page - 1 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonctions

I. RAPPELS:

A. Fonction numérique :

a. Définition :

- Toute relation f qui associe chaque élément x de $\mathbb R$ par un élément au plus y de $\mathbb R$ est appelée $f: \mathbb R \to \mathbb R$ fonction numérique de la variable réelle x on note $x \mapsto f(x)$.
- Tous les éléments x de $\mathbb R$ qui ont images par f constituent un ensemble , on l'appelle ensemble de définition (ou encore domaine de définition) on le note D_f ou D .

B. Fonction paire – fonction impaire :

<u>a.</u> Définition :

f est une fonction numérique de la variable réelle x définie sur D_f .

• (f est paire sur
$$D_f$$
) \Leftrightarrow $\begin{cases} \forall x \in D_f, -x \in D_f \\ \forall x \in D_f, f(-x) = f(x) \end{cases}$.

$$(f \text{ est impaire sur } \mathbf{D}_f) \Leftrightarrow \begin{cases} \forall x \in \mathbf{D}_f, -x \in \mathbf{D}_f \\ \forall x \in \mathbf{D}_f, f(-x) = -f(x) \end{cases}.$$

C. Monotonie d'une fonction numérique :

a. Définition :

f est une fonction numérique de la variable réelle x définie sur un intervalle I.

- **f** est une fonction croissante (strictement croissante) sur $I \Leftrightarrow (\forall x, x' \in I; x < x' \Rightarrow f(x) \le f(x'))$ ($\Leftrightarrow (\forall x, x' \in I; x < x' \Rightarrow f(x) < f(x'))$. (le sens de l'inégalité ne change pas))
- f est une fonction décroissante (strictement décroissante) sur I

$$\Leftrightarrow \left(\forall x, x' \in I; x < x' \Rightarrow f(x) \ge f(x')\right) \left(\Leftrightarrow \left(\forall x, x' \in I; x < x' \Rightarrow f(x) > f(x')\right) \right) \left(\text{le sens de}\right)$$

l'inégalité change)

f est une fonction constante sur I \Leftrightarrow $(\forall x, x' \in I; f(x) = f(x'))$.

b. Remarque:

- $lackbox{\bf D}_{\rm f} = {f I} igcup {f I}$ ' tel que $\, {f I} \,$ et $\, {f I}' \,$ sont symétrique par rapport à zéro .
- Si f est paire ou impaire sur $D_f = I \cup I'$ alors il suffit d'étudier f sur $D_E = D_f \cap \mathbb{R}^+ = I$ on l'appelle ensemble de d'étude (ou domaine d'étude) .
- Si f est paire sur $D_f = I \bigcup I'$ alors les variations de f sont opposées sur I et I'.
- Si f est impaire sur $D_f = I \bigcup I'$ alors les variations de f sont les même sur I et I'.

D. Extrémums d'une fonction :

<u>a.</u> Définition :

f est une fonction numérique de la variable réelle x définie sur D_f tel que $x_0 \in D_f$.

- $f(x_0)$ est valeur maximale absolue de $f(f(x_0))$ est valeur maximale absolue au point x_0) si et seulement si : $\forall x \in D_f(x) \le f(x_0)$.
- $f(x_0)$ est valeur minimale absolue de $f(f(x_0))$ est valeur minimale absolue au point $f(x_0)$ si et seulement si : $\forall x \in D_f(x_0) \le f(x_0)$.

COURS N° 4

Généralités sur les fonctions

E. Applications :

- Application 1 :
- Le Compléter le tableau de variation et la courbe de la fonction f sachant que f est :
- a. f est paire sur D_f (cas n $^{\circ}$ 1)

b. f	est impaire sur	$\mathbf{D}_{\mathbf{f}}$	(cas n	° 2)
------	-----------------	---------------------------	---------	------

X	8	-3	0	3	+∞
f(x)			/	7	7
			0		

	X	8	-2	0 2	2 +∞
	f(x)			-1 ∖	7
_					

- **2.** Que représente f(0) pour la fonction pour le cas n $^\circ$ 1.
- Application 2 :

On considère la fonction numérique f de la variable réelle définie par $f(x) = \frac{1}{x^2 - 1}$.

- $\underline{\underline{\bf l}}_{\bf f}$ Déterminer ${\bf D}_{\bf f}$ le domaine de définition de ${\bf f}$.
- ${\color{red} \underline{2}_{\scriptscriptstyle E}}$ Etudier la parité de f . On déduit l'ensemble $D_{\scriptscriptstyle E}$ d' étude de f .
- **3.** Etudier la monotonie de f sur [0,1[puis sur $]1,+\infty[$.
- **4.** On déduit la monotonie de f sur]-1,0] puis sur $]-\infty,-1[$.
- 5. Dresser le tableau de variation de f sur D_E puis sur D_f .
- 6. Est-ce que f admet un extremum? à déterminer.

II. A ajouter complément :

<u>A.</u> Extremums relatives :

a. Définition :

f est une fonction numérique de la variable réelle x définie sur D_f tel que $x_0 \in D_f$.

- $f(x_0)$ est valeur maximale relative de $f(f(x_0))$ est valeur maximale relative au point x_0) si et seulement si : il existe un intervalle ouvert I_{x_0} de centre x_0 tel que $I_{x_0} \subset D_f$ on a : $\forall x \in I_{x_0}$, $f(x) \leq f(x_0)$.
- $f(x_0)$ est valeur minimale relative de f (f admet valeur minimale relative au point x_0) si et seulement si :: il existe un intervalle ouvert I_{x_0} de centre x_0 tel que $I_{x_0} \subset D_f$ on a : $\forall x \in I_{x_0}$, $f(x_0) \le f(x)$.

page - 3 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonctions

B. Taux d'accroissement d'une fonction f:

a. Définition :

f est une fonction numérique de la variable réelle x définie sur l'intervalle I.

x et x' de I tel que $x \neq x'$ le nombre $\frac{f(x) - f(x')}{x - x'}$ s'appelle le taux d'accroissement de la fonction

f entre x et x', on note T.

b. Application :

Calculer le taux d'accroissement de la fonction f sur \mathbb{R} tel que : f(x) = 2x.

<u>c.</u> Propriétés :

Te est le taux d'accroissement de la fonction f sur l'intervalle I.

- Si $T_f \le 0$ alors la fonction f est décroissante sur I.
- Si $T_r < 0$ alors la fonction f est strictement décroissante sur I.
- Si $T_r \ge 0$ alors la fonction f est croissante sur I.
- Si $T_c < 0$ alors la fonction f est strictement croissante sur I.
- Si $T_r = 0$ alors la fonction f est constante sur I.

C. Fonction périodique :

a. Activité:

La figure ci-contre présente la courbe d'une fonction f définie sur $\mathbb R$. On prend x de $\mathbb R$.

b. Vocabulaire:

On a $\forall x \in \mathbb{R}$, f(x+3)=f(x) on dit que la fonction f est périodique sur \mathbb{R} et son période est f on note : f = f ou f = f .

c. Définition :

f est une fonction numérique de la variable réelle x définie sur D_f tel que $T \in \mathbb{R}^{+^*}$ (T > 0).

la fonction f est périodique sur D_f et son période est T si et seulement si :

$$\mathbf{x} \in \mathbf{D}_{\mathbf{f}} \Rightarrow (\mathbf{x} + \mathbf{T} \in \mathbf{D}_{\mathbf{f}}) \cdot (1)$$

$$\forall x \in D_f : f(x+T) = f(x) . (2)$$

d. Remarque:

- T le plus petit réel strictement supérieur à 0 qui vérifie la relation (2).
- $f(x) = \sin x$ et $f(x) = \cos x$ sont périodique de période $T = 2\pi$.
- $f(x) = \tan x$ est périodique de période $T = \pi$.

e. Application:

- Montrer que $f(x) = \sin ax$ (avec $a \neq 0$) est une fonction périodique de période $T = \frac{2\pi}{|a|}$
- f est une fonction périodique de période T sur D_f . montrer que :

page - 4 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonctions

- \perp $\forall n \in \mathbb{N} ; \forall x \in D_f : f(x+nT) = f(x)$.
- $\underline{2}$, $\forall n \in \mathbb{N}$; $\forall x \in D_f : f(x-nT) = f(x)$
- 3. Quel propriété obtenue ?

<u>f.</u> La courbe d'une fonction périodique :

 \mathbf{f} est une fonction périodique de période \mathbf{T} sur $\mathbf{D}_{\!_{\mathrm{f}}}$.

- On considère les ensembles suivants : $I_k = [a+kT,a+(k+1)T] \cap D_f$ avec $k \in \mathbb{Z}$. ([a+kT,a+(k+1)T] est un intervalle de longueur T).
- ${\ }^{\blacksquare} \quad C_{_k}$ les courbes représentative de f sur $I_{_k}$.
- ${\color{red} \bullet}$ Pour construire les courbes $\,C_{_k}\,$, on construit d'abord $\,C_{_0}\,\text{sur}\,\,I_{_0} = \! \big[a,\!a+T\big] \cap D_{_f}\,$.
- Puis on translate la courbe C_0 par des translations de vecteurs $\vec{u}=kT\vec{i}$ avec $k\in\mathbb{Z}$.
- Exemples :

Exemple n° 1

Exemple n° 2

- f III. Fonction majorée fonction minorée fonction bornée extremums d'une fonction f f :
 - **A.** Fonction majorée fonction minorée fonction bornée :
 - a. Activité:

La figure ci-contre présente la courbe d'une fonction f définie sur $\mathbf{D}_{\mathbf{f}}$.

Compléter par le symbole qui convient :

$$2. \forall x....[-4;11] : -4.....f(x)$$
.

$$\underline{3.} \quad \forall \mathbf{x} \in [\cdots, \cdots] : -4....\mathbf{f}(\mathbf{x})......5 \ .$$

- **b.** Vocabulaire: on dit que:
 - La fonction f est majorée par 5 sur [-4,11] (ou par $6 \dots$).
 - La fonction f est minorée par −4 sur [−4,11] (ou par −7).
 - La fonction f est bornée 5 sur [-4,11] .

page - 5 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonctions

c. Définitions :

f est une fonction numérique de la variable réelle x définie sur I ($I \subset D_f$). M et m de $\mathbb R$.

- La fonction f est majorée par M sur I si et seulement si : $\forall x \in I$; $f(x) \le M$ (ou f(x) < M)
- La fonction f est minorée par m sur I si et seulement si : $\forall x \in I$; $m \le f(x)$ (ou m < f(x))
- La fonction f est bornée par M sur I si et seulement si : f est majorée et minorée sur I .
- **Remarque**: (La fonction f est bornée sur I) \Leftrightarrow $(\exists A \in \mathbb{R}^+, \forall x \in I : |f(x)| \le A)$.

d. Applications:

- f est une fonction tel que son tableau de variation (ci-contre) :
- **<u>l.</u>** f est elle majorée ? f est elle minorée ? f est elle bornée ? sur $[-3,+\infty[$.

- 2. Que représente 7 puis -14 pour la fonction f sur [-3,11]?
- 3. Que représente 7 puis -6 pour la fonction f?
- f est une fonction définie par $f(x) = \frac{1}{x} \text{ sur } I = [1; +\infty[$.
- **L** Montrer que : f est majorée par 1 sur I.
- 2. Montrer que : f est minorée sur I.
- 3. Est-ce que f est bornée sur I.
- La figure ci-contre représente la courbe d'une fonction f
- **L** Est-ce que f est majorée ? f est minorée ? f est bornée ? sur [-8,11].

IV. Comparaison de deux fonctions et interprétation géométrique

A. Fonction positive – fonction négative :

<u>a.</u> Activité :

- La figure n° 1 représente une fonction positive sur [−8,11].
- La figure n° 2 représente une fonction négative sur [−8,11].
- **l.** Quelle remarque peut-on tirer?
- **2.** Exprimer la remarque on utilise des symboles .

page - 6 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonctions

4

b. Définition :

f est une fonction numérique de la variable réelle x définie sur D_f .

- f est une fonction positive sur D_f si et seulement si $\forall x \in D_f : f(x) \ge 0$. la courbe (C_f) de f est située au dessus de l'axe des abscisses.
- f est une fonction strictement négative sur D_f si et seulement si $\forall x \in D_f : f(x) < 0$. la courbe $\binom{C_f}{d}$ de f est située strictement au dessous de l'axe des abscisses.

B. Comparaison de deux fonctions :

a. Activité:

La figure ci-contre n° 3 présente la courbe d'une fonction f définie sur $D_{\rm f}$.

- On dit que : la fonction f est inferieure ou égale
 à la fonction g sur [-1,+∞].
- On dit que : la fonction f est strictement supérieure à la fonction g sur $[-1,+\infty[$.
 - **L** Exprimer les propositions présidentes par des symboles .
 - $\underline{2}$ Que peut-on dire pour le cas de la fonction f est égale à g ?

<u>b.</u> Définition :

Soient f et g deux fonctions définies sur I.

- $(f \le g \text{ sur } I) \Leftrightarrow (\forall x \in I : f(x) \le g(x))$.

 la courbe (C_f) de f est située au dessous de la courbe de (C_g) de g sur I.
- $(f > g \text{ sur } I) \Leftrightarrow (\forall x \in I : f(x) > g(x))$.

 la courbe (C_f) de f est située strictement au dessue de la courbe de (C_g) de g sur I.
- (f = g sur I) \Leftrightarrow $(\forall x \in I : f(x) = g(x))$.

 la courbe (C_f) de f et la courbe de (C_g) de g sont confondues sur I.

V. Composée de deux fonctions :

a. Activité:

Soient f et g deux fonctions définies sur \mathbb{R} par : f(x) = 2x + 3; $g(x) = x^2 + 1$.

- $\underline{\underline{\mathbf{l}}}$ Déterminer \mathbf{D}_{f} puis \mathbf{D}_{g} .
- **2.** Calculer f(1); g(5); puis écrire g(5) en fonction de f et 1.
- **3.** Calculer g(f(3)) puis g(f(x)).

b. Vocabulaire – notation:

- La fonction $h: x \mapsto h(x) = g(f(x))$ on la note par $h = g \circ f$ d'où : $h(x) = g \circ f(x) = g(f(x))$.
- La fonction g o f est appelée la composée de la fonction f et g dans cet ordre.
- Pour g∘f on considère le diagramme suivant :

$$\mathbf{h} = \mathbf{g} \circ \mathbf{f} : \mathbf{D}_{\mathbf{f}} \xrightarrow{\mathbf{f}} \mathbf{f} \left(\mathbf{D}_{\mathbf{f}} \right) \subset \mathbf{D}_{\mathbf{g}} \xrightarrow{\mathbf{g}} \mathbb{R}$$
$$\mathbf{x} \mapsto \mathbf{f}(\mathbf{x}) \in \mathbf{D}_{\mathbf{g}} \mapsto \mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{g} \circ \mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$$

page - 7 - NIVEAU: 1 SM

COURS N° 4

Généralités sur les fonctions

c. Définition :

Soient f et g deux fonctions définies respectivement sur D_f et D_g et $f(D_f) \subset D_g$.

On pose:
$$D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f \text{ et } f(x) \in D_g \right\}$$
.

La fonction h définie sur $D_{g \circ f}$ par h(x) = g(f(x)) est appelée la composée de f et g dans cet ordre et on note $h = g \circ f$.

d. Application:

Soient f et g deux fonctions définies respectivement par : $f(x) = 2x^2 + 3x$; g(x) = 5x - 7.

- $\underline{\underline{\hspace{0.1in} L}}$ Déterminer $D_{g\circ f}$ puis $D_{f\circ g}$.
- **2.** Calculer: $g \circ f$ puis $f \circ g$.
- **3.** Calculer: $g \circ f(2)$ puis $f \circ g(2)$. que remarquez-vous?

VI. Monotonie de : $\mathbf{f} + \mathbf{c}$ et $\mathbf{c} \cdot \mathbf{f}$ et $\mathbf{f} \circ \mathbf{g}$ avec \mathbf{c} de \mathbb{R}^* - $\mathbf{g} \circ \mathbf{f}$:

A. Monotonie de : $\mathbf{f} + \mathbf{c}$ et $\mathbf{c} \cdot \mathbf{f}$ et $\mathbf{f} \circ \mathbf{g}$ avec \mathbf{c} de \mathbb{R}^* .

a. Activité:

f est une fonction numérique de la variable réelle x définie sur I.

 T_f est le taux d'accroissement de la fonction f sur I.

- **L** Déterminer T_h le taux d'accroissement de la fonction h(x) = f(x) + c sur I. (avec $c \in \mathbb{R}$).
- **2.** Déterminer T_g le taux d'accroissement de la fonction $g(x) = c \times f(x)$ sur I. (avec $c \in \mathbb{R}$).
- 3. Donner la propriété obtenue.

Correction:

$\underline{\mathbf{L}}$ Calculons \mathbf{T}_{h} :

Soient: x et x' de I tel que $x' \neq x$.

On a:
$$T_h = \frac{h(x) - h(x')}{x - x'} = \frac{f(x) + c - (f(x') + c)}{x - x'} = \frac{f(x) - f(x)}{x - x'} = \frac{f(x) - f(x)}{x - x'} = T_f$$
.

D'où:
$$T_h = T_{f+c} = T_f$$

Conclusion : f et f+c varient dans le même sens sur I (ont même sens de variation sur I).

$\mathbf{\underline{l}}$ Calculons \mathbf{T}_{g} :

Soient: x et x' de I tel que $x' \neq x$

On a:
$$T_g = \frac{g(x) - g(x')}{x - x'} = \frac{c \times f(x) - c \times f(x)}{x - x'} = \frac{c \times (f(x) - f(x))}{x - x'} = c \times T_f$$
. D'où $T_g = T_{cxf} = c \times T_f$

Conclusion:

- Si c > 0 alors f et $c \times f$ varient dans le même sens sur I.
- Si c < 0 alors f et $c \times f$ leurs variations sont opposées sur I.

b. Propriété :

 T_c est le taux d'accroissement d'une fonction f sur I et $c \in \mathbb{R}$.

- Les fonctions f et f+c varient dans le même sens sur I (ont même sens de variation sur I)
- Si c > 0 alors f et $c \times f$ varient dans le même sens sur I.
- Si c < 0 alors f et c×f leurs variations sont opposées sur I.

page - 8 - NIVEAU: 1 SM

COURS N° 4

Généralités sur les fonctions

B. Monotonie de : $g \circ f$

a. Activité:

Soient f et g deux fonctions définies respectivement sur D_f et D_g et $f(D_f) \subset D_g$. (c.à.d.

 $\forall x \in D_f ; f(x) \in f(D_g)$

- **L** Montrer que si f et g varient dans le même sens respectivement sur D_f et $f(D_f) \subset D_g$ alors $g \circ f$ est croissante sur D_f .
- **2.** Montrer que si f et g leurs variations sont opposées respectivement sur D_f et $f(D_f) \subset D_g$ alors $g \circ f$ est strictement décroissante sur D_f .
- 3. Donner la propriété obtenue.

b. Propriété :

Soient f et g deux fonctions définies respectivement sur D_f et D_g et $f(D_f) \subset D_g$.

- si f et g ont même monotonie (strictement monotone) respectivement sur D_f et $f(D_f) \subset D_g$ alors $g \circ f$ est croissante sur D_f ($g \circ f$ est strictement croissante sur D_f).
- si f et g ont monotonie (strictement monotone) opposées respectivement sur D_f et $f\left(D_f\right) \subset D_g \text{ alors } g \circ f \text{ est décroissante sur } D_f \text{ } (g \circ f \text{ est strictement décroissante sur } D_f \text{ })$

c. Application :

Soient f et g deux fonctions définies respectivement par : f(x) = |x| + 5 et $g(x) = x^2$.

- $\underline{\underline{\mathbf{L}}}$ Déterminer \mathbf{D}_{f} puis \mathbf{D}_{g} .
- 2. Etudier la monotonie de f et g.
- **3.** Déterminer la monotonie de $g \circ f$ sur \mathbb{R} à travers un tableau.

VII. Etude et représentation graphique de certain fonctions :

 $\underline{\underline{A}}$ Etude et représentation graphique de $x \mapsto ax^2 + bx + c$ (polynôme du deuxième degré).

a. Activité

f est une fonction définie par : $f(x) = ax^2 + bx + c$ avec a et b et c de \mathbb{R} et $a \neq 0$.

On a: (1):
$$f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$
.

D'où:
$$f\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$$
.

Par suite:
$$(1) \iff f(x) = a\left(x + \frac{b}{2a}\right)^2 + f\left(-\frac{b}{2a}\right)$$

$$\Leftrightarrow f(x)-f(-\frac{b}{2a})=a(x+\frac{b}{2a})^2$$
; (2).

 1^{er} cas a > 0:

page - 9 - NIVEAU: 1 SM

COURS N° 4

Généralités sur les fonctions

$$(2) \Rightarrow f(x) - f\left(-\frac{b}{2a}\right) = a\left(x - \frac{b}{2a}\right)^2 \ge 0$$
$$\Rightarrow f(x) - f\left(-\frac{b}{2a}\right) \ge 0$$
$$\Rightarrow f(x) \ge f\left(-\frac{b}{2a}\right)$$
$$\Rightarrow f\left(x\right) \le f\left(x\right)$$

- Donc: $f\left(-\frac{b}{2a}\right)$ est la valeur minimale absolue pour f sur $\mathbb R$.
- Tableau de variation de f est: a > 0

X	$-\infty$ $-\frac{b}{2a}$ $+\infty$
f(x)	$\mathbf{f}\left(-\frac{\mathbf{b}}{2\mathbf{a}}\right)$

La courbe représentative de f est :

Vocabulaire:

- $f(x) = ax^2 + bx + c ; a > 0$
- La courbe obtenue est appelée parabole, orienté vers le haut de sommet $S\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- Son axe de symétrie est la droite (D) d'équation :
- $\bullet (D) : y = -\frac{b}{2a}$

 2^{ieme} cas a < 0:

$$(2) \Rightarrow f(x) - f\left(-\frac{b}{2a}\right) = a\left(x - \frac{b}{2a}\right)^2 \le 0$$
$$\Rightarrow f(x) \le f\left(-\frac{b}{2a}\right)$$

- Donc: $f\left(-\frac{b}{2a}\right)$ est la valeur maximale absolue pour f sur $\mathbb R$.
- Tableau de variation de f est : a < 0

X	$-\infty$ $-\frac{b}{2a}$ $+\infty$
f(x)	$\mathbf{f}\left(-\frac{\mathbf{b}}{2\mathbf{a}}\right)$

page - **10** - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonction.

La courbe représentative de f est :

Vocabulaire :

$$f(x) = ax^2 + bx + c ; a < 0$$

 La courbe obtenue est appelée parabole, orienté vers le bas de sommet

$$S\left(-\frac{b}{2a},f\left(-\frac{b}{2a}\right)\right).$$

Son axe de symétrie est la droite (D)

d'équation : (D) :
$$y = -\frac{b}{2a}$$

b. Application :

• f est une fonction définie par : $f(x) = 2x^2 + 4x + 3$.

 $\underline{\underline{\mathbf{l}}}_{\mathbf{f}}$ Déterminer les éléments caractéristiques de la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ de \mathbf{f} .

2. Dresser le tableau de variation de f .

 $\underline{\textbf{3.}}$ Construire la courbe de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

Correction:

 $\underline{\mathbf{L}}$ Les éléments caractéristiques de la courbe $\left(\mathbf{C}_{_{\mathbf{f}}}\right)$ de \mathbf{f} .

La courbe de f est appelée parabole , orienté vers le haut de sommet S(-1,1) .

• Son axe de symétrie est la droite (D) d'équation : (D) : y = 2.

2. Le tableau de variation de f .

X		-1	+∞
f(x)	$f\left(-\frac{b}{2a}\right)$	$\left(-\frac{1}{1} \right) = f\left(-\frac{1}{1} \right)$	→ 1)=1

3. On construit la courbe de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

page - 11 - NIVEAU : 1 SM

COURS Nº 4

Généralités sur les fonctions

- f est une fonction définie par : $f(x) = -x^2 + 4x$.
- $\underline{\underline{\bf l}}_{\bf c}$ Déterminer les éléments caractéristiques de la courbe $\left({\bf C}_{\bf f}\right)$ de ${\bf f}$.
- **2.** Dresser le tableau de variation de f et Construire la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j})

Correction:

- $\underline{\mathbf{L}}$ Les éléments caractéristiques de la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ de \mathbf{f} .
 - La courbe de f est appelée parabole, orienté vers le bas de sommet S(2,4).
 - Son axe de symétrie est la droite (D) d'équation : (D) : y = -1.
- 2. Le tableau de variation de f et On construit la courbe de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$

X	-8	2	+∞
f(x)	$f\left(-\frac{b}{2a}\right)$	$\left(\frac{1}{a}\right) = f\left(\frac{1}{a}\right)$	2)=4
	7		7

- **B.** Etude et représentation graphique de $(a \ne 0)$; $f(x) = ax^3$
 - a. Activité:

f est une fonction définie par : $f(x) = ax^3$ avec et $a \ne 0$.

- Ensemble de définition est $\mathbf{D}_{\mathbf{f}} = \mathbb{R}$.(car \mathbf{f} est une fonction polynomiale) .
- f est une fonction impaire car $\forall x \in \mathbb{R}, f(x) = a(-x)^3 = -ax^3 = f(x)$.
- Ensemble d'étude est : $\mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap \mathbb{R}^+ = \mathbb{R}^+$.
- La monotonie de f: soient x et x' de D_E tel que x < x' on a $(1): x < x' \Rightarrow x^3 < (x')^3$

 1^{er} cas a > 0:

$$(1) \Rightarrow ax^3 < a(x')^3$$
$$\Rightarrow f(x) < f(x')$$

D'où f est strictement croissante sur $\mathbf{D}_{\scriptscriptstyle E} = \mathbb{R}^*$ et aussi sur \mathbb{R}^- car la fonction est impaire .

 Le tableau de variation de f et la courbe représentative de f est

X	-8	0	+∞
f(x)	7	0	₹

page - 12 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonction.

 1^{er} cas a < 0:

$$(1) \Rightarrow ax^3 > a(x')^3$$
$$\Rightarrow f(x) > f(x')$$

D'où f est strictement décroissante sur $\mathbf{D}_{\!\scriptscriptstyle E} = \mathbb{R}^*$ et aussi sur \mathbb{R}^- car la fonction est impaire .

• Le tableau de variation de f et la courbe représentative de f est :

X	-∞ 0 +∞
f(x)	0

b. Application:

- f est une fonction définie par : $f(x) = \frac{1}{2}x^3$.
 - $\mathbf{\underline{l}}$ Dresser le tableau de variation de \mathbf{f} .
 - 2. Construire la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

Correction:

Le tableau de variation de f est :

X	-∞ 0 +∞
f(x)	フ 0 フ

 $\underline{\underline{2_{\cdot}}}$ On construit la courbe de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

• f est une fonction définie par : $f(x) = -\frac{2}{3}x^3$.

- **L** Dresser le tableau de variation de f.
- 2. Construire la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Correction:

L Le tableau de variation de f est :

X	-∞ 0 +∞
f(x)	0

 $\underline{\mathbf{2}}$. On construit la courbe de f dans un repère orthonormé $\left(\mathbf{O},\vec{\mathbf{i}},\vec{\mathbf{j}}\right)$.

<u>C.</u> Etude et représentation graphique de la fonction homographique : $f(x) = \frac{ax + b}{cx + d}$; $(c \neq 0)$.

Ensemble de définition :

On a:
$$x \in D_f \Leftrightarrow cx + d \neq 0$$

$$\Leftrightarrow x \neq -\frac{d}{c}$$

$$D'o\grave{u}:\,D_{_f}=\mathbb{R}\,\backslash\left\{-\frac{d}{c}\right\}=\left]\!\!-\!\!\infty,\!\!-\frac{d}{c}\!\!\left[\,\cup\,\right]\!\!-\!\frac{d}{c},\!\!+\!\!\infty\!\!\left[\right.$$

• La monotonie de f: soient x et x' de D_E tel que $x \neq x'$.

on a

$$\begin{split} T_f &= \frac{f\left(x\right) - f\left(x'\right)}{x - x'} \quad ; \left(x \neq x'\right) \\ &= \frac{\frac{ax + b}{cx + d} - \frac{ax' + b}{cx' + d}}{x - x'} \\ &= \frac{\frac{\left(ax + b\right)\left(cx' + d\right) - \left(ax' + b\right)\left(cx + d\right)}{\left(cx + d\right)\left(cx' + d\right)}}{x - x'} \\ &= \frac{\frac{adx + bcx' - adx' - bcx}{\left(cx + d\right)\left(cx' + d\right)\left(x - x'\right)} \end{split}$$

раде - **14** - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonction. ∠

$$=\frac{x(ad-bc)-x'(ad-bc)}{(cx+d)(cx'+d)(x-x')}$$

$$=\frac{\left(ad-bc\right)\left(x-x'\right)}{\left(cx+d\right)\left(cx'+d\right)\left(x-x'\right)} = \frac{\left(ad-bc\right)}{\left(cx+d\right)\left(cx'+d\right)} = \frac{\Delta}{\left(cx+d\right)\left(cx'+d\right)} \;\; ; \left(\Delta = ad-bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}\right)$$

• On a le signe de (cx+d)(cx'+d) > 0 sur $\left] -\frac{d}{c}, +\infty \right[$ et de même sur $\left] -\infty, -\frac{d}{c} \right[$.

D'où le signe de T_f est le signe de $\Delta = ad - bc$ donc la monotonie de f sur $\left] -\frac{d}{c}, +\infty \right[$ et de même sur

$$\left] -\infty, -\frac{d}{c} \right[\text{ dépend du signe de } \Delta = ad - bc .$$

$$1^{er} \cos \Delta = ad - bc > 0 : donc T_f > 0$$
.

- D'où f est strictement croissante sur $\left[-\frac{d}{c},+\infty\right]$ et aussi sur $\left[-\infty,-\frac{d}{c}\right]$.
- Le tableau de variation de f est :

La courbe représentative de f est :

- **Vocabulaire**:
 - $f(x) = \frac{ax+b}{cx+d}$; $(c \neq 0)$; $\Delta = ad-bc > 0$
 - La courbe obtenue est appelée hyperbole .
 - Son centre de symétrie est $\Omega\left(-\frac{d}{c}, \frac{a}{c}\right)$.
 - Asymptote verticale est la droite (D)

d'équation :
$$D_v : x = -\frac{d}{c}$$
.

Asymptote horizontale est la droite (D)

d'équation :
$$D_h : y = \frac{a}{c}$$

$$2^{ieme}$$
 cas $\Delta = ad - bc < 0$: donc $T_f < 0$.

- D'où f est strictement décroissante sur $\left] -\frac{d}{c}, +\infty \right[$ et aussi sur $\left] -\infty, -\frac{d}{c} \right[$.
- Le tableau de variation de f est :

page - 15 - NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonction.

La courbe représentative de f est

Vocabulaire:

•
$$f(x) = \frac{ax+b}{cx+d}$$
; $(c \neq 0)$; $\Delta = ad-bc < 0$

- La courbe obtenue est appelée hyperbole.
- Son centre de symétrie est $\Omega\left(-\frac{d}{c}, \frac{a}{c}\right)$.
- Asymptote verticale est la droite (D)

d'équation :
$$D_v : x = -\frac{d}{c}$$
.

Asymptote horizontale est la droite (D)

d'équation :
$$D_h : y = \frac{a}{c}$$

c. Application :

- f est une fonction définie par : $f(x) = \frac{2x+1}{x+1}$.
 - $\underline{\underline{\hspace{-0.1cm} 1\hspace{-0.1cm} }}_{\hspace{-0.1cm} \hspace{-0.1cm} }$ Déterminer les éléments caractéristiques de la courbe $\left(C_{_f}\right)$ de f .
 - 2. Dresser le tableau de variation de f .
 - **3.** Construire la courbe de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

Correction:

- $\underline{\underline{\hspace{0.5cm}}}$ Les éléments caractéristiques de la courbe $\left(C_{f}\right)$ de f .
 - On a $\Delta = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2 \times 1 1 \times 1 = 1 > 0$
 - La courbe de f est un hyperbole.
 - Son centre de symétrie est $\Omega\left(-\frac{d}{c}, \frac{a}{c}\right) = \Omega\left(-1, 2\right)$.
 - Asymptote verticale est la droite (D_v) d'équation : D_v : $x = -\frac{d}{c} = -1$.
 - Asymptote horizontale est la droite (D_h) d'équation : $D_h: y = \frac{a}{c} = 2$.
- 2. Le tableau de variation de f.

 $\underline{\underline{3}}$. On construit la courbe de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

раде **- 16 -** NIVEAU : 1 SM

COURS N° 4

Généralités sur les fonction.

• f est une fonction définie par : $f(x) = \frac{2x+1}{x-1}$.

<u>D.</u> Etude et représentation graphique de la fonction $f(x) = \sqrt{x+a}$:

• f est définie sur $D_f = [-a, +\infty[$.

■ Monotonie de f sur $D_f = [-a, +\infty[$. soient x et x' de $D_f = [-a, +\infty[$ tel que x < x' . on a :

$$x < x' \Rightarrow 0 \le x + a < x' + a$$
$$\Rightarrow 0 \le \sqrt{x + a} < \sqrt{x' + a}$$
$$\Rightarrow 0 \le f(x) < f(x')$$

D'où f est strictement croissante sur $\mathbf{D}_{\mathrm{f}} = \begin{bmatrix} -a, +\infty \end{bmatrix}$.

• Le tableau de variation de f .

X	-a		+∞
f(x)	0	7	

La courbe représentative de f est :

$$a = 2 \frac{5}{4} \quad f(x) = \sqrt{x+2}$$

$$\frac{3}{2} \quad \frac{2}{-2} \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{2}{4} \quad \frac{5}{6} \quad 7$$

$$Cas: f(x) = \sqrt{a-x}$$

• f est définie sur $D_f =]-\infty, a]$.

■ Monotonie de f sur $D_f =]-\infty,a]$. soient x et x' de $D_f =]-\infty,a]$ tel que x < x'.

on a:
$$x < x' \le a \Rightarrow -a \le -x < -x'$$

 $\Rightarrow 0 \le -x + a < -x' + a$
 $\Rightarrow 0 \le \sqrt{x + a} < \sqrt{x' + a}$
 $\Rightarrow 0 \le f(x) < f(x')$

D'où f est strictement décroissante sur $\mathbf{D}_{\mathrm{f}} = \left] -\infty, \mathbf{a} \right]$.

page - 17 - NIVEAU : 1 SM

COURS Nº 4

Généralités sur les fonction

Le tableau de variation de f .

X		a
f(x)	0	

La courbe représentative de f est :

$\underline{\mathbf{A}}$. Fonction la partie entière $\mathbf{f}(\mathbf{x}) = \mathbf{E}(\mathbf{x})$

a. Activité:

Soit x de \mathbb{R} . Compléter le tableau suivant on détermine le nombre entier relatif p $(p \in \mathbb{Z})$ tel que $p \le x < p+1$

X	 4,55	0,78	-0,78	-4,55	
p					

b. Vocabulaire:

Le nombre entier relatif s'appelle la partie entière relative du nombre réel x , on note $p=E\left(x\right)$ ou encore $p=\left[x\right]$.

c. Définition :

Soit x de \mathbb{R} .

Le nombre entier relatif p qui vérifie $p \le x < p+1$ s'appelle la partie entière relative du nombre réel x, on note p = E(x) ou encore p = [x].

Donc: $E(x) \le x < E(x) + 1$

d. Propriété :

- $\forall x \in I_p = [p, p+1[:f(x)=[x]=E(x)=p]$.
- $x \in \mathbb{Z} \Leftrightarrow E(x) = x.$
- $\forall x \in \mathbb{R} ; E(x) \leq x < E(x) + 1$.
- $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z} : E(x+k) = E(x)+k$.
- $\forall x \in \mathbb{R} ; x-1 < E(x) \le x .$
- La courbe représentative de f est :

e. Application:

$$f: \mathbb{R} \to \mathbb{R}$$

 \Leftrightarrow f est une fonction définie par :

$$x \mapsto f(x) = 2x - E(x)$$

- $\underline{\underline{\bf l}_k}$ On considère les intervalles I_k tel que $I_k = [k,k+1[$ avec $k \in \mathbb{Z}$.
- Détermine f(x) tel que $x \in I_k$.
- Construire C_0 la courbe de f sur $I_0 = [0,1[$. puis Construire C_k la courbe de f sur $I_k = [k,k+1[$.

