Strong light-matter coupling in two-dimensional atomic crystals

Agenda

Introduction

Part1: Observations

• Part2: Model – Explanation

Conclusion

Introduction

Device of interest

Made up of:

- Dielectric microcavity
- Monolayer of 2-D
 MoS₂ atomic crystal

Material selection

Traditional and organic materials:

- Only suitable at cryogenic T
- Strong localization
- Restricted to short wavelength
- Sophisticated growth techniques

MoS_2 :

- Excitonic devices at room temperature
- Enhanced direct-bandgap photoluminescence
- Broad wavelength range
- Cheap and abundant material
- 2-D dipole orientation
 - excitonic emission highly anisotropic

Light-matter coupling: polaritons

Cycle:

1. Interaction between **resonant light** and **monolayer** in cavity

2. Excitons: electrons-holes quasi-particles

3. Excitons recombination: light recreated

Observations

Experiment: Light-matter coupling

A is the only one excited and emitting

Two distinct dips, energy

Exciton A is of interest

Two distinct dips, energetically shifted: indicating the presence of new eigenstates -> polariton states?

Model - Explanation

Validation of polaritons state and strong coupling

Model for polaritons dispersion : eigenstates α and β

$$\begin{pmatrix} E_{cav}(\theta) + i\hbar \Gamma_{cav} & V_{A} \\ V_{A} & E_{ex} + i\hbar \Gamma_{ex} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Consistent with model? Analyze how the states change

Lower Polarization Branch and Upper Polarization Branch

LPB vanishes, UPB moves away

Fit of the polariton branches (dots) using a coupled oscillator theoretical model (black continuous lines)

The experimental data fit the polariton model:

- One branch (LPB) tends to the exciton A energy
- The other (UPB) tends to the cavity mode
- The polariton: a mix of exciton and cavity mode

Interpretation of eigenstates α and β

 α and β construct the eigenvector : weighting coefficients of the cavity photon and exA for each polariton state

Consistency of the Photoluminescence

The peaks behave in the same way as the previous dips :

 The more the polariton states tend to an optical component, the higher the intensity of photoluminescence

Same relations are found with the model

Conclusion

Conclusion

- MoS₂ shows excellent properties and is suitable for application
- Polaritons exhibits both light and matter properties
- The proportions of light and matter is tunable (take the best of both)
- For the first time strong-coupling regime is observed
- Applications : logic gates, spin switches