Chapitre 5

Trigonométrie - $x \mapsto \sin x$ et $x \mapsto \cos x$

5.1 Rappel

Mesure principale d'un angle α :

- en fonction des besoins
 - soit on considère la valeur dans $]-\pi;\pi]$
 - soit on considère la valeur de l'angle dans $[0; 2\pi[$, noté $\alpha[2\pi]$
- dans les 2 cas, pour trouver cette valeur, on effectue la division euclidienne de α par 2π , ce qui permet de "retirer" à l'angle α les tours inutiles

Propriétés fondamentales :

- $(\sin \alpha)^2 + (\cos \alpha)^2 = 1$
- $-1 \leqslant \sin \alpha \leqslant 1$
- $-1 \leqslant \cos \alpha \leqslant 1$
- $0 \le \sin \alpha \le 1 \Leftrightarrow 0 \le \alpha \le \pi$ (pour une mesure principale α)
- $0 \le \cos \alpha \le 1 \Leftrightarrow -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ (pour une mesure principale α)
- $\sin(\alpha + 2\pi) = \sin \alpha$: si on fait un tour, on a la même valeur de sinus
- $\cos(\alpha + 2\pi) = \cos \alpha$: si on fait un tour, on a la même valeur de cosinus

$Valeurs\ de\ Sinus\ -\ Cosinus\ -\ Tangente:$

		14 3 61				
angle	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	3) +1((32)	0
cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	indéfinie	0

 $T^{ale} S - Math 13 Net$ 2024 - 2025

Exemple:

- trouver les mesures principales des angles suivants : $\frac{17\pi}{4}$ et $-\frac{31\pi}{6}$
- positionner sur le cercle trigonométrique les angles suivants : $\frac{35\pi}{4}$ et $-\frac{2531\pi}{6}$
- trouver 2 mesures principales associées à l'angle $\frac{35\pi}{4}$ dont les cosinus sont égaux
- trouver 2 mesures principales associées à l'angle $\frac{35\pi}{4}$ dont les sinus sont égaux
- HP : trouver 2 mesures principales associées à l'angle $\frac{35\pi}{4}$ dont les tangentes sont égales

Résoudre une équation en Cosinus (exemple) : résoudre $\cos x = -\frac{1}{2} \operatorname{sur} \mathbb{R}$

• 1^{ere} étape : dessiner votre cercle trigonométrique et placer la valeur sinus recherchée; tracer la droite verticale permettant de visualiser les solutions

• $\frac{2^{\grave{e}me}}{\ifmmode{e}\else{e}\else{e}\else{e}\else{e}\else{e}}$ retrouver la mesure principale de l'angle associée au cosinus ; si la valeur n'est pas connue, utiliser "cos-1 de la valeur"

ici,
$$\frac{1}{2} = \cos\frac{\pi}{3} \Rightarrow \cos x = \cos\frac{\pi}{3}$$

• $\underline{3^{\grave{e}me}}$ <u>étape</u>: les solutions de l'équation sont alors $-\frac{\pi}{3}[2\pi]$ et $-\frac{\pi}{3}[2\pi]$

ici,
$$S=\left\{\frac{\pi}{3}+2k\pi; \frac{\pi}{3}+2k\pi \mid k \in \mathbb{Z}\right\}$$

 $T^{ale} S - Math 13Net$ 2024 - 2025

Résoudre une inéquation en Sinus (exemple) : résoudre $\sin x \leqslant -\frac{1}{2} \operatorname{sur} \mathbb{R}$

- 1ère étape :
 - dessiner votre cercle
 - placer la valeur sinus recherchée
 - tracer la droite horizontale de la valeur sinus

• <u>2ème étape</u>: retrouver la mesure principale de l'angle associée au sinus; si la valeur n'est pas connue, utiliser "sin-1 de la valeur"

ici,
$$\frac{1}{2} = \sin \frac{\pi}{6} \Rightarrow -\frac{1}{2} = \sin -\frac{\pi}{6} \Rightarrow \sin x = \sin -\frac{\pi}{6}$$

•
$$\underline{3^{\grave{e}me}\ \acute{e}tape}:$$
 calculer les 2 valeurs intessantes : $-\frac{\pi}{6}[2\pi]$ et $\pi-(-\frac{\pi}{6})[2\pi]=\frac{7\pi}{6})[2\pi]$

• écrire la solution :
$$S = \bigcup_{k \in \mathbb{Z}} \left[\frac{7\pi}{6} + 2k\pi \, ; \, \frac{11\pi}{6} + 2k\pi \right]$$

5.2 Étude des fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$

Définition:

- on considère le cercle trigonométrique
- le point M du cercle, associé l'angle x, a des coordonnées
- on pose (c'est donc une définition):
 - $x_M = \cos x$
 - $y_M = \sin x$
- lorsque $x \in \mathbb{R}$, on crée ainsi 2 fonctions :

Propriété:

- (1) sinus est impaire : $\forall x \in \mathbb{R}$, $\sin(-x) = -\sin x$
- (2) cosinus est paire : $\forall x \in \mathbb{R}$, $\cos(-x) = \cos x$
- (3) sinus et cosinus sont 2π -périodique :
 - $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$, $\sin(x + 2k\pi) = \sin x$
 - $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$, $\cos(x + 2k\pi) = \cos x$
- (4) $\forall x \in \mathbb{R}$, $(\sin x)' = \cos x$
- (5) $\forall x \in \mathbb{R}$, $(\cos x)' = -\sin x$
- (6) ROC : $\lim_{x\to 0} \frac{\sin x}{x} = 1$ et $\lim_{x\to 0} \frac{\cos x 1}{x} = 0$
- HP (7) $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$, $\sin(x + k\pi) = (-1)^k \sin x$
- HP (8) $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$, $\cos(x + k\pi) = (-1)^k \cos x$

 $T^{ale} S - Math 13 Net$ 2024 - 2025

Remarque, exemple:

- (1), (2), (3) sont immédiates par visualisation du cercle trigonométrique
- preuve HP mais facile : (4) , (5) peuvent se prouver simplement en dérivant e^{ix}
- (6) est a connaître (ROC); voir le chapitre 2 : limite (penser au nombre dérivée)
- (7) et (8) résultat HP mais très utile : encore une fois, le passage par les complexes clarifie tout ...

 $T^{ale} S$ - Math13Net 2024 - 2025

5.3 Exemple sujet BAC

5.3.1 Centre Étranger 2017

Le plan est muni d'un repère orthonormé $(0, \overrightarrow{u}, \overrightarrow{v})$.

Pour tout entier $n \ge 4$, on considère P_n un polygone régulier à n côtés, de centre O et dont l'aire est égale à 1. On admet qu'un tel polygone est constitué de n triangles superposables à un triangle OA_nB_n donné, isocèle en O.

On note $r_n = OA_n$ la distance entre le centre O et le sommet A_n d'un tel polygone.

Partie A: étude du cas particulier n = 6

On a représenté ci-contre un polygone P_6 .

- 1. Justifier le fait que le triangle OA_6B_6 est équilatéral, et que son aire est égale à $\frac{1}{6}$.
- 2. Exprimer en fonction de r_6 la hauteur du triangle OA_6B_6 issue du sommet B_6 .
- **3.** En déduire que $r_6 = \sqrt{\frac{2}{3\sqrt{3}}}$.

Partie B: cas général avec $n \ge 4$

Dans cette partie, on considère le polygone P_n avec $n \ge 4$, construit de telle sorte que le point A_n soit situé sur l'axe réel, et ait pour affixe r_n .

On note alors $r_n e^{i\theta_n}$ l'affixe de B_n où θ_n est un réel de l'intervalle $\left[0; \frac{\pi}{2}\right]$.

- 1. Exprimer en fonction de r_n et θ_n la hauteur issue de B_n dans le triangle OA_nB_n puis établir que l'aire de ce triangle est égale à $\frac{r_n^2}{2}\sin(\theta_n)$.
- **2.** On rappelle que l'aire du polygone P_n est égale à 1. Donner, en fonction de n, une mesure de l'angle $(\overrightarrow{OA_n}, \overrightarrow{OB_n})$, puis démontrer que :

$$r_n = \sqrt{\frac{2}{n \sin\left(\frac{2\pi}{n}\right)}}.$$

Partie C : étude de la suite (r_n)

On considère la fonction f définie pour tout réel x de l'intervalle]0; $\pi[$ par

 $T^{ale} S - Math 13Net$ 2024 - 2025

$$f(x) = \frac{x}{\sin x}.$$

Ainsi, le nombre r_n , défini dans la partie B pour $n \ge 4$, s'exprime à l'aide de la fonction f par :

$$r_n = \sqrt{\frac{1}{\pi} f\left(\frac{2\pi}{n}\right)}.$$

On admet que la fonction f est strictement croissante sur l'intervalle]0; $\pi[$.

- 1. Montrer que la suite (r_n) est décroissante. On pourra pour cela commencer par démontrer que pour tout $n \ge 4$, on a : $0 < \frac{2\pi}{n+1} < \frac{2\pi}{n} < \pi$.
- 2. En déduire que la suite (r_n) converge. On ne demande pas de déterminer sa limite L, et on admet dans la suite de l'exercice que $L = \frac{1}{\sqrt{\pi}}$.
- 3. On considère l'algorithme suivant.

VARIABLES:
$$n$$
 est un nombre entier

TRAITEMENT: n prend la valeur 4

Tant que $\sqrt{\frac{2}{n\sin\left(\frac{2\pi}{n}\right)}} > 0,58$ faire

 n prend la valeur $n+1$

Fin Tant que

SORTIE: Afficher n

Quelle valeur numérique de n va afficher en sortie cet algorithme?

5.3.2 Polynésie 2017

On rappelle que pour tout réel a et tout réel b,

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b).$$

Le plan est rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$. On considère la droite \mathbb{D} d'équation y = -x + 2.

- 1. Montrer que si le réel θ appartient à l'intervalle $\left] -\frac{\pi}{4} ; \frac{3\pi}{4} \right[$, alors $\cos\left(\theta \frac{\pi}{4}\right) > 0$.
- **2.** Soit M un point du plan complexe d'affixe z non nulle. On note $\rho = |z|$ le module de z et $\theta = \arg(z)$ un argument de z; les nombres ρ et θ sont appelés coordonnées polaires du point M.

Montrer que le point M appartient à la droite $\mathcal D$ si et seulement si ses coordonnées polaires sont liées par la relation :

$$\rho = \frac{\sqrt{2}}{\cos\left(\theta - \frac{\pi}{4}\right)}, \text{ avec } \theta \in \left] - \frac{\pi}{4}; \frac{3\pi}{4} \right[\text{ et } \rho > 0.$$

3. Déterminer les coordonnées du point de la droite $\mathcal D$ le plus proche de l'origine $\mathcal D$ du repère.

 $T^{ale} S$ - Math13Net 2024 - 2025

5.3.3 CE 2024

On considère l'équation différentielle

$$(E_0): y' = y$$

où y est une fonction dérivable de la variable réelle x.

- 1. Démontrer que l'unique fonction constante solution de l'équation différentielle (E_0) est la fonction nulle.
- 2. Déterminer toutes les solutions de l'équation différentielle (E_0) .

On considère l'équation différentielle

(E):
$$y' = y - \cos(x) - 3\sin(x)$$

où y est une fonction dérivable de la variable réelle x.

3. La fonction h est définie sur \mathbb{R} par $h(x) = 2\cos(x) + \sin(x)$.

On admet qu'elle est dérivable sur R.

Démontrer que la fonction h est solution de l'équation différentielle (E).

4. On considère une fonction f définie et dérivable sur \mathbb{R} .

Démontrer que : « f est solution de (E) » est équivalent à « f-h est solution de (E_0) ».

- **5.** En déduire toutes les solutions de l'équation différentielle (*E*).
- **6.** Déterminer l'unique solution g de l'équation différentielle (E) telle que g(0) = 0.
- 7. Calculer:

$$\int_0^{\frac{\pi}{2}} \left[-2e^x + \sin(x) + 2\cos(x) \right] dx.$$