Online Appendix for: Multidimensional Skills, Sorting, and Human Capital Accumulation*

Jeremy Lise Fabien Postel-Vinay

B Online Appendix

B.1 Extension: Worker Bargaining Power

When workers have bargaining power $\beta \in [0, 1]$, the dynamic equations (2) and (3) characterizing, respectively, the value of a match and the value of unemployment, must be amended as follows:

$$(r + \delta + \mu)P(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}, \mathbf{y}) - c(\mathbf{x}, \mathbf{y}) + \delta U(\mathbf{x}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) \cdot \nabla_{\mathbf{x}} P(\mathbf{x}, \mathbf{y}) + \lambda_1 \beta \mathbf{E} \max \{P(\mathbf{x}, \mathbf{y}') - P(\mathbf{x}, \mathbf{y}), 0\}$$
(B1)

and:

$$(r + \mu)U(\mathbf{x}) = b(\mathbf{x}) + \mathbf{g}(\mathbf{x}, \mathbf{0}) \cdot \nabla U(\mathbf{x}) + \lambda_0 \beta \mathbf{E} \max \{ P(\mathbf{x}, \mathbf{y}') - U(\mathbf{x}), 0 \}.$$
 (B2)

where, in both cases, the last (expectation) term captures the expected surplus share that the worker will extract from future matches thanks to her/his bargaining power.¹ The values defined by those two equations differ from the baseline case (which coincides with $\beta = 0$) precisely because of those expectation terms. While the economic interpretation of those expectation terms is clear enough, mathematically their impact is to add a non-linear term

^{*}Lise: University of Minnesota and Federal Reserve Bank of Minneapolis. Postel-Vinay: University College London and Institute for Fiscal Studies. The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

¹With $\beta > 0$, worker-firm pairs thus partly internalize the surplus supplement from the worker's future matches, as the worker now captures a share β of that extra surplus. In the limit $\beta \to 1$, the extra surplus from the worker's future matches is fully internalized by current match partners, and the private match and unemployment values (B1) and (B2) coincide with the corresponding Planner's values.

to the PDEs defining $P(\mathbf{x}, \mathbf{y})$ and $U(\mathbf{x})$, which rules out any closed-form solution. Those equations must therefore be solved numerically, using the following procedure.

We choose a grid $\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \times \{\mathbf{y}_1, \dots, \mathbf{y}_m\}$ of n worker skill and m job skill requirement vectors. For any point $(\mathbf{x}_i, \mathbf{y}_j)$ on that grid, we approximate $P(\mathbf{x}_i, \mathbf{y}_j) = \mathbf{\Pi}(\mathbf{x}_i) \cdot \boldsymbol{\phi}_P(\mathbf{y}_j)$ and $U(\mathbf{x}_i) = \mathbf{\Pi}(\mathbf{x}_i) \cdot \boldsymbol{\phi}_U$, where $\mathbf{\Pi}(\cdot)$ is a basis of complete polynomials of some chosen order, and where $\boldsymbol{\phi}_U$ and $\boldsymbol{\phi}_P(\cdot)$ are a set of m+1 vectors of coefficients that are computed by minimizing the distance between the left- and right-hand sides of (B1) and (B2) over the grid. Then, for a generic pair (\mathbf{x}, \mathbf{y}) that is not on the grid, we use the approximations $U(\mathbf{x}) = \mathbf{\Pi}(\mathbf{x}) \cdot \boldsymbol{\phi}_U$ and $P(\mathbf{x}, \mathbf{y}) = \mathbf{\Pi}(\mathbf{x}) \cdot \tilde{\boldsymbol{\phi}}_P(\mathbf{y})$, where $\tilde{\boldsymbol{\phi}}_P(\mathbf{y})$ is a linear interpolation of $\boldsymbol{\phi}_P(\tilde{\mathbf{y}}_{j1}(\mathbf{y}))$ and $\boldsymbol{\phi}_P(\tilde{\mathbf{y}}_{j2}(\mathbf{y}))$, $\tilde{\mathbf{y}}_{j1}(\mathbf{y})$ and $\tilde{\mathbf{y}}_{j2}(\mathbf{y})$ being the nearest two neighbors of \mathbf{y} on the grid.

Solving for ϕ_U and $\phi_P(\cdot)$ involves repeated calculations of $\mathbf{E} \max \{P(\mathbf{x}, \mathbf{y}') - P(\mathbf{x}, \mathbf{y}), 0\}$, a three-dimensional integral. Unfortunately, the computational cost of that simulation step quickly becomes prohibitive as one increases the order of the polynomial basis $\Pi(\cdot)$ or the size (n, m) of the grid of points upon which the approximation is based. This forces us to limit ourselves to a very sparse grid (in practice, we choose n = 10 and m = 6) and a low approximation order (in practice: 3), resulting in a very coarse approximation of our two value functions.² The results reported in this section should therefore be taken with the appropriate amount of caution. Yet we think it useful to provide an indication of what is likely to change and what isn't, compared to the baseline case $\beta = 0$, when workers are endowed with positive bargaining power. To that end, we re-estimate our model under the assumption that $\beta = 0.5$, using the approximation procedure just described.

Estimated parameters under the assumption $\beta = 0.5$ are reported in Table B.1, alongside our baseline estimates, copied from Table 4 for comparison. Point estimates of the flow surplus parameters (the α 's and the κ 's) tend to be slightly smaller with $\beta = 0.5$ than in the baseline case $\beta = 0$. Smaller values of the α parameters can be explained by the fact that those parameters are mainly identified off of the levels of wages (see Sub-section IV.C and Appendix A.A5).³ With positive bargaining power, workers appropriate an extra share of match productivity, which therefore needs to be estimated lower than in the $\beta = 0$

²Even with those coarse approximation settings, a single evaluation of the $\beta > 0$ version of the model takes about three times as long as a single evaluation of the baseline ($\beta = 0$) model, which involves no approximation. Moreover, estimation of the $\beta > 0$ model takes substantially more iterations to converge than estimation of the baseline model does. Although we cannot prove it, we suspect this is due to the extra noise caused by approximation error in the $\beta > 0$ case.

³In this version of the model, the wage equation is obtained, as before, by applying the rule $W(\mathbf{x}, \mathbf{y}, \sigma) = (1 - \sigma)U(\mathbf{x}) + \sigma P(\mathbf{x}, \mathbf{y})$, with the worker's value function now solving: $(r + \delta + \mu)W(\mathbf{x}, \mathbf{y}, \sigma) = w(\mathbf{x}, \mathbf{y}, \sigma) - c(\mathbf{x}, \mathbf{y}) + \delta U(\mathbf{x}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) \cdot \nabla_{\mathbf{x}}W(\mathbf{x}, \mathbf{y}, \sigma) + \lambda_1 \mathbf{E} \max\{0, \beta \max\{P(\mathbf{x}, \mathbf{y}), P(\mathbf{x}, \mathbf{y}')\} + (1 - \beta) \min\{P(\mathbf{x}, \mathbf{y}), P(\mathbf{x}, \mathbf{y}')\} - W(\mathbf{x}, \mathbf{y}, \sigma)\}.$

Table B.1: Parameter estimates (with worker bargaining power)

					production function	tion fur	nction					dist	ıtility o	f work		un. inc.
eta = 0	$\frac{\alpha_T}{137.5}$	$\begin{array}{ccc} \alpha_T & \alpha_C \\ 137.5 & 140.3 \end{array}$	α_M 64.4	α_I 92.4	$\begin{array}{ccc} \alpha_I & \alpha_{CC} & \alpha_{MM} \\ 92.4 & 195.6 & 10.7 \end{array}$	$\frac{\alpha_{MN}}{10.7}$	$1 \alpha_{II} \kappa_C^u = 15.4 5.165.3$	5.1	i.e .c.c 65.3	κ_M^u 984.5	κ_I^u 337.6	κ_C^o 54.1	$\kappa_C^o \kappa_M^o \kappa_I^o $ 54.1 409.6 171.9	κ_I^o		<i>b</i> 137.5
eta=0.5	122.3	116.2	2.09	91.4	280.7	9.7	14.5	3,0	01.4	641.3	304.5	53.2	376.1	142.5		122.4
					skill accumulation function	lation	functic	'n					gener	general efficiency	iency	
eta = 0	$\gamma_C^u \\ 7.7\mathrm{e} - 3$	3 2.1	$\begin{array}{cc} \gamma_C^o \\ 3 & 2.1e - 3 \end{array}$	3.4	2	$\gamma_M^o \\ 7.7\mathrm{e} - 3$	$\begin{array}{c} \gamma_I^u \\ 1.0\mathrm{e} - 3 \end{array}$		γ_I^o .8e – 7	$\begin{array}{ccc} \gamma_I^o & g \\ 5.8e - 7 & 2.3e - 3 \end{array}$	<i>j</i> -3	$\zeta_S \\ 2.4e - 2$		$\zeta_C = 0.18$	$\zeta_M -0.17$	$\zeta_I \\ 0.20$
$eta{=0.5}$	7.9e - 3	.3 2.1	2.1e - 3	3.5	9e - 2 8.1	1e - 3			1e - 7e	7. 2.4e	- 3	2.4e	•	•	-0.22	0.20
					sampl	sampling distribution	tributi	on						trans	trans. rates	
eta = 0	$ \xi_C \xi_M \xi_I \rho_{CM} $ 1.21 0.79 0.88 0.14	ξ_M 0.79	ξ_I 0.88		$ \rho_{CI} $ 0.73 –	$\rho_{IM} \\ -0.44$	$\eta_C^1 \\ 1.22$	$\eta_C^2 \\ 2.86$	$\eta_M^1 = 2.15$	$\eta_M^2 \\ 2.76$	$\eta_I^1 = 0.93$	$\eta_{I}^{2} = 2.96$		λ_0 0.39		
$\beta{=}~0.5$	1.08	92.0	0.82			-0.47	1.23	3.07	2.12	2.90	0.92	3.11		0.41	0.17	

Figure B.1: Model fit (with worker bargaining power)

case in order to match the wages observed in the data. Those lower estimated α 's have a knock-on effect on the estimated cost of mismatch (the κ 's): the cost of mismatch must stay commensurate with the returns on job attributes to rationalize observed mobility patterns.

Having said that, those differences are statistically small: point estimate differences between the two models are generally well within two standard deviations of our baseline estimates (see Table 4). Moreover, the relative values of the various parameters are very close between the $\beta=0.5$ and $\beta=0$ cases. As a result, none of the implications discussed above in the context of our baseline $\beta=0$ case are substantially changed.

Figure B.1 echoes Figure 2 and shows the main aspect of the model's fit in the $\beta=0.5$ case. A visual comparison of Figures B.1 and 2 suggests that the fit of the $\beta=0.5$ model is very similar to that of the baseline $\beta=0$ model, with two main differences. First, the model with bargaining power tends better to capture the wage/experience profile, in particular at low levels of experience (Figure B.1c). As discussed before, this was expected, as positive bargaining power mitigates the tendency of unemployed workers to exit unemployment on very low entry wages by bringing wages closer to match productivity. Second, the model with bargaining power no longer overstates the estimated returns to tenure to the extent that the baseline model did (Figure B.1h). This is again a consequence of bargaining power shifting weight away from workers' outside options and towards match productivity in the wage bargain, which affects entry wages (for which workers' outside option is low) proportionately more than the wages of longer-tenure workers (whose outside option is on average higher, closer to match productivity).

B.2 Sensitivity of Parameter Estimates to Data Moments

In Table B.2 we present a measure of the local sensitivity of the parameter estimates to the data moments (see Andrews, Gentzkow, and Shapiro, 2017). Specifically, we calculate and report the matrix Λ , defined as follows. Let Θ denote the parameter vector and $\mathbf{m}(\Theta)$ denote the vector of model-based moments we are matching. Next, let $G = \mathbb{E}\left[\partial \mathbf{m}/\partial \Theta^{\top}\right]$ denote the (expectation of the) Jacobian matrix of the moment function $\mathbf{m}(\Theta)$. Let Ω denote the covariance matrix of the data moments. Define $\tilde{\Lambda} = (G^{\top}G)^{-1}G^{\top}$. The Λ matrix is then the matrix whose ij-th element is given by $\Lambda_{ij} = \sqrt{\Omega_{jj}} \times \tilde{\Lambda}_{ij}$. The ij-th element of Λ can be interpreted as the local approximation to the effect of a one standard deviation change in moment j on parameter θ_i .

For the sake of brevity we omit from the table the five rows for the parameters $[\zeta_S, \zeta_C, \zeta_M, \zeta_I, \alpha_T]$ and the five columns for the moments corresponding to the wage regression coefficients on [years of education, x_{C0} , x_{M0} , x_{I0} , constant] since there is a one-to-one mapping between

these parameters and moments.

B.3 Comparing the unconditional and the conditional variance decompositions (Table 5)

Conditioning on broad levels of education reduces the share of variance explained by initial skill bundles, as those are correlated with education. The basic reason is that education explains a fair share of the variance in \mathbf{x}_0 , and a smaller share of the overall variance in $\ln Q$. Therefore, once one conditions on education, the residual variation in \mathbf{x}_0 explains a smaller share of the (conditional) variance of $\ln Q$.

This can be expressed formally, taking up the notation from Section 7 in the paper (and dropping indices to de-clutter the notation):

$$\frac{\mathbf{Var}_{\mathbf{x}_0}\left[\mathbf{E}(\ln Q\mid \mathbf{x}_0)\right]}{\mathbf{Var}\ln Q} > \frac{\mathbf{E}_{\mathrm{ed}}\left\{\mathbf{Var}_{\mathbf{x}_0}\left[\mathbf{E}(\ln Q\mid \mathbf{x}_0)\mid \mathrm{ed}\right]\right\}}{\mathbf{E}_{\mathrm{ed}}\left\{\mathbf{Var}\left[\ln Q\mid \mathrm{ed}\right]\right\}}$$

where our results in Section 7 say that the l.h.s. is about 0.65 while the r.h.s. is slightly below 0.3. Now, the l.h.s. can be further decomposed as:

$$\frac{\operatorname{\mathbf{Var}}_{\mathbf{x}_{0}}\left[\mathbf{E}(\ln Q \mid \mathbf{x}_{0})\right]}{\operatorname{\mathbf{Var}}\ln Q} = \frac{\mathbf{E}_{\operatorname{ed}}\left\{\operatorname{\mathbf{Var}}_{\mathbf{x}_{0}}\left[\mathbf{E}(\ln Q \mid \mathbf{x}_{0}) \mid \operatorname{ed}\right]\right\} + \operatorname{\mathbf{Var}}_{\operatorname{ed}}\left\{\mathbf{E}_{\mathbf{x}_{0}}\left[\mathbf{E}(\ln Q \mid \mathbf{x}_{0}) \mid \operatorname{ed}\right]\right\}}{\mathbf{E}_{\operatorname{ed}}\left\{\operatorname{\mathbf{Var}}\left[\ln Q \mid \operatorname{ed}\right]\right\} + \operatorname{\mathbf{Var}}_{\operatorname{ed}}\left\{\mathbf{E}\left[\ln Q \mid \operatorname{ed}\right]\right\}} \tag{B3}$$

Applying our estimates to those decompositions of the numerator and denominator of the fraction above, we find that:

$$\mathbf{Var}_{\mathrm{ed}} \left\{ \mathbf{E} \left[\ln Q \mid \mathrm{ed} \right] \right\} \simeq 0.507 \times \mathbf{Var} \ln Q$$

$$\mathbf{Var}_{\mathrm{ed}} \left\{ \mathbf{E}_{\mathbf{x}_{0}} \left[\mathbf{E} (\ln Q \mid \mathbf{x}_{0}) \mid \mathrm{ed} \right] \right\} \simeq 0.779 \times \mathbf{Var}_{\mathbf{x}_{0}} \left[\mathbf{E} (\ln Q \mid \mathbf{x}_{0}) \right]$$
(B4)

i.e. education explains much more of the variance of $\ln Q$ conditional on \mathbf{x}_0 than in the whole sample. Substitution of (B4) into (B3) implies:

$$\begin{split} \frac{\mathbf{Var}_{\mathbf{x}_0} \left[\mathbf{E} (\ln Q \mid \mathbf{x}_0) \right]}{\mathbf{Var} \ln Q} &\simeq \frac{\mathbf{E}_{\mathrm{ed}} \left\{ \mathbf{Var}_{\mathbf{x}_0} \left[\mathbf{E} (\ln Q \mid \mathbf{x}_0) \mid \mathrm{ed} \right] \right\} \times \left(1 + \frac{0.779}{1 - 0.779} \right)}{\mathbf{E}_{\mathrm{ed}} \left\{ \mathbf{Var} \left[\ln Q \mid \mathrm{ed} \right] \right\} \times \left(1 + \frac{0.507}{1 - 0.507} \right)} \\ &\simeq \frac{\mathbf{E}_{\mathrm{ed}} \left\{ \mathbf{Var}_{\mathbf{x}_0} \left[\mathbf{E} (\ln Q \mid \mathbf{x}_0) \mid \mathrm{ed} \right] \right\}}{\mathbf{E}_{\mathrm{ed}} \left\{ \mathbf{Var} \left[\ln Q \mid \mathrm{ed} \right] \right\}} \times 2.23 \end{split}$$

which is roughly the ratio found in Table 5.

Table B.2: Sensitivity of parameters to moments

N2E	U2E	1	$E2E_1$	$E2E_2$	$E2E_3$	$E2E_4$	$E2E_5$	$E2E_6$	y_{C1}	y_{C2}	y_{C3}	y_{C4}	y_{C5}	y_{C6}	y_{M1}	y_{M2}	<i>y</i> M3	.1
-0.017	0.021 0.206		0.016 -0.084		-0.004 0.200	0.003 0.146	0.000	-0.088	0.008	-0.013 -0.021	0.001	-0.002 -0.055	0.010	0.003 0.274	-0.039	-0.001	$0.011 \\ 0.158$	
0.235 -0.017	-0.017		0.033		0.026	-0.012	0.016	0.039	0.066	-0.014	0.029	0.059	-0.042	-0.100	-0.041	0.002	-0.079	
-0.001 0.023	0.023		-0.013		0.013	0.008	0.004	-0.009	-0.014	0.005	0.002	-0.006	0.000	0.015	-0.015	-0.019	0.017	
(-0.017 0.008	0.008		0.018		0.005	0.012	0.002	0.015	-0.005	-0.012	0.010	0.017	0.002	-0.011	-0.026	0.024	0.012	
-0.052	-0.052		-0.020		-0.017	-0.023	-0.003	-0.028	-0.020	-0.022	-0.009	-0.009	0.012	0.038	0.057	0.046	-0.002	
-27.787	-27.787		12.328		-19.626	-13.829	-5.146	10.775	25.275	-5.414	0.325	10.731	-1.540	-26.724	25.866	29.468	-22.689	
-8.827	-8.827		4.687		-2.673	-2.400	-0.139	1.439	4.400	-0.997	-1.417	3.227	-0.434	-5.457	8.745	9.970	-3.805	
-0.013	-0.013		-2.701		3.440	0.615	2.423	-1.090	-0.981	-0.883	-0.795	0.947	-0.762	2.394	2.738	0.955	-0.973	
0.024	0.024		0.076		-0.126	-0.029	-0.098	0.072	0.104	0.131	0.167	0.111	-0.067	-0.447	-0.032	0.168	0.032	
-2.625	-2.625		1.474		-0.753	-0.867	-0.200	1.266	1.888	-0.716	0.246	1.692	-0.470	-2.710	2.096	3.595	-2.134	
-0.748	-0.748		0.145		-0.435	-0.429	0.013	0.377	0.531	-0.122	0.289	0.692	-0.348	-1.100	0.807	1.028	-0.698	
0.001	0.001		0.056		0.068	-0.026	0.008	0.044	0.376	0.159	0.251	0.299	0.307	0.283	-0.108	-0.029	-0.067	
-0.320	-0.320		0.013		-0.118	-0.145	-0.073	-0.057	0.039	-0.026	-0.053	-0.013	0.005	0.007	0.424	0.297	0.065	
0.127	0.127		0.206		-0.157	0.00	-0.068	0.080	0.166	0.069	0.115	-0.021	-0.049	-0.254	-0.259	0.016	-0.011	
-0.601	-0.601		-0.031		-0.085	-0.098	990.0	0.335	0.137	0.070	-0.001	0.527	-0.199	-0.511	0.910	0.564	-0.513	
-0.527	-0.527		0.239		-0.390	-0.270	-0.174	0.124	0.295	-0.005	0.114	0.205	-0.041	-0.572	0.347	0.499	-0.171	
-0.389	-0.389		0.037		-0.017	-0.212	0.029	0.107	0.363	-0.152	0.060	0.297	-0.140	-0.479	0.459	0.523	-0.340	
-0.822	-0.822		-0.203		0.004	-0.527	0.110	0.200	0.909	-0.524	-0.309	0.183	-0.054	-0.214	1.128	0.557	-1.039	
-0.089	-0.089		0.016		-0.043	-0.059	0.000	0.049	0.102	-0.033	0.004	0.043	-0.029	-0.110	0.109	0.103	-0.102	
0.088	0.088		-0.130		0.066	-0.017	0.040	-0.034	0.040	0.005	0.001	-0.001	-0.027	-0.035	0.070	-0.037	0.033	
0.457 -0.673	-0.673		0.239		-0.262	-0.307	-0.030	0.330	0.505	-0.169	0.064	0.445	-0.187	-0.709	0.569	0.699	-0.671	
* -0.018 -0.027	-0.027		0.021		-0.015	-0.012	-0.012	-0.002	0.010	-0.001	-0.003	-0.003	0.003	-0.005	0.002	0.004	-0.012	
$ -0.054 \qquad 0.051$	0.051		0.120		-0.081	-0.073	-0.115	-0.013	0.098	-0.004	-0.047	-0.140	0.119	0.087	-0.153	-0.223	0.077	
0.366 -0.863	-0.863		0.310		-0.368	-0.306	-0.324	0.054	0.410	0.091	-0.021	0.090	-0.052	-0.615	0.534	0.752	-0.498	
-0.247 -0.103	-0.103		0.054		-0.321	-0.094	-0.131	0.097	0.208	0.104	0.173	0.015	-0.123	-0.430	0.065	0.205	-0.077	
0.287 0.371	0.371		0.012		-0.116	0.077	-0.121	-0.096	-0.164	0.306	-0.017	-0.253	0.112	0.209	-0.217	-0.497	0.403	
0.333 -0.025	-0.025		0.467		-0.345	0.140	-0.241	0.306	0.313	0.208	0.235	0.109	0.005	-0.814	-0.026	0.982	0.084	
-0.333	-0.333		-0.781		0.204	-0.112	0.110	0.002	-0.098	0.049	0.019	0.264	-0.257	-0.206	0.891	0.151	-0.166	
-0.076 -0.040	-0.040		0.01	6	-0.041	0.003	-0.002	0.017	0.000	-0.004	0.010	0.005	-0.004	-0.008	0.032	0.076	-0.004	
0.088 0.023	0.023		0.00	2	0.014	0.003	0.004	0.004	0.015	-0.004	-0.002	0.006	0.003	-0.008	-0.018	-0.018	-0.001	
0.052 -0.015	-0.015		0.0	13	-0.024	0.000	0.002	0.012	0.023	-0.005	0.008	0.012	900.0-	-0.032	0.016	0.000	-0.016	
-0.607 0.507	0.507		-0.0	47	0.453	0.341	0.254	0.145	-0.368	-0.036	0.058	0.166	-0.104	0.237	-0.568	-0.364	0.302	
0.009	0.009		0.03	2	-0.003	0.002	-0.011	0.009	0.003	-0.017	-0.007	0.024	0.019	-0.017	-0.042	-0.024	0.019	
The change in each parameter (rows) indu	ange in each parameter	each parameter	ameter	ت	rows) ind	uced by	a one standard		deviation change in each moment (rows	change	in each	moment	(rows).					

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

9.M. 9.M. <t< th=""></t<>
9A45 9A6 9A1 972 973 974 975 0.023 0.008 0.027 -0.040 -0.010 0.014 0.002 0.018 -0.061 -0.083 -0.165 -0.059 -0.059 0.019 -0.081 -0.085 -0.019 -0.050 -0.059 0.011 0.007 -0.085 -0.014 -0.014 -0.019 0.011 0.007 -0.085 -0.061 -0.086 -0.091 -0.050 0.011 -0.020 -0.085 -0.061 -0.086 -0.014 -0.011 -0.001 0.026 -0.021 -0.087 -1.445 20.010 -1.737 14.108 -1.581 -3.329 -2.372 -1.445 20.010 -1.737 4.400 -3.780 -0.089 -0.217 -0.153 -0.121 -0.153 -0.105 -0.053 -0.148 -0.227 -0.064 -0.144 0.046 -0.152 -1.445 -1.622 -
9M5 9M6 9M1 9M2 9M3 9M4 0.023 0.008 0.027 -0.040 -0.010 0.014 -0.018 -0.061 -0.008 0.031 -0.165 -0.063 0.004 0.030 0.102 0.069 0.109 -0.050 0.011 0.007 0.005 0.014 -0.014 0.004 0.004 -0.029 0.021 -0.036 0.003 -0.014 -0.050 -0.061 -0.085 -0.061 0.004 0.012 -1.581 -9.329 -0.872 -14.045 20.010 -1.737 -6.64 -6.369 -2.2496 1.769 1.527 -2.397 -0.050 0.008 0.251 0.121 0.152 -1.445 -0.044 0.083 -0.044 0.046 -0.144 0.046 -0.144 0.046 -0.144 0.046 0.033 -0.144 0.046 0.033 -0.144 0.046 0.046 0.046 0.046
9M6 9/11 9/12 9/13 0.023 0.008 0.027 -0.040 -0.010 0.018 -0.061 -0.08 0.031 -0.165 0.004 0.030 0.102 0.069 0.109 0.011 0.007 0.005 0.014 -0.014 0.011 0.007 0.005 0.014 -0.014 0.011 0.007 0.005 0.014 -0.014 0.050 -0.061 -0.085 -0.061 0.004 -1.581 -9.329 -0.872 -14.045 20.010 -6.664 -6.369 -2.353 -2.127 3.987 -3.780 -3.102 -2.496 1.769 1.527 0.096 0.008 0.251 0.014 0.046 0.090 0.144 -0.213 -0.144 0.046 0.090 0.144 -0.213 -0.012 0.071 0.0243 0.053 0.054 -0.016 0.058 0.176
9M6 9/1 9M7 9/1 0.023 0.008 0.027 -0.040 0.018 -0.051 -0.040 0.031 0.004 0.030 0.102 0.069 0.011 0.007 0.005 -0.014 0.004 -0.029 0.021 -0.036 -0.050 -0.061 -0.085 -0.061 -0.050 -0.061 -0.085 -14.045 -0.050 -0.061 -0.085 -0.061 -0.050 -0.061 -0.085 -0.061 -0.050 -0.087 -14.045 -1.079 -0.096 -0.089 -2.353 -2.127 -0.097 -0.144 -0.134 -1.539 -0.099 0.144 -0.134 -0.144 0.090 0.144 -0.213 -0.144 0.090 0.144 -0.213 -0.144 0.090 0.144 -0.213 -0.144 0.090 0.144 -0.213 -0.164
9M5 9M1 0.023 0.008 0.027 0.018 0.007 0.008 0.004 0.030 0.102 0.011 0.007 0.005 0.011 0.007 0.005 0.011 0.007 0.005 0.011 0.007 0.005 0.050 0.021 0.085 -1.581 -9.329 -0.872 -6.664 -6.369 -2.353 -3.780 -3.102 -2.496 0.096 0.008 0.251 0.097 -0.483 -0.527 0.006 0.090 0.144 -0.213 0.044 0.090 0.144 -0.213 0.036 0.090 0.144 -0.213 0.036 0.176 -0.037 -0.487 -0.049 0.054 -0.057 -0.015 -0.015 0.064 -0.025 -0.015 -0.015 0.005 -0.007 -0.003 -0.004
9M5 9M6 0.023 0.008 0.023 0.008 0.011 0.007 0.004 0.030 0.011 0.007 0.004 0.029 0.050 0.061 -11.581 -9.329 -6.664 -6.369 -3.780 -3.102 0.096 0.008 -1.582 -1.879 -0.483 -0.527 -0.014 0.063 0.032 0.247 -0.043 -0.250 0.033 -0.025 -0.064 0.028 -0.205 0.273 -0.205 0.273 -0.205 0.273 -0.003 0.005 0.125 0.273 -0.004 0.020 -0.004 0.020
9M5 0.023 0.023 0.004 0.004 0.001 0.004 0.005 0.006 0.096 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.096 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.322 0.090 0.090 0.090 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
'
9M4 -0.007 -0.007 -0.008 -0.008 -0.003 -0.033 -0.010 -0.033 -0.044 -0.31 -0.002 -0

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

n	* *	$\dots \operatorname{corr}_{5}(y_{C}, y_{M})$	$\operatorname{corr}_6(y_C, y_M)$	$\operatorname{corr}_1(y_C, y_I)$	$\operatorname{corr}_2(y_C, y_I)$	$\operatorname{corr}_3(y_C, y_I)$	$\operatorname{corr}_4(y_C, y_I)$	$corr_5(y_C, y_I)$	$\operatorname{corr}_6(y_C, y_I)$	$\operatorname{corr}_1(y_M, y_I) \dots$
	÷ ÷	-0.122	0.067	0.035	0.071	0.016	-0.174	0.005	0.093	0.054
γ_M^u	X X X	-0.373	1.003	1.278	0.065	0.028	-0.124	0.548	-0.325	-0.419
_	* * *	-0.148	-0.567	-0.463	-0.106	0.039	0.092	0.256	0.244	-0.169
, o C	* * *	0.009	0.039	0.020	0.012	-0.055	-0.008	0.004	0.088	-0.004
% %	* * *	-0.119	-0.010	0.064	0.078	0.016	-0.020	-0.032	-0.051	0.061
0/L	* * *	0.138	0.330	0.162	0.016	-0.244	-0.031	-0.097	-0.194	0.387
		-12.538	-66.797	-48.565	4.002	29.870	-41.995	1.328	-55.169	-44.500
₽		-22.174	-25.587	9.309	-14.790	15.415	15.545	13.193	-29.270	-12.871
κ_I^n		16.867	3.233	1.308	-1.150	-10.104	13.003	7.964	-7.932	-17.342
, ₀ 0		0.177	0.557	-0.701	-0.433	-0.373	0.203	0.326	0.778	0.215
\mathcal{K}_{N}^{o}		2.183	-7.926	-6.644	1.621	5.251	3.838	-2.341	-9.208	-4.453
		1.420	-3.913	-2.963	0.298	-0.354	0.820	-0.093	-0.463	-1.923
ξ_C	* *	0.214	-0.299	-0.131	0.402	0.712	-0.196	-0.174	-0.228	0.150
_	* *	-0.397	-0.747	-0.383	-0.398	-0.047	0.034	-0.019	0.080	0.795
ξ_I	* *	-0.602	-0.131	-0.530	0.151	0.203	-0.732	-0.167	0.755	0.021
α_C		2.344	-4.056	-2.122	-1.032	1.887	2.216	-0.450	-1.897	-3.685
α_M		-2.475	-0.997	-0.560	-0.262	-0.356	-0.037	0.729	0.020	0.826
α_I		1.547	-0.156	-1.531	0.219	-0.157	0.368	0.840	-0.883	-1.667
α^{CC}		3.669	-1.560	-0.861	2.555	2.273	-0.092	-0.037	-4.979	-2.727
α_{MM}		0.380	-0.097	-0.313	0.095	0.088	0.064	-0.122	-0.389	-0.483
α_{II}		0.396	0.698	0.234	0.147	-0.338	0.075	0.430	0.029	-0.618
		1.013	-3.120	-2.427	0.009	1.739	0.572	-0.419	-1.826	-1.590
	* * *	-0.118	-0.161	-0.065	-0.043	0.051	-0.006	-0.026	0.027	0.094
7.	* *	-0.895	-0.703	-0.555	0.770	0.478	-0.801	-0.595	0.109	-0.778
4	* *	-1.749	0.623	-1.570	-1.449	0.771	0.570	0.658	-0.441	1.435
η_I^1	*	-0.822	-0.351	-0.174	-0.113	-0.492	-0.817	0.083	1.008	0.737
	* *	-1.973	-1.187	-0.784	0.423	-0.726	-0.660	-0.392	1.073	-2.724
4	* *	-2.213	4.772	1.170	0.148	0.264	-0.150	0.243	-1.454	0.645
	* *	1.236	-1.373	0.025	-0.933	-1.417	1.469	2.034	0.545	-1.972
ρ_{CM}	*	-0.396	-0.005	0.157	0.084	-0.187	-0.081	-0.028	-0.124	-0.023
ρ_{CI}	*	-0.035	-0.008	-0.166	-0.101	-0.090	-0.186	-0.020	-0.054	-0.152
ρ_{MI}	* *	-0.095	0.145	0.031	0.067	-0.102	-0.122	0.111	-0.026	-0.427
_	* * *	0.954	-0.270	0.298	-1.052	1.129	0.931	-0.980	0.086	-1.613
	* * *	0.234	-0.486	0.001	-0.060	0.169	-0.185	-0.127	0.245	0.151
Jote.	The ch	The change in each narameter (rows) ind	meter (rows) in	duced by a one	standard	iation change	deviation change in each moment	of (rows)		

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

		\dots corr ₂ (y_M, y_I)	$corr_3(y_M,y_I)$	$\operatorname{corr}_4(y_M,y_I)$	$\operatorname{corr}_5(y_M,y_I)$	$\operatorname{corr}_6(y_M,y_I)$	$\operatorname{corr}_1(y_C, x_C)$	$\operatorname{corr}_2(y_C, x_C)$	$corr_3(y_C, x_C)$	$\operatorname{corr}_4(y_C, x_C)$
γ_C^a	* * *	0.026	-0.001	0.009	-0.116	0.121	-0.276	-0.049	0.001	0.260
\searrow_{n}^{N}	* * *	-0.319	-0.240	0.097	-0.539	0.188	-1.305	1.794	2.664	2.638
λ_I^n	* * *	0.185	0.061	-0.137	0.300	-0.267	-0.425	-1.146	-0.942	-1.113
, oC	* * *	-0.001	-0.097	-0.068	-0.071	0.133	0.002	0.130	0.119	0.136
<i>∑</i> ∘ (* * *	0.103	-0.094	-0.045	-0.141	-0.035	-0.164	-0.314	-0.268	-0.049
λ_o^{I}	* * *	-0.164	-0.108	0.166	-0.128	-0.154	-0.063	0.339	0.100	0.470
ν Σ		15.933	60.219	149.080	692.02	-148.034	-64.616	-203.664	34.137	-1.100
\mathcal{K}_{N}^{a}		-19.832	10.313	63.632	11.125	-82.512	-31.039	-56.630	48.199	46.060
\mathcal{K}_I^n		19.458	-2.498	-1.928	2.762	-13.261	-16.094	9.408	19.593	20.369
, ₀ , 0		-0.304	-1.337	-0.616	0.867	-0.044	-0.046	-2.213	-1.039	-0.537
\mathcal{K}_{M}^{o}		7.754	4.815	11.901	-0.102	-21.700	-8.933	-29.042	3.186	0.273
κ_I^o		1.083	0.312	5.318	0.527	-4.938	0.814	-8.780	-3.890	0.391
ξ_C	* *	0.853	0.687	0.035	-0.580	-0.617	-0.770	-0.829	-0.843	-0.633
ξ_M	* *	-1.733	0.977	0.461	-0.069	-0.862	0.236	0.017	0.840	0.066
ξ_I	* *	-0.552	-0.905	0.286	0.465	0.991	1.309	-1.915	-1.201	-0.524
α^C		1.729	1.664	1.681	1.214	-4.234	0.804	-2.786	2.902	-2.178
α_M		-1.378	-0.382	2.083	0.712	-2.582	-1.023	-4.590	-1.485	-0.449
α_I		2.324	-0.540	2.289	1.490	-3.650	-1.968	-4.285	0.369	1.822
α^{CC}		5.773	4.614	3.703	0.628	-7.980	0.007	-1.912	4.242	0.611
α_{MM}		0.562	0.366	0.662	0.211	-0.501	0.261	-0.788	-0.026	-0.067
α_{II}		0.761	-0.594	0.161	0.079	-0.055	0.013	0.531	1.018	1.162
q		1.812	1.944	3.161	0.457	-4.781	1.217	-5.998	-1.257	-0.755
g	* * *	-0.158	0.100	0.079	-0.035	-0.122	900.0	-0.128	-0.008	-0.051
η_C^1	* *	-0.006	1.393	0.975	-0.755	-0.383	-0.588	0.615	0.413	0.212
$\eta_M^{ ilde{1}}$	* *	-5.024	3.476	0.918	1.035	-3.205	-2.468	-4.191	5.796	-0.708
η_I^1	*	-1.621	-1.142	0.891	609.0	1.127	4.338	-2.749	-1.743	-1.278
η_C^2	* *	-0.691	0.780	0.483	0.123	1.806	1.133	3.395	2.972	2.300
η_M^2	* *	-1.160	-0.784	0.033	0.625	-0.469	-2.687	-6.162	2.350	-0.847
η_I^2	* *	0.494	1.017	-0.565	0.370	-1.039	3.949	-0.245	0.808	-1.880
ρ_{CM}	* *	-0.224	-0.071	0.241	-0.016	0.108	0.244	-0.392	-0.145	-0.045
$ ho_{CI}$	* *	0.172	0.016	-0.203	0.046	-0.028	-0.403	-0.044	0.103	-0.054
ρ_{MI}	* *	-0.240	-0.208	-0.165	-0.139	-0.332	-0.248	-0.414	-0.059	-0.068
γ_0	* * *	2.373	-0.602	-1.417	-1.985	3.592	3.488	-1.385	-3.413	-1.668
λ_1	* * *	0.169	0.046	-0.174	-0.106	290.0	-0.297	-0.415	0.033	0.444
Note:	The ch	Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows)	meter (rows) i	nduced by a or	e standard der	viation change	in each mome	nt (rows).		

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

	0 ***	0.014	0.039	-0.200	0.128	-0.048	-0.365	-0.274	0.134	0.107
*	- ***	025	-1.572	-0.643	7.594	-2.091	2.588	-0.731	1.158	0.695
	0 ***).122	-0.104	-0.392	0.999	1.079	-0.961	0.678	0.106	-0.334
).136	-0.025	-0.137	0.073	900.0	-0.008	0.070	-0.177	0.072
	0 ***	.298	-0.029	0.135	0.201	0.224	0.048	0.057	0.052	0.339
	0 ***	.257	-0.020	-0.039	-0.490	-0.100	0.158	-0.456	-0.030	0.118
Çs,	86	3.356	-96.800	296.853	12.780	-73.988	-121.765	-63.652	84.404	-149.724
\tilde{c}_{n}^{N}	48	3.435	-35.187	43.499	138.408	-49.088	50.370	5.455	28.385	-47.247
$n_{\mathcal{I}}$	16	.390	-15.874	-0.052	48.318	13.807	-21.520	1.557	3.153	16.039
ر وي	<i>c</i> ₁	2.547	2.070	-1.739	-3.980	1.591	-0.516	1.879	-2.444	-1.331
. o.3	23	3.561	-9.876	21.486	13.048	4.708	-12.011	9.672	-2.122	-4.085
0.0		3.651	-4.571	10.010	3.727	-2.885	-3.988	3.658	-1.706	-9.986
	0- **	0.048	0.458	-2.605	1.335	0.970	-1.123	0.000	0.237	0.082
	0- **	1.494	-0.556	-0.253	-1.343	0.073	-0.313	0.155	1.014	-0.645
	0 **	.222	1.025	1.389	1.202	-0.833	-0.693	-0.294	-0.509	-1.343
α_C		.081	-4.512	13.214	-0.633	1.363	-1.053	3.829	-0.050	-4.607
α_M		2.264	-0.165	2.481	-1.947	-0.120	0.380	2.427	1.296	-2.661
α_I	<u>.</u>	3.728	0.191	2.126	3.191	-0.583	-5.183	3.269	-0.205	0.037
α_{CC}	9	0.240	-1.776	1.444	12.025	-1.153	0.388	-3.233	2.544	-5.926
α_{MM}		.750	0.148	0.324	-0.094	0.505	-1.005	-0.290	-0.486	-0.526
α_{II}	9-	.276	0.607	-1.976	1.444	0.563	0.576	-0.020	-1.340	-1.345
	9	5.508	-0.982	6.040	1.941	-0.658	-3.542	1.058	1.008	-4.378
	*	0.065	-0.006	-0.017	-0.085	-0.002	-0.040	0.071	0.079	0.001
η_C^1 *		.779	1.266	-2.814	-1.710	-1.140	-0.382	1.292	-0.940	0.687
	**	321	-1.734	-4.767	-1.758	2.664	-1.231	1.949	-0.787	0.087
	0 **	.390	-0.108	3.558	0.137	-2.519	0.734	-0.805	-1.592	-0.801
	**	1.313	1.308	0.942	-3.606	-3.796	2.380	3.586	-1.893	1.377
	**	1.193	-1.345	0.280	-0.173	0.126	2.954	-0.468	-3.038	4.411
	0- **	0.036	-3.740	0.101	1.367	-0.808	1.141	3.184	-2.934	2.904
Į	0 **).113	-0.604	1.386	0.235	-0.665	-0.003	-0.291	0.407	0.767
		.135	0.052	-0.427	0.242	0.209	-0.218	0.113	0.060	-0.166
ϕ_{MI} *		0.015	-0.477	0.726	0.454	-0.273	-0.320	-0.131	0.555	0.349
* 0		2.059	-0.146	-1.337	4.309	0.428	-3.541	2.523	1.810	4.400
*	0 ***	0.086	-0.001	-0.249	-0.380	0.309	-0.076	0.340	0.395	0.348
TT TA	00000000	1	() +		-1-1-1-1-1			(======================================		

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

		$ \dots \text{corr}_2(y_I, x_I) $	$\operatorname{corr}_3(y_I, x_I)$	$\operatorname{corr}_4(y_I, x_I)$	$\operatorname{corr}_5(y_I,x_I)$	$\operatorname{corr}_6(y_I, x_I)$	$\operatorname{sd}_1(y_C)$	$\operatorname{sd}_2(y_C)$	$\mathrm{sd}_3(y_C)$	$\mathrm{sd}_4(y_C)$	$\mathrm{sd}_5(y_C)$	$\mathrm{sd}_6(y_C)$	$\mathrm{sd}_1(y_M)$	$\operatorname{sd}_2(y_M)$
γ_C^u	* * *	-0.051	0.111	-0.206	0.074	-0.108	0.011	0.010	0.005	-0.001	-0.001	0.000	-0.001	0.001
\mathcal{J}_n^N	* * *	1.388	0.629	-1.398	-1.514	1.157	0.125	-0.006	0.049	-0.098	0.056	0.057	-0.069	-0.011
n^{I} \wedge	* * *	0.185	1.211	0.256	1.895	0.980	-0.080	-0.034	-0.049	-0.026	-0.049	-0.081	0.022	0.009
<i>S</i>	* * *	0.057	0.018	0.002	-0.102	-0.049	0.011	0.007	0.004	0.005	0.00	0.009	-0.006	-0.002
70	* * *	0.043	0.217	-0.131	-0.098	-0.009	-0.009	-0.001	-0.011	-0.011	-0.020	-0.029	0.012	800.0
λ_o^I	* * *	0.481	-0.265	0.309	-0.056	-0.082	-0.009	-0.028	-0.021	-0.032	-0.020	-0.017	-0.030	-0.031
$\mathcal{L}_{\mathcal{L}}$		-139.556	117.349	-55.286	196.038	-13.921	-13.465	-4.817	-6.284	-5.867	-11.025	-10.664	13.386	8.187
\mathcal{K}_{M}^{n}		-6.455	27.399	-1.501	3.281	38.548	-3.998	-3.876	-2.103	-3.702	-3.395	-3.323	4.106	4.000
κ_I^a		-0.313	-15.235	-5.204	8.704	2.821	-1.549	-1.763	-1.640	-2.728	-1.183	-2.209	-0.849	-1.370
, o, S		-0.851	2.252	-1.257	1.161	-0.545	-0.124	0.044	-0.035	0.101	-0.081	-0.090	0.264	0.286
\mathcal{K}_{M}^{o}		-14.822	19.058	0.518	4.768	1.641	-2.177	-1.045	-1.223	-1.225	-1.936	-2.432	1.898	1.275
\mathcal{K}_I^o		-2.209	10.034	0.405	4.227	-2.428	-0.827	-0.292	-0.525	-0.323	-0.659	-0.886	0.433	0.213
ξ_C	*	-0.190	0.292	0.403	0.189	-0.477	-0.058	-0.067	-0.063	-0.095	-0.070	-0.110	-0.046	-0.075
ξ_M	*	0.125	-0.464	0.602	0.517	-0.470	-0.071	-0.104	-0.047	-0.026	-0.029	-0.011	-0.108	-0.108
ξI	*	-2.547	0.888	0.870	1.253	-0.041	0.063	0.122	0.077	0.136	0.041	0.069	0.180	0.185
α^C		-0.784	7.971	-3.161	-2.129	4.972	-0.565	-0.177	-0.224	-0.186	-0.395	-0.552	0.346	0.251
α_M		0.191	2.374	0.266	2.979	-2.260	-0.258	-0.121	-0.158	-0.026	-0.191	-0.171	0.211	0.166
α_I		-1.603	1.503	-2.695	3.600	-0.822	-0.416	-0.186	-0.293	-0.268	-0.341	-0.462	0.228	0.123
α^{CC}		-4.785	0.655	5.812	7.499	-4.345	-0.517	-0.554	-0.385	-0.708	-0.321	-0.423	-0.089	-0.427
α_{MM}		-0.903	-0.001	0.707	0.815	-0.475	-0.074	-0.032	-0.045	-0.035	-0.049	-0.066	0.051	800.0
α_{II}		090'0	0.148	0.672	0.855	-1.009	-0.009	-0.020	-0.027	-0.038	0.022	0.016	-0.003	-0.009
q		-3.928	4.977	-0.737	2.123	1.386	-0.602	-0.257	-0.327	-0.282	-0.489	-0.657	0.324	0.161
В	* * *	-0.075	-0.107	0.088	0.007	0.060	-0.002	-0.004	0.002	0.005	0.000	0.005	-0.001	0.001
η_C^1	*	-0.087	-2.248	1.667	0.773	-1.361	0.185	0.132	0.166	0.177	0.203	0.316	-0.058	-0.067
η_M^1	* *	-3.097	3.171	-2.179	2.693	-0.042	-0.348	-0.255	-0.102	-0.023	-0.217	-0.162	0.419	0.442
η_I^1	* *	-2.574	1.440	1.318	2.091	-2.236	-0.016	0.073	-0.021	0.136	-0.014	-0.011	0.173	0.132
η_C^2	*	-0.072	-3.049	1.291	0.519	-0.676	0.474	0.424	0.450	0.525	0.531	0.770	0.027	0.093
η_M^2	*	-4.032	4.886	-2.186	0.180	-1.155	-0.036	0.122	0.075	0.119	-0.158	-0.075	0.895	0.894
η_I^2	*	2.594	3.007	-3.665	2.847	-3.583	-0.388	-0.236	-0.363	-0.188	-0.192	-0.408	-0.165	-0.281
ρ_{CM}	*	-0.261	-0.146	0.215	0.182	-0.373	0.008	0.000	-0.003	0.001	-0.008	-0.006	0.018	0.002
ρ_{CI}	*	0.008	0.203	-0.309	0.351	-0.022	-0.001	0.005	0.004	0.000	0.005	0.005	0.000	800.0
ρ_{MI}	* *	-0.297	0.143	-0.230	0.691	-0.269	-0.006	0.002	-0.007	-0.005	-0.012	-0.010	0.028	0.017
$^{\circ}$	* * *	-0.121	2.378	3.213	-6.672	0.749	0.031	0.045	-0.082	-0.033	-0.058	-0.316	-0.099	-0.130
λ_1	* * *	-0.306	0.484	-0.122	-0.188	0.086	0.003	0.008	-0.001	0.006	-0.004	-0.014	0.000	900.0
Note:	The	The change in each parameter (rows) induced by a one standard deviation change in each moment (rows	arameter (re	ows) induced	by a one star	ndard deviat	ion chan	oe in eac	h mome	nt (rows				

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

Table B.2: ... continued ...

	•	$\dots \operatorname{sd}_3(y_M)$	$\operatorname{sd}_4(y_M)$	$\mathrm{sd}_5(y_M)$	$\mathrm{sd}_6(y_M)$	$\mathrm{sd}_1(y_I)$	$\mathrm{sd}_2(y_I)$	$\mathrm{sd}_3(y_I)$	$\mathrm{sd}_4(y_I)$	$\mathrm{sd}_5(y_I)$	$\mathrm{sd}_6(y_I)$	β_{y_C}	β_{y_M}	eta_{y_I}	:
	* * *	0.003	0.002	-0.011	-0.010	-0.014	-0.007	-0.013	-0.018	-0.015	-0.026	-0.097	-0.140	0.064	
_	* * *	-0.100	-0.085	-0.032	-0.040	-0.097	-0.161	-0.106	-0.143	-0.051	-0.110	-0.379	-0.263	0.132	
	* * *	0.029	0.000	-0.001	-0.014	0.081	0.081	0.085	0.075	0.051	0.054	-0.248	0.695	-1.057	
_	* * *	0.007	-0.002	-0.004	-0.012	0.000	0.004	0.005	0.000	0.002	0.003	0.037	0.078	-0.029	
_	* * *	0.014	0.009	0.005	0.015	-0.010	-0.004	-0.005	-0.005	-0.008	-0.012	0.007	-0.013	0.091	
	* * *	-0.035	-0.018	-0.007	-0.005	-0.004	-0.014	-0.016	-0.006	0.004	-0.003	-0.081	-0.229	0.116	
		4.614	5.713	7.819	10.926	13.642	10.215	9.158	8.628	6.987	1.393	-202.089	90.022	-148.307	
<u>_</u>		-0.443	1.063	4.404	6.715	1.405	-1.009	0.058	0.412	0.806	-0.404	-27.678	-18.971	2.966	
ı		-1.249	-2.205	-0.366	-1.212	1.840	0.592	1.421	1.188	1.654	1.794	-31.155	15.539	-35.377	
۲.		0.423	0.236	0.180	0.214	0.140	0.279	0.250	0.182	0.091	0.136	-0.601	-0.680	-0.377	
Į		0.868	0.696	1.410	1.986	0.795	0.712	0.742	0.790	0.312	0.191	-18.517	15.914	-23.835	
		0.564	0.181	0.221	0.099	1.007	0.995	0.984	0.900	0.717	0.685	-7.643	3.784	-8.220	
	*	-0.109	-0.055	-0.051	-0.047	-0.021	-0.043	-0.039	-0.029	-0.044	-0.060	-0.510	-0.368	-0.236	
_	*	-0.155	-0.067	-0.034	-0.068	0.083	0.050	0.034	0.069	0.070	0.065	0.631	0.439	-0.019	
	*	0.231	0.173	0.045	0.108	-0.088	-0.008	-0.056	-0.060	-0.108	-0.127	0.122	-0.248	0.095	
۶.		0.161	0.060	0.275	0.261	0.506	0.431	0.530	0.478	0.337	0.452	-8.148	1.614	-7.041	
Į		0.235	0.189	0.201	0.260	0.283	0.296	0.270	0.260	0.224	0.147	-1.592	1.583	-1.975	
α_I		0.209	0.023	0.137	0.100	0.459	0.416	0.438	0.358	0.287	0.245	-3.484	4.150	-5.695	
α_{CC}		-0.706	-0.418	-0.002	-0.065	0.504	-0.003	0.182	0.249	0.331	0.121	-8.709	5.791	-7.558	
α_{MM}		0.024	0.000	0.025	0.026	0.075	0.055	0.055	0.061	0.042	0.038	0.028	0.478	-0.345	
α_{II}		0.057	-0.025	0.013	-0.041	0.122	0.089	0.129	0.080	0.103	0.089	-0.482	1.057	-1.160	
		0.123	0.095	0.177	0.207	0.435	0.366	0.380	0.398	0.236	0.230	-5.775	4.291	-6.649	
	* * *	-0.011	0.003	0.003	0.007	-0.009	-0.009	-0.013	-0.007	-0.008	-0.008	0.066	-0.038	0.034	
٠.	* *	-0.123	-0.022	-0.047	-0.040	-0.188	-0.154	-0.217	-0.196	-0.167	-0.163	-0.233	-1.579	1.310	
Į	* *	0.248	0.303	0.464	0.554	0.206	0.283	0.212	0.206	0.147	0.107	1.572	3.402	-1.525	
	* *	0.370	0.222	0.067	0.057	0.296	0.337	0.299	0.292	0.251	0.186	0.341	-0.871	0.853	
	* *	0.122	0.077	0.017	-0.014	-0.290	-0.148	-0.236	-0.265	-0.193	-0.115	0.870	-1.125	2.317	
Į	* *	0.884	0.687	0.673	1.053	-0.231	-0.008	-0.075	-0.131	-0.172	-0.278	-0.411	0.626	-0.324	
	* *	0.228	-0.161	-0.015	-0.425	1.308	1.136	1.281	1.134	1.161	1.146	0.489	1.843	-0.915	
ρ_{CM}	* *	0.021	0.016	0.008	0.022	0.006	0.001	-0.007	0.005	0.015	-0.007	0.015	-0.131	-0.109	
ρ_{CI}	* *	0.006	-0.001	0.000	-0.004	0.007	0.008	0.011	0.000	0.000	-0.002	0.000	0.093	-0.037	
OMI	* *	0.031	0.015	0.011	0.016	0.024	0.021	0.019	0.014	0.022	0.003	0.049	0.144	-0.234	
	* * *	0.060	-0.066	-0.194	-0.233	-0.062	-0.064	0.008	0.038	-0.061	0.038	0.214	-0.153	0.266	
	* * *	0.005	0.006	-0.006	-0.011	-0.015	0.001	-0.001	-0.010	-0.019	-0.020	0.026	-0.057	0.045	
te: .	The ch	Note: The change in each parameter	h paramete	$\overline{}$	rows) induced by	y a one st	andard	deviatior	ı change	in each 1	a one standard deviation change in each moment (rows)	rows).			

Note: The change in each parameter (rows) of Values multiplied by *10, **100, ***1000.

Table B.2: ... continued.

eta_{exp}	0.000	0.000	0.000	0.000	0.000	0.000	-0.011	0.000	0.001	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
eta_{ten}	0.000	0.000	0.000	0.000	0.000	0.000	0.016	0.001	0.000	0.000	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
$eta_{x_I y_I}$	0.034	1.000	-0.810	-0.012	0.014	0.059	-286.850	-5.983	-35.270	-0.819	-31.138	-10.993	0.048	-0.234	0.025	-9.639	-3.237	-6.379	-10.820	-0.341	-1.023	-8.799	-0.020	1.306	-1.895	0.626	1.762	-0.016	-0.469	-0.041	-0.044	-0.175	0.000	0.069 0.0 (mg/s)
$\beta_{x_{MYM}}$	-0.104	-1.119	0.313	0.090	-0.017	-0.136	24.635	-39.612	1.720	-1.641	2.550	0.876	-0.371	0.373	-0.335	-2.246	1.147	2.498	2.008	0.308	0.515	1.417	0.046	-1.402	3.579	-0.707	-0.975	1.684	2.013	0.025	0.079	0.220	0.942	0.009
$\beta_{x_Cy_C}$	-0.141	-1.281	-0.394	0.029	0.053	-0.101	-191.574	-36.001	-43.820	-0.397	-19.606	-8.613	-0.987	1.194	0.271	-9.582	-1.269	-4.147	-10.309	0.093	969.0-	-6.469	0.142	-0.560	2.935	0.622	1.435	-1.014	0.468	-0.001	0.005	0.070	0.434	0.012
:																																		000
	* * *	* * *	* * *	* * *	* * *	* * *							* *	* *	* *								* * *	* *	* *	* *	* * *	***						
	λ_{C}^{C}	\mathcal{J}_{n}^{N}	n / c	\chi_0\chi_0) No. (1)	γ_o^{o}	\mathcal{X}_{c}	\mathcal{K}_{N}^{n}	κ_I^n	\mathcal{V}_{C_o}	\mathcal{K}_{M}^{o}	κ_I^o	ξ_C	ξ_M	ξ_I	α_C	α_M	α_I	α^{CC}	$lpha_{MM}$	α_{II}	q	g	η_C^1	η_M^1	η_I^1	η_C^2	η_M^2	η_I^2	ρ_{CM}	ρ_{CI}	ρ_{MI}	γ_0	λ_1 Note: T

Note: The change in each parameter (rows) induced by a one standard deviation change in each moment (rows). Values multiplied by *10, **100, ***1000.

References

Andrews, I., M. Gentzkow, and J. Shapiro (2017): "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," *Quarterly Journal of Economics*, 132(4), 1553–1592.