Using Trusted Execution Environments On High-Performance Computing Platforms

Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, Sean Peisert

Secure High-Performance Computing

How to compute with large sensitive data?
Biomedical data
Proprietary data

Secure from both external and internal threats Integrity or confidentiality or both

High-Performance Computing Workloads

Common characteristics Large data sets (10s-100s GB per node)

Limited user interaction (batch)

Often highly multithreaded

Dedicated (super computers) or shared (cloud) nodes

Diverse compute, memory, and security requirements

We Analyze Two TEEs

Technology	Ensures Integrity	TCB Size	Secure Memory Size	Application Changes
Intel SGX	Yes	Small	128 MB (useable: 94MB)	Required
AMD SEV	No	Large	Up to RAM size	Not Required

Methodology

- Benchmarks used: NAS parallel benchmarks, LightGBM and GAPBS
- Platforms used: Intel Core i7-8700 (12 threads/socket) for SGX and AMD EPYC 7451 (dual socket with 48 threads/socket) for SEV study
- Use of SCONE (SGX) and Kata (SEV) containers
- Measured slowdown of the used workloads under secure execution on both platforms
- Relate the slowdown to other collected metrics

Performance Impact of SGX

High slowdown, especially for graph workloads

Enclave Page Cache (EPC) Faults

Enclave Page Cache (EPC) Faults

All the benchmarks
have large
resident memory
except ep & tc_synth

Impact of Increasing Execution Threads (under SGX)

Don't scale well, as they have large resident memory

Impact of Increasing Execution Threads (under SGX)

Performance Impact of SEV

Performance Impact of SEV

Virtualization appears to be the biggest reason of slowdown

Preliminary Takeaways

Future TEEs should support HPC apps

Smaller slowdowns for SEV

Performance issues for SGX

EPC faults

Multiple execution threads

SEV and SGX slowdowns

