Autonomous and Mobile Robotics M

WRITTEN EXAM SAMPLE $\,$ - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

1.	A constraint is said <i>holonomic</i> if:
	\bigcirc the differential relation between the coordinates is not reducible to finite form
	○ finite relations between the coordinates of the system are present
	\bigcirc if differentiable/integrable relations between the coordinates of the system are present
2.	The constraint introduced by a single wheel can be expressed as:
	$\bigcirc x \sin \theta - y \cos \theta = 0$
	$\bigcirc \dot{x}\sin\theta - \dot{y}\cos\theta = 0$
	$\bigcirc x \sin \dot{\theta} - y \cos \dot{\theta} = 0$
3.	A single Swedish wheel:
	O enables to control the motion along both the rolling and the driven directions
	odoes not allow any control in the rolling direction
	\bigcirc does not allow to control the motion neither along the rolling nor the driven directions
4.	In reactive navigation, the robot:
	O plans the trajectory using a map of the environment
	O updates the planned path on the based of sensor information
	O navigates the environment on the base of the sensor information only
5.	The distance transform of a map
	○ has the same size of the original map
	○ has elements which values is the distance to the target position
	○ can be computed only usign Euclidean distance
6.	Sequential Monte-Carlo Localization:
	or resamples the particles on the based of their spacial distribution
	O performs better than the EKF in case the robot configuration is described by a Gaussian distribution
	\bigcirc works also in case the probability distribution function of the robot configuration is not known
7.	In Reinforcement Learning algorithms, the reward:
	○ is a scalar feedback signal
	is minimized by the agent
	\bigcirc indicates how well agent is doing at step t
8.	The future discounted reward is defined as:
	$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t+i+1}$
	$\bigcap G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots = \sum_{i=0}^{\infty} R_{t+i+1}$
	$\bigcirc G_t = R_{t-1} + \gamma R_{t-2} + \gamma^2 R_{t-3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t-i-1}$
9.	The agent state:
	is always the same as the environment state
	\bigcirc is the same as the environment state in case of fully observable environments
	○ is the same as the environment state in Markov decision processes
10.	The state value function is defined as:
	$\bigcirc v_{\pi}(s) = \mathbb{E}[R_{t+1} S_t = s]$
	$\bigcirc v_{\pi}(s) = \mathbb{E}[G_t S_t = s]$

 $\bigcirc v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(s') | S_t = s]$

WRITTEN EXAM SAMPLE - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable and deterministic environment with 7 states $s_{\{1,\dots,7\}}$.

S1	So	82	84	SE	86	87
01	02	03	54	00	00	01

- Action set : {TryLeft, TryRight}
- Rewards:
 - -+1 in state s_1
 - -+10 in state s_7
 - 0 in all other states
- Transition model:
 - $p(s_1|s_1, \text{TryRight}) = p(s_2|s_1, \text{TryRight}) = 0.5$
 - $p(s_1|s_2, \text{TryLeft}) = p(s_2|s_2, \text{TryLeft}) = 0.5$
 - $-p(s_2|s_2, \text{TryRight}) = p(s_3|s_2, \text{TryRight}) = 0.5$

-

- Discount factor $\gamma = 0.5$

Starting from an arbitrary initialisation of the state value function, compute the first iteration of the state value function evaluation provided by a Dynamic Programming algorithm assuming the random policy π .

$v_{\pi}(s_1) \mid v_{\pi}(s_2) \mid v_{\pi}(s_3) \mid v_{\pi}(s_4) \mid v_{\pi}(s_5)$	$v_{\pi}(s_6) v_{\pi}(s_7)$

Solution:

The state value function is initialized to 0 for all the states.

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$	$v_{\pi}(s_6)$	$v_{\pi}(s_7)$
0.75	0.25	0	0	0	2.5	7.5