CONCEITOS DE ENDEREÇAMENTO IP

IPv4, Octetos, Classes

Reforço - mulheres.h

28/10/2023

Preliminares

Relembrando bases

Um número decimal pode ser fatorado com base 10 elevado a algum número:

Exemplo:

$$152 = 1.10^2 + 5.10^1 + 2.10^0$$

Um número binário pode ser fatorado com base 2 elevado a algum número:

Exemplo:

$$1101 = 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0$$

Relembrando mudança de bases

Existem muitos métodos...

Decimal (base 10) para binário (base 2).

Decimal to Binary

$$(47)_{10} = (101111)_{2}$$

© w3resource.com

Binário para decimal

Resultant decimal number = 0+2+0+8+0+32 = 42

Um método sem cálculos, existe?

66

Exemplo:

1100001

1100001 = 1

1100001 = 1*2+1 = 3

1100001 = **3*2** = **6**

1100001 = **6*2** = **12**

1100001 = 12*2 = 24

```
1100001 = 24*2 = 48
```

1100001 = <u>48*2+1 = </u>97

Como isso se aplica ao endereço de uma rede? ou de uma máquina?

Um endereço IPv4 tem 4 blocos de 8 bits cada:

aaaaaaa.bbbbbbbb.ccccccc.ddddddd

Cada letra representa um bit, zero ou um.

Em decimal, cada bloco pode variar de 0 (00000000) a 255 (111111111).

Mesmo um número em decimal, por exemplo, 28 que em binário é 11100 (5 bits), precisa ser representado em 8 bits em um endereço IPv4

00011100

O Endereçamento IP

É a forma pela qual os endereços lógicos dos computadores e ativos são representados. O "v4" ou "v6" define a versão a ser utilizada. O IPv6 conta com 8 campos tendo 16 bits cada.

IPv4

É definido em 4 blocos de 8 bits cada, chamados de octetos.

Pode ser representado em binário ou decimal.

IPv4 address in dotted-decimal notation

Classes

Para facilitar, futuramente, o entendimento de redes e sub-redes fez-se necessário a divisão dos endereços IP em classes.

Antes disso, vamos entender a estrutura de um endereço IP

Essas máquinas conseguiriam se comunicar na rede?

Resposta: Depende

Se PC2 estiver na mesma rede que PC3, sim;

Caso contrário, não.

Como saberemos se estão na mesma rede?

Precisamos de mais uma informação, a máscara de rede. Com essa informação, saberemos quais octetos descrevem a **rede** e quais octetos descrevem o **host**, ou máquina individual.

w. x. y. z.

Example: 131.107.3.24

Classe A

O primeiro octeto define a rede, os demais definem os hosts.

Class	First Octet decimal (range)	First Octet binary (range)	IP range	Subnet Mask	Hosts per Network ID	# of networks
Class A	0 — 127	0XXXXXXXX	0.0.0.0-127.255.255.255	255.0.0.0	2 ²⁴ -2	2 ⁷

Exemplo:

10.1.128.2, com máscara 255.0.0.0, pertence a essa classe.

Classe B

Class	First Octet decimal (range)	First Octet binary (range)	IP range	Subnet Mask	Hosts per Network ID	# of networks
Class B	128 — 191	10XXXXXX	128.0.0.0-191.255.255.255	255.255.0.0	216-2	214

Classe C

ı							
I	Class C	192 - 223	110XXXXX	192.0.0.0-223.255.255.255	255.255.255.0	2 ⁸ – 2	2 ²¹

Classe D/E

Como identificar a classe IP em menos de 10 segundos 👀

Regra do Primeiro Octeto!

Se o primeiro Octeto começa com 0 ⇒ Classe A

Se os primeiros Octetos começam com $10 \Rightarrow Classe B$

Se os primeiros Octetos começam com 110 ⇒ Classe C

Exemplo:

15.1.90.128 ⇒ 15 é **0**0001111 ⇒ Classe A

Exemplo:

130.30.2.99 ⇒ 130 é **10**000010 ⇒ Classe B

Exemplo:

200.1.20.1⇒ 200 é **110**01000 ⇒ Classe C