Figure 1A

1	$\tt CCACGCGTCCGATAATTACTAAGTACAGGGTCCCAAATTAGAATCTATTCCAACTTAAAG$	60
61	${\tt GACAAGAAAAAAAAGTCCAAGATTACCCAGTGAACTATGTTTGTAGTTTGTCACCAA}$	120
121	${\tt ACTGATAGTCACGCCTAATTTCTTCTTATACTCCATAAAGACAGTGTGTATGTA$	180
181	$\tt GTGTGTTTCTTTGTGTATGTATGTATTCAGGTATATGTGTATAGCCTTAGCTAGGAGA$	240
241	${\tt CAATTCTAGTTTATCTAAAGGCTTATTTGAGCCCTTTCTCACGTTCATTTATTT$	300
301	${\tt ATAAGCATTATATCAGGTATTATTCAAAGCTCTTTAGAAATCTTTAGACATATTAACC}$	360
361	${\tt CATATAATTCTCTTCTATAGGGAATAGATATGATTATTATTGCTATTTTTATGGATGAT}$	420
421	${\tt GAAGCTTTCTAAACATGTTATAGCCAGTAAGTGTTACTATTCTCTCATTCCTATCTCTGT}$	480
481 1	TCTATCTTCTCCCAGATAATGTGATACTATGTGGAGGTTTCTGACCACAGAGAATGT $$\rm M_{\odot}S	540 2
541 3	CCAGCACTCTTGGCCACACATGAACTCTCCTCATCACACTGATGTTGACCCTTCTGTCT S T L G H N M E S P H H T D V D P S V F	600 22
601 23	TCTTCCTCCTGGGCATCCCAGGTCTGGAACAATTTCATTTGTGGCTCTCACTCCTGTGT F L L G I P G L E Q F H L W L S L P V	660 42
661 43	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	720 62
721 63	AACCAGTCTTGCACAAGCCTGTGTACCTTTTTCTGTGCATGCTCTCAACCATGGACTTGG P V L H K P V Y L F L M L S T I D L A	780 82
781 83	CTGCCTCTGTCTCCACAGTTCCCAAGCTACTGGCTATCTTCTGGTGTGGAGCCGGACATA	840 102
841 103	TATCTGCCTGCCTGCCACATATGTTCTTCATTCATGCCTTCTGCATGATGGAGT S A S A \blacksquare L A H M \blacksquare F F I H A F C M M \blacksquare S	900 122
901 123	CCACTGTGCTACTGGCCATGGCCTTTGATCGCTACGTGGCCATCTGCCACCCAC	960 142
9 61 143	ATGCCACAATCCTCACTGACACCATCATTGCCCACATAGGGGTGGCAGCTGTAGTGCCAG A T I L T D T I I A H I G V A A V V R G	1020 162

Figure 1B

1021	GCTCCCTGCTCATGCTCCCATGTCCCTTCTTTATTGGGCGTTTGAACTTCTGCCAAAGCC	1080
163	S L L M L P C P F F I G R L N F C Q S H	182
1081	ATGTGATCCTACACACGTACTGTGAGCACATGGCTGTGGTGAAGCTGGCCTGTGGAGACA	1140
183	VILHTY E E H M A V V K L A C G D T	202
1141	CCAGGCCTAACCGTGTATGGGCTGACAGCTGCACTGTTGGTCATTGGGGTTGACTTGT	1200
203	R P N R V Y G L T <u>A A L L V I G V D L F</u>	222
4004	<u> </u>	
1201	TTTGCATTGGTCTCTCCTATGCCCTAATTGCACAAGCTGTCCTTCGCCTCTCATCCCATG	1260
223	<u>CIGLSYALIAQAVL</u> RLSSHE	242
1261	AAGCTCGGTCCAAGGCCCTAGGGACCTGTGGTTCCCATGTCTGTGTCATCCTCATCTCTT	1320
243	A R S K A L G T G S H V C V I L I S Y	262
2 45	A K S K A D G I L G S A V C V I L I S I	262
1321	ATACACCAGCCCTCTTCTCCTTTTTTACACACCGCTTTGGCCATCACGTTCCAGTCCATA	1380
263	T P A L F S F F T H R F G H H V P V H I	282
		202
1381	TTCACATTCTTTTGGCCAATGTTTATCTGCTTTTTGCCACCTGCTCTTAATCCTGTGGTAT	1440
283	H I L L A N V Y L L L P P A L N P V V Y	302
1441	ATGGAGTTAAGACCAAACAGATCCGTAAAAGAGTTGTCAGGGTGTTTCAAAGTGGGCAGG	1500
303	<u>G V K T K Q I R K R V V R V F Q S G Q G</u>	322
1501	GAATGGGCATCAAGGCATCTGAGTGACCCTGGAGTATAGAGGGACTTAATCCAAAAAAA	1560
323	MGIKASE	329

1561 AAAAAAA 1567

Figure 2

Figure 3

Figure 4

Figure 5.

Protein	Genbank ID	Identities	Similarities
rat G-protein coupled receptor, RA1c protein	gil3420759	52.83%	59.75%
human prostate specific G- protein coupled receptor, PSGR protein	gil11875778	51.89%	59.12%
human HOR 5'Beta14 protein	gil11908211	51.58%	60.76%
mouse MOR 3'Beta5 protein	gil11908222	54.95%	60.38%

