인공지능 개론

한국폴리텍대학 대구캠퍼스 AI엔지니어링학과 강현우

Chapter 2 규칙 기반 모델의 발전

인공지능 연구와 연관이 있는 규칙 기반 모델의 여러 가지 기술을 설명하기

- ◆1.1조건 분기 프로그램과 규칙 기반 시스템
 - ▶특정 조건을 비교해서 처리할 일을 나누는 것을 조 건 분기라고 함.
 - ▶컴퓨터를 이용한 문제 해결은 조건 분기를 구현한 프로그램을 실행해 답을 끌어냄.
 - →규칙(조건 설정)을 사용해 조건 분기 프로그램을 실행하는 시스템을 규칙 기반 시스템이라고 함.
 - ▶기반 시스템을 만들기 전 순서도를 이용해 규칙을 설정하면 좋음.

◆1.1규칙 설계와 문제의 공식화

- >조건 분기의 기반이 되는 규칙
 - ✓ 사람이 미리 결정해 두어야 함.
- > 문제의 공식화
 - ✓ 규칙을 설계해 나가는 단계에서 문제와 해법을 명확히 하 는 것

그림 2-3 의료비 청구서의 사용자 정보 수집 작업

- ID 1: 보험증 번호, 이름, 성별 등을 조합한 정보의 해시값(해시 변수를 통해 얻은 값). 병원에서 발행하는 의료비 청구서와 조제약 청구서를 통해 얻습니다.
- ID 2: 보험증 번호, 생년월일, 가족 관계 등을 조합한 정보의 해시값, 의료 관계 데이터베이스에 서 정보를 조회해서 얻습니다.
- ID 1과 ID 2의 정보를 서로 비교하면 ID 1만으로는 구분하기 어려웠던 정보(이름이 잘못 표기 되었다 등의 이유)들을 판별할 수 있습니다. 그 결과 ID를 통해 비교하는 정보의 정확도를 높일 수 있게 되었습니다. 단, ID나 규칙을 늘리는 것은 수작업에 의존합니다.

- ◆1.1의사 결정 트리의 구축
 - ▶ 규칙을 바탕으로 그린 순서도로 구축한 이진 트리를 의사 결정 트리라고도 함

Decision Tree

- ◆ Decision Tree 활용 예
 - ➤ 구분 대상 Class 는 2개로 한정
 - ➤ feature 도 2개로 한정하고 진행

EERING

Decision Tree

◆트리 분류 규칙

◆ 어느 것이 더 잘 분류한 것인가?

Decision Tree

- Entropy
 - ▶ 불순도를 수치로 나타냄
 - > 엔트로피가 높다 = 불순도가 높다
 - \triangleright Entropy = $\sum_{i} (P_i) \log_2(P_i)$
 - > P_i = 범주 i에 속하는 데이터의 비율

Entropy 계산

$$-\{(P_a)\log_2(P_a) + (P_b)\log_2(P_b)\}$$

좌:
$$(P_a = 4/4) (P_b = 0/4)$$

Entropy(좌) = 0

9:
$$(P_a = 1/7) (P_b = 6/7)$$

Entropy(우) = 0.59

Entropy 계산

$$-\{(P_a)\log_2(P_a) + (P_b)\log_2(P_b)\}$$

좌:
$$(P_a = 3/5) (P_b = 2/5)$$

Entropy(좌)= 0.97

우:
$$(P_a = 2/6) (P_b = 4/6)$$

Entropy(우) = 0.92

Information Gain

- ◆Information Gain =
 - 현재 불순도 분류된 두 노드의 불순도의 합
- ◆현재의 불순도를 H(x) 라고 하면
- ◆ Information Gain IG 는

$$\triangleright$$
 IG = H - (H_L × P_L + H_R × P_R)

- ◆ 즉, IG가 크면 클 수록 얻을 수 있는 정보가 많 다는 의미가 됨.
- ◆ 따라서 IG가 최대가 되도록 분류!

Information Gain

SECTION 02 지식 기반 모델

◆2.1 규칙이 늘거나 변하는 경우

한국폴리텍대학

SECTION 02 지식 기반 모델

- ◆2.2 사람도 검색할 수 있는 지식 기반 시스템
 - > 방대한 정보 데이터를 저장
 - > 사람도 검색이 가능
 - > UniProtKB

SECTION 03 전문가 시스템

- ◆3.1 전문가 시스템
 - ➤전문가 시스템은 규칙 기반 모델을 이용하는 추론 엔진에 기반
 - ➤ 초기 전문가 시스템 Dendral
 - ➤ Dendral에서 파생된 MYCIN
 - >환자의 전염성 혈액질환을 진단한 후
 - >투약해야 하는 항생제, 투약량 등을 제시

SECTION 03 전문가 시스템

- ◆3.2 추론 엔진의 종류와 기법
 - **▶추론엔진**
 - ✓ 전문가시스템이 규칙을 사용해 결과를 추론하는 프로그램
 - ✓ 주로 수리논리학을 이용함

SECTION 03 전문가 시스템

표 2-1 명제 논리의 기호 종류

항목	내용
논리식	원자 논리식 혹은 원자 논리식과 명제 결합 기호의 조합으로 표현
원자 논리식(원자식)	명제 변수로 표현
명제 변수	P, Q, p, q, Φ, Ψ 등
명제 결합 기호(결합 기호)	¬, ~(부정, NOT), ∧(연언, 논리곱 AND), ∨(선언, 논리합, OR), ⇒(함축, implication), ⇔(동치, equivalence), NOT과 OR 이외의 기호는 NOT과 OR로 풀어서 표현 가능
보조 기호	()는 기호법에 따라 없는 경우도 있음
논리적동치	≕는 2개의 논리식이 같은 값인 경우를 표시

표 2-2 술어 논리의 기호 종류

항목	내용		
논리식	원자 논리식 혹은 원자 논리식과 논리 기호의	조합으로 표현	
원자 논리식(원자식)	원자 논리식 혹은 원자 논리식과 항의 조합으	로 표현	
항	정수 기호, 변수 기호, 함수 기호의 조합으로 표	I 현	
정수 기호	TRUE, FALSE, X, Y, apple, Tommy 등		
변수 기호	P, Q, p, q, Φ, Ψ 등	표 2-3 술0	
함수 기호	FATHER() 등 관계를 표시		
술어 기호	cold() 등 성질과 상태를 표시	술어 논리스	
논리 기호	명제 결합 기호와 한정 기호로 표현	MOTHER	
한정 기호	∀(전칭 기호), ∃(존재 기호)	cold(x)	

표 2-3 술어 논리식의 예

술어 논리식	의미
MOTHER(Tom)	Tom의 어머니
cold(x)	x가 처갑다.
$\exists x (have(l, x) \land book(x))$	나는 책이 있다.
$\forall x (girl(x)) \Rightarrow \exists y (loves(x,y) \land cake(y)))$	모든 여자는 케이크를 좋아한다.
¬∃x(human(x)∧touch(x, BACK(x)))	아무도 자신의 등을 만지지 않는다.

- ◆4.1 추천 엔진의 개념
 - >널리 사용하는 전문가 시스템의 예
 - >추천 엔진은 쇼핑몰 등의 사이트 방문자에게
 - >비슷한 정보를 추천하는 시스템임
 - 추천 엔진은 크게 두 가지 방법으로 실행함.
 - ✓ 콘텐츠 내용에서 비슷한 정보를 찾아 정보를 추천
 - ✓ 문자의 검색 이력, 구매 이력 등
 - ✔사이트 방문자 고유 정보를 이용해 연관된 정보를 추천

- ◆4.2 콘텐츠 내용을 분석하는 추천 엔진
 - > 방문자 정보를 제외한 콘텐츠 자체의 정보
 - ✓ 쇼핑몰 사이트라면 상품 정보
 - ✓ 뉴스 사이트라면 기사 정보
 - > 에서 관련 내용을 찾아 추천

EERING

- ◆4.3 협업 필터링을 이용하는 추천 엔진
 - 사이트 방문자와 상품의 구매 기록으로
 - > 상관계수를 계산

표 2-9 시	표 2-9 사이트 방문자, 각 상품의 구매 기록, 상관 계수 표											
		1	2	3	4	5 5	품 6	7	8	9	10	X 씨와의 상관계수
	Х	-	1	0	-	_	_	-	0	0	1	1,000
	Α	1	1	1	-	-	-	-	0	0	0	0,167
방문자	В	-	-	-	0	0	0	1	1	1	0	-1,000
	С	0	1	0	0	-	1	1	0	0	1	1,000
	D	0	-	-	0	1	1	0	0	1	1	0,500
	E	_	1	0	-	1	0	-	0	0	0	0,612
추천 정	도											

표 2-10 사이트 방문자, 각 상품의 구매 기록, 상관 계수, 추천 정도 표												
	상품										상관 계수	
		1	2	3	4	5	6	7	8	9	10	
	Χ	-	1	0	-	_	-	-	0	0	1	1,000
	Α	1	1	1	_	_	_	_	0	0	0	0.167
방문자	В	-	ı	_	0	0	0	1	1	1	0	-1,000
유판시	С	0	1	0	0	_	1	1	0	0	1	1,000
	D	0	-	-	0	1	1	0	0	1	1	0,500
	Е	-	1	0	-	1	0	_	0	0	0	0,612
추천 정도		0,00			0,00	1,00	0,67	0,50				

Contents Based 방식의 단점

- ◆ DB는 어떻게 구성할 것인가?
 - > 제품을 카테고리화 하는 것 부터
 - > 비슷한 색상, 디자인의 제품이 있는지
 - 재고는 있는지 어디에 있는지
 - > 이걸 어떻게 다 만드는가? → 사람이…
- ◆ 대용량의 DB를 구축했다고 치고…
 - 비용은 엄청나게 들었겠지만
 - > 상품이 수 천만/ 수억 개라면 검색은 어떻게?
 - ✔ Hadoop, Map Reduce 이런 기술이 결국 검색을 빠르게 하기 위한 것

Collaborative Filter

- ◆ 협업 필터는 그럼 만능?
 - > 좋긴 좋은데… CB도 잘 못하고 있는걸?
 - 수학 모델 (통계 모델) 을 잘 만들어야 된다.
 - ✓ 그런 사람이 잘 있나?
 - > 쉽게 말해서 CB 보다도 더 DB 설계가 어렵다.
 - ✓ 우리 나라에 사용하는 회사가 없다는 이야기도 들었다.
 - > 우리 예제에 나온 상관도는 시간 순서가 없지만
 - ✓ 실제로는 시간 순서도 고려한 모델을 짠다.

Latent Matrix Factorization

- ◆ 그 유명한 Netflix 의 추천 시스템
 - > Kaggle에서 받았다는 건 안 비밀
- ◆ Latent Matrix Factorization??
 - > 잠재 행렬 인수 분해법
 - ➤ 사용자들이 아이템에 점수를 등록해둔 것을
 - ➤ 2개의 메트릭스로 분해한다.
 - ✓ 잠재 요인을 분해해낸다. 정도. (나도 잘 모르겠다)
- ◆ 그래서…
 - > 좋아 보이지만, 넷플릭스니까 가능하다.

Summary

- ◆ 규칙 기반 모델
 - 규칙 기반 모델은 전문가 시스템을 거쳐
 - > 추천 엔진으로 발전하였다
- ◆ 협업 필터링 추천 시스템을 더 알고 싶다면
 - ➤ Collaborative Filtering 추천시스템의 핵심기술
 - http://www.oss.kr/oss_repository14/658203
 - >후에 Latent Factorization 으로 발전 (Netflix)
 - Introduction to Latent Matrix Factorization
 Recommender Systems | by Tumas Rackaitis |
 Towards Data Science