Classification

CS145 Fall 2015

Classification vs. Prediction

► Classification:

- predicts categorical class labels (discrete or nominal)
- ► classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Typical Applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness analysis

Classification—A Two-Step Process

- ► Model construction: describing a set of predetermined classes
 - ► Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - ► The set of tuples used for model construction is training set
 - ► The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - ► The known label of test sample is compared with the classified result from the model
 - ► Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - ► Test set is independent of training set
 - ▶ If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Classification Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classification Process (2): Use the Model in Prediction

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - ► Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - ▶ New data is classified based on the training set
- Unsupervised learning (clustering)
 - ► The class labels of training data is unknown
 - ► Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Major Classification Models

- Classification by decision tree induction
- Bayesian Classification
- Neural Networks
- Support Vector Machines (SVM)
- Classification Based on Associations
- Other Classification Methods
 - ► KNN
 - Boosting
 - Bagging

...

Evaluating Classification Methods

- Predictive accuracy
- Speed and scalability
 - time to construct the model
 - ▶ time to use the model
- Robustness
 - handling noise and missing values
- Scalability
 - efficiency in disk-resident databases
- Interpretability:
 - understanding and insight provided by the model
- Goodness of rules
 - decision tree size
 - compactness of classification rules

Decision Tree

Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for

"buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - ► Tree is constructed in a top-down recursive divide-and-conquer manner
 - ▶ At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - ► Examples are partitioned recursively based on selected attributes
 - ► Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - ▶ All samples for a given node belong to the same class
 - ► There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - ► There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- S contains s_i tuples of class C_i for $i = \{1, ..., m\}$
- information measures info required to classify any arbitrary tuple

$$I(s_1, s_2,...,s_m) = -\sum_{i=1}^{m} \frac{s_i}{s} log \, 2 \frac{s_i}{s}$$

• entropy of attribute A with values $\{a_1, a_2, ..., a_v\}$

$$E(A) = \sum_{j=1}^{\nu} \frac{S_{1j} + \dots + S_{mj}}{S} I(S_{1j}, \dots, S_{mj})$$

information gained by branching on attribute A

$$Gain(A) = I(s_1, s_2,...,s_m) - E(A)$$

Attribute Selection by Information Gain Computation

$$I(p, n) = I(9, 5) = 0.940$$

Compute the entropy for *age*:

5 4	
E(age) = -I(2.3) + -I(6.3)	4 (1)
$E(age) = \frac{3}{14}I(2,3) + \frac{4}{14}I(4,3)$	1,0)
17 17	
5	
$+\frac{5}{14}I(3,2)=0.694$	4
$\frac{1}{14}I(3,2)=0.05$	
14	

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = I(p,n) - E(age) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit \ rating) = 0.048$$

Natural Bias in The Information Gain Measure

- Favor attributes with many values
- An extreme example
 - Attribute "income" might have the highest information gain
 - ► A very broad decision tree of depth one
 - ► Inapplicable to any future data

Alternative Measures

- Gain ratio: penalize attributes like income by incorporating split information
 - SplitInformation(S, A) = $-\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$
 - ► Split information is sensitive to how broadly and uniformly the attribute splits the data
- Gain ratio can be undefined or very large
 - Only test attributes with above average Gain

Other Attribute Selection Measures

- ► Gini index (CART, IBM IntelligentMiner)
 - ▶ All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

Gini Index (IBM IntelligentMiner)

If a data set T contains examples from n classes, gini index, gini(T) is defined as

 $gini(T) = 1 - \sum_{j=1}^{n} p_j^2$

where p_j is the relative frequency of class j in T.

If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the *gini* index of the split data contains examples from n classes, the *gini* index gini(T) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

► The attribute provides the smallest $gini_{split}(T)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Extracting Classification Rules from Trees

- ▶ Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- ► Each attribute-value pair along a path forms a conjunction
- ► The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "<=30" AND student = "no" THEN buys\_computer = "no"

IF age = "<=30" AND student = "yes" THEN buys\_computer = "yes"

IF age = "31...40" THEN buys\_computer = "yes"

IF age = ">40" AND credit\_rating = "excellent" THEN buys\_computer = "yes"

IF age = ">40" AND credit\_rating = "fair" THEN buys\_computer = "no"
```

Avoid Overfitting in Classification

- Overfitting: An induced tree may overfit the training data
 - ► Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - ▶ Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - ▶ Difficult to choose an appropriate threshold
 - ▶ Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - ▶ Use a set of data different from the training data to decide which is the "best pruned tree"

Approaches to Determine the Final Tree Size

- \triangleright Separate training (2/3) and testing (1/3) sets
- ▶ Use cross validation, e.g., 10-fold cross validation
- Use all the data for training
 - but apply a statistical test (e.g., chi-square) to estimate whether expanding or pruning a node may improve the entire distribution
- ▶ Use minimum description length (MDL) principle
 - halting growth of the tree when the encoding is minimized

Minimum Description Length

- ► The ideal MDL select the model with the shortest effective description that minimizes the sum of
 - ► The length, in bits, of an effective description of the model; and
 - The length, in bits, of an effective description of the data when encoded with help of the model $H_0 = \min_{H \in \mathbb{N}} \{K(D \mid H) + K(H)\}$