NTares			
nome,	cognome,	matricola	l

Calcolatori Elettronici (12AGA) – esame del 20.7.2021

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Tempo: 15 minuti.

1	Quante righe ha la tavola di verità di un codificatore prioritario 4:2 con enable?		
2	Si consideri un'unità di controllo microprogrammata	6	A
	basata su una memoria di microcodice composta da	9	В
	510 parole da 18 bit: qual è il parallelismo del μPC?	18	С
		Nessuno dei precedenti	D
3	Quale vantaggio offre una memoria secondaria di tipo	Minore consumo di potenza	A
	SSD basata su MLC Flash rispetto a una memoria	Minor costo	В
	secondaria di tipo HHD?	Capacità di memoria maggiore	С
	secondaria di upe ililizi	Velocità di scrittura maggiore	D
		velocità di serittura maggiore	Б
4	Si consideri un bus sincrono. Che cosa si intende per	Un ritardo periodico sul segnale di Ready	A
	ciclo di wait durante un'operazione di lettura?	Un ritardo aggiuntivo sul ciclo di lettura dati	В
	-	L'aggiunta di cicli aggiuntivi di attesa per ottenere più tempo	С
		Un ritardo periodico sul segnale di Clock	D
•			<u> </u>
5	Si consideri una cache set associative a 4 vie composta da 128 insiemi in cui ciascuna linea corrisponde a 32 byte che usa la tecnica nota come write-back. Calcolare quanti dirty bit sono presenti nell'intera cache.		
6	Quale dei seguenti dispositivi può diventare un master	DMA controller	A
	di un bus?	Interfaccia di periferico	В
		Memoria	C
		Interrupt Controller	D
		1 ★	
7	A cosa serve il rinfresco delle memorie DRAM?	A ridurre gli effetti dei guasti indotti da radiazioni	A
		A ridurre il tempo di ciclo della memoria	В
		A risolvere il problema creato dal Destructive Read-Out	С
		A permettere alla memoria di mantenere nel tempo le informazioni	D
		<u>, </u>	

8	Quale tra i fenomeni elencati a lato può causare uno stallo in un processore con pipeline?	Un miss nella cache dati	A
		Un errore in un'operazione aritmetica	В
		Un'operazione di I/O	C
		L'esecuzione di un'istruzione NOP	D
9	A server de also \$50-5 \$51-h \$52-h \$52-i	beg \$s0, \$s1, L1	Ι Δ Ι
9	Assumendo che \$s0=a, \$s1=b, \$s2=h, \$s3=j Quale dei seguenti segmenti di codice realizza lo		A
	pseudo-codice C:	L1: addi \$s2, \$s3, 2	
	if(a == b)	bne \$s0, \$s1, L1	В
	h = j + 1	add \$s2, \$s3, 2	
	h = j + 2	L1: add \$s2, \$s3, 1	
		bne \$s0, \$s1, L1	C
		addi \$s2, \$s3, 1	
		L1: addi \$s2, \$s3, 2 beq \$s0, \$s1, L1	D
		add \$s2, \$s3, 1	
		L1: add \$s2, \$s3, 2	
			1 1
10	Quale valore (in esadecimale) sarà presente in \$11, dopo l'esecuzione dell'istruzione:		
	andi \$t1, \$t2, 0xFFFB		
	assumendo che \$t2 contenga il valore 4?		

Risposte corrette

1	2	3	4	5	6	7	8	9	10
32	В	A	С	512	A	D	A	С	0

		Parte	2						
byte. Assumendo che inizialmente le 8 linee contengano i primi 8 blocchi di memoria (quindi la linea 0 contiene il bloc linea 1 il blocco 1, e così via), si determini quali dei seguenti 12 accessi in memoria da parte del processore provocano quali un miss, scrivendo H o M nella colonna di destra della corrispondente riga nella tabella. Indirizzo	Domande a risposta aperta (sino	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.							
0 0000 0000 0011 0011 1 0000 0000 0001 1000 0 0000 0010 1000 1110 0 0000 0000 1011 1110 0 0000 0000 1001 1111 1 0000 0000 0011 0011 0 0000 1010 0010 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000	byte. Assumendo che inizialmente le 8 llinea 1 il blocco 1, e così via), si determ	linee contengano i primi nini quali dei seguenti 12	8 blocchi di memoria (accessi in memoria da	(quindi la linea 0 contiene il blocco 0, la parte del processore provocano un hit, e					
1 0000 0000 0001 1000 0 0000 0010 1000 1110 0 0000 0000 1011 1110 0 0000 0000 1001 1111 1 0000 0000 0011 0011 0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000	Indirizzo	Blocco	Linea acceduta	H/M					
0 0000 0010 1000 1110 0 0000 0000 1011 1110 0 0000 0000 1001 1111 1 0000 0000 0011 0011 0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000	0 0000 0000 0011 0011								
0 0000 0000 1011 1110 0 0000 0000 1001 1111 1 0000 0000 0011 0011 0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000	1 0000 0000 0001 1000								
0 0000 0000 1001 1111 1 0000 0000 0011 0011 0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000	0 0000 0010 1000 1110								
1 0000 0000 0011 0011 0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1001 1000	0 0000 0000 1011 1110								
0 0000 0101 0001 0011 0 0000 1010 0101 0100 0 0000 0011 0011	0 0000 0000 1001 1111								
0 0000 1010 0101 0100 0 0000 0011 0011	1 0000 0000 0011 0011								
0 0000 0011 0011 0100 0 0100 0000 0011 0110 0 0000 1000 1001 1000									
0 0100 0000 0011 0110 0 0000 1000 1001 1000									
0 0000 1000 1001 1000									
	1 0000 0000 0011 0111								

Nome, cognome, matricola

Funzione svolta	ALU Control _{2:0}
100000 (add)	010 (Add)
100010 (sub)	110 (Sub)
100100 (and)	000 (And)
100101 (or)	001 (Or)
101010(slt)	111 (SLT)

	PCWrite	Branch	PCSrc	ALUControl	ALUSrcB	ALUSrcA	RegWrite	MemtoReg	RegDst	IRWrite	MemWrite	IorD
1												
2												
3												
4												
5												
6												
7												
8												
9												

13	Con riferimento al meccanismo del DMA
	Si descrivano le funzionalità offerte dal DMA Controller
	Si evidenzino i vantaggi offerti dal DMA rispetto ad altri meccanismi di trasferimento dati da/verso
	periferiche, quali l'I/O programmato o l'interrupt
	Si descrivano le connessioni tra il DMA controller e il resto del sistema
	Si illustrino i passaggi attraverso i quali avviene un trasferimento in DMA, partendo dalla fase di
	programmazione da parte della CPU.

Un son	nmatore può essere realizzato utilizzando varie architetture, tra le quali
•	Sommatore seriale
•	Sommatore di tipo Ripple Carry Adder
•	Sommatore di tipo Carry Lookahead Adder.
Per cia	scuna di esse:
1.	Si elenchino i componenti hardware richiesti, specificando quanti componenti sono necessari per realizzare u sommatore su n bit e descrivendo i collegamenti tra i vari componenti
2.	Se ne descriva il funzionamento
3.	Si illustrino vantaggi e svantaggi.

Nome, cognome, matricola

20 luglio 2021 - parte 3: esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Si scriva una procedura CalcoloCF in linguaggio Assembly MIPS32 che restituisca una stringa contenente uno pseudo CodiceFiscale di 12 caratteri, a fronte dei seguenti parametri ricevuti:

- \$a0: indirizzo della stringa contenente il COGNOME
- \$a1: indirizzo della stringa contenente il NOME
- \$a2: indirizzo della stringa contenente la data di nascita nel formato DDMMYY
- \$a3: indirizzo della stringa contenente il CF-12 calcolato.

Questa la struttura del CF-12:

- Da 1 a 3, le prime 3 consonanti del COGNOME
- Da 4 a 6, le prime 3 consonanti del NOME
- Da 7 a 11, la data di nascita con lettera al posto del mese, ovvero Gennaio (01) diventa "A", Febbraio (02) diventa "B" e così via. Per calcolare la lettera corrispondente al mese dovete usare una procedura MonthToChar a cui passare in \$a0 (a partire dal LSB) i due caratteri estratti e corrispondenti al mese e che restituisce in \$v0 il carattere corrispondente.

Esempio: il mese di Agosto nella data è indicato con "08", corrispondente ai valori 0x30 e 0x38 nella tabella ASCII.

In uscita MonthToChar restituisce in \$v0 il valore "H", corrispondente al valore 0x48 nella tabella ASCII.

• Da 12 a 12, CRC calcolato come XOR di tutti i caratteri da 1 a 11.

Precisazioni:

- Tutti i Cognomi/Nomi hanno almeno 3 consonanti.
- Tutti caratteri alfabetici sono Maiuscoli.
- Non vengono richiesti controlli di congruenza dei dati in ingresso.
- Il 12[^] carattere della stringa CF-12 può non essere un carattere ASCII.
- La procedura MonthToChar NON è oggetto di questa prova d'esame e quindi NON dovrà essere sviluppata dallo studente.
- L'esempio di programma chiamante, qui sotto allegato, produce il codice RSSGNN12H92g

Di seguito un esempio di programma chiamante:

.data

cognome: .asciiz "ROSSI"
nome: .asciiz "GENNARO"
data: .asciiz "120892"
CF: .space 12

```
.text
           .globl main
           .ent main
main:
           subu $sp, $sp, 4
           sw $ra, ($sp)
           la $a0, cognome
           la $a1, nome
           la $a2, data
           la $a3, CF
           jal CalcoloCF
           lw $ra, ($sp)
           addiu $sp, $sp, 4
           jr $ra
           .end main
           .ent MonthToChar
MonthToChar:
           \# Parametro in ingresso $a0 = 2 CARATTERI ESTRATTI DALLA DATA
           # (esempio: "01" per Gennaio)
           # Parametro in uscita $v0 = "A" per l'esempio di Gennaio
           ... # codice della procedura da non sviluppare
           jr $ra
           .end MonthToChar
```

Soluzione proposta

```
.data
cognome: .asciiz "ROSSI"
nome: .asciiz "GENNARO"
data: .asciiz "120892"
CF: .space 12
.text
.globl main
.ent main
main: subu $sp, $sp, 4
sw $ra, ($sp)
la $a0, cognome
la $a1, nome
la $a2, data
la $a3, CF
jal CF12
lw $ra, ($sp)
addiu $sp, $sp, 4
jr $ra
.end main
.ent CalcoloCF
CalcoloCF:
move $t0, $a0
                        # output
move $t1, $a3
li $t3, 0 # flag
li $t4, 0 # contatore
li $t5, 0 # crc
ciclo: beq $t4, 3, controllo
lb $t2, ($t0)
beqz $t2, controllo
bltu $t2, 'B', next
bgtu $t2, 'Z', next
beq $t2, 'E', next
beq $t2, 'I', next
beq $t2, '0', next
beq $t2, 'U', next
xor $t5, $t5, $t2
sb $t2, ($t1)
                              # Memorizzo il carattere
addiu $t1, $t1, 1
addiu $t4, $t4, 1
next: addiu $t0, $t0, 1
j ciclo
controllo:
addiu $t3, $t3, 1
move $t0, $a1
li $t4, 0
bne $t3, 2, ciclo
controllo_data:
move $t0, $a2
```

```
1b $t3, ($t0)
sb $t3, ($t1)
lb $t3, 1($t0)
sb $t3, 1($t1)
addiu $t0, $t0, 2
                             #posiziono inizio MESE
addiu $t1, $t1, 2
                             #posiziono stringa out
lb $a0, ($t0)
sll $a0, $a0, 8
lb $t3, 1($t0)
or $a0, $a0, $t3
jal MonthToChar
sb $v0, ($t1)
addiu $t0, $t0, 2
                             #posiziono inizio ANNO
addiu $t1, $t1, 1
                              #posiziono stringa out
lb $t3, ($t0)
sb $t3, ($t1)
lb $t3, 1($t0)
sb $t3, 1($t1)
move $t2, $a3
li $t3, 0
                              #accumulatore
ciclo xor:
bgt $t2, $t1, fine
lb $t9, ($t2)
xor $t3, $t3, $t9
addiu $t2, $t2, 1
j ciclo_xor
fine:
addiu $t1, $t1, 2
                             #posiziono stringa per XOR
sb $t3, ($t1)
jr $ra
.end CalcoloCF
.ent MonthToChar
MonthToChar:
subu $sp, $sp, 4
sw $ra, ($sp)
subu $sp, $sp, 12
sw $t0, ($sp)
sw $t1, 4($sp)
sw $t2, 8($sp)
move $t0, $a0
srl $t0, $t0, 8
subu $t0, $t0, '0'
mul $t0, $t0, 10
move $t1, $a0
li $t2, 0xFF
and $t1, $t1, $t2
subu $t1, $t1, '0'
addu $t1, $t1, $t0
```

#in \$t1 il numero subu \$t1, \$t1, 1 # per partire con A addu \$v0, \$t1, 'A'

lw \$t2, 8(\$sp)
lw \$t1, 4(\$sp)
lw \$t0, (\$sp)
addiu \$sp, \$sp, 12
lw \$ra, (\$sp)
addiu \$sp, \$sp, 4
jr \$ra
.end MonthToChar