Измерение иннтенсивности радиационного фона (1.1.4)

Павлушкин Вячеслав

Сентябрь 2021

1 Введение

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

Оборудование: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

2 Теоретические сведения

В данной работе измеряется число частиц, проходящих через счетчик за 10 секунд, с помощью которого мы можем найти и количество за 40 секунд. Такие времена выбраны для того, чтобы продемонстрировать то, что при большем времени лучше выполняется нормальное распределение измеряемых величин и гистограмма более симметрична, чем при малых временах, когда при оработке лучше воспользоваться законом Пуассона.

Если случайные события, такие как регистрация частицы счётчиком, однородны во времени и являются независимыми, то результаты их измерений подчиняются распределению Пуассона. Теория вероятности гласит, что в таком случае среднеквадратичная ошибка числа отсчётов, измеренного за некоторый интервал времени, равна квадратному корню из среднего числа отсчётов за тот же интервал:

$$\sigma = \sqrt{n_0} \tag{1}$$

При проведении многочисленных опытов за n_0 принимается среднее арифметическое всех результатов \overline{n} , а стандартная ошибка отклонения \overline{n} от n_0 может быть вычислена по формуле:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2},$$

где N - количество измерений, n_i - результат i-того измерения. Относительная же погрешность составит:

 $\varepsilon_{\overline{n}} = \frac{1}{\sqrt{\overline{n}N}}.$

Распределение Пуассона.

Рассмотрим счетчик, регистрирующий частицы. Найдем вероятность того, что при плостности излучения ν счетчик сработает n раз за время измерения. Для простоты будем считать, что счетчик обладает единичной площадью.

Представим себе большое число совершенно одинаковых одновременно работающих счетчиков. Обозначимполное число счетчиков буквой N. Через них в секунду в среднем проходит $N\nu$ частиц, а за dt пройдет $N\nu dt$ частиц. Если dt достаточно мало, то за это время ни через один счетчик не пройдет двух частиц. Число счетчиков, через которые прошла частица равно $N\nu dt$, а их доля по отношению к общему числу счетчиков: $N\nu dt/N = \nu dt$. Вероятность того, что за время dt через счетчик пройдет частица, равна νdt .

Вычислим теперь вероятность $P_0(t)$ того, что за время t через счетсик не пройдет ни одной частицы. Количество таких счетчиков в момент t составляет $NP_0(t)$, а в момент времени t+dt равно $NP_0(t+dt)$. Это число меньше, чем $NP_0(t)$, потому что за время dt их сисло убавится на $NP_0(t)\nu dt$. Поэтому:

$$NP_0(t + dt) = NP_0(t) - NP_0(t)\nu dt,$$

 $P_0(t + dt) = P_0(t) - P_0(t)\nu dt.$

Разделиы это равенство на dt и переходя к пределу, получим

$$\frac{dP_0}{dt} = -\nu P_0$$

Интегрируя, найдем:

$$P_0(t) = e^{-\nu t} \tag{2}$$

Вычислим теперь $P_n(t+dt)$ – вероятность того, что за время t+dt через счетчик пройдет ровно n частиц. число таких счетчиков $NP_n(t+dt)$ состоит из двух частей. Первая часть – счетчики через которые все частицы прошли за $t-NP_n(t)(1-\nu dt)$, а вторая – счетчики, через которые за время t прошло n-1 частиц, а последня последняя за время dt, их число: $NP_{n-1}(t)\nu dt$. Имеем, следовательно:

$$NP_n(t+dt) = NP_n(t)(1-\nu dt) + NP_{n-1}(t)\nu dt.$$

Разделив на *Ndt* получаем:

$$\frac{dP_n}{dt} + \nu P_n = \nu P_{n-1}.$$

Применяя формулу полученную реккурентности, с помощью (2) найдем:

$$P_n = \frac{(\nu t)^n}{n!} e^{-\nu t}$$

Заметим теперь, что νt , которое мы обозначим через n_0 , равно среднему числу частиц, проходящих через счетчик за время t. Формула примет вид:

$$P_n = \frac{n_0^n}{n!} e^{-\nu t} \tag{3}$$

3 Ход работы

- 1. Включаем компьютер и счетчик Гейгера-Мюллера. Начинается основной эксперимент.
- 2. Проводим демонстрационный эксперимент. Изучая результаты, мы можем понять, что:
 - (а) измеряемая величина изменяется случайным образом (флуктуирует);
 - (b) её среднее значение вначале сильно изменяется, затем выходит на постоянную величину;
 - (с) погрешность отдельного измерения со временем выходит на постоянную величину;
 - (d) колебания погрешности среднего значения со временем уменьшаются, сама погрешность тоже уменьшается.

3. Проводим основной эксперимент, снимаем результаты, получаем таблицу для количества частиц прошедших за $20 \, \mathrm{c.} \, \mathrm{B}$ столбиках указаны единицы, в строках десятки. Например, $3 \, \mathrm{cтолбиk}$ вторая строчка – $13 \, \mathrm{onist}$:

№ опыта	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0
10	0	0	11	21	28	23	33	23	30	31
20	27	31	37	23	27	31	34	31	21	20
30	36	17	25	34	26	24	31	16	25	28
40	20	18	24	30	36	23	19	25	29	22
50	23	28	27	24	24	27	25	23	21	29
60	24	21	28	27	20	28	28	22	35	22
70	22	22	19	25	24	21	19	39	13	26
80	25	26	20	20	28	23	20	31	23	29
90	18	24	24	14	22	17	38	34	19	31
100	30	15	23	30	23	29	24	30	26	29
110	27	26	26	22	16	23	29	27	18	25
120	18	19	24	26	25	34	26	27	38	22
130	30	22	24	30	24	26	33	31	31	28
140	22	28	15	32	33	27	22	29	28	29
150	29	19	26	24	27	23	14	22	23	18
160	22	32	30	18	20	25	25	27	29	28
170	25	22	24	20	20	29	32	24	23	20
180	23	27	26	19	24	23	20	32	20	24
190	23	27	24	39	21	18	18	22	19	28

4. Переносим также данные для $\tau=10\,$ и строим по ним гистограмму распределения числа отсчётов $\omega_n=f(n)$:

Число частиц	3	4	5	6	7	8	9
Число случаев	1	2	4	7	13	9	22
Доля случаев	0.0025	0.005	0.01	0.0175	0.0325	0.0225	0.055
Число частиц	10	11	12	13	14	15	16
Число случаев	43	49	45	51	39	33	12
Доля случаев	0.1075	0.1225	0.1125	0.1275	0.0975	0.0825	0.03
Число частиц	17	18	19	20	21	22	23
Число случаев	15	8	8	5	4	2	4
Доля случаев	0.0375	0.02	0.02	0.0125	0.01	0.005	0.01

5. Разобьём полученные результаты для $\tau=20~c$ на группы по два в порядке их следования и построим гистограмму для $\tau=40~c$. При этом для второй гистограммы выберем цену деления по оси абсцисс в четыре раза больше.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	32	51	56	61
10	58	60	58	65	41	53	59	50	47	53
20	38	54	59	44	51	51	51	51	48	50
30	45	55	48	50	57	44	44	45	58	39
40	51	40	51	51	52	42	38	39	72	50
50	45	53	52	54	55	53	48	39	56	43
60	37	50	59	53	60	52	54	50	36	41
70	50	47	60	51	57	48	50	50	36	41
80	54	48	45	52	57	47	44	49	56	43
90	50	45	47	52	44	50	63	39	40	47

Данные для гистограммы:

Число частиц	32	36	37	38	39	40	41
Число случаев	1	1	1	2	4	2	2
Доля случаев	0.01064	0.01064	0.01064	0.02128	0.04255	0.02128	0.02128
Число частиц	42	43	44	45	47	48	49
Число случаев	1	2	5	5	5	5	1
Доля случаев	0.01064	0.02128	0.05319	0.05319	0.05319	0.05319	0.01064
Число частиц	50	51	52	53	54	55	56
Число случаев	3	11	9	5	5	4	2
Доля случаев	0.03191	0.11702	0.09574	0.05319	0.05319	0.04255	0.02128
Число частиц	57	58	59	60	61	63	64
Число случаев	3	3	4	3	1	1	1
Доля случаев	0.03191	0.03191	0.04255	0.03191	0.01064	0.01064	0.01064
Число частиц	65	72					
Число случаев	1	1					
Доля случаев	0.01064	0.01064					

Рис. 1: Гисторамма $\omega_n(n)$

6. Для обоих измерений определим среднее число частиц \overline{n} , среднеквадратичное отклонение отдельного измерения σ и среднего значения $\sigma_{\overline{n}}$:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i, \quad \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}, \quad \sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma}{\sqrt{N}},$$

а также убедимся в справедливости формулы $\sigma \approx \sqrt{\overline{n}}$.

$$t = 10 c$$
: $\overline{n}_1 = 12,53$, $\sigma_1 = 3,47$, $\sigma_{\overline{n}_1} = 0,18$; $3.74 \approx \sqrt{14.09} = 3.75$.

$$t = 40 c$$
: $\overline{n}_2 = 50,11$, $\sigma_2 = 7,15$, $\sigma_{\overline{n}_2} = 0,74$; $7,15 \approx \sqrt{50,11} = 7,08$.

7. Найдём процент случаев, когда отклонение от среднего не превышает σ , 2σ . Сравним результаты с теоретическими оценками.

Ошибка	Доля случаев, %	Теоретическая оценка
σ_1	69	68
$2\sigma_1$	94,1	95
σ_2	69	68
$2\sigma_2$	96,8	95

8. Наконец, найдём относительную погрешность средних значений:

$$\varepsilon_1 = \frac{1}{\sqrt{\overline{n_1}N_1}} = 1,46\%, \quad \varepsilon_2 = \frac{1}{\sqrt{\overline{n_2}N_2}} = 1,47\%.$$

4 Обсуждение результатов

В ходе работы была произведена обработка данных в двух сериях экспериметов: с временем эксперимета 10 с и с временем эксперимета 40 с. Получены результаты соответственно $\overline{n}_1 = 12{,}53 \pm 0{,}18$ и $\overline{n}_2 = 50{,}11 \pm 0{,}74$. Относительные погрешности определения n_1 и n_2 совпадают и весьма невелики (1,46%). Проверено, что результаты измерений соответствуют характерному для распределения Пуассона равенству: $\sigma = \sqrt{n_0}$.