FINAL

CORRECTIVE ACTION PLAN FOR THE RISK-BASED CLOSURE OF THE BASE EXCHANGE SERVICE STATION TYNDALL AIR FORCE BASE, FLORIDA

AETC Contract No. F41689-96-D-0710 Order No. 5015

Prepared for
AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
BROOKS AIR FORCE BASE, TEXAS

and

325 CES/CEVR TYNDALL AIR FORCE BASE, FLORIDA

August 1999

Prepared by

PARSONS ENGINEERING SCIENCE, INC. 1700 Broadway, Suite 900 Denver, Colorado 80290 and 5390 Triangle Parkway, Suite 100 Norcross, Georgia 30092

20000818 033

Approved for Public Release
Distribution Unlimited

TABLE OF CONTENTS

		Page
SECTION 1	INTRODUCTION	1-1
	1.1 Description of The Risk-Based Approach	1-1
	1.2 Risk-Based Approach Tasks	1-1
	1.3 Regulatory Requirements	1-2
	1.3.1 No Further Action	1-3
	1.3.2 Natural Attenuation With Monitoring	1-3
	1.3.3 Summary	
	1.4 Report Organization	1-4
	1.5 Site Description and Background	1-5
SECTION 2	SITE CHARACTERIZATION ACTIVITIES	
	2.1 Scope of Data Collection Activities	2-1
	2.2 Subsurface Soil Sampling	2-2
	2.3 Monitoring Well Installation and Development	
	2.4 Groundwater Sampling	
	2.5 Soil Gas Measurements	
•	2.6 Equipment Decontamination Procedures	
	2.7 Surveying	2-5
	2.8 Investigation-Derived Wastes (IDW)	
	2.9 Analytical Data Quality Assessment	
	2.9.1 Introduction	
	2.9.2 Data Quality	2-6
SECTION 3	PHYSICAL CHARACTERISTICS OF THE STUDY AREA	
•	3.1 Physiography	
	3.2 Regional Geology	
	3.3 Regional Hydrogeology	
	3.4 Site Geology and Hydrogeology	3-2
	3.5 Site Topography and Surface Water Hydrology	3-3
	3.6 Climatological Characteristics	
	3.7 Water-Supply Well Survey	3-3
SECTION 4	TIER 1 ANALYSIS AND IDENTIFICATION OF CHEMICALS	
	OF POTENTIAL CONCERN	
	4.1 Regulatory Review of the Tier 1 Screening Process	4-1
•	4.2 Preliminary Conceptual Site Model Review	
	4.3 Tier 1 Screening Analysis	
	4.3.1 Tier 1 Screening Analysis for Soil	
	4.3.2 Tier 1 Screening Analysis for Groundwater	
	4.3.3 Tier 1 Screening Analysis for Soil Gas	
	4.3.4 Summary of BX Service Station COPCs	4-4

TABLE OF CONTENTS (CONTINUED)

		Page
SECTION 5	ANALYTICAL DATA SUMMARY AND MAGNITUDE AND	
	EXTENT OF CHEMICALS OF POTENTIAL CONCERN	5-1
	5.1 Overview	5-1
	5.2 Soil Sampling Results	
	5.3 Groundwater Sampling Results	
	5.4 Soil Gas Sampling Results	
SECTION 6	CHEMICAL FATE ASSESSMENT	6-1
SECTION	6.1 Introduction	
	6.2 Operative Mechanisms of Contaminant Attenuation	
	6.2.1 Biodegradation of Dissolved BTEX and Naphthalene	
	6.2.3 Properties of MTBE	
	6.3.1 Hydrocarbon Concentration Trends in Soil	
	6.3.2 Hydrocarbon Concentration Trends in Groundwater	
	6.4 Site Specific Contaminant Biodegradation Rates	0-4
	6.5 Evidence of Contaminant Biodegradation Via Microbially	6.1
	Mediated Redox Reactions	
	6.5.1 Relevance of Redox Couples in Biodegradation	
	6.5.2 Dissolved Oxygen	
	6.5.3 Nitrate	
	6.5.4 Ammonia	
	6.5.5 Ferrous Iron	
	6.5.6 Sulfate	
	6.5.7 Dissolved Methane	
	6.5.8 pH	6-9
	6.5.9 Temperature	
	6.6 Theoretical Assimilative Capacity Estimates	
	6.7 Predicting Contaminant Transport And Fate	
	6.7.1 Volatilization from Subsurface Sources	6-11
	6.7.2 Bioscreen Modeling	6-12
SECTION 7	TIER 2 ANALYSIS AND IDENTIFICATION OF FINAL	
	CHEMICALS OF CONCERN	7-1
	7.1 Objective of Site-Specific Evaluation	
	7.2 Revised Conceptual Site Model	7-1
	7.2.1 Sources, Affected Media, Release Mechanisms, and	
	Contaminant Environmental Transport	7-2
	7.2.2 Potentially Exposed Receptors, Exposure Points, and	
	Exposure Routes	7-2
	7.2.3 Summary of Exposure Pathway completion	7-3
	7.3 Tier II Analysis for Soil	

TABLE OF CONTENTS (CONTINUED)

	•	Page
	7.4 Tier II Analysis for Groundwater	7-4
	7.5 Lead in Groundwater and Soil	7-4
	7.6 Summary of Risk-Reduction Requirements	7-5
SECTION 8	REMEDIAL ALTERNATIVES EVALUATION	8-1
	8.1 Remedial Alternative 1 – RNA with Institutional Controls and LTM	Q 1
	8.2 Remedial Alternative 2 – RNA with Institutional Controls,	0-1
	LTM, and Source Area Bio Sparging/SVE	8-1
	8.3 Remedial Alternative 3 – RNA with Institutional Controls and LTM to	0 1
	Verify Attainment of SSTLs, Followed by Inactive Status	8-2
	8.4 Recommended Remedial Alternative	8-2
SECTION 9	LONG-TERM MONITORING PLAN	9-1
	9.1 Overview	9-1
	9.2 Long-Term Groundwater Monitoring Wells	9-1
	9.3 Sampling Duration and Frequency	9-1
	9.4 Analytical Protocol	9-1
SECTION 10	REFERENCES	. 10-1
APPENDIX A	PERTINENT DATA FROM PREVIOUS SITE INVESTIGATIONS	
APPENDIX B	LABORATORY ANALYTICAL DATA SHEETS AND CHAIN- OF-CUSTODY RECORDS FROM MARCH 1998 SAMPLING EVENT	
APPENDIX C	FIELD FORMS FROM MARCH 1998- FIELD EFFORT	
APPENDIX D	FIRST-ORDER DECAY COEFFIENT CALCULATIONS	
APPENDIX E	SUPPORTING INFORMATION FOR VOLATILIZATION FROM SUBSURFACE SOURCES MODELS	
APPENDIX F	BIOSCREEN MODEL INPUT AND OUTPUT	
APPENDIX G	USEPA IEUBK MODEL INPUT AND OUTPUT	
APPENDIX H	COST TABLES FOR REMEDIAL ALTERNATIVES	

LIST OF FIGURES

No.	Title
1.1	Regional Map
1.2	Site Location Map
1.3	BX Service Station Layout
2.1	Sampling Location Map
3.1	Shallow Zone Groundwater Elevations; March 19, 1998
4.1	Preliminary Conceptual Site Model
5.1	Distribution of Groundwater COPCs; March 1998
6.1	Sequence of Microbially Mediated Redox Processes
7.1	Revised Conceptual Site Model

LIST OF TABLES

No.	Title
2.1	Analytical Protocol for Groundwater, Soil, and Soil Gas Samples
2.2	Sample Analyses by Location
2.3	Soil Boring and Monitoring Well Installation Summary
3.1	Summary of Monitoring Well Gauging Data
3.2	Supply Well Information
4.1	Comparison of Maximum Site Soil Concentrations Detected in March 1997
	and March 1998 to Target Cleanup Levels
4.2	Comparison of Maximum Site Groundwater Concentrations Detected in March 1997 and March 1998 to Target Cleanup Levels
4.3	Comparison of Maximum Site Soil Gas Concentrations Detected in March
	1998 to OSHA Permissible Exposure Limits
5.1	Summary of March 1998 Soil Analytical Data
5.2	Summary of Vertical Extent Soil Contamination
5.3	Summary of Groundwater Analytical Data
5.4	Summary of Soil Gas Analytical Data
6.1	Coupled Oxidation Reactions for COPC Compounds
6.2	Historical Comparison of Soil Analytical Data
6.3	Comparison of Historical Groundwater Analytical Data
6.4	Retardation Coefficient Calculation
6.5	Compound-Specific First-Order Decay Coefficients and Half-Lives
6.6	Summary of Groundwater Geochemical Data
6.7	Estimated Assimilative Capacity of Saturated Soil and Groundwater
6.8	Modeling Migration from Subsurface Media to Ambient and Indoor Air
7.1	Comparison of Maximum Soil Detections to Site-Specific Target Levels
	(SSTLs)
7.2	Calculation of Site-Specific Target Levels (SSTLs) - Soil Industrial Land Use -
	Construction Scenario RME Scenario
7.3	Calculation of Site-Specific Target Levels (SSTLs) - Soil Industrial Land Use -
	Construction Scenario CT Scenario
7.4	Comparison of Maximum Groundwater Detection to Site-Specific Target
7.5	Levels
7.5	Calculation of Site-Specific Target Levels (SSTLs) - Groundwater Industrial Land Use - Construction Scenario RME Scenario
76	
7.6	Land Line Construction Segnation CT Segnation

9.1 Long-Term Groundwater Monitoring Analytical Protocol

SECTION 1 INTRODUCTION

Parsons Engineering Science, Inc. (Parsons ES) was retained by the Air Force Center for Environmental Excellence, Technology Transfer Division (AFCEE/ERT) under Air Education and Training Command (AETC) Contract No. F41689-96-D-0710, Order No. 5015 to prepare a corrective action plan (CAP) to support a risk-based remediation decision for contaminated soil and groundwater at the Base Exchange (BX) Service Station at Tyndall Air Force Base (AFB) in Florida.

1.1 DESCRIPTION OF THE RISK-BASED APPROACH

The objective of risk-based remediation is to reduce the risk of specific chemicals to human health and/or ecological receptors such as animals or plant life. For any chemical to pose a risk, four elements must exist at the site:

- A source of chemical contamination that exceeds or could generate chemical contamination above health-protective or aesthetic standards;
- A mechanism of contaminant release;
- A human or ecological receptor available for chemical contact; and
- A completed pathway through which that receptor will contact the chemical.

If any one of these four elements is absent at a site, there is no current risk. The reduction or elimination of risk can be accomplished by limiting or removing any one of these four elements from the site.

The goal of this risk-based remediation approach is to find the most cost-effective method of reducing present and future risk by combining three risk reduction techniques:

- Chemical Source Reduction Achieved by natural attenuation processes over time or by engineered removals such as free product recovery, soil vapor extraction (SVE), or *in situ* bioventing.
- Chemical Migration Control Examples include natural attenuation of a groundwater plume, and SVE to prevent migration of hazardous vapors to a receptor exposure point.
- Receptor Restriction Land use controls and site fencing to eliminate chemical exposure until natural attenuation and/or engineered remediation reduce the chemical source and/or eliminate the potential for chemical migration to an exposure point.

1.2 RISK-BASED APPROACH TASKS

The major tasks of this risk-based project are:

 Assessing available data and collecting any supplemental site characterization data necessary to define the nature, magnitude, and extent of soil and

- groundwater contamination and to document to what degree natural attenuation processes are operating at the selected sites;
- Determining whether an unacceptable risk to human health or the environment currently exists or may exist in the foreseeable future using applicable Florida Department of Environmental Protection (FDEP) guidance and regulations, quantitative contaminant fate and transport models, and exposure concentration estimates;
- Evaluating and recommending a remedial alternative that both reduces the source of contamination and minimizes or eliminates risks to potential receptors; and
- Documenting the remedial action selection process in a report that satisfies FDEP requirements.

1.3 REGULATORY REQUIREMENTS

This section describes Florida's tiered approach for risk-based remedial action at sites contaminated with petroleum products. The *Petroleum Contamination Site Cleanup Criteria* rule [Chapter 62.770 of the Florida Administrative Code (FAC)] (FDEP, 1997) presents guidance for determination of remedial requirements for closure of petroleum-contaminated sites, including several mechanisms for determining matrix-specific cleanup criteria. The regulations allow closure of petroleum release sites under several different scenarios, including:

- No-Further-Action (NFA) Proposal Without Conditions,
- NFA Proposal With Conditions, or
- Monitoring-Only Proposal for Natural Attenuation.

A Remedial Action Plan (RAP) must be prepared for sites that do not meet the requirements for NFA or Natural Attenuation. Closure of a site under the NFA-Without-Conditions alternative would allow unrestricted future use of the site (e.g., residential land use), and therefore the requirements and allowable contaminant levels under this alternative are the most restrictive. The NFA-With-Conditions alternative requires that appropriate institutional or engineering controls be implemented to limit receptor exposure; sites seeking closure under this alternative are subject to potentially less stringent cleanup levels. A Natural Attenuation Monitoring Program is a recognized means of remediating a site, with the goal of achieving the NFA cleanup target levels.

The actual or potential beneficial use of the groundwater and susceptibility of the aquifer to contamination are considered in the risk-based corrective action program to determine site-specific remediation target levels. All groundwater of the State of Florida is classified according to the following uses:

Class F-I: Potable water use: groundwater in a single source aquifer described in Rule 62-520.460, FAC. that has a total dissolved solids (TDS) content of less than 3,000 milligrams per liter (mg/L) and was specifically reclassified as Class F-I by the Commission.

Class G-I: Potable water use: groundwater in a single-source aquifer that has a TDS content of less than 3,000 mg/L.

Class G-II: Potable water use: groundwater in an aquifer that has a TDS content of less than 10,000 mg/L, unless otherwise classified by the Commission.

Class G-III: Non-potable water use: groundwater in an unconfined aquifer that has a TDS content of 10,000 mg/L or greater; or that has a TDS content of 3,000-10,000 mg/L and either has been reclassified by the Commission as having no reasonable potential as a future source of drinking water, or has been designated by the FDEP as an exempted aquifer pursuant to Rule 62-28.130(3), FAC.

Class G-IV: Non-potable water use: groundwater in a confined aquifer that has a TDS content of 10,000 mg/L or greater.

The classification of the groundwater beneath the BX Service Station is unknown.

1.3.1 No Further Action

Closure of a petroleum release site under a NFA Proposal (without or with conditions) requires that a site meet the following criteria:

- No free product is present (as specified in 62-770.680 (1)(a), FAC);
- No fire or explosion hazard is present due to release of petroleum or petroleum products;
- No "excessively contaminated soil" (as defined in 62-770.200, FAC) is present;
- Matrix-specific target cleanup levels are met.

The Petroleum Contamination Site Cleanup Criteria rule (FDEP, 1997) incorporates matrix-specific Target Cleanup Levels for petroleum constituents in the form of "look-up" tables or through reference to other applicable regulations (i.e., state groundwater or surface water regulations). Contaminant concentrations in all affected media at a site must be below all applicable Target Cleanup Levels for the site to qualify for a NFA (with or without conditions) proposal. This comparison also is known as a Tier I assessment.

The rule also allows for the development of alternative cleanup standards based on a site-specific risk assessment for use in a NFA Proposal with conditions (Tier II assessment). These site-specific alternative cleanup standards can be used in place of those presented in the look-up tables.

1.3.2 Natural Attenuation With Monitoring

The FDEP recognizes natural attenuation with monitoring as a viable site remediation strategy. The following criteria must be met to demonstrate that this strategy is appropriate for a site:

- No free product is present (as specified in 62-770.690 (1)(a),FAC);
- Contaminated soil is not present to the extent that it may increase cleanup costs;
- Groundwater contaminant concentrations above applicable target cleanup levels are not migrating beyond a temporary point of compliance (POC);
- Available data show an overall decrease in the mass of contamination; and
- Contaminant concentrations in groundwater do not exceed appropriate criteria (Table IX levels, 62-770, FAC); or the technical evaluations (as specified in 62-770.690 (1)(f), FAC) indicate that natural attenuation is an appropriate remedial alternative.

Natural attenuation with monitoring requires the establishment of a temporary POC based on site-specific conditions relating to land and groundwater use, potentially exposed populations, hydrogeology, and type and concentrations of contaminants. Concentrations of petroleum compounds at the POC cannot exceed levels presented in the rule. Monitoring of natural attenuation to show plume stability and/or contaminant reductions can eventually lead to a proposal for NFA With or Without Conditions.

1.3.3 Summary

In summary, the *Petroleum Contamination Site Cleanup Criteria* rule allows a rapid determination of whether or not a site can qualify for a NFA proposal and/or the appropriateness of natural attenuation with monitoring as a remedial strategy. The rule allows for inclusion of site-specific information in developing alternative cleanup levels for NFA with conditions, and provides guidance on preparation of a RAP if active remediation is warranted.

1.4 REPORT ORGANIZATION

This CAP consists of ten sections, including this introduction, and eight appendices. Site background, including operating history and a review of environmental site investigations conducted to date, is provided in the remainder of this section. Section 2 summarizes the 1998 site characterization activities performed by Parsons ES. Physical characteristics of the BX Service Station and surrounding environs are described in Section 3. A Tier I evaluation is completed in Section 4 to identify those site contaminants that are considered chemicals of potential concern (COPCs). Section 5 summarizes the nature and extent of COPC contamination at the site. Section 6 addresses the effects of natural chemical attenuation processes that are documented to be occurring at the site, and presents quantitative chemical fate and transport. A Tier II evaluation and receptor exposure analyses and conclusions are included in Section 7. A remedial alternatives evaluation is presented in Section 8. Section 9 presents a long-term monitoring plan (LTM). Section 10 presents references used in preparing this CAP.

Pertinent information from prior investigations is presented in Appendix A. Analytical data sheets and chain-of-custody records are in Appendix B. Boring logs, groundwater sampling forms, and well construction diagrams for all sampling activities completed by Parsons ES during the March 1998 field effort are included in Appendix C. Appendix D presents the decay coefficient calculations. The volitization from subsurface

sources model calculations are presented in Appendix E. The BIOSCREEN fate and transport model results used in the predictive chemical fate assessment are in Appendix F. Appendix G includes input and output from the IEUBK lead model. Cost tables from the remedial alternatives are included in Appendix H.

1.5 SITE DESCRIPTION AND BACKGROUND

Tyndall AFB is located in Bay County in the Florida panhandle. The BX Service Station is an active gas station located southwest of the main runway and northeast of Hog Island Sound (Figures 1.1 and 1.2). Features of the site include Building 968, a pump island, a former tank pit located southwest of Building 968, and a currently in-use tank pit located northeast of the pump island (Figure 1.3).

The former tank pit contained underground storage tanks (USTs) installed in 1948 which stored leaded and unleaded gasoline. These tanks were replaced in 1967. In approximately 1983 to 1984, the USTs were closed in place and three 10,000-gallon gasoline USTs were installed east of the pump island. One tank was fitted with a fill line directly over the tank. The other two tanks were fitted with remote fill lines. Later, a new set of remote fill lines was laid parallel to the original set. The original remote fill lines were not removed or plugged. In 1987, vapor probes indicated a release when the USTs were overfilled through the new remote fill lines and fuel leaked out into the surrounding soil through the original remote fill lines. The remote fill lines have been replaced with direct fill lines, and one cubic yard of contaminated soil was removed from the site in May 1994 (BCM Engineers Inc. [BCM], 1995; Lewis, 1998).

BCM conducted a Contamination Assessment (CA) between March 1994 and April 1995 at the BX Service Station. The main objectives of the assessment were to determine if soil and groundwater at the site were contaminated and to define the horizontal and vertical extent of any identified contamination. Soil samples were collected from 22 hand-augered borings for headspace screening with an organic vapor analyzer (OVA). Five of the soil samples were sent to a laboratory for analysis of volatile organic compounds (VOCs), total recoverable petroleum hydrocarbons (TRPH), and Resource Conservation and Recovery Act (RCRA) metals. Eight direct-push groundwater samples were collected at an average depth of 12 feet below ground surface (bgs) for onsite analysis using United States Environmental Protection Agency (USEPA) Methods 601 and 602 to aid in the placement of groundwater monitoring wells. Seven groundwater monitoring wells were installed, and groundwater samples were collected for laboratory analysis of VOCs, semivolatile organic compounds (SVOCs), TRPH, and total lead. Slug tests were conducted at each monitoring well to estimate the hydraulic conductivity of water-bearing zones (BCM, 1995).

BCM conducted a Supplemental CA between March and June 1997. Soil samples were collected from 23 hand-augered borings for OVA headspace screening; nine of the soil samples were sent to a laboratory for analysis of VOCs, TRPH, and RCRA metals. Thirty-three direct-push groundwater samples were collected for onsite analysis to aid in the placement of groundwater monitoring wells, and 11 groundwater monitoring wells were installed. Groundwater samples were collected from the seven previously installed monitoring wells and 11 newly installed monitoring wells for laboratory analysis. Slug tests were conducted at eight of the monitoring wells to estimate the hydraulic conductivity of water-bearing zones (BCM, 1997).

BCM also performed a pump test and several slug tests at the BX Service Station in March 1998 to obtain additional aquifer hydraulic conductivity data. Monitoring well MWD-11-97 was used as the pumping well during the pump test. Slug tests were performed at MW-01, MW-03, MW-02-97, MW-03-97, MW-05-97, MW-06-97, and MW-08-97.

Pertinent data from the CA report, Supplemental CA report, and the 1998 pump/slug test report are included in Appendix A.

SECTION 2 SITE CHARACTERIZATION ACTIVITIES

Since 1995, several soil and groundwater investigations have been conducted at the BX Service Station. These investigations focused on characterizing and delineating dissolved hydrocarbons in groundwater and residual fuel hydrocarbons in soils. Parsons ES conducted an investigation at the site during March 1998 to collect site-specific data relevant to quantifying the effects of natural contaminant attenuation processes and to facilitate development and implementation of a risk-based remedial action for the BX Service Station. Soil gas, soil, and groundwater were sampled to:

- Further delineate the extent of contamination;
- Assess temporal trends in soil and groundwater contaminant concentrations;
- Support contaminant fate and transport analyses; and
- Develop appropriate exposure-point concentrations to compare to final remediation goals.

To the extent practicable, data collected during previous investigations were used to augment this study. Emphasis was placed on collecting data documenting the natural biodegradation and attenuation of fuel hydrocarbons in soils and groundwater at the site.

The March 1998 supplemental site characterization activities performed by Parsons ES at the BX Service Station are briefly described in the remainder of this section. Most site characterization procedures (i.e., soil, soil gas, and groundwater sampling procedures) are described in detail in the project Sampling and Analysis Plan (SAP) (Parsons ES, 1997a).

2.1 SCOPE OF DATA COLLECTION ACTIVITIES

As part of the risk-based remedial approach for the BX Service Station, field data collection efforts focused on investigating specific chemical constituents that potentially pose a threat to human health or the environment. The chemicals targeted for study at this site were identified from previous site investigations and the chemical composition of the primary contaminant source (i.e., release(s) of gasoline from the former USTs). The petroleum hydrocarbon and associated constituents identified and addressed as part of this study include benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary butyl ether (MTBE), polynuclear aromatic hydrocarbons (PAHs); TRPH and lead. These analytes were targeted based on previous site assessment results.

The risk-based investigation for the BX Service Station was conducted according to the methodologies presented in the Work Plan for the Risk-Based Investigation and Closure of the Base Exchange Service Station and Site FT-16 (Parsons ES, 1997b), hereafter referred to as the work plan. The work plan was developed according to available guidelines and requirements of the FDEP to support site closure.

The following sampling and testing activities were performed by Parsons ES during March 1998 at the site as part of this investigation:

- Drilled six soil borings;
- Collected ten subsurface soil samples for fixed-base laboratory analysis from the seven boreholes;
- Installed two permanent and one temporary small-diameter groundwater monitoring wells;
- Collected groundwater samples from seven existing groundwater monitoring wells and the three newly installed wells; and
- Collected three soil gas samples for laboratory analysis from two locations.

Analytical method detection limit (mdl) requirements were considered before site characterization work was initiated under the risk-based remediation investigation. Suitable analytical methods and quality control (QC) procedures were selected (Parsons ES, 1997a) to ensure that the data collected under this program are of sufficient quality to be used in a quantitative risk assessment.

Soil and groundwater samples were analyzed in the field and by Quanterra, Inc. of Arvada, Colorado; Tampa, Florida; and Dallas, Texas. Soil gas samples were analyzed in the field and by Air Toxics, Ltd. of Folsom, California. The laboratory data sheets and chain-of-custody records are presented in Appendix B. The analytical protocol for all samples is summarized in Table 2.1. Table 2.2 summarizes the field and fixed-base laboratory analyses performed by sampling location. These analyses and measurements were performed for various inorganic, geochemical, and physical parameters to document natural biodegradation processes and to assess the potential effectiveness of low-cost source reduction technologies.

2.2 SUBSURFACE SOIL SAMPLING

Soil samples were collected from six soil boreholes (SB-1 through SB-6) to obtain soil total organic carbon (TOC) data and to further characterize soil contamination at the site at locations where previous investigations indicated relatively high soil contaminant concentrations (Appendix A). Soils were sampled to facilitate evaluation of the potential for contaminant partitioning from soil into groundwater and soil gas, and to assess the magnitude of any changes in contaminant concentrations that have occurred over time. The soil boring locations are presented on Figure 2.1. These borings were advanced using a Geoprobe® hydraulic sampling rig as described in the SAP (Parsons ES, 1997a).

Soil samples for laboratory or field analysis were collected at regular intervals from all boreholes, both above and below the groundwater surface. A total of nine soil samples and one duplicate sample from the six boreholes were submitted to Quanterra Inc. for laboratory analysis. Samples from all six boreholes were described for lithology and field screened for volatile organic vapors using an organic vapor meter (OVM). Soil borehole information is summarized in Table 2.3, and borehole logs and completion diagrams for the newly-installed wells are included in Appendix C. Soil analytical results are summarized and discussed in Sections 4 and 5.

2.3 MONITORING WELL INSTALLATION AND DEVELOPMENT

Two permanent monitoring points (MP-1 and MP-2) and one temporary monitoring point (MP-3) were installed during the field effort. The purpose of MP-1 is to better define the lateral extent of groundwater contamination in the vicinity of the current tank pit and the pump island, to assess whether the BTEX plumes depicted east and west of the pump islands by BCM (Appendix A, Figure 19) are connected, and to obtain decay rate information. The purpose of MP-2 is to obtain shallow groundwater quality data where BTEX was detected in well MWD-10-97 (which has a 25-foot-long screen), to better define the lateral extent of the shallow groundwater plume associated with the former tank pit, and to obtain decay rate information. The purpose of MP-3 is to better define the lateral extent of the shallow groundwater plume associated with former tank pit. Table 2.3 summarizes the monitoring well completions, and Figure 2.1 presents the well locations.

MP-1 and MP-2 were constructed of schedule 80 polyvinyl chloride (PVC) screen having an internal diameter (ID) of 0.5 inch. MP-3 was constructed of schedule 40 PVC screen with an ID of 0.75 inch. All well casing and screen sections were flush-threaded; glued joints were not used. The lengths of the screened intervals for the three monitoring wells were 6 feet for MP-1 and MP-2 and 3 feet for MP-3. The field geologist recorded the borehole depth, the lengths of all casing sections, and the depth to the top of all monitoring well completion materials placed in the annulus between the casing and borehole wall.

A prepacked screen was utilized for MP-1 and MP-2. The prepacked screens are in 3-foot sections with an outside diameter (OD) of 1.5 inches and an ID of 0.5 inch. The inner component of the prepacked screen consists of 0.5-inch Schedule 80 PVC with 0.01 inch slots. The outer component of the screen is stainless steel wire mesh with a pore size of 0.011 inch. The screens are prepacked with 20/40 grade silica sand. For MP-3, medium to coarse silica sand was placed around the screened interval. A filter pack seal of hydrated sodium bentonite was placed above the screen. Well completion diagrams are included in Appendix C.

MP-1 and MP-2 were completed as flush mount wells with a 10 ½-inch diameter well vault set in an approximately 2-foot by 2-foot concrete pad. MP-3 was abandoned following sample collection by pulling the PVC pipe and backfilling the borehole with sodium bentonite chips.

Prior to sampling, monitoring wells were developed. Typically, development removes sediment from inside the well casing and flushes fines, cuttings, and drilling fluids from the sand pack and the portion of the formation adjacent to the well screen. Use of the Geoprobe® system to place monitoring wells eliminates cuttings and drilling fluids. As a result, development of monitoring wells was primarily intended to minimize the amount of fine sediment that might accumulate in the casing.

Monitoring well development was accomplished using a peristaltic pump with dedicated silicon and high density polyethylene (HDPE) tubing. The pump tubing was lowered to the bottom of the wells so that fines were agitated and removed from the well in the development water. Development was continued until ten casing volumes of water were removed from the well and the groundwater pH, temperature, conductivity, and

dissolved oxygen (DO) concentrations had stabilized. Development logs are included ion Appendix C.

2.4 GROUNDWATER SAMPLING

Groundwater samples were collected from the three newly installed monitoring points and eight existing monitoring wells at the site in March 1998. The groundwater sampling locations are shown on Figure 2.1. Samples collected from the ten wells were analyzed for fuel-related contaminants and for various inorganic and geochemical indicators to evaluate natural chemical and physical attenuation processes that are occurring at the site. Field and laboratory analytical data collected at each groundwater sampling location are summarized in Table 2.2.

All monitoring wells were purged and sampled using a peristaltic pump with dedicated HDPE and silicon tubing. Purging consisted of removing groundwater from the well until the pH, DO concentration, oxidation-reduction potential (ORP), conductivity, and temperature stabilized.

Within 24 hours of the purge event, groundwater samples were collected from the monitoring wells. The samples were transferred directly from the peristaltic pump discharge tubing into the appropriate sample containers. The water was carefully poured down the inner walls of the sample bottle to minimize aeration of the sample. Sample bottles for BTEX, MTBE, methane, and/or Hach® field analyses were filled so that there was no headspace or air bubbles within the container. One duplicate sample was collected during the groundwater sampling event.

Field and laboratory groundwater analytical results are discussed in Sections 4 and 5 of this report. These analytical results are used in Section 6 to evaluate the natural physical, chemical, and biological processes that are affecting the chemicals of potential concern (COPCs) at this site.

2.5 SOIL GAS MEASUREMENTS

Soil gas sampling was performed at the site using both field (semi-quantitative) and fixed-base laboratory (quantitative) analyses. The purpose of soil gas sampling was to assess the potential risk to future workers at the site from inhalation of volatilized contaminants, and to determine whether or not sufficient oxygen (O_2) is available in the soil gas to sustain aerobic fuel hydrocarbon biodegradation. If O_2 concentrations are significantly lower than background values, and carbon dioxide (CO_2) concentrations are higher than background levels, then the occurrence of aerobic fuel hydrocarbon biodegradation can be inferred. In addition, the O_2 levels allow an assessment of whether there is sufficient O_2 to sustain continuing aerobic biodegradation without engineered addition of oxygen via *in situ* bioventing.

Soil gas samples were collected at two locations (HA-1 and HA-15) from 2 to 3 feet below ground surface (bgs) as shown on Figure 2.1. All soil gas samples were screened using field instruments to measure O₂ and CO₂, collected in SUMMA® canisters, and submitted to Air Toxics, Ltd. in Folsom, California for analysis of total petroleum hydrocarbons (TPH) and BTEX using USEPA Method TO-3. All samples were field

screened using the test equipment and methods specified in the SAP (Parsons ES, 1997a). Analytical results for soil gas samples are summarized in Sections 4 and 5.

2.6 EQUIPMENT DECONTAMINATION PROCEDURES

All downhole soil sampling tools (e.g., stainless steel Geoprobe® pipe) were cleaned prior to collection of each sample with a clean water/phosphate-free detergent mix followed by a clean water rinse. Decontaminated tools also were used for installation of the two monitoring wells and soil gas sampling.

New, disposable HDPE and Teflon® tubing was used to collect the groundwater sample from each well. The only other equipment requiring decontamination was the water level indicator probe. The probe was decontaminated prior to each use with a clean water/phosphate-free detergent mix followed by a distilled water rinse.

2.7 SURVEYING

The newly-installed monitoring points (MP-1 and MP-2) at the BX Service Station were located by a professional surveyor (Sea Level Surveying and Mapping, Inc. of Panama City, Florida). MP-3 was abandoned before the survey was completed. Horizontal coordinates were measured to the nearest 0.1 foot using the incumbent coordinate system, and elevations of the top of the PVC well casing were measured to the nearest 0.01 foot relative to US Geological Survey (USGS) benchmarks. The survey tied into two existing monitoring wells. The locations of soil boreholes were documented via photographs and using a tape measure.

2.8 INVESTIGATION-DERIVED WASTES (IDW)

Soil cuttings, unused soil samples, and decontamination and purge water and were placed into 55-gallon, US Department of Transportation (DOT)-approved drums. All drums were moved to an on-base storage area for later disposal by the base.

2.9 ANALYTICAL DATA QUALITY ASSESSMENT

2.9.1 Introduction

A Parsons ES electronic Level III validation was performed on the March 1998 analytical results obtained from the fixed-base laboratories. The validation included internal data checks and application of data qualifiers to the analytical results based on adherence to method protocols and project-specific control limits. Method protocols reviewed included:

- Analytical holding times,
- Method blanks,
- Trip blanks,
- Surrogate spikes,
- Matrix spikes/matrix spike duplicates (MS/MSDs),
- Laboratory control samples (LCSs), and

• Sample temperatures during shipping and storage.

Data qualifiers were applied to analytical results during the data validation process. All data were validated using method applicable guidelines and in accordance with the National Functional Guidelines for Organic Data Review (USEPA 1994a) and the National Functional Guidelines for Inorganic Data Review (USEPA 1994b). The following definitions provide explanations of the USEPA (1994a and 1994b) qualifiers assigned to analytical results during data validation. The data qualifiers described were applied to both inorganic and organic results.

- U The analyte was not present above the reported sample quantitation limit (SQL).
- J1 The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environmental sample. The data should be considered acceptable as a basis for decision-making and are usable for many purposes.

2.9.2 Data Quality

Data quality for each QC parameter where exceptions were noted during the validation is summarized in this section. Only results that exceeded quality assurance (QA)/QC criteria are presented. All frequency requirements for field sample collection of QA/QC samples (MS/MSDs and blanks) were met. The frequency requirements for laboratory specific method criteria QA/QC also were met.

Samples were collected and analyzed as specified in the methods. All samples are representative of the site and comparable with previous and future investigations (when used in accordance with the validation qualifiers).

All sample results qualified as "U or J1" and used in accordance with data validation qualifiers applied are usable for the purposes intended. Results qualified as such represent an association to non-compliant QC criteria which has caused the reported concentration to be estimated. Project objectives do not exclude the use of estimated concentrations and therefore the usability of that data point for project purposes.

In summary, accuracy and precision were in control. All method specific criteria were in control.

TABLE 2.1 ANALYTICAL PROTOCOL FOR GROUNDWATER, SOIL, AND SOIL GAS SAMPLES

Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

		WHERE
MATRIX	METHOD	ANALYZED
GROUNDWATER		:
Ferrous Iron (Fe ⁺²)	Colorimetric, Hach Method 8146	Field
Alkalinity as Calcium Carbonate (CaCO ₃)	Titrimetric, Hach Method 8221	Field
Ammonia as Nitrogen (NH ₃ -N)	CHEMetrics Method 1510, ASTM 4500: NH ₃	Field
Sulfate (SO ₄ -2)	Colorimetric, Hach Method 8051	Field
Total Sulfide	Colorimetric, Hach Method 8131	Field
Conductivity	Direct reading meter	Field
Oxygen	Direct reading meter	Field
pH	Direct reading meter	Field
Redox Potential	Direct reading meter	Field
Temperature	Direct reading meter	Field
BTEX + MTBE	SW8020A	QUANTERRA [®]
Polynuclear Aromatic Hydrocarbons	SW8310	QUANTERRA
Total Recoverable Petroleum Hydrocarbons	FL-PRO (C8-C40)	QUANTERRA
Methane (CH ₄)	RSK-175	QUANTERRA
Nitrate as Nitrogen (NO ₃ ⁻¹ -N)	E300.0	QUANTERRA
Lead	SW7421	QUANTERRA
SOIL		
BTEX	SW8020A	QUANTERRA
Polynuclear Aromatic Hydrocarbons	SW8310	QUANTERRA
Total Recoverable Petroleum Hydrocarbons	FL-PRO (C8-C40)	QUANTERRA
Total Organic Carbon	SW9060	QUANTERRA
SOIL GAS		
втех	TO-3	Air Toxics ^{b/}
Total Petroleum Hydrocarbons	TO-3	Air Toxics
Oxygen	Direct reading meter	Field
Carbon Dioxide	Direct reading meter	Field

Notes:

a/ Quanterra, Inc. of Arvada, Colorado; Tampa, Florida (TRPH only); and Dallas, Texas (methane only)

b/ Air Toxics LTD. of Folsom, California

SAMPLE ANALYSES BY LOCATION Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

		Sample				Ar	nalyte and A	Analyte and Analysis Method	hod			
Sampling	Sample	Depth	BTEX	PAHs	TRPH	Total Lead	TOC	Methane	Nitrate	ORP	Alkalinity	Conductivity
Location	Matrix	(ft. bgs) "	SW8020	SW8310	FL-PRO	SW7421	SW9060	RSK-175	E300	Field	Field	Field
SB-1	Soil	8 - 9					X					
SB-1	Soil	9.5 - 10					X					
SB-2	Soil	6.5 - 7					×					
SB-3	Soil	2 - 3.5	X	X	X							
SB-3	Soil	4 - 5.5	X	X	X							
SB-4	Soil	4 - 7	X	X	X							
SB-4	Soil	10 - 12	X	X	X							
SB-5	Soil	4.5 - 5	X	X	X							
SB-6	Soil	7.5 - 8	×	×	×							
MW-01	Groundwater	NA	×					X	×	×	×	×
MW-03	Groundwater	NA	×	×	×	×		X	X		×	×
MW-05	Groundwater	NA	×					X	X	×	×	×
MW-07	Groundwater	NA	×					X	X	×	×	×
MW-03-97	Groundwater	NA	×	X	X	X				×	×	×
MW-05-97	Groundwater	NA	X	X	X	X				×	×	×
MW-08-97	Groundwater	NA	X					×	×	×	×	×
MP-1	Groundwater	NA	×					×	×	×	×	×
MP-2	Groundwater	NA	×	X	X	X		×	×	×	×	×
MP-3	Groundwater	NA	X							×	×	×
HA-1	Soil Gas	2										
HA-15	Soil Gas	2										
											•	

a' ft. bgs = feet below ground surface

NA = not applicable

TPH = Total Petroleum Hydrocarbons

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TRPH = Total Recoverable Petroleum Hydrocarbons

PAHs = Polynuclear Aromatic Hydrocarbons D0

TOC = Total Organic Carbon DO = Dissolved Oxygen

ORP = Oxidation Reduction Potential

SAMPLE ANALYSES BY LOCATION Risk-Based Approach to Remediation TABLE 2.2 (Continued) Tyndall AFB, Florida **BX** Service Station

					7	Analyte and Analysis Method	nalysis Metho	P		
Sampling	Sample	Depth	DO	Temperature	Hd	Ferrous Iron	Sulfate	Sulfides	Ammonia	втех/трн
Location	Matrix	(ft. bgs) "/	Field	Field	Field	Field	Field	Field	Field	TO-3
SB-1	Soil	8 - 9								
SB-1	Soil	9.5 - 10				:				
SB-2	Soil	6.5 - 7								
SB-3	Soil	2 - 3.5								
SB-3	Soil	4 - 5.5								
SB-4	Soil	4 - 7								
SB-4	Soil	10 - 12								
SB-5	Soil	4.5 - 5								
SB-6	Soil	7.5 - 8								
MW-01	Groundwater	ΝA	×	×	X	X	×	×	×	
MW-03	Groundwater	AN	×	×	×	X	X	×	×	
MW-05	Groundwater	NA	×	×	×	×	X	X	X	
MW-07	Groundwater	ΑN	×	X	X	×	×	×	×	
MW-03-97	₽	NA	×	X	X	×	×	×	×	
MW-05-97	Groundwater	NA	×	Х	X	X	×	×	×	
MW-08-97	Groundwater	NA	×	X	×	×	×	×	×	
MP-1	Groundwater	NA	×	X	×	X	x	×	×	
MP-2	Groundwater	NA	×	×	X	×	×	×	×	
MP-3	Groundwater	NA	×	X	X	X				
HA-1	Soil Gas	2								×
HA-15	Soil Gas	2								×
^{a/} ft. bgs = fe	^{a/} ft. bgs = feet below ground surface	surface		BTEX = Benza	ene, Toluene,	BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes	and Xylenes		TOC = Total	TOC = Total Organic Carbon

 $^{a/}$ ft. bgs = feet below ground surface

NA = not applicable

TPH = Total Petroleum Hydrocarbons

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TRPH = Total Recoverable Petroleum Hydrocarbons PAHs = Polynuclear Aromatic Hydrocarbons

DO = Dissolved Oxygen

ORP = Oxidation Reduction Potential

SOIL BORING AND MONITORING POINT INSTALLATION SUMAMRY Risk-Based Approach to Remediation Tyndall AFB, Florida **BX** Service Station TABLE 2.3

			Top of Casing	Depth to Top	Depth to Top Depth to Bottom	Casing/	Total
	Groundwater	Installation	Elevation	of Screen	of Screen	Screen ID	Depth
Well ID	Zone	Date	(ft msl)"	(ft bgs) ^{b/}	(ft bgs)	(inches)	(feet)
Soil Borings							
SB-1	NA °	3/18/98	NA	AN	VΝ	NA	11.0
SB-2	NA	3/18/98	NA	NA	VN	NA	7.0
SB-3	NA	3/18/98	NA	NA	NA	NA	8.0
SB-4	NA	3/18/98	NA	NA	VN	NA	12.0
SB-5	NA	3/18/98	NA	NA	NA VA	NA	8.0
SB-6	NA	3/18/98	NA	NA	NA	NA	8.0
Groundwater Monitoring Points							
MP-1	Shallow	3/18/98	29.62	2.5	8.5	0.50	8.5
MP-2	Shallow	3/18/98	29.41	3.2	9.2	0.50	9.2
MP-3 ^{d/}	Shallow	3/22/98	NA	2.8	7.8	0.75	7.8

a/ ft msl = feet above mean sea level

b/ ft bgs = feet below ground surface c/ NA = not applicable

d/ MP-3 was abandoned after sampling

SECTION 3 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section describes the physical characteristics of the BX Service Station and adjacent environs at Tyndall AFB, as determined from data collected during previous site investigations (BCM, 1997 and 1998) and by Parsons ES in March 1998 as part of the risk-based investigation. A summary of site characterization activities completed by Parsons ES to supplement existing data is presented in Section 2 of this CAP.

3.1 PHYSIOGRAPHY

Tyndall AFB is located in the East Gulf Coastal Plain Physiographic Province. This province is characterized by relatively low topographic relief, predominantly sandy soils, and a gradual slope toward the Gulf of Mexico. Physiographic districts within the Gulf Coastal Plain at Tyndall AFB include predominantly Coastal Lowlands. The Coastal Lowlands occur at approximately 25 feet above mean sea level (msl) and include coastal areas, and adjacent flood plains. The Coastal Lowlands are characterized by flat, poorly drained topography near the coast and in the flood plains of major rivers. White sand beaches and sand ridges typically border the coastline while flatlands and swamps extend 10 to 15 miles inland. Landforms in the Coastal Lowland reflect their origin in a near-shore environment.

3.2 REGIONAL GEOLOGY

Bay County is located in the south-central part of the Florida Panhandle. The county is situated on the western flank of the Appalachicola Embayment, the regional geologic structure influencing the subsurface sediments. The embayment is a relatively shallow basin between the Ocala and Chattahoochee uplifts. Bay County is underlain by Cenozoic sediments approaching 3,500 feet in thickness. The county is relatively flat in relief and is mostly covered with Pleistocene to recent age quartz sands.

The county has four physiographic provinces which include: the sand hills in the northern section, the sinks and lakes in the north-central section, the flat-woods forest located below an elevation of 70 feet msl (covers most of Bay County), and the beach dunes and wave-cut bluffs of the Gulf Coast. The beach dune deposits are the youngest sediments in the basin and are the most rapidly changing physiographic feature. The land forms along the coast are composed of barrier islands, coastal ridges, estuaries, lagoons, relief spits and bars, and sand dune ridges. In Bay County, eight terraces have been mapped based on their elevations. These terrace deposits can be up to 100 feet thick near the coast, and become thinner inland.

3.3 REGIONAL HYDROGEOLOGY

The hydrostratigraphic units in Bay County are the Surficial Aquifer System, Intermediate Aquifer System or Confining Unit, and Floridan Aquifer System. All lithostratigraphic units can usually be correlated on the basis of lithology and fossil occurrence.

The Surficial Aquifer System contains the undifferentiated Quaternary sediments and the Citronelle Formation. The typical lithology of the surficial aquifer is primarily fine to

coarse quartz sand, with clay, silt, and gravel, and clayey sand and sandy clay lenses. Limonite-cemented zones, shell beds, and carbonates are also common. The thickness of the surficial aquifer varies from 40 to 100 feet and the elevation of the water table varies from 0 to 30 feet above msl. The water within the Surficial Aquifer System is generally unconfined, however, beds of low permeability may cause semi-confined or locally confined conditions in its deeper parts. Water table elevations and horizontal gradients generally reflect contours of the land surface. Terraces influence groundwater occurrence and movement due to the elevations of terraces relative to adjacent land, in addition to size and the grading of the sands and locations of bodies of water.

The Intermediate Aquifer System or Confining Unit contains the Alum Bluff Group and Intracoastal Formation. The typical lithology of the Intermediate Aquifer System or Confining Unit is clay, sand, sandy clay, argillaceous limestone, shell beds, and occasional carbonate beds or lenses. The thickness of this unit varies from 210 to 230 feet and the elevation of the top of this unit varies from -30 to -70 feet below MSL. The Intermediate Aquifer System or Confining Unit is widespread in Florida and provides an effective aquitard for the Floridan Aquifer System. In places, this unit contains principally poorly-yielding to non-yielding strata, hence the term "Intermediate Confining Unit." In other places, one or more low-to moderate-yielding aquifers may be interlayered with the virtually impermeable confining beds. Even though Bay County contains both hydrogeologic situations, only the confining unit occurs in Southern Bay County. Therefore, there should be negligible leakage between the Surficial Aquifer System and the Floridan Aquifer System at and near Tyndall Air Force Base.

The Floridan Aquifer System contains the Bruce Creek Limestone, St. Marks Formation, Chattahoochee Formation, Suwannee Limestone, Marianna Limestone and Ocala Limestone. The typical lithology of the Floridan Aquifer System is vuggy, fossiliferous, micro-crystalline to granular, argillaceous to sandy, porous limestone and dolomite. The limestone and dolomite may be interbedded with dolomitic sand, silt and clay beds. The Ocala Limestone forms one of the most permeable zones within the Floridan Aquifer System. The extensive development of secondary porosity by dissolution and dolomitization has greatly increased the permeability of the unit. The thickness of the Floridan Aquifer System varies from 900 to 1,000 feet and the elevation of the top of this unit varies from -270 to -320 feet below msl.

When intra-aquifer confining beds are present, the Floridan Aquifer System can be subdivided into an upper and lower aquifer. The Floridan Aquifer System is well confined in southern and central Bay County.

3.4 SITE GEOLOGY AND HYDROGEOLOGY

Site geology is characterized by 2 feet of fill material overlying a fine to medium grained sand. The groundwater depth at the site is approximately 5 feet bgs. Groundwater surface elevations measured in March 1998 are summarized on Table 3.1 and Figure 3.1. Groundwater contour maps from previous investigations are presented in Appendix A. The contours indicate that groundwater flows toward the west and northwest at a hydraulic gradient which ranges from 0.003 to 0.005 foot per foot (ft/ft), with an average hydraulic gradient of 0.004 ft/ft (Figure 3.1). BCM (1998) performed slug tests on multiple wells and a pump test at the site. Slug test data indicate that the hydraulic conductivity of the surficial deposits at the site ranges from approximately

0.0022 to 0.0177 centimeters per second (cm/sec){6 to 50 feet per day (ft/day)} with an average of approximately 0.0099 cm/sec (28 ft/day). Pump test data indicate that the hydraulic conductivity of the surficial deposits at the site ranges from approximately 0.0089 to 0.013 cm/sec (25 to 37 ft/day) with an average of approximately 0.011 cm/sec (32 ft/day). The slug and pump test results are presented in Appendix A. Based on a hydraulic gradient of 0.004 ft/ft, a hydraulic conductivity of 30 ft/day, and an estimated effective porosity of 25 percent for sand (Spitz and Moreno, 1996), the average advective groundwater velocity at the site is 0.48 ft/day (175 ft/year).

3.5 SITE TOPOGRAPHY AND SURFACE WATER HYDROLOGY

The BX Service Station and the surrounding area have relatively flat topography, with ground elevations at the site at approximately 30 feet above the msl. Surface water hydrology around the site is dominated by the stormwater sewer system. Tyndall AFB occupies approximately 28,000 acres on a narrow 16-mile long peninsula bordered by St. Andrew and East Bays to the North, the Gulf of Mexico and St. Andrew Sound to the south, and St. Andrew Bay to the west. Topographic depressions which intersect the water table create shallow fresh-water pools throughout the Base. The closest surface water body to the BX Service Station is Hog Island Sound, which is located approximately 1,500 feet to the southwest.

3.6 CLIMATOLOGICAL CHARACTERISTICS

Tyndall AFB has a humid, semitropical climate. Daily average temperature in the hottest summer months, July and August, may range from a low of 70°F to a high of 88°F, with an average of approximately 82°F. Winters are mild, with occasional frost from November through February. During the coldest months, December and February, the temperature may be as low as 18°F or as high as 74°F, with the average around 50°F. Average annual rainfall is approximately 64 inches and ranges from 3.5 inches in October to almost 9 inches in July.

3.7 WATER-SUPPLY WELL SURVEY

Groundwater use in the Tyndall AFB area is restricted to industrial wells completed in the Floridan Aquifer. Three water supply wells have been identified in the vicinity of the BX Service Station. These wells include Backup Well #1 at Building 250, Backup Well #2 at Building 722, and Backup Well #3 at Building 652. Backup Well #1 is located approximately 3,200 feet east-southeast of the site; Backup Well #2 is located approximately 1,350 feet east of the site; and Backup Well #3 is located approximately 850 feet north of the site. All three wells identified are completed in the Floridan aquifer at a depth of 645 feet bgs with surface casing set at depths ranging from 338 to 360 feet. These wells are used as a backup water supply for community use and have pumping capacities ranging from 350 to 500 gpm. Table 3.2 presents additional information concerning the industrial wells near the BX Service Station, including location, construction details, and capacity.

TABLE 3.1 SUMMARY OF MONITORING WELL GAUGING DATA March 19, 1998

Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

Well Identification	Top of Casing Elevation	Depth of Screened Interval	Depth to Water	Water Table Elevation
	(ft msl) ^{a/}	(ft bgs) b/	(feet btoc) c/	(ft msl)
MW-01	30.85	6.5-16.5	4.97	25.88
MW-03	29.78	6.5-16.5	4.37	25.41
MW-04	30.12	4.5-14.5	4.45	25.67
MW-05	29.38	1-11	4.39	24.99
MW-06	28.44	7-17	3.36	25.08
MW-07	29.00	5.5-15.5	3.94	25.06
MW-08	29.37	5.3-15.3	4.11	25.26
MW-09	30.26	5.5-15.5	4.71	25.55
MWD-01-97	30.14	35.8-45.8	6.22	23.92
MW-02-97	29.66	2-12	3.85	25.81
MW-03-97	29.36	3-13	5.07	24.29
MWD-04-97	29.12	25.6-35.6	4.15	24.97
MW-05-97	28.66	3-13	4.16	24.50
MW-06-97	28.97	3-13	4.12	24.85
MW-07-97	29.55	3-13	4.33	25.22
MW-08-97	29.02	3-13	3.97	25.05
MWD-09-97	29.06	3.2-28.2	4.26	24.80
MWD-10-97	29.24	3.5-28.5	4.64	24.60
MWD-11-97	29.20	2.8-27.8	4.65	24.55
MP-1	29.62	2.5-8.5	4.37	25.25
MP-2	29.41	3.2-9.2	4.65	24.76

a/ ft msl = feet above mean sea level

b/ ft bgs = feet below ground surface

c/ ft btoc = feet below top of casing

TABLE 3.2 SUPPLY WELL INFORMATION Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

Well	Backup Well #1	Backup Well #2	Backup Well #3
	Building 250	Building 722	Building 652
Tyndall AFB Facility No.	250	722	652
NFWMD No.	10	9	8
Use Classification *	C	С	С
Existing/Proposed			
Abandoned/Will Abandon	Existing	Existing	Existing
Casing Diameter (in)	16	32/12**	16
Total Well Depth (ft)	645	645	645
Casing Depth (ft)	345	360	338
Pumping Capacity (GPM)	350	350	500
Pump Type	Turbine	Turbine	Submers.
Pump Horsepower (hp)	40	30	50
Mean Withdrawal/Day (GPD)	Backup	Backup	Backup
Flow Meter	Yes	Yes	Yes
Aquifer (if known)	FL	FL	FL
Section	7	7	1
Township	5 S	5 S	5 S
Range	13 W	13 W	14 W
Longitude	30° 04'	30° 04'	30° 04'
Latitude	85° 35'	85° 35'	85° 34'
Present CUP Number	S850312	S850312	S850312
Present Permitted			
Consumption Capacity	240,000	240,000	240,000
Requested Consumption			
Capacity	504,000	504,000	720,000

^{* =} NTNC-Nontransient, Noncommunity; C-Community; NC-Noncommunity;

OPS-Other Public Supply; IRR/OOU-Irrigation Well/Other Outside Use

UNK = Unknown

N/A = Not Applicable

^{** =} Well 722 is 32" cased for 120', 12" cased for 242'

SECTION 4 TIER 1 ANALYSIS AND IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN

This section presents a screening-level Tier 1 analysis used to select the COPCs that are the focus of this CAP. The COPCs for the site are identified in the Tier 1 analysis based on estimated risks to human health posed by maximum detected contaminant concentrations.

4.1 REGULATORY REVIEW OF THE TIER 1 SCREENING PROCESS

As an initial step in determining the necessity for remedial action, representative concentrations of site contaminants are compared to the NFA-With-Conditions (Direct Exposure II) generic target cleanup levels (TCLs) for soil, which are presented in the *Petroleum Contamination Site Cleanup Criteria* (FDEP, 1997). Contaminant soil concentrations must be below the Direct Exposure II presented in Table IV (based on applicable groundwater criteria specified in 62-770.680 (1)(c), FAC). Concentrations of COPCs in groundwater must be below background concentrations or less than levels presented in Table V. Maximum dissolved site contaminant concentrations also are compared to the Table IX Natural Attenuation Source Default Values. This comparison provides an initial assessment of the potential appropriateness of monitored natural attenuation as a remedial alternative.

The maximum soil contaminant concentrations were not compared to the leachability TCLs presented in Table IV of FDEP (1997). The leachability criteria were established to ensure that leaching of residual contamination adsorbed to soil particles will not result in significant impairment of groundwater quality. At the BX Service Station, the vadose zone is thin (approximately 4 to 5 feet thick), the pavement limits percolation of precipitation through site soils, and groundwater is continually or seasonally in direct contact with contaminated soil, minimizing the significance of downward leaching of contaminants from the vadose zone to the water table. In addition, the impacts of site contamination on groundwater quality have been demonstrated by the results of several years of groundwater monitoring. The gradual desorption of residual fuel contaminants from the soils and dissolution into the groundwater is significant to the extent that the contaminants in soils represent a continuing source of groundwater contamination. The length of time that the soil contamination will continue to cause groundwater contaminant concentrations to exceed Tier 1 TCLs (Table V levels in Chapter 62-770) is addressed in Section 6.

Those analytes with site concentrations that exceed the appropriate TCLs are considered to be COPCs, and are retained for further analysis concerning the risk-reduction requirements for the site. The nature and extent of these COPCs are described more fully in Section 5. Quantitative fate and transport are conducted and presented in Section 6.

4.2 PRELIMINARY CONCEPTUAL SITE MODEL REVIEW

Figure 4.1 presents the preliminary conceptual site model (CSM) developed for the BX Service Station. The model was developed using data collected during previous site

investigations, and is based on a review of potential receptors and feasible exposure scenarios. The purpose of developing a CSM is to guide the evaluation of available site information, including:

- Potential contaminant sources;
- Media affected by contaminant releases;
- Mechanisms of contaminant release (e.g., leaching and volatilization);
- · Potential human and ecological receptors;
- Potential receptor exposure points based on conservative, reasonable land use assumptions; and
- Routes of possible receptor exposure (e.g., inhalation, ingestion, or dermal contact).

The CSM also was developed to provide an outline for addressing all media-specific, current and future exposure scenarios at the BX Service Station. The CSM has been constructed to identify potentially completed receptor exposure pathways. For an exposure pathway to be completed, there must be a contaminant source, a release mechanism, a contaminant migration pathway, an exposure point, a receptor, and an exposure route. If any of these components is missing, the pathway is considered incomplete, and receptors are not at risk from exposure to site contaminants.

The leaking UST fuel supply lines at the current tank pit have been replaced, and the USTs at the former tank pit were emptied and closed in place. Therefore, the initial contaminant sources have been removed. Based on the CSM, air, soil, surface water, and shallow groundwater represent the potentially affected physical media at or downgradient from the BX Service Station (Figure 4.1). On the basis of available site-specific information, current and future land use at the BX Service Station is assumed to be industrial/commercial as opposed to residential. Potential release mechanisms and pathways by which contaminants could migrate to and impact potential receptors, and that will be evaluated during the data analysis process, include the following:

- Volatilization of subsurface contaminants into the soil vapor and the atmosphere and inhalation of the volatilized contaminants by interim workers and aboveground receptors;
- Dermal contact or incidental ingestion of contaminated soil by site workers (e.g., during excavation activities);
- Ingestion of contaminants by ecological receptors (e.g., burrowing animals and their predators);
- Soil contaminants leaching to groundwater and dermal contact or incidental ingestion of contaminated groundwater by site workers (e.g., during excavation activities);

• Migration of dissolved contaminants in the groundwater and ingestion by an aboveground receptor either through a groundwater withdrawal point or groundwater discharging to surface water.

4.3 TIER 1 SCREENING ANALYSIS

It is the intention of the Air Force to obtain FDEP approval for a corrective action for the BX Service Station that will protect potential receptors from unacceptable exposures to site-related chemicals. To accomplish this objective, the COPCs that drive potential risks and impact the final remedial requirements at this site were identified.

FDEP (1997) Tier 1 TCLs are based on 1) analyte-specific toxicity data; 2) an exposure-pathway-specific cancer target risk limit of 10⁻⁶ (i.e., there is an added lifetime cancer risk for people near the site of 1 additional cancer above the normal background level in 1 million people, expressed as 10⁻⁶ or 1 in 1 million) and a noncancer hazard quotient less than or equal to 1; and 3) conservative receptor exposure assumptions.

4.3.1 Tier 1 Screening Analysis for Soil

TCLs for direct exposure of industrial workers (Direct Exposure II) were selected as the appropriate set of Tier 1 screening values for soil at the BX Service Station. The FDEP (1997) guidance provides industrial-scenario TCLs for petroleum constituents in soil that incorporate risks posed by the dermal contact, ingestion, and inhalation exposure pathways. Table 4.1 compares the maximum site concentrations for each compound measured in soil at the BX Service Station during the 1997 supplemental CA investigation (BCM, 1997) and the 1998 risk-based sampling event to the Direct-Exposure II TCLs. The soil contamination "hotspots" detected during the CA (BCM, 1995) were resampled in March 1998; therefore, the March 1998 data are used for the Tier I screening in place of the 1995 data. Based on these comparisons, no chemicals are identified as site COPCs in soil. Benzene was not detected in any sample; however, the method detection limit (mdl) for benzene associated with the 1998 sample SB-5 (4.5 -5 feet bgs), was higher than the Tier I TCL of 1.5 mg/kg by 0.9 mg/Kg. Because benzene was detected in shallow groundwater, it is suspected to be present in soil. Therefore, benzene could not at eliminated as a COPC.

4.3.2 Tier 1 Screening Analysis for Groundwater

The Tier 1 groundwater TCLs presented by the FDEP (1997) and used in this CAP are based on the conservative assumption of unrestricted future use of groundwater (e.g., use as a drinking water source). Comparisons of the TCLs for unrestricted groundwater use to maximum concentrations of compounds detected in groundwater samples collected in May 1997 (BCM, 1997) and March 1998 are presented in Table 4.2. Based on these comparisons, benzene, ethylbenzene, toluene, total xylenes, naphthalene, TRPH, MTBE, and lead are identified as the COPCs in site groundwater. It should be noted that, for all of the analytes, the concentrations exceeding Tier 1 TCLs were delineated within the monitoring well network, and therefore appear to be localized occurrences at the site. Maximum dissolved contaminant concentrations from March 1998 also are compared to Table IX Natural Attenuation Source Default Values in Table 4.2. The BTEX compounds, MTBE, and naphthalene exceeded their default values.

As with the soil screening, several of the non-detected chemicals had mdls that were elevated above the Tier 1 screening level due to sample dilution at the laboratory. These chemicals were benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. The largest difference between a mdl and a Tier I screening level in groundwater was 0.61 μ g/L for dibenzo(a,h)anthracene from MW-03. The low magnitude of these differences indicate that any exceedences of the Tier 1 TCLs for these compounds would be very slight. In addition, all of the analytes are higher molecular weight PAHs which are not typically gasoline constituents. Therefore, they are not likely to be COPCs in site groundwater.

Table 4.2 also shows that groundwater was not sampled for several metals listed in the FDEP (1997) Table V. As shown in Table 4.1, these metals did not exceed soil Tier 1 screening levels, and they are not common gasoline constituents. Therefore, they will not be assessed further.

4.3.3 Tier 1 Screening Analysis for Soil Gas

FDEP (1997) guidance does not provide TCLs for screening soil gas concentrations or for directly screening ambient air quality data. However, FDEP guidance accounts for the potential for volatilization of contaminants from soils into ambient air in the calculation of the Tier 1 Direct Exposure II (Table 4.1) TCLs. No analytes were detected above Tier 1 TCLs in soil, indicating that exposure via volatilization from soil into ambient air will not present appreciable risks. The Tier 1 TCLs do not account for the presence of the concrete/asphalt cover at the site, which would act to further minimize the potential for exposure via the inhalation pathway.

As a secondary means of assessing the potential for exposure via inhalation of volatiles, soil gas samples collected in March 1998 were analyzed for BTEX, and maximum detections of each compound were compared to the chemical-specific Occupational Safety and Health Administration (OSHA) (NIOSH, 1997) 8-hour timeweighted-average Permissible Exposure Limits (PELs) and Time Weighted Average Threshold Limit Values (TWA-TLVs) (ACGIH, 1998). Table 4.3 presents the results of this comparison. Benzene was detected above the OSHA PEL and TWA-TLV. No other compounds were detected at concentrations above the PELs. The comparison of soil gas values to ambient air PELs is highly conservative. PELs are based on 8-hour timeweighted averages, whereas the maximum detected value represents a worse-case scenario at a localized "hotspot." Subsurface soil gas concentrations are not representative of potential ambient air exposure concentrations because they do not account for the presence of the asphalt/concrete cover, or the dilution which would occur as volatiles moved through the soil column and into ambient air. Neither are subsurface soil gas concentrations representative of an exposure concentration for onsite intrusive workers engaged in excavation activities because they do not account for the volatilization that could occur during excavation of soils or for the dilution of soil gas concentrations in ambient air. These exposure scenarios are discussed further in Section 6.

4.3.4 Summary of BX Service Station COPCs

Based on comparisons of the maximum detected site chemical concentrations to the Tier 1 TCLs for groundwater, benzene, ethylbenzene, toluene, total xylenes, naphthalene, lead, MTBE, and TRPH are identified as the groundwater COPCs. Benzene was

identified as a soil gas COPC. Benzene in soil was not present in detectable concentrations; however, its mdl exceeded the Tier 1 TCLs in at least one instance. Therefore, benzene in soil cannot be eliminated from further consideration as a COPC, and it will also be discussed further in Section 7.

TABLE 4.1

COMPARISON OF MAXIMUM SITE SOIL CONCENTRATIONS DETECTED IN MARCH 1997 AND MARCH 1998 TO TARGET CLEANUP LEVELS

Risk-Based Approach to Remediation

BX Service Station Tyndall AFB, Florida

		Maximum	Location of	Sample	Direct
	•	Concentration	Maximum	Collection	Exposure a/
Chemical Name	Units	Detected	Detection	Date	II
Acenaphthene	mg/kg ^{b/}	0.41	BX-HA-15	Mar-97	22,000
Acenaphthylene	mg/kg	2.3U ^{c/}	NA d/	NA	11,000
Anthracene	mg/kg	0.092	SB-4	Mar-98	290,000
Benzo(a)anthracene	mg/kg	0.15	SB-4	Mar-98	5.1
Benzo(a)pyrene	mg/kg	0.13	SB-4	Mar-98	0.5
Benzo(b)fluoranthene	mg/kg	0.17	SB-4	Mar-98	5
Benzo (g,h,i)perylene	mg/kg	0.092	SB-6	Mar-98	45,000
Benzo(k)fluoranthene	mg/kg	0.064	SB-6	Mar-98	52
Chrysene	mg/kg	0.12	SB-6	Mar-98	490
Dibenzo(a,h)anthracene	mg/kg	0.23U	NA	Mar-98	0.5
Fluoranthene	mg/kg	0.14	SB-6	Mar-98	45,000
Fluorene	mg/kg	0.024	SB-4	Mar-98	24,000
Indeno(1,2,3-cd)pyrene	mg/kg	0.34	SB-4	Mar-98	5.2
Naphthalene	mg/kg	46	SB-4	Mar-98	8,600
Phenanthrene	mg/kg	0.38	SB-3	Mar-98	29,000
Pyrene	mg/kg	0.15	SB-6	Mar-98	40,000
Benzene	mg/kg	24U(2.4) ^{e/}	NA	Mar-98	1.50
Ethylbenzene	mg/kg	30	BX-HA-15	Mar-97	240
Toluene	mg/kg	8.4	SB-4	Mar-98	2,000
Xylenes	mg/kg	290	SB-5	Mar-98	290
1,2-DCA	mg/kg	1.4U(0.0014)	NA	Mar-97	0.9
MTBE f/	mg/kg	24 U	NA	Mar-98	6,100
TRPH g/	mg/kg	1,700	SB-5	Mar-98	2,500
Arsenic	mg/kg	5U(1.8)	NA	Mar-97	3.7
Barium	mg/kg	9	BX-HA-14	Mar-97	87,000
Cadmium	mg/kg	0.5U	NA	Mar-97	1,300
Chromium	mg/kg	163	BX-HA-19	Mar-97	430
Lead	mg/kg	23	BX-HA-16	Mar-97	1,000
Mercury	mg/kg	0.02U	NA	Mar-97	28
Selenium	mg/kg	10U	NA	Mar-97	10,000
Silver	mg/kg	1U	NA	Mar-97	9,100

Notes: No maximum site concentration is above a target cleanup level

^{a/} Direct Exposure II is for No Further Action With Conditions (industrial worker scenario)

^{b/} mg/kg = milligrams per kilogram

 $^{^{}c/}$ U = not detected above corresponding reporting limit

 $^{^{}d/}$ NA = not applicable

When sample reporting limit is above Direct Exposure II target cleanup level and chemical is not detected (U), then the method detection limit (mdl) is given in parentheses; the analyte concentration is below the mdl

e/ MTBE = methyl tert-butyl ether

f/ TRPH = total recoverable petroleum hydrocarbons

TABLE 4.2

COMPARISON OF MAXIMUM SITE GROUNDWATER CONCENTRATIONS DETECTED IN MARCH 1997 AND MARCH 1998 TO TARGET CLEANUP LEVELS

Risk-Based Approach to Remediation

BX Service Station

Tyndall AFB, Florida

		Maximum Concentration	Sample Location of	Date of	Table V Target Cleanup	Table IX Natural Attenuation
Chamical Name	TT-side	Detected	Maximum	Sample	Level a/	Source Default b/
Chemical Name	Units C/		Detection	3.6 00		
Benzene	μg/L °/	3,400	MP-2	Mar-98	1	100
Ethylbenzene	μ g/L	3,100	MW-03	May-97	30	300
Toluene	μg/L	5,000	MW-03	May-97	40	400
Xylenes	μ g/ L	16,000	MW-03	May-97	20	200
MTBE d/	$\mu g/L$	1,300	MW-03	May-97	35	350
Acenaphthene	μ g/ L	11U	NA ^{g/}	Mar-98	20	200
Acenaphthylene	μ g/ L	11U	NA	Mar-98	210	2,100
Anthracene	μ g/ L	11.1U	NA	Mar-98	2,100	21,000
Benzo(a)anthracene	μ g/ L	1.4U (0.64) ^{f/}	NA	Mar-98	0.2	20
Benzo(a)pyrene	μg/L	2.4U (0.69)	NA	Mar-98	0.2	20
Benzo(b)fluoranthene	μ g/L	1.9U (0.63)	NA	Mar-98	0.2	20
Benzo (g,h,i)perylene	μ g/L	2.1U	NA	Mar-98	210	2,100
Benzo(k)fluoranthene	μ g/ L	1.8 U (0.63)	NA	Mar-98	0.5	50
Chrysene	μ g/ L	2.1 U	NA	Mar-98	5	500
Dibenzo(a,h)anthracene	μ g/ L	3.2 U (0.81)	NA	Mar-98	0.2	20
Fluoranthene	μ g/ L	2.1 U	NA	Mar-98	280	2,800
Fluorene	μ g/ L	2.1 U	NA	Mar-98	280	2,800
Indeno(1,2,3-cd)pyrene	μ g/ L	4.6 U (0.59)	NA	Mar-98	0.2	20
Naphthalene	μ g/ L	320	MP-2	Mar-98	20	200
Phenanthrene	μ g/ L	2.1 U	NA	Mar-98	210	2,100
Pyrene	μ g/ L	2.1 U	NA	Mar-98	210	2,100
1,2-dichloroethane	$\mu g/L$	100U (0.26)	NA	May-97	3	300
EDB h/	μ g/ L	0.02 U	NA	May-97	0.02	2
Arsenic	μg/L	NR i/	NA	NA	50	500
Barium	μ g /L	NR	NA	NA	2,000	20,000
Cadmium	μ g /L	NR	NA	NA	5	50
Chromium	μg/L	NR	NA	NA	100	1,000
Lead	$\mu g/L$	62	MW-05	May-97	15	150
Mercury	μg/L	NR	NA	NA	2	20
Selenium	μg/L	NR	NA	NA	50	500
Silver	μg/L	NR	NA	NA	100	1,000
TRPH j/	mg/L	41	MW-03	Mar-98	5	50
Chloride	mg/L	NR	NA	NA	250	2,500
Sulfate	mg/L	38	MW-08-97	Mar-98	250	2,500
TDS k/	mg/L	NR	NA	NA	500	5,000

Note: Shading indicates maximum site concentration is above target cleanup level

or Without Conditions

^g/ NA = not applicable

by natural attenuation with monitoring

^{i/} NR = no results available; sample may not have been analyzed for this parameter

Cleanup level for No Further Action With

^{b/} EDB = ethylene dibromide, 1,2-dibromoethane

Allowable maximum concentration for remediation

 $^{^{}j'}$ TRPH = total recoverable petroleum hydrocarbons

 $^{^{\}omega}$ µg/L = micrograms per liter

d MTBE = methyl tert-butyl ether

^{k/} TDS = total dissolved solids

 $^{^{}o'}$ U = The analyte was analyzed for but was not present above the reporting limit.

When reporting limit is above target clean-up level and chemical is not detected (U), then the method detection limit (mdl) is given in parentheses; the analyte concentration is below the mdl

DETECTED IN MARCH 1998 TO OSHA PERMISSIBLE EXPOSURE LIMITS COMPARISON OF MAXIMUM SITE SOIL GAS CONCENTRATIONS Risk-Based Approach to Remediation TABLE 4.3

BX Service Station Tyndall AFB, Florida

	Maximum Detected	OSHA PEL	TWA-TLV	Maximum Concentration
Chemical	Concentration (ppmv ^{a/})	(ppmv) ^{b/}	(ppmv) ^{c/}	Above PEL or TLV?
Benzene	24		0.5	Yes
Toluene	40	200	100	N _o
Ethylbenzene	46	100	50	No
Xylenes	12	100	100	No
TPH ^{d/}	10,000	e/	· c/	

^{a/} ppmv = parts per million, volume per volume.

^{b/} OSHA PEL = Occupational Safety and Health Administration (NIOSH, 1997) 8-hour time-weighted average permissible exposure limit.

^{°/} TWA-TLV = Time Weighted Average Threshold Limit Value recommended by the American Conference of Governmental Industrial Hygienists (ACGIH, 1998).

^d TPH = Total petroleum hydrocarbons.

 $^{^{}e'}$ "--" = No PEL or TLV available.

SECTION 5 ANALYTICAL DATA SUMMARY AND MAGNITUDE AND EXTENT OF CHEMICALS OF POTENTIAL CONCERN

5.1 OVERVIEW

This section presents analytical results from the March 1998 field sampling event in tabular form, and summarizes the magnitude and extent of COPC contamination in sampled media at the BX Service Station. Discussion in this section is primarily limited to those chemicals that were identified as COPCs based on the Tier 1 screening analysis presented in Section 4.

5.2 SOIL SAMPLING RESULTS

Soil sampling was performed as part of the recent risk-based investigation; analytical results are summarized in Table 5.1. Soil borings were advanced in "hotspots" of fuel contamination (based on previous BCM investigations) to determine worst case hydrocarbon concentrations in soil (Figure 2.1). The BCM locations that were resampled were HA-1, HA-9, and HA-4 (Appendix A, Figure 12). Maximum detected concentrations of individual fuel hydrocarbon-related compounds were compared to RBSLs (Table 4.1). Available soil analytical data indicate that there are no exceedences of RBSLs, except for the elevated benzene mdl as discussed in Section 4.

Two soil samples were collected beneath the water table to assess the vertical extent of contamination. The samples were collected in the areas of greatest soil contamination at the former and current UST pit based on previous investigation results. As shown on Table 5.2, hydrocarbon concentrations decreased significantly with depth.

5.3 GROUNDWATER SAMPLING RESULTS

Groundwater sampling was performed as part of the recent risk-based investigation; analytical results are summarized in Table 5.3. Sampled monitoring wells were selected based on the results of previous investigations. The sampling strategy was to determine the areal extent and magnitude of fuel hydrocarbon and total lead concentrations in groundwater. As shown in Table 4.2, benzene, ethylbenzene, toluene, total xylenes, naphthalene, MTBE, lead, and TRPH for groundwater exceeded Tier 1 RBSLs and are, therefore, the groundwater COPCs.

During the March 1998 field effort, the maximum concentrations of six of the groundwater COPCs were detected at MP-2. The six COPCs and their maximum concentrations were benzene (3,400 micrograms per liter [μ g/L]), toluene (4,800 μ g/L), ethylbenzene (1,400 μ g/L), total xylenes (7,200 μ g/L), naphthalene (320 μ g/L), and lead (9.8 μ g/L). The maximum TRPH concentration was detected at MW-03 (41,000 μ g/L). MTBE was not detected in 1998. The March 1998 distribution of six of the dissolved COPCs detected in 1998 is presented on Figure 5.1. As shown on this figure, the dissolved contaminant plume appears to be contained within the existing monitoring well/point network. The distributions of lead and MTBE in groundwater are not shown on Figure 5.1 because concentrations exceeding the TCLs were not detected in March 1998.

5.4 SOIL GAS SAMPLING RESULTS

Soil gas samples were collected at the site to facilitate assessment of the potential risk to future site workers from inhalation of volatile organic chemicals (VOCs), and to determine whether or not sufficient O₂ is available in the soil gas to sustain aerobic fuel hydrocarbon biodegradation. Two soil gas samples were collected and analyzed in the field for concentrations of O₂ and CO₂. Both samples also were submitted to Air Toxics, Ltd. of Folsom, California for analysis of BTEX and TPH (referenced to gasoline). Field and laboratory analytical results for the 1998 soil gas samples are summarized in Table 5.4. Comparison of maximum soil gas BTEX concentrations to OSHA 8-hour time-weighted average PELs (Table 4.3) indicated that benzene was a soil gas COPC. The maximum benzene concentration of 24 parts per million, volume per volume (ppmv) was detected in the proximity of the former UST pit at HA-15 (Figure 2.1). Benzene was not detected in the other sample collected (HA-1) at the BX Service Station.

The field screening data indicate that the soil gas O₂ level at both HA-1 and HA-15, which are in an areas of fuel-contaminated groundwater and soil, has been reduced due to microbial respiration during aerobic biodegradation of the fuel compounds. The oxygen content of ambient air is 20.8 percent. The concentration of CO₂, which is a metabolic byproduct of biodegradation reactions, is correspondingly elevated. The CO₂ content of ambient air is 0.05 percent.

TABLE 5.1 SUMMARY OF MARCH 1998 SOIL ANALYTICAL DATA

Risk-Based Approach to Remediation BX Service Station

Tyndall AFB, Florida

			Sample Loca	itions, Interva	ls, and Dates	
Analyte	Units	SB-1 (6 - 8) 18-Mar-98	SB-1 (9.5 - 10) 18-Mar-98	SB-2 (6.5 - 7) 18-Mar-98	SB-3 (2 - 3.5) 18-Mar-98	SB-3 (4 - 5.5) 18-Mar-98
	-1	L/				
Benzene	mg/kg*	NA ^{b/}	NA	NA	0.0060 U°∕	1.2 U
Ethylbenzene	mg/kg	NA	NA	NA	0.0024 U	0.48 U
Toluene	mg/kg	NA	NA	NA	0.0060 U	1.2 U
Xylenes (total)	mg/kg	NA	NA	NA	0.0060 U	1.2 U
Total BTEX ^{d/}	mg/kg	NA	NA	NA	0.0204 U	4.08 U
Methyl-tert-butyl ether	mg/kg	NA	NA	NA	0.0060 U	1.2 U
TRPH (C8-C40) ^{e/}	mg/kg	NA	NA	NA	110	400
Acenaphthene	mg/kg	NA	NA	NA	0.24 U	0.24 U
Acenaphthylene	mg/kg	NA	NA	NA	0.24 U	0.24 U
Anthracene	mg/kg	NA	NA	NA	0.11	0.024 U
Benzo(a)anthracene	mg/kg	NA	NA	NA	0.024 U	0.024 U
Benzo(a)pyrene	mg/kg	NA	NA	NA	0.010 J1 ^{f/}	0.018 U
Benzo(b)fluoranthene	mg/kg	NA	NA	NA	0.014 U	0.014 U
Benzo(g,h,i)perylene	mg/kg	NA	NA	NA	0.06 U	0.059 U
Benzo(k)fluoranthene	mg/kg	NA	NA	NA	0.013 U	0.013 U
Chrysene	mg/kg	NA	NA	NA	0.087	0.048 U
Dibenz(a,h)anthracene	mg/kg	NA	NA	NA	0.024 U	0.024 U
Fluoranthene	mg/kg	NA	NA	NA	0.048 U	0.048 U
Fluorene	mg/kg	NA	NA	NA	0.048 U	0.048 U
Indeno(1,2,3-cd)pyrene	mg/kg	NA	NA	NA	0.036 U	0.036 U
Naphthalene	mg/kg	NA	NA	NA	0.24 U	0.24 U
Phenanthrene	mg/kg	NA	NA	NA	0.38	0.048 U
Pyrene	mg/kg	NA	NA	NA	0.048 U	0.048 U
Total Organic Carbon	mg/kg	2000 U	2000 U	2000 U	NA	NA

a/ mg/kg = milligrams per kilogram

b/ NA = not analyzed

c/ U = The analyte was analyzed for and was not present above the associated reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ TRPH = total recoverable petroleum hydrocarbons

f/ J1 = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit

SB-4 duplicate (4-7) named SB-B (4-7) on chain-of-custody record

TABLE 5.1 (Continued) SUMMARY OF MARCH 1998 SOIL ANALYTICAL DATA

Risk-Based Approach to Remediation

BX Service Station

Tyndall AFB, Florida

			Sample Loca	tions, Interva	ls, and Dates	
Analyte	Units	SB-4 (4 - 7) 18-Mar-98	SB-4 (4 - 7) 18-Mar-98 Duplicate	SB-4 (10 - 12) 18-Mar-98	SB-5 (4.5 - 5) 18-Mar-98	SB-6 (7.5 - 8) 18-Mar-98
Benzene	mg/Kg ^{a/}	12 U	12 U	0.72 U	24 U	1.2 U
Ethylbenzene Ethylbenzene	mg/Kg	6.0	13	1.5	9.6 U	2.2
Toluene	mg/Kg	5.6 J1	8.4 J1	0.72 U	6.3 J1	1.2 U
Xylenes (total)	mg/Kg	260	220	0.27 J1	290	1.2 U
		271.6	241.4	1.77	296.3	2.2
Total BTEX	mg/Kg	2/1.0	241.4	1.//	270.0	
Methyl-tert-butyl ether	mg/Kg	12 U	12 U	0.72 U	24 U	1.2 U
TRPH (C8-C40)	mg/Kg	900	470	17 J1	1700	390
1RPH (C6-C40)	mg/Kg	700	1,70			
Acenaphthene	mg/Kg	2.3 U	2.3 U	0.29 U	1.2 U	0.24 U
Acenaphthylene	mg/Kg	2.3 U	2.3 U	0.29 U	1.2 U	0.24 U
Anthracene	mg/Kg	0.046 J1	0.092 J1	0.0047 J1	0.027 J1	0.018 J1
Benzo(a)anthracene	mg/Kg	0.23 U	0.23 U	0.15	0.12 U	0.085
Benzo(a)pyrene	mg/Kg	0.18 U	0.17 U	0.13	0.09 U	0.13
Benzo(b)fluoranthene	mg/Kg	0.14 U	0.14 U	0.14	0.072 U	0.17
Benzo(g,h,i)perylene	mg/Kg	0.59 U	0.58 U	0.049 J1	0.3 U	0.092
Benzo(k)fluoranthene	mg/Kg	0.13 U	0.13 U	0.076	0.066 U	0.064
Chrysene	mg/Kg	0.47 U	0.46 U	0.058 U	0.24 U	0.12
Dibenz(a,h)anthracene	mg/Kg	0.23 U	0.23 U	0.029 U	0.12 U	0.024 U
Fluoranthene	mg/Kg	0.47 U	0.46 U	0.052 J1	0.24 U	0.14
Fluorene	mg/Kg	0.47 U	0.46 U	0.024 J1	0.24 U	0.048 U
Indeno(1,2,3-cd)pyrene	mg/Kg	0.35 U	0.35 U	0.034 J1	0.18 U	0.036 U
Naphthalene	mg/Kg	32	46	0.28 J1	18	1.1
Phenanthrene	mg/Kg	0.47 U	0.46 U	0.019 J1	0.24 U	0.085
Pyrene	mg/Kg	0.47 U	0.46 U	0.09	0.24 U	0.15
		774	DTA.	NA	NA	NA
Total Organic Carbon	mg/Kg	NA	NA	INA	INA	INA

a/ mg/kg = milligrams per kilogram

b/ NA = not analyzed

c/U = The analyte was analyzed for and was not present above the associated reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ TRPH = total recoverable petroleum hydrocarbons

f/ J1 = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit SB-4 duplicate (4-7) named SB-B (4-7) on chain-of-custody record

TABLE 5.2 SUMMARY OF VERTICAL EXTENT OF SOIL CONTAMINATION

Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

		Samp	le Locations,	Intervals, and	Dates
Analyte	Units	SB-4 (4 - 7) 18-Mar-98	SB-4 (10 - 12) 18-Mar-98	HA-15 (2.5-4.5) 20-Mar-97	SB-6 (7.5 - 8) 18-Mar-98
	. 9/	h/		4 4 7 7	1011
Benzene	mg/kg ^{a/}	12 U ^{b/}	0.72 U	1.4 U	1.2 U
Ethylbenzene	mg/kg	13	1.5	30	2.2
Toluene	mg/kg	8.4 J1	0.72 U	3.2	1.2 U
Xylenes (total)	mg/kg	260	0.27 J1 ^{c/}	127	1.2 U
Total BTEX ^{d/}	mg/kg	281.4	1.77	160.2	2.2
TRPH ^{e/}	mg/kg	900	17 J1	1000	390
Acenaphthene	mg/kg	2.3 U	0.29 U	0.41	0.24 U
Anthracene	mg/kg	0.092 J1	0.0047 J1	0.370 U	0.018 J1
Naphthalene	mg/kg	46	0.28 J1	39	1.1
-					

a/ mg/kg = Milligrams per kilogram

b/U = The analyte was analyzed for and is not present above the associated reporting limit

c/ J1 = The analyte was positively identified between the method detection limit and the reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ TRPH = total recoverable petroleum hydrocarbons

HA-15 was advanced by BCM and is at the same location as SB-6

TABLE 5.3 SUMMARY OF GROUNDWATER ANALYTICAL DATA

Risk-Based Approach to Remediation

BX Service Station Tyndall AFB, Florida

			S	ample Locat	ions and Dat	es	
Analyte	Units	MP-1 22-Mar-98	MP-2 22-Mar-98	MP-2 22-Mar-98 Duplicate	MP-3 22-Mar-98	MW-01 22-Mar-98	MW-03 22-Mar-98
					1,		
Benzene	$\mu g/L^{a/}$	32 J1	3,400	3,100	2.0 U ^{b/}	2.0 U	67 J1
Ethylbenzene	μg/L	710	1,400	1,300	0.069 J1 ^{c/}	2.0 U	610
Toluene	μg/L	1,400	4,800	4,500	2.0 U	2.0 U	1,700
Xylenes (total)	μg/L	6,700	7,200	6,800	0.42 J1	2.0 U	6,900
Total BTEX ^{d/}	μg/L	8,842	16,800	15,700	0.489	8.0 U	9,277
Methyl-tert-butyl ether	μg/L	250 U	1000 U	1000 U	5.0 U	5.0 U	250 U
TRPH (C8-C40) ^{e/}	μg/L	NA ^{f/}	19,000	20,000	NA	NA	41,000
Total Lead	mg/L	NA	0.0078	0.0098	NA	NA	0.0030 J1
Acenaphthene	μg/L	NA	10 U	10 U	NA	NA	11 U
Acenaphthylene	μg/L	NA	10 U	10 U	NA	NA	11 U
Anthracene	μg/L	NA	1.0 U	1.0 U	NA	NA	1.1 U
Benzo(a)anthracene	μg/L	NA	1.4 U	1.3 U	NA	NA	1.4 U
Benzo(a)pyrene	μg/L	NA	2.4 U	2.3 U	NA	NA	2.4 U
Benzo(b)fluoranthene	μg/L	NA	1.9 U	1.8 U	NA	NA	1.9 U
Benzo(g,h,i)perylene	μg/L	NA	2.1 U	2.0 U	NA	NA	2.1 U
Benzo(k)fluoranthene	μg/L	NA	1.8 U	1.7 U	NA	NA	1.8 U
Chrysene	μg/L	NA	2.1 U	2.0 U	NA	NA	2.1 U
Dibenz(a,h)anthracene	μg/L	NA	3.1 U	3.0 U	NA	NA	3.2 U
Fluoranthene	μg/L	NA	2.1 U	2.0 U	NA	NA	2.1 U
Fluorene	μg/L	NA	2.1 U	2.0 U	NA	NA	2.1 U
Indeno(1,2,3-cd)pyrene	μg/L	NA	4.5 U	4.4 U	NA	NA	4.6 U
Naphthalene	μg/L	NA	320	250	NA	NA	300
Phenanthrene	μg/L	NA NA	2.1 U	2.0 U	NA	NA	2.1 U
Pyrene	μg/L	NA	2.1 U	2.0 U	NA	NA	2.1 U

a/ μ g/L = micrograms per liter

b/U = The analyte was analyzed for and was not present above the associated reporting limit

c/ J1 = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ TRPH = total recoverable petroleum hydrocarbons

f/ NA = Not analyzed

MP-2 duplicate named BX-MW-20 on chain-of-custody record

TABLE 5.3 (Continued) SUMMARY OF GROUNDWATER ANALYTICAL DATA

Risk-Based Approach to Remediation

BX Service Station Tyndall AFB, Florida

			Sample	Locations an	d Dates	
Analyte	Units	MW-05 22-Mar-98	MW-07 22-Mar-98	MW-03-97 22-Mar-98	MW-05-97 22-Mar-98	MW-08-97 22-Mar-98
Benzene	μg/L	360	11 J1	2.0 U	2.0 U	2.0 U
Ethylbenzene	μg/L	890	76	2.0 U	2.0 U	2.0 U
Toluene	μg/L	4.3 J1	38 J1	2.0 U	2.0 U	2.0 U
Xylenes (total)	μg/L	54 J1	620	2.0 U	2.0 U	2.0 U
Total BTEX	μg/L	1,308	745	8.0 U	8.0 U	8.0 U
Methyl-tert-butyl ether	μg/L	250 U	120 U	5.0 U	5.0 U	5.0 U
	· · · · · · · · · · · · · · · · · · ·		NA NA	500 U	500 U	NA
TRPH (C8-C40)	μg/L	NA NA	NA NA	0.005 U	0.005 U	NA NA
Total Lead	mg/L	NA NA	NA	0.003 0	0.003 0	IVA.
Acenaphthene	μg/L	NA	NA	1.0 U	1.0 U	NA
Acenaphthylene	μg/L	NA	NA	1.0 U	1.0 U	NA
Anthracene	μg/L	NA	NA	0.1 U	0.1 U	NA
Benzo(a)anthracene	μg/L	NA	NA	0.13 U	0.14 U	NA
Benzo(a)pyrene	μg/L	NA	NA	0.24 U	0.24 U	NA
Benzo(b)fluoranthene	μg/L	NA	NA	0.18 U	0.19 U	NA
Benzo(g,h,i)perylene	μg/L	NA	NA	0.21 U	0.21 U	NA
Benzo(k)fluoranthene	μg/L	NA	NA	0.17 U	0.18 U	NA
Chrysene	μg/L	NA	NA	0.21 U	0.21 U	NA
Dibenz(a,h)anthracene	μg/L	NA	NA	0.31 U	0.31 U	NA
Fluoranthene	μg/L	NA	NA	0.21 U	0.21 U	NA
Fluorene	μg/L	NA	NA	0.21 U	0.21 U	NA
Indeno(1,2,3-cd)pyrene	μg/L	NA	NA	0.44 U	0.45 U	NA
Naphthalene	μg/L	NA	NA	1.0 U	1.0 U	NA
Phenanthrene	μg/L	NA	NA	0.21 U	0.21 U	NA
Pyrene	μg/L	NA	NA	0.21 U	0.21 U	NA

a/ μ g/L = micrograms per liter

b/ U = The analyte was analyzed for and was not present above the associated reporting limit

c/ J1 = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ TRPH = total recoverable petroleum hydrocarbons

f/ NA = Not analyzed

MP-2 duplicate named BX-MW-20 on chain-of-custody record

TABLE 5.4
SUMMARY OF SOIL GAS ANALYTICAL DATA
Risk-Based Approach to Remediation
BX Service Station
Tyndall AFB, Florida

			Sai	mple Loca	Sample Locations, Dates, and Units	s, and Uni	its		
	, ,	HA-1 21-Mar-98		, ,	HA-15 21-Mar-98		•	HA-A" 21-Mar-98	
Analyte	vmqq	µg/L	percent	bpmv	µg/L	percent	nmdd	µg/L	percent
Benzene	<0.0020	<0.0065	NA	24	78	NA	23	74	NA
Toluene	0.0036	0.014	NA	40	150	NA	35	130	NA
Ethylbenzene	<0.0020	<0.0088	NA	46	200	NA	38	160	NA
Xylenes (total)	0.0068	0.030	NA	12	100	NA	22	98	NA
Total BTEX	0.0104	0.044	NA	122	528	NA	118	462	NA
TPH (C5+ Hydrocarbons)	0.49	2.0	NA	10,000	44,000	NA	10,000	41,000	NA
C2 - C4 Hydrocarbons	<0.020	<0.036	NA	<10	<18	NA	6.6>	<18	NA
Oxygen	NA	NA	14.8	NA	NA	6.0	NA	NA	VN
Carbon Dioxide	NA	NA	3.2	NA	NA	6.4	NA	NA	NA
									i

a/= BX-HA-A is a duplicate of BX-HA-15 ppmv = parts per million, volume per volume μg/L = micrograms per liter Analysis methods is TO-3 (Aromatic Volatiles in Air) Analysis performed by Air Toxics Ltd. of Folsom, California BTEX = benzene, toluene, ethylbenzene, and total xylenes TPH = total petroleum hydrocarbons referenced to gasoline

SECTION 6 CHEMICAL FATE ASSESSMENT

6.1 INTRODUCTION

Biodegradation of dissolved fuel constituents and the future migration and persistence of the dissolved COPCs are assessed in this section to support selection of an appropriate remedial alternative at the BX Service Station. As used throughout this report, the term "remediation by natural attenuation" (RNA) refers to a subsurface contaminant management strategy that relies on natural physical, chemical, and biological mechanisms to control exposure of potential receptors to concentrations of contaminants in soil, soil gas, and groundwater that exceed regulatory levels. These mechanisms include the processes of advection, hydrodynamic dispersion, dilution from recharge, sorption, volatilization, and biodegradation, which facilitate RNA of a variety of anthropogenic chemicals.

This section summarizes and interprets specific site characterization data relevant to documenting the effectiveness of RNA at minimizing dissolved COPC migration and reducing COPC concentration, mass, and toxicity over time.

6.2 OPERATIVE MECHANISMS OF CONTAMINANT ATTENUATION

Understanding the fate of COPCs in environmental media is critical to evaluating and predicting contaminant distribution patterns. There are several physical, chemical, and biological processes that influence how a chemical behaves in soil and groundwater.

Nondestructive attenuation processes can be described as those physical and chemical processes that may prohibit significant contaminant migration but will not result in a permanent reduction in contaminant mass. Examples of nondestructive attenuation processes include volatilization, sorption, dilution from recharge, advection, and hydrodynamic dispersion. These processes must be evaluated when determining whether some type of remediation is warranted because chemical contamination poses or has the potential to pose a risk to human or ecological receptors. If contamination cannot reach a potential receptor exposure point, the contamination poses no risk.

In comparison to nondestructive chemical attenuation processes, destructive chemical attenuation processes result in the permanent removal of contaminant mass from the environment. Documenting and distinguishing the effects of destructive attenuation processes, such as biodegradation, from nondestructive attenuation processes is critical to evaluating the potential for RNA to bring about a reduction in contaminant mass over time. The effectiveness of destructive attenuation processes at reducing contaminant mass at a site depends on how susceptible the chemical is to biodegradation and whether the site is characterized by physical, chemical, and biological conditions favorable to such processes.

6.2.1 Biodegradation of Dissolved BTEX and Naphthalene

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of different types of fuels (e.g., gasoline) under both aerobic and anaerobic conditions.

Biodegradation of fuel hydrocarbons such as BTEX and naphthalene will occur when an indigenous population of hydrocarbon-degrading microorganisms is present in the soil and groundwater, and sufficient concentrations of electron acceptors and nutrients, including fuel hydrocarbons, are available to these organisms. Soils and groundwater with a history of exposure to fuel hydrocarbon compounds, such as at the BX Service Station, generally contain microbial populations capable of facilitating biodegradation reactions (Wiedemeier *et al.*, 1995). The chemical basis for the biodegradation of dissolved BTEX and naphthalene is described in more detail in Section 6.5, where geochemical data relevant to documenting biodegradation at the field scale at the BX Service Station are presented.

6.2.2 Biodegradation of MTBE

MTBE is much less biodegradable than the BTEX compounds, due primarily to the presence and strength of MTBE tertiary bonds. However, natural biodegradation of MTBE by naturally-occurring microorganisms has been documented (Lee, 1986; Salanitro et al., 1994; Mormile et al., 1994; Yeh and Novak, 1994; Daniel, 1995; Park and Cowan, 1997; and Javanmardian and Glasser, 1997). Likewise, several studies have documented the lack of MTBE biodegradation (Hubbard, et al., 1994; and Mormile et al., 1994). Biodegradation of MTBE is poorly understood, and while both aerobic and anaerobic biodegradation have been documented, aerobic degradation has been reported to have the most potential. Howard et al. (1991) report a range of biodegradation half-lives for MTBE in groundwater of 8 weeks to 12 months (1,344 to 8,640 hours). Daniel (1995) reports degradation rates ranging from 0.01 to 0.18 percent per day.

As with BTEX and PAH compounds, the driving force behind redox reactions resulting in MTBE degradation is electron transfer, which is quantified by the Gibbs free energy of the reaction (ΔG° ,). As with BTEX, the value of ΔG° , represents the quantity of free energy consumed or yielded to the system during the reaction. Table 6.1 lists stoichiometry of potential redox reactions involving MTBE. Although thermodynamically favorable, most of the reactions involved in MTBE reduction and oxidation cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those redox reactions that have a net yield of energy. While biodegradation of MTBE has been demonstrated and measured in laboratory studies, there are little published data on the field-scale biodegradation of MTBE.

6.2.3 Properties of MTBE

The physical and chemical properties of MTBE differ significantly from benzene and the other BTEX compounds. MTBE differs from benzene in the following ways (USEPA, 1998; Zogorski, et al., 1997):

- MTBE's low octanol:water distribution coefficient indicates that MTBE will preferentially leach at a faster rate from fuel products relative to BTEX and other fuel components.
- MTBE's pure component solubility (43,000,000 μ g/L) is higher than benzene (1,780 μ g/L), which may result in significantly higher concentrations of MTBE in groundwater relative to benzene.

- MTBE has a lower affinity for organic carbon (Koc), resulting in lower retardation rates. In many cases MTBE may migrate in groundwater at approximately the rate of advective groundwater velocity.
- MTBE has a lower potential for biodegradation, therefore MTBE is more recalcitrant and more persistent in groundwater plumes.

In general, MTBE plumes will migrate faster and degrade slower than benzene or other fuel hydrocarbon plumes. However, MTBE plumes may still naturally attenuate due to the effects of advection, dispersion and dilution. Therefore, natural attenuation of MTBE may still be a suitable remedial strategy if it can be shown that MTBE concentrations will attenuate to concentrations that are not a threat to human health or the environment before potential receptors are impacted.

6.3 EVIDENCE OF CONTAMINANT BIODEGRADATION OVER TIME

The first step in determining whether COPC constituents are biodegrading in soils and groundwater at the BX Service Station was to compare contaminant concentrations at selected sampling locations over time. The purpose of this comparison was to assess the evidence of field-scale contaminant mass loss. Decreases in the magnitude of contaminant concentrations at a site over time that cannot be explained by physical processes (e.g., source removal, mass transport in groundwater) may be the first indication that contaminants are biodegrading at the site.

6.3.1 Hydrocarbon Concentration Trends in Soil

Biodegradation of soil hydrocarbon COPCs present in the vadose zone can proceed if the soil particles to which the contaminants are adsorbed are covered with a water film that supports microbial populations. The presence of abundant soil moisture in the vadose zone can be inferred from the shallow water table depth, the relatively warm ambient air temperature, and presence of the asphalt/concrete cap over much of the site that would inhibit evaporation of subsurface moisture into the atmosphere. Aerobic degradation appears to be occurring based on depleted oxygen levels in shallow soil gas, however, near the water table anaerobic conditions may prevail.

Soil BTEX, naphthalene, and TRPH concentrations from four samples collected in March 1995 are compared to samples collected in March 1998 in Table 6.2. All four samples are located near the current UST pit. Soil BTEX and TRPH concentrations decreased significantly at three locations, and increased slightly at one location. Temporal soil hydrocarbon concentration trends in the proximity of the former UST pit were not assessed because no available soil analytical data were collected prior to 1997.

6.3.2 Hydrocarbon Concentration Trends in Groundwater

Hydrocarbon concentrations measured at three monitoring wells from 1995 to 1998 are summarized in Table 6.3. MW-03 and MW-07 are located at and downgradient of the current UST pit, respectively. MW-05 is located at the former UST pit. Hydrocarbon concentrations at MW-03 and MW-07 increased from 1995 to 1997, but have decreased substantially from 1997 to 1998. These data suggest that the dissolved hydrocarbon plume associated with the current UST pit may be receding due to the effects of source biodegradation and leaching. Hydrocarbon concentrations at MW-05 were highest in

1995, decreased from 1995 to 1997, and were stable from 1997 to 1998. Stabilization or reduction of the dissolved plume is indicated by the fact that hydrocarbons have not been detected in downgradient monitoring wells MW-03-97 and MW-05-97 despite an average groundwater velocity of 175 ft/yr. Groundwater from downgradient monitoring point MP-3 had a very low concentration of ethylbenzene and total xylenes that was below the reporting limit but above the detection limit. Stable plume length indicates that the mass of hydrocarbons input into the groundwater system in the source area (through leaching of residual hydrocarbons in soils) is approximately equal to the mass of hydrocarbons being removed via destructive attenuation processes (e.g., biodegradation).

6.4 SITE SPECIFIC CONTAMINANT BIODEGRADATION RATES

It is important to distinguish between the effects of nondestructive attenuation processes (i.e., advection, dispersion, and sorption) and of destructive attenuation processes (i.e., biodegradation) on the mass of dissolved groundwater hydrocarbon COPCs in the groundwater at the BX Service Station. Comparison of analytical data spatially and temporally suggests that most of the groundwater hydrocarbon COPCs are being removed from saturated soils and groundwater by mechanisms other than dispersion, advection, and sorption. To quantify these effects, Buscheck and Alcantar (1996) derived a relationship that allows calculation of first-order decay rate constants for steady-state plumes. This method involves coupling the regression of contaminant concentration (plotted on a logarithmic scale) versus distance downgradient (plotted on a linear scale) to an analytical solution for one-dimensional, steady-state contaminant transport that includes advection, dispersion, sorption, and biodegradation. This method requires groundwater data from at least two locations near the centerline of a dissolved plume. Data from monitoring wells/points MW-03, MP-1, and MW-07 were utilized. These wells/points are related to the current UST pit. The decay rates were based on the average advective groundwater velocity of 0.48 ft/day (Section 3.4), retardation coefficients calculated in Table 6.4, and an estimated plume length of 250 feet (current UST pit).

Calculated decay coefficients (lambda) and corresponding half-lives for the BTEX compounds and total BTEX are presented on Table 6.5. As shown in this table, the calculated half-lives correlate well with literature values. Supporting information is presented in Appendix D.

6.5 EVIDENCE OF CONTAMINANT BIODEGRADATION VIA MICROBIALLY MEDIATED REDOX REACTIONS

Groundwater geochemical data also can be used to show that hydrocarbon COPCs are biodegrading in saturated soil and groundwater at the BX Service Station. Fuel hydrocarbon constituents are typically utilized as electron donors in biologically mediated redox reactions under a wide range of geochemical conditions. Therefore, analytical data on potential electron acceptors can be used as geochemical indicators of fuel hydrocarbon biodegradation (Wiedemeier *et al.*, 1995). Reductions in the concentrations of oxidized chemical species that are used by microorganisms to facilitate the oxidation of fuel hydrocarbon compounds within contaminated media are an indication that contaminants are biodegrading. Alternately, an increase in the metabolic byproducts resulting from the reduction of electron acceptors can be used as an indicator of contaminant biodegradation. The availability of potential electron acceptors to participate in contaminant

biodegradation reactions can be used to estimate the total contaminant mass that can be biodegraded over time at this site. Coupled with calculated biodegradation rates, this information can be used to predict how much and how quickly COPCs can be removed from saturated soils and groundwater at the BX Service Station as a result of natural processes only.

6.5.1 Relevance of Redox Couples in Biodegradation

Microorganisms obtain energy to replenish enzymatic systems and to reproduce by oxidizing organic matter. Biodegradation of dissolved hydrocarbons is the result of a series of redox reactions that maintain the charge balance within the natural environment. Microorganisms facilitate the degradation of these organic compounds by transferring electrons from the electron donor (i.e., fuel hydrocarbons and native organic carbon) to available electron acceptors. Electron acceptors are elements or compounds that occur in relatively oxidized states and can participate in redox reactions involving these available electron donors. Electron acceptors known to be present in saturated soil and groundwater at the BX Service Station are oxygen, nitrate/nitrogen, sulfate, ferric iron, and carbon dioxide.

Microorganisms facilitate fuel hydrocarbon biodegradation to produce energy for their use. The amount of energy that can be released when a reaction occurs or is required to drive the reaction to completion is quantified by the free energy of the reaction (Stumm and Morgan, 1981). Microorganisms are able to utilize electron transport systems and chemiosmosis to combine energetically favorable and unfavorable reactions to produce energy for life processes (i.e., cell production and maintenance). Microorganisms will facilitate only those redox reactions that will yield energy. By coupling the oxidation of fuel hydrocarbon compounds, which requires energy, to the reduction of other compounds (e.g., oxygen, nitrate/nitrite, manganese, ferric iron, sulfate, and carbon dioxide), which yields energy, the overall reaction will yield energy. Detailed information on the redox reactions required to biodegrade dissolved COPCs is included in Table 6.1. The reader is encouraged to review this information to more fully understand the chemical basis of biodegradation.

Figure 6.1 illustrates the sequence of microbially mediated redox processes based on the amount of free energy released for microbial use. In general, reactions yielding more energy tend to take precedence over processes that yield less energy (Stumm and Morgan, 1981). As Figure 6.1 shows, oxygen reduction would be expected to occur in an aerobic environment with microorganisms capable of aerobic respiration because oxygen reduction yields significant energy. However, once the available oxygen is depleted and anaerobic conditions dominate the interior regions of the contaminant plume, anaerobic microorganisms can utilize other electron acceptors in the following order of preference: nitrate/nitrite, manganese, ferric iron, sulfate, and finally carbon dioxide. Each successive redox reaction provides less energy to the system, and each step down in redox energy yield would have to be paralleled by an ecological succession of microorganisms capable of facilitating the pertinent redox reactions.

The expected sequence of redox processes can be estimated by the oxidation/reduction potential (ORP) of the groundwater. The ORP measures the relative tendency of a solution or chemical reaction to accept or transfer electrons, and can be measured in the field. This measurement can be used as a crude indicator of which redox

reactions may be operating at a site. High ORPs mean that the solution (or available redox couple) has a relatively high oxidizing potential.

Microorganisms can only facilitate the biodegradation (oxidation) of the fuel hydrocarbon compounds using redox couples that have a higher ORP than the contaminants. This is why these electron acceptors can be used to oxidize the fuel hydrocarbon compounds. The reduction of highly oxidized species results in an overall decrease in the oxidizing potential of the groundwater. As shown in Figure 6.1, the reduction of oxygen and nitrate will reduce the oxidizing potential to levels at which ferric iron (Fe³⁺) reduction can occur. As each chemical species that can be used to oxidize the contaminants is exhausted, the microorganisms are forced to use other available electron acceptors with lower oxidizing capacity. When sufficiently low (negative) ORP levels have been developed as a result of these redox reactions, sulfate reduction, and methanogenesis can occur almost simultaneously (Stumm and Morgan, 1981).

ORP values measured in shallow groundwater at the BX Service Station in March 1998 ranged from 22.2 to -280 millivolts (mV) (Table 6.6). Areas with the lowest ORP measurements generally coincided with the presence of fuel-contaminated groundwater, indicating that the progressive use of electron acceptors in the order shown on Figure 6.1 has caused the groundwater in the contaminated areas to become more reducing. These data imply that oxygen, nitrate, manganese, and ferric iron may be used to biodegrade fuel hydrocarbon contaminants at this site. However, many authors have noted that field ORP data alone cannot be used to reliably predict all of the electron acceptors that may be operating at a site, because the platinum electrode probes are not sensitive to some redox couples (e.g., sulfate/sulfide) (Stumm and Morgan, 1981; Godsey, 1994; Lovley et al., 1994). Analytical data on oxidized and reduced species are presented in the following subsections to verify which electron acceptors are actually being used to biodegrade the hydrocarbon COPCs in saturated soil and groundwater at the BX Service Station.

Throughout the following subsections, the distributions of geochemical parameters are examined by comparing background concentrations to COPC plume core concentrations. Analytical data from upgradient well MW-01 and cross-gradient well MW-08-97 are used for background concentrations. Analytical data from MW-03, MW-05, MP-1, and MP-2 are used for COPC plume core concentrations.

6.5.2 Dissolved Oxygen

Almost all types of fuel hydrocarbons can be biodegraded under aerobic conditions (Borden, 1994). Mineralization of fuel hydrocarbons to carbon dioxide and water under aerobic conditions involves the use of oxygen as a cosubstrate during the initial stages of metabolism, and as a terminal electron acceptor during the later stages of metabolism for energy production. The reduction of molecular oxygen during the oxidation of the fuel hydrocarbon compounds yields a significant amount of free energy that the microorganisms could utilize.

DO concentrations were measured at groundwater sampling locations in March 1998. Table 6.6 presents the analytical results for DO by sampling location. As shown on the table, DO concentrations were uniformly low at all sampling locations (0.16 to 1.20 mg/L). The presence of the lowest observed DO concentration in the core of the

dissolved COPC plume and the highest DO concentration at the upgradient well is an indication that biodegradation through aerobic respiration is occurring. However, the overall low magnitude of DO concentrations indicates that oxygen is not currently a significant electron acceptor during microbially mediated degradation of fuel hydrocarbons at the BX Service Station.

6.5.3 Nitrate

Because anaerobic conditions generally prevail in the site groundwater, nitrate can be used as an electron acceptor by indigenous facultative anaerobes that mineralize fuel hydrocarbon compounds via either denitrification or nitrate reduction processes. Concentrations of nitrate (as nitrogen [N]) measured at the site in March 1998 are summarized in Table 6.6. Background nitrate (as N) concentrations measured in upgradient and cross-gradient wells MW-01 and MW-08-97 ranged from 0.13 to 0.15 mg/L. Nitrate (as N) concentrations measured in plume core area wells exhibiting dissolved fuel contamination (MW-03, MW-05, MP-1 and MP-2) ranged from below the reporting limit of 0.5 mg/L to 0.16 mg/L. These data indicate that there is a poor correlation between nitrate concentrations within the dissolved plume and measured background concentrations. The use of nitrate as an electron acceptor in microbially facilitated redox reactions is consistent with the range of ORP values measured at the BX Service Station (Figure 6.1). However, the poor correlation described above limits the importance of this degradation reaction.

6.5.4 Ammonia

The presence of ammonia in groundwater can result from either nitrate reduction (facilitated by microbes) or fixing of atmospheric nitrogen (also a microbial process). Nitrate is not widespread in groundwater within the aquifer; however, the fixation of atmospheric nitrogen may occur under the anaerobic, methanogenic conditions observed at the site. The presence of ammonia in groundwater is a strong indication of microbial activity.

Ammonia (as N) concentrations measured in groundwater samples collected in March 1998 are summarized in Table 6.6. Ammonia was detected in all of the samples analyzed. The pale-yellow natural color of the shallow groundwater may have interfered with the ammonia analysis, causing the background concentrations to be biased high. Ammonia concentrations detected in shallow groundwater varied across the site, with elevated ammonia concentrations occurring in the COPC plume core area. Therefore, production of ammonia appears to be occurring due to increased microbial activity stimulated by the relative abundance of organic carbon (fuel hydrocarbons).

6.5.5 Ferrous Iron

Although relatively little is known about the anaerobic metabolic pathways involving the reduction of ferric iron (Fe³⁺), this process has been shown to be a major metabolic pathway for some microorganisms (Lovley and Phillips, 1988; Chapelle, 1993). Elevated concentrations of ferrous iron (Fe²⁺) often are found in anaerobic, fuel-contaminated groundwater systems. Concentrations of dissolved ferrous iron once were attributed to the spontaneous and reversible reduction of ferric oxyhydroxides, which are thermodynamically unstable in the presence of organic compounds such as benzene. However, more recent studies suggest that the reduction of ferric iron cannot proceed at

all without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature, neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley et al., 1991). This means that the reduction of ferric iron to ferrous iron requires mediation by microorganisms with the appropriate enzymatic capabilities.

To determine if ferric iron is being used as an electron acceptor for fuel biodegradation at the BX Service Station, ferrous (reduced) iron concentrations were measured at groundwater sampling locations in March 1998. Elevated ferrous iron concentrations were detected in the COPC plume core wells (1.47 mg/L to 11.95 mg/L; Table 6.6). The occurrence of ferrous iron concentrations within contaminated areas indicates that ferric iron is acting as an electron acceptor at these locations. In addition, the measured redox potentials of the groundwater at this site are within the range that would be expected for the ferric iron-reducing conditions implied by the observed ferrous iron distributions (Figure 6.1).

6.5.6 Sulfate

Sulfate also may be used as an electron acceptor during microbial degradation of fuel hydrocarbons under anaerobic conditions (Grbic-Galic, 1990). Sulfate can be reduced to sulfide during the oxidation of the fuel hydrocarbon compounds. The presence of decreased concentrations of sulfate (and increased concentrations of sulfide) in the source area relative to background concentrations indicates that sulfate is participating in redox reactions at the site. To investigate the potential for sulfate reduction at the BX Service Station, sulfate and sulfide concentrations were measured during the March 1998 groundwater sampling event.

Table 6.6 shows the analytical results for sulfate and sulfide in groundwater at the BX Service Station. In general, areas characterized by elevated concentrations of dissolved COPCs are depleted in sulfate concentrations relative to measured background concentrations. Background concentrations of sulfate at the site ranged from 24.37 mg/L at well MW-01 to 37.55 mg/L at MW-08-97. Sulfate concentrations measured at plume core area wells exhibiting dissolved fuel contamination (MW-03, MW-05, MP-1 and MP-2) ranged from 0.0 mg/L to 20.39 mg/L. This general depletion of sulfate within the contaminated areas indicates that this compound is acting as an electron acceptor during fuel biodegradation reactions.

Table 6.6 also shows that elevated concentrations of sulfide, which can be produced when sulfate is reduced during fuel hydrocarbon oxidation, generally coincide with depleted sulfate concentrations and elevated fuel hydrocarbon concentrations. The apparent production of sulfide within the contaminated area supports the observation that microbial populations are using sulfate to oxidize fuel hydrocarbons at the site.

The measured ORPs of the groundwater at this site are not within the range that would be expected for the sulfate-reducing conditions implied by the observed sulfate and sulfide distributions. However, as described in Section 6.5.1, field ORP data alone cannot be used to reliably predict the electron acceptors that may be operating at a site.

6.5.7 Dissolved Methane

On the basis of free energy yield and the oxidizing potential of the site groundwater, the carbon dioxide/methane (CO₂/CH₄) redox couple also could be used to oxidize fuel hydrocarbon compounds to carbon dioxide and water once the groundwater is sufficiently reducing. To attain these reducing levels, other highly oxidizing chemical species such as oxygen, nitrate, ferric iron, and sulfate must first be reduced. This redox reaction is called methanogenesis or methane fermentation. Methanogenesis yields the least free energy to the system in comparison to other chemical species (Figure 6.1). The presence of methane in groundwater at elevated concentrations relative to background concentrations is a good indicator of methane fermentation.

Dissolved methane was measured at groundwater monitoring wells sampled during the March 1998 sampling event. Table 6.6 presents the analytical data for methane. Methane concentrations detected at the contaminant source areas were elevated relative to background concentrations. Methane concentrations measured at plume core area wells MW-03, MW-05, MP-1 and MP-2 ranged from 1.2 mg/L to 4.3 mg/L. In contrast, background concentrations ranged from 0.017 mg/L to 0.018 mg/L. The presence of elevated methane levels in groundwater at the BX Service Station strongly indicates that biodegradation is occurring via methanogenesis.

6.5.8 pH

The pH of groundwater samples collected from groundwater monitoring points and monitoring wells in March 1998 was measured (Table 6.6). The pH of a solution is the negative logarithm of the hydrogen ion concentration [H⁺]. Groundwater pH values measured at the site were slightly acidic, ranging from 4.78 to 7.01 standard units (SU) with an average of 6.41 SU. This average pH is within the optimal range for fuel hydrocarbon-degrading microbes of 6 to 8 SU. The presence of more acidic pH values indicates that the groundwater alkalinity may be insufficient to fully buffer the groundwater pH against the organic acids produced during microbial reactions.

6.5.9 Temperature

Groundwater temperature was measured at groundwater monitoring wells in March 1998 (Table 6.6). Temperature affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures generally resulting in higher growth rates. The temperature of groundwater samples collected from the shallow monitoring wells varied from 18.1 degrees Celsius (°C) to 20.8 °C. These temperatures are warm enough to promote microbial growth and may enhance rates of hydrocarbon biodegradation.

6.6 THEORETICAL ASSIMILATIVE CAPACITY ESTIMATES

The preceding discussions have been devoted to determining if fuel hydrocarbons are biodegrading in saturated soils and groundwater at the BX Service Station. Analytical data on reduced and oxidized chemical species indicate that indigenous microorganisms are facilitating the oxidation of fuel hydrocarbons and the reduction of electron acceptors to generate free energy for cell maintenance and production. The question of how much contaminant mass can be biodegraded must be addressed to assess the full potential for long-term intrinsic bioremediation to minimize plume size and mass over time.

Mass balance relationships can be used to determine how much contaminant mass can be degraded by each of the redox reactions that the microorganisms might use to make free energy available for cell maintenance and production. The stoichiometric relationship between the contaminant and the electron acceptor can be used to estimate the expressed assimilative capacity of the groundwater. Once the redox reactions operating at the site have been defined, it is possible to estimate how much contaminant mass can be assimilated or oxidized by available electron acceptors.

Table 6.1 presents the coupled redox reactions that represent the biodegradation of the individual hydrocarbon COPCs, including the stoichiometric mass ratio of electron acceptors needed to oxidize each compound. These stoichiometric mass ratios can be used to estimate the assimilative capacity of the groundwater at the BX Service Station. For oxygen, nitrate, and sulfate, this is accomplished by first determining the initial (background) mass of each electron acceptor available in the groundwater. Data on these chemical species were collected at sampling locations upgradient (MW-01) and crossgradient (MW-08-97) from the dissolved plume. As groundwater slowly migrates into the source area, electron acceptors are brought into contact with hydrocarbon-degrading microorganisms and site contamination. The change in the electron acceptor mass from background sampling locations to sampling locations within the plume core is divided by the mass of electron acceptors required to mineralize the COPCs. For ferrous iron, ammonia, and methane, the highest observed concentration in the plume core wells is divided by the mass of electron acceptors required to mineralize each COPC. However, the change in ammonia mass was used to correct for the natural yellow color of the groundwater at the site. These numbers are summed to estimate the expressed intrinsic capacity of the groundwater to biodegrade COPCs.

Estimates of the background and plume core concentrations were used to calculate the expressed assimilative capacity of the groundwater system attributable to aerobic respiration and sulfate reduction (Table 6.7). Table 6.7 also presents the source area concentrations of ammonia, ferrous iron, and methane. These concentrations are used to "back-calculate" the expressed assimilative capacity that is attributable to nitrogen fixation, ferric iron reduction, and methanogenesis. Nitrate is not listed in Table 6.7. As discussed above, nitrate is ultimately reduced to ammonia; however, ammonia can be produced from the reduction of nitrate and from fixation of atmospheric nitrogen. Therefore, only ammonia is used to calculate the intrinsic capacity. On the basis of these calculations, one pore volume of saturated soils and groundwater at the BX Service Station has the capacity to oxidize an average COPC concentration of approximately 16.78 mg/L (16,780 µg/L).

This estimate essentially represents an estimate of the COPC reduction capability of one pore volume of groundwater at the BX Service Station. The estimate identifies how much contaminant mass can be theoretically oxidized as one pore volume travels through the plume core. In reality, over 1 pore volume is expected to move through the contaminated aquifer material in the source area every 2.5 years based on the estimated groundwater velocity of 175 ft/yr and a source area length of approximately 450 feet.

A closed system containing 2 liters of water can be used to help visualize the physical meaning of assimilative capacity. Assume that the first liter contains no fuel hydrocarbons, but it contains fuel-degrading microorganisms and has an assimilative capacity of exactly "x" mg of fuel hydrocarbons. The second liter has no assimilative

capacity; however, it contains fuel hydrocarbons. As long as these 2 liters of water are kept separate, biodegradation of fuel hydrocarbons will not occur. If these 2 liters are combined in a closed system, biodegradation will commence and continue until the fuel hydrocarbons or electron acceptors are depleted. If less than "x" mg of fuel hydrocarbons are in the second liter, all of the fuel hydrocarbons will eventually degrade given a sufficient time; likewise, if greater than "x" mg of fuel hydrocarbons were in the second liter of water, only "x" mg of fuel hydrocarbons would ultimately degrade.

This example shows that in a closed system, the measured expressed assimilative capacity eventually should be equivalent to the loss in contaminant mass; however, the groundwater beneath the site is an open system. Electron acceptors can continually enter the system from upgradient flow. Furthermore, contaminant mass can be added to the system through dissolution or leaching from LNAPL or contaminated soils. This means that the assimilative capacity is not fixed as it would be in a closed system, and therefore should not be quantitatively compared to concentrations of dissolved contaminants in the groundwater. Rather, the expressed assimilative capacity of groundwater is intended to serve as a qualitative tool. The fate of COPCs in groundwater is dependent on the relationship between the kinetics of biodegradation and the solute transport velocities (Chapelle, 1994).

6.7 PREDICTING CONTAMINANT TRANSPORT AND FATE

Understanding the effects of natural physical, chemical, and biological processes on chemicals in the subsurface is an important step in determining potential long-term risks associated with chemical migration in the environment. The behavior of COPCs under the influence of these processes must be quantified to assess the expected persistence, mass, concentration, and toxicity of dissolved COPCs over time at the site; and to estimate potential receptor exposure-point concentrations. If destructive and nondestructive attenuation processes can minimize or eliminate the concentration of contaminants to which a receptor could be exposed, engineered remedial action may not be warranted because no reasonable exposure pathway exists or the exposure pathway would result in insignificant risks. The focus of this section is to predict how the COPCs will be transported and transformed over time in soil, soil vapor, and groundwater based on site data and site-specific contaminant transport and fate models.

6.7.1 Volatilization from Subsurface Sources

6.7.1.1 Inhalation Risks Posed to Aboveground Receptors

Maximum detected soil gas concentrations were conservatively compared to OSHA PELs in Section 4 to define ambient atmosphere COPCs. However, as discussed previously, this comparison is overly conservative because soil gas measurements do not reflect the exposure-point concentrations in outdoor ambient air or within onsite structures. To determine whether subsurface sources (i.e., contaminated soils and dissolved contamination) could cause exposure-point concentrations in either outdoor or indoor air that may pose an unacceptable risk to potential onsite receptors via the inhalation exposure route, several different kinds of chemical flux and atmospheric transport equations were coupled to simulate the concentrations of benzene present in outdoor ambient air under normal atmospheric conditions and accumulating within onsite buildings. Two models [i.e., the Farmer Model (USEPA, 1992) and the indoor air dispersion model (Michelson *et al.*, 1993)] were utilized for this task.

A diffusion model was used to predict the transport of benzene from subsurface sources through unsaturated soils and manmade structures (e.g., building foundations), and within ambient air. The maximum measured soil gas benzene concentration was used to represent the observed subsurface source term. Flux equations were then used to estimate that mass of benzene that migrated to the target mixing area (i.e., outdoor ambient atmosphere and indoor building space). Simple "box" mixing equations were used to translate flux measurements into predicted exposure-point concentrations for air within the outdoor and indoor breathing zones. Outdoor air quality impacts were conservatively estimated assuming that benzene diffuses/convects through native soils only (i.e., the pavement capping a portion of the site is not present), and that only minimal atmospheric dispersion above the flux area is possible (i.e., virtual upwind pointsource dispersion assumption). Indoor air quality impacts were conservatively estimated by allowing benzene to seep through foundation cracks and mix within a ventilated but confined structure. Both site-specific and conservative default values were used as input parameters. The predictive model equations and input parameters are presented in Table 6.8.

The maximum benzene concentration detected in soil vapor samples in March 1998 (Table 5.4) was used in the diffusion model that is based on measured soil gas concentrations. This model predicted an outdoor benzene exposure concentration of 0.00186 mg/m³, which is three orders of magnitude less than the PEL for this compound of 1 mg/m³ (Table 6.8).

The predictive migration model equations for indoor air indicate that subsurface sources at the BX Service Station are not expected to cause indoor air concentrations of benzene to exceed the OSHA PEL. The predictive migration model indicates that the indoor air concentration of benzene is conservatively expected to be five orders of magnitude less than the OSHA PEL (Table 6.8). Therefore, no engineered remediation is warranted to prevent migration of benzene into indoor air at concentrations above the OSHA PEL.

6.7.1.2 Inhalation Risks Posed to Intrusive Workers

A box mixing model was used to estimate the concentration of benzene that would be present in the breathing zone in an excavated trench based on the maximum soil gas benzene concentration detected in March 1998. The mixing model and the parameter values used in the model were developed by toxicologists at the University of Florida for a similar site at Homestead AFB, Florida (University of Florida, 1998). Calculations are contained in Appendix E. The model indicated that the resulting benzene concentration would be 0.034 mg/m³, which is approximately two orders of magnitude lower than the OSHA PEL of 1 mg/m³. Therefore, no engineered remediation is warranted to prevent migration of benzene into excavations at concentrations above the OSHA PEL.

6.7.2 BIOSCREEN Modeling

BIOSCREEN® is a screening model which simulates RNA of dissolved hydrocarbons at petroleum fuel release sites (Newell and McLeod, 1996). The software is based on the Domenico (1987) analytical solute transport model and is designed to simulate advection, dispersion, adsorption, and aerobic decay as well as anaerobic reactions that have been shown to be the dominant biodegradation processes at many petroleum release sites.

6.7.2.1 Description of BIOSCREEN Model

BIOSCREEN® includes three different model types:

- 1) Solute transport without decay;
- 2) Solute transport with biodegradation modeled as a first-order decay process (simple, lumped parameter approach); and
- 3) Solute transport with biodegradation modeled as an "instantaneous" biodegradation reaction.

The first model is appropriate for predicting the movement of conservative (non-degrading) solutes such as chloride. The only attenuation mechanisms simulated are dispersion in the longitudinal, transverse, and vertical directions and adsorption of the chemical to the soil matrix.

With the second model, the solute degradation rate is proportional to the initial solute concentration. This is a conventional method for simulating biodegradation in dissolved hydrocarbon plumes. With this method, dispersion, sorption, and biodegradation parameters are lumped together in a single calibration parameter. The first-order decay model does not account for site-specific information such as the availability of electron acceptors. In addition, it does not assume any biodegradation of dissolved constituents in the source zone. In other words, this model assumes that biodegradation starts immediately downgradient from the source and that it does not decrease the concentrations of dissolved organic compounds in the source zone itself.

First-order expressions may not be accurate for describing biodegradation of organic chemicals in groundwater because electron acceptor limitations are not considered. A more accurate prediction of biodegradation effects may be realized by incorporating the instantaneous reaction equation into a transport model (Newell and McLeod, 1996).

At almost all petroleum release sites, biodegradation is present and can be verified by demonstrating the consumption of aerobic and anaerobic electron acceptors. Therefore, results from the No Biodegradation model are intended only to be used for comparison purposes and to demonstrate the effects of biodegradation on plume migration. The Instantaneous Reaction model is recommended either alone or in addition to the First-Order Decay model for most sites where electron acceptor and metabolic byproduct concentration data have been collected (Newell and McLeod, 1996).

6.7.2.2 Modeling Objectives

The BIOSCREEN® modeling was performed for the BX Service Station site to accomplish the following three objectives:

- To estimate the maximum migration distance of the plumes associated with the current and former UST pit over time;
- To assess the persistence of both plumes over time; and
- To support future remedial actions.

It was necessary to perform modeling for both the current and former UST pits to support development of future remedial options. The lateral migration potential and

persistence of benzene at the former UST pit was modeled because, of the groundwater COPCs identified in Section 4, benzene is both mobile in the groundwater environment and considered a toxic carcinogen (has the lowest Table V TCL of any of the volatile COPCs). Therefore, benzene will likely be a primary "risk-driver" at this site. Xylene was modeled at the current UST pit because it exceeded its Table V TCL by 800 times, which was the greatest exceedence.

6.7.2.3 Conceptual Model Design and Limiting Assumptions

BIOSCREEN® has the following limitations:

- As an analytical model, BIOSCREEN® assumes simple groundwater flow conditions; and
- As a screening tool, BIOSCREEN® only approximates the more complicated processes that occur in the field.

Because the model is not capable of simulating a complicated flow regime, the hydraulic input parameters for the site were based on slug and pump tests performed at site monitoring wells. As discussed previously, there are multiple sources at the site. The highest benzene concentration was detected at MP-2, which is associated with the former UST pit. The highest xylene concentration was detected at MW-03, which is associated with the current UST pit. Therefore, the BIOSCREEN models that are presented in this section predict the migration and persistence of benzene associated with the former UST pit and xylene associated with the current UST pit.

At the former UST pit, a twenty-three-year calibration simulation (1975 to 1998) was run using the dissolved benzene data collected in 1998 as calibration targets. As discussed in Section 1.5, the original USTs at the former UST pit were activated in 1948. The tanks were replaced in 1967 and closed in 1983. There is no information available about when a release occurred at the former UST pit. This simulation assumes that the contamination was first introduced into the environment in 1978 at the midpoint of the replacement tanks' life. This model will be referenced as model 1 for the remainder of this discussion.

At the current UST pit, a ten-year calibration simulation (1987 to 1997) was run using the dissolved xylene data collected in 1997 as calibration targets. Dissolved xylene concentrations decreased significantly from 1997 to 1998, however, the drop may be due to seasonal fluctuations. To be conservative, the BIOSCREEN model was calibrated to the 1997 data. As discussed in Section 1.5, a release occurred in 1987 when the USTs were overfilled through the new remote fill lines and fuel leaked out into the surrounding soil through the original remote fill lines. This simulation assumes that the contamination was first introduced into the environment in 1987 as a result of this release. This model will be referenced as model 2 for the remainder of this discussion.

6.7.2.4 Initial Model Input Data

Input data for the BIOSCREEN® model are used to specify/calculate groundwater velocity, aquifer dispersivity, a retardation factor, a chemical-specific decay coefficient, dissolved hydrocarbon concentrations in the source area, a half-life of the hydrocarbon source, and the dimensions of the source zone. The parameters were obtained from site-

specific data and commonly accepted literature values. The BIOSCREEN® input screens is presented in Appendix F. Each of these input values is described in more detail below.

6.7.2.4.1 Hydrogeology

Seepage Velocity (V_s)

Seepage velocity is the actual interstitial groundwater velocity. It is defined as the hydraulic conductivity times the hydraulic gradient divided by the effective porosity. The value of this parameter was the same for both models (175 ft/yr).

$$V_s = \left(\frac{K}{n_a}\right) \left(\frac{dH}{dL}\right)$$

Hydraulic Conductivity (K)

Hydraulic conductivity (K) is a term that describes the relative ease with which water can move through a permeable medium. The horizontal K value used for shallow aquifer modeling, 1.1 x 10⁻² centimeters per second (cm/s) (30 ft/day), was derived from slug and pump tests performed by BCM (Section 3.4, and Appendix A).

Hydraulic Gradient (dH/dL)

The hydraulic gradient is a unitless value which represents the change in water table elevation per unit distance in a direction parallel to groundwater flow. The average hydraulic gradient at the site was calculated to be 0.004 ft/ft based on water table elevation data.

Effective Porosity (n_e)

The effective porosity of a medium is the ratio of the volume of interconnected voids to the bulk volume of the aquifer matrix. The effective porosity is typically less than total porosity because of non-interconnected pores, dead-end pores, and boundary effects of aquifer solids. An effective porosity of 0.25 (25%) was used for the model. This value is commonly used for silt and sand lithologies (Newell and McLeod, 1996).

6.7.2.4.2 Dispersion

Dispersivity is a property of a porous medium that determines the dispersion or spreading characteristics of the medium by a relationship between pore-water velocity and dispersion coefficients. Bioscreen® computes the longitudinal dispersivity based on an estimated plume length, and the transverse dispersivity by using 10% of the longitudinal dispersivity. The default vertical dispersivity is zero.

An important step in the Bioscreen® model calibration process is the manipulation of the model's dispersivity, as the value of dispersivity can vary between 2 to 3 orders of magnitude across a site (Newell and McLeod, 1996). During calibration of model 1, dispersivity was varied, and final values of 450 feet, 45 feet, and 0 feet were input for longitudinal dispersivity, transverse dispersivity, and vertical dispersivity, respectively. The calibrated value of longitudinal dispersivity is within 2 to 3 orders of magnitude of

the initial value of 17.9 feet computed by the model based on an assumed maximum plume length of 500 feet.

6.7.2.4.3 Adsorption

Retardation Factor

The retardation factor is a measure of the degree of retardation of dissolved organic chemical movement through the aquifer. A retardation value of 1.15 was calculated using the following formula and input parameters:

$$R=1+(K_d\rho_b/n)$$

where

 $K_d = (K_{oc})(f_{oc})$

K_{oc} = Organic Carbon Partition Coefficient

 f_{oc} = Fraction Organic Carbon

 ρ_b = Soil Bulk Density of Aquifer Matrix

 $n_e = Effective Porosity$

Organic Carbon Partition Coefficient (Koc)

The organic carbon partition coefficient (K_{oc}) is a chemical-specific partition coefficient between organic carbon and water (Newell and McLeod, 1996). The selected K_{oc} value for model 1 was 79 milliliters per gram [mL/g] which corresponds to benzene. For model 2, a value of 422 mL/g was chosen for xylene (Weidemeier *et al.*, 1995).

Fraction Organic Carbon (foc)

The fraction organic carbon (f_{oc}) is the weight fraction of organic carbon in soil and is used in the estimation of the retardation factor. Typical f_{oc} values range from 0.0002 to 0.02 (Newell and McLeod, 1996). Total organic carbon concentration was not detected in site soils, so half of the mdl (550 mg/kg) was assumed to exist in site soils. This assumption means 275 mg/kg are in site soils, which translates to a f_{oc} value of 2.75 x 10

Effective Porosity (n_e)

The effective porosity of a medium is the ratio of the volume of interconnected voids to the bulk volume of the aquifer matrix. The effective porosity is typically less than total porosity because of non-interconnected pores, dead-end pores, and boundary effects of aquifer solids. An effective porosity of 0.25 (25%) was used for the model. This value is commonly used for silt and sand lithologies (Newell and McLeod, 1996).

Soil Bulk Density (ρ_b)

The soil bulk density is the bulk density of the aquifer matrix and is related to the porosity and pure solids density. An estimated value of 1.7 grams per cubic centimeter

(g/cm³) (or kilograms per liter [kg/L]) was used in this model (Newell and McLeod, 1996).

6.7.2.4.4 Biodegradation

First Order Decay Coefficient and Solute Half-Life

The solute half-life is a chemical specific value which specifies the amount of time it takes for a compound to degrade to half its original concentration. The first-order decay coefficient is equal to 0.693 divided by the half life of the chemical in groundwater. The half-life of benzene and xylene published in literature typically ranges from 0.02 to 2 years and 0.038 to 1 year, respectively (Newell and McLeod, 1996). Instead of using a literature value, a first-order decay coefficient was calculated using site-specific data and the method of Buscheck and Alcantar (1995). These values are discussed in Section 6.4 and presented in Table 6.5. A half-life of 0.28 years was used for benzene in model 1 and a half-life of 0.26 years for xylene was used in model 2.

First-order expressions may not be accurate for describing biodegradation of organic chemicals in groundwater because electron acceptor limitations are not considered. A more accurate prediction of biodegradation effects may be realized by incorporating the instantaneous reaction equation into a transport model (Newell and McLeod, 1996). For this reason, both models 1 and 2 were calibrated using the instantaneous reaction model.

Instantaneous Reaction Model

Using field and laboratory analytical data, background concentrations (wells MW-08 and MW-01) and concentrations within the COPC plume core area (wells MP-1, MP-2, MW-03, and MW-05) for each of the electron acceptors/by-products listed below were calculated. Although BTEX compounds dominate the dissolved plumes of gasoline spills, there are non-BTEX hydrocarbons that exert a demand on the available electron acceptors. A conservative approach is to reduce all available electron acceptor/by-product concentrations used in the model by thirty percent to account for the possible impacts of non-BTEX organics in groundwater (Newell and McLeod, 1997). Therefore, the delta for each of the indicators was reduced by thirty percent. Since benzene or xylene were the only constituents being modeled, the deltas were reduced by an additional seventy-five percent before being input into the model. Then, Bioscreen® calculates biodegradation capacities (BCs) for individual parameters. The BC is the amount (in mg/L) of a parameter utilized to biodegrade 1 mg/L of hydrocarbon. The calculated differences are provided below.

Difference in DO

```
17.5% of {(Background Oxygen Conc.) - (Core Oxygen Conc)}
Change in DO = 0.175*(0.76-0.16) = 0.11 \text{ mg/L}
```

Difference in Nitrate

17.5% of {(Background Nitrate Conc.) - (Core Nitrate Conc.)} Change in Nitrate = 0.175*(0-0) = 0 mg/L

Difference in Ferrous Iron

17.5% of {(Core Ferrous Iron Conc.)}
Change in Ferrous Iron = 0.175*(11.95) = 2.09 mg/L

Difference in Sulfate

17.5% of {(Background Sulfate Conc.) - (Core Sulfate Conc.)} Change in Sulfate = 0.175*(30.96-0.0) = 5.42 mg/L

Difference in Methane

17.5% of {(Core Methane Conc.)} Methane = 0.175*(4.3) = 0.75 mg/L

6.7.2.4.5 General

For model 1, the modeled area length and width were set at 600 feet and 120 feet, respectively. The model area dimensions were estimated from site groundwater monitoring data. The calibration period extended from 1975 to 1998 (23 years), and the model was run for 43 years (1975 to 2018) for predictive purposes.

For model 2, the modeled area length and width were set at 500 feet and 100 feet, respectively. The model area dimensions were estimated from site groundwater monitoring data. The calibration period extended from 1987 to 1997 (10 years), and the model was run for 80 years (1987 to 2067) for predictive purposes.

6.7.2.4.6 Source Data

Source Thickness in Saturated Zone

The source thickness in the aquifer was input as 10 feet. This simple assumption is appropriate for many petroleum release sites (Newell and McLeod, 1996).

Source Area Dimensions and Concentrations

BIOSCREEN® assumes a source represented by a vertical plane perpendicular to groundwater flow. The cross-sectional area of the vertical plane was estimated to be the maximum concentration. For model 1 this value was manipulated until the model predicted that a maximum of 3.4 mg/L of benzene would exist 23 years after the release occurred. For model 2 this value was manipulated until the model predicted that a maximum of 16 mg/L of xylene would exist 10 years after the release occurred.

Source Half-Life

BIOSCREEN® incorporates an approximation for a declining source concentration over time. The declining source term assumes that the mass of modeled constituent in the source area dissolves slowly as fresh groundwater passes through, and that the change in source zone concentration can be approximated as a first-order decay process. The model will compute an estimated source half-life given the estimated mass of modeled constituent present in the source area. Calibrated values of 530 kg and 1000 kg were employed for models 1 and 2, respectively.

6.7.2.4.7 Field Data for Comparison

An optional function of the BIOSCREEN® model is to incorporate field data along the centerline of the plume to compare to the model results. Data from the recent sampling events were used for this comparison.

6.7.2.5 Model Calibration

The analytical model was calibrated by altering input parameters in a trial-and-error fashion until the simulated plume calculated by the instantaneous reaction model approximated observed field data. The parameters varied during calibration were the dispersivity, source zone concentration, and the source mass. The parameters were varied within a realistic range of values until the simulation results of the both models closely matched the data from the recent sampling events.

6.7.2.6 Model Results

Model 1 indicates the benzene plume from the former UST pit migrated to its maximum distance of approximately 540 feet seven years after its release (1983). The model predicts that concentrations of benzene in excess of the TCL of 1 μ g/L will persist in the aquifer for 43 years after 1975 (2018). Model output is presented in Appendix F.

Model 2 indicates the xylene plume from the current UST pit migrated to its maximum distance of approximately 300 feet eight years after its release (1995). The model predicts that concentrations of xylene in excess of the TCL of 20 μ g/L will persist in the aquifer for 80 years after 1987 (2067). The model may be overly conservative because it is based on 1997 xylene data instead of lower magnitude 1998 data. Model output is presented in Appendix F.

6.7.2.7 Simulated Source Removal

The BIOSCREEN model also was utilized to evaluate the effectiveness of future remedial actions. This task was completed for the dissolved plumes at both the current and former UST pits. Model input and output is included in Appendix F.

For model 1 (former UST pit), the only input parameters that were changed were the maximum dissolved benzene concentration and the estimated mass of benzene in the source area. This model assumes that the future remedial action will remove 80 percent of the source benzene over 3 years. Based on model 1 results, it is estimated that 110 kg of source are left in 1998. This value was decreased by an additional 80 percent, which is the assumed removal capacity of the future remedial action. The final value of 22 kg was input into the model. The maximum benzene concentration from the calibration year (1998) of 3.4 mg/L was input as the maximum dissolved concentration. The result of the model indicates that after 80 percent of the source is removed, the benzene will completely attenuate in 3 years. If the 80 percent source removal takes 3 years, then the model predicts that benzene will attenuate 6 years after implementation of the remedial action.

The same source removal simulation was performed for the current UST pit as the former UST pit. This model also assumes that the future remedial action will remove 80 percent of the source xylene over 3 years. Based on model 2 results, it is estimated that

700 kg of source are left in 1998. This value was decreased by an additional 80 percent, which is the assumed removal capacity of the future remedial action. The final value of 140 kg was input into the model. To be conservative, the maximum xylene concentration from the calibration year (1997) of 16 mg/L was input as the maximum dissolved concentration. The result of the model indicates that after 80 percent of the source is removed, the xylene will completely attenuate in 14 years. If the 80 percent source removal takes 3 years, then the model predicts that xylene will attenuate 17 years after implementation of the remedial action.

ORP (mV)

Notes

ORP = Oxidation Reduction Potential

Range of ORP measured at the BX Service Station

- These reactions would be expected to occur in sequence if the system is moving toward equilibrium.
- 2. These redox processes occur in order of their energy-yielding potential (provided microorganisms are available to mediate a specific reaction). Reduction of a highly oxidized species decreases the ORP of the system.
- 3. The ORP of the system determines which electron acceptors are available for organic carbon oxidation.
- 4. Redox reaction sequence is paralleled by an ecological succession of biological mediators.

FIGURE 6.1

SEQUENCE OF MICROBIALLY MEDIATED REDOX PROCESSES

Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

PARSONS ENGINEERING SCIENCE, INC.

Atlanta, Georgia

Adapted from Stumm and Morgan, 1981.

TABLE 6.1 COUPLED OXIDATION REACTIONS FOR COPC COMPOUNDS

Coupled Benzene Oxidation Reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$7.5O_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 3H_2O$ Benzene oxidation /aerobic respiration	3.07:1
$6NO_3 + 6H^+ + C_6H_6 \Rightarrow 6CO_{2,g} + 6H_2O + 3N_{2,g}$ Benzene oxidation / denitrification	4.77:1
$3.75 \text{ NO}_3^- + C_6H_6 + 7.5 \text{ H}^+ + 0.75 \text{ H}_2O \Longrightarrow 6 \text{ CO}_2 + 3.75 \text{ NH}_4^+$ Benzene oxidation / nitrate reduction	2.98:1
$60H^{+} + 30Fe(OH)_{3,a} + C_{6}H_{6} \Rightarrow 6CO_{2} + 30Fe^{2+} + 78H_{2}O$ Benzene oxidation / iron reduction	21.5:1
$75H^+ + 3.75SO_4^{2-} + C_6H_6 \Rightarrow 6CO_{2,g} + 3.75H_2S^o + 3H_2O$ Benzene oxidation / sulfate reduction	4.61:1
$5 N_2 + C_6 H_6 + 10 H^+ + 12 H_2 O \Longrightarrow 6 CO_2 + 10 NH_4^+$ Benzene oxidation / nitrogen fixation	2.31:1
$4.5H_2O + C_6H_6 \Rightarrow 2.25CO_{2,g} + 3.75CH_4$ Benzene oxidation / methanogenesis	0.77:1

Coupled Toluene Oxidation Reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$9O_2 + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 4H_2O$ Toluene oxidation /aerobic respiration	3.13:1
$7.2NO_3 + 7.2H^+ + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 7.6H_2O + 3.6N_{2,g}$ Toluene oxidation / denitrification	4.85:1
$4.5NO_3^- + 9H^+ + 0.5H_2O + C_6H_5CH_3 \Rightarrow 7CO_2 + 4.5NH_4^+$ Toluene oxidation / nitrate reduction	3.03:1
$72H^{+} + 36Fe(OH)_{3,a} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2} + 36Fe^{2+} + 94H_{2}O$ Toluene oxidation / iron reduction	21.86:1
$9H^+ + 4.5SO_4^{2-} + C_6H_5CH_3 \Rightarrow 7CO_{2,8} + 4.5H_2S^o + 4H_2O$ Toluene oxidation / sulfate reduction	4.7:1
$6 N_2 + C_6 H_5 CH_3 + 12 H^+ + 14 H_2 O \Longrightarrow 7 CO_2 + 12 NH_4^+$ Toluene oxidation / nitrogen fixation	2.35:1
$5H_2O + C_6H_5CH_3 \Rightarrow 2.5CO_{2,g} + 4.5CH_4$ Toluene oxidation / methanogenesis	0.78:1

TABLE 6.1 (CONTINUED) COUPLED OXIDATION REACTIONS FOR COPC COMPOUNDS

Coupled Ethylbenzene Oxidation reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2g} + 5H_2O$ Ethylbenzene oxidation /aerobic respiration	3.17:1
$8.4 NO_3 + 8.4 H^+ + C_6 H_5 C_2 H_5 \Rightarrow 8 CO_{2,g} + 9.2 H_2 O + 4.2 N_{2,g}$ Ethylbenzene oxidation / denitrification	4.92:1
$5.25NO_3^- + 10.5H^+ + 0.25H_2O + C_6H_5C_2H_5 \Rightarrow 8CO_2 + 5.25NH_4^+$ Ethylbenzene oxidation / nitrate reduction	3.07:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ Ethylbenzene oxidation / iron reduction	22:1
$10.5H^+ + 5.25SO_4^2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2g} + 5.25H_2S^o + 5H_2O$ Ethylbenzene oxidation / sulfate reduction	4.75:1
$7 N_2 + C_6 H_5 C_2 H_5 + 14 H^+ + 16 H_2 O \Rightarrow 8 CO_2 + 14 NH_4^+$ Ethylbenzene oxidation / nitrogen fixation	2.38:1
$5.5 H_2O + C_6H_5C_2H_5 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ Ethylbenzene oxidation / methanogenesis	0.79:1

Coupled m-Xylene Oxidation Reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,8} + 5H_2O$ m-Xylene oxidation /aerobic respiration	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2g} + 9.2H_2O + 4.2N_{2g}$ m-Xylene oxidation / denitrification	4.92:1
$5.25NO_3^- + 10.5H^+ + 0.25H_2O + C_6H_4(CH_3)_2 \Rightarrow 8CO_2 + 5.25NH_4^+$ m-Xylene oxidation / nitrate reduction	3.07:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ $m-Xylene oxidation / iron reduction$	22:1
$10.5 H^{+} + 5.25 SO_{4}^{2} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8 CO_{2,g} + 5.25 H_{2}S^{o} + 5 H_{2}O$ $m-Xylene oxidation / sulfate reduction$	4.75:1
$7 N_2 + C_6 H_4 (CH_3)_2 + 14 H^+ + 16 H_2 O \Longrightarrow 8 CO_2 + 14 NH_4^+$ m-Xylene oxidation / nitrogen fixation	2.38:1
$5.5 H_2O + C_6 H_4 (CH_3)_2 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ m-Xylene oxidation / methanogenesis	0.79:1

TABLE 6.1 (CONTINUED) COUPLED OXIDATION REACTIONS FOR COPC COMPOUNDS

Coupled Naphthalene Oxidation Reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$12O_2 + C_{10}H_8 \Rightarrow 10CO_2 + 4H_2O$ Naphthalene oxidation /aerobic respiration	3.00:1
$9.6NO_3^- + 9.6H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 8.8H_2O + 4.8N_{2,g}$ Naphthalene oxidation / denitrification	4.65:1
$24MnO_2 + 48H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 24Mn^2 + 28H_2O$ Naphthalene oxidation / manganese reduction	10.30:1
$48Fe(OH)_{3,a} + 96H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 48Fe^{2+} + 124H_2O$ Naphthalene oxidation / iron reduction	20.94:1
$6SO_4^{2-} + 12H^+ + C_{10}H_8 \Rightarrow 10CO_2 + 6H_2S^0 + 4H_2O$ Naphthalene oxidation / sulfate reduction	4.50:1
$8 N_2 + C_{10}H_8 + 16 H^+ + 20 H_2O \Longrightarrow 10 CO_2 + 16 NH_4^+$ Naphthalene oxidation / nitrogen fixation	2.25:1
$8H_2O + C_{10}H_8 \Rightarrow 4CO_2 + 6CH_4$ Naphthalene oxidation / methanogenesis	0.75:1

Coupled Methyl tert-Butyl Ether Oxidation Reactions	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$6NO_3^- + 6H^+ + C_5OH_{12} \Rightarrow 5CO_2 + 9H_2O + 3N_2$ Methyl tert butyl ether oxidation/denitrification	4.23:1
$15MnO_2 + 30H^+ + C_5OH_{12} \Rightarrow 5CO_2 + 15Mn^{2+} + 21H_2O$ Methyl tert butyl ether oxidation/manganese reduction	9.36:1
30 Fe(OH) ₃ + 60H ⁺ + $C_5OH_{12} \Rightarrow 5CO_2 + 30Fe^{2+} + 81H_2O$ Methyl tert butyl ether oxidation/iron reduction	19.04:1
$3.75SO_4^{2-} + 7.5H^+ + C_5OH_{12} \Rightarrow 5CO_2 + 3.75H_2S + 6H_2O$ Methyl tert butyl ether oxidation/sulfate reduction	4.09:1
$5 N_2 + C_5 OH_{12} + 10 H^+ + 9 H_2 O \Longrightarrow 5 CO_2 + 10 NH_4^+$ Methyl tert butyl ether oxidation / nitrogen fixation	2.04:1
$1.5H_2O + C_5H_{12}O \Rightarrow 1.25CO_2 + 3.75CH_4$ Methyl tert butyl ether oxidation/methanogenesis	0.68:1

TABLE 6.2
HISTORICAL COMPARISON OF SOIL ANALYTICAL DATA
Risk-Based Approach to Remediation
BX Service Station
Tyndall AFB, Florida

				Sam	Sample Locations, Intervals, and Dates	Intervals, and	l Dates		
		HA-1	SB-3	I-AH	SB-3	HA-4	SB-4	HA-9	SB-5
		(2 - 3.5)		(4 - 5.5)	(4 - 5.5)	(4-5.5)	(4 - 7)	(4.5 - 5)	(4.5 - 5)
Analyte	Units	1 /-Mar-95	18-Mar-98	I /-IVIAI-93	I &-IVIAI-90	I / -INIAI - 9.5	10-IVIAL-70	CC-10101-47	10-141a1
Benzene	mg/kg ^{a/}	$^{/q}$ CIN	$0.0060~{ m U}^{c/}$	QN	1.2 U	ND	12 U	QN	24 U
Ethylbenzene	mg/kg	7.01 U	0.0024 U	14.7	0.48 U	0.681 U	13	38.9	0.6 U
Toluene	mg/kg	7.01 U	0.0060 U	24.9	1.2 U	1.43	8.4 J1 ^c /	36.6	6.3 J1
Xylenes (total)	mg/kg	362	0.0060 U	295	1.2 U	82.4	260	457	290
Total BTEX ^{e/}	mg/kg	362	0.0204 U	334.6	4.08 U	83.83	281.4	532.5	296.3
TRPH	mg/kg	551	110	888	400	2290	006	741	1700
Naphthalene	mg/kg	7.92	0.24 U	18.1	0.24 U	49.5	46	11.4	18

a/ mg/kg = Milligrams per kilogram

b/ ND = not detected

c/U = The analyte was analyzed for and was not present above the reporting limit

d/JI = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit

e/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

f/ TRPH = total recoverable petroleum hydrocarbons

HA-1, HA-4, and HA-9 advanced by BCM

HA-1, HA-4, and HA-9 are in the same locations as SB-3, SB-4, and SB-5, respectively

COMPARSION OF HISTORICAL GROUNDWATER ANALYTICAL DATA Risk-Based Approach to Remediation Tyndall AFB, Florida **BX** Service Station TABLE 6.3

					Sam	Sample Locations and Dates	and Dates			
		5-Apr-95	MW-03 21-May-97	MW-03 21-May-97 22-Mar-98	27-Sep-95	MW-05 21-May-97	22-Mar-98	27-Sep-95	MW-07 22-May-97	22-Mar-98
Analyte	Units									
Benzene	µg/Lª/	530	420	<i>L</i> 9	510	370	360	$10\mathrm{U}^\mathrm{b\prime}$	130	11 J1 ^{c/}
Ethylbenzene	µg/L	890	2100	610	420	830	890	10U	250	76
Toluene	µg/L	3600	2000	1,700	290	SU	4.3 J1	10U	140	38 J1
Xylenes (total)	µg/L	8400	16000	6,900	1,810	55	54 J1	7	086	620
Total BTEX ^{d/}	µg/L	13,420	23,520	9,277	3,330	1,255	1,308	7	1,500	745
Naphthalene	T/gn	067	NA ^{e/}	300	99	NA	NA	10U	NA	NA
Total Lead	µg/L	4	9	3	NA	0.02U	NA	NA	0.02U	NA

a/ $\mu g/L=micrograms$ per liter b/ U=The analyte was analyzed for and was not present above the reporting limit

c/ JI = The analyte was positively identified and had a concentration between the method detection limit and the reporting limit

d/ BTEX = benzene, toluene, ethylbenzene, and total xylenes

e/ NA = not analyzed

TABLE 6.4
RETARDATION COEFFICIENT CALCULATION
Risk-Based Approach to Remediation
BX Service Station
Tyndall AFB, Florida

		Average Fraction	Average Fraction Distribution Coefficient	Bulk		Coefficient of
	K	Organic	K _d (L/kg)		Effective	Retardation
Compound (L/kg ^a /) Carbon ^{b/}	(L/kg */)	Carbon ^{b/}	Average"	(kg/L) ^{d'}	(kg/L) ^{d/} Porosity ^{d/}	Average
Benzene	62	0.000275	0.021725	1.7	0.25	1.15
Toluene	190	0.000275	0.05225	1.7	0.25	1.36
Ethylbenzene	468	0.000275	0.1287	1.7	0.25	1.88
Total Xylenes	422	0.000275	0.11605	1.7	0.25	1.79
Total BTEX						1.54

Notes:

- From technical protocol (Wiedemeier et al., 1996)
 - $^{b'}$ From laboratory analyses of site soil samples
 - $^{o'}$ $K_d = Average$ Fraction Organic Carbon x K_{oc}
 - ^{d'} Estimated Value

COMPOUND-SPECIFIC FIRST-ORDER DECAY COEFFICIENTS AND HALF-LIVES Risk-Based Approach to Remediation Tyndall AFB, Florida **BX Service Station** TABLE 6.5

Chemical	$\operatorname{Lambda}^{\mathfrak{a}'}$ $(\operatorname{day}^{-1})^{\mathfrak{b}'}$	Lambda (year ⁻¹)	Site-Specific Half-Life ^{c/} (days)	Site-Specific Half-Life (years)	Literature Half-Life ^{d/} (years)
Benzene Toluene Ethylbenzene Total Xylenes Total BTEX	0.0067 0.017 0.0059 0.0073	2.5 6.4 2.2 2.6 3.3	103 40 117 96 78	0.28 0.11 0.32 0.26 0.21	0.02 to 2 0.02 to 0.17 0.016 to 0.62 0.038 to 1 0.024 to 0.95

^{a/} Lambda is the first-order decay coefficient

^{b/} Lambda estimated using method of Buscheck and Alcantar (1996)

^{°/} Half-life equals 0.693 divided by lambda

^d Literature half-life values from ASTM, 1995

SUMMARY OF GROUNDWATER GEOCHEMICAL DATA Risk-Based Approach to Remediation Tyndall AFB, Florida **BX Service Station** TABLE 6.6

		MP-1 22-Mar-98 22	MP-2 22-Mar-98	MP-3 22-Mar-98	MW-01 22-Mar-98	MW-03 22-Mar-98	MW-05 22-Mar-98	MW-07 22-Mar-98	MW-03-97 22-Mar-98	MW-05-97 22-Mar-98	MW-08-97 22-Mar-98
Parameter	Units										
Ferrous Iron	mg/L		2.75	1.60	0.09	1.47	11.95	0.41	0.15	0.36	0.14
Sulfate	mg/L		17.16	MN	24.37	20.39	0.00	0.19	30.77	34.23	37.55
Sulfide	mg/L	1.050	0.497	MN	0.024	0.547	0.048	0.780	0.048	0.039	0.037
Alkalinity	mg/L		59	10	79	<i>L</i> 9	365	41	36	9	7
Ammonia	mg/L		5	MN	0.3	2	7	_	9.0	_	
Nitrate	mg/L		0.13 J	MN	0.15	0.13	0.16	0.5 U	MM	MN	0.13
Methane	mg/L		1.8	NM	0.017	1.2	4.3	0.42	MN	NM	0.018
Temperature	Deg C		20.3	18.2	19.4	18.7	20.8	20.7	19.1	19.3	20.3
Hd	SU		6.24	6.05	6.59	6.50	7.01	6.54	6.77	4.78	6.83
Conductivity	mS/cm		236	520	149	236	703	165	188	143	164
Dissolved Oxygen	mg/L		0.20	0.49	1.20	0.25	0.21	0.16	0.64	0.44	0.32
ORP	mV	•	-214.0	-141.1	22.2	ΣX	-179.3	-114.8	-72.0	9.6	17.0

Natural yellow color may have interferred with sulfate analysis at MP-2 causing a high bias

Methane analysis performed by Quanterra Laboratories of Dallas, Texas

ORP = oxidation reduction potential

mg/L = milligrams per liter

Deg C = degrees Celcius

SU = Standard Units

mS/cm = microsiemens per centimeter

mV = millivolts

NM = not measured

TABLE 6.7
ESTIMATED ASSIMILATIVE CAPACITY OF
SATURATED SOIL AND GROUNDWATER
Risk-Based Approach to Remediation
BX Service Station
Tyndall AFB, Florida

Electron Acceptor	Background	Concentration in	COPC	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	MTBE
or Metabolic	Concentration	Core of Plume	Assimilative	Assimilative	Assimilative	Assimilative	Assimilative	Assimilative	Assimilative
Byproduct			Capacity ²⁷	Capacity*	Capacity*	Capacity*	Capacity"	Capacity"	Capacity*/
	$(mg/L)^{b'}$	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Oxygen	0.76	0.16	0.20	0.20	0.19	0.19	0.19	0.20	0.22
Ferrous Iron	NΑς	11.95	0.56	0.56	0.55	0.54	0.54	0.57	0.63
Sulfate	30.96	0.00	6.78	6.72	6.59	6.52	6.52	88.9	7.57
Ammonia ^d	0.84	9.03	3.58	3.55	3.49	3.44	3.44	3.64	4.02
Methane	N A	4.30	5.66	5.58	5.51	5.44	5.44	5.73	6.32
				,			17.11	17.00	10.76
	Total		16.78	16.60	16.32	10.14	10.14	17.02	10./0
	Max. 1997 and 1998 Concentration	98 Concentration	23.52, 17.12						

Calculation based on the ratio of the total mass of electron acceptor required to oxidize a given mass of the COPC

b/ mg/L = milligrams per liter

o' NA = not applicable

^d Concentration of ammonia = concentration of ammonia reported as N x 1.29 to convert to ammonia as NH₄

MODELING MIGRATION FROM SUBSURFACE MEDIA TO AMBIENT AND INDOOR AIR TABLE 6.8

Equations		Input Parameters	ırs			
Measured Vapor Phase in Soils	in Soils	C, ed	Equilibrium vapor c	Equilibrium vapor concentration (g/cm ³)		chemical-specific
C, = Maximum measu	C = Maximum measured soil gas concentration	Н	Henry's law constant (dimensionless)	(dimensionless)		chemical-specific
Ţ		M _w	Molecular weight (g/mol)	(lom)		chemical-specific
Effective Vapor Diffusion Coefficient	ion Coefficient	RT	Gas constant*tempe	Gas constant*temperature (cm³-atm/mol)		2.44E+04
$D^{eff} = (\phi_a^{3.33}/\phi_T^{3.33}) * D_{air}$	$D^{eff} = (\phi_a^{3.33}/\phi_T^{3.33}) * D_{air} + (1/H) * (\phi_w^{3.33}/\phi_T^{3.33}) * D_w$	ф	Volumetric content	Volumetric content of pore vapor (dimensionless)	nless)	0.12
		фт	Total volumetric cor	Total volumetric content in soil (dimensionless)	ess)	0.3
Maximum Vapor Flux to Open Space	to Open Space	D_{air}	Diffusion coefficient in air (cm²-day)	t in air (cm²-day)		chemical-specific
$F_{max} = R_v u_{vmax} C_{ver} - (R_v)$	$F_{max} = R_v u_{v,max} C_{v,eq} - (R_v u_{v,max} C_{v,eq})/[1 - exp(R_v u_{v,max} d/D^{eff})]$	D _w	Diffusion coefficient in water (cm ² /day)	t in water (cm ² /day)		chemical-specific
		R	Porous media retard	Porous media retardation (dimensionless)		k, *p,
Ambient Outdoor Concentration (g/cm³)	entration (g/cm³)	u _{v,max}	Convective transpor	Convective transport of vapors (cm/day)		100
$C_{author} = F_{max} L/u_w \delta$		þ	Distance below ground to source (cm)	nd to source (cm)		30
		7	Downwind length of source area (cm)	source area (cm)		2500
Maximum Vapor Flux to Enclosed Space	to Enclosed Space	^n	Wind speed (cm/day)			1.94E+07
$E_{max} = (D^{eff}C_{ve,o}\phi_a^{3.33})/(\phi_T^2 d)$	_b - ² d)	Ø	Breathing height (cm)	(r		1.89E+02
		Abldg	Surface area of building (cm ²)	ling (cm²)		3.10E+06
Ambient Indoor Concentration (g/cm ³)	ntration (g/cm³)	Forack	Fraction of cracks in	Fraction of cracks in foundation (dimensionless)	less)	0.01
$C_{indoor} = (E_{max}A_{blde}F_{crack})/(Air_{exch}V_{bldg}MF)$)/(AirexchVbldgMF)	Airexch	Air exchanges per day	ay		36
1		V	Volume of building (cm ³)	(cm ³)		7.50E+08
		MF	Mixing factor (dimensionless)	nsionless)		0.5
Compound	H M _w	Dair	D.	Measured Cyeq	Coutdoor (mg/m ³)	Cindoor (mg/m³)
Benzene	0.232 78	8	0.95	7.80E-08	1.86E-03	2.17E-05

SECTION 7 TIER 2 ANALYSIS AND IDENTIFICATION OF FINAL CHEMICALS OF CONCERN

7.1 OBJECTIVE OF SITE-SPECIFIC EVALUATION

The Tier 1 analysis conducted in this CAP (Section 4) identified benzene, ethylbenzene, toluene, total xylenes, naphthalene, MTBE, lead, and TRPH as COPCs in groundwater and benzene as a COPC in soil gas. These analytes are evaluated in detail to better define/assess the potential adverse health effects they may cause in current or future human receptors.

The Tier 1 screening process is considered protective of human health because the Tier 1 risk-based screening criteria are based on conservative exposure assumptions. However, analytes identified as COPCs in Section 4 of this CAP (i.e., analytes with representative site concentrations exceeding Tier 1 TCLs) should not automatically be considered to be present at the BX Service Station at levels that pose unacceptable threats to human health given the current and future exposure potential at this site. Rather, the exceedences of the screening criteria indicated that further evaluation under more site-specific exposure scenarios is warranted.

In summary, the objectives of developing site-specific target levels (SSTLs) that include exposure assumptions more representative of actual site conditions are 1) to determine whether current or predicted future site concentrations of COPCs present an unacceptable risk to current and future receptors; and 2) to provide a mechanism or reference to assess the cost and time required to lower site concentrations to achieve adequate risk reduction at the site.

7.2 REVISED CONCEPTUAL SITE MODEL

The preliminary CSM presented in Section 4 was used to qualitatively identify potential human and ecological receptors that may be exposed to site-related contaminants, and to define the types of these potential exposures at or in the vicinity of the BX Service Station (Figure 4.1). The preliminary CSM describes onsite release points, the affected physical media, the types of contaminant transport and fate mechanisms that may be involved at the site, each group of potentially exposed populations or receptors, and how each receptor group could come into contact with site-This CSM was used to identify which of the exposure related contamination. assumptions used to develop generic cleanup criteria most closely approximate site conditions. The exposure assumptions incorporated into the generic industrial TCLs (i.e., Table IV Direct-Exposure II TCLs) were identified as generally representative of the types of exposure that could occur at the BX Service Station, but perhaps greatly overestimated the magnitude of exposure specific to current and expected future site conditions. For example, Tier 1 screening of groundwater assumed unrestricted future use of groundwater. Therefore, the target cleanup criteria presented in Table V (FDEP, 1997) which were developed assuming potable use of groundwater, were used in the Tier 1 screening. The preliminary CSM exposure pathways are reevaluated in this section using the Tier 2 chemical fate information presented in Section 6. It is important to emphasize that the purpose of using the preliminary CSM and the conservative, nonsitespecific TCLs to identify COPCs was to ensure that all subsequent assessment activities beyond the Tier 1 screening evaluation address the full range of contaminants that may present some risk to current or future receptors.

The revised CSM for the BX Service Station, which is presented on Figure 7.1 and briefly reviewed in the following subsections, identifies only those receptors and exposure pathways that realistically may be involved in actual current or hypothetical future exposures. The outcome of the chemical fate assessment presented in Section 6 and the types of exposures likely to occur at this industrial site are reflected in this revised CSM. Justification for each site-specific exposure assumption is provided in subsequent discussions.

7.2.1 Sources, Affected Media, Release Mechanisms, and Contaminant Environmental Transport

The likelihood of release from a source, the nature of the contaminants involved, the affected environmental media, and the probable magnitude of their release all are included in the revised CSM (Figure 7.1). As described in the preliminary CSM (Figure 4.1), releases from the former gasoline USTs have contaminated site soil, soil gas, and groundwater with fuel hydrocarbons. The predominant ongoing release mechanism for groundwater COPCs is leaching from contaminated soils. The lack of mobile LNAPL (free product) detections at the site indicates that mobile LNAPL is not a significant, continuing source of groundwater contamination. Site data indicate that RNA is acting to limit migration of contaminants in concentrations above the TCLs. Therefore, future offsite migration of the contaminant plume is not anticipated to occur to a significant degree, and dissolved contaminants should not impact water supply wells (the closest water-supply well is located approximately 850 feet to the north [Section 3.7]) or downgradient surface water bodies.

7.2.2 Potentially Exposed Receptors, Exposure Points, and Exposure Routes

The revised CSM for the BX Service Station also refines the identification of potentially exposed receptor populations, receptor exposure points, and exposure routes for realistic scenarios based on specific site conditions. These components better reflect the likelihood and extent of human or ecological receptor contact with site-related contaminants. As described in Section 2, the BX Service Station is entirely within the boundaries of the Base. Therefore, potential receptor groups are currently limited to onsite workers and customers. There are currently no completed pathways to offsite receptors, and the fate and transport analyses presented in Section 6 indicate that pathways to offsite receptors will not be completed in the future. Furthermore, the asphalt/concrete cover over much of the site, the current lack of intrusive excavation activity at the site, and the lack of contamination in surface soils, prevents contact with contaminated soil or groundwater by current Base personnel and service station customers.

The industrial nature of the site, and the pavement covering much of the site, precludes the existence of suitable wildlife habitat. No resident ecological receptors were identified for which soils and/or groundwater are likely contaminant exposure media. No exposure pathways involving potential offsite ecological receptors are or will be complete based on the lack of significant offsite contaminant migration.

Using the most conservative exposure assumptions appropriate for the BX Service Station, the only realistic receptors that are likely to become exposed to site-related contaminants are the onsite intrusive worker involved in demolition, removal, and/or construction activities and the nonintrusive worker or service station customer. Inhalation of VOCs (partitioning from either contaminated soil or groundwater) in ambient air at the site could result in a completed pathway for the onsite intrusive worker or for aboveground workers and customers. As described in Section 6, rapid dilution by ambient air will decrease benzene concentrations to levels that are below the OSHA PEL; therefore, this pathway is assumed to be insignificant. Therefore, soil gas concentrations are not expected to pose a significant inhalation risk to aboveground or intrusive workers. However, there are potential risks to future construction workers posed by dermal contact with or incidental ingestion of contaminated soil or groundwater during excavation activities. Therefore, these exposure pathways may be completed in the future.

7.2.3 Summary of Exposure Pathway completion

Given the current and planned future uses of the BX Service Station and the outcome of the chemical fate assessment presented in Section 6, only onsite intrusive workers could be exposed to significant concentrations of site-related contamination in soils and groundwater during excavation activities. Therefore, health-based Tier 2 SSTLs developed for the BX Service Station are those designed to protect hypothetical future onsite intrusive workers from carcinogenic risks and noncarcinogenic hazards via direct contact with or incidental ingestion of soil and groundwater.

7.3 TIER II ANALYSIS FOR SOIL

Table 7.1 presents the chemical-specific soil SSTLs for the BX Service Station. The mdl for benzene in soils exceeded the Tier 1 TCL in at least one sample; therefore, this analyte could not be eliminated from further consideration as a COPC. Note that two sets of SSTLs are presented; a reasonable maximum exposure (RME) and a central tendency (CT). The RME SSTLs are designed to illustrate the residual concentration that can persist in onsite soil given "high-end" (reasonable maximum) exposure potential, whereas the CT SSTLs better illustrate the residual concentration that can persist in onsite soil given mean or average exposure potential. The CT SSTLs are presented for comparative purposes only to provide a less-than-maximum-exposure perspective. RME and CT exposure assumptions are presented on Tables 7.2 and 7.3, respectively.

The construction worker exposure assumptions used to derive the SSTLs were developed for use at Eglin AFB, Florida (McLain, 1998), and have been reviewed and accepted by the FDEP. The exposure pathways incorporated in the SSTLs include dermal exposure, incidental ingestion, and inhalation. COPC toxicity values used in the SSTL derivations are based on toxicity data reported in the Integrated Risk Information System (IRIS) (Micromedex, Inc., 1998) or used by the FDEP to derive the generic Tier 1 target cleanup levels.

As shown in Table 4.1, the maximum mdl for benzene in soils was 2.4 mg/kg, which is the maximum possible soil benzene concentration present in a site soil sample. As shown on Table 7.1, the SSTL for benzene in soils is calculated to be 35.8 mg/kg, indicating that this compound does not pose an appreciable risk to future potential receptors under reasonable site-specific construction worker exposure scenarios.

7.4 TIER II ANALYSIS FOR GROUNDWATER

Table 7.4 presents the chemical-specific groundwater SSTLs for the BX Service Station. As with the soil Tier II analysis, the RME and CT analyses are presented. The groundwater SSTLs are health-based values calculated to protect onsite intrusive workers from health risks associated with exposure to chemical contamination in groundwater. As stated earlier, the generic health-based TCLs are calculated assuming purposeful ingestion of onsite groundwater by onsite workers under residential-type exposure conditions (i.e., 30-year exposure duration, 2 liters per day consumption rate, etc.). In reality, these TCLs would apply only if impacted groundwater from the BX Service Station migrated to offsite locations where a residential land use assumption is more representative of exposure conditions. The groundwater quality data collected at the site since 1995, and the Tier 2 quantitative chemical fate assessment completed in Section 6, demonstrate that no groundwater COPC is expected to migrate to an offsite receptor location.

Tables 7.5 and 7.6 present the exposure assumptions for the RME and CT analyses, respectively. As described in Section 7.3, the construction worker exposure assumptions derived for use at Eglin AFB (McLain, 1998) were used to compute the SSTLs. The exposure pathways incorporated into the groundwater SSTLs are the same as those described for soil in Section 7.3. The approach used to incorporate the inhalation pathway in the SSTL calculations was derived by toxicologists at the University of Florida for a similar site at Homestead AFB, Florida (University of Florida, 1998).

Based on the data presented in Table 7.4, only benzene dissolved in groundwater slightly exceeds its Tier II SSTL. TRPH and total lead SSTLs for groundwater were not calculated because sufficient toxicity data were not available. Total lead is addressed in Section 7.5. Benzene was detected at concentrations above the SSTL of 2,980 μ g/L only at monitoring point MP-2 in March 1998. This monitoring point is located immediately downgradient (northwest) from the former tank pit. It should be noted that the benzene concentration in the field duplicate sample was 3,100 μ g/L (Table 5.3). Site data indicates that the areal extent of groundwater containing benzene concentrations in excess of the SSTLs is limited to the immediate vicinity of MP-2 (Figure 5.1).

7.5 LEAD IN GROUNDWATER AND SOIL

Given that the maximum detected concentration of lead in groundwater (62 ug/L) exceeded the Tier I TCL of 15 ug/L, it was retained for Tier II analysis. However, unlike the other COPCs, there is insufficient toxicity data available to compute a Tier II SSTL for lead. Therefore, it was evaluated for potential effects on the future residential child receptor using the EPA Integrated Exposure Uptake Biokinetic (IEUBK) model (EPA, 1994c). The IEUBK model provides an estimate of potential blood lead levels in residential children associated with exposure to all site media. The use of residential children as the receptor group makes this model very conservative since, as discussed in Section 7.2, the only potential receptor group is currently limited to onsite intrusive workers. The model was evaluated using the mean lead concentration in groundwater [the 95 percent upper confidence limit on the arithmetic mean (12.3 ug/L) was derived to provide a conservative assessment of potential risk]. Given that the maximum detected concentration of lead in soils (23 mg/kg) did not exceed the Tier I TCL of 1,000 mg/kg,

the maximum soil concentration was used in the evaluation to provide a conservative assessment of potential risk.

Per USEPA (1994c) guidance, the probability of an individual in a population having a blood lead level exceeding 10 micrograms per deciliter (ug/dL) should be less than 5 percent. The results of the IEUBK lead model for the BX Service Station indicate that an individual in a population would have only a 0.12% chance of exceeding a blood lead level of 10 ug/dL. This percentage falls below the criteria of 5%, therefore, the impacts of lead in site media on potential future residents are not considered to be significant. The geometric mean blood lead level derived for the population was 2.4 ug/dL, which is well below the level of 10 ug/dL. The input and output of the IEUBK model estimate are provided in Appendix G.

7.6 SUMMARY OF RISK-REDUCTION REQUIREMENTS

Soil contaminant concentrations did not exceed health-protective Tier 2 SSTLs, and soil vapor modeling results (Section 6) indicate that contaminant concentrations in soil gas should not pose a significant risk to potential receptors. Comparison of maximum detected COPC concentrations in groundwater to SSTLs indicate that dissolved benzene at a single location (MP-2) exceeded the RME SSTL. Data collected on destructive and nondestructive attenuation at the site indicate that elevated concentrations of groundwater contaminants are not migrating off-site, and are being reduced over time by natural attenuation processes. Consequently, implementation of engineered remediation to reduce dissolved contaminant concentrations in groundwater is not required to protect human receptors and underlying groundwater quality, given the types of exposure likely to occur at this site. However, engineering controls that eliminate excavation below the water table or that require ambient air monitoring and the use of appropriate personal protective equipment should excavation be required near MP-2 should be implemented to prevent exposure of intrusive workers to site-related benzene concentrations that exceed the benzene SSTL. These administrative controls would need to be in place and enforced until maximum benzene concentrations in groundwater decrease to below the Tier 2 SSTL of 2,980 µg/L (estimated to occur in 2 to 3 years [year 2000]) (Appendix F). After all SSTLs are met, excavations that intercept the water table could proceed, however, worker protection and ambient air monitoring are still recommended.

Fate and transport modeling results presented in Section 6 indicate that residual concentrations of groundwater COPCs above Tier 1 TCLs (the long-term cleanup goals) may persist for up to seventy years unless engineered source reduction is implemented at the site. Although seventy years is a conservative estimate, long-term monitoring/ site management may not be a reasonable option. Therefore, Section 8 describes candidate source removal technologies that could be used to achieve Tier 1 TCLs within a reasonable time frame.

COMPARISON OF MAXIMUM SOIL DETECTIONS TO SITE-SPECIFIC TARGET LEVELS (SSTLs) Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida TABLE 7.1

		Detected Site			Does Detected Site Maximum	Site Maximum
		Maximum	Tier 2 Health	Fier 2 Health-Based SSTL	Concentration Exceed SSTL?	Exceed SSTL?
Chemical of Potential Concern	Units	Concentration"	RME	CT	RME	CT
Benzene	mg/kg ^{b/}	2.40E+00	3.58E+01	6.32E+02	No	No

^{a/} Maximum detection at BX Service Station

 $^{^{6&#}x27;}$ mg/L = milligrams per kilogram

TABLE 7.2
CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - SOIL INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO
RME SCENARIO

Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

kg days/yr						
days/yr		RfDo = Reference Dose (Oral)	se (Oral)	-	mg/kg-day	
		RfDd = Reference Dose (Dermal)	se (Dermal)	-	mg/kg-day	
yr		RfDi = Reference Dose (Inhalation)	e (Inhalation)	-	mg/kg-day	
unitless		SFo = Oral Slope Factor	or	_	kg-day/mg	
mg/day		SFd = Dermal Slope Factor	actor		kg-day/mg	
5300 cm ²		SFi = Inhalation Slope Factor	Factor		kg-day/mg	
mg/cm²-day		SSTL-non = Noncarcinogenic PRG	nogenic PRG		mg/kg	
unitless		SSTL-car = Carcinogenic PRG	nic PRG	_	mg/kg	
chem-specific m ³ /kg						
1.24E+09 m ³ /kg		SSTL Calculations				
1.00E-06 kg/mg		Noncarcinogens				
		SSTL (mg/kg) = ((THQ*BW*AT)/((1/RfDo*CF*EF*ED*IR*FI)+	Q*BW*AT)/((1/RfC)0*CF*EF*EL)*IR*FI)+	
365 days		(1/RfDd*CF*SA*AF*DABS*EF*ED)+(1/RfDi*IRi*EF*ED*(1/VF+1/PEF)))	DABS*EF*ED)+(1	/RfDi*IRi*EF	*ED*(1/VF+	1/PEF)))
25550 days					,	
m³/day		Carcinogens				
1.00E-06 unitless		SSTL (mg/kg) = ((TR	*BW*AT)/((SFo*CI	f*EF*IR*FI*E	ED)+	
unitless		(SFd*CF*SA*AF*DA	\BS*EF*ED)+(SFi*	IRi*EF*ED*(1/VF+1/PEF)	<u> </u>
Carcinogen					SSTL-non	SSTL-car
Classification " VF b' RfDo c'	OABS "	RfDd "RfDi"	SFo " SFd "		(mg/kg)	(mg/kg)
3.11E+03 3.00E-03	9.00E-01	2.70E-03 1.70E-03	2.90E-02 3.22E-0	2 2.90E-02		4.92E+01
n 3.11E+03						Carcinogens SSTL (mg/kg) = ((TR*BW*AT)/((SFo*CF*EF*IR*FI*ED)+ (SFd*CF*SA*AF*DABS*EF*ED)+(SFi*IRi*EF*ED*(1/VF+1/PEF SSTL-non RfDd o' RfDi o' SFo o' SFd o' SFi o' (mg/kg) 2.70E-03 1.70E-03 2.90E-02 3.22E-02 2.90E-02 3.58E+01

^{al} USEPA classification system for carcinogens: A = human carcinogen

^{bl} Volatilization factors taken from Table 3a of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

d Toxicity values taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

TABLE 7.3
CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - SOIL INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO
CT SCENARIO
Risk-Based Approach to Remediation

t-based Approach to Kemediati BX Service Station Tyndall AFB, Florida

Toxicity Value Definitions	RfDo = Reference Dose (Oral) mg/kg-day	RfDd = Reference Dose (Dermal) mg/kg-day	RfDi = Reference Dose (Inhalation) mg/kg-day	SFo = Oral Slope Factor kg-day/mg	SFd = Dermal Slope Factor kg-day/mg	SFi = Inhalation Slope Factor kg-day/mg	SSTL-non = Noncarcinogenic PRG mg/kg	SSTL-car = Carcinogenic PRG mg/kg		SSTL Calculations	Noncarcinogens	SSTL (mg/kg) = ((THQ*BW*AT)/((1/RfDo*CF*EF*ED*IR*FI) +	(1/RfDd*CF*SA*AF*DABS*EF*ED)+(1/RfDi*IRi*EF*ED*(1/VF+1/PEF)))		Carcinogens	SSTL (mg/kg) = ((TR*BW*AT)/((SFo*CF*EF*IR*FI*ED) +	$(SFd^*CF^*SA^*AF^*DABS^*EF^*ED)+(SFi^*IRi^*EF^*ED^*(1/VF+1/PEF)))$
	kg	days/yr	yr	unitless	mg/day	cm ²	mg/cm ² -day	unitless	m³/kg	m³/kg	kg/mg		days	days	m³/day	unitless	unitless
	70	09	1	•	200	3160	0.2	0.01	chem-specific	1.24E+09	1.00E-06		365	25550	3.2	1.00E-06	-
Exposure Assumptions	Body Weight(BW)	Exposure Frequency (EF)	Exposure Duration (ED)	Fraction Ingested (FI)	Ingestion Rate (IR)	Surface Area (SA)	Adherence Factor (AF)	Dermal Absorption Factor (DABS)	Volatilization Factor (VF)	Particulate Emission Factor (PEF)	Conversion Factor (CF)	Averaging Time (AT)	Noncarcinogens	Carcinogens	Inhalation Rate (IRi)	Target Risk Level (TR)	Target Hazard Quotient (THQ)

	Carcinogen									SSTL-non	SSTL-car
Chemical of Potential Concern	Classification "	VF b'	RfDo "	OABS "	/ RMd d RMi d SFo d SFd d SFi d	RfDi ^o	SFo °	SFd °	SFi ^o	(mg/kg) (mg/kg)	(mg/kg)
Volatiles Benzene	Ą	3.11E+03	3.00E-03	9.00E-01	2.70E-03 1.70E-03 2.90E-02 3.22E-02	1.70E-03	2.90E-02		2.90E-02	2.90E-02 6.32E+02	8.32E+02

^{a'} USEPA classification system for carcinogens: A = human carcinogen

bl Volatilization factors taken from Table 3a of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

O Toxicity values taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

COMPARISON OF MAXIMUM GROUNDWATER DETECTION TO SITE-SPECIFIC TARGET LEVELS (SSTLs) Risk-Based Approach to Remediation Tyndall AFB, Florida **BX** Service Station TABLE 7.4

		Detected Site			Does Detected Site Maximum	Site Maximum
		Maximum	Tier 2 Health-Based SSTL	Based SSTL	Concentration Exceed SSTL?	Exceed SSTL?
Chemical of Potential Concern	Units	Concentration"	RME	CT	RME	CI
Benzene	μg/L ^{b/}	3.40E+03	2.98E+03	3.06E+04	Yes	χο
Ethylbenzene	µg/L	1.40E+03	5.33E+04	5.91E+05	No	No
MTBE	µg/L	1.30E+03	4.18E+04	4.72E+05	N _o	N _o
Toluene	µg/L	5.00E+03	1.26E+05	1.34E+06	No	Š
Xylenes	$\mu g/L$	1.60E+04	1.16E+06	1.30E+07	N _o	No
Naphthalene	$^{ m hg/L}$	3.20E+02	2.60E+04	2.85E+05	No	No
TRPH ^{c/}	mg/L ^{d/}	4.10E+01	١	1	!	:
Total Lead	µg/L	6.20E+00	1	-	1	

a Maximum detection at BX Service Station

b' ug/L = micrograms per liter

c/ TRPH = total recoverable petroleum hydrocarbon

^d mg/L = milligrams per liter
e' SSTL could not be calculated

TABLE 7.5 CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - GROUNDWATER INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO RME SCENARIO

			T V1 D. G isti	
Exposure Assumptions			1 OXICITY VAIUE DETINITIONS	
Body Weight (BW)	20	kg kg	RfDo = Reference Dose (Oral)	mg/kg-day
Exposure Frequency (EF)	46	days/yr	RfDd = Reference Dose (Dermal)	mg/kg-day
Exposure Duration (ED)		yr	RfDi = Reference Dose (Inhalation)	mg/kg-day
Ingestion Rate (IR)	0.005	L/hr	SFo = Oral Slope Factor	kg-day/mg
Conversion Factor (CF)	0.001	L/cm³	SFd = Dermal Slope Factor	kg-day/mg
Exposure Time Dermal(ET _D)	2	hr/day	SFi = Inhalation Slope Factor	kg-day/mg
Permeability Constant (PC)	chem-specifi	cm/hr	SSTL-non = Noncarcinogenic SSTL	mg/L
Surface Area (SA)	5300	cm ²	SSTL-car = Carcinogenic SSTL	mg/L
Oral Absorption Factor (OABS)	chem-specifi	unitless		
			Mass Transfer Coefficient (K) (cm/s) chem-specific	<u>,2</u>
Exposure Time Inhalation (ET ₁)	∞	hrs/day	1/K = 1/K(1) + [(8.2E-5(atm m3/mol oK)*298oK)/(HCL*K(g))])*298°K)/(HCL*K(g))]
Inhalation Rate (InhR)	2.5	m³/hr		
Area of Trench (A)	300000	cm^2	Liquid Mass Transfer Coefficient (K(1)) (cm/s) chem-specific	em-specific
Length of Side Perpendicular			$K(I) = ([32(g/mol)/MW]^{0.5})*0.0061(cm/sec)$	cm/sec)
to Wind (LS)	15	E		
Average Wind Speed (V)	4.47	m/sec	Gas Mass Transfer Coefficient (K(g)) (cm/s) chem-specific	ı-specific
Mixing Height Above Water (MH)	5	ш	$K(g) = ([18(g/mol)/MW]^0.335)*1.39(cm/sec)$	cm/sec)
Molecular Weight (MW)	chem-specifi	g/mol		
Henry's Law Constant (HLC)	chem-specifi	atm m³/mol	Noncarcinogens	
Averaging Time (AT)			SSTL (mg/L) = (THQ*BW*AT)/[ED*EF([I/RfDo*IR*ET]+[I/RfDd*SA*PC*ET*CF]+[I/RfDd*SA*PC*F]+[I/RfDd*SA*PC*F]+[I/RfDd*SA*PC*F]+[I/RfDd*SA*PC*F]+[I/RfDd*SA*PC*F]+	<*ET]+[1/RfDd*SA*PC*ET*CF]+
Noncarcinogens	365	days	[(ET*InhR*CF*K*A)/(RfDi*LS*V*MH)])]	
Carcinogens	25550	days		
Target Risk Level (TR)	1.00E-06	unitless	Carcinogens	
Target Hazard Quotient (THQ)	_	unitless	SSTL (mg/L) = (TR*BW*AT)/[ED*EF([SF0*IR*ET]+[SFd*SA*PC*ET*CF]+ [(SFi*ET*InhR*CF*K*A)/(LS*V*MH)])]]+[SFd*SA*PC*ET*CF]+

														SSTL	SSTL
														Carcinogen	Non-Carc.
Chemical Name	MW	HLC "	HLC 2 PC b OABS c'	OABS d	RfDo ^{d/}	RMd	RfDi	SFo	SFd	SFi	K(g)	K(I)	×	mg/L	mg/L
Volatiles															
Benzene	78.11	5.60E-03	2.10E-02	9.00E-01	3.00E-03	2.70E-03	1.70E-03	2.90E-02	3.22E-02	2.90E-02	8.50E-01	3.90E-03	3.83E-03	3.10E + 00	2.98E + 00
Ethylbenzene	106.17	7.90E-03		8.00E-01	1.00E-01	8.00E-02	2.90E-01	;	1	:	7.67E-01	3.35E-03	3.30E-03	ı	5.33E+01
MTBE	88.15	5.87E-04	4.20E-03	8.00E-01	5.00E-03	4.00E-03	8.60E-01	;	i	1	8.16E-01	٠,	3.10E-03	1	4.18E + 01
Toluene	92.14	6.60E-03	4.50E-02	8.00E-01	2.00E-01	1.60E-01	1.14E-01	:	;	;	8.04E-01	3.59E-03	3.54E-03	1	1.26E + 02
Xylene	106.17	6.70E-03	8.00E-02	8.95E-01	2.00E+00	1.79E+00	1.80E+00	:	1	ł	7.67E-01	3.35E-03	3.30E-03	ı	1.16E + 03

CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - GROUNDWATER INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO TABLE 7.5 (Continued) RME SCENARIO

Risk-Based Approach to Remediation Tyndall AFB, Florida **BX Service Station**

Exposure Assumptions			Toxicity Value Definitions	
Do.4. 11/2:24: (DII)	02	J	R(D) = Reference Dose (Oral)	me/ke-dav
Body weight (Dw)	2	X9.44		(m. G. A.
Exposure Frequency (EF)	5	days/yr	RfDd = Reference Dose (Dermal)	mg/kg-day
Exposure Duration (ED)		ĸ	RfDi = Reference Dose (Inhalation)	mg/kg-day
Ingestion Rate (IR)	0.005	L/hr	SFo = Oral Slope Factor	kg-day/mg
Conversion Factor (CF)	0.001	L/cm ³	SFd = Dermal Slope Factor	kg-day/mg
Exposure Time Dermal(ET _D)	7	hr/day	SFi = Inhalation Slope Factor	kg-day/mg
Permeability Constant (PC)	chem-specific	cm/hr	SSTL-non = Noncarcinogenic SSTL	mg/L
Surface Area (SA)	5300	cm^2	SSTL-car = Carcinogenic SSTL	mg/L
Oral Absorption Factor (OABS)	chem-specific	unitless	-	
•	1		Mass Transfer Coefficient (K) (cm/s) chem-specific	ffe
Exposure Time Inhalation (ET _I)	∞	hrs/day	$1/K = 1/K(1) + [(8.2E-5(atm m^3/mol ^9K)*298^9K)/(HCL*K(g))]$.298°K)/(HCL*K(g))]
Inhalation Rate (InhR)	2.5	m³/hr		
Area of Trench (A)	300000	cm^2	Liquid Mass Transfer Coefficient (K(I)) (cm/s) chem-specific	lem-specific
Length of Side Perpendicular			$K(1) = ([32(g/mol)/MW]^{0.5})*0.0061(cm/sec)$	m/sec)
to Wind (LS)	15	£		
Average Wind Speed (V)	4.47	m/sec	Gas Mass Transfer Coefficient (K(g)) (cm/s) chem-specific	n-specific
Mixing Height Above Water (MH)	2	E	$K(g) = ([18(g/mol)/MW]^0.335)*1.39(cm/sec)$	n/sec)
Molecular Weight (MW)	chem-specific	g/mol		
Henry's Law Constant (HLC)	chem-specific atm m3/mol	tm m³/mol	Noncarcinogens	
Averaging Time (AT)			$SSTL\ (mg/L) = (THQ*BW*AT)/[ED*EF([1/RtDo*IR*ET]+[1/RtDd*SA*PC*ET*CF]+[1/Rtd*SA*PC*ET*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]+[1/Rtd*SA*PC*CF]$	*ET]+[1/RtDd*SA*PC*ET*CF]+
Noncarcinogens	365	days	[(ET*InhR*CF*K*A)/(RfDi*LS*V*MH)])]	
Carcinogens	25550	days		
Target Risk Level (TR)	1.00E-06	unitless	Carcinogens	
Target Hazard Quotient (THQ)		unitless	$SSTL\ (mg/L) = (TR*BW*AT)/[ED*EF([SFo*IR*ET]+[SFd*SA*PC*ET*CF]+$	+[SFd*SA*PC*ET*CF]+
,			[(SFi*ET*InhR*CF*K*A)/(LS*V*MH)])]	

a/ Henry's Law Constants taken from Table 3a of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

b/ Permeability constants taken from or calculated per Dermal Exposure Assessment: Principles and Application (USEPA, 1992).
c/ The oral absorption values were taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).
d/ Toxicity values taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

e/ "--" indicates that no toxicity data is available.

TABLE 7.6 CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - GROUNDWATER INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO CT SCENARIO Risk-Based Approach to Remediation

BX Service Station Tyndall AFB, Florida

Exposure Assumptions		The state of the s	Toxicity Value Definitions		
Body Weight (BW)	02	ko	RfDo = Reference Dose (Oral)	mg/kg-dav	
Dony weight (Dw)	2	S. A.			
Exposure Frequency (EF)	15	days/yr	RtDd = Reference Dose (Dermal)	mg/kg-day	
Exposure Duration (ED)	-	yr	RfDi = Reference Dose (Inhalation)	mg/kg-day	
Ingestion Rate (IR)	0.0025	L/hr	SFo = Oral Slope Factor	kg-day/mg	
Conversion Factor (CF)	0.001	L/cm³	SFd = Dermal Slope Factor	kg-day/mg	
Exposure Time Dermal(ET _D)	-	hr/day	SFi = Inhalation Slope Factor	kg-day/mg	
Permeability Constant (PC)	chem-specifi	cm/hr	SSTL-non = Noncarcinogenic SSTL	mg/L	
Surface Area (SA)	2910	cm ²	SSTL-car = Carcinogenic SSTL	mg/L	
Oral Absorption Factor (OABS)	chem-specifi	unitless			
			Mass Transfer Coefficient (K) (cm/s) chem-specific	Ü	
Exposure Time Inhalation (ET ₁)	8	hrs/day	1/K = 1/K(1) + [(8.2E-5(atm m3/mol oK)*298oK)/(HCL*K(g))]	*298°K)/(HCL*K(g))]	
Inhalation Rate (InhR)	8.0	m3/hr			
Area of Trench (A)	300000	cm^2	Liquid Mass Transfer Coefficient (K(l)) (cm/s) chem-specific	m-specific	
Length of Side Perpendicular			$K(I) = ([32(g/mol)/MW]^{0.5})*0.0061(cm/sec)$	m/sec)	
to Wind (LS)	15	E			
Average Wind Speed (V)	4.47	m/sec	Gas Mass Transfer Coefficient (K(g)) (cm/s) chem-specific	specific	
Mixing Height Above Water (MH)	2	ш	$K(g) = ([18(g/mo1)/MW]^{0.335})*1.39(cm/sec)$	m/sec)	
Molecular Weight (MW)	chem-specifi	g/mol			
Henry's Law Constant (HLC)	chem-specifi	atm m³/mol	Noncarcinogens		
Averaging Time (AT)			SSTL(mg/L) = (THQ*BW*AT)/[ED*EF([1/RfDo*IR*ET]+[1/RfDd*SA*PC*ET*CF] + (FF) +	*ET]+[1/RfDd*SA*PC*ET*CF]+	
Noncarcinogens	365	days	[(ET*InhR*CF*K*A)/(RfDi*LS*V*MH)])]		
Carcinogens	25550	days			
Target Risk Level (TR)	1.00E-06	unitless	Carcinogens		
Target Hazard Quotient (THQ)		unitless	SSTL (mg/L) = (TR*BW*AT)/[ED*EF([SFo*IR*ET]+[SFd*SA*PC*ET*CF]+ [(SFi*ET*InhR*CF*K*A)/(LS*V*MH)])]	+{SFd*SA*PC*ET*CF}+	
			10.000	SSTL SSTL	IL

														Carcinogen	Non-Carc.
Chemical Name	i	MW HLC " PC " OABS "	PC b'	OABS ^{e/}	RfDo ^{d/}	RMd	RMi	SFo	SFd	SFi	K(g)	K(I)	*	mg/L	mg/L
Volatiles															
Benzene	78.11	5.60E-03	2.10E-02	9.00E-01	3.00E-03	2.70E-03	1.70E-03	2.90E-02	3.22E-02	2.90E-02	8.50E-01	3.90E-03	3.83E-03	3.26E + 01	3.06E + 01
Ethylbenzene	106.17			8.00E-01	1.00E-01	8.00E-02	2.90E-01	l e	:	;	7.67E-01	3.35E-03	3.30E-03	1	5.91E + 02
MTBE	88.15	5.87E-04	4.20E-03	8.00E-01	5.00E-03	4.00E-03	8.60E-01	;	;	1	8.16E-01	3.68E-03	3.10E-03	1	4.72E+02
Toluene	92.14	6.60E-03	4.50E-02	8.00E-01	2.00E-01	1.60E-01	1.14E-01	;	1	ì	8.04E-01	3.59E-03	3.54E-03	;	1.34E + 03
Xylene	106.17	6.70E-03	8.00E-02	8.95E-01	2.00E+00	1.79E+00	1.80E+00	:	:	;	7.67E-01	3.35E-03	3.30E-03	1	1.30E + 04
n															

CALCULATION OF SITE-SPECIFIC TARGET LEVELS (SSTLs) - GROUNDWATER INDUSTRIAL LAND USE - CONSTRUCTION SCENARIO TABLE 7.6 (Continued) CT SCENARIO

Risk-Based Approach to Remediation Tyndall AFB, Florida **BX** Service Station

Transmo Assumptions			Toxicity Value Definitions	
Exposure Assumptions				
Body Weight (BW)	70	kg	RfDo = Reference Dose (Oral)	mg/kg-day
Exposure Frequency (EF)	15	days/yr	RfDd = Reference Dose (Dermal)	mg/kg-day
Exposure Duration (ED)	_	14	RfDi = Reference Dose (Inhalation)	mg/kg-day
Ingestion Rate (IR)	0.0025	L/hr	SFo $=$ Oral Slope Factor	kg-day/mg
Conversion Factor (CF)	0.001	L/cm ³	SFd = Dermal Slope Factor	kg-day/mg
Exposure Time Dermal(ET _D)	1	hr/day	SFi = Inhalation Slope Factor	kg-day/mg
Permeability Constant (PC)	chem-specific	cm/hr	SSTL-non = Noncarcinogenic SSTL	mg/L
Surface Area (SA)	2910	cm ²	SSTL-car = Carcinogenic SSTL	mg/L
Oral Absorption Factor (OABS)	chem-specific	unitless		
•	ı		Mass Transfer Coefficient (K) (cm/s) chem-specific	pecific
Exposure Time Inhalation (ET ₁)	∞	hrs/day	1/K = 1/K(1) + [(8.2E-5(atm m3/mol °K)*298°K)/(HCL*K(g))]	K)*298°K)/(HCL*K(g))]
Inhalation Rate (InhR)	8.0	m3/hr		
Area of Trench (A)	300000	cm^2	Liquid Mass Transfer Coefficient (K(I)) (cm/s) chem-specific	chem-specific
Length of Side Perpendicular			$K(1) = ([32(g/mol)/MW]^{0.5})*0.0061(cm/sec)$	il(cm/sec)
to Wind (LS)	15	ш		
Average Wind Speed (V)	4.47	m/sec	Gas Mass Transfer Coefficient (K(g)) (cm/s) chem-specific	shem-specific
Mixing Height Above Water (MH)	2	ш	$K(g) = ([18(g/mol)/MW]^0.335)*1.39(cm/sec)$	9(cm/sec)
Molecular Weight (MW)	chem-specific	lom/g		
Henry's Law Constant (HLC)	chem-specific atm m3/mol	atm m³/mol	Noncarcinogens	
Averaging Time (AT)			SSTL(mg/L) = (THQ*BW*AT)/[ED*EF([1/RtDo*IR*ET]+[1/RtDd*SA*PC*ET*CF]+[1/RtDd*SA*PC*ET*CF] + (1/RtDo*IR*ET)	*IR*ET]+[1/RfDd*SA*PC*ET*CF]+
Noncarcinogens	365	days	[(ET*InhR*CF*K*A)/(RfDi*LS*V*MH)])]	
Carcinogens	25550	days		
Target Risk Level (TR)	1.00E-06	unitless	Carcinogens	
Target Hazard Quotient (THQ)	-	unitless	$SSTL\ (mg/L) = (TR*BW*ATY ED*EF(SFO*!R*ET + SFG*SA*PC*EI*CF + (SFi*ET*InhR*CF*K*A)/(LS*V*MH)])]$	3T]+[SFd*SA*PC*ET*CF]+

Non-Carc	mg/L	2.85E+02
Carcinogen	mg/L	ŀ
	К	2.51E-03
	K()	3.05E-03
	K(g)	7.20E-01
	SFi	ı
	SFd	1
	SFo	ı
	RŒ	4.00E-02
	RfDd	4.00E-02
	REDo 6	4.00E-02
	PC" OABS"	1.00E+00
	PC	6.90E-02 1.00E+00
	HLC"	4.80E-04
	MW	128.18
	Chemical Name	PAHs Naphthalene

a/ Henry's Law Constants taken from Table 3a of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

b/ Permeability constants taken from or calculated per Dermal Exposure Assessment: Principles and Application (USEPA, 1992).

c/ The oral absorption values were taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

d/ Toxicity values taken from Tables 4a and 4b of Technical Report: Development of Soil Cleanup Target Levels (SCTLs) for Chapter 62-770, F.A.C. (FDEP, 1997).

e/ "--" indicates that no toxicity data is available.

SECTION 8 REMEDIAL ALTERNATIVES EVALUATION

As described in Section 7, benzene was detected in groundwater at monitoring point MP-2 at a concentration that exceeded its matrix-specific Tier 2 SSTL. Fate and transport modeling results presented in Section 6 suggest that maximum dissolved benzene concentrations should decrease below the Tier 2 SSTL for benzene within approximately 3 years. However, the modeling results also indicate that residual concentrations of groundwater COPCs above Tier 1 TCLs are expected to persist for forty to eighty years unless some type of active source removal is implemented at the site. Two potential remedial alternatives are described in this section. Alternative 1 consists of RNA with institutional controls and long-term monitoring (LTM). Alternative 2 consists of all of the elements of Alternative 1, plus *in situ* biosparging and SVE.

8.1 REMEDIAL ALTERNATIVE 1 – RNA WITH INSTITUTIONAL CONTROLS AND LTM

Land and groundwater use restrictions are considered necessary components of any corrective action at this site to ensure that the exposure assumptions used to develop the Tier 2 SSTLs are representative of site exposure conditions. Maintaining the light industrial land use at this site, and barring unrestricted access to use of groundwater are consistent with the planned near-term use of this site. Limitations on groundwater use (i.e., groundwater cannot be used as a potable drinking water source until Tier 1 TCLs have been uniformly achieved throughout the site) will not impose additional restrictions on the current or planned new-term future use of this site.

Groundwater monitoring also should be implemented to track the progress of both natural and engineered remediation and to verify that no unacceptable receptor exposures could occur while remediation is in progress. The Bioscreen model results presented in Section 6 indicate that groundwater contaminant concentrations may not uniformly decrease below Tier 1 TCLs for 70 years. The present worth cost of 70 years of LTM at the site is estimated to be approximately \$214,000. An annual adjustment factor of 7 percent was assumed in present-worth calculations. The annual adjustment factor is the difference between the rate of inflation and the cost of money (USEPA, 1988). Cost calculations are contained in Appendix H. This cost assumes that 8 wells are sampled annually for three years, followed by biennial (every other year) sampling for the remaining 67 years.

8.2 REMEDIAL ALTERNATIVE 2 – RNA WITH INSTITUTIONAL CONTROLS, LTM, AND SOURCE AREA BIOSPARGING/SVE

The vertical extent of contamination at the BX Service Station is not known with precision. However, available data indicate that residual soil contamination is present both above and below the average water table. Implementation of vadose zone remediation technologies such as bioventing or SVE would rapidly remediate the area above the water table; however, residual contamination in the capillary fringe and saturated zone would only be remediated during low-water periods when this contaminated interval is dewatered and aerated. Implementation of biosparging in the source area would expedite reductions in contaminant concentrations in vadose zone,

capillary fringe, and saturated soils in the source area. Biosparging should increase the DO concentration in saturated soils and groundwater to about 1 to 2 mg/L within the source area. Incidental bioventing of vadose zone soils is anticipated as oxygen injected into the subsurface diffuses through the groundwater and capillary fringe soils. An SVE system could be operated concurrently to remove vapor-phase contamination generated by the biosparging system and prevent potential transport to occupied buildings. The reduction of contamination in the source area via the biosparging/SVE system will serve to reduce the total mass of contamination in groundwater (i.e., expedite attainment of Tier 2 SSTLs and eventually Tier 1 RBSLs).

Bioscreen modeling results presented in Section 6 indicate that groundwater contaminant concentrations would uniformly decrease below Tier 1 TCLs within approximately 17 years if a source removal action similar to the one described above is implemented at the site. The present worth cost of three years of biosparging and SVE, combined with 17 years of annual groundwater sampling of 8 wells, is estimated to be \$505,000. Cost calculations are contained in Appendix H. The cost assumes operation of an internal combustion engine for vapor treatment for six months, a 15-foot spacing for biosparging wells, and installation of a total of 18 sparging wells and two SVE wells at the former and current tank pits in the areas characterized by excessively contaminated soil as defined by BCM (1995 and 1997). The biosparging/SVE system would be operated for the three years.

8.3 REMEDIAL ALTERNATIVE 3 – RNA WITH INSTITUTIONAL CONTROLS AND LTM TO VERIFY ATTAINMENT OF SSTLS, FOLLOWED BY INACTIVE STATUS

Under Alternative 3, the site would be monitored annually for an estimated 3 years to document the attainment of Tier II groundwater SSTLs, verify that the groundwater plumes are stable or receding, and more firmly establish temporal groundwater quality trends. Following this monitoring period, LTM would cease and the site would be placed in an inactive (but managed) status or would only be monitored infrequently (e.g. every five years). Groundwater monitoring would be resumed or performed more frequently, if land use and/or ownership at the site changed (e.g. became residential). Implementation of this alternative would require that the site remain administratively "on the books" during the inactive period so that the proper institutional controls were enforced (e.g. proper worker protection procedures were followed in the event that excavation work was required) and the appropriate personnel remained aware of the site's status.

8.4 RECOMMENDED REMEDIAL ALTERNATIVE

Alternative 3 achieves the best combination of risk reduction and cost effectiveness; therefore, implementation of this alternative is recommended if it is accepted by the regulatory community. If Alternative 3 is not acceptable to the regulatory community, then limited additional groundwater sampling should be performed prior to selecting either Remedial Alternative 1 or 2. Specifically, well MW-03 should be resampled at least once to assess if the 1998 data are representative of contaminant concentrations at the site or is indicative of seasonal fluctuation. This sampling is recommended because as discussed above, the 70 years to reach TCLs in Alternative 1 is based on one dissolved xylene concentration of 16 mg/L detected at MW-03 in 1997. In 1998, the dissolved xylene concentration at the same location decreased to 6.9 mg/L. When the 6.9 mg/L is

input into the BIOSCREEN model instead of the 16 mg/L, xylene is predicted to fall below TCLs within 30 years after 1998 instead of 70 years (Appendix F).

If the resampling of MW-03 confirms a decrease in xylene concentration, an engineered remedial action like Alternative 2 may not be necessary. If the predicted time frame to achieve TCLs remains unacceptably long, then Alternative 2 should be selected.

The progress of source removal and RNA will be monitored using the existing network of monitoring wells and two proposed monitoring wells. Additional details on the well locations and the frequency and types of groundwater analysis recommended to confirm the effectiveness of source removal and ongoing natural processes and to verify the completion of a cleanup appropriate for an industrial site are presented in the LTM plan included in Section 9.

SECTION 9 LONG-TERM MONITORING PLAN

9.1 OVERVIEW

The objectives of the LTM are as follows:

- To assess site conditions over time;
- To confirm the effectiveness of naturally occurring processes of reducing contaminant mass and minimizing contaminant migration; and
- To evaluate the effectiveness of RNA or any engineered remedial actions.

The LTM plan consists of identifying groundwater sampling locations and developing a sampling and analysis strategy. The strategy described in this section is designed to assess the effectiveness of current remedial actions through measurement of the reduction of contaminant mass, and the rate of groundwater remediation. In the event that data collected under this LTM program indicate that current remedial actions are insufficient to be protective of human health and the environment, additional engineered controls may be necessary. A site-specific groundwater SAP and institutional control plan should be prepared prior to initiating the LTM program.

9.2 LONG-TERM GROUNDWATER MONITORING WELLS

A total of 8 monitoring wells should be included in the LTM program. These wells include MW-01, MW-03, MW-05, MW-07, MW-03-97, MW-05-97, a replacement well for MP-2, and a replacement well for MP-3. These wells include four wells without or very little hydrocarbon concentrations (one upgradient and three downgradient) and four wells with historical hydrocarbon concentrations (Figure 2.1).

9.3 SAMPLING DURATION AND FREQUENCY

The frequency of groundwater monitoring will depend on which remedial alternative in Section 8 is selected. If the data collected during the LTM program support the effectiveness of the selected remedial alternative at this site, it may be possible to reduce or eliminate sampling. If the data collected at any time during the monitoring period indicate the need for additional remedial activities at the site, sampling frequency should be adjusted accordingly. Previous monitoring results can be used to select the optimum time for performing the annual sampling events (e.g., during the time when maximum concentrations are detected).

9.4 ANALYTICAL PROTOCOL

All LTM wells will be sampled and analyzed to verify the effectiveness of naturally-occurring remediation processes at the site. At the beginning of each sampling event, water levels should be measured in all site monitoring wells. Groundwater samples collected from the LTM wells should be analyzed for the parameters listed in Table 9.1.

TABLE 9.1 LONG-TERM GROUNDWATER MONITORING ANALYTICAL PROTOCOL Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

on Field or Fixed-Base Laboratory	lass Field eD, per	low- Field	low- Field		n a Field assure i cell	mL Field	mL Fixed-base
Sample Volume, Sample Container, Sample Preservation	Collect 100 mL of water in a glass container; for Method A3500-FeD, acidify with hydrochloric acid per method	Measure at well-head using a flow- through cell	Measure at well-head using a flow- through cell	Measure at well-head using a flow- through cell	Collect 100–250 mL of water in a glass or plastic container or measure at wellhead using flow-through cell	Collect water samples in a 100 mL plastic container;	Collect water samples in a 500 mL plastic container; cool to 4°C; add
Recommended Frequency of Analysis	Every Sampling Event	Every Sampling Event	Every Sampling Event	Every Sampling Event	Every Sampling Event	Every Sampling Event	Every Sampling Event
Data Use	May indicate an anaerobic degradation process due to the depletion of oxygen, nitrate, and manganese	Purging adequacy; metabolism rates for microorganisms depend on temperature	Purging adequacy; concentrations less than 1 mg/L generally indicate an anaerobic pathway	Purging adequacy; aerobic and anaerobic processes are pH-sensitive	General water quality parameter used as a marker to verify that site samples are obtained from the same groundwater system	Most reduced form of nitrogen; metabolic byproduct of anaerobic microbial respiration	Measured for regulatory compliance.
Comments	Filter if turbid	Measure at well- head	Measure at well-head; refer to Method A4500 for a comparable laboratory procedure	Measure at well- head	Measure at well- head	Filter if turbid	Do not filter
Wethod (Beference	Colorimetric A3500-Fe D or Hach 25140-25	E170.1, direct-reading meter	Dissolved oxygen meter	E150.1/SW9040, direct-reading meter	E120.1/SW9050, direct-reading meter	CHEMetrics Method 1510, ASTM 4500: NH3	SW 7421
A society	Ferrous Iron (Fe ²⁺)	Temperature	Dissolved Oxygen	Hq	Conductivity	Ammonia (NH ₃)	Total Lead

TABLE 9.1 (Continued) LONG-TERM GROUNDWATER MONITORING ANALYTICAL PROTOCOL Risk-Based Approach to Remediation Tyndall AFB, Florida **BX** Service Station

				Recommended Frequency of Analysis	Sample Volume, Sample Container, Sample Preservation	Field or Fixed-Base
Analyte	Method/Reference	Comments	Data Use			Laboratory
Sulfate (SO ₄ ²⁻)	IC method E300 or	Method E300 is a Handhook method:	Substrate for anaerobic microbial respiration	Every Sampling Event	Collect up to 40 mL of water in a glass or plastic container; cool to	Fixed-base or field (for Hach
	Hach	method SW9056 is			4°C	method)
	SulfaVer 4 method	an equivalent				
		procedure. Hach				
		method is				
		Photometric				
Oxidation-	A2580 B, direct-	Measurements	The redox potential of groundwater	Every Sampling Event	Measure at well-head using a flow-	Field
Reduction	reading meter	are made with	influences and is influenced by		through cell	
Potential		electrodes; results	biologically mediated reactions; the			
(ORP)		are displayed on a	redox potential of groundwater may			
		meter; samples	range from more than 200 mV to			
		should be protected	less than -400 mV			
		from exposure to				
		atmospheric oxygen				
Methane	RSKSOP-114 modified	Method published	The presence of methane indicates	Every Sampling Event	Collect water samples in 40 mL	Fixed-base
	to analyze water	and used by the	the presence of sufficiently reducing		volatile organic analysis (VOA) vials	
	samples for methane	USEPA National	conditons for reductive		with butyl gray/Teflon-lined caps	
	by headspace sampling	Risk Management	dehalogenation to occur		(zero headspace); cool to 4°C	
	with dual thermal	Research Laboratory				
	conductivity and flame					
	ionization detection.					
BTEX. MTBE.	SW8260	GC/MS Method	Measured for regulatory compliance.	Every Sampling Event	Collect water samples in a 40 mL	Fixed-base
and					VOA vial; cool to 4°C; add	
Naphthalene					hydrochloric acid to pH < 2	

Handbook refers to the AFCEE (1993) "Handbook for the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS)."

SECTION 10 REFERENCES

- American Society for Testing and Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. E1739-95
- American Conference of Governmental Industrial Hygienists (ACGIH). 1998. Threshold Limit Values for Chemical Substances and Physical Agents.
- BCM Engineers Inc. (BCM). 1995. Contamination Assessment Report for BX Service Station, Tyndall Air Force Base, Bay County, Florida. November.
- BCM. 1997. Contamination Assessment Report for BX Service Station, Tyndall Air Force Base, Bay County, Florida. August.
- BCM. 1998. Modified Pump Test and Remedial Action Plan, Tyndall Air Force Base, Bay County, Florida. April.
- Borden, R.C., 1994. Natural Bioremediation of Hydrocarbon-Contaminated Ground Water, Handbook of Remediation, Lewis Publishers, Boca Raton, Fl/
- Buscheck, T.E., and Alcantar, C.M., 1995. Regressional techniques and analytical solutions to demonstrate intrinsic bioremediation, In Situ and On-Site Bioreclamation, The Third International Symposium. Sponsored by Battelle, accepted for presentation April 1995.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Chapelle, F.H., 1994, Assessing the Efficiency of Intrinsic Bioremediation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 171.
- Daniel, A. D. 1995. Intrinsic Bioremediation of BTEX and MTBE: Field, Laboratory and Computer Modeling Studies. Masters Thesis. North Carolina State University.
- Florida Department of Environmental Protection (FDEP). September 1997. Petroleum Contamination Site Cleanup Criteria. Final.
- Godsy, E.M., 1994. Microbiological and geochemical degradation processes, Symposium on Intrinsic Bioremediation in Ground Water, Denver, CO. August 30 September 1, 1994, p.35-40.
- Grbic'-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Howard, P. H., Boethling, R. S., Jarvis, W. F., Meylan, W. M., and Michalenko, E. M. 1991. Handbook of Environmental Degradation Rates. Lewis Publishers. Pp. 653-654.

- Hubbard, C. E., Barker, J. F., and S. F. O'Hannesin. 1994. Transport and Fate of Dissolved Methanol, Methyl-Tertiary-Butyl-Ether, and Monoaromatic Hydrocarbons in a Shallow Sand Aquifer. American Petroleum Institute, Washington, D. C., API Publication 4601.
- Javanmardian, M. and Glasser, H. A. 1997. In-Situ Biodegradation of MTBE Using Biosparging. In: Proceedings of the American Chemical Society, Division of Environmental Chemistry. April 13-17. San Francisco, CA. P. 424.
- Lee, M. D. 1986. Biodegradation of Organic Contaminant in the Subsurface of Hazardous Waste Sites, Ph.D. Dissertation, Rice University, Houston, Texas.
- Lewis, B. G. 1998. Telephonic conference with Joe McLernan of 325 CES/CERV Tyndall AFB, Florida. July 14.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- Lovley, Derek R., Chapelle, Francis H., and Woodward, Joan C., 1994. Use of dissolved H₂ concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater, Environmental Science and Technology, vol. 28, no. 7, p. 1205-1210.
- McLain, Captain. 1998. Tables received from Eglin AFB, Florida with construction worker exposure assumptions. June 12.
- Michelson, K. D., D. L. Kringel, G. L. Ginsberg, and W. H. Koch. 1993. Comparative Analysis of Two Models to Estimate Vapor Intrusion Through a Building Foundation and Associated Cancer Risks. Air & Waste Management Association, Denver, Colorado. June 13.
- Micromedex, Inc., 1998. Toxicology, Occupational Medicine and Environmental Series (TOMES) Plus Database. Denver, Colorado.
- Mormile, M. R., Liu, S., and Suflita, J. M. 1994. Anaerobic biodegradation of gasoline oxygenates: Extrapolation of information to multiple sites and redox conditions. Environmental Science Technology. Vol. 28, pp. 1727-1732.
- Newell, C.J. and R.K. McLeod, 1996. BIOSCREEN Natural Attenuation Decision Support System Users Manual, Version 1.3, Air Force Center for Environmental Excellence, Brooks AFB, San Antonio, TX.
- Newell, C.J. and R.K. McLeod, 1997. BIOSCREEN Natural Attenuation Decision Support System Users Manual, Version 1.4 Revisions, Air Force Center for Environmental Excellence, Brooks AFB, San Antonio, TX.
- NIOSH, 1997. Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services.

- Park, K. and Cowan, R. M. 1997., Effects of Oxygen and Temperature on the Biodegradation of MTBE. In: Proceedings of the American Chemical Society, Division of Environmental Chemistry. April 13-17. San Francisco, CA. Pp. 421-424.
- Parsons ES. 1997a. Sampling and Analysis Plan.
- Parsons ES. 1997b. Work Plan for the Risk-Based Investigation and Closure of the Base Exchange Service Station and Site FT-16.
- Salanitro, J. P., Diaz, L. A., Williams, M. P., and Wisniewski, H. L., 1994. Isolation of a Bacterial Culture that Degrades Methyl t-Butyl Ether.
- Spitz, K. and J. Moreno. 1996. A Practical Guide to Groundwater and Solute Transport Modeling. John Wiley & Sons, Inc.
- Stumm, W. and Morgan, J.J., 1981, Aquatic Chemistry. John Wiley & Sons, New York, NY.
- University of Florida, 1998. Letter from Lisa Tonner-Navaro and Stephen Roberts, Ph.D., Center of Environmental and Human Toxicology, to Ligia Mora-Applegate, M.P.H, Bureau of Waste Cleanup, FDEP. June 11.
- USEPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies (RI/FS) Under CERCLA. OSWER Directive 9355.3-01.
- USEPA, 1992. Guidelines for Exposure Assessment; Notice, Federal Register, vol. 57, No. 104 (Friday, May 29, 1992).
- USEPA, 1994a. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-94/012.
- USEPA, 1994b. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540/R-94/013.
- USEPA, 1994c. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. Office of Emergency and Remedial Response. EPA 540-R-93-081.
- USEPA, 1998. MTBE Fact Sheet No. 2: Remediation of MTBE Contaminated Soil and Groundwater. Office of Solid Waste and Emergency Response. January.
- Wiedemeier, Todd H., et al. 1995. Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater. Revision 0. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.
- Yeh, C. K., and J. T. Novak. 1994. Anaerobic Biodegradation of Gasoline Oxygenates in Soils. Water Environment Research. V. 66. (No. 5) Pp. 744-752.
- Zogorski, J. S., A, Morduchowitz, A. L. Baehr, B. J. Bauman, D. L. Conrad, R. T. Drew, K. E. Korte, W. W. Lapham, J. F. Pankow, and E. R. Washington. 1997. Fuel Oxygenates and Water Quality: Current understanding of sources, Occurrence in natural waters, Environmental Behavior, Fate, and Significance. In Interagency

Assessment of Oxygenated Fuels, Chapter 2. Washington, D. C.: the White House Office of Science and Technology Policy, Executive Office of the President.

APPENDIX A PERTINENT DATA FROM PREVIOUS SITE INVESTIGATIONS

BCM PUMP AND SLUG TEST ANALYSIS

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT

MODIFIED PUMP TEST AND REMEDIAL ACTION PLAN

BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

CONTRACT NO. DACA01-94-D-0005 DELIVERY ORDER NO. 0017 BCM PROJECT NO. 09-5000-17

APRIL 1998

TABLE 1

BX SERVICE STATION
WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATIONS

		_	_				_		\Box		$\neg \neg$									
GW ELEVATION 3/10/98	27.22	Abandoned	26.80	26.87	25,98	26.07	26.17	26.44	26.77	25.04	27.06	25.12	26.06	25.56	25.81	26.43	26.07	26.08	25.34	25.56
SCREEN LENGTH FEET	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	25	25	25
TOTAL DEPTH FEET - BTOC	16.5	15	16.5	14.5	1	21	15.5	15.3	15.5	45.80	12.00	13.00	35.60	13.00	13.00	13.00	13.00	28.20	28.50	27.83
ELEVATION - GROUND FEET	30.98	29.68	30.09	30.35	29.62	29.29	29.34	29.62	30.35	30.50	29.90	29.60	29.42	28.80	29.10	29.73	29.29	29.32	29.44	29.73
ELEVATION - TOC FEET	30.85	30.12	29.78	30.12	29.38	28.44	29.00	29.37	30.26	30.14	29.66	29.36	29.12	28.66	28.97	29.55	29.02	29.06	29.24	29.20
WELL DIAMETER INCHES	7	4	4	4	4	4	4	4	4	2	4	4	2	4	4	4	4	2	4	2
WELL NO.	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	0-WM	MWD01-97	MW02-97	MW03-97	MWD04-97	MW05-97	76-90MM	MW07-97	MW08-97	MWD09-97	MWD10-97	MWD11-97

TABLE 2

PERMEABILITY COEFFICIENTS DERIVED FROM PUMP TEST

MW-ID	Discharge (Q) GPM	Radial Distance (R ₁) - Feet Radial Distance (R ₂) - Feet	Head (H ₁) - Feet Head (H ₂) - Feet	Permeability Coefficient (K) cm/sec
MWD-11-97	~17.5	9.5	33.42	0.0089
MWD-09-97		30.8	34.16	
MWD-11-97	~17.5	9.5	33.42	0.011
MW-05-97		81.3	34.48	
MWD-11-97	~17.5	9.5	33.42	0.013
MW-04		195.7	34.74	
MWD-11-97	~17.5	9.5	33.42	0.011
MW-06-97		74.6	34.49	
MWD-10-97	~17.5	9.5	33.42	0.012
90-MW		84.4	34.46	

 $K = 1055 \text{ Q log } (r_2/r_1)$ $(h_2)^2 - (h_1)^2$

Where:

Q = Pumping rate in recovery well
R₁ = Radial distance to near observation well
R₂ = Radial distance to distant observation well
H₁ = Head in near observation well
H₂ = Head in distant observation well

TABLE 3
PERMEABILITY COEFFICIENTS DERIVED FROM SLUG TEST

	Permeability Coefficient (K)
MW-01	0.0177
MW-03	0.0103
MW-02-97	0.0113
MW-03-97	0.0047
WW-05-97	0.0133
MW-06-97	0.0022
MW-08-97	0.0098

Bouwer-Rice Unconfined Aquifer Solution Method

MW-01 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW01O.AQT

Date: <u>05/29/98</u> Time: <u>11:15:40</u>

PROJECT INFORMATION

Company: BCM Engineers
Client: USACE-Mobile
Project: 09-5000-17

Test Location: Tyndall AFB

Test Well: MW-01

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.009 ft Casing Radius: 0.1667 ft Screen Length: 10. ft

Water Column Height: 10.9 ft Wellbore Radius: 0.75 ft

SOLUTION

Aquifer Model: Unconfined K = 0.01771 cm/sec

Solution Method: Bouwer-Rice y0 = 0.8953 ft

MW-03 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW03O.AQT

Date: 05/29/98 Time: 11:15:15

PROJECT INFORMATION

Company: <u>BCM Engineers</u>
Client: <u>USACE-Mobile</u>
Project: 09-5000-17

Test Location: Tyndall AFB

Test Well: MW-03

AQUIFER DATA

Saturated Thickness: 11.29 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 0.995 ft Water Column Height: 11.29 ft Casing Radius: 0.1667 ft Wellbore Radius: 0.75 ft Screen Length: 10. ft

SOLUTION

Aquifer Model: <u>Unconfined</u> K = 0.0103 cm/sec Solution Method: <u>Bouwer-Rice</u> y0 = 0.9507 ft

MW-02-97 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW0297O.AQT

Date: 05/29/98 Time: 11:14:45

PROJECT INFORMATION

Company: BCM Engineers

Client: USAF

Project: 09-5000-17

Test Location: Tyndall AFB

Test Well: MW-02-97

AQUIFER DATA

Saturated Thickness: 7. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: <u>0.791</u> ft Casing Radius: <u>0.1667</u> ft

Screen Length: 10. ft

Water Column Height: 7. ft Wellbore Radius: 0.75 ft

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Bouwer-Rice

K = 0.0113 cm/sec

y0 = 1.024 ft

MW-03-97 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW0397O.AQT

Date: 05/29/98 Time: 11:16:25

PROJECT INFORMATION

Company: BCM Engineers

Client: USAF

Project: 09-5000-17

Test Location: Tyndall AFB Test Well: MW-03-97

AQUIFER DATA

Saturated Thickness: 7.45 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 0.876 ft
Casing Radius: 0.1667 ft
Screen Length: 10. ft

Water Column Height: 7.45 ft
Wellbore Radius: 0.75 ft

SOLUTION

Aquifer Model: Unconfined K = 0.004759 cm/sec Solution Method: Bouwer-Rice y0 = 0.7499 ft

MW-05-97 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW0597O.AQT

Date: 05/29/98 Time: 11:16:48

PROJECT INFORMATION

Company: <u>BCM Engineers</u>
Client: <u>USACE-Mobile</u>
Project: 09-5000-17

Test Location: Tyndall AFB

Test Well: MW-05-97

AQUIFER DATA

Saturated Thickness: 8.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 0.881 ft Casing Radius: 0.1667 ft

Screen Length: 10. ft

Water Column Height: 8.15 ft Wellbore Radius: 0.75 ft

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Bouwer-Rice

K = 0.01331 cm/sec

y0 = 1.037 ft

MW-06-97 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW0697O.AQT

Date: <u>05/29/98</u> Time: <u>11:17:21</u>

PROJECT INFORMATION

Company: <u>BCM Engineers</u>
Client: <u>USACE-Mobile</u>
Project: 09-5000-17

Test Location: Tyndall AFB Test Well: MW-06-97

AQUIFER DATA

Saturated Thickness: 8. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Initial Displacement: 1.335 ft Water Column Height: 8. ft Casing Radius: 0.1667 ft Wellbore Radius: 0.75 ft Screen Length: 10. ft

SOLUTION

Aquifer Model: Unconfined K = 0.00222 cm/sec

Solution Method: Bouwer-Rice y0 = 1.095 ft

MW-08-97 SLUG OUT TEST

Data Set: I:\DOUG\SLUGTEST\TYNDALL\MW0897O.AQT

Time: <u>11:17:45</u> Date: 05/29/98

PROJECT INFORMATION

Company: BCM Enginners Client: USACE-Mobile Project: 09-5000-17

Test Location: Tyndall AFB Test Well: MW-08-97

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 8.22 ft

WELL DATA

Initial Displacement: 1.085 ft Casing Radius: 0.1667 ft

Screen Length: 10. ft

Water Column Height: 8.22 ft Wellbore Radius: 0.75 ft

SOLUTION

Aquifer Model: Unconfined K = 0.009789 cm/sec

Solution Method: Bouwer-Rice y0 = 0.9239 ft

where: Q= pumping rate in gpm T = radial distance to near observation well (ft) ra= radial distance to distant observation well (Ft) h, = hand (Saturated thickness) in near observation well (ft) hz = head (saturated thisteness) in distant observation wall (A) mwD-11-97 & mwD-04-97 Q = 17.5 gpm h, = 35' - 1.581 = 33.4A' 1055 + 17.5 gpm + tog 9.5 (34.162 F) - (33.419 F)2 9431.14 gpm 1167 ft2 - 1117 ft2 K= 9431,14 50 K= 188-62 gpd/ft2 K= 25,27 F+/day K= 25.27 F+/day 3.53.10-4 cm/sec = 0.0089 cm/sec

$$K = \frac{1055 \, Q \, \log^{\frac{r_2}{r_1}}}{(h^2 - h')}$$

mwD-11-97
$$\frac{1}{2}$$
 mw-05-97
Q=17.5 gpm
 $C_1 = 9.5^{1}$
 $C_2 = 81.3^{1}$
 $C_3 = 35^{1} - 1.58^{1} = 33.42^{1}$
 $C_4 = 35^{1} - 0.517^{1} = 34.48^{1}$

$$K = \frac{1055 \cdot 17.5 \cdot 109^{-81.34.5}}{(34.48)^2 - (33.42)^2}$$

$$K = 32.08 \text{ Ft/day}$$
 . $\frac{3.53 - 10^{-4} \text{ cm/sec}}{1 \text{ Ft/day}} = 0.011 \text{ cm/sec}$

$$K = \frac{1025 \ a \ log \ r^2/r_1}{(h_2^2 - h_1^2)}$$

$$k = \frac{1052 \cdot 17.5 \log \frac{195.7}{9.5}}{(34.74)^2 - (33.42)^2}$$

$$K = \frac{24257.3}{90} = \frac{269.5 \text{ gpd/ft}}{1}$$

 $K = \frac{1055 \ Q \ \log^{-72}/\Gamma^{1}}{(h_{2}^{2} - h_{1}^{2})}$ $m\omega D \cdot \lim_{r \to 7} qr \ d \ m\omega - 06 - 97$ $Q = 17.5 \ gpm$ $r_{1} = 5.5!$ $h_{1} = 35 - 1.581 = 33.42!$ $h_{2} = 35 - 0.512 = 34.49!$ $K = \frac{1055 \cdot 17.5 \ gpm \cdot \log^{-74.5}}{(34.49)^{2} - (33.42)^{2}}$ $K = \frac{10524.2}{1189.4 - 1114.9}$ $K = \frac{10524.2}{72.7}$ $K = \frac{10524.2}{72.7}$

K = 228.2 gpd/Ft2. 0.134 FHday

K= 30.58 ft/day

R = 30.58 FH/day. $\frac{3.53 \cdot 10^{-4} \text{ cm/sec}}{1 \text{ FH/day}} = 0.0108 \text{ cm/sec}$

$$K = \frac{1055 \, Q \, \log^{52} r_1}{(h_2^2 - h_1^2)}$$

mwD-10-97 & mw-06

$$K = \frac{1055 \cdot 17.5 \cdot \log}{(34.46)^2 - (33.42)^2}$$

$$K=33.24 \text{ f+/day} \cdot \frac{3.53 \cdot 10^{-4} \text{ cm/sec}}{1 \text{ f+/day}} = 0.012 \text{ cm/sec}$$

MONITORING WELL LOCATION MAP
BX PUMP TEST-TYNDALL AFB

SCALE: 1 = 60

BCM Project No. 09-5000-17 APRIL 1998

10-MINUTE GROUNDWATER ELEVATION CONTOUR MAP BX PUMP TEST-TYNDALL SCALE: 1 = 60FIGURE 3

BCM Project No. 09-5000-17 APRIL 1998

BCM Project b

BX PUMP TEST-TYNDAL

9 =

SCALE:

5000-17

3-HOUR GROUNDWATER ELEVATION CONTOUR MAP BX PUMP TEST-TYNDALL AFB

SCALE: 1 = 60

BCM Project No. 09-5000-17 APRIL 1998

~25.40 EQUIPOTENTIAL REFERENCE CONTOUR

10-HOUR GROUNDWATER ELEVATION CONTOUR MAP

BX PUMP TEST-TYNDALL AFB

SCALE: 1 = 60

BCM Project N

~25.40 EQUIPOTENTIAL REFERENCE CONTOUR

~26.00~ EQUIPOTENTIAL CONTOUR

5000-17

FIGURE 7
15-HOUR GROUNDWATER ELEVATION CONTOUR MAP
BX PUMP TEST-TYNDALL AFB
SCALE: 1 = 60

BCM Project No. 09-5000-17 APRIL 1998

∼25.40 EQUIPOTENTIAL REFERENCE CONTOUR

24-HOUR GROUNDWATER ELEVATION CONTOUR MAP BX PUMP TEST-TYNDAL FIGURE 8

9 = SCALE:

BCM Project N

5000-17

TABLES

TABLE 11
HYDRAULIC CONDUCTIVITY (SLUG) TEST RESULTS
SLUG TEST DATA

WELL NO.	Hydra	ulic Conductivit	у	Groundwater Flow Velocity		
	Ft/Sec	Ft/Day	CM/SEC	(Ft/day)		
MW-02-97						
Slug In	5.7 x 10 ⁻⁴	49.99	0.01763	0.26		
Slug Out	6.4 x 10 ⁻⁴	55.88	0.01971	0.29		
MW-03-97						
Slug In	3.2 x 10 ⁻⁴	28.14	0.009926	0.14		
Slug Out	3.5 x 10 ⁻⁴	30.90	0.0109	0.16		
MW-05-97						
Slug In	8.6 x 10 ⁻⁴	74.36	0.02323	0.38		
Slug Out	7.4 x 10 ⁻⁴	64.52	0.02276	0.33		
MW-06-07						
Slug In	*	*	*	*		
Slug Out	1.2 x 10 ⁻⁴	10.78	0.003803	0.06		
MW-07-97						
Slug In	*	*	*	*		
Slug Out	7.5 x 10 ⁻⁴	65.49	0.0231	0.33		
MW-08-97						
Slug In	*	*	*	*		
Slug Out	5.4 x 10 ⁻⁴	47.38	0.01672	0.24		
MW-01						
Slug In	*	*	*	*		
Slug Out	9.6 x 10 ⁻⁴	83.21	0.02936	0.43		
MW-03						
Slug in	*	*	*	*		
Slug Out	5.5 x 10 ⁻⁴	48.25	0.01702	0.25		
	AVERAGE	VALUES				
Slug In	5.83 x 10 ⁻⁴	50.83	0.0178	0.26		
Slug Out	5.81 x 10 ⁻⁴	50.80	0.0179	0.26		
Average Hydraulic Conduct. Results/ Groundwater Flow Velocity	5.82 x 10 ⁻⁴	50.815	0.01785	0.26		

^{*} Invalid data

TABLE 10

GROUNDWATER LEAD CONCENTRATION PARTS PER MILLION (ppm) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

Location I.D.	Date	Reportable Limits	Results	MCL ^m
MWD-01-97	21 May 97	0.003	ND	0.015
MW-02-97	21 May 97	0.003	0.028	0.015
MW-03-97	21 May 97	0.003	ND	0.015
MW-04-97	22 May 97	0.003	ND	0.015
MW-05-97	21 May 97	0.003	0.003 .	0.015
MW-06-97	21 May 97	0.003	ND	0.015
MW-07-97	21 May 97	0.003	ND	0.015
MW-08-97	22 May 97	0.003	ND	0.015
MWD-10-97	22 May 97	0.003	ND .	0.015
MW-01	21 May 97	0.003	ND	0.015
MW-03	21 May 97	0.003	0.006	0.015
MW-04	21 May 97	0.003	ND	0.015
MW-05	21 May 97	0.003	0.062	0.15
MW-06	21 May 97	0.003	ND -	0.015
MW-07	22 May 97	0.003	0.004	0.015
MW-08	21 May 97	0.003	NC	0.015
MW-09	21 May 97	0.003	0.004	0.015
MW-20	21 May 97	0.003	0.057	0.015
MW-21	22 May 97	0.003	ND	0.015
Initial Equip. Blank	21 May 97	0.003	ND	0.015
Equip. Blank # 2	22 May 97	0.003	ND	0.015

ND = Non Detected

Bold/Shade = Exceeds Regualtory Threshold

= FDEP, Chapter 62-770, Petroleum Contamination Site Clean up Criteria.

TABLE 9

EDB GROUNDWATER CONCENTRATION PARTS PER BILLION (ppb)

Location I.D.	Date	Reportable Limits	Results	MCL ⁽ⁱ⁾
MWD-01-97 Deca	21 May 97	0.02	ND	0.02
MW-02-97	21 May 97	0.02	ND	0.02
MW-03-97	21 May 97	0.02	ND	0.02
MW-04-97 Deep	22 May 97	0.02	ND	0.02
MW-05-97	21 May 97	0.02	ND	0.02
MW-06-07	21 May 97	0.02	. ND	0.02
MW-07-97	21 May 97	0.02	ND .	0.02
MW-08-97	22 May 97	0.02	Ð	0.02
MWD-10-97	22 May 97	0.02	ND	0.02
MW-01	21 May 97	0.02	ND	0.02
MW-03	21 May 97	0.02	ND	0.02
MW-04	21 May 97	0.02	ND	0.02
MW-05	21 May 97	0.02	ND	0.02
MW-06	21 May 97	0.02	ND	0.02
MW-07	22 May 97	0.02	ND	0.02
MW-08	21 May 97	0.02	ND	0.02
MW-09	21 May 97	0.02	ND	0.02
MW-20	21 May 97	0.02	ND	0.02
MW-21	22 May 97	0.02	ND	0.02
Initial Equip. Blank	21 May 97	0.02	ND	0.02
Equip. Blank # 2	22 May 97	0.02	ND	0.02

(1)

= FDEP, Chapter 62-770, Petroleum Cntemaination Site Clean up Criteria.

ND

= Non Detected

		SAMPLE ID	, DATE SAMP	LED, AND RES	SULTS (ug/l) ·
			Initial Equip.	Equip.Blank		
Parameters	Laboratory	MW-21	Blank	#2		Standards ⁽¹⁾
	Detection				MCL	Source
	Limits	5/22/97	5/21/97	5/21/97		
Volatiles						
Benzene	1	ND	ND	ND	1	FDEP/62-770
Bromodichloromethane	1	ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND .	4	FDEP GW Criteria
Bromomethane	2	ND	ND	ND	10	FDEP GW Criteria
Carbon Tetrachloride	1	ND .	ND	ND	3	FDEP GW Criteria
Chlorobenzene	1	ND	ND	ND	100	FDEP GW Criteria
Chloroethane	5	ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	· ND	ND	DM	1	.NA
Chloroform	2	ND	ND	ND	6	FDEP GW Cinteria
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Cinteria
Dibromochloromethane	5	ND	ND	ND	ı	FDEP GW Criteria
1.2-dichlorobenzene	2	ND	ND	ND	600	FDEP GW Criteria
1,3-dichlorobenzene	· 2	ND	ND	ND	10	FDEP GW Criteria
1,4-dichlorobenzene	2	ND	ND	ND	75	FDEP GW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA NA
1,1-dichloroethane	1	ND	ND	ND	700	FDEP GW Criteria
1,2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria
1,1-dichloroethene	1	ND	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	NTO	ND	ND	-	NA
1,2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria
Cis-1,3-dichloropropene	1	ND	ND	ND	1	NA
Trans-1,3-dichloropropene	1	ND	ND	ND	0.077	NA
Ethylbenzene	1	ND	ND	ND	30	FDEP GW Criteria
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria
Methyl-T-butyl ether	5	ND	ND	ND	50	. NA
1,1,2,2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachioroethene	3	ND	ND	ND	3	FDEP GW Criteria
Toluene	5	ND	ND	ND	40	FDEP GW Criteria
1,1,1-trichloroethane	1	ND	ND	ND	200	FDEP GW Criteria
1.1,2-trichlomethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	ı	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	.ND	2100	NA
Vinyl Chloride	1	ND	ND.	ND	1	FDEP GW Criteria
Xylenes (Total)	. 2	Contain 4 set	2		10,000	FDEP GW Criteria
Total VOA	•	***************************************	2 প্রক্রে	LANGE OF SAME	~~ 5 0	FDEP/62-770

(1) Exerts derived from Flonda Department Groundwater Guidance concentrations, dated June 1994, and FDEP, Chapter 62-700, Petroleum Contaminantion Site Clean-up Critera

ND = Non-Detection of Analyte
Bold/Shade = Chemical of Potential Concern

NA = None Available
- w Not Applicable

		SAMPLE ID	, DATE SAMP	LED, AND RES	SULTS (ug/l)
Parameters	Laboratory	MW-08	MW-09	DUP MW-05 MW-20		Standards ⁽¹⁾
Faiameters	Detection Limits	5/21/97	5/21/97	5/21/97	MCL	Source
Voiatiles						
Benzene	1	ND	ND		1	FDEP/62-770
Bromodichloromethane	1	ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria
Bromomethane	2	ND	ND	ND	10	FDEP GW Criteria
Carbon Tetrachioride	1	ND	ND	ND	3	FDEP GW Criteria
Chlorobenzene	1	ND	ND	ND	100	FDEP GW Criteria
Chioroethane	5	ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	ND	ND	ND	1	NA
Chloroform	2	ND	ND	ND	6	FDEP GW Criteria
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Criteria
Dibromochloromethane	5	ND:	ND	ND	1	FDEP GW Criteria
1.2-dichlorobenzene	. 2	ND	ND	ND	600	FDEP GW Criteria
1.3-dichlorobenzene	2	ND	ND	ND	10	FDEP GW ('riteria
1.4-dichlorobenzene	2	ND	,ND	ND	75	FDEP GW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA
1.1-dichloroethane	1	ND	ND	ND	70 0	FDEP GW Criteria
1.2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria
1.1-dichloroethene	ī	ND	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	ND	ND	ND	-	NA
1.2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria
Cis-1,3-dichloropropene	1	ND	ND	ND	1	NA
Trans-1,3-dichloropropene	1	ND	ND	ND .	0.077	NA
Ethylbenzene	1	ND	ND		30	FDEP GW Criteria
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria
Methyl-T-butyl ether	5	ND	ND		· 5 0	NA
1.1.2.2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachloroethene	3	ND	ND	ND	3	FDEP GW Criteria
Toluene	5	ND	ND	ND	40	FDEP GW Criteria
1,1,1-trichloroethane	1	ND	ND	ND	200	FDEP GW Criteria
1,1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	1	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	ND	2100	NA
Vinyl Chloride	1	ND	ND	ND	1	FDEP GW Criteria
Xylenes (Total)	2	ND	ND .	48	10,000	FDEP GW Criteria
Total VOA		ND	ND	487 71249	50	FDEP/62-770

(1) = Levels derived from Florida Department Groundwater Guidance concentrations, dated June 1994, and FDEP. Chapter 62-700, Petroleum Contaminantion Site Clean-up Critera

ND = Non-Detection of Analyte

Bold/Shade = Chemical of Potential Concern

NA = None Available
-- | Not Applicable

		SAMPLE ID	, DATE SAMP	LED, AND RE	SULTS	(ug/l) ·
Parameters	Laboratory	MW-05	MW-06	MW-07		Standards ⁽¹⁾
T didinotoro	Detection Limits	5/21/97	5/21/97	5/22/97	MCL	Source
"Volatiles	Enints	3/21/31	3/21/3/	GZE57		
Benzene	1		· ND		1	FDEP/62-770
Bromodichloromethane	1	ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria
Bromomethane	2	ND	ND	ND	10	FDEP GW Criteria
Carbon Tetrachloride	1	ND .	ND	ND	3	FDEP GW Criteria
Chlorobenzene	1	ND	ND	ND	100	FDEP GW Criteria
Chloroethane	5	ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	· ND	ND	ND	1	NA NA
Chloroform	2	ND	ND	NÐ	6	FDEP GW Criteria
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Criteria
Dibromochloromethane	5	ND	ND	ND	1	FDEP GW Criteria
1.2-dichlorobenzene	2	ND	ND	ND	600	FDEP GW Criteria
1.3-dichlorobenzene	· 2	ND	ND	ND	10	FDEP GW Criteria
1.4-dichlorobenzene	2	ND	ND	ND	75	FDEP GW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA
1.1-dichloroethane	ı	ND	ND	ND	700	FDEP GW Criteria
1,2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria
1.1-dichloroethene	1	ND	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	ND	ND	ЙĎ	-	NA NA
1,2-dichloropropane	1	ND	ND	ND	.5	FDEP GW Criteria
Cis-1.3-dichloropropene	1	ND	ND	DN	-	NA
Trans-1,3-dichloropropene	I	ND	ND_	ND	0.077	.NA
Ethylbenzene	1		And 2***	66/250 S	30	FDEP GW Criteria
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria
Methyl-T-butyl ether	5		ND	**************************************	50	NA
1.1.2.2-tetrachloroethane	l	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachloroethene	3	ND	ND	ND	3	FDEP GW Criteria
Toluene	5	ND	ND		40	FDEP GW Criteria
1,1,1-trichloroethane	1	DM	ND	ND	200	FDEP GW Criteria
1,1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	1	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	ND	2100	NA
Vinyl Chloride	ı	ND	ND	ND	1	FDEP GW Criteria
Xylenes (Total)	2	***** 55 4	ND	980	10,000	FDEP GW Criteria
Total VOA	•	325	- 6 HAMPS 200	::::::::::::::::::::::::::::::::::::::	50	FDEP/62-770

(1) = Levels derived from Flonds Department Groundwater Guidance concentrations, dated June 1994, and FDEP, Chapter 62-700, Petroleum Contaminantion Site Clean-up Critera

ND = Non-Detection of Analyte

Bold/Shade = Chemical of Potential Concern

NA = None Available
- Not Applicable

		SAMPLE ID	, DATE SAMPI	ED, AND RE	SULTS (ug/l)
Parameters	Laboratory	MW-01	MW-03	MW-04		Standards ⁽¹⁾
	Detection Limits	5/21/97	5/21/97	5/21/97	MCL	Source
Volatiles						
Benzene	1	ND			1	FDEP/62-770
Bromodichloromethane	1	. ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria
Bromomethane	2	ND	ND	ND	10	FDEP GW Criteria
Carbon Tetrachloride	1	ND .	ND	ND	3	FDEP GW Criteria
Chlorobenzene	1	ND	ND	ND	100	FDEP GW Criteria
Chloroethane	5	ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	ND	ND	.ND	1	NA
Chloroform	2	ND	ND	ND	6	FDEP GW Criteria
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Cinteria
Dibromochloromethane	5	ND	ND	DM	1	FDEP GW Criteria
1.2-dichlorobenzene	2	ND	ND	ND	600	FDEP GW Criteria
1,3-dichlorobenzene	. 2	ND	ND	ND	10	FDEP GW Criteria
1.4-dichlorobenzene	2	ND	.ND	ND	75	FDEP GW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA
1.1-dichloroethane	1	ND	ND	ND	700	FDEP GW Criteria
1.2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria
1,1-dichloroethene	1	ND	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	ND	ND	ND	_	NA
1,2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria
Cis-1,3-dichloropropene	1	ND	ND	ND	_	NA
Trans-1,3-dichloropropene	1	ND	ND	ND	0.077	NA
Ethylbenzene	1	ND				FDEP GW Criteria
Methylene Chloride	5	ND	ND	, ND	2.7	FDEP GW Criteria
Methyl-T-butylether	5		(6.3)		50	NA
1,1,2,2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachloroethene	3	ND	ND	ND	3	FDEP GW Criteria
Toluene	5	ND	5000	¥ ND	40	FDEP GW Criteria
i.i.i-trichloroethane	1	, ND .	ND	ND	200	FDEP GW Criteria
1,1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	1	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	ND	2100	NA
Vinyl Chloride	1	ND	ND	ND	1	FDEP GW Criteria
Xylenes (Total)	2	ND		2300	10,000	FDEP GW Criteria
Total VOA					- 50	FDEP/62-770

(1) = Levels derived from Florida Department Groundwater Guidance concentrations, dated June 1994, and FDEP, Chapter 62-700, Petroleum Contaminantion Site Clean-up Criteria

ND = Non-Detection of Analyte

Bold/Shade = Chemical of Potential Concern

NA = None Available
-- Not Applicable

		SAMPLE ID	, DATE SAMP	LED, AND RES	SULTS (ug/l)
Parameters	Laboratory	MW 07-97	MW-08-97	MW-10-97		Standards ⁽¹⁾
1 4.4	Detection				MCL	Source
	Limits	5/21/97	5/22/97	5/22/97		
Volatiles						
Benzenes	1	ND	ND			FDEP/62-770
Bromodichloromethane	1	ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria
Bromomethane	2	ND	DN	ND	10	FDEP GW Criteria
Carbon Tetrachloride	1	ND	ND	,ND	3	FDEP GW Cinteria
Chlorobenzene	1.	D	ND	ND	100	FDEP GW Criteria
Chloroethane	5	ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	ND	ND	ND	1	NA
Chloroform	2	ND	ND	ND	6	FDEP GW Criteria
Chloromethane	5	D	ND	ND	2.7	FDEP GW Criteria
Dibromochloromethane	5	ND	ND	ND	1	FDEP GW Criteria
1.2-dichlorobenzene	. 2	ND	ND	ND	600	FDEP GW Criteria
1.3-dichlorobenzene	2	ND	ND	ND	10	FDEP GW Criteria
1,4-dichlorobenzene	2	ND	ND	ND	75	FDEP GW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA
1.1-dichloroethane	1	ND	ND	ND	700	FDEP GW Criteria
1.2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria
1.1-dichloroethene	1	NĐ	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	ND	ND	ND	_	NA
1,2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria
Cis-1,3-dichloropropene	1	ND	ND	ND	-	NA
Trans-1,3-dichloropropene	1	ND	ND	ND	0.077	.NA
Ethylbenzene	1	ND	ND		30	FDEP GW Criteria
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria
Methyl-T-butyl ether	5	ND	ND	ND	50	NA
1,1,2,2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachloroethene	3	ND	ND	ND	3	FDEP GW Criteria
Tolore	5	ND	ND		40	FDEP GW Criteria
1,1,1-trichloroethane	1	ND	ND	ND	200	FDEP GW Criteria
1,1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	l	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	ND	2100	NA
Vinyl Chloride	1	ND	ND	ND	1	FDEP GW Criteria
Xylenes (Total)	2	ND	ND	2300	10,000	FDEP GW Criteria
Total VOA	-	ND	ND		50	FDEP/62-770

(1) = Levels derived from Florida Department Groundwater Guidance concentrations, dated June 1994, and FDEP, Chapter 62-700, Petroleum Contaminantion Site Clean-up Critera.

ND = Non-Detection of Analyte
Bold/Shade = Chemical of Potential Concern

NA = None Available
- s Not Applicable

		SAMPLE ID	, DATE SAMP	LED, AND RE	SULTS (ug/l)
Parameters	Laboratory	MWD-04-97	MW-05-97	MW-06-97		Standards(1)
1 alameter	Detection Limits	5/22/97	5/21/97	5/21/97	MCL	Source
Volatiles						·
Benzene	1	ND	ND	ND	1	FDEP/62-770
Bromodichloromethane	1	ND	ND	ND	0.6	FDEP GW Criteria
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria
Bromomethane	2	ND	ДD	ND	10	FDEP GW Criteria
Carbon Tetrachloride	1	ND	ND	ND	3	FDEP GW Criteria
Chlorobenzene	1	ND	ND	ND ·	100	FDEP GW Criteria
Chloroethane	5	. ND	ND	ND	140	FDEP GW Criteria
2-chloroethylvinylether	5	ND	ND	ND	l	NA
Chloroform	2	ND	ND	ND	6	FDEP GW Criteria
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Criteria
Dibromochloromethane	5	ND	ND	ND	1	FDEP GW Criteria
1.2-dichlorobenzene	. 2	ND	ND	DN.	600	FDEP GW Criteria
1,3-dichlorobenzene	2	ND	ND	ND	10	FDEP GW Criteria
1.4-dichlorobenzene	2	ND	ND	DN	75	FDEP (JW Criteria
Dichlorodifluoromethane	5	ND	ND	ND	1400	NA
1.1-dichloroethane	1	ND	ND	ND	700	FDEP GW Criteria
1.2-dichloroethane	l	ND	ND	ND	3	FDEP GW Criteria
1,1-dichloroethene	1	NĐ	ND	ND	7	FDEP GW Criteria
Trans-1,2-dichloroethene	1	ND	ND	ND		NA
1,2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria
Cis-1,3-dichloropropene	1	ND	ND	ND		NA
Trans-1,3-dichloropropene	1	ND	ND	ND	0.077	NA
Ethylbenzene	1	ND	ND	ND	30	FDEP GW Criteria
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria
Methyl-T-butyl ether	5	ND	ND	ND	50	NA
1,1,2,2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria
Tetrachloroethene	3	ND	ND	ND	3	FDEP GW Criteria
Toluene	5	ND	ND	ND	40	FDEP GW Criteria
1,1,1-trichloroethane	1	ND	ND	ND	200	FDEP GW Criteria
1.1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria
Trichloroethene	1	ND	ND	ND	3	FDEP GW Criteria
Trichlorofluoromethane	2	ND	ND	ND	2100	NA .
Vinyl Chloride	1	ND	ND	ND	1	FDEP GW Criteria
Xylenes (Total)		200 15 5 S	ND	ND	10.000	FDEP GW Criteria
TOOLVOA		5	ND	ND	50	FDEP/62-770

(1) = Levels derived from Flonda Department Groundwater Guidance concentrations, dated June 1994, and FDEP. Chapter 62-700, Petroleum Contaminantion Site Clean-up Original

ND = Non-Detection of Analyte.

Bold/Shade = Chemical of Potential Concern

NA = None Available
- Not Applicable

	SAMPLE ID, DATE SAMPLED, AND RESULTS (ug/l)								
Parameters	Laboratory	MWD-01-97	MW-02-97	MW-03-97	Standards ⁽¹⁾				
raidinotoro	Detection Limits	5/21/97	5/21/97	5/21/97	MCL	Source			
Volatiles									
Benzene	1	ND	- ND	ND	ı	FDEP/62 770			
Bromodichloromethane	1	ND	DN	ND	0.6	FDEP GW Criteria			
Bromoform	2	ND	ND	ND	4	FDEP GW Criteria			
Bromomethane	2	ND	ND	ND	10	FDEP GW Cinteria			
Carbon Tetrachloride	1	ND	ND	ND	3	FDEP GW Criteria			
Chlorobenzene	1	ND	ND	ND	100	FDEP GW Criteria			
Chloroethane	5	ND	ND	ND	140	FDEP GW Criteria			
2-chloroethylvinylether	5	ND	ND	ND		NA			
Chloroform	2	ND	ND	ND	6	FDEP GW Criteria			
Chloromethane	5	ND	ND	ND	2.7	FDEP GW Criteria			
Dibromochloromethane	5	ND	ND	ND	1	FDEP GW Criteria			
1.2-dichlorobenzene	2	ND	ND	ND	600	FDEP GW Criteria			
1.3-dichlorobenzene	· 2	ND	ND	ND	10	FDEP GW Criteria			
1,4-dichlorobenzene	2	ND	ND	ND	75	FDEP GW Criteria			
Dichlorodifluoromethane	5	ND	ND	ND	_	NA			
1,1-dichloroethane	1	ND	ND	ND	700	FDEP GW Criteria			
1.2-dichloroethane	1	ND	ND	ND	3	FDEP GW Criteria			
1,1-dichloroethene	1	ND	ND	ND	7	FDEP GW Criteria			
Trans-1,2-dichloroethene	1	ND	ND	ND		NA			
1,2-dichloropropane	1	ND	ND	ND	5	FDEP GW Criteria			
Cis-1,3-dichloropropene	1	ND	ND	ND	_	NA			
Trans-1,3-dichloropropene	1	ND	ND	ND	0.077	NA			
Ethylbenzener	1	20 m 30 m		ND	30	FDEP GW Criteria			
Methylene Chloride	5	ND	ND	ND	2.7	FDEP GW Criteria			
Methyl-T-butyl ether	5	ND	ND	ND		.NA			
1,1,2,2-tetrachloroethane	1	ND	ND	ND	0.2	FDEP GW Criteria			
Tetrachioroethene	3	ND	ND	ND	3	FDEP GW Criteria			
Toluene	5	ND	ND	ND	40	FDEP GW Criteria			
1,1,1-trichloroethane	1	ND	ND	ND	200	FDEP GW Criteria			
1.1,2-trichloroethane	2	ND	ND	ND	5	FDEP GW Criteria			
Trichloroethene	1	ND	ND	ND	3	FDEP GW Criteria			
Trichlorofluoromethane	2	ND	ND	ND	_	NA			
Vinyl Chloride	1	ND	ND	ND	1	FDEP GW Criteria			
Xylenes (Total)	2	10	1500	ND	10,000	FDEP GW Criteria			
Total VOA			15/5/2015/9Ac	ND	50	FDEP/62-770			

(1) = Levels derived from Florida Department Groundwater Guidance concentrations, dated June 1994, and FDEP, Chapter 62-700, Petroleum Contaminantion Site Clean-up Critera

ND = Non-Detection of Analyte

Bold/Shade = Chemical of Potential Concern

NA = None Available
--- = Not Applicable

DIRECT PUSH GROUNDWATER ANALYTICAL RESULTS (ppb) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA TABLE 7 (Cont'd)

								_	
REFERENCE		FDEP 62-770 (1)	FDEP GW-Criteria (2)	FDEP GW-Criteria	FDEP GW-Criteria	FDEP 62-770	FDEP 62-770		•••
OFFICE PUSH SAMPLE LD DATE SAMPLED AND RESULTS (PPB)		1	1000	700	10000	50	100	NA	NA
E SAMPLED AND		ND	ND	ND	ND	ND	ND	2.0	10
#PLE_(J) DAT #BXOP-33 ##4097		ND	ND	4.2	29.3	33.5	ND	2.0	10
L Push 6Au		ND	ND	ND	ND	ND	ND	2.0	10
BX-DF-31 4/10/97		43	ND	120	340	503	20.1	2.0	10
BX-DP-30 4/1097		ND	ND	ND	ND	ND	ND	2.0	10
PAHAMETER	VOLATILES	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	Naphthalene	PQL for BTEX	PQL for Naphthalene

Florida Department of Environmental Protection s(FDEP) Chapter 62-770, F FDEP, Florida Groundwater Guldance concentrations, June 1994.

TABLE 7 (Cont'd)

DIRECT PUSH GROUNDWATER ANALYTICAL RESULTS (ppb) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

PARAMETER	BX-DP-23 BX-DP-24 (B) 4/1097* 4/10/97 (B)	XXDP-23 BX-DP-24 4/1097: 4/10/97	# DHECT PUSH 8.4 BX-24-26 #54-0-1 #1007 # 14/09	Padus Ballis	2001/8 27/24/19 10/24/19		PLED AND RESULTS (PPS) ACREA BY DRYD MCLS	(PPB)	# #STANDARD
VOLATILES									
Benzene	ND	ND	33	ND	9.5		ND	-1	FDEP 62-770 ⁽¹⁾
Toluene	ND	ND	ND	ND	4.1	ND	ND	1000	FDEP GW-Criteria (2)
Ethylbenzene	ND	ND	1400d	ND	39	470	ND	700	FDEP GW-Criteria
Total Xylenes	ND	ND	940	ND	210	850	ND	10000	FDEP GW-Criteria
Total BTEX	ND	NĎ	2500	ND	258.7	1371	ND	50	FDEP 62-770
Naphthalene	ND	ND	67.5	QN	ND	47.5	ND	100	FDEP 62-770
PQL for BTEX	2.0	2.0	10	2.0	2.0	10	2.0	NA	•••
PQL for Naphthalene	10	10	10	10	10	10	10	NA	-

Florida Department of Environmental Protection s(FDEP) Chapter 62-770, Petroleum Contamination Site Clean-up Critera. FDEP, Florida Groundwaler Guidance concentrations, June 1994.

E 8

TABLE 7 (Cont'd)

DIRECT PUSH GROUNDWATER ANALYTICAL RESULTS (ppb) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

PARAMETER	BX-DP-16 4/9/97	BX-DP-16 BX-DP-17 BX-DP-14 BX-DP-19 BX-DP-20 4997 4997 4997 84997	DIRECT BX OP 18 4/3/37	PUSH SAMP BX-06-19 UNST	1870 778 1880 20 1890 7	RECT PUSH SAMPLE LD JOATE SAMPLED AND RESULTS (PPB) R-14 BX-DP-10 BX-DP-20 BX-DP-21 BX-DP-22 MCL V7 4DVST 4DVST 4DVST 410°ST	NO RESULTS (PPB) BX-DP-22 MCL'S W1097	F ION	REFERENCE STANDARD
VOLATILES									
Benzene	4900	2700	061	ND	QN	ND	ND	1	FDEP 62-770 ⁽¹⁾
Toluene	6000	3100	3.3	ND	QN	ND	ND	1000	FDEP GW-Criteria (2)
Ethylbenzene	2500	3100	170	ND	QN	ND	ND	001	FDEP GW-Criteria
Total Xylenes	12000	21000	2	2.1	ND	ND	ND	10000	FDEP GW-Criteria
Total BTEX	25400	29900	. 365.3	2.1	ND	ND	ND	90	FDEP 62-770
Naphthalene	143.9	85.3	37.2	ND	QN	ND	ND	001	FDEP 62-770
PQL for BTEX	2.0	200	2.0	2.0	2.0	2.0	2.0	NA	
PQL for Naphthalene	10	10	10	10	10	10	10	NA	3 -
r P Control of Emission and Protection e/EDEP) Chanter 62-770 Patrolaum Contamination Site Clean. In Critera	tof Environments	1 Protoction s/FDF	P) Chanter 69-77	O Patroleum Co	ntamination Site	Clean-un Critera			والمساورة والمراجعة

= Florida Department of Environmental Protection s(FDEP) Chapter 62-770, Petroleum Contamination Site Clean-up Critera. = FDEP, Florida Groundwater Guidance concentrations, June 1994.

ۯ

TABLE 7

DIRECT PUSH GROUNDWATER ANALYTICAL RESULTS (ppb) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

STANDARD		FDEP 62-770 ⁽¹⁾	FDEP GW-Criteria (2)	FDEP GW-Criteria	FDEP GW-Criteria	FDEP 62-770	FDEP 62-770	***	***	
3 10M		-	1000	700	00001	50	100	NA	NA	
D. DATE SAMPLED AND RESULTS (PPB) OF 12 READPACE BY OP 16 WOLV		3800	240	\$ 2400	2000	3.11440	1333	4:13	- 10	·
100 (2000) 100 (2000) 100 (2000)		6.0	20	22	120	1659	ND	2.0	10	Chapter 62-770, Petroleum Contamination Sile Clean-up Critera ne 1994.
										Contamination Sile
FIGUR PUSH SAME COLONIAN		-		1(1)	7200					i2-770, Petroleum
BY JOXE		200	7.2	QN	3.9	211.1	95.2	7.0		
BX-DP-10 4/9/97		QN	ND	ND	ND	ND	ND	2.0	10	ntal Protection s ance concentral
BX-DP-08 BX-DP-10 BX-C 4997 49/97 48		ND	ND	ND	ND	ND	ND	2.0	10	Florida Department of Environmental Protection s(FDEP) (FDEP, Florida Groundwater Guidanoe concentrations, Jur Diluted Sample
РАЗАМЕТЕВ	VOLATILES	Benzene	Toluene	Ethylbenzenc	Total Xylencs	Total BTEX	Naphthalene	PQL for BTEX	PQL for Naphthalene	(1) = Florida Departm (2) = FDEP, Florida G d = Diluted Sample

Groundwater Analytical Results Above Method Quantification Limits TABLE 5-4 (Continued)

Tyndall Air Force Base Bay County, Florida **BX Service Station**

		SAN	SAMPLE 1.0., DATE SAMPLED AND RESULT (PPB)	APLED AND RES	ULT (PPB)	
PARAMETER	BX MW-5 (7)	BX MW-5 (7)	BX MW-65 (7)	BX MW-6 (8)	(8) Z-MM XE	
	8/27/86	9/27/96	9127/96	9/27/96	9/27/96	MCLS
HALOGENATED VOLATILES						
Methylene Chloride	<1.0	<1.0	<1.0	10.8	<50	5.0
AROMATIC VOLATILES						
Benzene	510	200	408	<10	<10	1
Ethylbenzene	420	420	355	<10	<10	700
Toulene	290	740	706	<10	<10	1000
Total Xylenes	1810	1560	2780	<10	7	10000
Total Aromatic Volatiles	3300	3220	4248	<10	7	50
рвср	BMQL	BMOL	BMaL	BMOL	BMQL	-
ЕDВ	BMOL	BMOL	BMQL	BMQL	BMQL	
SEMIVOLATILES						
Naphthalene	99	69	107	<10	<10	••100
2-Methylnaphthalene	47	51	82	<10	<10	100
TRPH	3640	3510	2630	<400	<400	•••2000
METALS						
Lead	10	13	21	3	. 2	50
TRPH = Total Recovera	Total Recoverable Petroleum Hydrocarbons	rocarbons				

Florida Clean-Up Standards for Hydrocarbon Contaminated Groundwater
Florida Drinking Water Standards, Florida administrative code, Tille 62, Dept. of Environmental Protection, Chapter 62-770
Below Method Quantification Limits
USACE Split Sample

BMal

Duplicate Sample DUP

Methylene Chloride detected in method blank at 11.0 ppb

Bold/Shade

Value exceeds a regulatory threshold Concentration exceeds the Calibration range for that specific analysis

EDB and DBCP - Ethylene dibromide and 1,2-dibromo-3-chloropropane

Groundwater Analytical Results Above Method Quantification Limits **Tyndall Air Force Base** Bay County, Florida **BX Service Station** TABLE 5-4

			SAMPLE I.D., DV	SAMPLE I.D.;;DATE SAMPLED AND RESULT (PPB)	VD RESULT (PP	9)	
PARAMETER	BX MW-1	BX MW-2	BX MW-2 DUP	BX MW-2 S	BX MW-3	BX MW-4	
	4/6/95	4/6/96	4/5/96	4/4/85	4/6/98	4/8/9.6	MCLS
HALOGENATED VOLATILES							
Methylene Chloride	<1.0	<50	110	10 B	<50	<50	5.0
AROMATIC VOLATILES							
Benzene	<1.0	97	110	61	630	<50	1
Ethylbenzene	<1.0	940	1100	006	690	1500	200
Toulene	41.0	4900	0009	5040	3600	290	1000
Total Xylenes	<1.0	10,000	13,000	10,400	8400	0059	10000
Total Aromatic Volatiles	<1.0	15,937	20,210	18,391	13,420	8690	50
рвср	BMat	BMaL	BMQL	BMQL	. BMal	BMQL	•
ЕОВ	BMQL	BMal	BMOL	BMQL	BMal	BMal	•
SEMIVOLATILES					•		
Naphthalene	<10	370	370	368	290	120	••100
2-Methylnaphthalene	<10	150	140	NA	100	os>	100
ткрн	<400	8640	5220	2930	2600	1290	••5000
METALS							
Lead	£	6	13	18	4	3	20

TRPH

Total Recoverable Petroleum Hydrocarbons
Florida Clean-Up Standards for Hydrocarbon Contaminated Groundwater
Florida Drinking Water Standards, Florida administrative code, Title 62, Dept. of Environmental Protection, Chapter 62-770
Below Method Quantification Limits
USACE Spit Sample

BMQL

DUP

Duplicate Sample Methylene Chloride detected in method blank at 11.0 ppb

TABLE 6

SOIL TOTAL PETROLEUM HYDROCARBONS (TPH) CONCENTRATION PARTS PER MILLION (ppm) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

Location I.D.	Date	Reportable Limits (mg/kg)	Result (mg/kg)	OVA HEADSPACE (PPM)
BX-HA-14 (0.5-2.5')	20 Mar 97	11	86	145
BX-HA-16 (2.5-4.5')	20 Mar 97	-11	520 5.0°k	385
BX-HA-24 (2.5-4.5')	20 Mar 97	. 11	520	NR
BX-HA-15 (2.5-4.5')	20 Mar 97	11	1000	>10,000
BX-HA-10 (2.5-4.5')	20 Mar 97	11	450	1490
BX-HA-17 (0.5-2.5')	20 Mar 97	11	60	155
BX-HA-25 (2.5-4.5')	2 Apr 97	11	400	3500
BX-HA-29 (2.5-4.5')	2 Apr 97	11	740	3100
BX-HA-31 (2.5-4.5')	3 Apr 97	11	750	7000
BX-HA-32 (2.5-4.5')	3 Apr 97	11	620 ±101	2000
BX-HA-36 (2.5-4.5')	3 Apr 97	11	690	NR

NR = No Reading Available

* PUMP ISLAND - ALL PET TANK FORMER TANK PET

	SAN	IPLE ID, DA	TE SAMPLE	D, AND RESULTS (mg/kg)
		BX-HA-32	BX-HA-36	Florida Selected Soil Clean-up
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾
<u> </u>	Detection			
	Limits	4/03/97	4/03/97	
A-A-dimethylphenethylamine	0.35	ND	ND	NA NA
Dimethylphthalate	0.35	ND	ND	630,000
Di-n-butylphthalate	0.35	ND	ND	7300
2.4-dinitrotoluene	0.35	ND	ND	130
2.6-dinitrotoluene	0.35	ND	ND	71
Di-n-octylphthalate	0.35	ND	ND	1500
Diphenylamine	0.35	ND	ND	.NA
1.2-diphenylhydrazine	0.35	ND	- ND	NA
Fluoranthene	0.35	ND	ND	2900
Fluorene	0.35	ND	ND	2400
Hexachlorobenzene	0.35	ND	ND	0.6
Hexachlorobutadiene	0.35	ND	ND	3.1
Hexachlorocyclopentadiene	0.35	ND	ND	NA NA
Hexachloroethane	0.35	ND	ND	27
Indeno(1,2,3,-cd)pyrene	0.35	ND	ND	1.4
Isophorone	0.35	ND	ND	NA NA
3-methylcholanthrene	0.35	ND	ND	NA NA
2-methylnaphthalene	0.35	41		960
Nanhthalene 1	0.35	4.9 m		1300
1-naphthylamine	0.35	ND	ND	NA NA
2-naphthylamine	0.35	ND	ND	NA
2-nitroaniline	0.35	ND	ND	NA NA
3-nitroaniline	0.35	ND	ND	NA NA
4-nitroaniline	0.35	ND	ND	NA
Nitrobenzene	0.35	ND	ND	22
N-nitrosodimethyamine	0.35	ND	ND	0.003
N-mitrosodi-n-butylamine	0.35	ND	ND	NA .
N-nitrosodiphenylamine	0.35	ND	ND	73
N-nitroso-di-n-propylamine	0.35	ND	.ND	0.02
N-nitrosopiperdine	0.35	ND	ND	NA
Pentachlorobenzene	0.35	ND	ND	NA
Pentachioronitrobenzene(pcnb)	0.35	ND	ND	NA ·
Phenacetin	0.35	ND	ND	NA NA
Phenanthrene	0.35	ND	ND	1700
2-picoline	0.35	ND	ND	NA NA
Pronamide	0.35	ND	ND	NA
Pyrene	0.35	ND	ND	2200
1,2,4,5-tetrachlorobenzene	0.35	ND	ND	NA
1.2.4 trichlorobenzene	0.35	ND	ND	590

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte
NA = No Clean-up Goal Available

30IL - A				NALYTICAL RESULTS
	SAN			O, AND RESULTS (mg/kg)
		BX-HA-32	BX-HA-36	Florida Selected Soil Clean-up
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾
	Detection			
		4/00/07	4/02/07	·
	Limits	4/03/97	4/03/97	
Acid & Base Extractables			\TD	130,000
Benzoic Acid	1.8	ND	ND	NA
4-chloro-3-methylphenol	0.35	ND ND	ND	280
2-chlorophenol	0.35	ND	ND	220
2.4-dichlorophenol	0.35	ND	ND ND	NA
2.6-dichlorophenol	0.35	ND ND	ND	1800
2.4-dimethylphenol	0.35	ON ON	ND	NA NA
4.6-dinitro-2-methylphenol	1.8	ND	ND	NA NA
2,4-dinitrophenol	0.35	ND .	ND	2600
2-methyphenol	0.35	ND	ND	340
4-methylphenol 2-nitrophenol	0.35	ND	ND	· NA
4-nitrophenol	1.8	ND	ND	NA NA
Pentachiorophenol	1.8	· ND	ND	5.4
Phenol	0.35	ND	ND	34,000
2,3,4,6-tetrachlorophenol	0.35	ND	ND	NA
2.4.5-trichlorophenol	1.8	ND	ND	7100
2.4.6-trichlorophenol	0.35	ND	ND	87
Acenaphthene	0.35	ND	ND	2800
Acenaphthylene	· 0.35	ND	ND	670
Acetophenone	0.35	ND	ND	NA .
4-aminobiphenyl	0.35	ND	ND	NA NA
Aniline	0.35	ND	ND	NA .
Anthracene	0.35	ND	ND	20,000
Benzidine	0.35	ND	ND	NA
Benzo(a)anthracene	0.35	ND	ND	1.4
Benzo(a)pyrene	0.35	ND	ND	0.1
Benzo(b)fluoranthene	0.35	ND	ND	1.4
Benzo(g,h,i)perylene	0.35	ND	ND	14
Benzo(k)fluoranthene0.	0.35	ND	ND	14 NA
Benzyl alcohol	0.35	ND	ND ND	170
Bis(2-chloroethoxy)methane	0.35	ND ND	ND	0.5
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	0.35	ND ND	ND	NA
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	0.35	ND	ND	48
4-bromophenyl phenyl ether	0.35	ND	ND	NA ·
Butylbenzyl phthalate	0.35	ND	ND	15000
4-chloroaniline	0.35	ND	ND	240
1-chloronaphthalene	0.35	ND	ND	NA NA
2-chlorophenyl phenyl ether	0.35	ND	ND	NA
Chrysene	0.35	ND	ND	140
Dibenz(a,j)acridine	0.35	ND	ND	NA NA
Dibenzo(a,h)anthracene	0.35	ND	ND	0.1
Dibenzofuran	0.35	ND	ND	240
1,2-dichlorobenzene	0.35	ND	ND	820
1,3-dichlorobenzene	0.35	ND	ND	1700
1.4-dichlorobenzene	0.35	ND	ND	7.5
3,3'-dichlorobenzidine	1.8	ND	ND .	NA NA
Diethyphthalate	0.35	DN	ND	56,000
P-dimethyllaminoazobenzene	0.35	ND	ND	NA NA
7.12-dimethylbenz(a)anthracene	0.35	ND	ND	NA

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. Non-Detection of Analyte
No Clum-up Goal Available (1)

ND NA

		SAMPLE	D, DATE SAM	IPLED, AND F	RESULTS (mg/kg)
		BX-HA-25	BX-HA-29	BX-HA-31	Florida Selected Soil Clean-up
 Parameters 	Laboratory	(2.5-4.5)	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾
, uramotoro	Detection		(0.0 1.0)		
	Limits	4/02/97	4/02/97	4/03/97	
70 1' 4 11 (-)	0.35	ND	ND	ND ND	NA
7,2-dimethylbenz(a)anthracene	0.35	ND	ND	ND	NA NA
A-A-dimethylphenethylamine	0.35	ND	ND	ND	630,00
Dimethylphthalate Di-n-butylphthalate	0.35	ND	ND	ND	7300
2.4-dinitrotoluene	0.35	ND	ND	ND	130
2,6-dinitrotoluene	0.35	ND	ND	ND	. 71
Di-n-octylphthalate	0.35	ND	ND	ND	1500
Diphenylamine	0.35	ND	,ND	ND	NA NA
1.2-diphenylhydrazine	0.35	ND	ND	ND	NA .
Fluoranthene	0.35	ND	ND	ND	2900
Fluorene	0.35	ND	ND	ND	2400
Hexachlorobenzene	0.35	ND	ND	ND	0.6
Hexachlorobutadiene	0.35	ND	ND	ND	3.1
Hexachlorocyclopentadiene	0.35	ND	ND	ND	NA
Hexachloroethane	0.35	ND	ND	ND	27
Indeno(1,2,3,-cd)pyrene	0.35	ND	ND	ND	1.4
Isophorone	0.35	ND	ND	ND	NA
3-methylcholanthrene	0.35	ND	ND	ND	NA
Z-methylnaphthalene	0.35	5. 6.6 mails	WWW.47-4-	7. 1. 17 may	960
Naphthalene on the second	0.35	an 4.4 - 5mm	20	22	1300
l-naphthylamine	0.35	ND	ND	ND	NA
2-naphthylamine	0.35	ND	ND	ND	NA
2-nitroaniline	0.35	ND	ND	ND	NA
3-nitroaniline	0.35	ND	ND	ND	NA
4-nitroaniline	0.35	ND	ND	ND	NA
Nitrobenzene	0.35	ND	ND	ND	22
N-nitrosodimethyamine	0.35	ND	ND	ND	0.003
N-mitrosodi-n-butylamine	0.35	ND	ND	ND	NA NA
N-nitrosodiphenylamine	0.35	ND	ND	ND	73
N-nitroso-di-n-propylamine	0.35	ND	ND	ND	0.02
N-nitrosopiperdine	0.35	ND	ND	ND	NA
Pentachlorobenzene	0.35	ND	ND	ND	. NA
Pentachioronitrobenzene(pcnb)	0.35	ND	ND	ND	NA
Phenacetin	0.35	ND	ND	ND	NA
Phenanthrene	0.35	ND	ND	ND	1700
2-picoline	0.35	ND	ND	ND	NA
Pronamide	0.35	ND	ND	ND	NA
Рутепе	0.35	ND	ND	ND	2200
1,2,4,5-tetrachlorobenzene	0.35	ND	ND	ND	NA COO
1,2,4 trichlorobenzene	0.35	ND	ND	ND	590

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte
NA = No Clean-up Goal Available

301	L - ACID AND				RESULTS (mg/kg)
		BX-HA-25	BX-HA-29	BX-HA-31	Florida Selected Soil Clean-up
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾
Faiameters	Detection	(2.3-4.3)	(2.3-4.3)	(2.0 4.0)	
		4/00/07	4/00/07	4/03/97	-
	Limits	4/02/97	4/02/97	4/03/97	
Acid & Base Extractables					130,000
Benzoic Acid	1.8	ND	ND	ND	· · · · · · · · · · · · · · · · · · ·
4-chloro-3-methylphenol	0.35	ND	ND	ND	NA 280
2-chlorophenol	0.35	ND	ND .	ND	220
2,4-dichlorophenol	0.35	ND	ND	ND	NA
2,6-dichlorophenol	0.35	ND	ND	ND	1800
2.4-dimethylphenol	0.35	ND	ND	ND	NA
4.6-dinitro-2-methylphenol	1.8	ND	ND	ND	NA NA
2.4-dinitrophenol	1.8	ND	. ND	ND	
2-methyphenol	0.35	ND	ND	ND	2600
4-methylphenol	0.35	ND	ND	ND	340
2-nitrophenol	0.35	ND	ND	ND ND	NA NA
4-aitropheaol	1.8	ND	ND	ND	NA S.A.
Pentachlorophenol	1.8	ND	ND	ND ND	5.4
Phenol	0.35	ND	ND	ND	34,000
2,3,4,6-tetrachlorophenol	0.35	ND	ND	ND	NA TINO
2,4,5-trichlorophenol	1.8	ND	ND	ND	7100
2,4,6-trichlorophenol	0.35	ND	ND	ND	87
Acenaphthene	0.35	ND	ND	ND	2800
Acenaphthylene	0.35	ND	ND	ND	670
Acetophenone	0.35	ND	ND	ND	NA NA
4-aminobiphenyl	0.35	ND	ND	ND	NA NA
Aniline	0.35	ND	ND	ND	NA .
Anthracene	0.35	ND	ND	ND	20.000
Benzidine	0.35	ND	ND	ND	NA NA
Benzo(a)anthracene	0.35	ND	ND	ND	1.4
Benzo(a)pyrene	0.35	ND	ND	ND	0.1
Benzo(b)fluoranthene	0.35	ND	ND	ND	1.4
Benzo(g,h,i)perylene	0.35	ND	ND	ND	14
Benzo(k)fluoranthene	0.35	ND	ND	ND	14
Benzyl alcohol	0.35	ND	ND	ND	NA NA
Bis(2-chloroethoxy)methane	0.35	ND	ND	ND	170
Bis(2-chloroethyl)ether	0.35	ND	ND	ND	• 0.5
Bis(2-chloroisopropyl)ether	0.35	ND	ND	ND	NA NA
Bis(2-ethylhexyl)phthalate	0.35	ND	ND	ND	48
4-bromophenyl phenyl ether	0.35	ND	ND	ND	NA
Butylbenzyl phthalate	0.35	ND	ND	ND	15000
4-chloroaniline	0.35	ND	ND	ND	240
1-chloronaphthalene	0.35	ND	ND	ND	NA NA
2-chlorophenyl phenyl ether	0.35	ND	ND	ND	NA NA
Chrysene	0.35	ND	ND	ND	140
Dibenz(a,j)acridine	0.35	ND	ND	ND	NA NA
Dibenzo(a,h)anthracene	0.35	ND	ND	ND	0.1
Dibenzofuran	0.35	ND	ND	ND	240
1,2-dichlorobenzene	0.35	ND	ND	ND	820
1,3-dichlorobenzene	0.35	ND	ND	ND	1700
1,4-dichlorobenzene	0.35	ND	ND	ND	7.5
3,3'-dichlorobenzidine	1.8	ND	ND	ND	NA
Diethyphthalate	0.35	ND	ND	ND	56,000
P-dimethyllaminoazobenzene	0.35	ND	ND	ND	NA

Screening Levels derived from Florida Soil Clean-up Goals. dated September 27, 1995. Residental Goals are used. (1)

ND -Non-Detection of Analyte NA

		SAMPLE	D, DATE SAM	PLED, AND F	RESULTS (mg/kg)
		BX-HA-15	BX-HA-10	BX-HA-17	Florida Selected Soil Clean-up
Parameters	Laboratory	(0.5-2.5)	(2.5-4.5)	(0.5-2.5)	Golas ⁽¹⁾
	Detection	(3.3.3.2.7			
	Limits	3/20/97	3/20/97	3/20/97	
7 12 di	0.35	ND ND	ND	ND	NA NA
7.12-dimethylbenz(a)anthracene	0.35	ND	ND	ND	NA NA
A-A-dimethylphenethylamine	0.35	ND	ND	ND	630,000
Dimethylphthalate Di-g-butylphthalate	0.35	ND	ND	ND	7300
2.4-dinitrocoluene	0.35	ND	ND	ИD	130
2.6-dinitrotoluene	0.35	ND	ND	ND	71
Di-n-octylphthalate	0.35	ND	ND	ND	1500
Diphenylamine	0.35	ND	ND	ND	.NA
1,2-diphenylhydrazine	0.35	ND	ND	ND	.NA
Fluoranthene	0.35	ND	ND	ND	2900
Fluorene	0.35	ND	ND	ND	2400
Hexachlorobenzene	0.35	ND	ND	ND	0.6
Hexachlorobutadiene	0.35	ND	ND	ND	3.1
Hexachlorocyclopentadiene	0.35	ND	ND	ND	NA
Hexachloroethane	0.35	ND	ND	ND	27
Indeno(1,2,3,-cd)pyrene	0.35	ND	ND	ND	1.4
Isophorone	. 0.35	ND	ND	ND	NA
3-methylcholanthrene	0.35	ND	ND	ND	NA
2-methylnaphthalene	0.35	38 60 min	7.5 :: *******	ND	960
Naphthalene	0.35	38	6.2	ND	1300
1-naphthylamine	0.35	ND	ND	ND	NA
2-naphthylamine	0.35	ND	ND	ND	NA NA
2-nitroaniline	0.35	ND	ND	ND	NANA
3-nitroaniline	0.35	ND	ND	ND	NA NA
4-nitroaniline	0.35	ND	ND	ND	NA NA
Nitrobenzene	0.35	ND	ND	ND	22
N-nitrosodimethyamine	0.35	ND	ND	ND	0.003
N-mitrosodi-n-butylamine	0.35	ND	ND	ND	NA
N-nitrosodiphenylamine	0.35	ND	ND	ND	73
N-nitroso-di-n-propylamine	0.35	ND	ND	ND	0.02
N-nitrosopiperdine	0.35	ND	ND	ND	NA NA
Pentachlorobenzene	0.35	ND	ND	ND	. NA
Pentachloronitrobenzene(pcnb)	0.35	ND	ND ND	ND	.NA NA
Phenacetin	0.35	ND	ND	ND	NA 1700
Phenanthrene	0.35	ND	ND	ND ND	1700 NA
2-picoline	0.35	ND	ND		NA NA
Pronamide	0.35	ND ND	ND	ND ND	2200
Pyrene	0.35	ND ND	ND ND	ND ND	NA
1,2,4,5-tetrachiorobenzene	0.35 0.35	ND	ND ND	ND ND	590
1,2,4 trichlorobenzene	0.33	עא	עא	עא	J7U

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte
NA = No Clean-up Goal Available

JOIL	- AOID AILD	BASE EXTE			RESULTS (mg/kg)
		BX-HA-15	BX-HA-10	BX-HA-17	Florida Selected Soil Clean-up
Devemotore	Laboratory	(0.5-2.5)	(2.5-4.5)	(0.5-2.5)	Golas ⁽¹⁾
Parameters	,	(0.5-2.5)	(2.5-4.5)	(0.5 2.5)	
	Detection			000/07	•
·	Limits	3/20/97	3/20/97	3/20/97	
Acid & Base Extractables					130,000
Benzoic Acid	1.8	ND	ND	ND	
4-chloro-3-methylphenol	0.35	ND	ND	ND	NA 280
2-chlorophenol	0.35	ND ·	ND	ND	220
2,4-dichlorophenol	0.35	ND	ND	ND ND	NA NA
2.6-dichlorophenol	0.35	ND	ND	ND	1800
2.4-dimethylphenol	0.35	ND	ND		NA NA
4.6-dinitro-2-methylphenol	1.8	ND ND	ND	ND ND	NA NA
2.4-dinitrophenol	1.8	ND	. ND	ND	2600
2-methyphenol	0.35	ND	ND		340
4-methylphenol	0.35	ND	ND	ND ND	NA NA
2-nitrophenol	0.35	ND	ND ND	ND	NA NA
4-nitrophenol	1.8	ND	ND	ND ND	5.4
Pentachlorophenol	1.8	ND ND	ND ND	ND ND	34,000
Phenol	0.35		ND	ND ND	NA
2,3,4,6-tetrachlorophenol	0.35	ND	ND	ND	7100
2,4.5-trichlorophenol	1.8	ND	ND	ND	87
2.4.6-trichlorophenol	0.35	ND 3:0.41 ★	ND	ND	2800
	0.35		ND	ND	670
Acenaphthylene	0.35	ND ND	ND	ND	NA NA
Acetophenone	0.35 0.35	ND	ND	ND	NA NA
4-aminobiphenyl	0.35	ND	ND	ND	NA NA
Aniline	0.35	ND	ND	ND	20,000
Anthracene Benzidine	0.35	ND ND	ND	ND	NA NA
Benzo(a)anthracene	0.35	ND	ND	ND	1.4
	0.35	ND	ND	ND	0.1
Benzo(a)pyrene Benzo(b)fluoranthene	0.35	ND	ND	ND	1.4
Benzo(g,h,i)perylene	0.35	ND	ND	ND	14
Benzo(k)fluoranthene0.	0.35	ND	ND	ND	14
Benzyl alcohol	0.35	ND	ND	ND	.NA
Bis(2-chloroethoxy)methane	0.35	ND	ND	ND	170
Bis(2-chloroethyl)ether	0.35	ND	ND	ND	• 0.5
Bis(2-chloroisopropyl)ether	0.35	ND	ND	ND	NA NA
Bis(2-ethylhexyl)ohthalate	0.35	ND	ND	ND	48
4-bromophenyl phenyl ether	0.35	ND	ND	ND	NA
Butyibenzyi phthalate	0.35	ND	ND	ND	15,000
4-chloroaniline	0.35	ND	ND	ND	240
1-chloronaphthalene	0.35	ND	ND	ND	NA
2-chlorophenyl phenyl ether	0.35	ND	ND	ND	. NA
Chrysene	0.35	ND	ND	ND	140
Dibenz(a,j)acridine	0.35	ND	ND	ND	NA
Dibenzo(a_h)anthracene	0.35	ND	ND	ND	0.1
Dibenzofuran	0.35	ND	ND	ND	240
1,2-dichlorobenzene	0.35	ND	ND	ND	820
1,3-dichlorobenzene	0.35	ND	ND	ND	1700
1,4-dichlorobenzene	0.35	ND	ND	ND	7.5
3,3'-dichlorobenzidine	1.8	ND	ND	ND	NA
Diethyphthalate	0.35	ND	ND	ND	56,000
P-dimethyllaminoazobenzene	0.35	ND	ND	ND	NA NA

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte
NA = No Clean-up Goal Available

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)						
#		BX-HA-14	BX-HA-16	BX-HA-24			
. Parameters	Laboratory	(0.5-2.5)	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾		
, arainstois	Detection	(0.0 2.0)	(2.0)	1			
	Limits	3/20/97	3/20/97	3/20/97			
Dimethylphthalate	0.35	ND	ND	ND	630,000		
Di-n-butylphthalate	0.35	ND	ND	ND	7,300		
2.4-dinitrotoluene	0.35	ND	ND	ND	130		
2.6-dinitrotoluene	0.35	ND	ND	ND	71		
Di-n-octylphthalate	0.35	ND	ND	ND	1500		
Diphenylamine	0.35	ND	ND	ND	NA		
1,2-diphenylhydrazine	0.35	ND	ND	ND	. NA		
Fluoranthene	0.35	ND	ND	ND	2900		
Fluorene	0.35	ND	ND	ND	2400		
Hexachlorobenzene	0.35	ND	ND	ΝD	0.6		
Hexachlorobutadiene	0.35	ND	ND	ND	3.1		
Hexachlorocyclopentadiene	0.35	ND	ND	ND	NA		
Hexachloroethane	0.35	ND	ND	ND	27		
Indeno(1,2,3,-cd)pyrene	0.35	ND	ND	ND	1.4		
Isophorone	0.35	ND	ИD	ND	NA		
3-methylcholanthrene	0.35	ND	₽ ·· ND	ND	NA		
2-methylnaphthalene	0.35	ND	.sew 3lavemen	26	960		
Naphthalese	0.35	ND	::: 1 8		1300		
1-naphthylamine	0.35	ND	ND	ND	.NA		
2-naphthylamine	0.35	- ND	ND	ND	NA		
2-nitrosniline	0.35	ND	ND	ND	NA		
3-nitroaniline	0.35	ND	ND	ND	NA .		
4-nitroaniline	0.35	ND	ND	ND	NA		
Nitrobenzene	0.35	ND	ND	ND	22		
N-nitrosodimethyamine	0.35	ND .	ND	ND	0.003		
N-nitrosodi-n-butylamine	0.35	ND	ND	ND	NA NA		
N-nitrosodiphenylamine	0.35	ND	ND	В	73		
N-nitroso-di-n-propylamine	0.35	ND	ND	ND	0.02		
N-nitrosopiperdine	0.35	ND	ND	ND	NA NA		
Pentachlorobenzene	0.35	ND	ND	ND	NA		
Pentachloronitrobenzene(pcnb)	0.35	ND	ND	ND	NA		
Phenacetin	0.35	ND	ND	ND	NA		
Phenanthrene	0.35	ND	ND	ND	. 1700		
2-pi∞line	0.35	ND	ND	ND	NA		
Pronamide	0.35	ND	ND	ND	NA NA		
Pyrene	0.35	ND	ND	ND	2200		
1.2.4.5-tetrachlorobenzene	0.35	ND	ND	ND	NA SOO		
1,2,4 trichlorobenzene	0.35	ND	ND	ND	590		

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. Non-Detection of Analyte
No Clean-up Goal Available (1)

ND NA

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
• 📕		BX-HA-14	BX-HA-16	BX-HA-24				
Parameters	Laboratory	(0.5-2.5)	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾			
	Detection							
	Limits	3/20/97	3/20/97	3/20/97				
Acid & Base Extractables								
Benzoic Acid	1.8	ND	ND	ND	130,000			
4-chloro-3-methylphenol	0.35	ND	ND	ND	NA .			
2-chlorophenol	0.35	ND	ND	ND	280			
2,4-dichlorophenol	0.35	ND	ND	ND	220			
2.6-dichlorophenol	0.35	ND	ND	ND	NA			
2,4-dimethylphenol	0.35	ND	ND	ND	1800			
4,6-dinitro-2-methylphenol	1.8	ND	ND	ND	NA			
2,4-dinitrophenol	1.8	ND	· ND	ND	NA			
2-methyphenol	0.35	ND	ND	ND	2600			
4-methylphenol	0.35	ND	ND	ND	340			
2-nitrophenol	0.35	ND	ND	ND	NA			
4-nitrophenol	1.8	ND	ND	ND	NA			
Pentachlorophenol	1.8	ND	ND	ND	5.4			
Phenoi	0.35	ND	ND	ND	34,000			
2,3,4,6-tetrachlorophenol	0.35	ND	ND	ND	NA			
2,4,5-trichlorophenol	1.8	ND	ND	ND	7100			
2,4,6-trichlorophenol	. 0.35	ND	ND	ND	87			
Acenaphthene	0.35	ND	ND	ND	2800			
Acenaphthylene	0.35	ND	ND	ND	670			
Acetophenone	0.35	ND	ND	ND	NA			
4-aminobiphenyl	0.35	ND	ND	ND	NA			
Aniline	0.35	ND	ND	ND	NA			
Anthracene	0.35	ND	ND	ND	20,000			
Benzidine	0.35	ND	ND	ND	NA NA			
Benzo(a)anthracene	0.35	ND	ND	ND	1.4			
Benzo(a)pyrene	0.35	ND	ND	ND	0.1			
Benzo(b)fluoranthene	0.35	ND	ND	ND	1.4			
Benzo(g,h,i)perylene	0.35	ND	ND	ND	14			
Benzo(k)fluoranthene	0.35	ND	ND	ND	14			
Benzyl alcohol	0.35	ND	ND	ND	NA			
Bis(2-chloroethoxy)methane	0.35	ND	ND	ND	170			
Bis(2-chloroethyl)ether	0.35	ND	ND	ND	- 0.5			
Bis(2-chloroisopropyl)ether	0.35	ND	ND	ND	NA 48			
Bis(2-ethylhexyl)phthalate	0.35 0.35	ND ND	ND ND	ND ND	48 NA			
4-bromophenyl phenyl ether Butylbenzyl phthalate	0.35	ND	ND	ND ND	15,000			
4-chloroaniline	0.35	ND	ND	ND	240			
1-chioronaphthalene	0.35	ND	ND	ND	NA NA			
2-chlorophenyl phenyl ether	0.35	ND	ND	ND	NA NA			
Chrysene Chrysene	0.35	ND	ND	ND	140			
Dibenz(a,j)acridine	0.35	ND	ND	ND	NA NA			
Dibenzo(a,h)anthracene	0.35	ND	ND	ND	0.1			
Dibenzofuran	0.35	ND	ND	ND	240			
1,2-dichlorobenzene	0.35	ND	ND	ND	820			
1,3-dichlorobenzene	0.35	ND	ND	ND	1700			
1,4-dichlorobenzene	0.35	ND	ND	ND	7.5			
3,3'-dichlorobenzidine	1.8	ND	ND	ND	NA NA			
Diethyphthalate	0.35	ND	ND.	ND	56,000			
P-dimethylarninoazobenzene	0.35	ND	ND	ND	NA			
7,12-dimethylbenz(a)anthracene	0.35	ND	ND	ND	NA NA			
A-A-dimethylphenethylamine	0.35	ND	ND	ND	NA			
				110	1 110			

⁽¹⁾

ND NA

Non-Detection of Analyte
No Clean-up Goal Available

Screening Levels derived from Florida Soil Clean-up Goals. dated September 27, 1995. Residental Goals are used.

TABLE 4 (Con't) SOIL - METALS ANALYTICAL RESULTS

	CAMPLEID	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
Parameters	Laboratory	BX-HA-32 (2.5-4.5)	BX-HA-36 (2.5-4.5)	Florida Selected Soil Clean- up Golas ⁽¹⁾					
	Detection Limits	4/03/97	4/03/97						
RCRA Metals									
Silver	1	ND	ND	390					
Arsenic	5	ND	ND	0.7					
Barium	i	ND	ND	5200					
Cadmium	0.5	ND	ND	. 37					
Chromium	i	1	2	290					
Mercury	0.02	ND	ND	23					
Lead	5	11	22	500					
Selenium	10	ND	ND	390					

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte

TABLE 4 (Con't) SOIL - METALS ANALYTICAL RESULTS

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
Parameters	Laboratory	BX-HA-25 (2.5-4.5)	BX-HA-29 (2.5-4.5)	BX-HA-31 (2.5-4.5)	Florida Selected Soil Clean-up Golas ⁽¹⁾			
	Detection Limits	4/02/97	4/02/97	4/03/97				
RCRA Metals								
Silver	1	ND	ND	ND	390			
Arsenic	5	ND	ND	ND	0.7			
Barium	1	ND	1	1	5200			
Cadmium	0.5	ND	ND	ND	37			
Chromium	1	1	. 2	3	290			
Mercury	0.02	ND	ND	ND	23			
Lead	5	ND	9	19	500			
Selenium	10	ND	ND	ND	390			

(1)

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. Non-Detection of Analyte

ND

TABLE 4 (Con't) SOIL - METALS ANALYTICAL RESULTS

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)								
Parameters	Laboratory	BX-HA-15 (0.5-2.5)	BX-HA-10 (2.5-4.5)	BX-HA-17 (0.5-2.5)	Florida Selected Soil Clean-up Golas ⁽¹⁾				
	Detection Limits	3/20/97	3/20/97	3/20/97					
RCRA Metals									
Silver	1	ND	ND	ND	390				
Arsenic	5	ND	ND	ND	0.7				
Barium	1	2	ND	4	5200				
Cadmium	0.5	ND	ND	ND	. 37				
Chromium	1	2	1	9	29 0				
Mercury	0.02	ND	ND	ND	23				
Lead	5	18	9	ND	500				
Selenium	10	ND	ND	ND	390				

(1) = Screening Levels derived from Florida Soil Clean-up Goals. dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte

TABLE 4 SOIL - METALS ANALYTICAL RESULTS

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)								
Parameters	Laboratory	BX-HA-14 (0.5-2.5)	BX-HA-16 (2.5-4.5)	BX-HA-24 (2.5-4.5)	Florida Selected Soil Clean-up Golas ⁽¹⁾				
	Detection Limits	3/20/97	3/20/97	3/20/97					
RCRA Metals									
Silver	1	ND	ND	ND	390				
Arsenic	5	ND	ND	ND	0,7				
Barium	1	9	6	6	5200				
Cadmium	0.5	ND	ND	ND	37				
Chromium	1	14	5	5	290				
Mercury	0.02	ND	ND	ND	23				
Lead	5	ND	23	13	500				
Selenium	10	ND	ND	ND	390				

(1)

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. Non-Detection of Analyte

ND

	SAM	PLE ID, DAT	E SAMPLED, A	ND RESULTS (mg/kg)
1		BX-HA-32	BX-HA-36	Florida Selected Soil Clean-
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	up Golas ⁽¹⁾
i i	Detection			
	Limits	4/03/97	4/03/97	
Tert-butyl benzene	0.005	ND	ND	NA
1,1,1,2-tetrachloroethane	0.005	ND	ND	5.9
1,1,2,2-tetrachloroethane	0.005	ND	ND	0.9
Tetrachloroethene	0.005	ND	ND	12
Toluene	0.005	ND	ND	520
Trans1,2 Dichloroethylene	0.005	ND	ND	62
1,1,1-trichloroethane	0.005	ND	ND	610
1,1,2-trichloroethane	0.005	ND	ND	2.0
1,2,3-trichlorobenzene	0.005	ND	ND	NA
1,2,4-trichlorobenzene	0.005	ND	ND	590
Trichloroethene	0.005	ND	ND	6.5
Trichlorofluoromethane	0.005	ND	ND	6.6
1,2,3-trichlorofluorobenzene	0.005	ND	ND	NA
1,2,4-trimethylbenzene	0.005		128	6.2
1,3,5-trimethylbenzene	0.005	* 57440.00		3.7
Vinyl chloride	0.005	ND	ND	0.005
M,P-xylene	0.005	6.2	7.5	. NA
O-Xylene **	0.005	4.9		NA
Heptane	0.005	ND	ND ND	NA
propyl acetate	0.022	ND	ND	NA
hyl cyclohexane	0.011	ND	ND	NA
Propyl acetate	0.022	ND	ND	NA

(1) = Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND = Non-Detection of Analyte

Bold/Shade = Exceeds Florida Clean-up Goals, Chemical of Potential Concern

NA = No Clean-up Gou Available

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
		BX-HA-32	BX-HA-36	Florida Selected Soil Clean-				
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	up Golas ⁽¹⁾				
	Detection							
	Limits	4/03/97	4/03/97					
Volatiles								
Benzene	0.005	ND	ND D	1.4				
Bromobenzene	0.005	ND	ND	NA				
Bromochloromethane	0.005	ND	ND	NA				
Bromodichloromethane	0.005	ND	ND	0.7				
Bromoform	0.005	ND	ND	65				
Bromomethane	0.005	ND	ND	NA				
Carbon Tetrachloride	0.005	ND	ND	0.6				
Chlorobenzene	0.005	ND	ND	44				
Chloroethane	0.005	ND	ND	NA				
Chloroform	0.005	ND	ND	0.6				
Chloromethane	0.005	ND	ND	0.2				
2-chlorotoluene	0.005	ND	ND	NA				
4-chlorotoluene	0.005	ND	ND	NA				
Cis 1,2 Dichloroethylene	0.005	ND	ND	NA				
Chlorodibromomethane	0.005	ND	ND	NA NA				
Dibromomethane	0.005	ND	ND	NA				
1,4-dichlorobenzene	0.005	ND	ND	7.5				
1,3-dichlorobenzene	0.005	ND	ND	1700				
-dichlorobenzene	0.005	ND"	ND	820				
hlorodifluoromethane	0.005	ND	ND	NA				
1,1-dichloroethane	0.005	ND	ND	310				
1,2-dichloroethane	0.005	ND	ND	0.7				
1,1-dichloroethene	0.005	ND	ND	0.1				
1,3-dichloropropane	0.005	ND	ND	NA				
2,2-dichloropropane	0.005	ND	ND	NA				
1,2-dichloropropane	0.005	ND	ND	0.8				
Cis-1,3-dichloropropene	0.005	ND	ND	0.3				
Trans-1,3-dichloropropene	0.005	ND	ND	0.3				
1,1 Dichloropropene	0.005	ND	ND	NA				
Ethylbenzene	0.005	ND	2.6	1400				
Hexachlorobutadiene	0.005	ND	ND	3.1				
Isopropyl benzene	0.005	ND	1.I w#	NA				
P-isopropyltoluene	0.005	™.3 · · ·	2.6	NA				
Methylene Chloride	0.005	ND	ND	16				
Napthalene 4	0.005	4.4	(48)	1300				
N-butyl benzene	0.005	ND	ND	NA				
N-propyl benzene	0.005	1.9	4.5	NA NA				
Sec-butyl benzene	0.005	2	وي 2.5	NA				
Styrene	0.005	ND	ND	4100				

(1)

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. Non-Detection of Analyte

hade

Exceeds Florida Clean-up Goals, Chemical of Potential Concern

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
_		BX-HA-25	BX-HA-29	BX-HA-31	Florida Selected Soil			
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	(2.5-4.5)	Clean-up Golas ⁽¹⁾			
	Detection							
	Limits	4/02/97	4/02/97	4/03/97				
Tert-butyl benzene	0.005	ND	ND	ND	NA			
1,1,1,2-tetrachloroethane	0.005	ND	ND	ND	5.9			
1,1,2,2-tetrachloroethane	0.005	ND	ND	ND	0.9			
Tetrachloroethene	0.005	ND	ND	ND	12			
Toluene	0.005	ND	ND	ND	520			
Trans1,2 Dichloroethylene	0.005	ND	ND	ND	62			
1,1,1-trichloroethane	0.005	ND	ND	ND	610			
1,1,2-trichloroethane	0.005	ND	ND	ND	2.0			
1,2,3-trichlorobenzene	0.005	ND	ND	ND	NA			
1,2,4-trichlorobenzene	0.005	ND	ND	ND	590			
Trichloroethene	0.005	ND	ND	ND	6.5			
Trichlorofluoromethane	0.005	ND	ND	ND	6.6			
1,2,3-trichlorofluorobenzene	0.005	ND	ND	ND	NA			
I,2,4-trimethylbenzene	0.005		100		6.2			
1,3,5-trimethylbenzene	0.005	9	39,75	2.5	3.7			
Vinyl chloride	0.005	ND	ND	ND	0.005			
M,P-xylene	0.005	1.8	9.1	~ 8.5	NA			
O-Xylene	0.005	0.84 ∞	5.7- See	maies into	NA			
Heptane	0.005	ND	ND	ND	NA			
oropyl acetate	0.022	ND"	ND	ND	NA NA			
hyl cyclohexane	0.011	ND	ND	ND	NA NA			
. Jpyl acetate	0.022	ND	ND	ND	NA			

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. **(I)**

ND Non-Detection of Analyte

Exceeds Florida Clean-up Goals, Chemical of Potential Concern Bold/Shade

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
		BX-HA-25	BX-HA-29	BX-HA-31	Florida Selected Soil Clean-up			
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	(2.5-4.5)	Golas ⁽¹⁾			
	Detection							
_	Limits	4/02/97	4/02/97	4/03/97				
Volatiles								
Benzene	U.005	ND	ND	ND	1.4			
Bromobenzene	0.005	ND ·	ND	ND	NA			
Bromochloromethane	0.005	ΝD	ND	ND	NA_			
Bromodichloromethane	0.005	ND	ND	ND	0.7			
Bromoform	0.005	ND	ND	ND	65			
Bromomethane	0.005	ND	ND	ND	NA NA			
Carbon Tetrachloride	0.005	ND	ND	ND	0.6			
Chlorobenzene	0.005	ND	ND	ND	44			
Chloroethane	0.005	ND	ND	ND	NA			
Chloroform	0.005	ND	ND	ND	0.6			
Chloromethane	0.005	ND	ND	ND	0.2			
2-chlorotoluene	0.005	ND	ND	ND	NA			
4-chlorotoluene	0.005	ND	ND	ND	NA			
Cis1,2 Dichloroethylene	0.005	ND	ND	ND	NA			
Chlorodibromomethane	0.005	ND	ND	ND	NA			
Dibromomethane	0.005	ND	ND	ND	NA			
1,4-dichlorobenzene	0.005	ND	ND	ND	7.5			
1,3-dichlorobenzene	0.005	ND	ND	ND	1700			
chlorobenzene	0.005	ND	ND	ND	820			
prodifluoromethane	0.005	ND	ND	ND	NA			
1,1-dichloroethane	0.005	ND	ND	ND	310			
1,2-dichloroethane	0.005	ND	ND	ND	0.7			
1,1-dichloroethene	0.005	ND	ND	ND	0.1			
1,3-dichloropropane	0.005	ND	ND	ND	NA			
2,2-dichloropropane	0.005	ND	ND	ND	. NA			
1,2-dichloropropane	0.005	ND	ND	ND	0.8			
Cis-1,3-dichloropropene	0.005	ND	ND	ND	0.3			
Trans-1,3-dichloropropene	0.005	ND	ND	ND	0.3			
1,1 Dichloropropene	0.005	ND	ND	ND_	NA			
Ethylbenzene	0.005	ND	-45/	2.9				
Hexachlorobutadiene	0.005	ND	ND	ND	3.1			
Isopropyl benzene	0.005	ND	1.8		NA NA			
P-isopropyltoluene «	0.005	ND	2.2	2.9				
Methylene Chloride	0.005	ND	ND	ND	16			
Napthalene 🕏	0.005	7	34	29	1300			
N-butyl benzene	0.005	ND	ND	ND	NA			
N-propyl benzene	0.005	-51.2	7.8	5.1 -				
Sec-butyl benzene	0.005	ND	3.4	2.7 🚁	NA NA			
Styrene	0.005	ND	ND	ND	4100			

(1)

nade

Screening Levels derived from Florida Soil Clean-up Goals, Non-Detection of Analyte

Exceeds Florida Clean-up Goals, Chemical of Potential Concern
No Clean-up Goal Available

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
π		BX-HA-15	BX-HA-10	BX-HA-17	Florida Selected Soil Clean-			
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	(0.5-2.5)	up Golas ⁽¹⁾			
	Detection							
	Limits	3/20/97	3/20/97	3/20/97				
Sec-butyl benzene	0.005	7.4	ND	ND	NA			
Styrene	0.005	ND	ND	ND	4100			
Tert-butyl benzene	0.005	ND	ND	ND	NA			
1,1,1,2-tetrachloroethane	0.005	ND	ND	ND	5.9			
1,1,2,2-tetrachloroethane	0.005	ND	ND	ND	0.9			
Tetrachloroethene	0.005	ND	ND	ND	12			
Toluene	0.005	3.2	ND	ND	520			
Trans1,2 Dichloroethylene	0.005	ND	ND	ND	62			
1,1,1-trichloroethane	0.005	ND	ND	ND	610			
1,1,2-trichloroethane	0.005	ND	ND	ND	2.0			
1,2,3-trichlorobenzene	0.005	ND	DN	ND	NA			
1,2,4-trichlorobenzene	0.005	ND	ND	ND	590			
Trichloroethene	0.005	ND	ND	ND	6.5			
Trichlorofluoromethane	0.005	ND	ND	ND	6.6			
1,2,3-trichlorofluorobenzene	0.005	ND	ND	ND	NA			
1:2,4-trimethylbenzene	0.005			0.11	6.2			
1,3,5-trimethylbenzene	0.005	4.6		ND	3.7			
2	>> 0.005	ND	ND	ND	0.005			
M.P-xylene	0.005	第79		ND	NA			
Xylene	0.005	48	' ND	ND	NA			
tane	0.005	ND	ND	ND	NA			
sopropyl acetate	0.022	ND	ND	ND	NA			
Methyl cyclohexane	0.011	8.3	ND	ND	NA			
Propyl acetate	0.022	ND	ND	ND	NA			

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. (1)

ND

Non-Detection of Analyte
Exceeds Florida Clean-up Goals, Chemical of Potential Concern Bold/Shade

	SAMPLE ID, DATE SAMPLED, AND RESULTS (mg/kg)							
		BX-HA-15	BX-HA-10	BX-HA-17	Florida Selected Soil Clean			
Parameters	Laboratory	(2.5-4.5)	(2.5-4.5)	(0.5-2.5)	up Golas ⁽¹⁾			
	Detection				•			
	Limits	3/20/97	3/20/97	3/20/97				
Volatiles								
Benzene	0.005	ND	ND	ND	1.4			
Bromobenzene	0.005	ND	. ND	ND	NA NA			
Bromochloromethane	0.005	ND	ND	ND	. NA			
Bromodichloromethane	0.005	ND	ND	ND	0.7			
Bromoform	0.005	ND	. ND	ND	65			
Bromomethane	0.005	ND	ND	ND	NA			
Carbon Tetrachloride	0.005	ND	ND	ND	0.6			
Chlorobenzene	0.005	ND	ND	ND	44			
Chloroethane	0.005	ND	ND	ND	NA			
Chloroform	0.005	ND	ND	ND	0.6			
Chloromethane	0.005	ND	ND	ND	0.2			
2-chlorotoluene	0.005	ND	ND	ND	NA			
4-chlorotoluene	0.005	ND	ND	ND	NA			
Cis1,2 Dichloroethylene	0.005	ND	ND	ND	NA			
Chlorodibromomethane	0.005	ND	ND	ND	NA			
Dibromomethane	0.005	ND	ND	ND	NA			
1,4-dichlorobenzene	0.005	ND	ND	ND	7.5			
1,3-dichlorobenzene	0.005	ND	ND	ND	1700			
?-dichlorobenzene	0.005	ND "	ND	ND	820			
hlorodiifluoromethane	0.005	ND	ND	ND	NA			
4-dichloroethane	0.005	ND	ND	ND	310			
1,2-dichloroethane	0.005	ND	ND	ND	0.7			
1,1-dichloroethene	0.005	ND	ND	ND	0.1			
1,3-dichloropropane	0.005	ND	ND	ND	NA			
2,2-dichloropropane	0.005	ND	ND	ND	NA			
1,2-dichloropropane	0.005	ND	ND	ND	0.8			
Cis-1,3-dichloropropene	0.005	ND	ND	ND	0.3			
Trans-1,3-dichloropropene	0.005	ND	ND	ND	0.3			
1,1 Dichloropropene	0.005	ND	ND	ND	NA			
Ethy!benzene	0.005	30 mg	ND	ND	1400			
Hexachlorobutadiene	0.005	ND	ND	ND	3.1			
Isopropyl benzene	0.005	6.8	ND	ND	NA			
P-isopropyltoluene	0.005	21	ND	ND	NA			
Methylene Chloride	0.005	ND	ND	ND	16			
Napthalene	0.005	A. 30	*~-8.8 ·· •	ND	1300			
N-butyl benzene	0.005	31	40.0	ND	NA			
N-propyl benzene *	0.005	Straige 37 miles	. ND	ND	NA			

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used. (1)

Non-Detection of Analyte ND

Bold/Shade Exceeds Florida Clean-up Goals, Chemical of Potential Concern

SOIL - VOLATILE ANALYTICAL RESULTS

		SAMPLE ID,	DATE SAMPLE	D, AND RESUL	
_		BX-HA-14	BX-HA-16	BX-HA-24	Florida Selected Soil
Parameters	Laboratory	(0.5-2.5)	(2.5-4.5)	(2.5-4.5)	Clean-up Golas ⁽¹⁾
	Detection				
	Limits	3/20/97	3/20/97	3/20/97	
Styrene	0.005	ND	ND	ND	4100
Tert-butyl benzene	0.005	ND	ND	ND	NA
1,1,1,2-tetrachloroethane	0.005	ND	ND	ND	5.9
1,1.2,2-tetrachloroethane	0.005	ND	ND	ND ·	0.9
Tetrachloroethene	0.005	ND	ND	ND	12
Toluene	0.005	ND	· ND	ND	520
Trans 1,2 Dichloroethylene	0.005	ND	ND	ND	62
1,1,1-trichloroethane	0.005	ND	ND	ND	610
1,1,2-trichloroethane	0.005	ND	ND	ND	2.0
1,2,3-trichlorobenzene	0.005	ND	ND	ND	NA
1,2,4-trichlorobenzene	0.005	ND	ND	ND	590
Trichloroethene	0.005	ND	ND	ND	6.5
Trichlorofluoromethane	0.005	ND	ND	ND	6.6
1,2,3-trichlorofluorobenzene	0.005	ND	ND	ND	NA
1,2,4-trimethylbenzene	0.005	-'حد 0.18عد		55.00	- 6.2
1,3,5-trimethylbenzene	0.005	ND	200 272 300		3.7
Vinyl chloride	0.005	ND	ND	ND	0.005
M.P-xylene	0.005	₹ 0.006 ~ · ·	2	2.2	NA
O-Xylene	• 0.005	ND	0.95	0.55	3 NA
ntane	0.005	ND	ND	ND	NA NA
ropyl acetate	0.022	ND	ND	ND	NA NA
thyl cyclohexane	0.011	ND	ND	ND	NA NA
Propyl acetate	0.022	ND	ND	ND	NA NA

(1)

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

ND

Non-Detection of Analyte
Exceeds Florida Clean-up Goals, Chemical of Potential Concern Bold/Shade

TABL_ > SOIL - VOLATILE TO ALYTICAL RESULTS

			DATE SAMPLE		
	 	BX-HA-14	BX-HA-16	BX-HA-24	Florida Selected Soi
Parameters	Laboratory	(0.5-2.5)	(2.5-4.5)	(2.5-4.5)	Clean-up Golas(1)
	Detection	20000	0/00/07	DUP	
	Limits	3/20/97	3/20/97	3/20/97	
Volatiles	0.005	100		170	1.4
Benzene	0.005	ND	ND	ND	1.4
Bromobenzene	0.005	ND	ND	ND	NA NA
Bromochloromethane	0.005	ND	ND	ND	NA 0.7
Bromodichloromethane	0.005	ND	ND	ND .	0.7
Bromoform	0.005	ND	ND	ND	65
Bromomethane	0.005	ND	ND	ND	NA NA
Carbon Tetrachloride	0.005	· ND	ND	ND	0.6
Chlorobenzene	0.005	ND	ND	ND	44
Chloroethane	0.005	ND	ND	ND	NA
Chloroform	0.005	ND	ND	ND	0.6
Chloromethane	0.005	ND	ND	ND	0.2
2-chlorotoluene	0.005	ND	ND	ND	NA NA
4-chlorotoluene	0.005	ND	ND	ND	NA
Cis1,2 Dichloroethylene	0.005	ND	ND	ND	NA
Chlorodibromomethane	0.005	ND	ND	ND	NA
Dibromomethane	0.005	ND	ND	ND	NA
l,4-dichlorobenzene	0.005	ND	ND	ND	7.5
dichlorobenzene	0.005	ND	ND	ND	1700
dichlorobenzene	0.005	ND	ND	ND	820
Dichlorodifluoromethane	0.005	ND	ND	ND	NA
1,1-dichloroethane	0.005	ND	ND	ND	310
1,2-dichloroethane	0.005	ND	ND	ND	0.7
1,1-dichloroethene	0.005	ND	ND ·	ND	0.1
1,3-dichloropropane	0.005	ND	ND	ND ·	NA
2,2-dichloropropane	0.005	ND	ND	ND	NA
1,2-dichloropropane	0.005	ND	ND	ND	0.8
Cis-1,3-dichloropropene	0.005	ND	ND	ND	0.3
Frans-1,3-dichloropropene	0.005	ND	ND	ND	0.3
1,1 Dichloropropene	0.005	ND	ND	ND	NA
Ethylbenzene	0.005	ND	1.8	1.9	1400
Hexachlorobutadiene	0.005	ND	ND	ND "	3.1
sopropyl benzene	0.005	ND	ND	ND	NA
P-isopropyltoluene	0.005	ND	1.4	1.6	NA
Methylene Chloride	0.005	ND	ND	ND	16
Naphthalene	0.005	ND	24		1300
N-butyl benzene	0.005	ND	7.6	777-8 477	NA
N-propyl benzene	0.005	0.001	** - 0.7 5	5.6	NA
Sec-butyl benzene	0.005	ND	1.8		

(1)

Screening Levels derived from Florida Soil Clean-up Goals, dated September 27, 1995. Residental Goals are used.

Non-Detection of Analyte

Exceeds Florida Clean-up Goals, Chemical of Potential Concern No Clean-up Goal Avai

w:\09500017\cartx97.doc

ilable	for the men
B	~ n
Ť	rw (
\ E	HAZY (I)
*	Ha 29 (17.7)
Name	laxed (mr)

Soil Analytical Results Above Method Quantification Limits

BX Service Station

Tyndall Air Force Race Florida TABLE 5-3

1

				Tynd	Tyndall Air Force Base, Florida	ce Base, Fi	orida				
				SAMPLE	I.D., DATE SA	SAMPLE I.D., DATE SAMPLED, AND RESULTS (PPM)	RESULTS (I	(Mdc			
PARAMETER	BX:HA1 (2:3.5)	BX-HA1 (4-5.5")	8X.HA1 8 (4.5.5)	BX-HA4 (4-6.5")	8X-HA7 (4:5.5')	ВХ:НАВ (2:3.5)	ВХ-НА9 (4-5.5')	BX:HA19 (4-5.5')	BX:HA19 DUP (4-5.5)	BX:HA19S (4.5.5')	Petroleum Standards*
	3/17/96	3/17/96	3/17/95	3/17/95	3/24/95	3/24/95	3/24/95	3/24/95	3/24/96	3/24/96	
VOLATILES											
Acelone	<13.6	<13.6	411.4	<1.32	0.015 B	<1.51	<2.97	<1.32	<1,32	ı	:
Ethlybenzene	£7.01	14.7	20	40.681	<0.00578	<0.781	36.9	<0.684	7.6	i	i
Toluene	10 7>	24.9	30.3	1,43	<0.00578	<0.781	36.6	<0.684	7.83	10.2	:
Total Xylenes	362	205	106	82.4	<0.00578	15.1	457	103	280	385	÷
Total Volatiles	362	334.6	156.3	b3.83	0.015 B	15.1	532,50	103	201'93	395.2	100
SEMIVOLATILES											
Naphthalene	7.92	18.1	12.5	49.5	<0.382	1.51	7 11	8.1E	11,0E	15,1	:
2-Methylnaphthalone	12.4	19.3	15.9	62.6	<0.382	3.65	20.6	14.0 E	18.0 E	19.3	
Total PAH	20.32	37.4	28.4	112.1	<0.382	5.18	32	22.2	. 55	34.4	9
тврн	651	888	25!	2290	<8.67	<9.45	741	754	1540	401	50
METALS											
Barium	<1.13	<1.13	<1.1	<1.10	<1.16	1.46	<1.14	2.1	2.3	<13	2750
Chromium	0.908	0.536	<1.1	<0 275	1.62	1.89	1.01	1.3	163	<1.3	875
Mercury	<0.113	<0.113	<0.130	<0.110	<0.116	0.166	<0.114	0.11	0.11	<0.130	17
Lead	13.3	4.22	2.2	3.03	5.58	2.83	5.83	8.8	3.6	3.8	11
Sefenium	<0.226	<0.227	<1.10	<0.220	0.347	<0.252	<0.229	0.33	0.37	<1.28	165

Guidelines for assessment and remediation of petrofeum contaminated soils; Florida Department of Environmental Protection, Chapter 62-775, Applies only to Total Volatiles, Total PAHs and Metals.
 USACE Spit Sample
 Duplicate Sample
 Creeds a regulatory threshold.
 A stion exceeds the calibration range for that specific analysis.

S DUP Bold/Shade E

TABLE 2A ORIGINAL CA SOIL HEADSPACE RESULTS BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

		CVA Reading	OVA Reading	OVA Reading
Location LD	Sample Interval	Unfiltered	Filtered	Total
BX-HA1	0-1	70	20	50
	2-3.5	>1000	ND	>1000
	4-5.5	>1000	160	840
BX-HA2	0-1	ND	ND	ND
	2-3.5	2	ND	2
	4-5.5	70	50	20
BX-HA3	0-1	ND	ND	ND
	2-3.5	1	ND	1
	4-5.5	300	220	80
BX-HA4	0-1	14	2.8	11.2
	2-3.5	260	40	220
	4-5.5	>1000	440	560
BX-HA5	0.5-2	180	10	170
	3.5-5	280	30	250
	6.5-8	>1000	ND	>1000
BX-HA6	0-1	ND	ND	ND
	2-3.5	ND	ND	ND
	4-5.5	200	80	120
BX-HA7	0-1	ND	ND	ND
j	2-3.5	ND	ND	ND
	4-5.5	820	260	560
BX-HA8	0-1	ND	ND	ND
	2-3.5	ND	ND	ND
	4-5.5	ND	ND	ND
BX-HA9	0-1	ND	ND	ND
	2-3.5	>1000	90	910
	4-5.5	>1000	150	850

ND = Non Detected

Bold = Exceedance of 500 ppm standard for excessively contaminated soil. Petroleum Contamination Site Clean-up Crtieria, FDEP 62-7-70; September 1994

TABLE 2 (Cont'd)

SOIL HEADSPACE RESULTS REPORTED IN PARTS PER MILLION (ppm) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

Location LD.	Sample Interval	OVA Reading Unfiltered	OVA Reading Filtered	G7A Reading Total
BX-HA-29	0.5 -2.5	900	ND	900
	2.5 -4.5	3100	ND ·	3100
BX-HA-30	0.5- 2.5	40	ND	40
	2.5 -4.5	45	ND	45
BX-HA-31	0.5 -2.5	1050	ND	1050
	2.5 -4.5	7000	ND	7000
BX-HA-32	0.5 -2.5	1000	ND	1000
	2.5 4.5	2000	ND	2000
BX-HA -33	0.5 -2.5	2	ND	. 2
	2.5 -4.5	2	ND	2

ND = Non Detected

Bold = Exceedance of 500 ppm standard for excessively contaminated soil. Petroleum Contamination Site Clean-up Crtieria, FDEP 62-7-70; September 1994

TABLE 2

SOIL HEADSPACE RESULTS REPORTED IN PARTS PER MILLION (ppm) BX SERVICE STATION TYNDALL AIR FORCE BASE BAY COUNTY, FLORIDA

		OVA Reading	OVA Reading	OVA Reading
Location I.D.	Sample Interval	Unfiltered	Filtered	Total
BX-HA-10	0.5 - 2.5'	145	ND	145
<u> </u>	2.5 - 4.5'	1490	ND	1490
BX-HA-11	0.5 - 2.5'	45	ND	45
	2.5 - 4.5'	30	ND	30
BX-HA-12	0.5 - 2.5'	25	ND .	25
	2.5 - 4.5'	45	ND	45
BX-HA-13	0.5 - 2.5'	35	ND ;	35
	2.5 - 4.5'	ND	ND	ND ND
BX-HA-14	0.5 - 2.5'	160	15	145
	2.5 - 4.5'	115	ND -	115
BX-HA-15	0.5 - 2.5'	2240	ND	2240
	2.5 - 4.5'	>10000	ND	>10000
BX-HA-16	0.5 - 2.5'	385	ND	385
	2.5 - 4.5'	>10000	ND ND	>10000
BX-HA-17	0.5 - 2.5'	155	ND	155
	2.5 - 4.5'	115	ND	115
BX-HA-18	0.5 - 2.5'	45	15	30
	2.5 - 4.5'	45	20	25
BX-HA-19	0.5 - 2.5'	120	80	40
	2.5 - 4.5'	95	80	15
BX-HA-20	0.5 - 2.5'	5	ND	5
	2.5 - 4.5'	11	ND	1
BX-HA-21	0.5 - 2.5'	31	ND	31
	2.5 - 4.5'	20	ND	20
BX-HA-22	0.5 - 2.5'	120	16	104
	2.5 - 4.5'	85	5	. 80
BX-HA-23	0.5 - 2.5'	75	35	40
	2.5 - 4.5'	15	ND '	15
BX-HA-25	0.5 - 2.5'	15	ND	15
	2.5 - 4.5'	3500	ND ·	3500
BX-HA-26	0.5 -2.5'	4	ND	4
	2.5 -4.5'	4	ND	4
BX-HA-27	0.5 -2.5'	4	ND	4
	2.5 -4.5'	4	ND	4
BX-HA-28	0.5 -2.5	31	ND	31
	2.5 -4.5	20	ND	20

ND = Non Detected

Bold = Exceedance of 500 ppm standard for excessively contaminated soil. Petroleum Contamination Site Clean-up eria, FDEP 62-7-70; September 1994

TABLE 1

BX SERVICE STATION WELL CONSTRUCTION DETAILS

NOI		-																		
GW ELEVATION 4/7/95	24 85	Abandoned	24 57	24.57	24 08	24.12	24 25	24.27	24 53	22 11	24 66	23.81	24 07	23.81	23.97	24 47	24.24	22.52	08.62	60.03
SCREEN LENGTH - FEET	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	25	25	36
TOTAL DEPTH FT BTOC	16.5	15	16.5	14.5	11	17	15.5	15.3	15.5	45.80	12.00	13.00	35.60	13.00	13.00	13.00	13.00	28.20	28.50	27 A3
ELEVATION - GROUND FEET	30.98	29.68	30.09	30.35	29.62	29.29	29.34	29.62	30.35	30.50	29.90	29.60	29.42	28.80	29.10	29.73	29.29	29.32	29.44	29 73
ELEVATION - TOC FEET	30.85	30.12	29.78	30.12	29.38	28.44	29.00	29.37	30.26	30.14	29.66	29.36	29.12	28.66	28.97	29.55	29.02	29.06	29.24	29.20
WELL DIAMETER INCHES	4	4	4	4	4	4	4	4	4	2	4	4	2	4	4	4	4	2	4	2
WELL NO.	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MWD01-97	MW02-97	MW03-97	MWD04-97	MW05-97	76-90WM	MW07-97	MW08-97	MWD09-97	MWD10-97	MWD11.07

TOC = Top of Casing BTOC = Below Top of Casing GW = Groundwater **FIGURES**

P AQUIFER	•	WATER TABLE	CONFINING LAYER	FLORIDAN	
UPDIP DOWNDIP SOULF OF MEXICO NORTH ROCK UNIT SOUTH		UNCONSOCIANTS SANDS AND CLAYET SANDS AND CLAYET SANDS AND CLAYET SANDS	INTRACOASTAL FORMATION	SEDIMENT NOT PRESENT WITNCOASTAL FORMATION SEDIMENT	SOURCE: STATE OF FLORIDA DIVISION OF RESOURCE MANAGEMENT, BUREAU OF GEOLOGY. RILLIFTIN No. 57, GEOLOGY OF BAY COUNTY, FL. 1980.
нЭОАЭ	RECENT	PLEISTOCENE	PLIOCENE	MIOCENE	SOURCE: STATE OF FLORIDA DIVISION

FIGURE 2

GENERALIZED STRATIGRAPHIC COLUMN TYNDALL AFB, FLORIDA

SCALE: 1"=200"

SOIL BORING LOGS/ MONITORING WELL CONSTRUCTION DIAGRAMS

BC	;M	⊨ng	in	eers				Drillin	g/Borin	g Lo
 	ject:	<u></u>	٦.	Fredeli ACD Const.				Sheet		1
	ject: ject N	<u></u>)E-	Tyndali AFB Contamination Assessm 09-5000-17				Well/Boring:	BX-MW 1	
		ing Lo			Date(s): _3	/23/95		Logged By:	David Britai	n
				follow Stem Auger	Drilling Cor	tractor	Ardaman &	Accordates		
		Groui				6/95	Alumina e	Reference:	тос	
	ation	s - Gr	our	d Surface: 30.96 ft.	Inner Casin		5 ft.	neterence: Outer Casing:		
		ater 1			_	6/95		Reference:	TOC	
Pen	arks	Mo	nite	ring well set at 16.5 feet BGS						
					***		Graphical Logs			
uepun, Sanspie Pi	ation	S S		Lithologic Description			=	Blow	Count	
7 5	Sample Location	OVA Readings				흗	Weff Construction			Elevation
<u>-</u>	B		┺			Strata	≅ ∑			3
П	1	ND	E					2-3	-3	苣
									~	EI
\exists		Τ-	F							EI
∄		}	E							
		L	E					=		
∃	2	ND	E					Ξ		
=	2	1	E					<u> </u>	4	FI
∄			E					_		
Ⅎ			E							Εl
Ⅎ			E							El
Ī		ND	E							
=	3		E	CANDICOLLIGHAGE				3-4-	5	Εl
1				SAND(SP) Light gray to dark gray to lile tan, fine to medium, well to poorly sorte	ght brown to			Ξ		
1				angular to sub rounded, very loose to k	ru, sub oose moist			=		FI
Ė				to saturated at 6-7.5', no odor	, ///////			-		
#	-	NO								El
Ė	4	ND						= - 2-3-:	3	
]_			Ξ					=		
7					İ			Ξ		
Ξ	1							=		
7								=		
	5	ND							e	
∄								/*** =		El
∄								_		ĒΙ
∄								=		
1			=					_		
∄	6	1.0	=					=		
=	۱۹							6-7	9	
⇟								_		
╡							F	-		Εl
\exists			Ξ				E	=		Εl
\exists							-	=		El
\exists							Ė	=		E
\exists	}		Ē					=		
크							F	_		⊨ l

CI	ИE	ngir	eers		_		Dri	ling/Bor	ing L
_							Well/Bo	Sheet: <u>1</u> o	
oroje ^O roje	ct: ct No		Tyndall AFB Contamination Assessment 09-5000-17	Date(s): 3/	 27/95		Logged		
		 g Loca							
)rillin	g Me	thod:	Hollow Stem Auger	Drilling Cont	tractor:	Ardaman	& Associat		
		iround			5/95		Referen		
leva			nd Surface: 29.68 ft.	Inner Casing Date: 4/6	3: <u>29.4</u> 5/95	<u>4 π.</u>	Outer C Referen	_	
lom:		iter Ta	le: 25.32 ft. oring well set at 15.0 feet BGS	_ Date	733			. <u>100</u>	
	11 NJ.		oring worr secret 10.0 reet out						
						Graphical Logs			
vepui, sampie r.	Sample Location	OVA Readings	Lithologic D es cription		Strata	Well Construction		Blow Count	resation action
=	<i>₹</i>	NĎ			35	¥3		1-2-2	
		##### 							
	2	71. 000						2-3-4	
	3	560 Ներ	SAND(SP) Tan, dark gray, brown, fine poorly sorted, sub angular to sub round loose, moist to saturated from 6-7.5°, poodor from 3-13.5°	ded,very				3-3-5	
		4.4	<u> </u>						
	4	10.0						1-2-3	
	_	20						4-7-8	
∄	5	2.0					Ē		E
\exists			_ 				E		
目			=				E		E
目							Ŧ		
\exists							E		E
\exists							E		
		!	_ _		1	1			⊢
\exists		1	_		1		F		
			=						
			= = = =	·		·			

BCN	И EI	ngin	eers					Drill	ing/Bori	ng Log
								S	heet: 1 · of	1
Proje	ct:	COE	Tyndail AFB Contamination Assessmen	it-5 sites				Weil/Bon		
Proje			09-5000-17	Date(s):	3/27/9	5		Logged 8	By: David Br	Itain
Well/	Boring	Local	tion: N 390292 E 1653708						······································	
Drillin	g Mei	thod:	Hollow Stem Auger			•	Ardaman &	Associate		
Dept	n to G	round			4/6/95			Referenc		
Eleva				Inner Cas	_		rt.	Outer Ca		
_		ter Tat		Date: _	4/6/95		· · · · · ·	Referenc	e: TOC	· · · · · · · · · · · · · · · · · · ·
Rema	arks:	Moni	toring well set at 16.5 feet BGS							
		1 1			- ,			7		
						G	iraphical Logs			
بر		[[\neg		7		
홍	, Eg.	<u>.</u>	Lithologic Description				_	1	Blow Count	
	loc	iĝ					. <u>Ş</u>			ے
Depth, Sample PL	Sample Location	OVA Readings				울	Well Construction			Elevation
å	2	8				2020	ક્ર ડે			<u> </u>
\equiv	1	ND						E	2-2-3	E
\exists	·									
			=					E		
2						ı		Ē		FI
∃			=					E		E
		100			'	ı		E		
4	2	l	=		ŀ			E	3-3-5	
•∃		0						E		E
\exists			-		1	- [E		E
╡								E		E
6			-].				
ͺΞ	3	280						E	3-3-4	
	3	2	— ■ SAND(SP) Light gray, light brown, tan, (dark brow	n,			E		
			dark gray, fine to medium, poorty sorted	i, sub				=		₽
8=			angular to sub rounded, very loose to lo					E		E
			to saturated at 6-7.5', petroleum odor from	om 3-13.5	1	- 1		E		E
Ξ		360			1			E	2-2-2	F
1,5	4	3 3 0	-			I		E	E-E-E	E
10=								E		E
			=					E		
								E		E
12 14 16 16 16 16 16 16 16 16 16 16 16 16 16	-	\vdash	•							F
Ι Ξ	5	200			l			E	3-5-7	E
=								E		E
<u></u> =						ļ		E		=
14=]				1			E		F
Ξ	1							E		E
=	i		=					E		E
16=	1									
Ι Ξ	}				\dashv			- E		
=	1									
=	1									E
1 <u>=</u>	1		F					E		F
=	1		E		1			F		E
=	1		=					E		
1 =	3	1	=		- 1					E

3CI	VI E	ngin	eers				Drilling/Boring	g Lo
Proje			Fyndall AFB Contamination Assessment-5 sites				Sheet: 1 of Well/Boring: BX-MW 4	1
	ct No		09-5000-17 Date(s):	3/23/95			Logged By: David Brital	n
Weil/	Boring	g Local						
Orillin	ıg Me	thod:			: Ardama			
Depti	n to G	roundy		4/6/95			Reference: TOC	
Eleva				sing: 30.	12 ft.	_	Outer Casing: N/A	
		ter Tab		4/6/95		 '	Reference: TOC	
Rema	arks:	Monit	oring well set at 14.5 feet BGS					
					Graphica Logs	ıl		
Uepth, Sample Pt.	Sample Location	OVA Readings	Lithologic Description		Well Construction		Blow Count	tion
R Peb	S E	8		Strata	ق ≨			Elevation
∄	1	ND	- -				1-1-2	
\exists								E
.∃			<u>-</u> -	1		l F	- -	E
		E		1			-	
\exists		<u> </u>		- 1			• •	E
目		ND		1		l F	1-1-2	E
彐	2	l -	<u> </u>	İ			₹-1- 6 ,	E
⇉		4 ,		- 1			-	E
\exists		þ	-				<u>-</u>	F
\exists		F						E
7		122	-				•	E
	3	16	SAND(SP) Light brown to dark gray, fine to medi	.m		ΙF	3-3-5	E
\exists		<u> </u>	grain, well rounded 0-1.5', sub angular to sub			l ⊨		E
			rounded, very loose to loose, well sorted to poort	y			<u>.</u>	E
\exists			sorted, moist to saturated at 6-7.5', trace of wood				•	E
\exists		F	10.5', trace of petroleum odor 6-10.5'	1			•	E
\exists	A	100	<u> </u>				2-2-4	E
\exists	4	歌	-					E
∄			-				• •	E
\exists			<u> </u>				•	F
\exists		F	=				_	E
		9.6]	2.2.4	E
\exists	5	9.6		ļ			2-3-4	E
\equiv				ţ		I	<u> </u>	E
			_				- -	E
\exists					+			E
\equiv						E		
Ξ			<u>-</u> =	1			- -	E
=					}	E	=	F
Ξ					1	F	<u>=</u>	E
=	i		=	-		E	=	E
Ξ	1		=			E	=	
Ξ	1		<u>=</u>			E		E
_	1		<u>-</u>	- 1		E	-	E
Ξ	1		= -		1	E	= - .	
_	1	L					<u> </u>	

BCN	ΛEι	ngine	eers				Drillir	ig/Borin	g Lo
							She	et; 1 of	1
Projec	. 1	COE	Tyndall AFB Contamination Assessme	ent-5 sites			Well/Boring		
Projec			09-5000-17	Date(s):	3/28/95		Logged By:		ıln
•		Locati					_		
		•	Hollow Stem Auger	Drilling (Contractor:	Ardaman &	Associates		
	-	-		Date:	4/6/95		Reference:	тос	***
•		roundw	nd Surface: 29.62 ft.	_ `	ising: 29.3	18 ft	Outer Casin		
Elevai				Date:	4/6/95		Reference:	TOC	
n		ter Tab	oring well set at 11.0 feet BGS				_		·
нета	inks:	Monito	oring wait set at 11,0 leet 503						
				· · · · · · · · · · · · · · · · · · ·		Graphical		<u> </u>	
1					!	Logs	4		
ح ا	_						Bla	w Count	
뽏	igi.	2	Lithologic Description			s	, Bio	w Count	
Depth, Sample P.	Sample Location	OVA Readings			1	Well Construction	1		5
s l	용	2			Strata	_ ½	1		Į Š
2	8	₹			贫	¥ 3			Elevation
=			0-0 5' Asphalt				F		E
\exists	1	180	- -				Ε :	2-2-3	
2		l E	=						E
旦		LE	_						
\exists		lE	- -				Ė		E
_			- -						F
		F	=				E		E
彐			SANDY CLAY(CL) 0.5-1', fine to medi	um, poorly	,		= ,	3-3-5	E
=	2	280	sorted, sub angular to sub rounded, lo				E '	r-5-0	E
\exists		E	yellowish orange, moist, petroleum od						E
目		F	into SAND(SP) Dark gray, fine to med				E		F
彐			sorted, sub angular to sub rounded, lo				E		E
		E	loose, moist to saturated at 6.5-8', stro	ong petrole	um		E		E
=		F	odor 6.5'				E		E
\exists	3	1,000	=				⊨ '	2-2-2	E
,=	1		=				E		E
'≓		E	-				Ħ		F
\exists		F	=				E		E
\exists		E	=				F		E
.≓		T	-				E .	2-2-4	E
Έ	4	1000	=		1			3-2-4	E
=	•		=						F
\exists							F		E
			=				E		F
Ϊ		E	=				E		Ε
\exists			=			1	F		=
\exists		 	=						E
\exists							E		E
\rightrightarrows			-		į		E		E
\exists		E			Ì	[E		E
\exists			_				E		E
\exists					1		E		E
\exists	}						=		E
\exists			=				E		F
\exists	1					1	E		=
Ξ	1		=		[E		E
	1				1		E		E
	1								F
_							L		
Ξ	1				į į	i	<u> </u>		
0									

No.: 09-5000-17	Drilling Supervisor Dav	
Location: N 390239 E 1653506	Date(s): 3/28	
Method: Hollow stem auger	Drilling Contractor: Ard	aman & Associates
	12 in Leak Resistant Manho	NOT TO SCALE
ting Surface	methoda, ee equa	
Emporpor Victoria Comment (Victoria)		Zakana zakana za
Top of Casing Below	2 ft	
Existing Surface		
Leakproof Locking	Ho	
Cap with Lock	Dian	neter: 6.25 in.
Court		
Grout:		
Type: Portland Cement 5% Bentonite	Cas	sing:
		neter: 4 in.
	Leng	th: 1 ft.
		nections: threaded
	Mate	rial: PVC sch. 40
	0.3 ft, To	p of Seal
Bentonite Seal: ────		
	0 5ft, Bo	ottom of Seal
		op of Screen
Screen:		
Slot Size: 0 01 in	Groundwate	
Length: 10 ft. Diameter: 4 in.	First Encou	
Material: PVC		c Level, ft 4.67
		7.01
Sand/Gravel		
Size: 16/40		
Material sand		
Bottom Plug		ottom of Screen
Material: N/A		epth of Bottom Plug
Connection: N/A		epth of Boring
	Depth from Surface	

Vell/t rillin epth	g Me to G tions	.: <u>C</u> g Location thod: <u>F</u> iroundwa - Groun	Aler: 3.70 ft. 29.29 ft.	Date(s): 3/ Drilling Con Date: 4/ Inner Casing	tractor: 6/95	Ardaman &	Well/Boring: Logged By: Associates Reference: Outer Casing Reference:	BX-MW 6 David Brita TOC N/A TOC	in
ema		Monito	pring well set at 17.0 feet BGS	Date			1000000		
ocpui, sumple re	Sample Location	OVA Readings	Lithologic Description		Svota	Graphical Logs Construction	Blov	v Count	Pevalian
	1	1.0	0-0.5' Asphalt		<i> . ili.</i>		2 = 2 = = = = = = = = = = = = = = = = =	-3-3	
	2	(20)					3- 	3-4	
-1	3	20.0	SANDY CLAY(CL) 0.5-1', fine to medi sorted, sub angular to sub rounded, ve yellowish orange, moist, no odor, grad SAND(SP) Dark gray to light brown, to medium, poorty sorted, sub angular to	ery loose, ling into tan fine to sub rounded,			5- 	6- 7	
	4	0.8	loose to very loose, moist to saturated trace of petroleum odor 3.5-8', no odo				3 = 3	-4- 7	
	5	6.2					6	-7-7	
	6	ND		-				-7- 8	

ect No.: 09	5000-17	Drilling	g Supervisor	David Britain	
ng Location:	N 390212 E 1653493		Date(s)	3/28/95	
ng Method:	Hollow stem auger	Drillin	g Contractor	Ardaman & A	Associates
		12	in Leak		NOT TO SCALE
Existing Surface			Resistant M	lanhole	
			. 1. 9 . 144. Ca	11 4.8 × 4. 1 × 18.1 1	
	Concrete	₽ ŢŢ ├┤ │	•	f t	
	asing Below		2	ft	
Existing				Hole:	
	Leakproof Locking Cap with Lock			Diameter:	6.25 in.
	Out will fook		•		V.44 III.
Grout:					
Туре:	Portland Cement				
	5% Bentonite	→		Casing:	
				Diameter:	4 in.
				Length:	4.5 ft.
				Connections:	threaded
				Material:	PVC sch. 40
			15	t Top of Cont	
Renton	ite Seal:		1.5	ft, Top of Seal	
Datifol	inte Seal.		2.5	ft. Bottom of S	eal
			2.3	, Location Or 31	
			4.5	ft, Top of Scre	en
Screen	:			, p	
Slot Size:					
Length:			Groundw	rater:	
Diameter:			First E	ncountered, ft	6.5
Material	PVC		;	Static Level, ft	3.70
Sand/0	Gravel ————				
Size	16/40	•			
Material	sand				
Botton			14.5	ft,Bottom of S	
			17.0	ft,Depth of Bo	-
Material	. —		17.0	ft, Depth of Bo	ring
Connection	threaded		Depth from	•	•

DCIVI E	ngineers							Drilling	J/BUIII	lg L
	0057							Sheet		1
Project: Project No			mination Assessment	Date(s): 9/	12/05			Well/Boring: Logged By:	BX-MW5	
	 g Location:	09-50		2119.47	13/33			_ Logged By:	David Bri	tain
Drilling Me		Holloy	w stem auger	Drilling Conti	actor:	Kelly Envi	ropm	ental Drilling		
	iroundwater:		v stem tager		1/95	,		Reference:	TOC	
	- Ground Surf	ace:		Inner Casing:				Outer Casing:		
	Water Ta			Date:	_			Reference:	TOC	
Remarks:	*****							·		
	1				T	Graphical	1			
- L					<u> </u>	Logs				
Sample Location			Lithologic Desc	cription		Well		Blow C	ounts	
	8>					_ ž				tion
Ser	Blows				Strate	Con				Elevation
#7		=								
∄ '		=						=	i/A	E
2∰		=						= =		E
∃—		=						- -		
∃ 2		=						- N	/A	E
.∃ ⁴		=					E			E
		=					. =	:		
=	n/a	=			and if		F			E
∃ 3		=	ND/CD) fine to medium a				, <u>E</u>	<u>.</u> N	/A	E
且			ND(SP) fine to medium, po ular to sub rounded from				Ė	<u>=</u>		=
			wn, tan, saturated from 5				E			F
= ,			r from 2.5' to 14', swam	py odor from 10.5' to				- 4-5-	10	E
∃ 4		= 12'					E			E
₹		=					F			
$\exists \neg$	· E	=								E
∃ 5	<u> </u>	-						8-10-1	2	E
=	F	=					F	•		E
= 1	E	=						•		E
$\exists \Box$	E	=					E	: - 6-12-1	A	Ε
= 6	-	=						0-12-1	7	F
3	Ę	=								E
	F	=								E
		=						7-9-1	2	E
7		=								
=		=						-		F
3		Ξ			-		-E			E
#		=					E	•		
		=					F	•		F
3		=					E			E
∃		=					E	-		E
3		=					F			F
		Ξ					E	<u> </u>		E
目		=					E	-		E
\exists		=						- -		E
<u>,</u> =		=					E	<u>-</u>		
	†	_			1			-		

roject: Tyndall Contamination Assesement	Well/Boring No.: BX-MW5 (7)
roject No.: 09-5000-17	Drilling Supervisor: David Britain
oring Location:	Date(s): 9-Sep-95
rilling Method: Hollow stern auger	Drilling Contractor: Kelly Environmental Drilling
Existing Surface	3 ft. Protective Casing NOT TO SCALE Above Ground
Existing Surface	
Concrete	2.5 ft
Top of Casing 3' Above	2.5
Existing Surface	Hole:
	Diameter: 8.0 in.
Grout:	
Type: Portland Cement	
	← Casing:
5% Bentonite	Diameter: 2 in.
	Length: 2.5
	Connections: threaded
	Material: PVC
	Material. FVC
	1.0 ft, Top of Seal
Bentonite Seal:	1.0 K, Top of Sear
Denitorinte Seal.	2.0 ft, Bottom of Seal
.	2.0 n, Bodom of Seal
	2.5 ft, Top of Screen
Screen:	
Slot Size: 0.01 in.	
Length: 12.0 in.	Groundwater:
Diameter: 2 in.	First Encountered, ft 5.0
Material: PVC	Water Level, ft 4,55
Waterial. — FVC	
Sand/Gravel	
Size: 2040	
Material: silica	
Daws Bloom	405 404
Bottom Plug	12.5 ft,Bottom of Screen
Material: PVC	14.5 ft,Depth of Bottom Plug
Connection: threaded	14.5 ft,Depth of Boring
	Depth from
	Surface

Olar File	gineers			-		-	Sheet:	/Boring
	COE Td-	II Cantani	nation Assessment					BX-MW6 (8)
	COE-Tynda			Date(s): 9/13	795			David Britain
oject No.:		09-5000			133		— coddeo by.	David Britain
ell/Boring l		-	N 390317.98 E 1622113.	Drilling Contrac		Velly Engine	nental Drilling	
illing Meth		Hollow 1	tem auger			Kelly Environ		
	undwater:	_		Date: 9/1/9	35			тос
evations - (Ground Sur			Inner Casing:			Outer Casing:	
marks:	Water Ta	able:		Date:			Reference:	TOC
		Т				Graphical		
<u>_</u>						Logs		
Sample Location			Lithologic Description	on		Well	Blow Co	ounts
				I		5		
<u> </u>					ă	= #		
Sample		1	•	1	Strata	₹ 00		ł
S B) 	<u></u>	·		<u> </u>			
=		E			i		Ξ	/A A
		E		1	1		N.	'A
3		E						E
1								E
∄		E						E
3		E			- 1		<u> </u>	A E
日 2		E		i	1			=
		E			- 1		=	F
	n/a			1			_	F
_	Ē	=		į.		5 1 1 1	<u> </u>	. 🛓
∃ 3							= "	^ =
			upper en en en en en en en en en en en en en				=	
= 1			(SP) fine to medium, poorly				_	
3-1			er to sub rounded, crange to					
4			, tan, white, saturated from	4 to 14, no			_ 4-5-1	° ⊨
4		odor		1				
1		=					=	
‡		=					_	. =
5					- 1		8-10-1	2 =
							_	
		=					_	
3				1			_	
╡╻╵		_						4 ⊨
6			,		l		<u></u>	E
					1		_	Ē
<u> </u>							_	
3 7		Ε.					7-9-1	₂
7		=		į	1			= =
1		E			1	[_	
=		Ē		1			_	F
 		=		· -				F
∃				1		<u> </u>		E
≓		 =			- 1	,	_	=
∄		E			1	Ì	=	
3		E			1			
3		E			-		=	E
=		=			1		=	
6 7					1			
∃		E			١		=	E
コ							=	F
3				i i	- 1	1		<u> </u>
□ '		1		1	1		L	ı

CM Engineers	Monitoring Well Schema
oject: Tyndall Contamination Assesement	Well/Boring No.: BX-MW6 (8)
	Drilling Supervisor: David Britain
•	Date(s): 9-Sep-95
oring Location: Hollow stem auger	Drilling Contractor: Kelly Environmental Drilling
illing Method: Hollow stem auger	
	3 ft. Protective Casing NOT TO SCALE
Eviation Contact	Above Ground
Existing Surface	annians surranamentalm
Top of Casing 3' Above	2.5 ft
Existing Surface	
<u></u>	Hole:
	Diameter: 8.0 in.
Grout:	
Type: Portland Cement	
5% Bentonite	Casing:
	Diameter: 2 in.
	Length: 2.5 in.
	Connections: threaded
	Material: PVC
	0.0 ft, Top of Seal
Bentonite Seal:	
	1.0 ft, Bottom of Seal
	2.5 ft, Top of Screen
Screen:	
Slot Size: 0.01 in.	
Length: 10.0 in.	Groundwater:
Diameter: 2 in.	First Encountered, ft 4.0
Material: PVC	Water Level, ft 4.98
Sand/Gravel	
Size: 20\(\frac{40}{2}\) Material: silica	
Material: silica	
Bottom Plug —	12.5 ft,Bottom of Screen
Material: PVC	14.5 ft,Depth of Bottom Plug
Connection: threaded	14.5 ft,Depth of Boring
	Depth from
	Surface

BC	VI E	igineers								Junny	IDUINI	g Lu
											1 of	1
Proj	ect:	COE-Tynda	II Conta	amination Assessment							BX-MW7	
Proj	ect No	.:	09-5	000-17	Date(s): 9/1	4/95			Log	ged By:	David Briti	ain
Well	/Borin	g Location:		N 390282.56 E1622175.50								
Drilli	ing Me	thod:	Hollo	w stem auger	Drilling Contra		Kell	y Enviro		Drilling		
		roundwater:				/95				Reference: TOC Outer Casing:		
Elev	ations	- Ground Sur	face:		Inner Casing:							
1		Water T	able:		Date:				Refe	erence:	тос	
Rem	arks:											
1			· · · · · · · · · · · · · · · · · · ·									
	1	T					Grap	hical				
نوا	1_	ŀ					Lo	gs				
Depth, Sample Pt.	Sample Location	ļ						_				
Ē	000			Lithologic Description			١,	5	- 1	Blow Co	ounts	ĺ
S	12		1					2	- 1			5
Ę	혈	3]			a a	=					Elevation
8	San	Blows	1			Strata	Well	3				8
		=	E		-						·	
=	1		=							N	/A	E
=	1					1						F
_=	 	1	⊨									
² =		1	E						F			
=	2		=						E	N/	'Α	E
=	1		E						F			FI
4 =	1	i	E						E			
1 =		n/a										
* =	3	_ =	E							N/	/Α	
=	7		E						ĖΕ			E
16=		1	E	annon e								
"	1	1		AND(SP) fine to medium, poorly sor gular to sub rounded, brown, tan, s								EI
1 =	4			to 13.5', no odor	aturateu ironi					3-6-1	11	
1 =	1		⊨ °	13.3 , 110 000.								E
8 =	1	4	⊨									
] =	-								F			= 1
=	5									2-5-	7	
1 =		1							E			
10	1	1										
=	6	İ							E			E
		1							=	5-7-	.7	=
E	}	1	E						E			$\equiv 1$
12		1	=						E			EI
1 =	7		E								_	
=	₫ ′	ļ							E	5-9-1	5	
14	}	1	\equiv						=			= 1
'*≡	j		E						E			三
=	1		E						=			
=	1		E						_ =			FI
16=	‡		=						E			
16=	1		E				!		F			
] =	‡		=			1			E			E
=	=	1	E						F			F
· ' , _ =	‡		E				1		E			E
18=	1	1	E			1			E			F
=	‡		F				1		E			
1 =	\$		E				1		E			E
20=	₫		=						<u> </u>			=
												6.91

BCI	ИΕ	ngin	eers -				Drillin	g/Boring	J Lo	
. roje			troleum Contaminated Sites	Data(a): 05			Sheel Well/Boring:	MWD-01-97	3	
Proje			09-5000-17 tion: BX Service Station, Tyndali AFE	Date(s): 05		102	_ Logged By	Robert Spen	cer	
		g Loca	Hollow stem auger				nmental Drilli			
	-			•	0/1997	Kelly Ellvilo	Reference	TOC		
•			water: 8.03 and Surface: 30.50	Inner Casing			Outer Casing			
CINT			ole: 22.11		V1997		Reference	ТОС		
Rema										
د	Ę	թա)				Graphical Logs				
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)	Lithologic Description		Strata	Well	Blow	Blow Counts		
	<i>5</i> 3	ND	SAND (SW) 0-3' Light gray, loose, fin layer at 2.5' several inches thick	e sand; Peat		V		<u> </u>		
	1		Static water at 4.5' bis Static water at 4.5' bis SAND (SW) Tan, loose, wet fine sand	d; gasoline od	ď		6-14-2	1-24		
	2		SAND (SW) Brown, fine, sand with pe	troleum odor			=	·-14		
	3		SAND (SW) Brown, fine, sand with pe	stroleum odor				i		
	4		SAND (SW) Brown, fine, sand with pe	etroleum odor			5-6- 	15-26		

BCN	/I Er	ngin	ee	rs				D	rilling	g/Borin	g Log	
Proje	Sheet: 2 of 3 Project: 5 Petroleum Contaminated Sites Well/Boring: MWD-01-97 Project No.: 09-5000-17 Date(s): 05/07/97 Logged By: Robert Spencer											
Well/	Well/Boring Location: BX Service Station, Tyndall AFB; N-390346, E-1622193											
Drillin	Drilling Method: Hollow stem auger Drilling Contractor: Kelly Environmental Drilling											
•	Depth to Groundwater: 8.03 Date: 05/20/97 Reference: TOC											
Eleva	Elevations - Ground Surface: 30.50 Inner Casing: 2" Outer Casing: Water Table: 22.11 Date: 05/20/97 Reference: TOC											
O	Water Table: 22.11 Date: 05/20/97 Reference: TOC Remarks:											
Hema	ITKS:									· ····································		
٦,	e	pm)				(Graphical Logs					
Depth, Sample Pt	Sample Location	OVA Reading(ppm)		Lithologic Description		Strate	Well		Blow	Counts	Elevation	
目								E			E	
umğının												
Ξ			E								EI	
15				SAND (SW) 0-3' Dark brown, fine sand with	n taint						FI	
∃	5		E	petroleum odor	u iau			E	11-15-2	·0-27	FI	
≡	·		E	F				E			Εl	
20∄			E					E			ΕI	
20			E	CAND (CIAD Light being fine goods to odo	.	Ì		E			E	
∃	6		E	SAND (SW) Light beige, fine sand; no odo	' I				18-50	-75	E	
ヨ			E		l						EI	
22	_		=									
∄	7		Ε	SAND (SW) Same as above							El	
	٠ ا		E					E			EI	
=			F		Ì			=			FI	
" 目			E		Į.			F			FI	
Ξ	8		E	SAND (SW) Same as above	1			Ε			EI	
\exists			E					E				
25					j							
\equiv	9		E	SAND (SW) Light brown, fine sand	ļ			Ξ	9-12-1	17-20		
\exists	•		E			į		E		=		
28		Ì	E			İ		E			FI	
7=		1	E					E			FI	
Ξ	10		E	SAND (SW) Same as above				E		7.0	EI	
			E						3-5-	1-9	EI	
30=		1	E		İ			E			E I	
Ξ			F	SAND (SW) Same as above							FI	
=	11							F	7-15-	11-19	EI	
_ =		1	E					E				
32		1	E			<u> </u>		丰			E	
=	Ì		E				}	F			F	
=			E					E			E	
=	1		E				[E				
_	1		E]	E			Εl	
=	1		E					E			E	
Ξ	1		E					E			E	

BCN	ИΕ	ngin	ee	rs							rillin	g/Bori	ing Log
```											Sheet	:_ <b>3</b> of	3
عزد	ct:	5 Pe	trole	um Contaminated Sites						We	Il/Boring:		
	ct No			5000-17		: 05/07/9				Lo	gged By:	Robert S	pencer
				BX Service Station, Tyndali A	FB; N-390	346, E-16	221	192				<del> </del>	<u>.</u>
	-			low stem auger	Drilling	Contracto	•	Kell	ly Env			•	
				r: <b>8.03</b>	Date:	05/20/97					erence.	TOC	
Eleva				Surface: 30.50	-	asing: 2	_				ter Casing		
_		ter Ta	pie:	22.11	Date:	05/20/97				— He	erence	TOC	
Rema	arks:												
1						1	C		hical				
1 2	E	Reading(ppm)					_	Lo	gs	_			
Depth, Sample Pt.	Sample Location	96				1	ı		<b>-</b>				
Ę	700	투		Lithologic Description	1	- [	١	Well	矣		Blow	Counts	
3	1	2					.		Ž				할
ŧ	Ē	OVA				Strate		7	5 L	l			Elevation
å	S	6		15-10-0		Ŭ.	4	_₹	<u>ŏ</u>				<u> </u>
ΙĦ			E	CAND (CW) Same as shows						E			E
∃	12		Image: section of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last o	SAND (SW) Same as above						E	3-8-1	<b>6-50</b>	
ΙĦ			E		•					E			FI
<b>3</b> /⊑			E			1				E			
I∃	13		E	SAND (SW) Same as above		l				E			ΕI
▎∃	13		$\equiv$			]				=			
I ⊷∃			E				1			E			E I
36∃			E			İ				E			
∃	14			SAND (SW) Same as above			1			F	3-6-4	0_43	<b>□ □ □</b>
E			Ш			- 1				E		<b></b> -	
7≓			E							E			
357 ⊟			E	CAND (ONE Province for sound			1			E			FI
ΙΞ	15		Ε	SAND (SW) Brown, fine sand						E	3-16	-50	EI
ΙΞ			E			1				E			
40=			E			.				E			
=	4.0		F	SAND (SW) Same as above						=			
I∃	16		E	CATO (CIT) Calle as above		-[				E	21-24	1-40-50	EI
													El
42=			E							E			
∃			F			-				E	9-12-	17-20	Εl
<b> </b> ∃			E			1	-			E			⊨l
44∃			E					į		E			Εl
=	}		E				Í			Ē			E
ΙΞ			E							E			EI
) <u>=</u>	1		E	SAND (SW) Same as above to 46	' SILTY-	1				E			E
46	17			SAND(SM) Gray silty-sand from 46		<u> </u>	_			Ē	12-	23-50	E
	1	1	F	, , ,			:			E		=	Εl
	<del>]</del>	ł	E			-	. 1			E			
=	1					14	-						E I
48=	1	1	F			] ,				F			
=	18	'	E	SILTY-SAND (SM) Gray silty-sand	d	13				E			E
1 =	<u> </u>		E			l l	١	1		E	6-6	<del>-9</del> -14	E
<u> </u> =	4	1	F					1		E		<del>.</del>	E
<b>`</b> =	‡	1	E							一世			E
<b>L</b> =	1		F							F			
<b>y</b> =	₹ .		F							E			E
LE	<u> </u>	1	E						_	E			F



BC	M E	ngin	eers				Drillin	ıg/Borin	g Log
_								et: 1 of	1
ole	ct:	5 Pe	roleum Contaminated Sites		_		Well/Boring:	MW-02-97	
	ct No		09-5000-17	Date(s): 05/0			Logged By:	Shawn E. D	)ueltt
		g Loca					<u>-</u> -		
,	-		Hollow stem auger	•		Kelly Enviro	onmental Drill	ing	
			water: 5.00	Date: 05/20			Reference:	TOC	
Eleva			nd Surface: 29.90	Inner Casing:			Outer Casin		
<b> </b>	Wa arks:		ole: 24.66	Date: 05/20	2/97	<del></del> ·	_Reference:	TOC	
Hem	31 R3 :								<del></del>
					7		<del></del>		
		_				Graphical			
4	Ę	nd c				Logs	<b>」</b>		
å	Ħ	ğ				<b> </b>			
<b>1 §</b>	န	늏	Lithologic Description		l	l ŝ	Biov	v Counts	
S	-	ı Ž			_	Ž			<u> </u>
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		i	Strate	Well Construction			Elevation
	<i>σ</i>	Ó			š	≱ ŏ			
=			<del>_</del>				E		E
=			=	i					
<b>[</b> . [		_	SAND (SP) Gray to brown, loose, med	tium to fice			E		EI
l ³∃		5 ppm	<ul> <li>sand with organics</li> </ul>	adin (U III) <del>0</del>			E		
Ι∃							E		EI
			<del>-</del>						
4			Static water at 4' bis				F		E I
┺╱			— CEUC WAIGH AL 4 DIS		,		E		EI
E		[	<b>=</b>	ļ	Ì		E		<b> </b>
		{	<b>=</b>		I		E		FI
l ₀∃			<b>=</b>				E		E
	1		SAND (SP) Tan to gray, loose, wet, m	edium to fine	l		E		
ΙĦ	•		= sand with some organics	Jean Willie	İ		4-64	3-12	
I∃∃			<b>-</b>				E		
l°∄		E	<b>=</b>	-			E		FI
l ≓			=		1		E		EI
			=		İ		E		
10=	2		<ul><li>SAND (SP) Tan, loose, wet, medium t</li><li>with some organics</li></ul>	n tine sand			4-8-1	2-16	
		[	with some organics				Ε ^{···}		FI
=		[	<del>_</del>				E		EI
=			<b>=</b> <del>-</del>				E		EI
12=						_==	Ė		EI
l∃			Boring terminated at 12 feet	BGS.			E		FI
=							E		EI
I∃			<b>=</b>	ļ			E		
14=			<del>-</del>				E		FI
=			<b>=</b>				E		Εl
=			Ξ				E		E
16=				:			E		=
16			<del>-</del>		ļ		E		F I
=			<u> </u>				E		EI
ıΞ			<del>=</del>				E		FI
111			<del></del>				Ē		E
			<del>-</del>		1		E		E
r =							E		<b> </b>
					1				E
	L	1			<u> </u>	1			



BCN	ЛΕ	ngın	eei	rs					Drillir	ng/Bori	ng Lo
. 0 0	ct.	5 Pe	trole	um Contaminated Sites					She Well/Boring	et: <u>1</u> of :: MW-03-9	
	ct No			5000-17	Date(s	): 05/0	5/97		Logged By:		
		 g Loca						007			
				low stem auger					ronmental Drii	ilng	
	-		_	r: 5.55	Date:	05/20			Reference:		
•				Surface: 29.60	Inner C				Outer Casir		
CMAG		ter Ta			Date:	05/20	_		Reference:		
Rema											
		Ê				<del></del>	,	Graphicai Logs			
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		Lithologic Description	n ·	ļ	Strata	Well	Blo	w Counts	Elevation
$\equiv$	UJ.	Ü		agina ang ana ang ang ang ang ang ang ang a			0,				
		_	E								
ıΞ			E	SAND (SP) Gray to dark gray, loos	se, medium	to fine			E		E
<b>'</b> ∃		ppm	E	sand with some organics					E		E
$\exists$			E	•					E		E
$\exists$									E		
.∃			$\equiv$						E		F
$\exists$			E						E		E
$\exists$			Ε,	Static water at 5' bis					E		=
Æ			Ħ,	State Water at 5 bis		1			E		E
′∃			=						F		E
<b>'</b> =									E		E
=	1		F	SAND (SP) Dark brown, loose, we	t, medium i	to fine			<b>+</b> ,,	' <del>-9-</del> 11	<b>=</b>
=			F	sand. Organics at 6-6.2' (wood)						-9-11	E
<u>,</u> =			E						E		E
]			E						E		F
$\exists$		Ì	E						F		F
Ш			F	CAND (CD) Dark beauty James was					E		F
己	2		E	SAND (SP) Dark brown, loose, we sand. Organics at 10' (wood)	r, mealum	to line			E 3-3	3-7-12	E
			Ε	Lis. Organico ac 10 (WOOd)					E		E
Ξ		1	Ē						=		E
$\exists$			Ε						=		E
žΞ									Ē		E
			E				1		E		E
=		1		A., A.,					_ <u></u> _		E
=		1	E	_			1		E		E
<u>-</u>	1			Boring terminated at 13 f	eet BGS.		į		E		E
=	1		E				Ì		E		E
_	1	1						1	=		
=	1		E						E		E
6 <u>=</u>	1						1		E		E
Ξ	1	1	F						E		E
_	1	1					1				E
Ξ	1		E				1		E		F
=	4						1		E		E
Ξ	1	ļ	E						E		E
ノ_	‡		=								E
=	<b>E</b>	1	E				1	1	E		E
Ξ	<u> </u>		E				1		_E		<b> </b>





~Q	M E	ngin	eers				Drillin	g/Borin	g Log
) 1							Shee	t: 1 of	3
04	sct.	5 Per	troleum Contaminated Sites					MWD-04-97	
• .	ct No		09-5000-17	Date(s): 05/	07/97		Logged By:	Robert Spe	
	Boring					)58	1		
	-	_	Hollow stem auger	Drilling Contr	actor:	Keliy Enviro	nmental Drilli	Ing	
1	_		water: 5.05	Date: 05/2	0/97		Reference:	TOC	
			ind Surface: 29.42	Inner Casing:	2"		Outer Casing	3:	
		ter Ta		Date: 05/2	0/97		Reference:	тос	
Rem	arks:								
					1	iraphical			
		Ē				Logs			
Depth, Sample Pt.	8	Reading(ppm)							
ğ	Sample Location	ğ	i ithologia Dagadatia	_		Well			
Į	Lo	P	Lithologic Description	भा	1 1	To To	Blov	v Counts	چ
Ë	÷	æ			5	į			ğ
8	1	<b>V</b> V			Strata				Elevation
	-	0			1 00 1	> 0	_		
2			<b>=</b>						E
=			_				E		<b> </b>
<b>.</b> =		>10,0	— SILTY-SAND (SM) 0-3' Silty-sam	d and red fill with			=		E
2=		>10,0	petroleum odor						
=							=		FI
=							=		E
Ļ,Ę					5 Tour		=		
, J			Static water at 4.5' bis						EI
-			Static water at 4.5 UIS						EI
/=			=			.450			FI
•							<b>=</b>		EI
<u> </u> =							_		E
) <u> </u>	1		SAND (SW) Light brown, loose, v petroleum odor	wet fine sand;			4-5-	-9-2	
ΙΞ	1	]	pouriouni ruci						EI
0=							E		EI
8 =							Ξ		E
=							=		
	,		SAND (SW) Light beige, fine, san	d with petroleum			E	<del>9-</del> 13	E
10=	1 *		odor				E '''	<b>7</b> -13	<u> </u>
=	1								FI
ΙΞ	1	1					-		
12									E
] =	1	]	E				Ē		FI
] =	3		SAND (SW) Light tan, fine to med	dium sand			E		E
=	1		E				⊨ ⁹⁻⁸⁻	36-26	F
14-		1	E				E		E
1 =	1		E				E		E
=		4	E						F
=	₹	1	SAND (SW) White, fine, sand				Ē		E
16-	∃ ⁴	1	Cotto (over) vento, mio, sand		1		16-2	1-40-45	
=	Ė		E				E		Ħ
1	1-	-	E				F		
<del>.</del>	1		E		1		E		E
	=		E				E		F
	∃ .	1				1	E		
T	∄		E				E		E
1 :	=	1	=		ļ		E		E

BC	ИΕ	ngir	iee	ers			Drillin	g/Boring	Log
Weit/ Drittin Dept	nct No Boring Ing Me In to G Itions Wa	.: g Loca thod: round	09- ation Ho wate	BX Service Station, Tyndall AFB flow stem auger er: 5.05 Surface: 29.42	-1622 actor: 0/97 2"		Shee Well/Bonng: Logged By: conmental Drill! Reference: Outer Casing Reference:	MWD-04-97 Robert Spen	3 cor
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		Lithologic Description	Strate	Craphical Logs Opposition Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Constitucing Const	Blow	/ Counts	Elevation
16 20 22 24 25 30 32 32 32 32 32 32 32 33 32 32 33 32 33 32 33 32 33 32 33 33	5			SAND (SW) Light brown, fine, sand  SAND (SW) White, fine, sand			9-36-		





2CI	ΛE	ngin	eei	rs						D	rillin	g/Bo	ring	Log
											Sheet		of _	3
oje				um Contaminated Sites	5		-			-	/Boring:			
	ct No. Boring			5000-17  BX Service Station, Tyndall AFI	Date(s)			007			ged By:	HODE	t Spen	cer
				low stem auger					ly Envi	ronmen	tal Drilli	)d		
				r: 5.05	Date:	05/20			7		rence:	TOC		
				Surface: 29.42	Inner C	asing:	2"				r Casing			
1	Wa	ter Ta	bie:_	24.07	Date:	05/20	<b>7</b> 97				rence:	TOC		
Rema	arks:													
								Grap	hical					
۲.	ç	OVA Reading(ppm)						Lo	<b>98</b>					
Depth, Sample Pt.	Sample Location	d)B(				i			c					
Ę	3			Lithologic Description		j			윩		Blow	Count	3	_
٦, S	훒	ě					9		Ĕ					윤
<u> </u>	Ę	×					Strata	Well	ē					Elevation
	<u></u>	J	=				9	->	Ĕ	+			······································	
			E							F				E
			E			ı				E				
₃₫			E			Į				E				E
ΙΞ			Е			1	Ì			E				E
							12.17	l		E				
السا	8		E	SILTY-SAND (SM) Dark brown, silty	-sand wit	th				E				
	•		E	minor peat layer (approx. 1-2*) at 36.		Ė	ij			E	3-7-12	2-26		F
F						ļ				E				F
2 =			E				·			F				E I
38≡						Í				E				E
ΙΞ			E				. Áti			E				E
=			E				- 1			E				E
4										E				
₩≡			E							E				
ΙΞ	9		E	SAND (SP) Brown sand with some s	iilt	- [				E	0.44	<del>-9</del> -27		E
∃			E			1				E	37-11	- <del>J-</del> L/		FI
42=							Ì			Ē				
I ≡			E							E				F
∃						l				E				F
44 <u>=</u>			E							E				FI
=			E			l	ļ			E				FI
ΙΞ		ļ	E			l				E				El
] =			E	SILTY-SAND (SM) Gray silty-sand w	ith possit	ole clav				E				E
46	10		E	stringers	,	1	7							
<b>=</b>			E							E				E
=		1	E				āv.							E
48=	1		E				#**			E				E
] =	1		E							E				E
1 =	1		E				-	l						E
=	1		E				1			E				E
	1	1	E							E				E
<b>)</b> =	11		F	CLAYEY-SAND (SC) Gray clayey-s	and					E				E
1 <b>=</b>	1		E							E	1-4	<del>-6-</del> 7		E
L	1	<u> </u>	E							;=				E

BCI	M E	ngın	eers					Dr	ıllıng	/Borir	ng Log
_								-	Sheet	1 of	1
oie	<b>c</b> t:	5 Pe	troleum Contaminated S	Sites				Well/8	Boring:	MW-05-97	
•	ct No		09-5000-17		Date(s): 05/0	5/97		Logge	d By:	Shawn E.	Dueltt
Well	Bonn	g Loca	ition: BX Service Sta	tion, Tyndall AFB	; N-390404, E	-1621	952				
Drittin	ng Me	thod:	Hollow stern auger		Drilling Contra	ctor:	Kelly Envi	ronments	d Drillin	9	
Dept	h to G	iround	water: 4.85		Date: 05/20	1/97		Refere	ence:	TOC	
Eleva	ltions	- Gro	and Surface: 28.80		Inner Casing:	4.		Outer	Casing:		
Į.	Wa	ter Ta	ble: 23.81		Date: 05/20	<b>197</b>		Refere	ence:	TOC	
Rema	arks:										
							Graphical				
بو	_	Ē					Logs	[			İ
•	ᇫ	<u>\$</u>						7			
Ē	3	<u>چ</u>	Litholog	ic Description			퉏		Diame	<b></b>	
8	ž	N N					uct	İ	BIOM (	Counts	5
Ę	출	E .				ā	_ t	ł			19
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)				Strata	Well Construction	İ			Elevation
			=								Ē
ΙΞ								E			= 1
			E					F		-	F
<b> </b> 2∃		5	SAND (SP) Gray to					E			EI
ΙΞ		ppm	sand with abundant	organics (wood &	roots)			E			EI
=			<u></u>								
=								E			EI
Ľ∃								E			
月			Static water at 4.7 bis	1				E			EI
Ė								E			- <b> </b> =
					l	I		F			
I°∃		1			l			E			EI
lΞ	1		SAND (SP) Dark gra			ſ		E	4-10-12	-16	=
			6.5-8; loose; wet, m	edium to fine sand		1		E			FI
8								E			EI
] =						l		E			EI
					1			E			
<b> </b> ₁₀∃	2		SAND (SP) Brown t	o tan, loose, wet, r	nedium to fine	- 1					F
10=	•		sand with little organ	nics at 9.5'				E	4-8-12-	14	FI
=			=					E			
I =		1						E			E
12		1	=					E			FI
=		1	Boring to	minated at 12 feet	RGS.			F			E I
ΙΞ		1			<b></b> 0.			E			EI
I =		1	E					E			FI
14	1	1	E					E			E
=	1		E					F			E
=	]		E								
=	1		E					E			E
16=	1	1	E					E			<b> </b>
=	1	1	E			1		E			
=	1	1						E			
· =	4		E					F			E
_	1	1	E					E			E
<b>n</b> =	1	1	E					E			Ē
<b>7</b>	₹ .		E				1	F			E
LE	<del>]</del>	<u> </u>	F				1				=



RCI	ИΕ	ngir	iee	rs				Drilli	ng/Bori	ng Lo
)								She	et: 1 of	1
Proje				ourn Contaminated Sites	- · · · ·			***************************************	: MW-06-97	
•	ct No Borin	u: g Loca	$\overline{}$	-5000-17  : BX Service Station, Tyndail AFI	Date(s):_(			Logged By:	Shawn E.	Duent
		_		llow stern auger			Kelly Enviro	onmental Dri	ling	
	-			er: 5.00		5/20/97		Reference:	TOC	
Eleva				Surface: 29.10	Inner Casi			Outer Casir		
Rema		iter Ta	ble:	23.97	Date: 0	5/20/97	· · · · · · · · · · · · · · · · · · ·	Reference:	TOC	·
,,,,,,,	31743.									
		Ê					Graphical Logs			
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		Lithologic Description		Strata	Well	Bio	w Counts	Elevation
_=				——————————————————————————————————————		<b>—</b>		E		
∃								E		E
		5		SAND (SP) Dark gray to gray, loose,	medium to f	ine		E		
- 1∃		ppm	E	sand with some orgaincs (roots)				E		E
$\exists$		<u> </u>	E					E		E
Δ≡								E.		E
"∃			E					E		E
_			Щ	Static water at 5.2" bis				E		E
				Static Water at 5.2 bis				E		E
٩∃			Ш					E		E
Ξ	1			SAND (SP) Dark gray to gray, loose,		n to		E 1-1	-1-1	E
∃			E	fine sand with some organics near ba	<b>S6</b>			Ē	• •	E
•==	<b></b>		E					E		E
$\exists$			E					Ē		F
≣,,			E	SAND (SP) Brown, loose, wet, mediu	m to fine sa	nd		E		E
10∃	2		E	- (- ) = (1 )		1		2-3	<b>-4-5</b>	E
∄			F					F		E
12			E	•				E		E
12 🗏								Ę		
Ξ			E	Boring terminated at 12 fee	t BGS.			E		Ē
Ξ			E				}	E		E
14=								E		E
_			E					Ē		E
=			E			-		E		E
16=			E					E		E
16=			E					E		E
=			E					E		E
Ξ			E					E		E
Ξ	1		E					E		E
=	}									Ē
=	1		E				1	E		Ē



RC	M E	ngir	ieers			Drilling/Boring	Log
_ ~						Sheet: 1 of	1
	ject:		troleum Contaminated Sites			Well/Boring: MW-07-97	
	ject N		09-5000-17 Date(: ation: BX Service Station, Tyndali AFB; N-39	s): 05/05/97		Logged By: Shawn E. Du	eltt
		_				nmental Drilling	
	-		water: 5.32 Date:		ttony Entire	Reference: TOC	<del></del>
				Casing: 4"		Outer Casing:	
1	W	ater Ta	ble: 24.47 Date:	05/20/97		Reference: TOC	
Ren	narks:						
					Graphical		
۲.	٦	E			Logs		
å	ğ	Ę			=		
1 5	٤	3	Lithologic Description		¥ 2	Blow Counts	_
É	ا ق	ğ		5	_ <b>5</b>		SE I
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		Strata	Well Construction		Elevation
	-	T		"			
	=					E	
=	∄		SAND (CD) Committee Block array lands are affected			E	E
2=	╡	3 ppm	SAND (SP) Gray to light gray, loose, medium sand with dew organincs (roots)	n to line			
] =	3	'	E (1002)				E
=	╡						E
4.5	∄	1		į			E
	₹ .						E
	∃ .	1	Static water at 5.2' bis				
<b>-</b> -	╡	1					EI
• =	#	7					E
] =	] 1		SAND (SP) Black, loose, wet, medium to fine			= 7-11-13-13	F
] =	3		from 6-6.3'; Light brown, loose, wet, medium sand from 6,3-8'	to line			E
8 =	-	-				<del>_</del>	
=	₹					=	E
=	#	1	E CAMP (COMPANY)				
10-	∄ 2		SAND (SP) Light brown to beige, semi-loose medium to fine sand	, wet,		= 4-7-32	E
=	3	1	medium to line sand				E
=	1-	-{	E				E
12	3		=	- 1			E
'-:	‡	1	E				E
3	Ξ					<b>=</b>	F
3	3		Boring terminated at 13 feet BGS.				F
14-	=		F				E
:	=		F			=	E
:	╡		<b>E</b>			=	E
16-	Ξ .	1	E				E
:	3		E				E
:	=		E		1	E	
1	=	1				E	E
			E	1		F	E
	$\exists$		E			E	E
1	3	1	E			F	E
	٦.	1_	_			=	_ <u></u>



BCI	ИE	ngir	eers				Drillin	g/Borin	ig Log
, <del>, , , , , , , , , , , , , , , , , , </del>							Shee	t: 1 of	1
roje	ct	5 Pe	troleum Contaminated Sites		_		Well/Boring:		
	ct No	·.:	09-5000-17	Date(s): 05/0			Logged By:	Shawn E. I	Dueltt
		-	tion: BX Service Station, Tyndali AFE						
1	-		Hollow stem auger	Drilling Contra	actor:	Kelly Enviro	nmental Drill		
Dept	n to G	iround	water: 4.78	Date: 05/20		<del></del>	_Reference:	TOC	
Eleva			and Surface: 29.29	Inner Casing:			Outer Casing		
Į		ter Ta	ble:	Date: <u>05/20</u>	0/97		_Reference:	тос	
Rema	arks:								
							· · · · · · · · · · · · · · · · · · ·		
						Graphical			
7	<b>c</b>	OVA Reading(ppm)				Logs	j		- 1
Depth, Sample Pt.	Sample Location	8				_			
🖁	8	<b>F</b>	Lithologic Description			Well Construction	Blow	Counts	
Š	•				_	<u>r</u> ec	5.5		10 E
f f	Ē	₹ .			Strata	7 ¢			Elevation
å	Š	Ó			St	_≱ ເວິ			<u></u>
$\exists$							E		E
Ξ			<del></del>				Ė		E
∄				<u> </u>					E
2=		4	SAND (SP) 0-4" Asphalt; 4-10" Red						E
二		ppm	sand; 10°-3' Dark gray to light gray, i to fine sand	oose, medium					E
$\exists$									
			<del>_</del>						E
-₹∃			<b>=</b>						E
「三、			Static water at 4.5' bis				=		E
ノヨ			=				=		
_∃			=		1		=		FI
•∃				İ					E
$\exists$	1		SAND (SP) Dark gray to light brown,	loose, wet			= 4-8-10	E_18	
目			medium to fine sand		İ		= <del>****</del>	y- 10	E
<u>, =</u>							=		E
			=		I		<del>_</del>		
-			<u>-</u>	i	1		=		EI
103			SAND (SP) Light gray to white, loose,	wet, medium	1		<del>=</del>		El
10=	2		to fine sand				4-8-10	0-14	
∄			=				=		FI
=			<b>=</b>				=		
12			<del></del>						
"∃							_		
╡			Boring terminated at 12 feet	BGS.			=		E
∄		l	<del>-</del>	ļ			_		E
143							_		E
. =			<del></del>						E
Ξ	i						=		
Ξ			<b>=</b>						FI
16		1					=		E
$\exists$									
161111111111111111111111111111111111111							_		E
Ξ							E		E
			<b>=</b>						E
) /=							Ë		E
7 ≡									F
=					1		Ē		E
	1	<u>.                                    </u>			j	L			







<b>RCN</b>	√l Ei	ngin	ee	rs				D	rilling/Borii	าg Log
\ \ <u>\</u>									Sheet: 1 of	2
-1010	ct:	5 Pe	trole	eum Contaminated Sites				We	Il/Boring: MWD-09-4	
•	ct No.	.:	09-	-5000-17	Date(s): 05/0	7/97		وماً	ged By: Robert Sp	encer
	•	J Loca								
ı	-			llow stem auger	Drilling Contra		Keliy Envi			
				er: 5.10	_ Date:05/2				erence: TOC	
Eleva				Surface: 29.32	Inner Casing: Date: 05/2				er Casing: erence: TOC	
D		ter Tal		23.96 -97 will be an observation well posit			imples we	_		
пени	uks.	M W L		-57 Will Do all Costs Validis Wall positi	101100 30 110111	- G.G p.	pg wo		-	
			_			T ,	bl1	<u> </u>		
		Ê				'	iraphical Logs			
Z	ē	pp				-		$\dashv$		į
호	#5 .	)Bu	Ì	Lithologic Description		1 1	5			
5	٦	Pe		Litilologic Description			rct		Blow Counts	۾
£	ģ	, B				2	_ \$			ğ
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)				Strata	Well Construction			Elevation
				· · · · · · · · · · · · · · · · · · ·						
Ξ			Ξ					E		E
2			E			1		Ē		E
2=		>10,0 00		SILTY-SAND (SM) 0-3' Silty-sand at	nd red fill with	<b>3</b>	1 1	E		E
Ξ			E	petroleum odor				F		E
		_						E		
∡∃								E		E
⁴∃				<b></b>				E		
Ę			Ш	Static water at 4.5' bis				E		E
<u> </u>			$\equiv$	SAND (SW) Light brown, loose, wet:	sand with some	1		E		E
_,∃	1		E	silt; Black layer above sand at 4-5.5;	_			E	5-10-14-22	E
•=			Е	petroleum odor, color may be due to p	petroleum			E		E
$\Box$			<del> </del>					=		F
Ξ			E					E		E
8=	ŀ		F					E		· E
Ξ			E					E		E
Ξ			E					E		E
10=		l	E					Ξ		F
Ξ		]	E					E		E
	2		E	SAND (SW) Brown sand with slight p	etroleum odor			E	3 <del>-8-</del> 20- <u>22</u>	E
=	1		E					E		E
12 =	1—	1						Ш		
Ξ	1		E					E		E
=	<u> </u>		$\models$							F
], <u> </u>	}		F					F		E
14=	1		$\equiv$							E
=	1	]	E					F		F
=	1	1	E	CAND (CMP) (CMP)				F		F
16-	3	1	E	SAND (SW) Light brown, fine sand				E	10-70	E
=	3	1	E					E	<b></b>	E
=	1-	-	E			-		<del>-</del>		
• =	1		E					E		
Ę	=		E					E		E
) =	3	1	E		•			E		E
] =	‡	1	E			1	1	E		
} =	╡		E	<u>.                                    </u>			]	E		E

BCI	ΜE	ngir	iee	ers					Drilling	g/Borir	ng Log
Proje	ict: ict No			eum Contaminated Sites	Date(s): 0				Sheet Well/Bonng: Logged By:	2 of MWD-09-9 Robert Sp	1
	Borin								_Logged by.	Nobel Sp	Tica
		-						v Enviror	nmental Drillir	NG	
	-		_		-	5/20/97		,	Reference:	TOC	
					inner Casir				Outer Casing:		
CHIVA		ter Ta				5/20/97			Reference:	TOC	
Rema			шж.	23.30	Jale. <u>U.</u>	32037			nolorolico.	100	
							Graph				
4	UQ	OVA Reading(ppm)				-	Log				
Depth, Sample Pt.	Sample Location	Jug(		Lithologic Description			Well	<u>د</u>	Plaw	Counts	
S	Ie L	No.				_		ruc	BIOW	Counts	
Į,	E D	Ν				Strate	3	<b>8</b>			Elevation
=	S	0	E			S	<b>&gt;</b> (	<u> </u>			
						ı					EI
∄			E						=		E
16			=						=		
Έ			E			-			<b>=</b>		
=	- 1		=			- 1			<del></del>		<b> </b>
=	-		E								
20∄						- 1			=		<b>⊨</b> I
⋾									<b>=</b>		EI
∃	4			SAND (SW) White, fine, sand						1-33	<b> </b>
∃	- 1								=	. •••	
_									_		<b> </b>
<b>4</b> =						-			=		EI
Ξ			E			1					
24			Ш								EI
24			E						=		EI
$\exists$			E						<del>_</del>		
=									=		El
<u> </u>	- [		E	CAND (CIAD IADA)		1			=		FI
26=	5			SAND (SW) White grading to brown, fir	ne, sand	ļ					EI
∃			E								
크									=		
=			E			1			=		El
28=			E				=		<b>=</b>		
∄			E			1			-		FI
∃			$\equiv$			1					
∄			$\equiv$						<del>-</del>		FI
30=									=		<b>F</b> 1
∃	6		E	SAND (SW) White, fine, sand to 31'; D	ark brown.	.			E		⊨ I
Ⅎ	_			fine sand to 32"					21-34	4-45-50	
=			E						E		
22		1	$\equiv$				+		=		E
∃		1	E				1		E		EI
			E			1					FI
$\equiv$			F			ĺ					
			E			1	1		=		FI
=		1	$\models$			1	1		E		El
=	i										=
=			E						F		E

1

---



BC	ΜE	ngir	eers				Drilling	/Boring	Log
Well	ct No Borin	: g Loca			16220			MWD-10-97 Robert Spend	2 cer
Dept	h to G ations Wa	round	Hollow stem auger water: 5.35 ind Surface: 29.44 ole: 23.89	Date: 05/20/ Inner Casing: Date: 05/20/	/97 2"	Kelly Enviror	Reference: Outer Casing:	тос	
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)	Lithologic Description		Strata	Logs Logs United to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t	Blow (	Counts	levation
2		>10.0 00	SAND (SP) 0-3' Brown to black sand strong petroleum odor	d with some silt					
	1		Static water at 4.5' bis  SAND (SW) Brown, wet, fine sand; so petroleum odor	trong			18-33-3	4- <b>4</b> 6	
10 112 112 112 112 112 112 112 112 112 1	2		SAND (SW) Light brown fine to medit slight petroleum odor	um sand with			= = = 2-3-6-	18	
16=	3		SAND (SW) Brown, fine to medium	sand			6-8-15	5-30	

вС	ИΕ	ngir	iee	rs				Drilling	g/Boring	Log
Proje Well	Sheet   2   of   2									
	-				Date: 05/20		Kelly Ellviro	Reference:	TOC	
					Inner Casing:	_		Outer Casing		
		ter Ta	ble:	23.89	Date: 05/20	/97		Reference:	TOC	
Rem	arks:									
<u>۔</u>	5	(mdc				(	Graphical Logs			
Depth, Sample Pt.	Sample Location	OVA Reading(ppm)		Lithologic Description		Strata	Well	Blow	Counts	Elevation
20 22 24 28 29 30 32 32	5			SAND (SW) Tan, fine, sand  SAND (SW) Same as above  SAND (SW) Same to 32'; Black dense approximately 32'	peat at			6-18-2	1-25	





	שט	IVI E	ngir	neers										g/bor	ing Log
												-	Shee	t: 1 o	2
	ОН	ect	5 Pc	etroleur	n Conti	minated S	Sites					٧	Vell/Boring:		
	•	ect No			00-17			Date(s	): 05/0	7/97		_	ogged By:	Robert S	
1	Well	Borin	g Loc	ation:	BX S	ervice Sta	tion, Tyndail	AFB; N-390	378, E	-162	2029				· <del>····································</del>
ı	Drilli	ng Me	thod:	Hollo	w stem	auger		Drilling	Contra	actor:	Kelly Env	ironm	ental Drilli	ng	
				water:				Date:	05/2				eference:	TOC	
	Eleva			und Su		29.43		Inner C	_			_	uter Casing		
ı	0		ater Ta		23.84			Date:	05/2				eference:	TOC	
ı	пен	arks.					the well is p						uon.		
ı		<u> </u>	1		.9 0000		- tie wai is p	351001100			-	<u> </u>			
İ			=								Graphical	1			
ı	Depth, Sample Pt.	5	OVA Reading(ppm)							<u> </u>	Logs	_			
I	<u>.</u>	20	) G								۾				
1		٦	7	ĺ		Limolog	ilc Descriptio	n			ij		Blow	Counts	ا ۽ ا
	Ę.	=	æ							5	Pt.	ł			ş
ı	8	Sample Location	١				•			Strata	Well Construction	-			Elevation
ŀ		<u> </u>		=						65	> 0				L 1
١	=											E			
١	=											F			E
ı	2=		950								1 1	E			EI
۱	∃		ppm									E			FI
١	=		<u> </u>	<u> </u>						ı		E			EI
İ	. 🗏									- 1		E			EI
L	.⁴∃			=						l					
	4 8 8 10			=					İ	- [		E			ΕI
	ıΞ			=					- 1	l		E			
7	′.∄	ı		=					1	[		E			
1	°∃		ĺ						1			F			Εİ
ı	╛			_					I			E			El
١	$\exists$								l	1		E			El
١	8=			=					1	l		E			EI
ı	∃			=					ļ	İ		E			Εl
١	∄			=					1			E			
1	10日			=						}		E			E I
ı										Ì		F			El
١	=									ì		E			ΕI
١	_=			Ε								E			E
١	12=			E								Ε			
١	Ξ			E		,						E			EI
١	Ξ			E								E			<b>=</b> 1
١	14=			E								F			FI
ŀ	'=			E								E			<b>E</b> 1
١	_			E						ł		E			=
	=		1	E						1		E			FI
1	16		İ									E			E
	=		1	E								E			E
	=			E						<u> </u>					E
į	=			E											E
	Ę											E			
	) =	1	1	E								E			E
_	14	1		E								E			E
-	Ξ	1		E.											=

BCI	VI E	ngin	eers					Drilling	g/Boring	Log
Proje		5 Pe	troleum Conta 09-5000-17	minated Sites	Date(s): 05/0			Sheet: Well/Boring: Logged By:	2 of MWD-11-97 Robert Spend	2 er
	Well/Boring Location: BX Service Station, Tyndall AFB; N-390378, E-1622029									
			Hollow stem		Drilling Contra	ctor:	Kelly Enviro	nmental Drillin	9	
	-		water: 5.36	X	Date: 05/20	<i>1</i> 97		Reference:	TOC	
			und Surface:	29.43	Inner Casing:	2"		Outer Casing:		
			ble: 23.84		Date: 05/20			Reference:	TOC	
Rem										
به		(mc				G	iraphical Logs			
Depth, Sample Pt	Sample Location	OVA Reading(ppm)		Lithologic Description		Strata	Well	Blow	Counts	Elevation
20 22 24 26 28 28 28 28 28 28 28 28 28 28 28 28 28										





# APPENDIX B LABORATORY ANALYTICAL DATA SHEETS AND CHAIN-OF-CUSTODY RECORDS FROM MARCH 1998 SAMPLING EVENT

#### WORK ORDER #: 9803254

Work Order Summary

**CLIENT:** 

Mr. Brad Lewis

**BILL TO:** Same

Parsons Engineering Science 5390 Triangle Pkwy #100 Norcross, GA 30092

PHONE:

770-446-4900

P.O. # 731854.1

FAX:

**770**-446-4910

PROJECT # 731854.10 TYNDALL

DECEIDT

DATE RECEIVED:

3/24/98

DATE COMPLETED:

4/16/98

			RECEIF I
FRACTION#	NAME	TEST	VAC./PRES.
01A	BX-HA-A	TO-3	0.4 psi
02A	BX-HA-15	TO-3	0 "Hg
03A	BX-HA-1	TO-3	0.2 psi
04A	FT16-HA-72	TO-3	0.2 psi
05A	FT16-HA-61	TO-3	0.2 psi
06A	FT16-HA-49	TO-3	7.0 "Hg
07A	Lab Blank	TO-3	NA
08A	Method Spike	TO-3	NA

CERTIFIED BY:

Laboratory Director

DATE: 4-16-98

Certification numbers: CA ELAP - 1149, NY ELAP - 11291, UT ELAP - E-217

SAMPLE NAME: BX-HA-A

ID#: 9803254-01A

### EPA Method TO-3 GC/PID/FID

Ella Name: 6040413	Date of Collection: 3/21/98
File Name: 6040413	
Dil Sentor 985	Date of Analysis: 4/ 4/98
Dil. Factor: 985	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.99	3.2	23	74
Toluene	0.99	3.8	35	130
Ethyl Benzene	0.99	4.3	38	160
Total Xylenes	0.99	4.3	22	98
TPH (C5+ Hydrocarbons) ref. to Gasoline	9.9	41	10000	41000
C2-C4 Hydrocarbons ref. to Gasoline	9,9	18	Not Detected	Not Detected

		Method		
Surrogates	% Recovery	Limits		
Fluorobenzene (PID)	149	50-150		
Fluorobenzene (FID)	86	50-150		

SAMPLE NAME: BX-HA-A Duplicate

ID#: 9803254-01AA

#### EPA Method TO-3 GC/PID/FID

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.99	3.2	18	60
Toluene	0.99	3.8	28	110
Ethyl Benzene	0.99	4.3	29	130
Total Xylenes	0.99	4.3	16	71
TPH (C5+ Hydrocarbons) ref. to Gasoline	9.9	41	8500	35000
C2-C4 Hydrocarbons ref. to Gasoline	9.9	18	Not Detected	Not Detected

		Method		
Surrogates	% Recovery	Limits		
Fluorobenzene (PID)	142	50-150		
Fluorobenzene (FID)	84	50-150		

# SAMPLE NAME : BX-HA-15

ID#: 9803254-02A

#### EPA Method TO-3 GC/PID/FID

File Name: 6640415	e of Collection: 3/21/98
File Name: 5040415	
	e of Analysis: 4/ 4/98
Dil. Factor: 1010	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	1.0	3.3	24	78
Toluene	1.0	3.9	40	150
Ethyl Benzene	1.0	4.5	46	200
Total Xylenes	1.0	4.5	23	100
TPH (C5+ Hydrocarbons) ref. to Gasoline	10	42	10000	44000
C2-C4 Hydrocarbons ref. to Gasoline	10	18	Not Detected	Not Detected

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	150	50-150
Fluorobenzene (FID)	78	50-150

SAMPLE NAME: BX-HA-1

ID#: 9803254-03A

#### EPA Method TO-3 GC/PID/FID

	Date of Collection: 3/21/98
File Name: 6040411	
	Date of Analysis: 4/ 4/98
DH. Factor: 1.99	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0020	0.0065	Not Detected	Not Detected
Toluene	0.0020	0.0076	0.0036	0.014
Ethyl Benzene	0.0020	0.0088	Not Detected	Not Detected
Total Xylenes	0.0020	0.0088	0.0068	0.030
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.020	0.083	0.49	2.0
C2-C4 Hydrocarbons ref. to Gasoline	0.020	0.036	Not Detected	Not Detected

Q = Exceeds Quality Control limits, possibly due to matrix effects.

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	24 Q	50-150
Fluorobenzene (FiD)	102	50-150

SAMPLE NAME: FT16-HA-72

ID#: 9803254-04A

#### EPA Method TO-3 GC/PID/FID

	Date of Collection: 3/21/98
File Name: 6040412	
	Date of Analysis: 4/ 4/98
Dil. Factor: 1,99	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0020	0.0065	Not Detected	Not Detected
Toluene	0.0020	0.0076	0.0067	0.026
Ethyl Benzene	0.0020	0.0088	Not Detected	Not Detected
Total Xylenes	0.0020	0.0088	Not Detected	Not Detected
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.020	0.083	0.13	0.55
C2-C4 Hydrocarbons ref. to Gasoline	0.020	0.036	Not Detected	Not Detected

Q = Exceeds Quality Control limits, possibly due to matrix effects.

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	25 Q	50-150
Fluorobenzene (FID)	85	50-150

**SAMPLE NAME: FT16-HA-61** 

ID#: 9803254-05A

#### EPA Method TO-3 GC/PID/FID

CITA Name : BOADA10 Date of Collection	
File Name: 6040410 Date of Collection	
Dil Factor 1:99 Date of Analysis:	
Dil. Factor: 1.99 Date of Analysis.	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0020	0.0065	Not Detected	Not Detected
Toluene	0.0020	0.0076	0.0027	0.010
Ethyl Benzene	0.0020	0.0088	Not Detected	Not Detected
Total Xylenes	0.0020	0.0088	Not Detected	Not Detected
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.020	0.083	0.12	0.48
C2-C4 Hydrocarbons ref. to Gasoline	0.020	0.036	Not Detected	Not Detected

Q = Exceeds Quality Control limits, possibly due to matrix effects.

		Method
Surrogates	% Recovery	Limits
Fluorobenzene (PID)	20 Q	50-150
Fluorobenzene (FID)	91	50-150

SAMPLE NAME: FT16-HA-49

ID#: 9803254-06A

#### EPA Method TO-3 GC/PID/FID

	Date of Collection: 3/21/98
File Name: 6040408	
	Date of Analysis: 4/ 4/98
Dil. Factor: 2.64	

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0026	0.0086	Not Detected	Not Detected
Toluene	0.0026	0.010	Not Detected	Not Detected
Ethyl Benzene	0.0026	0.012	Not Detected	Not Detected
Total Xylenes	0.0026	0.012	0.0034	0.015
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.026	0.11	0.51	2.1
C2-C4 Hydrocarbons ref. to Gasoline	0.026	0.048	0.027	0.050

Q = Exceeds Quality Control limits, possibly due to matrix effects.

		Method	
Surrogates	% Recovery	Limits	
Fluorobenzene (PID)	18 Q	50-150	
Fluorobenzene (FID)	82	50-150	

SAMPLE NAME : Lab Blank

ID#: 9803254-07A

### EPA Method TO-3 GC/PID/FID

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
Benzene	0.0010	0.0032	Not Detected	Not Detected
Toluene	0.0010	0.0038	Not Detected	Not Detected
Ethyl Benzene	0.0010	0.0044	Not Detected	Not Detected
Total Xvienes	0.0010	0.0044	Not Detected	Not Detected
TPH (C5+ Hydrocarbons) ref. to Gasoline	0.010	0.042	Not Detected	Not Detected
C2-C4 Hydrocarbons ref. to Gasoline	0.010	0.018	Not Detected	Not Detected

### Container Type: NA

		Method	
Surrogates	% Recovery	Limits	
Fluorobenzene (PID)	102	50-150	
Fluorobenzene (FID)	108	50-150	

SAMPLE NAME : LCS ID#: 9803254-08A

# EPA Method TO-3 GC/PID/FID

Elle Name: 6040404 Date of Collection: NA
File Name: 8040484 Date of Collection: NA
Dil Sector 1.00 Date of Analysis: 4/ 4/98
Dil. Factor: 1.00 Date of Analysis: 4/ 4/96

Compound	Rpt. Limit (ppmv)	Rpt. Limit (uG/L)	% Recovery	
Benzene	0.0010	0.0032	85	
Toluene	0.0010	0.0038	91	
Ethyl Benzene	0.0010	0.0044	105	
Total Xylenes	0.0010	0.0044	103	
TPH (C5+ Hydrocarbons) ref. to Gasoline		0.042	101	
C2-C4 Hydrocarbons ref. to Gasoline	0.010	0.018	101	

#### **Container Type: NA**

		Method	
Surrogates	% Recovery	Limits	
Fluorobenzene (PID)	99	50-150	
Fluorobenzene (FID)	109	50-150	



# AIR TOXICS LTD. AN ENVIRONMENTAL ANALYTICAL LABORATORY

(916) 985-1000 FAX: (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719

916) 985-1000 Ni 014535 CHAIN-OF-CUSTODY RECORD

Cahister Pressure / Vacuum Work Order # 980325 Turn Around Time: Normal ∞ ≪ Ϋ́ Custody Seals-Intact? 24 Project Name / YN0ALC 771854 10 アント・グルの ナニーナスにど ドフィナX出と Condition **Analyses Requested** J. LLX Project info: Project # ___ るを P.O. #_ Notes: Temp. (°C) Print State (24 Zig State 70-3 707 Date/Time 1354-94 p 70.3 Received By: (Signature) Date/Time Opened By: 1530 545 **4**55 240 705 Date & Time Received By: (Signature) へらとい 803541841833 78 20 2 16/14/6 Print Name FAX Air Bill # 969-24 89 Company 5340 Thinkice Field Sample I.D. Contact Person Bx - 17 - 7 レナーナナーター F16-114-12 16- HA-6 ア・アエ・XS Relinquished By: (Signature) Date/Time Shipper Name Relingatshed By: (Signatur Collected By: Signature Phone (6 76) 034 Lab Use Only ا ت ت

293 rev. 06

Page 1

Data File: /chem/gc6.i/04Apr1998.b/6040407b.d

Report Date: 04-Apr-1998 11:43

#### Air Toxics Limited

Data file : /chem/gc6.i/04Apr1998.b/6040407b.d

Lab Smp Id: " Client Smp ID: Lab Blank

Inj Date : 04-APR-1998 10:57

Operator : Inst ID: gc6.i

Smp Info : 250 ml, uhp blank

Misc Info :

Comment:

Method: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m

Meth Date : 04-Apr-1998 11:01 samerson Quant Type: ESTD Cal Date : 03-APR-1998 16:38 Cal File: 6040319b.d

Als bottle: 1

8 o-Xylene

9 Total Tylenes

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

1 4/4/98

		CONCENTRATIONS
		ON-COLUMN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( PPHV) ( PPHV)
-		*****
1 Methyl t-Butyl Ether	Compound Not Detected.	
2 the (0211)	Compound Not Detected.	
3 Benzene	Compound Not Detected.	
S 4 Pluorobenzene-SURROGATE	8.037 8.030 0.007 235294	0.10392 0.1039
5 Toluene	Compound Not Detected.	
6 Ethyl Benzene	Compound Not Detected.	
7 m.p-Xylenes	Compound Not Detected.	

Compound Not Detected.

Compound Not Detected.

Data File: /chem/gc6.i/04Apr1998.b/6040407b.d

Report Date: 04-Apr-1998 11:43



Air Toxics Limited

RECOVERY REPORT

Client Name:

Sample Matrix: GAS

Lab Smp Id:

Level: LOW

Data Type: GC DATA SpikeList File:

Sublist File: all.sub

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m

Misc Info:

Client SDG: 04Aprl998

Fraction: VOA

Client Smp ID: Lab Blank

Operator:

SampleType: SAMPLE Quant Type: ESTD

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
\$ 4 Fluorobenzene-SURR	" 0.1020	0.1039	101.88	50-150

J- 4/4/88

Page 1

Data File: /chem/gc6.i/04Apr1998.b/6040407.d

Report Date: 04-Apr-1998 11:41

#### Air Toxics Limited

Data file : /chem/gc6.i/04Apr1998.b/6040407.d

Client Smp ID: Lab Blank Lab Smp Id:

Inj Date : 04-APR-1998 10:57

Inst ID: gc6.i Operator :

Smp Info : 250 ml, uhp blank

Misc Info :

Comment

: /chem/gc6.i/04Apr1998.b/to3f0403.m Method

Meth Date: 04-Apr-1998 11:14 samerson Quant Type: ESTD Cal File: 6011120.d

Cal Date : 11-JAN-1998 16:43

Als bottle: 1

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: all.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

#### CONCENTRATIONS

FINAL

0.1099

( \p<del>:/</del>V)

೧೫-೧೦೭೩೦

( PPMV)

0.13988

Compounds	RT EXP RT DLT RT RESPONSE
***********************	
S 1 Fluorobenzene *SURR0403*	8.040 8.037 0.003 124257
S 2 CD+ (to-128P0311)	Compound Not Detected.
S 3 CD+ (3p40110)	Compound Not Detected.
S 4 CTC4 (jp40110)	Compound Not Detected.
S 5 CS+ ()p40110)	Compound Not Detected.
S 6 C2 - (jp50303)	Compound Not Detected.
S 7 CZC4 (jp50303)	Compound Not Detected.
S 8 C5+ (jp50303)	Compound Not Detected.
5 9 C2+ (gas0114f)	Compound Not Detected.
\$ 10 C2-C4 (gas01114f)	Compound Not Detected.
S 11 C5+ (gas0114f)	Compound Not Detected.
S 12 C9+ (gas0114f)	Compound Not Detected.
S 62 stod0330	Compound Not Detected.

/x +/4/48

Data File: /chem/gc6.i/04Apr1998.b/6040407.d

Report Date: 04-Apr-1998 11:41



# Air Toxics Limited

Client SDG: 04Apr1998

SampleType: SAMPLE Quant Type: ESTD

Client Smp ID: Lab Blank

Fraction: VOA

Operator:

#### RECOVERY REPORT

Client Name:

Sample Matrix: GAS

Lab Smp Id: Level: LOW

Data Type: GC DATA

SpikeList File:
Sublist File: all s

Sublist File: all.sub

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m

Misc Info:

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
\$ 1 Fluorobenzene *SUR	0.1020	0.1099	107.73	50-150

1-4/4/58

Page 2

Data File: /chem/gc6.i/04Apr1998.b/6040403b.d

Report Date: 04-Apr-1998 10:47

BTEX CAL (HECK

#### Air Toxics Limited

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc6.i Lab File ID: 6040403b.d

Analysis Type: AIR

Lab Sample ID: Quant Type: ESTD Injection Date: 04-APR-1998 08:07

Init. Calibration Date(s): 04/03/98 04/03/98
Init. Calibration Times: 14:58 16:38

I NOOM |

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b

| HOX |

CONGROTINO I ZE

1 Methyl t-Buryl Ether

4 Fluorobenzene-SURROGATE

2 the (0211)

3 Benzene

5 Toluene

6 Ethyl Benzene

7 m.p-Xylenes

# o-Xylene

|M 9 Total Xylenes

| 5014128.764| 4438348.910|0.010| 11.5| 50-3|

المالية مر

Data File: /chem/gc6.i/04Apr1998.b/6040403b.d

Report Date: 04-Apr-1998 10:47

# Air Toxics Limited

Data file : /chem/gc6.i/04Apr1998.b/6040403b.d

Lab Smp Id:

Inj Date : 04-APR-1998 08:07

Inst ID: gc6.i Operator : sa

Smp Info : 10ml,290-30 btex std=.0428ppmv on col

Misc Info :

Comment

Method : /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m Quant Type: ESTD Meth Date : 04-Apr-1998 10:47 g

Cal File: 6040319b.d Cal Date : 03-APR-1998 16:38

Als bottle: 1

Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: all.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

		AMOCRITS					
					CAL-AMT	an-cal	
epounds	RT	EXP RT	DLT RT	RESPONSE	( PPHV)	( PPHV)	
				******			
1 Methyl t-Butyl Ether	5.500	5.500	0.000	75668	0.04280	0.04443	
2 tba (0211)	Con	spound No	t Detect				
3 Benzene	7.737	7.737	0.000	136941	0.04280	0.03755	j. F# . /
4 Fluoropenzene-SURROGATE	8.030	8.030	0.300	211818	0.10200	0.39355	ورايدان
5 Toluene	9.377	9.377	0.300	161128	0.94280	3.33792	·7/4/7•
6 Ethyl Benzene	10.453	10.453	0.000	167123	0.04280	0.03802	
7 m.p-Xylenes	10.533	10.533	0.000	395695	0.08560	0.07570	
8 o-Xylene	10.803	10.803	0.000	174189	0.04280	0.03796	
9 Total Xylenes				569884	0.12840	0.1137	•
	2 tha (0211) 3 Benzene 4 Fluoropenzene-SURROGATE 5 Toluene 6 Ethyl Benzene 7 m.p-Xylenes 8 o-Xylene	1 Methyl t-Butyl Ether ' 5.500 2 tha (0211)	1 Methyl t-Butyl Ether	1 Methyl t-Butyl Ether	1 Methyl t-Butyl Ether	### CAL-ANT  ###################################	### CAL-AMT ON-COL  ###################################

Data File: /chem/gc6.i/04Apr1998.b/6040405.d

Report Date: 04-Apr-1998 11:14

Page 2

### Air Toxics Limited

#### RECOVERY REPORT

Client Name:

Sample Matrix: GAS

Client SDG: 04Apr1998

Fraction: VOA

Lab Smp Id: Level: LOW

Operator:

SampleType: METHSPIKE

Data Type: GC DATA SpikeList File: par358-82.spk

Quant Type: ESTD

Sublist File: c2gas.sub

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m

Misc Info: 386ppmv std

SPIKE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
S 9 C2+ (gas0114f)	1.544	1.444	93.55	85-115

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
\$ 1 Fluorobenzene *SUR	0.1020	0.1094	107.29	50-150

Data File: /chem/gc6.i/04Apr1998.b/6040405.d

Report Date: 04-Apr-1998 11:14

### Air Toxics Limited

Data file : /chem/gc6.i/04Apr1998.b/6040405.d /

Lab Smp Id:

Inj Date : 04-APR-1998 09:35

Inst ID: gc6.i Operator :

Smp Info : 1.0 ml,358-82 gas,1.544 ppmv on col

Misc Info : 386ppmv std

Comment

: /chem/gc6.i/04Apr1998.b/to3f0403.m Method

Meth Date: 04-Apr-1998 11:14 samerson Quant Type: ESTD Cal File: 6011120.d Cal Date : 11-JAN-1998 16:43 QC Sample: METHSPIKE

Als bottle: 1

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: c2gas.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

				CONCENTRA	ATIONS
				ದು-ದುಗುವ	FINAL
Compounds	RT	EXP RT OLT RT	RESPONSE	( PPHV)	( PPMV)
			/		
S 9 CD+ (gas0114f)	0.900	-18.000	2918956	2.44499	1.444
S 1 Fluorobenzene *SURR0403*	8.023	8.037 -0.014	123752	0.10944	0.1094

Page 2

Data File: /chem/gc6.i/04Apr1998.b/6040404b.d

Report Date: 04-Apr-1998 10:48

#### Air Toxics Limited

#### RECOVERY REPORT

Client Name:

Client SDG: 04Apr1998

Sample Matrix: GAS

Fraction: VOA

BIEX LCS

Lab Smp Id:

Operator:

Level: LOW

Data Type: GC DATA

SpikeList File: 358-21-50.spk

SampleType: METHSPIKE

Quant Type: ESTD

Sublist File: all.sub

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m

Misc Info:

SPIKE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
3 Benzene 5 Toluene 6 Ethyl Benzene 7 m,p-Xylenes 8 o-Xylene M 9 Total Xylenes	0.1000	0.08512	85.12	75-125
	0.1000	0.09145	91.45	75-125
	0.1000	0.1051	105.11	75-125
	0.2000	0.2011	100.57	75-125
	0.1000	0.1078	107.76	75-125
	0.3000	0.3089	102.97	75-125

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	% RECOVERED	LIMITS
\$ 4 Fluoropenzene-SURR	0.1020	0.1006	98.60	50-150

Data File: /chem/gc6.i/04Apr1998.b/6040404b.d

Report Date: 04-Apr-1998 10:47

### Air Toxics Limited

Data file : /chem/gc6.i/04Apr1998.b/6040404b.d

Lab Smp Id:

Inj Date : 04-APR-1998 08:57

Inst ID: gc6.i Operator :

Smp Info : 358-21,50ppmv=0.10ppmv on col Misc Info :

Comment

: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m Method Quant Type: ESTD Meth Date : 04-Apr-1998 10:47 g

Cal File: 6040319b.d Cal Date : 03-APR-1998 16:38 QC Sample: METHSPIKE Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: all.sub Integrator: Falcon

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

₹	•					CCHCENTR	ATIONS
_	<del></del> -					೦೫-೦೦೭೭೦	FRIAL
Cos	pounds	RT	EXP RT	DLT RT	RESPONSE	( PPHV)	( 2PHV)
		••			*******		
	1 Methyl t-Butyl Ether	Cos	pound No	t Detect	ed.		
	2 tba (0211)	5.400	5.553	-0.153	315874	0.19513	0.1951
	3 Benzene	7.713	7.737	-0.324	310380	0.08512	0.08512
5	4 Fluoropenzene-SURROGATE	8.020	8.030	-0.010	227729	0.10058	0.1006
	S Toluene	9.367	9.377	-0.010	388545	0.09145	0.09145
	6 Ethyl Benzene	10.443	10.453	-0.010	461964	0.10511	0.1051
	7 m.p-Xylenes	10.527	10.533	-0.006	1051414	0.20115	0.2011
	8 o-Xylene	10.793	10.803	-0.010	494448	0.10776	0.1078
M	9 Total Xylenes				1545862	0.30891	0.3089

pe 4/4/58

Data File: /chem/gc6.i/04Apr1998.b/6040406.d

Report Date: 04-Apr-1998 11:14

Air Toxics Limited

RECOVERY REPORT

Client Name:

Client SDG: 04Apr1998

Sample Matrix: GAS

Fraction: VOA

Lab Smp Id:

Operator:

Level: LOW

Data Type: GC DATA

SpikeList File: par358-82-A.spk

SampleType: METHSPIKE

Quant Type: ESTD

Sublist File: c2gas.sub

Misc Info:

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m

GAS LCS

SPIKE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
S 9 C2+ (gas0114f)	1.570	1.591	101.33	75-125

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	% RECOVERED	LIMITS	
\$ 1 Fluorobenzene *SUR	0.1020	0.1114	109.17	50-150	

Data File: /chem/gc6.i/04Apr1998.b/6040406.d Page 1

Report Date: 04-Apr-1998 11:14

#### Air Toxics Limited

Data file : /chem/gc6.i/04Aprl998.b/6040406.d

Lab Smp Id:

Inj Date : 04-APR-1998 10:21

Inst ID: gc6.i Operator : Smp Info : 1.0 ml 358-82a gas std,393ppmv=1.57ppmv on cl

Misc Info :

Comment

: /chem/gc6.i/04Apr1998.b/to3f0403.m Method

Quant Type: ESTD Meth Date: 04-Apr-1998 11:14 samerson Cal Date : 11-JAN-1998 16:43 Cal File: 6011120.d QC Sample: METHSPIKE

Als bottle: 1

Dil Factor: 1.00000 /

Integrator: Falcon Compound Sublist: c2gas.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

				CONCENTRATIONS		
				ON-COLUMN	FINAL	
Compounds	RT	EXP RT DLT RT	RESPONSE	( PPHV)	( PPMV)	
	••	•••••	*******			
S 9 C2+ (gas0114f)	0.900	-18.300	3214837	1.59091	1.591	
\$ 1 Fluorobenzene *SURR0403*	8.320	8.037 -0.017	125915	0.17135	0.1114	

Page 1

Data File: /chem/gc6.i/04Apr1998.b/6040421b.d

Report Date: 04-Apr-1998 18:36

#### Air Toxics Limited

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: gc6.i Lab File ID: 6040421b.d

Analysis Type: AIR

Lab Sample ID:

Injection Date: 04-APR-1998 18:13

Init. Calibration Date(s): 04/03/98 04/03/98 14:58

Init. Calibration Times: Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b

Quant Type: ESTD

COMPOUND	   227	RFO	HIN RRF	tD	NAX ND	i	•
1 Methyl t-Buryl Ether   2 tha (0211)   3 Benzene  S 4 Pluorobenzene-SURROGATE   5 Toluene   6 Ethyl Benzene   7 m.p-Xylenes   8 o-Xylene  M 9 Total Xylenes	2264250.980    4248749.688    4395232.555    5227043.380    4588299.533	2118528.037	0.010 0.010 0.010 0.010 0.010 0.010	-24.4 -5.6 -13.6 -7.5 -11.8 -11.5	30.0   50.0   30.0   30.0	)	14/14/9

1 34 4/98

Data File: /var/chem/gc6.i/04Apr1998.b/6040421b.d

Report Date: 04-Apr-1998 18:34

# Air Toxics Limited

Data file : /var/chem/gc6.i/04Apr1998.b/6040421b.d

Lab Smp Id:

Inj Date : 04-APR-1998 18:13

Operator :

Inst ID: gc6.i

Smp Info : 10ml,290-30 BTEX END STD=.0428ppmv on col

Misc Info :

Comment

Method : /chem/gc6.i/04Apr1998.b/to3f0403.m/TO3b0403.m Meth Date : 04-Apr-1998 16:07 samerson Quant Type: ESTD

Cal Date : 03-APR-1998 16:38

Cal File: 6040319b.d

Als bottle: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: all.sub

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

						CONCENTAL	ATIONS	
						CH-COLLEGE	FINAL	
Car	pounds	RT	EXP RT	CLT RT	RESPONSE	( PPMV)	( PPMV)	
		••		*****			*******	
	1 Methyl t-Butyl Ether	5.507	5.553	-0.046	90673	0.05324	0.05324	. 4
	2 tba (0211)	Com	pound M	ot Detect	ed.	/		الاعلى الم
	3 Benzene	7.737	7.740	-0.003	164834	3.04520	0.04520	,
S	4 Pluorobenzene-SURROGATE	8.030	8.033	-0.003	262452	0.11591	0.1159	
	5 Toluene	9.377	9.377	0.000	195446	0.04600	0.04600	
	6 Ethyl Benzene	10.450	10.453	-0.003	210258	0.04784	0.04784	
	7 m.p-Xylenes	10.533	10.533	0.000	499010	0.09547	0.09547	
	8 o-Xylene	10.800	10.800	0.000	220354	0.04803	0.04802	
M	9 Total Xylenes				719364	0.14349	0.1435	

Data File: /chem/gc6.i/04Apr1998.b/6040422.d

Report Date: 04-Apr-1998 18:59

Page 1

### Air Toxics Limited

#### RECOVERY REPORT

Client Name:

Client SDG: 04Apr1998

Sample Matrix: GAS

Fraction: VOA

Lab Smp Id:

Operator:

Level: LOW

Data Type: GC DATA

SampleType: METHSPIKE

SpikeList File: par358-82.spk

Quant Type: ESTD

Sublist File: all.sub

Method File: /chem/gc6.i/04Apr1998.b/to3f0403.m

Misc Info:

SPIKE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
S 9 C2+ (gas0114f)	1.544	1.663	107.69	85-115
	, I I			

SURROGATE COMPOUND	CONC ADDED PPMV	CONC RECOVERED PPMV	* RECOVERED	LIMITS
\$ 1 Fluorobenzene *SUR	0.1020	0.1140	111.80	50-150

Data File: /war/chem/gc6.i/04Apr1998.b/6040422.d

Report Date: 04-Apr-1998 18:57



## Air Toxics Limited

Data file : /var/chem/gc6.i/04Apr1998.b/6040422.d

Lab Smp Id:

Inj Date : 04-APR-1998 18:36

Inst ID: gc6.i Operator :

Smp Info : 1.0ml,358-82 gas END STD=1.544ppmv on col

Misc Info :

Comment

: /chem/gc6.i/04Apr1998.b/to3f0403.m Method

Meth Date: 04-Apr-1998 16:47 samerson Quant Type: ESTD Cal Date : 11-JAN-1998 16:43 Cal File: 6011120.d

Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: all.sub Integrator: Falcon

Target Version: 3.40 Processing Host: frodo

Concentration Formula: Amt * DF

		CONCENTRATIONS
		CN-CCLLDEN FINAL
Compounds	RT EXP RT DLT RT RESPONSE	( PP:(V) ( PP:(V)
*********	** ****** ******	******
S 1 Fluorobenzene *SURR0403*	8.033 8.037 -0.004 128954	0.11404 0.1140
S 2 C2+ (to-12BP0311)	0.300-18.300 3359940	1.45591 1.356
S 3 C2+ (jp40110)	0.900-18.000 3359940	2.98023 2.980
S 4 C2C4 (3p40110)	1.800-18.000 3284030	2.91290 2.913
S 5 CS+ ()p40110)	1.800-18.000 3284030	2.91290 2.913
S 6 C2+ (3p50303)	0.900-18.000 3359940	4.19624 4.196
S 7 C2C4 (jp50303)	0.900-1.800 75910	0.09480 0.09480
S 8 CS+ (jpS0303)	1.800-18.000 3284030	4.10143 / 4.101
S 9 C2+ (gas0114f)	0.900-18.000 / 3359940	1.66272 1.663
S 10 C2-C4 (gas01114f)	0.900-1.800 75910	0.03757 0.03756
\$ 11 C5+ (gas0114f)	1.800-18.000 3284030	1.62515 1.625
S 12 C9+ (gas0114f)	9.398-18.000 1205102	0.59636 0.5964
\$ 62 stod0330	0.900-18.000 3359940	1.51145 1.511

1-414/55

ф-Apr-1998 19:49 Report Date

# Air Toxics Limited

#### INITIAL CALIBRATION DATA

Start Cal Date : 03-APR-1998 14:58 : 03-APR-1998 16:38 End Cal Date

: ESTD Quant Method : Disabled Origin

Target Version : 3.40 : Falcon Integrator

: /chem/gc6.i/03Apr1998.b/to3f0403.m/TO3b0403.m Method file

: 03-Apr-1998 19:48 g Cal Date

: Average Curve Type

Calibration File Names:

Level 1: /chem/gc6.i/03Apr1998.b/6040315b.d Level 2: /chem/gc6.i/03Apr1998.b/6040316b.d Level 3: /chem/gc6.i/03Apr1998.b/6040317b.d / Level 4: /chem/gc6.i/03Apr1998.b/6040318b.d Level 5: /chem/gc6.i/03Apr1998.b/6040319b.d /

Compound	0.00428   Level 1 	Level 2		Level 4	Level 5	RRP	t RSD
1 Methyl t-Butyl Ether	[ 2039720	2075467	2013458	1214603	1171565	1702963	
3 Benzene	4127103					3646533	0.469
5 Toluene	4831776	4389065	4205269	3941083	3876556	4248750	9.075
6 Ethyl Benzene	4784112	4564930	4312161	4165997	4148963	4395233	6.232
7 m,p-Xylenes	6130374	5415759	4991676	4816947	4780460	5227043	10.800
8 o-Xylene	5169159	4721308	4415942	4287757	4343332	4588300	7.961
9 Total Xylenes	5809969	5184276	4801098	4640550	4634751	5014129	
4 Fluorobenzene-SURROGATE	2126157	2240245	2343627	2311392	2299833	2264251	3.789

A 4/4/58 OD 49.78



ig#Toxics Limited

#### DITTIAL CALIBRATION DATA

Start Cal Date : 31-DEC-1997 06:11 / End Cal Date : 14-JAN-1998 15:15 /

Tuanz Mechod : ESTD
Trigin : Disabled

Carget Version : 3.40
Categrator : Falcon

1ethod file : /chem/gcS.i/l7Jan1998.b/gas0114f.m
1al Date : 17-Jan-1998 11:23 samerson /

Dirine Type : Average

Calibration File Names:

Level 1: /chem/gc5.i/14Jan1998.b/6011412.d / Level 2: /chem/gc5.i/14Jan1998.b/6011405.d / Level 3: /chem/gc5.i/14Jan1998.b/6011406.d / Level 4: /chem/gc5.i/14Jan1998.b/6011407.d /

Level 5: /chem/gcs.i/14Jan1998.b/6011408.d *

	0.08360   1.572   1.344   0.360   16.720	
2 Tantill (C-)	1357752  1363370  221272  1364932  2005773  2020754 / 6.629	1/20/75 pm
		1.7

1-1/17/12

<u>--_-</u>

eport Date : 03-Apr-1998 19:23

# Air Toxics Limited

# INITIAL CALIBRATION DATA

tart Cal Date : 03-APR-1998 14:58 : 03-APR-1998 16:38 nd Cal Date

: ESTD uant Method : Disabled rigin

arget Version : 3.40 : Falcon ntegrator

: /chem/gc6.i/03Apr1998.b/surr0403.m = To3fc4o3.m ethod file

: 03-Apr-1998 19:21 samerson al Date

FOR THREET

: Average urve Type

alibration File Names:

evel 1: /chem/gc6.i/03Apr1998.b/6040319.d evel 2: /chem/gc6.i/03Apr1998.b/6040318.d evel 3: /chem/gc6.i/03Apr1998.b/6040317.d evel 4: /chem/gc6.i/03Apr1998.b/6040316.d evel 5: /chem/gc6.i/03Apr1998.b/6040315.d

Company	0.10200   0.10200   0.102 Level 1   Level 2   Level	3   Level 4	Level 5	RRF	t RSD
1 Flucrobenzene • Surrogate • FID	1067382  1116961  1174	520  1165284	1129824	1130794	3.782



Quanterra Incorporated 4955 Yarrou: Street Arvada, Colorado 80002

303 421-6611 Telephone 303 431-7171 Fax

> ANALYTICAL RESULTS FOR PARSONS ENGINEERING SCIENCE, INC.

> QUANTERRA INCORPORATED, DENVER PROJECT NUMBER 059549

> > May 1, 1998

Written by:

Ellen La Riviere, Program Manager



#### Overview

On March 27, 1998, Quanterra Incorporated; Denver Laboratory received ten soil samples from Parsons Engineering Science, Inc.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

Overview
Sample Description Information/Analytical Test Requests
Analytical Results
Quality Control Report

#### Aromatic Volatile Organics Data Review

Each sample was analyzed to achieve the lowest possible reporting limits within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration range of the instrument, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilutions required. Quanterra samples 059549-0005-SA, -0006-SA, -0007-SA, -0008-SA, -0009-SA and -0010-SA were analyzed at dilutions for Method 8020A due to the concentration of target compounds present in the samples. Quanterra samples 059549-0005-SA, -0006-SA, -0007-SA, -0008-SA and -0010-SA surrogates were diluted out and reported as ND.

#### Polynuclear Aromatic Hydrocarbons Data Review

Samples 059549-0006-SA, -0007-SA and -0008-SA were analyzed at dilutions for Method 8310 due to the concentration of target compounds in the samples. The reporting limits have been raised accordingly. As a result of the dilutions required, the surrogates were diluted to less than detectable concentrations in samples 059549-0006-SA and -0007.



# LIMs Report Key

Section	Description
Cover Letter	Signature page, report narrative as applicable.
Sample Description Information	Tabulated cross-reference between the Lab ID and Client ID, including matrix, date and time sampled, and the date received for all samples in the project.
Sample Analysis Results Sheets	Lists sample results, test components, reporting limits, dates prepared and analyzed, and any data qualifiers. Pages are organized by test.
QC LOT Assignment Report	Cross-reference between lab IDs and applicable QC batches (DCS, LCS, Blank, MS/SD, DU)
Duplicate Control Sample Report	Percent recovery and RPD results, with acceptance limits, for the laboratory duplicate control samples for each test are tabulated in this report. These are measures of accuracy and precision for each test. Acceptance limits are based upon laboratory historical data.
Laboratory Control Sample Report	Percent recovery results for a single Laboratory Control Sample (if applicable) are tabulated in this report, with the applicable acceptance limits for each test.
Matrix Spike/Matrix Spike Duplicate Report	Percent recovery and RPD results for matrix- specific QC samples and acceptance limits, where applicable. This report can be used to assess matrix effects on an analysis.
Single Control Sample Report	A tabulation of the surrogate recoveries for the blank for organic analyses.
Method Blank Report	A summary of the results of the analysis of the method blank for each test.

# List of Abbreviations and Terms

Abbreviation	Term	Abbreviation	Term
DCS	Duplicate Control Sample	MSD	Matrix Spike Duplicate
DU	Sample Duplicate	QC Run	Preparation Batch
EB	Equipment Blank	QC Category	LIMs QC Category
FB	Field Blank	QC Lot	DCS Batch
FD	Field Duplicate	ND	Not Detected at or above the reporting limit expressed
IDL .	Instrument Detection Limit (Metals)	QC Matrix	Matrix of the laboratory control sample(s)
LCS	Laboratory Control Sample	RL	Reporting Limit
MB	Method Blank	QC	Quality Control
MDL	Method Detection Limit	SA	Sample
MS	Matrix Spike	SD	Spike Duplicate
RPD	Relative Percent Difference	ТВ	Trip Blank
ppm (part-per- million)	mg/L or mg/kg (usually)	ppb (part-per- billion)	ug/L or ug/kg (usually)
QUAL	Qualifier flag	DIL	Dilution Factor



# SAMPLE DESCRIPTION INFORMATION for Parsons Engineering Science

	Client ID	Matrix	Sample Date	ed Time	Received Date
Lab ID  059549-0001-SA 059549-0001-MS 059549-0002-SA 059549-0003-SA 059549-0004-SA 059549-0006-SA 059549-0006-SA 059549-0008-SA 059549-0008-SA 059549-0009-SA	SB-1 (6.00,8.00) SB-1 (6.00,8.00) SB-1 (6.00,8.00) SB-1 (9.50,10.00) SB-2 (6.50,7.00) SB-3 (2.00,3.50) SB-3 (4.00,5.50) SB-4 (4.00,7.00) SB-6 (4.50,5.00) SB-6 (7.50,8.00)	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	18 MAR 98 18 MAR 98 18 MAR 98 18 MAR 98	10:45 10:55 13:00 13:20 13:25 14:10 14:30 14:40 15:10	21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98 21 MAR 98



# ANALYTICAL TEST REQUESTS for Parsons Engineering Science

# Page 1 of 1

Lab ID: 059549	Group Code	Analysis Description	Custom Test?
0001 - 0003	A	Total Organic Carbon (TOC) Prep - Total Organic Carbon Total Organic Carbon (TOC) Total Organic Carbon (TOC) Total Organic Carbon (TOC)	N N N N
0004 - 0010	В	Percent Water AFCEE     Aromatic Volatile Organics with MTBE GC Prep For Soils AFCEE     Polynuclear Aromatic Hydrocarbons, HPLC AFCEE     Prep - Polynuclear Aromatic Hydrocarbons, HPLC AFCEE     Polynuclear Aromatic Hydrocarbons, HPLC (Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content of the Content o	Y firYat N N Y



### Footnotes and Data Qualifiers

The data sheets contained in this report may contain a variety of footnotes and data qualifiers. Some footnotes are used with specific tests; for example, footnotes used with the GC/FID Petroleum Hydrocarbon methods to indicate (in the analyst's judgment) the product that appears to be present. Finally, there are a number of general qualifiers that serve to identify problems and pertinent observations made during sample analysis that may not be discussed in the Overview. These are described below:

- B Compound is also detected in the blank. The indicated compound was detected in the sample as well as the method blank. Please note that the B flag is not used when the sample result is ND (Not Detected).
- Reporting limit raised due to the matrix of the sample. Indicates that reporting limits were raised due to the presence of non-target compounds or other matrix interferences. The sample may or may not have been diluted. For inorganic methods, the footnote applies only to the flagged analyte. For organic methods, the footnote pertains to all analytes determined by the method.
- Result is detected below the reporting limit or is an estimated concentration. Most commonly, a "J" value indicates that the reported result for the analyte is below the stated reporting limit and is an estimated value. "J" values are applied to organic analytes detected above the MDL but below the reporting limit and for inorganic analytes detected above the IDL but below the reporting limit. Analytes which are not detected at or below the reporting limit are reported as "ND" and do not have "J" flags. Because "J" values may represent false positive concentrations, care should be used when interpreting these data. If there is uncertainty about the quantitation of an analyte such as due to metals serial dilution failure, this footnote may also indicate that a reported result is an estimated concentration, even if it is above the reporting limit.
- N Spiked sample recovery not within limits. This qualifier is applied to the parent sample when MS/MSD recoveries are not within acceptable limits.
- This footnote is analyst defined. The data sheets will list "r" footnotes with consecutive numbers.

  The electronic data deliverable will show "r" data qualifiers. Please see datasheet for exact definition.



# AFCEE^Aromatic Volatile Organics with MTBE Method 8020A

Parsons Engineering Science Client Name:

SB-3 (2.00,3.50) Client ID: 059549-0004-SA

Received: 21 MAR 98 Analyzed: 23 MAR 98 LAB ID: Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 1.0 SOIL Matrix: 21 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether	ND ND ND ND ND		0.0060 0.0060 0.0024 0.0060 0.0060	0.00060 0.0014 0.00060 0.0018 0.0018	mg/kg mg/kg mg/kg

Surrogate	Recov <b>er</b> y	Acceptable Range	
a.a.a-Trifluorotoluene	106	X	34 - 175
Fluorobenzene	102	X	34 - 175

Percent moisture is 16.8%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Approved By: Audrey Cornell Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE Method 8020A

Client Name: Parsons Engineering Science

Client ID: SB-3 (4.00,5.50) LAB ID: 059549-0005-SA

LAB ID: 059549-0005-SA
Matrix: SOIL Sampled: 18 MAR 98 Received: 21 MAR 98
Authorized: 21 MAR 98 Prepared: 23 MAR 98 Analyzed: 24 MAR 98

Instrument: GCPID-H Dilution: 10

Units Result Qualifier MDL RL Parameter 1.2 1.2 0.48 0.12 mg/kg ND Benzene 0.29 mg/kg ND Toluene 0.12 mg/kg ND **Ethylbenzene** 1.2 1.2 mg/kg 0.36 ND Xylenes (total) 0.36 mg/kg ND Methyl·tert-butyl ether

Surrogate Recovery Acceptable Range

a.a.a-Trifluorotoluene ND % 34 - 175
Fluorobenzene ND % 34 - 175

Percent moisture is 15.9%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Shawn Hadley Approved By: Audrey Cornell



# AFCEE^Aromatic Volatile Organics with MBTE Method 8020Å

Parsons Engineering Science Client Name:

SB-4 (4.00,7.00) Client ID: 059549-0006-SA

Received: 21 MAR 98 Analyzed: 24 MAR 98 LAB ID: Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 100 SOIL Matrix: 21 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether	ND 15 9.0 280 ND	d dB d	12 12 4.7 12 12	1.2 2.8 1.2 3.5 3.5	mg/kg mg/kg mg/kg mg/kg mg/kg

Surrogate	Recovery		Acceptable Range		
a.a.a-Trifluorotoluene	ND	*	34 - 175		
Fluorobenzene	ND		34 - 175		

Percent moisture is 14.5%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank. d = See Preferred Result on Other Column

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE (Second Column) Method 8020A

Client Name: Parsons Engineering Science

SB-4 (4.00,7.00) Client ID: 059549-0006-SA

LAB ID: Received: 21 MAR 98 Analyzed: 24 MAR 98 Sampled: 18 MAR 98 SOIL Matrix: Prepared: 23 MAR 98 21 MAR 98 Authorized:

Dilution: 100 GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether	ND 5.6 6.0 260 ND	JM JBM M	12 12 4.7 12 12	1.2 2.8 1.2 3.5 3.5	mg/kg mg/kg mg/kg mg/kg mg/kg

Acceptable Range Recovery Surrogate 34 - 175 34 - 175 ND a.a.a-Trifluorotoluene ND Fluorobenzene

Percent moisture is 14.5%. All results and limits are reported on a dry weight basis.

= Compound is also detected in the blank.

J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE Method 8020A

Client Name: Parsons Engineering Science

Client ID: SB-B (4.00.7.00) 059549-0007-SA

059549-0007-SA Received: 21 MAR 98 Analyzed: 24 MAR 98 LAB ID: Sampled: 18 MAR 98 SOIL Matrix: Prepared: 23 MAR 98 21 MAR 98 Authorized: Dilution: 100 GCPID-H Instrument: Units MDL RL Result Qualifier Parameter mg/kg 12 12 1.2 ND 2.8 1.2 3.5 Benzene mg/kg 16 Toluene mg/kg 4.6 13 BM Ethylbenzene mg/kg 12 12 240 Xylenes (total) mg/kg 3.5 ND Methyl-tert-butyl ether

Surrogate Recovery Acceptable Range a.a.a-Trifluorotoluene ND 34 - 175 Sluorobenzene ND 34 - 175

Percent moisture is 13.2%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank.
d = See Preferred Result on Other Column

M = Preferred Result

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE (Second Column) Method 8020A

Client Name: Parsons Engineering Science

Client ID: SB-B (4.00,7.00) LAB ID: 059549-0007-SA

LAB ID: 059549-0007-5A
Matrix: SOIL Sampled: 18 MAR 98
Authorized: 21 MAR 98
Instrument: GCPID-H Sampled: 18 MAR 98
Prepared: 23 MAR 98
Dilution: 100
Received: 21 MAR 98
Analyzed: 24 MAR 98

Instrument: Units MDL RL Result Qualifier Parameter 12 12 1.2 mg/kg ND Benzene 2.8 1.2 mg/kg JM 8.4 Toluene mg/kg 4.6 14 dB Ethylbenzene 3.5 mg/kg 12 12 M 220 Xylenes (total) mg/kg 3.5 Methyl-tert-butyl ether ND

Percent moisture is 13.2%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE Method 8020A

Parsons Engineering Science Client Name:

SB-5 (4.50,5.00) Client ID:

059549-0008-SA LAB ID: Received: 21 MAR 98 Analyzed: 24 MAR 98 Sampled: 18 MAR 98 SOIL Matrix: Prepared: 23 MAR 98 21 MAR 98 Authorized: Dilution: 200 GCPID-H Instrument: Units MDL Result Qualifier RL Parameter mg/kg 24 2.4 ND Benzene 5.8 2.4 mg/kg 24 d ND Toluene mg/kg 9.6 ND Ethylbenzene 7.2 7.2 mg/kg 24 300 d Xylenes (total) 24 mg/kg ND Methyl-tert-butyl ether Acceptable Range Recovery Surrogate

34 - 175 ND a.a.a-Trifluorotoluene 34 - 175 ND Fluorobenzene

Percent moisture is 16.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE (Second Column) Method 8020A

Parsons Engineering Science Client Name:

SB-5 (4.50,5.00) Client ID: 059549-0008-SA

LAB ID: Received: 21 MAR 98 Analyzed: 24 MAR 98 Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 200 SOIL Matrix: 21 MAR 98 Authorized: GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether	ND 6.3 ND 290 ND	JM M	24 24 9.6 24 24	2.4 5.8 2.4 7.2 7.2	mg/kg mg/kg mg/kg mg/kg mg/kg

Surrogate	Recovery		Acceptable Range	
a.a.a-Trifluorotol <b>uene</b>	ND	*	34 - 175	
Fluorobenzene	ND		34 - 175	

Percent moisture is 16.6%. All results and limits are reported on a dry weight basis.

 ${\tt J} = {\tt Result}$  is detected below the reporting limit or is an estimated concentration.  ${\tt M} = {\tt Preferred} \; {\tt Result}$ 

ND = Not Detected

Reported By: Shawn Hadley



0.22

0.22

0.72

mg/kg

mg/kg

# AFCEE^Aromatic Volatile Organics with MBTE Method 8020Å

Parsons Engineering Science Client Name:

SB-4 (10.00,12.00) Client ID:

059549-0009-SA LAB ID:

Xylenes (total)

Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 5.0 Received: 21 MAR 98 SOIL Matrix: Analyzed: 24 MAR 98 21 MAR 98 Authorized: GCPID-H Instrument: Units MDL Result Qualifier RL Parameter 0.072 mg/kg 0.72 ND Benzene mg/kg 0.72 0.17 ND Toluene mg/kg 0.29 0.72 0.072 1.5 ďB Ethylbenzene

Jd

Methyl-tert-butyl ether Acceptable Range Recovery Surrogate 34 - 175 a.a.a-Trifluorotoluene 34 - 175 97 Fluorobenzene

0.29

ND

All results and limits are reported on a dry weight basis. Percent moisture is 30.8%.

Approved By: Audrey Cornell

B = Compound is also detected in the blank.

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration.

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE (Second Column) Method 8020A

Parsons Engineering Science Client Name:

SB-4 (10.00,12.00) Client ID: 059549-0009-SA

LAB ID: Sampled: 18 MAR 98 Prepared: 23 MAR 98 Received: 21 MAR 98 SOIL Analyzed: 24 MAR 98 Matrix: 21 MAR 98 Authorized:

Dilution: 5.0 GCPID-H Instrument:

Parameter	Result Qualifier	RL	MDL	Units
Benzene	ND	0.72	0.072	mg/kg
Toluene	ND	0.72	0.17	mg/kg
Ethylbenzene	1.5 MB	0.29	0.072	mg/kg
Xylenes (total)	0.27 JM	0.72	0.22	mg/kg
Methyl-tert-butyl ether	ND	0.72	0.22	mg/kg

Surrogate	Recovery	Acceptable Range		
a.a.a-Trifluorotol <b>uene</b>	90	*	34 - 175	
Fluorobenzene	97		34 - 175	

Percent moisture is 30.8%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank.

J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE Method 8020A

Parsons Engineering Science SB-6 (7.50,8.00) Client Name:

Client ID: 059549-0010-SA LAB ID:

Received: 21 MAR 98 Analyzed: 24 MAR 98 Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 10 SOIL Matrix: 21 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene	ND	MB	1.2	0.12	mg/kg
Toluene	ND		1.2	0.29	mg/kg
Ethylbenzene	2.2		0.48	0.12	mg/kg
Xylenes (total)	ND		1.2	0.36	mg/kg
Methyl-tert-butyl ether	ND		1.2	0.36	mg/kg

Acceptable Range Recovery Surrogate 34 - 175 34 - 175 ND a.a.a-Trifluorotoluene ND Fluorobenzene

Percent moisture is 15.8%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank. M = Preferred Result

ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic Volatile Organics with MBTE (Second Column) Method 8020A

Client Name: Parsons Engineering Science SB-6 (7.50,8.00)

059549-0010-SA

LAB ID: Sampled: 18 MAR 98 Prepared: 23 MAR 98 Dilution: 10 Received: 21 MAR 98 Analyzed: 24 MAR 98 SOIL Matrix: 21 MAR 98 Authorized:

Instrument: GCPID-H

Parameter	Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether	ND ND 3.7 ND ND	dΒ	1.2 1.2 0.48 1.2 1.2	0.12 0.29 0.12 0.36 0.36	mg/kg mg/kg mg/kg mg/kg mg/kg	

Surrogate	Recovery	Acceptable Range		
a.a.a-Trifluorotol <b>uene</b>	ND	X	34 - 175	
Fluorobenzene	ND	X	34 - 175	

Percent moisture is 15.8%. All results and limits are reported on a dry weight basis.

B = Compound is also detected in the blank. d = See Preferred Result on Other Column

ND = Not Detected

Reported By: Shawn Hadley



# QC LOT ASSIGNMENT REPORT Organics by Chromatography

059549-0004-SA	Laboratory Sample Number	QC Matrix QC Ca	QC Lot tegory (DCS)	Number (	)C Run Number (SCS/BLANK)
059549-0006-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0007-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0008-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0008-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0009-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0009-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0009-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01         059549-0009-SA       SOIL       8020-PR-MS       23 MAR 98-01       23 MAR 98-01	059549-0004-SA 059549-0004-SA 059549-0005-SA 059549-0006-SA 059549-0006-SA 059549-0007-SA 059549-0007-SA 059549-0008-SA 059549-0008-SA 059549-0009-SA 059549-0009-SA 059549-0010-SA	SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020- SOIL 8020-	PR-LS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR         PR-MS       23 MAR	98-H 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01 98-01	MAR 98-H MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01 MAR 98-01



34-175

99

LABORATORY CONTROL SAMPLE REPORT

Organics by Chromatography

Project: 059549

Category: 8020-PR-LS Aromatic Volatile Organics (AFCEE-Low Level) with MTBE

Date Analyzed: 23 MAR 98 SOIL Matrix:

QC Run: 23 MAR 98-H

Concentration Units: mg/kg Accuracy(%) Concentration Limits LCS Spiked Measured Analyte 66-135 0.0559 112 0.0500 Benzene 60-135 103 0.0517 0.0500 Toluene 66-139 105 0.0525 0.0500 Chlorobenzene 61-139 105 0.0523 0.0500 Ethylbenzene 61-143 0.157 105 0.150 Xylenes (total) 60-141 104 0.0521 0.0500 1,3-Dichlorobenzene 66-136 0.0531 106 0.0500 1.4-Dichlorobenzene 51-144 0.0509 102 0.0500 1,2-Dichlorobenzene 25-175 0.0589 118 0.0500 Methyl-tert-butyl ether Accuracy(%) Concentration Limits LCS Spiked Measured Surrogates 104 34-175 0.0783 0.0750 a.a.a-Trifluorotoluene 96 34-175 0.0723 -0.0750

Category: 8020-PR-MS Aromatic Volatile Organics with MBTE (AFCEE-Medium Level)

Date Analyzed: 24 MAR 98 SOIL Matrix:

QC Run: 23 MAR 98-01

Fluorobenzene

Fluorobenzene

Concentration Units: mg/kg Accuracy(%) Concentration Limits LCS Spiked Measured Analyte 66-135 1.11 111 1.00 Benzene 60-135 1.00 1.06 106 Toluene 66-139 1.04 104 1.00 Chlorobenzene 61-139 1.03 103 1.00 Ethylbenzene 61-143 3.00 104 3.11 Xylenes (total) 60-141 103 1.00 1.03 1.3-Dichlorobenzene 66-136 104 1.00 1.04 1.4-Dichlorobenzene 51-144 103 1.00 1.03 1.2-Dichlorobenzene 107 25-175 1.00 1.07 Methyl-tert-butyl ether Accuracy(%) Concentration Limits LCS Spiked Measured Surrogates 104 34-175 1.56 a.a.a.Trifluorotoluene 1.50

Calculations are performed before rounding to avoid round-off errors in calculated results.

1.50

1.48



# SINGLE CONTROL SAMPLE REPORT Organics by Chromatography

	Concenti		Accur SCS	acy(%) Limits
Analyte	Spikea	Measured	363	<b>E</b> 11111.00
Category: 8020-PR-LS Matrix: SOIL QC Lot: 23 MAR 98-H QC Run: 23 MAR 9 Concentration Units: mg/kg	98-H	·		
a.a.a-Trifluorotoluene Fluorobenzene	0.0750 0.0750	0.0788 0.0728	105 97	34-175 34-175
Category: 8020-PR-MS Matrix: SOIL QC Lot: 23 MAR 98-01 QC Run: 23 MAR 9 Concentration Units: mg/kg	98-01			
a.a.a-Trifluorotol <b>uene</b> Fluorobenzene	1.50 1.50	1.59 1.50	106 100	34-175 34-175

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT

Organics by Chromatography

Project: 059549

Test: 8020-PAR-MDL-L-S AFCEE Aromatic Volatile Organics with MTBE

Matrix: SOIL QC Lot: 23 MAR 98-H QC Run: 23 MAR 98-H Date Analyzed: 23 MAR 98 Result Units RL

Analyte	Result	Units	RL	MDL
Benzene	ND	mg/kg	0.0050	0.00050
Toluene	ND	mg/kg	0.0050	0.0012
Ethylbenzene	ND	mg/kg	0.0020	0.00050
Xylenes (total)	ND	mg/kg	0.0050	0.0015
Methyl-tert-butyl ether	ND	mg/kg	0.0050	0.0015

Test: 8020-PAR-MDL-M-S AFCEE Aromatic Volatile Organics with MBTE

Matrix: SOIL QC Lot: 23 MAR 98-01 QC Run: 23 MAR 98-01 Date Analyzed: 24 MAR 98

Analyte	Result	Units	RL	MDL
Benzene	ND	mg/kg	0.10	0.010
Toluene	ND	mg/kg	0.10	0.024
Ethylbenzene	0.012 J	mg/kg	0.040	0.010
Xylenes (total)	ND	mg/kg	0.10	0.030
Methyl·tert·butyl ether	ND	mg/kg	0.10	0.030

Test: 8020-PAR-MDL-2-L-S AFCEE Aromatic Volatile Organics with MTBE (Second Column)

Matrix: SOIL
QC Lot: 23 MAR 98-H QC Run: 23 MAR 98-H Date Analyzed: 23 MAR 98

Units RL MDL Result Analyte 0.00050 0.0050 ND mg/kg Benzene 0.0050 0.0012 ND mg/kg Toluene 0.00050 0.0020 ND mg/kg Ethylbenzene 0.0050 0.0015 ND mg/kg Xylenes (total) 0.0050 0.0015 ND mg/kg Methyl-tert-butyl ether

 $^{{\}tt J}={\tt Result}$  is detected below the reporting limit or is an estimated concentration.  ${\tt ND}={\tt Not}$  Detected



METHOD BLANK REPORT Organics by Chromatography

Project: 059549

8020-PAR-MDL-2-M-S AFCEE Aromatic Volatile Organics with MBTE (Second Column)

Matrix: SOIL

OC Dum. 23 MAR 98-01

Date Analyzed: 24 MAR 98

OC Lot: 23 MAR 98-01	QC Run:	23 MAR 98-01	Date Analyzed.	E4 1001 00	
Analyte		Result	Units	RL	MDL
Benzene Toluene Ethylbenzene Xylenes (total) Methyl-tert-butyl ether		ND ND 0.012 ND ND	mg/kg mg/kg J mg/kg mg/kg mg/kg	0.10 0.10 0.040 0.10 0.10	0.010 0.024 0.010 0.030 0.030



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Organics by Chromatography Project: 059549

Category: 8020-PR-LS Aromatic Volatile Organics (AFCEE-Low Level) with MTBE

SOIL Matrix:

059549-0004 Sample:

23 MAR 98-H MS Run:

Dry weight Units Qualifier: mg/kg Units

		Concentra	tion	Amount % Recov. RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked Recovery Accep. RPD Accept MS MSD MS MSD Limits MS-MSD Limits
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene Methyl-tert-butyl ether	ND ND ND ND ND ND ND ND ND	0.0573 0.0517 0.0517 0.0497 0.148 0.0465 0.0481 0.0429	0.0603 0.0537 0.0535 0.0500 0.145 0.0460 0.0479 0.0418	0.05000.0500       115       121       66-135       5.1       30         0.05000.0500       103       107       60-135       3.8       30         0.05000.0500       103       107       66-139       3.4       30         0.05000.0500       99       100       61-139       0.6       30         0.150       0.150       99       96       61-143       2.3       30         0.05000.0500       93       92       60-141       1.1       30         0.05000.0500       96       96       66-136       0.4       30         0.05000.0500       86       84       51-144       2.6       30         0.05000.0500       117       128       25-175       8.5       50
Surrogates		#Recover	у	Rec. Accept. Limits
a.a.a-Trifluorotoluen Fluorobenzene	e 106 102	103 100	103 106	34-175 34-175

Category: 8020-PR-MS Aromatic Volatile Organics with MBTE (AFCEE-Medium Level)

Matrix: SOIL

059549-0005 Sample: MS Run: 23 MAR 98-01

Dry weight Units Qualifier: mg/kg Units

		Concentra	tion	۸	ount	*	P.e	cov.	R	PD.
Analyte	Sample Result	MS Result	MSD Result		iked MSD	Recover	y Ac		D Ac	cept
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	1.19 1.19 1.19 1.19 3.57 1.19 1.19	1.19 1.19 1.19 3.57 1.19 1.19	NC NC NC NC NC NC NC	NC NC NC NC NC NC NC	66-135 60-135 66-139 61-139 61-143 60-141 66-136 51-144	NC NC NC NC NC NC NC	30 30 30 30 30 30 30 30
Methyl-tert-butyl ether NC = Not Calculated,	ND calculation	ND on not appl	ND icable.	1.19	1.19	NC	NC	25-175	NC	50

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Organics by Chromatography Project: 059549 (cont.)

Category: 8020-PR-MS Aromatic Volatile Organics with MBTE (AFCEE-Medium Level)

Matrix: SOIL

Sample: 059549-0005

MS Run: 23 MAR 98-01 (cont.)

Units mg/kg Units Qualifier: Dry weight

		Concentration		Amount % Recov. RPD
Analyte	Sample	MS	MSD	Spiked Recovery Accep. RPD Accept
	Result	Result	Result	MS MSD MS MSD Limits MS-MSD Limits
Surrogates		#Recovery		Rec. Accept. Limits
a.a.a-Trifluorotoluen	e ND	ND	ND	34-175
Fluorobenzene	ND	ND	ND	34-175

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science Client ID: SB-3 (2.00,3.50)

059549-0004-SA LAB ID:

Received: 21 MAR 98 Analyzed: 17 APR 98 Sampled: 18 MAR 98 Prepared: 31 MAR 98 SOIL 21 MAR 98 Matrix: Authorized:

Instrument: HPLC-Q	Dilution: 1.0		
Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.24 d ND 0.010 JM ND ND ND ND ND ND ND ND ND ND ND ND ND	0.24 0.24 0.024 0.018 0.014 0.060 0.013 0.048 0.024 0.048 0.036 0.24 0.048 0.036 0.24	0.043 mg/kg 0.059 mg/kg 0.0031 mg/kg 0.0041 mg/kg 0.0026 mg/kg 0.0036 mg/kg 0.0042 mg/kg 0.0042 mg/kg 0.0044 mg/kg 0.0041 mg/kg 0.0047 mg/kg 0.0049 mg/kg 0.0055 mg/kg 0.0055 mg/kg 0.0066 mg/kg 0.0031 mg/kg
Surrogate	Recovery	Ac	ceptable Range
Terphenyl-d14	130	*	22 - 167

Percent moisture is 16.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

 $\mathtt{J}$  = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

ND = Not Detected

Reported By: Blake Besser



22 - 167

## Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Parsons Engineering Science SB-3 (2.00.3.50) Client Name:

Client ID: 059549-0004-SA

LAB ID: Received: 21 MAR 98 Analyzed: 17 APR 98 Sampled: 18 MAR 98 Prepared: 31 MAR 98 SOIL Matrix: 21 MAR 98 Authorized:

Dilution: 1.0 HPLC-Q Instrument:

Instrument: nrec-d	<b>D1.</b>			
Parameter	Result Qualifier	RL	MDL Un	iits
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.11 M ND 0.026 d ND ND ND 0.089 d ND ND ND ND ND ND ND ND	0.24 0.24 0.024 0.018 0.014 0.060 0.013 0.048 0.024 0.048 0.036 0.24 0.048 0.036	0.059 m 0.0031 m 0.0041 m 0.0026 m 0.0030 m 0.0036 m 0.0042 m 0.0041 m 0.0077 m 0.0029 m 0.0036 m 0.055 m 0.0066 m 0.0031 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg
Surrogate	Recovery	Ac	ceptable Rang	je

140

Percent moisture is 16.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

M = Preferred Result ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

*



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Parsons Engineering Science Client Name:

SB-3 (4.00,5.50) Client ID: 059549-0005-SA

LAB ID: Received: 21 MAR 98 Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 SOIL Analyzed: 17 APR 98 Matrix: 21 MAR 98

Authorized: HPLC-Q Instrument:

Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND	0.24 0.24 0.024 0.024 0.018 0.014 0.059 0.013 0.048 0.024 0.048 0.048 0.036 0.24 0.048	0.043 mg/kg 0.058 mg/kg 0.0031 mg/kg 0.0040 mg/kg 0.0026 mg/kg 0.0036 mg/kg 0.0042 mg/kg 0.0024 mg/kg 0.0024 mg/kg 0.0040 mg/kg 0.0076 mg/kg 0.0029 mg/kg 0.0036 mg/kg 0.0055 mg/kg 0.0055 mg/kg 0.0065 mg/kg
		_	

Acceptable Range Recovery Surrogate 22 - 167 100 Terphenyl-d14

Percent moisture is 15.9%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Approved By: Audrey Cornell Reported By: Blake Besser



# **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Parsons Engineering Science Client Name:

SB-4 (4.00,7.00) Client ID: 059549-0006-SA

Received: 21 MAR 98 Analyzed: 17 APR 98 LAB ID: Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 10 SOIL Matrix: 21 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.046 JM ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 2.3 0.23 0.18 0.14 0.59 0.13 0.47 0.23 0.47 0.35 2.3 0.47 0.47	0.42 mg/kg 0.57 mg/kg 0.030 mg/kg 0.040 mg/kg 0.026 mg/kg 0.029 mg/kg 0.035 mg/kg 0.041 mg/kg 0.023 mg/kg 0.040 mg/kg 0.075 mg/kg 0.028 mg/kg 0.035 mg/kg 0.035 mg/kg 0.035 mg/kg 0.030 mg/kg

Acceptable Range Recovery Surrogate

Terphenyl-d14

22 - 167 ND *

Percent moisture is 14.5%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result

ND = Not Detected

Reported By: Blake Besser



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Parsons Engineering Science SB-4 (4.00,7.00) Client Name:

Client ID:

059549-0006-SA LAB ID: Received: 21 MAR 98 Sampled: 18 MAR 98 SOIL Matrix: Prepared: 31 MAR 98 Analyzed: 17 APR 98 21 MAR 98 Authorized:

Instrument: HPLC-Q	Dilution: 10			
Parameter	Result Qualifier	RL	MDL Unit	:s
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.073 Jd ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 0.23 0.23 0.18 0.14 0.59 0.13 0.47 0.23 0.47 0.35 2.3 0.47	0.42 mg/ 0.57 mg/ 0.030 mg/ 0.040 mg/ 0.026 mg/ 0.029 mg/ 0.035 mg/ 0.041 mg/ 0.023 mg/ 0.040 mg/ 0.075 mg/ 0.028 mg/ 0.035 mg/ 0.035 mg/	kg kgg kkgg kkgg kkg kkg kkg kg
Surrogate	Recovery	Ad	cceptable Range	
Ternhenyl-d14	ND	X	22 - 167	

Percent moisture is 14.5%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science

SB-B (4.00,7.00) Client ID: 059549-0007-SA

LAB ID: Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 10 Received: 21 MAR 98 Matrix: SOIL Analyzed: 17 APR 98 21 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result Qualifier	RL	MDL Units	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.092 JM ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 2.3 0.23 0.17 0.14 0.58 0.13 0.46 0.23 0.46 0.35 2.3 0.46	0.41 mg/k 0.56 mg/k 0.030 mg/k 0.039 mg/k 0.025 mg/k 0.029 mg/k 0.035 mg/k 0.040 mg/k 0.023 mg/k 0.039 mg/k 0.074 mg/k 0.074 mg/k 0.035 mg/k 0.035 mg/k	
•	Perovery	Δα	centable Range	

Acceptable Range Recovery Surrogate

22 - 167 ND × Terphenyl-d14

All results and limits are reported on a dry weight basis. Percent moisture is 13.2%.

Approved By: Audrey Cornell

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result ND = Not Detected

Reported By: Blake Besser



22 - 167

#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Parsons Engineering Science Client Name:

SB-B (4.00,7.00) Client ID: 059549-0007-SA

LAB ID: Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 10 Received: 21 MAR 98 Analyzed: 17 APR 98 SOIL Matrix: 21 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b, i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND O.11 Jd ND ND ND ND ND ND ND ND ND ND ND ND ND	2.3 0.23 0.23 0.17 0.14 0.58 0.13 0.46 0.23 0.46 0.35 2.3 0.46	0.41 mg/kg 0.56 mg/kg 0.030 mg/kg 0.039 mg/kg 0.025 mg/kg 0.029 mg/kg 0.035 mg/kg 0.040 mg/kg 0.023 mg/kg 0.039 mg/kg 0.039 mg/kg 0.039 mg/kg 0.053 mg/kg 0.053 mg/kg 0.035 mg/kg 0.030 mg/kg
Surrogate	Recovery	A	cceptable Range

ND

Percent moisture is 13.2%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

×



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science

SB-5 (4.50,5.00) 059549-0008-SA Client ID: LAB ID:

Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 5.0 Received: 21 MAR 98 SOIL 21 MAR 98 Matrix: Analyzed: 17 APR 98 Authorized:

Instrument: HPLC-Q

Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND O.027 JM ND ND ND ND ND ND ND ND ND ND ND ND ND	1.2 1.2 0.12 0.090 0.072 0.30 0.066 0.24 0.12 0.24 0.12 0.24 0.18 1.2 0.24 0.24	0.22 mg/kg 0.29 mg/kg 0.016 mg/kg 0.020 mg/kg 0.013 mg/kg 0.015 mg/kg 0.018 mg/kg 0.021 mg/kg 0.021 mg/kg 0.012 mg/kg 0.012 mg/kg 0.014 mg/kg 0.014 mg/kg 0.018 mg/kg 0.018 mg/kg 0.018 mg/kg 0.018 mg/kg 0.018 mg/kg 0.018 mg/kg 0.018 mg/kg
	_	<b>A</b> = =	Dange

Acceptable Range Recovery Surrogate

22 - 167 * 110 Terphenyl-d14

Percent moisture is 16.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result

ND = Not Detected

Reported By: Blake Besser



22 - 167

#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Parsons Engineering Science SB-5 (4.50,5.00) Client Name:

Client ID: 059549-0008-SA LAB ID:

Received: 21 MAR 98 Analyzed: 17 APR 98 Sampled: 18 MAR 98 SOIL Matrix: Prepared: 31 MAR 98 21 MAR 98 Authorized:

Instrument: HPLC-Q	טונעדוסח: ביט			
Parameter	Result Qualifier	RL	MDL Units	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.045 Jd ND ND ND ND ND ND ND ND ND ND ND ND ND	1.2 1.2 0.12 0.090 0.072 0.30 0.066 0.24 0.12 0.24 0.18 1.2 0.24	0.22 mg/k 0.29 mg/k 0.016 mg/k 0.020 mg/k 0.013 mg/k 0.015 mg/k 0.018 mg/k 0.021 mg/k 0.020 mg/k 0.038 mg/k 0.014 mg/k 0.018 mg/k 0.018 mg/k 0.018 mg/k 0.018 mg/k	9999999999999999
Surrogate	Recovery	Acc	ceptable Range	

140

Percent moisture is 16.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

 $\mathtt{J}=\mathtt{Result}$  is detected below the reporting limit or is an estimated concentration.  $\mathtt{M}=\mathtt{Preferred}\ \mathtt{Result}$ 

ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

*



## **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Parsons Engineering Science Client Name:

SB-4 (10.00.12.00) Client ID: 059549-0009-SA

LAB ID: Received: 21 MAR 98 Analyzed: 17 APR 98 Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 SOIL Matrix: 21 MAR 98

Authorized: HPLC-0 Instrument:

INSTRUMENT: NELC-4	<b>5112010</b>			
Parameter	Result Qualifier	RL	MDL Units	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND 0.0070 Jd 0.15 M 0.13 M 0.14 M 0.060 Jd 0.076 M ND ND 0.040 Jd 0.052 JM 0.052 JM 0.045 d 0.28 Jd 0.019 JM 0.097 d	0.29 0.29 0.029 0.022 0.017 0.072 0.016 0.058 0.029 0.058 0.058 0.058	0.052 mg/kg 0.071 mg/kg 0.0038 mg/kg 0.0049 mg/kg 0.0032 mg/kg 0.0036 mg/kg 0.0051 mg/kg 0.0051 mg/kg 0.0029 mg/kg 0.0049 mg/kg 0.0092 mg/kg 0.0092 mg/kg 0.0049 mg/kg 0.0049 mg/kg 0.0035 mg/kg 0.0048 mg/kg 0.0048 mg/kg 0.0068 mg/kg 0.0079 mg/kg 0.0038 mg/kg	
Surrogate	Recovery	Acc	ceptable Range	
		<b>A.</b>	00 167	

22 - 167 * 100 Terphenyl-d14

Percent moisture is 30.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result

ND = Not Detected

Reported By: Blake Besser



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Parsons Engineering Science Client Name:

SB-4 (10.00,12.00) Client ID:

059549-0009-SA LAB ID: Received: 21 MAR 98 Analyzed: 17 APR 98 Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 SOIL Matrix:

21 MAR 98 HPLC-0 Authorized:

Instrument: HPLC-Q	Dilucion. 2.0		
Parameter	Result Qualifier	RL	MDL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND 0.0047 JM 0.23 d 0.14 d 0.20 d 0.049 JM 0.084 d ND ND 0.024 JM 0.069 Jd 0.034 JM 0.28 JM 0.029 Jd 0.090 M	0.29 0.29 0.029 0.029 0.022 0.017 0.072 0.016 0.058 0.058 0.058 0.058 0.058	0.052 mg/kg 0.071 mg/kg 0.0038 mg/kg 0.0049 mg/kg 0.0032 mg/kg 0.0036 mg/kg 0.0051 mg/kg 0.0059 mg/kg 0.0049 mg/kg 0.0049 mg/kg 0.0092 mg/kg 0.0092 mg/kg 0.0093 mg/kg 0.0043 mg/kg 0.0043 mg/kg 0.0043 mg/kg 0.0043 mg/kg 0.0043 mg/kg
Surrogate	Recovery	Acc	eptable Range
Terphenyl-d14	140	<b>x</b>	22 - 167

Percent moisture is 30.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

 ${\tt J}={\tt Result}$  is detected below the reporting limit or is an estimated concentration.  ${\tt M}={\tt Preferred}$  Result

ND = Not Detected

Reported By: Blake Besser



# **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Parsons Engineering Science SB-6 (7.50.8.00) Client Name:

Client ID: 059549-0010-SA

Received: 21 MAR 98 Analyzed: 17 APR 98 LAB ID: Sampled: 18 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 SOIL Matrix: 21 MAR 98

Authorized: HPLC-Q Instrument:

Parameter	Result Qualifier	RL M	OL Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND 0.018 JM 0.085 M 0.16 d 0.17 M 0.10 d 0.064 M 0.12 M ND ND ND 0.14 M 0.079 d 1.1 d 0.085 M 0.19 d	0.24 0 0.024 0 0.024 0 0.018 0 0.014 0 0.059 0 0.013 0 0.048 0 0.024 0 0.048 0 0.048 0 0.048 0 0.036 0 0.24 0	.043 mg/kg .058 mg/kg .0031 mg/kg .0040 mg/kg .0026 mg/kg .0030 mg/kg .0036 mg/kg .0042 mg/kg .0044 mg/kg .0040 mg/kg .0076 mg/kg .0029 mg/kg .0055 mg/kg .0055 mg/kg .0031 mg/kg
Surrogate	Recovery	Accepta	ble Range

22 - 167 **X** 100 Terphenyl-d14

Percent moisture is 15.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

ND = Not Detected

Reported By: Blake Besser



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

Client Name:

Parsons Engineering Science SB-6 (7.50.8.00) 059549-0010-SA Client ID: LAB ID:

Received: 21 MAR 98 Sampled: 18 MAR 98 Matrix: SOIL Analyzed: 17 APR 98 Prepared: 31 MAR 98 21 MAR 98 Authorized:

Instrument: HPLC-Q	Dilution: 1.0			
Parameter	Result Qualifier	RL	MDL Units	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.022 Jd 0.15 d 0.13 M 0.19 d 0.092 M 0.066 d 0.17 d ND ND ND 0.19 d ND 1.1 M 0.14 d 0.15 M	0.24 0.24 0.024 0.018 0.014 0.059 0.013 0.048 0.024 0.048 0.036 0.24 0.048	0.043 mg/kg 0.058 mg/kg 0.0031 mg/kg 0.0040 mg/kg 0.0026 mg/kg 0.0036 mg/kg 0.0042 mg/kg 0.0024 mg/kg 0.0024 mg/kg 0.0040 mg/kg 0.0076 mg/kg 0.0029 mg/kg 0.0036 mg/kg 0.0055 mg/kg 0.0055 mg/kg 0.0031 mg/kg	
Surrogate	Recovery	Ac	ceptable Range	
Terphenyl-d14	110	*	22 - 167	

Percent moisture is 15.8%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column

 $\mathtt{J}=\mathtt{Result}$  is detected below the reporting limit or is an estimated concentration.  $\mathtt{M}=\mathtt{Preferred}$  Result

ND = Not Detected

Reported By: Blake Besser



## QC LOT ASSIGNMENT REPORT High Performance Liquid Chromatography

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059549-0004-SA 059549-0004-SA 059549-0005-SA 059549-0006-SA 059549-0006-SA 059549-0007-SA 059549-0008-SA 059549-0008-SA 059549-0009-SA 059549-0010-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S 8310AF - S	31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01	31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01 31 MAR 98-01



LABORATORY CONTROL SAMPLE REPORT High Performance Liquid Chromatography Project: 059549

Category: 8310AF-S AFCEE - Polynuclear Aromatic Hydrocarbons
Matrix: SOIL
QC Run: 31 MAR 98-01 Date Analyzed: 17 APR 98

Concentration Units: mg/kg	Conce	ntration	Accur	acy(%)
Analyte	Spiked	Measured	LCS	Limits
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1.2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533	0.479 0.511 0.458 0.475 0.479 0.501 0.516 0.502 0.494 0.502 0.491 0.512 0.512 0.514 0.484	90 96 86 89 90 94 97 94 93 94 96 91 90	33-140 39-135 44-135 29-145 42-135 25-147 43-135 50-139 49-144 41-135 43-135 32-135 45-135 33-135 45-135
		ntration		racy(%)
Surrogates	Spiked	Measured	LCS	Limits
Terphenyl-d14	3.33	3.48	105	22-167



SINGLE CONTROL SAMPLE REPORT High Performance Liquid Chromatography

Accuracy(%) Concentration SCS Limits Spiked Measured Analyte

Category: 8310AF-S Matrix: SOIL QC Lot: 31 MAR 98-01 QC Run: 31 MAR 98-01

Concentration Units: mg/kg

22-167 103 3.43 3.33 Terphenyl-d14

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT

High Performance Liquid Chromatography

Project: 059549

AFCEE Polynuclear Aromatic Hydrocarbons. HPLC 8310-AFCEE-MDL-S Test:

Matrix: SOIL

Date Analyzed: 17 APR 98 QC Run: 31 MAR 98-01 QC Lot: 31 MAR 98-01

Analyte	Result	Units	RL	MDL
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.20 0.20 0.020 0.015 0.012 0.050 0.011 0.040 0.020 0.040 0.030 0.20 0.040	0.036 0.049 0.0026 0.0034 0.0022 0.0035 0.0035 0.0020 0.0034 0.0064 0.0024 0.0030 0.046

8310-AFCEE-MDL-2-S AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation)

Matrix: SOIL

Date Analyzed: 17 APR 98 QC Run: 31 MAR 98-01 QC Lot: 31 MAR 98-01

Analyte	Result	Units	RL	MDL
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	20 20 20 20 20 20 20 20 20 20 20 20 20 2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.20 0.20 0.020 0.020 0.015 0.012 0.050 0.011 0.040 0.020 0.040 0.040	0.036 0.049 0.0026 0.0034 0.0022 0.0025 0.0030 0.0035 0.0020 0.0034 0.0064 0.0024 0.0030
Phenanthrene Pyrene	ND	mg/kg	0.040	0.0026



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

High Performance Liquid Chromatography

Project: 059549

Category: 8310AF-S AFCEE - Polynuclear Aromatic Hydrocarbons

Matrix: SOIL Sample: 059549-0004 MS Run: 31 MAR 98-01

Units mg/kg Units Qualifier: Dry weight

		Concentrati	Amount	x	Re	cov.		RPD	
Analyte	Sample Result	MS Result	MSD Result	Spiked MS MSD	Recove	ry Ac SD Li	cep. RP mits MS-	D A MSD L	ccept
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene	ND ND 0.238 ND 0.0102 ND ND ND ND 0.0874 ND ND ND	0.369 0.427 d 0.581 0.610 JM 0.534 0.519 0.514 0.502 M 0.552 0.540 0.584 0.492	0.513 0.487 0.565 0.603 0.524 0.505 0.511 0.507 0.513 0.558 0.555	0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533	69 80 72 114 99 97 96 94 90 101 110 92	96 91 69 113 97 95 96 95 83 105 104	33-140 39-135 44-135 29-145 42-135 25-147 43-135 50-139 49-144 41-135 43-135 32-135	33 13 2.8 1.2 1.9 2.7 0.5 0.9 7.3 3.3 5.1 8.7	50 50 50 50 50 50 50 50 50
Indeno(1.2.3-cd) pyrene Naphthalene Phenanthrene Pyrene	ND ND 0.497 ND	0.492 0.541 d 0.800 0.554	0.499 0.537 0.778 0.662	0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533	92 102 73 104	94 101 68 124	45-135 33-135 42-139 45-135	1.4 0.7 2.8 18	50 50 50 50
Surrogates		#Recovery		Rec. Acce	ot. Lim	its			
Terphenyl-d14	134	89.4	91.2	22-	167				

Calculations are performed before rounding to avoid round-off errors in calculated results.

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result

ND = Not Detected



## General Inorganics

Parsons Engineering Science SB-1 (6.00,8.00) 059549-0001-SA Client Name:

Client ID:

Received: 21 MAR 98 Analyzed: See Below Lab ID: Sampled: 18 MAR 98 Prepared: See Below SOIL Matrix: 21 MAR 98 Authorized:

Addition 1200.					Test	Prepared Analyzed
Parameter	Result Qual	Dil	RL	Units	Method	Date Date
Total Organic Carbon	ND .	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	<b>m</b> g/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	<b>m</b> g/kg	9060	30 MAR 98 01 APR 98

ND = Not Detected

Reported By: Patty Jungk

Approved By: Jan Ecos



## General Inorganics

Client Name:

Parsons Engineering Science SB-1 (9.50,10.00) 059549-0002-SA

Client ID:

Lab ID: Matrix:

Authorized:

SOIL 21 MAR 98

Sampled: 18 MAR 98 Prepared: See Below

Received: 21 MAR 98 Analyzed: See Below

Author 12ca.			·		Tost	Prepared Analyzed
Parameter	Result Qual	Dil	RL	Units	Test Method	Date Date
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	<b>m</b> g/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98

ND = Not Detected

Reported By: Patty Jungk

Approved By: Jan Ecos



## General Inorganics

Client Name:

Parsons Engineering Science SB-2 (6.50,7.00) 059549-0003-SA Client ID: Lab ID:

Received: 21 MAR 98 Analyzed: See Below Sampled: 18 MAR 98 Prepared: See Below SOIL Matrix: 21 MAR 98 Authorized:

Parameter	Result Qual	Dil	RL	Units	Test Method	Prepared Analyzed Date Date
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	mg/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	<b>m</b> g/kg	9060	30 MAR 98 01 APR 98
Total Organic Carbon	ND	1.0	2000	<b>m</b> g/kg	9060	30 MAR 98 01 APR 98

ND = Not Detected

Reported By: Patty Jungk

Approved By: Jan Ecos



## QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059549-0001-SA 059549-0001-SA 059549-0001-SA 059549-0001-SA 059549-0001-MS 059549-0001-SD 059549-0002-SA 059549-0002-SA 059549-0002-SA 059549-0003-SA 059549-0003-SA 059549-0003-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S TOC-MG-S	01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2 01 APR 98-N2	30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1 30 MAR 98-N1



DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Concentration

Measured

Accuracy Average(%) Precision (RPD)

Analyte

Spiked

DCS2

AVG

DCS

Limits DCS Limits

Category: TOC-MG-S Matrix: SOIL QC Lot: 01 APR 98-N2

Concentration Units: mg/kg

Total Organic

Carbon

120000 120000

115000

117000

98 91-111

4.2 10

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT

Wet Chemistry Analysis and Preparation

Project: 059549

Test:

TOC-9060-MG-MDL-S

Total Organic Carbon (TOC)

Matrix: QC Lot:

SOIL

01 APR 98-N2

QC Run: 30 MAR 98-N1

Date Analyzed: 01 APR 98

Analyte

Result

Units

RL

MDL

Total Organic Carbon

ND

mg/kg

2000

550



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Wet Chemistry Analysis and Preparation

Project: 059549

Category: TOC-MG-S Total Organic Carbon for soils reported in mg/kg. (Limits for TOC-S also apply for this QC category)

Matrix: SOIL

Sample: 059549-0001 MS Run: 01 APR 98-N2

Units: mg/kg

		Con	Amount	Acceptance				
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	#Recove	ery %RPD SD		
Total Organic Carbon	ND	114000	110000	120000	<b>9</b> 5	92 4.1	91-111	10

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.



#### Method FL-PRO - TPH (C8-C40) Method FL-PRO

Parsons Engineering Science Client Name:

SB-3 (2.00.3.50) Client ID: 059549-0004-SA

LAB ID: Sampled: 18 MAR 98 Prepared: 01 APR 98 Dilution: 1.0 Received: 21 MAR 98 SOIL Analyzed: 03 APR 98 Matrix: 21 MAR 98

Authorized: GCFID-I Instrument:

MDL Units Result Qualifier RL Parameter

12 mg/kg 13 110 TPH (C8-C40)

Acceptable Range Recovery Surrogate

22 - 166 10 - 192 * 101 o-Terphenyl 111 Nonatriacontane

All results and limits are reported on a dry weight basis. Percent moisture is 16.8%.

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



### Method FL-PRO - TPH (C8-C40) Method FL-PRO

Client Name: Parsons Engineering Science

Client ID: SB-3 (4.00,5.50) LAB ID: 059549-0005-SA

LAB ID: 059549-0005-SA
Matrix: SOIL Sampled: 18 MAR 98 Received: 21 MAR 98
Authorized: 21 MAR 98 Prepared: 01 APR 98 Analyzed: 03 APR 98

Authorized: 21 FM 56
Instrument: GCFID-I Dilution: 1.0

Parameter Result Qualifier RL MDL Units

ADD 14 13 mg/kg

TPH (C8-C40) 400 14 13 mg/k

Surrogate Recovery Acceptable Range

o-Terphenyl 103 % 22 - 166 Nonatriacontane 121 % 10 - 192

Percent moisture is 15.9%. All results and limits are reported on a dry weight basis.

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



### Method FL-PRO - TPH (C8-C40) Method FL-PRO

Client Name: Parsons Engineering Science

Client ID: SB-4 (4.00,7.00) LAB ID: 059549-0006-SA

LAB ID: 059549-0006-SA
Matrix: SOIL Sampled: 18 MAR 98 Received: 21 MAR 98
Authorized: 21 MAR 98 Prepared: 01 APR 98 Analyzed: 03 APR 98

Instrument: GCFID-I Dilution: 4.0

Parameter Result Qualifier RL MDL Units
TPH (C8-C40) 900 56 51 mg/kg

Surrogate Recovery Acceptable Range

o-Terphenyl 85 2 - 166 Nonatriacontane 82 2 - 166 10 - 192

Percent moisture is 14.5%. All results and limits are reported on a dry weight basis.

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



Parsons Engineering Science Client Name:

SB-B (4.00,7.00) Client ID:

059549-0007-SA LAB ID: Sampled: 18 MAR 98 Prepared: 01 APR 98 Dilution: 1.0 Received: 21 MAR 98 SOIL Analyzed: 03 APR 98 Matrix:

21 MAR 98 Authorized: GCFID-I Instrument:

MDL Units Result Qualifier RL Parameter

12 mg/kg 14 470

TPH (C8-C40) Acceptable Range Recovery

Surrogate 22 - 166 10 - 192 * * 93 o-Terphenyl 98 Nonatriacontane

Percent moisture is 13.2%. All results and limits are reported on a dry weight basis.

Approved By: Lynn S. Calvin Reported By: Quanterra-Tampa



Parsons Engineering Science Client Name:

SB-5 (4.50,5.00) Client ID:

Instrument:

059549-0008-SA Received: 21 MAR 98 LAB ID: Sampled: 18 MAR 98 SOIL Analyzed: 03 APR 98 Matrix:

Prepared: 01 APR 98 21 MAR 98 Authorized: Dilution: 4.0 GCFID-I

Units MDL RL Result Qualifier Parameter

mg/kg 57 64 1700 TPH (C8-C40)

Acceptable Range Recovery Surrogate

22 - 166 10 - 192 83 o-Terphenyl 86 Nonatriacontane

All results and limits are reported on a dry weight basis. Percent moisture is 16.6%.

Approved By: Lynn S. Calvin Reported By: Quanterra-Tampa



Client Name: Parsons Engineering Science

Client ID: SB-4 (10.00.12.00) LAB ID: 059549-0009-SA

LAB ID: 059549-0009-SA
Matrix: SOIL Sampled: 18 MAR 98 Received: 21 MAR 98
Authorized: 21 MAR 98 Prepared: 01 APR 98 Analyzed: 03 APR 98

Authorized: 21 MAR 98 Prepared: 01 A Instrument: GCFID-I Dilution: 1.0

Parameter Result Qualifier RL MDL Units
TPH (C8-C40) 17 J 20 18 mg/kg

Surrogate Recovery Acceptable Range

o-Terphenyl 87 % 22 - 166 Nonatriacontane 106 % 10 - 192

Percent moisture is 30.8%. All results and limits are reported on a dry weight basis.

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Quanterra-Tampa A

Approved By: Lynn S. Calvin



Client Name: Parsons Engineering Science

Client ID: SB-6 (7.50,8.00) LAB ID: 059549-0010-SA

LAB ID: 059549-0010-SA
Matrix: SOIL Sampled: 18 MAR 98 Received: 21 MAR 98
Authorized: 21 MAR 98 Prepared: 01 APR 98 Analyzed: 03 APR 98

Authorized: 21 MAR 98 Prepared: UI A Dilution: 2.0

Parameter Result Qualifier RL MDL Units

TPH (C8-C40) 390 30 27 mg/kg

Surrogate Recovery Acceptable Range

o-Terphenyl 94 % 22 - 166 Nonatriacontane 92 % 10 - 192

Percent moisture is 15.8%. All results and limits are reported on a dry weight basis.

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



### QC LOT ASSIGNMENT REPORT Sent OUT to Subcontractors

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	(SCS/BLANK)
059549-0004-SA 059549-0005-SA 059549-0006-SA 059549-0007-SA 059549-0008-SA 059549-0009-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL	TPHFLPROS TPHFLPROS TPHFLPROS TPHFLPROS TPHFLPROS TPHFLPROS TPHFLPROS	01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1	01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1 01 APR 98-S1



Date Analyzed: 03 APR 98

DUPLICATE CONTROL SAMPLE REPORT Sent OUT to Subcontractors

Project: 059549

Category: TPHFLPROS Method FL-PRO, TPH (C8-C40)

Matrix: QC Lot: SOIL

01 APR 98-S1

Concentration Units:	mg/kg							
Analyte	Conc Spiked	entration     DCS1 Qu	Measured al DCS2 Qual	AVG		uracy rage(%) Limits	Preci (RP DCS L	D)
TPH (C8-C40)	56.7	53.0	49.4	51.2	90	63-135	7.0	25
Surrogate	Con Spiked		Measured al <b>D</b> CS2 Qual			curacy rage(%) Limits		
o-Terphenyl Nonatriacontane	3.33 20.0	3.22 11.0	2.99 13.9		93 62	22- <b>16</b> 6 10- <b>19</b> 2		



SINGLE CONTROL SAMPLE REPORT Sent OUT to Subcontractors

Accuracy(%) Concentration SCS Limits Spiked Measured Analyte

Category: TPHFLPROS
Matrix: SOIL
QC Lot: 01 APR 98-S1 QC Run: 01 APR 98-S1

Concentration Units: mg/kg

22-166 10-192 2.92 15.6 3.33 o-Terphenyl 20.0 Nonatriacontane

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT Sent OUT to Subcontractors Project: 059549

Method FL-PRO - TPH (C8-C40) TPH-FL-PRO-OUT-S Test:

Matrix: SOIL QC Lot: 01 APR 98-S1 Date Analyzed: 03 APR 98 QC Run: 01 APR 98-S1

MDL RLUnits Result Analyte

9.0 10 mg/kg ND TPH (C8-C40)

A 62

**Quanterra** 

**Custody Record** 

Chain of

Chain of Custody Number 02281 TENSTENSMEH SEIC Special Instructions/ Conditions of Receipt 3 (A lee may be assessed if samples are retained longer than 3 months) ムシイトン F ō S-21-96 Page Def Analysis (Altach list if more space is needed) 36/98 Months 506 70] Serve XXIII Serve HAS XXX XXX X 446-4910 ☐ Disposal By Lab ☐ Archive For GC Requirements (Specify) 016 La IS iviere 1/9-2489 Containers & Preservatives HOTN 1. Apolyad By 3. Received By ЮН SONH HSSON 225 0091 Return To Client Sample Disposa Der Grea Matrix Time Carrier/Waybill Number POS Project Manager S L S 110/18 1430 1300 Site Contact 2/6 3/18/85 11300 Other CHE! K5/6! 3/11/98/10/16 3/16/18/1055 3 18/94 11605 Unknown 18/14/ 1510 Time , Darte Date Project Name

TYNDALL—BX SERVICE STATION
Connect Purcles & Order Oxide No. 3/18/68 1917 ☐ 21 Days 3/18/8 118/98 State 20000 Date Potson B 子にもと 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Imfant 14.5- 5' CHENTY ARONS EX 1.5.31 15.7 ☐ 7 Days 75-10 4-5.5' 5370 TRAMPLE 1-3.51 र्स-क イーン 12-h | Flammable \& \& \& NORCHOSS WOOD WAS WASTED 148 Hours Non-Hazard | Flamm Turn Around Time Required Possible Hazard Identification T. respectived By 58.7 SB - 5 3. Relinquished By 1458-2 5B-B SR-32 27-17 58.2 Comments و

(Wuanterra

SAMPLE CHECKLIST
Project #: 59549 Date/Time Received: 3-21-98 @ 0835
Company Name & Sampling Site:       1. 1. 2. 3
Unpacking & Labeling Check Points:
N/A Yes No 1. Radiation checked, record if reading > 0.5 mR/hr. (mR/hr)
2. Cooler seals intact.
☐ 3, Chain of custody present.
☐ ☐ 4. Bottles broken and/or are leaking, comment if yes.
PHOTOGRAPH BROKEN BOTTLES
5. Containers labeled, comment if no.
6. pH of all samples checked and meet requirements, note exceptions.
7. Chain of custody includes "received by" and "relinquished" by signatures, dates, and times.
8. Receipt date(s) > 48 hours past the collection date(s)? If yes, notify PA/PM.
9. Chain of custody agrees with bottle count, comment if no.
☐ 10. Chain of custody agrees with labels, comment if no.
□ 11. VOA samples filled completely, comment if no.
□ □ 12. VOA bottles preserved, check for labels.
13. Did samples require preservation with sodium thiosulfate?
□ □ 14. If yes to #12, did the samples contain residual chlorine?
□ □ 15. Sediment present in "D," dissolved, bottles.
16. Are analyses with short holding times requested?
17. Is extra sample volume provided for MS, MSD or matrix duplicates?
☐ ☐ 18 Multiphase samples present? If yes, comment below.
☐ ☐ 19. Any subsampling for volatiles? If yes, list samples
PHOTOGRAPH MULTIPHASE SAMPLES
20. Clear picture taken, labeled, and stapled to project folder.
☐ ☐ 21. Subout COC signed and sent with samples to bottle prep?
☐ 22. Was sample labeling double checked?
Comments: Include action taken to resolve discrepancies/problems. Include a hard copy of e-mail or use extra paper if more space is needed.
Initials:



Quanterra Incorporated 4955 Yarrow Street Arvada, Colorado 80002

303 421-6611 Telephone 303 431-7171 Fax

#### ANALYTICAL RESULTS FOR PARSONS ENGINEERING SCIENCE, INC.

### QUANTERRA INCORPORATED, DENVER PROJECT NUMBER 059558

**APRIL 28, 1998** 



### **Table Of Contents**

## Standard Deliverables With Supporting Documentation

Report Contents	Section	Number Of Pages
Standard Deliverables Introduction	A	[15]
<ul> <li>Table of Contents</li> <li>Narrative</li> <li>LIMs Report Key</li> <li>Sample Description</li> <li>Test Requests</li> <li>Analytical Results</li> <li>QC Summary</li> </ul>		
<ul> <li>Chain-of-Custody</li> <li>Miscellaneous</li> </ul> Supporting Documentation		
[Please Note: .1 one-page "Description of Supportion Documentation section(s).]	ng Documentation* is provi	ided in the Supporting
Volatile GC/MS	В	
Semivolatile GC/MS	С	
Volatile GC	D	311
Semivolatile GC	E	
LC/MS or HPLC	F	312
Metals	G	15
General Chemistry	Ħ	52
Subcontracted Data	I	30

エ

YHPORDITOC-COVE DOC



#### Overview

On March 27, 1998, Quanterra Incorporated; Denver Laboratory received sixteen aqueous samples from Parsons Engineering Science, Inc.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

Overview
Sample Description Information/Analytical Test Requests
Analytical Results
Quality Control Report

#### **Aromatic Volatile Organics Data Review**

Each sample was analyzed to achieve the lowest possible reporting limits within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration range of the instrument, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilutions required. Quanterra samples 059558-0001-SA, -0002-SA, -0008-SA, -0012-SA, -0014-SA and -0016-SA were analyzed at dilutions for Method 8020A due to the concentration of target compounds present in the samples

#### Polynuclear Aromatic Hydrocarbons Data Review

Samples 059558-0001-SA, -0002-SA and -0008-SA were analyzed at dilutions for Method 8310 due to the concentration of target compounds in the samples. The reporting limits have been raised accordingly. As a result of the dilutions required, the surrogates were diluted to less than detectable concentrations in these samples.

Dibenz(a,h)anthracene was recovered above the upper control limit in the laboratory control sample (LCS) associated with the Method 8310 QC lot 26 MAR 98-01. Because this would indicate a high bias to the data, and this compound was not detected in the samples, the data was not adversely affected, and no further action was required.

#### Methane Data Review

The RSK-175 analysis for methane was performed by Quanterra's Austin laboratory.

Due to limitations of the laboratory information management system (LIMS) the spike amount in the duplicate control samples (DCS) represent an average of the spike amounts for the individual DCS. Therefore, the results presented in the summary report differ slightly from the results in the raw data package.



Samples 059558-0001-SA, -0002-SA, -0006-SA, -0008-SA, -0012-SA, -0014-SA and -0016-SA were analyzed at dilutions for Methane by RSK-175 due to the concentration of the target compound in the samples. The reporting limits have been raised relative to the dilutions required.

#### Total Petroleum Hydrocarbons Data Review

Analysis for total petroleum hydrocarbons (TPH) by the FL-PRO method was performed by Quanterra's Tampa laboratory.

Samples 059558-0001-SA,-0002-SA - and -0008-SA were analyzed at dilutions for TPH due to the concentration of the target compound in the samples. The reporting limits have been raised accordingly. As a result of the dilutions required the surrogates were diluted to less than detectable concentrations in sample 059558-0008-SA.

#### Method 504 Data Review

Analysis for 1,2-Dibromoethane (EDB) by Method 504 was performed by Quanterra's Tampa laboratory.

The 1,1,1,2-tetrachloroethane surrogate was recovered above the upper control limit in sample 059558-0004-SA. Because this would indicate a high bias to the data, and EDB was not detected in the sample, no further action was required by the laboratory.

With the above noted exception, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory quality control samples analyzed in conjunction with the samples in this project were within established control limits.



#### Footnotes and Data Qualifiers

The data sheets contained in this report may contain a variety of footnotes and data qualifiers. Some footnotes are used with specific tests; for example, footnotes used with the GC/FID Petroleum Hydrocarbon methods to indicate (in the analyst's judgment) the product that appears to be present. Finally, there are a number of general qualifiers that serve to identify problems and pertinent observations made during sample analysis that may not be discussed in the Overview. These are described below:

- B Compound is also detected in the blank. The indicated compound was detected in the sample as well as the method blank. Please note that the B flag is not used when the sample result is ND (Not Detected).
- Reporting limit raised due to the matrix of the sample. Indicates that reporting limits were raised due to the presence of non-target compounds or other matrix interferences. The sample may or may not have been diluted. For inorganic methods, the footnote applies only to the flagged analyte. For organic methods, the footnote pertains to all analytes determined by the method.
- Result is detected below the reporting limit or is an estimated concentration. Most commonly, a "J" value indicates that the reported result for the analyte is below the stated reporting limit and is an estimated value. "J" values are applied to organic analytes detected above the MDL but below the reporting limit and for inorganic analytes detected above the IDL but below the reporting limit. Analytes which are not detected at or below the reporting limit are reported as "ND" and do not have "J" flags. Because "J" values may represent false positive concentrations, care should be used when interpreting these data. If there is uncertainty about the quantitation of an analyte such as due to metals serial dilution failure, this footnote may also indicate that a reported result is an estimated concentration, even if it is above the reporting limit.
- N Spiked sample recovery not within limits. This qualifier is applied to the parent sample when MS/MSD recoveries are not within acceptable limits.
- This footnote is analyst defined. The data sheets will list "r" footnotes with consecutive numbers.

  The electronic data deliverable will show "r" data qualifiers. Please see datasheet for exact definition.



#### LIMs Report Key

Section	Description
Cover Letter	Signature page, report narrative as applicable.
Sample Description Information	Tabulated cross-reference between the Lab ID and Client ID, including matrix, date and time sampled, and the date received for all samples in the project.
Sample Analysis Results Sheets	Lists sample results, test components, reporting limits, dates prepared and analyzed, and any data qualifiers. Pages are organized by test.
QC LOT Assignment Report	Cross-reference between lab IDs and applicable QC batches (DCS, LCS, Blank, MS/SD, DU)
Duplicate Control Sample Report	Percent recovery and RPD results, with acceptance limits, for the laboratory duplicate control samples for each test are tabulated in this report. These are measures of accuracy and precision for each test. Acceptance limits are based upon laboratory historical data.
Laboratory Control Sample Report	Percent recovery results for a single Laboratory Control Sample (if applicable) are tabulated in this report, with the applicable acceptance limits for each test.
Matrix Spike/Matrix Spike Duplicate Report	Percent recovery and RPD results for matrix- specific QC samples and acceptance limits, where applicable. This report can be used to assess matrix effects on an analysis.
Single Control Sample Report	A tabulation of the surrogate recoveries for the blank for organic analyses.
Method Blank Report	A summary of the results of the analysis of the method blank for each test.

#### List of Abbreviations and Terms

Abbreviation	Term	Abbreviation	Term
DCS	Dupiicate Control Sample	MSD	Matrix Spike Duplicate
DU	Sample Duplicate	QC Run	Preparation Batch
EB	Equipment Blank	QC Category	LIMs QC Category
FB	Field Blank	QC Lot	DCS Batch
FD	Field Duplicate	ND	Not Detected at or above the reporting limit expressed
IDL	Instrument Detection Limit (Metals)	QC Matrix	Matrix of the laboratory control sample(s)
LCS	Laboratory Control Sample	RL	Reporting Limit
MB	Method Blank	QC	Quality Control
MDL	Method Detection Limit	SA	Sample
MS	Matrix Spike	SD	Spike Duplicate
RPD	Relative Percent Difference	TB	Trip Blank
ppm (part-per- million)	mg/L or mg/kg (usually)	ppb (part-per- billion)	ug/L or ug/kg (usually)
QUAL	Qualifier flag	DIL	Dilution Factor



# SAMPLE DESCRIPTION INFORMATION for Parsons Engineering Science

•			Sampled	Received
Lab ID	Client ID	Matrix	Date Ti	ime Date
059558-0001-SA 059558-0002-SA 059558-0003-SA 059558-0004-SA 059558-0005-SA 059558-0007-SA 059558-0008-SA 059558-0009-SA 059558-0010-SA 059558-0010-SD 059558-0011-SA 059558-0011-SA 059558-0011-SA 059558-0011-SA	FT-16. MP-1 FT-16. MP-2 FT-16. SB-2 FT-16. MP-3 FX-MW-03 BX-MW-03-97 BX-MW-05-97 BX-MW-05-97 BX-MW-05-97 MW-01 MW-01 MW-01 BX-MW-05 BX-MW-05 BX-MW-05 BX-MW-07	GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20 GRND-H20	22 MAR 98 07 21 MAR 98 10 21 MAR 98 11 21 MAR 98 12 22 MAR 98 13 22 MAR 98 16 22 MAR 98 16 22 MAR 98 10 22 MAR 98 11 22 MAR 98 11 22 MAR 98 11 22 MAR 98 11 22 MAR 98 11 22 MAR 98 12 22 MAR 98 11 22 MAR 98 12 22 MAR 98 13	L:15 23 MAR 98 2:15 23 MAR 98 7:00 23 MAR 98 3:15 23 MAR 98 5:30 23 MAR 98 0:00 23 MAR 98 0:00 23 MAR 98 0:00 23 MAR 98 1:30 23 MAR 98 1:30 23 MAR 98 1:30 23 MAR 98 1:30 23 MAR 98 1:30 23 MAR 98
059558-0016-SA	MP-1	GRND-H20	22 MAR 98 18	3:30 23 MAR 98



#### ANALYTICAL TEST REQUESTS for Parsons Engineering Science

Page 1 of 2

Lab ID: 059558	Group Code	Analysis Description Custom Test?
0001 - 0002,	A	Method EPA-9 RSK-175 by GC/FID  AFCEE  Nitrate, Ion Chromatography Prep - Total Metals, Furnace AA  AFCEE  Lead, Furnace AA (Totals)  AFCEE  Aromatic VOAs by Method 8020A with MTBE & TMBs Y  GC Prep For Waters  AFCEE  Aromatic VOAs by Method 8020A with MTBE & TMBs Y  Method FL-PRO - TPH (C8-C40) Prep - TPH (C8-C40)  AFCEE  Polynuclear Aromatic Hydrocarbons, HPLC  AFCEE  Prep - Polynuclear Aromatic Hydrocarbons - HPLCN  AFCEE  Polynuclear Aromatic Hydrocarbons, HPLC  N  N  N  N  N  N  N  N  N  N  N  N  N
0011 - 0014. 0016	В	Method EPA-9 RSK-175 by GC/FID  AFCEE Nitrate, Ion Chromatography GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y
0005 , 0015	С	GC Prep For Waters  AFCEE  Aromatic VOAs by Method 8020A with MTBE & TMBs Y  AFCEE  Aromatic VOAs by Method 8020A with MTBE & TMBs Y
0003 - 0004	D	Prep - Total Metals, Furnace AA  AFCEE Lead, Furnace AA (Totals)  AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y  GC Prep For Waters  AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y



# ANALYTICAL TEST REQUESTS for Parsons Engineering Science

Page 2 of 2

Lab ID: 059558	Group Code	Analysis Description Custom Test?
		Method FL-PRO - TPH (C8-C40) Prep - TPH (C8-C40)  AFCEE Polynuclear Aromatic Hydrocarbons, HPLC  AFCEE Prep - Polynuclear Aromatic Hydrocarbons - HPLCN  AFCEE Polynuclear Aromatic Hydrocarbons, HPLC  Method 504 - EDB Prep-1.2-Dibromoethane (EDB)
0006	E	Method EPA-9 RSK-175 by GC/FID Y AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs Y
0007	F	AFCEE Nitrate, Ion Chromatography N
0009 - 0010	G	Prep - Total Metals, Furnace AA NAFCEE Lead. Furnace AA (Totals) NAFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs YAFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs YAFCEE Aromatic VOAs by Method 8020A with MTBE & TMBs YAFCEE Polynuclear Aromatic Hydrocarbons, HPLC AFCEE Prep - Polynuclear Aromatic Hydrocarbons - HPLCNAFCEE Polynuclear Aromatic Hydrocarbons, HPLC



Client Name: Client ID:	Parsons Engineeri BX-MW-20 059558-0001-SA	ing Scienc	e (0.00,0.				
LAB ID: Matrix: Authorized: Instrument:	GRND-H20 24 MAR 98 GCPID-H	Prep	mpled: 22 MAR bared: 24 MAR ntion: 200	t 98 t 98		23 MAR 98 26 MAR 98	
Parameter		Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xvlenes (tota	1)	3100 4500 1300 6800	M M d M	400 400 400 400	11 30 11 30	ug/L ug/L ug/L ug/L	

Ethylbenzene Xylenes (total) tert-Butyl methyl ether	1300 6800 ND	d M	400 400 1000	11 30 2.0	ug/l ug/l ug/l
Surrogate		Recovery		Acceptable F	Range
a.a.a-Trifluorotoluene Fluorobenzene		100 90	X X	44 - 16 44 - 16	-

Reported By: Shawn Hadley

d = See Preferred Result on Other Column
M = Preferred Result

ND = Not Detected



### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Parsons Engineering Science Client Name:

(0.00.0.00)

Client ID:	BX-MW-20 059558-0001-SA	(0.00,0.00)					
LAB ID: Matrix: Authorized: Instrument:	GRND-H20 24 MAR 98 GCPID-H	Sampled: 22 MAR 98 Prepared: N/A Dilution: 200			Received: 23 MAR 9 Analyzed: 26 MAR 9		
Parameter		Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		3200 4500 1300 6800 ND	d d M d	400 400 400 400 1000	11 30 11 30 2.0	ug/L ug/L ug/L ug/L ug/L	
Surrogate		•	Recovery		Acceptable R	ange	
a,a,a-Trifluo Fluorobenzene			103 91	X X	44 - 16 44 - 16		

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley



Client Name: Client ID:	Parsons Engineeri	ng Scienc	e (0.00,0.	00)		
LAB ID: Matrix: Authorized: Instrument:	059558-0002-SA GRND-H20 24 MAR 98 GCPID-H	Prep	pled: 22 MAR bared: 24 MAR tion: 200	t 98 t 98		23 MAR 98 25 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Ponzone		3400	М	400	11	ug/L

44 - 165 44 - 165 a,a,a-Trifluorotoluene Fluorobenzene

d = See Preferred Result on Other Column
M = Preferred Result

ND = Not Detected

Reported By: Shawn Hadley



### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri BX-MP-2 059558-0002-SA GRND-H20 24 MAR 98 GCPID-H	San Prep	te (0.00,0 mpled: 22 MAI pared: 24 MAI ntion: 200	R 98	Received: Analyzed:	23 MAR 25 MAR	98 98
Parameter		Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		3400 4900 1400 7200 ND	d d M d	400 400 400 400 1000	11 30 11 30 2.0	ug/L ug/L ug/L ug/L ug/L	
Surrogate			Recovery		Acceptable R	ange	
a.a.a-Trifluo Fluorobenzene	rotoluene		103 97	x x	44 - 16 44 - 16		

Reported By: Shawn Hadley

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected



Client Name: Parsons Engineering Science Client ID: FT-16, MP-1 LAB ID: 059558-0003-SA (0.00, 0.00)

Sampled: 21 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 25 MAR 98 GRND-H20 24 MAR 98 Matrix: Authorized:

GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene	ND		2.0	0.056	ug/L
Toluene	ND		2.0	0.15	ug/L
Ethylbenzene	ND		2.0	0.054	ug/L
Xylenes (total)	ND		2.0	0.15	ug/L
tert-Butyl methyl ether	ND		5.0	0.010	ug/L

Surrogate	Recovery	Acceptable Range
a.a.a-Trifluorotoluene	101 2	44 - 165
Fluorobenzene	95 2	44 - 165

ND = Not Detected

Reported By: Shawn Hadley Approved By: Audrey Cornell



Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin FT-16, MP-2 059558-0004-SA GRND-H20 24 MAR 98 GCPID-H	Sam Prep	e (0.00,0.00) pled: 21 MAR 98 ared: 24 MAR 98 tion: 1.0	<b>,</b>	Received: 23 MAR 98 Analyzed: 25 MAR 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		ND ND ND ND ND		2.0 2.0 2.0 2.0 5.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L 0.010 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene			102 96	*	44 - 165 44 - 165

ND = Not Detected

Reported By: Shawn Hadley



Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri FT-16, SB-2 059558-0005-SA GRND-H20 24 MAR 98 GCPID-H	Samp Prepa	e (0.00,0.00 pled: 21 MAR 9 ared: 24 MAR 9 tion: 1.0	98	Received: 23 MAR 98 Analyzed: 25 MAR 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me	il) ithyl ether	ND 0.14 8.2 40 ND	JM d d	2.0 2.0 2.0 2.0 5.0	0.055 ug/L 0.065 ug/L 0.053 ug/L 0.32 ug/L 0.061 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene			104 107	*	44 - 165 44 - 165

Reported By: Shawn Hadley

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

ND = Not Detected



### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client Name: Client ID:	Parsons Engineeri FT-16, SB-2	ing Science	(0.00,0.0	00)		
LAB ID: Matrix: Authorized: Instrument:	059558-0005-SA GRND-H20 24 MAR 98 GCPID-H	Sampled: 21 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0				23 MAR 98 25 MAR 98
Parameter		Result (	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND 0.19 8.1 39	Jd M M	2.0 2.0 2.0 2.0	0.056 0.15 0.054 0.15	ug/L ug/L ug/L ug/L

Xylenes (total)	39	М	2.0	0.15 ug/
tert-Butyl methyl ether	ND		5.0	0.010 ug/
Surrogate		Recovery		Acceptable Range
a,a,a-Trifluorotoluene		121	X	44 - 165
Fluorobenzene		100	X	44 - 165

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

Approved By: Audrey Cornell

ND = Not Detected

Reported By: Shawn Hadley



Cliant	Name .	Danconc	Engineering	Science
LIIANT	Name:	Parconc	FROTREPTING	CIPICP

FT-16, MP-3 059558-0006-SA Client ID: (0.00.0.00)

LAB ID:

Sampled: 21 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 25 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

Instrument: GCPID-H

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	ND ND 1.0 0.78 ND	JM Jd	2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010	ug/L ug/L ug/L ug/L ug/L

Surrogate	Recovery	Acceptable Range		
a,a,a-Trifluorotoluene	97	*	44 - 165	
Fluorobenzene	93		44 - 165	

Reported By: Shawn Hadley

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

ND = Not Detected



#### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Parsons Engineering Science

Client Name: Client ID: FT-16, MP-3 059558-0006-SA (0.00, 0.00)

LAB ID:

Sampled: 21 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 25 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	ND ND 1.1 Jd 0.67 JM ND	2.0 2.0 2.0 2.0 5.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L 0.010 ug/L

Surrogate	Recovery		Acceptable Range	
a.a.a-Trifluorotoluene	97	*	44 - 165	
Fluorobenzene	93		44 - 165	

ND = Not Detected

Reported By: Shawn Hadley

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result



Received: 23 MAR 98 Analyzed: 25 MAR 98

### AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Client ID:	Parsons Engineering BX-MW-03	Science (0.00,0.00)
LAB ID: Matrix: Authorized:	059558-0008-SA GRND-H20 24 MAR 98	Sampled: 22 MAR 98 Prepared: 24 MAR 98

Instrument: GCPID-H	Dilu	ition: 50				
Parameter	Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	70 1700 620 6900 ND	Jd M d M	100 100 100 100 250	2.8 7.5 2.7 7.5 0.50	ug/L ug/L ug/L ug/L ug/L	

Surrogate	Recovery		Acceptable Range	
a.a.a-Trifluorotoluene	96	* *	44 - 165	
Fluorobenzene	89		44 - 165	

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

Approved By: Audrey Cornell

ND = Not Detected

Reported By: Shawn Hadley



### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client ID: LAB ID: Matrix: Authorized: Instrument:	BX-MW-03 059558-0008-SA GRND-H20 24 MAR 98 GCPID-H	Prep	(0.00,0. mpled: 22 MAR pared: 24 MAR ution: 50	98		23 MAR 98 25 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		67 1800 610 7000 ND	JM d M d	100 100 100 100 250	2.8 7.5 2.7 7.5 0.50	ug/L ug/L ug/L ug/L ug/L

Surrogate	Recovery		Acceptable Range	
a,a,a-Trifluorotoluene	98	*	44 - 165	
Fluorobenzene	91		44 - 165	

Client Name: Parsons Engineering Science

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley



Client Name: Client ID:	Parsons Engineeri BX-MW-03-97 059558-0009-SA	ng Scienc	e (0.00,0.00				
LAB ID: Matrix: Authorized: Instrument:	GRND-H20 24 MAR 98 GCPID-H	Prep	pled: 22 MAR 9 pared: 24 MAR 9 ption: 1.0	98 98	Received: Analyzed:	23 MAR 25 MAR	98 98
Parameter		Result	Qualifier	RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		ND ND ND ND ND		2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010	ug/L ug/L ug/L ug/L ug/L	
Surrogate			Recovery		Acceptable R	ange	
a.a.a-Trifluo Fluorobenzene			101 94	*	44 - 16 44 - 16		

ND = Not Detected

Reported By: Shawn Hadley



Client Name:

Parsons Engineering Science BX-MW-05-97 (0.00, 0.00)Client ID:

LAB ID: 059558-0010-SA

Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 26 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

Instrument: GCPID-H

Parameter	Result Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	ND ND ND ND ND	2.0 2.0 2.0 2.0 5.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L 0.010 ug/L

Surrogate	Recovery	Acceptable Range	
a.a.a-Trifluorotoluene	100 %	44 - 165	
Fluorobenzene	94 %	44 - 165	

ND = Not Detected

Reported By: Shawn Hadley



Parsons Engineering Science Client Name:

(0.00, 0.00)Client ID: MW-01

LAB ID:

059558-0011-SA GRND-H20 Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 26 MAR 98 Matrix: 24 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	ND ND ND ND ND		2.0 2.0 2.0 2.0 5.0	0.055 0.065 0.053 0.32 0.061	ug/L ug/L ug/L ug/L ug/L

Surrogate	Recovery		Acceptable Range	
a,a,a-Trifluorotoluene	99	*	44 - 165	
Fluorobenzene	94		44 - 165	

ND = Not Detected

Reported By: Shawn Hadley



Received: 23 MAR 98

#### AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Parsons Engineering Science

LAB ID:

(0.00, 0.00)BX-MW-05 Client ID: 059558-0012-SA

GRND-H20 Matrix: 24 MAR 98 Authorized:

Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 50 Analyzed: 26 MAR 98 GCPID-H Instrument: MDL Units Result Qualifier RL Parameter

2.8 100 ug/L 360 Benzene 3.2 2.6 ug/L 8.2 100 Jd Toluene ug/L 100 900 d Ethylbenzene ug/L 100 16 JM 54 Xylenes (total) ug/L 250 3.0 ND tert-Butyl methyl ether

Surrogate	Recovery		Acceptable Range	
a.a.a-Trifluorotol <b>uene</b>	100	*	44 - 165	
Fluorobenzene	100		44 - 165	

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result ND = Not Detected

Reported By: Shawn Hadley



### AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineering Science  BX-MW-05 (0.00,0.00)  059558-0012-SA  GRND-H20 Sampled: 22 MAR 98 Received: 23 MAR 98  24 MAR 98 Prepared: 24 MAR 98 Analyzed: 26 MAR 98  GCPID-H Dilution: 50					23 MAR 98 26 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		360 4.3 890 55 ND	d JM M Jd	100 100 100 100 250	2.8 7.5 2.7 7.5 0.50	ug/L ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable Ra	ange
a.a.a-Trifluo Fluorobenzene	protol <b>uen</b> e		113 97	X X	44 - 165 44 - 165	

Approved By: Audrey Cornell

Reported By: Shawn Hadley

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

ND = Not Detected



# AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri BX-MW-08-97 059558-0013-SA GRND-H20 24 MAR 98 GCPID-H	Sam Prep	e (0.00,0.00 pled: 22 MAR 9 pared: 24 MAR 9 pared: 1.0	В	Received: 23 MAR 98 Analyzed: 25 MAR 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		ND ND ND ND ND		2.0 2.0 2.0 2.0 5.0	0.055 ug/L 0.065 ug/L 0.053 ug/L 0.32 ug/L 0.061 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene	protol <b>uene</b>		101 93	*	44 - 165 44 - 165

ND - Not Detected

Reported By: Shawn Hadley



44 - 165 44 - 165

## AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri BX-MW-07 059558-0014-SA GRND-H20 24 MAR 98 GCPID-H	Sam Prep	e (0.00,0. mpled: 22 MAR pared: 24 MAR ntion: 25	98		23 MAR 98 26 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me	l) thyl <b>e</b> ther	11 41 79 620 ND	JM Jd d M	50 50 50 50 120	1.4 1.6 1.3 8.0 1.5	ug/L ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	lange

101 102

Approved By: Audrey Cornell

a.a.a-Trifluorotoluene Fluorobenzene

Reported By: Shawn Hadley

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result
ND = Not Detected



## AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client ID:	BX-MW-07	(0.00,0.00)	
LAB ID: Matrix: Authorized: Instrument:	059558-0014-SA GRND-H20 24 MAR 98 GCPID-H	Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 25	Received: 23 MAR 98 Analyzed: 26 MAR 98
Parameter		Result Qualifier RL	MDL Units

Client Name: Parsons Engineering Science

Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	15 38 76 620 ND	Jd JM M d	50 50 50 50 120	1.4 ug/L 3.8 ug/L 1.4 ug/L 3.8 ug/L 0.25 ug/L
Surrogate		Recovery		Acceptable Range

a.a.a-Trifluorotoluene 108 44 - 165 106 Fluorobenzene

Reported By: Shawn Hadley

 $[\]mbox{\bf d} = \mbox{\bf See}$  Preferred Result on Other Column  $\mbox{\bf J} = \mbox{\bf Result}$  is detected below the reporting limit or is an estimated concentration.  $\mbox{\bf M} = \mbox{\bf Preferred}$  Result  $\mbox{\bf ND} = \mbox{\bf Not}$  Detected



## AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Parsons Engineering Science Client Name: Client ID: MP-3 (0.00, 0.00)LAB ID: 059558-0015-SA

Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 26 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result Qualifier	RL	MDL Units
Benzene	ND	2.0	0.055 ug/L
Toluene	ND	2.0	0.065 ug/L
Ethylbenzene	0.069 JM	2.0	0.053 ug/L
Xylenes (total)	0.42 Jd	2.0	0.32 ug/L
tert-Butyl methyl ether	ND	5.0	0.061 ug/L

Surrogate	Recovery		Acceptable Range
a,a,a-Trifluorotol <b>uen</b> e	99	*	44 - 165
Fluorobenzene	94		44 - 165

Approved By: Audrey Cornell

Reported By: Shawn Hadley

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

ND = Not Detected



# AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Client Name:	Parsons Engineering Science	
Client ID:	MP-3	(0.00,0.00)

059558-0015-SA LAB ID: Sampled: 22 MAR 98 Prepared: 24 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 26 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

GCPID-H Instrument:

Parameter	Result Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (total) tert-Butyl methyl ether	ND ND 0.15 Jd 0.42 JM ND	2.0 2.0 2.0 2.0 5.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L 0.010 ug/L
Surrogate	Recovery		Acceptable Range

Surrogate	Kecosei 3		Acceptable Mail	
a.a.a-Trifluorotoluene	99	*	44 - 165	
Fluorobenzene	96		44 - 165	

d = See Preferred Result on Other Column

J = Result is detected below the reporting limit or is an estimated concentration.

M = Preferred Result ND = Not Detected

Reported By: Shawn Hadley



# AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Client ID:	Client ID: MP-1		e (0.00,0.	00)		
LAB ID: Matrix: Authorized: Instrument:	059558-0016-SA GRND-H20 24 MAR 98 GCPID-H	Prep	mpled: 22 MAR bared: 24 MAR ntion: 50	1 98 1 98	Received: Analyzed:	23 MAR 98 26 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota tert-Butyl me		32 1400 730 6800 ND	Jd d d d	100 100 100 100 250	2.8 3.2 2.6 16 3.0	ug/L ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a.a.a-Trifluo Fluorobenzene			99 98	*	44 - 16 44 - 16	

Reported By: Shawn Hadley

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected  $\frac{1}{2}$ 



44 - 165

## AFCEE^Aromatic VOAs by Method 8020A (Second Column) Method 8020A

Parsons Engineering Science Client Name: (0.00, 0.00)Client ID: MP-1 059558-0016-SA LAB ID: Sampled: 22 MAR 98 Prepared: 24 MAR 98 Received: 23 MAR 98 GRND-H20 Matrix: Analyzed: 26 MAR 98 24 MAR 98 Authorized: Dilution: 50 GCPID-H Instrument: Result Qualifier MDL Units RL Parameter JM 100 ug/L 32 Benzene M 7.5 ug/L 1400 100 Toluene 2.7 ug/L 710 M 100 Ethylbenzene 7.5 ug/L 6700 M 100 Xylenes (total) 0.50 250 ug/L tert-Butyl methyl ether ND Acceptable Range Recovery Surrogate a.a.a-Trifluorotoluene 101 44 - 165

100

ND = Not Detected

Fluorobenzene

Reported By: Shawn Hadley

 $^{{\}tt J}$  = Result is detected below the reporting limit or is an estimated concentration.  ${\tt M}$  = Preferred Result



# QC LOT ASSIGNMENT REPORT Organics by Chromatography

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059558-0001-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0001-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0002-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0002-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0003-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0004-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0005-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0005-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0006-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0006-SA	AOUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0008-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0008-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0009-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0010-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0010-3A 059558-0010-MS	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0010-NS 059558-0010-SD	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0011-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0011-3A 059558-0011-MS	AQUECUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0011-N3 059558-0011-SD	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0012-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0012-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0012-5A 059558-0013-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H	25 MAR 98-H
059558-0013-5A 059558-0014-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0014-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0014-3A 059558-0015-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0015-SA	AOUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0016-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2
059558-0016-SA	AQUEOUS	8020-PAR-A	25 MAR 98-H2	25 MAR 98-H2



LABORATORY CONTROL SAMPLE REPORT

Organics by Chromatography

Project: 059558

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE

Date Analyzed: 26 MAR 98

Matrix:	aqueous	
OC Run:	25 MAR 98-H2	
Concentra	ation Units:	ug/L

Concentration Units: ug/L	Conce	ntration	Accu	racy(%)
Analyte	Spiked	Measured	LCS	Limits
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene tert-Butyl methyl ether	20.0 20.0 20.0 20.0 60.0 20.0 20.0 20.0	22.5 21.7 21.6 21.4 65.0 21.6 21.6 22.1 24.6	112 108 108 107 108 108 108 110	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126 65-138
•	Conce	ntration	Accu	racy(%)
Surrogates	Spiked	Measured	LCS	Limits
a,a,a-Trifluorotoluene Fluorobenzene	30.0 30.0	30.3 28.6	101 95	44-165 44-165

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE Matrix: AQUEOUS Date Analyzed: 25 MAR 98

Matrix: AQUEOUS QC Run: 25 MAR 98-H

Conce	ntration	Accui	racy(%)
Spiked	Measured	LCS	Limits
20.0 20.0 20.0 20.0 60.0 20.0 20.0 20.0	21.2 20.6 20.4 20.3 61.7 20.7 20.7 20.9 22.3	106 103 102 102 103 104 104 104 112	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126 65-138
			racy(%)
Spiked	Measured	ECS	Limits
30.0 30.0	29.8 28.2	99 94	44-165 44-165
	Spiked  20.0 20.0 20.0 20.0 60.0 20.0 20.0 20.	20.0 21.2 20.0 20.6 20.0 20.4 20.0 20.3 60.0 61.7 20.0 20.7 20.0 20.7 20.0 20.7 20.0 20.9 20.0 22.3 Concentration Spiked Measured	Spiked         Measured         LCS           20.0         21.2         106           20.0         20.6         103           20.0         20.4         102           20.0         20.3         102           60.0         61.7         103           20.0         20.7         104           20.0         20.7         104           20.0         20.9         104           20.0         22.3         112           Concentration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accuration Accurat



# SINGLE CONTROL SAMPLE REPORT Organics by Chromatography

	Concent	ration		racy(%)
Analyte		Measured	SCS	Limits
Category: 8020-PAR-A Matrix: AQUEOUS QC Lot: 25 MAR 98-H2 QC Run: 25 Concentration Units: ug/L	MAR 98-H2			
a.a.a-Trifluorotoluene Fluorobenzene	30.0 30.0	30.0 27.4	100 91	44-165 44-165
Category: 8020-PAR-A Matrix: AQUEOUS QC Lot: 25 MAR 98-H QC Run: 25 Concentration Units: ug/L	MAR 98-H			
a.a.a-Trifluorotolu <b>ene</b> Fluorobenzene	30.0 30.0	29.8 27.9	99 93	44-165 44-165



METHOD BLANK REPORT Organics by Chromatography Project: 059558

Test:	8020-PAR-MDL-AP	AFC	EE Aromati	ic VOAs I	by Method 8020A	with MTBE &	IMBS
Matrix: QC Lot:	AQUEOUS 25 MAR 98-H2	QC Run:	25 MAR 98	3-H2	Date Analyzed:	26 MAR 98	
Analyte			Re	esult	Units	RL	MDL
Benzene Toluene Ethylben Xylenes tert-But				ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010
QC Lot:	25 MAR 98-H	QC Run:	25 MAR 98	3-H	Date Analyzed:	25 MAR 98	
Analyte			Re	esult	Units	RL .	MDL
Benzene Toluene Ethylben Xylenes tert-But				ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010

Test:	8020-PAR-MDL-2	AP AFO	EE Arom	atic VOAs	by Method 8020A w	vith MTBE &	TMBs
Matrix: QC Lot:	AQUEOUS 25 MAR 98-H2	QC Run:	25 MAR	98-H2	Date Analyzed:	26 MAR 98	
Analyte				Result	Units	RL	MDL
Benzene Toluene Ethylben Xylenes tert-But				ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010
QC Lot:	25 MAR 98-H	QC Run:	25 MAR	98-H	Date Analyzed:	25 MAR 98	
Analyte				Result	Units	RL	MDL
Benzene Toluene Ethylber Xylenes tert-But				ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0 5.0	0.056 0.15 0.054 0.15 0.010



Organics by Chromatography

Project: 059558

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE

**AQUEOUS** Matrix: Sample: MS Run: 059558-0011 25 MAR 98-H3

Units: ug/L

		Concentra	tion	Amount	¥	Recov.	RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked MS MS	Recovery		PD Accept
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene tert-Butyl methyl	ND ND ND ND ND ND ND	22.5 21.7 21.4 21.3 64.6 21.4 21.5 21.7	22.7 22.0 21.7 21.5 65.2 21.8 21.8 22.1	20.0 20. 20.0 20. 20.0 20. 20.0 20. 60.0 60. 20.0 20. 20.0 20. 20.0 20.	0 108 1 0 107 1 0 106 1 0 108 1 0 107 1 0 108 1	.14 75-125 .10 70-125 .08 75-129 .08 71-129 .09 71-133 .09 70-131 .09 61-134 .10 75-126	0.8 20 1.4 20 1.4 20 0.9 20 0.9 20 1.9 20 1.4 20 1.8 20
ether	ND	24.1	24.4	20.0 20.	0 120 1	.22 65-138	1.2 20

Surrogates		#Recovery		Rec. Accept. Limits		
a,a,a-Trifluorotoluene	99.1	100	100	44-165		
Fluorobenzene	93.6	95.3	96.6	44-165		

NA = Not Applicable NC = Not Calculated, calculation not applicable.

ND = Not Detected



Organics by Chromatography Project: 059558 (cont.)

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE

Matrix: AQUEOUS Sample: 059558-0010 MS Run: 25 MAR 98-H2

Units: ug/L

		Concentra	tion	Amount	ž R	ecov.	RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked MS MSI	Recovery A	ccep. RP	
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1,3-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND	22.3 21.4 21.4 21.1 63.0 21.5 21.6 21.7	22.2 21.2 21.2 21.0 63.8 21.4 21.6 21.8	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 20.0 20.0 20.0 20.0 20.0 20.0	107 106 107 106 107 106 106 105 105 106 108 107 108 108	75-129 71-129 71-133 70-131 61-134	0.4 20 0.9 20 0.9 20 0.4 20 1.3 20 0.4 20 0.0 20 0.4 20
tert-Butyl methyl ether	ND	25.0	25.1	20.0 20.0	125 126	65-138	0.4 20

Surrogates		#Recovery		Rec. Accept. Limits	
a,a,a-Trifluorotoluene	100	99.4	98.4	44-165	
Fluorobenzene	94.3	96.9	95.4	44-165	

NA = Not Applicable

NC = Not Calculated, calculation not applicable.

ND = Not Detected



Organics by Chromatography Project: 059558 (cont.)

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE

**AQUEOUS** Matrix: 059550-0002 Sample: MS Run: 25 MAR 98-H

Units: ug/L

		Concentrat	tion	Amount	<b>*</b> R	ecov.	RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked MS MSI	Recovery A	ccep. RP	
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene tert-Butyl methyl	ND ND ND ND ND ND ND	21.8 21.2 21.1 20.6 63.5 21.4 21.5 21.4	21.7 21.2 21.0 20.4 62.9 21.4 21.5 21.4	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 20.0 20.0 20.0 20.0	106 106 106 105 103 102 106 105 107 107 108 108	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126	0.4 20 0.0 20 0.4 20 0.9 20 0.9 20 0.0 20 0.0 20 0.0 20
ether	ND	22.8	23.7	20.0 20.0	114 118	65-138	3.9 20

Surrogates	*Recovery		Rec. Accept. Limits		
a.a.a-Trifluorotoluene	98.8	100	99.2	44-165	
Fluorobenzene	93.7	94.8	96.1	44-165	

NA = Not Applicable NC = Not Calculated, calculation not applicable.

ND = Not Detected



25 - 157

#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science
Client ID: BX-MW-20
LAB ID: 059558-0001-SA (0.00, 0.00)

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 10 Received: 23 MAR 98 Analyzed: 18 APR 98 GRND-H20 Matrix: 24 MAR 98

Authorized: HPLC-Q Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene		d	10 10 1.0 1.3 2.3 1.8 2.0 1.7 2.0 2.0 4.4 10 2.0	0.94 0.41 0.30 0.61 0.66 0.60 0.72 0.60 0.74 0.77 0.35 0.37 0.56 0.60	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate		Recovery		Acceptable	Range

ND

d = See Preferred Result on Other Column

ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

×



### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Second Column) Method 8310

(0.00, 0.00)

Client Name: Parsons Engineering Science
Client ID: BX-MW-20
LAB ID: 059558-0001-SA
Matrix: GRND-H20 Sampl
Authorized: 24 MAR 98 Prepar Received: 23 MAR 98 Analyzed: 18 APR 98 Sampled: 22 MAR 98 Prepared: 26 MAR 98

Instrument: HPLC-Q	Dilution	ı: 10		
Parameter	Result Qua	lifier RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	**************************************	10 1.0 1.3 2.3 1.8 2.0 1.7 2.0 3.0 2.0 2.0 4.4 10 2.0	0.94 0.41 0.30 0.61 0.66 0.60 0.72 0.60 0.77 0.36 0.37 0.56 0.60 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate	Re	covery	Acceptable R	lange
Terphenyl-d14		ND X	25 - 15	57

M = Preferred Result ND - Not Detected

Reported By: Blake Besser



## **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Parsons Engineering Science Client Name:

Client ID: LAB ID: (0.00, 0.00)BX-MP-2 059558-0002-SA

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 10 Received: 23 MAR 98 Analyzed: 21 APR 98 Matrix: GRND-H20 24 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	d	10 10 1.0 1.4 2.4 1.9 2.1 1.8 2.1 2.1 4.5 10 2.1	0.97 0.42 0.31 0.63 0.68 0.62 0.74 0.62 0.76 0.80 0.37 0.38 0.58 0.62 0.31	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate		Recovery		Acceptable	Range

ND

d = See Preferred Result on Other Column ND = Not Detected

Reported By: Blake Besser

Terphenyl-d14

Approved By: Audrey Cornell

X

25 - 157



### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Second Column) Method 8310

Client Name: Client ID: Parsons Engineering Science

(0.00, 0.00)BX-MP-2

059558-0002-SA LAB ID:

Received: 23 MAR 98 Analyzed: 21 APR 98 Sampled: 22 MAR 98 Prepared: 26 MAR 98 GRND-H20 Matrix: 24 MAR 98 Authorized:

Dilution: 10 HPLC-Q Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND	М	10 1.0 1.4 2.4 1.9 2.1 1.8 2.1 2.1 2.1 2.1 2.1 2.1	0.97 0.42 0.31 0.63 0.68 0.62 0.74 0.62 0.76 0.37 0.38 0.58 0.62 0.31	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

Recovery Acceptable Range Surrogate × 25 - 157 Terphenyl-d14 ND

M = Preferred Result ND = Not Detected

Reported By: Blake Besser



# AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science

Client ID: FT-16, MP-1 (0.00,0.00)

LAB ID: 059558-0003-SA

Matrix: GRND-H20 Sampled: 21 MAR 98 Received: 23 MAR 98
Authorized: 24 MAR 98 Prepared: 26 MAR 98 Analyzed: 14 APR 98
Instrument: HPLC-Q Dilution: 1.0

MDL Units Result Qualifier RL Parameter 1.0 0.094 ug/L ND Acenaphthene ug/L 0.041 ND 1.0 Acenaphthylene 0.030 0.89 ug/L 0.10 Anthracene ug/L ND 0.13 0.061 Benzo(a)anthracene 0.23 ug/L ND 0.066 Benzo(a)pyrene Benzo(b) fluoranthene ND 0.18 0.060 ug/L Benzo(g,h,i)perylene ug/L ND 0.20 0.072 ug/L ND 0.17 0.060 Benzo(k) fluoranthene 0.20 0.074 ug/L ND Chrysene 0.30 0.077 ug/L Dibenz(a,h)anthracene ND 0.20 ug/L 0.036 Fluorene 6.4 0.20 0.037 1.2 ug/L Fluoranthene 0.056 Indeno(1,2,3-cd)pyrene 0.44 ug/L ND 1.0 0.060 ug/L 4.0 d Naphthalene 0.20 0.030 ND ug/L Phenanthrene 0.20 0.044 ug/L d Pyrene 1.4

Surrogate Recovery Acceptable Range
Terphenyl-d14 120 % 25 - 157

d = See Preferred Result on Other Column

M = Preferred Result
ND = Not Detected

Reported By: Blake Besser



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Second Column) Method 8310

Client Name: Parsons Engineering Science Client ID: FT-16. MP-1 LAB ID: 059558-0003-SA (0.00,0.00)

Sampled: 21 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 14 APR 98 GRND-H20 Matrix: 24 MAR 98 HPLC-Q Authorized:

Instrument:

211001 Cilicito 1 1 1 -	<del>-</del>			
Parameter	Result Qual	ifier RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene	ND ND 0.29 M ND ND ND ND ND ND ND ND 1.4 d	1.0 1.0 0.10 0.13 0.23 0.18 0.20 0.17 0.20 0.30 0.20	0.094 0.041 0.030 0.061 0.066 0.072 0.060 0.074 0.077 0.036	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND 1.9 M ND 0.87 M	0.44 1.0 0.20 0.20	0.056 0.060 0.030 0.044	ug/L ug/L ug/L ug/L
Surrogate	Rec	overy A	cceptable R	ange

124

d = See Preferred Result on Other Column
M = Preferred Result

ND - Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

X

25 - 157



## **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Parsons Engineering Science Client ID: FT-16, MP-2 LAB ID: 059558-0004-SA (0.00, 0.00)

Client ID: LAB ID: Matrix: Sampled: 21 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 17 APR 98 GRND-H20 24 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene			1.0 1.0 0.10 0.14 0.24 0.19 0.21 0.31 0.21 0.21 0.45 1.0 0.21	0.097 0.042 0.031 0.063 0.068 0.062 0.074 0.062 0.076 0.080 0.037 0.038 0.058 0.062	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

Acceptable Range Surrogate Recovery Terphenyl-d14 107 X 25 - 157

ND = Not Detected

Reported By: Blake Besser



#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

(0.00, 0.00)

Client Name: Parsons Engineering Science
Client ID: BX-MW-03
LAB ID: 059558-0008-SA
Matrix: GRND-H20 Sampl Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 11 Received: 23 MAR 98 Analyzed: 18 APR 98 24 MAR 98 HPLC-Q Authorized:

Instrument:

2770 07 2						
Parameter	Result	Qualifier	RL	MDL	Units	,
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND ND ND		11 11 1.1 1.4 2.4 1.9 2.1	0.99 0.43 0.32 0.64 0.69 0.63 0.76	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	•
Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND 360 ND ND	d	2.1 3.2 2.1 2.1 4.6 11 2.1 2.1	0.78 0.81 0.37 0.38 0.59 0.63 0.32 0.46	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
_		_	_		_	

Acceptable Range Surrogate Recovery × Terphenyl-d14 ND 25 - 157

d = See Preferred Result on Other Column
ND = Not Detected

Reported By: Blake Besser



25 - 157

#### **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC (Second Column) Method 8310

(0.00, 0.00)

Client Name: Parsons Engineering Science
Client ID: BX-MW-03
LAB ID: 059558-0008-SA
Matrix: GRND-H20 Sampl Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 11 Received: 23 MAR 98 Analyzed: 18 APR 98 24 MAR 98 Authorized:

HPLC-Q Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	М	11 11 1.4 2.4 1.9 2.1 1.8 2.1 3.2 2.1 4.6 11 2.1	0.99 0.43 0.32 0.64 0.69 0.63 0.76 0.63 0.78 0.37 0.38 0.59 0.63	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate		Recovery		Acceptable (	Range

ND

M = Preferred Result
ND = Not Detected

Terphenyl-d14

Reported By: Blake Besser

Approved By: Audrey Cornell

* .



Acceptable Range 25 - 157

## **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

(0.00, 0.00)

Client Name: Parsons Engineering Science
Client ID: BX-MW-03-97
LAB ID: 059558-0009-SA
Matrix: GAMARO SAMPLES Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Analyzed: 17 APR 98 24 MAR 98 HPLC-Q Authorized:

Instrument:

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1.2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	25 25 25 25 25 25 25 25 25 25 25 25 25 2		1.0 1.0 0.10 0.13 0.24 0.18 0.21 0.17 0.21 0.21 0.21 0.21 0.21	0.095 0.041 0.031 0.062 0.067 0.061 0.073 0.075 0.078 0.036 0.037 0.056 0.031 0.044	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

Recovery

X

90

ND = Not Detected

Surrogate

Terphenyl-d14

Reported By: Blake Besser Approved By: Audrey Cornell



## **AFCEE** Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

(0.00, 0.00)

Client Name: Parsons Engineering Science
Client ID: BX-MW-05-97
LAB ID: 059558-0010-SA
Matrix: GRND-H20 Sampl
Authorized: 24 MAR 98 Prepar
Instrument: HPLC-Q Diluti Received: 23 MAR 98 Analyzed: 17 APR 98 Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0

Parameter	Result	Qualifier	RL	MDL	Units
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene			1.0 1.0 0.10 0.14 0.24 0.19 0.21 0.31 0.21 0.21 0.45 1.0 0.21	0.097 0.042 0.031 0.063 0.068 0.061 0.074 0.061 0.079 0.036 0.038 0.057 0.061 0.031	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

Acceptable Range Recovery Surrogate Terphenyl-d14 105 × 25 - 157

ND = Not Detected

Reported By: Blake Besser



## QC LOT ASSIGNMENT REPORT High Performance Liquid Chromatography

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059558-0001-SA 059558-0001-SA 059558-0002-SA 059558-0002-SA 059558-0003-SA 059558-0003-SA 059558-0004-SA 059558-0008-SA 059558-0008-SA 059558-0009-SA 059558-0010-SA	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A 8310AF-A	26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01	26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01 26 MAR 98-01



LABORATORY CONTROL SAMPLE REPORT High Performance Liquid Chromatography

Project: 059558

Terphenyl-d14

Category: 8310AF-A AFCEE - Polynuclear Aromatic Hydrocarbons

Date Analyzed: 14 APR 98

QC Run: 26 MAR 98-01 Concentration Units: ug/L	•		Accura	204(Y)
	Concei	ntration		acy(%)
Analyte	Spiked	Measured	LCS	Limits
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.60 4.20 3.86 4.37 4.19 4.38 4.39 4.26 4.18 4.01 4.28 4.55 3.71 4.34	90 105 96 109 105 110 111 110 106 104 # 100 107 114 93 108 110	43 · 130 49 · 125 54 · 125 39 · 135 52 · 125 31 · 137 53 · 125 60 · 129 59 · 134 35 · 103 53 · 125 42 · 125 53 · 125 52 · 129 55 · 125
	Conce	ntration		acy(%)
Surrogates	Spiked	Measured	LCS	Limits
Terphenyl-d14	20.0	21.6	108	25-157



SINGLE CONTROL SAMPLE REPORT High Performance Liquid Chromatography

**Analyte** 

Concentration Spiked Measured Accuracy(%) SCS Limits

Category: 8310AF-A Matrix: WATER QC Lot: 26 MAR 98-01 QC Run: 26 MAR 98-01

Concentration Units: ug/L

Terphenyl-d14

22.8 20.0

114 25-157



METHOD BLANK REPORT

High Performance Liquid Chromatography

Project: 059558

Test: 8310-AFCEE-MDL-A AFCEE Polynuclear Aromatic Hydrocarbons, HPLC
Matrix: WATER
QC Lot: 26 MAR 98-01 QC Run: 26 MAR 98-01 Date Analyzed: 14 APR 98
Analyte Result Units RL

Analyte	Result	Units	RL	MDL
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.10 0.13 0.23 0.18 0.20 0.17 0.20 0.30 0.20 0.43 1.0 0.20	0.093 0.040 0.030 0.065 0.059 0.071 0.059 0.073 0.076 0.035 0.035 0.055 0.030

Test: 8310-AFCEE-MDL-2-A AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Matrix: WATER QC Lot: 26 MAR 98-01 QC Run: 26 MAR 98-01 Date Analyzed: 14 APR 98

Analyte	Result	Units	RL	MDL
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 0.10 0.13 0.23 0.18 0.20 0.17 0.20 0.30 0.20 0.43 1.0 0.20 0.20	0.093 0.040 0.030 0.065 0.059 0.071 0.059 0.073 0.076 0.035 0.055 0.059 0.030



High Performance Liquid Chromatography Project: 059558

Category: 8310AF-A AFCEE - Polynuclear Aromatic Hydrocarbons Matrix: WATER

Matrix: 059558-0010 Sample: MS Run: 26 MAR 98-01

ug/L Units:

	Concentration		Δm	Amount		Re	cov.	RPD		
Analyte	Sample Result	MS Result	MSD Result		iked MSD	Recover MS MS	'v Ac		D A	ccept
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene		3.86 3.92 3.66 4.02 4.17 4.21 4.28 4.20 4.13 4.16 4.07 4.27	2.91 3.36 3.05 3.31 3.24 3.56 3.56 3.52 3.58 3.49 3.55 3.63	4.06 4.06 4.06 4.06 4.06 4.06 4.06 4.06	3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85	95 97 99 103 104 105 103 102 102 100 105	76 87 79 86 84 92 91 93 91 92 94	43-130 49-125 54-125 39-135 52-125 31-137 53-125 60-129 59-134 35-103 53-125 42-125	23 10 13 14 20 11 13 12 9.0 12 8.4	30 30 30 30 30 30 30 30 30 30 30
Indeno(1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND	4.16 4.22 4.00 4.07	3.49 3.72 3.50 3.45	4.06 4.06 4.06 4.06	3.85 3.85 3.85 3.85	102 104 99 100	91 97 91 90	53-153 43-125 52-129 55-125	12 7.3 8.0 11	30 30 30 30
Surrogates		*Recovery	,	Rec.		ot. Limi	ITS			
Terphenyl-d14	105	131	118		25-1	157				

## ND = Not Detected



## Memo (NCM)

Environmental Environmental Services Services

Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration  1. Analyst error  6. Log-in error  7. Miscommunication  8. Other (explanation required)  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Contamination check  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. Spike recoveries  1. S	eparation GC APLC GCMS Wet chemistr
######################################	eparation GC APLC GCMS Wet chemist Radiochemistry  Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
######################################	eparation GC APLC GCMS Wet chemist Radiochemistry  Quality Assurance/Ouality Control  17. OC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with OA and tech approval  20. Invalid instrument calibration
Analysis error  6. Log-in error  7. Miscommunication  8. Other (explanation required)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination attegory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation check  16. Other (explanation check  15. Confirmation of matrix effects  16. Other (explanation required)  17. Organic preparation  18. Other (explanation required)  19. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)  16. Other (explanation required)	eparation GC APLC GC/MS Wet chemist Radiochemistry  Quality, Assurance/Ouality Control 17. QC data reported outside of controls 18. Incorrect procedure used 19. SOP intentionally modified with QA and tech approval 20. Invalid instrument calibration
Asystematical and services and services and services and services are control organic preparation organic properties and services and services and services are control organic preparation organic properties and services and services are control organic properties and services and services are control organic properties and services are serviced by analyst and services and services are serviced by analyst and services are serviced by analyst and services are serviced by analyst and services are serviced by analyst analyst and services are serviced by analyst analyst analyst and services are serviced by analyst analyst and services are serviced as a service and services are serviced as a service and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services and services are services are services and services are services and services are services are services and services are services and services are services and services are services are services and services are services are services and services are services are services and services are services are services and services are	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
alytical Area (check appropriate box) Sample control Organic preparation Inorganic properties of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
alytical Area (check appropriate box)  Sample control Organic preparation Inorganic property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
alytical Area (check appropriate box)  Sample control Organic preparation Inorganic property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property o	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
Metals Reporting Data review in-Conformance (check appropriate box) To be completed by analyst inding Time Violation (exceeded by days) integory I: Laboratory Independent  1. Holding time expired in transit  2. Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  7. Miscommunication  8. Other (explanation required) aregory III: Analysis Reruns (OA/OC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination aregory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination of matrix effects  16. Other (explanation required)	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
Metals  Reporting  Data review In-Conformance (check appropriate box) To be completed by analyst Inding Time Violation (exceeded by	Quality Assurance/Ouality Control  17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
in-Conformance (check appropriate box) To be completed by analyst alding Time Violation (exceeded by	17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
stegory I: Laboratory Independent  1. Holding time expired in transit  2. Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  6. Log-in error  7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (OA/OC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
Integory I: Laboratory Independent  1. Holding time expired in transit  2. Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  6. Log-in error  7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	17. QC data reported outside of controls  18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
1. Holding time expired in transit  2. Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	18. Incorrect procedure used  19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
1. Holding time expired in transit  2. Sample received > 48 hours or 1/2 holding time has expired  3. Test added by client after expiration tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
2. Sample received > 48 hours or 1/2 holding time has expired 3. Test added by client after expiration tegory II: Laboratory Dependent 4. Instrument failure 5. Analyst error 6. Log-in error 7. Miscommunication 8. Other (explanation required) attegory III: Analysis Reruns (OA/OC) 9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination attegory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination of matrix effects 16. Other (explanation required)	19. SOP intentionally modified with QA and tech approval  20. Invalid instrument calibration
3. Test added by client after expiration tegory II: Laboratory Dependent 4. Instrument failure 5. Analyst error 6. Log-in error 7. Miscommunication 8. Other (explanation required) ategory III: Analysis Reruns (OA/OC) 9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	20. Invalid instrument calibration
tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  6. Log-in error  7. Miscommunication  8. Other (explanation required)  ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination  ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	
tegory II: Laboratory Dependent  4. Instrument failure  5. Analyst error  6. Log-in error  7. Miscommunication  8. Other (explanation required)  ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination  ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	21. Received insuffient sample for proper analysis
4. Instrument failure 5. Analyst error 6. Log-in error 7. Miscommunication 8. Other (explanation required) ategory III: Analysis Reruns (QA/QC) 9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	·
5. Analyst error 6. Log-in error 7. Miscommunication 8. Other (explanation required) ategory III: Analysis Reruns (OA/OC) 9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	Incorrect or Incomplete Client Deliverable
6. Log-in error 7. Miscommunication 8. Other (explanation required) ategory III: Analysis Reruns (QA/QC) 9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	
7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (OA/OC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	22. Hardcopy deliverable error
7. Miscommunication  8. Other (explanation required) ategory III: Analysis Reruns (OA/OC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	23. Electronic deliverable error
8. Other (explanation required) ategory III: Analysis Reruns (OA/OC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	Reported Detection Limits Elevated Due to:
ategory III: Analysis Reruns (QA/QC)  9. Surrogates  10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	
9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	24. Sample matrix: Does not include high analyte content
9. Surrogates 10. Internal standards 11. Spike recoveries 12. Blank contamination ategory IV: Analysis Reruns (Confirmation) 13. Second column 14. Contamination check 15. Confirmation of matrix effects 16. Other (explanation required)	25. Insufficient sample volume
10. Internal standards  11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	26. Other (explanation required)
11. Spike recoveries  12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	
12. Blank contamination ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	Miscellaneous
ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	27. Instrument Tag-out
ategory IV: Analysis Reruns (Confirmation)  13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	28. Other (explanation required)
13. Second column  14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	
14. Contamination check  15. Confirmation of matrix effects  16. Other (explanation required)	
15. Confirmation of matrix effects  16. Other (explanation required)	
16. Other (explanation required)	
16. Other (explanation required)	
otification (check appropriate box) To be completed by project manage	
otification (check appropriate box) To be completed by project manage	
otification (check appropriate box) To be completed by project manage	
otification (check appropriate box) To be completed by project manage	
otification (check appropriate box) To be completed by project manag	
Required Not Required	Tr Tr
ent notified by - Name , Date	ar .
In writing	
ient's name and response	By telephone By facsimile Other (explain)
Process as is On no	By telephone By facsimile Other (explain)



NCM Log Number

# Laboratory Non-Conformance Memo (NCM)

Environmental Services

		NCM Log Number	13367
2UA-4187		_1	
Corrective Action (To be completed and reviewed by all associates involved problem Descriptory Root Cause Of hGNZO - 9, h - Autro CE	ne recovery is	abou	- limit
in DC5 , 1047, + 1117, ( limit	+ is 1032 '		
			•
	Author's meets and det	45	4-219 N
Corrective Actions (Snort Term) MSQC in limit	La report	oble t	ensex
compond. Data accepted	<u>/</u>		
	Aumor's initials and da	100	4-2152
Currective Actions to Prevent Reoccurence (Long Term)			
	Corrective Action approved by (Supervisor)	Group Leaders and date	35 4.218 p
Addition:   Comments			7.
Corrective Action to be completed by (if other than Supervisor/Group Leader)	Date Corrective Acti	on is to be completed	
Quality Assurance Review (To be completed by a QA associate)			
Log ID Anomaly Deficiency	Notified Ops/Sys Manager	(Initials)	
Further action required			
		<u> </u>	
Further action assigned to			•
	Date 1/- 3/		
Exsensive AlaCtin Mikerruan	4/23/9	8	
Corrective Action Verification (To be completed by a QA associate)			
Verification not required or requested Verified/CA complete	d on by		
Cannot verifiy (specify reason)			
venhed by	Date		
	rmance Memo Closure		
CA signature A CARLO A White is a narran	4/23/9	E.	



Client Name:

Parsons Engineering Science

Client ID:

BX-MW-20

(0.00, 0.00)

LAB ID:

059558-0001-SA

Matrix: Authorized: GRND-H20 24 MAR 98 Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Parameter

Qual Dil Result

MDL

Rep Lim Units

Method

Prepared Analyzed Date Date

Lead

0.0098

0.0010 1.0

0.0050mg/L

SW7421

31 MAR 98 01 APR 98

Reported By: Robin Proctor



Client Name:

Parsons Engineering Science

Client ID:

Authorized:

BX-MP-2

LAB ID:

059558-0002-SA

Matrix:

GRND-H20

24 MAR 98

1.0

Sampled: 22 MAR 98 Prepared: See Below

(0.00, 0.00)

Received: 23 MAR 98 Analyzed: See Below

Date

Parameter

Lead

Result Qual Dil

0.0078

MDL C.0010 Rep Lim Units 0.0050 mg/L

SW7421

Method

31 MAR 98 01 APR 98

Prepared Analyzed

Date

Reported By: Robin Proctor



Client Name:

Parsons Engineering Science FT-16, MP-1 059558-0003-SA

Qual Dil

Client ID:

(0.00, 0.00)

LAB ID:

Matrix: Authorized: GRND-H20

Sampled: 21 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

24 MAR 98

MDL Rep Lim Units

Prepared Analyzed Method

Date Date

Parameter Lead

Result ND

1.0 0.0010 0.0050mg/L

SW7421

31 MAR 98 01 APR 98

ND = Not Detected

Reported By: Robin Proctor



Client Name: Client ID:

Parsons Engineering Science

1.0

(0.00, 0.00)

LAB ID:

FT-16, MP-2 059558-0004-SA

Matrix:

GRND-H20

ND

Sampled: 21 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Authorized:

24 MAR 98

Parameter

Result Qual Dil Rep Lim Units

Method

Prepared Analyzed Date Date

Lead

0.0010

MDL

0.0050mg/L

SW7421

31 MAR 98 01 APR 98

ND = Not Detected

Reported By: Robin Proctor



#### **AFCEE** Total Metals

Client Name:

Parsons Engineering Science

Client ID:

BX-MW-03

(0.00, 0.00)

LAB ID:

059558-0008-SA

Matrix:

GRND-H20

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Authorized:

24 MAR 98

Result Qual Dil

0.0030J

MDL

Rep Lim Units

Method

Prepared Analyzed

Date

Date

Parameter

Lead

1.0

0.0010

0.0050mg/L

SW7421

31 MAR 98 01 APR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Robin Proctor

Approved By: Kathy Wakeman



#### **AFCEE** Total Metals

Client Name:

Parsons Engineering Science

1.0

Client ID:

BX-MW-03-97

(0.00, 0.00)

LAB ID:

059558-0009-SA

Matrix:

GRND-H20

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Authorized:

24 MAR 98

Parameter

Result Qual Dil MDL Rep Lim Units Method

Prepared Analyzed Date Date

Lead

ND

0.0010

0.0050 mg/L

SW7421

31 MAR 98 01 APR 98

ND = Not Detected

Reported By: Robin Proctor

Approved By: Kathy Wakeman



#### **AFCEE** Total Metals

Client Name:

Parsons Engineering Science BX-MW-05-97

Client ID:

(0.00, 0.00)

LAB ID:

Matrix:

059558-0010-SA

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Date

Authorized:

GRND-H20 24 MAR 98

Parameter

Result Qual Dil

Rep Lim Units MDL

Method

Prepared Analyzed

Date

Lead

ND

0.0010 1.0

0.0050mg/L

SW7421

31 MAR 98 01 APR 98

ND = Not Detected

Reported By: Robin Proctor

Approved By: Kathy Wakeman



# QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059558-0001-SA 059558-0002-SA 059558-0003-SA 059558-0004-SA 059558-0008-SA 059558-0009-SA 059558-0010-SA 059558-0010-SD	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT	31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3	31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3 31 MAR 98-R3



LABORATORY CONTROL SAMPLE REPORT Metals Analysis and Preparation

Concentration

Measured

Accuracy(%) Limits LCS

Analyte

Category: PB-LAW-AT Matrix: AQUEOUS QC Lot: 31 MAR 98-R3

QC Lot: Concentration Units: mg/L

QC Run: 31 MAR 98-R3

Lead

0.0400

Spiked

0.0455

114

74-124



METHOD BLANK REPORT

Metals Analysis and Preparation

Project: 059558

Test: PB-AFCEE2-MDL-AT Matrix: AQUEOUS QC Lot: 31 MAR 98-R3 Q

AFCEE Lead. Furnace AA (Totals)

QC Run: 31 MAR 98-R3

Date Analyzed: 01 APR 98

Analyte

Result

Units

RL

MDL

Lead

ND

mg/L

0.0050

0.0010



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Metals Analysis and Preparation Project: 059558

Category: PB-LAW-AT Lead, Furnace AA / Totals Matrix: AQUEOUS Sample: 059558-0010 31 MAR 98-R3 MS Run:

Units: mg/L

		Concentration						Acceptance		
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD		very %RPD MSD	Limi			
Lead	ND	0.0440	0.0436	0.0400	110	109 0.9	74-124	15		

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.



Client Name:

Parsons Engineering Science

Client ID:

(0.00,0.00)

LAB ID:

BX-MW-20 059558-0001-SA GRND-H20

0.12 J

Received: 23 MAR 98

Matrix: Authorized:

24 MAR 98

Sampled: 22 MAR 98 Prepared: See Below

Analyzed: See Below

Prepared Analyzed Date Date

Parameter

Nitrate as N

Qual Dil Result

1.0

MDL 0.040

0.50 mg/L

Rep Lim Units

9056

Method

NA

23 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name: Client ID:

Parsons Engineering Science

LAB ID:

BX-MP-2 059558-0002-SA

Matrix: Authorized:

GRND-H20 24 MAR 98

Sampled: 22 MAR 98 Prepared: See Below

(0.00, 0.00)

Received: 23 MAR 98

Analyzed: See Below

Parameter

Result Qual Dil

Rep Lim Units

Method

Prepared Analyzed Date Date

Nitrate as N

0.13 J

1.0

0.040

MDL

0.50 mg/L

9056

NA

23 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name:

Parsons Engineering Science

1.0

Client ID:

FT-16, MP-3

059558-0007-SA GRND-H20

LAB ID: Matrix:

(0.00, 0.00)

Received: 23 MAR 98 Analyzed: See Below

Authorized:

24 MAR 98

Sampled: 22 MAR 98 Prepared: See Below

Prepared Analyzed

Parameter

Nitrate as N

Result Qual Dil

0.12 J

MDL

0.040

Rep Lim Units 0.50 mg/L

9056

Method

NA

Date

23 MAR 98

Date

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name:

Parsons Engineering Science

Client ID:

BX-MW-03

LAB ID:

059558-0008-SA

Matrix:

Authorized:

GRND-H20 24 MAR 98

Sampled: 22 MAR 98 Prepared: See Below

(0.00, 0.00)

Received: 23 MAR 98

Analyzed: See Below

Prepared Analyzed Date Date

Parameter

Nitrate as N

Result

0.13

Qual Dil

J

1.0

MDL 0.040 Rep Lim Units 0.50 mg/L

9056

Method

NA

24 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name:

Parsons Engineering Science

Client ID:

(0.00, 0.00)

LAB ID:

MW-01 059558-0011-SA

Matrix:

GRND-H20

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98

Date

Authorized:

24 MAR 98

MDL

Analyzed: See Below

Prepared Analyzed

Date

Parameter

Nitrate as N

Result

0.15 J

Qual Dil 1.0

Rep Lim Units 0.040

0.50 mg/L

9056

Method

NA 24 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name:

Parsons Engineering Science BX-MW-08-97

Client ID:

(0.00, 0.00)

LAB ID: Matrix: 059558-0013-SA

GRND-H20

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98

Authorized:

24 MAR 98

Analyzed: See Below

Parameter

Result Qual Dil

1.0

Rep Lim Units MDL

Method

Prepared Analyzed Date Date

Nitrate as N

0.13 J

0.040

0.50 mg/L

9056

NA 24 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



Client Name:

Parsons Engineering Science

1.0

Client ID:

BX-MW-07

(0.00, 0.00)

LAB ID:

059558-0014-SA

Matrix:

GRND-H20

Authorized:

24 MAR 98

ND

Sampled: 22 MAR 98 Prepared: See Below

Received: 23 MAR 98 Analyzed: See Below

Prepared Analyzed Date

Parameter

Nitrate as N

**Result** Qual Dil MDL 0.040 Rep Lim Units 0.50 mg/L

9056

Method

NA

Date

24 MAR 98

ND = Not Detected

Reported By: Mark Foster



Client Name:

Parsons Engineering Science

Client ID:

Authorized:

MP-1

LAB ID:

059558-0016-SA

Matrix:

GRND-H20

24 MAR 98

Sampled: 22 MAR 98 Prepared: See Below

(0.00, 0.00)

Received: 23 MAR 98

Analyzed: See Below

Prepared Analyzed

Parameter

Result

MDL Qual Dil

Rep Lim Units

Date

Date

Nitrate as N

0.13 J

1.0

0.040

0.50 mg/L

9056

Method

NA

24 MAR 98

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Mark Foster



## QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059558-0001-SA 059558-0002-SA 059558-0007-SA 059558-0008-SA 059558-0011-SA 059558-0011-SD 059558-0011-SD 059558-0012-SA 059558-0013-SA 059558-0014-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A	23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1	23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1 23 MAR 98-N1



LABORATORY CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Concentration

Accuracy(%)

Analyte

Spiked

Measured

LCS Limits

Category: NO3-PAR-A

Matrix: AQUEOUS QC Lot: 23 MAR 98-N1

Concentration Units: mg/L

ıı OC Rur

QC Run: 23 MAR 98-N1

Nitrate as N

10.0

10.5

105

90-110

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT

Wet Chemistry Analysis and Preparation

Project: 059558

Test: NO3-AF-IC-PAR-MDL-A AFCEE Nitrate, Ion Chromatography Matrix: AQUEOUS QC Lot: 23 MAR 98-N1 QC Run: 23 MAR 98-N1 Date Analyze

Date Analyzed: 23 MAR 98

MDL Units RLResult Analyte

0.040 0.50 ND mg/L Nitrate as N



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Wet Chemistry Analysis and Preparation

Project: 059558

Category: NO3-PAR-A Nitrate as N by Ion Chromatography (Cape Canaveral)

Matrix: AQUEOUS Sample: 059558-0011 MS Run: 23 MAR 98-N1

Units: mg/L

		Conc	entration	Amazina			Acceptance	
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	*Recovery MS MSD	/ XRPD	Limi'	
Nitrate as N	0.15 J	20.3	20.2	20.0	101 10	0 0.4	90-110	20

J = Result is detected below the reporting limit or is an estimated concentration.
Calculations are performed before rounding to avoid round-off errors in calculated results.



(0.00, 0.00)

Parsons Engineering Science Client Name:

Client ID:

BX-MW-20 059558-0001-SA LAB ID:

Received: 23 MAR 98 Analyzed: 27 MAR 98 Sampled: 22 MAR 98 GRND-H20 Matrix: Prepared: N/A 24 MAR 98 Authorized:

Dilution: 50 GCFID-K1A Instrument:

MDL Units RL Result Qualifier Parameter

2.6 ug/L В 25 1800 Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin Approved By: Cynthia Prentice



Client Name: Parsons Engineering Science

(0.00, 0.00)Client ID: BX-MP-2

LAB ID:

059558-0002-SA GRND-H20 24 MAR 98 GCFID-K1A Received: 23 MAR 98 Analyzed: 27 MAR 98 Sampled: 22 MAR 98 Prepared: N/A Matrix: Authorized:

Dilution: 50 Instrument:

MDL Units Result Qualifier RL Parameter

25 В 2.6 ug/L 1800 Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



Received: 23 MAR 98 Analyzed: 27 MAR 98

### Method EPA-9 RSK-175 by GC/FID Method EPA-9 RSK-175

Parsons Engineering Science Client Name:

Client ID:

FT-16, MP-3 059558-0006-SA (0.00, 0.00)LAB ID: Sampled: 21 MAR 98 Prepared: N/A Matrix: GRND-H20

24 MAR 98 GCFID-K1A Authorized: Dilution: 20 Instrument:

MDL Units Result Qualifier RL Parameter

490 В 10 1.0 ug/L Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



Client Name: Parsons Engineering Science Client ID: BX-MW-03

(0.00, 0.00)

LAB ID:

059558-0008-SA

Matrix:

Sampled: 22 MAR 98 Prepared: N/A Dilution: 25

Authorized:

GRND-H20 24 MAR 98 GCFID-K1A

Received: 23 MAR 98 Analyzed: 27 MAR 98

Instrument:

Result Qualifier

Units

Parameter Methane

1200

В

12

RL

1.3

MDL

ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



Client Name: Parsons Engineering Science

Client ID: MW-01

LAB ID: 059558-0011-SA

Matrix:

(0.00, 0.00)

GRND-H20 Authorized:

Sampled: 22 MAR 98 Prepared: N/A

Received: 23 MAR 98 Analyzed: 27 MAR 98

24 MAR 98 GCFID-K1A Dilution: 1.0 Instrument:

MDL Units Result Qualifier RL Parameter

0.052 В 0.50 ug/L 17 Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



Received: 23 MAR 98

Analyzed: 27 MAR 98

## Method EPA-9 RSK-175 by GC/FID Method EPA-9 RSK-175

(0.00, 0.00)

Client Name: Client ID: Parsons Engineering Science

BX-MW-05

059558-0012-SA

LAB ID: Sampled: 22 MAR 98 Prepared: N/A Dilution: 75 GRND-H20 Matrix:

24 MAR 98 GCFID-K1A Authorized: Instrument:

MDL Units Result Qualifier **RL** Parameter

В 38 3.9 ug/L 4300 Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



(0.00, 0.00)

Parsons Engineering Science Client Name:

GCFID-K1A

BX-MW-08-97 Client ID:

059558-0013-SA LAB ID:

Matrix: GRND-H20 Authorized: 24 MAR 98 Sampled: 22 MAR 98 Prepared: N/A

Dilution: 1.0

Received: 23 MAR 98

Analyzed: 27 MAR 98

**Parameter** 

Instrument:

Result Qualifier

В

RL

MDL Units

Methane

18

0.50

0.052

ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



(0.00, 0.00)

Parsons Engineering Science Client Name:

BX-MW-07 Client ID:

059558-0014-SA LAB ID:

Sampled: 22 MAR 98 Prepared: N/A Dilution: 20 Received: 23 MAR 98 Analyzed: 27 MAR 98 Matrix: GRND-H20

24 MAR 98 GCFID-K1A Authorized: Instrument:

**RL** MDL Units Result Qualifier Parameter

420 В 10 1.0 ug/L Methane

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



Client Name: Parsons Engineering Science Client ID: MP-1

LAB ID: Matrix:

059558-0016-SA

GRND-H20

Sampled: 22 MAR 98 Prepared: N/A

(0.00,0.00)

Received: 23 MAR 98 Analyzed: 27 MAR 98

Authorized: Instrument: 24 MAR 98 GCFID-K1A

Dilution: 50

Parameter

Result Qualifier

MDL

Units

Methane

1600

В

25

RL

2.6

ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin



# QC LOT ASSIGNMENT REPORT Subcontracted to Quanterra Lab

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059558-0001-SA 059558-0002-SA 059558-0006-SA 059558-0008-SA 059558-0011-SA 059558-0011-MS 059558-0011-SD 059558-0012-SA 059558-0013-SA 059558-0014-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A GAS-AUS-A	27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1	27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S1 27 MAR 98-S2



LABORATORY CONTROL SAMPLE REPORT Subcontracted to Quanterra Lab Project: 059558

Category: GAS-AUS-A Gases by Method AUS GC-0019 (Quanterra-Austin)
Matrix: AQUEOUS
Date Analyzed: Date Analyzed: 27 MAR 98

QC Run: 27 MAR 98-S1

Concentration Units:	ug/L	Conce	Accuracy(%)		
Analyte		Spiked	Measured	LCS	Limits
Methane Ethane Ethene		34.5 64.7 60.4	32.1 55.8 52.7	93 86 87	70-130 70-130 70-130



DUPLICATE CONTROL SAMPLE REPORT Subcontracted to Quanterra Lab Project: 059558

Category: GAS-AUS-A Gases by Method AUS GC-0019 (Quanterra-Austin)

Matrix: AQUEOUS QC Lot: 27 MAR 98-S2

Date Analyzed: 27 MAR 98

Concentration Units: ug/L

Analyte	Conce Spiked	oncentration Measured DCS1 Qual DCS2 Qual AVG			Accuracy Average(%) DCS Limits		Precision (RPD) DCS Limit	
	34.1	30.7	30.7	30.7	90	70-130	0.06	30
Methane Ethane Ethene	63.9 59.7	53.1 50.8	53.2 51.0	53.1 50.9	83 85	70-130 70-130	0.24 0.29	30 30



METHOD BLANK REPORT

Subcontracted to Quanterra Lab

Project: 059558

Test: GASES-AUSTIN-MDL-A Method EPA-9 RSK-175 by GC/FID

Matrix: AQUEOUS

QC Lot: 27 MAR 98-S1 QC Run: 27 MAR 98-S1 Date Analyzed:

Analyte Result Units RL MDL

Methane 0.12 J ug/L 0.50 0.052

QC Lot: 27 MAR 98-S2 QC Run: 27 MAR 98-S2 Date Analyzed: 27 MAR 98

Analyte Result Units RL MDL

Methane 0.15 J ug/L 0.50 0.052



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Subcontracted to Quanterra Lab

Project: 059558

Category: GAS-AUS-A Gases by Method AUS GC-0019 (Quanterra-Austin)

Matrix: **AQUEOUS** Sample: MS Run: 059558-0011 27 MAR 98-S1

Units: ug/L

	Concentration			Amount % Recov. RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked Recovery Accep. RPD Accept MS MSD MS MSD Limits MS-MSD Limits
Methane	17	B 53.1	B 56.1 B	33.8 34.2 107 114 70-130 4.4 30

B = Compound is also detected in the blank.
NA = Not Applicable
NC = Not Calculated, calculation not applicable.
ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.



#### Method FL-PRO - TPH (C8-C40) Method FL-PRO

(0.00, 0.00)

Parsons Engineering Science

Client Name: Client ID: BX-MW-20

059558-0001-SA LAB ID:

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 4.0 Received: 23 MAR 98 GRND-H20 Matrix: Analyzed: 03 APR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

RL MDL Units Result Qualifier Parameter

2.0 0.76 mg/L 20 TPH (C8-C40)

Acceptable Range Recovery Surrogate

33 · 162 10 · 109 99 89 * o-Terphenyl Nonatriacontane

Reported By: Quanterra-Tampa

Approved By: Lynn S. Calvin



#### Method FL-PRO - TPH (C8-C40) Method FL-PRO

(0.00, 0.00)

Client Name: Client ID: Parsons Engineering Science

BX-MP-2

059558-0002-SA LAB ID:

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 4.0 Received: 23 MAR 98 GRND-H20 Matrix: Analyzed: 03 APR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

MDL Units **RL** Result Qualifier Parameter

2.0 0.76 mg/L 19 TPH (C8-C40)

Recovery Acceptable Range Surrogate

33 - 162 10 - 109 92 87 o-Terphenyl Nonatriacontane

Reported By: Quanterra-Tampa

Approved By: Lynn S. Calvin



#### Method 504 - EDB Method 504

(0.00, 0.00)

Parsons Engineering Science Client Name:

Client ID: FT-16, MP-1

059558-0003-SA LAB ID:

Sampled: 21 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Matrix: GRND-H20 Analyzed: 31 MAR 98 Authorized: 24 MAR 98

GCFID-I Instrument:

RL MDL Units Result Qualifier Parameter

0.020 0.0060 ug/L ND EDB (1.2-Dibromoethane)

Recovery Acceptable Range Surrogate

1.1.1.2-Tetrachloroethane 89.0 * 80 - 120

ND = Not Detected

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



Client Name: Parsons Engineering Science

Client ID:

LAB ID:

Nonatriacontane

(0.00, 0.00)FT-16, MP-1 059558-0003-SA

Sampled: 21 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 GRND-H20 Matrix: Analyzed: 02 APR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

MDL Units Result Qualifier RL Parameter

0.50 0.19 mg/L J 0.18 TPH (C8-C40)

Acceptable Range Recovery Surrogate 33 - 162 10 - 109 99 53 o-Terphenyl

J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



#### Method 504 - EDB Method 504

(0.00, 0.00)

Parsons Engineering Science Client Name:

FT-16, MP-2 Client ID:

LAB ID: 059558-0004-SA

Sampled: 21 MAR 98 Prepared: 31 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Matrix: GRND-H20 Analyzed: 31 MAR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

Result Qualifier RL MDL Units Parameter

EDB (1.2-Dibromoethane) ND 0.020 0.0060 ug/L

Recovery Acceptable Range Surrogate

1.1.1.2-Tetrachloroethane 122 * 80 - 120

ND = Not Detected

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



Client Name: Parsons Engineering Science Client ID: FT-16, MP-2 059558-0004-SA (0.00, 0.00)

LAB ID:

Sampled: 21 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 GRND-H20 Matrix: Analyzed: 02 APR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

MDL Units RL Result Qualifier Parameter 0.50 0.19 mg/L ND TPH (C8-C40) Acceptable Range Recovery Surrogate

33 - 162 10 - 109 o-Terphenyl 55 Nonatriacontane

ND = Not Detected

Reported By: Quanterra-Tampa

Approved By: Lynn S. Calvin



(0.00, 0.00)

Parsons Engineering Science Client Name:

BX-MW-03 Client ID:

059558-0008-SA LAB ID:

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 5.0 Received: 23 MAR 98 Matrix: GRND-H20 Analyzed: 03 APR 98 Authorized:

24 MAR 98 GCFID-I Instrument:

Result Qualifier RL MDL Units Parameter

2.5 0.95 mg/L 41 TPH (C8-C40)

Recovery Acceptable Range Surrogate

33 - 162 10 - 109 ND o-Terphenyl ND Nonatriacontane

ND = Not Detected

Reported By: Quanterra-Tampa

Approved By: Lynn S. Calvin



(0.00, 0.00)

Client Name:

Parsons Engineering Science BX-MW-03-97 059558-0009-SA Client ID:

LAB ID:

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 GRND-H20 24 MAR 98 GCFID-I Received: 23 MAR 98 Matrix: Analyzed: 02 APR 98 Authorized:

Instrument:

RL MDL Units Result Qualifier Parameter

0.19 0.50 mg/L TPH (C8-C40) ND

Acceptable Range Recovery Surrogate

33 · 162 10 · 109 104 72 * o-Terphenyl Nonatriacontane

ND = Not Detected

Reported By: Quanterra-Tampa

Approved By: Lynn S. Calvin



(0.00, 0.00)

Parsons Engineering Science Client Name:

BX-MW-05-97 Client ID:

059558-0010-SA LAB ID:

Sampled: 22 MAR 98 Prepared: 26 MAR 98 Dilution: 1.0 Received: 23 MAR 98 Matrix: GRND-H20 Analyzed: 03 APR 98 24 MAR 98 Authorized:

GCFID-I Instrument:

MDL Units Result Qualifier RL Parameter

0.19 mg/L 0.50 ND TPH (C8-C40)

Acceptable Range Recovery Surrogate

92 75 33 - 162 10 - 109 o-Terphenyl Nonatriacontane

ND - Not Detected

Reported By: Quanterra-Tampa Approved By: Lynn S. Calvin



# QC LOT ASSIGNMENT REPORT Sent OUT to Subcontractors

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	(SCS/BLANK)
059558-0001-SA 059558-0002-SA 059558-0003-SA 059558-0003-SA 059558-0004-SA 059558-0004-SA 059558-0008-SA 059558-0009-SA 059558-0010-SA 059558-0010-SD	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	TPHFLPROA TPHFLPROA 504-PAR-A TPHFLPROA 504-PAR-A TPHFLPROA TPHFLPROA TPHFLPROA TPHFLPROA TPHFLPROA TPHFLPROA TPHFLPROA	26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 31 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1	26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 31 MAR 98-S1 26 MAR 98-S1 31 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1 26 MAR 98-S1



DUPLICATE CONTROL SAMPLE REPORT Sent OUT to Subcontractors

Project: 059558

Category: TPHFLPROA TPH - Method FL-PRO - Florida TPH Method

Matrix: AQUEOUS 26 MAR 98-S1 QC Lot:

Concentration Units: mg/L

Date Analyzed: 02 APR 98

		centration				curacy erage(%)	Preci (RP	
Analyte	Spiked	DCS1 Q	Measured ual DCS2 Qu	al AVG	DCS	Limits	DCS L	
TPH (C8-C40)	1.70	1.70	1.53	1.62	95	55-118	11	20
Surrogate	Co Spiked	ncentratio DCS1 Q	n Me <b>asure</b> d ual <b>D</b> CS2 Qu	ıal	Ave	ccuracy erage(%) Limits		
o-Terphenyl	0.100	0.102	0.0938		98	33-162		

0.318

0.366

Category: 504-PAR-A EDB - Method 504 - Cape Canaveral

0.600

Matrix: AQUEOUS 31 MAR 98-S1

o-Terphenyl

Nonatriacontane

QC Lot: Concentration Units: ug/L Date Analyzed: 31 MAR 98

57 10-109

Analyte	Co Spiked	oncentratio DCS1	n Measured Qual DCS2 Q	ual AVG	Ave	curacy crage(%) Limits	Preci (RP DCS L	D)
EDB (1.2-Dibromoethane)	0.200	0.200	0.206	0.203	102	75-126	3.0	20
Surrogate	Spiked	Concentrati DCS1	on Measured Qual DCS2 Q	ual	Ave	curacy erage(%) Limits		
1,1,1.2-Tetrachloroethane	0.400	0.432	0.427		107	80-120		



### SINGLE CONTROL SAMPLE REPORT Sent OUT to Subcontractors

Analyte	Concent Spiked	ration Measured	Accura SCS	cy(%) Limits
Category: TPHFLPROA Matrix: AQUEOUS QC Lot: 26 MAR 98-S1 QC Run: 26 Concentration Units: mg/L	MAR 98-S1			
o-Terphenyl Nonatriacontane	0.100 0.600	0.0987 0.382	99 64	33-162 10-109
Category: 504-PAR-A Matrix: AQUEOUS QC Lot: 31 MAR 98-S1 QC Run: 31 Concentration Units: ug/L	MAR 98-S1			
1.1.1.2-Tetrachloroethane	0.400	0.417	104	80-120

Calculations are performed before rounding to avoid round-off errors in calculated results.



METHOD BLANK REPORT

Sent OUT to Subcontractors

Project: 059558

Test:

TPH-FL-PRO-OUT-A

Method FL-PRO - TPH (C8-C40)

Matrix: AQUEOUS

QC Lot: 26 MAR 98-S1

QC Run: 26 MAR 98-S1

Date Analyzed: 02 APR 98

Analyte

Result

Units

RL

MDL

TPH (C8-C40)

ND

mg/L

0.50

0.19

Test:

504-PAR-OUT-A

Method 504 - EDB

Analyte

Matrix: AQUEOUS

QC Lot: 31 MAR 98-S1

QC Run: 31 MAR 98-S1

Date Analyzed: 31 MAR 98

RL

MDL

EDB (1.2-Dibromoethane)

ND

Result

ug/L

Units

0.020

0.0060



MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT

Sent OUT to Subcontractors

Project: 059558

Category: TPHFLPROA TPH - Method FL-PRO - Florida TPH Method

Matrix: AQUEOUS Sample: 059558-0010 MS Run: 26 MAR 98-S1

Units: mg/L

		Concentrat	ion	Δπ	nount	×	Re	cov.	R	PD
Analyte	Sample Result	MS Result	MSD Result			Recove	ry Ac			cept
TPH (C8-C40)	ND	3.2	3.7	3.4	3.4	94	108	41-101	15	20
Surrogates		#Recovery	′	Rec	. Acce	ot. Lin	its			
o-Terphenyl Nonatriacontane	92.0 75.0	95.2 55.8	110 54.9		33-: 10-:					

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

Chain of Custody Record

<b>Quanterra</b>	
29528	

QUA-124 0797																						
Chen/ARSONS ES		Project Manager	Ž.			D	lanis							Ŷ B	86/57/5	/{	6	1	Chain o	Custody	DSCO Quency Number Co. 294	94
しる	ر د	Selection of the second	Page 7	Area Code)/Fax Number	V/Gpo	₹ <del>%</del>	چَو	/3	020/	01	49	97		9	ab Numb				Page		0,	
State	Zip Code	Sile Conlact				5	Tage Color	ا ا	3 6	1		Scrit-	₹ E	Analysis (Attach list II	Attac 8 ts /	the fist	= Q					
134 Seno	STATION	Carrier/Waybill Number	Num Num	že.	7	5		=	1	i	018	ב-למש	7hL 0	000	511					Special	Instructions	
			2	Matrix			Containers & Preservatives	ners			3 1 W+7	<u> </u>	van	- 24	الالم					Conditio	Conditions of Receipt	*
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Sed.	MOS.	sergni	HSSON	SONH	HC®N IOH	HOPN		परत ख्रारा	IXb	TOT	VIW	1131 -							
11 BX - 11P-20	1/88/1P	0910	×		7	~	1	-		<del> </del> ^	S	X	X	Š				-				
12 Ja 13 X- MP- D	3/22/98 0730		×		3	20	18	_			3	X	X	N X			一	-				
											 		<del>                                     </del>	-	_		_	_				
			-		-						_			_	<u> </u>							
			-		_			_			_				<u> </u>		1	-	<u> </u>	:		
								<u> </u>		-							$\vdash$	-				
														-								
								_						_				-				
														_	_							
															_							1
Possible Hazard Identification			Sample Disposal	sods					,					1		3.	2	ybea	N pesses	amples a	(A lee may be assessed if samples are retained	
	1		The Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of the Column of th				OC Requirements (Specify)	awa	SS		2	<u>.</u>		i I	ST ST ST ST ST ST ST ST ST ST ST ST ST S	5		E 2	Muta)		ļ	
24 Hours 49 Hours 7 Days 14 Days	21 Days	Other		Ì						i										13.	lds.	ı
Paroished		Dallo AS		7 me 000	Ó	-	1. Received B		3	Z	1	13	,						18 C	44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2. Administratory		Dale	_	ine In		2.	2. Received By	d By					l						a -	Į.	Time	-
3. Reinquished By		Date	<del> </del>	Time		65	3. Received By	d By											Date		Time	
Commente			1			4													$\frac{1}{2}$			



5955 R

**W**uanterra

Chain of Custody Record

QUA-4124 0797													8		
Chient PARSONS ES			3240 Cens	E	Ş	•	•		<u>.</u>	から	79	198	ਲ	hain of Custody N	Chain of Custody Number $32285$
ردا	Prwr	Telephone Numa (678	8_	1 (Area Code)/Fax Number	A489		/(170) 446-4910	0/6	7	Lab Numb	per.		<b>a.</b>	Page	. of
	\$2000 \$2001	Site Contact		\$ 50 P	La XIVION	a)c	9	F	Analysi; more sp	is (Am	Analysis (Attach list if nore space is needed)	= <b>5</b>			
	Ś	Cerrier/Waybill Number	# Number				08 21	110	1840	0 00	7+3C2			Special I	nstructions/
Contract/Purchase Order/Quote No.			Matrix		Containers & Preservatives	ors & Ifives	アイト		70 to	E 24	244			Condition	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	pos pos pos	serdun	HCI HMO2 HS204	HOPN HOPN	XZI (I	ह्ण १५४	<u>1787</u>		<b>1</b> 2 W				
3 FT-16, A.P. I	3/11/48	0060	~	72	1 5		X	X	XX						
il F1-16, AP-A	3/11/18		X	5	115		X	XX	X						
FF-16, 513-3	3/12/198	1115	×		3		X								
MP-3	4/11/2	1215	X		9		X			<u>^</u>					
MP-3	19/20	0020	ス	=						X					
									_						
									-						
dentification	I Dolem R		Sample Disposal		) Olemosal I	Py ! ah	Ambba En	2		Months		e may t	Se asses	(A lee may be assessed if eamples are retained broner than 3 months!	refalned
				1	OC Requirements (Specify)	nents (Spe	cify)				1				
24 Hours 48 Hours 7 Days 14 Days	21 Days	Other												(23/1	
· Spenitrished by	3/23/948	Spate 98	06 OC		1. Received By	1	Parie	13	les	_				13/20/C	17 17 14 HH
2 Melmanylad By		Date	Time		2. Received By									Dalearthi	Time
3. Reinquished By		Date	Time		3. Received By	By								Date	Time
Comments			-												

5955 8  BRAD (EWIS  31 &54. 10  P.O.*  Dother (Specify)*	For Laboratory use only	W.O. 8 B.O.F. 8 C/S (1) C/S (1) Cooler Temp. *C Seals Integration / / N / NA Samples Press * / N / NA Headspace * / N / NA						Loc		alure) Daie/Tim
7 6 2		0.005 FINTING 167 CARD TRAI 167 CARD TRAI 167 CARD TRAINGE	<b>シアー</b>	) X						Date/Time   Received by: (Signature)
ERVIG (A)	ANALYSIS REQUESTED	Intel Metals - Works (Since & Itst metals below)  Okasolved Metals - DW/ SW846  Okasolved Metals - DW/ SW846  Okasolved Metals - DW/ SW846  Okasolved Metals - DW/ SW846	X 	×						-
	ANALYSIS	Peaulpicides 8080/608/508 (circae) PCB Screen Herbicides 8150/515 (circle) (ATEX 802)0002 (circle)(viTBE)(circle) TVPH 8015mod. (Diesel)	 	×						Colonial Reinquished by: (Signature)
RECORD EVERGREE  EVERGREE  K  4910		Ceirce  VC.4 8250/624/524.2 (circle)  BWA 8270/625 (circle)  Peuticides 8080/608 (circle)								
CHAIN OF CUSTODY	MATRIX	M. Sludge / Multi-phase	XI-51%0	1000 At 1				Sample Fraction	Container	- IS M5/MS Date/Ilme Received by: (Signature)
	ach land	PINT ormation: DATE SAMPLED	*6 *12	2						5-47
COMPANY PAILS ON ADDRESS 5390 TILLA CITY WORLIGSS STATE 54 PHONE 1678 369 34	(signature)	Please Dalink all ink CLIENT SAMPLE IDENTIF;3ATiON	12X - 150 - 15X	134 - A11/2 OS	So				Instructions:	O-MM-X(

quished by: (Signature)

3/23/9 80,00 lune M. Webs ...

Date/Time | Received by: (Signature)

hate/Tim

SAMPLE CHECKLIST	(222401 Lane 4/27
059550	3-22-08 1445
Project #.	7.A
Company Name & Sampling Site: $\frac{1}{2}$ Cooler #(s): $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac$	<u> </u>
Unpacking & Labeling Check Points:	Initials
N/A Yes No  1. Radiation checked, record if reading > 0.5 mR/hr.	(mR/hr)/\(\(\begin{array}{c}\B\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2. Cooler seals intact.	
Chain of custody present.	
4. Bottles broken and/or are leaking, comment if yes.	
PHOTOGRAPH BROKEN BOTTLES	
5. Containers labeled, comment if no.	
6. pH of all samples checked and meet requirements, note	exceptions
7. Chain of custody includes "received by" and "relinquish dates, and times.	ned" by signatures,
8. Receipt date(s) > 48 hours past the collection date(s)? I	f ves, notify PA/PM.
9. Chair of custody agrees with bottle count, comment if n	Ca : 4
10. Chain of custody agrees with labels, comment if no.	
☐ ☐ 11. VOA samples filled completely, comment if no.	<del>/</del>
☐ ☐ 12. VOA bottles preserved, check for labels.	/_
13. Did samples require preservation with sodium thiosulfat	te?
☐ ☐ 14. If yes to #12, did the samples contain residual chlorine?	· <del>/</del>
□ □ □ 15. Sediment present in "D," dissolved, bottles.	<del>/</del>
☐ ☐ 16. Are analyses with short holding times requested?	
☐ ☐ 17. Is extra sample volume provided for MS. MSD or matri	x duplicates?
☐ ☑ !8. Multiphase samples present? If yes, comment below.	<del>\</del>
☐ ☐ 19. Any subsampling for volatiles? If yes, list samples.	
PHOTOGRAPH MULTIPHASE SAMPL	ES
☐ 20. Clear picture taken, labeled, and stapled to project folde	er
☐ □ . □ 21. Subout COC signed and sent with samples to bottle prep	$\frac{\mathcal{L}B}{\mathcal{L}}$
□ 22. Was sample labeling double checked?	<u> </u>
more space is needed. The was not bed # 10 03 of Cha	ide a hard copy of e-mail or use extra paper if
	Initials:

# APPENDIX C FIELD FORMS FROM MARCH 1998 FIELD EFFORT

					Speet I of I
BORING NO.:	SB-1	_CONTRACTOR:	PANSONS	DATE SPUD:	3/18/98
CLIENT:	AFREE	_RIG TYPE:	OtoPhost	DATE CMPL.:	3/18/98
JOB NO.:	731854.09	_DRLG METHOD:	<u> </u>	ELEVATION:	
LOCATION:	BY SEAUSTA		2"	TEMP:	
GEOLOGIST:	BLEWIS	_DRLG FLUID:		WEATHER:	RAIN
COMENTS:					

	Depth		US	Cooleria Danaidia			Sample		DID/	71.1/	TOTAL	TPH
(ft)	(ft)	file	CS		No.	Depth (ft)	Type	Kes	PIU(ppm)	ILV(ppm)	BTEX(ppm)	(ppm)
	_ 1 _	la	30	0-2 SAND, Fine					0			
				orange red trender						_		
	- 5 -			to dain grey. DAY								
	3 -	ا		loose no olo					0			
	<u> </u>	10	کک ا	2-4 SAND, fine, gray								
				to tan, DAY, loose,				•				
	<del> </del> 10–			no odov					<u></u>			
		i	40	4-6 SAND, fine, grey-					U			
				brown to brown,						-		
	— —15—			water at ≈ 5'865,		ļ						
	-			loose, no odor					2			
	-	10	us	6-8 SAND, fine, ton-brown wet, loose, nobdor		i i			D_	-		
				wet loss and	')							
	-20-	.	سے ا	2-11 SAA			ļ		0			
		"	DS3	SAA								
									ļ	ļ		_
	25-											
	-	-								<u> </u>		
										<b></b>		
				-								
	-30-								<b></b>			
		-										
	35-									<b> </b>		

#### <u>NOTES</u>

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

	Sheet 1 of 1
BORING NO .: SB-2 CONTRACTOR: DATE SPUD:	3/18/98
CLIENT: HARSONS AFWERIG TYPE: LA COPROBE DATE CMPL.:	3/18/98
JOB NO .: A 731854.09 DRLG METHOD: DP ELEVATION:	- /
LOCATION: BX SOLU SYA BORING DIA .: 211 TEMP:	
GEOLOGIST: BLEWIS DRLG FLUID: WEATHER:	RAIN
COMENTS:	

	Depth						Sample				TOTAL	TPH
(ft)	(ft)	file	CS	Geologic Description	No.	Depth (ft)	Туре	Res		TLV(ppm)	BTEX(ppm)	(ppm)
	- 1 -								0			
			1247	U-X SAND, Fine, H						ļ		
				0-2 SAND, Fine, H brown to brown, loose, most, no odor								
	<del> -</del> 5 -			losse, most								
				no odor					0			
		]		3 (1 6 )								
	<u> </u>		1210	24 SAA				•				
	-10-		1225	2-4 SAA 4-6 SAA wetat					0			
				17-6 SAA WETAT								
				130778M 6-7 SAA								
	<b></b>		1300	6-1 SAA					0			
	<del> </del> -15-											
	-									<u> </u>		
									<u> </u>			
	-20-	]					•					
									-			
	25-								ļ			
	23-											
	-	}										
		1										
	-30-	]										
	<u> </u>	-										
		1										
	35											-

#### **NOTES**

bgs — Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

				Sheet 1 of 1
BORING NO.: CB-3	CONTRACTOR:	DANSONS	DATE SPUD:	3/18/98
CLIENT: AFCEE	_RIG TYPE:	CEDPHOBE	DATE CMPL .:	3/18/98
JOB NO.: 731854.09	_DRLG METHOD	: _02	ELEVATION:	
LOCATION: BY STAU STA	_BORING DIA.:	24	TEMP:	
GEOLOGIST: B CEWIS	_DRLG FLUID:		WEATHER:	RAIN
COMENTS:				•

1 :	Depth		US	•	0 1 1 0 11			Sample				TOTAL	TPH .
(ft)	(ft)	file	CS		Geologic Description	No.	Depth (ft)	Туре	Res	PID(ppm)	TLV(ppm)	BTEX(ppm)	(ppm)
	- 1 -				•	-							
		,-	سير ب	(0-)	CA . A . 1					0			
		1-	149	0 4	SAND, brown,								
<u></u>	- 5 -				loose								
		7	_ይ አο	እ · Ч	SAND, brown, loose SAA w/ ODON					100			
					(					107	<u> </u>		
		رح ،		/.	SAA SAA				•	<u>ର</u>	<del></del>		
	  -10-	15	<b>A</b> S	4.6	>/t/+								
	-	, 7	20	6-8	SAA					0			
		י ו											
	-15-												
										<u> </u>			
				:									
	-20-												
	20												
	<u> </u>		1							ļ			
	-25-												
		]											
		-											
		1								<del> </del>			
	-30-	]											
	<u> </u>	1											
		-											
		1								<b></b>			

#### **NOTES**

bgs — Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS — Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

Sheet 1 of 1 BORING NO .: SB-4 PARSONS DATE SPUD: DEOPNOBE DATE CMPL.: __CONTRACTOR: -RIG TYPE: CLIENT: 731854.09 DRLG METHOD: DP _____ ELEVATION: JOB NO.: PX SEAU STA BORING DIA .: _ LOCATION: _____ TEMP: ituis DRLG FLUID: GEOLOGIST: ___ WEATHER: COMENTS:

Elev (ft)	Depth (ft)	Pro- file	US CS	Geologic Des	ecription	 omple Depth (ft)	Sample		DID/nnm\	TI Wann	TOTAL BTEX(ppm)	TPH (ppm)
(11)	- 1 -					Deptir (11)	туре	Kes	C	rev(ppm)	o icy(hbui)	(рріп)
	- 5 -	1'	405	D-4 SAND,	dh brown			:	397			
	-10-	l	410	0-2 SAND brown a-4 SAND, loose, 4-6 SAA	oder net			,	380			
	15-	1	415	6-8 SAA					255			
	20-		/SID	10-12 SAA	No.			No.	/C >>	∪ <del>\</del> 1)		
	25-				+ 1							
	-30-											

#### NOTES

bgs — Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS — Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

		<b>.</b>		Speet 1 of 1	
BORING NO.: SB-5	_CONTRACTOR:	PARSONS	DATE SPUD:	3/18/98	
CLIENT: AFCEE	_RIG TYPE:	DEOPROBE	DATE CMPL.:	3/18/91	
JOB NO.: 23/854.09	_DRLG METHOD	: <u>DP</u>	ELEVATION:		
LOCATION: BX SELSIA	_BORING DIA.:	24	TEMP:		
GEOLOGIST: BLEWIS	_DRLG FLUID:		WEATHER:	PAW	
COMENTS					

Elev (ft)	Depth (ft)	Pro- file	US CS	Geologic Description		omple Depth (ft)	Sample		DiD(som)	TI V/ssm)	TOTAL BTEX(ppm)	TPH (nom)
(11)	- 1 -		<del>                                     </del>		NO.	Depth (11)	Type	Res	[гір(ррііі)	icv(ppm)	IB IE A(ppm)	(ppm)
	<u> </u>	{ (	430	0-2 SAUD, fine				c	275			
				grey, loose, mois								
	5 -			0-2 SAND, fine grey, loose, moid noodor								<del></del> .
		10	135	2-4 SAND, SAD				•	334			
		·		wet wooder				•	537			
	10-	, ,	140									
		ľ	10	4-6 SAND Horan				,	23.7			
				to brown Strong ador								
	15-	10	45	Strong addi					35			
		,		6-8 SAA					20			
												<del></del>
	-20-											
	-											<del></del>
	-25-											
	-30-									ļ		
												<u></u>
		-										
		<u> </u>										

#### **NOTES**

bgs - Below Ground Surface

GS — Ground Surface

TOC¹, — Top of Casing

NS — Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

					Sheet 1 of 1
BORING NO.: _	5B-6	CONTRACTOR:	PAUSONS GEOPROBE	DATE SPUD:	3/18/98
CLIENT:	14466	RIG TYPE:	(DEDPROBE	DATE CMPL.:	3/18/98
JOB NO.:	231854	DRLG METHOD:		ELEVATION:	
LOCATION:	BX SUIC	BORING DIA.:	24	TEMP:	
GEOLOGIST: _	BLEWS	DRLG FLUID:		WEATHER:	RAIN
COMENTS: _				****	

Elev (ft)	Depth (ft)		US	Geologic Description			Sample		DID/nom\	TI \//nn=\	TOTAL	TPH ()
(10)	1	ille	1 63	ASPHACI	INO.	Depth (ft)	ıype	Kes	riv(ppm)	ILV(ppm)	BTEX(ppm)	(ppm)
	- 1 -	10	50	O-2 SAND, fine to					0			
	-	'		( parse, grey, loose,		:						
	- 5 -			ASPHACI  0-2 SAND, fine to  (oarse, grey, loose,  moist to dry, stight								
	-			odor								
		] ,;	55	Dey SAA towas					26			
	10-	] (		1 ) AA , 511 OC								
	T10-			0201								
			lhac	0-4 SAA, stronger oder 4-6 SAA, net					a 8			
		_										
	15-	_										
			سري ا	6-8 SAA					129			
		1 '	1005	0-4 744								
	-20-	-										
	i	-										
	-25-											
	70	1										
	-30-											
	<b></b>	-							<u> </u>	]		
	L35_								1		1 1	

**NOTES** 

SAMPLE TYPE

bgs — Below Ground Surface  $\,$  D — DRIVE

GS - Ground Surface

TOC — Top of Casing

C - CORE

G - GRAB

NS — Not Sampled SAA - Same As Above

▼ Water level drilled

MONITORING WELL INSTALLATION RECORD
JOB NAME TINDAL 1231C WELL NUMBER 14P-1
JOB NUMBER 731854 INSTALLATION DATE LOCATION BY BX SERV
DATUM ELEVATION GROUND SURFACE ELEVATION
DATUM FOR WATER LEVEL MEASUREMENT
SCREEN DIAMETER & MATERIAL SCH 80 PVC 0.5" DIA SLOT SIZE 0.01"
RISER DIAMETER & MATERIAL SCIT 80 PUC 05"01"BOREHOLE DIAMETER
DRILLING METHOD DRILLING CONTRACTOR DANSING
DRILLING WE THOS DRILLING CONTRACTOR
VENTED CAP LOCKABLE COVER  WELL PROTECTOR STICK UP:
THREADED COUPLING  LENGTH OF SOLID RISER:  TOTAL DEPTH
DEPTH TO TOP OF UPPER GRANULAR BACKFILL  DEPTH TO TOP OF BENTONITE SEAL
DEPTH TO TOP OF LOWER  GRANULAR MATERIAL  SCREEN:  SCREEN SLOT  SIZE:
CAP LENGTH OF BACKFILLED
GROUT BOREHOLE:
BENTONITE BACKFILLED WITH:
GRANULAR BACKFILL (NOT TO SCALE)
STABILIZED WATER LEVEL FEET BELOW DATUM. MEASURED ON  ENGINEERING-SCIENCE, INC.

MONITORING WELL INSTAL	LATION RECORD
JOB NAME TYNDAL REIC	WELL NUMBER MP-2
JOB NUMBER 31854 INSTALLATION DATE	LOCATION BX SCAUICE
	ROUND SURFACE ELEVATION
DATUM FOR WATER LEVEL MEASUREMENT	
SCREEN DIAMETER & MATERIAL SHE 80 PUC	O-5" DIA SLOT SIZE O.01
RISER DIAMETER & MATERIAL SCHOOL OS"	BOREHOLE DIAMETER
GRANULAR BACKFILL MATERIAL SAND DRILLING METHOD DIRECT PUSH	
DIVILLING METHOD	DRILLING CONTRACTOR
VENTED CAP — LOCK	ABLE COVER
WELL PROTECTOR — \	•
GROUND SURFACE 7	STICK UP:
	NANA I
THREADED COUPLING	
	LENGTH_QF ,SOLID
	RISER: 3 20LID
	TOTAL DEPTH
SOLID RISER	OF MONITORING
DEPTH TO TOP OF UPPER ———————————————————————————————————	WELL: 9.d
DEPTH TO TOP OF  BENTONITE SEAL	
DEDTIL TO TOP OF LOWER	LENGTH OF / /
GRANULAR MATERIAL	SCREEN:6_
· /   = 1 / .	SCREEN SLOT SIZE: 0.01
	SIZL.
	LENGTH OF BACKFILLED
	BOREHOLE:
BENTONITE Library 1	BACKFILLED WITH:
GRANULAR BACKFILL (NOT TO SCALE)	
E. S. S. S. S. S. S. S. S. S. S. S. S. S.	
	MONITORING WELL
STABILIZED WATER LEVEL FEET	INSTALLATION RECORD
BELOW DATUM.	
MEASURED ON	
	ENGINEERING-SCIENCE, INC.
94DN0199, 03/01/94 at 10:22	

### MONITORING WELL DEVELOPMENT RECORD

Job Number: 730308.03000	Job Name: AFCEE-RNA						
Location PNM - Person Gen. Station	by Reg. Brammer Date: 3-27-91 Measurement Datum To C						
Well Identification Bx mp/	Measurement Datum To C						
Pre-Development Information	Time (Start): 1745						
Water Level: 4.37	Total Depth of Well: 8.4						
Water Characteristics							
Color Biown	Clear Cloudy						
Odor: None Weak	Moderate Strong						
Any Films or Immiscible Material	Lone						
pH 6 • 76 Temper	ature (°C) 18.0						
Specific Conductance (µS/cm)	281						
Dissolved Oxygen (mg/L) 0.4	3						
Redox (mV) $-2^2$ $\cancel{Y}$ .							
Interim Water Characteristics							
Gallons Removed 2							
( ) 1							
pH 6.76							
Temperature (°C)							
Specific Conductance(µS/cm) . 276							
Dissolved Oxygen (mg/L) 0 - 14							
Redox (mV)							
Post-Development Information	Time (Finish):						
Water Level: 4,2	Total Depth of Well: 8.4						
Approximate Volume Removed: 24.	5						
Water Characteristics							
Color	Clear Cloudy						
Odor: None (Weak)	Moderate Strong						
	none						
pH 6-76	Temperature (°C)						
Specific Conductance (μS/cm)							
Dissolved Oxygen (mg/L) 0.16							
Redox (mV) -297-3							
Comments:	<del></del>						

l:\forms\develop.doc

### MONITORING WELL DEVELOPMENT RECORD

Job Number: <u>730308.03000</u>	Job Name: AFCEE-RNA
Location PNM - Person Gen. Station	by fry freeze Date: 3-22-58  Measurement Datum 700
Well Identification Bx-MP2	Measurement Datum 10 t
Pre-Development Information	Time (Start): 0400
Water Level: 465	Total Depth of Well: 8.7
Water Characteristics	
Color Beaun	Clear Cloudy
Color Brown Odor: (None Weak	Moderate Strong
Any Films or Immiscible Material	
	ature (°C) 19.4
Specific Conductance (µS/cm)	. 260
Dissolved Oxygen (mg/L) 0.4  Redox (mV) 771.3	53
Redox (mV) - 171.3	
Interim Water Characteristics	
•	
Gallons Removed ~ 2	
A 36	
pH 622	
Temperature (°C) 20.2	
Specific Conductance(µS/cm)	238
Dissolved Oxygen (mg/L) O · 2 4	
Redox (mV) $-2/7/$	
Post-Development Information	Time (Finish): 0770
Water Level: 4.7	Total Depth of Well:y' . 7
Approximate Volume Removed: $\frac{\sim 5}{}$	·
Water Characteristics	_
Color_ celleu	Clear (Cloudy)
Odor: None Weak	Moderate Strong
Any Films or Immiscible Material	
	Temperature (°C) 20.3
	236
Dissolved Oxygen (mg/L) 0.2	· · · · · · · · · · · · · · · · · · ·
Redox (mV) $\sim 2/\gamma \cdot \rho$	
Comments:	

l:\forms\develop.doc

# GROUNDWATER SAMPLING RECORD

Sampling Location Bx mp/
Sampling Dates 3-27-9.8

GROUND W	ATER SAMPLING RECORD - MONITORING WELL 6x MP1	
0100112 11		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-49 , 1998 1830 a.m. (p.m.)  OLLECTED BY: 403 of Parsons ES	
SAMPLE CO	OLLECTED BY: 103 of Parsons ES	
WEATHER:	Cler ~ 65°F	MACTAL
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): Toc TOP OF	CASSNG
MONITORE	NG WELL CONDITION:	
MONTOIG	[] LOCKED: [] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS: OF	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM(IS - IS NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	4/	•
1 [/3]	EQUIPMENT CLEANED BEFORE USE WITH A conox, DL, I SO, D	12
7 -	EQUIPMENT CLEANED BEFORE USE WITH Alconor, DE J SO, D Items Cleaned (List): all insturtion of probes	
0.1.1	PRODUCT DEPTH	FT. BELOW DATUM
2 [/]	PRODUCT DEPTH Measured with:	PT. DELOW DATOW
,	Measured with.	
	WATER DEPTH 4-37	FT. BELOW DATUM
	Measured with: 5/ope water level inducator	1. 5220 51110
	Wicasulou Willi.	
3 [ _y ]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
- <b>y</b> ,	Appearance: Very cloudy brown	
•	Odor: nong	
	Other Comments:	
4 [ ]	WELL EVACUATION:	
r	Method:	
	Volume Removed: 4.5 ga /	
	Observations: Water (slightly - very) cloudy clay	
	Water level (rose - fell - no change)	
	Water odors: weak	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. Bk nel (Cont'd)

5[]	] SAMPLE EXTRACTION METHOD:							
	[] Bailer made of: [A] Pump, type: _parastaltiC [] Other, describe:							
		Sample	obtained i	s [X] G	RAB; [ ]	COMPO	SITE SA	MPLE
6[]	ON-SITE M	IEASURE	EMENTS:			•		
~ [ ]					RUMENT	READIN	GS	
	Time							Measured With
	Temp (°C)	18.0	18.1	18.1	18-1	18-1		457 55
	pН	6.76	6.76	6.76	6-76	6-76		Ocion 250A
	Cond (µS/cm)	,281	.277	.276	,273	,273		Hach
	Do (mg/L)		0.11	0.14	0.15			YST 55
	Redox (mv)	-228.4	-293.2	-2631	-271.5	-277.3		Oxion 250A
	gallons purged		/	2	3	4		
			FI	ELD CHE	MISTRY	RESULTS	3	
:	Analyte		Dilution	?	Con	centration		Observations/Notes
	(1) Sulfate							
	(2) Sulfide							
	(3) Nitrate							
	(4) Nitrite							
	(5) Manganese							
	(6) Ferrous Iron							
	(7) Total Iron							
	(8) Alkalinity							
	(9) Carbon Dioxide							
	(10) Chloride							
								***
	Additional Commen	ts:						
7 J.J	SAMPLE (	CONTAIN	IERS (ma	terial, nun	nber, size)	:6-40m	1 glass	vials, Fliter poly
8 [×]	8 [x'] ON-SITE SAMPLE TREATMENT:							
	ľ.)	Telephone Method Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers: C						
	ſλ	Preserv	atives add	ed: HCL	BTEX - B	7 <i>8E</i> 1		ners: 40 ml vials
9[]								
10 [	OTHER COMMENTS:							

# GROUNDWATER SAMPLING RECORD

Sampling Location BX mp3
Sampling Dates 3-22-98

GROUND W	VATER SAMPLING RECORD - MONITORING WELL $\beta x m \beta 3$	
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-91, 1998 a.m./p.m.	
SAMPLE CO	OLLECTED BY: of Parsons ES	
WEATHER:		
DATUM FC	OR WATER DEPTH MEASUREMENT (Describe): 6 64 nd 34 r face	
MONITORI	NG WELL CONDITION:	
	[ ] LOCKED: (*) UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: 0 /-	
	WATER DEPTH MEASUREMENT DATUM (IS (IS NOP) APPARENT	
	[ ] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	10
	[X] MONITORING WELL REQUIRED REPAIR (describe): 4, 6, a	Dankrael
Charle off		
Check-off	EQUIDMENT OF EANED REPORT USE WITH Algarian D.T. TSO.	<i>b 7</i>
1 [[x]	EQUIPMENT CLEANED BEFORE USE WITH alconox DI TSO I Items Cleaned (List): a.// insturtment probes	
	Tions Crounce (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. C. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (2001). M. Marie (	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 4.6/ Measured with: 5/ope water level in disolar	FT. BELOW DATUM
	Measured with: Slane water level in the day	
	With the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
• ( )	Appearance: Brown 4 - Black	
	Odor: none	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method: punf	
	Volume Removed: ~ 3ga/	
	Observations: Water (slightly -very) cloudy Brown Water level (rose - fell (no change)	
	Water odors:	
	Other comments:	
	One comments.	

Groundwater Sampling Record

Monitoring Well No. <u>Bx np3</u> (Cont'd)

5[]	SAMPLE EXTRACTION METHOD:								
	[] Bailer made of: [7] Pump, type:garostaltic [] Other, describe:								
	Sample obtained is [X] GRAB; [ ] COMPOSITE SAMPLE								
6[]	ON-SITE N	ÆASURE	EMENTS:						
• •			DIRE	CT INS	TRUMENT	READIN	GS		
Γ	Time	18:5					Measured With	1	
	Temp (°C)	18.2	18.3	18.2					
_	pH	6.06	6.05						
<u> </u>	Cond (µS/cm)	0.62		0.52					
	Do (mg/L)	0.66	0.49					-	
	Redox (mv)	7102 5	-26-9	-141 1					
	gallons purged	102-1	2	3	-				
L	ganous purgeu	<u> </u>			EMISTRY	DECIII TO			
. г	Analyte	<del></del>	Dilution'			entration	Observations/Note		
-			Ditution		Conc	ZIIII AUUII	Coscivations i vot		
	(1) Sulfate					·			
_	(2) Sulfide								
	(3) Nitrate (4) Nitrite					· <del>-</del>			
-	<u> </u>								
	(5) Manganese		<del></del>						
-	(6) Ferrous Iron								
<b>,</b>	(7) Total Iron								
	(8) Alkalinity				<del></del>				
	(9) Carbon Dioxide								
<u> </u>	(10) Chloride								
L						<u> </u>			
L		<u> </u>	·						
A	Additional Commen	ts:							
		•							
7[]	SAMPLE (	CONTAIN	ERS (mat	erial, nu	mber, size):	3-40	m1 gloss vials		
		*					*		
8[]	ON-SITE S	AMPLE 1	TREATM	ENT:					
	[]	Filtratio	n:	Method			Containers:	······································	
	[K]	Preserva	atives add	ed: HCL Method	BTEX-M	18É	Containers: Youl vials		
9[]	CONTAIN	[] C	Container S Container I	Lids Tap					
10[]	OTHER CO	OMMENT	`S:		J			·····	

## GROUNDWATER SAMPLING RECORD

Sampling Location Bx mw-63-97
Sampling Dates 3-22-97

GROUND W	ATER SAMPLING RECORD - MONITORING WELL $D^{\chi}$ $M\omega_{-0}$ $J^{-1}$	1 /
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-9/ 1998 /63/ (2010)	
SAMPLE CO	OLLECTED BY: of Parsons ES  Sunny ~ 62° F SI Breeze	
WEATHER:	Sunny 262°F SI Breeze	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): Toc Top	of 865,29
	,	
) (O) WEODI	ALC MENT CONTRETION.	
MONITORE	NG WELL CONDITION:      LOCKED:     UNLOCKED	
	[ ] LOCKED: [/] UNLOCKED WELL NUMBER (IS IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 0 /<	
	INNER PVC CASING CONDITION IS: 0 /2	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	[ ] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[ ] MONITORING WELL REQUIRED REPAIR (describe):	
C1 1 M		
Check-off	TOWN ON THE STATE OF THE PERSON WHEN IN THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE	nT
1 [4]	EQUIPMENT CLEANED BEFORE USE WITH a conex, DI, ISU,	<i>V</i> 1
	Items Cleaned (List):	
2 [/]	PRODUCT DEPTH Pront	FT. BELOW DATUM
<b>y</b> 1	Measured with:	
	WATER DEPTH	FT. BELOW DATUM
	Measured with:	
2 1   4	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
3 [h]	Appearance: <u>C/qu</u>	
	Appearance/Yu /	
	Odor: None	
	Other Comments:	
4[]	WELL EVACUATION:	
11	Method: Pula P	
	Volume Removed: ~ 7511	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell -no change)	
	Water ever (lose - left - lib change)	
	Other comments:	
	Offici Comments.	

# **Groundwater Sampling Record**

Monitoring Well No. Bx nw-03-97(Cont'd)

5[]	SAMPLE EXTRACTION METHOD:							
		[] Bailer made of:						
		Sample	obtained i	s [X] G	RAB; [ ]	COMPO	OSITE SA	MPLE
6[]	ON-SITE MEASUREMENTS: DIRECT INSTRUMENT READINGS							
í	Time						T T	Measured With
	Temp (°C)	18.8	19.3	19.3	19.2	19.2	19.1	YSI 55
	pH	6.76	6.77	677	6.77	6-11	6.71	orion 250A
	Cond (µS/cm)	. 213	.212		.201	.195	,188	Hach
	Do (mg/L)	2 ./7	1.31	1.01	0.91	0.79	0.64	45155
	Redox (mv)	15.5	4-8	6.2	-17.3	-35	1-72	Orion 250A
	gallons purged	,,,,,	7	2	1	4	7	
,	Serrom bengen	1	FI	ELD CHE	MISTRY	RESULT	S	
	Analyte		Dilution'	?	Con	centration	1	Observations/Notes
	(1) Sulfate							
	(2) Sulfide							
	(3) Nitrate							
	(4) Nitrite							
	(5) Manganese							
	(6) Ferrous Iron	1						
	(7) Total Iron							
	(8) Alkalinity							
	(9) Carbon Dioxide	;						
	(10) Chloride							
		ŀ						
	Additional Commen	its:						
			<u>-</u>					
7 [X]	7 [X] SAMPLE CONTAINERS (material, number, size): 4-11; ter glass, 3-40mlglass, 1-500mlglass, 1-1, ter poly							
8 [)]								
•	[] Filtration: Method Containers:    Method   Containers:							
	g i m	D	_41 _ 94	Method_		テン デ	_ Contair	ners:
	[X]	Preserv	atives add	ed: HLC  Method_	Tiph + B	olex4 m/k	Contair	ners: 40ml vin 5
9 [7]	CONTAIN	[X] C	OLING: Container ( Container )	Lids Tape	d	t		
10 [	OTHER COMMENTS:							

## GROUNDWATER SAMPLING RECORD

Sampling Location 6x MW-27
Sampling Dates 3-22-98

GROUND W	ATER SAMPLING RECORD - MONITORING WELL <b>DXmw -07</b>	
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-95 , 1998 (530 a.m. 10,00).	
SAMPLE CO	OLLECTED BY: 1003 of Parsons ES	
WEATHER:	Sun 267 F SI Breeze	
DATIM FO	TIME OF SAMPLING: 3-22-95 , 1998 1530 a.m. fo. pr.  OLLECTED BY: \$03 of Parsons ES  Samply ~ 620 F SI Brecze  OR WATER DEPTH MEASUREMENT (Describe): 100 of	Casina
Dillomic	( )	7
MONITORI	NG WELL CONDITION:	
	[ ] LOCKED: [x] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 0 K	
	INNER PVC CASING CONDITION IS: 0 +	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
		'
Check-off		
1 [( ]	FOURMENT CLEANED BEFORE USE WITH a Conox. OI, Iso. D	)Į
1 [()	EQUIPMENT CLEANED BEFORE USE WITH a conox OI, Iso, D Items Cleaned (List): a // in stantment probe?	
2[]	PRODUCT DEPTHnanc	FT. BELOW DATUM
	Measured with:	
	2.61/	
	WATER DEPTH 3-14	FT. BELOW DATUM
	WATER DEPTH 3-94  Measured with: 5/6 pe water level jadica	6/
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
2[]	Appearance: Brown	
	Odor: Nonl	
	Other Comments:	
	Omer Comments.	
4[]	WELL EVACUATION:	
7[]	Method: My 14 9	
	Volume Removed: 2 / Ast	
	Observations: Water (slightly very) eloudy rellow	· · · · · · · · · · · · · · · · · · ·
	Water level (rose - fell (no change)	
	Water odors: hone	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. <u>Bx mw-07</u> (Cont'd)

[ ] Bailer made of:	5[]	SAMPLE E	EXTRACTION N	METHOD:					
ON-SITE MEASUREMENTS:   DIRECT INSTRUMENT READINGS		[x] Pump, type: Parastaltic							
Time			Sample obtain	ed is [X]	RAB; []	COMPO	SITE SAMPLE		
Time	6[]	ON-SITE N				•			
Temp (°C)	ſ		D	IRECT INST	RUMENT	READIN			
Decompy			207 20	1 107	1207	207			
Cond (µS/cm)	1								
Do (mg/L)							It ach		
Redox (mv)									
SAMPLE CONTAINERS (material, number, size): C- YOml gloss was 1-11, for flow method Containers:   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals   Yom vals									
FIELD CHEMISTRY RESULTS			1						
(1) Sulfate (2) Sulfide (3) Nitrate (4) Nitrite (5) Manganese (6) Ferrous Iron (7) Total Iron (8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:  [1] SAMPLE CONTAINERS (material, number, size): C-YOm1 gloss vials, 1-11,4c1 fglose  8[1] ON-SITE SAMPLE TREATMENT: [2] Filtration: Method Containers: [3] Method Containers: [4] Preservatives added: Hell Beth Antoe Containers: [5] Method Containers: [6] Preservatives added: Hell Beth Antoe Containers: [7] CONTAINER HANDLING: [8] Container Sides Labeled [9] CONTAINER HANDLING:		B		FIELD CH			3		
Containers:		Analyte	Dilu	ion?	Con	centration	Observations/Notes		
3) Nitrate   (4) Nitrite   (5) Manganese   (6) Ferrous Iron   (7) Total Iron   (8) Alkalinity   (9) Carbon Dioxide   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Chloride   (10) Ch		(1) Sulfate							
(4) Nitrite (5) Manganese (6) Ferrous Iron (7) Total Iron (8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:    SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11,411 fly  8 [ ] ON-SITE SAMPLE TREATMENT:  [ ] Filtration: Method Containers:		(2) Sulfide							
(5) Manganese (6) Ferrous Iron (7) Total Iron (8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:  SAMPLE CONTAINERS (material, number, size): C-40ml glass wals, 1-11, 4cl felge  8 [ ] ON-SITE SAMPLE TREATMENT:  [ ] Filtration: Method Containers:  [ Method Containers:  [ Method Containers:  [ Method Method Containers:  [ Method Containers:  [ Method Method Containers:  [ Method Method Containers:  [ Method Method Containers:  [ Method Method Containers:  [ Method Method Containers:  [ Method Method Containers:  [ Method Method Method Containers:  [ Method Method Method Containers:  [ Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Me									
(6) Ferrous Iron (7) Total Iron (8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:  SAMPLE CONTAINERS (material, number, size): C-40ml glass wals, 1-11, tel felg  8 [] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  W Preservatives added: Hot Beth - In the Containers:  Whethod Total - In the Containers:  Your vials  9 [] CONTAINER HANDLING:  [X] Container Sides Labeled [] Container Placed in Ice Chest									
(7) Total Iron (8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:  SAMPLE CONTAINERS (material, number, size): C-40ml glass wals, 1-11,+11 fely  8 [ ] ON-SITE SAMPLE TREATMENT:  [ ] Filtration: Method Containers:  Method Containers:  Method Containers:  [ ] Preservatives added: Het Bety-Antoe Containers:  Method Method Containers:  [ ] ON-SITE SAMPLE TREATMENT:  [ ] Filtration: Method Containers:  [ ] ON-SITE SAMPLE TREATMENT:  [ ] Filtration: Method Containers:  [ ] ON-SITE SAMPLE TREATMENT:  [ ] Containers Detainers:  [ ] Containers Detainer Sides Labeled  [ ] Container Lids Taped  [ ] Containers Placed in Ice Chest									
(8) Alkalinity (9) Carbon Dioxide (10) Chloride  Additional Comments:  SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11,4ct felge  8[] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  [K] Preservatives added: Hot Beta-Mathe Containers:  Method mtthase Containers:  Youl vials  9[] CONTAINER HANDLING:  [Y] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest									
(9) Carbon Dioxide (10) Chloride  Additional Comments:  SAMPLE CONTAINERS (material, number, size): C-40ml gloss vials, 1-11,411 fgly  8[] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  [K] Preservatives added: Hcl Beta-Marbe Method m(4+666 Containers:  [K] Preservatives added: Hcl Beta-Marbe Containers:  [X] Container Sides Labeled  [] Container Lids Taped  [] Container Placed in Ice Chest									
Additional Comments:    SAMPLE CONTAINERS (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, number, size): C-40ml glass wals, 1-11, ter folgons   Sample Containers (material, n					<del></del>				
Additional Comments:    SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11, tel folgonial formula for the folgonial formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula formula			5						
SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11,41 fly  8[] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  [] Preservatives added: Hcl Bets-Atbe Containers:  Method Containers:  9[] CONTAINER HANDLING:  [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest		(10) Chioride							
SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11,41 fly  8[] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  [] Preservatives added: Hcl Bets-Atbe Containers:  Method Containers:  9[] CONTAINER HANDLING:  [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest									
SAMPLE CONTAINERS (material, number, size): C-40ml glass vials, 1-11,41 fly  8[] ON-SITE SAMPLE TREATMENT:  [] Filtration: Method Containers:  Method Containers:  [] Preservatives added: Hcl Bets-Atbe Containers:  Method Containers:  9[] CONTAINER HANDLING:  [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest		Additional Commer	nts:						
ON-SITE SAMPLE TREATMENT:    Filtration: Method Containers:   Method Containers:   Method   Containers:   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Met									
ON-SITE SAMPLE TREATMENT:    Filtration: Method Containers:   Method Containers:   Method   Containers:   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Method   Met									
[] Filtration: Method Containers: Method Containers: Method Containers: Whethod Method Method Method Method Method Method Containers: You what will be a container Sides Labeled [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest	7[]	SAMPLE (	CONTAINERS	(material, nu	mber, size	: <u>6-40,</u>	miglass wals, 1-x1, ter Poly		
Method Containers:    Preservatives added:	8[]	ON-SITE	SAMPLE TREA	TMENT:	<del></del>				
Preservatives added: HCL Bets-Mtbe Containers: You Vials  9[] CONTAINER HANDLING:  [V] Container Sides Labeled  [] Container Lids Taped  [V] Containers Placed in Ice Chest		[1	Method Containers:						
9 [ ] CONTAINER HANDLING:  [ Y] Container Sides Labeled  [ ] Container Lids Taped  [ ] Containers Placed in Ice Chest		<b>[</b> /3]	Preservatives	added: //c/ Method	Betz-M	the	Containers: Yom/ vials		
10 [ ] OTHER COMMENTS:	9[]	9 [ ] CONTAINER HANDLING:  [ \( \) Container Sides Labeled  [ ] Container Lids Taped							
	10 [	) OTHER C	OTHER COMMENTS:						

#### **GROUNDWATER SAMPLING RECORD**

Sampling Location BX MW-08-97
Sampling Dates 3-22-99

GROUND W	ATER SAMPLING RECORD - MONITORING WELL $\beta x mw$	18-97
GROOME !!		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-4/ 1998 1430 a.m. p.m.  DILLECTED BY: 20 of Parsons ES	
SAMPLE CO	of Parsons ES	
TITE A COUNTY.	. 158 51 Benefit	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): TOE Top of e.	15,45
MONITORI	NG WELL CONDITION:	
	[ ] LOCKED: [X] UNLOCKED	
	WELL NUMBER (IS - 15 NOT) APPARENT	
	STEEL CASING CONDITION IS: 0/-	
	INNER PVC CASING CONDITION IS: OF	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	[ ] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[ ] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		
1 [/]	EQUIPMENT CLEANED REFORE USE WITH A Manux. DI JSV OI	
1 [F]	EQUIPMENT CLEANED BEFORE USE WITH A Mano x, D.J. J.Sv., D.J.  Items Cleaned (List): a// instant proves	
		TT DELOW DATEN
2[]	PRODUCT DEPTH	_ri. below datom
	Measured with:	<del></del>
	WATER DEPTH 3.97	FT. BELOW DATUM
	WATER DEPTH 3.97  Measured with: Slope water level indicator	
3 [ ]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
	Appearance: Yellow	
	Odor: nont	
	Other Comments:	
4[]	WELL EVACUATION:	
. ( )	Method: Pum	
	Volume Removed: ~ Y	
	Observations: Water (slightly - very) eloudy Tellow	
	Water level (rose - fell no change)	
	Water odors: none	
	Other comments:	

#### **Groundwater Sampling Record**

Monitoring Well No. 6x nw-03-97 (Cont'd)

5[]	SAMPLE E	XTRACT	ION ME	THOD:					
	[] Bailer made of: [] Pump, type: farus fultic [] Other, describe:								
	Sample obtained is [X] GRAB; [ ] COMPOSITE SAMPLE								
6[]	ON-SITE N	ÆASURE				DDEADD	TCC		
	Time	1	DIK	I INSI	RUMEN	readin	l l	Measured With	
	Temp (°C)	20.1	204	20.3	20.4	20.3		45155	
	pH	6.83	6.83	683	6.43	6.83			
	Cond (µS/cm)	.177	1774	.169	164	164		Orion 250A Hack YSI 55	
	Do (mg/L)	1.0	0.40	0.35	0.32	0.32		YST 55	
	Redox (mv)	6.19	13.5	17.9	16.6	17-0		Orion 250A	
	gallons purged		1	12	3	4			
					EMISTRY	RESULT	S		
	Analyte		Dilution	?	Cor	centration		Observations/Notes	
	(1) Sulfate								
	(2) Sulfide								
	(3) Nitrate								
	(4) Nitrite								
	(5) Manganese								
	(6) Ferrous Iron								
	(7) Total Iron							***************************************	
	(8) Alkalinity (9) Carbon Dioxide				-,				
	(10) Chloride	<u> </u>							
	(10) Chloride								
						<del></del>			
	Additional Commen	ts:			· · · · · · · · · · · · · · · · · · ·				
7 [Ý]	SAMPLE (	CONTAIN	ERS (ma	terial, nur	nber, size	): <u>6-40</u> ,	m/ g/ass	wials, 1-16, ter poly	
8 [/]	8 [\(\frac{1}{2}\)] ON-SITE SAMPLE TREATMENT:								
,		-							
	[]	Filtratio	n:	Method_	<del></del>		Contain	ners:	
	<b>K</b> ]	Dreserv	atives add	Method_	155. 43	ro :-		ners:	
	k, l	I ICSCIV	auves auu	Method_	methane	TBE	Contain	ners: 40 ml winks	
9[]		[X] C	Container Container Containers	Sides Lab Lids Tape Placed in	d Ice Ches				
10 [	) OTHER CO	OMMENT	`S:	<u></u>		<del></del>			

#### GROUNDWATER SAMPLING RECORD

Sampling Location By mw-03
Sampling Dates 3-22-49

GROUND W	VATER SAMPLING RECORD - MONITORING WELL $\beta \lambda - m \omega - o \beta$	
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-98, 1998 1315 a.m. (p.m.)	
SAMPLE CO	OLLECTED BY: (4) of <u>Parsons ES</u> : Sacry ~ 60' F Brecke ~ 3 mph N  OR WATER DEPTH MEASUREMENT (Describe): <u>TOC</u> <u>Top of case</u>	
WEATHER:	: Surry 260'r Breeze 23mph N	
DATUM FO	OR WATER DEPTH MEASUREMENT (Describe): TOC TOP OF Case	149
MONITORI	NG WELL CONDITION:	
	[ ] LOCKED: [x] UNLOCKED	
	WELL NUMBER (IS (IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 6 K	
	INNER PVC CASING CONDITION IS: OK	
	WATER DEPTH MEASUREMENT DATUM([]S - IS NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
	[ ] MOMIONING WELL ILL CONCLOSING (COSCIOC).	
		· · · · · · · · · · · · · · · · · · ·
Check-off		
1 [0]	EOUIPMENT CLEANED BEFORE USE WITH A leinex OT TSU O	Ī
- 1.1	Items Cleaned (List): a 1/2 returned propes	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 4.37	FT BELOW DATUM
	WATER DEPTH 4.37  Measured with: 5/6pe water leve indicator	11. DLLC W D111 0W
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
3 [ ]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
	Appearance: Yellow Odor: Hy fr: carbon	
	Odor: Hafre carbon	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method: Jung	
	Volume Removed: 2456/	
	Observations: Water (slightly - very) slendy yellow	
	Water level (rose - fell - no change)	
	Water odors: Hydre carbons	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. 5x / hw-03 (Cont'd)

5[] S	SAMPLE EXTRACTION METHOD:									
	[ ] Bailer made of: [**] Pump, type: \( \int_{a \sqrt{a}} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b} \tau_{b}									
	Sample obtained is [X] GRAB; [ ] COMPOSITE SAMPLE									
6 [ ] ON-SITE MEASUREMENTS:										
			DIRE	CT INST	RUMENT	READIN	GS			
Time	49	<del>.e</del>						Measured With		
Temp (°C			19.0	18.9	18.7			45Ī 55		
pН			.50	6.50				0110n 250A		
Cond (µS	/cm) , 2	44	240	,239				1-lach		
Do (mg/I		09 0.	.36	0.31	0,25			YSI 55		
Redox (n			.98	10.05				Orian 250A		
gallons p			,	2	3					
			FI	ELD CHE	MISTRY	RESULTS				
Analyte		D	ilution'			centration		Observations/Notes		
(1) Sulfat	e									
(2) Sulfic										
(3) Nitrat				The second second						
(4) Nitrit						<del> </del>		-		
(5) Mang										
(6) Ferro										
(7) Total										
(8) Alkal										
	n Dioxide									
(10) Chlo										
Additiona	Comments:									
						<i>r</i> .		1		
7[] S	AMPLE CON	TAINE	&S (mat	erial, nun	nber, size)	6-40 m	19/075.	ials , 4-11.ter glass,		
		-117 x	puly,	1-500	ml poly	<del></del>		,		
8[] C	N-SITE SAM	PLE TR	EATM	ENT:	······································	-				
	_	_								
[	[ ] Filtration: Method Containers:									
-				Method_			Contain	ers:		
į	] Pr	eservativ	ves adde	ed: HCL B Method_	TEX-MIB methane	Ē	Contain	ers: Yuml V.al		
Method Methane Containers: Yuml Vial						goo mi poly				
9[] C	CONTAINER I									
	ĺχ	•		Sides Labe						
	[			Lids Tape						
	ſγ	j Con	MALLICIS	riaccu in	Ice Chest					
10 [ ] C	THER COM	ÆNTS:		<del></del>						

#### GROUNDWATER SAMPLING RECORD

m5/m50

Sampling Location Bx mw-o1
Sampling Dates 3-22-49

GROUND W	ATER SAMPLING RECORD - MONITORING WELL 13 x Mw-o	
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-98 , 1998 //30 a.m./p.m.	
SAMPLE CO	TIME OF SAMPLING: 3-3.2-98, 1998 //30 a.m. p.m.  OLLECTED BY: 1998 //30 a.m. p.m.	
WEATHER:	Warm ~ 65°F S/Breeze	
DATUM FO	WAY M ~ 65° F 5/Breeze  R WATER DEPTH MEASUREMENT (Describe): Toc Top	OF Edsing
MONITORI	NG WELL CONDITION:	
	[ ] LOCKED: [/] UNLOCKED	
	WELL NUMBER (IS -(IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 0 K	
	INNER PVC CASING CONDITION IS: OF	
	WATER DEPTH MEASUREMENT DATUM ((S)- IS NOT) APPARENT	
	[ ] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		
1 [2]	EQUIPMENT CLEANED BEFORE USE WITH A GOOD OF 150, 0.	I
	Items Cleaned (List): a// instituted preses	
2[]	PRODUCT DEPTH NON C	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 4.97	FT BELOW DATUM
	WATER DEPTH 4.97  Measured with: 5/0ge water lovel indicate	<u> </u>
	They control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
	Appearance: $\frac{Y_{\rm c}}{I_{\rm c}}$	
	Odor: None	
	Other Comments:	
	Outer Comments.	
4[]	WELL EVACUATION:	
, r 1	Method: fung	
	Volume Removed: V	
	Observations: Water (slightly very) cleanly Yollow	*** · · · · · · · · · · · · · · · · · ·
	Water level (rose - fell - no change)	
	Water odors: None	
	Other comments:	
	Omer comments.	

Groundwater Sampling Record

Monitoring Well No. Bx ny-ol (Cont'd)

5[]	SAMPLE E	XTRACT	TON MET	THOD:				
	[ ] Bailer made of:							
		Sample	obtained i	s [X] (	GRAB; [ ] CO	MPOSITE S	SAMPLE	
	ON CUTE A	ATT A CLITTLE	er aerite.					
6[]	ON-SITE N	IEASUKI	DIRF	CT INS	TRUMENT REA	DINGS		
1	Time	1	Dhu	1			Measured With	
		14.8	19 6	19.¥	17.4		451 35	
	Temp (°C)	6.63	6.59		6.59		Orion 25DA	
	Cond (µS/cm)	. 144	. 143	, 144	. 149		Hach	
	Do (mg/L)	2.30	1.73	1-59	1-20		Hach 45I 55	
	Redox (mv)	86.6	71.7	64.1	22.2		Orion 250A	
	gallons purged	00.0	11	)	4			
	ganons purgou		FI FI		EMISTRY RESU	ULTS		
•	Analyte		Dilution		Concentra		Observations/Notes	
	(1) Sulfate							
	(2) Sulfide							
	(3) Nitrate							
	(4) Nitrite							
	(5) Manganese							
	(6) Ferrous Iron							
	(7) Total Iron							
	(8) Alkalinity							
	(9) Carbon Dioxide	e						
	(10) Chloride							
	Additional Commer	nts:						
7[]	SAMPLE	CONTAI	NERS (ma	nterial, n	umber, size): <u>6-</u>	40 ml gla	55 vials, 1-1liter Poly	
8[]	ON-SITE	SAMPLE	TREATM	ÆNT:				
	[]	Filtrati	on:	Method	l	Con	tainers:	
	l J	THUAU	OII.				tainers:	
	[x]	Preserv	vatives ad		Bety-MIbe Mathane		stainers: 40 ml vial	
9 [ ] 10 [			Container Container Container	Lids Tags S Placed				
	•							

#### **GROUNDWATER SAMPLING RECORD**

Sampling Location BX M4'05
Sampling Dates 3-71-95

GROUND W	ATER SAMPLING RECORD - MONITORING WELL Bx mwo5	
		(number)
DATE AND SAMPLE CO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 3 - 22 - 4 y , 1998 68 45 (a.m./p.m. OLLECTED BY: of Parsons ES  Face ~ 50 - Polithy S/ prece  R WATER DEPTH MEASUREMENT (Describe): Toc Top of Cas	1.5
MONITORI	NG WELL CONDITION:	
MONTOKI	[] LOCKED: [r] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: 6/L	
	WATER DEPTH MEASUREMENT DATUM (4'S - IS NOT) APPARENT  [ ] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[ ] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIDMENT OF EARIED DECODE LICE WITH (4 OF EC. OF	
1[]	Items Cleaned (List): a// institute of Temporal	
2[]	PRODUCT DEPTH none	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 4.16	FT. BELOW DATUM
	WATER DEPTH 4.16  Measured with: Slye water level inflicator	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
. ,	Appearance: Yellow	
	Odor: ity fro carken	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method: Branf	<b>*</b>
	Volume Removed: 25 gg/	
	Observations: Water (slightly - very) cloudy Water level (rose - fell (no change)	
	Water odors: Hydrocar ban	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. <u>Bx mwo5</u> (Cont'd)

5[]	SAMPLE E	SAMPLE EXTRACTION METHOD:								
		[] Bailer made of: [>] Pump, type: farastriffice [] Other, describe:								
	Sample obtained is [X] GRAB; [ ] COMPOSITE SAMPLE									
<i>(</i>	ON-SITE M	AE A CITOT	-STINENES							
6[]	ON-511E W	LASUK			RUMENT	READIN	1GS			
[	Time		T					Measured With		
	Temp (°C)	19.3	206	20.7	20.7	20.8	20.8	45 L 55		
	pH	6.87	6.91	6.74		6.49		Urion 1502 Hach 75I 55		
	Cond (µS/cm)		.650	199	.703	.696		Hach		
	Do (mg/L)		0.46	0.30	0.21		0.21	75I 55		
	Redox (mv)		-140.9	-155.3	-165.9	-176.5	-179.3	orion 250A		
	gallons purged		1	2	3	¥	3			
			FI	ELD CHE	EMISTRY	RESULT	S			
•	Analyte		Dilution	?	Con	centration	l	Observations/Notes		
	(1) Sulfate									
	(2) Sulfide									
	(3) Nitrate									
	(4) Nitrite									
	(5) Manganese									
	(6) Ferrous Iron									
	(7) Total Iron									
	(8) Alkalinity									
	(9) Carbon Dioxide	;								
	(10) Chloride 4									
	Additional Commen	ıts:								
						_		1 01		
7 } ]	SAMPLE (	CONTAIN	VERS (ma	terial, nu	mber, size	): <u>6-40m</u>	glass via	lo, 1-11:tor Poly		
8 [/]	ON-SITE S	SAMPLE	TREATM	ENT:						
7.										
	[]	Filtratio	on:	Method_			_ Contain	iers:		
				Method_			_ Contain	ners:		
	<b>(</b> )	Preserv	atives add	led://cl/ Method_	BTEX-MT Methane		_ Contain	ners: 40 ml via 15		
9,[ ]										
10 [	] OTHER CO	OMMEN	rs:				· · · · · · · · · · · · · · · · · · ·			

#### **GROUNDWATER SAMPLING RECORD**

M5/M50

Sampling Location BX Mw-05-97Sampling Dates 3-22-9Y

GROUND W	ATER SAMPLING RECORD - MONITORING WELL	.5
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-90 , 1998 (a.m./p.m.	
SAMPLE CO	TIME OF SAMPLING: 3-22-90, 1998 a.m./p.m.  OLLECTED BY: (1977) of Parsons ES	
WEATHER:	R WATER DEPTH MEASUREMENT (Describe): 100 top of	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): 100 tap of	Casing
	,	
MONITORI	NG WELL CONDITION:	
MONTOR	[] LOCKED: [A] UNLOCKED	
	WELL NUMBER (IS) - IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 0 &	
	INNER PVC CASING CONDITION IS: OF	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		
1 [()]	EQUIPMENT CLEANED BEFORE USE WITH a conux, OI TSU, OI	
- (<)	Items Cleaned (List): 4// 105/11/2007 probes	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 4.16	ET DEI OW DATIM
	WATER DEPTH 4.16  Measured with: 5/age cafu receleration	FI. BELOW DATOM
	Measured with. 377 78 Cart Williams	
3 [ ]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
• ( )	Appearance: Yollow	
	Odor: hone	
	Other Comments:	
4[]	WELL EVACUATION:	
-	Method: $\int 4 u \gamma$	
	Volume Removed: $\sim 4  Ga$	
	Observations: Water (slightly - very) eloudy Tellow	
	Water level (rose - fell - no change)	
	Water odors: hin c	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. Bx mw-05-97 (Cont'd)

5[]	SAMPLE E	XTRACT	TON ME	THOD:					
	[] Bailer made of:  [t] Pump, type: _parastalia  [] Other, describe:								
		Sample	obtained i	is [X] (	GRAB; [ ] CC	MPOSITI	E SAMPLE	_	
6[]	ON-SITE M	ŒASURE	EMENTS:						
• [ ]	<b>61</b> , <b>2</b> 222				TRUMENT RE	ADINGS			
	Time						Measured With		
	Temp (°C)	120 19	19.1	19.2	19.73		45I55	7	
	pН	4.78	4.78	4.78	4-78		Orion 250A	7	
-	Cond (µS/cm)	447	-142	.143	1/43		Hach 75155 0160n 250A	7	
	Do (mg/L)	1-12	0.60	0.46	0,44		45I 55	7	
	Redox (mv)	12.3	6.5	2.5	5.6		0120n 250A	7	
	gallons purged		1	2	4			٦	
. '			FI	ELD CH	EMISTRY RES	ULTS			
	Analyte		Dilution	?	Concentr	ation	Observations/Notes	]	
	(1) Sulfate							7	
	(2) Sulfide							٦	
	(3) Nitrate							]	
	(4) Nitrite							]	
	(5) Manganese							]	
	(6) Ferrous Iron							٦	
	(7) Total Iron							7	
	(8) Alkalinity							7	
	(9) Carbon Dioxide								
	(10) Chloride							]	
				<u>_</u>					
	Additional Comment	ts:						_	
								_	
1								_	
7[4]	SAMPLE C	ONTAIN	ERS (ma	terial, nu	mber, size): 3-9	oml glass u	iols, Yalliter ambor glass, Soom	110	
8 [/]	ON-SITE S.	AMPLE :	TREATM	ENT:		···			
	[]	Filtratio	n:	Method_		Cor	ntainers:		
	[ +1	Drocar	ativec add				ntainers:		
	[/]	FIESCIVA	auves auu	Method_	BIEX-MIEE	Co	ntainers: 40 ml vials	_	
9[]	CONTAINE	[] (	Container ( Container )	Lids Tap					
10 [	OTHER CO	MMENT	`S:		·			_	

#### GROUNDWATER SAMPLING RECORD



Sampling Location By MP2
Sampling Dates 3-22-73

GROUND W	ATER SAMPLING RECORD - MONITORING WELL 6x m/2	
dicono "		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [ ] Special Sampling;	
DATE AND	TIME OF SAMPLING: 3-22-98, 1998 0730 a.m./p.m.  OLLECTED BY: 100 of Parsons ES	
SAMPLE CO	OLLECTED BY: Ref of Parsons ES	
WEATHER.	Cool ~ 45° t chuty	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): Tec Top of casing	
MONUTORII	NG WELL CONDITION:	
MONITORII	[Y] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS: 02	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS- IS NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	TOTAL STATE OF TAXABLE PROPERTIES WITHIN A A T TOUR OF	
1 [/]	Items Cleaned (List): a//ins/ins/ins/	
	nems Cleaned (List). a/ /h3/14/h · f/5)	
2[]	PRODUCT DEPTH POLK	FT. BELOW DATUM
- [ ]	Measured with:	
	1.15	
	WATER DEPTH 4.65  Measured with: 5/4pt water level in dicator	FT. BELOW DATUM
	Measured with: 3/6 pt ( )   11 dich 17	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
2[]	Appearance: Charley	
	Odor: hung	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method: $\int \sim m \int$	
	Volume Removed:5	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell no change)	
	Water odors: Hydri early?	
	Other comments:	

#### **Groundwater Sampling Record**

Monitoring Well No. <u>Bx x p2</u> (Cont'd)

5[]	SAMPLE E	SAMPLE EXTRACTION METHOD:							
	[] Bailer made of:								
		Sample	obtained i	s [X] G	RAB; [ ]	COMPO	SITE SA	MPLE	
<i>(</i>	ON-SITE M	AC A CITOE	NAENTTC.						
6[]	OM-211E IV	ILABURI			RUMENT	READIN	GS		
1	Time							Measured With	
	Temp (°C)	19. y	20.3	20.2	20 Y	20.3			
	pH	6.08	6.18	6-22	6 24	6-24			
	Cond (µS/cm)		.246		. 236				
	Do (mg/L)	0.53		0.24	0.20		-		
	Redox (mv)	171.3	-185 3	-217,1	-212.4	-214.0			
	gallons purged	,,,,,,,	1	2	3	4			
· · · ·	B	·	FI	ELD CHE	MISTRY	RESULTS	S		
	Analyte		Dilution	?	Con	centration		Observations/Notes	
	(1) Sulfate								
	(2) Sulfide								
	(3) Nitrate								
	(4) Nitrite								
	(5) Manganese								
	(6) Ferrous Iron								
	(7) Total Iron		-						
	(8) Alkalinity								
	(9) Carbon Dioxide	;							
	(10) Chloride								
	·						<u> </u>		
	Additional Commen	ıts:							
7 [ k]	SAMPLE (	CONTAIN <u>4-1//</u>	IERS (ma	terial, nur	nber, size)	: 6-40 ml	glass va	ds, 1 liter poly, 1 scompoly	
8 [X]	ON-SITE S	SAMPLE	TREATM	ENT:					
							_		
[ ] Filtration: Method Containers:						ners:			
	. 1	D		Method_			-	iers:	
	[y]	Preserv	atives add	Method_	Methone Total lea	170 ^E	Contair	ners: 40ml via 5	
9[]	CONTAIN	ER HAN [M] ( [] (	DLING: Container Container	Sides Lab Lids Tape	eled			500 m1 po14	
10 [	) OTHER CO	OMMEN	rs:						

### Keesler AFB, BX Service Station, AOC-A (ST-96) SAMPLE DATE TIME SAMPLED TIME ANALYSIS START SAMPLE I.D. TIME ANALYSIS END FILTERED (circle) COLOR / ODOR:

**HACH DR/700 Measurements:** 

Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{a/,b/}	
Ferrous	50.01.1	0 - 5.10 mg/L	İ	カフラー	mg/L	sample	
					mg/L	sample	
Manganese	<b>5</b> 2.13.1	0 - 20.0 mg/L			mg/L	sample	
					mg/L	sample	1
Sulfate	45.000	0 - 100 mg/L	1	17.16	mg/L	DI or 50mg/L	Ø
				•	mg/L	DI or 50mg/L	ļ
Sulfide	61.12.1	0 - 0.600 mg/L	5	0.497	mg/L	DI	
			,		mg/L	DI	J

		_
Alkalinity	Sample Size =	100
	Phenolphthalein A	
	BGB	

Titrate with 1	. ( NI	H ₂ SO ₄
0	digits	
54	digits	
59	total digits	
		•

Digit Multiplier X Total Digits = Total Alkalinity (mg/L) =	59

#### **CHEMetrics Color Tests:**

Ammonia

ppm

Technician:

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

& COLON MAY HAVE INTENTONICO

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

HACH AND CHEMetrics ANALYSES
Keesler AFB, BX Service Station, AOC-A (ST-96)
74NDAUC RISIC

SAMPLE D	ATE	3/22/9	. ¥	]	TIME SAMPLED	0845	
SAMPLE I	.D.	MW-0	5	]	TIME ANALYSIS START TIME ANALYSIS END	0978	
FILTERED	(circle)	(YES)	NO	1			
COLOR / O	DOR: (	PALE YOU	m/ 51	NONN			
HACH DR	/700 Measu	rements:	C	$O()^{\circ}$			
Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{a/,b/}	
Ferrous	50.01.1	0 - 5.10 mg/L	5	2.39	mg/L	sample	
		L			mg/L	sample	
Wanganese	52.13.1	0 - 20.0 mg/L			mg/L	sample	
		[			mg/L	sample	
Sulfate	45.000	0 - 100 mg/L		6.83	mg/L	DI or 50mg/L	A
		. [			mg/L	DI or 50mg/L	
Sulfide	61.12.1	0 - 0.600 mg/L		0.044	mg/L	DI	
					mg/L	DI	
Alkalinity	Sample Si Phenolpht BGR	ze = ( 000 halein Alkalinity		Titrate with	digits digits total digits		
	Digit N	Iultiplier X Total	Digits = To	tal Alkalinity (	(mg/L) = 365	]	
CHEMetric Ammonia	es Color Tes	ts: Technician:	72	-1 /	-> ppm	] ¥	
		Technician.		<del>,                                    </del>			
Ferrous ire	on and mang	n Color	without reag be diluted acc	ents.  cordingly if san	mples are diluted.  PD 9FFFFFD  19414	ANALYSS	7
gulf	Mi 7.1	or m(	No (	VEAGE!	ハフ		

### **ON-SITE MEASUREMENTS** Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE D	ATE	37	18		TIME SAMPLED	TADE	1000	
SAMPLE I.	D. 73)	MW-0	2-97		TIME ANALYSIS S' TIME ANALYSIS E		1015	
FILTERED	(circle)	YES	NO					
COLOR / OI	DOR:	PALEYEN	ew/	NO 0	10N			
HACH DR/	700 Measu	rements:						
Analyte	Program	Range	Dilution	Reading	Concentration		Blank ^{a/,b/}	
Ferrous	50.01.1	0 - 5.10 mg/L	Dilquoii	0.36	Concentration	mg/L	sample	
1 011000	20.02.2	0 2.10 <u>111</u>	<del></del>			mg/L	sample	
Manganese	52.13.1	0 - 20.0 mg/L				mg/L	sample	
		_				mg/L	sample	
Sulfate	45.000	0 - 100 mg/L		48,79			<b>1</b> or 50mg/L	
				8.56		mg/L	DL or 50mg/L	NO R ZAG
Sulfide	61.12.1	0 - 0.600 mg/L		0.039		mg/L	DI	
						mg/L	DI	
HACH Titr Alkalinity	Sample Si	ze = ( C halein Alkalinity	0	C &	N H ₂ SO ₄ digits digits total digits			
	Digit N	Multiplier X Total	Digits = To	otal Alkalinity (	mg/L) = 6			
CHEMetric Ammonia	es Color Tes	sts:				ppm	×	
		Technician:	7	7				
a/ Contrata	J16 J. 1.1.			•				

Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

### **ON-SITE MEASUREMENTS** Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE DA	ATE	3/22/0	18	]	TIME SAMPLED TIME ANALYSIS ST	LADT	130				
SAMPLE I.I	D. BX-	mw-01		]	TIME ANALYSIS E	<u> </u>	A36				
FILTERED (		YES	NO								
COLOR/ODOR: MACRICON NO UDON											
HACH DR/											
	_	_					- 1 a/ h/				
Analyte	Program	Range	Dilution	Reading	Concentration		Blank ^{a/,b/}	l			
Ferrous	50.01.1	0 - 5.10 mg/L	L	0-09	6.09	mg/L	sample				
				<b> </b>		mg/L	sample				
- Manganese	52.13.1	0 - 20.0 mg/L				mg/L	sample				
				201 11 14		mg/L	sample				
Sulfate	45.000	0 - 100 mg/L	L	1.21.44			Off 50mg/L	10.1			
			ļ	7.07			Nor 50mg/L	Vic			
Sulfide	61.12.1	0 - 0.600 mg/L		0.024		mg/L	DI				
			<u></u>	<u> </u>		mg/L	DI				
HACH Titra Alkalinity	Sample Siz	ze = \$ 0 C halein Alkalinity		Titrate with  O  26	$\begin{array}{c c} \text{Lip} & \text{NH}_2\text{SO}_4\\ \hline & \text{digits}\\ & \text{digits}\\ \hline & \text{total digits} \end{array}$						
	Digit N	Multiplier X Tota	1 Digits = To	tal Alkalinity (	(mg/L) =						
CHEMetric Ammonia	s Color Tes	ts:		,	<i>®-</i> 3	ppm					
٠		Technician:		7							

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

### **ON-SITE MEASUREMENTS** Keesler AFB, BX-Service Station, AOC-A (ST-96)

SAMPLE DAT	E _ 3/26	798	TIME SAMPLED	1315	_
SAMPLE I.D.	13X-[nw-	03	TIME ANALYSIS START TIME ANALYSIS END	1345	i
FILTERED (cir		NO			
COLOR / ODO	R: PME	Yerrou	STRONG OD	on	
HACH DR/700	Measurements:	,			
Analyte l	Program Range	Dilution Reading	Concentration	Blank ^{a/,b/}	
	50.01.1 0 - 5.10 mg/L	I I. 47			
<u>Manganese</u>	52.13.1 0 - 20.0 mg/L		mg/L mg/L mg/L	sample sample sample	
Sulfate	45.000 0 - 100 mg/L	1 32,07		Did 50mg/L	,
Sulfide	61.12.1 0 <b>-</b> 0.600 mg/I	11.68	mg/L		u/0
HACH Titratio	nns•				
Alkalinity Sa	ample Size = \(\begin{aligned} \mathcal{O} \\ \text{henolphthalein Alkalinit} \\ \text{GR} \end{aligned}		digits digits total digits		
	Digit Multiplier X Tot	al Digits = Total Alkalinity	r  (mg/L) = 67	]	
CHEMetrics C Ammonia	color Tests:	• ,	ppm	1	
·	Technician:	<u> </u>	····		

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

				Metrics ANA	LYSES C-A (ST-96)	NDALL R	316		
SAMPLE DAT	E	3/22/9	Κ	]	TIME SAMPLED	19	30		
SAMPLE I.D.		MW-09	b-97	]	TIME ANALYSIS S TIME ANALYSIS E		0		
FILTERED (cir	rcle)	YES	NO /		_				
COLOR / ODO	OR:	Your		0 000	V \				
HACH DR/700	0 Measur	ements:							
A malveta	Program	Range	Dilution	Dooding	Concentration	Blanl	_a/,b/		
Analyte Ferrous	50.01.1	0 - 5.10 mg/L	Dittuon	Reading O.14	Concentration	mg/L sam			
Terrous	50.01.1	0 - 3.10 Mg/L	<u> </u>	- '		mg/L sam	- :		
Manganese	52.13.1	0 - 20.0 mg/L				mg/L sam	- 1		
	32.13.1	0 20.0 mg.2				mg/L sam	- 1		
Sulfate	45.000	0 - 100 mg/L	<u> </u>	41 92		mg/L DI or 50	- 1		
,				955		mg/L DI or 50	- 1		
Sulfide	61.12.1	0 - 0.600 mg/L	ì	0.000		mg/L D	- 1		
						mg/L D			
P	Sample Siz	ze = ( ど nalein Alkalinity	90	Titrate with	1.6 NH ₂ SO ₄ digits digits total digits				
Digit Multiplier X Total Digits = Total Alkalinity (mg/L) =									
CHEMetrics ( Ammonia	Color Tes	ts:	アー			ppm			

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

## **ON-SITE MEASUREMENTS** Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE D	ATE	3/200	( <b>/</b>	] _	TIME SAMPLED TIME ANALYSIS STAR	1435			
SAMPLE I.	D.	MW-08-9	7 D	JP )	TIME ANALYSIS END	1530			
FILTERED	(circle)	YES	NO						
COLOR / O	DOR:	YEllow	, / N	0 0001	_				
HACH DR/	700 Measu	•	•						
Analyte	Program		Dilution	Reading	Concentration	Blank ^{s/,b/}			
Ferrous	50.01.1	0 - 5.10 mg/L		6-14	mg/l	sample			
					mg/l	<del></del>			
Manganese	52.13.1	0 - 20.0 mg/L			mg/l	<b>-</b> 1			
		_			mg/l				
Sulfate	45.000	0 - 100 mg/L		45.43		LDI or 50mg/L			
a 1# 1				7,88		LDI or 50mg/L			
Sulfide	61.12.1	0 - 0.600 mg/L		0-032	mg/l				
		i	<del> </del>	<u> </u>	mg/l	L DI			
TIA CITE TO	.4								
HACH Titr		ize (00	)	<b></b>	1/				
Alkalinity	Sample Si	20		Titrate with	/-6 N H ₂ SO ₄				
		thalein Alkalinity		0	digits				
	BGR				digits				
					total digits				
Digit Multiplier X Total Digits = Total Alkalinity (mg/L) =									
CHEMetric	s Color Te	sts:			<del></del>	<del></del>			
Ammonia					ppn	<u>n</u> ]			
•		Technician:	T	ろし					
		reciniician:	·	, -					
9/									

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

### **ON-SITE MEASUREMENTS** HACH AND CHEMetrics ANALYSES Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE DA		3/20/	48	]	TIME SAMPLED TIME ANALYSIS S		1530 1535	
SAMPLE I.I	D. 13/	MW-0	7	_	TIME ANALYSIS E	מא	1547	
FILTERED (	(circle)	YES	NO					
COLOR / OI	OOR:	PATOUR	wy	Monoxa	nor oppr	`		
HACH DR/	700 Measui	rements:	'					
Analyte	Program		Dilution	Reading	Concentration	L	Blank ^{a/,b/}	
Ferrous	50.01.1	0 - 5.10 mg/L		0.41		mg/L	sample	
1.	50 10 1	0 20 0 //		<del> </del>		mg/L	sample	i
-Manganese	52.13.1	0 - 20.0 mg/L				mg/L mg/L	sample sample	
Sulfate	45.000	0 - 100 mg/L	<del>                                     </del>	10.00		mg/L	DDr 50mg/L	
Dunate	15.000	0 100 1119,2	1	0.41			DI or 50mg/L	W/0
Sulfide	61.12.1	0 - 0.600 mg/L	5	0.156		mg/L	DI	
		J				mg/L	DI	i
HACH Titra Alkalinity	Sample Si	ze =		Titrate with	I H ₂ SO ₄	· <del>-</del>		
	BGR	naiem Aikaninty		41	digits total digits			
				<u> </u>	total tigits			
	Digit N	Multiplier X Tota	l Digits = To	otal Alkalinity (	(mg/L) =			
CHEMetric	s Color Tes	its:						
Ammonia						ppm		
		Technician:	B	U		**	1	
8/ 0. 10			•					

Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE DATE	3/22/91	7	] .	TIME SAMPLED TIME ANALYSIS S	TART (630	
SAMPLE I.D.	MW-03	97	]	TIME ANALYSIS E	<u> </u>	
FILTERED (circle)	YES	NO				
COLOR / ODOR:	PALEYER	ou/ ,	No soi			
HACH DR/700 Measu	rements:	·				
Analyte Program		Dilution	Reading	Concentration		
Ferrous 50.01.1	0 - 5.10 mg/L		0.15		mg/L sample	
) (	0. 20.0 //				mg/L sample	
Manganese 52.13.1	0 - 20.0 mg/L				mg/L sample mg/L sample	
Sulfate 45.000	0 - 100 mg/L	<del></del>	70-21		mg/L sample mg/L DI or 50mg/L	
Sunate 45.000	0 - 100 mg/L		57,70			/c
Sulfide 61.12.1	0 - 0.600 mg/L	<del></del>	0-048		mg/L DI	
Sunde 01.12.1	0 - 0.000 mg/L		U-UTX		mg/L DI	
HACH Titrations:  Alkalinity Sample Signature Phenolphia  BGR	ize = 107 thalein Alkalinity		Titrate with	digits digits total digits		
Digit l	Multiplier X Total	Digits = To	otal Alkalinity	(mg/L) = 36		
CHEMetrics Color Te	sts:		•			
Ammonia				0-6	ppm	
	Technician:	B	<u></u>			
a/ Sulfate, and sulfide bl	anks contain respo	ective reager	nts;			

Ferrous iron and manganese blanks are without reagents. b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

#### HACH AND CHEMetrics ANALYSES

Keesler AFB, BX Service Station, AOC-A (ST-96)

TYNDALL RISIC

SAMPLE DA	ATE	3/22/9	8		TIME SAMPLED TIME ANALYSIS START	1730					
SAMPLE I.I	D.	MP-3			TIME ANALYSIS END	1737					
FILTERED (	(circle)	YES	NO								
COLOR / OI	COLOR/ODOR: VERY CLOUPY, YAWW, NO DOOK										
HACH DR/700 Measurements:											
Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{a/,b/}					
Ferrous	50.01.1.	0 - 5.10 mg/L		1.60	mg/L	sample					
					mg/L	sample					
Manganese	52.13.1	0 - 20.0 mg/L			mg/L	sample					
					mg/L	sample					
Sulfate	45.000	0 - 100 mg/L		NA	mg/L	DI or 50mg/L					
					mg/L	DI or 50mg/L					
Sulfide	61.12.1	0 - 0.600 mg/L		NA	mg/L	DI					
		-			mg/L	DI					
HACH Titrations:  Alkalinity Sample Size = 2  Titrate with 6 N H ₂ SO ₄ Phenolphthalein Alkalinity  BGR											
CHEMetric	s Color Tes	its:			111	1					
Ammonia					///_ ppm	.]					
·		Technician:	15								

^{a/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

HACH AND CHEMetrics ANALYSES
Keesler AFB, BX Service Station, AOC-A (ST-96)

SAMPLE DATE	[3/22/	18	]	TIME SAMPLED	1830	
SAMPLE I.D.	MP-1	, 13X	]	TIME ANALYSIS STAI TIME ANALYSIS END		
FILTERED (circl	e) YES	NO				
COLOR / ODOR:	PALEYE	ww,	57hd.	vs, opan		
HACH DR/700 N	Measurements:	,				
	ogram Range	Dilution	Reading	Concentration	Blank ^{a/,b/}	
Ferrous 50	0.01.1 0 - 5.10 mg/L	<u> </u>	1.29	mg	/L sample	
				mg	<del></del>   •	
Manganese 52	2.13.1 0 - 20.0 mg/L			mg		
				mg		
Sulfate 4	5.000 0 - 100 mg/L	(	10.82		/LOLD 50mg/L	. /
			10.43		L DI or 50mg/L	4/0
Sulfide 61	1.12.1 0 - 0.600 mg/L	5	0,210	mg		
	Į			mg	/L DI	
· · · · · · · · · · · · · · · · · · ·	nple Size = LOC enolphthalein Alkalinity	7	Titrate with  O  107  007	digits digits total digits		
;	Digit Multiplier X Total	Digits = To	tal Alkalinity (	mg/L) = 107		
CHEMetrics Col Ammonia	lor Tests:			_ <u></u>	om	
·	Technician:	1	3L	·····		

² Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

b/ Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

# APPENDIX D FIRST-ORDER DECAY COEFFICIENT CALCULATIONS

#### Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

Point	Northing (feet)	Easting (feet)	Distance Downgradient (feet)	Benzene (μg/L) Feb 1998
MW-03			0	67
MP-1			35	32
MW-07			140	11

### PLOT OF BENZENE CONCENTRATION VERSUS DISTANCE



$$\lambda = \frac{v_c}{4\alpha_x} \left[ \left[ 1 + 2\alpha_x \left( \frac{k}{v_x} \right) \right]^2 - 1 \right]$$

where  $v_c = 0.417$ 

ft/day (advective velocity =0.48, R = 1.15)

 $\alpha_x = 25$ 

ft (Literature; approximately 1/10th of plume length)

 $k/v_x = 0.0123$ 

μg/L per foot (1st-order curve fit)

Therefore 
$$\lambda = 0.00671259 \text{ day}^{-1}$$
  
2.45009583 year⁻¹

Benzene half life=

0.28 year

#### Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

Point	Northing (feet)	Easting (feet)	Distance Downgradient (feet)	Total Xylene (µg/L) Feb 1998
MW-03	· · · · · · · · · · · · · · · · · · ·		0	6900
MP-1			35	6700
MW-07			140	620

### PLOT OF TOTAL XYLENE CONCENTRATION VERSUS DISTANCE





$$\lambda = \frac{v_c}{4\alpha_x} \left[ \left[ 1 + 2\alpha_x \left( \frac{k}{v_x} \right) \right]^2 - 1 \right]$$

where  $v_c = 0.268156425$  ft/day (advective velocity = .48, R = 1.79)

 $\alpha_x = 25$ 

ft (Literature; approximately 1/10th of plume length)

 $k/v_x = 0.0185$ 

μg/L per foot (1st-order curve fit)

Therefore  $\lambda = 0.00725531 \text{ day}^{-1}$ 2.64818715 year⁻¹

Xylene half life=

0.26 year

#### Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

	Northing	Easting	Distance	Toluene (μg/L)
Point	(feet)	(feet)	Downgradient (feet)	Feb 1998
MW-03			0	1700
MP-1			35	1400
MW-07			140	38

### PLOT OF TOLUENE CONCENTRATION VERSUS DISTANCE



$$\lambda = \frac{v_c}{4\alpha_x} \left( \left[ 1 + 2\alpha_x \left( \frac{k}{v_x} \right) \right]^2 - 1 \right)$$

where  $v_c$  = 0.352941176 ft/day (advective velocity =0.48, R = 1.36 )

 $\alpha_x = 25$ 

ft (Literature; approximately 1/10th of plume length)

 $k/v_x = 0.0288$ 

μg/L per foot (1st-order curve fit)

Therefore  $\lambda = 0.01748329 \text{ day}^{-1}$ 6.38140235 year⁻¹

Toluene half life=

0.11 year

#### Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

Point	Northing (feet)	Easting (feet)	Distance Downgradient (feet)	Ethylbenzene (µg/L) Feb 1998
MW-03			0	610
MP-1			35	710
MW-07			140	76

### PLOT OF TOTAL ETHYLBENZENE CONCENTRATION VERSUS DISTANCE



$$\lambda = \frac{v_c}{4\alpha_x} \left[ \left[ 1 + 2\alpha_x \left( \frac{k}{v_x} \right) \right]^2 - 1 \right]$$

where  $v_c = 0.255$ 

ft/day (advective velocity =0.48, R = 1.88)

 $\alpha_x = 25$ 

ft (Literature; approximately 1/10th of plume length)

 $k/v_x = 0.0164$ 

μg/L per foot (1st-order curve fit)

Therefore  $\lambda = 0.00590400 \text{ day}^{-1}$ 2.15496000 year⁻¹

Total Ethylbenzene half life=

0.32 year

#### Risk-Based Approach to Remediation BX Service Station Tyndall AFB, Florida

	Northing Easting		Distance	Total BTEX (µg/L)				
Point	(feet)	(feet)	Downgradient (feet)	Feb 1998				
MW-03			0	9277				
MP-1			35	8842				
MW-07			140	745				

### PLOT OF TOTAL BTEX CONCENTRATION VERSUS DISTANCE



$$\lambda = \frac{v_c}{4\alpha_x} \left( \left[ 1 + 2\alpha_x \left( \frac{k}{v_x} \right) \right]^2 - 1 \right)$$

where  $v_c = 0.311688312$  ft/day (advective velocity =0.48, R = 1.54)

 $\alpha_{\rm x} = 25$ 

ft (Literature; approximately 1/10th of plume length)

 $k/v_x = 0.0193$ 

μg/L per foot (1st-order curve fit)

Therefore 
$$\lambda = 0.00891810 \text{ day}^{-1}$$
  
3.25510792 year⁻¹

Total BTEX half life=

0.21 year

### APPENDIX E SUPPORTING INFORMATION FOR VOLATILIZATION FROM SUBSURFACE SOURCES MODELS

Calculation of Benzene Concentration in Ausient Air From Soil Gas Concentration USE equations for K(g): gas mass transfer coefficient and equation for K: mass transfer coefficient to estimate flux based on soil gas concentration. Use Flux in sox model to estimate concentrations in the breathing  $K(g) = \left(\frac{18 g/mol}{MWq/mol}\right)^{0.335} \times (1.39)$ K = (8.25x10-5 x 298)/(HLC x Kg))( Eu = Csoilgas x K x A x CF Car = Eu/(LS x V x MH) Benzene MW = 78.11 9/mol HLC = 5.60 ×10-3 atm m3/mol A (Area of trench) = 300,000 cm² V (average wind speed) = 4.47 m/s MH (mixing height) - 2 m LS (length of side perpendicular to wind) = 15 m CF = 1x10-3 L/cm3

Csoilgas (max detect) = 78 mg/L

$$K = \frac{1}{(8.25 \times 10^{-5} + 298)/(5.60 \times 10^{-3} \times 0.85)}$$

$$= \frac{1}{5.16} = 0.194$$

constants taken from VoFF resp comments on Homestead Report

# APPENDIX F SUPPORTING INFORMATION FOR BIOSCREEN MODEL

### **CURRENT UST PIT WITH 1997 XYLENE DATA**



DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

							gaj.	**************************************			T	P	<b>P</b>	50C				
0	200	1.574	0.228	0.000												his		
mg/Lat Z=	450	1.680	0.303	0.000										450		Recalculate This	Sheet	
TERLINE (	400	1.802	0.404	0.000		Field Data from Site					200			400				
OCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)  Distance from Source (ft)	350	1.946	0.544	0.000		# Field D								350		Return to	Input	
LONG PL	300	2.120	0.741	0.059	-	dation								300				
ONCENTRATION AI Distance from Source (ft)	250	2.340	1.021	0.294										250 Distance From Source (ft)				
ONCENTI Distance fro	200	2.631	1.436	909.0		•								00 ice From S				
ARBON C	150	3.049	2.083	1.054	0.980	Instantaneous Reaction										8 Years	Cana	
HYDROC	100	3.729	3.192	1.785		Instanta								750	444	7   Times		
DISSOLVED HYDR	50	5.188	5.568	3.354		ecay					#			700				ì
4	0	17.689	17.689	16.820	16.000	- 1st Order Decay								. 20		ē	uc	
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site	18 000	16.000		12.000 (L) (L) (L) (L) (L) (L) (L) (L) (L) (L)			2,000	0000			Calculate	Animation	

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

|--|--|

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

200	966.0	0.095	0.000		
450	1.039	0.126	0.000		Recalculate This
400	1.090	0.169	0.000		Field Data from Site
350	1.152	0.228	0.000		Field Da
300	1.230	0.310	0.000		3000 Particular (1970)
250	1.331	0.427	0.000		No Degradation
200	1.469	0.600	0.000	:	
150	1.672	0.871	0.000	0.980	
100	2.010	1.334	0.000		Instantanee
50	2.750	2.327	0.470		ecay 100
0	7.393	7.393	5.043	16.000	1st Order Decay
TYPE OF MODEL	No Degradation	1st Order Decay	Inst Reaction	Field Data from Site	Concentration 15,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12,000 (mg/H, 12

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

	500	0.610	0.055	0.000		
	450	0.635	0.073	0.000		Recalculate This Sheet
	400	0.665	0.098			m Site
	40	9.0	0.0	0.000		Field Data from Site
	350	0.701	0.132	0.000		Field D 350 Return to Input
	300	0.747	0.179	0.000		
Distance from Source (ft)	250	0.807	0.247	0.000		No Degradation
istance fron	200	0.890	0.348	0.000		Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Trom S Tr
$\boldsymbol{q}$	150	1.011	0.505	0.000	0.980	ntaneous Reaction  150 200  Time:  60 Years
	100	1.213	0.773	0.000		"Instantaneous  Logical Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro
	- 20	1.658	1.349	0.000		
	0	4.285	4.285	1.751	16.000	Ilate trion
						Calculate Animation
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst Reaction	Field Data from Site	16.000 12.000 12.000 12.000 12.000 12.000 12.000 13.000 14.000
	٤				$F_{\mathcal{K}}$	Concentration

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L'at.Z=0)

TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site	16.000	12,000	12,000	000 <b>/Bu</b> u)	4.000	2.000	0,000		Calculate Animation
0	ın 2.553	ly 2.553	0.013	16.000	→ 1st Order Decay					<i> </i>	09		ulate ation
- 50	1.006	0.804	0.000		. Decay						100		
100	0.737	0.461	0.000									1	7
150	0.614	0.301	0.000	0.980	antaneous Reaction						150 Dist	Time	79 Years
200	0.541	0.207	0.000		ction						200 ince From		
250	0.491	0.147	0.000		No Degradation						200 250 300 Distance From Source (ft)		
300	0.455	0.107	0.000		adation						300		
350	0.427	0.079	0.000		Field D						350		Return to Input
400	0.405	0.058	0.000		Field Data from Site						400		
450	0.387	0.044	0.000								750		Recalculate This Sheet
500	0.372	0.033	0.000								0		This

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

					Distance fr	Distance from Source (ft)	0					ſ
TYPE OF MODEL	0	20	100	150	200	250	300	350	400	450	500	
No Degradation	2.484	0.979	0.717	0.598	0.527	0.478	0.443	0.416	0.395	0.377	0.363	
1st Order Decay	2.484	0.782	0.448	0.293	0.202	0.143	0.104	0.076	0.057	0.042	0.032	
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data from Site	16.000			0.980							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Concentation (mg/h) 11 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6												
0,000	20	202		The first and a	00 ice From	200 250 Distance From Source (ft)	300	350	007		720	<b>1</b> 00 <b>1</b>
Calculate	fe f		T) 80	Time: 80 Years				Return to		Recalculate This	This	
	5							Induc		Jaalle		

# **CURRENT UST PIT WITH 1998 XYLENE DATA**

Data Input Instructions:    115	0.02   " cells below. (To restore formulas, hit buffon below).   Variable* → Data used directly in model.   20 → Value calculated by model.   Conf. celes and data.	Vertical Plane Source: Look at Plume Cross-Section and Input Concentrations & Widths	for Zones 1, 2, and 3		View of Plume Looking Down	Observed Centerline Concentrations at Monitoring Wells	200   250   300   350   400   450   500	Help Recalculate This Sheet Paste Example Dataset	Restore Formulas for Vs, Dispersivities, R, lambda, other
Tyndall AFB BX Service Station Current UST Pit	500 100 40	OURCE DATA Source Thickness in Sat Zone* 10 (#) Vertical I	4		e Help):	$ (\kappa_{\mathcal{G}}) $	50 100 150	OUTPUT TO:	ıt View Output
tion Decision Support System	2 5	0.25   (-)   6. SOURCE DATA   Source Thickne	400.0 (#) VVidth* (ft) Conc. (mg/L)* 40.0 (#)	0.0 (ff) 13 250 (ff) 0 0	Source Halflife (s.	$ \begin{array}{c c} \hline 7 & (kg/l) & So \\ \hline 2 & (L/kg) & In S \\ 4 & (-1) & 7 \end{array} $		S. (year)  I (mg/L)	9 7 5
BIOSCREEN Natural Attenuation Decision Air Force Center for Environmental Excellence	JGY VS Vity K	Effective Porosity n 0	ersivity* alpha x rsivity* alpha y	Vertical Dispersivity* alpha z 0.0 or or or Estimated Plume Length Lp 256	Stor* R	Soil Bulk Density tho 1 Partition Coefficient Koc 42 FractionOrganic Cathon foc 2 86	l (ambda	t-half tion Model DO MO3	rous fron* Fe2+ SO4 Hane* CH4

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

450   500	1.566 1.483	0.086 0.058	0.000 0.000				Sheet
400	1.662 1.5	0.127 0.0	0.000 0.0		om Site	700	S
ദാറ	1.774 1	0.189	0.000		Field Data from Site	250 Marie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Input
300	1.909	0.285	0.000			300	
7220	2.080	0.434	0.054		No Degradation	250 30trce (ft)	
200	2.305	0.674	0.295		tion and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	200 250 Distance From Source (#)	
120	2.628	1.078	0.640	0.620	aneous Reaction	ين الله	l reals
200	3.147	1.814	1.198		Instantan		
20	4.210	3.411	2.345		Decay		
0	n 8.347	y 8.347	n 6.822	006.9	1st Order Decay	500 Ilate	ation
TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site		2.000 1.000 0.000 0.000 E. S. S. S. S. S. S. S. S. S. S. S. S. S.	Animation

					Distance fro	Distance from Source (ft)	9					
TYPE OF MODEL	0	- 20	100	150	200	250	300	350	400	450	200	
No Degradation	5.580	3.060	2.308	1.945	1.724	1.573	1.461	1.375	1.306	1.249	1.201	
1st Order Decay	5.580	2.280	1.212	0.721	0.451	0.290	0.190	0.126	0.085	0.057	0.039	
Inst. Reaction	3.409	0.866	0.109	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data from Site	006.9			0.620					·			
		100 (100 (100 (100 (100 (100 (100 (100										
000.9												Swjery T
() Other											a about the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o	· uprorqu
500 S												
0000		<b> </b>										
2.000												
J.000			1									H T
0.000												t
0	50	100	150		200 Jistance From Source (ft)	250 Jource (ft)	300	350	400	450		200
			1	Time:								
Calculate	ıte		21	21 Years				Return to		Recalculate This	This	
Animation	ion				7		120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -	Input		Sheet		
												Á

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/Lat/Z=0)

	TYPE OF MODEL	No Degradation	1st Order Decay	Inst Reaction	Field Data from Site	Concentration 2 (mg/L) 5, 5, 7, 6, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,		Calculate Animation
	0	3.730	3.730	1.280	6.900	1st Order Decay		ion
	20	2.113	1.524	0.000		(6c3y)		
	100	1.598	0.810	0.000		- Instantan		34
	150	1.351	0.482	0.000	0.620	000	Time	31 Years
Distance fr	200	1.202	0.301	0.000		000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 July 1000 Ju		
Distance from Source (ft)	250	1.100	0.194	000'0		s Reaction — No Degradation  200 250 250 250 250 306		
	300	1.026	0.127	0.000		Jation 300		
	350	0.969	0.084	0.000		Field Da		Return to Input
	400	0.924	0.057	0.000		Field Data from Site		<b>E</b>
	450	0.888	0.038	0.000		720		Recalculate This Sheet
	200	0.858	0.026	0.000				This

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)



DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

350 400 450 500	63 0.633 0.609 0.590	0.056 0.038 0.026 0.017	0.000 0.000 0.000 0.000		Field Data from Site							350 400 500		Return to Recalculate This
300   32	0.700 0.663	0.085 0.0	0.00 0.0									300		Retu
250	0.750	0.130	0.000		No Degradation							250 Source (ft)		**************************************
200	9 0.818	2 0.201	00000 0	0	eaction							200 250 Distance From Source (ft)		
100 150	1.085 0.919	0.542 0.322	0.000 0.000	0.620	Instantaneous Reaction							150 Di	Time	41 Years
20	1.433	1.019	0.000							$\left\  \cdot \right\ $		100		
0	2.493	2.493	0.000	6.900	- 1st Order Decay			140				20		te
TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site		2000	iteri (1) (000	000 (ms	Con 2.000	7.000	0.000			Calculate

# FORMER UST PIT WITH 1998 BENZENE DATA



DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at. Z=0)

	T.					Production of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th				909			
	600	1.974	0.123	0.000								nis	
	540	2.109	0.174	0.127		<b>O</b>				500		Recalculate This	
	480	2.263	0.248	0.294	-	Field Data from Site				<u>2</u>		<b></b>	
	420	2.441	0.357	0.487		Field D				400		Return to Input	
	360	2.653	0.517	0.717		rdation							
Distance from Source (ft)	300	2.916	0.760	1.002		►No Degradation				300 ource (ft)			
Distance fro	240	3.258	1.137	1.375		ction				200 Distance From Source (ft)			
	180	3.739	1.751	1.899	0.000	Instantaneous Reaction				200 Distar	Time	7 Years	
	120	4.499	2.831	2.729		- Instan					1	7	
	. 09	6.009	5.089	4.381		Decay		#		007			ì
	0	11.172	11.172	10.045	3.400	■1st Order Decay						9 E	
		No Degradation	1st Order Decay	Inst. Reaction	from Site				9	0		Animation	
	TYPE OF MODEL	No Dec	1st Ord	Inst	Field Data from Site	12.000	понячи 8(1 <b>)</b> 8	та) та) 2000 1000 1000 1000 1000 1000 1000 100	2.000				

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/Lat Z=0)

009	1.391	0.063	0.000	
540	1.445	0.089	0.000	
480	1.509	0.127	0.000	
420	1.588	0.182	0.000	
360	1.686	0.264	0.000	
300	1.814	0.388	0.000	
240	1.987	0.580	0.000	
180	2.239	0.893	0.000	0.000
120	2.649	1.444	0.402	
09	3.484	2.595	1.228	-
0	5.697	5.697	3.421	3.400
MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Dafa from Site
TYPE OF MODEL	No De	lst Or	Isu	Field Dat

DISSOLVED HYDROGARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

1					Г				7	1 009	
009	1.340	090.0	0.000								
540	1.391	0.085	0.000							500	
480	1.453	0.121	0.000		Field Data from Site						
420	1.528	0.174	0.000		Field De					400	
360	1.622	0.253	0.000		sation						
300	1.745	0.372	0.000							000 +	ource (ft)
240	1.911	0.556	0.000								Distance From Source (ft)
180	2.152	0.856	0.000	0.000	Instantaneous Reaction			-		000	Distan
120	2.546	1.384	0.283		• Instanta				<i> </i>		3
00	3.347	2.488	1.071		)ecay 			<i>\\</i>	1		
0	5.463	5.463	3.153	3.400	■1st Order Decay						
МОБЕГ	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site						0	
TYPE OF MODEL	NoD	1st O	sul 🛴	Field Dat	6.000	n 55.000	oilath 4(1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3   S in) = S iouo;	7.000 T	0000	

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

										-		009			
	009	1.290	0.058	0.000								2		This	
	540	1.339	0.082	0.000								200		Recalculate This	Sheet
	480	1.398	0.116	0.000		Field Data from Site						9			
	420	1.470	0.167	0.000		Field D						400		Return to	<b>Input</b>
	360	1.560	0.242	0.000		Jation						7			
Distance from Source (ft)	300	1.677	0.356	0.000		-No Degradation						300			
Distance froi	240	1.836	0.533	0.000								istance From Source (ft)			
	180	2.068	0.821	0.000	0.000	neous Reaction						200		25 Years	
	120	2.446	1.327	0.169		- Instantaneous					1		L me	25	
	09	3.215	2.386	0.920		ecay			1	1	1	001			
	0	5.237	5.237	2.898	3.400	■ 1st Order Decay								e te	
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site		5:000	1000 4.000 2000 2000	000 Situ)	7,000		0		Calculate	Alliación de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de l

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

ſ	, I					
	600	0.940	0.041	0.000		
	540	0.974	0.058	0.000		500 Ecalculate This Sheet
	480	1.015	0.083	0.000		Field Data from Site
	420	1.066	0.119	0.000		Field Di
	360	1.130	0.173	0.000		
Distance from Source (#)	300	1.214	0.254	0.000		No Degradation
Distance fro	240	1.327	0.381	0.000		neous Reaction — No Degr.  200 200 300 300 included the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the st
	180	1.493	0.586	0.000	0.000	Instantaneous Reaction  200  Time:  33 Years
	120	1.765	0.948	0.000		Instante in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st
	09	2.318	1.704	0.000		
	0	3.740	3.740	1.247	3.400	1st Order Decay
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst Reaction	Field Data from Site	Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentration 3.500 (Concentra

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/f.at.Z=0)

														•	00 9		
	. 600	0.649	0.028	0.000													
	540	0.672	0.040	0.000									•		500		
28 X 30 X 30 X 30 X 30 X 30 X 30 X 30 X 3	480	0.700	0.057	0.000		Field Data from Site							•		S		
	. 420	0.735	0.082	0.000		Field De									400		
	360	0.779	0.119	0.000		dation									N.		
	300	0.836	0.174	0.000		No Degradation									300 Source (ft)		
	240	0.914	0.261	0.000		otion =									200 300 Distance From Source (ft)		
	180	1.027	0.401	0.000	0.000	Instantaneous Reaction									200 Dista		ij
	120	1.214	0.649	0.000		- Instant										Ę	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	09	1.593	1.167	0.000		Decay '					<i> </i>		<i>[</i> ]		100		
	0	2.561	2.561	0.014	3.400	-tri Order Decay	XX										
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site		3.500	3.000	tion 2.500	000	7.500	1,000	0.500	0.000	0		

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

			10.744772	and so ha	ele estendo
	009	0.622	0.027	0.000	
	9	0.6	0.0	0.0	
	540	0.645	0.038	0.000	
	2	ö	ö	Ö	
	20 A				
	480	0.672	0.055	0.000	
		0	0	0	
			~		
	420	0.705	0.078	0.000	
		0	0	0	
		7	4	0	
	360	0.747	0.114	0.000	
Ç.					
Distance from Source (ft)		12	7:	0	
Sour	300	0.802	0.167	0.000	
uo,	manusiii.				
ce fr	240	9/	င္က	00	
stan	24	0.876	0.250	0.000	
Ä					
	180	0.985	0.385	0.000	0.000
	1	0.9	0.3	0.0	0.0
	120	.164	.622	000	
	-	<del> </del>	0.0	0.0	
	_09	1.528	1.118	0.000	
		1		o.	
		2.455 1	2.455		
	0	.455	455	0.000	3.400
			2		
		No Degradation	1st Order Decay	io	Field Data from Site
	ZEL	adat	L De	မ်ခင်	E O
	Ş	egr.	rde	it R	ta fr
	ا ا	우	sto	Inst. Reaction	1Da
osymilikiji Lima	Щ		Ţ		Fielc
	iri ni		15000 9890 3	<b>€</b> 0.0750110	10.70
	TYPE OF MODEL				



# CURRENT UST PIT WITH 1997 XYLENE DATA AND THREE YEARS OF SOURCE REMOVAL



					· Commence of						
TYPE OF MODEL	0	20	100	150	200	250	300	350	400	450	200
No Degradation	on 10.461	2.810	2.093	1.770	1.578	1.446	1.335	1.170	1.033	0.916	0.814
1st Order Decay	ay 10.461	3.491	2.122	1.468	1.073	0.809	0.616	0.447	0.327	0.241	0.179
Inst Reaction	<b>on</b> 8.993	0.804	0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	ile ile			-							
Concen (mg (mg (mg)											
	09	100	097		200 250 Distance From Source (ft)	250 30urce (ft)	300	350	700	450	200
Replay	Next Timestep	det		Time:				Refurn fo		Recalculate This	This
Animation		Y	,	Icars				1		1	

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/Lat.Z=0)

											500		
500	0.982	0.158	0.000										This
450	766.0	0.198	0.000				-				450		Recalculate This
400	1.017	0.249	0.000		om Site						400		Rec
350	1.043	0.317 0	0.000		Field Data from Site						350		Return to
					<b>.</b>						i e		Ret
300	1.080	0.407	0.000		radation					╁	300		
250	1.132	0.529	0.000		►No Degradation						+ 	ource (ft	
200	1.208	0.702	0.000		on T			and cold order over				Distance From Source (ft)	
150	1.328	0.960	0.000		ntaneous Reaction							Distanc	Veare
 9	1.542	1.387	0.000		Instantane					<b>  </b>	<b>4</b> 9		Time:
- 20	2.034	2.283	0.000		.ay						, 00L	<b>.</b>	
0	6.840	6.840	4.678		= 1st Order Decay								Next Timestep
	tion	3cay	tion	Site	1,8								Ne
TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site								( د	Replay
PE OF	°   °	1st C	Ľ	-ield Da	7.0	6.0	) (2) (4)	1 <b>/3</b> tm	Cond 2007	0.7	0.0		Rep

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

		4900) 777.1			200	
200	0.532	0.068	0.000			This
450	0.531	0.085	0.000		750	Recalculate This
400	0.533	0.107	0.000		a from Site	Ž.
350	0.538	0.135	0.000		Field Data from Site	Return to Input
300	0.549	0.174	0.000			
250	0.567	0.226	0.000			
200 250	0.597	0.300	0.000		S HOO	
150	0.648	0.410	0.000		ntaneous Reaction	Time:
100	0.743	0.593	0.000		Instantane	Time: 12 Ye
50	0.970	976.0	0.000			
0	2.924	2.924	0.381		1st Order Decay	Next Timestep Prev Timestep
TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site		Replay Ne

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat						Distance from Source (1)	· · · · · · · · · · · · · · · · · · ·					
2.365 0.789 0.613 0.536 0.494 0.470 0.456 0.448 0.444 2.365 0.789 0.480 0.332 0.243 0.183 0.141 0.110 0.088 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  -1/st Order Decay	TODEL	0	50	100	150	200	250	300	350	400	450	500
2.365 0.789 0.480 0.332 0.243 0.183 0.141 0.110 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	gradation	2.365	0.799	0.613	0.536	0.494	0.470	0.456	0.448	0.444	0.444	0.446
0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.00	der Decay	2.365	0.789	0.480	0.332	0.243	0.183	0.141	0.110	0.086	0.068	0.055
1st Order Decay Instantaneous Reaction Field Data from Sit Timestep Timestep Table Timestep Table Timestep Table Timestep Table Table Timestep Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table T	Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Sit  So 100 150 Distance From Source (ft) 300 350 400  Next Timestep Trime:  Distance From Source (ft) 14 Years  Return to Input	a from Site											
50 100 250 400 Next Timestep  Next Timestep  Trine:  Next Timestep  Trine:  Input Timestep  Trine:  Input Timestep	1	'1st Order L	ecay	Instanta	neous React	<b>T</b> .	■No Degrac	lation	🙀 Field Da	ta from Site		
50 100 250 300 350 400  Next Timestep												
50   100   150   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   400   250   250   400   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250												
Next Timestep  Next Timestep  Next Timestep  Next Timestep  Next Timestep  Next Timestep  Next Timestep  Next Timestep  Next Timestep												
100   150   250   300   350   400   250   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150				***								
550 100 150 Distance From Source (ft) 300 350 400  Next Timestep												
50  100  150  150  150  250  400  400  Next Timestep  14 Years  Input		1	<b> </b>						-			
50   150   150   200   300   400   400	rawe											
Source (ft) 300 350 400  Next Timestep  Trime:  14 Years  Input												
Next Timestep    Time:   Time:   Return to	0	50	100	150	Distanc	e From So	.50 urce (ft)	300	350	400	450	906
Next Timestep												
Prev Timesten Input		lext Timest	a c		me:	r					F -40[]	المالية
Dray IIMASIAD CHARLES THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONT				41	Years				Keturn to	Ž	ecalculate I	2
	$\dashv$	rev Timest	de					J	Imput		Palle	

# FORMER UST PIT WITH 1998 BENZENE DATA AND THREE YEARS OF SOURCE REMOVAL



No Degradation   3.031   1.07     Ist Order Decay   3.031   1.35     Inst. Reaction   2.419   0.000     Field Data from Site	0 0 0	120 180 2. 672 0.439 0. 724 0.410 0. 000 0.000 0.0	239	300 350 0.187 0.118 0.139 0.080 0.000 0.000	0.000 0.000 0.000	0.072 0.045 0.000	72 0.042 45 0.024 00 0.000 Field Data from Site	0.000 0.000 0.000	0.012 0.006 0.000
3.031 3.031 2.419 1st Order De	0 0 0	0.439 0.000 antaneous Rea	539	0.187 0.139 0.000	0.118 0.080 0.000 adation	0.072 0.045 0.000	0.042 0.024 0.000 Data from \$	29255.3.	0.006
3.031 2.419 - 1st Order De	0 0 0	0.410 0.000 antaneous Rea	0000	0.139 0.000 0.000	0.080 0.000 adation	0.045 0.000	0.024 0.000 Data from S	£44xxx	0.000
2.419	0	0.000 antaneous Rea	000	0.000 No Degr.	0.000 adation	0.000	0.000 Data from S	4.3	0.000
		antaneous Rea		-No Degr	adation	Field	Data from S	Site	
		antaneous Rea		No Degr.	adation		Data from S	Site	
				_					
0.00 Bases	Management of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	**************************************	100 100 100 100 100 100 100 100 100 100						
0 100		200 Distance	300 stance From Source (ft)	nce (ft)	4	400		500	009
		Time							
Replay Next Timestep		1 Years				Return to		Recalculate This	This
Prev Imestep								19910	

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

ſ							
	009	0.202	0.031	0.000			This
	540	0.245	0.045	0.000		Site 5000	Recalculate This
	480	0.296	0.065	0.000		Field Data from Site	
	420	0.356	0.096	0.000		Field 400	Return to Input
9	360	0.428	0.142	0.000			
Distance from Source (ft)	300	0.513	0.210	0.000		No Degradation	
Distance fro	240	0.570	0.293	0.000		nitaneous Reaction  700 200 1stance From Source (#	
	180	0.647	0.419	0.000		stantaneous Reaction	Time. 2 Years
	120	0.764	0.630	0.000			T. 2
	09	0.995	1.052	0.000		TOO	a a
	0	2.147	2.147	0.386		Tst Order Decay	Next Timestep Prev Timestep
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site	Concentation	Replay N Animation P

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

						7 1 1 9	
	600	0.299	0.032	0.000			This
	540	0.344	0.046	0.000		Site 500	Recalculate This Sheet
	480	0.397	0.066	0.000		Field Data from Site	Ě
	420	0.433	0.091	0.000			Return to Input
	360	0.457	0.123	0.000			
Distance from Source (ft)	300	0.487	0.168	0.000		No Degradation  (00)	
Distance fron	240	0.526	0.233	0.000		Somm See	
	180	0.580	0.334	0.000		Instantaneous Reaction  200  Distance Free	Years
	120	699.0	0.501	0.000			Time 3 Ye
	09	0.853	0.837	0.000		r Decay	
	0	1.706	1.706	0.000		1st Order Decay	Next Timestep Prev Timestep
	TYPE OF MODEL	No Degradation	1st Order Decay	Inst. Reaction	Field Data from Site	2	Replay NAnimation P
	Ž				<u>u</u>	Concentration Concentration	

# APPENDIX G USEPA IEUBK MODEL INPUT AND OUTPUT

## LEAD MODEL Version 0.99d

AIR CONCENTRATION: 0.100 ug Pb/m3 DEFAULT ndoor AIR Pb Conc: 30.0 percent of outdoor.

hor	7 TD	Parameters:	
cner .	AIK	Parameters:	

C1101 11111							
Age	Time Outdoors	(hr)	Vent.	Rate	(m3/day)	Lung Abs.	(왕)
0-1	1.0			2.0		32.0	
1-2	2.0			3.0		32.0	
2-3	3.0			5.0		32.0	
3-4	4.0			5.0		32.0	
4-5	4.0			5.0		32.0	
5-6	4.0			7.0		32.0	
5 0 6-7	4.0			7.0		32.0	
U - /	4.0			, . 0		<b></b>	

DIET: DEFAULT

DRINKING WATER Conc: 12.30 ug Pb/L WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: Multiple Source Analysis

Age	Soil (ug Pb/g)	House Dust	(ug Pb/g)
0-1	23.0	26.1	
1-2	23.0	26.1	
2-3	23.0	26.1	
3 - 4	23.0	26.1	
4-5	23.0	26.1	
5-6	23.0	26.1	
6 - 7	23.0	26.1	

Additional Dust Sources: None DEFAULT Soil contribution conversion factor: 0.70 Air contribution conversion factor: 100.0

PAINT Intake: 0.00 ug Pb/day DEFAULT

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 ug Pb/dL

### CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (ug/dL)	Total Uptake (ug/day)	Soil+Dust Uptake (ug/day)	
0.5-1:	2.4	4.42	0.60	
1-2:	2.7	6.61	0.94	
2-3:	2.6	7.12	0.95	
3-4:	2.5	7.12	0.96	
4-5:	2.3	6.93	0.71	
5-6:	2.2	7.25	0.64	
_6-7:	2.1	7.60	0.61	
YEAR	Diet Uptake (ug/day)	Water Uptake (ug/day)	Paint Uptake (ug/day)	Air Uptake (ug/day)
0.5-1:	2.63	1.17	0.00	0.02

1-2:	2.73	2.90	0.00	0.03
2-3:	3.08	3.03	0.00	0.06
3-4:	2.98	3.12	0.00	0.07
4-5:	2.89	3.26	0.00	0.07
-6:	3.06	3.45	0.00	0.09
-7:	3.39	3.51	0.00	0.09



# APPENDIX H COST TABLES FOR REMEDIAL ALTERNATIVES

# ALTERNATIVE 1 Cost Estimate Tyndall AFB BX Service Station 731854.10000.30000

Author: JRH Date: 7/21/98 Checked by:

Date:

	Sampling Labor 8 Long-Term Monitoring Wells	50 hours	X	\$60	/hour	\$3,000
	5 QA/QC (1 dupl, 1 field blank 13 Total Samples		MS, 1 MSD)			
	Analytical Subcontractor					
		13 BTEX MTBI	(/napthalene/ ≣	\$150	/each	\$1,950
		8 Meth	ane	\$100	/each	\$800
		12 Field	Parameters	\$20	/each	\$240
	Supplies			\$500	lump sum	\$500
	Travel			\$400	lump sum	\$400
•	Data Management (20 hr x \$60hr)	l		\$1,200		\$1,200
	Data Validation (15 hr x \$60/hr	)		\$900		\$900
	Reporting/Project Management La	abor			•	
	Word Processing	5	hours x		/hour	\$125
	CADD	10	hours x		/hour	\$500
	Reproduction	8	hours x		/hour	\$160
	Staff Level	40	hours x		/hour	\$2,400
	Proj. Manager	15	hours x		/hour	\$1,200
	Editor	5	hours x	\$60	/hour	\$300
	Reporting/Project Management O	DCs		\$400	lump sum	\$400

# LTM 1 Cost Estimate Tyndall AFB BX Service Station 731854.10000.30000

Author: JRH Date: 7/21/98 Checked by:

Date:

Summary	/ of	Capital	and	Present	Worth	Costs
Outilities ;	,	Cupitai	4114			

**Capital Costs** 

Design/Construct 2 LTM Wells in 1999

P/F i=7% n=1

P/A i=7% n=3

\$7,776

**Monitoring Costs** 

Annual Monitoring of 8 Wells 1999-2001

Annual Cost =

\$14,075

PWF = 2.62431604

Present Worth Cost

\$36,937

Biennial Monitoring of 7 wells, 2002-2040

(20 events)

Cost per Event	\$14,075	
P/A i=7%, n=4	2002	\$10,737.75
P/A i=7%, n=6	2004	\$9,378.77
P/A i=7%, n=8	2006	\$8,191.78
P/A i=7%, n=10	2008	\$7,155.02
P/A i=7%, n=12	2010	\$6,249.47
P/A i=7%, n=14	2012	\$5,458.53
P/A i=7%, n=16	2014	\$4,767.69
P/A i=7%, n=18	2016	\$4,164.28
P/A i=7%, n=20	2018	\$3,637.25
P/A i=7%, n=22	2020	\$3,176.91
P/A i=7%, n=24	2022	\$2,774.84
P/A i=7%, n=26	2024	\$2,423.65
P/A i=7%, n=28	2026	\$2,116.91
P/A i=7%, n=30	2028	\$1,848.99
P/A i=7%, n=32	2030	\$1,614.98
P/A i=7%, n=34	2032	\$1,410.59
P/A i=7%, n=36	2034	\$1,232.06
P/A i=7%, n=38	2036	\$1,076.13
P/A i=7%, n=40	2038	\$939.93
P/A i=7%, n=42	2040	\$820.97
P/A i=7%, n=44	2042	\$717.07
P/A i=7%, n=46	2044	\$626.32
P/A i=7%, n=48	2046	\$547.05
P/A i=7%, n=50	2048	\$477.81
P/A i=7%, n=52	2050	\$417.34
P/A i=7%, n=54	2052	\$364.52

# LTM 1 Cost Estimate **Tyndall AFB BX Service Station** 731854.10000.30000

Author: JRH Date: 7/21/98 Checked by:

Date:

Total Capital and Present Worth Costs o	f LTM Progra	am	\$213,773
P/A i=7% n=70		4.1603893 Worth Cost	\$84,962
Site Management every year (70 years) Annual Cost	\$6,000		
Total P	resent Worth	Cost	\$84,098
P/A i=7%, n=72	2070	\$107.85	
P/A i=7%, n=70	2068	\$123.48	
P/A i=7%, n=68	2066	\$141.37	
P/A i=7%, n=66	2064	\$161.85	
P/A i=7%, n=64	2062	\$185.30	
P/A i=7%, n=62	2060	\$212.16	
P/A i=7%, n=60	2058	\$242.90	
P/A i=7%, n=58	2056	\$278.09	
P/A i=7%, n=56	2054	\$318.39	

Author:

JRH

Date:

7/21/98

Checked by: Date:

iosparging Pilot					
	Test Performance				\$4,000
	Pilot Test Workplan Pilot Test Kit Rental				Ψ-1,000
	(blower, accessories, etc.)	5 days x	\$500	/day	\$2,500
	Labor	112 hours	\$70	/hour	\$7,840
	Per Diem	14 days	\$136	•	\$1,904
	Mob/Demob/Data Analysis	80 hours	\$70	/hour	\$5,600
	Travel (1 tround trip from Denver @	¢200)	\$1.700	lump sum	\$1,700
	\$1500 and one trip from Atlanta @ Misc. Supplies	\$200)	\$1,700	lump sum	\$500
	Contingency (10%)			iamp cam	\$2,404
	Commigancy (1070)			Subtotal	\$26,448
nstallation of the	18-Well Biosparging System				
	Design/Procure/Install System	360 hours x	\$70	/hour	\$25,200
	Blower/Shed/Accessories		\$5,000	lump sum	\$5,000
	Asphalt Cutting/ Well point Installation	on/trenching	\$10,000	lump sum	\$10,000
	Electrical Subcontractor		\$5,000	lump sum	\$5,000
	Per Diem	20 days x	\$90	/day	\$1,800
	Travel		\$2,000	lump sum	\$2,000
	Geprobe Rental (2 weeks)		\$4,000	lump sum	\$4,000
	O & M Manual Preparation	40 hours x	\$60	/hour	\$2,400
	Contingency (10%)		\$5,540	lump sum	\$5,540
	Terrangeria, (vers)			Subtotal	\$60,940
nstallation of the	2-well SVE System				
	Design/Procure/Install System	130 hours x	\$70	/hour	\$9,10
	ICE Unit (V3)		\$65,000	lump sum	\$65,00
	Asphalt Cutting/ Well Installation		\$2,500	lump sum	\$2,50
	Electrical Subcontractor (included w	rith biosparging system abov	\$0	lump sum	\$
			***		***
	Per Diem	10 days x	\$90	/day	\$90
	Per Diem Travel	10 days x		lump sum	\$90 \$1,50

Author:

JRH

Date:

7/21/98

Checked by:

Date:

Emissions Permitting		\$1,000	lump sum	\$1,000
Contingency (10%)		\$8,240	lump sum	\$8,240
			Subtotal	\$90,640
Future Costs				
Confirmatory Soil Sampling at 6 Locations				
Sampling Labor 12 Soil Samples 5 QA/QC 17 Total Samples	60 hours x	\$60	/hour	\$3,600
Analytical Subcontractor	17 BTEX + naphthalen	<b>\$</b> 150	/each	\$2,550
Geoprobe Rental	2 days x	\$500	/day	\$1,000
Supplies		\$500	lump sum	\$500
Travel		\$1,500	lump sum	\$1,500
Per Diem	4 days x	\$90	day	\$360
Office ODC		\$300	lump sum	\$300
Contingency (10%)		\$981	lump sum	\$981
		Total Futur	e Cost	\$10,791
Annual and Operational Costs				
Soil Gas Sampling/ Respiration Testing at 6 Location	ns - Semiannually			
Soil Gas Analysis (EPA TO-3)	6 samples x	\$130	/sample	\$780
Sampling Labor	64 hours x	\$60	/hour	\$3,840
Sample Shipping		\$250	lump sum	\$250
Per Diem	8 days x	\$90	/day	\$720
Travel		\$1,500	lump sum	\$1,500

Author:

JRH

Date:

7/21/98

Checked by:

Equipment Rental (Me	eters)	\$500	lump sum	\$500
Progress Report	20 hours x	\$70	/hour	\$1,400
Contingency (10%)		\$899	lump sum	\$899
			Subtotal	\$9,889
	Total for 1 year (two sam	pling events	)	\$19,778
Groundwater Sampling - Annually for 5	years Biennial for 12 years (8 wells, 11 e	vents)		
Total for 1 sampling e	vent (from Alternative 1 cost estimate)			\$14,075
Operation and Maintenance of the Biosp	earging/SVE System -1 trip per month			
System Monitoring  Monitoring Labo	or 180 hours x	\$60	/hour	\$10,800
Travel		\$1,200	lump sum	\$1,200
Per Diem	12 days x	\$90	/day	\$1,080
Equipment Ren	tai	\$1,200	lump sum	\$1,200
Electrical Usage		\$5,000	lump sum	\$5,000
		Ann	ual O&M Cost	\$19,280
Site Management - per year	100 hrs/yr x	\$60	/hour	\$6,000
Summary of Capital Costs and 1st Ye	ar of Operation			
Biosparging System Pilot Test				\$26,448
Installation of the 18-Well Biosparging S	System			\$60,940
Installation of the 2-well SVE System				\$90,640
Groundwater Sampling per year				\$14,075
Soil Gas Sampling/ Respiration Testing	at 6 Locations for First year			\$19,778
Site Managment for first year				\$6,000
Annual O&M Cost				\$19,280
		Total Cap	ital Costs	\$237,161

Author:

JRH

Date:

7/21/98

Checked by:

Date:

A -		•			
Ar	nnual Costs				
Gr	roundwater Annual Sar	mpling for 5 years			
			Anı	nual Cost	\$14,075
		P/A i=7%, n=5	PWF = 4	4.10019744	
G	roundwater Biennial Sa	ampling for 12 years			
0.	Touridate Diominated	P/A i=7%, n=6	2004	\$9,378.77	
		P/A i=7%, n=8	2006	\$8,191.78	
		P/A i=7%, n=10	2008		
		P/A i=7%, n=12	2010	• •	
		P/A i=7%, n=14	2012		
		P/A i=7%, n=16	2014	\$4,767.69	
			Present	Worth Cost	\$98,912
	Grou	undwater sampling Prese	nt Worth	Cost	\$98,912
		, ,			
Bi	iosparging/SVE Syster	n Maintenance (3 years)			
			An	nual Cost	\$19,280
		P/A i=7%, n=3	PWF =	2.62431604	
		F/A 1-1 /0, 11-3		Worth Cost	\$50,597
					• •
So	oil Gas Sampling Semi	annually for three years			
			An	nual Cost	\$19,778
		D/A:-70/2	DIA/E -	2.62431604	
		P/A i=7%, n=3		Worth Cost	\$51,904
			1 163011	Worth Cost	ΨΟ1,004
Si	ite Management every	year (17 years)			
			An	nual Cost	\$6,000
		D/A :-70/47	DIA/E -	9.76322299	
		P/A i=7% n=17	•	Worth Cost	\$58,579
<u>Fi</u>	uture Costs		ricaciii	Worth Cost	Ψου,στο
P	resent Worth of Confin	matory Soil Sampling P/F i=7% n=4		-	\$8,232
т	otal Present Worth of	Annual Costs =			\$259,991
Total Cost E	Estimate of Propo	sed Corrective Acti	on =		\$505,385

# Design/Construct 2 LTM Wells

Tyndall AFB BX Service Station

Standard Rate Schedule

Standard Rate Sch	leanie							
Billing		Billing		Install New		Subcon-		
Category			Task 1	LTM/POC	I.	tracting		Reporting
Cost Code/(Billing	g Category)	Rate	(hrs)	Wells (\$)	(hrs)	(\$)	(hrs)	& PM (\$)
Word Processor	88/(15)	\$30	0	\$0	2	· ·	2	\$60
CADD Operator	58/(25)	\$47	0	\$0	0		5	\$235
Technician	42/(50)	\$40	5	\$200	0	\$0	0	\$0
Staff Level	16/(65)	\$57	15	\$855	30	\$1,710	10	\$570
Project Level	12/(70)	\$65	4	\$260	8	\$520	2	\$130
Senior Level	10/(80)	\$85	2	\$170	2		2	\$170
Principal	02/(85)	\$97	0	\$0	0	\$0	0	\$0
Total Labor (hrs	\$)		26	\$1,485	42	\$2,460	21	\$1,165
ODCs								
Phone				\$20		\$20		\$0
Photocopy				\$10		\$0		\$10
Mail				\$0		\$10		\$20
Computer		,		\$0		\$20		\$20
CAD				\$0		\$0		\$50
WP				\$0		\$20		\$20
Travel				\$150		\$0		\$0
Per Diem				\$0		\$0		\$0
Eqpt. & Supplies				\$150	<u> </u>	\$0		\$0
Total ODCs		· · · · · · · · · · · · · · · · · · ·		\$330		\$200		\$120
Outside Services								
LTM/POC Well	Installation Cost	S		\$2,160		\$0		\$0
Surveying		~		\$400		\$0		\$0
Other: Maintain	Institutional Cor	ntrols		\$0		\$0		\$0
Total Outside Ser	vices			\$2,560		\$0		\$0

Proposal Estimate	Task 1	Task 2	Task 3
Labor	\$1,485	\$2,460	\$1,165
ODC's	\$330	\$200	\$120
Outside Services	\$2,560	\$0	\$0
Total by Task	\$4,375	\$2,660	\$1,285
Total Labor	\$5,110		
Total ODCs	\$650		
Total Outside Services	\$2,560		
Total Project	\$8,320		

Task 1: Install 2 New LTM wells

Task 2: Subcontracting/Permitting

Task 3: Reporting/PM per Event.

# Tyndall AFB BX Service Station Backup Calculations

Long-Term Monitoring								
		Cost calculations						
Mise calculations		Description	Unit	Qty.	Qty. Unit Price Subtotal	Subtotal	Total	Total Source (If applicable)
Number of LTM wells: Number of wells: Depth each:	2 13 ft	Well Installation Mobilization Well Installation Soil Disposal	ea In ft drum	1 26 1	\$ 200 \$	\$ 500 \$ 1,560 \$ 100	\$ 2,160	