TJA1050 高速 CAN 收发器

特征

- 与 " ISO 11898 " 标准完全兼容
- 速度高(最高可达 1M 波特)
- 低电磁辐射(EME)
- 具带有宽输入范围的差动接收器,可抗电磁干扰(EMI)
- 没有上电的节点不会对总线造成干扰
- 发送数据(TXD)控制超时功能
- 发送禁能时的静音模式
- 在暂态时自动对总线引脚进行保护
- 输入级与 3.3V 装置兼容
- 热保护
- 对电源和地的防短路功能
- 可以连接至少 110 个节点

总体描述

TJA1050 是控制器区域网络(CAN)协议控制器和物理总线之间的接口。TJA1050 可以为总线提供不同的发送性能,为 CAN 控制器提供不同的接收性能。

TJA1050 是 PCA82C250 高速 CAN 收发器的后继产品。TJA1050 在以下方面作了重要的改进:

- CANH 和 CANL 理想配合,使电磁辐射减到更低。
- 在有不上电节点时,性能有所改进。

快速参考数据

助记符	参数	条件	最小值	最大值	单位
Vcc	电源		4.75	5.25	V
V _{CANH}	引脚 CANH 的直流电压	0< V _{CC} <5.25V; 无时间限制	-27	+40	V
V _{CANL}	引脚 CANL 的直流电压	0< V _{CC} <5.25V; 无时间限制	-27	+40	V
V _{i(dif)(bus)}	不同的总线输入电压	控制	1.5	3	V
t _{PD(TXD-RXD)}	TXD 到 RXD 的传播延迟时间	VS=0V ; 见图 7	-	250	ns
T _{amb}	环境温度		-40	+125	

订货信息

型 믁		封装								
至与 	名字	描述	版本							
TJA1050T	SO8	塑料小型封装;8 引脚;宽 3.9mm	SOT96-1							
TJA1050U -		裸板;板尺寸 1700x1280x380 μm	-							

方框图

图 1 方框图

引脚

J 1 1141-						
助记符	引脚	描述				
TXD	1	发送数据输入				
GND	2	接地				
Vcc	3	电源				
RXD	4	收数据输入				
V _{ref}	5	参考电压输出				
CANL	6	低电平 CAN 总线				
CANH	7	高电平 CAN 总线				
S	8	选择进入高速模式还是静音模式				

图 2 引脚配置

功能描述

TJA1050 是 CAN 协议控制器和物理总线之间的接口。它最初是应用在波特率范围在 60k 波特到 1M 波特的高速自动化应用中。TJA1050 可以为总线提供不同的发送性能,为 CAN 控制器提供不同的接收性能。而且它与"ISO 11898"标准完全兼容。

TJA1050 有一个电流限制电路,保护发送器的输出级,使由正或负电源电压意外造成的短路不会对TJA1050 造成损坏(此时的功率消耗增加)。

TJA1050 还有一个温度保护电路,当与发送器的连接点的温度超过大约 165 时,会断开与发送器的连接。因为发送器消耗了大部分的功率,所以这个集成电路的功率消耗和温度会较低。但是此时 IC 的其他功能仍继续工作。当引脚 TXD 变高(电平),发送器由关闭状态复位。当总线短路时,尤其需要这个温度保护电路。

在汽车通电的瞬间,引脚 CANH 和 CANL 也受到保护(根据"ISO 7637";见图 4)。

通过引脚 S 可以选择两种工作模式:高速模式或静音模式。

高速模式就是普通的工作模式,将引脚 S 接地可以进入这种模式。如果引脚 S 没有连接,高速模式就是默认的的工作模式。

在静音模式中,发送器是禁能的。但 IC 的其他功能可以继续使用。将 S 引脚连接到 V_{CC} 可以进入这个模式。静音模式可以防止在 CAN 控制器不受控制时对网络通讯造成堵塞。

当引脚 TXD 由于硬件和 / 或软件程序的错误而持久地为低(电平)时," TXD 控制超时 " 定时器电路可以防止总线进入这种持久的支配状态(阻塞所有网络通信 》。这个定时器是由引脚 TXD 的负跳变边缘触发。如果引脚 TXD 的低电平持续时间超过内部定时器的值,发送器会被禁能,使总线进入隐性状态。定时器由引脚 TXD 的正跳变边沿复位。

V _{cc}	TXD	S	CANH	CANL	总线状态	RXD
4.75-5.25V	0	0(或悬空)	高	低	控制	0
4.75-5.25V	Х	1	0.5 V _{CC}	0.5 V _{CC}	隐性	1
4.75-5.25V	1(或悬空)	Х	X 0.5 V _{CC} 0.5 V _{CC}		隐性	1
<2V(不加电)	Х	Х	0V <v<sub>CANH< V_{CC}</v<sub>	0V <v<sub>CANH< V_{CC} 0V<v<sub>CANL< V_{CC}</v<sub></v<sub>		Х
2V <vcc<4.75< td=""><td>>2V</td><td>Х</td><td>0V<vcanh< td="" vcc<=""><td>0V<vcani< td="" vcc<=""><td>隐性</td><td>Х</td></vcani<></td></vcanh<></td></vcc<4.75<>	>2V	Х	0V <vcanh< td="" vcc<=""><td>0V<vcani< td="" vcc<=""><td>隐性</td><td>Х</td></vcani<></td></vcanh<>	0V <vcani< td="" vcc<=""><td>隐性</td><td>Х</td></vcani<>	隐性	Х

表 1 CAN 收发器功能表: X=不考虑

限值

根据绝对最大额定值系统(IEC 60134)。所有电压都是以 GND (引脚 2) 为参考。正电流方向是流入 IC 的方向。

助记符	参数	条件	最小值	最大值	单位
Vcc	电源电压		-0.3	+6	V
V _{CANH}	引脚 CANH 的 DC 电压	0 <v<sub>CC<5.25V; 无时间</v<sub>	- 27	+ 40	V
		限制			
V _{CANL}	引脚 CANL 的 DC 电压	0 <v<sub>CC<5.25V; 无时间</v<sub>	- 27	+ 40	V
		限制			
V _{TXD}	引脚 TXD 的 DC 电压		- 0.3	VCC+0.3	V
V _{RXD}	引脚 RXD 的 DC 电压		- 0.3	VCC+0.3	V
V _{ref}	引脚 V _{ref} 的 DC 电压		- 0.3	VCC+0.3	V
Vs	引脚S的DC电压		- 0.3	VCC+0.3	V
V _{trt(CANH)}	引脚 CANH 的瞬态电压	注1	- 200	+ 200	V
V _{trt(CANL)}	引脚 CANL 的瞬态电压	注1	- 200	+ 200	V

V _{es}	所有引脚的静电放电电	注 2	- 4000	+ 4000	V
	压	注3	- 200	+ 200	V
T _{stg}	存储温度		- 55	+ 150	
T _{amb}	环境温度		- 40	+ 125	
T _{vj}	实际连接温度	注 4	- 40	+ 150	

注:

- 1. 根据"ISO 7637 part 1"确定应用的暂态波形,测试脉冲1,2,3a和3b(见图4)。
- 2. 人体模型: C=100pF, R=1.5k 。如果引脚 CANH 向所有其他没有上电的引脚放电: -3750V<Ves<+3750V。
- 4. 根据"IEC 60747-1"。T_{vj}的可选定义:T_{vj}=T_{amb}+PxR_{th(vj-a)},R_{th(vj-a)}是一个固定值,用于计算 T_{vj}。
 T_{vj}的额定值限制了允许的功率消耗(P)和环境温度(T_{amb})的组合。

温度特性

根据 IEC 60747-1

助记符	参数	条件	值	单位
R _{th(vj-a)}	从连接点到 SO8 封	在空气中	145	K/W
	装环境的温度阻抗			
R _{th(vj-s)}	从连接点到裸板下	在空气中	50	K/W
	层的温度阻抗			

质量标准

使用质量标准 "SNW-FQ-611 part D"。

特性

如果没有特别说明, V_{CC} = 4.75 ~ 5.25V; T_{vj} =-40 ~ +150 ; R_L = 60 。 所有电压都是以 GND(引脚 2)为参考;正电流的方向是流进 IC 的方向;见注 1 和 2。

助记符	参数	条件	最小值	类型	最大值	单位
电源(引脚 Ⅴ∞)					
Icc	电源电流	控制;V _{TXD} =0V	25	50	75	mA
		隐性;V _{TXD} =V _{CC}	2.5	5	10	mΑ
发送器数据输力	入(引脚 TXD)					
V _{IH}	高电平输入电压	输出隐性	2.0	-	V _{CC} +0.3	V
V _{IL}	低电平输入电压	输出控制	-0.3	•	+0.8	٧
l _{IH}	高电平输入电流	$V_{TXD} = V_{CC}$	-5	0	+5	μΑ
I _{IL}	低电平输入电流	V _{TXD} =0V	-100	-200	-300	μΑ
Ci	输入电容	未经测试	-	5	10	pF
模式选择输入	(引脚S)					
V _{IH}	高电平输入电压	静音模式	2.0	-	VCC+0.3	٧
V _{IL}	低电平电压	高速模式	- 0.3	-	+0.8	V
I _{IH}	高电平输入电流	V _S = 2V	20	30	50	μΑ
I _{IL}	低电平输入电流	V _S =0.8V	15	30	45	μΑ

接收器数据输	出(引脚 RXD)					
Іон	高电平输出电流	V _{RXD} =0.7V _{CC}	-2	-6	-15	mA
l _{OL}	低电平输出电流	V _{RXD} =0.45V	2	8.5	20	mΑ
参考电压输出	(引脚 V _{ref})		•	•	•	•
V _{ref}	参考输出电压	-50µ A <i<sub>vref<+50µ A</i<sub>	0.45V _{CC}	0.5V _{CC}	0.55V _{CC}	V
总线(引脚 CA	NH和CANL)					
V _{o(reces)(CANH)}	引脚 CANH 的隐性	V _{TXD} =V _{CC} ;无负载	2.0	2.5	3.0	V
	总线电压					
$V_{o(\text{reces})(\text{CANL})}$	引脚 CANL 的总线 隐性电压	V _{TXD} =V _{CC} ;无负载	2.0	2.5	3.0	٧
I _{o(reces)(CANH)}	引脚 CANL 总线输	-27V <v<sub>CANH<+32V;</v<sub>	-2.0	-	+2.5	mΑ
, ,, ,	出电流	0V <v<sub>CC<5.25V</v<sub>				
I _{o(reces)(CANL)}	引脚 CANL 的隐性	-27V <v<sub>CANH<+32V;</v<sub>	-2.0	-	+2.5	mA
•	输出电流	0V <v<sub>CC<5.25V</v<sub>				
V _{o(dom)(CANH)}	引脚 CANH 的控制	V _{TXD} =0V	3.0	3.6	4.25	V
	输出电压			<u> </u>		
$V_{o(dom)(CANL)}$	引脚 CANL 的控制	V _{TXD} =0V	0.5	1.4	1.75	V
	输出电压					
V _{i(dif)(bus)}	差动总线输入电压	V _{TXD} =0V;控制;	1.5	2.25	3.0	V
	(VCANH-VCANL)	42.5 <r<sub>L<60</r<sub>				
		V _{TXD} =V _{CC} ;隐性;无	-50	0	+50	m۷
		负载				
$I_{\text{O(sc)(CANH)}}$	引脚 CANH 的短路	V _{CANH} =0V ; V _{TXD} =0V	-45	-70	-95	mA
	输出电流					
$I_{\text{O(SC)}(\text{CANH})}$	引脚 CANL 的短路	V _{CANL} =36V; 45		70	100	mA
	输出电流	V _{TXD} =0V				
$V_{i(dif)(th)} \\$	差动接受器限值电	-12V <v<sub>CANL<+12V;</v<sub>	0.5	0.7	0.9	V
	压	-12V <v<sub>CANH<+12V;</v<sub>				
		见图 5				
$V_{i(dif)(hys)} \\$	差动接受器的输入	-12V <v<sub>CANL<+12V;</v<sub>	50	70	100	mV
	电压滞后	-12V <v<sub>CANH<+12V;</v<sub>				
		见图 5				
$R_{i(cm)(CANH)} \\$	引脚 CANH 的普通 模式输入阻抗		15	25	35	k
R _{i(cm)(CANL)}	引脚 CANL 在普通		15	25	35	k
(((()))((()) ((1))	模式下的输入阻抗					
R _{i(cm)(m)}	引 脚 CANH 和	V _{CANH} =V _{CANL}	-3	0	+3	%
V- // /	CANL 在普通模式下					
	的输入阻抗的比					
R _{i(dif)}	差动输入阻抗		25	50	70	k
C _{i(CANH)}	引脚 CANH 的输入	V _{TXD} =V _{CC} ;未经测试	-	7.5	20	pF
, ,	电容					1

C _{i(CANL)}	引脚 CANL 的输入	V _{TXD} =V _{CC} ;未经测试	-	7.5	20	pF
	电容					
C _{i(dif)}	差动输入电容	V _{TXD} =V _{CC} ;未经测试	-	3.75	20	pF
I _{LI(CANH)}	引脚 CANH 的输入	V _{CC} =0V; V _{CANH} =5V	100	170	250	μΑ
	漏电流					
I _{LI(CANL)}	引脚 CANL 的输入	VCC=0V ;V _{CANH} =5V	100	170	250	μΑ
	漏电流					
停机温度						
T _{j(sd)}	断开连接温度		155	165	180	
时序特性(见图	6和图7)					
t _{d(TXD-BUSon)}	TXD 到总线激活的	V _S =0V	25	55	110	ns
	延迟					
t _{d(TXD-BUSoff)}	TXD 到总线停止的	V _S =0V	25	60	95	ns
	延迟					
$t_{d(BUSon-RXD)}$	总线激活到 RXD 的	V _S =0V	20	50	110	ns
	延迟					
t _{d(BUSoff-RXD)}	总线停止到 RXD 的	V _S =0V	45	95	155	ns
	延迟					
$T_{dom(TXD)}$	TXD 超时的控制时	V _S =0V	250	450	750	μs
	间					

注:

- 1. 所有参数在连接温度范围内得到保证,但只有晶片级的电路板在 125 的环境温度下所有参数都测试过,封装的产品是在 25 的环境温度下全部测试过,除非另外指出。
- 2. 只有当裸板的背面连接到地,所有的参数才能得到保证。

应用和测试信息

图 3 应用信息

图 4 自动的暂态过程测试电路

图 5 接收器滞后

图 6 时序特性的测试电路

(1) $V_{i(dif)(bus)} = V_{CANH} - V_{CANL}$

图 7 AC 特性的时序图

图 8 电磁辐射测量的基本测试设置 (带有可分离终端)(见图 9 和图 10)

Data rate of 500 kbits/s.

图 9 50MHz 内的典型电磁辐射(峰值振幅测量)

图 10 10MHz 内的典型电磁辐射 (峰值振幅测量和峰值振荡的包络线)

图 11 电磁干扰性测量的基本测试配置(见图 12)

Data rate of 50@bits/s.

图 12 典型的电磁抗干扰性

焊接区位置

/										
助记符	焊点	坐标								
		Х	у							
TXD	1	103	103							
GND	2	740	85							
Vcc	3	886.5	111							
RXD	4	1371.5	111							
V _{ref}	5	1394	1094							
CANL	6	998	1115							
CANH	7	538.5	1115							
S	8	103	1097							

注:

1. 以电路板的 x/y=0 为原点,每一个 x/y 坐标表示了每个焊点的中心位置(单位 μm)。(见图 13)

图 13 焊接区位置

封装外形

SO8: 塑质的小型封装; 8引脚; 片宽 3.99mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

	WINE TO CITE (Internal Internal Control of the Cont																	
UNIT	A max.	A 1	A ₂	A ₃	bp	U	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	>	v	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.050	0.244 0.228	0.041		0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT96-1	076E03	MS-012				97-05-22 - 99-12-27