SME0820 - Gestão da Qualidade - Questionário 7 e 8

Francisco Rosa Dias de Miranda 4402962 Heitor Carvalho Pinheiro 11833351

novembro 2021

```
library(tidyverse)
library(knitr)
library(qcc)
library(vMask)
set.seed(1238)
```

Geração dos dados

Foram gerados um total de 40 observações, provenientes de distribuições Normais independentes, de mesma média e variância amostrada de uma distribuição $\chi^2_{(\nu)}$. As 30 primeiras observações têm média $\mu=110$ e $\nu=1$. Já as 10 últimas, $\mu_2=112$ e $\nu=2$, respectivamente.

1	2	3	4	5
113.5960	110.1054	109.8060	109.9909	109.9835
110.6513	109.9392	110.0026	109.9971	109.9697
108.1505	110.1931	110.0616	109.9851	109.9957
113.2783	109.6346	110.0686	110.0038	109.9926
113.4769	110.7103	110.1520	109.9951	109.9817
106.9789	109.9956	110.1210	109.9993	110.0309

Característica da qualidade

Foram coletadas medições em milímetros do comprimento de mancais com flange de 2 parafusos, realizadas por cinco funcionários de forma independente. Nos primeiros 30 produtos, é assumido que o processo estava sob controle.

Em seguida, houve um problema na forma de injeção. A gerência foi notificada e o processo foi interrompido para reparos na máquina.

Graficos de controle

Gráfico de controle X-barra

```
q1 <- qcc(dados[1:30,], type="xbar", newdata= dados[31:40,])
```


Grafico de controle Xbarra R

```
q2 <- qcc(dados[1:30,], type="R", newdata= dados[31:40,])
```


Grafico de controle Xbarra S

```
q3 <- qcc(dados[1:30,], type="S", newdata= dados[31:40,])
```


Curiosamente, há 3 pontos violando as regras dentro dos dados sob controle, e nenhum ponto acima do 30 infringe as diretivas, como seria o esperado.

Grafico da soma cumulativa

```
q4 <- cusum(dados[1:30,], newdata= dados[31:40,])
```


Este gráfico permitiu a rápida detecção de problemas, a partir do ponto 31.

CUMSUM tabular

```
q5 <- cusum(dados[1:30,],newdata = dados[31:40,], decision.interval = 4, se.shift = 1, chart.all=FALSE)
```


No gráico da soma cumulativa, usamos um intervalo de decisão H=4, indicando que o processo emitirá um sinal de que está fora de controle caso o número de desvios-padrão entre a linha central e os limites de controle seja igual a 4. Também usamos um shift=1 indicando que toleramos um erro padrão de 1 em relação à média.

Em comparação ao gráfico de X-R, o gráfico da **soma cumulativa**, detectou que o processo está fora de controle a partir da observação 31 e se mantém assim até a observação 40, como esperado. Já no gráfico de X-R, o processo é considerado fora de controle a partir da amostra 32, e as amostras 34, 35 e 36 que estão fora de controle foram consideradas dentro dos limites de especificação.

Mascara V

```
dm <- as.matrix(dados)
mask <- vMask.method4(data = dm, mu0 = mu1, sleep = "PressEnter")</pre>
```

CUSUM control chart and V-Mask on point (32, c32)

A máscará V foi capaz de detectar inconformidade dos dados a partir da observação 32.

Limites de Especificação

Para este exemplo vamos definir os limites de especificação, Limite Inferior de Especificação (LSL) e Limite Superior de Especificação (USL) de modo que LSL = 12 e USL = 111, medidos em mm.

Capacidade do processo

Definindo a variância da amostra

```
lsl <- 12
usl <- 111

sigma <- mean(var(dados[1:30,]))
#calculando o Cp
cp <- (usl - lsl)/6*sigma
cp</pre>
```

[1] 3.463271

Da tabela do Montgomery temos que $d_2=2.326.$