

Exercise 4C

Question 14:

Since AB || CD and PQ is a transversal.

So, y = 75

[Alternate angle]

Since PQ is a transversal and AB \parallel CD, so x + APQ = 180°

[Sum of consecutive interior angles]

 \Rightarrow x° = 180° - APQ

 \Rightarrow x = 180 - 75 = 105

Also, AB | CD and PR is a transversal.

So, ∠APR = ∠PRD

[Alternate angle]

 $\Rightarrow \angle APQ + \angle QPR = \angle PRD$ [Since $\angle APR = \angle APQ + \angle QPR$]

 \Rightarrow 75° + z° = 125°

 \Rightarrow z = 125 - 75 = 50

x = 105, y = 75 and z = 50.

Question 15:

 \angle PRQ = x° = 60°

[vertically opposite angles]

Since EF \parallel GH, and RQ is a transversal.

So, $\angle x = \angle y$ [Alternate angles]

 \Rightarrow y = 60

AB \parallel CD and PR is a transversal.

So, \angle PRD = \angle APR [Alternate angles]

 $\Rightarrow \angle PRQ + \angle QRD = \angle APR$ [since $\angle PRD = \angle PRQ + \angle QRD$]

 \Rightarrow x + \angle QRD = 110°

 \Rightarrow \angle QRD = 110° - 60° = 50°

In Δ QRS, we have,

 $\angle QRD + t^{\circ} + y^{\circ} = 180^{\circ}$

 \Rightarrow 50 + t + 60 = 180

 \Rightarrow t = 180 - 110 = 70

Since, AB || CD and GH is a transversal

So, $z^{\circ} = t^{\circ} = 70^{\circ}$ [Alternate angles]

x = 60, y = 60, z = 70 and t = 70

******* END ******