Департамент образования и науки города Москвы Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет» Институт цифрового образования Департамент информатики управления и технологий

# Агафонов Антон Александрович БД-241м

# Практическая работа 1. Введение в большие данные и их хранение. Инструменты обработки больших данных (Hadoop)

Направление подготовки/специальность

38.04.05 - Бизнес-информатика

Бизнес-аналитика и большие данные

(очная форма обучения)

Вариант 1

Москва

### Цель

Изучить основные операции и функциональные возможности системы, что позволит понять принципы работы с данными и распределенными вычислениями.

#### Основная часть

Запускаем hadoop

Start-dfs.sh

```
hadoop@devopsvm:~$ sudo su - hadoop
[sudo] password for devops:
hadoop@devopsvm:~$ start-dfs.sh
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [devopsvm]
2025-03-30 21:59:50,217 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable hadoop@devopsvm:~$
```

Рис.1 Запускаем файловую систему

## Start-yarn.sh

Проверяем запущенные службы командой

jps



Рис.2 Проверка запущенных служб

Проверяем доступность запущенных систем

Переходим по ссылке для проверки запущен ли dfs по ссылке

Localhost:9870/dfshealth.html#tab-overview



Рис.3 проверка доступности систем

Проверяем запущен ли yarn по ссылке

Localhost:8088/cluster



Рис.4 Проверка работы yarn

Создаем пользователя и каталог командой

Hdfs dfs -mkdir -p /agafonov01/Hadoop/input

```
hadoop@devopsvm: ~
 F
           hadoop@devopsvm: ~
                                               devops@devopsvm
devops@devopsvm:~$ sudo su - hadoop
[sudo] password for devops:
hadoop@devopsvm:~$ start-dfs.sh
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [devopsvm]
library for your platform... using builtin-java classes where
hadoop@devopsvm:~$ start-yarn.sh
Starting resourcemanager
Starting nodemanagers
hadoop@devopsvm:~$ jps
4976 NodeManager
3281 NameNode
3479 DataNode
3672 SecondaryNameNode
5340 Jps
4845 ResourceManager
hadoop@devopsvm:~$ hdfs dfs -mkdir -p /agafonov01/hadoop/input
2025-03-30 22:09:24,247 WARN util.NativeCodeLoader: Unable to l
library for your platform... using builtin-java classes where
hadoop@devopsvm:~$
```

Рис. 5 Создание пользователя



Рис. 6 Проверка созданного пользователя

#### Скачиваем данные

#### wget

https://raw.githubusercontent.com/BosenkoTM/Distributed\_systems/main/practice/2 024/I w\_01/GDP.csv



Рис.7 Скачиваем данные

Создаем каталог для данных

Hdfs dfs -mkdir -p /agafonov01/Hadoop/input/economic\_data



Рис.8 Создание каталога economic\_data



Рис.9 Проверка созданного каталога economic\_data

Size

Group

supergroup 0 B

Last

Modified

Mar 30

22:22

If Block If

Size

0 B

Previous

Replication

0

11

economic\_data 🗂

Name

Next

Переносим данные в каталог

抽

Permission

drwxr-xr-x

Showing 1 to 1 of 1 entries

Owner

hadoop

Hdfs dfs -put GDP.csv /agafonov01/Hadoop/input/economic\_data

```
Mar 30 22:31
                                hadoop@devopsvm: ~
           hadoop@devopsvm: ~
                                                 hadoop@devopsvm: ~
systems/main/practice/2024/lw 01/GDP.csv
--2025-03-30 22:18:16-- https://raw.githubusercontent.com/BosenkoTM/Distributed
systems/main/practice/2024/lw 01/GDP.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.1
33, 185.199.108.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.
133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 30268 (30K) [text/plain]
Saving to: 'GDP.csv'
GDP.csv
                   in 0.02s
2025-03-30 22:18:16 (1.42 MB/s) - 'GDP.csv' saved [30268/30268]
devops@devopsvm:~$ sudo su - hadoop
[sudo] password for devops:
hadoop@devopsvm:~$ hdfs dfs -mkdir -p /agafonov01/hadoop/input/economic_data
2025-03-30 22:22:03,053 WARN util.NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
hadoop@devopsvm: $ hdfs dfs -put GDP.csv /agafonov01/hadoop/input/economic_data/
2025-03-30 22:31:22,343 WARN util.NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
```

Рис. 10 Перенос данных в каталог



Рис.11 Проверка перенесенных данных

Задаем права доступа

hdfs dfs -chmod 777 /agafonov01/hadoop/input/economic\_data



Рис.12 Устанавливаем права доступа

Обрабатываем данные при помощи Spark

Spark-shell



**Рис.13** Запуск spark

Загружаем данных из hdfs

# val data = spark.read.option("header", "true").csv("file:///home/hadoop/GDP.csv")

```
scala> val data = spark.read.option("header","true").csv("file:///home/hadoop/GD
P.csv")
data: org.apache.spark.sql.DataFrame = [Country: string, Year: string ... 21 mor
e fields]
scala>
```

## Проверка полученной схемы данных

## data.printSchema()



Рис.15 Выводим схему

Вычисление среднего значения GDP

val result = data.selectExpr("avg(GDP) as avg\_GDP")

```
scala> val result=data.selectExpr("avg(GDP) as avg_GDP")
result: org.apache.spark.sql.DataFrame = [avg_GDP: double]
scala>
```

Рис.16 Вычисление среднего значения GDP

Сохраняем результата в CSV файл

result.write.option("header", "true").csv("/home/hadoop/output/avg GDP.csv")



Рис.17 сохранение результатов

Переходим в директорию с результатами

cd /home/hadoop/output/avg GDP.csv



Рис.18 Проверяем полученный файл

Загружаем полученный файл в HDFS

hdfs dfs -put /home/hadoop/output/avg\_GDP.csv /agafonov01/hadoop/input/



Рис.19 Проверка загруженного файла в hdfs

Проверка загрузки

hdfs dfs -ls /user01/hadoop/input/

```
hadoop@devopsvm:~/output/avg_GDP.csv$ hdfs dfs -ls /agafonov01/hadoop/input
2025-03-30 23:57:42,223 WARN util.NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 1 hadoop supergroup 27 2025-03-30 23:55 /agafonov01/hadoop/input/avg
_GDP.csv
drwxrwxrwx - hadoop supergroup 0 2025-03-30 22:31 /agafonov01/hadoop/input/eco
nomic_data
hadoop@devopsvm:~/output/avg_GDP.csv$
```

Рис.20 Проверка загрузки

## Задание для самостоятельной работы

Подключиться к HDFS и убедиться, что файл доступен по пути hdfs://localhost:9000/agafonov01/hadoop/economic data/GDP.csv

Запускаем jupyterlab и загружаем файлы из hdfs

File\_path= "hdfs://localhost:9000/agafonov01/Hadoop/input/economic\_data/GDP.csv" df = spark.read.csv(file\_path, header=True, inferShema =True ) df.show(5)



#### Индивидуальное задание

#### Вариант 1

https://raw.githubusercontent.com/BosenkoTM/Distributed\_systems/main/practice/2 024/I w\_01/AAPL.csv

Для начала создаем каталог в hdfs

## Hdfs dfs -mkdir -p /agafonov01/hadoop/input/vol



Рис.21 Создание каталога surgutneftgaz в hdfs

Переносим файл из пользователя devops в пользователя Hadoop

sudo mv /home/devops/Desktop/AAPL.csv /home/hadoop

Переносим данные в каталог

## Hdfs dfs -put AAPL.csv /agafonov01/Hadoop/input/vol



Рис.22 Переносим данные об акциях в hdfs

#### Устанавливаем права доступа

## hdfs dfs -chmod 777 /agafonov01/hadoop/input/vol

```
hadoop@devopsvm:~$ hdfs dfs -chmod 777 /agafonov01/hadoop/input/vol
2025-04-08 02:02:08,618 WARN util.NativeCodeLoader: Unable to load native-hadoo
library for your platform... using builtin-java classes where applicable
hadoop@devopsvm:~$
```

#### Рис.23 Устанавливаем права доступа

Загружаем данные из hdfs

Import pandas as pd

Import matplotlib.pyplot as plt

From pyspart.sql import SparkSession

Spark = SparkSession.builder\

.appName("Economic Data Analysis")\

.config("spark.hadoop.fs.defaultFS","hdfs://localhost:9000")\

.get0Create()

Spark.conf.set("spark.sql.shuffle.partition", "50")

File\_path = "hdfs://localhost:9000/agafonov01/Hadoop/input/vol/AAPL.csv

Df= spark.read.csv(file\_path, header = True, inferSchema =True)

# Df.show(5)

| # 1               | .appNa<br>.confi<br>.confi<br>.get0      | ame("E<br>ig("sp<br>ig("sp<br>rCreat           | conomi<br>ark.ha<br>ark.ui<br>e() | builder \ c Data Analysis" doop.fs.defaultF .port", "4050")  a pasgenos gns s .sql.shuffle.par | S", "hdf:        | пераций          | host:90        | ) \           |                      |                    |     |                      |                  |                |              |                         |                      |                      |                                      |                      |                |
|-------------------|------------------------------------------|------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|------------------|------------------|----------------|---------------|----------------------|--------------------|-----|----------------------|------------------|----------------|--------------|-------------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------|
| fil               | = spark                                  | = "hd<br>c.read                                | fs://li<br>l.csv(f                | FS<br>ocalhost:9000/ag<br>ile_path, header<br>ок данных                                        |                  |                  |                |               |                      |                    |     |                      |                  |                |              |                         |                      |                      |                                      |                      |                |
| df.               | show(5)                                  | = df.                                          |                                   | las()                                                                                          |                  |                  |                |               |                      |                    |     |                      |                  |                |              |                         |                      |                      | 6                                    | Λ 4                  | ÷              |
| par<br>par        | show(5)                                  | = df.<br>head(                                 | )                                 |                                                                                                | Industry         | Business         | Mining         | Manufacturing | Electricity_supply   | Water_supply       | _ ^ | Accommodation        | Information      | Financial      | Real estate  | Professional_scientific | Administrative       | Education            |                                      | . 10.51              |                |
| par<br>par        | show(5)                                  | = df.<br>head(<br>Year                         | GDP                               | Urban_population                                                                               | Industry<br>24.0 | Business<br>25.2 | Mining<br>18.3 | Manufacturing |                      |                    |     | Accommodation<br>9.9 | Information 21.2 | Financial 30.3 | Real estate  |                         |                      |                      | Human_health                         | . 10.51              | Oth            |
| df.<br>par<br>par | show(5) ndas_df ndas_df Country          | = df.<br>head(<br>Year<br>2010                 | GDP<br>35390                      | Urban_population 57.40                                                                         |                  |                  |                |               | 23.6                 | 12.2               |     |                      |                  |                |              | 34.0                    | 22.5                 | 27.8                 | Human_health                         | Arts                 | Oth<br>3       |
| par<br>par        | show(5) ndas_df ndas_df Country Austria  | = dfhead(<br>Year<br>2010<br>2015              | GDP<br>35390<br>36140             | Urban_population<br>57.40<br>57.72                                                             | 24.0             | 25.2             | 18.3           | 24.4          | 23.6<br>17.6         | 12.2               | -   | 9.9                  | 21.2             | 30.3           | 27.0         | 34.0<br>31.3            | 22.5<br>20.0         | 27.8<br>24.2         | Human_health<br>12.0<br>12.9         | Arts<br>34.0         | Oth 3,         |
| par<br>par        | ndas df<br>ndas df<br>Country<br>Austria | = df.<br>head(<br>Year<br>2010<br>2015<br>2016 | 35390<br>36140<br>36390           | Urban_population<br>57.40<br>57.72                                                             | 24.0             | 25.2<br>23.4     | 18.3           | 24.4<br>22.7  | 23.6<br>17.6<br>13.2 | 12.2<br>9.3<br>8.2 |     | 9.9<br>6.4           | 21.2             | 30.3<br>30.3   | 27.0<br>28.0 | 34.0<br>31.3<br>30.4    | 22.5<br>20.0<br>17.8 | 27.8<br>24.2<br>24.3 | Human_health<br>12.0<br>12.9<br>14.5 | Arts<br>34.0<br>26.2 | 32<br>28<br>27 |

## Заключение

В ходе проделанной лабораторной работы, были изучены основные операции и функциональные возможности системы, что позволило понять принципы работы с данными и распределенными вычислениями, также было выполнено задание по вариантам.