2-1 a)			SO.	n's occupa	tion			
	father's occupation	farm	operatives	craftsmen	sales	professional	Il Tather	- 1 >0-1
/\)^		0.018		0.031	0.008	0.018	0.11	ー フ
0)	operatives	0.002	0.112	0.064	0.032	0.069	0-2-19	
•	craftsmen	0.001	0.066	0.094	0.032	0.084	0-27 7	
	sales	0.001	0.018	0.019	0.010	0.051	0.099	
	professional	0.001	0.029	0.032	0.043	0.130	0.235	
	P(Son/Father)	0 0 0 0 2	3 0.26	0-24	0.125	0-352	1	
	•		\ /					

$2 \cdot (c)$ father's occupation farm 0	arm op .018		on's occup craftsme 0.031		rofessional 0.018
			0-11		
= 0-1636, 0-3181) O.	2818	3,0.0	127,0	-1636
2-ld) father's occupation	L				/
father's occupation farm	$\frac{\text{on farm}}{0.01}$		C	0-1926	0
operatives craftsmen	0.00	2	= (0.086	96
sales	0.00			0-0439	
professional	0.00			9,04 0.04	, , ,

SID 1<u>155017920</u>

2.20) E(di. 1, + a. 12) = dight + azillz Vax (d; 1, + d2 1/2) $= d_1^2 f_1^2 + d_2^2 f_2^2 + 2a_1 \cdot a_2 \cdot Cov(f_1, f_2)$ b) E(q. 4, -q. 52) = d, M, - q. M2 Vor (a, -4, -02- 72) $=d_1^2\sigma_1^2+d_2^2\sigma_2^2-2d_1\cdot d_2\cdot Cov(f_1,f_2)$ use the definition

2-3a)
$$P(x|y,z) = \frac{P(x,y,z)}{P(y,z)}$$

$$\angle \frac{P(x,y,z)}{P(x,y,z)}$$

$$\int P(x,y,z) dx$$

$$\int P(x,z) \cdot g(y,z) \cdot h(z)$$

$$\int f(x,z) \cdot g(y,z) \cdot h(z) dx$$

$$\mathcal{L} = f(x,z) \cdot g(x,z) \cdot h(z)$$

$$g(x,z) \cdot h(z) \int f(x,z) dx$$

$$\mathcal{L} = f(x,z) \int f(x,z) dx$$

b)P(y|x,z) = P(y,x,z)/P(x,z) $2 \frac{P(y, x, z)}{\int P(y, x, z) dy}$ 2 /(1/2)·g(1/2)·h(2) J /(1,2).g(y,2).h(2)dy /(1,2).g(4,2).h(2) $f(\eta,z)\cdot h(z) \int g(y,z) dy$ g(Yrz)_ (g(x, 2) dy

c) Show
$$P(y|z) = P(y|z,\pi)$$

$$P(y|z) = P(y,z)/P(z)$$

$$P(x,y,z) dx$$

$$\int P(x,y,z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,z) - P(y|z) dxdy$$

$$P(x,y,z) dxdy$$

$$P(x,z) - P(y|z) dxdy$$

$$P(x,z) - P(y|z) dxdy$$

$$P(x,z) - P(y|z) dxdy$$

$$P(x,z) - P(y|z) dxdy$$

 $\int g(y,z) \int f(x,z) dx$ $\int g(y,z) \int g(y,z) dy$ $\int g(y,z) \int g(y,z) dy$

2-59)

6) 2

() Vor
$$[Y|X=0]$$

= $E[(Y|X=0)^2] - E[Y|X=0] \cdot E[Y|X=0]$
= $[Y|X=0] - [Y|X=0] - [Y|X=0] = 0$
= $[Y|X=0] = 0$
=

Vor
$$\{Y\} = E[Y^2] - E[Y] \cdot E[Y]$$

= 0.5 - 0.25 = 0.25

Vor $\{Y\} = \{Y\} =$

$$= 0.3/0.7 = 3 = 0.6$$

3.1a)
$$\theta^{z_i t_i}$$
. $(1-\theta)^{100-z_i t_i}$
 $P(z_i t_i = y(\theta) = M) e^{z_i t_i}$ $(1-\theta)^{100-z_i t_i}$

```
b)
```

```
> theta_seq <- seq(0, 1, by = .1)
> likelihood <- dbinom(57, 100, theta_seq)
> plot(theta_seq, dbinom(57, 100, theta_seq), type = 'l')
> likelihood
[1] 0.0000000e+00 4.107157e-31 3.738459e-16 1.306895e-08 2.285792e-04 3.006864e-02 6.672895e-02 1.853172e-03 1.003535e-07 9.395858e-18
[11] 0.000000e+00
```


> likelihood / sum(likelihood)
[] 0.000000e+00 4.153701e-30 3.780824e-15 1.321705e-07 2.311695e-03 3.040939e-01 6.748515e-01 1.874172e-02 1.014907e-06 9.502335e-17
[] 0.000000e+00

- > theta_seq <- seq(0, 1, length.out = 10000)
 > likelihood <- dbinom(57, 100, theta_seq)
 > plot(theta_seq, likelihood, type = 'l')
- 0.08 90.0 0.04

e 75 normalised, d 7, not