I Algorithme de déterminisation

Déterminiser l'automate suivant en utilisant l'algorithme du cours :

II Clôture des langages reconnaissables

Si $m=m_1...m_n$ est un mot, on définit son miroir $\widetilde{m}=m_n...m_1$. Si L est un langage, on définit son miroir $\widetilde{L}=\{\widetilde{m}\mid m\in L\}$.

1. Montrer que le miroir d'un langage reconnaissable est reconnaissable.

Si L est un langage sur Σ , on définit :

- $Pref(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, uv \in L\}$: ensemble des préfixes des mots de L.
- $Suff(L) = \{u \in \Sigma^* \mid \exists v \in \Sigma^*, vu \in L\}$: ensemble des suffixes des mots de L.
- $Fact(L) = \{u \in \Sigma^* \mid \exists v, w \in \Sigma^*, vuw \in L\}$: ensemble des facteurs des mots de L.
- 2. Montrer que si L est reconnaissable alors Pref(L), Suff(L), Fact(L) le sont aussi.
- 3. Montrer que si L est rationnel alors Pref(L), Suff(L), Fact(L) le sont aussi (puisqu'on va montrer que rationnel = reconnaissable, c'est une preuve alternative à la précédente).

III Reconnaissable ou non?

Pour chacun de ces langages, dire s'il est reconnaissable ou non. Justifier.

- 1. $L_1 = \text{mots sur } \{a, b\}$ sans lettres consécutives égales.
- 2. $L_2 = \text{mots sur } \{a, b\}$ ayant un nombre pair de a et dont le nombre de b est multiple de 3.
- 3. $L_3 = \{m \in \{a,b\}^* \mid |m|_a = |m|_b\}$ (où $|m|_a$ est le nombre de a du mot m).
- 4. $L_4 =$ écritures en base 2 des multiples de 5.
- 5. $L_5 = \{a^p \mid p \text{ est un nombre premier}\}.$

IV Algorithmes sur les automates

- 1. À quelle condition nécessaire et suffisante simple le langage reconnu par un automate est vide? Décrire un algorithme pour le savoir.
- 2. À quelle condition nécessaire et suffisante simple le langage reconnu par un automate est fini? Décrire un algorithme pour le savoir.
- 3. Décrire un algorithme pour déterminer si deux automates admettent le même langage.
- 4. Soit A un automate à n états. Montrer que si L(A) est non vide alors il contient un mot de longueur $\leq n-1$.
- 5. On dit qu'un automate est **émondé** si, pour tout état q, il existe d'une part un chemin d'un état initial à q et d'autre part un chemin de q à un état final. Montrer que tout automate est équivalent à un automate émondé.

V Longueur discriminante

- 1. Soit A un automate. Décrire un algorithme pour déterminer la plus petite longueur d'un mot reconnu par A et préciser sa complexité.
- 2. Soit A un automate à n états et de langage L(A). Montrer que $L(A) = \emptyset$ si et seulement si L(A) ne contient aucun mot de longueur strictement inférieure à n.
- 3. Soit $A_1 = (Q_1, i_1, F_1, \delta_1)$ et $A_2 = (Q_2, i_2, F_2, \delta_2)$ deux automates déterministes complets à n_1 et n_2 états et de langages L_1 et L_2 . On suppose que $L_1 \neq L_2$. Soit $l(L_1, L_2)$ la plus petite longueur d'un mot u appartenant à l'un des deux langages mais pas à l'autre.

Montrer que $l(L_1, L_2) < n_1 n_2$.

VI Ensemble distingant

Soient L un langage sur un alphabet Σ et $u, v \in \Sigma^*$. On dit que $w \in \Sigma^*$ est un *suffixe distingant* pour u et v si exactement l'un des mots uw ou vw appartient à L.

Un ensemble de mots D est distingant pour L si toute paire de mots de D a un suffixe distingant.

- 1. Soit L_1 le langage dénoté par l'expression régulière $(ab)^*$. Montrer que $\{\varepsilon, a, b\}$ est un ensemble distingant pour L_1 .
- 2. On note ind(L) le nombre minimum d'états d'un automate déterministe complet reconnaissant L. Montrer que si L a un ensemble distingant de taille n alors $ind(L) \geqslant n$.
- 3. Que vaut $ind(L_1)$?
- 4. On suppose que L a un ensemble distingant infini. Montrer que L n'est pas un langage régulier.
- 5. En déduire que $\{a^nb^n \mid n \in \mathbb{N}\}$ n'est pas un langage régulier.
- 6. Soit L_2 l'ensemble des mots de $\{a,b\}^*$ qui contiennent un nombre pair de a et un nombre pair de b. Déterminer $ind(L_2)$.

VII Oral ENS info

On fixe un alphabet Σ avec $|\Sigma| > 1$. Un mot $w \in \Sigma^*$ est un palindrome s'il s'écrit $w = a_1 \cdots a_n$ et qu'on a $a_i = a_{n-i+1}$ pour tout $1 \le i \le n$. On note $\Pi \subseteq \Sigma^*$ le langage des palindromes. Pour un automate fini A sur Σ , on note L(A) le langage reconnu par A.

- 1. Soit $\Pi_n := \Pi \cap \Sigma^n$. Montrer que pour tout automate fini déterministe complet A, pour tout $n \in \mathbb{N}$, si $L(A) \cap \Sigma^{2n} = \Pi_{2n}$, alors A a au moins $|\Sigma|^n$ états.
- 2. En déduire que le langage Π n'est pas régulier.
- 3. Étant donné un automate fini A sur Σ , peut-on calculer un automate A_{Π} qui reconnaisse $L(A) \cap \Pi$?
- 4. Pour tout mot $u = b_1 \cdots b_m$ de Σ^* , on note $\overline{u} := b_m \cdots b_1$ son miroir. Étant donné A, peut-on calculer un automate A'_{Π} qui reconnaisse $\{u \in \Sigma^* \mid u\overline{u} \in L(A)\}$?
- 5. On appelle Π_{pair} l'ensemble des palindromes de longueur paire, i.e., $\Pi_{\text{pair}} = \bigcup_{n \in \mathbb{N}} \Pi_{2n}$. Proposer un algorithme qui, étant donné un automate fini A sur Σ , détermine si $L(A) \cap \Pi_{\text{pair}}$ est vide, fini, ou infini. Discuter de sa complexité en temps et en espace.
- 6. Modifier l'algorithme de la question 4 pour calculer la cardinalité de $L(A) \cap \Pi_{pair}$ quand cet ensemble est fini, en faisant l'hypothèse que l'automate d'entrée A est déterministe. Comment la complexité est-elle affectée?
- 7. Modifier l'algorithme des questions 4 et 5 pour qu'il s'applique à $L(A) \cap \Pi$.