Oppsummering

- 1. Fysisk størrelse = verdi
- 2. SI System
- 3. Små og store tall
 standard form

 - dekadishe prefiles
- 3000 = 3,0.103 1,0.10°m = 1,0pm
- 1.2 Posisjon og forflytning
 - a) Posisjon (langs en rett linje)

- Posssjoner er avstanden fra origo (nullpunkt).
- Posisjonen til et legeme som beveger seg avhenger av tid \Rightarrow s(t)

b) Posisjonsgraf Vi har målt posisjonen til en person for ulike tidspunkt.

t/s	0 1,0 2,0 3,0 4,0 5,0 6,0 7,0
5/m	0 5,0 9,0 16 20 20 19 17

En person
- løper 20m på 4s
- står stille i 1s
- går tilbake 3m

Forflytningen as i et tidsintervall [t1, t2] er endringen au posisjonen i dette tidsintervallet.

$$\Delta S = S(t_2) - S(t_1)$$

Merk! ved forflytning bakover kan bevegelsen være lengre em forflytningen.

Forflytning er as

Total bevegelse kalles banelengde

Eksempel

Hva er forflytningen til "løperen" vår i avsnitt b) i følgende intervaller?

1)
$$[0, 4,05]$$
 $\Delta S = S(4,0s) - S(0s) = 20m - 0m = 20m$

d) Skalurer og vektorer

Skalar	Vektor	
mass. m	posisjon: 3	
temperatur: T	fart: V	
tid: t	akselerasjon, a	
tid: t		

- a) Gjennomsnittsfart
- b) Momentanfart
- c) Konstant fart

a) Gjennomsnittsfart

$$V = \frac{\Delta S}{\Delta t}$$
 hvor ΔS er forflytningen og Δt er tidsintervallet

$$\frac{70}{51}$$

$$\frac{10}{510}$$

$$\frac{10}{5}$$

$$\overline{V} = \frac{\Delta S}{\Delta t} = \frac{S(t_2) - S(t_1)}{t_2 - t_1}$$

$$\frac{5}{m}$$
 $\frac{40}{30}$
 $\frac{51}{30}$
 $\frac{52}{20}$
 $\frac{5}{20}$
 $\frac{10}{10}$
 $\frac{5}{120}$
 $\frac{5}{20}$
 $\frac{1}{20}$

$$\Delta t = t_2 - t_1 = 25s - 15s = 10s$$

$$\Delta S = S(t_2) - S(t_1)$$

$$= 25m - 30m = -5m$$

$$\overline{V} = \frac{\Delta S}{\Delta t} = \frac{-5m}{10s} = -0,50\frac{m}{s}$$

b) Momentanfart

Farten ved et bestemt tidspunkt

Hva er faites; t?

V: regner ut V i mindel og mindel tidsintervall:

$$V_1 = \frac{\Delta S_1}{\Delta t_1}$$

$$\overline{V}_2 = \frac{\Delta S_2}{\Delta t_2}$$

Momentantfarten V på et bestent tidspunkt t er den grensen gjennomsniktsfarten nærmer seg når tidsinkervallet går mot null.

$$V = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t}$$

V er stigningstollet til posisjonsgrafen ved et bestemt tidspunkt.

For hvilke tidspunkt er momentanfacten

- 1) Positiv ta
- 2) Negtio Es
- 3) Null E2

Eksempel

Anta at posisjoner er gitt ved følgende funksjon:

$$S(t) = b + a \cdot t$$

$$a = 2 \frac{m}{s}$$

$$b = 1 m$$

- b) Hva er gjennomsn: tésfarten for et vilkarlig tids: ntervall?
- C) Hua er momentanfacten for et vilkarlig tidspundet?

$$S(0) = I_{m} + 2\frac{3}{9} \cdot 0 = I_{m}$$

$$S(I_{5}) = I_{m} + 2\frac{3}{5} \cdot I_{5} = 3m$$

$$S(2s) = I_{m} + 2\frac{3}{5} \cdot 2s = 5m$$

$$S(4s) = I_{m} + 2\frac{3}{5} \cdot 4s = 9m$$

a)
$$\frac{5}{m}$$
 $\frac{6}{4}$
 $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{4}$
 $\frac{1}{5}$

b)
$$\sqrt{[1s, 3s]} = \frac{as}{at} = \frac{7m - 3m}{3s - 1s} = \frac{4}{2} \frac{m}{s} = 2 \frac{m}{s}$$

$$V[0,2s] = \frac{05}{0t} = \frac{5m-1m}{2s-0s} = \frac{4m}{2s} = 2\frac{m}{5}$$

$$V = V = 27$$

C) Konstant fart

Derson gjennomsnittslarten er den Samme i alle tidsintervall, sier vi at farten er konstant.

Bevegelsesligning for rettlinget bevegelse med konstant fact:

Nvor So er posisjon ved t=0

V er momentanhastighet

= gjemomsn:ttshastighet