Recursion with multiple base cases

Fibonacci numbers

- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
 - Newborn pair of rabbits (one female, one male) are put in a pen
 - Rabbits mate at age of one month
 - Rabbits have a one month gestation period
 - Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
 - How many female rabbits are there at the end of one year?

Fibonacci

- After one month (call it 0) − 1 female
- After second month still 1 female (now pregnant)
- After third month two females, one pregnant, one not
- In general, <u>females(n)</u> = <u>females(n-1)</u> + <u>females(n-2)</u>
 - Every female alive at month n-2 will produce one female in month n;
 - These can be added those alive in month
 n-1 to get total alive in month n

Month	Females
0	1
1	1
2	2
3	3
4	5
5	8
6	13

Fibonacci

- Base cases:
 - Females(0) = 1Females(1) = 1
- Recursive case
 - Females(n) = Females(n-1) + Females(n-2)

```
def fib(x):
 """assumes x an int >= 0
    returns Fibonacci of x"""
 assert (type(x) == int) and(x >=
 if x == 0 or x == 1:
    return 1
 else:
     return fib(x-1) + fib(x-2)
```