Lernkontrolle 10

HINWEIS : Beantworten Sie die Fragen erst mit Ja/Nein und versuchen Sie danach, schlüssige Beweise, respektive Widerlegungen, anzugeben.

- a) Regt man ein lineares System mit einer Frequenz f_1 an, so kann am Ausgang die Frequenz $2f_1$ erscheinen.
- b) Die Totzeit ist ein lineares Element.
- c) Mit der Laplacetransformation lassen sich nichtlineare Differentialgleichungen lösen.
- d) Eine Differentialgleichung, in der die Zeit explizit auftritt, ist nichtlinear.
- e) Durch die Linearisierung um einen Arbeitspunkt wird das physikalische System linear.
- **f)** Die Schrittantwort eines Integrators springt bei t = 0.
- g) Die Impulsantwort eines linearen Systems ist die Ableitung der Schrittantwort.
- h) Lineare Differentialgleichungen führen zwingend auf rationale Übertragungsfunktionen.
- i) Die Differentialgleichung $5\dot{y}^2 + 3ty = 2u$ ist zeitvariant.
- j) Die Differentialgleichung $5\dot{y}^2 + 3ty = 2u$ ist linear.
- k) Der Amplitudengang einer Totzeit ist abhängig von der Frequenz.
- I) Impulsantwort und Frequenzgang eines LZI Systems sind direkt miteinander verknüpft.
- m) Stör- und Führungsübertragungsfunktion besitzen dasselbe Nennerpolynom.
- n) Ist der Nennergrad = Zählergrad einer Übertragungsfunktion, so beginnt die Schrittantwort mit einem endlichen Wert.
- o) Das Verhalten eines nichtlinearen Systems ist vom Arbeitspunkt unabhängig.
- p) Systeme sind nur dann realisierbar ist, wenn der Grad des Zählerpolynoms kleiner ist als der Grad des Nennerpolynoms.
- q) Ein lineares System erfüllt entweder das Verstärkungs- oder das Überlagerungsprinzip.
- r) Die Laplace Transformation beruht auf einem Integral mit unendlicher oberer Grenze für die Zeit t.
- s) Der Verlauf der Sprungantwort eines Systems kann mit dem Laplace Endwertsatz berechnet werden.
- t) Eine Differentialgleichung, welche auch die Ableitungen des Eingangsignals u enthält, ist ein zeitvariantes System.
- u) Die Impulsantwort eines dynamischen Systems ist die Laplace Transformation der Übertragungsfunktion.
- v) Das Totzeitglied besitzt im Bodediagramm eine unendliche negative Phasendrehung.
- w) Ein System mit ungerader Anzahl Pole hat mindestens einen Pol auf der reellen Achse.
- x) Der Laplace Endwertsatz gilt nicht für eine sinusförmige Anregung.
- y) Ein Differentiator dreht die Phase für alle Frequenzen um -90° .
- z) Eine Nullstelle des offenen Kreises ist auch eine Nullstelle des geschlossenen Kreises.
- α) Die Systemordnung eines Totzeitelementes ist unendlich.
- β) Eine Phasendrehung von mehr als $\pm 360^{\circ}$ ist technisch nicht möglich.
- γ) Das Bodediagramm ist das Abbild der reellen Achse durch G.
- δ) Ortskurve und Bodediagramm stellen unterschiedliche Eigenschaften eines Übertragungsgliedes dar.
- ϵ) Das Verhalten für $t \to \infty$ ergibt sich aus dem Bodediagramm für $\omega \to \infty$.
- ζ) Kausale Systeme sind Systeme, welche keine relevanten Nichtlinearitäten aufweisen.
- η) Die Serieschaltung von Übertragungsgliedern entspricht der Multiplikation der entsprechenden Bodediagramme.
- θ) Ein Ziel der Regelungstechnik besteht darin, die Störübertragungsfunktion $G_s \to 0$ zu machen.
- *t*) Anhand einer gemessenen Sprungantwort kann die zugehörige Übertragungsfunktion ermittelt werden.
- κ) Geht die Stossantwort eines LZI Systems für $t \to \infty$ gegen Null, so ist die entsprechende Sprungantwort beschränkt.
- λ) Eine rationale Übertragungsfunktion ist durch die Angabe der Pole und Nullstellen vollständig definiert.
- μ) Instabile System können auch durch eine Regelung nicht stabilisiert werden.
- u) Ideale PD-Regler weisen eine endliche Schrittanwort auf.
- ξ) Das Nyquistkriterium schliesst vom offenen Kreis auf die Stabilität des geschlossenen Kreises.
- π) $G(s) = \frac{1}{s^5 + 5s^4 + 10s^2 + 10s^2 + 5s + 1}$ beschreibt ein instabiles System.
- ho) Eine negative Phasenreserve bedeutet nicht zwingend ein instabiles Verhalten.
- σ) Beim PT2 Glied ist die Phase bei ω_0 von der Dämpfung d abhängig.
- τ) Die Amplitudenreserve ist ein gutes Mass für die Dämpfung eines Systems.
- v) Ein Doppelintegrator kann nicht mit einem P-Regler stabilisiert werden.