بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۱ - جلسه چهاردهم: پیچیدگی حافظه (۴)

Theory of computation - 002 - S14 - space complexity (4), NL=coNL

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE $(\log n)$

 $NL = NSPACE(\log n)$

Log space can represent a constant number of pointers into the input.

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE $(\log n)$

$$NL = NSPACE(\log n)$$

Log space can represent a constant number of pointers into the input.

Examples

 $1. \quad \left\{ ww^{\mathcal{R}} \mid w \in \Sigma^* \right\} \in \mathsf{L}$

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE
$$(\log n)$$

NL = NSPACE $(\log n)$

Log space can represent a constant number of pointers into the input.

Examples

1.
$$\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in L$$

2. $PATH \in NL$

Nondeterministically select the nodes of a path connecting s to t.

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE
$$(\log n)$$

$$NL = NSPACE(\log n)$$

Log space can represent a constant number of pointers into the input.

Examples

1.
$$\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in L$$

2. $PATH \in NL$

Nondeterministically select the nodes of a path connecting s to t.

$$G = ((v_3, v_5), (v_7, v_{22}), \dots), s = \dots, t = \dots$$

Work tape tracks the current node on the guessed path.

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE
$$(\log n)$$

$$NL = NSPACE(\log n)$$

Log space can represent a constant number of pointers into the input.

Examples

1.
$$\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in L$$

2. $PATH \in NL$

Nondeterministically select the nodes of a path connecting s to t.

$$G = ((v_3, v_5), (v_7, v_{22}), \dots), s = \dots, t = \dots$$
 Work tape tracks the current node on the guessed path.

L = NL? Unsolved

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L = SPACE
$$(\log n)$$

$$NL = NSPACE(\log n)$$

Log space can represent a constant number of pointers into the input.

Examples

1.
$$\{ww^{\mathcal{R}} \mid w \in \Sigma^*\} \in L$$

2. $PATH \in NL$

Nondeterministically select the nodes of a path connecting s to t.

$$G = ((v_3, v_5), (v_7, v_{22}), \dots), s = \dots, t = \dots$$
 Work tape tracks the current node on the guessed path.

L = NL? Unsolved

Theorem: $L \subseteq P$

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time.

Conclusion: $A \in P$

Theorem: $L \subseteq P$

Proof: Say M decides A in space $O(\log n)$.

Defn: A configuration for M on w is (q, p_1, p_2, t) where q is a state, p_1 and p_2 are the tape head positions, and t is the work tape contents.

The number of such configurations is $|Q| \times n \times O(\log n) \times d^{O(\log n)} = O(n^k)$ for some k.

Therefore M runs in polynomial time.

Conclusion: $A \in P$

Theorem: $NL \subseteq SPACE(log^2n)$

Proof: Savitch's theorem works for log space

Theorem: $NL \subseteq SPACE(\log^2 n)$

Proof: Savitch's theorem works for log space

Theorem: $NL \subseteq SPACE(\log^2 n)$

Proof: Savitch's theorem works for log space

Each recursion level stores 1 config = $O(\log n)$ space.

Number of levels = $\log t = O(\log n)$.

Total $O(\log^2 n)$ space.

Theorem: $NL \subseteq SPACE(\log^2 n)$

Proof: Savitch's theorem works for log space

Each recursion level stores 1 config = $O(\log n)$ space.

Number of levels = $\log t = O(\log n)$.

Total $O(\log^2 n)$ space.

Theorem: $NL \subseteq P$

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

configuration graph $G_{M,w}$

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$

has a path from $c_{
m start}$ to $c_{
m accept}$

Polynomial time algorithm T for A:

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm T for A:

T= "On input w

- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

configuration graph $G_{M,w}$ $c_{
m accept}$ iff M accepts w

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm T for A:

T= "On input w

- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm T for A:

T= "On input w

- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

Theorem: $NL \subseteq P$

Proof: Say NTM M decides A in space $O(\log n)$.

Defn: The configuration graph $G_{M,w}$ for M on w has

nodes: all configurations for M on w

edges: edge from $c_i \rightarrow c_j$ if c_i can yield c_j in 1 step.

Claim: M accepts w iff the configuration graph $G_{M,w}$ has a path from c_{start} to c_{accept}

Polynomial time algorithm T for A:

T= "On input w

- 1. Construct $G_{M,w}$. [polynomial size]
- 2. Accept if there is a path from $c_{\rm start}$ to $c_{\rm accept}$. Reject if not."

Defn: B is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L B$

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in \overline{\mathsf{NL}}$, $\overline{A} \leq_{\mathrm{L}} \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f \colon \Sigma^* o \Sigma^*$

if T on input w halts with f(w) on its output tape for all w.

Say that f is computable in log-space.

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L B$

Log-space reducibility

Defn: A log-space transducer is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_{\operatorname{L}} B$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathsf{L}} B$ and $B \in \mathsf{L}$ then $A \in \mathsf{L}$

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathbb{L}} B$ and $B \in \mathbb{L}$ then $A \in \mathbb{L}$

Proof: TM for A = "On input w

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\operatorname{L}} B$ and $B \in \operatorname{L}$ then $A \in \operatorname{L}$

Proof: TM for A = "On input w

1. Compute f(w)

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathbf{L}} B$ and $B \in \mathbf{L}$ then $A \in \mathbf{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathbf{L}} B$ and $B \in \mathbf{L}$ then $A \in \mathbf{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w).

NL-completeness

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathbf{L}} B$ and $B \in \mathbf{L}$ then $A \in \mathbf{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w). So, (re-)compute symbols of f(w) as needed.

NL-completeness

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A log-space transducer is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

A log-space transducer T computes a function $f: \Sigma^* \to \Sigma^*$ if T on input w halts with f(w) on its output tape for all w. Say that f is computable in log-space.

Defn: A is <u>log-space reducible</u> to B ($A \leq_L B$) if $A \leq_m B$ by a reduction function that is computable in log-space.

Theorem: If $A \leq_{\mathbb{L}} B$ and $B \in \mathbb{L}$ then $A \in \mathbb{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w). So, (re-)compute symbols of f(w) as needed.

NL-completeness

Defn: *B* is NL-complete if

- 1) $B \in NL$
- 2) For all $A \in NL$, $A \leq_L \overline{B}$

Log-space reducibility

Defn: A <u>log-space transducer</u> is a TM with three tapes:

- 1. read-only input tape of size n
- 2. read/write work tape of size $O(\log n)$
- 3. write-only output tape

Check-in 20.1

If T is a log-space transducer that computes f, then for inputs w of length n, how long can f(w) be?

(a) at most $O(\log n)$

(d) at most $2^{O(n)}$

(b) at most O(n)

- (e) any length
- (c) at most polynomial in n

Theorem: If $A \leq_{\mathbb{L}} B$ and $B \in \mathbb{L}$ then $A \in \mathbb{L}$ Proof: TM for A = "On input w

- 1. Compute f(w)
- 2. Run decider for B on f(w). Output same."

BUT we don't have space to store f(w). So, (re-)compute symbols of f(w) as needed.

Theorem: *PATH* is NL-complete

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathsf{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathsf{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle$$

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathsf{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle$$

 $w \in A$ iff G has a path from s to t

Theorem: PATH is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in A$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in A$ iff G has a path from S to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_L PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Let $A \in \mathbb{NL}$ be decided by NTM M in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in A$ iff G has a path from s to t

Here is a log-space transducer T to compute f in log-space.

T = "on input w

- 1. For all pairs c_i , c_j of configurations of M on w.
- 2. Output those pairs which are legal moves for M.

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Let $\overline{A} \in \mathsf{NL}$ be decided by NTM \overline{M} in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in \overline{A}$ iff G has a path from s to t

Here is a log-space transducer T to compute f in log-space.

T = "on input w

- 1. For all pairs c_i , c_j of configurations of M on w.
- 2. Output those pairs which are legal moves for M.
- 3. Output c_{start} and c_{accept} ."

Theorem: *PATH* is NL-complete

Proof: 1) $PATH \in NL \checkmark$

2) For all $A \in NL$, $A \leq_{L} PATH$

Let $\overline{A} \in \mathsf{NL}$ be decided by NTM \overline{M} in space $O(\log n)$.

[Modify M to erase work tape and move heads to left end upon accepting.]

Give a log-space reduction f mapping A to PATH.

$$f(w) = \langle G, s, t \rangle = \langle G_{M,w}, c_{\text{start}}, c_{\text{accept}} \rangle$$

 $w \in A \text{ iff } G \text{ has a path from } s \text{ to } t$

Here is a log-space transducer T to compute f in log-space.

T = "on input w

- 1. For all pairs c_i , c_j of configurations of M on w.
- 2. Output those pairs which are legal moves for M.
- 3. Output c_{start} and c_{accept} ."

Theorem (Immerman-Szelepcsényi): NL = coNL

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

1) All branches of M on w halt with f(w) on the tape or reject.

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let
$$path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$$

NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $PATH \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c.

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let
$$path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$$

NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c.

Proof: "On input $\langle G, s \rangle$

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $PATH \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c.

Proof: "On input $\langle G, s \rangle$

1. Let $k \leftarrow 0$

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c. Proof: "On input $\langle G, s \rangle$

- 1. Let $k \leftarrow 0$
- 2. For each node *u*
- 3. If path(G, s, u) = YES, then $k \leftarrow k + 1$
- 4. If path(G, s, u) = NO, then continue

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c. Proof: "On input $\langle G, s \rangle$

- 1. Let $k \leftarrow 0$
- 2. For each node *u*
- 3. If path(G, s, u) = YES, then $k \leftarrow k + 1$
- 4. If path(G, s, u) = NO, then continue
- 5. Output *k*"

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c. Proof: "On input $\langle G, s \rangle$

- 1. Let $k \leftarrow 0$
- 2. For each node *u*
- 3. If path(G, s, u) = YES, then $k \leftarrow k + 1$
- 4. If path(G, s, u) = NO, then continue
- 5. Output *k*"

Next: Converse of above

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Theorem: If some NL-machine (log-space NTM) computes path, then some NL-machine computes c. Proof: "On input $\langle G, s \rangle$

- 1. Let $k \leftarrow 0$
- 2. For each node *u*
- 3. If path(G, s, u) = YES, then $k \leftarrow k + 1$
- 4. If path(G, s, u) = NO, then continue
- 5. Output *k*"

Next: Converse of above

Theorem (Immerman-Szelepcsényi): NL = coNL

Proof: Show $\overline{PATH} \in NL$

Defn: NTM M computes function $f: \Sigma^* \to \Sigma^*$ if for all w

- 1) All branches of M on w halt with f(w) on the tape or reject.
- 2) Some branch of M on w does not reject.

Let $path(G, s, t) = \{ \text{ YES, } \overline{\text{ if } G \text{ has a path from } s \text{ to } t \}$ NO, if not

Let
$$R = R(G, s) = \{u \mid path(G, s, u) = YES\}$$

Let $c = c(G, s) = |R|$

R = Reachable nodes c = # reachable

Check-in 20.2

Consider the statements:

- (1) $\overline{PATH} \in NL$, and
- (2) Some NL-machine computes the *path* function.

What implications can we prove *easily*?

- (a) $(1) \rightarrow (2)$ only
- (b) $(2) \rightarrow (1)$ only
- (c) Both implications
- (d) Neither implication

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

1. Compute c

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

- 1. Compute *c*
- 2. $k \leftarrow 0$

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$.

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

If u = t, then output YES, else set $k \leftarrow k + 1$.

(n) Skip *u* and continue.

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute c
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

- (n) Skip *u* and continue.
- 5. If $k \neq c$ then reject.

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- $2. k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

- (n) Skip u and continue.
- 5. If $k \neq c$ then reject.
- 6. Output NO." [found all c reachable nodes and none were t}

Theorem: If some NL-machine computes c, then some NL-machine computes path.

c ===> path

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute c
- $2. k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq m$. If fail, then reject.

- (n) Skip u and continue.
- 5. If $k \neq c$ then reject.
- 6. Output NO." [found all c reachable nodes and none were t}

Let $path_d(G, s, t) = \{ \text{YES, if } G \text{ has a path } s \text{ to } t \text{ of length } \leq d \}$ NO, if not

$$c_d ===> path_d$$

Let $path_d(G, s, t) = \{ \text{YES, if } G \text{ has a path } s \text{ to } t \text{ of length } \leq d \}$ NO, if not

$$c_d ===> path_d$$

Let $path_d(G,s,t)=\{$ YES, if G has a path s to t of length $\leq d$ NO, if not Let $R_d=R_d(G,s)=\{u\,\big|\,path_d(G,s,u)=$ YES $\}$

$$c_d ===> path_d$$

$\overline{NL} = \overline{coNL} \text{ (part 3/4)}$

Let $path_d(G,s,t)=\{$ YES, if G has a path s to t of length $\leq d$ NO, if not Let $R_d=R_d(G,s)=\{u\,|\,path_d(G,s,u)=$ YES $\}$ Let $c_d=c_d(G,s)=|R_d|$

$$c_d ===> path_d$$

Let $path_d(G,s,t)=\{$ YES, if G has a path s to t of length $\leq d$ NO, if not Let $R_d=R_d(G,s)=\{u\,\big|\,path_d(G,s,u)=$ YES $\}$ Let $c_d=c_d(G,s)=|R_d|$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$.

 $c_d ===> path_d$


```
Let path_d(G,s,t)=\{ YES, if G has a path s to t of length \leq d NO, if not Let R_d=R_d(G,s)=\{u\,\big|\,path_d(G,s,u)= YES\} Let c_d=c_d(G,s)=|R_d|
```

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$.

 $c_d ===> path_d$

- Proof: "On input $\langle G, s, t \rangle$
- 1. Compute c_d
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.
 - If u = t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO" [found all c_d reachable nodes and none were t}


```
Let path_d(G,s,t)=\{ YES, if G has a path s to t of length \leq d NO, if not Let R_d=R_d(G,s)=\{u\,\big|\,path_d(G,s,u)= YES\} Let c_d=c_d(G,s)=|R_d|
```

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_d$.

 $c_d ===> path_d$

- Proof: "On input $\langle G, s, t \rangle$
- 1. Compute c_d
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.
 - If u = t, then output YES, else set $k \leftarrow k + 1$.
 - (n) Skip u and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO" [found all c_d reachable nodes and none were t}

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes $\overline{c_{d+1}}$ from $\overline{c_d}$.

$$c_d ===> c_{d+1}$$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k+1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$ "On input $\langle G, s, t \rangle$

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$ "On input $\langle G, s, t \rangle$

1.
$$c_0 = 1$$
.

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$

- 1. $c_0 = 1$.
- 2. Compute each c_{d+1} from c_d for d=1 to m.

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip *u* and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$

- 1. $c_0 = 1$.
- 2. Compute each c_{d+1} from c_d for d=1 to m.
- 3. Accept if $path_m(G, s, t) = NO$.

Theorem: If some NL-machine computes c_d , then some NL-machine computes $path_{d+1}$. $c_d ===> path_{d+1}$

Proof: "On input $\langle G, s, t \rangle$

- 1. Compute *c*
- 2. $k \leftarrow 0$
- 3. For each node *u*
- 4. Nondeterministically go to (p) or (n)
 - (p) Nondeterministically pick a path from s to u of length $\leq d$. If fail, then reject.

If u has an edge to t, then output YES, else set $k \leftarrow k + 1$.

- (n) Skip u and continue.
- 5. If $k \neq c_d$ then reject.
- 6. Output NO." [found all c_d reachable nodes and none had an edge to t}

Corollary: Some NL-machine computes c_{d+1} from c_d .

$$c_d ===> c_{d+1}$$

Hence $\overline{PATH} \in NL$

- 1. $c_0 = 1$.
- 2. Compute each c_{d+1} from c_d for d=1 to m.
- 3. Accept if $path_m(G, s, t) = NO$.
- 4. Reject if $path_m(G, s, t) = YES.$ "

Quick review of today

- 1. Log-space reducibility
- 2. L = NL? question
- 3. *PATH* is NL-complete
- 4. NL = coNL

Quick review of today

- 1. Log-space reducibility
- 2. L = NL? question
- 3. *PATH* is NL-complete
- 4. NL = coNL