Árvores AVL

Prof. Kennedy Lopes

UFERSA

May 7, 2021

Introdução

- A complexidade de busca em árvores binárias são dependentes da ordem que os elementos são inseridos ou removidos das estrutura de dados.
- Isto ocorre devido ao fato das árvores poderem se comportar no pior caso como filas.
- Surge o conceito de árvores com alturas balanceadas, conhecidas como AVL.

Árvores AVL

Uma árvore é definida como sendo:

- Uma árvore vazia é uma árvore AVL;
- Sendo T uma árvore binária de busca cujas sub-árvores esquerda e direita são L e R, respectivamente, T será uma AVL contando que:
 - ▶ L e R sejam AVL's;
 - ▶ $|h_L h_R| \le 1$. h_L e h_R são as alturas das sub-árvores L e R.

Fator de Balanceamento (FB)

- O fator de balanceamentoou fator de equilíbrio de um nó T em uma árvore binária é definido como sendo $hL\tilde{\ }hR$.
- Para qualquer nó Tnuma árvore AVL, o fator de balanceamento assume o valor -1, 0 ou +1.
 - O FB de uma folha é 0.

Inserção Maio

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Março

Depois da inserção

Sem necessidade de rebalanceamento

Inserção Novembro

Depois da inserção

Depois do rebalanceamento

Inserção Agosto

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Abril

Depois da inserção

Depois do rebalanceamento

Inserção Janeiro

Depois da inserção

Depois do rebalanceamento

Inserção Dezembro

Depois da inserção

Depois do rebalanceamento

+1
Maio

-1
Agosto

-1
Agosto

-1
Agosto

-1
Março

Novembro

O
Dezembro

Sem necessidade de rebalanceamento

Inserção Julho

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Fevereiro

Inserção Junho

Depois da inserção

Depois do rebalanceamento

0

Inserção Outubro

Depois da inserção

Depois do rebalanceamento

Inserção Setembro

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Rotações

- O balanceamento é conduzido utilizando 4 tipos de rotações: LL, LR, RL e RR.
- RR e LR são simétricos em relação a LL e RL.
- O ancestral mais novo de A do novo nó inserido Y caracteriza o desbalanceamento. Pode ter os valores de +2 e -2.

Identificando rotações:

Α	В	Tipo
+2	+1	LL
-2	-1	RR
+2	-1	LR
-2	+1	RL

Subárvore balanceada

Subárvore desbalanceada após inserção

Altura de B_L aumenta para h+1

- □ Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

Subárvore balanceada

Subárvore desbalanceada após inserção

Altura de B_R aumenta para h+1

- □ Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

Rotação LR(a)

Subárvore balanceada

Subárvore desbalanceada após inserção

Subárvore rebalanceada

Rotação LR(b)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Rotação LR(c)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

Rotação RL(a)

Subárvore balanceada

Subárvore desbalanceada após inserção

Subárvore rebalanceada

Rotação RL(b)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Rotação RL(c)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

☐ Inserir x=7

_

- ☐ Inserido x=7
- □ A inserção produz uma árvore desbalanceada...

- ☐ Inserido x=7
- □ A inserção produz uma árvore desbalanceada, cujo balanceamento envolve uma rotação RR

☐ Inserir x=2

☐ Inserido x=2

- ☐ Inserido x=2
- ☐ Inserir x=1

- ☐ Inserido x=2
- ☐ Inserido x=1
- □ Ocorre desbalanceamento da subárvore de raiz 4...

- ☐ Inserido x=2
- ■Inserido x=1
- □ Ocorre desbalanceamento da subárvore de raiz 4, que é corrigido por uma rotação LL

 \square Inserir x=3

- ☐ Inserido x=3
- □ Ocorre desbalanceamento da subárvore de raiz 5...

- ☐ Inserido x=3
- □ Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação LR

☐ Inserir x=6

- ☐ Inserido x=6
- □ Ocorre desbalanceamento da subárvore de raiz 5...

- ☐ Inserido x=6
- □ Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação RL

