Exercise sheet 3

The Lie groups SU(2), $SO_{\mathbb{R}}(3)$, and the compact symplectic group Sp_2 .

- 1. The Hamiltonian quaternions. Define $\mathbb{H} = \{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} : w, z \in \mathbb{C} \}.$
- (i) Check privately, but do not write up, that \mathbb{H} is a subring of $M_2(\mathbb{C})$ (i.e. \mathbb{H} is closed under $+, \times, -$ and $1 \in \mathbb{H}$).
- (ii) What is the image of the map, $det : \mathbb{H} \to \mathbb{C}$? (We will call this map the reduced norm and we will denote it by n.)
- (iii) Suppose that $h \in \mathbb{H} \{0\}$. Is h a unit in \mathbb{H} ? If so give an explicity description of its inverse.
- (iv) Consider the elements, 1, (respectively \mathbf{i} , \mathbf{j} , \mathbf{k}) of \mathbb{H} defined by taking (z, w) = (1, 0) (respectively (i, 0), (0, 1), (0, i)). Compute \mathbf{i}^2 , \mathbf{j}^2 , \mathbf{k}^2 , $\mathbf{i}\mathbf{j}$, $\mathbf{j}\mathbf{i}$.
- (v) Describe the action of matrix transpose on the matrices \mathbf{i} , \mathbf{j} , \mathbf{k} . Short answer. (Matrix transpose is called quaternionic conjugation.)
 - (vi) Find a relationship between det(h) and $h^T h$ for all $h \in \mathbb{H}$.
 - (vii) Give without justification an \mathbb{R} -basis for \mathbb{H} .

2. The norm 1 Hamiltonian quaternions.

- (i) Take z = a + bi and w = c + di and compute the reduced norm of the associated quaternion.
- (ii) To what familiar C^{∞} manifold is the space of reduced norm 1 quaternions, \mathbb{H}_1 , diffeomorphic?
- (iii) Suppose $h \in \mathbb{H}^{\times}$ has norm equal to 1. Is there a formula for h^{-1} involving quaternionic conjugation?
- (iv) Do the reduced norm 1 quaternions form a Lie group? (Don't allow your written answer to be too long.)
- (v) Recall from exercise 3.5 on the handout "computation of tangent spaces of some closed subgroups" the compact symplectic group Sp(2). What relationship exists between that group and this exercise?
- **3.** The unitary and special unitary groups. Let $U(2) = \{A \in GL_2(\mathbb{C}) : \overline{A}^T A = Id\}$, where \overline{A} is obtained from A by taking the complex conjugate of each entry. Let $SU(2) = \{A \in U(2) : det(A) = 1\}$.
 - (i) Relate SU(2) to Lie groups in the previous exercise.
 - (ii) To what familiar \mathcal{C}^{∞} manifold is SU(2) isomorphic?
 - (iii) Is U(2) isomorphic to \mathbb{H}^{\times} in the category of Lie groups?

4. The special orthogonal group $SO_{\mathbb{R}}(3)$.

Let $\mathbb{I}\subset\mathbb{H}$ denote the $\mathbb{R}\text{-vector}$ space of trace 0 quaternions.

- (i) Explain briefly why the trace of the product of two matrices gives a map $\mathbb{I} \times \mathbb{I} \xrightarrow{(\ ,\)} \mathbb{R}$ and why this map is a symmetric bilinear form.
 - (ii) Compute tr(AB) where $A = x_1\mathbf{i} + x_2\mathbf{j} + x_3\mathbf{k}$ and $B = y_1\mathbf{i} + y_2\mathbf{j} + y_3\mathbf{k}$.
- (iii) Define $SO_{\mathbb{R}}(3) = \{ A \in GL_3(\mathbb{R}) : A^T A = Id \}$. Is $SO_{\mathbb{R}}(3)$ isomorphic to $G = \{ A \in GL(\mathbb{I}) : (Ah_1, Ah_2) = (h_1, h_2) \ \forall \ h_1, h_2 \in \mathbb{I} \}$?

- (iv) Show that H^{\times} acts on \mathbb{I} by conjugation: $h * \ell = h\ell h^{-1}$.
- (v) Use (iv) the produce a Lie group homomorphism, $\xi : \mathbb{H}_1 \to G$. (vi) What are the dimensions of the Lie groups H_1 and G?
- (vii) Show that the map ξ is not an isomorphism.
- (viii) Show that the map ξ is a covering space.