Trabajo y Energía

- **1.** La fuerza $\vec{F} = 7\vec{u}_x 6\vec{u}_y$ actúa sobre una partícula y se mide en newtons.
 - a) Calcule el trabajo efectuado por la fuerza sobre la partícula cuando ésta se mueve desde el origen de coordenadas O hasta el punto P, $\vec{r}_P = -3\vec{u}_x + 4\vec{u}_y + 16\vec{u}_z$, donde las coordenadas se dan en metros ¿La fuerza es conservativa?
 - b) Calcule la potencia promedio de la fuerza si la partícula tarda 0.6 s en ir desde O a P.
 - c) Calcule el cambio en la energía cinética de la partícula entre O y P si \vec{F} es la única fuerza que actúa sobre ella.
- **2.** Una fuerza en el plano xy viene dada $\vec{F}=-\frac{b}{r^3}(x\vec{i}+y\vec{j})$, b es una constante y $r=\sqrt{x^2+y^2}$
 - a) Demuestre que el módulo de la fuerza varía según el inverso del cuadrado de la distancia al origen.
 - b) Calcule el trabajo realizado por dicha fuerza sobre una partícula que se mueve a lo largo de una recta entre una posición inicial x=2m y=0m y una posición final x=5 m y=0 m. *Nota:*

$$\int \frac{x}{\sqrt{x^2 + y^2}} dx = \frac{-1}{\sqrt{x^2 + y^2}} + constante$$

- c) Determine el trabajo realizado por esta fuerza sobre una partícula que se mueve por un cuadrado de lado l = 7 m.
- **3.** Una fuerza actúa sobre un objeto de 750 kg que se desplaza a velocidad constante de 60 km/h por una superficie horizontal con rozamiento. La potencia asociada a la fuerza cuando actúa sobre el objeto es de 15 KW. Calcule:
 - a) El valor neto de las fuerzas de rozamiento que se oponen al movimiento.
 - b) La potencia necesaria para que el objeto suba una pendiente del 10% a 60 km/h.
 - c) La potencia necesaria para que baje una pendiente del 5% a 60 km/h.
- **4.** Un electrón en movimiento tiene una energía cinética K_1 . Después de realizarse sobre él una cantidad neta de trabajo W, se mueve con un tercio de su rapidez anterior y en sentido contrario.
 - a) Calcule W en términos de K_1 .
 - b) ¿Su respuesta depende de la dirección final del movimiento del electrón?
- **5.** La masa de la lanzadera espacial es de unos $8\cdot10^4$ kg y describe una órbita circular a 402 km de la superficie de la Tierra y con un periodo de 90 minutos. Calcule la energía cinética de la lanzadera cuando está en órbita y el trabajo realizado por la fuerza de la gravedad entre el momento del lanzamiento y el instante que alcanza su órbita (R_T =6370·10³ m)

Aunque la fuerza de la gravedad decrece con la altitud, este efecto es pequeño cerca de la superficie de la Tierra. Use este hecho para evitar calcular la integral.

6. Un cuerpo de masa M=1 Kg está en reposo sobre una mesa horizontal, sujeto a una cuerda inextensible y de masa despreciable que pasa por una polea de rozamiento y masa despreciables. Al otro extremo de la cuerda se encuentra una masa m=0.3 Kg. El coeficiente de fricción estático entre el cuerpo y la superficie de la mesa es $\mu_e=0.5$. Si se hace oscilar el cuerpo m de manera que el cuerpo M no se mueve:

- a) Calcule la velocidad v del cuerpo oscilante en función de la altura. Suponga $\theta = 0$ si h = 0.
- b) Si se parte del reposo desde una altura inicial h_0 = 20 cm, ¿cuál es la velocidad máxima alcanzada?
- c) Calcule una expresión para la tensión de la cuerda cuando el cuerpo m pasa por la vertical, en función del ángulo inicial θ_0 .
- d) Calcule el máximo valor de θ_0 para que la masa M no se mueva.
- **7.** Un bloque de 6.0 kg de masa se libera desde A en la pista de la figura y desliza sin rozamiento. Determine las componentes radial y tangencial de la aceleración del bloque en el punto P.

8. Un niño se lanza por un tobogán y se desliza hacia abajo sin rozamiento, tal como se muestra en la figura ¿En términos de R y H, a qué altura h perderá contacto con la sección de radio R?

- 9. Una moneda de masa 0.10 kg se encuentra sobre un plano inclinado con ángulo α =30°. Partiendo del reposo, la moneda desliza con rozamiento (μ_c =0.2) por la rampa por efecto de la gravedad. La longitud de la rampa es 1 m. Al llegar al final de la rampa, el cuerpo continúa deslizando en horizontal hasta quedar completamente parado.
 - a) ¿Qué trabajo ha realizado la fuerza de gravedad entre el punto inicial y el punto final?
 - b) ¿Cuál es la energía cinética al final de la rampa?
 - c) ¿Cuánta energía se ha disipado en forma de calor debido al rozamiento a lo largo de todo el movimiento?
 - d) ¿Qué parte de la energía se ha disipado en la rampa y que parte en el tramo horizontal?
 - e) ¿Cuál es el trabajo total realizado por las fuerzas sobre la moneda?
- **10**. Un esquiador de masa 70 Kg que parte del reposo desde el punto A alcanza una velocidad de 30 m/s en el punto B y de 23 m/s en el punto C, siendo la distancia BC de 30 m y α = 45° y β = 30°.
 - a) Calcule el trabajo realizado por las fuerzas de fricción sobre el esquiador entre B y C.
 - b) Calcule la máxima altura que puede alcanzar el esquiador respecto del nivel C suponiendo que el esquiador continúa por la pista.

11. Una partícula puntual realiza un movimiento rectilíneo. En la figura se muestra la dependencia funcional de la energía potencial de la partícula con su posición, $E_p(x)$.

- a) Determine en cuáles de los puntos indicados la fuerza es nula.
- b) Determine en cuáles de los puntos indicados la fuerza actúa en el sentido de x decreciente
- c) ¿En qué punto de los indicados el módulo de la fuerza adquiere el mayor valor?
- d) ¿Alguno de los puntos indicados es un punto de equilibrio estable?

- **12.** Una partícula está sujeta a una fuerza asociada con la energía potencial $E_p(x)=3x^2-x^3$.
 - a) Trace una gráfica de $E_p(x)$
 - b) Determine la dirección de la fuerza en cada intervalo apropiado de la variable x.
 - c) Analice los movimientos posibles de la partícula para los diferentes valores de su energía total.
 - d) Encuentre las posiciones de equilibrio (estable o inestable)
- **13.** La energía potencial de dos átomos en una molécula biatómica se aproxima con $U(r)=a/r^{12}-b/r^6$, donde r es la distancia entre los átomos y a y b son constantes positivas.
 - a) Determine la fuerza F(r) que actúa sobre un átomo en función de r.
 - b) Determine la distancia de equilibrio entre los dos átomos ¿Es estable el equilibrio?
 - c) Suponiendo que los átomos están a la distancia de equilibrio obtenida en b), ¿Qué energía mínima debe agregarse a la molécula para disociarla, es decir, para separar los dos átomos una distancia infinita?

- **1.** La fuerza $\vec{F} = 7\vec{u}_x 6\vec{u}_y$ actúa sobre una partícula y se mide en newtons.
 - a) Calcule el trabajo efectuado por la fuerza sobre la partícula cuando ésta se mueve desde el origen de coordenadas O hasta el punto P, $\vec{r}_P = -3\vec{u}_x + 4\vec{u}_y + 16\vec{u}_z$, donde las coordenadas se dan en metros ¿La fuerza es conservativa?
 - b) Calcule la potencia promedio de la fuerza si la partícula tarda 0.6 s en ir desde O a P.
 - c) Calcule el cambio en la energía cinética de la partícula entre O y P si \vec{F} es la única fuerza que actúa sobre ella.

- **2.** Una fuerza en el plano xy viene dada $\vec{F} = -\frac{b}{r^3}(x\vec{i}+y\vec{j})$, b es una constante y $r = \sqrt{x^2+y^2}$
 - a) Demuestre que el módulo de la fuerza varía según el inverso del cuadrado de la distancia al origen.
 - b) Calcule el trabajo realizado por dicha fuerza sobre una partícula que se mueve a lo largo de una recta entre una posición inicial x=2m y=0m y una posición final x=5 m y=0 m. *Nota:*

$$\int \frac{x}{\sqrt{x^2 + y^2}} dx = \frac{-1}{\sqrt{x^2 + y^2}} + constante$$

c) Determine el trabajo realizado por esta fuerza sobre una partícula que se mueve por un cuadrado de lado I = 7 m.

- **3.** Una fuerza actúa sobre un objeto de 750 kg que se desplaza a velocidad constante de 60 km/h por una superficie horizontal con rozamiento. La potencia asociada a la fuerza cuando actúa sobre el objeto es de 15 KW. Calcule:
 - a) El valor neto de las fuerzas de rozamiento que se oponen al movimiento.
 - b) La potencia necesaria para que el objeto suba una pendiente del 10% a 60 km/h.
 - c) La potencia necesaria para que baje una pendiente del 5% a 60 km/h.

$$P = \frac{15.000}{16.69} = \frac{15.000}{16.63} = \frac{15.00$$

5. La masa de la lanzadera espacial es de unos $8\cdot10^4$ kg y describe una órbita circular a 402 km de la superficie de la Tierra y con un periodo de 90 minutos. Calcule la energía cinética de la lanzadera cuando está en órbita y el trabajo realizado por la fuerza de la gravedad entre el momento del lanzamiento y el instante que alcanza su órbita ($R_T=6370\cdot10^3$ m)

Aunque la fuerza de la gravedad decrece con la altitud, este efecto es pequeño cerca de la superficie de la Tierra. Use este hecho para evitar calcular la integral.__

$$C = \frac{1}{2} m v_{3} - 3 = \frac{1}{2} m \left(\frac{1}{2} - \frac{1}{2} \right)^{2} = \frac{1}{2} m \left(\frac{1}{$$

6. Un cuerpo de masa M = 1 Kg está en reposo sobre una mesa horizontal, sujeto a una cuerda inextensible y de masa despreciable que pasa por una polea de rozamiento y masa despreciables. Al otro extremo de la cuerda se encuentra una masa m = 0.3 Kg. El coeficiente de fricción estático entre el cuerpo y la superficie de la mesa es μ_e = 0.5. Si se hace oscilar el cuerpo m de manera que el cuerpo M no se mueve:

- a) Calcule la velocidad v del cuerpo oscilante en función de la altura. Suponga θ = 0 si h = 0.
- b) Si se parte del reposo desde una altura inicial h₀ = 20 cm, ¿cuál es la velocidad máxima alcanzada?
- c) Calcule una expresión para la tensión de la cuerda cuando el cuerpo m pasa por la vertical, en función del ángulo inicial θ_0 .
- d) Calcule el máximo valor de θ_0 para que la masa M no se mueva.

and Como no hay rozanieto, es conserv. -> Em= Ec + Ep = (6=cte) = \frac{1}{2}mv2 + mgh = 0 + mgho v2 = (mgho-mgh) = => V = [2g(ho-h) b.) = mv 2 +0 = 0 + mg ho => v moix = \frac{2}{2} mg \, \text{mg \, m/s} c.) v2= 29/10=29(1=1000) = 29/(1-0000) (EF=ma) T-my= ~ 12= ~ 29L (1-cosQ) => T= mg+ng 2(1-cosQ)=[mq(3-2cosQ) di X: T-Fr=Ma=O (QF=na) ng (3-2000) - Ne Mg=0 N-Mg=0=7 N=Mg -> cos00= 3m-NeM => [0=48120]

11. Una partícula puntual realiza un movimiento rectilíneo. En la figura se muestra la dependencia funcional de la energía potencial de la partícula con su posición, $E_p(x)$.

- a) Determine en cuáles de los puntos indicados la fuerza es nula.
- b) Determine en cuáles de los puntos indicados la fuerza actúa en el sentido de x
- c) ¿En qué punto de los indicados el módulo de la fuerza adquiere el mayor valor?
- d) ¿Alguno de los puntos indicados es un punto de equilibrio estable?

- - a) Trace una gráfica de $E_p(x)$
 - b) Determine la dirección de la fuerza en cada intervalo apropiado de la variable x.
 - c) Analice los movimientos posibles de la partícula para los diferentes valores de su energía total.
 - d) Encuentre las posiciones de equilibrio (estable o inestable)

- 13. La energía potencial de dos átomos en una molécula biatómica se aproxima con U(r)=a/r12 b/r^6 , donde r es la distancia entre los átomos y a y b son constantes positivas.
 - a) Determine la fuerza F(r) que actúa sobre un átomo en función de r.
 - b) Determine la distancia de equilibrio entre los dos átomos ¿Es estable el equilibrio?
 - c) Suponiendo que los átomos están a la distancia de equilibrio obtenida en b), ¿Qué energía mínima debe agregarse a la molécula para disociarla, es decir, para separar los dos átomos una distancia infinita?

7. Un bloque de 6.0 kg de masa se libera desde A en la pista de la figura y desliza sin rozamiento. -> (F. conserv.)

Determine las componentes radial y tangencial de la aceleración del bloque en el punto P.

Emiche = EC+EP

$$C_{A} = C_{P}$$

$$C_{CA} + C_{PA} = C_{CP} + C_{PP}$$

$$C_{CA} + C_{PA} = C_{CP} + C_{PP}$$

$$C_{CA} + C_{PA} = C_{CP} + C_{PP}$$

$$C_{PA} = C_{CP} + C_{PP}$$

$$C_{CA} + C_{PA} = C_{CP} + C_{PP}$$

$$C_{CA} + C_{CP} = C_{CP} + C_{CP}$$

$$C_{CA} + C_{CP} = C_{$$

8. Un niño se lanza por un tobogán y se desliza hacia abajo sin rozamiento, tal como se muestra en la figura ¿En términos de R y H, a qué altura h perderá contacto con la sección de radio R?

- 9. Una moneda de masa 0.10~kg se encuentra sobre un plano inclinado con ángulo α =30°. Partiendo del reposo, la moneda desliza con rozamiento (μ_c =0.2) por la rampa por efecto de la gravedad. La longitud de la rampa es 1 m. Al llegar al final de la rampa, el cuerpo continúa deslizando en horizontal hasta quedar completamente parado.
 - a) ¿Qué trabajo ha realizado la fuerza de gravedad entre el punto inicial y el punto final?
 - b) ¿Cuál es la energía cinética al final de la rampa?
 - c) ¿Cuánta energía se ha disipado en forma de calor debido al rozamiento a lo largo de todo el movimiento?
 - d) ¿Qué parte de la energía se ha disipado en la rampa y que parte en el tramo horizontal?
 - e) ¿Cuál es el trabajo total realizado por las fuerzas sobre la moneda?

a) Wy = fg. ? = (ngsend) L Wg = - NEP = - (0-mglsena) = 10149 5 (de sinceson) 2 (M=, (q2+23) - (6c+6p),=W'R (+chairs de) (x: mgsad-Fr=max)> Fr=NcN=Ncmgcosd -> W'= - Nc macos d.L -> BEC=W==Wg+W==0149-017=101323 [DICE CLUE ESTÁ PARADO) c) DET(0-2) = W' = (E/c+6/P2) - (E/c+6P0) = mgh = [-0149] d) DGT10-N= [032] DET (1-2) = 0,100 - 0,25 = [0,15] (000) en Woz= (wgoi+Wfoi) + (wgiz +W'fiz) = (0147-0117) -0132=101

 $h_1-h_2=h$ $Sen B = \frac{h}{dist_{BC}} - 7h = 30 sen 30° = 15m$

-> W'BC = [-2695]