

Linear Regression

DCS310

Sun Yat-sen University

Outline

- Introduction
- Single Feature Case
- Multiple Features Case
- Numerical Optimization

Introduction

• What is regression?

Based on the given features, predict the values of interested variables

Example: House price prediction

	I	Interested variable		
		↓		
Size (feet) x_1	# bedrooms x_2	# floors x_3	# years (Ages)	Price (\$ 1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Features: 1) size, 2) # bedrooms, 3) # floors, 4) # years

• Mathematically, regression aims at building a function $f(\cdot)$ to model the relation between input data x and supervised value y

$$\hat{y} = f(x_1, x_2, x_3, x_4)$$

Linear regression

Restricting the function $f(\cdot)$ to be of linear form, *i.e.*,

$$f(x_1, x_2 \cdots x_m) = \mathbf{w_0} + w_1 x_1 + w_2 x_2 + \cdots + w_m x_m$$

- $-w_k$: model parameters
- m: number of features

Objective

Find a set of parameters $\{w_k\}_{k=1}^m$ so that the prediction

$$\hat{y} = f(x_1, x_2, \cdots, x_m)$$

is as close as possible to the true y values for all data samples in the training dataset

	Size (feet)	# bedrooms	# floors	# years (Ages)	Price (\$ 1000)
Sample 1	2104	x ₂	<i>x</i> ₃	-	460
Gampic 1	2104	5		45	460
Sample 2→	1416	3	2	40	232
Sample 3	1534	3	2	30	315
Sample 4	852	2	1	36	178

Linear model is very understandable, or saying explainable.

Outline

- Introduction
- Single Feature Case
- Multiple Features Case
- Numerical Optimization

Model

 For simplicity, first consider only one feature, e.g., house size

Size (feet) x	Price (\$ 1000) <i>y</i>
2104	460
1416	232
852	178

• Plot the (x, y) pairs on a plane

The prediction function reduces to

$$f(x) = w_0 + w_1 x$$

• For different w_0 and w_1 , the function f(x) represents different straight lines

• The objective is to find an appropriate w_0 and w_1 so that the line is as fit as possible with the true y's of all given x

Cost / Loss Function

 Mathematically, the objective can be described as minimizing the cost (loss) function, a.k.a. mean squared error (MSE)

$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (f(x^{(i)}) - y^{(i)})^2$$

where $x^{(i)}$ and $y^{(i)}$ denote the feature and target value of the i-th training sample; n is the number of training samples

• Substituting $f(x^{(i)}) = w_0 + w_1 x^{(i)}$ into $L(w_0, w_1)$ gives

$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

Remark: To better understand this cost function, we simplify it by setting $w_0 = 0$

Then, the cost function becomes

$$L(w_1) = \overline{x^2}w_1^2 - 2\overline{xy}w_1 + \overline{y^2}$$

where
$$\overline{x^2} = \frac{\sum_{i=1}^{n} (x^{(i)})^2}{n}$$
, $\overline{xy} = \frac{\sum_{i=1}^{n} x^{(i)} y^{(i)}}{n}$ and $\overline{y^2} = \frac{\sum_{i=1}^{n} (y^{(i)})^2}{n}$

The cost function is a quadratic function w.r.t. w₁

$$L(w_1) = \overline{x^2}w_1^2 - 2\overline{xy}w_1 + \overline{y^2}$$

• If w_0 is taken into account, the cost function $L(w_0, w_1)$ is still a quadratic function, but is two-dimensional

$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

• The best w_0 and w_1 can be found by setting the derivatives to zero

$$\frac{\partial L}{\partial w_0} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)}) = 0$$

$$\frac{\partial L}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)}) x^{(i)} = 0$$

• It can be derived that the best w_0 and w_1 are

$$w_0 = \frac{\overline{xy}\overline{x} - \overline{x^2}\overline{y}}{\overline{x}^2 - \overline{x^2}}$$

$$w_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2}$$

Outline

- Introduction
- Single Feature Case
- Multiple Features Case
- Numerical Optimization

 Training data from single feature to multiple feature case, a.k.a. multivariate linear regression

Siz	te (feet) x_1	# bedrooms x_2	# floors x_3	# years (Ages) x_4	Price (\$ 1000) y
	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

The function of a general linear regression is

$$f(x_1, x_2 \cdots x_m) = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_m x_m$$

- x_i is the *i*-th feature
- Working with the scalar form is cumbersome. Reformulating it into a matrix-form gives

$$f(\mathbf{x}) = \mathbf{x}\mathbf{w}$$

- $x = [1, x_1, x_2, \dots, x_m] \in \mathbb{R}^{1 \times (m+1)}$ is the feature row vector
- $\mathbf{w} = [w_0, w_1, w_2, \cdots, w_m]^T \in \mathbb{R}^{(m+1)\times 1}$ is the parameter column vector

By setting the first element in x to be 1, w_0 can be treated the same as the other parameters w_k

Cost Function

The objective is still to find a w such that the prediction

$$f(\mathbf{x}^{(i)}) = \mathbf{x}^{(i)}\mathbf{w}$$

is close to the true value $y^{(i)}$, where $x^{(i)}$ and $y^{(i)}$ is the feature vector and target value of the i-th training sample

Si	ze (feet)	# bedrooms	# floors	# years (Ages)	Price (\$ 1000)
	x_1	x_2	x_3	x_4	У
	2104	5	1	45	460
	1416	3	2	40	
	1534	3	2	30	315
	852	2	1	36	178

Thus, the cost function can be represented as

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} \mathbf{w} - y^{(i)})^{2}$$

The cost function can be further written as

YAL

$$L(\boldsymbol{w}) = \frac{1}{n} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

where X and y are the feature matrix the target vector, defined as

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Size (feet)			# bedrooms	# floors	# years (Ages)	years (Ages) Price (\$ 1		000)
_	(x_0)	x_1	x_2	x_3	x_4		у	
	1	2104	5	1	45		460	
	1	1416	3	2	40		232	
X =	1	1534	3	2	30	y =	315	
	1	852	2	1	36		178	
Į	1							

• The gradient of the cost function w.r.t. w is

$$\frac{\partial L(\boldsymbol{w})}{\partial \boldsymbol{w}} = \frac{2}{n} \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})$$

• Since L(w) is a convex function, its optima can be found by setting

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{2}{n} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{2}{n} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$

Solving the equation gives

18

• It can be verified that when the number of feature is 1, the 以不可焚 result reduces to

$$w_0 = \frac{\overline{xy}\overline{x} - \overline{x^2}\overline{y}}{\overline{x}^2 - \overline{x^2}}, \qquad w_1 = \frac{\overline{x}\overline{y} - \overline{xy}}{\overline{x}^2 - \overline{x^2}}$$

• What about X^TX is NOT invertible, i.e. not full-rank? Resulting multiple solutions, which one to select? Regularization

Geometric Interpretation

• From the requirement of $X^T(Xw^* - y) = 0$, we can see that

 The result suggests that Xw* can be understood as the projection of y onto the space spanned by X

Outline

- Introduction
- Single Feature Case
- Multiple Features Case
- Numerical Optimization

Gradient Descent

- Analytical solutions do not always exist, or evaluating the analytical expression is computational expensive

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - r \cdot \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}^{(t)}}$$

- r: the learning rate

• Let us take the single-feature case and set $w_0 = 0$ as an example, in which the loss function becomes

$$L(w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_1 x^{(i)} - y^{(i)})^2$$

• The parameter w_1 can be updated as

$$w_1^{(t+1)} = w_1^{(t)} - r \cdot \frac{\partial L(w_1)}{\partial w_1} \bigg|_{w_1 = w_1^{(t)}}$$

 With appropriate learning rate, the model parameter is iteratively updated, and will eventually converge to the optima

 As approaching the optimal value, the gradient becomes smaller and smaller. Thus, even if the learning rate is fixed, the updating intervals also approach 0 as the iteration proceeds, as long as the rate is set appropriately If the learning rate is too small, the convergence speed will be very slow

If the <u>learning rate is too large</u>, the iteration may <u>diverge</u>

 So, setting appropriate learning rate is important • Now consider the case with both w_0 and w_1

$$w_0^{(t+1)} = w_0^{(t)} - r \cdot \frac{\partial L(w_0, w_1)}{\partial w_0} \bigg|_{w_0 = w_0^{(t)}, w_1 = w_1^{(t)}}$$

$$w_1^{(t+1)} = w_1^{(t)} - r \cdot \frac{\partial L(w_0, w_1)}{\partial w_1} \bigg|_{w_0 = w_0^{(t)}, w_1 = w_1^{(t)}}$$

The function
$$f(x) = w_0^{(t)} + w_1^{(t)}x$$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}\right)$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}) \right)$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}) \right)$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}\right)$

The function
$$f(x) = w_0^{(t)} + w_1^{(t)}x$$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}\right)$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}) \right)$

The function
$$f(x) = w_0^{(t)} + w_1^{(t)}x$$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}\right)$

32

The function
$$f(x) = w_0^{(t)} + w_1^{(t)}x$$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}) \right)$

The contours of $L(w_0, w_1)$ and the track of $\left((w_0^{(t)}, w_1^{(t)}\right)$

34

Stochastic Gradient Descent

- The GD algorithm need to evaluate the gradient of loss w.r.t. model parameters w at every iteration
- Generally, the gradient takes the form

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell(\mathbf{w}, \mathbf{x}^{(i)}, \mathbf{y}^{(i)})}{\partial \mathbf{w}}$$

 Every iteration requires computing the gradient for all data samples in the training dataset

The complexity would be extremely high for large datasets

• To reduce the complexity, we can estimate the gradient $\frac{\partial L(w)}{\partial w}$ using a small portion of the dataset, *i.e.* mini-batch

- How to obtain the mini-batches?
 - Reshuffling
 - Segmenting

A noisy estimate to

the true gradient

Update:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + r \cdot \frac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \frac{\partial \ell(\mathbf{w}, \mathbf{x}^{(i)}, \mathbf{y}^{(i)})}{\partial \mathbf{w}}$$

where \mathcal{B}_t is a mini-batch of the dataset at the t-th iteration

Other Optimization Methods

- There also exist many other optimization methods
 - 1) Newton method 牛顿法

Advantages

- No need to manually choose the learning rate
- Faster convergence rate

Disadvantages

More expensive

- 2) Quasi-Newton methods
- 3) Conjugate gradient method
- 4) Coordinated descent method:

These methods generally converge faster than the gradient method, but are more computationally expensive