Total Type Error Localization and Recovery with Holes

Eric Zhao, Raef Maroof, Anand Dukkipati, Andrew Blinn, Zhiyi Pan, Cyrus Omar

Future of Programming Lab University of Michigan

Reality check

Reality check

Most of the code we write is **ill-typed**

As programmers, we want tooling that can

As programmers, we want tooling that can

localize type errors

As programmers, we want tooling that can

• **localize type errors**: describe *what* and *where* they are

As programmers, we want tooling that can

- **localize type errors**: describe *what* and *where* they are
- **recover**: even when an error is encountered, continue to provision downstream services and find other errors

As programmers, we want tooling that can

- **localize type errors**: describe *what* and *where* they are
- **recover**: even when an error is encountered, continue to provision downstream services and find other errors

i.e., code completion, type hints, and other downstream services shouldn't suddenly all fail because of one error!

let $f = \lambda b$: bool. · · · in

let $f = \lambda b$: bool. \cdots in let x = if true then 5 else false in

let $f = \lambda b$: bool. \cdots in let x = if true then 5 else false in f(x)

OCaml: the first branch is right

```
let f=\lambda b : bool. \cdots in let x= if true then 5 else false in f x 1 | let x= if true then 5 else false in f x
```

Error: This expression has type bool but an expression
 was expected of type int

OCaml: the first branch is right

let $f = \lambda b$: bool. \cdots in let x = if true then 5 else false in f x

1 | let x = if true then 5 else **false** in f x

Error: This expression has type bool but an expression
 was expected of type int

1 | let x = if true then 5 else false in f x

Error: This expression has type int but an expression
 was expected of type bool

Haskell: 5 is the problem

```
let f=\lambda b : bool. \cdots in let x= if true then \bf 5 else false in f x Main.hs:4:26: error: [GHC-39999]

• No instance for 'Num Bool' arising from the literal '5'

4 | _ = let x = if True then \bf 5 else False in f x
```

Rust: maybe 5 is also the problem?

```
let f=\lambda b : bool. \cdots in let x= if true then 5 else false in f x error[E0308]: 'if' and 'else' have incompatible types -> src/main.rs:2:30 | 6 | let x= if true 5 else false ; f(x); | - ^^^^ expected integer, found 'bool' | | expected because of this
```

Hazel: the whole thing's all messed up!

let $f = \lambda b$: bool. \cdots in let x =if true then 5 else false in f(x)

```
let f = fun b : Bool -> in
let x = if true then 5 else false in f(x)
EXP ? If expression Branches have inconsistent types: Int , Bool
```

Today's tooling is error-resilient to a certain degree

Today's tooling is error-resilient to a certain degree, but

Today's tooling is error-resilient to a certain degree, but

• localization can be varied

Today's tooling is error-resilient to a certain degree, but

• localization can be varied, often guessing about *user intent*

Today's tooling is error-resilient to a certain degree, but

- localization can be varied, often guessing about *user intent*
- recovery necessitates reasoning without complete knowledge about types

Today's tooling is error-resilient to a certain degree, but

- localization can be varied, often guessing about *user intent*
- recovery necessitates reasoning without complete knowledge about types
- decisions can influence other downstream decisions

Most of the code we write is *ill-typed*

Most of the code we write is *ill-typed*, but conventional language definitions *only specify the meaning of well-typed programs*.

Most of the code we write is *ill-typed*, but conventional language definitions *only specify the meaning of well-typed programs*.

$$\Gamma \vdash e : \tau$$

Most of the code we write is *ill-typed*, but conventional language definitions *only specify the meaning of well-typed programs*.

$$\Gamma \vdash e : \tau$$

If a type error appears **anywhere**, the program is meaningless **everywhere**.

The goal

We'd like a way to formally specify type checkers that are capable of localizing and recovering from errors

The goal

We'd like a way to formally specify type checkers that are capable of localizing and recovering from errors

Totality

These semantics should give meaning to *all well-typed and ill-typed programs*.

Uniting *local* and *global* type inference for principled total type error localization and recovery:

Uniting *local* and *global* type inference for principled total type error localization and recovery:

• the marked lambda calculus

Uniting *local* and *global* type inference for principled total type error localization and recovery:

• the **marked lambda calculus**: a judgmental framework for bidirectional type error localization and recovery

Uniting *local* and *global* type inference for principled total type error localization and recovery:

- the **marked lambda calculus**: a judgmental framework for bidirectional type error localization and recovery
- type hole inference

Uniting *local* and *global* type inference for principled total type error localization and recovery:

- the **marked lambda calculus**: a judgmental framework for bidirectional type error localization and recovery
- **type hole inference**: a global, constraint-based system that is neutral in error localization and recovery

Marked lambda calculus: a tutorial

Start: a small gradually typed lambda calculus*

```
	au ::= ? \mid \text{num} \mid \text{bool} \mid 	au 	o 	au
e ::= x \mid \lambda x : 	au . e \mid e e \mid n \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e
```

Marked lambda calculus: a tutorial

Start: a small gradually typed lambda calculus*

```
	au ::= ? \mid \text{num} \mid \text{bool} \mid \tau \to \tau
e ::= x \mid \lambda x : \tau. \ e \mid e \ e \mid n \mid \text{true} \mid \text{false} \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e
```

with a standard bidirectional type system

$$\Gamma \vdash e \Rightarrow \tau \quad (e \text{ synthesizes type } \tau)$$

 $\Gamma \vdash e \Leftarrow \tau \quad (e \text{ analyzes against type } \tau)$

Marked lambda calculus: a tutorial

Start: a small gradually typed lambda calculus*

$$au ::= ? \mid \text{num} \mid \text{bool} \mid \tau \to \tau$$
 $e ::= x \mid \lambda x : \tau. \ e \mid e \ e \mid n \mid \text{true} \mid \text{false} \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e$

with a standard bidirectional type system

$$\Gamma \vdash e \Rightarrow \tau \quad (e \text{ synthesizes type } \tau)$$

 $\Gamma \vdash e \Leftarrow \tau \quad (e \text{ analyzes against type } \tau)$

*We need only the *static semantics* for ill-typed programs!

9

Synthesizing the type of a variable is standard:

SVAR

$$\overline{\Gamma \vdash x \Rightarrow \tau}$$

Synthesizing the type of a variable is standard:

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

Synthesizing the type of a variable is standard:

$$rac{x: au\in\Gamma}{\Gamma\vdash x\Rightarrow au}$$

But what if $x \notin \text{dom}(\Gamma)$?

How do we handle this failure case?

```
let rec syn ctx e =
  match e with
  Var x ->
    match Ctx.lookup ctx x with
       Some ty -> ty
       None -> ???
...
```

How do we handle this failure case?

```
let rec syn ctx e =
  match e with
  Var x ->
    match Ctx.lookup ctx x with
       Some ty -> ty
       None    -> failwith (x ++ " is unbound")
...
```

How do we handle this failure case?

```
let rec syn ctx e =
  match e with
  Var x ->
    match Ctx.lookup ctx x with
       Some ty -> Ok(ty)
       None -> Error(UnboundError(...))
...
```

We've *localized* the error: "this occurrence of x is unbound!"

We've *localized* the error: "this occurrence of x is unbound!"

How can we recover?

We've *localized* the error: "this occurrence of x is unbound!"

How can we recover?

Solution. ?

We've *localized* the error: "this occurrence of x is unbound!"

How can we recover?

Solution. ? \leftarrow unknown type

Idea. Augment the type checking process with *marking*!

• localize and report the error as a *mark*

- localize and report the error as a *mark*
 - compiler messages

- localize and report the error as a *mark*
 - compiler messages
 - editor decorations

- localize and report the error as a *mark*
 - compiler messages
 - editor decorations
- use the unknown type to encapsulate missing type information

$$rac{ au_1 \sim au_1}{ au_2 \sim au_2} \qquad rac{ au_1 \sim au_1' \qquad au_2 \sim au_2'}{ au_1
ightarrow au_2 \sim au_1'
ightarrow au_2'}$$

Supplement the *unmarked* syntax

```
	au ::= ? \mid \text{num} \mid \text{bool} \mid \tau \to \tau
e ::= x \mid \lambda x : \tau. \ e \mid e \ e \mid n \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e
```

14

Supplement the *unmarked* syntax

$$au ::= ? \mid \text{num} \mid \text{bool} \mid \tau \to \tau$$
 $e ::= x \mid \lambda x : \tau. \ e \mid e \ e \mid n \mid \text{true} \mid \text{false} \mid \text{if} \ e \ \text{then} \ e \ \text{else} \ e$

into a *marked* one that contains *error marks*:

$$\check{e} ::= x \mid \lambda x : \tau. \check{e} \mid \check{e} \check{e} \mid n \mid \text{true} \mid \text{false} \mid \text{if } \check{e} \text{ then } \check{e} \text{ else } \check{e} \mid (x)_{\square}$$

 $(x)_{\square}$ is a marked term denoting a free occurrence of x

Extend the original typing judgments

$$\Gamma \vdash e \Rightarrow \tau \quad (e \text{ synthesizes type } \tau)$$
 $\Gamma \vdash e \Leftarrow \tau \quad (e \text{ analyzes against type } \tau)$

Extend the original typing judgments

```
\Gamma \vdash e \Rightarrow \tau \quad (e \text{ synthesizes type } \tau)

\Gamma \vdash e \Leftarrow \tau \quad (e \text{ analyzes against type } \tau)
```

into the bidirectional **marking judgments**:

```
\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau (e is marked into \check{e} and synthesizes type \tau)
\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau (e is marked into \check{e} and analyzes against type \tau)
```

Extend the original typing judgments

```
\Gamma \vdash e \Rightarrow \tau \quad (e \text{ synthesizes type } \tau)

\Gamma \vdash e \Leftarrow \tau \quad (e \text{ analyzes against type } \tau)
```

into the bidirectional **marking judgments**:

```
\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau (e is marked into \check{e} and synthesizes type \tau)
\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau (e is marked into \check{e} and analyzes against type \tau)
```

Type-based semantic services use marked terms!

$$\Gamma \vdash_{\!\!\scriptscriptstyle{M}} \check{e} \Rightarrow \tau \quad (\check{e} \text{ synthesizes type } \tau)$$
 $\Gamma \vdash_{\!\!\scriptscriptstyle{M}} \check{e} \Leftarrow \tau \quad (\check{e} \text{ analyzes against type } \tau)$

One typing rule for variables

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

One typing rule for variables

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x\looparrowright x\Rightarrow\tau}$$

One typing rule for variables

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

$$\begin{array}{ccc} \mathsf{MKSVar} & \mathsf{MKSFree} \\ x: \tau \in \Gamma & & x \not\in \mathsf{dom}(\Gamma) \\ \hline \Gamma \vdash x \looparrowright x \Rightarrow \tau & & \Gamma \vdash x \looparrowright & \Rightarrow \end{array}$$

One typing rule for variables

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

$$\begin{array}{ll} \mathsf{MKSVar} & \mathsf{MKSFree} \\ x: \tau \in \Gamma & x \not\in \mathsf{dom}(\Gamma) \\ \hline \Gamma \vdash x \looparrowright x \Rightarrow \tau & \hline \\ \end{array}$$

One typing rule for variables

$$rac{x: au\in\Gamma}{\Gammadash x\Rightarrow au}$$

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x \hookrightarrow x \Rightarrow \tau} \qquad \frac{\text{MKSFree}}{\Gamma \vdash x \hookrightarrow (x)_{\square} \Rightarrow ?}$$

The standard subsumption principle:

$$rac{\Gamma dash e \Rightarrow au' \qquad au \sim au'}{\Gamma dash e \Leftarrow au}$$

The standard subsumption principle:

$$rac{\Gamma dash e \Rightarrow au' \qquad au \sim au'}{\Gamma dash e \Leftarrow au}$$

becomes the analytic marking rule:

$$\frac{\Gamma \vdash e \looparrowright \check{e} \Rightarrow \tau' \qquad \tau \sim \tau'}{\Gamma \vdash e \looparrowright \check{e} \Leftarrow \tau}$$

What if $\tau \sim \tau'$, e.g., in 5 + true?

What if $\tau \sim \tau'$, e.g., in 5 + true?

$$\check{e} ::= \cdots \mid (x)_{\square} \mid (\check{e})_{\varkappa}$$

What if $\tau \sim \tau'$, e.g., in 5 + true?

$$\check{e} ::= \cdots \mid (x)_{\square} \mid (\check{e})_{\sim}$$

$$\frac{\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau' \qquad \tau \sim \tau'}{\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau} \qquad \frac{\text{MKAInconsistentTypes}}{\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau} \qquad \frac{\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau' \qquad \tau \nsim \tau'}{\Gamma \vdash e \hookrightarrow (|\check{e}|) \iff \tau}$$

MKAInconsistentTypes
$$\frac{\Gamma \vdash e \looparrowright \check{e} \Rightarrow \tau' \qquad \tau \nsim \tau'}{\Gamma \vdash e \looparrowright (\![\check{e}]\!]_{\tau} \Leftarrow \tau}$$

What if
$$\tau \nsim \tau'$$
, e.g., in $5 + \frac{\text{(true)}_{\sim}}{\text{?}}$?

$$\check{e} ::= \cdots \mid (x)_{\square} \mid (\check{e})_{\nsim}$$

$$\frac{\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau' \qquad \tau \sim \tau'}{\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau} \qquad \frac{\text{MKAInconsistentTypes}}{\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau} \qquad \frac{\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau' \qquad \tau \nsim \tau'}{\Gamma \vdash e \hookrightarrow (\check{e}) \iff \tau}$$

MKAInconsistentTypes
$$\frac{\Gamma \vdash e \looparrowright \check{e} \Rightarrow \tau' \qquad \tau \nsim \tau'}{\Gamma \vdash e \looparrowright (|\check{e}|) \iff \tau}$$

... and the rest

```
e ::= \cdots
| (|\check{e}_1|)^{\Rightarrow}_{\blacktriangleright, \neq} \check{e}_2
| (|\mathsf{if} \; \check{e}_1 \; \mathsf{then} \; \check{e}_2 \; \mathsf{else} \; \check{e}_3|)_{\nabla}
| (|\lambda x : \tau . \; \check{e}|)^{\Leftarrow}_{\blacktriangleright, \neq}
| (|\lambda x : \tau . \; \check{e}|)_{:}
```

 \check{e}_1 synthesizes non-matched arrow type branches synthesize inconsistent types analysis against non-matched arrow type ascription inconsistent with domain

A total marking

Totality

These semantics should give meaning to *all well-typed and ill-typed programs*.

A total marking

Totality

These semantics should give meaning to *all well-typed and ill-typed programs*.

Theorem 2.1. Totality

For all Γ and e, $\exists \check{e}, \tau$ s.t. $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau$.

For all Γ , e, and τ , $\exists \check{e}$ s.t. $\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau$.

(Every unmarked term can be marked under any context!)

A sensible marking

Theorem 2.2. Well-Formedness

If $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau$, then $\Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Rightarrow \tau$ and $\check{e}^{\square} = e$. If $\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau$, then $\Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Leftarrow \tau$ and $\check{e}^{\square} = e$. (Marking only adds marks, *i.e.*, marking then erasing is identity!)

Theorem 2.2. Well-Formedness

If $\Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau$, then $\Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Rightarrow \tau$ and $\check{e}^{\square} = e$. If $\Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau$, then $\Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Leftarrow \tau$ and $\check{e}^{\square} = e$. (Marking only adds marks, *i.e.*, marking then erasing is identity!)

Theorem 2.2. Well-Formedness

```
If \Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau, then \Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Rightarrow \tau and \check{e}^{\square} = e.

If \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau, then \Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Leftarrow \tau and \check{e}^{\square} = e.

(Marking only adds marks, i.e., marking then erasing is identity!)
```

Theorem 2.3(1). Well-Typed Terms

```
If \Gamma \vdash_{v} e \Rightarrow \tau, then \exists \check{e} s.t. \Gamma \vdash e \looparrowright \check{e} \Rightarrow \tau and \check{e} markless. If \Gamma \vdash_{v} e \Leftarrow \tau, then \exists \check{e} s.t. \Gamma \vdash e \looparrowright \check{e} \Leftarrow \tau and \check{e} markless. (Marking well-typed terms introduces no marks!)
```

Theorem 2.2. Well-Formedness

```
If \Gamma \vdash e \hookrightarrow \check{e} \Rightarrow \tau, then \Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Rightarrow \tau and \check{e}^{\square} = e.

If \Gamma \vdash e \hookrightarrow \check{e} \Leftarrow \tau, then \Gamma \vdash_{\!\scriptscriptstyle{M}} \check{e} \Leftarrow \tau and \check{e}^{\square} = e.

(Marking only adds marks, i.e., marking then erasing is identity!)
```

Theorem 2.3(1). Well-Typed Terms

```
If \Gamma \vdash_{v} e \Rightarrow \tau, then \exists \check{e} s.t. \Gamma \vdash e \looparrowright \check{e} \Rightarrow \tau and \check{e} markless. If \Gamma \vdash_{v} e \Leftarrow \tau, then \exists \check{e} s.t. \Gamma \vdash e \looparrowright \check{e} \Leftarrow \tau and \check{e} markless. (Marking well-typed terms introduces no marks!)
```


Metatheory completely mechanized in Agda [hazelgrove/error-localization-agda]

The Recipe

- Begin with a bidirectional gradually* typed language
 - *Only need the static parts for marking ill-typed programs!

The Recipe

- Begin with a bidirectional gradually* typed language
 - *Only need the static parts for marking ill-typed programs!
- Derive marking rules from each typing rule
 - Consider the "success" case
 - Consider the "failure" cases, introducing error marks

The Recipe

- Begin with a bidirectional gradually* typed language
 - *Only need the static parts for marking ill-typed programs!
- Derive marking rules from each typing rule
 - Consider the "success" case
 - Consider the "failure" cases, introducing error marks
- *Not* prescriptive *w.r.t.* localization strategy
 - We formalize three possible localization strategies for if-then-else with inconsistent branches

Consider this program:

$$\lambda f$$
 : ? . $f(f+1)$

f:?, so the bidirectional system operates gradually,

Consider this program:

$$\lambda f$$
 : ? . $f(f+1)$

f:?, so the bidirectional system operates gradually, but f is

1. applied as a function (a function?)

Consider this program:

$$\lambda f$$
 : ? . $f(f+1)$

f:?, so the bidirectional system operates gradually, but f is

- 1. applied as a function (a function?)
- 2. an operand of + (a number?)

Consider this program:

$$\lambda f$$
 : ? . $f(f+1)$

f:?, so the bidirectional system operates gradually, but f is

- 1. applied as a function (a function?)
- 2. an operand of + (a number?)

Global, constraint-based type checking would have caught this!

Get the best of both worlds by layering **constraint-based inference** atop the marked lambda calculus

Get the best of both worlds by layering **constraint-based inference** atop the marked lambda calculus

• The marked lambda calculus localizes and recovers predictably from *local inconsistencies*

Get the best of both worlds by layering **constraint-based inference** atop the marked lambda calculus

- The marked lambda calculus localizes and recovers predictably from *local inconsistencies*
- **Type hole inference** solves and marks *global inconsistencies*

Get the best of both worlds by layering **constraint-based inference** atop the marked lambda calculus

- The marked lambda calculus localizes and recovers predictably from *local inconsistencies*
- Type hole inference solves and marks *global inconsistencies*
 - Downstream service to supplement the marked lambda calculus

1. Gather constraints, treat occurrences of ? as unification variables

- 1. Gather constraints, treat occurrences of ? as unification variables
- 2. When solvable, proceed as normal to find substitution

- 1. Gather constraints, treat occurrences of ? as unification variables
- 2. When solvable, proceed as normal to find substitution
- 3. When unsolvable, maintain partial solutions: possible type fillings, which are offered to the user for selection

- 1. Gather constraints, treat occurrences of ? as unification variables
- 2. When solvable, proceed as normal to find substitution
- 3. When unsolvable, maintain partial solutions: possible type fillings, which are offered to the user for selection
- 4. Control returned to the bidirectional system upon selection

- 1. Gather constraints, treat occurrences of ? as unification variables
- 2. When solvable, proceed as normal to find substitution
- 3. When unsolvable, maintain partial solutions: possible type fillings, which are offered to the user for selection
- 4. Control returned to the bidirectional system upon selection

fun f: Int
$$\rightarrow$$
 \leftarrow \rightarrow f (f + 1)

- 1. Gather constraints, treat occurrences of? as unification variables
- 2. When solvable, proceed as normal to find substitution
- 3. When unsolvable, maintain partial solutions: possible type fillings, which are offered to the user for selection
- 4. Control returned to the bidirectional system upon selection

This approach is *neutral*

This approach is *neutral*

• Localize errors to the originating type hole or error mark, instead of guessing about user intent

This approach is *neutral*

- Localize errors to the originating type hole or error mark, instead of guessing about user intent
- All potential type hole fillings are provided to the user for selection

This approach is *neutral*

- Localize errors to the originating type hole or error mark, instead of guessing about user intent
- All potential type hole fillings are provided to the user for selection

Control returned to bidirectional system after user selects

• A full description of the marked lambda calculus

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)
 - connections to structured editing

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)
 - connections to structured editing
- A more thorough discussion of type hole inference

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)
 - connections to structured editing
- A more thorough discussion of type hole inference, and
 - filling expression holes

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)
 - connections to structured editing
- A more thorough discussion of type hole inference, and
 - filling expression holes
 - polymorphic generalization

- VI.1
- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)

Reusable VI

- connections to structured editing
- A more thorough discussion of type hole inference, and
 - filling expression holes
 - polymorphic generalization
- Implementations of both in Hazel [hazel.org] [hazelgrove/hazel]

More in the paper and artifact

- A full description of the marked lambda calculus, and
 - mechanization in Agda [hazelgrove/error-localization-agda]
 - extensions to richer typing features (parametric polymorphism and destructuring let)
 - connections to structured editing
- A more thorough discussion of type hole inference, and
 - filling expression holes
 - polymorphic generalization
- Implementations of both in Hazel [hazel.org] [hazelgrove/hazel]

Consider using these techniques for your next language!

MKSIF

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

.....

MKSIF

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool}$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

 \Rightarrow

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

MKSIF

 $\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$

 $\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathrm{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

$$\Rightarrow$$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow$$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool}$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{ if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{ if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3$$

MKSIF

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3}$$

MKSINCONSISTENTBRANCHES

$$\frac{\Gamma \vdash e_1 \looparrowright \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \looparrowright \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \looparrowright \check{e}_3 \Rightarrow \tau_2 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \looparrowright} \Rightarrow$$

29

MKSIF

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \hookrightarrow \mathsf{if} \ \check{e}_1 \ \mathsf{then} \ \check{e}_2 \ \mathsf{else} \ \check{e}_3 \Rightarrow \tau_3}$$

MKSInconsistentBranches

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash \mathsf{if} \qquad \mathsf{if$$

 $\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\not \sqcap} \Rightarrow$

29

MKSIF

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3}$$

MKSInconsistentBranches

$$\frac{\Gamma \vdash e_1 \looparrowright \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \looparrowright \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \looparrowright \check{e}_3 \Rightarrow \tau_2 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \looparrowright \ (\mathsf{if} \ \check{e}_1 \ \mathsf{then} \ \check{e}_2 \ \mathsf{else} \ \check{e}_3)_{\bowtie} \Rightarrow ?}$$

.....

```
MKSIF
```

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathrm{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3$$

MKSInconsistentBranches

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \overline{\tau_1} \nsim \overline{\tau_2}$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_1 \nsim \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{|\gamma|} \Rightarrow ?$$

MKSIE'

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

MKSIF

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3$$

MKSInconsistentBranches

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \overline{\tau_1} \nsim \overline{\tau_2}$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$au_1 \nsim au_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \{\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3\}_{|\gamma|} \Rightarrow ?$$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool}$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

MKSIF

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3$$

MKSInconsistentBranches

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \overline{\tau_1} \nsim \overline{\tau_2}$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$au_1 \nsim au_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \{\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3\}_{\bowtie} \Rightarrow ?$$

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow$$

MKSIF

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3}$$

MKSINCONSISTENTBRANCHES

$$\frac{\Gamma \vdash e_1 \looparrowright \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \looparrowright \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \looparrowright \check{e}_3 \Rightarrow \tau_2 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \looparrowright \ (\mathsf{if} \ \check{e}_1 \ \mathsf{then} \ \check{e}_2 \ \mathsf{else} \ \check{e}_3)_{\bowtie} \Rightarrow ?}$$

.....

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \begin{array}{c} (\mathsf{prioritize\;first\;branch}) \\ \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau \end{array} \qquad \begin{array}{c} (\mathsf{blame\;second\;branch}) \\ \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Leftarrow \tau \\ \hline \Gamma \vdash \mathsf{if}\; e_1 \; \mathsf{then}\; e_2 \; \mathsf{else}\; e_3 \hookrightarrow \\ \end{array} \Rightarrow$$

MKSIF

$$\frac{\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \hookrightarrow \mathsf{if} \ \check{e}_1 \ \mathsf{then} \ \check{e}_2 \ \mathsf{else} \ \check{e}_3 \Rightarrow \tau_3}$$

MKSInconsistentBranches

$$\frac{\Gamma \vdash e_1 \looparrowright \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \looparrowright \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \looparrowright \check{e}_3 \Rightarrow \tau_2 \qquad \tau_1 \nsim \tau_2}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \looparrowright \ (\mathsf{jif} \ \check{e}_1 \ \mathsf{then} \ \check{e}_2 \ \mathsf{else} \ \check{e}_3)_{\bowtie} \Rightarrow ?}$$

.....

MKSIF'

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \text{bool} \qquad \begin{array}{c} \text{(prioritize first branch)} \\ \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau \end{array} \qquad \begin{array}{c} \text{(blame second branch)} \\ \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Leftarrow \tau \end{array}$$

 $\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow$

MKSIF

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$\tau_3 = \tau_1 \sqcap \tau_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau_3$$

MKSInconsistentBranches

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool} \qquad \Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1 \qquad \Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2 \qquad \overline{\tau_1} \nsim \overline{\tau_2}$$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau_1$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Rightarrow \tau_2$$

$$au_1 \nsim au_2$$

$$\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow (\text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3)_{\bowtie} \Rightarrow ?$$

MKSIF'

$$\Gamma \vdash e_1 \hookrightarrow \check{e}_1 \Leftarrow \mathsf{bool}$$
 $\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau$ $\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Leftarrow \tau$

$$\Gamma \vdash e_2 \hookrightarrow \check{e}_2 \Rightarrow \tau$$

$$\Gamma \vdash e_3 \hookrightarrow \check{e}_3 \Leftarrow \tau$$

 $\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \hookrightarrow \text{if } \check{e}_1 \text{ then } \check{e}_2 \text{ else } \check{e}_3 \Rightarrow \tau$

- Link occurrences of ? to the originating type hole or error mark (denoted by unique id *u*)
- Distinguish between different ? based on locus

- Link occurrences of ? to the originating type hole or error mark (denoted by unique id *u*)
- Distinguish between different ? based on locus

$$p ::= u \mid exp(u) \mid \rightarrow_L (p) \mid \rightarrow_R (p)$$

- Link occurrences of ? to the originating type hole or error mark (denoted by unique id u)
- Distinguish between different ? based on locus

$$p ::= u \mid exp(u) \mid \to_L (p) \mid \to_R (p)$$

$$\tau ::= \cdots \mid ?^p$$

- Link occurrences of ? to the originating type hole or error mark (denoted by unique id u)
- Distinguish between different ? based on locus

$$p ::= u \mid exp(u) \mid \to_L (p) \mid \to_R (p)$$

$$\tau ::= \cdots \mid ?^p$$

$$\check{e} ::= \cdots \mid (x)_{\square}^u \mid (\check{e})_{\blacktriangleright}^{\to, u} \mid (\check{e})_{\sim}^u$$

Augment the type system (of the marked language) to generate sets C of constraints $\tau_1 \approx \tau_2$

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C$$
 $\Gamma \vdash \check{e} \Leftarrow \tau \mid C$

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C$$
 $\Gamma \vdash \check{e} \Leftarrow \tau \mid C$

$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \sim \tau'}{\Gamma \vdash \check{e} \Leftarrow \tau \mid C \cup \{\tau \approx \tau'\}}$$

$$\Gamma \vdash \check{e} \Rightarrow \tau \mid C$$
 $\Gamma \vdash \check{e} \Leftarrow \tau \mid C$

MASubsume-C
$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \sim \tau'}{\Gamma \vdash \check{e} \Leftarrow \tau \mid C \cup \{\tau \approx \tau'\}}$$

MAInconsistentTypes-C
$$\frac{\Gamma \vdash \check{e} \Rightarrow \tau' \mid C \qquad \tau \nsim \tau'}{\Gamma \vdash (\![\check{e}]\!]^u \Leftarrow \tau \mid C \cup \{\tau \approx ?^{exp(u)}\}}$$

For each occurrence of ?, accumulate the PotentialTypeSet

For each occurrence of ?, accumulate the PotentialTypeSet: *all* potential type fillings as inferred from the constraints

```
Potential
TypeSet s ::= \{t^*\} Potential
Type t ::= ?^p \mid \text{num} \mid \text{bool} \mid s \rightarrow s
```

For each occurrence of ?, accumulate the PotentialTypeSet: *all* potential type fillings as inferred from the constraints

```
PotentialTypeSet s := \{t^*\}
PotentialType t := ?^p \mid \text{num} \mid \text{bool} \mid s \rightarrow s
```

To unify $\tau_1 \approx \tau_2$, recursively merge PotentialTypeSet(τ_1) and PotentialTypeSet(τ_2) without substituting

$$\lambda f: ?^1$$
 . $f\left(f+1
ight)$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1 \approx ?^{\rightarrow_L(1)} \rightarrow ?^{\rightarrow_R(1)}\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1pprox ?^{ o_{L}(1)} o ?^{ o_{R}(1)}, \mathsf{num}pprox ?^1\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1pprox?^{oldsymbol{ o}_{oldsymbol{L}}(1)}
ightarrow?^{oldsymbol{ o}_{oldsymbol{R}}(1)}, \mathsf{num}pprox?^1, \mathsf{num}pprox?^{oldsymbol{ o}_{oldsymbol{L}}(1)}\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1pprox?^{ o_L(1)} o?^{ o_R(1)}, \mathsf{num}pprox?^1, \mathsf{num}pprox?^{ o_L(1)}\}$$

$$PotentialTypeSet(?^1) = \{\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1\approx?^{\boldsymbol{\rightarrow_L(1)}}_{\quad \ \, \wedge}\rightarrow?^{\boldsymbol{\rightarrow_R(1)}}, \mathbf{num}\approx?^1, \mathbf{num}\approx?^{\boldsymbol{\rightarrow_L(1)}}\}$$

PotentialTypeSet(?¹) =
$$\{\{?^{\rightarrow_L(1)}\} \rightarrow \{?^{\rightarrow_R(1)}\}\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1 \approx ?^{\rightarrow_L(1)} \rightarrow ?^{\rightarrow_R(1)}, \mathsf{num} \underset{\wedge}{\approx} ?^1, \mathsf{num} \approx ?^{\rightarrow_L(1)}\}$$

PotentialTypeSet
$$(?^1) = \{\{?^{\rightarrow_L(1)}\} \rightarrow \{?^{\rightarrow_R(1)}\}, \underline{\text{num}}\}$$

$$\lambda f: ?^1$$
 . $f(f+1)$

yields the (inconsistent) constraints

$$\{?^1\approx?^{\boldsymbol{\rightarrow_L}(1)}\rightarrow?^{\boldsymbol{\rightarrow_R}(1)},\mathbf{num}\approx?^1,\mathbf{num}\underset{\wedge}{\approx}?^{\boldsymbol{\rightarrow_L}(1)}\}$$

$$PotentialTypeSet(?^1) = \{\{\underline{num}\} \rightarrow \{?^{\rightarrow_R(1)}\}, num\}$$