# Pollard's rho factorization method

# Random Factoring

- Let p|n and a≡b (mod p)
- Note: p is unknown and a,b is randomly selected
- a ≠b (mod n) ⇒ gcd(a-b,n) is a non-trivial factor of n

Proof: p|(a-b),  $p|n \Rightarrow p|gcd(a-b,n)$ 

- Let f: S → S be a random function
- We use f to generate  $x_0$ ,  $x_1$ ,  $x_2$ , ... defined by  $x_{i+1} = f(x_i)$ .
- Since S is finite, the sequence must eventually cycle.
- Then we can use this sequence to test gcd(x<sub>i</sub>-x<sub>i</sub>,n) factors n or not.
- Require  $O(\sqrt{n})$  Memory and Time (birthday problem)

# Example

• Let  $f = x^2 + 1 \mod 15$ 

| $X_0$ | <b>X</b> <sub>1</sub> | $X_2$ | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> | X   |
|-------|-----------------------|-------|-----------------------|----------------|-----------------------|-----------------------|-----|
| 1     | 2                     | 5     | 11                    | 2              | 5                     | 11                    | ••• |

- Memory all x<sub>i</sub> and compute every gcd(x<sub>i</sub>-x<sub>i</sub>,n)
- gcd(5-2,15) = 3

• The sequence of f is cyclic.



# Floyd's cycle finding

 $p_2$ 

 $p_1$ 

- Let p<sub>1</sub> and p<sub>2</sub> be two pointer.
- $p_1$ ,  $p_2$  starts at  $x_0$ .
- p<sub>1</sub> goes one step at a time

p<sub>2</sub> goes two steps at a time

If there is a cycle, p<sub>1</sub> and p<sub>2</sub>
will meet somewhere.

 $p_1$ 



### Pollard's rho method (1975)

- Combine random factoring and Floyd's cycle finding (use only tow pointers p<sub>1</sub> and p<sub>2</sub> to save memory).
- Let  $f(x) = x^2 + 1 \mod n$  be the random sequence generator.

#### Pollard's rho method

- INPUT: a composite integer n that is not a prime power
- OUTPUT: a non-trivial factor d of n
- 1. Set  $p_1 \leftarrow 2$ ,  $p_2 \leftarrow 2$
- 2. For i=1, 2, ...
  - ①  $p_1 \leftarrow f(p_1), p_2 \leftarrow f(f(p_2))$
  - ②  $d \leftarrow gcd(p_1-p_2,n)$
  - If 1<d<n then return d</p>
  - ④ If d=n then return fail

Example

|            | а      | b      | d   |
|------------|--------|--------|-----|
| • n=455459 | 2      | 2      |     |
| =613*743   | 5      | 26     | 1   |
|            | 26     | 2871   | 1   |
|            | 677    | 179685 | 1   |
|            | 2871   | 155260 | 1   |
|            | 44380  | 416250 | 1   |
|            | 179685 | 43670  | 1   |
|            | 121634 | 164403 | 1   |
|            | 155260 | 247944 | 1   |
|            | 44567  | 68343  | 743 |