CSC 372, Spring 2025

Comparative Programming Languages

Michelle Strout

Course Description

- Introduction to several major high-level programming languages and their characteristics. Programming projects are required in at least three languages.
- Main Goal: Be able to compare programming languages as tools to solve problems

Instructor Introduction: Dr. Michelle Strout

BS, MS, and Ph.D. at University of California, San Diego

Kids have gone to UofA

Senior Engineering Manager 2021-2024 at Hewlett Packard Enterprise, currently a Distinguished Technologist

TA Introductions

Phyllis Spence

- 1st year PhD student
- Have a masters in Computer Science
- 30+ years in Software Engineering industry, 26 in Aerospace Industry
- Professionally trained musician, vocalist, classical piano, guitar, ...
- Love gigantic jigsaw puzzles, have done 43K+ pieces one

CJ Chen

- Senior CS minor, Math major, Music minor
- Did an internship last summer, research internship at Stanford
- Plays piano, in the UofA Folk Rock ensemble
- Looking for a job or internship for the future

Student Introductions

TopHat Questions about you and PLs

- How long have you lived in Tucson?
- Programming language you feel most proficient and experienced in?
- Languages you have programmed in for 1+ semesters?
- Languages you have written at least one example in?
- Languages you would like to learn more about?
- What motivates you to want to learn a new programming language?

Asking Questions in Class

Please do!!

Options

- Raise your hand
- Ask a question in the in_class_questions category in Piazza

In class activity

- Sign into Piazza for 372
- For future classes
 - Bring a device can program on to each class
 - Also a writing utensil

There are thousands of languages

Fortran appeared around 1957, Lisp around 1958.

By 1959, the Tower of Babel analogy was being applied to programming languages.

Some Language Families

A short list of languages

372 Focus this Semester

Compare different languages and paradigms in the context of real-world problems

- You will need a vocabulary and an understanding of a range of programming language features to do this
- Use these skills and concepts to build confidence in reading and understanding code in any programming language

• Some example language features we will discuss

- First-class functions, i.e., lambda functions
- Pattern matching
- Type inference
- Generics/templates
- Concurrency and parallelism

How we will study language features

- Write small programs exercising these features
 - Standard ML
 - Prolog
 - Chapel
- Compare programming languages (TopHat)
 - Evaluation criteria
 - Tradeoffs between different design choices in the context of applications

Participation Quiz (15 minutes)

- You will get feedback in Gradescope
- If you answer all the questions, you will get all of the points on the quiz
- · It is OK if you do not know any of the answers!
 - This first participation quiz is to collect a baseline.
 - Put your answers in the provided box.
 - If you do not have any idea, please use a question mark.

Course Logistics (Highlights from Syllabus)

- Out-of-class work (400/1,000 points)
 - Eight SAs (small assignments) at 15 each, capped at 100 total points
 - Three LAs (large assignments) at 40 each, capped at 120 total points
 - Final group project, 200 points
 - SA1 on docker use is due Wednesday Jan 22nd at 11:59pm
- In-class work (600/1000 points)
 - ->= 120 points work of participation and other quizzes, capped at 100
 - MT1 100 points, MT2 200 points, Final exam 200 points
 - Final exam score can replace MT2 score
- To pass the course, you must earn at least 360/600 (60%) of the in-class points

Collaborating with Others and AI

Highly encouraged

- Share ideas, ask each other questions, ask free LLMs questions
- Share questions and answers about concepts
- The goal is for you to learn and be able to use the material
- My responsibility is to evaluate the extent to which you have

• AI generators (LLMs, copilot, etc.) are tools

- Google caused a shift in how programming was done in the 1990s
- AI generators are causing a similar shift
- Programmers will not be replaced by AIs, but they will be replaced by other programmers that know how to effectively use Ais
- Take opportunities to practice using AI generators to help you learn

Dr. Randi Weinstein's Philosophy of AI Use

Suggested Workflow for the Course

Daily

- Check the schedule in syllabus on GitHub, https://github.com/UofA-CSc-372-Spring-2025/CSc372Spring2025-CourseMaterials/blob/main/syllabus-csc372-Spring2025.md
- Check Piazza for announcements
- Do some spaced repetition practice with cards

Class days

- Bring laptop and potentially a cell phone to class
- Ask questions in class and answer TopHat polls
- Create ~5 spaced repetition cards after each class or while reading

• Weekly minimum of 9 hours for 372 (TopHat)

- 2.5 for class, 1.5 for 20 minutes space repetition each day
- Leaves >= 5 hours for reading and current SA, LA, or FP

Spaced Repetition

- Anki demo (TopHat)
 - Put in some questions and answers about the syllabus
 - Show what a review session looks like
 - Show them questions at the bottom of Ray Toal reading

Small Assignment 1 (SA1)

- Posted in syllabus schedule (TopHat)
 - Building a Docker container
 - Running programs in SML, Prolog, and Chapel in Docker
 - Editing files with an editor of your choice and seeing the changes in Docker
 - Doing GitHub commits and pushes
 - Submitting the assignment in Gradescope

Applicable Skills for the "Real World"

Definition of "Real World"

- Industry: single proprietor, startup, ... to a big company like HPE
- Labs: Argonne, LLNL, Oakridge, ...
- Academia: research, teaching, service

Skills

- Collaborating with others
- GitHub, or similar tools, are used everywhere
- Actively curate your project portfolio while taking classes
- Read and understand existing code
- Compare different programming tools for use in projects where there is time, money, and credibility at stake
- Leverage AI tools

Course Logistics that Encourage Skills

• Extra Credit

- Answering others in a substantive way on Piazza
- Create a study guide for quizzes, midterms, and final exam
- Do a pull request to fix an error in course materials.

Assignments and In-Class Activities

- Work with others but you are evaluated individually, just like in industry and academia
- Learning new PLs and working with existing code

Limitations of a class format

- Won't be able to do 1:1's with your "manager/advisor"/instructor every other week
- Figuring out what questions to ask and proposing what to do is the hard part in the real world, in a class most of that has been done

Welcome to 372!!

• Questions?

Instructor Office Hours

- Every day after class in GS 707
- Feel free to walk back to GS with me

TA Office Hours

- Phyllis, Tuesdays 1:30-2:30pm, TBD room
- CJ, TBD

