Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ

Varianta 7

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Comparați numerele $a = \log_2 4$ și $b = \sqrt[3]{27}$
- **5p** 2. Rezolvați în mulțimea numerelor reale inecuația $3x^2 11x + 6 \le 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x^2+x+1} = 3^{5x-2}$.
- **5p** 4. Determinați $n \in \mathbb{N}, n \ge 2$, pentru care $C_n^1 + C_n^2 = 15$.
- **5p 5.** Determinați numerele reale m, pentru care punctul $A_m(2m-1, m^2)$ se află pe dreapta d: x-y+1=0.
- **5p** 6. Calculați $\cos x$, știind că $0^{\circ} < x < 90^{\circ}$ și $\sin x = \frac{12}{13}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} | a, b \in \mathbb{N} \right\}$.
- **5p** a) Determinați numerele naturale m și n pentru care matricea $\begin{pmatrix} 4 & m^2 \\ 9 & n^2 \end{pmatrix} \in G$.
- **5p b)** Arătați că dacă $U, V \in G$, atunci $U \cdot V \in G$.
- **5p** c) Calculați suma elementelor matricei $U \in G$, știind că suma elementelor matricei U^2 este egală cu 8
 - **2.** Se consideră polinomul $f = X^4 X^3 4X^2 + 2X + 4$.
- **5p** a) Arătați că restul împărțirii polinomului f prin polinomul $g = X \sqrt{2}$ este egal cu 0.
- **5p b)** Rezolvați în mulțimea numerelor reale ecuația f(x) = 0.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $16^x 8^x 4 \cdot 4^x + 2 \cdot 2^x + 4 = 0$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}, f(x) = \begin{cases} \frac{x+1}{x}, & x \in (1,+\infty) \\ x+1, & x \in (0,1] \end{cases}$.
- **5p** a) Demonstrați că funcția f este continuă în punctul $x_0 = 1$
- **5p b)** Arătați că funcția f este convexă pe intervalul $(1, +\infty)$.
- **5p** c) Demonstrați că $f(x) + f(\frac{1}{x}) \le 4$, pentru orice $x \in (0, +\infty)$
 - 2. Se consideră funcțiile $f:(0,+\infty)\to\mathbb{R}$, $f(x)=e^x\cdot \ln x$ și $g:(0,+\infty)\to\mathbb{R}$, $g(x)=\frac{e^x}{x}$
- **5p** a) Calculați $\int_{1}^{2} x \cdot g(x) dx$

Probă scrisă la Matematică

Varianta 7

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- **5p b)** Calculați $\int_{e}^{e^2} \frac{f(x)}{x \cdot e^x} dx$.
- 5p c) Demonstrați că $\int_{1}^{e} (f(x) + g(x)) dx = e^{e}$.

Probă scrisă la Matematică

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.