Práctica 5 Integrales complejas y fórmulas de Cauchy

1. Calcular

a)
$$\int_0^{\pi/4} e^{it} dt$$

b)
$$\int_0^\infty e^{-zt} dt \ (\text{Re}(z) > 0) \ \mathbf{c}) \int_1^2 \log(it) dt$$

- 2. a) Sean γ , σ las poligonales de vértices $\{1,i\}$ y $\{1,1+i,i\}$ respectivamente. Hallar una parametrización de γ y de σ y calcular $\int_{\gamma} f$ y $\int_{\sigma} f$, donde $f(z) = |z|^2$.
 - b) Deducir que en el plano complejo deja de ser cierto que toda función continua tiene primitiva.
- 3. Calcular: $\int_{\gamma} 3zdz$ y $\int_{\gamma} 3|z|dz$, para
 - a) γ : segmento que une -1 con 1.
 - **b)** $\gamma: |z| = 1$ de -1 a 1, recorrido en el sentido horario.
 - c) $\gamma: |z| = 1$ de -1 a 1, recorrido en el sentido antihorario.
 - d) γ : poligonal de vértices -1, i, 1.

4. Calcular

- a) $\int_C e^z dz$, si $C: \frac{x^2}{4} + \frac{y^2}{9} = 1$, recorrida una vez en sentido horario.
- **b)** $\int_0^1 x dz$, uniendo ambos puntos con un segmento y luego con la poligonal de vértices: 0, i, 1.
- c) $\int_{|z-a|=r} (z-a)^m dz$ para cada $m \in \mathbb{Z}$, recorriendo la curva una vez en sentido horario
- 5. Sea γ el polígono cerrado de vértices: 1-i , 1+i , -1+i , -1-i , 1-i. Hallar $\int_{\gamma} \frac{dz}{z}$.
- 6. Sean $D\subset\mathbb{C}$ abierto, $\gamma:[a,b]\to D$ diferenciable a trozos y $f:D\to\mathbb{C}$ continua. Se define:

$$\int_{\gamma} f|dz| = \int_{a}^{b} f(\gamma(t))|\gamma'(t)|dt$$

a) ¿Qué se obtiene cuando $f \equiv 1$?

b) Calcular
$$\int_{\gamma} |dz|$$
 para $\gamma : |z - a| = r$.

c) Probar que $\left| \int_{\gamma} f dz \right| \leq \int_{\gamma} |f| |dz|$ y deducir que si $|f(z)| \leq M$ y $\ell = \log(\gamma)$, entonces $\left| \int_{\gamma} f dz \right| \leq M \ell$.

7. Calcular

a)
$$\int_{\gamma} x dz$$
, γ : segmento de 0 a $1+i$

b)
$$\int_{|z|=1} |z-1| |dz|$$

c)
$$\int_{C_i} z^n dz$$
 $(a \in \mathbb{R}_{>0}, n \in \mathbb{N})$

$$C_1: z(t) = ae^{it}, \ 0 \le t \le \pi;$$
 $C_2: z(t) = ae^{it}, \ 0 \le t \le 2\pi$

d)
$$\int_{C_1} \frac{dz}{z-2}$$
 $C_1: |z-2|=4;$ $C_2: |z-1|=5$

e)
$$\int_{\gamma} (x^2 + iy^2)|dz| \quad \gamma : |z| = 2$$

$$\mathbf{f)} \int_{|z-1|=1} \bar{z}^2 dz$$

8. Hallar $\int_{\gamma} z^{-\frac{1}{2}} dz$, donde:

a)
$$\gamma : |z| = 1$$
, $\text{Im}(z) \ge 0$, de 1 a -1.

b)
$$\gamma : |z| = 1$$
, $\text{Im}(z) \le 0$, de 1 a -1.

9. Sea $\gamma(t) = 1 + e^{it}$ para $0 \le t \le 2\pi$. Hallar

a)
$$\int_{\gamma} (z^2 - 1)^{-1} dz$$
.

b) Idem para
$$\gamma(t) = 2e^{it}$$
, $-\pi \le t \le \pi$.

10. Sea f holomorfa en un abierto conexo Ω tal que |f(z)-1|<1 en Ω . Mostrar que $\int_{\gamma} \frac{f'(z)}{f(z)} \ dz = 0$ para cualquier curva cerrada γ contenida en Ω .

Nota: f' es continua.

11. Sean $f: \mathbb{C} - \mathbb{R}_{\leq 0} \to \mathbb{C}$ la rama principal del logaritmo y $g: \mathbb{C} - \mathbb{R}_{\leq 0} \to \mathbb{C}$ la rama del logaritmo que verifica $g(1) = 2\pi i$.

Comparar $\int_{\gamma} f(z) \ dz$ y $\int_{\gamma} g(z) \ dz$, siendo $\gamma: [0,1] \to \mathbb{C} - \mathbb{R}_{\leq 0}$ una curva que une 1 con i.

12. Determinar el dominio de holomorfía de la función f y aplicar el teorema de Cauchy-Goursat para demostrar que $\int_C f(z)dz = 0$ cuando C: |z| = 1, siendo:

a)
$$f(z) = ze^{-z}$$

b)
$$f(z) = \frac{1}{z^2 + 2z + 2}$$

13. Calcular

a)
$$\int_{\gamma} \frac{e^{iz}}{z^2} dz$$
, $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$

b)
$$\int_{\gamma} \frac{\sin z}{z^3} dz, \quad \gamma(t) = e^{it}, \ 0 \le t \le 2\pi$$

c)
$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz$$
, $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$, $n \in \mathbb{N}$

d)
$$\int_{\gamma} \frac{dz}{(z-\frac{1}{2})^n}, \quad \gamma(t) = \frac{1}{2} + e^{it}, \ 0 \le t \le 2\pi, \ n \in \mathbb{N}$$

e)
$$\int_{\gamma} \frac{\log z}{z^n} dz$$
, $\gamma(t) = 1 + \frac{1}{2}e^{it}$, $0 \le t \le 2\pi$, $n \ge 0$.

$$\mathbf{f}) \int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz, \quad \gamma(t) = re^{it}, \ 0 \le t \le 2\pi, \ r \in \mathbb{R}_{>0} - \{2\}.$$

14. Desigualdades de Cauchy

a) Sea f holomorfa en B(a, R) y tal que $|f(z)| \leq M$ para todo $z \in B(a, R)$. Probar que en tal caso:

$$|f^{(n)}(a)| \le \frac{n!M}{R^n}$$

b) Mostrar que las derivadas sucesivas de una función holomorfa en un punto z no pueden satisfacer:

$$|f^{(n)}(z)| > n! \cdot n^n$$

15. Sea f entera y tal que $|f(z)| \leq A + B|z|^k$ para todo $z \in \mathbb{C}$, $A, B \in \mathbb{R}_{>0}$. Probar que f es un polinomio.

Deducir que si f es una función entera tal que para algún $k \ge 0$, $\lim_{|z| \to \infty} \left| \frac{f(z)}{z^k} \right| = 0$, entonces f es un polinomio de grado menor que k (si k > 0) o $f \equiv 0$ (si k = 0).

Deducir además que si f es entera y acotada entonces f es constante.

- 16. Hallar todas las f holomorfas en $|z| \le 1$ tales que $|f(z)| \le \sqrt{5}$ cuando |z| = 1 y $f(\frac{1}{3}) = 2 + i$.
- 17. ¿Existe f holomorfa en |z|<1 tal que $f(\frac{1}{2n})=\frac{(-1)^n}{n}$ para todo $n\in\mathbb{N}$?
- 18. Encontrar los desarrollos en serie de Taylor alrededor del punto a, para:

a)
$$\frac{e^z - 1}{z}$$
, $a = 0$

b)
$$ze^z$$
, $a = -1$

c)
$$(z+1)^{-1}$$
, $a=1$

d)
$$\frac{1-z}{(z+1)^3}$$
, $a=0$

- 19. Desarrollar la función $f(z) = z^{-1}$ en serie de potencias de z+1-i. ¿Cuál es el radio de convergencia de la serie hallada?
- 20. Probar que si la serie $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ es convergente en $|z-z_0| < r$, entonces la serie $F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$ es convergente en este disco y su suma es una primitiva de f. ¿Prueba esto que toda función holomorfa en un abierto Ω admite primitiva en todo Ω ?
- 21. a) Calcular, sin efectuar el desarrollo, el radio de convergencia de las series de Taylor de las siguientes funciones en los puntos indicados

(i)
$$\frac{1}{\operatorname{sen}(1+iz)}$$
 en $z=0$

(ii)
$$\frac{1}{\sin z}$$
 en $z = \frac{3}{2} - i$

- **b)** Sean $\Omega \subset \mathbb{C}$ abierto y $f: \Omega \to \mathbb{C}$ holomorfa. ¿Se puede encontrar siempre una serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, $z_0 \in \Omega$, tal que $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ en Ω ?
- 22. **a)** Sea $f(z) = \sum_{n=0}^{\infty} a_n z^n$ tal que restringida a \mathbb{R} tiene radio de convergencia ∞ . Probar que f es entera.
 - b) Dar una interpretación del hecho que la función real $\frac{1}{1+x^2}$ es indefinidamente derivable en \mathbb{R} pero no es desarrollable en serie de potencias de radio ∞ .