Indian Institute of Technology Roorkee

MAN-001(Mathematics-1) Autumn Semester: 2019-20

Assignment-10: Vector Calculus II

(Line and surface integrals, Green's, Gauss and Stokes's theorem and their applications)

- 1. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = x^{2} \hat{i} xz \hat{j} + y^{2} \hat{k}$ along the path C joining the points $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1) \rightarrow (0,0,1)$ via straight lines.
- 2. Show that $\vec{F} = (y^2 \cos x + z^3)\hat{i} + (2y\sin x 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is a conservative vector field and find a function ϕ such that $\vec{F} = \nabla \phi$. Also, find the work done by a moving particle from (0, 1, -1) to $(\pi/2, -1, 2)$.
- 3. If $\vec{F} = \left(\frac{x\,\hat{j}}{x^2 + y^2} \frac{y\,\hat{i}}{x^2 + y^2}\right)$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ for the various curves C from
 - (0, 1) to (1, 0) along
 - (i) the arc of $x^2 + y^2 = 1$ lying in the second, third and fourth quadrant.
 - (ii) x + y = 1.
 - (iii) the arc of $x^2 + y^2 = 1$ lying in the first quadrant.

Is the vector field \overrightarrow{F} conservative? If so, find ϕ such that $\nabla \phi = \overrightarrow{F}$. Why is the line integral not path independent?

- 4. Evaluate the surface integral $\iint_{S} \vec{F} \cdot \hat{n} \ dS$, if
 - (i) $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the surface of $x^2 + y^2 + z^2 = 1$ in the first octant.
 - (ii) $\vec{F} = z\hat{i} + x\hat{j} 3y^2z\hat{k}$ and S is the surface of $x^2 + y^2 = 16$ in the first octant between z = 0 and z = 5.
 - (iii) $\overrightarrow{F} = \frac{\overrightarrow{r}}{r^3}$ and S is the surface of $x^2 + y^2 + z^2 = a^2$.
- 5. If $\vec{F} = 4xz\hat{i} + xyz^2\hat{j} + 3z\hat{k}$, evaluate the volume integral $\iiint_V \nabla \cdot \vec{F} dV$ over the entire surface of the region above the xy- plane bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 4.
- 6. Evaluate $\iiint_V \phi \ dV$, where $\phi = 45x^2y$ and V is the closed region bounded by the planes 4x + 2y + z = 8, x = 0, y = 0 and z = 0.

- 7. Evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS$, where $\vec{F} = y^2 \hat{i} + y \hat{j} xz \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above xy- plane.
- 8. Verify Green's theorem for
 - (i) $\iint_C [(xy^2 2xy)dx + (x^2y + 3)dy]$ around the boundary curve C of the regionenclosed by $y^2 = 8x$ and x = 2.
 - (ii) $\iint_C [(xy+y^2)dx+x^2dy]$, C bounds the region enclosed by y=x and $y=x^2$.
 - (iii) $\iint_C [(3x^2 8y^2) dx + (4y 6xy) dy]$ and C bounds the region enclosed by x = 0, y = 0 and x + y = 1.
- 9. By converting into the line integral, evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \ dS$,

where
$$\vec{F} = (x-z)\hat{i} + (x^3 + yz)\hat{j} - 3xy^2\hat{k}$$
 and
S is the surface of the cone $z = 2 - \sqrt{x^2 + y^2}$ above xy-plane.

- 10. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0 and y = b.
- 11. Verify Gauss's divergence theorem for
 - (i) $\vec{F} = (2x z)\hat{i} x^2y\hat{j} + 4xz^2\hat{k}$ taken over the region bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
 - (ii) $\vec{F} = 2x^2y\hat{i} y^2\hat{j} + 4xz^2\hat{k}$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and x = 2.
- 12. Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ and S is a rectangular parallelepiped $0 \le x \le a, 0 \le y \le b$ and $0 \le z \le c$.

Answers

(1)
$$3/2$$
 (2). $\phi = y^2 \sin x + xz^3 - 4y + 2z$, $4\pi + 15$

(3).
$$\frac{3\pi}{2}$$
, $\frac{\pi}{2}$, $-\frac{\pi}{2}$, $\phi = \tan^{-1}(y/x)$ (4). (i) 3/8 (ii) 90(iii) 4π

$$(5).320 \pi (6).128(7).0(9).12\pi$$

(12)
$$abc(a+b+c)$$