Подробное описание шагов исследования.

Проект в рамках всероссийской научно-технологической программы по решению проектных задач в области искусственного интеллекта и смежных дисциплин «Сириус.ИИ»

Шаг 1

Обработка отсутствующих значений.

Взглянув на строки с пропущенными значениями, было принято решение сначала интерполировать часть данных на основе уже известных, а после убрать те строки, в которых есть пропущенные значения, потому что в ином случае (после объединения train.csv и macro.csv) просто удалив все строки с пропущенными значениями не остаётся строк с хоть какимито значениями в принципе.

Шаг 2

Обработка лишних значений.

Посмотрев на корреляцию между полями и целевой переменной, можно понять, что к признакам, которые можно убрать, не повлияв на целевую переменную, относятся:

- trc_sqm_500 (0.000374),
- divorce_rate (0.000385),
- build_year (0.002161),
- cafe_sum_3000_max_price_avg (0.002200)
- balance_trade (0.003161)

Шаг 3 Выявление аномалий.

Если посмотреть на данные, то можно увидеть аномалии и выбросы. Есть несколько причин того, с чем они могут быть связаны, самые вероятные — опечатки при записи данных, разные экономические события (например кризис на рынке). Для их обработки было принято решение УЗАЛИТЬ строки с аномальными значениями и выбросами.

0	<pre>data_cleaned = all_data_interpolated[~std_outliers].copy() data_cleaned</pre>																
∃		id	timestamp f	ull_sq	life_sq 1	floor i	max_floor	material	build_year	num_room	kitch_sq .	pro	vision_retail_space_modern_sqm	turnover_catering_per_cap	theaters_viewers_per_1000_cap	seats_theather_rfmin_per_100000_ca	p museum_visitis_per_100_cap band
	8278	8281	2013-06-01	63	22.000000	15.0	12.428571	1.000000	2005.857143	2.285714	6.714286		271.0	9350.0	627.0	0.4393	9 1440.0
	8289	8292	2013-06-03	82	43.666667	11.0	9.000000	1.666667	1966.666667	2.333333	8.000000		271.0	9350.0	627.0	0.4393	9 1440.0
	8293	8296	2013-06-03	38	19.000000	17.0	17.000000	1.000000	1986.000000	1.000000	8.000000		271.0	9350.0	627.0	0.4393	9 1440.0
	8295	8298	2013-06-03	14	14.000000	1.0	16.352941	1.058824	1985.087719	1.058824	8.235294		271.0	9350.0	627.0	0.4393	9 1440.0
	8301	8304	2013-06-04	57	57.000000	13.0	14.411765	1.235294	1982.350877	1.235294	8.941176		271.0	9350.0	627.0	0.4393	9 1440.0
	25519	25522	2014-11-29	61	38.000000	4.0	9.000000	1.000000	1972.000000	3.000000	7.000000		271.0	10311.0	627.0	0.4478	4 1440.0
	25520	25523	2014-11-29	38	36.000000	13.0	17.000000	1.000000	1965.000000	1.000000	1.000000		271.0	10311.0	627.0	0.4478	4 1440.0
	25523	25526	2014-11-29	45	18.000000	5.0	5.000000	1.000000	1965.000000	2.000000	5.000000		271.0	10311.0	627.0	0.4478	4 1440.0
	25524	25527	2014-11-29	27	27.000000	21.0	22.000000	6.000000	2015.000000	1.000000	10.000000		271.0	10311.0	627.0	0.4478	4 1440.0
	25525	25528	2014-11-29	72	44.000000	7.0	16.000000	1.000000	1982.000000	3.000000	10.000000		271.0	10311.0	627.0	0.4478	4 1440.0
	7927 rows	s × 391	columns														

Шаг 4 Сбалансированность.

Проверять сбалансированность данных стоит по целевой переменной — ценой недвижимости, так как перед нами стоит задача регрессии. Проведя анализ данных, используя коэффициент ассиметрии, значение эксцесса и, отобразив распределение на графике, на котором видны пики, можно утверждать о несбалансированнсти целевой переменной. Для ее балансировки было принято решение убрать строки, из-за которых происходил дисбаланс целевой переменной

```
from scipy.stats import skew, kurtosis
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.hist(all data interpolated["price doc"], bins=50, density=True, alpha=0.6, color='blue')
plt.title('Histogram of Data')
# Вычисляем коэффициент асимметрии и эксцесс
skewness = skew(all data interpolated["price doc"])
kurt = kurtosis(all data interpolated["price doc"])
print("коэффициент асимметрии:", skewness)
print("эксцесс:", kurt)
plt.subplot(1, 2, 2)
plt.boxplot(all_data_interpolated["price_doc"])
plt.title('Boxplot of Data')
plt.show()
# Видны пики на графиках и высокие значаения коэффициента асимметрии и эксцесса до баланасировки целевой переменной
коэффициент асимметрии: 3.9482878974423765
```


Шаг 5

Базовый отбор признаков.

Проанализировав данные через встроенную функцию, можно увидеть, что самый влиятельный на цену признак — full_sq, cafe_count_2000, ekder_male.

```
plt.figure(figsize=(10, 6))
plt.barh(importances_df['Признак'][:10], importances_df['Важность'][:10], color='skyblue')
plt.xlabel('Важность')
plt.ylabel('Признак')
plt.title('Важность признаков')
plt.gca().invert_yaxis()
plt.show()
```


Шаг 6 Статистики

Согласно проведенному анализу недвижимости в прошлом и в настоящем, мы сделали вывод, что рынок недвижимости очень изменчив.

```
filtered data 2014["floor"].value counts()
   # В 2014 году чаще всего покупают недвижимость на 3 этаже или с 1 по 10 этажи, в Москве в 2023 большинство сделок также приходит на 1-10 этажи
           1416
   2.0
           1355
   5.0
           1249
           1183
   1.0
            977
   7.0
   8.0
   12.0
   10.0
   11.0
   14.0
   13.0
   16.0
   17.0
            302
   15.0
```

Данные о современных показателях:

https://blog.domclick.ru/novosti/post/kakie-kvartiry-na-vtorichnom-rynke-moskvy-pokupayut-chashe-vsego-issledovanie-domklik?ysclid=lucxn45v2e969504679