Vorlesung 2 - Ana 2

Florian Bierlage 10.4.2025

Contents

1	Vorl	nerige Vorlesung	3
	1.1	Äquivalenz von Normen	3
		Vollständiger Raum	3
		1.2.1 ℓ^1 Vollständigkeit	3
2	(1.3) Offene und abgeschlossene Menge	3
	2.1	Def:	3
		2.1.1 Elementare Eigenschaften	4
	2.2	Satz:	4
	2.3	Satz:	4
	2.4	Def:	4
	2.5	Teilraumtopologie	4
	2.6	Produkttopologie	5
3	Stetige Abbildung zwischen Metrischen Räumen		
	3.1	Def: Stetigkeit	5
	3.2	Def: Lipschitz Stetig	5

1 Vorherige Vorlesung

(X, d) Metrischer Raum

 $(V, ||\cdot||)$ Normierter Raum

 $(V, \langle \cdot, \cdot \rangle)$ Euklidischer Raum

1.1 Äquivalenz von Normen

zwei normen f, g sind äquivalent, falls c_1 , c_2 existieren, so dass

$$c_2 f(x) \le g(x) \le c_1 f(x)$$

Alle normen auf \mathbb{R}^n sind äquivalent.

1.2 Vollständiger Raum

Der metrische Raum (X, d) ist vollständig falls alle Cauchy Folgen konvergieren.

1.2.1 ℓ^1 Vollständigkeit

 $(\ell^1, ||\cdot||_{\ell^1}$ ist vollständig. Sei $x \in \ell^1$ eine Cauchy Folge in ℓ^1 . D.h. dass

$$\forall \epsilon > 0 \exists k_0 \in \mathbb{N}(||x^k - x^m||_{\ell^1} < \epsilon) \forall k, m \ge k_0$$

$$= \sum_{i=1}^{\infty} |x_i^k - x_i^m|_{\ell^1} < \epsilon \times k_0$$

$$\Rightarrow x^k \text{ ist CF für } R \Rightarrow \exists x_i \in \mathbb{R}(x_i^k \to x_i, k \to \infty)$$
(2)

$$\Rightarrow x^k \text{ ist CF für R } \Rightarrow \exists x_i \in \mathbb{R}(x_i^k \to x_i, k \to \infty)$$
 (2)

2 (1.3) Offene und abgeschlossene Menge

2.1 Def:

Sei (X, d) ein mtrischer Raum, $x_0 \in X$ und r > 0 Dann ist

- $B_r(x_0) = \{x \in X | d(x, x_0) < r\}$ die Offene Kugel
- $\overline{B}_r(x_0) = \{x \in X | d(x, x_0) \le r\}$ abgeschlossene Kugel
- $U \subset X$ heißt umgebung von x_0 , falls $\exists \epsilon > 0$ mit $B_{\epsilon}(x_0) \subset U$.
- $U \subset X$ heißt offen falls $\forall x \in U \ \exists \epsilon > 0 \ \text{mit} \ B_{\epsilon} \subset U$.
- $A \subset X$ ist abgeschlossen falls A^c offen ist.

2.1.1 Elementare Eigenschaften

- \emptyset und X sind offen und abgeschlossen.
- $B_r(x_0)$ ist offen. Sei $x \in B_r(x_0)$ und sei $\epsilon = r d(x, x_0) > 0$ dann ist $B_{\epsilon}(x) \subset B_r(x_0)$
- $y \in (\overline{B}_r(x_0))^c \Rightarrow d(y, x_0) > r$ und sei $\epsilon = d(y, x_0) r > 0$ Dann $B_{\epsilon}(y) \subset (\overline{B}_r(x_0))$
- Durchschnitt endlich vieler offenen mengen ist offen. Sei V, U offen. Sei $x \in U \cap V$, sei ϵ_1, ϵ_2 s.d. $B_{\epsilon_1}(x) \subset U$ und $B_{\epsilon_2}(x) \subset V$ dann sei $\epsilon = \min(\epsilon_1, \epsilon_2)$ und $B_{\epsilon}(x) \subset U \cap V$

2.2 Satz:

Sei (X, d) ein metrischer Raum, $x, y \in X$ mit $x \neq y$. Dann existiert eine Umgebung von X und V von y mit $U \cap V = \emptyset$.

Beweis: $2\epsilon = d(x, y) > 0$ sei $U = B_{\epsilon}(x), V = B_{\epsilon}(y)$ dann $\exists z \in B_{\epsilon}(x) \cap B_{\epsilon}(y)$ und dann $2\epsilon = d(x, y) \le d(x, z) + d(z, y) < 2\epsilon$

2.3 Satz:

Sei $A \subset X$ abgeschlossen, das ist äquivalent zu $\forall (x^k) \subset A$ mit $x^k \to x$ in X dann gilt $x \in A$. Beweis: " \Rightarrow ": Annahme: $x \notin A$ dann $\epsilon > 0$ so dass $B_{\epsilon}(x) \subset A^c$. Widerspruch zu $x_k \in B_{\epsilon}(x)$ für $k \ge k_0$.

" \Leftarrow ": Nehme an dass A^c nicht offen ist. Dann existiert ein $x \in A^c$ sodass $B_{\epsilon}(x)A^c$ für alle ϵ . Wähle $\epsilon = 1/n$, dann $\exists x_n \in B_{1/n}(x), x_n \in A$ Dann $x_n \to x$, nach vorherigem $x \in A$ Widerspruch

2.4 Def:

Sei (X, d) ein metrischer Raum, Sei $M \subset X$ und $x_0 \in X$ heißt innerer Punk von M falls $x_0 \in M$ und $\exists \epsilon > 0$ s.d. $B_{\epsilon}(x_0) \subset M$.

 $x_0 \in X$ heißt innerer Punkt, falls alle ϵ Kugel um x_0 ein $y \in M$ und ein $z \in M^c$ enthält.

 $x_0 \in X$ heißt Häufungspunkt von M falls in jeder ϵ kugel von x_0 ein $y \in M$ mit $y \neq x_0$ liegt.

 $x_0 \in X$ heißt Isolierter punkt falls $x_0 \in M$ aber ist kein Häufungspunkt.

- M Menge der Inneren Punkte von M
- ∂M Menge der Randpunkte von M
- $\overline{M} = M \cup \partial M$ ist der Abschluss von M

2.5 Teilraumtopologie

Sei (X, d) ein metrischer raum, sei $X_0 \subset X$ dann ist (X_0, d) auch ein metrischer Raum. Dann ist $U_0 \subset X_0$ offen, falls $U \subset X$ existiert, offen und $U \cap X_0 = U_0$ ist.

2.6 Produkttopologie

Seien (X, d_x) und (Y, d_y) metrische Räume, dann ist $(X \times Y, d)$ ein metrischer Raum mit der metrik

$$d((x_1, y_1), (x_2, y_2)) = \max(d_x(x_1, x_2), d_y(y_1, y_2))$$

 $W \subset X \times Y$ ist offen, falls $\forall (x,y) \in W$ eine umgebung U von $x \in X$ existiert und eine Umgebung V von $y \in Y$ s.d. $U \times V \subset W$

3 Stetige Abbildung zwischen Metrischen Räumen

3.1 Def: Stetigkeit

Seien $(X, d_x), (Y, d_y)$ metrische Räume. Sei $f: X \to Y$ eine Abbildung. diese Abbildung ist stetig in x_0 falls

$$\forall \epsilon > 0 \exists \delta > 0 \forall x (d_y(f(x), f(x_0)) < \epsilon \text{ und } d_x(x, x_0) < \delta)$$

Falls für alle $x \in X$ f stetig ist, dann heißt f stetig.

3.2 Def: Lipschitz Stetig

falls $L \ge 0$ exisiert und

$$d_v(f(x), f(x')) \le Ld_x(x, x') \quad \forall x, x' \in X$$

3.3 Satz:

Seien $(X,d_x),(Y,d_y)$ metrische Räume, $f:X\to Y$ ist stetig gdw $f^{-1}(V)\subset X$ offen für alle $V\subset Y,V$ offen, ist