Security of Public Key Schemes

- Keys used are very large (>512bits)
 - like private key schemes brute force exhaustive search attack is always theoretically possible
- Security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyze) problems
 - more generally the hard problem is known, it's just made too hard to do in practice
- Requires the use of very large numbers, hence is slow compared to private/symmetric key schemes

Public-Key Cryptography Algorithm (RSA)

RSA Public-key encryption

- by Rivest, Shamir & Adleman of MIT in 1977
- currently the "work horse" of Internet security
 - most public key infrastructure (PKI) products
 - SSL/TLS: certificates and key-exchange
 - secure e-mail: PGP, Outlook,
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - exponentiation takes O((log n)³) operations (easy)
- security due to cost of factoring large integer numbers
 - factorization takes O(e log n log log n) operations (hard)
- uses large integers (eg. 1024 bits)

RSA key setup

- each user generates a public/private key pair by:
 - selecting two large primes at random p, q
 - computing their system modulus n=p·q
 - note \emptyset (n) = (p-1) (q-1)
 - selecting at random the encryption key e
 - where $1 < e < \emptyset$ (n), $gcd(e, \emptyset) = 1$
 - solve following equation to find decryption key d
 - ed=1 mod \emptyset (n)
 - publish their public encryption key: pk={e,n}
 - keep secret private decryption key: sk={d,p,q}

Select p, q p and q both prime, $p \neq q$ Calculate $n = p \times q$ Calculate $\phi(n) = (p-1)(q-1)$ Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ Calculate d $de \mod \phi(n) = 1$ Public key $KU = \{e, n\}$ Private key $KR = \{d, n\}$

RSA example

- 1. Select primes: p=17 & q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e : gcd(e, 160) = 1; choose e=7
- 5. Determine d: $de=1 \mod 160$ and d < 160 Value is d=23 since $23 \times 7 = 161 = 10 \times 160 + 1$
- 6. Publish public key $pk = \{7, 187\}$
- 7. Keep secret private key $sk = \{23, 17, 11\}$

Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

RSA use

- to encrypt a message M the sender:
 - obtains **public key** of recipient pk={e, n}
 - computes: $C=M^e \mod n$, where $0 \le M < n$
- to decrypt the ciphertext C the owner:
 - uses their private key sk={d,p,q}
 - computes: M=C^d mod n

Decryption			
Ciphertext:	C		
Plaintext:	$M = C^d \pmod{n}$		

 note that the message M must be smaller than the modulus n (block if needed)

