$10_{22} \ (K10a_{112})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{24} - u^{23} + \dots + 2u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{24} - u^{23} + \dots + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{16} + 7u^{14} - 19u^{12} + 22u^{10} - 3u^{8} - 14u^{6} + 6u^{4} + 2u^{2} + 1 \\ -u^{16} + 6u^{14} - 14u^{12} + 14u^{10} - 2u^{8} - 6u^{6} + 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{18} - 7u^{16} + 20u^{14} - 27u^{12} + 11u^{10} + 13u^{8} - 14u^{6} + 3u^{2} + 1 \\ -u^{20} + 8u^{18} - 26u^{16} + 40u^{14} - 19u^{12} - 24u^{10} + 30u^{8} - 9u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{21} + 32u^{19} + 4u^{18} - 108u^{17} - 28u^{16} + 180u^{15} + 80u^{14} - 104u^{13} - 104u^{12} - 120u^{11} + 24u^{10} + 216u^9 + 88u^8 - 56u^7 - 76u^6 - 80u^5 - 12u^4 + 36u^3 + 24u^2 + 8u + 20u^4 - 120u^4 + 120$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_{10}	$u^{24} + u^{23} + \dots + 2u^2 + 1$
c_2, c_4, c_9	$u^{24} - 3u^{23} + \dots - 8u + 1$
c_3, c_7, c_8	$u^{24} + u^{23} + \dots + 2u^2 + 1$
<i>C</i> ₆	$u^{24} - 3u^{23} + \dots + 20u - 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_{10}	$y^{24} - 23y^{23} + \dots + 4y + 1$
c_2, c_4, c_9	$y^{24} + 25y^{23} + \dots - 20y + 1$
c_3, c_7, c_8	$y^{24} - 19y^{23} + \dots + 4y + 1$
<i>c</i> ₆	$y^{24} - 11y^{23} + \dots - 904y + 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.047552 + 0.882738I	12.21820 + 5.35992I	5.68286 - 3.17670I
u = -0.047552 - 0.882738I	12.21820 - 5.35992I	5.68286 + 3.17670I
u = 0.023946 + 0.850260I	5.90820 - 2.14805I	2.49248 + 3.24690I
u = 0.023946 - 0.850260I	5.90820 + 2.14805I	2.49248 - 3.24690I
u = -0.832524	3.20914	1.52540
u = 1.20293	-2.53343	-1.89060
u = -1.293390 + 0.128068I	-4.64383 + 2.66216I	-8.07524 - 4.83074I
u = -1.293390 - 0.128068I	-4.64383 - 2.66216I	-8.07524 + 4.83074I
u = -1.234200 + 0.427679I	8.55472 - 0.67393I	2.54072 - 0.18139I
u = -1.234200 - 0.427679I	8.55472 + 0.67393I	2.54072 + 0.18139I
u = -0.691969	3.21354	0.806220
u = 1.30821	-2.22926	-4.75390
u = 1.252440 + 0.391136I	2.10558 - 2.30642I	-0.925091 + 0.098908I
u = 1.252440 - 0.391136I	2.10558 + 2.30642I	-0.925091 - 0.098908I
u = 1.317160 + 0.196052I	-0.01480 - 5.67994I	-2.05445 + 5.89837I
u = 1.317160 - 0.196052I	-0.01480 + 5.67994I	-2.05445 - 5.89837I
u = -1.291330 + 0.388939I	1.81113 + 6.59660I	-1.74384 - 6.15928I
u = -1.291330 - 0.388939I	1.81113 - 6.59660I	-1.74384 + 6.15928I
u = 1.311950 + 0.407404I	7.97363 - 9.98187I	1.73153 + 5.91019I
u = 1.311950 - 0.407404I	7.97363 + 9.98187I	1.73153 - 5.91019I
u = -0.240904 + 0.566295I	4.81497 + 3.00632I	4.21158 - 5.20782I
u = -0.240904 - 0.566295I	4.81497 - 3.00632I	4.21158 + 5.20782I
u = 0.208545 + 0.356460I	-0.079333 - 0.910145I	-1.70410 + 7.59691I
u = 0.208545 - 0.356460I	-0.079333 + 0.910145I	-1.70410 - 7.59691I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_{10}	$u^{24} + u^{23} + \dots + 2u^2 + 1$
c_2, c_4, c_9	$u^{24} - 3u^{23} + \dots - 8u + 1$
c_3, c_7, c_8	$u^{24} + u^{23} + \dots + 2u^2 + 1$
c_6	$u^{24} - 3u^{23} + \dots + 20u - 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_{10}	$y^{24} - 23y^{23} + \dots + 4y + 1$
c_2, c_4, c_9	$y^{24} + 25y^{23} + \dots - 20y + 1$
c_3, c_7, c_8	$y^{24} - 19y^{23} + \dots + 4y + 1$
c_6	$y^{24} - 11y^{23} + \dots - 904y + 49$