Today

- Neural networks and deep learning
 - Single layer neural networks
 - Multi-layer neural networks
 - Convolutional neural networks
 - Recurrent neural networks

Input layer Hidden layer

Output layer

Input layer Hidden layer

Output layer

Input Hidden Output layer layer layer **Activation function** A_1 X_1 generalized linear model A_2 X_2 A_3 f(X)*X*₃ A_4 X_4 A_5 j = 1 ... pk = 1 ... K

Input Hidden Output layer layer layer **Activation function** A_1 X_1 ω_{20} generalized linear model ω_{21} A_2 ω_{22} X_2 ω_{23} A_3 f(X) $\angle \omega_{24}$ X_3 A_4 X_4 A_5 j = 1 ... pk = 1 ... K

Input Hidden Output layer layer layer **Activation function** A_1 X_1 generalized linear model A_2 X_2 A_3 f(X) ω_{51} *X*₃ ω_{52} A_4 ω_{53} X_4 ω_{50} ω_{54} . A_5 j = 1 ... pk = 1 ... K

Model algorithm

define g(z)

load x_i

set K

set parameters: ω_{kj} , β_k

for each activation unit k in 1:K

calculate linear predictor: $z_k = \omega_{k0} + \sum_j \omega_{kj} x_j$

calculate nonlinear activation: $A_k = g(z_k)$

calculate linear model: $f(x) = \beta_0 + \sum_k \beta_k A_k$

return f(x)

Loss function (SSQ)

$$R(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 \qquad \theta = \bigcup_{\substack{\omega_{10} \\ \omega_{11} \\ \vdots}}^{\beta_1}$$

```
Gradient descent guess \theta (typically random) set \rho do until R(\theta) fails to decrease calculate derivative of R(\theta): \nabla R(\theta) = \frac{\delta R(\theta)}{\delta \theta} \theta \leftarrow \theta - \rho \nabla R(\theta)
```

Back propagation

Gradient descent of loss surface (1D example)


```
Stochastic gradient descent
guess \theta (typically random)
set \rho
do until R(\theta) fails to decrease
    randomly sample the data
    calculate derivative of R(\theta): \nabla R(\theta) = \frac{\delta R(\theta)}{s \rho}
    \theta \leftarrow \theta - \rho \nabla R(\theta)
                                               Back propagation
```