#### course\_content

#### Data Structures and Algorithms

#### **Sorting Review & Intro Trees**

# Week 8

top

W8: Trees

W9: Heaps

W10: Graphs

W11: Greedy Algorithms

#### Time: 5 min

## Quiz Time

bit.ly/DSA1920Quiz7



# Sorting Review - Stability

- Stable Sorts two identical elements maintain their existing order
- We want stable sorts when there are multiple properties to sort on
- Any algorithm that swaps elements that are not near each other can
  break stability e.g. Selection Sort, Shell Sort, Heap Sort, Quick Sort
- Any sorting algorithm can be made to be stable with O(n) space by including the current position in the comparison (when comparing two equal elements)

# **Sorting Review**

| Algorithm | Time-Best | Time-Avg | Time-Worst | Aux Space | In-place | Stable |
|-----------|-----------|----------|------------|-----------|----------|--------|
| Bubble    | O(n)      | O(n²)    | O(n²)      | O(1)      | Yes      | Yes    |
| Selection | O(n²)     | O(n²)    | O(n²)      | O(1)      | Yes      | No     |
| Insertion | O(n)      | O(n²)    | O(n²)      | O(1)      | Yes      | Yes    |
| Shell     | O(nlogn)  | O(nlogn) | O(n²)      | O(1)      | Yes      | No     |
| Merge     | O(nlogn)  | O(nlogn) | O(nlogn)   | O(n)      | No       | Yes    |
| Quick     | O(n)      | O(nlogn) | O(n²)      | O(log n)  | Yes/No   | No     |
| Неар      | O(nlogn)  | O(nlogn) | O(nlogn)   | O(1)      | Yes      | No     |

## MidTerm Review

- What is the worst-case runtime for searching a sorted array?
- What is the worst-case runtime for deleting a node from a doubly-linked list?
- What is the worst-case runtime for accessing a hash table? (no collisions)
- Definition of 'x and y' and 'x or y' in Python.
- Mutable types in Python
- Number of Operations → Time Complexity

### Trees

- A tree is a non-linear data structure
- It has a root, branches and leaves
- The root (only one) is at the top, branches come down with leaves at the bottom
- Each item in a tree is called a node
- Examples: Animal Kingdom Hierarchy, Family Tree, File System, XML/HTML data, Heaps, compilers (for managing syntax),

### Trees

- What do the following mean in the context of trees?
  - Node, Edge, Root, Path, Children, Parent
  - Sibling, Subtree, Leaf Node, Level, Height
- You can think of a tree in 2 ways:
  - A root + one-way edges coming out of each node to new nodes such that there are no 'cycles' ---- the intuitive understanding
  - A tree is either empty or a root connecting to zero or more subtrees (which are also trees) ---- the recursive definition

## Trees



Figure 3: A Tree Consisting of a Set of Nodes and Edges



Figure 4: A recursive Definition of a tree

Time: 5 min

## Trees - Implementation

- 2 main ways of implementing Trees
  - List of Lists
    - E.g. [3,[1],[2,[1],[3]]]
  - Node and list of children
    - Think of Linked Lists but instead of just one next node, you have a list of children nodes
- Binary Trees have at most 2 children left Node and right Node (can be Empty)

Time: 5 min

### Trees - Traversals

- There are many different traversal methods:
  - Depth-First Search (method)
    - Pre-order traversal
    - In-order traversal
    - Post-order traversal
  - Breadth-First Search (method)
- What do they mean? How do they work?

Time: 1 min

## **Questions?**