Graph algorithms II

- 1. Kruskal's Minimum Spanning Tree Algorithm
- 2. Floyd's All-Pairs Shortest Path Algorithm
- 3. Prim's Minimum Spanning Tree Algorithm
- 4. Dijkstra's Single Source Shortest Path Algorithm

연결된 가중치 비방향그래프

- □ Spanning Tree (신장트리)
 - A connected subgraph that contains all the vertices in G and is a tree
 - 연결된 비방향성 그래프 G에서 순환경로를 제거하면서 연결된 부분그래프가 되도록 이음선을 제거
- □ Minimum spanning tree (최소비용 신장트리)
 - A spanning tree with minimum weight in G
 - 최소 비용의 연결된 부분그래프는 반드시 트리가 되어야 한다.
 왜냐하면, 만약 트리가 아니라면, 분명히 순환경로(cycle)가 있을 것이고, 그렇게 되면 순환경로 상의 한 이음선을 제거하면 더작은 비용의 연결된 부분그래프를 얻을 수 있기 때문이다.
 - 관찰1: 모든 신장트리가 최소비용 신장트리는 아니다.
 - 관찰2: 최소비용 신장트리는 유일하지 않을 수도 있다.

(a) A connected, weighted, undirected graph G

(b) If (v₄,v₅) were removed from this subgraph, the graph would remain connected.

(c) A spanning tree for G

(d) A minimum spanning tree for G

- □ 최소비용신장트리의 적용 예
 - 도로 건설 (road construction)
 - 도시들을 모두 연결하면서 도로의 길이가 최소가 되도록 하는 문제
 - 통신 (telecommunications)
 - 전화선의 길이가 최소가 되도록 전화 케이블 망을 구성하는 문제
 - 배관 (plumbing)
 - 파이프의 총 길이가 최소가 되도록 연결하는 문제

- Brute-force method
 - 알고리즘
 - 모든 신장트리를 다 고려해 보고, 그 중에서 최소비용이 드는 것을 고른다.
 - 분석
 - 이는 최악의 경우, 지수보다도 나쁘다.
 - Complete graph의 신장트리는 $\Theta(n^{n-2})$ 개 존재함이 알려져 있다.

High-level Algorithm

```
// initialize set of edges to empty
F := \Phi;
create disjoint subsets of V, one for each
vertex and containing only that vertex;
sort the edges in E in nondecreasing order;
While (the instance is not solved) {
      select next edge;
                                                      // selection procedure
      if (the edge connects 2 vertices
                  in disjoint subsets) {
                                                      // feasibility check
           merge the subsets;
           add the edge to F;
      }
                                                      // solution check
      if (all the subsets are merged)
           the instance is solved;
```

Determining a MST

- 1. Edges are sorted by weight
 - (v_1, v_2) 1
 - (v_3, v_5) 2
 - (v_1, v_3) 3
 - (v_2, v_3) 3
 - (v_3, v_4) 4
 - (v_4, v_5) 5
 - (v_2, v_4) 6

2. Disjoint sets are created

 v_3

 v_5

3. (v₁, v₂) is selected

4. (v₃, v₅) is selected

5. (v_1, v_3) is selected

6. (v₂, v₃) is selected

7. (v₃, v₄) is selected

□ 서로소 집합 추상 데이터 타입 (disjoint set abstract data type)

```
index i; set_pointer p, q;
```

- initial(n): n개의 서로소 부분집합을 초기화 (하나의 부분집합에 1에서 n사이의 인덱스가 정확히 하나 포함됨)
- $p = \operatorname{find}(i)$: 인덱스 i가 포함된 집합의 포인터 p를 넘겨줌
- $\operatorname{merge}(p,q)$: 두 개의 집합을 가리키는 p와 q를 합병
- equal(p,q): p와 q가 같은 집합을 가리키면 true를 넘겨줌

```
void kruskal(int n, int m, set_of_edges E, set_of_edges& F) {
    index i, j;
    set_pointer p, q;
    edge e;
    Sort the m edges in E by weight in nondecreasing order;
    F = \Phi;
    initial(n);
    while (number of edges in F is less than n-1) {
        e = edges with least weight not yet considered;
        i, j = indices of vertices connected by e;
        p = find(i);
       q = find(j);
       if (!equal(p,q)) {
               merge(p,q);
              add e to F;
    }
```

- Worst-Case Time-Complexity Analysis
 - 단위연산: 비교문
 - 입력크기: 정점의 수 n과 이음선의 수 m
 - 1. 이음선 들을 정렬하는데 걸리는 시간: $\Theta(m \lg m)$
 - 2. 반복문 안에서 걸리는 시간: 루프를 m번 수행한다. 서로소인 집합 자료구조(disjoint set data structure)를 사용하여 구현하고, find, equal, merge 같은 동작을 호출하는 횟수가 상수이면, m개의 이음선 반복에 대한 시간복잡도는 $\Theta(m \lg n)$ 이다.
 - 3. n개의 서로소인 집합(disjoint set)을 초기화하는데 걸리는 시간: $\Theta(n)$
 - 그런데 여기서 $m \ge n$ 1이기 때문에, 위의 1과 2는 3을 지배하게 되므로, $W(m,n) = \Theta(m \lg m)$ 가 된다.
 - 그러나, 최악의 경우에는 모든 정점이 다른 모든 정점과 연결이 될 수 있기 때문에, $m = \frac{n(n-1)}{2} \in \Theta(n^2) \text{ 가 된다. 그러므로, 최악의 경우의 시간복잡도는}$ $W(m,n) \in \Theta(n^2 \lg n^2) = \Theta(2n^2 \lg n) = \Theta(n^2 \lg n)$
 - 최적여부의 검증(Optimality Proof)
 - Prim의 알고리즘의 경우와 비슷함. (교재 참조)

All-Pairs Shortest Path Problem

- □ 가중치가 있는 방향성 그래프에서 모든 정점에서 다른 모든 정점으로 가는 최단경로 구하는 문제
- □ 그래프에서 최단경로의 길이의 표현:

$$D^{(k)}[i][j] = v_{\scriptscriptstyle 1}$$
에서 $v_{\scriptscriptstyle k}$ 까지의 정점들 만을 통해서 $v_{\scriptscriptstyle i}$ 에서 $v_{\scriptscriptstyle j}$ 로 가는 최단경로의 길이

□ 그래프의 인접행렬(adjacent matrix) 표현: W

$$W[i][j] =$$
 이음선의가중치 v_i 에서 v_j 로의 이음선이 있다면 v_i 에서 v_j 로의 이음선이 없다면 0 $i=j$ 이면

동적계획식 설계전략 - 자료구조

□ 보기:

• W: 그래프의 인접행렬식 표현

D: 각 정점들 사이의 최단 거리

$$W[i][j]$$
 1 2 3 4 5 $D[i][j]$ 1 2 3 4 5 1 0 1 ∞ 1 5 1 0 1 3 1 4 2 9 0 3 2 ∞ 2 8 0 3 2 5 3 ∞ ∞ 0 4 ∞ 3 10 11 0 4 7 4 ∞ ∞ 2 0 3 5 3 ∞ ∞ 0 0 5 3 4 6 4 0

여기서, $0 \le k \le 5$ 일때, $D^{(k)}[2][5]$ 를구해보자.

 $D^{(0)} = W$ 이고, $D^{(n)} = D$ 임은 분명하다. 따라서 D를 구하기 위해서는 $D^{(0)}$ 를 가지고 $D^{(n)}$ 을 구할 수 있는 방법을 고안해 내어야 한다.

동적계획식 설계절차

- 1. Establish a recursive property
 - $D^{(k-1)}$ 을 가지고 $D^{(k)}$ 를 계산할 수 있는 재귀 관계식을 정립 $D^{(k)}[i][j] = minimum(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j])$

경우1

경우2

경우 1: $\{v_1,v_2,...,v_k\}$ 의 정점들 만을 통해서 v_i 에서 v_j 로 가는 최단경로가 v_k 를 거치지 않는 경우.

보기: $D^{(5)}[1][3] = D^{(4)}[1][3] = 3$

경우 2: $\{v_1,v_2,...,v_k\}$ 의 정점들 만을 통해서 v_i 에서 v_j 로 가는 최단경로가 v_k 를 거치는 경우.

보기: $D^{(2)}[5][3] = D^{(1)}[5][2] + D^{(1)}[2][3] = 4 + 3 = 7$

보기: $D^{(2)}[5][4]$

2. 상향식으로 k = 1부터 n까지 다음과 같이 이 과정을 반복하여 해를 구한다.

$$D^{(0)}, D^{(1)}, \dots, D^{(n)}$$

동적계획식 설계절차

$$D^{(k)}[i][j] = minimum(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j])$$
 경우1 경우2

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

A shortest path from v_i to v_k using only vertices in $\{v_1, v_2, \dots, v_k\}$

A shortest path from v_k to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

Floyd's Algorithm

□ 문제

- 가중치 포함 그래프의 각 정점에서 다른 모든 정점까지의 최단거리를 계산하고, 각각의 최단경로를 구하라.
- 입력
 - lacktriangle 가중치 포함 방향성 그래프 W와 그래프 정점의 수 n
- 출력
 - $lacksymbol{\blacksquare}$ 최단경로의 길이가 포함된 배열 D, 그리고 다음을 만족하는 배열 P

$$P[i][j] = \begin{cases} v_i \text{에서 } v_j \text{ 까지 가는 최단경로의 중간에 놓여 있는 정점이 최소한} \\ \text{하나는 있는 경우} \to \text{그 놓여 있는 정점 중에서 가장 큰 인덱스} \\ \\ \text{최단경로의 중간에 놓여 있는 정점이 없는 경우} \to 0 \end{cases}$$

Floyd's Algorithm

□ 알고리즘:

```
void floyd(int n, const number W[][], number D[][], index P[][]) {
     index i, j, k;
     for(i=1; i <= n; i++)
          for(j=1; j <= n; j++)
                P[i][i] = 0;
     D = W;
     for(k=1; k <= n; k++)
          for(i=1; i <= n; i++)
                for(j=1; j <= n; j++)
                     if (D[i][k] + D[k][j] < D[i][j]) {
                          P[i][j] = k;
                          D[i][j] = D[i][k] + D[k][j];
}
```

Floyd's Algorithm

 \square 앞의 예를 가지고 D와 P를 구해 보시오.

	1	2	3	4	5
1	0	0	4	0	4
2	0 5 5 0	0	0	0	4
3	5	5	0	0	4
4	5	5	0	0	0
5	0	1	4	1	0

최단경로의 출력

- □ 문제: 최단경로 상에 놓여 있는 정점을 출력하라.
- □ 알고리즘:

```
void path(index q,r) {
    if (P[q][r] != 0) {
        path(q,P[q][r]);
        cout << " v" << P[q][r];
        path(P[q][r],r);
    }
}</pre>
```

□ 위의 P를 가지고 path(5,3)을 구해 보시오.

```
path(5,3) = 4
    path(5,4) = 1
        path(5,1) = 0
        v1
        path(1,4) = 0
        v4
        path(4,3) = 0
```

<u>결과</u>: v1 v4.

즉, V_5 에서 V_3 으로 가는 최단경로는 V_5 , V_1 , V_4 , V_3 ,이다.

High-level Algorithm

```
F := \Phi;
                                                    // initialize set of edges to empty
Y := \{v_1\};
                                                    // initialize set of vertices to
                                                    // contain only the first one
While (the instance is not solved) {
      select a vertex in V-Y that is nearest to Y; // selection procedure and
                                                     // feasibility check
      add the vertex to Y;
      add the edge to F;
     if (Y == V)
                                                    // solution check
           the instance is solved;
```


$$W[i][j] = \begin{cases} 0 음선의 가중치 & v_i 에서 v_j 로의 이음선이 있다면 \\ \infty & v_i 에서 v_j 로의 이음선이 없다면 \\ 0 & i = j 이면 \end{cases}$$

• nearest[1..n]과 distance[1..n] 배열 유지

$$\mathbf{nearest[i]} = Y$$
에 속한 정점 중에서 v_i 에서 가장 가까운 정점의 인덱스

$$distance[1..n] = v_i$$
 와 $nearest[i]$ 를 잇는 이음선의 가중치

	1	2	3	4	5
1	0	1	3	00	00
2	1	0	3	6	00
3	0 1 3 &	3	0	4	2
4	∞	6	4	0	5
5	∞	00	2	5	0

```
void prim(int n, const number W[][], set_of_edges& F) {
    index i, vnear; number min; edge e;
    index nearest[2..n]; number distance[2..n];
    F = \Phi;
    for(i=2; i \le n; i++) 
                                               // 초기화
        nearest[i] = 1;
                                               // vi에서 가장 가까운 정점을 v1으로 초기화
        distance[i] = W[1][i];
                                               // vi과 v1을 잇는 이음선의 가중치로 초기화
    }
                                               // n-1개의 정점을 Y에 추가한다
    repeat(n-1 times) {
        min = "infinite";
        for(i=2; i \le n; i++)
                                               // 각 정점에 대해서
            if (0 <= distance[i] <= min) {
                                              // distance[i]를 검사하여
                                               // 가장 가까이 있는 vnear을
                min = distance[i];
                                               // 찾는다.
                vnear = i;
        e = edge connecting vertices indexed by vnear and nearest[vnear];
        add e to F;
        distance[vnear] = -1;
                                               // 찾은 노드를 Y에 추가한다.
        for(i=2; i \le n; i++)
            if (W[i][vnear] < distance[i]) {
                                              // Y에 없는 각 노드에 대해서
                distance[i] = W[i][vnear]; // distance[i]를 갱신한다.
                nearest[i] = vnear;
    }
```

- Every-case Time Complexity Analysis
 - 단위연산: repeat-루프 안에 있는 두 개의 for-루프 내부에 있는 명령문
 - 입력크기: 마디의 개수, n
 - 분석: repeat-루프가 n-1번 반복되므로
 - $T(n) = 2(n-1)(n-1) \in \Theta(n^2)$

□ 최적여부의 검증 (Optimality Proof)
Prim의 알고리즘이 찾아낸 신장트리가 최소비용(minimal)인지를 검증해야한다.

Definition 4.1

그래프 G = (V, E)가 주어져 있다. 임의의 이음선의 집합 $F \subseteq E$ 에 대해서 F에 최소비용신장트리(MST)가 되도록 이음선을 추가할 수 있으면 F는 유망하다(promising)라고 한다.

Lemma 4.1

그래프 G = (V, E)가 주어져 있다. 이음선의 집합 F가 유망하고, Y는 F안에 있는 이음선들에 의해 연결되어 있는 정점의 집합이라고 하자. 이때, Y에 있는 정점과 V - Y에 있는 정점을 잇는 이음선 중에서 가중치가 가장 작은 이음선을 e라고 하면, $F \cup \{e\}$ 는 유망하다.

🔋 Lemma 4.1의 증명

- F가 유망하기 때문에 $F \subseteq F$ '이면서 (V, F')가 MST가 되는 이음선의 집합 F'가 반드시 존재한다.
- 만일 $e \in F'$ 라면, $F \cup \{e\} \subseteq F'$ 가 되고, 따라서 $F \cup \{e\}$ 도 유망하다.
- 이제 $e \notin F$ '라고 가정하자. e=uv라 하고 $u \in Y$, $v \in V Y$ 라 하자.
 - F'은 신장트리이기 때문에 u와 v간에 F'의 이음선만을 이용한 단일경로 γ 를 포함한다. 따라서 F' \cup $\{e\}$ 는 u와 v를 연결하는 두 가지 경로(e 와 γ)를 갖게 된다.
 - 경로 γ 는 Y에 있는 정점 u에서 V-Y에 있는 정점 v로 가는 경로이므로 V에서 V-Y로 건너는 이음선 $e' = u'v' \in F'$ 을 포함하고 있다.
 - 이제 F" = F' ∪ {e} {e'} (즉 F' ∪ {e} 에서 e'를 제거)를 생각해 보자.
 F"은 정점 u와 v를 연결하는 경로를 하나만 갖게 되고 신장트리가 된다.
 그런데 e는 Y에 있는 정점과 V Y에 있는 정점을 연결하는 이음선 중
 가중치가 최소인 이음선이므로 e'의 가중치보다 작거나 같다.
 만일 작다면 F'이 MST라는 가정에 모순이므로 같아야 한다. 즉
 F"=F'∪ {e} {e'}은 또다른 MST이다.
 - e'는 F안에 속할 수 없으므로(F는 Y의 정점만을 연결한 집합), $F \cup \{e\} \subset F' \cup \{e\} \{e'\}$ 가 되고, 따라서 $F \cup \{e\}$ 는 유망하다.

□ Theorem 4.1 (최적여부의 검증 (Optimality Proof))
Prim의 알고리즘은 항상 최소비용신장트리를 만들어낸다.

증명: (수학적귀납법)

매번 반복이 수행된 후에 집합 F가 유망하다는 것을 보이면 된다.

- 출발점: 공집합은 당연히 유망하다.
- Prim의 알고리즘을 k번 수행하며 만든 이음선의 집합 F가 유망하다고 가정하자.
- k+1번째 선정된 이음선을 e라 할 때 집합 $F \cup \{e\}$ 가 유망하다는 것을 보이면 된다. 그런데 Lemma4.1에 의하여 $F \cup \{e\}$ 은 유망하다. 이음선 e는 Y에 있는 어떤 정점을 V-Y에 있는 어떤 정점으로 잇는 이음선 중에서 최소의 가중치를 가지고 있기 때문이다.

• 두 알고리즘 시간 복잡도 비교

연결된 그래프에서의 m은 $n-1 \le m \le \frac{n(n-1)}{2}$ 의 범위를 갖는다.

	W(m,n)	sparse graph	dense graph
		$m=\Theta(n)$	$m=\Theta(n^2)$
Prim	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$
Kruskal	$\Theta(m \lg m)$	$\Theta(n \lg n)$	$\Theta(n^2 \lg n)$

 알고리즘의 시간복잡도는 그 알고리즘을 구현하는데 사용하는 자료구조에 좌우되는 경우도 있다.

Prim 의 알고리즘	W(m,n)	sparse graph	dense graph
		$m=\Theta(n)$	$m=\Theta(n^2)$
Heap	$\Theta(m \lg n)$	$\Theta(n \lg n)$	$\Theta(n^2 \lg n)$
Fibonacci heap	$\Theta(m+n\lg n)$	$\Theta(n \lg n)$	$\Theta(n^2)$

- 가중치가 있는 방향성 그래프에서 한 특정 정점에서 다른 모든 정점으로 가는 최단경로 구하는 문제
- □시작점 $\mathbf{v}_{\mathbf{i}}$
- □ 알고리즘

```
F := 0;
Y := \{v_1\};
While (the instance is not solved)
\text{select a vertex v from } V - Y, \text{ that has a shortest path } // \text{ selection procedure}
\text{from } v_1, \text{ using only vertices in } Y \text{ as intermediate; } // \text{ and feasibility check}
\text{add the new vertex v to } Y;
\text{add the edge (on the shortest) that touches v to } F;
\text{if } (Y == V) 
\text{the instance is solved;}
// \text{ solution check}
```


- Define nearest & length
 - nearest[i] = index of vertex v in Y such that the edge $\langle v, v_i \rangle$ is the last edge on the current shortest path from v_i to v_i using only vertices in Y as intermediates
 - length[i] = length of the current shortest path from v_i to v_i using only vertices in Y as intermediates.

 (Prim 알고리즘에서 distance[i]와 같은 역할)

```
void dijkstra (int n, const number W[][], set of edges& F) {
     index i, vnear; edge e;
     index nearest[2..n]; number length[2..n];
     F = \Phi;
     for(i=2; i \le n; i++) { // For all vertices, initialize v1 to be the last
                         // vertex on the current shortest path from v1,
         nearest[i] = 1;
         length[i] = W[1][i];
                                   // and initialize length of that path to be the
                                   // weight on the edge from v1.
     repeat(n-1 times) {
                                          // Add all n-1 vertices to Y.
        min = "infinite";
        for(i=2; i <= n; i++)
                                           // Check each vertex for having shortest path.
             if (0 \le length[i] \le min) {
               min = length[i];
               vnear = i;
         e = edge from vertex indexed by nearest[vnear]
             to vertex indexed by vnear;
         add e to F;
        for(i=2; i <= n; i++)
             if (length[vnear] + W[vnear][i] < length[i]) {</pre>
                length[i] = length[vnear] + W[vnear][i];
                nearest[i] = vnear; // For each vertex not in Y, update its shortest
                                         // path. Add vertex indexed by vnear to Y.
         length[vnear] = -1;
```

- □ 분석
 - $T(n) = 2 (n-1)^2 \in \Theta(n^2)$.

- □ 최적여부의 검증(Optimality Proof)
 - Prim의 알고리즘의 경우와 비슷함.