TOPIC 4 - Differentiation

Objectives (A2 syllabus):

- use the derivatives of e^x , $\ln x$, $\sin x$, $\cos x$, $\tan x$, together with constant multiples, sums, differences and composites;
- differentiate products and quotients;
- find and use the first derivative of a function which is defined parametrically or implicitly.

Rules of Differentiation

- 1. $\frac{d}{dx}(k) = 0$ where k is a constant
- $2. \quad \frac{d}{dx}(x^n) = nx^{n-1}$
- 3. $\frac{d}{dx}[f(x)+g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
- 4. $\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1}\frac{d}{dx}[f(x)]$
- 5. $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ --- The Chain Rule

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

The Product Rule and Quotient Rule

Example 1

Differentiate the following with respect to *x*.

i)
$$x^2(x+3)^3$$
 ii) $x^2\sqrt{1+x^2}$

Example 2

Differentiate the following with respect to x.

$$\frac{x-2}{(x+2)} \qquad \qquad \frac{x^2}{2x+1}$$

Exercise 1 - Product Rule and Quotient Rule

Question 1

Find $\frac{d^2y}{dx^2}$ given that

(a)
$$y = \frac{1}{x^2 + 1}$$
, (b) $y = \frac{x}{x - 1}$, (c) $y = \sqrt{(x^2 + 1)}$.

(b)
$$y = \frac{x}{x-1}$$
,

(c)
$$y = \sqrt{(x^2 + 1)}$$
.

(a)
$$\frac{2(3x^2-1)}{(x^2+1)^3}$$
, (b) $\frac{2}{(x-1)^3}$, (c) $\frac{1}{(x^2+1)^{3/2}}$

Question 2

Differentiate the following with respect to x

(a)
$$\frac{(x^2+1)(x-1)^2}{2x-1}$$

(b)
$$\frac{x\sqrt{(x-1)}}{x+1}$$
,

(a)
$$\frac{(x^2+1)(x-1)^2}{2x-1}$$
, (b) $\frac{x\sqrt{(x-1)}}{x+1}$, (c) $\sqrt{\left\{\frac{x^3+1}{(x+1)^3}\right\}} \cdot \frac{x^3+1}{(x+1)^3} \cdot \frac{x^3+1}{(x+1)^3} \cdot \frac{x^2+3x-2}{(2x-1)^2}}{\frac{3(x-1)}{2\sqrt{(x+1)^3(x^3+1)}}}$

Question 3

Given that $y = \frac{1-x}{1+x}$, show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4}{(1+x)^3}$$

Question 4

$$f(x) = \frac{x}{x^2 + 2}, \ x \in \mathbb{R}$$

Find the set of values of x for which f'(x) < 0.

$$x < -\sqrt{2}, \ x > \sqrt{2}$$

Question 5

Use differentiation to find the *x*-coordinates of the points at which the graph of $y = \frac{x^2}{2x-1}$ has either a maximum or a minimum and

distinguish between them.

$$x = 0, 1$$

Question 6

The curve $y = \frac{2x+1}{2x-1}$ crosses the x-axis at A and the y-axis at B. Find the point of intersection of the tangents to the curve at A and B. (-1/6, -1/3)

Differentiating Trigonometric Functions

The function $\sin x$ is differentiated from first principles as follows:

$$y = \sin x$$
 (where x is in radians)

$$\Rightarrow y + \delta y = \sin(x + \delta x)$$

$$\delta y = \sin(x + \delta x) - \sin x = 2\cos(x + \frac{1}{2}\delta x)\sin\frac{1}{2}\delta x$$

$$\Rightarrow \delta y = \sin(x + \delta x) - \sin x = 2\cos(x + \frac{1}{2}\delta x)\sin\frac{1}{2}\delta x$$

$$\Rightarrow \frac{\delta y}{\delta x} = \frac{2\cos(x + \frac{1}{2}\delta x)\sin\frac{1}{2}\delta x}{\delta x} = \cos(x + \frac{1}{2}\delta x)\cdot\frac{\sin\frac{1}{2}\delta x}{\frac{1}{2}\delta x}.$$

As
$$\delta x \to 0$$
, $\cos(x + \frac{1}{2}\delta x) \to \cos x$ and $\frac{\sin\frac{1}{2}\delta x}{\frac{1}{2}\delta x} \to 1$

$$\therefore \frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \cos x \cdot 1.$$

Hence

$$\frac{d}{dx}(\sin x) = \cos x.$$

Similarly it can be shown that $\frac{d}{dx}(\cos x) = -\sin x$

Example 3

- Find $\frac{d}{dx}(tan x)$ -----> differentiate by using quotient rule. i)
- Find $\frac{d}{dx}(\sec x)$ ii)
- Find $\frac{d}{dx}(\cot x)$ iii)
- Find $\frac{d}{dx}(cosec\ x)$ iv)

Example 4

Differentiate (a) $\sin^3 x$, (b) $\cos (4-3x)$, (c) $\sin x^\circ$

Exercise 2

Differentiate the following with respect to x, simplifying your answers where possible.

- 1. (a) $\sin 2x$, (b) $3\cos 4x$,
- (c) $4 \tan \frac{1}{2}x$.
- 2. (a) $\cos^4 x$, (b) $\sqrt{(\sin x)}$,
- (c) $\sin^2 5x$.
- 3. (a) $(x + \sin x)^3$, (b) $\sin (x^2)$, (c) $\tan (6x^\circ)$.

- 4. (a) $x^4 \cos x$,
- (b) $(4x^2+1)\tan x$, (c) $x^2\sin 3x$.
- 5. (a) $\csc(x+1)$, (b) $2\cot(1-2x)$, (c) $\sec(3x-4)$.

- 6. (a) $\tan(\cos x)$, (b) $\sec(1+\sqrt{x})$,
- (c) $\cot (1/x)$.
- 7. (a) $\sin x \cos 2x$, (b) $\cos^3 x \sin 3x$,
- (c) $\cos x \tan x$.

Answers:

1. (a) $2\cos 2x$, (b) $-12\sin 4x$, (c) $2\sec^2 \frac{1}{2}x$.

2. (a) $-4\cos^3 x \sin x$, (b) $\cos x/2\sqrt{(\sin x)}$, (c) $5\sin 10x$.

3. (a) $3(x + \sin x)^2 (1 + \cos x)$, (b) $2x \cos(x^2)$, (c) $\frac{\pi}{30} \sec^2 (6x^\circ)$. 4. (a) $x^3 (4 \cos x - x \sin x)$, (b) $8x \tan x + (4x^2 + 1) \sec^2 x$,

(c) $x(2\sin 3x + 3x\cos 3x)$.

5. (a) $-\csc(x+1)\cot(x+1)$, (b) $4\csc^2(1-2x)$, (c) $3\sec(3x-4)\tan(3x-4)$.

6. (a) $-\sin x \sec^2(\cos x)$, (b) $\frac{1}{2\sqrt{x}} \sec(1+\sqrt{x}) \tan(1+\sqrt{x})$,

(c) $\frac{1}{x^2}$ cosec² $\left(\frac{1}{x}\right)$.

7. (a) $\cos x \cos 2x - 2 \sin x \sin 2x$, (b) $3 \cos^2 x \cos 4x$, (c) $\cos x$.

Question 8

Differentiate with respect to x

(a) $\sin^2(2x-5)$,

(b) $x^4 \tan 4x$,

(d) $\frac{\sin x}{\sqrt{(\cos 2x)}}$ (a) $2\sin(4x-10)$, (b) $4x^3(\tan 4x + x \sec^2 4x)$, (c) $\frac{2\sec x}{(\sec x - \tan x)^2}$, (d) $\frac{\cos x}{(\cos 2x)^{3/2}}$.

Question 9

The equation of a curve is $y = 2\cos x + \sin 2x$. Find the x-coordinates of the stationary points on the curve for which $0 < x < \pi$, and determine the nature of each of these stationary points.

$$\frac{\pi}{6}$$
 - max, $\frac{5\pi}{6}$ - min

Question 10

Find the equation of normal to the curve $y = tan^2x$ when $x = \frac{\pi}{4}$.

$$4y + x = 4 + \frac{\pi}{4}$$