Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа по основам профессиональной деятельности №4

Вариант 15601

Санкт Петербург 2025 г.

Выполнил: Снагин Станислав Максимович Проверил: Блохина Елена Николаевна

Группа: РЗ115

Содержание

адания и цели работы	3
Код работы	
Текст исходной программы	4
Назначение программы, подпрограммы и комплекса программ и реализуемая ег	
функция	
Область представления	
Область допустимых значений	8
Расположение данных в памяти ЭВМ программы, исходных данных и результатов:	
Программа	
Подпрограмма1	0
Адреса первой и последней выполняемой команды1	0
В программе	0
В подпрограмме1	0
Вывод1	1

Задания и цели работы

Цель работы — изучение способов связи между программными модулями, команды обращения к подпрограмме и исследование порядка функционирования БЭВМ при выполнении комплекса взаимосвязанных программ.

Задание — по выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить их предназначение и составить описание, определить область представления и область допустимых значений для исходных данных и возвращаемых значений подпрограммы, выполнить трассировку программного комплекса.

39E: +	· 0200	1	3AC:	0800	ı	3BA:	YYYY	Т	729:	EC01
39F:	EE1C	İ	3AD:	0740	İ	3BB:	XXXX	İ	72A:	0A00
3A0:	AE19	ĺ	3AE:	6E0D	ĺ	3BC:	FF3A	Ì	72B:	0F6C
3 A1 :	0700	Ī	3AF:	EE0C	ĺ			Ī	72C:	00C1
3A2:	0C00	Ι	3B0:	AEOA	l	71F:	AC01	-		
3 A 3:	D71F	Ι	3B1:	0700		720:	F204			
3 A4 :	0800	1	3B2:	0C00		721:	F003			
3 A 5:	0700	1	3B3:	D71F		722:	7E08			
3A6:	6E15	1	3B4:	0800		723:	F004			
3A7:	EE14	1	3B5:	0740		724:	F803			
3A8:	AE10	1	3B6:	4E05		725:	4C01			
3A9:	0740	ı	3B7:	EE04	l	726:	6E05			
3AA:	0C00	ı	3B8:	0100	l	727:	CE01	-		
3AB:	D71F	1	3B9:	ZZZZ	ı	728:	AE02			

Ход работы

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии
39E+	0200	CLA	Начало программы
39F	EE1C	ST IP + 28	(AC=0) AC → D , отчистка результата
3A0	AE19	LD IP + 25	Y → AC
3A1	0700	INC	AC = Y + 1
3A2	0C00	PUSH	Передача Y + 1 (аргумента) в стек (0x7FF)
3A3	D71F	CALL 0x71F	Вызов подпрограммы F(Y + 1) (0x7FE)
3A4	0800	POP	Получаем результат подпрограммы в AC
3A5	0700	INC	AC = AC + 1 (AC = F(Y + 1) + 1)
3A6	6E15	SUB IP + 21	AC = AC – D вычитаем из результата ноль
			AC = F(Y + 1) + 1 - 0
3A7	EE14	ST IP + 20	AC → D Сохраняем новый результат
			$(D = \mathbf{F}(\mathbf{Y} + 1) + 1)$
3A8	AE10	LD IP + 16	Z → AC
3A9	0740	DEC	AC = AC - 1
			(AC = Z - 1)
3AA	0C00	PUSH	Передача Z – 1 (аргумента) в стек (0x7FF)
3AB	D71F	CALL 0x71F	Вызов подпрограммы F(Z – 1)

			(0x7FE)
3AC	0800	POP	Результат из SP → AC
3AD	0740	DEC	AC = F(Z - 1) - 1
3AE	6E0D	SUB IP + 13	AC = F(Z - 1) - D
			(AC = F(Z - 1) - F(Y + 1) - 1)
3AF	EE0C	ST IP + 12	AC → D
			(D = F(Z - 1) - F(Y + 1) - 1)
3B0	AE0A	LD IP + 10	$X \rightarrow AC$
3B1	0700	INC	AC = AC + 1
			(AC = X + 1)
3B2	0C00	PUSH	Передача аргумента X + 1 в стек (0x7FF)
3B3	D71F	CALL 0x71F	Вызов подпрограммы F(X + 1) (0x7FE)
3B4	0800	POP	Результат из SP → AC
3B5	0740	DEC	AC = AC - 1
			(AC = F(X + 1) - 1)
3B6	4E05	ADD IP + 5	AC = AC + D
			(AC = F(X + 1) - 1 + F(Z - 1) - F(Y + 1) - 1)
3B7	EE04	ST IP + 4	АС → D, итоговый результат программы
			(D = F(X + 1) - 1 + F(Z - 1) - F(Y + 1) - 1)
3B8	0100	ніт	Остановка программы

Текст подпрограммы

Адрес	Код команды	Мнемоника	Комментарии
71F	AC01	LD &1	Загрузка аргумента (0x7FF) + флаги
720	F204	BMI IP + 4	Если AC < 0 , переход на 0x725
721	F003	BEQ IP + 3	Если AC = 0 , переход на 0x725
722	7E08	CMP IP + 8	Флаги по результату АС - А
723	F004	BEQ IP + 4	Если $\mathbf{AC} - \mathbf{A} = 0$, переход на $0x728$
724	F803	BLT IP + 3	Если AC – A < 0 , переход на 0x728
725	4C01	ADD &1	Умножить аргумент на 2
726	6E05	SUB IP + 5	AC = AC - B + флаги по результату.
			т. е. Если изначальный аргумент был отрицательный, то $AC = 2X - B$
727	CE01	JUMP IP + 1	Переход на 0х729
728	AE02	LD IP + 2	A → AC Загрузка константы
			т. е. Если значение AC <= A, загружаем A в AC
729	EC01	ST &1	AC → M Сохранение результата в ячейку аргумента программы в стеке
72A	0A00	RET	Возврат

Данные подпрограммы

72B	0F6C	A	Константа

			F6C (16) = 3948 (10)
72C	00C1	В	Константа, вычитаемое в 2X -В
			C1 (16) = 193 (10)

Данные

3B9	ZZZZ	Z	Значение Z
ЗВА	YYYY	Y	Значение У
3BB	XXXX	X	Значение X
3ВС	00C1	D	Результат

Назначение программы, подпрограммы и комплекса программ и реализуемая ею функция

Программа вычисляет результат выражения:

$$D=F(x+1)-1+F(z-1)-F(y+1)-1 D=F(x+1)-F(y+1)+F(z-1)-2.$$

Программа трижды вызывает подпрограмму, передавая в неё различные значения аргументов: x+1, y+1 и z-1 соответственно.

Подпрограмма вычисляет функцию, заданную следующим образом:

$$F(x) = \begin{bmatrix} 2x - B; x \notin (0, A] \\ A; x \in (0, A] \end{bmatrix}.$$

Подпрограмма принимает аргумент через ячейку в стеке. Результат вычисления функции возвращается через ту же ячейку в стеке. То есть, одна и та же ячейка памяти используется и для передачи параметра в подпрограмму, и для возврата результата (в нашем случае, это 0x7FF).

Область представления

Входные параметры **X, Y, Z** — 16-ти разрядные знаковые числа в допкоде. $[-2^{15}, 2^{15}-1]$

Константы **A, B** — 16-ти разрядные знаковые числа в допкоде. $[-2^{15}, 2^{15}-1]$

Результат ${\bf D}$ — 16-ти разрядное знаковое число в допкоде. $[-2^{15}, 2^{15}-1]$

Область допустимых значений

Область допустимых значений для функции, вычисляемой подпрограммой, относительно x.

Пусть

$$A = F 6 C_{16} = 3948_{10}$$

 $B = C 1_{16} = 193_{10}$

Тогда,

$$-2^{15} \le F(x) \le 2^{15} - 1,$$

$$-2^{15} \le 2x - 193 \le 2^{15} - 1,$$

$$-2^{15} + 193 \le 2x \le 2^{15} + 192,$$

$$-16287 \le x \le 16480.$$

Область допустимых значений для итогового выражения, вычисляемого программой относительно X, Y, Z.

Учтём ограничения, налагаемые при вычислении итогового выражения программы.

$$-2^{15} \le D \le 2^{15} - 1$$
$$-2^{15} \le F(X+1) - F(Y+1) + F(Z-1) - 2 \le 2^{15} - 1$$

$$-32766 \le F(X+1) - F(Y+1) + F(Z-1) \le 32769$$

Так как выражение является суммой результатов вызова подпрограммы, рассмотрим два худших случая с точки зрения переполнения при вычислении итогового выражения:

- 1. Переполнение положительных чисел (наиболее положительное значение выражения) $F(X+1)=2^{15}-1$, $F(Y+1)=-2^{15}$, $F(Z-1)=2^{15}-1$;
- 2. Переполнение отрицательных чисел (наиболее отрицательное значение выражения) $F(X+1)=-2^{15}$, $F(Y+1)=2^{15}-1$, $F(Z-1)=-2^{15}$.

Тогда:

$$-32768 \le \frac{F(X+1) - F(Y+1) + F(Z-1)}{3} \le 32767,$$
$$-10923 \le F(X) \le 10922.$$

Тогда <u>повторно</u> вычислим допустимые значения аргумента функции с учётом новых ограничений:

$$-10923 \le 2x - 193 \le 10922$$
,
 $-10730 \le 2x \le 11115$,
 $-5365 \le x \le 5557$.

Область допустимых значений параметров программы (X, Y, Z).

Так как параметры программы передаются в подпрограмму с инкрементом/декрементом их исходных значений, учтём это, дополнительно сузив область допустимых значений. То есть:

$$\begin{vmatrix}
-5365 \le X + 1 \le 5557 \\
-5365 \le Y + 1 \le 5557 \\
-5365 \le Z - 1 \le 5557
\end{vmatrix}$$

<u>Итого</u>, область допустимых значений параметров <u>программы</u> с учётом всех ограничений:

$$\begin{cases}
-5366 \le X \le 5556 \\
-5366 \le Y \le 5556, \\
-5364 \le Z \le 5558
\end{cases}$$

$$-2^{15} < D < 2^{15} - 1$$

Расположение данных в памяти ЭВМ программы, исходных данных и результатов:

Программа

0x3B9 — входное значение, переменная **Z**

0x3BA — входное значение, переменная Y

0x3BB — входное значение, переменная X

0x3BC — Результат **D**

Подпрограмма

0x71F — 0x72A - команды

0х72В — константа А

0x72C — константа **В**

Адреса первой и последней выполняемой команды

В программе

Адрес первой выполняемой команды: 0x39E

Адрес последней выполняемой команды: 0х3В8

В подпрограмме

Адрес первой выполняемой команды: 0х71F

Адрес последней выполняемой команды: 0x72A

Вывод

В ходе лабораторной работы были подробно изучены команды, в том числе связанные с работой со стеком: POP, PUSH, RET, CALL; принципы работы подпрограмм в БЭВМ, прямая адресация относительно SP.