第一章 张量的定义及表示

对偶基, 度量 1.1

1.1.1 对偶基

R"空间中的基可分为两类: 指标写在下面的基

$$\left\{ \mathbf{g}_{i}\right\} _{i=1}^{m}\subset\mathbb{R}^{m}\tag{1.1}$$

称为协变基, 指标写在上面的基

$$\left\{ \mathbf{g}^{i}\right\} _{i=1}^{m}\subset\mathbb{R}^{m}\tag{1.2}$$

称为逆变基. 它们满足对偶关系:

$$(\mathbf{g}^i, \mathbf{g}_j)_{\mathbb{R}^m} = \delta^i_j = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$
 (1.3)

这里的 δ^i_j 是 Kronecker δ 函数.

1.1.2 度量

下面引入度量的概念. 其定义为

$$\begin{cases} g_{ij} \triangleq (\mathbf{g}_i, \mathbf{g}_j)_{\mathbb{R}^m}, \\ g^{ij} \triangleq (\mathbf{g}^i, \mathbf{g}^j)_{\mathbb{R}^m}. \end{cases}$$
(1.4-a)

$$\left(g^{ij} \triangleq \left(g^i, g^j\right)_{\mathbb{R}^m}. \tag{1.4-b}\right)$$

下面证明

$$g_{ik}g^{kj} = \delta_i^j. (1.5)$$

它也可以写成矩阵的形式:

$$[g_{ik}][g^{kj}] = [\delta_i^j] = \mathbf{I}_m, \tag{1.6}$$

其中的 I_m 是 m 阶单位阵.

证明:

$$g_{ik}g^{kj} = (\mathbf{g}_i, \mathbf{g}_k)_{\mathbb{R}^m}g^{kj} = (\mathbf{g}_i, g^{kj}\mathbf{g}_k)_{\mathbb{R}^m}$$

$$(1.7)$$

后文将说明 $g^{kj}g_k = g^j$, 因此可得

$$g_{ik}g^{kj} = (\mathbf{g}_i, \mathbf{g}^j)_{\mathbb{R}^m} = \delta_i^j.$$
 (1.8)

要注意的是,这里的指标 k 是哑标。根据 **Einstein 求和约定**,重复指标并且一上一下时,就表 示对它求和. 后文除非特殊说明, 也均是如此.

现在澄清**基向量转换关系**. 第 i 个协变基向量 g_i 既然是向量,就必然可以用协变基或逆变基来 表示. 根据对偶关系式 (1.3) 和度量的定义式 (1.4-a)、(1.4-b), 可知

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = \mathbf{g}_{ik} \mathbf{g}^{k}, \\ \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \delta_{i}^{k} \mathbf{g}_{k} \end{cases}$$
(1.9-a)

$$\int \mathbf{g}_i = (\mathbf{g}_i, \mathbf{g}^k)_{\text{Dm}} \mathbf{g}_k = \delta_i^k \mathbf{g}_k \tag{1.9-b}$$

以及

$$\begin{cases} \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = \delta_{k}^{i} \mathbf{g}^{k}, \\ \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \mathbf{g}^{ik} \mathbf{g}_{k}. \end{cases}$$
(1.10-a)

$$\int \mathbf{g}^i = (\mathbf{g}^i, \mathbf{g}^k)_{\text{max}} \mathbf{g}_k = \mathbf{g}^{ik} \mathbf{g}_k. \tag{1.10-b}$$

这四个式子中,式 (1.9-b)和 (1.10-a)是平凡的,而式 (1.9-a)和 (1.10-b)则通过度量建立起了协变基 与逆变基之间的关系. 这就称为基向量转换关系, 也可以叫做"指标升降游戏".

1.1.3 向量的分量

对于任意的向量 $\xi \in \mathbb{R}^m$,它可以用协变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}^k)_{\mathbb{R}^m} \, \boldsymbol{g}_k = \boldsymbol{\xi}^k \boldsymbol{g}_k \,, \tag{1.11}$$

也可以用逆变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}_k)_{\text{\tiny Dm}} \, \boldsymbol{g}^k = \boldsymbol{\xi}_k \boldsymbol{g}^k \,, \tag{1.12}$$

式中, ξ^k 是 ξ 与第 k 个逆变基做内积的结果, 称为 ξ 的第 k 个逆变分量; 而 ξ_k 是 ξ 与第 k 个协变 基做内积的结果, 称为 ξ 的第k个协变分量.

以后凡是指标在下的(下标),均称为协变某某;指标在上的(上标),称为逆变某某.

1.2 张量的表示

1.2.1 张量的表示与简单张量

所谓张量,即指多重线性函数.

以三阶张量为例. 考虑任意的 $\Phi \in \mathcal{J}^3(\mathbb{R}^m)$, 其中的 $\mathcal{J}^3(\mathbb{R}^m)$ 表示以 \mathbb{R}^m 为底空间的三阶张量全 体. 所谓三阶(或三重)线性函数,指"吃掉"三个向量之后变成数,并且"吃法"具有线性性. 对于一般地张量空间 $\mathcal{J}^r(\mathbb{R}^m)$, 我们引入了线性结构:

$$\forall \alpha, \beta \in \mathbb{R}, \boldsymbol{\Phi}, \boldsymbol{\Psi} \in \mathcal{J}^{r}(\mathbb{R}^{m}), \quad (\alpha \boldsymbol{\Phi} + \beta \boldsymbol{\Psi}) (\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}) \triangleq \alpha \boldsymbol{\Phi} (\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}) + \beta \boldsymbol{\Psi} (\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}),$$

$$(1.13)$$

于是

$$\alpha \mathbf{\Phi} + \beta \mathbf{\Psi} \in \mathcal{J}^r(\mathbb{R}^m). \tag{1.14}$$

下面我们要获得 ϕ 的表示.根据之前任意向量用协变基或逆变基的表示,有

$$\forall u, v, w \in \mathbb{R}^m, \quad \Phi(u, v, w)$$
$$= \Phi(u^i g_i, v_i g^j, w^k g_k)$$

考虑到 Φ 对第一变元的线性性, 可得

$$= u^i \boldsymbol{\Phi}(\boldsymbol{g}_i, v_i \boldsymbol{g}^j, w^k \boldsymbol{g}_k)$$

同理,

$$= u^i v_i w^k \mathbf{\Phi}(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k). \tag{1.15}$$

注意这里自然需要满足 Einstein 求和约定.

上式中的 $\Phi(g_i, g^j, g_k)$ 是一个数. 它是张量 Φ "吃掉"三个基向量的结果. 至于 $u^i v_j w^k$ 部分,三项分别是 u 的第 i 个逆变分量、v 的第 j 个协变分量和 w 的第 k 个逆变分量. 根据向量分量的定义,可知

$$u^{i}v_{j}w^{k} = (\boldsymbol{u}, \boldsymbol{g}^{i})_{\mathbb{R}^{m}} \cdot (\boldsymbol{v}, \boldsymbol{g}_{j})_{\mathbb{R}^{m}} \cdot (\boldsymbol{w}, \boldsymbol{g}^{k})_{\mathbb{R}^{m}}. \tag{1.16}$$

暂时中断一下思路, 先给出简单张量的定义.

$$\forall u, v, w \in \mathbb{R}^m, \quad \xi \otimes \eta \otimes \zeta(u, v, w) \triangleq (\xi, u)_{\mathbb{R}^m} \cdot (\eta, v)_{\mathbb{R}^m} \cdot (\zeta, w)_{\mathbb{R}^m} \in \mathbb{R}, \tag{1.17}$$

式中 ξ , η , $\zeta \in \mathbb{R}^n$, 而暂时把 $\xi \otimes \eta \otimes \zeta$ 理解为一种记号. 简单张量作为一个映照, 组成它的三个向量分别与它们"吃掉"的第一、二、三个变元做内积并相乘, 结果为一个实数.

考虑到内积的线性性, 便有(以第二个变元为例)

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta}(\boldsymbol{u}, \, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}}, \, \boldsymbol{w}) \triangleq (\boldsymbol{\xi}, \, \boldsymbol{u})_{\mathbb{R}^m} \cdot (\boldsymbol{\eta}, \, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} \cdot (\boldsymbol{\zeta}, \, \boldsymbol{w})_{\mathbb{R}^m} \in \mathbb{R}$$

注意到 $(\boldsymbol{\eta}, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} = \alpha(\boldsymbol{\eta}, \tilde{\boldsymbol{v}})_{\mathbb{R}^m} + \beta(\boldsymbol{\eta}, \hat{\boldsymbol{v}})_{\mathbb{R}^m}$,同时再次利用简单张量的定义,可得

$$= \alpha \xi \otimes \eta \otimes \zeta(u, \, \tilde{v}, \, w) + \beta \xi \otimes \eta \otimes \zeta(u, \, \hat{v}, \, w). \tag{1.18}$$

类似地,对第一变元和第三变元,同样具有线性性.因此,可以知道

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta} \in \mathcal{J}^3(\mathbb{R}^m). \tag{1.19}$$

可见,"简单张量"的名字是名副其实的,它的确是一个特殊的张量.

回过头来看 (1.16) 式. 很明显,它可以用简单张量来表示. 要注意,由于内积的对称性,可以有两种[®]表示方法:

$$\mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k(\mathbf{u}, \mathbf{v}, \mathbf{w}) \tag{1.20}$$

或者

$$\boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w} (\boldsymbol{g}^i, \boldsymbol{g}_j, \boldsymbol{g}^k),$$
 (1.21)

我们这里取上面一种. 代入式 (1.15),得

$$\Phi(u, v, w)$$

$$= \Phi(g_i, g^j, g_k) \cdot g^i \otimes g_j \otimes g^k(u, v, w)$$

① 这里只考虑把 \mathbf{u} 、 \mathbf{v} 、 \mathbf{w} 和 \mathbf{g}^i 、 \mathbf{g}_i 、 \mathbf{g}^k 分别放在一起的情况.

由于 $\Phi(g_i, g^j, g_k) \in \mathbb{R}^m$, 因此

$$= \left[\boldsymbol{\Phi} (\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k \right] (\mathbf{u}, \mathbf{v}, \mathbf{w}). \tag{1.22}$$

方括号里的部分,就是根据 Einstein 求和约定,用 $\Phi(g_i, g^i, g_k)$ 对 $g^i \otimes g_i \otimes g^k$ 进行线性组合.

由于u, v, w 选取的任意性,可以引入如下记号:

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k =: \boldsymbol{\Phi}_{ik}^{\ j} \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k, \tag{1.23}$$

即

$$\boldsymbol{\Phi}_{i\,k}^{\,j} \coloneqq \boldsymbol{\Phi}\big(\boldsymbol{g}_i, \, \boldsymbol{g}^j, \, \boldsymbol{g}_k\big),\tag{1.24}$$

这称为张量的分量. 它说明一个张量可以用张量分量和基向量组成的简单张量来表示.

指标 i、j、k 的上下是任意的. 这里,它有赖于式 (1.15) 中基向量的选取.实际上,对于这里 的三阶张量,指标的上下一共有8种可能.指标全部在下面的,称为协变分量:

$$\boldsymbol{\Phi}^{ijk} \coloneqq \boldsymbol{\Phi} \left(\mathbf{g}^i, \, \mathbf{g}^j, \, \mathbf{g}^k \right); \tag{1.25}$$

指标全部在上面的, 称为逆变分量:

$$\boldsymbol{\Phi}_{ijk} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_i, \boldsymbol{g}_j, \boldsymbol{g}_k); \tag{1.26}$$

其余 6 种, 称为混合分量. 对于一个 r 阶张量, 显然共有 2^r 种分量表示, 其中协变分量与逆变分量 各一种,混合分量 $2^r - 2$ 种.

1.2.2 张量分量之间的关系

我们已经知道,对于任意一个向量 $\xi \in \mathbb{R}^m$,它可以用协变基或逆变基表示:

$$\boldsymbol{\xi} = \begin{cases} \boldsymbol{\xi}^{i} \boldsymbol{g}_{i}, \\ \boldsymbol{\xi}_{i} \boldsymbol{g}^{i}. \end{cases}$$
 (1.27)

式中, 协变分量与逆变分量满足坐标转换关系:

$$\begin{cases} \boldsymbol{\xi}^{i} = \left(\boldsymbol{\xi}, \, \boldsymbol{g}^{i}\right)_{\mathbb{R}^{m}} = \left(\boldsymbol{\xi}, \, g^{ik} \boldsymbol{g}_{k}\right)_{\mathbb{R}^{m}} = g^{ik} \left(\boldsymbol{\xi}, \, \boldsymbol{g}_{k}\right)_{\mathbb{R}^{m}} = g^{ik} \boldsymbol{\xi}_{k}, \\ \boldsymbol{\xi}_{i} = \left(\boldsymbol{\xi}, \, \boldsymbol{g}_{i}\right)_{\mathbb{R}^{m}} = \left(\boldsymbol{\xi}, \, g_{ik} \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \left(\boldsymbol{\xi}, \, \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \boldsymbol{\xi}^{k}. \end{cases}$$

$$(1.28-a)$$

$$(1.28-b)$$

$$\left(\xi_{i} = \left(\boldsymbol{\xi}, \, \boldsymbol{g}_{i}\right)_{\mathbb{R}^{m}} = \left(\boldsymbol{\xi}, \, g_{ik} \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \left(\boldsymbol{\xi}, \, \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \boldsymbol{\xi}^{k}.$$

$$(1.28-b)$$

每一式的第二个等号都用到了基向量转换关系, 见式 (1.9-a) 和 (1.10-b).

现在再来考虑张量的分量. 仍以上文中的张量 $\boldsymbol{\Phi}_{i,k}^{j} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_{i},\boldsymbol{g}^{j},\boldsymbol{g}_{k})$ 为例,我们想要知道它与张 量 $\Phi^{p_q} := \Phi(g^p, g_q, g')$ 之间的关系. 利用基向量转换关系,可有

$$\begin{aligned} \boldsymbol{\Phi}_{i k}^{j} &\coloneqq \boldsymbol{\Phi} \left(\boldsymbol{g}_{i}, \boldsymbol{g}^{j}, \boldsymbol{g}_{k} \right) \\ &= \boldsymbol{\Phi} \left(g_{ip} \boldsymbol{g}^{p}, g^{jq} \boldsymbol{g}_{q}, g_{kr} \boldsymbol{g}^{r} \right) \end{aligned}$$

又利用张量的线性性,得

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}(\boldsymbol{g}^{p},\boldsymbol{g}_{q},\boldsymbol{g}^{r})$$

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}_{q}^{p}. \tag{1.29}$$

可见, 张量的分量与向量的分量类似, 其指标升降可通过度量来实现. 用同样的手法, 还可以得到 诸如 $\boldsymbol{\Phi}^{ijk} = g^{jp} \boldsymbol{\Phi}_{p}^{ik} \setminus \boldsymbol{\Phi}_{p}^{ik} = g_{ip} g^{kq} \boldsymbol{\Phi}_{k}^{ip}$ 这样的关系式.

1.2.3 相对不同基的张量分量之间的关系

 \mathbb{R}^m 空间中,除了 $\{g_i\}_{i=1}^m$ 和相应的对偶基 $\{g^i\}_{i=1}^m$ 之外,当然还可以有其他的基,比如带括号 的 $\{g_{(i)}\}_{i=1}^m$ 以及对应的对偶基 $\{g^{(i)}\}_{i=1}^m$. 前者对应形如 $\boldsymbol{\Phi}_j^{i\;k}\coloneqq \boldsymbol{\Phi}(g^i,g_j,g^k)$ 的张量,后者则对应带 括号的张量,如 $\boldsymbol{\Phi}^{(p)}_{(q)} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}^{(p)}, \boldsymbol{g}_{(q)}, \boldsymbol{g}^{(r)})$. 下面我们来探讨这两个张量的关系.

首先来建立基之间的关系. 带括号的第i个基向量 $g_{(i)}$,作为 \mathbb{R}^m 空间中的一个向量,自然可以 用另一组基来表示:

$$\mathbf{g}_{(i)} = \begin{cases} \left(\mathbf{g}_{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}_{(i)}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.30)

同理,自然还有它的对偶基:

$$\mathbf{g}^{(i)} = \begin{cases} \left(\mathbf{g}^{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}^{(i)}, \mathbf{g}^{k}\right)_{\mathbb{D}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.31)

引入记号 $c_{(i)}^k\coloneqq \left(\mathbf{g}_{(i)},\mathbf{g}^k\right)_{\mathbb{R}^m}$ 和 $c_k^{(i)}\coloneqq \left(\mathbf{g}^{(i)},\mathbf{g}_k\right)_{\mathbb{R}^m}$,那么有

$$\begin{cases} \mathbf{g}_{(i)} = c_{(i)}^k \mathbf{g}_k, & (1.32-a) \\ \mathbf{g}^{(i)} = c_k^{(i)} \mathbf{g}^k. & (1.32-b) \end{cases}$$

(1.32-b)

容易看出,这两个系数具有如下性质:

$$c_k^{(i)}c_{(i)}^k = \delta_i^i. {(1.33)}$$

写成矩阵形式¹,为

$$\left[c_k^{(i)}\right]\left[c_{(j)}^k\right] = \left[\delta_i^j\right] = I_m. \tag{1.34}$$

换句话说,两个系数矩阵是互逆的.

证明:

$$c_k^{(i)}c_{(j)}^k = \left(\mathbf{g}^{(i)},\,\mathbf{g}_k\right)_{\mathbb{R}^m}c_{(j)}^k$$

利用内积的线性性,有

$$= \left(\mathbf{g}^{(i)}, \, c_{(j)}^{k} \mathbf{g}_{k}\right)_{\mathbb{R}^{m}}$$

根据 $c_{(i)}^k$ 的定义,得到

$$= \left(\mathbf{g}^{(i)}, \, \mathbf{g}_{(i)}\right)_{\mathbb{D}^m}.\tag{1.35}$$

带括号的基同样满足对偶关系 (1.3) 式,于是得证.

上面我们用不带括号的基表示了带括号的基. 反之也是可以的:

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{(k)})_{\mathbb{R}^{m}} \mathbf{g}_{(k)} = c_{i}^{(k)} \mathbf{g}_{(k)}, \\ \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{(k)})_{\mathbb{R}^{m}} \mathbf{g}^{(k)} = c_{(k)}^{i} \mathbf{g}^{(k)}. \end{cases}$$
(1.36-a)

$$\left| \mathbf{g}^{i} = \left(\mathbf{g}^{i}, \mathbf{g}_{(k)} \right)_{\mathbb{R}^{m}} \mathbf{g}^{(k)} = c_{(k)}^{i} \mathbf{g}^{(k)}.$$
 (1.36-b)

① 通常我们约定上面的标号作为行号,下面的标号作为列号.

这样一来,就建立起了不同基之间的转换关系. 现在我们回到张量.根据张量分量的定义,

$$\boldsymbol{\Phi}_{j}^{i k} \coloneqq \boldsymbol{\Phi} \left(\boldsymbol{g}^{i}, \, \boldsymbol{g}_{j}, \, \boldsymbol{g}^{k} \right)$$

利用之前推导的不同基向量之间的转换关系,得

$$= \boldsymbol{\Phi} \Big(c_{(p)}^{i} \boldsymbol{g}^{(p)}, \, c_{j}^{(q)} \boldsymbol{g}_{(q)}, \, c_{(r)}^{k} \boldsymbol{g}^{(r)} \Big)$$

由张量的线性性,提出系数:

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi(\mathbf{g}^{(p)}, \mathbf{g}_{(q)}, \mathbf{g}^{(r)})$$

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi_{(q)}^{(p)}.$$
(1.37)

完全类似,还可以有

$$\boldsymbol{\Phi}^{(i)}_{(j)}{}^{(k)} = c_p^{(i)} c_r^g c_r^{(k)} \boldsymbol{\Phi}_q^{p}. \tag{1.38}$$

总结一下这两小节得到的结果. 对于同一组基下的张量分量, 其指标升降通过度量来实现; 对于不同基下的张量分量, 其指标转换则通过不同基之间的转换系数来完成.

第二章 张量的代数运算

2.1 张量积

张量积也叫**张量并**,用符号"⊗"表示.在 1.2.1 小节给出简单张量的定义时,实际上就用到了 张量积. 张量积的定义为:

$$\forall \boldsymbol{\Phi} \in \mathcal{J}^{p}(\mathbb{R}^{m}), \, \boldsymbol{\Psi} \in \mathcal{J}^{q}(\mathbb{R}^{m}), \quad \boldsymbol{\Phi} \otimes \boldsymbol{\Psi} \in \mathcal{J}^{p+q}(\mathbb{R}^{m}) \\
= \left(\boldsymbol{\Phi}^{i_{1}\cdots i_{p}} \, \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{\Psi}_{j_{1}\cdots j_{q}} \, \boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right) \\
\triangleq \boldsymbol{\Phi}^{i_{1}\cdots i_{p}} \, \boldsymbol{\Psi}_{j_{1}\cdots j_{q}} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right). \tag{2.1}$$

由该定义可以知道,关于简单张量 $\left(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}\right) \otimes \left(\mathbf{g}^{j_1} \otimes \cdots \otimes \mathbf{g}^{j_q}\right)$,相应的张量分量为

$$\left(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}\right)^{i_1 \cdots i_p}_{j_1 \cdots j_q}.\tag{2.2}$$

2.2 e 点积