Základy Zadání funkce Dodatek

Funkce Úvod

Alexander Slávik

Gymnázium Voděradská

4. 10. 2022

Základy Zadání funkce Dodatek

Definice

Alexander Slávik

Funkce

Základy Zadání funkce Dodatek

Definice

Matematika pro gymnázia – Funkce (Doc. RNDr. Oldřich Odvárko, DrSc.):

Definice

Matematika pro gymnázia – Funkce (Doc. RNDr. Oldřich Odvárko, DrSc.):

Funkce na množině $A \subset R$ je předpis, který každému číslu z množiny A přiřazuje právě jedno reálné číslo. Množina A se nazývá definiční obor funkce.

Definice

Matematika pro gymnázia – Funkce (Doc. RNDr. Oldřich Odvárko, DrSc.):

Funkce na množině $A \subset R$ je předpis, který každému číslu z množiny A přiřazuje právě jedno reálné číslo. Množina A se nazývá definiční obor funkce.

"Lepší" definice bude v semináři z difernciálního a integrálního počtu.

Jiná představa

Jiná představa

Jiná představa

"Dostaň x, vrať x."

"Dostaň x, vrať druhou mocninu x."

"Dostaň x, vrať počet (kladných) dělitelů čísla x."

"Dostaň x, vrať počet (kladných) dělitelů čísla x." funkce \approx předpis \approx přiřazení \approx proces

Definiční obor & obor hodnot

Definiční obor

Definiční obor & obor hodnot

Definiční obor

... funkce f značíme D_f (příp. D(f));

Definiční obor & obor hodnot

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.
- = "co můžeme do f dosadit".

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.
- = "co můžeme do f dosadit".

Obor hodnot

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.
- = "co můžeme do f dosadit".

Obor hodnot

... funkce f značíme H_f (příp. H(f));

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.
- = "co můžeme do f dosadit".

Obor hodnot

- ... funkce f značíme H_f (příp. H(f));
- = množina těch reálných čísel y, pro která existuje aspoň jedno $x \in D_f$ splňující y = f(x).

Definiční obor

- ... funkce f značíme D_f (příp. D(f));
- = množina těch reálných čísel x, pro která je hodnota f(x) definována.
- = "co můžeme do f dosadit".

Obor hodnot

- ... funkce f značíme H_f (příp. H(f));
- = množina těch reálných čísel y, pro která existuje aspoň jedno $x \in D_f$ splňující y = f(x).
- = "jakých hodnot může f nabývat".

SŠ učebnice typicky uvádí tyto způsoby:

SŠ učebnice typicky uvádí tyto způsoby:

• tabulkou,

SŠ učebnice typicky uvádí tyto způsoby:

- tabulkou,
- grafem,

SŠ učebnice typicky uvádí tyto způsoby:

- tabulkou,
- grafem,
- funkčním předpisem.

Funkce daná tabulkou

Např. počet pozitivních testů na COVID-19 v ČR v x-tý den počínaje 1. 3. 2020:

Funkce daná tabulkou

Např. počet pozitivních testů na COVID-19 v ČR v x-tý den počínaje 1. 3. 2020:

```
den | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | ... počet | 3 | 0 | 2 | 1 | 3 | 11 | 7 | 6 | 6 | 25 | 31 | 22 | 25 | 48 | 109 | 85 | 67 | 110 | 206 | 124 | 159 | 115 | 126 | 185 | 292 | 259 | 377 | 263 | 159 | 184 | 304 | 283 | ... |
```

Funkce daná tabulkou

Např. počet pozitivních testů na COVID-19 v ČR v x-tý den počínaje 1. 3. 2020:

```
den | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | ... počet | 3 | 0 | 2 | 1 | 3 | 11 | 7 | 6 | 6 | 25 | 31 | 22 | 25 | 48 | 109 | 85 | 67 | 110 | 206 | 124 | 159 | 115 | 126 | 185 | 292 | 259 | 377 | 263 | 159 | 184 | 304 | 283 | ... |
```

Zřejmě může mít pouze konečný definiční obor a obor hodnot.

Funkce daná grafem

Funkce daná grafem

Takto "zadaná" funkce musí mít omezený definiční obor.

Funkce daná grafem II

Funkce daná grafem II

Nezbytně záleží na tom, "kam se díváme".

Funkce daná grafem II

Nezbytně záleží na tom, "kam se díváme". $(y = x^3 + 9x^2 - 10)$

Funkce daná grafem III

Funkce daná grafem III

Ze stránek Ministerstva zdravotnictví:

Funkce daná grafem III

"Spojování bodů" je přehledné, ale nemá matematický význam.

Funkce daná grafem IV

Základy Zadání funkce Dodatek

Funkce daná grafem V

Noty jakožto graf funkce:

Funkce daná grafem V

Noty jakožto graf funkce:

Například

$$f: y = x^3 + 9x^2 - 10, \quad x \in \mathbb{R}$$

Například

$$f: y = \underbrace{x^3 + 9x^2 - 10}_{\text{funkční předpis}}, \quad \underbrace{x \in \mathbb{R}}_{\text{def. obor}}$$

Například

$$f: y = \underbrace{x^3 + 9x^2 - 10}_{\text{funkční předpis}}, \quad \underbrace{x \in \mathbb{R}}_{\text{def. obor}}$$

Nebo stejně dobře tak

$$f(x) = x^3 + 9x^2 - 10$$
, $D_f = \mathbb{R}$

Například

$$f: y = \underbrace{x^3 + 9x^2 - 10}_{\text{funkční předpis}}, \quad \underbrace{x \in \mathbb{R}}_{\text{def. obor}}$$

Nebo stejně dobře tak

$$f(x) = x^3 + 9x^2 - 10$$
, $D_f = \mathbb{R}$

Příklad s menším definičním oborem:

$$f(x) = \sqrt{x}, \quad x \in (0, \infty)$$

Například

$$f: y = \underbrace{x^3 + 9x^2 - 10}_{\text{funkční předpis}}, \quad \underbrace{x \in \mathbb{R}}_{\text{def. obor}}$$

Nebo stejně dobře tak

$$f(x) = x^3 + 9x^2 - 10$$
, $D_f = \mathbb{R}$

Příklad s menším definičním oborem:

$$f(x) = \sqrt{x}, \quad x \in (0, \infty)$$

Pozor:

Definiční obor by *měl být* součástí zadání funkce, ovšem typicky se bere jako definiční obor co největší množina reálných čísel, pro kterou má funkční předpis smysl.

Například

$$f: y = \underbrace{x^3 + 9x^2 - 10}_{\text{funkční předpis}}, \underbrace{x \in \mathbb{R}}_{\text{def. obor}}$$

Nebo stejně dobře tak

$$f(x) = x^3 + 9x^2 - 10$$
, $D_f = \mathbb{R}$

Příklad s menším definičním oborem:

$$f(x) = \sqrt{x}, \quad x \in (0, \infty)$$

Pozor:

Definiční obor by *měl být* součástí zadání funkce, ovšem typicky se bere jako definiční obor co největší množina reálných čísel, pro kterou má funkční předpis smysl. Odtud úlohy typu "určete definiční obor funkce".

Základy Zadání funkce Dodatek

* Děsivé funkce

Alexander Slávik

Základy Zadání funkce Dodatek

* Děsivé funkce

Ve skutečnosti se "drtivá většina" reálných funkcí nedá zadat ani jedním z těchto způsobů.

* Děsivé funkce

Ve skutečnosti se "drtivá většina" reálných funkcí nedá zadat ani jedním z těchto způsobů.

Např.

• Cantorova funkce ("Ďáblovo schodiště")

* Děsivé funkce

Ve skutečnosti se "drtivá většina" reálných funkcí nedá zadat ani jedním z těchto způsobů.

Např.

Cantorova funkce ("Ďáblovo schodiště")

 Funkce, která mezi každými dvěma reálnými čísly nabývá všech reálných čísel