Mapping Gaussian Process priors to Bayesian Neural Networks

Daniel Flam-Shepherd, James Requeima and David Duvenaud

NIPS Workshop on Bayesian Deep Learning

The main objective

Minimize the KL divergence of prior $p_{\text{GP}}(f) \equiv \mathcal{GP}(f|0, \mathbf{K})$ to prior $p_{\text{BNN}}(f|\phi)$ in function space! Note ϕ are variational parameters of $q(\mathbf{w}|\phi)$

$$\mathcal{K}(\boldsymbol{\phi}) = \mathbb{KL}[p_{\text{BNN}}(\boldsymbol{f}|\boldsymbol{\phi}) \mid p_{\text{GP}}(\boldsymbol{f})]$$
 (1)

$$= -\mathbb{H}[p_{\text{BNN}}(\boldsymbol{f}|\boldsymbol{\phi})] - \mathbb{E}_{p_{\text{BNN}}(\boldsymbol{f}|\boldsymbol{\phi})}[\log p_{\text{GP}}(\boldsymbol{f})]$$
 (2)

But this is infinite! Approximate it by taking expectations over $p(\mathbf{X})$:

$$\mathcal{L}_{\mathbf{X}}(\boldsymbol{\phi}) \equiv \mathbb{E}_{\mathbf{X} \sim p(\mathbf{X})}[\mathcal{K}(\boldsymbol{\phi})]$$

Assume normality of $p_{\text{BNN}}(f|\phi)$ and use MC estimation:

$$\mathcal{L}_{\mathbf{X}}(\boldsymbol{\phi}) \approx -\frac{1}{2}\log|\boldsymbol{\Sigma}_{\boldsymbol{f}}| - \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{\mathbf{X} \sim p(\mathbf{X})}[\log p_{GP}(\boldsymbol{f}^{(s)}(\mathbf{X}))]$$
(3)

Now find $\phi^* = \underset{\phi}{\operatorname{argmin}} \ \mathcal{L}_{\mathbf{X}}(\phi)$

Two Experiments with different kernels

Red are samples of $p_{\text{BNN}}(f(\mathbf{X})|\phi^*)$ (optimized ones)! Green are samples from the GP prior and Blue are non-optimized samples of $p_{\text{BNN}}(f(\mathbf{X}))$.

Check out our poster!!