

# Indian Institute of Technology Kharagpur West Bengal -India 721302

# Department of Mechanical Engineering Mechatronics Laboratory ME69036

# **Project**

# Motion Sensing Automatic Sanitizing and Door Locking System

# Submitted By

- 1. Mahesh Tapse (21ME63R30)
- 2. Dhiraj Dharmadip Raut (21ME63R31)
  - 3. Dipannoy Dhar (21ME63R32)
    - 4. Punith H J (21ME63R33)

### **CONTENT**

- 1.Description
- 2. Components List and Specifications
- 3. Project Block Diagram
- 4. Circuit Diagram
- 5.3D Model
- **6.Working Process**
- 7. Arduino Coding
- 8.Final Product
- 9.Cost Estimation

### DESCRIPTION

As we are in the middle of a grave pandemic situation, our team members have come up with the idea of automatic sanitizing and temperature checking where no personnel will be involved.

There will be a proximity motion sensor on the door which will detect any motion, trying to enter and spray a necessary amount of sanitizer on him/her.

Now there will also be a non-touching type of temperature sensor that will detect the temperature of the specified person. If that person on the question has a higher temperature than 100°F, the door will stay locked and won't open, but if the temperature is less than 100°F, he/she can enter effortlessly.

# **COMPONENTS LIST**

|       |                                | 1                   |
|-------|--------------------------------|---------------------|
| Sl.no | COMPONENTS                     | Quantity            |
| 1     | Arduino uno R3                 | 1                   |
| 2     | PIR Motion Sensor              | 1                   |
| 3     | Temperature Sensor( MLX90614 ) | 1                   |
| 4     | LCD Display 16*2               | 1                   |
| 5     | Pump 12V                       | 1                   |
| 6     | Relay 12V                      | 1                   |
| 7     | Adapter 12V                    | 1                   |
| 8     | Servo Motor                    | 1                   |
| 9     | Nozzle                         | 1                   |
| 10    | Pump Tube                      | 1 Meter             |
| 11    | Wire                           | As much<br>Required |

## **COMPONENTS DESCRIPTION**

### 1. Arduino uno R3



The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P microcontroller and developed by Arduino.cc.

### 2. PIR Motion Sensor



A motion sensor, or motion detector, is an electronic device that uses a sensor to detect nearby people or objects.

## 3. Temperature Sensor( MLX90614 )



The MLX90614 is a Contactless Infrared (IR) Digital Temperature Sensor that can be used to measure the temperature of a particular object ranging from -70° C to 382.2°C

# 4. LCD Display 16\*2



A 16x2 LCD means it can display 16 characters per line and there are 2 such lines. In this LCD each character is displayed in 5x7 pixel matrix.

# 5. Pump 12V



A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy.

## 6. Relay 12V



12V DC relay switches used for full voltage applications, as they allow a low current flow circuit to control a high current flow circuit

## 7. Adapter 12V



A power supply for electronic devices. Also called an "AC adapter" or "charger," power adapters plug into a wall outlet and convert AC to a single DC voltage

### 8. Servo Motor



A servomotor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration.

### 9. Nozzle



A nozzle is often a pipe or tube of varying cross-sectional area, and it can be used to direct or modify the flow of a fluid

## **PROJECT BLOCK DIAGRAM**



# **CIRCUIT DIAGRAM**

## **3D MODEL**



### **WORKING PROCESS**

- When PIR sensor detects any human motion within a range then Temperature sensor is activated, and it measures body temperature
- If the Temperature is in the range of 35.5°C to 37.5°C
   Pump and Servo motor is activated if not Pump and
   Servo motor are inactive
- Pump inlet is connected to sanitizer source and outlet is connected to nozzle for spraying sanitizer
- Servo motor is connected to door hinges when it is activated door opening and closing is done
- This is how Motion Sensing Automatic Sanitizing and Door Locking System works

### **ARDUINO CODING**

```
#include <LiquidCrystal.h>
#include <Wire.h>
#include <Adafruit_MLX90614.h>
#include<Servo.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
float temp;
Adafruit_MLX90614 mlx = Adafruit_MLX90614();
int servo2 = 6;
int pir = 7;
int pir_value = 0;
int pir_state = LOW;
const int RELAY_PIN = A3;
float Temp;
Servo myServo1;
int pos = 155;
void setup()
{
 myServo1.attach(servo2);
 myServo1.write(pos);
 pinMode(pir, INPUT);
 pinMode(RELAY_PIN, OUTPUT);
 Serial.begin(9600);
 mlx.begin();
 lcd.begin(16, 2); // set up the LCD's number of columns and rows:
```

```
lcd.clear();
}
void loop()
{
 pir_value = LOW;
 Serial.print("Ambient = ");
 Serial.print(mlx.readAmbientTempC());
 Serial.print("*C\tObject = ");
 Serial.print(mlx.readObjectTempC());
 Serial.println();
 temp = mlx.readObjectTempC();
 pir_value = digitalRead(pir);
 Temp=mlx.readAmbientTempC();
 if (pir_value == HIGH)
 {
  Serial.println("Motion Detected");
  lcd.setCursor(0, 0);
  lcd.print("MOTION DETECTED");
  delay(2000);
  lcd.setCursor(0, 1);
  lcd.print("CHECK TEMP");
  delay(3000);
  lcd.clear();
  delay(1000);
  if (pir_state == LOW)
  {
```

```
pir_state = HIGH;
 }
}
else
{
 ServosClose();
 if (pir_state == HIGH)
 {
  Serial.println('Motion Stopped');
  lcd.clear();
  delay(1000);
  lcd.setCursor(0, 0);
  lcd.print("DOOR CLOSED");
  pir_state = LOW;
}
if (temp > 32.5 && temp < 38 && temp!= Temp)
{
 if (pir_value == HIGH)
 {
  lcd.clear();
  delay(1000);
  lcd.setCursor(0, 0);
  lcd.print("YOUR TEMP");
  lcd.setCursor(0, 1);
  lcd.print("IS NORMAL");
  delay(1000);
```

```
lcd.clear();
   delay(1000);
   lcd.setCursor(0, 0);
   lcd.print("SATINIZE");
   lcd.setCursor(0, 1);
   lcd.print("YOURSELF");
   delay(3000);
   digitalWrite(RELAY_PIN, HIGH);
   delay(5000);
   digitalWrite(RELAY_PIN, LOW);
   lcd.clear();
   delay(1000);
   lcd.setCursor(2, 0);
   lcd.print("WELCOME!!!");
   delay(1000);
   ServosOpen();
   lcd.clear();
   delay(4000);
  }
 }
}
void ServosOpen()
{
 for (pos = 155; pos >= 40;)
 {
  myServo1.write(pos);
```

```
pos = pos - 5;
  delay(40);
}

void ServosClose()
{
  for (; pos <= 155; pos += 5)
  {
    myServo1.write(pos);
    delay(40);
}
</pre>
```

# FINAL MODEL



# **COST ESTIMATION**

| SL<br>NO | COMPONENT                        | Cost in Rs |
|----------|----------------------------------|------------|
| 1        | Arduino Uno R3                   | 500        |
| 2        | IR Temperature sensor<br>MLX9061 | 720        |
| 3        | 12V Pump                         | 399        |
| 4        | PIR Sensor                       | 75         |
| 5        | Servo Motor                      | 120        |
| 6        | 12V DC Relay                     | 250        |
| 7        | 12V Adaptor                      | 100        |
| 8        | Pump Nozzle                      | 100        |
| 9        | 16*2 LCD Display                 | 260        |
| 10       | Pump Tube                        | 50         |

Total Cost 2574 Rs

