EE 102 spring 2001-2002 Handout #25

Lecture 12 Modulation and Sampling

- The Fourier transform of the product of two signals
- Modulation of a signal with a sinusoid
- Sampling with an impulse train
- The sampling theorem

Convolution and the Fourier transform

suppose f(t), g(t) have Fourier transforms $F(\omega)$, $G(\omega)$

the **convolution** y = f * g of f and g is given by

$$y(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

(we integrate from $-\infty$ to ∞ because f(t) and g(t) are not necessarily zero for negative t)

from the table of Fourier transform properties:

$$Y(\omega) = F(\omega)G(\omega)$$

i.e., convolution in the time domain corresponds to multiplication in the frequency domain

Multiplication and the Fourier transform

the Fourier transform of the product

$$y(t) = f(t)g(t)$$

is given by

$$Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda)G(\omega - \lambda)d\lambda$$
$$Y = \frac{1}{2\pi} (F * G)$$

i.e., multiplication in the time domain corresponds to convolution in the frequency domain

example:

$$f(t) = e^{-|t|}, \quad F(\omega) = \frac{2}{1 + \omega^2}$$
$$g(t) = \cos 20t, \quad G(\omega) = \pi \delta(\omega - 20) + \pi \delta(\omega + 20)$$

the Fourier transform of $y(t) = e^{-|t|} \cos 20t$ is given by

$$Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda)G(\omega - \lambda) d\lambda$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} F(\lambda)\delta(\omega - \lambda - 20) d\lambda + \frac{1}{2} \int_{-\infty}^{\infty} F(\lambda)\delta(\omega - \lambda + 20) d\lambda$$

$$= \frac{1}{2}F(\omega - 20) + \frac{1}{2}F(\omega + 20)$$

$$= \frac{1}{1 + (\omega - 20)^2} + \frac{1}{1 + (\omega + 20)^2}$$

Modulation and Sampling 12–5

Sinusoidal amplitude modulation (AM)

Fourier transform of y

$$Y(\omega) = \frac{1}{2\pi}U(\omega) * (\pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0))$$
$$= \frac{1}{2}U(\omega - \omega_0) + \frac{1}{2}U(\omega + \omega_0)$$

- $\cos \omega_0 t$ is the carrier signal
- y(t) is the modulated signal
- ullet the Fourier transform of the modulated signal is the Fourier transform of the input signal, shifted by $\pm\omega_0$

Sinusoidal amplitude modulation

Modulation and Sampling 12–7

example: $u(t) = 2 + \cos t$, $\omega_0 = 20$

demodulation

Fourier transform of y and z:

$$Y(\omega) = \frac{1}{2}U(\omega - \omega_0) + \frac{1}{2}U(\omega + \omega_0)$$

$$Z(\omega) = \frac{1}{2\pi}Y(\omega) * (\pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0))$$

$$= \frac{1}{2}Y(\omega - \omega_0) + \frac{1}{2}Y(\omega + \omega_0)$$

$$= \frac{1}{4}U(\omega - 2\omega_0) + \frac{1}{2}U(\omega) + \frac{1}{4}U(\omega + 2\omega_0)$$

if U is bandlimited, we can eliminate the 1st and 3rd term by lowpass filtering

Sinusoidal amplitude demodulation

Modulation and Sampling 12–10

Application

Suppose for example that u(t) is an audio signal (frequency range $10 \mathrm{Hz} - 20 \mathrm{kHz}$)

We rather not transmit u directly using electromagnetic waves:

- the wavelength is several 100 km, so we'd need very large antennas
- we'd be able to transmit only one signal at a time
- the Navy communicates with submerged submarines in this band

Modulating the signal with a carrier signal with frequency 500 kHz to 5 GHz:

- allows us to transmit and receive the signal
- allows us to transmit many signals simultaneously (frequency division multiplexing)

Sampling with an impulse train

Multiply a signal x(t) with a unit impulse train with period T

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$x(t) \longrightarrow y(t)$$

Sampled signal:
$$y(t) = x(t) \sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT) \delta(t-kT)$$

(a train of impulses with magnitude . . . , x(-T), x(0), x(T), x(2T), . . .)

The Fourier transform of an impulse train

train of unit impulses with period $T{:}\ p(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$

Fourier transform (from table): $P(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$

Consequences of Sampling

- Frequencies well below the sampling rate ($\omega << 2\pi/T$) are "sampled" in the sense we expect.
- Frequencies at multiples of the sampling rate ($\omega = 2\pi n/T$) look like they are constant. We can't tell them from DC. These frequencies "alias" as DC.

Frequency domain interpretation of sampling

The Fourier transform of the sampled signal is

$$Y = \frac{1}{2\pi}(X * P),$$

i.e., the convolution of X with $P(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$

$$Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda) P(\omega - \lambda) d\lambda$$

$$= \frac{1}{T} \int_{-\infty}^{\infty} X(\lambda) \left(\sum_{k=-\infty}^{\infty} \delta(\omega - \lambda - \frac{2\pi k}{T}) \right) d\lambda$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} X(\lambda) \delta(\omega - \lambda - \frac{2\pi k}{T}) d\lambda$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X(\omega - \frac{2\pi k}{T})$$

example: sample $x(t) = e^{-|t|}$ at different rates

x sampled with T=1 ($2\pi/T=6.3$)

x sampled with $T=0.5~(2\pi/T=12.6)$

x sampled with $T=0.2~(2\pi/T=31.4)$

The sampling theorem

can we recover the original signal x from the sampled signal y?

example: a band-limited signal x (with bandwidth W)

Fourier transform of $y(t) = \sum_{k} x(kT)\delta(t - kT)$:

suppose we filter y through an ideal lowpass filter with cutoff frequency ω_c , i.e., we multiply $Y(\omega)$ with

$$H(\omega) = \begin{cases} 1 & -\omega_c \le \omega \le \omega_c \\ 0 & |\omega| \ge \omega_c \end{cases}$$

if $W \leq \omega_c \leq 2\pi/T - W$, then the result is $H(\omega)Y(\omega) = X(\omega)/T$, *i.e.*, we recover X exactly

same signal, sampled with $T=\pi/W$

we can still recover $X(\omega)$ perfectly by lowpass filtering with $\omega_c=W$

sample with $T > \pi/W$

 $X(\omega)$ cannot be recovered from $Y(\omega)$ by lowpass filtering

the sampling theorem

suppose x is a band-limited signal with bandwidth W, i.e.,

$$X(\omega) = 0$$
 for $|\omega| > W$

and we sample at a rate 1/T

$$y(t) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t - kT)$$

then we can recover x from y if $T \leq \pi/W$

- the sampling rate must be at least $1/T = W/\pi$ samples per second (W/π) is called the *Nyquist rate*)
- the distortion introduced by sampling below the Nyquist rate is called aliasing