MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2006 SOLUTION KEY

Round 5

A) $\angle A$ must be located in quadrant 4, since the cosine is positive and the tangent is negative. $y^2 = 16 - 1 = 15$ and $y < 0 \rightarrow y = -\sqrt{15}$ Using cofunction identities (or complementary angle relationships),

$$\sin(90 - A) \cdot \cos(90 - A) = \cos(A) \cdot \sin(A) = \frac{\sin A}{4} = \frac{-\sqrt{15}}{16}$$

B) Since $\sin^2 \theta + \cos^2 \theta = 1$, $\cos^2(\frac{\pi}{9}) + \cos^2(\frac{2\pi}{9}) + \cos^2(\frac{3\pi}{9}) + \cos^2(\frac{4\pi}{9}) + \sin^2(\frac{\pi}{9}) + \sin^2(\frac{2\pi}{9}) + \sin^2(\frac{3\pi}{9}) + \sin^2(\frac{4\pi}{9}) = 4$ and $\cos^2(\frac{\pi}{9}) + \cos^2(\frac{2\pi}{9}) + \cos^2(\frac{3\pi}{9}) + \cos^2(\frac{4\pi}{9}) = 4 - \frac{a}{b} = \frac{4b - a}{b}$

C) The slant height of the pyramid is the altitude from B in each equilateral triangle. Let P denote the center of the square base and Q the foot of one of these altitudes. Then $AB = 6 \rightarrow BQ = 3\sqrt{3}$ and PQ = 3 Using the Pythagorean Theorem, $BP^2 = 27 - 9 = 18 \rightarrow BP = 3\sqrt{2}$ Thus, the angle formed by a face with the base of the pyramid is $\angle \theta$

as indicated in the diagram at the right. $\sin(\theta) = \frac{3\sqrt{2}}{3\sqrt{3}} = \left| \frac{\sqrt{6}}{3} \right|$

Round 6

- A) Since $\triangle CED$ is an isosceles triangle with a base angle of 69°, its vertex angle CED has a measure of 42°. Thus, \overline{OC} is both parallel and congruent to \overline{FE} , forcing OCEF to be a parallelogram. Since opposite angles in a parallelogram are congruent, $m\angle OFE = 42^\circ$ \Rightarrow $m\angle AFO = 93 42 = 51^\circ$. Finally, in $\triangle FAB$, $x = m\angle FAB = 180 (20 + 51) = \underline{109}$
- B) $4(m\angle 1 + m\angle 1) = 180 \rightarrow m\angle C = 135^{\circ}$. Draw a line thru point C parallel to n. Since alternate interior angles of parallel lines are congruent, $x + y = 135 \rightarrow y = \underline{135 x}$
- C) Since $\triangle ACE \cong \triangle AFB$ (by SAA), AC = AF and $\triangle ACF$ is isosceles w/base CF. $BC = 6 \rightarrow EF = 6 \rightarrow AE = 2 \rightarrow AC = 8$ Thus, $8 = CF/2 + 6 \rightarrow CF = 4$