

Instituto Federal De Educação, Ciências e Tecnologia do Rio Grande do Norte – IFRN

Projeto de extensão - Matemática básica: um auxílio aos nossos estudos em tempo de pandemia.

Curso: Matemática Fundamental Professora: Enne Karol Monitores: Fabiany e Marcelo

EQUAÇÕES

Equação do 1º grau

Chamamos de *equação*, uma sentença matemática composta por dois termos e uma igualdade entre eles. Os termos são representados por meio de números e letras, as quais são denominadas incógnitas ou variáveis e são escritos da seguinte forma:

onde a, b e x são números reais com a $\neq 0$ e x é um valor desconhecido que está elevado sempre à primeira potência.

Exemplos:

- a) 3x + 2 = 8 é uma equação que contém uma incógnita x;
- b) a-5=0 é uma equação que contém uma incógnita a;
- c) 3m = 12 é uma equação que contém incógnita m;
- d) 5b-3c=0 é uma equação que contém incógnitas b e c;
- e) f + 5 = 35 2f é uma equação que contém incógnita f;
- f) 2 + 4 = 6 não é equação, pois não possui incógnita;
- g) 2x não é equação, pois não possui igualdade.

Raízes de uma equação do primeiro grau

Chamamos de raízes das equações, todos os números reais que, substituídos na incógnita, geram uma igualdade entre os termos, ou seja, tornam a sentença verdadeira. Uma equação do primeiro grau tem sempre uma única raiz real e resolver uma equação significa encontrar sua raiz, o qual realizamos isolando a incógnita, como no exemplo a seguir.

$$2x + 5 = 11$$

 Como queremos isolar a incógnita no primeiro termo, devemos "passar" os outros valores para o segundo termo. Observe que para que a igualdade continue válida, se diminuirmos 5 no primeiro termo, devemos diminuir 5 também no segundo.

$$2x + 5 - 5 = 11 - 5$$

 $2x = 8$

2. Da mesma forma, podemos dividir o primeiro termo por 2, tendo que dividir também o segundo.

$$2x:2=8:2$$

$$x=4$$

Encontramos então o valor da incógnita, logo, a equação está resolvida. Podemos conferir se o resultado está correto substituindo o x por 4 na sentença inicial (2x + 5 = 11).

Responda: 2 é raiz de quais das equações abaixo?

a)
$$5x + 1 = 16$$

b)
$$2x - 1 = 3$$

c)
$$5 - 2x = x - 1$$

d) 9x = 36

Sistemas de equações do 1º grau

Quando temos duas ou mais equações, tendo cada uma delas duas ou mais incógnitas, chamamos a isso de sistema de equações e representamos como o exemplo abaixo.

$$\begin{cases} x + y = 20 \\ 3x + 4y = 72 \end{cases}$$

Podemos encontrar suas raízes utilizando dois diferentes métodos, os quais chamamos de método da adição e método da substituição.

Método da adição

Esse método consiste em somar as duas equações termo a termo. É necessário que ao ser realizada a soma, uma das duas incógnitas "desapareça". Para isso, devemos multiplicar uma das duas equações por um certo valor que faça com que os coeficientes da incógnita fiquem opostos. Utilizando o sistema acima, se multiplicarmos toda a equação por (-3), os coeficientes do x ficarão opostos, como queremos.

$$\begin{cases} x + y = 20 & . (-3) \\ 3x + 4y = 72 \end{cases}$$

$$[-3x - 3y = -60]$$

$$[-3x + 4y = 72]$$

Feito isso, podemos agora somar as equações termo a termo.

$$\begin{cases}
-3x - 3y = -60 \\
3x + 4y = 72
\end{cases}$$

$$0x + 1y = 12$$

$$\therefore y = 12$$

Como já sabemos o valor do y, podemos agora substitui-lo em qualquer uma das duas equações para encontrar o valor do x. Como exemplo, faremos com a primeira.

$$x + y = 20$$

 $x + 12 = 20$
 $x = 20 - 12$
 $x = 8$

Portanto, a solução do nosso sistema é $S = \{8, 12\}.$

Método da substituição

Outro método para solucionar um sistema de equações é o chamado método da substituição, que consiste em isolar uma das incógnitas e uma das equações e depois substitui-la na outra. Observe com o mesmo exemplo anterior:

$$\begin{cases} x + y = 20 & \text{(I)} \\ 3x + 4y = 72 & \text{(II)} \end{cases}$$

Dada a primeira equação, que chamamos de (I), iremos isolar o x da seguinte forma:

$$x + y = 20$$
$$\therefore x = 20 - y$$

Como encontramos uma representação para x, podemos substitui-la na equação (II).

$$3x + 4y = 72$$

 $3.(20 - y) + 4y = 72$

Agora ficamos com uma equação do primeiro grau com uma incógnita, a qual já aprendemos como resolver.

$$3.(20 - y) + 4y = 72$$

$$60 - 3y + 4y = 72$$

$$-3y + 4y = 72 - 60$$

$$y = 12$$

Sabendo o valor do y, podemos substitui-lo em qualquer uma das equações para encontrar o valor do x. Substituindo y em (II):

$$3x + 4y = 72$$

 $3x + 4 \cdot 12 = 72$
 $3x + 48 = 72$
 $3x = 24$
 $x = 24 : 3$
 $x = 8$

Novamente, encontramos o conjunto solução $S = \{8, 12\}.$

Exercícios

- 1. Carlos tinha certa quantia em dinheiro, foi ao shopping e gastou 1/3 da quantia na compra de uma revista, gastou 1/4 da quantia na compra de um CD e ainda ficou com R\$ 25,00. Qual era a quantia que Carlos possuía?
 - a) R\$40,00 b) R\$ 50,00 c) R\$ 60,00 d) R\$ 70,00
- Resolva os seguintes sistemas de equações:

a)
$$\begin{cases} 2x - y = -3 \\ -x + y = 2 \end{cases}$$

b) $\begin{cases} 2x + y = 7 \\ 5x - 2y = -5 \end{cases}$

c)
$$\begin{cases} x + 2y = 21 \\ 3x - 2y = -17 \end{cases}$$

- 3. Numa papelaria o preço de uma borracha é R\$0,70 e o de um lápis R\$1,10. Gastei R\$14,80 comprando lápis e borracha num total de 16 unidades. O número de lápis comprados foi igual a a) 7 b) 8 c) 9 d) 10 e) 11
- 4. A idade de um pai é igual ao triplo da idade de seu filho. Calcule a idade do pai, sabendo que juntos tem 60 anos.
 - a) 30 anos
- b) 40 anos
- c) 45 anos
- d) 60 anos
- 5. No Parque de Diversões Dia Feliz, os ingressos custam R\$ 10,00 para adultos e R\$ 6,00 para crianças. No último domingo, com a venda de 400 ingressos, a arrecadação foi de R\$ 3.000,00. A razão entre o número de adultos e crianças pagantes foi:
 - a) 3/5
- b) 2/3
- c) 2/5
- d) 3/4
- e) 4/5
- 6. Um comerciante varejista comprou 80 calças de dois tamanhos diferentes, pequeno e médio, gastando R\$ 4300,00. Cada calça de tamanho pequeno custou R\$ 50,00 e cada calça de tamanho médio custou R\$ 60,00. Quantas calças de tamanho pequeno e médio, respectivamente, ele comprou?
 - a) 30 e 50
- b) 37 e 43
- c) 40 e 40
- d) 43 e 37 e)
- e) 50 e 30

Equação do 2º grau

Uma equação do segundo grau é dada no formato $ax^2 + bx + c = 0$, onde a, b e c são coeficientes reais com a $\neq 0$ e x é a incógnita e, como as equações do primeiro grau, são constituídas por dois termos e uma igualdade entre os mesmos.

Exemplos:

- a) $3x^2 + 4x + 1 = 0$
- b) $x^2 + 16 = 0$
- c) $-7x^2 = 0$
- d) $(x + 1)^2 = 0$

> Raízes de uma equação do segundo grau completa

Assim como vimos em equações do primeiro grau, as raízes de uma equação são valores que ao substituírem o x, geram uma igualdade entre os termos. As equações do segundo grau têm no máximo duas raízes reais. Observe o exemplo: dada a equação x^2 - 8x + 15 = 0, temos que dois valores a satisfazem, ou seja, essa equação tem duas raízes, que são 3 e 5. Veja:

$$x^2 - 8x + 15 = 0$$

• Para x = 3:

$$(3)^2 - 8 \cdot (3) + 15 = 0$$

 $9 - 24 + 15 = 0$
 $-15 + 15 = 0$
 $0 = 0$

• Para x = 5:

$$(5)^2 - 8 \cdot (5) + 15 = 0$$

 $25 - 40 + 15 = 0$
 $25 - 25 = 0$
 $0 = 0$

As raízes de uma equação do segundo grau completa podem ser encontradas utilizando diferentes métodos. Apresentaremos os dois mais utilizados, que são a fórmula de Bháskara e o método da soma e produto.

> Fórmula de Bháskara

A fórmula de Bháskara é dada pela seguinte sentença:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

onde $\Delta = b^2 - 4ac$.

x''.

Exemplo: Dada a equação $3x^2 - 10x + 3 = 0$, encontrar sua(s) raiz(es).

1º Observe que nessa equação, a = 3, b = -10 e c = 3.

2º Sabendo os valores de a, b e c, substituiremos os mesmos na fórmula de Bháskara:

$$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4.3.3}}{2 \cdot 3}$$
$$x = \frac{10 \pm \sqrt{64}}{6}$$
$$x = \frac{10 \pm 8}{6}$$

A equação terá então duas raízes, as quais chamaremos de x' e

$$x' = \frac{10+8}{6} = \frac{18}{6} = 3$$

$$x'' = \frac{10 - 8}{6} = \frac{2}{6} = \frac{1}{3}$$

Portanto, as raízes dessa equação são 3 e $\frac{1}{2}$.

A partir do sinal do valor do discriminante Δ, podemos verificar a quantidade de raízes reais que tem a equação.

- Se $\Delta > 0 \rightarrow$ a equação tem duas raízes reais e distintas;
- Se $\Delta = 0 \rightarrow$ a equação tem uma única raiz real (duas raízes iguais);
- Se $\Delta < 0 \rightarrow$ a raiz não tem nenhuma raiz real.

Método da soma e produto

Outra forma de encontrar as raízes de uma equação do segundo grau é utilizando um meces produto das mesmas, sabendo que $S = \frac{-b}{a} e P = \frac{c}{a}$ grau é utilizando um método de comparação entre a soma e o

$$S = \frac{-\hat{b}}{a} e P = \frac{c}{a}$$

onde S é o resultado da soma entre as raízes da equação e P é o resultado do produto. Vamos analisar isso utilizando um exemplo.

Exemplo: Dada a equação $x^2 - x + 12 = 0$, encontrar sua(s) raiz(es).

$$x^2 - x - 12 = 0$$

Utilizando as fórmulas acima apresentadas, temos:

$$S = \frac{-b}{a} = \frac{-(-1)}{1} = \frac{1}{1} = 1$$

$$P = \frac{c}{a} = \frac{-12}{1} = -12$$

Para encontrar as raízes, devemos pensar em dois números que somados resultam em 1 e multiplicados resultam em -12. Nesse caso, os valores são 4 e -3, pois 4 + (-3) = 1 e $4 \cdot (-3) = -12$.

Raízes de uma equação do segundo grau incompleta

Equações do segundo grau incompletas são as que não seguem o formato $ax^2 + bx + c = 0$, mas têm dois termos, uma igualdade e uma incógnita elevada ao quadrado.

Equações do tipo $ax^2 + c = 0$

Equações desse tipo são resolvidas de forma semelhante as equações do primeiro grau, pois basta isolar o x.

Exemplo:
$$3x^2 - 27 = 0$$

 $3x^2 - 27 = 0$
 $3x^2 = 27$
 $x^2 = 9$
 $x = \pm \sqrt{9}$
 $x = \pm 3$
 $x = \pm 3$

Equações do tipo $ax^2 + bx = 0$

Para resolver equações desse tipo, utilizaremos fatoração.

Exemplo:
$$5x^2 - 45x = 0$$

 $5x^2 - 45x = 0$
 $x.(5x - 45) = 0$
 $x = 0$ ou $(5x - 45) = 0$
 $\Rightarrow 5x - 45 = 0$
 $5x = 45$
 $x = 9$
 $\therefore x' = 0$ e $x'' = 9$

Exercícios

1. Resolva as seguintes equações completas do segundo grau.

- a) $x^2 13x + 12 = 0$
- b) $x^2 8x + 12 = 0$
- c) $3x^2 + 4x + 1 = 0$
- d) $2x^2 5x + 2 = 0$

2. (CESGRANRIO) A maior raiz da equação $-2x^2+3x+5=0$ vale:

- a) -1
- b) 1
- c) 2
- e) 4.5

3. (CEFET 2002) Qual das equações do segundo grau abaixo possui raízes cujos valores são -2 e 7?

- a) $x^2 + 5x + 14 = 0$

d) 2,5

- c) $x^2 5x = 0$
- b) x^2 5x 14 = 0d) x^2 5x 14 = 0

4. (ECT-RN 2001) O valor inteiro de x que satisfaz a equação $3x^2 +$

- a) 1 b) 1/3
- c) 3
- d) -1/3
- e) -3

5. (CEFET 2002) A soma dos quadrados das raízes da equação x² - 2x = 15 é igual a:

- b) 34 a) 16
- c) 25
- d) 36
- 6. (ECT-RN 2005) Qual o valor da Expressão x^2 20x + 100 se x = -
- a) 144 b) 140 c) 66 d) -66

7. Duas torneiras enchem um tanque em 6 horas. Sozinha, uma delas gasta 5 horas mais que a outra. Determine o tempo que uma delas leva para encher esse tanque isoladamente.

- b) 4h
- c) 11h
- d) 15h

8. Considere o seguinte problema: "Achar um número que, somando com 1, seja igual ao seu inverso. Qual das equações representa este problema?

- a) $x^2 x + 1 = 0$
- b) $x^2 + x 1 = 0$ c) $x^2 x 1 = 0$ e) $x^2 x 2 = 0$

- d) $x^2 + x + 2 = 0$

9. Os alunos de uma turma resolveram comprar um presente custando R\$ 48,00 para o professor de Matemática, dividindo igualmente o gasto entre eles. Depois que 6 alunos recusaram-se a participar da divisão, cada um dos alunos restantes teve que contribuir com mais R\$ 0,40 para a compra do presente. Qual a percentagem de alunos da turma que contribuíram para a compra do presente?

- a) 85%
- b) 65%
- c) 60%
- d) 80%
- e) 75%

10. Comprei 4 lanches a um certo valor unitário. De outro tipo de lanche, com o mesmo preço unitário, a quantidade comprada foi igual ao valor unitário de cada lanche. Paguei com duas notas de cem reais e recebi R\$ 8,00 de troco. Qual o preço unitário de cada produto?

- a) R\$ 16,00
- b) R\$ 14,00
- c) R\$ 12,00
- d) R\$ 10,00

11. Ao realizar as medições da sala de aula do 9º ano, foi constatado que a área é igual a 15m^2 , onde a largura foi expressa por x + 1 e o comprimento por x + 3. É correto afirmar que a medida do comprimento é igual a:

- c) 6 m

12. Bento está casado há m anos. Se ele permanecer casado por mais 30 anos, ele irá estar casado por m² anos. Pode-se afirmar que Bento está casado há:

- a) 3 anos
- b) 4 anos
- c) 5 anos
- c) 6 anos