Bayesian Optimization Tutorial

Module 4: Beyond Black-box Bayesian Optimization

Joel Paulson

Assistant Professor, Department of Chemical and Biomolecular Engineering, The Ohio State University

Great Lakes PSE Student Workshop, 2023

For copies of slides & code, see https://github.com/joelpaulson/Great_Lakes_PSE_Workshop_2023

The Principles of Bayesian Optimization are **Extremely Flexible**

while {budget not exhausted}

Fit a Bayesian machine learning model (usually Gaussian process regression) to observations $\{x, f(x)\}$

Find x that maximizes acquisition(x, posterior)

Sample x & then observe f(x)

end

The Principles of Bayesian Optimization are **Extremely Flexible**

Elicit some **prior distribution** on the functions of interest

while {budget not exhausted}

Find **information source** whose **value of information** is the largest in the set of options

Query corresponding information source

Update the **posterior distribution** of the functions

end

Grey-Box Perspective

"one should avoid learning what you already know"

We can do better by peeking **INSIDE** of the box

(really just any additional information about problem and/or simulator)

"knowledge" or "physics"

^{*}sometimes referred to as grey-box (or hybrid) optimization

We can do MUCH better by peeking inside of the box

Theoretical Justification: Why is Grey-Box View Important?

- Simple regret: $\operatorname{Regret}_n = f(\tilde{x}_n) f(x^\star)$ Recommended point after n evaluations: \tilde{x}_n

Bound on performance of ANY black-box querying algorithm:

$$\exists C \geq 0, \ \exists n_0, \ \mathrm{such \ that} \ \mathbb{E}\left\{\mathrm{Regret}_n\right\} \leq \frac{C}{n}, \ \forall f \in \mathcal{F}, \ \forall n \geq n_0$$
[Chen, 1988]

- It is not possible to do better than linear convergence (on average)!
 - Must exploit other information to overcome this limiting barrier

Prior / Domain Knowledge Can Come in Many Forms

- Composite Functions (+ Constraints)
 - Represent function with a graph-like composite structure f(x) = g(h(x)) where only part of the graph h(x) is unknown
- Multi-Information Source Problems
 - Represent function f(x) = g(x, 1) as limit of a higher-dimensional function g(x, s) that involves correlated source parameters s
- Local Derivative & Noise Information
 - Incorporate any information relevant to noise and/or rate-of-change of f(x)

Prior / Domain Knowledge Can Come in Many Forms

- Robust and Stochastic Optimization
 - Represent function f(x, w) as function of design x and uncertainty w (with additional operators over w such as sums, integrals, max)
- Low-Dimensional Embeddings
 - Whenever $x \in \mathcal{X}$ is a large, identify an embedding space z = h(x) of significantly lower dimension that captures dominant behavior
- Unknown Objective Functions (Preference Learning)
 - Try to infer objective function f(x) from human-labeled preferences (as opposed to assuming we know the right function from the start)

Prior / Domain Knowledge Can Come in Many Forms

...and many, many more.

Let me just take a single example (**composite functions**) to step through the details

The COBALT Method

Our Approach: The COBALT Method

Code available : https://github.com/joelpaulson/COBALT

while {budget not exhausted}

Fit multi-output Gaussian process regression to observations $\{x, h(x)\}$

Find x that maximizes a **new acquisition function** $COBALT(x) = E[\{g(h(x)) - f^*\}^+]$

Sample x & then observe h(x), f(x)

end

We have further modified acquisition to account for unknown constraints

*Recall: objective is f(x) = g(h(x))

Let's see why COBALT works with a simple example

- Assume that we have the following variable declarations:
 - -x is a parameter of a black-box simulator (e.g., Aspen)
 - -h(x) is the simulator's prediction given x
 - -y is our observed data that we would like our simulator to match
- To calibrate our simulation model, we want to solve

$$\min_{x} (h(x) - y)^2$$

Let's Solve Example using Standard Bayesian Optimization

Let's Solve Example using Standard Bayesian Optimization

Let's Solve Example using Standard Bayesian Optimization

Notice how BO continues to sample in the right corner of / the function

Evaluations of h(x) - y

Evaluations of h(x) - y

Evaluations of $(h(x) - y)^2$

GP posterior on h(x) - y using 3 data points

Implied posterior on $(h(x) - y)^2$ using 3 data points

Notice how COBALT exploits positivity of the loss function to find a value of x that is more likely to make h(x) match y

GP posterior on h(x) - y using 4 data points

Implied posterior on $(h(x) - y)^2$ using 4 data points

Challenge: Maximizing COBALT is Hard!

- In standard Bayesian optimization, prediction of f(x) is Gaussian so that expected improvement (EI) has a closed-form expression
- When prediction of h(x) is Gaussian and $g(\cdot)$ is nonlinear, f(x) = g(h(x)) is no longer Gaussian
- COBALT has **no closed form** representation, making it harder to optimize
 - Can use same principles that we discussed for knowledge gradient (KG) to construct efficient algorithms (even when constraints are present)
- <u>General trend:</u> Additional operators provide very useful information but break Gaussian prediction when they are nonlinear \rightarrow increase complexity

Composite Functions arise in Many Practical Examples

Calibration of Expensive Black-box Forward Models

- -h(x) = prediction of observed data as function of parameters
- -g(h(x)) = negative log-likelihood (+ regularization)

Materials Design

- -h(x) = vector of different material attributes
- -g(h(x)) = combined performance measure over attributes

Process Flowsheet Optimization

- -h(x) = reaction & separation efficiency as function of temp. and concentration
- -g(h(x)) = return on investment

Genome-scale Bioreactor Model Calibration Test Problem

Expensive computer simulation Experimental measurements genome-scale flux balance analysis [Hanly, Urello, and Henson, 2012] Compare

- Optimize simulation's parameters such that log-likelihood is maximized
 - <u>six parameters</u> related to bounds on extracellular uptake rate

Genome-scale Bioreactor Model Calibration Test Problem

Negative log-likelihood is a composite function:

$$f(x) = g(h(x)) = \sum_{j=1}^{N} \frac{\log(0.0025h_j^2(x)) + 400h_j^{-2}(x)(y_j - h_j(x))^2}{\text{these terms are related to measurement noise term that depends on concentration}}$$

where x is the vector of parameters that must be estimated y_j is the jth measured datapoint (e.g., extracellular concentrations)

 $h_j(x)$ is the forward model prediction for the jth measurement

Results: Log10(Regret) versus Number of Evaluations

A Few Practical Examples

We can extend Bayesian Optimization to multiple "models" with different accuracies & costs

We can extend Bayesian Optimization $\min_{x \in \mathcal{X}} f(x) = \sum_{i=1}^{N} f_i(x)$ to multi-agent problems

D. Krishnamoorthy and J.A. Paulson, "Multi-agent Black-box Optimization using a Bayesian Approach to Alternating Direction Method of Multipliers", IFAC World Congress 2023 (accepted), https://arxiv.org/pdf/2303.14414.pdf

We can extend Bayesian optimization to work in real-world experimental systems (safety)

We can extend Bayesian Optimization to handle (partial) gradient information

GP regression naturally handles gradients (since it is linear operator)

We can estimate gradients in reinforcement learning (policy gradient theorem)

Thanks for your attention

Questions?