Let $f \in C^2[0, N]$ and |f'(x)| < 1, f''(x) > 0 for every $x \in [0, N]$. Let $0 \le m_0 < m_1 < \cdots < m_k \le N$ be integers such that $n_i = f(m_i)$ are also integers for $i = 0, 1, \ldots, k$. Denote $b_i = n_i - n_{i-1}$ and $a_i = m_i - m_{i-1}$ for $i = 1, 2, \ldots, k$.

a) Prove that

b) Prove that for every choice of
$$A > 1$$
 there are

 $-1 < \frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_k}{a_k} < 1.$

- no more than N/A indices j such that $a_j > A$.
- c) Prove that $k \leq 3N^{2/3}$ (i.e. there are no more than $3N^{2/3}$ integer points on the curve $y = f(x), x \in [0, N]$).