Definition 8.1 The **regression residual** is the observed value of the dependent variable minus the predicted value, or

$$\hat{\varepsilon} = y - \hat{y} = y - (\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k)$$

Definition 8.3 The **standardized residual**, denoted z_i , for the *i*th observation is the residual for the observation divided by s, that is,

$$z_i = \hat{\varepsilon}_i / s = (y_i - \hat{y}_i) / s$$

1. Standardized Residuals

$$d_i = \frac{e_i}{\sqrt{MS_{\text{Re}s}}}$$

- d_i's have mean zero and variance approximately equal to 1
- Large values of d_i (d_i > 3) may indicate an outlier

Definition 8.5 The studentized residual, denoted z_i^* , for the *i*th observation is

$$z_i^* = \frac{\hat{\varepsilon_i}}{s\sqrt{1 - h_i}} = \frac{(y_i - \hat{y}_i)}{s\sqrt{1 - h_i}}$$

s = sqrt(MSE)

2. Studentized Residuals

- MS_{Res} is only an approximation of the variance of the *i*th residual.
- Improve scaling by dividing e_i by the exact standard deviation:

$$Var(e_i) = \sigma^2(1 - h_{ii})$$

 $Var(e) = Var(Y-Xb) = Var(Y-X(X'X)^{-1}X'Y) = Var((I-X(X'X)^{-1}X')Y)$ =sigma2 (I - X(X'X)^{-1}X') **Definition 8.7** A **deleted residual**, denoted d_i , is the difference between the observed response y_i and the predicted value $\hat{y}_{(i)}$ obtained when the data for the *i*th observation is deleted from the analysis, that is,

$$d_i = y_i - \hat{y}_{(i)}$$
 di = e(i)

$$e_{(i)} = \frac{e_i}{1 - h_{ii}}$$
 PRESS residual

$$Var(e_{(i)}) = Var(e_i)/(1-h_{ii})^2 = \sigma^2(1-h_{ii})/(1-h_{ii})^2 = \sigma^2/(1-h_{ii})$$

So the standardized PRESS residual is

$$e_{(i)}$$
 / σ / $sqrt(1-h_{ii}) = e_{(i)} sqrt(1-h_{ii})$ / $\sigma = e_{i}$ / $\sigma sqrt(1-h_{ii})$

If you use s=sqrt(MSE) to estimate σ , then the standardized PRESS residual is just the studentized residual. (internally scaled)

(3) Externally studentized residual also known R-student is given by $t_i = e_i/\text{sqrt}(s^2_{(i)}(1-h_{ii})) \text{ where } s^2_{(i)} \text{ is MSE computed with the ith observation excluded.}$

 $t_i \sim t(n-p-1)$ MSE from model with ith observation deleted has (n-1)-p df.

• The **hat matrix** is:

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

The diagonal elements of the hat matrix are given by

$$\mathbf{h}_{ii} = \mathbf{x}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_i$$

 h_{ii} – standardized measure of the distance of the *i*th observation from the center of the xspace.

Cook's Distance

$$D_{i}(X'X, pMS_{\text{Re}s}) = D_{i} = \frac{(\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})'X'X(\hat{\boldsymbol{\beta}}_{(i)} - \hat{\boldsymbol{\beta}})}{pMS_{\text{Re}s}}$$

$$\frac{\mathbf{r_i} \text{ is studentized residual}}{p} = \frac{r_i^2}{p} \frac{Var(\hat{y}_i)}{Var(e_i)} = \frac{r_i^2}{p} \frac{h_{ii}}{(1 - h_{ii})}$$

What contributes to D_i :

- 1. How well the model fits the ith observation, y_i
- 2. How far that point is from the remaining dataset.

Large values of D_i indicate an influential point, usually if $D_i > 1$.

.....

DFBETAS – measures how much the regression coefficient changes in standard deviation units if the *i*th observation is removed.

DFBETAS
$$_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j(i)}}{\sqrt{S_{(i)}^2 C_{ji}}}$$
 C_{jj} is the jth diagonal of (X'X)-1

where $\hat{\beta}_{j(i)}$ is an estimate of the *j*th coefficient when the *i*th observation is removed.

.....

DFFITS – measures the influence of the ith observation on the fitted value, again in standard deviation units.

$$DFFITS_{i} = \frac{\hat{y}_{i} - \hat{y}_{(i)}}{\sqrt{S_{(i)}^{2} h_{ii}}}$$

COVARIANCE RATIO (measure of model performance)

Information about the overall precision of estimation can be obtained through another statistic, COVRATIO_i

$$COVRATIO_{i} = \frac{\left| \left(\mathbf{X}'_{(i)} \mathbf{X}_{(i)} \right)^{-1} S_{(i)}^{2} \right|}{\left| \left(\mathbf{X}' \mathbf{X} \right)^{-1} M S_{\text{Res}} \right|}$$
$$= \frac{\left(S_{(i)}^{2} \right)^{p}}{M S_{\text{Res}}^{p}} \left(\frac{1}{1 - h_{ii}} \right)$$