

(12) UK Patent Application (19) GB (11) 2 345 950 (13) A

(43) Date of A Publication 26.07.2000

(21) Application No 0001100.7

(22) Date of Filing 19.01.2000

(30) Priority Data

(31) 9901095

(32) 20.01.1999

(33) GB

(51) INT CL⁷

F16K 11/076

(52) UK CL (Edition R)

F2V VA6 VV4 VW33

U1S S1713

(56) Documents Cited

GB 2323428 A GB 1267337 A GB 0909953 A
WO 87/02428 A1

(58) Field of Search

UK CL (Edition R) F2V VA4 VA6 VV4
INT CL⁷ F16K 11/072 11/074 11/076

On-line: WPI; EPODOC; PAJ

(71) Applicant(s)

Newteam Limited

(Incorporated in the United Kingdom)

Brunel Road, Earlstrees Industrial Estate, CORBY,
Northamptonshire, NN17 2LS, United Kingdom

(72) Inventor(s)

Christopher John Samwell

Robert Bishop

(74) Agent and/or Address for Service

Lewis & Taylor

144 New Walk, LEICESTER, LE1 7JA, United Kingdom

(54) Abstract Title

Selector valve for showers

(57) A selector valve arrangement 4 for a shower bath comprises a radially directed, angularly movable flow directing ported valve member 40 within a valve chamber 41 having ports (45-48, figure 4) with which porting 44 of the valve member 40 selectively communicates on appropriate rotational positioning of the valve member 40. The valve member 40 receives fluid for distribution through a selected port or ports (45-48) from an on/off fluid flow control inlet valve 43. A spindle 42 for rotating the valve member (40) may be axially operable and releasably lockable for operating the on/off flow valve (43). Alternatively an operating spindle has a co-axial hollow shaft (62, figure 10) about it which can be releasably locked to the spindle (32). When locked together the shaft (62) operates the ported valve member (60) with the on/off flow inlet valve such as a ceramic disc type valve (30) remaining inoperative i.e. during port selection. On release of the shaft (62) from the spindle (32) the latter can independently operate the on/off flow inlet valve (30) for admitting fluid flow to the ported valve member (60) and to the porting (66). The selector valve arrangement may be received in a body 10 or body assembly having passageways for directing selected fluid flow to locations of use such as to shower heads.

Fig. 1

Fig. 1

2/12

Fig.3

Fig.2

3/12

Fig.4

Fig.5

Fig.6

Fig.7

Fig. 8

6/12

Fig. 9

Fig. 10

8/12

Fig. 11

Fig. 12

9/12

Fig. 13A

Fig. 13B

10/12

Fig. 13C

Fig. 13D

11/12

Fig. 14A

Fig. 14B

12/12

Fig. 14C

Fig. 14D

TITLE: SELECTOR VALVE ARRANGEMENT

This invention relates to a valve arrangement for selectively controlling fluid flow more particularly, but not exclusively, for shower bath units providing multiple shower outlets or heads. Such outlets or heads are usually carried on or from a panel or tower which in use is
5 wall mounted or similarly mounted in relation to a bath or within a shower cabinet or cubicle.

The object of the invention is to provide an improved selector valve arrangement for simply and effectively diverting or distributing fluid flow in one or more of various directions e.g. water flow to one or more shower outlets or heads.

According to one aspect of the invention a selector valve arrangement is characterised by a
10 ported valve member for receiving fluid flow therethrough and selectively movable into communication with outlet ports in a valve chamber for diverting or distributing fluid flow to one or more of the outlet ports for onward flow in a required direction or directions.

According to another aspect of the invention a selector valve arrangement includes incorporated therewith an on/off fluid flow control inlet valve.

15 The selector valve arrangement may be wall or otherwise mounted in use and arranged for operation in conjunction with a thermostatic or manual fluid or water blending means for a required output temperature.

Practical examples of a selector valve arrangement in accordance with the invention are shown in the accompanying drawings in which:-

20 Figure 1 is an axial plane cross sectional view of one form of complete valve assembly incorporating the selector valve arrangement;

Figure 2 is an axial plane cross section of the selector valve arrangement of Figure 1 in the open condition and taken on a line through diametrically opposed ports of Figure 4;

Figure 3 is a detail view of valve spindle locating means;

5 Figures 4 to 7 are cross sectional plan views each showing a different arrangement of selected fluid flow diversion or distribution;

Figure 8 is an axial plane cross section of a further form of valve assembly incorporating a developed form of on/off and selector valve arrangement;

Figure 9 is a cross sectional plan view taken on the line 1X - 1X of Figure 8;

10 Figure 10 is an axial plane cross section of the on/off and selector valve arrangement of Figure 8, shown in a locked condition;

Figures 11 & 12 are detail cross sectional views of locking means respectively taken on lines X1 - X1 and X11 - X11 of Figures 8 and 10;

15 Figures 13A to 13D are diagrammatic plan views each showing a different selected position of the valve member in relation to outlet ports, and

Figures 14A to 14D correspondingly show the operation and release of the locking means at each selected position of the valve member and also fluid flow control operation.

In practice the complete valve assembly 1 as shown in Figure 1 would usually be mounted or incorporated in a wall mounted panel or tower (not shown), the latter carrying a number

of shower heads such as an overhead shower head, side heads or jets for showering the body of a person taking a shower and a shower hand set connected to the panel or direct to the valve assembly by a flexible hose.

5 The valve assembly 1 comprises a hollow compartmented body or manifold 10 having a water inlet 11 for admitting water flow W into compartment 12 and about an adjustable thermostat 2 for controlling heating of the water to a required temperature. Alternatively temperature control of heated water may be effected by means of a manual blender. The water flow W then passes via compartment 13 to an on/off valve 3 for controlling the water supply to the lower part of the selector valve 4 in compartment 14.

10 The selector valve 4 comprises a radially directed and angularly movable flow diverting valve member 40 within a ported chamber 41 and rotationally fast with an operating valve spindle 42 receiving a knob (not shown) at 442. The inner end of the valve spindle 42 carries an on/off inlet valve member or stopper plug 43 which in Figure 1 is shown seated in a closed position against a seating 400 at the base or inner end of the valve member 40. A seal 401 is provided between the latter and the valve chamber 41.

The inlet valve member or plug 43 which is provided with a sealing ring 430 serves to close off or admit water flow into the valve member 40 on operation of the latter and is operated to the open position by axially depressing the valve spindle 42 against spring loading 409 acting between a cross piece 49 on the spindle 42 and the valve member 40 (see Figure 2).

20 The plug 43 is urged to the closed position by the action of the spring 409 and also by water supply pressure acting directly on it.

On such axial movement of the valve spindle 42 it moves axially relative to the selector valve member 40 but it always has a rotary driving engagement with the latter i.e. by means of a nut shaped member 420 fast on the spindle 42 and slidable but non-rotatable within the central hollow interior of the valve member 40.

An open outlet port 44 of the valve member 40 is arranged to register with one or more outlet ports 45, 46, 47 and 48 of the valve chamber 41 and includes a spring loaded lip seal member 441 for fluidtight communication with a selected port or ports 45, 46, 47 or 48. These ports lie on a part circular path about the axis of the valve spindle 42.

- 5 As the spindle 42 is axially depressed to unseat the plug 43 and turned to a selected position it is locked in such position by locking means shown in the form of the radial projection or cross piece 49 carried by the spindle 42 and which engages any one of a series of notches or opposite notches 50 in a ring 5 surrounding the spindle 42 and fixed in the valve assembly body 10 by the valve retaining cap 19 (see Figure 3). The notches 50 correspond to settings
10 of the valve member 40 as referred to below.

A typical arrangement of selectively directing or diverting water flow W to required shower heads is shown in Figures 4 to 7.

- 15 Thus on depressing, turning and locking the valve spindle 42 to a first selected position or setting (Figure 4), the plug 43 is unseated to admit water into the initially turned valve member 40 and from thence by its port 44 to port 45 in the valve chamber 41. From this port 45 it passes via a passageway 15 in the manifold body 10 to a shower handset for water outlet or spray use of the latter in the usual manner.

- 20 On further turning and locked selection of the valve member 40 to a second position (Figure 5) the valve member 40 communicates with valve chamber port 46 for directing the water flow W via passageway 16 to an overhead shower head.

- 25 On still further turning and locking the valve member 40 at a third position (Figure 6) the valve member 40 still communicates with the port 46 and also a further port 47 in the valve chamber 41 firstly for maintained water flow via the passageway 16 to the overhead shower head and also to a passageway 17 and an outlet 18 to shower heads or body jets usually carried in a fixed manner (apart from provision for any directional adjustment) on the panel

or tower for showering the user's body. Where more than one water outlet is selected in this way it can be referred to as a "combination mode" of operation of the selector valve 4 or of the selector valve 6 as later described.

In a furthermost fourth angular setting of the valve spindle 42 as shown in Figure 7, the valve member 40 communicates with the port 47 and a further port 48 for directing water flow to the passageway 17 and the outlet 18 to the shower head or body jets for operation only of the latter.

From a first or zero operational setting position of the valve member 40, typical relative angular positions of the valve member 40 for the further settings may be 45°, 90° and 135° but these angles may be varied according to requirements.

Whereas the valve member or plug 43 may solely serve as an on/off valve, in a further form of the selector valve arrangement according to this invention and as shown in Figures 8 to 14D, an on/off valve is incorporated in the selector valve 6 thus dispensing with a separate on/off valve 3 and also providing more advantageous operation of the selector valve 6.

Referring firstly to Figures 8 and 9 a ducted manifold body or body assembly 100 receives the thermostat 20 in one body part 102 and the selector valve 6 in a further body part 101, the two body parts 101, 102 being secured together at adjacent faces 110 by screw connection 103 and in a fluidtight manner by the provision of sealing rings 104.

Hot and cold water side inlets 105, 107 communicate with annular spaces 108 about the thermostat 20 for regulation of the temperature of water passing therefrom to a lower water supply passageway 106 to the base of the selector valve 6. In the usual manner the thermostat 20 normally limits the water temperature to a maximum setting (e.g. 38 °C) but if a higher temperature is required a spring loaded button 21 on the knob 22 is depressed

inwardly to permit the knob to be turned to a higher setting. Alternatively or additionally to the thermostat 20, the body part 100 may accommodate a manual water flow blender device for effecting temperature control.

The passageway 106 communicates with a lower inlet 163 to a flow control inlet valve 30 within the assembly of the selector valve 6, the control valve 30 being shown of the ceramic disc type in which a pair of apertured discs 31 are in highly finished face contact, one disc (i.e. the upper one) being driven by the valve spindle 32 to bring the apertures into and out of register for water flow control from the valve 30 to a port 36 through to the interior of a radially directed and angularly movable valve member 60 within a ported valve chamber 61 as later described. The lower inlet 163 receives a tubular distance piece 34 of rubber or other suitable resilient material retained by a circlip 35 and which serves to locate the valve 30 in position and maintain its discs 31 in intimate face contact on a support washer 37. An annularly recessed head 38 of the valve 30 provides a driving connection of the spindle 32 to the disc 31, the spindle 32 receiving a knob 33 rotationally fast with it such as by splined engagement as shown.

The selector valve member 60 is secured to a hollow shaft 62 for rotation therewith which shaft 62 is co-axially positioned about the spindle 32 for relative rotation of the latter except when they are locked together. In the unlocked condition the spindle 32 can be rotated by the knob 33 to operate the control valve 30 between a water flow shut off position and a full flow position and any rate of flow positions in between. Angular movement of the spindle 32 for this purpose may be through 90°.

Referring also to Figures 9 to 12 and for directional flow selection purposes and with the control valve 30 in the shut off position, the shaft 62 can be locked to the spindle 32 by a locking member 70 which is received in a transverse opening 67 in the upper part of the shaft 62, which opening 67 is closed at one end by a wall portion 68 of the shaft 62. An elongate

hole or slot 72 in the locking member 70 freely surrounds the spindle 32 and permits a required extent of diametrical sliding movement of the locking member 70 relative to the spindle 32.

A push button 73 received by a slot 37 through the knob 33 is inwardly movable radially
5 relative to the knob 33 against the action of spring loading shown provided by a spring ring
74 which urges the button 73 to an outward release position. On pushing the button 73 in,
it has a driving engagement with the locking member 70 such as by a recess 75 at the inner
end of the button engaging a corresponding projection 76 on the locking member 70 or vice
versa. At the same time a pair of projections or pins 77 on an inner part of the locking
10 member 70 fully engage corresponding recesses 680 in the wall portion 68 of the shaft 62 (or
vice versa) so that a positive driving engagement is provided between the locking member
70 and the shaft 62 and by the depressed button 73 with the knob 33.

In this way by turning the knob 33 in a required direction the spindle 32 and shaft 62 are
turned with it and, in particular, the valve member 60 is also turned with the shaft 62 to the
15 same angular extent. Thus the valve member 60 can be selectively turned for communication
with outlet ports 63, 64 and 65 in the valve chamber 61. For this purpose the outer part of
the valve member 60 is ported such as by a pair of ports 66 both communicating in common
with a hollow interior 69 of the valve member 60 about the annular recess 380 in the head
38, (see Figure 13A). Again the ports 63, 64 and 65 lie on a part circular path about the axis
20 of the spindle 32 and the shaft 62.

During such selecting operation of the locked rotatable parts of the selector valve 6, the flow
control valve 30 is simultaneously turned with the spindle 32 so that there is no relative
movement between them and consequently the valve 30 is not operated and remains in its
shut off condition. Having selected a required setting of the valve member 60, the push
25 button 73 is released and becomes disengaged from the locking member 70. However, the
latter remains located with the wall portion 68 of the shaft 62 by the pins 77 but is outwardly

urged by the action of spring loading shown provided by compression springs 78 acting between the locking member 70 and wall portion 68, each spring 78 being located in a corresponding recess 680 and about the associated pin 77.

The knob 33 and spindle 32 can now be turned relative to the shaft 62 such as in the anti-clockwise direction shown (see Figures 14A to 14D) for opening the control valve 30 to allow water flow to pass into the valve member 60 and through selected ports of the outlet ports 63, 64 and 65. Before selecting another setting mode the knob 33 is turned back to the shut off position and then the button 73 is depressed to operate the locking member 70 for the above described locked turning operation of the spindle 32, shaft 62 and valve member 60. In this way water flow does not take place during setting mode selection in the interests of satisfactory operation for a person taking a shower.

In this example the valve chamber is provided with a pair of outlet ports 63, a single intermediate port 64 and a further pair of ports 65 and the two ports 66 of the valve member 60 are arranged to communicate with a pair of adjacent ports 63, 63 or 63, 64 or 64, 65 or 65, 65 at any one mode setting as respectively shown in Figures 13A to 13D. Corresponding push button 73 selection and release de-selection and also knob 33 turning movement for water flow is shown in Figures 14A to 14D.

Operative turning movement of the valve member 60 is shown in a clockwise direction and water flow turning movement of the knob 33 is shown in an anti-clockwise direction but any suitable turning directions may be employed.

On selection of both ports 63, 63 (Figure 13A), water flow is directed to a communicating duct or passageway 113 in the body or manifold assembly 100 (see Figure 9) solely to an outlet connection 123 for a shower head handset (not shown) connected to the outlet 123 by a flexible hose. Selection of ports 63, 64 (Figure 13B) maintains water flow to the handset and also directs it via the port 64 to a duct 114 and outlet connections 124 to body shower heads or jets mounted on or from the panel in the manner previously referred to.

Further selection of ports 64, 65 (Figure 13C) maintains water flow to the body jets and also directs it to an overhead shower head on the panel (or otherwise mounted) via the port 65 and then via a short duct 115 and outlet connection 125 to the overhead shower head. Furthermore selection of both ports 65, 65 (Figure 13D) directs water flow solely to the
5 overhead shower head.

As before the angular settings of the valve member 60 from an initial zero setting (as in Figure 13A) may be at 45°, 90° and 135° as shown but, again, these angles may be varied according to requirements. Corresponding selection operation and release operation of the button 73 and also flow control operation of the knob 33 is shown in Figures 14A to 14D.
10 The radial direction of the button 73 in Figures 8, 10, 11 and 12 is shown differently for clarity.

Referring back to Figures 13A to 13D and the right-hand series of diagrams, markers 700 or other suitable indications are preferably provided on a cap 600 or other support to assist in turning the knob 33 with depressed button 73 to the appropriate angular position for a
15 required shower mode selection. The cap 600 serves to secure the valve assembly 6 in the body part 101 of the manifold body assembly 100. "Click" location of the knob 33 for tactile recognition of each mode selection may be provided as later described.

For satisfactory fluidtight operation of the valve member 60 in relation to the ports 63, 64 and 65 the latter are provided through a plate 610 at the bottom of the valve chamber 61 and located therein at 661, the plate 610 having a highly finished smooth upper surface for cooperation with spring loaded lip seals 660 in the ports 66 of the valve member 60. As will be appreciated the ports 63, 64 and 65 communicate through the plate 610 with respective ducts 113, 114 and 115 in the manifold assembly 100.
20

To assist the user, the position of the knob 33 at any of its angular mode selection settings, i.e. as per Figures 13A to 13D and 14A to 14D, may be indicated by "click" action location of each setting. This is shown provided in Figures 8 and 10 by a spring loaded plunger 330
25

carried by the knob 33 and engaging one or the other of angularly spaced apart recesses 602 on a fixed part of the valve assembly viz: on the end of an upstanding part or collar 601 of the cap 600. Alternatively the plunger may be carried by the collar 601 and cooperate with recesses within the knob 33.

- 5 In the case of either of the above described selector valve arrangements, the selection or sequence of selected operation of communicating ports and the number or combination of selected shower heads at any one setting may be varied to meet operational requirements.

Whereas the selector valve arrangements have been described in relation to their upright positions as principally shown in the drawings, it will be appreciated that they may be
10 installed in any required position of use.

Various modifications may be made to the selector valve arrangements and valve assemblies within the scope of the invention herein defined. It is also to be understood that the selector valve arrangement may be used or combined with other shower or fluid flow control devices.

CLAIMS

1. A selector valve arrangement for controlling fluid flow characterised by a ported valve member for receiving fluid flow therethrough and selectively movable into communication with outlet ports in a valve chamber for diverting or distributing fluid flow to one or more of the outlet ports for onward flow in a required direction or directions.
5
2. A selector valve arrangement according to claim 1 wherein the ported valve member is radially directed from an axis of rotation and is operable for selective angular movement about said axis into communication with the outlet ports lying on a circular path about said axis in the valve chamber.
10
3. A selector valve arrangement according to claim 1 or 2 wherein the porting of the valve member is such that at least one selected position of the valve member, it communicates with more than one of the ports in the valve chamber.
4. A selector valve arrangement according to any of the preceding claims wherein it is arranged to operate in conjunction with an on/off fluid flow inlet valve thereto.
15
5. A selector valve arrangement according to claim 4 wherein it includes incorporated therewith or therein the said on/off fluid flow inlet valve.
6. A selector valve arrangement according to claim 4 or 5 wherein the on/off fluid flow control inlet valve comprises a disc type valve.
- 20 7. A selector valve arrangement according to claim 4, 5 or 6 wherein the ported valve member is operated directly or indirectly by an operating member or spindle which is also arranged to operate the on/off fluid flow control inlet valve.

8. A selector valve arrangement according to claims 4 and 7 or 5 and 7 wherein the on/off fluid flow control inlet valve comprises a valve member or plug which is axially operated by the operating member or spindle and cooperates with a seating at an inlet to the selector valve arrangement for on/off inlet fluid flow control to the latter.
5
9. A selector valve arrangement according to claim 8 wherein the operating member or spindle is axially movable to operate the valve member or plug, releasable locking means being provided for locking the operating member or spindle and the valve member or plug in the open condition of the latter.
10. 10. A selector valve arrangement according to claim 9 wherein the releasable locking means is arranged to lock the operating member or spindle and the valve member or plug in the open condition of the latter at each selected position of the ported valve member.
10
11. A selector valve arrangement according to claims 6 and 7 wherein the disc type valve member is located within the assembly of the selector valve arrangement and is operable by the operating member or spindle for on/off fluid flow control into the ported valve member and to and through the porting of the latter.
15
12. A selector valve arrangement according to claim 7 wherein a hollow shaft co-axially disposed about the operating spindle and adapted to be releasably locked to the spindle whereby when they are so locked together the hollow shaft rotatably operates the ported valve member when the spindle is turned whilst the on/off fluid flow inlet control valve remains inoperative i.e. during port selection and whereby, on release of the hollow shaft from the spindle when the ported valve member is at a required selected position, the spindle can be independently turned to operate the on/off fluid flow control inlet valve for admitting fluid flow into the ported valve member and to and through the porting of the latter.
20
25

13. A selector valve arrangement according to claim 12 wherein the hollow shaft and spindle are releasably locked together by an externally operated locking member.

14. A selector valve arrangement according to claim 13 wherein the locking member is arranged to be externally operated by an operating member or push button carried by
5 the spindle such as by an operating knob thereon.

15. A selector valve arrangement according to claim 14 wherein the operating member or push button has a releasable engagement with the locking member.

16. A selector valve arrangement according to any of the preceding claims wherein it is received in a body member or body assembly containing passageways communicating with corresponding ports of the valve chamber and further communicating with outlets from the body member or assembly for fluid flow direction to required locations of use such as to shower heads or the like.
10

17. A selector valve arrangement when substantially as herein described with reference to Figures 1 to 7 or to Figures 8 to 14D of the accompanying drawings.

INVESTOR IN PEOPLE

Application No: GB 0001100.7
Claims searched: 1-17

14

Examiner: Tim James
Date of search: 6 April 2000

Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.R): F2V (VA4, VA6, VV4)

Int Cl (Ed.7): F16K (11/072, 11/074, 11/076)

Other: On-line: WPI; EPODOC; PAJ

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims
X	GB 2323428 A (Vosper Thorneycroft) see page 9 line 17 - page 10 line 6	1, 3, 4 and 16
X	GB 1267337 (Miller) see page 2 lines 116-120	1-4 and 16
X	GB 0909953 (Borg-Warner) see figures 1 and 2	1-4 and 16
X	WO 87/02428 A1 (Finbiomedica) see figure 3	1, 3, 4 and 16

X	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.