E. T. S. de INGENIERÍA INFORMÁTICA

Curso 2010/11

Matemática Discreta

Relación de Ejercicios 1.1

Álgebra de Conjuntos

1. Establece si son verdaderas o falsas las siguientes afirmaciones:

 $\begin{array}{lll} \text{II)} & a \in \{a\} & & \text{II)} & a \subseteq \{a\} \\ \text{III)} & \{a\} \in \{a\} & & \text{IV)} & \{a\} \subseteq \{a\} \\ \text{V)} & \{a,b\} \in \{a,\{a,b\}\} & & \text{VI)} & \{a,b\} \subseteq \{a,\{a,b\}\} \end{array}$

2. Sean los conjuntos $A_1 = \{-2, -1, 0, 1, 2\}, A_2 = \{0, 1, 2\}, A_3 = \{-1, 0, 1\}$ y sea el conjunto de índices $I = \{1, 2, 3\}$. Determina los siguientes conjuntos:

 $a) \bigcup_{i \in I} A_i \qquad b) \bigcap_{i \in I} A_i$

Tomando \mathbb{Z} como conjunto universal, determina:

 $c) \bigcup_{i \in I} \overline{A_i} \qquad d) \bigcap_{i \in I} \overline{A_i}$

3. En el conjunto de los números naturales se consideran los subconjuntos siguientes:

P: conjunto de números naturales primos; D: conjunto de múltiplos de dos;

T: conjunto de múltiplos de tres; I: conjunto de números impares y S: conjunto de múltiplos de seis.

■ Determina: a) $P \cap I$, b) $P \cap D$, c) $D \cap T$, d) $D \cap S$, e) $I \cap S$.

■ Describe el complementario de: f) P, g) I, h) D.

■ Determina: i) $P \cup I$, j) P - I, k) $\overline{D \cap I}$.

4. Sean A, B y C subconjuntos de un universo \mathcal{U} .

a) Demuestra que son equivalentes los siguientes enunciados:

1) $A \subseteq B$

 $A \cap B = A$

3) $A \cup B = B$

b) Demuestra que son ciertas las siguientes igualdades:

1) $A \cap (B - C) = (A \cap B) - (A \cap C)$

2) $A - (B \cap C) = (A - B) \cup (A - C)$

3) $A - (B \cup C) = (A - B) \cap (A - C)$

4) $(A \cup B) - C = (A - C) \cup (B - C)$

5) $(A\triangle B)\triangle C = A\triangle (B\triangle C)$

c) Da un contraejemplo para demostrar que no se verifican las igualdades:

1) A - (B - C) = (A - B) - C

2) $(A - B) \cup B = A$

3) $A - (B \cap C) = (A - B) \cap (A - C)$

4) $A\triangle(B\cup C)=(A\triangle B)\cup(A\triangle C)$

5) $A - (B \triangle C) = (A - B) \triangle (A - C)$

Relaciones

5. Dados los conjuntos $A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4\}$ y $C = \{c_1, c_2, c_3\},$ se establecen las relaciones \mathcal{R}_1 , \mathcal{R}_2 y \mathcal{R}_3 siguientes:

$$\mathcal{R}_1 = \{(a_1, b_1), (a_2, b_4), (a_3, b_1), (a_3, b_2), (a_3, b_4)\}$$

$$\mathcal{R}_2 = \{(a_1, b_3), (a_2, b_2), (a_3, b_1)\}$$

$$\mathcal{R}_3 = \{(b_2, c_1), (b_2, c_3), (b_3, c_2), (b_4, c_3)\}.$$

Usa las matrices asociadas para determinar las relaciones:

$$a)$$
 $\mathcal{R}_1 \cap \mathcal{R}_2$

b)
$$\mathcal{R}_1^{-1} \cup \mathcal{R}_2^{-1}$$

$$c)$$
 $\mathcal{R}_2 \circ \mathcal{R}_3$

6. En el conjunto $A = \{2, 3, 4, 5, 6\}$ se establece la relación binaria \mathcal{R} definida de la siguiente forma

$$a\mathcal{R}b \iff mcd(a,b) = 1$$

- a) Escribe el conjunto de pares ordenados de \mathcal{R} .
- b) Representa los pares matricialmente.
- 7. Halla el dominio y el rango de la relación $\mathcal{R} \subseteq \mathbb{N} \times \mathbb{N}$ definida

$$x\mathcal{R}y \iff x^2 + 2y = 100$$

- 8. Sea $\mathcal{R} = \{(a,b), (b,d), (c,b), (d,a)\}$ una relación binaria definida sobre el conjunto $A = \{a,b,c,d\}$. Estudia qué propiedades cumple la relación binaria \mathcal{R} .
- 9. En el conjunto $A = \{1, 2, 3, 4\}$ se establece una relación binaria

$$\mathcal{R} = \{(1,1), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\}$$

Justifica que \mathcal{R} es una relación de equivalencia y halla el conjunto cociente.

10. Se considera la relación binaria $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ definida

$$a\mathcal{R}b \iff a \leq b+1$$

- a) Estudia las propiedades de la relación \mathcal{R} .
- b) Determina cada uno de los siguientes subconjuntos:

I)
$$\{x \in \mathbb{Z} \mid (x,1) \in \mathcal{R}\}$$
 II) $\{x \in \mathbb{Z} \mid (1,x) \in \mathcal{R}\}$

II)
$$\{x \in \mathbb{Z} \mid (1,x) \in \mathcal{R}\}$$

III)
$$\{x \in \mathbb{Z} \mid (x,4) \in \mathcal{R}\}$$
 IV) $\{x \in \mathbb{Z} \mid (4,x) \in \mathcal{R}\}$

IV)
$$\{x \in \mathbb{Z} \mid (4, x) \in \mathcal{R}\}$$

11. En el conjunto $A = \{1, 2, 3, 4, 5\}$ se consideran las siguientes relaciones

$$x\mathcal{R}y$$
 si y sólo si $x\mid y$
 $x\mathcal{S}y$ si y sólo si $y=x+2$

- a) Halla los pares que pertenecen a cada una de las relaciones.
- b) Estudia si \mathcal{R} una relación de equivalencia.
- c) Estudia si S una relación de orden.
- 12. En el conjunto $A = \{1, 2, 3, 4, 5\}$ se define la relación $\mathcal{R} = \{(1, 2), (2, 1), (3, 3), (4, 5)\}$. Demuestra que $S = \mathcal{R} \cup \mathcal{R}^2$ es una relación transitiva.
- 13. Define (si es posible) una relación de equivalencia en $\mathbb R$ tal que la clase de equivalencia C_a de cada $a \in \mathbb{R}$ sea

$$C_a = \{a, -a\}$$

Functiones

14. Sea el conjunto $X=\{x,y,z,t\}\;\; {\rm y}\;\; f\subseteq X\times X\;\;$ la relación binaria dada por la matriz

$$\mathcal{M}_f = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & - & 1 \\ - & - & - & - \end{array}\right)$$

Completa la matriz \mathcal{M}_f sabiendo que f es una función inyectiva.

15. Dados los conjuntos $A = \{1, 2, 3, 4\}$ y $B = \{5, 6, 7\}$, se define la relación $\mathcal{R}_f \subseteq A \times B$

$$\mathcal{R}_f = \{(1,5), (2,5), (3,6), (a,b)\}$$

Estudia si es posible encontrar elementos $a \in A$ y $b \in B$ tales que:

- a) \mathcal{R}_f no sea una función.
- b) \mathcal{R}_f sea una función inyectiva.
- c) \mathcal{R}_f sea una función sobreyectiva.

16. En el conjunto $\mathbb Q$ de los números racionales se define una relación binaria $\mathcal R$ de la siguiente forma:

$$\frac{a}{b} \mathcal{R} \frac{c}{d} \iff c = 2a + b \quad \text{y} \quad d = b$$

Prueba que es una función y estudia si es inyectiva y/o sobreyectiva.

17. Sea el conjunto $\mathbb Z$ de los números enteros y las funciones

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 y $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ $(a,b) \mapsto a-b$

- a) Determina $g \circ f$ y $f \circ g$.
- b) Estudia las propiedades de f, g, $g \circ f$ y $f \circ g$.
- 18. Sean los conjuntos $S = \{1, 2\}$ y $T = \{a, b, c, d\}$.
 - a) Determina el número de funciones de S en T que se pueden definir.
 - ¿Cuántas de estas funciones son sobrectivas?
 - ¿Cuántas de estas funciones no son inyectivas?
 - b) Determina el número de funciones de T en S que se pueden definir.
 - ¿Cuántas de estas funciones son inyectivas?
 - ¿Cuántas no son sobreyectivas?
 - ¿Cuántas de estas funciones son sobreyectivas?

Inducción

19. Demuestra por inducción que para todo entero $n \ge 1$ se verifica:

a)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

b)
$$\sum_{i=1}^{n} i^3 = (1+2+3+\cdots+n)^2$$
 (Indicación: Usa el apartado anterior)

c)
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

$$d) \sum_{i=1}^{n} 2^{i-1} = 2^n - 1$$

- 20. Demuestra por inducción que para todo entero $n \geq 1$ se verifica:
 - a) $n^3 + (n+1)^3 + (n+2)^3$ es múltiplo de 9.
 - b) $n^2 + 3n$ es divisible por 2.
- 21. Demuestra por inducción que para todo entero $n \ge 1$ se verifica:
 - a) $7^n 2^n$ es múltiplo de 5.
 - b) $2^{2n} 1$ es múltiplo de 3.
- 22. Sea $\{a_n\}$ definida recursivamente de la forma:

$$a_1 = 1$$

 $a_n = a_{n-1} + 2n - 1, n \ge 2$

- a) Conjetura una fórmula explícita para a_n .
- b) Demuestra por inducción que es correcta.
- 23. Para cada $n \in \mathbb{N}$, sea p(n): " $n^2 + n + 11$ es primo". Comprueba que $p(1), \ldots, p(9)$ son todos verdaderos. Estudia si para todo n es verdadero p(n).
- 24. Para cada $n \in \mathbb{N}$, sea p(n): "3n+2 es múltiplo de 3". Comprueba que la implicación $p(k) \Longrightarrow p(k+1)$ es verdadera para cada $k \in \mathbb{N}$ y determina si p(n) es verdadero para todo $n \in \mathbb{N}$.
- 25. Los números de Fibonacci $\{f_n\}$ se definen recursivamente

$$f_0 = 0,$$
 $f_1 = 1,$ $f_n = f_{n-1} + f_{n-2},$ $n \ge 2$

Siendo $F = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, demuestra por inducción que, para todo entero $n \ge 1$, $F^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$

26. Los números de Fibonacci generalizados $\{g_n\}$ se definen recursivamente

$$g_0 = a$$
 $g_1 = b$
 $g_n = g_{n-1} + g_{n-2}$ $n \ge 2$

Demuestra por inducción que $g_n = af_{n-1} + bf_n$, para todo $n \ge 2$, en donde f_n es la sucesión definida en el ejercicio 25.