B5: Programming Language Processing

CS1101S: Programming Methodology

Martin Henz

September 10, 2021

- T-Diagrams
- 2 Interpreters
- 3 Compilers
- 4 Combinations
- **5** Programming the LEGO Bricks

- T-Diagrams
 - Program on PC
 - App on iPhone
- 2 Interpreters
- 3 Compilers
- 4 Combinations
- **5** Programming the LEGO Bricks

T-Diagrams

x86-64 Processor

T-Diagrams

×86-64

x86-64 Processor

Overwatch x86-64

Program "Overwatch" (x86-64 code)

T-Diagrams

×86-64

x86-64 Processor

Overwatch x86-64

Program "Overwatch" (x86-64 code)

Overwatch x86-64 x86-64

"Overwatch" running on x86-64

Running an app on iPhone X

A11 Bionic, the processor of iPhone \boldsymbol{X}

Running an app on iPhone X

A11 Bionic, the processor of iPhone X

Program "NinjaVoltage" (A11 build)

Running an app on iPhone X

- T-Diagrams
- 2 Interpreters
 - T-Diagram of interpreter
 - Chrome as interpreter
 - Elixir interpreter
 - Hardware emulation
 - Stepper as interpreter
- 3 Compilers
- 4 Combinations
- 5 Programming the LEGO Bricks

• Interpreter is program that executes another program

- Interpreter is program that executes another program
- The interpreter's *source language* is the language in which the interpreter is written

- Interpreter is program that executes another program
- The interpreter's source language is the language in which the interpreter is written
- The interpreter's *target language* is the language in which the programs are written which the interpreter can execute

- Interpreter is program that executes another program
- The interpreter's source language is the language in which the interpreter is written
- The interpreter's target language is the language in which the programs are written which the interpreter can execute

Teaser for Lecture 11

The evaluator (interpreter), which determines the meaning of statements in a language, is just another program.

("Most fundamental idea in programming")

T-Diagram of interpreter Chrome as interpreter Elixir interpreter Hardware emulation Stepper as interpreter

Interpreters

JavaScript ×86-64

Chrome browser for PC, seen as interpreter for JavaScript, written in x86-64 machine code

"Normal" Way of Running JavaScript on Chrome

The browser acts as an interpreter for JavaScript.

Another example: Elixir

Elixir x86-64

Interpreter for Elixir, written in x86-64 machine code

Running Elixir on Server

Elixir program "assessment" running on x86-64 using interpretation

Hardware Emulation

"NinjaVoltage" app running on a PC using hardware emulator

Running Source §2 in Source Academy using Stepper

factorial Source Source $\mathsf{JavaScript}$ JavaScript x86-64 x86-64

Source Academy stepper:

layer between your programs and Chrome's native JavaScript

- T-Diagrams
- 2 Interpreters
- 3 Compilers
 - T-Diagram of compiler
 - Compiling Source Academy
 - Compiling a compiler
 - Compiling an interpreter
- 4 Combinations
- 5 Programming the LEGO Bricks

Compilers

Definition

A compiler is a program that translates from one language (the *from-language*) to another language (the *to-language*).

Compilers

Definition

A compiler is a program that translates from one language (the *from-language*) to another language (the *to-language*).

Teaser for Lecture L12C

A compiler, which translates programs from one language to another, is just another program.

("Second most fundamental idea in programming")

T-Diagram of Compiler

TypeScript-to-JavaScript compiler written in x86-64 machine code

Compiling a program (SA Game of Source Academy)

Compiling "SA Game" from TypeScript to JavaScript

Compiling our Source Compiler

Compiling Source-to-JavaScript compiler from TypeScript to JavaScript

Compiling the Stepper

Compiling stepper tool from TypeScript to JavaScript

- T-Diagrams
- 2 Interpreters
- Compilers
- 4 Combinations
 - Typical Source Academy session
 - Typical execution of JavaScript
 - Excursion: making these slides
 - Excursion: SICP JS textbook
- 5 Programming the LEGO Bricks

A typical Source Academy session

Compiling "RunicCurves" from Source to JavaScript in browser, and then running JavaScript program in browser.

Typical Execution of Java Programs

Compiling "Overwatch" from Java to JVM code, and running the JVM code on a JVM running on an x86-64

Excursion: Making these Slides

Compiling these slides using the XeTeX tool chain from LATEX to XDV to PDF on x86-64

Excursion: Viewing these Slides with Acrobat Reader

Viewing the slides on a PC

Typical Source Academy session Typical execution of JavaScript Excursion: making these slides Excursion: SICP JS textbook

Excursion: Web edition of SICP JS

Compiling SICP JS textbook from XML to HTML, then Viewing textbook with browser

Typical Source Academy session Typical execution of JavaScript Excursion: making these slides Excursion: SICP JS textbook

Excursion: PDF edition of SICP JS

Compiling SICP JS from XML to PDF via LATEX

- T-Diagrams
- 2 Interpreters
- 3 Compilers
- 4 Combinations
- 5 Programming the LEGO Bricks
 - Problem
 - SVML
 - SVML on EV3
 - Compiling SVML emulator

Programming Lego Mindstorms with Source

Program "controller" (written in Source)

Programming Lego Mindstorms with Source

Program "controller" (written in Source)

Lego Mindstorms EV3 (ARM5 processor) running EV3dev, an operating system based on Debian Linux

Programming Lego Mindstorms with Source

Program "controller" (written in Source)

Lego Mindstorms EV3 (ARM5 processor) running EV3dev, an operating system based on Debian Linux

Now what?

How to run Source on EV3?

SVML to the rescue!

Compiling "controller" from Source to SVML

SVML on EV3

Running SVML program on EV3 brick

Compiling SVML Emulator

Compiling SVML emulator from C to EV3

Overview: Source for Robotics

Compiling "controller" from Source to SVML on a PC, and then running the SVML program on the EV3 brick.

 Components: programs, compilers, interpreters, machines

- Components: programs, compilers, interpreters, machines
- T-diagrams

- Components: programs, compilers, interpreters, machines
- T-diagrams
- Combination of interpretation and compilation (tool chains) are common

- Components: programs, compilers, interpreters, machines
- T-diagrams
- Combination of interpretation and compilation (tool chains) are common
- Source Academy is making use of Source interpreter and Source-to-JavaScript compiler, both written in TypeScript, compiled to JavaScript, and running on Chrome browser

- Components: programs, compilers, interpreters, machines
- T-diagrams
- Combination of interpretation and compilation (tool chains) are common
- Source Academy is making use of Source interpreter and Source-to-JavaScript compiler, both written in TypeScript, compiled to JavaScript, and running on Chrome browser
- Robotics in CS1101S is making use of SVML interpreter and a Source-to-SVML compiler