Machine Learning Techniques - Homework 1

資工四 B05902023 李澤諺

Transforms: Explicit versus Implicit

1. 將 input vector 經過題幹中的 transformation 之後會變爲

$$\mathbf{z}_{1} = (\phi_{1}(\mathbf{x}_{1}), \phi_{2}(\mathbf{x}_{1})) = (-4, 0)$$

$$\mathbf{z}_{2} = (\phi_{1}(\mathbf{x}_{2}), \phi_{2}(\mathbf{x}_{2})) = (-1, -3)$$

$$\mathbf{z}_{3} = (\phi_{1}(\mathbf{x}_{3}), \phi_{2}(\mathbf{x}_{3})) = (-1, 1)$$

$$\mathbf{z}_{4} = (\phi_{1}(\mathbf{x}_{4}), \phi_{2}(\mathbf{x}_{4})) = (0, 0)$$

$$\mathbf{z}_{5} = (\phi_{1}(\mathbf{x}_{5}), \phi_{2}(\mathbf{x}_{5})) = (2, -5)$$

$$\mathbf{z}_{6} = (\phi_{1}(\mathbf{x}_{6}), \phi_{2}(\mathbf{x}_{6})) = (2, 3)$$

$$\mathbf{z}_{7} = (\phi_{1}(\mathbf{x}_{7}), \phi_{2}(\mathbf{x}_{7})) = (2, 3)$$

以上的 transformed vector 在 Z space 中的分佈如下圖所示

由上圖可以看出,在 $\mathcal Z$ space 中的 optimal separating hyperplane 為 $z_1=-0.5$ (在 $\mathcal X$ space 中為 $x_2^2-2x_1-2=-0.5$,即 $x_2^2-2x_1-1.5=0$)。

2. 以下爲我實作的程式

import numpy as np
from sklearn.svm import SVC

由此程式可以得到

$$\begin{split} &\alpha_1=0\\ &\alpha_2=0.59647182\\ &\alpha_3=0.81065085\\ &\alpha_4=0.8887034\\ &\alpha_5=0.20566488\\ &\alpha_6=0.31275439\\ &\alpha_7=0 \end{split}$$

並且可得 support vector $\mathbf{A} \mathbf{x}_2 \cdot \mathbf{x}_3 \cdot \mathbf{x}_4 \cdot \mathbf{x}_5 \cdot \mathbf{x}_6$ 。

3.

$$b = y_2 - \sum_{SV \ indices \ n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_2) \approx -1.667$$

所以在 X space 中的 optimal separating nonlinear curve 爲

$$\sum_{SV \text{ indices } n} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b \approx 0.889 x_1^2 + 0.667 x_2^2 - 1.778 x_1 - 1.667 = 0$$

4. 因爲在這兩題中分別使用了不同的 transformation, 在不同的 Z space 中進行求解,所以在這兩題中所得到的 optimal separating nonlinear curve 不同。

Dual Problem of Soft-Margin Support Vector Machine with Per Example Margin Goals

5. 將 (P'_1) 中的限制條件改寫爲

$$\rho_n - \xi_n - y_n(\mathbf{w}^T \mathbf{x}_n + b) \le 0$$
$$-\xi_n \le 0$$

利用 Lagrange multiplier,可得

$$\mathcal{L}((b, \mathbf{w}, \boldsymbol{\xi}), (\boldsymbol{\alpha}, \boldsymbol{\beta})) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - \xi_n - y_n (\mathbf{w}^T \mathbf{x}_n + b)) + \sum_{n=1}^N \beta_n (-\xi_n)$$

6. 因為

$$\frac{\partial \mathcal{L}}{\partial \xi_n} = C - \alpha_n - \beta_n$$

因此,若令 $\frac{\partial \mathcal{L}}{\partial \xi_n} = C - \alpha_n - \beta_n = 0$,則可得到 $\beta_n = C - \alpha_n$,並且,由於 $\beta_n \geq 0$,因此可得 $\alpha_n \leq C$,所以原問題可以改寫如下

$$\max_{0 \le \alpha_n \le C} \min_{(b, \mathbf{w}, \boldsymbol{\xi})} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N (C - \alpha_n - \beta_n) \xi_n + \sum_{n=1}^N \alpha_n (\rho_n - y_n(\mathbf{w}^T \mathbf{x}_n + b))$$

$$= \max_{0 \le \alpha_n \le C} \min_{(b, \mathbf{w})} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (\rho_n - y_n(\mathbf{w}^T \mathbf{x}_n + b))$$

接著,因爲

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n$$

因此,若令 $\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^N \alpha_n y_n = 0$,即 $\sum_{n=1}^N \alpha_n y_n = 0$,則可將問題繼續改寫如下

$$\max_{0 \le \alpha_n \le C, \sum_{n=1}^N \alpha_n y_n = 0} \min_{(b, \mathbf{w})} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (\rho_n - y_n \mathbf{w}^T \mathbf{x}_n) - \sum_{n=1}^N \alpha_n y_n \cdot b$$

$$= \max_{0 \le \alpha_n \le C, \sum_{n=1}^N \alpha_n y_n = 0} \min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (\rho_n - y_n \mathbf{w}^T \mathbf{x}_n)$$

接著,因爲

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

因此,若令 $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$,即 $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$,則可將問題繼續改寫如下

$$\max_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^N \alpha_n y_n \mathbf{w}^T \mathbf{x}_n + \sum_{n=1}^N \alpha_n \rho_n$$

$$= \max_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \mathbf{w}^T \left(\sum_{n=1}^N \alpha_n y_n \mathbf{x}_n \right) + \sum_{n=1}^N \alpha_n \rho_n$$

$$= \max_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} \frac{1}{2} \mathbf{w}^T \mathbf{w} - \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n \rho_n$$

$$= \max_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} -\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n \rho_n$$

$$= \max_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} -\frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m \mathbf{x}_n \mathbf{x}_m + \sum_{n=1}^N \alpha_n \rho_n$$

上式等同於

$$\min_{0 \leq \alpha_n \leq C, \sum_{n=1}^N \alpha_n y_n = 0} \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m \mathbf{x}_n \mathbf{x}_m - \sum_{n=1}^N \alpha_n \rho_n$$

因此可得 dual problem 爲

minimize
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{x}_n \mathbf{x}_m - \sum_{n=1}^{N} \alpha_n \rho_n$$
variables $\boldsymbol{\alpha} = (\alpha_1, \ \alpha_2, \ \cdots, \ \alpha_N)$
subject to $0 \le \alpha_n \le C, \ \sum_{n=1}^{N} \alpha_n y_n = 0$
implicitly $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \ \beta_n = C - \alpha_n$

7. 首先,將 (P_1) 和 (P_1') 改寫爲 unconstrained form。 因爲

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge \rho_n - \xi_n \text{ and } \xi_n \ge 0$$

 $\Leftrightarrow \xi_n \ge \rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b) \text{ and } \xi_n \ge 0$
 $\Leftrightarrow \xi_n \ge \max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b), 0)$

因此, (P'_1) 可以改寫爲

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \xi_n$$

variables \mathbf{w} , b , $\boldsymbol{\xi}$
subject to $\xi_n \geq max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b), 0)$

接著,設 $(\mathbf{w}',b',\boldsymbol{\xi}')$ 爲 (P_1') 的一個 optimal solution,其中 $\exists \ k \in \{1,2,\cdots,N\}$ 使得 $\xi_k' > max(\rho_k - y_k(\mathbf{w}^T\mathbf{x}_k + b),0)$,令 $\boldsymbol{\xi}''$ 爲

$$\xi_n'' = \begin{cases} max(\rho_k - y_k(\mathbf{w}^T \mathbf{x}_k + b) < \xi_k' & if \ n = k \\ \xi_n' & if \ n \neq k \end{cases}$$

則 $(\mathbf{w}', b', \boldsymbol{\xi}'')$ 符合 (P_1') 的限制條件,並且

$$\frac{1}{2}\mathbf{w'}^{T}\mathbf{w'} + C\sum_{n=1}^{N} \xi_{n}^{"}$$

$$= \frac{1}{2}\mathbf{w'}^{T}\mathbf{w'} + C\left(\xi_{k}^{"} + \sum_{1 \leq n \leq N, n \neq k} \xi_{n}^{"}\right)$$

$$< \frac{1}{2}\mathbf{w'}^{T}\mathbf{w'} + C\left(\xi_{k}^{'} + \sum_{1 \leq n \leq N, n \neq k} \xi_{n}^{'}\right)$$

$$= \frac{1}{2}\mathbf{w'}^{T}\mathbf{w'} + C\sum_{n=1}^{N} \xi_{n}^{'}$$

因此 $(\mathbf{w}',b',\boldsymbol{\xi}'')$ 比 $(\mathbf{w}',b',\boldsymbol{\xi}')$ 更為 optimal ,其與 $(\mathbf{w}',b',\boldsymbol{\xi}')$ 為 (P_1') 的一個 optimal solution 矛盾,由此可知,若 $(\mathbf{w}',b',\boldsymbol{\xi}')$ 為 (P_1') 的一個 optimal solution,則必定有 $\xi_n' = max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b),0)$, $\forall n \in \{1,2,\cdots,N\}$,因此在求 (P_1') 的 optimal solution 的過程中,其實不需要 $\xi_n \geq max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b),0)$ 如此 寬鬆的限制條件,將限制條件限縮為 $\xi_n = max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b),0)$ 並不會影響 到求解,因此可以將 (P_1') 繼續改寫為

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \xi_n$$

variables \mathbf{w} , b , $\boldsymbol{\xi}$, where $\xi_n = max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b), 0)$

其等同於以下的 unconstrained form

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^{N} max(\rho_n - y_n(\mathbf{w}^T\mathbf{x}_n + b), 0)$$

而 (P_1) 爲 (P_1') 的特例,只要將以上敘述中的 ρ_n 皆換爲 1,即可得到 (P_1) 的 unconstrained form

minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^{N} max(1 - y_n(\mathbf{w}^T\mathbf{x}_n + b), 0)$$

接著,説明若 (b'_*, \mathbf{w}'_*) 爲 (P'_1) 在 ρ_n 皆爲 1 時的 optimal solution,則 $(2b'_*, 2\mathbf{w}'_*)$ 爲 (P_1) 在將 C 换爲 2C 時的 optimal solution。因爲 \forall (b'', \mathbf{w}'') ,皆有

$$\frac{1}{2}(2\mathbf{w}'_{*})^{T}(2\mathbf{w}'_{*}) + 2C\sum_{n=1}^{N} \max(1 - y_{n}((2\mathbf{w}'_{*})^{T}\mathbf{x}_{n} + 2b'_{*}), 0)$$

$$= 4\left(\frac{1}{2}\mathbf{w}'_{*}^{T}\mathbf{w}'_{*} + C\sum_{n=1}^{N} \max(\rho_{n} - y_{n}(\mathbf{w}'_{*}^{T}\mathbf{x}_{n} + b'_{*}), 0)\right)$$

$$\leq 4\left(\frac{1}{2}(\frac{1}{2}\mathbf{w}'')^{T}(\frac{1}{2}\mathbf{w}'') + C\sum_{n=1}^{N} \max(\rho_{n} - y_{n}((\frac{1}{2}\mathbf{w}'')^{T}\mathbf{x}_{n} + \frac{1}{2}b''), 0)\right)$$

$$= \frac{1}{2}\mathbf{w}''^{T}\mathbf{w}'' + 2C\sum_{n=1}^{N} \max(1 - y_{n}(\mathbf{w}''^{T}\mathbf{x}_{n} + b''), 0)$$

因此可得,若 (b'_*, \mathbf{w}'_*) 爲 (P'_1) 在 ρ_n 皆爲 1 時的 optimal solution,則 $(2b'_*, 2\mathbf{w}'_*)$ 爲 (P_1) 在將 C 換爲 2C 時的 optimal solution。

Hard-Margin versus Soft-Margin

8. 因爲 α^* 爲 hard-margin SVM 的一個 optimal solution,所以 α^* 會滿足 hard-margin SVM 的限制條件

$$\alpha_n^* \ge 0, \ \sum_{n=1}^N \alpha_n^* y_n = 0$$

又 $C \ge \max_{1 \le n \le N} \alpha_n^*$, 因此可得

$$0 \le \alpha_n^* \le C, \ \sum_{n=1}^N \alpha_n^* y_n = 0$$

故 α^* 滿足 soft-margin SVM 的限制條件。接著,設在 soft-margin SVM 中, α' 比 α^* 更爲 optimal,意即, α' 亦滿足 soft-margin SVM 的限制條件

$$0 \le \alpha_n' \le C, \ \sum_{n=1}^N \alpha_n' y_n = 0$$

並且 α' 可以使得 soft-margin SVM 的目標函數 $\sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^N \alpha_n$ 有更小的值,即

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n' \alpha_m' y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n' < \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n^* \alpha_m^* y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \alpha_n^* y_n y_n \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m^T \mathbf{z}_m^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m^T \mathbf$$

因此,lpha' 亦滿足

$$\alpha_n' \ge 0, \ \sum_{n=1}^N \alpha_n' y_n = 0$$

即 α' 滿足 hard-margin SVM 的限制條件,並且,由於 hard-margin SVM 和 soft-margin SVM 的目標函數相同,因此

$$\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha'_n \alpha'_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha'_n < \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n^* \alpha_m^* y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \alpha_n^* y_n y_n \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n^* \mathbf{z}_n^T \mathbf{z}_m^T \mathbf{z}$$

代表 α' 可以使得 hard-margin SVM 的目標函數 $\sum_{n=1}^{N}\sum_{m=1}^{N}\alpha_{n}\alpha_{m}y_{n}y_{m}\mathbf{z}_{n}^{T}\mathbf{z}_{m}-\sum_{n=1}^{N}\alpha_{n}$ 有更小的值,綜合以上所述,可得在 hard-margin SVM 中, α' 比 α^* 更為 optimal,其與 α^* 爲 hard-margin SVM 的一個 optimal solution 矛盾,故假設錯誤,可得在 soft-margin SVM 中,不存在 α' 比 α^* 更爲 optimal, α^* 即爲 soft-margin SVM 的一個 optimal solution。

Operation of Kernels

9. [a] 若

$$\mathbf{Q}_1 = \begin{pmatrix} K_1(\mathbf{x}_1, \mathbf{x}_1) & K_1(\mathbf{x}_1, \mathbf{x}_2) \\ K_1(\mathbf{x}_2, \mathbf{x}_1) & K_1(\mathbf{x}_2, \mathbf{x}_2) \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

 $(\mathbf{Q}_1$ 爲 symmetric,並且,因爲 \mathbf{Q}_1 所有的 principal minor 的 determinant 爲

$$\begin{vmatrix} 0.9 & | = 0.9 \ge 0 \\ 0.9 & 0.1 \\ 0.1 & 0.9 \end{vmatrix} = 0.8 \ge 0$$

因此由 Sylvester's criterion 可知 \mathbf{Q}_1 爲 positive semi-definite),則有

$$\mathbf{Q} = \begin{pmatrix} K(\mathbf{x}_{1}, \mathbf{x}_{1}) & K(\mathbf{x}_{1}, \mathbf{x}_{2}) \\ K(\mathbf{x}_{2}, \mathbf{x}_{1}) & K(\mathbf{x}_{2}, \mathbf{x}_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} 1 - K_{1}(\mathbf{x}_{1}, \mathbf{x}_{1}) & 1 - K_{1}(\mathbf{x}_{1}, \mathbf{x}_{2}) \\ 1 - K_{1}(\mathbf{x}_{2}, \mathbf{x}_{1}) & 1 - K_{1}(\mathbf{x}_{2}, \mathbf{x}_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{pmatrix}$$

因爲 Q 所有的 principal minor 的 determinant 爲

$$\left| \begin{array}{cc} 0.1 & | = 0.1 \ge 0 \\ 0.1 & 0.9 & | = -0.8 < 0 \end{array} \right|$$

因此由 Sylvester's criterion 可知 \mathbf{Q} 不爲 positive semi-definite, 故由 Mercer's condition 可知 $K(\mathbf{x}, \mathbf{x}')$ 不爲一個 valid kernel。

9. [b] 因爲

$$K(\mathbf{x}, \mathbf{x}') = (1 - K_1(\mathbf{x}, \mathbf{x}'))^0 = 1$$

所以∀ x、x′,皆有

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$$

故 $K(\mathbf{x}, \mathbf{x}')$ 為 symmetric, 並且, 因為 $\forall \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \dots \cdot \mathbf{x}_N$, 皆有

$$\mathbf{Q} = \begin{pmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & K(\mathbf{x}_1, \mathbf{x}_2) & \cdots & K(\mathbf{x}_1, \mathbf{x}_N) \\ K(\mathbf{x}_2, \mathbf{x}_1) & K(\mathbf{x}_2, \mathbf{x}_2) & \cdots & K(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & & \vdots \\ K(\mathbf{x}_N, \mathbf{x}_1) & K(\mathbf{x}_N, \mathbf{x}_2) & \cdots & K(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

所以
$$\forall \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{pmatrix} \in \mathbb{R}^N \mathbf{\ L \ u} \neq \mathbf{0}$$
,皆有

$$\mathbf{u}^T \mathbf{Q} \mathbf{u} = \sum_{i=1}^N \sum_{j=1}^N u_i u_j = (u_1 + u_2 + \dots + u_N)^2 \ge 0$$

因此可得 ${f Q}$ 必定爲 positive semi-definite,故由 Mercer's condition 可知 $K({f x},{f x}')$ 爲一個 valid kernel。

Lemma

- (1) 若 $K_1(\mathbf{x}, \mathbf{x}')$ 和 $K_2(\mathbf{x}, \mathbf{x}')$ 皆爲 valid kernel,則 $K(\mathbf{x}, \mathbf{x}') = K_1(\mathbf{x}, \mathbf{x}')K_2(\mathbf{x}, \mathbf{x}')$ 亦爲 valid kernel。
- (2) 若 $\forall i \in \mathbb{N}$, $K_i(\mathbf{x}, \mathbf{x}')$ 皆爲 valid kernel,並且 $\sum_{i=1}^{\infty} K_i(\mathbf{x}, \mathbf{x}')$ 存在,則 $K(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} K_i(\mathbf{x}, \mathbf{x}')$ 亦爲 valid kernel。

Proof (1) 因爲 $K_1(\mathbf{x},\mathbf{x}')$ 和 $K_2(\mathbf{x},\mathbf{x}')$ 皆爲 valid kernel,所以 \exists $\Phi_1(\mathbf{x})$ 、 $\Phi_2(\mathbf{x})$ 使得

$$K_1(\mathbf{x}, \mathbf{x}') = \Phi_1(\mathbf{x})^T \Phi_1(\mathbf{x}')$$

$$K_2(\mathbf{x}, \mathbf{x}') = \Phi_2(\mathbf{x})^T \Phi_2(\mathbf{x}')$$

令

$$\Phi(\mathbf{x}) = (\cdots \Phi_1^i(\mathbf{x})\Phi_2^j(\mathbf{x}) \cdots)^T$$

(其中 $\Phi_n^k(\mathbf{x})$ 爲 $\Phi_n(\mathbf{x})$ 的第 k 個 element,因爲 $\{\Phi_1^i(\mathbf{x})\}$ 和 $\{\Phi_2^j(\mathbf{x})\}$ 皆爲 countable set,所以 $\{\Phi_1^i(\mathbf{x})\Phi_2^j(\mathbf{x})\} \simeq \{\Phi_1^i(\mathbf{x})\} \times \{\Phi_2^j(\mathbf{x})\}$ 亦爲 countable set,因此才能將 $\{\Phi_1^i(\mathbf{x})\Phi_2^j(\mathbf{x})\}$ 列爲 $\Phi(\mathbf{x})$ 的各個 element),則有

$$K(\mathbf{x}, \mathbf{x}')$$

$$= K_1(\mathbf{x}, \mathbf{x}') K_2(\mathbf{x}, \mathbf{x}')$$

$$= (\Phi_1(\mathbf{x})^T \Phi_1(\mathbf{x}')) (\Phi_2(\mathbf{x})^T \Phi_2(\mathbf{x}'))$$

$$= \left(\sum_i \Phi_1^i(\mathbf{x}) \Phi_1^i(\mathbf{x}')\right) \left(\sum_j \Phi_2^j(\mathbf{x}) \Phi_2^j(\mathbf{x}')\right)$$

$$= \sum_{i,j} \Phi_1^i(\mathbf{x}) \Phi_1^i(\mathbf{x}') \Phi_2^j(\mathbf{x}) \Phi_2^j(\mathbf{x}')$$

$$= \sum_{i,j} \left(\Phi_1^i(\mathbf{x}) \Phi_2^j(\mathbf{x})\right) \left(\Phi_1^i(\mathbf{x}') \Phi_2^j(\mathbf{x}')\right)$$

$$= \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$$

因此可得 $K(\mathbf{x}, \mathbf{x}')$ 為一個 valid kernel。

(2) 因爲 $\forall i \in \mathbb{N}$, $K_i(\mathbf{x}, \mathbf{x}')$ 皆爲 valid kernel,因此由 Mercer's condition 可知, $K_i(\mathbf{x}, \mathbf{x}')$ 爲 symmetric,即 $\forall \mathbf{x} \cdot \mathbf{x}'$,皆有

$$K_i(\mathbf{x}, \mathbf{x}') = K_i(\mathbf{x}', \mathbf{x})$$

所以

$$K(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} K_i(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} K_i(\mathbf{x}', \mathbf{x}) = K(\mathbf{x}', \mathbf{x})$$

因此 $K(\mathbf{x}, \mathbf{x}')$ 亦爲 symmetric, 並且, 因爲 $\forall \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \cdots \cdot \mathbf{x}_N$

$$\mathbf{Q}_{i} = \begin{pmatrix} K_{i}(\mathbf{x}_{1}, \mathbf{x}_{1}) & K_{i}(\mathbf{x}_{1}, \mathbf{x}_{2}) & \cdots & K_{i}(\mathbf{x}_{1}, \mathbf{x}_{N}) \\ K_{i}(\mathbf{x}_{2}, \mathbf{x}_{1}) & K_{i}(\mathbf{x}_{2}, \mathbf{x}_{2}) & \cdots & K_{i}(\mathbf{x}_{2}, \mathbf{x}_{N}) \\ \vdots & \vdots & & \vdots \\ K_{i}(\mathbf{x}_{N}, \mathbf{x}_{1}) & K_{i}(\mathbf{x}_{N}, \mathbf{x}_{2}) & \cdots & K_{i}(\mathbf{x}_{N}, \mathbf{x}_{N}) \end{pmatrix}$$

皆爲 positive semi-definite ,即 \forall $\mathbf{u} \in \mathbb{R}^N$ 且 $\mathbf{u} \neq \mathbf{0}$,皆有 $\mathbf{u}^T \mathbf{Q}_i \mathbf{u} \geq 0$,因此,若令

$$\mathbf{Q} = \begin{pmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & K(\mathbf{x}_1, \mathbf{x}_2) & \cdots & K(\mathbf{x}_1, \mathbf{x}_N) \\ K(\mathbf{x}_2, \mathbf{x}_1) & K(\mathbf{x}_2, \mathbf{x}_2) & \cdots & K(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & \vdots & & \vdots \\ K(\mathbf{x}_N, \mathbf{x}_1) & K(\mathbf{x}_N, \mathbf{x}_2) & \cdots & K(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

則有

$$\mathbf{Q} = \begin{pmatrix} \sum_{i=1}^{\infty} K_i(\mathbf{x}_1, \mathbf{x}_1) & \sum_{i=1}^{\infty} K_i(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \sum_{i=1}^{\infty} K_i(\mathbf{x}_1, \mathbf{x}_N) \\ \sum_{i=1}^{\infty} K_i(\mathbf{x}_2, \mathbf{x}_1) & \sum_{i=1}^{\infty} K_i(\mathbf{x}_2, \mathbf{x}_2) & \cdots & \sum_{i=1}^{\infty} K_i(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & & \vdots & & \vdots \\ \sum_{i=1}^{\infty} K_i(\mathbf{x}_N, \mathbf{x}_1) & \sum_{i=1}^{\infty} K_i(\mathbf{x}_N, \mathbf{x}_2) & \cdots & \sum_{i=1}^{\infty} K_i(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

$$= \sum_{i=1}^{\infty} \begin{pmatrix} K_i(\mathbf{x}_1, \mathbf{x}_1) & K_i(\mathbf{x}_1, \mathbf{x}_2) & \cdots & K_i(\mathbf{x}_1, \mathbf{x}_N) \\ K_i(\mathbf{x}_2, \mathbf{x}_1) & K_i(\mathbf{x}_2, \mathbf{x}_2) & \cdots & K_i(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & & \vdots & & \vdots \\ K_i(\mathbf{x}_N, \mathbf{x}_1) & K_i(\mathbf{x}_N, \mathbf{x}_2) & \cdots & K_i(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

$$= \sum_{i=1}^{\infty} \mathbf{Q}_i$$

所以 $\forall \mathbf{u} \in \mathbb{R}^N$ 且 $\mathbf{u} \neq \mathbf{0}$, 皆有

$$\mathbf{u}^T \mathbf{Q} \mathbf{u} = \mathbf{u}^T \left(\sum_{i=1}^{\infty} \mathbf{Q}_i \right) \mathbf{u} = \sum_{i=1}^{\infty} \mathbf{u}^T \mathbf{Q}_i \mathbf{u} \ge 0$$

故 Q 爲 positive semi-definite,因此由 Mercer's condition 可知, $K(\mathbf{x},\mathbf{x}')$ 爲一個 valid kernel。

9. [c] 因爲 $0 < K_1(\mathbf{x}, \mathbf{x}') < 1$,所以

$$K(\mathbf{x}, \mathbf{x}') = (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1} = \sum_{i=0}^{\infty} K_1(\mathbf{x}, \mathbf{x}')^i$$

其中,由 9. [b] 和 Lemma (1) 可知, $\forall i \in \mathbb{N} \cup \{0\}$, $K(\mathbf{x}, \mathbf{x}')^i$ 皆爲 valid kernel,因此由 Lemma (2) 可知, $K(\mathbf{x}, \mathbf{x}') = \sum_{i=0}^{\infty} K_1(\mathbf{x}, \mathbf{x}')^i$ 爲一個 valid kernel。

9. [d] 因爲

$$K(\mathbf{x}, \mathbf{x}') = (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-2} = (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1} \cdot (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1}$$

其中,由 9. [c] 可知, $(1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1}$ 爲一個 valid kernel,因此由 **Lemma** (1) 可知, $K(\mathbf{x}, \mathbf{x}') = (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1} \cdot (1 - K_1(\mathbf{x}, \mathbf{x}'))^{-1}$ 爲一個 valid kernel。

10. $\Diamond \alpha^*$ 爲以下 (S_1) 的 optimal solution

$$minimize \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \alpha_n$$

subject to
$$0 \le \alpha_n \le C$$
, $\sum_{n=1}^{N} \alpha_n y_n = 0$

首先,説明 $\frac{\alpha^*}{p}$ 爲以下 (S_2) 的 optimal solution

minimize
$$\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \alpha_n$$
subject to $0 \le \alpha_n \le \tilde{C}, \sum_{n=1}^{N} \alpha_n y_n = 0$

因爲 $oldsymbol{lpha}^*$ 爲 (S_1) 的 optimal solution,所以 $oldsymbol{lpha}^*$ 會滿足 (S_1) 的限制條件

$$0 \le \alpha_n^* \le C, \ \sum_{n=1}^N \alpha_n^* y_n = 0$$

因此可得

$$0 \le \frac{\alpha_n^*}{p} \le \frac{C}{p} = \tilde{C}, \ \sum_{n=1}^{N} \frac{\alpha_n^*}{p} y_n = \frac{1}{p} \sum_{n=1}^{N} \alpha_n^* y_n = 0$$

故 $\frac{\pmb{\alpha}^*}{p}$ 會滿足 (S_2) 的限制條件。接著,設在 (S_2) 中, $\pmb{\alpha}'$ 比 $\frac{\pmb{\alpha}^*}{p}$ 更爲 optimal,亦即, $\pmb{\alpha}'$ 亦符合 (S_2) 的限制條件

$$0 \le \alpha'_n \le \tilde{C}, \ \sum_{n=1}^N \alpha'_n y_n = 0$$

並且 α' 可以使得 (S_2) 的目標函數 $\sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^N \alpha_n$ 有更小的值,即

$$\sum_{n=1}^N \sum_{m=1}^N \alpha_n' \alpha_m' y_n y_m \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^N \alpha_n' < \sum_{n=1}^N \sum_{m=1}^N \frac{\alpha_n^*}{p} \frac{\alpha_m^*}{p} y_n y_m \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^N \frac{\alpha_n^*}{p} \frac{\alpha_n^*}{p} y_n y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) = \sum_{n=1}^N \frac{\alpha_n^*}{p} \frac{\alpha_n^*}{p} y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) = \sum_{n=1}^N \frac{\alpha_n^*}{p} \frac{\alpha_n^*}{p}$$

因此,plpha' 會滿足

$$0 \le p\alpha'_n \le p\tilde{C} = C, \ \sum_{n=1}^{N} (p\alpha'_n)y_n = p\sum_{n=1}^{N} \alpha'_n y_n = 0$$

即 $p\alpha'$ 會滿足 (S_1) 的限制條件,並且

$$\sum_{n=1}^{N} \sum_{m=1}^{N} (p\alpha'_n)(p\alpha'_m) y_n y_m K(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} p\alpha'_n$$

$$= p \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha'_n \alpha'_m y_n y_m p K(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \alpha'_n \right)$$

$$= p \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha'_n \alpha'_m y_n y_m \tilde{K}(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \alpha'_n \right)$$

$$$$= p \left(\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\alpha^*_n}{p} \frac{\alpha^*_m}{p} y_n y_m p K(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \frac{\alpha^*_n}{p} \right)$$

$$= \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha^*_n \alpha^*_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m) - \sum_{n=1}^{N} \alpha^*_n$$$$

代表 $p\alpha'$ 可以讓 (S_1) 的目標函數 $\sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m K(\mathbf{x}_n,\mathbf{x}_m) - \sum_{n=1}^N \alpha_n$ 有更小的值,綜合以上所述,可得在 (S_1) 中, $p\alpha'$ 比 α^* 更爲 optimal,其與 α^* 爲 (S_1) 的 optimal solution 矛盾,故假設錯誤,可得在 (S_2) 中,不存在 α' 比 $\frac{\alpha^*}{p}$ 更爲 optimal, $\frac{\alpha^*}{p}$ 即爲 (S_2) 的一個 optimal solution。接著,由

$$0 \le \alpha_n^* \le C \Leftrightarrow 0 \le \frac{\alpha_n^*}{n} \le \frac{C}{n} = \tilde{C}$$

可知 (S_1) 和 (S_2) 有相同的 support vector (以及 free support vector),因此,若 (S_1) 所得到的 classifier 爲

$$g_{SVM}(\mathbf{x}) = sign\left(\sum_{SV \ indices \ n} \alpha_n^* y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

 (S_2) 所得到的 classifier 爲

$$\tilde{g}_{SVM}(\mathbf{x}) = sign\left(\sum_{SV \ indices \ n} \frac{\alpha_n^*}{p} y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}) + \tilde{b}\right)$$

則有

$$b = y_s - \sum_{SV \ indices \ n} \alpha_n^* y_n K(\mathbf{x}_n, \mathbf{x}_s)$$

$$= y_s - \sum_{SV \ indices \ n} \frac{\alpha_n^*}{p} y_n p K(\mathbf{x}_n, \mathbf{x}_s)$$

$$= y_s - \sum_{SV \ indices \ n} \frac{\alpha_n^*}{p} y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}_s) = \tilde{b}$$

(其中 s 爲任意一個 free support vector 的 index)

$$g_{SVM}(\mathbf{x}) = sign\left(\sum_{SV \ indices \ n} \alpha_n^* y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

$$= sign\left(\sum_{SV \ indices \ n} \frac{\alpha_n^*}{p} y_n p K(\mathbf{x}_n, \mathbf{x}) + \tilde{b}\right)$$

$$= sign\left(\sum_{SV \ indices \ n} \frac{\alpha_n^*}{p} y_n \tilde{K}(\mathbf{x}_n, \mathbf{x}) + \tilde{b}\right) = \tilde{g}_{SVM}(\mathbf{x})$$

Experiments with Soft-Margin Support Vector Machine

11. 由下圖可知,當 $log_{10}C$ 越大時, $\|w\|$ 也越大。

12. 由下圖可知,不論 $log_{10}C$ 爲何, E_{in} 皆相同。

13. 由下圖可知,當 $log_{10}C$ 從 -5 增加到 -3 時,support vector 的數量上升到最大值,而當 $log_{10}C$ 從 -3 遞增到 3 時,support vector 的數量則遞減。當 $log_{10}C$ 在 -3 到 -1 之間時,support vector 的數量較多。

14. 由下圖可知,當 $log_{10}C$ 越大時, $\mathcal Z$ space 中 free support vector 到 optimal separating hyperplane 的距離越小。

15. 由下圖可知,當 $\log_{10}\gamma$ 從 0 增加到 1 時, E_{out} 會下降到最小值,而當 $\log_{10}\gamma$ 從 1 遞增到 4 時, E_{out} 則會遞增。

16. 當 $log_{10}\gamma$ 爲 1 時,被選中的次數最多,而當 $log_{10}\gamma$ 爲 -1 或 3 時,則皆沒被選中。

Bonus: Constant Feature for Support Vector Machine

17. 不論是 hard-margin SVM 還是 soft-margin SVM , optimal solution 的形式皆爲

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$$

因此,考慮上式的第i 個 component,可得

$$w_i = \sum_{n=1}^{N} \alpha_n y_n z_i = \left(\sum_{n=1}^{N} \alpha_n y_n\right) z_i$$

而不論是 hard-margin SVM 還是 soft-margin SVM , optimal solution 皆必須滿足限制條件

$$\sum_{n=1}^{N} \alpha_n y_n = 0$$

因此可得

$$w_i = 0$$

Bonus: Dual of Dual

18. 令

$$\mathbf{Q} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
$$\mathbf{Q} = \begin{pmatrix} y_1 y_1 \mathbf{z}_1^T \mathbf{z}_1 & y_1 y_2 \mathbf{z}_1^T \mathbf{z}_2 & \cdots & y_1 y_N \mathbf{z}_1^T \mathbf{z}_N \\ y_2 y_1 \mathbf{z}_2^T \mathbf{z}_1 & y_2 y_2 \mathbf{z}_2^T \mathbf{z}_2 & \cdots & y_2 y_N \mathbf{z}_2^T \mathbf{z}_N \\ \vdots & \vdots & \vdots \\ y_N y_1 \mathbf{z}_N^T \mathbf{z}_1 & y_N y_2 \mathbf{z}_N^T \mathbf{z}_2 & \cdots & y_N y_N \mathbf{z}_N^T \mathbf{z}_N \end{pmatrix}$$

則 hard-margin dual SVM 可以寫爲

minimize
$$\frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}_N^T \boldsymbol{\alpha}$$

subject to $\alpha_n \ge 0, \ \mathbf{y}^T \boldsymbol{\alpha} = 0$

接著,利用 Lagrange multiplier 將以上問題改寫爲

$$\begin{aligned} & \min_{\alpha_n \geq 0} \max_{\lambda_n \geq 0, \mu} \mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{\lambda}, \mu) \\ &= \min_{\alpha_n \geq 0} \max_{\lambda_n \geq 0, \mu} \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}_N^T \boldsymbol{\alpha} + \sum_{n=1}^N \lambda_n (-\alpha_n) + \mu \mathbf{y}^T \boldsymbol{\alpha} \\ &= \min_{\alpha_n \geq 0} \max_{\lambda_n \geq 0, \mu} \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}_N^T \boldsymbol{\alpha} - \boldsymbol{\lambda}^T \boldsymbol{\alpha} + \mu \mathbf{y}^T \boldsymbol{\alpha} \\ &= \min_{\alpha_n \geq 0} \max_{\lambda_n \geq 0, \mu} \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T \boldsymbol{\alpha} \end{aligned}$$

設以上問題爲 feasible,由於該問題爲 convex,且限制條件皆爲 linear,所以可以利用 strong duality,將以上問題改寫爲

$$\max_{\lambda_n \geq 0, \mu} \min_{\alpha_n \geq 0} \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T \boldsymbol{\alpha}$$

接著,利用 KKT condition,令

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\alpha}} = \mathbf{Q}\boldsymbol{\alpha} - (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N) = \mathbf{0}$$

設 Q 爲 invertible,則有

$$\mathbf{Q}\alpha = \lambda - \mu \mathbf{y} + \mathbf{1}_N$$
$$\alpha = \mathbf{Q}^{-1}(\lambda - \mu \mathbf{y} + \mathbf{1}_N)$$

因此,以上問題可以繼續改寫爲

$$\max_{\lambda_n \ge 0, \mu} \frac{1}{2} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T (\mathbf{Q}^{-1})^T (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N) - (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T \mathbf{Q}^{-1} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)$$

由於 ${f Q}$ 爲 symmetric,因此 ${f Q}^{-1}$ 亦爲 symmetric,故將 $({f Q}^{-1})^T={f Q}^{-1}$ 代入以上式子化簡後,可以得到 hard-margin dual SVM 的 dual problem 爲

$$\max_{\lambda_n \geq 0, \mu} -\frac{1}{2} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T \mathbf{Q}^{-1} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)$$

其等同於

$$\min_{\boldsymbol{\lambda}_n \geq 0, \mu} \frac{1}{2} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)^T \mathbf{Q}^{-1} (\boldsymbol{\lambda} - \mu \mathbf{y} + \mathbf{1}_N)$$

其與 hard-margin SVM 的 primal problem 不同,但雨者皆是在限制條件下 minimize 某個 vector norm,爲雨者在形式上的相似之處。