NAME:	

ChBE 2130 Thermodynamics I Fall 2015 Exam 2

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________
- Submit your crib sheet with your exam.

Problem	Possible Points	Score
1	20	
2	24	
3	24	
4	32	
Crib Sheet	Yes No (-5)	
Total	100	

- 1. Concept Questions [20 pts: 5 points each, no partial credit within sub-problem]
 - An ideal gas is compressed isothermally. What happens to the **entropy** of the gas?
 - a. Increases
 - b. Decreases
 - c. Remains the same
 - d. Not enough information to determine
 - The pressure of an ideal gas is increased while keeping the entropy constant. What happens to the **enthalpy** of the gas?
 - a. Increases
 - b. Decreases
 - c. Remains the same
 - d. Not enough information to determine
 - A power plant operates using a hot reservoir of 350°C and a cold reservoir of 30°C. The system (heat engine) efficiency is 55% of the Carnot efficiency for these reservoirs. What is the system efficiency?
 - a. 55%
 - b. 50.3%
 - c. 28.3%
 - d. 26.7%
 - Which of the following systems is isentropic?
 - a. An adiabatic system
 - b. An isothermal system
 - c. A reversible adiabatic system
 - d. A reversible isothermal system

2.	A closed, rigid vessel containing 4 lb _m of saturated vapor methane has a total volume of 4 ft ³ (State 1). The surroundings are at 80°F. Heat transfers from the surroundings to the vessel until the final temperature of the methane is 80°F (State			
	2).			
	Note: Temperature conversion of °F + 460 = °R and Entropy values on the			
	diagram are in units of btu lb _m /R where R is °Rankine			
	a. [6 pts] What is the final pressure (State 2)?			
	b. [8 pts] What is the entropy change of methane?			
	c. [10 pts] If the heat transfer is 420 btu, what is the total entropy generation?			

3. An inventor proposes a process whereby 1.5 kmol of an ideal gas (constant $C_p = 30 \text{ kJ/kmol K}$) is taken from 10 bar and 300 K to 1 bar and 500 K in a non-flow closed system. The process receives 50,000 kJ of heat reversibly from the surroundings at 300 K. The process produces work.

Note: For an ideal gas, $C_p - C_v = R$

a. [12 pts] Based upon an energy balance, how much work is produced?

b. [12 pts] Is the process feasible (i.e. consistent with the 2nd Law)?

4. Consider a Carnot Cycle operating on steam (Steam Table Attached). The fluid is condensed at 30°C and evaporated at 200°C. The process steps are:

Isothermal expansion from State 1 to 2 Adiabatic expansion from State 2 to 3 Isothermal compression from State 3 to 4 Adiabatic compression from State 4 to 1

a. [12 pts] Complete the following chart:

State	Temp (°C)	Entropy (kJ/ kg K)
1		
2		
3		
4		

b. [8 pts] Determine the heat transfer in the boiler in kJ/kg

c. [8 pts] Determine the cycle efficiency

d. **[4 pts]** Suppose that the turbine and pump operated at 85% efficiency. In other words, they did **not** operate isentropically (there was irreversibility in the equipment operation). Compare the entropy change of the steam for one complete cycle with the entropy change of a reversible cycle. Does ΔS increase, decrease, or remain the same?