COMP 3804 Assignment 2:

- We can get the Sorted eist in O(nlogk) time by organizing the lists into a minimum heap. - The first element of each K heap is the Smallest element in that heap. we must Search through all the elements in the heap in order to make the min. heap (n time)

[I] - In order to remove an element from each heap, we must execute a runtime of logk to reorganize the array

The product of Steps I & II is (n)(logk) = nlogk time

Diagram: Getting a Sorted Rist Using Steps I & II K heaps

.. the runtimes the product of the # of clements of the time to rebolence the hosp

n. logk -> O(nlogk)

Psudocode:

let mintmay be a minimum sorted array let heaptmay be the the array of all K heaps let n be the # of elements

let K be the # of heaps

let miniteap be a blank heap FOIR all Integers in n:

REMOVE the root from a heap Array heap & add it to min Heap UPDATE the heap in heaptray we removed the post from

END FOR

FOR all Integers in n:

REMOVE the root from mintlesp & add it to the leatherst free position in minArray LADATE minHeap

DISPLAY minArray Ishow the output, the Singly Sorted list of all n numbers Proof: The Algorithm will Sort the elements in order

- we are always zetting the minimum element from each of the K-heaps · Each of the these minimal elements will be added to a new heap which is to contain all the in elements
- The heap W all n elements will be updated each time a new demont is added This ensures that the root W always be the minimal element
- We can then remove the root from the heap of all n elements I add the Post value to the lessemose Position in min Array
 - ·This means mintray will always have larger 2 larger elements being added to the end * AS long as we keep updating the heap every time we remove the root, the root remains the Smollest element in the heap
- To Summerize: We always have the Smallest remaining element added to the arrays & . The resulting array will be sorted least to greatest.

We are given two input heaps called n-heap & K-heap in-heap is 10 = 26 elements

. K-heap: K=13 elements

K-heap: 13 elements

- the lest subtree, A, is Smaller then the root &; We must count the # of Permutations it May hold:

A has a max of n-1 elements (when Z=0)

thus, is P is the Current Permutation of the lest tree, there are (n-1) different nodes we may Pick in the lest tree.

Let ?= fermutation of heap

let C = elements in A

then we may Pick C = elements in C = elements

T(1)=1 only 1 choice for the $T(\lambda) = 1 \cdot T(\lambda) \cdot T(\lambda)$ lest most tree: $T(3) = 1 \cdot T(\lambda) \cdot T(\lambda)$ $T(4) = 3 \cdot P_2 + T(\lambda) \cdot T(\lambda)$ $T(4) = 3 \cdot P_2 + T(\lambda) \cdot T(\lambda)$

T(n) = (n-1Pa) (T(left recursion)) (T(right recursion))

-> tree A has ox elements & tree z has n-1-ox elements

 $(T(n) = (x)(T(\alpha))(T(n-1-\alpha))$

i) If we modify G, I to by adding an edge, we get G=(V,E) as dollows

Gilba are joined who an edge of height 12

the MST is as follows: (Start from A)

5 C. 118 11 wall the start

the minimum serch is 2+3+7+8-12=32

Those	f: Using	Kruska 1/5	Algorihm.	
Pain	Edge	Weight	Start at A	
1	AB	2	Add AB -> 2	total MST:
2	AC	3	Add AC -> 3	2+3+7+8+1
3	BC	4	Ignore BC - S Cycle	
4	xy	7	Add XV -D 7	The MIST
5	XZ	8	Add XZ -D 8	Correct
6	y Z	9	Ignore yz -D Cycle	
7	cy	12	Agd Cy -D 12	1

Stop - D We have n-1 edges, the MST's complete

(A) - as can be seen, the MST of G must always contain the edge Connecting G, & G2, otherwise the MST Won't be delly connected.

The MST is as follows:

the Min. Serch tree is: 2+3+6+6+12=31

Proof via. Kruskals Alg.:

ALL PARTY OF THE P		The second second second	made .	
Pair	Edge	Weight	START at A	total MST:
1	AB	2	ADD AB -D 2	2+3+6+8+12=(31)
2	AC.	3	ADD AC -D3	
3	· 13C	4	IGNORE BC-DCGCle	. The MST above is
1 4	CX	6	ADD CX->6	Correct
5	XZ	8	ADD XZ-D8	
6,	cy	12	ADD Cy -D 12	
7	XY	30	STOP - > 11-1 edges, MST	is Complete
8	YZ	30		
And in case of the last of the				

In this case, the newly added edge of (P=6) weight 6 is in the MST tree because its part of the Min. Search.

i. Both edges may be part of the MST for G.

Results were Proven via. Kruskal's Alg.

They are both the lowest weight edges to a Specific node.

As seen in case 2, it possible that any I edge is in the MST, because although we need atteact 1 edge to connect the Subgraphs, the Second edge is only added When its the minimum weight edge to a Specific node.

If the Alg. Simply treats all a edges as having wight 1, we can ignore this property b) A & has a MST is: D. If it is Connected (theres attends 1 mst) & G is Weighted DIF its disconnected or its unwighted, its not Possible to determine a Path to connect all the nodes 1. If the G is undirected & 1 is met, it must have a MST - There is Certainly a vay to connect all nodes, as theres no restrictions on how the MIST may form. D. If it directed & D is met, then the directedness connot force cycles in the MST & connot make only nodes unreachable I by desinition, A MST Cannot have a Cycle of muse contain all n nodes I Undirected graphs have a maximum of nn-2 Spanning trees w/ 9 minimum of 1 MST IF . If all the edges of G have unique weights, there is I unique MST, otherwise there may be more than one MST (1) The G must have more than one node

I Otherwise, the "MST" Cannot be a tree, as theres only one node

1 - let T be the MST. for G 1 - Deleting the heaviest edge dosn't alter T - Fiven conditions B & B, What Can we say about G? 'We can say three things: 1 G Contains more then the minimum # of loges for Connectedness (n-1) (2) 6 is a Connected Graph 3 We know that the heaviest edge dosn't connect to a vertex of degree 1 (4) The heaviest edge is Part of a Cycle - Prove (1): · Case 1: 6 has less then n-2 esges I the Graph is disconnected, & .: there will be no way to make a MST containing all n nodes · Case 2: F has n-1 odges I If the Graph has the minimal # of edger to be connected, then removing Dry edge wil disconnect the graph. A MST can only be formed from a connected graph (see 5.6 for Proof) - Prove (2): · G is connected, by definition a MST must contain all n nodes. If F is disconnected, a MST Cannot Span all n elements. Thus, in general; & cannot be disconnected in any case. - Prove D: · It the heaviest edge Connects to a vertex of degree I, then removing the edge Will disconnect the graph. This makes dinding the MST impossible (See S.b for more from) - Prove (1): · According to the cut property removing the largest edge from a cycle wont Change a MST. · We remove the heaviest edge from the 6, & the MST dosn't change, This may only occur by way of the cut property.

(i. The heaviest edge is Part of a cycle)

2 5 4 ->

MSt: 1+2+3=6lowest Possible MST: $\frac{(n-1)(n)}{2}$ = $\frac{2\cdot3}{3}=3$

edges 1,2,3,..., IEI in G= (V,E)

e) DT is incorrect

- Diskstra's Algorithm Produces a G of edges representing the Shortest Path from the Source to all nodes in the G.

The outputs: , a spanning tree od G

- Assuming the Spanning tree produced by Dijkstra's Alg. is the MST: 2e6 G be:

2,6

PG 66 - Set. 6 to be the Start

- find the shortest Path to all nodes w/ diskstras Alg.

Dijks	tra's	Alg.						
	A							
1	00	001-	001-	001-	00,-	00,-	0,-	
a (2,6	2,6/	2,6	2,6	2,6	2,6	2	
3	1	216	2,6	2,6	26	2,6	.	
4		1	2,6)	2,6	2,6	2,6	2 -	
5				26				

2,82,6

the real	MST is:	Use Kruskuls Alg.
	Weight	
AB	P	MST is:
AC		1 A 2 B.
BF	1	Total weight = 3
FE		
ED		
DC	-	(.: Diskstra's Alg. generally Worlt find the MST
AG	2	
BG	2	
FG	2	
EG	2	

8) DT is incorrect

The Shortest Path tree is not necisarily the MST when using this Algorithm

- take the following graph:

Krushruls Spanning tree to C is:

Theration A B C1 $Q- \Omega, - \Omega, - \Omega$ 2 $\overline{7}, A$ 2, A \Rightarrow $\overline{3}$ $\overline{7}, A$

as Seen, the MST Joes not Contain AB i a Spanning tree from Krus Krus Krus Krus Alg. is Not necisarily Part of the MST.

	Dijkst	rale A	-Lanth	m:	Char	4 2	L C					
6)	DIJKJII	193 /	35		01211	, 1						
. iti	eration	S	2 -	C	U	V	W	Z		grde	r of build:	
	0	0,-	00	00	00	00	00	00		5-120-120-	42-12V-15W-1	Su
	1	0,-	(13,5)	40,0	00	00	00	00		Note:		
	2		174	(16,9)	113,9	19,9	00	17,2	7	> v&wa	ire both If in	
	3				13,7	18,6	24,0	(17,9)		iteration	8485, eith	er
	4				37,7	(18,0	18,7	11		can be	Picked. I ci	10se
	5				28/W		(181Z))		Vi its th	ne lonest let	er,
	6				28,W)							
<u> </u>	ijkstm's	Spannin	g tree						from	5:		
		3 4	文艺	1				ロコン				
	3	20	2	8 1 10	X	18		C =15				
0		3	((7)	(W))		(1 => S			2	
. (3	J. A	(3) 2 ,	18		_			V=>1				
01	201 16							V=D				
91	eps: 16					0.		24>1	+			
							t at		,9:			
_		4 (2)						S		n 0:	4	
-		20	1							the Prior	· ·	
	(13)	15	18 8	*		AL				omove it	from the Horny	THEIR
	40		TIK 1		1	Makan	The state of the s	eue: C	70			
1	Hon 47 5,0	167					2: 5		Z 1/_12	4-113.6-1	to the	
			18-11	to 0.			141		11 111	0, 1137 0 1)	6 to the	
	tob edges.	- 0			ene	A	nty 9		form	the more		
	queue! 3.7.		1							the quare		
	thon 51 5				ì		3 : S,		- 11/1			
	tall edges				_				18-V,2	4-W, 1 17	*-Z to the o	WELH
À	dd edge	18-W D1	om quell	e				17-2			100	
0	wenes 28-	u,37-1					queuo:	13-4	18-01	24-W		
	vation 6 S											
	dd edge ?			ne -	-	allr	noes i	n Sportning	tree:	8,9,0,2,	Viwi U	
	1		Y					0				

