# 顺义区 2016---2017 学年度第一学期七年级教学质量检测 数学试券

一、选择题(共10个小题,每小题2分,共20分)

下列各题均有四个选项,其中只有一个符合题意,请把对应题目答案的相应字母填在 括号内.

- 1. 2017 年 1 月份某天的最高气温是 4℃,最低气温是-9℃,那么这天的温差(最高气温减 最低气温)是( ).
  - A. −5°C
- B. 13℃
- C. −13°C D. 5°C
- 2. 中国倡导的"一带一路"建设将促进我国与世界各国的互利合作,根据规划,"一带一路" 地区覆盖总人口约为4 400 000 000 人,将这个数用科学记数法表示为( )
- A.  $44 \times 10^8$  B.  $4.4 \times 10^8$  C.  $4.4 \times 10^9$
- 3. 用代数式表示"a的 2 倍与b的差的平方",正确的是(

  - A.  $(2a-b)^2$  B.  $2(a-b)^2$  C.  $2a-b^2$

- 4. 在下列式子中变形正确的是()
  - A. 如果a=b, 那么a+c=b-c
- B. 如果a = b, 那么
- C. 如果 $\frac{a}{2} = 6$ ,那么a = 2
- D. 如果a-b+c=0,那么a=b+c
- 5. 下列各式中运算正确的是()
  - A.  $a^2 + a^2 = a^4$

C.  $3a^2b - 4ba^2 = -a^2b$ 

- **6.** 若 x = -3 是关于 x 的一元一次方程 2x + m + 5 = 0 的解,则 m 的值为 ( )
  - A. -1 B. 0
- C. 1
- D. 11

- 7. 下列叙述错误的是()
  - A. 经过两点有一条直线,并且只有一条直线
  - B. 在同一平面内不相交的两条直线叫做平行线
  - C. 连接两点的线段的长, 叫做这两点间的距离
  - D. 从直线外一点到这条直线的垂线段, 叫做点到直线的距离
- 8. 有理数 *a*, *b* 在数轴上的位置如图所示,以下说法正确的是(
  - A. a+b=0 B. b < a C. ab > 0 D. |b| < |a|



9. 如图, 是正方体的平面展开图, 每个面上都标有一个汉字,

与"信"字相对的面上的字为( )

- A. 文 B. 明 C. 法 D. 治



10. 计算 $(-0.125)^{2017} \times 8^{2016}$ 结果正确的是( )

A. 
$$-\frac{1}{8}$$
 B.  $\frac{1}{8}$  C. 8

B. 
$$\frac{1}{8}$$

二、填空题 (共6个小题,每小题3分,共18分)

12. 计算: 
$$-5+(+3)=$$
\_\_\_\_\_;  $2\div(-3)\times(-\frac{1}{3})=$ \_\_\_\_\_\_;  $\frac{(-1)^3}{2}=$ \_\_\_\_\_\_.

13. 北京市的"阶梯水价"收费办法是:每户一年用水不超过180吨,每吨水费5元;超过 180 吨但不超过 260 吨,超过的部分,每吨水费加收 2元,超过 260 吨时,超过 260 吨的部 分,每吨水费加收4元,小明家2016年共交水费1187元,那么小明家2016年共用水 吨.



平角的角.



16. 下列图案是我国古代窗格的一部分,其中"○"代表窗纸上所贴的剪纸,则第5个图中 所贴剪纸"〇"的个数为\_\_\_\_\_\_,第n个图中所贴剪纸"〇"的个数为\_\_\_\_\_\_.





三、解答题 (共13个小题,共62分)

17. 
$$(4 分)$$
 计算:  $2 + \frac{3}{4} - \left(\frac{3}{8} + 4 - \frac{1}{4}\right)$ 

18. (5 分) 计算: 
$$-2\frac{2}{3} \times (-\frac{1}{4}) + \frac{5}{9} \div (-1\frac{2}{3})$$

19. (5 分) 计算: 
$$\frac{2}{3} \times (-9) - 36 \times (\frac{5}{9} - \frac{3}{4} + \frac{1}{12})$$

20. (5 分) 计算: 
$$(-2)^3 \times (-\frac{1}{2})^2 + (-\frac{3}{2})^2 \div (-\frac{3}{4})$$

- 21. (4分)解方程: 2x-6=2(3x-5)
- 22. (5 分 ) 解方程:  $\frac{x+2}{3}-1=\frac{2x-1}{4}$
- 23. (5 分) 已知 x , y 为有理数,且满足  $|2x+1|+(\frac{1}{3}y-1)^2=0$  , 求代数式 xy 的值.
- 24.  $(4 \, \beta)$  如图,A, B, C, D 为 4 个居民小区,现要在 4 个居民小区之间建一个购物中心,试问应把购物中心建在何处,才能使 4 个居民小区到购物中心的距离之和最小?画出购物中心的位置,并说明理由.



 $B_{\bullet}$ 

- 25. (5分) 已知平面上三点 A、B、C. 按下列要求画出图形:
  - (1) 画直线 AB, 射线 BC, 线段 AC;
  - (2) 过点C画直线CD,使 $CD \square AB$ ;
  - (3) 画出点C到直线AB的垂线段CE.



- 26. (5分) 某中学举办中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分. 小强考了68分,求小强答对了多少道题?
- 27. (5 分) 已知:  $\angle AOB = 90^{\circ}$ ,  $\angle BOC = 20^{\circ}$ , OM 平分  $\angle AOB$ , 求  $\angle MOC$  的度数.

解: 设
$$S = 1 + 2 + 2^2 + 2^3 + 2^4 + \dots + 2^{2016} + 2^{2017}$$
,

将等式两边同时乘以2得:

$$2S = 2 + 2^2 + 2^3 + 2^4 + 2^5 + \dots + 2^{2017} + 2^{2018}$$

将下式减去上式得  $2S - S = 2^{2018} - 1$ 

即 
$$S = 2^{2018} - 1$$

即
$$1+2+2^2+2^3+2^4+\cdots+2^{2017}=2^{2018}-1$$

请你仿照此法计算: (1)  $1+2+2^2+2^3+2^4+\cdots+2^9$ :

- (2)  $1+5+5^2+5^3+5^4+\cdots+5^n$  (其中n为正整数).
- 29. (5分)新华书店举行购书优惠活动:
  - ①一次性购书不超过100元,不享受打折优惠;
  - ②一次性购书超过100元但不超过200元一律打九折;
  - ③一次性购书满 200 元一律打七折. 🔪

小丽在这次活动中,两次购书总共付款 229.4 元,第二次购书原价是第一次购书原价的 3 倍,那么小丽这两次购书原价的总和是多少元?

## 选做题(5分)

1. (2分) 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即"结绳计数".如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是



2. (3 分)设a = -3, b = 15, 试确定 $a^{2016} + b^{2017}$ 的末位数字是几?

# 顺义区 2016---2017 学年度第一学期七年级教学质量检测 数学试题参考答案及评分参考

## 一、选择题

| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|----|
| 答案 | В | С | A | В | С | С | D | D | В | A  |

#### 二、填空题

| 题号 | 11       | 12                                    | 13  | 13 14     |     | 16                 |
|----|----------|---------------------------------------|-----|-----------|-----|--------------------|
| 答案 | 3, -2, 2 | $-2$ , $\frac{2}{9}$ , $-\frac{1}{2}$ | 221 | 65度14分24秒 | 6、7 | 17, 3 <i>n</i> + 2 |

# 三、解答题

18. 解: 原式=
$$-\frac{8}{3} \times (-\frac{1}{4}) + \frac{5}{9} \times (-\frac{3}{5})$$

$$= \frac{2}{3} + (-\frac{1}{3})$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

$$= \frac{1}{3}$$

| 所以 $2x+1=0$ 且 $\frac{1}{3}y-1=0$ .                                                                                                                                                                                       |     |       |                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------------------------------------------------------------------------------------------|
| 移项,得 $4x-6x=-3-8+12$                                                                                                                                                                                                     |     |       |                                                                                               |
| 合并同类项,得 $-2x=1$ 系数化为 1, 得 $x=-\frac{1}{2}$ 所以, $x=-\frac{1}{2}$ 是方程的解 5分 23. 解:因为 $ 2x+1  \ge 0$ , $(\frac{1}{3}y-1)^2 \ge 0$ ,且满足 $ 2x+1 +(\frac{1}{3}y-1)^2 = 0$ ,                                                     |     |       |                                                                                               |
| 系数化为 1, 得 $x=-\frac{1}{2}$ 所以 , $x=-\frac{1}{2}$ 所以 , $x=-\frac{1}{2}$ 是方程的解                                                                                                                                             |     |       |                                                                                               |
| 所以, $x = -\frac{1}{2}$ 是方程的解                                                                                                                                                                                             |     |       |                                                                                               |
| 23. 解: 因为 $ 2x+1  \ge 0$ , $(\frac{1}{3}y-1)^2 \ge 0$ , 且满足 $ 2x+1 +(\frac{1}{3}y-1)^2 = 0$ ,                                                                                                                            |     |       | 系数化为 1, 得 $x = -\frac{1}{2}$                                                                  |
| 所以 $2x+1=0$ 且 $\frac{1}{3}y-1=0$ .                                                                                                                                                                                       |     | J     | 所以 , $x=-rac{1}{2}$ 是方程的解                                                                    |
| 所以 $x = -\frac{1}{2}$ , $y = 3$                                                                                                                                                                                          | 23. | 解:    | : 因为 $ 2x+1  \ge 0$ , $(\frac{1}{3}y-1)^2 \ge 0$ , 且满足 $ 2x+1  + (\frac{1}{3}y-1)^2 = 0$ ,1 分 |
| 所以代数式 xy 的值是 − 3/2                                                                                                                                                                                                       |     |       | 所以 $2x+1=0$ 且 $\frac{1}{3}y-1=0$                                                              |
| 24. 解:连结 AC 和 BD, AC 和 BD 相交于点 M,则点 M 即是购物中心的位置                                                                                                                                                                          |     |       |                                                                                               |
| 別点 M 即是购物中心的位置                                                                                                                                                                                                           |     |       | 所以代数式 $xy$ 的值是 $-\frac{3}{2}$                                                                 |
| $MA + MC + MB + MD = AC + BD$ 理由是两点之间线段最短. 4分 25. 略(每个图形各一分) 5分 26. 解:设小李答对了 $x$ 道题. 1分 依题意,列方程得 $5x-3(20-x)=68. 3分 解得 x=16. 4分 答:小李答对了 16 道题. 5分 27. 解:\angle AOB = 90^{\circ},OM \                                   $ | 24. | 解:    |                                                                                               |
| 理由是两点之间线段最短. 4 分 25. 略(每个图形各一分) 5 分 26. 解:设小李答对了 x 道题. 1 分 依题意,列方程得                                                                                                                                                      |     |       | 则点 $M$ 即是购物中心的位置 . ···································                                        |
| 25. 略(每个图形各一分)                                                                                                                                                                                                           |     |       |                                                                                               |
| 26. 解: 设小李答对了 x 道题.                                                                                                                                                                                                      |     |       | 理由是两点之间线段最短4分                                                                                 |
| 26. 解: 设小李答对了 x 道题.                                                                                                                                                                                                      |     |       |                                                                                               |
| 依题意,列方程得 $5x-3(20-x)=68. \qquad \qquad$                                                           | 25. | 略     | (每个图形各一分) ····································                                                |
| 5x-3(20-x)=68.                                                                                                                                                                                                           | 26. | 解:    | 设小李答对了 $x$ 道题.                                                                                |
| 解得 $x = 16$ .                                                                                                                                                                                                            |     |       | 依题意,列方程得                                                                                      |
| 答: 小李答对了 16 道题                                                                                                                                                                                                           |     |       | 5x-3(20-x)=68                                                                                 |
| 答: 小李答对了 16 道题                                                                                                                                                                                                           |     |       | 解得 x − 16                                                                                     |
| 27. 解: : ∠AOB = 90°, OM 平分 ∠AOB,<br>∴ ∠BOM = 45°                                                                                                                                                                         |     | 欠.    |                                                                                               |
| <ul> <li>∴ ∠BOM = 45°</li> <li>□ 当 OC 在 ∠AOB 内部时,</li> <li>∠MOC = ∠BOM - ∠BOC = 45° - 20° = 25°</li> <li>□ 当 OC 在 ∠AOB 外部时</li> <li>∠MOC = ∠BOM + ∠BOC = 45° + 20° = 65°</li> </ul>                                      |     | п.    | 77年6月100億6.                                                                                   |
| <ul> <li>∴ ∠BOM = 45°</li> <li>□ 当 OC 在 ∠AOB 内部时,</li> <li>∠MOC = ∠BOM - ∠BOC = 45° - 20° = 25°</li> <li>□ 当 OC 在 ∠AOB 外部时</li> <li>∠MOC = ∠BOM + ∠BOC = 45° + 20° = 65°</li> </ul>                                      | 27  | 解.    | ∴ $/AOR = 90^{\circ}$ . $OM $ $\subset$ $\bigcirc$ $AOR$ .                                    |
| 又: $\angle BOC = 20^\circ$<br>①当 $OC$ 在 $\angle AOB$ 内部时,<br>$\angle MOC = \angle BOM - \angle BOC = 45^\circ - 20^\circ = 25^\circ$                                                                                     | 21. | /UT • |                                                                                               |
| ①当 <i>OC</i> 在 ∠ <i>AOB</i> 内部时,<br>∠ <i>MOC</i> = ∠ <i>BOM</i> - ∠ <i>BOC</i> = 45° - 20° = 25° ···································                                                                                     |     |       |                                                                                               |
| $\angle MOC = \angle BOM - \angle BOC = 45^{\circ} - 20^{\circ} = 25^{\circ}$                                                                                                                                            | ,   |       |                                                                                               |
| ② 当 <i>OC</i> 在 ∠ <i>AOB</i> 外部时<br>∠ <i>MOC</i> = ∠ <i>BOM</i> + ∠ <i>BOC</i> = 45° + 20° = 65° ···································                                                                                     |     | 公     |                                                                                               |
| $\angle MOC = \angle BOM + \angle BOC = 45^{\circ} + 20^{\circ} = 65^{\circ} \cdots 5$                                                                                                                                   |     |       |                                                                                               |
|                                                                                                                                                                                                                          |     |       |                                                                                               |
|                                                                                                                                                                                                                          |     |       | ∴ ∠MOC 的度数是 25°.或 65°                                                                         |

则 
$$2S = 2 + 2^2 + 2^3 + \cdots + 2^{10}$$

$$\therefore 2S - S = 2^{10} - 1$$

$$\therefore 1 + 2 + 2^2 + \cdots + 2^9 = 2^{10} - 1$$

(2) 设 $S = 1 + 5 + 5^2 + \dots + 5^n$ 

则 
$$5S = 5 + 5^2 + 5^3 + \dots + 5^{n+1}$$

$$\therefore 5S - S = 5^{n+1} - 1$$

即 
$$4S = 5^{n+1} - 1$$

$$\therefore S = \frac{5^{n+1} - 1}{4} \qquad ... 5 \,$$

29. 解:设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,

依题意得:

① 
$$\stackrel{\text{def}}{=} 0 < x \le \frac{100}{3}$$
 时,  $x + 3x = 229.4$ 

② 
$$\stackrel{\text{def}}{=} \frac{100}{3} < x \le \frac{200}{3}$$
  $\stackrel{\text{def}}{=}$ ,  $x + \frac{9}{10} \times 3x = 229.4$ ,

解得: x = 62

③ 
$$\stackrel{\text{def}}{=} \frac{200}{3} < x \le 100 \text{ PJ}, \quad x + \frac{7}{10} \times 3x = 229.4$$

解得: x = 74,

此时两次购书原价总和为:  $4x=4\times74=296$ ·

综上可知:小丽这两次购书原价的总和是 248 或 296 元. ..... 5 分

#### 选做题(选做题得分可以加入总分中,加到满分100分止)

**1.** 510

# **2.** 解: ∵ *b* = 15

$$\therefore a = -3$$

$$\therefore a^{2016} = (-3)^{2016} = 3^{2016}$$

$$3^1 = 3$$
,  $3^2 = 9$ ,  $3^3 = 27$ ,  $3^4 = 81$ ,

$$3^5 = 243$$
,  $3^6 = 729$ ,  $3^7 = 2187$ ,  $3^8 = 6561$ , ...

- ∴推算3<sup>2016</sup>的末位数字一定是1-----2分
- $\therefore a^{2016}$ 与 $b^{2017}$ 的末位数字之和是 16
- $\therefore a^{2016} + b^{2017}$  的末位数字是 6 -------3 分