1. Velocity is a free vector and will only be affected by rotation.
$$AV = {}^{A}R^{B}V = [-1.34 \quad 22.32 \quad 30]^{T}$$

4.
$$R \triangleq \Gamma_1, \Gamma_2, \Gamma_3$$
 From the definition, $\Gamma_1 \times \Gamma_2 = \Gamma_3$

$$\det(R) = (\Gamma_1 \times \Gamma_2) \cdot \Gamma_3 = \Gamma_3 \cdot \Gamma_3 = 1$$

5.
$$\|P\| = \sqrt{P^T P} = \sqrt{(RP)^T (RP)} = \|RP\|$$
 $|\cdot| \Rightarrow determinant$

7.
$$\begin{bmatrix} A \\ b \\ C \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \times \begin{bmatrix} \frac{13}{2} \\ -\frac{13}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{3}{4} \\ -\frac{13}{4} \end{bmatrix}$$

$$R_{2YX}(Y,\beta,\alpha) = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} = \begin{bmatrix} \cos\beta\cos\gamma - \cos\beta\sin\gamma & \sin\beta \\ -\sin\alpha\cos\beta & \cos\beta \\ \cos\alpha\cos\beta & \cos\alpha\cos\beta \end{bmatrix}$$

$$\sin \beta = \frac{1}{2} \Rightarrow \beta = \frac{\pi}{6} \text{ or } \beta = \frac{5}{6}\pi$$

$$\alpha = A + anz \left(-\frac{R_{23}}{\cos \beta}, \frac{R_{33}}{\cos \beta} \right) \Rightarrow \alpha = -\frac{2}{5}\pi \quad \text{or} \quad \alpha = \frac{\pi}{3}$$

$$Y = A + an^2 \left(\frac{-R_{12}}{\cos \beta}, \frac{R_{11}}{\cos \beta} \right) \Rightarrow Y = -\frac{\pi}{2} \theta r \quad Y = \frac{\pi}{2}$$

g. Proposition:
$$R_{\frac{1}{2}(\pm\pi+\alpha)}R_{\frac{1}{2}(\pm\pi+\gamma)}=R_{\frac{1}{2}(\pm\pi+\gamma)}=R_{\frac{1}{2}(\alpha)}R_{\frac{1}{2}(\beta)}R_{\frac{1}{2}(\gamma)}$$

This is easily derived if you work backwards. i.e, substitute into Rodriquez's formula wherever $\hat{K} \otimes \hat{Q}$ or $\hat{K} \cdot \hat{Q}$ occur, collect terms, and you'll get (2.80).

14.

3.3) (Continued)

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{2} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{W}^{B}T = {}_{3}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T$$

$${}^{B}_{W}T = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & L_{1}C_{1} + L_{2}C_{1}C_{2} \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & L_{1}S_{1} + L_{2}S_{1}C_{2} \\ S_{23} & C_{23} & 0 & L_{2}S_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.	4

α_{i-1}	a_{i-1}	d_i	θ_i
0	0	$L_1 + L_2$	θ_1
90°	0	0	θ_2
0	L_3	0	θ_3
0	L_4	0	0

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & L_{1} + L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{3} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4.2) This problem can have different solutions depending how it is interpreted. I intended that a goal is specified which includes a desired orientation of the last link. In this case, the solution is fairly easy.

 $_{T}^{S}T$ is given, so compute:

$$_{W}^{B}T = _{S}^{B}T_{T}^{S}T_{T}^{W}T^{-1}$$

Now $_W^B T = _3^0 T$ which we write out as:

$${}_{3}^{0}T = \begin{bmatrix} R_{11} & R_{12} & R_{13} & P_{x} \\ R_{21} & R_{22} & R_{23} & P_{y} \\ R_{31} & R_{32} & R_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From the solution of exercise 3 from chapter 3 we have:

$${}_{3}^{0}T = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & C_{1}(C_{2}L_{2} + L_{1}) \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & S_{1}(C_{2}L_{2} + L_{1}) \\ S_{23} & C_{23} & 0 & S_{2}L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equate elements (1, 3): $S_1 = R_{13}$

Equate elements (2, 3): $-C_1 = R_{23}$

$$\therefore \quad \theta_1 = \operatorname{atan2}(R_{13}, -R_{23})$$

If both $R_{13} = 0$ and $R_{23} = 0$ the goal is unattainable.

Equate elements (1, 4): $P_x = C_1(C_2L_2 + L_1)$

Equate elements (2, 4): $P_y = S_1(C_2L_2 + L_1)$

If
$$C_1 \neq 0$$
 then $C_2 = \frac{1}{L_2} \left(\frac{P_x}{C_1} - L_1 \right)$

Else
$$C_2 = \frac{1}{L_2} \left(\frac{P_y}{S_1} - L_1 \right)$$

Equate Elements (3,4): $P_z = S_2 L_2$

so,
$$\theta_2 = \operatorname{atan2}\left(\frac{P_z}{L_2}, C_2\right)$$

Equate elements (3, 1): $S_{23} = R_{31}$

Equate elements (3, 2): $C_{23} = R_{32}$

so,
$$\theta_3 = \text{atan2}(R_{31}, R_{32}) - \theta_2$$

If both R_{31} and R_{32} are zero, the goal is unattainable.

A second interpretation of the problem is that only a desired position is given (no orientation). In this there may be up to four solutions:

Assume³ $P_{\text{tool}} = L_3 \hat{X}_3$, then

$${}^{0}P_{\text{tool}} = \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix} = \begin{bmatrix} L_{1}C_{1} + L_{2}C_{1}C_{2} + L_{3}C_{1}C_{23} \\ L_{1}S_{1} + L_{2}S_{1}C_{2} + L_{3}S_{1}C_{23} \\ L_{2}S_{2} + L_{3}S_{23} \end{bmatrix}$$

First

$$S_1 = \frac{P_y}{L_1 + L_2 C_2 + L_3 C_{23}}$$
 $C_1 = \frac{P_x}{L_1 + L_2 C_2 + L_3 C_{23}}$

so,
$$\theta_1 = \operatorname{atan2}(P_y, P_x)$$
 or $\operatorname{atan2}(-P_y, -P_x)$

Since the sign of the " $L_1 + L_2C_2 + L_3C_{23}$ " term may be + or -.

Next, define:

$$\alpha = \begin{cases} \frac{P_x}{C_1} - L_1 & \text{if } C_1 \neq 0\\ \frac{P_y}{S_1} - L_1 & \text{if } S_1 \neq 0 \end{cases}$$

And we have:

$$L_2C_2 + L_3C_{23} = \alpha$$

$$L_2S_2 + L_3S_{23} = P_z$$

Square and add these two equations to get:

$$L_2^2 + L_3^2 + 2L_2L_3C_3 = \alpha^2 + P_2^2$$

$$C_3 = \frac{1}{2L_2L_3}(\alpha^2 + P_z^2 - L_2^2 - L_3^2)$$

$$S_3 = \pm \sqrt{1 - C_3^2}; \quad \theta_3 = atan2(S_3, C_3)$$

4.2) (Continued)

Finally,

$$L_3C_{23}=\alpha-L_2C_2$$

$$L_3 S_{23} = P_z - L_2 S_2$$

so,
$$\theta_2 = \text{atan2}(P_z - L_2 S_2, \alpha - L_2 C_2) - \theta_3$$

- 17. NOTE: It's Example 3.4, NOT Exercise 3.4
 - 4.4) For an arm like this it is reasonable to specify a goal by giving the desired x & y coordinates of the tip and a value for θ₃, the wrist roll. After transforming back to P_X & P_T of the wrist (i.e. remove offset due to L₃) the solution is simple and corresponds to the conversion between cartesian and polar coordinates.