

## 2016 | Cyber Security Division R&D SHOWCASE AND TECHNICAL WORKSHOP

## Ensuring and Accelerating Routing Security

PARSONS, Inc Sandra Murphy

18 Feb 2016

## Team Profile

## PARSONS

Prime

secure infrastructure protocols

#### DRAGON RESEARCH LABS

Sub-contractor network operations

**Raytheon**BBN Technologies

Sub-contractor security; public key infrastructures

## Customer Need

- Routing is a critical core-infrastructure protocol
  - With an Achilles heel
- Routing protocol (BGP)
  - A global, cooperative, distributed system
  - That's powerful, but also its weakness
- World-wide threat source
- World-wide impact
  - Blackholes, MITM, outages
- Everybody's problem
- Nobody's responsibility



## Approach (Part 1)

- Proactive: <u>block</u> bogus routing information
- Technical Solution:
  - Step 1: Certify Right to Use Addresses
  - Step 2: Origin Validation (protect creation of initial route)
  - Step 3: Path Validation (protect record of the route's path)
- Project Team and Strategy
  - Project team of experts in key areas
  - Engage with key stakeholders and gatekeepers:
    - Router vendors, operators, Internet resource registries
  - Work on all solution phases:
     standardization, implementation, and deployment
  - Parallel existing systems and operations

## Approach (continued, Part 2)

STEP 21: 3Cer+fy@the@right@to@use@addresses@



#### STEP12: 1Drigin 13/alida+on 13/ (protect 13/rea+on 13/f13/ni+ali3/oute) 13/

Parallelaexis&ngaddressalloca&onsystem?



Resource Public Key Infrastructure - RPKI

- IRPKI Inoute Tauthoriza & on Industrial Months of the Impact of the Im
- IRouters I use IRPK I authoriza & on I to I validate I the I moute I brigin I

#### Globally@Distributed@CA@Repositories@

Cache-to-router2 oprotocoldelivers2 list@fauthorized2 prefix@rigins@c2 routers@n@eal2 8me.2 Routers@do@NO2 crypto2



#### STEP®::Path@/alida/on@ (protect@build@up@bf@the@route's@path)@



ISP signs everything it receives to validate the path

- Originators, ISP A sign what they originate
- Propogators, ISP B and ISP C, sign what they propagate
- Routes collect signatures as they pass through the network

Protections parallel legitimate behavior

Proactive solution: BLOCK bogus routing

## Approach (continued, Part 3)

#### **Stages of ISP Deployment**

Choose activities to facilitate deployment in each stage

|           | Reluctance |                                                          | Doubting<br>& |                                              | Planning |                                           | Beginning<br>to Move |                                                     | Progressing<br>Steadily |                                           |
|-----------|------------|----------------------------------------------------------|---------------|----------------------------------------------|----------|-------------------------------------------|----------------------|-----------------------------------------------------|-------------------------|-------------------------------------------|
| Standards | •          | Start solution                                           | •             | ↑<br>Formalize<br>Solution                   | •        | Obtain<br>feedback<br>Revise as<br>needed | •                    | Document BCPs                                       | •                       | Define needed extensions                  |
| Outreach  | :          | Recruit Core Experts<br>Explain need to other<br>Experts | •             | Explain path<br>Widen Publicity<br>Tutorials | •        | Coordinate policy Find early adopters     | •                    | Hold tutorials<br>Technical & Policy<br>Conferences | •                       | Widen outreach<br>Articles &<br>Workshops |
| Technical | •          | Analyze<br>Measure Risk                                  | •             | Predict needs<br>Start tools                 | •        | Interop. tests<br>Deploy tools            | •                    | Monitoring<br>Scaling<br>Performance tweaks         | •                       | Measure growth Fix slow areas             |

**Culture change**: explain the need, create the tools, find a leader, publish use cases

## Competition

#### Reactive systems

- Routing-history-based anomaly detectors
  - BGP-route collectors and alert services
  - Collectors: RouteViews, RIPE RIS, PacketClearingHouse
  - Alert services: research and commercial: e.g., Cyclops, Dyn Research, BGPMON

#### Proactive systems

- Best current practice is BGP route filters
  - Based on customer input or Internet Routing Registry (IRR) data
- Issues with best current practice
  - <u>AUTHORIZATION</u>: Input (customer & IRR) authorization is weak
  - EFFECTIVENESS: Most effective close to error
  - <u>COVERAGE</u>: Mostly for origin validation, not path validation
  - <u>PERFORMANCE</u>: Filters (475K lines) challenge memory; filters must be rebuilt and reloaded periodically; loading new filters seriously impacts operations

## Benefits

- Proactive: Block bogus routing, rather than detect and alert
- Authorization: Routing information is certified with high assurance
- Effectiveness: Validation effective anywhere in the Internet
- Coverage: Path validation as well as origin validation
- Performance: Incremental update, no need to rebuild full set
  - Updated information can arrive in real time without disrupting operations

## Current Status (Part 1)



- Certification:
  - All global registries certifying member resources
  - 2.3M address blocks certified, world-wide
- Origin Validation:
  - Three top router vendors support in shipping code
  - Top US companies with deployment in progress
    - using DHS funded implementations
- Path Validation:
  - specifications mature but not yet published

## Current Status (continued, Part 2)

#### **Deployment – Origin Validation - Current Stage**

Reluctance Doubting/ Planning Beginning Progressing to Move Steadily

- Building tools to aid deployment:
  - Workshop in a Box training and planning
  - RPKI Visualization certification monitor
  - Router-RPKI Monitor origin validation in operation
  - Emulation and Operation Monitor planning and operations
  - Rpki.net and RPSTIR standards and operation
- Participating in policy development

## Next Steps

## FROM NOW TO COMPLETION: Ensure and accelerate deployment:

- Tools
  - Ease barriers, monitor, diagnosis, performance
- Community
  - · Training, workshops, tutorials, outreach, community building
  - Working with major providers (ISP, data center, cloud)
  - Working with major address holders to encourage deployment
- Policy
  - Work with principal policy bodies registries, government, sector
  - Work with policy bodies' clients and members
- Specification
  - Complete path validation standardization!
  - As needed, address specification issues

## Potential Transition Activities

#### TECHNOLOGY TRANSITION:

- Transition to commercial products in place
- Transition to critical gateholders in place

#### MAJOR CULTURE CHANGE FOR OPERATIONS:

- Ensure community understands need
  - (outreach; status monitors)
- Ensure community has the means to make the change
  - (OAM tools for internal operations)
- Find a leader
  - (working with major networks for use cases, experiments, etc.)

## Contact Information



**Sandra Murphy** 

PARSONS, Inc.

Sandra.Murphy@parsons.com

+1 443-430-8065

**EARS** information

www.securerouting.net

www.rpki.net

http://sourceforge.net/projects/rpstir/

PARSONS





# 2016 | Cyber Security Division R&D SHOWCASE AND TECHNICAL WORKSHOP