

FBX5010 CÁLCULO DIFERENCIAL E INTEGRAL I

Aula 02 – Limites (continuação)

Limites (continuação)

Retomando:

Limite de f(x) num ponto x = a

$$\lim_{x \to a} f(x) = L$$

se, e somente se,

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Respostas do Exercício 04 – Aula 01

Determine os seguintes limites (observe a estratégia mais adequada: algébrica, numérica ou gráfica)

a)
$$\lim_{x\to 2} x^3 - 2x^2 - 4 = -4$$
 (fazendo $p(2)$)

b)
$$\lim_{x\to 2} \frac{x-2}{x^2+x-6} = 0.2$$
 (pela análise do gráfico)

c)
$$\lim_{x \to 2^+} \frac{x}{x-2} = +\infty$$
 (pela análise de uma tabela numérica)

Respostas do Exercício 05 – Aula 01

Seja
$$f(x) = \begin{cases} 1/x & , & x < 0 \\ x^2 & , & 0 \le x < 1 \\ 2 & , & x = 1 \\ 2 - x, & x > 1. \end{cases}$$

Esboce o gráfico e calcule os limites indicados se existirem:

(a)
$$\lim_{x \to -1} f(x) = 1$$

(b)
$$\lim_{x\to 1} f(x)$$
. 4

(c)
$$\lim_{x\to 0^+} f(x)$$
.

(d)
$$\lim_{x\to 0^-} f(x)$$
.

(e)
$$\lim_{x\to 0} f(x)$$
. \overline{A}

(f)
$$\lim_{x\to 2^+} f(x).0$$

(g)
$$\lim_{x\to 2^-} f(x)$$
. \bigcirc

(h)
$$\lim_{x\to 2} f(x)$$
. \bigcirc

Respostas Exercs (livro) – Aula 01

No livro: respostas dos ímpares ⇒ R.5

- **2.** (a) 0
- **(b)** 0
- (c) 0 (d) 0

- 4. (a) 2
- (b) 0 (c) does not exist (d) 2
- **6.** (a) 1 (b) 1 (c) 1 (d) 0

- 8. (a) $+\infty$ (b) $+\infty$ (c) $+\infty$ (d) can not be found from graph
- **10.** (a) does not exist (b) $-\infty$ (c) 0 (d) -1 (e) $+\infty$ (f) 3 (g) x = -2, x = 2

12. (i)

-0.1	-0.01	-0.001	0.001	0.01	0.1
2.0135792	2.0001334	2.0000013	2.0000013	2.0001334	2.0135792

- **18.** True; by 1.1.3.
- **20.** False; define f(x) = 1/x for x > 0 and f(0) = 2.

Limites infinitos: análise gráfica e numérica

Limites infinitos: Notação

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = +\infty$$

Logo,
$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = -\infty$$

Logo,
$$\lim_{x \to a} f(x) = -\infty$$

Seção 1.2 (p. 80) Calculando Limites

Limites importantes (limites básicos)

$$\lim_{x \to a} x = a$$

Limites importantes (limites básicos)

FUNDAÇÃO UNIVERSIDADE DE CAXIAS DO SUL

Limite de funções racionais

$$y = \frac{1}{(x-a)^2}$$

$$\lim_{x \to a^{+}} \frac{1}{x - a} = +\infty$$

$$\lim_{x \to a^{-}} \frac{1}{x - a} = -\infty$$

$$\lim_{x \to a} \frac{1}{(x-a)^2} = +\infty$$

$$\lim_{x \to a} -\frac{1}{(x-a)^2} = -\infty$$

Retomando alguns limites da Aula 01 (Exercício 04)

• Limite de uma função polinomial:

$$\lim_{x\to 2} x^3 - 2x^2 - 4 =$$

• Limite de uma função racional:

$$\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6} =$$

Observações:

• Todo polinômio de **grau 2**, $P(x) = ax^2 + bx + c$, pode ser representado na forma fatorada por

$$P(x) = a(x - r_1)(x - r_2)$$

sendo r_1 e r_2 as raízes da equação P(x) = 0.

• Todo polinômio de **grau 3**, $P(x) = ax^3 + bx^2 + cx + d$, pode ser representado na forma fatorada por

$$P(x) = a(x - r_1)(x - r_2)(x - r_3)$$

sendo r_1 , r_2 e r_3 as raízes da equação P(x) = 0.

E assim por diante...

Exemplo 01: Calcule os limites indicados

a)
$$\lim_{x \to 4} \left(\frac{x^2 - 16}{x - 4} \right) =$$

b)
$$\lim_{x \to 3} \left(\frac{x^2 - 4x + 3}{x^2 + x - 12} \right) =$$

c)
$$\lim_{x \to -1} \left(\frac{x^3 + 4x^2 - 3}{x^2 + 5} \right) =$$

$$d) \lim_{x \to 1} \left(\frac{x^2 + x - 2}{x^2 - x} \right) =$$

e)
$$\lim_{x \to 0} \left(\frac{x+1}{x^2 + x} \right) =$$

Seção 1.3 (p. 89)

Limites no infinito: comportamento final de uma função

Limites no infinito e assíntotas horizontais

Limites no infinito e assíntotas horizontais

Limites no infinito: notação

1.3.1 LIMITES NO INFINITO (PONTO DE VISTA INFORMAL) Se os valores de f(x) ficam tão próximos quanto queiramos de um número L à medida que x cresce sem cota, então escrevemos

$$\lim_{x \to +\infty} f(x) = L \quad \text{ou} \quad f(x) \to L \text{ quando } x \to +\infty$$
 (3)

Analogamente, se os valores de f(x) ficam tão próximos quanto queiramos de um número L à medida que x decresce sem cota, então escrevemos

$$\lim_{x \to -\infty} f(x) = L \quad \text{ou} \quad f(x) \to L \text{ quando } x \to -\infty$$
 (4)

Limites infinitos no infinito

1.3.2 LIMITES INFINITOS NO INFINITO (UM PONTO DE VISTA INFORMAL) Se os valores

de f(x) crescem sem cota quando $x \to +\infty$ ou $x \to -\infty$, então escrevemos

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = +\infty$$

conforme o caso. Se os valores de f(x) decrescem sem cota quando $x \to +\infty$ ou $x \to -\infty$, então escrevemos

$$\lim_{x \to +\infty} f(x) = -\infty \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = -\infty$$

conforme o caso.

Limites de polinômios no infinito

$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to -\infty} x^2$$

$$\lim_{x \to -\infty} x^2$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} x^4 = +\infty$$

$$\lim_{x \to -\infty} x^4 = +\infty$$

Importante: sobre limites de polinômios e funções racionais no infinito

O comportamento final de um polinômio coincide com o comportamento final de seu termo de maior grau.

O comportamento final de uma função racional coincide com o comportamento final do quociente do termo de maior grau do numerador dividido pelo termo de maior grau do denominador.

Exemplo 02: Determine os limites

a)
$$\lim_{x \to -\infty} (x^3 - 2x^2 - 1) =$$

b)
$$\lim_{x \to +\infty} \left(\frac{2x+1}{3x-1} \right) =$$

Seção 1.5 (p. 110) Continuidade

Continuidade

Intuitivamente dizemos que o gráfico de uma função é contínuo quando a sua curva não apresentar "quebras" ou "buracos".

Definição de continuidade

- 1.5.1 DEFIN⁻⁻⁻O Dizemos que uma função f é contínua em x = c se as seguintes condições estiverem satisfeitas:
 - 1. f(c) está definida.
 - 2. $\lim_{x \to c} f(x)$ existe.
 - 3. $\lim_{x \to c} f(x) = f(c)$.

Por que as funções abaixo são descontínuas?

Exemplo 03:

a) Verifique se a função $f(x) = \frac{x^2-4}{x-2}$ é contínua no ponto de abscissa igual a 2.

b) Para quais valores de x há uma descontinuidade no gráfico de $f(x) = x^2 - 2x + 1$?

c) Para quais valores de x há uma descontinuidade no gráfico

de
$$f(x) = \begin{cases} 2x - 3, & \text{se } x \le 2 \\ x^2, & \text{se } x > 2 \end{cases}$$
?

Atividades da Aula 02

• Exercícios – p. 87 (Seção 1.2): 3 ao 6 + 9 ao 12 + 21 ao 26

Exercícios – p. 96 (Seção 1.3): 1 ao 4, 9, 10, 13 ao 22

• Exercícios - p. 118 (Seção 1.5): 11, 13, 15, 17, 21

• Elabore um mapa mental com as ideias e regras discutidas na aula de hoje para auxiliar na resolução das atividades.