For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex dibris universitates albertaeasis

THE UNIVERSITY OF ALBERTA

A LANDSLIDE NEAR EDMONTON

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF GEOLOGY

EDMONTON, ALBERTA

SPRING, 1971

45

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled A LANDSLIDE NEAR EDMONTON, submitted by Eberhard F. Lorberg in partial fulfilment of the requirements for the degree of Master of Science.

ABSTRACT

A landslide on an abandoned cutbank along the North Saskatchewan River was investigated. Standard procedures were employed and conventional equipment and instruments were used to arrive at and compile a large-scale surficial materials, structure and contour map, a cross-section along the longitudinal axis of the slide, and lithologic sections in bedrock and slide material.

The principal materials involved in the slide area, are from top to bottom: Lake Edmonton silts and clays, two tills, bent-onitic, partly concretionary beds of shale and sandstone, and a seam of coal from the Edmonton Formation. Surficial expressions, vegetal regrowth and auger hole logs indicate the occurrence of an earlier slide. The shear zone of the more recent slide is shallow and material displacement is large. The mass probably descended quite rapidly.

Probable causes of this slope failure are: additional consolidation of all materials due to the load of glacial ice and subsequent differential rebound, under-cutting by the river, a fault trending normal into the bank, lateral expansion and fissuring of bedrock near the surface, swelling pressure of clays, the increase of hydrostatic pressure in open fractures due to seasonal meltwater, and the removal of gravel from the toe by man.

ACKNOWLEDGEMENT

The author acknowledges with gratitude all assistance offered by staff of the Department of Geology and Civil Engineering, notably Dr. A.J. Broscoe under whose direction this work was initiated, Dr. S. Thomson and Dr. E.W. Brooker who offered valuable suggestions on mechanical aspects of slope stability, Dr. J. Toth who pointed out some of the effects of fine grained rock on groundwater motion, and Dr. J.S. Bell under whose kind and tolerant supervision this work was completed. Both departments offered their facilities. Through the Department of Geology, the University assisted financially. A student, B. Smith, tirelessly assited in field and laboratory work. For the compiling of drawings, D. Seibt, M.J. Oosting, and E.W. Spofford offered their experience. I would also like to express my gratitude to the Water Resources Division of the Department of The Environment and it's personnel for their assistance.

TABLE OF CONTENTS

Title	Page
ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
CHAPTER ONE	2
INTRODUCTION	2
CHAPTER TWO	7
METHOD OF INVESTIGATION	7
Field Work	7
Laboratory Work	9
CHAPTER THREE	10
RESULTS OF SURFACE INVESTIGATIONS	11
Morphology of the Slide	11
The Crown	11
The Flanks	12
The Scarp	14
The Head	21
The Body	21
The Foot	31
OBSERVATIONS ON PRECIPITATIONS, RUNOFF AND INFILTRATION	35
RESULTS OF SUBSURFACE INVESTIGATIONS	37
Auger Hole and Trench Data	37
Laboratory Data	38
CHAPTER FOUR	40
INTERPRETATION OF RESULTS	40

TABLE OF CONTENTS, CONT'D

Title			Page
	Surficial	Morphology	40
		General Environment	40
		Scarp	40
		Head	42
		Northern Section of Slide Area	43
		Transition Zone	43
		Central and Southern Section of Slide Body	44
		Foot	44
		Anomalous Sandstone Lens	45
		Stress Relief	46
	Subsurface	e	46
	Groundwate	er	47
	Future Sl	ope Failure	48
CHAPTER FIVE			50
EVOLUTION	OF THE SL	I DE	50
CHAPTER SIX			53
SUMMARY			53
SELECTED REFERENCES.			56
APPENDIX A	• • • • • • • •		62
APPENDIX B	• • • • • • • •		67
APPENDIX C			75
APPENDIX D			32
APPENDIX E			91
APPENDIX F			94

Title,	Cont	.*d	Page
APPEND	IX G.		97
APPEND	іх н.	• • • • • • • • • • • • • • • • • • • •	116
APPEND	IX I.		118
LIST OF	F FIG	GURES	
Figure	1.	Location of study area	1
Figure	2.	Landslide after drilling	3
Figure	3.	Landslide. View downslope from the crown	4
Figure	4.	Central section of crown and scarp	13
Figure	5.	Columnar till and lacustrine silts and clays on northern scarp	13
Figure	6.	Upper central and southern scarp	14
Figure	7.	Fault zone below peg 2	16
Figure	8.	Paraconformable contact between till and sandstone on northern scarp	18
Figure	9.	Upper till, lower till and sandstone	18
Figure	10.	Till-sandstone contact exposed along northern scarp	19,
Figure	11.	Wedge of till above sandstone and tuffaceous shale on northern scarp	19
Figure	12.	Sandstone and overlying fissured shales of southern scarp	20
Figure	13.	Tension cracks common on northern part of slide head that is underlain by till	22
Figure	14.	Northern section of slide	23
Figure	15.	Central section of slide	23
Figure	16.	Outward wedged blocks of sandstone and bentonitic shales	24
Figure	17.	Outward wedged and dipping beds of bituminous, bentonitic shales that are not completely disjointed	24
Figure	18.	Blocks of till separating from edge of slide head	26
Figure	19.	A sharp break between the transition zone and the main section of the slide body	27
Figuro	20	Shale pippacles pear foot of slide	27

LIST OF	FIGL	JRES, CONT'D	Page
Figure	21.	Mixture of shales and calcareous sandstone on lower transverse ridge	28
Figure	22.	Shales and fractured sandstone just below surface of lower transverse ridge	28.
Figure	23.	Bentonitic shale and till exposed in main section of body	29
Figure	24.	Bentonitic shales exposed in upper main section of body	29
Figure	25.	Bentonitic and tuffaceous shales exposed under veneer of till	30
Figure	26.	Shales and sandstone exposed in centre of main section of body	30
Figure	27.	Fractured swale on foot of slide	32
Figure	28.	Open fracture on foot. Coal seam is exposed	32
Figure	29.	Open fracture on foot filled with stagnant	
		muddy surface water	33
Figure	30.	Fractured low relief knoll on swale of slide foot	33
Figure	31.	Mud filled cracks around partially disintegrated swale blocks	34
Figure	32.	Disintegrated coal and bentonitic shales on foot	
119410	<i>J</i>	of slide	34
Figure	33.	Exposed bentonitic shales on northern end of scarp,	36
Figure	34.	Trench A	63
Figure	35.	Trench B. Exhumed shale - sandstone contact	66
Figure	36.	Axially cut shelby tube samples from auger holes	68
Figure	37.	Photomicrographs of thinsections of bedrock	76
Figure	38.	Evolution of the slide	52
Figure	39.	Map of principal surficial material	83
Figure	40.	Outline of major slide parts	84
Figure	41.	Major zones of fractures	85
Figure	42.	Estimated surface contours before slide	86

LIST OF FI	GURES, CONT'D	Page
Figure 43.	Estimated shear surface contours	87
Figure 44.	Estimated movement of slide material	88
Figure 45.	Vegetation density	89
Figure 46.	Location index of surficial photographs	90
Figure 47.	Plasticity chart	92
Figure 48.	Activity chart	93
Figure 49.	Macro till fabric of upper till	95
Figure 50.	Strike of joint planes of upper till	96
Figure 51.	Legend to Plates III to XII	119
LIST OF TA	BLES ·	
Table 1.	Data of macro till fabric of upper till, south sc	arp 95
Table 2.	Azimuth of joint planes in upper till, north scar	p 96
Table 3.	Test results of samples	98
Table 4.	X-ray refractograms of clay-sized fraction of bed	rock. 117
LIST OF PL	ATES	
Plate I.	Map of study area	(in pocket)
Plate II.	Section C-C	(in pocket)
Plate III.	Auger hole C-1	(in pocket)
Plate IV.	Auger hole C-2	(in pocket)
Plate V.	Auger hole C-3	(in pocket)
Plate VI.	Auger hole C-4	(in pocket)
Plate VII.	Auger hole C-5	(in pocket)
Plate VII!	. Auger hole C-6	(in pocket)
Plate IX.	Auger hole C-7	(in pocket)
Plate X.	Auger hole D-1	(in pocket)
Plate XI.	Trench A	(in pocket)
Plate XII.	Trench B	(in pocket)

CHAPTER ONE

INTRODUCTION

In Webster's Third New International Dictionary, a landslide or landslip is defined as "(1) the rapid downward movement under the influence of gravity of a mass of rock, earth or artificial fill on a slope, (2) the mass that moves or has moved." This investigation is primarily devoted to the second definition. Terzaghi (1929) differentiates between the shearing slide or slump and the flow slide. A slump is a "downward slipping of a mass of rock or unconsolidated material of any size, moving as a unit or as several subsidiary units, usually with backward rotation on a more or less horizontal axis parallel to the cliff or slope from which it descends. Displacement is usually small relative to the size of the block. The slip surface is deep and spoonshaped. Most slumps move slowly and intermittently over a long period of time but some are completed in a single rapid slip" (Sharpe 1938, p.65). While a flow slide involves only a skin of surficial material.

The landslide under investigation falls under Terzaghi's group of shearing slides or slumps. It is a shallow slump of large displacement and rapid movement that spills over the lip of its shear surface and grades into an earthflow towards the toe.

The slide area is located in NW4 Sec. 28, Tp. 51, Rg. 23, W 4 Mer., close to "Big Island", eight aerial miles southwest of the University Campus in Edmonton, Alberta (Figure 1). The slide material has slid out westward from a steep cutbank into an abandoned channel of the North Saskatchewan River (Figures 2 & 3). To the north of the slide

Figure 2. Landslide after drilling. View eastward from floodplain.

is a wooded area exhibiting progressive wedge or block sliding, to the east a hummocky belt that abruptly yields to a gently undulating plain, to the south a steep slope that is sparingly vegetated, and to the west a gravel-covered low terrace, 'big Island,' and the River.

Until two centuries ago little was known about landslides.

Collin (1846) published a detailed report on the geometry of failed slopes in clays and postulated causes of their failure, which marked the beginning of geomechanics. But this significant work was largely ignored and forgotten until Terzaghi (1925) injected renewed enthusiasm into research on slope failure. Since then a large number of workers have produced volumes of valuable material on this topic. Among them Sharpe (1938, 1960) summarized the types of slides and their relation-

Figure 3. Landslide. View downslope from the crown.

ship to other forms of mass wasting; and Terzaghi (1951) grouped the causes of slope failure into two categories: those that are directly responsible and those that are indirectly responsible for a slide.

In 1958 the U.S. Highway Research Board Landslide Committee published the Special Report No. 29 entitled Landslides and Engineering Practice which summarized all work, currently accepted definitions, and forms. of slope failure. Because of its concise, comprehensive and logical presentation, material from Plate 1 and Table 1 of this particular report served as a basis for the terms and scales used in this study.

Relatively little has been published on slope stability in the overconsolidated bentonitic rock that typically outcrops on valley sides in the Edmonton area. This rock is jointed, poorly cemented, thin bedded, lenticular bentonitic sandstone and shale of continental origin and of Upper Cretaceous age (Ower, 1958). Tills and lacustrine deposits overlie this succession. Scott and Brooker (1968) have approached the problem of slope stability in bentonitic shales that typically outcrop for many miles along streams in the Prairies, and Bruce (1966) has studied slope failure in a similar succession, the bentonitic Pierre Shales of South Dakota. In addition some research has been undertaken recently by the University of Alberta staff on aspects of slope stability, however, little has yet been published.

In the present study the slide is mainly in bentonite-rich sandstone some of which have a salt-and-pepper appearance, and shales of the Upper Edmonton Formation, which are covered with two sheets of till and beds of Lake Edmonton silts and clays. The object of this study was to map all features of the slide area, to establish the shear surface of the slide, to estimate displacements of surficial slide material, to determine some engineering properties of the materials in-

volved, and to determine the more significant factors responsible for this slide. It is emphasized that this is a geomorphic study.

CHAPTER TWO

METHOD OF INVESTIGATION

Field Work

Since both general and detailed surficial expressions of the slide are of prime significance in estimating the character of the landslide, an accurate topographic map (Plate 1) with one-foot contour intervals was required. To establish a control grid, 185 labelled pegs were placed at topographically and lithologically strategic points. Almost all pegs were surveyed with a transit by triangulation and checked with a chain to with +0.1 feet in elevation and +0.5 feet in plan. The ground elevation at TPA on the flood plain gravels was chosen as an arbitrary datum of 100 feet in elevation, roughly 2100 feet above mean sea level; the location itself was the end of a baseline. Pegs within the slide area proper were marked with numbers and pegs along both ends of the slide were labelled with prefixes CL and TL, (Plate 1) meaning cliff line and toe line. The pegs were 5 to 30 feet, or an average of 20 feet, apart and provided good control for visual mapping. Then, with an optical alidade and plane table, points an average of 3 feet apart were surveyed and plotted. On an overlay of this plot of points, the elevation countours, at one foot interval, were closely estimated in the field, thus ensuring that all prominent and almost all small features were included. Small features, such as protrusions and depressions, having less than 1/2 foot of relief were ignored. To ensure against excessive crowding of contour lines a scale of 1 inch to 10 feet was chosen.

On the countour map an outline of surficial materials, their attitudes and fractures, and the location of surface material samples were plotted (Plate 1). Later, the locations of drill holes and trenches were added to this map.

One hundred bag samples, prefixed with an S, (Table 3) were collected from the surface, located on the map (Plate 1), and later matched with those recovered from the subsurface investigation.

The subsurface investigation involved drilling seven power auger holes along the line of greatest estimated movement, (Plate 11 to IX), denoted as line C-C and one auger hole D-1, (Plate X), in a graben below the northern scarp. Both disturbed and undisturbed samples were recovered at one foot intervals. The tool was always driven to refusal.

The lithology of in-place bedrock was logged from two manually dug trenches. The trench along line A-A (Plate XI), follows the grade up the cut-slope just south of the slide. An averager of 6 feet, and up to 10 feet, of weathered material had to be removed before undisturbed bedrock was reached. The trench along line B-B, (Plate XII), is an offset continuation of trench A. It, too, follows a straight line, but within the slide near the southern end of the main scarp. Because of its recent exposure, weathering was relatively shallow so that less than 2 feet of material needed removing.

Attitudes of probable joint planes were measured in till outcropping along the northern scarp (Table 2, Figure 50). No such planes

were found in the same till on the southern scarp where fabric measurements were done (Table 1, Figure 49). All field work was completed in the winter and spring of 1968.

Laboratory Work

In order to establish the mineralogy and engineering properties of the materials involved in the slide, one or more tests were performed on each of the 436 samples collected. The results are tabulated in Table 3 and plotted in part on Plates III to XII. Three dozen thinsections were prepared and examined under the petrographic microscope and photographed but were not found to be useful in this study. Two dozen of these photomicrographs are illustrated in Figure 37 (in Appendix C). The clay fraction, of particle size not exceeding 1 micron, of 8 rock samples was prepared for, and subjected to X-ray diffraction analysis. The results are illustrated in Table 4.

Essentially all rock material disintegrated readily with agitation in water and could therefore be subjected to testing procedures suited for soils. Hence, complete mechanical analyses were performed on 300 samples, and Atterberg limits on 135 samples. The natural moisture content was measured on 395 samples. The results were used mainly for lithologic correlation of slide material with that in-situ.

Most undisturbed, or shelby tube, samples from the auger holes were cut axially and photographed (Figure 36). Carbonate content determinations were performed on 321 samples (Table 3 and Plates III to XII).

Essentially all rock material disintegrated readily with agitation in water and could therefore be subjected to testing procedures suited for soils. Hence, complete mechanical analyses were performed on 300 samples, and Atterberg limits on 135 samples. The natural moisture content was measured on 395 samples. The results were used mainly for lithologic correlation of slide material with that in situ.

Most undisturbed, or shelby tube, samples from the auger holes were cut axially and photographed (Figure 36). Carbonate content determinations were performed on 321 samples (Table 3 and Plates III to XII).

CHAPTER THREE

RESULTS OF SURFACE INVESTIGATIONS

Field and laboratory data were compiled in the following forms: several small-scale outline and indicator maps (Figures 39 to 46), a large-scale composite map (Plate 1), a cross-section through the slide along line C-C (Plate 11), and logs from auger holes and trenches (Plates III to XII). Tables 1 to 4 list all data. Figure 46 indicates the location and scope of Figures 3 to 33. Figure 51 contains the legend to the log plates.

Morphology of the Slide

The slide surface exhibits the following features (Figure 40):

a V-shaped crown and flanks, a bisected main scarp the foot of which

is largely covered with talus, a slightly backward rotated head, a

number of drifted apart and forward tilted blocks below the head,

three major and several minor transverse ridges on the back of the

outflowing slide material, a rimmed halfmoon-shaped toe and onlapping

tip. Visible shear and tension fractures are common in many parts of

the slide material (Figure 41).

The Crown

The crown spreads across the highest area of the main scarp. At its edge it breaks abruptly through the turf with no visible fractures and little bevelling. Between pegs CL-6 and CL-7 (Plate I) a small scarp trends easterly. The ends of the crown-line turn westerly quite abruptly and continue in cliff-lines. As seen on the shear slope

the material under the crown is water-deposited silts and clays of glacial Lake Edmonton, with the proportion of silt increasing with depth. The contact with till is conformal without transition (figures 4, 5 & 6).

The Flanks

The surfaces of the two flanks differ considerably from each other (Figure 2). The northern flank is covered with a stand of young deciduous trees and moderately dense underbrush. Trees close to the scarp, particularly those higher up the flank, are stunted or dried out, clearly indicating a lack of soil moisture. The slope is exposed to the north. Except for the two anomalies at the faults (Plate 1), it is fairly smooth. A few old tree stumps lean up to ten degrees into the slope and the lower parts of some trunks are bent outwards from the slope. The slope ends at CL-16 in old, progressive slide material.

The southern flank which is exposed to the southwest, is free of shrubs and trees but is covered with grass. Its inclination varies with the type of underlying materials. The slope is shallower in the lacustrine silts, clays, and in the highly fissile black shales under the tills, and steeper in the tills. The cliff-line, or edge, is bevelled between CL-4 and CL-6 and is increasingly separated into parallel enechelon turf strips as one approaches the scarp. No cracks are visible further down the cliff-line.

In plan the crest, or crown-line, together with both clifflines, resembles a right-angle V with its axis pointing northeast. Its total length is approximately 180 feet. In more detail the entire crest projects as a series of concave inward lines, each spanning

Figure 4. Central section of scarp and crown.

Figure 5. Columnar till and lacustrine silts and clays on northern scarp.

Figure 6. Upper central and southern scarp.

a section of material of different properties. The ends merge imperceptibly with the slopes. The southern limb of the crest projects as a shallow zig-zag pattern to CL-1 and disperses beyond peg 20. All points that lie south of a straight line that connects CL-1 and TPB on the northern limb deviate little from a straight line.

The Scarp

It was indicated earlier that different materials underlie the flanks and crown. The upper members of the Edmonton Formation, till and

glacio-lacustrine deposits are clearly exposed along much of the 50foot high scarp and control the angle of repose. However, this scarp
is structurally interrupted along a long talus slope between TPB and
TPF (Figure 4), a point on the highest part of the slide head. A
talus wedge, the thickness of which is largely related to the quantity
of debris available, skirts much of the scarp and obscures the contact
line with the head.

The slope of the scarp changes for each type of material exposed. The central portion increases with silt content from 35 degrees at the top to 45 degrees at the till contact (Figure 6). In the area between CL-6 and peg 2 the slope is steeper and appears to have sagged considerably. Cracks and large voids between blocks of till seem to point to a disturbed zone beneath the surface (Figure 7). Indeed, a vertical displacement of almost 8 feet was measured where material to the south is on the upthrown side.

South of CL-8 is another crease, where a downward displacement of 4 inches with respect to material to the north, could be measured. The silt beds immediately above the till point between CL-8 and peg 4 stand vertically for several feet before they grade into clayey beds that assume an average angle of repose that ranges from 25 to 40 degrees (Figure 5). The ground surface east of CL-8 is irregular. Thus a large block has dropped between CL-6 and CL-8. It is worth noting that the surface between CL-6 and CL-7 has dropped 2 feet only, and not 8 feet as measured on the scarp.

A relatively major shear fault zone due to earlier sliding was exhumed west of peg 2 and between pegs 3 and 5 (Figure 7). This fault is in line with and is the cause of the depression trending east through CL-7. It is dipping steeply to the north and disappears

Figure 7. Fault zone below peg 2; left portion of photograph.

under the talus slope below.

The contact between the silt beds and the tills below is sharp and conformable. It is dipping several degrees southeast on the north side and one to two degrees on the south side of the scarp. The upper till is tough, medium grey, desiccated on the surface, and 7 to 9 feet thick. It rests on a thin irregular sheet of well-sorted sand, probably the Tofield Sands. On the south scarp it is a vertical continuous wall but on the north scarp it is columnar (Figures 4 & 5).

The lower till is dark grey and lightly stained, weak and finely fissured and rests at angles of between 35 and 55 degrees. It is mostly covered with fine debris. The contact with the Edmonton Formation below is nonconformable (Figures 8 & 9).

The attitude of the Edmonton Formation outcropping below the tills is also very difference on both sides of the scarp. On the north side sandstone beds striking northeast and dipping 18 to 20 degrees easterly make an unconformable contact with the tills (Figure 10). Between pegs 44 and 46 a wedge of till, sandstone and tuffaceous shales has slid down some ten feet (Figures 10 & 11). The exposed triangle within CL-16, pegs 44 and 54 is covered with bentonitic deeply weathered light grey shales and clay-ironstone pebbles (Figure 33). This surface appears to be paralleling a continuation of the cutbank along trench A. Dragged-along material of the same type is found below this triangle.

On the south scarp the Edmonton Formation reaches a higher elevation and exhibits finely fissured mauve shales and buff to light grey bentonitic and tuffaceous shales above the salt-and-pepper sandstone. These beds dip 6 to 8 degrees to the east. The contact with the tills above is nonconformable. The scree-covered shales rest with a slope of 42 to 45 degrees whereas the sandstone bulges to stand up to 80 degrees east of peg 13 (Figure 12). In the middle of the bentonite-rich sandstone is a porous, calcite-cemented, erosionally resistant, cross-bedded sandstone which does not yet protrude.

A striking feature is a thick lens of sandstone within the shales above the sandstone beds between pegs 10 and 11 (Figure 10).

Its beds and contact planes strike east-west and dip 23 degrees north.

The upper contact is nonconformable with shales but the lower contact

Figure 8. Paraconformable contact between till and sandstone on northern scarp. Note difference in slope between tills.

Figure 9. Upper till, lower till and sandstone. Note deformed layers of silt embedded in lower till, rills on talus apron.

Figure 10. Till-sandstone contact exposed along northern scarp.

Figure 11. Wedge of till above sandstone and tuffaceous shale on northern scarp.

Figure 12. Sandstone and overlying fissured shales of southern scarp.

is unconformable, seperated from the shales by a 1/2 inch thick zone of slickensided shales. The shales below this thin zone are dipping 6 to 8 degrees to the east. At both ends is a sequence of interfingered wedges, dipping under talus to the north and bending down to the south to conform with the locally prevailing attitudes.

Much of the centre portion of the scarp is covered with a siltand till, sandstone and shale talus apron of increasing thickness downslope (Figures 4 & 7). The location of formation contact planes and
the fault zone could be guessed only. Similarly, much of the contact
along the top of the head is concealed under a wedge of this debris.
The largest particles fringe the lowest strip of the debris cone.

The Head

There is one large, voluminous head below the scarp. No minor scarps were noticed elsewhere on this head. Its surface is generally sloping downhill at low angles. Shrubs and trees often indicate the amount of tilting due to sliding. In plan it is halfmoon shaped and breaks off sharply to the west along the 157-foot contour line. The maximum downward displacement of the head is 60 feet, its lateral displacement westward some 70 feet, and its backward rotation at least 7 degrees, as measured from the till-silt contact under TPF.

On the northern part of the head large, curvilinear shear and separation fractures are common (Figure 13). Till underlies most of the area, and lake deposits cap the east-central area. A 3-foot deep graben clearly marks the northernmost edge of the head and disappears under the talus. It does not reappear on the south side. Going southeast, from peg 54 the graben is at first 10 feet wide and 6 feet deep, then it widens to 25 fect in a depression at auger hole D-1, and then it rises until it finally disperses somewhere between pegs 30 and 31.

The Body

One half of the entire area within the slide is occupied by a broad body of much-deformed, broken slide material. Its widest section spans 220 feet between CL-16 and peg 74, and over 120 feet in plan along line C-C, between the 157-foot and 98-foot contour lines. Its average slope is 25 degrees.

The topography allows the body to be divided into two distinct sections: a smaller section in the northern area (Figure 14) and a larger section in the central and southern area (Figure 15). The upper

Figure 13. Tension cracks common on northern part of slide head that is underlain by till.

portion of this northern area has a steeper and more variable slope than the lower portion. Its surface is fractured and quite rough, with blocks of sandstone outcropping, as for example around peg 57 (Figure 16). The strip between TL 22-23 and peg 56 is also quite steep, but the disturbed shales that outcrop here dip southerly at 25 to 28 degrees and are not completely disjointed (Figure 17). The lower portion is relatively smooth, evenly sloped, and lightly vegetated (Figure 14).

A 30 to 50-foot wide, very sandy and evenly sloping strip south

Figure 14. Northern section of slide.

Figure 15. Central section of slide.

Figure 16. Outward wedged blocks of sandstone and bentonitic shales.

Figure 17. Outward wedged and dipping beds of bitum; hous, bentonitic shales that are not completely disjointed.

of the area just described is a transition zone to the major and later slide. It is marked with a slight topographic indentation and with a few low diagonal ridges traversing its upper part (Figure 14). Sandstones mixed with light grey bentonitic shales are present here. In the middle, between pegs 86 and 92, are a few blocks of vegetated till. The lower portion steepens to 44 degrees down to peg 121 but levels out at peg 123. The principal surficial rock is salt-and-pepper sandstone of the Edmonton Formation, interspersed with fragments of light buff bentonitic shales.

Quite distinct from the outcropping slope materials described so far is much of the surficial material on both sides of line C-C (Figure 15). Most of it, in the upper portion, is till that thins out in a veneer of vegetated tilley debris downslope, and has occasional windows of silt and shale. The lowest strip exhibits highly disturbed shales, sandstones and clay-ironstone concretions but no till. All surface material has drifted and separated to some extent.

The edge of the head north of line C-C is distinct and straight but becomes indistinct and interrupted to the south of this line.

Downslope the topographic contours become more and more curved, convex outward, with three transverse ridges evident. From the indistinct edge of the head, the till has drifted apart as thick blocks in a southwesterly direction (Figure 18), and rapidly wedges out to the south. The mauve shales and buff Lake Edmonton deposits outcrop at only two locations. Downward from the black shale window around peg 80 the till in its original state wedges out and carries on as a wasted, vegetated veneer almost to the toe near peg 110. Below the edge of the

Figure 18. Blocks of till separating from edge of slide head.

veneer, shales and sandstone can hardly be distinguished at the surface. Later, bulldozer cuts revealed a maze of variably tilted blocks dipping generally towards line C-C.

The uneven southern edge grades indistinctly into relatively undisturbed rock. Only near pegs 20, 73, 74, 101, and 103 do shear and tension fractures delimit the margin of the slide. A distinct scarp between pegs 97 and 120 clearly delineates a short section of the boundary (Figure 19). The contact with the foot, however, is almost everywhere clearly defined as a near horizontal line which is the result of the intersection of the sloping body surface and the essentially level foot surface. This boundary line ends at peg 103 to the south and peg 123 to the north. A variety of surface and freshly exposed near-surface materials is illustrated in Figures 20 to 26.

Figure 19. A sharp break (left) between the transition zone and the main section of the slide body.

Figure 20. Shale pinnacles near foot of slide. The outcropping rock mass appears disrupted and mixed.

١ ,

Figure 21. Mixture of shales and calcareous sandstone on lower transverse ridge.

Figure 22. Shales and fractured sandstone just below surface of lower transverse ridge. Here, the rock mass is fractured only.

Figure 23. Bentonitic shale and till exposed in main section of body.

Figure 24. Bentonitic shales exposed in upper main section of body.

Figure 25. Bentonitic and tuffaceous shales exposed under veneer of till.

Figure 26. Shales and sandstone exposed in centre of main section of body.

The Foot

The foot rests entirely in the abandoned stream channel. It is quarter moon shaped in plan, it holds two shallow bodies of water in the large inner depressions, and its elevated but broken toe, or rim, tucks into both sides of the major slide. The surface is weathered such that all the more elevated knolls or swales clearly exhibit tension fractures (Figures 27 to 30), and loose fine grained sediments is washed into depressions, often burying the original surface (Figures 31 & 32). The ponded water is surface runoff and is therefore constantly turbid, with colloidal bentonite clays that do not settle sufficiently before the next downpour of rain washes more clay sized particles into these ponds. During the winter season evaporation and seepage has been observed to reduce this water level by more than 8 inches. Vegetation in the foot area is young and scant.

Surficial material is generally moister and softer than material anywhere else in the slide. It is also well mixed and perhaps remolded in places. Sandstone, shales, concretions, and calcicemented sandstones are present as an unsorted disoriented mass of blocks (Figure 30). Coal outcrops in noticeable quantity south of peg 133 only (Figure 28 & 32). It is derived from the coal seam exhumed at the 120-125 foot level in the A-line trench. Partings of coal derived from very thin lenses under the sandstone member are found around pegs 139 and 126. Clay-ironstone fragments appear to have been scattered like seed grain over many parts of the foot and buoyed up in other areas without forming a clearly decipherable pattern.

It is worth noting that the toe along the northern end is rough, steep and overlaps earlier slide material as is indicated by overrun shrubs, whereas along the southern end of the foot undisturbed

Figure 27. Fractured swale on foot of the slide.

Figure 28. Open fracture on foot. Coal seam is exposed.

Figure 29. Open fracture on foot filled with stagnant muddy surface water.

Figure 30. Fractured low relief knoll on swale of slide foot.

Figure 31. Mud filled cracks around partially disintegrated swale blocks.

Figure 32. Disintregrated coal and bentonitic shales on foot of slide.

vegetation gradually increases with proximity to a body of standing water towards which the ground slopes fairly gently and evenly so that the two materials could not be clearly differentiated. The western strip of the toe drops only slightly because it onlaps sharply against a broad ridge of gravel tailings.

Observation of Precipitation, Runoff, and Infiltration

Snow accumulated most and remained longest in depressions not directly exposed to sunlight. Larger and deeper snowpacks occur between TL-9 and TL-10, TL-1 and peg 103, around pegs 10, 12, 24, and 53 and between pegs 28 and 54, 97 and 120. These areas remained quite moist until the end of spring. Groundwater seepage near peg 7 under the talus slope was most pronounced right into July, at which time this source of moisture also dried up. A spring-runoff rivulet discharged over the edge of the head, at peg 70, and dispersed between the blocks of till below. No other running or ponded water was observed except that on the foot as described above.

It was observed that after a moderate rain shower a thin sheet of water carried grains of sand and some clay readily some distance downslope on exposed surface. Because the clays swelled quite readily upon wetting and thus sealed the pores (Figure 33), infiltration was less than 1/2 inch on shales but up to 1/2 inch in bentonitic sandstone. After a week of damp weather, water infiltrated no further than one inch.

Another feature worth noting here are the deep hair line cracks in the surficial soils of the original cutbank. Though invisible at the surface these cracks were exposed and traced into the bedrock in trench A. They are almost vertical, thin wet ribbons

Figure 33. Exposed bentonitic shales on most northern end of scarp.

widely spaced but concentrated in portions of deepest overburden.

They don't appear to aid soil creep very much; instead, outward rotation, some toppling over and slumping in behind the cracks seems to be a preferred mechanism of motion.

Frost penetration during the winter was not measured, as frozen ground could not be penetrated with hand tools.

RESULTS OF SUBSURFACE INVESTIGATIONS

Auger Hole and Trench Data

In order to establish a section for correlating bedrock material from the 8 auger holes, trenches A and B were dug. On Plate XI, which illustrates Section A, the shales and sandstones below a fivefoot thick coal seam, at elevation 120 to 125 feet, are quite silty, whereas those above the coal are clayey and often rusty. Clay-ironstone beds are common at elevations of 98, 125, 140, 156, 161-162, and 171 feet. All shales are highly fissile with steeply inclined cracks. Within the large body of shale above the coal bed pure, continuous bentonite seams 1/2 to 1 inch thick were encountered at elevations of 130 and 166 feet. Sandstone outcrops above the 174-foot level. matrix is largely bentonite clays. The bedrock is illustrated in Figure 34. The base of the same sandstone is at the 171-foot level in section B (Plate XII). Here it is $11\frac{1}{2}$ feet thick. In the middle the sandstone is a hard, calcicemented, porous, one-foot thick bed. The matrix contains little clay. Above the sandstone in section B are some 15 feet of mauve, tuffaceous shales with a one-inch seam of tuff at the 196-foot level. This tuff and the mauve shales are absent from the north side of the slide. Some material of the lower portion of this section is illustrated in Figure 35.

Field inspection of samples recovered from auger holes afforded a crude appraisal of the lithology within the slide material (Plates III to X and Figure 36). Generally, the degree of fracturing, shearing, separating and mixing of material was observed to be directly

proportional to the distance travelled downslope from the edge of the head. Material within the head has moved essentially as a single, large block as the structure of undisturbed samples from auger holes C-6, C-7 and D-1 indicated.

Nowhere does the shear surface dip into the slope nor is it uniformly curved. Instead, it consists of as many straight segments as there are types of material along it. The lip, or the lower end line of the shear surface, is 20 feet above the surface of the standing body of water just south of the foot.

Below this lip, material of an earlier slide was encountered.

It is sandwiched between material of the later slide above it and the undisturbed cutbank and alluvium bed below. All of this earlier slide material is broken up and mixed at the contact with the slide material above.

Laboratory Data

All results from tests performed on collected samples are tabulated in Table 3 and plotted with a few exceptions alongside the lithology on Plates III to XII. A direct-shear test on the salt-and-pepper sandstone yielded no conclusive results; but the bentonitic shale just below this sandstone produced consistent results under similar testing conditions. Cohesive strength is low and the residual angle of shear averages 11 degrees. The average angle of rest of the slide mass is 25 degrees whereas the cutbank rests at 42 to 43 degrees.

It may be noted that the natural moisture content in the slide material is slightly higher than that in the undisturbed material (Plates III to XII). The largest gain in moisture content was found in

invariably below the plastic limit in undisturbed material but often at or even above this limit in disturbed material.

Because of distinctive test results found in the various materials both the Atterberg limits and the grainsize distributions were largely relied upon to correlate material from the auger holes with material from the two trenches. In other words, lithologic correlation depended much on mechanical properties and this allowed the internal displacements of the slide to be estimated.

Although the clay-mineral assemblage of rock and soils in the Edmonton area have been established (W. Pettapiece, personal communication, Aug., 1968) clays from a few rock samples were subjected to X-ray diffraction analysis. It was found that montmorillonite was invariably the predominant constituant, followed by chlorite and illite. (Table 4). The bentonitic seams at the 130 and 166-foot levels consist almost entirely of montmorillonite. Liquid limits of bentonite from these seams also indicate a high percentage of this swelling sensitive clay. Although the montmorillonite content of the clay matrix in the sandstone was high, the proportion of sand, with respect to the total mass of a sample, was too high to permit Atterberg Limits to be run.

CHAPTER FOUR

INTERPRETATION OF RESULTS

Surficial Morphology

Sufficient data were gathered and observations made to allow an interpretation of many of the surficial features. The major parts of the slide are discussed below and their areal extent is shown on Figure 40.

General Environment

To the south of the slide, the cutbank is now stable as compared to the cutbank to the north of the slide where material from above the 130-foot level bentonite seam has flowed out and been removed through stream erosion.

East of the crown the undulating topography might be due inpart to sliding material. Some indication of earlier movement in
this area is provided by the dip of the rocks which is generally steeper than the regional dip.

On the north flank a zone of slumped and actively creeping blocks was noticed. Three north dipping shear zones were observed that are believed to be related to the above movements. In contrast to this, no sign of internal movement was noticed on the south flank which is therefore considered relatively undisturbed.

Scarp

The scarp is basically a spoon-shaped surface bounded on the uphill side by a sinuous crestline. As the map shows the crestline is actually made up of a series of linked crescents which are concave

downslope. The junction between crescents corresponds to boundaries between rock types suggesting that the crestline configuration is related to the present state of internal stress of each of the rock types.

The scarp is recessed into the normally consolidated lacustrine silts and clays that rest on top of the tills. The major reason for this indentation into the middle of the cliff is probably the lack of adequate lateral support of the weak material in the two shear zones that run through CL-7 and CL-8. The larger one of these zones also affects the tills, the shales, and the sandstones below.

The difference in appearence of the upper till between the two sides of the scarp is due to several factors. As noted earlier material on the north side is slumped and therefore more likely to be fractured internally. This allows deeper infiltration of surface water, particularly through the upper till into the clean sands below. Greater exposure to the sun's radiation and thus losses of moisture from the surface is much more pronounced on the north scarp than on the south scarp. Furthermore, trees on the north flank draw large quantities of water during the growth season thus tending to lower the moisture content of the till.

The sand layer between the tills is unconfined laterally at the scarp surface so that the first row of columns can shift and tilt enough to open joints and shear planes, and water can move more easily down into the sand. Staining and slaking was observed more than four feet deep into the flank.

In contrast, the upper till exposed on the south scarp revealed no more than small desiccation fractures at the surface of fissured, moist material. It is exposed to little radiation of the sun. Grasses only draw from its moisture during the growth season.

The lower till is softer and more fissured than the upper till and rests at a moderate slope. This could be attributed to the release of internal stresses in the probably overconsolidated material. The same interpretation likely applies to the shales below this till on the south scarp because of the same texture and slope.

The sandstone below the tills is not fissured and appears stable at a steep angle because the loadbearing silica framework can absorb and release relatively large stresses with little change in volume. The clay matrix probably shares little if any of the load and is thus inactive with regard to stress changes within the rock mass. Except for the thin bed of hard, calcicemented, porous sandstone the clay matrix closes the pores on wetting and the soft sandstone turns into an aquiclude. From water wells in the Edmonton area it is known that this sandstone yields water from open fractures only.

Head

The large head has moved as a single block with little internal displacement. The graben to the north is created by a slight southward shift when the whole mass moved down to the west.

The cracks in the northern portion of the head would indicate that the till is quite thick and was no moister than the same material on the north flank at the time of slope failure. The low area around peg 68 indicated a slipout of softer and probably already disturbed bedrock, which probably came from an area near CL-8. Similarly, the low bay west of a line between pegs 25 and 69 indicates a slipout of weak material under the till. The upward turn of the silt-till contact correlates well with the upward turn of that same contact below peg 2. Thus, the large east-west trending block fault is in part responsible for the large depression on the southern part of the

head. In addition, the western edge is ill-defined here; it is shallow and disrupted.

Northern Portion of Slide Area

The triangular area east of CL-16 and peg 54 is believed to represent the scar of surficial slip. The extent of weathering and vegetal growth (Figure 45) supports this interpretation. It is possible that this area is an irregular part of the cutbank.

Immediately west of this area is a zone of blocky, fractured and sheared material from the Edmonton Formation. It appears that the head has dragged along and wedged-outward adjacent material. No subsurface investigation was conducted here so that the configuration of subsurface shear and bedding planes remains unknown. However, judging from the stable talus material below TL-19 to TL-20 and from a mature, not displaced deciduous tree near TL-20, the slide wedge and slide surface are not as deep here as to the south along line C-C below TPF.

Transition Zone

Subsurface investigations were not conducted in the transition zone (Figure 40) but, with the deep head above, the plane of fail-ure is expected to be at a depth of approximately 30 feet, which is a relatively great depth.

The diagonal ridges striking northwest (Figure 3) are interpreted as resulting from lateral spreading during sliding.

Central and Southern Portion of Slide Body

The surface is generally convex slope-downward and crossed by three transverse ridges. These ridges closely respond to the internal geometry slope downward beneath them (Figure 40, Plates 1 and II). One or perhaps two such ridges could be expected to develop during a single slide but the third, and lowest, ridge appears to be due to an earlier slide. Part of this material was later bull-dozed along and mixed with the material of the most recent slide.

Considering the shallow depth and slope of the scarp the slumped material from either slide cannot be thick. The total thickness of slumped material is probably less than 50 feet and half that thick under the foot. Thus, the slide surface is shallow enough to allow it to be roughly visualized from the surface configuration. As Plate II shows the shear planes are more frequently encountered farther downslope. The sheared material is believed to rest on the original cutbank and on the wedge-shaped plane of failure of this slide on which the head rests. This interpretation is based on the cross-section (Plate II) discussed further in a following section.

Foot

The morphological configuration of the foot suggests that the availability of water in the abandoned channel contributed substantially to the spreading and thorough mixing of chunks and fragments of bentonitic sandstone and shale. The lateral spreading of the larger chunks is especially well documented in the low interripted outer rim. The high degree of mixing is evident with the absence of any stratigraphic pattern, however faint, on the surface.

Ponded water and a confining bank of worked terrace alluvials are largely responsible for the almost level surface of the foot.

Coal, from the 120-125 foot level seam, outcrops near peg 133 and provides the only measurable displacement of material from undisturbed beds in the cutbank. The absence of this coal elsewhere on the surface of the foot suggests that the coal was buried by slide materials from above the seam. The erratic spatter of coal found in the northern area of the foot is associated with sandstone that is exposed in the north scarp near peg 34.

Anomalous Sandstone Lens

The peculiarly downward-bent sandstone lens between pegs 10 and 11 does not appear to have been deformed by recent stress changes. It could hardiy be attributed to slumping because the stresses to cause such a large deformation are believed to be much greater than could possibly be provided under present conditions. Alternatively, ice pressure during glaciation seems to be a more plausible factor. Under streses of several thousand feet of ice, softer material would yield, deform and consolidate more readily than a harder material, particularly in locally anomalous facies. It is thus speculated that perhaps the entire failed area to the north of the slide area was somewhat altered during glaciation and weakened more when variable strains on rebound would have induced differential stresses. Therefore, the east-west trending shear zone, for example, through CL-7 could in part be attributable to this initial weakening of rock material, and the anomalous sandstone lens below is evidence of a large differential shift in this material.

Stress Relief

Material near the surface is fissured and slickensided.

Much of this is caused by a significant reduction of lateral confining pressure and accompanying strain. Water entering the fissures is adsorbed by swelling clays that then exert a swelling pressure against confining material.

It was found that the natural moisture content was slightly higher in the slide material below the till than in undisturbed bedrock. (Plates III to XII). This is mainly attributed to increased porosity created by a general major stress relief and accompanying strain expansion in the compressed rock material. Skempton (1948) referred to it as strain softening.

Subsurface

The cross-section C-C (Plate II) was constructed from auger hole data. The correlation of the strata between holes and definition of the subsurface structure was achieved mostly by the use of texture, color, and Atterberg limits. In addition, the surface morphology significantly assisted in delineating the trend and especially the frequency of shear planes between the wedges and slices below the head. Unfortunately, no reconstruction of the internal structure of the slide west and a little east of hole C-4 was possible, but the surface configuration of form and material suggests that no very large blocks are left intact.

The plane of failure is well below the weathered zone which is 6 feet deep, extends east almost horizontally from the cutbank surface into the slope for about 70 feet when it meets the scarp surface that has a grade of 55 degrees from the horizontal. It is not a simple plane of failure of a fixed or uniformly varying

radius of curvature, as is commonly observed in failed slopes of homogeneous or isotropic material. It also should be noted that nowhere is the plane of failure dipping into the slope. This is mainly due to the horizontal, saturated, bentonite-rich zone of shale. Only active earth pressures and large, resisting friction stresses can account for the steep angle of the plane of failure of the scarp. The probable absence of excess pore water pressure allows for such steep angles. It is probable also that the shear plane has maintained the steep angle through the lower till and become vertical through the upper till and the lacustrine deposits. These have then collapsed to deposit the talus apron on the scarp above the head and to leave a stable slope below the crest.

From the description above it is evident that failure of the slope here originated within the highly overconsolidated bent-onitic shales of the Edmonton Formation. The high internal stresses and heterogeneous lithology prevented the plane of failure from reaching a great depth. In addition, it is emphasized that the varying internal friction stresses, the load stresses, and stresses due to pore water, just before and at the instant of slope failure, determine in essence the configuration of the plane of failure.

Groundwater

In the absence of data on groundwater its involvement in this landslide remains speculative. No water was found except in Holes C-1, C-2, and C-3. This data was far from sufficient to even guess at the water table location and configuration anywhere within the slope, not to mention groundwater motion.

Instead, the bedrock structure and estimated relative porosity of the material were used in order to arrive at some workable model of groundwater motion and its effects on the medium

under various conditions. Calcicemented sand and rust staining are indicators of active groundwater movement. Open joints in the coal bed can readily transmit groundwater. Shaley beds and lenses of very low permeability separate beds of higher permeability which are usually identified with rust staining or noticeable clay-ironstone concretion content. This alternate bedding is quite frequent though unequally spaced. When montomorillonite clay is hydrated with water, it tends to swell and seal pores, exsert pressure on surrounding material so as to assist slope failure. Thus, if the effects of meltwater or groundwater was among the final factors triggering this landslide, slope failure most likely occurred during or after a wet spring.

Future Slope Failure

There are no signs within the immediate slide area that point to another massive slope failure in the immediate future since the toe is loaded while the head and crests to the south are low. The weaker zones appear to be sufficiently stable, on the one hand, to safeguard against failure, making the slide mass, at least, temporarily stable. On the other hand, there is ample evidence that mass wasting on a smaller scale takes place. Largely as a result of agents that influence surficial weathering and mass wasting, debris, scales and occasionally a block of sandstone or column of till break loose from the scarp and come to rest on the talus apron. Pieces of sod also drift a little from time to time and material on the north flank is creeping. Within the slide mass only the recently cut banks are shifting into a stable position. During the cold season no shifting of any material was detected.

Removal of any material from the bottom of the cutbank however, will tend to make the slope unstable again.

CHAPTER FIVE

EVOLUTION OF THE SLIDE

The internal stress history of the materials studied is: 1) compression due to loading of sediments deposited during late Cretaceous and early Tertiary times; 2) partial release of these stresses by removal of overburden through extensive land erosion; 3) recompression by a thick ice sheet; followed by 4) some stress release when the Pleistocene ice melted away; and 5) the release of stress, laterally was produced by a channel that was rapidly carved out by meltwater from the ice. This channel is now occupied by the North Saskatchewan River (Figure 38.1).

The slide scar, to the north of the slide area, is believed to predate a terrace at its foot, because no slide material was found on the terrace. The terrace, which is wide, gravel capped, and about 25 feet above the present river level, has been dated as at least 6500 years old (Westgate, 1969). The water table in the slide area remains low throughout the year, showing only slight sasonal fluctuations. It is, however, above the terrace level, as indicated by the ponded groundwater in the depressions on the terrace. The water table is highest during the frost free period.

Approximately 25 years ago, based on the appearance of the pit, gravel was removed from the toe of the slope, probably, when the ground was unfrozen. This removal of the toe load, at a time when the groundwater table and therefore the hydrostatic pressure are high, probably was the triggering mechanism for the landslide. The mass slid horizontally, slope-outward, on a weak, bentonite-rich zone, at the piezometric surface. As the mass slid outward, sections on the west

side collapsed into the water-filled gravel pit. The east side of the uppermost portion of the wedge block collapsed into the open space behind it (Figures 38.2 to 38.5). Some material from the cliff, and part-cularly from the crown, has since broken away and formed the talus apron.

Figure 38.1

Figure 38.2

Figure 38.3

Figure 38.4

Figure 38.5

CHAPTER SIX

SUMMARY

With detailed mapping of surficial materials, topographic and structural features, followed up by trenching, drilling and logging, and finally by tests on over four hundred samples, the motion of the slide with respect to its surficial expressions could be established. Factors causing this slope failure were suggested.

The slide area is located eight miles southwest of Edmonton, Alberta, on an abandoned cutbank of the North Saskatchewan River. The 150-foot high slope faces west. The slide is 220 feet wide, 320 feet long in plan and up to 50 feet thick. The large head has descended 60 feet into a graben, moved outward 70 feet, and tilted backward 10 degrees as indicated by shrubs, and trees as well as borehole information, and the study of surficial material. The few cracks on its northern surface indicate minor internal shearing. Depressions along the southern edge of the head, point to material with greater displacement some distance below the surface. A graben is formed only along the northern rim, which indicates predominant movement away from the scarp.

Some material has also wedged outward in the northern portion. The sharp edge of the head is related to the lower end of the shear surface, encountered near the bottom of the auger hole C-4.

The bulk of the slide material is beyond the edge of the head. This is the body on which there are three transverse ridges, or swales, with only the lowest one clearly exhibiting a variety of tension fractures on exposed subsurface material. Till blocks have slid down to almost the lowest ridge.

The moon-shapped foot and toe which rest almost horizontally in the water-filled trench, is encompassed by a broken and tension-fractured, rim.

The materials involved in this landslide are, from top to bottom, Lake Edmonton silts and clays, a columnar, desiccated upper till, a softer and fissured lower till, and from the Edmonton Formation black, mauve and bentonitic shales that are absent under the north flank tills, a thick bed of bentonitic sandstone, a thick sequence of thin-bedded, fissile, bentonitic, concretionary, and sometimes silty shales, a 5 foot thick bed of coal, and silty, sandy and sometimes bentonitic shales below this coal.

Several factors are thought to have influenced the stability of the material in this area. An early and major factor responsible for setting the stage for slope failure, is overconsolidation of rock material that now tends to release presumably large stresses and becomes strain softened. Added to this state of stress, are the stresses left from differential reconsolidation by a thick sheet of ice that has melted away at the close of the Pleistocene Epoch.

Among the more recent and readily detectable factors affecting slope stability are stream cutting that formed the cutbank, fissuring and weathering of exposed material, and some minor local faulting. The steepness of the slope certainly is a major factor contributing here to slope instability. A fault zone trending orthogonally through the upper central portion of the scarp, not only interrupted and thus weakened the slope, but also allowed meltwater to accumulate and build up a hydrostatic head in its large open spaces, probably during spring thaw. Furthermore, montmorillonite clay tends to swell on addition of water, but in a confined environment it converts part of its ability

to expand into pressure that readily weekens its resistance to shear stresses. Removal of the toe load is in this case credited with triggering the slide.

Slope failures in overconsolidated heterogeneous material are typically shallow and wedge-shaped. Borings along a central line have not entirely confirmed this assumption here, but investigations of slides in central Alberta invariably demonstrate a wedge-slide pattern.

A carefully instrumented slope with observation records over many years and continuous sampling of material from many strategically placed holes would reduce guesswork and permit mathematical treatment of the problem. It is estimated that the large outlay for such an undertaking might be feasible in the case of a slope which is about to fail and threatens the safety of a structure such as a bridge abutment or some other property.

SELECTED REFERENCES

- Alden, W.C., (1928): Landslide and Flood at Gros Ventre, Wyoming;

 Amer. Inst. Mining and Metallurgical Eng., Technical

 Public. No. 140, Trans., Vol. 76, pages 347-361.
- Aronovici, V.S., (1947): The Mechanical Analysis as an Index of Subsoil Permeability; Proc. Amer. Soc. Soil Science, Vol. II, pages 137-141.
- Baker, R.F. and R. Chieruzzi, (1959): Regional Concept of landslide occurrence; Highway Res. Board Buil. 216, pages 1-16.
- Barton, R.H., E.A. Christiansen, W.O. Kupsch, W.H. Mathews, C.P. Gravenor, and L.A. Bayrock, (1964): Quaternary; In Geological History of Western Canada, Alberta Soc. Petrol. Geol., pages 195-200
- Bayrock, L.A. and G.M. Hughes, (1962): Surficial Geology of the Edmonton District, Alberta; Res. Council of Alberta, Preliminary Rept. 62-6.
- Beatty, C.B., (1956): Landslide and Slope Exposure; Jour. of Geology,
 Vol. 64(1), pages 70-74.
- Bishop, A.W., and N. Morgenstern, (1960): The Stability Coefficients in Earth Slopes; Geotechnique, Vol. 10. No. 4.
- Bjerrum, L., (Sept. 1967): Progressive Failure; Amer. Soc. Civil. Eng.

 Journal of Soil Mechanics and Foundation Div., Vol. 93, SM5.
- Brooker, E.W., Aug. (1967): Strain Energy and Behavior of Overconsol-idated Soils; Canadian Geotechnical Journal, Vol. IV. No.3.

- Brooker, E.W., and H.O. Ireland, (1964): Earth Pressures related to Stress History; Can. Geotech. Jour. Vol. 2, No. 1.
- Broscoe, A.J., and S. Thomson, (1968): The Devon Landslide, Edmonton,

 Alberta; University of Alberta, Edmonton, Unpubl. Report.
- Bruce, R.L., (1966): Landslides in the Pierre Shale of South Dakota;

 Proc., 17 th Annual Highway Geology Symposium.
- Carrigy, M.A., and G.B. Mellon, (1964): Authigenic Clay Minerai Cements,

 Alberta; Jour. Sed. Petrology, Vol. 34, No. 3, pages 461-472.
- Casagrande, A., (1948): Classification and Identification of Soils;

 Trans. Amer. Soc. Civil Eng. Vol. 113, page 901.
- Collin, A., (1846): Landslides in Clays; translated by W.R. Schiever,
 University of Toronto Press, 1956, 160 pages.
- Department of Civil Engineering, (1968): Report on River bank Stability;
 University of Alberta, Edmonton, Unpublished.
- Elliott, R.H.J., (1958): Subsurface Correlation of the Edmonton Form- 'ation; Edmonton Geol. Scc. Quart., Vol. 2, No. 2, pages 1-8.
- Elson, J.A., (1960): The Geology of Tills; Fourteenth Canadian Soil

 Mechanics Conference, Froc. Techn. Mem. No. 69, pages 5-35.
- Freeze, R.A., and P.A. Witherspoon, (1967): Theoretical Analysis of
 Regional Groundwater flow. II: Effect of Water-Table Configuration and Subsurface Permeability Variation; Water
 Resources Research, Vol. 3.
- Grim, R.E., (1949): Mineralogical Composition in Relation to the

 Properties of Certain Soils; Geotechnique, Vol. 1, No. 3.

 Pages 139-147.

- Hardy, R.M., (Sept. 1957): Engineering Problems Involving Preconsolidated Clay Shales; Trans. Eng. Inst. Can.
- Shales; Highway Research Record, No. 17.
- Consolidated Clays; Engineering Journal, Montreal, Vol. 45, pages 81-89.
- Hemwell, J.B. and P.F. Low, (1956): Hydrostatic Repulsive Force in Clay Swelling; Soil Science Soc. Amer., Vol. 82, pages 135-145.
- Henkel, D.J., and A.W. Skempton, (1955): A landslide at Jackfield,

 Shropshire, in a Heavily Over-Consolidated Clay;

 Geotechnique, Vol. 5, pages 131-137.
- Kenny, T.C., (1963): Permeability ratio of repeatedly layered soils; Geotechnique, Vol. 13(4), pages 325-333.
- Ladd, C.C., (1959): Mechanism of Swelling by Compacted Clay: Highway

 Research Board Bull. 245, Pages 10-26.
- Locker, J.G., (1969): The Petrographic and Engineering Properties of

 Fine-Grained Sedimentary Rocks of Central Alberta; Unpublished

 Ph.D. Thesis, Univ. of Alberta.
- Mitchell, R.H., (1941): An Unusual Landslide; Jour. of Geol., Vol. 49, pages 382-391.

- Mocum, J. and I.I. Rosenquist, (1961): The Mechanical Properties of

 Montmorillonite and Illite Clays related to Electrolytes of
 the Pore Water; Proc. 5th Intern. Conf. Soil Mech. and

 Found. Eng. Vol. 1, pages 263-367.
- Ower, J.R., (1958): The Edmonton Formation; Edmonton Geol. Soc. Quart.,

 Vol. 2, No. 1, pages 3-11.
- Painter, W.P., (1965): An investigation of the Lesueur Landslide;
 Unpublished M.Sc. Thesis, University of Alberta.
- Peck, R.B., (July 1967): Stability of Natural Slopes; Amer. Soc.

 Civil Eng. Jour. of Soil Mech. and Found. Div., Vol. 96,

 SM4.
- Pennell, D.G., (1969): Residual Strength Analysis of Five Landslides;
 Unpublished Ph.D. Thesis, Univ. of Alberta.
- Peterson, R., J.L. Jasper, P.J. Rivard, and N.L. Iverson, (1960):

 Limitations of Laboratory Shear Strength in Evaluating

 Stability of Highly Plastic Clays; ASCE Research Conf. on

 the Shear Strength of Clays, Denver, Colo. pages 765-791.
- Scott, J.S., (1965): Landslide Investigations, Saskatchewan and Alberta;

 In Jenness, S.E. (Comp.), Geol. Surv. Can., Paper 65-1,

 pages 85-87.
- Scott, J.S. and E.W. Brooker, (1968): Geological and Engineering

 Aspects of Upper Cretaceous Shales in Western Canada; Geol.

 Surv. of Canada, Paper 66-37, 75 pages.
- Seed, H.B., J.K. Mitchell, and C.K. Chan, (1962): Studies of Swell and Swell pressure Characteristics of Compacted Clays; Highway Research Board Bull. 313, pages 12-39.
- Sharpe, C.F.S., (1938): Landslides and Related Phenomena; Columbia.

 University Press, New York, N.Y., pages 83-87.

Sharpe, C.F.S., (1960): Landslides and related Phenomena; Pageant Books, Inc. N.J., 137 pages. Sinclair, S., E.W. Brooker, (1967): The Shear Strength of Edmonton Shale; Proc. of the Geotechnical Conference, Oslo, Vol. 1, pages 295-299. Skempton, A.W., (1948): The Rate of Softening in Stiff, Fissured Clays, with special Reference to London Clay; Proc. of 2nd Intern. Conf. on Soil Mech. and Found. Eng. Rotterdam, Vol. 2, pages 50-53. ., (1961): Horizontal Stresses in an Overconsolidated Eocene Clay; Proc. 5th Intern. Conf. on Soil Mech. and Found. Eng. Vol. 1, page 351. Terzaghi, K., (1925): Erdbaumechanik; Leipzig, physics, and Vienna, Franz Denticke, pages 353-357 and 382-384. __., (1929): The Mechanics of Shear Failures on Clay Slopes and the Creep of Retaining Walls; Public Road, Vol. 10, No. 10, pages 177-192. ., (1950): Mechanism of Landslides; In Application of Geology to Engineering Practice; Berkey Volume, Geol Soc. of America, pages 83-123. ., and R.B. Peack, (1967): Soil Mechanics in Engineering Practice; John Wiley and Sons, Inc., N.Y. pages 232-255. Thomson, S., (1963): Effects of Salt Content and Adsorbed Cations on the Shear Strength of a Remolded Highly Plastic Clay Soil; Unpubl. Ph.D. Thesis, University of Alberta. _., (1971): The Lesueur Landslide, a Failure in Upper Cretaceous Clay Shale; Ninth Annual Symposium on Engineering

Geology and Soils Engineering, Boise, Idaho, April 1971, pages

1-25

- Varnes, D.J., (1958): Landslide Types and Processes; <u>In Landslides</u>
 and Engineering Practice; Highway Res. Board Spec. Report
 29, pages 23-26 and 42-45.
- Ward, W.H., (1945): The Stability of Natural Slopes; Geog. Jour.

 London, Vol. 105, No. 5-6, pages 17-197.
- Warkentin, B.P., G.H. Bolt, and R.D. Miller, (1957): Swelling Pressure of Montmorillonite. Soil Science Soc. Amer., Proc., Vol. 21, pages 495-497.
- Weeks, E.P., (1964): Field Methods for determining vertical permeability and aquifer anisotropy. U.S.G.S. Prof. Paper 501D, pages 193-199.
- Westgate, J.A., (1969): Notes on the Quaternary Geology of the Edmonton Area, Alberta. Field Guide Book, Symposium on Pedology and Quaternary Research, Edmonton, May, 1969. pages 31-55.
- Williams, G.D, and C.F. Burke, Jr., (1964): Upper Cretaceous; In

 Geological History of Western Canada, McCrossan, R.G., and

 R.P. Glaistor (editors). Alberta Soc. Petrol. Geol., Pages

 168-189.
- Young, R.N., and B.P. Warkentin, (1965): Studies of the Mechanism of Failure Under Expansive Soils; Int. Res. and Eng. Conf. on Expansive Soils, August 1965, Vol. II, Texas A and M. Univ.
- Yong, R.N., and B.P. Warkentin, (1966): Introduction to Soil Behavior;

 MacMillan Co., N.Y., pages 151-390
- Young, A., P.F. Low, and A.S. M_cLatchie, (1964): Permeability Studies of Argillaceous rocks; Jour. Geophys. Res., Vol. 69, pages 4237-4247.

APPENDIX A

PHOTOGRAPHS OF TRENCH A AND B

Figure 34. Trench A. Exhumed sequence of most of bedrock underlying slide.

Figure 34. Trench A. Exhumed sequence of most of bedrock underlying slide.

Figure 34. Trench A. Exhumed sequence of most of bedrock underlying slide.

Figure 35. Trench B. Exhumed shale - sandstone contact under slip surface.

APPENDIX B

PHOTOGRAPHS OF AXIALLY CUT SHELBY TUBE SAMPLES

Figure 36.01. Auger hole C-1; axially cut shelby tube samples.

Figure 36.02. Auger hole C-2; axially cut shelby tube samples.

Figure 36.03. Auger hole C-3; axially cut shelby tube samples.

Figure 36.04. Auger hole C-4; axially cut shelby tube samples.

Figure 36.05. Auger hole C-5; axially cut shelby tube samples.

Figure 36.06. Auger hole C-6; axially cut shelby tube samples.

Figure 36.07. Auger holes C-7 and D-1; axially cut shelby tube samples.

APPENDIX C

PHOTOMICROGRAPHS OF THINSECTIONS OF BEDROCK

Figure 37.01. Sample A108.1, 40X. Shale, fine grained poorly sorted poorly structured siliceous calcareous bitumenous.

Figure 37.02. Sample A115.0, 100X. Shale, very fine textured massive.

Figure 37.03. Sample A119.3, 40X. Shale, fine textured poorly sorted poorly bedded calcareous.

Figure 37.04. Sample A125.1, 100X. Clay-ironstone concretion, fine textured calcareous unstructured.

Figure 37.05. Sample A132.9, 40X. Shale, very fine textured finely laminated bentonitic siliceous very fine coally partings.

Figure 37.06. Sample A138.2, 100X. Shale, very fine textured bedded concretionary calcareous some coally fragments.

Figure 37.07. Sample A146.8, 40X. Shale, fine textured poorly sorted disturbed laminated bitumenous ferrugenous.

Figure 37.08. Sample A152.1, 100X. Shale, medium-fine textured bedded siliceous coally fragments.

Figures 37.01 to 37.08. Photomicrographs of thinsections of bedrock.

Figure 37.09. Sample A158.0, 40X. Figure 37.10. Sample A165.6, 40X. Shale, medium-fine textured Shale, medium-fine textured poorly structured large and small sorted laminated bentonitic coal fragments siliceous feldspath- very fine coal particles. ic poorly sorted.

Figure 37.11. Sample A168.0, 128X. Figure 37.12. Sample A172.3, 40X. Shale, very fine textured laminated Shale, very fine grained laminated bentonitic common coal particles. bentonitic common coal fragments.

Figure 37.13. Sample A172.3, 40X. Shale, very fine grained laminated common coal partings bentonitic.

Figure 37.14. Sample A172.3, 40X. Shale, very fine textured massive bentonitic siliceous feldspathic minor coal fragments.

Figure 37.15. Sample A173.7, 40X. Shale, very fine grained laminated bentonitic minor coal particles.

Figure 37.16. Sample B190.0, 40X. Shale, medium to very fine textured tuffaceous slightly calcareous.

Figures 37.09 to 37.16. Photomicrographs of thinsections of bedrock.

Figure 37.17. Sample A174.2, 40X. Figure 37.18. Sample A174.2, 40XNic. Sandstone, medium textured poorly structured siliceous feldspathic trace heavy minerals clay cemented closed framework.

Figure 37.19. Sample A176.2, 40X. Figure 37.20. Sample A176.2, 40XNic. Sandstone, medium textured well sorted poorly structured feldspathic siliceous minor heavy minerals and coal not quite closed framework clay matrix slightly dolopitic.

Figure 37.21. Sample A179.2, 40X. Figure 37.22. Sample A179.2, 40XNic. Sandstone, medium textured well sorted unstructured siliceous feldspathic trace heavy minerals slightly weathered closed framework clay matrix.

Figure 37.23. Sample B182.3, 40X. Sandstone, medium textured massive minor coal particles clay matrix closed framework slightly weathered.

Figure 37.24. Sample S43, 40X.

Shale, medium-very fine grained disturbed laminated fractured coal partings bentonitic.

Figures 37.17 to 37.24. Photomicrographs of thinsections of bedrock.

APPENDIX D

CARTOGRAPHIC PRESENTATION OF VARIOUS ASPECTS OF THE SLIDE AREA

APPENDIX E
PLASTICITY AND ACTIVITY CHARTS

APPENDIX F

DATA AND ROSE DIAGRAMS OF:

MACRO TILL FABRIC OF UPPER TILL,

SOUTH SCARP, AND AZIMUTH OF JOINT PLANES IN UPPER TILL,

NORTH SCARP.

Table 1. Data of macro till fabric of upper till, south scarp

Azi	Dip	Azi	Dip	Azi	Dip	Azi	Dip	Azi	Dip
200	A411110			005			0111115	225	aa cu
030 060	01NNE 0	040 060	05 NE 0	325 015	10 NW 17 N	030 065	O1NNE O	225 080	23 SW 0
055	05 NE	235	31WSW	135	02 SE	235	12 SW	240	18WSW
045	21 NE	300	20WNW	320	02 NW	240	34WSW	240	43WSW
155	0	145	03 SE	015	0	215	07 SW	255	18 W
240	12WSW	240	17WSW	025	02NNE	350	01 N	040	0
270	06 W	015	16 N	200	45 SW	195	20 S	275	02 W
020	04 N	345	18 N	300	32WNW	335	11NNW	040	03 NE
055	08 NE	060	0	185	27 S	005	07 N	005	0
050	36 NE	145	05 SE	080	13 E	030	14NNE	080	06 E

Fig. 49. Macro till fabric of upper till.

Table 2. Azimuth of joint planes in upper till, north scarp

103	062	074	053	104	000	158	009	020	028
142	132	000	068	163	022	022	081	078	

Fig. 50. Strike of joint planes of upper till.

APPENDIX G

TABULATED RESULTS OF LABORATORY ANALYSIS

4-		∞	2	w ru		01.0						\sim	. , ,
% wt	Caic.	3.	77	n n	•	5.2	5.	5.1	w.c.	7.	5.0	n M	5.6
Carb.	Dol.	0.0	1.0	00		1.2	prose 0 proses	-	0.7	0.0	0.0	•	0
rty	Sant Sant	.07.					0		5	.07	0	.03	80.
Property	.•	w					i o		ı ∞	1 2	1	7 -	- 9
	ACT	2.0					2.7		<u></u>	<u>-</u>	 	0.0	6.0
Index	% ¢!	71					92		62	49	57	48	45
V.F.	% dm	23					23		35	28		24	26
Conf. by	%UM	76					5		97	92	000	72	71
Moist C	% vm	• •	• •				• •			W 2 0		• •	• • •
	ಧ	7 ~ 7		none proces			20	0 - 0	000	000	7 - 7	222	10:
	Scew	+.92											
(m)	b '0	∞ 1.	.7			9.	0	20	• •	•	4.1.4	ئ	24
(1/Dmm)	9 9	∞ ~4	_			0	2	~ ~	ı mm	\sim	m 0 m	m	4
	φ wu φ	· · ·	~			00	01		* •		>		_
1092	g ⊠	6.8	4.8			ω ω.	5.2	4.0	• •	ω.	1 W L	2.8	8
<i>₽</i>	জ	6,5	99			00	67	0 kg			63	55	53
r than	တ	58	9			80	63	66			52 73 56 56	94	7 1
coarser	~	52	55		•	77	58	64			44 70 70 70	37	m
wt. co	Ø	457	50			74	54	9,6		~	36 68 42	28	25
%	77.)	33	746			71	6.4	55	7 7	7	27 64 35	20	2
	4	28	37			63	70	74.	•		58	0	7
Scale	M	164	14			28	0 10	7 0			~ W ~	. 2	Ŋ
:	N	20		•		m	0	00	00	O	000	0	
Wentworth		00	0			0	0	00			000	0	0
Wei	0 0	II ()	ပ ပ (υ υ υ υ	ပပ	OI	U U I		# # # # # # # # # # # # # # # # # # #	I O I		
×!	Ď	<i>O 37</i>		,, ,,		-, -,							
i						it tt	ب	ببب			1.		
	in The rice	~ o .	ם ס	nds nds nds	nds nds	nd na	nd al	חק חל שו	ה ה ה	തതത	ם ס ם	<u> </u>	ש ש ש
ple	64	sa	S S		SS	S S	S S	SSS	. <i> </i>	ds single	s s s s s s	rs rs rs	त्र पुर
Sample	7. 51.	10.00	0.1		 	$\infty \infty$	99	000	7 7 7 7	103.3	96.	· 60 c	000

Note: T = thinsection made, X = x-ray analysis run

Table 3. Yest Sasutts of Samples, Trench A.

% m	Calc.		19.0	4.50		97.UU0 97.U00	0. 2. 2. 2. 5. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	
Carb.	Dol. C		- 0	000		00000	1. 0.00 1. 1. 2. 0.00 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Index Property	% Act. 11	0.7337	1.0517	0.9518	0.74	0.8744	3.58 - 01 2.52 - 04 4.52 - 02 1.40 - 11 1.59 - 08	
	% 1p	9 33	9† 9	6 37	7	7 14	8 172 0 176 0 344 6 344 6 95 6 94 6 115	
Moist, Cont. by wr.	WIS WP	2 2	2 2	2 2		<u> </u>	10 0 0 0 0 0 mm 4 m 4 m 4 m 4 m 4 m 4 m 4	
Con	% E	9	7	0 10	70	m 000011-10	5 200 9 216 6 400 5 400 0 135 0 135	
Mois	Wn	• •	, , , , ,		· · · · ·	0 / 0 - / 0 / 1	48000000000000000000000000000000000000	
	Scew a		+.452		:	+.179		
(1/ Dmm)	d way sdo	<u>-</u>	5.8 4.2	27.7	- 7.	6.4 2.8 7.0 2.5 1.5 4.0 1.6	w www w www	
= 10g2	ल वर्ष	8.7	3.9	7.27	• •	v°0.4∞ v°4 v°0.0∞ ∞−	8.6 0.0 9.6 7.9	
~0. 83	G	55	56	65	9	88.5 73 88.5 73 73 86.5 74 73 86.5	52 30 32 41 40	
coarser than	ော	38	752	450000000000000000000000000000000000000	י יע ו	668 498	46 5 23 5 19 5 30 30 30	١
cars	7	23	25 74	4 70 4 70 70 10 00 00	, (2)	65 85 85 85 85 85 85 85 85 85 85 85 85 85	15 41 15 17 17 17 17 17 17 17 17 17 17 17 17 17	
W. C	9	9 0	68	2 7 7 X X X X X X X X X X X X X X X X X	, 01	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 - 20	
% w.	ιΩ.	0 0	(2)	787		7007	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
 ც	3"	- 0	21.7	0 28)	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 2 00 00 00 00 00 00 00 00 00 00 00	
Scale	10	0	350			7 7		
£	63	0	22	0000	, , ,	-00000	00 0 000	
Wentworth	~~	0	0 &	0000		0000 0-	00 0 000	
OF STATE	0 0							
><		OOC	- -	1) = = = 0		× ×	× -	
			•	• •	•	' ئى ئى د	٠.	
ple	Material	shall	shale sands	\$\$4\$h \$\$4\$h \$\$4\$h \$\$4\$h	shale shale	shale sands sands sands sands sands		
Sample	Elev.	•			,	000770000	130.02 13	
	d N	A A A	(< < <	4444	(444		(বেববববববব	

Note: Thinsection of concretionary rock from elev. 125.1'

Toble 3. Test Recuits of Semples, Trench A

ş l		9.	(c:			က				~17			g-reams.										7			9			∞			
%	Calc	77	Ł		ഗ			4.				rų			77							.5	77-		'n	5		4.			4.			'n
Carb.	Dol.	2.		•	w. w	•		0.			0.8	0.1		•	0.7	•	•	•	•	•		0.0	•		0.7	•		0.0		•	0.0	•		0.
14.7	<u></u>		0	O	0		.03			. 15		60.			0	.21	0			80.			.09	0				.24			7	.25	0	
Property		90		<u> </u>	_		12 -			0		9			ى ا	2 -	5			ı ∽			7 -	m							5	- 7	_	
	Act	2.6	•	•	•		2.4			1.7		1.5			•	<u>.</u>	•			2.1			1.7	•				0.0			•	1.2	• '	•
rapul	15 % di	0 0	 (2)			109			80		65				44				87			69					29				38		
V.T.	%d#	32					27			34		32				. 32				28		•	25.	9				23				25		
Cont. by	W1% N	150	7 (7	5		136			114		25				. 9/	2			115			46					52				63		
St.	%	me	χ. (٠ ا	5	•	5.	•	•		•	•	•	•	•	•	•	•	•	.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Moist	W.	26	26	77	25	25	23	25	28	22	24	26	27	20	20	22	23	20	0	2]	21	20	9	2]	6 .	5	17	_	15	17	_		-	
	Scew a																											146					—	.02
(£)	b		•	•	•	•	•		•	∞	•	•			•	7	•	•		•	•	∞	•	•	•	•		.2			•		•	•
(1/ Dimm)	. O	4	~ 1 (~ (7	t	m		-7	7	_	7			c1			_		m	,	2	\sim	\sim	7	7		.53			7	.3		9
~ ~ ·	d Ma	co 1	_ <	Λ.		.	_+		0	∞	7	~ I			\sim I	-1	⊘ i	co.		0	7	9	10	_	D	03		9 0			0	7	_	0
Scl :	भिव्		•	•	•	•	•		•	∞	•	•			•	7:	•	•		•	•	7.(•	•	4	•		7.			•	/	•	•
-O-	C:	52										59				73						61		-				68				70		
then	ന	777							50	40	9	94				56						54						58				9		
ccerser	1-	35								28		35				38						44						50				49		
	φ	26								16						24						33					•	45				7.0		
% wt	အ	17	$\frac{\infty}{-}$						30	9	55					16		61				19						36				3		
	4	0,	9 0	O \	0	26	2)		25	******	49				10	တ	0	55		23	N	7	0	/		34		25				20		
Scole :	n	0	0	0	0	0	~		12	0	16	4			2	\sim	0	25		-	0	_	—	0	-	\sim		_			∞	01		
1	os.	0	0	0	0	0	0		0	0	0				0	0	0	∞		0	0	0	0	0	0	0					-	~ ~~	,	,
Ventworth	413	0	0	O 1	0	0	0	•	0	0	0	0			Ö	0	0	0		0	0	0	0	0	0	0		0			0	0	0	0
Wen1	0		0							0				ere.		0			\Box			0							_		_	0		
	2	ت : ت		ر ا –		<u></u>	ਹ	ပ	$\ddot{\circ}$	$\ddot{\circ}$	S	$\ddot{\circ}$	$\ddot{\circ}$	$\overline{\mathcal{G}}$			$\overline{\mathbf{c}}$	S	S	$\overline{\mathbf{c}}$	ప	$\ddot{\mathbf{c}}$	Ω ⊢	ొ	$\ddot{\circ}$	၁	ప	О Н	$\ddot{\circ}$	င်	င်	T CH	င်	င်
Ϋ́Ι			•		•						•				•	×			•									•				•		
	erio D	<u></u>	رن دن	<u>o</u> .	<u>o</u>	<u>e</u>			-	-	7	-	-	-	-	,	-	∇	∇	-	_	-	~		_	-		_	_	-	_	<u>e</u>		_
	Maie	· _C	sha -		شد	2			_C.		CU	S				-7-	_C_	ത	വ	\Box			-				-5-		SC			sha		
ample		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
So	न हर.	136	137	200	200	140	140	142	142	143	. 143	144	145	146	146	146	147	148	149	150	150	151	152	153	155	156	157	158	158	160	161	162	162	164
ļ	o.v.	A	∢ ∘	X.	A	۷.	A	¥ .	A	Α.	«	A	A	A	<(A	A	A	A	A	A	A	A	V	٧.	V	Α.	A	A	A	Α.	4	A	Þ

Toble 3. Test Results of Scinples, Trench A

هداده				_																	
%	Calc.	17	, r.	•	•	•	5.7	,			•	, ru	•				•		6.7	•	6.9
ું. જ	1	00	2	· <			2				0						9	\sim	, O		•,
Carb.	Dol.	C	, ,		•	2	,	•			2		-	0			_	2	•		0.7
<i></i>	1 ==		60		90	2					90)	05	.							
Property			,	1	ı	i					1	•	1								
à.	Act.		34		.96						.08))	.71								
Index	1 %		r.O	(i)	· —	2 2					3										
	0				0	9							8								
Moish Cont. by wr.	W% Wp%		22	62	30	32					27	•	26								
	%			72	33	24					8		5								
Ö	30	~		m m	_	7	4	∞	0	m	3		p	10	. 7	~			60		. ^
Moist	Vin 9	0	00	•	ω.	20.7	20.1	•	20.0	22.8	20.9	21.0	g	.5	4.1	.3	12.4	3.5	•	10,5	10.6
			•	4			.,	_		(1	(1	(1	(1	14]		1 7	_	ထ	∞	_	2
	Ѕсем а													74		.72		64	.73		.89
(i.	Ь		2	٠	0	.2	∞		Ŋ		9	•	9.	ى ب	_	+ /		+ 4.	2 +		8
(1/Dmm)	80		4.		w)				4)	١	2		2	ω.		4.	<u>.</u>	\sim			w.
	φ Wn φ													5.7		6.1	•	2.0	5.7		5.9
[0g5	73		0		•	5.	•		∞		9.		•	ω.	•	•	.7	.7	•		5.
 -0	8 6		8	4		5 8			7		9 4			3 2							4 2
1	တ		0 5		3 4	N			1 5		9		-17-	0	7	က	∞	9	∞		00
coarser than			ω 5			4		•	3		3		3	လ က	7	∞	/	∞	7		8
5,500	7		4			3	•		4 4		6 5		7	5 7	7	∞	/	∞	7		6 7
wt c	Q		3			7	in		37		9 46			1		1	1	∞	1-		7
%	Cu		7 27				4		2		M			<u></u>	0	7	7	/	9		73
 (0	4				4	ω,	2				23				rV	/	9	7	۷,		69
Scole	30				2		por es		0		_				7	9	7	5	7		-9
i	~				0				0		0			20		Services.	\sim	\sim	M		33
Wentworth			0	0	0	0	0		0		0			_							0
Wen	0	T	0	0	0 H	0	H 0	II	0 H	==	0 H			0 0					0	ပ	O ၁
\ \ \ !	20	ں	<u>ن</u>	ن ><	<u>H</u>	HOL	CH	5	H	5	HO H	3	3	× ×	S	S	N N	S	5	S	S
×			•	•		•					•			-	•	•	•	•	•	•	•
	rici	e	O	ton	o	a	9	e	9	e	e	0	9	ds rt	dst	dst	dst	dst	dst	ist,	ist.
	Materic	sha	sha	bent	sha	ha	sha	sha	sha	sha	sha	sha	sha	sand	san(sand	sand	a C	пe	and	and
aldmo	6				7	0 s	7			9		77						5. S	2 s	5 S	s S
So	Elev.	64.	65.	.99	66.	68	68.	69				72.									
		games of	_	_	_		_	_	p	_		,	prom.	_	p. a. a			_	_	_	_
	d N	A	A	A	A	A	A	Ø	A	A	A	A	A	A	A	A	V	A	A	A	A

Table 3. Test Results of Samples, Trench B

A. 1																												
% wt	Cole.	5.4	•	•	•	•	•		•	•	•	5.1	•		•	•		4.9	•	•	•			•	5.2		4.8	
Carb.	Dol. (0.7	•		•	•	<u></u>		•	တ.	•	0.1	•		•	•	•	0.0	•	•	•			•	0.8		0.7	
1	p-0		0				9										9		7		4							
Property	m-m		+				4.										0.+		+.2		-		0.	0.	-	0.+	•	1
å.	Act.		04.				.42										07.		.90	•	.52		.72	.52	4	.67	7	.65
ndex	%		7		•		5 2	,									72 2		50		0					0		
	41 %		~				∞												m		2					ω ~		
by w	C/M		28				24										25		25		29					28		
Moist. Cont. by wr.	W.%		102				109										97		99		58					59		
sist.	98	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•	•
žI	a Win	28						7		\sim					2		7									28		
	Scew a							0	.85(.826			0	$\overline{\infty}$.026					
6	φ 0	poura	7		2		0	-0	+ 0	- ∞		+ 9			5 0	+ ~	<u>م</u>		0		9		+	0	9	0	9	7
(1/0mm)	D s	4.	2.		ς.		2.	ώ.	4.	ω.		4.				4	Bases on		4.		2.			ω.	ς.	щ		2.
	ψuψ							•	6.1	•		6.3			6.7								9.9					
10g5	W d Ø	8.3	•		8.2		•	•	2.7	•		2.5			•	3.0	•		8.2		9.4		•	•	٠.	9.8	•	•
-0-	<u>~</u>	56	^		36 8		5	7	83	4		79 ;			\sim	 	0		61		5 44		N	0	0	54 8	9	0
than	တ	67	4		64		0	2	80			76			4	79	Ŋ		49		30		9	Ŋ	9	4.1	9	Ń
coarser than	۲۰۰	38			100				.9/			74				76			34		17					30		
	ဖ	30			30				74			71				74			25		7		48	9		9		
% wt	က	22	Ŋ		15				73			69				71			16		4		42	\sim		10		
	4	7	7		7		29		69			63				65			ψ.				35		7	5	10	7
Scale	io.	0	0		0	•	10	01	59			61				50			\sim		0		$\frac{2}{8}$	0	(1)	7	\sim	W.
1	2	0	0		0				8	4		29				50			0		0							
Wentworth	~	0			0				. 2			0) 14			0		0					0		
Wer	0 00	0 H	O	西	0	西			0 08		SC	0 08	J'S	SC		0 05			O	五	0 H	X.O				CH O		
×	ر ا								├	ν,	ν,	,	ν,	•		⊢					X	,	•		~			dens
,,	*		•						٠,	٠,	s s		٠,								•	٠,	ţ					
	Material	a e	a e	aie	ale	ale	ale	ale	spu	spui	C	spu	spu	na	lts	pu	ā	a	<u></u>	_ _ _	σ	7		σ	a le	Ø		a e
pla	Z	S		က	Sh	S	s sh	sh (sa (sa) ca		S	S	S	Ŋ	S	sh (S	S	S		S	S	S	S	sh.	S
Sample	Elev.	•	5	9	7	∞	$\dot{\circ}$	0		~ :	9	7.	∞		2	2	2	-7-	· ·	~	7	7.	φ.	0	•	93.5	9	
		-		16			7			_		,	p=~	-		~				~		7	~	~	~		-	
	S.	മ	മ	മ	മ	ധ	മ	മ	മ	മ	മ	മ	മ	ധ	ä	മ	ω	മ	മ	മ	മ	മ	മ	Ω	ω	മ	മ	ന

Table 3. Test Results of Samples, Auger hole C-1

Carb. % wt	Caic.		7	7.4	C Li	, ~	•	7. 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0	1 1 6 0		10.4
Carb.	Dol. Caic.		p	•	ο.	o c	•	7		7 . 1	p	- 00	5.7 10.4
operty	1 :=												
ndex P	% Act.							25 56 1 22 ± 01	77.				
Moist Cont. by wt. Index Property	% 0/M %							81 25 1					
oist. Cont	M % c		30.0	36.0	36.6	.	28.1			40.0	34.8	•	
Ž	Md Mn d sd o Scew a Wn % W1% Wp % 19 % Act.		3(~ ~	36	`	36	16	1 —	. 77	78		
/ Dmm)	φ sq σ					3.9		3, 1				2.9	1.6
% wt coarser than ϕ = \log_2 (1/Dmm)	Md & Mn					7.8		7.7				2.7	2.5
han ϕ	ග ග					52 60		32 43 53 64				87 90	92 94
arser 1	7					44		43				84 8	90
vt. co:	ω					35		32	•				88
%						18 27		10 20					0 35
ale:	3 .4					<u>~</u>		process process					69 80
Wentworth Scale:	2					purm		0					27 (
twort						0		0					m
Wen	0 00		SC	SC	HJ	CH O	SC	CH O	SC	5	CH		SP 0
Ϋ́Ι													
ie	Material		sandst.	sandst.	shale	shale	sstsh	shale	ss+sh	shale	shale	sandst.	sand
Sample	Elev.		93.1	92.7	92.5	90.1	88.0	87.3	82.5	82.2	81.9	80.1	78.1
	d N	C-1	3.0	3.4	3.6	6.0	~ ∞	ω	13.6	13.9	14.2	16.0	78.0

Table 3. Test Results of Samples, Auger hole C-2

% wi	4.9	\sim	72	0.0						
0.10	7	7.0	•	5.3	5.1	2.12		•	•	8.4
Carb. Dol.	o. o.	7.7	0.0	0.0	1.2	1.4	-	· ·		0.0
# H			.02			02			+.09	
Property 1.			51 + 82 +			2 +.				
4			2.2			61			1.64	
프 호			123			106			. 79	
ont. by νπ. Vπ% Wp%			32			34			34	
Moist, Cont. by vr. Vm % V/1% Wp %			155			140			= 3	
Moist, (000 000	07000	N E	₩. •	00	L	1.4	$\sim \infty \sim$	t (v	
18	806	C1 W	1 m M	77	77	mm	m 47 0	n m c	74 6	
Scew	**									+.2
ops (ama)	- 1	∞ ∞	4.3		2.6	3.8	4.4	7. 7°	7.0	4.3
^{2ε} (1/ Dmm) φ Mnφ sdσ	5.6					•	•			5.9
2001 5001	2.3	 	88		0.9	~ 9	m =	•	, w	9.4
0 0	84	56 8	53		89	50 9	97		22	79
o s	82	40	45		52	4:0	40		200	75
% wt coarser	88	6 40	0 38		0 56	4 22	4 32	† ~	5 3 3	1 70
5 5	76 79	17 2	20 3 26 3		43 5	, <u>,</u>	17 2	^	17 2	9 44
4	72 7	0	8 2		35 1	7	0.00	γ c	10 1	33 4
Scale:	65	7	- m		\0		4 r	ر د	<u>5</u> w	25
0.1	80	2	0 -		2	0	2 0	7 -	r —	4:
Wentworth	0	0	00		0	0	00		- 0	0
13	S S C S	SCH	3 5 5	55	55	5 5	555	5 5 3	S C E S	MS
¥1		•				٠				
Moterici	ndst ndst ndst	nd st	m brown from	a a e	ltst ale	0 0	bern bern for		+ a - c - c - c - c - c - c - c - c - c -	ס
ple No	s a r	Sar	22 22	L L	s	sh	-C -C -	\Box \Box \Box		O
Semple	N - 7 M	0000	0.00		10 W	4.	223	- 0 0		7
	, o v o	000	mm	00	00	01.	000	000	000	0
Į Ž	0 0 0 0 0 0	7 0 0		00	0	<u> </u>	7 5		2 0 0	20

Table 3. Test Results of Samples, Auger hale C-3

•							•	,
% wt	Calc.	•	1 4 4 4 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	• •		7-7-	NNN0 W@ N@	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Carb.	Dol.	•	-0-0	•			0.7.0%	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Property	Purity drovids				<u>.</u>	۲.07	60.	
Prog	÷				. 22	747	. 52	
×	4				_	=	2	
Index	% d1				45	73	9	
WT.	%d∧				25	8 8	27	
Coni. by	%				02	0		
	w %	1 m m	<u> </u>				~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-mouro-4r
Moist.	Wn 9	987	0000	20.	0444	mmo - 100		22. 22. 22. 22. 22.
	g Ha	76		=		45		
	Sce	+.5		+.7	·	∞. . +		· ;
um)	s q d	p	w.	•	w ru	3.3	3.1	7 7 7 7 . 2
(I / Dmm)	-Q-	9	m	τ. ω	0 0	ω.	., ~	
લ	d Ma	57 .		ω ω	9 7	3 6	2 2	3 7 7 0
= log	Z C	m	9	•	500	ω m		o o m m
ب ئ	S	80	99		74 65	. 80	60	59 77 77
coarser than	လ	78			70 29	50 17	54	50 50 744
oarse	7	74	53	7	47	74	48	40 40 70 70
W. C.	9	89	45	7	4 54 9 37	9 30	1 41	8 35 1 66 2 66
% wt	ß	£ 63	4 39	9	20 20 20 20 20 20 20 20 20 20 20 20 20 2	9 19 0	5 31	0 28 6 27 6 63 6 63
: 0	4	5 54	1.2	2 61	0 0	. v	2 19	2 7 7 7
Scale	10	ω 4		5 5	- m	7 7	0 9	44 44
orth	62	W 2.	0	2 2	00	0 0	0 8	m m00
Wentworth	0	0	0	0	00	0 0	0 0	00
24	ပ္ဘ	SC	H H H H	S H H H H H H H H H H H H H H H H H H H	5555	35555555	555555	H H H H D O O O O H
× -								
	ਹ	ω ω ττ ττ •	0 0 0 0	0 0 0 t	0000			
	Material	~ ~		a a a a a a a a a a a a a a a a a a a	La ha la			
Sample	.3		0 M M -	0	~0) 	-0	
Sa	Elev.	(7) (7)	0000	n m m	000000000000000000000000000000000000000	ントロンイン	20000	7788888
	ර		- 4 0 C		7000			,000-0000
	Ž.	322	m m m lí	\ \o \ \o \ \o	200	010tmm	-M N O 00	88888888888888888888888888888888888888

Table 3. Tost Results of Samples, Auger hole C-3

% w	Calc.	0.8	2.3 21.2
Carb.	Doi:	0	2.3
erry	grow week	. 17	-
Prop	, ,	.28	
Index	₽ % d1	82 2	
. 36.	% ow	30	
ont. ხ <u>ა</u>	w % v	112	
Moist Cont. by ws. Index Property Carb. % wt	dφ Mnφ sdo Scew a Mn% Wh% Wp% Ip % Act. 11 Doi. Calc.	16.1 112 30 82 2.2817 0.8 5.1 24.9 1.6 5.3 23.9	12.3
	cew a		
(m)	d o. S	2.0	p
TX Wentworth Scale: % will course then \$ = log_ (1/Dmm)	9)- 13:	2	,,,,,
092 (24 P	7.7	ص
6	∑ თ	54 7	31 3
hen	သ	24 6	82
301	UC 0 1 2 3 4 5 6 7 8	CH O O O i 3 7 19 39 54 64	1 4 19 51 63 69 74 78 81
Coci	9	5	69
5 WL	5	7	63
%	4	\sim	15
: eio:	ю	,	9
Š	લ	0	4
worth		0	
Went	0	0 7 7 7	0 0 0 0 0
	3	555	S S S S S S S S S S S S S S S S S S S
× ⊢			
	Material	77.5 shale 77.1 shale	/5.1 shale 74.1 sandst. 73.1 sandst.
Sample	No Elev.		•
	o N	0.47 0.47 0.47	38.00

Table 3. Test Results of Samples, Auger hole C-4

% w	Calc.	5.0) r w		5.0	•	•	₩. 0	•		7.5	•	•	•	•		•	٠. ا	4,	•	•	•	•	•			5	
Carb. %	o].	o,α	• •		0	٠ <u>.</u>	.7	4.	٠,		٠	7.	p (.2		.2	m l	<u>, 1</u>	<u>`</u> [`.'	٦	<u>,</u>	-	7.		4.	
ပို	à	0 (preser .	0	_	7			, ·						graces.	7	0 -			(Э [,]			•		
Property	prine enie		09	40	•													52										
Prop	ct.		0.5	00								•						20	<u></u>									
×	% A %		3 2.	~~	•													-	<u>.</u>									
Index	<u>a</u>		78	93														53										
y wr.	Wp %		28	27	ì													40										
Cont. by vr.	%VA		90!	120														603										
Moist, C.	%	•	• •	م م	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	• •	•	•
Moi	UM 7			17				,	$\frac{\infty}{2}$		<u> </u>	7	_	16	23	18	17	12	$\frac{\infty}{2}$	$\frac{1}{2}$	ο \ -	50,	<u> </u>	17	3 - 6	23		14
	Scew a					.713		.761			.733		.650															•
~	S)	. 4	9	0 4	~	+ ∞		+			+		+: 0		2			5	v o	ת	,	<u>ه</u> د	∞			. 0		;
(1/ Dmm)	sd	-	2.	2:		'n		÷			4.		2.		<u>ښ</u>			m	٠ ښ	'n	~	1 (·					
\geq	Μnφ					5.6		5.6			5.5		2.57															
10g ₂	Å¢. ⊕.	4.4	•	5.2	•	2.8		2.6			2.9		2.2		6.9			8.5	•	4.	-	4.	4.		•	, w		
"	≥	74	01	70	0	84		84			$\overline{\infty}$		တိ		70 (56	5	0	(200	7		۲۲	9/		
coarser than	ത	71		89		8		<u></u>			80	(88		63.			49			ī	ひに	_			7.0		
ırser	7	00		61		80		73		. (78	(87		20			33				4/0				69		
1 COC	9	64		577		78		76		•	74		00 17		35			27				4				63		
% wt	മ	52	22	407	25	. 75		74			70		84		25			5				3				52		
	4	43		33		70		70		•	62	•	80		2]				7	~		200				5		
Scale	M	17		0.0		09		69			2		: 73		12			01	(7	(20			~		•	
i	8	0		00) 24		33			2 25	•	2 42		9 +			0				~ - (0		
Wentworth		0		00		0		0			0		0		1 4			0				၁ (၁ (00		
Wer	0 0	U C	s m) H		ں ں	SC	ن ن	ر م	C	ں ر	ی	ی	SC	I	HO	CH	II :	T :	32 2	n: :		۰	SC) ()	· ()	()	SC
× ;	5																											
		٠ ب		a) a)	. 41	S 5 t	St.							st.	<i>a</i>)	41	4)	4 \	41	a >	-1				بر د			, ,
	Materiel	ם מי	ands hale	hale hale	<u>_</u> ه	ands	ands	nd.	na,	р С	nd.	חמ	pu	pu	Ø	_ _	hale	a)			— , თ	 	\subseteq	מש	אסנומ אסנומ	p c	nd	ands
Sample	X	ů,	s s	4 st	(V)	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S (s v	י יא	S	Ś
San	בופי.	00	∞ π	28 28	9.	7. W	2	- (· ·	•	•	•	•	•	•	•	•	•	•	7.	<u> </u>	•	$\dot{\circ}$	<u>'</u>	•	7	4.	m'
			- m	000	0	0.0	0	0,0) i	17	0.	.7.	∞	0	0	0	_	7	0) () c) c) C	0	0 0		0 0		0
	SZ.	C-4	in	w-4	90	∞ ∞	10		7	12.	2	7	~	14.	16.	8	<u>~</u>	Ω,	× (70.	7	. 77	23.	25.	27.	28.	28.	29.

% wt	Colc		•	4.5	•	•	•			43.0		6.5			00	က	•	•		•	2.4	•	•		•	رن س	•		•	n.	•		٠. س
Carb.	Dol.		9	သ သ	-	•	5.		0.7	4.		1.4			•	2.2 1	•	•		2.6	•	o.0	•		•	0.7	•		•	0.9	•		o o
erty	Shared Shared			41	43													•				. 14			26					05			
Property	÷			. 74.																	•	- 9/.			.58 +					.23			.36
index	2% A			20 0	0																	67 1		•	63					53		1	57
	d1 % d:A			33																		22			32					25			27
Cont. by vn.	N % M			53																	,	89			95					78			7 %
Moist, Co	. % U!!!		6.	•	5	3	_7	$\dot{\circ}$	6.	$\overset{\sim}{\sim}$	•	19.8	0	•	•	•	-	0)	∞	$\dot{\circ}$		2.	•	9	∞	9	7	0	16.5	2	i,	•	•
-	Scew a			000						784					249		970	90/												,	•		
~	ь		٠. س	.0 0.	·î-		9.		0.	.7 +.		٠ <u>.</u>			4 +		8.	4 +			9.	i.	4.		m.	<u>ښ</u>	r.	7.		.2	٥.		.2
(1/ Omm)	ps of			33	m		m		0	.63		provide			9			4 3				-	4		4.	7		~		7	M	•	7
log ₂ (1	dφ Mn		•	.3 7	•		9		٠.	•		ω.			.7 4		-7	•			<u>∞</u>	•	•		•	5.	•	•		·.	•		.2
-G-	≫ 0			73 7	0		65 7		80 3	4		77 3			85 2			85 3				62 8	0		0	54 8	/	∞		57 8	/	(58 α
i	Ø		63	9	∞		2		78	7		74			84		9	83					4		0	45	0	9		44	9		2
coarsor than			58				3		75			71			82			8			41	28				37				34			33
000	9			33			m		73			989			30		~	79			2	9	42		ω	29	\sim	\sim		26			30
% wî.	10		100	22	,		23		69	L-		79			78			7			7		3		7	22	7	2		20	7		23
	4		N				5 12		63	9		52			3 71			67			17		7								· Provide	•	
Scale:	10		2	4-8		•	2 5		5 4:	N		2 32			2 58			7 50			9	0			prove	3 7				7			_
	CJ		prom	77			_		0	_					4 3			0 3				0				prom				0			0
Wentworth	p-Derik		•																				•										
Wei	0 00			0	III	II	0 H	<u></u>	0 03	ى	ပ္	0 0	ပ္	S	0 00	C	ပ	0 0	ပ္	ပ	m	0 ==	工	二	\mathbb{T}	0 H	I	II	m	O H	=	II	0 <u> </u>
×			0	den	S	0	0	0	0)	0)	0,	0)	0,	0,		0,	0,	0)	0,	0)	0	O	O ₁	O	O	O	O	0	S	0	S	O	S
				S tt	v	O)	ູນ ີ	บ	st.	st.	s t	S	S	S		S	S				a	O	v	a	Ø	ข	υ υ	a	Ø	٥ ع	a)	v	υ
	Material			: : :	hal	т П	hal	hai	and	and	and	C O	and	and	ത	and	and	and	c C	ano	hal	hal	hal	hal	hal	hal	hal	9	hal	0	m	m	
Sample	Æ		2 7	0	5 s	2	7	CI	00	/	5 S	N	~	gravata	0	/	2	C1	7	5	∞	7	2 s	7	_	7	7	/	6 s	7:		7	N
San	Elev.		39	200	37	37	35	$\frac{1}{2}$	32	32	32	こ	29	29	29	28	27	25	24	23	\sim	23	121.	0	00	/	5	3	112.	112.		000	∞
	o Z	0 -5	, C4	•	•	4	•	•	•	•	•	0	2	2	•	2	-1	5.	7.	/	7	7	0	2	2	4.	9	7	28.6	\circ	0	2	2

Table 3. Test Results of Samples, Auger hole C-5

Table 3. Test Results of Samples, Auger hole C-6

Carb. % wt	Dol. Calc		.1 6.	.0 6.	3.2 5.7	.0 4.		. 1 5.	3.4 4.7		. 5	3.3 5.2	.2 5.	.8 4.		ω.	3.3 5.7			2.8 5.2		2.8 5.6		1.3 4.8		1.5 5.3
Index Property	1p% Act. 11				15 0.7120			10 0.4868				∞										17	•			
•					5			73				2				91						8				
Cont. by wr.	% das %.1/A		-		30			28				21				27						35				
Moist, C	% %		16.0	10.7	12.0	12.6	12.4	11.2	7.7	8.7	10.2	11.2	13.3	14.9	•	•	10.8	•	13.6	•	16.9	•	21.2	26.8	20.2	18.4
	Scew a				+.432				+.467	+.276								+ 797.+	+.523					•	•	
(1/Dmm)	ops o		3.5		.2 4.4			•	.8 3.0	.7 2.9		2.7	<u>~</u>	2.7	2.6	3.0		.8 2.8	7.	2.9		3.4		4.7		4.0
= log ₂ (1	Med Mnd		5.7		4.8 6			4.8	3.4 4	3.9 4		ف	4.7	4.0	-10	4.5	5.	•		5.1		5.1		8.5		8.2
φ ui	O		1 76		4 79			7	5 87	ထ		∞	1-	7	/	3 76	0)	လ	1	/		9/ 1		9 24		3 54
coarser than	တ		3 7		8 71			4 7	2 8	~		7	7	'	7	9 7	9	∞	7	7		6 7		3 46		1 48
oars	_		3 6		9.			\sim	∞	5		9	0		0	3 6	<u>'</u>	∞	\sim	∞		9 23		6 3		5 4
W	9		43 5		53 6			9	707	/		7	\sim	\sim	p	55 6	- 7	\sim	1	0		50 5		18 2		28 3
%	4 ص		32 1					∞	59 7			7			9	45	7	9	17	9		40		/		13.2
le :	10		0.		29			က	42	/		0	/	9	0	33.	တ	0	1	ın		30		4		7
Scale	2		\sim		0			လ	5					15		21	9		2			6		0		0
dro			0		∞			7	9	2		3	\sim	5	-3*	10	0	N	m	4		ഗ		0		0
Wentworth	0		0		7				7		,					7						7		0		0
X	9		S		<u></u>	<u></u>		J		<u></u>	<u></u>	5	<u></u>		<u></u>	5	S	:	<u></u>	ਹ	<u></u>	<u></u>	<u></u>	ㅎ	さ	ਹ
Sample	Material		8 till	8 till		8 till				∞		ر ر	က	8 till	∞	7 t	4 san	3. til	0	8 til	8 til	7 t				4 shale
San	Elev.		-	153.	151.	150.	149.	149.	146.	144.	144.	143.	142.	140.	139.	139.	139.	139.	139.	136.	134.	134.	133.	132.	130.	130.
	d Z	9-0	2	3.0	•	0.9	•	•	•	•	•	•	•	•	7	17.1	7	7	7	0	2.	•	$\overset{\cdot}{\sim}$	4.	9	·

Table 3. Test Results of Samples, Auger hole C-7

₹	1								
%	Caic	2.5	9.2		3 W	7.7.	•	5.0	
Carb.	Dol.	2.7.		C	သထ	-a. 51	0	on	o
ဒိ	ă	ω ιν	9	-	2 -	m 0		0 -	0
\$\frac{1}{2}	==	0.		.20		60			.12
Property				•	<u>ي</u> ا	68 -			- 4
	Act	0.0		0.65		0.6			1.74
Index	% d:	20		=;	.0	7			63
	1 %	∞_		14	7	21			ا رک
Moist. Cont. by vr.	Wi% Wp%	m		rv c					7
onî.	%im	38		2,0	, .	44			93
ر اور ا	%	N-1,0 0 21,121	• • •	•		7.0	97	0.0	
Mo	Wn	- 2		9	20			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 11
	Scew a			.32(
		~ or) IV	+ m c	ש מ	7 12	. o	77	10
mm)	sdo	• •	1 7	•	• •	m m	•	m	m
(1/ Dmm)	φu			5.7					
) 2 Ec	φww φp	97.0	. w	wi	25.	m o	0	.5	9.
	N	ω τυ α α τυ α		71	· / · · · · · · · · · · · · · · · · · ·		0	1 7	7
й Ф	თ	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		∞	0 0	50	Ţ.	9 4	7 9
coarser than	တ	2000			n m.			77	77
odrse	~	7 % %			ν ου. 1 - 4			7 0	7
7. CC	9	-00	1	000	0 O	77	r-	9	τ υ
% wt	က	1 6 46 7		N.C	$\frac{1}{2}$	<u> </u>	7	5 2	72
1	4	0 ~ 0		7 -	л M .	. ~	0	9	9
Scale:	ល	000		24 3	0 -		0	0	
J	8	000		_	7 N		0	0	0
Wentworth		000	0		o 0	0 -	0	0	0
Wen	0 00			3	-	from trong	uu	- 등 등	H CH
. I	ב	ΣΟΣΟ	OOE	ن ر	، ن	ပ ပ	U U	U U	υņ
! l									
	Material	444	<u></u>	+	، د	t	1a le	a e	<u>a</u> <u>e</u>
010	%et	N N N V				T T	15. (sh sh	sh sh
Sample	s	4074	0 70	00		ر ا ا	্ন -য়	52.4	999
	<u>m</u>	2222	9 9 9	16				<u> </u>	17
	S 1	57.00 57.00		•				000	
i	Ċ				~ ;		p-va pare		

Table 3. Test Results of Samples, Auger hole D-1

. % wt	Calc.		5	2 5.2	1	Ŋ	rv.	~. ~.		· ∞	ι Λ	, un		5.7	5.1				5.1		Ŋ	5.2	-4 -4		5.5
Carb.	Dol.		•	8	•	2.1		67		b	0.7	ω. ω		2	~.			0.0	0		 N	0.7	•		0.
r Y	-					5						.15							90						.07
Property	1					70 -						+ 0							4						
	6 Act					0						2.2							 ا						-
xapul.	% qi °					9		•				110							138						78
by wr.	% dw					7						28							32						30
ont. k	%m					34						138							170						108
Moist, Cont. by wr.	% vM		7.9		7.1	•	•	•	7	4.	6	5	·	· 0	5	0	2	φ.	~	~	•	9	8	∞	4.
2	8		_	C1	p	p		2	7	22 2	7	-1	7	7	2	2	2	_	0	7	2	<u></u>	2		7
	Scew									÷ ⇔															
ოლ)	sd 9		3.0			•	2.2			4.5		4.0			3.3			j.4	4. 1			4.2			2.8
(1/Dmm)	Mnφ									6.5															
1092	å Å		<u></u>			•	∞.			∞		0.0			0			m:	4.			0.			ن
- 0 -	∑ 0		75 5				7 6/			81 2		50 9			65 6			77 3				50 9			59 7
than	တ		7			∞				80		42			62			. 9/	9			42			5
coarser than	~		65			57	70			78		34			56			74	38			35			42
ŏ u	9		55			47	63			75		26	٠		50			.72	$\frac{1}{2}$			27			30
% wt	ທ		47				N			72		5			45			68	7			~			7
	4		3 39				35			69 /		4 . 1			3 39			t 61	_			0 0			2
Scale	ts.		5 23			5 23	7			6 47		0			5 23			8 44				3			0
rth	C)									M															
Wentworth	0		0 2			. 0				0		0		٠	0			0				0			0
NEV.	2		\overline{z}	<u>၂</u>	<u></u>	$\overline{\circ}$	<u>_</u>	<u></u>	SC	SC	H	CH	5	<u>_</u>	SC	SC	SC	SC	CH	CH	S	CH	CH	H	CH
×																									
	Ioi			_		_		,	dst.	dst.	<u>o</u>	<u>e</u>	<u>e</u>	garren	dst.	dst.	dst.		<u></u>		<u> </u>	ခ	<u>e</u>	e e	e o
0	Material		<u></u>	<u>ت</u> : 	٠ <u>-</u> .		را 	4:1	San	a		sha		•	an	an	a	-			sha			sha	sha
Sample	>		ŗ,	å	•	•	5	7	·	6.	9	5.8	5	4.	8	2.			0	0	5	· •	7.	•	rų.
	Elev.		5	5	15	15	14	17	17:	14	-2.	6 14	7.	77	14	14	14	14	14	14	<u>~</u>	3	3	3	2
	g [- -	•	•	•	•	•	•	•	•	•	13.6	•	•	•	•	•	•	∞	9	0		•	÷.	'n

Table 3. Test Results of Samples, Surface

% w.t	Cale.	16.6 14.9 26.9	なるのではなる		けた	5.3	4.7	20 4 WWWW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Carb.	Dol.	77-7	00-100		0.0 0.0	0.7	0.8	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y tr	=							
Property	• •	ű	<u>က</u> - '	<u></u>		r ₂	7	90 74 89
×	% Act	7.0	0	M		1.6	-0	6 - 7 - 9
Index	<u>a</u>	25	16	150		70	29	74 47 115
by vr.	% cm % m	25	<u>~</u>	31		30	57	28 33 37 37
Conf. by wr.	W %	50	47	112		100	99	102 80 135 99
Moist.	% um							
	ಚ		083	0 0	763		782	823
	Scew		1 + +	+ +	+ +	- 1	+	• • • • • • • • • • • • • • • • • • •
(1/Dmm)	s d d	7.7.7.		7.00.V	3.1	3.2	2.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Maφ	7.6	- 22	•	5.8		5.6	5.0
- 10g ₂	Μαφ	2 0 0 0 V 0 0 10 V	47978		2.3	7.4	23.0	8010070
4	o	81 70 70	77999	0 α 4 rv α	83	57	72 77 84	7685019
coarser than	Ø	10 74 8 7 1 2	8 64 3 71 6 97 6 97	- co w ru co	7 79 3 85	8 53	1 63 9 75 9 81	020000 020000 020000 020000 0200000
COGTS	2	040m	∞ ω ω ω ω ω	0.00 m	1 8	0 4	000	V44WVWV
% wr	ري ري	0-00	ひちのかん	727 3 74 7 74 7 74 7 74 7	69 7 79 8	30 4	25 3 66 7 74 7	28 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	4	00-0	- m-4 m c		59 (14	11 2 61 61 670 7	5m - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Scale:	ເດ	0000	8225 8225 8225 8225	. 40 m 0 9	20 67		50 60	m∞ m 0 0 − 0
	2	0000	0=100	3000	0 444	0	29 20 20	∞ w - 0 0 0 iv
Wentworth	and)	0000	0 0 0 0 0		00	0	000	0-00000
Wen	0 00	0 0 0 0 0 U	N N N N N N N N N N N N N N N N N N N	UIIU	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 H3		
×		\{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		-	⊢	J	2, 01 01 0	
	-		dn	٠	t b th th	4 د.	, , , , , , , , , , , , , , , , , , ,	
<u>ಾ</u> ನ	Materia	9 - 9 -	S S C C C C C C C C C C C C C C C C C C	sand sand sand	2 4 C C C C C C C C C C C C C C C C C C	and uff	s s d d d d d d d d d d d d d d d d d d	sharp s s s s s s s s s s s s s s s s s s s
Sample	Elev.	~ ~ ~ ~ ~ ~ ~ ·	224 223.5 216 210 207 207	1 0 0 0 to 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\sim 10 10 α	3 CD L	SIDET MC	2000 2000 2000 2000 2000 2000 2000 200
•	N Q	S S S S S S S S S S S S S S S S S S S	N N N N N N N N N N N N N N N N N N N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$250 \$250 \$250 \$350 \$350 \$350 \$350 \$350 \$350 \$350 \$3

% wit	Caic.	7 N T N T T T T T T T T T T T T T T T T
Carb.	Dol.	000000000000000000000000000000000000000
Property	=	- + + 0 + + - 1 + + + + + + + + + + + + + + + +
	Act.	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Index	% c1	100 27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
by wr.	% d/M	75 75 75 75 75 75 75 75 75 75 75 75 75 7
Cont. b	Wi%	34 34 34 34 35 37 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38
ಗಿರುವ. C	Wn %	6926609600974076346525555555555555555555555555555555555
	sew a	
(c	o Sc	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
/ Dmm)	ф sq	0 40 0 40 0 40 0 40 0 0 0 0 0 0 0 0 0 0
2 (1,	N. n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
= 1092	Ma	
gu 🤄	a	578000000000000000000000000000000000000
coarser than	8 %	0 - 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
coars	<i>ω</i>	00000000000000000000000000000000000000
o wt	ເດ	02864-W05722 20875500-000500-00072727275000-0000-00072727272
% :	G.	07701000410000400047000047000 0770100041000047000047000
og je	3	00000000000000000000000000000000000000
S	03	000000000000000000000000000000000000000
Wentworth		44000 000000000000000000000000000000000
Went	0	-00000000000000000000000000000000000000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ပ္သ	# -
×		
0	Material	shale sandst sandst sandst shale
Sample	m lov.	202 202 202 100 100 100 100 100 100 100
	d Z	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 3. Test Results of Samples, Surface

		~ ~ ~	. ~	~	~	<u> </u>												_		_											
% w.t	Cale,	2.00	• •	•	•	•	• •	•		e	•	•	•	•	•	•	ហំ		•	•	•	•	•	•	•	•	•	•	•	•	
Carb.	Dol.	0-1-	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	9		•	•	•	•	•	•	•	•	•	•	•	•	• •
rty	=	.03	-	0.	•		•						0.	.07	0							0 .			0.	.2			9[.		.22
Propert	•	. 1		7		+ 1 00 =							တ	- 04	,							52 -			- 90				85		42 -
	Act	2.		'n		m -	•						•	2.7	•							0		•	-	•			~ O	•	-
index	% 4:	104			-	[5]							3	115	3							<u></u>		-	38	-			28		51
× × 5	% dM	90				29								<u>m</u>								9			26				28		26
Conf. by	%w%	134		∞		0 0 0 0 0 0 0 0 0 0							9	146	9							29			49				26		77
Moist, C	26	ν. 9.6α	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	o u	• •
ا <u>چ</u> ا	a Vin	212	>			i m			5	7	~ ∞												m			1 2	2(process
	Scew	7	+.70				+.85		φ.	+.72	(C)						•	+.50	7				+.14			+.09				7.2	
Dmm)	<i>b</i>	90-	0	•	•	•		•	9.	.7	.7	•	•	•	•	•	. 4	.2	0	•	•	•		•	•	.7	•	•	•	•	• •
1 / Dr	s pr	- m u	. 9	7	(,).	~ ~	70.		4.	∞.	9	•••	•-1	7 .	7		∞		9		_		0.		,	ψ.				7	
	d Min	— - · · · · · · · · · · · · · · · · · ·				4.0		0		က	∞						5		∞												90
<u> </u>	. N.	∞ \overline{N} \overline{V} \overline{V}	1 01	co	0)(∞ α	0 01	77	2	~	7	/	0	ယ	9	9	7	7	7	7	\sim	7		9	7	/	_	4.	/	w c	7
אָ שְּיִשְׁנֶּ	တ (၁)	Φ O riΦ ri ν α	ノーナ	7	∞	o) m	5	9		0	,	m	ത		/	7	0	0	∞	7	7	9	/	7	9	7	0	_	<u></u> σ) M
ik ros	<i>-</i>	50 to 00 to	7 —		/	9 0	· —	0	∞	9	∞	/	ω	9	ΓŲ	/	7	∞	∞	4	S	/	∞	rV	0	∞	2	_	9	ru ra	7
cogrser	· (C	17 K	2 02	7	10	α		9	9	۲.	2		0	0	r)	N	0	12	9		Q	σ	7	Ŋ	9	0	5	\sim	، و	<u> </u>	10
% w¢	က	122				22																									
0 :	₹	733		∞		<u></u> -		40																						ら ら に い	
ccia	ເນ		o w				9		S	N	7						9	9	7		7	CI	N						•	M LI)
S.	N	000	0	0	0			.4.				0	0	0	0			30		0	\sim	<u></u>	7	0	_	_	p		7 1	/ x	7
Wentworth		000																													
Wei	o on	SC	S S S	E	H	当 c	S	SC	SC	SC	SC	H	H	H	CH	CH CH	SC	SC	SC	SC	SC	- -	SP	CL	뒫	분	₩ W	SC	뒫	S C	2 2
×																						 -									
	. 10	(0 (1) (1)	٥ د د	(1)	o	υ	S	st.	S	S	S	a	v	บ	o	O	S	S	Ist.	S	S	S		ഗ	ี ข	ข	υ	st.	0)	st.	ט מ
	Materi	sand:		م	Ö	<u>م</u> 4	_ C	_ m	a	CI CI	e E	ha	ha	hа	ha	ha	n n	C W	m L	a D	C m	•	E C	na L	0	Ja	20	C C	Па		a L
aldwo						iÙ					i		r.	•		5.					5		•			ī		ī			1.
SS	Elev.	133	2 1	~	/	1-1	- 1	. ~	/	∞	∞	∞	∞	134	183	8	∞	ω	9	Q)	9	0	2	\circ	9	9	9	9	9		187
	d N	\$68	2	<u></u>	1	7	-	. ~	~	/	1-	∞	တ	CO	∞	\circ	CO.	∞	∞ .	∞	တ	0	9	9	0	9	Q)	9	σ	σ	<i>)</i>

Table 3. Test Rosuits of Samples, Shear fast

Moist Conf. by wr. Index Property Carb. % wt	Md Mn osdo Scewa Vn % W1% V12% 12% Act. 11 Dol. Calc.		1.0 4.7
رن 0	3		0 17
Ö	13		ture ture
erty	=		
Prop	+:	*	23
×	S Ac		2
Ind	00		135 28 107 2.23
V W.	% c;n		28
ूर्य जूर	%1		35
S **	%		,
Moin	\$		
	ew a		.75
	Sc		+
Jmm)	sdo		3.4
=======================================	φ uw		4.9
* log ₂ (1/ Dmm)	d d		2.4 4.9 3.4 + .75 8.8 2.2
	S .		85 2 2
% wit coarser than ϕ	1		83
3.5c.	UC 0 1 2 3 4 5 6 7 8		80
\$ CO	ဖ		36 65 71 75 78 80 0 0 1 6 15 27
% %	ಬ		75
 ජා	な		7
Scal	t.)		90
Wentworth Scale:	2		
entwo	0		00
W	ပ္		0 0 X X CH 0 X X
×			××
	Io	LES	ist e
c)	Material	SAMPLES	sandst
Sample		ST	
(r)	Tiley Ve	1 -~	172.5
	Na Elev.	SHEAR TEST	CE #14
1		7	

APPENDIX H

X-RAY REFRACTOGRAMS OF CLAY-SIZED FRACTIONS OF BEDROCK

Machine setting, Cu: 16/1.0/2. Ch = Chlorite, I = Illite, M = Montmorill.

Table 4. X-ray refractograms of clay-sized fraction of bedrock

APPENDIX I

LEGEND TO PLATES III TO XII

		SILTY	JOINTED	SHALEY SHALEY PEBBLES	SANDY	COALLY	CALCAREOUS	BENTONITIC TUFFACEOUS	IRONSTONE	DEVOID OF SECONDARY MAT'L	FIGURE; 51
LITHOLOGY	SECONDARY	w		## ## ## ## ## ## ## ## ## ## ## ## ##			74 Silver	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ΔΑΛ Α 947.6 ΥΔ 80.6 ΥΔ 80.		PLATES III to XII
		GLACIO - LACUSTRINE SILT & CLAY	זונר	SHALE	SANDSTONE	COAL	CALCAREOUS	BENTONITE	OVERBURDEN		LEGEND TO
	PRIMARY							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

DESCRIPTION	Situation in section in the section	الم المراكب ال	entral control of the second o	واد د در کران کی سال می ایر در در در از از در ا	נוו פינה י לייום י איים וו	m gray a dem wildy	Sy makes assessing a constant frags	Sanzarone H. majora, it can some dragos. Sirja major et en. Sans allanos	
LITHOLOBY PRIMARY SEC'Y	`. '	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 12 3	3 1	, ,	, `	>	0 - 77	-
ELEV IN FEET	83	56 - 26 - 26 - 26 - 26 - 26 - 26 - 26 -	33	88	99	7	20	8	102
E- RELATIVE						, , , , , , , , , , , , , , , , , , ,			
CUMULATIVE GRAINSIZE - RELATIVE ELEV ANALYSIS, % by relight POROSITY IN IN 10 40 50 40 40 40 40 40 40						\$ \ s.//			
DEPTR PERCENTAGE BY WEIGHT , W ₀ (c), W, ——————————————————————————————————		· · · · · ·	as a second of the second of t					V /	A AND OFF THE PART OF
PERCENTAGE BY WEIGHT. W.(O), W. A.	7. 200								
DEPTH IN FEET	0 2	4	9	0	ç	2	Ā	9 4	

HO	I F	Nº	C-2
110	has har	1 %	U Z

DEPTH PERCENTAGE OF WEIGHT, W. C. ALLIEL I., CARBONARES I.) N. MICHAEL ST. C.							
90	IN	400 300 200 150 100 80 60 40 30		ANALYSIS, % by weight POROSITY	IN		DESCRIPTION
- 24 - 20					97.6		· · · · · · · · · · · · · · · · · · ·
90 -80 -81 -82 -82 -83 -84 -85 -85 -85 -85 -85 -85 -85					- 96		-
-80 -80 -80 -80 -80 -80 -80 -80					- 94	0 .	A TO THE STATE OF
14 - 80 -			¥				Francis Santa
14 - 86 Image of the control of the	8 —	<u> </u>	. 1				the steps one the
14 - 84 In the first of the state of the sta		į		1	- 88		migray 1 Br. distributions The resist for a St. 1200
10 - 52 In the first of the state of the sta		d			· 86		1 = 70e. + = 12 + 251 + 2
10 — 6.2 — 6.2 — 6.2 — 6.2 — 6.3 — 6	ы —				84		n 18 form n grey r orall ar roem
10 - 60 - 10 - 10 - 10 - 10 - 10 - 10 -	16	7			82		
15 cyces a constant	18	b			80		
	20	- >	IND IF HOLE		77 8		a by wyers was a popularings

FEET	PERCENTAGE BY WEIGHT, W (J, W	40 30 20 15	10 9 8 7 6 5 4	CUMULATIVE GRAINSI	ant POROSI	TY IN	LITHOL	1	DESCRIPTION
	l mainting a large and a large	<u> հոմասկայկայիրու Մո</u>	1 1 halaitadan bahalain land	m 10 30 30 40 50 60 10 60	90	FEET	PRIMARY	SECT	
						141.1	a spilling	1	INDUCTOR / Trey
						110].	
		F-X	7	1					grey
		1	<i>*</i>			- 108		2 3	SMALL Imben Mercaning
4 -		2	·				-		to air in the shore it is
			•			106	1	THAN	major of goly in , e m, on
-		·. *		>)		1		. 15	here sie
				1		04		, , ,	
0	-	<u> </u>							and the second of the second o
									Months of the second of the se
		1	1	1		1			
						- 00		-	
1		1		1					
			/ 1	1		- 96			
		-		į į		- 90			70"
				50.0				· -	-11 VD_ 0.VE
6		, b	1 1			- 96			
		4	i i	,				100	SMALE
8 -						- 94		۵۵۵	
	-	—	} }						· · ·
		,	1/			- 92			
			ÍÍ						rey - sue
						- 90			
2		4	<i>> > > > > > > > > ></i>					;	
		7				58			
		g							emp and egal or established common and any employee, en common and any employee, en
		4				06		4.0	Fig. 1 11 11 . Graf to
		>	()				-	۵.	or and accommendation of the second
						- 64		, a ,	May see
		6					1.	م م	
						- 02			
		4					1		WAY TO CAR TO THE TOTAL TH
		>						*	
_						- 00		7. 1	771 721
									dens de la adulta en al Se de adulta en al
	-	¬ >>		(- 76	770.09	Say.	SHALL TO STATE TO STATE
								J.	d steen in its and show miles are are a more than the area of the second terms and the area of a shown
			/			- 76			TOPERDOS MONTHLY SORME
							1	7	SANDO UNI PROPERTIES CONTRACTOR CO
		Xu			V I		1		Re e De al e conga a a
				, \		7-13	·th		are at

HOLE Nº C-4	carbonates(1)	DMULATIVE GRAINSIZE RELATIVE	ELEV LITHOLOGY	
0EPTH PERCENTAGE BY WEIGHT, W. 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W	. 15 10 98 7 6 5 4 3	ANALYSIS . % by weight POROSITY	IN PRIMARY SEC'Y	DESCRIPTION
	. 1			
-		· _		
-				
	į		4	1
	1			_
	, ,			9
_	1 //			
·			- 110	
		/		
-	4 7	Ł		
	1		- 2	= -
	1	1 1	- ne	20.00
4				
				7.00
~	11		105	
'3-	/ ·		- 104	
.9	END OF HOLE		1532 3 574	

PLATE VIII

TRENCH Nº B							PLATE XII
PERCENTAGE BY WEIGHT IN AD 00 200 1	CHT, W W. W. CALL TO ZAF TO BOX 60 SC 40 Y		ATIVE GRAINSIZE - F LYSIS , % by weight * 4 50% bor y	POROSITY FEET	PRIMARY SEC'Y	DESCRIPTION	
			i,	127		The ree register	**************************************
	⊢		1			And the second s	
				les		grey grey salane myrey som on PFS som on Front more on born markey salane segrey yes	
			1	30 j	east	m ben i Meg at ben i gif greg i greg Ar femil greg i med co i m greg m ben	
			-7			5 ratine in grey **Alia ** '= m grey from a si	
1-1.		19	10 1		244	g Shafe	
	ą						
		N Norman	* •		- 1	Sm ()	
w	* * * * * * * * * * * * * * * * * * *		1	168			

B29975