04. 8. 2004

JAPAN PATENT OFFICE

REC'D 3 0 SEP 2004

別紙添付の書類に記載されている事項は下記の出願書類いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 8月 4 日

号 出 Application Number:

特願2003-285810

[ST. 10/C]:

[JP2003-285810]

人 出

Applicant(s):

10/1

横浜ゴム株式会社

三菱自動車工業株式会社

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

特許庁長官 Commissioner, Japan Patent Office

9月16日 2004年

BEST AVAILABLE COPY

出証特2004-3083624 出証番号

【書類名】 特許願 P2003241 【整理番号】 平成15年 8月 4日 【提出日】 【あて先】 特許庁長官殿 B60C 19/00 【国際特許分類】 【発明者】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚製造所内 【住所又は居所】 丹野 【氏名】 篤 【特許出願人】 【識別番号】 000006714

【氏名又は名称】 横浜ゴム株式会社

【代理人】

【識別番号】 100066865

【弁理士】

【氏名又は名称】 小川 信一

【選任した代理人】

【識別番号】 100066854

【弁理士】

【氏名又は名称】 野口 賢照

【選任した代理人】

【識別番号】 100068685

【弁理士】

【氏名又は名称】 斎下 和彦

【手数料の表示】

【予納台帳番号】 002912 21,000円 【納付金額】

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 図面 1 【物件名】 【物件名】 要約書 1

【曹類名】特許請求の範囲

【請求項1】

JIS K6400に規定される見掛け密度が10~70kg/m³の多孔質材料からなる複数の帯状吸音材を長手方向に間隔を隔てて弾性固定バンドによりトレッド内面に装着した低騒音空気入りタイヤ。

【請求項2】

前記トレッド内面に装着された前記帯状吸音材の総周長がタイヤ内周面の総周長の30%以上である請求項1に記載の低騒音空気入りタイヤ。

【請求項3】

前記帯状吸音材の内周面に段差が20mm以下の凹凸面を形成した請求項1又は2に記載の低騒音空気入りタイヤ。

【請求項4】

前記帯状吸音材のタイヤ空洞側表面に、JIS A1405に規定される周波数200 Hzにおける吸音率が20%以上の第2の多孔質材料を積層させた請求項1又は2に記載 の低騒音空気入りタイヤ。

【請求項5】

前記帯状吸音材の厚さが5~50mmであり、前記第2の多孔質材料の表面が平坦でかつ厚さが1~10mmである請求項4に記載の低騒音空気入りタイヤ。

【請求項6】

前記第2の多孔質材料の表面に段差が20mm以下の凹凸面を形成した請求項4に記載の低騒音空気入りタイヤ。

【請求項7】

前記帯状吸音材の厚さが $5\sim50$ mmであり、前記第 2 の多孔質材料の厚さが $1\sim20$ mmである請求項 6 に記載の低騒音空気入りタイヤ。

【書類名】明細書

【発明の名称】低騒音空気入りタイヤ

【技術分野】

[0001]

本発明は、低騒音空気入りタイヤに関し、更に詳しくは、空洞共鳴による騒音を効果的に低減するようにした低騒音空気入りタイヤに関する。

【背景技術】

[0002]

タイヤ騒音を発生させる原因の一つにタイヤ内部に充填された空気の振動による空洞共鳴音がある。この空洞共鳴音は、タイヤを負荷転動させたときに、接地するトレッド部が路面の凹凸によって振動し、この振動がタイヤ内部の空気を振動させることによって生じる。この空洞共鳴音の中で騒音として聞こえる音の周波数は250Hz付近であることが知られている。したがって、この周波数域の騒音レベルを低下させることがタイヤ騒音を低減するのに重要である。

[0003]

このような空洞共鳴現象による騒音を低減する手法として、タイヤ内部に吸音材を付加 して共鳴音を吸収することが提案されている(例えば、特許文献1参照。)。しかしなが ら、吸音材の特性に対する検討が充分行なわれていないため、必ずしも良好な騒音の低減 が達成されているとはいえなかった。

【特許文献1】特開昭62-216803号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明の目的は、吸音材の特性を生かすことにより効率のよい消音効果が得られるようにした低騒音空気入りタイヤを提供することにある。

【課題を解決するための手段】

[0005]

上記目的を達成するための本発明の低騒音空気入りタイヤは、JIS K 6 4 0 0 に規定される見掛け密度が $10\sim7$ 0 k g/m^3 の複数の帯状吸音材を長手方向に間隔を隔てて弾性固定バンドによりトレッド内面に装着したことを特徴とするものである。

【発明の効果】

[0006]

本発明の低騒音空気入りタイヤは、帯状吸音材を多孔質材料から構成し、その多孔質材料の密度を適切に設定すると共に、これを複数個に分割してトレッド部の内周面に間隔を隔てて弾性固定バンドにより装着したので、帯状吸音材の多孔質材料による効果的な吸音に加えて、帯状吸音材を周方向に間欠的に配置したことにより共鳴周波数を変化させたことによる消音効果が相乗されて、大幅な空洞共鳴音の低減を図ることができる。

【発明を実施するための最良の形態】

[0007]

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。各図において 共通する構成要素には同一の符合を付し、重複する説明を省略する。

[0008]

図1は本発明の低騒音空気入りタイヤの一例を示す子午線断面図で、図2 (a)及び (b)は図1のタイヤの要部を説明するための二つの異なる態様を示す側面図である。

[0009]

図1において、空気入りタイヤTはトレッド部1と、左右一対のビード部2と、これらトレッド部1とビード部2とを互いに連接するサイドウォール部3を備えている。そして、タイヤTをリムRに装着したとき、タイヤTとリムRとの間には空洞部4が形成される

[0010]

トレッド部1の内面には、図2(a)及び(b)に示すように、複数(図では2つ)の 帯状吸音材5が長手方向に間隔を隔てて弾性固定バンド6によりトレッド部1の内面側に 圧着するように装着されている。帯状吸音材5はJIS K6400に規定される見掛け 密度が $10\sim70$ kg/m³ の多孔質材料からなり、弾性固定バンド6は高引張り弾性率を有する合成樹脂からなる。

[0011]

このように、帯状吸音材 5 は、その見掛け密度を 7 0 k g/m³ 以下にしたことにより、多孔構造を有しながらもタイヤ内圧により圧縮変形しないように維持できるため、高い吸音効果を得ることができる。しかし、1 0 k g/m³ より小さくすると多孔構造が大きすぎて吸音性能が得られなくなる。

[0012]

トレッド部1の内周面に装着される帯状吸音材5の数及び長手方向の配置間隔は特に限定されるものではないが、騒音を効率よく低減させる観点から、帯状吸音材5の総周長をタイヤ内周面の総周長の30%以上に設定することが好ましく、さらに好ましくは40%以上にするとよい。また、周上における帯状吸音材5の配置は、重量のバランスを保つことを考慮して、周上に均等な長さの帯状吸音材5を均等な間隔で配置するとよい。

[0013]

このように、帯状吸音材5の密度を特定な範囲に設定すると共に、これをトレッド部1の内周面に間隔を隔てて配置したので、吸音材による吸音効果とタイヤ周方向の断面積変化に基づく共鳴周波数の変化による消音効果とが相乗して、空洞共鳴音を大幅に低減することができる。さらに、これら複数の帯状吸音材5を弾性固定バンド6の弾性力を利用してタイヤ内面に圧着しているので、簡単には離脱しないように安定した状態に装着することができる。

[0014]

帯状吸音材5を構成する多孔質材料は、樹脂の発泡体が好ましく、特に低密度のポリエーテル系ウレタンフォームはタイヤ内圧により圧縮変形しにくい耐性を有するので好ましい。気泡の形態は連続気泡が好ましい。また、多孔質材料は樹脂発泡体のほか、繊維を結合させたフェルト、マットなどの不織布であってもよい。また、弾性固定バンド6には、ASTM試験法D638で定める試験方法による700MPa程度の引張り弾性率を有するポリプロピレン樹脂が好ましく使用される。

[0015]

なお、図2 (a) の実施形態では、帯状吸音材5が内周面側から弾性固定バンド6によりトレッド部1の内面に接圧するように装着されている場合を示したが、弾性固定バンド6と帯状吸音材5とのタイヤ径方向の位置関係は、図2 (b) に示すように弾性固定バンド6を帯状吸音材5の外周面側に配置させてもよい。いずれの形態においても、弾性固定バンド6は帯状吸音材5を接着剤等により固定して、その長手方向の両端部を互いに連結させて帯状吸音材5をトレッド部1の内面に圧着させていればよい。

[0016]

また、帯状吸音材 5 の内周面には、吸音効果を高めるために多数の凹凸面を形成しておくとよい。凹凸面の形態は特に限定されるものではないが、図 3 (a)~(e)に例示するような形態にするとよい。この凹凸面における凹凸の段差は 2 0 mm以下に設定するとよい。

[0017]

本発明において、更に好ましくは、帯状吸音材 5 の空洞 4 側の表面に、吸音特性の異なる第 2 の多孔質材料を積層する。このように表層に別の多孔質材料を積層する場合には、図 4 (a) 及び (b) に例示するように、見掛け密度が 1 0 ~ 7 0 k g/m³ であることにより空洞部 4 内の空気圧により押し潰されることのない耐圧縮性に優れた多孔質材料をタイヤ内面側にして、空洞 4 側の表面にJIS A1405 に規定される周波数 2 0 0 H z における吸音率が 2 0 %以上の第 2 の多孔質材料 5 a を積層するとよい。この多孔質材料 5 a としては、樹脂の発泡体でもよく、繊維の不織布などでもよい。

[0018]

上述するように、帯状吸音材 5 と第 2 の多孔質材料 5 a との積層体にする場合には、帯状吸音材 5 の厚さ A を 5 ~ 5 0 mmとし、第 2 の多孔質材料 5 a の厚さ B を図 4 (a)のように表面が平坦の場合は 1 ~ 1 0 mm、図 4 (b)のように表面が凹凸の場合は 1 ~ 2 0 mmにするとよい。これにより、タイヤ内圧により帯状吸音材 5 が押し潰されて吸音効果を失うことを防止すると共に、吸音性能を向上させることができる。

[0019]

なお、帯状吸音材5の表面に第2の多孔質材料5 a を積層する場合における弾性固定バンド6と帯状吸音材5とのタイヤ径方向の位置関係は、図5 (a)及び(c)のように弾性固定バンド6を帯状吸音材5の内周側又は外周側に配置させるほか、図5 (b)のように帯状吸音材5と第2の多孔質材料5 a との間に配置させてもよい。

[0020]

上述するように帯状吸音材5の表面に第2の多孔質材料5 a を積層する場合には、図6 (a)に示すように耐圧縮性に優れた帯状吸音材5の周囲を第2の多孔質材料5 a で覆い、多孔質材料5 a に帯状吸音材5 に通じる多数の孔Sを形成させることができる。これにより、孔Sがタイヤ空洞部4からの音響エネルギーを帯状吸音材5 に取り込む通路としての役割を果たすと共に、タイヤ空気圧による帯状吸音材5の潰れを防止する。

[0021]

さらに、図6(b)に示すように耐圧縮性に優れた帯状吸音材5の一方の端部Pを除いて周囲を第2の多孔質材料5 a で覆った構造にすることもできる。このような構造とした場合には、図7に示すように帯状吸音材5の露出した端部Pを一方向に揃えて、帯状吸音材5の長さをタイヤ内面の周長の約25%にして、トレッド部1の内面の対向する位置に一つずつ配置するとよい。これにより、帯状吸音材5によって形成される片端が開放された筒状の長さと空洞共鳴の波長の1/4周期の長さとが接近し、これが共鳴型の吸音器として機能するため、さらに吸音効果が増大する。

[0022]

本発明による帯状吸音材5及び弾性固定バンド6は、加硫工程を経たタイヤTに対して後から装着するものであるので、タイヤやリムの生産設備等を変更する必要がなく、既存のタイヤに対して適用することが可能である。特に、弾性固定バンド6の周長が可変であることから、多種類の空気入りタイヤに対して共通の帯状吸音材5及び弾性固定バンド6を使用することができる。更に、上述した帯状吸音材5及び弾性固定バンド6は、タイヤTのトレッド部1の内面に装着されるので、リム組み時の作業性の障害となることもない

【実施例】

[0023]

タイヤサイズ205/65R15の空気入りタイヤにおいて、空洞部に何も装着しなかった従来タイヤ(従来例)と、空洞部に表1のようにJIS K6400に規定する見掛け密度を異ならせた吸音材を図2(a)のように装着した本発明タイヤ(実施例)及び比較タイヤ(比較例1、2)とをそれぞれ製作した。

[0024]

[0025]

【表1】

表 1

	従来例	実施例	比較例 1	比較例 2
見掛け密度(kg/m³)		3 0	5	8 0
周波数200~250Hzの車内騒音	1 0 0	9 0	1 0 0	9 9

表1より、本発明タイヤは従来タイヤに比して周波数200~250Hzでの空洞共鳴音が低減していることがわかる。

【図面の簡単な説明】

[0026]

- 【図1】本発明の実施形態からなる低騒音空気入りタイヤをリム組みし、空気圧を充填した状態を示す子午線断面図である。
- 【図2(a)】本発明の実施形態からなる帯状吸音材と弾性固定バンドとの配置関係を説明するための側面図である。
- 【図2(b)】本発明の実施形態からなる帯状吸音材と弾性固定バンドとの配置関係を説明するための側面図である。
- 【図3(a)】本発明の実施形態からなる帯状吸音材の内周面の表面形状を説明する ための斜視図である。
- 【図3 (b)】本発明の実施形態からなる帯状吸音材の内周面の表面形状を説明するための斜視図である。
- 【図3 (c)】本発明の実施形態からなる帯状吸音材の内周面の表面形状を説明するための斜視図である。
- 【図3(d)】本発明の実施形態からなる帯状吸音材の内周面の表面形状を説明する ための斜視図である。
- 【図3(e)】本発明の実施形態からなる帯状吸音材の内周面の表面形状を説明する ための斜視図である。
- 【図4 (a)】本発明の実施形態からなる帯状吸音材の積層構造を説明するための側面図である。
- 【図4 (b)】本発明の実施形態からなる帯状吸音材の積層構造を説明するための側面図である。
- 【図5(a)】本発明の実施形態からなる弾性固定バンドの配置を説明するための斜 視図である。
- 【図5(b)】本発明の実施形態からなる弾性固定バンドの配置を説明するための斜 視図である。
- 【図5 (c)】本発明の実施形態からなる弾性固定バンドの配置を説明するための斜視図である。
- 【図6(a)】本発明の他の実施形態からなる帯状吸音材の積層構造を説明するための側面図である。
- 【図6(b)】本発明の他の実施形態からなる帯状吸音材の積層構造を説明するための側面図である。
- 【図7】本発明の実施形態からなる帯状吸音材の配置を説明するための側面図である

【符号の説明】

[0027]

- 1 トレッド部
- 2 ビード部
- 3 サイドウォール部
- 4 空洞部
- 5 帯状吸音材
- 5 a 第2の多孔質材料
- 6 弾性固定バンド

【書類名】図面 【図1】

【図2 (a)】

【図3 (a)】

【図3 (b)】

【図3 (c)】

【図3 (d)】

【図3 (e)】

【図4 (a)】

【図4 (b)】

【図5 (a)】

【図5 (b)】

【図5 (c)】

【図6 (a)】

【図7】

【書類名】要約書

【要約】

【課題】 吸音材の特性を生かすことにより効率のよい消音効果が得られるようにした低 騒音空気入りタイヤを提供する。

【解決手段】 JIS K6400に規定される見掛け密度が10~70kg/m³の複数の帯状吸音材5を長手方向に間隔を隔てて弾性固定バンド6によりトレッド内面に装着する。

【選択図】 図1

【書類名】出願人名義変更届【提出日】平成15年11月14日【あて先】特許庁長官殿

【事件の表示】

【出願番号】 特願2003-285810

【承継人】

【識別番号】 000006286

【氏名又は名称】 三菱自動車工業株式会社 【代表者】 ロルフ・エクロート

【承継人代理人】

【識別番号】 100066865

【弁理士】

【氏名又は名称】 小川 信一

【承継人代理人】

【識別番号】 100066854

【弁理士】

【氏名又は名称】 野口 賢照

【承継人代理人】

【識別番号】 100068685

【弁理士】

【氏名又は名称】 斎下 和彦

【手数料の表示】

【予納台帳番号】 002912 【納付金額】 4,200円

認定・付加情報

特許出願の番号 特願2003-285810

受付番号 50301883740

曹類名 出願人名義変更届

担当官 小菅 博 2143

作成日 平成16年 1月 5日

<認定情報・付加情報>

【承継人】

【識別番号】 000006286

【住所又は居所】 東京都港区港南二丁目16番4号

【氏名又は名称】 三菱自動車工業株式会社

【承継人代理人】

【識別番号】 100066854

【住所又は居所】 東京都港区虎ノ門2丁目6番4号 虎ノ門11森

ビル 小川・野口・斎下特許事務所

【氏名又は名称】 野口 賢照

【承継人代理人】

【識別番号】 100068685

【住所又は居所】 東京都港区虎ノ門2丁目6番4号 虎ノ門11森

ビル 小川・野口・斎下特許事務所

【氏名又は名称】 斎下 和彦

【承継人代理人】 申請人

【識別番号】 100066865

【住所又は居所】 東京都港区虎ノ門2丁目6番4号 虎ノ門11森

ビル 小川・野口・斎下特許事務所

【氏名又は名称】 小川 信一

特願2003-285810

出願人履歴情報

識別番号

[000006714]

1. 変更年月日

1990年 8月 7日

[変更理由]

新規登録

住 所

東京都港区新橋5丁目36番11号

氏 名 横浜ゴム株式会社

特願2003-285810

出願人履歴情報

識別番号

[000006286]

1. 変更年月日

2003年 4月11日

[変更理由]

住所変更

住所

東京都港区港南二丁目16番4号

氏 名

三菱自動車工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY