Computer Vision, Autonomous Driving & Perception

+1 647-866-5575 kellyk.zhu@mail.utoronto.ca https://kellyzoo.github.io

EDUCATION

University of Toronto, St. George

Toronto, ON

Bachelor of Applied Science (BASc) in Engineering Science

Sep 2019–Apr 2024 (expected)

- Major: Machine Intelligence, Minor: Robotics & Mechatronics
- Dean's Honours List

PUBLICATIONS

Y. Liu, K. Zhu, G. Wu, Y. Ren, B. Liu, Y. Liu, J. Shan
MV-DeepSDF: Implicit Modeling with Multi-Sweep Point Clouds for 3D Vehicle
Reconstruction in Autonomous Vehicles
In International Conference on Computer Vision (ICCV), Paris, France, October 2023

PATENTS

Yuan Ren, Yibo Liu, Kelly Zhu, Bingbing Liu. Methods and Processors for Implicit Modeling with Multi-Sweep Point Clouds for 3D Vehicle Reconstruction in Autonomous Driving.
PCT Application Number: PCT/CN2023/101585 (Patent Pending)

AWARDS & DISTINCTIONS

•	DAAD RISE Germany 2023 Scholarship Recipient (Value of \$6000)	2023
•	Mitacs Research Training Award (Value of \$6000)	2020
•	ESROP – Engineering Science Research Opportunity Program (Value of \$6000)	
•	University of Toronto Scholar (Value of \$7500)	2019

Faculty of Applied Science & Engineering – Dean's Merit Award (Value of \$2500)

RESEARCH EXPERIENCE

Robot Vision and Learning (RVL) Lab

University of Toronto

Undergraduate Thesis Student (Supervised by Prof. Florian Shkurti)

Sep 2023-Present

- Developing a BEV detection and trajectory prediction framework using LiDAR data to achieve real-time and collision-free predictions in multi-agent scenarios
- Working towards the development of an end-to-end motion planner for the task of sidewalk navigation
- Conducting an extensive analysis and review of existing end-to-end perception, prediction, and motion planning baselines in the literature

safe.trAIn by Siemens AG | DAAD RISE Germany

Hochschule Düsseldorf

Undergraduate Researcher (Supervised by Prof. Alexander Braun)

Jun 2023-Aug 2023

- Government-funded project in Germany for investigating the use of AI-based methods to develop safe and reliable autonomous train systems
- Led a solo computer vision project on 3D landmark detection using multimodal fusion of LiDAR and camera data to aid with downstream task of sensor calibration
- Presented research results to project consortium, resulting in approval of proposed methods and implementation into safe.trAIn's project pipeline

Huawei Noah's Ark Lab | Autonomous Driving Division

Toronto, ON

Perception Researcher

May 2022-Apr 2023

 Researched LiDAR-based 3D scene reconstruction methods to aid with the development of simulation platforms for autonomous driving

- Developed a novel 3D vehicle reconstruction method by employing multi-frame aggregation of LiDAR sweeps, achieving SOTA performance on existing 3D reconstruction benchmarks (ICCV 2023)
- Other topics of research included LiDAR sensor simulation and multimodal scene understanding

Space and Terrestrial Autonomous Robotics Systems (STARS) Lab

University of Toronto

Undergraduate Researcher (Supervised by Prof. Jonathan Kelly)

May 2021-Sep 2021

- Investigated efficient path planning on weighted graphs for planetary navigation with Python, using NASA's Mars 2020 Rover Mission as a performance benchmark
- Proposed novel methods for planetary path planning by leveraging geographical information from satellite data, resulting in reduced memory usage and computation time

Robotics and Automation Lab (RAL)

University of Toronto

Undergraduate Researcher (Supervised by Prof. Andrew Goldenberg)

May 2020-Aug 2020

- Prototyped an autonomous bed-making robot on a 6-DoF robot arm mounted on a mobile platform
- Created a depth image simulation pipeline using camera calibration techniques in Python to generate synthetic datasets for a 3D grasp point detection model
- Implemented SLAM and robot platform navigation using live input from a 2D LiDAR sensor

INDUSTRY EXPERIENCE

Trimble Applanix

Toronto, ON

Autonomy Engineering Intern

May 2021-Sep 2021

- Contributed towards a LiDAR-based SLAM and perception solution for autonomous vehicles
- Implemented GPU scheduling on a multi-GPU server for machine learning applications using Docker, Kubernetes, PyTorch, and TensorFlow
- Streamlined the continuous integration pipeline with new GPU-enabled regression and unit tests

EXTRACURRICULARS

aUToronto - University of Toronto's Self-Driving Car Team

Toronto, ON

Perception Engineer

Jul 2021-Apr 2022

- Designed an end-to-end 2D/3D object tracking pipeline for a student-led self-driving car team
- Implemented Bayesian statistics algorithms, such as Kalman filters and Hidden Markov Models, to achieve real-time tracking of bounding boxes in ROS and C++

Robotics for Space Exploration (RSX)

Toronto, ON

Autonomy Engineer

Sep 2020–Sep 2021

• Researched and implemented various GPS and SLAM algorithms for a Raspberry Pi-powered 4WD mini rover to achieve autonomous rover navigation

UofTHacks - Canada's Largest Student-Run Hackathon

Toronto, ON

Logistics Coordinator

Jul 2020–Mar 2021

- Organized a series of activities, workshops, and mini-events for UofTHacks VIII, which was attended by over 800 participants
- Coordinated diversity-focused workshops to foster an inclusive hackathon environment and encourage hacker participation from all backgrounds

RELEVANT SKILLS

- **Programming Languages:** Python, C/C++, MATLAB, Java
- Libraries: PyTorch, TensorFlow, NumPy, SciPy, scikit-learn, pandas, Matplotlib, Open3D, OpenCV
- **Tools:** Linux/Unix, ROS, Git, Docker, Kubernetes