LIVE SECURITY

:실시간 CCTV 감지 시스템

MID - Presentation 오픈소스(가)분반 7팀 남채린, 손준오, 송병현, 장준용

Table of contents

01

Aim & Background

목표 & 핵심내용, 개발동기, 극복방안, 차별점, 시스템 요약

02

Contents

시스템 구조, 카메라 연결, APPENDIX, 구현테스트, 향후 계획

03

Source & References

출처 및 참고자료

목표 & 핵심내용

목표 :

허점이 많은 기존의 도난방지 시스템과 손님 출입 벨을 보완하여 직접 매장주인과 근무자에게 알림을 제공하는 앱을 개발하는 것

핵심내용:

카운터 동작인식 기능을 통하여 기존 무인 편의점 시스템들과는 다르게 도난을 즉각적으로 확인할 수 있고, 출입 감지를 통해 근무자의 더욱 수월한 업무 수행을 가능하게 한다.

개발 동기

1. 무인 병행 점포에 대한 도난사건 증가

- 최근 들어 무인운영을 병행하는 점포의 도난 사건 발생
- 이를 신속하게 대응하기 위해 CCTV의 단점을 보완
- 실제로 팀원 중 한명이 근무하는 편의점에서 부실한 도 난 방지 시스템으로 인해 도난 범죄를 겪음

2. 1인 매장 출입 손님에 대한 부족한 시스템

- 혼자 매장을 운영할 시 손님 출입에 대해 알아차리지
 못할 수 있다
- '손님 출입 벨'이 존재하나 성능이 확실하게 발휘되지
 못할 때가 존재

<편의점 내 카운터 도난 장면>

Part 3 극복 방안

Part 3 극복 방안

차별점

<이마트24의 출입 인증기>

<동작감지 비상벨>

기존 무인매장의 시스템

출입인증기: 고객의 카드를 인식하여 출입하게 하는 시스템. 고객의 신원을 파악하고 고객의 출입정보를 저장한다

단점: 고객이 매장 내부에서 도난행위를 할 수 있는지 실시간으로 알 수 없으며, 고객들이 동시에 들어가면 카드를 인식하지 않은 고객의 신분을 파악할 수 없다.

동작감지 비상벨: 카운터 내부나 입구의 동작을 감지하여 울리는 벨. 카운터의 동작이 감지되면 벨이 울려 범죄자를 쫓아낸다. 또한 고객의 출입을 감지하여 근무자가 들을 수 있도록 벨을 울려준다.

단점: 도난행위자에게 겁을 먹일 뿐 실시간으로 도난 행위를 막을 순 없다. 또한 고객의 출입을 감지하여 울려도 근무자가 창고에 있어 듣지 못하는 등 알아차리지 못하는 경우가 많다.

차별점

<이마트24의 출입 인증기>

실시간 CCTV 감지 시스템

- 실시간으로 CCTV 동작감지를 통해 카운터의 도난행위를 즉각적으로 운영자에게 알려 출입인증기와 동작감지 비상벨의 단점을 보완할 수 있다.
- 실시간으로 CCTV 동작감지를 통해 고객의 출입을 근무자의 핸드폰에 즉각적으로 알림을 제공해 동작감지 비상벨의 단점을 보완할 수 있다.

시스템 요약

실시간 CCTV 동작감지 시스템

고객 출입 감지 시스템

고객이 출입하면 운영자의 휴대폰 으로 진동과 알림을 제공

도난 방지 시스템

실시간으로 카운터를 녹화해 도난을 실시간으로 감지

Contents

시스템 구조, 카메라 연결, APPENDIX, 구현테스트, 향후 계획

시스템 구현

시스템 구조

Part 2 시스템 구조

카메라 연결

<실제 편의점 CCTV>

도난 방지 시스템: 카운터를 촬영하는 CCTV(사진의 <mark>적</mark> 색 사각형)를 연결하여 구현

이유

- 기술의 한계로 매장의 상품을 도난하는 것은 막을 수 없다
- 무인매장은 카운터가 없지만, 무인운영과 유인운영을 병행하는 매장은 카운터가 존재
- 도난 방지 시스템의 목표는 카운터에 있는 귀중품(돈, 담배 등)의 도난을 막는 것

고객 출입 감지 시스템: 매장 입구를 촬용하는 CCTV(사 진의 주황색 사각형)를 연결하여 구현

이유

- 출입하는 손님들을 더욱 효율적으로 감지할 수 있다

```
import cv2
import datetime
from PIL import ImageFont, ImageDraw, Image
import numpy as np
import os
from tkinter import *
def get_diff_img(frame_a, frame_b, frame_c, threshold):
                                                          # 쉽게 말해서 프레<mark>립이 바뀌면 차이가 있구나 그리고 얼마정도 차이가 있구나를</mark>
    # 3 프레임의 영상을 모두 흑백으로 전환 -- 흑백은 처리시간이 3분의1이므로 흑백으로 바꾼것(RGB색)
    frame_a_gray = cv2.cvtColor(frame_a, cv2.COLOR_BGR2GRAY)
    frame_b_gray = cv2.cvtColor(frame_b, cv2.COLOR_BGR2GRAY)
    frame_c_gray = cv2.cvtColor(frame_c, cv2.COLOR_BGR2GRAY)
    # 1,2 프레임, 2,3 프레임 영상들의 차를 구함
    diff_ab = cv2.absdiff(frame_a_gray, frame_b_gray)
    diff_bc = cv2.absdiff(frame_b_gray, frame_c_gray)
    # 영상들의 차가 threshold 이상이면 값을 255(백색)으로 만들어줌
    ret, diff_ab_t = cv2.threshold(diff_ab, threshold, 255, cv2.THRESH_BINARY)
    ret, diff_bc_t = cv2.threshold(diff_bc, threshold, 255, cv2.THRESH_BINARY)
    diff = cv2.bitwise_and(diff_ab_t, diff_bc_t)
    # 영상에서 1이 된 부분을 적당히 확장해줌(morpholgy)
    k = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
    diff = cv2.morphologyEx(diff, cv2.MORPH_OPEN, k)
    diff_cnt = cv2.countNonZero(diff)
    return diff, diff_cnt
```

```
capture = cv2.VideoCapture(0)
capture.set(cv2.CAP PROP FRAME WIDTH, 640)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
fourcc = cv2.VideoWriter_fourcc(*'XVID') # 영상을 기록할 코덱 설정
font = ImageFont.truetype('fonts/SCDream6.otf', 20) # 글꼴파일을 불러옴
is record = False
                                    # 녹화상태는 처음엔 거짓으로 설정
on record = False
threshold = 40 # 영상 차이에 사용할 threshold 설정
diff_max = 10 # 영상 차이 픽셀의 개수(이것 이상이면 움직임이 있다고 결정)
cnt_record = 0 # 영상 녹화 시간 관련 변수
max_cnt_record = 5 # 최소 촬영시간
# 초기 프레임으로 사용할 프레임들을 저장
ret, frame_a = capture.read()
ret, frame_b = capture.read()
```

```
while True:
   now = datetime.datetime.now()
   nowDatetime = now.strftime('%Y-%m-%d %H:%M:%S')
   nowDatetime_path = now.strftime('%Y-%m-%d %H_%M %S') # 파일이름으로는 :를 못쓰기 때문에 따로 만들어줌
   ret, frame_c = capture.read()
   diff, diff cnt = get diff img(frame a=frame a, frame b=frame b, frame c=frame c, threshold=threshold)
   if diff cnt > diff max:
      cv2.imwrite("capture/capture" + nowDatetime_path + ".png", frame) # 파일이름(한글안됨), 이미지
      is record = True # 녹화 준비
      if on record == False:
          video = cv2.VideoWriter("움직임이 감지됨 " + nowDatetime_path + ".avi", fourcc, 1, (frame_c.shape[1], frame_c.shape[0]))
       cnt_record = max_cnt_record
   if is_record == True: # 녹화중이면
      print('녹화 중')
      video.write(frame_c) # 현재 프레임 저장
       cnt_record -= 1 # 녹화시간 1 감소
      on_record = True # 녹화중 여부를 참으로
   if cnt_record == 0: # 녹화시간이 다 되면
      is_record = False # 녹화관련 변수들을 거짓으로
      on_record = False
   cv2.imshow("diff", diff)
   frame = np.array(frame_c)
```

```
from tkinter import *
     import wo
11
     root=Tk()
     root.title("말림")
12
     root.geometry("320x240")
13
     def start():
         wo.cm()
         root.quit()
17
     def done():
         root.quit()
21
     Label(root, text="움직임 감지됨\n카메라 연결", padx=20, pady=20).pack(side="top")
23
     frame run = Frame(root)
     frame_run.pack(fill="x", padx=5, pady=5)
     btn_close = Button(frame_run, padx=5, pady=5, text="아니오", width=12, command=done)
     btn_close.pack(side="bottom", padx=5, pady=5)
     btn_start = Button(frame_run, padx=5, pady=5, text="OH", width=12, command=start)
     btn_start.pack(side="bottom", padx=5, pady=5)
     root.mainloop()
```

APPENDIX

파이어베이스 서버에서 python코드를 통해 모바일로 알림을 보낸다

APPENDIX

모바일 푸시 알림을 위해 안드로이드 스튜디오에 파이어베이스 모듈 추가

위 코드를 통해 앱이 백그라운드에서 실행될 때 메시지를 전송받을 수 있다.

Part 4 구현 테스트

Part 4 구현 테스트

Part 4 구현 테스트

CCTV에서 동작 감지 시 알림이 오는 것을 확인할 수 있다.

Source & References

출처 및 참고자료

출처 & 참고자료

https://www.youtube.com/watch?v=bKPIcoou9N8&list=PLMsa_0kAjjrd8hYYCwbAuDsXZmHpqHvIV&index=3

https://pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opency/

https://velog.io/@jun7332568/flutter%ED%94%8C%EB%9F%AC%ED%84%BO-%ED%91%B8%EC%8B%9C%EC%95%8C%EB%9E%8C%EC%95%88%EB%93%9C%EB%A1 %9C%EC%9D%B4%EB%93%9C-%EA%B5%AC%ED%98%84%ED%95%98%EA%B8%B0with-firebase

https://www.youtube.com/@GDSB

https://stackoverflow.com/questions/40514508/opencv-detect-movement-in-python

https://github.com/opencv/opencv/tree/master/data/haarcascades

https://sonagiya.tistory.com/entry/FCM-%ED%91%B8%EC%8B%9C-%EB%B3%B4%EB%82%B4%EA%B8%B0-with-Python

출처 & 참고자료

-파이어 베이스 링크

https://console.firebase.google.com/project/opensource-team7/overview?hl=ko4

-오픈소스 7팀 깃허브

https://github.com/Opensource7team/Opensource7team