ЛЕКЦИИ ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

Московский авиационный институт (национальный исследовательский университет)

Лектор: Иванов Сергей Валерьевич | Конспект составила: Настя "The" Прудникова Примечание: если найдёте ошибки или опечатки, пишите в Telegram или ВК

"Любой математик должен знать две вещи: меру и норму."

Содержание

1	Лекция от 05.09.22: Алгебра множеств					
2	Лекция от 12.09.22: Мера					
	2.1 Лебегово продолжение меры	. 5				
3	Лекция от 19.09.22: Измеримые множества и функции					
	3.1 Канторово множество	. 7				
	3.1.1 Канторова лестница	. 7				
	3.2 Измеримые функции	. 8				
	3.3 Сходимость и понятие эквивалентности функций	. 9				
	3.4 Меры на прямой	. 10				
4	Лекция от 26.09.22: Интеграл Лебега для простой функции					
	4.1 Свойства интеграла Лебега для простых функций	. 11				
5	Лекция от 03.10.22: Интеграл Лебега	12				
	5.1 Свойства интеграла Лебега для произвольных функций	. 12				
	5.2 Некоторые теоремы без доказательств	. 15				
6	Лекция от 10.10.22: Интеграл Лебега. Произведение мер					
	6.1 Теоремы с интегралом Лебега	. 16				
	6.2 Произведение мер	. 18				
	6.3 Об использовании теории меры в теории вероятностей	. 18				
	6.4 Некоторые неравенства	. 19				
7	Лекция от 17.10.22: Нормированные пространства. Множества	21				
	7.1 Нормированные пространства	. 21				
	7.2 Открытые и замкнутые множества	. 22				
	7.2.1 Полнота и сепарабельность	. 23				
	7.2.2 Теорема о вложенных шарах	. 23				
8	Лекция от 24.10.22: Пополнение метрического (нормированного) пространства. Прин	H-				
	цип сжимающих отображений	24				
	8.1 Пополнение метрического пространства					
	8.2 Сжимающие отображения	. 24				
	8.2.1 Принцип сжимающих отображений	. 24				
	8.3 Сходимость в нормированных пространствах	. 25				
	8.4 Линейное многообразие и линейное подпространство	. 26				

9	Лекция от 31.10.22: Евклидово пространство								
	9.1	Неравенство Коши-Буняковского	27						
		9.1.1 Критерий существования скалярного произведения, согласованного с нормой про-							
		странства	27						
		9.1.2 Теорема о проекции и перпендикуляре	28						
	9.2	Ортогональное дополнение	28						
		9.2.1 Ортогонализация Грама-Шмидта	29						
		9.2.2 Задача проецирования на линейную оболочку векторов	29						
10	Лекция от 07.11.22: Гильбертово пространство. Линейные функционалы и операторы 3								
	10.1	Гильбертово пространство. Ряды Фурье	30						
		10.1.1 Теорема Фишера	31						
	10.2	Линейные функционалы и операторы	32						
11	Лег	кция от 14.11.22: Теорема Хана-Банаха	3 4						
	11.1	Теорема Хана-Банаха	34						
		11.1.1 Следствия	35						
	11.2	Сопряжённое пространство к нормированному пространству X	35						
12	Лег	кция от 21.11.22: Теоремы Рисса	36						
	12.1	Теоремы Рисса	36						
		12.1.1 Теорема Рисса для гильбертовых пространств	39						
13	Лен	кция от 28.11.22: Сходимость	40						
	13.1	Каноническое вложение	40						
	13.2	Сходимость	40						
		Принцип равномерной ограниченности							
	13.4	Теорема Банаха-Штейнгауза	42						
		13.4.1 Следствия	42						
14			43						
	14.1	Обратный оператор							
		14.1.1 Теорема Банаха	44						
		14.1.2 Теорема об устойчивости обратного оператора	45						
	14.2	Сопряжённый оператор							
		14.2.1 Свойства сопряжённого оператора	45						
15		кция от 12.12.22: Комплексификация нормированного пространства	46						
			46						
			47						
	15.3		47						
		15.3.1 Теорема о спектре	47						
16		кция от 19.12.22: Компактный оператор	49						
	16.1	Компактный оператор	50						
			50						
		16.1.2 Теорема Гильберта-Шмидта	50						

1 Лекция от 05.09.22: Алгебра множеств

Пусть $\Omega \neq \varnothing$ – некоторое пространство, а $\mathcal{A} \subset 2^{\Omega}$ – класс подмножеств.

Определение: $A \subset 2^{\Omega} - a$ лгебра, если

- 1. $\Omega \in \mathcal{A}$
- 2. Если множества $A,B\in\mathcal{A}\implies A\cap B,\ A\cup B,\ A\backslash B\in\mathcal{A}$

Утверждение: Свойства 1), 2) эквивалентны свойствам 1), 2'), где 2') $A, B \in \mathcal{A} \implies A \cap B, \ \Omega \backslash A \in \mathcal{A}$. Доказательство:

⇒: очевидно.

$$\Leftarrow: \ A \cup B = \Omega \setminus ((\Omega \setminus A) \cap (\Omega \setminus B))$$

$$A \setminus B = A \cap (\Omega \setminus B)$$

Определение: $\mathcal{A} \subset 2^{\Omega}$ – σ - алгебра, если

1. \mathcal{A} – алгебра

2.
$$A_i \in \mathcal{A}, i \in \mathbb{N} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

Утверждение: Если $\mathcal{A} - \sigma$ - алгебра, то $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.

Доказательство:
$$\bigcap_{i=1}^{\infty} A_i = \Omega \setminus \bigcup_{i=1}^{\infty} (\Omega \backslash A_i)$$

Примеры:

- 0. $\Omega \neq 0$ $\mathcal{A}_0 = \{\varnothing, \Omega\}, \ \mathcal{A}_1 = 2^\Omega$ (множество всех подмножеств Ω)— алгебры и сигма-алгебры
- 1. $\Omega=(0;\,1]$ $\mathcal{A}=\{\varnothing,\,(0;\,1],\,(0;\,\frac{1}{3}],\,(\frac{1}{3};\,1]\}$ алебра и сигма-алгебра
- 2. $\Omega=(0;1]$ $\mathcal{A}=\{(a_1;\ b_1]\cup(a_2;\ b_2]\cup...\cup(a_n;\ b_n]\ |\ 0\leqslant a_1\leqslant b_1\leqslant a_2\leqslant...\leqslant b_n\leqslant 1\}$ алгебра, но не сигма-алгебра: $(\bigcup_{i=1}^nA_i)\cap \left(\bigcup_{j=1}^mB_j\right)=\bigcup_{i,\ j}A_i\cap B_j$ $(k;\ k]=\varnothing$

- 3. $\Omega = \mathbb{R}^n$ $\mathcal{A} = \{$ конечные множества и их дополнения $\}$ алгебра, но не сигма-алгебра
- 4. $\Omega = \mathbb{R}$ $\mathcal{A} = \{$ не более чем счётные множества и их дополнения $\}$ алгебра и сигма-алгебра

Утверждение: \mathcal{A}_{α} – алгебры Ω , $\bigcap_{\alpha \in \mathbb{A}} \mathcal{A}_{\alpha}$ – алгебра; \mathcal{A}_{α} – сигма-алгебры Ω , $\bigcap_{\alpha \in \mathbb{A}} \mathcal{A}_{\alpha}$ – сигма-алгебра. Доказательство:

1)
$$\Omega \in \bigcap_{\alpha} \mathcal{A}_{\alpha}$$
 2) $A, B \in \mathcal{A}_{\alpha} \implies A \cap B \in \mathcal{A}_{\alpha} \implies A \cap B \in \bigcap_{\alpha \in \mathcal{A}} \mathcal{A}_{\alpha}$

$$\forall \alpha \ A_i \in \mathcal{A}_{\alpha} \implies \forall \alpha \ \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}_{\alpha} \implies \forall \alpha \ \bigcap_{i=1}^{\infty} A_i \in \bigcap_{\alpha \in \mathbb{A}} \mathcal{A}_{\alpha}.$$

Определение: Пусть $\mathcal{F} \subset 2^{\Omega}$, тогда $\alpha(\mathcal{F})$ – минимальная алгебра, порождённая \mathcal{F} , если

- 1. $\mathcal{F} \subset \alpha(\mathcal{F})$
- 2. $\alpha(\mathcal{F})$ алгебра
- 3. $\mathcal{F} \subset \alpha'$, α' алгебра $\Longrightarrow \alpha(\mathcal{F}) \subset \alpha'$

Определение: $\sigma(\mathcal{F})$ – минимальная сигма-алгебра, порождённая \mathcal{F} , если

- 1. $\mathcal{F} \subset \sigma(\mathcal{F})$
- 2. $\sigma(\mathcal{F})$ сигма-алгебра

3. Если $\sigma'(\mathcal{F})$ – это сигма-алгебра и $\mathcal{F} \subset \sigma'(\mathcal{F}) \implies \sigma(\mathcal{F}) \subset \sigma'(\mathcal{F})$

Утверждение: $\mathcal{F} \subset 2^{\Omega} \implies \exists ! \min \alpha(\mathcal{F}), \exists ! \min \sigma(\mathcal{F})$

Доказательство:

$$\alpha(\mathcal{F}) = \cap \mathcal{A}, \ \mathcal{A}$$
 – алгебра, $\mathcal{F} \subset \mathcal{A}; \quad \alpha' \supset \alpha(\mathcal{F}) \implies \alpha'$ – алгебра, $\alpha' \supset \mathcal{F} \implies \alpha' \subset \cap \mathcal{A}$

Предположим, что β – другая минимальная алгебра, тогда

$$\beta \supset \alpha(\mathcal{F}) \implies \beta \cap \alpha(\mathcal{F}) = \alpha(\mathcal{F}), \ \alpha(\mathcal{F})$$
 — единственная минимальная.

Определение: *Борелевская сигма-алгебра* на \mathbb{R} – это минимальная сигма-алгебра, порождённая системой открытых множеств.

[Обозначение: $\mathcal{B}(\mathbb{R})$]

 Π римечание: Напомним, что открытое множество – это множество, каждая точка которого входит в него со своей окрестностью.

Утверждение: $\mathcal{B}(\mathbb{R}) = \sigma(A)$, где A:

- 0. $A_0 = \{$ все открытые множества $\}$
- 1. $A_1 = \{$ все замкнутые множества $\}$
- 2. $A_2 = \{$ все интервалы $(a; b)\}$
- 3. $A_3 = \{[a; b]\}$
- 4. $A_4 = \{(a; b]\}$
- 5. $A_5 = \{(-\infty; a]\}$
- 6. $A_6 = \{(-\infty; a)\}$
- 7. $A_7 = \{(a; b) \mid a, b \in \mathbb{Q}\}$

Доказательство:

 $\mathcal{A}_0 \Rightarrow \mathcal{A}_1$: Заметим, что дополнение открытого множества – замкнутое множество. Тогда $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{A}_1)$.

 $\mathcal{A}_0 \Rightarrow \mathcal{A}_2$: Интервал – это открытое множество, значит, что $\mathcal{A}_2 \subset \mathcal{A}_0 \implies \sigma(\mathcal{A}_2) \subset \sigma(\mathcal{A}_0) = \mathcal{B}(\mathbb{R})$.

 $A_1 \Rightarrow A_3$: Аналогично предыдущему пункту (отрезок – замкнутое множество).

 $\mathcal{A}_2 \Rightarrow \mathcal{A}_4$: $(a;b] = \bigcap_{n=1}^{\infty} (a;b+\frac{1}{n}) \implies \mathcal{A}_4 \subset \sigma(\mathcal{A}_2) \implies \sigma(\mathcal{A}_4) \subset \sigma(\mathcal{A}_2) = \mathcal{B}(\mathbb{R})$. Можно также доказать возможность порождения борелевской алгебры полуинтервалами альтернативным образом с помощью операций дополнения/пересечения/объединения над отрезками/интервалами.

$$\mathcal{A}_4 \Rightarrow \mathcal{A}_5$$
: $(a; b] = (-\infty; b] \setminus (-\infty; a] \implies (-\infty; a] = \bigcup_{n=1}^{\infty} (-n; a] \implies \sigma(\mathcal{A}_5) \subset \sigma(\mathcal{A}_4) = \mathcal{B}(\mathbb{R}).$

 $\mathcal{A}_2 \Rightarrow \mathcal{A}_6$: Аналогично предыдущему доказательству устремляем a в $-\infty$.

$$\mathcal{A}_2 \Rightarrow \mathcal{A}_7$$
: $(a; b) = \bigcap_{n=1}^{\infty} (a_n; b_n), \ a_n, b_n \in \mathbb{Q} \quad \sigma(\mathcal{A}_7) \subset \sigma(\mathcal{A}_2) = \mathcal{B}(\mathbb{R}).$

Теорема: [из семинара] Если $f:\Omega\to\Xi,\ \mathcal{F}\in 2^\Xi$ — сигма-алгебра, то $\mathcal{G}=\{f^{-1}(A)\mid A\in\mathcal{F}\}$ — тоже сигма-алгебра.

Доказательство:

$$f^{-1}(\bigcap_{\alpha}A_{\alpha}) = \bigcap_{\alpha}f^{-1}(A_{\alpha}). \ \ \text{Пусть} \ \ x \in f^{-1}(\bigcap_{\alpha}A_{\alpha}) \iff f(x) \in \bigcap_{\alpha}A_{\alpha} \iff \forall \alpha \ f(x) \in A_{\alpha} \iff \forall \alpha \ x \in f^{-1}(A_{\alpha}) \iff x \in \bigcap_{\alpha}f^{-1}(A_{\alpha}).$$

Теорема: [из семинара] $f^{-1}(A \backslash B) = f^{-1}(A) \backslash f^{-1}(B)$.

Доказательство: Пусть $x \in f^{-1}(A \backslash B)$. Тогда

$$f(x) \in A \backslash B \implies \begin{cases} f(x) \in A, \\ f(x) \notin B; \end{cases} \implies \begin{cases} x \in f^{-1}(A), \\ x \notin f^{-1}(B); \end{cases} \implies x \in (f^{-1}(A) \backslash f^{-1}(B)).$$

2 Лекция от 12.09.22: Мера

Определение: Дизтюнктное объединение $C = A \sqcup B$ – это такое объединение двух множеств, что $C = A \cup B, \ A \cap B = \emptyset$.

Определение: Пусть $\Omega \neq \emptyset$, $\mathcal{A} \subset 2^{\Omega}$. Функция μ определена на алгебре \mathcal{A} ($\mu : \mathcal{A} \to \mathbb{R}$) и называется *мерой*, если

1. $\forall A \in \mathcal{A} : \mu(A) \geqslant 0$

2.
$$\mu(A \sqcup B) = \mu(A) + \mu(B) \quad \forall A, B \in \mathcal{A}$$
 (аддитивность)

Определение: Мера μ называется σ -аддитивной или cчётно-аддитивной, если $A_k \in \mathcal{A}, \ \bigsqcup_{k=1}^\infty A_k \in \mathcal{A} \implies \mu(\bigsqcup_{k=1}^\infty A_k) = \sum_{k=1}^\infty \mu(A_k).$

Свойства меры:

1.
$$\mu(\bigsqcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mu(A_k)$$

2.
$$\mu(\varnothing)=0$$
 Док-во: $\mu(\varnothing)=\mu(\varnothing)+\mu(\varnothing) \implies \mu(\varnothing)=0$

3.
$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

4.
$$A \subset B \implies \mu(A) \leqslant \mu(B)$$
 Док-во: $B = A \sqcup (B \backslash A)$ $\mu(B) = \mu(B \backslash A) + \mu(A) \geqslant \mu(A)$

5.
$$A = \bigsqcup_{k=1}^{\infty} A_k \in \mathcal{A} \implies \mu(A) \geqslant \sum_{k=1}^{\infty} \mu(A_k)$$
 — Док-во: $\bigsqcup_{k=1}^{\infty} A_k \in A \rightarrow (4) \rightarrow \mu(\bigsqcup_{k=1}^{\infty} A_k) \leqslant \mu(A)$

6. Если
$$\mu$$
 сигма-аддитивна, то $\mu(\bigcup_{k=1}^\infty A_k) \leqslant \sum_{k=1}^\infty \mu(A_k)$

Определение: Мера является *конечной*, если $\mu(\Omega) < \infty$.

Определение: Мера является *нормированной*, если $\mu(\Omega) = 1$.

Определение: Сигма-аддитивная нормированная мера называется вероятностью.

Примеры:

1.
$$\Omega = (a, b]$$
 $\mathcal{A} = \{ \bigsqcup_{k=1}^{n} (a_k; b_k] \}$ $\mu(\bigsqcup_{k=1}^{n} (a_k; b_k]) = \sum_{k=1}^{n} (b_k - a_k) \Longrightarrow$ счётно-аддитивная

2. $\Omega=\mathbb{N}$ $\mathcal{A}=\{$ конечные множества и их дополнения $\}$ μ $\{$ конечное множество $\}=0, \quad \mu$ $\{$ бесконечное множество (доп. конечного) $\}=1$ $\mathbb{N}=\bigsqcup_{k=1}^{\infty}\{k\}$ $1=\mu(\mathbb{N})=\sum_{k=1}^{\infty}\mu(\{k\})=0$ – противоречие $(1\neq 0)$ \Longrightarrow не счётно-аддитивная

Определение: Мера называется *непрерывной*, если $\forall A_n \in \mathcal{A}: A_1 \supset A_2 \supset ... \supset A_n, \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$ верно, что $\lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{n=1}^{\infty} A_n)$

Определение: Мера непрерывна в нуле, если $\forall A_n \in \mathcal{A}: A_1 \supset A_2 \supset ... \supset A_n, \bigcap_{n=1}^{\infty} A_n = \varnothing: \lim_{n \to \infty} \mu(A_n) = 0$

Утверждение: Пусть μ – конечная мера, тогда следующие утверждения эквивалентны:

- 1. $\mu \sigma$ -аддитивна
- 2. μ непрерывна
- $3. \mu$ непрерывна в 0

Доказательство:

 $1 \implies 2$:

$$A_{1} \supset A_{2} \supset A_{3} \supset \dots \qquad A = \bigcap_{n=1}^{\infty} A_{n} \qquad A_{1} = \bigsqcup_{n=1}^{\infty} (A_{n} \backslash A_{n+1}) \sqcup A$$

$$\mu(A_{1}) = \sum_{n=1}^{\infty} \mu(A_{n} \backslash A_{n+1}) + \mu(A) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_{k} \backslash A_{k+1}) + \mu(A)$$

$$\mu(A_{k} \backslash A_{k+1}) = \mu(A_{k}) - \mu(A_{k+1})$$

$$\sum_{k=1}^{n} (\mu(A_{k}) - \mu(A_{k+1})) = \mu(A_{1}) - \mu(A_{2}) + \mu(A_{2}) - \mu(A_{3}) + \dots - \mu(A_{n+1}) = \mu(A_{1}) - \mu(A_{n+1})$$

$$\implies \mu(A_{1}) = \mu(A_{1}) - \lim_{n \to \infty} \mu(A_{n+1}) + \mu(A) \implies \mu(A_{n+1}) \to \mu(A) \implies \lim_{n \to \infty} \mu(A_{n+1}) = \mu(\bigcap_{n \to \infty}^{\infty} A_{n+1})$$

2 ⇒ **3:** очевидно.

 $3 \implies 1$:

$$B = \bigsqcup_{n=1}^{\infty} A_n \in \mathcal{A} \qquad \left\{ B_1 = B, \ B_2 = \bigsqcup_{n=2}^{\infty} A_n, \dots B_k = \bigsqcup_{n=k}^{\infty} A_n \right\} \qquad B_1 \supset B_2 \supset B_3 \supset \dots \implies \bigcap_{n=1}^{k-1} B_n \neq \emptyset$$

В силу непрерывности в 0: $\lim_{n\to\infty} \mu(B_n) = 0$

$$\mu(B) = \sum_{n=1}^{k-1} \mu(A_n) + \mu(B_k), \ k \to \infty$$

$$\mu(B) = \sum_{k=1}^{\infty} \mu(A_k) + \lim_{n \to \infty} \mu(B_n) = \sum_{k=1}^{\infty} \mu(A_k) + 0 \implies \mu(\bigsqcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$$

Примеры:

- 1) $\mathbb{R}\setminus[-n, n]$
- 2) Пусть $F: \mathbb{R} \to \mathbb{R}$, которая удовлетворяет следующим свойствам:
 - 1. F неубывающая
 - 2. F непрерывна справа (т. е. $F(x_0) = \lim_{x \to x_{0\perp}} F(x)$)
 - 3. $\lim_{x \to +\infty} F(x) < +\infty \ (F(x) = F_+), \ \lim_{x \to -\infty} F(x) > -\infty \ (F(x) = F_-)$

В этом случае F – это функция распределения. Определим меру:

$$\mu_F\left(\bigsqcup_{k=1}^n (a_k; b_k]\right) = \sum_{k=1}^n (F(b_k) - F(a_k)); \ a_k, \ b_k$$
 могут принимать значения $-\infty, +\infty$ соответственно.

Докажем, что эта мера является сигма-аддитивной. Рассмотрим случай, где $(a;b] = \coprod_{k=1}^{\infty} (a_k;b_k]$, а a и b конечны. По свойству меры $\mu(a;b] \geqslant \sum_{k=1}^{\infty} \mu(a_k;b_k]$. Теперь докажем, что $\mu(a,b] \leqslant \sum_{k=1}^{\infty} \mu(a_k;b_k]$.

1) Функция непрерывна справа $\implies 0 \leqslant F(c) - F(a) \leqslant \frac{\varepsilon}{2}$

$$\forall k \; \exists d_k : \; 0 \leqslant F(d_k) - F(b_k) \leqslant \frac{\varepsilon}{2^{k+1}}$$

2) Лемма о конечном покрытии: из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок. Тогда $[c; b] \subset \bigcup_{k=1}^{n} (a_k; d_k)$.

$$\mu(c;\,b]\leqslant \mu(a;\,b]+\frac{\varepsilon}{2}\quad \text{(в силу свойства 1)};\quad \mu(c;\,b]=F(b)-F(c),\; \mu(a;\,b]=F(b)-F(a)(c;\,b]\subset \bigcup_{k=1}^{\infty}(a_k;\,d_k]$$

$$\mu(a;b]\leqslant \mu(c;b]+\frac{\varepsilon}{2}\leqslant \sum_{k=1}^{n}(\mu(a_k;d_k]+\frac{\varepsilon}{2})\leqslant \sum_{k=1}^{\infty}(\mu(a_k;d_k])+\frac{\varepsilon}{2}\leqslant \sum_{k=1}^{\infty}(\mu(a_k;b_k]+\frac{\varepsilon}{2^{k+1}})+\frac{\varepsilon}{2}=\sum_{k=1}^{\infty}(\mu(a_k;b_k)+\frac{\varepsilon}{2^{k+1}})$$

Здесь $\frac{\varepsilon}{2^{k+1}}$ – это геометрическая прогрессия. Суммируем и получаем $\frac{\varepsilon}{2}$.

$$=\sum_{k=1}^{\infty}(\mu(a_k;\,b_k])+\varepsilon,\quad \varepsilon>0,\quad \mu(a;\,b]\leqslant \sum_{k=1}^{\infty}\mu(a_k;\,b_k] \implies \mu(a;\,b]=\sum_{k=1}^{\infty}\mu(a_k;\,b_k]$$

Следует дополнительно разобрать случай, где одна из точек устремлена в бесконечность.

2.1 Лебегово продолжение меры

Определение: Пусть A – произвольное множество ($A \subset \Omega$). Внешней мерой множества A является

$$\mu^*(A) := \inf_{A \subset \bigcup_{k} A_k} \sum_{k=1}^{\infty} \mu(A_k) \qquad A_k \in \mathcal{A}, \ k \in \mathbb{N}.$$

Таким образом, внешняя мера множества – это инфинум объединения его покрытий.

Если $A \in \mathcal{A}$, то $\mu^*(A) = \mu(A)$.

Замечание 1: Внешняя мера может не являться мерой.

Замечание 2: Внешняя мера есть у любого множества.

Определение: Множество называется измеримым относительно меры μ , если $\forall \varepsilon > 0 \; \exists A_{\varepsilon} \in \mathcal{A} : \mu^*(A \vartriangle A_{\varepsilon}) < \varepsilon$, где \vartriangle – симметрическая разность $(A \vartriangle B = (A \cup B) \backslash (A \cap B))$.

Теорема: Пусть μ – σ -аддитивная мера. Тогда

- 1. $\mathcal{L}_{\mu}(\Omega) = \{$ измеримые множества относительно $\mu \} \sigma$ -алгебра
- 2. μ^* мера на $\mathcal{L}_{\mu}(\Omega)$
- 3. μ^* единственная мера на $\mathcal{L}_{\mu}(\Omega)$: $\forall A \in \mathcal{A} \quad \mu^*(A) = \mu(A) \quad (\mu^*$ продолжение меры)

Доказательство:

Определение: Продолжение меры

$$\mu_F\left(\bigsqcup_{k=1}^n (a_k; b_k]\right) = \sum_{k=1}^n (F(b_k) - F(a_k))$$

называется мерой Лебега-Стилтьеса, если F – монотонная неубывающая функция на $\mathbb R$.

Определение: Пусть $\Omega_N = (-N, N]^n \subset \mathbb{R}^n$ и известна мера:

$$\mu((a_1; b_1] \times (a_2; b_2] \times ... \times (a_n; b_n]) = \prod_{k=1}^{n} (b_k - a_k)$$

Заметим, что на ограниченном множестве эта мера является мерой Лебега-Стилтьеса, поскольку порождающая её F тоже ограничена.

 λ_n продолжим на систему измеримых множеств $\mathcal{L}_{\lambda_n}((-N;N])$. Полученная мера называется *мерой Лебега* (λ_n^*) на множестве $(-N;N]^n$. Меру неограниченного множества определим таким образом:

$$\lambda_n(A) = \lim_{n \to \infty} \lambda_n(A \cap (-N; N]^n)$$

Полученная мера сохраняет свойство сигма-аддитивности, но теряет свойство непрерывности (в силу неограниченности).

Примечание: Свойства меры Л-С на прямой будут верны и для меры Лебега некоторого ограниченного подмножества прямой.

[Из семинара] Вот так считается мера Лебега-Стилтьеса на $\mathbb R$ с функцией Хевисайда в дифференциале:

$$\int\limits_{\mathbb{R}} f(t) \, d(b \, \chi(t-a)) = f(a) \times b, \qquad \chi(x) = \begin{cases} 0, \ x < 0, \\ 1, \ x \geqslant 0. \end{cases}$$

3 Лекция от 19.09.22: Измеримые множества и функции

Определение: [из предыдущей лекции] Множество называется *измеримым* относительно меры μ , если $\forall \varepsilon > 0 \ \exists A_{\varepsilon} \in \mathcal{A} : \mu^*(A \triangle A_{\varepsilon}) < \varepsilon$, где \triangle – симметрическая разность $(A \triangle B = (A \cup B) \setminus (A \cap B))$.

3.1 Канторово множество

Определим канторово множество $C=[0;1]\setminus \bigsqcup_{n=1}^{\infty}\bigsqcup_{k=1}^{2^{n-1}}A_{nk}$, где A_{nk} – интервалы. Это множество замкнутое, у него нет внутренных торок (д. 2) — . .

тое, у него нет внутренних точек (т.е. точек со своей окрестностью). Проще говоря, на каждом шаге мы "выкидываем" среднюю треть интервала таким образом, что оставшиеся отрезки тоже являются интервалами.

				1	
	:	1/3			
1	/9	_	_		
1/27	_	_	_		
1/81					

Здесь и далее меру Лебега на прямой обозначим как $\lambda(X)$.

$$\lambda(C) = \lambda[0; 1] - \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n-1}} \lambda(A_{nk}) = 1 - \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 1 - \frac{\frac{2}{3} \times \frac{1}{2}}{1 - \frac{2}{3}} = 0 \qquad \lambda(A_{nk}) = \frac{1}{3^n}$$

 $\frac{1}{3} \to 0,1$ в троичной системе. Заметим, что в этой системе канторово множество можно записать без единиц, так как $0, 1_3 = 0, 0(2)_3$. Это значит, что любое число можно записать как последовательность нулей и двоек. Если мы заменим двойки на единицы, получим множество из последовательностей вида 01101..., что даёт нам определить мощность этого множества: это континуум. Таким образом, все подмножества канторового множества измеримы и имеют мощность с (континуум).

3.1.1 Канторова лестница

 $\Phi AH \ \phi a\kappa m$: её ещё называют дьявольской лестницей.

Запишем функцию канторовой лестницы $\widetilde{C}(x)=\frac{2k-1}{2^n},\ x\in A_{nk};\ C(x)=\inf_{\widetilde{x}\in A_{nk}}\widetilde{C}(x).$ Доопределим функцию слева нулём, а справа единицей. Теперь можно рассмотреть $\mu_c((a;b])=c(b)-c(a).$ $\mu_c\{a\} = 0, \ \mu_c(C) = 1, \ \mu_c([0; 1]) = 1 \to \mu_c([1] A_{nk}) = \mu_c([0; 1] C) = 0.$

Пример (неизмеримого множества): Возьмём за основу некоторую окружность S. Пусть $\beta \in \mathbb{R} \backslash \mathbb{Q}$ —

произвольное иррациональное число. Введём следующее отношение эквивалентности: $x \sim y$, если $\exists k \in \mathbb{Z}$: $x = y + 2\pi\beta k \pmod{2\pi}$. В этом случае можно говорить, что одна точка переходит в другую с помощью целого числа поворотов на угол $\pi\beta$. Теперь можно разбить это множество на классы эквивалентности: $S = \bigsqcup_{\alpha \in \mathbb{Z}} A_{\alpha}$.

Соберём в B_0 множества A_k . Положим B_k – поворот B_0 на угол $2\pi\beta k$. Тогда $S=\bigsqcup_{k=-\infty}^{+\infty}B_k$. Пусть $x\in S\implies x\in A_\alpha\implies \exists y\in B_0:\ x=y+2\pi\beta k\implies x\in B_k$.

Предположим, что существуют такие номера $k \neq l$, что $x \in B_k \cap B_l$. Тогда

$$x = y_1 + 2\pi\beta k$$

$$x = y_2 + 2\pi\beta l$$

$$y_1 + 2\pi\beta k = y_2 + 2\pi\beta l \qquad y_1 = y_2 + 2\pi\beta (l - k)$$

$$y_1, y_2 \in B_0, y_1 \sim y_2 \implies l = k$$

Значит, предположение неверно, и попасть из одной точки в другую возможно единственным образом.

Аксиома: Если $\exists \lambda(B_0)$, то $\lambda(B_0) = \lambda(B_k) = d \implies 2\pi = \lambda(S) = \sum_{k=-\infty}^{+\infty} d \implies B_0$ неизмеримо.

Если мы возьмём набор множеств ... $B_{-2},\ B_{-1},\ B_0,\ B_1,\ B_2,\ ...$ и распределим их в два других множества $C_1:=...\ B_{-2},\ B_{-0},\ B_2,\ B_4,\ ...$ и $C_2:=...\ B_{-3},\ B_{-1},\ B_1,\ B_3,\ ...$, то мы получим такие же наборы, что и исходный.

3.2 Измеримые функции

Пусть у нас имеются измеримые пространства (Ω, \mathcal{F}) , (Ξ, \mathcal{G}) , где Ω , Ξ – множества, а \mathcal{F} , \mathcal{G} – σ -алгебры подмножеств этих множеств.

Определение: Функция $f: \Omega \to \Xi$ называется $(\mathcal{F}, \mathcal{G})$ -измеримой, если $\forall A \in \mathcal{G}: f^{-1}(A) \in \mathcal{F}$.

Определение: $(\mathcal{B}(\mathbb{R}^n), \mathcal{B}(\mathbb{R}^m))$ – измеримая борелевская функция.

Определение: $(\mathcal{L}_{\mu}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ – измеримая (по Лебегу) функция.

Утверждение: Пусть даны пространства $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$, $(\Omega_3, \mathcal{F}_3)$ и заданные на них функции f- $(\mathcal{F}_1, \mathcal{F}_2)$ -измеримая $(f: \Omega_1 \to \Omega_2)$, $g - (\mathcal{F}_2, \mathcal{F}_3)$ -измеримая $(g: \Omega_2 \to \Omega_3)$. Тогда их композиция $g \circ f(\mathcal{F}_1, \mathcal{F}_3)$ -измерима.

Доказательство: Напомним, что $(g \circ f)(x) = g(f(x))$. $\forall A \in \mathcal{F}_3: (g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A)) \in \mathcal{F}_1 (g^{-1}(A) \in \mathcal{F}_2) \implies$ отображение измеримо.

Следствие: Если f измерима (по Лебегу), g борелевская, то их композиция $g \circ f$ измерима.

Пример: Пусть $A \in \mathcal{L}_{\mu}(\Omega)$. Введём индикаторную функцию

$$I_A(X) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

Пусть $B \in \mathcal{B}(\mathbb{R})$. Тогда

$$I_A^{-1}(B) = \begin{cases} \Omega, & 0, \ 1 \in B, \\ A, & 0 \notin B, \ 1 \in B, \\ \Omega \backslash A, & 0 \in B, \ 1 \notin B, \\ \varnothing, & 0, \ 1 \notin B. \end{cases}$$

Теорема (критерий измеримости):

$$(\Omega,\,\mathcal{F}),\;(\Xi,\,\mathcal{G})\colon\mathcal{G}=\sigma(\mathscr{C}),\;f\;-(\mathcal{F},\,\mathcal{G})\text{-измеримая}\iff\forall\,C\in\mathscr{C}:\;f^{-1}(C)\in\mathcal{F}.$$

Доказательство:

⇒: очевидно.

$$\Leftarrow$$
: Положим $\mathscr{S}=\{A\in 2^\Xi\,|\,f^{-1}(A)\in\mathcal{F}\};\ \mathscr{C}\subset\mathscr{S}.$ Докажем, что \mathscr{S} – это сигма-алгебра. Пусть $A_1,\,A_2,\,...\in\mathscr{S}\implies f^{-1}(\bigcap_{n=1}^\infty A_n)=\bigcap_{n=1}^\infty f^{-1}(A_n)\in\mathcal{F}\ (f^{-1}(A_n)\in\mathcal{F}\ \forall\,n).$ Проверим, является ли \mathscr{S} алгеброй:

- 1) $f^{-1}(\Xi) = \Omega \in \mathcal{F}$
- 2) $f^{-1}(A_1 \backslash A_2) = f^{-1}(A_1) \backslash f^{-1}(A_2) \in \mathcal{F}.$
- $\implies \sigma(\mathscr{C}) \subset \mathscr{S}; f$ измеримая функция.

Следствия:

- 1. f измерима (по Лебегу) $\iff \forall c \in \mathbb{R} : \{t \mid f(t) \leqslant c\} \in \mathcal{L}_{\mu}(\Omega).$
- 2. f измерима (по Лебегу) $\iff \forall c \in \mathbb{R} : \{t \mid f(t) < c\} \in \mathcal{L}_{\mu}(\Omega).$
- 3. f измерима (по Лебегу) $\iff \forall c \in \mathbb{R} : \{t \mid f(t) > c\} \in \mathcal{L}_{\mu}(\Omega)$.

Теорема: Все непрерывные функции являются борелевскими.

Доказательство: Положим $f:A\to B\;(A\in\mathbb{R}^n,\;B\in\mathbb{R}^m)$, где f непрерывна и B является открытым множеством. Знаем, что прообраз открытого множества также открыт и что борелевская сигма-алгебра порождена открытым множеством. Тогда прообраз А борелев, следовательно, функция является борелев-

Утверждение: Пусть $f, g: \Omega \to \mathbb{R}$ – измеримые функции. Тогда функция

$$\varphi = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}, \ \varphi: \ \Omega \to \mathbb{R}^2$$
 будет измеримой в $(\mathcal{L}_{\mu}(\Omega), \mathcal{B}(\mathbb{R}^2)).$

Доказательство: $\mathcal{B}(\mathbb{R}^2) = \sigma(\{(-\infty; x] \times (-\infty; y] \mid x, y \in \mathbb{R}\});$

 $\varphi^{-1}((-\infty;x]\times(-\infty;y])=\{t\,|\,f(t)\leqslant x\}\cap\{t\,|\,g(t)\leqslant y\}.$ Оба члена этого пересечения лежат в $\mathcal{L}_{\mu}(\Omega)$, тогда весь прообраз лежит в $\mathcal{L}_{\mu}(\Omega)$. Значит, функция φ измерима.

Теорема: [из семинара] Пусть f – измеримая функция, $a, b \in \mathbb{R} \implies g(t) = af(t) + b$ измеримая. Доказательство: Так как g(t) = ax + b – непрерывная функция, она борелевская (из предыдущего утверждения). Тогда g(f(t)) = af(t) + b – это борелевская функция, взятая от измеримой. В силу следствия такая функция будет измеримой.

Теорема: [из семинара] Если есть две измеримых функции f, g и константы $a, b, c \in \mathbb{R}$, тогда f+g, f-g $g, af + bg + c, fg, f^2, \min\{f, g\}, \max\{f, g\}$ измеримы. Также если $\forall t: g(t) \neq 0$, то f/g тоже измерима. Доказательство: Докажем для суммы.

$$\{t \mid f(t) + g(t) < x\} = \{t \mid f(t) < x - g(t)\} = \{t \mid \exists c \in \mathbb{Q} : f(t) < c < x - g(t)\} = \bigcup_{c \in \mathbb{Q}} \{t \mid f(t) < c < x - g(t)\} = \bigcup_{c \in \mathbb{Q}} (\{t \mid f(t) < c\} \bigcap \{t \mid g(t) < x - c\})$$

Теорема: Если f_n – измеримая функция, $f_n \to f(t)$, то f тоже измерима.

Доказательство: Докажем, что $\{t \mid f(t) \leqslant x\} = \{t \mid \forall \, \varepsilon > 0 \, \exists \, N: \, \forall \, n > N, \, n \in \mathbb{N} \, f_n(t) < x + \varepsilon\}.$ Возьмём $\varepsilon = 1/k, k \in \mathbb{N}$. Тогда с помощью преобразования кванторов получаем

$$\bigcap_k \bigcup_{n>N} \bigcap_{n>N} \{t \mid f_n(t) < x + \frac{1}{k}\} \implies f \text{ измерима.}$$

3.3 Сходимость и понятие эквивалентности функций

Определение: Если $\forall t \in \Omega: f_n(t) \to f(t)$, то f – поточечный предел.

Определение: Если $\sup_{t\in\Omega}|f_n(t)-f(t)|\to 0,$ то f – равномерный предел $(f_n\rightrightarrows f).$

Определение: f_n сходится к f normu всюду, если $\mu \{t \mid \lim_{n \to \infty} f_n(t) \neq f(t)\} = 0$ $(f_n \xrightarrow{\text{п.в.}} f)$.

Пример: $t \in [0; 1]$, мера Лебега

$$f_n(t) = t^n$$
 $h(t) = \begin{cases} 0, \ t < 1, \\ 1, \ t = 1; \end{cases} \Longrightarrow f_n \xrightarrow{\text{\tiny II.B.}} f$

Определение: f_n сходится к f по мере, если $\forall \, \varepsilon > 0 \, \lim_{n \to \infty} \mu \, \{ \, t \mid |f_n(t) - f(t)| > \varepsilon \} = 0 \, \, (f_n \xrightarrow{\mu} f).$

Определение: f эквивалентна g, если $\mu \{t \mid f(t) \neq g(t)\} = 0 \quad (f \cong g).$

Из предыдущего примера: $h(t) \cong 0$.

Примечание: Из сходимости почти всюду следует сходимость по мере (в ТВиМС: из сходимости почти наверное следует сходимость по вероятности).

3.4 Меры на прямой

- 1. Абсолютно непрерывные относительно меры Лебега
- 2. Дискретные меры $(\mu(\mathbb{R}) = \mu(\sqcup_{n=1}^{\infty} \{a_n\}), \ \mu\{a_n\} > 0)$
- 3. Сингулярные меры $(\exists A \neq 0: \mu(\mathbb{R} \backslash A) = 0, \mu\{a\} = 0 \ \forall a \in \mathbb{R}, \ \lambda(A) = 0)$

Замечание: Любая мера может быть представлена в виде линейной комбинации вышеперечисленных мер.

Пример: Пусть ξ_k – случайные величины, распределённые по закону Бернулли с параметром 1/2 ($\xi_k \sim Be(1/2)$). Тогда $F_{\xi}(t) = C(t)$, где C(t) – канторово множество.

$$\xi = \sum_{n=1}^{\infty} \frac{2\xi_n}{3^n}$$

4 Лекция от 26.09.22: Интеграл Лебега для простой функции

Пусть есть пространство $(\Omega, \mathcal{L}_{\mu}, \mu)$, где Ω – некоторое множество, а \mathcal{L}_{μ} и μ – его сигма-алгебра и мера соответственно.

Определение: Функция $f: \Omega \to \mathbb{R}$ – *простая функция*, если она измерима и принимает конечное либо счётное число значений.

Пусть
$$\Omega = \bigsqcup_{n=1}^{\infty} A_n$$
, $f(t) = \sum_{n=1}^{\infty} y_n I_{A_n}(t)$, где A_n – измеримое множество $\forall n$, а I_{A_n} – индикатор, $I_{A_n} = \begin{cases} 1, & t \in A_n, \\ 0, & t \notin A_n. \end{cases}$

Определение: Интегралом Лебега простой функции называется выражение

$$\int_{\Omega} f \, d\mu = \sum_{n=1}^{\infty} y_n \, \mu(A_n),$$

если ряд сходится абсолютно.

Пример:

$$D(x) = \begin{cases} 1, \ x \in \mathbb{Q}, \\ 0, \ x \in \mathbb{R} \setminus \mathbb{Q}; \end{cases} \quad (\text{функция Дирихле}) \int_{[0; \ 1]} D(x) \, dx = 1 \times \mu \left\{ \mathbb{Q} \cap [0; \ 1] \right\} + 0 \times \mu \left\{ (\mathbb{R} \setminus \mathbb{Q}) \cap [0; \ 1] \right\} = 0$$

Теперь определим

$$\int_{A} f \, d\mu = \int_{\Omega} f I_A \, d\mu = \sum_{k} y_k \, \mu(A_k \cap A)$$

4.1 Свойства интеграла Лебега для простых функций

1)
$$\int\limits_A 1\,d\mu = \mu(A) \quad \text{Док-во: } 0 \times \mu(\Omega\backslash A) + 1 \times \mu(A) = \mu(A)$$

2)
$$\int_A cf \, d\mu = c \int_A f \, d\mu$$
, $c \in \mathbb{R}$

3) Если
$$|f|\leqslant c$$
, то f интегрируема и $\int\limits_{\Omega}f\,d\mu\leqslant c\mu(\Omega)$

4) Если
$$f,\,g$$
 интегрируемы, то $\int\limits_{\Omega} (f+g)\,d\mu = \int\limits_{\Omega} f\,d\mu + \int\limits_{\Omega} g\,d\mu$

Док-во.

$$\int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu = \sum_{k=1}^{\infty} y_k \mu(A_k) + \sum_{n=1}^{\infty} z_n \mu(B_n) = \sum_{k=1}^{\infty} y_k \sum_{n=1}^{\infty} \mu(A_k \cap B_n) + \sum_{n=1}^{\infty} z_n \sum_{k=1}^{\infty} \mu(A_k \cap B_n) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} (y_k + z_n) \mu(A_k \cap B_n) = \int_{\Omega} (f + g) \, d\mu$$

5 Лекция от 03.10.22: Интеграл Лебега

Лемма: f – измеримая функция $\iff \exists f_n$ – измеримые функции такие, что $f_n \rightrightarrows f$ Доказательство:

Положим $f_n(t):=rac{k}{n}$ при $t\in\left[rac{k}{n};\,rac{k+1}{n}
ight),$ тогда

 $\sup_{t\in\mathbb{R}}|f_n(t)-f(t)|\leqslant \frac{1}{n}$ – условие равномерной сходимости выполнено при $n\to\infty$

$$f_n^{-1}\left(\left\{\frac{k}{n}\right\}\right) = \left\{t \mid f(t) \in \left[\frac{k}{n}; \frac{k+1}{n}\right]\right\}$$

Определение: Пусть f – измеримая функция $(f \in \mathcal{L}_{\mu}(\Omega)), f_n \rightrightarrows f, f_n$ – простые функции. Тогда

$$\int\limits_{\Omega}f\,d\mu=\lim_{n o\infty}\int\limits_{\Omega}f_n\,d\mu$$
 – интеграл Лебега для произвольной функции.

1) Докажем, что предел всегда существует.

Покажем, что последовательность фундаментальна:

$$\int_{\Omega} f_n d\mu = \left| \int_{\Omega} f_n d\mu - \int_{\Omega} f_m d\mu \right| \leqslant \int_{\Omega} |f_n - f_m|^{(*)} d\mu \leqslant \sup_{t} |f_n(t) - f_m(t)| \mu(\Omega) \to 0$$

(*) – Заметим, что в данном случае из определённости одного из интегралов следует определённость второго.

2) Теперь покажем, что предел не зависит от выбора последовательности.

Пусть $f_n \rightrightarrows f, \ g_n \rightrightarrows f$. Тогда рассмотрим последовательность $\{f_1, \ g_1, \ f_2, \ g_2, \ \dots\}$, обозначим её члены как $\{h_1, \ h_2, \ h_3, \ h_4, \ \dots\}$. Она фундаментальна \implies последовательность сходится $\implies \int h_n \ d\mu$ фундаментальна \implies

$$\int h_n d\mu \to I, \int f_n d\mu \to I, \int g_n d\mu \to I; I = \int_{\Omega} f d\mu \implies$$
 не зависит от выбора последовательности.

Определение:

$$\int\limits_{\mathbb{R}} f(x)\,dF(x) = \int\limits_{\mathbb{R}} f\,d\mu_F$$
 – интеграл Лебега-Стилтьеса.

5.1 Свойства интеграла Лебега для произвольных функций

1. $\int\limits_{\Omega} cf \, d\mu = c \int\limits_{\Omega} f \, d\mu \quad \forall \, c \in \mathbb{R}$

Доказательство: Пусть $f_n \rightrightarrows f$, тогда $cf_n \rightrightarrows cf$.

$$1) \int\limits_{\Omega} c f_n \, d\mu \to \int\limits_{\Omega} c f \, d\mu, \quad 2) \, c \int\limits_{\Omega} f_n \, d\mu \xrightarrow{n \to \infty} \, c \int\limits_{\Omega} f \, d\mu \implies \int\limits_{\Omega} c f \, d\mu = c \int\limits_{\Omega} f \, d\mu \qquad \qquad \Box$$

2. $\int\limits_{\Omega} (f+g)\,d\mu = \int\limits_{\Omega} f\,d\mu + \int\limits_{\Omega} g\,d\mu \quad \forall\, f,\,g \text{ - интегрируемых}$

Доказательство: Пусть $f_n \rightrightarrows f, \, g_n \rightrightarrows g, \, \text{тогда} \, f_n + g_n \rightrightarrows f + g.$

1)
$$\int_{\Omega} (f_n + g_n) d\mu = \int_{\Omega} f_n d\mu + \int_{\Omega} g_n d\mu \to \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$
2)
$$\int_{\Omega} (f_n + g_n) d\mu \to \int_{\Omega} (f + g) d\mu$$

$$\implies \int_{\Omega} (f + g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$

3.
$$\mu(A) = 0 \implies \int_A f \, d\mu = 0$$

Доказательство: Пусть $f_n \rightrightarrows f$.

$$f_n = \sum_{n=1}^{\infty} y_n I_{A_n} \implies \int_A f_n \, d\mu = \sum_{n=1}^{\infty} y_n \mu(A \cap A_n) = (A=0) = 0$$

4. Пусть $|f| < g, \, f$ и g измеримы, g интегрируема. Тогда f тоже интегрируема и

$$\left| \int_{\Omega} f \, d\mu \right| \leqslant \int_{\Omega} g \, d\mu$$

$$\left| \int_{\Omega} f_n d\mu \right| \leq \int_{\Omega} g_n d\mu$$

$$\parallel \qquad \qquad \parallel$$

$$\sum_{n} y_n \mu(A_n) \qquad \sum_{n} z_n \mu(B_n)$$

$$\implies \sum_{n} \sum_{l} y_n \mu(A_n \cap B_l) = \sum_{n} \sum_{l} z_l \mu(A_n \cap B_l)$$

Разложив в суммы имеющиеся интегралы, получаем

$$\int_{\Omega} f_n \, d\mu \to \int_{\Omega} f \, d\mu, \int_{\Omega} g_n \, d\mu \to \int_{\Omega} g \, d\mu \implies \left| \int_{\Omega} f \, d\mu \right| \leqslant \int_{\Omega} g \, d\mu$$

5. [Следствие из 4] Пусть $f\geqslant 0$ и f интегрируема, тогда

$$\int_{A} f \, d\mu \geqslant 0$$

6. [Следствие из 4] Пусть $f \leqslant c$ и f интегрируема, тогда

$$\int\limits_A f\,d\mu\leqslant c\mu(A)$$

7. Пусть f – измеримая функция. Тогда f интегрируема \iff |f| интегрируема Доказательство:

⇐: Очевидно.

 $\Rightarrow: f_n = \sum_n y_n I_{A_n}$

$$\int_{\Omega} f_n \, d\mu = \sum_{k(=n)} y_k \mu(A_k) \quad \text{сходится абсолютно.}$$

$$\sum_{k} |y_{k}| \mu(A_{k}) \xrightarrow{k \to \infty} \int_{\Omega} |f| \, d\mu$$

8. Неравенство Чебышёва:

$$\mu \left\{ t \mid |f(t)| \geqslant \varepsilon \right\} \leqslant \frac{1}{\varepsilon} \int_{\Omega} |f(t)| \, d\mu \quad \forall \, \varepsilon > 0$$

Доказательство:

$$\int\limits_{\Omega} |f(t)| \, d\mu \geqslant \int\limits_{\{t \mid |f(t)| \geqslant \varepsilon\}} |f(t)| \, d\mu \geqslant \varepsilon \mu \left\{ t \mid |f(t)| \geqslant \varepsilon \right\}$$

9.

$$f\geqslant 0,\;\int\limits_{\Omega}f\,d\mu=0\implies f(t)=0$$
 почти всюду

Доказательство:

$$\mu\{t\,|\,f(t)>0\} = \mu\left(\bigcup_{n=1}^{\infty}\left\{t\,|\,f(t)\geqslant\frac{1}{n}\right\}\right)\leqslant \sum_{n=1}^{\infty}\mu\left\{\exists n:\;f(t)\geqslant\frac{1}{n}\right\}\leqslant \sum_{n=1}^{\infty}\int\limits_{\Omega}f\,d\mu = 0$$

$$\{t \mid f(t) > 0\} = \bigcup_{n=1}^{\infty} \left\{ t \mid f(t) \ge \frac{1}{n} \right\}$$

10.

$$\int\limits_{\prod\limits_{n=1}^{\infty}A_{n}}f\,d\mu=\sum_{n=1}^{\infty}\int\limits_{A_{n}}f\,d\mu$$

Доказательство: 1) Докажем для простых. Пусть f – простая функция.

$$f = \sum_{k=1}^{\infty} y_k I_{B_k}$$

$$\int_{\substack{\infty \\ \square \\ n=1}} f \, d\mu = \sum_{k=1}^{\infty} y_k \mu \left(B_k \bigcap_{n=1}^{\infty} A_n \right) = \sum_k y_k \sum_n \mu \left(B_k \bigcap_{n=1}^{\infty} A_n \right) = \sum_n \sum_k y_k \mu \left(B_k \bigcap_{n=1}^{\infty} A_n \right) = \sum_n \int_{A_n} f \, d\mu$$

2) Теперь покажем, что это выполняется и для произвольных функций. Пусть f – некоторая произвольная функция, и есть последовательность простых f_m , которые равномерно к ней сходятся $(f_m \to f)$. Оценим

$$\left| \int\limits_{\bigcup\limits_{n=1}^{\infty}A_n} f \, d\mu - \sum\limits_{n=1}^{\infty} \int\limits_{A_n} f \, d\mu \, \right| = \left| \int\limits_{\bigcup\limits_{n=1}^{\infty}A_n} f \, d\mu - \int\limits_{\bigcup\limits_{n=1}^{\infty}A_n} f \, d\mu + \sum\limits_{n=1}^{\infty} \left(\int\limits_{A_n} f_m \, d\mu - \int\limits_{A_n} f \, d\mu \right) \, \right| \leqslant$$

Заметим, что два средних слагаемых в сумме дают ноль.

$$\leqslant \int\limits_{\bigsqcup\limits_{m=1}^{\infty}A_{n}}^{\left|f(t)-f_{m}(t)\right|} d\mu + \sum\limits_{n=1}^{\infty}\int\limits_{A_{m}}\left|f_{m}-f\right|d\mu \leqslant 1$$

$$\leqslant \mu \left(\bigsqcup_{n=1}^{\infty} A_n \right) \sup_{t} |f(t) - f_m(t)| + \sup_{t} |f(t) - f_m(t)| \sum_{n=1}^{\infty} \mu(\bigsqcup_{n=1}^{\infty} A_n) \to 0$$

Определение: Пусть $f\geqslant 0$ — интегрируемая функция, $\mathcal{V}(A)$ — сигма-аддитивная мера, заданная интегралом

$$\mathcal{V}(A) = \int_{A} f \, d\mu$$

Говорят, что $\mathcal V$ абсолютно непрерывна относительно μ ($\mathcal V << \mu$), если из $\mu(A)=0$ следует, что и $\mathcal V(A)=0$.

Теорема Радона-Никодима

Если
$$\mathcal{V}<<\mu,$$
 то $\exists\, f\geqslant 0:\ \mathcal{V}(A)=\int\limits_A f\,d\mu$

Пример:

$$P\{x\in A\}=\int\limits_A f(x)\,dx\left(=\int\limits_A f\,d\mu,\;\;\mu$$
— мера Лебега $ight)$

5.2 Некоторые теоремы без доказательств

Теорема Лебега о мажорируемой сходмости

Пусть $f_n \xrightarrow{\text{п.в.}} f$, f_n – измеримые функции, функция φ интегрируема, $|f_n| \leqslant \varphi \implies$

$$\lim_{n \to \infty} \int_{\Omega} f_n \, d\mu = \int_{\Omega} f \, d\mu$$

Теорема Леви

Пусть есть монотонная последовательность функций $f_1\leqslant f_2\leqslant f_3\leqslant\dots$ и

$$\int_{\Omega} f_n \, d\mu < K, \ K \in \mathbb{R}$$

Тогда
$$\exists f: \ f_n \xrightarrow{\text{п.в}} f \ \text{и} \ \lim_{n \to \infty} \int\limits_{\Omega} f_n \ d\mu = \int\limits_{\Omega} f \ d\mu$$

Теорема Фату

Пусть
$$f_n\geqslant 0, \int\limits_{\Omega}f_n\,d\mu\leqslant K,\ K\in\mathbb{R},\ f_n\xrightarrow{\text{п.в.}}f\implies f$$
 интегрируема и $\int\limits_{\Omega}f\,d\mu\leqslant K$

6 Лекция от 10.10.22: Интеграл Лебега. Произведение мер

6.1 Теоремы с интегралом Лебега

Теорема:

Пусть есть
$$I_n := \int\limits_{[0;1]} \frac{|f(t) - f_n(t)|}{1 + |f(t) - f_n(t)|} dt \xrightarrow[n \to \infty]{} 0$$
, тогда $f_n \xrightarrow{\lambda} f$ (сходимость по мере Лебега)

Доказательство: Зафиксируем $\varepsilon > 0$:

$$I_{n} \geqslant \int \frac{|f(t) - f_{n}(t)|}{1 + |f(t) - f_{n}(t)|} dt \geqslant \frac{\varepsilon}{1 + \varepsilon} \geqslant \int dt = \frac{\varepsilon}{1 + \varepsilon} \{t \mid |f(t) - f_{n}(t)| \geqslant \varepsilon\} \to 0$$

Значит, можно задать сходимость с помощью сходимости по метрике $(\rho(f, f_n))$.

Определение: Mempukoŭ (расстоянием) называют такую функцию $\rho(x, y)$, что

1.
$$\rho(x, y) \geqslant 0$$
; $\rho(x, y) = 0 \iff x = y$

2.
$$\rho(x, y) = \rho(y, x) \forall x, y$$

3.
$$\rho(x, z) \leq \rho(x, y) + \rho(y, z) \ \forall x, y, z$$

Определение: Пусть $\mu(\Omega)=\infty,\ \Omega=\bigcup_{n=1}^{\infty}\Omega_n,\ \mu(\Omega_n)<\infty,\ \Omega_1\subset\Omega_2\subset\Omega_3\subset...$ – исчерпание множества Ω .

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega_n} f \, d\mu,$$

если предел существует, конечен и не зависит от выбора исчерпывающей последовательности.

Теорема:

Если
$$f \geqslant 0, \ F(x) = \int\limits_{(-\infty; \, x]} f(y) \, dy$$
, то

$$I = \int_{\mathbb{R}} g(x) dF(x) = \int_{\mathbb{R}} g(x) f(x) dx$$

Доказательство:

$$\mu_F(A) = \int_A dF(x), \quad \mathcal{V}(A) = \int_A f(x) dx$$

$$\mu_F((-\infty; x]) = F(x) - F(-\infty) = F(x), \quad \mathcal{V}_F((-\infty; x]) = \int_{(-\infty; x]} f(y) \, dy = F(x)$$

$$\mu_F((a; b]) = F(b) - F(a) = \mathcal{V}((a; b])$$

Пусть
$$g = \sum_{n=1}^{\infty} y_n I_{A_n}$$
 (простая). Тогда

$$I = \sum_{n} y_{n} \mu_{F}(A_{n}) = \sum_{n} y_{n} \int_{A_{n}} f(x) dx = \int_{\mathbb{R}} \sum_{n=1}^{\infty} g(x) I_{A_{n}} d\mu = \int_{\mathbb{R}} g(x) f(x) dx$$

$$\int\limits_{\mathbb{R}} g(x) \, dF(x)$$

Пусть теперь $g_n \rightrightarrows g$. Тогда

$$\int_{\mathbb{R}} g_n dF(x) = \int_{\mathbb{R}} g_n(x) f(x) dx = I$$

$$\downarrow \text{ по опр.}$$

$$\int_{\mathbb{R}} g dF(x)$$

Рассмотрим два случая для g:

1)
$$g \geqslant 0$$
: $gf \geqslant 0$ $f(x)g_n(x) \xrightarrow{\text{II. B.}} f(x)g(x) \implies I \leqslant K, K \in \mathbb{R}$

Применим теорему Φ ату $\to gf$ интегрируема. Начиная с некоторого номера n, имеем

$$|g_n(x)f(x)| \le |g(x) + \varepsilon|f(x) \le f(x)g(x) + \varepsilon f(x)$$

Оба слагаемых интегрируемы (первое в силу утверждения выше, второе в силу интегрируемости f(x)). Используем теорему Лебега

$$I \xrightarrow{n \to \infty} \int_{\mathbb{R}} g(x) f(x) \, dx$$

Утверждение доказано для неотрицательных д. Рассмотрим другой случай.

2)
$$g < 0$$
: $g(x) = g^+(x) - g^-(x)$, где
$$\begin{cases} g^+(x) = \max\{g(x), 0\} \\ g^-(x) = -\min\{g(x), 0\} \end{cases}$$

Теорема: Пусть f интегрируема по Риману в собственном смысле

$$\exists\,I=\int\limits_a^bf(x)\,dx\implies$$
 существует интеграл Лебега $\int\limits_{[a;\,b]}f\,d\lambda=I=\int\limits_{[a;\,b]}f(x)\,dx$

Доказательство: f интегрируема, значит, f ограничена. Разобьём функцию на 2^n частей, тогда

$$\overline{f_n}(x) = \sup_{x \in A_{nk}} f(x),$$

$$\underline{f_n}(x) = \inf_{x \in A_{nk}} f(x), \text{ где}$$

$$A_{nk} = \left[a + \frac{b-a}{2^n} (k-1); a + \frac{b-a}{2^n} k \right), \quad x \in A_{nk}$$

$$\int_{[a;b]} \overline{f_n} \, d\lambda = \sum_{k=1}^{2^n} \overline{f_n} \left(a + \frac{b-a}{2^n} (k-1) \right) \frac{b-a}{2^n} = \overline{\mathcal{I}_n}(f)$$

$$\int_{[a;b]} \underline{f_n} \, d\lambda = \underline{\mathcal{I}_n}(f)$$

Здесь $\overline{\mathcal{I}_n}(f)$ и $\underline{\mathcal{I}_n}(f)$ – это верхняя и нижняя суммы Дарбу соответственно. Отметим сходимость следующих последовательностей

$$\overline{f_n}(x) \downarrow \overline{f}(x), \qquad \underline{f_n}(x) \uparrow \underline{f}(x),$$

причём $\overline{f}\geqslant f$. Тогда

$$\int\limits_{[a;\,b]} (\overline{f_n} - \underline{f_n}) \, d\lambda \xrightarrow{\text{по теореме}} \int\limits_{[a;\,b]} (\overline{f} - \underline{f}) \, d\lambda$$

$$\parallel$$

$$\overline{\mathcal{I}_n}(f) - \underline{\mathcal{I}_n}(f) \longrightarrow 0$$

$$\Longrightarrow \int\limits_{[a;\,b]} (\overline{f} - \underline{f}) \, d\lambda = 0 \implies \text{по свойству (9): } \overline{f} = \underline{f} \text{ почти всюду.}$$

Знаем, что $f(x) \in [f(x); \overline{f}(x)]$. Тогда почти всюду f(x) равна $\overline{f}(x)$ (f(x)), значит,

$$\int_{[a;b]} f \, d\lambda = \int_{[a;b]} \overline{f} \, d\lambda = \lim_{n \to \infty} \int_{[a;b]} \overline{f_n} \, d\lambda = I$$

6.2 Произведение мер

Пусть есть два пространства: $(\Omega, \mathcal{F}, \mu)$ и $(\Xi, \mathcal{G}, \mathcal{V})$, где \mathcal{F}, \mathcal{G} – сигма-алгебры, а μ, \mathcal{V} – меры.

Определение: *Произведением* $\mathcal{F} \otimes \mathcal{G}$ называется минимальная сигма-алгебра, порождённая измеримыми прямоугольниками.

$$\mathcal{F} \otimes \mathcal{G} = \sigma(\{A \times B \mid A \in \mathcal{F}, B \in \mathcal{G}\})$$

- это измеримое пространство, меру на котором зададим следующим образом:

$$(\mu \otimes \mathcal{V})(A \times B) = \mu(A) \times \mathcal{V}(B) \qquad \forall A \in \mathcal{F}, B \in \mathcal{G}$$

Заметим, что если обе меры сигма-аддитивны, то их произведение также будет сигма-аддитивным.

Теорема Фубини

Пусть f измерима относительно $\mathcal{F} \otimes \mathcal{G}$ и интегрируема по $\mu \otimes \mathcal{V}$, тогда

$$\int_{\Omega\times\Xi} f\,d(\mu\otimes\mathcal{V}) = \int_{\Omega} \mu(dx) \int_{\Xi} f(x,\,y) \mathcal{V}(dy) = \int_{\Xi} \mathcal{V}(dy) \int_{\Omega} f(x,\,y) \mu(dx)$$

Теорема Тонелли

Если f измерима относительно $\mathcal{F}\otimes\mathcal{G}$ и существует интеграл

$$\int\limits_{\Omega}\mu(dx)\int\limits_{\Xi}f(x,\,y)\mathcal{V}(dy)<\infty,\,\,\text{то теорема Фубини применима}.$$

6.3 Об использовании теории меры в теории вероятностей

Пусть есть вероятностное пространство (Ω, \mathcal{F}, P) .

1) ξ – случайная величина (измеримая функция).

$$\mu(A) = P\{\xi \in A\} = P\{\omega \, | \, \xi(\omega) \in A\} = P\{\xi^{-1}(A)\} = \int\limits_{\xi^{-1}(A)} dP \, \stackrel{\infty}{=} \, \int\limits_{A} dF_{\xi}(x) = \mathcal{V}(A)$$

Возьмём $A = (-\infty; x]$:

$$\mu(A) = \int_{\{\omega \mid \xi(\omega) \leqslant x\}} dP = P\{\xi \leqslant x\} = F_{\xi}(x) = \int_{(-\infty; x]} dF_{\xi}(y)$$

2) ξ – случайная величина, $M\xi = \int\limits_{\Omega} \xi \, dP$

$$M[\varphi(\xi)] = \int_{\Omega} \varphi(\xi) \, dP$$

Пусть φ – простая функция, $\varphi = \sum\limits_n y_n I_{A_n}$

$$M[\varphi(\xi)] = \sum_{n} y_{n} \int_{\xi^{-1}(A_{n})} dP = \sum_{n} y_{n} P(\xi^{-1}(A_{n})) = \sum_{n} y_{n} \int_{A_{n}} dF(x) = \int_{\Omega} \varphi(x) dF(x)$$

Пусть $\varphi_n \rightrightarrows \varphi$

$$M[\varphi_n(\xi)] \to \int_{\Omega} \varphi(\xi) dP$$

$$\parallel$$

$$\int_{\mathbb{R}} \varphi_n(x) dF(x) \to \int_{\mathbb{R}} \varphi(x) dF(x)$$

Для непрерывных:

Если задана плотность f, то

$$\int\limits_{\mathbb{R}} \varphi(x)\,dF(x) = \int\limits_{\mathbb{R}} \varphi(x)f(x)\,dx \qquad M\xi = \int\limits_{\mathbb{R}} xf(x)\,dF(x)$$

6.4 Некоторые неравенства

Неравенство Юнга

Пусть
$$a,\,b\geqslant 0,\;a,\,b\in\mathbb{R},\;p,\,q>1:\frac{1}{p}+\frac{1}{q}=1\implies ab\leqslant \frac{a^p}{p}+\frac{b^q}{q}$$

Доказательство:

Возьмём функцию $f(x) = y = x^{p-1}, p > 1.$

$$S_1 = \int_0^a x^{p-1} dx = \frac{a^p}{p}$$

Найдём обратную функцию:

$$y^{\frac{1}{p-1}} = x \implies \varphi(y) = y^{\frac{1}{p-1}} = y^{\frac{1}{p(1-\frac{1}{p})}} = y^{\frac{q}{p}} = y^{q(1-\frac{1}{q})} = y^{q-1}$$

$$S_2 = \int_0^b y^{q-1} dy = \frac{b^q}{q}$$

$$ab \leqslant S_1 + S_2 = \frac{a^p}{p} + \frac{b^q}{q}$$

Неравенство Гёльдера

Пусть $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$

$$\implies \int\limits_{\Omega} |fg| \, d\mu \leqslant \left(\int\limits_{\Omega} |f|^p \, d\mu \right)^{1/p} \left(\int\limits_{\Omega} |g|^q \, d\mu \right)^{1/q}$$

Доказательство:

$$\frac{|f(t)| \times |g(t)|}{\left(\int\limits_{\Omega} |f|^p \, d\mu\right)^{1/p} \left(\int\limits_{\Omega} |g|^q \, d\mu\right)^{1/q}} = \frac{|f(t)| \, |g(t)|}{c_1 \, c_2} \leqslant \frac{|f(t)|^p}{p c_1^p} + \frac{|g(t)|^q}{q c_2^q}$$

$$|f(t)g(t)| \le \frac{1}{p} |f(t)|^p c_1^{1-p} c_2 + \frac{1}{q} |g(t)|^q c_1 c_2^{1-q}$$

Интегрируем:

$$\int\limits_{\Omega} |fg| \, d\mu \leqslant \frac{1}{p} \, c_1^{1-p} \, c_2 \int\limits_{\Omega} |f|^p \, d\mu + \frac{1}{q} \, c_1 \, c_2^{1-q} \int\limits_{\Omega} |g|^q \, d\mu = \frac{1}{p} c_1 c_2 + \frac{1}{q} c_1 c_2 = c_1 c_2$$

 $c_{1}c_{2}$ – это правая часть неравенства.

Неравенство Минковского

Пусть $p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1.$

$$\left(\int\limits_{\Omega}|f+g|^p\,d\mu\right)^{1/p}\leqslant \left(\int\limits_{\Omega}|f|^p\,d\mu\right)^{1/p}+\left(\int\limits_{\Omega}|g|^p\,d\mu\right)^{1/p}$$

Доказательство:

$$\int\limits_{\Omega}|f+g|^p\,d\mu=\int\limits_{\Omega}|f|\,|f+g|^{p-1}\,d\mu+\int\limits_{\Omega}|g|\,|f+g|^{p-1}\,d\mu\leqslant \big(\text{применяем неравенство Гёльдера}\big)$$

$$\leqslant \left(\int\limits_{\Omega} |f|^p \, d\mu\right)^{1/p} \left(\int\limits_{\Omega} |f+g|^{q(p-1)} \, d\mu\right)^{1/q} + \left(\int\limits_{\Omega} |g|^p \, d\mu\right)^{1/p} \left(\int\limits_{\Omega} |f+g|^{q(p-1)} \, d\mu\right)^{1/q}$$

Поделим обе части неравенства на $\left(\int\limits_{\Omega}|f+g|^p\,d\mu\right)^{1/q}$:

$$\left(\int\limits_{\Omega}|f+g|^p\,d\mu\right)^{1-1/q=1/p}\leqslant \left(\int\limits_{\Omega}|f|^p\,d\mu\right)^{1/p}+\left(\int\limits_{\Omega}|g|^p\,d\mu\right)^{1/p}$$

7 Лекция от 17.10.22: Нормированные пространства. Открытые и замкнутые множества

7.1 Нормированные пространства

Определение: Пусть \mathscr{L} – линейное пространство. Функция $||\cdot||:\mathscr{L}\to\mathbb{R}$ называется *нормой*, если:

- 1. $||x||\geqslant 0 \ \forall x\in \mathscr{L}$, при этом $||x||=0 \iff x=0$ аксиома невырожденности (здесь x=0 означает, что вектор x нулевой)
- 2. $||\lambda x|| = |\lambda| \, ||x|| \, \, \, \forall \, \lambda \in \mathbb{R}, \, \forall \, x \in \mathscr{L}$ аксиома положительной однородности
- 3. $||x+y|| \leq ||x|| + ||y|| \quad \forall x, y \in \mathcal{L}$

Замечание: В нормированном пространстве можно ввести метрику $\rho(x, y) = ||x - y||$

Примеры:

1. $\mathbb{R}_p^n = \{x = (x_1, ... x_n) \mid x_k \in \mathbb{R}\}, \ p \geqslant 1$ – пространство векторов $||x|| = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$

Например, евклидова норма при p=2 в \mathbb{R}^n вычисляется привычным образом: $||x||=\left(\sum\limits_{k=1}^n|x_k|^2\right)^{1/2}$

- 2. \mathbb{R}_{∞}^n $||x|| = \max_{k=1, n} |x_k|$
- 3. $l_p,\ p\geqslant 1$ пространство суммируемых последовательностей

$$l_p = \left\{ x = (x_1, x_2, ...) \mid \sum_{k=1}^{\infty} |x_k|^p < \infty \right\} \quad ||x|| = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}$$

- 4. $l_{\infty} = \{x = (x_1, x_2, ...) \mid \sup_{k} |x_k| < \infty\}$ $||x|| = \sup_{k} |x_k|$
- 5. $C^0 = C[a, b]$ пространство непрерывных функций $||x|| = \max_{t \in [a; b]} |x(t)|$
- 6. $C^k[a, b]$ пространство k раз дифференцируемых непрерывных функций

$$||x|| = \max_{t \in [a;b]} |x(t)| + \sum_{l=1}^{k} \max_{t \in [a;b]} |x^{(l)}(t)|$$

7. $L^p_\mu(\Omega)$ – пространство классов эквивалентных функций, суммируемых в степени p на Ω по мере μ

$$||x|| = \left(\int_{\Omega} |x|^p \, d\mu\right)^{1/p}$$

8. $L^p[a, b]$ – эквивалентные функции, интегрируемые по Лебегу на [a; b]

$$||x+y|| = \left(\int_{\Omega} |x+y|^p d\mu\right)^{1/p} \le ||x|| + ||y||$$

Элементы этого множества – это классы эквивалентных функций, но интеграл не меняется от выбора какой-либо из них.

21

7.2 Открытые и замкнутые множества

Определение: *Отврытым шаром* в метрическом (в нормированном) пространстве (X, ρ) называют множество

$$O_R(x) = \{ y \in X \mid \rho(x, y) < R \} \qquad (||x - y|| < R)$$

Определение: Замкнутым шаром в метрическом (в нормированном) пространстве (X, ρ) называют множество

$$B_R(x) = \{ y \in X \mid \rho(x, y) \leqslant R \} \qquad (||x - y|| \leqslant R)$$

Пусть теперь $A \subset X$.

Определение: x – это *внутренняя точка* A, если $\exists R > 0$: $O_R(x) \subset A$.

Определение: x – это *предельная точка* A, если $\forall R > 0$: $A \cap O_R(x)$ бесконечно.

Определение: x – это точка прикосновения A, если $\forall R > 0$: $A \cap O_R(x) \neq \emptyset$.

Определение: x – это изолированная точка A, если $x \in A$ и $\exists R > 0$: $A \cap (O_R(x) \setminus \{x\}) = \varnothing$.

Определение: Bнутренностью множества A называют множество его внутренних точек $(int\ A)$.

Определение: От крытое множество – это множество, каждая точка которого входит со своей окрестностью (т.е. при открытом <math>A: A = int A).

Определение: Замкнутое множество – это дополнение открытого множества.

Определение: Замыкание множества A – это $\overline{A} = A \cup \{$ предельные точки $A\}$.

Утверждение: Множество A замкнуто $\iff A = \overline{A}$

Доказательство:

- \Rightarrow : $X\backslash A$ открытое $\implies \forall\,y\in (X\backslash A)\ \exists\,R:\ O_R(y)\subset X\backslash A\ \Longrightarrow\ y$ не является предельной точкой $\Longrightarrow\overline{A}=A$

$$O_{\widetilde{R}}(y)\cap A=\varnothing\implies O_{\widetilde{R}}(y)\subset X\backslash A\implies X\backslash A$$
 открытое $\implies A$ замкнуто. \square

Упражнение: Доказать, что $\overline{\overline{A}} = \overline{A}$.

Определение: Последовательность $cxo\partial umcs$ κ x $(x_n \to x)$ в метрическом пространстве, если $\rho(x_n, x) \to 0$, $n \to \infty$ $(||x_n - x|| \to 0$ в нормированном пространстве).

Замечание 1: x – точка прикосновения $A \iff \exists x_n \in A: x_n \to x.$

3амечание 2: x – предельная точка $\iff \exists$ различные $x_n \in A: x_n \to x.$

Определение: Последовательность x_n является фундаментальной, если $\forall \, \varepsilon > 0 \, \exists \, N \in \mathbb{N} : \, \forall \, n, \, m > N : \, \rho(x_n, \, x_m) < \varepsilon \quad (\rho(x_n, \, x_m) \to 0, \, n \to \infty, \, m \to \infty).$

Утверждение: Если $x_n \in X, \ x_n \to x$, то x_n является фундаментальной.

Доказательство:
$$\rho(x_n, x_m) \leqslant \rho(x_n, x) + \rho(x, x_m) \to 0$$

Пример: Пространство непрерывных функций

$$C_2[-1; 1] = \left\{ x \in C[0; 1] \, \middle| \, ||x|| = \sqrt{\int_{-1}^{1} (x(t))^2 \, dt} \right\}$$

$$m>n: \ ||x_n-x_m||\leqslant \int\limits_{-1/n}^{1/n} 2\,dt=rac{4}{n} o 0 \implies$$
 последовательность фундаментальна.

Последовательность не сходится, так как не существует непрерывной функции $x_n(t)$ такой, что

$$\int_{-1}^{1} |x_n(t) - x(t)| dt \to 0$$

7.2.1 Полнота и сепарабельность

Определение: Пространство (X, ρ) *полное*, если из того, что x_n – фундаментальная, следует, что $\exists \lim_{n \to \infty} x_n = x \in X$.

Пример: \mathbb{Q} не является полным.

Определение: Множество A *всюду плотно* в пространстве X, если $\overline{A} = X$.

Пример: $\overline{\mathbb{Q}} = \mathbb{R}$.

Пример: Канторово множество нигде не плотно.

Определение: Пространство называется *сепарабельным*, если в нём существует всюду плотное множество ($\exists A \subset X$, A счётное и $\overline{A} = X$).

Замечание: Все счётные пространства сепарабельны.

7.2.2 Теорема о вложенных шарах

$$(X, \rho)$$
 полное $\iff \forall B_{\varepsilon_1}(x_1) \supset B_{\varepsilon_2}(x_2) \supset B_{\varepsilon_3}(x_3) \supset \dots : \ \varepsilon_n \to 0 \ \exists x^* \in \bigcap_{k=1}^\infty B_{\varepsilon_k}(x_k).$

Доказательство:

 \Rightarrow : $\forall x_n$ – фундаментальных $\exists x^*: x_n \to x^*$. $B_{\varepsilon_n}(x_n) \supset B_{\varepsilon_{n+1}}(x_{n+1})$ $\rho(x_{n+k}, x_n) \leqslant \varepsilon_n \implies x_n \to x^*$ фундаментальна. Тогда x^* – предельная точка, то есть, начиная с некоторого номера, эта точка принадлежит множеству пересечения всех шаров.

 \Leftarrow : x_n фундаментальна, тогда

$$\rho(x_{n_1}, x_n)^m \leqslant \frac{1}{2} \,\forall \, n > n_1 \qquad \rho(x_{n_k}, x_n)^m \leqslant \frac{1}{2^k} \,\forall \, n > n_k
B_1(x_{n_1}) \supset B_{1/2}(x_{n_2}) \supset B_{1/4}(x_{n_3}) \supset \dots \supset B_{1/2^{k-1}}(x_{n_k})
\Piусть $x^* \in B_{1/2^{k-1}}(x_{n_k}).$

$$\rho(x_1, x_{n_k}) \leqslant \rho(x_1, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k})
\leqslant \frac{1}{2^k} + \frac{1}{2^k} = \frac{1}{2^{k-1}}
\implies x^* \in \bigcap_{k=1}^{\infty} B_{1/2^{k-1}}(x_{n_k}) \implies x_{n_k} \to x^* \implies x_n \to x^* \qquad \Box$$$$

8 Лекция от 24.10.22: Пополнение метрического (нормированного) пространства. Принцип сжимающих отображений

8.1 Пополнение метрического пространства

Определение: Пусть $(X, \rho), \ (\widetilde{X}, \widetilde{\rho})$ — метрические пространства. Они *изометричны*, если существует биекция $f: X \to \widetilde{X}$ и $\forall x, y: \rho(x, y) = \widetilde{\rho}(f(x), f(y))$.

Определение: Пространство $(\widetilde{X}, \widetilde{\rho})$ – *пополнение* пространства (X, ρ) , если

- 1. $(\widetilde{X},\,\widetilde{\rho})$ полное
- 2. $X \subset \widetilde{X}$
- 3. $\forall x, y \in X : \rho(x, y) = \widetilde{\rho}(x, y)$
- 4. $\overline{X} = \widetilde{X}$

Теорема: Пусть (X, ρ) – метрическое пространство, тогда $\exists !$ с точностью до изометрии пополнение этого пространства.

Доказательство (udes): Рассмотрим множество фундаментальных последовательностей в X.

$$x_n \sim y_n \iff \rho(x_n, y_n) \to 0; \ n \to \infty \qquad x \in X \leftrightarrow (x, x, x, ...)$$

Введём расстояние пространства, элементами которого являются классы эквивалентвности $[x_n]$:

$$\rho([x_n, y_n]) = \lim_{n \to \infty} \rho(x_n, y_n)$$

Остаётся проверить аксиомы метрики, полноту полученного пространства и то, что расстояние не зависит от выбора элемента.

Пример:

$$C_2[a; b]: ||x|| = \sqrt{\int_a^b x^2(t)dt}$$
 $\widetilde{C_2[a; b]} = L_2[a; b]$

8.2 Сжимающие отображения

Пусть в пространстве (X, ρ) есть $f: X \to X$.

Определение: Отображение f сжимающее, если $\exists \alpha < 1 : \forall x, y \in X \ \rho(f(x), f(y)) \leqslant \alpha \rho(x, y)$.

Замечание: Сжимающее отображение непрерывно.

Определение: x^* – неподвижная точка отображения f, если $f(x^*) = x^*$.

8.2.1 Принцип сжимающих отображений

Теорема: Пусть (X, ρ) – полное метрическое пространство, f – сжимающее отображение. Тогда

- 1. \exists ! неподвижная точка $x^* \in X$
- 2. Если известен $x_0 \in X$, то $x_n = f(x_{n-1}), n \in \mathbb{N}$

$$(x_0 \to f(x_0) = x_1 \to f(x_1) = x_2 \to f(x_2) = x_3 \to \dots; \quad \exists \lim_{n \to \infty} x_n = x^*)$$

Доказательство:

$$\rho(x_{n+1}, x_n) \leqslant \alpha \rho(x_n, x_{n-1}) \leqslant \alpha^2 \rho(x_{n-1}, x_{n-2}) \leqslant \dots \leqslant \alpha^n \rho(x_1, x_0)$$

$$\rho(x_{n}, x_{n+m}) \leqslant \rho(x_{n}, x_{n+1}) + \rho(x_{n+1}, x_{n+2}) + \dots + \rho(x_{n+m-1}, x_{n+m}) \leqslant$$

$$\leqslant \alpha^{n} \rho(x_{1}, x_{0}) + \alpha^{n+1} \rho(x_{1}, x_{0}) + \dots + \alpha^{n+m-1} \rho(x_{1}, x_{0}) = \rho(x_{1}, x_{0}) (\alpha^{n} + \alpha^{n+1} + \dots + \alpha^{n+m-1}) \leqslant$$

$$\leqslant \frac{\alpha^{n}}{1 - \alpha} \rho(x_{1}, x_{0}) \xrightarrow[n \to \infty]{} 0 \implies \text{последовательность } x_{n} \text{ фундаментальна } \implies \exists x^{*} = \lim_{n \to \infty} x_{n}$$

Докажем единственность. От противного: пусть $\exists y^* \neq x^*$ – другая неподвижная точка. Тогда $\rho(f(x^*),\,f(y^*)) \leqslant \alpha \rho(x^*,\,y^*)$

$$\stackrel{\parallel}{\rho}(x^*, y^*) \\ \Longrightarrow \rho(x^*, y^*) = 0 \implies x^* = y^*$$
 – противоречие $\implies \exists ! \ x^*$

Пример:

$$x = \frac{\sin x - 1}{10}, \ x \in \mathbb{R} \quad f(x) = \frac{\sin x - 1}{10}$$

Докажем, что это отображение сжимающее. Пусть $x_0 = 0$

$$x_1 = f(x_0) = -\frac{1}{10}, \ x_2 = \frac{\sin(-0,1) - 1}{10}, \ \dots x_n$$
 – решение при $n \to \infty$.

Замечание: При $m \to \infty$: $\rho(x_n, x^*) \leqslant \frac{\alpha^n}{1-\alpha} \rho(x_1, x_0)$.

Пример: [Задача Коши]

$$\begin{cases} \dot{x}(t) = f(x(t), t), \\ x(0) = x_0 \end{cases}$$

Теорема Пикара: ∃! решение этой системы.

 \mathcal{A} оказательство: Предположим, что $f:\mathbb{R}^2 o\mathbb{R}$ – непрерывная функция и $\exists\,L:\,|f(x,\,t)-f(y,\,t)|\leqslant L|x-y|$

$$\begin{split} x(t) &= x_0 + \int\limits_0^t f(x(\tau), \, \tau) \, d\tau \\ x &= F(x) \quad F: \, G[0; \, a] \to G[0; \, a] \\ (F(x))(t) &= x_0 + \int\limits_0^t f(x(\tau), \, \tau) \, d\tau \\ \rho(F(x), \, F(y)) &= \max_{t \in [0; \, a]} |(F(x))(t) - (F(y))(t)| = \max_{t \in [0; \, a]} \left| \int\limits_0^t f(x(\tau), \, \tau) - f((y(\tau), \, \tau)) \, d\tau \right| \leqslant \\ &\leqslant \int\limits_0^a |f(x(\tau), \, \tau) - f(y(\tau), \, \tau)| \, d\tau \leqslant \int\limits_0^a L|x(\tau) - y(\tau)| \, d\tau \leqslant L \int\limits_0^a \max_{\tilde{\tau}} |x(\tilde{\tau}) - y(\tilde{\tau})| \, d\tau = La\rho(x, \, y) \end{split}$$

Если La < 1, то f является сжимающим. При $a < \frac{1}{L}$ на отрезке [0; a] $\exists !$ решение задачи Коши. \Box

8.3 Сходимость в нормированных пространствах

 $x_n \to x$, если $\rho(x_n, x) = ||x_n - x|| \to 0$.

Пример:

Mep.
$$C[a, b]: \qquad ||x||_1 = \max_{t \in [a; b]} |x(t)| \qquad ||x||_2 = \sqrt{\int\limits_a^b (x(\tau))^2 \, d\tau}$$

$$||x_n - 0||_1 = 1 \qquad \qquad ||x_n - 0||_2 \to 0$$

Лемма: $||\cdot||$ – непрерывная функция (т.е. если $||x_n-x|| \to 0$, то $||x_n|| \to ||x||$)

Доказательство:

1.
$$||x|| = ||x - x_n + x_n|| \le ||x - x_n|| + ||x_n|| \implies ||x|| - ||x_n|| \le ||x - x_n||$$

2.
$$||x_n|| = ||x_n - x + x|| \le ||x - x_n|| + ||x|| \implies ||x_n|| - ||x|| \le ||x - x_n||$$

$$\implies |||x|| - ||x_n||| \leqslant ||x - x_n|| \to 0 \implies ||x_n|| \to ||x||$$

Определение: Нормы эквивалентны $(||\cdot||_1 \sim ||\cdot||_2)$, если $\exists c, c > 0 : \forall x \ c ||x||_1 \leqslant ||x||_2 \leqslant c ||x||_1$.

Замечание: $||\cdot||_2 \sim ||\cdot||_1 : \frac{1}{C}||x||_2 \leqslant ||x||_1 \leqslant \frac{1}{C}||x||_2$.

Лемма: Если $||\cdot||_1 \sim ||\cdot||_2$, то $||x_n - x||_1 \to 0 \iff ||x_n - x||_2 \to 0$

Доказательство:

$$||x_n - x||_1 \leqslant C||x_n - x||_2 \to 0$$
 $||x_n - x||_2 \leqslant \widetilde{C}||x_n - x||_1 \to 0$

Теорема: В конечномерном пространстве все нормы эквивалентны.

Пусть
$$||x||_2 = \sqrt{\sum_{k=1}^n |a_k|^2}$$
. Докажем, что любая норма эквивалентна $||\cdot||_2$.

 \Rightarrow : Возьмём произвольную норму $x: \ ||x|| = ||a_1e_1 + a_2e_2 + ... + a_ne_n|| \leqslant$

$$\leqslant \sum_{k=1}^n |a_k| \, ||e_k|| \leqslant \big| \text{ неравенство } \Gamma$$
ёльдера
$$\big| \leqslant \sqrt{\sum_{k=1}^n |a_k|^2 \sum_{k=1}^n ||e_k||^2} = ||x||_2 \sqrt{\sum_{k=1}^n ||e_k||} = c||x||_2$$

$$\Leftarrow$$
: $||x|| = ||a_1x_1 + ... + a_ne_n|| = f(a_1, \, ... \, a_n) = f(x)$ непрерывна

Рассмотрим множество
$$A:=\left\{x=(a_1,\,\dots a_n)\in\mathbb{R}^n\,\middle|\,||x||_2=\left(\sum_{k=1}^n|a_k|^2\right)^{1/2}=1\right\}$$

$$\exists \, \min_{x \in A} \left(\frac{1}{||x||_2} ||x|| \right) = \min_{x \neq 0} \left| \left| \frac{1}{||x||} x \right| \right| = \min_{x \in A} ||x|| = c$$

$$\left| \left| \frac{1}{||x||_2} x \right| \right|_2 = \frac{||x||_2}{||x||_2} = 1$$

$$||x|| \geqslant c$$
 $||x|| \geqslant c||x||_2 \Longrightarrow ||\cdot|| \sim ||\cdot||_2$

8.4 Линейное многообразие и линейное подпространство

Определение: Пусть X – нормированное пространство. Подмножество $L \subset X$ – линейное многообразие, если $\forall x, y \in L \ \forall \alpha, \beta \in \mathbb{R} : \alpha x + \beta y \in L$.

Определение: Замкнутое линейное многообразие называют линейным подпространством $(\overline{L}=L)$.

Пример: Если L – многочлен в C[a; b], то L является линейным многообразием, но не линейным подпространством.

$$f(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = \lim_{x \to \infty} P_n(x) \quad ||P_k - f|| \to 0$$

Определение: (базис Шаудера)

$$\{e_n\}$$
 – базис линейного пространства, если $\forall x \in X \exists ! a_n \in \mathbb{R}: \ x = \sum_{k=1}^{\infty} a_k e_k \ \left(\lim_{n \to \infty} \left|\left|\sum_{k=1}^n a_k e_k - x\right|\right| = 0\right).$

Определение: (базис Гамеля)

 $\{e_{\alpha}\}$ – базис линейного пространства, если $\forall\,x\in X\;\exists!\;e_{\alpha_1},\,\dots e_{\alpha_n},\;a_1,\,\dots a_n:\,x=a_1e_{\alpha_1}+\dots+a_ne_{\alpha_n}$

9 Лекция от 31.10.22: Евклидово пространство

Определение: Линейное пространство H называется $ee\kappa nudoeыm$, если на нём задана функция $(\cdot\,,\,\cdot): H^2 \to \mathbb{R}$ (скалярное произведение) и для его элементов $x,\,y,\,z$ выполнены следующие условия:

- 1. $(x, x) \ge 0$, $(x, x) = 0 \iff x = 0$
- 2. (x, y) = (y, x)
- 3. $(\alpha x, y) = \alpha(x, y), \ \alpha \in \mathbb{R}$
- 4. (x + y, z) = (x, z) + (y, z)

9.1 Неравенство Коши-Буняковского

$$|(x, y)| \le \sqrt{(x, x)(y, y)}$$
 $[|(x, y)| \le ||x|| ||y||]$

Доказательство:

$$(x + \alpha y, x + \alpha y) = (x, x) + 2\alpha(x, y) + \alpha^{2}(y, y) \geqslant 0$$

$$\mathcal{D} = 4(x, y)^2 - 4(x, x)(y, y) \le 0$$

$$(x, y)^2 \leqslant (x, x)(y, y)$$

$$|(x, y)| \leqslant \sqrt{(x, x)(y, y)}$$

Равенство достигается при нулевом значении дискриминанта, т.е. при $x + \alpha y = 0$.

Замечание: В евклидовом пространстве всегда можно ввести норму $||x|| = \sqrt{(x,x)}$:

1.
$$||x|| \ge 0$$
, $||x|| = 0 \iff x = 0$

2.
$$||\alpha x|| = \sqrt{(\alpha x, \alpha x)} = |\alpha|\sqrt{(x, x)}$$

3.
$$||x+y|| = \sqrt{(x+y, x+y)} = \sqrt{(x, x) + 2(x, y) + (y, y)} \le \sqrt{(x, x) + (y, y) + 2\sqrt{(x, x)(y, y)}} = \sqrt{\left(\sqrt{(x, x)} + \sqrt{(y, y)}\right)^2} = ||x|| + ||y||$$

9.1.1 Критерий существования скалярного произведения, согласованного с нормой пространства

В нормированном пространстве можно ввести скалярное произведение $(\cdot,\cdot) \iff$ выполнено равенство параллелограмма $\forall\,x,\,y\;||x-y||^2+||x+y||^2=2||x||^2+2||y||^2.$

Доказательство (идея):

$$\Rightarrow$$
: $(x - y, x - y) + (x + y, x + y) = 2(x, x) + 2(y, y)$

$$\Leftarrow$$
: $(x, y) = \frac{1}{4}(||x+y||^2 - ||x-y||^2)$ – осталось проверить аксиомы скалярного произведения.

Пример: $C[a; b], l_p, p \neq 2, L_p[a; b], p \neq 2$ не евклидовы.

Утверждение: Скалярное произведение (f(x, y) = (x, y)) непрерывно.

Доказательство: Пусть $x_n \to x, y_n \to y$.

$$|(x_n, y_n) - (x, y)| = |(x_n, y_n) - (x_n, y) + (x_n, y) - (x, y)| \le |(x_n, y_n - y)| + |(x_n - x, y)| \le |(x_n, y_n) - (x_n, y_n)| \le |(x_n,$$

(применяем неравенство Коши-Буняковского)

$$\leq ||x_n|| ||y_n - y|| + ||x_n - x|| ||y||$$

Здесь $||x_n||$ ограничена в силу сходимости к x, а $||y_n - y||$ и $||x_n - x||$ стремятся к нулю, значит, к нулю стремится всё выражение. Таким образом, функция непрерывна.

9.1.2 Теорема о проекции и перпендикуляре

Пусть H – полное евклидово пространство, L – линейное подпространство $H, x \in H$. Тогда

1. $\exists !$ проекция $y^* \in L : \rho(x, y^*) = \min_{y \in L} \rho(x, y)$

2.
$$h := x - y^* \perp L \quad (\forall z \in L : (h, z) = 0)$$

Доказательство:

1.
$$\inf_{y \in L} \rho(x, y) = d \quad \left(\inf_{y \in L} ||x - y|| = d\right)$$

$$\implies \forall n \in \mathbb{N} \ \exists y_n \in L \ \rho(x, y_n) (= ||x - y_n||) < d + \frac{1}{n}$$

Запишем равенство параллелограмма:

$$2(||x - y_n||^2 + ||x - y_m||^2) = ||2x - y_n - y_m||^2 + ||y_m - y_n||^2$$

$$||y_m - y_n||^2 = 2(||x - y_n||^2 + ||x - y_m||^2) - 4 \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n + y_m) \right| \right|^2 + \left| \left| x - \frac{1}{2}(y_n$$

Тогда при $n, m \to \infty$

$$\lim_{n,m\to\infty} ||y_n-y_m||^2 \leqslant 4d^2-4d^2=0 \implies y_n$$
 фундаментальна $\implies y_n\to y^*\in L$ (в силу замкнутости).

Докажем единственность от противного.

Пусть
$$\exists \widetilde{y} \neq y^*, \ \widetilde{y} \in L: \ ||x - \widetilde{y}|| = d$$

$$||y^* - \widetilde{y}||^2 = 2(||x - \widetilde{y}||^2 + ||x - y^*||^2) - 4\left|\left|x - \frac{1}{2}(y^* + \widetilde{y})\right|\right|^2 \leqslant 4d^2 - 4d^2 = 0 \implies y^* - \widetilde{y} = 0 \implies y^* = \widetilde{y}$$

Получили противоречие, значит, проекция единственна.

2. Hyctb
$$z \in L$$
, $y^* + \alpha z \in L$

$$\rho(x, y^*) \leq \rho(x, y^* + \alpha z) \,\forall \,\alpha$$

$$(x - y^*, x - y^*) \leq (x - y^* - \alpha z, x - y^* - \alpha z)$$

$$(h, h) \leq (h - \alpha z, h - \alpha z)$$

$$(h, h) \leq (h, h) - 2\alpha(h, z) + \alpha^2(z, z)$$

$$2\alpha(h, z) \leq \alpha^2(z, z)$$

$$\alpha = \frac{(h, z)}{(z, z)}: \quad \frac{2(h, z)^2}{(z, z)} \leqslant \frac{(h, z)^2}{(z, z)}, \quad z \neq 0 \implies (h, z) = 0 \implies h \perp L$$

9.2 Ортогональное дополнение

Определение: Ортогональным дополнением называют $L^T := \{x \,|\, \forall\, z \in L: \; (x,\, z) = 0\}.$

 $Замечание 1: L^{T}$ – линейное подпространство

$$x_n \in L^T$$
, $x_n \to x$, $(x_n, z) \to (x, z) = 0 \implies$ оно замкнуто.

Замечание 2: $(L^T)^T = L$.

Утверждение: $\exists !\ y\in L,\ \exists !\ h\in L^T:\ x=y+h,$ где h – проекция x на $L^T,$ а $y\perp L^T.$

Доказательство: Пусть $x = y' + h', y' \in L, h' \in L^T$. Тогда

$$y + h = y' + h'$$

$$y - y' = h' - h$$

$$\in L$$

$$(y - y', h' - h) = 0$$

$$||y - y'|| = 0 \implies y = y', h = h'$$

 $\mathit{Cnedcmeue}\colon H$ можно представить в виде прямой суммы $H=L\oplus L^T.$

Определение: Систему векторов $\{x_n\}$ называют *ортогональной*, если $\forall x_i, x_j, i \neq j : (x_i, x_j) = 0$.

Определение: Систему векторов $\{x_n\}$ называют *ортонормированной*, если она ортогональна и $\forall i: (x_i, x_i) = 1.$

9.2.1 Ортогонализация Грама-Шмидта

Пусть $x_i \in H \ \forall x_i \in \{x_n\}$ – линейная независимая система, $\exists \ \{y_n\}, \ \{z_n\}$ – ортогональная и ортонормированная системы соответственно.

$$\begin{split} & \operatorname{Lin}\{x_n\} = \operatorname{Lin}\{y_n\} = \operatorname{Lin}\{z_n\} - \operatorname{линейные} \ \text{оболочки} \\ & y_1 = x_1 \\ & y_2 = x_2 - \lambda_1 y_1, \quad 0 = (y_1, \, y_2) = (x_2, \, y_1) - \lambda_1 (y_1, \, y_1) \implies \lambda_1 = \frac{(y_1, \, x_2)}{(y_1, \, y_1)} \\ & y_n = x_n - \sum_{k=1}^{n-1} \lambda_{nk} y_k, \quad \lambda_{nk} = \frac{(x_n, \, y_k)}{(y_k, \, y_k)} \\ & z_n = \frac{1}{||y_n||} y_n = \frac{1}{\sqrt{(y_n, \, y_n)}} y_n \end{split}$$

9.2.2 Задача проецирования на линейную оболочку векторов

Пусть
$$L=\left\{\sum_{k=1}^n a_k \varphi_k \,|\, a_k \in \mathbb{R}\right\}=\mathrm{Lin}\{\varphi_n\},\,$$
 где $\{\varphi_n\}$ — ортогональная система.

Найдём проекцию x на L=:l.

$$\begin{split} l &= \sum_{k=1}^n \alpha_k \varphi_k \\ \left| \left| x - \sum_{k=1}^n \alpha_k \varphi_k \right| \right|^2 \to \min \\ \left(x - \sum_{k=1}^n \alpha_k \varphi_k, \ x - \sum_{k=1}^n \alpha_k \varphi_k \right) &= (x, \ x) - 2 \sum_{k=1}^n \alpha_k (x, \ \varphi_k) + \sum_{k=1}^n \alpha_k^2 (\varphi_k, \ \varphi_k) \to \min_{\alpha_1, \dots \alpha_n} \\ -2(x, \ \varphi_k) + 2\alpha_k (\varphi_k, \ \varphi_k) &= 0 \\ \alpha_k &= \frac{(x, \ \varphi_k)}{(\varphi_k, \ \varphi_k)} - \text{коэффициенты Фурье.} \end{split}$$

10 Лекция от 07.11.22: Гильбертово пространство. Линейные функционалы и операторы

10.1 Гильбертово пространство. Ряды Фурье

$$f:=\sum_{k=1}^{\infty}lpha_karphi_k$$
 – ряд Фурье

Определение: Бесконечномерное полное евклидово пространство называют гильбертовым.

Примеры:

- 1. $\mathbb{R}^n (x, y) = x^T A y, A > 0$
- 2. $l_2,\ \alpha\leqslant c$ ограниченные последовательности, $\alpha_k>0\ \forall\, k$

$$(x,y)=\sum_{k=1}^{\infty} lpha_k x_k y_k \leqslant c \left|\sum_{k=1}^{\infty} x_k y_k \right| \leqslant c \sqrt{\sum_{k=1}^{\infty} x_k^2 \sum_{k=1}^{\infty} y_k^2} < \infty$$
 (получили из неравенства Гёльдера)

3. $L_2[a, b]$

$$(x, y) = \int_{[a; b]} x(t)y(t) dt$$

4. $L^2_{\mu}(\Omega)$

$$(x, y) = \int_{\Omega} xy \, d\mu$$

5. Пространство случайных величин с нулевым матожиданием и конечной дисперсией $(\mathbb{M}[\xi] = 0, \mathbb{D}[\xi] < \infty)$ $(\xi, \eta) = cov(\xi, \eta)$

Пусть H – сепарабельное гильбертово пространство, $\{\varphi_k\}$ – ортонормированная система векторов из него.

Определение: Система векторов $\{\varphi_k\}$ является тотальной, если $\overline{\operatorname{Lin}}\{\varphi_k\} = H$.

Утверждение: В сепарабельном бесконечномерном пространстве существует тотальная система.

Доказательство: Пусть A — счётное всюду плотное множество, применяем метод ортогонализации Γ -Ш → получаем ортонормированную систему, она тотальна.

 $\it Замечание:$ Не всякая счётная тотальная система образует базис. Например, многочлены в $\it C_2[a;\,b]:$

$$||x|| = \sqrt{\int\limits_a^b x^2(t) \, dt}, \quad \text{пусть } a = 0, \, b = 1.$$

 $\{1,\,t,\,t^2,\,...\}$ – тотальная система, $f(t)=\sum_{k=1}^\infty \alpha_k t^k$ сходится $\implies ||\alpha_k t^k|| \to 0$

$$\implies ||\alpha_k t^k|| = |\alpha_k| \sqrt{\int_0^1 t^{2k} dt} = \alpha_k \sqrt{\frac{1}{2k+1}} \to 0$$

Найдём радиус сходимости $\sum_{k=1}^{\infty} \alpha_k t^k$: $\sqrt[k]{|\alpha_k|} \leqslant \sqrt{2k+1} \implies \sqrt[k]{|\alpha_k|} \sim k^{\frac{1}{2k}} \to 1 \implies R=1$

На отрезке [0; 1-a] ряд сходится $\implies f$ – бесконечно дифференцируемая функция. Но $f(t) = |t-\frac{1}{2}|$ не является бесконечно дифференцируемой \implies система не является базисом.

Теорема: Пусть $\{\varphi_k\}$ – ортогональная (ортонормированная) система в гильбертовом пространстве H. Тогда следующие утверждения эквивалентны:

- 1. $\{\varphi_k\}$ базис
- 2. $\{\varphi_k\}$ тотальная система
- 3. (Равенство Парсеваля)

$$\forall\,x\in H:\;||x||^2=\sum_{k=1}^\infty lpha_k^2||arphi_k||^2,$$
 где $lpha_k=rac{(arphi_k,\,x)}{(arphi_k,\,arphi_k)}$

Доказательство:

 $1\implies 2$: Всякий вектор раскладывается по базису \implies он всюду плотен \implies система тотальна.

$$\mathbf{2} \implies \mathbf{3}: \ \forall x \ \forall \varepsilon > 0 \ \exists \beta_1, \dots \beta_n : \left\| x - \sum_{k=1}^n \beta_k \varphi_k \right\| < \varepsilon$$

$$\Pr_{\text{Lin}\{\varphi_1, \dots \varphi_n\}}(x) = \sum_{k=1}^n \alpha_k \varphi_k$$

$$\left\| x - \sum_{k=1}^n \alpha_k \varphi_k \right\| \le \left\| x - \sum_{k=1}^n \beta_k \varphi_k \right\| < \varepsilon \implies$$

$$\left\| x - \sum_{k=1}^n \alpha_k \varphi_k \right\|^2 = (x, x) - 2 \sum_{k=1}^n \alpha_k (x, \varphi_k) + \sum_{k=1}^n \alpha_k (\varphi_k, \varphi_k) = (x, x) - 2 \sum_{k=1}^n \frac{(x, \varphi_k)^2}{(\varphi_k, \varphi_k)} + \sum_{k=1}^n \frac{(x, \varphi_k)^2}{(\varphi_k, \varphi_k)} = (x, x) - \sum_{k=1}^n \frac{(x, \varphi_k)^2}{(\varphi_k, \varphi_k)} = (x, x) - \sum_{k=1}^n \alpha_k^2 (\varphi_k, \varphi_k)$$

$$\left|\left|x - \sum_{k=1}^{n} \alpha_k \varphi_k\right|\right|^2 \to 0 \text{ в силу тотальности } \Longrightarrow \sum_{k=1}^{\infty} \alpha_k^2 ||\varphi_k||^2 = ||x||^2$$

$$\mathbf{3} \implies \mathbf{1}$$
: $\left| \left| x - \sum_{k=1}^{n} \alpha_k \varphi_k \right| \right|^2 = (x, x) - \sum_{k=1}^{n} \alpha_k^2 (\varphi_k, \varphi_k) \to 0 \implies x = \sum_{k=1}^{\infty} \alpha_k \varphi_k$. Проверим единственность. Пусть $x = \sum_{k=1}^{\infty} \beta_k \varphi_k$.

$$(x, \varphi) = \begin{cases} \left(\sum_{k=1}^{\infty} \alpha_k \varphi_k, \varphi_n\right) = \alpha_n \\ \left(\sum_{k=1}^{\infty} \beta_k \varphi_k, \varphi_n\right) = \beta_n \end{cases} \implies \alpha_n = \beta_n$$

Замечание: $\sum\limits_{k=1}^{n} \alpha_k^2 ||\varphi_k||^2 \leqslant ||x||^2 \implies n \to \infty$: $\sum\limits_{k=1}^{\infty} \alpha_k^2 ||\varphi_k||^2 \leqslant ||x||^2$ – неравенство Бесселя.

Примеры:

- 1. $L_2[-\pi;\pi]: \{1,\cos(t),\sin(t),\cos(2t),\sin(2t),\ldots\cos(nt),\sin(nt)\}$ ортогональная система.
- 2. $L_2\left[a;b\right]: \{1,t,t^2,t^3,...\} \to$ применяем ортогонализацию. При $\left[a;b\right]=\left[-1;1\right]$ получаем полиномы Лежандра, что является базисом в данном пространстве.

10.1.1 Теорема Фишера

Любое сепарабельное гильбертово пространство H изоморфно и изометрично l_2 ($H\cong l_2$). Доказательство: Пусть $\{l_n\}$ – ортонормированный базис в пространстве H.

$$\forall x: \ x = \sum_{k=1}^{\infty} \alpha_k e_k \qquad ||x||^2 = \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

- 1) Отображение инъективно
- 2) $\alpha \in l_2 \implies x = \sum_{k=1}^{\infty} \alpha_k \varphi_k$ докажем, что последовательность фундаментальна.

$$\left\| \sum_{k=n}^m \alpha_k \varphi_k \right\|^2 = \sum_{k=n}^m \alpha_k^2 \leqslant \sum_{k=1}^\infty \alpha_k^2 \xrightarrow[k \to \infty]{} 0 \implies \text{ряд сходится.}$$

$$||x||^2 \sum_{k=1}^{\infty} \alpha_k^2 = ||\alpha||_l$$
 Пусть $x = (\alpha_1, \, \alpha_2, \, \ldots), \, y = (\beta_1, \, \beta_2, \, \ldots)$

$$ax + by \leftrightarrow a\alpha + b\beta$$
$$ax + by = \sum_{k=1}^{\infty} (a\alpha_k + b\beta_k)\varphi_k$$

Следствие: $L_2\left[a;\,b\right]\cong l_2$

10.2 Линейные функционалы и операторы

Определение: Полное нормированное пространство называется банаховым.

Пример: C[a, b] – банахово пространство.

Определение: Линейный оператор из нормированного пространства X в нормированное пространство Y – это такое отображение $A: X \to Y$, что $\forall \alpha, \beta \in \mathbb{R}, \ \forall x, y \in X: \ A(\alpha x + \beta y) = \alpha Ax + \beta Ay \ [Ax = A(x)].$

Определение: Линейный функционал – это линейный оператор $X \to \mathbb{R}$.

Примеры:

1. Оператор: $A: C[0; 1] \to C[0; 1]$

$$(Ax)(t) = \int_{0}^{t} x(\tau) d\tau$$

2. Функционал: $f: C[0; 1] \to \mathbb{R}$ f(x) = x(0)

Определение: $\mathscr{L}(X,Y)$ – пространство *ограниченных линейных операторов* из X в Y. $A,B\in\mathscr{L}(X,Y)$ $(\alpha A+\beta B)(x)=\alpha Ax+\beta Bx$

Определение: Норма линейного оператора – это $||A|| = \sup_{||x|| \le 1} ||Ax||$.

Проверим, что норма линейного оператора действительно является нормой.

- 1. $||A|| = 0 \iff A = 0$
- 2. $||\alpha A|| = |\alpha| ||A||$
- 3. $||A+B||\leqslant ||A||+||B||$, так как $||(A+B)(x)||=||Ax+Bx||\leqslant ||Ax||+||Bx||\leqslant \sup_{||x||\leqslant 1}||Ax||+\sup_{||x||\leqslant 1}||Bx||=||A||+||B||$

Определение: Оператор *ограничен*, если $\sup_{||x|| < 1} ||Ax|| < \infty$.

Замечание: Линейный оператор ограничен ⇔ он ограничен на любом шаре.

$$||x||\leqslant a \qquad ||Ax||=||x|| \ \left|\left|A\frac{1}{||x||}x\right|\right|\leqslant a \sup_{||x||\leqslant 1}||Ax||<\infty$$

$$\left| \left| \frac{x}{||x||} \right| \right| = 1 = \frac{||x||}{||x||}$$

Определение: Пространство ограниченных функционалов на L – conpяжеённое npocmpaнство к L. [Обозначение: L^*]

$$||f|| = \sup_{||x|| \le 1} |f(x)|$$

Утверждение: $||f|| = \sup_{||x||=1} |f(x)| = \sup_{x \neq 0} \frac{|f(x)|}{||x||}$

Пусть
$$||x|| < 1 \implies |f(x)| = ||x|| \left| f\left(\frac{x}{||x||}\right) \right|; \ \ y = \frac{x}{||x||}, \ ||y|| = 1$$

$$|f(y)| = \frac{|f(x)|}{||x||} > |f(x)|$$

$$||f|| = \sup_{||x||=1} |f(x)| = \sup_{||x||=1} \frac{|f(x)|}{||x||} \leqslant \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{x \neq 0} \left| f\left(\frac{x}{||x||}\right) \right| \leqslant \sup_{||y||=1} |f(y)| = ||f||$$

Правая и левая части равны, значит, везде равенство.

Замечание: $|f(x)| \le ||f|| \, ||x||$

Теорема: Ограниченность функционала 👄 его непрерывность.

Доказательство:

1
$$\Longrightarrow$$
 2: $|f(x) - f(y)| = |f(x - y)| \le ||f|| ||x - y|| \Longrightarrow f(x) \to f(y)$

2 \implies 1: От противного: пусть функционал не ограничен, тогда ограничения нет и в шаре.

$$\exists x_k: ||x_k|| \leqslant 1 \quad |f(x_k)| > k$$

$$f\left(\frac{x_k}{k}\right) = \frac{f(x_k)}{k} > 1$$

$$\left|\left|\frac{x_k}{k}\right|\right|\leqslant \frac{1}{k}\to 0 \implies f\left(\frac{x_k}{k}\right)\to f(0)=0 \implies \text{противоречние} \implies \text{функционал ограничен.} \quad \square$$

Пример (неограниченного функционала): Пусть L – бесконечное пространство $\Longrightarrow \exists$ бесконечный базис Гамеля $\{\varphi_{\alpha}\}$, а $\{\varphi_{k}\}$ – счётное множество нормированных базисных векторов ($||\varphi_{i}|| = 1 \ \forall \varphi_{i} \in \{\varphi_{k}\}$). Определим функционал следующим образом:

1.
$$f(\varphi_i) = i$$

2.
$$f(\alpha_1 \varphi_1 + ... + \alpha_k \varphi_k) = \sum_{i=1}^k \alpha_i \quad \sup_{||x||=1} |f(x)| \ge |i|$$

11 Лекция от 14.11.22: Теорема Хана-Банаха

11.1 Теорема Хана-Банаха

Пусть X — нормированное пространство, $L \subset X$ — линейное многообразие, f — линейный ограниченный функционал на L. Тогда \exists функционал $F \in X^*$:

- 1. $\forall x \in L : F(x) = f(x)$ продолжение функционала
- 2. ||F|| = ||f||

Проще говоря, можно продолжить f на всё пространство X таким образом, что норма не увеличится (например, при переносе функционала с прямой на плоскость).

Доказательство: Пусть $x \in L$, $\alpha \in \mathbb{R}$, $y \notin L$. Определим F:

$$F(x + \alpha y) = F(x) + \alpha F(y) = f(x) + \alpha c, \ c = F(y).$$

Теперь рассмотрим F на прямой сумме $L \oplus L_0$, где $L_0 = \text{Lin}\{y\}$:

$$||F||_{L \oplus L_0} = \sup_{x \in L \oplus L_0, \, ||x|| \le 1} |F(x)| = \sup_{x \in L, \, \alpha \in \mathbb{R}, \, ||x + \alpha y|| \le 1} |f(x) + \alpha c|$$

$$\sup_{x \in L, \; \alpha \in \mathbb{R}, \; ||x + \alpha y|| \leqslant 1} |f(x) + \alpha c| = \sup_{x + \alpha y \neq 0} \frac{|f(x) + \alpha c|}{||x + \alpha y||}$$

Итак, требуется доказать, что полученный супремум ограничен нормой ||f||.

$$\sup_{x \in L, \alpha \in \mathbb{R}, ||x + \alpha y|| \le 1} |f(x) + \alpha c| \le ||f|| \iff |f(x) + \alpha c| \le ||f|| \, ||x + \alpha y||$$

$$-||f||\,||x + \alpha y|| \leqslant f(x) + \alpha c \leqslant ||f||\,||x + \alpha y||$$

Разделим на $\alpha \neq 0$ и рассмотрим вторую часть неравенства:

1.
$$\alpha > 0$$
: $f(\frac{1}{\alpha}x) + c \leq ||f|| ||\frac{1}{\alpha}x + y$ $x' := \frac{1}{\alpha}x$

2.
$$\alpha < 0$$
: $f(\frac{1}{\alpha}x) + c \ge ||f|| \frac{1}{\alpha} ||x + \alpha y|| = ||f|| \frac{1}{\alpha} (-\alpha) ||\frac{1}{\alpha}x + y|| = -||f|| ||\frac{1}{\alpha}x + y|| \qquad x'' := \frac{1}{\alpha}x$

Тогда
$$\begin{cases} f(x') + c \leqslant ||f|| \, ||x' + y||, \\ f(x'') + c \geqslant -||f|| \, ||x'' + y||; \end{cases} \implies -f(x'') - ||f|| \, ||x'' + y|| \leqslant c \leqslant -f(x') + ||f|| \, ||x' + y||$$

Pacemotrhy parameter f(r') - f(r'') = f(r' - r'')

$$f(x') - f(x'') = f(x' - x'') \le ||f|| ||x' - x''|| = ||f|| ||x' + y - (y + x'')|| \le ||f|| ||x' + y|| + ||f|| ||x'' + y||$$

Вычтем из обеих частей неравенства f(x'):

$$-f(x'') - ||f|| ||x'' + y|| \le -f(x') + ||f|| ||x' + y|| \implies \exists c \in [-f(x'') - ||f|| ||x'' + y||; -f(x') + ||f|| ||x' + y||]$$

F продолжим на $L_1 = L \oplus L_0$. Если $L_1 \neq X$, $L_2 = L_1 \oplus \text{Lin}\{y_1\}$, $y \notin L_1 \implies F$ продолжим на L_2 без увеличения нормы.

Предположим, что X сепарабельно $\implies \exists \{y_1, y_2, ...\}$ – счётное всюду плотное множество.

$$L_3 = L_2 \oplus \text{Lin}\{y_2\}, \ L_4 = L_3 \oplus \text{Lin}\{y_3\}, \ \dots \ L_k = L_{k-1} \oplus \text{Lin}\{y_{k-1}\}$$

$$X_0 = L_1 \oplus L_2 \oplus \dots = \text{Lin}\{L, y_1, y_2, y_3, \dots\}$$

f продолжим с сохранением нормы на X_0 – всюду плотное множество в X.

$$x \in X : F(x) = \lim_{n \to \infty} F(x_n), x_n \to x$$

 $F(\alpha x + \beta y) = \lim_{n \to \infty} F(\alpha x_n + \beta y_n) = \alpha F(x) + \beta F(y)$ при $x_n \to x, \ y_n \to y.$ Если $x_n \to x, \ y_m \to x,$ то последовательность фундаментальна $\Longrightarrow |F(x_n) - F(y_m)| \le ||F|| \, ||x_n - y_m|| \to 0$

Докажем, что норма не увеличится. От противного: предположим, что $||F|| > ||f|| \implies \exists x : ||x|| \le 1, |F(x)| > ||f||.$

 X_0 всюду плотно $\implies \exists x_n \in X_0: x_n \to x, ||x_n|| \leqslant 1$. Тогда $F(x_n) \to F(x) > ||f|| \implies |F(x_n)| \leqslant ||f|| -$ получили противоречие.

11.1.1 Следствия

1. Пусть $x_0 \neq 0$. Тогда существует линейный ограниченный функционал $(f \in X^*)$ такой, что $f(x_0) = ||x_0||, ||f|| = 1$.

Доказательство: Пусть $L = \text{Lin}\{x_0\}$. Построим функционал на $L: f(\alpha x_0) = \alpha ||x_0||$.

$$||f||_{L} = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{\alpha} \frac{|f(\alpha x_0)|}{||\alpha x_0||} = \frac{|\alpha| ||x_0||}{|\alpha| ||x_0||} = 1$$

Применим теорему Хана-Банаха и получим продолжение на всё $X: ||f||_X = 1$.

2. Если $\forall f \in X^* : f(x) = 0 \implies x = 0.$

Доказательство: От противного: $\forall f \in X^*: f(x) = 0, \ x \neq 0 \implies \exists f: ||f|| = 1, \ f(x) = ||x|| > 0$ — получили противоречие.

3. Пусть L – линейное многообразие в $X, \ y \notin \overline{L}, \ \rho(L, \ y) = d = \inf_{x \in L} ||x - y||$. Тогда $\exists \ f \in X^* : \ f(x) = 0$ при $x \in L, \ f(y) = 1, \ ||f|| = \frac{1}{d}$.

Доказательство: $x \in L, \ \alpha \in \mathbb{R}: \ f(x + \alpha y) = \alpha$

$$||f|| = \sup_{x \in L, \ \alpha \in \mathbb{R}, \ ||x + \alpha y|| \neq 0} \frac{|f(x + \alpha y)|}{||x + \alpha y||} = \sup_{x \in L, \ \alpha \in \mathbb{R}, \ ||x + \alpha y|| \neq 0} \frac{|\alpha|}{|\alpha| \ ||y + \frac{1}{\alpha} x||} = \sup_{x \in L, \ \alpha \in \mathbb{R}, \ ||x + \alpha y|| \neq 0} \frac{1}{||y + \frac{1}{\alpha} x||} = \sup_{x \in L, \ \alpha \in \mathbb{R}, \ ||x + \alpha y|| \neq 0} \frac{1}{||y - (-\frac{1}{\alpha} x)||} = \frac{1}{d}$$

4. Пусть L – линейное подпространство в X и $L \neq X \implies \exists f: f(x) = 0$ при $x \in L$ и ||f|| = 1. Доказательство: $\exists x_0 \notin L, \ \exists f \in X^*: \ ||f|| = \frac{1}{d}, \ d$ – расстояние от x_0 до L. $F = df \implies ||F|| = \frac{d}{d} = 1$ – нормаль линейного подпространства F.

Определение: $L^{\perp} = \{ f \in X^* \mid f(x) = 0 \text{ при } x \in L \}$ – аннулятор L. [Обозначение: $\langle f, x \rangle = f(x)$]

11.2 Сопряжённое пространство к нормированному пространству X

Определение: X^* – пространство линейных ограниченных функционалов – называется *сопряжеённым*.

$$||f|| = \sup_{x \neq 0} \frac{f(x)}{||x||}$$

Утверждение: Сопряжённое пространство всегда полное.

Доказательство:

1. Пусть f_n – фундаментальная последовательность в $X^* \implies ||f_n - f_m|| \to 0 \; n, \, m \to \infty$

$$|f_n(x)-f_m(x)|\leqslant |(f_n-f_m)x|\leqslant ||f_n-f_m||\,||x||\to 0 \implies f_n(x)$$
 фундаментальна
$$\exists\,y=\lim_{n\to\infty}f_n(x)=f(x)\implies f_n\to f$$

$$|f_n(x)-f_m(x)|\leqslant \varepsilon||x||$$

$$n, m > N: \sup_{x \neq 0} \frac{|f_n(x) - f_m(x)|}{||x||} \leqslant \varepsilon$$

При $m \to \infty: \ |f_n(x) - f(x)| \leqslant \varepsilon ||x|| \implies ||f_n - f|| \to 0$

2.
$$||f|| = ||f - f_n + f_n|| < \underbrace{||f - f_n||}_{\to 0} + \underbrace{||f_n||}_{< c \in \mathbb{R}}$$

12 Лекция от 21.11.22: Теоремы Рисса

Определение: $L^{\infty}_{\mu}[a;b]$ – пространство существенно ограниченных функций, $L^{\infty}_{\mu}[a;b] = \{x:[a;b] \to \mathbb{R} \ | \ \exists c \in \mathbb{R}: \mu\{t \ | \ |x(t)| > c\} = 0\}, \ x$ – классы эквивалентных функций. (т.е. функции, ограниченные константой везде, кроме точек меры 0)

$$||x||_{L^{\infty}_{\mu}[a;b]}=\mathrm{ess}\sup_{t\in\mathbb{R}}|x(t)|=\inf_{c\in\mathbb{R}}\{c\,|\,\mu\{t\,\big|\,|x(t)|>c\}=0\}$$
 (существенный супремум)

Утверждение: Пространство, сопряжённое к несепарабельному пространству, несепарабельно.

Доказательство: От противного: пусть X несепарабельное, X^* сепарабельное. $\{f_i\}$ – всюду плотное множество в X^* , $i \in \mathbb{N}$.

$$|f_i(x_i)|\geqslant rac{1}{2}||f_i||,\quad ||x_i||=1$$

$$\sup_{||x||=1}|f_i(x)|=||f_i||$$
 $L=\mathrm{Lin}\{x_i\}\qquad x_i$ счётное $\implies \exists\, x_0\notin L,\ x_0\in X$

Из теоремы Хана-Банаха: $\exists \psi \in X^* : \psi(x_0) = ||x_i||, ||\psi|| = 1, \psi(x) = 0, x \in L$

$$\exists \, f_{i_n} \to \psi : 1 = ||f_{i_n} - \psi|| \, ||x_{i_n}|| \geqslant \underbrace{|f_{i_n}(x_{i_n}) - \psi(x_{i_n})|}_{\text{в силу сходимости} \to 0} \geqslant \frac{1}{2} ||f_{i_n}|| \implies ||f_{i_n}|| \to 0$$

$$|\psi(x_0) - f_{i_n}(x_0)| \leqslant \underbrace{||\psi - f_{i_n}||}_{\to 0} ||x_0||$$

$$\implies f_{i_n}(x_0) \to \psi(x_0) = 1, \quad f_{i_n}(x_0) \to 0 \implies \text{противоречие.}$$

12.1 Теоремы Рисса

1. $l_p,\ p\in[1;\infty)$. Пусть $f\in l_p^*,\ x\in l_p,\ x=\sum\limits_{k=1}^\infty x_ke_k$, где e_k – последовательности нулей с единицей на k-м месте, $\frac{1}{q}+\frac{1}{p}=1$. Тогда $l_p^*\cong l_q$.

Доказательство:

$$\left\| \sum_{k=n}^{m} x_{k} e_{k} \right\|^{p} \leqslant \sum_{k=n}^{m} |x_{k}|^{p} \leqslant \sum_{k=n}^{\infty} |x_{k}|^{p} \xrightarrow[n \to \infty]{} 0$$

$$f(x) = f\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right) = \sum_{k=1}^{\infty} x_{k} f(e_{k}) = \sum_{k=1}^{\infty} \widetilde{f}_{k} x_{k}, \ \widetilde{f}_{k} = f(e_{k})$$

$$\|f\| - \sup_{\|x\| \leqslant 1} \left| \sum_{k=1}^{\infty} \widetilde{f}_{k} x_{k} \right| \leqslant \sup_{\|x\| \leqslant 1} \left(\sum_{k=1}^{\infty} |\widetilde{f}_{k}|^{q} \right)^{1/q} \left(\sum_{k=1}^{\infty} |x_{k}|^{p} \right)^{1/p} \leqslant \left(\sum_{k=1}^{\infty} |\widetilde{f}_{k}|^{q} \right)^{1/q} = \|\widetilde{f}\|_{q}$$

Докажем, что $f \in l_q$ (считаем, что $\widetilde{f} \in l_\infty$ при $p=1,\ q=\infty$):

 $p \neq 1$:

$$|f(x)| = \left|\sum_{k=1}^{\infty} \widetilde{f}_k x_k\right| \leqslant \left| \text{ неравенство } \Gamma$$
ёльдера
$$|f(x)| = \left|\sum_{k=1}^{\infty} |\widetilde{f}_k|^q \right|^{1/q} \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p} = ||\widetilde{f}||_q \, ||x||_p$$

$$\frac{|f(x)|}{||x||} \leqslant ||\widetilde{f}||_q$$

$$x^{(n)} = (\operatorname{sgn} \widetilde{f}_1 | \widetilde{f}_1 |^{q-1}, \, \operatorname{sgn} \widetilde{f}_2 | \widetilde{f}_2 |^{q-1}, \, \dots, \, \operatorname{sgn} \widetilde{f}_n | \widetilde{f}_n |^{q-1}, \, 0, \, 0, \, 0, \, \dots)$$

$$\frac{|f(x^{(n)})|}{||x^{(n)}||} = \frac{\sum\limits_{k=1}^{n} |\widetilde{f}_{k}|^{q}}{\left(\sum\limits_{k=1}^{n} |\widetilde{f}_{k}|^{(q-1)p}\right)^{1/p}} \ \ \, \Longrightarrow \ \,$$

$$(q-1)p = qp(1-\frac{1}{q}) = qp\frac{1}{p} = q$$

функционал ограничен $\implies \frac{|f(x^{(n)})|}{||x^{(n)}||} < c, \ c \in \mathbb{R}$

$$\left(\sum_{k=1}^n |\widetilde{f}_k|^q\right)^{1/q} < c \implies \text{ряд сходится} \implies \widetilde{f} \in l_q \qquad l_p^* \cong l_q$$

p = 1:

$$f(x) = \sum_{k=1}^{\infty} \widetilde{f}_k x_k$$

$$|f(x)| \leq \sup_{k} |\widetilde{f}_k| \sum_{k=1}^{\infty} |x_k| = ||\widetilde{f}||_{\infty} ||x||_1 \implies ||f|| \leq ||\widetilde{f}||_{\infty}$$

$$x^{(n)} = (0, 0, 0, \dots 0, \operatorname{sgn}(\widetilde{f}_n), 0, 0 \dots) \quad ||x^{(n)}|| \leq 1$$

$$f(x^{(n)}) = |\widetilde{f}_n| < c \implies \widetilde{f} \in l_{\infty}$$

$$\sup_{x^{(n)}} f(x^{(n)}) = \sup_{n} |\widetilde{f}_n| = ||\widetilde{f}||_{\infty}$$

2. $\forall f \in L_p^*[a; b], p \in (1; \infty) \exists ! \widetilde{f} \in L_q$:

$$f(x) = \int_{[a;b]} \widetilde{f}(t)x(t) dt, \ ||f|| = ||\widetilde{f}||_{L_q[a;b]}$$

3. $(L_1[a; b])^* \cong L_{\infty}[a; b] (= L_{\lambda}^{\infty}[a; b])$

$$\forall f \in L_1^*[a; b] \quad ||f|| = ||\widetilde{f}||_{L_\infty[a; b]}$$

$$f(x) = \int_{[a;b]} \widetilde{f}(t)x(t) dt$$

Пример: $L_{\infty}[-1; 1]$, непрерывные функции (C[a; b]) образуют в этом пространстве линейное многообразие. Покажем, что существует функционал, для которого не существует таких \tilde{f} , что f(x) представима в виде

$$f(x) = \int_{[a:b]} \widetilde{f}(t)x(t) dt$$

Пусть

$$f(x) = x(0), x \in C[-1; 1]$$
 $||f|| = 1$

По следствию из теоремы Хана-Банаха: существует продолжение f на $L_{\infty}[-1; 1], ||f||_{L_{\infty}} = 1$. Предположим, что f(x) можно представить в следующем виде:

$$f(x) = \int_{[-1; 1]} x(t)\widetilde{f}(t) dt, \ \widetilde{f} \in L_1[-1; 1]$$

Возьмём функцию $x_{\varepsilon}(t)$:

Заметим, что $x_{\varepsilon} \xrightarrow{\text{п.в.}} 0 \quad |x_{\varepsilon}| \leqslant 1$

$$1 = f(x_{\varepsilon}) = \int\limits_{[-1;\,1]} x_{\varepsilon}(t) \widetilde{f}(t) \, dt \xrightarrow{\varepsilon \to 0} 0$$
 – противоречие.

Упражнение: Показать, что

$$\exists f \in l_{\infty}^* : \not\exists \widetilde{f} \in l_1 : f(x) = \sum_{k=1}^{\infty} \widetilde{f}_k x_k$$

Peшениe: Возьмём пространство сходящихся последовательностей $c \subset l_{\infty}$. Определим функционал.

Пусть
$$\forall x \in c : f(x) = \lim_{n \to \infty} x_n$$

Заметим, что этот функционал является линейным. Кроме того, он ограничен:

$$\sup_{||x|| \le 1} |f(x)| = 1, \quad ||f|| = 1$$

По следствию из теоремы Хана-Банаха: f можно продолжить на l_{∞} : $||f||_{l_{\infty}} = 1$. Возьмём последовательность x^1 :

$$x^1 = (1, 1, 1, \dots)$$

$$f(x^1) = \sum_{k=1}^{\infty} \widetilde{f_k} \, 1 = \sum_{k=1}^{\infty} \widetilde{f_k}, \quad f(x^1) = \lim_{n \to \infty} x_n^1 = 1 \implies \sum_{k=1}^{\infty} \widetilde{f_k} = 1 \implies \text{ряд сходится}$$

$$x^2 = (0, 1, 1, \dots) \quad \dots \quad x^n = (\underbrace{0, \dots, 0, 1}_{n-1}, 1, \dots)$$

$$1 = f(x^n) = \sum_{k=1}^{n-1} 0\widetilde{f}_k + \sum_{k=n}^{\infty} 1\widetilde{f}_k = \sum_{k=n}^{\infty} \widetilde{f}_k \xrightarrow{\text{остаток ряда}} 0 - \text{противоречие}.$$

4. $\forall f \in (C[a;b])^* \exists$ монотонные неубывающие ограниченные на $(a-\varepsilon;b], \varepsilon > 0$ непрерывные справа функции F_1, F_2 :

$$f(x) = \int_{[a;b]} x(t) dF_1(t) - \int_{[a;b]} x(t) dF_2(t) =: \int_{[a;b]} x(t) d(F_1(t) - F_2(t)) \qquad F(t) := F_1(t) - F_2(t)$$

$$||x|| = \sup_{a \leqslant t_1 < t_2 < \dots < t_n \leqslant b, \ n \in \mathbb{N}} \sum_{k=2}^n |F(t_k) - F(t_{k-1})|$$

- полная вариация F (сумма приращений по каждому участку монотонности)

Упражнение: c_0^* – пространство сходящихся к 0 последовательностей. Доказать, что $c_0^*\cong l_1.$

Решение: Определим норму в c_0 : $||x|| = \sup_{k} |x_k|$.

$$x=\sum_{k=1}^{\infty}x_ke_k$$
 $f(x)=\sum_{k=1}^{\infty}x_k\underbrace{f(e_k)}_{\widetilde{f}}$ – в силу линейности

$$||f|| = \sup_{||x|| \leqslant 1} \sum_{k=1}^{\infty} \widetilde{f}_k \underbrace{x_k}_{\leqslant 1} \leqslant \sum_{k=1}^{\infty} |\widetilde{f}_k| = ||\widetilde{f}||_1$$

Покажем, что норма достигается с помощью примера последовательности x_k :

$$x_k = (1, \dots, 1, 0, \dots, 0) \qquad ||x^2|| = 1$$

12.1.1 Теорема Рисса для гильбертовых пространств

Пусть H – гильбертово пространство, тогда $\forall f \in H^* \exists ! \ \widetilde{f} \in H : \ f(x) = (\widetilde{f}, x), \ ||f|| = ||\widetilde{f}||$ Доказательство:

$$0) \quad f \equiv 0 \gg \widetilde{f} = 0$$

1)
$$f \neq 0$$
 $L = \{x \in H \mid f(x) = 0\} \implies \exists x_0 \notin L \ (x_0 \neq 0) : x_0 \perp L, \ f(x_0) = 1$

$$y \in L : y := x - f(x)x_0 \quad f(y) = f(x) - f(x)f(x_0) = f(x) - f(x) = 0$$

$$y \perp x_0 \implies (y, x_0) = 0 \implies (x, x_0) - f(x)(x_0, x_0) = 0$$

$$f(x) = \frac{(x_0, x)}{(x_0, x_0)} = (\widetilde{f}, x), \quad \widetilde{f} = \frac{1}{(x_0, x_0)}x_0 = \frac{1}{||x_0||^2}x_0$$

Докажем, что $||f|| = ||\widetilde{f}||$:

$$||f||=\sup_{||x||\leqslant 1}(\widetilde{f},\,x)\leqslant \sup_{||x||\leqslant 1}||\widetilde{f}||\,||x||=||\widetilde{f}||$$

Осталось показать, что эта оценка достигается:

$$\frac{|f(\widetilde{f})|}{||\widetilde{f}||} = \frac{(\widetilde{f},\widetilde{f})}{||\widetilde{f}||} = \frac{||\widetilde{f}||^2}{||\widetilde{f}||} = ||\widetilde{f}||$$

13 Лекция от 28.11.22: Сходимость

13.1 Каноническое вложение

Пусть X – нормированное пространство, X^* к нему сопряжённое, $\psi_x: X^* \to \mathbb{R}, x \in X, \psi_x(f) = f(x)$ – пример линейного ограниченного функционала на сопряжённом пространстве.

$$||\psi_x|| = \sup_{||f|| \le 1} |f(x)| \le \sup_{||f|| \le 1} ||f|| \, ||x|| = ||x||$$

Из следствия теоремы Хана-Банаха:

$$\exists \overline{f} \in X^* : \overline{f}(x) = ||x||, ||\overline{f}|| = 1$$

$$\psi_x(\overline{f}) = \overline{f}(x) = ||x|| \implies ||\psi_x|| = x$$

Определение: Введём функцию $\Pi(x) = \psi_x$. $\Pi: X \to X^{**}$ называется *каноническим вложением*.

Заметим, что функция П непрерывна, так как

$$||\Pi(x) - \Pi(y)|| = ||\psi_x - \psi_y|| = \sup_{\|f\| \le 1} |f(x) - f(y)| \le \sup_{\|f\| \le 1} ||f|| \, ||x - y|| = ||x - y||$$

Определение: Если каноническое вложение является биекцией, то оно рефлексивно.

Так как отображение непрерывно \implies свойства полноты и сепарабельности сохраняются \implies рефлексивное отображение всегда полно.

Пример (сепарабельного пр-ва):

$$l_p, \ p \neq 1, \ p \neq \infty, \ \frac{1}{p} + \frac{1}{q} = 1: \quad f(x) = \sum_{k=1}^{\infty} \widetilde{f}_k x_k, \ f = \sum_{k=1}^{\infty} \widetilde{f}_k e_k \quad e_k(x) = x_k, \ e_k \in X^*, \ \widetilde{f} \in l_q$$

$$\psi_x(f) = f(x) = \sum_{k=1}^{\infty} \widetilde{f}_k x_k, \ \psi \in X^{**} \qquad \psi(f) = \sum_{k=1}^{\infty} \widetilde{f}_k \underbrace{\psi(e_k)}_{\widetilde{x}_k} \underbrace{\Longrightarrow}_{\text{упражнение}} \widetilde{x} \in l_p$$

13.2 Сходимость

Пусть x_n – некоторая последовательность.

Определение: $x_n \stackrel{s}{\to} x$ (x_n сходится сильно κ x), если $||x_n - x|| \to 0$.

Определение: $x_n \xrightarrow{w} x$ $(x_n \ cxodumcs \ cnabo \ \kappa \ x)$, если $\forall f \in X^* : f(x_n) \to f(x) \ [f(x_n - x) \to 0]$.

Пусть $x_n \xrightarrow{w} x$, $x_n \xrightarrow{w} y$.

$$\frac{-f(x_n - x) \to 0}{f(x_n - y) \to 0}$$

$$\frac{-f(x_n - x) \to 0}{f(x_n - x) - f(x_n - y) \to 0}$$

 $f(y-x) \to 0 \implies f(y-x) = 0 \implies y = x \implies$ предел единственен.

Замечание: Если ∃ сильный предел, то он совпадает со слабым.

Пример: В l_p , $p \in (1; \infty)$ $e_n = (0, 0, 0, ..., 0, 1_n, 0, ...)$

$$||e_n - e_m|| = 2^{1/p}, \ n \neq m$$

 $f(e_n) = \widetilde{f}_n \to 0 \implies \widetilde{f} \in l_q$ – есть слабая сходимость, но нет сильной сходимости.

Сходимость операторов

Пусть теперь A_n – последовательность операторов из X в Y.

Определение: $A_n \xrightarrow{u} A$ (сходится равномерно), если $||A_n - A|| \to 0$.

Определение: $A_n \stackrel{s}{\to} A$ (сходится *сильно*), если $\forall x \in X : A_n x \to A x$.

Определение: $A_n \xrightarrow{w} A$ (сходится *слабо*), если $\forall f \in Y^* \ \forall x \in X: \ f(A_n x) \to f(A x) \ [A_n \in \mathscr{L}(X, Y)].$

 $u \implies s \implies w$

Утверждение: $A \in \mathcal{L}(X,Y) \iff A$ непрерывен, т.е.

$$x \to y \implies ||Ax - Ay||_Y \to 0 \quad x, \ y \in X \quad ||x - y||_X \to 0$$

$$||Ax - Ay|| \le ||A|| ||x - y|| \to 0$$

13.3 Принцип равномерной ограниченности

Для доказательства теоремы воспользуемся нижеприведённой леммой.

Лемма: Пусть $A_n \in \mathcal{L}(X,Y)$, X банахово и $\exists x_0 \in X, r > 0$, $\exists c \in \mathbb{R} : \forall x \in B_r(x_0) (B_r - \text{map})$, $||A_nx|| < c$. Тогда $||A_n||$ ограничена.

Доказательство:

$$\left\| x_0 + \frac{r}{||x||} x \in B_r(x_0) \right\| = \left\| \frac{r}{||x||} x \right\| = r \frac{||x||}{||x||} = r$$

$$\left\| A_n \frac{r}{||x||} x \right\| = \left\| A_n \frac{r}{||x||} x + A_n x_0 - A_n x_0 \right\| \leq \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n \left(\frac{r}{||x||} x + x_0 \right) \right\| + \left\| A_n x_0 \right\| \leq \frac{1}{||x||} \left\| A_n x_0 \right\| + \left\| A_n x_0$$

$$\left|\left|A_n\frac{r}{||x||}x\right|\right| = \frac{r}{||x||}||A_nx|| \implies \frac{||A_nx||}{||x||} \leqslant \frac{2c}{r}$$

$$\implies ||A_n|| = \sup_{x \neq 0} \frac{||A_n x||}{||x||} \leqslant \frac{2c}{r} \implies ||A_n||$$
 ограничена.

Теорема [ПРО]: Пусть $A_n \in \mathcal{L}(X,Y), X$ – банахово пространство, $\forall x \in X : \{A_n x\}$ – ограниченная последовательность. Тогда $||A_n||$ тоже ограничена.

Доказательство:

От противного: пусть последовательность норм не является ограниченной. Тогда $\exists n_1, x_1 : A_{n_1}x_1 > 1$.

Функционал A_{n_1} ограничен, следовательно, он непрерывен $\implies \exists B_{r_1}(x_1): \ \forall x \in B_{r_1}(x_1): \ A_{n_2}x > 1$

 $\implies ||A_nx||$ не ограничена на $B_{r_1}(x_1) \implies \exists x_2 \in B_{r_1}(x_1): A_{n_2}x_2 > 2$

Из непрерывности получаем, что $\exists B_{r_2}(x_2) \subset B_{r_1}: \forall x \in B_{r_2}(x_2): A_{n_2}x > 2$

Тогда $\exists B_{r_k}(x_k) \subset B_{r_{k-1}}(x_{k-1})$, на котором $A_{r_k}x > k$. Пусть $r_k \to 0$

$$B_{r_k}(x_k)\subset B_{r_{k-1}}(x_{k-1})\xrightarrow{\text{теорема o}}\exists\,\overline{x}\in\bigcap_k B_{r_k}(x_k)$$
 – принадлежащая всем шарам точка.

$$A_{n_k}(\overline{x}) > k \implies$$
 получили противоречие.

13.4 Теорема Банаха-Штейнгауза

Пусть $A_n \in \mathcal{L}(X,Y), \ X$ — банахово пространство, $A \in \mathcal{L}(X,Y)$. Тогда

$$A_n \stackrel{s}{\to} A \iff egin{array}{c} 1) \ ||A_n|| \ \mbox{ограничена} \\ 2) \ A_n x \to A x \ \mbox{при} \ x \in L, \ \overline{L} = X, \ L - \mbox{ЛМ в } X \end{array}$$

Доказательство:

 \Rightarrow : $A_n x$ ограниченная $\stackrel{\Pi PO}{\Longrightarrow} ||A_n||$ ограничена.

$$\Leftarrow: x' \in L: ||x - x'|| < \varepsilon$$

$$||A_nx-Ax|| = ||A_nx-A_nx'+A_nx'-Ax'+Ax'-Ax|| \leq \underbrace{||A_n||}_{< c \in \mathbb{R}} \underbrace{||x-x'||}_{< \varepsilon} + \underbrace{||A_nx'-Ax'||}_{\to 0} + ||A|| \underbrace{||x'-x||}_{< \varepsilon} < k(c)\varepsilon$$

$$\implies A_n x \to A x \implies A_n \stackrel{s}{\to} A$$

13.4.1 Следствия

1. Если $x_n \xrightarrow{w} x$, то $||x_n||$ ограничена.

Доказательство:
$$\forall f \in X^*: f(x_n) \to f(x) \iff \forall f \ \psi_{x_n}(f) \to \psi_x(f) \iff \psi_{x_n} \xrightarrow{s} \psi_x$$
 $||\psi_{x_n}|| = ||x_n||$ ограниченная.

2. Критерий слабой сходимости в l_p :

$$x^{(n)} \xrightarrow{w} x$$
 в $l_p,\ p \in (1;\infty) \iff \begin{array}{c} 1)\ ||x^{(n)}|| < c \\ 2)\ x_k^{(n)} o x_k,\ n o \infty$ (покоординатная сходимость)

Доказательство:

⇒: 1) Из следствия 1.

2)
$$f(x) = x_k, f \in X$$
 $f(x^{(n)}) = x_k^{(n)} \to x_k = f(x)$

 $\Leftarrow: f(x_n) \to f(x) \iff \psi_{x_n} \xrightarrow{s} \psi_x$ – функционалы на X^* .

$$L = \left\{ \sum_{k=1}^{n} \widetilde{f}_{k} e_{k} \mid e_{k}(x) = x_{k} \right\} \qquad f \in L$$

$$\psi_{x^{(n)}}(f) = \sum_{k=1}^{n} \widetilde{f}_k x_k^{(n)} \to \sum_{k=1}^{n} \widetilde{f}_k x_k = \psi_x(f)$$

Полученное множество всюду плотно в $X^* \implies x^{(n)} \xrightarrow{w} x$.

Упражнение: Доказать, что в конечномерных пространствах сильная и слабая сходимости совпадают.

Упражнение: (*Теорема Шура*) В l_1 сильная и слабая сходимости равносильны.

Упражнение: Доказать, что в C[a; b]:

$$x_n \xrightarrow{w} x \iff \begin{array}{c} 1) \; ||x_n|| \; \text{ограничена} \\ 2) \; \forall \, t \in [a; \, b] \; x_n(t) \to x(t) \end{array}$$

14 Лекция от 05.12.22: Обратный оператор. Сопряжённый оператор

 $\mathscr{L}(X,Y)$ – линейные ограниченные операторы из X в Y.

$$||A|| = \sup_{||x|| \le 1} ||Ax|| = \sup_{x \ne 0} \frac{||Ax||}{||x||}$$

Упражнение: Доказать, что $A \in \mathcal{L}(X,Y) \iff A$ линеен и непрерывен (ограниченность эквивалентна непрерывности).

Утверждение: Если Y – полное (банахово) пространство $\implies \mathscr{L}(X,Y)$ полное.

Доказательство:

Пусть A_n – фундаментальная последовательность: $\forall \varepsilon > 0 \; \exists \, N \in \mathbb{N} : \; \forall \, n, \, p > N \; ||A_n - A_p|| \leqslant \varepsilon$

$$||A_nx - A_px|| \le ||A_n - A_p||$$
 $||x||$ $\Longrightarrow A_nx$ фундаментальна в $Y \implies A_nx \to y$

Оператор $Ax = \lim_{n \to \infty} A_n x$ линеен:

$$A(\alpha x_1 + \beta x_2) = \lim_{n \to \infty} A_n(\alpha x_1 + \beta x_2) = \alpha \lim_{n \to \infty} A_n x_1 + \beta \lim_{n \to \infty} A_n x_2 = \alpha A x_1 + \beta A x_2$$

$$||A_n x - A_p x|| \le \varepsilon ||x|| \quad \forall n, p > N$$

При $p \to \infty$ получаем

$$||A_n x - Ax|| \le \varepsilon ||x||$$

$$\frac{||A_n x - Ax||}{||x||} \leqslant \varepsilon \implies ||A_n - A|| \leqslant \varepsilon$$

Осталось проверить ограниченность.

$$||A|| \leqslant ||A_n - A|| + ||A_n||$$

Утверждение: Если X, Y – банаховы пространства, $\forall x \in X \ A_n x$ фундаментальна $(A_n \in \mathcal{L}(X, Y))$, то $\exists A \in \mathcal{L}(X, Y) : \ A_n x \to Ax \ (A_n \xrightarrow{s} A)$.

 $\ensuremath{\mathcal{A}o\kappa a same necessary}$ банахово $\implies A_n x$ фундаментальна $\implies A_n x \to A x, \ A$ линейный.

$$\forall \, x \in X \ A_n x$$
 ограничен $\xrightarrow{\Pi PO} ||A_n|| < c, \ c \in \mathbb{R}$

Осталось проверить, что A ограничен.

$$\frac{||A_n x||}{||x||} < c \qquad n \to \infty : \frac{||Ax||}{||x||} \leqslant c \implies A \in \mathcal{L}(X, Y)$$

Определение: Пусть $A:X\to Y,\ B:Y\to Z\implies BA:X\to Z\ (BA)(x)=B(Ax)$ – умножение операторов.

Утверждение: $||AB|| \le ||A|| \, ||B||$.

Доказательство:

$$||ABx|| \le ||A|| \, ||Bx|| \le ||A|| \, ||B|| \, ||x|| \qquad \frac{||ABx||}{||x||} \le ||A|| \, ||B|| \implies ||AB|| \le ||A|| \, ||B|| \qquad \Box$$

14.1 Обратный оператор

Определение: Пусть $A: X \to Y$ – биективный ограниченный оператор.

 $A^{-1}: Y \to X: Axy \iff x = A^{-1}y$ – обратный оператор.

Лемма:

$$B = A^{-1} \iff \begin{array}{c} 1) \ AB = I : Y \to Y \ (Iy = y) \\ 2) \ BA = I : X \to X \ (Ix = x) \end{array}$$

Доказательство: $ABy = y \quad BAx = x$

Пусть Ax = y x = By

Пусть
$$x = By$$
 $y = Ax$

Утверждение: Если A(X, Y) – линейный оператор, то A^{-1} тоже линейный.

Доказательство: Пусть $x, z \in Y$.

$$A^{-1}x = u \qquad A^{-1}z = v$$

$$x = Au$$
 $z = Av$

$$\alpha x + \beta z = A(\alpha u + \beta v) \implies \alpha A^{-1} x + \beta A^{-1} z = \alpha u + \beta v = A^{-1}(\alpha x + \beta z)$$

14.1.1 Теорема Банаха

 $A \in \mathcal{L}(X, Y)$ и X, Y полные $\implies A^{-1} \in \mathcal{L}(X, Y)$.

Доказательство:

Определение: Пусть $A: X \to X$. Тогда

$$A^2 = AA \qquad A^n = A^{n-1}A \qquad A^0 = I$$

При этом $||A^n|| \le ||A||^n$.

Теорема: Пусть $A \in \mathcal{L}(X, X)$, X банахово, ||A|| < 1. Тогда

$$\exists (I-A)^{-1} \in \mathcal{L}(X, X): (I-A)^{-1} := \sum_{n=0}^{\infty} A^n = I + A + A^2 + \dots$$

Доказательство: Для начала докажем, что ряд сходится.

$$\left|\left|\sum_{k=n}^{n+m}A^k\right|\right|\leqslant \sum_{k=n}^{n+m}||A||^k\leqslant \sum_{k=n}^{\infty}||A||^k=\frac{||A||^n}{1-||A||}\xrightarrow{n\to\infty}0$$

Пусть
$$B:=\sum_{n=0}^{\infty}A^n\in \mathscr{L}(X,\,X)$$

Осталось доказать, что B(I - A) = I:

$$B = \lim_{n \to \infty} \sum_{k=0}^{n} A^{k} \qquad B_n \to B \implies B_n A \to B A \qquad ||B_n A - BA|| \leqslant ||A|| \, ||B_n - B|| \to 0$$

$$B(I-A) = \lim_{n \to \infty} (I+A+A^2+\ldots+A^n)(I-A) = \lim_{n \to \infty} (I-A+A-A^2+A^2-\ldots-A^{n+1}) = \lim_{n \to \infty} (I-A^{n+1}) = I = I = I$$

14.1.2 Теорема об устойчивости обратного оператора

Пусть $A\in \mathscr{L}(X,\,X),\,\,X$ банахово, $||B||<\frac{1}{||A^{-1}||}.$ Тогда $\exists\,(A+B)^{-1}\in \mathscr{L}(X,\,X).$

Доказательство: $\exists (A+B)^{-1} \iff \exists (A^{-1}(A+B))^{-1}$

- 1. Если A + B биекция, A биекция $\implies A^{-1}(A + B)$ тоже биекция.
- 2. $A + B = AA^{-1}(A + B)$

$$A^{-1}(A+B) = I + A^{-1}B \quad ||A^{-1}B|| \leqslant ||A^{-1}|| \, ||B|| < 1 \, \text{при} \, ||B|| < \frac{1}{||A^{-1}||} \qquad \qquad \square$$

14.2 Сопряжённый оператор

 $A \in \mathcal{L}(X, Y)$. Пусть $f \in Y^*$, f(Ax) = g(x), $g \in X^*$.

Определение: $A^*: Y^* \to X^*$ $A^*f = g: f(Ax) = g(x) \ \forall x \in X$ – сопряжённый A оператор.

14.2.1 Свойства сопряжённого оператора

A* линейный:

$$A^*(\alpha f_1 + \beta f_2)(x) = (\alpha f_1 + \beta f_2)(Ax) = \alpha f_1(Ax) + \beta f_2(Ax) = \alpha (A^* f_1)(x) + \beta (A^* f_2)(x) = \alpha A^* f_1 + \beta A^* f_2$$

2. $(A+B)^* = A^* + B^*$

$$((A+B)^*f)(x) = f((A+B)x) = f(Ax) + f(Bx) = (A^*f)(x) + (B^*f)(x)$$

Утверждение: $||A|| = ||A^*||$.

Доказательство:

1. $|(A^*f)(x)| = |f(Ax)| \le ||f|| ||Ax|| \le ||f|| ||A|| ||x||$

$$||A^*f|| = \sup_{||x|| \le 1} |(A^*f)x| \le ||A|| \, ||f|| \qquad \frac{||A^*f||}{||f||} \le ||A|| \implies ||A^*|| = \sup_{f \ne 0} \frac{||A^*f||}{||f||} \le ||A||$$

2. По следствию из теоремы Хана-Банаха: $\forall y \in Y \; \exists f \in Y^* : \; ||f|| = 1 \; f(y) = ||y||$

$$\implies ||Ax|| = f(Ax) = (A^*f)x \leqslant ||A^*|| ||f|| ||x|| = ||A^*|| ||x||$$

$$\implies \frac{||Ax||}{||x||} \leqslant ||A^*|| \implies ||A|| \leqslant ||A^*||$$

$$1., 2. \implies ||A|| = ||A^*||$$

Пусть H – гильбертово пространство, $A:\,H\to H.$ По теореме Рисса $f(x)=(\widetilde{f},\,x),\,\,\widetilde{f}\in H.$

$$f(Ax) = (\widetilde{f}, Ax) = g(x) = (\widetilde{g}, x) \implies \widetilde{g} = A^* \widetilde{f}$$

Определение: В гильбертовых пространствах оператор A^* , сопряжённый оператору $A: H \to H$:

$$A^*: H \to H \quad \forall x, y \in H: (y, Ax) = (A^*y, x)$$

Пример: $A: \mathbb{R}^n \to \mathbb{R}^n$

$$(y, Ax) = y^T Ax = (A^T y)^T x = (A^T y, x) \implies A^* = A^T$$

Пример: $A: l_2 \to l_2$ $Ax = (x_1 - x_2, x_3 - x_4, x_5 - x_6, ...)$

$$f(Ax) = \widetilde{f}_1(x_1 - x_2) + \widetilde{f}_2(x_3 - x_4) + \widetilde{f}_3(x_5 - x_6) + \dots = \widetilde{f}_1x_1 - \widetilde{f}_1x_2 + \widetilde{f}_2x_3 - \widetilde{f}_2x_4 + \widetilde{f}_3x_5 - \widetilde{f}_3x_6 + \dots = g(x) = (A^*f)(x)$$

$$\implies A^*f = (\widetilde{f}_1, -\widetilde{f}_1, \widetilde{f}_2, -\widetilde{f}_2, \widetilde{f}_3, -\widetilde{f}_3, \dots) \qquad ||A^*f||^2 = 2\sum_{k=1}^{\infty} \widetilde{f}_k^2 = 2||f||^2 \qquad ||A^*f|| = \sqrt{2}||f||$$

$$\frac{||A^*f||}{||f||} = \sqrt{2} \implies ||A^*|| = \sqrt{2} \implies ||A|| = ||A^*|| = \sqrt{2}$$

15 Лекция от 12.12.22: Комплексификация нормированного пространства

Определение: *Комплексификация* – переход от вещественного пространства к приближенному к нему комплексному.

Пусть X – линейное пространство, определим операторы в комплексном виде:

1.
$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

2.
$$(x_1 + iy_2)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)$$

3.
$$||x + iy|| = \sqrt{||x||^2 + ||y||^2}$$

4.
$$A \in \mathcal{L}(X, Y), \ A(x+iy) = Ax + i(Ay)$$

$$||A||_{\mathbb{C}} = \sup_{x, y, ||x||^2 + ||y||^2 \le 1} ||A(x+iy)|| = ||A||$$

Определение: Комплексные евклидовы пространства называют унитарными.

Определение: Функция (\cdot, \cdot) : $H \to \mathbb{C}$ называется *скалярным произведением*, если она удовлетворяет следующим условиям:

$$1. \ (x,\,x)\geqslant 0, \ (x,\,x)=0 \iff x=0,$$
 скалярный квадрат вещественен

2.
$$(x, y) = \overline{(y, x)}$$
 – сопряжённое

3.
$$(ax + by, z) = a(x, z) + b(y, z)$$
 – линейность по первому аргументу

Примеры:

1.
$$\mathbb{C}^n$$
 $(x, y) = x^T \overline{y}$ $(y_k = a + ib, \overline{y_k} = a - ib)$

2.
$$l_2$$
 $(x, y) = \sum_{k=1}^{\infty} x_k \overline{y_k}$

3.
$$L_2[a; b]$$

$$(x, y) = \int_{[a; b]} x(t) \overline{y(t)} dt$$

Замечание: $(x, ay) = \overline{(ay, x)} = \overline{a(y, x)} = \overline{a}(y, x) = \overline{a}(x, y).$

15.1 Неравенство Коши-Буняковского

$$|(x, y)| \leq ||x|| \, ||y||$$

Доказательство:

$$0 \leqslant (x + ty, x + ty) = (x, x) + t(y, x) + \overline{t}(x, y) + t\overline{t}(y, y) = \left| t = -\frac{(x, y)}{(y, y)} \right| =$$

$$= (x, x) - \frac{(x, y)(y, x)}{(y, y)} - \frac{(y, x)(x, y)}{(y, y)} + \frac{(x, y)(y, x)}{(y, y)^2}(y, y) = (x, x) - \frac{(x, y)(y, x)}{(y, y)} = (x, x) - \frac{|(x, y)|^2}{(y, y)}$$

$$\frac{|(x, y)|^2}{(y, y)} \leqslant (x, x) \implies |(x, y)|^2 \leqslant (x, x)(y, y)$$

15.2 Сопряжённые операторы в комплексном гильбертовом пространстве

Определение: $A^*: H \to H: \forall x, y \in H (Ax, y) = (x, A^*y), ||A|| = ||A^*||.$

Свойства:

- 1. $A^{**} = A$ $(Ax, y) = (x, A^*y), = \overline{(A^*y, x)} = \overline{(y, A^{**}x)} = (A^{**}x, y) \implies (Ax - A^{**}x, y) = 0 \ \forall y$ $\implies Ax - A^{**}x = 0 \ \forall x \implies A = A^{**}$
- 2. $(AB)^* = B^*A^*$ $(ABx, y) = (Bx, A^*y) = (x, B^*A^*y)$
- 3. $(A^*A)^* = A^*A^{**} = A^*A; \ A$ самосопряжённый оператор, если справедливо равенство $A = A^*$
- 4. $A = A^* \implies ||A^2|| = ||A||^2$ $(Ax, Ax) = (x, A^*Ax) \le ||x|| ||A^*A|| ||x|| = ||A^2|| ||x||^2 \qquad ||A||^2 \le ||A^2|| \le ||A||^2 \implies ||A^2|| = ||A||^2$
- 5. $Q_A(x)=(Ax,\,x)$ квадратичная форма оператора A $A=A^*\iff (Ax,\,x)\in\mathbb{R}\;\forall\,x$
 - \Rightarrow : В силу равенства A и A^* : $(Ax, x) = (x, Ax) = \overline{(Ax, x)} \implies (Ax, x) \in \mathbb{R}$
 - \Leftarrow : $P_A(x, y) = (Ax, y)$ билинейная форма. Пусть $P_A(x, y) = P_B(x, y) \implies (Ax, y) = (Bx, y) = 0 \implies Ax Bx = 0 \implies Ax = Bx <math>\forall x$. Билинейная форма однозначно определяет оператор и выражается через квадратичную форму следующим образом:

$$4P_A(x, y) = Q_A(x + y) - Q_A(x - y) + iQ_A(x + iy) - iQ_A(x - iy)$$

$$(Ax, x) \in \mathbb{R}: \ Q_A(x) = (Ax, x) = (x, A^*x) = \overline{(A^*x, x)} [\in \mathbb{R}] = (A^*x, x) = Q_{A^*}(x) \implies A = A^*$$

 $\it Замечание: В евклидовых пространствах в <math>\it R$ квадратичная форма не определяет оператор однозначно.

Пример:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2xy = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad x, \ y \in \mathbb{R}$$

15.3 Введение в спектральную теорию

Пусть X – банахово пространство, $A: \mathcal{L}(X, X)$ $Ax = \lambda x \qquad (A - \lambda I)x = 0$

Определение: $R_{\lambda} = (A - \lambda I)^{-1} - pезольвента A.$

Определение: Спектр оператора A – это множество $\lambda \in \mathbb{C}$, при которых резольвента не определена. Остальные значения λ называются регулярными. [Обозначение: $\sigma(A)$]

15.3.1 Теорема о спектре

- 1. $\sigma(A)$ компакт (замкнут и ограничен)
- 2. $\lambda \in \sigma(A) \implies |\lambda| \leqslant |A|$
- 3. $\lambda \in \sigma(A) \implies |\lambda| \leqslant \lim_{n \to \infty} ||A^n||^{1/n}$
- 4. Если $A=A^*$, то $\lim_{n\to\infty}||A^n||^{1/n}=||A||$

Доказательство:

1. Пусть существует обратный оператор $A - \lambda I \xrightarrow{\text{th Bahaxa}} A - \lambda I$ ограничен. Тогда $A - \lambda I + \varepsilon I$ ограничен при малых ε (из теоремы об устойчивости обратного оператора) $\implies \lambda + \varepsilon$ тоже регулярно \implies множество регулярных λ открыто \implies его дополнение замкнуто \implies спектр является компактом.

2.
$$R_{\lambda} = -\lambda (I - \frac{1}{\lambda}A)^{-1} = -\lambda \sum_{k=0}^{\infty} \frac{1}{\lambda^k} A^k$$

Сходится при $\left|\left|\frac{1}{\lambda}A\right|\right|<1\iff |\lambda|>||A||$ (λ регулярно). Тогда ряд сходится, если $\lambda>\overline{\lim_{k\to\infty}}||A^k||^{1/k}$.

Лемма Фекете: Если $a_{n+m} \leqslant a_n + a_m$, то $\lim_{n \to \infty} \frac{a_n}{n} = \inf_n \frac{a_n}{n}$.

Доказательство:

$$\varepsilon > 0 \qquad \frac{a_{n\varepsilon}}{n_{\varepsilon}} - A < \varepsilon \qquad n = kn_{\varepsilon} + r \qquad a_{rn_{\varepsilon}} \leqslant a_{kn_{\varepsilon}} + a_{n_{\varepsilon}}$$

$$\frac{a_{n}}{n} = \frac{a_{kn_{\varepsilon}} + r}{kn_{\varepsilon} + r} \leqslant \frac{ka_{n_{\varepsilon}} + a_{r}}{kn_{\varepsilon} + r} = \frac{a_{n_{\varepsilon}} + \frac{a_{r}}{k}}{n_{\varepsilon} + \frac{r}{k}} \to \frac{a_{n_{\varepsilon}}}{n_{\varepsilon}} < A + \varepsilon$$

$$\implies \overline{\lim_{n \to \infty}} \frac{a_{n}}{n} \leqslant A, \quad \lim_{n \to \infty} \frac{a_{n}}{n} \geqslant A = \inf_{n} \frac{a_{n}}{n} \implies \lim_{n \to \infty} \frac{a_{n}}{n} = A$$

3. $a_n = \ln ||A^n||, \ a_{n+m} = \ln ||A^{n+m}|| = \ln ||A^nA^m|| \le \ln ||A^n|| + \ln ||A^m||.$ Применим лемму:

$$\exists \lim_{n \to \infty} \frac{\ln ||A^n||}{n} = \lim_{n \to \infty} ||A^n||^{1/n} = B \implies ||A^n||^{1/n} \to e^B$$

4. Пусть $A = A^*$.

$$||A^2|| = ||A||^2 \implies ||A^{2^n}|| = ||A||^{2^n} \implies \lim_{n \to \infty} ||A^n||^{1/n} = \lim_{n \to \infty} ||A^{2^n}||^{1/2^n} = \lim_{n \to \infty} ||A|| = ||A|| \qquad \Box$$

Замечание 1: Если λ – собственное значение, то $A - \lambda I$ не инъективно.

$$\begin{cases} Ax - \lambda x = 0, \\ A0 - \lambda 0 = 0; \end{cases} \iff \operatorname{Ker}(A - \lambda I) \neq \{0\}$$

Замечание 2: Если $A - \lambda I$ инъективно, но не сюръективно, то $\lambda \in \sigma(A)$, $\operatorname{Im}(A - \lambda I) \neq X$.

16 Лекция от 19.12.22: Компактный оператор

Теорема (критерий Вейля): Пусть $A = A^*$ – линейный ограниченный оператор в гильбертовом пространстве H. Тогда

$$\lambda \in \sigma(A) \iff \exists x_n \in H: ||x_n|| = 1, Ax_n - \lambda x_n \to 0.$$

Доказательство:

 \Leftarrow : Пусть $\exists x_n$. Предположим, что $\lambda \notin \sigma(A)$ ($\exists (A - \lambda I)^{-1}$).

$$(A - \lambda I)x_n \to 0 \implies (A - \lambda I)^{-1}(A - \lambda I)x_n \to 0 \implies x_n \to 0$$
, но $||x_n|| = 1 \implies$ противоречие.

Значит, предположение неверно и $\lambda \in \sigma(A)$.

 \Rightarrow : Докажем, что если $\nexists x_n$, то $\lambda \notin \sigma(A)$.

$$\inf_{||x||=1} ||Ax - \lambda x|| = \alpha > 0, \ \alpha \in \mathbb{R}$$

$$\left| \left| A \frac{1}{||x||} x - \frac{\lambda}{||x||} x \right| \right| \geqslant \alpha$$

$$||Ax - \lambda x|| \geqslant \alpha ||x|| \; \forall \, x \in H \implies \operatorname{Ker}(A - \lambda I) = \{0\} \iff A - \lambda I \;$$
инъективный.

Проверим, что ${\rm Im}(A-\lambda I)=H$, т.е. сюръективность этого оператора. Обозначм $A-\lambda I=Y$. Сначала докажем, что его замыкание совпадает с H.

Пусть $a \perp Y$, $a \neq 0$.

$$Y: (Ax - \lambda x, a) = 0 \ \forall x \in H$$

$$(Ax - \lambda x, a) = ((A - \lambda I)x, a) = (x, (A - \lambda I)^*a) = (x, (A - \overline{\lambda}I)a) = (x, Aa - \overline{\lambda}a) = 0 \implies Aa = \overline{\lambda}a$$

$$(Aa, a) \in \mathbb{R}, (Aa, a) = (\overline{\lambda}a, a) = \overline{\lambda} \underbrace{(a, a)}_{>0, \in \mathbb{R}} \implies \overline{\lambda} \in \mathbb{R} \implies \lambda = \overline{\lambda} (Aa = \lambda a, (A - \lambda I)a = 0)$$

Так как $A-\lambda I$ инъективен, $(A-\lambda I)0=0 \implies a=0$. Получили противоречие, значит, $\overline{Y}=H$. Осталось проверить, что Y=H.

Пусть $y \in H$, $\exists x_n : y_n = (A - \lambda I)x_n \to y$.

$$0 \leftarrow ||y_n - y_m|| = ||(A - \lambda I)(x_n - x_m)|| \geqslant \alpha ||x_n - x_m||, \ x_n \text{ фундаментальна} \implies x_n \rightarrow x$$

$$y \leftarrow y_n = (A - \lambda I)x_n \rightarrow (A - \lambda I)x \implies y = (A - \lambda I)x \implies A - \lambda I \text{ сюръективный.}$$

Тогда существует и обратный оператор $\implies \exists R_{\lambda}, \ \lambda \notin \sigma(A)$.

Следствия:

- 1. При $A=A^*$: $\inf_{||x||=1}||Ax-\lambda x||>0 \implies \lambda \notin \sigma(A)$ (λ регулярно).
- 2. Если в гильбертовом пространстве H оператор $A = A^*$, то $\sigma(A) \in \mathbb{R}$ $(\sigma(A) \subset [-||A||; ||A||])$. Доказательство: Пусть $\lambda = a + ib$, $a, b \in \mathbb{R}$, ||x|| = 1.

$$||Ax - (a+ib)x|| = (Ax - ax - ibx, \ Ax - ax - ibx) = (Ax - ax, \ Ax - ax) - ib(x, \ Ax - ax) - (Ax - ax, \ ibx) + i(bx, \ ibx)$$

$$\geqslant -ib(x, \ Ax - ax) + ib(Ax - ax, \ x) + (bx, \ bx) = ||b||^2 ||x||^2 = ||b||^2$$

$$((A - aI)x, \ x) = (x, \ (A - aI)^*x) = (x, \ (A - aI)x)$$

$$\inf_{||x||=1} ||Ax - \lambda x|| \geqslant ||b||^2 \implies \text{Если } b \neq 0, \text{ то } \lambda \notin \sigma(A) \implies \sigma(A) \in \mathbb{R}$$

Утверждение: Если $A=A^*$, то $\sigma(A)\subset [m_A;\,M_A]$, где $m_A=\inf_{||x||=1}Q_A(x),\,\,M_A=\sup_{||x||=1}Q_A(x).$

Доказательство: Пусть $Ax_n - \lambda x_n \to 0$, $||x_n|| = 1$. Умножим скалярно на x_n :

$$(Ax_n, x_n) - \lambda (x_n, x_n) \to 0 \implies Q_A(x_n) \to \lambda$$

$$Q_A(x_n) = 1$$

Замечание: Можно доказать, что m_A , $M_A \in \sigma(A)$.

16.1 Компактный оператор

Определение: Линейный оператор $A: X \to Y$ (X, Y банаховы) называется *компактным*, если \forall (x_n) ограниченных последовательностей в X из последовательности (Ax_n) можно выделить сходящуюся подпоследовательность.

Примеры:

 $0.~I:~l_2
ightarrow l_2$ не компактный

$$e_n = (0, 0, 0, \dots 0, 1_n, 0, \dots)$$
 $Ie_n = e_n, \quad ||e_n - e_m|| = \sqrt{2}, \ n \neq m \implies e_n$ не фундаментальна

 $1. \ A: \ l_2
ightarrow l_2$ компактный

$$y = Ax$$
, $y_n = \alpha_n x_n$, $\alpha_n \to 0$

 $2. \ A: \ L_2[0;\, 1] o L_2[0;\, 1]$ компактный

$$(Ax)(t) = \int_{[0;1]} K(t,s)x(s) ds$$
, где $K \in L_2([0;1]^2)$

 $3. \ V: \ L_1[0; \, 1] o L_1[0; \, 1]$ компактный

$$(Vx)(t) = \int_{[0;t]} x(s) \, ds$$

16.1.1 Альтернатива Фредгольма

Пусть $A: X \to X$ — компактный оператор в банаховом пространстве $X \Longrightarrow \operatorname{Ker}(A-I) = \{0\} \iff \operatorname{Im}(A-I) = X.$

[Либо уравнение Ax = x + y имеет единственное решение для любых y, либо однородное уравнение Ax = x имеет ненулевое решение.]

16.1.2 Теорема Гильберта-Шмидта

Пусть $A: H \to H$ компактный, $A = A^*, H$ – сепарабельное гильбертово пространство. Тогда в $H \exists$ базис e_n из собственных векторов оператора A, т.е. $Ae_n = \lambda_n e_n, \ \lambda_n \in \mathbb{R}, \ \lambda_n \to 0$.

Пример: Ax - x = y, A компактный, $A = A^*$.

$$x = \sum_{k} a_k e_k \quad y = \sum_{k} b_k e_k$$

$$A \sum_{k} a_k e_k - \sum_{k} a_k e_k = \sum_{k} b_k e_k$$

$$\sum_{k} a_k A e_k - \sum_{k} a_k e_k = \sum_{k} a_k e_k = \sum_{k} b_k e_k$$

$$\sum_{k} a_k \lambda_k e_k - \sum_{k} a_k e_k = \sum_{k} b_k e_k$$

$$\sum_{k} (a_k (\lambda_k - 1) - b_k) e_k = 0 \implies a_k = \frac{b_k}{\lambda_k - 1}$$