МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра «Инфокогнитивные технологии»

Практические и лабораторные занятия по дисциплине «Проектирование интеллектуальных систем»

Лабораторная работа № 3

«Распознавание изображений на базе НС обратного распространения»

Группа 224-321

Студент Пахомов Денис Владимирович

Преподаватель Кружалов Алексей Сергеевич

Краткое описание

Разработка программы, которая обучает искусственную нейронную сеть (персептрон) распознавать два или более черно-белых изображения.

Цель работы

Изучить принципы работы и алгоритм обучения простейших искусственных нейронных сетей (НС).

Порядок выполнения работы

- Изучить теоретическое введение.
- Сформировать обучающую выборку из 10+ изображений.
- Разработать компьютерную программу (среда разработки выбирается студентом самостоятельно).
- Провести серию из 5+ испытаний с различными исходными данными, выявить ограничения и недостатки однослойных НС для решения задач распознавания.
- Оформить отчет по лабораторной работе.

Требования к функциональности компьютерной программы

- В программе должна быть реализована возможность задания обучающей выборки из внешних файлов изображений.
- Изображения должны быть черно-белыми (bitmap) и размером не менее 9 (3x3) пикселей.
- Программа должна иметь два режима работы: обучения и распознавания.
- Обучение должно производиться по стандартному алгоритму обучения персептрона с использованием дельта-правила.
- В программе должны задаваться следующие настройки:
 - количество входов нейрона, которое соответствует общему числу пикселей изображения,
 - о коэффициент скорости обучения (если его значение постоянно),
 - о правильные варианты элементов обучающей выборки,

- размер ошибки, при котором обучение персептрона завершается (опционально).
- На экранной форме режима обучения должны отображаться:
 - о элементы обучающей выборки (изображения),
 - о настройки алгоритма обучения,
 - о текущие (итоговые) веса нейронов и значение порога активационной функции,
 - о протоколы результатов обучения (значения весов для каждой итерации).
- На экранной форме режима распознавания должны отображаться:
 - распознаваемое изображение (должно выбираться из всего множества),
 - о результат распознавания,
 - о веса нейронов и значение порога активационной функции,
 - о значения выходов всех нейронов до и после применения активационной функции.

Описание выбранной задачи:

Разработка осуществлялась на языке Python.

Блок-схемы:

1) Блок-схема работы функции forward

2) Блок-схема алгоритма обучения

3) Блок-схема алгоритма обучения

Эксперименты:

Таблица 1 - Результаты экспериментов

№	Активация Скрытых слоев	Кол-во эпох	Кол-во данных	Скорость обучения	Accuracy
1	ReLU	6	60000	0.001	92.04%
2	Sigmoid	6	60000	0.001	23.31%
4	ReLU	6	60000	0.01	96.89%
5	Sigmoid	6	60000	0.01	91.38%
7	ReLU	6	60000	0.1	92.47%
8	Sigmoid	6	60000	0.1	96.71%

Общие параметры:

Входное изображение: 28x28

<u>Выходные нейроны</u>: 100 - 50 -10

<u>Порог ошибки: 1*e-10</u>

Параметры:

Функция активации: ReLU

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.001

Accuracy: 92.04%

Результаты работы алгоритма представлены на рисунке 1.

Рисунок 2 – Эксперимент при функции активации ReLU-0.001

 Φ ункция активации: Sigmoid

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.001

Accuracy: 23.31%

Результаты работы алгоритма представлены на рисунке 2.

Рисунок 2 – Эксперимент при функции активации Sigmoid-0.001

<u>Функция активации</u>: ReLU

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.01

Accuracy: 96.89%

Результаты работы алгоритма представлены на рисунке 3.

Рисунок 3 – Эксперимент при функции активации ReLU-0.01

Функция активации: Sigmoid

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.01

Accuracy: 91.38%

Результаты работы алгоритма представлены на рисунке 4.

Эксперимент при функции активации Sigmoid-0.01

Функция активации: ReLU

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.1

Accuracy: 92.47%

Результаты работы алгоритма представлены на рисунке 5.

Эксперимент при функции активации ReLU-0.1

Функция активации: Sigmoid

Кол-во обучающих данных: 60000

Кол-во эпох: 6

Скорость обучения: 0.1

Accuracy: 96.71%

Результаты работы алгоритма представлены на рисунке 6.

Рисунок 6 – Эксперимент при функции активации Sigmoid-0.1

Вывод:

Многослойный перцептрон с обратным распространением ошибки подходит для задач мультиклассовой классификации, при средней скорости обучения и подходящей функции активации для скрытых слоев, значение точности предсказаний может приближаться к 97%.

Наибольший результат показывает перцептрон с ReLU функцией активации скрытых слоев и скоростью обучения 0.01, а наименьший результат показывает перцептрон с Sigmoid функцией активации и скоростью обучения 0.001.

Программный код представлен на GitHub:

https://github.com/GongniR/Mag_2_semester/blob/main/DoIS/LW_3/LW_3.ipynb