2019/2020

A rendre individuellement

EXERCICE 1

Pour $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k!}, \quad u_n = S_{2n} \quad \text{et} \quad v_n = S_{2n+1}$$

- **1.** a) Montrer que les deux suites $(u_n)_{n\in\mathbb{N}}^{n-1}$ et $(v_n)_{n\in\mathbb{N}}$ sont strictement monotones et adjacentes.
 - b) En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge et que sa limite λ vérifie : $\frac{1}{3}<\lambda<\frac{1}{2}$
 - c) Montrer que : $\forall n \in \mathbb{N}$, $|S_n \lambda| \leq \frac{1}{(n+1)!}$ (on distinguera le cas n pair et le cas n impair).
- **2.** Dans cette question, on montre par l'absurde que λ est irrationnel. On pose $\lambda = \frac{p}{q}$ avec $(p,q) \in (\mathbb{N}^*)^2$.
 - a) Soit $n \geqslant q$. Montrer que : $n!S_n n!\lambda \in \mathbb{Z}$.
 - b) En déduire, à l'aide de 1c), que : $\forall n \geqslant q$, $S_n = \lambda$.
 - c) Aboutir à une absurdité.
- 3. Montrer que : $\forall x \in \mathbb{R}^+$, $1-x \leqslant e^{-x} \leqslant 1-x+\frac{x^2}{2}$
- **4.** En déduire que : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}^+$, $\sum_{k=0}^{2n+1} \frac{(-x)^k}{k!} \leqslant e^{-x} \leqslant \sum_{k=0}^{2n+2} \frac{(-x)^k}{k!}$ (on pourra raisonner par récurrence)
- **5.** En déduire la valeur de λ .

EXERCICE 2

Soit $(u_n)_{n\geqslant 1}$ la suite définie par

$$0 < u_1 < \frac{1}{\sqrt{2}}$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n - 2u_n^3$.

- **1.** a) Montrer que $\forall n \in \mathbb{N}^*, \ 0 < u_n < \frac{1}{\sqrt{2}}$
 - b) Montrer que (u_n) est convergente, et calculer sa limite.
- **2.** On considère les suites $(v_n)_{n\geqslant 1}$ et $(V_n)_{n\geqslant 1}$ définies par :

$$\forall n \geqslant 1, \ v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} \quad \text{et} \quad V_n = \sum_{k=1}^n v_k$$

- a) Montrer que (V_n) diverge vers $+\infty$.
- b) Montrer que $\forall n \geqslant 1, \ v_n \leqslant \frac{2}{1-2u_1^2} \, u_n$, et en déduire la limite de $U_n = \sum_{k=1}^n u_k$.
- **3.** Soit (a_n) une suite réelle, et $b_n = \frac{a_1 + a_2 + \cdots + a_n}{n}$
 - a) On suppose que (a_n) converge vers 0, et on fixe $\varepsilon > 0$. Justifier l'existence d'un entier n_0 tel que : $\forall n \geqslant n_0$, $\left| \frac{a_{n_0} + a_{n_0+1} + \dots + a_n}{n} \right| \leqslant \frac{\varepsilon}{2}$, En déduire que (b_n) converge vers 0
 - b) Montrer que si (a_n) converge vers $\ell \in \mathbb{R}$, alors (b_n) aussi.
- **4.** On considère la suite $(w_n)_{n\geqslant 1}$ définie par $w_n=\frac{1}{u_{n+1}^2}-\frac{1}{u_n^2}$
 - a) Montrer que (w_n) converge vers 4.
 - b) A l'aide de la question 3. et de (w_n) , montrer que $u_n \sim \frac{1}{2\sqrt{n}}$.

PCSI 1

EXERCICE 3

Dans tout ce problème $(u_n)_{n\in\mathbb{N}}$ désigne une suite réelle **bornée**.

Pour tout entier naturel n on définit l'ensemble

$$A_n = \{u_k, k \geqslant n\}$$

- 1. Soit $n \in \mathbb{N}$. Montrer que l'ensemble A_n admet une borne supérieure dans \mathbb{R} . On notera désormais $a_n = \sup A_n$ pour tout $n \in \mathbb{N}$.
- **2.** a) Soient A et B deux parties de $\mathbb R$ non vides telles que $A\subset B$ et B majorée. Montrer que A admet une borne supérieure qui vérifie $\sup A\leqslant \sup B$.
 - b) Justifier que $A_{n+1} \subset A_n$ pour tout entier naturel n et en déduire le sens de variation de la suite (a_n) .
 - c) Montrer que la suite (a_n) est convergente. On note $\ell(u) = \lim_{n \to +\infty} a_n$ sa limite.
- 3. Soit $\varepsilon > 0$.
 - a) Justifier que pour tout $p \in \mathbb{N}$, il existe un entier N > p tel que $a_N \leqslant \ell(u) + \varepsilon$.
 - b) Soit N un tel entier. Montrer qu'il existe $k \geqslant N$ tel que

$$\ell(u) - \varepsilon \leqslant u_k \leqslant a_N \leqslant \ell(u) + \varepsilon$$

4. a) En raisonnant par récurrence sur n, construire à l'aide de la question 3. une extractrice φ telle que

$$\forall n \in \mathbb{N}$$
 $\ell(u) - \frac{1}{n+1} \leqslant u_{\varphi(n)} \leqslant \ell(u) + \frac{1}{n+1}$

(On rappelle qu'une **extractrice** est une fonction de \mathbb{N} dans \mathbb{N} strictement croissante).

- b) Qu'en déduire pour $(u_{\varphi(n)})$?
- 5. a) On appelle valeur d'adhérence de la suite u la limite d'une suite convergente extraite de u.

Soit ℓ une valeur d'adhérence de u et σ une extractrice telle que $(u_{\sigma(n)})_{n\in\mathbb{N}}$ converge vers ℓ .

Justifier que $u_{\sigma(n)} \in A_n$ pour tout $n \in \mathbb{N}$ et en déduire que $\ell \leqslant \ell(u)$.

Indication: on pourra utiliser que si φ est une extractrice alors $\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n$.

- b) En déduire que toute suite bornée admet une valeur d'adhérence et que $\ell(u)$ est la plus grande d'entre elles.
- c) Que vaut $\ell(u)$ si u est convergente?
- **6.** Déterminer $\ell(u)$ si l'on définit $u_n = (-1)^n \left(1 + \frac{1}{n}\right)$ pour tout entier $n \ge 1$.

Remarque 1: $\ell(u)$ s'appelle la *limite supérieure de u*, que l'on note $\limsup_{n \to +\infty} (u_n)$.

Remarque 2 : le résultat démontré dans ce problème sur l'existence d'une valeur d'adhérence pour une suite bornée porte le nom de *théorème de* BOLZANO-WEIERSTRASS. Il est d'une importance cruciale en mathématiques.