Curs 1

Mulţimi. Relaţii. Funcţii

Mulţimi

Teoria mulțimilor reprezintă un domeniu al matematicii care studiază conceptul de mulțime. Studiul sistematic al mulțimilor a fost inițiat de către Georg Cantor. În cadrul teoriei descrise de Cantor, prin *mulțime* înțelegem o colecție de obiecte <u>bine determinate</u> și <u>distincte</u> în care dispunerea elementelor nu are importanță. Obiectele din care este constituită mulțimea se numesc <u>elementele</u> mulțimii. Vom spune că două mulțimi sunt *egale* dacă acestea sunt formate din aceleași elemente.

Noțiunile de mulțime și element sunt legate prin relația de apartenență: Dacă x este un obiect, iar A este o mulțime, spunem că

- $x \in A$, dacă x este element al lui A;
- $x \notin A$, dacă x nu este element al lui A.

Printre mulțimi admitem existența unei mulțimi notate \emptyset , și numita $mulțimea\ vidă$, care nu conține nici un element.

Exemple de mulțimi remarcabile:

- multimea numerelor naturale: $\mathbb{N} = \{0, 1, 2, \dots, n, n+1, \dots\}$;
- mulțimea numerelor întregi: $\mathbb{Z} = \{\dots, -n-1, -n, \dots, -1, 0, 1, \dots, n, n+1 \dots\};$
- mulțimea numerelor raționale: $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\};$
- multimea numerelor reale: \mathbb{R} ;
- multimea numerelor complexe: $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}.$

Definiția 1.1 Fie A și B două mulțimi. Spunem că o mulțime A este **inclusă** în mulțimea B(sau că A este **submulțime** a lui B), și notăm $A \subseteq B$, dacă toate elementele mulțimii A sunt și elemente ale mulțimii B.

Notația 1.2 Vom nota prin $\mathcal{P}(A)$, mulțimea tuturor părților mulțimii A, adică

$$X \in \mathcal{P}(A) \Leftrightarrow X \subseteq A$$
.

Evident, $\varnothing, A \in \mathcal{P}(A)$.

Proprietățile incluziunii: Dacă X este o mulțime oarecare, iar $A, B, C \in \mathcal{P}(X)$, atunci:

- i) $A \subseteq A$ (reflexivitate);
- ii) $(A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C \ (tranzitivitate);$

Definiția 1.3 Spunem că mulțimea A este egală cu mulțimea B, și scriem A=B, dacă acestea au aceleași elemente, adică

$$A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)$$

Definiția 1.4 (Operații cu mulțimi) Fie X o mulțime nevidă și $A, B \in \mathcal{P}(X)$.

a) Se numește **reuniune** a mulțimilor A și B, mulțimea

$$A \cup B := \{ x \in X \mid x \in A \lor x \in B \};$$

b) Se numește intersecție a mulțimilor A și B, mulțimea

$$A \cap B := \{ x \in X \mid x \in A \land x \in B \};$$

c) Se numește diferența multimilor A și B, multimea

$$A \setminus B := \{ x \in X \mid x \in A \land x \notin B \};$$

- d) Se numește complementara mulțimii A, mulțimea $X \setminus A$, notată cu $C_X(A)$ sau C_A . Altfel scris, $C_X(A) = X \setminus A = \{x \in X \mid x \notin A\}$;
- e) Se numește diferența simetrică a mulțimilor A și B, mulțimea

$$A\Delta B := (A \setminus B) \cup (B \setminus A).$$

Următoarea propoziție prezintă câteva proprietăți ale operațiilor cu mulțimi:

Propoziția 1.5 Fie X o mulțime nevidă. Atunci pentru orice $A, B, C \in \mathcal{P}(X)$, au loc următoarele proprietăți:

- 1. $A \cup A = A$; $A \cap A = A$ (idempotența);
- $2. A \cup \emptyset = A; A \cap \emptyset = \emptyset;$
- 3. $A \cup B = B \cup A$; $A \cap B = B \cap A$ (comutativitate);
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$ (asociativitatea reuniunii);
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$ (asociativitatea intersecţiei);
- 6. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributivitatea intersecției față de reuniune);
- 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributivitatea reuniunii față de intersecție);
- 8. $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$ (absorbtie);
- 9. $C_{C_A} = A$; $A \cup C_A = X$; $A \cap C_A = \emptyset$;
- 10. $C_{A \cup B} = C_A \cap C_B$; $C_{A \cap B} = C_A \cup C_B$ (legile lui De Morgan);
- 11. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C); A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C);$
- 12. $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$; $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$;
- 13. $A\Delta A = \emptyset$; $A\Delta \emptyset = A$;

14.
$$A\Delta B = B\Delta A$$
;

15.
$$A\Delta(B\Delta C) = (A\Delta B)\Delta C$$
.

Exercițiul 1: Demonstrați asociativitatea reuniunii: $A \cup (B \cup C) = (A \cup B) \cup C$. Soluție:

$$x \in A \cup (B \cup C) \Leftrightarrow (x \in A) \lor (x \in (B \cup C)) \Leftrightarrow (x \in A) \lor (x \in B \lor x \in C)$$
$$\Leftrightarrow (x \in A \lor x \in B) \lor (x \in C) \Leftrightarrow x \in (A \cup B) \cup C.$$

Exercițiul 2: Fie X o mulțime nevidă și $A, B \in \mathcal{P}(X)$. Arătați că: $A \setminus (A \setminus B) = A \cap B$. Solutie:

$$x \in A \setminus (A \setminus B) \Leftrightarrow (x \in A) \land (x \notin (A \setminus B)) \Leftrightarrow (x \in A) \land (x \notin A \lor x \in B)$$
$$\Leftrightarrow (x \in A \land x \notin A) \lor (x \in A \land x \in B) \Leftrightarrow (x \in A \land x \in B)$$
$$\Leftrightarrow x \in A \cap B.$$

Definiția 1.6 Fie A și B două mulțimi nevide. **Produsul cartezian** al mulțimilor A și B, notat cu $A \times B$, este mulțimea tuturor perechilor ordonate (a,b) cu $a \in A$ și $b \in B$, adică mulțimea

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Propoziția 1.7 Fie X o mulțime nevidă și $A, B, C \in \mathcal{P}(X)$. Atunci au loc egalitățile:

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
;

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
;

3.
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
:

4.
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

Operațiile de intersecție, reuniune și produs cartezian se pot extinde la cazul unei familii de mulțimi.

Definiția 1.8 Fie X o mulțime nevidă. Dacă I este o mulțime nevidă de indici, iar $\{A_i\}_{i\in I}$ o familie nevidă de submulțimi ale lui X, atunci **reuniunea tuturor mulțimilor** A_i este definită prin

$$\bigcup_{i \in I} A_i := \{ x \in X \mid \exists i \in I : x \in A_i \}$$

iar intersecția multimilor A_i este definită prin

$$\bigcap_{i \in I} A_i = \{ x \in X \mid x \in A_i, \forall i \in I \}$$

Dacă I este o mulțime finită, spre exemplu $I = \{1, 2, ..., n\}, n \in \mathbb{N}^*$, atunci reuniunea și respectiv intersecția mulțimilor A_i , $i = \overline{1, n}$, se notează $\bigcup_{i=1}^n A_i$ și respectiv $\bigcap_{i=1}^n A_i$.

Propoziția 1.9 Fie X o mulțime nevidă, $B \in \mathcal{P}(X)$ și $\{A_i\}_{i \in I}$ o familie nevidă de submulțimi ale lui X. Atunci au loc următoarele:

i)
$$A_i \subseteq \bigcup_{i \in I} A_i$$
 și $\bigcap_{i \in I} A_i \subseteq A_i$ pentru orice $i \in I$;

$$ii) \ B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (B \cap A_i); \ B \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (B \cup A_i);$$

$$iii) \ X \setminus \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} (X \setminus A_i); \ X \setminus \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} (X \setminus A_i).$$

Pentru un număr finit de mulțimi nevide $\{A_i \mid i \in \overline{1,n}\}$, produsul cartezian al mulțimilor A_i este definit prin

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}.$$

Dacă $A_1 = A_2 = ... = A_n = A$, atunci produsul cartezian $A_1 \times A_2 \times ... \times A_n$ se notează cu A^n .

Relații

Definiția 1.10 Fie A și B două mulțimi nevide și $A \times B$ produsul cartezian al acestora.

O submulţime $R \subseteq A \times B$ se numeşte **relaţie** (binară) între elementele lui A și elementele lui B. Dacă $(x,y) \in R \subseteq A \times B$, unde $x \in A$ și $y \in B$, vom citi: x **este în relaţia** R **cu** y, și vom nota xRy.

Definiția 1.11 Fie A și B două mulțimi nevide și relația binară $R \subseteq A \times B$.

a) Se numeste domeniul relației R, multimea

$$Dom(R) := \{ x \in A \mid \exists y \in B : xRy \};$$

b) Se numeste imaginea (codomeniul) relației R, multimea

$$\operatorname{Im}(R) := \{ y \in B \mid \exists x \in A : xRy \};$$

c) Se numește inversa relației R, relația de la B la A definită prin

$$R^{-1} := \{ (y, x) \in B \times A \mid xRy \}.$$

Exercițiul 3: Fie $A = \{1,2,3\}$ și $B = \{4,5\}$ și fie relațiile $R = \{(1,5),(2,4),(3,4)\}$ și $S = \{(1,4),(1,5)\}$. Să se determine domeniul, codomeniul și inversele relațiilor R și S.

$$\begin{array}{l} Solutie: \ {\rm Dom(R)} = \{1,2,3\} = {\rm A, \ Im(R)} = \{4,5\} = {\rm B, \ } R^{-1} = \{(5,1),(4,2),(4,3)\} \\ {\rm Dom(S)} = \{1\}, \ {\rm Im(S)} = \{4,5\} = {\rm B, \ } S^{-1} = \{(5,1),(4,1)\}. \end{array}$$

Definiția 1.12 Fie A, B, C mulțimi nevide și fie $R \subseteq A \times B$ și $S \subseteq B \times C$. Compusa relațiilor S și R, notată cu $S \circ R$, este relația de la A la C definită prin

$$S \circ R = \{(x, z) \in A \times C \mid \exists y \in B : (x, y) \in R \land (y, z) \in S\}.$$

Exercițiul 4: Fie $A = \{1,2\}$ și $B = \{3,4,5\}$ și fie relațiile $R = \{(1,5),(2,3),(2,4)\}$ și $S = \{(3,1),(3,2),(4,1),(4,2)\}$. Să se determine $S \circ R, R \circ S, R \circ R^{-1}, R^{-1} \circ R$.

Soluție: $R \subseteq A \times B$ iar $S \subseteq B \times A$, rezultă că $S \circ R \subseteq A \times A$.

 $S \circ R = \{(x, z) \in A \times A \mid \exists y \in B : (x, y) \in R \land (y, z) \in S\}$

 $(1,5) \in R$, însă în S nu avem nici o pereche cu prima componenta 5;

 $(2,3) \in R \Rightarrow (3,1), (3,2) \in S \Rightarrow (2,1), (2,2) \in S \circ R;$

 $(2,4) \in R \Rightarrow (4,1), (4,2) \in S \Rightarrow (2,1), (2,2) \in S \circ R;$

Rezultă $S \circ R = \{(2,1), (2,2)\}$

Similar, $R \circ S \subseteq B \times B$, $R \circ S = \{(3,5), (3,3), (3,4), (4,5), (4,3), (4,4)\}$

 $R^{-1} = \{(5,1),(3,2),(4,2)\} \subseteq B \times A, R \circ R^{-1} = \{(5,5),(3,3),(3,4),(4,3),(4,4)\} \subseteq B \times B, \text{ iar } R^{-1} \circ R = \{(1,1),(2,2)\} \subseteq A \times A.$

Definiția 1.13 Fie A o mulțime. Numim identitate pe A, relația

$$1_A := \{(x, x) \mid x \in A\}.$$

Definiția 1.14 Fie A o mulțime nevidă și fie $R \subseteq A \times A$ o relație pe A. Spunem că R este:

- reflexivă dacă xRx, $\forall x \in A$, adică $1_A \subseteq R$;
- simetrică dacă $(xRy \Rightarrow yRx), \forall x, y \in A, adică R^{-1} = R;$
- antisimetrică dacă $((xRy \land yRx) \Rightarrow x = y), \forall x, y \in A, adică R \cap R^{-1} = 1_A;$
- $tranzitiv \check{a} dac \check{a} ((xRy \land yRz) \Rightarrow xRz), \forall x, y, z \in A, alt felse is R \circ R \subseteq R.$

Definiția 1.15 Fie A o mulțime nevidă și fie $R \subseteq A \times A$ o relație pe A. Spunem că R este o **relație** de echivalență pe A dacă este reflexivă, simetrică și tranzitivă.

Definiția 1.16 Fie R o relație de echivalență pe mulțimea nevidă A. Clasa de echivalență a elementului $x \in A$ este mulțimea

$$[x]_R = \widehat{x}_R := \{ y \in A \mid xRy \}.$$

Multimea claselor de echivalență determinate de R, se numește multime cât și se notează

$$A_{/R} = \{ [x]_R \mid x \in A \}.$$

Exercițiul 5: Considerăm pe mulțimea $\mathbb{R} \setminus \{0\}$ relația $x \rho y \Leftrightarrow x \cdot y > 0$. Arătați că ρ este o relație de echivalență și determinați clasele de echivalență $[x]_{\rho}$.

Solutie: (1) Reflexivitate: $x \rho x, \forall x \in \mathbb{R} \setminus \{0\} \Leftrightarrow x^2 > 0, \forall x \in \mathbb{R} \setminus \{0\} \text{ (evident)};$

- (2) Simetrie: $x \rho y, \forall x \in \mathbb{R} \setminus \{0\} \Rightarrow x \cdot y > 0, \forall x \in \mathbb{R} \setminus \{0\} \Leftrightarrow y \cdot x > 0, \forall x \in \mathbb{R} \setminus \{0\} \Leftrightarrow y \rho x, \forall x \in \mathbb{R} \setminus \{0\}.$
- (3) Tranzitivitate: $x\rho y \wedge y\rho z, \forall x, y, z \in \mathbb{R} \setminus \{0\} \Leftrightarrow x \cdot y > 0 \wedge y \cdot z > 0, \forall x, y, z \in \mathbb{R} \setminus \{0\}$

 $\Leftrightarrow x \cdot y^2 \cdot z > 0, \forall x, y, z \in \mathbb{R} \setminus \{0\} \Leftrightarrow x \cdot z > 0, \forall x, z \in \mathbb{R} \setminus \{0\} \Leftrightarrow x \rho z, \forall x, z \in \mathbb{R} \setminus \{0\}.$

Din (1), (2) și (3), rezultă că ρ este o relație de echivalență.

Pentru mulțimea cât distingem două situații

- dacă $x > 0 \Rightarrow [x]_{\rho} = \{y \in \mathbb{R} \setminus \{0\} \mid y \cdot x > 0\} = (0, +\infty).$
- dacă $x < 0 \Rightarrow [x]_{\rho} = \{y \in \mathbb{R} \setminus \{0\} \mid y \cdot x > 0\} = (-\infty, 0).$

Prin urmare, $(\mathbb{R} \setminus \{0\})/\rho = \{(-\infty,0),(0,+\infty)\}.$

Definiția 1.17 *Fie* $R \subseteq A \times A$. *Spunem că:*

- i) R este o **relație de ordine (parțială)** pe A dacă este reflexivă, antisimetrică și tranzitivă.
- ii) R este o **relație de preordine** pe A dacă este reflexivă și tranzitivă.
- iii) O relație de ordine R se numește totală dacă are loc

$$xRy \lor yRx, \forall x, y \in A.$$

iv) Dacă A este o mulțime nevidă și R este o relație de preordine/ordine/ordine totală pe A, atunci perechea (A,R) se numește mulțime preordonată/ordonată/total ordonată.

Observație 1.18 De obicei, relațiile de ordine sunt notate prin: \leq , \preceq , etc., iar inversele sale sunt notate prin \geq , \succeq . Dacă \preceq este o relație de preordine pe A, atunci \prec va nota relația $\preceq \backslash 1_A$, adică $x \prec y \Rightarrow (x \preceq y) \land (x \neq y), \forall x, y \in A$.

Exercițiul 6: Pe mulțimea N definim relația : astfel

$$x : y \Leftrightarrow \exists k \in \mathbb{N} : x = k \cdot y$$

Să se arate că relația $\dot{\cdot}$ este o relație de ordine pe \mathbb{N} .

Soluție: Reflexivitate: $\exists k = 1$ astfel încât $x = 1 \cdot x$. Aşadar, $x : x, \forall x \in \mathbb{N}$.

Antisimetrie: Arătăm că $\forall x, y \in \mathbb{N}$, din x : y și y : x, rezultă x = y.

Cum $x : y \le i y : x$, rezultă că $\exists k, k' \in \mathbb{N}$ astfel încât $x = k \cdot y \le i y = k' \cdot x$.

Asadar, $x = k \cdot y = k \cdot (k' \cdot x) \Rightarrow k \cdot k' = 1 \Rightarrow k = k' = 1 \Rightarrow x = y$.

<u>Tranzitivitate</u>: Fie $x, y, z \in \mathbb{N}$ astfel încât x : y şi y : z. Atunci există $k, k' \in \mathbb{N}$ astfel încât $x = k \cdot y$ şi $y = k' \cdot z$. Prin urmare, $x = k \cdot y = k \cdot k' \cdot z$. Deci, $\exists k'' = k \cdot k'$ astfel încât $x = k'' \cdot z \Rightarrow x : z$.

Relația de ordine $\dot{}$ se numește relație de divizibilitate pe \mathbb{N} .

Definiția 1.19 Fie o mulțime ordonată (A, \preceq) și $B \subseteq A$ o mulțime nevidă.

- i) Un element $x \in A$ se numește **majorant** pentru B dacă $y \leq x, \forall y \in B$.
- ii) Un element $x \in A$ se numește **minorant** pentru B dacă $x \leq y, \forall y \in B$.
- iii) Dacă B admite minorant, majorant sau ambii, spunem că B este mărginită inferior, mărginită superior, respectiv mărginită.
- iv) Dacă $x \in A$ este un minorant pentru A, atunci x se numește **cel mai mic element** al lui A și se notează cu $\min_{R} A$.
- v) Dacă $y \in A$ este un majorant pentru A, atunci y se numește **cel mai mare element** al lui A și se notează cu $\max_R A$.

Exemple:

1. Mulţimea \mathbb{N} a numerelor naturale este mărginită inferior (0 este minorant al acesteia) şi nemărginită superior.

2. Mulţimea A=(0,1] este mărginită inferior (0 este un minorant) şi superior (1 este un majorant).

Definiția 1.20 Fie (A, \preceq) o mulțime ordonată și fie $B \subseteq A$.

- Spunem că un element x ∈ A este **margine superioară** a mulțimii B (sau supremum) dacă x este cel mai mic majorant al mulțimii B. Dacă există un astfel de element, acesta se notează sup_≺ B.
- Spunem că $x \in A$ este margine inferioară a mulțimii B (sau infimum) dacă x este cel mai mare minorant al mulțimii B. Dacă există un astfel de element, acesta se notează inf $\prec B$.

Multimea numerelor reale

În cele ce urmează, vom indica, sub formă de axiome, proprietățile fundamentale ale unui sistem de numere reale, adică ale unui corp total ordonat complet.

Definiția 1.21 Se numește **mulțime de numere reale** o mulțime \mathbb{R} înzestrată cu două operații algebrice: + (adunarea) și \cdot (înmulțirea), precum și cu o relație de ordine: \leq , în raport cu care sunt îndeplinite următoarele trei grupe de axiome:

I. $(\mathbb{R}, +, \cdot)$ este un corp, adică au loc:

```
(I.1) x + (y+z) = (x+y) + z, \forall x, y, z \in \mathbb{R};
```

(I.2)
$$\exists 0 \in \mathbb{R}, \forall x \in \mathbb{R} : x + 0 = 0 + x = x;$$

$$(I.3) \ \forall x \in \mathbb{R}, \ \exists (-x) \in \mathbb{R} : x + (-x) = (-x) + x = 0;$$

$$\textit{(I.4)} \ x+y=y+x, \, \forall \, x,y \in \mathbb{R};$$

(I.5)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{R};$$

$$(I.6) \ \exists \ 1 \in \mathbb{R} : x \cdot 1 = 1 \cdot x = x, \ \forall \ x \in \mathbb{R};$$

$$(I.7) \ \forall x \in \mathbb{R} \setminus \{0\}, \ \exists x^{-1} \in \mathbb{R} : x \cdot x^{-1} = x^{-1} \cdot x = 1;$$

$$(I.8) \ x \cdot y = y \cdot x, \ \forall \, x, y \in \mathbb{R};$$

$$(I.9) \ x \cdot (y+z) = x \cdot y + x \cdot z, \ \forall \, x,y,z \in \mathbb{R};$$

II. $(\mathbb{R},+,\cdot,\leq)$ este un corp ordonat, adică:

(II.1)
$$x \leq x, \forall x \in \mathbb{R};$$

(II.2)
$$(x \le y) \lor (y \le x), \forall x, y \in \mathbb{R};$$

(II.3)
$$((x \le y) \land (y \le x)) \Rightarrow x = y, \forall x, y \in \mathbb{R};$$

(II.4)
$$((x \le y) \land (y \le z)) \Rightarrow x \le z, \forall x, y, z \in \mathbb{R};$$

$$(\mathit{II.5}) \ x \leq y \Rightarrow x+z \leq y+z, \, \forall \, x,y,z \in \mathbb{R};$$

$$(\textit{II.6}) \ ((x \leq y) \land (0 \leq z)) \Rightarrow x \cdot z \leq y \cdot z, \forall \, x, y, z \in \mathbb{R};$$

III. (Axioma de completitudine Cantor-Dedekind) Orice submulțime nevidă A a lui \mathbb{R} care este majorată admite o cea mai mică margine superioară în \mathbb{R} .

Observații:

1) Orice proprietate a numerelor reale poate fi demonstrată pornind de la aceste axiome. Spre exemplu, scăderea și $\hat{i}mpărtirea$ pot fi introduse astfel:

$$x - y := x + (-y), x, y \in \mathbb{R};$$
$$\frac{x}{y} := x \cdot (y^{-1}), x \in \mathbb{R}, y \in \mathbb{R} \setminus \{0\};$$

2) Ţinând cont de axiomele lui $\mathbb R$ se observă cu uşurință că, întrucât $1 \in \mathbb R$, atunci și elementele $2=1+1,3=(1+1)+1,\ldots$ aparțin mulțimii numerelor reale. Aceste elemente $1,2,3,\ldots$ le vom numi numere naturale, iar mulțimea lor o vom nota cu $\mathbb N$. De asemenea, odata cu orice element $n \in \mathbb N$, avem că $-n \in \mathbb R$. Totalitatea elementelor $0,1,-1,2,-2,\ldots$ se notează cu $\mathbb Z$, și numește mulțimea numerelor întregi. Mai mult, dacă $x,y \in \mathbb Z$ iar $y \neq 0$, atunci $x \cdot y^{-1} \in \mathbb R$. Mulțimea numerelor reale care satisfac această proprietate se numește mulțimea numerelor raționale și se notează cu $\mathbb Q$.

Aşadar, între submulțimile remarcabile ale lui \mathbb{R} , avem următoarele relații

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$
.

Definiția 1.22 O mulțime total ordonată strict este numită **bine ordonată** dacă orice submulțime nevidă a ei are cel mai mic element.

Exemplu: Mulţimea numerelor naturale (\mathbb{N}, \leq) este bine ordonată, în schimb mulţimile $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, împreună cu relația uzuală de ordine, " \leq ", nu sunt bine ordonate.

Definiția 1.23 Fie $x \in \mathbb{R}$. Definim valoarea absolută a lui x prin

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

Propoziția 1.24 Au loc următoarele proprietăți:

$$i) |x| \geq 0, \forall x \in \mathbb{R};$$

$$|iii)|x \cdot y| = |x| \cdot |y|, \forall x, y \in \mathbb{R};$$

$$|x| = 0 \Leftrightarrow x = 0, \ \forall x \in \mathbb{R};$$

$$|iv||x + y| \le |x| + |y|, \forall x, y \in \mathbb{R}.$$

Teorema 1.25 Fie A o submulțime nevidă a lui \mathbb{R} .

- 1. Un element $\alpha \in \mathbb{R}$ este margine superioară a mulțimii A, dacă și numai dacă:
 - (i) $x \le \alpha, \ \forall \ x \in A$;
 - (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A \text{ astfel } \hat{n} c \hat{a} t \alpha \varepsilon < x_{\varepsilon}.$
- 2. Un element $\beta \in \mathbb{R}$ este margine inferioară a mulțimii A, dacă și numai dacă:
 - (i) $\beta < x, \forall x \in A$;
 - (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A \text{ astfel } \hat{n} \hat{c} \hat{a} t x_{\varepsilon} < \beta + \varepsilon.$

Demonstraţie: Vom demonstra prima proprietate, cea legată de marginea inferioară se demonstrează analog.

 \Longrightarrow : Cum $\alpha = \sup(A)$, α este majorant al mulţimii A: $x \le \alpha, \forall x \in A$. Pe de altă parte, α este cel mai mic majorant, prin urmare, există $\varepsilon > 0$ astfel încât $\alpha - \varepsilon$ sa nu fie majorant pentru A. Aşadar, relația de ordine \le fiind totală, există $x_{\varepsilon} \in A$, astfel încât $\alpha - \varepsilon < x_{\varepsilon}$.

 \Leftarrow : Fie $\alpha \in \mathbb{R}$ ce satisface (i) şi (ii). Conform punctului (i), α este un majorant pentru A. Să presupunem că mai există $\gamma \in \mathbb{R}$, un alt majorant pentru A, astfel încât $\alpha > \gamma$. Atunci, luând $\varepsilon := \alpha - \gamma > 0$, din (ii) obţinem că există $x_{\varepsilon} \in A$ astfel încât $\alpha - \varepsilon < x_{\varepsilon}$, adică $\gamma < x_{\varepsilon}$. Dar acest lucru contrazice faptul că γ este un majorant pentru A. Prin urmare, α este marginea superioară a mulţimii A.

Observații:

1. Dacă $a, b \in \mathbb{R}$ cu a < b, atunci

$$\sup[a, b] = \sup[a, b) = \sup(a, b] = \sup(a, b) = b$$

 $\inf[a, b] = \inf[a, b) = \inf(a, b] = \inf(a, b) = a$

2. Dacă o mulțime A are un cel mai mare (cel mai mic) element, atunci max $A = \sup A$ (respectiv, min $A = \inf A$).

Deoarece între mulțimea \mathbb{R} și mulțimea punctelor de pe o dreaptă (pe care s-a stabilit un punct numit origine, un sens, o orientare și o unitate de măsură) se poate pune în evidență o corespondență biunivocă (bijecție), vom identifica numerele reale cu punctele dreptei respective. Vom numi această dreaptă, dreapta reală.

Cum, pentru o mulţime $A \subset \mathbb{R}$ nevidă, nemajorată, nu mai avem asigurat faptul că sup $A \in \mathbb{R}$, iar pentru o mulţime nevidă şi neminorată $B \subset \mathbb{R}$, nu putem spune că inf $B \in \mathbb{R}$, vom considera două simboluri, numite **plus infinit** şi **minus infinit**, notate cu $+\infty$ şi respectiv $-\infty$. Vom nota prin $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ si vom numi această multime, **dreapta reală extinsă**.

Vom prelungi ordinea uzuală a lui \mathbb{R} la $\overline{\mathbb{R}}$, convenind ca

$$-\infty < x$$
, $x < +\infty$, $-\infty < +\infty$, pentru orice $x \in \mathbb{R}$

Prin extensia menționată, mulțimea $\overline{\mathbb{R}}$ este total ordonată, iar elementele $+\infty$ și $-\infty$ – numite (acum) *numere reale infinite* (punctele de la infinit ale dreptei reale) sunt *cel mai mare* și respectiv *cel mai mic* dintre elementele sale.

Se consideră lipsite de sens, fiind nedeterminate, operațiile următoare: $(+\infty) + (-\infty)$, $(+\infty) - (+\infty)$, $(-\infty) + (+\infty)$, $(-\infty) - (-\infty)$; $(+\infty)$, $(-\infty)$, $(+\infty)$, $(-\infty)$, $(+\infty)$, $(-\infty)$, $(+\infty)$, $(-\infty)$, $(+\infty)$. Elucidarea sensului acestor operații are loc, de regulă, pe seama expresiilor din care provin.

Funcții

Definiția 1.26 Fie A și B două mulțimi nevide. O relație $f \subseteq A \times B$ se numește **funcție** (sau relație funcțională) dacă satisface următoarele condiții:

- 1) Dom(f) = A (altfel scris, $\forall x \in A, \exists y \in B, \text{ astfel } \hat{incat} (x, y) \in f$);
- 2) $(x,y) \in f$ $\S i(x,z) \in f \Rightarrow y = z, \forall x \in A, \forall y, z \in B.$

În acest caz, vom nota funcția $f \subseteq A \times B$, astfel $f : A \to B$. Mulțimea A se numește **domeniul de definiție** al funcției f, iar mulțimea B se numește **codomeniul** lui f.

Din definiția de mai sus rezultă că pentru orice $x \in A$ există un unic $y \in B$ astfel încât $(x, y) \in f$. Elementul y se numește imaginea lui x prin f, și se notează f(x).

Definiția 1.27 i) Se numește graficul funcției $f: A \to B$, mulțimea $G_f \subseteq A \times B$ definită prin

$$G_f = \{(x, f(x)) \mid x \in A\}.$$

ii) Spunem că două funcții $f:A\to B$ și $g:C\to D$ sunt **egale** dacă A=C,B=D și $f(x)=g(x), \ \forall x\in A=C.$

Definiția 1.28 Fie funcția $f: A \rightarrow B$.

- a) Dacă $C \subseteq A$, atunci funcția $f_{|C} := f \cap (C \times B)$ (adică $f_{|C}(x) = f(x)$, $\forall x \in C$), se numește restricția lui f la multimea C.
- b) $Dacă C \subseteq A$, atunci numim **imagine a mulțimii** C **prin** f, mulțimea

$$f(C) = \{ y \in B \mid \exists x \in C : y = f(x) \}.$$

c) Dacă $D \subseteq B$, atunci numim **preimaginea lui** D prin f (sau **imaginea inversă**) mulțimea

$$f^{-1}(D) = \{ x \in A \mid \exists y \in D : y = f(x) \}.$$

Definiția 1.29 Fie A o mulțime nevidă. Funcția $1_A: A \to A$ definită prin $1_A(x) = x, \forall x \in A$ se numește funcția identică.

Definiția 1.30 Fie A și B două mulțimi nevide. Atunci funcția $f: A \to B$ se numește:

- i) injectivă dacă $\forall x, y \in A, f(x) = f(y) \Rightarrow x = y;$
- ii) surjectivă dacă $\operatorname{Im}(f) = B$ (altfel scris, $\forall y \in B, \exists x \in A : f(x) = y$);
- iii) bijectivă dacă f este injectivă și surjectivă;
- iv) inversabilă dacă există $g: B \to A$ astfel încât $g \circ f = 1_A$ și $f \circ g = 1_B$. Dacă există funcția g, acesta se numește inversa lui f și se notează cu f^{-1} .

Propoziția 1.31 Fie $f: A \to B$ și $g: B \to C$ două funcții.

- i) $Dacă f si g sunt injective, atunci g \circ f este injectivă;$
- ii) Dacă f și g sunt surjective, atunci $g \circ f$ este surjectivă;
- ii) Dacă f și q sunt bijective, atunci q o f este bijectivă;
- ii) Dacă q o f este injectivă, atunci f este injectivă;
- ii) Dacă q o f este surjectivă, atunci q este surjectivă.

Propoziția 1.32 O funcție $f: A \to B$ este bijectivă dacă și numai dacă este inversabilă. În acest caz, f^{-1} este o funcție de la B la A, și $f \circ f^{-1} = 1_B$ și $f^{-1} \circ f = 1_A$.

Funcția caracteristică

În cele ce urmează, vom introduce noțiunea de funcție caracteristică (indicatoare) a unei mulțimi.

Definiția 1.33 Fie X o mulțime nevidă și $A \subseteq X$. Se numește **funcție caracteristică (indicatoare)** a mulțimii A, funcția $\chi_A : X \to \{0,1\}$ definită prin

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}$$

 $Dac\check{a} A = \emptyset$, $atunci \chi_A \equiv 0$.

Propoziția 1.34 Fie X o mulțime nevidă și fie $A, B \subseteq X$. Atunci au loc următoarele proprietăți:

- i) $\chi_A^{\alpha} = \chi_A, \ \forall \alpha > 0;$
- $ii) A \subseteq B \Leftrightarrow \chi_A \leq \chi_B$
- iii) $A = B \Leftrightarrow \chi_A = \chi_B$;
- *iv*) $\chi_{C_A} = 1 \chi_A$;
- $v) \chi_{A \cap B} = \chi_A \cdot \chi_B;$
- vi) $\chi_{A \cup B} = \chi_A + \chi_B \chi_A \cdot \chi_B$;
- vii) $\chi_{A \setminus B} = \chi_A \chi_A \cdot \chi_B$;
- viii) $\chi_{A\Delta B} = \chi_A + \chi_B 2\chi_A \cdot \chi_B$.

Exercițiul 7: Fie $X \neq \emptyset$ și $A, B, C \subseteq X$. Utilizând proprietățile funcției caracteristice, arătați că:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Soluție: Folosind proprietatea iii) din Propoziția 1.34, ar trebui să arătăm că $\chi_{A \cup (B \cup C)} = \chi_{(A \cup B) \cup C}$.

$$\chi_{A\cup(B\cup C)} \stackrel{vi)}{=} \chi_A + \chi_{B\cup C} - \chi_A \cdot \chi_{B\cup C} = \chi_A + \chi_B + \chi_C - \chi_B \chi_C - \chi_A \cdot (\chi_B + \chi_C - \chi_B \chi_C)$$

$$= \chi_A + \chi_B + \chi_C - \chi_B \chi_C - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_B \chi_C$$

$$\chi_{(A\cup B)\cup C} \stackrel{vi)}{=} \chi_{A\cup B} + \chi_C - \chi_{A\cup B} \cdot \chi_C = \chi_A + \chi_B - \chi_A \chi_B + \chi_C - \chi_C \cdot (\chi_A + \chi_B - \chi_A \chi_B)$$

$$= \chi_A + \chi_B + \chi_C - \chi_B \chi_C - \chi_A \chi_B - \chi_A \chi_C + \chi_A \chi_B \chi_C$$
(2)

Din (1) și (2) rezultă concluzia.

Exemple de funcții reale

In continuare, vom prezenta câteva exemple de funcții reale:

- 1. Funcții elementare de bază:
 - funcția constantă: $f: \mathbb{R} \to \mathbb{R}$, cu $f(x) = c, \forall x \in \mathbb{R}$, unde $c \in \mathbb{R}$;
 - funcția identitate: $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}, 1_{\mathbb{R}}(x) = x, \forall x \in \mathbb{R};$
 - funcția exponențială de bază a, a > 0: funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x, \forall x \in \mathbb{R}$;

- funcția logaritm de bază $a > 0, a \neq 1$: $f:(0,\infty) \to \mathbb{R}, f(x) = \log_a x$;
- funcția putere de exponent $a \in \mathbb{R}$: $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}, \ f(x) = x^a, \forall x \in \mathbb{R}$;
- funcții trigonometrice (directe): sin, cos, tg, ctg;
- funcții trigonometrice inverse: arcsin, arccos, arctg, arcctg.
- 2. Funcții elementare: adică o funcție obținută prin aplicarea uneia sau a mai multor operații de bază cu funcțiile elementare de bază: adunarea, scăderea, înmulțirea și împărțirea.
- 3. Funcții speciale:
 - funcția parte întreagă: $f: \mathbb{R} \to \mathbb{R}, f(x) = [x] \stackrel{def}{=} \sup \{n \in \mathbb{Z} \mid n \leq x\};$
 - funcția parte fracționară: $f: \mathbb{R} \to \mathbb{R}$ definită de $f(x) = \{x\} = x [x]$;
 - funcția semn: $f: \mathbb{R} \to \mathbb{R}$ definită de $f(x) = \text{sgn}(\mathbf{x}) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$
 - funcția valoare absolută: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$;
 - funcția parte pozitivă: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = x^+ = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$;
 - funcția parte negativă: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = x^- = \begin{cases} 0, & x \ge 0 \\ -x, & x < 0 \end{cases}$;
 - funcția lui Dirichlet: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$;
 - funcția lui Heaviside: $f: \mathbb{R} \to \mathbb{R}$, definită de $f(x) = \left\{ \begin{array}{ll} 0, & x < 0 \\ 1, & x \geq 0 \end{array} \right.$;
 - $\bullet \ \text{ funcția lui Riemann}, \ f:[0,1] \to \mathbb{R}, \ \text{cu} \ f(x) = \left\{ \begin{array}{ll} 0, & \text{dacă } x=0 \ \text{sau } x \in (0,1] \ \backslash \ \mathbb{Q} \\ \frac{1}{q}, & x = \frac{p}{q} \in (0,1] \cap \mathbb{Q}, \ (p,q) = 1 \end{array} \right. .$

Bibliografie

- [1] A. Precupanu, Bazele analizei Matematice, Editura Universității "Al. I. Cuza", Iași, 1993.
- [2] F.L. Ţiplea, Introducere în teoria multimilor, Editura Universității "Al. I. Cuza", Iași, 1998.
- [3] M. Postolache, Analiză matematică (teorie și aplicații), Editura Fair Partners, București, 2011.
- [4] G. Bergman, An Invitation to General Algebra and Universal Constructions, Henry Helson, 15 the Crescent, Berkeley CA, 94708 1998, 398, pp. 45. (http://math.berkeley.edu/~gbergman/245/)
- [5] G. O'Regan, Mathematics in Computing, Springer Verlag, London, 2013.