The Counterfactual and Treatment Effects:

The Conceptual Framework

Yi, Junjian

Peking University

Feb 25, 2022

Policy Evaluation and Casual Inferences

How much did people benefit from the policy?

The Counterfactual: Need to know what would have happened in the absence of program

- Ideally, need to observe 2 times in the same world: 1 with the policy, and 1 without the policy
- Ceteris paribus

The Counterfactual: Time Series

t = I

t = 0

The Counterfactual: Cross-section

Statistical association

ID	T	Y
1	0	<i>y</i> ₁
2	0	y_2
3	0	<i>y</i> ₃
4	1	<i>y</i> 4
5	1	<i>y</i> 5
6	1	У6_

$$\Delta = E(Y_i|T=1) - E(Y_i|T=0) = (\sum_{i=4}^6 y_i)/3 - (\sum_{i=1}^3 y_i)/3$$

Potential Outcomes

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})T_i$$

ID	T	Y	Y(T=0)	Y(T=1)
1	0	<i>y</i> ₀₁	<i>y</i> ₀₁	<i>y</i> ₁₁
2	0	<i>y</i> ₀₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	<i>y</i> 03	<i>y</i> 03	<i>y</i> 13
4	1	<i>y</i> 14	<i>y</i> 04	<i>y</i> 14
5	1	<i>y</i> 15	<i>y</i> 05	<i>y</i> 15
6	1	<i>y</i> ₁₆	<i>y</i> 06	<i>y</i> 16

Average Treatment Effects (ATE)

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})T_i$$

ID	T	Y	Y(T=0)	Y(T=1)
1	0	<i>y</i> 01	У01	<i>y</i> 11
2	0	<i>y</i> ₀₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	<i>y</i> ₀₃	<i>y</i> ₀₃	<i>y</i> ₁₃
4	1	<i>y</i> ₁₄	<i>y</i> ₀₄	<i>y</i> ₁₄
5	1	<i>y</i> 15	<i>y</i> 05	<i>y</i> 15
6	1	<i>y</i> 16	У06	<i>y</i> 16

$$ATE = E(Y_{1i} - Y_{0i}) = E(Y_{1i}) - E(Y_{0i}) = (\Sigma_{i=1}^6 y_{1i})/6 - (\Sigma_{i=1}^6 y_{0i})/6$$

Average Treatment Effects on the Treated (ATT)

ID	T	Y	Y(T=0)	Y(T=1)
1	0	<i>y</i> ₀₁	<i>y</i> ₀₁	<i>y</i> ₁₁
2	0	<i>y</i> 02	<i>y</i> 02	<i>y</i> 12
3	0	<i>y</i> 03	<i>y</i> 03	<i>y</i> 13
4	1	<i>y</i> 14	<i>y</i> 04	<i>y</i> 14
5	1	<i>y</i> ₁₅	<i>y</i> ₀₅	<i>y</i> 15
6	1	<i>y</i> ₁₆	У06	<i>y</i> 16

$$ATT = E(Y_{1i} - Y_{0i}|T = 1)$$

$$= E(Y_{1i}|T = 1) - E(Y_{0i}|T = 1)$$

$$= (\sum_{i=4}^{6} y_{1i})/3 - (\sum_{i=4}^{6} y_{0i})/3$$

Average Treatment Effects on the Un-treated (TUT)

ID	T	Y	Y(T=0)	Y(T=1)
1	0	<i>y</i> ₀₁	<i>y</i> ₀₁	<i>y</i> ₁₁
2	0	<i>y</i> 02	<i>y</i> 02	<i>y</i> 12
3	0	<i>y</i> 03	<i>y</i> 03	<i>y</i> 13
4	1	<i>y</i> 14	<i>y</i> 04	<i>y</i> 14
5	1	<i>y</i> ₁₅	<i>y</i> 05	<i>y</i> ₁₅
6	1	<i>y</i> 16	<i>y</i> 06	<i>y</i> 16

$$TUT = E(Y_{1i} - Y_{0i}|T = 0)$$

$$= E(Y_{1i}|T = 0) - E(Y_{0i}|T = 0)$$

$$= (\sum_{i=1}^{3} y_{1i})/3 - (\sum_{i=1}^{3} y_{0i})/3$$

The Unobservability of Potential Outcomes

T	Y	Y(T=0)	Y(T=1)
0	<i>y</i> ₀₁	<i>y</i> ₀₁	•
0	<i>y</i> ₀₂	<i>y</i> ₀₂	
0	<i>y</i> 03	<i>y</i> 03	•
1	<i>y</i> 14		<i>y</i> 14
1	<i>y</i> 15		<i>y</i> 15
1	<i>y</i> ₁₆	•	<i>y</i> 16
	0	0 y ₀₁ 0 y ₀₂ 0 y ₀₃ 1 y ₁₄ 1 y ₁₅	0 y ₀₁ y ₀₁ 0 y ₀₂ y ₀₂ 0 y ₀₃ y ₀₃ 1 y ₁₄ . 1 y ₁₅ .

Selection Bias

$$\underbrace{E[Y_i|D_i=1] - E[Y_i|D_i=0]}_{\text{Observed difference}} = \underbrace{E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=1]}_{\text{Average treatment effect on the treated}} \\ + \underbrace{E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]}_{\text{Selection bias}}$$

$$\Delta = ATT +$$
Selection Bias

Key Concepts

• Heterogeneity: ATT vs. TUT

• Selection: Δ vs. ATT

• Heterogeneity + Selection: Δ vs. ATE

Selection Bias: James Heckman (Nobel laureate, 2000)

Indirect (Encouraging) Interventions

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	1	<i>y</i> ₀₁	У01	<i>y</i> ₁₁
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	0	0	1	<i>y</i> 03	<i>y</i> 03	<i>y</i> 13
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> 14
5	0	1	1	1	<i>y</i> 15	<i>y</i> 05	<i>y</i> 15
_6	1	1	1	1	<i>y</i> ₁₆	<i>y</i> 06	<i>y</i> 16

Intention-to-treat (ITT): $Z \rightarrow Y$

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	1	<i>y</i> 01	<i>y</i> ₀₁	<i>y</i> ₁₁
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> 02	<i>y</i> 12
3	0	0	0	1	<i>y</i> 03	У03	<i>y</i> 13
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> 14
5	0	1	1	1	<i>y</i> ₁₅	<i>y</i> ₀₅	<i>y</i> 15
6	1	1	1	1	<i>y</i> ₁₆	<i>y</i> 06	<i>y</i> 16

$$ITT = E(Y|Z = 1) - E(Y|Z = 0)$$

Three Players

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	0	<i>y</i> ₀₁	У01	<i>y</i> ₁₁
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	0	0	1	<i>y</i> 03	У03	<i>y</i> 13
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> 14
5	0	1	1	1	<i>y</i> ₁₅	<i>y</i> ₀₅	<i>y</i> ₁₅
6	1	1	1	1	<i>y</i> ₁₆	<i>y</i> 06	<i>y</i> ₁₆

1. Compliers: $T_0 = 0, T_1 = 1$

2. Always takers: $T_0 = T_1 = 1$

3. Never takers: $T_0 = T_1 = 0$

Local Average Treatment Effect (LATE): $T \rightarrow Y$

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	1	<i>y</i> ₀₁	У01	<i>y</i> ₁₁
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	0	0	1	<i>y</i> ₀₃	<i>y</i> ₀₃	<i>y</i> ₁₃
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> 14
5	0	1	1	1	<i>y</i> ₁₅	<i>y</i> 05	<i>y</i> 15
6	1	1	1	1	<i>y</i> 16	У06	<i>y</i> 16

$$LATE = E(Y_{1i} - Y_{0i}|T_0 = 0, T_1 = 1)$$

Wald estimator:
$$LATE = \frac{ITT}{E(T|Z=1) - E(T|Z=0)} = \frac{E(Y|Z=1) - E(Y|Z=0)}{E(T|Z=1) - E(T|Z=0)}$$

No Never Takers

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	1	<i>y</i> 01	У01	У11
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> 02	<i>y</i> ₁₂
3	0	0	0	1	<i>y</i> 03	У03	<i>y</i> 13
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> ₀₄	<i>y</i> ₁₄
5	0	1	1	1	<i>y</i> ₁₅	<i>y</i> ₀₅	<i>y</i> ₁₅
6	1	1	1	1	<i>y</i> ₁₆	<i>y</i> 06	<i>y</i> 16

LATE = TUT

No Always Takers

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	0	<i>y</i> 01	У01	<i>y</i> 11
2	1	0	0	0	<i>y</i> ₀₂	<i>y</i> ₀₂	<i>y</i> ₁₂
3	0	0	0	0	<i>y</i> ₀₃	<i>y</i> ₀₃	<i>y</i> ₁₃
4	1	1	0	1	<i>y</i> ₁₄	<i>y</i> ₀₄	<i>y</i> ₁₄
5	0	0	0	1	<i>y</i> 05	<i>y</i> 05	<i>y</i> 15
6	1	1	0	1	<i>y</i> 16	У06	<i>y</i> 16

LATE = ATT

Neither Never Takers, Nor Always Takers

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	1	У01	<i>y</i> 01	У11
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> 02	<i>y</i> ₁₂
3	0	0	0	1	<i>y</i> 03	<i>y</i> 03	<i>y</i> 13
4	1	1	0	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> ₁₄
5	0	0	0	1	<i>y</i> ₀₅	<i>y</i> 05	<i>y</i> ₁₅
6	1	1	0	1	<i>y</i> ₁₆	У06	<i>y</i> 16

$$LATE = ATT = TUT = ATE$$

An Alert: Defiers

ID	Z	T	T(Z=0)	T(Z=1)	Y	Y(T=0)	Y(T=1)
1	0	0	0	0	<i>y</i> 01	<i>y</i> 01	<i>y</i> 11
2	1	1	0	1	<i>y</i> ₁₂	<i>y</i> 02	<i>y</i> ₁₂
3	0	0	0	0	<i>y</i> ₀₃	<i>y</i> 03	<i>y</i> ₁₃
4	1	1	1	1	<i>y</i> ₁₄	<i>y</i> 04	<i>y</i> ₁₄
5	0	1	1	0	<i>y</i> ₁₅	<i>y</i> 05	<i>y</i> ₁₅
_6	1	1	1	1	У16	У06	У16

No answer to the question, and need to redesign the experiment.

A Final Remark

Behavioral inferences from the comparisons between Δ , ATE, ATT, TUT, ITT, and LATE are very important!

Need a new framework —-Roy Model

Construct Proper Counterfactual

- Experimental approach
- Quasi-experimental approaches
 - Conditional independence, regression, and matching
 - Fixed effects, difference-in-differences, and panel data
 - Excludability and instrumental variable method
 - Jump and regression discontinuity design

Construct proper counterfactual, impact evaluation methods, identification strategies

• The manner in which a researcher uses observational data (i.e., data not generated by a randomized trial) to approximate a real experiment (Angrist and Krueger, 1999)

Policy evaluation, causal inferences

Summary

- Program evaluation
- The counterfactual: The fundamental challenges to program evaluation.
- Treatment effects:
 - ATE
 - ATT
 - TUT
 - ITT
 - LATE