ODE parameter estimation

Matthieu Poyer

26 juillet 2019

Content

- Introduction
- 2 Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 6 References

Content

- Introduction
- 2 Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 5 References

Introduction: presentation of our problem

We have a model which is governed by this equation :

$$d\mathbf{x}_t = f(t, \mathbf{x}_t, \theta)dt,$$

and the question is how to find the parameter θ using the observations?

Introduction add noise in the equation

$$d\mathbf{x}_t = f(t, \mathbf{x}_t, \theta)dt + \sigma dB_t$$

- add some noise : σdB_t
- The unknown is θ and maybe σ too.

An example : the Lotka Volterra model

An example : the Lotka Volterra model

$$d\mathbf{x}_t = f(t,\mathbf{x}_t,\theta)dt$$

The problem that I used to test the theory is the Lotka-Volterra model :

$$\begin{cases} \frac{dX_R}{dt} = X_R(\alpha - \beta X_F) \\ \frac{dX_F}{dt} = -X_F(\delta - \gamma X_R). \end{cases}$$

So here the unknow are $\theta = (\alpha, \beta, \gamma, \delta)$, $\mathbf{x} = (x_R, x_F)$ and f does not depend on t.

An example : the Lotka Volterra model

Content

- Introduction
- 2 Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 6 References

Likelihood of Y (observations) for given parameters

Likelihood:

$$L(\theta) = \rho(\mathbf{y}_{t_0}, t_0; \theta) \prod_{i=1}^{n} \rho(\mathbf{y}_{t_i}, t_i \mid \mathbf{y}_{t_{i-1}}, t_{i-1}; \theta)$$

where p is the probability to obtain \mathbf{y}_{t_i} at t_i knowing $\mathbf{y}_{t_{i-1}}$ when f is paramtrisezd by θ . So its log-likelihood becomes :

$$I(\theta) = \log(p(\mathbf{y}_{t_0}, t_0; \theta)) + \sum_{i=1}^{n} \log(p(\mathbf{y}_{t_i}, t_i \mid \mathbf{y}_{t_{i-1}}, t_{i-1}; \theta))$$

$$\widehat{\theta}_n = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ L(\theta).$$

Assumptions and Approximations

We do 2 hypothesis

- $\exists \Delta t \ \forall i, \ t_i t_{i-1} = \Delta t$
- Euler approximation

$$\mathbf{x}_{t_{i+1}} = \underbrace{\mathbf{x}_{t_i}}_{\text{older value}} + \underbrace{f(t_i, \mathbf{x}_{t_i}, \theta)}_{\text{gradient}} \underbrace{\Delta t}_{\text{time step}} + \underbrace{\sigma(B_{t_{i+1}} - B_{t_i})}_{\text{noise}}.$$

The log-likelihood becomes:

$$I(\theta) = -\frac{1}{2} \sum_{i=1}^{n} \left(\frac{\|\sigma^{-1}(\mathbf{y}_{t_{i}} - \mathbf{y}_{t_{i-1}} - f(t_{i-1}, \mathbf{y}_{t_{i-1}}, \theta)(\Delta t))\|_{2}^{2}}{\Delta t} + \text{cste} \right).$$

The new problem

So the new problem is how to minimise:

$$S(\theta) = \sum_{i=1}^{n} \|\sigma^{-1}(\mathbf{y}_{t_i} - \mathbf{y}_{t_{i-1}} - f(t_{i-1}, \mathbf{y}_{t_{i-1}}, \theta)(\Delta t))\|_{2}^{2}.$$

and this is much more easy.

Remark : So, in our case, the max-likelihood estimator is the least squared estimator.

- Introduction
- Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauβ-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 5 References

The Gradient descent method

This algorithm uses this formula:

$$\theta^{(\text{new})} = \theta - \alpha' \ \nabla_{\theta} S$$

where $\nabla_{\theta}S$ is the gradient of S at θ and α' need to be determined. We choose α' such that :

$$\alpha' = \arg\min_{\alpha \in \mathbb{R}} \{ S(\theta - \alpha \nabla_{\theta} S) \}$$

The Lotka-Volterra model with many observations

The Lotka-Volterra model with few observations

The Gauß-Newton method

The Newton method

$$heta^{(\mathsf{new})} = heta - \mathsf{Hess}_{ heta}(S)^{-1}
abla_{ heta}(S)$$

• The Gauß-Newton method :

$$egin{aligned} heta^{(\mathsf{new})} &= heta - (\mathsf{Jac}_{ heta}(\mathbf{r})^{ op} \mathsf{Jac}_{ heta}(\mathbf{r}))^{-1} \mathsf{Jac}_{ heta}(\mathbf{r})^{ op} \mathbf{r} \end{aligned},$$

where $r_k = \|\sigma^{-1}(x_{t_k} - x_{t_{k-1}} - f(t_{k-1}, x_{t_{k-1}}, \theta)(\Delta t))\|_2$ and :

$$\mathbf{r} = \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$$
.

The Lotka-Volterra model with few observations

The Lotka-Volterra model with few observations

A heuristic method

We also can use **scipy.optimize.differential_evolution()**, this function permits to find a global minimum of a multivariate function. In our case it is S

The Lotka-Volterra model with few observations

The Lotka-Volterra model with few observations

Content

- Introduction
- 2 Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 5 References

Bayesian approach

We also can use a Bayesian approach to answer the problem.

What is a bayesian approach?

A bayesian approach consists on giving a law (prior) and adjust this law with the observation.

$$p(M \mid D) = \frac{p(D \mid M) \ p(M)}{p(D)}$$

Bayesian approach

Example:

Gaussian Process

Gradient Matching

The main idea is to use a Gaussian Processes (GP) as a prior :

where θ are the parameters that we are searching, ϕ is our prior : the GP.

$$\begin{aligned} & p(\phi, \mathbf{x}, \dot{\mathbf{x}}_{ODE}, \dot{\mathbf{x}}_{GP}, \mathbf{y}, \theta \mid \dot{\mathbf{x}}_{ODE} = \dot{\mathbf{x}}_{GP}) \\ & = p(\phi)p(\mathbf{x} \mid \phi)p(\dot{\mathbf{x}}_{GP} \mid \phi, \mathbf{x})p(\theta) \\ & p(\dot{\mathbf{x}}_{ODE} \mid \mathbf{x}, \theta)p(\mathbf{y} \mid \mathbf{x})\delta(\dot{\mathbf{x}}_{ODE} - \dot{\mathbf{x}}_{GP}) \end{aligned}$$

Gradient Matching

$$p(\phi, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{y}, \theta) = p(\phi)p(\mathbf{x} \mid \phi)p(\dot{\mathbf{x}}_{GP} \mid \phi, \mathbf{x})p(\theta)p(\dot{\mathbf{x}}_{ODE} \mid \mathbf{x}, \theta)p(\mathbf{y} \mid \mathbf{x})\delta(\dot{\mathbf{x}}_{ODE} - \dot{\mathbf{x}}_{GP})$$

Now we change our priors thanks :

$$\phi \sim p(\phi \mid \mathbf{y})$$
$$\mathbf{x} \sim p(\mathbf{x} \mid \phi, \mathbf{y})$$
$$\theta \sim p(\theta \mid \mathbf{x}, \phi)$$

An othe bayesian approach

An other approach is:

where θ are

the parameters that we are searching, ϕ is our prior : the GP.

$$p(\mathbf{y}, \mathbf{x}, \dot{\mathbf{x}}, \phi, \theta) = \\ p(\phi)p(\mathbf{x} \mid \phi)p(\dot{\mathbf{x}} \mid \theta, \mathbf{x})p(\theta)p(\mathbf{y} \mid \dot{\mathbf{x}}, \phi)$$

$$\phi, \theta \sim p(\phi, \theta \mid \mathbf{y}, \mathbf{x})$$
 $\mathbf{x} \sim p(\mathbf{x} \mid \phi, \theta, \mathbf{y})$

The Lotka-Volterra model with noise (0,1)

Content

- Introduction
- Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 6 References

Conclusion

methods	pro	contra
Gradient descent method	often fast	gradient
		big noise sensitive
Gauß-Newton method	fast (O(data))	Jacobian
	often better than	noise sensitive
	gradient descent	
Newton method	fast (O(data))	Hessian
	better than G-N	big noise sensitive
Heuristic method	fast	heuristic
Bayesian approach	guess the noise	slow (O(data ³))

Content

- Introduction
- 2 Maximum likelihood estimation
 - A preparatory work
 - The Gradient descent method
 - The Newton and Gauß-Newton method
 - A heuristic method
- Bayesian approach
 - Gradient Matching
 - An other method
- 4 Conclusion
- 6 References

Introduction
Maximum likelihood estimation
Bayesian approach
Conclusion
References

You can find this presentation and my python codes here: https://github.com/Yellowkholle/ODE-parameter-estimation-python

Bibliography

- Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (Barber, Wang)
- ODE parameter inference using adaptive gradient matching with Gaussian processes (Dondelinger, Husmeier, Rogers, Filippone)
- Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes (Calderhead, Girolami, Lawrence)