Неинерциални отправни системи. Инерционни сили при праволинейно и криволинейно движение

Неинерциални отправни системи

Чрез първия принцип на Нютон (4 въпрос) ние въведохме инерциална отправна система. Оказва се, че принципите на Нютон се изпълняват само в инерциални системи. Ако дадена отправна система се движи с ускорение спрямо коя да е инерциална система, тя се нарича неинерциална отправна система. В такава отправна система се нарушават и трите принципа на Нютон.

Нека да разгледаме пак две отправни системи **K** (**XYZ**) и **K'** (**X'Y'Z'**) (фиг. 1), като приемем, че **K** е неподвижна. Нека система **K'** се движи спрямо нея с някаква скорост $\overrightarrow{v_0}$ и ускорение $\overrightarrow{a_0}$. Следователно, ако системата **K** е инерциална, то системата **K'** трябва да е неинерциална, защото се движи с ускорение спрямо инерциалната отправна система **K**. Нека отново да намерим връзката между координатите и

скоростите на тяло, което в даден момент от време се намира в т. А, в двете отправни системи. Ако означим радиус-векторът на тялото в \mathbf{K} с \overrightarrow{r} , а в $\mathbf{K'}$ – с $\overrightarrow{r'}$, връзката между тях се дава чрез радиус-векторът $\overrightarrow{r_0}$ на началото $\mathbf{O'}$ на система $\mathbf{K'}$ спрямо система \mathbf{K} :

$$(1) \vec{r} = \vec{r_0} + \vec{r'}.$$

Ако диференцираме (1) по времето ще получим скоростта на тялото спрямо ${\bf K}$:

(2)
$$\vec{v} = \frac{\overrightarrow{dr}}{dt} = \frac{\overrightarrow{dr_0}}{dt} + \frac{\overrightarrow{dr'}}{dt} = \overrightarrow{v_0} + \overrightarrow{v'},$$

където $\overrightarrow{v'}$ е скоростта му спрямо $\mathbf{K'}$. От (2) се вижда непосредствено, че в неинерциалната отправна система $\mathbf{K'}$ се нарушава първият принцип на Нютон. Ако на тялото не действат други тела, в инерциалната система \mathbf{K} скоростта му ще бъде постоянна ($\overrightarrow{v} = \operatorname{const}$), а в неинерциалната $\mathbf{K'} - \overrightarrow{v'} \neq \operatorname{const}$, тъй като $\overrightarrow{v'} = \overrightarrow{v} - \overrightarrow{v_0}$, а $\overrightarrow{v_0}$ не е постоянна ($\mathbf{K'}$ се движи с ускорение $\overrightarrow{a_0}$ спрямо \mathbf{K}).

Ускорението на тялото в отправната система ${\bf K}$ ще получим като вземем първата производна на скоростта по времето:

(3)
$$\vec{a} = \frac{\vec{dv}}{dt} = \frac{\vec{dv_0}}{dt} + \frac{\vec{dv'}}{dt} = \vec{a_0} + \vec{a'}$$
.

Ускорението \vec{a} и скоростта \vec{v} се наричат абсолютно ускорение и абсолютна скорост на тялото (материалната точка) спрямо неподвижната система \vec{K} , а ускорението \vec{a} и скоростта \vec{v} – относително ускорение и относителна скорост на тялото спрямо движещата се ускорително система \vec{K} . Ускорението $\vec{a_0}$ и скоростта $\vec{v_0}$ се наричат преносно ускорение и преносна скорост (това са ускорението и скоростта на системата \vec{K} спрямо \vec{K}).

Инерционни сили при праволинейно и криволинейно движение

Ако върху тялото не действат сили (в инерциалната отправна система **K** това означава, че $\vec{F} = 0$ и $\vec{a} = 0$), (3) ще придобие вида:

$$\vec{a} = 0 = \vec{a_0} + \vec{a'}$$

$$(4) \vec{a'} = -\vec{a_0} ,$$

което показва, че ако тялото е в покой спрямо системата \mathbf{K} (или се движи праволинейно и равномерно), спрямо движещата се ускорително система $\mathbf{K'}$ то ще се движи с ускорение $\overrightarrow{a'} = -\overrightarrow{a_0}$. Следователно в $\mathbf{K'}$ се нарушава и вторият принцип на Нютон – тялото получава ускорение без да му действа сила. Оказва се, че в системата $\mathbf{K'}$ тялото привидно изпитва действие на някаква сила $\overrightarrow{F'}$, която му придава ускорение, равно по големина и обратно по посока на $\overrightarrow{a_0}$. Оттук се вижда и нарушаването на третия принцип на Нютон – тази сила няма съответстваща ѝ равна по големина и обратна по посока сила. Силата $\overrightarrow{F'}$ можем да получим като умножим (4) по масата на тялото:

$$\overrightarrow{F}' = m\overrightarrow{a}' = -m\overrightarrow{a}_0 \equiv \overrightarrow{F}_{in}$$
.

Тази сила се нарича инерционна сила \overrightarrow{F}_{in} . Следователно в неинерциалните системи възникват допълнителни сили, наречени инерционни, които са свързани с тяхното ускорително движение, а не с някакво външно въздействие върху телата. Появата на инерционни сили в дадена координатна система е признак за ускорителното ѝ движение.

Ако неинерциалната система **K'** се движи праволинейно, ускорението, което получава тялото в система **K**, е тангенциално ускорение $(\overrightarrow{a_0} = \overrightarrow{a_t})$. В такъв случай инерционната сила е $\overrightarrow{F_{in}} = -m\overrightarrow{a_t}$ (напр. при потегляне или спиране на превозно средство). При равномерно движение по окръжност също възниква инерционна сила – т.нар. центробежна сила, тъй като в този случай имаме нормално ускорение $(\overrightarrow{a_0} = \overrightarrow{a_n}, \overrightarrow{F_{in}} = -m\overrightarrow{a_n})$. Големината на тази сила, изразена чрез скоростта или ъгловата скорост на тялото, можем да получим като използваме връзката между големините на нормалното ускорение, линейната и ъгловата скорост на тялото (10 въпрос):

$$a_n = \frac{v^2}{R} = \omega^2 R$$

$$F_{in} = m \frac{v^2}{R} = m \omega^2 R$$

Такава сила действа на всяко тяло върху земната повърхност (отправна система, свързана с повърхността на Земята, е неинерциална, поради въртенето на Земята около оста й) или на тяло, намиращо се в превозно средство, което прави завой. Центробежната сила действа на всяко тяло във въртяща се неинерциална отправна система, независимо дали то се движи спрямо нея или е в покой. Ако тялото се движи спрямо въртяща се неинерциална отправна система, възниква и т.нар. сила на Кориолис, която зависи от скоростта \overrightarrow{v} на тялото и ъгловата скорост $\overrightarrow{\omega}$ на системата ($\overrightarrow{F_c} = -2m \left[\overrightarrow{\omega} \times \overrightarrow{v}\right]$).

Тази сила е причината за отклонението на свободно падащите тела на изток от отвесната права, за неравномерното отмиване на бреговете на реките – в северното полукълбо се отмива повече десният бряг, а в южното – левият.

За инерционните сили също е валиден принципът на суперпозицията – общата инерционна сила е сума от всички действащи инерционни сили.