

KTH Stockholm EECS :: CST

Visualization, Autumn 2019, DD2257

Tino Weinkauf, Anke Friederici, Wiebke Köpp

Homework assignment No. 03 Due September 19, 2019

Task 3.1: Marching Cubes

9 P

Apply the Marching Cubes algorithm for the isovalue c=0 for the cells in Figure 1 by drawing the resulting triangles of the isosurface. Indicate which of the 15 base cases shown in Figure 2 has to be used to set up the triangle connectivity. Mark the faces of the cells that result in ambiguous configurations and solve ambiguities using the *Asymptotic Decider* if necessary.

Task 3.2: Volume Data 4 P

Given are the scalar values $f_{000}, f_{100}, \dots, f_{111}$ at the 8 corners of a unit cube. We assume tri-linear interpolation inside the cube. Consider the isosurface s(x, y, z) = c for a certain isovalue c. How many intersections (maximal number) may this surface have with a straight line $\mathbf{p}(t) = \mathbf{p}_0 + t \cdot \mathbf{r}$

- (a) for an arbitrary direction vector **r**. (2 points)
- (b) for a direction vector \mathbf{r} that is parallel to the x-, y-, or z-axis. (1 point)
- (c) for a direction vector ${\bf r}$ that is perpendicular to the x-, y-, or z-axis. (1 point)

Provide a short reasoning for your findings!

Note: Exclude degenerate cases such as the direction vector lying completely inside the isosurface.

Task 3.3: Decider Correctness

4 P

Given are the scalar values f_{00} , f_{10} , f_{01} , and f_{11} at the corners of a unit square that are interpolated in a bi-linear way. Assume that $f_{00} < c$ and $f_{11} < c$ as well as $f_{01} > c$ and $f_{10} > c$, such that this configuration yields an ambiguous case for the *Marching Squares* algorithm when applied for an isovalue c.

- (a) Give the f_{ij} values of a configuration for which the *Midpoint Decider* will fail to solve the ambiguity in the unit square. (2 points)
- (b) Give the general formal conditions for this decider to fail. (2 points)

Figure 1: Cells for Task 1.

Figure 2: Marching Cubes cases for Task 1.

Task 3.4: Compositing Schemes

9 P

A ray was shot into a scalar field and collected the following light intensity values C_i and opacity values α_i along its traversal (with increasing depth):

Index i	0	1	2	3	4	5	6	7	8
Intensity C_i	0	2	4	2	8	7	9	5	1
Opacity α_i	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$

For each of the following compositing schemes, compute the resulting value:

- (a) First Hit with the light intensity value C = 7. At which segment [i, i+1) will the first hit occur? (2 points)
- (b) Average Intensity. (1 point)
- (c) Maximum Intensity Projection (MIP). (1 point)
- (d) Accumulate with back-to-front. (2 points)
- (e) Accumulate with **front-to-back** blending. Can early ray termination be applied? (Justify your answer.) If so, at which segment [i, i+1) can blending be stopped? (3 points)