Variable selection for the Gambia data

The gambia data in the geoR package includes data for 1332 children in the Gambia. The binary response Y_i is the indictor that child i tested positive for malaria. We use five covariates in X_{ij} .

- 1. Age: age of the child, in days
- 2. Netuse: indicator variable denoting whether (1) or not (0) the child regularly sleeps under a bed-net
- 3. Treated: indicator variable denoting whether (1) or not (0) the bed-net is treated (coded 0 if netuse=0)
- 4. Green: satellite-derived measure of the greenness of vegetation in the immediate vicinity of the village (arbitrary units)
- 5. PCH: indicator variable denoting the presence (1) or absence (0) of a health center in the village

We use the logit regression model

logit[Prob(
$$Y_i = 1$$
)) = $\alpha + \sum_{j=1}^{p} X_{ij}\beta_j$.

The spike-and-slab prior for $\beta_j = \gamma_j \delta_j$ where $\gamma_j \sim \text{Bernoulli}(0.5)$ and $\delta_j \sim \text{Normal}(0, \tau^2)$.

Load the data and necessary libraries

```
library(geoR)
  Analysis of Geostatistical Data
## For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
    geoR version 1.9-4 (built on 2024-02-14) is now loaded
data(gambia)
Y <- gambia[,3]
X <- gambia[,4:8]</pre>
Y[1:5]
## [1] 1 0 0 1 0
X[1:5,]
##
         age netuse treated green phc
## 1850 1783
                  0
                          0 40.85
## 1851
        404
                  1
                          0 40.85
                                     1
                  1
                          0 40.85
## 1852
        452
                                     1
                          0 40.85
## 1853
        566
                  1
                                     1
## 1854 598
                          0 40.85
                  1
                                     1
```



```
# Standardize X
X <- scale(X)
X[1:5,]</pre>
```

```
## age netuse treated green phc
## 1850 1.650148 -1.5683351 -0.6167739 -0.8462609 0.6802564
## 1851 -1.588791 0.6373055 -0.6167739 -0.8462609 0.6802564
## 1852 -1.476050 0.6373055 -0.6167739 -0.8462609 0.6802564
## 1853 -1.208292 0.6373055 -0.6167739 -0.8462609 0.6802564
## 1854 -1.133132 0.6373055 -0.6167739 -0.8462609 0.6802564

n <- length(Y)
p <- ncol(X)</pre>
```

Put the models in JAGS

```
library(rjags)
## Loading required package: coda
## Linked to JAGS 4.3.1
## Loaded modules: basemod, bugs
m <- textConnection("model{</pre>
for(i in 1:n){
   Y[i]
                  ~ dbern(pi[i])
                                    + X[i,1]*beta[1] + X[i,2]*beta[2] +
   logit(pi[i]) <- alpha</pre>
                    X[i,3]*beta[3] + X[i,4]*beta[4] + X[i,5]*beta[5]
}
for(j in 1:5){
    beta[j] <- gamma[j]*delta[j]</pre>
    gamma[j] ~ dbern(0.5)
    delta[j] ~ dnorm(0,tau)
alpha \sim dnorm(0,0.01)
tau ~ dgamma(0.1,0.1)
}")
```

Fit the model

Marginal distributions of the β_j

	Inc_Prob	50%	5%	95%
Age	1.00	0.26	0.19	0.34
Netuse	1.00	-0.25	-0.35	-0.17
Treated	0.78	-0.13	-0.24	0.00
Green	1.00	0.29	0.21	0.37
PCH	0.57	-0.05	-0.19	0.00


```
# Load required library
library(kableExtra)

# Calculate inclusion probabilities
Inc_Prob <- colMeans(beta_combined != 0)

# Calculate quantiles
Q <- t(apply(beta_combined, 2, quantile, probs = c(0.5, 0.05, 0.95)))

# Combine the results into a single matrix
out <- cbind(Inc_Prob, Q)

# Create a formatted table
kbl(round(out, 2)) %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

```
# Construct model strings based on beta values
models <- rep("Intercept", nrow(beta_combined))</pre>
for (j in 1:5) {
 models <- paste0(models, ifelse(beta_combined[, j] == 0, "", "+"), ifelse(beta_combined[, j] == 0, ""
}
# Print first 5 models and corresponding beta values
print(models[1:5])
## [1] "Intercept+Age+Netuse+Treated+Green+PCH"
## [2] "Intercept+Age+Netuse+Treated+Green+PCH"
## [3] "Intercept+Age+Netuse+Treated+Green+PCH"
## [4] "Intercept+Age+Netuse+Treated+Green+PCH"
## [5] "Intercept+Age+Netuse+Treated+Green"
print(beta_combined[1:5, ])
##
                                                            PCH
              Age
                      Netuse
                                 Treated
                                              Green
## [1,] 0.2580549 -0.2327265 -0.06832056 0.3270162 -0.16317827
## [2,] 0.2540875 -0.1766476 -0.26656317 0.3176130 -0.06695072
## [3,] 0.3610022 -0.3351425 -0.10067628 0.3356066 -0.12249523
## [4,] 0.2885323 -0.2377438 -0.14408006 0.2557963 -0.12620481
## [5,] 0.2873900 -0.1706000 -0.22408183 0.3176870 0.00000000
# Calculate and sort model probabilities
model_probs <- table(models) / length(models)</pre>
model probs <- sort(model probs, decreasing = TRUE)</pre>
round(model probs, 3)
## models
##
       Intercept+Age+Netuse+Treated+Green Intercept+Age+Netuse+Treated+Green+PCH
##
##
           Intercept+Age+Netuse+Green+PCH
                                                       Intercept+Age+Netuse+Green
                                     0.203
                                                                             0.016
##
```

Summary: Age, bed-net use and greenness are included with posterior probability one and are thus clearly important predictors of malaria. Treatment of the bed net and proximity to a health center are included with posterior probability more than a half and so there is moderate evidence that these variables are important predictors of malaria prevalence. The posterior distribution of these parameters has an unusual shape: they are a combination of a Gaussian curve for samples that include the variable and a spike at zero for samples that exclude the variable.

Summary: Three models dominate the posterior probability:

```
\begin{aligned} & \text{Intercept} + \text{Age} + \text{Netuse} + \text{Green} + \text{Treated} \\ & \text{Intercept} + \text{Age} + \text{Netuse} + \text{Green} + \text{Treated} + \text{PCH} \\ & \text{Intercept} + \text{Age} + \text{Netuse} + \text{Green} + \text{PCH} \end{aligned}
```

Therefore it is clear that age, bed net use and greeness should be included in the model, but uncertainty about whether one or both of the remaining two variables should be included.