$\begin{array}{c} {\rm Math~5102-Linear~Algebra-~Fall~2024} \\ {\rm w/Professor~Penera} \end{array}$

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Homework}~\#9-{\rm NONE} \end{array}$

Page 180: 6 Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(a,b,c) = (a+b,2a-c). Determine $T^{-1}(1,11)$.

Page 180:8 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(a, b, c) = (a + b, b - 2c, a + 2c). For each vector v in \mathbb{R}^3 , determine whether $v \in R(T)$.

- (a) v = (1, 3, -2)
- (b) v = (2, 1, 1)