Теория вероятностей и математическая статистика. Домашнее задание №7

Автор: Сурова София, БПИ191 октябрь 2022

Замечание. Задачи взяты из задачника «Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами», А.И. Кибзун, Е.Р. Горяинова, А.В. Наумов, 2007.

стр.93, №35

Станок-автомат изготавливает валики. Контролируется их диаметр X, удовлетворительно описываемый гауссовским законом распределения со средним значением m=10мм. Каково среднеквадратическое отклонение диаметра валика, если с вероятностью 0.99 он заключен в интервале (9.7, 10.3)?

Решение

Воспользуемся следующей теоремой: пусть ξ - нормальная случайная величина с параметрами $m,\sigma^2,$ тогда

$$P\{a < \xi < b\} = \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right)$$

$$P\{9.7 < X < 10.3\} = \Phi_0\left(\frac{10.3-10}{\sigma}\right) - \Phi_0\left(\frac{9.7-10}{\sigma}\right) = 2\Phi_0\left(\frac{0.3}{\sigma}\right) = 0.99 \Rightarrow \Phi_0\left(\frac{0.3}{\sigma}\right) = 0.495 \Rightarrow$$

Смотрим в таблицу и находим значение 0.495

	x	0	1	2	3	4	5	6	7	8	9
	0,0	0,0000	,0039	,0079	,0119	,0159	,0199	,0239	,0279	,0318	,0358
	0,1	,0398	,0438	,0477	,0517	,0556	,0596	,0635	,0674	,0714	.0753
	0,2	,0792	,0831	,0870	,0909	,0948	,0987	,1025	,1064	,1102	,1140
	0,3	,1179	,1217	,1255	,1293	,1330	,1368	,1405	,1443	,1480	1517
	0,4	,1554	,1591	,1627	,1664	,1700	,1736	,1772	,1808	,1843	1879
	0,5	,1914	,1949	,1984	,2019	,2054	,2088	,2122	,2156	,2190	,2224
	0,6	,2257	,2290	,2323	,2356	,2389	,2421	,2453	,2485	,2517	,2549
	0,7	,2580	,2611	,2642	,2673	,2703	,2733	,2763	,2793	,2823	,2452
	0,8	,2881	,2910	,2938	,2967	,2995	,3023	,3051	,3078	,3105	,3132
	0,9	,3159	,3185	,3212	,3228	,3263	,3289	,3314	,3339	,3364	,3389
	1,0	,3413	,3437	,3461	,3485	,3508	,3531	,3554	,3576	,3599	,3621
	1,1	,3643	,3665	,3686	,3707	,3728	,3749	,3769	,3790	,3810	,3829
	1,2	,3849	,3868	,3887	,3906	,3925	,3943	,3961	,3979	,3997	,40,4
	1,3	,4032	,4049	,4065	,4082	,4098	,4114	,4130	,4146	,4162	,4177
	1,4	,4192	,4207	,4222	,4236	,4250	,4264	,4278	,4292	,4305	,43 18
- 1	1,5	,4331	,4344	,4357	,4369	,4382	,4394	,4406	,4417	,4429	,4,140
	1,6	,4452	,4463	,4473	,4484	,4495	,4505	,4515	,4525	,4535	,4544
	1,7	,4554	,4563	,4572	,4581	,4590	,4599	,4608	,4616	,4624	1632
	1,8	,4640	,4648	,4656	,4663	,4671	,4678	,4685	,4692	,4699	,4706
	1,9	,4712	,4719	,4725	,4732	,4738	,4744	,4750	,4755	,4761	,4767
	2,0	,4772	,4777	,4783	,4788	,4793	,4798	,4803	,4807	,4812	,4816
	2,1	,4821	,4825	,4830	,4834	,4838	,4842	,4846	,4850	,4853	,4857
	2,2	,4861	,4864	,4867	,4871	,4874	,4877	,4880	,4884	,4887	,4889
	2,3	,4892	,4895	,4898	,4901	,4903	,4906	,4908	,4911	,4913	,4915
	9.4	,4918	,4920	,4922	,4924	,4926	,4928	,4930	,4932	,1001	,4936
	2,5	,4937	,4939	,4941	,4943	,4944	,4946	,4947	,4949	,4950	4952
	2,0	மேற	,4954	,4956	,4957	,4958	,4959	,4960	,4962	,1000	,4964
	2,7	,1965	4966	,4967	,4968	,4969	,4970	,4971	,4972	,4972	,4973
	2,8	,4974	,4975	,4976	,4976	,4977	,4978	,4978	,4979	,4980	,4980
	2,9	,4981	,4981	,4982	,4000	1063	,4984	,4984	,4985	,4985	,4986
_	3,0										
_	3,5	,499767 ,4999683									
	4,0										
	4,5	,4999966									
	5,0	,49999971									

$$\frac{0.3}{\sigma} = 2.58 \Rightarrow \sigma = \frac{0.3}{2.58} \approx 0.1163$$

Ответ: 0.1163

стр.91, №24

СВ
$$X \sim N(0,1),$$
 а $Y \sim R(0,1).$ Сравнить $P\{0 < X < 1\}$ и $P\{0 < Y < 1\}$

Решение

$$P\{0 < X < 1\} = \Phi_0 \left(\frac{1-0}{1}\right) - \Phi_0 \left(\frac{0-0}{1}\right) = 0.3413 - 0 = 0.3413$$

$$P\{0 < Y < 1\} = F(1) - F(0) = \frac{1-0}{1-0} - \frac{0-0}{1-0} = 1 - 0 = 1$$

Ответ: $P\{0 < X < 1\} < P\{0 < Y < 1\}$

стр.93, №36

Время X безотказной работы станка имеет экспоненциальное распределение. Вероятность того, что станок не откажет за пять часов работы равна 0.60653. Найти EX, DX, $E(X^2)$

Решение

Пусть X - время безотказной работы станка, тогда $X \sim \mathbf{E}(\lambda)$.

$$P(\{X > 5\}) = 1 - P(\{X \le 5\}) = 1 - F(5) = 1 - (1 - e^{-5\lambda}) = e^{-5\lambda} = 0.60653 \Rightarrow \lambda = -\frac{\ln 0.60653}{5} = 0.1$$

$$\begin{split} EX &= \frac{1}{\lambda} = \frac{1}{0.1} = 10 \\ DX &= \frac{1}{\lambda^2} = \frac{1}{0.1^2} = 100 \\ E(X^2) &= DX + (EX)^2 = 100 + 10^2 = 200 \end{split}$$

стр.93, №37

Случайная величина X имеет гауссовское распределение вероятностей со средним значением 25. Вычислить вероятность попадания этой CB в интервал (35,40), если она попадает в интервал (20,30) с вероятностью 0.2

Решение

1)
$$P\{20 < X < 30\} = \Phi_0\left(\frac{30 - 25}{\sigma}\right) - \Phi_0\left(\frac{20 - 25}{\sigma}\right) = 2\Phi_0\left(\frac{5}{\sigma}\right) = 0.2 \Rightarrow \Phi_0\left(\frac{5}{\sigma}\right) = 0.1 \Rightarrow$$
 по таблице выше $\frac{5}{\sigma} = 0.25 \Rightarrow \sigma = \frac{5}{0.25} = 20$

$$2) \ P\{35 < X < 40\} = \Phi_0\left(\frac{40 - 25}{20}\right) - \Phi_0\left(\frac{35 - 25}{20}\right) = \Phi_0\left(\frac{3}{4}\right) - \Phi_0\left(\frac{1}{2}\right) = 0.2733 - 0.1914 = 0.0819$$

Ответ: 0.0819

стр.93, №43

 $CB X \sim N(0,1)$. Найти EX^3

Решение

$$EX^3 = \int\limits_{-\infty}^{+\infty} x^3 f(x) dx = \int\limits_{-\infty}^{+\infty} x^3 \frac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}} dx = 0$$
, т.к. функция нечётная и интегрируется в симметричных пределах

Ответ: 0

стр.93, №44

СВ $X \sim N(2,1)$. Сравнить $P\{X < EX\}$ и $P\{X > DX\}$

Решение

$$P\{X < EX\} = P\{X < 2\} = \Phi\left(\frac{2-2}{1}\right) - \Phi\left(\frac{-\infty - 2}{1}\right) = 0 - 0 = 0$$

$$P\{X > DX\} = P\{X > 1^2\} = \Phi\left(\frac{+\infty - 2}{1}\right) - \Phi\left(\frac{1-2}{1}\right) = 1 - 0.1587 = 0.8413$$

Ответ: $P\{X < EX\} < P\{X > DX\}$

стр.93, №46

Функция распределения $\operatorname{CB} X$ имеет вид

$$F(x) = \begin{cases} 1 - e^{-2x}, x \ge 0\\ 0, x < 0 \end{cases}$$

Найти $E[(X-4)(5-X)], P\{X \leq EX\}$ и D(3-2X)

Решение

Если вы поняли, что F(x) - функция распределения $\mathbf{E}(2)$, то вы огромные умнички!

Действительно, $X \sim \mathbf{E}(2)$, тогда

1)
$$E[(X-4)(5-X)] = E(5X-X^2-20+4X) = -E(X^2)+9EX-20$$

 $EX = \frac{1}{\lambda} = 0.5$

$$E(X^2) = DX + (EX)^2 = \frac{1}{\lambda^2} + 0.5^2 = 0.25 + 0.25 = 0.5$$

$$E[(X - 4)(5 - X)] = -E(X^2) + 9EX - 20 = -0.5 + 9 * 0.5 - 20 = -16$$

2)
$$P\{X \le EX\} = P\{X \le 0.5\} = F(0.5) = 1 - e^{-1}$$

3)
$$D(3-2X) = 4DX = 4*0.25 = 1$$

Ответ: -16, $1 - e^{-1}$, 1

стр.94, №48

Заданы две CB $X \sim R(0,1)$ и $Y \sim E(1)$. Сравнить вероятности того, что каждая из них не превышает по модулю 2.

Решение

$$F_X(x) = \begin{cases} 0, x < 0 \\ x, x \in [0, 1] \\ 1, x > 1 \end{cases} \qquad F_Y(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-x}, x \ge 0 \end{cases}$$

$$P(\{-2 \le X \le 2\}) = F_X(2) - F_X(-2) = 1 - 0 = 1$$

$$P(\{-2 \le Y \le 2\}) = F_Y(2) - F_Y(-2) = 1 - e^{-2} - 0 = 1 - e^{-2} \approx 0.8647$$

$$\Rightarrow P(\{-2 \le X \le 2\}) > P(\{-2 \le Y \le 2\})$$

Ответ: $P(\{-2 \le X \le 2\}) = 1 > 1 - e^{-2} = P(\{-2 \le Y \le 2\})$