ミリ波を用いた地中埋設物の位置と形状の推定

廣瀬夏秋研究室 学籍番号 03-210499 高原陽太

2020 年吉日

目次

第1章	はじめに	2
1.1	現状と問題点	2
1.2	解決策の提案	2
1.3	数式の書き方	2
第2章	原理と提案手法	3
2.1	地中レーダーの原理	3
2.2	図の挿入の仕方	3
第3章	最後に	4
参考文献		5

第1章

はじめに

最初はイントロ的なことを書く。

1.1 現状と問題点

最近の現状と問題点とか。

1.2 解決策の提案

こうしたらいい、とか。

1.3 数式の書き方

アインシュタイン方程式は以下の通りである。

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu} \tag{1.1}$$

第2章

原理と提案手法

この辺から本番。

2.1 地中レーダーの原理

地中レーダーは電磁波の地下物体からの反射を利用した地下計測手法である。 データは参考文献 [1] にあったものを使った.この文献 [2] も参考にした。

2.2 図の挿入の仕方

図 2.1 サイン関数のグラフ

第3章

最後に

結論とか、まとめとか。最後にいうのもなんだが、ベクトルの書き方。

- 普通の α は\alpha で書く。
- $\ \ \vec{\alpha}$
- \usepackage{bm} している場合は $\infty \alpha$
- 並べると、 α , $\vec{\alpha}$, α

参考文献

- [1] 国立天文台編, 理科年表 (丸善)
- [2] 天文年鑑, 誠文堂新光社。
- [3] K.Oyama and A.Hirose, "Phasor Quaternion Neural Networks for Singular Point Compensation in Polarimetric-Interferometric Synthetic Aperture Radar", IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 5, May 2019
- [4] Y.Kim, Senior Member, IEEE, and T.Moon, "Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks", IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1, January 2016
- [5] https://geology.co.jp/archives/projects/