Stickleback project presentation

- 5-7 min
- Include the following elements:
 - 1. General background (see XX et al., 2019, will post others as well)
 - 2. Background on **your** samples (where collected, what studies used in, etc.)
 - 3. Sequencing metadata from your sample
 - How many reads? How many mapped? Average depth (assuming 460 Mb genome size)
 - 4. Syn/Nsyn differences of your samples compared to the reference
 - I'll provide code/instructions later today
 - 5. Summary/conclusions
- For 535 students, you'll also write up the presentation into a 1000-3000 word summary (due May 8th, but extensions possible)

Machine Learning, Simulations, and Modeling

BIOL 435/535: Bioinformatics April 26, 2022

Machine learning – classifying data

Machine learning – classifying data

Machine learning

Supervised

- Trains on a labeled set of data
- Attempts to classify unlabeled data based on what it learned
- Regression, Support Vector Machines, Decision Trees, Naïve Bayes, etc.

Unsupervised

- Trains on an unlabeled set of data
- Attempts to mimic the data, then compares to original for errors
- Clustering, principal component analysis, neural networks, etc.

Supervised Machine Learning

Training dataset

Supervised Machine Learning

Markov Chain + Monte Carlo simulation

Markovian processes have no memory, but the present state dictates probabilities of future states

Markov chain is a progressive series of "generations" in which the current state is used to estimate the probability of future states

Monte Carlo is a simulation incorporating randomness with weighted probabilities (obtained from the current state)

Hidden Markov Models

Markov chain (i.e., no memory) with hidden states

Hidden Markov Models

Gene model inference

HHPred

Supervised Machine Learning – Seek app

On-the-fly species identification! Using Decision Tree

Sequoia sempervirens

Training dataset (<u>Tree of Life</u>)

Unsupervised Machine Learning

Principle Components Analysis

Trade-offs in training

Underfit models (i.e., not enough parameters) have high misclassification rates in training and test datasets

Over-fit model (i.e., too many parameters) will be too keyed in on the training dataset to accurately classify test datasets

Bayesian inference

Uses Markov chain Monte Carlo (MCMC) simulations to estimate posterior probability given a set of prior probabilities and the data

Markov Chain + Monte Carlo simulation

Markovian processes have no memory, but the present state dictates probabilities of future states

Markov chain is a progressive series of "generations" in which the current state is used to estimate the probability of future states

Monte Carlo is a simulation incorporating randomness with weighted probabilities (obtained from the current state)

Bayesian inference

Uses Markov chain Monte Carlo (MCMC) simulations to estimate posterior probability given a set of prior probabilities and the data

Bayesian inference – BAMM

Model historical macro-evolutionary trends on trees (e.g., speciation/extinction rate)

