Эффект Эйнштейна — де Хааза (реферат)

Сергей Володин, 274 гр. 2015.01.22

Введение

В 1820 году Эрстед выяснил, что магнитное поле может быть создано не только постоянными магнитами, но еще и токами. Получалось, что источников магнитного поля может быть два типа: токи и постоянные магниты. В попытке разобраться в этой ситуации и выяснить природу магнетизма, сведя два типа к одному, Ампер выдвинул гипотезу, согласно которой в постоянных магнитах циркулируют без сопротивления молекулярные токи, которые и создают магнитное поле. В 1915 году Эйнштейн и де Хааз провели эксперимент, который должен был подтвердить гипотезу Ампера.

Классическое обоснование (модель Бора, орбитальный момент)

В модели атома Бора (1913) электрон вращается по круговой орбите. Из-за этого, во-первых, он имеет момент импульса, во-вторых, магнитный момент, так как электрон — заряженная частица. Поэтому следует ожидать, что изменение магнитных свойств (намагничивание) будет приводить к изменению механических: тело начнет вращаться. Такой эффект и наблюдали Эйнштейн и де Хааз.

Рассмотрим атом модели Бора. Электрон с зарядом $e=-1.6\cdot 10^{-19}$ Кл движется вокруг ядра с зарядом Z|e|. Момент импульса электрона $L=mvr=m\frac{2\pi r}{T}r=m2\pi r^2\nu$, где ν — частота обращения электрона вокруг ядра. Магнитный момент $M=IS=e\nu\pi r^2$. Отсюда получаем гиромагнитное отношение $\gamma\stackrel{\text{def}}{=}\frac{M}{L}=\frac{e\nu\pi r^2}{2m\pi\nu r^2}=\frac{e}{2m}\approx -8.79\cdot 10^{10}\frac{\text{K}\text{Л}}{\text{K}\Gamma}$. Обратная величина $\frac{1}{\gamma}=-1.14\cdot 10^{-11}\frac{\text{K}\Gamma}{\text{K}\Gamma}$.

В векторном виде гиромагнитное отношение записывается как $\vec{M}=\gamma\vec{L}$

Из-за наличия такого соотношения изменение намагниченности образца приведет к его вращению как целого. Действительно, пусть \vec{L}_1 — сумма всех орбитальных моментов импульса электронов, \vec{L}_2 — момент импульса тела как целого. Полный момент сохраняется: $0 = \frac{d}{dt}(\vec{L}_1 + \vec{L}_2)$, откуда $\frac{d\vec{L}_2}{dt} = -\frac{d\vec{L}_1}{dt} = -\frac{1}{\gamma}\frac{d}{dt}\sum_i \vec{M}_i$, где \vec{M}_i — орбитальные магнитные моменты всех атомов. Это можно интерпретировать так: на тело как целое действует момент силы $\vec{\tau} = -\frac{1}{\gamma}\frac{d}{dt}\vec{M}_{\Sigma}$, то есть, тело начнет вращаться.

Покажем, что эффект можно наблюдать. Пусть внешнее магнитное поле изменяется с \vec{B}_0 до противоположного $-\vec{B}_0$. Пусть B_0 достаточно сильное, т.е. намагниченность достигает насыщения и изменяется с $\vec{I}s$ на противоположное $-\vec{I}_s$. Изменение момента импульса $J\Delta\omega=\int\limits_0^t \tau dt=\int\limits_0^t -\frac{1}{\gamma}\frac{d}{dt}(M_\Sigma)dt=-\frac{\Delta M_\Sigma}{\gamma}$. Оценим $\Delta M_\Sigma=2I_sV=2N\mu_{\rm B}$, где $\mu_{\rm B}$ — магнетон Бора, N — число атомов. $=2\frac{MN_a\mu_{\rm B}}{\mu}$, μ — молярная масса. Если взять $J=\frac{1}{2}MR^2$, $R=10^{-3}$ м, $\mu=56\cdot 10^{-3}\frac{{\rm K}\Gamma}{{\rm MOJIb}}$, получим $\Delta\omega=-\frac{4M\cdot N_a\cdot \mu_{\rm B}}{\mu\gamma MR^2}=\frac{4N_a\hbar}{\mu R^2}\approx 5\cdot 10^{-3}{\rm c}^{-1}$.

Эксперимент

Рис. 1: Схема установки

Рассмотрим подвешенный на нити цилиндр, помещенный в катушку с током i, которая создает магнитное поле. Запишем уравнение вращательных колебаний (β, ω_0 — параметры собственных колебаний):

$$\ddot{\alpha} + 2\beta \dot{\alpha} + \omega_0^2 \alpha = \frac{1}{J} \tau$$

Пропустим через катушку синусоидальный ток частоты ω : $i=A\sin\omega t$. Момент сил τ в таком случае не обязан быть синусоидальным, так как кривая намагничивания нелинейна (петля гистерезиса) при достаточно больших внешних полях, а именно такие поля и были использованы.

Рис. 2: Петля гистерезиса для железа — зависимость $I(H_{\mathrm{BHeIII.}})$

Эйнштейном и де Хаазом был получен график зависимости тока от времени и момента сил от времени. Ток синусоидальный, а момент сил (вторая кривая) — нет.

Рис. 3: Зависимость тока и момента сил от времени

«Пик» возникает при смене знака тока, что соответствует смене знака внешнего магнитного поля, т.е. движению вдоль кривой гистерезиса вблизи нуля, где производная $\frac{dI}{dt}$ как раз велика. «Плоские» участки соответствуют движению по асимп-

Разложим момент сил в ряд Фурье на периоде $T = \frac{2\pi}{\omega}$ как четную функцию: $\tau = \sum_{n=1}^{\infty} B_n \cos n\omega t$. В результирующих колебаниях амплитуда велика только для первого члена при $\omega \approx \omega_0$ (резонанс). Вычислим B_1 . На отрезке $t \in [-\frac{\pi}{2\omega}, \frac{3\pi}{2\omega}]$ наблюдается два пика, первый вверх, второй вниз. Проинтегрируем разложение для момента, умноженное на $\cos \omega t$ по указанному периоду («перекрестные» члены уйдут):

$$\int_{-\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} \tau \cos \omega t dt = \int_{-\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} B_1 \cos^2 \omega t dt = \frac{\pi}{\omega} B_1$$

В первом пике $(t\approx 0)$ значение $\cos\omega t\approx 1$, во втором пике $(t\approx \frac{\pi}{\omega})$ значение $\cos\omega t\approx -1$. Интеграл по каждому пику, как показано выше, равен $\int \tau dt = -\frac{1}{\gamma}\Delta M_{\Sigma} = -\frac{2}{\gamma}M_s$, где $M_s = I_sV$ — суммарный магнитный момент при насыщении. В итоге интеграл слева можно оценить как $-\frac{4}{\gamma}I_sV$. Получаем соотношение $B_1=-\frac{4I_sV\omega}{\pi\gamma}$. Найдем решение уравнения колебаний, оставив в правой части только член с $\cos\omega t$, который дает максимальную среди

всех членов амплитуду колебаний (резонансный):

$$\ddot{\alpha} + 2\beta \dot{\alpha} + \omega_0^2 \alpha = \frac{B_1}{J} \cos \omega t$$

Собственные колебания не учитываем, так как они затухающие (ими можно пренебречь). Частное решение ищем в виде $\alpha(t) = \operatorname{Re} A e^{i\omega t}$, получаем $A = \frac{B_1/J}{(\omega_0^2 - \omega^2) + 2\beta i\omega}$, откуда $\alpha = \operatorname{Re} (A e^{i\omega t}) = \operatorname{Re} (A)\operatorname{Re} (e^{i\omega t}) - \operatorname{Im} (A)\operatorname{Im} (e^{i\omega t}) = |A|\cos(\omega t + \varphi)$, $\begin{cases} \cos \varphi = \frac{\operatorname{Re} A}{|A|} \\ \sin \varphi = \frac{\operatorname{Im} A}{|A|} \end{cases}$

В опыте была получена зависимость амплитуды колебаний от частоты тока в катушке, $|A|(\omega)$ — резонансная кривая, которая представлена графически. По оси ординат отложена величина, пропорциональная |А|: угол измерялся при помощи зеркальца, жестко закрепленного на торце цилиндра, луча света и шкалы на расстоянии $L=1.45\,\mathrm{m}$, откуда «размах» на шкале $2\Delta l = L \tan(2|A|) \approx 2|A|L$ и $|A| = \frac{1}{2} \arctan \frac{2\Delta l}{L} \approx \frac{\Delta l}{L}$

Рис. 4: Резонансная кривая

Из полученной резонансной кривой найдем γ . Фиксируем значение |A| и найдем две частоты ω_1 и ω_2 соответствующие этому |A| на кривой. Рассмотрим также резонансную частоту $\omega_m \equiv \omega_0$. Обозначим в выражении для |A| константу μ , содержащую искомое γ :

$$|A|(\omega) = \frac{|B_1|}{J} \left((\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2 \right)^{-1/2} = \underbrace{\frac{4I_s V}{\pi |\gamma| J}}_{\mu} \left(\frac{(\omega_0^2 - \omega^2)^2}{\omega^2} + 4\beta^2 \right)^{-1/2}$$

Тогда
$$(\frac{\mu}{|A|})^2 = \frac{(\omega_0^2 - \omega^2)^2}{\omega^2} + 4\beta^2$$
. В резонансе $(\omega = \omega_0 \equiv \omega_m)$ найдем $\frac{\mu}{|A|_m} = 2\beta$.

Для двух точек с совпадающими |A| найдем $(\frac{\mu}{|A|_{1,2}})^2 = \frac{(\omega_0^2 - \omega_1^2)^2}{\omega_1^2} + 4\beta^2 = \frac{(\omega_0^2 - \omega_2^2)^2}{\omega_2^2} + 4\beta^2$. Приравняем второе и третье выражения, получим $\omega_0 = \sqrt{\omega_1 \omega_2}$. Рассмотрим разницу $(\frac{\mu}{|A|_{1,2}})^2 - (\frac{\mu}{|A|_m})^2$, подставим туда найденные ω_0 и $\frac{\mu}{|A|_m}$, получим $\equiv (\omega_1 - \omega_2)^2$.

Обозначим $b\stackrel{\text{def}}{=} \frac{|A|_{1,2}}{|A|_m}$ — безразмерный параметр (отношение выбранной амплитуды к максимальной амплитуде) и $4\pi\nu=0$ $\omega_2 - \omega_1$ — половина разницы частот между ω_1 и ω_2 .

Подставим обозначенные параметры в найденное соотношение: $(\frac{\mu}{|A|_m})^2(\frac{1}{b^2}-1)=(4\pi)^2\nu^2$. Выразим из него μ и приравняем с определением μ :

$$\frac{4I_sV}{\pi|\gamma|J} \stackrel{\text{def}}{=} \mu = 4\pi\nu|A|_m\sqrt{\frac{b^2}{1-b^2}}$$

отсюда получим $\frac{1}{|\gamma|} = \frac{J\pi^2\nu|A|_m}{I_sV}\sqrt{\frac{b^2}{1-b^2}}$ Таким образом, выбрав любую амплитуду $|A|_{1,2}$, мы можем рассчитать значение γ . Поэтому, если все предположения (например, линейность члена, отвечающего за затухание; отсутствие зависимости γ от величины поля, ...) верны, величина $\nu \sqrt{\frac{b^2}{1-b^2}}$ не должна зависеть от выбора |A|. В проведенном Эйнштейном и де Хаазом опыте это утверждение верно при достаточно близких к максимальному $|A|_m$ значениях $|A|_{1,2}$, т.е., вблизи резонанса:

$\Delta l, 10^{-3}$ _M	$\nu\sqrt{\frac{b^2}{1-b^2}}$, c ⁻¹
15	0.120
12	0.130
9	0.124
7	0.121
5	0.114
4	0.108
3	0.0957

Найдем среднее значение величины $x\stackrel{\text{def}}{=} \nu \sqrt{\frac{b^2}{1-b^2}}$ по первым четырем значениям из таблицы, где величина остается постоянной: $x_{\rm CD.} \approx 0.124 {\rm c}^{-1}$.

Найдем остальные величины, входящие в выражение для $\frac{1}{|\gamma|}$:

- 1. J = 0.0126г \cdot см 2 (найдено добавлением небольшой массы и измерением новой частоты собственных колебаний)
- 2. $I_sV = 470$
- 3. $|A|_m = \frac{\Delta l}{L} = \frac{1.85}{145.4} \approx 0.32 \cdot 10^{-2}$ рад.

Получаем
$$\frac{1}{|\gamma|} = \frac{J\pi^2|A|_m}{I_s V} x_{\rm CP.} = \frac{0.0126 \cdot 3.14^2 \cdot 0.32 \cdot 10^{-2}}{470} \cdot 0.124 \approx 1.0 \cdot 10^{-7}$$

Результаты и квантовая физика

Для электрона связь между магнитным моментом \vec{M} и моментом импульса \vec{L} выражается через g-фактор: $\gamma = g \frac{e}{2m}$. Для спина $g_s = 2$ (опыт Штерна-Герлаха), для орбитального $g_l = 1$. Таким образом, Эйнштейном и де Хаазом было получено значение g=1, что соответствует орбитальному движению. Но в последующих опытах такого же типа (см. 5) было получено значение q=2, т.е. в работе Эйнштейна и де Хааза была допущена ошибка, либо неверно оценена погрешность.

Значение g=2 указывает на то, что магнетизм ферромагнетиков связан не с орбитальным, а со спиновым угловым моментом. То есть, хотя и эксперимент де Хааза не подтверждает существование молекулярных токов Ампера, но косвенно подтверждает существование спина.

«Одна вторая»

От «настоящего» результата, который подтверждается последующими экспериментами, результат γ у Эйнштейна и де Хааза отличается в 2 раза. Он согласуется с моделью Бора, которая была на тот момент, но не согласуется с действительностью.

В оригинальной статье опущены некоторые элементарные, но важные детали, из-за чего невозможно провести вычисления самостоятельно и выяснить, в чем проблема: в большой погрешности результата или в неверных расчетах. Например:

- 1. Для измерения угла используется зеркальце. Соответственно, измеренный угол всегда будет в 2 раза больше, чем угол отклонения. В статье не указано, какой конкретно угол имеется в виду
- 2. Не указано, что отложено по оси ординат (амплитуда или размах, который в 2 раза больше), здесь также может быть ошибка в 2 раза. В оригинальной статье величина называется «double deviation», но неясно, что имеется в виду
- 3. Величина ν равна половине расстояния между ω_1 и ω_2 .
- 4. Погрешность указана только в конце статьи (10%), неизвестно, как она получена и какая на самом деле точность результата

Список литературы

- [1] A. Einstein, W. J. de Haas, Experimental proof of the existence of Ampère's molecular currents (in English), Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings, 18 I, pp. 696–711 (1915).
- [2] В.Я.Френкель. УФН т.128, (1979) с.545.
- [3] S. J. Barnett: Gyromagnetic and Electron-Inertia Effects. In Rev. Mod. Phys. 7. 1935
- [4] Д.В.Сивухин, т.3, с.308
- [5] С.В.Вонсовский. Магнетизм. Магнитные свойства диа-, пара-, ферро-, антиферро и ферромагнетиков. М.: Наука, 1971.