1. Fent servir la successió exacta llarga de Mayer-Vietoris, calculem l'homologia de l'esfera, el tor i el pla projectiu.

Calcularem l'homologia de \mathbb{S}^n , $\mathbb{S}^n \times \mathbb{S}^m$ ($\mathbb{T}^2 \cong \mathbb{S}^1 \times \mathbb{S}^1$ via Mayer-Vietoris i $\mathbb{S}^n \times \mathbb{S}^m$ via Künneth) i \mathbb{RP}^n .

Calculem l'homologia de \mathbb{S}^n . Veurem que, si n > 0,

$$H_p(\mathbb{S}^0) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & \text{si } p = 0 \\ 0 & \text{si } p \neq 0 \end{cases}, H_p(\mathbb{S}^n) \cong \begin{cases} \mathbb{Z} & \text{si } p = 0, n \\ 0 & \text{si } p \neq 0, n \end{cases}$$

Amb homologia reduïda, és equivalent a veure que, per tot $n \ge 0$,

$$\widetilde{H}_p(\mathbb{S}^n) \cong \begin{cases} \mathbb{Z} & \text{si } p = n \\ 0 & \text{si } p \neq n \end{cases}$$

Procedim per inducció en n. Si n=0, $\mathbb{S}^0=\{1\} \sqcup \{-1\}$. Per l'axioma de la dimensió, $\widetilde{H}_p(\mathbb{S}^0)\cong \widetilde{H}_p(\{1\})\oplus \widetilde{H}_p(\{-1\})\cong 0\oplus 0=0$. Com \mathbb{S}^0 no és buit i l'homologia singular és una teoria d'homologia amb coeficient \mathbb{Z} , $H_0(\mathbb{S}^0)\cong H_0(\{1\})\oplus H_0(\{-1\})\cong \mathbb{Z}\oplus \mathbb{Z}$, d'on $\widetilde{H}_0(\mathbb{S}^0)\cong \mathbb{Z}$.

Suposem que per i < n el resultat és cert. Siguin $p \in \mathbb{S}^n, U = \mathbb{S}^n - \{p\}, V = \mathbb{S}^n - \{-p\}$. $U, V \subset \mathbb{S}^n$ són oberts (ja que en un espai Hausdorff $\{p\}, \{-p\}$ són tancats), $U, V \simeq \{*\}, U \cap V \simeq \mathbb{S}^{n-1}$ i $U \cup V = \mathbb{S}^n$. Considerem la successió de Mayer-Vietoris per homologia reduïda:

$$\cdots \longrightarrow \widetilde{H}_{p}(U) \oplus \widetilde{H}_{p}(V) \xrightarrow{k_{*}-\ell_{*}} \widetilde{H}_{p}(\mathbb{S}^{n}) \xrightarrow{D} \widetilde{H}_{p-1}(U \cap V) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{p-1}(U) \oplus \widetilde{H}_{p}(V) \longrightarrow \cdots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\cdots \longrightarrow 0 \longrightarrow \widetilde{H}_{p}(\mathbb{S}^{n}) \longrightarrow \widetilde{H}_{p-1}(\mathbb{S}^{n-1}) \longrightarrow 0 \longrightarrow \cdots$$

Per exactitud de la successió de Mayer-Vietoris, $\widetilde{H}_p(\mathbb{S}^n) \cong \widetilde{H}_{p-1}(\mathbb{S}^{n-1})$ (n > 0). Per hipòtesi d'inducció,

$$\widetilde{H}_p(\mathbb{S}^n) \cong \widetilde{H}_{p-1}(\mathbb{S}^{n-1}) \cong \begin{cases} \mathbb{Z} & \text{si } p-1=n-1\\ 0 & \text{si } p-1 \neq n-1 \end{cases} = \begin{cases} \mathbb{Z} & \text{si } p=n\\ 0 & \text{si } p \neq n \end{cases}$$

Calculem l'homologia de $\mathbb{S}^n \times \mathbb{S}^m$ via Künneth. La fórmula de Künneth diu

$$H_n(X \times Y) \cong \left(\bigoplus_{p=0}^n H_p(X) \otimes H_{n-p}(Y)\right) \oplus \left(\bigoplus_{p=1}^n \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(X), H_{n-p}(Y))\right)$$

Aleshores, distingint si $n \neq m$ i n = m, obtenim

$$H_p(\mathbb{S}^n \times \mathbb{S}^m) = \begin{cases} \mathbb{Z} & \text{si } p = 0, n, m, n + m \\ 0 & \text{si } p \neq 0, n, m, n + m \end{cases}, H_p(\mathbb{S}^n \times \mathbb{S}^n) = \begin{cases} \mathbb{Z} & \text{si } p = 0, 2n \\ \mathbb{Z} \oplus \mathbb{Z} & \text{si } p = n \\ 0 & \text{si } p \neq 0, n, 2n \end{cases}$$

Calculem l'homologia de \mathbb{T}^2 via Mayer-Vietoris. Sigui $\pi: \mathbb{I} \times \mathbb{I} \to \mathbb{I} \times \mathbb{I} / \sim (=: \mathbb{T}^2)$ el pas al quocient, on $\forall (x,y)((x,y) \in \mathbb{I} \times \mathbb{I} \to (x,0) \sim (x,1) \wedge (0,y) \sim (1,y))$. Com \mathbb{T}^2 és arc-connex, $H_0(\mathbb{T}^2) = 0$. Siguin $p \in Int(\mathbb{I} \times \mathbb{I}), U = \pi(\mathbb{I} \times \mathbb{I} - \{p\})$ i $V = \pi(Int(\mathbb{I} \times \mathbb{I}))$. Tenim que $U \simeq \mathbb{S}^1 \vee \mathbb{S}^1, V \simeq \{*\}, U \cap V \simeq \mathbb{S}^1$ i $U \cap V = \mathbb{T}^2$. Considerem la successió de Mayer-Vietoris per homologia reduïda. Si $p \geq 3$,

$$\cdots \longrightarrow \widetilde{H}_{p}(U \cap V) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{p}(U) \oplus \widetilde{H}_{p}(V) \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{p}(\mathbb{T}^{2}) \xrightarrow{D} \widetilde{H}_{p-1}(U \cap V) \longrightarrow \cdots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \widetilde{H}_{p}(\mathbb{T}^{2}) \longrightarrow 0 \longrightarrow \cdots$$

Per exactitud de la successió de Mayer-Vietoris, $\widetilde{H}_p(\mathbb{T}^2)=0$ si $p\geq 0$. De Mayer-Vietoris, obtenim la següent successió exacta:

$$0 \longrightarrow \widetilde{H}_{2}(\mathbb{T}^{2}) \stackrel{D}{\longrightarrow} \widetilde{H}_{1}(\mathbb{S}^{1}) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{1}(\mathbb{S}^{1} \vee \mathbb{S}^{1}) \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{1}(\mathbb{T}^{2}) \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \parallel$$

$$0 \longrightarrow \widetilde{H}_{2}(\mathbb{T}^{2}) \stackrel{D}{\longrightarrow} \mathbb{Z} \xrightarrow{\iota_{*} \oplus j_{*}} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{1}(\mathbb{T}^{2}) \longrightarrow 0$$

Tenim que (fent un abús de notació) $\iota_* \oplus j_* : \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ esta definida per $\iota_* \oplus j_*(1) = (1,0) + (0,1) - (1,0) - (0,1) = (0,0)$. Aleshores, $\ker \iota_* \oplus j_* = \mathbb{Z}$ i im $\iota_* \oplus j_* = 0$. Per exactitud de la successió, D és injectiva i $k_* - \ell_*$ és exhaustiva. Aleshores, $\widetilde{H}_2(\mathbb{T}^2) \cong \operatorname{im} D = \ker \iota_* \oplus j_* = \mathbb{Z}$ i, pel primer teorema d'isomorfisme, $\widetilde{H}_1(\mathbb{T}^2) \cong \mathbb{Z} \oplus \mathbb{Z}/\ker k_* - \ell_* = \mathbb{Z} \oplus \mathbb{Z}/\operatorname{im} \iota_* \oplus j_* = \mathbb{Z} \oplus \mathbb{Z}/0 \cong \mathbb{Z} \oplus \mathbb{Z}$, com volíem. Fixem-nos que el càlcul coincideix amb Künneth. Calculem l'homologia de \mathbb{RP}^2 . Veurem que

$$H_p(\mathbb{RP}^2) \cong \begin{cases} \mathbb{Z} & \text{si } p = 0 \\ \mathbb{Z}/(2) & \text{si } p = 1 \\ 0 & \text{si } p \ge 2 \end{cases}$$

Considerem $\pi: \mathbb{S}^2 \to \mathbb{S}^2/(\mathbb{Z}/(2)) (= \mathbb{RP}^2)$ la identificació dels antipodals. Siguin $p, -p \in \mathbb{S}^2$, $U = \pi(\mathbb{S}^2 - \{p, -p\})$, $V = \pi(\mathcal{B}(p; \varepsilon) \sqcup \mathcal{B}(-p; \varepsilon))$. U, V són oberts, $U \simeq \mathbb{S}^1$, $V \simeq \{*\}$, $U \cap V \simeq \mathbb{S}^1$ i $U \cup V = \mathbb{RP}^2$. Considerem la successió de Mayer-Vietoris per homologia reduïda. Si $p \geq 3$,

$$\cdots \longrightarrow \widetilde{H}_{p}(U \cap V) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{p}(U) \oplus \widetilde{H}_{p}(V) \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{p}(\mathbb{RP}^{2}) \xrightarrow{D} \widetilde{H}_{p-1}(U \cap V) \longrightarrow \cdots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\cdots \longrightarrow \widetilde{H}_{p}(\mathbb{S}^{1}) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{p}(\mathbb{S}^{1}) \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{p}(\mathbb{RP}^{2}) \xrightarrow{D} \widetilde{H}_{p-1}(\mathbb{S}^{1}) \longrightarrow \cdots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \qquad \qquad$$

De Mayer-Vietoris, obtenim la següent successió exacta llarga:

$$0 \longrightarrow \widetilde{H}_{2}(\mathbb{RP}^{2}) \xrightarrow{D} \widetilde{H}_{1}(\mathbb{S}^{1}) \xrightarrow{\iota_{*} \oplus j_{*}} \widetilde{H}_{1}(\mathbb{S}^{1}) \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{1}(\mathbb{RP}^{2}) \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \parallel$$

$$0 \longrightarrow \widetilde{H}_{2}(\mathbb{RP}^{2}) \xrightarrow{D} \mathbb{Z} \xrightarrow{\iota_{*} \oplus j_{*}} \mathbb{Z} \xrightarrow{k_{*} - \ell_{*}} \widetilde{H}_{1}(\mathbb{RP}^{2}) \longrightarrow 0$$

Tenim que $\iota_* \oplus j_* : \mathbb{Z} \to \mathbb{Z}$ esta definida per $\iota_* \oplus j_*(1) = 2$. Aleshores, $\ker \iota_* \oplus j_* = 0$ i im $\iota_* \oplus j_* = 2\mathbb{Z}$. Per exactitud de la successió, D és injectiva i $k_* - \ell_*$ és exhaustiva. Aleshores, $\widetilde{H}_2(\mathbb{RP}^2) \cong \operatorname{im} D = \ker \iota_* \oplus j_* = 0$ i, pel primer teorema d'isomorfisme, $\widetilde{H}_1(\mathbb{RP}^2) \cong \mathbb{Z}/\ker k_* - \ell_* = \mathbb{Z}/\operatorname{im} \iota_* \oplus j_* = \mathbb{Z}/(2)$, com volíem.

2. Com ho faries per calcular l'homologia de qualsevulla d'elles (superfícies compactes)?

Pel teorema de classificació de les superfícies compactes connexes, tota superfície compacta connexa és homeomorfa a una superfície compacta connexa orientable de gènere g (és a dir, homeomorfa a \mathbb{S}^2 si g=0 o a $\#_g\mathbb{T}^2$ si g>0) o bé una superfície compacta connexa no-orientable de gènere g (és a dir, homeomorfa a $\#_g\mathbb{RP}^2$ per g>0). Si g>0, les superfícies compactes connexes orientables i no-orientables de gènere g corresponen amb un 4g-gon amb costats identificats per les etiquetes $\alpha_1, \beta_1, \alpha_1^{-1}, \beta_1^{-1}, \ldots, \alpha_g, \beta_g, \alpha_g^{-1}, \beta_g^{-1}$ i amb un 2g-gon amb costats identificats per les etiquetats $\alpha_1, \alpha_1, \ldots, \alpha_g, \alpha_g$. Aleshores, calcularem l'homologia de qualsevol d'elles buscant un recobriment adequat per fer servir Mayer-Vietoris.

3. Descriu de manera general $H_*(S_g)$ i $H_*(N_g)$ on S_g és una superfície compacta connexa orientable de gènere g i N_g és una superfície compacta connexa no-orientable de gènere g.

Com S_g, N_g són arc-connexes, $H_0(S_g), H_0(N_g) \cong 0$. Considerem P_{4g} el 4g-gon descrit abans (per les superfícies compactes connexes orientables de gènere g>0) sense identificar i $q:P_{4g} \twoheadrightarrow S_g$ el pas al quocient. Sigui $p \in Int(P_{4g}), \ U=q(Int(P_{4g}))$ i $V=q(P_{4g}-\{p\})$. Tenim que U,V són oberts, $U\simeq \{*\}, \ V\simeq \bigvee_{2g}\mathbb{S}^1, \ U\cap V\simeq \mathbb{S}^1$ i $U\cup V=S_g$. Considerem la successió de Mayer-Vietoris per homologia reduïda. Si $p\geq 3$,

Per exactitud de la successió de Mayer-Vietoris, $\widetilde{H}_p(S_g)$ per $p \geq 3$. De Mayer-Vietoris, tenim la següent successió exacta:

Tenim que $\iota_* \oplus j_* : \mathbb{Z} \to \bigoplus_{2g} \mathbb{Z}$ esta definida per $\iota_* \oplus j_* = e_1 + e_2 - e_1 - e_2 + e_3 + e_4 + e_4 + e_5 + e_5$

... + $e_{2g-1} + e_{2g} - e_{2g-1} - e_{2g} = (0, ..., 0)$, on $e_i = (0, ..., 0, 1, 0, ..., 0) \bigoplus_{2g} \mathbb{Z}$. Aleshores, $\ker \iota_* \oplus j_* = \mathbb{Z}$ i $\operatorname{im} \iota_* \oplus j_* = 0$. Per exactitud de la successió, D és injectiva i $k_* - \ell_*$ és exhaustiva. Aleshores, $\widetilde{H}_2(S_g) \cong \operatorname{im} D = \ker \iota_* \oplus j_* = \mathbb{Z}$ i, pel primer teorema d'isomorfisme, $\widetilde{H}_1(S_g) \cong \bigoplus_{2g} \mathbb{Z}/\ker k_* - \ell_* = \bigoplus_{2g} \mathbb{Z}/\operatorname{im} \iota_* \oplus j_* = \bigoplus_{2g} \mathbb{Z}/0 \cong \bigoplus_{2g} \mathbb{Z}$, com volíem.

Considerem Q_{2g} el 2g-gon descrit abans (per les superfícies compactes connexes no-orientables de gènere g>0) sense identificar i $q:Q_{2g} \twoheadrightarrow N_g$ el pas al quocient. Sigui $p\in Int(Q_{2g}),\ U=q(Int(Q_{2g}))$ i $V=q(Q_{2g}-\{p\})$. Tenim que U,V són oberts, $U\simeq \{*\},\ V\simeq\bigvee_g\mathbb{S}^1,\ U\cap V\simeq\mathbb{S}^1$ i $U\cup V=N_g$. Considerem la successió de Mayer-Vietoris per homologia reduïda. Si $p\geq 3$,

Per exactitud de la successió de Mayer-Vietoris, $\widetilde{H}_p(N_g)$ per $p \geq 3$. De Mayer-Vietoris, tenim la següent successió exacta:

Tenim que $\iota_* \oplus j_* : \mathbb{Z} \to \bigoplus_g \mathbb{Z}$ esta definida per $\iota_* \oplus j_*(1) = e_1 + e_1 + \ldots + e_g + e_g = (2,\ldots,2)$. Aleshores, $\ker \iota_* \oplus j_* = 0$ i $\operatorname{im} \iota_* \oplus j_* = \langle (2,\ldots,2) \rangle$. Tenim que $\langle (1,\ldots,1), e_2,\ldots, e_g \rangle$ és una base de $\bigoplus_g \mathbb{Z}$, $\operatorname{im} \iota_* \oplus j_* = 2\mathbb{Z} \oplus (\bigoplus_{g-1} 0)$. Per exactitud de la successió, D és injectiva i $k_* - \ell_*$ és exhaustiva. Aleshores, $\widetilde{H}_2(S_g) \cong \operatorname{im} D = \ker \iota_* \oplus j_* = 0$ i, pel primer teorema d'isomorfisme, $\widetilde{H}_1(S_g) \cong \bigoplus_g \mathbb{Z}/\ker k_* - \ell_* = \bigoplus_g \mathbb{Z}/\operatorname{im} \iota_* \oplus j_* = \bigoplus_g \mathbb{Z}/(2\mathbb{Z} \oplus (\bigoplus_{g-1} 0)) \cong \mathbb{Z}/(2) \oplus (\bigoplus_{g-1} \mathbb{Z})$, com volíem.

4. Per cadascun dels dos grups abelians graduats següents, descriu dos espais topològics no homòtops tals que la seva homologia coincideixi.

$$A_p \cong \begin{cases} \mathbb{Z} & si \ p = 0 \\ \bigoplus_5 \mathbb{Z} \oplus \mathbb{Z}/(2) & si \ p = 1 \ , B_p \cong \\ 0 & si \ p \ge 2 \end{cases} \begin{cases} \mathbb{Z} & si \ p = 0, 2 \\ \bigoplus_6 \mathbb{Z} & si \ p = 1 \\ 0 & si \ p \ge 3 \end{cases}$$

Pel grup abelià graduat A_p , considerem N_6 i $\mathbb{RP}^1 \vee (\bigvee_5 \mathbb{S}^1)$. És clar que $H_*(N_6) \cong A_p \cong H_*(\mathbb{RP}^1 \vee (\bigvee_5 \mathbb{S}^1))$. Si fóssin homotòpicament equivalents, els grups d'homotopia serien isomorfs. Però, els primers grups d'homotopia no ho són, ja que els següents són clarament no isomorfs:

$$\pi_1(N_6) \cong \langle a_1, a_2, a_3 | a_1^2 a_2^2 a_3^2 = e \rangle$$
$$\pi_1(\mathbb{RP}^1 \vee (\bigvee_{5} \mathbb{S}^1)) \cong (*_5 \mathbb{Z}) * \mathbb{Z}/(2)$$

Similarment, pel grup abelià graduat B_p , considerem S_3 i $\mathbb{S}^2 \vee (\bigvee_6 \mathbb{S}^1)$. És clar que $H_*(S_3) \cong B_p \cong H_*(\mathbb{S}^2 \vee (\bigvee_6 \mathbb{S}^1))$, però $\pi_1(S_3) \not\cong \pi_1(\mathbb{S}^2 \vee (\bigvee_6 \mathbb{S}^1))$:

$$\pi_1(S_3) \cong \langle a_1, b_1, a_2, b_2, a_3, b_3 | a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} a_3 b_3 a_3^{-1} b_3^{-1} = e \rangle$$

$$\pi_1(\mathbb{S}^2 \vee (\bigvee_6 \mathbb{S}^1)) \cong \pi_1(\mathbb{S}^2) * (*_6 \pi_1(\mathbb{S}^1)) \cong *_6 \mathbb{Z}$$