Formulari Estadística Descriptiva

- Percentil p de dades agrupades en intervals: $P_p = L_p + (L_{p+1} L_p) \frac{N \cdot p N_{p-1}}{n_p}$
- Coeficient de simetria: $g_1 = \frac{m_3}{s^3}$, s: desviació típica
 - Dades brutes: $m_3 = \frac{(x_1 \bar{x})^3 + (x_2 \bar{x})^3 + \dots + (x_N \bar{x})^3}{N}$
 - Dades en taula de freqüències: $m_3 = \frac{(x_1-\bar{x})^3n_1+(x_2-\bar{x})^3n_2+\cdots+(x_k-\bar{x})^3n_k}{N}$
- \blacksquare Coeficient d'apuntament: $g_2 = \frac{m_4}{s^4} 3, \; s$: desviació típica
 - Dades brutes: $m_4 = \frac{(x_1 \bar{x})^4 + (x_2 \bar{x})^4 + \dots + (x_N \bar{x})^4}{N}$
 - Dades en taula de freqüències: $m_4 = \frac{(x_1 \bar{x})^4 n_1 + (x_2 \bar{x})^4 n_2 + \dots + (x_k \bar{x})^4 n_k}{N}$
- \bullet Recta de regressió: $\hat{Y}=aX+b, \qquad a=\frac{\mathrm{Cov}(\mathbf{X},\mathbf{Y})}{\mathrm{Var}(\mathbf{X})} \qquad b=\bar{y}-a\bar{x}$
- $\text{ Coeficient de contingència: } 0 \leq C \leq \sqrt{1 \frac{1}{\min(k, l)}}, \quad C = \sqrt{\frac{\chi^2}{\chi^2 + N}}, \quad \chi^2 = \sum_i \sum_j \frac{(n_{ij} e_{ij})^2}{e_{ij}}, \quad e_{ij} = \frac{n_{i*} n_{*j}}{N}$

Formulari Estadística Inferencial

Variables aleatòries usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$\operatorname{si} x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	$B(n,p) \approx Po(np)$
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			(n gran, p petit)
TI :C 2// 1)	1	[1]	b+a	$(b-a)^2$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} 0 & x < a \\ 1 & x > b \end{cases}$
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$			
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$
					$B(n,p) \approx N(np, np(1-p))$
					(n gran)
					$Po(\lambda) \approx N(\lambda, \lambda)$
					$(\lambda \text{ gran})$

Estadístics més usuals

Paràmetre mostral (estadístic)	Esperança	Variància	Distribució de probabilitat	
$ar{ar{X}}$	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\begin{split} \bar{X} &\sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} &\sim t_{n-1} \\ \bar{X} &\sim N(\mu, \frac{\hat{s}_X^2}{n}) \end{split}$	població normal, σ conegut població normal, σ desconegut, $n \leq 30$ σ desconegut, $n > 30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	població normal
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\begin{vmatrix} \hat{p}_X \sim N(p, \frac{p(1-p)}{n}) \\ \hat{p}_X \sim t_{n-1} \end{vmatrix}$	$n > 30$ població normal, $n \leq 30$

Intervals de confiança més usuals

Paràmetre mostral	Interval de confiança				
Mitjana	$ar{X} \pm z_{lpha/2} rac{\sigma}{\sqrt{n}}$	població normal, σ conegut			
	$\bar{X} \pm t_{n-1,\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	població normal, σ desconegut i $n \leq 30$			
	$\bar{X} \pm z_{\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	si $n > 30$			
Variància	$\left[\frac{n-1}{\chi_{n-1,1-\alpha/2}^2}\hat{s}_X^2, \frac{n-1}{\chi_{n-1,\alpha/2}^2}\hat{s}_X^2\right]$	si la població segueix una llei normal			
Proporció	$\hat{p}_X \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X (1 - \hat{p}_X)}{n}}$	si $n > 30$			