

Mechanik - Translation

SCAN ME

Begriff		P-Speicher	T-Speicher	Energie-Wandler	Basisgrößen
Bauelement		Kapazität	Induktivität	Widerstand	
Formelzeichen E	inheit	C_m $[C_m] =$	$kg \mid L_m \mid [L_m] = \frac{m}{N}$	$R_m \qquad [R_m] = \frac{m}{N \cdot s}$	
Definition (linear)		$C_m = \frac{p}{v} = m_T$	$L_m = \frac{s}{F} = n$	$R_m = \frac{v}{F} = \frac{1}{k_{St}}$	
Flussgröße		$F_C = C_m \frac{d}{dt} v_C$	$F_L = \frac{1}{L_m} \int s_L dt$	$F_R = \frac{v_R}{R_m}$	T-Speicher $Ex \qquad v = \frac{ds}{dt} \qquad Y$ $S \qquad v \qquad v$ $L := \frac{s}{F} \qquad R := \frac{v}{F} \qquad C := \frac{p}{v}$ $F = \frac{dp}{dt} \qquad P$
Potentialgröße		$v_C = \frac{1}{C_m} \int F_C \ dt$	d	$v_R = R_m \cdot F_R$	
Energie		$E_P^P = \frac{1}{2C_m}p^2$	$E_T^T = \frac{1}{2L_m} s^2$	-	
Co-Energie		$E_P^T = \frac{C_m}{2}v^2$	$E_T^P = \frac{L_m}{2} F^2$	-	
Leistung		-	-	$P = F \cdot v$	
Symbol (mechanisch)		F_{C} m_{T} v_{C}	F_L v_L	F_R k_{St} V_R	
Symbol (mechatro	onisch)	F_{c} V_{c}	F _L L _m	F_R R_m V_R	