Supervised learning – continued

What is supervised learning?

supervised learning

Logistic regression

$$p(X) = P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

$$\log(\frac{p(X)}{1 - p(X)}) = \beta_0 + \beta_1 X$$

Link function: Links Y to the linear predictor Log-odds or logit

Linear predictor: Linear function of X

Other classification methods

- Ensemble learning
 - Boosting
 - Gradient boosting
 - AdaBoost
 - Bagging (Bootstrap aggregating)
 - Random forest classification/regression
- Neighbors
 - K-nearest neighbors (KNN)

What class would you assign to the new point?

One way is to look at the neighbours of the new point

Ridiculous question time: How do you choose neighbours?

Choose k-nearest neighbours: How do you pick k?

Choose neighbours in a radius: How do you pick radius?

Once we have chosen neighbours, how do we predict?

Ensemble learning

Wisdom of crowds

Ensemble learning

- Wisdom of crowds
 - Wikipedia
 - Democracy

Emsemble learning

- Aggregate weak models to get a much better one
 - Models must be very weakly correlated
 - Models must have some predictive power

Random forest classification

- Ensemble learning method
 - Based on decision trees

- Build trees that maximally separate our outcome of choice
 - Each node is decision based on a single variable (feature)

<u>1</u> <u>1</u> 0 0 0 0 0

From Decision Trees to Random Forests

- Build many decision trees
 - Each tree based on random resampling of data (with replacement)

From Decision Trees to Random Forests

- Forest with many decision trees
 - Each tree based on random resampling of data (with replacement)
 - Each tree built on a random set of features

From Decision Trees to Random Forests

- Forest with many decision trees
 - Each tree based on random resampling of data (with replacement)
 - Each tree built on a random set of features
 - Ensures that the different trees are not highly correlated with each other

Random forest classifiers

- The final prediction is based on votes from individual trees
 - Each tree the RF gets one vote
 - Majority vote is the prediction

Tally: Six 1s and Three 0s

Prediction: 1

Advantages of random forest

- Highly flexible can work for a variety of problems
- Very scalable number of input features can be very high
- Reduces overfitting, while improving prediction
- Can be used for both classification and regression

Exercise time