## irisModels

July 27, 2024

```
from sklearn.datasets import load_iris
[3]: data = load_iris()
     print(data)
    {'data': array([[5.1, 3.5, 1.4, 0.2],
           [4.9, 3., 1.4, 0.2],
           [4.7, 3.2, 1.3, 0.2],
           [4.6, 3.1, 1.5, 0.2],
           [5., 3.6, 1.4, 0.2],
           [5.4, 3.9, 1.7, 0.4],
           [4.6, 3.4, 1.4, 0.3],
           [5., 3.4, 1.5, 0.2],
           [4.4, 2.9, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [5.4, 3.7, 1.5, 0.2],
           [4.8, 3.4, 1.6, 0.2],
           [4.8, 3., 1.4, 0.1],
           [4.3, 3., 1.1, 0.1],
           [5.8, 4., 1.2, 0.2],
           [5.7, 4.4, 1.5, 0.4],
           [5.4, 3.9, 1.3, 0.4],
           [5.1, 3.5, 1.4, 0.3],
           [5.7, 3.8, 1.7, 0.3],
           [5.1, 3.8, 1.5, 0.3],
           [5.4, 3.4, 1.7, 0.2],
           [5.1, 3.7, 1.5, 0.4],
           [4.6, 3.6, 1., 0.2],
           [5.1, 3.3, 1.7, 0.5],
           [4.8, 3.4, 1.9, 0.2],
           [5., 3., 1.6, 0.2],
           [5., 3.4, 1.6, 0.4],
           [5.2, 3.5, 1.5, 0.2],
           [5.2, 3.4, 1.4, 0.2],
           [4.7, 3.2, 1.6, 0.2],
           [4.8, 3.1, 1.6, 0.2],
           [5.4, 3.4, 1.5, 0.4],
           [5.2, 4.1, 1.5, 0.1],
```

```
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5., 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3., 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5., 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5., 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5., 3.3, 1.4, 0.2],
[7., 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4., 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
```

```
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3., 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5., 2.],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6., 2.2, 5., 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6., 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
```

```
[7.2, 3., 5.8, 1.6],
     [7.4, 2.8, 6.1, 1.9],
     [7.9, 3.8, 6.4, 2.],
     [6.4, 2.8, 5.6, 2.2],
     [6.3, 2.8, 5.1, 1.5],
     [6.1, 2.6, 5.6, 1.4],
     [7.7, 3., 6.1, 2.3],
     [6.3, 3.4, 5.6, 2.4],
     [6.4, 3.1, 5.5, 1.8],
     [6., 3., 4.8, 1.8],
     [6.9, 3.1, 5.4, 2.1],
     [6.7, 3.1, 5.6, 2.4],
     [6.9, 3.1, 5.1, 2.3],
     [5.8, 2.7, 5.1, 1.9],
     [6.8, 3.2, 5.9, 2.3],
     [6.7, 3.3, 5.7, 2.5],
     [6.7, 3., 5.2, 2.3],
     [6.3, 2.5, 5., 1.9],
     [6.5, 3., 5.2, 2.],
     [6.2, 3.4, 5.4, 2.3],
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
     'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
'DESCR': '.. _iris_dataset:\n\nIris plants
dataset\n-----\n\n**Data Set Characteristics:**\n\n:Number of
Instances: 150 (50 in each of three classes)\n:Number of Attributes: 4 numeric,
predictive attributes and the class\n:Attribute Information:\n
                                               - sepal length
in cm\n
       - sepal width in cm\n
                          - petal length in cm\n
                                            - petal width in
     - class:\n
                     - Iris-Setosa\n
                                         - Iris-Versicolour\n
cm\n
===== ======\n
                               Min Max Mean
                                             SD
4.3 7.9 5.84 0.83
                          0.7826\nsepal width:
                                           2.0 4.4
length:
                                                   3.05
                               3.76
0.43
    -0.4194\npetal length:
                       1.0 6.9
                                    1.76
                                         0.9490 (high!)\npetal
       0.1 2.5
             1.20
                    0.76
                          width:
====== ============\n\n:Missing Attribute Values: None\n:Class
Distribution: 33.3% for each of 3 classes.\n:Creator: R.A. Fisher\n:Donor:
Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n\nThe famous
Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom
Fisher\'s paper. Note that it\'s the same as in R, but not as in the
UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is
perhaps the best known database to be found in the \npattern recognition
```

literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The \ndata set contains 3 classes of 50 instances each, where each class refers to a ntype of iris plant. One class is linearly separable from the other 2; the nlatter are NOT linearly separable from each other.\n\n|detailsstart|\n\*\*References\*\*\n|details-split|\n\n- Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n- Many, many more ...\n\n|details-end|\n', 'feature names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': 'iris.csv',

## [5]: import pandas as pd

'data\_module': 'sklearn.datasets.data'}

| [7]: | <pre>X_data = pd.DataFrame(data.data, columns = data.feature_names)</pre> |
|------|---------------------------------------------------------------------------|
|      | <pre>print(X_data)</pre>                                                  |

|     | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) |
|-----|-------------------|------------------|-------------------|------------------|
| 0   | 5.1               | 3.5              | 1.4               | 0.2              |
| 1   | 4.9               | 3.0              | 1.4               | 0.2              |
| 2   | 4.7               | 3.2              | 1.3               | 0.2              |
| 3   | 4.6               | 3.1              | 1.5               | 0.2              |
| 4   | 5.0               | 3.6              | 1.4               | 0.2              |
|     | •••               | •••              | •••               | •••              |
| 145 | 6.7               | 3.0              | 5.2               | 2.3              |
| 146 | 6.3               | 2.5              | 5.0               | 1.9              |
| 147 | 6.5               | 3.0              | 5.2               | 2.0              |
| 148 | 6.2               | 3.4              | 5.4               | 2.3              |
| 149 | 5.9               | 3.0              | 5.1               | 1.8              |

[150 rows x 4 columns]

[13]: y\_data = pd.Series(data = data.target, name = "Targets")
print(y\_data)

- 0 0
- 1 0
- 2 0
- 3 0
- 4 0

```
145
            2
     146
             2
     147
             2
     148
     149
     Name: Targets, Length: 150, dtype: int32
[11]: from sklearn.model_selection import train_test_split
[17]: X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.
[19]: from sklearn.ensemble import RandomForestClassifier
[21]: model = RandomForestClassifier()
      print(model)
     RandomForestClassifier()
[23]: model.fit(X_train, y_train)
[23]: RandomForestClassifier()
[27]: y_pred = model.predict(X_test)
      print(y_pred)
      [0\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 2\ 0\ 0\ 1\ 2\ 2\ 1\ 0\ 2\ 1\ 0\ 2\ 1\ 2\ 0\ 2\ 1\ 1\ 2\ 1\ 0\ 0]
[29]: from sklearn.metrics import accuracy_score
[31]: accuracy_score(y_test, y_pred)
[31]: 1.0
[33]: from joblib import dump
[35]: dump (model, './../Savedmodels/model.joblib')
[35]: ['./../Savedmodels/model.joblib']
 []:
 []:
 []:
 []:
```

| []: |  |
|-----|--|
| []: |  |