Programação Funcional 5ª Aula — Definições recursivas

Sandra Alves DCC/FCUP

2019/20

Definições usando outras funções

Podemos definir funções usando outras previamente definidas (por exemplo: do prelúdio-padrão).

Exemplo:

```
factorial :: Int -> Int
factorial n = product [1..n]
```

Definições recursivas I

Também podemos definir uma função por recorrência, i.e. usando a própria função que estamos a definir; tais definições dizem-se recursivas.

Definições recursivas II

Exemplo: factorial definido recursivamente.

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

Exemplo de uma redução

```
factorial 3
 3 * factorial 2
=
 3 * (2 * factorial 1)
 3 * (2 * (1 * factorial 0))
=
 3 * (2 * (1 * 1))
  6
```

Observações

- A primeira equação define o factorial de zero.
- A segunda equação define o factorial de n usando factorial de n - 1.
- Logo: o factorial fica definido apenas para inteiros não-negativos.

```
> factorial (-1) Não termina!
^C
Interrupted
```

Alternativas

Duas equações sem guardas:

```
factorial 0 = 1 factorial n = n * factorial (n-1)
```

Uma equação com guardas:

```
factorial n \mid n==0 = 1
| otherwise = n*factorial (n-1)
```

Uma equação com uma condição:

```
factorial n = if n==0 then 1 else n*factorial (n-1)
```

Porquê recursão?

- Modelo universal de computação: qualquer algoritmo pode ser escrito usando funções recursivas.
- Vamos ver que podemos demonstrar propriedades de funções recursivas usando indução matemática.

Recursão sobre listas

Também podemos definir funções recursivas sobre listas.

Exemplo: a função que calcula o produto de uma lista de números (do prelúdio-padrão).

```
product [] = 1
product (x:xs) = x*product xs
```

Exemplo de redução

```
product [2,3,4]
 2 * product [3,4]
=
 2 * (3 * product [4])
 2 * (3 * (4 * product []))
=
 2 * (3 * (4 * 1))
  24
```

A função length I

O comprimento duma lista também pode ser definido por recursão.

```
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs
```

A função length II

```
Exemplo de redução:
  length [1,2,3]
=
  1 + length [2,3]
=
  1 + (1 + length [3])
=
  1 + (1 + (1 + length []))
=
  1 + (1 + (1 + 0))
=
  3
```

A função reverse l

A função *reverse* (que inverte a ordem dos elementos numa lista) também pode ser definida recursivamente.

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

A função reverse II

```
Exemplo de redução:
 reverse [1,2,3]
  reverse [2,3] ++ [1]
=
  (reverse [3] ++ [2]) ++ [1]
=
  ((reverse [] ++ [3]) ++ [2]) ++ [1]
=
  (([] ++ [3]) ++ [2]) ++ [1]
=
  [3,2,1]
```

Funções com múltiplos argumentos I

Também podemos definir recursivamente funções com múltiplos argumentos.

Por exemplo: a concatenação de listas.

```
(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)
```

Funções com múltiplos argumentos II

A função *zip* que constroi a lista dos pares de elementos de duas listas.

Funções com múltiplos argumentos III

A função *drop* que remove um prefixo de uma lista.

A implementação seguinte segue a versão do prelúdio que permite inteiros negativos como primeiro argumento:

Recursão mútua

Podemos também definir duas ou mais funções que dependem mutamente umas das outras.

Exemplo: testar se um natural é par ou impar.¹

¹De forma ineficiente.

Quicksort I

O algoritmo *Quicksort* para ordenação de uma lista pode ser especificado de forma recursiva:

se a lista é vazia então já está ordenada; se a lista não é vazia seja x o primeiro valor e xs os restantes:

- recursivamente ordenamos os valores de xs que são menores ou iguais a x;
- 2. recursivamente ordenamos os valores de xs que são maiores do que x;
- 3. concatenamos os resultados com x no meio.

Quicksort II

Em Haskell:

```
qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort menores ++ [x] ++ qsort maiores
    where menores = [x' | x'<-xs, x'<=x]
         maiores = [x' | x'<-xs, x'>x]
```

Esta é provavelmente a implementação mais concisa do algoritmo *Quicksort* em *qualquer* linguagem de programação!

Quicksort III

Exemplo de execução (abreviando qsort para qs):

```
qs [3,2,4,1,5]
=
qs [2,1] ++ [3] ++ qs [4,5]
=
(qs [1]++[2]++qs []) ++ [3] ++ (qs []++[4]++qs [5])
=
([1]++[2]++[]) ++ [3] ++ ([]++[4]++[5])
=
[1,2,3,4,5]
```

Como escrever definições recursivas

- 1. Definir o tipo da função
- 2. Enumerar os casos a considerar usando equações com padrões
- 3. Definir o valor nos casos simples
- 4. Definir o valor nos outros casos assumindo que a função está definida para valores de tamanho inferior
- 5. Generalizar e simplificar

Exemplo I

Escrever uma definição recursiva da função *init* que remove o último elemento duma lista.

```
> init [1,2,3,4,5]
[1,2,3,4]
> init [1]
[]
> init []
*** Exception: Prelude.init: empty list
```

Exemplo II

Passo 1: o tipo da função é

init :: [a] -> [a]

Exemplo III

Passo 2: enumerar os casos.

```
init :: [a] -> [a] init (x:xs) =
```

Notar que init não está definido para a lista vazia.

Exemplo IV

Passo 3: definir o caso simples.

Notar que se xs é a lista vazia então a lista (x : xs) tem um só elemento.

Exemplo V

Passo 4: definir o caso recursivo.

Notar que xs é uma sub-lista de (x:xs), logo tem comprimento menor.

Exemplo VI

Passo 5: simplificação.

```
init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
```

Podemos separar o caso da lista com um só elemento numa equação e assim eliminar as guardas.

Exercícios:

- Usando o hugs experimente as funções sum, maximum, minimum, notElem, take, unzip, zip3, unzip3.
- Defina as funções indicadas na alínea anterior.