

ПРЕОБРАЗОВАТЕЛИ ДВОИЧНОГО КОДА В ДВО-ИЧНО-ДЕСЯТИЧНЫЙ КОД

Методические указания к выполнению лабораторных работ по курсу «Электроника и схемотехника»

Москва 2018

*Лабораторная работа №*2. «ПРЕОБРАЗОВАТЕЛИ ДВОИЧНОГО КОДА В ДВО-ИЧНО-ДЕСЯТИЧНЫЙ КОД»

<u>**Цель работы**</u> – исследование принципов построения преобразователей двоичного кода в двоично-десятичный код.

Теоретическая часть

1. ПРИНЦИПЫ ПОСТРОЕНИЯ ПРЕОБРАЗОВАТЕЛЯ ДВОИЧНОГО КОДА В ДВОИЧНО-ДЕСЯТИЧНЫЙ КОД

В качестве элементарных преобразователей двоичного кода в двоично-десятичный код можно использовать преобразователи двоично-десятичного в двоичный код с четырьмя входами и четырьмя выходами, а также с четырьмя входами и пятью выходами, произведя взаимную замену соответствующих весов, указанных на дополнительных полях (рис. 1. а, б).

Рис.1 УГО элементарных преобразователей двоичного кода в двоичнодесятичный код: а —с четырьмя входами и четырьмя выходами, б — четырьмя входами и пятью выходами

Рассмотрим преобразователь, имеющий четыре входа и четыре выхода (рис. 1., а). Он должен выполнять функцию, обратную функции преобразования двоично-десятичного кода в двоичный код, т. е. при $X \ge 5$ надо производить сложение числа X = (x4, x3, x2, x1) с числом 3. Таким образом, данный преобразователь выполняет функцию:

$$Y = \begin{cases} X, если \ 0 \le X \le 4, \\ X + 3, если \ 5 \le X \le 9. \end{cases}$$
 (1)

Числа 10,..., 15 не могут появляться на входе данного преобразователя.

2. ПРАВИЛА СОСТАВЛЕНИЯ ПРЕОБРАЗОВАТЕЛЕЙ ДВОИЧНОГО КОДА В ДВОИЧНО-ДЕСЯТИЧНЫЙ КОД:

- веса разрядов входных сигналов всех преобразователей кодов должны находиться в отношении 1:2:4:8;
- так как каждый преобразователь кодов преобразует только один двоичный разряд в двоично-десятичный разряд (вес 8 изменяется на вес 5), то преобразователь двоичного кода в двоично-десятичный код имеет пирамидальную структуру;
- построение пирамиды продолжается до тех пор, пока не будут получены веса $\mathbf{10}^{j}$ 2^{1} , где j = 0, 1, 2, ... (за исключением старшего десятичного разряда);
- на преобразователи нельзя подавать двоичные числа, превышающие сумму весов выходных сиг-налов 5 + 4 + 2 + 1 = 12.

Последнее правило относится к преобразователям, составляющим нижний ряд схемы преобразователя двоичного кода в двоично-десятичный. По этим правилам можно составить схему преобразователя для любого п-разрядного двоичного числа.

3. СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ КОДОВ

Выполним синтез преобразователя, описываемого соотношением (1), условное графическое обозначение которого представлено на рис. 1а. Для этого по функции составим таблицу истинности (табл. 1).

							Таблица М	№ 1
i	x4	х3	x2	x1	y4	у3	y2	у1
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
8	0	1	0	1	1	0	0	0
9	0	1	1	0	1	0	0	1
10	0	1	1	1	1	0	1	0
11	1	0	0	0	1	0	1	1
12	1	0	0	1	1	1	0	0

Сделаем синтез преобразователя кодов, задаваемого соотношением (1), которому соответствует таблица истинности (табл. 1), приведенная выше. Составим диаграммы Карно (или Вейча) для функций у1, ..., у4, минимизируем и получим выражения:

$$y_1 = \overline{X}_1 X_4 \vee X_1 \overline{X}_3 \overline{X}_4 \vee \overline{X}_1 X_2 X_3;$$

$$y_2 = X_1 X_2 \vee \overline{X}_1 X_4 \vee X_2 \overline{X}_3;$$

$$y_3 = X_1 X_4 \vee \overline{X}_1 \overline{X}_2 X_3;$$

$$y_4 = X_4 \vee X_1 X_3 \vee X_2 X_3.$$

Для определенности используем диаграммы Карно.

		∨ X₁ <u>X</u> ₃	$\overline{\zeta}_4 \vee \overline{X}_1 X_2$	Хз	$\mathbf{y}_2 = \mathbf{X}_1 \mathbf{X}_2 \vee \overline{\mathbf{X}}_1 \mathbf{X}_4 \vee \mathbf{X}_2 \overline{\mathbf{X}}_3$				
X_2X_1 X_4X_3	00	01	11	10	X_2X_1 X_4X_3	00	01	11	10
00	0	1	1	0	00	0	0	1	1
01	0	0	0	1	01	0	0	1	0
11	α	α	α	α	11	α	α	α	α
10	1	0	α	α	10	<u>1</u>	0	α	α
	• •	$X_1X_4 \vee \overline{X}$	$\overline{X}_1 \overline{X}_2 X_3$			- 4	4∨X₁X ₃	V X 2 X 3	
X_2X_1 X_4X_3	00	01	11	10	X ₂ X ₁	00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	0	0	0	01	0	1	1	1
11	α	α	α	α	11	α	α	α	α
	<u> </u>								

Если провести преобразование уравнений логики работы преобразователя и привести их к базису И-НЕ, то можно построить схему, приведенную на рис.2.

Рис.2 Схема элементарного преобразователя двоичного кода в двоично-десятичный код с четырьмя входами и четырьмя выходами

Поскольку двоичные сумматоры выполняют более сложные функции, чем логические элементы И-НЕ (ИЛИ-НЕ), то рассмотрим синтез преобразователя, описываемого соотношением (1), на двоичных сумматорах.

Рис.3 Схема элементарного преобразователя двоичного кода в двоично-десятичный с четырьмя входами и четырьмя выходами, выполненная на четырехразрядных сумматорах

Так как при $5 \le X \le 9$ функция Y = X + 3, то необходимость операции суммирования с числом 3 можно установить с помощью сумматора, вычисляющего сумму X + 11, поскольку при $X \ge 5$ возникает перенос P4 = 1, а при X < 5 - перенос P4 = 0. Тогда, использовав второй двоичный сумматор (рис. 3), легко реализовать функцию, описываемую соотношением (1). Действительно, при P4 = 0 второй двоичный сумматор вычисляет сумму (X + 11) + 5 = 16 + X. Так как выходами схемы являются выходы второго сумматора S1, S2, S3, S4, то число S4, которое появляется на выходе S4, теряется. Если же S4 = 1, то второй двоичный сумматор вычисляет сумму S4 = 1, то второй двоичный сумматор вы

Выполним синтез такого же преобразователя на сдвоенных четырехканальных мультиплексорах (см. рис. 4). Для этого будем считать, что сложность получаемой в результате синтеза комбинационной схемы зависит от выбора переменных, используемых в качестве адресных переменных мультиплексора. Если в качестве адресных переменных для функций у1 и у4 использовать переменные х1 и х3, а для функций у2 и у3 — переменные х1 и х2, то будет получена наиболее экономичная комбинационная схема.

Для мультиплексоров, реализующих функции выходов:

у1 и у4 (см. рис.4) A0 = 1, A1 = x2, A2 = A3 = x4, B0 = 0, B1 = x2, $B2 = \overline{x4}$, B3 = x4;

у2 и у3 (см. рис.4) A0 = 1; $A2 = \overline{x3}$, A2 = 0, A3 = x4, B0 = B1 = 0, B2 = x4, B3 = x3.

Рис.4 Схема элементарного преобразователя двоичного кода в двоично-десятичный код с четырьмя входами и четырьмя выходами на двух сдвоенных четырехканальных мультиплексорах

Недостатком рассмотренных преобразователей кодов с четырьмя входами и четырьмя выходами является то, что сумма весов входных сигналов (8+4+2+1=15) больше, чем сумма весов выходных (5+4+2+1=12), что вызывает необходимость подачи сигнала «0» на некоторые преобразователи.

На рис. 5, также как и на рис. 1 б, показан элементарный преобразователь кодов, имеющий четыре входа и пять выходов, сумма весов выходных сигналов которого (10+5+4+2+1=22) больше суммы весов входных сигналов (8+4+2+1=15). Такой преобразователь позволяет уменьшить число микросхем, используемых для построения преобразователя двоичного кода в двоично-десятичный код (рис. 6), так как на значения двоичных чисел, подаваемых на входы элементарных преобразователей, сняты ограничения.

Рис. 5 Элементарный преобразователь кодов, имеющий четыре входа и пять выходов

На рис. 6 показан преобразователь кодов, имеющий пять входов и шесть выходов с дополнительным стробирующим входом. Такой преобразователь реализован на микросхеме К155ПР7, которая выполнена в виде ПЗУ. Понятно, что чем больше двоичных разрядов преобразуется в двоично-десятичные разряды, тем проще будет схема преобразователя многоразрядного двоичного кода в многоразрядный двоично-десятичный код.

Рис. 6 Элементарный преобразователь кодов, имеющий пять входов и шесть выходов, реализованный на микросхеме К155ПР7

ИМС К155ПР7 построена по тому же принципу, что и К155ПР6, но отличается обратным действием, т.е. преобразует двоичный код на входах в двоичнодесятичный код на выходах. Двоичный код подается на входы А0...А4. Вход разрешения RE используется также, как и в ИМС К155ПР6.

Выходы Q6 и Q7 у данной микросхемы не коммутируются и всегда имеют высокие выходные уровни напряжения.

Таблица истинности работы микросхемы К155ПР7 приведена на рис.7.

Номер		Вход					Двоичный-десятичный код на выходе							
слова	A4	A3	A2	A1	AO	RE	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
0	Н	н	Н	Н	н	Н	В	В	н	Н	н	Н	н	Н
1	Н	н	Н	Н	В	Н	В	В	н	Н	Н	Н	н	В
2	Н	н	Н	В	н	Н	В	В	н	Н	н	Н	В	Н
3	Н	н	В	В	Н	В	В	Н	Н	Н	Н	Н	В	В
4	Н	Н	В	Н	Н	Н	В	В	Н	Н	Н	В	Н	Н
5	Н	Н	В	Н	В	Н	В	В	Н	Н	В	Н	Н	Н
6	Н	Н	В	В	Н	Н	В	В	Н	Н	В	Н	Н	В
7	Н	Н	В	В	В	Н	В	В	Н	Н	В	Н	В	Н
8	Н	В	Н	Н	Н	Н	В	В	Н	Н	В	Н	В	В
9	Н	В	Н	Н	В	Н	В	В	Н	Н	В	В	Н	Н
10	Н	В	Н	В	Н	Н	В	В	Н	В	Н	Н	Н	Н
11	Н	В	Н	В	В	Н	В	В	Н	В	Н	Н	Н	В
12	Н	В	В	Н	Н	Н	В	В	Н	В	Н	Н	В	Н
13	Н	В	В	Н	В	Н	В	В	Н	В	Н	Н	В	В
14	Н	В	В	В	Н	Н	В	В	Н	В	Н	В	Н	Н
15	Н	В	В	В	В	Н	В	В	Н	В	В	Н	Н	Н
16	В	Н	Н	Н	Н	Н	В	В	Н	В	В	Н	Н	В
17	В	Н	Н	Н	В	Н	В	В	Н	В	В	Н	В	Н
18	В	Н	Н	В	Н	Н	В	В	Н	В	В	Н	В	В
19	В	В	В	Н	Н	Н	В	Н	Н	В	В	Н	Н	Н
20	В	Н	В	Н	Н	Н	В	В	В	Н	Н	Н	Н	Н
21	В	Н	В	Н	В	Н	В	В	В	Н	Н	Н	Н	В
22	В	Н	В	В	Н	Н	В	В	В	Н	Н	Н	В	Н
23	В	Н	В	В	В	Н	В	В	В	Н	Н	Н	В	В
24	В	В	Н	Н	Н	Н	В	В	В	Н	Н	В	Н	Н
25	В	В	Н	Н	В	Н	В	В	В	Н	В	Н	Н	Н
26	В	В	Н	В	Н	Н	В	В	В	Н	В	Н	Н	В
27	В	В	Н	В	В	Н	В	В	В	Н	В	Н	В	Н
28	В	В	В	Н	Н	Н	В	В	В	Н	В	Н	В	В
29	В	В	В	Н	В	Н	В	В	В	Н	В	В	Н	Н
30	В	В	В	В	Н	Н	В	В	В	В	Н	Н	Н	Н
31	В	В	В	В	В	Н	В	В	В	В	Н	Н	Н	В
Любое	x	x	x	x	x	В	В	В	В	В	В	В	В	В

Рис. 7 Таблица истинности работы микросхемы К155ПР7

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Проведите преобразование уравнений логики работы элементарного преобразователя двоичного кода в двоично-десятичный с четырьмя входами и четырьмя выходами, полученных с помощью таблиц Карно, к базису И-НЕ. Полученные результаты поместите в отчет.

Во всех заданиях, в схемных установках, необходимо установить рабочее поле не менее 50 см в ширину и не менее 30 см в высоту.

Задание 1. Ознакомьтесь с вариантом задания. Соберите на рабочем поле среды Multisim схему для исследования элементарного преобразователя двоичного кода в двоично-десятичный (0-15) с четырьмя входами и четырьмя выходами (рис. 8), на элементах И-НЕ.

Состав схемы: интерактивные цифровые константы; схемы логики 2И-НЕ, 3И-НЕ, пробники, семисегментные индикаторы.

Рис. 8 Схема для исследования элементарного преобразователя 4-х разрядного двоичного кода в двоично-десятичный (0-15) с четырьмя входами и четырьмя выходами

С помощью интерактивных цифровых констант выставьте на входе преобразователя, в соответствии с вариантом(табл.2), необходимые значения чисел, в дво-ичном коде. Скопируйте схему (рис. 8) на страницу отчета.

При моделировании убедитесь в правильности преобразования двоичного кода в двоично-десятичный, сделайте скриншот и поместите его в отчет. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Измените младший разряд двоичного кода (2^0), на входе преобразователя с 1 на 0 и убедитесь в правильности преобразования двоичного кода в двоично-десятичный, с помощью индикаторов и пробников. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Сделайте скриншот и поместите его в отчет.

Таблица 2

Вариант	Информация, в двоичном коде, на входе преобразователя	Цвет семисегментного инди- катора и пробников		
1, 6, 11, 16, 21, 26, 31	0101	красный		
2, 7, 12, 17, 22, 27, 32	0011	синий		
3, 8, 13, 18, 23, 28, 33	1001	зеленый		
4, 9, 14, 19, 24, 29	1011	оранжевый		
5, 10, 15, 20, 25, 30	0111	желтый		

Задание 2. Ознакомьтесь с вариантом задания. Соберите на рабочем поле среды Multisim схему для исследования преобразователя 6-ти разрядного двоичного кода в двоично-десятичный (0-63), рис. 7, на четырехразрядных сумматорах.

Состав схемы: интерактивные цифровые константы; четырехразрядные сумматоры, пробники, семисегментные индикаторы.

Рис. 7 Схема для исследования преобразователя 6-ти разрядного двоичного кода в двоично-десятичный (0-63) на четырехразрядных сумматорах

С помощью интерактивных цифровых констант выставьте на входе преобразователя, в соответствии с вариантом(табл.3), необходимые значения чисел, в дво-ичном коде. Скопируйте схему (рис. 7) на страницу отчета.

При моделировании убедитесь в правильности преобразования двоичного кода в двоично-десятичный, сделайте скриншот и поместите его в отчет. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Измените двоичный код разряда 2^1 с «0» на «1», убедитесь в правильности преобразования двоичного кода в двоично-десятичный, с помощью пробников и индикаторов. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Сделайте скриншот и поместите его в отчет.

Вариант	Информация, в двоичном коде, на входе преобразователя	Цвет семисегментных индикаторов и пробников
1, 6, 11, 16, 21, 26, 31	111010	желтый
2, 7, 12, 17, 22, 27, 32	101110	красный
3, 8, 13, 18, 23, 28, 33	100111	синий
4, 9, 14, 19, 24, 29	001110	зеленый
5, 10, 15, 20, 25, 30	100011	оранжевый

Объясните полученные результаты.

Задание 3. Ознакомьтесь с вариантом задания. Соберите на рабочем поле среды Multisim схему для исследования преобразователя 13-ти разрядного двоичного кода в двоично-десятичный (рис. 8), на микросхемах SN74185 (аналог микросхемы К155ПР7).

Состав схемы: интерактивные цифровые константы; микросхемы SN74185, пробники, семисегментные индикаторы.

Рис. 8 Схема для исследования преобразователя 13-ти разрядного двоичного кода в двоично-десятичный, на микросхемах SN74185

С помощью интерактивных цифровых констант выставьте на входе преобразователя, в соответствии с вариантом(табл.4), необходимые значения чисел, в дво-ичном коде. Скопируйте схему (рис. 8) на страницу отчета.

При моделировании убедитесь в правильности преобразования 13-ти разрядного двоичного кода в двоично-десятичный, сделайте скриншот и поместите его в отчет. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Измените двоичный код в разряде 2⁷ со значения «0» в значение «1» и убедитесь в правильности преобразования двоичного кода в двоично-десятичный, с помощью индикаторов. Результаты преобразования двоичного кода в двоично-десятичный внесите в таблицу(с.12). Сделайте скриншот и поместите его в отчет.

Таблица 4

Вариант	Информация, в двоичном коде, на входе преобразователя	Цвет семисегментных индикаторов и пробников		
1, 6, 11, 16, 21, 26, 31	0111000010101	зеленый		
2, 7, 12, 17, 22, 27, 32	0101001001100	оранжевый		
3, 8, 13, 18, 23, 28, 33	1100001101011	желтый		
4, 9, 14, 19, 24, 29	1011101010010	красный		
5, 10, 15, 20, 25, 30	1111001110111	синий		

Объясните полученные результаты.

Номер задания	Информация, в двоичном коде, на входе преобразователя	Информация, в двоично- десятичном коде, на вы- ходе преобразователя		
1				
2				
3				

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Наименование и цель работы.
- 2. Перечень элементов схем, использованных в исследованиях, с их краткими характеристиками.
- 3. Преобразованные уравнения логики работы элементарного преобразователя с четырьмя входами и четырьмя выходами, в базисе И-НЕ.
- 4. Изображения электрических схем исследования преобразователей двоичного кода в двоично-десятичный.
- 5. Таблица результатов преобразования двоичного кода в двоично-десятичный.

6. Выводы по работе.

Контрольные вопросы

- 1. Какого типа бывают преобразователи кодов? Приведите примеры.
- 2. Расскажите порядок преобразования двоичного кода в двоично-десятичный.
 - 3. Какой разряд двоичного кода и двоично-десятичного всегда совпадает?
- 4. Расскажите правила составления преобразователя двоичного кода в дво-ично-десятичный.
- 5. Как используется комбинационный сумматор при преобразовании двоичного кода в двоично-десятичный?
- 6. Почему можно получить более экономичную схему преобразователя двоично-десятичного кода в двоичный на основе преобразователей кодов, имеющих по пять входных и шесть выходных сигналов?
- 7. Нарисуйте структурную схему микросхемы К155ПР7 и объясните ее работу.
- 8. Нарисуйте схему преобразователя 8-ми разрядного двоичного кода в дво-ично-десятичный код (0-255) на микросхемах К155ПР7.