Eric Ewing

Introduction to Machine Learning

Classical AI

Search and Planning

Optimization

Knowledge Representation and Reasoning

All rely on how the "world" is represented

What if we don't know all the rules of our world?

- Bayes Nets rely on the structure of the network...
- We need to know what the constraints are to run constrained optimization...
- If we don't know the rules of a game, we can't write down the PDDL for it...

Learning

What does it mean to *learn*?

The more information you consume, the more you know about a topic

The more you practice something, the better you'll do

A teacher/coach teaches you a specific skill by providing examples

Learning

What does it mean to *learn*?

The more data we have, the better our algorithms should perform

The more experience we have, the better our algorithms should perform.

Types of Learning

Supervised Learning	

Unsupervised Learning

Reinforcement Learning

Our dataset consists of a large number of examples

answers

of a task **and** the correct

Our dataset consists of a large number of examples, our algorithm tries to find patterns in this data

Our agent takes actions in an environment and is rewarded for taking "good" actions

Function Approximation

Supervised Learning

Our dataset consists of a large number of examples of a task **and** the correct

answers

Inputs to our algorithm:

x: features of an example

y: Label

Our goal: Learn a **function approximation** that maps from features to labels

Example image

Supervised Learning

Inputs:

```
Data: X \in \mathbb{R}^{n \times d}
```

n examples, each with *d* features

Labels: $y \in \mathbb{R}^n$ (for regression) or $y \in \{0, 1, ..., \text{num_classes}\}$ (for classification) n ground-truth labels

Outputs:

A Function approximation: $\tilde{f} \colon \mathbb{R}^d \to \mathbb{R}$ (for regression)

Goal: Approximate the true function f(x)=y as closely as possible

Supervised Learning

Step 1: How should we model *f*?

Linear Regression: Perhaps there's a (closeto) linear trend between X and y... model \tilde{f} as a line

Neural Network: can model even more complex relationships between X and y

Polynomial Regression: Instead of a linear relationship, model \tilde{f} as a polynomial of some degree (e.g., 2 is a quadratic, 3 a cubic, and so on)

The space of all different types of functions we might choose from is quite large...

K Nearest Neighbors

Key Intuition: Examples that are "close" to each other should have similar labels to each other

Given dataset (X, y)

To predict a label for a new example input *x*:

Find the closest *k* examples in X use the labels of those *k* examples to label *x*

Two possible classes, red triangles and blue squares

How should we label the green circle?

K Nearest Neighbors

Key Intuition: Examples that are "close" to each other should have similar labels to each other

Given dataset (X, y)

To predict a label for a new example input *x*:

Find the closest *k* examples in X use the labels of those *k* examples to label *x*

In classification (i.e., discrete labels): Use majority voting

In regression (i.e., continuous labels): Use average of *k* labels

iris

3 species (i.e., classes) of iris

- Iris setosa
- Iris versicolor
- Iris virginica

Image Source

iris

- 50 observations per species
- 4 variables per observation
 - Sepal length
 - Sepal width
 - Petal length
 - Petal width

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

Visualizing the data

A new observation

```
new_point <- data.frame
  (Sepal.Length = 7.2,
    Sepal.Width = 3.2,
    Petal.Length = 6.4,
    Petal.Width = 2.4)</pre>
```



```
new_point <- data.frame
  (Sepal.Length = 6.4,
    Sepal.Width = 2.8,
    Petal.Length = 4.9,
    Petal.Width = 1.3)</pre>
```



```
[1] k = 3
[1] versicolor
```



```
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica
```



```
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica
[1] k = 11
[1] versicolor
```


The choice of *k* has a large impact on model outputs

k = 1

k = 15

What's the best *k*?

Idea: try out different values of k, use the best one

But what does it mean to be best? What is our objective? What does it mean to have a "good" function approximation?

Idea: We'd like to optimize for accuracy (in classification).

Let's check how the model would classify each example input in X and choose k with highest accuracy

The goal of machine learning is to learn a function approximation using X, and use that function approximation in the **real world** on many **new examples**

Loss Function: A function that describes how closely our approximation matches our data

Loss Function: A function that describes how closely our approximation matches our data

Loss Function: A function that describes how closely our approximation matches our data

Loss Function: A function that describes how closely our approximation matches our data

Loss Function: A function that describes how closely our approximation matches our data

Loss Function: A function that describes how closely our approximation matches our data

$$MSE = \frac{\sum_{i}^{n} (f(x^{(i)}) - y^{(i)})^{2}}{n}$$

 \mathbb{X}

X

$x^{(1)}$ $x^{(2)}$ $x^{(3)}$ $x^{(4)}$ $x^{(5)}$	Training Set
$x^{(6)}$ $x^{(7)}$ $x^{(8)}$	Test Set

 \mathbb{X}

- 1. Train model on training set
- 2. Validate performance on validation set
- 3. Report results on test set

Data Sets

- Training Set: Used to adjust parameters of model
- Validation set used to test how well we're doing as we develop
 - Prevents overfitting
- **Test Set** used to evaluate the model once the model is done

In k-NN:

Nearest neighbors are found in Training Set Validation set is used to test model's performance on "new" examples Test set is used to measure final performance of model

Small *k*

- k = 1
- Low bias
- High variance: model varies greatly with the data
- Models like this are overfit
 The model reads too much into the data, extrapolating based on randomness, rather than relevant feature values

Large *k*

- k = 101
- High bias: systematic errors
- Low variance: model barely varies with the data
- Rather than being overfit, this model is underfit The decision boundary doesn't capture enough of the relevant information encoded in the data

1-nearest neighbor

1-nearest neighbor

1-nearest neighbor

51-nearest neighbor

51-nearest neighbor

51-nearest neighbor

Model Selection

Find a model that balances the biasvariance tradeoff.

- A high value of k correspond to a high degree of bias, but contains the variance
- With low values of *k*, the jagged decision boundaries are a sign of high variance
- k = 15 seems "just right"

k-NN caveats

- k-NN can be very slow, especially for very large data sets
 - k-NN is not a learning algorithm in the traditional sense, because it doesn't actually do any learning: i.e., it doesn't preprocess the data
 - o Instead, when it is given a new observation, it calculates the distance between that observation and every existing observation in the data set
- k-NN works better with quantitative data than categorical data
 - Data must be quantitative to calculate distances
 - So categorical data must be transformed
- Without clusters in the training data, k-NN cannot work well