CS 321: Homework #4

Due: Monday Oct 23 at 9am, on Canvas

Homeworks should be **typed**. You can describe a DFA by giving its transition table (don't forget to indicate start state and accept states), or by drawing a state diagram. You can easily draw state diagrams using this web-based tool: http://madebyevan.com/fsm/.

For reference, here is the *pumping lemma game* (for language *A*):

- 1. Adversary picks a number $p \ge 0$.
- 2. You pick a string $w \in A$, such that $|w| \ge p$.
- 3. Adversary breaks w into w = xyz, such that $|xy| \le p$ and $y \ne \varepsilon$.
- 4. You pick a number $i \ge 0$. If $xy^iz \notin A$, then you win.

If you can describe a strategy in which you always win, then *A* is not regular.

- 1. Show that the following languages are not regular. You can use the pumping lemma game, or you can use closure properties (or both).
 - (a) $\{w \in \{a, b, c\}^* \mid \text{num}(a, w) = \text{num}(b, w) + \text{num}(c, w)\}$ In this problem num(a, w) means the number of a characters in the string w.
 - (b) $\{a^n b^m c^k \mid n = m \text{ or } m = k\}$
 - (c) $\{w \in \{a,b\}^* \mid \text{the length of } w \text{ is a square number}\}$

This language contains all strings of length 1, 4, 9, 16, etc. *Hint:* after you pump, you'll want to show that the length of the resulting string is *not* a square. The best way to do this is to show that its length is *strictly* between consecutive squares n^2 and $(n + 1)^2$ for some appropriate n.

(d) $\{w \in \{a,b\}^* \mid w \neq rev(w)\}.$

In this problem rev(w) denotes the reverse of w (i.e., characters put in opposite order).