Лабораторная работа №1. Питон для математиков

Python (B русском языке встречаются названия питон или пайтон) — высокоуровненвый язык программировния общего назначения с динамической строгой типизацией и автоматическим управлением памятью, ориентированный на повышение производительности разработчика, читаемости кода и его качества, а также на обеспечение переносимости написанных на нём про-Язык является полностью объектно-ориентированным в том плане, что всё является объектами. Необычной особенностью языка является выделение блоков кода пробельными отступами. Синтаксис ядра языка минималистичен, за счёт чего на практике редко возникает необходимость обращаться к документации. Сам же язык известен как интерпретируемый и используется в том числе для написания скриптов. Недостатками языка являются зачастую более низкая скорость работы и более высокое потребление памяти написанных на нём программ по сравнению с аналогичным кодом, написанным на компилируемых языках, таких (Материал как С или С++. Википедии RZAT https://ru.wikipedia.org/wiki/Python)

Освоение языка **Python** начинается со стандартной библиотеки, этот путь вами уже пройден. На занятиях мы будем использовать библиотеки Math, NumPy, SciPy и Mathplotlib для построения графиков.

Библиотека math

Библиотека math — предоставляет обширный функционал для работы с числами, содержит основные математические функции.

Таблица 1. Функции в библиотеке Math

функция	описание
math.ceil(X)	округление до ближайшего
maur.cen(X)	большего числа
math.floor(X)	округление вниз
math.trunc(X)	усекает значение Х до целого
math.fabs(X)	модуль Х
math.fmod(X, Y)	остаток от деления Х на Ү
math.factorial(X)	факториал Х
	возвращает целую и дробную
math.modf(X)	часть X, оба числа имеют тот
	же знак, что и Х
math frayn(V)	возвращает мантиссу и экспо-
math.frexp(X)	ненту
math.exp(X)	e ^X
	логарифм X по основанию
math.log(X, [base])	base. Если base не указан, вы-
matil.log(A, [base])	числяется натуральный лога-
	рифм.
	натуральный логарифм (1 +
math.log1p(X)	X), при $X \rightarrow 0$ точнее, чем
	math.log(1+X)
math.log10(X)	логарифм X по основанию 10
math.log2(X)	логарифм X по основанию 2
math.pow(X, Y)	X ^Y
math.sqrt(X)	квадратный корень из X
math cos(Y)	косинус Х (Х указывается в
math.cos(X)	радианах)
moth cin(V)	синус X (X указывается в ра-
math.sin(X)	дианах)

функция	описание
math.tan(X)	тангенс X (X указывается в радианах).
math.acos(X)	арккосинус Х. В радианах
math.asin(X)	арксинус Х. В радианах
math.atan(X)	тангенс X (X указывается в радианах)
math.pi	pi
math.e	e

Библиотека NumPy

NumPy —Numerical Python. Здесь реализовано множество вычислительных механизмов, пакет поддерживает специализированные структуры данных, в том числе — одномерные и многомерные массивы, значительно расширяющие возможности Python по выполнению различных вычислений. NumPy можно рассматривать как свободную альтернативу MATLAB. Язык программирования MATLAB внешне напоминает NumPy: оба они интерпретируемые, оба позволяют выполнять операции над массивами (матрицами), а не над скалярами. И MATLAB, и NumPy для решения основных задач линейной алгебры используют код, основанный на коде библиотеки LAPACK.

Таблица 2. Команды в библиотеке NumPy

команда	описание
import numpy as np	загрузить библиотеку numpy
a = np.array([1, 4, 5, 8], float)	создать одномерный массив из
	списка с вещественными значе-
	ниями (тип данных может быть
	любым, даже комплексные чис-

команда	описание	
	ла, доступные типы данных	
	хранятся в словаре np.sctypes)	
a = np.array([[1, 2, 3], [4, 5, 6]],	создание двумерного	
float)	массива (матрицы)	
a.shape	возвращает количество строк и	
	столбцов в матрице а	
a.dtype	возвращает тип переменных,	
	хранящихся в матрице а	
a[0], a[0,0]	доступ к элементам массива	
	(матрицы). Помните, что в Руt-	
	non нумерация начинается с	
	нуля.	
:	позволяет работать со срезами	
	массивов	
a[1,:]	второй (!) столбец	
a[:,2]	третья (!) строка	
a[-1:, -2:]	отрицательными индексами	
	тоже можно пользоваться	
np.ones((2,3), dtype=float)	создает матрицу указанной	
	размерности из 1 (тип можно	
	менять)	
np.zeros(7, dtype=int)	создает матрицу размера 1х7 из	
	нулей	
np.identity(4, dtype=float)	создает единичную матрицу	
nn ava(A Ir_1 dtyma_float)		
np.eye(4, k=1, dtype=float)	создает матрицу с единицами	
	на k-той диагонали	
a.t a.transpose()	транспонирование матрицы	
np.random.rand(4, 5)	создание матрицы из случай-	
1	,, 1 ,	

команда	описание
	ных чисел вещественных чисел
	из интервала (0,1), размер 4х5
np.random.randint(0,3,(2, 10))	создание матрицы из случай-
	ных целых чисел из полуотрез-
	ка [0,3) размер матрицы (2,10)
np.random.uniform(0,3,(2, 10))	создание матрицы из случай-
	ных вещественных чисел из
	полуотрезка [0,3) размер мат-
	рицы (2,10)
+, -, *, \	поэлементное выполнение опе-
	раций над массивами (матри-
	цами)
np.dot(a, b)	скалярное умножение строк, а
	также умножение матриц
np.linalg.det(a)	вычисляет определитель мат-
	рицы
vals, vecs = np.linalg.eig(a)	сохранит собственные вектора в
	переменную vecs и собственные
	значения в переменную vals
np.set_printoptions(formatter={'	команда позволяет оформлять
float': "{0:.0f}".format})	вывод с плавающей точкой

Библиотека SciPy

Библиотека SciPy очень хорошо расширяет функционал NumPy. В настоящее время библиотека SciPy поддерживает интеграцию, градиентную оптимизацию, специальные функции, средства решения обыкновенных дифференциальных уравнений, инструменты параллельного программирования и многое другое. Другими словами, мы можем сказать, что если что-то есть в общем учебнике числовых вычислений, высока вероятность того, что вы найдете его реализацию в SciPy.

Таблица 3. Пакеты в бибилиотеке SciPy

название пакета	описание пакета	
cluster	алгоритмы кластерного анализа	
constants	физические и математические кон-	
	станты	
fftpack	быстрое преобразование Фурье	
integrate	решения интегральных и обыкно-	
	венных дифференциальных уравне-	
	ний	
interpolate	интерполяция и сглаживание сплай-	
	нов	
linalg	линейная алгебра	
ndimage	п-мерная обработка изображений	
odr	метод ортогональных расстояний	
optimize	оптимизация и численное решение	
	уравнений	
signal	обработка сигналов	
sparse	разреженные матрицы	
special	специальные функции	
stats	статистические распределения и	
	функции	

Библиотека SymPy

SymPy — это библиотека Python для выполнения символьных вычислений. Это система компьютерной алгебры, которая может выступать как отдельное приложение, так и в качестве библиотеки для других приложений. Поработать с ней онлайн можно на https://live.sympy.org/. Поскольку это чистая библиотека Python, ее можно использовать даже в интерактивном режиме.

В SymPy есть разные функции, которые применяются в сфере символьных вычислений, математического анализа, алгебры, дискретной математики, квантовой физики и так далее. SymPy может представлять результат в разных форматах: LaTeX, MathML и так далее. Распространяется библиотека по лицензии New BSD. Первыми эту библиотеку выпустили разработчики Ondřej Čertík и Aaron Meurer в 2007 году.

Символьные вычисления это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.

Компьютерная алгебра (в отличие от численных методов) занимается разработкой и реализацией аналитических методов решения математических задач на компьютере и предполагает, что исходные данные, как и результаты решения, сформулированы в аналитическом (символьном) виде. То есть символьные вычисления очень близки к вычислениям, которые производит человек. SymPy преобразует алгебраические выражения с помощью тех же символов, которые используются в традиционных ручных методах.

```
import math
print(math.sqrt(7))
2.6457513110645907

import sympy
print(sympy.sqrt(7))
sqrt(7)
```

Рисунок 1. Извлечение корня в SymPy

Сравним вычисление квадратного корня в модуле math и в модуле SymPy. Как можно увидеть, квадратный корень числа 7 вычисляется приблизительно. Но в SymPy квадратные корни чисел, которые не являются полными квадратами, просто не вычисляются. Основной модуль в SymPy включает класс Number, представляющий атомарные числа. У него есть пара подклассов: Float и Rational. В Rational также входит Integer. Symbol — самый важный класс в библиотеке SymPy. Как уже упоминалось ранее, символьные вычисления выполняются с помощью символов. И переменные SymPy являются объектами класса Symbol.

```
from sympy import Symbol
x = Symbol('x')
y = Symbol('y')
expression = x**2 + y**2
expression
```

Рисунок 2. Создание выражений

Аргумент функции Symbol() - это строка, содержащая символ, который можно присвоить переменной.

Таблица 4. Создание символов в библиотеке SymPy

функция	описание	пример
x = Symbol('x')	определяет символ, в данном случае х	<pre>from sympy import Symbol x = Symbol('x') x</pre>
v = Symbol('var1')	переменная может состоять из нескольких символов и чисел	v = Symbol('variable') v**3 variable ³
x, y, z = symbols("x, y, z")	определяет несколь- ко символов за один раз	x, y, z = symbols("x, y, z") expression = $x^{\text{HH}2} + y^{\text{HH}2} + \text{sympy.sqrt}(z)$ expression $x^2 + y^2 + \sqrt{z}$
beta= Symbol('beta')	можно работать с греческими буквами	<pre>beta = Symbol('beta') beta β</pre>
symbols('a:5')	индексированные символы (последовательность слов с цифрами) можно определить с помощью синтаксиса, напоминающего функцию range(). Диапазоны обозна-	from sympy import symbols symbols('a:5') (a0, a1, a2, a3, a4)

функция	описание	пример
	чаются двоеточием.	
	Тип диапазона оп-	
	ределяется симво-	
	лом справа от двое-	
	точия. Если это	
	цифра, то все смеж-	
	ные цифры слева	
	воспринимаются как	
	неотрицательное	
	начальное значение.	
	Смежные цифры	
	справа берутся на 1	
	больше конечного	
	значения	
symbols('mark(1:4)')	определяет несколь-	symbols('mark(1:4)')
	ко индексированных	
	переменных	(mark1, mark2, mark3)

Таблица 5. Подстановка значений в SymPy

функция	описание	пример
subs(a,b)	заменяет пер- вый параметр на второй	a = Symbol('a') expression = a*a +5 *a +3 expression $\alpha^2 + 5\alpha + 3$
		expression.subs(a, 2)

expr.subs(x, pi)	можно подставить известные константы, например,	<pre>from sympy import sin, pi expr = sin(x) expr1 = expr.subs(x, pi) expr1</pre>
expr.subs(b, a + b)	можно подставить выражение	a, b = symbols("a, b") expr = $(a + b)^{**}2$ expr1 = expr.subs(b, a + b) expr1 $(2\alpha + b)^2$
sympify(expr)	simplify() используется для преобразования любого произвольного выражения, чтобы его можно было использовать как выражение SymPy. Целые числа, конвертируются в SymPy.Integer, строки конвертируются в выражения SymPy	: $expr = "x**2 + 3*x + 2"$ expr1 = sympy.sympify(expr) expr1 : $x^2 + 3x + 2$: $expr1.subs(x, 2)$: 12

аргумент	если установить	sympy.sympify('10/5 + 4/2')
evaluate =	значение аргу-	4
False	мента False, то	sympy.sympify('10/5 + 4/2', evaluate = Fal
	арифметические	
	выражения и	$\frac{10}{5} + \frac{4}{2}$
	операторы бу-	
	дут конверти-	
	рованы в их эк-	
	виваленты	
	SumPy без вы-	
	числения выра-	
	жения	
lambdify()	переводит вы-	expr = 1 / sin(x)
	ражения SymPy	<pre>f = sympy.lambdify(x, expr)</pre>
	в функции	f(3.14)
	Python. Функ-	627.8831939138764
	ция lambdify	
	действует как	
	лямбда-	
	функция с тем	
	исключением,	
	что она конвер-	
	тирует ЅутРу в	
	имена данной	
	числовой биб-	
	лиотеки, обыч-	
	но NumPy. По	
	умолчанию же	
	она реализована	
	на основе стан-	
	дартной биб-	

лиотеки math	
--------------	--

Таблица 6. Преобразование выражений

функция	описание	пример
simplify()	применяет методы интеллектуальной эвристики, чтобы сделать входящее выражение «проще»	<pre>: x = Symbol('x') expr = Sympy.sin(x)**2 + Sympy.cos(x)**2 sympy.simplify(expr) : 1</pre>
expand()	используется для разложения полиномиальных выражений	a, b = symbols('a b') sympy.expand((a+b)**2) $a^2 + 2ab + b^2$
factor()	раскладывает многочлен на неприводимые множители по рациональным числам	x, y, z = symbols('x y z') expr = $(x^{4+}2^{4}z + 4^{4}x^{4}y^{4}z + 4^{4}y^{4+}2^{4}z)$ sympy.factor(expr) $z(x + 2y)^{2}$
factor_list()	возвращает список (множитель, сте- пень)	x, y, z = symbols('x y z') expr = (x**2*z + 4*x*y*z + 4*y**2*z) sympy.factor_list(expr) (1, [(z, 1), (x + 2*y, 2)])
cansel()	рациональную функцию приводит к каноническому виду р/q, где р и q — это разложенные полиномы без общих множителей, старшие коэффици-	expr1=x***2+2*x+1 expr2=x+1 sympy.cancel(expr1/expr2) x + 1

trigsimp()	енты р и q , являются целыми числами упрощает тригонометрические выражения	<pre>from sympy import trigsimp, sin, cos expr = 2*sin(x)**2 + 2*cos(x)**2 trigsimp(expr)</pre>
powsimp()	сокращает выражения, объединяя степени с аналогичными основаниями и значениями степеней	expr = $x^{**}y^{*}x^{**}z^{*}y^{**}z$ expr $x^{y}x^{z}y^{z}$ sympy.powsimp(expr) $x^{y+z}y^{z}$
combsimp()	упрощает комбина- торные выражения	$ \begin{aligned} & \exp r = \text{sympy.factorial}(x) / \text{sympy.factorial}(x-1) \\ & \exp r \\ & \frac{x!}{(x-1)!} \\ & \text{sympy.combsimp}(\text{expr}) \\ & x \end{aligned} $
logcombine()	преобразует лога- рифмические выра- жения	$\label{eq:continuous} \begin{split} &: sympy.logcombine(a^*sympy.log(x) + sympy.log(y) - sympy.log(z)) \\ &: a\log(x) + \log(y) - \log(x) \\ &: sympy.logcombine(a^*sympy.log(x) + sympy.log(y) - sympy.log(z), force = True) \\ &: \log\left(\frac{x^4y}{z}\right) \end{split}$

Таблица 7. Дифференцирование и интегрирование в SymPy

функция	описание	пример
diff()	вычисление производной	from sympy import diff expr = $x^* \sin(x^*x) + 1$ expr $x \sin(x^2) + 1$ diff(expr) $2x^2 \cos(x^2) + \sin(x^2)$
Derivative() и метод doit()	класс Derivative() создает производные, метод doit() вычисляет	: from sympy import Derivative d = Derivative(expr) d $ \frac{d}{dx} \left(x \sin \left(x^2 \right) + 1 \right) $: d.doit() $ 2x^2 \cos \left(x^2 \right) + \sin \left(x^2 \right) $
diff(expr, var)	вычисляет ча- стные произ- водные	<pre>expr1 = x*sin(x*x) + 1 expr2 = x*sin(y) + y*sin(x) diff(expr1, y) 0 diff(expr2, y) x cos(y) + sin(x)</pre>

integrate() Integral() и	вычисляет интегралы Integral() соз-	from sympy import integrate expr = $x *** 2 + x + 1$ integrate(expr, x): $\frac{x^3}{3} + \frac{x^2}{2} + x$
doit()	дает интегралы, метод doit() вычисляет	from sympy import Integral expr = Integral(sympy.log(x) *** 2, x) expr
integrate(expr, (x, a, b))	вычисляет определенный интеграл	<pre>expr = x *** 2 + x + 1 integrate(expr, (x, -1, 1)) : 8/3</pre>
integrate(f, (var, f1, f2))	допускается интегрирование по переменным границам	f = x * y res = integrate(f, (y, 1, x-2)) res $\frac{x(x-2)^2}{2} - \frac{x}{2}$
integrate(f, (y, a1, b1), (x, a2, b2))	вычисление кратных инте- гралов	integrate(res, (x, -1, 1)) $-\frac{4}{3}$ integrate(f, (y, 1, x-2), (x, -1, 1)) $-\frac{4}{3}$

Таблица 8. Решение уравнений в SymPy

функция	описание	пример
Eq(expr1, expr2)	создает уравнение	<pre>from sympy import Eq x, y = symbols("x y") Eq(x,y) x = y</pre>
solve- set(equation, va- riable, domain)	решает алгебраические уравнения. По умолчанию domain = S.Complexes	<pre>from sympy import solveset equation1 = Eq(x ***2 + 1, 0) solveset(equation1, x) {-i,i} from sympy import S solveset(equation1, x, S.Reals)</pre>
solveset(expr)	по умолчанию выражение приравнивается к нулю	solveset(x *** 2 -1) {-1,1}
solveset(expr)	решает некоторые трансцендентные уравнения	$solveset(sympy.exp(x) + 1, x)$ $\{i(2n\pi + \pi) \mid n \in \mathbb{Z}\}$
linsolve()	решает линейные уравнения, можно использовать для решения систем	from sympy import linsolve linsolve (Eq(x - y, 4), Eq(x + y, 1)], (x,y)) $\left\{ \left(\frac{5}{2}, -\frac{3}{2} \right) \right\}$

linsolve()	аргументы можно задавать в матричном виде	: from sympy import Matrix a, b = symbols('a b') a = Matrix([[1, -1], [1, 1]]) b = Matrix([4, 1]) linsolve([a, b], y) : { (\frac{5}{2}, -\frac{3}{2}) }
nonlinsolve()	решает нели- нейные уравне- ния	<pre>from sympy import nonlinsolve a, b = symbols('a b') nonlinsolve([a**2 + a, a - b], [a, b]) {(-1, -1),(0, 0)}</pre>

Задание к лабораторной работе.

Пример выполнения приведен по ссылке https://drive.google.com/file/d/1mz3GOdB54WyvrlN7tUVDo9ep R0oTYKz4/view?usp=sharing

Вариант 1.

- 1. Используя библиотеку NumPy, создать матрицу 5х5 случайных целых чисел, принадлежащих полуотрезку [0, 10). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
- 3. Используя библиотеку SymPy, упростите выражение $(2x+3y)^2-\frac{4xy}{3}(x-y)$ и найдите его значение при x=1.038, $y=\sqrt{7}$.
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.

- 5. Решить систему уравнений двумя способами: используя библиотеку NumPy и библиотеку SymPy $\begin{cases} x_1-x_3=1\\ -x_1-x_2+3x_3=-3\\ x_1-2x_2-4x_3=5 \end{cases}.$
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 \left(\sqrt{x}+\sqrt[3]{x^2}\right) dx$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1}^{1} \frac{y}{dy} \int\limits_{-1}^{y} (x-y) e^{y} dx.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 3\sin(x) \\ y = \sqrt{x+5} \end{cases}.$ Оси координат должны быть подписаны, графики

Вариант 2.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных вещественных чисел, принадлежащих интервалу (0, 2). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\frac{28a}{b}(a+b) + (2a-7b)^2 \quad \text{и найдите его значение при}$ $a = \sqrt{3} \; , \; b = -3.42 \; .$

- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, найти собственные векторы

и собственные значения матрицы
$$A = \begin{pmatrix} 0 & -3 & -1 \\ 3 & 8 & 2 \\ -7 & -15 & -3 \end{pmatrix}$$
.

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^4 \frac{dx}{1+\sqrt{2x+1}}$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^{\pi.2} \frac{x}{dx} \cos(x+y) dy.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = Ln(x+5) \\ y = 3x-2 \end{cases}$. Оси координат должны быть подписаны, графики

Вариант 3.

- 1. Используя специальные функции библиотеки NumPy, создать матрицу 5x5 из единиц и создать единичную матрицу 20x20.
 - 2. Используя библиотеку NumPy, вычислить определитель

$$\begin{vmatrix} 3 & -1 & 2 & 3 & 2 \\ 1 & 2 & -3 & 3 & 4 \\ 2 & -3 & 4 & 2 & 1 \\ 3 & 0 & 0 & 5 & 0 \\ 2 & 0 & 0 & 4 & 0 \end{vmatrix}.$$

- 3. Используя библиотеку SymPy, упростите выражение $\left(\frac{2}{x^2} + \frac{3}{y^2}\right)(x+3y)$ и найдите его значение при x = -2.01, $y = \sqrt{5}$.
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, создать случайную матрицу A из целых чисел из отрезка [0,5] размера 4x4. Создать векторстолбец B подходящего размера. Решить систему AX = B.
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^{1/3} ch^2(3x) dx$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 dx \int\limits_0^{1-x} dy \int\limits_0^{1-x-y} (x+y+z) dz.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 2\cos(x \frac{\pi}{4}) \\ y = x + 3 \end{cases}.$ Оси координат должны быть подписаны, графи-

Вариант 4.

1. Используя библиотеку NumPy, создать матрицу 7x7 случайных целых принадлежащих отрезку [0, 10]. Транспонировать. Вычислить ее определитель.

- 2. Используя библиотеку NumPy, создать две матрицы подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $(2a+3b)^2 + \frac{a}{b} \quad \text{и найдите его значение при} \quad a = \sqrt{3} \; ,$ $b = \sqrt{27} \; .$
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Решить систему уравнений двумя способами: используя

библиотеку NumPy и библиотеку SymPy
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 3x_1 + 3x_2 + 2x_3 = 7 \\ 5x_1 + 5x_2 + 3x_3 = 11 \end{cases}$$

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int_{0}^{\pi/4} \frac{dx}{1 + 2\sin^2 x}.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1}^2 dy \int\limits_{y^2}^{y+2} y^2 dx$.
 - 8. Построить в одной системе координат графики функций: $\begin{cases} y = 1 \cos(x) \\ y = \sqrt{3-x} \end{cases}.$ Оси координат должны быть подписаны,

Вариант 5.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных вещественных чисел, принадлежащих интервалу (-3, 3). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\frac{7xy}{4}(x+y)-(x-y)^2 \quad \text{и найдите его значение при}$ $x=-1.23, \ y=\sqrt{8} \ .$
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Используя библиотеку NumPy, найти собственные векторы

и собственные значения
$$A = \begin{pmatrix} -7 & -5 & -5 \\ 0 & 3 & 0 \\ 10 & 5 & 8 \end{pmatrix}$$

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^{\pi/2} e^{2x} \cos x dx.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = Ln(x) + 2 \\ y = -3x \end{cases}$. Оси координат должны быть подписаны, графики

должны быть разного цвета, должна быть выведена легенда. Точку пересечения (если она есть) выделить на графике оранжевым цветом.

Вариант 6.

- 1. Используя специальные функции библиотеки NumPy, создать матрицу 10x10 из вещественных единиц и создать единичную матрицу 10x10.
 - 2. Используя библиотеку NumPy, вычислить определитель

$$\begin{vmatrix} 2 & 1 & 3 & 6 \\ 4 & 1 & 3 & 3 \\ 5 & 2 & 4 & 1 \\ 5 & 1 & 2 & 2 \end{vmatrix}.$$

- 3. Используя библиотеку SymPy, упростите выражение $(2x+3y)^2-\frac{4xy}{3}(x-y)\quad \text{и найдите его значение при}$ $x=1.038,\ y=\sqrt{7}\ .$
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, создать случайную матрицу A из целых чисел из отрезка [-3,5] размера 4х4. Создать векторстолбец B подходящего размера. Решить систему AX = B.
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1/2}^{1/2} \frac{dx}{\sqrt{1-x^2}}.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{0}^{+\infty}\cos 2x dx.$

8. Построить в одной системе координат графики функций: $\begin{cases} y = \sin(x + \frac{\pi}{3}) \\ y = 2x \end{cases}$. Оси координат должны быть подписаны, графики

должны быть разного цвета, должна быть выведена легенда. Точку пересечения (если она есть) выделить на графике оранжевым цветом.

Вариант 7.

- 1. Используя библиотеку NumPy. создать матрицу 5x5 случайных целых принадлежащих полуотрезку [0, 10). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy. создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $(2a+3b)^2 + \frac{a}{b} \quad \text{и найдите его значение при} \quad a = \sqrt{3} \; ,$ $b = \sqrt{27} \; .$
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Решить систему уравнений двумя способами: используя

библиотеку NumPy и библиотеку SymPy
$$\begin{cases} x_1-x_3=1\\ -x_1-x_2+3x_3=-3.\\ x_1-2x_2-4x_3=5 \end{cases}$$

6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 \! \left(\sqrt{x} + \sqrt[3]{x^2} \right) \! dx$.

- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1}^{1} \frac{y}{dy} \int\limits_{-1}^{y} (x-y)e^y dx$.
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 3\sin(x) \\ y = \sqrt{x+5} \end{cases}.$ Оси координат должны быть подписаны, графики

Вариант 8.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных вещественных чисел, принадлежащих интервалу (0, 2). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\left(\frac{2}{x^2} + \frac{3}{y^2}\right)(x+3y)$ и найдите его значение при x = -2.01, $y = \sqrt{5}$.
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Используя библиотеку NumPy, найти собственные векторы

и собственные значения
$$A = \begin{pmatrix} 0 & -3 & -1 \\ 3 & 8 & 2 \\ -7 & -15 & -3 \end{pmatrix}$$
.

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^4 \frac{dx}{1+\sqrt{2x+1}}$.
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = Ln(x+5) \\ y = 3x-2 \end{cases}.$ Оси координат должны быть подписаны, графики

Вариант 9.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 из единиц. Создать единичную матрицу 50x50.
 - 2. Используя библиотеку NumPy, вычислить определитель

$$\begin{vmatrix} 3 & -1 & 2 & 3 & 2 \\ 1 & 2 & -3 & 3 & 4 \\ 2 & -3 & 4 & 2 & 1 \\ 3 & 0 & 0 & 5 & 0 \\ 2 & 0 & 0 & 4 & 0 \end{vmatrix}.$$

- 3. Используя библиотеку SymPy, упростите выражение $(2a+3b)^2 + \frac{a}{b} \quad \text{и найдите его значение при} \quad a = \sqrt{3} \; ,$ $b = \sqrt{27} \; .$
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.

- 5. Используя библиотеку NumPy, создать случайную матрицу A из целых чисел из отрезка [0,5] размера 4x4. Создать векторстолбец B подходящего размера. Решить систему AX = B.
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^{1/3} ch^2(3x)dx$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 \frac{1-x}{dx} \int\limits_0^{1-x-y} \frac{1-x-y}{0}$ теку SciPy и библиотеку SymPy $\int\limits_0^1 \frac{1}{dx} \int\limits_0^{1-x} \frac{1-x-y}{0} \int\limits_0^{1-x-y} \frac{1-x-y}{0} dz$.
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 2\cos(x \frac{\pi}{4}) \\ y = x + 3 \end{cases}.$ Оси координат должны быть подписаны, графи-

Вариант 10.

- 1. Используя библиотеку NumPy, создать матрицу 7x7 случайных целых принадлежащих отрезку [0, 10]. Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать две матрицы подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\frac{7xy}{4}(x+y)-(x-y)^2 \quad \text{и найдите его значение при}$ $x=-1.23, \ y=\sqrt{8} \ .$

- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Решить систему уравнений двумя способами: используя

библиотеку NumPy и библиотеку SymPy
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 3x_1 + 3x_2 + 2x_3 = 7 \\ 5x_1 + 5x_2 + 3x_3 = 11 \end{cases}.$$

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{0}^{\pi/4} \frac{dx}{1+2\sin^2 x}.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1}^2 dy \int\limits_{y^2}^{y+2} y^2 dx$.
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 1 \cos(x) \\ y = \sqrt{3-x} \end{cases}.$ Оси координат должны быть подписаны, графики

Вариант 11.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных вещественных чисел, принадлежащих интервалу (-3, 3). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.

- 3. Используя библиотеку SymPy, упростите выражение $(2x+3y)^2-\frac{4xy}{3}(x-y)\quad \text{и найдите его значение при}$ $x=1.038,\ y=\sqrt{7}$.
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, найти собственные векторы

и собственные значения
$$A = \begin{pmatrix} -7 & -5 & -5 \\ 0 & 3 & 0 \\ 10 & 5 & 8 \end{pmatrix}$$
.

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{0}^{\pi/2}e^{2x}\cos xdx.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = Ln(x) + 2 \\ y = -3x \end{cases}$. Оси координат должны быть подписаны, графики

Вариант 12.

1. Используя библиотеку NumPy, создать матрицу 10x10 из вещественных единиц. Создать единичную матрицу 10x10.

2. Используя библиотеку NumPy, вычислить определитель

$$\begin{vmatrix} 2 & 1 & 3 & 6 \\ 4 & 1 & 3 & 3 \\ 5 & 2 & 4 & 1 \\ 5 & 1 & 2 & 2 \end{vmatrix}.$$

- 3. Используя библиотеку SymPy, упростите выражение $(x-5y)^2 + \frac{4x}{y}(x+4) \, , \, \text{найдите его значение при} \ \, x=1.038 \, ,$ $y=\sqrt{7} \, .$
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, создать случайную матрицу A из целых чисел из отрезка [-3,5] размера 4х4. Создать векторстолбец B подходящего размера. Решить систему AX = B.
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{-1/2}^{1/2} \frac{dx}{\sqrt{1-x^2}} \, .$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{0}^{+\infty}\cos 2x dx.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = \sin(x + \frac{\pi}{3}) \\ y = 2x \end{cases}.$ Оси координат должны быть подписаны, графики

должны быть разного цвета, должна быть выведена легенда. Точку пересечения (если она есть) выделить на графике оранжевым цветом.

Вариант 13.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных целых принадлежащих полуотрезку [0, 10). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\frac{2b}{a}(b-2a)-(a+3b)^2 \ \text{и найдите его значение при} \ a=\sqrt{3} \ ,$ $b=-3.42 \ .$
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Решить систему уравнений двумя способами: используя

библиотеку NumPy и библиотеку SymPy
$$\begin{cases} x_1-x_3=1\\ -x_1-x_2+3x_3=-3\\ x_1-2x_2-4x_3=5 \end{cases}.$$

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 \left(\sqrt{x} + \sqrt[3]{x^2} \right) dx$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int_{-1}^{1} dy \int_{-2}^{y} (x-y)e^{y} dx$.
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = 3\sin(x) \\ y = \sqrt{x+5} \end{cases}.$ Оси координат должны быть подписаны, графики

Вариант 14.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 случайных вещественных чисел, принадлежащих интервалу (0, 2). Транспонировать. Вычислить ее определитель.
- 2. Используя библиотеку NumPy, создать вектор-столбец и матрицу подходящих размеров. Выполнить умножение матриц.
 - 3. Используя библиотеку SymPy, упростите выражение $\left(\frac{2}{x^2} + \frac{3}{y^2}\right)(x+3y)$ и найдите его значение при x = -2.01, $y = \sqrt{5}$
 - 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
 - 5. Используя библиотеку NumPy, найти собственные векторы

и собственные значения
$$A = \begin{pmatrix} 0 & -3 & -1 \\ 3 & 8 & 2 \\ -7 & -15 & -3 \end{pmatrix}$$
.

- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int_{0}^{4} \frac{dx}{1+\sqrt{2x+1}}$.
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^{\pi.2} dx \int\limits_0^x \cos(x+y) dy.$
- 8. Построить в одной системе координат графики функций: $\begin{cases} y = Ln(x+5) \\ y = 3x-2 \end{cases}$. Оси координат должны быть подписаны, графики должны быть разного цвета, должна быть выведена легенда. Точку

пересечения (если она есть) выделить на графике оранжевым цветом.

Вариант 15.

- 1. Используя библиотеку NumPy, создать матрицу 5x5 из единиц. Создать единичную матрицу 50x50.
 - 2. Используя библиотеку NumPy, вычислить определитель

$$\begin{vmatrix} 3 & -1 & 2 & 3 & 2 \\ 1 & 2 & -3 & 3 & 4 \\ 2 & -3 & 4 & 2 & 1 \\ 3 & 0 & 0 & 5 & 0 \\ 2 & 0 & 0 & 4 & 0 \end{vmatrix}.$$

- 3. Используя библиотеку SymPy, упростите выражение $\frac{x}{y^2}(x+y)-(2x-y)^2\,,$ найдите его значение при $x=-1.2\,,$ $y=\sqrt{2}\,.$
- 4. Используя библиотеку SymPy, найдите частные производные от выражения из задания выше.
- 5. Используя библиотеку NumPy, создать случайную матрицу A из целых чисел из отрезка [0,5] размера 4х4. Создать векторстолбец B подходящего размера. Решить систему AX = B.
- 6. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_{0}^{1/3} ch^{2}(3x) dx.$
- 7. Вычислить интеграл двумя способами: используя библиотеку SciPy и библиотеку SymPy $\int\limits_0^1 \frac{1-x}{dx} \int\limits_0^{1-x-y} \frac{1-x-y}{0}$ теку SciPy и библиотеку SymPy $\int\limits_0^1 \frac{1}{dx} \int\limits_0^{1-x} \frac{1-x-y}{0}$

8. Построить в одной системе координат графики функций:

$$\begin{cases} y = 2\cos(x - \frac{\pi}{4}) \text{ . Оси координат должны быть подписаны, графи-} \\ y = x + 3 \end{cases}$$

ки должны быть разного цвета, должна быть выведена легенда. Точку пересечения (если она есть) выделить на графике оранжевым цветом.