

Light Sources

Reflection Models Shading Models

Light Sources

Where is the light coming from?

Directional Light

- Light source is infinitely far away
- Light rays are parallel, like sun
- 1 ... direction to the light = -dir

Point Light

• Has a certain position in space $l = normalize(light_{pos} - pos)$

Spot Light

- Has a certain position and cone in space
- Cone can be specified by opening angle and central direction

Spot Light

Point is in cone iff

$$\cos^{-1} dot(l, -light_{dir}) < \theta$$

Point Light Attenuation

- Point light energy emitted is distributed across surface of a sphere
- Further object receive less energy per surface area

$$S = \frac{S_{intensity} * S_{color}}{4\pi r^2}$$

Inverse-square law

Multiple Light Sources

- Have a linear light response
- $Total\ light = \sum Light_i$

Light Sources

Reflection Models Shading Models

Light-Material Interaction

Reflection/Illumination/Lighting model

- How is light reflected by a surface?
- What is the resulting color?
- What properties can we simulate with a given model?
- What lighting effects can we create?

Surface lighting effects

Lighting Models

Light-Material Interaction

 Color channels are independent (not true for advanced phenomena, like fluorescence, phosphorescence, interference, relativistic Doppler effect)

Color Multiplication – "*" Operator

- Color channels are independent
- S...light color
- M...material color

$$\begin{pmatrix} S_R \\ S_G \\ S_B \end{pmatrix} * \begin{pmatrix} M_R \\ M_G \\ M_B \end{pmatrix} \coloneqq \begin{pmatrix} S_R M_R \\ S_G M_G \\ S_B M_B \end{pmatrix}$$

Color Multiplication – "*" Operator

Phong Illumination Model

component ... lighting model component

Ambient Light Reflection

- Background light
 - No direction because scattered so often
 - "Color inside shadow"
 - Approximation of global diffuse lighting effects
- S_{amb} ...ambient light color
- *M_{amb}*...ambient material color

$$ambient = M_{amb} * S_{amb}$$

Diffuse Light Reflection

diffuse

- The flatter light falls on a surface, the darker it will appear
- Ideal diffuse reflectors (Lambertian reflectors)
- Brightness depends on orientation of surface

Lamberts Law

- Diffuse brightness is dependent on angle between
 - n ... surface normal and
 - 1 ... direction to the light

Lamberts Law

- Diffuse brightness is dependent on angle between
 - n ... surface normal and
 - 1 ... direction to the light
- $\cos \theta = dot(\mathbf{n}, \mathbf{l})$

Diffuse Light Reflection

- S_{diff} ...diffuse light color
- M_{diff} ... diffuse material color
- $diffuse = M_{diff} * S_{diff} \cdot dot(\mathbf{n}, \mathbf{l})$

Light from Behind

- Should be ignored
- $diffuse = M_{diff} * S_{diff} \cdot \max(0, dot(\mathbf{n}, \mathbf{l}))$

Effect of Ambient + Diffuse

Specular Highlights

Light source reflection directly into the viewer's eye Approximate image of light source

Mirror Reflection

Empirical Specular Reflection

- S_{spec} ... specular light color
- $M_{\rm spec}$... specular material color
- $specular = M_{spec} * S_{spec} \cdot \cos \sigma$

Specular Reflection Coefficient – p = Shininess

• $specular = M_{spec} * S_{spec} \cdot cos^p \sigma$

Specular Reflection Coefficient p=1

Specular Reflection Coefficient p=8

Specular Reflection Coefficient p = 64

Specular Reflection Coefficient p=128

Specular Reflection Coefficient p=256

Specular Reflection Calculation

$$specular = M_{spec} * S_{spec} \cdot cos^{p} \sigma$$
$$= M_{spec} * S_{spec} \cdot dot(\mathbf{r}, \mathbf{v})^{p}$$

$$\mathbf{r} + \mathbf{l} = 2 \cdot dot(\mathbf{n}, \mathbf{l}) \cdot \mathbf{n}$$

 $\mathbf{r} = 2 \cdot dot(\mathbf{n}, \mathbf{l}) \cdot \mathbf{n} - \mathbf{l}$

Do not apply Specular when

Phong Illumination Model

ambient + diffuse + specular =

$$= M_{amb} * S_{amb} + M_{diff} * S_{diff} \cdot dot(\mathbf{n}, \mathbf{l}) + M_{spec} * S_{spec} \cdot dot(\mathbf{r}, \mathbf{v})^{p}$$

Lighting Models

Gooch

Blend between a cool and a warm color

Toon shading

Discrete color steps for diffuse

Cel shading

Detect edges and color them

Light Sources

Reflection Models Shading Models

Shading Models

Shading model

- Shading ≠ shadows (shadowing)
- Coloring / shading the model
- When to evaluate lighting model

Flat-shading

- 1 color for the mesh (polygon)
- Really fast
- Really ugly
- If an object really is faceted, is this accurate?
- No:
 - Point light sources
 - Direction to light varies across the facet
 - Specular reflectance
 - Direction to eye varies across the facet

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex

Vertex Normals

- Vertex normals may be
 - Provided with the model
 - Artist
 - 3d program
 - Computed from first principles
 - Mathematic description of model

Sharp Edges and Normals

Vertex Normals

Approximated by averaging the normals of the facets that share the vertex

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex

3. Color interpolation along edges $R=t\cdot S_1+(1-t)\cdot S_2$ $R!=u\cdot S_2+(1-u)\cdot S_3$

Gouraud shading

- 1. Calculate the normal vector for each vertex
- 2. Calculate the intensitity for each vertex
- 3. Color interpolation along edges
- 4. Color interpolation along scanline

Phong Shading Model

- 1. Normal Vector for each vertex
- 2. Normal vectors are interpolated along the edge
- 3. Normal vectors are interpolated along the scanline
- 4. Calulate the intensity using the normal vectors

Normal Interpolation

Flat / Gouraud / Phong Comparison

Transforming Normals

- Differential scaling changes shape and normals
- If **M** transforms points, then (**M**^T)⁻¹ transforms normals

