Microéconomie: équilibre général

Epreuve sur 24 points. Toutes les réponses doivent être justifiées.

Exercice 1: Questions de cours (7 = 1+1+2+2+1 points)

Soit $\mathcal{E} = (N, L, (u^i, e^i)_{i=1,\dots,N})$ une économie où, pour tout $i = 1, \dots, N, u^i : \mathbb{R}_+^L \to \mathbb{R}$ est une fonction d'utilité croissante représentant les préférences \succsim^i de l'agent i sur les paniers à L biens et e^i est sa dotation initiale.

1. Qu'est-ce qu'un équilibre concurrentiel dans \mathcal{E} ? Enoncer des conditions suffisantes pour l'existence d'un équilibre concurrentiel.

On suppose désormais que, pour tout i, la fonction de demande $p \mapsto d^i(p)$ est bien définie

- 2. Définir et interpréter la fonction de demande excédentaire f. Décrire les équilibres concurrentiels à l'aide de f.
- 3. Déterminer tous les équilibres concurrentiels de \mathcal{E} lorsque tous les agents sont identiques, i.e. $(u^1, e^1) = \cdots = (u^N, e^N)$. Commenter.
- 4. Soit h > 0. Interpréter et comparer $d^i(p)$ et $d^i(p')$, pour deux prix $p, p' \in \mathbb{R}_+^L$ vérifiant $p' = p + h(1, 0, \dots, 0)$.
- 5. L'énoncé suivant est-il vrai ou faux ? (justifier votre réponse) : "Si $z=(z^1,\ldots,z^N)$ est une allocation d'équilibre, alors $u^i(z^i) \geqslant u^i(e^i)$ pour tout $i=1,\ldots,N$ ".

Exercice 2 : Un problème de consommateur (5 points)

On considère un agent dont les préférences sur deux biens sont données par la fonction d'utilité $u(x,y)=10+2x^2y^3$. Initialement, l'agent possède une unité de chaque bien, i.e. e=(1,1). Soit $p=(p_x,p_y)\gg 0$ un vecteur de prix fixé.

- 1. Décrire le problème de maximisation du consommateur et expliquer pourquoi il admet une unique solution $d(p) := (x^*, y^*)$ vérifiant, en plus, $x^*y^* > 0$.
- 2. Expliquer pourquoi on peut supposer, sans perte de généralité, que $p_y = 1$. Montrer que $x^*p_x + y^*p_y = p_x + p_y$. Nommer et interpréter ce résultat.
- 3. Déterminer le taux marginal de substitution du bien y pour le bien x en tout point (x_0, y_0) . En déduire le panier optimal d(p).
- 4. On suppose que $p_y = 1$. Donner des conditions sur p_x pour que
 - (a) il y ait excès de demande pour le bien x
 - (b) il v ait excès de demande pour le bien y
- 5. Si le consommateur reçoit une quantité $\delta > 0$ additionnelle du premier bien, comment sa demande se verra-t-elle affectée? Justifier la réponse en déterminant la nouvelle fonction de demande $d(p; \delta)$ et en la comparant à l'ancienne d(p).

Exercice 3: Un problème d'équilibre (8 points)

On considère une économie d'échange $\mathcal{E} = \{(u^i, e^i)_{i=1,2}\}$ avec deux biens et deux agents, décrits par des fonctions d'utilité $u^1(x,y) = \ln x + 2 \ln y$ et $u^2(x,y) = x + y$ et des dotations initiales $e^1 = (4,2)$ et $e^2 = (1,3)$. On supposera que $p_y = 1$, et on notera $p \ge 0$ le prix du premier bien.

- 1. Que représentent les courbes d'iso-utilité $\{u^1 = 4 \ln 2\}$ et $\{u^2 = 4\}$? Déterminer leur expression analytique.
- 2. Placer $e = (e^1, e^2)$, $\{u^1 = 4 \ln 2\}$ et $\{u^2 = 4\}$ sur une boîte d'Edgeworth.
- 3. Interpréter et indiquer graphiquement (sur la même boite d'Edgeworth) l'ensemble :

$$\{(z^1, z^2) \in \mathbb{R}^4_+ \mid z^1 + z^2 = (5, 5), \ u^1(z^1) \geqslant u^1(e^1), \ u^2(z^2) \geqslant u(e^2)\}$$

- 4. Toujours sur le même dessin, indiquer les contraintes budgétaires des deux agents pour les prix (du bien x) suivants : $p_1 = 3$, $p_2 = 1$ et $p_3 = 1/4$.
- 5. Le problème de maximisation du deuxième consommateur admet-il une solution unique? Justifier la réponse en déterminant (analytiquement ou à l'aide d'un graphique) la demande $D^2(p)$ du deuxième consommateur en fonction de p. Déterminer également $D^1(p)$.
- 6. Montrer que pour p > 1, (p, 1) n'est pas un prix d'équilibre.
- 7. Montrer que pour p < 1, (p, 1) n'est pas un prix d'équilibre.
- 8. Montrer que (1,1) est un prix d'équilibre, et déterminer l'allocation correspondante. Commenter et conlcure.

Exercice 4 : Un problème de préférences (4=1+2+1 points)

Soit $X = \{a, b, c\}$ un ensemble d'alternatives. On considère deux décideurs i = 1, 2 dont les comportements sont décrits par les fonctions de choix suivantes (les ensembles de tests \mathcal{A}^1 et \mathcal{A}^2 y sont définis implicitement):

agent 1 :
$$C^1(A) = A$$
, pour tout $A \subset X$ ayant deux éléments, et $C^1(X) = \{a\}$ agent 2 : $C^2(\{a,b\}) = C^2(\{a,c\}) = \{a\}$, et $C^2(\{b,c\}) = \{b,c\}$

On définit les préférences révélées \succeq^i de l'agent i=1,2 en posant pour tout $\alpha,\beta\in X$:

$$\alpha \succsim^i \beta \quad \Leftrightarrow \quad \exists A \in \mathcal{A}^i \text{ tel que } \alpha, \beta \in A \text{ et } \alpha \in C^i(A)$$

- 1. Les préférences \succeq^i sont-elles rationnelles? Justifier votre réponse.
- 2. Enoncer l'axiome faible des préférences révélées (WA). Vérifier si les fonctions de choix décrites ci-dessus le vérifient.
- 3. Ordonner (si possible) les alternatives a, b et c du point de vue de chaque agent et définir (si possible) une fonction d'utilité u^i qui représente \succsim^i , pour i=1,2.