数字逻辑设计

王鸿鹏 计算机科学与技术学院 wanghp@hit.edu.cn

后续课程: 如计算机组

数字逻辑的知识脉络

课程内容

- 布尔代数
- 组合电路分析及设计
- 时序电路分析及设计
- 硬件描述语言(Verilog)
- Logisim

课程目标

- 掌握布尔代数基础,具有利用布尔代数原理及基本逻辑门构造 典型逻辑组合部件的能力
- 掌握组合逻辑电路的分析方法及设计方法,具有利用基本逻辑 部件及中规模芯片构造组合逻辑电路的能力:
- •掌握时序逻辑电路的分析方法及设计方法,具有利用触发器、 逻辑门、基本逻辑部件构造时序逻辑电路的能力:
- 了解可编程逻辑器件的基本工作原理,具有利用可编程逻辑器 件设计逻辑电路的能力:
- •培养自主学习的能力,通过查阅器件资料及参考文献,能利用 各种基本逻辑部件、中规模芯片及可编程逻辑器件设计一个较 为复杂的完整的数字系统。

与其他课程之间的关系

□嵌入式系统及应用

系统应用软件与 系统硬件一体化

介绍计算机的基本组成原理和内部工作机制,应用数字逻辑课中的大量基本逻辑部件知识(如加法器、译码器、各种逻辑门、计数器、寄存器等),可以设计一个简单的CPU。

山计算机设计与实践

山计算机组成原理

□数字逻辑设计

□编译原理

□操作系统

CSAPP

□计算机体系结构

跨越软件和硬件两个层次, 主要研究软件、硬件功能分 配和对软件、硬件界面的确 定。建立起计算机软硬件整 机的概念,需要计算机组成 原理的相关知识

山单片机

单片机的外围电路、接口 电路设计需要用到数字逻 辑的相关知识(如各种逻 辑门、译码器、数据选择 器、计数器等)

□电工原理

掌握数字系统设计的理论基础布尔代数 理解基本元件(逻辑门、触发器) 如何应用数字电路进行数字系统逻辑设计

教材及参考书

- 数字设计原理与实践(第5版), John F. Wakerly著, 林生等译. 机械工业出版社
- 逻辑设计基础(第7版), Charles Roth著,解晓萌等译. 清 华大学出版社
- · 搭建你的数字积木一数字电路与逻辑设计(Verilog HDL&Vivado版). 汤勇明、张圣清等著. 清华大学出版社.
- 数字逻辑实用教程. 王玉龙. 清华大学出版社

考核方法

- •课时: 64学时
 - 理论课 —— 44 学时
 - •实验课——20学时(总实验耗时平均约3倍)
- 成绩构成
 - 考试: 60% (包括10分左右的Verilog实验内容)
 - 作业: 20%
 - 实验: 20%

对哪部分内容有疑问?

- A) 无
- B 考核方式
- 文 教材
- 」 其他

数制和码制 (编码)

- 数制 (表示数量)
- •编码(表示状态等——非数量,例如:学号等)
 - BCD码(BCD code)
 - 余3码(Excess-3 code)
 - 格雷码 (Gray code)
 - 文字编码

数制——数字的表示

• 十进制数的表示

9 8 7 6 0 5.4 3 2 1
$$D = d_{p-1}d_{p-2} \dots d_1d_0.d_{-1}d_{-2}...d_{-n+1}d_{-n}$$

$$= \sum_{i=0}^{p-1} d_i \times 10^i$$

- LSB(least significant bit): 最低有效位*d*_{-n}
- MSB(most significant bit): 最高有效位 d_{p-1}

按位计数制

• 任意r进制数R可表示如下:

$$R = d_{p-1} d_{p-2} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_n = \sum_{i=-n} d_i \times r^i$$

- r是计数制的基数(Base or Radix), ri为第i位的权;
- •基数确定可用数符的个数。如十进制的数符为: 0——9, 个数为10; 二进制的数符为: 0、1, 个数为2
- 逢基数进一

十一二转换(整数)

十一二转换(小数)

$$R_{10}$$
=0. d_{-1} d_{-2} ... d_{-n}

$$=d_{-1}2^{-1}+d_{-2}2^{-2}+...+d_{-n+1}2^{-n+1}+d_{-n}2^{-n}$$

$$=\underline{2^{-1}}(d_{-1}+d_{-2}2^{-1}+...+d_{-n+1}2^{-n+2}+d_{-n}2^{-n+1})$$
乘2 ,去掉整数部分
$$d_{-1}+d_{-2}2^{-1}+...+d_{-n+1}2^{-n+2}+d_{-n}2^{-n+1}$$

$$=\underline{2^{-1}}(d_{-2}+...+d_{-n+1}2^{-n+3}+d_{-n}2^{-n+2})$$
乘2 ,去掉整数部分,直到剩余部分为0

整数 0|.4375 0|.875 *2 1|.75 *2

例: 0.4375=(?.....?)₂ =(0.0111)₂

二进制与八进制和十六进制之间的转换

十进制	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
二进制	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
八进制	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
十六进制	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F

二进制与八进制和十六进制之间的转换

- •位数替换法:
 - 保持小数点不变
 - 1位八进制数对应3位二进制数,1位十六进制数对应4位二进制数;
- •八或十六进制转换为二进制时,MSB前面和LSB后面的0不写;
- •二进制转换为八进制或十六进制数时,从小数点开始向左右分组,在MSB前面和LSB后面可以加0;
- 例: $10\ 111\ 000.110\ 1_2 = 270.64_8$ $1011\ 1000.1101_2 = B8.D_{16}$

编码

- 扑克牌玩法很多,但本质上,就是有限的牌在不同游戏规则下的组合而已
- 学号、班号、寝室号等
- 二进制编码
 - BCD码 (Binary-Coded Decimal)
 - 余3码(Excess-Three Code)
 - 格雷码 (Gray Code)
 - · 编法很多,就是0和1在不同编码规则下的组合而已。

BCD码 (Binary-Coded Decimal)

- •也叫二——十进制编码,用4位二进制数表示1位十进制数
- 4位二进制码共有2⁴=16种码组,可以任选10种来表示10 个十进制数码(8008种方案)
- 每位二进制数都带有权值,根据权值不同,有
 - 8421BCD
 - 2421BCD
 - 4221BCD
 - •

几种BCD码

十进制	8421 BCD	2421 BCD	4221 BCD	5421 BCD
0	0000	0000 (0000)	0000 (0000)	0000 (0000)
1	0001	0001 (0001)	0001 (0001)	0001 (0001)
2	0010	0010 (1000)	0010 (0100)	0010 (0010)
3	0011	0011 (1001)	0011 (0101)	0011 (0011)
4	0100	0100 (1010)	0110 (1000)	0100 (0100)
5	0101	1011 (0101)	1001 (0111)	1000 (0101)
6	0110	1100 (0110)	1100 (1010)	1001 (0110)
7	0111	1101 (0111)	1101 (1011)	1010 (0111)
8	1000	1110 (1110)	1110 (1110)	1011 (1011)
9	1001	1111 (1111)	1111 (1111)	1100 (1100)

余三码——一种无权码

Decimal	8421BCD	Excess-3		
0	0000	0011		
1	0001	0100		
2	0010	0101		
3	0011	0110		
4	0100	0111		
5	0101	1000		
6	0110	1001		
7	0111	1010		
8	1000	1011		
9	1001	1100		

- ■每一位是无权的
- 8421码+3

格雷码(Gray Code)

- •由贝尔实验室的Frank Gray在1940年代提出的,1953年获得 批准的专利"Pulse Code Communication",当初是为了通 信,后来则常用于模拟一数字转换中。
- 在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code)
- 另外由于最大数与最小数之间也仅一位数不同,即"首尾相连",因此又称循环码或反射码。
- •格雷码有多种编码形式——典型格雷码。

典型格雷码(Gray code)

Decimal	Binary	Gray code		
0	0000	0000		
1	0001	0001		
2	0010	0011		
3	0011	0010		
4	0100	0110		
5	0101	0111		
6	0110	0101		
7	0111	0100		
8	1000	1100		
9	1001	1101		
10	1010	1111		

Decimal	Binary	Gray code		
11	1011	1110		
12	1100	1010		
13	1101	1011		
14	1110	1001		
15	1111	1000		

卡诺图采用的编码

怎样获得任意给定的二进制数对应的典型格雷码?

- 1) 计算法
 - 复制最高位
 - 从最高位开始, 俩俩比较相邻位:
 - 二者相同取 0
 - 二者不同取 1
 - 转换前后数据的位宽不变

二进制: **101101** 典型格雷码: **101101**

22

如何写典型格雷码

如何写n位典型格雷码

3) 图形法

2位格雷码

00, 01, 11, 10

3位格雷码

000、001、011、010、110、111、101、100

如何写n位典型格雷码

4位格雷码

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

格雷码的优点

十进制: 3→4 8421BCD 典型格雷码 0011 0010 0100 0110 3 位码元改变 1位码元改变

Decimal	Binary	Gray code		
0	0000	0000		
1	0001	0001		
2	0010	0011		
3	0011	0010		
4	0100	0110		
5	0101	0111		
6	0110	0101		
7	0111	0100		
8	1000	1100		
9	1001	1101		
10	1010	1111		

格雷码 ——连续变化时,比较可靠

文字编码

- ASCII 编码是最简单的西文编码方案
 - American Standard Code for Information Interchange
 - 8位
- GB2312、GBK、GB18030 是汉字字符编码方案的国家标准
- Unicode 是全球字符编码的国际标准

ASCII码表

ASCII值	控制字符	ASCII值	控制字符	ASCII值	控制字符
32(20H)	(space)	64(40H)	(a)	96	`
33	!	65(41H)	A	97(61H)	a
34	11	66	В	98	b
• • •	• • •	• • •	• • •	• • •	• • •
48(30H)	0	80	P	112	p
• • •	• • •	• • •	• • •	• • •	• • •
57(39H)	9	89	Y	121	У
58	•	90	Z	122	Z
• • •	• • •	• • •	• • •	• • •	• • •
63	?	95	_	127	DEL

数制和编码小结

- 数制 (表示数量)
- •编码(表示状态等——非数量,例如:学号等)
 - BCD码(BCD code)
 - 余3码(Excess-3 code)
 - 格雷码 (Gray code)
 - 文字编码: ASCII、Unicode等