Loris Jautakas

September 10, 2023

1 Introduction

This note covers basic definitions and results of category theory. It mostly follows [riehl'2016], but also contains notes from [simmons'2011], as well as special topics from [nourani'2014].

Definition 1: /category

A category C consists of

- A class $\mathbf{Ob}(C)$ consisting of objects
- A class $\mathbf{Hom}(C)$ of morphisms.

Definition 2: /morphism

A morphism is any object that has a source object $A \in \mathbf{Ob}(C)$ and a target $B \in \mathbf{Ob}(C)$. Morphisms are sometimes called arrows.

If f is a morphism with source $A \in \mathbf{Ob}(C)$ and target $B \in \mathbf{Ob}(C)$, then this is usually written as $f : A \to B$.

- A binary operation $\circ: M \to M$, called composition, which satisfies:
 - 1. is associative
 - 2. $\mathbf{Hom}(A)$ has an idenity morphism for every $X \in \mathbf{Ob}(C)$

Definition 3: [morphism]/ identity_morphism

For every objectmt $X \in \mathbf{Ob}(C)$, there exists an identity morphism $\mathrm{id}_X : X \to X$, such that for every morphism $f : X \to Y$:

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f \tag{1}$$

Or as a diagram:

$$\operatorname{id}_X \longrightarrow X \xrightarrow{f} Y \xrightarrow{\operatorname{id}_Y} \operatorname{id}_Y$$

common_categori

Some common categories are:

- Set has objects consisting of all sets, and morphisms consisting of all functions between sets.
- Top has objects consisting of all topological spaces, and morphisms consisting of all continuous functions between these spaces.
- **Group** has objects consisting of all groups, and morphisms consisting of all homomorphisms between groups.
- \mathbf{Mod}_R for a fixed ring R (with identity), is the category of left R-modules and R-module homomorphisms. If R is a field, then we call this
- Graph has objects consisting of all graphs, and morphisms consisting of graph homomorphisms.

• Model_T for any language \mathcal{L} and first order \mathcal{L} -theory T is a category with objects as $[\mathcal{L}, T]$ -

structures (i.e. \mathcal{L} -structures \mathcal{M} that model T, so $\mathcal{M} \models T$).

unique_identity Identity morphisms in a category are unique.

Result 1: [category]/

hom_class

Thus f = g and identity morphisms are unique.

Definition 4: [category]/

Proof. Consider an object A with two identity morphisms $f, g: A \to A$. Then note $f = f \circ g = g$.

Let C be a category. Let $A, B \in (C)$ be two objects. Denote $C(A, B) = \{f \in \mathbf{Hom}(C) | f : A \to B\}$, i.e. the class containing all morphisms with source A and target B. This is called the Hom-class,

A morphism $f: X \to Y$ is an isomorphism if and only if it is invertible, i.e there exists some $f^{-1}: Y \to X$ such that:

 $f^{-1} \circ f = \mathrm{id}_X$ $f \circ f^{-1} = \mathrm{id}_Y$ (2) (3)

$$\operatorname{id}_X \left(X \right) \stackrel{f}{\underset{\exists f-1}{\bigvee}} \operatorname{id}_Y$$

Definition 6: [morphism]/
endomorphism

We then say two objects X, Y are isomorphic.

An endomorphism is a morphism whose domain is the same as the codomain, i.e. $f: X \to X$ is an endomorphism. a set of all endomorphisms of an object X is denoted $\mathbf{End}(X)$.

Definition 7: [morphism]/
automorphism

A automorphism is a morphism which is both an isomorphism and an endomorphism.

Example 1.2: [isomorphism]

in the following example:

Note that morphisms are technically binary relations, (if they arent a set then they can be though of as a relation of a class) but this sometimes is not the right way of looking at them. This is true

category_isomorphisms

1. For any ring R, define the category C:
• Ob(C) ^{def} Z₊

- $\mathbf{Hom}(C) \stackrel{\text{def}}{=}$ the set of $C(n,m) = R^{n \times m}$, i.e. all n by m matrices.
 - o def matrix multiplication
 - To check this forms a category, note that:

 • is associative because matrix multiplication is associative
 - Every object has an identity, namely for any $n \in \mathbf{Ob}(C)$ there is the $n \times n$ identity matrix I_n , which has the property that for any morphism $f: m \to n$ (i.e. for every $n \times m$ matrix) we have $I_n \circ f = f \circ I_m = f$.

Thus C is a category.

Note that while technically $\mathbf{Hom}(C)$ consists of relations, (i.e. you have a relation for each $n \times m$ matrix) it is not productive to think of morphisms this way, so you should rather think of morphisms as some new object, i.e. an arrow.

- For any monoid M = (M *) defin
- 2. For any monoid M = (M,*), define the category C = B_M:
 Ob(C) consists of some single object (could be anything, let's call it o)
 - For every monoid element $m \in M$, define a morphism $f_m : o \to o$.
 - Define \circ as the binary operation $f_m \circ f_n \mapsto f_{m*n}$.

Note that monoids have identity elements and associative binary operation.

Definition 8: [category]/ small_category

A category is small if both $\mathbf{Ob}(C)$ and $\mathbf{Hom}(C)$ are sets.