Fórmulas interesantes sobre agujeros negros (Semana de la Ciencia)

Alejandro Jiménez Cano¹

Constantes

☐ Velocidad de luz (y de todas las cosas sin masa) en el vacío:

$$c = 299792458 \,\text{m/s}$$
 (exacta, se define así). (1)

☐ Constante de gravitación universal de Newton:

$$G = 6,674 \times 10^{-11} \,\mathrm{N \,m^2/kg^2} \,. \tag{2}$$

Radio de Schwarzschild

Definición de radio de Schwarzschild: radio al que hay que comprimir una masa M esférica para que colapse en un agujero negro (es igual al radio del agujero negro resultante). Su expresión es:

$$R_{\rm Sch} = \frac{2GM}{c^2} = (1, 48 \times 10^{-27} \,\mathrm{m/kg}) \,M$$
 (3)

(Si metéis la masa del objeto o del agujero negro, M, en kilogramos os sale directamente $R_{\rm Sch}$ en metros).

Tiempo de caída horizonte → singularidad (en caída libre)

Supón que somos liberados (en *reposo*) en el *infinito* (en la práctica sería muuuy lejos, donde los efectos gravitacionales son casi cero), comenzando una *caída libre*. Una vez alcanzado el horizonte, el tiempo de nuestro reloj que tardaríamos en llegar a la singularidad para un agujero negro de Schwarzschild (sin carga y sin rotación) viene dado por:

$$\tau_{\text{hor}\to\text{sing}} = \frac{4}{3} \frac{GM}{c^3} = (3, 3 \times 10^{-36} \text{ s/kg}) M$$
 (4)

(Si metéis la masa del agujero negro, M, en kilogramos os sale directamente τ en segundos).

Ejemplos

Practicad vosotros mismos con lo que os apetezca:², ³, ⁴

Tracticae vosotros mismos com to que os aperezea.				
Objeto	M [kg]	$R_{\mathrm{Sch}}\left[\mathbf{m}\right]$	$\tau_{ m hor ightarrow sing} [s]$	Comentarios
Humano	≥ 70	$1,036 \times 10^{-25}$	$2,31 \times 10^{-34}$	${\rm i}R_{\rm Sch} \simeq 0,00000000012$ veces el tamaño de un protón!
La Tierra	$5,97 \times 10^{24}$	0,0088	$1,97 \times 10^{-11}$	$R_{ m Sch} \simeq 1{ m cm}$ (juna canica!)
Júpiter	$1,90\times10^{27}$	2,812	$6,27 \times 10^{-9}$	$R_{ m Sch} \simeq 3{ m m}$
El Sol	$1,99\times10^{30}$	2945, 2	$6,567 \times 10^{-6}$	$R_{ m Sch} \simeq 3{ m km}$
Agujero negro de	$7,164 \times 10^{36}$	$1,060 \times 10^{10}$	23,641	$R_{ m Sch} \simeq 0,071{ m UA} \simeq {1\over 5}$ órbita de Mercurio
Sagitario A*				$\simeq 15, 2 \mathrm{radios solares} \simeq 1664 \mathrm{radios terrestres}$
Agujero negro aún	10^{39}	$1,48 \times 10^{12}$	3300	$ au_{ m hor ightarrow sing} = 55$ agradables minutos para rezar
más grande				

¹Contacto: alejandrojc@ugr.es

Unidad Astronómica (UA) (aprox. el radio medio de la órbita terrestre) $\simeq 1,496 \times 10^{11} \, \mathrm{m}$

Radio del protón $\simeq 8,4 \times 10^{-16} \, \mathrm{m}$ Radio medio de la órbita de Mercurio $\simeq 5,789 \times 10^{10} \, \mathrm{m}$

Radio solar $\simeq 6,957 \times 10^8 \, \mathrm{m}$ Radio terrestre $\simeq 6,371 \times 10^6 \, \mathrm{m}$

²Algunos datos útiles:

³Sagitario A* es una fuente de radio muy pequeña y brillante en el centro de la Vía Láctea donde creemos que hay un agujero negro cuya masa es de unos 3,6 millones de soles.

 $^{^4}$ El caso del humano, la Tierra, Júpiter y el Sol de la tabla no son realistas. Ningún proceso natural los hará colapsar a esos tamaños.