

There are old traders and there are bold traders, but...

Kris Boudt

Professor of finance and econometrics

About the instructor

- Kris Boudt
 - PhD in financial risk forecasting
 - Use GARCH models to win by not losing (much)
- R package rugarch of Alexios
 Ghalanos.

Calculating returns

Relative financial gains and losses, expressed in terms of returns

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

• Function CalculateReturns in PerformanceAnalytics

```
# Example in R for daily S&P 500 prices (xts object)
library(PerformanceAnalytics)
SP500returns <- CalculateReturns(SP500prices)</pre>
```

Daily S&P 500 returns

Properties of daily returns:

- The average return is zero
- Return variability changes through time

Standard deviation = measure of return variability.

Synonym: Return volatility.

Greek letter σ_t .

How to estimate return volatility

• Function sd() computes the standard deviation:

```
# Compute daily standard deviation
> sd(sp500ret)
[1] 0.01099357
```

Corresponding formula for T daily returns:

$$\hat{\sigma} = \sqrt{rac{1}{T-1}\sum_{t=1}^T (R_t - \hat{\mu})^2},$$

where $\hat{\mu}$ is the mean return.

Annualized volatility

- sd(sp500ret) is daily volatility
- Annualized volatility = $\sqrt{252} imes ext{daily volatility}$

```
# Compute annualized standard deviation
> sqrt(252)*sd(sp500ret)
[1] 0.1745175
```


S&P 500 returns in 1989

Ann. volatility=13%

Rolling volatility estimation

Rolling estimation windows :

Window width? Multiple of 22 (trading days).

Function chart.RollingPerformance()

Jan 04 1989 Jan 03 1994 Jan 04 1999 Jan 02 2004 Jan 02 2009 Jan 02 2014

About GARCH models in R

• Estimation of σ_t requires time series models, like GARCH.

Let's refresh the basics of computing rolling standard deviations in R

GARCH models: The way forward

Kris Boudt

Professor of finance and econometrics

Inventors of GARCH models

Robert Engle

Tim Bollerslev

Notation (i)

• Input: Time series of returns

Notation (ii)

• At time t-1, you make the prediction about the the future return R_t , using the information set available at time t-1:

 I_{t-1} = Information set available at the time of prediction (t-1)

Notation (iii)

 Predicting the mean return: what is the best possible prediction of the actual return?

 I_{t-1} = Information set available at the time of prediction (t-1)

$$\mu_t = E[R_t \mid I_{t-1}]$$

Prediction error: $e_t = R_t - \mu_t$

Notation (iv)

• We then predict the variance: how far off the return can be from its mean?

 I_{t-1} = Information set available at the time of prediction (t-1)

$$\sigma_t^2 = var(R_t \mid I_{t-1})$$

$$= E[(R_t - \mu_t)^2 \mid I_{t-1}]$$

$$= E[e_t^2 \mid I_{t-1}]$$

$$\sigma_t = \sqrt{\sigma_t^2}$$

From theory to practice: Models for the mean

We need an equation that maps the past returns into a prediction of the mean

Rolling mean model:
$$\mu_t = \frac{1}{M} \sum_{i=1}^{M} R_{t-i}$$

For AR(MA) models for the mean, see Datacamp course on time series analysis.

From theory to practice: Models for the variance

We need an equation that maps the past returns into predictions of the variance

Rolling variance model:
$$\sigma_t^2 = \frac{1}{M} \sum_{i=1}^{M} e_{t-i}^2$$

ARCH(p) model: Autoregressive Conditional Heteroscedasticity

We need an equation that maps the past returns into predictions of the variance

Rolling variance model:
$$\sigma_t^2 = \frac{1}{M} \sum_{i=1}^M e_{t-i}^2$$

ARCH(p) model: $\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i e_{t-i}^2$

GARCH(1,1) model: Generalized ARCH

We need an equation that maps the past returns into predictions of the variance

 I_{t-1} = Information set available at the time of prediction (t-1)

ARCH(p) model:
$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i e_{t-i}^2$$

GARCH(1,1) model: $\sigma_t^2 = \omega + \alpha e_{t-1}^2 + \beta \sigma_{t-1}^2$

Parameter restrictions

To make the GARCH process realistic, we need that:

- 1. ω , α and β are > 0: this ensures that $\sigma_t^2 > 0$ at all times.
- 2. $\alpha+\beta<1$: this ensures that the predicted variance σ_t^2 always returns to the long run variance:
 - The variance is therefore "mean-reverting"
 - The long run variance equals $\frac{\omega}{1-\alpha-\beta}$

R implementation - Specify the inputs

• Let's familiarize ourselves with the GARCH equations using R code:

$$\sigma_t^2 = \omega + \alpha e_{t-1}^2 + \beta \sigma_{t-1}^2$$

```
# Set parameter values
alpha <- 0.1
beta <- 0.8
omega <- var(sp500ret) * (1-alpha-beta)
# Then: var(sp500ret) = omega/(1-alpha-beta)</pre>
```

```
# Set series of prediction error
e <- sp500ret - mean(sp500ret) # Constant mean
e2 <- e^2</pre>
```


R implementation - compute predicted variances

```
# We predict for each observation its variance.
nobs <- length(sp500ret)
predvar <- rep(NA, nobs)

# Initialize the process at the sample variance
predvar[1] <- var(sp500ret)

# Loop starting at 2 because of the lagged predictor
for (t in 2:nobs){
    # GARCH(1,1) equation
    predvar[t] <- omega + alpha * e2[t - 1] + beta * predvar[t-1]
}</pre>
```


R implementation - Plot of GARCH volatilities

```
# Volatility is sqrt of predicted variance
predvol <- sqrt(predvar)
predvol <- xts(predvol, order.by = time(sp500ret))

# We compare with the unconditional volatility
uncvol <- sqrt(omega / (1 - alpha-beta))
uncvol <- xts(rep(uncvol, nobs), order.by = time(sp500ret))

# Plot
plot(predvol)
lines(uncvol, col = "red", lwd = 2)</pre>
```


Let's practice!

Alpha - Beta - Sigma: The rugarch package

Kris Boudt

Professor of finance and econometrics

The normal GARCH(1,1) model with constant mean

The normal GARCH model

$$R_t = \mu + e_t$$

$$e_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \omega + \alpha e_{t-1}^2 + \beta \sigma_{t-1}^2$$

- Four parameters: $\mu, \omega, \alpha, \beta$.
- Estimation by maximum likelihood: find the parameter values for which the GARCH model is most likely to have generated the observed return series.

Alexios Ghalanos

```
library(rugarch)
citation("rugarch")
When using rugarch in publications, please cite:
To cite the rugarch package, please use:
Alexios Ghalanos (2018). rugarch: Univariate GARCH models. R package version 1.4
```

Workflow

- Three steps:
 - ugarchspec (): Specify which GARCH model you want to use (mean μ_t , variance σ_t^2 , distribution of e_t)
 - ugarchfit(): Estimate the GARCH model on your time series with returns $R_1,...,R_T$.
 - ugarchforecast (): Use the estimated GARCH model to make volatility predictions for R_{T+1} ,...

Workflow in R

• ugarchspec(): Specify which GARCH model you want to use.

```
# Constant mean, standard garch(1,1) model
garchspec <- ugarchspec(
    mean.model = list(armaOrder = c(0,0)),
    variance.model = list(model = "sGARCH"),
    distribution.model = "norm")</pre>
```

• ugarchfit(): Estimate the GARCH model

• ugarchforecast (): Forecast the volatility of the future returns

ugarchfit object

- The ugarchfit yields an object that contains all the results related to the estimation of the garch model.
- Methods coef, uncvar, fitted and sigma:

```
# Coefficients
garchcoef <- coef(garchfit)

# Unconditional variance
garchuncvar <- uncvariance(garchfit)

# Predicted mean
garchmean <- fitted(garchfit)

# Predicted volatilities
garchvol <- sigma(garchfit)</pre>
```


Estimated GARCH coefficients for daily S&P 500 returns

```
print(garchcoef)

mu omega alpha1 beta1
5.728020e-04 1.220515e-06 7.792031e-02 9.111455e-01
```

• Estimated model:

$$\begin{aligned} R_t &= 5.7 * 10^{-4} + e_t \\ e_t &\sim N(0, \widehat{\sigma}_t^2) \\ \widehat{\sigma}_t^2 &= 1.2 * 10^{-6} + 0.08e_{t-1}^2 + 0.91 \, \widehat{\sigma}_{t-1}^2 \end{aligned}$$

```
sqrt (garchuncvar)
```

0.01056519

Estimated volatilities

garchvol <- sigma(garchfit)</pre>

plot(garchvol)

What about future volatility?

```
tail(garchvol, 1)
2017-12-29 0.004862908
```

• What about the volatility for the days following the end of the time series?

Forecasting h-day ahead volatilities

• Applying the sigma() method to the ugarchforecast object gives the volatility

forecasts:

```
sigma(garchforecast)

2017-12-29
T+1 0.005034754
T+2 0.005127582
T+3 0.005217770
T+4 0.005305465
T+5 0.005390797
```


Forecasting h-day ahead volatilities

Applying the fitted() method to the ugarchforecast object gives the mean forecasts:

```
fitted(garchforecast)

2017-12-29
T+1 0.000572802
T+2 0.000572802
T+3 0.000572802
T+4 0.000572802
T+5 0.000572802
```

Application to tactical asset allocation

• A portfolio that invests a percentage w in a risky asset (with volatility σ_t) and keeps 1-w on a risk-free bank deposit account has volatility equal to

$$\sigma_p = w\sigma_t$$
.

• How to set w? One approach is **volatility targeting**: w is such that the predicted annualized portfolio volatility equals a target level, say 5%. Then:

$$w^* = 0.05/\sigma_t$$

Since GARCH volatilities change, the optimal weight changes as well.

Let's play with rugarch!