線形モデル: OLS と Stacking への応用

経済学のための機械学習入門

川田恵介

Table of contents

Linear prediction model	2
例	2
Tree	3
RandomForest	3
OLS	4
Stacking (後述)	4
サンプル分割による評価	5
Empirical Risk Minimization による推定	5
Basic function	5
モデル設定	5
例	6
復習:過剰適合した決定木	6
Stacking	7
動機	7
アイディア	7
Stacking with linear model	7
Stacking	8
数值例	8
数値例: OLS と決定木	9
数値例: OLS と決定木	9
数値例: OLS と決定木	10
数値例: OLS と決定木	10
他の例: SuperLearner	11
まとめ	11
Defenence	11

Linear prediction model

- $\bullet \ \ g(X_1,..,X_L)=\beta_0+\beta_1X_1+..+\beta_LX_L$
 - "Smooth" な母平均関数に対する、有力な手法
 - 大量の推定方法: **OLS**, Maximum liklehood, Bays, Penalized Regression

例

Tree

${\sf RandomForest}$

• 参考: Smooth な母平均への対応 (Friedberg et al. 2020) : grf

OLS

Stacking (後述)

サンプル分割による評価

task_id learner_id resampling_id iteration regr.rsq nr 1 0.04573460 1: 1 Linear Population (5000) holdout regr.lm 2: 2 Linear Population (5000) OptimalTree holdout 1 0.03353547 3: 3 Linear Population (5000) regr.ranger holdout 1 -0.24427837 4: 4 Linear Population (5000) Stack holdout 1 0.04727011 Hidden columns: uhash, task, learner, resampling, prediction

Empirical Risk Minimization による推定

1. 研究者が事前にモデルを指定

$$g(X_i) = \beta_0 + ... + \beta_L X_L$$

2. "OLS" 推定

$$\min_{\beta_0,..,\beta_L} E[(Y_i - g(X_i))^2]$$

Basic function

- Linear model は"一直線"とは限らない
 - 非常に自由度が高いフレームワーク
- Linear model with Basic function

$$g(Y_i) = \beta_0 + \ldots + \beta_L b_L(X_i)$$

• b: 研究者が指定する既知の関数

- 例:
$$b_1(X_i) = X_1^2, b_2(X_i) = X_2^2, b_2(X_i) = X_1 \times X_2$$

モデル設定

- 事例数に比べて、十分に単純 (推定するパラメタが少ない) なモデルを指定できれば、OLS 推定可能
 - モデルを複雑にしすぎると、過剰適合する
- 極めて難しい課題
 - 実践として、連続変数についての二乗項の優先順位は高い

例

復習: 過剰適合した決定木

Stacking

- 大きく異なる予測モデル群を、最適化された加重を用いて集計する
 - Bagging: 決定木を単純集計
- 応用むけに推奨される (Naimi, Mishler, and Kennedy 2021; Díaz 2019)
 - Einav et al. (2018) でも活用

動機

- 大量のアルゴリズムが提案されている
- 最善のアルゴリズム = 母集団の性質に依存
 - 社会分析においては、BlackBox
- 解決策: 交差検証で性能を比較し、最善のアルゴリズムを選択
 - Stacking = 一般化
 - かなり現実的な選択肢

アイディア

• 最終予測モデル:

- β_a 各予測への重み付け
 - $_{-}$ "交差推定で最善のアルゴリズムを探す" のであれば、 $\beta_a=\{0,1\}$
 - {0,1} に限定する理由はない

Stacking with linear model

$$g(X) = \beta_0 + \beta_1 g_1(X) + ... + \beta_A g_A(X)$$

• $g_a(X) := \text{Algorithm } a$ (例: OLS, RandomForest) によって生成される予測モデル

Stacking

- 全訓練データを用いて、 $g_a(X)$ などを推定
- β_a を推定
 - 1. 交差推定を用いて、 \bar{g}_a を推定
 - 2. 以下を解く

$$\min_{\beta_a} E[(Y_i - \beta_0 - .. - \beta_A \times \bar{g}_A)^2]$$

数值例

#	A	tibbl	e: 20	x 3
	(Group	Х	Y
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	1	2.24
2	2	1	2	5.67
3	3	1	3	11.7
4	1	1	4	17.7
Ę	5	1	5	29.8
6	3	1	1	2.14
7	7	1	2	4.5
8	3	1	3	11.0
ç	9	1	4	19.0
1()	1	5	29.5
11	1	2	1	1.83
12	2	2	2	5.59
13	3	2	3	13.8
14	1	2	4	20.4
15	5	2	5	30.8
16	3	2	1	0.43
17	7	2	2	5.91
18	3	2	3	11.6
19	9	2	4	18.8
20)	2	5	30.4

数値例: OLS と決定木

A tibble: 20 x 5

	Group	Х	Y	FitOLS	FitTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	2.24	-0.318	2.19
2	1	2	5.67	6.51	5.08
3	1	3	11.7	13.3	11.3
4	1	4	17.7	20.2	18.4
5	1	5	29.8	27.0	29.7
6	1	1	2.14	-0.318	2.19
7	1	2	4.5	6.51	5.08
8	1	3	11.0	13.3	11.3
9	1	4	19.0	20.2	18.4
10	1	5	29.5	27.0	29.7
11	2	1	1.83	-0.589	3.44
12	2	2	5.59	6.69	3.44
13	2	3	13.8	14.0	12.7
14	2	4	20.4	21.2	19.6
15	2	5	30.8	28.5	30.6
16	2	1	0.43	-0.589	3.44
17	2	2	5.91	6.69	3.44
18	2	3	11.6	14.0	12.7
19	2	4	18.8	21.2	19.6
20	2	5	30.4	28.5	30.6

数値例: OLS と決定木

A tibble: 20 x 7

	${\tt Group}$	X	Y	${\tt FitOLS}$	${\tt FitTree}$	${\tt PredOLS}$	${\tt PredTree}$
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	2.24	-0.318	2.19	-0.589	3.44
2	1	2	5.67	6.51	5.08	6.69	3.44
3	1	3	11.7	13.3	11.3	14.0	12.7
4	1	4	17.7	20.2	18.4	21.2	19.6
5	1	5	29.8	27.0	29.7	28.5	30.6
6	1	1	2.14	-0.318	2.19	-0.589	3.44
7	1	2	4.5	6.51	5.08	6.69	3.44

```
3 11.0 13.3
8
                             11.3
                                    14.0
                                              12.7
9
            4 19.0 20.2
                             18.4
                                    21.2
                                              19.6
10
            5 29.5 27.0
                             29.7
                                    28.5
                                              30.6
11
            1 1.83 -0.589
                              3.44 -0.318
                                               2.19
12
            2 5.59 6.69
                              3.44
                                     6.51
                                               5.08
13
      2
            3 13.8 14.0
                             12.7
                                    13.3
                                              11.3
14
      2
            4 20.4 21.2
                             19.6
                                    20.2
                                              18.4
15
            5 30.8 28.5
                             30.6
                                    27.0
                                              29.7
            1 0.43 -0.589
                              3.44 -0.318
                                               2.19
16
17
            2 5.91 6.69
                              3.44
                                    6.51
                                               5.08
      2
18
      2
            3 11.6 14.0
                             12.7
                                    13.3
                                              11.3
19
      2
            4 18.8 21.2
                             19.6
                                    20.2
                                              18.4
      2
            5 30.4 28.5
20
                             30.6
                                    27.0
                                              29.7
```

数値例: OLS と決定木

```
lm(Y ~ PredOLS + PredTree,
    ExampleData)
```

1

① OLS による最適加重の計算

Call:

lm(formula = Y ~ PredOLS + PredTree, data = ExampleData)

Coefficients:

(Intercept) PredOLS PredTree
-0.1176 0.2598 0.7488

数値例: OLS と決定木

A tibble: 20 x 6

	${\tt Group}$	Х	Y	${\tt FitOLS}$	${\tt FitTree}$	Stacking
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1	2.24	-0.454	1.66	1.26
2	1	2	5.67	6.60	5.42	5.34
3	1	3	11.7	13.6	12.0	12.4
4	1	4	17.7	20.7	19.0	19.5
5	1	5	29.8	27.7	30.1	29.6
6	1	1	2.14	-0.454	1.66	1.26

7	1	2	4.5	6.60	5.42	5.34
8	1	3	11.0	13.6	12.0	12.4
9	1	4	19.0	20.7	19.0	19.5
10	1	5	29.5	27.7	30.1	29.6
11	2	1	1.83	-0.454	1.66	1.26
12	2	2	5.59	6.60	5.42	5.34
13	2	3	13.8	13.6	12.0	12.4
14	2	4	20.4	20.7	19.0	19.5
15	2	5	30.8	27.7	30.1	29.6
16	2	1	0.43	-0.454	1.66	1.26
17	2	2	5.91	6.60	5.42	5.34
18	2	3	11.6	13.6	12.0	12.4
19	2	4	18.8	20.7	19.0	19.5
20	2	5	30.4	27.7	30.1	29.6

他の例: SuperLearner

- Van der Laan, Polley, and Hubbard (2007) により提案
 - OLS 推定だが、 $\beta_0=0,\beta_a\geq 0$ と制約
- 細かいチュートリアル (Phillips et al. 2022)
- SuperLearner Pacakge

まとめ

- Stacking の実戦では、大きく異なる予測モデルを生み出すアルゴリズムを使用すべき
 - 少なくとも決定木系統と Linear Model 系統を含めている実践が多い
 - 単純な OLS など、伝統的な推定方法も含める

Reference

Díaz, Iván. 2019. "Machine Learning in the Estimation of Causal Effects: Targeted Minimum Loss-Based Estimation and Double/Debiased Machine Learning." *Biostatistics*.

Einav, Liran, Amy Finkelstein, Sendhil Mullainathan, and Ziad Obermeyer. 2018. "Predictive Modeling of US Health Care Spending in Late Life." *Science* 360 (6396): 1462–65.

Friedberg, Rina, Julie Tibshirani, Susan Athey, and Stefan Wager. 2020. "Local Linear Forests." *Journal of Computational and Graphical Statistics* 30 (2): 503–17.

Naimi, AI, AE Mishler, and EH Kennedy. 2021. "Challenges in Obtaining Valid Causal Effect Estimates

with Machine Learning Algorithms." $American\ Journal\ of\ Epidemiology,\ kwab201-1.$

Phillips, Rachael V, Mark J van der Laan, Hana Lee, and Susan Gruber. 2022. "Practical Considerations for Specifying a Super Learner." arXiv Preprint arXiv:2204.06139.

Van der Laan, Mark J, Eric C Polley, and Alan E Hubbard. 2007. "Super Learner." Statistical Applications in Genetics and Molecular Biology 6 (1).