Dur grade: 80% r latest: 80% • Your highest: 80% • To pass you need at least 70%. We keep your highest score.	Next item →
The term Bogging stands for bootstrap aggregating. © True	1/1 point
False	
○ Correct Correct! You can find more information in the lesson: Ensemble Based Methods and Bagging.	
This is the best way to choose the number of trees to build on a Bagging ensemble.	1 point
Prioratize training error metrics over out of bag sample	
Tune number of trees as a hyperparameter that needs to be optimized	
Choose a large number of trees, typically above 100 Choose a number of trees past the point of diminishing returns	
⊗ Incorrect	
Incorrect. Please review the lesson: Ensemble Based Methods and Baggling.	
Which type of Ensemble modeling approach is NOT a special case of model averaging?	1/1 point
The Pasting method of Bootstrap aggregation	
Random Forest methods Boosting methods	
The Bagging method of Bootstrap aggregation	
 Correct Correct! You can find more information in the lesson Overview of Boosting. 	
What is an ensemble model that needs you to look at out of bag error?	1/1 point
Out of Bag Regression Stacking	
Collistic Regression.	
Random Forest	
© Correct Correct! You can find more information in the lesson Random Forest.	
What is the main condition to use stacking as ensemble method?	1/1 point
Models need to output residual values for each class	2/2/
○ Models need to be nonparametric	
Models need to be parametric	
Models need to output predicted probabilities Correct	
Correct! You can find more information in the lesson Stacking.	
This tree ensemble method only uses a subset of the features for each tree:	1/1 point
Adaboost	
Random Forest	
Stacking Bagging	
Correct Correct! This tree ensemble only uses a subset of the features for each tree. For more information, please review the Random Forest lesson.	
Order these tree ensembles in order of most randomness to least randomness:	1/1 point
Random Forest, Bagging, Random Trees Random Trees, Random Forest, Bagging	
Bagging, Random Forest, Random Trees	
Random Forest, Random Trees, Bagging Correct	
Correct! Random Trees add one more degree of randomness than Random Forests and two more than Bagging, You can find more information in the Random Forest lesson.	
This is an ensemble model that does not use bootstrapped samples to fit the base trees, takes residuals into	1/1 point
account, and fits the base trees iteratively:	2/200110
Boosting Bandom Trees	
Random Trees Bagging	
O Random Forest	
 Correct Correct These are all characteristics of boosting algorithms. You can find more information in the Boosting lesson. 	
When comparing the two ensemble methods Bagging and Boosting, what is one characteristic of Boosting? Only data points are considered	1/1 point
Only data points are considered No weighting used	
Bootstraped samples	
Fits entire data set	
 Correct. With Boosting you can use the entire data set to train each of the classifiers 	
What is the most frequently discussed loss function in boosting algorithms?	1 point
Gradient Loss Function	
AdaBoost Loss Function	
0-1 Loss Function Gradient Boosting Loss Function	
Gradient Boosting Loss Function Incorrect	
Incorrect. Please review the Adaboost and Gradient Boosting Overviewvideo.	