Digital Logic Design

Chapter 2 **Boolean Algebra and Logic Gates**

Combinational Logic Circuits

- Logic Gates: Control the flow of information
- Represent Logical Operations (Functions)
 - Inputs are like arguments to a function
 - Outputs are like result of the function
 - Fundamental Set
 - AND
 - OR
 - NOT
 - Transmission Gate
- Truth Tables...

Digital Logic Design - Chapter 2

- 2

	GII.	aphics Symbols		
Name	Distinctive shape	Rectangular shape	Algebraic equation	Truth table
NAND	X		F≖X•Y	0 0 1 0 1 1 1 0 1 1 1 0
NOR	х		F = X + Y	X Y F 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive—OR (XOR)	х		F=XŸ+XY =X 69 Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	х ү — Б		F = XY + XY = X	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

Boolean Algebra

- Algebra is a complete set of rules defined on some variables.
- Variables can be Real or Logical: This subject deals with Logical Variables
- A Logical Variable can take one of two values
- A Logical Function is represented by
 - Truth Tables
 - Boolean Expressions

Digital Logic Design - Chapter 2

What is Boolean Algebra

- An algebra dealing with
 - Binary variables by alphabetical letters
 - Logic operations: OR, AND, XOR, etc
- Consider the following Boolean equation

$$F(X,Y,Z) = \overline{X \cdot Y} + \overline{Y \cdot \overline{Z} + Z}$$

 A Boolean function can be represented by a truth table which list all combinations of 1's and 0's for each binary value

Digital Logic Design - Chapter 2

Fundamental Operators

- NOT
 - Unary operator
 - Complements a Boolean variable represented as A', ~A, or Ā
- OR
 - Binary operator
 - A ORed with B is represented as A + B
- AND
 - Binary operator
 - A ANDed with B is represented as AB or A'B
 - Can perform logical multiplication

Digital Logic Design - Chapter 2

Binary Boolean Operations All possible outcomes of a 2-input Boolean function 0 0 0 0 0 0 0 0 0 1 - 1 -1 1 A·B A·B A⊕B NÚLL A⊕B В A+B Identity Digital Logic Design - Chapter 2

Sixteen 2-Variable Functions

Boolean Function	Operator Symbol	Name	Comments
$F_0 = 0$		NULL	binary constant 0
$F_1 = xy$	х·у	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	У
$F_6 = xy' + x'y$	х⊕у	Exclusive-OR	ж or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	x↓y	NOR	not-OR
$F_9 = xy + x'y'$	(x ⊕ y)'	Equivalence (XNOR)	x equals y
$F_{10} = y'$	y'	Complement	not y
$F_{11} = x + y'$	x ⊂ y	Implication	if y, then x
$F_{12} = x'$	x'	Complement	not x
$F_{13} = x' + y$	x⊃y	Implication	if x, then y
$F_{14} = (xy)'$	x↑y	NAND	not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital Logic Design - Chapter 2

Precedence of Operators

- Precedence of Operator Evaluation (Similar to decimal arithmetic)
 - (): Parentheses
 - NOT
 - AND
 - OR

$$F = A \cdot (\overrightarrow{B} + \overrightarrow{C} \cdot \overrightarrow{D}) + \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{E}$$

Digital Logic Design - Chapter 2

Function Evaluation

$$F = A \cdot (\overline{B + C \cdot D}) + \overline{A} \cdot \overline{B + E}$$

ABCDE=00000

$$F = 0 \cdot (0 + \overline{0} \cdot 0) + \overline{0} \cdot \overline{0} + 0 = 0 \cdot (0 + 1 \cdot 0) + \overline{0} \cdot \overline{1} + 0$$
$$= 0 \cdot (0 + 0) + 1 \cdot \overline{1} = 0 \cdot 1 + 1 \cdot 0 = 0$$

ABCDE=10000

$$F = 1 \cdot (0 + \overline{0} \cdot 0) + \overline{1} \cdot \overline{0} + 0 = 1 \cdot (0 + 1 \cdot 0) + 0 \cdot \overline{1} + 0$$
$$= 1 \cdot (0 + 0) + 0 \cdot \overline{1} = 1 \cdot 1 + 0 \cdot 0 = 1$$

Digital Logic Design - Chapter 2

Boolean Variables

- A multi-dimensional space spanned by a set of n Boolean variables is denoted by \mathcal{B}^n
- A literal is an instance (e.g. A) of a variable or its complement (Ā)

Digital Logic Design - Chapter 2

15

Basic Identities of Boolean Algebra

X + 0 = X (Identity)

X + 1 = 1

X + X = X (Idempotent Law)

 $X + \overline{X} = 1$ (Complement)

 $\overline{\overline{X}} = X$ (Involution Law)

X + Y = Y + X (Commutative)

X+(Y+Z)=(X+Y)+Z (Associative) X(Y+Z)=XY+XZ (Distributive)

X(Y+Z) = XY + XZ (Distributive) $\overline{X+Y} = \overline{X}\overline{Y}$ (DeM organ's Law)

X + XY = X (Absorptin Law)

 $X + \overline{X}Y = X + Y$ (Simplification)

 $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ (Consensus Theorem)

Digital Logic Design - Chapter 2

/

Derivation of Simplification

$$X + \overline{X}Y$$

$$= X \cdot (1+Y) + \overline{X}Y$$

$$=X+XY+\overline{X}Y$$

$$=X+(X+\overline{X})Y$$

$$=X+Y$$

$$\therefore X + \overline{X}Y = X + Y$$

Digital Logic Design - Chapter 2

17

Derivation of Consensus Theorem

$$XY + \overline{X}Z + YZ$$

$$=XY+\overline{X}Z+YZ\cdot(X+\overline{X})$$

$$=XY+\overline{X}Z+XYZ+\overline{X}YZ$$

$$= XY(1+Z) + \overline{X}Z(1+Y)$$

$$=XY+\overline{X}Z$$

$$\therefore XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

Digital Logic Design - Chapter 2

10

Duality Principle

- A Boolean equation remains valid if we take the dual of the expressions on both sides of the equals sign
- Dual of expressions
 - Interchange 1's and 0's
 - Interchange AND (•) and OR (+)

Digital Logic Design - Chapter 2

19

Duality Principle

X+1=1 $X\cdot \theta = 0$

X + X = X $X \cdot X = X$

 $X + \overline{X} = 1$ $X \cdot \overline{X} = 0$

 $X+Y=Y+X \hspace{1cm} X\cdot Y=Y\cdot X$

X(Y+Z) = XY + XZ $X+Y\cdot Z = (X+Y)\cdot (X+Z)$

 $\overline{X+Y} = \overline{X} \cdot \overline{Y} \qquad \qquad \overline{X \cdot Y} = \overline{X} + \overline{Y}$

 $X + X \cdot Y = X$ $X \cdot (X + Y) = X$

 $X + \overline{X} \cdot Y = X + Y$ $X \cdot (\overline{X} + Y) = X \cdot Y$

 $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ $(X + Y)(\overline{X} + Z)(Y + Z) = (X + Y)(\overline{X} + Z)$

Digital Logic Design - Chapter 2

DeMorgan's Law

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Digital Logic Design - Chapter 2

21

Generalized De Morgan's Theorem

- NOT all variables
- Change . to + and + to .
- NOT the result

 \blacksquare F = X . Y + X . Z + Y . Z

- $F = !((!X + !Y) \cdot (!X + !Z) \cdot (!Y + !Z))$
- F = !(!(X . Y) . !(X . Z) . !(Y . Z))

Digital Logic Design - Chapter 2

Sum of Product (SOP) Form

- A product of literals is called a product term (e.g. \bar{A} ·B·C in \mathcal{B}^3 , or B·C in \mathcal{B}^3)
- Sum-Of-Product (SOP) Form: OR of product terms is called SOP. e.g. ĀB+AC
- A minterm is a product term in which every literal (or variable) appears in Bⁿ
 - $\bar{A}BC$ is a minterm in \mathcal{B}^3 but not in \mathcal{B}^4 . ABCD is a minterm in \mathcal{B}^4 .
- A canonical (or standard) SOP function:
 - A sum of minterms, corresponding to the input combination of the truth table, for which the function produces a "1" output.

Digital Logic Design - Chapter 2

26

Minterms in \mathcal{B}^3

			m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
Α	В	С	ĀBC	$\bar{A}\bar{B}C$	$\overline{A}B\overline{C}$	$\bar{A}BC$	ABC	$A\bar{B}C$	$\mathbf{A}\mathbf{B}\overline{\mathbf{C}}$	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Digital Logic Design - Chapter 2

Canonical (Standard) SOP Function

$$F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$
$$= m0 + m1 + m4 + m5$$

$$F(A,B,C) = \sum m(0,1,4,5) = one - set(0,1,4,5)$$

$$F(A,B,C,D) = \overline{ABCD} + A\overline{BCD} + ABC\overline{D}$$
$$= m4 + m9 + m14$$

$$F(A,B,C,D) = \sum m(4,9,14) = one - set(4,9,14)$$

Digital Logic Design - Chapter 2

-28

Product of Sums Design

Maxterms:

A maxterm is a NOT minterm maxterm M0 = NOT minterm m0

Digital Logic Design - Chapter 2

Product of Sum (POS) form (dual of SOP form)

- A sum of literals is called a sum term (e.g. $\bar{A}+B+C$ in \mathcal{B}^3 , or (B+C) in \mathcal{B}^3)
- Product-Of-Sum (POS) Form: AND of sum terms is called POS. e.g. (Ā+B)(A+C)
- A maxterm is a sum term in which every literal (or variable) appears in \mathcal{B}^n
 - ($\bar{A}+B+C$) is a maxterm in \mathcal{B}^3 but not in \mathcal{B}^4 . A+B+C+D is a maxterm in \mathcal{B}^4 .
- A canonical (or standard) POS function:
 - A product (AND) of maxterms, corresponding to the input combination of the truth table, for which the function produces a "0" output.

Digital Logic Design - Chapter 2

30

Product of Sums Design

Х	Y	minterms	maxterms
0	0	m0 = !X . !Y	MO = !mO = X + Y
0	1	$m1 = !X \cdot Y$	M1 = !m1 = X + !Y
1	0	$m2 = X \cdot !Y$	M2 = !m2 = !X + Y
1	1	$m3 = X \cdot Y$	M3 = !m3 = !X + !Y

Digital Logic Design - Chapter 2

31

Maxterms in \mathcal{B}^3

Digital Logic Design - Chapter 2

Canonical (Standard) POS Function

$$F(A,B,C) = (\overline{A} + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$
$$= M7 \cdot M6 \cdot M3 \cdot M2$$

$$F(A,B,C) = \prod M(2,3,6,7) = zero \ for \ set(2,3,6,7)$$

$$F(A,B,C,D) = (\overline{A} + B + \overline{C} + \overline{D})(A + \overline{B} + \overline{C} + D)(A + B + C + \overline{D})$$
$$= M \cdot 1 \cdot M \cdot 6 \cdot M \cdot 1$$

$$F(A,B,C,D) = \prod M(1,6,11) = \text{zero } for \text{ set}(1,6,11)$$

Digital Logic Design - Chapter 2

Convert a Boolean to Canonical SOP

- Expand the Boolean equation into a SOP
- Take each product term with a missing literal, say A, and "AND" (•) it with (A+Ā)

Digital Logic Design - Chapter 2

24

Convert a Boolean to Canonical SOP

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= \sum m(0,1,3,7)$$

	Α	В	C	F		
-ABC	0	0	0	1	0	
ĀBC	0	0	1	1	1	
ABC	0	1	0	0		Minterms listed
ABC	0	1	1	1	3	as 1's
ABC	1	0	0	0		
ABC	1	0	1	0		
ABC	1	1	0	0		
ABC	1	1	1	1	← 7	

Digital Logic Design - Chapter 2

Convert a Boolean to Canonical SOP

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^4$$

$$\Rightarrow F(A,B,C,D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD} + ABCD + ABCD$$

$$= \sum m(0,1,2,3,6,7,14,15)$$

$$F = AB + \overline{B}(\overline{A} + \overline{C}) \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A,B,C) = \overline{ABC} + \overline{ABC$$

Digital Logic Design - Chapter 2

Convert a Boolean to Canonical POS

- Expand Boolean eqn into a POS
 - Use distributive property
- Take each sum term with a missing literal, say A, and OR it with A·Ā

Digital Logic Design - Chapter 2

31

Convert a Boolean to Canonical POS

$$F = \overline{AB} + BC \text{ in } B^3$$

$$Use X + YZ = (X + Y)(X + Z) \quad (Distributive)$$

$$F = \overline{A}\overline{B} + BC$$

$$F = (\overline{AB} + B)(\overline{AB} + C)$$

$$F = (\overline{A} + B)(\overline{B} + B)(\overline{A} + C)(\overline{B} + C)$$

$$F = (\overline{A} + B + C\overline{C})(\overline{A} + B\overline{B} + C)(A\overline{A} + \overline{B} + C)$$

$$F = (\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + C)(A + \overline{B} + C)(\overline{A} + \overline{B} + C)$$

$$F = (\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)(A + \overline{B} + C)$$

$$=\prod M(2,4,5,6)$$

Digital Logic Design - Chapter 2

38

Convert a Boolean to Canonical POS

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^3$$

$$F = \overline{AB} + BC$$

$$F = (A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$$

$$=\prod M(2,4,5,6)$$

	Α	В	С	F	
ABC	0	0	0	1	
ABC	0	0	1	1	
ABE	0	1	0	0 .	2
ABC	0	1	1	1	
A₿€	1	0	0	0 4	4
ABC	1	0	1	0	5
AB€	1	1	0	0	6
ABC	1	1	1	1	0
		Digital I	.ogic Design	n - Chapter 2	

Maxterms listed as 0's

Convert a Boolean to Canonical SOP

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= \sum m(0,1,3,7)$$

	A	В	С	F
-ABC	0	0	0	10
¬ABC	0	0	1	1 ← 1
ĀĒC	0	1	0	0
ABC	0	1	1	1 ← 3
ABC	1	0	0	0
ABC	1	0	1	0
ABC	1	1	0	0
ADC	1	- 1	- 1	1 -

Digital Logic Design - Chapter 2

40

Minterms listed

as 1's

Convert a Boolean to Canonical POS

$$F = AB + \overline{B}(\overline{A} + \overline{C})$$
 in \mathcal{B}^3

Use
$$X + YZ = (X + Y)(X + Z)$$
 (Distributive)

$$F = AB + \overline{B}(\overline{A} + \overline{C})$$

$$F = (AB + \overline{B}) (AB + \overline{A} + \overline{C})$$

$$F = (A + \overline{B})(B + \overline{B})(A + \overline{A} + \overline{C})(B + \overline{A} + \overline{C})$$

$$F = (A + \overline{B})(\overline{A} + B + \overline{C})$$

$$F = (A + \overline{B} + C\overline{C})(\overline{A} + B + \overline{C})$$

$$F = (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$

$$= \prod M(2,3,5)$$

Digital Logic Design - Chapter 2

Convert a Boolean to Canonical SOP

$$F = AB + \overline{B}(\overline{A} + \overline{C}) \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A,B,C) = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + AB\overline{C} + AB\overline{C} + AB\overline{C}$$

$$= \sum m(0,1,4,6,7)$$

Digital Logic Design - Chapter 2

42

Interchange Canonical SOP and POS

- For the same Boolean equation
 - Canonical SOP form is complementary to its canonical POS form
 - ullet Use missing terms to interchange Σ and Π
- Examples
 - $F(A,B,C) = \sum m(0,1,4,6,7)$

Can be re-expressed by

• $F(A,B,C) = \prod M(2,3,5)$

Where 2, 3, 5 are the missing minterms in the canonical SOP form

Digital Logic Design - Chapter 2

43

Positive and Negative Logic

- Binary signals in a circuit can have one of two values.
 - One signal represents logic-1 and the other logic-0.
- A circuit input or output will hold either a high or low signal.
 - Choosing the high level, H, to represent logic-1 is called a positive logic system.
 - Choosing the low level, L, to represent logic-1 is called a negative logic system

Digital Logic Design - Chapter 2

2-8 Integrated Circuits

- An integrated circuit (IC) is a silicon semiconductor crystal, called a chip, containing the electronic components for constructing digital gates.
 - Gates are interconnected within the chip to form the required circuit
 - The IC is housed inside a ceramic or plastic container with connections welded to external pins
 - There can be 14 to several thousand pins on a logic chip
 - Each IC has a numeric designation printed on the surface for identification. The number can be looked up in catalogs (paper and electronic) that contain descriptions and information about the IC

Digital Logic Design - Chapter 2

43

Levels of Integration

- ICs are categorized by the number of gates that they contain in them:
 - Small-scale integration (SSI) devices contain several (usually less than 10) independent gates in a single package.
 - Medium-scale integration (MSI) devices include 10 to 1000 gates in a single package, used to perform elementary digital operations.
 - Large-scale integration (LSI) devices contain thousands of gates in a single package, used in processors, memory chips, and programmable logic devices.

46

Logic Families

- ICs are also classified by the specific circuit technology (digital logic family) that they belong to:
 - Transistor-transistor logic (TTL) is a standard.
 - Emitter-coupled logic (ECL) is used in highspeed operation.
 - Metal-oxide semiconductor (MOS) is used for high component density.
 - Complementary metal-oxide semiconductor (CMOS) is used in low power consumption.

Digital Logic Design - Chapter 2

47

Logic Family Characteristics

- Digital logic families are usually compared by the following characteristics:
 - Fan-out specifies the amount of current that an output needs to drive many input pins on other gates.
 - Fan-in is the number of inputs available in a gate.
 - Power dissipation is the power consumed by the gate.
 - Propagation delay is the average delay time for the signal to propagate from input to output.
 - Noise margin is the maximum external noise voltage added to an input signal that does not cause an undesirable change in the circuit output.
 - Real estate is the amount of space required to implement the IC.
 - Reliability is the long-term success factor of the IC.

 Digital Logic Design Chapter 2