AI: Strategy + Marketing (MGT 853) ML Essentials (Session 2)

Vineet Kumar

Yale School of Management Spring 2024

Definitions: Al and ML

Artificial Intelligence

"...Intelligence can in principle be so precisely described that a machine can be made to simulate it." (John McCarthy)

Machine Learning

 "The field of study that gives computers the ability to learn without explicitly being programmed" (Arthur Samuel)

What's the difference?

Definitions: Al and ML

Artificial Intelligence

"...Intelligence can in principle be so precisely described that a machine can be made to simulate it." (John McCarthy)

Machine Learning

- "The field of study that gives computers the ability to learn without explicitly being programmed" (Arthur Samuel)
- "Improve over Task T with resect to some performance measure P based on experience E" (Tom Mitchell)

What's the difference?

ML primarily is "learning from data"

- ML primarily is "learning from data"
- Human domain knowledge is *not* required or even expected

- ML primarily is "learning from data"
- Human domain knowledge is *not* required or even expected
- Same algorithm can be used for very different applications (e.g. cancer detection or astronomy or cats /dogs)

- ML primarily is "learning from data"
- Human domain knowledge is *not* required or even expected
- Same algorithm can be used for very different applications (e.g. cancer detection or astronomy or cats /dogs)
- Since 2010+ ML, especially Deep Learning, has dominated other approaches when measured by accuracy

- ML primarily is "learning from data"
- Human domain knowledge is *not* required or even expected
- Same algorithm can be used for very different applications (e.g. cancer detection or astronomy or cats /dogs)
- Since 2010+ ML, especially Deep Learning, has dominated other approaches when measured by accuracy

- ML primarily is "learning from data"
- Human domain knowledge is *not* required or even expected
- Same algorithm can be used for very different applications (e.g. cancer detection or astronomy or cats /dogs)
- Since 2010+ ML, especially Deep Learning, has dominated other approaches when measured by accuracy

Rest of the course will focus on ML (use interchangeably with AI)

• Al not a new technology, has been around

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable
- ullet Currently ML pprox AI, since classical AI not as common

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable
- Currently ML ≈ AI, since classical AI not as common
- ML is focused on prediction and "learning from data" using many different methods

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable
- ullet Currently ML pprox AI, since classical AI not as common
- ML is focused on prediction and "learning from data" using many different methods
- ML: Supervised, Unsupervised and Reinforcement

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable
- ullet Currently ML pprox AI, since classical AI not as common
- ML is focused on prediction and "learning from data" using many different methods
- ML: Supervised, Unsupervised and Reinforcement
 - Designed to answer different types of questions, data different

- Al not a new technology, has been around
- Recent trends in algorithms, data and computing have converged to make AI more valuable
- Currently ML ≈ AI, since classical AI not as common
- ML is focused on prediction and "learning from data" using many different methods
- ML: Supervised, Unsupervised and Reinforcement
 - Designed to answer different types of questions, data different
- Integrating Prediction with decision making can be challenging (Module B)

 Trying to predict some variable y based on other data X

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable
- X: predictor, covariate, explanatory variable

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable
- X: predictor, covariate, explanatory variable
- Represent this as y = f(X)

Yale SOM / Kumar

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable
- X: predictor, covariate, explanatory variable
- Represent this as y = f(X)
- Do Humans learn like this?

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable
- X: predictor, covariate, explanatory variable
- Represent this as y = f(X)
- Do Humans learn like this?

- Trying to predict some variable y based on other data X
- y: label / target / output / dependent variable
- X: predictor, covariate, explanatory variable
- Represent this as y = f(X)
- Do Humans learn like this?

Most commonly used form of ML in practice

Logistic Regression Polynomial Regression Support Vector Machines Decision Trees Deep Neural Nets

• Trying to identify patterns in the data

- Trying to identify patterns in the data
- We do not have a output label y only X variables

- Trying to identify patterns in the data
- We do not have a output label y only X variables
- Cannot represent this as with structured learning

- Trying to identify patterns in the data
- We do not have a output label y only X variables
- Cannot represent this as with structured learning
- Not trying to make any prediction here

- Trying to identify patterns in the data
- We do not have a output label y only X variables
- Cannot represent this as with structured learning
- Not trying to make any prediction here

- Trying to identify patterns in the data
- We do not have a output label y only X variables
- Cannot represent this as with structured learning
- Not trying to make any prediction here

Can use for exploratory analysis and segmentation even when question is unclear

Cluster Analysis K-means K-Nearest Neighbor Association Rule Mining Principal Components Analysis

Impact of AI

- Impact of AI
- Elements of ML model

- Impact of AI
- Elements of ML model
 - Supervised Models

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

Practicum

- Intro to Google Colab
- Building an ML model in Colab
- Before the model (Pre-processing)

Agenda for Today's Session

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

Practicum

- Intro to Google Colab
- Building an ML model in Colab
- Before the model (Pre-processing)
- In the model (In-processing)

Agenda for Today's Session

- Impact of AI
- Elements of ML model
 - Supervised Models
 - Unsupervised Models

Practicum

- Intro to Google Colab
- Building an ML model in Colab
- Before the model (Pre-processing)
- In the model (In-processing)
- After the Model (Post-processing)

Building Blocks of ML models

Data

Training, Validation and Test

Why do we need to split data?

Peeking is a consequence of using test-set performance to both choose a hypothesis and evaluate it. The way to avoid this is to really hold the test set out - lock it away until you are completely done with learning and simply wish to obtain an independent evaluation of the final hypothesis. (And then, if you don't like the results . . . you have to obtain, and lock away, a completely new test set if you want to go back and find a better hypothesis.) – Russell and Norvig (Artificial Intelligence: A Modern Approach)

Data

Training, Validation and Test

Why do we need to split data?

If the test set is locked away, but you still want to measure performance on unseen data as a way of selecting a good hypothesis, then divide the available data (without the test set) into a training set and a validation set. – Russell and Norvig (Artificial Intelligence: A Modern Approach)

Why?

What is Data Pre-processing?

Transforming the Raw Data to a format that is suitable for use in an ML algorithm. Two types of pre-processing: Lossy and Lossless

• Identify anomalies in the data (missing values, duplicates, outliers, inconsistent or implausible values etc.)

Why?

What is Data Pre-processing?

Transforming the Raw Data to a format that is suitable for use in an ML algorithm. Two types of pre-processing: Lossy and Lossless

- Identify anomalies in the data (missing values, duplicates, outliers, inconsistent or implausible values etc.)
- Convenient format for input

Why?

What is Data Pre-processing?

Transforming the Raw Data to a format that is suitable for use in an ML algorithm. Two types of pre-processing: Lossy and Lossless

- Identify anomalies in the data (missing values, duplicates, outliers, inconsistent or implausible values etc.)
- Convenient format for input
- Dimensionality Reduction

Why?

What is Data Pre-processing?

Transforming the Raw Data to a format that is suitable for use in an ML algorithm. Two types of pre-processing: Lossy and Lossless

- Identify anomalies in the data (missing values, duplicates, outliers, inconsistent or implausible values etc.)
- Convenient format for input
- Dimensionality Reduction
- Consistent format of possibly acquired from multiple sources

Why?

What is Data Pre-processing?

Transforming the Raw Data to a format that is suitable for use in an ML algorithm. Two types of pre-processing: Lossy and Lossless

- Identify anomalies in the data (missing values, duplicates, outliers, inconsistent or implausible values etc.)
- Convenient format for input
- Dimensionality Reduction
- Consistent format of possibly acquired from multiple sources
- Reduce algorithmic bias (How?)

What is Feature Engineering?

The process of identifying specific features, transforming them, or *creating new features* from data is called feature engineering.

 "some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." – Pedro Domingos

What is Feature Engineering?

The process of identifying specific features, transforming them, or creating new features from data is called feature engineering.

- "some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." – Pedro Domingos
- Land price (Price) based on rectangular plot characteristics: length
 (L) and width (W)

What is Feature Engineering?

The process of identifying specific features, transforming them, or creating new features from data is called feature engineering.

- "some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." – Pedro Domingos
- Land price (Price) based on rectangular plot characteristics: length (L) and width (W)
 - $Price_i = \beta_0 + \beta_1 L_i + \beta_2 W_i$

What is Feature Engineering?

The process of identifying specific features, transforming them, or creating new features from data is called feature engineering.

- "some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." – Pedro Domingos
- Land price (Price) based on rectangular plot characteristics: length (L) and width (W)
 - $Price_i = \beta_0 + \beta_1 L_i + \beta_2 W_i$
 - Is this linear model sufficient? What about a quadratic model?

What is Feature Engineering?

The process of identifying specific features, transforming them, or creating new features from data is called feature engineering.

- "some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used." – Pedro Domingos
- Land price (Price) based on rectangular plot characteristics: length (L) and width (W)
 - $Price_i = \beta_0 + \beta_1 L_i + \beta_2 W_i$
 - Is this linear model sufficient? What about a quadratic model?
- Lots of possibilities with unstructured data

14/30

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

Also called tuning parameters.

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

- Also called tuning parameters.
- Control the operation of the learning algorithm

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

- Also called tuning parameters.
- Control the operation of the learning algorithm
- K-means: ??

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

- Also called tuning parameters.
- Control the operation of the learning algorithm
- K-means: ??
- Set based on application and purpose of ML algorithm

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

- Also called tuning parameters.
- Control the operation of the learning algorithm
- K-means: ??
- Set based on application and purpose of ML algorithm
- For more: https://towardsdatascience.com/
 the-what-why-and-how-of-hyperparameter-tuning-for-machine-learning

What are Hyperparameters?

These are parameters typically not learned from the data during training, but rather set to specific values when implementing.

- Also called tuning parameters.
- Control the operation of the learning algorithm
- K-means: ??
- Set based on application and purpose of ML algorithm
- For more: https://towardsdatascience.com/ the-what-why-and-how-of-hyperparameter-tuning-for-machine-learning
- For Random Forest hyperparameters, see:

```
https://scikit-learn.org/stable/modules/generated/sklearn.
```

Complex models explain data better

 We create categorize models in terms of their "complexity"

Complex models explain data better

- We create categorize models in terms of their "complexity"
- More complex models could have:

17/30

- We create categorize models in terms of their "complexity"
- More complex models could have:
 - more parameters

- We create categorize models in terms of their "complexity"
- More complex models could have:
 - more parameters
 - more features

- We create categorize models in terms of their "complexity"
- More complex models could have:
 - more parameters
 - more features
 - more flexible functions (quadratic versus linear)

- We create categorize models in terms of their "complexity"
- More complex models could have:
 - more parameters
 - more features
 - more flexible functions (quadratic versus linear)
- Complex models can often explain training data very well (technical video)

Complex models explain data better

- We create categorize models in terms of their "complexity"
- More complex models could have:
 - more parameters
 - more features
 - more flexible functions (quadratic versus linear)
- Complex models can often explain training data very well (technical video)
- But the question is do they "generalize" such performance when

K-means

What is K-means?

Group similar data together

- Group data so that points are close to the center of their clusters, but far away from other clusters
- Let's say the center of cluster i is C_i
- Any point x in the cluster has a distance of $d(x, C_i) = (x C_i)$ from the center
- How do you decide which cluster a point "belongs to"? See which center is the closest to the point.
- There are many such points x in the cluster so we sum over all of them

K-means

- Probably the most common unstructured ML method used
- Typically used for customer segmentation (finding "similar" groups of customers)
- K is a **hyperparameter** chosen based on the business application
 - Typically K = 2,3,4 in applications
- Can devise different interventions for each group
- Other Applications:

```
https://dzone.com/articles/
```

10-interesting-use-cases-for-the-k-means-algorithm

Decision Trees and Random Forest

Desirable Properties of Models

• ML is focused on prediction and "learning from data"

- ML is focused on prediction and "learning from data"
- We have examined the elements of an ML model consider each when building your ML pipeline

- ML is focused on prediction and "learning from data"
- We have examined the elements of an ML model consider each when building your ML pipeline
- Results very much depend on the quality and quantity of data

- ML is focused on prediction and "learning from data"
- We have examined the elements of an ML model consider each when building your ML pipeline
- Results very much depend on the quality and quantity of data
 - Think about trying to predict temperature for year using data from Jan 1 -June 30

Summary of Session 2

- ML is focused on prediction and "learning from data"
- We have examined the elements of an ML model consider each when building your ML pipeline
- Results very much depend on the quality and quantity of data
 - ullet Think about trying to predict temperature for year using data from Jan 1 June 30
- ML methods have many challenges including underfitting / overfitting

Summary of Session 2

- ML is focused on prediction and "learning from data"
- We have examined the elements of an ML model consider each when building your ML pipeline
- Results very much depend on the quality and quantity of data
 - ullet Think about trying to predict temperature for year using data from Jan 1 June 30
- ML methods have many challenges including underfitting / overfitting
- Need to carefully choose appropriate methods for your problem

 Model – Can I convert a problem to prediction?

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity
- Statistical Properties

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity
- Statistical Properties
- Explainability Black Box

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity
- Statistical Properties
- Explainability Black Box
- Fairness and Bias

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity
- Statistical Properties
- Explainability Black Box
- Fairness and Bias
- Moving Target What new (better) methods are being developed?

- Model Can I convert a problem to prediction?
- Data: Spurious Correlation Is it real?
- Generalizability
- Causality Counterfactual Validity
- Statistical Properties
- Explainability Black Box
- Fairness and Bias
- Moving Target What new (better) methods are being developed?
- Fragility When and how does it break?

Spurious Correlations

Next Class: Deep Learning and Reinforcement Learning

- Readings for Next Class:
- Try to read Chapter 6 of Algorithms book and RL book Chapter 1 (parts 1.1 to 1.4)
- Can skim / skip Chapter 1 and 2 of Deep Learning book
- Skip over parts that are difficult just need a general idea