课外练习题 3

- 1. 已知向量组 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 2 \\ a \\ -1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ 线性相关,则 $a = \underline{\qquad}$.
- 2. 设向量组 $\alpha_1 = (a,0,1), \alpha_2 = (b,1,0), \alpha_3 = (0,a,b)$ 线性无关,则 a,b必满足关系 式_____.
- 3. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_1 + 2\alpha_2, \alpha_2 \alpha_3, \alpha_1 + \alpha_2 + t\alpha_3$ 线性相关,则 $t = \underline{\hspace{1cm}}$.
- 4. 向量组 $\boldsymbol{\alpha}_1 = (1,2,3,4)^T$, $\boldsymbol{\alpha}_2 = (1,3,4,5)^T$, $\boldsymbol{\alpha}_3 = (2,4,6,8)^T$, $\boldsymbol{\alpha}_4 = (2,6,7,7)^T$ 的一个极大 无关组为<u>_____</u>.
- 5. 若矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 经初等行变换变为 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, 那么向量组

的关系式为_____.

- 6. 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 \alpha_2$ 的秩为_______.
- 7. 设 3×2 矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2), \mathbf{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$, 其中 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 是 3 维列向量,若 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性 无关,则 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 线性无关的充要条件是(

 - (A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 能由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 线性表示 (B) $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性表示

 - (C) 矩阵 A 与 B 等价 (D) 向量组 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 等价
- 8. 已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是线性无关向量组,则下列向量组中仍为线性无关向量组的是 ().

 - (A) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 + \boldsymbol{\alpha}_1$ (B) $\boldsymbol{\alpha}_1 \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 \boldsymbol{\alpha}_1$
 - (C) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_4, \alpha_4 \alpha_1$ (D) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 \alpha_1$
- 10. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量组 $\alpha_1, \alpha_2, \beta$ 线性相关,则(
 - (A) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 可由 $\alpha_1, \alpha_2, \beta$ 线性表示

(B) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 不可由 $\alpha_1, \alpha_2, \beta$ 线性表示
(C) β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 可由 $\alpha_1, \alpha_2, \beta$ 线性表示
(D) β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 不可由 $\alpha_1, \alpha_2, \beta$ 线性表示
11. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量 β_1 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,向量 β_2 不能由 $\alpha_1, \alpha_2, \alpha_3$
线性表示,则必有().
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$ 线性无关 (B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$ 线性相关
(C) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性无关 (D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性相关
12. n 维向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ (3 ≤ m ≤ n) 线性无关的充要条件是 ().
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 中任意两个向量均线性无关
(B) 向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 的秩小于 m
(C) $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中任意一个向量均不能由其余 $m-1$ 个向量线性表示
(D) 方程组 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_m\alpha_m = 0$ 有非零解
13. 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关的充分必要条件是()
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 均不为零向量.
(B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 中任意两个向量的分量不成比例.
(C) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中任意一个向量均不能由其余各向量线性表示
(D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 中有一部分向量线性无关
14. 设 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$, 其中 c_1, c_2, c_3, c_4 为任意常数,则下列向量组线性相关的为(
(A) $\alpha_1, \alpha_2, \alpha_3$ (B) $\alpha_1, \alpha_2, \alpha_4$ (C) $\alpha_1, \alpha_3, \alpha_4$ (D) $\alpha_2, \alpha_3, \alpha_4$
15. 设 A 为 3×4 矩阵,且 $R(A)=3$,则 A 的()
(A) 行向量组线性相关,列向量组线性无关
(B) 行向量组线性无关, 列向量组线性相关

- (C) 行、列向量组均线性相关 (D) 行、列向量组均线性无关 16. 设n阶矩阵 $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)$, $B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n)$, $AB = (\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \dots, \boldsymbol{\gamma}_n)$.记向量组 $I: \alpha_1, \alpha_2, \cdots, \alpha_n: II: \beta_1, \beta_2, \cdots, \beta_n: III: \gamma_1, \gamma_2, \cdots, \gamma_n$,如果向量组 III 线性相关,则() (B) 向量组 Ⅱ 线性相关 (A) 向量组 I 线性相关 (C) 向量组 I 与 II 都线性相关 (D) 向量组 I 与 II 中至少有一个线性相关 17. 设向量组 $I: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r$ 可由向量组 $II: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s$ 线性表出. 下列命题正确的是 (). (C) 若 $r \le s$, 则向量组 II 线性无关 (D) 若r > s, 则向量组 II 线性相关 18. 设有向量组 $\alpha_1 = (1,-1,2,4)^T$, $\alpha_2 = (0,3,1,2)^T$, $\alpha_3 = (3,0,7,14)^T$, $\alpha_4 = (1,-2,2,0)^T$, 则该向量组的极大线性无关组是((A) α_1, α_2 (B) $\alpha_1, \alpha_2, \alpha_4$ (C) $\alpha_1, \alpha_2, \alpha_3$ (D) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 19. 设 $A \neq m \times n$ 矩阵, $C \neq n$ 阶可逆矩阵,矩阵A的秩为r,矩阵B = AC的秩为 r_1 , 则 (). (A) $r > r_1$. (B) $r < r_1$. (C) $r = r_1$. (D) $r = r_1$ 的关系依C 而定 20. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为r,则(). (A) 必有 *r < s* (B) 向量组中任意个数小于r 的部分组必线性无关 (C) 向量组中任意r个向量必线性无关 (D) 若r < s,则向量组中任意r+1个向量必线性相关 21. 设**A** 为 $m \times n$ 矩阵,**B** 为 $n \times k$ 矩阵,**AB** = **O**, **B** \neq **O**,则下列命题中正确的是(). (A) A 的列向量组线性相关 (B) **A** 的行向量组线性相关 (C) A 的列向量组线性无关 (D) A 的行向量组线性无关
- 22. (6 分)设A 是 $n \times m$ 矩阵,B 是 $m \times n$ 矩阵,其中n < m.若AB = E ,证明B 的列向量组线性无关.
- 23. (8 分) 已知向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关, $\alpha_1,\alpha_2,\alpha_3,\alpha_5$ 线性无关,讨论

 $\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4$ 的线性相关性.

24. (12 分) 设向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 2\\1\\2\\1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} -1\\1\\0\\2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} -1\\-2\\-2\\-3 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 1\\1\\3\\3 \end{pmatrix}$, $\boldsymbol{\alpha}_5 = \begin{pmatrix} 2\\4\\-1\\1 \end{pmatrix}$, 求

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个极大线性无关组,并将其余向量用该极大无关组线性表示.

25. (10分)设向量组:

$$\alpha_1 = (1,1,2,-1)^T$$
, $\alpha_2 = (1,2,-1,1)^T$, $\alpha_3 = (2,3,-5,4)^T$, $\alpha_4 = (1,-1,\lambda,-1)^T$.

当参数 λ 取何值时线性相关,相关时求其极大线性无关组,并将其余向量用该极大无关组线性表示。