

Formal Relational Query Languages

Instructor: Nítesh Kumar Jha

niteshjha@soa.ac.in

ITER,S'O'A(DEEMED TO BE UNIVERSITY)

Sept 2018

3 DATABASE ADMINS WALKED INTO A NOSQL BAR...

A LITTLE WHILE LATER
THEY WALKED OUT BECAUSE
THEY COULDN'T FIND A TABLE

Formal Relational query language

- Relational Algebra
- Relational Calculus
 - Tuple Relational Calculus
 - Domain Relational Calculus

Relational Algebra

- Procedural formal query language
- It forms a basis of mathematical foundation on which SQL is developed
- The operators take one or two relations as inputs and produce a new relation as a result.

Relational Algebra

Six basic operators

- select: σ -----Unary Operator
- project: ∏ -----Unary Operator
- union: ○
- set difference: –
- Cartesian product: x
- rename: ρ ------Unary operator
- Other operators include
 - Natural Join : ⋈
 - Left Outer Join : □⋈
 - Right Outer Join : ⋈
 - Full Outer Join :──

Which I have discussed in my Lab lecture on Subquery and joins.

More operators include Division(÷) and Assignment(←)

Binary Operator

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $E_1 \cup E_2$
 - $E_1 E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 - $\prod_{S}(E_1)$, S is a list consisting of some of the attributes in E_1
 - $\rho_x(E_1)$, x is the new name for the result of E_1

Two Databases

Consider the following tables for Bank Database:

- Customer(C_id, name, ph_no, address)
- Depositor(C_id, A_no)
- Account(A_no, Balance, B_name)
- Borrower(C_id, I_no)
- Loan(l_no, l_amt, B_name)
- Branch(B_name, B_city, B_assets)

Consider the following table for University Database:

- Instructor(<u>ID</u>, Name, Dept_name, Salary)
- Course(<u>Course_id</u>, Title, Dept_name, credits)
- Prereq(<u>Course_id</u>, <u>Prereq_id</u>)
- Department(<u>Dept_name</u>, Building, Budget)
- Teaches(ID, Course_id, sec_id, sem, year)
- Student(<u>id</u>, Name, dept_name, tot_credit)
- Takes(id, course_id, sec_id, semester, year, grade)
- Section(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_no, timeslot_id)

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by : \land (**and**), \lor (**or**), \neg (**not**) Each **term** is one of:

Example of selection:

Project Operation

Notation:

$$\prod_{A_1,A_2,\ldots,A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor

 $\Pi_{ID, name, salary}$ (instructor)

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For r ∪ s to be valid.
 - 1. *r*, *s* must have the *same* **arity** (same number of attributes)
 - 2. The attribute domains must be **compatible** (example: 2^{nd} column of r deals with the same type of values as does the 2^{nd} column of s)
- Example: to find all courses taught in the Fall 2009 semester, or in the
 Spring 2010 semester, or in both

$$\Pi_{course_id}(\sigma_{semester="Fall"} \land year=2009(Section)) \cup \Pi_{course_id}(\sigma_{semester="Spring"} \land year=2010(Section))$$

Set Difference Operation

- Notation r s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$\Pi_{course_id}(\sigma_{semester="Fall"} \land_{year=2009}(Section)) - \Pi_{course_id}(\sigma_{semester="Spring"} \land_{year=2010}(Section))$$

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_X(E)$$

returns the expression *E* under the name *X*

If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,...A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1 , A_2 ,, A_n .

More Operators: Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
 - Iter_Faculty $\leftarrow \prod_{ID,Name}$ (Instructor)

Division Operation

- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively r ÷ s

•
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

•
$$S = (B_1, ..., B_n)$$

The result of $r \div s$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

$$r \div S = \{ t \mid t \in \prod_{R-S} (r) \land \forall u \in S (tu \in r) \}$$

Where *tu* means the concatenation of a tuple *t* and *u* to produce a single tuple

^{*} u representing any tuple in s

^{*} for every tuple in R-S (called t), there are a set of tuples in R, such that for all tuples

Introduction to databases (such as u) in s, the tu is a tuple in R.

Division Operation – Example

Relations *r*, *s*:

Α	В		
$\begin{array}{c c} \alpha & \alpha \\ \alpha & \alpha \\ \beta & \gamma \\ \delta & \delta \end{array}$	1 2 3 1 1 1 3		
δ ∈ ∈ β	4 6 1 2		
r			

1 2 s

 $r \div s$:

A α

e.g.

A is customer name

B is branch-name

1and 2 here show two specific branchnames

(Find customers who have an account in all branches of the bank)

Another Division Example

Relations *r*, *s*:

Α	В	С	D	E
α	а	α	а	1
α	а	γ	а	1
α	а	γ	b	1
β	а	γ	а	1
β	а	γ	b	3 1
γ	а	γ	а	1
$eta \ eta \ \gamma \ $	а	γ γ γ γ γ	b	1
γ	а	β	b	1
r				

D	Ε	
а	1	
b	1	
S		

 $r \div s$:

Α	В	С
α	а	γ
γ	а	γ

e.g.

Students who have taken both "a" and "b" courses, with instructor "1"

(Find students who have taken all courses given by instructor 1)

Assignment Operation

Example of writing division with set difference, projection, and assignments: r ÷ s

temp1
$$\leftarrow \prod_{R-S} (r)$$

temp2 $\leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,s} (r))$
result = temp1 - temp2

- The result to the right of the \leftarrow is assigned to relation variable on the left of the \leftarrow .
- May use variables in subsequent expressions

^{*} Try executing the above query at home on the previous example, to convince yourself about its equivalence to the division operation

Tuple Relational Calculus

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form $\{t \mid P(t)\}$
- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, t [A] denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g., \langle , \leq , =, \neq , \rangle)
- 3. Set of connectives: and (\land) , or (\lor) , not (\neg)
- 4. Implication (\Rightarrow) : $x \Rightarrow y$, if x if true, then y is true

$$X \Rightarrow Y \equiv \neg X \lor Y$$

- 5. Set of quantifiers:
 - ▶ $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate Q(t) is true
 - $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

■ Find the *ID*, name, dept_name, salary for instructors whose salary is greater than \$80,000

$$\{t \mid t \in instructor \land t [salary] > 80000\}$$

Notice that a relation on schema (*ID, name, dept_name, salary*) is implicitly defined by the query

As in the previous query, but output only the ID attribute value

$$\{t \mid \exists \ s \in \text{instructor} \ (t[ID] = s[ID] \land s[salary] > 80000)\}$$

Notice that a relation on schema (*ID*) is implicitly defined by the query

Find the names of all instructors whose department is in the Watson building

```
\{t \mid \exists s \in instructor (t [name] = s [name] \land \exists u \in department (u [dept_name] = s[dept_name] " \land u [building] = "Watson"))\}
```

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

```
\{t \mid \exists s \in teaches \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \ \lor \exists u \in teaches \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
\{t \mid \exists s \in teaches \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \exists u \in teaches \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\{t \mid \exists s \in teaches \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \neg \exists u \in teaches \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

Universal Quantification

Find all students who have taken all courses offered in the Biology department

```
    {t | ∃ r ∈ student (t [ID] = r [ID]) ∧
    (∀ u ∈ course (u [dept_name]="Biology" ⇒
    ∃ s ∈ takes (t [ID] = s [ID] ∧
    s [course_id] = u [course_id]))}
```

Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{t \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression {t | P(t)} in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
 - NOTE: this is more than just a syntax condition.
 - ▶ E.g. { $t \mid t[A] = 5 \lor \text{true}$ } is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Safety of Expressions (Cont.)

 Consider again that query to find all students who have taken all courses offered in the Biology department

```
    {t | ∃ r ∈ student (t [ID] = r [ID]) ∧
    (∀ u ∈ course (u [dept_name]="Biology" ⇒
    ∃ s ∈ takes (t [ID] = s [ID] ∧
    s [course_id] = u [course_id]))}
```

Without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

Domain Relational Calculus

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

- $x_1, x_2, ..., x_n$ represent domain variables
- P represents a formula similar to that of the predicate calculus

- Find the *ID*, name, dept_name, salary for instructors whose salary is greater than \$80,000
 - $\{ < i, n, d, s > | < i, n, d, s > \in instructor \land s > 80000 \}$
- As in the previous query, but output only the ID attribute value
 - $\{ < i > | < i, n, d, s > \in instructor \land s > 80000 \}$
- Find the names of all instructors whose department is in the Watson building

```
\{ \langle n \rangle \mid \exists i, d, s \ (\langle i, n, d, s \rangle \in instructor \land \exists b, a \ (\langle d, b, a \rangle \in department \land b = "Watson") \} \}
```

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

{ | ∃ a, s, y, b, r, t (∈ Teaches ∧
$$s = \text{`Fall''} \land y = 2009$$
)
v∃ a, s, y, b, r, t (∈ Teaches] ∧ $s = \text{`Spring''} \land y = 2010$)}

This case can also be written as

$$\{ \mid \exists \ a, \ s, \ y, \ b, \ r, \ t \ (\in \ Teaches \land ((s = "Fall" \land y = 2009)) \lor (s = "Spring" \land y = 2010)) \}$$

Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

{<*c*> | ∃ *a*, *s*, *y*, *b*, *r*, *t* (<*c*, *a*, *s*, *y*, *b*, *r*, *t* > ∈ Teaches
$$\land$$
 $s = \text{`Fall''} \land y = 2009$) $\land \exists a$, *s*, *y*, *b*, *r*, *t* (<*c*, *a*, *s*, *y*, *b*, *r*, *t* > ∈ Teaches] \land $s = \text{`Spring''} \land y = 2010$)}

Safety of Expressions

The expression:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

is safe if all of the following hold:

- All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
- 2. For every "there exists" subformula of the form $\exists x (P_1(x))$, the subformula is true if and only if there is a value of x in $dom(P_1)$ such that $P_1(x)$ is true.
- 3. For every "for all" subformula of the form $\forall_x (P_1(x))$, the subformula is true if and only if $P_1(x)$ is true for all values x from $dom(P_1)$.

Universal Quantification

- Find all students who have taken all courses offered in the Biology department
 - {< i > | ∃ n, d, tc (< i, n, d, tc > ∈ student ∧
 (∀ ci, ti, dn, cr (< ci, ti, dn, cr > ∈ course ∧ dn = "Biology"
 ⇒ ∃ si, se, y, g (< i, ci, si, se, y, g > ∈ takes))}
 - Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

End of Chapter 6