Introdução à
Visão
Computacional e
Aprendizado
Profundo com
Python

Como essa tecnologia auxilia no diagnóstico de doenças

Clésio Gonçalves

Mestre em Engenharia Elétrica e Doutorando em Ciência da Computação - UFPI. Professor de Informática do IFSertãoPE -Campus Ouricuri

Repositório do minicurso

https://github.com/clesio-goncalves/MinicursoIFPI2024

Conteúdo

Inteligência Artificial

Conceito

- A Inteligência Artificial (IA) refere-se à capacidade de máquinas aprenderem e tomarem decisões de maneira autônoma
 - Algoritmos inteligentes;
 - Dados.
 - Uso de GPU para treinamento

Em julho de 2020, a OpenAl revelou o GPT-3, o maior modelo de linguagem então conhecido.

O GPT-3 possui **175 bilhões de parâmetros** e foi treinado em **570 gigabytes de texto**. Para efeito de comparação, seu antecessor, **GPT-2, era 100 vezes menor**, com **1,5 bilhão de parâmetros**.

Fonte: THE AI INDEX REPORT 2024

O GPT-4 da OpenAI usou cerca de **US\$ 78 milhões** em computação para treinar,
enquanto o Gemini Ultra do Google custou **US\$ 191 milhões** em computação.

Fonte: THE AI INDEX REPORT 2024

Aplicações

Energia

Redirecionamento de energia, inspeções, etc.

Assistentes de voz

Siri, Google Home, Alexa, etc.

Aplicativos de streaming

YouTube, Spotify, Netflix, etc.

Aplicações

Marketing personalizado

Ajuda as marcas a alcançar as pessoas certas.

Navegação e viagem

Exemplos: Google Maps e Waze.

Veículos autônomos

IA ensinando os veículos a operar de forma independente

Aplicações

Reconhecimento facial

Aplicações de segurança, identificação de humor, etc.

Segurança e Vigilância

Exemplo: monitoramento e verificação de incidentes.

Internet das Coisas

Dispositivos inteligentes.

Na saúde

000

"Inteligência Artificial em medicina é o uso de computadores que, analisando um **grande volume de dados** e seguindo **algoritmos** definidos por especialistas na matéria, são capazes de propor soluções para problemas médicos."

— Luiz Carlos Lobo (2017)

Visão Computacional

Visão Computacional

 A Visão Computacional tem por objetivo final simular o olho humano para realizar análises e aprender padrões a partir de entradas visuais

Visão Computacional

Modelagem e replicação da visão humana usando software e hardware

analisar, interpretar e extrair informações relevantes de imagens e/ou vídeos

Principais tarefas realizadas utilizando a Visão Computacional

Principais desafios

Necessidade de grandes volumes de dados rotulados para treinamento

Risco de overfitting (ajuste excessivo) em modelos muito complexos

Alto custo computacional associado ao treinamento de redes profundas

Anotação das imagens para treinamento

Falta de interpretabilidade em modelos complexos (redes neurais profundas)

Grad-CAM: aplicação em imagens

PAVIC

Laboratório de Pesquisas Aplicadas à Visão e Inteligência Computacional - PAVIC UFPI

Detecção de doenças de pele

Classificação das doenças pelas manifestações na pele

Segmentação de deformações na próstata

Detecção de doenças oculares

Detecção de doenças pulmonares

Detecção de bacilos da Tuberculose

Segmentação de células cervicais

Geração **Automatizada** de Relatórios Médicos a partir de **Imagens de** Raio-X

BLEU-1: 0.80 BLEU-2: 0.78 BLEU-3: 0.77 BLEU-4: 0.76 METEOR: 0.50 ROUGE-L: 0.81

LATERAL-LEFT

Detecção de Leishmaniose Visceral Humana Utilizando Aprendizado Profundo em Imagens de Microscopia do Exame Parasitológico da Medula Óssea

Aquisição das Imagens

Aquisição das Imagens

Resultados

97,3%

Classificação

Kappa superior a 97% e F1-Score superior a 98% utilizando os modelos InceptionV3 e InceptionResNetV2

80,4

O Segmentação

Dice superior a 80%, utilizando recortes RGB com dimensões 96x96 em uma U-Net

Anotação Manual vs Modelo Desenvolvido

Nova parceria com o LAPEDONE

LV Canina 30 animais

crista ilíaca

úmero

esterno

fêmur

Automação na captura das imagens

04

Aprendizado Profundo

O que é Deep Learning ou Aprendizado Profundo?

Inteligência Artificial

Qualquer técnica que permita aos computadores imitar a inteligência humana

Aprendizado de Máquina

Sistema ou algoritmos que são projetados para aprender estruturas, para prever resultados futuros

Aprendizado Profundo

Subcategoria de aprendizado de máquina adequada para algoritmos de autotreinamento e extração de recursos

É baseada em sistemas computacionais que simulam a maneira como o cérebro humano funciona

Representação do neurônio biológico

Representação do neurônio biológico

Representação do neurônio artificial

Representação de uma rede neural artificial

Representação de uma rede neural artificial

AP usa múltiplas camadas de neurônios matemáticos para processar dados, compreender a fala e reconhecer objetos visuais.

Rede Neural Simples e Rede Neural Profunda (Deep Learning)

Exemplo de uma rede neural profunda aplicadas à análise de imagens.

CNN

 Quando se trabalha com imagens envolvendo o aprendizado profundo, as redes neurais convolucionais (CNN) são amplamente utilizadas dentro da literatura.

 São tipos de redes neurais artificiais que utilizam multicamadas complexas e profundas, que são capazes de reconhecer elementos em imagens Como
Funcionam as
Redes Neurais
Convolucionais?

Entrada da rede

 Uma imagem nada mais é do que uma matriz de valores de pixels, certo? Então, por que não achatar a imagem (por exemplo, matriz de imagem 3x3 em um vetor 9x1) e alimentá-la em uma rede neural? Sim, é isso que fazemos.

1	1	0	
4	2	1	
0	2	1	

Representação de uma imagem em RGB

Convolução

Convolução em imagem escala de cinza

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Pooling

 extrair características importantes das imagens, como bordas, texturas, formas e, em camadas mais profundas, padrões mais complexos.

Pooling

Pooling

 A Pooling, que é responsável por reduzir a dimensionalidade da imagem (diminuindo a largura e a altura dos mapas de características).

- Benefícios:
- diminuir o custo computacional
- extrair características dominantes das imagens.

Treinamento e Backpropagation

Estrutura de uma CNN

Transferência de Aprendizado

000

"Técnica de transferência de aprendizado é utilizada para extrair as características aprendidas em um problema e reutilizar esse conhecimento em um novo problema semelhante"

— Orenstein e Beijbom 2017

Transferência de Aprendizado

 A transferência de aprendizado é normalmente utilizada quando há um conjunto de dados com poucas imagens para treinar um modelo classificação real com CNNs.

 É adicionado um novo classificador (camadas totalmente conectadas), que é treinado sob o modelo pré-treinado para que possa redirecionar os mapas de características aprendidos anteriormente para o novo conjunto de dados.

Segundo [Fchollet 2020], no contexto de DL, o guia geral para realizar a aprendizagem por transferência é o seguinte:

 Reutilizar todas as camadas de um modelo pré-treinado (uma CNN pré-treinada, por exemplo);

 Congelar todas essas camadas para evitar perder as informações que foram aprendidas durante as próximas iterações de treinamento. As camadas congeladas evitam que os pesos dos neurônios sejam atualizados;

3. Adicionar novas camadas totalmente conectadas sob as camadas congeladas. Com isso essas novas camadas irão transformar o aprendizado das camadas congeladas em previsões para o novo conjunto imagens;

4. Treinar essas novas camadas recém adicionadas no novo conjunto de imagens.

Agora vamos ao estudo de caso!

