Risk Quadrangles

Gersi Doko

Department of Computer Science University of New Hampshire

Financial Analysts

Goal: We want $\mathcal{R}: \tilde{X} \to \mathbb{R}$ that represents the "hazard" for $\tilde{X}: \Omega \to \mathbb{R}$

Insurance Providers

Goal: We want $\mathcal{D}: \tilde{X} \to \mathbb{R}$ that represents the "uncertainty" for $\tilde{X}: \Omega \to \mathbb{R}$

ML Practitioners

Goal: We want $\mathcal{E}: \tilde{X} \to \mathbb{R}$ that represents the "non-zeroness" for $\tilde{X}: \Omega \to \mathbb{R}$

Risk Quadrangle

Goal: We want $\mathcal{R}: \tilde{X} \to \mathbb{R}$ that represents the "hazard" for $\tilde{X}: \Omega \to \mathbb{R}$

Goal: We want $\mathcal{D}: \tilde{X} \to \mathbb{R}$ that represents the "uncertainty" for $\tilde{X}: \Omega \to \mathbb{R}$

Goal: We want $\mathcal{E}: \tilde{X} \to \mathbb{R}$ that represents the "non-zeroness" for $\tilde{X}: \Omega \to \mathbb{R}$

Observation: The three goals are not independent

Risk Quadrangle

Risk Quadrangle

 $\mathcal{R}(X)$ provides a numerical surrogate for the overall hazard in X, $\mathcal{D}(X)$ measures the "nonconstancy" in X as its uncertainty, $\mathcal{E}(X)$ measures the "nonzeroness" in X, $\mathcal{V}(X)$ measures the "regret" in facing the mix of outcomes of X, $\mathcal{S}(X)$ is the "statistic" associated with X through \mathcal{E} and \mathcal{V} .

Diagram 2: The Quantifications in the Quadrangle.

Fundamental Theorem of Risk Quadrangles

$$\mathcal{R}(X) = EX + \mathcal{D}(X), \qquad \mathcal{D}(X) = \mathcal{R}(X) - EX$$

$$\mathcal{V}(X) = EX + \mathcal{E}(X), \qquad \mathcal{E}(X) = \mathcal{V}(X) - EX$$

$$\mathcal{R}(X) = \min_{C} \{C + \mathcal{V}(X - C)\}, \qquad \mathcal{D}(X) = \min_{C} \{\mathcal{E}(X - C)\}$$
 argmin $\{C + \mathcal{V}(X - C)\} = \mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{\mathcal{E}(X - C)\}$ Diagram 3: The General Relationships

Example Risk Quadrangle

Example 1: A Mean-Based Quadrangle (with $\lambda > 0$ as a scaling parameter)

$$S(X) = EX = \mu(X) = \text{mean}$$

$$\mathcal{R}(X) = \mu(X) + \lambda \, \sigma(X) = \text{safety margin tail risk}$$

$$\mathcal{D}(X) = \lambda \, \sigma(X) = \text{standard deviation, scaled}$$

$$\mathcal{V}(X) = \mu(X) + \lambda ||X||_2 = L^2$$
-regret, scaled

$$\mathcal{E}(X) = \lambda ||X||_2 = L^2$$
-error, scaled

Example Risk Quadrangle

Example 2: A Quantile-Based Quadrangle (at any confidence level
$$\alpha \in (0,1)$$
)
$$\mathcal{S}(X) = \operatorname{VaR}_{\alpha}(X) = q_{\alpha}(X) = \text{quantile}$$

$$\mathcal{R}(X) = \operatorname{CVaR}_{\alpha}(X) = \overline{q}_{\alpha}(X) = \text{superquantile}$$

$$\mathcal{D}(X) = \operatorname{CVaR}_{\alpha}(X - EX) = \overline{q}_{\alpha}(X - EX) = \text{superquantile-deviation}$$

$$\mathcal{V}(X) = \frac{1}{1-\alpha}EX_{+} = \text{average absolute loss, scaled}^{17}$$

$$\mathcal{E}(X) = E\left[\frac{\alpha}{1-\alpha}X_{+} + X_{-}\right] = \text{normalized Koenker-Bassett error}$$

Elicitability

Risk measure \mathcal{R} is **elicitable** if there exists a function S such that

$$\mathcal{R}(\tilde{X}) = \operatorname*{arg\,min}_{z \in \mathbb{R}} \mathbb{E}[S(\tilde{X}, z)]$$

Example: $\mathcal{R}(\tilde{X}) = \mathbb{E}(\tilde{X})$ is elicitable with $S(\tilde{X},z) = (\tilde{X}-z)^2$

Regression

minimize $\mathcal{E}(Z_f)$ over all $f \in \mathcal{C}$, where $Z_f = Y - f(X_1, \dots, X_n)$,

Regression

Regression Theorem. Consider problem (5.6) for random variables X_1, \ldots, X_n and Y in the case of $\mathcal E$ being a regular measure of error and $\mathcal C$ being a class of functions $f: \mathbb R^n \to \mathbb R$ such that

$$f \in \mathcal{C} \implies f + C \in \mathcal{C} \text{ for all } C \in \mathbb{R}.$$
 (5.8)

Let \mathcal{D} and \mathcal{S} correspond to \mathcal{E} as in the Quadrangle Theorem. Problem (5.6) is equivalent then to:

minimize
$$\mathcal{D}(Z_f)$$
 over all $f \in \mathcal{C}$ such that $0 \in \mathcal{S}(Z_f)$, (5.9)

Elicitability

$$\operatorname{CVaR}_{\alpha}(X) = \min_{C} \left\{ C + \frac{1}{1 - \alpha} E[X - C]_{+} \right\},$$

$$\operatorname{VaR}_{\alpha}(X) = \operatorname{argmin}_{C} \left\{ C + \frac{1}{1 - \alpha} E[X - C]_{+} \right\}.$$