Propositions and Predicates

CSC165 Week 2 - Part 1

<u>Propositions</u> are statements that have a true or false value. The value of a proposition is fixed.

<u>Predicates</u> are functions that have codomain {True, False} The value of a predicate depends on one or more input values.

$$(2<1)\vee(2\in\mathbb{Z}) \qquad \text{vs.} \qquad (x<1)\vee(x\in\mathbb{Z})$$

This is a proposition because we know that it is

This is a predicate because its truth value depends on the value of x.

$(x < 1) \Longrightarrow (x \ge 2)$	Proposition?	Predicate?	
18 January 2021 is a Monday.	Proposition?	Predicate?	
Today is Monday.	Proposition ?	Predicate ?	

5 is an even number Proposition? Predicate?

All dogs are animals. Proposition? Predicate?

If x is a dog, then x is an animal. Proposition? Predicate?

Quantifiers

A quantifier tells you the quantity of something.

is called the "universal quantifier".

It means "for all", "each", "every" or "all".

Example: $\forall x \in \mathbb{N}, x \ge 0$ means "Every natural number x is greater than or equal to zero."

is called the "existential quantifier".

It means "there exists", "at least one", "for some element".

Example: $\exists x \in \mathbb{N}, x \geq 5$

means "There exists a natural number x that is greater than or equal to five."

Reading quantifiers in precise and colloquial language

Statement 1: All dogs are animals.

Statement 2: If x is a dog, then x is an animal.

Statement 3: Let U = the set of living things on Earth.

 $\forall x \in U$ If x is a dog, then x is an animal.

Which quantifiers are hidden in these sentences?

Example 1: All rational numbers are real numbers.

Example 2: At least one prime number is even.

Example 3: Someone in this class is wearing a purple t-shirt.

Example 4: It is always possible to add 1 to any integer to get another integer.

How to symbolize "There are infinitely many primes"

Let $U = \mathbb{N}$ and P(x) = "x is prime"

Double Quantifiers

Let $U = \{\text{students in this course}\}$, and $x \in U$, $y \in U$

Let S(x,y) = "x studies with y"

$$\forall x \in U, \forall y \in U, S(x,y) =$$

$$\forall x \in U, \exists y \in U, S(x,y) =$$

$$\exists x \in U, \forall y \in U, S(x,y) =$$

$$\exists x \in U, \exists y \in U, S(x,y) =$$