

Sistem Kendali

Kendali = pengukuran, penggerak (aktuator) dan prosesor

Video Pendulum Terbalik

Molecular and chemical processes

Information Systems

Mechanical and Aero Systems

Electrical and Electronic Systems

Robotics and Autonomy

Produk yg mendasarkan pada *embedded* control

Embedded control di sekitar kita

Inverted Pendulum

Siklus Desain Sistem Kendali

CONVENTIONAL CONTROL

- Open-loop control is 'blind' to actual output
- Closed-loop control takes account of actual output and compares this to desired output

Digital Control System Configuration

Fuzzy Control

Fuzzy control provides a formal methodology for representing, manipulating, and implementing a human's heuristic knowledge about how to control a system.

Fuzzy Systems

Fuzzy Control Systems

Basic configuration of fuzzy logic control system

KB: Knowledge Base,

FI: Fuzzification interface,

DML: Decision Making Logic, DFI: Defuzzification interface

Block diagram for a fuzzy inference system

Block diagram for a fuzzy inference system

The structure of a FKBC

Three fuzzy partition terms: N(Negative), Z(Zero), and P(Positive)

Rule Base Construction

- Intuitive Method
- Method based Operator (Expert) Experience
- Response Ideal Method

Fuzzy decision rule justification by using step response

DML Rule Prototype with Three Fuzzy Set Term (negative, zero, positive)

Rule Number	Е	DE	CI	Reference Points
1	P	Z	P	a, e, i
2	Z	N	N	b, f, j
3	N	Z	N	c, g, k
4	Z	P	P	d, h, 1
5	Z	Z	Z	desired position

Rule Justification with Three Fuzzy Set Terms

Rule Number	Е	DE	CI	Reference Region
6	P	N	P	i(rise time),v
7	N	N	N	ii(overshoot),vi
8	N	P	N	iii, vii
9	P	P	P	iv, viii
10	P	N	Z	ix
11	N	P	Z	xi

Configuration Procedure and DML Consequence

Masukan kendali setelah tahap defuzzifikasi (Masukan kendali C1: Metoda maksimum rata-rata Masukan kendali C2: Metoda pusat area)

Various defuzzification schemes for obtaining a crisp output.

Fuzzy Partition using Seven Terms

Fuzzy Rules with 7 Terms {NB, NM, NS, ZE, PS, PM, PB}

Rule No.	Е	DE	CI	Reference Region/Point	
1	PB	ZE	PB	a	
2	PM	ZE	PM	e	
3	PS	ZE	PS	i	
4	ZE	NB	NB	b	
5	ZE	NM	NM	f	
6	ZE	NS	NS	j	
7	NB	ZE	NB	c	
8	NM	ZE	NM	g	
9	NS	ZE	NS	k	
10	ZE	PB	PB	d	
11	ZE	PM	PM	h	
12	ZE	PS	PS	i	
13	ZE	ZE	ZE	desired position	

Tabel Justifikasi kaidah dengan tujuh subset fuzzy

Nomor Kaidah	Е	DE	CI	Daerah Acuan
14	PB	NS	PM	i(rise-time)
15	PS	NB	NM	ii(overshoot)
16	NB	PS	NM	iii
17	NS	PB	PM	viii
18	PS	NS	ZE	ix
19	NS	PS	ZE	xi

The rule base of a PI-like FKBC in tabular form: the five groups of rule

The Mamdani fuzzy inference system using min and max for T-norm And T-conorm operators, respectively.

IF X is A1 and Y is B1 THEN Z is C1: R1 IF X is A2 and Y is B2 THEN Z is C2: R2

•