F. Aït Salaht ¹ H. Castel Taleb ² J.M. Fourneau ¹ N. Pekergin ³

¹PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles France
 ²SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France
 ³LACL, Univ. Paris Est, Créteil, France

MSR 2013, Novembre 2013

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

Motivation

Motivation

 Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles

Motivation

- Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles
 - Problème :

Motivation

- Chaînes de Markov à espace d'état très grand
- Solution exacte est très difficile voir impossible

Motivation

 Analyser les performances d'un réseau sous des trafics généraux issus de traces réelles

Problème :

Motivation

- Chaînes de Markov à espace d'état très grand
- · Solution exacte est très difficile voir impossible
- Proposition :

Appliquer la méthode de bornes stochastiques pour l'analyse de performance du réseau par une représentation en histogramme du trafic

- Approche par histogramme
 - La théorie de bornes stochastiques pour réduire la taille de la distribution

 Borne stochastique

 le résultat est une borne de la distribution exacte
 - ⇒ Bornes sur les mesures de performance
- Contrôler la taille des distributions ⇒ Contrôler la complexité

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

▶ Trace du trafic utilisé comme exemple :

- Trace du trafic MAWI correspondant à une heure de mesure de trafic IP 9 janvier 2007 entre 12h et 13h
- Échantillonnage avec une période de 40 ms

► Trace du trafic utilisé comme exemple :

- Trace du trafic MAWI correspondant à une heure de mesure de trafic IP 9 janvier 2007 entre 12h et 13h
- Échantillonnage avec une période de 40 ms

- Représentation en histogramme
- Nombre de bins est de 80511

► Modèle de file d'attente :

Le trafic en entrée est stationnaire et i.i.d. (A(t) = A).

Équations d'évolution

▶ Équation de récurrence sur la longueur du tampon :

$$Q(k) = \min(B, (Q(k-1) + A - S)^+), \quad k \in \mathbb{N}. \tag{1}$$

▶ Distribution de sortie :

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (2)

► Chaîne de Markov à temps discret.

Hypothèse : chaînes de Markov ergodiques.

► Modèle de file d'attente :

Le trafic en entrée est stationnaire et i.i.d. (A(t) = A).

Équations d'évolution

▶ Équation de récurrence sur la longueur du tampon :

$$Q(k) = \min(B, (Q(k-1) + A - S)^+), \quad k \in \mathbb{N}.$$
(1)

▶ Distribution de sortie :

$$D(k) = \min(S, Q(k-1) + A), \quad k \in \mathbb{N}.$$
 (2)

▶ Inconvénients : Calcul trop coûteux → Histogramme trop grand

Modèle d'Hernández et al. (2007)

Objectif: Réduire la taille de la trace initiale \Longrightarrow Accélérer le temps de calcul.

Modèle d'Hernández et al. (2007)

Objectif: Réduire la taille de la trace initiale Accélérer le temps de calcul.

Méthode : Diviser l'espace d'état ($|\mathcal{H}| = N$) en K sous-intervalles (bins), K << N.

Exemple:

Modèle d'Hernández et al. (2007)

Objectif: Réduire la taille de la trace initiale Accélérer le temps de calcul.

Méthode : Diviser l'espace d'état ($|\mathcal{H}| = N$) en K sous-intervalles (bins), K << N.

Exemple:

Modèle d'Hernández et al. (2007)

Objectif: Réduire la taille de la trace initiale Accélérer le temps de calcul.

Méthode : Diviser l'espace d'état ($|\mathcal{H}| = N$) en K sous-intervalles (bins), K << N. Exemple:

Modèle d'Hernández et al. (2007)

Objectif: Réduire la taille de la trace initiale Accélérer le temps de calcul.

Méthode : Diviser l'espace d'état ($|\mathcal{H}| = N$) en K sous-intervalles (bins), K << N. Exemple:

Processus stochastique: file d'attente HD/D/1/B

Distribution de la longueur du tampon :

$$Q(k) = \Phi_{\hat{S}}^{\hat{B}}(Q(k-1) \otimes A).$$

Où, $\hat{S} = class(S)$, $\hat{B} = class(B)$, \otimes : opérateur de convolution des distributions et Φ est un opérateur bornant.

Processus stochastique : file d'attente HD/D/1/B

Distribution de la longueur du tampon :

$$Q(k) = \Phi_{\hat{S}}^{\hat{B}}(Q(k-1) \otimes A).$$

Où, $\hat{S} = class(S)$, $\hat{B} = class(B)$, \otimes : opérateur de convolution des distributions et Φ est un opérateur bornant.

Soient X et Y deux variables aléatoires discrètes définies sur \mathcal{G}_X et \mathcal{G}_Y resp. avec $|\mathcal{G}_X| = I_X \text{ et } |\mathcal{G}_Y| = I_Y.$

Proposition : Complexité de la convolution

- ▶ La convolution des distributions génère une distribution avec au plus $I_X \times I_Y$ états.
- ▶ Et requière : $O(I_X \times I_Y)$ opérations (+) approche naïve;

$$O((l_X + l_Y)log(l_X + l_Y))$$
 en utilisant la FFT.

Processus stochastique: file d'attente HD/D/1/B

Distribution de la longueur du tampon :

$$Q(k) = \Phi_{\hat{S}}^{\hat{B}}(Q(k-1) \otimes A).$$

Où, $\hat{S} = class(S)$, $\hat{B} = class(B)$, \otimes : opérateur de convolution des distributions et Φ est un opérateur bornant.

Soient X et Y deux variables aléatoires discrètes définies sur \mathcal{G}_X et \mathcal{G}_Y resp. avec $|\mathcal{G}_X| = I_X$ et $|\mathcal{G}_Y| = I_Y$.

Proposition : Complexité de la convolution

- ▶ La convolution des distributions génère une distribution avec au plus $I_X \times I_Y$ états.
- ▶ Et requière : $O(I_X \times I_Y)$ opérations (+) approche naïve;

$$O((l_X + l_Y)log(l_X + l_Y))$$
 en utilisant la FFT.

Propriétés

- Méthode approximative
- Considère un seul nœud utilisant des traces de trafic réelles

Processus stochastique: file d'attente HD/D/1/B

Distribution de la longueur du tampon :

$$Q(k) = \Phi_{\hat{S}}^{\hat{B}}(Q(k-1) \otimes A).$$

Où, $\hat{S} = class(S)$, $\hat{B} = class(B)$, \otimes : opérateur de convolution des distributions et Φ est un opérateur bornant.

Soient X et Y deux variables aléatoires discrètes définies sur \mathcal{G}_X et \mathcal{G}_Y resp. avec $|\mathcal{G}_X| = I_X$ et $|\mathcal{G}_Y| = I_Y$.

Proposition : Complexité de la convolution

- ▶ La convolution des distributions génère une distribution avec au plus $I_X \times I_Y$ états.
- ▶ Et requière : $O(I_X \times I_Y)$ opérations (+) approche naïve;

$$O((l_X + l_Y)log(l_X + l_Y))$$
 en utilisant la FFT.

Propriétés

- Méthode approximative
- Considère un seul nœud utilisant des traces de trafic réelles
- Différence entre deux distributions successives n'est pas un test de convergence suffisant.

Sommaire

Notre méthodologie

Bornes stochastiques

- ▶ Soit $G = \{1, 2, ..., n\}$ un espace d'état fini. ▶ X, Y: distributions discrètes sur G;
- $ightharpoonup p_X(i) = prob(X = i)$ et $p_Y(i) = prob(Y = i)$ pour $i \in \mathcal{G}$.

Propriété sur l'ordre stochastique ≤_{st}

- Définition de l'ordre \leq_{st} : $X \leq_{st} Y$ ssi $\sum_{k=i}^{n} p_X(k) \leq \sum_{k=i}^{n} p_Y(k)$, $\forall i$.
- Comparaison de fonctions non décroissantes :

$$X \leq_{st} Y \iff \mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$$

pour toute fonction non décroissante $f: \mathcal{G} \to \mathbb{R}^+$ à condition que les espérances existent.

Bornes stochastiques

- ▶ Soit $\mathcal{G} = \{1, 2, ..., n\}$ un espace d'état fini. ▶ X, Y: distributions discrètes sur \mathcal{G} ;
- $ightharpoonup p_X(i) = prob(X = i)$ et $p_Y(i) = prob(Y = i)$ pour $i \in \mathcal{G}$.

Propriété sur l'ordre stochastique \leq_{st}

- Définition de l'ordre \leq_{st} : $X \leq_{st} Y$ ssi $\sum_{k=i}^{n} p_X(k) \leq \sum_{k=i}^{n} p_Y(k)$, $\forall i$.
- Comparaison de fonctions non décroissantes :

$$X \leq_{st} Y \iff \mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$$

pour toute fonction non décroissante $f: \mathcal{G} \to \mathbb{R}^+$ à condition que les espérances existent.

Exemple : Nous considéons $\mathcal{G} = \{1, 2, \dots, 7\}$,

$$\mathbf{p}_{\chi} = [0.1, \, 0.2, \, 0.1, \, 0.2, \, 0.05, \, 0.1, \, 0.25] \text{ et } \mathbf{p}_{\gamma} = [0, \, 0.25, \, 0.05, \, 0.1, \, 0.15, \, 0.15, \, 0.3].$$

The pmf of a discrete distributions X and Y

Cumulative distribution functions

Hypothèses

Nous considérons

d : Distribution de probabilités discrète sur un espace d'état totalement ordonné $\mathcal{H}, |\mathcal{H}| = N, d(i) > 0$ for $i \in \mathcal{H}$.

r: fonction de récompense positive croissante, $R[\mathbf{d}] = \sum r(i)\mathbf{d}(i)$.

Hypothèses

Nous considérons

d: Distribution de probabilités discrète sur un espace d'état totalement ordonné \mathcal{H} , $|\mathcal{H}| = N$, $\mathbf{d}(i) > 0$ for $i \in \mathcal{H}$.

r: fonction de récompense positive croissante, $R[\mathbf{d}] = \sum \mathbf{r}(i)\mathbf{d}(i)$.

Déterminer d1 et d2 tel que :

- 1. $d2 <_{st} d <_{st} d1$;
- 2. **d1** et **d2** ont exactement K états (pas nécessairement le même);
- 3. $\sum_{i \in \mathcal{H}} r(i)d(i) \sum_{i \in \mathcal{H}^l} r(i)d2(i)$ est minimal pour les distributions bornes infrieures de **d** avec K états:
- 4. $\sum_{i \in \mathcal{H}^u} \mathbf{r}(i) \mathbf{d} 1(i) \sum_{i \in \mathcal{H}} \mathbf{r}(i) \mathbf{d}(i)$ est minimal pour les distributions bornes suprieures **d** avec *K* états:

Algorithme optimal basé sur la programmation dynamique

- Problème de théorie des graphes.
- On considère un graphe pondéré G = (V, E) avec :
 - ▶ Borne inférieure: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(j) r(u))$
 - ▶ Borne supérieure : $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(v) r(j))$

Algorithme optimal basé sur la programmation dynamique

- Problème de théorie des graphes.
- On considère un graphe pondéré G = (V, E) avec :
 - ▶ Borne inférieure: $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(j) r(u))$
 - ▶ Borne supérieure : $w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(v) r(j))$

Calcul de la borne optimale \equiv Calculer le plus court chemin dans le graphe G avec K nœuds ($K \ll N$).

- La masse de probabilités des nœuds supprimés est sommée avec
 - ▶ Borne inférieure : Les prédécesseurs immédiats
 - ▶ Borne supérieure : Les successeurs immédiats

Algorithme optimal basé sur la programmation dynamique

- Problème de théorie des graphes.
- On considère un graphe pondéré G = (V, E) avec :

▶ Borne inférieure:
$$w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(j) - r(u))$$

▶ Borne supérieure :
$$w(e) = \sum_{j \in \mathcal{H}: u < j < v} d(j)(r(v) - r(j))$$

Calcul de la borne optimale \equiv Calculer le plus court chemin dans le graphe G avec K nœuds ($K \ll N$).

- La masse de probabilités des nœuds supprimés est sommée avec
 - ▶ Borne inférieure : Les prédécesseurs immédiats
 - ▶ Borne supérieure : Les successeurs immédiats

Complexité : $O(N^2 K)$ et cubique quand K est de même ordre que N.

Exemples à partir de traces réelles

Exemple: Borne supérieure optimale

On considère

- Distribution discrète $A = (\mathbf{A}, p(\mathbf{A}))$ avec $\mathbf{A} = \{0, 2, 3, 5, 7\}$ et $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$
- Fonction de récompense r: $\forall a_i \in A$, $r(a_i) = a_i$, $R[A] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15.$
- ▶ Calculer la borne optimale supérieure \overline{A} sur 3 états tel que $R[\overline{A}] R[A]$ est minimale.

Exemple: Borne supérieure optimale

On considère

- Distribution discrète $A = (\mathbf{A}, p(\mathbf{A}))$ avec $\mathbf{A} = \{0, 2, 3, 5, 7\}$ et $p(\mathbf{A}) = [0.05, 0.3, 0.15, 0.2, 0.3]$
- Fonction de récompense r: $\forall a_i \in A$, $r(a_i) = a_i$, $R[A] = \sum_{a_i \in \mathbf{A}} \mathbf{r}(a_i) p_{\mathbf{A}}(i) = 4.15.$
- ▶ Calculer la borne optimale supérieure \overline{A} sur 3 états tel que $R[\overline{A}] R[A]$ est minimale.

 $\overline{A} = (\overline{A}, p(\overline{A}))$ with $\overline{A} = \{2, 5, 7\}, p(\overline{A}) = [0.35, 0.35, 0.3]$ and $R[\overline{A}] = 4.55$.

Résultats théoriques

Objectif: Bornes stochastiques sur le processus d'entrée ⇒ bornes sur les mesures de performance.

Nous avons montré les principaux résultats suivants :

Monotonie

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $Q(k) \leq_{st} Q^U(k), \forall k \geq 0$

et

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $D(k) \leq_{st} D^U(k), \forall k \geq 0$.

Également vrai pour les processus stationnaires.

Objectif: Bornes stochastiques sur le processus d'entrée ⇒ bornes sur les mesures de performance.

Nous avons montré les principaux résultats suivants :

Monotonie

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $Q(k) \leq_{st} Q^U(k), \forall k \geq 0$

et

If
$$A(k) \leq_{st} A^U(k), \forall k \geq 0$$
, alors $D(k) \leq_{st} D^U(k), \forall k \geq 0$.

Également vrai pour les processus stationnaires.

Test de convergence proposé

Supposons que la chaîne est ergodique et que l'état stationnaire est π .

$$Q^L(k) \leq_{st} Q^L(k+1) \leq_{st} \pi \leq_{st} Q^U(k+1) \leq_{st} Q^U(k)$$
.

Si $||Q^U(k+1) - Q^L(k+1)||_{\infty} < \epsilon$ la limite de $Q^L(k)$ et $Q^U(k)$ est π .

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

Exemples à partir de traces réelles

Objectif:

Comparer les différentes méthodes (résultat exact, méthode HBSP et nos bornes).

1- File simple

- Influence du nombre de bins sur la précision des résultats
- Relation entre la taille du tampon et certaines mesures de performance

2- Réseau de files d'attente

On considère le réseau en tandem suivant

Nombre de bins vs précision : Paramètres QoS en utilisant la trace de trafic MAWI

1- File simple

Nombre de bins vs précision : Paramètres QoS en utilisant la trace de trafic MAWI

1- File simple

(c) Probabilités de blocage

(d) Moyenne de la longueur du tampon

Distribution de probabilités cumulée (cdf) de la longueur du tampon sous la trace MAWI

Paramètres QoS en utilisant la trace de trafic CAIDA OC-48

2- Réseau de file d'attente : Réseau en tandem

- Hypothèse: indépendance (approximation)
 - Chaque file est analysée séparément
- Monotonie ⇒ borne à chaque étape intermédiaire

2- Réseau de file d'attente : Réseau en tandem

- Hypothèse: indépendance (approximation)
- Chaque file est analysée séparément
- Monotonie ⇒ borne à chaque étape intermédiaire

Distribution de probabilités cumulée de la longueur du tampon de la file 3.

bins=100

Sommaire

Motivation

Description du modèle de file d'attente

Notre méthodologie

Exemples à partir de traces réelles

Conclusion

Conclusion

- Proposer une nouvelle approche basée sur les bornes stochastiques;
- Deriver des bornes sur différentes mesures de performance : probabilités de blocage, occupation du tampon...
- Les bornes sur les performances sont très pertinentes pour le dimensionnement d'une file d'attente.

Notre méthode nous permet de

- Contrôler la taille des distributions;
- Compromis entre la précision et la complexité en changent la taille des distributions.

Perspectives:

- ▶ Considérer des topologies plus générales et des capacités de services décrites par des histogrammes;
 - ▶ Étendre la théorie en considérant des flux non stationnaires.

Merci pour votre attention