Linear Representations of Finite Groups by Serre Exercises completed by Caitlin Beecham

Exercise 3.4

Show that each irreducible representation of G is contained in a representation induced by an irreducible representation of H. Obtain from this another proof of the Corollary to Theorem 9. We complete the above by way of the following steps:

- Note that any irreducible representation (ρ', V') is contained as an isomorphic copy $(\rho|_{V'_0}, V'_0)$ of the regular representation (ρ, V) via the bijection $k: V' \to V'_0$. Specifically, that means that $V'_0 \subseteq V$ and that $(\rho|_{V'_0})_g \circ k = k \circ \rho'_g$ for all $g \in G$. We note that either V' = 0 or $V' \neq 0$. If V' = 0 then $V'_0 = 0$ and thus V'_0 is contained in the representation induced by the zero representation $(\rho|_H, 0)$ of H, concluding the proof. So, from now on we assume $V' \neq 0$.
- Now, note that the restriction $(\rho|_{V_0'}|_H, V_0')$ of the representation $\rho_{V_0'}: G \to V_0'$ is a representation of H and, as such, contains a non-zero irreducible representation $V_{0,H}' \subseteq V_0'$ of H.
- Now, one can form the induced representation $V_{0,ind} := \sum_{r \in R} \rho_r V'_{0,H}$ by letting R be a set of representatives for the left cosets of H in G, and we note that the induced representation $(\rho_{0,ind}, V_{0,ind})$, with action defined by $(\rho_{0,ind})_g = \rho_g$, is a subset $V_{0,ind} \subseteq V$ of the regular representation.
- Now, we may apply the key lemma of this chapter which allows us to extend a linear function f defined on an irreducible representation of H to a linear function F defined on the induced representation of G, which respects the structure of the associated representations.
- Namely, let f be the natural inclusion map $f: V'_{0,H} \to V'$. The aforementioned lemma allows us to extend f to a linear map $F: V_{0,ind} \to V'$ such that $F \circ (\rho_{0,ind})_g = \rho'_g \circ F$ for all $g \in G$.
- Now, we note that since (ρ', V') is an irreducible representation of G we have that F is surjective or the zero map. To be a little more clear about the details, note that $F \circ (\rho_{0,ind})_g = \rho'_g \circ F$ implies that $\rho'_g(F(v)) \subseteq im(F)$ for all $v \in V_{0,ind}$, which put simply says that $\rho'_g(im(F)) \subseteq im(F)$ for all $g \in G$ or that im(F) is stable under the action of ρ'_g . By irreducibility of V', we have that im(F) = 0 or im(F) = V'. Note that F is not the zero map since $F|_{V'_{0,H}} = id_{V'_{0,H}}$.
- Also, we note that $ker(F) \subseteq V_{0,ind}$ is stable under the action of $(\rho_{0,ind})_g$. In more detail, $F \circ (\rho_{0,ind})_g = \rho'_g \circ F$ for all $g \in G$ means that for $w \in ker(F)$ we have that $F((\rho_{0,ind})_g(w)) = 0$ for all $g \in G$ and thus $(\rho_{0,ind})_g(w)$ for all $g \in G$ and all $w \in ker(F)$ meaning that ker(F) is stable under the action of $\rho_{0,ind}$. Since G is a finite group, we know that the orthogonal complement $ker(F)^{\perp}$ of ker(F) inside of $V_{0,ind}$, which exists since $V_{0,ind}$ is a finite dimensional complex vector space, and thus a Hilbert space, is also stable under the action of $\rho_{0,ind}$.
- So, finally we have that the map $F|_{ker(F)^{\perp}}: ker(F)^{\perp} \to V'$ is an isomorphism of representations, which means precisely that $F|_{ker(F)^{\perp}} \circ (\rho_{0,ind})_g = \rho'_g \circ F|_{ker(F)^{\perp}}$ for all $g \in G$, or put more simply $(\rho'_g, V') \subseteq (\rho_{0,ind}, V_{0,ind})$ is contained in the representation $(\rho_{0,ind}, V_{0,ind})$ induced by the irreducible representation $((\rho_{V'_0})|_H, V'_{0,H})$ of H.

Exercise 3.5

Let (W, θ) be a linear representation of H.

Exercise 3.6