PANDIT DEENDAYAL PETROLEUM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY RE- EXAMINATION MAY 2019

B. Tech Computer Engineering

Semester V

Course Name: Theory of Computation Course Code: 18CP 302 Max. Marks: 100

1.	a	Design a DFA for the language $L=\{w w\in(a,b)^*, w \text{ starts and ends with same symbol}\}$. Also write the regular expression for the same. (6)	
	b	Convert the following NFA to a DFA. (6)	
		q_0 $\xrightarrow{a,b}$ q_1 \xrightarrow{b} q_2	(20)
	c	State pumping lemma for regular languages. Prove that language $L=\{a^p, p \text{ is prime }\}$ is not regular using pumping lemma. (8)	
2.	a	i. Find a regular expression corresponding to the language L_I of all strings over the alphabet $\{a, b\}$ that do not end with ab. (3) ii. Whether the above language is regular? Justify. (2)	
	b	Write context free grammar for the following Languages L_2 and L_3 . Also design separate push down automatas to recognize the same. (10)	
		$L_2 = \{a^i b^j c^k \mid i = j \text{ or } i = k\}.$	(20)
		$L_3 = \{ a^n b^m c^{2n} m, n \ge 1 \}.$	
	С	Show that the grammar $G: E \to E + E + E + E + E + (E) + a$ is ambiguous. Construct an unambiguous grammar equivalent to the grammar G . (5)	
3.	a	State whether context free languages are closed under the operations: i) union, ii) intersection and iii) complementation. Justify your answer with necessary proof. (5)	
	b	State and prove "size of a parse tree" theorem with respect to context free languages. (5)	i
	c	Given the following grammar G with production rules $S \to ASB \mid \epsilon$; $A \to aAS \mid a$; $B \to SbS \mid A \mid bb$; Can you apply CYK algorithm on G to test the membership of the string w=aabb in L(G)? Justify your answer mentioning the necessary changes that you make in G. Show the complete steps in testing the membership. (10)	(20)

4.	a	Draw the PDA M for the language $L_4 = \{a^n \ b^n \mid n \ge 1.\}$ Also derive context free grammar form the PDA M such that L(M)=L ₄ . (10)	
	b	What is a Turing machine? Design a Turing machine for recognizing $L=\{wcw \mid w \in (a,b)^*\}$. You need to show the tape movement for the input <i>abbcabb</i> . (10)	(20)
5.	a	(i) State and prove Halting Theorem. (6) (ii) Write a short note on universal Turing machines. (4)	
	b	State PCP and MPCP problems. Whether they are decidable or not? Justify your answer with necessary proof. (10)	(20)

•