THE UNIVERSITY OF MELBOURNE ENGR30002 Fluid Mechanics

Workshop 05 - Head loss

Part A: Newton-Raphson method

- -Most widely used root finding method.
- -Converges quickly.
- -Only need one initial guess.

To find a root using Newton-Raphson method, do the following:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

- i) Let the initial guess be x_i
- ii) Find x_{i+1} by using the above relationship
- iii) Let $x_i = x_{i+1}$ repeat until you feel your answer is accurate enough.

Question 01

Find the roots of the following equation using the Newton-Raphson method and starting with $x_1=4$.

$$f(x) = e^x - 10x = 0$$

Part B

Question 01

Water at 150° C is flowing steadily in a 60-meter horizontal pipe made of stainless steel at a rate of 6 L/s as shown in Figure 1. Determine a diameter of the pipe (meter). Pressure drop over the pipe length is 96.5 kPa.

Hint: Since a diameter is not known, you first guess an initial value and then do the iteration until it converges. Apply the Newton-Raphson method and set a tolerance of 1e-3.

Figure 1: Water flowing in the horizontal pipe

Question 02

Water at 20°C flows at a rate of 0.28 m^3 /min by gravity from a reservoir 1 at a high elevation to a smaller reservoir 2 through a 20 meter-long cast iron piping system as shown in Figure 2. It includes four standard flanged elbows, a well-rounded entrance, a sharp-edged exit, and a fully open gate valve. How does the elevation change with a different size of diameters?. Take the free surface of the lower reservoir as the reference level and use the roughness of cast iron pipe $\epsilon = 0.00026$ m.

Resistance coefficient:

A well-rounded entrance K_L =0.03 A standard flanged elbow K_L =0.3 A fully open gate valve K_L =0.2 A sharp-edged exit K_L =1.0

Figure 2: Water flowing from the large reservoir to the small one

END OF WORKSHOP