Krótki wyciąg paru metod rozwiązywania zadań

Trochę się obawiamy, czy udostępniając ten plik nie wyświadczymy niektórym niedźwiedziej przysługi. Z tego powodu wyraźnie ostrzegamy, że **z tego pliku nie da się nauczyć GAL-u**, ponieważ

- Przedstawione tu metody (w liczbie ponad 50) trudno opanować na pamięć, za to dość łatwo odtworzyć, jeśli się zna stojącą za nimi teorię (której nie przedstawiliśmy to nie skrypt).
- Cały ten plik dotyczy zadań praktycznych, które w zasadzie nie są GAL-em. (Nawet na kolokwium nie dają 100% punktów, tylko najwyżej 60%. Zresztą patrz niżej.)

Dajemy go Wam po to, żeby sobie coś powtórzyć / utrwalić / zrozumieć jakieś detale niezrozumiane na ćwiczeniach itp.

Aha, nawet jeśli by się dało nauczyć stąd GAL-u (na jakąś tróję), to nie warto, ponieważ

- Ten przedmiot ma swój urok, który zwykł się ujawniać w zadaniach typu 5 na kolokwium. Za to nie tutaj :)
- Jest to być może jedyny przedmiot na matematyce, dla którego stworzenie takiego spisu metod jest w ogóle możliwe. Lepiej od razu zacząć przestawiać się na inny sposób myślenia.

Miłej lektury! :)

1 Przestrzenie liniowe, bazy

- 1. Znajdź bazę i/lub wymiar przestrzeni $lin(\alpha_1, \ldots, \alpha_k)$.
 - 1. Wpisz wektory $\alpha_1, \ldots, \alpha_k$ do wierszy macierzy.
 - 2. Zeschodkuj macierz.
 - 3. Bazę tworzą niezerowe wiersze z macierzy zeschodkowanej, a wymiar to liczność bazy.
- 2. Znajdź współrzędne wektora α w bazie β_1, \ldots, β_l .
 - 1. Zbuduj układ równań: wpisz wektory β_1, \ldots, β_l do kolumn macierzy układu; dopisz (za "kreską") kolumnę zawierającą wektor α .
 - 2. Rozwiąż układ równań. Musi wyjść dokładnie jedno rozwiązanie i to właśnie będą szukane współrzędne.
- 3. Znajdź baze i/lub wymiar podprzestrzeni w \mathbb{R}^n opisanej układem równań.
 - 1. Znajdź zbiór rozwiązań, czyli:
 - (a) Wpisz równania do wierszy macierzy.

- (b) Zeschodkuj macierz.
- (c) **Jeśli pytają o sam wymiar, to już koniec:** jeśli r jest liczbą niezerowych wierszy, to z tw. Kroneckera-Capelliego wymiar przestrzeni rozwiązań wynosi n-r.
- (d) Zredukuj macierz.
- (e) Przejdź z powrotem do równań, wyraź zmienne związane w zależności od wolnych.
- (f) Wypisz zbiór rozwiązań w odpowiedniej postaci, na przykład: $\{(x_2+2x_4, x_2, -3x_4, x_4) : x_2, x_4 \in \mathbb{R}\}.$
- 2. Wypisz bazę przestrzeni rozwiązań na jeden z dwóch sposobów:
 - podstaw po kolei jedynkę pod każdą zmienną wolną, a zero pod pozostałe
 - rozpisz rozwiązanie ogólne jako sumę, a w każdym składniku wyciągnij zmienną przed nawias

Tak czy siak, w powyższym przykładzie wyjdzie (1, 1, 0, 0) i (2, 0, -3, 1).

- 3. Tak otrzymujesz bazę, a wymiar to jej wielkość.
- Jest to tylko jedna z bardzo wielu możliwych baz tej przestrzeni! (Ale liczność każdej bazy będzie taka sama — z tw. o wymiarze)
- 4. Podprzestrzeń $W\subseteq \mathbb{R}^n$ jest opisana układem równań. Opisz ją jako "lin" układu wektorów.

To się sprowadza do punktu 3: znajdź bazę W, wtedy W jest linem tej bazy.

- 5. Podprzestrzeń $W\subseteq\mathbb{R}^n$ jest dana jako "lin" układu wektorów α_1,\ldots,α_k . Opisz ją układem równań.
 - 1. Zbuduj układ równań: wpisz wektory $\alpha_1, \ldots, \alpha_k$ do kolumn macierzy układu; dopisz (za "kreską") kolumnę zawierającą niewiadome x_1, \ldots, x_k .
 - 2. Schodkuj macierz tak długo, aż część przed "kreską" (czyli oprócz ostatniej kolumny) będzie zeschodkowana. Na przykład:

$$\begin{bmatrix}
1 & 2 & 3 & x_1 + x_2 \\
0 & 0 & 4 & x_1 - x_3 \\
0 & 0 & 0 & x_2 + x_3 + x_4 \\
0 & 0 & 0 & 2x_1 - x_4
\end{bmatrix}$$

3. W jest opisana przez układ równań typu $\diamond=0$, dla każdego wiersza postaci [0 ... 0 | \diamond] w powyższej macierzy. W naszym przypadku wychodzi

$$\begin{cases} x_2 + x_3 + x_4 = 0 \\ 2x_1 - x_4 = 0 \end{cases}$$

2

4. Więc tak zbudowany układ równań opisuje W. Koniec.

- 6. Dana jest podprzestrzeń $W \subseteq \mathbb{R}^n$ oraz pewien wektor α . Sprawdź, czy $\alpha \in W$.
 - \bullet Jeśli W jest opisana układem, po prostu podstaw α do układu i sprawdź, czy wszystkie równania są spełnione.
 - Jeśli W jest dana jako $lin(\beta_1, \ldots, \beta_l)$:
 - 1. Zbuduj układ równań: wpisz wektory β_1, \ldots, β_l do kolumn macierzy układu; dopisz (za "kreską") kolumnę wektor α .
 - 2. Zeschodkuj macierz.
 - 3. $\alpha \in W$ wtw, gdy układ nie jest sprzeczny, czyli gdy zeschodkowana macierz nie zawiera wiersza postaci $[0 \ldots 0] \neq 0$.

7. Dane są dwie podprzestrzenie $W_1, W_2 \subseteq \mathbb{R}^n$. Sprawdź, czy $W_1 \subseteq W_2$.

- 1. Zrób tak, żeby W_1 było opisane jako "lin" jakiegoś układu wektorów $\alpha_1, \ldots, \alpha_k$, zaś W_2 było opisane przez pewien układ równań U (używając, jeśli jest taka potrzeba, punktów 4 i 5)
- 2. Podstaw wektory $\alpha_1, \ldots, \alpha_k$ do układu U. $W_1 \subseteq W_2$ wtw, gdy wszystkie wektory spełniają wszystkie równania.
- Można też sprawdzać to inaczej. Na przykład, jeśli W_2 jest dane jako $\lim(\beta_1, \ldots, \beta_l)$, to można dla każdego α_i osobno sprawdzić, czy jest on kombinacją liniową wektorów β_1, \ldots, β_l (patrz punkt 6).

Uwaga niekluczowa (kto nie rozumie, niech zignoruje): w tym wariancie trzeba zeschodkować kilka podobnych do siebie macierzy:

$$[\beta_1 \ldots \beta_l \mid \alpha_1], \quad [\beta_1 \ldots \beta_l \mid \alpha_2] \quad \text{i tak dale}$$

Można oszczędzić sobie rachunków, schodkując "zbiorczą" macierz

$$[\beta_1 \quad \beta_2 \quad \dots \quad \beta_l \mid \alpha_1 \quad \alpha_2 \quad \dots \quad \alpha_k]$$

i na koniec "wyszarpnąć" z niej po kolei te k zeschodkowanych macierzy, o które chodzi.

- Czasem warto popatrzeć na wymiary:
 - jeśli dim $W_1 > \dim W_2$, to na pewno $W_1 \not\subseteq W_2$
 - jeśli przypadkiem dim $W_1 = \dim W_2$, to $W_1 \subseteq W_2$ jest równoważne z $W_2 \subseteq W_1$, a to może być czasem dużo łatwiejsze do sprawdzenia.

8. Dane są dwie podprzestrzenie $W_1,W_2\subseteq\mathbb{R}^n$. Sprawdź, czy $W_1=W_2$.

- 1. Sprawdź równość wymiarów (patrz 1 i 3) to jest warunek konieczny.
- 2. Jeśli wymiary są równe, wystarczy sprawdzić jedno zawieranie w którąkolwiek stronę (patrz 7)

9. Wyznacz rząd macierzy A.

1. Zeschodkuj macierz — wolno używać operacji elementarnych na wierszach i na kolumnach (i dowolnie je ze sobą przeplatać).

2. Rząd = liczba niezerowych wierszy po zeschodkowaniu.

10. Podaj liczbę rozwiązań układu równa
ń ${\cal U}$ (metoda przez tw. Kroneckera-Capelliego)

- 1. Niech A_u oznacza pełną macierz układu razem z kolumną za "kreską", zaś A macierz bez tej kolumny.
- 2. Wyznacz rząd macierzy A oraz A_u (patrz 9).
- 3. Niech n będzie liczbą kolumn macierzy A. Liczba rozwiązań wynosi:
 - -0, gdy $r(A) < r(A_u)$,
 - $-1, \text{ gdy } r(A) = r(A_u) = n,$
 - $-\infty$, gdy $r(A) = r(A_u) < n$.

11. Czy można opisać podprzestrzeń W układem r równań?

- 1. Znajdź wymiar W (patrz 1 i 3).
- 2. Można wtedy i tylko wtedy, gdy $r \ge n \dim W$. To wynika z tw. Kroneckera-Capelliego i warto to rozumieć oraz napisać w rozwiązaniu.

12. Opisz podprzestrzeń W układem r rownań.

- 1. Opisz W układem tak, jak w punkcie 5 (otrzymasz dokładnie $n \dim W$ równań)
- 2. Jako brakujące $r-(n-\dim W)$ równań możesz wziąć np. kopie któregoś z otrzymanych równań, albo równanie 0=0 (albo sumy otrzymanych równań, albo ich dowolne kombinacje liniowe)

13. Dopełnij wektory $\alpha_1, \ldots, \alpha_k$ do bazy podprzestrzeni $W \subseteq \mathbb{R}^n$ [używając jakichś wektorów].

- Jeśli $W = \mathbb{R}^n$ i nie ma ograniczeń na wektory używane do dopełnienia, to metoda jest szczególnie prosta:
 - 1. Wpisz wektory $\alpha_1, \dots \alpha_k$ do wierszy macierzy.
 - 2. Zeschodkuj macierz.
 - 3. Uzupełnij bazę przez dopisanie jedynek pod brakiem schodków, na przykład:

$$\begin{bmatrix}
0 & \mathbf{1} & 2 & 3 & 7 \\
0 & 0 & 0 & \mathbf{15} & 0 \\
0 & 0 & 0 & 0 & -\mathbf{3} \\
\hline
\mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0
\end{bmatrix}$$

4. **Odpowiedź:** "Bazą W jest układ $\alpha_1, \ldots, \alpha_k$ rozszerzony o (tu wymieniasz wiersze, które zostały przez Ciebie dopisane pod "kreską")".

4

• W przeciwnym razie:

- 1. Wyznacz układ wektorów β_1, \ldots, β_l , których będziesz używać do dopełnienia:
 - Jeśli są jawnie podane, to je po prostu weź (ale wykreślając te z nich, które nie należą do W).
 - Jeśli jest powiedziane, że mają pochodzić z podprzestrzeni $Z = \text{lin}(\gamma_1, \ldots, \gamma_m)$, to bierzemy $\beta_1 = \gamma_1$, $\beta_2 = \gamma_2$ itd.
 - Jeśli jest powiedziane, że mają pochodzić z podprzestrzeni Z opisanej układem równań, to wyznacz bazę Z (patrz 3) i za β_1, \ldots, β_l weź tę bazę. (Powyższe dwa punkty będą działać tylko pod warunkiem, że $Z \subseteq W$, ale bez tego zadanie wymagałoby znajdowania bazy przekroju przestrzeni, a to nie jest w materiale na kolokwium więc zakładamy, że czegoś takiego nie będzie :)
 - Jeśli nic nie jest powiedziane, to weź dowolny układ rozpinający W (tzn. podstaw Z=W i wykonaj któryś z dwóch powyższych kroków w zależności od tego, jak jest opisane W).
- 2. Znajdź wymiar W (patrz 1 i 3).
- 3. Wpisz wektory $\alpha_1, \ldots, \alpha_k$ do wierszy macierzy (nazwijmy ją A).
- 4. Zeschodkuj macierz A i wykreśl z niej wiersze zerowe.
- 5. Wykonuj w pętli (dla kolejnych β_1, \ldots, β_l) następujące czynności:
 - Dopisz na końcu A wiersz z kolejnym wektorem β_i i wschodkuj go w macierz.
 - Jeśli pojawił się wiersz niezerowy, zapamiętaj, że β_i jest dobre. W przeciwnym razie wykreśl wiersz zerowy i zapamiętaj, że β_i jest złe.
 - Otrzymana macierz przejmuje rolę macierzy A.
 - Jeśli liczba wektorów α_j oraz znalezionych dotychczas dobrych β_i równa się w sumie wymiarowi W, przerwij. W przeciwnym razie kontynuuj dla następnego wektora β_{i+1} .
- 6. **Odpowiedź:** "Bazą W jest układ $\alpha_1, \ldots, \alpha_k$ rozszerzony o (tu wymieniasz znalezione dobre β_i)".

14. Czy da się dopełnić wektory $\alpha_1, \ldots, \alpha_k$ do bazy podprzestrzeni $W \subseteq \mathbb{R}^n$ [używając jakichś wektorów] tak, żeby wektor γ miał w otrzymanej bazie współrzędne c_1, \ldots, c_m ? Jeśli tak, zrób to.

Tu nie będzie pełnego opisu ogólnej metody. W każdym razie trzeba rozpisać sobie, co oznacza warunek na temat γ . Czyli: poszukujemy takiego dopełnienia $\beta_1, \ldots, \beta_{m-k}$, żeby zachodziło

(*)
$$\gamma = c_1 \alpha_1 + c_2 \alpha_2 + \ldots + c_k \alpha_k + c_{k+1} \beta_1 + c_{k+2} \beta_2 + \ldots + c_m \beta_{m-1}$$

I teraz trzeba popatrzeć i pomyśleć:

• Jeśli w zadaniu każą dopełnić, to zapewne warunek (*) wyznacza któreś sposród β_i i dalej trzeba znaleźć te pozostałe. Na przykład: jeśli trzeba dopełnić (1,1,0) do bazy \mathbb{R}^3 tak, żeby (3,1,0) miał w otrzymanej bazie współrzędne (1,2,0), to

szukamy wektorów dopełniających β_1 , β_2 , które będą spełniać

$$(3,1,0) = 1 \cdot (1,1,0) + 2 \cdot \beta_1 + 0 \cdot \beta_2,$$

$$\alpha_1 = (1, 1, 0), \qquad \beta_1 = (1, 0, 0)$$

i dopełniamy go do bazy \mathbb{R}^3 zwyczajnie (patrz 13).

• Jeśli w zadaniu pytają, czy da się dopełnić, to zapewne z warunku (*) wynika np., że γ musi być kombinacją liniową wektorów $\alpha_1, \ldots, \alpha_k$; albo wręcz przeciwnie, że nie może być ich kombinacją; albo że γ musi należeć do przestrzeni Z, z której wolno nam brać wektory β_1, β_2, \ldots ; albo coś innego. W ten sposób można uzasadniać, że dopełnić się nie da; albo wykombinować przykład dopełnienia tak jak w uwadze powyżej.

15. Dla jakich wartości parametru $s \in \mathbb{R}$ zbiór A rozwiązań układu równań niecałkiem-liniowych U jest podprzestrzenią liniową w \mathbb{R}^n ?

- 1. Posprzątaj układ (zmienne na lewą stronę, stałe na prawą).
- 2. Podstaw $x_1 = x_2 = \ldots = 0$ i sprawdź, czy równania są spełnione. Jeśli nie są, to A nie jest podprzestrzenią.
- 3. Podstaw takie wartości s, żeby układ był całkowicie liniowy i jednorodny (tzn. za "kreską" są wszędzie zera). Dla takich wartości A na pewno jest podprzestrzenią (bo tw. z wykładu).
- 4. W pozostałych sytuacjach domyślamy się, że A nie jest podprzestrzenią, ale należy to jeszcze uzasadnić. Wystarczy wskazać przykład wektora $\alpha \in A$ oraz liczby a takiej, że $a \cdot \alpha \notin A$.
- 5. Wyróżnij w układzie U zmienne paskudne, czyli uwikłane w jakąś nieliniowość. Na przykład: jeśli układ zawiera gdzieś wyrażenie $|x_3|$, to x_3 staje się paskudna. Jeśli zawiera gdzieś x_5^2 , to x_5 staje się paskudna. I tak dalej.
- 6. Wymyśl dobre a. (Jeśli dobrze rozumiesz sytuację, możesz wybrać -1 albo 2, ale to nie zawsze działa. -2 jest na ogół dobrym wyborem).
- 7. Teraz dwie możliwości znalezienia sensownego α :
 - (prostsze rachunki, ale czasem zawodzi) Podstaw wartość 1 za wszystkie zmienne paskudne. Otrzymasz zwyczajny układ równań liniowych na wartości zmiennych niepaskudnych, rozwiąż go zwyczajną metodą i wybierz jakiekolwiek rozwiązanie.
 - (metoda ogólna) Przekształć układ U tak, żeby wszystkie zmienne paskudne były po prawej stonie. Potraktuj U jako zwyczajny układ równań liniowych na zmienne niepaskudne, ze zmiennymi paskudnymi w roli parametrów. Zeschodkuj teraz U i wybierz takie niezerowe wartości dla zmiennych paskudnych, żeby układ był niesprzeczny. Wybierz jakiekolwiek rozwiązanie.
- 8. Teraz napisz, że $\alpha \in A$ (nie wymaga uzasadnienia, bo to już sprawdzone), ale $a \cdot \alpha \notin A$ (co należałoby sprawdzić przez podstawienie wektora $a \cdot \alpha$ do układu U wystarczy podstawić do tego równania, które zawiera paskudność). W takim razie A nie jest podprzestrzenią liniową w \mathbb{R}^n .

2 Sumy, przekroje, ładne bazy

16. Znajdź bazę przestrzeni $V_1 + V_2$.

- 1. Znajdź bazy przestrzeni V_1 i V_2 .
- 2. Wpisz je do wierszy macierzy, zeschodkuj.
- 3. Bazę $V_1 + V_2$ tworzą niezerowe wiersze otrzymanej macierzy.

17. Znajdź bazę (wymiar) przestrzeni $V_1 \cap V_2$.

- Są zasadniczo dwa sposoby: pierwszy stosuje się, gdy obie przestrzenie są opisane układem, drugi, gdy znamy bazę V_1 , a V_2 jest opisane układem. Można zawsze zmienić opis V_1 lub V_2 korzystając z punktów 1, 3 oraz 5.
- Sposób pierwszy (zakładamy, że V_1 , V_2 są opisane układem)
 - 1. Połącz układy opisujące V_1 , V_2 w jeden wielki układ równań.
 - 2. Znajdź bazę przestrzeni rozwiązań tego układu (punkt 3).
- Sposób drugi (zakładamy, że $\alpha_1, \ldots, \alpha_n$ jest $bazq\ V_1$, zaś V_2 jest opisane układem U; jeśli V_1 jest dane jako "lin" pewnych wektorów, to należy najpierw znaleźć jego bazq)

 Rozważmy przykład: V_1 ma bazę (1, 2, 3), (1, 1, 1), zaś V_2 jest opisane równaniem $2x_1 x_3 = 0$.
 - 1. Wprowadź zmienne a_1, \ldots, a_n i uprość wyrażenie $a_1\alpha_1 + \ldots + a_n\alpha_n$. $a_1(1,2,3) + a_2(1,1,1) = (a_1 + a_2, 2a_1 + a_2, 3a_1 + a_2)$.
 - 2. Podstaw otrzymany wektor do układu U. Uprość wszystkie równania, aby otrzymać warunki na zmienne a_1, \ldots, a_n .

```
Podstawienie daje 2(a_1 + a_2) - (3a_1 + a_2) = 0; po uproszczeniu: -a_1 + a_2 = 0.
```

- 3. Znajdź bazę przestrzeni rozwiązań otrzymanego układu. Oznaczmy ją β_1, \ldots, β_k . U nas $\beta_1 = (1,1)$ i to cała baza.
- 4. Dla każdego β_i oblicz wektor mający w bazie $\alpha_1, \ldots, \alpha_n$ takie współrzędne, jak każą współczynniki β_i .

```
Bierzemy \beta_1 = (1,1) i obliczamy 1 \cdot (1,2,3) + 1 \cdot (1,1,1) = (2,3,4).
```

- 5. Bazę $V_1 \cap V_2$ tworzą wektory obliczone w poprzednim punkcie. Czyli (2,3,4).
- Jeśli pytają tylko o wymiar, to na ogół prościej znaleźć $\dim(V+W)$ (punkt 16) i skorzystać ze wzoru

$$\dim(V \cap W) = \dim V + \dim W - \dim(V + W)$$

18. Czy $V = W \oplus Z$?

Odpowiedź na to pytanie wymaga sprawdzenia dowolnych dwóch spośród poniższych trzech warunków (bo wtedy trzeci też musi zajść). Na ogół najprościej sprawdzić pierwszy i ostatni.

• Czy
$$V = W + Z$$
?

- Czy $W \cap Z = \{0\}$?
- Czy dim $V = \dim W + \dim Z$?

19. Dane są przestrzenie $W \subseteq V$. Znajdź Z takie, że $V = W \oplus Z$.

- \bullet Znajdź bazę W.
- Dopełnij ją do bazy V (punkt 13).
- \bullet Przykładowym dobrym Z jest "lin" wektorów dopełniających bazę do bazy.

Definicja do wewnętrznego użytku. Niech \mathcal{B} będzie bazą przestrzeni V, i niech V_1 będzie podprzestrzenią V. Powiedzmy, że \mathcal{B} widzi V', jeśli spośród wektorów \mathcal{B} można wybrać część tak, by otrzymać bazę V'. (W dalszej części zobaczycie, że często warto jest pracować z bazami, które widzą podprzestrzenie podane w treści zadania. A w takim razie trzeba umieć znajdować takie bazy.)

20. Dane są przestrzenie $V_1 \subseteq V$. Znajdź bazę V widzącą V_1 .

- 1. Znajdź bazę V_1 .
- 2. Dopełnij ją do bazy V (punkt 13).
- 3. Otrzymana w ten sposób baza V jest dobra.

21. Dane są przestrzenie $V_1, V_2 \subseteq V$. Znajdź bazę V widzącą równocześnie V_1 oraz V_2 .

- 1. Znajdź bazę $\alpha_1, \ldots, \alpha_i$ przestrzeni $V_1 \cap V_2$.
- 2. Dopełnij wektory $\alpha_1, \ldots, \alpha_i$ do bazy V_1 wektorami β_1, \ldots, β_j (punkt 13).
- 3. Dopełnij wektory $\alpha_1, \ldots, \alpha_i$ do bazy V_2 wektorami $\gamma_1, \ldots, \gamma_k$ (j. w.).
- 4. Dopełnij wektory $\alpha_1, \ldots, \alpha_i, \ \beta_1, \ldots, \beta_j, \ \gamma_1, \ldots, \gamma_k$ do bazy V wektorami $\delta_1, \ldots, \delta_l$ (j. w.). Nie jest oczywiste, że się da. Dokładniej, nie jest oczywiste, że cały układ $\alpha_1, \ldots, \beta_1, \ldots, \gamma_1, \ldots$ jest niezależny. Można to jednak udowodnić i to jest zrobione w ramach dowodu tw. 3.32 w skrypcie. Warto ten dowód rozumieć. Warto też wiedzieć, że to nie działa dla trzech przestrzeni, tzn. gdybyśmy mieli jeszcze V_3 i chcieli obliczyć α_1, \ldots jako bazę $V_1 \cap V_2 \cap V_3$, a potem β_1, \ldots oraz γ_1, \ldots jak wyżej i wreszcie η_1, \ldots jako dopełnienie α_1, \ldots do bazy V_3 , to wektory $\alpha_1, \ldots, \beta_1, \ldots, \gamma_1, \ldots, \eta_1, \ldots$ wszystkie razem $nie\ musialyby$ być niezależne. Co więcej, może się nie dać znaleźć bazy widzącej V_1, V_2 i V_3 naraz.
- 5. Dobrą bazą jest $\alpha_1, \ldots, \alpha_i, \beta_1, \ldots, \beta_j, \gamma_1, \ldots, \gamma_k, \delta_1, \ldots, \delta_l$. Mianowicie: Bazą V_1 jest $\alpha_1, \ldots, \alpha_i, \beta_1, \ldots, \beta_j$, zaś bazą V_2 jest $\alpha_1, \ldots, \alpha_i, \gamma_1, \ldots, \gamma_k$.

22. Wykaż, że V posiada bazę widzącą podprzestrzeń V_1 (oraz V_2).

W pewnych zadaniach trzeba skorzystać z istnienia takiej bazy, bez wyliczania konkretnych jej wektorów. Jednak takiego twierdzenia nie było na wykładzie, więc należałoby (zwięźle) napisać przynajmniej, jak się uzyskuje taką bazę. Napisz z grubsza taki opis konstrukcji, jak my powyżej (odpowiednio w p. 20 lub 21).

3 Przekształcenia, ich macierze, mnożenie macierzy

- 23. Sprawdź, czy przekształcenie φ jest liniowe.
 - 1. Sprawdź, czy $\varphi(0) = 0$.
 - 2. Sprawdź, czy $\varphi(a \cdot \alpha) = a \cdot \varphi(\alpha)$.
 - 3. Sprawdź, czy $\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta)$.
- 24. Mając dany wzór na φ , znajdź jego macierz (w bazach st.). Albo na odwrót.

Współczynniki ze wzoru mechanicznie do wierszy macierzy (por. p. 25). Przykład:

$$\varphi((x_1, x_2, x_3)) = (x_1 + 2x_2 + 3x_3, \ 4x_1 + 5x_2 + 6x_3) \qquad \longleftrightarrow \qquad M(\varphi)_{\text{st}}^{\text{st}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- 25. Wartościami przekształcenia φ na bazie $\alpha_1, \ldots, \alpha_n$ są wektory β_1, \ldots, β_n . Znajdź wzór na φ (albo macierz $M(\varphi)^{\rm st}_{\rm st}$).
 - 1. Zbuduj macierz $\left[\begin{array}{c|c} \underline{\alpha_1} & \underline{\beta_1} \\ \hline \vdots & \overline{\beta_n} \end{array}\right].$
 - 2. Zeschodkuj i zredukuj. Otrzymasz macierz postaci $\left[\begin{array}{c|c} I & A \end{array}\right]$.
 - 3. Odczytaj wynik:
 - $M(\varphi)_{st}^{st}$ jest macierzą transponowanq do A.
 - \bullet Wzór na φ uzyskasz przepisując mechanicznie współczynniki Azkolumn (por. p. 24).
- 26. Czy istnieje przekształcenie liniowe φ takie, że $\varphi(\alpha_1) = \beta_1$, $\varphi(\alpha_2) = \beta_2$ itd.? (Podaj przykład).
 - 1. Zbuduj macierz $\left[\begin{array}{c|c} \underline{\alpha_1} \\ \vdots \\ \hline \alpha_n \end{array} \middle| \begin{array}{c} \underline{\beta_1} \\ \vdots \\ \hline \beta_n \end{array} \right]$ i zeschodkuj ją.
 - 2. Jeśli pojawi się wiersz postaci [0 ... 0 | nie-same-zera], φ nie istnieje. W przeciwnym razie φ istnieje.
 - 3. Jeśli proszą o podanie przykładu φ poprzez zadanie wartości na bazie, to:
 - (a) Wykreśl z macierzy wiersze zerowe.
 - (b) Jeśli lewy segment macierzy jest kwadratowy, to koniec. Dokładniej: każdy wiersz postaci $[\gamma \mid \delta]$ oznacza, że $\varphi(\gamma) = \delta$, i wszystkie tak uzyskane równości zadają φ na pewnej bazie.

9

- (c) Jeśli lewy segment nie jest kwadratowy, dopełnij jego wiersze do bazy do \mathbb{R}^n wektorami η_1, \ldots, η_k . Następnie dopisz do macierzy wiersze postaci $[\eta_i \mid 0]$, po czym wykonaj krok (b).
- 4. Jeśli proszą o podanie wzoru na φ , lub macierzy w bazach st., wykonaj krok 3, a potem punkt 25.

27. Oblicz iloczyn macierzy $A \circ B$.

Opowieści nie będzie. (Bez przesady :). Ale będzie rysunek:

					B		
					1		
					\downarrow		
				?	2	?	?
				?	15	?	?
		?	?	?	?	?	?
A		?	?	?	?	?	?
	\longrightarrow	3	20	?	$3 \cdot 2 + 20 \cdot 15$?	?

28. Odwróć macierz A.

1. Zbuduj macierz blokową postaci $\left[egin{array}{c|c} A & I \end{array} \right].$

2. Zeschodkuj i zredukuj — otrzymasz
$$\begin{bmatrix} & I & A^{-1} & \end{bmatrix}$$
.

29. Znajdź macierz A, jeśli wiadomo, że $A \circ B = C$ (albo $D \circ A = E$).

Równanie na macierzach można pomnożyć stronami przez macierz — z lewej albo z prawej strony, bo mnożenie macierzy jest nieprzemienne! Zatem:

$$AB = C \quad \Leftrightarrow \quad ABB^{-1} = CB^{-1} \quad \Leftrightarrow \quad A = CB^{-1},$$

$$DA = E \quad \Leftrightarrow \quad D^{-1}DA = D^{-1}E \quad \Leftrightarrow \quad A = D^{-1}E.$$

I dalej korzystamy z punktów 27 i 28.

30. Znając bazę \mathcal{B} , oblicz $M(\mathrm{id})^{\mathrm{st}}_{\mathcal{B}}$. Albo $M(\mathrm{id})^{\mathcal{B}}_{\mathrm{st}}$. Albo na odwrót.

• Przejście między bazą \mathcal{B} a macierzą $M(\mathrm{id})^{\mathrm{st}}_{\mathcal{B}}$ jest mechaniczne przez wpisanie wektorów do kolumn. Przykład:

$$\mathcal{B}: \qquad (1,2), \quad (3,4) \qquad \longleftrightarrow \qquad M(\mathrm{id})^{\mathrm{st}}_{\mathcal{B}} = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} \right]$$

10

 \bullet Macierze $M(\mathrm{id})^{\mathcal{B}}_{\mathrm{st}}$ i $M(\mathrm{id})^{\mathrm{st}}_{\mathcal{B}}$ są wzajemnie odwrotne.

Oznaczenie do wewnętrznego użytku. Oznaczmy przez $\alpha^{\mathcal{A}}$ współrzędne wektora α w bazie \mathcal{A} . Przez [β] oznaczamy macierz utworzoną przez wpisanie wektora β do pojedynczej kolumny (nie wiersza!) macierzy.

Dwa kluczowe wzory o macierzach przekształceń.

$$M(\psi \circ \varphi)_{\mathcal{A}}^{\mathcal{C}} = M(\psi)_{\mathcal{B}}^{\mathcal{C}} \circ M(\varphi)_{\mathcal{A}}^{\mathcal{B}}, \qquad \left[\varphi(\alpha)^{\mathcal{B}}\right] = M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \circ \left[\alpha^{\mathcal{A}}\right]$$

Ten drugi można stosować dla wielu wektorów naraz (co zresztą dowodzi poprawności tego pierwszego:):

$$\left[\begin{array}{c|c} \varphi(\alpha_1)^{\mathcal{B}} & \dots & \varphi(\alpha_n)^{\mathcal{B}} \end{array}\right] = M(\varphi)^{\mathcal{B}}_{\mathcal{A}} \circ \left[\begin{array}{c|c} \alpha_1^{\mathcal{A}} & \dots & \alpha_n^{\mathcal{A}} \end{array}\right]$$

- 31. Znajdź macierz przejścia z bazy \mathcal{A} do \mathcal{B} , czyli $M(\mathrm{id})_{\mathcal{A}}^{\mathcal{B}}$.
 - Jeśli \mathcal{A} lub \mathcal{B} jest bazą st, patrz punkt 30.
 - Jeśli obie są niestandardowe, to

$$M(\mathrm{id})_{A}^{\mathcal{B}} = M(\mathrm{id})_{\mathrm{st}}^{\mathcal{B}} M(\mathrm{id})_{A}^{\mathrm{st}}$$

- 32. Znając $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$, oblicz $M(\varphi)^{\mathcal{D}}_{\mathcal{C}}$.
 - Zrozum, co masz zrobić: nie zmienić przekształcenia, tylko bazy zatem użyć odpowiednich macierzy przejścia:

$$M(\varphi)_{\mathcal{C}}^{\mathcal{D}} = M(\mathrm{id})_{?}^{?} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} M(\mathrm{id})_{?}^{?}$$

• Dobierz bazy tak, żeby się zgadzało:

$$M(\varphi)_{\mathcal{C}}^{\mathcal{D}} = M(\mathrm{id})_{\mathcal{B}}^{\mathcal{D}} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} M(\mathrm{id})_{\mathcal{C}}^{\mathcal{A}}$$

33. Znając $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ i $\alpha^{\mathcal{C}}$, wyznacz $\varphi(\alpha)^{\mathcal{D}}$.

Podobnie jak przed chwilą:

- $\left[\varphi(\alpha)^{\mathcal{D}}\right] = M(\mathrm{id})^{?}_{?} M(\varphi)^{\mathcal{B}}_{\mathcal{A}} M(\mathrm{id})^{?}_{?} \left[\alpha^{\mathcal{C}}\right]$
- $[\varphi(\alpha)^{\mathcal{D}}] = M(\mathrm{id})^{\mathcal{D}}_{\mathcal{B}} M(\varphi)^{\mathcal{B}}_{\mathcal{A}} M(\mathrm{id})^{\mathcal{A}}_{\mathcal{C}} [\alpha^{\mathcal{C}}]$
- 34. Znając $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$ i $M(\psi)^{\mathcal{D}}_{\mathcal{C}}$, wyznacz $M(\psi \circ \varphi)^{\mathcal{F}}_{\mathcal{E}}$.

Podobnie jak w dwóch poprzednich punktach:

- $M(\psi \circ \varphi)_{\mathcal{E}}^{\mathcal{F}} = M(\mathrm{id})_{?}^{?} M(\psi)_{\mathcal{C}}^{\mathcal{D}} M(\mathrm{id})_{?}^{?} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} M(\mathrm{id})_{?}^{?}$
- $M(\psi \circ \varphi)_{\mathcal{E}}^{\mathcal{F}} = M(\mathrm{id})_{\mathcal{D}}^{\mathcal{F}} M(\psi)_{\mathcal{C}}^{\mathcal{D}} M(\mathrm{id})_{\mathcal{B}}^{\mathcal{C}} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} M(\mathrm{id})_{\mathcal{E}}^{\mathcal{A}}$
- 35. Czy istnieje takie α , że $\varphi(\alpha) = \beta$? (Podaj przykład).

Wystarczy skorzystać z równoważności:

$$\varphi(\alpha) = \beta \quad \Leftrightarrow \quad M(\varphi)^{\rm st}_{\rm st} \circ \left[\alpha\right] = \left[\beta\right] \quad \Leftrightarrow \quad \alpha \text{ jest rozwiązaniem układu o macierzy} \quad \left[\quad M(\varphi)^{\rm st}_{\rm st} \quad \middle| \beta \right].$$

Jeśli jakimś dziwnym trafem byłoby to przydatne, można skorzystać z uogólnienia:

$$\varphi(\alpha) = \beta \quad \Leftrightarrow \quad M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \circ \left[\alpha^{\mathcal{A}}\right] = \left[\beta^{\mathcal{B}}\right] \quad \Leftrightarrow \quad \alpha^{\mathcal{A}} \text{ jest rozwiązaniem układu o macierzy } \left[\qquad M(\varphi)_{\mathcal{A}}^{\mathcal{B}} \qquad \middle| \beta^{\mathcal{B}} \right].$$

36. Wyznacz rzut na V wzdłuż W / symetrię względem V wzdłuż W.

- 1. Znajdź bazę \mathcal{A} przestrzeni V oraz bazę \mathcal{B} przestrzeni W.
- 2. Teraz są dwa sposoby:
 - ullet Znajdź przekształcenie φ zadane na bazie przez warunki (patrz p. 26)

$$\varphi(\alpha_1) = \alpha_1, \dots, \varphi(\alpha_i) = \alpha_i, \quad \varphi(\beta_1) = 0, \dots, \varphi(\beta_j) = 0$$
 (dla rzutu)
$$\varphi(\alpha_1) = \alpha_1, \dots, \varphi(\alpha_i) = \alpha_i, \quad \varphi(\beta_1) = -\beta_1, \dots, \varphi(\beta_j) = -\beta_j$$
 (dla symetrii)

• Jeśli oznaczymy przez $\mathcal C$ połączoną bazę $\alpha_1,\ldots,\alpha_i,\ \beta_1,\ldots,\beta_j,$ to φ jest zadane przez

$$M(\varphi)_{\mathcal{C}}^{\mathcal{C}} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} \quad \text{(rzut)}, \qquad M(\varphi)_{\mathcal{C}}^{\mathcal{C}} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & -1 \\ & & & -1 \end{bmatrix} \quad \text{(symetria)}$$

(W obu przypadkach jedynek w pierwszym segmencie ma być tyle, ile wektorów $\alpha_1, \ldots, \alpha_i$). A potem zależnie od potrzeby można wyliczyć macierz φ w innych bazach.

37. Znajdź rząd przekształcenia φ .

- 1. Znajdź macierz przekształcenia φ (w dowolnych bazach).
- 2. Oblicz jej rząd (patrz p. 9) to jest szukany rząd φ .

38. Znajdź bazę (wymiar) $\ker \varphi$.

- Jeśli znamy macierz $M(\varphi)_{\rm st}^{\rm st}$ (albo ogólniej jakąkolwiek macierz postaci $M(\varphi)_{\rm st}^{\mathcal{B}}$), to:
 - 1. Zbuduj macierz $\left[\begin{array}{c|c} M(\varphi)_{\rm st}^{\mathcal{B}} & 0 \\ \vdots \\ 0 \end{array} \right].$
 - 2. Znajdź bazę przestrzeni rozwiązań układu równań o tej macierzy jest to baza ker φ .
- Jeśli znamy macierz $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}$, gdzie \mathcal{A} nie jest standardowa, to: Rozpatrzymy dwa przykłady; w obu będzie zachodzić $M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}$. W pierwszym \mathcal{A} jest bazą w \mathbb{R}^2 zawierającą (3,4) oraz (5,6). W drugim \mathcal{A} jest bazą st* w przestrzeni $(\mathbb{R}^2)^*$. Baza \mathcal{B} nie będzie nam potrzebna.

1. Zbuduj macierz
$$\left[\begin{array}{c|c} M(\varphi)_{\mathcal{A}}^{\mathcal{B}} & \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right]. \right.$$

- 2. Znajdź bazę przestrzeni rozwiązań układu równań o tej macierzy oznaczmy ją $\gamma_1, \ldots, \gamma_k$. W obu przykładach wychodzi $\gamma_1 = (3, 1)$.
- 3. Dla każdego i, oblicz wektor mający w bazie $\mathcal A$ takie współrzędne, jak każą współczynniki γ_i .

Bierzemy $\gamma_1 = (3,1)$ i obliczamy: w pierwszym przykładzie $3 \cdot (3,4) + 1 \cdot (5,6) = (14,18)$; w drugim $3 \cdot \varepsilon_1^* + 1 \cdot \varepsilon_2^*$ upraszcza się po prostu do $3\varepsilon_1^* + \varepsilon_2^*$; jest to funkcjonał $\psi : \mathbb{R}^2 \to \mathbb{R}$ o macierzy [3 1] i wzorze $\psi((x_1, x_2)) = 3x_1 + x_2$.

- 4. Bazę $\ker \varphi$ tworzą wektory obliczone w poprzednim punkcie.
- Zamiast tego wszystkiego można by obliczyć macierz $M(\varphi)_{\text{st}}^{\mathcal{B}}$ i zastosować pierwszą metodę, jednak to wymagałoby obliczenia trudnej macierzy przejścia $M(\text{id})_{\text{st}}^{\mathcal{A}}$, więc może się nie opłacić. Poza tym w pewnych przestrzeniach (np. $(\mathbb{R}^n)^*$) ściśle rzecz biorąc nie ma czegoś takiego jak baza standardowa i wtedy tak się w ogóle nie da.

39. Znajdź bazę im φ .

Jest to w pewien sposób podobne do poprzedniego punktu.

- Jeśli znamy macierz $M(\varphi)^{\text{st}}_{\text{st}}$ (albo ogólniej jakąkolwiek macierz postaci $M(\varphi)^{\text{st}}_{\mathcal{A}}$), to:
 - 1. Zeschodkuj macierz transponowaną $\left(M(\varphi)_{\mathcal{A}}^{\text{st}}\right)^T$.
 - 2. Bazę im φ tworzą niezerowe wiersze otrzymanej macierzy.
- Jeśli znamy macierz $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$, gdzie \mathcal{B} nie jest standardowa, to: Ponownie rozpatrzymy dwa przykłady dla $M(\varphi)^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}$. W pierwszym \mathcal{B} jest bazą w \mathbb{R}^2 zawierającą (7,8) oraz (9,10). W drugim \mathcal{B} jest bazą st* w przestrzeni (\mathbb{R}^2)*. Tym razem \mathcal{A} nie będzie nam potrzebna.
 - 1. Zeschodkuj macierz transponowaną $\left(M(\varphi)_{\mathcal{A}}^{\mathcal{B}}\right)^{T}$. W obu przykładach: $\begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -2 \\ 0 & 0 \end{bmatrix}$.
 - 2. Wypisz niezerowe wiersze otrzymanej macierzy oznaczmy je $\gamma_1, \ldots, \gamma_k$. W obu przykładach: $\gamma_1 = (-1, -2)$.
 - 3. Dla każdego i, oblicz wektor mający w bazie $\mathcal A$ takie współrzędne, jak każą współczynniki γ_i .

Bierzemy $\gamma_1 = (-1, -2)$ i obliczamy: w pierwszym przykładzie $(-1) \cdot (7, 8) + (-2) \cdot (9, 10) = (-25, -28)$; w drugim $-\varepsilon_1^* - 2\varepsilon_2^*$, czyli funkcjonał o macierzy $[-1 \quad -2]$ i wzorze $\psi((x_1, x_2)) = -x_1 - 2x_2$.

4. Bazę im φ tworzą wektory obliczone w poprzednim punkcie.

40. Niech $\varphi:V\to W$ oraz $V_1\subseteq V$. Znajdź bazę $\varphi(V_1)$.

- Jeśli φ jest dane wzorem lub macierzą postaci $M(\varphi)_{\mathcal{A}}^{\mathrm{st}}$, to:
 - 1. Znajdź bazę V_1 (lub dowolny układ rozpinający V_1) niech będzie to $\alpha_1, \ldots, \alpha_n$.

2. Oblicz wartości $\varphi(\alpha_1), \ldots, \varphi(\alpha_n)$.

Jeśli dysponujesz macierzą $M(\varphi)^{\text{st}}_{\mathcal{A}}$ oraz współrzędnymi wektorów α_i w bazie \mathcal{A} , możesz to elegancko zrobić mnożąc macierze:

$$\left[\begin{array}{c|c} \varphi(\alpha_1) & \dots & \varphi(\alpha_n) \end{array}\right] = M(\varphi)_{\mathcal{A}}^{\mathrm{st}} \circ \left[\begin{array}{c|c} \alpha_1^{\mathcal{A}} & \dots & \alpha_n^{\mathcal{A}} \end{array}\right]$$

- 3. $\varphi(V_1)$ jest rozpięte przez znalezione przed chwilą wektory. Zatem aby wyznaczyć bazę, wpisz je do wierszy macierzy, zeschodkuj i wybierz niezerowe wiersze.
- Jeśli φ jest dane przez macierz $M(\varphi)^{\mathcal{B}}_{\mathcal{A}}$, gdzie \mathcal{B} jest niestandardowa, to wykonaj powyższy algorytm i na końcu przebazuj odpowiednio wyniki. (Tak jak w kroku 3 w punkcie 39).

41. Czy $\varphi: \mathbb{R}^a \to \mathbb{R}^b$ jest mono/epi/izo?

- 1. Wyznacz liczby a i b. (To jest puste polecenie, chyba że φ jest zadane przez macierz; wówczas a jest liczbą jej kolumn, a b liczbą wierszy).
- 2. Wyznacz rząd r przekształcenia φ (patrz p. 37).
- 3. φ jest:

mono
$$\Leftrightarrow r = a$$
, epi $\Leftrightarrow r = b$, izo $\Leftrightarrow r = a = b$.

• Zauważ, że czasem nie ma czego liczyć, np. jeśli pytają, czy φ jest mono, podczas gdy a > b.

42. Dane są ψ i χ . Czy istnieje φ liniowe takie, że $\psi \circ \varphi = \chi$? Albo takie, że $\varphi \circ \psi = \chi$? (Podaj przykład).

Kluczem do rozwiązania jest następujący fakt: dwa przekształcenia są równe \Leftrightarrow mają zgodne wartości na pewnej bazie.

- Czy istnieje φ takie, że $\psi \circ \varphi = \chi$?
 - 1. To jest równoważne temu, żeby dla każdego i zachodziło $\psi(\varphi(\varepsilon_i)) = \chi(\varepsilon_i)$.
 - 2. Dla każdego i sprawdź, czy istnieje α_i takie, że $\psi(\alpha_i) = \chi(\varepsilon_i)$ (patrz p. 35).
 - 3. Jeśli któreś α_i nie istnieje, to φ nie istnieje. Jeśli wszystkie istnieją, to przykładowe φ jest zadane na bazie standardowej warunkami $\varphi(\varepsilon_i) = \alpha_i$.
- Czy istnieje φ takie, że $\varphi \circ \psi = \chi$?
 - 1. To jest równoważne temu, żeby dla każdego i zachodziło $\varphi(\psi(\varepsilon_i)) = \chi(\varepsilon_i)$.
 - 2. Oblicz wszystkie $\psi(\varepsilon_i)$ i otrzymasz sytuację dokładnie jak w punkcie 26.

43. Czy istnieje przekształcenie $\varphi:V\to W$ takie, że [i tu bardzo różne warunki]? (Podaj przykład).

Zwróć uwagę, że warunki w zadaniach trafiają się naprawdę różne — np. takich typów:

- (a) $\varphi(\alpha) = \beta$
- (b) $\varphi(V_1) \subseteq W_1$

- (c) $\varphi(V_1) = W_1$ (to jest na ogół trudniejsze niż (b))
- (d) $\varphi(V_1) = 0$ (to wyjątkowo nie jest trudniejsze niż (b), bo się do (b) sprowadza :)
- (e) rząd φ wynosi k
- (f) dim ker φ wynosi l (to się sprowadza do (e))
- (g) $\psi \circ \varphi = 0$ (to się sprowadza do (b))
- (h) $\varphi \circ \psi = 0$ (to się sprowadza do (d))
- (i) $\ker \varphi = V_1$ (to można sprowadzić do połączenia (d) i (e))

Zatem zadanie może wystąpić w naprawdę wielu smakach i ogólnej metody nie będzie. Ale będzie kilka wskazówek:

- Staraj się sprowadzić warunki dotyczące φ do dogodnej dla Ciebie postaci (wskazówki odnośnie tego podaliśmy powyżej).
- Staraj się znaleźć bazy widzące wszystkie podprzestrzenie w zadaniu (patrz p. 20, 21, 22).
- Jeśli w jednej przestrzeni żyją dwie podprzestrzenie i nie jest jasne, jaki jest wymiar ich przecięcia staraj się rozważyć po kolei wszystkie możliwe przypadki (zresztą zapewne przyda Ci się to podczas budowania ładnych baz).
- Często przydaje się wzór

 $\dim \operatorname{im} \varphi = \dim V - \dim \ker \varphi,$ gdzie V oznacza dziedzinę przekształcenia φ

• Często ten wzór trzeba stosować dla *obcięcia* φ do pewnej podprzestrzeni V_1 , wtedy ma on postać

$$\dim \varphi(V_1) = \dim V_1 - \dim(\ker \varphi \cap V_1),$$

ponieważ z definicji jądra wynika natychmiast, że ker $(\varphi|_{V_1}) = \ker \varphi \cap V_1$.

- 44. Dana jest podprzestrzeń $V_1 \subseteq V$ oraz baza \mathcal{B} widząca V_1 . Wyraź warunek $\alpha \in V_1$ poprzez współrzędne $\alpha^{\mathcal{B}}$.
 - 1. Wypisz, które wektory z bazy \mathcal{B} rozpinają V_1 . Niech na przykład dim V=10 oraz $V_1=\ln(\beta_2,\beta_3,\beta_5)$.
 - 2. Wektor α należy do $V_1 \Leftrightarrow$ współrzędne odpowiadające pozostałym wektorom z \mathcal{B} są zerowe. W naszym przykładzie: $\alpha \in V_1 \Leftrightarrow \alpha^{\mathcal{B}} = (*,0,0,*,0,*,*,*,*,*)$.
- 45. Znajdź wymiar przestrzeni przekształceń $\varphi:V\to W$ takich, że...
 - Jeśli pytają o całą przestrzeń dim L(V, W), to jej wymiarem jest dim $V \cdot \dim W$.
 - Jeśli pytają o przestrzeń $\varphi:V\to W$ takich, że $\varphi(V_1)\subseteq W_1$ itd., to:
 - 1. Opisz, jak uzyskać bazę \mathcal{A} przestrzeni V widzącą wszystkie V_i (patrz p. 22).

- 2. Opisz, jak uzyskać bazę \mathcal{B} przestrzeni W widzącą wszystkie W_i (j. w.).
- 3. Narysuj ogólną postać macierzy $M(\varphi)_{\mathcal{A}}^{\mathcal{B}}$, na początku wypełnij ją gwiazdkami. Jeśli byłaby to macierz rozmiaru 15 × 28, to wyróżnij w niej istotne bloki, zamiast wypisywać 420 gwiazdek.
- 4. Dla każdego warunku postaci $\varphi(V_i) \subseteq W_i$:
 - (a) Sprawdź, które wektory z \mathcal{A} rozpinają V_i .
 - (b) Jeśli $\alpha_k \in V_i$, to nanieś w k-tej kolumnie macierzy odpowiednie zera. Dokładniej: wyznacz warunek nałożony na k-tą kolumnę stosując metodę z punktu 44 dla bazy \mathcal{B} oraz przestrzeni W_i . Uwaga: jeśli zawieranie $\varphi(V_1) \subseteq W_1$ dopuszcza gdzieś gwiazdkę, a zawieranie $\varphi(V_2) \subseteq W_2$ każe wpisać zero, to oczywiście wygrywa zero. (" $a \in \mathbb{R}$ i a = 0" jest równoważne z "a = 0", a nie z " $a \in \mathbb{R}$ ")
- 5. Policz gwiazdki. (Te pojedyncze; blok rozmiaru 3 × 7 to 21 prawdziwych gwiazdek).

46. Dane są macierze A i B. Czy istnieją takie X,Y odwracalne, że $B=X\circ A\circ Y$? (Podaj przykład).

- Istnieją \Leftrightarrow rzędy macierzy A i B są równe (patrz p. 9).
- ullet Jak je znaleźć, jeśli istnieją w przypadku, gdy B jest ładna (podobna do I):
 - 1. Narysuj takie coś (rysunek dla A rozmiaru 3×5):

- 2. Przy pomocy operacji elementarnych na wierszach i kolumnach przerób A na B. Każdą operację na wierszach wykonuj zarazem na macierzy dopisanej z lewej. Każdą operację na kolumnach wykonuj zarazem na macierzy dopisanej z góry.
 W każdej chwili Twoich obliczeń, jeśli po lewej jest X, a na górze Y, to w środku jest X o A o Y.
- 3. Na końcu rachunków macierz po lewej jest dobrym X, a macierz na górze dobrym Y.
- Gdy B jest brzydka, możesz mieć problem z przerobieniem A na B. Wtedy możesz tak:
 - 1. Wymyśl jakąś ładną macierz C i na marginesie przerób B na C (bez macierzy towarzyszących).

 Najładniejsza macierz 3×5 to $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 &$
 - 2. Teraz, tak jak w poprzednim wariancie, rozpocznij od A z towarzyszącymi identycznościami. Przerób A na C, a potem C na B wykonując kroki odwrotne do tych wykonanych w kroku 1. (Oczywiście cały czas wykonując operacje również na towarzyszach).
 - 3. Wynik odczytujesz tak samo jak powyżej.

- 47. Niech $M(\varphi)^{\mathcal{B}}_{\mathcal{A}} = A$. Czy istnieją takie bazy $\mathcal{C}, \mathcal{D}, \dot{\mathbf{z}} \in M(\varphi)^{\mathcal{D}}_{\mathcal{C}} = B$? (Podaj przykład).
 - Istnieją \Leftrightarrow macierze A i B mają równe rzędy (patrz p. 9).
 - 1. Zauważ, że warunek $B = M(\varphi)^{\mathcal{D}}_{\mathcal{C}}$ jest równoważny takiemu:

$$B = M(\mathrm{id})^{\mathcal{D}}_{\mathcal{B}} M(\varphi)^{\mathcal{B}}_{\mathcal{A}} M(\mathrm{id})^{\mathcal{A}}_{\mathcal{C}}$$

Macierz w środku to po prostu A, a te po bokach masz znaleźć.

2. Użyj metody z p. 46, aby znaleźć X, Y takie, że

$$B = X A Y$$
.

- 3. Aby wyznaczyć \mathcal{D} , zauważ, że $X = M(\mathrm{id})^{\mathcal{D}}_{\mathcal{B}} = M(\mathrm{id})^{\mathcal{D}}_{\mathcal{B}} M(\mathrm{id})^{\mathrm{st}}_{\mathcal{B}}$. W tym równaniu dwie macierze są znane, a trzecia szukana. Pozostaje zastosować punkty 29 oraz 30.
- 4. Podobnie wyznacz \mathcal{C} .
- Przed rozpoczęciem rachunków warto je zaplanować w celu uniknięcia np. mozolnego obliczania $(A^{-1})^{-1}$;)

48. Przedstaw macierz A jako iloczyn macierzy elementarnych.

- 1. Zeschodkuj i zredukuj A, wykonując pojedyncze operacje elementarne na wierszach. $\begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix} \quad \longrightarrow \quad \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \quad \longrightarrow \quad \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad \longrightarrow \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 2. $A = E_1 \circ E_2 \circ \ldots \circ E_k$, gdzie E_i jest macierzą operacji elementarnej odwrotnej do tej wykonanej w *i*-tej kolejności. W przykładzie: $\begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \circ \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

Przestrzenie sprzężone 4

Kluczowe wzory związane z przestrzeniami sprzężonymi.

(1)
$$\alpha_i^*(\alpha_j) = \begin{cases} 1 & \text{jeśli } i = j, \\ 0 & \text{jeśli } i \neq j \end{cases}$$
 (to jest definicja α_i^*)

(2)
$$F^*(\varphi) = \varphi \circ F$$
, (to jest definicja F^*)

$$(3) (F \circ G)^* = G^* \circ F^*, (wniosek z (2))$$

(4)
$$id_V^* = id_{V^*}, \qquad (wniosek z (2))$$

(4)
$$id_V^* = id_{V^*},$$
 (wniosek z (2))
(5) $(F^{-1})^* = (F^*)^{-1},$ (wniosek z (3) i (4), albo z (6) :)

(6)
$$M(F^*)_{\mathcal{B}^*}^{\mathcal{A}^*} = \left(M(F)_{\mathcal{A}}^{\mathcal{B}}\right)^T$$
, (uwaga na kolejność baz!)

(7)
$$M(\mathrm{id})_{\mathcal{B}^*}^{\mathrm{st}} = \left(M(\mathrm{id})_{\mathrm{st}}^{\mathcal{B}}\right)^T = \left(\left(M(\mathrm{id})_{\mathcal{B}}^{\mathrm{st}}\right)^{-1}\right)^T$$
 (a to wniosek z (6))

Najważniejsze są (6) i (7). Warto też znać macierzowe odpowiedniki (3) i (5):

(8)
$$(A \circ B)^T = B^T \circ A^T, \qquad (A^{-1})^T = (A^T)^{-1}$$

49. Mając bazę \mathcal{B} , znajdź bazę \mathcal{B}^* . Albo na odwrót.

Skorzystaj ze wzoru (7). Związek miedzy bazą a macierzą przejścia — patrz p. 30.

50. Wektor α ma w bazie \mathcal{B} współrzędne (a_1, \ldots, a_n) , a funkcjonał φ ma w \mathcal{B}^* współrzędne (c_1, \ldots, c_n) . Ile wynosi $\varphi(\alpha)$?

Wynosi $c_1a_1 + c_2a_2 + \ldots + c_na_n$. Zrozumienie tego pomaga zrozumieć dalsze metody.

51. Znajdź funkcjonał φ mający w bazie \mathcal{B}^* współrzędne (a_1,\ldots,a_n) .

Można przejść przez punkt 49. Ale będzie troche mniej rachunków, jak się zauważy, że φ jest zadane przez warunki:

$$\varphi(\beta_1) = a_1, \quad \varphi(\beta_2) = a_2, \quad \dots, \quad \varphi(\beta_n) = a_n.$$

Dalej wystarczy zastosować metodę z punktu 25; początkowa macierz w tej metodzie będzie wyglądać tak:

$$\begin{bmatrix}
\frac{\beta_1}{\beta_2} & a_1 \\
\frac{\beta_2}{\beta_n} & \vdots \\
\frac{\beta_n}{\beta_n} & a_n
\end{bmatrix}$$

52. Znajdź współrzędne funkcjonału φ w bazie \mathcal{B}^* .

Szukanymi współrzędnymi są po prostu wartości $\varphi(\beta_1), \varphi(\beta_2), \ldots, \varphi(\beta_n)$. Uzasadnienie: szukamy a_1, \ldots, a_n takich, że

 $\varphi = a_1 \beta_1^* + a_2 \beta_2^* + \ldots + a_n \beta_n^*.$

To jest równość funkcjonałów, czyli przekształceń liniowych. Można nakarmić te przekształcenia dowolnym wektorem i wtedy mają wyjść takie same wyniki. Nakarmmy wektorem β_1 :

$$\varphi(\beta_1) = \left(a_1\beta_1^* + a_2\beta_2^* + \ldots + a_n\beta_n^*\right)(\beta_1) = a_1\beta_1^*(\beta_1) + a_2\beta_2^*(\beta_1) + \ldots + a_n\beta_n^*(\beta_1) = a_1 \cdot 1 + a_2 \cdot 0 + \ldots + a_n \cdot 0 = a_1.$$

(porównaj z punktem 50). Więc a_1 musi być równe $\varphi(\beta_1)!$ I tak dalej.

53. Dana jest macierz $M(F)^{\mathcal{B}}_{\mathcal{A}}$. Znajdź macierz $M(F^*)^{\mathcal{C}^*}_{\mathcal{D}^*}$.

- Z (6) wywnioskuj, że $M(F^*)_{\mathcal{D}^*}^{\mathcal{C}^*} = (M(F)_{\mathcal{C}}^{\mathcal{D}})^T$.
- Oblicz $M(F)_{\mathcal{C}}^{\mathcal{D}}$ przy pomocy metody z punktu 32.

54. Znajdź jądro F^* / obraz F^* / obraz jakiejś podprzestrzeni przy F^* .

- \bullet Znajdź macierz przekształcenia F^* w jakichś bazach (najlepiej w bazach st*).
- Teraz użyj odpowiedniej metody z punktów 38, 39, 40. (Przeczytaj opisy przykładów w tych punktach).

18