

@julsimon

What to expect

Apache MXNet

Demos using Jupyter notebooks

Resources

• Q&A

Apache MXNet: Open Source library for Deep Learning

Programmable

Simple syntax, multiple languages

Most Open

Accepted into the Apache Incubator

Portable

Highly efficient models for mobile and IoT

High Performance

Near linear scaling across hundreds of GPUs

Best On AWS

Optimized for Deep Learning on AWS

CPU or GPU: your choice

```
mod = mx.mod.Module(lenet)

mod = mx.mod.Module(lenet, context=mx.gpu(0))

mod = mx.mod.Module(lenet, context=(mx.gpu(7), mx.gpu(8), mx.gpu(9)))
```

Multi-GPU Scaling With MXNet

The Apache MXNet API

- Storing and accessing data in multi-dimensional arrays
 →NDArray API
- Building models (layers, weights, activation functions)
 - → Symbol API
- Serving data during training and validation
 - → Iterators
- Training and using models
 - → Module API

Gluon: Deep Learning gets even easier

https://github.com/gluon-api/

- Available now in MXNet, soon in Microsoft Cognitive Toolkit
- Developer-friendly high-level API
- Dynamic networks can be modified during training
- No compromise on performance
- Extensive model zoo

Gluon Model Zoo

vgg11	VGG-11 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg13	VGG-13 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg16	VGG-16 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg19	VGG-19 model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg11_bn	VGG-11 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg13_bn	VGG-13 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg16_bn	VGG-16 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
vgg19_bn	VGG-19 model with batch normalization from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
VGG	VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			
get_vgg	VGG model from the "Very Deep Convolutional Networks for Large-Scale Image Recognition" paper.			

resnet18_v1	ResNet-18 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet34_v1	ResNet-34 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet50_v1	ResNet-50 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet101_v1	ResNet-101 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet152_v1	ResNet-152 V1 model from "Deep Residual Learning for Image Recognition" paper.
resnet18_v2	ResNet-18 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet34_v2	ResNet-34 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet50_v2	ResNet-50 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet101_v2	ResNet-101 V2 model from "Identity Mappings in Deep Residual Networks" paper.
resnet152_v2	ResNet-152 V2 model from "Identity Mappings in Deep Residual Networks" paper.
ResNetV1	ResNet V1 model from "Deep Residual Learning for Image Recognition" paper.
ResNetV2	ResNet V2 model from "Identity Mappings in Deep Residual Networks" paper.
BasicBlockV1	BasicBlock V1 from "Deep Residual Learning for Image Recognition" paper.
BasicBlockV2	BasicBlock V2 from "Identity Mappings in Deep Residual Networks" paper.
BottleneckV1	Bottleneck V1 from "Deep Residual Learning for Image Recognition" paper.
BottleneckV2	Bottleneck V2 from "Identity Mappings in Deep Residual Networks" paper.
get_resnet	ResNet V1 model from "Deep Residual Learning for Image Recognition" paper.

mobilenet1_0		MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 1.0.
mobilenet0_75		MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.75.
mobilenet0_5		MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.5.
mobilenet0_25		MobileNet model from the "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" paper, with width multiplier 0.25.
MobileNet		ileNet model from the "MobileNets: Efficient Convolutional Neural Networks for ile Vision Applications" paper.
densenet12		ensenet-BC 121-layer model from the "Densely Connected Convolutional Networks" uper.
		ensenet-BC 161-layer model from the "Densely Connected Convolutional Networks" aper.
		ensenet-BC 169-layer model from the "Densely Connected Convolutional Networks" aper.
		ensenet-BC 201-layer model from the "Densely Connected Convolutional Networks" oper.
DenseNet	Dense	enet-BC model from the "Densely Connected Convolutional Networks" paper.
inception_v3		Inception v3 model from "Rethinking the Inception Architecture for Computer Vision" paper.
Incept		Inception v3 model from "Rethinking the Inception Architecture for Computer Vision" paper.
alexne	t Alex	xNet model from the "One weird trick" paper.
AlexNe	t Alex	xNet model from the "One weird trick" paper.
squeezenet1_0		SqueezeNet 1.0 model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" paper.
squeeze	net1_1	SqueezeNet 1.1 model from the official SqueezeNet repo.

SqueezeNet model from the "SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size" paper.

VGG ResNet **AlexNet** DenseNet SqueezeNe Inception **MobileNet**

Deep Learning in practice

- One-click launch
- Single node or distributed
- CPU, GPU, FPGA
- NVIDIA & Intel libraries
- Anaconda Data Science Platform
- Python w/ AI/ML/DL libraries

Demos

https://github.com/juliensimon/dlnotebooks

- 1) Synthetic data set
- 2) Learn MNIST with a Multi-Layer Perceptron
- 3) Learn MNIST with the LeNet CNN
- 4) Predict handmade MNIST samples

The MNIST data set

- 70,000 hand-written digits
- 28x28 grayscale images

Training models on MNIST

- MLP does well on MNIST, but not on real-life samples.
- MLP flattens the 28x28 image into a 784-byte vector
 → the 2-D relationship between pixels is lost.
- Look at the '5': the top-left angle is a unique feature. No other digit exhibits this. Same thing for the intersection on the '8'.
- CNNs such as LeNet work on 2-D images and learn to detect these unique geometric features.
- The result is a more accurate and more robust network.

Resources

https://aws.amazon.com/machine-learning

https://aws.amazon.com/blogs/ai

https://mxnet.incubator.apache.org

https://github.com/apache/incubator-mxnet

https://github.com/gluon-api

https://medium.com/@julsimon

