22-R-KM-TW-2

The fire truck is in the process of raising its ladder. It is able to lift the ladder with a constant angular velocity of $\omega = 0.05$ rad/s. If the combined length of d_1 and d_2 is 6 m and the ladder starts with an initial angle of 0° , what is the rate at which the height of the ladder at point A is increasing, with respect to the ground, when $\theta = 55^{\circ}$?

Solution:

$$d_1 + d_2 = 6$$

$$\sin \theta = \frac{h}{d}$$

$$\frac{d}{dt} \sin \theta = \frac{d}{dt} \cdot \frac{h}{d}$$

$$\omega \cos \theta = \frac{\dot{h}}{d}$$

$$v_y = \dot{h} = \omega d \cos \theta$$

$$v_y = (0.04)(3) \cos(45^\circ) = 0.085 \text{ m/s}$$