# Introduction to Machine Learning Basics



# What is Machine Learning?

 Algorithm: a clear and unambiguous description of a set of steps for solving a problem



- Can you guess the difference between 2 classes of images:
  - Chartreux
  - Persian

- Can you guess the difference between 2 classes of images:
  - Chartreux
  - Persian





- With some examples "labeled" you can solve the task with an high performance
- But listing examples in a programming way is very difficult
  - programming = set of instructions (if-else)
  - listing all type of pattern combinations (e.g., from pixel) is impossible in real-life
    - potential infinite "pictures"
    - time consuming
  - Hard to formalize

- Challenges with real-life tasks
  - The "data" you are using for the prediction might not be fully ideal
    - e.g., a picture can be noisy
    - e.g., wrong angle, it does not capture the details you need
    - e.g., data might be ambiguous
  - You need a lot of data to "generalize"
  - So what if .. rather than we design an algorithm with properties to classify images
    - We write an algorithm that finds pattern automatically from the data

# Example of a Machine Learning Algorithm

- Idea: let the computer look for the patterns
- Ex. Input = an image; Output = 1 if there is a certosino, 0 otherwise
- Automatically search for patterns that correlate with class 1 or 0



#### When to use Machine Learning

- When we use ML?
  - The problem is difficult to formalize the problem, easy to provide examples
  - Presence of noise
- And the ML system should
  - adapt to each sample in in order to compute the correct answer
  - find and discover new regularities from empirical data
- The level of information and knowledge acquire highly depends on the data quality used for the training
  - if you only show black Chartreux cat, it might learn that "black" is an essential condition for that class
  - same for a sofa
  - the more data we have, the more likely we generalize
    - the ML model learns the actual "concept" of that class

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

A well-defined learning task is given by <P, T, E>

 A task is usually described in terms of how the machine learning algorithm should process an example (i.e. what the output should be)





- A task is usually described in terms of how the machine learning algorithm should process an example (i.e. what the output should be)
- Examples of questions
  - How much or how many? (regression)
  - Which category? (classification)
  - Which group? (clustering)
  - Is this weird? (anomaly detection)
  - Which option should be taken? (recommendation)

- A task is usually described in terms of how the machine learning algorithm should process an example (i.e. what the output should be)
- In this case: classification task
- Now, how we represent data?





- A task is usually described in terms of how the machine learning algorithm should process an example (i.e. what the output should be)
- In this case: classification task
- Now, how we represent data?
  - Raw: RGB representation
  - Features Engineering: "colour of eyes", "shape of the ear"





#### The Performance Measure

- How good is the learning algorithm?
- We need to measure its performance, i.e. how accurate is the function/model returned by it!
- The performance measure depends on the task, e.g.:
  - Classification -> accuracy, proportion of examples for which the model produces the correct output
  - It can also depend on the type of task (e.g., identifying animals rather than cancer)
    - We might have different metrics

#### The Performance Measure

- How good is the learning algorithm?
- We need to measure its performance, i.e. how accurate is the function/model returned by it!
- The performance measure depends on the task, e.g.:
  - Regression -> mean squared error (MSE), the average of the squares
    of the errors

predicted toxicity index 
$$\rightarrow$$
 1.2 0.9 0.75 1.1 mSE: 0.023125 squared error  $\rightarrow$  0.04 0.04 0.0025 0.01

#### The Experience

- The dataset
- Which kind of data?
  - real-valued features
  - discrete features
  - mixed features
- How do we get data?
  - obtained once for all (batch learning)
  - acquired incrementally by interacting with the environment (on-line learning)
- How can data be used?
  - Learning paradigms

# Main Learning Paradigms

#### Different paradigms

- Supervised Learning
- Unsupervised learning
- Reinforcement learning
- .. and many others.

# Main Learning Paradigms

#### Different paradigms

- Supervised (inductive) Learning
  - Given: training data + desired outputs (labels)
- Unsupervised learning
  - Given: training data (without desired outputs)
- Reinforcement learning
  - Given: Rewards from sequence of actions
- .. and many others.

# Supervised Learning: Regression

- Given a set of points  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function h(x) to predict y given x
  - y is continuous -> regression
- As you can see, there are many f that we can use



# Supervised Learning: Classification

- Given a set of points  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function h(x) to predict y given x
  - y is discrete -> classification
- As you can see, there are many f that we can use



# Supervised Learning: Classification

- Given a set of points  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function h(x) to predict y given x
  - y is discrete -> classification
- As you can see, there are many f that we can use

#### **Tumor Size**



# Supervised Learning: Classification

- Given a set of points  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function h(x) to predict y given x
  - y is discrete -> classification
- As you can see, there are many f that we can use



- Training Set is drawn from "the entire world"
  - drawn: how we collect the data
  - the entire world: all possible data that there exists
    - impossible to have
- There exists a function f that solve the task
  - f is unknown
    - if it is known, we design an algorithm





- Since h is an approximation
  - you might not solve the task perfectly
- This happens for many reasons such as
  - The training data you have does not allow the algorithm to generalize to the entire world
    - you might need more samples
    - there might be bias in your data
    - or the data "representation" does not allow you to solve the task
      - · e.g., see example of breast cancer classification
    - your function h is not suitable to learn the insight (or all) to solve the task
  - usually, in real life, you have all of these problem together
    - with maybe different "degrees" of impact

#### Unsupervised Learning

- Goal: find regularities / patterns on the data
- Given examples  $\{x^{(i)}\}$ , discover regularities on the whole input domain
- There is no expert (i.e. no supervision)



# Clustering application example



# Reinforcement Learning

- Agent which may
  - be in state s
  - execute action a
     (among the ones admissible in state s)
- and operates in an environment e, which in response to action a in the state s returns
  - the next state and a reward r (which can be positive, negative or neutral)
- The goal of the agent is to maximize a function of the rewards



#### **Example of Reinforcement Learning**



#### **Example of RL 2**

• The agent learns a policy: a mapping from states to actions, that maximizes the long-term reward





#### Ingredients

- Training Data
  - drawn from the Instance Space X
- Hypothesis Space H
  - set of functions that can be implemented by the machine learning algorithm
- f (the target function) is unknown
  - f can be represented by the hypotheses in H
  - there exist  $h \in \mathcal{H}$  s.t. h is similar to f
- Therefore, learning means finding the function h that approximate the most f

#### **Inductive Bias**

- Can we have H s.t. it contains all the possible functions?
  - No! Potentially infinite!
- Inductive Bias = all the assumptions about the "nature" of the target function and its selection
- Two type of bias:
  - Restriction: limit the hypothesis space
  - Preference: impose ordering on hypothesis space

# Concept Learning

- A concept in an instance space X is defined as a boolean function over X ,  $c: X \rightarrow \{0, 1\}$
- An example in X is defined as
  - (x, c(x)), where  $x \in X$  and c() is a boolean function over x
- Let h:  $X \rightarrow \{0, 1\}$  a boolean function in X
  - h satisfies  $x \in X$  if h(x) = 1 (true)
- h is consistent with an example x if h(x) = c(x)
  - h is consistent with Tr is h is consistent with any training example in Tr

# Concept Learning

#### Conjunction of *m* literals

- ▶ Instance Space  $\rightarrow$  strings of m bits:  $X = \{s | s \in \{0, 1\}^m\}$
- ▶ Hypothesis Space  $\rightarrow$  all the logic sentences involving literals  $l_1, \ldots, l_m$  (any boolean variable  $l_i$  or its negation  $\neg l_i$ ) and just containing the operator  $\land$  (and):

$$\mathcal{H} = \{f_{\{i_1,...,i_j\}}(s)|f_{\{i_1,...,i_j\}}(s) \equiv L_{i_1} \land L_{i_2} \land \cdots \land L_{i_j}, \text{ where } L_{i_k} = l_{i_k} \text{ or } \neg l_{i_k}, \{i_1,...,i_j\} \subseteq \{1,...,2m\}\}$$

Notice that if in a formula a literal occurs together with its negation, then the formula is always *false* (unsatisfiable formula) So, all the formulas containing a literal and its negation, are equivalent to *false* 

# Learning Conjunctions of Literals

#### Find-S Algorithm

/\* it finds the most specific hypothesis which is consistent with the training set \*/

- ▶ input: training set *Tr*
- initialize h to the most specific

$$h \equiv l_1 \wedge \neg l_1 \wedge l_2 \wedge \neg l_2 \wedge \cdots \wedge l_m \wedge \neg l_m$$

- ▶ for each positive training instance  $(x, true) \in Tr$ 
  - remove from h any literal which is not satisfied by x
- returns *h*

# Example of application: m=5

| (positive) Example | current hypothesis                                                                                                                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                    | $h_0 \equiv l_1 \wedge \neg l_1 \wedge l_2 \wedge \neg l_2 \wedge l_3 \wedge \neg l_3 \wedge l_4 \wedge \neg l_4 \wedge l_5 \wedge \neg l_5$ |
| 1 1 0 1 0          | $h_1 \equiv l_1 \wedge l_2 \wedge \neg l_3 \wedge l_4 \wedge \neg l_5$                                                                       |
| 10010              | $h_2 \equiv I_1 \wedge \neg I_3 \wedge I_4 \wedge \neg I_5$                                                                                  |
| 1 0 1 1 0          | $h_3 \equiv l_1 \wedge l_4 \wedge \neg l_5$                                                                                                  |
| 10100              | $h_4 \equiv l_1 \wedge \neg l_5$                                                                                                             |
| 0 0 1 0 0          | $h_5 \equiv \neg l_5$                                                                                                                        |

Notice that  $h_0 \leq_g h_1 \leq_g h_2 \leq_g h_3 \leq_g h_4 \leq_g h_5$ 

Moreover, at every step the current hypothesis  $h_i$  is substituted by hypothesis  $h_{i+1}$  which constitutes a minimal generalization of  $h_i$  consistent with the current example.

Thus **Find-S** returns the most specific hypothesis which is consistent with Tr

#### Inductive Bias

#### due to inductive bias





# Hypothesis Spaces Example

 Regression Task; function f in green, examples with noise added; Different polynomials of degree M as Hypothesis spaces



### **Variance**

- M=9 adapts "too well" to the data: it is so powerful that can model the noise as well!
- M=9 has high variance/sensitivity (if we select a different set of training points, the fitting curve changes a lot; it would not happen to M=1)
- High variance is undesirable because...







#### **Variance**

- High variance is undesirable:
- Consider two function with different complexity
  - f() (simpler) that does not change a lot
  - h() (more complex) that change a lot
  - what can we say about the error h() will do on unseen examples?







# **Complex Models - Overfitting**

- h(x) = 1 if x=x\_blue, 0 otherwise
- x is classified as blue only if it coincides with a blue point, i.e. it "memorizes" the training set

Zero error on the training set but it is not learning

anything!



## **Notions of Statistical Learning Theory**

- The dataset we have is a random sample identically and independently distributed according to some probability distribution D
- In general, we are interested in generalization!
- E.g. Emotion detection system from faces.
  - Training set: pictures of your faces expressing different emotions
  - Goal: classify emotions of other people!

#### True Error

Instance Space X



**Def:** The **True Error**  $(error_{\mathcal{D}}(h))$  of hypothesis h with respect to target concept c and distribution  $\mathcal{D}$  (to observe an input instance  $x \in X$ ) is the probability that h will misclassify an instance drawn at random according to  $\mathcal{D}$ :

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

## **Empirical Error**

Instance Space X



**Def:** The **Empirical Error** ( $error_{Tr}(h)$ ) of hypothesis h with respect to Tr is the number of examples that h misclassifies:

$$error_{Tr}(h) = Pr_{(x,f(x)) \in Tr} [f(x) \neq h(x)] = \frac{|\{(x,f(x)) \in Tr | f(x) \neq h(x)\}|}{|Tr|}$$

**Def:**  $h \in \mathcal{H}$  overfits Tr if  $\exists h' \in \mathcal{H}$  such that  $error_{Tr}(h) < error_{Tr}(h')$ , but  $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$ .

# **Overfitting**



### **Bias-Variance Tradeoff**

- The bias error is produced by weak assumptions in the learning algorithm
  - High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting)
- The variance is an error produced by an over-sensitivity to small fluctuations in the training set
  - High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting)

## **Bias-Variance trade-off**



 Function too simple - High Bias - risk of underfitting (no function in H has high error on the training set -> high true error!)



 right complexity for this problem good balance between bias and variance



- Small empirical error
- Small True error
- H too "powerful" might model noise
  - high variance
    - Very low empirical error (error on the training set)
    - High true error!

## **Bias-Variance Tradeoff**

|                | Underfitting | Optimal | Overfitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regression     |              |         | · In the second of the second |
| Classification |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# **Estimating the True error**

 Minimizing the error on the training set (Empirical Risk Minimization) may not be the best option (see overfitting later)

We want to minimize the true error!

$$error_D(h) = error_{Tr}(h) + generalization(h)$$

2 ways: bounds and estimation

 relate the Empirical error and the true error with generalization bounds:

```
error_{\mathcal{D}}(h) \leq error_{Tr}(h) + complexityMeasure(\mathcal{H})
```

with  $h \in \mathcal{H}$ , exploiting some complexity measure of the hypothesis space

2. compute the error on unseen data (TEST set)

# Overfitting - 2



#### No Free Lunch Theorem

- No Free Lunch Theorem: there is no "best" learning algorithm
- Each learning algorithm defines an inductive bias, we can constrict a problem for which his inductive bias does not result in the best bias-variance tradeoff
- This is one of the reason why there are so many learning algorithm