ICSE 2017 Q8 b

Suryaansh Jain*

Question: In the given figure PQ is a tangent to the circle at A. AB and AD are bisectors of $\angle CAQ$ and $\angle PAC$. IF $\angle BAQ = 30^{\circ}$, prove that:

- (i) BD is a diameter of the circle.
- (ii) ABC is an isosceles triangle.

Solution:

$$\angle BAQ = 30^{\circ} \tag{0.1}$$

$$\Rightarrow \angle BAC = 30^{\circ} \tag{0.2}$$

Also,

$$\angle CAP = 180^{\circ} - \angle CAQ \tag{0.3}$$

$$\Rightarrow \angle CAP = 120^{\circ} \tag{0.4}$$

$$\Rightarrow \angle CAD = \angle PAD = 60^{\circ} \tag{0.5}$$

$$\Rightarrow \angle BAD = 90^{\circ} \tag{0.6}$$

So BD is a diameter.

Since angle made by a chord at two different points is equal,

$$\angle ADB = \angle ACB = 30^{\circ}$$
 (0.7)

And since $\angle CAB = 30^{\circ}$, $\triangle ABC$ is an isosceles triangle.

Steps for drawing the diagram: Finding the coordinates of the points A.

Symbol	Value	Description
θ	30°	Input, $\angle QAB$
r	2	Radius, Input
0	(0,0)	Center, Input
P	(-4,-2)	Point on the tangent, Input
Q	(4, -2)	Point on the tangent, Input
A	(0, -2)	(0, -r), calculated
B	$(1, -\sqrt{3})$	(rsin2 heta, -rcos2 heta) , calculated
C	$(1,\sqrt{3})$	$(rsin2\theta, rcos2\theta)$, calculated
D	$(-1, \sqrt{3})$	$(-rsin2\theta, rcos2\theta)$, calculated

TABLE 0.1

- 1) A is on the line segment PQ.
- 2) The point closest to the circle on the segment lies on a line passing through O and perpendicular to $PQ \Rightarrow A (0-2)$.

Finding the coordinates of the points B.

- 1) A (0-2).
- 2) $\angle BAQ = 30^{\circ}$
- 3) |AB| = 2
- 4) \Rightarrow **B** $(1, -\sqrt{3})$

Finding the coordinates of the points C.

- 1) A (0-2).
- 2) $\angle CAQ = 60^{\circ}$
- 3) $|AC| = 2\sqrt{3}$
- 4) \Rightarrow $\mathbf{C}(1,\sqrt{3})$

Finding the coordinates of the points D.

- 1) A (0-2).
- 2) $\angle DAP = 60^{\circ}$
- 3) $|AD| = 2\sqrt{3}$
- 4) \Rightarrow **D** $\left(-1,\sqrt{3}\right)$