Universitatea Politehnica din București

Facultatea de Automatică și Calculatoare

Tema 2 Laborator

Sisteme cu microprocesoare

Interfațarea sistemului RISC Motorola PowerPC 7410 cu dispozitivul TSI107 Host Bridge

Realizat de:

Lăbău-Cristea Andrei-Liviu 343C1 Blaga Ana-Maria Andreea 344C5

Descrierea temei:

Tundra TSI107 Host Bridge pentru PowerPC este un dispozitiv care asigură interconectarea intre procesoare PowerPC, periferice PCI și memoria locală. De asemenea, dispozitivul asigură multe alte necesități pentru sistemele încorporate precum: control de înaltă performanță a memoriei și suport pentru procesoare multiple, controller DMA, controller întreruperi, unitate I2O și unitate I2C.

În scopul realizării temei am ales interfațarea acestui dispozitiv cu microprocesorul RISC MPC7410 - a doua implementare a celei de a patra generații (G4) de microprocesoare a producătorului Freescale Semiconductor (actual NXP Semiconductors). Acesta implementează întreaga arhitectură pe 32 biți PowerPC.

Semnalele intefatate ale dispozitivului conform datasheet sunt următoarele:

Tsi107 Pin	Processor Pin	External Pull-ups?	Description
A(0:31)	same	Optional ¹	Address bus
DH(0:31), DL(0:31), DP(0:7)	same	No	Data Bus (note: not the same as the MDH/MDL/PAR memory bus).
TSIZ(0:2), TBST	same	Optional	Address info (size, burst)
TT(0:4)	same	Optional	Address types (read, write, atomic, cache)
CI, GBL, WT,	same	Optional	Address coherency
TS, TA, TEA	same	Recommended ³	Address/Data tenure start and completion
AACK, ARTRY	same	Recommended ³	Address tenure completion signals
BRO, BGO, DBGO	BR, BG, DBG	Optional	Bus request/grant
BR1, BG1, DBG1	BR, BG, DBG	Optional	Bus request/grant (optional second CPU)
none	ABB, DBB ²	Optional	Bus busy (unused by Tsi107)

Table 1. Tsi107 Processor Bus Connections

Schema bloc a sistemului:

Pe baza detaliilor tehnice din datasheets am realizat designul sistemului cu 5 componente:

- modulul **mpc7410**: un automat ce procesează acțiunile de pe magistrală și poate transmite sau cere adrese și date
- modulul **tsi107**: comunică cu mpc7410 și rolul său este de aștepta date pe magistrală și de a scrie în memorie
- modului **mx9_sdramfsm:** automat finit de stări ce reprezintă memoria sdram a sistemului
- 2 splittere pentru semnalele DH (data bus) și CS (chip select)

Schema detaliată a sistemului:

Rezultatele simulării:

