Quantum mechanics for many-particle systems A short story

Joseph P.Vera

Faculty of Mathematics and Natural Sciences
Department of Physics
University of Oslo

19th December, 2023

Table of Contents

- Second quantization
- 2 Hartree-Fock theory
- 3 Full Configuration Interaction (FCI)
- Many-body perturbation theory

Table of Contents

- Second quantization
- 2 Hartree-Fock theory
- 3 Full Configuration Interaction (FCI)
- 4 Many-body perturbation theory

Figure:

https://shoptr3.magmamusicfestival.com/content?c=many+body+physicsid=32

Useful tool for treating systems composed of a large number of particles.

Introduction

Creation and annihilation operators

Second quantization is quantum mechanics.

Why?

Antisymmetry principle

We have satisfaced this principle using Slater determinants.

We transfer the antisymmetry property of the wave function onto the algebraic properties of creation and annihilation operators [1].

How can I transfer this property?

Define:

Creation operator a_i^\dagger for each particle in the single-particle state ϕ_i

$$a_i^{\dagger}|\phi_{\alpha}\dots\phi_{\gamma}\rangle=|\phi_i\phi_{\alpha}\dots\phi_{\gamma}\rangle$$

Rules

$$a_i^{\dagger} a_j^{\dagger} | \phi_{\alpha} \dots \phi_{\gamma} \rangle = | \phi_i \phi_j \phi_{\alpha} \dots \phi_{\gamma} \rangle$$

 $a_j^{\dagger} a_i^{\dagger} | \phi_{\alpha} \dots \phi_{\gamma} \rangle = | \phi_j \phi_i \phi_{\alpha} \dots \phi_{\gamma} \rangle = -| \phi_i \phi_j \phi_{\alpha} \dots \phi_{\gamma} \rangle$

The last equation it's associated with antisymmetry property of Slater determinant.

If we sum

$$\left(a_i^\dagger a_j^\dagger + a_j^\dagger a_i^\dagger \right) |\phi_\alpha \dots \phi_\gamma \rangle = 0$$

$$a_i^\dagger a_j^\dagger + a_j^\dagger a_i^\dagger = \{ a_i^\dagger, a_j^\dagger \} = 0 \qquad \text{Anticommutator}$$

Pauli exclusion principle

$$a_i^{\dagger} a_i^{\dagger} | \phi_{\alpha} \dots \phi_{\gamma} \rangle = a_i^{\dagger} | \phi_i \phi_j \phi_{\alpha} \dots \phi_{\gamma} \rangle = 0$$

The way to define annihilation operator is similar, a_i , we're going to considerate as the adjoint of the creation operator

$$(a_i^\dagger)^\dagger=a_i$$
 $a_i|\phi_i\phi_lpha\ldots\phi_\gamma
angle=|\phi_lpha\ldots\phi_\gamma
angle$

Rule

$$a_i |\phi_{\alpha}\phi_{\beta}\phi_i\rangle = -a_i |\phi_i\phi_{\beta}\phi_{\alpha}\rangle = |\phi_{\alpha}\phi_{\beta}\rangle$$

Same the creation operator

$$a_i a_j + a_j a_i = \{a_i, a_j\} = 0$$
 Anticommutator

Combining both operators

$$a_i a_j^{\dagger} + a_j^{\dagger} a_i = \{a_i, a_j^{\dagger}\} = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

One-body operator

$$\hat{H}_0 = \sum_i \hat{h}_0(x_i)$$

Antisymmetric *n* particle Slater determinant

$$\Phi(x_1, x_2, \dots, x_n, \alpha_1, \alpha_2, \dots, \alpha_n) = \frac{1}{\sqrt{n!}} \sum_{n} (-1)^n \hat{P} \psi_{\alpha_1}(x_1) \psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n)$$

$$\sqrt{n!} \frac{1}{p}$$

$$=\sum \psi_{\alpha_k'}(\mathbf{x}_i)\langle \alpha_k'|\hat{h}$$

$$\hat{h}_0(x_i)\psi_{\alpha_i}(x_i) = \sum_{\alpha_k'} \psi_{\alpha_k'}(x_i) \langle \alpha_k' | \hat{h}_0 | \alpha_k \rangle$$

$$lpha_k'$$

$$(x_1)\psi_{\alpha_2}(x_2)\ldots\psi_{\alpha_n}(x_n)=$$

$$\alpha'_k$$

$$\langle \psi_{\alpha_2}(x_2)\dots\psi_{\alpha_n}(x_n) - \psi_{\alpha_1}(x_1)\psi_{\alpha_2}(x_2)\dots\psi_{\alpha_n}(x_n) + \dots + \psi_{\alpha_n}(x_n) + \dots + \psi_{\alpha_n}(x_n)$$

$$(\psi_{\alpha_2}(x_2)\dots\psi_{\alpha_n}(x_n))$$

$$=\sum_{\alpha_1'}\langle \alpha_1'|\hat{h}_0|\alpha_1\rangle\psi_{\alpha_1'}(x_1)\psi_{\alpha_2}(x_2)\ldots\psi_{\alpha_n}(x_n)+\ldots+$$

$$\sum_{i} \hat{h}_{0}(x_{i}) \psi_{\alpha_{1}}(x_{1}) \psi_{\alpha_{2}}(x_{2}) \dots \psi_{\alpha_{n}}(x_{n}) =$$

$$= \sum_{i} \langle \alpha'_{1} | \hat{h}_{0} | \alpha_{1} \rangle \psi_{\alpha'_{1}}(x_{1}) \psi_{\alpha_{2}}(x_{2}) \dots \psi_{\alpha_{n}}(x_{n}) =$$

 $+\sum_{\alpha'}\langle \alpha'_{n}|\hat{h}_{0}|\alpha_{n}\rangle\psi_{\alpha_{1}}(x_{1})\psi_{\alpha_{2}}(x_{2})\ldots\psi_{\alpha'_{n}}(x_{n})$

$$\sum_{i} \hat{h}_{0}(x_{i}) \psi_{\alpha_{1}}(x_{2}) \psi_{\alpha_{2}}(x_{1}) \dots \psi_{\alpha_{n}}(x_{n}) =$$

$$= \sum_{\alpha'_{1}} \langle \alpha'_{1} | \hat{h}_{0} | \alpha_{1} \rangle \psi_{\alpha'_{1}}(x_{2}) \psi_{\alpha_{2}}(x_{1}) \dots \psi_{\alpha_{n}}(x_{n}) + \dots +$$

$$+ \sum_{\alpha'_{n}} \langle \alpha'_{n} | \hat{h}_{0} | \alpha_{n} \rangle \psi_{\alpha_{1}}(x_{2}) \psi_{\alpha_{2}}(x_{1}) \dots \psi_{\alpha'_{n}}(x_{n})$$

Considering all the permutations, we can write

$$\hat{H}_{0}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle = \sum_{\alpha'_{1}} \langle \alpha'_{1}|\hat{h}_{0}|\alpha_{1}\rangle|\alpha'_{1},\alpha_{2},\ldots,\alpha_{n}\rangle +$$

$$+ \sum_{\alpha'_{2}} \langle \alpha'_{2}|\hat{h}_{0}|\alpha_{2}\rangle|\alpha_{1},\alpha'_{2},\ldots,\alpha_{n}\rangle + \ldots + \sum_{\alpha'_{n}} \langle \alpha'_{n}|\hat{h}_{0}|\alpha_{n}\rangle|\alpha_{1},\alpha_{2},\ldots,\alpha'_{n}\rangle$$

in second quantization form,

$$|\alpha_1, \alpha_2, \dots, \alpha'_k, \dots, \alpha_n\rangle = \mathbf{a}_{\alpha'_k}^{\dagger} \mathbf{a}_{\alpha_k} |\alpha_1, \alpha_2, \dots, \alpha_k, \dots, \alpha_n\rangle$$

$$\begin{split} \hat{H}_{0}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle &= \sum_{\alpha_{1}'} \langle \alpha_{1}'|\hat{h}_{0}|\alpha_{1}\rangle a_{\alpha_{1}'}^{\dagger} a_{\alpha_{1}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle + \\ &+ \sum_{\alpha_{2}'} \langle \alpha_{2}'|\hat{h}_{0}|\alpha_{2}\rangle a_{\alpha_{2}'}^{\dagger} a_{\alpha_{2}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle + \ldots + \\ &+ \sum_{\alpha_{1}'} \langle \alpha_{n}'|\hat{h}_{0}|\alpha_{n}\rangle a_{\alpha_{n}'}^{\dagger} a_{\alpha_{n}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle = \sum_{\alpha\beta} \langle \alpha|\hat{h}_{0}|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle \end{split}$$

$$\hat{\mathcal{H}}_0 = \sum_{lphaeta} \langle lpha | \hat{h}_0 | eta
angle a_lpha^\dagger a_eta$$

Two-body operator

ody operator
$$\hat{H}_I = \sum_{i < j} V(x_i, x_j)$$
 $V(x_i, x_j) \psi_{\alpha_k}(x_i) \psi_{\alpha_l}(x_j) = \sum_{\alpha_k' \alpha_l'} \psi_{\alpha_k'}(x_i) \psi_{\alpha_l'}(x_j) \langle \alpha_k' \alpha_l' | \hat{v} | \alpha_k \alpha_l \rangle$

$$\sum_{i < j} V(x_i, x_j) \psi_{\alpha_1}(x_1) \psi_{\alpha_2}(x_2) \dots \psi_{\alpha_n}(x_n) =
= \sum_{\alpha'_1 \alpha'_2} \langle \alpha'_1 \alpha'_2 | \hat{v} | \alpha_1 \alpha_2 \rangle \psi_{\alpha'_1}(x_1) \psi_{\alpha'_2}(x_2) \dots \psi_{\alpha_n}(x_n) + \dots +
+ \sum_{\alpha'_1 \alpha'_n} \langle \alpha'_1 \alpha'_n | \hat{v} | \alpha_1 \alpha_n \rangle \psi_{\alpha'_1}(x_1) \psi_{\alpha_2}(x_2) \dots \psi_{\alpha'_n}(x_n) + \dots +
+ \sum_{\alpha'_1 \alpha'_n} \langle \alpha'_2 \alpha'_n | \hat{v} | \alpha_2 \alpha_n \rangle \psi_{\alpha_1}(x_1) \psi_{\alpha'_2}(x_2) \dots \psi_{\alpha'_n}(x_n) + \dots$$

Considering all the distinct pairs, we can write

$$\hat{H}_{I}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle = \sum_{\alpha'_{1}\alpha'_{2}} \langle \alpha'_{1}\alpha'_{2}|\hat{\mathbf{v}}|\alpha_{1}\alpha_{2}\rangle|\alpha'_{1},\alpha'_{2},\ldots,\alpha_{n}\rangle + \ldots + \sum_{\alpha'_{1}\alpha'_{2}} \langle \alpha'_{1}\alpha'_{n}|\hat{\mathbf{v}}|\alpha_{1}\alpha_{n}\rangle|\alpha'_{1},\alpha_{2},\ldots,\alpha'_{n}\rangle + \ldots +$$

$$+\sum_{\alpha_{2}'\alpha_{n}'}\langle\alpha_{2}'\alpha_{n}'|\hat{\mathbf{v}}|\alpha_{2}\alpha_{n}\rangle|\alpha_{1},\alpha_{2}',\ldots,\alpha_{n}'\rangle+\ldots$$

in second quantization form,

$$|\alpha_1,\ldots,\alpha_k',\ldots,\alpha_l',\ldots,\alpha_n\rangle = a_{\alpha_k'}^{\dagger} a_{\alpha_l'}^{\dagger} a_{\alpha_k} a_{\alpha_l} |\alpha_1,\alpha_2,\ldots,\alpha_k,\ldots,\alpha_l,\ldots,\alpha_n\rangle$$

$$\hat{H}_{I}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle = \sum_{\alpha'_{1}\alpha'_{2}} \langle \alpha'_{1}\alpha'_{2}|\hat{\mathbf{v}}|\alpha_{1}\alpha_{2}\rangle \mathbf{a}^{\dagger}_{\alpha'_{1}} \mathbf{a}^{\dagger}_{\alpha'_{2}} \mathbf{a}_{\alpha_{1}} \mathbf{a}_{\alpha_{2}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle + \ldots + \\
+ \sum_{\alpha'_{1}\alpha'_{n}} \langle \alpha'_{1}\alpha'_{n}|\hat{\mathbf{v}}|\alpha_{1}\alpha_{n}\rangle \mathbf{a}^{\dagger}_{\alpha'_{1}} \mathbf{a}^{\dagger}_{\alpha'_{2}} \mathbf{a}_{\alpha_{1}} \mathbf{a}_{\alpha_{n}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle + \ldots +$$

$$+\sum_{\alpha',\alpha'}^{n}\langle\alpha'_{2}\alpha'_{n}|\hat{\mathbf{v}}|\alpha_{2}\alpha_{n}\rangle \mathbf{a}_{\alpha'_{2}}^{\dagger}\mathbf{a}_{\alpha'_{n}}^{\dagger}\mathbf{a}_{\alpha_{2}}\mathbf{a}_{\alpha_{n}}|\alpha_{1},\alpha_{2},\ldots,\alpha_{n}\rangle+\ldots$$

$$\begin{split} &= \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | \hat{v} | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} | \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \rangle \\ &\hat{H}_{I} = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | \hat{v} | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} \end{split}$$

Wick's theorem

It is a powerful tool to solve vacuum expectation values.

Normal product (Normal-ordered product)

Defined as the rearranged product of operators such that all creation operators are to the left of all annihilation operators [2].

$$n[\hat{A}\hat{B}\hat{C}\ldots] = (-1)^{\sigma(\hat{P})}a^{\dagger}b^{\dagger}\ldots uv$$
$$a^{\dagger}b^{\dagger}\ldots uv = \hat{P}(\hat{A}\hat{B}\hat{C}\ldots)$$

$$\langle 0|\hat{X}\,\hat{Y}\,\hat{Z}\dots\hat{W}|0\rangle \longrightarrow \hat{X}\,\hat{Y}\,\hat{Z}\dots\hat{W}$$

$$\hat{X}\,\hat{Y}\,\hat{Z}\dots\hat{W} = \sum_{(1)} N[XYZ\dotsW] + \sum_{(2)} N[XYZ\dotsW] + \dots + \sum_{(\frac{N}{2})} N[XYZ\dotsW]$$

Result

$$\langle 0|\hat{X}\hat{Y}\hat{Z}\dots\hat{W}|0\rangle = \langle 0|\sum_{(\frac{N}{2})}N[XYZ\dotsW]|0\rangle$$

Table of Contents

- Second quantization
- 2 Hartree-Fock theory
- 3 Full Configuration Interaction (FCI)
- 4 Many-body perturbation theory

Ground state energy by E_0

$$E_0 \leq E[\Phi] = \int \Phi^* \hat{H} \Phi d\tau$$

we assume that Φ is normalized. Slater determinant:

$$\Psi(x_1, x_2, \dots, x_n, \alpha, \beta, \dots, \nu) = \frac{1}{\sqrt{N!}} \sum_{p} (-1)^p \hat{P} \underbrace{\psi_{\alpha}(x_1) \psi_{\beta}(x_2) \dots \psi_{\nu}(x_N)}_{\Phi_H}$$

we written

$$E[\Phi] = \sum_{\mu=1}^{N} \int \psi_{\mu}^{*}(x_{i}) \hat{h}_{0} \psi_{\mu}(x_{i}) dx_{i} + \frac{1}{2} \sum_{\mu=1}^{N} \sum_{\nu=1}^{N} \left[\int \psi_{\mu}^{*}(x_{i}) \psi_{\nu}^{*}(x_{j}) \hat{v}(r_{ij}) \psi_{\mu}(x_{i}) \times \psi_{\nu}(x_{j}) dx_{i} dx_{j} - \int \psi_{\mu}^{*}(x_{j}) \psi_{\nu}^{*}(x_{i}) \hat{v}(r_{ij}) \psi_{\mu}(x_{i}) \psi_{\nu}(x_{j}) dx_{i} dx_{j} \right]$$

Compact form

$$E[\Phi] = \sum_{\mu}^{N} \langle \mu | \hat{h}_0 | \mu \rangle + \frac{1}{2} \sum_{\mu\nu}^{N} \left[\langle \mu \nu | \hat{v} | \mu \nu \rangle - \langle \nu \mu | \hat{v} | \mu \nu \rangle \right]$$

$${\cal E}[\Phi] = \sum_{\mu}^{N} \langle \mu | \hat{h}_0 | \mu
angle + rac{1}{2} \sum_{\mu
u}^{N} \langle \mu
u | \hat{v} | \mu
u
angle_{{\cal A}{\cal S}}$$

we can write the variational equation with the Lagrange multipliers

$$\delta\left(E[\Phi]-\sum_{\mu
u}^{N}\epsilon_{\mu
u}\int\psi_{\mu}^{*}\psi_{\mu}\right)=0$$

\ -\/ : .: :.!

Variation with respect
$$\psi_{\mu}^*$$

$$\left(\hat{h}_0 + \sum_{\nu=1}^N \int \psi_{\nu}^*(x_j) \hat{v}(r_{ij}) \psi_{\nu}(x_j) dx_j\right) \psi_{\mu}(x_i) - \left(\int \psi_{\nu}^*(x_j) \hat{v}(r_{ij}) \psi_{\mu}(x_j) dx_j\right) \psi_{\nu}(x_i) = \epsilon_{\mu} \psi_{\mu}(x_i)$$

Varying the coefficients

New basis

$$\psi_{p}(x) = \sum_{\lambda} C_{p\lambda} \phi_{\lambda}(x)$$

$$\Psi(x_{1}, x_{2}, \dots, x_{N}) = \frac{1}{\sqrt{N!}} det \begin{vmatrix} \psi_{p}(x_{1}) & \psi_{p}(x_{2}) & \dots & \psi_{p}(x_{N}) \\ \psi_{p}(x_{1}) & \psi_{p}(x_{2}) & \dots & \psi_{p}(x_{N}) \\ \vdots & \vdots & \dots & \vdots \\ \psi_{p}(x_{1}) & \psi_{p}(x_{2}) & \dots & \psi_{p}(x_{N}) \end{vmatrix}$$

$$= \frac{1}{\sqrt{N!}} det \begin{vmatrix} \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{1}) & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{2}) & \dots & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{N}) \\ \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{1}) & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{2}) & \dots & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{N}) \\ \vdots & \vdots & \dots & \vdots \\ \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{1}) & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{2}) & \dots & \sum_{\lambda} C_{p\lambda}\phi_{\lambda}(x_{N}) \end{vmatrix}$$

Energy functional in terms of the basis function $\phi_{\lambda}(r)$

$$E[\Phi] = \sum_{n}^{N} \langle \mu | \hat{h}_{0} | \mu \rangle + \frac{1}{2} \sum_{n}^{N} \langle \mu \nu | \hat{v} | \mu \nu \rangle_{AS}$$

we define a new basis

$$E[\Phi^{HF}] = \sum_{i}^{N} \langle i | \hat{h}_{0} | i \rangle + \frac{1}{2} \sum_{ij}^{N} \langle ij | \hat{v} | ij \rangle_{AS}$$

$$E[\Phi^{HF}] = \sum_{i=1}^{N} \sum_{\alpha\beta} C_{i\alpha}^* C_{i\beta} \langle \alpha | h | \beta \rangle + \frac{1}{2} \sum_{i,j=1}^{N} \sum_{\alpha\beta\gamma\delta} C_{i\alpha}^* C_{j\beta}^* C_{i\gamma} C_{j\delta} \langle \alpha\beta | v | \gamma\delta \rangle_{AS}$$
$$\langle i | j \rangle = \delta_{ij} = \sum_{\alpha\beta} C_{i\alpha}^* C_{i\beta} \langle \alpha | \beta \rangle = \sum_{\alpha} C_{i\alpha}^* C_{i\alpha}$$

Functional

$$F[\Phi^{HF}] = E[\Phi^{HF}] + \sum_{i=1}^{N} \epsilon_i \sum_{\alpha} C_{i\alpha}^* C_{i\alpha}$$

Minimizing with respect to $C_{i\alpha}^*$

$$\frac{d}{dC_{i\alpha}^*} \left[E[\Phi^{HF}] + \sum_{i=1}^N \epsilon_i \sum_{\alpha} C_{i\alpha}^* C_{i\alpha} \right] = 0$$

$$\sum_{\beta} C_{i\beta} \langle \alpha | h | \beta \rangle + \sum_{j=1}^{N} \sum_{\beta \gamma \delta} C_{j\beta}^* C_{i\gamma} C_{j\delta} \langle \alpha \beta | v | \gamma \delta \rangle_{AS} = \epsilon_i^{HF} C_{i\alpha}$$

changing dummy variables

$$\sum_{\beta} \left\{ \langle \alpha | h | \beta \rangle + \sum_{j=1}^{N} \sum_{\beta \gamma \delta} C_{j\gamma}^* C_{j\delta} \langle \alpha \gamma | v | \beta \delta \rangle_{AS} \right\} C_{i\beta} = \epsilon_i^{HF} C_{i\alpha}$$

We can define

$$h_{\alpha\beta}^{HF} = \langle \alpha | h | \beta \rangle + \sum_{j=1}^{N} \sum_{\gamma\delta} C_{j\gamma}^* C_{j\delta} \langle \alpha \gamma | \nu | \beta \delta \rangle_{AS}$$

Hartree-Fock equations

$$\sum_{\beta} h_{\alpha\beta}^{HF} C_{i\beta} = \epsilon_i^{HF} C_{i\alpha}$$

Table of Contents

- Second quantization
- 2 Hartree-Fock theory
- 3 Full Configuration Interaction (FCI)
- Many-body perturbation theory

Using the determinant formalism

$$\Psi(x_{1}, x_{2}, \dots, x_{N}) = \frac{1}{\sqrt{N!}} det \begin{vmatrix} \phi_{1}(x_{1}) & \phi_{1}(x_{2}) & \dots & \phi_{1}(x_{N}) \\ \phi_{2}(x_{1}) & \phi_{2}(x_{2}) & \dots & \phi_{2}(x_{N}) \\ \vdots & \vdots & \dots & \vdots \\ \phi_{N}(x_{1}) & \phi_{N}(x_{2}) & \dots & \phi_{N}(x_{N}) \end{vmatrix}$$

Product wavefunction + antisymmetry = Determinant

Slater dterminant follow the Pauli principle.

We define the ground state

$$|\Phi_0\rangle = \left(\prod_{i \le F} a_i^\dagger\right) |0\rangle$$

Particle-Hole formalism

$$\begin{split} |\Phi_{i}^{a}\rangle &= a_{a}^{\dagger}a_{i}|\Phi_{0}\rangle \longrightarrow 1p1h \\ |\Phi_{ij}^{ab}\rangle &= a_{a}^{\dagger}a_{b}^{\dagger}a_{i}a_{j}|\Phi_{0}\rangle \longrightarrow 2p2h \\ \vdots \\ |\Phi_{ijk...}^{abc...}\rangle &= a_{a}^{\dagger}a_{b}^{\dagger}a_{c}^{\dagger}\dots a_{i}a_{j}a_{k}|\Phi_{0}\rangle \longrightarrow NpNh \end{split}$$

Expanding the exact state function for the ground state

$$|\Psi_0\rangle = \mathit{C}_0 |\Phi_0\rangle + \sum_{\mathit{ai}} \mathit{C}^{\mathit{a}}_i |\Phi^{\mathit{a}}_i\rangle + \ldots + \sum_{\mathit{abcijk} \ldots} \mathit{C}^{\mathit{abc} \ldots}_{\mathit{ijk} \ldots} |\Phi^{\mathit{abc} \ldots}_{\mathit{ijk} \ldots}\rangle$$

We can define the correlation operator

$$\hat{C} = \sum_{ai} C_i^a a_a^{\dagger} a_i + \ldots + \sum_{abcijk...} C_{ijk...}^{abc...} a_a^{\dagger} a_b^{\dagger} a_c^{\dagger} \ldots a_i a_j a_k$$

$$egin{aligned} C_0 &= 1 \ |\Psi_0
angle &= (1+\hat{\mathcal{C}})|\Phi_0
angle \end{aligned}$$

in particle-hole terms

$$|\Psi_0
angle = \sum_{ph} C_h^p \Phi_h^p = \sum_{ph} C_h^p \hat{A}_h^p |\Phi_0
angle$$

unit normalization

$$\langle \Psi_0 | \Psi_0 \rangle = \sum_{ph} |C_h^p|^2 = 1$$

energy

$$E = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle = \sum_{pp'hh'} C_h^{*p} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'}$$

Diagonalization, finding the variational minimum

$$F = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle - \lambda \langle \Psi_0 | \Psi_0 \rangle$$

Minimization

$$\begin{split} \delta \big[\langle \Psi_0 | \hat{H} | \Psi_0 \rangle - \lambda \langle \Psi_0 | \Psi_0 \rangle \big] &= 0 \\ \delta \big[\sum_{pp'hh'} C_h^{*p} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'} - \lambda \sum_{ph} C_h^{*p} C_{h'}^{p'} \big] &= 0 \\ \sum_{p'h'} \Big\{ \delta C_h^{*p} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'} - \lambda \delta C_h^{*p} C_{h'}^{p'} \Big\} &= 0 \\ \sum_{p'h'} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'} - \lambda C_h^p &= 0 \end{split}$$

multiply by C_h^{*p} and sum over ph

$$\sum_{pp'hh'} C_h^{*p} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'} - \lambda \sum_{ph} |C_h^p|^2 = 0$$

therefore

$$\lambda = E$$

FCI equations

$$\sum_{p'h'} \langle \Phi_h^p | \hat{H} | \Phi_{h'}^{p'} \rangle C_{h'}^{p'} = E C_h^p$$

Table of Contents

- Second quantization
- 2 Hartree-Fock theory
- 3 Full Configuration Interaction (FCI)
- 4 Many-body perturbation theory

Ground state of the system and expand

$$|\Psi_0\rangle = |\Phi_0\rangle + \sum_{m=1}^{\infty} C_m |\Psi_m\rangle$$

Assume that true ground state (unperturbed hamiltonian)

$$\hat{H}_0|\Phi_0\rangle=W_0|\Phi_0\rangle$$

 $|\Psi_0\rangle$ is a wave function unknow, not normalized. We used an intermediate normalization

$$\langle \Phi_0 | \Psi_0 \rangle = 1$$

 $\langle \Phi_0 | \Phi_0 \rangle = 1$

Schrödinger equation

$$\begin{split} \hat{H}|\Psi_0\rangle &= E|\Psi_0\rangle \\ \langle \Phi_0|\hat{H}|\Psi_0\rangle &= \langle \Phi_0|E|\Psi_0\rangle = E \end{split}$$

and

$$\langle \Psi_0 | \hat{H}_0 | \Phi_0 \rangle = \langle \Psi_0 | W_0 | \Phi_0 \rangle = W_0$$

correlation energy

$$\langle \Phi_0 | \hat{H}_I | \Psi_0 \rangle = E - W_0 = \Delta E$$

we have assumed that our model space

$$\hat{P} = |\Phi_0\rangle\langle\Phi_0|$$
 $\hat{Q} = \sum_{m=1}^{\infty} |\Phi_m\rangle\langle\Phi_m|$

rewrite the exact wave function

$$|\Psi_0
angle=(\hat{P}+\hat{Q})|\Psi_0
angle=|\Phi_0
angle+\hat{Q}|\Psi_0
angle$$

adding and a subtracting $\omega |\Psi_0
angle$ in Schrödinger equation

$$(\omega - \hat{H}_0)|\Psi_0\rangle = (\omega - E + \hat{H}_I)|\Psi_0\rangle$$

 $|\Psi_0\rangle = \frac{1}{\omega - \hat{H}_0}(\omega - E + \hat{H}_I)|\Psi_0\rangle$

multiplying by \hat{Q}

$$|\hat{Q}|\Psi_0
angle = rac{\hat{Q}}{\omega - \hat{H}_0}(\omega - E + \hat{H}_I)|\Psi_0
angle$$

therefore, we can define

$$|\Psi_0\rangle = |\Phi_0\rangle + \frac{\hat{Q}}{\omega - \hat{H}_0}(\omega - E + \hat{H}_I)|\Psi_0\rangle$$

E and $|\Psi_0\rangle$ are unknow

$$|\Psi_{0}\rangle = \sum_{i=0}^{\infty} \left\{ \frac{\hat{Q}}{\omega - \hat{H}_{0}} (\omega - E + \hat{H}_{I}) \right\}^{i} |\Phi_{0}\rangle$$
$$\Delta E = \sum_{i=0}^{\infty} \langle \Phi_{0} | \hat{H}_{I} \left\{ \frac{\hat{Q}}{\omega - \hat{H}_{0}} (\omega - E + \hat{H}_{I}) \right\}^{i} |\Phi_{0}\rangle$$

In Rayleigh-Schrödinger perturbation theory we set $\omega=W_0$

$$\Delta E = \langle \Phi_0 | \left(\hat{H}_I + \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} (\hat{H}_I - \Delta E) + \right.$$

$$+ \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} (\hat{H}_I - \Delta E) \frac{\hat{Q}}{W_0 - \hat{H}_0} (\hat{H}_I - \Delta E) + \dots \right) | \Phi_0 \rangle$$

Since
$$[\hat{Q}, \hat{H}_0] = 0$$

$$\hat{Q}\Delta E|\Phi_0\rangle=\hat{Q}\Delta E|\hat{Q}\Phi_0\rangle=0$$

$$\Delta E = \langle \Phi_0 | \left(\hat{H}_I + \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I + \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} (\hat{H}_I - \Delta E) \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I + \dots \right)$$

$$egin{align} \Delta E &= \sum_{i=1}^{\infty} \Delta E^{(i)} \ \Delta E^{(1)} &= \langle \Phi_0 | \hat{H}_I | \Phi_0
angle \ \Delta E^{(2)} &= \langle \Phi_0 | \hat{H}_I rac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I | \Phi_0
angle \ \end{split}$$

$$\Delta E^{(3)} = \langle \Phi_0 | \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I | \Phi_0 \rangle - \langle \Phi_0 | \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \Delta E \frac{\hat{Q}}{W_0 - \hat{H}_0}$$

$$\begin{split} \Delta E^{(3)} &= \langle \Phi_0 | \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I | \Phi_0 \rangle - \\ &- \langle \Phi_0 | \hat{H}_I \frac{\hat{Q}}{W_0 - \hat{H}_0} \langle \Phi_0 | \hat{H}_I | \Phi_0 \rangle \frac{\hat{Q}}{W_0 - \hat{H}_0} \hat{H}_I | \Phi_0 \rangle \end{split}$$

References

- [1] Szabo, A. & Ostlund, N. (1996). Modern quantum chemistry. Dover Publications.
- [2] Shavitt, I. & Bartlett, R. (2009). Many-body methods in chemistry and physics. Cambridge University Press.
 - [3] Morten Hjorth-Jensen. (2023). Lectures on Quantum mechanics for many-particle systems course.