_					
Фа	NΛ	и	п	и	a

1. Пусть F – PRF на $(\{0,1\}^n,\{0,1\}^n,Y)$. Выберите верные утверждения, доказав или опровергнув их.

Nº	Задание	Ответ	
a	$F: \forall k, x, c \in \{0,1\}^n \ F(k, x \oplus c) = F(k, x) \oplus c; F$ – может быть		
	стойкой		
b	$F: \forall k, x, c \in \{0,1\}^n \ F(k \oplus c, x) = F(k, x) \oplus c; F$ – не может быть		
	стойкой		
	Не заполнять!	/ 2	/ 2

2. Выберите верные утверждения:

Nº	Задание	Ответ
а	Любой стойкий блочных шифр семантически стойкий для любых	
	сообщений имеющих размер, кратный длине блока	
b	Если блочный шифр имеет ключ длины 128 бит, его параметр	
	стойкости не может превосходить 128 бит	
С	Если блочный шифр имеет ключ длины 128 бит, его параметр	
	стойкости не может быть ниже 64 бит	
d	Возможно существование стойкого блочного шифра, не стойкого к	
	восстановлению ключа	
е	Стойкость блочного шифра можно свести к стойкости его функции	
	зашифрования, как псевдослучайной подстановки	
f	Блочной шифр в режиме ЕСВ является шифром подстановки	
g	Если стойкий блочный шифр имеет ключ длины 128 бит и размер	
	блока 128 бит то он является абсолютно стойким.	
h	Невозможно построить абсолютно стойкий шифр с длинной	
	ключа 128 бит на основе блочного шифра с длинной ключа 128	
	бит, размером блока 64 бита для сообщений длины 256 бит.	
	Не заполнять!	/ 8

3. Пусть $F:K\times X\to Y$ – стойкая PRF, $Y=\{0,1\}^n$. Для некоторого параметра l< n рассмотрим $F':K\times X\to Y',Y'=\{0,1\}^l:F'(k,x)=F(k,x)[0,\ldots,l-1]$. Является ли F' - стойкой PRF? Докажите

	Ответ	
Не заполнять!	/2	

4. Рассмотрим игру на семантическую стойкость для случайных сообщений: вместо выбора произвольных сообщений противник может выбрать сообщения только случайно из множества сообщений. В остальном игра идентично обычной игре на семантическую стойкость. Являются ли игры эквивалентными? (записать в ответ). Если нет — выясните какая из них является более строгой, докажите это сведением, продемонстрируйте пример шифра, стойкого в одной из моделей семантической стойкости, и не стойкого в другой. Если игры эквивалентны — формально докажите это.

	Ответ	
Не заполнять!	/4	

5. Пусть $F: K \times X \to Y$ – стойкая PRF, $K = X = Y = \{0,1\}^n$. Какие из следующих алгоритмов является стойкими PRF? Для каждого алгоритма предоставить доказательство стойкости или атаку.

Nº	Задание	Ответ
а	F'(k,x) = F(k,x) 0	
b	$F'(k,x) = F(k,x) \oplus 1^n$	
С	$F'(k,(x,y)) = F(k,x) \oplus F(k,y)$	
d	$F'(k,x) = F(k,x) \oplus x.$	
е	$F'((k_1, k_2), x) = F(k_1, x) \oplus F(k_2, x)$	
f	$F'(k,x) = F(k,x) F(k,x \oplus 1^n)$	
g	$F'(k,x) = F(F(k,0^n),x).$	
h	$F'(k,x) = F(F(k,0^n),x) F(k,x)$	
i	F'(k,x) = F(k,x) F(k,F(k,x))	
	Не заполнять!	/9

6. Рассмотрим модифицированную игру на стойкость PRF. Назовём игру, описанную в лекции — адаптивной, в том смысле, что противник отправляет сообщения последовательно, после получения ответа на свое предыдущее сообщения от претендента. Т.е. при формировании сообщения x_i противник может учитывать полученные от претендента результаты $y_1, ..., y_{i-1}$. Рассмотрим неадаптивную версию игры — противник отправляет сообщения $x_1, ..., x_q$ одновременно, и получает результаты $y_1, ..., y_q$, где здесь и далее $y_i = f(x_i)$. Преимущество противника в неадаптивной игре описывается аналогично адаптивной версии. Пусть F стойкая PRF на (K, X, X), |X| - сверх-полиномиальная. Построим F' следующим образом: для некоторого элемента $x' \in X, y' = F(k, x')$ определим F'(k, y') = x', для остальных $x \in X$: $x \neq y'$ F'(k, x) = F(k, x). Формально докажите или опровергните утверждения ниже.

Для заданий с и d определите аналогичную задачу для блочных шифров E и E'.

Nº	Задание	Ответ	
а	F^\prime – не стойкая PRF против адаптивных противников		
b	F^\prime – стойкая PRF против неадаптивных противников		
С	Е' – не стойкий блочный шифр против адаптивных противников		
d	Е' – стойкий блочный шифр против неадаптивных противников		
	Не заполнять!	/4	/4