Convergence in a Vector Norm

Definition: Convergence

Let $\|\cdot\|$ be a vector norm on \mathbb{C}^n . To say that a sequence of vectors $\{\vec{x}_k\}$ in \mathbb{C}^n converges with respect to the norm means $\exists \vec{x}_0 \in \mathbb{C}^n$ such that:

$$\lim_{k \to \infty} \|\vec{x}_k - \vec{x}_0\| = 0$$

Definition: Cauchy

Let $\|\cdot\|$ be a vector norm on \mathbb{C}^n . To say that a sequence of vectors $\{\vec{x}_k\}$ in \mathbb{C}^n is *Cauchy* with respect to the norm means:

$$\forall \epsilon > 0, \exists N_{\epsilon} > 0, \forall i, j > N_{\epsilon}, \|\vec{x}_i - \vec{x}_i\| < \epsilon$$

Definition: Complete

Let $\|\cdot\|$ be a vector norm on \mathbb{C}^n . To say that \mathbb{C}^n is *complete* with respect to the norm means that every Cauchy sequence in \mathbb{C}^n converges to to some $\vec{x}_0 \in \mathbb{C}^n$.

Theorem

 \mathbb{C}^n is complete with respect to ℓ_{∞}

Proof

Assume $\{\vec{x}_k\}$ in \mathbb{C}^n is Cauchy with respect to ℓ_∞ Let $\vec{x}_k(i)$ refer to the i^{th} component of \vec{x}_k Assume $1 \leq i \leq n$ Assume $\epsilon_1 > 0$ $\exists \ N_{\epsilon_1} > 0, \forall \ j,k > N_{\epsilon_1}, \|\vec{x}_j - \vec{x}_k\| < \epsilon_1$ Assume $j,k > N_{\epsilon_1}$

$$|\vec{x}_j(i) - \vec{x}_k(i)| \le \max_{1 \le i \le n} |\vec{x}_j(i) - \vec{x}_k(i)| = ||\vec{x}_j - \vec{x}_k||_{\infty} < \epsilon_1$$

So $\{\vec{x}_k(i)\}$ is Cauchy in $\mathbb C$ But $\mathbb C$ is complete, so $\{\vec{x}_k(i)\} \to \vec{x}_0(i)$ as $k \to \infty$ Assume $\epsilon > 0$ $\exists \, N_\epsilon(i) > 0, \forall \, k > N_\epsilon(i), |\vec{x}_k(i) - \vec{x}_0(i)| < \epsilon$ Let:

$$N_{\epsilon} = \max_{1 \le i \le n} N_{\epsilon}(i)$$

Assume $k > N_{\epsilon}$

$$\|\vec{x}_k - \vec{x}_0\| = \max_{1 \le i \le n} |\vec{x}_k(i) - \vec{x}_0(i)| < \epsilon$$

Therefore:

$$\lim_{k \to \infty} \|\vec{x}_k - \vec{x}_0\| = 0$$

and thus $\{\vec{x}_k\}$ converges with respect to the norm to some $\vec{x}_0 \in \mathbb{C}^n$.

Theorem

Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ be two norms on \mathbb{C}^n . There exists $c_m, c_M \in \mathbb{R}$ such that $\forall \vec{x} \in \mathbb{C}^n$:

$$c_m \|\vec{x}\|_{\alpha} \le \|\vec{x}\|_{\beta} \le c_M \|\vec{x}\|_{\alpha}$$

Proof

Consider $S = \{\vec{x} \in \mathbb{C}^n \mid ||\vec{x}||_2 = 1\}$

S is compact

Let
$$h(\vec{x}) = \frac{\|\vec{x}\|_{\beta}}{\|\vec{x}\|_{\alpha}}$$

 $h(\vec{x})$ is continuous

h[S] is compact in $\mathbb R$

Let
$$h[S] = [c_m, c_M]$$

Assume
$$\vec{x} \in S$$

$$c_m \leq \frac{\|x\|_{\beta}}{\|\vec{x}\|_{\alpha}} \leq c_M$$

Assume
$$\vec{x} \in S$$

$$c_m \le \frac{\|\vec{x}\|_{\beta}}{\|\vec{x}\|_{\alpha}} \le c_M$$

$$c_m \|\vec{x}\|_{\alpha} \le \|\vec{x}\|_{\beta} \le c_M \|\vec{x}\|_{\alpha}$$

Now, assume $\vec{x} \in \mathbb{C}^n$

$$\frac{\vec{x}}{\|\vec{x}\|_2} \in S$$

$$c_m \left\| \frac{\vec{x}}{\|\vec{x}\|_2} \right\|_{\alpha} \le \left\| \frac{\vec{x}}{\|\vec{x}\|_2} \right\|_{\beta} \le c_M \left\| \frac{\vec{x}}{\|\vec{x}\|_2} \right\|_{\alpha}$$

$$\therefore c_m \|\vec{x}\|_{\alpha} \le \|\vec{x}\|_{\beta} \le c_M \|\vec{x}\|_{\alpha}$$

Example

$$c_m \|\vec{x}\|_2 \le \|\vec{x}\|_1 \le c_M \|\vec{x}\|_2$$

Clearly,
$$c_m = 1$$

$$\sum_{k=1}^{n} |x_k| \le c_M \left(\sum_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}}$$

But by C-S:

$$\sum_{k=1}^{n} 1 \cdot |x_k| \le \left(\sum_{k=1}^{n} 1^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}}$$

So
$$c_M = (\sum_{k=1}^n 1^2)^{\frac{1}{2}} = \sqrt{n}$$

Theorem

Let $\|\cdot\|$ be a vector norm on \mathbb{C}^n and let $\{\vec{x}_k\}$ be a sequence in \mathbb{C}^n :

The sequence converges iff the sequence is Cauchy.

Proof

The statement holds for ℓ_∞

Assume $\vec{x} \in \mathbb{C}^n$

There exists some c_M such that $0 \le \|\vec{x}\| \le c_M \|\vec{x}\|_{\infty}$ So, by the squeeze theorem, the statement also holds for $\|\cdot\|$.

Consequences:

- 1). $\{\vec{x}_k\}$ Cauchy wrt $\|\cdot\|_{\alpha} \implies \{\vec{x}_k\}$ Cauchy wrt $\|\cdot\|_{\beta}$.
- 2). $\{\vec{x}_k\}$ converges wrt $\|\cdot\|_{\alpha} \implies \{\vec{x}_k\}$ converges wrt $\|\cdot\|_{\beta}$.
- 3). All $\|\cdot\|$ on \mathbb{C}^n are complete.