Reguläre Sprachen, Ausdrucksstärke

BC George (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Motivation

Themen für heute

- Endliche Automaten
- Reguläre Sprachen
- Lexer

Endliche Automaten

Alphabete

Def.: Ein **Alphabet** Σ ist eine endliche, nicht-leere Menge von Symbolen. Die Symbole eines Alphabets heißen *Buchstaben*.

Def.: Ein **Wort** w über einem Alphabet Σ ist eine endliche Folge von Symbolen aus Σ . ϵ ist das leere Wort. Die Länge |w| eines Wortes w ist die Anzahl von Buchstaben, die es enthält (Kardinalität).

Def.: Eine **Sprache** L *über einem Alphabet* Σ ist eine Menge von Wörtern über diesem Alphabet. Sprachen können endlich oder unendlich viele Wörter enthalten.

Beispiel

Def.: Ein **deterministischer endlicher Automat** (DFA) ist ein 5-Tupel $A = (Q, \Sigma, \delta, q_0, F)$ mit

- Q : endliche Menge von **Zuständen**
- Σ : Alphabet von **Eingabesymbolen**
- δ : die (eventuell partielle) **Übergangsfunktion** $(Q \times \Sigma) \to Q$, δ kann partiell sein
- $q_0 \in Q$: der **Startzustand**
- $F \subseteq Q$: die Menge der **Endzustände**

Die Übergangsfunktion

Def.: Wir definieren $\delta^*:(Q\times\Sigma^*)\to Q$: induktiv wie folgt:

- Basis: $\delta^*(q, \epsilon) = q \ \forall q \in Q$
- Induktion: $\delta^*(q, a_1, \dots, a_n) = \delta(\delta^*(q, a_1, \dots, a_{n-1}), a_n)$

Def.: Ein DFA akzeptiert ein Wort $w \in \Sigma^*$ genau dann, wenn $\delta^*(q_0, w) \in F$.

Beispiel

Nichtdeterministische endliche Automaten

Def.: Ein **nichtdeterministischer endlicher Automat** (NFA) ist ein 5-Tupel $A = (Q, \Sigma, \delta, q_0, F)$ mit

- *Q* : endliche Menge von **Zuständen**
- Σ : Alphabet von Eingabesymbolen
- δ : die (eventuell partielle) Übergangsfunktion $(Q \times \Sigma) \to Q$
- $q_0 \in Q$: der **Startzustand**
- $F \subseteq Q$: die Menge der **Endzustände**

Akzeptierte Sprachen

Def.: Sei A ein DFA oder ein NFA. Dann ist L(A) die von A akzeptierte Sprache, d. h.

$$L(A) = \{ \text{W\"{o}rter } w \mid \delta^*(q_0, w) \in F \}$$

Wozu NFAs im Compilerbau?

Pattern Matching (Erkennung von Schlüsselwörtern, Bezeichnern, ...) geht mit NFAs.

NFAs sind so nicht zu programmieren, aber:

 $\textbf{Satz:} \ \, \textbf{Eine Sprache} \ \, \textbf{\textit{L}} \ \, \textbf{wird von einem NFA akzeptiert} \, \Leftrightarrow \textbf{\textit{L}} \ \, \textbf{wird von einem DFA akzeptiert}.$

D. h. es existieren Algorithmen zur

- Umwandlung von NFAs in DFAS
- Minimierung von DFAs

Reguläre Sprachen

Reguläre Ausdrücke definieren Sprachen

Def.: Induktive Definition von **regulären Ausdrücken** (regex) und der von ihnen repräsentierten Sprache **L**:

- Basis:
 - ϵ und \emptyset sind reguläre Ausdrücke mit $L(\epsilon) = {\epsilon}$, $L(\emptyset) = \emptyset$
 - Sei a ein Symbol $\Rightarrow a$ ist ein regex mit $L(a) = \{a\}$
- Induktion: Seien E, F reguläre Ausdrücke. Dann gilt:
 - E + F ist ein regex und bezeichnet die Vereinigung $L(E + F) = L(E) \cup L(F)$
 - EF ist ein regex und bezeichnet die Konkatenation L(EF) = L(E)L(F)
 - E^* ist ein regex und bezeichnet die Kleene-Hülle $L(E^*) = (L(E))^*$
 - (E) ist ein regex mit L((E)) = L(E)

Vorrangregeln der Operatoren für reguläre Ausdrücke: *, Konkatenation, +

Beispiel

Wichtige Identitäten

Satz: Sei A ein DFA $\Rightarrow \exists$ regex R mit L(A) = L(R).

Satz: Sei E ein regex $\Rightarrow \exists$ DFA A mit L(E) = L(A).

Formale Grammatiken

Formale Definition formaler Grammatiken

Def.: Eine formale Grammatik ist ein 4-Tupel G = (N, T, P, S) aus

- N: endliche Menge von Nichtterminalen
- T: endliche Menge von **Terminalen**, $N \cap T = \emptyset$
- $S \in N$: Startsymbol
- P: endliche Menge von **Produktionen** der Form

$$X \to Y \text{ mit } X \in (N \cup T)^* N(N \cup T)^*, Y \in (N \cup T)^*$$

Ableitungen

Def.: Sei G = (N, T, P, S) eine Grammatik, sei $\alpha A \beta$ eine Zeichenkette über $(N \cup T)^*$ und sei $A \to \gamma$ eine Produktion von G.

Wir schreiben: $\alpha A\beta \Rightarrow \alpha \gamma \beta$ ($\alpha A\beta$ leitet $\alpha \gamma \beta$ ab).

Def.: Wir definieren die Relation ^{*}⇒ induktiv wie folgt:

- Basis: $\forall \alpha \in (N \cup T)^* \alpha \stackrel{*}{\Rightarrow} \alpha$ (Jede Zeichenkette leitet sich selbst ab.)
- Induktion: Wenn $\alpha \stackrel{*}{\Rightarrow} \beta$ und $\beta \Rightarrow \gamma$ dann $\alpha \stackrel{*}{\Rightarrow} \gamma$

Def.: Sei G = (N, T, P, S) eine formale Grammatik. Dann ist $L(G) = \{\text{W\"orter } w \text{ \"uber } T \mid S \stackrel{*}{\Rightarrow} w\}$ die von G erzeugte Sprache.

Beispiel

Reguläre Grammatiken

Def.: Eine **reguläre (oder type-3-) Grammatik** ist eine formale Grammatik mit den folgenden Einschränkungen:

- Alle Produktionen sind entweder von der Form
 - $X \rightarrow aY$ mit $X \in N$, $a \in T$, $Y \in N$ (rechtsreguläre Grammatik) oder
 - $X \rightarrow Ya$ mit $X \in N, a \in T, Y \in N$ (linksreguläre Grammatik)
- $lacksquare X o \epsilon$ ist erlaubt

Beispiel

Reguläre Sprachen und ihre Grenzen

Satz: Die von endlichen Automaten akzeptiert Sprachklasse, die von regulären Ausdrücken beschriebene Sprachklasse und die von regulären Grammatiken erzeugte Sprachklasse sind identisch und heißen **reguläre Sprachen**.

Reguläre Sprachen

- einfache Struktur
- Matchen von Symbolen (z. B. Klammern) nicht möglich, da die fixe Anzahl von Zuständen eines DFAs die Erkennung solcher Sprachen verhindert.

Wozu reguläre Sprachen im Compilerbau?

- Reguläre Ausdrücke
 - definieren Schlüsselwörter und alle weiteren Symbole einer Programmiersprache, z. B. den Aufbau von Gleitkommazahlen
 - werden (oft von einem Generator) in DFAs umgewandelt
 - sind die Basis des Scanners oder Lexers

Lexer

Ein Lexer ist mehr als ein DFA

Ein Lexer

- wandelt mittels DFAs aus regulären Ausdrücken die Folge von Zeichen der Quelldatei in eine Folge von sog. Token um
- bekommt als Input eine Liste von Paaren aus regulären Ausdrücken und Tokennamen, z. B. ("while", WHILE)
- Kommentare und Strings müssen richtig erkannt werden. (Schachtelungen)
- liefert Paare von Token und deren Werte, sofern benötigt, z. B. (WHILE, _), oder (IDENTIFIER, "radius") oder (INTEGERZAHL, "334")

Wie geht es weiter?

Ein Parser

- führt mit Hilfe des Tokenstreams vom Lexer die Syntaxanalyse durch
- basiert auf einer sog. kontextfreien Grammatik, deren Terminale die Token sind
- liefert die syntaktische Struktur in Form eines Ableitungsbaums (syntax tree, parse tree), bzw. einen
 AST (abstract syntax tree) ohne redundante Informationen im Ableitungsbaum (z. B. Semikolons)
- liefert evtl. Fehlermeldungen

Wrap-Up

Wrap-Up

- Definition und Aufgaben von Lexern
- DFAs und NFAs
- Reguläre Ausdrücke
- Reguläre Grammatiken
- Zusammenhänge zwischen diesen Mechanismen und Lexern, bzw. Lexergeneratoren

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.