Research Progress:

Supervised Monocular Depth Estimation via Stacked Generalization

School of Environment and Society
Department of Transdisciplinary Science and Engineering
Yamashita Laboratory
CHINCHUTHAKUN WORAMETH

Background: Monocular Depth Estimation

- Active → depth sensors based on wave reflection
- Passive → use images from different perspectives to predict depth map
 - Stereo (2), Multiview (2+) → Near-perfect Approximation via epipolar geometry
 - Monocular (1) → Ill-posed problem
- Can provide a cost, space, and energy efficient alternative
 - Extremely useful in small robotic platforms

Epipolar geometry [1]

RGB image [2] and Depth map [3]

Why it's hard?[4]

^[1] D. Chotrov, Z. Uzunova, Y. Yordanov, and S. Maleshkov, "Mixed-reality_spatial_configuration_with_a_ZED_Mini_Stereoscopic_camera," 2018. Available: https://www.researchgate.net/publication/329443348_Mixed-Reality_Spatial_Configuration_with_a_ZED_Mini_Stereoscopic_Camera [2] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from rgbd images," in Computer Vision – ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 746–760.

^[3] C. Chaijirawiwat, "Monocular Depth Estimation via Transfer Learning and Multi-Task Learning with Semantic Segmentation," Bachelor's thesis, Tokyo Institute of Technology, Tokyo, Jul. 2019.
[4] D. Tan, "Depth estimation: Basics and Intuition," Medium, 12-Feb-2021. [Online]. Available: https://towardsdatascience.com/depth-estimation-1-basics-and-intuition-86f2c9538cd1. [Accessed: 14-Oct-2021].

Background: Monocular Depth Estimation (2)

How can we perceive depth in this painting?

Gustave Caillebotte's painting of a rainy street in Paris [1]

Background: Monocular Depth Estimation (3)

- We perceive depth subconsciously → difficult to mathematically describe how
- Deep learning approaches
 - Supervised → Use ground truth depth maps
 - Unsupervised → Use geometric constraints between frames in a monocular videos
 - Semi-supervised → Use stereo image pairs

Supervised problem setting [1, 2]

Unsupervised problem setting [3]

Semi-supervised problem setting [3]

Background: Deep Neural Network (DNN)

- ML model learns parameter θ to approximate $f(y|\theta) = x$
- Neural network (NN) is a specific type of ML models
 - Logistic regression is basically a one-layer neural network
- Deep NN (DNN) is NN with more than one layers
 - We often use Convolutional Neural Network (CNN) to process images since it can capture (local) spatial information
- Train by minimizing a loss function using variations of gradient descend
- Transfer learning (reuse NN's parameters in similar tasks)
 - Freezing → Completely reuse
 - Fine-tuning → Reuse with slight adjustments
 - We call NN being transferred as pretrained NN

Deep Neural Network [1]

Gradient descend [2]

Background: Encoder-Decoder Framework

- CNN keeps reducing input dimension, but we need depth map to have the same size with image
- Just append a CNN (Encoder) and an inverted CNN (Decoder) together!
 - In practice, we use interpolation + convolution instead
 - U-Net, which serves as a baseline, also employs residual connection

Convolution and Transposed convolution [1]

Encoder-Decoder [2]

U-Net Architecture [3]

Background: Ensemble Deep Learning

- Combine predictions from multiple NNs (base learners)
 to (hopefully) make a better final decision
- How to combine (better than simple average)?
 - Weighted average → Stacked Generalization (SG)
- How to determine weights?
 - Just let another ML model (meta-learner) learn it!
- Of course, it's not omnipotent
 - More storage memory, longer inference time

Ensemble Deep Learning [1]

"It has been applied in various tasks, but still no application in monocular depth estimation"

Research: Objective

"Supervised Monocular Depth Estimation via Stacked Generalization"

- Study SG in monocular depth estimation
- Compare performance of different SG
 frameworks with simple average (baseline)
 - Should we train base learners and meta-learner <u>separately</u> or <u>simultaneously</u>?
 - Should we <u>freeze</u> or <u>fine-tune</u> base-learners when train meta-learner?
 - What should be <u>inputs of the meta-learner</u>?
 - How the <u>performance of base learners</u> affects the performance of ensemble?

Overview of training pipeline

Research: Methodology

Base learners

- Adopted 3 SOTA architectures [1, 2, 3]
- Some modifications to cope with SG's drawbacks and hardware's limitation (1 = lower #param, 2 = lower latency)
 - Employ pretrained GhostNet as encoder (1,2)
 - Use depthwise separable convolutions (1)
 - Interpolating after convolution instead of before (2)

Meta-learner

- U-Net architecture with above modifications
- Inputs are either predictions from <u>base learners</u> or <u>RGB image</u>
- Output are coefficients tensor $[W]_{ijk}$

Research: Methodology

Loss Functions

- (1) Pixel-wise depth loss [1]
 - Mitigate pixel-wise difference
 - Human perceive logarithmically
 - Uses when train every model
- (2) Bin center density
 - Bichamfer Loss [2]
 - Encourage distribution of bin centers to follow distribution of ground truth depth values
 - Uses in Adabins only

$$L_{\text{total}} = L_{\text{pixel}} + L_{\text{bins}}$$

$$L_{\text{pixel}} = \alpha \sqrt{\frac{1}{N} \sum_{i=1}^{N} y_i^2 - \frac{\lambda}{N^2} (\sum_{i=1}^{N} y_i)^2}$$

where $y_i^2 = \log(d_i) - \log(d_i^*)$ and d_i^* is ground truth depth

$$L_{\text{bins}} = \text{BiChamfer}(c(b), D) + \text{BiChamfer}(D, c(b))$$

Note that $\lambda=0.85$ and $\alpha=10$ are used as same as the original Adabins

Bichamfer Loss

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Implementations

- Implemented in Pytorch, trained in a Laboratory's server using distributed training
 - Intel(R)Xeon(R) CPU E5-2534 @ 3.40GHz with 256 GB of RAM
 - o 10 NVIDIA GeForce GTX 1080 Ti GPUs with 12 GB memory
- Train with AdamW optimizer following 1-cycle policy for fast convergence
 - Maximum learning rate (lr) for each model is determined from lr range test
 - Linear warm-up for 30% of iteration from lr/25, followed by cosine annealing to lr/100
- Batch size 32, Weight decay 1e-4
- Other hyperparameters are tuned via grid search and random search
- Monitored using Weights and Biases platform
- <u>NOT</u> employing bootstrap since lower #data might affect performance of model
 - One base learner uses a Visual Transformer (ViT) which is extremely data hungry

Dataset

- 464 different indoor scenes
 - \circ Official split \rightarrow 249 training and 215 for testing (654 images)
- Monocular video sequences of scenes & ground truth depth from RGB-D camera
- Operation frequency of RGB and Depth camera are different
 - \circ 120K image-depth pairs are sampled and matched \rightarrow 24,231 training samples [1]

A sample of raw image, preprocessed depth, and labeled from the dataset [1]

Data augmentation

- Data augmentation refers to techniques to prevent overfitting by generating more (<u>feasible</u>) training examples from original data
- Follow data augmentation techniques described in [1]:
 - Random horizontal flipping with probability of 0.5
 - Random contrast, brightness, and color adjustment in a range of [0.9, 1.1]
 with probability of 0.5
 - Random crop of size 416 **★** 544
 - Random rotation of degree in a range of [-2.5,2.5]

Evaluation metrics

- Threshold Accuracy: % of d_i s.t. $\max\left(\frac{d_i}{d_i^*}, \frac{d_i^*}{d_i}\right) = \delta < \text{threshold}$, usually threshold = $1.25, 1.25^2, 1.25^3$
- Average Relative Error (REL): $\frac{1}{N} \sum \left(\frac{|d_i d_i^*|}{d_i^*} \right)$
- Root Mean Squared Error (RSME): $\sqrt{\frac{1}{N}\sum(d_i-d_i^*)^2}$
- Average \log_{10} Error: $\frac{1}{N} \sum |\log_{10}(d_i) \log_{10}(d_i^*)|$
- Squared REL (Sq REL): $\frac{1}{N} \sum \frac{\|d_i d_i^*\|}{d_i^*}$
- RSME of logarithm (RSME log): $\sqrt{\frac{1}{N} \sum \|\log d_i \log d_i^*\|^2}$

Research: Result

- Using RGB image in meta-learner \rightarrow worse REL, but better overall performance
 - Likely caused by insufficient representation capability of meta-learner

Variant	#Params	higher is better			lower is better				
		$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$	REL	Sq REL	RSME	RSME log	$\log 10$
Base: Adabins	17.2M	0.8106	0.9641	0.9919	0.1463	0.0875	0.5019	0.1788	0.0604
Base: LDRN	14.9M	0.8306	0.9661	0.9925	0.1320	0.0875	0.4561	0.1675	0.0564
Base: BTS	8.9M	0.8567	0.9724	0.9932	0.1202	0.0749	0.4326	0.1558	0.0521
Baseline	=	0.8564	0.9758	0.9948	0.1216	0.0739	0.4261	0.1537	0.0518
SG: Simultaneous	4.3M	0.8538	0.9727	0.9935	0.1199	0.0741	0.4340	0.1553	0.0521
SG: RGB, Tuned	4.3M	0.8581	0.9746	0.9944	0.1210	0.0733	0.4274	0.1540	0.0517
SG: RGB, Freeze	4.3M	0.8578	0.9748	0.9944	0.1195	0.0727	0.4290	0.1538	0.0516
SG: D	4.3M	0.8590	0.9745	0.9941	0.1189	0.0728	0.4267	0.1535	0.0514
SG: RGB + D	4.3M	0.8595	0.9748	0.9944	0.1193	0.0724	0.4267	0.1533	0.0514

Table 1: Evaluation results on NYU Depth V2. Bold and underline denote the first and second place, respectively. The proposed method (SG: RGB + D) yields competitive results on all metrics.

Research: Result (2)

- Training base learners and meta-learner together is <u>unstable</u>
 - Likely caused by performance gap among base learners
 - Require careful hyperparameter tuning to ensure convergence

Research: Result (3)

• Fine-tuning base learners when train meta-learner yields <u>useless</u> loss fluctuation

Research: Result (4)

Computational resource required

• No significant difference among meta-learner variants

Variants	Param Size (MB)	Total Mul-adds (G)	Training time (hrs)	Inference time (fps)
Base: Adabins	68.90	9.57	~6	15.94
Base: BTS	35.60	12.07	~8	9.57
Base: LDRN	59.57	14.83	~5	18.76
Baseline	-	-	-	6.5
SG: D	17.06	1.66	~11	5.86 (ensemble)
SG: RGB + D	17.07	1.69	~11	5.9 (ensemble)

Research: Future works

Current Plan

- Experiment with
 - Base learners without significant performance gap
 - Different/larger encoders with more representation capability
- Qualitative results

Need Advices!

- Should I repeat the same experiment several times and average their results?
- Should I try bootstrap? How to compare the result with those w/o bootstrap?
- Any advices is welcome!

Appendix: Depthwise Separable Convolution

Appendix: GhostNet

- Based on observation that the output feature maps of convolutional layers often contain much <u>redundancy</u>
- Generate some feature maps through usual convolution. Then, apply linear operations to generate more feature maps
- GhostNet is ghost modules arranged in a structure similar to MobileNetV2

Appendix: Why not use transposed convolution?

Transposed convolution generates checkerboard pattern

Coverage of Transposed Conv and Conv [1]

Checkerboard pattern [1]

Conv and Transposed Conv [2]

Appendix: FastDepth

- This paper proposes a lightweight decoder for monocular depth estimation
 - Contains only depthwise separable convolutions
 - When decoding, interpolate after convolution instead of before
- While it has low-latency and smaller size (even smaller after network pruning), its accuracy is naturally worse than SOTAs

