ΑΝΙΣΩΣΕΙΣ

29 Φεβρουαρίου 2016

ΑΝΙΣΩΣΕΙΣ 200 ΒΑΘΜΟΥ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΤΡΙΩΝΥΜΟ 200 ΒΑΘΜΟΥ

Τριώνυμο 200 βαθμού ονομάζεται κάθε πολυώνυμο 200 βαθμού με τρεις όρους το οποίο είναι της μορφής

$$ax^2 + \beta x + \gamma$$

με πραγματικούς συντελεστές $a, \beta, \gamma \in \mathbb{R}$ και $a \neq 0$.

ΟΡΙΣΜΟΣ 2: ΑΝΙΣΩΣΗ 200 ΒΑΘΜΟΥ

Ανίσωση 2^{ov} βαθμού ονομάζεται κάθε πολυωνυμική ανίσωση η οποία περιέχει τριώνυμο 2^{ov} βαθμού και είναι της μορφής

$$ax^2 + \beta x + \gamma > 0$$
 η $ax^2 + \beta x + \gamma < 0$ $\mu\epsilon$ $a \neq 0$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

Για τη μετατροπή ενός τριωνύμου $ax^2+\beta x+\gamma$ με $a\neq 0$ σε γινόμενο παραγόντων διακρίνουμε τις εξής περιπτώσεις :

1. Αν η διακρίνουσα του τριωνύμου είναι θετική ($\Delta > 0$) τότε το τριώνυμο παραγοντοποιείται ως εξής

$$ax^{2} + \beta x + \gamma = a(x - x_{1})(x - x_{2})$$

όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.

2. Αν η διακρίνουσα είναι μηδενική ($\Delta = 0$) τότε το τριώνυμο παραγοντοποιείται ως εξής :

$$ax^{2} + \beta x + \gamma = a(x - x_{0})^{2} = a\left(x + \frac{\beta}{2a}\right)^{2}$$

όπου x₀ είναι η διπλή ρίζα του τριωνύμου.

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο δεν γράφεται ως γινόμενο πρώτων παραγόντων. Εναλλακτικά όμως μπορεί να γραφεί :

$$ax^{2} + \beta x + \gamma = a \left[\left(x + \frac{\beta}{2a} \right)^{2} + \frac{|\Delta|}{4a^{2}} \right]$$

1

ΘΕΩΡΗΜΑ 2: ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

Για το πρόσημο των τιμών ενός τριωνύμου $ax^2 + \beta x + \gamma$ ισχύουν οι παρακάτω κανόνες.

1. Αν η διακρίνουσα είναι θετική $(\Delta > 0)$ τότε το τριώνυμο είναι

- i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται έξω από τις ρίζες x_1, x_2 .
- ii. ετερόσημο του a στο διάστημα ανάμεσα στις ρίζες.
- iii. ίσο με το μηδέν στις ρίζες.

$$x$$
 $-\infty$ x_1 x_2 $+\infty$ $ax^2 + \beta x + \gamma$ ομόσημο του a 0 ετερόσημο του a 0 ομόσημο του a

- **2.** Αν η διακρίνουσα είναι μηδενική ($\Delta = 0$) τότε το τριώνυμο είναι
 - i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται δεξιά και αριστερά της ρίζας x_0 .
 - ίσο με το μηδέν στη ρίζα.

$$\begin{array}{c|cccc} x & -\infty & x_0 & +\infty \\ \hline ax^2 + \beta x + \gamma & \text{ομόσημο του } a & 0 & \text{ομόσημο του } a \end{array}$$

3. Αν η διακρίνουσα είναι αρνητική $(\Delta < 0)$ τότε το τριώνυμο είναι ομόσημο του συντελεστή a για κάθε $x \in \mathbb{R}$.

$$x - \infty$$
 $+ \infty$ $ax^2 + \beta x + \gamma$ ομόσημο του a

ΜΕΘΟΔΟΛΟΓΙΑ

ΜΕΘΟΔΟΣ 1: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

Για να παραγοντοποιηθεί ένα τριώνυμο της μορφής $ax^2 + \beta x + \gamma$:

10 Βήμα: Υπολογισμός διακρίνουσας

Υπολογίζουμε τη διακρίνουσα Δ του τριωνύμου.

20 Βήμα: Πρόσημο τριωνύμου

Ανάλογα το πρόσημο της παραγοντοποιούμε ακολουθώντας τον κανόνα στο Θεώρημα 1.

ΜΕΘΟΔΟΣ 2: ΕΥΡΕΣΗ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ

Για την εύρεση του προσήμου των τιμών ενός τριωνύμου για τις διάφορες τιμές της μεταβλητής:

10 Βήμα: Υπολογισμός διακρίνουσας

Υπολογίζουμε τη διακρίνουσα του.

20 Βήμα: Ρίζες τριωνύμου

Υπολογίζουμε τις ρίζες του τριωνύμου δηλαδή τις τιμές για τις οποίες μηδενίζεται.

3ο Βήμα: Πίνακας προσήμων

Κατασκευάζουμε και συμπληρώνουμε τον κατάλληλο πίνακα προσήμων ανάλογα το πρόσημο της διακρίνουσας ακολουθόντας τον κανόνα στο Θεώρημα 2. Στον άξονα των τιμών της μεταβλητής x τοποθετούμε τις ρίζες σε αύξουσα σειρά.

40 Βήμα: Πρόσημο τριωνύμου

Δίνουμε απάντηση για κάθε πρόσημο του τριωνύμου αναφέροντας και το διάστημα των τιμών του x για το οποίο προκύπτει.

ΜΕΘΟΔΟΣ 3: ΛΥΣΗ ΑΝΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ

Για να λυθεί μια ανίσωση 2ου βαθμού

1ο Βήμα: Σχηματισμός τριωνύμου

Αν η ανίσωση δεν είναι της μορφής του **Ορισμού 1**, εκτελούμε κατάλληλες πράξεις ώστε να τη μετασχηματίσουμε στη μορφή αυτή.

2° Βήμα : Διακρίνουσα - Πίνακας προσήμων

Ακολουθούμε τα βήματα 1, 2 και 3 της Μεθόδου 2 για την εύρεση προσήμου.

30 Βήμα: Λύση ανίσωσης

Απαντάμε γράφοντας τις λύσεις της ανίσωσης για τις οποίες προκύπτει μόνο το πρόσημο που μας ενδιαφέρει, δηλαδή το πρόσημο που μας υποδεικνύει η ανίσωση.