Clase práctica 4

December 6, 2024

- 1. Clasifique en verdadero o falso las siguientes afirmaciones:
 - $37621 + 2^{30} * 471 + 59603 * 25$ es divisible por 12.
 - $375121*4^{105}-35^{91}$ es coprimo (primo relativo) con 6 y $9^{1684}-7^{52688}$ es divisible por 10.
 - $2^{70} + 3^{70}$ es divisible por 13 y 3^{47} deja resto 4 cuando se divide por 13.
- 2. Demuestre que es finita la cantidad de valores de n, para los cuales la suma desde k=1 hasta n de k! es un cuadrado ($\left[\sum_{k=1}^n k! = x^2\right]$).
- 3. Demuestre que las siguientes ecuaciones no tienen solución en enteros (\mathbb{Z}) :
 - $3x^2 + 5 + 9xy = y^2$
 - $x^2 + y^2 8z = 6$
- 4. Determine el número de ternas (a, b, c) que satisfagan: $2^a + 2^b = c!$
- 5. Sea P un número primo tal que si $P \equiv 5(8)$ y $P \mid (a^4 + b^4)$ entonces $P \mid a$ y $P \mid b$.
- 6. Demuestre que dados tres números enteros cualesquiera, siempre es posible seleccionar dos de ellos, sean estos a y b tales que el número a^3b-ab^3 sea divisible por 10.
- 7. Se le llama 'número de Fermat' a aquellos que pueden ser escritos de la forma $2^{2^n} + 1$, $n \ge 0$. Demuestre que los números de Fermat son coprimos dos a dos.
 - a) Utilizando este resultado, demuestre que existen infinitos números primos.