Structural Estimation of Dynamic Discrete Choice Models

The Nested Fixed Point Algorithm (NFXP)

Bertel Schjerning, University of Copenhagen

Dynamic Programming and Structural Econometrics #6

The Nested Fixed Point Algorithm (NFXP)

Rust (ECTA, 1987):

OPTIMAL REPLACEMENT OF GMC BUS ENGINES: AN EMPIRICAL MODEL OF HAROLD ZURCHER

Harold Alois Zuercher June 16, 1926 - June 21, 2020 (age 94)

Overview of Rust (1987)

This is a path-breaking paper that introduces a methodology to estimate a single-agent dynamic discrete choice (DDC) models.

Main contributions

- 1. An illustrative application in a simple model of engine replacement.
- 2. Development and implementation of Nested Fixed Point Algorithm
- 3. Formulation of assumptions that makes DDC models tractable
- 4. The first researcher to obtain ML estimates of DDC models
- 5. Bottom-up approach: Micro-aggregated demand for durable assets

Policy experiments:

► How does changes in replacement cost affect the demand for engines and the equilibrium distribution of mileage?

Who cares about Harold Zurcher?

- Occupational Choice (Keane and Wolpin, JPE 1997)
- ► Retirement (Rust and Phelan, ECMA 1997)
- Brand choice and advertising (Erdem and Keane, MaScience 1996)
- ► Choice of college major (Arcidiacono, JoE 2004)
- ▶ Individual migration decisions (Kennan and Walker, ECMA 2011)
- High school attendance and work decisions (Eckstein and Wolpin, ECMA 1999)
- Sales and dynamics of consumer inventory behavior (Hendel and Nevo, ECMA 2006)
- Advertising, learning, and consumer choice in experience good markets (Ackerberg, IER 2003)
- Route choice models (Fosgerau et al, Transp. Res. B)
- ► Fertility and labor supply decisions (Francesconi, JoLE 2002)
- Residential and Work-location choice (Buchinsky et al, ECMA 2015)
- Equilibrium Allocations Under Alternative Waitlist Designs: Evidence From Deceased Donor Kidneys (Argarwal et al, ECMA 2021)
- Equilibrium Trade in Automobiles (Gillingham et al, JPE 2022)
- ...and many more

Big Mac Index of Dynamic Structural Econometrics

Methods for estimating Dynamic Discrete Choice Models

- ▶ Rust (1987): MLE using Nested-Fixed Point Algorithm (NFXP)
- ► Hotz and Miller (1993): CCP estimator (two step estimator)
- ► Keane and Wolpin (1994): Simulation and interpolation
- Rust (1997): Randomization algorithm (breaks curse of dimensionality)
- Aguirregabiria and Mira (2002): Nested Pseudo Likelihood (NPL).
- ▶ Bajari, Benkard and Levin (2007): Two step-minimum distance (equilibrium inequalities).
- Arcidiacono Miller (2002): CCP with unobserved heterogeneity (EM Algorithm).
- ▶ Norets (2009): Bayesian Estimation (allows for serial correlation in ϵ)
- ▶ Su and Judd (2012): MLE using constrained optimization (MPEC)
- and MUCH more
- Any estimator method or solution algorithm of DDC models must confront NFXP and Harold Zurcher

Formulating, solving and estimating a dynamic model

Components of the dynamic model

- **Decision** variables: vector describing the choices, $d_t \in C(s_t)$
- State variables: vector of variables, st, that describe all relevant information about the modeled decision process
- Instantaneous payoff: utility function, u(st, dt), with time separable discounted utility
- Motion rules: agent's beliefs of how state variable evolve through time, conditional on states and choices. Here formalized by a Markov transition density $p(s_{t+1} \mid s_t, d_t)$

Solution is given by:

- **Value function**: maximum attainable utility $V(s_t)$
- ▶ Policy function: mapping from state space to action space that returns the optimal choice, $d^*(s_t)$

Structural Estimation

- Parametrize model: utility function $u(s_t, d_t; \theta_u)$, motion rules for states $p(s_{t+1} \mid s_t, d_t; \theta_p)$, choice sets $C(s_t; \theta_c)$, etc.
- Search for (policy invariant) parameters θ so that model fits targeted aspects of data on (a subset of) decisions, states, payoff's, etc.

Zurcher's Bus Engine Replacement Problem

- ▶ Choice set: Binary choice set, $C(x_t) = \{0, 1\}$.
 - ▶ Engine replacement $(d_t = 1)$ or ordinary maintenance $(d_t = 0)$
- ▶ State variables: Harold Zurcher observes $s_t = (x_t, \varepsilon_t)$:
 - x_t: mileage at time t since last engine overhaul/replacement
 - $ightharpoonup \varepsilon_t = [\varepsilon_t(d_t = 0), \varepsilon_t(d_t = 1)]$: decision specific state variable
- ▶ Utility function: $U(x_t, \varepsilon_t, d_t; \theta_1) =$

$$u(x_t, d_t, \theta_1) + \varepsilon_t(d_t) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if } d_t = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } d_t = 0 \end{cases}$$
(1)

- State variables process
 - $ightharpoonup arepsilon_t$ is iid with conditional density $q(\varepsilon_t|x_t,\theta_2)$
 - x_t (mileage since last replacement)

$$p(x_{t+1}|x_t, d_t, \theta_2) = \begin{cases} g(x_{t+1} - 0, \theta_3) & \text{if } d_t = 1\\ g(x_{t+1} - x_t, \theta_3) & \text{if } d_t = 0 \end{cases}$$
 (2)

If engine is replaced, state of bus regenerates to $x_t = 0$.

Parameters to be estimated $\theta = (RC, \theta_1, \theta_3)$ (Fixed parameters: (β, θ_2))

General Behavioral Framework

The decision problem

► The decision maker chooses a sequence of actions to maximize expected discounted utility over a (in)finite horizon

$$V_{ heta}\left(s_{t}
ight) = \sup_{\Pi} E\left[\sum_{j=0}^{T} eta^{j} U\left(s_{t+j}, d_{t+j}; heta_{1}
ight) | s_{t}, d_{t}
ight]$$

- $ightharpoonup eta \in (0,1)$ is the discount factor
- $V(s_t, d_t; \theta_1)$ is a choice and state specific utility function
- ightharpoonup We may consider an infinite horizon , i.e. $T=\infty$
- \triangleright E summarizes expectations of future states given s_t and d_t

Recursive form of the maximization problem

▶ By Bellman Principle of Optimality, the value function V(s) constitutes the solution of the following functional (Bellman) equation

$$V(x,\varepsilon) \equiv T(V)(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,\varepsilon,d) + \beta E[V(x',\varepsilon') | x,\varepsilon,d] \right\}$$

Expectations are taken over the next period values of state $s' = (x', \varepsilon')$ given it's controlled motion rule, $p(s' \mid s, d)$

$$E[V(x',\varepsilon')|x,\varepsilon,d] = \int_X \int_{\Omega} V(x',\varepsilon')p(x',\varepsilon'|x,\varepsilon,d)dx'd\varepsilon'$$

where
$$\varepsilon = (\varepsilon(1), \dots, \varepsilon(J)) \in \mathbb{R}^J$$

Hard to compute fixed point V such that T(V) = V

- \triangleright x is continuous and ε is continuous and J-dimensional
- $V(x,\varepsilon)$ is high dimensional
- ▶ Evaluating E may require high dimensional integration
- ▶ Evaluating $V(x', \varepsilon')$ may require high dimensional interpolation/approximation
- \triangleright $V(x,\varepsilon)$ is non-differentiable

Rust's Assumptions

1. Additive separability in preferences (AS):

$$U(s_t, d) = u(x_t, d; \theta_1) + \varepsilon_t(d)$$

2. Conditional independence (CI): State variables, $s_t = (x_t, \varepsilon_t)$ obeys a (conditional independent) controlled Markov process with probability density

$$p(x_{t+1},\varepsilon_{t+1}|x_t,\varepsilon_t,d,\theta_2,\theta_3)=q(\varepsilon_{t+1}|x_{t+1},\theta_2)p(x_{t+1}|x_t,d,\theta_3)$$

3. Extreme value Type I (EV1) distribution of ε (EV) Each of the choice specific state variables, $\varepsilon_t(d)$ are assumed to be iid. extreme value distributed with CDF

$$F(\varepsilon_t(d);\mu,\lambda)=\exp(-\exp(-(\varepsilon_t(d)-\mu)/\lambda)) \text{ for } \varepsilon_t(d)\in\mathbb{R}$$
 with $\mu=0$ and $\lambda=1$

(ロ) (部) (重) (重) (重) の(の)

Rust's Assumptions simplifies DP problem

$$V(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,d) + \varepsilon(d) + \beta \int_X \int_{\Omega} V(x',\varepsilon') p(x'|x,d) q(\varepsilon'|x') dx' d\varepsilon' \right\}$$

- 1. Separate out the deterministic part of choice specific value v(x, d) (assumptions SA and CI)
- Reformulate Bellman equation on reduced state space (assumption CI)
- Compute the expectation of maximum using properties of EV1 (assumption EV)

1. DP problem under AS and CI

Separate out the deterministic part of choice specific value v(x, d)

$$V(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,d) + \beta \int_X \left(\int_{\Omega} V(x',\varepsilon') q(\varepsilon'|x') d\varepsilon' \right) p(x'|x,d) dx' + \varepsilon(d) \right\}$$

So that

$$V(x', \varepsilon') = \max_{d \in C} \{v(x', d) + \varepsilon'(d)\}$$

$$v(x, d) = u(x, d) + \beta E[V(x', \varepsilon')|x, d]$$

2a. Bellman equation in expected value function space

Let $EV(x, d) = E[V(x', \varepsilon')|x, d]$ denote the expected value function.

Because of CI we can now express the Bellman equation in expected value function space

$$EV(x,d) = \Gamma(EV)(x,d) \equiv \int_X \int_\Omega \left[V(x',\varepsilon') q(\varepsilon'|x') d\varepsilon' \right] p(x'|x,d) dx'$$

$$V(x', \varepsilon') = \max_{d' \in C(x')} [u(x', d') + \beta EV(x', d') + \varepsilon'(d')]$$

- ► Γ is a <u>contraction mapping</u> with unique fixed point EV, i.e. $\|\Gamma(EV) \Gamma(W)\| \le \beta \|EV W\|$
- ► Global convergence of VFI
- \triangleright EV(x, d) is lower dimensional: does not depend on ε

2b. Bellman equation in integrated value function space

Let $\bar{V}(x) = E[V(x,\varepsilon)|x]$ denote the integrated value function

Because of CI we can express Bellman equation in integrated value function space

$$ar{V}(x) = ar{\Gamma}(ar{V})(x) \equiv \int_{\Omega} V(x, \varepsilon) q(\varepsilon|x) d\varepsilon$$

$$V(x,\varepsilon) = \max_{d \in C(x)} [u(x,d) + \varepsilon(d) + \beta \int_X \bar{V}(x')p(x'|x,d)dx']$$

- ▶ $\bar{\Gamma}$ is a contraction mapping with unique fixed point \bar{V} , i.e. $\|\bar{\Gamma}(\bar{V}) \bar{\Gamma}(W)\| \le \beta \|\bar{V} W\|$
- ► Global convergence of VFI
- $ightharpoonup ar{V}(x)$ is lower dimensional: does not depend on arepsilon and d

3. Compute the expectation of maximum under EV

We can express expectation of maximum using properties of EV1 distribution (assumption EV)

Expectation of maximum, $\bar{V}(x)$, can be expressed as "the log-sum"

$$ar{V}(x) = E\left[\max_{d \in \{1, \dots, J\}} \{v(x, d) + \lambda \varepsilon(d)\} \mid x\right] = \lambda \log \sum_{j=1}^{J} \exp(v(x, d)/\lambda)$$

Conditional choice probability, P(x, d) has closed form logit expression

$$P(d \mid x) = E\left[\mathbb{1}\left\{d = \arg\max_{j \in \{1, \dots, J\}} \{v(x, j) + \lambda \varepsilon(j)\}\right\} \mid x\right]$$
$$= \frac{\exp(v(x, d)/\lambda)}{\sum_{j=1}^{J} \exp(v(x, j)/\lambda)}$$

HUGE benefits

- \blacktriangleright Avoids J dimensional numerical integration over ε
- ▶ $P(d \mid x)$, $\bar{V}(x)$ and EV(x,d) are smooth functions.

The DP problem under AS, CI and EV

Putting all this together

Conditional Choice Probabilities (CCPs) are given by

$$P(d|x,\theta) = \frac{\exp\{u(x,d,\theta_1) + \beta EV_{\theta}(x,d)\}}{\sum_{i \in C(x)} \exp\{u(x,j,\theta_1) + \beta EV_{\theta}(x,j)\}}$$

► The expected value function can be found as the unique fixed point to the contraction mapping Γ_{θ} , defined by

$$EV_{\theta}(x, d) = \Gamma_{\theta}(EV_{\theta})(x, d)$$

$$= \int_{y} \ln \left[\sum_{d' \in C(y)} \exp \left[u(y, d'; \theta_{1}) + \beta EV_{\theta}(y, d') \right] \right]$$

$$p(dy|x, d, \theta_{2})$$

- ▶ We have used the subscript θ to emphasize that the Bellman operator, Γ_{θ} depends on the parameters.
- ▶ In turn, the fixed point, EV_{θ} , and the resulting CCPs, $P(d|x,\theta)$ are implicit functions of the parameters we wish to estimate.

How to deal with continuous mileage state?

Rust discretize the mileage state space x into n grid points

$$X = \{x_1, ..., x_n\}$$
 with $x_1 = 0$

Mileage transition probability: for I = 0, ..., L

$$p(x'|\hat{x}_k, d, \theta_2) = \begin{cases} Pr\{x' = x_{k+l}|\theta_2\} = \pi_l \text{ if } d = 0\\ Pr\{x' = x_{1+l}|\theta_2\} = \pi_l \text{ if } d = 1 \end{cases}$$

- ▶ where $\theta_2 = [\pi_1, ..., \pi_L], \; \pi_0 = 1 \sum_{l=1}^L \pi_l, \; \text{and} \; \pi_l \geq 0$
- ightharpoonup Mileage in the next period x' can move up at most L grid points.
- L is determined by the empirical distribution of mileage.

Transition matrix for mileage is sparse

Transition matrix conditional on keeping engine

$$\Pi(d = \text{keep})_{n \times n} = \begin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \ddots & \ddots & 0 \\ 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & & & & \pi_0 & \pi_1 & \pi_2 & 0 \\ 0 & & & & & \pi_0 & \pi_1 & \pi_2 \\ 0 & & & & & & \pi_0 & 1 - \pi_0 \\ 0 & 0 & & & & & 1 \end{pmatrix}$$

Transition matrix for mileage is sparse

Transition matrix conditional on replacing engine

$$\Pi(d = \text{replace})_{n \times n} = \begin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \\ \pi_0 & \pi_1 & \pi_2 & 0 & \cdots & 0 \end{pmatrix}$$

Bellman equation in matrix form

Bellman equation in expected value function space

$$EV(d) = \Gamma(EV) = \Pi(d) \ln \left[\sum_{d'} \exp[u(d') + \beta EV(d')] \right]$$

Bellman equation in integrated value function space

$$ar{V} = ar{\Gamma}(ar{V}) = \operatorname{In}\left[\sum_{d'} \exp[u(d') + eta\Pi(d')ar{V}]
ight]$$

- $\vdash u(d) = [u(x_1, d), ..., u(x_n, d)]$
- $ightharpoonup EV(d) = [EV(x_1, d), ..., EV(x_n, d)]$
- $\bar{V} = [\bar{V}(x_1), ..., \bar{V}(x_n)]$
- $ightharpoonup \Pi(d)$ is a $n \times n$ state transition matrix conditional on decision d

Structural Estimation

Data: $(d_{i,t}, x_{i,t}), t = 1, ..., T_i \text{ and } i = 1, ..., N$

Log likelihood function

$$L(\theta, EV_{\theta})) = \sum_{i=1}^{N} \ell_{i}^{f}(\theta, EV_{\theta})$$

$$\ell_{i}^{f}(\theta, EV_{\theta}) = \sum_{t=2}^{T_{i}} log(P(d_{i,t}|x_{i,t}, \theta)) + \sum_{t=2}^{T_{i}} log(p(x_{i,t}|x_{i,t-1}, d_{i,t-1}, \theta_{3}))$$

where

$$P(d|x, \theta) = \frac{\exp\{u(x, d, \theta_1) + \beta EV_{\theta}(x, d)\}}{\sum_{d' \in \{0,1\}} \{u(x, d', \theta_1) + \beta EV_{\theta}(x, d')\}}$$

and

$$EV_{\theta}(x,d) = \Gamma_{\theta}(EV_{\theta})(x,d)$$

$$= \int_{y} \ln \left[\sum_{d' \in \{0,1\}} \exp[u(y,d';\theta_{1}) + \beta EV_{\theta}(y,d')] \right] p(dy|x,d,\theta_{3})$$

The Nested Fixed Point Algorithm

Since the contraction mapping Γ_{θ} always has a unique fixed point, the constraint $EV_{\theta} = \Gamma(EV_{\theta})$ implies that the fixed point EV_{θ} is an implicit function of θ .

Hence, NFXP solves the unconstrained optimization problem

$$\max_{\theta} L(\theta, EV_{\theta})$$

Outer loop (Hill-climbing algorithm):

- Likelihood function $L(\theta, EV_{\theta})$ is maximized w.r.t. θ
- Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
- ► Each evaluation of $L(\theta, EV_{\theta})$ requires solution of EV_{θ}

Inner loop (fixed point algorithm):

The implicit function EV_{θ} defined by $EV_{\theta} = \Gamma(EV_{\theta})$ is solved by:

- Successive Approximations (SA)
- ► Newton-Kantorovich (NK) Iterations

Data

- ► Harold Zurcher's Maintenance records of 162 busses
- ► Monthly observations of mileage on each bus (odometer reading)
- ▶ Data on maintenance replacement decisions

Estimated Hazard Functions

Structural Estimates, n=90

TABLE IX STRUCTURAL ESTIMATES FOR COST FUNCTION $c(x,\theta_1)=.001\theta_{11}x$ Fixed Point Dimension = 90 (Standard errors in parentheses)

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates/ Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 4)	Marginal Significance Level
β = .9999	RC θ_{11} θ_{30} θ_{31} LL	11.7270 (2.602) 4.8259 (1.792) .3010 (.0074) .6884 (.0075) -2708.366	10.0750 (1.582) 2.2930 (0.639) .3919 (.0075) .5953 (.0075) -3304.155	9.7558 (1.227) 2.6275 (0.618) .3489 (.0052) .6394 (.0053) -6055.250	85.46	1.2E – 17
$oldsymbol{eta}=0$	RC θ_{11} θ_{30} θ_{31} LL	8.2985 (1.0417) 109.9031 (26.163) .3010 (.0074) .6884 (.0075) -2710.746	7.6358 (0.7197) 71.5133 (13.778) .3919 (.0075) .5953 (.0075) -3306.028	7.3055 (0.5067) 70.2769 (10.750) .3488 (.0052) .6394 (.0053) -6061.641	89.73	1.5E-18
Myopia test:	LR Statistic $(df = 1)$	4.760	3.746	12.782		
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal Significance Level	0.0292	0.0529	0.0035		

Structural Estimates, n=175

TABLE X
STRUCTURAL ESTIMATES FOR COST FUNCTION $c(x, \theta_1) = .001\theta_{11}x$ FIXED POINT DIMENSION = 175
(Standard errors in parentheses)

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 6)	Marginal Significance Level
β = .9999	RC	11.7257 (2.597)	10.896 (1.581)	9.7687 (1.226)	237.53	1.89E - 48
	θ_{11}	2.4569 (.9122)	1.1732 (0.327)	1.3428 (0.315)		
	θ_{30}	.0937 (.0047)	.1191 (.0050)	.1071 (.0034)		
	θ_{31}	.4475 (.0080)	.5762 (.0075)	.5152 (.0055)		
	θ_{32}	.4459 (.0080)	.2868 (.0069)	.3621 (.0053)		
	θ_{33}	.0127 (.0018)	.0158 (.0019)	.0143 (.0013)		
	ĽĹ	-3993.991	-4495.135	-8607.889		
$\beta = 0$	RC	8.2969 (1.0477)	7.6423 (.7204)	7.3113 (0.5073)	241.78	2.34E - 49
	θ_{11}	56.1656 (13.4205)	36.6692 (7.0675)	36.0175 (5.5145)		
	θ_{30}	.0937 (.0047)	.1191 (.0050)	.1070 (.0034)		
	θ_{31}	.4475 (.0080)	.5762 (.0075)	.5152 (.0055)		
	θ_{32}	.4459 (.0080)	.2868 (.0069)	.3622 (.0053)		
	θ_{33}	.0127 (.0018)	.0158 (.0019)	.0143 (.0143)		
	LL	-3996.353	-4496.997	-8614.238		
Myopia tests:	LR	4.724	3.724	12.698		
	Statistic					
	(df=1)					
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal	0.0297	0.0536	.00037		
	Significance					
	Level					

MATLAB implementation, n=175, (replication of Table X)

Output from run_busdata.m:

```
maci64 -nodesktop - 89×35 maci64 -nodesktop - 89×35
>> run busdata
Structural Estimation using busdata from Rust(1987)
Bustypes
               = [ 1 2 3 4 ]
Beta
                    0.99990
                 175.00000
Sample size
               = 8156.00000
Method nfxp (pmle)
    Param.
                              Estimates
                                                  s.e.
                                                              t-stat
                                 9.7910
                                               1.2684
                                                              7.7190
                                               0.3458
                                                              3.8996
                                 1.3486
log-likelihood
                  = -300.57017
runtime (seconds) =
                       0.07795
a'*inv(h)*a
                 = 2.65552e-09
Method nfxp (mle)
    Param.
                              Estimates
                                                              t-stat
                                 9.7915
                                               1.2689
                                                              7.7168
                                 1.3488
                                               0.3460
                                                              3.8982
                      (1)
                                 0.1070
                                               0.0034
                                                             31.2111
                      (2)
                                                             93.0533
                                 0.5152
                                               0.0055
                      (3)
                                 0.3622
                                               0.0053
                                                             68.0413
                      (4)
                                 0.0143
                                               0.0013
                                                             10.8947
                      (5)
                                 0.0009
                                               0.0003
                                                              2,6469
loa-likelihood
                  = -8607.88844
runtime (seconds) =
                       0.07484
g'*inv(h)*g
                 = 7.26854e-09
>>
```

Equilibrium bus mileage and demand for enigines

- Let π be the long run stationary (or equilibrium) distribution of the controlled process $\{i_t, x_t\}$
- lacktriangleright π is then given by the unique solution to the functional equation

$$\pi(x,i) = \int_{y} \int_{j} P(i|x,\theta)p(x|y,j,\theta_3)\pi(dy,dj)$$

- \blacktriangleright π is the ergodic distribution of the controlled state transition matrix
- ► Carly the equilibrium distribution of π is an implicit function of the structural parameters θ , which we emphasize by the notation π_{θ}
- ▶ Given π_{θ} , we can also obtain the following simple formula for annual equilibrium demand for engines as a function of RC

$$d(RC) = 12M \int_0^\infty \pi_\theta(dx, 1)$$

Equilibrium Bus mileage, bus group 4

Demand Function, bus group 4

Why not a reduced form for demand?

Reduced form

Regress engine replacements on replacement costs

Problem: Lack of variation in replacement costs

- ▶ Data would be clustered around the intersection of the demand curves for $\beta=0$ and $\beta=0.9999$ (both models predict that RC is around the actual RC of \$4343)
- Demand also depends on how operating costs varies with mileage
- Need exogenous variation in RC.... that doesn't vary with operating costs
- Even if we had exogenous variation, this does not help us to understand the underlying economic incentives

Structural Approach

Attractive features

- Structural parameters have a transparent interpretation
- ▶ Evaluation of (new) policy proposals by counterfactual simulations.
- Economic theories can be tested directly against each other.
- Economic assumptions are more transparent and explicit (compared to statistical assumptions)

Less attractive features

- We impose more structure and make more assumptions
- ► Truly "structural" (policy invariant) parameters may not exist
- ► The curse of dimensionality
- ► The identification problem
- ▶ The problem of multiplicity and indeterminacy of equilibria
- ▶ Intellectually demanding and a huge amount of work