Лабораторная работа 5.2.1 Опыт Франка-Герца Выполнил Жданов Елисей Б01-205

1 Цель работы

Методом электронного возбуждения измерить энергию первого уровня атома гелия в динамическом и статическом режимах

2 В работе используюются:

- трёхэлектродная лампа ЛМ-2
- микроамперметр
- понижающий трансформатор
- осциллограф
- блок источников питания
- вольтметр В7-22А

3 Теоретические положения

Опыт Франка-Герца подтверждает существование дискретных уровней энергии атомов. Разреженный одноатомный газ заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия.

- энергия электрона недостаточна, чтобы возбудить/ионизировать атом -> упругое столкновение, электрон не теряет энергию
- при большой разности потенциалов энергия электрона достаточна для возбуждения атомов -> *неупругое столкновение*, кинетическая энергия передаётся одному из атомных электронов, в результате чего происходит:

- возбуждение переход одного из атомных электронов на свободный энергетический уровень
- ионизация отрыв электрона от атома

Рис. 1: Схема опыта Франка и Герца

Рис. 2: Схематический вид зависимости тока коллектора от напряжения на аноде

Объясним вид зависимости тока коллектора (измеряется микроамперметром) от напряжения на аноде. При увеличении потенциала анода ток в лампе растёт и падает (зависимость, подобная ВАХ вакуумного диода). Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния, равные энергии первого возбуждённого состояния.

4 Экспериментальная установка

Рис. 3: Схема экспериментальной установки

5 Измерения, Обработка

5.1 Динамический метод

По результатам, полученным на экране осциллографа получим данные таблицы.

Измерения проводились снятием разницы потенциалов, соответствующих пикам прямого и обратного изменения напряжения, далее эти значения усреднялись и записывались как $\Delta V_{\rm max}$ и $\Delta V_{\rm min}$.

V_3 ,	$\Delta V_{\rm max}$, B	ΔV_{\min} , B	Е, эВ
4	12 ± 2	19 ± 2	16 ± 4
6	10 ± 2	18 ± 2	15 ± 4
8	9 ± 2	17 ± 2	14 ± 4

Таблица 1: Результаты динамического измерения

Итоговое значение потенциала,

$$E \approx 15 \pm 5 \text{ 9B}$$

Погрешности оценены как случайные и соответствующие цене деления шкалы(1 Вольт - малое деление).

5.2 Статический метод

Проведем аналогичные измерения в статическом режиме, снимем точки, построим графики и оценим приборные погрешности по характерным осцилляциям напряжений и токов приборов.

V_3 ,	$\Delta V_{\rm max}$, B	ΔV_{\min} , B
4	14.6	20.1
6	14.1	22.1
8	14.0	23.5

Таблица 2: Результаты статических измерений

Итоговое значение потенциала,

$$E \approx 18 \pm 3 \text{ 9B}$$

Погрешность была взята преимущественно случайная, также были учтены погрешности определения максимума и минимума по графикам(порядка 1 Вольта).

6 Вывод

Показания динамического режима: $E \approx 15 \pm 5 \text{ эВ}$

Показания статического режима: $E \approx 18 \pm 3 \text{ эВ}$

Теоретическое значение энергии первого уровня гелия: E = 21.6 эВ.

С точностью до погрешности, измеренная величина близка к теоретическому значению, хоть и не дотягивает до него.

Статический метод точнее оценивает значение энергии, вероятно как из-за лучшей точности приборов обработки данных, так и из-за метода рассчетов.