CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection

EunBin CHO

Visual Computing and Medical Imaging Lab., Department of Software Convergence, Seoul Women's University

Contents

- **■** Paper Information
- **■** Introduction
- **■** BackGround
- **■** OverView
- **■** Results
- **■** Interpretation
- **■** Conclusion
- **■** Considerations & Adaptation

Paper Information

■ Authors

☐ Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A. Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, Zongwei Zhou

■ Affiliation

□ Johns Hopkins University, City University of Hong Kong, Vanderbilt University, NVIDIA

■ Publication

- □ Publication Platform: arXiv
- □ Publication Date: Aug 17, 2023
- ☐ Github Page: https://github.com/ljwztc/CLIP-Driven-Universal-Model

Introduction

■ Research Topic

- □ Development of CLIP-Driven Universal Model for Medical Imaging
 - Develop universal model for segmenting organs & tumors by applying **CLIP Embeddings**
 - Ensure generalization & offer high accuracy and efficiency
 - Overcome the limitations of traditional one-hot label encoding
 - Approach CLIP embeddings to **capture semantic relationships** between organs and tumors.

Introduction

■ Research Necessity

- ☐ Limitations of Existing Medical Imaging AI Models
 - Partially labeled datasets
 - Poor generalization performance
 - One-hot label encoding lacks semantics

■ Research Objectives and Expected Effects

- ☐ CLIP-based embeddings for meaningful segmentation
 - More intuitive anatomical relationship learning and improved generalization
- □ Masked Back-Propagation for partial labels
 - Effective use of partially labeled datasets enables robust learning & the development of a highly generalizable model
- ☐ Universal Medical Imaging AI model
 - Highly generalizable AI model with consistent performance across diverse CT data

BackGround

■ Medical Image Segmentation

Identify specific organs or tumors in medical imaging(e.g CT or MRI)

- ☐ Conventional Deep Learning Based Approaches
 - CNN based (e.g U-Net, nnU-net)
 - Transformer based (e.g Swin UNETR, TransBTS, nnFormer)
- □ Partial Label Problem
 - Contain labels only for specific organ or tumor
 - Performance degradation when applied to data from other hospitals
 - Organs without labels are mistakenly recognized as background that leads to error

Aims to address this issue by utilizing the Masked Back-Propagation technique

BackGround

■ CLIP(Contrastive Language-Image Pre-training)

A vision-language model developed by OpenAI that aligns images and text in a shared space using contrastive learning¹⁾

□ Role of CLIP in Medical Imaging

- Addressing one-hot encoding limitations & capturing organ-tumor relationships
- e.g) One-hot Encoding: "Liver" & "Liver Tumor" treated as independent classes
 CLIP: "A CT scan of the liver." and "A CT scan of a liver tumor." → reflect close relationship
- Enhances segmentation performance by learning semantic similarity

Designed for precise organ and tumor segmentation using CLIP-based label embeddings

■ CLIP-Driven Universal Model

Liu, Jie, et al. "Clip-driven universal model for organ segmentation and tumor detection." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

■ CLIP-Driven Universal Model

- □ Training & Test Dataset
 - Training Data: 14 public datasets with 3,410 CT scans containing partial labels for different organs and tumors.
 - Test Data: 3 additional datasets with 6,162 CT scans for model validation

□ Text Branch

Generate CLIP-based text embeddings for **segmentation reflecting organ-tumor relationships**

- Method:
 - Utilize CLIP's text encoder with prompts in the format "A photo of a [CLS]."
 e.g) "A photo of a liver", "A photo of a kidney tumor"
 - Generate CLIP embeddings for each class
 - Pass the embeddings through an MLP network before sending them to the Vision Branch.

■ CLIP-Driven Universal Model

□ Vision Branch

Takes CT scans as input and outputs organ and tumor segmentation results

- 1) Standardized Processing

Convert CT scans into a standardized format to enable training with multiple datasets

- 2) Vision Encoder

Extract features from CT images using CNN- or Transformer-based networks (e.g., U-Net)

- 3) Global Average Pooling

Summarize overall image features to prepare for integration with CLIP-based text embeddings

- 4) Vision Decoder

Generate the final segmentation masks for each organ and tumor

■ CLIP-Driven Universal Model

- □ Masked Backpropagation
 - Existing Partial Label Problem
 - e.g BTCV datasets labels liver, while the WORD dataset does not include liver labels.
 - Solution: Masked Backpropagation
 - Compute loss only for classes with labels in each dataset
 - Exclude unlabeled classes from loss calculation to prevent unnecessary gradient updates

» allows effective training by combining partially labeled datasets

Visually represents the **Masked Backpropagation** technique, where only specific classes (e.g., pancreas, spleen, kidney) are activated for training.

Results

	Existing Model (e.g Swin UNETR)	Universal Model (proposed model)	Improvement
MSD (Dice Score)	~82–84%	87.39%	+3~5%
BTCV (Dice Score)	~80–82%	86.13%	+4~6%
False Positives	Relatively high	Reduced	Lower false positives
Sen.	High FP risk in tumor detection	Maintains high sensitivity while reducing FP	More accurate tumor detection
Harm.	Lower (92.26% for pancreatic tumors)	92.59% for pancreatic tumors	+0.33%
Computation Speed	Baseline	6× faster	6× faster than Swin UNETR, 19× faster than nnU-Net
Generalization	Large performance variation	Maintains high performance	Strong generalization
Transferability	Optimized for specific datasets	Various diseases and datasets	More versatile

Interpretation

■ Addressing the Partial Label Problem

- ☐ Masked Back-Propagation technique
- ☐ Utilization of 14 public datasets (3,410 CT scans)
 - Maximize generalization performance by training on diverse datasets

■ Leveraging CLIP Embeddings for Semantic Understanding

- ☐ CLIP-based embeddings
 - t-SNE visualization
 - shows that CLIP embeddings form a better feature space than one-hot encoding

■ Scalability and Efficiency of the Model

- □ Compatibility with various backbones (CNN, Transformer, etc.)
- ☐ High performance relative to computational cost

Conclusion

■ Addressing the Partial Label Problem

- ☐ Universal Model trains from partially labeled diverse datasets
- ☐ Use Masked Backpropagation
 - exclude loss calculation for unlabeled regions & enable better generalization

Effectiveness of CLIP Embedding

□ CLIP embeddings → organs and tumors naturally cluster based on similarity

Conclusion

■ Scalability and Computational Efficiency

- □ Designed to support both CNN (e.g., U-Net) and Transformer (e.g., Swin UNETR) backbones
 - enable application across various architectures
- □ With reduced computational cost and 6× faster processing

■ Generalizability Across Different Datasets

- ☐ A generalizable medical AI model (Foundation Model)
 - maintains consistent performance across diverse environments

Considerations & Adaptation

■ Medical Prompt Design

- ☐ Generate appropriate CLIP-based text embeddings for anatomical structures
- □ Text embeddings should capture relationships between the meniscus and surrounding tissues (bones, cartilage, etc.)
 - Need to experimentally optimized
 - e.g "A 3D MRI scan of the medial meniscus" A segmented meniscus in a knee MRI image"

■ Data Preprocessing

- meniscus segmentation relies on MRI data, might require different preprocessing methods
- □ Resolution and contrast characteristics of MRI must be considered

Considerations & Adaptation

■ Masked Backpropagation

- ☐ Some datasets might label only specific structures (Medial/Lateral Meniscus)
- ☐ Masked Backpropagation enables effective learning on partially labeled datasets
 - experimental evaluation is needed to assess how Masked Backpropagation improves

■ Apply Various Backbone Models

□ Compare CNN (U-Net) and Transformer (Swin UNETR) for Meniscus segmentation

■ Model Performance Evaluation

- □ Dice Similarity Coefficient (DSC) & Normalized Surface Distance (NSD)
 - use the same metrics to compare with existing models

Considerations & Adaptation

■ Key Experiments

- □ Evaluate how CLIP-based embeddings enhance Meniscus MRI segmentation
- □ Compare with traditional One-Hot Encoding-based models
- □ Verify whether Masked Backpropagation addresses the partial label problem