Właściwości i zastosowania dyskretnego przekształcenia Fouriera

Lewandowski	Adam	277659
Termin i grupa:	Czwartek 7:30 15.05.2025; Grupa 2	
Wejściówka:		
Zad 1.		
Zad 2.		
Zad 3.		
Zad 4.		
Data oddania:	15.05.2025	

ZAD 1. Liniowość transformaty Fouriera (1 pkt.)

Parametry:

Liczba próbek N = 250

Częstotliwość próbkowania fs = 1000 [Hz]

Liczba okresów dla x1: o1 = 6

Liczba okresów dla x2: o2 = 8

Częstotliwość 1. Sinusa: f1 = 24 Hz

Częstotliwość 2. Sinusa: f2 = 32 Hz

Wnioski:

Charakterystyki potwierdziły liniowość transformaty Fouriera – widmo sumy sygnałów sinusoidalnych pokrywa się z sumą ich widm. Otrzymane wyniki są zgodne z teorią, a zgodność wykresów widm amplitudowych potwierdza poprawność obliczeń i działania FFT.

ZAD 2. Wyciek widma (2 pkt.)

Parametry:

Liczba próbek N = 350

Częstotliwość próbkowania fs = 1000 [Hz]

Liczba okresów dla x1: o1 = 17

Liczba okresów dla x2: o2 = 21,5

Częstotliwość 1. Sinusa: f1 ≈ 48,58 Hz

Częstotliwość 2. Sinusa: f2 ≈ 61,43 Hz

Wnioski:

Z przebiegów można zaobserwować, że zastosowanie różnych funkcji okna wpływa na wyniki. Przebieg z oknem prostokątnym ma silny wyciek widma – wyraźne i szerokie prążki boczne. Okno Hamminga i Hanninga skuteczniej tłumi te prążki. Okno Blackmana najlepiej tłumiło wyciek, choć kosztem szerszego głównego piku. Dobór odpowiedniego okna istotnie wpływa na jakość widma, zwłaszcza gdy sygnał nie zawiera całkowitej liczby okresów. Wszystkie testowane okna tłumią sygnał na początku i końcu, co zapobiega wyciekowi widma.

ZAD 3. Parametry sygnału w dziedzinie czasu (1 pkt.)

Parametry:

Amplituda A = 10

Częstotliwość próbkowania fs = 1000 [Hz]

Czas trwania T = 1 [s]

Częstotliwość sygnału: f = 15 [Hz]

Parametr	Numerycznie	Analitycznie	Błąd względny [%]
 Średnia	-0.000000	0.000000	0.016486
Moc średnia	49.950000	50.000000	0.100000
Wartość skut.	7.067531	7.071068	0.050013

Wnioski:

Wyniki uzyskane za pomocą funkcji sig_avg, sig_power i sig_rms bardzo dobrze pokrywają się z wartościami analitycznymi, a błędy względne są znikome (są bliskie zeru), co potwierdza poprawność implementacji i skuteczność metod numerycznych.

ZAD 4. Parametry sygnału w dziedzinie częstotliwości (1 pkt.)

Parametry:

Liczba próbek N = 250

Częstotliwość próbkowania fs = 1000 [Hz]

f1 = 19

f2 = 21,5

Okno	P czas	P psd	Błąd [%]
prostokątne	0.4980	0.4980	0.000000
Hamming	0.1979	0.1979	0.000000
Hann	0.1867	0.1867	0.000000
Blackman	0.1517	0.1517	0.000000
Sygnal: Z wyc	iekiem		
Okno	P czas	P psd	Błąd [%]
prostokątne	0.5064	0.5064	0.000000
Hamming	0.1980	0.1980	0.000000
Hann	0.1868	0.1868	0.000000
Blackman	0.1517	0.1517	0.000000
Sygnał: Złożo	ny		
Okno	P czas	P psd	Błąd [%]
prostokątne	0.8161	0.8161	0.000000
Hamming	0.2717	0.2717	0.000000
Hann	0.2534	0.2534	0.000000
Blackman >>	0.2012	0.2012	0.000000

Wnioski:

Okienkowanie poprawia jakość widma (tłumienie wycieku), ale wprowadza modyfikację amplitudy sygnału, dlatego przy porównywaniu mocy należy uwzględniać wpływ zastosowanego okna.