CENG213 Theory of Computation

Midterm, the 2nd of December 2014

Duration: 100 minutes.

Q1 (30 points). Construct a deterministic finite automaton (DFA) to recognize the following language that's defined on the alphabet $\Sigma = \{0,1\}$:

The set of strings whose number of 0's is divisible by five and whose number of 1's is even.

Q2 (20 points).

Describe the equivalence classes (\approx_L) for the following languages:

- a) $\{w \in \{a, b\}^* : w \text{ has an even number of a's}\}.$
- b) $\{w \in \{a, b\}^* : w \text{ has an even number of a's and number of b's that is divisible by three}\}.$

Q3 (30 points).

Let R_{ij}^k be the regular expression denoting all strings that take a finite automaton from state i to state j without going through any state numbered higher than k.

(a) Give the formula for R_{ij}^k in terms of R_{ij}^l for l<k.

- (b) What is the regular expression for R_{34}^2 for the above state diagram?
- (c) What is the regular expression for R_{43}^2 for the above state diagram?

You do not need to use the formula in (a) to get your answer to parts (b) and (c).

Q4 (20 points). Consider the alphabet $\sum = \{a,b,(,),\cup,*,\varnothing\}$. Construct a context-free grammar that generates all strings in \sum^* that are regular expressions over $\{a,b\}$.