上 海 交 通 大 学 试 卷(<u>B</u>卷)

(2022 至 2023 学年 第<u>1</u>学期)

I. Single choice (20°	')		
1. When ABC=010, the out	put of the circuit in the f	figure is (from left to righ	nt) ().
A B C			
A. 00	B. 01	C. 10	D. 11
2. Assuming that the word word, the number of address	=	64 bits and the storage c	apacity is 128MB. If it is addressed by
A. 8M	B. 16M	C. 32M	D. 64M
after executing the following	ng instructions, which o	f the corresponding phys	H, DI=5210H, BP=3600H, AX=1024H, sical addresses and values are correct?
A. MOV [129H], AH; ph B. MOV [BX], AL; phy C. MOV [BP]+48, AX; p D MOV [SI]+38, AX; ph	sical address: 25370H; v	ralue : 24H value : 24H	
4. Assuming that a sub instance () respectively.	truction is executed, the	states of the CF and SF	flag registers after calculating 5394H-
A.0,0	B. 0,1	C. 1,0	D. 1,1
5. Which of the following 8	8086 assembly statement	es is wrong? ()	
A.MOV AX, CX	B.XOR AX, CX	C.ADD 10,SUM	D.DIV 10
6. In 8086 processor, when the CPU detects interrupt re	_		rupts are generated at the same time, so
A. NMI、INT instructio	n、INTR B. NM	II、INTR、INT instruct	tion
C. INTR、INT instruction	on, NMI D. IN	Γ instruction、NMI、IN	TR
7. If the content of the regis _A_卷 总_ <u>10</u> _页 第_		le is () of -92.	

- A. original code
- B. two's complement
- C. one's complement
- D. BCD code
- 8. Which of the following declarations defines a 32-bit variable? ()
 - A. DB
- B.DW
- C.DD
- D.DQ

9. The address range of the following memory chip is ().

- A. 88000H~8BFFFH
- B. 74000H~77FFH
- C. 8800H~8BFFH
- D. 7400H~77FFH
- 10. To keep the higher 4 bit unchanged of the register and change all the lower 4 bits to 1, we need to use instruction ().
 - A. AND AL, 0F0H
- B. AND AL, 0FH
- C. OR AL, 0F0H
- D. OR AL, 0FH
- 11. Which of the following statements about the basic idea of Von Neumann Architecture is wrong? ()
 - A. The functions of the program are realized through the execution of instructions by the CPU.
 - B. Instructions and data are represented by binary numbers, and there is no difference in form.
 - C. The instruction is accessed by address, and the data is directly given in the instruction.
 - D. Before the program is executed, the instructions and data need to be stored in the memory in advance.
- 12. Among various I/O methods, the interrupt method is characterized by ().
 - A. CPU and peripherals work serially, data transmission and the main program work serially.
 - B. CPU and peripherals work in parallel, data transmission and the main program work serially.
 - C. CPU and peripherals work serially, data transmission and the main program work in parallel.
 - D. CPU and peripherals work in parallel, data transmission and the main program work in parallel.
- 13. Suppose SS=2300H, SP=1500H. After the 8086 CPU executes 3 times of PUSH AX and 1 time of PUSH BX, the values of SS and SP are () respectively.
 - A. 2300H:14F8H
- B. 2300H:14FCH
- C. 22FCH:1500H
- D. 22F8H:1500H
- 14. After the ret instruction of a certain function is called, the returned CS:IP is 00ACH:3090H. Before calling the ret instruction, the content of the stack in the figure below is ().

	4091 ①						
	4090 ②						
SP	4089 ③						
	4088 4						
Į	4087 N/	A					
	A.1)00 2A	C 330 490					
		0 300 4AC					
		00 390 430					
	D.190 23	0 3AC 400					
15 W/h	uan tha 2026 C	DII avacutas IN	AI 24H ins	truction	s the states of th	a aytarnal nine RI	o, M/IO, WR are ()
		ro executes in a	AL, 24H IIIS	uction	s, the states of the	le external pins 19	5, 11210, 1111 ale ()
respect	ivery.						
A. 0	,0,0	B. 0,0,1		C. 1,	,0,0	D. 1,1,1	
address	-	type and the entr FE34H		the inte	errupt service pro	<u>•</u>	ess 0003CH to higher
17. Wh	ich jump instru	uction uses CF fo	or condition	judgmei	nt? ()		
(1) J (2 2 JAE 3 JC	GE 4JBE					
	1 2		B. ① ②	3			
	1 2 4		D. 2 3				
C.	1) (2) (4)		D. 4 3	(4)			
18. For	this assembly	code, the value of	of AX after e	executin	g (1) and (2) ar	e respectively ().	
	-				B	e respectively ().	
	V AX, 7100H						
SUB	3 AX, 8000H;	1)					
ADO	CAX,1H ;②						
A. 1	00H, 101Н	В. 100Н,	102H	C. F	100H, F101H	D. F100H, F102	2H
10 70.1		1 00050: 01	SOTT II II				
19. If t	he control num	ber of 8253 is 0I	32H, then th	e counte	er and mode are	espectively ().	
A. 2	,1	B. 2,3		C. 3	3,0	D. 1,2	
20 11/1	. 1 . 0.1 . 0.11	. 1	CDMA:		9 ()		
20. Wn	iich of the folic	owing description	IS OI DIMA I	s wrong	?()		
A. D	MA transfer is	hardware operat	tion: it transf	fers data	from memory to	device or from de	vice to memory.
B. Fe	or kevboard an	d mouse data inp	out, DMA is	more ef	ficient than inter	rupt-driven I/O.	
	-	on stage of DMA				1	
		•		·•			
D. D	iviA needs to u	ise interrupt proc	essing.				
II. Fi	ll in Blank	(s (20°)					
	n in Diam.	.s (20)					
1 In 80)86 systems as	ssume that SS·SF	is 2000H·1	000H at	nd AX=1234H_a	fter executing PUS	SH AX, byte 12H and
111 00	5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Desirie that DD.DI	15 2 00011.1	JUJII UI	123 III, a	in thousand i on	11111, 0, to 1211 till
byte 34	H are stored at	t physical addres	S	a	nd	, respectively.	
A 考	· 总 <u>10</u> 页	第 3 页					

2. Different types of memory form a	in a computer system, which can obtain a tradeoff
between data access performance and cost because	
3. In asynchronous serial communication, baud factor refe	
which is set to	.
4. In 8086 systems, "INT 21H" can be used to call the ISR	of DOS, which(can/cannot) be masked;
the entrance address of the ISR is stored at physical address	H; before entering the ISR, IF of
8086 is cleared, which means	; when returning from the
ISR, the IRET instruction is used, what is the difference bet	ween IRET and RETF?
5. Modern CPUs support instruction pipeline technique. A _	
better suit instruction pipeline. The 8086 is a	_(CISC/RISC) CPU, which integrates two components,
i.e.,, respectively, fo	rming astage instruction pipeline. These
two components can work simultaneously because	
6. An 8-bit number 0FFH in 2's complement represents into	eger
7. 8259 is used to manage interrupts in 8086 systems. Which	n are the two factors that determine whether an interrupt
request IR issued from some device can make 8259 issue an	effective INT signal to the CPU?
and	. The purpose of an EOI command of 8259 is to
III. Answer Questions (25')	
1. Answer the following questions about (4')	
1) Briefly describe the advantages and disadvantages of t linear select) for I/O ports (one for each).	he two address decoding methods (i.e., absolute and
2) Briefly describe the interrupt response process.	
2. Use several 512K×8-bit memory chip(s) to form a 4M×3 Answer the following questions: (9')	2-bit memory chip. The memory is addressed by byte.
1) How many 512K×8-bit memory chips are needed? (1' _A_卷 总 _10_ 页 第 _4_ 页)

2) What are the number of the data lines and that of the address lines of this 4M×32-bit memory chip? (2')
3) Describe the function of each address line of this 4M×32-bit memory chip. (3')
4) Is a decoder required to form the 4M×32-bit memory chip? If needed, draw the circuit of the decoder, and label the input address lines. If not, please explain the reason. (3')
3. Given the C/C++ code below, answer the questions.(12')
<pre>int factorial(int n) { if(n <= 1) { return 1; }</pre>
return n * factorial(n - 1);
1) Write the non-recursive C/C++ form of the above recursive code. (3')
2) Convert recursive and non-recursive code to assembly code. (6')
3) Compare the performance of recursive and non-recursive method and explain the reason. (3')

<u>A</u>卷 总 <u>10</u> 页 第 <u>5</u> 页

IV. Applications (35')

1. A computer exchanges data with another one via asynchronous serial communication using 7-bit characters, 1 parity bit, 1 stop bit, and the baud factor is 16. Given the following figure which depicts a transmitted character, please answer all requirements. (7')

- 1) Mark the start bit and the stop bit respectively on the figure. (2')
- 2) What is the transmitted character? (2')
- 3) Odd parity or even parity? (1')
- 4) If symbol rate is 9600 bauds, what is the bit rate? (2')
- 2. 8086 is executing the following instructions which send the data stored in the memory at a specific address to an output port. Assume that DS=1000H, and byte 81H, 82H, and 83H are stored at 11000H, 11001H, and 11002H, respectively. Please answer the following requirements. (9')


```
MOV AX, [1001H] ;①
MOV DX, ____H ;②
OUT DX, AL ;③
MOV AL, AH
A 卷 总 10 页 第 6 页
```

1) How many bus cycles would the instruction at ① take? Please give detailed explanation on each bus cycle including how CPU coordinates the address bus, the control bus and the data bus to obtain a piece of data from the memory. (4')

- 2) The port number at ② is _____H. (1')
- 3) Please draw the following signals when executing the instruction at (3). (4')

3. The following schematic shows a timer application, where the OUT1 of 8253 generates an interrupt request on every 1 second, making the timer count down by 1 second until the timer meets terminal count 0. The current count is displayed on the 4-digit LED tubes with the format MM.SS, where MM is the left minutes and SS is the left seconds. Assume that the initial count is 10.00. Please finish the following program. (19')

1) Identify the port numbers of 8253 and 8255 (all unused system address lines take the value of 0) (3')

```
; 8253
                   _____ Н
L8253T0
                            ; Timer0's port number
             EQU
L8253T1
                   Н
                            ; Timer1's port number
             EQU
                   H
L8253CS
                            ; 8253 Control Register's port number
             EQU
; 8255
                    Н
L8255PA
                            ; Port A's port number
             EQU
L8255PB
                   H ; Port B's port number
             EQU
L8255CS
                   H ; 8255 Control Register's port number
             EQU
```

2) Data segment definition (2')

```
; SEGTAB is the code for displaying "0-F" on 7-Segment Tube
 SEGTAB
         DB 3FH;
          DB 06H;
          DB 5BH;
                      ааа
                      f
          DB 4FH;
                              b
          DB 66H;
                      f
                              b
          DB 6DH;
                       f
          DB 7DH;
                         ggg
          DB 07H;
          DB 7FH;
                      е
                      е
          DB 6FH;
                         d d d
          DB 77H;
                                 h h h
          DB 39H;
                     b7 b6 b5 b4 b3 b2 b1 b0
          DB 5EH;
                     DP g f e d c b a
          DB 79H;
```

```
DB 31H;
 ; SEGTAB1 is the code for displaying "0.-F." (2')
   SEGTAB1 DB ___H, ___H, ___H, OE6H, OEDH, OFDH, 87H
             DB OFFH, OEFH, OF7H, OFCH, OB9H, ODEH, OF9H, OB1H
 ; Any other variables that your code needs
3) Initialization of 8253 (2')
 INIT8253 PROC
 ; Set the mode and the initial count for TimerO
 ; Set the mode and the initial count for Timer1
 RET
 INIT8253 ENDP
4) Initialization of 8255 (1')
 INIT8255 PROC
   ; Init 8255 in Mode x, L8255PA xPUT, L8255PB xPUT
   RET
 INIT8255 ENDP
5) Identify the interrupt type; set up the IVT; and complete the ISR (5')
             EQU
                     H; INT type (1')
 IRQNum
 INT INIT PROC FAR ; set up the IVT (2')
                ; Disable interrupt
   CLI
   MOV AX, 0
   MOV ES, AX ; To set up the interrupt vector table
   ; Put your code from here
```

RET

INT_INIT ENDP

MYIRQ PROC FAR ; complete the ISR (2')

; Put your code here

; 中断返回

MYIRQ ENDP

6) Display control using 8255 (6')

DISPLAY8255 PROC

; Put your code here

RET

DISPLAY8255 ENDP