

### PROGETTO DI INTELLIGENZA ARTIFICIALE



Prof. Vincenzo Deufemia Dott. Gaetano Cimino

Studenti:
Cavaliere Mattia
Citro Carmine
Nunziata Vincenzo



## Introduzione e Obiettivo del Progetto

- Il progetto ha come obiettivo l'applicazione di Reinforcement Learning (RL) nel trading finanziario.
- Si mira a massimizzare i profitti attraverso decisioni ottimali basate su dati storici.
- II RL permette di apprendere strategie di trading efficienti bilanciando esplorazione e sfruttamento.



### Contesto e Dati di Mercato

- L'algoritmo è applicato al mercato finanziario e testato su dati storici di azioni i dati utilizzati provengono da Yahoo Finance tramite la libreria Python yfinance.
- Il modello può essere esteso ad altri assets come criptovalute



## **Background Teorico**

# Esistono tre principali paradigmi di Machine Learning



Supervised Learning: Apprendimento con dati etichettati.

Unsupervised Learning: Trova pattern senza etichette. Reinforcement Learning: Apprendimento basato su ricompense e penalità, il RL è il più adatto per problemi sequenziali e con incertezza temporale.

#### **Q-Learning**



Il Q-Learning è un algoritmo di RL che apprende il valore di ogni azione in ogni stato. Aggiornamento basato sull'equazione di Bellman:

$$Q(s,a) \leftarrow Q(s,a) + lpha[r + \gamma max_a'Q(s',a') - Q(s,a)]$$

L'agente bilancia esplorazione e sfruttamento con la strategia  $\epsilon$ -greedy.

### Fondamenti del Reinforcement Learning



Elementi chiave:

Stato (s): rappresentazione dell'ambiente in un dato momento.

Azione (a): decisione presa dall'agente.

Ricompensa (r): segnale che indica il valore dell'azione.

Policy  $(\pi)$ : strategia che guida le azioni dell'agente.

Oblettivo: massimizzare la ricompensa cumulativa.

### Deep Q-Network (DQN)



Migliora il Q-Learning utilizzando reti neurali per gestire spazi di stato molto grandi o continui

Elementi chiave:

Replay Buffer: evita la dipendenza sequenziale nei dati.

Rete Target Separata: stabilizza

l'addestramento.

Strategia ε-greedy: migliora l'apprendimento

bilanciando esplorazione/sfruttamento.

## **Approccio - Due Strategie**

- DON: Approccio basato su reti neurali per gestire spazi di stato continui.
- Q-Learning con discretizzazione: Riduzione dello spazio degli stati con tecnica di binning.



### Formalizzazione del Problema (MDP)

- Il problema è modellato come un Markov Decision Process
- Stati(S): descrivono la situazione corrente.
- Azioni (A): decisioni possibili.
- Funzione di Transizione (P): regole di passaggio tra stati.
- Funzione di Ricompensa (R): segnala il valore di una decisione.
- Fattore di Sconto (y): bilancia ricompense immediate e future.



## Spazio degli Stati

Lo spazio degli stati S è definito come:

$$S = \{s_1, s_2, \ldots, s_n\}$$

dove ogni stato  $s \subseteq S$  è una rappresentazione unica e completa del sistema, descritto da variabili osservabili:

$$s=(x_1,x_2,\ldots,x_k)$$

dove:

 $X_i$  è una variabile rilevante per il problema.

La dimensionalità k dipende dal numero di variabili necessarie.

Nel problema del trading, lo spazio degli stati è continuo e multidimensionale:

$$S \in R^k$$

Ogni time step t corrisponde a un giorno e lo stato è determinato da:

- Prezzi di chiusura giornalieri
- Volume giornaliero
- Differenza di prezzo tra il time step precedente e quello corrente
- Profitto (o perdita) generato al time step precedent

Lo stato può essere formalizzato come:

$$s_t = (P_t, V_t, D_t, \Omega_t)$$

dove:

- $P_t \in \mathbb{R}^{30}$  prezzi di chiusura della finestra temporale corrente.
- $V_t \in \mathbb{R}^{30}$  volumi giornalieri della finestra temporale.
- $D_t \in R^{30}$  differenza di prezzo tra il time step t e t-1 con:  $\Delta p_i = p_i p_{i-1}$
- $\Omega_t \in R$  profitto o perdita accumulata al time step t

Quindi, ogni stato  $S_t$  appartiene a:

$$s_t \in R^{91}$$

## Spazio delle Azioni

Lo spazio delle azioni è discreto e definito come:

$$A=\{a_1,a_2,\ldots,a_k\}$$

Nel nostro caso:

$$A = \{Vendi, Compra, Mantieni\}$$
 quindi k=3.



L'agente seleziona un'azione  $a_t \in A$  in base allo stato corrente  $s_t$  e alla politica appresa  $\pi(s_t)$ :

$$\pi(s_t) = rg \max_a Q(s_t, a)$$

dove  $Q(S_t, a)$  è la funzione Q appresa dal modello DQN.

### Funzione di transizione

In un processo decisionale di Markov (MDP), le transizioni sono definite dalla funzione:

che rappresenta la probabilità di raggiungere lo stato s' dallo stato s eseguendo l'azione a.

Nel DQN, le transizioni possono essere deterministiche o stocastiche. Nel nostro caso, sono trattate come deterministiche, quindi lo stato successivo è determinato dalla funzione:

$$s'=f(s,a)$$

#### dove f(s,a) modella:

- 1. Lo shift della finestra temporale.
- 2. L'aggiornamento del portafoglio in base all'azione scelta.
- 3. L'evoluzione di prezzi, volumi e differenze di prezzo.

Le transizioni aggiornano ogni componente dello stato come segue:

#### Prezzi di chiusura:

$$P_{t+1} = [p_{t-28}, p_{t-27}, \dots, p_t, p_{t+1}]$$

Volumi:

$$V_{t+1} = [v_{t-28}, v_{t-27}, \dots, v_t, v_{t+1}]$$

#### Differenza di prezzo:

$$D_{t+1} = [p_{t-27} - p_{t-28}, \dots, p_{t+1} - p_t]$$

#### Profitto/perdita:

$$\Omega_{t+1} = \Omega_t + \Delta P_{t+1}$$

dove  $\Delta P_{t+1}$  è il cambiamento del valore del portafoglio. In generale, la transizione dallo stato  $s_t$  allo stato  $s_{t+1}$  data l'azione  $s_t$  si scrive come:

$$s_{t+1} = f(s_t, a_t)$$
 con:

$$f(s_t, a_t) = egin{cases} P_{t+1}, & ext{prezzi shiftati in avanti} \ V_{t+1}, & ext{prezzi shiftati in avanti} \ D_{t+1}, & ext{differenze di prezzo aggiornate} \ \Omega_{t+1}, & ext{profitto/perdita aggiornato} \end{cases}$$

### Funzione di ricompensa

La ricompensa  $R(s_t,a_t)$  associata all'azione  $oldsymbol{a}_t$  eseguita nello stato  $oldsymbol{s}_t$  è data da:

$$R\left(s_{t}, a_{t}
ight) = \Delta P_{t} - penalita_{h} - penalita_{drawdown} - penalita_{transizione}$$

dove  $\Delta P_t$  è la variazione del valore del portafoglio tra il time step attuale e quello dell'ultimo trade.

#### Penalità della Ricompensa

#### 1. Penalità sulle azioni e inattività:

$$penalita_h = \lambda_h \left( h_{azioni} + h_{inattivo} \right)$$

#### 2. Penalità di Drawdown:

Si applica se il valore del portafoglio scende oltre il 50% del massimo valore raggiunto fino al tempo t :

$$ext{penalita}_{drawdown} = egin{cases} \lambda_d \cdot lpha \cdot rac{V_{max} - V_t}{V_{max}}, & ext{se} \, rac{V_{max} - V_t}{V_{max}} > 0.5 \ 0, & ext{altrimenti} \end{cases}$$

#### dove:

- $ullet V_{max} = max_{t' \leq t} V_{t'} \;\;\;$  è il massimo valore del portafoglio fino a t.
- $\lambda_d \in \alpha$  sono coefficienti di penalizzazione

#### 3. Penalità di Transazione

Penalizza ogni azione proporzionalmente al prezzo corrente:

$$penalita_{transizione} = \lambda_t \cdot 0.05 \cdot prezzo_t$$

La funzione di ricompensa finale risulta quindi:

$$R(s_t, a_t) = (V_t - V_ au) - \lambda_h (h_{azioni} - h_{inattivo}) - egin{cases} \lambda_d \cdot lpha \cdot rac{V_{max} - V_t}{V_{max}}, & ext{se } rac{V_{max} - V_t}{V_{max}} > 0.5 - \lambda_t \cdot 0.05 \cdot ext{prezzo}_t \ 0, & ext{altrimenti} \end{cases}$$

l coefficienti  $\lambda_h, \lambda_d, \lambda_t$  possono essere adattati per bilanciare l'influenza delle penalizzazioni

### Fattore di sconto

Il fattore di sconto  $\, \gamma \,$  è un valore scalere che determina l'importanza delle ricompense future rispetto a quelle immediate:

$$\gamma \in [0,1]$$

#### dove:

Se  $\,\gamma=0\,\,$  l'agente considera solo al ricompensa immediata, ignorando quelle future.

Se  $\gamma \to 1$  l'agente dà grande peso alle ricompense future, considerandole quasi equivalenti a quelle immediate .

Nel presente progetto, dopo vari test, è stato trovato che il valore ottimale del fattore di sconto è  $\gamma=0.99$  per DQN e  $\gamma=0.9$  per Q-Learning



## Implementazione del DQN

#### Obiettivo:

Usare il Deep Q-Network (DQN) per gestire il trading su azioni

#### Motivazione:

 Necessità di un algoritmo capace di apprendere in ambienti con spazi degli stati continui

#### • Architettura della rete neurale:

- Input: Stato (91 caratteristiche)
- **Hidden layers:** 2 strati con 320 neuroni ciascuno, attivazione ReLU
- Output: 3 neuroni (Compra, Vendi, Mantieni)



## Funzione di perdita del DQN

- Obiettivo:
  - $\circ$  Minimizzare la differenza tra il valore stimato e il valore atteso della funzione  $\,Q(s,a)\,$
- Formula della funzione di perdita:
  - DQN usa una rete target fissa per stabilizzare il training:

$$ext{Loss} = E[(r + \gamma \max_a Q(s', a'; heta^-) - Q(s, a; heta))^2]$$

- Tecniche usate per migliorare la stabilità:
  - Experience Replay Memory: Evita correlazioni nei dati di addestramento
  - Rete target separata: Parametri aggiornati periodicamente (ogni 5 episodi)
- Ottimizzazione degli iperparametri
  - $\circ$  Learning Rate  $\alpha$
  - $\circ$  Epsilon-decay  $\epsilon$
  - $\circ$  Fattore di sconto  $\gamma$



### Parametri chiave e tuning

1000 episodi di training su 11 asset finanziari.



Per il tasso di apprendimento  $\alpha$ , sono stati presi in considerazione i valori 0.01, 0.001, 0.005 e 0.0005. La figura mostra le curve di apprendimento per  $\epsilon$  = 0.95 e  $\gamma$  = 0.9.

• **Grafico:** curve di apprendimento per diversi valori di Learning Rate

### Implementazione del DQN

#### Risultati sull'ambiente di test

In conclusione i risultati migliori sono stati ottenuti con i valori  $\alpha = 0.001$  e  $\alpha = 0.0005$ . Analizzando l'esecuzione sull'ambiente di test, si puo notare che quest'ultimo valore ha ottenuto risultati nettamente migliori in tutti gli aspetti di valutazione.



Ricompensa totale





ROI

Drawdown



**Errori** 

### Parametri chiave e tuning

1000 episodi di training su 11 asset finanziari.



Per il tasso di decadimento  $\varepsilon$ , sono stati presi in considerazione i valori 0.9, 0.95, 0.99, 0.995, 0.999.

• **Grafico:** curve di apprendimento per diversi valori di Learning Rate

L'agente riesce ad ottenere mediamente risultati migliori con una maggiore esplorazione.

• L'unica eccezione avviene per ε=0.999

### Implementazione del DQN

#### Dettagli sull'addestramento

Un agente casuale tende a eseguire molte azioni e a commettere numerosi errori, ottenendo ricompense fortemente negative.

Terminata la fase di esplorazione, l'agente apprende rapidamente a ridurre sia il numero di azioni di trading eseguite sia il numero di errori commessi.



Numero di azioni di trading



Numero di errori

### Parametri chiave e tuning

1000 episodi di training su 11 asset finanziari.



Per il fattore di sconto y, sono stati presi in considerazione i valori 0.9, 0.99, 0.999

- Valore basso: tendeze generalmente locali
  - Utile al trader in posizione "corta"
- Valore alto: tendenze nel lungo periodo
  - Utile al trader in posizione "lunga"

Si è scelto di affrontare il problema considerando operazioni di compravendita "classiche".

 Grafico: curve di apprendimento per diversi valori di Learning Rate

### Implementazione del DQN

#### Dettagli sull'addestramento

Poiché l'obiettivo principale dell'agente dovrebbe essere quello di massimizzare i profitti, in questo caso si è scelto di sacrificare il numero di azioni eseguite, privilegiando un approccio più redditizio.

Un agente più "miope" tende ad avere un atteggiamento più prudente



Numero di azioni di trading



#### ROI

Tuttavia, la strategia adottata dagli agenti più "lungimiranti" consente di ottenere profitti nettamente più elevati.

### Risultati DQN - Test su ambiente reale

Iperparametri ottimali:  $\alpha$ =0.0005  $\epsilon$ =0.99  $\gamma$ =0.999



- Risultati ottenuti dopo 2000 episodi di addestramento:
  - **ROI:** +274.53%
  - Durata media di un'operazione: 46 giorni
  - Numero di operazioni: 11
  - Errori commessi: 163 (pochi rispetto a Q-Learning)

### Implementazione del Q-Learning con Discretizzazione

#### • Obiettivo:

- Verificare se il Q-Learning può essere applicato con successo al problema del trading
- Problema principale: il Q-Learning non può gestire direttamente spazi degli stati continui



Grafico: Numero di errori

#### **Grafico: Ricompensa totale**



- Soluzione: Discretizzazione dello spazio degli stati
  - Tecncia utilizzata: Equal Width Binning
    - I dati vengono suddivisi in k bin di uguale ampiezza
    - Gli stati vengono rappresentati in base al bin in qui ricade il loro valore

### Tecnica di Discretizzazione

Grafici: Risultati ottenuti sull'ambiente di test per diversi valori di k.





- Scelta del valore di k:
  - k troppo basso (es. 5): Perdita di informazioni, trend di prezzo "appiattiti"
  - **k troppo alto (es. 15):** Aumento della complessità dello spazio degli stati, difficile esplorarlo completamente
  - **k=8:** Compromesso ottimale tra accuratezza e efficienza

### Addestramento dell'Agente Q-Learning

- Iperparametri ottimizzati:
  - Learning Rate alpha: 0.0005
  - Taasso di esplorazione epsilon:
     0.995 (elevato per garantire sufficiente esplorazione
  - Fattore di sconto gamma: 0.9
     (priorità alle ricompense immediate)

#### • Differenza con il DQN:

- II DQN utilizza una rete neurale per approssimare la funzione Q, mentre il Q-Learning memorizza direttamente i valori Q in una tabella
- II Q-Learning necessita di più esplorazione per imparare efficacemente



**Grafico: alpha** 



**Grafico:** gamma



**Grafico: epsilon** 

### Risultati Finali del Q-Learning

- Analisi delle prestazioni su ambiente di test:
  - Numero di opreazioni eseguite: 12
  - Durata media di un'operazione: 18 giorni (più breve rispetto a DON
  - ROI finale: +71.40% (nettamente inferiore rispetto a DQN)
  - Errori commessi: 491 (quasi il triplo degli errori rispetto a DQN)
- Problema principale:
  - Alta sensibilità alla discretizzazione: Se uno stato non è stato visitato in fase di addestramento, il Q-Learning non sa come comportarsi



## Confronto tra DQN e Q-Learning - Analisi

| Metrica                          | DQN                    | Q-Learning |
|----------------------------------|------------------------|------------|
| ROI (%)                          | +274.53 <mark>%</mark> | +71.40%    |
| Numero di operazioni             | 11                     | 12         |
| Durata media operazione (giorni) | 46                     | 18         |
| Errori commessi                  | 163                    | 491        |

#### • Osservazioni principali:

- DQN ottiene un ROI più alto e commette meno errori
- Q-Learning esegue più operazioni, ma meno efficaci
- DQN generalizza meglio su nuovi dati

## Confronto tra DQN e Q-Learning - Analisi

L'agente Q-Learning ha prestazioni migliori durante l'addestramento



**Ambiente di addestramento** 

#### **Ambiente di test**



L'agente DQN ha prestazioni migliori su stati mai visitati

### Impatto della Discretizzazione sulla Generalizzazione

#### Perché il Q-Learning ha risultati peggiori?

- Ridotta capacità di generalizzazione:
  - II Q-Learning memorizza gli stati esplorati ma fatica con nuovi stati
  - Se uno stato non è stato visto durante l'addestramento il modello non sa cosa fare
- Dipendenza dalla discretizzazione:
  - Troppi bin: Troppi stati da esplorare, apprendimento difficile
  - Pochi bin: Si perdono informazioni chiave sui trend di mercato







**Grafico: Ricompensa Totale** 

**Grafico: Numero di azioni** 

**Grafico: ROI** 

### Conclusioni e Sviluppi Futuri

### **Cosa abbiamo imparato?**

- DQN è nettamente superiore al Q-Learning per problemi con spazi degli stati continui.
  - L'uso della discretizzazione introduce troppe limitazioni nell'apprendimento.
  - DON ha ottenuto ROI più alto e meno errori grazie alla capacità di apprendere rappresentazioni più complesse degli stati.

### Come possiamo migliorare il modello?

- Utilizzo di Proximal Policy Optimization (PPO).
   Algoritmo avanzato che combina il meglio del DQN e dei metodi basati su politiche.
- Integrazione con NLP per analizzare news di mercato. Le informazioni finanziarie non sono solo nei dati storici. Integrare articoli e notizie potrebbe migliorare le decisioni dell'agente.
- Adattamento del modello a mercati reali. Test su mercati con maggiore volatilità. Implementazione su dati in tempo reale con API di trading.





