Introduction

Quadratics (Babylonians):

$$X^{2} + bX = c = (X + \frac{1}{2}b)^{2} + c - \frac{b^{2}}{4}$$

$$= (X - x_{1})(X - x_{2}) \implies x_{1}x_{2} = c, x_{1} + x_{2} = -b$$

$$x_{1} = \frac{1}{2} \left[(x_{1} + x_{2}) + (x_{1} - x_{2}) \right] = \frac{1}{2} \left[-b + \sqrt{b^{2} - 4c} \right]$$

Cubics (Italy, 16th Century):

$$X^{3} + aX^{2} + bX + c = (X - x_{1})(X - x_{2})(X - x_{3})$$

$$\implies x_{1} + x_{2} + x_{3} = -a, x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} = b, x_{1}x_{2}x_{3} = -c$$

WLOG $X \to X - a/3$ and a = 0

$$x_1 = \frac{1}{3} \left[(x_1 + x_2 + x_3) + \underbrace{(x_1 + \omega x_2 + \omega^2 x_3)}_{=u} + \underbrace{(x_1 + \omega^2 x_2 + \omega x_3)}_{=v} \right]$$

where $\omega = e^{2\pi i/3}$ so $\omega^2 + \omega + 1 = 0$. Cyclic permutation of x_1, x_2, x_3 gives $u \to \omega u \to \omega^2 u$ and $v \to \omega v \to \omega^2 v$ which implies u^3 and v^3 are invariant under cyclic permutations of the roots.

Also $u \leftrightarrow v$ under $x_2 \leftrightarrow x_3$. So $u^3 + v^3$, u^3v^3 are invariant under permutations of roots.

In fact,

$$u^3 + v^3 = 27x_1x_2x_3 = -27c$$
$$u^3v^3 = -27b^2$$

So u^3, v^3 are roots of $Y^2 + 27cY - 27b^2$. This gives a formula for x_1 (Cardano's formula).

Can follow a similar method for quartics - auxilliary cubic equation. Unfortunately it doesn't work for quintics - the reason being group theory.

1 Polynomials

In this course, all rings are commutative and non-zero. Let R be a ring, then R[X] denotes the ring of polynomials $\sum_{i=0}^{n} a_i X^i$, $a_i \in R$. A polynomial $f \in R[X]$ determines a function $R \to R$, $r \mapsto f(r)$.

The polynomial is not in general determined by this function, e.g let $R = \mathbb{Z}/p\mathbb{Z}$ (p prime). Then for all $a \in R$, $a^p = a$ so the polynomials X^p and X represent the same function.

In the case when R = K (a field), K[X] is a <u>Euclidean domain</u>. The "division algorithm" says that if $f, g \in K[X]$, $g \neq 0$ then there exists unique $q, r \in K[X]$ such that f = gq + r and $\deg r < \deg g$ (define $\deg(0) = -\infty$).

In particular, if g = X - a is linear then f = (X - a)q + f(a) ("remainder theorem"). So K[X] is also a PID and a UFD - every polynomial is a product of irreducible polynomials, and there are GCD's, computable via Euclids algorithm in the usual way.

Proposition 1.1. If K is a field, $0 \neq f \in K[X]$, then f has at most deg f roots in K.

Proof. If f has no roots then we are done. Otherwise, suppose f(a) = 0 for $a \in K$. Then

$$f = (X - a)g$$

for some $g \in K[X]$ and $\deg g = \deg f - 1$. If $b \in K$ is a root of f then either b = a or g(b) = 0 so the number of roots of f is at most one more than the number of roots of g. Now done by induction.

2 Symmetric polynomials

Let R be a ring, consider $R[X_1, \ldots, X_n]$ for $n \ge 1$.

Definition. A polynomial $f \in R[X_1, ..., X_n]$ is *symmetric* if for every $\sigma \in S_n$, $f(X_{\sigma(1)}, ..., X_{\sigma(n)}) = f$.

The set of symmetric polynomials is a subring of $R[X_1, \ldots, X_n]$.

Example. $X_1 + \ldots + X_n$, or more generally, $p_k = X_1^k + \ldots + X_n^k = \sum_{i=1}^n X_i^k$.

Alternative definition: if $f \in R[X_1, \ldots, X_n]$, define $f\sigma = f(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$. This is an action (on the right) of S_n on $R[X_1, \ldots, X_n]$. A polynomial f is symmetric if and only if it is fixed by this action.

Definition. The elementary symmetric polynomials are

$$s_r(X_1, \dots, X_n) = \sum_{1 \le i_1 < \dots < i_r \le n} X_{i_1} X_{i_2} \dots X_{i_r}$$

Example. When n=3 we have

$$s_1 = X_1 + X_2 + X_3$$

$$s_2 = X_1X_2 + X_1X_3 + X_2X_3$$

$$s_3 = X_1X_2X_3$$

Theorem 2.1.

- (i) Every symmetric polynomial over R can be expressed as a polynomial in $\{s_r: 1 \leq r \leq n\}$, with coefficients in R.
- (ii) There are no non-trivial relations between s_1, \ldots, s_n .

Page 3

Remark:

(a) Consider the ring homomorphism

$$\theta: R[Y_1, \dots, Y_n] \to R[X_1, \dots, X_n], Y_r \mapsto s_r$$

then (i) says the image of θ is the set of symmetric polynomials. (ii) says that θ is injective.

(b) Equivalent definition of the s_r 's is

$$\prod_{i=1}^{n} (T + X_i) = T^n + s_1 T^{n-1} + \ldots + s_{n-1} T + s_n$$

If we need to specify the number of variables, write $s_{r,n}$ instead of s_r .

Proof. Terminology:

- A monomial is some $X_I = X_1^{i_1} \dots X_n^{i_n}$ for $I \in \mathbb{N}^n = \{0, 1, 2, \dots\}^n$. Its (total) degree is $\sum_{\alpha} i_{\alpha}$.
- A term is some cX_I , for $0 \neq c \in R$. So a polynomial is uniquely a sum of terms
- Total degree of f is the maximum degree over its terms

<u>Lexicographical</u> ordering on monomials X_I : write $X_I > X_J$ if either $i_1 > j_1$ or, for some $1 \le r < n$, $i_1 = j_1, \ldots, i_r = j_r$ and $i_{r+1} > j_{r+1}$.

This is a total ordering: for each pair $I \neq J$, exactly one of $X_I > X_J$ or $X_J > X_I$ holds.

First we prove (ii):

Let d be the total degree of some symmetric polynomial f, and let X_I be the <u>largest</u> (in lexicographical order) monomial which occurs in f, with coefficient $\overline{c \in R}$. As f is symmetric, we must have $i_1 \geq i_2 \geq \ldots \geq i_n$ (otherwise we could exchange variables to get a larger monomial).

So

$$X_I = X_1^{i_1 - i_2} (X_1 X_2)^{i_2 - i_3} \dots (X_1, \dots X_n)^{i_n}$$

consider

$$g = s_1^{i_1 - i_2} s_2^{i_2 - i_3} \dots s_{n-1}^{i_{n-1} - i_n} s_n^{i_n}$$

the leading monomial (i.e largest in lexicographical order) of g is X_I , and g is symmetric. So f-cg is symmetric of total degree $\leq d$, and its leading monomial term is smaller (lexicographical) than X_I . As the set of monomials of degree at most d is finite, this process terminates.

To prove (ii): induct on n. Suppose we have $G \in R[Y_1, \ldots, Y_n]$ with $G(s_{n,1}, \ldots, s_{n,n}) = 0$. We want to show G = 0. If n = 1, this is trivial $(s_{1,1} = X_1)$. If $G = Y_n^k H$, with $Y_n \nmid H$, then $s_{n,n}^k H(s_{n,1}, \ldots, s_{n,n}) = 0$. As $s_{n,n} = X_1 \ldots X_n$, $s_{n,n}$ is not a zero divisor in $R[X_1, \ldots, X_n]$ so $H(s_{n,1}, \ldots, s_{n,n}) = 0$.

So we may assume G is not divisible by Y_n . Replace X_n by 0. Then

$$s_{n,r}(X_1, \dots, X_{n-1}, 0) = \begin{cases} s_{n-1,r}(X_1, \dots, X_{n-1}) & \text{if } r < n \\ 0 & \text{if } r = n \end{cases}$$

and so $G(s_{n-1,1},\ldots,s_{n-1,n-1},0)=0$. So by induction, $G(Y_1,\ldots,Y_{n-1},0)=0$, i.e $Y_n\mid G$, a contradiction.

Example. $f = \sum_{i \neq j} X_i^2 X_j$ for $n \geq 3$. The leading term is $X_1^2 X_2 = X_1(X_1 X_2)$. Then compute

$$s_1 s_2 = \sum_{i} \sum_{j < k} X_i X_j X_k = \sum_{i \neq j} X_i^2 X_j + 3 \sum_{i < j < k} X_i X_j X_k$$

so $f = s_1 s_2 - 3s_3$.

Computing say $\sum X_i^5$ by hand is tedious. But there are alternative formulae.

Recall $p_k = \sum_{i=1}^n X_i^k$ for $k \ge 1$.

Theorem 2.2 (Newton's formulae). Let $n \ge 1$. Then for all $k \ge 1$

$$p_k - s_1 p_{k-1} + \ldots + (-1)^{k-1} s_{k-1} p_1 + (-1)^k k s_k = 0$$

by convention, $s_0 = 1$, and $s_r = 0$ if r > n.

Proof. We may assume $R = \mathbb{Z}$ (or \mathbb{R}). Generating function

$$F(T) = \prod_{i=1}^{n} (1 - X_i T) = \sum_{r=0}^{n} (-1)^r s_r T^r$$

Take logarithmic derivative with respect to T:

$$\frac{F'(T)}{F(T)} = \sum_{i=1}^{n} \frac{-X_i}{1 - X_i T} = -\frac{1}{T} \sum_{i=1}^{n} \sum_{r=1}^{\infty} X_i^r T^r = -\frac{1}{T} \sum_{r=1}^{\infty} p_r T^r$$

So

$$-TF'(T) = s_1T - 2s_2T^2 + \dots + (-1)^{n-1}ns_nT^n$$
$$= F(T)\sum_{r=1}^{\infty} p_rT^r = (s_0 - s_1T + \dots + (-1)^ns_nT^n)\left(p_1T + p_2T^2 + \dots\right)$$

comparing coefficients of T^k gives the result.

Definition. The discriminant polynomial is

$$D(X_1, \dots, X_n) = \Delta(X_1, \dots, X_n)^2$$

where $\Delta = \prod_{i < j} (X_i - X_j)$. (Recall from IA Groups that applying $\sigma \in S_n$ to Δ multiplies Δ by $\mathrm{sgn}(\sigma)$, so D is symmetric.)

So $D(X_1,\ldots,X_n)=d(s_1,\ldots,s_n)$ for some polynomial d (\mathbb{Z} -coefficients). For example, when n=2, $D=(X_1-X_2)^2=s_1^2-4s_2.$

Definition. Let $f = T^n + \sum_{i=0}^{n-1} a_{n-i}T^i \in R[T]$. Its discriminant is $\operatorname{Disc}(f) = d(-a_1, a_2, -a_3, \dots, (-1)^n a_n) \in R$.

Observe that if $f = \prod_{i=1}^n (T - x_i)$, $x_i \in R$, then $a_r = (-1)^r s_r(x_1, \dots, x_n)$, so

Disc
$$(f) = \prod_{i < j} (x_i - x_j)^2 = D(x_1, \dots, x_n)$$

If moreover R = K is a field, then $\operatorname{Disc}(f) = 0$ iff f has a repeated root (i.e $x_i = x_j$ for some $i \neq j$). E.g when n = 2, $\operatorname{Disc}(T^2 + bT + c) = b^2 - 4c$.

3 Fields

Recall:

Definition. A field is a ring K (commutative with a 1) in which every non-zero element has a multiplicative inverse. The set of non-zero elements of K is a group under multiplication, written K^{\times} or K^* , called the multiplicative group of K.

Definition. The *characteristic of a field* K is the least positive integer p (if it exists) such that $p \cdot 1_K = 0_K$, or is said to be 0 if no such p exists.

Example. \mathbb{Q} has characteristic 0 and $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ has characteristic p (p prime).

The characteristic char(K) of K is either 0 or a prime. Inside K, there is a smaller subfield, called the *prime subfield* of K. It is either isomorphic to \mathbb{Q} (if characteristic is 0), or to \mathbb{F}_p (if char(K) = p).

Proposition 3.1. Let $\varphi: K \to L$ be a homomorphism of fields. Then φ is an injection.

Proof.
$$\varphi(1_K) = 1_L \neq 0$$
, so $\operatorname{Ker}(\varphi) \subsetneq K$ is a proper ideal of K , so $\operatorname{Ker}(\varphi) = (0)$

Definition. Let $K \subseteq L$ be fields (where the field operations on K are the same as those on L). We say K is a *subfield of* L, and L is an extension of K, denoted L/K.

Remarks:

- (i) The notation L/K has nothing to do with the quotient (some write $L \mid K$)
- (ii) It is useful to be more general if $i: K \to L$ is a homomorphism of fields, then Proposition 3.1 says that K is isomorphic to its image $i(K) \subseteq L$. In this situation, also say L is an extension of K.

Example. Some extensions include

- \bullet \mathbb{C}/\mathbb{R}
- \mathbb{R}/\mathbb{Q}
- $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}/\mathbb{Q}$

Definition. $K \subseteq L$, $x \in L$. Define $K[x] = \{p(x) : p \in K[T]\}$ (a subring of L). Define $K(x) = \{\frac{p(x)}{q(x)} : p, q \in K[T], q(x) \neq 0\}$ (a subfield of L) "K adjoin x". For $x_1, \ldots, x_n \in L$, define

$$K(x_1, \dots, x_n) = \left\{ \frac{p(x_1, \dots, x_n)}{q(x_1, \dots, x_n)} : p, q \in K[T_1, \dots, T_n], q(x_1, \dots, x_n) \neq 0 \right\}$$

(Easy to check $K(x_1, \ldots, x_{n-1})(x_n) = K(x_1, \ldots, x_n)$). Likewise $K[x_1, \ldots, x_n]$ is defined analogously.

Definition. Suppose L/K is a field extension. Then L is naturally a vector space over its subfield K (forget multiplication by elements of L). We can ask if it is a finite-dimensional vector space, if so we say that L/K is a finite extension and write $[L:K] = \dim_K(L)$ for the dimension. The dimension is called the degree of the extension L over K. If the dimension is infinite write $[L:K] = \infty$.

 \dim_K denotes the dimension as a K-vector space. Of course L has dimension 1 over itself. As a K-vector space, $L \cong K^{[L:K]}$.

Example.

- (i) \mathbb{C}/\mathbb{R} , $[\mathbb{C}:\mathbb{R}]=2$
- (ii) For any field K, K(X) = field of rational functions in X = field of fractions of polynomial ring $K[X] = \{\frac{p}{q} : p, q \in K[X], q \neq 0\}$. Then $[K(X) : K] = \infty$ since $1, X, X^2, \ldots$ are linearly independent.
- (iii) \mathbb{R}/\mathbb{Q} , $[\mathbb{R}:\mathbb{Q}]=\infty$. This follows from countability every finite dimensional vector space over \mathbb{Q} is countable.

This course is largely about properties (and symmetries) of $\underline{\text{finite}}$ extensions of fields.

Definition. We say an extension L/K is quadratic (cubic,...) if [L:K] = 2(3,...)

Proposition 3.2. Suppose K is a <u>finite</u> field (necessarily of characteristic p > 0). Then |K| is a power of p.

Proof. Certainly K/\mathbb{F}_p is finite, so $K \cong (\mathbb{F}_p)^n$ (as a vector space), where $n = [K : \mathbb{F}_p]$, so $|K| = p^n$.

Later on we will see that every prime power $q=p^n$ admits a field \mathbb{F}_q with q elements.

Here is a simple but powerful fact:

Theorem 3.3 ("Tower Law"). Suppose M/L and L/K are field extensions. Then M/K is a finite extension if and only if both M/L and L/K are finite. If so, then [M:K] = [M:L][L:K].

In fact, a slightly more general statement holds:

Theorem 3.4. Let L/K be an extension, V an L-vector space. Then $\dim_K(V) = [L:K] \dim_L(V)$ (and obvious conclusions if any quantities are infinite).

Example. If $V = \mathbb{C}^n$ then $V \cong \mathbb{R}^{2n}$.

Proof. Let $\dim_L(V) = d < \infty$. Then $V \cong L \oplus \ldots \oplus L = L^d$ as an L-vector space, so also as a K-vector space. If $[L:K] = n < \infty$, then $L \cong K^n$ as a K-vector space, so

$$V \cong \underbrace{K^n \oplus \ldots \oplus K^n}_{d \text{ times}} = K^{nd}$$

so $\dim_K(V) = [L:K] \dim_L(V)$. If V is finite-dimensional over K, then a K-basis for V certainly spans V over L. So if $\dim_L(V) = \infty$ then $\dim_K(V) = \infty$. Likewise, if $[L:K] = \infty$ and $V \neq \{0\}$, then V has an infinite linearly independent subset, so $\dim_K(V) = \infty$.

Another important fact:

Proposition 3.5.

- (i) Let K be a field, $G \subseteq K^{\times}$ a finite subgroup. Then G is cyclic
- (ii) If K is finite, then K^{\times} is cyclic

Proof. We prove (i) ((ii) follows immediately): (recall from IB GRM) we can write

$$G \cong \frac{\mathbb{Z}}{m_1 \mathbb{Z}} \oplus \ldots \oplus \frac{\mathbb{Z}}{m_k \mathbb{Z}}$$

where $1 < m_1 \mid m_2 \mid \ldots \mid m_k = m$. So for all $x \in G$, $x^m = 1$. As K is a field, the polynomial $T^m - 1$ has at most m roots. So |G| < m. Hence k = 1 and G is cyclic.

Remark: Let $K = F = \mathbb{Z}/p\mathbb{Z}$. The above says there exists $a \in \{1, \dots, p-1\}$ such that $\mathbb{Z}/pZ = \{0\} \cup \{a, a^2, \dots, a^{p-1}\}$. a is called a primitive root modulo p.

Г