Lecture 1. Introduction and Syllabus

Yuan Yao

Hong Kong University of Science and Technology

January 30, 2019

Outline

Geometric Data Analysis

Topological Data Analysis

Part I. Geometric Data Analysis

- A duality in linear dimensionality reduction
 - Principal Component Analysis (PCA)
 - Multidimensional Scaling (MDS)
 - Random matrix theory and phase transitions
 - Random projection and restricted isometry property
- Extended PCA/MDS via SDP
 - Robust PCA
 - Sparse PCA
 - Graph Realization or Sensor Network Localization
- Manifold Learning: nonlinear dimensionality reduction via spectral method on graphs
 - Locally Linear Embedding (PCA+), Isomap (MDS+)
 - Laplacian LLE, Diffusion Map, LTSA

Part I. Geometric Data Analysis (continued)

- Supervised PCA
 - Ridge Regression and PCA
 - Slice Inverse Regression and Linear Discriminant Analysis
- *Other topics in representation learning
 - tSNE
 - Steerable PCA
 - Dictionary learning and Matrix Factorization
 - Deep learning

Outline

Geometric Data Analysis

Topological Data Analysis

Part II. Topological Data Analysis

- Clustering method (0-homology)
 - k-center
 - k-means
 - hierarchical linakge
- Topological Data Analysis and Morse Theory
 - Reeb graph and mapper
 - Persistent homology and discrete Morse theory
 - *Critical nodes and graphs
- *Euler Calculus and signal processing

Part I. Topological Data Analysis (continued)

- ► Hodge Theory: a bridge connecting geometry and topology
 - Spectral clustering and graph Laplacian
 - Statistical ranking and graph Helmoholtzian/Hodge Laplacian
 - Experimental design and random graph theory
 - Online ranking and stochastic algorithms
 - Budget control and information maximization
 - Individual learning vs. social choice theory
 - Game theory

Outline

Geometric Data Analysis

Topological Data Analysis

Planned Schedule

Planned Schedule

- ▶ The course runs for about 13 weeks.
- ► Week 1:
 - Jan 30: Introduction
 - Feb 1: seminar by Ruohan ZHAN (Stanford University) with title "Safety masked reinforcement learning"
- Week 2: spring festival break (Feb 8 will be rescheduled to later)
- ► Week 3:
 - Feb 13: PCAFeb 15: MDS

Planned Schedule (continued)

- ▶ Feb 20 May 8: to-be-announced on courseweb
 - https://yao-lab.github.io/2019_csic5011/
- Occasionally invited speakers from academia or industry will present
- Discussions on piazza (by invitation only):
 - https://piazza.com/ust.hk/spring2019/csic5011/home