Data Science in 7 Steps

Mário Antunes

June 23, 2017

Instituto de telecomunicações Universidade de Aveiro

About me

Name: Mário Antunes

Occupation: PhD Student, researcher, jack of all

trades

Areas of interest: Artificial intelligence, Machine

learning, text mining, stream

mining, IoT, M2M, ...

DS Portugal

- Community of data science enthusiasts.
- Mission: share knowledge between peers informally.
- Several successful meetups in the past.
- Everyone is welcomed to join and share knowledge.

Terminology

Dataset organized set of examples, typically composed of features and labels

Feature single property of an example (input variable)

Label classification category of an example (output variable)

Example single instance of a dataset

Outline

- 1. Step 0 Demystifying machine learning
- 2. Step 1 Basic Introduction
- 3. Step 2 Acquiring data
- 4. Step 3 Preprocessing data
- 5. Step 4 Learn a machine learning model
- 6. Step 5 Evaluate a machine learning model
- 7. Step 6 Profit
- 8. Step 7 Advance topics and discussing

Step 0 - Demystifying machine learning

• I do not like equations!

- I do not like equations!
- Never had formal training!

- I do not like equations!
- Never had formal training!
- It is such a complex topic!

- I do not like equations!
- Never had formal training!
- It is such a complex topic!
- Can I be a data scientist?

- I do not like equations!
- Never had formal training!
- It is such a complex topic!
- Can I be a data scientist?
- Yes!

How to start?

- Several tools, frameworks and libraries ready to use
- Books, on-line courses, stack-overflow
- Meeting groups (remember DSPT)
- More than just a trend it is a necessity

Materials

coursera

Step 1 - Basic Introduction

Five main learning techniques

Induction symbolic reasoning

Neural Networks connections modelled on brain's neurons

Evolutionary algorithms learn from random generations (genetic algorithm)

Bayesian inference probabilistic models based on bayes' theorem **Analogy** learns by finding *similar* examples

Taxonomy

Supervised learning algorithm learns from input and output data
Unsupervised learning algorithm learns with input data only
Reinforcement learning algorithms learns based on a reward system

Taxonomy

Taxonomy

Curse of Dimensionality

 As the number of features (or dimensions) grows, the amount of data we need to learn accurately grows exponentially.

No free lunch

"No Free Lunch" :(

D. H. Wolpert. The supervised learning no-free-lunch theorems. In Soft Computing and Industry, pages 25–42. Springer, 2002.

Our model is a simplification of reality

Simplification is based on assumptions (model bias)

Assumptions fail in certain situations

Roughly speaking:

"No one model works best for all possible situations."

Step 2 - Acquiring data

Acquiring data

- The most important step in data science
- Google's Research Director Peter Norvig said:
 We don't have better algorithms. We just have more data.
- Unfortunately there is no recipe for data acquisition

• Public available dataset

• Public available dataset

• Gather data from web (scrapper, crawler, APIs)

• Public available dataset

• Gather data from web (scrapper, crawler, APIs)

• Gather data from sensors

• Public available dataset

• Gather data from web (scrapper, crawler, APIs)

• Gather data from sensors

• Better yet, known what you want to learn and gather the right data

Step 3 - Preprocessing data

Preprocessing data

• The world is a messy and noisy place

Preprocessing data

• The world is a messy and noisy place

• As such the data that you acquire needs to be clean

Preprocessing data

- 1. Obtain meaningful data (called ground truth)
- 2. Acquire enough data for the task at hand (requires experience)
- 3. Organize data in the correct format
- 4. Deal with bad data
- 5. Create new features (advanced)

Deal with bad data

- Bad data is not criminal, just refers to:
 - 1. Mislabel or missing data
 - 2. Redundancy of information
 - 3. Outliers

Missing data

- When a feature has more than 90% examples missing, just drop it.
- Replacement strategies:
 - Replace with a computed value:
 - Mean, median, most common
 - Value outside of range
 - (
 - Interpolate missing value

"Well, this certainly explains much of the company's missing data. Who else thought the 'DEL' key on their computer was for delegating work?"

Transform Distributions

• Normalization:

$$x_i = \frac{x_i - \min(X)}{\max(X) - \min(X)}$$

• Z-score normalization:

$$x_i = \frac{x_i - \mu}{\sigma}$$

Removing outliers

- Plot examples and manual remove outliers (small datasets)
- Remove [1%, 5%, 10%] of the extremes
- Use unsupervised learning methods to cluster data

Create features automatically (Advanced)

• Polynomial expansion:

$$(x+y)^2 = x^2 + 2xy + y^2$$

• Principal Component Analysis (PCA):

Step 4 - Learn a machine learning model

Learn a machine learning model

- There is a lot going on inside the learners code
- But you do not have to worry about it
- Just take into account:
 - Different types of learners (with different assumptions)
 - Different types of data (numerical, stream, images, stock...)

Taxonomy

K-nearest neighbour

- Euclidean $\sqrt{\sum_{i=1}^{k} (x_i y_1)^2}$
- Manhattan $\sum_{i=1}^{k} |x_i y_1|^2$
- Minkowski $\left(\sum_{i=1}^{k}|x_i-y_1|^q\right)^{\frac{1}{q}}$

Naive bayes

• George E. P. Box said:

All models are wrong; some models are useful.

Logistic regression

Logistic regression

Logistic regression

 Support Vector Machine (SVM) and Neural Networks are extensions of this...

Decision Trees

Model decision boundary

Linear regression

TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

K-means

Step 5 - Evaluate a machine

learning model

Generalization, over-fitting, under-fitting

Generalization, over-fitting, under-fitting

- Generalization = min(overfitting + underfitting)
- Over-fitting = high variance
- Under-fitting = high bias

Bias and variance

Validation

• Split-sample or holdout validation

Validation

• K-fold cross validation

Metrics

- Classification Accuracy
- Area Under ROC Curve
- Confusion Matrix

Step 6 - Profit

Profit

What can you do with machine learning?

Users' Similarity

Group users from social media based on their similarity.

Step 7 - Advance topics and

discussing

Users' Similarity

Are we doomed?