Laboratório de Máquinas de Corrente Alternada Motor Monofásico de Indução Partida a Capacitor.

Felipe Bandeira da Silva 1020942-X

1 de maio de 2014

Este laboratório tem como objetivo: Medir as características de partida e funcionamento do motor com partida por capacitor. Comparar seu funcionamento durante a patida e operação contínua com o do motor monofásico de fase dividida.

Sumário

1	1 Introdução					
2	2 Prática, parte II					
	2.1	Corrente de partida	3			
	2.2	Operação com carga variável	4			
3	Con	aclusão	4			

1 Introdução

Quando se interrompe uma das fases de um motor trifásico enquanto ele será girando, este continua a funcionar como motor monofásico suportando a carga, ainda que a menor velocidade. Entretanto, se o motor estiver parado, não poderia arrancar porque faltaria o campo magnético rotativo e não teria partida automática.

Para que o motor possa funcionar é necessário fazer o arranque por algum meio exterior, e então, a reação do rotor, provoca o nascimento de um campo magnético rotativo. Assim como o motor trifásico não arranca, sozinho quando lhe falta uma fase, um motor monofásico para ser posto em marcha precisa também utilizar-se de um dispositivo auxiliar.

O sistema de partida por capacitor é uma modificação do método de fase divida, e utiliza um capacitor de pouca reatância ligado em série com o enrolamento de partida do estator a fim de proporcionar uma variação de fase de aproximadamento 90 graus para a corrente de partida, resultando num torque de partida muito superior ao obtido no sistema normal de fase divida. O capacitor e o enrolamento de partida é desligado por meio de um interruptor centrífugo, como se faz no caso normal do motor de fase divida.

2 Prática, parte II

A segunda parte da experiência consistem em encontrar os valores práticos para o motor monofásico de partida a capacitor.

2.1 Corrente de partida

Utilizando o módulo EMS de fase divida com partida a capacitor e uma alimentação fixa de 120 volts. A corrente de partida ficou em 10.6 Amperes para o enrolamento primário. Alimentando agora, apenas, o enrolamento auxiliar em série com o capacitor a corrente foi de 7.8 Amperes.

Conectando em paralelo as duas bobinas do motor, principal e auxiliar, usando o eletro dinamómetro com sua carga máxima. A corrente mensurada foi de 11.4

Amperes.

2.2 Operação com carga variável

O teste agora foi para um acoplamento com o eletro dinamómetro. Observação importante, o motor foi alimentando com uma tensão de 120 Volts, entretanto devido a grande corrente de consumo em seus terminais foram obtidos apenas 103.1 Volts.

Conjungado (lbf.in)	I (Amperes)	VA	P (Watts)	Velocidade (rpm)
0	3.00	309.30	69.00	1781
3	3.17	326.83	123.00	1751
6	3.72	383.54	210.00	1717
9	4.513	465.30	294.00	1661

Tabela 1

O conjugado de partida foi da ordem de 1.3 Newton por metro.

3 Conclusão

O Motor monofásico apresenta características bem semelhantes ao motores de fase divida. Só que o conjugado de partida é levemente maior que os motores de fase divida.