

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH2302D - PROBABILITÉS ET STATISTIQUE

TD nº8

Exercice 1:8.2 a) page 239. [9.2 a) dans la 2ème édition]

Exercice 2 : 8.4 page 239 (modifié) : [9.4 dans la 2ème édition]

On choisit au hasard un échantillon de 100 plaquettes semi-conductrices et on vérifie si elles sont défectueuses ou non. Elles proviennent d'un procédé de fabrication qui génère une proportion θ de plaquettes défectueuses avec $0 < \theta < 1$. On pose $X_i = 1$ si la i-ème plaquette est défectueuse (et $X_i = 0$ sinon), avec $i \in \{1, 2, ..., 100\}$, $Y = \sum_{i=1}^{100} X_i$ le nombre de plaquettes défectueuses dans l'échantillon, et $\overline{X} = Y/100$ la proportion de plaquettes défectueuses dans l'échantillon.

- a) Déterminer la loi exacte de *Y* et ses paramètres.
- **b)** Calculer $P(1 \le Y \le 5)$ si $\theta = 0.03$.
- c) Déterminer une loi approximative de Y basée sur le théorème central-limite.
- **d)** Déterminer une loi approximative de \overline{X} .
- e) Utiliser cette approximation pour calculer $P(0.01 \le \overline{X} \le 0.05)$ si $\theta = 0.03$, sans la correction pour la continuité.
- **f)** Comparer les réponses obtenues en **b)** et en **e)** (donner les erreurs). Utiliser cette fois la correction pour la continuité et donner la nouvelle erreur.

Exercice 3:

Soient les variables aléatoires indépendantes $Z_i \sim N(0,1)$ et $U_i \sim \chi_1^2$ avec $i \in \{1,2,3,4\}$ Déterminer la loi de probabilité de chacune des variables aléatoires suivantes ainsi que leurs paramètres.

a)
$$T_1 = \sum_{i=1}^4 Z_i$$
.

b)
$$T_2 = \sum_{i=1}^{3} U_i$$
.

c)
$$T_3 = \frac{2U_1}{U_2 + U_3}$$
.

d)
$$T_4 = \frac{\sum\limits_{i=1}^4 Z_i}{\sqrt{\sum\limits_{i=1}^4 U_i}}.$$

e)
$$T_5 = (U_1 + U_2)/2$$
.

Exercice 4:

Avec les mêmes variables que dans l'exercice précédent :

- a) Trouver a tel que $P(U_1/U_2 \ge a) = 0,1$.
- **b)** Trouver b tel que $P\left(\frac{U_1}{1+U_1} \ge b\right) = 0.01$.
- c) Trouver c tel que $P\left(\frac{(Z_1 + Z_2)^2}{Z_3^2 + Z_4^2} \ge c\right) = 0.05$.

Exercice 5:

Soit une population X qui suit une loi uniforme $\mathrm{U}(0,\theta)$ avec $\theta>0$ et soit X_1,X_2,\ldots,X_n un échantillon aléatoire de X. On pose $M=\max\{X_1,X_2,\ldots,X_n\}$ la valeur maximale observée dans l'échantillon.

- a) Utiliser le fait que que $P(M \le x) = P(X_1 \le x, X_2 \le x, ..., X_n \le x)$ pour déterminer la distribution d'échantillonnage de M.
- **b)** Vérifier que la distribution d'échantillonnage de $Y = M/\theta$ ne dépend pas de θ .
- c) Déterminer la valeur $c_{0,05}$ qui satisfait $P(Y > c_{0,05}) = 0.05$ et calculer-la pour un échantillon de taille n = 20.