Middleware for Communications

Middleware for Communications

Edited by

Qusay H. Mahmoud

University of Guelph, Canada

Copyright 2004

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86206-8

Typeset in 10.25/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

To all those who helped in the creation of this book in one way or another

Contents

Preface		xix	
List	of Cont	ributors	xxi
Introduction		xxvii	
1		ge-Oriented Middleware d Curry	1
1.1	Introdu	action	1
	1.1.1		1
	1.1.2	Synchronous Communication Asynchronous Communication	1 2 2 2 4
	1.1.3	Asynchronous Communication	2
	1.1.4	Introduction to the Remote Procedure Call (RPC)	2
		Introduction to Message-Oriented Middleware (MOM)	
1.2		When to use MOM or RPC	6 7
1.2	-	ge Queues	
1.3	Messag	ging Models	8
	1.3.1		8
	1.3.2	Publish/Subscribe Comparison of Messaging Models	9
1 1	1.3.3	Comparison of Messaging Models	11
1.4		on MOM Services	12
	1.4.1		12 12
	1.4.2	Transactions Guaranteed Message Delivery	15
	1.4.4		15
	1.4.5	Load Balancing	15
		Clustering	16
1.5		Iessage Service	16
	1.5.1	Programming using the JMS API	17
1.6		e-Oriented Architectures	22
	1.6.1	XML	22
	162	Weh Services	23

viii Contents

1.7	1.6.3 MOM 1.6.4 Developing Service-Oriented Architectures Summary	23 24 26
	liography	26
2	Adaptive and Reflective Middleware Edward Curry	29
2.1	Introduction	29
	2.1.1 Adaptive Middleware	30
	2.1.2 Reflective Middleware2.1.3 Are Adaptive and Reflective Techniques the Same?	30 32
	2.1.4 Triggers of Adaptive and Reflective Behavior	33
2.2	Implementation Techniques	33
	2.2.1 Meta-Level Programming	33
	2.2.2 Software Components and Frameworks	34
	2.2.3 Generative Programming	35
2.3	Overview of Current Research	35
	2.3.1 Reflective and Adaptive Middleware Workshops	35
	2.3.2 Nonfunctional Properties 2.3.3 Distribution Mechanism	36 37
2.4	Future Research Directions	42
	2.4.1 Advances in Programming Techniques	42
	2.4.2 Open Research Issues	44
	2.4.3 Autonomic Computing	47
2.5	Summary	48
Bibli	liography	49
3	Transaction Middleware	53
	Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou	
3.1	Introduction	53
3.2	Transaction Processing Fundamentals	54
	3.2.1 ACID Transactions	55
	3.2.2 Distributed Transactions	57
	3.2.3 Common Extensions	58
	3.2.4 Programming Models for Transactions	60
3.3	Distributed Object Transactions	61
	3.3.1 Transaction Model	61
	3.3.2 Transaction APIs	63
3.4	3.3.3 Container-Managed Transactions Messaging Transactions	63 65
3.4		
	3.4.1 Messaging Models 3.4.2 Programming Models	65 66
	3.4.3 Queued Transaction Processing	67
3.5	Web Transactions	68
	3.5.1 Web Services Coordination and Transactions	69
	3.5.2 Programming model	69

<u>Contents</u> ix

	3.5.3	Web Services Messaging	70
3.6		ced Transactions	70
	3.6.1	Long Running Unit of Work (LRUOW)	71
	3.6.2	Conditional Messaging and D-Spheres	72
	3.6.3	Transactional Attitudes (TxA)	74
3.7	Conclu		77
Bibli	iography		78
4	Peer-t	o-Peer Middleware	81
	Marku	s Oliver Junginger	
4.1	Introdu		81
	4.1.1	Peer-to-Peer and Grids	82
	4.1.2	Lack of Peer-to-Peer Middleware	82
	4.1.3		83
	4.1.4	0	83
	4.1.5	Chapter Outline	83
4.2	JXTA		84
	4.2.1	Overview	84
	4.2.2	Resources and Advertisements	84
	4.2.3	Peer Groups	85
	4.2.4		85
		Protocols	86
	4.2.6		86
	4.2.7	Security	87
	4.2.8		87
	4.2.9	•	88
	4.2.10	11	89
	4.2.11	· ·	89
4.2	4.2.12	Summary	90
4.3		lessaging System	90
	4.3.1	Self-Organizing Overlay Networks	90
	4.3.2	Failure Tolerance	92
	4.3.3		93
	4.3.4	~ , ,	94
	4.3.5	•	95
	4.3.6	•	96
	4.3.7 4.3.8	1	96
		Challenges and Comparison with JXTA	96 97
4.4	4.3.9 Hybrid	Summary I Middleware – a Conceptual Proposal	97 97
	4.4.1	Service Providers	99
	4.4.2	Conceptual Model and Services	99
	4.4.3	Service Connectors	100
	4.4.4	Peer Group Membership Service	101
	4.4.5	Synchronization Service and P2P Synchronization	101
	4.4.6	Summary	104
4.5	Conclu		105
	iography		105
	- 5- mp - 1		105

x Contents

5		liddleware von Laszewski and Kaizar Amin	109
5.1	The Gri	d	110
5.2	Grid Aı	chitecture	112
5.3		iddleware Software	114
5.4	Grid M	iddleware Challenges	115
5.5		iddleware Standardization	115
5.6	Grid M	iddleware Services	115
	5.6.1	Elementary Grid Middleware Services	116
	5.6.2	Advanced Grid Management Services	117
5.7		iddleware Toolkits	118
	5.7.1	Globus Toolkit	118
	5.7.2	Commodity Grid Kits	120
5.8		Open Grid Services Architecture Middleware for Grids	120 123
5.9		tions Using and Enhancing Grid Middleware	125
3.9			
	5.9.1 5.9.2	Astrophysics Earthquake Engineering	125 126
	5.9.3	High-energy Physics Grids	126
5.10		ling Remarks	127
Ackn	owledgm		127
	ography		128
6	Nanbor Anirudo	a bled Middleware Wang, Christopher D. Gill, Douglas C. Schmidt, lha Gokhale, Balachandran Natarajan, Joseph P. Loyall	131
	Richara	E. Schantz, and Craig Rodrigues	
6.1	Introduc	ction	131
	6.1.1	Emerging Trends	131
	6.1.2	Key Technical Challenges and Solution Approaches	132
	6.1.3	Chapter Organization	135
6.2		olution of Middleware	135
	6.2.1 6.2.2	Overview of Middleware	135
6.3		Limitations of Conventional Middleware nent Middleware: A Powerful Approach to	137
0.5		g DRE Applications	138
	6.3.1	Overview of Component Middleware and the CORBA Component Model	138
	6.3.2	Limitations with Conventional Component Middleware for Large- scale DRE Systems	142
6.4	OoS Pr	ovisioning and Enforcement with CIAO and QuO Qoskets	144
	6.4.1	Static Qos Provisioning via QoS-enabled Component Middleware	145
	6.4.2	and CIAO Dynamic QoS Provisioning via QuO Adaptive Middleware and Qoskets	150

<u>Contents</u> <u>xi</u>

6.5	Related Work	156 158
6.6	.6 Concluding Remarks ibliography	
Biblic	ograpny	159
7	Model Driven Middleware Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, Jeff Gray, Nanbor Wang	163
7.1	Introduction	163
7.2	Overview of the OMG Model Driven Architecture (MDA)	169
	7.2.1 Capabilities of the MDA	169
	7.2.2 Benefits of the MDA	172
7.3	Overview of Model Driven Middleware	172
	7.3.1 Limitations of Using Modeling and Middleware in Isolation 7.3.2 Combining Model Driven Architecture and QoS-enabled	173
7.4	Component Middleware Model Driven Middleware Case Study: Integrating MDA with QoS-enabled	173
7.4	Middleware Middleware	178
7.5	Related Work	181
7.6	Concluding Remarks	183
Biblio	ography	184
8	High-Performance Middleware-Based Systems	189
	Shikharesh Majumdar	
8.1	Introduction	189
8.2	Performance of CORBA Middleware	191
8.3	Impact of Client-Server Interaction Architectures	192
	8.3.1 Three Interaction Architectures	192
	8.3.2 Performance Comparison	194
8.4	Middleware Performance Optimization	197
	8.4.1 Systems with Limited Heterogeneity	198
	8.4.2 Flyover	198
0.5	8.4.3 Performance of Flyover	201
8.5	Application Level Performance Optimizations	204
	8.5.1 Connection Setup Latency	204
	8.5.2 Parameter Passing 8.5.3 Combination of Methods and Performance Recovery	205 206
	8.5.4 Method Placement and Object Packing	207
	8.5.5 Load Balancing	207
8.6	Summary and Conclusions	208
8.7	Acknowledgments	208
	ography	208
9	Concepts and Capabilities of Middleware Security Steven Demurjian, Keith Bessette, Thuong Doan, Charles Phillips	211
0.1	•	211
9.1	Introduction	211

xii Contents

9.2	Security in CORBA, .NET, and J2EE	212
	9.2.1 CORBA Security Capabilities	213
	9.2.2 .NET Security Capabilities	217
	9.2.3 J2EE Security Capabilities	223
9.3	RBAC and MAC using CORBA and JINI	227
	9.3.1 Overview of the RBAC/MAC Security Model	228
	9.3.2 The Security Services of USR	229
	9.3.3 Prototyping/Administrative and Management Tools	231
9.4	Conclusion	232
-	ography	234
10	Middleware for Scalable Data Dissemination	237
	Panos K. Chrysanthis, Vincenzo Liberatore, Kirk Pruhs	
10.1	Introduction	237
10.2	Architecture Overview	238
10.3	Background and Historical Notes	242
	10.3.1 Multicast Data Dissemination	242
	10.3.2 Multicast	242
10.4	Middleware Components	243
	10.4.1 Transport Adaptation Layer	243
	10.4.2 Document Selection	244
	10.4.3 Multicast Push Scheduling	245
	10.4.4 Multicast Pull Scheduling	247
	10.4.5 Multicast Indexing	249
	10.4.6 Data Consistency and Currency	250
	10.4.7 Client Cache	251
10.5		252
	10.5.1 Integration	252
	10.5.2 Scheduling for Layered Multicast	253
10.6	Application: Real-Time Outbreak and Disease Surveillance	253
10.7	Conclusions	254
Bibli	ography	255
11	Dringing of Mahile Computing Middlewere	261
11	Principles of Mobile Computing Middleware Cecilia Mascolo, Licia Capra, Wolfgang Emmerich	201
11.1	Introduction	261
11.1	Mobile Distributed Systems	262
11,2		
	11.2.1 Characterization of Distributed Systems	263
	11.2.2 Traditional Distributed Systems 11.2.3 Mobile Nomadic Systems	264 264
	11.2.3 Mobile Nomadic Systems 11.2.4 Mobile Ad Hoc Systems	265
11.3	Middleware Systems: A Reference Model	266
	11.3.1 Middleware for Fixed Distributed Systems	267
	11.3.2 Middleware for Mobile Nomadic and Ad hoc Systems	268
	11.0.2 1.1.a.a.c., wie joi 110000 110110000 www.110 110 bystellis	200

Contents xiii

11.4	Fault Tolerance	269
	11.4.1 Connectivity	269
11.5	11.4.2 Data-sharing Heterogeneity	271 272
11.6	Openness	273
	-	
11.7	Scalability	274
	11.7.1 Discovery 11.7.2 Quality of Service	274 275
11.8	Resource-sharing	276
11.0	11.8.1 Transactions	276
	11.8.2 Security	277
11.9	Conclusions	278
Biblio	ography	278
12	Application of Middleware Technologies to Mobile	281
	Enterprise Information Services	
	Guijun Wang, Alice Chen, Surya Sripada, Changzhou Wang	
12.1	Introduction	281
12.2	Wireless Technologies	283
12.3	Middleware Technologies for Enterprise Application Integrations	286
12.4	An Integrated Architecture for Mobile Enterprise Information Services	289
	12.4.1 Enterprise Requirements	289
	12.4.2 Design Considerations and Our Approach	289
	12.4.3 An Integrated Mobile EIS Architecture	290
12.5	12.4.4 Deployment and Operation J2EE-Based Middleware in Mobile EIS	291 292
12.3	12.5.1 J2EE Middleware Platform	292
	12.5.2 JMS	292
	12.5.3 JMS in Our Mobile EIS	295
12.6	Data Representation and Presentation in Mobile Enterprise Information	207
12.7	Services Challenges and Future Directions	296 299
12.7	-	301
	Summary and Conclusions	
12.9 Biblio	Acknowledgment ography	302 302
13	Middleware for Location-based Services: Design and Implementation Issues	305
	Peter Langendörfer, Oliver Maye, Zoya Dyka, Roland Sorge, Rita Winkler,	
	Rolp Kraemer	
13.1	Introduction	305
13.2	Related Work	306
13.3	Architecture 13.3.1 Infrastructure	307 307
	15.5.1 Injiusii uciii e	307

xiv Contents

10.4	13.3.2 Platform Components	311
13.4	Concepts of Selected Components	314
	13.4.1 Event Engine and Auras and Objects Engine	314
12.5	13.4.2 Profile Servers and Profile Database	319
13.5	Measurements	321
	13.5.1 Testbed Settings 13.5.2 Results	321 322
	13.5.3 Conclusions	324
13.6	Realization of PLASMA	325
	13.6.1 Design Decisions and Lessons Learned	325
	13.6.2 Implementation Notes	326
13.7	Conclusions	327
Biblio	ography	327
14	QoS-Enabled Middleware for MPEG Video Streaming	331
	Karl R.P.H. Leung, Joseph Kee-Yin Ng, Calvin Kin-Cheung Hui	
14.1	Introduction	331
14.2	Related Works	333
	14.2.1 Overview of MPEG	333
	14.2.2 Quality of Services	334
142	14.2.3 Video Distribution	335
14.3		336
	14.3.1 Environment Analysis	336
111	14.3.2 Requirements for the Middleware	337
14.4	QoS Facilities	337
	14.4.1 QoS-GFS 14.4.2 Transmission Scheme	337
	14.4.2 Transmission Scheme 14.4.3 QoS Tuning Scheme	338 341
14.5		341
14.5	14.5.1 Clientware	341
	14.5.2 Serverware	345
14.6	Experiments	347
	14.6.1 System Setup	347
	14.6.2 Experiment Results	348
	14.6.3 QoS in QoS-Index	353
	14.6.4 QoS-Frame and QoS-Byte	353
14.7	Discussions	353
14.8	Acknowledgment	354
14.9	Conclusion & Future Works	355
Biblio	ography	355
15	Middleware for Smart Cards	359
	Harald Vogt, Michael Rohs, Roger Kilian-Kehr	
15.1	Introduction	359
15.2	ISO 7816	360
	15.2.1 Communication between Card and Card Reader	360

<u>Contents</u> <u>xv</u>

15.3	Data Structures on Smart Cards	361
	15.3.1 Command Sets	362
15.4	JavaCards	362
	15.4.1 Hardware Architecture	363
	15.4.2 Runtime Environment	363
	15.4.3 Developing JavaCard Applets	365
15.5	PC/SC: Data Communications	369
15.6	OpenCard Framework	371
	15.6.1 Architectural Concepts	371
	15.6.2 Configuration	373
	15.6.3 Programming Model	373
157	15.6.4 Summary	374
15.7	JavaCard RMI	375
	15.7.1 On-Card JCRMI	375
	15.7.2 Off-Card JCRMI 15.7.3 Summary	378
15 0	PKCS #11 Security Tokens	382 382
	•	383
	Smart Cards as Distributed Objects Smart Card Middleware for Mobile Environments	383
13.10		
	15.10.1 SIM Application Toolkit 15.10.2 J2ME Smart Card Middleware	383 385
15 11	JiniCard	386
	Smart Cards on the Internet	387
13.12	15.12.1 A Browser Interface for Smart Cards	387
	15.12.1 A Browser Interface for Smart Cards 15.12.2 Smart Cards as Mobile Web Servers	387
	15.12.3 Internet Smart Cards	388
15.13	Conclusion	389
	graphy	389
16	Application-Oriented Middleware for E-Commerce	393
	Jesús Martínez, Luis R. López, Pedro Merino	
16.1	Introduction	393
	Previous Work on Networked Smart Card Applications	394
16.3	A Public Transport Ticketing System for e-Commerce	396
10.5	16.3.1 The System Architecture	396
	16.3.2 The Electronic Ticket	399
	16.3.3 Choosing a Smart Card for the System	400
16.4	Advanced Ticketing Management Using Middleware	402
	16.4.1 Middleware Platform Security	403
	16.4.2 The Smart Card Service	404
	16.4.3 The Smart Card Object-Oriented Library	406
16.5	The Application Prototype	407
16.6	Summary and Conclusions	411
16.7	Acknowledgments	411
Biblio	graphy	411

xvi Contents

17	Real-time CORBA Middleware Arvind S. Krishna, Douglas C. Schmidt, Raymond Klefstad, Angelo Corsaro	413
17.1	Introduction	413
17.2	DRE System Technology Challenges	415
	17.2.1 Challenges of Today's DRE Systems	415
	17.2.2 Challenges of Future DRE Systems	416
17.2	17.2.3 Limitations with Conventional DRE System Development	417
17.3	Overview of Real-time CORBA	418
	17.3.1 Overview of CORBA 17.3.2 Overview of Real-time CORBA 1.0	418 419
	17.3.3 Overview of Real-time CORBA 2.0	421
17.4	TAO: C++-based Real-time CORBA Middleware	422
	17.4.1 Motivation	422
	17.4.2 TAO Architecture and Capabilities	423
	17.4.3 TAO Successes	425
17.5	ZEN: RTSJ-based Real-time CORBA Middleware	426
	17.5.1 Motivation 17.5.2 ZEN Architecture and Capabilities	426 427
	17.5.2 ZEN Architecture and Capabitities 17.5.3 ZEN Successes	430
17.6	Related Work	432
17.7	Concluding Remarks	433
Bibli	ography	434
18	Middleware Support for Fault Tolerance Diana Szentiványi, Simin Nadjm-Tehrani	439
18.1	Introduction	439
18.2	Terminology	441
10.2	18.2.1 Replication Styles	441
	18.2.2 Consensus	441
	18.2.3 Unreliable Failure Detectors	442
	18.2.4 Broadcast	442
18.3	Background	442
	18.3.1 Middleware Fault Tolerance	443
10.4	18.3.2 CORBA and Fault Tolerance	443
18.4	11	444
	18.4.1 The FT-CORBA Standard	444
18.5	18.4.2 Architecture Units Adding Support for Full Availability	445 450
10.5		
	18.5.1 Architecture Units 18.5.2 Infrastructure Interactions	450 451
	18.5.3 Platform Implementation	453
18.6	Experiments with a Telecom Application	455
	18.6.1 The Service	455
	18.6.2 Experiment Setup	455
	18.6.3 Measuring Overheads	456

Conte	ents	xvi
18.7	Trade-off Studies	456
	18.7.1 Overheads	457
	18.7.2 Failover Times	459
18.8	Conclusions	461
18.9	Acknowledgments	463
Bibli	ography	463
Inde	x	465

Preface

Middleware has emerged as a critical part of the information technology infrastructure. The need for it stems from the increasing growth in network-based applications as well as the heterogeneity of the network computing environment. Communications systems such as computer and telecommunications networks are composed of a collection of heterogeneous devices whose applications need to interact. Middleware systems are used to mask heterogeneity of applications that are made up of several distributed parts running on different computer networks and telecommunications systems. In addition, middleware systems provide value-added services such as naming and transaction services, as well as tools and APIs that offer uniform high-level interfaces to application developers so that applications can be easily constructed. The importance of middleware will continue to grow as long as computing and communications systems continue to be heterogeneous.

All existing books on middleware concentrate on a specific area: fundamentals of middleware, comparing some middleware technologies such as CORBA, RMI, and DCOM, or surveying middleware products that exist on the market. The aim of this book is to fill the gap by providing a state-of-the-art guide to middleware. The book covers all aspects of middleware by including chapters on concepts and fundamentals for beginners to get started, advanced topics, research-oriented chapters, and case studies.

This book provides convenient access to a collection of exemplars illustrating the diversity of communications problems being addressed by middleware technology today and offers an unfolding perspective on current trends in middleware. The lessons learned and issues raised in this book pave the way toward the exciting developments of next generation middleware.

Audience

This book is aimed at students, researchers, and practitioners. It may be used in undergraduate and graduate courses on middleware. Researchers will find the book useful as it provides a state-of-the-art guide to middleware technology, and offers an unfolding perspective on current and future trends in middleware. Practitioners will find the book useful as a means of updating their knowledge on particular topics such as Message-Oriented Middleware (MOM), Adaptive and Reflective Middleware, Transaction Middleware, Middleware for Mobile Computing, Middleware for Peer-to-Peer Systems, QoS-enabled Middleware,

xx Preface

Grid Middleware, Model Driven Middleware, Real-time Middleware, Middleware for Smart Cards, Middleware Performance, and Middleware Security.

Acknowledgments

A large number of people have contributed to this book and I would like to thank them all. First of all, I am deeply grateful to my editors Birgit Gruber and Sally Mortimore for providing me with the opportunity to edit this book but more importantly for providing me with comments, suggestions, and guidelines over the course of its production.

This book would not exist without the authors of the individual chapters that make up this book. I would like to thank all the authors of the individual chapters without whom this book would not have been possible. Also, I am grateful to the anonymous reviewers for the terrific job they did in evaluating and recommending chapters.

Finally, I would like to thank my wife, Reema, and son Yusef for putting up with my strenuous schedule over the past several months.

Qusay H. Mahmoud Toronto, Canada June 2004

Contributors

Qusay H. Mahmoud
Department of Computing & Information
Science
University of Guelph, Guelph, ON, N1G
2W1
Canada
qmahmoud@cis.uoguelph.ca

Edward Curry Department of Information Technology National University of Ireland, Galway Ireland edward.curry@nuigalway.ie

Stefan Tai IBM T.J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 USA stai@us.ibm.com

Thomas Mikalsen IBM T.J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 USA tommi@us.ibm.com

Isabelle Rouvellou IBM T.J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 USA rouvellou@us.ibm.com Markus Oliver Junginger Germersheimer Str. 33 81541 München Germany markus@junginger.biz

Yugyung Lee School of Computing & Engineering University of Missouri, Kansas City 5100 Rockhill Rd. Kansas City, MO 64110 USA leeyu@umkc.edu

Gregor von Laszewski
Argonne National Laboratories &
University of Chicago
9700 S. Cass Ave.
Argonne, IL 60439
USA
gregor@mcs.anl.gov

Kaizar Amin
Argonne National Laboratories &
University of North Texas
9700 S. Cass Ave.
Argonne, IL 60439
USA
amin@mcs.anl.gov

Nanbor Wang 5541 Central Ave., Suite 135 Boulder, CO 80301 USA nanbor@cs.wustl.edu xxii Contributors

Christopher D. Gill
Dept. of Computer Science & Engineering
Washington University
One Brookings Drive
St. Louis, MO 63130
USA
cdgill@cse.wustl.edu

Douglas C. Schmidt Institute for Software Integrated Systems Vanderbilt University Box 1829, Station B Nashville, TN 37235 USA schmidt@dre.vanderbilt.edu

Aniruddha Gokhale Institute for Software Integrated Systems Vanderbilt University Box 1829, Station B Nashville, TN 37235 USA a.gokhale@vanderbilt.edu

Balachandran Natarajan Institute for Software Integrated Systems Vanderbilt University Box 1829, Station B Nashville, TN 37235 USA bala@dre.vanderbilt.edu

Joseph P. Loyall BBN Technologies 10 Moulton Street Cambridge, MA 02138 USA jloyall@bbn.com

Richard E. Schantz BBN Technologies 10 Moulton Street Cambridge, MA 02138 USA schantz@bbn.com Craig Rodrigues BBN Technologies 10 Moulton Street Cambridge, MA 02138 USA crodrigu@bbn.com

Jeff Gray
Department of Computer & Information
Science
University of Alabama
1300 University Blvd.
Birmingham, AL 35294
USA
gray@cis.uab.edu

Shikharesh Majumdar
Department of Systems & Computer
Engineering
Carleton University
1125 Colonel By Drive, Ottawa, ON, K1S
5B6
Canada
majumdar@sce.carleton.ca

Steven A. Demurjian, Sr.
Computer Science & Engineering Department
371 Fairfield Road, Unit 1155
The University of Connecticut
Storrs, Connecticut 06269-1155
USA
steve@engr.uconn.edu

Keith Bessette
Computer Science & Engineering
Department
The University of Connecticut
Storrs, CT 06269-3155
USA
keithbessette@hotmail.com

Thuong Doan
Computer Science & Engineering
Department
The University of Connecticut

Contributors xxiii

Storrs, CT 06269-3155 USA

thuongdoan@yahoo.com

Charles Phillips
Department of Electrical Engineering &
Computer Science
United Stated Military Academy
West Point, NY 10996
USA
charles.phillips@usma.edu

Panos K. Chrysanthis
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
USA
panos@cs.pitt.edu

Vincenzo Liberatore
Electrical Engineering & Computer
Science Department
Case Western Reserve University
Cleveland, Ohio 44106-7071
USA
vincenzo.liberatore@cwru.edu

Kirk Pruhs
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
USA
kirk@cs.pitt.edu

Cecilia Mascolo
Department of Computer Science
University College London
Gower Street
London WC1E 6BT
UK
c.mascolo@cs.ucl.ac.uk

Licia Capra
Department of Computer Science
University College London
Gower Street

London WC1E 6BT UK l.capra@cs.ucl.ac.uk

Wolfgang Emmerich
Department of Computer Science
University College London
Gower Street
London WC1E 6BT
UK
w.emmerich@cs.ucl.ac.uk

Dr. Guijun Wang Mathematics & Computing Technology The Boeing Company P.O. Box 3707, MC 7L-20 Seattle, WA 98124 USA guijun.wang@boeing.com

Alice Chen
Mathematics & Computing Technology
The Boeing Company
P.O. Box 3707, MC 7L-20
Seattle, WA 98124
USA
alice.chen@boeing.com

Surya Sripada Mathematics & Computing Technology The Boeing Company P.O. Box 3707, MC 7L-20 Seattle, WA 98124 USA surya.sripada@boeing.com

Changzhou Wang
Mathematics & Computing Technology
The Boeing Company
P.O. Box 3707, MC 7L-20
Seattle, WA 98124
USA
changzhou.wang@boeing.com

Peter Langendörfer IHP, Im Technologiepark 25

xxiv Contributors

D-15236 Frankfurt (Oder)

Germany

langendoerfer@ihp-microelectronics.com

Oliver Maye

IHP, Im Technologiepark 25 D-15236 Frankfurt (Oder)

Germany

maye@ihp-microelectronics.com

Zoya Dyka

IHP, Im Technologiepark 25 D-15236 Frankfurt (Oder)

Germany

dyka@ihp-microelectronics.com

Roland Sorge

IHP, Im Technologiepark 25 D-15236 Frankfurt (Oder)

Germany

sorge@ihp-microelectronics.com

Rita Winkler

IHP, Im Technologiepark 25

D-15236 Frankfurt (Oder), Germany rwinkler@ihp-microelectronics.com

Rolp Kraemer

IHP, Im Technologiepark 25

D-15236 Frankfurt (Oder), Germany kraemer@ihp-microelectronics.com

Karl R.P.H. Leung

Department of Information & Communications Technology

Hong Kong Institute of Vocational

Education (Tsing Yi)
Tsing Yi Island

Hong Kong

kleung@computer.org

Joseph Kee-Yin Ng

Department of Computer Science Hong Kong Baptist University

Kowloon

Hong Kong

jng@comp.hkbu.edu.hk

Calvin Kin-Cheung Hui

Department of Computer Science

Hong Kong Baptist University

Kowloon

Hong Kong

kchui@comp.hkbu.edu.hk

Harald Vogt

Institute for Pervasive Computing

Haldeneggsteig 4

ETH Zentrum

8092 Zurich

Switzerland

vogt@inf.ethz.ch

Michael Rohs

Institute for Pervasive Computing

Haldeneggsteig 4

ETH Zentrum

8092 Zurich

Switzerland

rohs@inf.ethz.ch

Roger Kilian-Kehr

SAP Corporate Research

Vincenz-Priessnitz-Str. 1, 76131, Karlsruhe

Germany

roger.kilian-kehr@sap.com

Jesus Martinez

Computer Science Department

University of Malaga

Campus de Teatinos s/n. 29071, Malaga

Spain

jmcruz@lcc.uma.es

Luis R. López

Computer Science Department

University of Malaga

Campus de Teatinos s/n. 29071, Malaga

Spain

lramonl@terra.es

Pedro Merino

Computer Science Department

University of Malaga

Contributors xxv

Campus de Teatinos s/n. 29071, Malaga Spain pedro@lcc.uma.es

Arvind S. Krishna
Institute of Software Integrated Systems
P.O.Box 1829, Station B
Nashville, TN 37235
USA
arvindk@dre.vanderbilt.edu

Raymond Klefstad
Dept. of Electrical Engineering &
Computer Science
University of California, Irvine
Irvine, CA 92697
USA
klefstad@uci.edu

Angelo Corsaro, Phone: 314-935-6160 Dept. of Computer Science & Engineering Washington University St. Louis, MO 63130 USA corsaro@cs.wustl.edu

Diana Szentivanyi
Department of Computer & Information
Science
Linköping University
S-581 83 Linköping
Sweden
diasz@ida.liu.se

Simin Nadjm-Tehrani
Department of Computer & Information
Science
Linköping University
S-581 83 Linköping
Sweden
simin@ida.liu.se