La Dinámica de Glóbulos Rojos en Medicina: Un acercamiento con Modelos Matemáticos.

por Miguel Sandoval Cardozo

Thesis submitted in fulfilment of the requirements for the degree of Bachelor of Science bajo la supervisión de José Ricardo Arteaga Bejarano

> Departmento de Matemáticas Facultad de Ciencias Universidad de los Andes 3 de marzo de 2024

Resumen

Dedicatoria

Agradecimientos

Miguel Sandoval Cardozo 3 de marzo de 2024 Bogotá, Colombia

Índice general

1.	Introducción	2
2.	Los glóbulos rojos en el cuerpo humano	4
3.	Modelo Base	5
4.	Variaciones del Modelo	6
5.	Experiments	7
6.	Conclusiones y trabajo a futuro	8
Α.	Useful Bounds	11

Introducción

Los glóbulos rojos (RBC's) constituyen alrededor del 50 % de la sangre en el cuerpo humano. Entre sus funciones se encuentra el transporte de oxígeno a los diferentes órganos y tejidos del cuerpo para su correcto funcionamiento, es por esto que son fundamentales para la vida humana, pues todos los órganos fallarían de no ser por la existencia de los glóbulos rojos. De esta manera, poder controlar la cantidad de RBC's en el cuerpo es una tarea muy importante para la labor médica, pues en ciertas enfermedades o complicaciones puede ocurrir una disminución de la cantidad de estas células en el torrente sanguíneo y, por lo tanto, ciertas funciones vitales pueden fallar. ([1][2][3][4][5])

Los modelos matemáticos con ecuaciones en diferencias (discretos) o ecuaciones diferenciales (continuos) se han transformado en los últimos años en componentes fundamentales para varios campos de la vida humana como la economía, la biología o medicina. Utilizando el modelo desarrollado del problema propuesto se pueden realizar simulaciones computacionales de este par poder así generar una predicción matemáticamente acertada de lo que se busque. ([6][7][8])

La investigación buscará modelar y simular matemáticamente las dinámicas de los glóbulos rojos en el cuerpo humano de una forma discreta, es decir día a día. El objetivo principal del trabajo es analizar, en un ambiente matemático y médico, la homeostasis (equilibrio) del modelo y también modificarlo para incluir diferentes complicaciones físicas, como la anemia o hemorragias, que pueden perturbar la homeostasis del modelo propuesto, observar su comportamiento y buscar soluciones para volver a lograr la homeostasis, como la aplicación de eritropoyetina, de hierro o de transfusiones en el cuerpo humano. ([9][10][11][12][13])

El modelo base escogido está basado en el propuesto por Edelstein [6] en el segundo problema de la página 27 y el decimosexto de la página 33.

Sea R=R(n) el número de glóbulos rojos circulando en el torrente sanguíneo en el día $n,\,M=M(n)$ el número de glóbulos rojos producidos por la médula ósea en el día $n,\,f>0$ la fracción de RBC's eliminada por el hígado y $\gamma>0$ la constante de producción, es decir la cantidad de glóbulos producida por cada glóbulo perdido. El modelo resultante es:

$$R(n+1) = (1-f)R(n) + M(n)$$

$$M(n+1) = \gamma \cdot f \cdot R(n)$$

A este modelo, y a los demás derivados de este al hacer las modificaciones adecuadas, se le hará el análisis matemático para encontrar la solución analítica, a través de los valores y vectores propios de la matriz que generan las ecuaciones, y se hallarán los equilibrios del modelo, determinando los valores de los parámetros para los cuales estos son estables o inestables. Sobre los modelos modificados, es decir con enfermedades o complicaciones fisiológicas y sus posibles curas, se presentará la explicación de los resultados obtenidos sobre las simulaciones y se intentará determinar la cura óptima para cada enfermedad y la cantidad a administrar para no perturbar la homeostasis. Para los medicamentos y las enfermedades, hay dos opciones: que sean de una sola vez (como hemorragias o medicamentos de una dosis) o multiples veces (multidosis y anemia).

Las conclusiones y los análisis presentados se espera que sean útiles para el campo médico, pues con estos se busca optimizar tiempo y fármacos, además de (lo más importante) lograr salvar vidas humanas.

La estructura del proyecto de grado es la siguiente:

- El capítulo dos presenta
- El capítulo tres presenta el análsis matemático del modelo base, así como las simulaciones computacionales de este y su respectivo análisis.
- El capítulo cuatro presenta variaciones del modelo nacidas de enfermedades, así como las simulaciones computacionales y su análisis.
- El capítulo cinco presenta las conclusiones del proyecto y el trabajo a futuro que se puede hacer a partir de la investigación.

Los glóbulos rojos en el cuerpo humano

Modelo Base

Variaciones del Modelo

Experiments

Conclusiones y trabajo a futuro

Bibliografía

- [1] J. Cosgrove, L. S. Hustin, R. J. de Boer y L. Perié, "Hematopoiesis in numbers," *Trends in Immunology*, vol. 42, n.º 12, págs. 1100-1112, 2021.
- [2] J. Hall, M. Hall y A. Guyton, *GUYTON & HALL TRATADO DE FISIOLO-GIA MEDICA 14a ED.* ELSEVIER, 2021, ISBN: 9788413820132. dirección: https://books.google.com.co/books?id=YtB1zgEACAAJ.
- [3] N. Schippel y S. Sharma, "Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage," *Experimental Hematology*, 2023.
- [4] W. E. Winter, L. A. Bazydlo y N. S. Harris, "The molecular biology of human iron metabolism," *Laboratory medicine*, vol. 45, n.º 2, págs. 92-102, 2014.
- [5] J. M. Higgins, "Red blood cell population dynamics," Clinics in laboratory medicine, vol. 35, n.º 1, págs. 43-57, 2015.
- [6] L. Edelstein-Keshet, Mathematical Models in Biology (Classics in Applied Mathematics). Society for Industrial y Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1988, ISBN: 9780898719147. dirección: https://books.google.com.co/books?id=uABYP1hnsf0C.
- [7] Y. Liu, R. Wu y A. Yang, "Research on Medical Problems Based on Mathematical Models," *Mathematics*, vol. 11, n.° 13, pág. 2842, 2023.
- [8] J. Murray, *Mathematical Biology: I. An Introduction* (Interdisciplinary Applied Mathematics). Springer New York, 2007, ISBN: 9780387224374. dirección: https://books.google.com.co/books?id=4WbpP90Gk1YC.
- [9] H. F. Bunn, "Erythropoietin," Cold Spring Harbor perspectives in medicine, vol. 3, n. ° 3, a011619, 2013.
- [10] M. Heras-Benito, "Anemia renal: tratamientos actuales y moléculas emergentes," Revista Clínica Española, 2023.
- [11] J. Portolés, L. Martín, J. J. Broseta y A. Cases, "Anemia in Chronic Kidney Disease: From Pathophysiology and Current Treatments, to Future Agents," Frontiers in Medicine, vol. 8, 2021, ISSN: 2296-858X. DOI: 10.3389/fmed. 2021.642296. dirección: https://www.frontiersin.org/articles/10.3389/fmed.2021.642296.
- [12] R. P. Shrestha, J. Horowitz, C. V. Hollot et al., "Models for the red blood cell lifespan," *Journal of pharmacokinetics and pharmacodynamics*, vol. 43, págs. 259-274, 2016.
- [13] J. Kirk, J. Orr y C. Hope, "A mathematical analysis of red blood cell and bone marrow stem cell control mechanisms," *British journal of haematology*, vol. 15, n.° 1, págs. 35-46, 1968.
- [14] Y. Liu, R. Wu y A. Yang, Research on Medical Problems Based on Mathematical Models. 2023.

- [15] R. P. Shrestha, J. Horowitz, C. V. Hollot et al., "Models for the red blood cell lifespan," 2016.
- [16] M. Loeffler, K. Pantel, H. Wulfff y H. E. Wichmannt, "A mathematical model of erythropoiesis in mice and rats Part 1: Structure of the model," 1989.
- [17] J. Murray, Mathematical Biology: I. An Introduction, Third Edition. 2001.
- [18] J. M. Higgins. "Red Blood Cell Population Dynamics." Accessed: Date you accessed the website. (2016), dirección: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717490/#:~:text=The%20RBC%20population%20is%20in,before%20being%20recycled%20and%20replaced.
- [19] L. Edelstein, *Mathematical Models in Biology*. SIAM, 2005, Problem 2, page 27 and Problem 16, page 33.
- [20] T. Manuel, L. Patrick, P. Torben, F. Thomas, S. Enrico y S. Sager, "Mathematical Modeling of RBC Count Dynamics after Blood Loss," *processes MDPI*, 2018.
- [21] J. D. Crispino, "Introduction to a review series on hematopoietic stem cells," *Blood*, vol. 142, n.º 6, págs. 497-497, 2023.
- [22] M. Loeffler, K. Pantel, H. Wulff y H. Wichmann, "A mathematical model of erythropoiesis in mice and rats Part 1: Structure of the model," *Cell Proliferation*, vol. 22, n.° 1, págs. 13-30, 1989.

Apéndice A

Useful Bounds