Solución del examen de Matemática Discreta 2

Ejercicio 1.

A. (17pts)

$$\begin{cases} 2x + 3 \equiv 8 \mod 21 \\ 3x + 2 \equiv 3 \mod 11 \end{cases} \Rightarrow \begin{cases} 2x \equiv 5 \mod 21 \\ 3x \equiv 1 \mod 11 \end{cases} \Rightarrow \begin{cases} 2x \equiv 5 \mod 21 \equiv -16 \mod 21 \\ x \equiv 4 \mod 11 \end{cases} \Rightarrow \begin{cases} x \equiv -8 \mod 21 \\ x \equiv 4 \mod 11 \end{cases}$$

Por el Teorema Chino del resto se tiene que x = 21A + 11B + k(21)(11) con $k \in \mathbb{Z}$ y

$$\begin{cases} 21A \equiv 4 \bmod 11 \\ 11B \equiv -8 \bmod 21 \end{cases} \Rightarrow \begin{cases} -A \equiv 4 \bmod 11 \\ 22B \equiv -16 \bmod 21 \end{cases} \Rightarrow \begin{cases} A \equiv -4 \bmod 11 \\ B \equiv -16 \bmod 21 \equiv 5 \bmod 21. \end{cases}$$

Entonces x = 21(-4) + 11(5) + k(231) = -29 + k(231) y por lo tanto el menor x > 0 es x = -29 + 231 = 202.

B. (13pts) Sea d = mcd(a, b) y escribimos a = a'd y b = b'd (por lo tanto a' y b' son coprimos). Entonces a'b'd = mcm(a, b) = x mcd(a, b) = 202d y por lo tanto $a'b' = 202 = 2 \times 101$. Entonces las posibilidades para el par (a', b') son (1, 202), (2, 101), (101, 2) y (202, 1). Por otro lado a + b = d(a' + b') = 618 así que a' + b' divide a 618 y por lo tanto las únicas posibilidades para (a', b') son (2, 101) y (101, 2); en ambos casos a' + b' = 103 y por lo tanto d = 618/103 = 6 y entonces (a, b) = (12, 606) o (a, b) = (606, 12).

Ejercicio 2.

- **A.** (i) (4pts) En S_3 (13)(12) = (123) y (12)(13) = (132), así que (13)(12) \neq (12)(13) y por lo tanto S_3 no es conmutativo.
 - (ii) (3pts) El mismo ejemplo funciona para S_n si n > 3.
- **B.** (i) (10pts) Si $\psi : \mathbb{Z}_7 \to S_6$ es un homomorfismo entonces $\ker \psi < \mathbb{Z}_7$ y por lo tanto $|\ker \psi|$ divide a $|\mathbb{Z}_7| = 7$. Entonces $|\ker \psi| = 1$ o 7. Si $|\ker \psi| = 7$ entonces $\ker \psi = \mathbb{Z}_7$ y por lo tanto ψ es el homomorfismo nulo. Si $|\ker \psi| = 1$, por el Primer Teo. de Isomorfismo se tiene que $|\operatorname{Im}\psi| = |\mathbb{Z}_7| = 7$ pero $\operatorname{Im}\psi$ es un subgrupo de S_6 y por lo tanto su orden debe dividir a $|S_6| = 6!$; pero 7 no divide n! así que $|\ker \psi| \neq 1$. Resulta entonces que el único ψ posible es el nulo.
 - (ii) (10pts) Si existe un homomorfismo $\phi: \mathbb{Z}_n \to S_n$, sea $\phi(\bar{1}) = \sigma \in S_n$. Como ϕ es homomorfismo se tiene que $\phi(\bar{k}) = \sigma^k$ y $e = \phi(\bar{0}) = \phi(\bar{n}) = \sigma^n$. Por lo tanto $o(\sigma)$ debe dividir a n. Pero si $o(\sigma) = k < n$ tendríamos que $\phi(\bar{k}) = \sigma^k = e$ y por lo tanto ϕ no sería inyectivo. Asi que $o(\sigma)$ tiene que ser n. Tomando $\sigma = (1 \ 2 \cdots n)$ queda que $\phi: \mathbb{Z}_n \to S_n$ dado por $\phi(\bar{k}) = \sigma^k$ es un homomorfismo inyectivo.
- C. (8pts) Si existe un isomorfismo $\mu: \mathbb{Z}_n \to S_m$, al ser Z_n un grupo conmutativo, S_m también es conmutativo. Por la parte A. tenemos que m=1 o 2. En ambos casos se tiene que cumplir que $n=|\mathbb{Z}_n|=|S_m|=m!$ Si m=1 entonces n=1, y si m=2 entonces n=2.

Ejercicio 3.

- **A.(10pts)** Si $o(g) < \infty$ sea n = o(g); entonces si i = kn + j entonces $g^i = (g^n)^k g^j = g^j$ y por lo $\tan o(g) = \{e, g, g^2, \dots, g^{n-1}\}$. Para ver que el cardinal de este conjunto es n, basta ver que si $0 \le i < j < n$ entonces $g^i \ne g^j$. Si $g^i = g^j$, multiplicando a ambos lados por $(g^i)^{-1}$ tenemos que $e = g^{j-i}$; por lo tanto n|(j-i) lo cual es absurdo pues 0 < j-i < n. Y si o(g) es infinito, por el mismo argumento, todas las potencias de g son distintas, y por lo tanto $o(g) = \infty$.
 - **B.(5pts)** Por el Teo. de Lagrange tenemos que $|\langle g \rangle|$ divide a |G| y por la parte anterior tenemos que $|\langle g \rangle| = o(g)$. Por lo tanto o(g) divide a |G|.
- C.(10pts) Como $118 = 2 \times 59$ tenemos que $\varphi(118) = 58 = 2 \times 29$. Como $11 \in U(118)$ y $|U(118)| = \varphi(118) = 58$, las posibilidades para o(11) son los divisores de 58. Es decir que o(11) = 1, 2, 29 o 58. Para probar que 11 es raiz primitiva módulo 118 basta con probar que o(11) = 58. Claramente $o(11) \neq 1$. Ahora $11^2 = 121 \equiv 3 \mod 118$, así que $o(11) \neq 2$. Ahora $11^4 \equiv 3^2 \mod 118 \equiv 9 \mod 118$, $11^8 \equiv 81 \mod 118$, $11^{10} = 11^8 11^2 \equiv 81 \times 3 \mod 118 \equiv 243 \mod 118 \equiv 7 \mod 118$, $11^{20} \equiv 49 \mod 118$ y $11^{30} \equiv 253 \mod 118 \equiv 107 \mod 118$. Entonces $o(11) \neq 29$ porque si fuera 29 tendríamos que $11^{30} = 11^{29} 11 \equiv 11 \mod 118$.
- **D.(10pts)** Si x no es coprimo con 118 no cumple que $x^4 \equiv 33 \mod 118$ pues x^4 no es coprimo con 118 y 33 sí lo es.

Si x es coprimo con 118, como 11 es raíz primitiva módulo 118, tenemos que $x \equiv 11^a$ mod 118 para algún $a \in \mathbb{Z}$. Así que existe $x \in \mathbb{Z}$ tal $x^4 \equiv 33 \mod 118$ si y sólo si existe $a \in \mathbb{Z}$ tal que $(11^a)^4 \equiv 33 \mod 118$. Por otro lado $33 = 3 \times 11 \equiv 11^2 \times 11 \mod 118 \equiv 11^3 \mod 118$. Así que hay que investigar si existe $a \in \mathbb{Z}$ tal que $11^{4a} \equiv 11^3 \mod 118$. Tenemos que $11^{4a} \equiv 11^3 \mod 118 \Leftrightarrow 11^{4a-3} \equiv 1 \mod 118 \Leftrightarrow o(11)|(4a-3) \Leftrightarrow 58|(4a-3) \Leftrightarrow 4a-3=58k$ para algun $k \in \mathbb{Z}$; es decir si y sólo si la ecuación 4a-58k=3 tiene solución entera. Pero $\gcd(4,58)=2$ y 2 no divide a 3, por lo tanto la ecuación no tiene solución.