

Curso: Estadistica 3

Profesor: Jose Daniel Ramirez Soto

Tarea #: 2

Tema: Aprendizaje No supervisado y Regresión **Fecha entrega**: 11:59 pm Abril 24 de 2023

Objetivo: Aplicar los conceptos de PCA en datos reales.

Entrega: Crear una rama utilizando el mismo repositorio de la tarea 1, crear otra carpeta llamada tarea 2, solucionar el problema y crear un pull request sobre la master donde me debe poner como reviewer (entregas diferentes tienen una reducción de 0.5 puntos).

1 PCA (20%)

Cargar el data set de caras que está en la carpeta datos de la tarea 2 (ver notebook https://github.com/jdramirez/UCO ML Al/blob/master/src/notebook/PCA.ipynb):

- 1. Calcular la mean face. Que es la cara con el promedio de los pixeles y visualizarla.
- 2. Centrar los datos, utilizar PCA. ¿Cuántos componentes se deben utilizar para mantener el 90% de las características?. Crear una tabla para mostrar las primeras 5 caras utilizando, la mean face + los datos reconstruidos utilizando la primera componente, después con 5 componentes, después con las primeras 10 componentes, después con las componentes que explican el 90% de la varianza y por último con el numero de componentes que tiene el 99% de la varianza. ¿Qué se puede concluir de los resultados?

Cara original	MeanFace + 1 comp	MeanFace + 5 comp	MeanFace + 10 comp	MeanFace + 90% comp	MeanFace + 99% comp
1					
2					
3					
4					

2 K-means (20%)

Utilizar las 3 primeras componentes e implementar el algoritmo k-means sin librerías, crear clase con métodos fit(aprender de los datos) y predict(predecir con los centroides el cluster de un nuevo dato).

1. Crear 5 clusters. Seleccione las 3 caras más cercanas al centroide de cada cluster, describa si son similares y porque estan cerca una de la otra.

Curso: Estadistica 3

Profesor: Jose Daniel Ramirez Soto

Cluster	Centroide	1ra Cara cercana al cluster	2da Cara cercana al cluster	3ra cara más cercana al cluster	¿Qué tienen en común?
1					
2					
3					
4					
5					

3 Regresión (60%).

Utilizar el data set de la carpeta datos. 'Resultados_Saber_TyT_Gen_ricas_2020-1.csv' (ver origen), el caso de uso es que basado en las condiciones del estudiantes vamos a predecir el puntaje que tendrá en las pruebas del saber. Por supuesto no se pueden utilizar ninguna variable de puntaje en las variables a utilizar o datos que se generen después de presentar el examen. La variable objetivo es PUNT_GLOBAL.

- 1. Realizar la exploración de los datos correlación, scatter plots, boxplots e histogramas:
 - 1.1. ¿Qué variables son importantes para predecir el valor?
 - 1.2. Existen nulos?, ¿cómo se deben imputar?
 - 1.3. Crear dummy variables para incluirlas en la correlación
 - Crear una correlación, que variables tienen un efecto positivo en el puntaje y cuales un efecto negativo.
- 2. Divida los datos en training y testing
 - 2.1. Aplique las transformaciones más importantes a los datos. (Hint calcular la edad basada en la fecha de nacimiento, agrupar variables categóricas con mucha cardinalidad en grupos).
 - 2.2. Entrenar un modelos de regresión
 - 2.3. ¿Cuál es el mejor R squared? Cuál es el MAPE y el MSE.
- 3. Remueva las variables que nos son relevantes
- 4. Utilizando los datos de test medir el MAPE y el MSE de test. Qué tan diferentes son las métricas de training. (El menor error del grupo tiene un +1)
- 5. Describa en palabras que dice el modelo cuales son los principales hallazgos.