Introdução à Inteligência Artificial

Setrem

João Paulo Aires

Estes slides têm como base as aulas do prof. Rodrigo Barros na cadeira "Aprendizado de Máquina" (PUCRS)

Índice

- $01 \longrightarrow \text{Recap!}$
- 02 --> Introdução ao Aprendizado de Máquina
- 03 --- Projetando um Sistema de Aprendizado
- 04 → Informações Úteis

01 →

Recap!

Tipos de Problemas

- Determinístico, Totalmente Observável → Problema de Estado-único
 - o O agente sabe exatamente em que estado estará; solução é uma sequência.
- Não observável → Problema de Conformidade
 - O agente pode não ter ideia de onde está; solução (se houver) é uma sequência
- Não Determinístico e/ou Parcialmente Observável → Problema Contingente
 - percepções fornecem novas informações sobre o estado atual a solução é um plano contingente ou uma política frequentemente intercalada, busca, execução
- Espaço de estados desconhecido → Problema de exploração ("online")

Agentes

Formulação de um Problema

Busca em Árvore

[Desinformada] Busca Breadth-First

[Desinformada] Busca Depth-First

[Informada] Busca Greedy

[Informada] Busca A*

Algoritmos Genéticos

Busca Adversária

02 →

Introdução ao Aprendizado de Máquina

Bibliografia

• FACELI, K., LORENA, A.C., GAMA, J., CARVALHO, A.C.P.L.F.

Inteligência Artificial: Uma Abordagem em Aprendizado de Máquina. Rio de Janeiro: LTC, 2011.

Bibliografia

• TAN, P. N., STEINBACH, M., KUMAR, V.

Introduction to Data Mining. Addison-Wesley, 2005.

Bibliografia

• MITCHELL, T.

Machine Learning. McGraw-Hill, 1997.

Definir tratamentos mais eficazes para determinadas doenças/perfis de pacientes.

Otimizar o consumo de energia elétrica visando redução de gastos e/ou aumento de conforto.

Otimizar as notícias apresentadas em um jornal eletrônico de acordo com o perfil do usuário

Dirigir veículos sem qualquer necessidade de supervisão humana

"Na medida que os computadores se tornam mais sofisticados, parece inevitável que o Aprendizado de Máquina exerça um papel central em Ciência da Computação e tecnologia de computadores"

Tom Mitchell

Identificar genes associados a determinadas doenças

Discriminar tecidos (saudáveis/doentes); objetos celestiais

Identificar nichos de mercado

Detectar uso fraudulento de cartões de crédito

Reconhecimento facial, de voz e assinaturas

Exemplo: ALVINN

ALVINN

- Sistema automático de navegação para automóveis
 - o Baseado em imagens de uma câmera *onboard*
 - O Dirigiu a 110km/h em rodovia pública americana
 - De costa a costa em 1989 por 2850 milhas

ALVINN

- Utiliza uma Rede Neural
 - o 960 entradas
 - Matriz 30x32 derivada dos píxeis da imagem
 - 29 neurônios intermediários
 - 45 neurônios de saída
 - Cada um representando um comando de direção

Tesla Self-Driving Car

Captura do Estilo de Pintores Famosos

- Uma das áreas de aplicação mais importantes de AM têm sido descoberta de conhecimento em bases de dados (KDD)
 - Mineração de Dados (Data Mining DM)
 - Exemplos:
 - Registros de compras em grandes supermercados
 - Registros de empréstimos financeiros
 - Registros de transações financeiras
 - Registros médicos
 - Projeto genoma
 - ...

AM, DM, KDD

 Os termos Aprendizado de Máquina e Data Mining são muitas vezes utilizados de maneira indiscriminada, porém, se referem a conceitos diferentes:

DM é geralmente feita utilizando AM (mas nem sempre!)

Por que estudar AM?

• Esse é o momento!

- Vários algoritmos efetivos e eficientes estão disponíveis;
- Grande quantidade de dados disponíveis online;
- Elevada capacidade deos recursos computacionais disponíveis;
- Data scientist is the sexiest job og the 21th Century!
 (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century)

Definições

Definições relacionadas a aprendizado e AM

- Uma máquina de aprendizado, definida de maneira ampla, é qualquer dispositivo cujas ações são influenciadas por experiências anteriores. (Nilsson, 1965)
- Qualquer mudança em um sistema que o permite ter um melhor desempenho na segunda vez em que ele repete uma mesma tarefa (Simon, 1983)
- Modificação de uma tendência comportamental por meio de experiência (Webster, 1984)
- Uma melhoria na capacidade de processar informação a partir da atividade de processar informação (Tanimoto, 1990)

Definição de Aprendizado

• Sócrates: Aprender é Recordar (Diálogos de Platão)

Definição clássica (Mitchell, 1997)

"Um programa de computador é dito aprender a partir de uma experiência E com respeito a alguma classe de tarefas T e medida de desempenho P, se seu desempenho em tarefas T, medido por P, melhora com a experiência E."

Exemplo 1:

- Tarefa T: jogar xadrez
- Medida de desempenho P: percentagem de jogos vencidos contra adversários
- Experiência de treinamento *E*: praticar jogando contra si próprio ou contra adversários humanos (ex., pela internet)

- Tarefa T:
- Medida de desempenho P:
- Experiência de treinamento E:

- Tarefa T: categorizar mensagens de e-mail como spam ou legítima
- Medida de desempenho P:
- Experiência de treinamento E:

- Tarefa T: categorizar mensagens de e-mail como spam ou legítima
- Medida de desempenho P: perceptagem de mensagens corretamente classificadas
- Experiência de treinamento E:

- Tarefa **T**: categorizar mensagens de e-mail como spam ou legítima
- Medida de desempenho P: perceptagem de mensagens corretamente classificadas
- Experiência de treinamento *E*: conjunto de e-mails manualmente rotulados por seres humanos

Exercício 1: Problema de reconhecimento de escrita manual

- o Tarefa T:
- Medida de desempenho P:
- Experiência de treinamento E:

Exercício 2: Problema do Veículo Autônomo

- Tarefa T:
- Medida de desempenho P:
- o Experiência de treinamento *E*:

Exercício 3: Diagnóstico Médico

- Tarefa T:
- Medida de desempenho P:
- o Experiência de treinamento *E*:

Paradigmas de AM

- O treinamento de um sistema de aprendizado pode ser:
 - Supervisionado
 - Semi-Supervisionado
 - Self-Supervisionado
 - Não Supervisionado
 - Por Reforço

Aprendizado Supervisionado

- Guiado por "professor" externo
 - Professor possui conhecimento sobre a tarefa
 - Representado por conjuntos de pares (x, y)
 - Algoritmo de AM gera modelo de busca reproduzir comportamento do professor
 - Parâmetros do modelo são ajustados por apresentações sucessivas dos pares (x, y): fase de treinamento
 - Após o treinamento, o desempenho do sistema deve ser testado com dados não vistos: fase de teste

Aprendizado Supervisionado

- Exemplos de tarefas supervisionadas
 - Classificação de padrões
 - Categorizar objetos
 - Regressão
 - Previsão de valores contínuos

Aprendizado por Reforço

- Guiado por um "crítico" externo
 - Processo de tentativa e erro
 - Procura maximizar sinal de reforço
- Se ação tomada por sistema é seguida por estado satisfatório, o sistema é fortalecido. Caso contrário, o sistema é enfraquecido (Lei de Thorndike)
- Tipos de reforço
 - Positivo = recompensa
 - Negativo = punição
 - Nulo

Supervisionado x Reforço

Treinamento Supervisionado	Treinamento por Reforço
Professor	Crítico
Sistema de Feedback	Sistema de Feedback
É dito o que fazer	Faz e vê o que acontece
Mais rápido	Mais lento

Aprendizado Não Supervisionado

- Não tem "crítico" ou "professor" externo
- Exemplos:
 - o Clustering: descobre categorias automaticamente
 - Associação: descobre relacionamentos entre variáveis;
 - Quantização: sumariza dados em graõs automaticamente;
 - Redução de dimensionalidade.

Aprendizado Semi-Supervisionado

- Professor externo apenas para parte dos exemplos de treinamento.
- Exemplo:
 - Web mining: Usuários podem rotular páginas como pertencentes a determinadas categorias, mas apenas uma parcela ínfima de webpages teria essa informação associada.

03 →

Algoritmos de AM

Função Alvo

- Exemplo:
 - Aprender a diagnosticar paciente de diabetes
 - Função = mapeamento das características dos pacientes para os valores (classes) "diabético" e "não diabético";
 - Como aprender a função?
 - Ajustá-la aos dados disponíveis
 - Como determinar o desempenho da função aprendida?
 - Verificar quantos pacientes ela diagnostica corretamente.

Modelo de Representação do Conhecimento

- Modelos Matemáticos:
 - Regressão linear / logística
 - Redes Neurais
 - Máquinas de Vetores de Suporte
- Modelos Simbólicos
 - Árvores de Decisão
 - Regras em lógica proposicional ou de 1a ordem
 - Redes Semânticas

Modelo de Representação do Conhecimento

- Modelos "Lazy":
 - k-NN
 - Raciocínio Baseado em Casos (CBR),
 - 0 ...
- Modelos Probabilísticos
 - Naïve Bayes
 - Redes Bayesianas
 - Misturas de Gaussianas
 - Modelos Ocultos de Markov (HMMs),
 - 0 ..

Rede Neural

Árvores de Decisão

Rede Semântica

Rede Bayesiana

Técnicas de Aprendizado

- Dado um tipo de modelo, uma função alvo e um conjunto de objetos de treinamento, é preciso algum mecanismo para obter um modelo específico que represente bem a função alvo.
 - Esse mecanismo consiste fundamentalmente de uma técnica de busca;
 - Busca-se, no espaço de modelos plausíveis de um determinado tipo, aquele que melhor represente a função

Técnicas de Aprendizado

- Algoritmos Baseados em Otimização via Gradiente Descendente
 - o Regressão linear/logística, redes neurais, ...
- Algoritmos Baseados em Programação Dinâmica
 - o HMMs, ...
- Algoritmos Baseados em Divisão e Conquista;
 - Indução de árvores e regras de decisão
- Algoritmos baseados em Probabilidades
 - Naïve Bayes, Redes Bayesianas, ...

Modelos, Técnicas e Bias Indutivo

- Cada tipo de modelo é mais apropriado para determinada classe de problemas (no free-lunch)
 - É parte importante do estudo de AM aprender a identificar os cenários mais apropriados para cada modelo e técnica de aprendizado
- O modelo e a técnica estabelecem algo fundamental em Aprendizado de Máquina:
 - Bias Indutivo

Bias Indutivo

- Informalmente, o bias indutivo de um sistema de AM é uma tendência a privilegiar um dado conjunto de hipóteses em detrimento a outras
 - Assuma que "hipótese" nesse caso se refere a uma realização (ou instanciação) particular de um modelo para aproximar uma determinada função alvo.

Informações Úteis

- Repositório de Dados na Web
 - UCI data repository
 - https://archive.ics.uci.edu/
 - Kaggle
 - https://www.kaggle.com/
- MOOCs
 - Machine Learning (Coursera Andrew Ng)
 - https://www.coursera.org/learn/machine-learning
 - Introduction to Machine Learning (Udacity)
 - https://www.udacity.com/course/intro-to-machine-learning--ud120

slidesgo