Álgebra Linear e Geometria Analítica

Exame de recurso - 23/01/2013

Duração: 2h30

Nome: ______ N.º mecanográfico: _____

	Grupo I
Cotação	50

Questões	1	2	3	4	5	Total
Cotação	30	30	40	24	26	150
Classificação						

Grupo I

As questões do grupo I encontram-se na folha em anexo que será recolhida após 45 minutos.

Grupo II

Justifique convenientemente todas as suas respostas e indique os cálculos que efetuar.

1. Considere

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) Calcule a inversa de A.
- (b) Determine a matrix X que satisfaz $XA = B^T$.

2. Considere $\mathcal{C}(A)$ o espaço das colunas da matriz

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

- (a) Determine $\mathcal{C}(A)$, verifique que se trata de um plano de \mathbb{R}^3 e escreva uma sua equação.
- (b) Determine o conjunto de todos os vetores ortogonais ao plano obtido em (a).
- (c) Indique, justificando, uma base de \mathbb{R}^3 que contenha uma base de $\mathcal{C}(A)$.

3. Considere $k \in \mathbb{R}$ e

$$A = \left[\begin{array}{ccc} 1 & 1 & k \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{array} \right].$$

- (a) Determine os valores próprios de A.
- (b) Discuta a caraterística da matriz $A-I_3$ em função do parâmetro k.
- (c) Para k=2, mostre que A é diagonalizável e determine uma matriz P que diagonaliza A.

4. Considere os vetores $X=(0,0,1),\,Y=(1,0,0)$ e $Z=X\times Y$ de \mathbb{R}^3 . Seja $L:\mathbb{R}^3\to\mathbb{R}^3$ uma aplicação linear tal que

$$L(X) = X - Y,$$
 $L(Y) = X + 2Y,$ $L(Z) = L(X) \times L(Y).$

- (a) Mostre que L(Z) pertence ao subespaço gerado por Z.
- (b) Determine a matriz representativa de L relativamente à base S=(X,Y,Z) de \mathbb{R}^3 .

- 5. Considere em \mathbb{R}^3 os pontos $A=(0,0,1),\,Q=(x,y,z)$ e o plano $\mathcal P$ de equação z+1=0.
 - (a) Indique as expressões das distâncias
 - i. $d_{A,Q}$ entre os pontos $A \in Q$;
- ii. $d_{Q,\mathcal{P}}$ do ponto Q ao plano \mathcal{P} .
- (b) Determine uma equação reduzida e classifique a quádrica definida pelo conjunto dos pontos Q de \mathbb{R}^3 tais que $(d_{A,Q})^2 = (d_{Q,P})^2$.

Nota: Se não responder à alínea (a) ii., substitua $(d_{Q,P})^2$ por $z^2 + 7z$ na alínea (b).