OMOC OLIMPÍADA DE MATEMÁTICA

DO OESTE CATARINENSE

GABARITO DO CADERNO DE QUESTÕES NÍVEL 2 8º ao 9º Ano - Ensino Fundamental

Universidade Federal da Fronteira Sul

Campus Chapecó

2018

II OLIMPÍADA DE MATEMÁTICA DO OESTE CATARINENSE

CADERNO DE RESPOSTAS NÍVEL 2

1.

ALTERNATIVA A

Vamos chamar de ℓ e L, respectivamente, os lados do quadrado menor e do quadrado maior, e de Q a área comum aos dois quadrados. Então Q corresponde a 100-52=48% da área do quadrado menor e a

$$100-73=27\%$$
 da área do quadrado maior. Segue que $\frac{48}{100}\ell^2=\frac{27}{100}L^2$; logo

$$\left(\frac{\ell}{L}\right)^2 = \frac{27}{48} = \frac{9}{16} = \left(\frac{3}{4}\right)^2$$
, ou seja, $\frac{\ell}{L} = \frac{3}{4}$.

2.

ALTERNATIVA D

Podemos organizar as informações numa tabela:

	mês	dia do mês	dia da semana	
Andrea	agosto	16	segunda	
Daniela	agosto	16	terça	
Fernanda	setembro	17	terça	
Patrícia	agosto	17	segunda	
Tatiane	setembro	17	segunda	

Se Andrea estivesse certa, então Fernanda não acertaria nenhuma das informações. Logo, não é ela que está certa, nem Fernanda (pelo mesmo motivo). Se Daniela estivesse certa, então Tatiane também nada acertaria. Logo Daniele e Tatiane não estão certas. Se Patrícia acertar tudo, as demais também acertarão alguma informação e, portanto, Patrícia é a única que está certa.

3.

ALTERNATIVA C

Chamando de T o peso total das frutas, m o peso (massa) das maçãs, u o peso das uvas e l o peso das laranjas, os dados do problema nos fornecem

$$m = T/2$$
, $u + I = T/2$ e $u = 2I$

donde concluímos que m = T/2, u = T/3 e I = T/6. Portanto, de acordo com a tabela de preços, teremos:

$$3 \cdot \frac{T}{2} + 4 \cdot \frac{T}{3} + 2 \cdot \frac{T}{6} = 38 : T = 12$$

Logo, Télio comprou 12 kg de frutas.

ALTERNATIVA D

Chamando cada participante pela primeira letra de seu nome, as possibilidades de escolha dos 2 premiados são: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ou seja, há 10 possibilidades. As possibilidades de escolha das duas premiações são: Ouro Ouro, Ouro Prata, Ouro Bronze, Prata Ouro, Prata Prata, Prata Bronze, Bronze Ouro, Bronze Prata e Bronze Bronze, ou seja, há 9 possibilidades. Pelo Princípio Multiplicativo, as diferentes formas de premiação são 10 x 9 = 90.

Outra solução Existem dois casos a considerar: ou os dois meninos premiados ganharam medalhas iguais, ou ganharam medalhas diferentes.

Se as medalhas são iguais, há 3 possibilidades para as medalhas, a saber, ou as duas são de ouro, ou as duas são de prata, ou as duas são de bronze. Além disso, dos 5 meninos, apenas 2 receberam medalhas, o que pode ocorrer de $\frac{5\times4}{2}$ maneiras diferentes (são 5 escolhas para o primeiro e são 4 escolhas para o segundo menino, mas precisamos dividir por 2, para eliminar as repetições, uma vez que para determinar a dupla de premiados, não importa a ordem de escolha dos meninos). Logo, pelo Princípio Multiplicativo, há $3\times\frac{5\times4}{2}=3\times10=30$ possibilidades para a premiação de dois desses meninos com medalhas iguais.

No segundo caso, se as medalhas recebidas pelos 2 meninos premiados são diferentes, há 3 possibilidades para os tipos de medalhas: ouro e prata; ouro e bronze; e prata e bronze. Em cada uma dessas possibilidades, a mais valiosa será recebida por 1 dos 5 meninos e a outra por um dentre os 4 meninos restantes. Assim, pelo Princípio Multiplicativo, nesse caso, o número de formas diferentes de premiação é $3 \times 5 \times 4 = 60$.

Portanto, pelo Princípio Aditivo, o número total de formas diferentes de ocorrer a premiação é 30 + 60 = 90.

5.

ALTERNATIVA A

Notamos primeiro que a soma dos números de 1 a 25 pode ser calculada de várias maneiras; por exemplo, observando que 1+25=2+24=...=12+14=26, vemos que essa soma é $12\times26+13=325$. Desse modo, a soma dos números em uma linha, coluna ou diagonal é então $\frac{325}{5}=65$. As casas brancas do tabuleiro consistem de uma linha, de uma coluna e das duas diagonais, todas se cruzando na casa central; assim, ao somar os números dessa linha, dessa coluna e dessas diagonais o número da casa central aparecerá quatro vezes. Denotando por x o número da casa central e lembrando que a soma dos números das casas cinzentas é 104, temos então $4\times65-3x=325-104$ e segue que x=13.

6.

ALTERNATIVA A

Como os quadrados estão dispostos de forma que os pontos A, M e B estão alinhados, e como M é o ponto médio de AB, segue que os dois triângulos da figura são triângulos retângulos, com catetos medindo 6 e 3 centímetros. Assim, a área de cada quadrado é $6 \times 6 = 36 \text{ cm}^2$ e a área de cada triângulo é $\frac{6 \times 3}{2} = 9 \text{ cm}^2$. A área total da figura é $36 + 36 + 9 + 9 = 90 \text{ cm}^2$.

Pode-se também deslocar um dos triângulos para se obter um outro método de resolução.

ALTERNATIVA A

Somando as metragens dos muros de Luiz e de Lúcio, obtemos 240 + 260 = 500 m. Neste total estão computados o comprimento do muro original (de 340 m) mais duas vezes o comprimento do muro interno. Logo, o comprimento do muro interno é igual a [500-340]/2 = 80 metros.

Podemos também resolver algebricamente: como o muro interno pertence ao cercado dos terrenos de Luiz e de Lúcio, se x é a medida do muro interno, temos:

$$340 + 2x = 240 + 260$$

Portanto $x = 80$ m.

8.

ALTERNATIVA E

Observando a conta, vemos que a letra B só pode representar o algarismo 0, pois é igual a A-A. Por outro lado, como o algarismo das centenas do resultado não aparece (é zero), concluímos que Á representa o algarismo 1, pois quando tiramos de um número menor do que 100 de um número maior do que 200, a diferença é maior do que 100, que não é o caso. Substituindo os valores já encontrados, obtemos:

BA CA A B

Disto concluímos que C representa o algarismo 9.

Outra solução: A conta apresentada pode ser convertida em uma adição, como na figura. O algarismo que corresponde à letra B deve ser 0, pois B + A = A. Analisando a casa das dezenas, vemos que A + C = 10, o que nos leva a concluir que o dígito das centenas do resultado é 1, ou seja, que A = 1. Logo, 1 + C = 10 e, portanto, C = 9.

9.

ALTERNATIVA C

Como em cada face aparecem quatro números consecutivos, então na face onde estiver o número 1, obrigatoriamente estarão os números 1, 2, 3 e 4. Logo, na face onde estiver o número 5 estarão os números 5, 6, 7 e 8, e assim, sucessivamente, até chegarmos à face com os números 21, 22, 23 e 24.

Sendo assim, no cubo apresentado a face com o número 23 também apresenta os números 21, 22 e 24. Como o enunciado diz que a soma do maior número de uma face com o menor da face oposta é igual a 25, podemos concluir que na face oposta à que contém o 23 estão os números 1, 2, 3 e 4. Na face em que aparece o número

7 aparecem os números 5, 6 e 8, e na face oposta a esta estão os números 17, 18, 19 e 20. Logo, na face destacada (em cinza) pode estar qualquer número de 9 até 16.

Como a pergunta é qual é o menor número que pode aparecer na face cinza, a resposta é 9.

ALTERNATIVA D

Como quatro alunos correspondem a 10% dos alunos da escolinha de futebol, concluímos que esta tem $4 \times 10 = 4 \div (10/100) = 4 \div (1/10) = 40$ alunos. Logo, 40 - 4 = 36 alunos participam somente da escolinha de futebol. Os mesmos quatro alunos correspondem a 25% dos alunos da escolinha de basquete, que tem, portanto, $4 \times 4 = 4 \div (25/100) = 4 \div (1/4) = 16$ alunos. Assim, 16 - 4 = 12 alunos participam somente dessa escolinha.

Conclusão: o número de atletas que participam somente de uma escolinha é 36 + 12 = 48.

11.

ALTERNATIVA D

Basta observar que $242424 = 2 \times 121212$. Logo,

$$\frac{242424^2 - 121212^2}{242424 \times 121212} = \frac{(2 \times 121212)^2 - 121212^2}{2 \times 121212 \times 121212} = \frac{4 \times 121212^2 - 121212^2}{2 \times 121212^2} = \frac{3 \times 121212^2}{2 \times 121212^2} = \frac{3}{2}.$$

12.

ALTERNATIVA D

Cada figura é formada por 3 cópias da figura anterior, posicionadas de modo a colocar em contato apenas dois pares de quadradinhos das cópias das figuras. Em consequência, o comprimento do contorno da nova figura é igual a 3 vezes o comprimento do contorno da anterior, menos 4 cm (correspondentes aos lados em contato).

A tabela abaixo dá o comprimento do contorno das sucessivas figuras.

Figura	Contorno (cm)	
1	4	
2	$3 \times 4 - 4 = 8$	
3	$3 \times 8 - 4 = 20$	
4	$3 \times 20 - 4 = 56$	
5	$3 \times 56 - 4 = 164$	
6	$3 \times 164 - 4 = 488$	

Portanto, o contorno da Figura 6 mede 488 cm.

ALTERNATIVA E

Como x^2 -xy = 23, então x(x-y) = 23, mas 23 é um número primo e assim temos somente duas possibilidades:

- x =1 e x-y = 23. Isto implica y = 22, o que n\u00e3o nos interessa pois x e y s\u00e3o n\u00eameros naturais ou
- x = 23 e x-y = 1. Isto nos leva a y = 22.
 Logo x + y = 22 + 23 = 45.

14.

26 Divisão do terreno - Solução

Como a área do quadrado do centro é igual a 64 m², então o seu lado mede 8 m. Como o perímetro de um quadrado é igual a quatro vezes o comprimento do seu lado, concluímos que o perímetro do quadrado central é igual a 32 m.

Como as cinco regiões têm o mesmo perímetro, concluímos que o perímetro de cada retângulo também é igual a 32 m. Observe agora a seguinte figura:

Através dela vemos que MA + AN é igual à metade do perímetro do retângulo MANS.

Portanto,

$$MA + AN = 16 \text{ m}. \tag{.4}$$

Mas os lados maiores dos retângulos são iguais, logo MA = NB. Assim, podemos substituir MA por NB na equação (.4) para obter que NB+AN=16 m. Concluímos

então que o lado do terreno mede NB+AN=16 m. Como o terreno tem forma de quadrado, a área do terreno é $(16~{\rm m})^2=256~{\rm m}^2$.

15 Soma constante – Solução

a) Como a soma de três números consecutivos é sempre a mesma, se *a*, *b*, *c* e *y* estão escritos nessa ordem na fila, devemos ter *a* = *y* pois:

$$a+b+c = b+c+y$$

 $a = y$.

Assim, seguindo esse padrão de repetição a cada três quadrados, os vizinhos do número x devem ser 2 e 3 como indica a figura abaixo.

	_	_		-	_	_	_	
2	3	2	x	3	2	3	2	

Como 2 + x + 3 = 30, segue que x = 25.

b) Repetindo o argumento do item anterior, na figura abaixo, podemos concluir que:

$$a+b+c = b+c+d$$

 $a = d$.

L	a	
	b	
	c	
Γ	d	1

Consequentemente, quaisquer dois quadradinhos, separados por outros dois em uma mesma linha ou coluna, são iguais. Podemos então preencher dois vizinhos de x com os números sublinhados abaixo:

4		4		4	
				x	
				7	
		7		7	

Finalmente, analisando a soma de um triminó com x no meio, temos 4+7+x=30 e x=19.