

 $\mathrm{MTH}\ 372$

Hw 2

Due Thursday, 9/16/2021.

Solutions are required, not just answers. Unsupported answers will recieve little or no credit.

Read Chapters 4,5 of *Huber*.

p.28 #4.2 Suppose $Y \sim \text{Unif}[0, 10]$.

- (a) Find $P(Y \in [3, 7])$.
- (b) Find $P(Y \in [6, 12])$.

#4.4 Suppose that $U = (U_1, U_2)$ is uniformly chosen over the region $\{(x; y) : x \geq 2, 0 \leq y \leq 1/x^2\}$.

- (a) What is $D(U \le 5)$?
- (a) What is $P(U_1 \le 5)$? (b) What is $P(U_2 \ge .01)$?

#4.5 (revised) Let U_1 and U_2 be independent uniform random variables over [0, 1]. What is the chance that $5 U_2 < U_1$?

#4.8 Suppose that (U_1, U_2) is uniform over the quadrilateral region with vertices (0, 0); (0, 1); (2, 2); (2, 0). Prove that U_1 and U_2 are not independent. (Hint: Start by drawing a picture.

#5.2 Suppose $U \sim \text{Unif}([0, 1])$ and W = 1/U.

- (a) Find $P(W \ge 2)$.
- (b) Find $P(W \ge -2)$.

#5.4 Let $U \sim \text{Unif}([-1,1])$. Find the cdf of U^3 .

#5.10 Suppose that (U_1, U_2) is uniform over the quadrilateral region with vertices (0, 0); (0, 1); (2, 2); and (2, 0). Find the cdf of U_1 .

#5.12 Suppose $T \sim \text{Exp}(2)$. Find and graph $F_T(t)$.

p.28 #4.2 Suppose $Y \sim \text{Unif}[0, 10]$.

(a) Find $P(Y \in [3, 7])$.

$$P(Y \in [3,7]) = \frac{7-3}{10-0} = \boxed{4}$$

(b) Find $P(Y \in [6, 12])$

#4.5 (revised) Let U_1 and U_2 be independent uniform random variables over [0,1]. What

#4.8 Suppose that (U_1, U_2) is uniform over the quadrilateral region with vertices (0, 0); (0, 1); (2, 2); (2, 0). Prove that U_1 and U_2 are not independent. (Hint: Start by drawing a picture.

$$P(U,71) \cdot P(U_271) = \frac{1.35}{3} \cdot \frac{1}{3} = \frac{1.35}{9} = .1944 \neq P(U,71 \neq U_271) = .25$$

#5.2 Suppose $U \sim \text{Unif}([0, 1])$ and W = 1/U.

(a) Find
$$P(W \ge 2)$$
. WZ 2 \rightleftharpoons $V \le .5$

[a) Find
$$\Gamma(W \ge 2)$$
. $W \ge X \in \mathcal{P} \setminus S = \frac{1}{2}$. $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$. $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$. $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$. $\frac{1}{2} \cdot \frac{1}{2} \cdot$

P1760)=1

