Tarea 2

Nombres: Mario Becerra, Miguel Vilchis

Fecha: Agosto 2016

1.- Demostrar que las siguientes funciones son $\Theta(n^2)$ Mostrar n_0 , c_1 y c_2 .

Nota: Se dice que una función $f \in \Theta(g(n))$ si existen $c_1, c_2 \in \mathbb{R}$, con $c_1, c_2 > 0$ y $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumple que

$$c_2g(n) \le f(n) \le c_1g(n)$$

.

1. $60n^2 + 5n + 1$

$$(1) (2)$$

La desigualdad: $c_2n^2 \le 60n^2 + 5n + 1$ se cumple si y solo si: $c_2 \le 60 + \frac{5}{n} + \frac{1}{n^2}$

La desigualdad:
$$c_1 n^2 \ge 60n^2 + 5n + 1$$

se cumple si y solo si:
 $c_1 \ge 60 + \frac{5}{n} + \frac{1}{n^2}$

De (1) es fácil ver que $\forall n \geq 1$ se tiene que $60 + \frac{5}{n} + \frac{1}{n^2} \leq 50 + 5 + 1 = 66$. Y de (2) tenemos que $\forall n \geq 1$ se cumple con $60 + \frac{5}{n} + \frac{1}{n^2} \geq 60$. De aquí tomando a $n_0 = 1$, $c_2 = 66$ y $c_1 = 60$ se cumple :

$$\forall n \ge n_0 \to 60n^2 \le 60n^2 + 5n + 1 \le 66n^2$$

$$\therefore 60n^2 + 5n + 1 \in \Theta(n^2)$$

2.
$$2n^2 - 16n + 35$$

$$(3) (4$$

La desigual dad: $c_2n^2 \le 2n^2 - 16n + 35$ se cumple si y solo si: $c_2 \le 2 - \frac{16}{n} + \frac{35}{n^2}$

La desigual
dad:
$$c_1n^2 \ge 2n^2 - 16n + 35$$
 se cumple si y solo si: $c_1 \ge 2 - \frac{16}{n} + \frac{35}{n^2}$

Por (3) tenemos que $\forall n \geq 4$ se tiene que $\frac{16}{n} \geq \frac{35}{n^2}$ por lo que $2 \geq 2 - (\frac{16}{n} - \frac{35}{n^2})$. Por otro lado por la desigualdad (4) para valores de $n \geq 16$ se tiene que $2 - \frac{16}{n} + \frac{35}{n^2} \geq 2 - 1 + \frac{35}{n^2} \geq 1$. De esto, tomamos $n_0 = 16$, $c_1 = 2$ y $c_2 = 1$ se cumple :

$$\forall n \ge 16 \to n^2 \le 2n^2 - 16n + 35 \le 2n^2$$

$$\therefore 2n^2 - 16n + 35 \in \Theta(n^2)$$

3.
$$3n^2 + 2nloq(n)$$

Nota: La función f(n) = n - log(n) es creciente para $n \ge 1$, y además $\forall n \ge 1$ se cunmple que $n \ge log(n)$.

$$(5) (6)$$

Evidentemente se cumple: $3n^2 + 2nloq(n) > 3n^2$

Por la nota tenemos que:

$$3n^2 + 2nlog(n) \le 3n^2 + 2nn$$

 $3n^2 + 2nn = 5n^2$

Como las desigualdades se cumplen $\forall n \geq 1$ y por lo ya mencionado, si tomamos $n_0 = 1$, $c_1 = 5$ y $c_2 = 3$ se cumple:

$$\forall n \ge 1$$
 $3n^2 \le 3n^2 + 2nlog(n) \le 5n^2$

$$\therefore 3n^2 + 2nlog(n) \in \Theta(n^2)$$

4. 2+4+6+...+2n

Nota: La expresión 2+4+6+...+2n es equivalente a:

$$\sum_{i=1}^{n} 2i = 2\sum_{i=1}^{n} i$$

$$2\sum_{i=1}^{n} i = n * (n-1)$$

$$(7) (8)$$

La desigualdad: $c_2 n^2 \le n^2 - n$ se cumple si y solo si: $c_2 \le 1 - \frac{1}{n}$

La desigualdad: $c_2n^2 \ge n^2 - n$ se cumple si y solo si: $c_2 \ge 1 - \frac{1}{2}$

Si tomamos $n_0=2,\,c_1=1,\,{\rm y}\,\,c_2=\frac{1}{2},\,{\rm con}$ lo que se cumple que :

$$\forall n \ge 2 \to \frac{1}{2}n^2 \le n^2 - n \le n^2$$

 $\therefore n^2 + n \in \Theta(n^2)$

5. for i = 1:n

for j = 1:i for k = 1:j x = x + 1

El costo del código de arriba es

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} c \tag{1}$$

donde c es un costo fijo por operación. Simplificando las sumas en la ecuación 1 se llega a que

$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} c = c \sum_{i=1}^{n} \sum_{j=1}^{i} j$$
(2)

$$=c\sum_{i=1}^{n}\frac{i(i+1)}{2}$$
(3)

$$= \frac{c}{2} \left[\sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i \right] \tag{4}$$

$$= \frac{c}{2} \left[\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right]$$
 (5)

$$=an^3 + bn^2 + dn (6)$$

con $a = \frac{c}{6}, b = \frac{c}{2}, d = \frac{c}{3}$.

Con lo que concluimos que la complejidad del código está dada por:

$$p(n) = an^3 + bn^2 + dn.$$

Lo que implica que el polinomio $p(n) \in \Theta(n^3)$. Se sabe que si una función $g \in \Theta(n^3)$ entonces $g \notin \Theta(n^2)$, por lo que $p(n) \notin \Theta(n^2)$.

2.- Ordenar las siguientes funciones de acuerdo a su tasa de crecimiento.

Esto se puede resolver de forma gráfica. El ordenamiento final es

- 1. $2^{2^{n+1}}$
- $2. \ 2^{2^n}$
- 3. (n+1)!
- 4. n!
- 5. e^n
- 6. $n2^n$
- 7. 2^n
- 8. $(\frac{3}{2})^n$
- 9. $\lg(n)^{\lg(n)} = n^{\lg(\lg(n))}$
- 10. $(\lg(n))!$
- 11. n^3
- 12. $n^2 = 4^{\lg(n)}$
- 13. $\lg(n!)$
- 14. $n = 4^{\lg(n)}$ 15. $\sqrt{2}^{\lg(n)}$
- 16. $2^{\sqrt{2\lg(n)}}$
- 17. $\lg^2(n)$
- 18. ln(n)
- 19. $\sqrt{\lg(n)}$
- 20. ln(ln(n))
- 21. $2^{\lg^*(n)}$
- 22. $\lg^*(n)$
- 23. $\lg^*(\lg(n))$
- 24. $\lg(\lg^*(n))$
- 25. $n^{\frac{1}{\lg(n)}}$
- 26. 1

Las gráficas de las funciones se pueden ver a continuación, donde 'ec_n' se refiere a la ecuación n-ésima ecuación yendo de izquierda a derecha y de arriba a abajo.

