

Mini-batch gradient descent

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

Mini-batch gradient descent report 2 for t = 1,..., 5000 { Formal prop on X ses. HECO = QCO (SCO)

HECO = QCO (SCO)

There is for Xii)

There is for Xii)

There is for Xii)

There is for Xii) Compute cost $J^{EIJ} = \frac{1}{1000} \stackrel{?}{\approx} 2(90,90) + \frac{1}{21000} \stackrel{?}{\approx} 1000 |_{F}^{2}$ Bookprop to comput grounts cort Jes (usy (x513, x512)) Mis Mes - 99 mis , Pers! = Pers - 48 mis "I epoch" pass through training set. Andrew Ng

Understanding mini-batch gradient descent

Training with mini batch gradient descent

Batch gradient descent

Mini-batch gradient descent

Andrew Ng

Choosing your mini-batch size

> If mini-both size = m : Both godnet desert. (X 813, Y 813) = (X, Y)

 \rightarrow If min=both Size=1: Stochaste graph descent. Every example is it our $(X^{(1)},Y^{(1)})=(\chi^{(1)},y^{(1)})\dots(\chi^{(2)},y^{(1)})$ min=both.

In practice: Somewh in-between I all m

Stochostic Live speaking for Vartoritation

In-bother Bostch (minihotal size godiet desul not too by/small) (min; both size an) Furleyt learnly. Too long · Vectoraution. per iteration · Make poor without processing extire truly sot.

Andrew Ng

Choosing your mini-batch size

Exponentially weighted averages

Temperature in London

```
\theta_{1} = 40^{\circ}F \quad 4^{\circ}C \leftarrow
\theta_{2} = 49^{\circ}F \quad 9^{\circ}C
\theta_{3} = 45^{\circ}F
\vdots
\theta_{180} = 60^{\circ}F \quad 8^{\circ}C
\theta_{181} = 56^{\circ}F
\vdots
```


Exponentially weighted averages

Ve as appropriately

Overop over

No 1-1-13 days

temperature.

Understanding exponentially weighted averages

Exponentially weighted averages

Implementing exponentially weighted averages

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$
...

$$V_{0} := \beta v + (1-\beta) O_{1}$$

$$V_{0} := \beta v + (1-\beta) O_{2}$$
:

Bias correction in exponentially weighted average

Bias correction

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$v_0 = 0$$

$$v_1 = 0.08 v_0 + 0.02 \Theta_1$$

$$v_2 = 0.98 v_1 + 0.02 \Theta_2$$

$$= 0.98 \times 0.02 \times \Theta_1 + 0.02 \Theta_2$$

$$= 0.98 \times 0.02 \times \Theta_1 + 0.02 \Theta_2$$

$$= 0.0196 \Theta_1 + 0.02 \Theta_2$$

$$\frac{1-\beta^{t}}{1-\beta^{t}}$$

$$t=2: 1-\beta^{t} = 1-(0.98)^{2} = 0.0396$$

$$\frac{1-\beta^{t}}{0.0396} = \frac{0.01960. + 0.020}{0.0396}$$

Andrew Ng

Gradient descent with momentum

Implementation details

On iteration *t*:

Compute *dW*, *db* on the current mini-batch

$$\Rightarrow v_{db} = \beta v_{db} + (1 - \beta) \underline{db}$$

$$W = W - \alpha v_{dW}, \ b = b - \alpha v_{db}$$

Hyperparameters:
$$\alpha, \beta$$

$$\beta = 0.9$$
Overlose our last 20 graduits

RMSprop

RMSprop W, W2, 42 On iteration t: Compute dw. db on count mini-both Saw = P2 Saw + (1-P2) dw = small Z=10-8

Adam optimization algorithm

Adam optimization algorithm

Hyperparameters choice:

$$\rightarrow \mathcal{A}$$
: needs to be tune
 $\rightarrow \beta_1$: 0.9 $\rightarrow (du)$
 $\rightarrow \beta_2$: 0.999 $\rightarrow (dw^2)$
 $\rightarrow \mathcal{E}$: 10-8

Adami: Adaptu momet estination

Adam Coates

Learning rate decay

Learning rate decay

Learning rate decay

d = 1 + decay-rote * epoch-num

Epoch	2	
	0.1	
2	0.67	
3	6.5	
4	0.4	
;	1	

X 813	X 827		7	
			7	epoch 1
1			7	epoul
\leftarrow				

do = 0.2 decq. rate = 1

Other learning rate decay methods

The problem of local optima

- Unlikely to get stuck in a bad local optima
- · Plateaus can make learning slow