

Виртуализация: Виртуализация и облачные решения. AWS, GCP, Яндекс. Облако, Openstack

Александр Зубарев

Председатель цикловой комиссии "Информационной безопасности инфокоммуникационных систем"

АКТ (ф) СПбГУТ

Модуль «Виртуализация»

Цели модуля:

- познакомиться с облаками и их применением;
- изучить виртуальные машины, контейнеры и научиться с ними работать;
- освоить систему оркестрации Kubernetes и научиться с его помощью разворачивать приложения.

Структура модуля

- 1. Виртуализация и облачные решения. AWS, GCP, Яндекс.Облако, Openstack.
- 2. Типы виртуализаций KVM, QEMU.
- 3. Docker.
- 4. Docker. Часть 2.
- 5. Kubernetes.
- 6. Kubernetes. Часть 2.

Предисловие

На этом занятии мы:

- познакомимся с несколькими видами облачных сервисов;
- научимся их использовать.

План занятия

- 1. Классическая серверная инфраструктура
- 2. Облачная инфраструктура
- 3. Основные виды услуг в облаке
- 4. Гибридное развертывание инфраструктуры
- 5. <u>laaS продукты: AWS и OpenStack</u>
- 6. Google Cloud Platform
- 7. Яндекс.Cloud
- 8. <u>Итоги</u>
- 9. Домашнее задание

Классическая серверная инфраструктура

Серверная инфраструктура

Серверная инфраструктура включает в себя:

- Помещение, где установлены серверы;
- Компьютерные стойки и линии связи;
- Серверы;
- Установленное в серверы ПО;
- Оборудование для доступа в интернет;
- Системы обеспечения: резервные источники питания, система кондиционирования.

Серверная инфраструктура

Для развертывания инфраструктуры требуется:

- Серверы и дополнительное оборудование;
- Персонал для обслуживания ПО;
- Помещение и персонал для его обслуживания.

В совокупности обеспечение этих ресурсов создает затраты на эксплуатацию данной инфраструктуры.

Облачная инфраструктура

Облачная инфраструктура

Облачная инфраструктура – это тоже ЦОД, но виртуальный, предлагается как услуга и используется через Интернет.

Основные компоненты:

- серверы;
- системы хранения данных;
- вычислительные ресурсы;
- система безопасности.

Виды облаков

- Публичное облако
- Частное облако
- Общественное облако
- Гибридное облако

Публичное облако

Публичное облако (англ. public cloud) – инфраструктура, предназначенная для свободного использования широкой публикой.

- Публичное облако может находиться в собственности, управлении и эксплуатации коммерческих, научных и правительственных организаций (или какой-либо их комбинации).
- Публичное облако физически существует в юрисдикции владельца поставщика услуг.

Частное облако

Частное облако – объединяет в себе службы облачных вычислений, предоставляемые по Интернету или по частной внутренней сети не всем, а только определенным пользователям.

Преимущество частного облака – высокая безопасность.

Недостаток – ИТ-отдел компании несет ответственность за стоимость и подотчетность, касающиеся управления частным облаком.

Общественное облако

Общественное облако – вид инфраструктуры, которая распределяется между несколькими организациями из определенного сообщества с общими интересами.

- Может находиться в совместной собственности, управлении и эксплуатации этих организаций или третьей стороны.
- Может физически существовать как внутри, так и вне юрисдикции владельца.

Гибридное облако

Гибридное облако – вычислительная система, в которой используются все разновидности виртуальных сред.

Добавление в инфраструктуру традиционных ИТ-ресурсов позволяет построить гибридную ИТ-модель, которая обладает следующими преимуществами:

- цены общедоступного облака,
- общая гибкость облачных вычислений,
- безопасность выделенного оборудования.

Основные виды услуг в облаке

Основные виды услуг в облаке

- Infrastructure-as-a-Service (laaS) инфраструктура как услуга;
- Platform-as-a-Service (PaaS) платформа как услуга;
- Software-as-a-Service (SaaS) ПО как услуга

Остальные виды услуг можно посмотреть здесь.

Infrastructure-as-a-Service (laaS)

Инфраструктура как услуга (laaS) – модель обслуживания в облаке, в которой потребителям предоставляются по подписке виртуальные серверы с заданной вычислительной мощностью и операционной системой.

Примеры laaS-сервисов:

- IBM Softlayer,
- Hetzner Cloud,
- Microsoft Azure,
- Amazon EC2,
- GigaCloud.

Клиенты laaS — это системные администраторы компаний.

Platform-as-a-Service (PaaS)

Платформа как услуга (PaaS) – модель предоставления облачных вычислений, при которой потребитель получает доступ к использованию информационно-технологических платформ: операционных систем, систем управления базами данных и прочим программам.

Примеры PaaS-сервисов:

- Google App Engine,
- IBM Bluemix,
- Microsoft Azure,
- VMWare Cloud Foundry.

Пользователи PaaS-сервисов — это разработчики ПО.

Software-as-a-Service (SaaS)

ПО как услуга (SaaS) – одна из форм облачных вычислений, при которой подписчикам предоставляется готовое прикладное программное обеспечение, полностью обслуживаемое провайдером.

Примеры SaaS-сервисов:

- Dropbox (место для хранения файлов),
- GoogleDoc,
- Flickr (организация хранение фотографий),
- Facebook.

Основной клиент SaaS-сервисов — обычный пользователь.

Гибридное развертывание инфраструктуры

Гибридное развертывание инфраструктуры

В некоторых отраслях бизнеса существуют задачи быстрого развертывания высоконагруженных, отказоустойчивых IT инфраструктур и высокой степенью приватности данных.

Например: глобальный веб-сайт для маркетинговой компании с необходимостью сбора, хранения и редактирования персональных данных.

По законодательству РФ эти данные должны храниться на сервере на территории Российской федерации.

В этом случае актуальным является комбинированное развертывание классической и облачной инфраструктуры.

Гибридное развертывание инфраструктуры

laaS продукты: AWS и OpenStack

AWS EC2

Amazon Web Services (AWS With EC2) – самая современная реализация систем управления виртуализацией. Гипервизоры и прочая реализация системы скрыта от пользователя, при этом есть гарантированные показатели доступности и отказоустойчивости.

Пользователь может создавать инфраструктуру продуктивных окружений и использовать преимущества:

- установка в нескольких локациях,
- построение цепочки с другими сервисами облака,
- программное API для автоматизации создания и изменения ресурсов.

AWS EC2

OpenStack

OpenStack – комплекс проектов свободного ПО, который может быть использован для создания инфраструктурных облачных сервисов и облачных хранилищ (как публичных, так и частных).

OpenStack

Основные компоненты OpenStack

- Nova контроллер вычислительных ресурсов;
- Glance библиотека образов виртуальных машин, обычно с бэкендом в Swift;
- Swift облачное файловое хранилище;
- Cinder служба работы с блочными устройствами хранения данных;
- Keystone сервис идентификации;
- Neutron (в первых выпусках Quantum) сервис «подключение к сети как услуга» между интерфейсами устройств (vNIC), которые управляются другими сервисами OpenStack;

Основные компоненты OpenStack

- Horizon графический интерфейс администрирования;
- Heat оркестратор;
- Ceilometer средства сбора, нормализации и трансформации данных, предоставляемых сервисами OpenStack;
- Trove База данных;
- Sahara Elastic Map Reduce;
- Ironic средства управления и провижининга физическими серверами (Bare Metal Provisioning);

Основные компоненты OpenStack

- Zaqar Multiple Tenant Cloud Messaging;
- Manila Shared File System Service;
- Designate DNS как сервис (DNSaaS DNS as a Service);
- Barbican API безопасности;
- Searchlight передовая и масштабируемая индексация и поиск по многопользовательским облачным ресурсам;
- Watcher оптимизация вычислительной нагрузки облачных ресурсов.

Google Cloud Platform

Google Cloud Platform

Google Cloud Platform – комплекс облачных сервисов для организаций и технических специалистов.

Инфраструктурные сервисы позволяют обеспечить проект основными ресурсами:

- наладить обработку и хранение данных,
- безопасный доступ и обмен трафиком.

Благодаря платформенным сервисам можно разрабатывать приложения на основе управляемых баз данных, а также пользоваться речевыми технологиями и машинным переводом.

Google Compute Engine

Google Compute Engine – это сервис аренды вычислительных сред в публичном облаке (laaS) на базе ОС Linux, предоставляющий услуги на базе платы за почасовое потребление ресурсов (вычислительные мощности и хранилища).

Google Compute Engine API

Overview

Creates and runs virtual machines on Google Cloud Platform.

About Google

Google's mission is to organize the world's information and make it universally accessible and useful. Through products and platforms like Search, Maps, Gmail, Android, Google Play, Chrome and YouTube, Google plays a meaningful role in the daily lives of billions of people.

Additional details

Type: APIs & services Last updated: 3/18/21

Category: Compute, Networking

Service name: compute.googleapis.com

Google Compute Engine API

Yandex.Cloud – облачная платформа, предоставляющая пользователям в формате «as a service»:

- инфраструктурные сервисы Yandex Compute Cloud, Yandex Object Storage, Yandex Message Queue, Yandex Virtual Private Cloud и Yandex Identity and Access Management,
- платформенные сервисы Yandex Managed Service (для различных баз данных), Yandex SpeechKit и Yandex Translate.

Виртуальные машины

Создайте вашу первую виртуальную машину

Yandex Compute Cloud позволяет использовать виртуальные машины в инфраструктуре Yandex.Cloud для решения ваших задач. Вы можете разместить в Compute Cloud свое готовое приложение или инфраструктуру для разработки, провести нагрузочное или функциональное тестирование.

Вы сами определяете число ядер, объём памяти, размер и количество дисков, операционную систему и зону доступности виртуальной машины.

Чтобы начать работу, просто нажмите **Создать ВМ**. Подробнее о сервисе читайте в документации:

- Начало работы с виртуальными машинами
- Документация Yandex Compute Cloud

Создать ВМ

= Yandex Cloud

Итоги

Итоги

Сегодня мы:

- поговорили о классической серверной и облачной инфраструктуре;
- изучили виды облаков и основные услуги в облаке;
- познакомились с такими платформами, как AWS, GCP, Яндекс. Облако, Openstack и научились их использовать.

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера
 Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Александр Зубарев

