ІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 2

з дисципліни

«Дискретна математика»

з теми:

"Моделювання основних операцій для двох числових множин"

Виконав:

студент групи КН-109

Кінрат Володимир

Викладач:

Мельникова Н.І.

Лабораторна робота №2

Варіант №10

Тема роботи: Моделювання основних операцій для двох числових множин.

Мета роботи: набуття практичних вмінь і навичок з використання основних аксіом, законів і теорем теорії множині.

- 1. Для даних скінчених множин $A=\{1,2,3,4,5,6,7\}$, $B=\{4,5,6,7,8,9,10\}$, $C=\{2,4,6,8,10\}$ та універсума $U=\{1,2,3,4,5,6,7,8,9,10\}$, знайти множину, яку задано за допомогою операцій:
 - a) $(A \cap B)$; 6) $(A \setminus C) \cup (B \setminus A)$.

Розв'язання:

-
$$(A \cap B) = \{1,2,3,8,9,10\}.$$

$$(A \setminus C) \cup (B \setminus A) = \{1,3,5,7,8,9,10\}, \text{ fo } (A \setminus C) = \{1,3,5,7\} \text{ i } (B \setminus A) = \{8,9,10\}.$$

2. На множинах задачі 1 побудувати булеан множини (С \setminus -(A \cap C)). Знайти його потужність.

Розв'язання:

$$-(C \setminus (A \cap C)) = \{2,4,6\}$$

$$P(X) = \{\emptyset, \{2\}, \{4\}, \{6\}, \{2,4\}, \{2,6\}, \{4,6\}, \{2,4,6\}\}\}.$$

$$|P(X)| = 8.$$

3. Нехай маємо множини: N – множина натуральних чисел, Z – множина цілих чисел, Q – множина раціональних чисел, R – множина дійсних чисел; A, B, C – будь-які множини. Перевірити які твердження є вірними (в останній задачі у випадку невірного твердження достатньо

навести контрприклад, якщо твердження вірне – навести доведення):

а)
$$\{2,3\} \subset \{1,2,3,4,5\}$$
; б) $Q \subset N$; в) $N \cup Z = Z \cap R$; $\Gamma \setminus Z \setminus N \subset Q \cap Z$; д) якщо -A \subset B, то A \subset (-B)

Розв'язання:

- а) Видно, що множина $\{2,3\}$ ϵ підмножиною $\{1,2,3,4,5\}$, бо елементи 2 і 3 зустрачаються в обох множинах.
- б) N⊂Q, тому твердження Q ⊂ N ϵ не вірним.
- в) При об'єднанні натуральних чисел з цілими, ми отримаємо цілі числа.
- I при перетині цілих та дійсних цілі числа, тому що множина цілих чисел ϵ підмножиною дійсних. Отже, рівняння вірне.
- г) При $Z \setminus N$ ми отримаємо множину чисел протилежних до натуральних і число 0. Множина $Z \in підмножиною Q$, тому результатом $Q \cap Z$ буде Z. Множина чисел протилежних до натуральних і число $0 \in підмножинами Z$, отже рівність справджується.
- д) Очевидно що з данного твердження випливає $A \subset B$. Логічно припустити, що $-B = \{\{-B\}, \{-A\}, \{A\}\}$. Отже, $A \subset -B$.
- 3. Логічним методом довести тотожність: $(A \cap C) \setminus B = (A \setminus B) \cap (C \setminus B)$.

Доведення:

За дистрибутивним законом : $(A \cap C) \setminus B = (A \setminus B) \cap (C \setminus B)$.

4. Зобразити на діаграмі Ейлера-Венна множину: $(C \setminus A) \ \Delta \ (B \cup (A \setminus C \cap B))$

5. Множину зображено на діаграмі. Записати її за допомогою операцій.

 $(A\B)U(A\cap C)U(D\B\C)U(B\cap D\cap C)$

6. Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу): $(A \cap C \Delta B) \setminus A$.

Розв'язання:

 $(A \cap C \Delta B) \setminus A = (B \cap -A \cap C) \cup (A \cap -B \cap C) \cup (B \cap -A) \cup (A \cap B) \cup (B \cap -C) \cup (B \cap -C \cap B) \cap -A.$

Додаток № 2 до лабораторної роботи № 2:

Ввести з клавіатури дві множини символьних даних. Реалізувати операції різниці та доповнення над цими множинами. Вивести на екран новоутворені множини. Знайти їх потужність.

Розв'язання:

```
#include <stdio.h>
#include <locale.h>
int main(void){
    setlocale(LC_ALL,"Ukrainian");
printf("Введіть розмір множин: \n");
int lenth;
scanf("%d",&lenth);
int nam;
char mnA[100];
char mnB[100];
char mnU[] = "abcdefghijklmnopgrstuvwxyz";
int potA = 0;
int potB = 0;
int aa, bb;
for(int m = 0; m < lenth; m++)
    printf("Символ %d для множини A: ",m);
```

```
scanf("%s", &mnA[m]);
    printf("\n");
for(int n = 0; n < lenth; n++){
    printf("Символ %d для множини В: ", n);
    scanf("%s", &mnB[n]);
    printf("\n");
  //Різниця множин
  printf("Piзниця множини A i B = {");}
for(int x = 0; x < lenth; x++){
      nam = 0;
  for(int y = 0; y < lenth; y++){
      if(mnA[x]!=mnB[y]){
      nam++;
    }
  }
    if(nam == lenth){
      printf("1, ");
    }else{
       printf("0, ");
    }}
 printf("\n");
 printf("Piзниця множини B i A = {");}
for(int x = 0; x < lenth; x++){
      nam = 0;
  for(int y = 0; y < lenth; y++){
    if(mnB[x]!=mnA[y]){
    nam++;
     }
   if(nam == lenth){
      printf("1, ");
    }else{printf("0, ");}
 }
//Доповнення множин
 printf("\n");
 printf("Доповнення множини A = {");}
    for(int x = 0; x < 26; x++){
      nam = 0;
     for(int y = 0; y < lenth; y++){
       if(mnU[x]!=mnA[y]){
        nam++;
```

```
}
     if(nam == lenth){
       printf("1, ");
    }else{printf("0, ");}
 }
 printf(")n");
printf("Доповнення множини В = {");}
 for(int x = 0; x < 26; x++){
       nam = 0;
  for(int y = 0; y < lenth; y++){
    if(mnU[x]!=mnB[y]){
     nam++;
    }
  }
    if(nam == lenth){
       printf("1, ");
    }else{printf("0, ");}
 }
//Потужність множин
 printf("\n');
  for(int x = 0; x < lenth; x++){
     aa = 0;
    for(int y = 0; y < lenth; y++){
    if(mnA[x]!=mnA[y]){
      aa++;
      }
    if(aa == lenth-1)
       potA++;
     }
   for(int x = 0; x < lenth; x++){
       bb = 0;
    for(int y = 0; y < lenth; y++){
      if(mnB[x]!=mnB[y]){}
      bb++;
        }
      }
    if(bb == lenth -1){
       potB++;
     }
  }
```

```
if(potA == lenth){
  printf("Потужність множини A = %d\n",potA);
}
  else{
    potA++;
    printf("Потужність множини A = %d\n",potA);
}
    if(potB == lenth){
    printf("Потужність множини B = %d\n",potB);
}
  else{
    potB++;
    printf("Потужність множини B = %d\n",potB);
}
```

Результат роботи програми:

Висновок:

Набув практичних навичок і вмінь з використання основних аксіом, законів і теорем теорії множин. Навчився програмно реалізовувати деякі закони алгебри множин.