KIỂM TRA CUỐI KỲ

<u>Câu 1:</u>

a.

Hàm sinh đã cho ban đầu:

$$F(x) = \frac{e^{4x} - x e^{3x} - 4x^2 e^{6x}}{3}$$

Phân tích từng thành phần:

$$\frac{1}{3}e^{4x} = \frac{1}{3}\sum_{k=0}^{\infty} \frac{(4x)^k}{k!} = \frac{1}{3}\sum_{k=0}^{\infty} \frac{4^k}{k!}x^k$$

$$-\frac{1}{3}xe^{3x} = -\frac{1}{3}x\sum_{k=0}^{\infty} \frac{(3x)^k}{k!} = -\frac{1}{3}x\sum_{k=0}^{\infty} \frac{3^k}{k!}x^k = -\frac{1}{3}\sum_{k=1}^{\infty} \frac{3^{k-1}}{(k-1)!}x^k$$

$$-\frac{1}{3}4x^2e^{6x} = -\frac{1}{3}4x^2\sum_{k=0}^{\infty} \frac{(6x)^k}{k!} = -\frac{4}{3}x^2\sum_{k=0}^{\infty} \frac{6^k}{k!}x^k = -\frac{4}{3}\sum_{k=2}^{\infty} \frac{6^{k-2}}{(k-2)!}x^k$$

Hàm sinh sau đó:

$$F(x) = \frac{1}{3} \sum_{r=0}^{\infty} \frac{4^r}{r!} x^r - \frac{1}{3} \sum_{r=1}^{\infty} \frac{3^{r-1}}{(r-1)!} x^r - \frac{4}{3} \sum_{r=2}^{\infty} \frac{6^{r-2}}{(r-2)!} x^r$$

Hệ số của a_r :

• Với r = 0:

$$a_0 = \frac{1}{3} \frac{4^r}{r!} = \frac{1}{3} \frac{4^0}{0!} = \frac{1}{3}$$

• Với r = 1:

$$a_1 = \frac{1}{3} \frac{4^r}{r!} - \frac{1}{3} \frac{3^{r-1}}{(r-1)!} = \frac{1}{3} \frac{4^1}{1!} - \frac{1}{3} \frac{3^0}{0!} = 1$$

• Với $r \ge 2$:

$$a_r = \frac{1}{3} \frac{4^r}{r!} - \frac{1}{3} \frac{3^{r-1}}{(r-1)!} - \frac{4}{3} \frac{6^{r-2}}{(r-2)!}$$

b.

Hàm sinh đã cho ban đầu:

$$F(x) = -\frac{9x^4 - 43x^3 + 91x^2 - 49x + 8}{(x-1)^3(3x-1)^2} + 3e^{x^2}$$

Ta xét:

$$-\frac{9x^4 - 43x^3 + 91x^2 - 49x + 8}{(x-1)^3(3x-1)^2} = -\frac{1}{x-1} + \frac{2}{(x-1)^2} - \frac{4}{(x-1)^3} + \frac{1}{(3x-1)^2}$$

Ta có:

$$-\frac{1}{x-1} = \frac{1}{1-x} = \sum_{r=0}^{\infty} x^r$$

$$\frac{2}{(x-1)^2} = 2\sum_{r=0}^{\infty} {r+1 \choose r} x^r$$

$$-\frac{4}{(x-1)^3} = \frac{4}{(1-x)^3} = 4\sum_{r=0}^{\infty} {r+2 \choose r} x^r$$

$$\frac{1}{(3x-1)^2} = \frac{1}{(1-3x)^2} = \sum_{r=0}^{\infty} {r+1 \choose r} (3x)^r = \sum_{r=0}^{\infty} {r+1 \choose r} 3^r x^r$$

Lai xét:

$$3e^{x^2} = 3\sum_{r=0}^{\infty} \frac{(x^2)^r}{r!} = 3\sum_{r=0}^{\infty} \frac{x^{2r}}{r!}$$

Ở đây, ta thấy rằng chỉ có các bậc chẵn của x, tức là x^{2r} . Vì vậy, hệ số của x^r trong phần này sẽ bằng 0 khi r lẻ và có giá trị $\frac{3}{\left(\frac{r}{2}\right)!}$ khi r chẵn.

Hàm sinh đã cho có hệ số:

$$a_r=1+2\binom{r+1}{r}+4\binom{r+2}{r}+3^r\binom{r+1}{r}+\frac{3}{\left(\frac{r}{2}\right)!}\text{ , v\'oi }r\text{ ch\'an}.$$

$$a_r = 1 + 2 {r+1 \choose r} + 4 {r+2 \choose r} + 3^r {r+1 \choose r}$$
, với r lẻ.

<u>Câu 2:</u>

a. .

Couls
a, Ta e'
x, +16 + 1/3 + x4 = r +x, 20, 1 = 1,4
6) x + x + x + x4 + x5 = r 10 x 20
Distrim ham sind far) to voy dung ear when the da
this is dang: y " y = y x y x y x y x y x y x y x y x y x
y 14 y 2 y 23 y 44 y 15 V2 20, V= 1,9
Như vày can tim 5 nhãn thể, tối mối nhân trẻ:
40 +41 + 1 = 1
1-4
Vay ham suit can tun la so
E(y) = (1-4)5 = 5 CK444
Vay ar = Cr+4, 4r≥0
a de asus - Crou + 4 - Cros - 2015
040)

b. .

Voi
$$x_3 \ge -2.00$$
 $x_1 \ge 0.00$ $x_1 \ge 0.00$ (3) etc. with law:
$$x_1' + x_2 + x_3 + x_4 \le r + 2$$

$$voi x_1' \ge 0.00$$
 $x_1' = x_1 + 2$
Sugra $x_1' + x_2 + x_3 + x_4 + x_5 = r + 2$ $(x_5 \ge 0)$

$$(3)$$
 etc. with law:
$$x_1' + x_2 + x_3 + x_4 + x_5 = r + 2$$

$$(x_5 \ge 0)$$

$$(3)$$
 $x_1' + x_2 + x_3 + x_4 + x_5 = r + 2$

$$(x_5 \ge 0)$$

<u>Câu 3:</u>

a.

 $\forall k \geq 0$, đặt a_k là số cách chọn k quả bóng từ các loại bóng màu xanh, đỏ, vàng thỏa yêu cầu của bài toán. Ta cần tìm $a_{30} = \text{số nghiệm nguyên của phương trình}$

$$e_1 + e_2 + e_3 = 30$$

Trong đó $e_1 \ge 6, e_2 \ge 2, e_3 : 3$.

Hàm sinh của $\{a_k \mid k \ge 0\}$ là

$$G(x) = (x^{6} + x^{7} + x^{8} + \cdots)(x^{2} + x^{3} + x^{4} + \cdots)(1 + x^{3} + x^{6} + x^{9} + \cdots)$$

$$= x^{6}(1 + x + x^{2} + \cdots)x^{2}(1 + x + x^{2} + \cdots)(1 + x^{3} + x^{6} + x^{9} + \cdots)$$

$$= x^{8} \cdot \frac{1}{(1 - x)^{2}} \cdot \frac{1}{1 - x^{3}}.$$

Muốn tìm hệ số của x^{30} trong G(x) ta tìm hệ số của x^{22} trong biểu thức:

$$h(x) = \frac{1}{(1-x)^2} \cdot \frac{1}{1-x^3}$$

Đặt:

$$f(x) = \frac{1}{(1-x)^2}$$
$$g(x) = \frac{1}{1-x^3}$$

 $g(x) = \frac{1-x^3}{1-x^3}$

Gọi a_r là hệ số của x^r trong f(x), b_r là hệ số của x^r trong g(x).

Khi đó $b_r = \left\{ egin{array}{ll} 1 \ n \Hee u \ r \ chia \ h \Hee t \ cho \ 3 \\ 0 \ n \Hee u \ r \ k h \Hong \ chia \ h \Hee t \ cho \ 3 \end{array}
ight.$

Do $b_{22-k}=1$ khi 22-k \vdots 3 nên ta sẽ chỉ cần xét các giá trị k sao cho 22-k \vdots 3, tức là 22-k=3m với $m\in Z$.

Ta có các giá trị k thỏa mãn điều kiện 22 - k : 3 là 22 - k = 3m với

$$m = 0, 1, 2, 3, 4, 5, 6, 7 \Rightarrow k = 22, 19, 16, 13, 10, 7, 4, 1.$$

Hệ số của x^{22} trong h(x) là:

$$a_{22}b_0 + a_{21}b_1 + a_{20}b_2 + \cdots + a_0b_{22}$$
.

Thu gọn ta được:

$$\begin{aligned} &a_{22}b_0 + a_{19}b_3 + a_{16}b_6 + a_{13}b_9 + a_{10}b_{12} + a_7b_{14} + a_4b_{18} + a_1b_{21} \\ &= \binom{23}{22}.1 + \binom{20}{19}.1 + \binom{17}{16}.1 + \binom{14}{13}.1 + \binom{11}{10}.1 + \binom{8}{7}.1 + \binom{5}{4}.1 + \binom{2}{1}.1 = 100. \\ &b. \quad . \end{aligned}$$

c. .

	1
tan sul can tun:	
F(x) = (1+x+2+) (1+2+2+) (1+2+2+) (1+2+2+)	29
	!!
= 23x 1 (2x +2-x) 5 xt	
= 1 (e4e + e1x) 5 xt	
= 1 5 4 kl + 5 2 kl) 5 kl 100 kl	
= 1 \(\tau \) \(\tau	
Đạt G(E) = 1 2 (4/tdl) X X l	
this do his so have sail trong G(2) la 2 (4 tol) 1 422	5
$\Rightarrow F(a) = G(a) = \frac{3}{2} \times \frac{1}{2}$	
ex P(x) = G(x) + G(x)x + G(x) x - + G(x) x - + G(x) 2! - + G(x) 9!	
0 < r < 9, 10, 86° ar wa ham lot:	
the kel (r-k)!	
Tiên học lễ - Hậu học văn QUANG TÂN	

129 hi số ar wà han tā:

ar = K=0 k! (r-k)!

Vây số chuối ngư phái đó, dấi k theá yir cầu là hì 8' ar

dony han P(1)

K 4 K-1 + a K-1 (0 < k < 9)

ar = 1 = 0 i! (K-1)! (0 < k < 9)

i=0 i! (K-1)! (K ≥ 9)

<u>Câu 4:</u>

(a) 4 a) 5 k2	xK = x2+x (1-K)5	
Ø ∑ k²;	x+2 x4+25 (1-x)5	
⇔ Σ k²(k+,	2) x K+1 = (4x3+3x2) (1-x13-	+(24-+25)3(A-2)2)6
Ø ∑ k2(k+2	2) x k+1 = (4x3+522) (1-2) 4	+3(2*+23)
8 2 12 (1cts	2)2K = (423+324)(1-x) + (1-x)4	5(2'+2°)
E L2 (kt	2) x = - x - 42 + 32 - 37 - 37 - 37 - 37 - 37 - 37 - 37 -	QUANG TÂM

In fam suit voir to $a_1 = 1^2(r+2)1a + 6a_1 = -\frac{1^3 + 41^2 + 18}{(n-1)^4}$ 4b) Gri $tt(x) = \frac{G(1)}{n-1} = \frac{r^3 + 41^2 + 18}{(n-1)^4}$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^3 + 18x^2) \sum_{k=0}^{\infty} c_k + x^k$ $= (-x^3 + 4x^2) \sum_{k=0}^$

<u>Câu 5:</u>

(a) 6a

(b) $G(x) = \sum_{n=0}^{\infty} a_n x^n$ (b) $G(x) = \sum_{n=0}^{\infty} a_n x^n$ (c) $G(x) = \sum_{n=0}^{\infty} a_n x^n$ (d) $G(x) = \sum_{n=0}^{\infty} a_n x^n$ (e) $G(x) = \sum_{n=0}^{\infty} a_n x^n + a_n x^n + a_n + a_n x^n + a$

$$(2) \sum_{|x|=2}^{\infty} \frac{x^{k}}{x^{k}} = 2\sum_{|x|=2}^{\infty} \frac{x^{k+2}}{x^{k}} = 2\sum_{|x|=2}^{\infty} \frac{x^{k+2}}{x^{k}} = 2\sum_{|x|=2}^{\infty} \frac{x^{k}}{x^{k}} = 2\sum_{|x|=2}^{\infty} \frac{x^{k}}{$$

$$a_r = n! \left[\frac{1}{2} \frac{c_3^3}{n+3} - \frac{11}{1} \frac{c_2^2}{n+2} + \frac{32}{32} \frac{(n+1)}{n+3} - \frac{155}{128} + \frac{63}{128} \frac{(-1)^n}{n+20} \right] + \frac{1}{32} \frac{1}{n+20}$$

<u>Câu 6:</u>

con U là top caé es nguyes duon, nho hon se soo => (U) = 9999 CS Got to ea to eac phai ti x & U suo cho x & chie so o Goi B là tháy caí phái trí x + U và chá lit cho 2 Theo de ta ear tuis A 15B Tacó As As B = U - As U B whi so do cal tap hop con, to se sor tad ca can so 6 1 chir 85 , 2 chir 85, 3 chir 80, 4 chir 86 ma be hon 10000 Ja cos (A) - 9+92+93+ 94 7,80 1A51 = 8+89+899+8993 = 6560 (B) = 5+9.5+9.10.5+9.10.40.5=5000 TOAG 1 - 8+ 8.8+ 8.8+ 8.88 - 4680 1 1 5 1 = 5 + 9 5 + 9 9 5 + 9 9 9 5 = 4100 [AB] = 4+8.4-8.9.4+8.9.94=2916 4+84+884+8884 = 2340 A. A.B =

<u>Câu 7:</u>

a.

$$R(C,x) = xR$$

$$= x \left[xR \left(-x \right) + R \left(-x \right) + xR \left(-x \right) + xR \left(-x \right) + R \left($$

b. Gọi
$$S_1 = \{A, B, C, D, E\}, S_2 = \{a, b, c, d, e, f, g\}.$$

Gọi $S_3 = S_1 \cup \{F, G\}.$

Bài toán sắp xếp nhiệm vụ với việc phân bổ 5 bạn cho 7 nhiệm vụ sao cho mỗi ban nhận một nhiệm vụ giống như số đơn ánh từ tập S_1 vào S_2 .

Mặt khác giả sử ta thêm 2 bạn F,G và hai bạn này đều làm tất cả công việc. Vậy số cách xây dựng đơn ánh từ tập S_3 vào S_2 chính là số cách phân bổ 7 bạn cho 7 nhiệm vụ.

Có 2! = 2 cách xây dựng song ánh từ tập S_3 vào S_2 .

(Vì có 2! Cách chọn công việc cho F và G).

Ta biểu diễn 7 bạn A, B, C, D, E, F, G và 7 nhiệm vụ a, b, c, d, e, f, g thành một bàn cờ 5 x 7 như hình sau. Đây cũng chính là bài toán tìm số hoán vị với vị trí cấm.

	a	b	c	d	e	f	g
A	X	X	X	X			
В	X					X	X
С					X		X
D						X	
Е						X	
F							
G							

Gọi D là bàn cờ được tạo bởi các ô cấm. Khi đó ta cần tìm đa thức quân xe:

$$= x[x(1+5x+6x^2)+1+8x+18x^2+8x^3]+x(1+6x+11x^2+6x^3)$$

$$+xR\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) + R\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

$$= x[x(1+5x+6x^{2})+1+8x+18x^{2}+8x^{3}]+x(1+6x+11x^{2}+6x^{3})$$
$$+x(1+7x+12x^{2})+(1+4x)(1+4x+2x^{2})$$
$$= 1+11x+40x^{2}+54x^{3}+20x^{4}$$

Số song ánh từ tập S_3 vào S_2 thoả yêu cầu là:

$$\sum_{k=0}^{7} (-1)^k (7-k)! r_k(D)$$

$$= (7!.1 - 6!.11 + 5!.40 - 4!.54 + 3!.20 - 2!.0 + 1!.0 - 0!.0) = 744$$

Vậy số cách phân bổ 5 bạn cho 7 nhiệm vụ thoả yêu cầu là: $\frac{744}{2} = 372$ cách.

Câu 8:

a.

$$S_{4}^{2} = {4 \brace 2} = {3 \brace 1} + 2 {3 \brace 2} = 1 + 2. (2^{3-1} - 1) = 7$$

$$S_{5}^{2} = {5 \brace 2} = {4 \brack 1} + 2 {4 \brack 2} = 1 + 2. (2^{4-1} - 1) = 15$$

$$S_{4}^{3} = {4 \brace 3} = {3 \brack 2} + 3 {3 \brack 3} = (2^{3-1} - 1) + 3.1 = 6$$

$$S_{5}^{4} = {5 \brack 4} = {4 \brack 3} + 4 {4 \brack 4} = 6 + 4.1 = 10$$

b.

Ta phân tích N = 2790090303 thành tích các số nguyên tố.

Ta có:

$$2790090303 = 3.7.11.13.17.31.41.43$$

Do đó mỗi nhân tử trong phân tích số 2790090303 là tích của các phần tử của tập con khác rỗng của {3,7,11,13,17,31,41,43}. Do đó số cách phân tích 2790090303 thành tích của nhiều hơn 3 số nguyên lớn hơn 1 là số phân hoạch của {3,7,11,13,17,31,41,43} thành nhiều hơn 3 tập con.

Ta có tam giác Stirling loại 2:

Je K	0	1	2	3	4	5	6	7	8
0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0
5	0	1	15	25	10	1	0	0	0
6	0	1	31	90	65	15	1	0	0
7	0	1	63	301	350	140	21	1	0
8	0	1	127	966	1701	1050	266	28	1

Vậy ta có số cách phân tích 2790090303 thành tích của nhiều hơn 3 số nguyên lớn hơn 1 là:

$$S = \sum_{k=4}^{8} {8 \brace k} = {8 \brace 4} + {8 \brace 5} + {8 \brace 5} + {8 \brace 6} + {8 \brace 7} + {8 \brace 8} = 1701 + 1050 + 266 + 28 + 1 = 3046$$

c.

Ta phân tích M = 147874786059 thành tích các số nguyên tố.

Ta có:

147874786059 = 3.7.11.13.17.31.41.43.53

Do đó mỗi nhân tử trong phân tích số 147874786059 là tích của các phần tử của tập con khác rỗng của {3,7,11,13,17,31,41,43,53}. Do đó số cách phân tích 147874786059 là số phân hoạch của {3,7,11,13,17,31,41,43,53}.

Tam giác Bell:

1							
1	2						
2	3	5					
5	7	10	15				
15	20	27	37	52			
52	67	87	114	151	203		
203	255	322	409	523	674	877	
877	1080	1335	1657	2066	2589	3263	4140
4140	5017	6097	7432	9080	11155	13744	17007

Như vậy ta có $B_9 = 21147$ cách.

<u>Câu 9:</u>

the lan kind thing cop law un hop -> là 3 ead chon kill think hop . THE: 12 là hiel thing gail is to till this hop the do x, x, là kiel thick hop ou x, x, là kiel thick gas Live now to plan chan bell think hop to top 124, 25 =) e6 2 ead thon kell there hap . THE: 12 13 la ked shill god, by la hed thicke hop the do but their hip lot ke . Ky kg bo ked their gard la x2 x3 x6 Ma rekry was likely this be good onto hop - whome then tour can be Turn, the trush, hop 12, 12 la kill think gous on it la hed thick hop can know ton toi -> 58 cal tao kul thire hop the 6 giá tri là 3 = 20. và sai quất cần tum là P= 3-62 QUANG TÂM Tien học tế - Hau học văn

Câu 10:

can 10 a chan ra 3 88 trong 3 chut 80 ed c3 call Chon ra 6 cho sho s chu so, mon chir so suat his 2 lar co c12 c10 cg cach => 05 each chan 3 chur so trong 9 chur so saw cho mon chie 86 said high thing 2 can la C3 C12 C10 C8 - 6485 440 (cond) Luc nay top hop (1,2,8) ,9 con lai 6 so on không con so nax tong tap hop now, rought him dung 2 lan 80 6 12 chie so ta ear lap con 6 cho trong Cots: A la so thus I trong top 6 so con lay khong is not such him thing 2 lan vor it 16 Ta can the A, Az A, A4 A4 A4 A4 So ead too a church hoar church san the der our 6 che con though the tap 6 00 con low la : 66 cail Taco (A, Az A, A4 A5 Ac = 69 - 1 A1 0 A2 UT, UTY UTS UTS low of 1A1 = 6254 vá 15156 [A, A;] - C2C442 vA. 1514 6 | Ā,Ā,Ā, | = c2 c2 c2 voi 151 < j 455 C MATARALL - 0 Vi vai to car A; (1-16) ca who mhan tuco:

S1 = 602 59

Se = C6 C6 C4 42

S5 = C6 C6 C4 C2 S4 = S5 = S1 = 0 -> 1 Ag v Az v Az v Az v Az v Az v Az 1 - SZ - Sz + Sz - SZ + SZ - SZ = 60559-06060442+03020402-0+0-0 = 36 450 => A, Az A, A4 A5 A6 = 66- 36450 - 10206 bay so can so is the lap their you can: 6985440 10206-21235400640 b) Gos A = {1,2,3, 94 Con; S lat tip can so stilk two bang call chon can so to the A tag thail mot so is 12 chie 85 vo mão chie 80 sual hon tug & las Char 6 chil 88 to top A 66 Cg = 84 call Dies 6 the so now vai out that trong sas the most that so out chen sund hier thing & lan, to ed C/2 C10 C8 C6 C4 C2 - 748 4400 cash -> |S | = 84. 84844100 = 628689600 Dels

chan 6 80 du tai A, to doit to 6 80 lan lun la 0, 02, 03, 04, 04, 06. Dot A sa tap how eac thus me & there is a string each whom sao cho car enuis to thuse tap & Vor (, i, k, l, m, n en ta d: 1A:1 = C1 C1 C2 C2 C2 C2 C2 100 15:46 14, A, M = 2! C/2 C/2 C/2 C/2 C/2 Voi 15/4/5/5 C [A, A, A, C] = - 3 | c3 c7 c4 c2 vor 12 c4 < 6 1 Ar A; Ar Acl = 41 01 05 02 voi 1415 406 650 IAIAIAKTEAN - 5! 03 00 1614 CKCLEM 66 1 A, A, A, A, A, A, 1 = 6 vo. 15 is < K< K< K < K < K < K Vi A; có va to who whom to EN per i = 4,6 min S, = 6 c1 c10 c8 c6 c4 c2 = 3484460 8 = c3 2 c1 c2 c3 C4 c4 c5 = 540 2000 S= 02 31 03 06 04 05 - 907 000 Su= 09 41 04 03 03 = 151 200 Sc = 6.5 . Co co, = 15120 86= 13 = 18 1cho do 1 A, v A, v A, v A, v A, v A, 1 - 5; - 5, -5, -5, -5, -5, -5, -5, = 2484400 - 3402000 + 907200 -151200 +15120 - 72 = 485 2800

Organ 485 2800 So those you can us to day as chie so a said him & chief so grow, whom thing couch whom the 6.80 of a, a, a, a, a, a, a, a cho to day so grow, whom the so grow, whom thing couch who is to day the chief of war him so town the time of the chief of the so town the can him the course of the chor of the chief of the chor of the ch