การบ้านครั้งที่ 1

1. จงทำให้อยู่ในรูปของ Scientific Notation

1nA 10,000,000 119 14nm 50kw
$$1 \times 10^{-9}$$
 1×10^{7} 1.4×10^{8} m 5×10^{4} W

2. จงหาคำตอบต่อไปนี้ (คำนวณ V I W)

120mAx1.5V =
$$\frac{1.8 \times 10^{-1}}{4.4 \times 10^{-1}}$$
 W
220V/50uA = $\frac{4.4 \times 10^{-1}}{4}$ Ohm
22kW/24V = $\frac{9.16 \times 10^{-1}}{4}$ A
3.3kW/10A = $\frac{3.3 \times 10^{-1}}{4}$ V

3. จงอ่านค่า R และค่าความผิดพลาดจากแถบสีที่กำหนด

4. จงแปลงหน่วยต่อไปนี้ให้อยู่ในรูปของ Power of Ten

119 925,000,000 0.000000033 20,000,000,000
$$9.25 \times 10^{9}$$
 3.3× 10 2.0× 10 3

5. จงทำให้ถูกต้อง (ใส่ค่าทางวิศวะ หน่วย การใช้งาน)

6. จงแปลงค่า R เป็น แถบสี

7. การต่อแบตเตอรี่แบบใดทำให้มีแรงดันไฟฟ้ามากขึ้น

HUE Scries - connected cells Courses

8. การต่อแบตเตอรี่แบบใดทำให้ความจุของแบตเตอรี่มากขึ้น

NUU Parallel - connected cells (my)

9. จงทำให้อยู่ในรูปของ Engineering Notation

0.900000000005m

1,000,000,000,000B

0.000000003A

son A

spm

1 TB

10. จากรูปวงจรจงกำหนด Node วง Branch และ เขียน Loop ในวงจร

Branch

node

Branch

node

Branch

node

- 11. จากรูปวงจรจงวิเคราะห์วงจรเพื่อหาค่าต่างๆ ดังนี้ 🎧 🧸 56 + 100 + 29 + 10 + 49 5 240 2
 - 11.1 ค่าความต้านทานรวม
 - 11.2 ค่ากระแสไหลผ่านตัวต้านทาน
 - 11.3 ค่าแรงดันไฟฟ้าตกครุ่มตัวต้านทานทุกตัว
 - 11.4 ค่าพลังงานไฟฟ้าที่ตัวต้านทานได้รับทุกตัว

(3)
$$V_{R_1} = [R_1 \setminus 0.05 \times 56 = 2.8V]$$

$$V_{R_2} = [R_2 \setminus 5V]$$

$$V_{R_3} = [R_3 \setminus 1.35V]$$

র
$$V_{R_1} = [R_1 \setminus 0.05 \times 56 = 2.8V]$$
 $V_{R_2} = [R_1 \setminus 5V]$
 $V_{R_3} = [$

(3)
$$V_{R_1} = \sum_{j=1}^{R_1} P_{R_2} = 56(3)$$

- 168W

 $V_{R_1} = \sum_{j=1}^{R_2} P_{R_2} = 32W$
 $V_{R_3} = \sum_{j=1}^{R_3} P_{R_4} = 32W$
 $V_{R_4} = R_5$
 $V_{R_5} = R_5$
 V_{R

- 12. จากรูปวงจร มิเตอร์สามารถวัดกระแสได้ 50mA เมื่อสวิตซ์อยู่ในอยู่ในตำแหน่งของ A จงหา
 - 12.1 ค่าความต้านทาน R4
 - 12.2 ถ้าปรับตำแหน่งสวิตซ์ไปอยู่ที่ตำแหน่ง C มิเตอร์สามารถวัดกระแสได้เท่าไหร่
 - 12.3 จงหาว่าค่าความต้านทานภายในวงจรควรมีขนาดกำลังน้อยที่สุดกี่วัตต์

- 13. จากรูปวงจรจงหา
 - 13.1 ค่ากระแสสูงสุดของแหล่งจ่ายแรงดันไฟฟ้า
 - 13.2 ค่ากระแสที่ไหลผ่าน R1 เมื่อสวิตซ์อยู่ในตำแหน่ง C
 - 13.3 ค่าความต้านทานรวมของวงจร เมื่อสวิตซ์อยู่ในตำแหน่ง A
 - 13.4 ค่าพลังงานไฟฟ้าที่ตัวต้านทาน R2 เมื่อสวิตซ์อยู่ในตำแหน่ง B

1800+521

1657900