

Classe: 4^{ème}Math (Gr standard)

Seriel I physique Dipôle RL(2)

Prof: Karmous Med

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

A l'aide d'un résistor de résistance R , d'une bobine d'inductance L et de résistance $r=12,5~\Omega$, associés en série , on réalise un dipôle RL qu'on branche aux bornes d'un générateur de tension variable délivrant une tension périodique (figure).

A t=0 on ferme l'interrupteur. Un oscilloscope à mémoire permet de visualiser

R

(r; L)

les tensions u_R et u_B aux bornes du résistor et de la bobine, dans l'intervalle de temps [0; 0,02s] on obtient les courbes de la figure 2

$$u_B = \frac{L}{R} \cdot \frac{du_R}{dt} + \frac{r}{R} \cdot u_R$$

c- Montrer que
$$\frac{L}{r}$$
 = 0,02. Calculer alors la valeur de L

3°)

On remplace le GBF par un générateur de tension continue de fem E On femme K à une nouvelle

date prise comme une nouvelle origine des temps t=0, et on enregistre, grâce à un système

d'acquisition informatisé, la courbe de variation de la tension aux bornes de la bobine (figure)

a – Montrer que l'équation différentielle régissant la réponse i(t) du dipôle est donner par :

$$\frac{di}{dt} + \frac{1}{\tau} \cdot i = \frac{E}{L}$$

b-La solution de cette équation est une fonction : $i(t) = I_0.(1 - e^{-t/\tau})$ Déterminer l'expression de I_0 en fonction de **E**, **L** et τ .

- c- Exprimer la tension u_B (t) en fonction de τ; r; L et E
- d- Déterminer la valeur de τ et déduire celle de R.

Exercice 2

On réalise le circuit électrique de la figure 1 comportant : un générateur de tension de fém E ; un résistor de résistance R; une bobine d'inductance L et de résistance r; un ampèremètre; un voltmètre; un interrupteur.

- 1) A l'instant t = 0, on ferme l'interrupteur K.
 - a) Etablir l'équation différentielle régissant l'évolution temporelle de la tension u_R(t) aux bornes du résistor.
 - b) La solution de l'équation différentielle précédente peut s'écrire sous la forme $\mathbf{u}_{\mathbf{R}}(\mathbf{t}) = \mathbf{U}_{\mathbf{RP}}(\mathbf{1} - \mathbf{e}^{-\frac{\mathbf{t}}{\tau}})$. Déterminer les expressions des constantes U_{RP} et τ en fonction de L, R, r et E.

 $R(\Omega)$

- a) Expérience (E1): Cette expérience consiste à faire varier la résistance R du résistor et déterminer à chaque fois la valeur de la constante de temps τ . Cette étude a permis de tracer la courbe $\frac{1}{\tau} = f(R)$ donnée sur la figure 2. a_1) Justifier théoriquement, l'allure de la courbe obtenue.

 - a₂) En déduire les valeurs de L et r.
- b) Expérience (E2) : Cette expérience consiste à mesurer :
 - A l'instant = 0 s, la tension U_0 aux bornes de la bobine;
 - A l'instant $t_P = 50 \text{ ms}$ d'établissement du régime permanent:
 - la tension U_{BP} aux bornes de la bobine;
 - l'intensité Ip du courant qui y circule.

Les mesures donnent : $U_0 = 5V$; $U_{BP} = 1V$; $I_P = 0, 1$ A.

- 3) Le deuxième groupe modifie l'une des caractéristiques R, L ou E du circuit. A l'aide d'un oscilloscope à mémoire, il visualise la courbe représentée sur la figure 3.
 - a) Identifier en justifiant, la courbe observée.
 - b) Quelle est la caractéristique modifiée ? Déterminer sa nouvelle valeur.

120

20

0

figure 2

Exercice 3

(5)

Un circuit électrique comporte, branchés en série, un résistor de résistance R variable, une bobine d'inductance L et de résistance r, un générateur idéal de tension, de fem E et un interrupteur K (figure 1).

A l'instant t = 0, on ferme l'interrupteur K.

1- a- Montrer que l'équation différentielle en \mathbf{u}_{R} (tension instantanée aux bornes du résistor) s'écrit : $\frac{d\mathbf{u}_{R}}{dt} + \frac{\mathbf{u}_{R}}{\tau} = \mathbf{E}\frac{\mathbf{R}}{\mathbf{L}}$; où τ est la constante de temps que l'on exprimera en fonction de \mathbf{R} , \mathbf{r} et \mathbf{L} .

- b- En déduire l'expression de la tension U_R aux bornes du résistor en régime permanent.
- 2- Pour deux valeurs différentes R₁ = 40 Ω et R₂ de R, on suit les évolutions au cours du temps des tensions instantanées u_{R1}(t) et u_{R2} (t) aux bornes du résistor. On obtient les courbes de la figure 2.
 - a- Exprimer, en régime permanent, les tensions U_{R1} et U_{R2} correspondant respectivement aux tensions instantanées u_{R1}(t) et u_{R2} (t).

- b- En exploitant les courbes de la figure 2, montrer que : $\frac{R_1}{R_2} \cdot \frac{\tau_1}{\tau_2} = \frac{8}{9}$; où τ_1 et τ_2 sont les constantes de temps correspondant respectivement à R_1 et R_2 .
- c- Déterminer graphiquement les valeurs de T, et T,.
- d- Déduire la valeur de R₂.
- 3- a- Montrer que $r = 10 \Omega$.
 - b- Déterminer les valeurs de E et L.

