The Inner Products AA^{T} and $A^{T}A$

Ng Yen Kaow

Notations (Important)

- A vector is by default a column
 - For vectors x and y, their inner (or dot) product, $\langle x, y \rangle = x^{T}y$
 - Beware: some texts use row vectors and $\langle x, y \rangle = xy^T$
- For a matrix an example is a row
 - An example (or datapoint) is a row x_i while each feature is a columns
 - Features are like fixed columns in a spreadsheet
 - For matrices X and Y, $\langle X, Y \rangle = XY^{\mathrm{T}}$ or $\sum_{i} (x_{i}y_{i}^{\mathrm{T}})$
 - Beware: some texts use column for examples and let $\langle X, Y \rangle = X^{T}Y$
- \square So it's x^Tx , x^TMx , but XX^T and $Q\Lambda Q^T$

What about outer product?

The outer product of two vectors is a matrix

$$\begin{pmatrix} a \\ b \end{pmatrix} (c \quad d) = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix}$$

- The outer product (or Kronecker product)
 of two matrices is a tensor
- We don't deal with outer products yet

Python call for inner product

- Inner products are performed with np. dot()
 - When called on two arrays, the arrays are
 automatically oriented to perform inner product
 Note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot(x, X), and column for np. dot(X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
 - Impossible to get outer product with np. dot()
- If you write x*y or X*Y, what you get is an element-wise multiplication

The inner products AA^{T} and $A^{T}A$

- \square Given an $n \times m$ matrix A where the rows are datapoints and columns are features
 - The inner product $A^{T}A$ is the covariance matrix (more precisely $A^{T}A/n$)
 - Used in the proof of PCA
 - The inner product AA^T is called a Gram matrix, or Gramian
 - Used in the proof of MDS
 - Eigendecomposition of both A^TA and AA^T are equivalent (convertible from each other)

Properties of AA^{T} and $A^{T}A$

- Properties
 - Positive semi-definite (proof later)
 - Furthermore, positive semi-definiteness of symmetric matrices is preserved over sum, product, and scaling
- \square AA^{T} and $A^{\mathrm{T}}A$ are related
 - Equivalent eigendecomposition (later)
 - Convertible through their eigenvectors (later)
 - Obtainable from SVD of A (proof omitted)

AA^T/A^TA is positive semi-definite

- □ A matrix M is positive semi-definite (PSD) iff all its eigenvalues are non-negative
 - That is, $\forall x (x^T M x \ge 0)$
- □ For example, $M = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$ is positive semidefinite because

$$(x_1 \quad x_2) \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 - 2x_1x_2 + x_2^2$$
$$= (x_1 - x_2)^2 \ge 0$$

□ To show that AA^{T} is PSD, we first establish the equivalence between $x^{T}Mx$ and a quadratic formula

Quadratic form

- A generalized quadratic formula of n variables can be written in the form of x^TMx
- For instance, a quadratic formula of two variables $a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{22}x_2^2$

can be written as

$$(x_1 x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1 a_{11} + x_1 a_{12} x_1 a_{12} + x_2 a_{22}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= a_{11} x_1^2 + a_{12} x_1 x_2 + a_{21} x_2 x_1 + a_{22} x_2^2$$

 \square The general form of n variables is

$$(x_1 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x^T A x = \sum_{ij} a_{ij} x_i x_j$$

AA^T in quadratic form

□ Let $B = AA^{T}$, then $x^{T}Bx \ge 0$, let a_{i} be the irow of A, then

$$x^{\mathrm{T}}(AA^{\mathrm{T}})x = \sum_{ij} \langle a_i, a_j \rangle x_i x_j$$
$$= \sum_{ij} \langle x_i a_i, x_j a_j \rangle$$
$$= \langle \sum_i x_i a_i, \sum_j x_j a_j \rangle \ge 0$$

- □ This says that $x^{T}(AA^{T})x$ can be factorized into a linear addition of the terms $(\sum_{i} x_{i} a_{ik})^{2}$
 - Hence AA^{T} is PSD (and similarly so is $A^{T}A$)

Example of 2 × 2 matrix

$$A = (\xleftarrow{} a_1 \xrightarrow{}), A^T = (\xrightarrow{} \uparrow \uparrow \uparrow)_{x_1^T = a_2^T \downarrow}$$

$$AA^T = (\xrightarrow{} a_1 a_1^T = a_1 a_2^T)_{x_2^T = a_2 a_2^T \downarrow}$$

$$x^T AA^T x = (x_1 - x_2) (\xrightarrow{} a_1 a_1^T = a_1 a_2^T)_{x_2^T = a_2 a_2^T \downarrow} (\xrightarrow{} x_2)_{x_2^T = a_2 a_2^T \downarrow} (\xrightarrow{} x_1 a_1 a_2^T + x_2 a_2 a_2^T)_{x_2^T = a_2 a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_1^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_1 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T = a_2^T \downarrow} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T \to} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T \to} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T = a_2^T \to} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T \to} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T \to} (\xrightarrow{} x_1 a_2 + x_2 a_2)_{x_2^T \to} (\xrightarrow$$

Example of 2×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$x^{T}AA^{T}x = (x_{1} \quad x_{2}) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= (x_{1} + x_{2} \quad x_{1} + 2x_{2}) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$= x_{1}^{2} + x_{1}x_{2} + x_{1}x_{2} + 2x_{2}^{2}$$

$$= (x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2}) + x_{2}^{2}$$

$$= (x_{1} + x_{2})^{2} + x_{2}^{2}$$
By theorem, $\sum_{i} x_{i} a_{i} = x_{1}(1 \quad 0) + x_{2}(1 \quad 1) = (x_{1} + x_{2} \quad x_{2})$

$$(\sum_{i} x_{i} a_{i}) (\sum_{i} x_{i} a_{i}) = (x_{1} + x_{2} \quad x_{2}) \begin{pmatrix} x_{1} + x_{2} \\ x_{2} \end{pmatrix}$$

$$= (x_{1} + x_{2})^{2} + x_{2}^{2}$$

$$x^{T}AA^{T}x = (x_{1} + x_{2})^{2} + x_{2}^{2} \ge 0$$

Example of 3×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$x^{T}AA^{T}x = (x_{1} \quad x_{2} \quad x_{3}) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= (x_{1} + x_{3} \quad x_{2} + x_{3} \quad x_{1} + x_{2} + 2x_{3}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= x_{1}^{2} + 2x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3} + 2x_{3}^{2}$$
By theorem, $\sum_{i} x_{i} a_{i} = x_{1}(1 \quad 0) + x_{2}(0 \quad 1) + x_{3}(1 \quad 1)$

$$= (x_{1} + x_{3} \quad x_{2} + x_{3})$$

$$(\sum_{i} x_{i} a_{i}) (\sum_{i} x_{i} a_{i}) = (x_{1} + x_{3} \quad x_{2} + x_{3}) \begin{pmatrix} x_{1} + x_{3} \\ x_{2} + x_{3} \end{pmatrix}$$

$$= x_{1}^{2} + 2x_{3}^{2} + 2x_{1}x_{3} + x_{2}^{2} + 2x_{2}x_{3}$$

$$x^{T}AA^{T}x = (x_{1} + x_{3})^{2} + (x_{2} + x_{3})^{2} \ge 0$$

AA^T/A^TA equal in decomposition

- AA^T and A^TA have equivalent eigendecomposition
- We will prove these facts
 - 1. AA^{T} and $A^{T}A$ have the same rank
 - 2.1 AA^{T} and $A^{T}A$ have the same eigenvalues
 - 2.2 AA^{T} and $A^{T}A$ have the same eigenvectors (different for only up to an orthogonal transformation)

AA^{T} and $A^{\mathrm{T}}A$ have the same rank

- \Box Let N(A) denote the null space of A
 - $N(A) = \{x | Ax = 0\}$
- $\Box \quad \text{For } u \in N(A), Au = 0 \Rightarrow A^{T}Au = 0 \Rightarrow u \in N(A^{T}A)$
- For $u \in N(A^{T}A)$, $A^{T}Au = 0 \Rightarrow uA^{T}Au = 0 \qquad \text{next}$ $\Rightarrow (Au)^{T}(Au) = 0 \stackrel{\text{Slide}}{\Rightarrow} Au = 0$ $\Rightarrow u \in N(A)$
- □ Hence $N(A^{T}A) = N(A) \Rightarrow \operatorname{rank}(A^{T}A) = \operatorname{rank}(A)$
- □ Similarly $N(AA^{T}) = N(A^{T})$ ⇒ $rank(AA^{T}) = rank(A^{T})$
 - : rank(A) = rank (A^{T}) , rank $(A^{T}A)$ = rank (AA^{T})

Proof $X^{\mathrm{T}}X = 0 \Rightarrow X = 0$

- \Box Let $X = (x_{ij})$
- □ Observe that $(X^TX)_{ij} = \sum_k x_{ik} x_{jk}$ ⇒ $(X^TX)_{ii} = \sum_k x_{ik}^2$

AA^T/A^TA have equal eigenpairs

- \Box For any matrices A and B, AB and BA have the same non-zero eigenvalues
 - Let $\lambda \neq 0$ be a eigenvalue for AB with eigenvector v
 - Then $ABv = \lambda v \Rightarrow BABv = \lambda Bv$ $\Rightarrow (BA)(Bv) = \lambda(Bv)$
 - $\Rightarrow \lambda$ is a eigenvalue of BA with eigenvector (Bv)
- \square This result holds for all A and B

Convert $AA^{\mathrm{T}} \longleftrightarrow A^{\mathrm{T}}A$

- □ Let Λ be the diagonal matrix of eigenvalues for both AA^{T} and $A^{T}A$
- Let U, V be their respective eigenvectors, that is, $AA^{T}U = \Lambda U$ and $A^{T}AV = \Lambda V$, then $AA^{T} = U\Lambda U^{T}$ $= U(V^{T}A^{T}AV)U^{T}$ $= (UV^{T})A^{T}A(VU^{T})$

AA^T and A^TA related through SVD

- □ Singular values and vectors of AA^{T} and $A^{T}A$ are related to the singular values and vectors of A
- □ Let $A = UDV^{T}$ (UDV^{T} is the SVD of A), then

$$A^{\mathrm{T}}A = VD^2V^{\mathrm{T}}$$
, and $AA^{\mathrm{T}} = UD^2U^{\mathrm{T}}$

(Proof omitted)

Gramian as kernel

- □ A kernel is a function that computes a distance $d(x_i, x_j)$ in a high dimensional mapped space ϕ without knowing $\phi(x_i)$ and $\phi(x_j)$
 - Good when $\phi(x)$ has way more features than x in the original space
 - But when number of datapoints is large, still better to compute $\phi(x_i)$ and $\phi(x_j)$
 - $d(x_i, x_j)$ often defined to be an inner product, $\langle \phi(x_i), \phi(x_j) \rangle$
 - More precisely, a Gramian