Architecture

Features

- Supports the complete 32-bit RISC-V base integer ISA (RV32I) version 2.0
- Supports machine mode as defined by the RISC-V supervisor extensions version 1.7
- Includes a hardware timer with microsecond resolution and compare interrupt
- 8 IRQ inputs that can be invidually enabled
- Classic 5-stage RISC pipeline
- Instruction cache
- Wishbone interface
- Automatic test suite

Interface

The processor includes a wishbone interface conforming to the B4 revision of the wishbone specification.

Interface type	Master
Address port width	32 bits
Data port width	32 bits
Data port granularity	8 bits
Maximum operand size	32 bits
Endianess	Little
Sequence of data transfer	In-order

Specifications

http://opencores.org/opencores,wishbone

Application

Signals

The processor is provided by a VHDL module named pp_potato. All signals are active high and the following signals are provided:

Name	Width	Description
clk	1	Processor clock
timer_clk	1	10 MHz timer clock
reset	1	Reset signal
irq	8	IRQ inputs
wb_adr_out	32	Wishbone address
wb_sel_out	4	Wishbone byte select
wb_cyc_out	1	Wishbone cycle
wb_stb_out	1	Wishbone strobe
wb_we_out	1	Wishbone write enable
wb_dat_out	32	Wishbone data output
wb_dat_in	32	Wishbone data input
wb_ack_in	1	Wishbone acknowledge

Additional signals are used to implement a host-target interface used in the automatic testing environment. These signals have names starting with fromhost and tohost and should be left unconnected.

Tools and Utilities

Tools for writing applications for the RISC-V architecture are available from the RISC-V project, at:

https://github.com/riscv/riscv-tools