

جامعة طرابلس كلية تقنية المعلومات

مقدمة في قواعد البيانات

Introduction to Databases ITGS228

h.ebrahem@uot.edu.ly

الأستاذ - حسن علي حسن

المحاضرة العاشرة - صيغ التطبيع أو التبسيط

Normalization

مواضيع المحاضرة

- صيغ التطبيع أو التبسيط أو المعيارية
- تبسيط قواعد البيانات Normalization in Databases
- قواعد تبسيط قواعد البيانات Normalization in Databases
 - الاعتمادية الوظيفية وأنواعها.
 - مراحل صيغ التطبيع
 - مرحلة التطبيع الاولى (First Normal Form(1NF))

صبغ التطبيع أو التبسيط Normalization

تبسيط قواعد البيانات Normalization in Databases

الهدف من التبسيط هو:

- □ زيادة الكفاءة: يجب أن تكون المعلومات منتظمة بشكل يدعم الكفاءة:
- 1. تقليل التكرار، يجب فصل المعلومات التي تتكرر بكل سجل ووضعها في جدول مستقل حتى نتجنب التكرار، وعلى سبيل المثال، في جدول الزيارات المرضية فإن رقم المريض يحل محل اسم المريض، والمعلومات الشخصية للمريض لا نحتاج إلى تكرارها بكل سجل للزيارة.
- 2. تقليل مدخلات البيانات المفقودة، أي المعلومات التي قد لا تتوفر عند الكل حتى لا نضطر على تركها فارغة، على سبيل المثال، بعض الموظفين لا يوجد لهم أبناء.
- □ السماح للمستخدم بالوصول إلى البيانات التي يردها، أي يجب أن يسمح للمستخدم بالبحث عن المعلومات في مجال واحد لا أن يخمن أي مجال آخر يحتوي على نفس هذه المعلومات.

تبسيط قواعد البيانات Normalization in Databases

قواعد التبسيط:

□ قام علماء الرياضيات بتطوير مجموعة من القواعد التي إن تم اتباعها سوف ينتج عنها استخدام أكثر كفاءة وسهولة لقواعد البيانات، وهذه القواعد مطلب لقاعدة البيانات الجيدة ذات الكفاءة العالية.

□ القاعدة رقم 1: يجب أن يتوافق كل جدول مع كيان واحد

• القاعدة الأولى هي أن كل جدول يتوافق مع كيان واحد أو علاقة واحدة، مثلاً لا يكون لديك جدول واحد به معلومات عن كل من الطلاب والمواد الدراسية معاً، وإن وجود ذلك سيؤدي إلى خلط بشأن موقع وجود البيانات، كما يجبرنا على إضافة معلومات عن الطلاب عند إضافة بيانات المواد الدراسية، مما يزيد تكرار البيانات.

□ القاعدة رقم 2: الصفوف في الجدول يجب أن تتوافق مع الأحداث الفردية للكيان

• القاعدة الثانية يُشار إلى الصف الموجود في جدول على أنه السجل، ويجب أن يتوافق كل سجل مع الكيان، وعلى سبيل المثال، فإن كل سجل في جدول المريض يجب أن يكون خاص بمريض واحد فقط، وكل سجل في جدول الدكاترة يجب أن يكون عن دكتور واحد فقط.

تبسيط قواعد البيانات Normalization in Databases

□ القاعدة رقم 3: يجب أن يحدد المفتاح الأساسي الأحداث الفردية للكيان أو العلاقة

• القاعدة الثالثة هي أن تتأكد أن المفتاح الأساسي يحدد أحداث الكيان بشكل فريد، ويجب ألا يُستخدم المفتاح الأساسي في صفين بنفس الجدول، على سبيل المثال، الاسم الأول والاسم الأخير غالباً غير كافيين لتحديد المريض بشكل فريد من نوعه لأن الكثير من المرضى لهم نفس الأسماء، لكن رقم الضمان الاجتماعي يحدد المريض بشكل فريد من نوعه.

□ القاعدة رقم 4: يجب أن تقدم كل حقيقة مرة واحدة فقط في قاعدة البيانات.

• القاعدة الرابعة هي التأكد من أننا لم نقدم أي حقيقة لأكثر من مرة في قاعدة البيانات، ليس هناك حاجة إلى عمل نسختين من المعلومات، على سبيل المثال، ليس من العقلي أن تدخل اسم المادة الدراسية للطالب في جدول النتائج في حين أن اسم المادة الدراسية متوفر في جدول المواد الدراسية، من المريح أن نجد كل ما نريد في جدول واحد وهذا يعني إمكانية الوصول إلى المعلومات، ومن هنا فلا داعي لتكرار البيانات.

صيغ التطبيع هي مجموعة من الخطوات التي تستخدم لتقسيم البيانات الى مجموعة من العلاقات أو الجداول التي تتسم بالتجانس والخالية من التكرار بناءً على المفاتيح الرئيسية والاعتمادية الوظيفية بين الخصائص داخل العلاقة.

أو هي العلاقة التي تحتوي على أقل فصل للبيانات ما يمكن المستخدمين من الادخال والحذف والتعديل في البيانات بدون حدوث تضارب للبيانات.

- ✓ سلامة قاعدة البيانات تتم من خلال منع مشاكل تكرار البيانات (Data anomalies)
 والتي تحدث عندما نقوم بالآتي :
 - 1. الإضافة Insert Anomaly.
 - 2. التعديل Update Anomaly.
 - 3. الحذف Delete Anomaly.

مشاكل تكرار البيانات (Data anomalies):

في هذا الجدول نلاحظ أن معلومات الموظف والقسم موجودة في نفس الجدول relation وهذا أدى إلى التكرار في البيانات مثل إسم وموقع القسم في كل سجل وهذا يؤدي الى عدة مشاكل وهي:

1- مشكلة الإضافة Insert Anomaly: بفرض أن المفتاح الرئيسي للجدول هو رقم الموظف،

وبالتالي فإننا لانستطيع إضافة قسم جديد إلا إذا كان القسم يحتوي على موظف.

Employee_department						
Empno	Ename	Job	Salary	Deptno	Dname	Loc
101	Sami	clerk	3000	10	Accounting	Riyadh
205	Khalid	manager	2500	10	Accounting	Riyadh
303	Ali	salesman	1200	20	Sales	Jeddah
502	Saeed	salesman	2100	20	Sales	Jeddah
601	Salem	clerk	1000	30	Operation	Dmmam

مشاكل تكرار البيانات (Data anomalies):

مثال 2 على مشكلة الإضافة Insert Anomaly بفرض أن المفتاح الرئيسي في جدول المؤلفة (Emp_ID - Course_title)، إننا لا نستطيع إضافة موظف جديد إلا إذا

کان متحصل علی دو/رة Course.

Ε	М	Ρ	D	YE	Ε	2
---	---	---	---	----	---	---

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000	C	4/22/200X
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

مشاكل تكرار البيانات (Data anomalies):

2. مشكلة التعديل Update Anomaly: نلاحظ تكرار إسم وموقع القسم، إذا قمنا بتعديل مشكلة التعديل لجميع Loc وقع لقسم 20 من jeddah الى Loc فلابد من اجراء التعديل لجميع الموظفين في هذا القسم والا سيؤدي هذا الى عدم توافقية البيانات.

Employee_department						
Empno	Ename	Job	Salary	Deptno	Dname	Loc
101	Sami	clerk	3000	10	Accounting	Riyadh
205	Khalid	manager	2500	10	Accounting	Riyadh
303	Ali	salesman	1200	20	Sales	Jeddah
502	Saeed	salesman	2100	20	Sales	Jeddah
601	Salem	clerk	1000	30	Operation	Dmmam

مشاكل تكرار البيانات (Data anomalies):

مثال 2. مشكلة التعديل Update Anomaly: نلاحظ إذا قمنا بتعديل المرتب للموظف 100 فإن ذلك يتطلب تعديل جميع السجلات لهذا الموظف والا سيؤدي هذا الى عدم توافقية البيانات.

EMPLOYEE2

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000	C	4/22/200X
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

مشاكل تكرار البيانات (Data anomalies):

3. مشكلة الحذف Delete Anomaly: نلاحظ أن القسم رقم 30 يحتوي على موظف واحد فقط فاذا قمنا بحذف الموظف رقم 601 فان معلومات القسم رقم 30 سوف تختفي من الجدول.

Employee_department						
Empno	Ename	Job	Salary	Deptno	Dname	Loc
101	Sami	clerk	3000	10	Accounting	Riyadh
205	Khalid	manager	2500	10	Accounting	Riyadh
303	Ali	salesman	1200	20	Sales	Jeddah
502	Saeed	salesman	2100	20	Sales	Jeddah
601	Salem	clerk	1000	30	Operation	Dmmam

مشاكل تكرار البيانات (Data anomalies):

مثال2. مشكلة الحذف Delete Anomaly: نلاحظ إذا قمنا بحذف الموظف رقم 140 ، فأننا

سنفقد البيانات المتعلقة بالدورة Tax ACC.

EMPLOYEE2

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000	C	4/22/200X
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

الاعتمادية الوظيفية (functional dependencies):

الاعتماد الوظيفي هو اعتماد او ارتباط خاصية او مجموعة من الخصائص على خاصية او مجموعة الحرى من خصائص قاعدة البيانات. والتي تصف العلاقة بين الصفات attributes في العلاقة relation (الجدول)

B is functionally
dependent on A

Determinant

لو أخذنا A و B صفات في العلاقة R نقول أن B تعتمد اعتمادا وظيفيا على A

. B هذا الاعتماد بالرمز $A \longrightarrow A$ هذا يعني أن قيمة A تحدد قيمة

مثال جدول الطالب في قاعدة بيانات الجامعة يحتوي على خاصية رقم الطالب وكذلك اسمه وعنوائه. نقول أن خاصية رقم الطالب تحدد اسم الطالب لأن كل قيمة من خاصية رقم الطالب تحدد قيمة واحدة من خاصية اسم الطالب وبنفس المعنى نقول ان اسم الطالب يعتمد اعتمادا وظيفيا

على رقم الطالب وتكتب كما يلي:

اسم الطالب 🔷 رقم الطالب

العنوان	الاسم	رقم الطالب
بن عاشور	سعتر	10611205
السراج	محمد	10711311
جنزور	حسام	10612312
تاجوراء	اكرم	10723141

توجد ثلاث أنواع من الاعتمادية الوظيفية:

1- الاعتمادية الوظيفية الجزئية (Partial functional dependencies):

الاعتمادية الجزئية Partial dependency هي ان الخاصية أو العمود معتمداً على جزء من المفتاح الرئيسي وليس كله، أي أن الخاصية معتمد وظيفيا على مفتاح رئيسي مركب. إذا كان العمود A مفتاحا رئيسيا مركبا بحيث أن A=BC وكان لدينا العمود D بحيث أن:

 \square يعتمد جزئيا على \square إذا كان العمود \square فقط هو الذي يحدد \square

SubNo, Student_No → SubName Partial dependency
Student_No, Sub_No → Student_Name Partial dependency

2- الاعتمادية الوظيفية الكلية (Full functional dependencies):

هي ان الخاصية أو العمود معتمداً على كل المفتاح الرئيسي وليس جزء منها.

تكون الاعتمادية الكلية Full dependency في حالتين:

- •إذا كان المفتاح الذي يحدد الاعمدة الاخرى غير مركبا، أي مفرد.
- •أو إذا كان المفتاح مركبا، وكل مكوناته تحدد الاعمدة الاخرى معا.

 $A \longrightarrow D$ إذا كان العمود A مفتاحا رئيسيا مركبا بحيث أن A = BC وكان لدينا العمود D بحيث أن D = A فإننا نقول أن D يعتمد كليا على A إذا كان العمودان A = A

ClientNo, PropertyNo → RentDate Full dependency

Student_No, Sub_No → Result Full dependency

3- الاعتمادية الوظيفية المتعدية (Transitive dependency)

لدينا A و B و C صفات لعلاقة relation ما ، فإذا كان العمود A يحدد العمود B وكان العمود B وكان العمود B وكان العمود B يحدد العمود C فإننا نقول A تحدد كا

 $A \longrightarrow B$ and $B \longrightarrow C$, then $A \longrightarrow C$

مثال: رقم الموظف _____مرقم الفرع رقم الفرع _____عنوان الفرع رقم الموظف ____عنوان الفرع

رقم الموظف ---->رقم القسم ----> اسم القسم

مثال1: أعطيت الجدول أو العلاقة التالية:

حاسوب - (الرقم التسلسلي ,اسم البرنامج ,الذاكرة المطلوبة) والبيانات المدونة في الجدول

الرقم التسلسلي	اسم البرنامج	الذاكرة المطلوبة
100A	WORD	640K
100A	DBASEIII	512K
100B	DBASEIII	512K
200A	WORD	640K
200B	WORD	640K
200C	WORD STAR	128K
200C	DBASEIII	512K
200D	WORD STAR	128K

ماهي الاعتمادية الوظيفية الموجودة في الجدول السابق. الحل:

اسم البرنامج -----الذاكرة المطلوبة.

مثال2:أعطيت الجدول التالى:

العمل	الميزانية	المشروع	الراتب	الاسم
فني	300	DB	200	محمد
مصمم	500	WEB	300	سامر
مصمم	1000	CAD	300	سامر
مدير	1000	CAD	700	علي
مستشار	500	WEB	700	علي
مستشار	300	DB	700	علي
مدير	300	DB	600	ماهر
مصمم	1000	CAD	600	ماهر
مصمم	1000	CAD	800	ياسر
مصمم	300	DB	800	ياسر

ماهي الاعتمادية الوظيفية الموجودة في الجدول السابق

نلاحظ الاعتمادات الوظيفية التالية:

الراتب ← الاسم الميزانية ← المشروع

مراحل صيغ التطبيع: طورت صيغ التطبيع من قبل ادوارد كود سنة 1972.

توجد عدة مراحل لتحويل العلاقة أو الجدول من الصيغة الغير مطبعة "unnormalized" الى الشكل النهائي المتكامل من البيانات. سنكتفى بثلاث المراحل الأولى من صيغ التطبيع.

الخطوة الأولى في التطبيع يتم فيها تحويل البيانات الموجودة لدينا الى جدول ذو بعدين صفوف وأعمدة.

المرحلة الغير طبيعية (مطبعة) Zero Normal Form(0NF) unnormalized

في مرحلة غير التطبيع unnormalized يكون فيها البيانات داخل الجدول ذات صفة مركبة أو أن الخاصية داخل الجدول تحتوي على أكثر من قيمة (متعددة القيم) أو الخاصية لا تحتوي على أي قيمة أو يوجد تكرار للبيانات.

مثال 1: جدول بیانات موظف Employee

No	Name			Name Adress				
	Fname	Mid	Lname	city	Street	House no		
100	Ali	Salem	musa	Riyadh	Immam saud	210		
120	Saeed	Eisa	Ali	Riyadh	King Fahad	202		

نلاحظ من الجدول ان الخاصية name تتكون من ثلاثة اجزاء وكذلك العنوان address يتكون من ثلاثة اجزاء و الغير مطبعة من ثلاثة اجزاء وبالتالي فالجدول السابق يعتبر في الصيغة المعيارية الغير مطبعة

المرحلة الغير طبيعية (مطبعة) Zero Normal Form (ONF) unnormalized مثال 2: الجدول التالي يمثل ساعات العمل Hours لموظف في عدة مشاريع Projects وبيانات القسم الذي يشرف على تنفيذ المشروع.

NO	Name	Project_Code	Hours	Deptno		Dname
210	Ali	P1,p2,p3	12,20,40	10,20,20	Research,	Operation,
			200 81			Operation
201	Salem	P1,p3	30,15	10,20	Research Operation	
305	Ali	P2,p3	40,20	20,20	Operat	ion, Operation

العديد من الاعمدة تحتوي على أكثر من قيمة مثل رمز المشروع project code وكذلك عدد الساعات Hours والاقسام deptno وبالتالي فالجدول السابق يعتبر في الصيغة المعيارية الغير مطبعة.

1. مرحلة التطبيع الاولى (First Normal Form(1NF))

نقول أن الجدول أو العلاقة في الصيغة الاولى إذا كانت جميع أعمدة الجدول تحتوي على بيانات بسيطة أو مفردة (غير مركبة) أي ان كل عمود يحتوي على قيمة واحدة فقط أو إذا كان لا يوجد تكرار للبيانات في الجدول ولا توجد خصائص فارغة

مثال 1: جدول بیانات موظف Employee

No	Name			Adresse			
=	Fname	Mid	Lname	city	Street	House no	
100	Ali	Salem	musa	Riyadh	Immam saud	210	
120	Saeed	Eisa	Ali	Riyadh	King Fahad	202	

نلاحظ من الجدول ان الاسم يتكون من ثلاثة اجزاء وكذلك العنوان وبالتالي فالعمود يجب أن يحتوي على قيمة واحدة فقط وبالتالي فالجدول السابق لا يعتبر في الصيغة المعيارية الاولى.

1. مرحلة التطبيع الاولى ((First Normal Form(1NF))

وبالتالي لوضع الجدول التالي في الصيغة المعيارية الاولى 1NF

No	Name			Adres		
	Fname	Mid	Lname	city	Street	House no
100	Ali	Salem	musa	Riyadh	Immam saud	210
120	Saeed	Eisa	Ali	Riyadh	King Fahad	202

نقوم بتقسيم الاعمدة المركبة الى اعمدة بسيطة كالآتي:

No	Fname	Mid	Lname	city	Street	House no
100	Ali	Salem	musa	Riyadh	Immam	210
				-C	saud	
120	Saeed	Eisa	Ali	Riyadh	King Fahad	202

1. مرحلة التطبيع الاولى (First Normal Form(1NF))

مثال 2: نلاحظ أن الجدول التالي في الصيغة الغير مطبعة، لأن العديد من الاعمدة تحتوي على أكثر من قيمة.

NO	Name	Project_Code	Hours	Deptno		Dname
210	Ali	P1,p2,p3	12,20,40	10,20,20	Research,	Operation,
,4						Operation
201	Salem	P1,p3	30,15	10,20	Resea	rch Operation
305	Ali	P2,p3	40,20	20,20	Operat	ion, Operation

NO	Name	Project_Code	Hours	Deptno	Dname
210	Ali	P1	12	10	Research
210	Ali	p2	20	20	Operation
210	Ali	р3	40	20	Operation
201	salem	P1	30	10	Research
201	salem	р3	15	20	Operation
305	Ali	P2	40	20	Operation
305	Ali	р3	20	20	Operation

لوضع الجدول في الصيغة المعيارية الاولى نقوم بتقسيم الاعمدة المركبة الى اعمدة كالآتي:

1. مرحلة التطبيع الاولى (First Normal Form(1NF)) مثال 2:

NO	Name	Project_Code	Hours	Deptno	Dname
210	Ali	P1	12	10	Research
210	Ali	p2	20	20	Operation
210	Ali	р3	40	20	Operation
201	salem	P1	30	10	Research
201	salem	р3	15	20	Operation
305	Ali	P2	40	20	Operation
305	Ali	р3	20	20	Operation

في الجدول السابق توجد لدينا مشكلة وهي ايجاد المفتاح الرئيسي Primary Key للجدول حيث ان رقم الموظف لوحده لايصلح أن يكون مفتاح رئيسي لعدم تحقق شرط عدم التكرار. لنستخدم الان الاعتمادية الوظيفية لايجاد المفتاح الرئيسي Primary Key.

1. مرحلة التطبيع الاولى (First Normal Form(1NF)) مثال 2:

NO	Name	Project_Code	Hours	Deptno	Dname
210	Ali	P1	12	10	Research
210	Ali	p2	20	20	Operation
210	Ali	р3	40	20	Operation
201	salem	P1	30	10	Research
201	salem	р3	15	20	Operation
305	Ali	P2	40	20	Operation
305	Ali	p3	20	20	Operation

باستخدام الاعتمادية الوظيفية لايجاد المفتاح الرئيسي Primary Key نتحصل على الآتي:

No----Name

Deptno ---- Dname

No, Project_Code ----> Deptno

نهاية المحاضرة

Any Questions