2 4 1 5 1 - = 2 () - = 2 () 5 1 - C) 2 + Ed 2 (F3) X-=[9x (5x)] s([8'5]-[5'8]):-s(\$\frac{1}{2})m:-s(\frac{1}{2})m:-s [48]-[4xa] 5(K'x)m!o $S^{\frac{1}{2}}_{X_{8+}}$ $S^{\frac{1}{2}}_{X_{8+}}$ 5 = x 5 1 - (35) = x (1 + S ((5) = x - (6) = x) ! - S [= x / 5x] - = $\frac{1}{250} = \frac{1}{250} = \frac{1}$ (4) 27 co do 21 works 5 5 : MT 10 : 3000 5 (50 % -5) + (5) x !-= 55 (5)* () = () = () = () = () = () = 50) = 5X (5×8=6 , pop) =0, two 3+2190, 8200 (5 (2) (2) 2011 200, 2000 (X)0!-=(se!-(X) x the (P w) is your entry space (a = b × s = d + 12 (concern for [5p = (w) 1/2 | x 521913 00 000 TEMEL! Q 15 Culled the connection of withing 1x lantodd contrac 2-50 m and a one-form of on of that the pullbick The 9 = D: 11 alord 6 15 C. Pencipul C. 1618 burdle 11: Q = A 20 £ (0,0) be asympletic marfold, the sympletic marifuld 15 TO=WI 2194 ADLS not to cothodiffer to si world to the sile of x S pre-quentizection (peport/ 5+111 in devent): principul circie buble

 $\Theta(x_{q})=0 \quad \text{As} \quad \widehat{q}=\frac{1}{2\rho}+\frac{1}{2}\text{ id}$ $(2)5.05c \quad 5=\text{promethyn}, \quad \infty \quad \chi_{p}=(1,0)=\frac{2}{24} \quad \infty \quad \Theta(\chi_{p})=1.6$ $\widehat{p}=-\frac{1}{24} \quad \Longrightarrow \quad [\widehat{q},\widehat{p}]=\frac{1}{2\rho} \quad \Longrightarrow \quad \widehat{q}=0 \quad \Longrightarrow$ Femank S. P-> C. A Subminford LCP is Layrangion pour fold if
L is isotropic (w varissies on TeLXTL) and L is muximal (olint

= 1/2 to Des: A real polarization of (P, w) is a formetion too P. by Luyoungian Subminisolds (as leaves). Des: Let (P, w) be a yountuble sympland marisold, and let F be a polarization. Let L be the line bundle optained from the quantitation manifold Then the quantitation Hilbert space is the Space of L' sections of L that dake constant on the leaves of F Exi P=TaC, L=PxC securions of La complex varied fractions on pro-The leaves of F are the lines space TxC. This is a polaration and the intensic Hibert space H= L2(C,N) Des: Let Eard MI be marfolds with, din Man, M resp. TI: E-> MI Suggestive smooth map. Let the fiber Ti(p) =: Ep courses the structure of a K-vector billing (K=C) Up for each pero). The quadrople (E,T, 1") [Vg]pert) is cauch a K-vanvounde if for every PEM there exists an open neighborhood Woff in MI and a dissecriphism. P: Ti-1(4) -> UXK1 S.t. the following of agen com. The water bundle. EXT Consider a) IN is a Smooth mixed of olim K. TIM, TITIN-) IN HW Costill a local triviaturior OF TNI HW Costort a local triviazution OF TVI (Ex EGF or) a be and out fiber wise.

c) T* M d) Let n=dm 11, KEE9,1,00, N3. The KH4 exterior former OF TXIVI is the bundle of K-linear skew symetric forms on TIVI

AX TXIVI. This is a seal vertor bundle of rock (2). Def: A section in a come bundle (E,TI, M, [Vg]per) is a map 5: M -> E Sit ITOS = 13 IN . EX/ · E = INIX K (STODIN + INM ENTIN) NO OF IK VALED FURHING · Sections of TVI are cilled Vectorficids on M

LU (or, 4) county on M. For each je I'm the corres représent a torget votor 0 de p Y: ICR - MCM () I-form of $V(x) = V(y) + te_y$ () I-form of V(x) = V(x) = V(x)() Let V(x) = V(x) = V(x). Apparently V(x) = V(x) = V(x)and felos a rater bundle of rock one over wi DOS SELFORS OVER NY are called obsities. 6 en a local Chart (u,4) a smooth density lox/, lox/(dx/n-ndx) = 1 on a.
There is a unique emul S: D(M) IMM) -> R

Cilied the intagnal for eny 5 & D(C) IMRI). If 5 lox/ = \(\dx/n-ndx \) sop

(x).x) Remark. Consider sections of E* & E* relation to some counterstan planny botheyou)
Let 3= 900 0x 0 dx pseudo Remanin prenie 1600 the moved dessity is d voly = Videt g) lox , so on fo D(12), R) there is a Canonial jury to integrate it as (5 druly . olde of observation satisfy is award a connection Def: Let (ET) / [VB]p6+1) be a K-vector bundle summer gras me A consistion on E is a R-bilineur map V: C(M, TM) xC(M, E) and the following properties: a) V 5 C(N) R) (inchiv in the b) V is a derivation in its 2 agrant 5x = f (II is R-biliner and Px (55) = X(5) +5 7,5 The value of \$ 5 at a good get get organs only on X(g) and the values of S femalik Let V be a connection on a vertor bindic E over M. Let V: [4,6]-11 Smooth CIFIC GIVER SOE Egray there is availed smooth solution 5: [a, 5]>E SALISSIYING S= SCH), OF 05 = 0E. The map Pa(r): Esca, > Escb) is called familled transport along of 5 50m 800 to 8(b). 50 -506 Bemuk: Any connection Von Embrus a connegion Von Et. $\frac{\langle \nabla_{X} \theta \rangle(s)}{\langle \nabla_{X} \theta \rangle(s)} = \frac{\langle \nabla_{X} \theta \rangle(s)}{\langle \nabla_{X} \theta \rangle(s)} - \frac{\langle \nabla_{X} \theta \rangle(s)}{\langle \nabla_{X} \theta \rangle(s)} + \frac{\langle \nabla_{X} \theta \rangle(s)}{\langle \nabla_{X} \theta$ place For isual multinear general-bution Denux. If a vertor bundle E curries a semi-kienumin menco & then a cornection or E is called metic computate of the following vale holds. 0x 3(5,5) = 4(x 5,51) + 4(5, x 5) dreunit X (865,57) - 7 XE (0(N, 714)) S.CIETOTATE

ECTIVITY Character The sup C, G: C(NI, G(NI) X2 C(NI, G(NI) is and a Lie brucket; G(NI) TR-6) hocal and Sutisfies jucobi Remark: Let I'l be a nodo monifold with a Sent-Richamile metre of TIVI. I: on be shown that there exists a conque-factic confutible) connection I an TIVI. Satskippes $\nabla_{x} y - \nabla_{y} X = [X, y]$ and the beneation. Det: The fierworks Corntre tensor of the Tevi Citia Cornection is the map R: Clin, TM) XCM S.+ (X) // V) - R(X) // V = VX V V - VX V i.e. RECO(M), No THER (TMAM)) Comple: The Rice Course rice C (M) TM (6TM) given by $ricc(X, Y) = \sum_{\alpha \in Y} Eag((X, e_{\alpha}) e_{\alpha}, Y)$ whose e, are orthogormal with g and Ea = 9 (Ea, Ea) = ±1 Let E-314 K-very bodic. Europ Earl Triplusto commercions of the decid by No. For $\varphi \in C'(M, E)$, $\nabla \varphi \notin C'(M, T^*M \otimes E)$ i.e. $\nabla \varphi = \frac{\psi_{\varphi}(X) \otimes \psi_{\varphi}}{\nabla \varphi} \otimes \psi_{\varphi}$ Make governly: $\nabla \varphi \in C'(M, T^*M \otimes E)$ $\nabla \varphi = \frac{\psi_{\varphi}(X) \otimes \psi_{\varphi}}{\nabla \varphi} \otimes \psi_{\varphi}(X) \otimes$ we charge metrics on TXIVI and E. This indices metres on all tesser bridges Time mene a (son) non of The to be defined an all forts in MI For a Sity of ACM and GEC"(ME) we define the C"-Boni) norm by 11 911 = MELX SUP 11 D'SP(P) 11 x MOJ & E EX/ IS A 15 compact, the different Choice of Metics and norms induce the same CK(A) norm. Noutron: D(M,E) denote space of compactly supported Sections in E. Desi Let 4, Elif D (M,E). The solvence (4) her converge to 4 in D(M,E) if: 1) 3 K Compact St. supp 4, CK for all but finte. 2) (4) converges to 4 crt to all Chroms i.e.

1) 4-4, 10 crt to all Chroms i.e.

Let W har converges to 4 crt to all Chroms i.e. Da: Les W be a fine som K-van space. A K-omer map F: D(17) =)

is comed a distribution in E ath values in W. . FH is continues, i.e. if if D(M, E*) then F(4) - Flep in W. The space of w-valued distributions in E is denoted by D'(TV), E, w) Lennar. Let F be a W-valued astronom to E, let KCM accompact. There is a KEN and Constant C>O S.t. YPED(IN)E') with sippy CK 11 f (4) 11 & C 1141/K , such K is alled the order of Flove, K. Prof: 1) Ask ne doson Kold, ie for any K we in find a northwar school PKED (N', E') with sipply CK and S.t. IF (PR) W 3 R II PR ICK(K) 2) YK = IF (PK) IN PK & D(IY, E) which his siff. CK. and 114 KI SK. Home JEK M 114 EYK) = 1 7/2 1 EKK = 1 3 1/2 -0 3) Since F is a distance => #F(4n) -> F(0) = 0

Recounty

IF(4n) | W = | F(4n) | W = | a contradiction. Examples: 1) Let E= 171, BENT. The della-asalation of is on Equand different in E. For $\varphi \in D$ (1×1, E*) it is 3, ver by $\delta_{\rho}(\varphi) = \varphi(\rho) \in E_{\rho}^{*}$ 2) Every locally heastable Section $f \in L'_{loc}(M', E)$ can be interpreted as a K-valued distribution on E by setting for every $\varphi \in D'(M, E')$ $f(\varphi) := \int \varphi(f) dvol where <math>\int_{K} devotes + kc restration of f + 0$ ony KCM Conquest. AW what is the degree of I and f ? Kover Causai relativs (M,3), 9, per). · Per q = 17 trac exist a corre x: [tp, ty] -> M S.t. K(tp]=P 0.5 × is timelse i.e. 112(4)120 and 2(4) is fine 2«(64)=4.

• 189 € 18 we relavise → 5 in person. of ASV: Italia () I'm 05 AGN: 5(A):= U 5(B) · Causal Surve of ps of J(P) = { ferral peq}
· Dua y: Correspond of past relators by time reverse of time-oriented

Def. Asbert Replator of the oriented Lorenzian refd. is could

Causally compatible of Y PER J(P) = J(P) nsc

The production of the period CLEARY JECO C (2) (P) NS], however, the loverse is not true! The For each ASR we have Carsuly confusion do no un For each ASR we had

2005: 2 (e) = In (e) no e In (p) non on torpide won" = LES IXI DE a semi-Revolution mont of assured to be complete. For all pert, the exp on p exp Tp 170 17 constitute as some * What is not complete exp and E hall the sunce, exp. (N) largest dona : the set D of all Vetos 5 TM S.t. the geodesic by is defined at least on the literal Egil. The the tweet dome of exp. 15 p. - DOTATE FIN Comment of exprision in TM.

The domain of exprision of set of TpM

South State of the exprision of set of TpM

South State of the exprision of set of TpM

South State of the exprision of t DEF An Open set C in a sen-Riemann mfd. to each of its points. / Remark: For any to part 1,4 6 6 there for play that his in C. (Segment) Ty: [0,1] - M INP Each port & of 17 has a convex noble. front old \$= (x) - x1, n= in (1) be a commit come regin on a n6h v asset Let N= \(\text{X} \) for \(\text{S} \) Sussetly Small, \(\text{V} \) = \(\text{S} \) \(\text{N} \) \(\text{Let} V(5) = {PEV | N(0) 28} 13 a robb of 0 d HO Moder 5 to an oper bout on me.
Thou, lets see a cultime for a normal rational. Consider the symmetry of the sort B labore Companies being to & Take Bab = Sab - Z Pab Xe . X B is possed depte at o second septe at o second septe at o second septe at o second september is necessary,

13 is process of second second september is necessary, we age + the UE VCOI is a normal intent of each point pour Tagedon: Ens a sesso of a robbd Wor & 6 Total in THI onto V(S) XV(S) · W & Star Shaped: To We = Water, by construction to about 0 6Total. For 964 and 97 let \$ (84) = V and 0= Voltal. Provided of his har har be shows that

to EW FOR E. E. E. J. Hence Wp would quitized as Dropped Assume the opposite, i.e. of leaves U. Size, by aussumption, P, 46 W = V(J) > N(P), N(4) eS. There fore there is a felli S.t. Noo: R-) I has a run at Ex (why?) Compliantes! of Motes) = 2 \(\times \(\times \) \(\times \) 12 Mora) = 2 [(x)(o(t)) + x(06) x (o(t)) * 300 15 a co replay the goodsic of the gedsic etwo gives: Nilore) = 2 E (of - Pab x (ore)) × (600) = 2 \(\begin{align*} B_{\oldots} \(\sigma(\delta) \) \(\delta \) \(A cotad C7 DA. ~ at tx S-pposed to be a muximum. Definition A donain R 15 curred augul I R 15 contained in a Conex dong - e and If for any p. 4 E To the intraction Je (Pla Je(9) 15 confact and contant by I. Remoder! If MI containes no cosed 6 inc-like cornes, we say the channel by condition holds on M. Lemny IF IM 15 can pact, it anders Convex but not a closed fine like cine.

Proof. By a peter & I (P), pe Proof. By apris { TCP/ peris has sie Story (I'th), I'th), we asser a minul. Now If he would not is only It (Pa), the ITCPIPET (Pa) contrary to minuity. Here we mist have field Definion the strong Couseby cootion holds at PEM fronded that given any now that p that exists a noted Voller p s.t. every Causal Sieve (Sognett) with adoption in V 15 adrely in a. Renark & I [a, b] > M be a fire use smooth stade segment in M The exe 18310 OF X IS LIKE = JOE 11 2/6) 11, which 11 2/6) = [2 x/6) 2/6) 15 called the radios faction of Mario y P> 11 x 8 (P) 11 In notant coordinates $V = |-(x^2)^2 + \sum (x^2)^2|^2$ Lemmu: Let V be the moves free and a Brommer right cos of IS 0 18 the radial geodes, & from 0 (00) 10 p (00) EUL that L(0) = V(P)

= 1 (+) = 1 exp. (p) = x(p) Det Les 8,4 EM! the time separation from \$104, TCR4] is 5. p { (x) als figs of your consultative Segment from p to 4}. · 2(84)= 0 15 the RECOR (Conthis 15 unbounded and 2(94) = 0 15 Hs Leane 1) 2(p,y) 70 155 PK4 "a proceds p 4) IF P = 4 5 K, then & (P, 4) + ~ (4, Y) = ~ (P, Y) Proposition For 1849, is the set Z(P.4) = Z(P) n Zm (4), is compact and the strong causarry holds, then thesis a causar godesic from 1 +0 9 of leasth 2(p, 4) Def A concerted time or creed bestern in for It is called woodally hyperbolic provided the strong consulty condition holds on it and TO EUCS PK4 TO PI Z(PA) the cursul down of P.4 15 corpus fenore any pair of points that can be joiled by a course ane can be joined by a cossil Judes ... Def. The susce in a grady hyperbac ponded the study coming costs on se as pet on A then JACPA) is English Des. A subjet & of M is could achieve (acrossal) product the God read pley (PLY) never holds for P, 4 & J. Des A Cuichy hypersurface in IVI is a subject & that is not Exactly ance by every hext-dible facility cove in My DES IF A is an abbonul subset of My the func carry development of A is the set Dt(A) GM Sit. every post to example Curve through permisers A REE DIA = D (A) UD (A) Theorem: IF As as a chromal set the int (D(A)) is grading hypothesic. HW Theorem Let Al be a corrected time-prested wenter munifold, then to forang ac equal est: a) INT is globaly the factoric. 6) There exists a Cauchy hypersofuce in M. c) MIS 130-12the to a RXS I with metric as is a pienounal metre or 5 septembry smoothy on 6, and euch E= (6)x & 15 a most concy & Free on

DEE: A smooth vertor producte is a quadriple (E, II, M, V) of rol on V, where 1) MIS a Smooth Manfold celled fre 6458 2) VIS a VELLOT Space could fit typica FIBYE 3) Eisa (dm M+ dm/)-dnessional sparts monifold carred til totlet space 1) TI E > 1" Is a smooth sujective map will the fisector 5.1. a) Each fibre Eps Ti(p) is a veter space isomorphe to the typical fibre. b) for each buse point PEM there is a robbol use p and a differ of Talu) -> axV 87. Pro7= TOTI(W>Y & C) of acts as a veter spore iso-orphism on each fibre ie. Ep - 1 & p3 x V 15 an 150407 P15 m between Vetor 1) Any Dur (U, 4) sutstiying bland c) is called a local trivial quetor of fact vector binde. Dry todal Collect's of 100 11 trivial 7400 Cose of 11 15 Called a vector budle atlus. 2) Here HIS a spacetime (always) Exigral is makouski, V rectorspace (E=MXV, T=Pr, M, V) Reput fire of Lit MixV a touch varie bode

desire fire of the MixV of the best of our prof = 10/m $P \to (P, f(P))$ Der Let (E, ti, M', V) be a vetar bundle. Asserted of

the verter bundle is a smooth function of M' E S.t. Too Elder we denote the vertisque of sectors of the vector bande of ((M) E). DE Let (E,T, M) be a real vertor bundle. A bosine (femore) Vector nos degenere blinear form 15 a bilinearform nos degente

spulling NI with a non-vousing volume form volume
Let E,) be a bosone (Sermione) non-degenente binar form on E 5.t. each fibre is endowed as 114 a nor degende inner product. A non degende pointy between smooth sections
and conflicty smooth sectors of E is a map from $(-,-): \Gamma_0(Y)E)\otimes \Gamma(Y)E) \rightarrow \mathbb{R}$
0027) [voly (0,7).
Def! Let (G,T,M,V), (F,T), M, W) two verter buildies over the suml buse. M. A. Loar appartial differential operator of order at most X is a linear operator L: M(M,E) -> M(M,E) Satisfying: For each pent, up policy St. (U, E)
a local Chart of MI and there is collections:
of smooth Hom (V, W) - valued maps on $\phi(u)$ with allows to express L lowery as forward
$Y_{\circ}(L\sigma)\circ \phi'=\sum_{\alpha\in I(\mathcal{A})}\sum_{j_{\alpha}=j_{\alpha}}a_{j_{\alpha}}a_{j_{\alpha}}^{2}\left(\frac{1}{2}\cos\varphi_{\alpha}\left(\frac{1}{2}\cos\varphi_{\alpha}\right)\right)$
where of sector bashe raised fractors defined on the same open subset of form
of form
Des: Let (ET, MI, V) be a real broke over a specetime (M,5)
American portal deferential operator of exactly second boder is considered
Early hyperbolic 15, in a pocket drivial Zation, the cas a concertion of a care to the (V, V) - volved maps
of p (Ci) such that P rends as follows:
For each section of of E. (Party)
\$0(po)09 = 1-29 1d, 20 06 + 2 0. a + 1(9.009)
Jopopopopolo = [-] gab id, 2006 + [acida Mi) gives a section Jos E, culved sovice, po=5
is cared a ware equation.

The field of the ship of the like with vector field on E.

Space lice smooth certain sylve boils spacetime and E.

Theorem Let (P.19) 810 built hype boils spacetime and E. (5/2) 18 of earlier of Hard Dod to St 18 = 12+0+18, ((SQ, 2), Y, (S2 Q(3)) XE+ 五(20cg)(A3)(20cg))A3(20)A3(20)A)3至片+2口= (tt(50,3),43-53) & (3) ++ ((68,3), (7,5)) Q (3), V = + ((58,6)) V = +52) 2)-1 33 = M(50,3)+=53)++((50,3)++((50,3)+2+53) 2-33 (5)00 = 5 D- 54°, X+5 D [(50, 2) (4, 5) 5 - ((20, 5) + 2, 5) = 25 (2, 5) + 2 (2, 5) = (2, 5) + 2 (2, 5) = (2 0=2 \ Q (2) = 1 = (2, 2) = 1 = (3) dim (2)]; MT 30 EINO 2002 . (2007X) A Z - 2 X = 2 X Danpart VI D=D=D= 3 to 5-1205 Stooms 1120 00 5 5 \$ = 5 \$. (C. CODE - COD 601 - COD 600 - COD 600

Collider a vector bindle (E. Tim, V) and a normally hypotox
For each initial data us, a C To(E, E) and For each
Source SE PO (ME), the cauchy problem
$\mathcal{D}\mathcal{U}=5 \text{ or MI} \nabla_{\mathcal{U}}\mathcal{U}=\mathcal{U}, \mathcal{U}=\mathcal{U}_{5}, \mathcal{E}$
Admis a unique solution a $\in \Gamma(M, E)$, the support of a $\int_{M} S_{-}PP(u) \subseteq \int_{M} (S_{-}PP(u))US_{-}PP(u)US_{-}PP(u))US_{-}PP(u)$
the suffers of a supplied = Jim (supplied) usupplied usupplied)
Male ore, Γ , $(\Sigma, E) \times \Gamma$, $(\Sigma, E) \times \Gamma$, $(Y, E) \rightarrow \Gamma(Y, E)$
(uo, u, 5) - a is linear and continuos.
Defi Let E be a vector badle over a globar hypobolic
Spucetime (Myg), and let P: M(M,E) - BOME) a
1.19er diff. of. Almer aup 6 . [(M, E) - [(M,
If For ench some JEI (M)E),
$\mathcal{I} \mathcal{P} \mathcal{C}^{\pm} \mathcal{F} = \mathcal{F} \mathcal{I}$
2) 6 ² P5=53
3) Sign (6 to 5) \subseteq $\int_{1}^{\infty} (s \circ p(5))$
Desi Les Ebe a vecto binde over (M, g), let p: (M, E) - M(M, E)
Desi Let Ebe a vector bundle over (17,9), let p: (17,6)-1(17,6) be a licer diss of Pis called Green-hyperbolic if it asked advanced and retarded green operators.
Remoder A K-Iner map F: To (M, E) -> W is called a distribution
12 to with value on W IF FIS CONTINUOS.
$\mathcal{L} = \mathcal{L} = $
FIGN] - FEP]. (Nom tracked topology and all otics are compatible)
() = spuc of all W- valed distributions on E.
Ext. 1) X EM. The Selfundsorbition of 15 cm Ex valed distribution in E. For PEP(ME*),
$\int f(0) = f(0)$

Satis of the girls for for for french smoothly on the forms of the forms french of the forms of 1 Jog 80 (2019 popular saiso [b](x), == (x)(b-59) € f = ([b]()=x1)d 501551415 por of 10 post for some of 4 foods of [b] (x) x t - x tyt os. 05 at ultil 3 x 00 phores sendals (x) = 3] *d do tooler out Jet sutiles literal backed backed surfamily soldier (2) It sold (4) (2) (1) intology from the solution (2) (2) (3) 1905 31 (2) (A) = [b, 1] + (3 (M) 2) 30 (1 SANVA) Costuditation 21 M3x +2 9 go 10+1/22 lation works A JE (14) E) & M (M) E) & a noming hyperbolic distrib (15/12/13 do ho not [dx7]] = [d](17) (f. Lay M = (3/12/1) - (1/2/12) -(b) (h,7) 1-101 = (h7) h wins (3/11) 12 th po (3/11) 2 th (11) 1) - (1/1 (1275 x) & 1-121 5 = [b] 5

and satisfies P(Ft=(0)[P])= P(0) for each test states Proof: 1) we show that P(6= 4)=4. By def. P(6 + 4) = P(F+6)[4]) = P 2) 6 = P9 = 9 follows from the fact flat Ft (X) activised. 6 - (P4) = F + (x) [P9] = P* FOIL 4] = 4(x) 3) we show that sope $(6^{+}Q) \in S_{N}^{+}(s-ppq)$ Let $x \in [V] SH (6^{+}Q)(x) \neq 0$ Since SUPP (F(X)) CJT (X) the support of 9 must need July) Hence X E J' (SUPP (4)) and the Eque Supp (64) = JM(S-PPP) (6\$0-FX[4] =0 t) = P(6 9) 9 = P(A) =0 1) In general, supp(F(4) = 3, (1), c(7) = 2) 2) SUPP AJ (x) #0 3) X & JT(54909) \$ (4x 153 646) } 5 500 69) 50PCP (SECRE) =22 5-PP (SE) ST. (FREE) Sup (F) (6)/615 y = 6 ver 6, X FOR FOR FOR FOR Y the 04(6+4)(W= F CASP], we star 5-8/E FOR EJ, (x) P (6 4) (x) = 9 M = P(F (x)[4]) = 0 3-PP 6 P/ S J. (S-PP 9) · XESTEF) FTXILY #0 6 + P (x) · 69: M > E 6-37 -1 F'ED'MED Posts Posts so F (4) = 0 声,下(下,目)一段 F P: M = EX

s dd y (3'm) 30 / 1/2 / (7) / 20 / (7) / 20 / (7) foodwar ary ands = 125 " for which there exists a compact K CNISt 30/200 (14) (1) (1) Sacolf Sacolf Satist bable E (hy 3 (h) = (200) = (400Ding an Jo word of to 13 compact in a globily hyperboic specetion. (hours) (v ((b)dons) = C o (2 + 9) o dons v (b = 3) o dons (1 = 1 + oold (n + 9n) = (n'n + 9)growth for all sorters up a EE with compact support we have (3/W) 3 8 pl 100 105 (+ +2) b 1/2 = (+3(+2) 1) 129/L Josephi Let E be a vert bind core a globaly hypothic ore a globall hypothic ore a globall hypothic ore a globall hypothic day. "d 105 (3/21) [(3/21) J = 249 Then their exist unique advocad returbed green opentor 427 (PD (M) 6) De a notal bool (2) M) Might best (M) B), Let 29 15 Supply Madell Bold John Files Sop althought frachon along a showers

is the intersection of the carry hypersurface with the Consul domain (5 U5 OFK). 152 Stands for space like conjuct.

It is 6.H and 9 E Psecime then for every C. Hyper ECIVITACEUPPOF 9/2 15 contained in Injuk). Det Let E be a vector bende over a g.h. s.t. (Mg),
let p: p(ME) -> MME) be a green hyperbolic of. Close advocal/returned green of 6 For P. Then, the linear map 6=6+-6: To (M,E) -> To (M,E)
15 called the causal propagator for p defined by 6th. Theorem Let Ebe a V.b over a g.h. s.t. (17,9) and PIP(ME) - pr(M, C) be a Michael Noho of Let 6 be adv/ret 9.0 p. For P. Then the sequence of linear maps $0 \longrightarrow \Gamma_{o}(\Gamma, E) \xrightarrow{f} \Gamma_{o}(\Gamma, E) \xrightarrow{g} \Gamma_{sc}(\Gamma, E) \xrightarrow{g} \Gamma_{sc}(\Gamma, E)$ 15 a Chair complex which is exact every where 1) Since PE = 10/13 (12/5) by def it Follows that PE=0. The seems property of retady good op., 6 P = ld (ME) GILES GP=0.

MORE OVER, SUPP (6+9) = 5, (5-704) 50 my 4 ETO hence, G maps (s(171,E) -) To (171,E) Heree, the sequence It's a chain conflex. 2) The Chin is exact:

15t main that p: io (ME) > for (ME) is insertice Le K97450. Let 9 (Pomer P) propropriate right => 4=6 PP=0 2rd everses news that ke 6= maye p 百号尼马門 Let YEP (14(E) with 64=0 10 46 K86. 1-e. 64=64. Let N=64Cr(M,E) Kerg = Imy f Supe (7) = Supp (64) 1 Supp (64) 45, (supp) 36/14) Lys As For 13 compact => 7 C 13 (17, E)

exactions, at his isc crye) may that 6 is suspective. Parter of unity subordated to to open for [Jan (K), In(K)] Hence Y 6 Po (17) E) Weshaw that ETY = 92 for all \$6 Pol. $(\theta, \frac{e^{\dagger} p q_2}{e^{\dagger} \gamma}) = (6^* - \theta, p q_2) = (p^* 6^* - \theta, q_2) = (0, q_2) V$ Sponeny 6 4=- P, so 64=67-67=4+9=46 my 6. proposition: Let E bea veb. or a g.h.S.t (1,y) and PIT (ME)- P(ME) be a n.h. of Denote by 6th te adv / returned Breen of for P. Then 6 To (M, E) 7 Se (M, E) and all muls of the preciding chain complex are superticuly Beneak: Let Ploe "Green-hyperdone with passo gh.

Bookie by Se (10) to Space of Selvins of Porto with spicethe

Conquet Support on M. It can be shown that 6 indices an isomorphism of vertor squees Find P. (17, E)/P(Fo (17, E)) to Se (14) proposed Let E ben v.b. orr (mg) expred with a brone nondey. Let P: P(M,E)-, P(M,E) be a formy self adout green-hygotian of. Then, the cousul property of & for P \$-17,115: (u, 6 v) = - (6u, v) u, v e [(1, E) av the mul o: 3/2 (14) & 3/2 (14) -> P $\sigma(u,v) = (f,6h)$ with $f,y \in \Gamma_0(v) \in \mathcal{E}$ 53. 9=6f, 2=6h, 15 a symplecte form, $P_{vor6}^{*} = P_{vor6}^{*} = P_{v$

2) Introduce a lonear form to or ((14, 62, defend by T(u, V) = (u, 62) Consider in C (11), E) S.t. - I (u, M) =0 42 E (. (M(E) She (, e) is not degreet = 6 u=0 but then

WEP ([M,E)) & Mence defined o = To(309). Ex the seul scalor sicild: 6-h.st. (MJ3) simple bundie. E = IVIXR P(IV, E) = CO(IV) Le rece v en proposes OF Santicid Section of $E = M \times R$ S.t. fre associated function $\Phi \in C^{\infty}(M)$ is a saddin of the following Carchy problems P\$ = (1) + 3 R + m2) \$= 0 0 0 m Symplectic Structure of Section & Section of R $(\Phi_{\varsigma},\Phi_{b}) \rightarrow (\varsigma,6b)$ F=65, \$4=64. Quantzation; Desti Let 1 be or association C-anyelon and Hell be a norm On 1'6 C-VECHOL GOVE A. Le * & t be a C-1, er mup. The riphe (1, 11011, *) is called a C*-largebook 15 to Pair (A 11-11) 15 conpicte and? Yabed 1) (a*) = a**= a (* 15 on 10 volution) E) (Ob)*= b* a*, 3) 11abl 3 11all 1011 (50 mulpianty) 4) 11 at 11 = 11 all (* 15 G) 1301 ctry) 5) 110xall = 11all (Cx - property). EXT Let (H, <0,0) be a conplex Hilbert space and L= L(H) be the argebra of bounded op on H. Let

```
\langle \alpha x, y \rangle = \langle x, \alpha^* y \rangle - \forall x y \in \mathcal{H}
               11a112= Sup 11ax12 = Sup (ax, ax) = sup (x, aax)
Prote (5):
                  2) Let X be a locally compact Hausdorff space compact

Introduce A = C_0(x) = \{f: X \to C_0 | musics = 4620 \} Kex S.t.
                                            I fixe extext Ke S
   A= a yebre of coninvos functions unishing at infinity.
  AN & E Co(X) we brunded, some my define
            11 511 = sop (5(x)) c
 Let f(x) = \overline{f(x)} for any x \in X. The topie. (G(x), ||-||, x)
15 a Connidative C^*-algebra.
 3) Let I'll be a smooth manifold, Impoduce A-Co(M) = C(M)
  (Colly, Holl) is not complete.
Remaril A c'- aisobre has atmost l'unit. Assure 1, de units.
 For a a E A we have 1 a= (1 a) ** = (a 1 ) = (a 1) = a = a
  and sindary for al = a = 1 is a only = 1 = 1*
   mac 0,00 / 11/11 = 11/1 | = 11/1 = 0 ort 13 11/1=1.
Let A be a C'-aigebri with wait 1. Write & be tic set
   of inventor elements of A. If ac A' mateA'
             a^*(a')^* = (a(a)^* = 1^* = 1)
  and similarly (at)^k a^k = 1 \implies (at)^{-1} = (at)^{-1}
Lenna: Let A be a c-algebra. Then the maps
    1) And o A
                          4) A^{\times} \rightarrow A^{\times}
       (a, b) -jath
                                               are Continuos.
                              a \rightarrow a^{-1}
    e) ord -d
       (Lay ) la
                          5) A > A
    3) A \times A \rightarrow A
(a, b) \rightarrow a \cdot b
                            a \rightarrow a^{*}
```

with [> - 6 = 1/ /1-2) 17 the Nedmann Series DA(a) 15 C10500 : Let No E (L), For Ch 2000) 1(x) + xnw = (5) 8 $(x) = (x)^{2}$ $(x) = (x)^{2}$ करेल हमान्यी किमान कर वर्ष [(n) 70 3 7 5 \$ [VI] 3 drs = 5 (n) 78 29 wow on) (1) /4 D = 1(11) /0 pro 0 50 tos par1052 out (x y = (x - a) = (topostop-1-10) 7 (00 43) 11.5011 > 3 = 25.097 | 11.5011 3 > 11.60 = 2011 11 coll 3 (11 coll + 11 co- 121) > [[[] - 40] + 1 | 60] + 1 | 60 - 41 | 1 | 60 - 41 | 1 | 60] 1 11-31-11 (12-012) 11 3p+ 3p-10 (1= H Sp) 1120-50/1 1/20/2 11 02-05) = (0,000 - 12 dias) 1= + 01 (00-01) 05) 11 \$ 100 M 32/180-11/1 Ath MS 110-45/128 We have

Horne for 1/2 = 1/4/1 + 1/4 = 1/4/1 = 1/4/1 = 1/4/1 | 1/4 | 1/4/1/2 | 1/4/1/ (= 3 7 7 - 2 7 3 = 20 1 3 7 (2-14) 1+w 1-w 0 51 +w/ 5+1 pw /10+1059 10 506:0100 1 2 (cy = 1nf | 10/1 / 2 | 2 m | 15 | 1 do 1/n Since LoC(2(4), the above expression gos to Zon for Jah (b-19/19/-41-1 1/6-19/11 2 = 1-w-116-10/11 1/-41 3 # = -1 VII 3/-9/ "- " = 1 (10-19) - 1/- (10-17) 1 1 (10-197) - (10-197) (1-97) = 1 (10-197) - 1/- (10-17) 1 1- (10-197) - (10-197) (7-97) 3 1 = 1 (10-197) - 1/- (10-17) 1 Therefore (4) 15 open and of (4) 15 closed 116-14711>910-1410 D34 10) 37 05 (= [] [() - | () - | ()] = [() - | () - | () - | ()] [()] [() - | ()] [() - | ()] [() - | ()] [() - | ()] [() - | ()] [() - | ()] [() - | ()] [()] [() - | ()] [()] 11 1- (2-1°V) 11 11-(20-1V) 11 > 11 1th [(10-19)] 11 = (4-97) = 11 + 12 [(10-19)] (4-97) 11 234.5 / Malipsav 55622007 8 (2-1307 (2-91) 7

The converse is also tooken gala) = im sop 11 a' 11 's = 8/11) case if g (u)=0, (F a use overtide, then 1=1111 = 11 a a 11 5 11 a 11 4 a 1 4 m 13 8 (m) 8 (a) =0 a considerion =) a & A ad QC of(a) & p. $\sim \widetilde{g}(a) = 0 \in \mathcal{G}_{A}(a)$ CIEZ. 3 (0) >0. Introduce 5 = { } / / / (> P(4) } we show S of Ti(a) brance describe the 3 leonal $S_{\lambda}(\alpha) \geq |\lambda|_{0} \geq \widetilde{p}(\alpha)$ Assume Sithere is no A and there is a place

Let were be an orthogod of unity.

For AES, ARES, Herce $= \left(\frac{1}{\omega^{k}} \left(1 - \alpha\right)^{-1} + \frac{\omega^{k}}{\omega^{k}} \left(1 - \frac{\omega^{k}}{\omega^{k}} \alpha\right)^{-1} = 0.1515.$ $R_{n}(a,\lambda) = \frac{1}{\lambda} \left(\frac{1-\frac{\alpha k_{n}}{\lambda}}{\lambda} \right)^{-1}$ we can show that Ra (an) - (1-a) + hes of (a) $\|(1-\frac{\alpha^{2}}{9(\alpha)})^{-1}-(1-\frac{\alpha^{2}}{3^{2}})^{-1}\|\leq |\{g(\alpha)-\lambda\}| \|\|a\|\| \sup_{z\in S} \|(z_{1}-\alpha)\|^{2}$ For 121 3 211411 $||(2|-a)^{-1}|| \le \frac{1}{|2|} \le \frac{1}{|2|} \le \frac{1}{|2|} \le \frac{1}{|2|} \le \frac{1}{|2|}$ \(\frac{1}{2}\)^0 Consider +10 convivs B(0) - B(0) $\| \mathcal{R}_{n}(\alpha, \beta_{(\alpha)}) - \mathcal{R}_{n}(\alpha, \lambda) \| \ge c | |g(\alpha) - \lambda|$ p+) = g(4)+= 10 | R, (0) (4) - R, (4) | Site > In | B, (a, g(e))-111 Yhs 55 5

1) (m sop 1/ Pm (a, g (4)) - 11 =0, Az => 11a"11 n=0 1 and 1 A1 = 1 a 1 = > Seyvice (11021) 15 perdoras or the other hand, heleasing. M 3-(4) = 1 m SUP /10(811 /2 Z 1100) 1 + 0 EN HOUS 13 11911 , a controd C+100. ~ S & C, (a) & S(a) = 1 in 11021/2 2 11 all ue order uth id A be a c-algorn with Unit. Then, a & lis called pormul if act and an isorary if a*a=1
unitary if a*a=aa=1 Proportion: Let A be a c*-alyobry with cont, ack There 1) 2(4) = 0, (a) IF a E AX, then of (at) = (o (a)) If a 15 normal, the, gay = 1/411. it) Is a vanisometry, then garage 5) If alsoning, of (u) csico 6) If a 13 scifado 1) for (a) c [-141], 1411] (0x(42) < [0,1121] 7) If P(2) is a pay onth complex coessions and ach is abitum, then o (p(a)) = p (o (a)) := {p(d): 1 ∈ o (a)}. Prof red & synon

7.2

Corollary: tet (11011, A) be a consele out. Then the norm is uniquely determined by A and A. Procs For a E the fre element a a 15 serfadjoint hence, b/3) Mali = Ma'ull = g (ata) which depends on A and the LEZE A and B be C*-algebras. An algebra homomorphism T: A-B is called a *-nophism if Pach Tr(a*) = Tr(a)* A mup Till al 15 a x- anto morphism if its invertee x-puflism Carollary Land B C- delyebrs with upit. Each on H-property X- C- Phisa TI. R = 33 setis Fy: If The My & hally for all a, in perticular, This continuos. Proof for at 1x we have ST (a) I (a) = Tract) =T(In) = IB $\pi(a)\pi(a)=1_3$ Hence, $\pi(a) \in \mathbb{B}^{\times}$ and $\pi(a) = \pi(a)$.

If $\lambda \in \Gamma_{\lambda}(a)$, then $(\lambda_{15} - \pi(a)) = \pi(\lambda_{14} - \alpha) \in \pi(\lambda_{15}) = \pi(\lambda_{14} - \alpha) \in \pi(\lambda_{15}) = \pi(\lambda_{15} - \alpha) \in \pi(\lambda_{15} - \alpha)$ i.e. $\lambda \in \Gamma$ (T(a)). Have $\Gamma(\alpha) \subset \Gamma(\alpha)$ and $\Gamma(\alpha) \subset \Gamma(\alpha)$ $\int_{\mathbb{R}} \left(\overline{\chi}(u) \right) \leq S_{\ell}(u)$ $\int_{\mathbb{R}} \left(\overline{\chi}(u) \right) \leq S_{\ell}(u)$ $\int_{\mathbb{R}} \left(\overline{\chi}(u) \right) = S_{\ell}(\overline{\chi}(u)) = S_{\ell}(\overline{\chi}(u)) = S_{\ell}(\overline{\chi}(u))$ 5 Sz(a*a)=11911) Coolage Let A be a C-alseba with unit. Then each coul preserving & automorphism TI: A > A sutis Syes 11 17(4) 11 = 11(4) DEF A weyl system of a sympteth vector & pure (V, SL)
Consists of a CE alsobra of with unit and a map W: V 3 & S. + For all P, T & V + k Followy bold: 1) W (Or) = 1 (3) W (4) - W (4) = E W (4+ 4) 2) W (-9) = W(9) (uc didn't reduce w to be

Example 14 (V) JU) be as abovey symplectic space. H = L(V, E) endered with the conting measure ine. finding winship everywhere except for wintable muny ports 11 811,25 \(\sum_{\text{f}}(\phi)\)_C < 00. The Hermitian product on H 15 given by (8,5) = [5(4) 3(4) Let $A = \mathcal{L}(H)$ be the considering of bounded expertised of the we define $W^{\circ} V \rightarrow \mathcal{L}$ by $(W(\varphi) f)(Y) = exp(\frac{1}{2} S(\varphi, Y)) + f(\varphi + Y)$ (1) 15 objects. (2) (Wigf, 9) = E (Wigf) (4) 9(4) = E exp (\frac{1}{2} l(q, y)) f (q+4) g(4) = [exp {\frac{1}{2}} \lambda(q, x-p)) f(y) g(x=y) \frac{1}{2} \lambda(y) \frac{1}{2} \lambda(q, x-p)) f(y) g(x=y) \frac{1}{2} \lambda(y) \f $=\frac{\sum_{x\in V} e^{x} \left(\frac{1}{2} \mathcal{N}(\varphi x)\right) f(x) g(x-\varphi)}{2} = (f, w(-\varphi)g)_{2} \Rightarrow w(\varphi)^{*} = w(-\varphi)$ (3) $(n(4)(n(4)f))(x) = exp(\frac{1}{2}s(4, x))(n(4)f)(4+x)$ = exp (= 2 (9,2)) exp (= 2 (2,4+x)) f (9+x+x = ex (= r(4,4)) ex (= r(4+x, x) f(4+x+x) IC*P (- 1/2 r(4,7)) (N(4+4) F) (2) V LOUCCR(V, N) be the C-alsobu of L(+1) generated by the elements W(P), GEV. Then ECR (V, S) together with the mup W Fairs a weyl system for (V, R) Prof: Let (Aw) be a weyl system of a symplate valor Space (V, se). Then,

```
1) W(q) is unitary for accorde V.
2) IN W(P) - W(Y) 1 = Z for all P, YEV, 4+7.
3) A 15 not soporate intess V= {0,3.
4) The Family [W(4)] Jeev 15 Tracky Indep.
P \times 005: 1) (W(\varphi)^* W(\varphi) = W(-\varphi) W(\varphi) = exp(-\frac{1}{2} \Re(\varphi, \varphi)) W(0)

= W(0) = 1

= W(0) = 1

= W(0) = 1
2) Let q YEV q + Y. For an aburary VEV we consider
    w(x) w(q-x) w(x) = w(x) w(q-4) w(x) = exp{-\frac{1}{2}} x(x, q-4)
      = exp(-in(x, p-4)] exp(-in(x+q-4,-x)) w(p-4)
     = ex (-= N(x, 4-4)) w(p-4)
  = \exp\left(-\frac{1}{2}S(\chi, \varphi - \psi)\right)\sigma_{\chi}\left(w(\varphi - \psi)\right)
since \varphi - \psi \neq 0, the real numbers SL(\chi, \varphi - \psi) for through
       =) The spection of w(42 Y) is a(1) - 10 varion.
     =) Of (M(G-4)) = 5! but the entire!
 => oa (exp{-iv(4, Y), w(4-4)} = 5! =>
       Ch (exp (+ = st(4,4)) w(4-4) - 14) is the with
circle centred at 1. Therefore, 11 exp { = vr(4, 9) ]wiffy) -1/11
                                      = S(exp[: a(T, F)) w(q. y)-74)
 ||w(\varphi) - w(\varphi)| = ||(exp(\frac{1}{2}x(\varphi, \varphi))w(\varphi, \varphi) - |_{4}) = w(exp(\frac{1}{2}x(\varphi, \varphi)))||(\varphi, \varphi) - |_{4})
```


To fact, It is a x-1500mphism. ~ Span (W(V)) cA Span(w(v))cA.2) on span (u(v)) we define the norm: (\sum com. But For every C*-nom 11-110 on squi (W(V)) 1 all = 1 \(\geq \inp \mu(\phi) \rightarrow \geq \left[\left \colon \left[\left \right] \right] \\ \frac{\phi}{\phi} \\ \frac{\phi}{\phi} \right] \\ \frac{\phi}{\phi} \right] \\ \frac{\phi}{\phi} \right] \\ \frac{\phi}{\phi} \right] \\ \frac{\phi Lemma Let (6 W) be a weyl system of a symplactic VEHOU SQUEE (V) SL) defis a com o, spo (WIV). Trungle hedualty 11 at 61 max = sip (11 at 61) : 11 0 13 a (-norm or spur (W(V))) 5 sup 8 Halls: ... 3 + sp { 11 Ell ... - } 5 Hallax + Hollax. Def. A veyl system (A, W) of a symplecte space (V, R) is Called a CCR- représentation of (V.M) if A 15 Benerical as a C= algebra by the elevents well, 4EV. In this we call A a CCR-alsebri as (V, R). Theorem: Let (V, I) be a spoller vertor space and (A, W), (A, W) two CCR-reps 05 (V, R). There is a conque *- isomorphism T: A-Az S. + 16 Cougreen countes WA CCR (V, N) V/# 10

(27/21) 3 (27) 3 (37) 3 (4) (12/4) (12/4) 1x1 = 1x1 (7/4)0 (9/W)° 1 # 1 Marc over I has to preserve the 沙丁 The duguen - Lyonosi 65 Dolores 5 2010 somputale open subset. (11-5000 10 51 3/1) (1/1) 50 + tout 35 (1/1) C/1/2 15 a Constitut ECULISTA CONTROLO SIL GILLINIS MONDO (75) More Rison (17, 12, 12) - (18, 12) 18, the colours of 19, 18 of pull 16t. (141, E. R.) and (141, E. S. L.) +402 ab ets 1, 606 Hp े के प्राचीत के प्रतिकार प्रतिकार का mosely liming triology formy soil adjoint morning hypothere Départion the Certerjon 610 140 hes objects triples (MJE) EN -0 = 22/ July 10 1022 10 100 100 100 3 100 00 00 (CCP(508)) = CCP(8) · CCP(S) (5/2/) - (5/2/) - (5/2/2) - (5/2/2/2) Z m m V = V2 1-5 (3) 2 CC/2 (1/2) CC/2 (2) 2) = (5) 2/2) wsinduan to mostal status of state and told ハヨれかA (れる)か = (よららら)で

of Journal suppositions so 37 = 1 = 5 = 27

```
where ext(4) denotes the extension of
           Fogos to all of 11/2 by 0.
 Defi Let Log Fina ocrote he cutagory whose objects are
  five triplets (ME, P, 6, 6) where I'll is a time operated
  To entro MED., E a real vector bundle ever MI with
  nos dagernita inner product, pis a formally sels adjoint Dep.
  normally hypebolic op acting or sections on E, 6th
Let X, E (N, E, P, 6, 5) and Xz:= (N, Ez, Pz, 62)
 two objects OF LorFund.
 If I'm, is not hypobolic (Globilly), then we let the set
 of norghisms From X to Xz be empty cones Xz=X.
  in which = case we put Mor (X, Xz) = { (id, id )}.
from IF M 15 globaly hypebolic, the Mor(X1, X2)
 Coisists of all poirs (5, 5) unds the same properts as trace
 FOF the norphism 1- GIOBHYP
             C(Y, E) EXT C(YZEZ)
             where extra Foy. f' E ( (5(17), Ez)
         res = Foyof & To (F) F (E)) & respector of E to F (Ex).
Def ne define afactor
             SOLVE : GLOSHYP - LORFUND,
             SCHE(ME,P)=(ME,P,6*)
            SolvE(F,F) 1= (F,F) For all triples (1",E,P)
                               morphsons (MY, E, PL) > (Mz, E, PL)
                                         17 Clas Hyp.
```

37/2 Janios 23 78 M/S 1679 19 paper dam shollong of boggs si (7,3) insidoly (9-19 =19 9 (m) R = (-29 (19 (L)) 76 NAS Remark Funder SYMPL: LORFUND > SYMPLE FOR (29) 27 of (9) 70/ 5/ J(M) D dow should (6) to ke (6) 7 1000101 Let X := (1/4, En Pa, En Par (X, X) be a molphism.
Colorson Logiting and (5, 4) e Mor (X, X) be a molphism. 16 or Comprex exiction (95) (91) (2) 3 5 " (2) 3 - (2) 3 miles "5 - (2) 3 そんわタンツのブニの(れか)から(れか) A C G (N) SI X (TA) SI (3/M/22 (3/M)) 19-19 = 9

12 (066

J:= { Causany corputible) globaly hypolonic? Coult Assente to any object (14,6) P. 6th, the Cutoyony -610-30 mol-12 to 10 1 20 1200 1 /2000 04m) 509610-20 10001-10001 Cx-0126005: June 1-10008 5 3 × 110 105 (Nhu 0 (xx) \$ (E 5) of preserves [GLAM DESCRIPTION ON GO OF JE & MANDES ON ON SING HAND Thurst 200 of 100 10 30 30 1000 31 1 1 1 1 1 3) The algebrus & here a common doth 1 / C3 × (2) 1) In cherever as 1/2 // on the stand of the cults of the selection of the substitute of th 10 (John C x - alybin 15 a par (A E A 2) of directed set with other soullity recutions 6 points SI wat SIX puro 83 d 15 & t's & 3p S1 237+ Lant & TX (d I) 31 (h) 'STX 134+ RTY 1002 Y > 20 J1 (8 1 > d may (ATX 4+2) £ 2 & D 51 20mt £ 2 y 620 05 (2 13x 410 [31 0 3+3/8 204 [3 1/2 111 105 (1 +1794 6205 Stovald 5H Gartag 1 1 cources or perturb ording 80 to 1200 H court or tolor I

(a(n) 932 ro (a/a) 30 d +01 (h) (n) (n) (b) (n) (m) (m) Since daya is insective, the Chal-× () 2 () COREVERSON) KIND COR(VINDAN) (2) (2) (3) (3) N (2) (3) (3) (3) (3) (3) (3) (3) (3) motice And is a ce-shallyeby of cck (the) the Au := Km, (ccr(Va, sa,)). (mg (mg) = = (mg (mg) 97/J-JU (mm) (7010) Lesp full, estives by the embeddings. 00000+ (WELL) D. 64-) for each WET U.Ed. Transported Lymporoges 00 thoughall be at 10.5 y then y so directed fort with Lemmi The set of defined above is a directed set with weak bestouplustus. p=10 V(D) L (D) in the still constitution Cousas TVI Cousasia interd

From 5-88 (64) C J (U) 1- Fedlows that Supp (64) north = \$
For the symplectic form on To (IN, E)/KC, (6) this imples SU(Qy):
This gives property (3) of a weyl-systems
(4) w(4) = w(4) = w(4) w(9).
remove we associate a morphism to Quasi Loc ALG veak)
Xai= (Na, Ea, Pa, 6a=).
[F, F) where SI My NZ is at me or entitien preserving isometric embedoing S.t. f(M) CMZ is causing companies open subset.
File wise an isometry. Let Ja and let (Am) (Au) west) and (My) (Au) be the corresponds weak quasi local C-anyober Consider the morphism $\Phi = CCR o Sym PL (S, F) : CCR(V_m, S_m) - CCR(V_m, $
$ \begin{array}{c c} \hline S[a] & \Rightarrow \\ S[a] & \Rightarrow \\ \hline S[a] & \Rightarrow \\ S[a] & \Rightarrow \\ \hline S[a] & \Rightarrow \\ S[a] & \Rightarrow \\ \hline S[a] & \Rightarrow \\ S[a] & \Rightarrow \\ \hline S[a] & \Rightarrow \\ S[a$
This implies $G(A_{M_1}) \in \mathcal{M}_{\mathbb{Z}}$. The effect $(\mathcal{G}, \overline{\mathcal{G}})_{A_{M_1}}$ is a mulphis?
Theorem The assignment (M,E,P,6") - (A, Edin's) and (S,F) - (P, \$\P\Am) yields a finctor
Lor Fund - Quartoc ALG WELK
GLOBHYP SOLYE LOR FUND
Quastar ALE TOURS LOC ALIG WELL

denote by (An, Editary) the corresponding quasi-local & angelow

then

A = CERO SYMPLO SOLVE (M,E,P)

By off An C A.

For an other, (M,E,P,62) = SOLVE (M,E,P). Then

SYMPL (M,E,P,62) 13 VM = 6 (M,E)/ko (6)

I is general by E= { W(EQ) : 46 PC (M,E)}

and some W(EQ) E My there E C U La C LM