<u>E</u>

STRUCTURAL DYNAMICS SYSTEM MODEL REDUCTION

J. C. CHEN

T. L. ROSE

B. K. WADA

Applied Technologies Section
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Workshop on Structural Dynamics and Control Interaction of Flexible Structures
Marshall Space Flight Center, Alabama

April 22-24, 1986

the usually are However, a simplified model is needed for other tasks Because of the complexity of the structural system, the model contains large number of degreeanalysis for modal testing, and controlsystematic method of model reduction for modal test analysis will In the present report, Perhaps it will be of some help in developing stress, loads and responses due to mission environments The large model is necessary since details of systems dynamic simplified model for the control studies. performed by finite element models. studies. structural structural interaction for as pre-test analysis be presented. of-freedom. computed. Loads such

loads model and the corresponding modal test whose purpose is to TAM must be compatible with the measurements of the modal test. Since instrumentation limitation, the TAM degrees-of-freedom will be much smaller than that of the loads analysis model. It is obvious that Test-Analysis Model (TAM) serves as the bridge verify the validity of the loads model.

LOADS ANALYSIS MODEL REDUCTION

Test Analysis Model (TAM) Requirement

Pre-Test Analysis for Primary Modes Determination, Instrumentation Location Selection, Excitation Distribution and etc.

Compatibility of DOF

Test - Analysis Correlation

Analytical Model Updating

CRITERIA FOR REDUCED MODEL

- Accuracy in Frequency Prediction for Primary Modes
- Sufficient Resolution of Mode Shape Comparison
- Effective Mass Completeness
- Accuracy With Respect to External Forcing Function
- Selection of DOF Based on Kinetic Energy

GOVERNING EQUATIONS FOR PAYLOAD/LAUNCH VEHICLE COMPOSITE SYSTEM

$$\begin{bmatrix} \mathbf{m}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_2 \\ \mathbf{x}_2 \end{bmatrix} \begin{pmatrix} \ddot{\mathbf{x}}_1 \\ + \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{21} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{k}_{12} & \mathbf{k}_{22} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ + \begin{bmatrix} k_{11} & k_{21} \\ k_{12} & k_{22} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{cases} F(t) \\ 0 \end{cases}$$

$$\{x_2\}$$
 = PAYLOAD DOF

$$[m_2]$$
 = MASS MATRIX OF THE PAYLOAD

$$\left[k_{11}\right]$$
, $\left[k_{12}\right]$, $\left[k_{21}\right]$, $\left[k_{22}\right]$ = SUB-MATRICES OF THE TOTAL PAYLOAD STIFFNESS MATRIX PARTITIONED INTO LAUNCH VEHICLE/PAYLOAD INTERFACE DOF AND PAYLOAD DOF.

and the spacecraft between Statically determinate interface launch vehicle is assumed.

IN STATICALLY DETERMINATE SUPPORTED PAYLOAD

$$\begin{bmatrix} k_{11} \end{bmatrix} = \begin{bmatrix} \phi_{R} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} k_{22} \end{bmatrix} \begin{bmatrix} \phi_{R} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{k}_{21} \end{bmatrix} = - \begin{bmatrix} \phi_{\mathbf{R}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{k}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{k}_{12} \end{bmatrix}^{\mathsf{T}}$$

- PAYLOAD RIGID BODY TRANSFORMATION MATRIX DEFINED AS THE PAYLOAD DISPLACEMENT DUE TO UNIT DISPLACEMENT OF THE LAUNCH VEHICLE/PAYLOAD INTERFACE DOF, $\{X_I\}$.
- LAUNCH VEHICLE/PAYLOAD INTERFACE DOF CONNECT-ING PAYLOAD TO LAUNCH VEHICLE, A SUBSET OF THE LAUNCH VEHICLE DOF {x1}.

motion elastic The spacecraft responses are decomposed into rigid-body and elastic motion. It should be noted that only the emotion will cause structural loads.

PAYLOAD MOTION DECOMPOSITION

 $\{x_2\} = [\phi_R] \{x_I\} + \{x_{\theta}\}$

$$\begin{bmatrix} m_1 + m_{rr} & \phi_R^T m_2 \\ m_2 \phi_R & m_2 \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_e \end{pmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_{22} \end{bmatrix} \begin{pmatrix} x_1 \\ x_e \end{pmatrix} = \begin{cases} F(t) \\ 0 \end{cases}$$

WHERE

$$[\mathbf{m_{rr}}] = [\phi_{\mathbf{R}}]^{\mathsf{T}} [\mathbf{m_2}] [\phi_{\mathbf{R}}]$$

DENOTED AS RIGID-BODY MASS.

of providing maximum response, frequency sensitive to the forcing functions and maximum effective mass. The TAM should produce modes. The modes selection should be based on the criteria selection The accuracy of the response is dependent on the modes which will satisfy all these criteria.

GENERALIZED COORDINATES

$$[m] \{\ddot{x}\} + [k] \{x\} = -[m_2] [\phi_R] \{\ddot{x}_I\} \leftarrow FULL DOF MODEL$$

LEI

$$\{x\} = [\phi] \{u(t)\} \longleftarrow$$

MODAL TRUNCATION SELECT MODES FOR MAX. X

WHERE $\left[\phi
ight]$ IS THE NORMAL MODE MATRIX SUCH THAT

$$[\phi]^T [m][\phi] = [-1,]$$
, IDENTITY MATRIX

;

$$[\phi]^T[k][\phi] = [\sim \omega^2]$$
, EIGENVALUE

 $\{ii\} + \left[-2\rho\omega_{\sim} \right] \{ii\} + \left[-\omega_{\sim}^{2} \right] \{ii\} = \left\{ F(t) \right\}$

WUEDE

SELECT MODES SENSITIVE TO F(t)

$$\{F(t)\} = -[\phi]^T[m_2][\phi_R]\{\ddot{x}_1\} = GENERALIZED FORCE$$

$$= - \left[M_{er} \right] \left\{ \ddot{x}_{l} \right\}$$

RELATED TO EFFECTIVE MASS

This is a typical forcing function in the form of interface acceleration. The shock spectra indicates that that modes with frequency either lower than 2.0 Hz or higher than 40.0 Hz will be of little effect as far as response calculation is concerned.

LAUNCH VEHICLE / SPCECRAFT INTERFACE ACCELERATION LONGITUDINAL (Z) DIRECTION

The model reduction procedure will be demonstrated by the Galileo spacecraft.

The Galileo spacecraft has a complex structural system. A detailed finite element model is required for the loads analysis.

GALILEO SPACECRAFT CORE STRUCTURES

GALILEO SPACECRAFT MAJOR SUBSYSTEMS

Subsystem	Mass (kg)	Weight* (1bs)
High Gain Antenna	49.5	109.1
Bus	272.5	600.7
Retro Propulsion Module (RPM)	1216	2681
Despun Box	110.4	243.3
RRH	0.9	13.2
Bay E	14.5	32.0
Science Boom	76.6	168.8
Scan Platform	96.4	212.5
+x RTG	80.2	176.9
-x RTG	77.2	170.2
Probe	341.8	753.4
Spin Bearing	43.1	95.1
Inner Cone		
LTR		
Despun Cone	52.8	116.3
S/C Adapter	50.1	110.6

FREQUENCY PREDICTION

MODE NO.	FREQ (Hz)	MODE NO.	FREQ (Hz)	MODE NO.	FREQ (Hz)
1	12.78	25	37.49	49	53.42
2	13.04	26	38.48	20	53.90
က	16.59	27	40.22	51	54.58
4	17.45	28	40.54	25	56.02
2	18.42	29	41.34	23	56.45
9	19.36	30	41.60	54	56.76
7	19.77	31	41.93	99	63.35
8	20.86	32	42.09	99	63.89
6	21.94	33	42.16	57	65.07
10	22.69	34	42.25	58	67.94
11	22.88	35	42.33	59	68.35
12	28.01	36	42.78	09	69.04
13	29.11	37	43.38	61	69.94
14	29.51	38	43.48	62	71.02
15	31.17	39	44.08	63	71.63
16	31.44	40	45,23	64	72.56
17	31.44	41	47.25	92	73.38
18	31.90	42	48.43	99	75.04
19	33.44	43	48.89	29	76.07
20	34.57	44	49.74	89	76.55
21	35.21	45	49.98	69	80.19
22	35,99	46	50.23	70	82.88
23	36.07	47	50.89		
24	36.47	48	51.38		

MODES DESCRIPTION

DESCRIPTION	GLOBAL BENDING IN x-DIRECTION. +x & -x RTG MOTION IN +z & -z DIRECTION RESPECTIVELY, WALKING MODE	GLOBAL BENDING IN y-DIRECTION	LOCAL MODE, MAG. CAN. MOTION IN y-DIRECTION, -x RTG MOTION IN z-DIRECTION	2nd GLOBAL BENDING IN y-DIRECTION	2nd GLOBAL BENDING IN x-DIRECTION	LOCAL MODE, BOTH MAG. CAN. & -x RTG IN z-DIRECTION MOTION, IN PHASE
FREQ (HZ)	12.78	13.04	16.59	17.45	18.42	19.36
MODE No.	1	2	m	4	5	9

should be noted that the total effective mass for the first are the predicted errective mass in recommodes for with large effective mass are the important modes for returned model. loads analysis and should be predicted by the reduced model. modes constitutes only a portion of the total mass. modes These

EFFECTIVE MASS

DOF	×	>	Z	× _θ	$^{A}_{ heta}$	z _θ
-	.3239	.0046	.0001	2900	.6701	.000
2	.0028	.3519	.0002	8299	.0067	0
က	.0569	.0018	.000	9000	.0189	.2719
4	.0038	.3392	.0004	.2434	.0024	6000
2	.1135	.0018	0	.0015	.1118	.0130
9	.0343	.0844	.0016	.0143	.0204	8000
7	.1520	.0026	.0003	0	.0813	.0171
8	.0031	.0003	.0021	5000 ′	.0002	.2785
6	0	9000	.0723	.0024	.000	8600
10	.000	3000	.0117	.0003	0	0
11	.000	.0012	.1225	.0013	0	.0021
12	.1453	.0002	.0020	0	.0395	.0141
13	9000	8000	0	.0001	.0004	.0037
14	.0007	7900.	0	.0011	.0001	6000.
15	0	0	0	0	0	0
16	0	0	0	0	0	0
17	0	0	0	0	0	0
18	.000	.0004	.0002	0	.000	6000
19	6300'	0030	.4144	.0002	.0015	0
20	6000	.0051	.0642	.000	.0002	.0007
21	.0048	.0010	.0738	.0001	.001	.0001
SUM	.8488	.8061	.7659	.9403	.9548	.6152

The residual mass is defined as the total mass subtracted by the effective mass. The smaller residual mass is an indication for a better modal truncation.

may acceleration here modal accerlations there are some modes such they Therefore, They are shown These modes may be local modes but they with smaller effective mass but large modal accelerations In general, modal accelerations due to a typical interface generate higher loads for the local structures. with higher effective mass will have higher However, together with the sum of the effective mass. should be considered as important modes too. for the first 21 modes. and they are the important modes. the 19th mode. calculated 98

MODAL ACCELERATION

MODE	FREQ (Hz)	EFFECTIVE MASS SUMMATION	MODAL ACCELERATION
1	12,78	1,01	2.00 (g)
2	13.04	1.03	8.52
3	16.59	.35	-1.36
4	17.45	69"	-8.14
2	18.42	.24	1.19
9	19.36	.16	3.15
7	19.77	.25	-1.62
8	20.86	.29	-1.33
6	21.94	60°	4.25
10	52.69	.01	-1.39
11	22.88	.13	4.42
12	28.01	.20	-2.26
13	29.11	10.	12.
14	29.51	.01	09"
15	31.17	0	0
16	31.44	0	20 '-
17	31.44	0	90'-
18	31.90	0	20
19	33.44	.43	6.35
20	34.57	70'	2.46
21	35.21	80.	2.75

As mentioned before, the kinetic energy distribution will be used as the basis for selecting the degree-of-freedom for the reduced model. For this particular mode, the kinetic energy is distributed with 36.20% in x-direction, 40.43% in y-direction and a relatively uniform distribution. The higher kinetic energy is indicated. Because of the relatively uniform distribution of kinetic energy, we conside this mode to be a global mode. mode, degree-of-freedom with 22.15% in z-direction,

JPL

KINETIC ENERGY DISTRIBUTION FOR GLOBAL MODE

KINETIC	ENERGY	FOR MODE	7 JPL D	ATA				
CRID	DOF	x	Y	Z RX	RY	RZ		
119		0. 0039	0. 0018					0. 0056
379		0. 0020	0.0001	0. 000B				0. 0030
841		0.1195	0.0908	0. 0000				0.2103
2130		0. 0131	0.0177	0.0038				0. 0346
2340		0. 0219	0. 0404	0.0008				0. 0631
2530		0. 0129	0. 0187	0. 0060				0. 0377
2740		0. 0289	0. 0350	0.0011				0. 0650
3075		0.0011	0.0012	0.0005				0. 0027
3076		0. 0007 0. 0389	0. 0013 [0. 0524]	0.0006	0.0001	0.0001		0. 0026
3160 3260		0. 0212	0.0288	0.0159	0.0001	0.0001	0. 0000	0.1074
3360		0. 0303	0. 0266	0. 0000 0. 0171	0. 0001 0. 0001	0. 0000 0. 0001	0. 0000 0. 0000	0. 0501 0. 0873
3460		0. 0172	0. 0250	0. 0000	0.0001	0. 0000	0. 0000	0. 0423
3550		0.0013	0.0016	0.0007	0. 0001	0. 0000	U. UUUU	0. 0037
3555		O. 000B	0.0012	0. 0034	0. 0000			0. 0054
3650		0.0014	0.0017	0.0006	0. 0000			0. 0037
3665		0. 0009	0.0015	0. 0035	0. 0000			0. 0059
4123		0.0009	0. 0007	0.0001	0.000			0.0017
4128		0.0013	0.0002	0.0011				0. 0025
4235		0.0013	0.0001	0. 0003				0.0017
4401		0. 0000						0. 0000
4418		0.0003	0. 0033	0. 0007	0.0000	0. 0000		0. 0043
5001		0. 0035	O. 007 8	0. 0040				0. 0154
5004		0. 0048	0. 0000	0. 0095				0. 0144
500B		0. 0045	0. 0036	0. 0042				0. 0123
5009		0. 0002	0. 0001	0. 0007				0.0010
5050				0.0011				0.0011
5052		0. 0030		0.0011				0. 0041
5072		0.0018		0.0013				0.0013
5092 5111		0. 0019 0. 0019	0. 0000	0. 001 8 0. 0046				0.0037
5112		0.0019	0.0006	0.0038				0. 0065 0. 0063
5115		0.0017	0.0001	0.0036				0.0063
5604		0. 0003	0. 0000	U. UUJU				0. 0003
5610		0. 0001	0. 0000					0. 0001
6002		0. 0002	3. 3333	0. 0001				0. 0005
6003				0. 0001				0. 0001
6100		0. 0002	0. 0007	0.0013	0. 0004	0. 0000	0. 0001	0. 0026
6205				0.0004				0. 0004
7050		0. 0000	0. 0001	0.0089	0. 0006	0. 0001	0. 0000	0.0097
7550		0. 0000	0. 0001	0. 1155	0. 0002	0. 0009	0. 0000	0.1145
8050		0. 0154	0. 0200	0. 0000	0. 0032	0. 0033	0. 0000	0.0419
8060		0. 0000	0. 0000	0. 0000	0. 0000	0. 0000		0. 0001
8130		0.0005	0. 0077	0. 0002	0.0016	0. 0010	0.0002	0.0112
9104		0. 0000	0. 0000					0. 0000
9114		0. 0000	0. 0002					0. 0003
9125		0. 0002	0. 0000					0. 0002
9404		0. 0000	0. 0000					0. 0000
9414		0. 0000	0. 0000					0. 0000
9425		0. 0000	0. 0000					
		0. 3420	0. 4043	0. 2215	0. 0064	0. 0056	0. 0002	1. 0000

For this mode, almost all the kinetic energy is concentrated one degree-of-freedom which is a good indication for a loc mode.

JPL

KINETIC ENERGY DISTRIBUTION FOR LOCAL MODE

							ORIGINAL	PAGE IS
KINETIC	ENERGY	FOR MODE	10 JPL 1	DATA			OF POOR	
GRID	DOF	x	Y	z RX	RY	RZ		•
•		•	•	• "		***		
		0.0000	0.0000					0.0000
119		0.0000	0. 0000	0. 0000				0. 0000 0. 0000
379		0.0000	0. 0000 0. 0000	0. 0000				0. 0000
841		0.0000	0. 0000	0. 0000				0. 0000
2130 2340		0. 0000 0. 0000	0. 0001	0. 0000				0. 0001
2530		0.0000	0.0002	0. 0000				0. 0002
2740		0.0000	0. 0002	0. 0000				0.0001
3075		0.0000	0. 0001	0. 0000				0. 0000
3076		0. 0000	0. 0000					0. 0000
3160		0. 0000	0. 0001	0. 0001	0. 0000	0. 0000	0. 0000	
3590		0. 0002	0. 0002		0. 0000	0. 0000		
3360		0. 0000	0. 0001	0.0002	0. 0000	0. 0000		
3460		0. 0001	0. 0000		0. 0000	0. 0000		
3550		0. 0000	0. 0000		0.000	0.000	0.000	0. 0000
3555		0. 0000	0. 0001	0. 0000	0. 0000			0. 0001
3650		0. 0000	0. 0000					0. 0000
3665		0. 0000	0. 0001	0. 0000	0. 0000			0. 0001
4123		0. 0000	0. 0000					0. 0000
4128		0. 0000	0. 0000	0. 0000				0. 0000
4235		0. 0000	0. 0000					0. 0000
4401		0. 0000						0. 0000
4418		0. 0000	0. 0000	0. 0000	0. 0000	0. 0000)	0. 0000
5001		0. 0000	0. 0000			•		0. 0001
5004		0. 0000	0. 0000	0. 0005				0. 0005
5008		0. 0000	0. 0000	0. 0003				0. 0003
5009		0.0000	0. 0000	0.0001				0. 0001
5050				0. 0001				0. 0001
5052		0. 0000		0. 0001				0. 0001
5072				0. 0001				0. 0001
5092		0. 0000		0. 0001				0. 0001
5111		0. 0000	0. 0000					0. 0004
5112		0. 0000	0. 0000					0. 0004
5115		0. 0000	0. 0000					0. 0004
5604		0. 0000	0. 0000					0. 0000
5610		0. 0000	0. 0000					0. 0000
6002		0. 0006		0. 001B				0. 0024
6003				0.0015	0.0010	0.000	0. 0004	0. 0015 0. 0070
6100		0. 0006	0. 0002	0.0046	0. 0012	0. 0000	0.0004	0.0070
6205								
7050		0. 0000	0. 0000		0. 0000	0. 0000		
7550		0. 0000	0. 0000		0. 0000	0. 0000		
8050		0. 0000	0.0000		0.0008	0. 0000		
8060		0. 0000	0. 0001		0. 0000	0. 0000		0. 0001
8130		0. 0000	0. 0036		0. 0000	0. 0000	0.0000	
9104		0. 0000	0. 0000					0. 0000
9114		0. 0000	0. 0000					0.0000
9125 9404		0.0001	0. 0000					0.0001
9414		0.0000	0. 0000					0.0000
7414 9425		0.0000	0. 0000					0. 0000
7723		0. 0000	0. 0000	7				
	•	0. 0017	0. 0050	0. 9909	0. 0020	0. 0000	0. 0004	1. 0000
		J. 5517	J. JUJU	V. 77V7	J. JJEV	J. 3000	J. 0007	2. 0000

degrees-of-freedom with more than 5.0% of kinetic energy in of the important modes are retained for the reduced model, A total of 162 degrees-of-freedom are retained out of The degrees-of-freedom with any of the important mode: TAM. A total of 162 degrees-of-freedom.

TAM PREDICTION

Mode	Frequencies (Hz)	Description
1	13.22	Global bending in X
2	13.44	Global bending in Y
ო	16.93	Science boom in X
4	17.90	SXA in Y
S	18.89	SXA in X
9	19.92	-X RTG in Z
7	20.58	+X RGG in Z
80	21.46	Oxidizer 2 in X-Y
6	22.67	±X RTG in Z
10	23.62	Probe in Y
11	28.69	Science in Y
12	29.76	Damper and Science Boom in Y
13	30.26	SXA Local in X-Y
14	31.38	SXA Local in X
15	32.40	SXA Local in Y
16	32.69	Probe in X
17	33.15	Damper in X
18	34.26	Oxidizer in Z
19	36.06	Relay Antenna in Y
20	36.53	Thruster Boom in Y
12	37.35	Thruster Boom in Y

The results of the reduced model, TAM, are compared with those of the loads model. Excellent agreement is obtained. It is concluded that this systematic procedure for model reduction will provide a good representation for a large complex model.

→ FREQUENCY AND EFFECTIVE MASS COMPARIONS FOR TAM AND LOADS MODEL

	TAM		L.	Loads Model	Į,
Mode	Freq (Hz)	Eff. Mass (kg)	əpoW	Freq (Hz)	Eff. Mass (kg)
1	13.22	796.0	1	13.23	786.2
2	13.44	840.0	2	13.50	841.0
က	16.93	142.5	က	16.94	143.4
4	17.90	858.0	4	17.99	852.0
2	18.89	291.0	ည	18.98	281.0
9	19.92	293.0	9	19.93	298.0
7	20.58	391.1	7	20.39	395.8
80	21.46	6.0	∞	21.47	10.1
6	22.67	120.2	6	22.60	176.2
10	23.62	394.0	10	23.54	391.1
1	28.69	344.6	11	28.84	360.3
13	30.26	15.9	13	30.34	16.6
18	34.26	1091.5	18	34.40	1043.8
23	37.69	55.1	19	35.56	17.1
19	36.06	345.2	20	36.18	176.2
22	37.33	5.9	21	36.76	25.1

