

Compilers

so, E,
$$S \vdash i : Int(i)$$
, S

so, E,
$$S \vdash s : String(n,s), S$$

$$E(id) = I_{id}$$

$$S(I_{id}) = v$$
so, E, S \(\text{id} : v, S \)

so, E, S ⊢ self : so, S

so, E, S
$$\vdash$$
 e : v, S₁
E(id) = I_{id}
S₂ = S₁[v/I_{id}]
so, E, S \vdash id \leftarrow e : v, S₂

so, E, S
$$\vdash$$
 e₁ : v₁, S₁ so, E, S₁ \vdash e₂ : v₂, S₂

so, E, S
$$\vdash$$
 e₁ + e₂: v₁ +v₂, S₂

so, E, S
$$\vdash$$
 e₁: v₁, S₁
so, E, S₁ \vdash e₂: v₂, S₂
...

so, E, S_{n-1} \vdash e_n: v_n, S_n

so, E, S \vdash { e₁; ... e_n; }: v_n, S_n

Consider the expression

$$-\{X \leftarrow 7 + 5; 4;\}$$

```
so, E, S \vdash e<sub>1</sub>: Bool(true), S<sub>1</sub>
so, E, S<sub>1</sub> \vdash e<sub>2</sub>: v, S<sub>2</sub>
so, E, S \vdash if e<sub>1</sub> then e<sub>2</sub> else e<sub>3</sub>: v, S<sub>2</sub>
```

so, E,
$$S \vdash e_1$$
: Bool(false), S_1
so, E, $S \vdash$ while e_1 loop e_2 pool: void, S_1

```
so, E, S \vdash e<sub>1</sub>: Bool(true), S<sub>1</sub>
so, E, S<sub>1</sub> \vdash e<sub>2</sub>: v, S<sub>2</sub>
so, E, S<sub>2</sub> \vdash while e<sub>1</sub> loop e<sub>2</sub> pool: void, S<sub>3</sub>
so, E, S \vdash while e<sub>1</sub> loop e<sub>2</sub> pool: void, S<sub>3</sub>
```

```
so, E, S \vdash e<sub>1</sub> : v<sub>1</sub>, S<sub>1</sub>
so, ?, ? \vdash e<sub>2</sub> : v, S<sub>2</sub>
so, E, S \vdash let id : T \leftarrow e<sub>1</sub> in e<sub>2</sub> : v<sub>2</sub>, S<sub>2</sub>
```

- In what context should e₂ be evaluated?
 - Environment like E but with a new binding of id to a fresh location I_{new}
 - Store like S₁ but with I_{new} mapped to v₁

- We write I_{new} = newloc(S) to say that I_{new} is a location not already used in S
 - newloc is like the memory allocation function

```
so, E, S \vdash e<sub>1</sub> : v<sub>1</sub>, S<sub>1</sub>

I_{new} = newloc(S_1)

so, E[I_{new}/id] , S<sub>1</sub>[v_1/I_{new}] \vdash e<sub>2</sub> : v<sub>2</sub>, S<sub>2</sub>

so, E, S \vdash let id : T \leftarrow e<sub>1</sub> in e<sub>2</sub> : v<sub>2</sub>, S<sub>2</sub>
```

Fill in the missing store value for the derivation of $(x \leftarrow 6) < x + 1$.

```
      so, [x:I], S_1 \vdash 6 : Int(6), S_2
      so, [x:I], S_3 \vdash 1 : Int(1), S_4

      S_3 = S_2[6/I]
      so, [x:I], S_4 \vdash x : 6, S_5

      so, [x:I], S_1 \vdash x \leftarrow 6 : 6, S_3
      so, [x:I], S_3 \vdash x + 1 : 7, S_5

      so, [x:I], [I \leftarrow 3] \vdash (x \leftarrow 6) < x + 1 : Bool(true), S_5
```

	<u>S</u> ₂	<u>S</u> ₃	<u>S</u> ₄	<u>S₅</u>	
	_	<u>=</u> [l←3]	_	_	
\bigcirc	[l←6]	[l←6]	[l←7]	[l←7]	
\bigcirc	[l←3]	[l←3]	[l←6]	[l←6]	
\bigcirc	[l←3]	[l←6]	[l←6]	[l←6]	