Deep Natural Language Processing

Reyyan Yeniterzi
Sabancı University

reyyan@sabanciuniv.edu

3. Veri Bilimi Yaz Okulu (VBYO 2019)

Outline

- Language Modeling
 - Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - Recurrent Neural Network Language Models (RNNLM)
- □ Sequence-to-Sequence Models
- Attention Models

□ If not stated otherwise, images are from "Neural Network Methods for Natural Language Processing" book by Yoav Goldberg

Language Modeling

- Probability of a sequence of words
 - *P(the, quick, brown, fox, jumps, over)*
- Probability of seeing a particular word after a sequence of words
 - □ *P*(*the* | *the*, *quick*, *brown*, *fox*, *jumps*, *over*)

$$p(w_i|w_1, w_2, \dots, w_{i-1}) = \frac{p(w_1, w_2, \dots, w_{i-1}, w_i)}{p(w_1, w_2, \dots, w_{i-1})}$$

□ The Chain Rule

$$P(w_{1:n}) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_{1:2})P(w_4 \mid w_{1:3}) \dots P(w_n \mid w_{1:n-1})$$

□ The Markov Assumption

$$P(w_{i+1} \mid w_{1:i}) \approx P(w_{i+1} \mid w_{i-k:i})$$

$$P(w_{1:n}) \approx \prod_{i=1}^{n} P(w_i \mid w_{i-k:i-1})$$

□ The Chain Rule

$$P(w_{1:n}) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_{1:2})P(w_4 \mid w_{1:3}) \dots P(w_n \mid w_{1:n-1})$$

□ The Markov Assumption

$$P(w_{i+1} \mid w_{1:i}) \approx P(w_{i+1} \mid w_{i-k:i})$$

Count-based (MLE-based) Language Modeling (ngrams)

Apply Maximum Likelihood Estimate over a large corpus

$$\hat{p}_{\text{MLE}}(w_{i+1} = m | w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

Apply Maximum Likelihood Estimate over a large corpus

$$\hat{p}_{\text{MLE}}(w_{i+1} = m | w_{i-k:i}) = \frac{\#(w_{i-k:i+1})}{\#(w_{i-k:i})}$$

□ Effective but ...

$$\#(w_{i-k:i+1}) = 0$$

□ Smoothing: Steal a bit of probability mass from more frequent events and give it to the unseen events

- □ Pros
 - Very scalable, can be trained on very large data easily
 - Constant time evaluation during testing
 - Sophisticated smoothing techniques help
- □ Cons
 - Scaling to larger ngrams is hard
 - Larger ngrams are sparse
 - Very expensive in terms of memory

- ☐ Train: "Ms. Jane Brown"
- Test: "Ms. Açılay Brown"

- □ Problem 1: Intervening words cause limited context modeling
 - □ Train: "Ms. Jane Brown"
 - Test: "Ms. Açılay Brown"
 - Seeing 'Ms.' should be useful to guess 'Brown'
 - Count-based LMs do backoff and lose context
- □ Proposed Solution: Skip-gram LMs
 - Instead of conditioning on previous word, condition on two words ago

- Train: "The cat is walking in the bedroom"
- Test: "A dog was running in a room"

- □ Problem 2: Ignoring the "similarity" between words
 - Train: "The cat is walking in the bedroom"
 - Test: "A dog was running in a room"
 - Seeing the first sentence in the training corpus should be useful for the second sentence during testing
- □ Proposed Solution: Class-based LMs

- □ Train: "For tennis class, he wanted to buy his own ..."
- Test: "For programming class, he wanted to buy his own ..."

- □ Problem 3: Cannot handle long-distance dependencies
 - □ Train: "For tennis class, he wanted to buy his own racquet"
 - Test: "For programming class, he wanted to buy his own computer"

- Count-based (MLE-based) Language Modeling (ngrams)
- □ Neural Network Language Models (NNLM)
 - Bengio, Yoshua, et al. "A Neural Probabilistic Language Model." Journal of Machine Learning Research 3, 2003.

- Count-based (MLE-based) Language Modeling (ngrams)
 - \blacksquare # possible ngrams over vocabulary V is $|V|^n$
 - Increase n by 1 will result in a |V| fold increase
- □ Neural Network Language Models (NNLM)
 - Bengio, Yoshua, et al. "A Neural Probabilistic Language Model." Journal of Machine Learning Research 3, 2003.
 - The fight with the curse of dimensionality!

Curse of Dimensionality

□ As dimensions grow, dimensions space increases exponentially

Curse of Dimensionality

- □ As dimensions grow, dimensions space increases exponentially
 - High data sparsity
 - More storage space
 - More processing time

Curse of Dimensionality

- □ As dimensions grow, dimensions space increases exponentially
 - High data sparsity
 - More storage space
 - More processing time

Fighting the Curse of Dimensionality

- Generalization btw semantially & syntactically similar words
- Similar words are expected to have similar feature vectors
 - Training data:
 - The cat is walking in the bedroom
 - □ Test data:
 - A dog was running in a room
 - The cat is running in a room
 - A dog is walking in a bedroom
 - The dog was walking in the room

Neural Probabilistic Language Model

- Distributed Representations
 - A distributed word feature vector
 - Real-valued vector
 - # features <<< vocabulary size
 - Learn the LM and word feature vectors simultaneously

- Count-based (MLE-based) Language Modeling (ngrams)
 - \blacksquare # possible ngrams over vocabulary V is $|V|^n$
 - lacksquare Increase n by 1 will result in a |V| fold increase
- □ Neural Network Language Models (NNLM)
 - # parameters:
 - \blacksquare linearly with the size of the input window n
 - linearly with the size of the vocabulary
 - Amount of computation required >> n-gram models

- Count-based (MLE-based) Language Modeling (ngrams)
 - \blacksquare # possible ngrams over vocabulary V is $|V|^n$
 - Increase n by 1 will result in a |V| fold increase
- □ Neural Network Language Models (NNLM)
 - # parameters:
 - \blacksquare linearly with the size of the input window n
 - linearly with the size of the vocabulary
 - Amount of computation required >> n-gram models

- □ Brown corpus: 1.2M words
 - Count-based (MLE-based) Language Modeling (ngrams)
 - Perplexity: 312 (SOA: Class-based back-off)
 - Neural Network Language Models (NNLM)
 - Perplexity: 270

- □ Brown corpus: 1.2M words
 - Count-based (MLE-based) Language Modeling (ngrams)
 - Perplexity: 312 (SOA: Class-based back-off)
 - Neural Network Language Models (NNLM)
 - Perplexity: 270

By Product: Distributed Word Representations

Outline

- Language Modeling
 - □ Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - Recurrent Neural Network Language Models (RNNLM)

Distributed Word Representations

- □ Yoshua Bengio, 2003, Neural Probabilistic Language Model
 - Jointly learning word representation and statistical LM
- □ Tomas Mikolov, 2007, LM for Speech Recognition in Czech
 - □ First word vectors are learned using NN with one hidden layer
 - Then vectors are used to train NNLM
- □ Non-linear hidden layer is the computational hot point ⊗
- □ A simpler and efficient model?

Word2Vec

 Continuous Bag-of-Words: Predict the current word given context

Word2Vec (Mikolov et. al, 2013)

□ Skip-gram: Given a word, predict the context words

king − man + woman ~= queen

```
model.most_similar(positive=["king","woman"], negative=["man"])

[('queen', 0.8523603677749634),
   ('throne', 0.7664333581924438),
   ('prince', 0.7592144012451172),
   ('daughter', 0.7473883032798767),
   ('elizabeth', 0.7460219860076904),
   ('princess', 0.7424570322036743),
   ('kingdom', 0.7337411642074585),
   ('monarch', 0.721449077129364),
   ('eldest', 0.7184862494468689),
   ('widow', 0.7099430561065674)]
```

CNN Applied to Text

ngram detectors

Convolutional Neural Networks

- CNN Architecture
 - □ Identify indicative local predictors in a large structure
 - Combine them to produce a fixed size vector representation
 - Capture local aspects that are most informative for prediction task

Figure 1: Model architecture with two channels for an example sentence.

(fine tuned via backpropagation)

- Competitive results compared to more sophisticated models
- Pretrained word vectors are important

- Competitive results compared to more sophisticated models
- Pretrained word vectors are important
- But retraining is also important

	Most Similar Words for	
	Static Channel	Non-static Channel
bad	good	terrible
	terrible	horrible
	horrible	lousy
	lousy	stupid
good	great	nice
	bad	decent
	terrific	solid
	decent	terrific
n't	os	not
	ca	never
	ireland	nothing
	wo	neither

Outline

- Language Modeling
 - □ Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - Recurrent Neural Network Language Models (RNNLM)

Neural Network Language Models

- □ Pros
 - □ Can generalize unseen contexts
 - \blacksquare Can scale to much larger n's
- □ Cons
 - More expensive than count-based LMs

Neural Network Language Models

- □ Pros
 - Can generalize unseen contexts
 - \blacksquare Can scale to much larger n's
- □ Cons
 - More expensive than count-based LMs
- NNLMs can get good perplexities even with relatively small training sets, but in MT, they may not beat count-based LMs

Neural Network Language Models

- □ Pros
 - Can generalize unseen contexts
 - \blacksquare Can scale to much larger n's
- □ Cons
 - More expensive than count-based LMs
- NNLMs can get good perplexities even with relatively small training sets, but in MT, they may not beat count-based LMs
 - □ black horse, brown horse, white horse but not red horse

A Neural Probabilistic Language Model

- □ Do we still have these problems?
 - □ Problem 1: Intervening words cause limited context modeling
 - □ Problem 2: Ignoring the "similarity" between words
 - □ Problem 3: Cannot handle long-distance dependencies

A Neural Probabilistic Language Model

- □ Do we still have these problems?
 - □ Problem 1: Intervening words cause limited context modeling
 - □ Problem 2: Ignoring the "similarity" between words
 - Problem 3: Cannot handle long-distance dependencies

A Neural Probabilistic Language Model

- □ Do we still have these problems?
 - □ Problem 1: Intervening words cause limited context modeling
 - □ Problem 2: Ignoring the "similarity" between words
 - Problem 3: Cannot handle long-distance dependencies

Recurrent Neural Network Language Models (RNNLM)

Outline

- Language Modeling
 - □ Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - ■RNN Abstraction
 - Concrete RNN Architecture (LSTM)
 - Recurrent Neural Network Language Models (RNNLM)

Recurrent Neural Networks (RNN)

Feed-forward NN

Recurrent NN

RNN Unrolled in Time

Recurrent Neural Networks (RNN)

- □ The unrolled RNN is like a deep NN in which
 - The parameters are shared across layers
 - Additional input is added at various layers

- □ RNN is just a component to encode the input sequence
 - Through training RNN learns to represent the input more suited for the final prediction task

Recurrent Neural Networks (RNN)

- □ There are several RNN usage patterns:
 - Acceptor
 - Encoder
 - Transducer

RNN as Acceptor

loss

predict and

calculate loss

- Supervision signal is based on only the final output vector
- Decide on an outcome after observing the final state

Deep NLP - Reyyan Yeniterzi

RNN as Encoder

- □ Like the acceptor, it only uses the output vector
- Unlike the acceptor, prediction is not based on the output vector only
- Output vector is an encoding of the input sequence which is used together with other useful signals for prediction

RNN as Transducer

RNN as Transducer

- Example:
 - Task: Language Modeling
 - □ Input: Current word (previous context)
 - Output: Next word (a tag is anything in the vocabulary)

RNN as Transducer

Example:

■ Task: Language Modeling

BiDirectional RNN (BiRNN)

■ Use both previous and following words

RNN Architectures

■ The RNN abstraction

$$y_i = O(s_i)$$

$$s_i = R(s_{i-1}, x_i)$$

 \square We need concrete definitions of R and O functions

Simple RNN (SRNN)

$$s_i = R_{SRNN}(x_i, s_{i-1}) = g(s_{i-1}W^s + x_iW^x + b)$$
$$y_i = O_{SRNN}(s_i) = s_i$$

$$s_i, y_i \in \mathbb{R}^{d_S}, x_i \in \mathbb{R}^{d_X}, W^x \in \mathbb{R}^{d_X \times d_S}, W^s \in \mathbb{R}^{d_S \times d_S}, b \in \mathbb{R}^{d_S}$$

The Problem of S-RNN

- Hard to train due to vanishing gradient problem
 - Error signals (gradients) diminish quickly and do not reach to earlier input signals (cannot capture long-range dependencies)

$$\frac{dl}{d_{h_0}} = \text{tiny} \quad \frac{dl}{d_{h_1}} = \text{small} \quad \frac{dl}{d_{h_2}} = \text{med.} \quad \frac{dl}{d_{h_3}} = \text{large}$$

$$\begin{array}{c|c} \mathbf{h_0} & \mathbf{RNN} & \mathbf{h_1} & \mathbf{RNN} & \mathbf{h_2} & \mathbf{RNN} & \mathbf{h_3} & \mathbf{square_err} & \mathbf{b} \\ \hline \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} & \mathbf{y^*} \end{array}$$

The Problem of S-RNN

- □ Vanishing Gradient Problem:
 - Aren't the parameters tied within the whole network? So why do we have a learning problem at the beginning of the sentence?
 - Yes, but
 - Word embeddings won't get updated for words at the beginning of the sentence
 - RNN matrices won't be updated in the ideal way for the beginning of the sentence

The Problem of S-RNN

- Consider the RNN architecture
 - \blacksquare Reads the current memory state S_i
 - \blacksquare Reads the input x_{i+1}
 - Operates on these
 - \square Write the new memory state S_{i+1}
- □ The problem is that the memory access is not controlled
 - At each step entire memory is read and written
- Gated architectures solve this problem

Gated Architectures

 $g \in \{0,1\}^n$

$$s' \leftarrow g \odot x + (1-g) \odot (s)$$

Deep NLP - Reyyan Yeniterzi

Long Short Term Memory (LSTM)

- Designed to avoid long-term dependency problem
 - \square State vector S_i has two parts:
 - \blacksquare Cell state (C_i): Long term memory
 - Memory cells where long term dependencies are preserved
 - Hidden state (h_i) : Short term memory (working memory)
 - $\blacksquare h$ controls gates and decide what will go to long term memory
- □ There are 3 gates: input, forget, output
 - lacksquare Linear combination of the input x and previous state h
 - Passed through sigmoid function

Image Credit: Chris Olah's blog post on Understanding LSTM Networks

Image Credit: Chris Olah's blog post on Understanding LSTM Networks

- Update the old cell state into new cell state
 - Multiply the old state with forget gate
 - Multiply the state update with input gate

Outline

- Language Modeling
 - □ Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - Recurrent Neural Network Language Models (RNNLM)

RNN for Language Modeling

- RNNs as non-markovian LMs
 - Relax the Markov assumption which is used in traditional LM
 - □ Can condition on the entire history

RNN Generators

- Sequence generation
 - A special case of RNN transducers
 - lacksquare Generation works by tying the output of the transducer at time i with its input at time i+1

RNN Generators

RNN Conditioned Generators

Conditioned Generations

- \square What is encoded in the context c?
 - Anything useful
 - Predefined topic
 - Inferred property
- \Box The context C can have many forms
 - fixed length or set-like examples
 - sequence
- □ Sequence to sequence (encoder-decoder)

Sequence to Sequence Models

Language model: $a^{<0} \rightarrow \begin{array}{c} y & y & y \\ \uparrow & \downarrow \\ \uparrow & \downarrow \\ \chi & \downarrow \end{array}$

Outline

- Language Modeling
 - Problems with ngrams
 - Neural Network Language Models (NNLM)
 - Word Embeddings
 - CNN Applied to Text
 - Recurrent Neural Networks (RNNs)
 - Recurrent Neural Network Language Models (RNNLM)
- Sequence-to-Sequence Models
- Attention Models

Conditioned Generation

□ Encode all information into a single fixed-size vector

$$c = \operatorname{Enc}(x_{1:n})$$

- Decoder use this vector and generates the output sequence
- □ This architecture works quite well, most of the time

Conditioned Generation with Attention

- Conditioned Generation
 - □ Input is encoded into a single vector

$$c = \operatorname{Enc}(x_{1:n})$$

- Conditioned Generation with Attention
 - Input is encoded as a sequence of vectors

$$c_{1:n} = \operatorname{Enc}(x_{1:n})$$

Attention Function

- □ Attention mechanism is soft
 - lacktriangle at each stage the decoder sees a weighted average of the vectors $c_{1:n}$

$$c^{j} = \sum_{i=1}^{n} \alpha_{[i]}^{j} \cdot c_{i}$$

lacktriangle weights are produced by a feed-forward network which uses both the decoder state at time j and each of the vectors c_i

RNN without Attention

RNN with Attention

$$e_{ij} = \mathrm{fc}(s_{i-1}, h_j)$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{4} \exp(e_{ik})}$$

The attention mechanism

Image Source: Neural MT by Jointly Learning to Align and Translate

Any Questions?

Deep NLP - Reyyan Yeniterzi