(3) Japan Patent Office (JP)

(1) Patent Application Laid-Open Disclosure

Dublication of Unexamined Patent Application (A)

SHO 61-207566

1 Int. Cl.4

Domestic Classification Symbol

JPO File Number

- 425 -

@ Disclosure 1986 (1986) September 13

C 23 C 4/10

7011 – 4K

Request for Examination

Not requested

Number of inventions 1 (5 pages)

<u> </u>	Title of the Invention	Ceramic Spray Deposit Formation Method			
		Patent Application SHO 60-47400			
	·	@ Filing Date March 12, 1985 (SHO 60)			
0	Inventor(s) -	Isamu Asakawa 239-1 Shimokagemori, Chichibu-shi			
	Inventor(s)	Yoshio Machida 788-1, Kamitano, Ooaza, Arakawa-mura, Chichibu-gun, Saitama			
Ø	Inventor(s)	Katsuyuki Shirai 1403-2, Koorimoto, Ichihara-shi			
Ð	Applicant(s)	Showa Denko Co., Ltd. 1-13-9, Shibadaimon, Minato-ku, Tokyo			
€A)	Agent(s)	Selichi Kikuchi, Patent Attorney			

Specification

1. Title of the Invention

Ceramic Spray Coating Formation Method

2. Scope of Claims

1) It is a ceramic spray coating formation method which is characterized by the spraying of nickel - aluminum alloy, containing aluminum 4 - 22 % by weight; nickel - chrome alloy, containing chrome 15 - 25 % by weight; or nickel - chrome-aluminum, containing chrome 15 - 25 % by weight; or aluminum 4 - 22 % by weight, as the bonding layer on the alloy backing material of aluminum or aluminum alloy that is heated to a temperature of 250° or up to 400°C, wherein subsequently ceramic material is sprayed on the said bonding layer.

2) It is the method in paragraph 1 of the Scope of Claims paragraph which is characterized by the fact that the ceramic material is a fully stabilized zirconia series material.

3. Detailed Description of the Invention

(Subject Matter of the Invention)

The present invention is concerned with the method of forming a spray coating.

(Conventional Technology)

A member of framework for internal combustion engines is required in order to endure continuous operation for long periods in a high temperature state; and moreover, mechanical strength, as well as resistance to heat and corrosion are required because it experiences a thermocycle, and in piston materials there is a high demand for spray coating with peeling resistance, particularly when using a thermal spray material for items such as the piston head of an internal combustion engine.

For example, although at first there is a spray coating of Ni - Cr alloy on a Ni base alloy backing material, followed by spraying of ZrO2 series in a gas turbine, the disadvantage is that peeling of the spray coating commonly occurs while the turbine is being used.

In addition, the results of the practical use test of the piston material made of cast steel, which is conducted by spray coating with Ni - Cr alloy followed by spray coating with ZrO2 whereby, as expected, peeling of the sprayed layer occurs, consequently demonstrate that the thickness of ZrO2 should be made sufficiently thin to prevent peeling; however, this would require a sacrifice in thermal resistance and resistance to wear.

1

Furthermore, as a result of having tried the method in which thermal spraying is conducted with ZrO2 for thermal insulation following the bond-coating of Ni - Cr alloy or Ni - Al material on the surface of the piston made of Al alloy, it is known that this thermal spraying method will not be able to bear up to use

because of peeling of the sprayed layer within a comparatively short time, as shown by a practical use engine test.

The reason that such peeling occurs is that there is a difference in the coefficient of thermal expansion between the backing material and the oxide layer of the thermal spray finish layer. That is to say, if the coefficients of thermal expansion for each of the above materials are measured, the results such as those obtained in table 1 and the differences in the coefficients for thermal expansion of each material would be remarkable.

(Table 1)	
- Materials	Coefficient of Linear Expansion (×10 - 6/°C)
Al Alloy of Al Alloy Piston Cast Steel Backing Material Ni Base Backing Material Ni - Cr Spray Coating Ni - Al Spray Coating ZrO2 Scrics Spray Deposit	18~24 11~12 10~13 16.0 15.0 9~11

3

The Al or Al alloy in the present invention includes pure Al, Al - Mg series, Al - Si series, Al - Mg - Si series, Al - Si - Ca series, and Al - Si - Fe series.

In addition, Ni - Cr alloy, Ni - Al alloy or Ni - Cr - Al alloy, which are used as base materials, are powders of comparatively coarse-grain in the range of $105\text{-}20~\mu$ m respectively and the use of such powders is desirable for improving the bonding strength of these materials with the ceramic spray coating. It is necessary to have: a quality of Cr that is 15-25% by weight in the Ni - Cr alloy; a quality of Al that is 4-22% by weight in the Ni - Al alloy; a quality of Al that is 4-22% by weight, and a quality of chrome that is 15-22% by weight in the Ni- Cr - Al alloy. However, according to experimental results, it has been verified that using Al -20% Si alloy, etc. as a base material has the great effect of improving the bonding strength of the spray coating.

In addition, Ni - Al alloy, and Ni - Cr - Al alloy refer to any of the composite powders, which are coated with Ni or Ni - Cr alloy, ultra-fine granular powders of Ni. Cr, and Al, or metallic bond

alloy powders of each component.

Patent Application Laid-open Disclosure SHOWA 61-207566 (2)

As the table makes evident, in thermal spraying of Ni - Cr alloy on the Al alloy backing material followed by thermal spraying with ZrO2 in each interval layer, there is a coefficient of thermal expansion difference of approximately (2-8) × 10-6/ degrees Celsius which leads to peeling of the coating. When examining this kind of peeling part, peeling is often recognized on the border of the surface between the backing material and the bonding layer.

(Object of the Invention)

The purpose of the present invention is to provide a ceramic spray coating formation method, which shows superior pecling resistance by improvement of the defects in said conventional technology.

(Constitution of the Invention)

In this invention, it is the ceramic spray coating formation method, which is characterized by the fact that initially Ni - Cr alloy, which contains Cr 15 - 25% by weight, Ni - Al alloy, which contains Al 4 - 22% by weight, or Ni - Cr - Al alloy comprising Ni - Cr alloy, wherein Al 4 - 22% by weight is added and thermally sprayed to form the bonding layer, and subsequently, a stabilized ZrO2 series ceramic material is thermally sprayed on the surface of this bonding layer.

One of the characteristic points of the present invention is that the thermal spraying of Al or Al alloy backing material is conducted on the said base material under the heating conditions of 250~400°C as described above. As a result of the many experiments done by our inventors, it was ascertained that the heating effect at temperatures of lower than 250 °C is comparatively weak, and that temperatures higher than 400°C are not only undesirable for this invention because of softening deformation of the backing material but also because the improvement in the bonding strength of the spray coating reaches saturation at temperatures over 400°C. Moreover, it is desirable to conduct bonding immediately after heating up the backing material to a predetermined temperature in a short period of time in order to avoiding deterioration of the backing material, especially when heating it at high temperatures over 350°C. A range of 0.05-0.2mm is suitable for the thickness of the bonding coat because the effect of thermal stress relaxation is weak when the thickness is under 0.05mm; on the other hand, once the thickness exceeds 0.2mm the processing cost of the thermal spraying only increases in cost, while an improvement in effects

cannot be expected.

Furthermore, in the present invention, it is desirable that the material for the ceramic thermal spray show excellent high temperature stability, and moreover, low heat conductivity, and furthermore, to have a thermal expansion coefficient that is as close as possible to that of the materials in both the metal for the backing material and the metal for the bonding material.

Patent Application Laid-open Disclosure SHOWA 61-207566 (3)

There are ceramic materials, such as alumina, mullite, fully stabilized zirconia, calcia, yttria, and magnesia which have these properties, of which fully stabilized zirconia is particularly suitable.

A range of 0.2-10mm is the most suitable thickness for thermal spraying of ceramic material. A thin coating, which is equal to or less than 0.2mm, has the disadvantage of poor thermal insulation; whereas, with a thick coating equal to or more than 1.0mm a decrease in peeling resistance cannot be avoided.

According to the method in the present invention, substances processed by thermal spraying, which are obtained by thermal spraying of oxide ceramic material following thermal spraying of the bonding material on the heated backing material become such that peeling or cracking of the spray coating does not occur even if the substances are used for a long period of time in a thermocycle environment. Therefore, the reason for this is thought to be that the difference in the thermal expansion coefficient among the backing material, bonding material, and zirconia layer has become substantially closer, which is because of the adhesion between the heated backing material and bonding coat layer, which has become remarkably improved as a result of bonding layer adherence, as if the bonding layer had bitten into the backing material, causing expansion in comparison to the backing material that is not heated, and also because zirconia, which has a low thermal expansion coefficient, is thermosprayed on the bonding layer.

7

Bonding layer spray conditions: The quantity of Ar gas used as arc gas: 38l/min, the used quantity of He gas as auxiliary gas: 7l/min, spraying distance: 110mm, spray coating thickness: 0.1mm/min (Plasmadyne Corporation SG - 100 plasma thermal spraying gun was used)

Finish layer spray conditions: Ar gas: 331 / min, He gas: 151/min, spraying distance: 90mm, spray coating thickness: 0.4mm (Plasmadyne Corporation SG - 100 plasma thermal spray gun was used)

Thermal cycle test conditions: The processing which is repeated 10 times involves the text piece being maintained in a furnace at 400°C for 20 minutes, followed by air-cooling.

Tension test conditions: The test piece, in which the end face of the spray coated part and the material of another part of pure aluminum were adhered with Araldite AT -1, was used for the tension test.

Test results: Each of the tests shows actual measurement values or the mean of five samples.

(The following is left blank)

The reason for using fully stabilized zirconia in the present invention is as follows.

Fully stabilized zirconia has a structure which does not show a sudden volume change by transformation from an ordinary temperature to a high temperature because more than several % of Y2O3, CaO, and MgO, etc. are added, whereas pure zirconia shows a sudden volume change at the specific temperature of heating or cooling due to transformation. In addition, zirconia is the most suitable material because it hardly causes problems, such as cracking on the coating of member of the framework experiencing thermocycle due to the fact that the thermal expansion coefficient of zirconia is close to metal.

(Embodiment 1)

Peeling resistance of the spray coating was studied on the test pieces, which were thermally sprayed with various kinds of oxide powder following the thermal spraying Ni -Cr alloy or Ni - Cr Al alloy on the alloy backing materials of pure Al, Al - 13% Si alloy, and Al -15% Mg alloy that were heated to 250-400°C. Spray conditions, thermal cycle test conditions and tension test conditions are shown as follows, and the test results are shown in table 2.

Patent Application Laid-open Disclosure SHOWA 61-207566 (4)

(Table 2) Test Pieces	Backing Materials	I	Finish Thermal Spraying	
	Materials	Bonding Materials	Backing Material Temperature	
1 2 3 4	Pure Al Al - 13% Si Al - 1.5% Mg Al - 13% Si	Ni - 20% Cr Ni - 18% Cr -6% Al Ni - 5% Al Ni - 20% Cr	260 340 390 310	Al ₂ O ₃ · 2% TiO ₂ ZrO ₂ · 12% Y ₂ O ₃ ZrO ₂ · 7% CaO ZrO ₂ · 8% Y ₂ O ₃

Test Pieces	Tension Test					
163111000	Pecling Strength Kg / mm ²	Average Strength Kg / mm ²	Peeling Part			
1 2 3 4	2.4 - 2.8 2.5 - 2.9 2.4 - 3.1 2.7 - 3.2	2.59 2.76 2.74 2.92	Inside of the Finish Layer Same as above Same as above Same as above			

2129041025

10

(Comparative Example)

Table 3 shows the thermal spraying and the test results according to the same method used in Embodiment I, in which the same backing material and various kinds of bonding materials, were used and various kind of oxides without heating the backing material or heating at a temperature less than 250°C, or at a temperature equal to or more than 400°C.

(The following is left blank)

Patent Application Laid-open Disclosure SHOWA 61-207566 (5)

(Table 3) Test Pieces	Backing		Finish Thermal Spraying	
	Materials	Bonding Materials	Backing Material Temperature	
1 2 3 4	Pure Al Al -13% Si Al - 13% Si Al - 1.5%Mg	Ni - 5% Al Ni - 20% Cr Ni - 20% Cr Ni - 20% Al	Normal Temperature 120 210 420	Al ₂ O ₃ · 2% TiO ₂ ZrO ₂ · 8% Y ₂ O ₃ ZrO ₂ · 24% CaO ZrO ₂ · 7% Y ₂ O ₃

Test Pieces	Tension Test				
1 CSt I locos	Peeling Strength Kg/mm ²	Average Strength Kg/mm²	Peeling Part		
1 2 3 4	2.4 - 2.8 2.5 - 2.9 2.4 - 3.1 2.7 - 3.2	2.59 2.76 2.74 2.92	Between Base Metal – Bonding, Inside of the Finish Layer Same as above Between Base Metal - Bonding, Inside of the Finish Layer		

12

As described above, according to Embodiment 1 and the comparative samples, the samples that were not heated, or in which a bonding coat was sprayed on the backing material in which the range of heating temperature of the present invention deviated, showed not only low tensile strength but also wide dispersion; however, samples that were processed based on the present invention showed high tensile strength, small dispersion of tensile property, no peeling between the base material and bonding layer, and were broken equally within the finishing layer, and consequently the improvement of the peeling resistance was clearly suggested.

(Embodiment 2)

After conducting the same thermospraying as Embodiment 1, No. 4, and comparative sample example No. 2 on the top of Lo-Ex Al alloy piston of 50mm ϕ in diameter, during intermittent operation of 10 hours operation and 1 hour shut down, using an actual gasoline engine with conditions of 125 cc, 5000 cycle/min, and as a result, the former did not show any abnormality, such as peeling or cracking on the spray coating following the 20 cycle operation test. However, the latter showed approximately 30% missing on the piston top spray coating by examination of the inside of the engine after the second cycle.

From the above-mentioned results, it is obvious that the peeling resistance of the spray coating formed by the above-mentioned results based on the method of the present invention is extremely good.

Patent Applicant Showa Denko Co., Ltd.

Agent(s) Seiichi Kikuchi, Patent Attorney

TRANSLATOR CERTIFICATION

450 7th Ave | 6th Floor | New York, NY 10123 | Tel 212.643.8800 | Fox 212.643.0005 | www.mside.com

Morningside | Translations

I, Hirohisa Oda, a translator-fluent in the Japanese language, on behalf of Morningside Evaluations and Consulting, do solemnly and sincerely declare that the following is, to the best of my knowledge and belief, a true and correct translation of the document(s) listed below in a form that best reflects the intention and meaning of the original text.

MORNINGSIDE EVALUATIONS AND CONSULTING

d. Odaly Signature of Translator

Date: December 30, 2005

Description of Documents Translated: Ref. No. 270597US

® 日本国特許庁(JP)

① 特許出願公開

四公開特許公報(A)

昭61-207566

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和61年(1986)9月13日

C 23 C 4/10

7011-4K

審査請求 未請求 発明の数 1 (全5頁)

の発明の名称

セラミツク溶射皮膜形成方法

②特 願 昭60-47400

愛出 願 昭60(1985)3月12日

⑩発 明 者 浅 川

勇

秩父市下影森239-1

Ø発 明 者 町 田

芳 雄

埼玉県秩父郡荒川村大字上田野788-1

個発明者 白井

勝 之

市原市郡本1403-2

⑪出 願 人 昭和電工株式会社

東京都港区芝大門1丁目13番9号

10代理人 弁理士 菊地 精一

明 網 崔

発明の名称

セラミック解射皮膜形成方法

2.特許請求の範囲

- 1) 温度 250℃ないし 400℃に加熱したアルミニウムまたはアルミニウム合金基材に、下地層としてアルミニウム 4~22重量%を含有するニッケルーアルミニウム合金、またはクロム15~25重量%を含有するニッケルークロム合金、あるいはクロム15~25重量%とアルミニウム 4~22重量%を含有するニッケルークロムーアルミニウム合金のうちいずれが 1 種を溶射し、次いで設下地層の上にセラミック溶射皮膜形成方法。
- 2) セラミック材料が安定化ジルコニア系材料 であることを特徴とする特許請求の範囲第1項の 方法。

3. 発明の詳細な説明

(発明の対象)

本発明は溶射皮膜を形成する方法に関するもの

である。

(従来技術)

内燃機関用部材は長期にわたり高温状態で連続運転に耐え、しかも熱サイクルを受けるため耐熱耐食性と共に機械的強度を要求され、とくに内燃機関のピストンおよびピストンヘッド材等はそれが溶射材である場合には溶射皮膜の耐剝離性に対して高度な要求がある。

たとえばガスタービンにおいてはNi基合金基材上にまづNi-Cr合金を溶射し更にその上に ZrO2 系セラミックを溶射したものがあるが斯様な皮膜はタービン使用中に溶射皮膜の剝離を生じやすい欠点がある。

また、鋳鋼製ピストン材の表面にNi-Cr合金を 部別し更にその上に ZrOz を箝射したものを実用 試験した結果はやはり溶射皮製の剝離が生起し易 く、したがって剝離を防ぐには ZrOz の溶射厚さ を確くしなければ使用出来ないがこれによって耐 熱性および耐摩鈍性を犠牲にしなければならない。

2

さらに、A2合金製ピストンに対し、その表面 にNI-Cr合金またはNI- A2 材を下地溶射したの ち ZrO2 を溶射して断熱する方法を試みた 結果は 実用エンジン試験によって比較的短時間内に溶射 層の剝離を生じ使用に堪えなくなることが知られ

斯様な剝離原因は基材と溶射仕上げ層の酸化物層との熟膨型係数の差異が大なるためである。 すなわち上記各材の熱膨張係数を測定すれば第1 裏のような結果が得られ、各材質の熱膨張係数の差異は顕著である。

(第1表)

. N	質	線 膨 張 係 数 (×10 ⁻⁸ /℃)
Al合金ピストン	၈	
	免合金	18~24
络 鋼 基 材		11~12
Ni抹合金基材		10~13
Ni-Cr溶射皮膜		18.0
NI- AL溶射皮腺		15.0
2:02系容射皮膜		9 ~ 1 1

3

本発明に謂う Al または Al 合金とは純 Al または Al - Mg系、 Al - Si系、 Al - Mg - Si系、 Al - Si - Fe系を含むものである。

なおここにいうNI-AI合金、Ni-Cr- AI合金とは、Ni又はNi-Cr 合金に被覆された複合粉末あるいはNI,Cr, AIの散粉造粒粉末、又は各成分の金属結合合金粉末のいずれであっても良い。

変から明らかな通り A 2 合金基材上にNi-Cr合金を溶射し更に 2 r0 2 密射したものは名層間において、ほぼ (2~8)×10⁻⁶/ での熱膨張率差があり皮膜剝離の原因をなすことは明白である。 類様な別離 部分をしらべると、しばしば基材と下地層との度 地間において剝離を認めることができるのである。

(発明の目的)

本発明の目的は上紀従来技術の欠点を改良し耐 倒離性にすぐれたセラミック溶射皮膜の形成方法 を提供することにある。

(発明の構成)

本発明は 250~400 でに加熱した A 2 または A 2 合金塩材にまず Cr 15~25 気優%を含む Ni - Cr 合金または A 2 4~22 取最%を含む Ni - A 2 合金 あるいは前記 Ni - Cr 合金に A 2 4~22 重量%を添加した Ni - Cr - A 2 合金を溶射して下地層を形成し、次いでこの下地層の装面に安定化 2 r 0 2 系セラミック材を溶射することを特徴とする溶射皮膜形成方法にある。

4

本発明の特徴の一つは前記した通り A.Q. または A Q 合金基材を福度 250~400 ℃に加熱した状態 において上記下地材を溶射する点にある。木発明 者は多数の実験の結果、基材加熱程度 :2/50℃以下 においては加熱の効果は比較的関ぐ、また 400℃ を超えるときは基材の軟化変形を生じ易いのみな らず溶射皮膜の接合力向上効果も飽和に達するた め 400℃以上の加熱は本発明達成のため好ましく ないことが確認された。なお基材の加熱に関して は、特に 850で以上の高温加熱の場合は、基材の 変質をさける為い短時間の加熱で所定温度とし、 ナみやかに下地溶射することが望ましい。下地溶 射の厚さは、0.05~ 0.2㎝の範囲が適しており、 0.05 mm以下では熱応力級和の効果が弱く、一方 0.2mmを超えると溶射加工費がかざむのみで効果 の向上は期待できない。

また本発明にいうセラミック溶射材は高温安定性良好で、しかも熱伝導率が低く、更に無容景係 数は可能な限り基材金属ならびに下地材金属の熟 膨張係数に近いものが良い。新様な性質を有する セラミック材としてはアルミナ、ムライト、安定 化ジルコニア、カルシア、イットリア、マグネシ ア等があげられるが、特に安定化ジルコニアが好 適である。

セラミック材の溶射厚さは 0.2~1.0 nmの範囲が最適である。 0.2mm以下の強い皮膜は断熱効果に乏しい欠点があり、また 1.0mm以上の厚い皮膜は耐剝酸性低下はまぬがれない。

7

下地層溶射条件: アークガスとしてAiガス使用量 38 2 / min 補助ガスとしてHeガス使用量 7
 2 / min 溶射距離 110mm、溶射皮膜厚さ 0.1
 mm (プラズマダイン社SG-100 プラズマ溶射ガン使用)

- 仕上げ層溶射条件: Arガス38 Q / min 、 Keガス15 Q / min 、 溶射距離 80 mm、溶射皮膜厚さ0.4 mm (プラズマダイン社 SG 100 プラズマ浴射ガン使用)
- 熱サイクル試験条件:溶射後の試片を 400℃の 炉内に20分間保持後空冷する過程を10回繰り 返す。
- 引張り試験条件:熱サイクル試験後の試片の端 而溶射皮膜部と相手材純アルミニウムを接着 剤アラルダイトAT-1 にて接着後引張り試験 に供す。
- 試験結果:各試験とも5試料の実測値または平 均値。

(以下 余白)

本発明において安定化ジルコニアを使用する理由は次の通りである。

安定化ジルコニアとは、加熱・冷却において特定温度で変態しその映象隊な体積変化を起す絶ジルコニアに対しY203、 CaO、 M80等が数%以上添加され、常温から高温まで変態による急激な体積変化を起さない構造をしたジルコニアである。又ジルコニアの熱膨張係数が金属に近く高いことから熱サイクルを受ける部材のコーティングに対しクラック等が生じにくく最適である。

(実施例1)

純 A2、 A2-13%S(合金および A2-1.5 % K8合金基材にNi-Cr合金、Ni- A2合金またはNi-Cr- A2合金を 250~400 でに加熱された基材上に溶射し、次いで各種酸化物粉末を仕上げ溶射した試片について熱サイクル処理後、溶射皮膜の引張り試験を行い皮膜の耐倒酸性をしらべた。溶射条件、熱サイクル試験条件および引張り試験条件は次に示す通りであり、試験結果を第2変に示す。

8

(第2表)

		ፑ	地	榕	射	
試片	基材	· 下	地	材	基材程度 ℃	仕上げ容射
1 .2 3 4		N i - 2 0 N i - 1 8 N i - 5 N i - 2 0	%C r - %A l	6%A 2	260 340 390 310	A 1 2 0 3 • 2%T i 0 2 Z r 0 2 • 1 2%Y 2 0 3 Z r 0 2 • 7%C a 0 Z r 0 2 • 8%Y 2 0 3

試一	3	日張り試	、 秋
片	剣 離 強 度 Kg/mm*	平均強度 Kg/mm*	紅 韓 部 位
1	2.4~2.8	2.59	仕上げ層内
2	2.5~2.9	2.76	同上
3	2.4~3.1	2.74	同上
4	2.7~3.2	2.92	同上

C 14 to 64 3

実施例 1 と同一基材と各種下地材および各種酸化物を用い、基材を加熱せず、または 250℃以下もしくは 400℃以上の加熱状態において実施例 1 と同様の方法により密射および試験を行なった結果、第 3 妻に示す結果を得た。

(以下余白)

(第3要)

M		T	地	裙.	射	
片	基材	下	地	材	蓋材温度℃	· 仕上げ溶射
1 2 3 4	終A 2 A 2 - 1 3 % S i A 2 - 1 3 % S i A 2 - 1 5 % M g	Ni-20	%С г %С г		常 温 120 210 420	Al ₂ O ₃ Z ₁ O ₂ · 8%Y ₂ O ₃ Z ₁ O ₂ · 24%M ₂ O Z ₁ O ₂ · 7%C ₄ O

EX.		引張り食	₩
片	剣 離 強 度 Kg/mm	平均強度 Kg/mm'	剣 離 部 位
1 2 3 4	1 . 3~2 . 1 1 . 9~2 . 3 2 . 2~2 . 5 1 . 9~2 . 6	1.66 2.32 2.31 2.15	母材 - 下地間、仕上層内 何 上 母材 - 下地間 仕 上 層 内

1 2

以上、実施例1および比較例を見るに、加熱せず、または本発明の加熱温度範囲を逸脱する程度に加熱した基材に下地容射を施したものは引張り強度が低いのみならず強度のばらつきが大であるのに対し本発明方法によれば引張強度は高く、引張り特性にばらつきが少く、母材・下地間での剝離も見られず、仕上層内で安定して破断していることから判断して本発明方法により耐剝離性の改善は顕著であることが知られる。

(実施例2)

径50mm 中のローエックス A 2 合金製ビストンの頂部に実施例 1、 No. 4 および比較例No. 2 と同様の溶射を行なった後 125cc、5000サイクルンののガソリンエンジン実機において10時間運転 1時 時上の間けつ運転でエンジンテストを定わした お祭 中の関係 2 サイクルの運転デスト後に 数率の異常は全く観察 転換 をかった。 しかるに後者は 2 サイクル目の運転を なかった。 しかるに後者は 2 サイクル目の海 制皮膜の約30%に欠落が観察された。

以上の結果から本発明方法によって形成された 溶射皮膜の耐制離性は極めて良好であることは明 らかである。

> 特 許 山 顧 人 昭和電工株式会社 代理人 弁理士 菊 坞 精 一

-429-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

6-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OF BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.