Περιεχόμενα

- Συναρτήσεις (Μέρος Α)
 - Ορισμός
 - Βασικές έννοιες
 - Τρόποι έκφρασης
 - Γραφική παράσταση
 - Χαρακτηριστικές συναρτήσεις
 - Γραφήματα στο Octave/Matlab

Συνάρτηση f

Ορισμός: Έστω X και Y δύο μη κενά σύνολα. Μία συνάρτηση f από το X στο Y είναι μια σχέση που συνδέει κάθε στοιχείο του X με ακριβώς ένα στοιχείο του Y

$$y = f(x)$$

Συνάρτηση f

Ορισμός: Έστω X και Y δύο μη κενά σύνολα. Μία συνάρτηση f από το X στο Y είναι μια σχέση που συνδέει κάθε στοιχείο του X με ακριβώς ένα στοιχείο του Y

$$y = f(x)$$

Εξαρτημένη μεταβλητή (έξοδος)

Ανεξάρτητη μεταβλητή (είσοδος)

Συνάρτηση f

Ορισμός: Έστω X και Y δύο μη κενά σύνολα. Μία συνάρτηση f από το X στο Y είναι μια σχέση που συνδέει κάθε στοιχείο του X με ακριβώς ένα στοιχείο του Y

$$y = f(x)$$

Εξαρτημένη μεταβλητή (έξοδος) Ανεξάρτητη μεταβλητή (είσοδος)

- Αν τα σύνολα *X* και *Y* είναι σύνολα πραγματικών αριθμών, η συνάρτηση ονομάζεται **πραγματική συνάρτηση**
- Αν τα σύνολα X και Y είναι σύνολα μιγαδικών αριθμών, η συνάρτηση ονομάζεται μιγαδική συνάρτηση κλπ
- Εδώ θα ασχοληθούμε με πραγματικές συναρτήσεις

Βασικές έννοιες

• Η συνάρτηση *f* λαμβάνει τιμές από το σύνολο Α και παράγει τιμές στο σύνολο Β

$$f \colon A \to B$$

- Αν δοθεί η ίδια τιμή ως είσοδος θα παραχθεί η ίδια τιμή ως έξοδος
- Πεδίο ορισμού συνάρτησης (domain): είναι το σύνολο τιμών για το οποίο έχει νόημα η συνάρτηση
- Πεδίο τιμών συνάρτησης (range): είναι το σύνολο όλων των τιμών f(x) που παράγονται όταν το x μεταβάλλεται σε όλο το πεδίο ορισμού της f.

Συνάρτηση

Τρόποι έκφρασης συναρτήσεων

• Έκφραση με τύπο (αναλυτική έκφραση)

$$f(x) = x^2 - 3x + 2$$

- Έκφραση με πίνακα τιμών
- Γραφική παράσταση συνάρτησης

$\boldsymbol{\chi}$	$x^2 - 3x + 2$
-1	6
-0.5	3.75
0	2
0.5	0.75
1	0
1.5	-0.25
2	0
2.5	0.75
3	2
3.5	3.75
4	6

Γραφική παράσταση συνάρτησης

- Δεν υπάρχουν σημεία της γραφικής παράστασης της f με την ίδια τετμημένη
- Κριτήριο της κατακόρυφης γραμμής: δεν θα πρέπει η γραφική παράσταση μιας συνάρτησης να τέμνεται από οποιαδήποτε κατακόρυφη γραμμή σε περισσότερα από ένα σημεία
- Αν για ένα σημείο x_0 του άξονα x η κατακόρυφη γραμμή δεν τέμνει το γράφημα τότε το x_0 δεν ανήκει στο πεδίο ορισμού της συνάρτησης f

Κριτήριο Κατακόρυφης Ευθείας

Ποια από τις παρακάτω γραφικές παραστάσεις παριστάνει συνάρτηση;

Κριτήριο Κατακόρυφης Ευθείας

Ποια από τις παρακάτω γραφικές παραστάσεις παριστάνει συνάρτηση;

Η συνάρτηση $f(x)=x^2+1$ είναι πολυωνυμική και ορίζεται για όλες τις τιμές του x. Επομένως $D(f) = \mathbb{R}$. Επειδή $x^2 \ge 0$ για κάθε x, είναι $x^2+1 \ge 1$, άρα το σύνολο τιμών της f είναι το $[1, \infty)$.

$$4-t^{2}>0$$

$$4>t^{2}$$

$$t^{2} \leq 4$$

$$1t \leq 2$$

$$-2 \leq t \leq 2$$

$$D(f) = [-2,2]$$

$$R(f) = [0,2]$$

$$\mathcal{D}(f) = \mathbb{R}^* =$$

$$(-\infty,0) \, U(0,+\infty)$$

$$\mathcal{P}(f) = \mathbb{R}^*$$

Τη χρονική στιγμή t=0 μια πέτρα ρίχνεται κατακόρυφα προς τα πάνω με ταχύτητα $30m/\sec$. Το ύψος της πάνω από το έδαφος σε μέτρα δίνεται ως $h=30t-5t^2$. Βρείτε το πεδίο ορισμού και το σύνολο τιμών της h.

Τη χρονική στιγμή t=0 μια πέτρα ρίχνεται κατακόρυφα προς τα πάνω με ταχύτητα $30m/\sec$. Το ύψος της πάνω από το έδαφος σε μέτρα δίνεται ως $h=30t-5t^2$. Βρείτε το πεδίο ορισμού και το σύνολο τιμών της h.

Λύση

- Αν και η h ορίζεται για κάθε t, οι μόνοι συναφείς χρόνοι είναι η χρ. στιγμή t=0 και όταν βρίσκει το έδαφος t=6 (λύση της εξίσωσης $h=0 \Leftrightarrow 30t-5t^2=0 \Leftrightarrow 5t(6-t)=0 \Leftrightarrow$).
- $\triangle P(f) = [0,6]$

- Η μεγαλύτερη τιμή του h είναι στα μισά της διαδρομής δηλ. για t=3. Τότε h=45, άρα σύνολο τιμών R(f)=[0,45].
- Σημείωση: Το παραπάνω γράφημα δεν είναι η τροχιά της πέτρας η οποία είναι κατακόρυφη.

Χαρακτηριστικές συναρτήσεις (1/6)

$$f(x) = k$$

σταθερή συνάρτηση

Χαρακτηριστικές συναρτήσεις (2/6)

Συνάρτηση Δύναμης $f(x) = x^n$, n θετικός ακέραιος

Χαρακτηριστικές συναρτήσεις (3/6)

$$f(x) = \sqrt{x}$$

$$f(x) = \sqrt[3]{x}$$

συνάρτηση τετραγωνικής ρίζας

συνάρτηση κυβική ρίζας

Χαρακτηριστικές συναρτήσεις (4/6)

Συνάρτηση Αντίστροφης Δύναμης $f(x) = \frac{1}{x^n}$, n θετικός ακέραιος

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x^2}$$

$$f(x) = \frac{1}{x^3}$$

Χαρακτηριστικές συναρτήσεις (5/6)

$$f(x) = log(x)$$

Χαρακτηριστικές συναρτήσεις (6/6)

 $\sin x$ $\cos x$

Γραφήματα στο Octave/Matlab

Εντολή plot

- Οι γραφικές παραστάσεις 2 διαστάσεων (στο επίπεδο) γίνονται με την εντολή συνάρτηση **plot**
- Η plot γενικά απαιτεί 2 ορίσματα, τα οποία πρέπει να είναι διανύσματα με τον ίδιο αριθμό στοιχείων και σχεδιάζει τη γραφική παράσταση που ορίζουν τα σημεία των 2 διανυσμάτων

```
>> x = [-10:0.1:10];
>> y=sin(x);
>> plot(x,y)
>> title("y=sin(x)")
>> xlabel("x")
>> ylabel("y(x)")
```


Ασκήσεις 1,2, 3, 4 ΣΕΤ1