

Bayesian methods for the control-based continuation of multiple-timescale systems

Mark Blyth

Plan de jour

- CBC maths
- Surrogate modelling
- Novel discretisations

Plan de jour

- Surrogate modelling
- Novel discretisations

Dynamics are 'what something does'

A bifurcation is a change in dynamics

Bifurcation analysis:

1. Find a feature

Bifurcation analysis:

- 1. Find a feature
 - Eg. a rest-state or sustained oscillation

Bifurcation analysis:

- 1. Find a feature
 - Eg. a rest-state or sustained oscillation
- 2. Change a parameter slightly

Bifurcation analysis:

- 1. Find a feature
 - Eg. a rest-state or sustained oscillation
- 2. Change a parameter slightly
 - Eg. inject more current in a neuron

Bifurcation analysis:

- Find a feature
 - Eg. a rest-state or sustained oscillation
- 2. Change a parameter slightly
 - Eg. inject more current in a neuron
- 3. Find where the feature moved to

Bifurcation analysis:

- Find a feature
 - Eg. a rest-state or sustained oscillation
- 2. Change a parameter slightly
 - Eg. inject more current in a neuron
- 3. Find where the feature moved to
 - Eg. increase in rest-state membrane potential

Bifurcation analysis:

- Find a feature
 - Eg. a rest-state or sustained oscillation
- Change a parameter slightly
 - Eg. inject more current in a neuron
- 3. Find where the feature moved to
 - Eg. increase in rest-state membrane potential
- 4. Bifurcations occur when features change, appear, or disappear

- Numerical continuation:
 - Features x defined given by $f(x, \lambda) = 0$
 - Change λ , see how x changes

George Box

All models are wrong, but some are useful

Control-based continuation; model-free bifurcation analysis:

1. Build a system controller

Control-based continuation; model-free bifurcation analysis:

- 1. Build a system controller
 - Put in target $u^*(t)$

- 1. Build a system controller
 - Put in target $u^*(t)$
 - lacktriangle Controller makes system follow $u^*(t)$

- 1. Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$

- 1. Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$
 - Noninvasiveness = no control action applied

- Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$
 - Noninvasiveness = no control action applied
 - No control action = system behaves naturally

- Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$
 - Noninvasiveness = no control action applied
 - No control action = system behaves naturally
- Change a parameter

Control-based continuation; model-free bifurcation analysis:

- Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$
 - Noninvasiveness = no control action applied
 - No control action = system behaves naturally
- Change a parameter
- 4. Find how noninvasive $u^*(t)$ changed

Control-based continuation; model-free bifurcation analysis:

- Build a system controller
 - Put in target $u^*(t)$
 - ightharpoonup Controller makes system follow $u^*(t)$
- 2. Find noninvasive $u^*(t)$
 - Noninvasiveness = no control action applied
 - No control action = system behaves naturally
- Change a parameter
- 4. Find how noninvasive $u^*(t)$ changed
 - Tracks system features, bifurcations without ever needing a model

CBC

Control-based continuation

A model-free bifurcation analysis method. Uses a controller to stabilise a system, and continuation to track features.

My project: use CBC to analyse the bifurcations that make neurons fire

$$\ensuremath{\mathbb{K}}$$
 Periodic orbits are functions satisfying $f(t) = f(t+T)$

- \bigvee Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T [u(u^*, t)]^2 dt = 0$$
 for function $u^*(t)$

- \bigvee Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T [u(u^*, t)]^2 dt = 0$$
 for function $u^*(t)$

This is hard!

- \bigvee Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T [u(u^*, t)]^2 dt = 0$$
 for function $u^*(t)$

- This is hard!
- Finteresting aside: optimal control developed some nice approaches for solving variational equations]

- \bigvee Periodic orbits are functions satisfying f(t) = f(t+T)
- Tracking these means solving the functional equation

$$I[u^*] = \int_0^T [u(u^*, t)]^2 dt = 0$$
 for function $u^*(t)$

- This is hard!
- Finteresting aside: optimal control developed some nice approaches for solving variational equations]
- Discretisation lets us solve the problem by solving a finite set of equations

Goal: solve $I[u^*] = 0$

- Translate problem to system of vector-valued equations
- 2. Solve system numerically
- Translate solution back to a continuous function

Translation between continuous and vector-valued systems is discretisation

Definition (Discretisation)

The act of representing a continuous signal by a discrete counterpart

We want a discretisation that

Has minimal discretisation error

₭ Is low-dimensional

 $\ensuremath{\mathbb{K}}$ Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$

- $\normalfont{\mathbf{k}}$ Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - ► Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- $m{arkappa}$ We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - ► Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- k We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $u^*(t)$ can be represented by u^* with minimal error

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\mathbf{k} u^*(t)$ can be represented by \mathbf{u}^* with minimal error
 - u* is a discretisation

🍇 😽 BRISTÓL

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- - 11* is a discretisation
 - Represents a continuous function as finite-dimensional vector, with minimal error

How do we discretise?

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not k$ $u^*(t)$ can be represented by \mathbf{u}^* with minimal error
 - u* is a discretisation
 - Represents a continuous function as finite-dimensional vector, with minimal error
- \bigvee The functional problem can be rewritten as $I(\mathbf{u}^*) = 0$

How do we discretise?

- \bigvee Let \mathbf{u}^* be some vector 'representing' the signal $u^*(t)$
 - Eg. Fourier: let our periodic target be $u^*(t) = a_0 + \sum a_i \cos i\omega t + \sum b_i \sin i\omega t$
- We can represent the signal by its Fourier harmonics $\mathbf{u}^* = \{a_0, a_i, b_i\}$
- $\not k$ $u^*(t)$ can be represented by \mathbf{u}^* with minimal error
 - u* is a discretisation
 - Represents a continuous function as finite-dimensional vector, with minimal error
- \bigvee The functional problem can be rewritten as $I(\mathbf{u}^*) = 0$
 - Finite-vector equation, solvable!

Issues with discretisation

- Kee Solving the discretised system takes a long time when it is high-dimensional
- Neuron signals require lots of Fourier harmonics to discretise

Higher-order harmonics are harder to get [Nyquist cap] and less accurate [SNR]

Plan de jour

CBC maths

Surrogate modelling

Novel discretisations

bristol ac uk

Recent work: local surrogate models for experimental data

University of Bayesian methods for the control-based continuation of multiple-timescale systems BRISTOL

The need for surrogates

Recent work: local surrogate models for experimental data

Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

bristol ac uk

Recent work: local surrogate models for experimental data

Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

Record experimental data

bristol ac uk

Recent work: local surrogate models for experimental data

Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

- Record experimental data
- Fit a surrogate model

Recent work: local surrogate models for experimental data

Definition (Surrogate models)

A local model for data, that can be used in place of experimental recordings

- Record experimental data
- Fit a surrogate model
- Perform analysis, eg. discretisation, on model instead of data

Real data are noisy

Real data are 'fast'

[Thanks to KTA for the data]

We want to get rid of noise to get the best possible discretisation

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
 - High signal-to-noise ratio on the harmonics that give sharp spikes

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
 - High signal-to-noise ratio on the harmonics that give sharp spikes
 - Simple low-pass filters would remove both noise and signal

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
 - High signal-to-noise ratio on the harmonics that give sharp spikes
 - Simple low-pass filters would remove both noise and signal

A good surrogate lets us remove noise in a statistically optimal way

bristol ac uk

- We want to get rid of noise to get the best possible discretisation
 - Fourier should encode only signal, not signal + noise
- Fast signals mean lots of high-frequency energy
 - High signal-to-noise ratio on the harmonics that give sharp spikes
 - Simple low-pass filters would remove both noise and signal
- A good surrogate lets us remove noise in a statistically optimal way
 - Less noise = better discretisation

A primer on Bayes

The laws of probability, applied to beliefs instead of proportions-of-outcomes

- [Frequentist] probability:
 - How likely is something to happen?
 - An event is known to happen some proportion of the time; how can I reason about its outcomes?
- [Bayesian] beliefs:
 - Encoding uncertain beliefs; reasoning in the face of ignorance
 - I have some beliefs about an event; how can I update my beliefs after seeing some evidence?
 - Let's us combine beliefs and evidence to make better decisions

bristol ac uk

We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - $lackbox{ } f(t)$ is unknown, but we can reason about it with Bayes

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - lackbox f(t) is unknown, but we can reason about it with Bayes

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - lackbox f(t) is unknown, but we can reason about it with Bayes
- $\slash\hspace{-0.6em}$ Prior: assume $\varepsilon \sim \mathcal{N}(0,\sigma^2)$
 - ▶ Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - lackbox f(t) is unknown, but we can reason about it with Bayes
- - Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$
 - All observations: $\mathbf{y} \sim \mathcal{N}(f(\mathbf{t}), \Sigma_n^2)$

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
- k Prior: assume $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$
 - All observations: $\mathbf{y} \sim \mathcal{N}(f(\mathbf{t}), \Sigma_n^2)$
- $\ensuremath{\mathbf{k}}$ Let's estimate $y^* = f(t^*)$ at unseen data t^*

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - lackbox f(t) is unknown, but we can reason about it with Bayes
- k Prior: assume $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - ► Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$
 - All observations: $\mathbf{y} \sim \mathcal{N}(f(\mathbf{t}), \Sigma_n^2)$
- \bigvee Let's estimate $y^* = f(t^*)$ at unseen data t^*
 - ▶ Joint distribution: $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_k^2)$

🧔 😽 BRISTOL

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
- \mathbf{k} Prior: assume $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$
 - All observations: $\mathbf{y} \sim \mathcal{N}(f(\mathbf{t}), \Sigma_n^2)$
- \bigvee Let's estimate $y^* = f(t^*)$ at unseen data t^*
 - ▶ Joint distribution: $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_k^2)$
 - ightharpoonup Conditional distribution: $p(f(t^*)|t^*,y,t)$

- We have a 'true' signal f(t), but we can only see noise-corrupted samples $y_i = f(t_i) + \varepsilon$
 - ightharpoonup f(t) is unknown, but we can reason about it with Bayes
- \mathbf{k} Prior: assume $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 - Single observation: $y_i \sim \mathcal{N}(f(t_i), \sigma_n^2)$
 - All observations: $\mathbf{y} \sim \mathcal{N}(f(\mathbf{t}), \Sigma_n^2)$
- \not Let's estimate $y^* = f(t^*)$ at unseen data t^*
 - ▶ Joint distribution: $p(f(t^*), t^*, y, t) \sim \mathcal{N}(\mu, \Sigma_k^2)$
 - ► Conditional distribution: $p(f(t^*)|t^*, y, t)$
- This is Gaussian process regression!

Gaussian process regression surrogates

Build a statistically optimal regression model from noisy observations

★ GPR is Bayesian

- - Covariance function specifies our initial belief about the data

- - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data

- - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data
- Covariance functions generally assume stationarity

- - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data
- Covariance functions generally assume stationarity
 - Assume smooth, nice signals

🎑 🛂 BRISTÓL

- GPR is Bayesian
 - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data
- Covariance functions generally assume stationarity
 - Assume smooth, nice signals
 - Neuron data are highly non-stationary

bristol ac uk

2 BRISTOL

- GPR is Bayesian
 - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data
- Covariance functions generally assume stationarity
 - Assume smooth, nice signals
 - Neuron data are highly non-stationary
- Stationary covariance = poorly encoded beliefs = low belief in posterior

bristol ac uk

BRISTOL

- GPR is Bayesian
 - Covariance function specifies our initial belief about the data
 - Conditioning step updates this belief after seeing data
- Covariance functions generally assume stationarity
 - Assume smooth, nice signals
 - Neuron data are highly non-stationary
- Stationary covariance = poorly encoded beliefs = low belief in posterior
 - Bayes with bad priors = bad results!

Stationary GPR, non-stationary data = overly flexible models

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes
 - Stationary = equally flexible everywhere, even away from spikes

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out
- Non-stationary would fix this

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out
- Non-stationary would fix this
 - Flexible near spikes

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accomodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out
- Non-stationary would fix this
 - Flexible near spikes
 - Inflexible away from them

BRISTOL

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accommodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out
- Non-stationary would fix this
 - Flexible near spikes
 - Inflexible away from them
 - Smooths out noise, while also modelling spikes

bristol ac uk

- Stationary GPR, non-stationary data = overly flexible models
 - Needs to change rapidly to accommodate spikes
 - Stationary = equally flexible everywhere, even away from spikes
 - Overfit noise, instead of averaging it out
- Non-stationary would fix this
 - Flexible near spikes
 - Inflexible away from them
 - Smooths out noise, while also modelling spikes
- Non-stationary GPR is hard!

bristol ac uk

Less flexible alternative: splines

- Less flexible alternative: splines
- Choose some representative points

- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point

- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point
- Choose polynomials so that the function is smooth

- Less flexible alternative: splines
- Choose some representative points
- Place a piece of cubic polynomial between each point
- Choose polynomials so that the function is smooth
- Finite, low degree-of-freedom, forcibly averages out noise

Choosing representative points is hard

- Choosing representative points is hard
- Alternative: don't!

bristol ac uk

- Choosing representative points is hard
- Alternative: don't!
 - Let ξ be a vector of representative points

- Choosing representative points is hard
- Alternative: don't!
 - Let ξ be a vector of representative points
 - ightharpoonup Find $p(\xi|x,y)$

- Choosing representative points is hard
- Alternative: don't!
 - Let ξ be a vector of representative points
 - ightharpoonup Find $p(\xi|x,y)$
 - Use that to estimate $p(f|\xi, x, y)$

- Choosing representative points is hard
- Alternative: don't!
 - Let \mathcal{E} be a vector of representative points
 - Find $p(\xi|x,y)$
 - Use that to estimate $p(f|\xi, x, y)$
- This is Bayesian free-knot splines

Splines as a surrogate

Result 1: splines outperform stationary GPR as neuronal data surrogate

Plan de jour

- CBC maths
- Surrogate modelling
- Novel discretisations

My current work...

▶ Bayesian free-knot splines gives a good noise-free surrogate model

My current work...

- ▶ Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate

My current work...

- ₩ Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients

🎑 🛂 BRISTÓL

The issue with surrogates

My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients
- Issue: too many coefficients are needed to discretise the signal

bristol ac uk

My current work...

- Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients
- Issue: too many coefficients are needed to discretise the signal
 - Too many = slow, inaccurate CBC

My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients
- Issue: too many coefficients are needed to discretise the signal
 - Too many = slow, inaccurate CBC
 - Question: how many do we actually need?

My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients
- Issue: too many coefficients are needed to discretise the signal
 - Too many = slow, inaccurate CBC
 - Question: how many do we actually need?
- We can reconstruct signal from splines models

bristol ac uk

My current work. . .

- Bayesian free-knot splines gives a good noise-free surrogate model
 - Can apply Fourier discretisation on the surrogate
 - Can get arbitrarily many mostly-accurate Fourier coefficients
- Issue: too many coefficients are needed to discretise the signal
 - Too many = slow, inaccurate CBC
 - Question: how many do we actually need?
- We can reconstruct signal from splines models
 - Is this a discretisation?

K Splines models are of form
$$\hat{f}(x) = \sum \beta_i b_i(x)$$

- **K** Splines models are of form $\hat{f}(x) = \sum \beta_i b_i(x)$
 - \blacktriangleright $b_i(x)$ form a set of basis functions over splines models

bristol ac uk

- \checkmark Splines models are of form $\hat{f}(x) = \sum \beta_i b_i(x)$
 - \blacktriangleright $b_i(x)$ form a set of basis functions over splines models
- $kinesign For a basis set <math>b_i$, can the associated β_i discretise a signal?

bristol ac uk

- Ke Splines models are of form $\hat{f}(x) = \sum \beta_i b_i(x)$
 - \blacktriangleright $b_i(x)$ form a set of basis functions over splines models
- kinesign For a basis set b_i , can the associated β_i discretise a signal?
 - Result 2: probably...

- \checkmark Splines models are of form $\hat{f}(x) = \sum \beta_i b_i(x)$
 - \blacktriangleright $b_i(x)$ form a set of basis functions over splines models
- \bigvee For a basis set b_i , can the associated β_i discretise a signal?
 - Result 2: probably...
 - This is my current work

Spline discretisation

8-dimensional discretisation; but does it work with continuation?

Where next?

- Compare Fourier vs splines discretisation
 - What error for what discretisation-size?
- See if the discretisation breaks down with stochastic models
 - It probably will
- Test the discretisation with continuation