Super Relativity: A Speculative Framework

Sir Hrishi Mukherjee I

May 4, 2024

1 Introduction

In this paper, we propose a speculative framework for Super Relativity, which extends the principles of general relativity to incorporate supersymmetry. We present a mathematical formalism for this framework and discuss its implications.

2 Mathematical Formalism

We begin by defining the metric for spacetime and the fields for supersymmetry:

Spacetime Metric $(ds^2): -1$ $\begin{pmatrix} -c^2T & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$

Supersymmetric Fields $(\Phi(x, \theta, \bar{\theta}))$: Scalar Fields A, B, C, D, \dots

The action principle for Super Relativity is given by:

$$S = L \cdot \text{Volume} \cdot c^{4}$$

$$+ \int d^{4}x \Phi \cdot \bar{\Phi}$$

$$+ \int d^{4}x \sqrt{-g}R$$

$$+ \int d^{4}x \sqrt{-g}\Lambda$$

$$+ \int d^{4}x \sqrt{-g}L_{m}$$

$$+ \int d^{4}x \sqrt{-g}L_{\text{int}}$$

$$+ \int d^{4}x \sqrt{-g}L_{\text{top}}$$

$$+ \int d^{4}x \sqrt{-g}L_{\text{Dark}}$$

$$+ \int d^{4}x \sqrt{-g}L_{\text{extra}}$$

Here, L represents the Lagrangian density, $g_{\mu\nu}$ is the metric tensor, R is the Ricci scalar, Λ is the cosmological constant, L_m is the matter Lagrangian density, $L_{\rm int}$ is the interaction Lagrangian density, $L_{\rm top}$ is the topological Lagrangian density, $L_{\rm Dark}$ represents the dark matter Lagrangian density, and $L_{\rm extra}$ is an additional, speculative contribution.

The field equations for Super Relativity are given by:

$$\begin{split} \frac{\delta S}{\delta g_{\mu\nu}} &= 0 \\ \frac{\delta S}{\delta \Phi} &= 0 \\ G_{\mu\nu} + \Lambda g_{\mu\nu} &= 8\pi G T_{\mu\nu} \\ \partial_{\mu} (\sqrt{-g} \partial^{\mu} \Phi) - \sqrt{-g} \left(\frac{\delta L}{\delta \Phi} \right) &= 0 \\ \frac{\delta S}{\delta A} &= \frac{\delta S}{\delta B} = \frac{\delta S}{\delta C} = \frac{\delta S}{\delta D} = \dots = 0 \end{split}$$

3 Conclusion

We have presented a speculative framework for Super Relativity, which extends the principles of general relativity to incorporate supersymmetry. Further research is needed to explore the implications and validity of this framework.

Spacetime Metric	Supersymmetric Fields
ds^2	$\Phi(x,\theta,\overline{\theta})$
-1	Scalar (e.g., $A, B, C, D,$)
$\left(-c^2T 0 0 0\right)$	A B C D
$\begin{pmatrix} -c^2T & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$	$\begin{bmatrix} E & F & G & H \end{bmatrix}$
$\begin{pmatrix} 0 & 1 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ M & N & O & P \end{pmatrix}$
Action Principle	Field Equations
S	$\frac{\delta S}{\delta g_{\mu\nu}} = 0, \frac{\delta S}{\delta \Phi} = 0$ $G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$
$L \cdot \text{Volume} \cdot c^4 + \int d^4x \Phi \cdot \bar{\Phi} + \int d^4x \sqrt{-g}R + \dots$	$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$
	$\partial_{\mu}(\sqrt{-g}\partial^{\mu}\Phi) - \sqrt{-g}\left(\frac{\delta L}{\delta \Phi}\right) = 0$

Table 1: Field Equations for Super Relativity