

MAE 298 -Aeroacoustics

(Aerodynamically Induced Noise)

What is Aeroacoustics

- Aeroacoustics = Aerodynamics + Acoustics
- Aeroacoustics is defined as aerodynamically induced noise
- Aeroacoustics is a branch of acoustics that studies noise generation via either <u>turbulent fluid motion</u> or <u>aerodynamic forces</u> interacting with surfaces.

About Instructor

- Ph.D. Aerospace Engineering, Penn State, 2009 (Minor: Acoustics)
 - Research: Rotorcraft Noise, Computational Aeroacoustics
- Post-doc at Penn State, 2009-2010
 - Research : Rotorcraft Noise, Jet Noise
- Lead Mechanical Engineer at GE Global Research, 2010-2015
 - Research: Wind Turbine Noise, Aircraft Engine Noise
- Assistant Professor, UC Davis, 2015

Introduce Yourself

- Your name
- Your pursuing graduate degree (MS or PhD) and year
- Your advisor
- Your research area

Motivation

• Why do you take this course?

Goals

- You will learn fundamental theories and practical applications of aerodynamically induced noise including jet noise, rotorcraft noise, turbomachinery noise, wind turbine noise, etc.
- You expand your knowledge in fluid mechanics, aerodynamics, and acoustics

Topics

- Introduction to Acoustics
- Moving sources
- Lighthill acoustic analogy
- Jet noise
- Helicopter noise
- FW-H equation and Farassat's formulation 1 and 1A
- Turbomachinery noise (aircraft engine fan noise)
- Wind turbine noise
- Turbulent inflow noise
- Turbulent trailing edge noise
- Atmospheric sound propagation

Resource

- UC Davis Canvas (https://canvas.ucdavis.edu/)
 - Homework problems
 - Papers
 - Grades

MAE 298 - Aeroacoustics

Change the course unit from 1 to 4 Grading Policy

- Homework: 40 % (4 assignments, 10% for each assignment) no late submission is allowed
- Mid-term exam: 30 %
- Project: literature study report and presentation:
 30 %
- Letter grades will be assigned

Office Hour

 Thursday, 10 am at 2013 Bainer Hall or by appointment

Final Project

- Choose one area in aeroacoustics, write down a literature survey, and present the summery in class
- Avoid too broad or too narrow topics
- Good examples:
 - Helicopter blade-vortex interaction noise
 - Amplitude modulation of wind turbine noise
 - Jet broadband noise
 - Slat noise
 - Landing gear noise
 - Trailing edge noise
 - Leading edge noise
- Send me an email about your topic by Oct. 13th
- Format
 - Margin: 1 in
 - Font: Times New Roman
 - Font size: 12 in
 - Line spacing: single line
 - Page limit: maximum 10 pages excluding references

MAE 298 - Aeroacoustics

Text book/note

Instructor's notes will be used as primary course materials.

Useful references but not required

- Dowling, Ann P and Ffowcs Williams, JE (1983) Sound and sources of sound, Ellis Horwood Publishers
- Hubbard, Harvey H. (1995) Aeroacoustics of Flight Vehicles, Acoustical Society of America
- Smith, Michael J. (1989) Aircraft Noise, Cambridge University Press
- Howe, Michael S (2003) Theory of Vortex Sound, Cambridge University Press
- Goldstein, Marvin E. (1976) Aeroacoustics, McGraw-Hill
- Salomons, Erik M. (2001) Computational Atmospheric Acoustics, Kluwer Academic Publishers
- Rienstra, S. W. and Hirschberg, A. (2003) An Introduction to Acoustics. Eindhoven University of Technology

My teaching style

- I like to combine basic concepts, mathematical derivations, and real-world problems. These three elements are equally important
- I also like to tell history of research
- I encourage students to ask questions in class, break time, after class, or in office hour

Introduction to Aircraft Noise and Aeroacoustics

Aircraft Noise Trend

Aircraft noise trend

NASA's Vision

NASA's Goals for Green Aviation

- Fuel Efficiency: Burn 60% less fuel by 2025
- Emissions: Cut NOx emissions greater than 80% by 2025
- Noise: Shrink the nuisance noise footprint within airport property boundary (52dB EPNL reduction)
 - Advanced and fundamental research in aeroacoustics needed

TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)		
	N+1 (2015)	N+2 (2020**)	N+3 (2025)
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-52 dB
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%

Courtesy: NASA, 2013

Challenges of Aeroacoustic Predictions

- Small magnitude and a wide range of pressure amplitudes
 - Aerodynamic: $p / p_{amb} \sim O(1)$
 - Acoustic: $p / p_{amb} \sim O (10^{-6})$
- CAA requires robust and efficient algorithms, good turbulence models, and parallel code capability, etc.
 - Numerical dissipation and dispersion errors require high order numerical schemes in space and time
 - Require non-reflective boundary conditions

Milestones of Aeroacoustics

- James Lighthill...a father of aeroacoustics
 - 1952, Rearranged Navier-Stokes equation into acoustic equation with equivalent sources (acoustic analogy)

- Found the role of turbulence in the noise generation
- Ffowcs Williams
 - 1969, Generalized Lighthill's acoustic analogy for moving surfaces (FW-H)
- Feri Farassat
 - 1982, Found integral solutions of FW-H equation Widely used in rotorcraft noise, jet noise
- Christopher Tam
 - 1990s, Computational aeroacoustics, jet noise

Lighthill's Acoustic Analogy

 Aeroacoustics began with Lighthill's acoustic analogy, which is rearrangement of N-S equations

$$\frac{\partial}{\partial t} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho u_{i}) = 0$$

$$p_{ij} = -\sigma_{ij} + \delta_{ij} p$$

$$\sigma_{ij} = \mu \left\{ \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3} \left(\frac{\partial u_{i}}{\partial x_{i}} \right) \delta_{ij} \right\}$$

$$\text{subtract } c_{0}^{2} \nabla^{2} \rho$$

$$\frac{\partial^{2} \rho}{\partial t^{2}} - c_{0}^{2} \nabla^{2} \rho = \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} T_{ij}$$

$$T_{ij} = \rho u_{i} u_{j} + p_{ij} - c_{0}^{2} \rho \delta_{ij}$$

$$\rho = \rho' + \rho_{0}$$

• Aerodynamic noise is generated by Lighthill stress tensor (T_{ij}) and propagted with the speed of sound (c_0)

FW-H Equation

 Ffowcs Williams—Hawkings Equation : Generalized acoustic analogy for rotating blades as noise source

Thickness displacement of fluid generates sound

Loading accelerating force distribution generates sound (unsteady flows)

Quadrupole
All volume sources,
non-linear effects
nonuniform sound speed

Aircraft Noise Certifications

Aircraft Noise Certification Locations

EPNL (Effective Perceived Noise Level)

- EPNL is measured in units of EPNLdB and it is a single number indicator of the subjective effects of airplane noise on human beings
- EPNLdB is used in aircraft noise certification
- EPNLdB is a measure of human annoyance to aircraft noise which has special spectral characteristics and persistence of sounds.
- It accounts for human response to spectral shape, intensity, tonal content and duration of noise from an intensity, tonal content and duration of noise from an aircraft.
- Certification quality EPNLdB cannot be directly measured, it has to be calculated in a standard manner as described in Annex 16.

5 Steps of EPNL Calculation

For each ½ second sample,

- SPL converted to PNL (using a formula for noy values)
- 2. Tone correction factor C is calculated (this involves length computations by averaging SPLs)
- 3. PNLT=PNL+C
- 4. Duration coefficient D is calculated

$$D = 10 \log \left[\left(\frac{1}{T} \right) \sum_{k=0}^{d/\Delta t} \Delta t \cdot antilog \frac{PNLT(k)}{10} \right] - PNLTM$$

where PNLTM is the maximum value of PNLT, T is a normalizing time constant (10 sec) and Δt =is the length of the equal increments of time (0.5 sec), and d is the time interval to the nearest second during which PNLT(k) is within a specified value h of PNLTM (h=10 dB)

5. EPNL=PNLTM+D where PNLTM=Max(PNLT). EPNL is the total subjective effects of an airplane flyover.

EPNL Calculation

Figure 2.2. The noise time history and the related terms.

$$EPNL = PNLTM + D$$

Stage 3 Noise Regulation

Figure 3.2 Stage 3 certification requirements for sideline and approach.

Trend of Aircraft Noise Regulations

Current and Future FAA Noise Standards

- The current FAA noise standards applicable to new type certifications of *jet and large turboprop aircraft is Stage 4*. It is equivalent to the ICAO Annex 16, Volume 1 Chapter 4 standards. Recently, the international community has established and approved a more stringent standard within the ICAO Annex 16, Volume 1 Chapter 14, which became effective July 14, 2014. The FAA is adopting this standard and promulgating the rule for *Stage 5 that is anticipated to be effective for new type certificates after December 31, 2017 and December 31, 2020*, depending on the weight of the aircraft. The Notice of Proposed Rule Making (NPRM) for Stage 5 was published on January 14, 2016.
- For helicopters, the FAA has noise standards for a <u>Stage 3</u> helicopter that became effective on May 5, 2014. These more stringent standards apply to new type helicopters and are consistent with ICAO Annex 16, Volume 1 Chapter 8 and Chapter 11.

Aircraft Noise Sources & Applications of Aeroacoustics

Aircraft Noise Sources

Relative Weight of Aircraft Noise Sources

Engine Noise Level and Directivity

Jet Noise

M.L. Shur et. al. AIAA 2006-485

- Turbulent mixing noise
- Broadband shock noise
- Screech tone noise
- Research Topic
 - Analytical turbulent theory
 - Prediction: CFD
 - Experiment
- Reduction of jet noise

Chevron, fluidic injection: increase turbulent mixing and reduce jet flow speed

ANA

Turbomachinery Noise

- Engine noise (Fan Noise)
 - Fan wake and OGV interaction noise
 - Fan shock noise (high speed)

- Duct acoustics (acoustic liner)
- Turbomachinery CFD
- Open rotor noise
- Noise reduction
 - Acoustic linear
 - Blade counts / spacing
 - Low speed fan

Courtesy: NASA

Open Rotor Noise

Airframe Noise I

- Airframe noise sources
 - Landing gears
 - Slotted slat
 - Flap side-edges
 - Spoilers
 - Gear wake and flap interaction
 Landing gear noise reduction

Courtesy: Airbus

Courtesy: DLR

Airframe Noise II

Slat Noise

Figure 7. Spanwise vorticity, $\omega_z c/U_\infty$, around the slat averaged both temporally and in the spanwise direction.

Figure 1: Typical slat frequency spectrum. Cs represents slat

Figure 2: Instantaneous spanwise vorticity field at slat trailing edge.

Figure 3: Instantaneous fluctuating pressure field.

Figure 4: Instantaneous spanwise vorticity field for partially laminar simulation of cove.

Propulsion Airframe Integration

- Hybrid wing body concept (over-the-wing engines)
- Huge potential to reduce engine noise by shielding (main concept to meet NASA's 2025 noise vision: 52dB noise reduction)
- Acoustic scattering : accurate and efficient numerical tools are essential
- Challenges due to installation, maintenance, public acceptance, etc.

Courtesy: NASA

Rotorcraft Noise

- Main noise sources
 - Blade self noise (thickness & loading)
 - Blade vortex interaction noise
 - High speed impulsive noise
 - Broadband noise
- Research topics
 - Prediction (CFD/FW-H)
 - Maneuvering noise
 - Co-axial rotor
 - Acoustic scattering
- Noise reductions
 - Active blade control
 - Low noise blade design

Helicopter aeromechanical challenges

Courtesy: Progress in Aerospace Sciences, 2003

Rotorcraft noise source and directivity

Wind Turbine Noise

- Aerodynamic noise
 - Trailing edge noise
 - Inflow turbulence noise
 - Flow Separation noise
 - Tip noise
 - Typically, broadband noise
 - Associated with blade motion
 - Doppler amplification
 - Directivity
- Research topics
 - Serrated trailing edge
 - Low noise airfoil
 - Amplitude modulation
 - Far-field noise propagation

Wind Turbine Noise (MultiScience, 2011)