Project Report Format

1. INTRODUCTION

1.1 Abstract

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature
- 7.2 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

Name of the Team leader: PRANJAIV

Team ID: PNT2022TMID00833

Roll number: 2019PECCS347

Registration Number:211419104195

Name of the Team Member 1:PRANJIVAN V

Roll number: 2019PECCS348

Registration Number: 211419104196

Mobile Number: 8056249909

Mail ID: pranjivanvelmurugan24@gmailcom

Name of the Team Member 2:PRAKASH R

Roll number: 2019PECCS345

Registration Number: 211419104193

Mobile Number: 9789801834

Mail ID:prakashstoneyn49@gmailcom

Name of the Team Member 3: PRABHU SAI D

Roll number: 2019PECCS344

Registration Number:211419104193

Mobile Number: 9361283615

Mail ID:prabhusai660@gmail.com

Name of the Team Member 3: NAVEEN KUMAR B

Roll number: 2019PECCS338

Registration Number:211419104180

Mobile Number: 9499979041

Mail ID:naveenmema06@gmail.com

1.INTRODUCTION 1.1ABSTRACT

Predicting the price of used cars is one of the significant and interesting areas of analysis. As an increased demand in thesecond-hand car market, the business for both buyers and sellers has increased. For reliable and accurate prediction it requires expert knowledge about the field because of the price of the cars dependenton many important factors. This paper proposed a supervised machine learning model using KNN (K Nearest Neighbor) regression algorithm to analyze the price of used cars . Through this experiment, the data was examined with different trained and test ratios. As a result, the accuracy of the proposed model is around 85% and is fitted as the optimized model. The predictions are then evaluated and compared in order to find those which provide the best performances. A seemingly easy problem turned out to be indeed very difficult to resolve with high accuracy. All the four methodsprovided comparable performance. In the future, we intend to use more sophisticated algorithms to make the predictions. Determining whether the listed price of a used car is a challenging task, due to the many factors that drive a used vehicle's price on the market. The focus of this project is developing machine learning models that can accurately predict the price of a used car based on its features, in order to make informed purchases. We implement and evaluate various learning methods on a dataset consisting of the sale prices of different makes and models across cities in the United States. Our results show that Random Forest model and K-Means clustering with linear regression yield the best results, but are compute heavy. Conventional linear regression also yielded satisfactory results, with the advantage of a significantly lower training time in comparison to the aforementioned methods

2.LITERATURE SURVEY 2.1EXISTING PROBLEM

Several studies and related works have been done previously to predict used car prices around the world using different methodologies and approaches, with varying results of accuracy from 50% to 90%. In (Pudaruth, 2014) the researcher proposed to predict used car prices in Mauritius, where he applied different machine learning techniques to achieve his results like decision tree, K-nearest neighbours, Multiple Regression and Naïve Bayes algorithms to predict the used cars prices, based on historical data gathered from the newspaper.

Achieved results ranged from accuracy of 60-70 percent, the author suggested using more sophisticated models and algorithms to make the evaluation, with the main weakness off the decision tree and naïve Bayes that it is required to discretize the price and classify it which accrue to more inaccuracies. Moreover, he suggested a larger set of data of data to train the models hence the data gathered was not sufficient.

(Monburinon, et al., 2018) Gathered data from a German e-commerce site that totalled to 304,133 rows and 11 attributes to predict the prices of used car using different techniques and measured their results using Mean Absolute Error (MEA) to compare their results. Same training dataset and testing dataset was given to each model. Highest results achieved was by using gradient boosted regression tree with a MAE of 0.28, and MEA of 0.35 and 0.55 for mean absolute error and multiple linear regression respectively. Authors suggested adjusting the parameters in future works to yield better results, as well as using one hot encoding instead of label encoding for more realistic data interpretations on categorical data.

(Gegic, Isakovic, Keco, Masetic, & Kevric, 2019) from the International Burch University in Sarajevo, used three different machine learning techniques to predict used car prices. Using data scrapped from a local Bosnian website for used cars totalled at 797 car samples after preprocessing, and proposed using these methods: Support Vector Machine, Random Forest and Artificial Neural network. Results have shown using only one machine learning algorithm achieved results less

than 50%, whereas after combing the algorithms with pre calcification of prices using Random Forest, results with accuracies up to 87.38% was recorded.

(Noor & Jan, 2017) were able to achieve high level of accuracy using Multiple linear regression models to predict the price of cars collected from used cars website in Pakistan called Pak Wheels that totalled to 1699 records after pre-processing, and where able to achieve accuracy of 98%, this was done after reducing the total amount of attributes using variable selection technique to include significant attributes only and to reduce the complexity of the model.

(K.Samruddhi & Kumar, 2020) Proposed using Supervised machine leaning model using K-Nearest Neighbour to predict used car prices from a data set obtained from Kaggle containing 14 different attributes, using this method accuracy reached up to 85% after different values of K as well as Changing the percent of training data to testing data, expectedly when increasing the percent of data that is tested better accuracy results are achieved. The model was also cross validated with 5 and 10 folds by using K fold method.

(Gongqi, Yansong, & Qiang, 2011) proposed using Artificial Neural Network (ANN) through a combined method of BP neural network and nonlinear curve fit and have achieved accurate value prediction with a feasible model.

(Listiani, 2009) used Support Vector Machines to evaluate leased cars prices, results have shown that SVM is far more accurate in large dataset with high dimensional data than Multiple linear regression. Whereas the computation Multiple linear regression can take several minutes and the SVM would take up to a day to compute the results. Multiple linear regression may be simple, but SVM is far more accurate. Moreover, the study includes Samples with up to 178 attributes which is far more than the proposed variable in our study, hence the use of multiple linear regression may be more suitable in our case.

(Kuiper, 2008) Collected data from General Motor of cars that are produced in 2005, where he as well used variable selection technique to include the most relevant attributes in his model to reduce the

complexity of the data. He proposed used Multivariate regression model that would be more suitable for values with numeric format.

In order to predict the price of used cars, researchers (Nabarun Pal, 2018) used a supervised learning method known as Random Forest. Kaggle's dataset was used as a basis for predicting used car prices. In order to determine the price impact of each feature, careful exploratory data analysis was performed. 500 Decision Trees were trained with Random Forests. It is most commonly used for classification, but they turned it into a regression model by transforming the problem into an equivalent regression problem. Using experimental results, it was found that training accuracy was 95.82%, and testing accuracy was 83.63%. By selecting the most correlated features, the model can accurately predict the car price.

In light of the number of works that have been done in this field, another group of researchers (Jian Da Wu, 2017) conducted research on this topic and tried to develop a system that consists of three components: a data acquisition system, a price forecasting algorithm, and a performance analysis. Due to its adaptive learning capability, a conventional artificial neural network (ANN) with a back-propagation network is compared to the proposed ANFIS. In the ANFIS, qualitative fuzzy logic approximation as well as adaptive neural network capabilities are included. Using ANFIS as an expert system in predicting used car prices showed better results in the experiment. Using GUI, the consumer can get accurate and convenient

information about used cars' purchasing prices, and experiments proved that the proposed system could provide accurate and convenient price forecasting.

Hence, from all literature review it is concluded that used cars price prediction is an important topic which is the area of many researchers nowadays. So far, the best achieved accuracy is 83.63% on kaggle's dataset using random forest technique. The researchers have tested multiple regressors and final model is regression model using linear regression.

Method:

The topic such as this can be assessed with mathematical models derived from quantitative data. A multiple variable regression can analyze the data by assessing the role each independent variable plays in determining the dependent variable (in this case, resale value). Significance can also be assessed by observing the p-values for each variable. The use of a statistical model will aide in making a claim on this, and to identify some of the major contributors to resale value in automobiles.

Data Collection:

The data used for this regression will be quantitative in nature. The sources of data are what someone would expect for used car information. Four sources that are used include Kelly Blue Book, Edmunds, a government fuel economy resource, and Car and Driver. Kelly Blue Book and Edmunds will both serve as data sources, with each source providing different aspects of the independent variables used. With the cooperation of these sources, data regarding price of a car-including new and used-with the respective age, mileage, make, condition, miles per gallon, safety ratings, and hybrid technology information will be obtained. These variables will allow for a regression to be run and an equation to be estimated.

Expected Outcomes:

Before I can make predictions regarding the influence each variable will have on resale value, a review of prior research and literature is appropriate. This will allow me to make a more confident prediction as well as confirm which variables are needed to produce a strong equation that explains much of the variations in vehicle depreciation. An expected equation could look like this:

Resale Value (DV) = Intercept- B3(Age) - B4(Mileage) + BI(Make) + B2(MPG) + B5(Hybrid Tech)

2.2REFERENCES

- [1] Pudaruth, Sameerchand. "Predicting the price of used cars using machine learning techniques." Int. J. Inf. Comput. Technol 4, no. 7 (2014): 753-764.
- [2] Monburinon, Nitis, Prajak Chertchom, Thongchai Kaewkiriya, Suwat Rungpheung, Sabir Buya, and Pitchayakit Boonpou. "Prediction of prices for used car by using regression models." In 2018 5th International Conference on Business and Industrial Research (ICBIR), pp. 115-119. IEEE, 2018.
- [3] Gegic, Enis, Becir Isakovic, Dino Keco, Zerina Masetic, and Jasmin Kevric. "Car price prediction using machine learning techniques." TEM Journal 8, no. 1 (2019): 113.
- [4] Noor, Kanwal, and Sadaqat Jan. "Vehicle price prediction system using machine learning techniques." International Journal of Computer Applications 167, no. 9 (2017): 27-31.
- [5] https://ieeexplore.ieee.org/Xplore/home.jsp
- [6] https://www.analyticsvidhya.com/blog/2018/08/k-nearestneighbor-introduction-regression-python/
- [7] https://machinelearningmastery.com/k-fold-cross-validation/

3.IDEATION PHASE 3.1EMPATHY MAP

3.2BRAINSTROMING

Brainstorm

Write down any ideas that come to mind that address your problem statement.

(i) 10 minutes

PRANJIVAN				
A Community of the Comm	Control of the state of the sta	Transit Hall De		
1-1-1-1-1 1-1-1-1-1 1-1-1-1-1	And a district of the second o			

PRAKASH

NAVEEN KUWAR

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

10 minutes to prepare
1 hour to collaborate
2-8 people recommended

Before you collaborate A little bit of preparation goes a long way with this session. Here's what you need to do to get going. 10 minutes

A Team gathering Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

B Set the goal
Think about the problem you'll be focusing on solving in the brainstorming session. C Learn how to use the facilitation tools
Use the Facilitation Superpowers to run a happy and
productive session.

PROJECT: CAR **RESALE VALUE PREDICTIO** Ν

Define your problem statement
What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

D Feasibility

3.3PROPOSED SOLUTION

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	I am a customer. I'm trying to buy a second hand car. But I cannot estimate the price of the car. Because I need a trustworthy platform to predict the price of the car. Which makes me feel Frustrated and Confused.
2.	Idea / Solution description	Deciding whether a used car is worth the posted price when you see listings online can be difficult. Several factors, including mileage, make, model, year, etc. can influence the actual worth of a car. From the perspective of a seller, it is also a dilemma to price a used car appropriately [2-3]. Based on existing data, the aim is to use machine learning algorithms to develop models for predicting used car prices.
3.	Novelty / Uniqueness	As there are so many ongoing experiments that use statistical approaches and some traditional methods to focus on predicting item sales. Most researches have experimented by taking single algorithm to predict sales. In this thesis Machine Learning algorithms such as Simple Linear Regression, Support Vector Regression, Gradient Boos4ng algorithm, and Random Forest Regression are considered for predict the most effective metrics such as accuracy, mean absolute error, and max error are considered for measuring algorithm efficiency. This method will be very beneficial in the future for advanced item sales forecasting.
4.	Social Impact / Customer Satisfaction	Predicting prices of a used car is a challenging task because of a high number of features and parameters that should be considered to generate accurate results. The first and foremost step is data gathering and preprocessing data. Therefore the results generated are highly accurate.so the customer was satisfied.
5.	Business Model (Revenue Model)	Deciding whether a used car is worth the posted price when you see listings online can be difficult. Several factors, including mileage,

		make, model, year, etc. can influence the actual worth of a car. From the perspective of a seller,	
		it is also a dilemma to price a used car. Based	
		on existing data, the aim is to use machine	
		learning algorithms to develop models for predicting used car prices.	
6.	Scalability of the Solution	We started with understanding the use case of machine learning in the Automotive industry and how machine learning has transformed the	
		driving experience. Moving on, we looked at	
		the various factors that affect the resale value	
		of a used car and performed exploratory data	
		analysis (EDA). Further, we build a Random	
		Forest Regression model to predict the resale	
		value of a used car. We could have also used	
		simpler regression algorithms like Linear	
		Regression and Lasso Regression. Still, we need	
		to make sure there are no outliers in the	
		dataset before implementing them. Pair plots	
		and scatter plots help visualize the outliers	

3.4 PROBLEM SOLUTION FIT

3.REQUIREMENT ANALYSIS 3.1.Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Profile	User information
		Bank details
FR-4	Database	Car database
		Customer database
FR-5	Features and Technology	Performance of the car
		Fuel capacity, mileage etc.
FR-6	Feedback	Feedback through Form
		Feedback through Gmail
		Feedback through LinkedIN

3.2. Non-functional Requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Great UI (user interface), Quick adaptation of user.
NFR-2	Security	Aware of fraud and scams, Protect your password and account personal details.
NFR-3	Reliability	Rate of occurrence of failure is less, Failure free.
NFR-4	Performance	Perform value and correct prediction value, The landing page must support several users must provide 5 second or less response time
NFR-5	Availability	Uninterrupted services must be available all time except the time of server updation.
NFR-6	Scalability	that can handle any amount of data and perform many computations in a cost-effective and timesaving way to instantly serve millions of users residing at global locations.

5.Project Design Phase-I5.1.Data Flow Diagram & User Stories

User Stories

User Type	Functi onal Requir ement (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Data Entry	USN-1	As a user, I can enter the car details in the application.	I can enter the car details	Medium	Sprint-1
Customer (Mobile user)	Obtain output	USN-2	As a user, I will receive car resale value in theapplication.	I can receive my car resalevalue	High	Sprint-1
Customer (Mobile user)	Data Entry	USN-1	As a user, I can enter the car details in the application.	I can enter the car details	Medium	Sprint-1
Customer (Mobile user)	Obtain output	USN-2	As a user, I will receive car resale value in theapplication.	I can receive my car resalevalue	High	Sprint-1

5.2. SOLUTION ARCHITECTURE

CAR RESALE VALUE PREDICTION ARCHITECTURE DATA PROCESSING MLALGORITHM EVALUATION TEAM ID: PNT2022TMID000778 INPUT OUTPUT USERS USERS

5.2.1.Technology Architecture

Technical Architecture:

Table-1 : Components & Technologies:

S.N	Component	Description	Technology
0			
1.	User Interface	How user interacts with application e.g.Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript / Angular Js /React Js etc.
2.	Data Pre - Processin g	Checking if the given data has any missing values, duplicate values, outliers and other noises that can affect the performance of the model.	Python, Pandas, Numpy, Matplotlib,Seaborn.
3.	Splitting the DataSet	The data set is split into test and train data for themodel.	Python, Sk - Learn
4.	Predicting the values	After the model is trained using various machine learning algorithms, some code is written to predict the value of a used car.	Python, Sk - Learn
5.	Database	The data is stored in the database.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage requirements	IBM Block Storage or Other StorageService or Local Filesystem
8.	Machine Learning Model	There are various Machine Learning Models that can be used like Linear Regression, Multi- Linear Regression, Decision Tree, Random Forest, SVMetc.	Python, Sk - Learn

Table-2: Application Characteristics:

S.N o	Characteristics	Description	Technology
1.	Open-Source Frameworks	Anaconda Navigator, Jupyter Notebook, Python,Flask.	Python
2.	Security Implementations	Aware of Fraud and Scams, Protection of password and account details.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Whether demand increases gradually or abruptly, scalable web architecture can accommodate any load without compromising the application's integrity.	Microservies, Progressive Web Apps(PWA)
4.	Availability	Availability of application like load balancers, distributed servers etc	IBM Cloud
5.	Performance	Good Performance is expected.	IBM Cloud

5.3.CUSTOMER JOURNEY

OPEN WEBAP?	ENTER THE CAR FEATURES	PREDICT CAR RESALE VALUE	Team ID : PNT2022TMID00778
Wants to open the car predict the	Enter the	prediction of	Display the
resale value resale value of the car prediction accurately module	features of Click predict the car and get result	car resale price	predicted value
Eager and Heppy	happy to find a car resale predicted price	ecstatic	Feeling Good
Unexcited	SAD	Unhappy	Feeling bad
	T. F.		
Not happy with number of features to enter	stressed for entering more features	worried about time taken to see result	worried about accuracy
Better and Good design	user friendly	Quicker response	High and Good accuracy
	- Wants to predict the resale value of the cer accurately rediction module Eager and Happy Unexcited Not happy with number of features to enter	*Wants to predict the resale value prediction accurately prediction module *Bager and Happy Unexcited *Not happy with number of features to enter the number of features to enter the enter to enter the car and user friendly. *Bager and the car and u	Wants to predict the resale value prediction of the car accurately prediction module resale value prediction module resale predicted price resale

6.PROJECT PLANNING PHASE

6.1.Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Dataset reading and Pre processing	USN-1	Cleaning the dataset and splitting to dependentand independent variables	2	High	Pranjai V
Sprint-2	Building the model	USN-2	Choosing the appropriate model for building and saving the model as pickle file	1	High	PranjivanV
Sprint-3	Application building	USN-3	Using flask deploying the ML model	2	Medium	Prakash R
Sprint-4	Train the model in IBM	USN-4	Finally train the model on IBM cloud and deploy the application	2	Medium	Prabhu sai D Naveen Kumar B

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	15	5 Days	24 Oct 2022	29 Oct 2022	15	29 Oct 2022
Sprint-2	15	5 Days	31 Oct 2022	05 Nov 2022	15	05 Nov 2022
Sprint-3	15	5 Days	07 Nov 2022	12 Nov 2022	15	12 Nov 2022
Sprint-4	15	5 Days	14 Nov 2022	19 Nov 2022	15	19 Nov 2022

Velocity:

We have a 5-day sprint duration, and the velocity of the team is 15 (points per sprint). The team's average velocity (AV) per iteration unit (storypoints per day)

Actual Velocity = Sprint
Duration/Velocity = 15/5 =

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies suchas Scrum. However, burn down charts can be applied to any project containing measurable progress over time

6.2.Sprint Delivery Schedule

Activi ty Numb er	Activity Name	Detailed Activity Description	Assigned To	Status / Comments
1	Preparation Phase	 Access the resources (courses) in projectdashboard Access the guided project workspace Create GitHub account & collaborate withProject Repository in project workspace Set-up the Laptop / Computers based on the prerequisites for each technology track 	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	It refers to done the listed activitiesi n the preparati on phase and done Prerequisi t es, Registrati o n, Environm e nt setup
2	Ideation Phase	 Literature survey on the selected project & Information Gathering Preparation of Empathy Map Canvas to capture the user Pains & Gains Prepare listof problem statements List the ideas by organizing thebrainstorming session and prioritize the top3 ideas based on the feasibility & importance 	Pranjivan Prakash Prabbu	The activities in ideation phase refers to when gathering the ideafor project information and picturize in Empathy map
3	Project Design Phase -I			

3.1	Proposed Solution	Preparation of proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	The solution for the project is prepareda s a standard document structure
-----	----------------------	--	--	---

		from
		Team
		members

3.2	Problem SolutionFit	Prepared problem is analyzed and make effective solutions for the problem	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	
3.3	Solutio n Archite cture	Prepare an architecture for solution	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	Suitable block diagram templat e used to prepare Solution architec tu re
4	Project Design Phase -II			
4.1	Require ment Analysi s	Prepare the Functional Requirement and NonFunctional Document	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	Listing of functional and non-functional requireme nt s of project.
4.2	Customer Journey	Preparation of customer journey maps tounderstand the user interactions & experiences with the application (entry to exit)	Drakach	Customer j ourneymap prepared by suitable tem p late by tea m me m bers.
4.3	Data Flow Diagr ams	Prepare a Data Flow Diagram for Project use level0(Industry Standard)	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	Use suitable data flow diagr a m rulesand standards to prepare level 0 DFD
4.4	Techno logy Archite cture	Prepare Technology Architecture of the solution	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	

5	Project Planning Phase			
5.1	Milestones & Tasks	Prepare Milestone & Activity List	Pranjai, Pranjivan Prakash	

			Prabhu sai Naveen kumar	
5.2	Sprint Schedules	Prepare Sprint Delivery Plan	Pranjai Pranjivan Prakash Prabhusai Naveen kumar	
6	Project Development Phase			
6.1	Coding & Solutio ning	Sprint-1 Delivery: Develop the Code, Test andpush it to GitHub.	On Progress	
6.2	Acceptance Testing	 Sprint-2 Delivery: Develop the Code, Testand push it to GitHub. Sprint-3 Delivery: Develop the Code, Testand push it to GitHub. 	On Progress	
6.3	Perform ance Testing	Sprint-4 Delivery: Develop the Code, Test andpush it to GitHub.	On Progress	

Milestone:

When project begins then it is expected that project related activities must be initiated. In project planning, series of milestones must be established. Milestone can be defined as recognizable endpoint of software project activity. At each milestone, report must be generated.

Milestone is distinct and logical stage of the project. It is used as signal post for project start and end date, need for external review or input and for checking budget, submission of the deliverable, etc. It simply represents clear sequence of events that are incrementally developed or build until project gets successfully completed. It is generally referred to as task with zero-time duration because they are used to symbolize an achievement or point of time in project. It helps in signifying change or stage in development.

6.3. Reports from JIRA

Milestone Timeline Chart

7.CODING & SOLUTIONING 7.1.FFATURE 1

Importing Required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings warnings.filterwarnings('ignore')
```

Reading the Dataset

Cleaning the Dataset

```
In [ ]:
df.columns
Out[3]:
Index(['dateCrawled', 'name', 'seller', 'offerType', 'price',
       'abtest', 'vehicleType', 'yearOfRegistration', 'gearbox',
       'powerPS', 'model', 'kilometer', 'monthOfRegistration',
       'fuelType', 'brand', 'notRepairedDamage', 'dateCreated',
       'nrOfPictures', 'postalCode', 'lastSeen'],
      dtype='object')
In [ ]:
# Rearranging the Columns
df = df[['dateCrawled', 'name', 'seller', 'offerType', 'abtest', 'vehicleType',
'yearOfRegistration', 'gearbox', 'powerPS', 'model', 'kilometer',
'monthOfRegistration', 'fuelType', 'brand', 'notRepairedDamage', 'dateCreated',
'nrOfPictures', 'postalCode', 'lastSeen', 'price']]
In [ ]:
# Droping the Unwanted Columns
df.drop(columns= ['seller', 'offerType', 'nrOfPictures'], inplace = True)
In [ ]:
df.drop(columns= ['dateCrawled', 'dateCreated', 'lastSeen'], inplace = True)
```

Missing Values

```
In [ ]:
 # Checking for Missing Values
df.isna().sum()
Out[6]:
                            0
name
                            0
abtest
vehicleType
                       37869
yearOfRegistration
                           0
                       20209
gearbox
powerPS
                       20484
model
kilometer
                            0
                            0
monthOfRegistration
fuelType
                       33386
brand
notRepairedDamage
                       72060
postalCode
                            0
price
                            0
dtype: int64
In [ ]:
# Removing Missing Values df['vehicleType'].fillna(df['vehicleType'].mode()[0],
inplace = True) df['gearbox'].fillna(df['gearbox'].mode()[0], inplace = True)
df['model'].fillna(df['model'].mode()[0], inplace = True)
df['fuelType'].fillna(df['fuelType'].mode()[0], inplace = True)
df['notRepairedDamage'].fillna(df['notRepairedDamage'].mode()[0], inplace = True)
In [ ]:
df.isna().sum()
Out[8]:
                       0
name
abtest
                       0
vehicleType
                       0
yearOfRegistration
                       0
gearbox
                       0
powerPS
                       0
model
                       0
kilometer
                       0
monthOfRegistration
                       0
                       0
fuelType
brand
                       0
notRepairedDamage
                       0
postalCode
                       0
                       0
price
dtype: int64
```

Duplicate Values

```
In [
```

```
# Checking for Duplicates
df.duplicated().sum()
Out[9]:
4703
In [ ]:
# Removing Duplicates
df = df.drop duplicates()
In [ ]:
df.duplicated().sum()
Out[11]:
0
```

Label Encoding

```
In [ ]:
```

```
df.info()
<class
'pandas.core.frame.DataFrame'>
Int64Index: 366825 entries, 0 to
371527 Data columns (total 14
columns):
 #
     Column
                        Non-Null Count Dtype
    ----
                         ______
                                        -----
 0
    name
                         366825 non-null object
 1
    abtest
                        366825 non-null object
    vehicleType
                        366825 non-null object
     yearOfRegistration 366825 non-null int64
 3
 4
                         366825 non-null object
    gearbox
 5
    powerPS
                         366825 non-null int64
 6
    model
                        366825 non-null object
 7
    kilometer
                        366825 non-null int64
 8
    monthOfRegistration 366825 non-null int64
 9
    fuelType
                        366825 non-null object
 10
    brand
                        366825 non-null object
                        366825 non-null object
 11
    notRepairedDamage
 12 postalCode
                         366825 non-null
                                         int64
 13 price
                        366825 non-null
int64 dtypes: int64(6), object(8)
memory usage: 42.0+ MB
```

In []:

```
from sklearn.preprocessing import LabelEncoder le = LabelEncoder()
df['name'] = le.fit_transform(df['name']) df['abtest'] =
le.fit_transform(df['abtest'])
df['vehicleType'] = le.fit_transform(df['vehicleType']) df['gearbox'] =
le.fit_transform(df['gearbox']) df['model'] = le.fit_transform(df['model'])
df['fuelType'] = le.fit_transform(df['fuelType']) df['brand'] =
le.fit_transform(df['brand'])
df['notRepairedDamage'] = df['notRepairedDamage'].replace({'nein' : 0, 'ja' : 1})
```

```
1
   abtest
                       366825 non-null int64
2
                      366825 non-null int64
   vehicleType
3
   yearOfRegistration 366825 non-null int64
                       366825 non-null int64
4
   gearbox
5
   powerPS
                       366825 non-null int64
6
   model
                       366825 non-null int64
7
   kilometer
                       366825 non-null int64
8
   monthOfRegistration 366825 non-null int64
9
                       366825 non-null int64
   fuelType
10 brand
                       366825 non-null int64
   notRepairedDamage 366825 non-null int64
11
12 postalCode
                       366825 non-null int64
13 price
                       366825 non-null
```

int64 dtypes: int64(14)
memory usage: 42.0 MB

Identifying and Handling Outliers

```
In [ ]:
# Checking for outliers in 'price' column
```

```
In [
sns.boxplot(x = df['price'])
Out[16]:
```

<AxesSubplot:xlabel='price'>


```
In []:
a =
df['price'].quantile(q=[0.75,0.25])
a
Out[17]:
0.75   7150.0
0.25   1150.0
Name: price, dtype: float64

In []:
IQR = a.iloc[0] - a.iloc[1] IQR
Out[18]
:
6000.0
```

```
In [
upper = a.iloc[0]+(1.5*IQR) lower = a.iloc[0]-(1.5*IQR)

In [ ]:
upper
Out[20]:
16150.0

In [ ]:
lower
Out[21]:
-1850.0

In [ ]:
# Dropping outliers in price
a = df[df['price'] > 20000].index
df.drop(a, inplace = True)
```

In []:

```
sns.boxplot(x = df['price'])
```

Out[23]:

<AxesSubplot:xlabel='price'>

In []:

```
{\it \# Checking for outliers in 'yearOfRegistration' column}
```

```
In [
sns.boxplot(x = df['yearOfRegistration'])
Out[25]:
<AxesSubplot:xlabel='yearOfRegistration'>
      2000
               4000
                       6000
                                8000
                                        10000
                yearOfRegistration
In [ ]:
a = df['yearOfRegistration'].quantile(q=[0.75,0.25]) a
Out[26]:
0.75 2008.0
0.25
        1999.0
Name: yearOfRegistration, dtype: float64
In [ ]:
IQR = a.iloc[0] - a.iloc[1] IQR
```

upper = a.iloc[0]+(1.5*IQR) lower = a.iloc[0]-(1.5*IQR)

Out[27]

In []:

9.0

```
In [
uppe
Out[29]:
2021.5
In [ ]:
lower
Out[30]:
1994.5
```

In []:

```
# Dropping outliers in yearOfRegistration
a = df[df['yearOfRegistration'] > 2019].index df.drop(a, inplace = True)
a = df[df['yearOfRegistration'] < 1970].index df.drop(a, inplace = True)</pre>
```

In []:

```
sns.boxplot(x = df['yearOfRegistration'])
```

Out[32]:

<AxesSubplot:xlabel='yearOfRegistration'>

In []:

Checking for outliers in 'powerPS' column

```
In [
sns.boxplot(x = df['powerPS'])
Out[34]:
```



```
In [ ]:
df['powerPS'].quantile(q=[0.75,0.25]) a
Out[35]:
0.75
     141.0
       69.0
0.25
Name: powerPS, dtype: float64
In [ ]:
IQR = a.iloc[0] -
a.iloc[1] IQR
Out[36]
72.0
In [ ]:
upper =
a.iloc[0]+(1.5*IQR) lower
= a.iloc[0]-(1.5*IQR)
```

```
In [
upper
Out[38]:
249.0

In [ ]:
lower
Out[39]:
33.0

In [ ]:
# Dropping outliers in powerPS
a = df[df['powerPS'] > 300].index
df.drop(a, inplace = True)

In [ ]:
sns.boxplot(x = df['powerPS'])
Out[41]:
```

<AxesSubplot:xlabel='powerPS'>

Visualization

```
In [
```

plt.figure(figsize=(20,20)) sns.heatmap(df.corr(), annot = True) plt.show()


```
In [
```

```
sns.pairplot(df) plt.show()
```

Out[74]:

<seaborn.axisgrid.PairGrid at 0x7fc23cddbc40>

Descriptive Statistics

In [

df.nunique()

Out[80]:

name	218805
abtest	2
vehicleType	8
yearOfRegistration	50
gearbox	2
powerPS	299
model	250
kilometer	13
monthOfRegistration	13
fuelType	7
brand	40
notRepairedDamage	2
postalCode	8140
price	3708
dtype: int64	

In []:

df.describe()

Out[42]:

	name	abtest	vehicleType	yearOfRegistration	gearbox	
count	344985.00000 0	344985.00000 0	344985.00000 0	344985.000000	344985.00000 0	34498
mean	117904.58591 2	0.518202	4.565471	2003.229619	0.819265	10
std	67510.545516	0.499669	1.661815	6.980320	0.384799	5
min	0.000000	0.000000	0.000000	1970.000000	0.000000	
25%	60989.000000	0.000000	4.000000	1999.000000	1.000000	6
50%	119794.00000 0	1.000000	5.000000	2003.000000	1.000000	10
75%	175396.00000 0	1.000000	6.000000	2008.000000	1.000000	14
max	233530.00000	1.000000	7.000000	2019.000000	1.000000	30
4						•

```
In [
```

```
df.skew()
Out[43]:
                     -0.022347
name
abtest
                     -0.072858
                     -0.917651
vehicleType
yearOfRegistration
                     -0.360852
gearbox
                     -1.659392
                      0.189407
powerPS
model
                      0.395804
                     -1.737954
kilometer
monthOfRegistratio
                      0.082692
                      1.542590
fuelType
brand
                     -0.172770
notRepairedDamage
                       2.622955
                      0.075437
postalCode
                       1.461433
price
dtype: float64
In [ ]:
df.kurt()
```

Out[44]:

```
name
                     -1.200546
abtest
                     -1.994703
vehicleType
                     -0.028758
yearOfRegistration
                      1.432725
gearbox
                      0.753586
                      0.085471
powerPS
model
                     -0.883618
kilometer
                      1.984077
monthOfRegistratio
                     -1.147400
fuelType
                      2.400634
brand
                     -1.310623
                      4.879922
notRepairedDamage
postalCode
                     -0.962817
                      1.547299
price
dtype: float64
```

Splitting the Data

```
In [ ]:
# Splitting x and y
variables x
df.drop(columns = 'price') y
= df['price']
```

```
In [
# Splitting into test and train
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
random_state=0
```

Building Models

```
In []:
# Linear Regression

In []:
from sklearn.linear_model import LinearRegression lr = LinearRegression()
lr.fit(x train, y train)
```

```
Out[48]:
```

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [ ]:
# Lasso Regression
```

```
In [ ]:
```

```
from sklearn.linear_model import Lasso
lasso = Lasso(alpha=0.01,
normalize=True) lasso.fit(x_train,
y train)
Out[72]:
```

Lasso(alpha=0.01, normalize=True)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [ ]:
# Ridge Regression
```

```
In [
from sklearn.linear_model import Ridge ridge = Ridge(alpha=0.01, normalize=True)
ridge.fit(x_train, y_train)
```

Out[73]:

Ridge(alpha=0.01, normalize=True)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [ ]:
```

```
# Decision Tree
```

In []:

```
from sklearn.tree import
DecisionTreeRegressor DT =
DecisionTreeRegressor()
DT.fit(x train, y train)
Out[54]:
```

DecisionTreeRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [ ]:
```

```
# KNN
```

```
In [ ]:
```

```
from sklearn.neighbors import KNeighborsRegressor knn = KNeighborsRegressor()
knn.fit(x_train, y_train)
```

Out[56]:

KNeighborsRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [ ]:
```

```
# Random Forest
```

```
In [
from sklearn.ensemble import RandomForestRegressor RF = RandomForestRegressor()
RF.fit(x_train, y_train)
Out[58]:
```

RandomForestRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Checking the Metrics of the models

```
In [ ]:
# Linear Regression
lr.score(x_test, y_test)
Out[59]:
0.50461642931597
22
In [ ]:
from sklearn.metrics import mean squared error
np.sqrt(mean_squared_error(y_test,lr.predict(x_test)))
Out[60]:
3124.8392438160
01
In [ ]:
# Lasso Regression
lasso.score(x test, y test)
Out[61]:
0.50462790178427
87
In [ ]:
np.sqrt(mean squared error(y test,lasso.predict(x test)))
Out[62]:
3124.8030599083
48
```

```
In [
# Ridge Regression
ridge.score(x_test, y_test)
Out[63]:
0.50461321529664
06
In [ ]:
np.sqrt(mean_squared_error(y_test,ridge.predict(x_test)))
Out[64]:
3124.84938068573
36
In [ ]:
# K Nearest Neighbour
knn.score(x_test, y_test)
Out[65]:
0.36042646561748
47
In [ ]:
np.sqrt(mean_squared_error(y_test,knn.predict(x_test)))
Out[66]:
3550.6030573153
32
In [ ]:
# Decision Tree
DT.score(x test, y test)
Out[67]:
0.73518914589835
89
In [ ]:
np.sqrt(mean squared error(y test,DT.predict(x test)))
Out[68]:
2284.67679972225
64
In [ ]:
# Random Forest
RF.score(x_test, y_test)
```

In [
Out[69]:
0.86219410430520
54

```
In [
np.sqrt(mean_squared_error(y_test,RF.predict(x_test)))
Out[70]:
1648.12740037350
57
```

Saving the Model

```
In []:
import pickle
pickle.dump(RF, open('Car Resale Value Prediction.pkl', 'wb'))
```

8.1.USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3

Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

8.2.Model Performance Test

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - 1232.3528089560773, MSE - 5063778.951720876, RMSE - 2250.2841935455344, R2 score - 0.87528399134989	from sklearn.metrics import r2_score r2_score(y_test, RF.predict(x_test)) 0.875283991349982 from sklearn.metrics import mean_squared_error mean_squared_error(y_test, RF.predict(x_test)) 5063778.951728876 from sklearn.metrics import mean_squared_error np.sqrt(mean_squared_error(y_test, RF.predict(x_test))) 2250.2841935455344 from sklearn.metrics import mean_absolute_error mean_absolute_error(y_test, RF.predict(x_test)) 1232.3328809560773
2.	Tune the Model	Validation Method - train_test_split	# Splitting x and y variables x = df.drug(clumes = 'price') y = df['price'] # Splitting into test and train from sklearn.model_selection_import train_test_split x_train_x_test_x_train_x_test_split(x, y, test_size=0.2, random_state=0)

9. RESULT

The Car Resale Value is predicted by using Random Forest Algorithm . Proofs and Procedures are attached Above