MSC (CA&IT) - Semester: IV

(Effective from year 2024-25)

Course Code:	CAIT-401	Course Title:	Database Management System
Course Credits:	02	Hour of Teaching/Week:	02
Internal Assessment Marks:	25	External Exam Marks:	25
Exam Duration	1Hr	1	

Unit	Contents				
	Database Management System				
	Introduction of DBMS, File processing system Vs DBMS				
Data Models					
	Introduction, Object Based Logical Model, Record Base Logical Model, Relational Model,				
1.	Network Model, Hierarchical Model, Entity Relationship Model, Entity Set, Attribute,				
	Relationship Set, Entity Relationship Diagram (ERD)				
Relational Databases					
	Introduction, Terminology: Relation, Tuple, Attribute, Cardinality, Degree, Domain				
	Keys - Super Key, Candidate Key, Primary Key, Foreign Key				
	Relational Algebra Operations - Select, Project, Union, Difference, Intersection, Cartesian,				
	Product, Natural Join				
	Relational Database Design				
	Introduction, Anomalies of un normalized database, Normalization, Normal Forms: 1 NF, 2 NF, 3				
	NF, 4 NF, BCNF				
	SQL (Structured Query Language)				
2.	Introduction, Basic Structure,				
	DDL Commands: CREATE, ALTER, DROP, TRUNCATE				
	DML Commands: SELECT, INSERT, UPDATE, DELETE				
	Clauses: FROM, GROUP BY, HAVING, ORDER BY, IN				
	Aggregate Functions: AVG, COUNT, FIRST, LAST, MIN, MAX, SUM, Simple Queries and				
	Nested Queries				
D . C.	·				

References:

- 1. Database System Concepts By Henry Korth and A. Silberschatz
- 2. An Introduction to Database System by Bipin Desai
- 1. SQL, PL/SQL the Programming Language of Oracle, Ivan Bayross, BPB Publications
- 2. Fundamentals of Database Systems · Shamkant Navathe

MSC (CA&IT) - Semester: IV

(Effective from year 2024-25)

Course Code:	CAIT-401-P	Course Title:	Lab: Practical Based on CAIT-401
Course Credits:	02	Hour of Teaching/Week:	04
Internal Assessment Marks:	25	External Exam Marks:	25
Exam Duration	1Hr	1	

List of Sample Programs

- 1. Write a SQL statement that performs DDL Queries.
- 2. Write a SQL statement that displays all the information about all salespeople.

Sample table: salesman

- 3. Write a SQL statement to display a string "This is SQL Exercise, Practice and Solution".
- 4. Write a SQL query to display three numbers in three columns.
- 5. Write a SQL guery to display the sum of two numbers 10 and 15 from the RDBMS server.
- 6. Write an SQL query to display the result of an arithmetic expression.
- 7. Write a SQL statement to display specific columns such as names and commissions for all salespeople.

Sample table: salesman

8. salesman_id | name | city | commission

5001 | James Hoog | New York | 0.15 5002 | Nail Knite | Paris | 0.13 5005 | Pit Alex | London | 0.11 5006 | Mc Lyon | Paris | 0.14 5007 | Paul Adam | Rome | 0.13

5003 | Lauson Hen | San Jose | 0.12

9. Write a query to display the columns in a specific order, such as order date, salesman ID, order number, and purchase amount for all orders.

Sample table: orders

ord_no	purch_a	mt ord_date custome	r_id salesman_id
70001	150.5	2012-10-05 3005	5002
70009	270.65	2012-09-10 3001	5005
70002	65.26	2012-10-05 3002	5001
70004	110.5	2012-08-17 3009	5003
70007	948.5	2012-09-10 3005	5002

10. From the following table, write a SQL query to identify the unique salespeople ID. Return salesman id.

Sample table: orders

ord_no	purch_ar	nt ord_date cus	stomer_id salesman_id
70001	150.5	2012-10-05 300	5 5002
70009	270.65	2012-09-10 300	01 5005
70002	65.26	2012-10-05 300	2 5001
70004	110.5	2012-08-17 300	9 5003
70007	948.5	2012-09-10 300	5 5002