GG: GEOLOGY AND GEOPHYSICS

EE25BTECH11032- KARTIK LAHOTI

PART A: COMMON TO BOTH GEOLOGY AND GEOPHYSICS CANDIDATES

Q.1 - Q.25 carry on	ne mark each.:			
2) It takes approxim3) In a remotely se	ately n	a's scale of hardness is ninutes for sunlight to rea the presence of hydrous metic spectrum?	ch the Earth. (GATE G	G 2013) ed using
a) Radiowave	b) Gamma	c) Infrared	d) Visible	
4) Amongst the follo	owing, which one will ha	ve the highest P-wave ve	locity? (GATE G	G 2013)
a) Granite	b) Diamond	c) Shale	d) Talc	
(GATE GG 2013) 6) Both strength and a) increase in tem b) decrease in stra c) increase in con d) increase in pore	l plasticity of a rock increperature in rate fining pressure e fluid pressure	ts equatorial velocity is apease with the	(GATE G	G 2013)
a) 0.55	b) 1.00	c) 0.25	d) -1.00	
8) The acceleration of	due to gravity, $'g'$ is max	imum at	(GATE G	G 2013)
a) equator	b) poles	c) mid-latitudes	d) sub-tropical re	gions
9) The most abundan	nt mineral in the Earth's	crust is	(GATE G	G 2013)
a) quartz	b) K-feldspar	c) biotite	d) garnet	
10) Acoustic impedan (GATE GG 2013)		of density and velocity	7. (GATE G	G 2013)
a) sum	b) difference	c) product	d) ratio	
11) Choose the diama	agnetic mineral from the	following.	(GATE G	G 2013)
a) Calcite	b) Enstatite	c) Pyrite	d) Ilmenite	
a) same resistanceb) same resistivitionc) same resistanced) different resistance	es and resistivities es but different resistance es but different resistivitie ances and resistivities			,

	a) P-wave	b) S-wave	c) Rayleigh wave	d) Love wave
14)	a) Accretionary wedgeb) Spreading ridge is ac) Dehydration of subd	owing is the correct states is part of the foreland be major zone of metamorp fucting slab induces mant esent a convergent regime	asin bhism :le melting	(GATE GG 2013)
15)) Match the following ite	ems of Group I with the	ose of Group II.	(GATE GG 2013)
	p) Electrical Method q) Magnetic Method r) Gravity Method s) Seismic Method		Group II a) Density b) Velocity c) Resistivity d) Susceptibility e) Dielectric Permittiv	vity
	a) P-3, Q-2, R-5, S-1 b) P-3, Q-4, R-1, S-2 c) P-3, Q-4, R-2, S-1 d) P-5, Q-4, R-3, S-2			
16)) If a radioactive isotope (GATE GG 2013)	e has a decay constant of	$1.55 \times 10^{-10} \text{ year}^{-1}$, its h	alf-life (in years) would be
	a) 4.57×10^9	b) 4.47×10^9	c) 4.57×10^{10}	d) 4.47×10^{10}
17)) Which of the following	physical properties of roc	ks has the widest range of	f variation? (GATE GG 2013)
	a) Magnetic permeabilib) Dielectric permittivit	=	c) Seismic velocityd) Electrical resistivity	
18)	a) Which of the following a) Newton's law of Gra b) Coulomb's law of el c) Coulomb's law of m d) Hooke's law	ectrostatics	are law?	(GATE GG 2013)
19)	A type of unconformity rocks is known as	characterized by the occu	arrence of sedimentary roc	cks on igneous/metamorphic (GATE GG 2013)
	a) angular unconformitb) nonconformity	у	c) paraconformityd) disconformity	
20)) For seismic S-wave ve	locity, V , the rigidity mo	dulus, μ , is proportional	to (GATE GG 2013)
	a) \sqrt{V}	b) V	c) V^2	d) V^3
21)) An active trench is pre	esent in the vicinity of		(GATE GG 2013)
	a) Andaman & Nicobab) Gulf of Cambay	r Islands	c) Lakshadweepd) Krishna-Godavari de	elta
22) In a homogeneous anis	sotronic medium, the phy	sical property varies	(GATE GG 2013)

- a) with position but not with direction
- b) with both position and direction
- c) with direction but not with position
- d) neither with position nor with direction
- 23) Which one of the following stable isotopic ratios is used for estimation of palaeo-temperature of seawater? (GATE GG 2013)
 - a) $^{13}C/^{12}C$

c) 87S/86Sr

b) ¹⁸O/¹⁶O

- d) $^{15}N/^{14}N$
- 24) Match the following items of **Group** *I* with those of **Group** *II*.

(GATE GG 2013)

Group I

- p) Coal
- q) Copper
- r) Oil
- s) Uranium

- Group II
- a) Gandhar
- b) Singareni
- c) Khetri
- d) Jadugoda
- e) Degana

- a) P-4, Q-3, R-1, S-2
- b) P-2, Q-3, R-5, S-4

- c) P-1, Q-3, R-2, S-5
- d) P-2, Q-3, R-1, S-4
- 25) Which of the following logging techniques is best suited to estimate the shaliness of hydrocarbon reservoirs? (GATE GG 2013)
 - a) Resistivity
 - b) Sonic

- c) Induction
- d) Gamma ray

PART B (SECTION 1): FOR GEOLOGY CANDIDATES ONLY

	Q.26 -	-0.55	carry	two	mark	each.
--	--------	-------	-------	-----	------	-------

26)	Which	of	the	following	statements	is	correct?

(GATE GG 2013)

- a) Eolian sands do not exhibit cross bedding.
- b) Deep marine sands are well sorted.
- c) Glacier deposit may contain faceted pebble.
- d) Wave ripples do not form on shallow marine sands.
- 27) The test of organic-walled foraminifera is termed as

(GATE GG 2013)

a) Microgranular

c) Porcellaneous

b) Hyaline

- d) Tectinous
- 28) The void ratio (in percentage) of sandstone is 25. Its porosity in percentage is ______. (GATE GG 2013)
- 29) On a 1:10,000 scale map, the length of a fault trace on a hrizontal plane is represented as 5 cm. The same on 1:25,000 scale vertical aerial photograph is _____ cm (GATE GG 2013)
- 30) In high-grade metamorphism, biotite melting indicates

(GATE GG 2013)

- a) rock cooling
- b) rock hydration

- c) rock uplifting
- d) rock dehydration
- 31) Match the defination type in **Group** I with the bivalves in **Group** II.

(GATE GG 2013)

Group I

- p) Desmodont
- q) Dysodont
- r) Isodont
- s) Heterdont

Group II

- a) Mytilus
- b) Ceratoderma
- c) Mya
- d) Spondylus
- e) Nucula
- f) Arca

- a) P-3, Q-1, R-4, S-2
- b) P-1, Q-2, R-6, S-5

- c) P-3, Q-1, R-5, S-2
- d) P-2, Q-1, R-4, S-6
- 32) Which one of the following is the correct statement regarding hydrocarbon generation? (GATE GG 2013)
 - a) H/C content of organic matter increases as it matures.
 - b) O/C content of organic matter increases as it matures.
 - c) Lignite does not form any hydrocarbon during maturation.
 - d) Oil source rock is most abundant in Mesozoic.
- 33) In the stereographic projection, 1, 2 and 3 represent poles of three planes. Choose the correct combination of statements from the following. (GATE GG 2013)
 - a) The plane corresponding to 1 is horizontal and the plane corresponding to 2 is inclined.
 - b) The plane corresponding to 1 is striking N-S and the plane corresponding to 2 is horizontal.
 - c) The plane corresponding to 2 is vertical and the plane corresponding to 3 is striking E-W.
 - d) The plane corresponding to 2 is striking E-W and the plane corresponding to 3 is inclined.

Fig. 1. Question 33

34) Match the minerals in **Group** *I* with its corresponding industrial application in **Group** *II*. (GATE GG 2013)

Group I	Group II
p) Kaolinite	a) Pigment
q) Rutile	b) Asbestos
r) Graphite	c) Cement
s) Serpentine	d) Lubricant
	e) Abrasive
a) P-1, Q-3, R-4, S-2	c) P-3, Q-1, R-4, S-2
b) P-3, Q-1, R-2, S-4	d) P-1, Q-5, R-3, S-2

35) Match the Hermann-Maugin symbol in **Group** I with its corresponding general form in **Group** II. (GATE GG 2013)

Group I		Group II		
p) 6/m		a) Trigonal Dipy	ramid	
q) <u>3</u> m		b) Ditrigonal Di	oyramid	
r) $\frac{\overline{6}m^2}{6}$		c) Dihexagonal	Pyramid	
s) $\overline{6}$		d) Ditrigonal Py	ramid	
		e) Hexagonal Di	pyramid	
a) P-5, Q-4, R-2, S-1		c) P-5, Q-4, R-1,	S-3	
b) P-5, Q-4, R-1, S-2		d) P-3, Q-4, R-2,	S-1	
36) Which of the followi	ng is a type of dam?		(GAT)	E GG 2013)
a) Anchor	b) Shotcrete	c) Geogrid	d) Buttress	
37) Match the following	items in Group I with	those in Group II.	(GAT)	E GG 2013)

Group I

- p) Kersantite
- a) Fenite
- r) Mugearite
- s) Phonolite
- a) P-1, Q-2, R-4, S-3
- b) P-4, Q-5, R-2, S-3

Group II

- a) Hornblende-diopside-plagioclase lamprophyre
- b) Basaltic trachyandesite
- c) Volcanic nepheline syenite
- d) Biotite-plagioclase lamprophyre
- e) Metasomatic rock associated with carbonatites
- c) P-3, Q-1, R-2, S-4
- d) P-4, Q-5, R-3, S-2
- 38) A chondrite-normalized REE pattern of quartzo-feldspathic gneiss shows a sharp positive *Eu* anomaly. This indicates presence of (GATE GG 2013)
 - a) plagioclase in the sample.
 - b) quartz in the sample.
 - c) clinopyroxene in the sample.
 - d) sillimanite in the sample.
- 39) Choose the correct expression from the following that explains the changing vertical position of a point on the land surface at any time (Surface Uplift SU, Bedrock Uplift BU, Deposition D, Compaction C, Erosion E). (GATE GG 2013)
 - a) SU = BU D C E
 - b) SU = BU D + C E
 - c) SU = BU + D C + E
 - d) SU = BU + D C E
- 40) Match the following stratigraphic units listed in **Group** *I* with the Precambrian basins in **Group** *II*. (GATE GG 2013)

Group I

- p) Badami Group
- g) Kheinjua Formation
- r) Sullavai Group
- s) Papaghni Group

- Group II
- a) Vindhyan
- b) Chhatisgarh
- c) Kaladgi
- d) Cuddapah
- e) Pranhita-Godavari

- a) P-3, Q-1, R-5, S-4
- b) P-1, Q-5, R-4, S-3

- c) P-1, Q-2, R-3, S-5
- d) P-3, Q-2, R-5, S-4
- 41) Mantle xenoliths are observed in

(GATE GG 2013)

- a) Kimberlite
- b) Granite
- c) Pegmatite
- d) Granulite
- 42) Dimension of hydraulic conductivity is

(GATE GG 2013)

- a) LT^{-2}
- b) L^3T^{-1}
- c) ML^{-3}
- d) LT^{-1}

43) Match the items in **Group** *I* with those in **Group** *II*.

(GATE GG 2013)

Group I

- p) Katrol Formation
- q) Barail Formation
- r) Ariyalur Formation
- s) Sylhet Formation
- a) P-2, Q-4, R-5, S-3
- b) P-2, Q-5, R-3, S-1

Group II

- a) Oligocene
- b) Cretaceous
- c) Eocene
- d) Jurassic
- e) Paleocene
- f) Miocene
- c) P-4, Q-2, R-4, S-5
- d) P-4, Q-1, R-2, S-3
- 44) The outcrop pattern of folded sedimentary strata on the map given below represents (GATE GG 2013)

Fig. 2. Question 44

- a) culmination of antiform
- b) culmination of synform

- c) depression of antiform
- d) depression of synform
- 45) Match the economic deposits in **Group** I with the host rocks in **Group** II. (GATE GG 2013)

Group I

- p) Malanjkhand copper
- q) Salem magnesite
- r) Zawar Pb-Zn
- s) Rampura-Agucha

- Group II
- a) Granite
- b) Dolomite
- c) Graphitic Schist
- d) Ultramafics
- e) Basalt
- f) Rhyollite
- c) P-1, Q-4, R-2, S-3
 - d) P-3, Q-2, R-6, S-5

- a) P-1, Q-4, R-3, S-2
- b) P-2, Q-3, R-5, S-2

46) The stereographic projection below shows the principal stress axes and fault planes. The projection represents a (GATE GG 2013)

Fig. 3. Question 46

- a) normal fault
- b) reverse fault
- c) dextral fault
- d) sinistral fault

47) Select the correct the statement from the following.

(GATE GG 2013)

- a) Incised channels form an account of aeolin action.
 - b) Mesa structures are observed only in steeply dipping beds.
 - c) Crevasse splay is commonly associated with meandering river.
 - d) Coral reefs are abundant in Gulf of Cambay.

Common Data Questions

Common Data for Questions 48 and 49: A, B, C, D, E, F and G are minerals in a sample of metamorphic rock. The micro-texture of the assemblage is given below. A, D and G are porphyroblasts, B and C are coronas, E and F are inclusions.

Fig. 4. Common Data Questions 48 and 49

48) Select the appropriate metamorphic reaction from the following options.

(GATE GG 2013)

a)
$$A + B = C + D$$

c)
$$A + D = B + C$$

b)
$$A + C = D + G$$

d)
$$E + D = C + A$$

49) Based on the micro-texture, select the oldest assemblage from the following. (GATE GG 2013)

a)
$$A - D$$

b)
$$E - F$$

c)
$$B-C$$

d)
$$A - G$$

Common Data for Questions 50 and 51: The Mohr-Coulomb failure envolope (A - B) of a porous limestone is given below.

Fig. 5. Common Data Questions 50 and 51

50) The point P represents

(GATE GG 2013)

- a) uniaxial tensile strength.
- b) uniaxial compressive strength.
- c) indirect tensile strength.
- d) shear strength.
- 51) For a condition represented by the circle 1, if pore water pressure increases, the circle will change to (GATE GG 2013)
 - a) circle 2.
- b) circle 3.
- c) circle 4.
- d) circle 5.

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53: Sedimentary structures are useful for determining the younging direction of a bed.

- 52) Which one of the following sedimentary structure represents the bottom of a bed? (GATE GG 2013)
 - a) Current crescent

c) Rain print

b) Desiccation crack

- d) Load cast
- 53) Which sedimentary process is responsible for the generation of the structure identified above? (GATE GG 2013)
 - a) Wave reworking

c) Drying and desiccation

b) Liquefaction of sediments

d) Erosion of cohesive substrate

Statement for Linked Answer Questions 54 and 55: The table below represents recalculated cation compositions data of minerals.

	I	II	III	IV
Si	3.000	3.00	1.910	2.000
Ti	0.000	0.003	0.003	0.000
Al	1.997	2.000	0.186	0.009
Fe	1.400	6.000	0.160	1.405
Mn	0.000	0.000	0.000	0.032
Mg	1.038	0.510	0.877	0.998
Ca	0.568	0.475	0.848	1.567
Na	0.000	0.024	0.021	0.000
Total	8.003	12.012	4.005	6.011

- 54) Select the correct garnet $[(Ca, Fe, Mg, Mn)_3 Al_2 Si_3 O_{12}]$ and clinopyroxene $[Ca(FeMg) Si_2 O_6]$ pair respectively. hfill(GATE GG 2013)
 - a) II and III
- b) II and IV
- c) I and IV
- d) I and III
- 55) Calculate the distribution coefficient $[K_D]$ for the Fe-Mg system.

(GATE GG 2013)

- a) 0.504
- b) 0.620
- c) 1.420
- d) 1.535

(GATE GG 2013)

PART B (SECTION 2): FOR GEOPHYSICS CANDIDATES ONLY

26) A P-wave is reflected as both P- and S- waves from an interface at angles r_p and r_s respectively.

Q.26 to Q.55 carry two marks each. :

The relationship between r_p and r_s is

	a) $r_p > r_s$	b) $r_p = r_s$	c)	$r_p < r_s$	d) $r_p =$	$=2r_s$
27)	Which of the following recording?	ways of measuring the	size	of an earthquake do	es not r	equire instrumental (GATE GG 2013)
	a) Richter magnitudeb) Moment			M_w Intensity		
28)	In what circumstances, (GATE GG 2013)	the migrated reflection s	seisn	nic section will be sa	me as th	ne unmigrated one?
	a) Inclined interfacesb) Undulating interfaces			Horizontal interfaces Vertical interfaces		
29)	Which of the following mantle? a) Deep electrical resist.		d to	estimate the resistiv	ity varia	tions in the upper (GATE GG 2013)
	b) Ground Penetrating Fc) Controlled Source Eld) Magnetotellurics	Radar				
30)	Amongst the following suited for archeological a) Schlumberger b) Pole-Pole c) Wenner d) Dipole-Dipole	_	ns o	f the electrical resisti	vity me	thod, which is best (GATE GG 2013)
	A singular value of an	$m \times n$ matrix, A, is defin	ned a	as		(GATE GG 2013)
	a) positive square root ob) modulus of eigenvalu	•		eigenvalue of $A^T A$ square of eigenvalue	of A	
32)	In an ill-posed geophys of determinant of the co	<u>-</u>	ated	as non-singular matr	ix equat	ion, the magnitude (GATE GG 2013)
	a) large	b) zero	c)	near zero	d) very	/ large
33)	In a 4-layer subsurface sounding curves is NO ?		tion	of A-, H-, K- and Q)- type e	electrical resistivity (GATE GG 2013)
	a) HA	b) AK	c)	KQ	d) HQ	
34)	Which of the following of centre of the buried a) Position of maximum b) Position of minimum c) Position of zero cross d) Position midpoint between the control of the cont	ore body? of the anomaly of the anomaly sing			es the ap	oproximate position (GATE GG 2013)
35)	d) Position midpoint bet Given a scalar function			=		(GATE GG 2013)

a) $2x\hat{i}$	b) $-2y \hat{j}$	c) 0 <i>î</i>	d) $x\hat{i} + y\hat{j}$	
b) Fraser filter is a dc) Static shift affectsd) Tipper vector is d37) If L, B, F and T res	ique, the tilt-angle moifference filter MT impedance phase erived from the three pectively stand for La	magnetic field compone	ents, H_x , H_y and H_z . The applied for gravity dates	
a) LFBT	b) LBTF	c) FLBT	d) TBLF	
38) Geomagnetic secular	variations originate f	from the	(GATE	GG 2013)
a) inner core	b) outer core	c) crust	d) mantle	
a) Removal of regionala) band-pass filteringb) low-pass filteringc) high-pass filteringd) band-reject filtering		gnetic data is similar to	(GATE	GG 2013)
40) Which of the following anomaly curve?a) Surface integrationb) Volume integrationc) Twice the absoluted) Half-width of the	n n e maximum	e the depth to the centre	-	m a gravity GG 2013)
41) Application of reducea) flattening the anorable transforming the acceptable control to the control of the	naly curve. symmetry in the anorude.		results in (GATE	GG 2013)
42) The Fourier transform	m of a comb function	is	(GATE	GG 2013)
a) delta function	b) comb function	c) sync function	d) rectangular	function
43) In Cartesian coordina <i>x</i> -direction, then the method are	•	gical strike of a two-dim components associated	with TM mode of mag	_
a) H_x , E_y and E_z	b) E_x , H_y and E_z	c) H_x , H_y and E	d) E_x , H_y and	H_z
44) A seismic signal is sampling interval one45) Wadati diagram is a P-wave. It helps in e	e should choose to av plot of the difference	oid aliasing is	ms. (GATE al times against the arri	GG 2013)

	a) velocity of P-wave.b) velocity of S-wave.		c) time of occurrence d) hypocenter of earth	-
46)	Match the items of Gr	roup <i>I</i> with those of Gro	oup II	(GATE GG 2013)
	Group <i>I</i> a) Caliper log b) NMR log c) Neutron log d) SP log		Group IIa) Permeabilityb) Resistivityc) Diameterd) Velocitye) Porosity	
	a) P - 3, Q - 4, R - 2, b) P - 3, Q - 1, R - 5,		c) P - 4, Q - 2, R - 4, d) P - 1, Q - 3, R - 2,	
47)	The most common hyd	drocarbon indicator is		(GATE GG 2013)
	a) flat spot	b) dim spot	c) bright spot	d) velocity sag
	Common Data Question Common Data for Question The order of y_n is The transfer function of	estions 48 and 49: A rec	ursive filter y_n is given b	y $y_n = 2x_n - 1.5x_{n-1} + y_{n-2}$. (GATE GG 2013) (GATE GG 2013)
	a) $\frac{1-1.5z}{2-z^2}$ b) $\frac{1-z^2}{2-1.5z}$		c) $\frac{2+z^2}{1+1.5z}$ d) $\frac{2-1.5z}{1-z^2}$	
	Common Data for Qua $\begin{pmatrix} 2.00 & 2.01 \\ 2.01 & 2.00 \end{pmatrix}$.	estions 50 and 51:: In a	linear inverse problem,	the coefficient matrix, $A =$
50)	The eigenvalues of A a	nre		(GATE GG 2013)
	a) (4.01, -0.01)	b) (-4.01, -0.01)	c) (4.01, 0.01)	d) (-4.01, 1.01)
51)		are expressed up to first ting inverse problem is	t decimal place only, th	en the number of possible (GATE GG 2013)
	a) 1	b) 2	c) 3	d) ∞
52)	current of 20mA is particular voltage of 3V is measured.	Answer Questions 52 and	t electrodes separated by	esistivity sounding survey a y a distance of 50m and a 10m. (GATE GG 2013)
53)	The apparent resistivity	$(\text{in }\Omega - m) \text{ for the above }$	electrode configuration i	s close to (GATE GG 2013)

	a) 100	b) 200	c) 300	d) 400)
54)	•	answer Questions 54 and a homogeneous half-spacewave is about			• •
	a) 1 <i>km</i>	b) 1 <i>m</i>	c) 500km	d) 500)m
55)	The velocity of the EM	I wave $(inkm/s)$ is close	to		(GATE GG 2013)
	a) 20πb) 30π		c) 40πd) 50π		
	General Aptitude (GA)	Questions			
56)	A number is as much g	greater than 75 as it is sn	naller than 117. The num	ber is:	(GATE GG 2013)
	a) 91	b) 93	c) 89	d) 96	
57)	\overline{I} II	$\frac{\text{to}}{III}$ $\frac{\text{the students to go}}{III}$ derlined parts of the sent	IV	correct?	(GATE GG 2013)
	a) I	b) II	c) III	d) IV	
58)	Which of the following	options is the closest in r	meaning to the word given	n below	: (GATE GG 2013)
	a) Modernb) Historic		c) Primitived) Antique		
	a) cordialb) intimatec) secretd) pleasant	now it i		sed in t	(GATE GG 2013)
00)	Health	st expresses a relationshi	p similar to that express	ca iii t	(GATE GG 2013)
	a) Science: Experimentb) Wealth: Peace		c) Education: Knowledged) Money: Happiness	ge	
	A. Q.61 to Q.65 carry	two marks each.			
61)	_	ive numbers such that $2X$ action $f(X, Y) = 3X + 6Y$			ich of the following (GATE GG 2013)

62) If $ 4X - 7 = 5$ then the values of $2 X - -X $	(is
--	------

(GATE GG 2013)

a) 2, 1/3

b) 1/2,3

c) 3/2,9

d) 2/3,9

63) Following table provides figures (in rupees) on annual expenditure of a firm for two years - 2010 and 2011. (GATE GG 2013)

Category	2010	2011
Raw material	5200	6240
Power & fuel	7000	9450
Salary & wages	9000	12600
Plant & machinery	20000	25000
Advertising	15000	19500
Research & Development	22000	26400

In 2011, which of the following two categories have registered increase by same percentage?

- a) Raw material and Salary & wages
- b) Salary & wages and Advertising
- c) Power & fuel and Advertising
- d) Raw material and Research & Development
- 64) A firm is selling its product at *Rs*.60 per unit. The total cost of production is *Rs*.100 and firm is earning total profit of *Rs*.500. Later, the total cost increased by 30%. By what percentage the price should be increased to maintained the same profit level. (GATE GG 2013)
 - a) 5

b) 10

c) 15

- d) 30
- 65) Abhishek is elder to Savar. Savar is younger to Anshul. Which of the given conclusions is logically valid and is inferred from the above statements? (GATE GG 2013)
 - a) Abhishek is elder to Anshul
 - b) Anshul is elder to Abhishek
 - c) Abhishek and Anshul are of same age
 - d) No conclusion follows

END OF THE QUESTION PAPER