STK211 Metode Statistika

catatan: sebagian besar isi pada slide ini diambil dari bahan kuliah Prof. Khairil Anwar Notodiputro

Pengajar

- Dr. Bagus Sartono
- Prof. Dr. Mennofatria Boer
- Dr. Rahmat Kurnia

Bagus Sartono

- Latar Belakang Pendidikan Formal
 - Sarjana Sains, Statistika, Institut Pertanian Bogor, 2000
 - Magister Sains, Statistika, Institut Pertanian Bogor, 2004
 - PhD, Applied Economics, Universiteit Antwerpen, 2012
- Bidang keahlian
 - Statistika
 - Data Science
 - Experimental Design
- Nomor Kontak: 0852-1523-1823
- bagusco@gmail.com atau bagusco@apps.ipb.ac.id

Tema Umum

Pembelajaran dari Data (learning from data)

Ruang Lingkup

Gathering and Exploring Data

- Statistika sbg ilmu & seni pembelajaran dari data
- Eksplorasi data dg grafik dan ringkasan numerik
- Percobaan, percontohan dan observasi
- Pengumpulan data yang harus dihindari

Probability, Probability Distributions, and Sampling Distributions

- Peluang dalam keseharian
- Sebaran peluang
- Sebaran percontohan

Inferential Statistics

- Pendugaan parameter
- Selang kepercayaan
- Pengujian hipotesis
- Pembandingan dua kelompok

Analyzing Association

- Model asosiasi antar-peubah kategorik
- Model hubungan antar-peubah kuantitatif

"without data, you are just another person with an opinion"

mengapa belajar statistika?

- Semakin sulit kita hidup saat ini kalau tidak memahami data
- Masyarakat melek informasi (modern) perlu:
 - Mengambil sari-pati dari informasi yang ada di dalam tabel, diagram dan grafik.
 - Memahami argumen berbasis data, BUKAN asal bunyi (asbun)
 - Memahami bagaimana cara mengumpulkan data, menyajikan data, menganalisis data dan cara mengambil kesimpulan

Hasil yang diharapkan

	Menerima + Menjalankan + Menghargai + Menghayati + Mengamalkan
SIKAP	PRIBADI YANG BERIMAN, BERAKHLAK MULIA, PERCAYA DIRI, DAN BERTANGGUNG JAWAB DALAM BERINTERAKSI SECARA EFEKTIF DENGAN LINGKUNGAN SOSIAL, ALAM SEKITAR, SERTA DUNIA DAN PERADABANNYA
	Mengamati + Menanya + Mencoba + Menalar + Menyaji + Mencipta
KETERAMPILAN	PRIBADI YANG BERKEMAMPUAN PIKIR DAN TINDAK YANG PRODUKTIF DAN KREATIF DALAM RANAH KONKRET DAN ABSTRAK
	Mengetahui + Memahami + Menerapkan + Menganalisa + Mengevaluasi +Mencipta
PENGETAHUAN	PRIBADI YANG MENGUASAI ILMU PENGETAHUAN, TEKNOLOGI, SENI, BUDAYA DAN BERWAWASAN KEMANUSIAAN, KEBANGSAAN, KENEGARAAN, DAN PERADABAN

Apa yang akan kita pelajari?

 Analisis data adalah PROSES mulai dari perencanaan, pengumpulan data, penyajian data dan ringkasan numerik, pemodelan dan analisis, penarikan kesimpulan

- DATA bukan sekedar ANGKA
- DATA memiliki KONTEKS, yang melekat kepadanya mulai dari bagaimana dia diperoleh, dianalisis, dan kemudian ditarik kesimpulan

Rincian Materi

No.	Pokok Bahasan	Sub Pokok Bahasan
1	Lingkup statistika	 Statistika: Apa dan Mengapa? Statistika Deskriptif dan Inferensia: Induksi vs. Deduksi Peubah dan macam-macam peubah. Skala pengukuran (nominal, ordinal, interval, rasio) Ilustrasi statistika dalam penelitian Contoh acak dan penarikan contoh acak sederhana. Percobaan vs Studi observasional)
2	Deskripsi data	 Sebaran frekuensi, frekuensi kumulatif Presentasi grafik Diagram dahan-daun Ukuran lokasi (rataan, rataan terboboti, median, dan modus) Ukuran keragaman (kisaran, ragam dan simpangan baku) Persentil dan Kuartil Diagram kotak garis
3	Konsep dasar peluang	 Ruang contoh dan kejadian, operasi-operasi pada kejadian Permutasi dan kombinasi Peluang (aksiomatik dan frekuensi relatif), peluang bersyarat Menghitung peluang suatu kejadian Penarikan contoh acak (pemulihan dan tanpa pemulihan) Kejadian bebas dan Kaidah penggandaan Dalil Bayes

Rincian Materi

No.	Pokok Bahasan	Sub Pokok Bahasan
4	Populasi, contoh, peubah acak dan sebaran peluang peubah acak.	 Populasi (batasan populasi, populasi terhingga dan tak hingga) Contoh (pengertian contoh, contoh representatif, dan contoh acak) Peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Sebaran peubah acak (konsep dan sifat-sifat nilai harapan dan ragam) Beberapa model sebaran peubah acak (Sebaran Binomial, Sebaran Poisson, Sebaran Normal) Hampiran Normal terhadap Binomial
5	Sebaran penarikan contoh	 Penarikan contoh dan Inferensia (pengertian inferensia statistik, statistik dan parameter, dan sebaran penarikan contoh) Nilai harapan dan ragam penarikan contoh. Penarikan contoh dari populasi Normal (Sebaran t-Student, Khi-Kuadrat, dan Sebaran F) Rataan contoh terbakukan dan Dalil Limit Pusat
6	Pendugaan parameter	 Pengertian pendugaan (penduga tak bias, dan penduga terbaik) Selang kepercayaan bagi rataan sebaran Normal, bagi proporsi Pendugaan parameter Binomial p. Ukuran contoh untuk pendugaan rataan populasi Normal dengan tingkat ketelitian tertentu.

Rincian Materi

No	Pokok Bahasan	Sub Pokok Bahasan
7	Konsep pengujian hipotesis, Pengujian Hipotesis kasus satu populasi	 Prinsip pengujian hipotesis (pengertian, galat jenis I dan galat jenis II). Pengujian hipotesis rataan populasi dan proporsi (uji z dan atau uji t) Asumsi pengujian hipotesis Pengujian hipotesis untuk ragam populasi (uji khi kuadrat) Hubungan ukuran contoh dan kesensitifan uji
9	Pengujian hipotesis kasus dua populasi	 Selang kepercayaan dan uji hipotesis untuk beda dua rataan populasi (contoh bebas dan berpasangan). Asumsi yang diperlukan Uji untuk tiga nilai tengah populasi (Anova)
10	Korelasi dan Regresi linier sederhana	 Pengertian dan cara memperoleh korelasi Pengertian regresi linier sederhana Pendugaan koefisien regresi dengan Metode Kuadrat Terkecil Menduga keragaman dari galat Pengujian hipotesis terhadap parameter regresi Ukuran kelayakan model : koefisien determinasi
11	Kecocokan model dan tabel kontingensi	 Uji Khi Kuadrat untuk 'Goodness of Fit' Uji Khi kuadrat untuk uji kebebasan antar dua peubah kategorik

Referensi

 Agresti A, Franklin CA. 2017. The Art and Science of Learning from Data, 3rd Edition. Pearson.

Ketentuan Perkuliahan

Tugas-tugas

Mengerjakan soal-soal latihan, kuis, tugas mandiri, pembuatan makalah tentang topik yang terkait, dan mengerjakan tugas-tugas individu maupun kelompok lainnya yang dirasa perlu.

Kriteria Penilaian

Penilaian akhir terhadap mahasiswa diberikan di akhir kuliah dengan mempertimbangkan ujian tengah semester (UTS), ujian akhir semester (UAS), tugas, dan presentasi. Komposisi dari masing-masing adalah 35% UTS, 35% UAS, dan 30% (tugas, praktikum, kuis dan presentasi).

Ketentuan Perkuliahan

- Toleransi waktu keterlambatan: 15 menit
- Berpakaian dan berprilaku sopan sebagaimana ditetapkan dalam aturan IPB
- Tidak ada ujian susulan kecuali bagi mahasiswa yang sakit atau menjalankan tugas institusi dan dibuktikan dengan surat keterangan dari fakultas

Penilaian

- Penilaian didasarkan pada hasil UTS, UAS dan Tugas yang diberikan kepada mahasiswa
- Nilai akhir berupa A, AB, B, BC, C, D, dan E
- Nilai A diberikan kepada mahasiswa yang menunjukkan hasil cemerlang dalam UTS, UAS maupun Tugas. Nilai ini kira-kira setara dengan 76 ke atas dalam skala penilaian 0-100.
- Ujian susulan: soal berbeda dengan soal pada ujian utama

mari kita mulai....

statistik?

ARSENAL O - O CHELSEA

STATISTIK PERTANDINGAN			
7	TEMBAKAN	13	
2	TEMBAKAN KE TARGET	4	
8	TENDANGAN SUDUT	6	
7	PELANGGARAN	12	
2	KARTU KUNING	1	
0	KARTU MERAH	0	
84	OPERAN SUKSES (%)	77	
61	PENGUASAAN BOLA (%)	39	

INDONESIA STOCK MARKET (JCI)

Senin, 23 Mei 2016

DARI 100 ORANG YG SAYA SURVEY, 100% PILIH PRABOWO

SAYA SURVEYNYA DI KANTOR GERINDRA

Definisi Statistika

 Statistika adalah ilmu yg mempelajari selukbeluk data, terutama bagaimana :

- Cara mengumpulkan
- Cara menganalisis atau memodelkan
- Cara menarik kesimpulan shg kesahihan (validity) dan kehandalan (reliability) dari kesimpulan tsb dapat dinilai secara objektif

Deduksi dan Induksi

Deduksi dan Induksi

Statistika Deskriptif dan Inferensia

Statistika deskriptif

- penyajian data (tabel, grafik atau gambar, ukuran deskriptif)
- merupakan upaya agar info dapat ditangkap dg jelas

Inferensi statistika

 merupakan proses penarikan kesimpulan secara induktif

Ilustrasi

- kajian efektivitas obat tekanan darah utk hipertensi moderat (90– 150)
- 389 pasien, dibagi dua
 - 196 sbg kelompok kontrol (placebo)
 - 193 sbg kelompok yang diberikan obat senyawa aktif

		Aktif	Kontrol
	Uraian		
1.	Jumlah kasus dengan tekanan darah ≥ 130	0	24
2.	Jumlah kasus kejadian hipertensif	37	89
3.	Jumlah kasus serangan jantung dan penyakit jantung koroner	35	38
4.	Jumlah kasus pembengkakan jantung	12	20
5.	Jumlah pasien	193	196

		Aktif	Kontrol
	Uraian		
1.	Jumlah kasus dengan tekanan darah ≥ 130	0	24
2.	Jumlah kasus kejadian hipertensif	37	89
3.	Jumlah kasus serangan jantung dan penyakit jantung koroner	35	38
4.	Jumlah kasus pembengkakan jantung	12	20
5.	Jumlah pasien	193	196

- Dari 193 pasien kelompok aktif, 19% mengalami kejadian hipertensif
 - Ini merupakan statistika deskriptif (hanya fakta)
- Pasien yang mengkonsumsi obat tekanan darah lebih kecil risiko utk terkena pembengkakan jantung drpd yang tidak mengkonsumsi obat tersebut
 - Ini merupakan pernyataan inferensi (kita melampaui fakta!)

Statistika bekerja dengan data contoh

- Populasi vs contoh
 - Populasi (population): himpunan semua individu/objek yang menjadi minat/perhatian
 - Contoh (sample): himpunan bagian dari populasi
- Sensus vs Survei
 - Sensus: proses pengumpulan data populasi
 - Survei: proses pengumpulan data contoh
- Mengapa bekerja dengan contoh

Mengapa Contoh?

- Keterbatasan sumberdaya (tenaga, biaya, waktu, dll)
- Sensus tidak dapat dikerjakan untuk kasus individu yang selalu bergerak ataupun bertambah jumlahnya.
- Proses pengumpulan data kadangkala bersifat merusak, misal: pemeriksaan kualitas kemasan, pemeriksaan rasa buah, dsb

Contoh harus representatif

 Representatif = mewakili >> kesimpulan tidak bias. Contoh harus memiliki karakteristik yang sama dengan populasi karena data contoh digunakan untuk menarik kesimpulan mengenai populasi.

Contoh Acak (random sample)

Probability sampling vs non-probability sampling

Statistik sebagai penduga parameter

- Parameter vs Statistik
 - Parameter: karakteristik numerik dari populasi
 - Statistik: karakteristik numerik dari contoh
 - Statistik adalah penduga parameter

- Statistik selalu memiliki galat (error)
 - Sampling error
 - Non-sampling error

Keacakan dan Keberagaman

- Random sampling allows us to make powerful inferences about populations.
- Randomness is also crucial to performing experiments well.
- Just as people vary, so do samples vary.

Perhitungan KPU ±13.000 TPS

Quick Count ±500 TPS

REAL COUNT KPU

PRABOWO-HATTA

46.85% 62.576.444 Suara **53.15%** 70.997.833 Suara

Peubah dan Jenisnya

- Variable, karakteristik dari individu. Misal untuk individu manusia, dapat dikumpulkan data mengenai: ukuran tubuh, usia, pekerjaan, penghasilan. Untuk individu tanaman dapat dikumpulkan data peubah ukuran tanaman, produktivitas, daya tahan terhadap hama, dsb.
- Numerik vs Kategorik
- Peubah Kategorik
 - Nominal
 - Ordinal
- Peubah Numerik
 - Interval
 - Ratio

Peubah Kategorik

Nominal

- Hanya berupa penggolongan. Urutan kelas atau kategorinya tidak memiliki makna.
- Misal: warna baju, pekerjaan, bentuk daun

Ordinal

- Urutan kelas atau kategorinya dapat diurutkan.
- Misal: intensitas serangan hama (parah, sedang, ringan), tingkat pendidikan (SD, SMP, SMA, PT), tingkat kesetujuan masyarakat (sangat setuju, setuju, kurang setuju, tidak setuju)

Peubah Numerik

Interval

- Nilai 0 pada peubah ini tidak bersifat mutlak, dan hanya berupa kesepakatan.
- Misal: temperatur benda/ruangan, nilai IPK

Ratio

- Nilai 0 pada peubah ini bersifat mutlak.
- Misal: penghasilan per bulan, panjang benda, jumlah daun per cabang, produktivitas tanaman, berat badan sapi.

Data

- Nominal:
 - kategori (misal suku, agama, varietas)
- Ordinal
 - kategori dan peringkat (misal tingkat kepuasan)
- Interval
 - kategori, peringkat, dan jarak (misal temperatur dalam derajat Celsius)
- Rasio
 - kategori, peringkat, jarak, dan perbandingan (misal tinggi tanaman dalam meter, hasil padi per ha dalam ton)

Rangkuman

- Statistika adalah ilmu tentang seluk-beluk data: Cara mengumpukan, cara memodelkan dan menganalisis dan cara menarik kesimpulan
- Kita perlu belajar statistika krn masyarakat modern berargumen berdasarkan data, shg kita harus tahu bagaimana menarik kesimpulan berdasarkan data.
- Pola pikir statistika bersifat induktif sehingga setiap kesimpulan yang diperoleh selalu berpeluang untuk salah. Teknik statistika perlu untuk memperkecil kesalahan ini.
- Setiap data yang kita amati memiliki konteks: data bukanlah sekedar angka
- Ada 4 skala pengukuran data: nominal, ordinal, interval, rasio.
 Perbedaan skala pengukuran → perbedaan teknik statistika yang digunakan