



# Blockchain Resistant to Quantum Attack

Michal L'aš, supervised by Mgr. Kamil Malinka, Ph.D.

# Goals

- Analyze blockchain components vulnerable to quantum attacks
- Identify appropriate post-quantum cryptography algorithms for use in a blockchain
- Design and implement a post-quantum blockchain
- Test implementation performance with different postquantum cryptography algorithms



## **Threats**

The main threat is the ability of quantum computers to break the currently used cryptography. For blockchains, it indicates:

- Threat for transactions integrity
- Threat to consensus mechanisms, mainly PoW
- Theoretical threat to the entire integrity of a blockchain



# **Solution & Design**

Application Layer

### Wallet

Replicated State Machine Layer

#### **Transactions**

Digital signatures Falcon and Dilithium

Consensus Layer

XRP Ledger Consensus Protocol
Digital signatures Falcon and Dilithium

Network Layer

Network Services

Data storage
Chained with SHA-512

Peer communication

## Results

- The performance of PQ algorithms compared to the currently utilized ones is actually quite sufficient
- ◆ Faster consensus mechanism can reduce demands on allocated memory
- The primary issue is the size of PQ signatures and keys



Number of nodes

Falcon1024 → Falcon512 → Dilithium5 → Dilithium3 → Dilithium2 → Ed25519 → ECDSA