★★★☆ Exercice 1 2 points

On se place dans un repère orthonormal $(0; \overrightarrow{i}; \overrightarrow{j})$.

Dans ce repère on considère les droites (d_1) et (d_2) d'équation cartésienne :

$$(d_1)$$
: $3x + 5y - 23 = 0$ et (d_2) : $5x - 3y + 7 = 0$

- 1. Démontrer que les droites (d_1) et (d_2) sont perpendiculaires.
- 2. Calculer les coordonnées du point d'intersection de ces deux droites

★★☆☆ Exercice 2 3 points

On se place dans un repère orthonormal $(0; \overrightarrow{i}; \overrightarrow{j})$.

Dans ce repère on considère les points A(-2; 10) et B(10; -6) ainsi que le cercle \mathscr{C} de diamètre [AB].

- 1. Déterminer les coordonnées du point Ω centre du cercle $\mathscr C$ ainsi que son rayon.
- 2. Déterminer une équation cartésienne de la droite (T) tangente à $\mathscr C$ au point A.

★★☆☆ Exercice 3 3 points

- 1. Faire le tableau de signes sur \mathbb{R} de $f(x) = 6x^2 + x + 5$.
- 2. Factoriser, si possible dans \mathbb{R} , $g(x) = -36x^2 + 12x 1$.
- 3. Résoudre dans \mathbb{R} l'équation $8888x^2 + 7777x 1111 = 0$.

★★☆☆ Exercice 4 2 points

Dans cet exercice, vous traiterez, au choix, l'une des deux questions suivantes :

- Résoudre dans \mathbb{R} l'équation $-x^4 + 4x^2 3 = 0$ en posant $X = x^2$.
- Résoudre dans \mathbb{R} l'équation $-x + 4\sqrt{x} 3 = 0$ en posant $X = \sqrt{x}$.

★★☆☆ Exercice 5 6 points

Soit *P* la fonction définie sur \mathbb{R} par : $P(x) = -x^3 + 2x^2 + 31x + 28$.

- 1. (a) Calculer P(-4).
 - (b) Qu'en déduire?
- 2. Déterminer trois réels a, b et c tels que $P(x) = (x+4)(ax^2+bx+c)$.
- 3. (a) Faire le tableau de signes de P(x) sur \mathbb{R} .
 - (b) En déduire l'ensemble des solutions de l'inéquation $P(x) \le 0$.

14/10/2025 1/2

★★★☆ Exercice 6 4 points

ABCD est un rectangle tel que AB = 10 et AD = 6.

M étant un point du segment [AD], on construit le quadrilatère MNPQ comme indiqué sur la figure cidessous, avec AM = AN = CP = CQ

On pose AM = x avec $x \in [0; 6]$.

- 1. Exprimer en fonction de *x* l'aire du triangle *MAN* ainsi que l'aire du triangle *NBP*
- 2. On note f(x) l'aire du quadrilatère MNPQ.
 - (a) Démontrer que $f(x) = -2x^2 + 16x$.
 - (b) Donner le tableau de variation complet de la fonction f sur [0;6].
 - (c) En déduire la valeur maximale de l'aire du quadrilatère MNPQ.
 - (d) Déterminer les positions éventuelles du point M sur le segment [AD] pour que l'aire du quadrilatère MNPQ soit égale à la moitié de l'aire du rectangle ABCD.

14/10/2025 2/2