

گروه مهندسی کامپیوتر رشته تحصیلی: هوش مصنوعی و رباتیکز

نام درس: تشخیص الگو گزارش تمرین عملی۳

استاد مربوطه: دکتر مهدی یزدیان تهیه کننده: حمیدرضا نادمی

Part1: Parametric Methods:

b) Generate N samples with N=10 from this density;

Now, we are going to estimate this density using an ML estimate. For this, we have to suppose a specific distribution for these samples. Based on the above simulation, we assume the density of the samples is Gaussian;

Estimate the parameter of the Gaussian using ML estimate; report the estimated parameters and compare them with the true values.

	Mean vector	Covariance matrix
True Value	[0,5]	$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
Estimated Value for N=10	[-0.080, 4.746]	[0.862 0.981] [0.981 2.203]

مقادیر تخمینی بدست آمده حدودا با مقادیر واقعی برابر می باشد.

c) Plot the true density and the estimated density.

d) Repeat Section a and b for 20 times; Compute and report the bias and variance; Compare and discuss about the results.

	Mean	Covariance matrix
Bias	[0.05, 0.12]	[-0.24, -0.32]
Variance	[0.08,0.23]	[0.15, 0.57]

با رفتن به لینک زیر می توانید خروجی آنلاین کدها را در محیط Colab Research Google مشاهده کنید.

https://colab.research.google.com/drive/1 oBapPjQu7GMSZAv0w5YjOAotbxQWLyn

e) Repeat Section a to d for N=100, N=1000. Discuss the effect of sample size in the performance of the estimation.

	Mean vector	Covariance matrix
True Value	[0,5]	$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
Estimated Value for N=100	[0.028, 5.022]	[1.159 0.999] [0.999 1.981]
Estimated Value for N=1000	[0.035, 5.042]	$\begin{bmatrix} 1.023 & 1.077 \\ 1.077 & 2.150 \end{bmatrix}$

	Mean		Covariano	ce matrix
	Bias	Variance	Bias	Variance
N=100	[0.023,0.049]	[0.005, 0.015]	[0.020, 0.117]	[0.016,0.089]
N=1000	[-9.945, -0.006]	[0.001,0.001]	[-0.001,0.013]	[0.001, 0.009]

هرچه تعداد sample تولید شده بیشتر باشد، بردار میانه و ماتریس کوواریانس تخمین زده شده به مقدار واقعی نزدیکتر است و نمودار تولید شده به شکل گوسی نزدیکتر میشود.

با رفتن به لینک زیر می توانید خروجی آنلاین کدها را در محیط Colab Research Google مشاهده کنید.

https://colab.research.google.com/drive/1ljsDZiSzK-qFnvLP2x09wzH47rnxLBtc

f) Repeat all the previous sections with the following mean and covariance; Compare the results with the previous ones.

$$\mu_2 = \begin{bmatrix} 5 & 0 \end{bmatrix}^T \qquad \qquad \Sigma_2 = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$$

	Mean vector	Covariance matrix
True Value	[5,0]	$\begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$
Estimated Value for N=10	[5.492, -0.315]	$\begin{bmatrix} 0.758 & -0.421 \\ -0.421 & 1.373 \end{bmatrix}$
Estimated Value for N=100	[4.849,0.131]	$\begin{bmatrix} 0.754 & -0.489 \\ -0.489 & 2.507 \end{bmatrix}$
Estimated Value for N=1000	[4.964, 0.066]	$\begin{bmatrix} 0.947 & -1.025 \\ -1.025 & 3.838 \end{bmatrix}$

	Mean		Mean Cov		Covarian	ce matrix
	Bias	Variance	Bias	Variance		
N=10	[5.062, -4.881]	[0.098, 0.222]	[-0.316,1.728]	[0.055,2.627]		
N=100	[5.000, -5.047]	[0.007, 0.034]	[-0.017, 1.953]	[0.017,0.452]		
N=1000	[4.996, -5.027]	[0.000,0.002]	[-0.005,1.968]	[0.001, 0.036]		

با توجه به ماتریس کوواریانس متوجه میشویم که میزان پخش شدن دادهها در محور Y برابر محور X است و اگر توزیع گوسی شبیه به کلاه برعکس در نظر بگیریم، نوک کلاه مایل به محور Y است (برای پلات های N=100 و قابل مشاهده است) و این مایل بودن نسبت به نمودارهای قسمت e دو برابر است و در جهت برعکس است زیرا ضریب ماتریس کوواریانس منفی است. با رفتن به لینک زیر می توانید خروجی آنلاین کدها را در محیط Colab Research Google مشاهده کنید.

https://colab.research.google.com/drive/1E7FepJ9EO FsfB4myanxPp2bN3RFQ7hE#scrollTo=PR 9sH9PK4y5S

B) [optional] MAP Parameter Estimate

Consider a Normal Distribution $N(\mu_1, \Sigma_1)$ as defined in Section A. Assume Σ_1 is known and μ_1 is unknown; Estimate the mean parameter of this density using MAP estimate. Suppose the prior of the mean is as follows:

$$P(\mu) = N(\mu_{\mu}, \Sigma_{\mu}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix})$$

Note: repeat this section for N=10, 100, 1000

	Mean
N=10	[-0.0930, 4.8959]
N=100	[0.0033, 4.9409]
N=1000	[0.0569, 5.0654]

[Part2: Non-Parametric Methods]

b) Using the generated samples in Section (a), estimate their density via the Parzen Window method for h=0.2, 0.4, 0.8, 1.6; plot the true density and the estimated densities for different h values.

با رفتن به لینک زیر می توانید خروجی آنلاین کدها را در محیط Colab Research Google مشاهده کنید.

c) Estimate their density via the k-nearest neighbors (KNN) method for k=1, 10, 30; plot the true density and the estimated densities for different k values.

https://colab.research.google.com/drive/1jd15oyFDLb6TQlaX0WKfW_jQXoNYPYFH

با رفتن به لینک زیر می توانید خروجی آنلاین کدها را در محیط Colab Research Google مشاهده کنید.

https://colab.research.google.com/drive/1-XMNvWa0A6j8gNjn2X9Qjxmv6dphu4V6

d) Compare and discuss about the results.

در خروجی قسمت b هرچه مقدار h کوچکتر باشد شکل نمودار سیخ سیخی تر یا (spiky تر) است و شکل اصلی داده ها را از دست میدهیم، مقدار b نزدیکترین پلات به پلات واقعی ($True\ Density$) می باشد و بهترین مقدار b همین مقدار میباشد(از بین b های داده شده)

در خروجی سوال C هرچه مقدار k کوچکتر باشد شکل نمودار سیخ سیخی تر یا (spiky تر) است و شکل اصلی دادهها را از دست میدهیم و پلات ایجاد شده شباهت کمی به پلات واقعی دارد با افزایش مقدار k پلات به شکل گوسی دادهها نزدیکتر می شود و تحلیل و تفسیر آن راحتر می شود، مقدار k=30 , k=30 , مقادیر مناسبی جهت محاسبه k=30 , مقدار می باشد.