1.1	Introduction. Real numbers.
	- 2 difficulties with decimal representation
	1) a different infinite decimals can represent the same real number
	2) if is not immediately obvious how to calculate with them because an infinite decimal has no right-hand end
1,2	Increasing Sequences
	Sequence:
	- an infinite list of numbers, written in a definite order
	EX) a, a,, an, or {an}, n ≥0
	Definition:
	- We say the sequence [an] is increasing if an < an+1 for all n.
	- We say the sequence [an] is strictly increasing if an < an+1 for all n.
	- We say the sequence $\{a_n\}$ is decreasing if $a_n \ge a_{n+1}$ for all n .
	- We say the sequence $\{a_n\}$ is strictly decreasing if $a_n > a_{n+1}$ for all n .
1.3	The limit of an increasing sequence
	Limit:
	- A number L, in a suitable decimal representation, is the limit of the increasing sequence {Qn} if.
	given any integer $K>0$, all the an after some place in the sequence agree with L to
	K decimal places.
	notations: $n \to \infty$ $\{a_n\} = \angle$ or $\{a_n\} \to \angle$ as $n \to \infty$
	- If such an L exists, it must be unique. On the other hand, such an L need not exist.
	- A sequence 99n? is said to be bounded above if there is a number B such that an & B
	for all n
	Theorem:
	- A positive increasing sequence {an} that is bounded above has a limit

1.4	Example: the number e
	Binomial Theorem:
	$(1+x)^k = 1 + kx + \dots + {k \choose i} x^i + \dots + x^n$
	Geometric Sum:
	Geometric Sum: $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$
	Compound Interest Formula:
	$A_n = P\left(1 + \frac{r}{n}\right)^n$
	- investing P dollars at the annual interest rate r, with the interest compounded
	at equal time intervals n times a year
1.5	Example: the harmonic sum and Euler's number
	Harmonic Sums:
	- an increasing sequence that does not have a limit
	Proposition 1.5A Let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$, $n \ge 1$.
	The sequence $\{a_n\}$ is strictly increasing, but not bounded above.
	Proposition 1.5B Let $b_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln(n+1)$, $n \ge 1$. Then $\{b_n\}$ has a limit (denoted by γ and called "Euler's number").
	Then (on) has a mine (denoted by) and cancer butter 5 number).
1.6	Decreasing sequences, The Completeness Property
	- A sequence [an] is said to be bounded below if there is a number C such that
	an 2 C for all n
	Theorem:
	- A positive decreasing sequence has a limit
	3 cases:
	i) The sequence also contains a positive term an. In this case, all the terms after an
	will be positive.
	ii) All the terms are negative. In this case, just change the sign of all the terms: the
	sequence {-an} will be a positive decreasing sequence, so it will have a limit

L; then -L is the limit of $\{a_n\}$. For, since the decimal places of L agree with those of the $\{-a_n\}$, the places of -L agree with those of the $\{a_n\}$
iii) Neither of the above.
- Sequence [an] is bounded if it is bounded above and below; there are
constants B and C such that C = An = B for all n
Completeness Property:
- A bounded monotone sequence has a limit