海河北梁 沙物 理实验报告

实验名称:	普朗克常数
指导教师:	单 哲 加
信箱号:	04柜06号箱

专 业: 自动化(控制)
班 级: 控制 1901
姓 名: 孟世元
学 号: 3190104700
实验日期: 9 月 24 日 星期皿上/下午

【实验目的】

- 1. 加深对光的量子性的理解
- 2. 学习验证爱因斯坦光电效应方程的实验方法,并测定普朗克常数

【实验原理】(电学、光学画出原理图)

具有能量为 h> 的光量子打在金属表面时, 电子需要做功克服 金属内正电荷吸引力才能速出金属表面, 这部分能量都为逸出功W

由能量守恒原理有 hv = -1 mv2+W

当 hv >w 电子不仅可以逸出金属而且还可以具有一定的动能

当ho<W 无论光强有多大,电子均不能强出金属,因此不能产生光电效应

此时临界频率用い表示,则 る= 岩 称为极限频率

本实验采用"减速电位法"测量光电子由最大初动能力如图为系统示意图

光经过滤光片下后产生某种频率的单色光,

并照射到光电管的阴极K上,则阴极

发射大量由电子到阳极A形成电子流I, 🖺

它的大小随着阴极与阳极电压 Uak 的变化而跟着变化

当阳极上积累起大量的负电荷时对电客C页向充电,使加在UAK间负电位逐渐增加,当电势能完全阻拦电子流动时,有eUAK=±mv²

此时光电子管由电子流为零,将UAK定为截止电压用Uo表示

得 ello=hy-w 即 llo=もソー世

科率 ム= * <u>AU</u> = 世 已知电荷大小 C 即可求得普朗克 常量 h

【实验内容】(重点说明)

1. 仪器的调试

首先将所有器作放在光具座上,并调好光轴的同心轴,将汞灯发出的光线聚焦到光电管正中心,完成放大电路板的连接,在其输出端接上测量用的电压表

- 2. 本实验不需在暗室里操作,具体步骤如下:
 - ii) 打开测量电压表的电压量程, 烫置于"Ⅳ"档
 - (2) 旋转光孔转盘,使黄光 (入=578 nm)的干涉 滤光片置于光路上
 - (8) 按下电容旁的放电开关,直到电表上的读数为0
 - (4)释放放电开关的按钮,等待1分钟左右时间,直到电表指针不动为止,记下电表。
 - (5) 按上述同样的步骤 完成 绿光 (入=546 nm) 的测量
 - (6) 设置电表量程到"3V"档,接着完成蓝光(2-436 nm),紫光(2=405nm)测量
 - (7) 用公式 V= C/入 求出每个波长的光郎对应的频率,用标准坐标纸将频率与电压线性拟合,斜率 h/e,根据 C 值即可求得普朗克常数 h
- 3. 完成表格

【实验器材及注意事项】

实验器材: 承刈电源, 汞刈, 光阑, 透镜, 旋转光孔转盘, 光电管, 放大器. 电压表

- 在意事项:1. 汞灯只有在冷却的状态下才能启辉,在高温状态下启辉十分困难,因此在使用的过程中尽量不要关闭电源
 - 2. 避免用手接触滤光片的表面,保持四种颜色的滤光片的表面清洁
 - 3. 在不工作的时候, 应尽量减少对光电管的光照, 以免影响其 使用寿命

【数据处理与结果】

1. 由后部分页记录表

我性拟合斜率人= 兴 = 告

A = 4036 × 10-15

Y = 0.97 校接近1, 拟合有效

h = d.e = 6.466 x 10-15

本实验无B类不确定度,仅A类,对U有A类不确定度 但最后结果由拟合得到,因此暂不计算不确定度

h = 6.466 × 10-15 J.S

2. 由表2 I~ Uax 关系绘制

【误差分析】

查周网络上精确普朗克常数 6.62×10⁻³⁷J·5 发现我们测得数值偏小 不吃休食差割校

- 11) 对截止电压测量基本痛小。因为电子表数字浮动,可能现有完全到达截止电压就 进行了数据测量
- (2) Y并没有达到 a.99,可见我性拟合过程不是有一些粗糙出。这样得出的斜年会有误差
- (3)不可避免会有会光进入,因此激发光电流的》并不完全为确测量对值,这可能导 致了u截止电压则量的不准确
- (4) 仪器本身存在误差,以及我操作的误差,仪器、暗电流不为0月数值浮动也放大了仪器、

【实验心得及思考题】

思考题: 1) 爱因勒坦方程表达那些主要内容,共物理意义是什么?

答: E=ho-W·电子获得光由能量 ho,还预克股金属放射遮出功W, 才能有大于0自动能区,如果少人兴,则光电子无法飞出,光电流无 战 法检测到。彻理意义是构建了光电效应电子最终能量与光频率、金属产品

- (2) 胜采用本实验由测试方法外, 你还能提出何种实验方案来测试普朗克常量?
 - 答:由德布罗意物或政 p= 六 对有 P的量的电子,只须则得其物质政 波长入,即可由 h= p入计算音朗克宗教。对于皮长入出测算,可用 类似杨氏双缝干涉方式进行
- (3) 什么是强出办?从作图中能,在得到此金属的盛出办?
 - 答: 鱼出功是电子从金属表面脱离以颈做的功。 国中可以得到金属材料 盛出功,延长拟台直践与 x 轴的友点 为最小 > 值.与 h.相來即为 金属材料透出力
- 实验心得:本实验是正式接触大学物理实验由第一个实验。最大的感受是对不确定度 的严谨计算,无疑对"萌新"是新鲜由·不放好的却也是必要的。对实验以 器由操作也预很认真,则得多组数据这些,中间在闽武仪器时也遇到一定麻风 但包正是这些困难才能促读收获、进步里

数据记录 草基	反 (已把	,	电流一 负电压	•	号便于计	承)	<i></i>			
	√/H2	Ui /	/v	U1/U	U3/v	U	10	Us/u	ũ	IV.
λ=578nm	5.19×1013	\		. 1	\		\	•	\	
λ= 546nm	5.49×p13	0.714		0.708	0.71	0	0.707	0.70) 0	.710
Λ= 436nm	6.88 × 1013	0.98	7	0.985	0.98	9	0.98	0.98]	0	.98]
Λ=405nm	7.40×1013	*1.2	25	1.226	t/·225	+1	.225	+1.226		.225
2 = 365 nm	8.2 × 103	1.6	47	1.650	1.648	3 1.	647	1.645	5 1	.647
<i>i</i> .	在入=518		-17	I~				则得截止	电压	误差额 则这组
实验办教	人 入= 5 8		-17		UAK :	关系			电压	误差额
	·在入=5 89		表2	1~ 4 5	UAK :	关系	8 9	则得截止	故未以	误差额 则这组
实验办数	1	2	表2	1 ~ 4 5	6 4.5	关系	3 9 1.5	10 9.0 10	故未以	误差额 则这组
实验办数 UAK/V	-3.0	2 -1.5	表 2 3 0.0	I ~ 4 5 1.5 3.0	6 4.5	天年 7 60 60	3 9 1.5	10 9.0 10	电压 改未以 向老	误差额 则这组
实验贝数 UAK/V I/(×10 ⁻¹⁰ A)	-3.0 0	2 -1.5 0	表2 3 00 1	I ~ 4 5 1.5 3.0 5 12	6 4.5	天余 7 60 78	3 9 1.5 31	10 9.0 0 3] 4 18	电放气	误差额 则这组 师说师
实验办数 UAK/V I/(xh ^{-1*} A) 实验办数	-3.0 0 11 2.0	2 -1.5 0	表2 3 00 1 13	I ~ 4 5 1.5 3.0 5 12	6 4.5 20	天年 7 60 28 16	3 9 1.5 31	10 9.0 0 3] 4 18	电放气	误差额 加克姆

教师签字: 其格化

28.5

85

27.0

83

UAK/V

I/(×10-PA)

30.0

87