based on various sources, including slides from: José Nelson Amaral – University of Alberta, David Walker – Princeton University

Register Allocation

Compilers course

Masters in Informatics and Computing Engineering (MIEIC), 3rd Year

João M. P. Cardoso

Email: jmpc@fe.up.pt

Outline

- Introduction to Register Allocation
- Variables' Live Ranges
- Register Allocation by Graph Coloring
 - Heuristics
 - Spilling
- > Summary

- > Store as many variables as possible in registers
- Use each register to store as many variables as possible (registers are limited resources)
 - use live range (also known as "lifetime interval") of variables
- One the optimizations with highest impact (code size and performance)

Variables' Live Ranges

- Duration in the code from a definition of a variable and a use of this variable reached by that definition
- See Liveness Analysis

Variables' Live Ranges

Variables' (\$t registers) live ranges in the following MIPS code

Based on the variables' (\$t registers) live ranges try to use each register to store more than one variable (\$t register)

Let's try to reduce the number of registers t in the following MIPS code

- > Determine the live range for each variable
 - Use liveness analysis
- > Allocate a register to one or more variables
- > Homs
 - Graph Coloring (problem NP-complete)
 - Use heuristics

- Graph Coloring
 - Calculate the live range for each variable
 - Construct the Register-Interference Graph* (there is interference when 2 variables have lifetimes with non-null intersection)
 - Edges represent interference
 - Nodes represent variables
 - Find the minimum colors or the k colors
 - Each color corresponds to a register
 - i.e., number of registers = number of colors
- * Also known as Register-Conflict Graph

Variables' (\$t registers) Live Range

Register-Interference Graph (IG)

- Register-Interference Graph
 - Interference (edge)
 between two variables
 (nodes) indicates that the
 two variables could not be
 stored in the same register

- Register-Inference Graph
- > After Coloring:
 - Number of colors indicate the number of necessary registers

A graph is k-colorable if each node can be assigned one of k colors in such a way that no two adjacent nodes have the same color.

Steps:

- 1. Build the register interference graph,
- 2. Attempt to find a k-coloring for the interference graph.

- The problem of determining if an undirected graph is kcolorable is NP-hard for k ≥ 3
- It is also hard to find approximate solutions to the graph coloring problem

- > Key observation:
 - Let G be an undirected graph
 - Let x be a node of G such that degree(x) < k

Then G is k-colorable if G' is k-colorable.

- Kempe's algorithm[1879] for finding a Kcoloring of a graph
- Step 1 (simplify): find a node n with degree(n)<k and cut it out of the graph (remember this node on a stack for later stages)

- Once a coloring is found for the simpler graph, we can always color the node we saved on the stack
- Step 2 (color): when the simplified subgraph has been colored, add back the node on the top of the stack and assign it a color not taken by one of the adjacent nodes

> Let's go back to the example

v0 Stack

Consider k=3

- > Let's go back to the example
- Consider k=3
- \rightarrow Edges(v0) < 3

Stack

Let's go back to the example

Consider k=3

- Let's go back to the example
- Consider k=3
- \rightarrow Edges(v1) < 3

Stack

> Let's go back to the example

v0 ______v1

Stack

Consider k=3

- > Let's go back to the example
- Consider k=3
- \rightarrow Edges(v6) < 3

Stack

Let's go back to the example

Consider k=3

- Let's go back to the example
- Consider k=3
- > After some steps...

Stack

Let's go back to the example

v0 ______v1

Consider k=3

Now we start coloring using the top of the stack

Stack

v10

v9

v8

v7

v2

v4

v3

v5

٧6

v1

> Let's go back to the example

Consider k=3

Now we start coloring using the

top of the stack

> Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

Let's go back to the example

Consider k=3

Now we start coloring using the

top of the stack

• v8

Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

• ∨4

Stack

- Let's go back to the example
- Consider k=3
- Now we start coloring using the top of the stack
 - v3

> Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

• ٧6

> Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

v1

Stack

Let's go back to the example

Consider k=3

Now we start coloring using the top of the stack

v0

- Let's go back to the example
- Consider k=3
- Done!
- > 3 colors imply 3 registers

Stack

Register Allocation

Question: What to do if a register-interference graph is <u>not</u> k-colorable? Or if the compiler cannot efficiently find a k-coloring even if the graph is k-colorable?

Answer: Repeatedly select less profitable variables for "spilling" (i.e. not to be assigned to registers) and remove them from the interference graph until the graph becomes k-colorable.

- > Example:
 - What if we only have 2 registers, i.e., k=2?

- > Example:
 - What if we only have 2 registers, i.e., k=2?

Stack

v0

- Step 3 (spilling): once all nodes have K or more neighbors, pick a node for spilling
 - Storage on the stack
- There are many heuristics that can be used to pick a node
 - E.g., not in an inner loop

- We need to generate extra instructions to load variables from stack and store them
- > These instructions use registers themselves. What to do?
 - Stupid approach: always keep extra registers handy for shuffling data in and out: what a waste!
 - Better approach: ?

- We need to generate extra instructions to load variables from stack and store them
- > These instructions use registers themselves. What to do?
 - Stupid approach: always keep extra registers handy for shuffling data in and out: what a waste!
 - Better approach: rewrite code introducing a new temporary; rerun liveness analysis and register allocation

- Consider: add t1, t2, t3
 - Suppose t3 is selected for spilling and assigned to stack location [8+\$sp]
 - Invented new temporary t35 for just this instruction and rewrite:
 - **lw \$t35**, **8(\$sp)**; add t1, t2, t35
 - Advantage: †35 has a very short live range and is much less likely to interfere
 - Rerun the algorithm
 - fewer variables will spill

- Variables selected to Spill?
- > The selection can be based on a number of properties:
 - frequencies of execution of uses/defs (based on the iteration count, profiling results)
 - number of uses/defs
 - number of adjacent nodes for the variable in the Interference Graph
 - Lifetime duration
 - etc.

Precolored Nodes

- Some variables are pre-assigned to registers
- > Treat these registers as special temporaries; before beginning, add them to the graph with their colors
- > Can't simplify a graph by removing a precolored node
- Precolored nodes are the starting point of the coloring process
- Once simplified down to colored nodes start adding back the other nodes as before

> A 2-Phase Register Allocation Algorithm

Remarks

- > This register allocation algorithm, based on graph coloring, is both efficient (linear time) and effective (good assignment)
- It has been used in many industry-strength compilers to obtain significant improvements over simpler register allocation heuristics

Optimizing Moves

- > Code generation produces a lot of extra move instructions
 - mov t1, t2 ($t1 \leftarrow t2$)
 - If we can assign 11 and 12 to the same register, we do not have to execute the mov
 - Idea: if †1 and †2 are not connected in the interference graph, we coalesce into a single variable
 - First: Include in the register interference graph a move-related edge between two variables used in a move instruction

Coalescing

Problem: coalescing can increase the number of interference edges and make a graph uncolorable

- > Solution 1 (Briggs): avoid creation of high-degree (>= K) nodes
- > Solution 2 (George): a can be coalesced with b if every neighbor t of a:
 - already interferes with b, or
 - has low-degree (< K)

Simplify and Coalesce

- Step 1 (simplify): simplify as much as possible without removing nodes that are the source or destination of a move (move-related nodes)
- Step 2 (coalesce): coalesce move-related nodes provided low-degree node results
- Step 3 (freeze): if neither steps 1 or 2 apply, freeze a move instruction: registers involved are marked not move-related and try step 1 again
- Step 4 (spill): if there are no low-degree nodes, select a node for potential spilling
- Step 5 (select): pop each element of the stack assigning colors and turning potential spill into actual spill if needed
- Step 6 (rewrite the program): rewrite the program based on the register allocation, remove move operations with coalesced variables, and inserting spilling code. If there is spill build a new register-inference graph and goto Step 1

Overall Algorithm

From Tiger Book (by Appel)

Example: Step 1: Compute Live Ranges

stack

Example: Step 3: Coalesce (K=4)

stack

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

Why we cannot simplify?

Cannot simplify move-related nodes.

Example: Step 3: Coalesce (K=4)

stack


```
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
```


stack

```
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
```

Example: Step 3: Coalesce (K=4)

stack

b-j

```
(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)
```


Could we do the allocation in the previous example with 3 registers?

Example: Step 3: Simplify (K=3)

Example: Step 3: Simplify (K=3)

Example: Step 5: Freeze (K=3)

Example: Step 3: Simplify (K=3)

Example: Step 6: Spill (K=3)

Example: Step 3: Simplify (K=3)

Example: Step 3: Simplify (K=3)

stack (m, no-spill) (f, no-spill) (e, may-spill) (c, no-spill) (g, no-spill) (h, no-spill)


```
stack
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)
```



```
stack
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)
```

j-b

```
stack
(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)
```


R1= $\{j,b\}$ R2= $\{k,h,m\}$ R3= $\{f,d,c,g\}$

R3

```
LIVE-IN: r2(k) r1(j)
  r3 := mem[r1+12]
  r2 := r2 -1
  r3 := r3 + r2
  e := mem[r1+8] \Rightarrow t4 := mem[r1+8]; mem[$sp+4] := t4
  r2 := mem[r1+16]
  r1 := mem[r3]
  r3 := e + 8 \Rightarrow t5 := mem[$sp+4]; r3 := t5 + 8
  r3 := r3
                        A good optimizing compiler would recognize that
  r2 := r2 + 4
                        the assignment to "e" can be moved to just before
                        its use and no spilling would be needed!
  r1 := r1
```

LIVE-OUT: r3(d) r2(k) r1(j)

R1={j,b} R2={k,h,m} R3={f,d,c,g}

R3

```
LIVE-IN: r2(k) r1(j)
  r3 := mem[r1+12]
  r2 := r2 -1
  r3 := r3 + r2
  e := mem[r1+8] \Rightarrow t4 := mem[r1+8]; mem[$sp+4] := t4
  r2 := mem[r1+16]
  r1 := mem[r3]
  r3 := e + 8 \Rightarrow t5 := mem[\$sp+4]; r3 := t5 + 8
  r2 := r2 + 4
LIVE-OUT: r3(d) r2(k) r1(j)
```

99

R1

R2

R3

```
LIVE-IN: r2(k) r1(j)
  r3 := mem[r1+12]
  r2 := r2 -1
  r3 := r3 + r2
  t4 := mem[r1+8]
  mem[\$sp+4] := t4
  r2 := mem[r1+16]
  r1 := mem[r3]
  t5 := mem[\$sp+4]
  r3 := t5 + 8
  r2 := r2 + 4
LIVE-OUT: r3(d) r2(k) r1(j)
```


R2

R3

R1

R2

R3

LIVE-OUT: r3(d) r2(k) r1(j)

After repeating Register Allocation

. . .

R1

R2

R3

After repeating Register Allocation

. .

Live Range Splitting

- The basic coloring algorithm does not consider cases in which a variable can be allocated to a register for part of its live range
 - Some compilers split live ranges within the iteration structure of the coloring algorithm
 - When a variable is split into two new variables, one of the new variables might be profitably assigned to a register while the other is not

Length of Live Ranges

- The interference graph does not contain information of where in the CFG variables interfere and what the length of a variable's live range is
- For example, if we only had few available registers in the following intermediate-code example, the right choice would be to spill variable w because it has the longest live range:

$$x = w + 1$$
 $c = a - 2$
 $y = x * 3$
 $z = w + y$

Summary

- > Register allocation has three major parts
 - Liveness analysis
 - Graph coloring
 - Program transformation (move coalescing and spilling)
- > See Sections 11.1-11.3 in the Tiger Book (Appel)

References

- Kempe, A. B. 1879. On the geographical problem of the four colors. Am. J. Math. 2, 193-200.
- G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein. **Register Allocation via Coloring**. Computer Languages, 6:45-57, January 1981.
- Gregory Chaitin. 2004. Register allocation and spilling via graph coloring. SIGPLAN Not. 39, 4 (April 2004), 66–74. [1982] DOI: https://doi.org/10.1145/989393.989403
- See also Patent US4571678A: "Register allocation and spilling via graph coloring," Inventor: Gregory J. Chaitin https://patents.google.com/patent/US4571678A/en
- Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to Graph Coloring Register Allocation. ACM Transactions on Programming Languages and Systems, 16(3):428-455, May 1994. https://doi.org/10.1145/177492.177575
- Lal George and Andrew W. Appel. **Iterated register coalescing**. ACM Trans. Program. Lang. Syst., 18(3):300-324, 1996. https://doi.org/10.1145/229542.229546