AD-A072 081

EASTMAN KODAK CO ROCHESTER N Y APPARATUS AND OPTICAL DIV F/6 14/2 SPECTRAL RADIOMETRIC MEASUREMENT AND ANALYSIS PROGRAM. VOLUME 4--ETC(U) APR 79 L G CHRISTENSEN, R SIMMONS, G SCHAUSS

UNCLASSIFIED

I OF 1

AQ072061

AQ07206

DOC FILE COPY

Po

AWS/TN-79/001 Vol. IV

SPECTRAL RADIOMETRIC MEASUREMENT AND ANALYSIS PROGRAM

SCAT3
Operator's Manual

Lawrence G. Christensen

Eastman Kodak Co.

Kodak Apparatus Division
901 Elmgrove Road
Rochester, New York 14658

April 1979 Final Report

Approved for Public Release; Distribution Unlimited

Prepared for AIR WEATHER SERVICE (MAC) Scott AFB, Illinois 62225

79 07 31 115

REVIEW AND APPROVAL STATEMENT

This report approved for public release. There is no objection to unlimited distribution of this report to the public at large, or by DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

DONALD B. HODGES, LYCO1, USAF Chief, Aerospace Physics and Space Sciences Division Directorate of Aerospace Development

FOR THE COMMANDER

ROBERT M. GOTTUSO, Col, USAF DCS/Aerospace Sciences

Volumes I-II, AD-A072 078AD-A072 081 were all insued without a contract per place
Consenstin with Slivly were
Eastman Kodak, Co. Rockester, Ny
(716-736-5390)

Laid martin ii
(TID)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TN-79/001-VOL Spectral Radiometric Measurement Final and Analysis Program. Volume 4. SCAT3 Operator's Manual CONTRACT OR GRANT NUMBER(8) AUTHOR(s) L. Christensen et al 9. PERFORMING ORGANIZATION NAME AND ADDRESS Eastman Kodak Co. Kodak Apparatus Div. 901 Elmgrove Rd., Rochester, N.Y. 14624 11. CONTROLLING OFFICE NAME AND ADDRESS EPONT DATE Air Weather Service (MAC) Scott AFB, Illinois 62225 15. SECURITY CLASS. (of this report) 4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) None 10 Lawrence G./Christensen, R./Simmons, 15. DECLASSIFICATION DOWNGRADING G./Schauss, R./Norton R./Schoenfeld 6. DIST Approved for Public Release; Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES This document is Volume 4 of four volumes. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) VISUAL & INFRARED ATMOSPHERIC TRANSMITTANCE VISUAL & INFRARED ATMOSPHERIC SCATTERING AND ABSORPTION SURFACE METEOROLOGY AND ATMOSPHERIC RADIOMETRIC TRANSFER IN SITU ATMOSPHERIC MEASUREMENTS GROUND-BASED RADIOMETRY MISTRACT (Continue on reverse side if necessary and identify by block number) Eastman Kodak Company, recently completed a contract with the United States Air Force Air Weather Service to conduct research into the transfer of atmospheric energy in the visible and near-infrared portions of the electromagnetic spectrum. Its objective was to produce a spectral model of path transmittance, radiance, and ground-level irradiance that could be related to meteorological observations through the use of simultaneous, insitu data collections. For this purpose a mathematical model was developed. DD , FORM 1473

121 220

SUL

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

79 01

31 11

It was based on physical equations for a homogeneous atmosphere that were modified by empirical observations made under a broad range of meteorological conditions. With the model it is possible to estimate the visible and near-infrared spectral absorption and scattering phenomena that result from atmospheric constituents, from surface synoptic weather observations. The atmospheric model was coded into a computer program called SCAT3.

This document is the fourth volume documenting the radiometric data collection program that culminated in the radiometric atmospheric model, SCAT3. The objective of this volume is to acquaint the user with the proper input sequences and options when SCAT3 is run on an IBM 370 computer. Volumes, 1, 2, and 3 contain the details of data collection, analysis, and derivation of equations that were coded into the program to reconstruct atmospheric radiance, transmittance, and ground irradiance.

at all house that eggs bert I evolutioners for confidence were

TABLE OF CONTENTS

				Page
1.0	Gene	eral Description of SCAT3		1-1
	1.1	Introduction		1-1
		Operating Commands		1-1
		Example of a Typical Program	Run	1-3
2.0	Desc	cription of the Command AMOS		2-1
	2.1	General Description		2-1
	2.2			2-1
	2.3	Output		2-3
		ebre X sits best		
3.0	Desc	cription of Command: GENERATE S	YSINT VFUN	3-1
	3.1	Command Format		3-1
	3.2	Inputs		3-1
	3.3	Outputs		3-5
4.0	Desc	ription of Command I/O READIN	Accession For	4-1
	4.1	General Description Inputs	NTIS GRA&I DDC TAB Unanneunced	4-1
5.0	Desc	ription of the Command FILE	Justification	5-1
	5.1	General Description	Ву_	5-1
	CONTRACTOR OF THE PARTY OF THE	Inputs	Distribution/	5-1
			Availability Codes	
6.0	Othe	er Functions	Avail and/or	6-1
		General Description	Dist special	6-1
		I/O Functions	No. 4 Bleff by Dona, whom are	6-1
	6.3	Generate Function		6-1
APPE	NDIX	A: SCAT3 Test Cases		A-1
APPE	NDIX	B: Error Messages That Might	Be Generated by SCAT3	B-1
APPE	NDIX	C: SYSINT VFUN Default Elemen	ts	C-1
APPE	NDIX	D: Programmer's Aids		D-1
	MINTY	P. PODERAN Licaina of Complet	lean Dunation	E-1

LIST OF FIGURES

Figur	re	Page
1-1	SCAT3 Commands and Functions	1-2
1-2	Example of Correctly Formatted Input Cards for SCAT3 Operation	1-4
2-1	Examples of Correctly Formatted Command Cards	2-2
2-2	Example of Correctly Formatted Data Cards	2-7
2-3	Example of SCAT3 Output and Listing of Data-Card- Specified Variables	2-8
2-4	Example of SCAT3 Output and Typical Spectral Array Generated by AMOS	2-12
2-5	Examples of Potential Error Messages Generated by AMOS	2-13
3-1	Example of Correctly Formatted SYSINT VFUN Commands	3-2
3-2	Example of SCAT3 Output: Integrated Values Generated by SYSINT VFUN Command	3-5
	LIST OF TABLES	
2-1	Formats and Definitions of Data Card Parameters	2-4
2-2	Albedo Types and Default Reflectances	2-6

SECTION 1

GENERAL DESCRIPTION OF SCAT3 PROGRAM

1.1 INTRODUCTION

SCAT3 is a special version of Program SPECTR, a general purpose program for manipulating optical, photographic, and electro-optical elements on a wavelength-by-wavelength basis. Each element is represented by an array of values representing, for instance, transmittance, reflectance, or relative sensitivity for a 5 nm portion of the spectrum (300-1200 nm). These elements may be added, multiplied, integrated, etc, to model the response of a system. A disk-based library of elements provides flexibility in modeling a wide variety of components and systems. In addition to handling array values, the program may also use temporary constants.

SCAT3 contains an atmospheric simulation model based on the collection program and data analysis discussed in detail in Volumes 1, 2, and 3. The atmospheric model is contained in a series of subroutines, commanded by an operator command function, AMOS. The output of the AMOS function is a series of spectral elements describing atmospheric path transmittance and radiance, various forms of ground-level irradiances, and several other spectral radiometric quantities that can be used in subsequent computations. User function SYSINT VFUN is available for performing a series of calculations and integrations of AMOS elements, and elements that define a system-sensor response.

1.2 OPERATING COMMANDS

The SCAT3 Program, in its basic form, supports four commands which in turn support the functions shown in Figure 1-1. These commands are summarized below and described in detail in the following four sections of this volume:

a. AMOS generates temporary elements for atmospheric computations, based on surface weather, solar altitude, etc.

Figure 1-1. SCAT3 Commands and Functions

- b. GENERATE generates temporary elements that are the result of computations; e.g., special functions such as AMOS, or the user function SYSINT VFUN. The command GENERATE SCAT3 AMOS is equivalent to AMOS.
- c. I/O (Input/Output) is used to read in or print out spectral elements.
- d. FILE is used for disk file maintenance. It is normally used to save spectral elements in the library or delete elements when they are no longer needed.

Although SCAT3 has a multiplicity of optional functions, only the following four basic command sequences are used:

- a. GENERATE SCAT3 AMOS, or simply AMOS
- b. GENERATE SYSINT VFUN
- c. I/O READIN
- d. FILE SAVE or FILE DELETE

The various other options are not used in routine operation of the SCAT3 program and have therefore been grouped for further discussion in Section 6.

1.3 EXAMPLE OF A TYPICAL PROGRAM RUN

To set up program SCAT3, a series of command and associated data cards are used. Each command card (e.g., GENERATE ...) must begin in column 1 of the card. If the particular function does not require a data card, subsequent command cards for the same function may have a blank in column 1 instead of the command name. An 80-column layout sheet for the command and data cards for a typical run are shown in Figure 1-2. The purpose of each command sequence in the example in Figure 1-2 is summarized below. This sequence exercises all the required commands in the normal operation of SCAT3.

- (1) Read-in a new detector spectral sensitivity element to be stored by the name DET78.
- (2) Peak-normalize DET78, and store the normalized spectral element, by the name DET78, in the disk file.

Example of Correctly Formatted Input Cards for SCAT3 Operation Figure 1-2.

* See text for explanation of example.

- (3) Generate the atmospheric and ground level irradiance spectral elements corresponding to the following: solar altitude of 40 degrees, surface temperature of 15 degrees Celsius, relative humidity of 60%, forest surround, and all other parameters having default* values for the date 4/1/78.
- (4) Spectral integrate the elements DH, T, and SK, etc, with the default spectral elements for detector, lens, and scene reflectance.
- (5) Repeat the spectral integrations, substituting the normalized detector array PKDET78 for its default element. Multiply the results by the factor 1.375. The lens and scene reflectance elements remain unchanged.
- (6) Delete the element DET77 from the disk library.

^{*} If no input specification is given, the program will assume certain values of parameters and spectral element arrays.

SECTION 2

DESCRIPTION OF THE COMMAND AMOS

2.1 GENERAL DESCRIPTION

The AMOS command allows the user to generate spectral elements that describe the atmosphere based on estimated surface meteorology, solar altitude, acquisition geometry, and other factors. These spectral elements can be used in subsequent functions, such as SYSINT VFUN, I/O FILE, etc.

2.2 INPUTS

Each run of AMOS requires a command card that defines print options, and a data card. The data card provides the values for the input variables that are needed to generate the spectral atmospheric and ground irradiance elements. All options and values have defaults except for solar altitude and weather/transmittance estimates. The input values are checked for reasonableness, and warnings or fatal error-condition messages may be written, depending on the seriousness of the error.

The user may specify the amount of printout from an AMOS run. The choices are: FULL, which prints all 8 spectral-array elements; PARTIAL, which prints only atmospheric path transmittance (T), atmospheric path radiance (SK), and horizontal daylight irradiance (DH); and NONE, which prints no array elements. The input and default variables are printed regardless of the option selected.

2.2.1 Command Card

The three valid AMOS commands that serve to illustrate the print options (see Figure 2-1) are:

- a. GENERATE SCAT3 AMOS NONE, or AMOS NONE
- b. GENERATE SCAT3 AMOS PARTIAL, or AMOS PARTIAL
- c. GENERATE SCAT3 AMOS FULL, or AMOS FULL.

-	-	-	-				_	_	_			_	_	_	_	-	_	-	-	-	-	_	-	-	_
4	-		_	-		-		-		-	-	_	-	-	_	-	_		-	-	_			-	-
ш		_					_	_	-	-	-			_	_			_	_			_		-1	_
\Box															-										-
\vdash	-	-			-	-		-			_				-				-	-	-	-	-		-
-	-	-				_	_	_	_	-	_	_	-	_		_	_	_	-	_			_	-	_
									_																
		T																							
\neg	-	-	-	-		-								-	-	-		-		-				-	-
\rightarrow	-	-	_	_	-	-	_	-	-	-	-	-	-	-	_	-		-	-	-	-	-	-	-	-
_		-	_	_				-					_	_	_	-	-							- :	
																				1			1		
2							-						-		_						e de la constante de la consta	_	-		
P	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-			-	-	-	*******	-	-	-
\rightarrow	-	-	-	-	_			_	-		-		_	-	_	-	_		-	-	_	-	-	-	
		1																				1		. 1	
П										7															
\vdash	-	-													-				_	-		-		-	
-	_	-	-	-	_	_	_		-			_	_	-			-	_	-	_		-	_	-	_
3																		_							
										0.17															
\neg																-						********			_
-	-	-		-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-		-	_	_	-	-	-	_		-	_	-			_	-		_	_	-	-
श									100				770	E TOTAL			The same		1000			7			
-		-	-	-		-	-	-	-	-	-	-	-	_	-	_		-	-	-	-	-	-	• •	-
Н		-	-	-	_	_	_	-	-	-	-	-	-	_	_			-	-	-		_	-	-	_
																						_			
			_	-															1			_		1	_
1		-	-	_	-	_	_	-	-	_	-	_	_		_	_	_	-	-	-	_	-	-	-	_
2		_					_		_		-		-		_			-				_			
																									_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_
\vdash	-	-	-		_	_	-	-	-	-	-	_	_	-	_	-	_	-	-	_	_	-	-		
ш		_																				L			
8																									
~		-	_					-							_				_			_		1	_
\vdash	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ш			_	_			_		_	_	_	_	_	-				_	_			_			
								-															-		-
w t		-	_	_	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-
3		-					_	_			_		-	-				-	-	-		-	-	-	
П																									
М			-	_				-	_		_	_		-		_		-	t	-	-	-	_	1-	_
Н		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-
_								_																	
\$																									
\neg																			1	-					1000
-	-	-	-	_	-	-		-	-	_	-	-	-	-	-	_	_	-		-	_	-	-	-	-
ш		-	_	-											-		_							_	
		_ 1																							
П																									
35							_	_										_	_	_				-	-
-	-	-	_	-	-		-	-	-	_	-	_	_	-	-	-	-	_	-	-	-	-	-	-	-
-		-	-					_		-	_			_	_		_	_						_	_
							Land				120					Lucia I							1000		
Н		-	-	_		-	-	_	_	-	_	_	_	-	_	_	_	-	-	-		-	-	-	-
-		-	_	-			_				_	_	_	_	_	_		_	_			_	_	\vdash	_
81										. 91															
Т								1																	
_				-	_			-			_							_						1	
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	_
-						1	_		_	_															_
						4		1																	
10																									
~+		1.1	_			-	-	-	_	-		-	-	-		-		-	-	-		_		-	_
ш	_	-	_	-		E	-	-	-	1	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-
		-				×				_						_			_						_
		0				4																			
		NOME				PARTIFIL				FUL															
8		_						-										_	_					-	_
			_	-			-	-	-	-	_	-	-	-	-	_	_	-	-	-		-	-	-	_
		-				5	_	1		3			_												_
2		G	_			~				0															
H		उ	_					-	_				_	1				_	1-		-	_			_
H	Ξ	S O				ř		1	(
		SOU	=			3		-	-	-	-	-		-	_	_	-	-	-	-		-		F	_
		AMOS				Ano				3															_
		AMOS					11 10			*															_
61			=				11 10			3 Amo															=
							11 10			TIS AP															=
							11 10			113 AP															
							11 10	1		ATE AP															
60							11 10	14		CATISA															=
60							11 10	I A		SCATE AP															
64						SCATIS AND	11 10	A -		SCATE															
60		SCATE				SCATIS		TAL		SCATE		1													
60		SCATE		L S N		SCATIS		PT-N-		SCATE															
60		SCATE		JUNC		SCATIS		A PAT		SCATE															
60		SCATE		IONE		SCATIS		ARTIAL		SCATE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
64		SCATE		NONE		SCATIS		PARTIAL		SCATE		FULL													
		SCATE		MONE		SCATIS		PART		SCATE															
		SCATE		SINONE		SCATIS		PART		SCATE															
		SCATE		NONE IN		SCATIS		PART		SCATE															
		SCATE		OIS MONE		SCATIS		PART		SCATE															
64 64		SCATE		MOIS MOINE		SCATIS		PART		SCATE															
64 64				AMOIS MONE				AMOS PARTIAL		SCATE		AMOS FULL													

Figure 2-1. Examples of Correctly Formatted Command Cards

2.2.2 Data Card

Each AMOS command card must be followed by a single data card having the format and definition of input variables shown in Tables 2-1 and 2-2. When a run is set up, the user must be sure that any values that he lets default match the desired run conditions. The program can be operated using one of three types of input variables.

Surface Weather for which the inputs are surface relative humidity, temperature in degrees centigrade, and pressure corrected to sea level, in millibars.

T550 for which the single input is an estimate of the vertical-path atmospheric transmittance at 550 nm wavelength, and

<u>Precipitable Moisture</u> for which the simple input is the integrated partial pressure of water in a vertical column of atmosphere, expressed in centimeters.

These input options are mutually exclusive, and if input variables are specified for more than one mode, error messages will be generated and the AMOS run will possibly be terminated. Valid data cards that illustrate use of the AMOS atmospheric options are shown in Figure 2-2.

TABLE 2-1 FORMATS AND DEFINITIONS OF DATA CARD PARAMETERS

Definition	The solar altitude above the local horizon. Its valid range is between -5° and 90°. Below 5° this value is adjusted for refraction to obtain apparent solar altitude.	The observation zenith angle. It is defined as the angular displacement of the look vector from local zenith. The valid range is 0° to 90° where 0° represents a downward vertical ray vector.	The angle between the observer and the sun's vector. It has a valid range of 0° to 180°. If no value is specified and ZA = 0° (vertical), a value of 90°-RSA will be assumed.	Surface temperature in degrees celsius. Its valid range is -50°C to +50°C. If the temperature is not specified, a value of 20°C is assumed. The decimal point must be included in any value.	Relative humidity indicated as a decimal fraction. Its valid range is 0-1.0. If percent humidity is specified, it will be converted to decimal format.	Atmospheric pressure at the station reduced to sea level, in millibars. The valid range is 500-1200 MB. The default is 1 standard atmosphere, or 1013.25 MB. Values given in inches of mercury (which may be a number less than 32) will be converted to millibars.
Name of Variable	RSA	088	CATS	Đ	¥	PSL
Format	F5.1	FS.1	FS.1	*	F4.2	F6.0
Colum	1-5	6-10	11-15	17-20	21-24	25-30

Definition	The estimate of vertical transmittance at 550 nm (T550). It may be specified as a value between 0.2 and 0.815, or as "TAVG" (0.740) or "RAYL" (Rayleigh atmosphere, w/DUST, = 0). If either precipitable moisture (PM) or relative humidity (RH) is specified, no entry is required.	Ozone scale height in millimeters. If no value is specified, OZ is estimated on the basis of latitude, altitude, and elevation.	for October 15, 1978). If the month and day are inverted in an unambiguous manner (e.g., 24 278), it will be corrected to 2/24/78. The default date is the computer run date.	Latitude. The valid range is 1° to 90° for the northern hemisphere.	The station elevation in kilometers. A value greater than 500 is assumed to be in feet and is converted to km. The default is 0 (sea level).	The altitude of the observer above the station in kilometers A value greater than 500 is assumed to be in feet and is converted to km. The default is 150 km.	The albedo reflectance of the station surroundings at 650 nm expressed as a decimal fraction (e.g., 0.26). The valid range of 0 - 1.0. If percent reflectance is used, it will be converted to decimal format. The default depends on the albedo type specified.*
Name of Variable	Т55СН	20	MO, DAY, YR	LAT	ELEV	ALT	ARFL
Format	44	F4.2	312	F4.0	F7.2	F10.2	F4.2
Column	31-34	35-38	39-44	45-48	49-55	29-92	69-99

^{*} See Table 2-2 for the albedo default reflectances.

TABLE 2-1 CONT'D

Definition	The albedo type, showing 1 for desert, 2 for snow, 3 for forest, and 4 for urban/industrial (default). For each type there is an appropriate default albedo reflectance, which may be overridden by a value in the previous field.	Dust in particles/cubic centimeter. If not specified, a value is estimated from the precipitable moisture.	Precipitable moisture in cm. If not specified, it is estimated from atmospheric transmittance, or temperature and relative humidity.
Name of Variable	ІТҮР	DUST	RPM
Format	п	F5.2	F5.2
Column	70	71-75	76-80

TABLE 2-2

ALBEDO TYPES AND DEFAULT REFLECTANCES

Default ARFL*	.385	.735	.084	.125
ITYP (Col. 70)	Dings, yeste prestage an	2 September Brownings Co.	3	4 To done the street st
Desired Albedo	Desert	Snow	Forest	<pre>Urban/Industrial (default)</pre>

The decimal reflectance at 650 mm, which is multiplied by a spectral array selected by ITYP that is normalized at 650 mm.

Figure 2-2. Example of Correctly Formatted Data Cards

2.3 OUTPUT

The output of SCAT3 is printed copy only. Each execution of the program, which results from a correctly input command and a data card, generates the output described below.

2.3.1 Data Card Variables

The listing of variables is divided into six groups accordings to the way they operate in the program and as shown in Figure 2-3. The six variable groups are:

1. Trigonometric Data (in degrees)

SA: Solar altitude CATS: Observer-sun angle

ZA: Observation zenith angle

LAT: Station latitude

		CONVERTED	10000.0	T. 10 3	.05 KM	Mari		•	
		DATE	5/ 6/78						
SA CATS	40.0	(40.0)	TEMP 20.				1550 02	0.740	TAV
ZEN	0.0 39.0			1013.3 MB 2.2 P/ML	(1013.	11		2.274 CM	
ELEV	0.0	KA	ALB TYPE				KR -	-0.00255	
YA	3.048		ALB REF	0.13			C W	1.014 1.900	
GENER	ATES:								
1		TV	ALB	SK	DH	DV		H	SVB

Figure 2-3. Example of SCAT3 Output and Listing of Data-Card-Specified Variables

2. Surface Weather Data

TEMP: Temperature (°C)
RH: Relative humidity

SL PRES: Station pressure corrected to sea-level (mb)

DUST: Surface dust concentration (part/cm3)

3. Alternative Scaling Parameters

T550: Vertical atmospheric transmittance at 550 nm

OZ: Ozone scale height (cm)

PM: Total vertical column of precipitable moisture;

sea-level to space (cm)

4. Elevation Data (km)

ELEV: Station elevation above sea-level

VA: Observer's altitude above station elevation

5. Surround Reflectance Parameters

ALB TYPE: Description of station surrounding

(i.e., vegetation, sand, snow, industrial)

ALB REF: Surround reflectance at 650 nm

6. Atmospheric Transmittance Parameters

KR: Rayleigh scattering coefficient

KA: Aerosol scattering coefficient

C: Exponent for aerosol scattering term

W: Precipitable moisture between station and

observer's elevation (cm)

2.3.2 Spectral Arrays

In addition to the data card variables, the spectral arrays and their numeric codes that were generated as a result of these input data card variables, are also printed.

These arrays can be recalled from temporary program data files to operate on the spectral data in subsequent calculations. The arrays are not permanently stored and are written over upon the execution of a subsequent GENERATE command. The eight spectral arrays grouped by type are listed below.

Atmospheric Path Transmittance (350-1150 nm)

- T: Oblique spectral transmittance (scattering plus absorption) from the observer's altitude to ground, adjusted for precipitable moisture, dust, path length, and terrain elevation.
- TV: Vertical spectral transmittance (scattering plus absorption) from the observer's altitude to ground, adjusted for precipitable moisture, dust, and terrain elevation.

Atmospheric Path Radiance (350-1150 nm)

SK: Spectral atmospheric path radiance, at the specified angles, adjusted for observer's altitude, terrain elevation, surround albedo, precipitable moisture, (watts/m²/steradian/5 nm).

Terrain Reflectance (350-1150 nm)

ALB: Spectral reflectance of the station surround based on the albedo type and normalizing reflectance that is input.

Ground Level Irradiance (350-1150 nm)

- DH: Daylight irradiance on a horizontal surface adjusted for solar altitude, atmospheric transmittance, and surround albedo (watt/m²/5 nm).
- SH: Skylight irradiance on a horizontal surface from the full hemisphere minus direct sunlight adjusted for solar altitude, atmospheric transmittance, and surround albedo (watts/m²/5 nm).
- DV: Daylight irradiance on a vertical surface perpendicular to the solar azimuth adjusted for solar altitude, atmospheric transmittance, and surround albedo (watts/m²/5 nm).
- SVB: Skylight irradiance on a vertical surface perpendicular to and 180° away from the sun azimuth adjusted for solar altitude, atmospheric transmittance, and surround albedo (watts/m²/5 nm).

Figure 2-4 shows a typical spectral array generated by the AMOS subroutine. Although only three such arrays are printed under the PARTIAL print option, all eight arrays are internally generated and available for further computer operations.

			ALUES FOR						
		485	4.575	670	4.059	855	2.718	1040	1.86
		490	4.537	675	4.020	860	2.686	1045	1.45
		445	4.600	080	3.979	865	2.655	1050	1.82
		500	4.504	685	3.436	870	2.624	1055	1.80
		505	4.570	090	3.920	875_	2.592	1060	1.79
		510	4.571	695	3.475	BAO	2.561	1065	1.77
	-	515	4.424	700	_3.829	885	2.529	. 1070_	_1.75
		520	4.394	705	3.7A3	890	2.497	1075	1.73
		525	4.522	710	3.762	. 895	2.385	1080	1.71
		530	4.605	715	3.715	900	2.282	1085	1.69
350	1.764	515	1.057	720	3.472	905	2.393	1090	1.67
355	1.781	540	4.686	725	3.458	910	2.282	1095	1.66
360	1.829	545	4.607	7.30	3.454	915	2.248	1100	1.64
365	2.086	550	4.014	735	3.477	920	2.282	1105	1.59
370	2.202	555_	4.540	740	3.497	925	2.246	1110	1.45
375	2.235	560	4.4HR	745	3.474	930	1.650	1115	1.13
380	2.127	565	1.403	750	3.424	935	1.335	1120	0.971
385	2.030	570	4.413	755	3.390	940	1.891	1125	0.862
390_	_2.016	575_	4.417	760	2.923	945	1.584	1130	1.08
395	2.199	580	4.418	765	3.213	950	1.621	1135	0.542
400	2.873	585	4.381	770	3.287	955	1.513	1140	1_13
405	3.566	590	4.306	775	3.252	960	1.693	1145	0.928
110	3.738	545	505.0	780	3.217	965	1.822	1150	1.09
415	3.756	600	4.334	785	3.193 "	970	2.022		
120_	3.809	605	4.314	740	3.147	975	_1.906		
425	3.801	610	4.292	745	3.112	980	1.979		
130	3.627		475.4	H00	BA0.E	985	2.016		
135	3.755	620	4.283	805	3.037	990	2.036		
40	4.238	625	4.207	810	2.973	995	2.034		
145	4.539	630	4.249	815	2.781	1000	2.016		
150	4.695	635	4.231	054	2.851	1005	1.991		
455	4.720	640	4.211	825	2.864	1010	1.986		
000	4.698	645	4.107	830	2.792	1015	1.959		
465	4.718	650	4.103	835	2.7A7	1020	1.949		
70	508.4	655	0.100	840	2.821	1025	1.921		
475	4.908	660	4.129	845	2,791	1030	1.905		
480	4.854	665	4.094	650	2.749	1035	1.889		

Figure 2-4. Example of SCAT3 Output and Typical Spectral Array Generated by AMOS

2.3.3 Error Messages

If a parameter specified on the Data Card is out of range or a required option is omitted, an appropriate error message(s) will precede the reprint of the command card values. Figure 2-5 shows an output page that lists several possible error messages. This is not a complete list of all possible messages but it illustrates their format. A complete listing of possible error messages generated by subroutine AMOS is contained in Appendix B.

OOO ALB RF	105.00 OUT OF RANGE (0-1.)			
DOD ALB TYP	5 INVALID			
*** LAT 100	-00 INVALID			
** SA -6.23	DEG OUT OF RANGE (-5 TO 90)			
*** ZEN ANG	LE 185.0 DUT OF RANGE (0-90)			
. DO CATS ANGL	E 185.0 OUT OF RANGE (0-180)		·	
*** 76.0	DEG CELSIUS OUT OF RANGE (-/+50)			
INPUT OF DATE MAD	NG - ASSUMED YOU MEANT 10/13/77			
M+ PRESSURE 27.50 IN	NG CONVERTED TO 931-3 MB			
••• T550 T	AVG OVERRIDES PM 2.000 E/OR RH	0.80		
DATES	10/13/77			
SA -10.0 (-6.2) CATS 185.0	TEMP 78.0 DEG C		50 0.740 50.00	TAVG
ZEN 185.0	SL PRES 931.3 MB (977.6)		2.000 LM	
LAT 100.0	DUST 0.0 P/ML			
ELEV -0.500 KM	ALB TYPE 5	KR	-0.00892	
	ALB REF105.00	- KA	0.0	
VA 150.000			1.538	
VA 150.000	TO RUN ANDS FOR THIS CASE		0.134	
VA 150.000	TO RUN AMOS FOR THIS CASE *** _		0.134	
** 150,000			0.134	
HERATE SYSINT VIOLES			0.134	
NERATE SYSINT VIOLES	TO LEMENT (S) NOT LOCATED		0.134	

NOTE: The improperly specified data card below was responsible for the error messages above.

Figure 2-5. Examples of Potential Error Messages Generated by AMOS

SECTION 3

DESCRIPTION OF COMMAND: GENERATE SYSINT VFUN

3.1 COMMAND FORMAT

A special user function SYSINT VFUN has been provided that calculates spectrally integrated ground-level irradiances, atmospheric path radiance, and effective atmospheric transmittance for a generalized system. This function is used in conjunction with an AMOS run, which <u>must</u> precede it, however. By overriding the default elements and the system constant, the computations can be performed for a wide variety of system components. The default elements are listed in Appendix C. Figure 1-2, items 3, 4, and 5 illustrate the input for a typical run of this function along with its associated AMOS run.

3.2 INPUTS

A typical command is: GENERATE SYSINT VFUN XXX YYY ZZZ. The variables XXX, YYY, and ZZZ are element names for the detector, optics, and ground reflectance, respectively. These elements can be extracted from the disk library or entered on cards via a preceding I/O READIN step. If any of these elements are defined short of the range 400 to 1100 nm, the integration limits are adjusted accordingly. The element defining the detector should be peaknormalized to the value of 1. The user can set all three elements to their default values by replacing XXX with STD and omitting YYY and ZZZ. Any single element can be set to its default value by specifying in DEF in place of the element name. This is shown in Figure 3-1. The variables, which are specified as XXX, YYY, or ZZZ use the input codes defined in the table below.

An optional units-conversion multiplier may be specified as K = F.FF. The printed values of output ERS and EH will be multiplied by F.FF. If no value is specified, 1.00 is assumed.

Figure 3-1. Example of Correctly Formatted SYSINT VFUN Commands

Element Names	Codes	Definition
XXX (for Detector):	STD	The code that permits all three spectral elements to assume their default values. (XXX becomes 899N, YYY becomes 457L, and ZZZ becomes 825F.)
		NE ANT THE ANALYSIS AND THE STATE OF THE STA
	DEF	The code that only permits XXX to default to 899N.
	Any valid	
	element name (i.e,835N)	A spectral array defined in the library of elements that represents the system spectral response. The values should be peak-normalized
YYY (for Optics):	DEF	The code that only permits XXX to default to 457L.
	Any valid element name (i.e.,424L)	A spectral array defined in the library of elements representing the system spectral optical transmittance.
ZZZ (for Ground Reflector):	DEF	The code that only permits ZZZ to default to 825F.
	Any valid element name (i.e.,179RF)	A spectral array defined in the library of elements representing the spectral reflectance of a ground object.

3.3 OUTPUTS

Each use of the SYSINT VFUN Command generates one page of output. An example of this output is shown in Figure 3-2. The format for this output is summarized below.

Line(s)	Data Provided
1	Array element names for detector (SD), optics (OPT), and reflectance on the ground (REF).
2-5	The integrated effective value for the radiance (ERS) assumed reflector (REF) under the various forms of ground level irradiance and effective path transmittance (TEFF) relative to each irradiance.
6	The integrated effective atmospheric path radiance x π (EH).
7	The assumed or read-in value of K.

If one or more of the spectral elements is not defined over the range 400 to 1100 nm, the integration limits are changed. If this occurs, a warning message; e.g., UPPER INTEGRATION LIMIT LOWERED TO 1000 nm, is printed.

The two following error indications may possibly be encountered.

- (1) NO AMOS ELEMENTS LOCATED . . . which indicates that the program was unable to locate elements T, SK, and DH, etc, from a prior AMOS run or from the disk library.
- (2) UNABLE TO LOCATE XXX, which indicates that the spectral array element XXX was not found in the disk library or from a previous step.

3.4 SUMMARY OF COMPUTATIONS

The following equations are used in SYSINT VFUN

a. Effective Integrated Irradiances:

ERS =
$$K \left[\int_{400}^{1100} H(\lambda) \cdot R_s(\lambda) \cdot T(\lambda) \cdot L(\lambda) \cdot S_D(\lambda) d\lambda \right]$$

<u>en</u>	ASSA	OP1 457L	REF AZ	SE
на	ERS	27.500	TEFF	0.8471
N	2A3		TAFF.	0.8476
SH	ERS	2.7786	TEFF	0.8256
SVB	ERS	1800.0	TEFF	0.8518
EH	11.1780	which we will the term of the second	-	DESCRIPTION OF THE PERSON OF T
_	1.0000			

Figure 3-2. Example of SCAT3 Output: Integrated Values Generated by SYSINT VFUN Command

b. Atmospheric Path Radiance:

EH =
$$\pi \cdot K \cdot \begin{bmatrix} \int_{400}^{1100} N_h(\lambda) \cdot L(\lambda) \cdot S_D(\lambda) d\lambda \end{bmatrix}$$

c. Effective Atmospheric Path Transmittance:

TEFF =
$$\frac{\int_{400}^{1100} H(\lambda) \cdot R_{S}(\lambda) \cdot T(\lambda) \cdot L(\lambda) \cdot S_{D}(\lambda) d\lambda}{\int_{400}^{1100} H(\lambda) \cdot R_{S}(\lambda) \cdot L(\lambda) \cdot S_{D}(\lambda) d\lambda}$$

In the above equations, the integrand variables are defined as follows:

- $T(\lambda)$ is the spectral atmospheric path transmittance (AMOS array name is T).
- $N_h(\lambda)$ is the spectral atmospheric path radiance in watts/m²/5 nm steradian (AMOS array name is SK).
- $H(\lambda)$ is either skylight or daylight irradiance on either a horizontal or a vertical surface in watts/m²/5 nm (AMOS array names are DH, DV, SH, SVB).

In addition, the integrand variables from the disk library or a preceding I/O READIN step are defined as follows:

- $S_{D}(\lambda)$ is the spectral sensitivity of the Film/Detector (peak-normalized)
- $L(\lambda)$ is the spectral transmittance of the optics, and
- $R_{c}(\lambda)$ is the spectral ground reflectance.

SECTION 4

DESCRIPTION OF COMMAND I/O READIN

4.1 GENERAL DESCRIPTION

This command is used to read any element array into the program for use in computations or for permanent storage in the disk library. The general form of the command is:

I/O READIN (option)

The possible options are:

NOLIST which allows the spectral array to be read into a temporary file, but returns no printed listing of the array.

SAVE which allows the spectral array to be read in and stored as a permanent array by the element name given on the header card (equivalent to a FILE SAVE Command, see section 5), or,

"Blank" which allows the spectral array to be read into a temporary file and results in a printed listing of the array.

Any element of the same name that is already in the library is printed out and replaced. The response SAVED ON DISK indicates satisfactory completion. Following the command card are a header card and data cards that contain the spectral values.

4.2 INPUTS

Once the I/O READIN command has been specified, a number of spectral arrays can be read in. Each array, or element, is read in using a header card and a series of data cards in the formats described below.

HEADER CARDS

Column	Format	Description
1-8	A8	Name of element in 4 to 8 alphanumeric characters, at least one of which must be alphabetic.
10-12	А3	One of the following four transformations must be used to indicate condition of the data.
		VAL: In correct form
		LOG: In logarithmic form
		LIN: In log-inverse form
		INV: In inverse form
20-22	13	The wavelength of first data point.
29-32	I4 (right justified)	The wavelength of last data point.
40-49	F10.4	The constant that is multiplied times every data point after conversion to the correct form. If left blank, default is 1.0.
73-80	A8 (right justified)	The date when the deck was made. It must always be present and never use less than columns 75-80 (ex: 1/1/78).
		DATA CARDS
Column	Format	Description
1-70	10E7.2	Lists spectral data starting with the value for the first wavelength specified on the header card and continuing on other cards until the value for the last wavelength has been reached.

The order number of the card.

Identification.

73-76

79-80

A4

I2 (right
justified)

SECTION 5 DESCRIPTION OF THE COMMAND FILE

5.1 GENERAL DESCRIPTION

This command is used to maintain the disk library of elements. Each card must contain one complete command to store or delete a spectral array on the disk file.

The first card must contain the word FILE beginning in column 1. The cards immediately following the first card need not contain the word FILE, but instead can be blank in column 1. Each command item (SAVE, DELETE, NAME, etc) must be separated from the next item at least one blank. Blanks must not be used within a command word.

The name by which an array is to be saved in a disk file may contain (1) as many as eight characters and (2) any combination of letters and numerals. However, all numerals cannot be used.

5.2 INPUTS

Three possible FILE commands can be given, each of which must be structured as indicated in paragraph 5.1 above.

5.2.1 FILE SAVE XXX BY YYY

(In the following paragraphs, XXX refers to the name of an array that is either to be stored by the new name YYY or deleted; XXX and YYY can be identical.)

This command performs the basic task of placing XXX in the disk file and giving it the element name YYY. If another array is already on the disk by the second name, the save operation will not be executed. Instead, both arrays will be printed.

5.2.2 FILE SAVE XXX BY YYY U

This command differs only from that of 5.2.1 in that it replaces existing elements in the disk file (e.g., with an improved estimate of the same lens transmittance). After the array XXX is stored by the name YYY, both the old element YYY and the new element YYY will be printed.

5.2.3 FILE DELETE XXX

The purpose of this command is to erase the specific element XXX from the disk file. After the array is deleted, the element XXX is printed to indicate what has been erased.

time with sain and at the country by fore already in

SECTION 6

OTHER FUNCTIONS

6.1 GENERAL DESCRIPTION

In addition to the commands already discussed, SCAT3 also supports several other command functions that are occasionally used. These commands are given on a single card, and they usually generate one page of output. The element that is created by these commands is often used in subsequent steps. Two of these functions are discussed below.

6.2 I/O FUNCTIONS

In addition to the I/O READIN function discussed in Section 4 of this report, function I/O PRINT and I/O DUMP are also available. The first of these, I/O PRINT, is used to print an element array or constant. For this item, the command is I/O PRINT XXX YYY ZZZ . . . where XXX, YYY, etc, are the names of elements in the program, or in the disk library. The user may specify as many element names as will fit on the command card, but each name must be separated by blanks. An example of the output format for any array element is shown in Appendix C.

The command I/O DUMP is used by the programmer who maintains the disk library; it can also be used in debugging problems within the program. The command I/O DUMP will generate listings of the names of all elements in the disk library, and those in the program's core data table (CDT).

6.3 GENERATE FUNCTION

In addition to the command GENERATE SYSINT VFUN described in Section 3 of this report, there are several other GENERATE functions. The resulting output is printed in the format shown in Appendix C for an array element, or one value per page for a constant. The inputs for these functions are of two types: single operator functions and double operand computations.

6.3.1 Single Operator Functions

These commands are of the form: GENERATE XXX = (function) YYY, where the function can be any of those described below.

 SUM. Integrates the values of an array element over its spectral range. The output is a constant.

Example: GENERATE X = SUM XYZ where XYZ is an array element and X will be the integral constant.

(2) LOG. Takes the log (base 10) of a constant or of each value of an array.

Example: GENERATE LOGX = LOG X.

(3) AREA NORMALIZE. Creates a scaled array such that the area under the curve is equal to 1.0, and the shape is the same as the input array.

Example: GENERATE ANX = AREANORMALIZE X, where X is a spectral array.

(4) PEAK NORMALIZE. Creates a scaled array such that the maximum value is 1.0, and the shape is the same as the input array.

Example: GENERATE PKK = PEAKNORMALIZE X, where X is a spectral array.

(5) BBODY. Generates an array element from 300-1200 nm for a black body radiator at the given color temperature (°K).

Example: GENERATE BB BBODY 3200.

Note: No equals sign (=) is used.

(6) BANDPASS. Generates an array element from 300-1200 nm for a bandpass filter. At wavelengths from LOW to HIGH, the element has values of 1. Elsewhere it has values of zero.

Example: GENERATE FILT BANDPASS (450) (1025) where low is 450 nm and HIGH is 1025 nm.

(7) User Function. Program SPECTR provides for three user-written functions to give access to program elements and utility routines.

The user function is a FORTRAN program with the name SUBROUTINE UFUNCT (, ,). As with other functions in the program SPECTR, the user function must be called by an appropriate command of the form:

GENERATE XXX* CFUN (option, option, . . .)

SCAT 3, for example, uses a user function** routinely to perform spectral integrations of arrays generated by AMOS. Within the constraints of subroutine name and command, complete flexibility is contained in this user option.

Appendix E reviews, in more detail, the generation of a user function routine which can be used as a guide in development of new ones. Reference to the SCAT3 program listings must be made before one attempts to write a user function.

6.3.2 Double Operand Functions

The GENERATE Command also provides for double operand computations such as addition, subtraction, multiplication, division, and exponentiation. The user may perform the above computations on constant elements, array elements, or numeric values. However, an array cannot be raised to an array power or divided by zero.

Examples of the above computations are:

GENERATE A = B + C

X = Y * A

Y = M * X

Y = Y + B

 $PI = 3.14159 \times 1$

ANTILOG = 10. ** A

The word GENERATE may be omitted after the first GENERATE command if the subsequent commands do not begin in column 1.

^{*} A user-provided variable name that is subject to the restrictions discussed in Section 4.2.1, Element Name.

^{**} See Section 3 of this report.

APPENDIX A

SCAT3 TEST CASES

A series of 15 test cases was constructed and run to utilize all possible input options and variables and to illustrate the output of a correctly assembled input deck. Figure A-1 is an annotated copy of the input commands that were used, and Table A-1 lists the respective 15 output results.

Figure A-1. Input Data for SCAT3 Test Cases

	-
	×
	=
	RECORDS
	0
. 19	J
	ш
	~
	_
	=
	2
	•
	5
	=
	_
	6
	0
	3
	=
	_
	n
	LISTING
	-
	_

1 Generale Scala and Full Tave 5 67839. 10000. 1 Generale Syling very STD Centerale Syling very	COMMENIA
GENERATE SYSINT VEIN STD TAVE 2 17 4 170	
CEMERATE SYSINT VEWN STD CEMERATE SYSINT VEW	
Ceneral System vein Std Ceneral System vein System vein Std Ceneral System vein System vein Std Ceneral System vein System vein System vein System vein System vein Sy	
CENERATE SYSINT VFUN STD CENERATE SCAT3 AND PART COO CONDO	
CENERATE SEATS AND PART	
40.00 40.0	
GENERALE SYSINT YEAN STD 45.0 45.0 0.0	
CEMERATE SYSINT VFUN STD TAVG2.7 4 178	
4 00.0 00.0 00.0 00.0 00.0 00.0 00.0 0	
CENERATE SYSINT VEWN STO	Away from sun
S GENERATE SYSINT FUN STD	
GENERATE SYSIMT VFUN STD	Into the sun
CENERATE SCAT3 ANOS PART TAVE	
CENERATE SYSIMT VEUN STD	
CENERATE SYSINT VFUN STD CENERATE SCAT3 ANOS PART RAYL + 17840. 1 CENERATE SYSINT VFUN STD CENERATE SCAT3 ANOS PART CENERATE SYSINT VFUN STD 12247854.4 0.5 2 CENERATE SYSINT VFUN STD 12247854.4 0.5 2 CENERATE SYSINT VFUN DEF DEF 173RF K=.983 12.	5000 ft station elevation
CENERATE SCAT3 ANGS PART RAYL	marane at
CENERATE SYSINT VFUN STD	•
GENERATE SYSINT VFUN STO GENERATE SCAT3 ANGS PART GENERATE SCAT3 ANGS PART GENERATE SYSINT VFUN STO GENERATE SYSINT VFUN BEF DEF 173RF K=.983 GENERATE SYSINT VFUN BEF DEF 173RF K=.983 GENERATE SYSINT VFUN STO GENERATE SCAT3 ANGS PART CENERATE SYSINT VFUN STO GENERATE SYSINT VFUN STO GENERATE SCAT3 ANGS PART CENERATE SYSINT VFUN STD CENERATE	Rayleigh atmosphere/desert_
GENERATE SCATA ANDS PART GENERATE SCATA ANDS PART GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN BEF DEF 173RF K=.983 GENERATE SYSINT VEUN STD GE	
8	
GENERATE SYSINT VFUN STD GENERATE SCAT3 ANOS PART GENERATE SCAT3 ANOS PART GENERATE SCAT3 ANOS PART 40.	Surface weather input
9 GENERATE SYSINT VEUN DEF DEF 173RF K=.983 GENERATE SYSINT VEUN DEF DEF 173RF K=.983 GENERATE SCAT3 AMOS PART 40. GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SCAT3 AMOS PART 40.0 60.0110.0 154 GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SYSINT VEUN STD GENERATE SCAT3 AMOS PART GENERATE SYSINT VEUN STD GENERATE SCAT3 AMOS PART GENERATE SCAT3 AMOS PART TO.0 GENERATE SYSINT VEUN STD	Carry Amound day in Alacka.
CENERATE SYSINT VEUN DEF DEF 173RF K=-983	Silow surround day in A
GENERATE SCAT3 AMOS PART 40.0 15.0	non-standard scene
10 40. 154 2.9 12247842. 0.250 3 GENERATE SCAT3 ANDS PART 4 17842. 4 GENERATE SCAT3 ANDS PART 4 17842. 3.8 GENERATE SYSINT VEUN STD GENE	
GENERATE SYSINT VFUN STD GENERATE SCAT3 ANDS PART 11 40.0 30.0 20.0 154 17842. 4 17842. 4 17842. 4 17842. 4 17842. 4 17842. 4 17842. 3.8 4 17842. 4 17842. 3.8 4	
1 GENERATE SCAT3 ANDS PART 4 17842.	
11	Arrest faces cons
GENERATE SYSINT VEUN STD GENERATE SCAT3 ANDS PART 4 17842.	Away Irom sun
40.0 4 17842. 4 17842. 4 17842. 4 17842. 4 66NERATE SYSINT VFUN STD 4 17842. 3.8 4 17842. 3.8 4 17842. 3.8 6 6 6 6 6 6 7 7 7 0 7 0 7 0 7 0 7 0 7 0	
GENERATE SYSINT YEUN STD GENERATE SCATA ANDS PART 40.0 GENERATE SYSINT VFUN STD GENERATE SYSINT VFUN STD GENERATE SYSINT YFUN STD GENERATE SYSINT YFUN STD GENERATE SYSINT YFUN STD	
GENERATE SCATA ANDS PART 40.0 GENERATE SYSINT VFUN STD GENERATE SCATA ANDS PART 70.0 GENERATE SYSINT VFUN STD GENERATE SYSINT VFUN STD	Into the sun
40.0 GENERATE SYSINT VFUN STD GENERATE SCAT3 ANDS PART 70.0 GENERATE SYSINT VFUN STD GENERATE SYSINT VFUN STD	
GENERATE SYSINT VFUN STD GENERATE SCAT3 AMOS PART 70.0 GENERATE SYSINT VFUN STD	Precipitable moisture
GENERATE SCATS ANDS PART 70.0 GENERATE SYSINT VFUN STD	
GENERATE SYSINT VEUN STD	
. 185. 78. 80. 27.5 TAVGSO. 1310771005 105.5 2.	Errors!!
VFUN STD	

TABLE A-1
INTEGRAL RESULTS FOR SCAT3 TEST CASES
(K=1.0)

	TEFF/DH	.856	9680	.204	.722	.766	.804	.929	.885	.866	.870	.845	.748	865.	.928	
δI	割	8.89	18.91	10.67	30.33	18.43	13.57	89.9	9.6	8.19	11.52	16.75	23.32	27.09	8.79	
OUTPUTS	ERS/DV	42.17	52	8.69	32.56	35.67	37.82	53.92	48.77	220.96	47.29	42.23	37.37	23.48	25.39	
	ERS/DH	30.36	.37	4.46	27.04	25.76	27.32	35.67	32.80	54.33	32.53	30.03	26.60	17.88	52.59	
Atmospheric	Estimate	Average	T550 = .2	T5502	Average	Average	Average	Rayleigh	Weather	Weather	Weather	Weather	Weather	Precipitable Moisture	Rayleigh	
INPUT PARAMETERS	Albedo Type	Urban/Industrial	Urban/Industrial	Urban/Industrial	Urban/Industrial	Urban/Industrial	Urban/Industrial	Desert	Desert	Snow	Forest	Urban/Industrial	Urban/Industriel	Urban/Industrial	Urban/Industrial	illustrate error messages.)
INPUT	CATS	80	70	80	•	98	20	80	20	78	90	20	110	20	20	_
	ZEN		20	0	\$	30	•	•	0	•	0	30	8			(Invalid run to
	SI	9	01	9	45	9	\$	9	9	13	9	9	9	9	0/	(Inva
	Case No.	1	2	3.	•	8	•	1		**6	01	11	12	113	**	15

. 10,000 ft. altitude.

** Snow surround case with K = 0.983.

APPENDIX B

ERROR MESSAGES THAT MIGHT BE GENERATED BY SCAT3

The meaning of each of the following error messages is explained on the line below the message.

- ALB RF XX.XX OUT RANGE (0-1)
 Albedo surround reflectance value XX.XX not between 0 and 1.
- ALB TYPE N INVALID
 Albedo surround type N not valid (0-4).
- YOU MUST SPECIFY A TYP AS WELL AS AN ALB REF
 If you override the default albedo surround reflectance you must specify TYP 1-4.
- AN ELEVATION OF XX.X KM SEEMS TOO HIGH Warning.
- YOU ARE UNDERGROUND XX.XX KM A negative observer altitude.
- 6. LAT XX.XX INVALID

 Latitude must be -90 to +90. For southern hemisphere (negative latitude) an ozone value of 3.0mm is assumed.
- 7. SA XX.X DEG OUT OF RANGE (-5 -90)

 The solar altitude, after any low solar altitude refraction correction, exceeds the range of the model.
- RH XX.XX OUT OF RANGE (0 1.00)
 Relative humidity out of range.
- ZEN ANGLE XX.XX OUT OF RANGE (0 90)
 Observation angle not between 0 and 90 degrees.
- 10. CATS ANGLE XX.X OUT OF RANGE (0 180)
- XX.X DEG CELSIUS OUT OF RANGE (-/+50)
 Temperature out of range.
- SPECIFYING PM X.XXX OVERRIDES RH XXX Warning.
- 13. YOU MUST SPECIFY EITHER RH, PM, or T550.

APPENDIX B (Con't)

- 14. YOU SPECIFIED BOTH A RAYLEIGH ATMOSPHERE & A PM OF X.XXX
- 15. YOU SPECIFIED BOTH A RAYLEIGH ATMOSPHERE & A RH OF X.XXX
- T550 NNNN OVERRIDES PM XXX &/OR RH X.XX Warning.
- 17. T550 X.XXX OUT OF RANGE (.2 .815)
- 18. READ/FORMAT ERROR IN AMOS INPUT CARD
 Error return from FORTRAN READ (. . .
- ANGLE IN BEMAS X.XX GT 90 DEGREES
 Warning, which may occur with negative solar altitude.
- CONVERTED X.XX FT TO Y.YY KM Advisory.
- 21. NO INPUT DATE -- ASSUMED TODAY -/-/Advisory.
- INPUT DATE WRONG ASSUMED YOU MEANT -/-/Warning when day and month interchanged.
- 23. DATE -/-/- NOT USABLE
- 24. CREARH -VE PM ... PM, KA, KO3, TS

 Combination of T550, ozone, pressure, temperature, dust etc, give a negative value for calculated precipitable moisture. This error would be followed by a system "log of negative number" error.
- 25. RH X.XX & TEMP YY.Y DEG C NOT CONSISTENT WITH T550 Z.Z IN CREARH Calculated a relative humidity over 100%.
- 26. DEFAULT TEMPERATURE INCREASED TO XX.X DEG C Advisory.
- 27. DO YOU REALLY WANT OZONE AT THE EQUATOR? Advisory when no OZ specified and LAT is zero.
- 28. PRESSURE XX.XX IN HG CONVERTED TO YY.Y MB Advisory when units converted from inches of mercury to millibars.
- 29. PRESSURE X.XX MB OUT OF RANGE (500 1200)

- 30. AMOS ELEMENT(S) NOT LOCATED

 Run of SYSINT VFUN could not locate required elements from an AMOS run.
- 31. UNABLE TO RUN SYSINT FOR THIS CASE Run of SYSINT VFUN could not locate elements specified for detector, optics, etc.
- 32. UPPER (LOWER) INTEGRATION LIMIT LOWERED (RAISED) TO NNN NM

 Run of SYSINT VFUN adjusted integration limits from 400-1100
 nanometers to conform to range of one or more of the specified elements.

In addition to these messages from the AMOS package, many error messages may be generated by the SPECTR package, particularly if the user generates his own user function, or does spectral computations (e.g., GENERATE X = DH * .4. These messages are generally self-explanatory.

Other error messages such as "JCL ERROR" or "INSUFFICIENT CORE" may be generated by the computer operating system, and will depend upon the installation.

APPENDIX C

DESCRIPTION AND ASSESSMENT OF THE PROPERTY OF THE PARTY O

SYSINT VFUN DEFAULT ELEMENTS

The tables of spectral data default elements shown in Tables C-1 through C-3 are called in SYSINT VFUN when no specific elements have been named in the command. The default value of the system constant is 1.0. These spectral data also illustrate the I/O PRINT XXX command discussed in Section 6 of this report.

TABLE C-1

DEFAULT SPECTRAL ARRAY FOR THE DETECTOR (PEAK NORMALIZED)

VALUES FOR 899N

		485	0.6430	676	0.9733	855	0.7812	1040	0.130
		440	0.7031	475	0.9763	860	0.7651	1045	0.121
		493	0.7148	680	0.9793	865	0.7481	1050	0.112
		500	6.7271	685	0.9415	870	0.7310	1055	0.104
		505	0.7392	690	0.9835	875	0.7120	1066	0.965
		510	0.7512	695	0.9855	880	0.6929	1065	0.876
		515	0.7633	700	0.9875	885	0.6720	1070	0.794
		520	0.7754	705	0.9895	490	0.6509	1075	0.739
		525	0.7089	710	0.9915	895	0.6276	1080	0.684
		530	0.8027	715	0.9936	900	0.6629	1085	0.624
		335	0.8170	720	0.9956	905	0.5804	1090	0.564
		340	6.8315	725	0.9978	910	0.5585	1095	0.513
		345	0.8419	730	1.000	915	0.5321	1100	0.463
		550	0.8519	735	0.9995	920	0.5059		
		555	0.8611	740	0.9990	925	0.4849		
		340	0.8701	745	0.9985	930	0.4638		
		503	0.8773	750	0.9980	935	0.4436		
		570	0.8844	755	0.9947	940	0.4236		
		575	0.8900	700	0.9907	945	0.4045		
		500	0.8955	765	0.9855	950	0.3854		
-	0.3492	385	4.9018	770	0.9799	955	0.3653		
405	0.3504	590	0.9045	775	0.9719	960	0.3453		
410	6.3506	393	0.9137	780	0.9638	965	0.3272		
415	0.5040	400	0.9187	785	0.9558	970	0.3094		
420	4.5749	605	4.9247	790	0.4477	975	0.2943		
425	0.5829	•10	0.9307	795	0.9377	980	0.2793		
430	0.5916	615	0.9358	800	0.9277	985	0.2452		
435	0.5997	620	0.9409	805	0.9176	990	0.2511		
***	0.4044	625	0.7441	810	0.9676	995	0.2360		
***	0-0178	630	0-9472	815	0.0960	1400	0.2211		
450	0.6269	635	0.9510	820	0.8839	1005	0.2090		
455	0.0352	840	0.9551	825	0.8703	1010	0.1968		
400	0.4433	645	0.9582	830	0.8563	1015	0.1823		
405	0.0521	650	0.9412	835	0.8419	1020	0-1691		
470	0.0611	655	0.9642	840	0.8273	1025	0.1400		
475	0-4717	000	0.9073	845	0.8123	1030	0.1508		
40	0-4827	665	0.9703	830	0.7972	1035	0.1407		
			447105	-50		. 437			

TABLE C-2
DEFAULT SPECTRAL ARRAY FOR LENS TRANSMITTANCE

1040 0.7820 1045 0.7810 1050 0.7800 1055 0.7780 1066 0.7760 1045 0.7740 1076 0.7720 1075 0.7700 1080 0.7440 1090 0.7440 1090 0.7440 1095 0.7420 1100 0.7460

VALUES FOR 457L

		485	U.8050	670	0.8110	855	0.8000	
		490	0.8100	675	0.8080	840	0.000	
			4.8150	680	0.8050	845	0.8000	
			0.8200	685	0-8020	870	0.8000	
			6.8210	690	0.7490	875	0.4000	
			0.8220	695	0.7970	884	8.8600	
			0.8230	700	0.7950	885	0.4000	
			0.8240	705	0.7940	890	0.0000	
			0.8250	710	0.7930	875	0.0000	
			0.4250	715	0.7920	100	0.8606	
		335	0.8250	720	0.7416	905	0.8600	
		540	0-8250	725	0.7410	910	0.8000	
		545	0.8250	730	6.7410	¥15	0.8000	
		550	0.8250	735	0.7920	920	0.8000	
		355	0.8250	740	0.7930	925	0.8000	
		560	0.8250	745	0.7440	930	0.8000	
		365	U-8230	750	0.7950	135	0.8000	
			0.8250	755	0.7950	940	0.8000	
		575	0.8250	760	0.7960	945	0.8000	
		580	0.8250	765	0.7960	950	0.8600	
400	6.3260	585	0.8250	770	0.7970	955	0.7990	
405	0.4500	390	0.8250	775	0.7980	940	0.7980	
410	0.5200	595	0.8250	760	0.7460	465	0.7970	
415	6.5760	600	0.8250	785	6.7490	470	0.7900	
420	0.6100	605	0.8250	740	0.7990	975	0.7950	
425	6.0400	•10	0.8250	795	0.8000	980	0.7940	
430	0.6700	415	0.8250	800	0.000	985	0.7930	
435	4.4900	62D	0.8250	805	0.8000	490	0.7920	
440	0.7400	625	0.8250	810		995	0.7910	
445	U.7350	430	0.8240	615	4.8000	1000	0.7900	
450	0.7500	435	0.8230	820	0.8000	1005	0.7840	
455	0.1063	040	4.8220	825	0.8000	1010	0.7880	
460	0.7700	645	0.8210	836	0.8000	1015	0.7870	
405	0.7000	450	0.8200	835	0.8000	1620	6.700u	
470	0.7480	455	0.8190	840	0.8004	1025	0.7850	
475	6.7450	440	0.8170	845	0.8000	1030	0.7840	
480	0.8000	445	0.8140	850	0.8000	1035	0.7830	

TABLE C-3

DEFAULT SPECTRAL ARRAY FOR STANDARD GROUND REFLECTOR

VALUES FOR 825F

		465	0.8980E-01	674	0.1272	855	0-1469	1040	0.1666
		490	6.40BOE-01	475	0-1277	240	0.1474	1045	0.1672
		445	0-91906-01	480	0.1202	845	0.1480	1050	0.1477
		500	0-93001-01	485	0.1288	870	0.1485	1035	0-1682
		305	0-9-606-01	490	0.1293	875	0.1490	1040	6.1488
		510	0.9510E-01	495	0.1298	800	0.1496	1065	0.1693
		515	G.9610t-01	700	0.1304	005	0-1501	1070	0.1648
		520	6.4740E-61	705	0.1309	294	0.1506	1075	0-1704
		525	0.98306-01	710	0.1314	495	0.1512	1000	0.1709
		530	0. 9930E-01	715	0.1320	¥00	6.1517	1085	0-1714
350	0.01008-01	535	0.1004	720	0.1325	905	0.1522	1040	0.1720
355	0-6200E-01	540	0.1615	725	0.1330	910	0-1328	1095	0.1725
360	0-0310E-01	345	0.1025	730	0.1336	915	0.1533	1100	0-1730
365	U-044UE-01	550	0.1036	735	0.1341	920	0.1536	1105	0.1736
370	0.4520E-01	555	0.1047	740	0.1346	925	0.1544	1110	0.1741
375	4-44301-01	340	0-1057	745	0.1352	930	0.1549	1115	0.1746
380	0.0740E-01	505	0.1068	750	0.1357	935	0.1554	1120	0.1752
385	0.4846E-01	570	4.1079	755	0.1342	940	0.1500	1125	0.1757
390	0.0950E-01	375	4.1089	760	0.1348	945	0-1565	1130	0-1762
395	0.7060E-01	380	0-1100	765	0.1373	950	0.1570	1135	0.1768
400	0.7100E-01	585	0.1111	770	0.1378	¥35	0.1576	1140	0.1773
405	0.7270E-01	590	0.1121	775	0.1364	960	0.1501	1145	0-1776
410	0.7380E-01	595	0.1132	780	0.1389	945	0.1586	1150	0.1704
415	0.7480E-01	600	0.1143	785	0.1394	970	0-1592	1155	0.1789
420	0.7590E-01	405	0.1153	790	0.1400	975	0.1597	1160	0.1794
425	0.7740E-61		The state of the s	0.0000000000000000000000000000000000000	The state of the s	V80			
436	0.7800E-01	610	6-1164 0-1175	795	0.1405	985	0.1602	1165	0.1800
435		•15		800	0.1410		0.1.08	1176	
	0.7910E-01	620	0.1185	805	0.1416	990	0.1013	1175	0.1810
***	0.802Ut-U1	425	0.1196	810	0.1421	995	0.1618	1100	0.1816
445	0-9150E-01	630	0.1207	815	0.1426	1000	0.1624	1185	0-1821
450	0.8230E-01	635	0.1217	820	0.1432	1005	0.1424	1190	0.1826
455	0.8340E-01	640	0.1228	825	0.1437	1010	0.1634	1105	0.1832
460	0.8440E-01	645	0.1239	830	0.1442	1615	0.100	1200	0.1837
465	0.8550E-01	450	0.1250	835	0.1448	1020	0.1045		
470	0.8660E-01	455	0-1256	840	0.1453	1625	0.1650		
475	0.8670E-U1	660	0.1261	845	0.1450	1030	0.1656		
480	0.88706-01	445	0.1266	850	0.1464	1035	0.1661		

APPENDIX D

PROGRAMMER'S AIDS

This appendix contains guidelines for the programmer who will maintain SCAT3. The call hierarchy of SCAT3 subroutines is shown in Figure D-1, subroutine definitions are contained in Figure D-2; and the JCL to run program SCAT3 is shown in Figure D-3.

Figure D-1. Call Hierarchy of SCAT3 Subroutines

Figure D-2. Program Notes

SCAT3 is a generalized program for manipulating spectral elements, and generating optical characteristics of the atmosphere.

SUBROUTINES

A. ATMOSPHERIC PACKAGE:

A 105	"MAINLINE" INTERFACE WITH SPECTR. DECODES DATA CARD)
	CHECKS 6/OR SETS UP CONSTANTS & DEFAULTS. SETS	
	UP TEMPORARY ELEMENTS IN CORE DATA TABLE.	

ALERF	GENERATES APPROPRIATE ALBEDO SPECTRAL REFLECTANCE
ASÓL	CALCULATES AEROSOL SCATTERING PARAMETERS (KA+C)
ATDEN	DETERMINES RAYLEIGH SCATTERING COEFFICIENT (KR)
BEMAS	AIR MASS PATH LENGTH CORRECTION (SECANT THETA) BLOCK DATA AIRMAS

CFTOK	CONVERT	FEET	TO K	LOMETERS

CKDATE CHECKS INPUT DATA FOR DATE

CREARH CALCULATES PRECIPTIBLE MOISTURE & RH WHEN
T550 IS SPECIFIED. MAY INCREASE DEFAULT TEMP

DH GENERATES SPECTRAL ELEMENT FOR DAYLIGHT IRRADIANCE
ON A HORIZONTAL SURFACE

DV GENERATES SPECTRAL ELEMENT FOR DAYLIGHT IRRADIANCE
ON A VERTICAL SURFACE

OZONE ESTIMATE OF OZONE BASED ON DATE & LATITUDE BLOCK DATA OZTABL

PCHEK CHECKS INPUT PRESSURE & CORRECTS FOR ELEVATION

POLCOP COMPUTES ANGULAR SCATTER FUNCTION ("FISH")

SH GENERATES SPECTRAL ELEMENT FOR SKYLIGHT IRRADIANCE ON A HORIZONTAL SURFACE

Figure D-2 (Continued)

SK	GENERATES SPECTRAL ELEMENT FOR SKYLIGHT RADIANCE (HAZE)
sve	GENERATES SPECTRAL ELEMENT FOR SKYLIGHT IRRADIANCE DI A VERTICAL BACKLIT SURFACE (SHADOW)
511	GENERATES SPECTRAL IRRADIANCE OF SUN (ABOVE ATMOSPHERE)
TRANA	CALCULATES SPECTRAL APSORPTIONS OF WATER. OZONE & OXYGEN
TRANS	COMPUTES SPECTRAL TRANSMITTANCE DUE TO SCATTERING
MATER	CALCULATES PRECIPTIBLE MOISTURE (MOISTURE SCALE HEIGHT)
VFUNCT	USER FUNCTION WHICH PERFORMS "SYSINT VFUN" SYSTEM INTEGRATIONS

6. FRO SPECTR:

MAIN PROGRAM MAINLINE..TRANSFERS INPUT COMMAND AND DATA CARDS FROM //FTOS FILE TO //FTO2 FILE.
"OPENS" DISK LIBRARY FILE //FTO9 AND READS DIRECTORY DECODES COMMANDS AND DIRECTS EXECUTION TO THE PROPER SUBROUTINE.

GENERA DECODES & PROCESSES GENERATE COMMAND

10RO DECODES & PROCESSES 1/0 COMMAND

FILE DECODES & PROCESSES FILE COMMANDS

NOTE: AMOS and GENERATE SCATS AMOS COMMANDS ARE DIRECTED TO SUBPOUTINE AMOS

SETUP ENTERS AN ELEMENT NAME IN THE CORE DATA TABLE

LOCATE LOGICAL FUNCTION TO SEARCH FOR AN ELEMENT NAME IN THE CORE DATA TABLE. OR IN THE DISK LIBRARY.

DELETE REMOVES AN ELEMENT NAME FROM THE CORE DATA TABLE.
BUT NOT FROM THE DISK LIBRARY.

ECRITE WRITES AN ELEMENT. ARRAY OR CONSTANT. ON THE

THERE ARE NUMEROUS OTHER SUBROUTINES IN SPECTR WHICH SUPPORT THOSE ALREADY MENTIONED. CONSULT THE PROGRAM

LISTINGS FOR DETAILS.

END

Figure D-3. JCL to Run Program SCAT3

```
C
11*
11*
11*
//STEPONE EXEC FORTHC.PARM.FORT= MAP.XREF.OPT=2"
//FORT.SYSIN DD * FORTFAN SOURCE DECKS FOLLOW THIS CARD
//FORT.SYSUT2 DD UNIT=SYSDA.SPACE=(CYL.20.RLSE)
/*
//STEPTWC EXEC ASMFC.PARM.ASM="LIST.LOAD"
//ASM.SYSGO DD DSN=*.STEPONE.FORT.SYSLIN.DISP=(MOD.PASS.DELETE)
//ASM.SYSIN DD *
                   ASSEMBLER SOURCE FOR "CORE" FOLLOWS THIS CARD
//STEP3 EXEC AS"FC.PARM.ASM= LIST.LOAD.
//ASM.SYSGO DD DSN=*.STEPONE.FORT.SYSLIN.DISP=(MOD.PASS.DELETE)
                    ASSEMBLER SOURCE FOR "DATE" FOLLOWS THIS CARD
//ASM.SYSIN DD *
1*
//STEPFOUR EXEC FORTHLG.PARM.LKED=(XREF.LIST.LET)
//LKED.SYSLIN DD DSN=*.STEPONE.FORT.SYSLIN.DISP=(OLD.DELETE.DELETE)
              DD * LINK-EDIT INPUT FOLLOWS THIS CARD
      ENTRY MAIN
14
//GJ.FT02F001 DD UNIT=SYSDA.SPACE=(CYL.(10.1)).
    DCB=(RECFM=FB+LRECL=80+BLKSIZE=3600)
//GO.FTO9FOO1 DD DSN=SPECTRAL.DATA.UNIT=DISK.VOL=SER=ABF225.DISP=OLD
//GO.FT10F001 DD UNIT=SYSDA.SPACE=(732.(450.1))
1/60.5YSIN DD *
                    INPUT DATA CARDS FOLLOW THIS CARD
/*
ALL JCL CONVENTIONS ARE FOR THIS INSTALLATION'S IBM 370. RUNNING
UNDER US. USING THE LASP OPTION.
PLEASE NOTE THE FOLLOWING .....
/*SETUF ...
     THIS CARD MAY BE REQUIRED FOR OPERATOR MOUNTING OF THE VOLUME
     IN THE 'ID' PARAMTER, WHICH IS A DISK PACK ON WHICH
     RESIDES THE SPECTRAL DATA LIBRARY (SEE FT09F001 OF THE .GO.
     STEP)
//STEPUNE ...
     SEVERAL OF THE FORTRAN ROUTINES TAKE ADVANTAGE OF THE POWER
     OF THE IEM "H" LEVEL COMPILER. AND WILL NOT COMPILE UNDER
     A LOWER LEVEL. WITHOUT MODIFACTION. THE COMPILER OPTIONS
     STATED IN THE *PARM FIELD ARE HIGHLY RECOMMENDED.
     THIS JCL IS REQUIRED FOR OUR CATALOGUED PROCEDURE INVOKING THE
     "H" COMPILER.
//STEPTWO ...
     THIS IS OUR CATALOGUED PROCEDURE TO INVOKE THE "IEUASM"
     LANGUAGE COMPILER. NOTE THE ADDITION OF THE PROCESSOR'S OUTPUT
     TO THAT ALREADY PRODUCED BY THE FORTRAN COMPILER.
//STEP3 ...
     SAME AS EXPLAINED FOR STEPTWO (ABOVE)
//STEPFOUR ....
     THIS IS OUR CATALOGUED PROCEDURE TO INVOKE THE PROGRAM . EWL.
```

Figure D-3 (Continued)

(IBM LINKAGE EDITOR). DEPENDING UPON THE PARTICULAR SYSTEM BEING USED. AN OVERLAY STRUCTURE MAY BE ADVISABLE TO CUT

DOWN THE MEMORY REQUIREMENTS. HOWEVER. IF THE PROGRAM CAN BE EXECUTED AS A SINGLE SEGMENT. RUN TIME WILL BE OPTIMIZED.

//GO.FT02F001... TEMPORARY DATA SET, NO NEED TO ALLOCATE PERMANENT SPACE FOR IT. THIS SET-UP SPECIFIES THAT THE DATA SET IS NEW, AND WILL BE SCRATCHED AFTER THIS RUN.

//GD.FT09F001.... THIS IS THE SPECTRAL DATA LIBRARY, WHICH WE HAVE SET UP ON A 3330 DISK PACK . VOLUME SERIAL NUMBER ABF225 THIS PARTICULAR SETUP ASSUMES THAT THE DATA SET HAS BEEN PRE-FORMATTED ON THE DEVICE. WITH A SPACE PARAMETER OF (740.2920). THE PRE-FORMATTING COULD HAVE BEEN DONE BY A PREVIOUS RUN. WITH DISP=NEW, OR WITH "IEHPROGM" UTILITY PROGRAM.

//GO.FT10F001.... THIS IS ANOTHER SCRATCH DATA SET USED BY THE PROGRAM.

C

SINCE THE PROGRAM IS QUITE LARGE. IT IS HIGHLY ADVISED THAT A LOAD MODULE BE CREATED, AND RETAINED IN A PRIVATE LIBRARY, AS SOON AS POSSIBLE. NOTE THE COMMENTS IN THE FORTRAN MAINLINE, REGARDING INITIAL USE OF THE SPECTRAL ELEMENT LIBRARY (PRECEDING THE CALL TO 'FDTINT').

THIS PROGRAM SHOULD RUN ON ANY INSTALLATION SUPPORTING IBM 05/360-370, ASSUMING ENOUGH MAIN STORAGE, HAVING SUITABLE RANDOM-ACCESS STORAGE FOR THE DATA LIBRARY. WITHOUT ANY SOURCE MUDIFICATION. THE JCL CAN EASILY BE MODIFIED TO ACCOMMODATE ANY VERSION OF ASP, OR A SYSTEM RUNNING WITHOUT THE BENEFIT OF ASP.

APPENDIX E USER WRITTEN FUNCTIONS

The user may wish to write special functions to perform repetitive calculations on elements generated by SCAT3, or provide outputs tailored to a particular job. These may be written as FORTRAN SUBROUTINE UFUNCT, VFUNCT, or WFUNCT. These SUBROUTINES may be invoked by a command card of the form:

GENERATE XXX UFUN YYY ZZZ AAA=N

where XXX, YYY, ZZZ, and AAA are arguments that might be passed to SUBROUTINE UFUNCT. Similarly, GENERATE XXX VFUN will result in a CALL to SUBROUTINE VFUNCT, and GENERATE XXX WFUN will invoke SUBROUTINE UFUNCT.

SCAT3 makes use of the above capability in the GENERATE SYSINT VFUN command. It is recommended that before one begins writing a user function, a FORTRAN programmer review the program listings, particularly SUBROUTINE VFUNCT and SUBROUTINE AMOS. It should be noted that the SPECTR portion of the SCAT3 code contains dummy versions of SUBROUTINE AMOS, UFUNCT, VFUNCT, and WFUNCT. For this reason, when one performs a LINKAGE EDIT to incorporate a new user function, the new SUBROUTINES must be loaded first. Numerous utility SUB-ROUTINES within the SPECTR coding may be used for arithmetic and bookkeeping functions. At such times, the listing for details and calling sequences should be consulted.

As a guide in writing a user function, a simple card-punching aid is described below. A listing of the FORTRAN statements can be found in Figure E-1.

The user function can be used to punch any spectral array element previously calculated or that is in the library, onto cards in the format used to enter a new element via an I/O READIN command. The element values will also be printed. The function will be invoked by the command:

GENERATE XXX WFUN FORM=N.

where XXX is the name of the array element (e.g., the AMOS output array code DH) and N is a format code. In addition to illustrating the writing of a user

function, the example may be of practical use.

The following steps are performed in this user function:

- (a) Check the number of arguments.
- (b) Use SPECTR function LOCATE to determine the position of the values for element XXX in COMMON/LIBRY/ARRAY(,) if the element name is not in the core data table, the disk library is searched and the element loaded into ARRAY.
- (c) If the element cannot be located or if the mode is wrong; e.g., it has been defined as a constant instead of an array, an error message is generated.
- (d) The LOW and HIGH positions in the element are determined, and the date is obtained from the system.
- (e) Check the parameter "FORM =" for 1., 2., or 3. A code of 1 will use FORMAT (10G7.2) and a code of 2 will use FORMAT (10E7.2). Code 3 will use FORMAT(10F7.4), which may not be sufficient for some element values.
- (f) Punch the array values.
- (g) Print the array values.

The SUBROUTINE may be compiled and linkage-edited to SCAT3. The new sub-routine must be loaded before SCAT3, which contains a dummy routine by that name. The JCL must be modified to include a card punch as device FT07F001.

Figure E-1
FORTRAN Listing of Sample User Function

15N 0002	SUBROUTINE WFUNCT (RESULT. PARS. NPAR)
	C USER FUNCTION TO PUNC CARDS FROM ARRAY ELEMENT
	C INVOKED VIA : GENERATE XXX WFUN FORMEN.
	C WEFE AXX = ARRAY ELEMENT NAME, & N IS FORMAT CODE
	C N=1. (DEFAULT) 1067.3
	C N=2. 10E7.3
	C N=3. 10F7.4 (USE WITH CAREEASILY OVERFLOWED 1)
	C
ISN 0003	INTEGER RANGE (183.150)
ISN 0004	LOGICAL LOCATE
ISN 0005	REAL®S RESULT. PARS (NPAR) . FOURS
	c
SN 0006	DIMENSION LUATE (2)
ISN 0007	COMMON/LIBRY/APRAY(183.150).CONST(600)
15N 000A	EQUIVALENCE (APRAY (1.1) . RANGE (1.1))
SN 0009	COMMON/INPUT/STRING(80) .LSTR.INFIL
	· ·
	C * OF ARGUMENTS OK 2
SN 0010	IF (NPAR-LE-1)GO TO 1
	C .
SU 0012	10) FORMAT (00 . 10x TOO MANY ARGUMENTS ! . / . D.)
SN 0013	WRITE (5-101)
SN 0014	RETORN
3. 0014	전 보았습니다. 2011년에 2011년에 보고 1.0 보고 1.0 보고 1.0 H.
SN 0015	C GET FLEMENT WITH NAME "(RESULT)" 1 IF(LOCATE(RESULT, JPOS, MODE)) GO TO 2
34 0015	C C (COCATE (MESOLITADOS. MODE)) GO 10 2
SN 0017	102 FORMET (*D 10X. **** UNABLE TO LOCATE *.AR)
SN 0018	
SN 0019	WEITE (5,102) RESULT
34 0017	
SN 0020	C MODE OK ?
34 00E0	2 IF (MODE. 50.2) GO TO 3
SN 0022	C
	103 FORMAT (*0 - 10x . *** * . AB. * NOT AN ARRAY ELEMENT */*0 *)
SN 0023	WRITE (6+103)
ISN 0024	RETURN
CH 0635	C GET LOW & MIGH INDEX FOR ELEMENT (LAST 2 ARGUMENTS)
ISN 0025	3 LOW=RANGE (182-JPOS)
ISN 0026	IHIGH=RANGE (183.JPOS)
	C CONVERT TO WAVELENGTH: (1) = 300 NANOMETERS
SN 0027	LAML=295 + 5°LOW
SN 0028	LAMH=295 + 5*IHIGH
	C GET DATE FROM SYSTEM VIA SPECTR UTILITY
SN 0050	CALL COMDAT(IDATE)
	C CHECK FORMAT OPTION
2N 9030	IFORMs1
EN 0031	CALL SCALNM(STRING.BO. FORME . 6.F. 84)
	C NOT REACHED IS MEDRM=" NOT FOUND
ISN 0032	IFORM=IFIx(F+.1)
SN 0033	IF ((IFORM.GE.1).AND.(IFORM.LE.3)) GO TO 4
	C
SN 0035	URITE (6.104)F
SN 0036	104 FORMAT(*0 . 10x
SN 0037	RETURN
	C

Figure E-1 (Continued)

	C PUNCH HEADER
ISN 0038	4 WPITE (7.105) RESULT.LAML.LAMH.IDATE
ISN 0039	105 FORMAT ('I/O READIN')
	1 A8. VAL . 6X. [4.6X. [4.40X. 244)
	C GET FIRST & CHAR OF ELEMENT NAME "RESULT"
ISN 0040	FIDERESULT
15N 0041	NCARD = ([HIGH-LOW)/10 + 1
ISN 0042	Il=LOw
15N 0043	DO 8 N=1+NCARD
ISN 0044	15=11+0
	C WHICH FORMAT ?
ISN 0045	GO TO(5.5.7). IFORM
ISN 0046	106 FORMAT(10G7.2.2X.A4.14)
ISN 0047	5 #PITF (7.106) (ARRAY (1.JPOS) . [=[1.12).FID.N
ISN 0048	GO TO 8
ISN 0049	107 FORMAT(10E7.2.2X.A4.14)
ISN 0050	6 WRITE (7.107) (ARRAY (1.JPOS) . [=[]. [2] . FID.N
150 JOST	GO 70 B
15N 0052	108 FORMAT(10F7.4.2X.44.14)
ISN 0053	7 WPITE (7.108) (ARRAY (1.JPOS) . [=]] . [2) . FID. N
	C
15N 0054	8 [1=[2+]
	C PAINT
ISN 0055	WAITE (6.109) RESULT
ISN 0056	109 FORMAT (*1 . / . 0 10x . PUNCHED 48/ . 0 .)
	C "RESULT" WILL BE PRINTED UPON RETURN
ISN 0057	PETURN .
15N 0058	END