

NRL Report 9127

AD-A197 822

A Note on Incomplete Integrals of **Cylindrical Functions**

ALLEN R. MILLER

Engineering Services Division

June 21, 1988

SECURITY	C	.ASS:FIC	ATION	OF	THIS	PAGE

REPORT DOCUMENTATION				N PAGE			Form Approved OMB No. 0704 0188
Ta REPORT SECURITY CLASSIFICATION UNCLASSIFIED				16 RESTRICTIVE	MARK NGS		
2a SECURITY CLASSIFICATION AUTHORITY				3 DISTRIBUTION AVAILABILITY OF REPORT			
26 DECLASSI	CATION DOW	VNGRADING SCHEDI	πE	Approved for public release; distribution unlimited.			
4 PERFORMIN	IG ORGANIZAT	ION REPORT NUMBE	ER(S)	5 MONITORING	ORGANIZATION I	REFORT NO	.V8ER(S)
NRL Rep	ort 9127						
	PERFORMING (search Labora	ORGANIZATION atory	6b OFFICE SYMBOL (If applicable) Code 2303	7a NAME OF MONITORING OPGANIZATION			
6c ADDRESS	(City, State, and	d ZIP Code)	<u> </u>	7b ADDRESS (City State and ZIP Code)			
Washingto	on, DC 20375	i-5000					
8a NAME OF ORGANIZA	FUNDING / SPO ATION	INSORING	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8c. ADDRESS ((City, State, and	I ZIP Code)	<u> </u>	10 SOURCE OF FUNDING NUMBERS			
				PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
A Note of	AUTHOR(S)	lassification) Integrals of Cylino	drical Functions				
Miller, A.		13b TIME C		14 DATE OF REPO		1 Day) 15	PAGE COUNT
Final FROM TO 16 SUPPLEMENTARY NOTATION			10	1988 June 21 11			
, , , , , , , ,							
17	COSATI		18 SUBJECT TERMS ((Continue on rever	se if necessary an	nd identify i	by block number)
FIELD GROUP SUB-GROUP			Hypergeometric functions Cylindrical functions				
Rejusing Ka	presentations mpé de Férie	for incomplete L	and identify by block n Lipschitz-Hankel integometric functions. In	grals of cylindric	ion formulas fo	-	•
tions asso	ciated with the	nese integrals are	provided for some car	ises.			
_ □ DNCLAS	SIFED UNLIMIT	ED ABSTRACT	RP1 DITIC USERS	21 ABSTRACT SECURITY CLASS HEATION UNCLASSIFIED			
22a NAME OF RESPONSIBLE (NOLVIDUAL) Allen R. Miller				226 TELEPHONE (202) 76	(Include Area Code 57-2215		Code 2303

DD Form 1473, JUN 86

Previous editions are obsolete S/N=0102+LF=014+6603 _____ SEC. R ** C. ASS FLA****** OF *6 S + A +

CONTENTS

INTRODUCTION	1
PRELIMINARY RESULTS AND DEFINITIONS	1
REPRESENTATIONS FOR $C_{e_{\mu,\nu}}(a,z)$, $C_{s_{\mu,\nu}}(a,z)$, $C_{c_{\mu,\nu}}(a,z)$	3
REDUCTION FORMULAS FOR L AND Q	5
APPLICATIONS	5
SUMMARY	7
REFERENCES	7

Acce	esion For	
Drid	GRANI TAB Doubled Liestien	
By	ibution/ lability	000
Dist	Avail and Special	l/or
A-1		,

A NOTE ON INCOMPLETE INTEGRALS OF CYLINDRICAL FUNCTIONS

INTRODUCTION

The class of cylindrical functions C includes Bessel functions of the first kind J, modified Bessel functions I, Bessel functions of the second kind or Neumann functions Y (or N), Bessel functions of imaginary argument or MacDonald functions K, and Bessel functions of the third kind that include Hankel functions of the first and second kind, $H^{(1)}$ and $H^{(2)}$.

The general incomplete Lipschitz-Hankel integral of cylindrical functions $C_{\nu}(z)$ is defined as the function of two complex variables:

$$C_{e_{\mu,\nu}}(a,z) \equiv \int_0^z e^{at} t^{\mu} C_{\nu}(t) dt$$
 (1)

Here the symbol e denotes the presence of the exponential function and μ , ν may be complex. Analogously, we define integrals that contain the functions $\sin(at)$ and $\cos(at)$ in place of $\exp(at)$:

$$C_{s_{\mu,\nu}}(a,z) \equiv \int_0^z \sin(at) t^{\mu} C_{\nu}(t) dt$$
 (2)

$$C_{c_{\mu,\nu}}(a,z) \equiv \int_0^z \cos(at) t^{\mu} C_{\nu}(t) dt$$
 (3)

To assure convergence of $C_{e_{\mu,\nu}}(a,z)$ and $C_{c_{\mu,\nu}}(a,z)$, it is necessary that Re $(\mu+1)>|\text{Re }\nu|$ when $C=K,Y,H^{(1)},H^{(2)};$ Re $(1+\mu+\nu)>0$ when C=I,J. When $\mu=\nu$, we define, for example, $C_{e_{\mu,\nu}}\equiv C_{e_{\mu}}$ where for convergence Re $\mu>-1/2$ for all C.

Integrals of the type given by Eqs. (1) to (3) occur very often in applied mathematics. Agrest and Maksimov [1] have found representations for $C_{e_{\mu}}(a,z)$, $C_{s_{\mu}}(a,z)$, and $C_{c_{\mu}}(a,z)$ using incomplete cylindrical functions. In this report we give representations for $C_{e_{\mu}}(a,z)$, $C_{s_{\mu}}(a,z)$, and $C_{c_{\mu}}(a,z)$ using only the Kampé de Fériet double hypergeometric functions $F_{2:1:0}^{0:2:1}[x,y]$.

PRELIMINARY RESULTS AND DEFINITIONS

To begin, we summarize some results that are found in Ref. 2, p. 85: Let a and b be arbitrary constants,

$$\mathbf{F}_{n}(z) \equiv aI_{n}(z) + be^{i\nu\pi}K_{n}(z)$$

$$G_{\nu}(z) \equiv aJ_{\nu}(z) + bY_{\nu}(z)$$

$$\alpha \equiv \begin{cases} i : \mathbf{H} = \mathbf{F} \\ 1 : \mathbf{H} = \mathbf{G} \end{cases} \quad \beta \equiv \begin{cases} 1 : \mathbf{H} = \mathbf{F} \\ 0 : \mathbf{H} = \mathbf{G} \end{cases}$$

Manuscript approved February 24, 1538.

Then

$$\int_{0}^{z} t^{\mu} \mathbf{H}_{\nu}(t) dt = e^{-\frac{\pi}{2}i\beta\mu} \left[(\mu + \nu - 1)z \mathbf{H}_{\nu}(z) s_{\mu - 1, \nu - 1}(\alpha z) + (2\beta - 1)\alpha z \mathbf{H}_{\nu - 1}(z) s_{\mu, \nu}(\alpha z) \right], \quad (4)$$

where the Lommel functions $s_{\mu,\nu}$ are given by

$$s_{\mu,\nu}(z) = \frac{z^{\mu+1}}{(\mu-\nu+1)(\mu+\nu+1)} \, _{1}F_{2} \left[1; \, \frac{\mu-\nu+3}{2} \, , \, \frac{\mu+\nu+3}{2} \, ; \, \frac{-z^{2}}{4} \, \right]. \tag{5}$$

Now defining

$$\xi \equiv \begin{cases} 1: & C = I, K \\ -1: & C = H, J, Y \end{cases} \eta \equiv \begin{cases} 1: & C = K \\ -1: & C = H, I, J, Y \end{cases}$$

we may deduce from Eqs. (4) and (5) the result

$$\int_{0}^{z} t^{\mu} C_{\nu}(t) dt = \frac{z^{\mu+1}}{\mu - \nu + 1} \left\{ C_{\nu}(z) \, {}_{1}F_{2} \left[1; \, \frac{\mu - \nu + 3}{2} , \, \frac{\mu + \nu + 1}{2} ; \, \frac{\xi z^{2}}{4} \right] + \frac{\eta z C_{\nu-1}(z)}{\mu + \nu + 1} \, {}_{1}F_{2} \left[1; \, \frac{\mu - \nu + 3}{2} , \, \frac{\mu + \nu + 3}{2} ; \, \frac{\xi z^{2}}{4} \right] \right\}.$$

$$(6)$$

We define the Kampé de Fériet double hypergeometric functions L and Q and give associated generating relations $\{3, 4\}$:

$$Q[\alpha, \beta, \gamma; \mu, \nu, \lambda; x, y] \equiv F_{2:1;0}^{0:2;1} \begin{bmatrix} \underline{\qquad} : & \alpha, \beta; & \gamma; \\ & & x, y \end{bmatrix}, \quad |x| < \infty, \quad |y| < \infty$$

$$\mu, \nu: \quad \lambda; \quad \underline{\qquad} :$$

$$L[\alpha, \beta; \gamma, \delta; x, y] = \sum_{m=0}^{\infty} \frac{(\alpha)_m}{(\gamma)_m(\delta)_m} \frac{x^m}{m!} {}_{1}F_{2}[\beta; m+\gamma, m+\delta; y]$$

$$Q[\alpha, \beta, \gamma; \mu, \nu, \lambda; x, y] = \sum_{m=0}^{\infty} \frac{(\alpha)_m(\beta)_m}{(\mu)_m(\nu)_m(\lambda)_m} \frac{x^m}{m!} {}_{1}F_{2}[\gamma; m + \mu, m + \nu; y].$$
 (7)

It is easy to see that the function L is a special case of Q:

$$Q[\alpha, \lambda, \beta; \gamma, \delta, \lambda; x, y] = L[\alpha, \beta; \gamma, \delta; x, y].$$

For brevity we define the parameter lists

$$A_{1}(\mu, \nu) \equiv \frac{\mu + \nu + 1}{2}, \frac{\mu - \nu + 1}{2}, 1; \frac{\mu + \nu + 1}{2}, \frac{\mu - \nu + 3}{2}, \frac{1}{2}$$

$$A_{2}(\mu, \nu) \equiv \frac{\mu + \nu + 1}{2}, \frac{\mu - \nu + 1}{2}, 1; \frac{\mu + \nu + 3}{2}, \frac{\mu - \nu + 3}{2}, \frac{1}{2}$$

$$B_{1}(\mu, \nu) \equiv \frac{\mu + \nu + 2}{2}, \frac{\mu - \nu + 2}{2}, 1; \frac{\mu + \nu + 2}{2}, \frac{\mu - \nu + 4}{2}, \frac{3}{2}$$

$$B_{2}(\mu, \nu) \equiv \frac{\mu + \nu + 2}{2}, \frac{\mu - \nu + 2}{2}, 1; \frac{\mu + \nu + 4}{2}, \frac{\mu - \nu + 4}{2}, \frac{3}{2}$$

$$D_{1}(\mu) \equiv \frac{1}{2} + \mu, 1; \frac{1}{2} + \mu, \frac{3}{2}$$

$$D_{2}(\mu) \equiv \frac{1}{2} + \mu, 1; \frac{3}{2} + \mu, \frac{3}{2}$$

$$E_{1}(\mu, \nu) \equiv \frac{1 + \mu + \nu}{2}, \frac{2 + \mu + \nu}{2}, 1; \frac{2 + \mu + \nu}{2}, \frac{3 + \mu + \nu}{2}, 1 + \nu$$

$$E_{2}(\mu, \nu) \equiv \frac{1 + \mu + \nu}{2}, \frac{2 + \mu + \nu}{2}, 1; \frac{3 + \mu + \nu}{2}, \frac{4 + \mu + \nu}{2}, 1 + \nu$$

$$F_{1}(\mu) \equiv \frac{1}{2} + \mu, 1; 1 + \mu, \frac{3}{2} + \mu$$

$$F_{2}(\mu) \equiv \frac{1}{2} + \mu, 1; 2 + \mu, \frac{3}{2} + \mu$$

REPRESENTATIONS FOR $C_{e_{-}}(a, z)$, $C_{s_{-}}(a, z)$, $C_{c_{-}}(a, z)$

Substituting the Maclaurin series for exp (at) in Eq. (1) and splitting into even and odd terms we obtain on integrating term by term

$$C_{e_{\mu}}(a,z) = \sum_{n=0}^{\infty} \frac{a^{2n}}{(2n)!} \int_{0}^{z} t^{\mu+2n} C_{\nu}(t) dt + \sum_{n=0}^{\infty} \frac{a^{1+2n}}{(1+2n)!} \int_{0}^{z} t^{1+\mu+2n} C_{\nu}(t) dt.$$

Then using Eq. (6) and the generating relation Eq. (7) we obtain after a tedious but straightforward computation the principal result of this note

$$C_{e_{\mu}}(a,z) = z^{1+\mu}C_{\nu}(z) \left\{ \frac{1}{\mu-\nu+1} Q \left[A_{1}; \frac{a^{2}z^{2}}{4}, \frac{\xi z^{2}}{4} \right] + \frac{az}{\mu-\nu+2} Q \left[B_{1}; \frac{a^{2}z^{2}}{4}, \frac{\xi z^{2}}{4} \right] \right\}$$

$$+ \eta z^{2+\mu}C_{\nu-1}(z) \left\{ \frac{1}{(\mu+\nu+1)(\mu-\nu+1)} Q \left[A_{2}; \frac{a^{2}z^{2}}{4}, \frac{\xi z^{2}}{4} \right] \right\}$$

$$+ \frac{az}{(\mu+\nu+2)(\mu-\nu+2)} Q \left[B_{2}; \frac{a^{2}z^{2}}{4}, \frac{\xi z^{2}}{4} \right] \right\}.$$

$$(8)$$

Since

$$C_{s_{\mu,\nu}}(a,z) = \frac{1}{2i} \left\{ C_{e_{\mu,\nu}}(ia,z) - C_{e_{\mu,\nu}}(-ia,z) \right\}$$

$$C_{c_{\mu,\nu}}(a,z) = \frac{1}{2} \left\{ C_{e_{\mu,\nu}}(ia,z) + C_{e_{\mu,\nu}}(-ia,z) \right\}$$

we may write

$$C_{s_{\mu,\nu}}(a,z) = \frac{az^{2+\mu}}{\mu - \nu + 2} \left\{ C_{\nu}(z)Q \left[B_1; \frac{-a^2z^2}{4}, \frac{\xi z^2}{4} \right] + \frac{\eta z}{\mu + \nu + 2} C_{\nu-1}(z)Q \left[B_2; \frac{-a^2z^2}{4}, \frac{\xi z^2}{4} \right] \right\}$$
(9)

$$C_{c_{\mu,\nu}}(a,z) = \frac{z^{1+\mu}}{\mu-\nu+1} \left\{ C_{\nu}(z)Q \left[A_1; \frac{-a^2z^2}{4}, \frac{\xi z^2}{4} \right] \right\}$$

$$+\frac{\eta z}{\mu+\nu+1}C_{\nu-1}(z)Q\left[A_2;\frac{-a^2z^2}{4},\frac{\xi z^2}{4}\right]\right\}.$$
 (10)

For $\mu = \nu$, Eqs. (8) to (10) reduce to

$$C_{e_s}(a,z) = z^{1-\mu}C_{\mu}(z) \left\{ L\left[D_1; \frac{a^2z^2}{4}, \frac{\xi z^2}{4}\right] + \frac{az}{2} Q\left[B_1(\mu,\mu); \frac{a^2z^2}{4}, \frac{\xi z^2}{4}\right] \right\}$$

$$+ \eta z^{2+\mu} C_{\mu-1}(z) \left\{ \frac{1}{1+2\mu} L \left[D_2; \frac{a^2 z^2}{4}, \frac{\xi z^2}{4} \right] + \frac{az}{4(1+\mu)} Q \left[B_2(\mu, \mu); \frac{a^2 z^2}{4}, \frac{\xi z^2}{4} \right] \right\}$$
(11)

$$C_{s_{\mu}}(a,z) = \frac{1}{2} az^{2+\mu} \left\{ C_{\mu}(z)Q \left[B_{1}(\mu,\mu); \frac{-a^{2}z^{2}}{4}, \frac{\xi z^{2}}{4} \right] \right\}$$

$$+ \frac{\eta z}{2(1+\mu)} C_{\mu-1}(z) Q \left[B_2(\mu,\mu); \frac{-a^2 z^2}{4}, \frac{\xi z^2}{4} \right]$$
 (12)

$$C_{C_{\mu}}(a,z) = z^{1+\mu} \left\{ C_{\mu}(z)L \left[D_1; \frac{-a^2z^2}{4}, \frac{\xi z^2}{4} \right] + \frac{\eta z}{1+2\mu} C_{\mu-1}(z)L \left[D_2; \frac{-a^2z^2}{4}, \frac{\xi z^2}{4} \right] \right\}. \quad (13)$$

Defining $J^+ \equiv J$, $J^- \equiv I$, it is interesting to note that we may also write [6]

$$J_{e_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}e^{az}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \left\{ Q\left[E_1; \frac{\mp z^2}{4}, \frac{a^2z^2}{4}\right] - \frac{az}{2+\mu+\nu} Q\left[E_2; \frac{\mp z^2}{4}, \frac{a^2z^2}{4}\right] \right\}$$

$$J_{e_{\mu}}^{\pm}(a,z) = \frac{z(z^2/2)^{\mu}e^{az}}{(1+2\mu)\Gamma(1+\mu)} \left\{ L\left[F_1; \frac{\pm z^2}{4}, \frac{a^2z^2}{4}\right] - \frac{az}{2(1+\mu)} L\left[F_2; \frac{\pm z^2}{4}, \frac{a^2z^2}{4}\right] \right\}. \tag{14}$$

Here the Bessel functions J_{ν}^{\pm} do not appear.

REDUCTION FORMULAS FOR L AND Q

Many special cases of Eqs. (11) to (14) may be obtained in one form or another, provided we know a reduction formula for either L or Q. We summarize some known relevant reduction formulas [3-6]:

$$L[\alpha, \beta; \gamma, \delta; z, z] = {}_{1}F_{2}[\alpha + \beta; \gamma, \delta; z]$$

$$L\left[D_{2}; \frac{z^{2}}{4}, \frac{z^{2}}{4}\right] = \frac{\sinh z}{z}$$

$$L\left[D_{1}; \frac{z^{2}}{4}, \frac{z^{2}}{4}\right] = \frac{2\mu}{1 + 2\mu} \frac{\sinh z}{z} + \frac{\cosh z}{1 + 2\mu}$$

$$Q\left[B_{2}(\mu, \mu); \frac{z^{2}}{4}, \frac{z^{2}}{4}\right] = \frac{1 + \mu}{1 + 2\mu} \frac{4}{z^{2}} \left\{\cosh z - \left(\frac{2}{z}\right)^{\mu} \Gamma(1 + \mu)I_{\mu}(z)\right\}$$

$$Q\left[B_{1}(\mu, \mu); \frac{z^{2}}{4}, \frac{z^{2}}{4}\right] = \frac{2}{1 + 2\mu} \frac{1}{z} \left\{2\mu \frac{\cosh z}{z} + \sinh z - \left(\frac{2}{z}\right)^{\mu} \Gamma(1 + \mu)I_{\mu - 1}(z)\right\}.$$

Other properties and reduction formulas for L and Q are found in Refs. 3-6.

APPLICATIONS

Of interest in applications are the functions $J_{e_0}(a,z)$, $I_{e_0}(a,z)$, $Y_{e_0}(a,z)$, and $K_{e_0}(a,z)$. $J_{e_0}(a,z)$ and $Y_{e_0}(a,z)$ occur in problems in the theory of diffraction in optical apparatus [1, p. 227]. The function $I_{e_0}(a,z)$ plays an important role in the study of oscillating wings in supersonic flow and arises in the study of resonant absorption in media with finite dimensions [1, p. 195]. $K_{e_0}(a,z)$ occurs when the statistical distribution of the maxima of a random function is applied to the amplitude of a sine wave in order to calculate the distribution of its ordinate. This latter distribution is of

ALLEN R. MILLER

interest in the study of the scattered coherent reflected field from the sea surface [7, 8]. Since the functions $C_{e_n}(a, z)$ are of some importance, by using Eq. (11) and defining

$$L_{1}(x, y) \equiv L \left[\frac{1}{2}, 1; \frac{1}{2}, \frac{3}{2}; x, y \right]$$

$$L_{0}(x, y) \equiv L \left[\frac{1}{2}, 1; \frac{3}{2}, \frac{3}{2}; x, y \right]$$

$$Q_{1}(x, y) \equiv Q \left[1, 1, 1; 1, 2, \frac{3}{2}; x, y \right]$$

$$Q_{0}(x, y) \equiv Q \left[1, 1, 1; 2, 2, \frac{3}{2}; x, y \right]$$

we obtain

$$K_{e_0}(a,z) = zK_0(z) \left\{ L_1 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] + \frac{az}{2} Q_1 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] \right\}$$

$$+ z^2 K_1(z) \left\{ L_0 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] + \frac{az}{4} Q_0 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] \right\}$$

$$Y_{e_0}(a,z) = zY_0(z) \left\{ L_1 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] + \frac{az}{2} Q_1 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] \right\}$$

$$+ z^2 Y_1(z) \left\{ L_0 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] + \frac{az}{4} Q_0 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] \right\}$$

$$J_{e_0}(a,z) = zJ_0(z) \left\{ L_1 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] + \frac{az}{2} Q_1 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] \right\}$$

$$+ z^2 J_1(z) \left\{ L_0 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] + \frac{az}{4} Q_0 \left[\frac{a^2 z^2}{4}, \frac{-z^2}{4} \right] \right\}$$

$$I_{e_0}(a,z) = zI_0(z) \left\{ L_1 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] + \frac{az}{2} Q_1 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] \right\}$$

$$- z^2 I_1(z) \left\{ L_0 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] + \frac{az}{4} Q_0 \left[\frac{a^2 z^2}{4}, \frac{z^2}{4} \right] \right\} .$$

The equations for $H_{e_0}^{(1)}$ and $H_{e_0}^{(2)}$ are the same as those for Y_{e_0} or J_{e_0} with Y or J replaced by $H^{(1)}$ or $H^{(2)}$. Further, from Eq. (14) we have

$$J_{e_0}(a,z) = ze^{az} \left\{ L\left[1, \frac{1}{2}; \frac{3}{2}, 1; \frac{a^2z^2}{4}, \frac{-z^2}{4}\right] - \frac{az}{2} L\left[1, \frac{1}{2}; \frac{3}{2}, 2; \frac{a^2z^2}{4}, \frac{-z^2}{4}\right] \right\}$$

$$I_{e_0}(a,z) = ze^{az} \left\{ L\left[1,\frac{1}{2};\frac{3}{2},1;\frac{a^2z^2}{4},\frac{z^2}{4}\right] - \frac{az}{2}L\left[1,\frac{1}{2};\frac{3}{2},2;\frac{a^2z^2}{4},\frac{z^2}{4}\right] \right\}.$$

Here we have used the properties of L that

$$L[\alpha, \beta; \gamma, \delta; x, y] = L[\alpha, \beta; \delta, \gamma; x, y] = L[\beta, \alpha; \gamma, \delta; y, x].$$

The latter results for $C_{e_a}(a, z)$ should prove useful in numerical computation of these functions.

SUMMARY

Secretary 1992-1997 1997 1998 Kill State Constant

Representations for incomplete Lipschitz-Hankel integrals of cylindrical functions using only the Kampé de Fériet functions in two variables $F_{2:1:0}^{0:2:1}[x, y]$ are given. In addition, known relevant reduction formulas for these functions are provided.

REFERENCES

- 1. M.M. Agrest and M.S. Maksimov, *Theory of Incomplete Cylindrical Functions and Their Applications* (Springer-Verlag, New York, 1971).
- 2. Y.L. Luke, Integrals of Bessel Functions (McGraw-Hill, New York, 1962).
- 3. A.R. Miller, "An Incomplete Lipschitz-Hankel Integral of K_0 ," J. Math. Anal. Appl. (to appear).
- 4. A.R. Miller, "A Lipschitz-Hankel Integral of K_0 ," J. Franklin Institute (to appear).
- A.R. Miller, "Incomplete Lipschitz-Hankel Integrals of MacDonald Functions," NRL Report 9112, March 1988.
- 6. A.R. Miller, "Incomplete Lipschitz-Hankel Integrals of Bessel Functions," J. Math. Anal. Appl. (to appear).
- 7. A.R. Miller and E. Vegh, "A Family of Curves for the Rough Surface Reflection Coefficient," *IEE Proc.-H*, 133, 483-489 (1986).
- 8. A.R. Miller and E. Vegh, "Comparison of the Rough Surface Reflection Coefficient with Specularly Scattered Acoustic Data," *J. Acoust. Soc. Amer.*, **82**(5), 1836-1838 (1987).