Z: Estimations and Unit Analysis

Melissa Martinez

Score: 19/25

2) a)
$$.25m^3 \rightarrow cm^3$$
 $.25m^3 \times \frac{100cm}{1m} \times \frac{100cm}{1m} \times \frac{100cm}{1m} = 250,000 cm^3$

b)
$$100 \text{ km/h} \rightarrow \text{m/s}$$
 $\frac{100 \text{ km}}{\text{h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1}{3600 \text{ s}} = 27.7 \text{ m/s}$

3: Vectors

1) a.)
$$\vec{\times}_{1} = [9.66\hat{1} + 7.59\hat{3})m$$

10mcos15°= 9.66
Sin15°= 7.59

1) a.)
$$\vec{X}_1 = (9.661 + 7.595) m$$
 $\vec{X}_2 = (-14.141 + 14.143) m$
 $\vec{X}_3 = (-14.141 + 14.143) m$
 $\vec{X}_4 = (-14.141 + 14.143) m$
 $\vec{X}_5 = (-14.141 + 14.143) m$
 $\vec{X}_7 = (-14.141 + 14.143) m$
 $\vec{X}_7 = (-14.141 + 14.143) m$
 $\vec{X}_7 = (-14.141 + 14.143) m$

$$(2.) 0) \xrightarrow{\chi_1} (3.5) \times (3.5)$$

4: Motion Along a Straight Line

1.) a.)
$$\times (z) = -1.0 - 4.0(z)$$
 $-9 - 7 = -16m$ b.) $\frac{-16}{-4} = -4m/s$

(-1) Graph should be linear

2.)
$$X(t) = -2t + 7t^2$$

a) $X(t) = -7(2) + 7(2)^2$
= -41 + 28
= 24
 $X(0) = 0$

$$\frac{1}{(-1)} = \frac{14 \text{ m/s}^2}{(-1)} = \frac{14 \text{ m/s}^2}{(-1)} = \frac{14 \text{ m/s}^2}{(-1)}$$

(-1) This is the position

(Would be 11 seconds)

(-1) The initial velocity is zero otherwise this would have been 10m

162.5
$$\frac{167.5}{75} = 2.166$$

 $\frac{167.5}{75} = 2.166$
 $\frac{167.5}{75} = 2.166$

(-1) So what is the velocity required?

2)
$$D) \Delta t = \frac{V_f - V_i}{g} = \frac{0 - 20Jz}{-9.8} = 2.885 \times 2 - 5.77s$$

$$a) 20Jz \times 5.77s = 535ft$$

$$SCD^{\circ} = FI \quad |DCOS45=7.07$$

$$SOJ = F2 \quad |SSIN30=1|$$

$$SCOD30=692 \quad |XTOT=J(X)^{7}+|Y|^{7}$$

$$= \sqrt{||3.99|^{2}+|1|.07}$$

XTOT = 17.84

(-1) The forces have to combine like vectors, and then subtract the friction