Project5 Report

Cheng Ma 105033453, Jinxi Zou 605036454, Shuo Bai 505032786, Xiaoxi Gong 705034355

March 20, 2018

1 introduction

For this project, useful practice in social network analysis is to predict future popularity of a subject or event. Twitter, with its public discussion model, is a good platform to perform such analysis. The available Twitter data is collected by querying popular hashtags related to the 2015 Super Bowl spanning a period starting from 2 weeks before the game to a week after the game. We should use data to train regression model to make prediction for other hash tag set. For the test set, we used trained model to predict the number of tweets after the given time window. And we could infer from the text of the tweet to analyze where the author from. At last, we should define our own work and show how it works. We decided to analyze the sentiment of the tweet to know which team won the game.

2 Popularity Prediction

2.1 Problem 1.1

In this part, we roughly get some basic statistics from the given data, and plot the number of tweets in hour over time for #SuperBowl and #NFL.

Table 1: statistics from the given data

$_{ m tags}$	number of tweets per hour	avg number of followers	avg number of retweets
gohawks	325.49	2203.93	0.21
gopatriots	45.70	1401.90	0.03
sb49	1420.88	10267.32	0.18
superbowl	2301.65	8858.97	0.14
$_{ m nfl}$	442.02	4653.25	0.05
patriots	835.69	3309.98	0.09

And we can also get the number of tweets in hour over time for #SuperBowl and #NFL easily. The plots are shown below.

Figure 1: superbowl: the number of tweets in hour

Figure 2: nfl: the number of tweets in hour

2.2 Problem 1.2

In this problem, the main task is to perform a Linear Regression model with five feature to make a prediction of the total tweets in next hour. We use 1 hour as the time window. We make prediction for next hour by the features from the previous one hour window. We should compute the following five values for each kind of hashtag.

Table 2: Feature and Compute

Total Tweets	Index sum in an hour
Total Retweets	Sum of [metrics][citations][total]
Total Followers	Sum of [author][followers]
Max Followers	Max of [author][followers]
Time	datetime(citation_date)

And for these five hashtags, we use the same way to anlyze them. We will show the result respectively.

2.2.1 GoHawks

For GoHawks tweets. we use linear regression and get the distribution plot as following

Figure 3: GoHawks distributed plot

		OLS Re	gression	Results		
Dep. Varia	 ble:		y R-s	quared:		0.500
Model:			OLS Adj	. R-squared:		0.496
Method:		Least Squar	res F-s	tatistic:		113.4
Date:	M	on, 12 Mar 2	018 Pro	b (F-statistic	:):	6.70e-83
Time:		21:22	:31 Log	-Likelihood:		-4743.0
No. Observ	ations:	!	571 AIC	:		9496.
Df Residua	ls:	!	566 BIC	:		9518.
Df Model:			5			
Covariance	Type:	nonrob	ıst			
	coef	std err	t	P> t	[0.025	0.975
x1	1.2314	0.171	7.206	0.000	0.896	1.56
x2	-0.1286	0.044	-2.899	0.004	-0.216	-0.043
x 3	-0.0002	8.57e-05	-2.043	0.041	-0.000	-6.78e-06
x4	2.793e-05	0.000	0.173	0.863	-0.000	0.000
x 5	8.8307	3.332	2.650	0.008	2.286	15.375
Omnibus:		897.	585 Dur	bin-Watson:		2.220
Prob(Omnib	us):	0.0	000 Jar	que-Bera (JB):	:	749641.637
Skew:		8.	522 Pro	b(JB):		0.00
Kurtosis:		179.	586 Con	d. No.		2.33e+05

Figure 4: GoHawks distributed plot

 $\begin{array}{ll} {\rm R\text{-}squared:} \ \, \mathbf{0.4724817508090412} \\ {\rm RMSE:} \mathbf{957184.6939752336} \end{array}$

2.2.2 GoPatriots

For GoPatriots tweets. we use linear regression and get the distribution plot as following:

Figure 5: GoPatriots distributed plot

OLS Regression Results							
Dep. Variable	e:		y R	-squared:			0.640
Model:			OLS A	dj. R-squa	red:		0.635
Method:		Least Squa	res F	-statistic	::		156.5
Date:	M	on, 12 Mar 2	018 P	rob (F-sta	tistic):		2.44e-95
Time:		21:44	:14 L	og-Likelih	lood:		-3017.5
No. Observat	ions:		446 A	IC:			6045.
Df Residuals	:		441 B	IC:			6065.
Df Model:			5				
Covariance T	ype:	nonrok	ust				
	coef	std err		t P>	• t	[0.025	0.975]
x1	-0.0788	0.290	-0.2	72 0.	786	-0.649	0.491
x2	0.5012	0.254	1.9	71 0.	049	0.001	1.001
x3	0.0003	0.000	1.1	12 0.	267	-0.000	0.001
x4	-0.0004	0.000	-1.6	99 0.	090	-0.001	6e-05
x5	0.6618	0.787	0.8	41 0.	401	-0.886	2.209
Omnibus:		367.	255 D	urbin-Wats	on:		1.951
Prob(Omnibus):	0.	000 J	arque-Bera	(JB):		138888.641
Skew:	-	2.	403 P	rob(JB):			0.00
Kurtosis:		89.	318 C	ond. No.			3.75e+04

Figure 6: GoPatriots distributed plot

 $\begin{array}{l} {\rm R\text{-}squared} \ \, \textbf{0.6298299526540944} \\ {\rm RMSE} \ \, \textbf{44019.54600896945} \end{array}$

2.2.3 NFL

For NFL tweets. we use linear regression and get the distribution plot as following:

Figure 7: NFL distributed plot

		OLS Re	gressio	on Res	ults		
Dep. Vari	able:		у Б	R-squa	red:		0.647
Model:					-squared:		0.644
Method:		Least Squa			istic:		211.7
Date:	Mo	on, 12 Mar 2	018 I	Prob (F-statistic):	5.69e-128
Time:		22:13	:19 I	Log-Li	kelihood:		-4536.2
No. Obser	vations:		582 <i>I</i>	AIC:			9082.
Df Residu	als:		577 E	BIC:			9104.
Df Model:			5				
Covarianc	e Type:	nonrob	ust				
	coef	std err		t	P> t	[0.025	0.975]
x1	0.7393	0.134	5.5	 527	0.000	0.477	1.002
x2	-0.1781	0.064	-2.7	773	0.006	-0.304	-0.052
x 3	7.903e-05	2.64e-05	2.9	994	0.003	2.72e-05	0.000
x4	-7.276e-05	3.61e-05	-2.0	016	0.044	-0.000	-1.87e-06
x 5	7.5271	2.209	3.4	407	0.001	3.188	11.867
Omnibus:		562.	394 I	Durbin	-Watson:		2.326
Prob(Omni	.bus):				-Bera (JB):		341811.410
Skew:		3.		Prob(J			0.00
Kurtosis:		121.	544 (Cond.	No.		4.26e+05

Figure 8: NFL distributed plot

 $\begin{array}{l} {\rm R\text{-}squared} \ \, \textbf{0.5637304797580409} \\ {\rm RMSE} \ \, \textbf{340255.5355600498} \end{array}$

2.2.4 Patriots

For Patriots tweets. we use linear regression and get the distribution plot as following:

Figure 9: Patriots distributed plot

		OLS Re	gression 1	Results		
Dep. Vari Model: Method: Date: Time: No. Obser Df Residu Df Model: Covariance	rvations:	Least Squa Mon, 12 Mar 2 22:19	OLS Adj res F-st 1018 Prol 1:47 Log- 586 AIC 581 BIC	-Likelihood:	ic):	0.681 0.678 247.8 1.88e-141 -5422.9 1.086e+04
	coei	std err	t	P> t	[0.025	0.975]
x1 x2 x3 x4 x5	0.9214 -0.0870 -1.184e-06 0.0002 3.9215	0.059 5 2.62e-05 2 0.000	12.878 -1.476 -0.045 1.770 0.449	0.141 0.964	0.781 -0.203 -5.27e-05 -1.97e-05 -13.238	
Omnibus: Prob(Omni Skew: Kurtosis:	•	0.	000 Jaro 765 Prol 698 Cond	oin-Watson: que-Bera (JB D(JB): 1. No.	,	1.994 692548.491 0.00 7.66e+05

Figure 10: Patriots distributed plot

 $\begin{array}{l} {\rm R\text{-}squared} \ \, \textbf{0.6696695191747575} \\ {\rm RMSE} \ \, \textbf{6382071.540743866} \end{array}$

2.2.5 SB49

For SB49 tweets. we use linear regression and get the distribution plot as following:

Figure 11: SB49 distributed plot

Мог	n, 12 Ma	Equares or 2018 1:27:58 540 535	Adj. F-st Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statisti Likelihood:		0.800 0.800 451.4 2.26e-189 -5325.5 1.066e+04
Мог	n, 12 Ma 22	Equares or 2018 1:27:58 540 535	F-st Prob Log- AIC: BIC:	atistic: (F-statisti Likelihood:	c):	451.8 2.26e-189 -5325.5 1.066e+0
Мог	n, 12 Ma 22	Equares or 2018 1:27:58 540 535	F-st Prob Log- AIC: BIC:	atistic: (F-statisti Likelihood:	c):	2.26e-189 -5325.9 1.066e+0
Мог	n, 12 Ma 22	2018 1:27:58 540 535	Prob Log- AIC: BIC:	(F-statisti Likelihood:	c):	-5325.5 1.066e+0
		540 535 5	AIC: BIC:		•	1.066e+0
		540 535 5	AIC: BIC:			
	nor	5				1.068e+0
	nor					
	nor	robust				
======						
				P> t		
				0.000		
2151	0.09	1	-2.362	0.019	-0.394	-0.036
e-05	1.46e-0	15	1.283	0.200	-9.92e-06	4.73e-05
0001	4.95e-0	15	2.035	0.042	3.47e-06	0.000
		_				
						1.682
		0.000	Jarq	ue-Bera (JB)	:	1781152.70
		14.109	Prob	(JB):		0.00
	2	82.939	Cond	. No.		7.51e+0
	2151 e-05 0001 0590	2151 0.09 e-05 1.46e-0 0001 4.95e-0 0590 16.51	2151 0.091 e-05 1.46e-05 0001 4.95e-05 0590 16.512 	2151 0.091 -2.362 e-05 1.46e-05 1.283 0001 4.95e-05 2.035 0590 16.512 -0.246 1082.406 Durb 0.000 Jarg 14.109 Prob 282.939 Cond	2151 0.091 -2.362 0.019 e-05 1.46e-05 1.283 0.200 0001 4.95e-05 2.035 0.042 0590 16.512 -0.246 0.806	0.000 Jarque-Bera (JB): 14.109 Prob(JB):

Figure 12: SB49 distributed plot

${\rm RMSE}~\bf 21537350.76006268$

2.2.6 SuperBowl

For SuperBowl tweets. we use linear regression and get the distribution plot as following:

Figure 13: SuperBowl distributed plot

	OLS Regression Results							
Dep. V	ariable:		y R	-squared:			0.805	
Model:			OLS A	dj. R-squa	red:		0.804	
Method	:	Least Squa	ares F	-statistic	:		480.7	
Date:		Mon, 12 Mar	2018 P	rob (F-sta	tistic):		9.59e-204	
Time:		22:42	2:09 L	og-Likelih	ood:		-6098.3	
No. Ob	servations:		586 A	IC:			1.221e+04	
Df Res	iduals:		581 B	IC:			1.223e+04	
Df Mod	el:		5					
Covari	ance Type:	nonrol	oust					
=====								
	coef	std err		t P>			0.975]	
x1	2.3014	0.079	28.9				2.457	
x2	-0.2899	0.036	-8.0	59 0.	000	-0.361	-0.219	
x 3	-0.0001	1.87e-05	-7.0	20 0.	000	-0.000	-9.46e-05	
x4	0.0008	0.000	5.4	57 0.	000	0.000	0.001	
x 5	-38.8599	29.764	-1.3	06 0.	192	-97.319	19.599	
Omnibu	s:	1012	.645 D	urbin-Wats	on:		2.317	
Prob(0	mnibus):	0	.000 J	arque-Bera	(JB):		1838502.343	
Skew:		10	123 P	rob(JB):			0.00	
Kurtos	is:	276	.655 C	ond. No.			1.09e+07	

Figure 14: SuperBowl distributed plot

 $\begin{array}{l} {\rm R\text{-}squared} \ \, \textbf{0.8021867271634405} \\ {\rm RMSE} \ \, \textbf{64056953.49228067} \end{array}$

2.3 Problem 1.3

In this part, we choose five features as the train feature, and they are followers number, favorite_count, citation data, length of the title and the number of the twitters. Different from the citation data in the previous part, we use the data from 1 to 600 instead of mapping the data into 24 hours in a day.

2.3.1 GoHawks

For GoHawks tweets, we use linear regression and get the following statistics.

-		OLS R	egressio	on Result	s		
Dep. Variable			y I	 R-squared			0.641
Model:	s:			Adj. R-sq			0.638
Method:		Least Squ		Raj. K-sq F-statist			204.9
Date:						٠.	5.01e-125
Time:	Pi	on, 12 Mar			tatistic):	-4702.0
		19:2		Log-Likel	.inooa:		
No. Observati				AIC:			9414.
Df Residuals:	•			BIC:			9436.
Df Model:			5				
Covariance Ty	ype:	nonrol	bust				
	coef	std err		t	P> t	[0.025	0.975]
x1		4.92e-05					
x2	0.0017	0.000	14.8	365	0.000	0.001	0.002
x3	0.0184	0.113	0.1	163	0.870	-0.204	0.241
x4	0.0212	0.004	5.6	590	0.000	0.014	0.029
x 5	-4.3520	0.393	-11.0	062	0.000	-5.125	-3.579
Omnibus:		974	.336 I	Ourbin-Wa	tson:		2.047
Prob(Omnibus)):	0	.000	Jarque-Be	ra (JB):		697873.381
Skew:		10	.022 I	Prob(JB):			0.00
Kurtosis:		172	.043	Cond. No.			4.99e+04

Figure 15: Regression Results

The R-squared is 0.62049. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

Figure 16: scatter plot of predict versus value of the features

2.3.2 GoPatriots

For GoPatriots tweets, we use linear regression and get the following statistics.

OLS Regression Results							
Dep. Variab	ole:		y	R-squ	ared:		0.771
Model:			OLS	Adj.	R-squared:	1	0.769
Method:		Least Sq	uares	F-sta	atistic:		383.5
Date:		Mon, 12 Mar	2018	Prob	(F-statist	ic):	1.51e-179
Time:		19:	28:10	Log-I	ikelihood		-3681.0
No. Observa	ations:		574	AIC:			7372.
Df Residual	ls:		569	BIC:			7394.
Df Model:			5				
Covariance	Type:	nonre	obust				
	coet	std err		t	P> t	[0.025	0.975]
x1	3.408e-05	4.25e-05		.801	0.423	-4.94e-05	0.000
x2	-0.0024	0.000	-17	7.308	0.000	-0.003	-0.002
x 3	0.0568	0.025	- 2	2.236	0.026	0.007	0.107
x4	0.0136	0.004	:	3.296	0.001	0.006	0.022
x 5	4.2737	0.400	10	0.697	0.000	3.489	5.058
Omnibus:		41	4.948	Durb	in-Watson:		1.848
Prob(Omnibu	ıs):		0.000	Jarqu	ie-Bera (JI	3):	218798.303
Skew:		-:	1.877	Prob	(JB):		0.00
Kurtosis:		91	B.573	Cond	No.		4.50e+04

Figure 17: Regression Results

The R-squared is 0.766665. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

Figure 18: scatter plot of predict versus value of the features

2.3.3 NFL

For NFL tweets, we use linear regression and get the following statistics.

OLS Regression Results						
Dep. Varia	ble:		y R-sq	uared:		0.651
Model:		OL	s Adj.	R-squared:		0.648
Method:		Least Square	s F-st	atistic:		216.8
Date:	1	Mon, 12 Mar 201	8 Prob	(F-statisti	ic):	2.90e-130
Time:		19:28:4	5 Log-	Likelihood:		-4562.4
No. Observ	ations:	58	6 AIC:			9135.
Df Residua	ls:	58	1 BIC:			9157.
Df Model:			5			
Covariance	Type:	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975]
x1	2.136e-05	1.44e-05	1.482	0.139	-6.96e-06	4.97e-05
x2	0.0004	0.000	2.615	0.009	0.000	0.001
x3	0.4042	0.128	3.153	0.002	0.152	0.656
x4	0.0103	0.005	2.106	0.036	0.001	0.020
x 5	-0.7964	0.573	-1.390	0.165	-1.922	0.329
Omnibus:		531.24	3 Durb	in-Watson:		2.319
Prob(Omnib	us):	0.00	0 Jarq	ue-Bera (JB)	:	310334.235
Skew:		2.90	<pre>1 Prob</pre>	(JB):		0.00
Kurtosis:		115.58	9 Cond	. No.		1.11e+05

Figure 19: Regression Results

The R-squared is 0.56326. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

Figure 20: scatter plot of predict versus value of the features

2.3.4 Patriots

For Patriots tweets, we use linear regression and get the following statistics.

		OLS Re	gression	Results		
Dep. Variabl	e:		y R-s	quared:		0.733
Model:			OLS Adj	. R-squared:		0.731
Method:		Least Squa	res F-s	tatistic:		319.3
Date:	M	on, 12 Mar 2	018 Pro	b (F-statistic)):	4.82e-164
Time:		19:29	:40 Log	-Likelihood:		-5370.3
No. Observat	ions:		586 AIC	:		1.075e+04
Df Residuals	:		581 BIC	:		1.077e+04
Df Model:			5			
Covariance T	ype:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0002	2.45e-05	7.939	0.000	0.000	0.000
x2	0.0006	5.78e-05	10.661	0.000	0.001	0.001
x 3	-0.1432	0.323	-0.443	0.658	-0.778	0.492
x4	0.0256	0.007	3.719	0.000	0.012	0.039
x 5	-3.0608	0.596	-5.136	0.000	-4.231	-1.890
Omnibus:		979.	093 Dur	bin-Watson:		2.040
Prob(Omnibus):	0.	000 Jar	que-Bera (JB):		611846.691
Skew:		9.	924 Pro	b(JB):		0.00
Kurtosis:		160.	050 Con	d. No.		8.64e+04

Figure 21: Regression Results

The R-squared is 0.72507. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

Figure 22: scatter plot of predict versus value of the features

2.3.5 SB49

For SB49 tweets, we use linear regression and get the following statistics.

-		OLS R	egress:	ion Re	sults		
Dep. Vari	iable:		У	R-squ	ared:		0.807
Model:			OLS	Adj.	R-squared:		0.805
Method:		Least Squa	ares	F-sta	tistic:		482.5
Date:	Mo	on, 12 Mar	2018	Prob	(F-statisti	c):	2.12e-203
Time:		19:3	1:18	Log-I	ikelihood:		-5720.2
No. Obser	rvations:		582	AIC:			1.145e+04
Df Residu	als:		577	BIC:			1.147e+04
Df Model:			5				
Covariano	ce Type:	nonrol	oust				
		std err				-	0.975]
x1	-1.812e-05				0.005		
x2							9.4e-06
x3					0.450		
x4	0.0177	0.009	1	.886	0.060	-0.001	0.036
x 5	-0.0368	0.732	-0	.050	0.960	-1.474	1.400
Omnibus:		1168	.510	Durbi	n-Watson:		1.563
Prob (Omni	ibus):	0	.000	Jarqu	e-Bera (JB)	:	2110184.460
Skew:		14	.290	Prob(JB):		0.00
Kurtosis:	:	296	.600	Cond.	No.		3.90e+05

Figure 23: Regression Results

The R-squared is 0.80318. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

Figure 24: scatter plot of predict versus value of the features

2.3.6 Superbowl

For Superbowl tweets, we use linear regression and get the following statistics.

			OLS F	Regress	ion Re	esults		
Dep. Variabl	le:			У	R-sq	uared:		0.817
Model:				OLS	Adj.	R-squared:		0.815
Method:		Le	ast Squ	ares	F-sta	atistic:		517.8
Date:		Mon,	12 Mar	2018	Prob	(F-statistic)	:	2.36e-211
Time:			19:3	3:46	Log-	Likelihood:		-6080.6
No. Observat	tions:			586	AIC:			1.217e+04
Df Residuals	3:			581	BIC:			1.219e+04
Df Model:				5				
Covariance 7	Type:		nonro	bust				
	coet	s	td err		t	P> t	[0.025	0.975]
x1	-0.0002	1.	 27e-05	-16	.291	0.000	-0.000	-0.000
x2	0.0027	,	0.000	10	.433	0.000	0.002	0.003
x3	1.7479)	1.129	1	.548	0.122	-0.470	3.966
x4	0.1114	Į.	0.011	9	.846	0.000	0.089	0.134
x 5	-11.6534	ŀ	1.056	-11	.033	0.000	-13.728	-9.579
Omnibus:			1023	.353	Durb	in-Watson:		2.150
Prob(Omnibus	3):		C	.000	Jarqı	ie-Bera (JB):		895687.803
Skew:			10	.745	Prob	(JB):		0.00
Kurtosis:			193	.320	Cond	. No.		4.98e+05

Figure 25: Regression Results

The R-squared is 0.81380. And the top three features are favorite count, length of the tile and the number of twitters. And the scatter plot of predict versus value of the features are given below.

the length of the title

Figure 26: scatter plot of predict versus value of the features

2.3.7 Conclusion

250000

200000

150000

100000

-100000 -5000

the number of the twitters

Predicted size

From the above scatter plots of predict versus value of the features, we can get a relatively linear relationship between the predict values and the selected feature, from which we can conclude that the linear regression is quite successful.

2.4 Problem 1.4

In this section, we use k-fold cross validation to get a more accurate judgments to our model. And we use 90-10% splitting for each model. Apart from this, we also separate the data by three time period, and get the more precise model.

Also, in this part, we use three different models to fit the data. And the models we use in this section is linear model, neutral network and svm.

For all the model, we train the data using these three different models and the final results are shown in the following table.

Table 3: Before Feb. 1, 8:00 a.m

tags	linear model	neutral network	svm
gohawks	303.63	227.77	197.76
gopatriots	15.09	13.97	45.57
sb49	37.15	93.91	1919.62
superbowl	301.88	412.34	2459.91
$_{ m nfl}$	120.04	189.98	231.58
patriots	229.14	287.25	227.44

Table 4: Between Feb. 1, 8:00 a.m. and 8:00 p.m

tags	linear model	neutral network	svm
gohawks	7971.91	5452.35	4284.13
gopatriots	813.88	1471.83	819.53
sb49	75383.89	64287.71	70395.90
superbowl	148049.23	94192.73	81612.61
$_{ m nfl}$	2029.75	4637.33	1214.34
patriots	23030.77	26419.31	57055.42

Table 5: After Feb. 1, 8:00 p.m.

tags	linear model	neutral network	svm
gohawks	35.44	37.67	113.85
gopatriots	3.87	3.56	5.66
sb49	172.56	360.77	285.48
superbowl	183.69	696.34	677.95
$_{ m nfl}$	109.20	466.04	125.82
patriots	88.95	146.23	278.87

From the table we can see that we can have a relatively accurate prediction during the time period 1 and 3, but in period 2, namely between Feb. 1, 8:00 a.m. and 8:00 p.m, we have a less accurate answer.

Finally, we aggregate all the data and get our final result, which is displayed below.

Table 6: Aggregated data

	Time Period 1	Time Period 2	Time Period 3
linear regression	253.27	115980.00	175.92
neutral network	411.36	87689.34	711.74
svm	1080.54	85851.11	385.96

2.5 Problem 1.5

In this part, we will use the all of the hash tag as the training sets. And we will use the training sets to produce a trained model. The number of tweets in the next hour we predict by using with features from previous 5 hour window. The test files have content with different hash tags, then

we need to combine six hash tag sets to be one set. And use this set to train the model. After we train the model, we use the trained model to predict the number of tweets in last hour.

The following graph shows the predicted value vs actual value in the test set. The graph shown in order from sample 1 to sample 10.

predict value:954.6026690346104

actual value:595

predict value:6268.288017288751
actual value:204746

predict value:2474.261899333979
actual value:3188

predict value:410.6939920559822
actual value:1228

predict value:1367.9340393605019
actual value:1718

predict value:111947.98601000413
actual value:204599

predict value:65.41886829541272 actual value:403

predict value:203.0319643273405 actual value:180

predict value:6626.48115244231 actual value:9582

predict value: 239.79483169725566 actual value: 303

Figure 27: predicted value with actual value of 10 samples

From the predicted number of tweets and actual number of tweets, the accuracy of predicted tweets by five hours window improved compared with one hour window. And the training model is good, only when the number is very large, there will be a large difference. However, it is make sense, if we do the ratio of error, it is still good. This is because five hours window includes more information of past activity.

3 problem2

For this problem, we want to use the text as the feature to predict the location of the author of the tweet. In this part, we only use 'super bowl.txt' as the dataset. We use ['highlight'] as the feature. It is simply the content of the tweet. Then we create a list of text of tweet and location. After that, we use some characteristic words to identify the location of the tweet. We split the dataset

into two sets. One is Washington set, the other one is Massachusetts set. At the same time, we clean the text and just remain the words. And according to the content of tweets and location we get to train a classifier. And we will try three different algorithms in this part.

3.1 SVM

In this part, we use SVM algorithm. After we got the words, we convert the content to tf-idf matrix. And we got the accuracy, recall and precision to prove the model works. The reason why we use recall and precision is the datasets are not balanced. The figure below is our result.

Figure 28: Roc of SVM

accuracy:0.759587462664 recall:0.748326648751 precision:0.810059970222

Figure 29: accuracy, recall, precision of SVM

confusion matrix:/n [[6258 5328] [561 12349]]

Figure 30: matrix of SVM

AS we can see from the result, the accuracy of SVM is relatively high enough to prove that we could use the content of tweets to predict the location. And the recall and precision is also high enough to prove that. The ROC curve area is 0.748 which is also relatively high enough to prove the model is work.

3.2 Logistical Regression

Figure 31: Roc of Logistical Regression

accuracy: 0.760771785995 recall: 0.750449909782 precision: 0.805701840284

Figure 32: accuracy, recall, precision of Logistical Regression

confusion matrix:/n [[6484 5102] [758 12152]]

Figure 33: matrix of Logistical Regression

AS we can see from the result, the accuracy of Logistical Regression is relatively high enough to prove that we could use the content of tweets to predict the location. And the recall and precision is also high enough to prove that. The ROC curve area is 0.75 which is also relatively high enough to prove the model is work. We can conclude that the Logistical Regression works well.

3.3 GaussionNB

Figure 34: Roc of GaussionNB

accuracy:0.728684137954 recall:0.717741092794 precision:0.768110643738

Figure 35: accuracy, recall, precision of GaussionNB

confusion matrix:/n [[5972 5614] [1032 11878]]

Figure 36: matrix of GaussionNB

AS we can see from the result, the accuracy of GaussionNB is relatively high enough to prove that we could use the content of tweets to predict the location. And the recall and precision is also high enough to prove that. The ROC curve area is 0.718 which is also relatively high enough to prove the model is work. We can conclude that the GaussionNB works well.

From all of the above result, we could find all of the three algrithoms have the simlair result. That means these three algrithoms could deal with the prediction of location by the content of tweets. However, there is still one have the a liitle bit better effect. We think the Logistical Regression is the best algrithom in these three algrithoms. It has the largest ROC curve area. And the accuarcy, recall and preicsion also relatively higher than other two algrithoms.

4 Problem 3

4.1 Problem proposal:

For part 3, data analysis is that we could learn from the data to know something we do not know. For this part, we focus on the sentiment of the tweets. We could infer many things from the sentiment of the tweets. firstly, we could analyze the sentiment of the tweets and find out the positive ratio of all tweets from Wahsington and Massachusetts to predict which team won the game. It's obviouly that people living in winner state will have larger ratio of positive tweets. Secondly, we could predict the location of the author by the sentiment of the tweets, most people who tweeted positive tweets would be from winner state.

4.2 Solution:

Firstly, we choose tweets from the Washington area and Massachusetts area. The reason is the sentiment of tweet from two teams' area will be more relevant to the game result.

Secondly, We choose the time of data set to be after the game. Because only after the game, the sentiment attribute is more relevant to the result of the game.

Thirdly, We use textblob function to calculate the polarity. We clean the text and remain the words only. If we do not clean the text, it will be many neutral result which is not good for our training.

Fourthly, we find out the number of tweets which are positive from Washington and Massachusetts. The reason is only author from these two area will have strong sentiment feature.

Fifthly, we use polarity to train the model, and then predict the location of the author. After that, calculate the accuracy, recall, and precision of the model. The data in two sets is not balanced. Therefore, we need recall and precision to prove the model works.

At last, we could calculate the ratio of positive tweets and all tweets after the game from Washington and Massachusetts. We could infer from the ratio to know which team won the game.

4.3 Result:

The following graph is the accuracy, recall and precision of the trained model to predict the location of author by sentiment of the tweets.

```
accuracy: 0.9018841800551611
recall: 0.9320803842450701
precision: 0.8293157977598848
```

Figure 37: Accuarcy of trained model

As we can see from the result, the accuracy is good. At the same time, the recall and precision is also reasonable high enough to prove that model is work. In this part, we know the Massachusetts team lost game, so we know the sentiment of tweets from Massachusetts should be negative. We could use sentiment of the tweet to know where the author from.

```
ratio w postive: 0.843939393939
```

Figure 38: ratio of positive tweets in Washington

```
ratio_m_postive:0.364052287582
```

Figure 39: ratio of positive tweets in Massachusetts

From the two graph above, we could know that the ratio of positive tweets in Washington is much higher than the ratio in Massachusetts. Therefore, we could conclude that the Washington team probably win the game. And the result of the 2015 super bowl also prove that analysis result is correct. That solution works.