Game Theory I

A taxonomy of games

Zero-sum games vs. nonzero-sum games

- In a *zero-sum game*, a player wins **exactly** as much as the opponent **lost**.
- In a *nonzero-sum game*, games don't satisfy the above criterion.

Non-cooperative vs. cooperative games

- In a *non-cooperative game*, players are **not able to form binding agreements**.
- Sometimes it is rational for rational decision makers to cooperate even when no binding agreement has been made or could have been made
- In a cooperative game, players can agree on binding contracts
 - that forces them to respect whatever they have agreed on.

Simultaneous-move vs sequential-move games

- In *simultaneous game*, each player decides on her strategy **without knowing other's decisions** (Rock, paper, scissors)
- In *sequential games*, the players have some (or full) information
 - about the **strategies** played by the other players in earlier rounds
 - Ex: Chess (perfect information)

Perfect information vs. Imperfect information

- Both are subset of *sequential games*
- In games with *perfect information* the players have full information about the strategies played by the other players

Symmetric vs. non-symmetric games

• In a symmetric game, all players face the same strategies and outcomes

		Strat 1	Strat 2		Strat 1	Strat 2
•	Strat 1	0, 1	0, 0	Strat 1	0, 1	0, 0
	Strat 2	0, 0	1, 0	Strat 2	0, 0	0, 1

• Leftmost is symmetric, rightmost is asymmetric

Two person vs. n-person games

- *Two person game* is a game that is played by exactly two players.
 - what matters is the number of players
- ullet An n-person game is a game played by an arbitrary number of players.
 - Difficult to analyze

Non-iterated games vs. iterated games

- A *non-iterated game* is played only once, no matter how many strategies it comprises.
- An *iterated game* is played several times.

Pure strategies vs. mixed strategies

- To play a *pure strategy* is just to choose a strategy among others
- To play a *mixed strategy* is to choose pure strategies with **probabilities**.
 - if A and B are two pure strategies,

- then to do A with the probability p
- and B with probability (1-p) is a mixed strategy.

Prisoner's Dilemma

Description

- Police have caught two persons, Row and Col.
- They are kept separately and cannot communicate.
- The officer says to each of them that:
 - If both confess, each of them will get 10 years in prison.
 - If one confesses and the other doesn't,
 - one who confesses get only 1 year
 - the other 20 years
 - If both deny, each of them will get 2 years.
- The decision matrix

•

		Col	
		Confess	Do not
Dow	Confess	-10, -10	-1, -20
Row	Do not	-20, -1	-2, -2

Analysis

- Both players are **rational** leads them to an outcome which is **not optimal** for them as **a group**.
- What is **optimal** for **each individual** need **not coincide** with what is **optimal** for the **group**.
- The best strategy for them as group, they would deny the charge.
- The assumption that the **opponents acts rationally** does **not matter**.
 - Even if Row knows that Col is going to deny the charge,
 - the **rational choice** for Row is to **confess**.
 - Even if Row and Col can
 - communicate and coordinate their strategies

- *promise* each other to deny the charge,
- the result remains the same.
 - The rational choice for Row is to confess

Common Knowledge and Dominance Reasoning

 Many games can in fact be solved by just applying the *dominance principle* in a clever way.

A number of technical assumptions

- All players are rational.
 - They try to play strategies that **best promote** the objective they consider to be **important**.
 - This not mean that all players must be selfish.
- All players know that other players are rational.
 - *n*th-order common knowledge of rationality
- **Dominance principle** is a valid principle of rationality.
 - Recall dominance principle in Decisions Under Ignorance
- It makes sense to accept this principle only in cases where
 - one thinks the players' strategies are causally independent of each other.

Dominance Principle

- Notice, there are two ways to apply *Dominance principle*
- First way (*minimax principle* ?)
 - a. find the minimum for each row
 - b. select the maximum minimum from step i
 - c. find the maximum for each column
 - d. select the minimum maximum from step iii
 - e. The result will be the equilibrium point
 - f. Does not work if minimums for all rows have an opposite sign compared to maximums for all columns
- Second way: (matrix reduction, suit better in zero-sum game)

- Eliminating rows (or columns) which are dominated by other rows (or columns) respectively
 - a. Dominance property for rows:
 - i. $x \le y$ (x is dominate by y)
 - ii. If all the entries in a row should be less tan or equal to the corresponding entries of another row, then that row can be deleted
 - b. Dominance property for columns:
 - i. $x \ge y$ (x is dominate by y)
 - ii. If all the entries in a column should be greater than or equal to the corresponding entries of another column, then that column can be deleted
 - c. Keep repeating the above process until find the equilibrium point

Example

•		C 1	C2	C3
	R1	1,3	2,2	1,0
	R2	3,2	3,3	2,7
	R3	1,1	8,2	1,4

- Row won't play R1 since it's dominated by R2
- No matter which Col decides on, Row will be better off if Row plays R2 rather than R1
- Therefore, both players know for sure Row will play either R2 or R3.
- Given that Row won't play R1, C3 dominates C2 and C1.
- Hence, both players can conclude that Col will play C3.
- Furthermore, since, Col will play C3, Row will be better off playing R2.

Drawback

•		C1	C2	C3
	R1	1,3	2,4	1,0
	R2	3,3	3,3	0,1

	C 1	C2	С3	
R3	4,2	2,0	1,3	

- *Dominance principle* doesn't always directed us toward clear, unambiguous and uncontroversial conclusions.
- There are also cases in which *dominance reasoning* lead to unacceptable conclusions
 - Centipede game
 - Only irrational people can get more money

Two-Person Zero-sum Games

- It's always played by only two players
- Whatever amount of utility is gained by one player is lost by the other.
 - If the utility of an outcome for Row is 4, it's -4 for Col
- Two-person zero-sum games can be presented by listing only the outcome for *one player*
 - By convention, **list Row**'s outcomes
 - **knowing** what the **outcome for Row** will be, then automatically **know** the outcome for **Col**.
- Naturally, Row **seeks** to maximize the numbers in the matrix, whereas Col tries to keep the **number as low as possible**

Nash Equilibrium

- A pair of strategies is in equilibrium if and only if
 - it holds that once this pair of strategies is chosen,
 - **none** of the players **could reach** a **better outcome** by **unilaterally** switching to another strategy.

Example

•	C1	C2	C3
R1	3	-3	7

	C1	C2	C3
R2	4*	5	6
R3	2	7	-1

- No strategy is dominated by the others.
- It's easy to figure out what rational players will do.
- Consider (R2, C1)
- If Col knew that Row was going to play R2,
- then Col would not wish to play any other strategy,
 - since Col tries to keep the numbers down.
- Furthermore, if Row *knew* that Col was going to play strategy C1, Row would have no reason to choose any other strategy.
- Hence, if that pair of strategies is played,
- no player would have any good reason to switch to another, as long as the opponent sticks with his strategy.
- *Minimax condition*: A pair of strategies are in equilibrium if (but not only if)
 - the outcome determined by the strategies equals
 - the **minimal** value of **row**
 - the **maximal** value of the **column**
- It has been proved that if there are more than one equilibrium point
 - then all of them are either on the same row or in the same column.

Mixed Strategies

• *Minimax criterion* is not sufficient for solving every two-person zero-sum game.

The minimax theorem

- Every two-person zero-sum game has a solution
- If there is no solution for a two-person zero-sum game using pure strategy, it must involve mixed strategy.
- i.e. there is **always** a **pair** of strategies that are in **equilibrium**
- if there is **more than one pair** they all have the **same expected utility**.