Project 6 Solutions

```
(Abhimanyu Agarwal)
Collaborators: N/A
TA help:
1) Melissa: Helped me go through Question 4 and 5.
Online resources used: N/A
Question 1
\verb|#Loads| into data frame called "accidents" using read.csv()
dat <- read.csv("/class/datamine/data/fars/7581.csv")</pre>
#tapply
tapply(dat$PERSONS, dat$DRUNK_DR, mean, na.rm = T)
2.615540 2.474079 3.660711 5.197917 5.250000 6.000000
#Method Preferred
#From question 4 of Project 5, where we worked on solving the problem iteratively. Here the tapply() fu
#It can observed that using tapply() function did a quicker job than using loops to estimate the mean.
#Moreover, it significantly reduces the code complexity. Therefore, using tapply() instead of using loo
# Read in data that maps state codes to state names
state_names <- read.csv("/class/datamine/data/fars/states.csv")</pre>
# Create a vector of state names called v
v <- state_names$state</pre>
# Set the names of the new vector to the codes
names(v) <- state names$code</pre>
# Create a new column in the dat dataframe with the actual names of the states
dat$mystates <- v[as.character(dat$STATE)]</pre>
Question 2
sort(tapply(dat$DRUNK_DR, dat$mystates, mean))
       West Virginia
                              Mississippi
                                                          Texas
           0.1672332
                                0.1688661
                                                      0.1852601
            New York
                                 Missouri
                                                        Alabama
                                0.2078921
                                                      0.2136050
           0.1983089
            Arkansas
                           North Carolina
                                                       Indiana
           0.2650494
                                0.2678010
                                                      0.2717200
```

North Dakota	Florida	South Carolina
0.2887538	0.2898366	0.3052830
Kansas	District of Columbia	Ohio
0.3133971	0.3153409	0.3161686
New Mexico	Louisiana	Massachusetts
0.3184573	0.3241348	0.3308242
Georgia	Illinois	Utah
0.3309584	0.3366005	0.3385707
Maryland	Virginia	Oklahoma
0.3422666	0.3426975	0.3484964
Iowa	Kentucky	Pennsylvania
0.3609572	0.3637387	0.3793978
Idaho	Wyoming	Arizona
0.4049811	0.4110644	0.4126347
Nebraska	Tennessee	Rhode Island
0.4146229	0.4159967	0.4188830
New Jersey	Minnesota	Connecticut
0.4286125	0.4492386	0.4621138
Oregon	Michigan	California
0.4692250	0.4713560	0.4863834
Maine	Hawaii	Vermont
0.4916084	0.4952652	0.5126263
Nevada	South Dakota	Alaska
0.5127907	0.5132450	0.5223022
Montana	Colorado	Wisconsin
0.5269231	0.5326633	0.5350330
Washington	Delaware	New Hampshire
0.5498288	0.5642023	0.6094050

#New Hampshire has the highest average number of drunk drivers per accident

Question 3

Question 4

```
tapply(dat$DRUNK DR, dat$ALIGNMNT, mean, na.rm = T)
0.3143146 0.4729582 0.2764798
#Don't need this, but this is another way of doing it. I just wanted to try it
sum(dat$DRUNK_DR[dat$ALIGNMNT == 1]) / sum(dat$ALIGNMNT == 1)
[1] 0.3143146
#Curved roads
sum(dat$DRUNK_DR[dat$ALIGNMNT == 2]) / sum(dat$ALIGNMNT == 2)
[1] 0.4729582
#Unknown scenarios
sum(dat$DRUNK_DR[dat$ALIGNMNT == 9]) / sum(dat$ALIGNMNT == 9)
[1] 0.2764798
###Question 5
#Total number of fatalities in the respective breaks
tapply(dat$FATALS, cut(dat$HOUR, breaks = c(0,6,12,18,24,99), include.lowest = TRUE), sum)
         (6,12] (12,18] (18,24] (24,99]
  [0,6]
  93151
          49764
                  96375
                          98715
                                   1737
#Average number of fatalities in the respective breaks
tapply(dat$FATALS, cut(dat$HOUR, breaks = c(0,6,12,18,24,99), include.lowest = TRUE), mean)
   [0,6]
           (6,12] (12,18] (18,24]
                                     (24,99]
1.133293 1.123037 1.128671 1.140331 1.087664
```

Submitting deliverables: project06.RMD, project06.R and project06.pdf

Pledge

By submitting this work I hereby pledge that this is my own, personal work. I've acknowledged in the designated place at the top of this file all sources that I used to complete said work, including but not limited to: online resources, books, and electronic communications. I've noted all collaboration with fellow students and/or TA's. I did not copy or plagiarize another's work.

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.