课程试卷二

(本卷考试时间 120 分钟)

题号	_	1 1	=	四	五.	六	七	总得分
题分	15	28	12	12	12	9	12	100
得分								

一、选择题(本题共5小题,每小题3分,共15分)

1、已知
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix}$$
,则 A 的零空间 $N(A) = \{x \in \mathbb{R}^3 \mid Ax = 0\}$ 的维数和 A 的值

域 $R(A) = \{y \mid y = Ax, x \in R^3\}$ 的维数分别为(

- (A) $\dim N(A) = 1$, $\dim R(A) = 1$; (B) $\dim N(A) = 1$, $\dim R(A) = 2$;
- (C) $\dim N(A) = 2$, $\dim R(A) = 1$; (D). $\dim N(A) = 2$, $\dim R(A) = 2$.

2、 己知
$$\alpha_1 = (1,0,1,2)^T$$
, $\alpha_2 = (0,-1,-1,0)^T$, $\alpha_3 = (1,0,1,2)^T$, $\alpha_4 = (1,1,2,2)^T$,

 $V_1 = span\{\alpha_1, \alpha_2\}$, $V_2 = span\{\alpha_2, \alpha_4\}$, 则 $V_1 + V_2$ 与 $V_1 \cap V_2$ 的维数分别为 (

- (A) $\dim(V_1 + V_2) = 1, \dim(V_1 \cap V_2) = 3$; (B) $\dim(V_1 + V_2) = 3, \dim(V_1 \cap V_2) = 1$;
- (C) $\dim(V_1 + V_2) = 2$, $\dim(V_1 \cap V_2) = 2$; (D) 以上说法都不对.

3、已知矩阵
$$e^{At} = \begin{pmatrix} e^{2t} & 0 \\ 2te^{2t} & e^{2t} \end{pmatrix}$$
,则矩阵 $A = ($).

(A)
$$\begin{pmatrix} 2 & 0 \\ 1 & 8 \end{pmatrix}$$
; (B) $\begin{pmatrix} 2 & 0 \\ 1 & 9 \end{pmatrix}$; (C) $\begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}$; (D) $\begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$.

- 4、设 $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{C}^n$,则下列
- ① $|x_1| + |x_2| + \cdots + |x_n|$, ② $\sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$, ③ $\max\{|x_1|, |x_2|, \cdots |x_n|\}$ 中可以作为x的向量范数的有几个 ().
 - (A) 3 个;
- (B) 2 个; (C) 1 个;
- (D) 0 个.
- 5、设矩阵 $A, B, C, D \in C^{n \times n}, k$ 为任意常数,则关于矩阵 Kronecker 积,下列说法 **错误**的是 ().

$$(A) k(A \otimes B) = (kA) \otimes B$$
;

(B)
$$(A+B)\otimes C = A\otimes C + B\otimes C$$
;

(C)
$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$
;

(D)
$$(A \otimes B)(C \otimes D) = AD \otimes BC$$
.

二、填空题(本题共7小题,每小题4分,共28分)

1、已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}, 则 $A \otimes B$ 的行列式 $|A \otimes B| = \underline{\qquad}$$$

2、设
$$A(t) = \begin{pmatrix} t & \sin t \\ e^{-t} & \cos 2t \end{pmatrix}$$
,则 $\int_0^1 A(t)dt =$ _____.

3、已知
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 0 \end{pmatrix}$$
,若 $x = (x_1, x_2)$, $h(x) = xA^T A x^T$,则 $\frac{dh(x)}{dx} = \underline{\qquad}$.

4、已知
$$A = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$$
,则 $cond_{\infty}(A) = \underline{\qquad}$

5、设
$$W = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2} \middle| a_{11} + a_{22} = 0, a_{12} - a_{21} = 0 \right\}$$
,则 W 的维数为______.

6、已知
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$
,则 A 的谱半径 $\rho(A) =$ ______.

7、已知
$$A^{(k)} = \begin{pmatrix} \arctan k & \cos \frac{1}{k} \\ e^{-k} & k \sin \frac{1}{k} \end{pmatrix}$$
,则 $\lim_{k \to +\infty} A^{(k)} = \underline{\qquad}$.

三、计算题(本题12分)

在线性空间 R^3 中,线性变换 T 将基 $\alpha_1,\alpha_2,\alpha_3$ 变为基 β_1,β_2,β_3 ,其中

$$\alpha_1 = (1,0,0)^T$$
, $\alpha_2 = (0,-1,1)^T$, $\alpha_3 = (2,1,0)^T$,

$$\beta_1 = (1, -1, 2)^T$$
, $\beta_2 = (1, -2, 3)^T$, $\beta_3 = (1, -3, 3)^T$,

- (1) 求线性变换T在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵A;
- (2) 求向量 $\xi = (1,1,1)^T$ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标;

(3) 求 $T(\xi)$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

四、计算题(本题12分)

已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- (1) 求 A 的行列式因子、不变因子、初等因子;
- (2) 求 A 的 Smith 标准形 $J(\lambda)$ 及 Jordan 标准形 J;

五、计算题(本题12分)

已知
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

(1)
$$\vec{x} \frac{d(aa^T X)}{dX^T}$$
;

- (2) $\Re \|aa^T\|_{m}, \|aa^T\|_{1}, \|aa^T\|_{m}, \|aa^T\|_{\infty};$
- (3) 求 aa^T 的正奇异值的个数,并说明理由.

六、计算证明题(本题9分)

- (1) 设 $A \in C^{n \times n}$,证明 $\rho(A) \le ||A||$,其中||A||是A的任意一种范数;
- (2) 已知 $A = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix}$,试判别矩阵级数 $\sum_{k=0}^{\infty} A^k$ 是否收敛,若收敛,求其和.

七、计算题(本题12分)

已知
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 2 & -2 & -2 \end{pmatrix}$$
, $x(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- (1) 求 *A* 的最小多项式;
- (2) 求 e^{At} ;
- (3) 求微分方程 $\frac{dx(t)}{dt} = Ax(t)$ 满足初始条件 x(0) 的解.