4736 Decision Mathematics 1

1	(i)	A	В	C	D		M1	A, B and C correct for first pass	
		614	416	1	198	(A=198)	A 1	D = 198 on first pass	
		198	891	2	693	(A=693)	M1	sca at second and third passes	
		693	396	3	297		A1	Second and third passes correct	[4]
	(ii)	0					B1	0	[1]
	(iii)	To make the	he algor	ithm teri	minate		B1	So that it does not get stuck in a loop	[1]
								Total =	6

2	(i)	eg		Graph need not be simple or planar	
		The state of the s	M1	A graph with five vertices and at least three correct vertex orders	
			A1	A graph with five vertices of orders 1, 2, 2, 3, 4	
		\			[2]
	(ii)	Semi-Eulerian	M1	Unless their graph was not connected, in which case the answer is 'neither'	
		It has <u>exactly</u> two odd nodes	A1	(Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	
		of order 1			[2]
				Total =	6

ANSWERED ON INSERT

3	(i)	AB = 9 $DF = 14$ $BD = 16$ $CD = 18$	B = E	M1 A1	Not selecting <i>CF</i> (working seen on list) Selecting correct arcs (working seen on list)	
		CD = 18 $FG = 20$ $CF = 22$ $EG = 23$		M1 A1	A spanning tree drawn Correct (minimum) spanning tree drawn	
		$ \begin{array}{rcl} EF & = 26 \\ AC & = 27 \\ DE & = 28 \\ AD & = 29 \end{array} $	Total weight = 100	B1	100 cao	
		$\frac{DG}{DG} = \frac{31}{37}$ $\frac{BE}{} = \frac{37}{}$				[5]

(1	(ii)	Delete EG from spanning tree $100 - 23 = 77$ Two shortest arcs from E are EG and EF	В1	Follow through from part (i) if possible Weight of MST on reduced network	
		77 + 23 + 26 = 126 Lower bound = 126	M1 A1	Adding two shortest arcs to MST 126 cao	[3]
	iii)	A - B - D - F - G - E – stall Misses out vertex C	M1 A1	A - B - D - F - G - E Cannot continue because B , D and F have	[2]
				already been visited	[2]
	iv)	B - A - C - D - F - G - E - B Upper bound = 148	M1 A1 B1	Tour starts $B - A - C - D - F - C$ Correct tour, starting and ending at B 148 cao	[3]
((v)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1	(Accept correct working starting from <i>G</i> , if seen) At least three sets of temporary labels correct, with no extras Temporary labels all correct, with no extras Permanent labels correct	[0]
		$C \begin{bmatrix} 4 & 27 \\ 27 \end{bmatrix} F \begin{bmatrix} 5 & 39 \\ 39 \end{bmatrix}$ Weight = 56	B1	Order of labelling (correct or follow through their permanent labels) 56 cao	[4]
(vi)	Route = $A - B - D - G$ A, B, C and G are odd	B1 B1	A - B - D - G cao Identifying or using A, B, C, G (seen)	[2]
		AB = 9 $AC = 27$ $AG = 56CG = 42$ $BG = 47$ $BC = 3451$ 74 $90Repeat AB and CG (C - F - G) = 51$	M1 A1	At least one correct pairing seen or total seen (not just six weights) All three totals correct, or explanation of how it is known that other pairings are too long	
		Weight = $300 + 51 = 351$	B1	351 cao	[4]
				Total =	23

ANSWERED ON INSERT

4	(i)	8	B1	cao	[1]
	(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
	(iii)	76 65 21 13 88 62 67 28 34	B1	Correct list (complete)	
		2 comparisons and 1 swap	B1	2 and 1	[2]
	(iv)	C S 76 65 21 13 88 62 67 28 34 1 0 88 76 65 21 13 62 67 28 34 4 4 88 76 65 62 21 13 67 28 34 3 2 88 76 67 65 62 21 13 28 34 5 4	M1 M1 A1	Underlined values correct in 3 rd and 4 th passes, values not underlined may be left blank Similarly for 5 th and 6 th passes, follow through slips in previous passes Similarly for 7 th and 8 th passes, but cao (Dependent on both M marks)	[3]
		88 76 67 65 62 28 21 13 34 3 2 88 76 67 65 62 34 28 21 13 4 3	M1 A1 A1	Reasonable attempt at Comp and Swap 1 4 3 5 3 4 cao in figures 0 4 2 4 2 3 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17		Follow through their totals if possible	
	swaps			
	Shuttle sort is more efficient	M1	Choosing shuttle sort with a reason or	
	because		with totals seen (here)	
	although it uses the same number of swaps	A1	Correct reason stated (comparisons and	
	as bubble sort it uses fewer comparisons		swaps both compared, in words)	[2]
			Total =	12

5	(i)	Katie must spend at least 8 minutes preparing the first batch of cookies so she has at most 52 minutes of baking time. 52 ÷ 12 = 4.3, hence at most 4 batches	M1 A1	Identifying why there is less than 60 minutes of baking time (or seeing 52) Explaining why 4 is the greatest possible number of batches	[2]
	(ii)	The last batch takes 12 minutes to bake, so Katie has (at most) 48 minutes of preparation time	B1	Explaining why total time for preparation cannot exceed 48 minutes	
		$8x + 12y + 10z \le 48 \Rightarrow 4x + 6y + 5z \le 24$	B1	$8x + 12y + 10z \le 48$ seen or explicitly referred to	[2]
	(iii)	as given Must be integer valued	B1	Integers	[2] [1]
	(iv)	P = 5x + 4y + 3z	B1	5x + 4y + 3z or any positive multiple of	[1]
	(IV)	Assumes that she sells all the cookies	В1	3x + 4y + 3z of any positive multiple of this Assumes she sells them all	
		(batches) that she makes	Di	Assumes she sens them an	[2]
	(v)	P x y z s t 1 -5 -4 -3 0 0 0 0 1 1 1 1 1 0 4 0 4 6 5 0 1 24 4 ÷ 1 = 4, 24 ÷ 4 = 6, 4 < 6 Pivot on the 1 in the <i>x</i> column P x y z s t 1 0 1 2 5 0 20 0 1 1 1 1 0 4 0 0 2 1 -4 1 8 Row 1 = R1 + 5×R2 Row 2 = R2 ÷ 1 Row 3 = R3 - 4×R2 Katie should make 4 batches of plain cookies, and no chocolate chip or fruit cookies, to give a profit of £20.	M1 A1 B1 M1 A1 A1	Correct use of slack variable columns Objective row correct (cao) Constraint rows correct (cao) Working need not be seen Correct pivot choice (row 2) (cao) Follow through their tableau and pivot choice, if possible sca pivoting (x, t cols, P not decreased) Correct tableau (final column contains no negative values) Showing valid method, may imply row 2 Follow through their tableau, if reasonable (non-negative variables) Reading off values from tableau (may be implied from answer) Interpretation: 4 batches of plain cookies	[3]
			A1	(may imply none of others) Interpretation: £20	[3]

(vi)				
	У			
	5	M1	At least two of the lines $y = 2x$, $x+y = 4$ and $4x + 6y = 24$ drawn correctly	
	3	A1	All three lines drawn correctly and graph has both scales and labels	
	2	A1	Feasible region identified and correct	
	1		Follow through their feasible region if possible	[3]
	0 1 2 3 4 5 6	M1	At least two correct	
	Vertices of feasible region are	A 1	All (three) correct (1 dp or better)	[2]
	$(0, 0), (0, 4)$ and $(1\frac{1}{3}, 2\frac{2}{3})$	M1	Or a line of constant profit <u>drawn</u> (or gradient discussed) and used correctly on	
	$x = 0, y = 4 \Rightarrow P = 16$ $x = 1, y = 3 \Rightarrow P = 17$ $(x = 1\frac{1}{3}, y = 2\frac{2}{3} \Rightarrow P = 17\frac{1}{3})$	A1	integer-valued coordinates For (1, 3) or 17 chosen (cao)	
	Make 1 batch of plain cookies and 3 batches of chocolate chip cookies	B1	Interpretation: 1 batch of plain, 3 batches of chocolate chip (cao)	[3]
			Total =	25