Single Neuron Dynamics

What determines the resting potential of a neuron?

chemical gradient alone; no membrane potential

chemical gradient and electrical gradient driving ion movement in the same direction

chemical gradient and electrical gradient driving ion movement in opposing directions

Ion pump

The Equivalent Electronic Circuit of a Neuron

$$C_m \frac{dV}{dt} = -\sum_i g_i(V)(V - E_i) - \bar{g}_L(V - E_L) + I_e$$

Voltage Clamp Recording

Voltage-gated Conductance

Integrate-and-Fire model

$$C\frac{dV}{dt} = -g(V - E_K) + I_e$$

$$V(t_{spike}^-) = V_{th}$$

$$V(t_{spike}^+) = V_{res}$$

Voltage-gated Conductance of K+

Voltage-gated Conductance of K⁺

$$C\frac{dV}{dt} = -g_{K}n^{4}(V - E_{K}) - g_{Na}m^{3}h(V - E_{Na}) - g_{L}(V - E_{L}) - I_{e}$$

Transient Na⁺ channel conductance

Squid Giant Axon

Figure 2–19 Studying action potentials in the squid giant axon. (A) Electron micrograph of a cross section of a squid giant axon showing its large diameter (~180 μm for this sample) as compared to neighboring axons (for example, the axon indicated by *). (B) Photograph of an electrode inserted inside a squid giant axon whose diameter is close to 1 mm. (C) An action potential recorded from the squid giant axon. (A, courtesy of Kay Cooper and Roger Hanlon; B, from Hodgkin AL & Keyes RD [1956] *J Physiol* 131:592–616; C, from Hodgkin AL & Huxley AF [1939] *Nature* 144:710–711. With permission from Macmillan Publishers Ltd.)

Gray and White Matter

Myelinated axons

