Input-Corrective Drawing Pad

Jesse Jensen

Overview

- Introduction
- Design details
 - System overview
- Project Management
 - Schedule
 - Budget
- Conclusion
- Questions

The Input-Corrective Drawing Pad is a touch pad with four main features.

- Pressure sensitive input
- Learns user intentions
- Corrects shaky input
- Connects via USB

Many cannot write or draw due to fine motor impairment

Difficulties include

- Shaky hands
- Inability to draw a straight line
- Inability to draw a consistent curve

The Input-Corrective Drawing Pad learns intended writing/drawing and outputs corrected data to a desktop computer.

System Overview

The stylus input module will send measured force to microprocessor via bluetooth.

Force sensitive resistor - SEN-09673

3.7V Rechargeable Li ion battery

BLE microcontroller

Bluetooth microcontroller

Microcontroller	Size	DC Supply Voltage	Cost
Beetle BLE	28.8mm X 33.1mm	3.7V	14.95
Bluno Nano	53x19x12mm	7V	33.35
RedBearLab BLE Nano	18.5mm x 21.0mm	3.3V	18.75

Touchpad input module

- Receives accurate readings from stylus
- Sends data to microprocessor
- Powered from microcontroller (through driver board)
- Screen size of at least 7 x 15 cm

Several capacitive touch pads are under consideration for the input device.

•					
Touchpad	Cost	Resolut ion	Screen size	Input Data	Input Power
Adafruit Pi Foundation (w/ driver board)	\$79	800 x 480 pixels	155mm x 86mm	DSI	Driver Board via Pi GPIO (5V)
Sainsmart	\$46	800x480 pixels	164 X 100mm	HDMI	4.5-7V
Seeed	\$60	1024 x 600 pixels	210mm x 150mm	HDMI	5V (2 A), 9V (1.5 A)

Processor Module

- Processes input and delivers an output to a desktop computer
- Processes input within 0.25 seconds
- Corrects shaky data
- Implements neural network to learn intended inputs
- Powered through desktop via USB

The QualComm SnapDragon 410c and Raspberry Pi 3 are under consideration to act as the processing module.

Microcontroller	CPU	Memory	Price	Architecture
Raspberry Pi 3	QuadCore ARM53(v8) 1.2GHz	1 GB	\$35	32-bit
SnapDragon 410C	QuadCore ARM53(v8) 1.2GHz	1 GB	\$85	64-bit

Benchmark tests using Python Performance Benchmark Suite show that the QualComm processor had better performance running Python code.

Test	Raspberry Pi3	DragonBoard 410c
cpu sysbench –test=cpu run	318.1229s	12.6500s
memory sysbench –test=memory –memory-total-size=2G run	7.5322s	3.0507s
threads sysbench –test=threads run	23.1469s	9.1600s
mutex sysbench –test=mutex run	0.0283s	0.0141s

Learning Software

- Programmed in the Python language
- Will first remove shakes
- Neural network trained with TensorFlow
- Training data taken from open source Quick Draw! Data sets
- Position and angle of drawing type will then be applied to data

Schedule

Budget

Item	Estimated Cost	Quantity	Total Cost
Touchpad	80.00	2	160.00
Microcontroller	50.00	2	140.00
Rechargeable Battery	15.00	2	30.00
Force Sensor	6.00	3	18.00
Beetle BLE Arduino	15.00	2	30.00
Case Enclosure	40.00	1	40.00
Total			418.00

Conclusion

Impact

- Limit amount of shake and error in drawing and writing
- Learn to adapt to user needs

Design

- Pressure-sensitive bluetooth stylus
- Capacitive touchpad
- Compact Processor

Questions

References

https://www.mouser.com/ProductDetail/DFRobot/DFR0339?qs=Zcin8yvlhnNH0fWhvo%2Fcpg%3D%3D

https://www.dfrobot.com/product-1259.html

https://towardsdatascience.com/rpi3-vs-dragonboard-f4dd877b7da9

https://www.adafruit.com/product/2718

https://www.sparkfun.com/products/9673