

ESCUELA SUPERIOR DE COMPUTO

1er. Departamental → TEORÍA DE COMUNICACIONES Y SEÑALES

PROFESORA: JACQUELINE ARZATE GORDILLO	TIPO "C"
NOMBRE DEL ALUMNO:	GRUPO:

PROBLEMA 1. (valor 2.0 puntos). Encuentre la serie trigonométrica de Fourier de la siguiente señal f(t)

PROBLEMA 2. (valor 1.0 punto). A partir de la serie encontrada en el problema anterior, deduzca la serie exponencial de Fourier de f(t)

PROBLEMA 3. (valor 2.0 puntos). Encuentre la transformada 1 de f(t)

¹Puede usar la definición o emplear propiedades, es libre el criterio.

PROBLEMA 4. (valor 2.0 puntos). Usando las propiedades de la transformada de Fourier, complete la pareja de transformadas siguiente:

$$? \leftrightarrow \frac{1}{3-j\omega}\omega^2 + e^{j4\omega}(\omega-1)$$

PROBLEMA 5. (valor 2.0 puntos). Usando la Propiedad de diferenciación de la transformada de Fourier, encuentre la transformada de f(t).

PROBLEMA 6. (valor 1.0 punto). Usando un graficador, grafique el espectro de frecuencias de la siguiente función (agregue la captura de pantalla de espectro de magnitud y espectro de fase al examen, y agregue sus respectivas funciones matemáticas):

$$te^{-t}u(t)\leftrightarrow\frac{1}{(1+j\omega)^2}$$

Transformadas de Fourier

f(t)	$F(\omega)$
1. $e^{-at}u(t)$	$\frac{1}{a+j\omega}$
2. $te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$
3. t	$\frac{-2}{\omega^2}$
4. $\delta(t)$	1
5.′ 1	$2\pi \delta(\omega)$
6. $u(t)$	$egin{aligned} \pi \; \delta(\omega) \; + \; rac{1}{j\omega} \ & rac{\pi}{2} \left[\delta(\omega - \omega_0) \; + \; \delta(\omega + \omega_0) ight] \; + \; rac{j\omega}{\omega_0^2 - \omega^2} \ & \omega_0 \end{aligned}$
7. $\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$
8. sen $\omega_0 t u(t)$	$\frac{n}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\sigma}{\omega_0^2 - \omega^2}$
9. $\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
10. sen $\omega_0 t$	$j_{\pi}[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$
11. e^{-at} sen $\omega_0 t \ u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$
12. $\frac{W}{2\pi}Sa\frac{(Wt)}{2}$	$\int \pi [o(\omega + \omega_0) - o(\omega - \omega_0)]$ $\frac{\omega_0}{(a + j\omega)^2 + \omega_0^2}$ $G_{W}(\omega)$
13. $G_{\tau}(t)$	$ au Saigg(rac{\omega au}{2}igg)$
14. $ 1 - \frac{ t }{\tau} \cdot \cdot \cdot t < \tau \\ 0 \cdot \cdot \cdot t > \tau $	$ au Sa \left(rac{\omega au}{2} ight) \ au \left[Sa \left(rac{\omega au}{2} ight) ight]^2$
15. $e^{-a t }$	$\begin{array}{ c c } \hline \frac{2a}{a^2 + \omega^2} \\ \hline \sigma \sqrt{2\pi} e^{-\sigma^2 \omega^2/2} \\ \hline \omega_0 \ \delta_{\omega_0}(\omega) & \left(\omega_0 = \frac{2\pi}{T}\right) \end{array}$
16. $e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$
17. $\delta_T(t)$	$\omega_0 \delta_{\omega_0}(\omega) \qquad \left(\omega_0 = \frac{2\pi}{T}\right)$