Математическая логика и теория алгоритмов

Посов Илья Александрович

запись конспекта: Блюдин Андрей и Хаматов Вадим

Содержание

1	Ma	Математическая логика						
	1.1	Исчис	ление высказываний	1				
		1.1.1	Основные понятия	1				
		1.1.2	Функции от 1 переменной (их определения)	2				
		1.1.3	Функции от 2 переменных (их определения)	3				
		1.1.4	Приоритеты операций	5				
		1.1.5	Алгебраические преобразования логических выра-					
			жений	5				
		1.1.6	Таблица эквивалентных логических выражений	6				
		1.1.7	Многочлены Жегалкина	8				
		1.1.8	Получение многочлена Жегалкина через алгебраи-					
			ческие упрощения	11				
		1.1.9	Дизъюнктивно-нормальная форма (ДН Φ)					
		1.1.10	Задача (не) выполнимости	14				
		1.1.11	Запись таблиц истинности в виде графика					

1 Математическая логика

1.1 Исчисление высказываний

1.1.1 Основные понятия

Определение. Логическая функция — это множество из 2 элементов. Также, логической функцией называют множество логических значений $B = \{0,1\}$, где 0 — это ложь (false), а 1 — это истина (true)

Определение. Логическая функция от n переменных

$$f:B^n\to B$$

Замечание. Часто логические функции вводят как перечисление возможных аргументов и значений функции при этих аргументах

Пример. Введем функцию f(x,y)

X	у	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 1: Таблица истинности для f(x,y)

Эту же функцию можно задать функцией f(x,y) = max(x,y)

Утверждение. Функция от п переменных может быть $f(x_1, x_2, x_3, \dots, x_n)$

x_1	x_2	 x_n	$f(x_1,x_2,\ldots,x_n)$
0	0	 0	0 или 1
		 	0 или 1
1	1	 1	0 или 1

Таблица 2: Таблица истинности для $f(x_1, x_2, \dots, x_n)$

При этом количество всех возможных наборов аргументов равняется 2^n , а количество всех возможных функций при всех возможных наборах аргументов равняется 2^{2^n}

Следствие. Посчитаем количество таких функий для разных п

$$n=1$$
 $2^2=4$ функций $f(x)$ $n=2$ $2^{2^2}=16$ функций $f(x,y)$ $n=3$ $2^{2^3}=2^8=256$ функций $f(x,y,z)$

1.1.2 Функции от 1 переменной (их определения)

Пример. Перечислим все возможные функции от 1 переменной Данные функции имеют значение:

$$f_1(x) = 0$$
 — функция 0 $f_2(x) = x$ — функция x

$$f_3(x) = !x, \bar{x}, \neg x, \text{ not } x - функция отрицания (не x)$$

$$f_4(x) = 1 - функция 1$$

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	1	1
1	0	1	0	1

1.1.3 Функции от 2 переменных (их определения)

Пример. Перечислим все возможные функции от 2 переменных

x	y	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 3: Таблица истинности для f(x,y)

Продолжение:

x	y	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 4: Таблица истинности для f(x,y)

Перечислим основные значения функций:

 $f_2(x,y)$ — это конъюнкция или "лочическое и"или логическое умножение $(xy,x\&y,x\land y)$

 $f_7(x,y)$ — это исключающее или $(x+y,xXORy,x\oplus y)$, также данную функцию можно ассоциировать как (x+y)mod2

 $f_8(x,y)$ — это логическое или, но ее можно также записать как $max(x,y) \; (x|y,x\vee y)$

 $f_{10}(x,y)$ — это эквивалентность $(x \Leftrightarrow y, x \equiv y, x == y)$

 $f_{14}(x,y)$ — это импликация $(x \Rightarrow y, x \rightarrow y)$

Импликация работает так, что истина следует из чего угодно:

лешия не существует \Rightarrow русалок не существует =1 $(1 \Rightarrow 1 = 1)$

допса скучная \Rightarrow русалок не существует $= 1 \ (0 \Rightarrow 1 = 1)$

русалки существуют \Rightarrow драконы существуют $= 1 \ (0 \Rightarrow 0 = 1)$

 $x \Rightarrow y = 0$ только если x = 1, а y = 0

 $f_{12}(x,y)$ — это обратная импликация $(x \Leftarrow y = y \Rightarrow x)$

$$f_{9}(x,y)$$
 — стрелка Пирса $(x\downarrow y=\overline{x\lor y})$ $f_{15}(x,y)$ — штрих Шеффера $(x|y=\overline{xy})$ $f_{3}(x,y)$ — запрет по у $(x>y=\overline{x\Rightarrow y})$ $f_{1}(x,y)$ — 0 $f_{4}(x,y)$ — x $f_{5}(x,y)$ — запрет по х $(x< y=\overline{x\Leftarrow y})$ $f_{6}(x,y)$ — y $f_{11}(x,y)$ — не у $(\neg y)$ $f_{13}(x,y)$ — не х $(\neg x)$ $f_{16}(x,y)$ — 1

Определение. Логические выражения — способ задания логических функций с помощью переменных, цифр 0 или 1 и операций:

$$\cdot$$
 \vee \Rightarrow \Leftrightarrow $+$ \equiv $|$ \downarrow $<$ $>$

Пример. Примеры логических выражений:

$$(x \lor y) = (x \Rightarrow yz) \lor (y \equiv z) (0 \Rightarrow x) \lor (1 \Rightarrow y)$$

Определение. Значения логического выражения можно записать Таблицей истинности

Пример.
$$f(x, y, z) = (x \vee y)z$$

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Замечание. Порядок строчек в таблеце истинности может быть любым, но лучше использовать как у двоичных чисел

Утверждение. Таблицы истинности часто считают постепенно

X	у	\mathbf{Z}	$x \lor y$	$(x \lor y)z$

1.1.4 Приоритеты операций

.

V

+ =

 $\Rightarrow \Leftarrow$

| | | < >

Пример. Примеры приоритетов операций:

$$\neg x \lor y = (\neg x) \lor y$$

$$x \vee yz = x \vee (yz)$$

$$x \Rightarrow y \lor z = x \Rightarrow (y \lor z)$$

1.1.5 Алгебраические преобразования логических выражений

Определение. Алгебраические преобразования логических выражений — изменяем выражения по правилам, обычно в сторону упрощения

Пример.
$$(0 \Rightarrow x) \lor (1 \Rightarrow y) = 1 \lor (1 \Rightarrow y) = 1$$

Утверждение 1.

$$\overline{\overline{x}} = x$$

Доказательство:

\boldsymbol{x}	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Утверждение 2. $\Pi pu \vee :$

$$1 \lor x = 1$$

$$0 \lor x = x$$

$$x \lor y = y \lor x$$

1.1.6 Таблица эквивалентных логических выражений

Утверждение. $x \lor y = y \lor x$ - симметричность

- $x \lor 0 = x$
- $x \lor 1 = 1$
- $x \lor x = x$
- $x \vee \overline{x} = 1$

Доказательство:

x	\overline{x}	$x \vee \overline{x}$
0	1	$0 \lor 1 = 1$
1	0	$1 \lor 0 = 1$

- xy = yx
- x * 0 = 0
- x * 1 = x
- x * x = x
- $x * \overline{x} = 0$
- x + y = y + x
- x + 0 = x
- $x + 1 = \overline{x}$
- x + x = 0
- $x + \overline{x} = 1$

Утверждение. $x \lor (y \lor z) = (x \lor y) \lor z$ - ассоциативность Ассоциативность означает, что порядок скобок не важен

Пример. $x\Rightarrow y\neq y\Rightarrow x$ - не симметричная функция

Доказательство:

3амечание. $x \Rightarrow y \neq y \Rightarrow x$

ху	$x \Rightarrow y$	$y \Rightarrow x$
0 0	1	1
0 1	1	0
1 0	0	1
1 1	1	1

$$x \Rightarrow 0 = \overline{x}$$
$$0 \Rightarrow x = 1$$

Доказательство:

$$\begin{array}{c|c} x & x \Rightarrow 0 \\ \hline 0 & 0 \Rightarrow 0 = 1 \\ 1 & 1 \Rightarrow 0 = 0 \\ \end{array}$$

$$x\Rightarrow 1=1$$
 $1\Rightarrow x=x$ $x\Rightarrow x=1$ $x\Rightarrow \overline{x}=\overline{x}$ $\overline{x}\Rightarrow x=x$ $\overline{x}\Rightarrow x=x$ $\overline{x}\Rightarrow y\Rightarrow z$ договоримся, что это $x\Rightarrow y(y\Rightarrow z)\neq (x\Rightarrow y)\Rightarrow z$

хух	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	1	0	1	0
0 1 1	1	1	1	1
1 0 0	0	1	1	1
1 0 1	0	1	1	1
1 1 0	1	0	0	0
1 1 1	1	1	1	1

$$\begin{array}{l} x \Leftrightarrow y = y \Leftrightarrow x \\ x \Leftrightarrow 0 = \overline{x} \\ x \Leftrightarrow 1 = x \\ x \Leftrightarrow x = 1 \\ x \Leftrightarrow \overline{x} = 0 \\ x \Leftrightarrow (y \Leftrightarrow z) = (x \Leftrightarrow y) \Leftrightarrow z \text{ - accoyuamus no} \end{array}$$

Утверждение. Дистрибутивность

$$(x \lor y)z = xz \lor yz$$

$$(x+y)z = xz + yz \text{ no maблице истинности}$$

$$(x\&y) \lor z \text{ } (xy \lor z = (x \lor z)(y \lor z)$$

$$(x \lor y)\&z = (x\&z) \lor (y\&z)$$

$$(x\&y) \lor z = (x \lor z)\&(y \lor z)$$

Замечание. $(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 = x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$

$$xy\lor z=(x\lor z)(y\lor z)=xy\lor xz\lor zy\lor zz=xy\lor xz\lor zy\lor z=xy\lor xz\lor zy\lor z+1=xy\lor z(x\lor y\lor 1)=xy\lor z$$
 сошлось

$$x+y=\overline{x} \Longrightarrow y$$
 - смотри Таблицу истинности $(x\Rightarrow y)(y\Rightarrow x)=x\Rightarrow y$

1.1.7 Многочлены Жегалкина

Замечание. Одну и ту же функцию можно записать по разному.

В алгебре:
$$f(x) = 1 + x = x + 1 = x + 5 - 4 = \sin(x - x) + x = \dots$$

В логике: $f(x,y) = x \lor y = x \lor y \lor 0 = (x \lor y)(\overline{y} \lor y = x\overline{y} \lor y \ (= -\partial ucmpu бутивность)$

Многочлены Жегалкина для логической формулы

Определение. $f(x_1....x_n)$ - это многочлен с переменными хі, конспектами 0,1 и со степенями переменных ≤ 1 . Это многочлены от хі $\mathbf{Z_2}$

Пример.
$$f(x, y, z) = 1 + x + yz + xyz$$
 $1 + x$ $xy + xyz$
 $1 + xy$

He многочлены
 $1 + x + (y \lor z)$
 $1 + x + z^2$ нельзя степень 2

 $\it 3ame\, vanue. \, \, {
m B} \,$ общем случае многочлен от 1 переменной $({}_i = 0 \,$ или 1)

$$a_0 + a_1 x$$
 от $2yx$: $a_0 + a_1 x + a_2 y + a_3 x y$ от $3ex$: $a_0 + a_1 x + a_2 y + a_3 z + a_4 x y + a_5 x z + a_6 y z + a_7 x y z$

B общем случае $f(x1....x_n)$ $a_0+a_1x_1+...+a_nx_n+ax_1x_2+ax_1x_3+...$ (все пары переменных) + $ax_1x_2x_3+ax_1x_3x_2$ \leftarrow все тройки перменных $+ax_1x_2x_3...x_n$

Определение. $\forall f(x_1...x_n)$ - логические функция $\exists !$ многочлен Жегалкина $g(x_1...x_n): f=g$ Замечание. Всего 4 функции от 1ой переменной

$$f(x) = 0 = \overline{x} = 0 + 0x$$

$$f(x) = 1 = 1 = 1 + 0x$$

$$f(x) = x = x = 0 + 1x$$

$$f(x) = \overline{x} = 1 + x = 1 + 1x$$

Докозательство:

Определение. Разные многочлены - это разные логические функции

T.e.
$$f(x_1...x_n = a_0 + ... + a_1x_1...x_n)$$

$$g(x_1...x_n) = b_0 + ... + bx_1...x_n$$

 $\exists !: a_i \neq b_i$ различающийся

Доказательство:

Возьмем индекс с самым большик количеством переменных

$$f(x, y, z) = 1 + x + xy + xyz = \dots + 1x + Dy + Dz + 1xy$$

$$q(x, y, z) = 1 + y + z + xyz... + Dx + 1y + 1z$$

для переменных этого слагаемого подставим 1 дху

для остальных переменных : θ

[
$$B$$
 $npumepe \ x = 1, y = 0, z = 0 : f(1, 0, 0)g(1, 0, 0)$]

u в f u в g все другие слагаемые равны θ

Tenepo f(...) u g(...)

$$f(...) = a_i x_1 x_2 x_3 \neq b_i x_1 x_2 x_3 \Rightarrow f(x_1 ... x_n) \neq y$$

Доказательство:

Проверим, что многочленов Жегалкина столько, сколько функций:

Посчитаем

$$a_0 + a_1 x_1 + \dots + a_1 x_1 x_2 \dots x_n$$

Сколько слагаемых:

1) 1 слагаемых без переменных

п слагаемых с переменной

$$a_1x_1 + \ldots + a_nx_n$$

 C_n^2 - слагаемых с $\mathcal Z$ - мя переменными

 $rac{3}{n}^n$ - слагаемых с \Im - мя переменными

 C_n^n - слагаемых с n переменными Bсего : $C_n^0 + C_n^1 + C_n^2 + ... C_n^n = 2^n ((1+1)^2)$

Пример. $a_0 + a_1 x$ - 2 слагаемых

$$a_0 + a_1 x + a_2 y + a_3 x y - 2^2 = 4$$
 слагаемых

2) Все слагаемых имею вид: $x_1, x_2, x_3...x_n$ (0 или 1) - 2^n слагаемых

Итого: многочлен Жегалкина от n переменных

Задача. Сколько разных многочленов?

Это столько же, сколько логический функций

Итог:

Следствие: Любая логическая функция может быть представлена в виде многочлена Жегалкина

Пример. $f(x,y) = x \vee y$

f(x,y) = x * y - уже многочлен Жегалкина

Метод неопределенных коэффициентов:

Подберем $x \lor y = a_0 + a_1 x + a_2 y + a_3 x y$

$$f(0,0) = 0$$

$$f(0,0) = a_0 + a_1 * 0 + a_2 * 0 + a_3...$$

$$f(1,0) = 1 \lor 0 = 1$$

$$f(1,0) = a_0 + a_1 = a_1 \ (a_0 = 0, \Rightarrow a_1 = 1)$$

$$f(0,1) =$$
 аналогично $\Rightarrow a_1 = 1$

$$f(x,y) = x + y + a_3 x y$$

$$f(1,1) = 1 \lor 1 = 1$$

$$f(1,1) = 1 + 1 + a_3 = 0 + a_3 = a_3, a_3 = 1$$

Otbet: $x \lor y = x + y + xy$

Многочлены Жегалкина от 1 переменной:

f(x)	Мн Ж
0	0
1	1
x	x
\bar{x}	1+x

Многочлены Жегалкина от 2 переменных:

f(x)	Мн Ж	
0	0	
1	1	
xy	xy	
x+y	x + y	
$x \vee y$	x + y + xy	

Формулы:

1.
$$\overline{xy} = \neg(xy) = \overline{x} \vee \overline{y}$$

2.
$$\overline{x \vee y} = \neg(x \vee y) = \overline{x} \cdot \overline{y} = \overline{x} \overline{y}$$

Замечание. $\overline{xy} \neq \overline{x} \cdot \overline{y} = \overline{x} \, \overline{y}$

Докзательство формул через таблицу истинности:

x	y	$\overline{x \vee y}$	$\overline{x} \cdot \overline{y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

1.1.8 Получение многочлена Жегалкина через алгебраические упрощения

1. Многочлен Жегалкина для ∨

$$x \lor y = (x = \overline{a}, y = \overline{y}) = \overline{ab} = \overline{\overline{x} \cdot \overline{y}} = \overline{(1+x)(1+y)} = 1 + (1+x)(1+y) = 1 + 1 + x + y + xy = x + y + xy$$

2. Многочлен Жегалкина для ⇔

$$x \Leftrightarrow y = \overline{x+y} = 1 + x + y$$

3. Многочлен Жегалкина для ⇒

$$x\Rightarrow y=\overline{x}\vee y=(1+x)\vee y=(1+x)+y+(1+x)y=1+x+y+y+xy=1+x+xy$$

Замечание. Если есть логическая формула, то ее можно приветси к форме многочлена Жегалкина двумя способами:

1. метод неопределенных коэффициентов:

$$a_0 + a_1x + a_2y + a_3z + \ldots + axyz$$

2. метод алгебраических преобразований

$$\Pi p u Mep. \ x \lor y = \overline{\overline{x} \cdot \overline{y}} = \ldots = x + y + xy$$

$$\Pi$$
ример. $x \Rightarrow y = \overline{x} \lor y = \ldots = 1 + x + xy$

Пример.
$$x \Rightarrow (y \lor \overline{z}) = x \Rightarrow (y + \overline{z} + y \cdot \overline{z}) = x \Rightarrow (y + (1+z) + y \cdot (1+z)) = x \Rightarrow (y + 1 + z + y + yz) = x \Rightarrow (1 + z + yz) = 1 + x + x(1 + z + yz) = 1 + x + x + xz + xyz = 1 + xz + xyz$$

Поймем, что:
$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$
 $x \Leftrightarrow y \Leftrightarrow z = (1+x+y) \Leftrightarrow z = 1+(1+x+y)+z = 1+1+x+y+z = x+y+z$ Вывод:

Заранее не ясно, сложно ли привести логическую формулу к многочлену Жегалкина

1.1.9 Дизъюнктивно-нормальная форма (ДНФ)

Определение. Литерал — это переменная или отрицание переменной

Пример. $x, \overline{x}, y, \overline{y}, z, \overline{z}$

Определение. Конъюнктор — конъюнкция литералов

Пример. $x\overline{y}, xyz, \overline{x} \overline{y} \overline{z}, \overline{x}z$, ноль (пустой конъюнкт).

Определение. Логическое выражение имеет ДНФ, если она является дизъюнкцией конъюнкторов

Пример. $x\overline{y} \vee \overline{x} \overline{z} \vee z \vee \overline{x} \overline{y}$ — ДНФ

Пример. $xy \vee \overline{x}\,\overline{y}$ — ДНФ

Пример. $x \vee y$ — ДНФ

Пример. $xy - ДН\Phi$

Пример. не ДНФ $-\overline{xy} = \overline{x} \vee \overline{y} - ДНФ$

Пример. не ДНФ $-x\Rightarrow yz=\overline{x}\vee yz$ — ДНФ

Построение ДНФ по таблице истинности функции:

алгоритм на примере трех переменных

y	z	f(x,y,z)	
0	0	0	
0	1	0	
1	0	1	$\overline{x} y \overline{z}$
1	1	1	$\overline{x} yz$
0	0	0	
0	1	0	
1	0	1	$xy \overline{z}$
1	1	0	
	0 0 1 1	0 0 0 1 1 0 1 1 0 0 0 1	0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0

Берем строки из столбца f(x,y,z), где значения в столбце равны 1 Допустим есть строка: $x=a_1,y=a_2,z=a_3$ (а могут быть как 0, так и 1)

В ответ добавляется конъюнкт xyz (0 \Rightarrow отрицание, 1 \Rightarrow не отрицание)

Otbet: $f(x, y, z) = \overline{x} y \overline{z} \vee \overline{x} yz \vee xy \overline{z}$

Докозательство корректности алгоритма:

Когда полученный ДН $\Phi = 1$?

Когда есть конъюнкт равный 1

- 1. Если первый конъюнкт равняется 1 (в примере \overline{x} у $\overline{z}=1$)
 - \Rightarrow все литералы конъюнкта равняются 1

$$\Rightarrow$$
 в примере $\overline{x}=1$ $y=1$ $\overline{z}=1$

$$x = 0$$
 $y = 1$ $z = 0$

- 2. Если второй конъюнкт равняется 1
 - \Rightarrow в примере x=0 y=1 z=1 строка из таблицы истинности
- 3. То же самое с третьим конъюнктом

Посмотрим таблицу с этими конъюнктами:

x	y	z	$\overline{x} y \overline{z}$	$\overline{x} yz$	$xy \overline{z}$	f(x, y, z)
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

Замечание. У одной функции могут быть разные ДНФ

Получить ДНФ для логической функции/формулы можно:

- 1. по таблице истинности
- 2. с помощью алгебраических преобразований

Пример. 1. $\overline{x} = \overline{x}$

$$2. \ x \lor y = x \lor y$$

3.
$$x \cdot y = x \cdot y$$

4.
$$x \Rightarrow y = \overline{x} \vee y$$

x	y	$x \Leftrightarrow y$
0	0	1
0	1	0
1	0	0
1	1	1

5.
$$x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\overline{x} \lor y)(\overline{y} \lor x) = \overline{x}\overline{y} \lor \overline{x}x \lor y\overline{y} \lor yx = \overline{x}\overline{y} \lor xy$$

6.
$$x + y = \overline{x \Leftrightarrow y} = \overline{x} \, \overline{y} \vee xy \dots$$

= $\overline{\overline{x}} \, \overline{y} \vee \overline{x} \vee \overline{\overline{y}} = \overline{\overline{x}} \cdot \overline{y} \vee \overline{x} \cdot \overline{\overline{y}} = x \, \overline{y} \vee \overline{x} y$

7.
$$x \Rightarrow (y+z) = \overline{x} \lor (y+z) = \overline{x} \lor \overline{y} z \lor y \overline{z}$$

1.1.10 Задача (не) выполнимости

Дана логическая формала в ДНФ

Проверить, бывает ли она равна 0?

$$\overline{x}\,\overline{y}\vee x\vee y?=0$$

$$x = 0, y = 0 \Rightarrow \overline{x} \, \overline{y} = 1$$

 \Rightarrow данный ДНФ не может быть равным 0

Эта задача обладает особенностью:

- 1. если знать значения переменных (ответ), то их легко можно быстро проверить
- 2. подобрать значения переменных для 0 нет

Нет известного алгоритма, который "принципиально" быстрее полного перебора

У этой задачи класс NP выполнимости (ответ легко проверить, а найти его простым способом невозможно)

Следствие. То к чему сводится задача (не) выполнимости тоже сложна

- 1. упростить логическое выражение
- 2. поиск минимального ДНФ

Запись таблиц истинности в виде графика

Формула = f(x, y, z) = x + y

$$f(0,0) = 0$$

$$f(0,1) = 1$$

$$f(1,0) = 1$$

