Proposed	10 000 32 250 2 918 0 000 2 000 2 000 2
	10 000 3 250 3 000 3 000 3 000 3 000 3 000 3 000 3
1 1	10 000 3 250 3 000 3 000 3 000 3 000 3 000 3 000 3
1	000 3 250 2 918 0 000 3 000 3 000 3
	000 2 000 3 000 3
1	- 2.5
1	- 2.5
and the control of th	- 2.5
Section Property	- 2.5
Section Community Commun	- 2.5
Proposed Service Proposed Se	- 2.5
Secretarian Control of the Secretarian Control of the Control of t	- 2.5
Society of the transport of the control of the cont	- 2.5
The control to these depression planes are three towns (a) [1] [Indication [1]] [Indicatio	- 2.5
in equipment of the control of the c	- 2.5
1	- 2.5
Section 1. Section 2.	- 2.5
Visualising Data Fortraum a narrange state of the state	- 2.5
To [10]: pint supplies impactive (15, 10) on neutropy cross-content of content of the content of	- 2.5
To (28): pl.1. substitute (figurare (16, 10)) and the control of t	- 2.5
in above goach we can see a number of testaires are Might verby corelated while some are also highly verby core row or an enter in the can result in goal distribute committees and the can result in goal distribute committees the control of the control of recon testates whose conflictabilities are given to entered information. So we will use Particle Swarm Optimization (PSCI) to committees the control of the control of the control control of the contro	- 2.5
In advoce graph we can see a runther of features are High -verify constanted while some are also highly +verify come now we need to conso only useful features which consone so pool Machine Learning Model Extracting useful features using PSO Out of all three features, may be run all will purisipate for great control of the property of the control o	- 2.0
in above graph we can see a number of features are Highy-vely corelated while some are also highly +vely core new we need to extract only useful features that can exper us good Machine Learning Model Extracting useful features using PSO Out of all these features, may be not all will participate for poot accuracy. Sow enem have no divose only those features witnose contribution can give us useful information. So we will use Particle Swarm Optimization - (PSO) to extract useful features using produce on the contribution can give us useful information. So we will use Particle Swarm Optimization - (PSO) to extract useful features. The particle of the produce of the produce of the produce of the particle of the produce of the produc	- 1.5
In almow graph we can see a number of reatures are High, vely corelated while some are also highly +vely core now we need to extract only useful features that can essure us good Machine Learning Model Extracting useful features using PSO Out of all these features, may be not all wall participate for good accuracy. So we may have to choose only those features whose contribution can give us useful information. So we will use Particle Swarm Optimization - (PSO) to extract useful features from our dataset In [11]: **Installing Pyswarms* Downloading pyswarms* Downloading pyswarms* Downloading pyswarms* Downloading pyswarms* Downloading pyswarms* Lineary and the state of the state	- 0.5 - 0.5
good accuracy. So we may have to choose only those leatures whose contribution can give us useful information. So we will use Particle Swarm Optimization - (PSO) to extract useful features from our dataset In [11]: # Installing Pyswarms Library lpython -m pip Install pyswarms; Collecting pyswarms 1.1 0-py2.py3-none.any.whi (48 k8) Downloading pyswarms 1.2 1.1 0-py2.py3-none.any.whi (49 k8) Downloading pyswarms 1.2 2.1 Requirement already satisfied: matpiollib=-1.3.1 in /opt/conda/lib/python3.6/site-packages (from solid pyswarms) 1.2 2.1 Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from solid python3.6/site-packages (from solid python3.6/site-pack	
Collecting pyswarms Downloading pyswarms-1.1.0-py2.py3-none-any.whl (96 kB)	
s) (0.18.2) Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from s) (1.18.2) Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from s) (4.42.6) Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-from matplotlib>=1.3.1->pyswarms) (2.8.1) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib=1.3.1->pyswarms) (2.4.6) Requirement already satisfied: klwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib=1.3.1->pyswarms) (1.0.0) Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages atplotlib=1.3.1->pyswarms) (0.10.0) Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.6/site-packages (from n-dateutil>=2.1->matplotlib>=1.3.1->pyswarms) (1.10.0) Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.6/site-packages (from matplotlib=1.1-)=matplotlib>=1.3.1->pyswarms) (1.14.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from matplotlib=1.3.1->pyswarms) (1.14.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from n-dateutil>=2.1->matplotlib=1.3.1->pyswarms) (46.1.3.post20200330) Installing collected packages: pyswarms Successfully installed pyswarms-1.1.0 In [12]: # importing the libraries import train_test_split(X,y,test_size=0.3) print("Xtrain shape ; {} vytrain shape :	pyswarm
atplotlib>=1.3.1->pyswarms) (0.10.0) Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.6/site-packages (fn n-dateutil>=2.1->matplotlib>=1.3.1->pyswarms) (1.14.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (sisolver>=1.0.1->matplotlib>=1.3.1->pyswarms) (46.1.3.post202000330) Installing collected packages: pyswarms Successfully installed pyswarms-1.1.0 In [12]: # importing the libraries import pyswarms as ps Spliting data in Train and Test set In [13]: from sklearn.model_selection import train_test_split X,y = data.iloc[:,1:].values, data.iloc[:,0].values Xtrain,Xtest,ytrain,ytest = train_test_split(X,y,test_size=0.3) print("Xtrain shape; {} \nytrain shape : {} \nytrain shape : {} \nytrain shape; (22, 56) ytrain shape; (22, 56) ytrain shape : (22,) Use of PSO In [14]: from sklearn.linear_model import LogisticRegression # Logistic Regression Classifier clf = LogisticRegression(solver='saga') def cal_per_particle(mask,alpha,no_of_features=56): subset=None if np.count_nonzero(mask) == 0: subset = Xtrain[:,mask==1] clf.fit(subset,ytrain) pred = (clf.predict(subset)==ytrain).mean()	pyswarm byswarms package a/lib/py ckages (
<pre>In [13]: from sklearn.model_selection import train_test_split X,y = data.iloc[:,1:].values, data.iloc[:,0].values</pre>	rom pyth
<pre>ytrain shape : (22,) Use of PSO In [14]: from sklearn.linear_model import LogisticRegression # Logistic Regression Classifier clf = LogisticRegression(solver='saga') def cal_per_particle(mask, alpha, no_of_features=56): subset=None if np.count_nonzero(mask) == 0: subset = Xtrain else : subset = Xtrain[:,mask==1] clf.fit(subset,ytrain) pred = (clf.predict(subset)==ytrain).mean()</pre>	
<pre>subset=None if np.count_nonzero(mask) == 0: subset = Xtrain else : subset = Xtrain[:,mask==1] clf.fit(subset,ytrain) pred = (clf.predict(subset)==ytrain).mean()</pre>	
<pre>tmp = (alpha * (1.0 - pred) + (1.0 - alpha)* (1 - (subset.shape[1]/no_of_features return tmp</pre>	s)))
<pre>def calc(x,alpha=0.81): number_of_particles = x.shape[0] arr = [cal_per_particle(x[i],alpha) for i in range(number_of_particles)] return np.array(arr) In [15]: %time op1 = ['c1','c2'] ops = {'w':0.9,'k':30,'p':2} for o in op1:</pre>	
<pre>ops[o] = np.random.random() dims = Xtrain.shape[1] optimizer = ps.discrete.BinaryPSO(n_particles=32, dimensions=dims, options=ops) cost, pos = optimizer.optimize(calc, iters=800) print("Options are : {}".format(ops)) 2020-04-10 15:12:59,087 - pyswarms.discrete.binary - INFO - Optimize for 800 iters widely on the second seco</pre>	oest cos
Selected features are: ['2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '17', '19', '20', '21', '23', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '38', '40', '41', '43', '44', '45', '46', '47', '48', '51', '52', '53', '54', '6'] Excluded features are: ['1', '16', '22', '24', '39', '42', '49', '50'] Visualising PSO Optimizer Cost History	5', '36'
Visualising PSO Optimizer Cost History In [17]: from pyswarms.utils.plotters import plot_cost_history	
0.060 0.055 0.050	
0.045 0.040 0.035 0.030	
O 100 200 300 400 500 600 700 800 Checking Model performance over Selected Features In [18]: from sklearn.linear_model import LogisticRegression	
<pre>In [18]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix clf = LogisticRegression(solver='saga') # selected trainging features s_xtrain = Xtrain[:,pos==1] clf.fit(s_xtrain,ytrain) # selected testing features s_xtest = Xtest[:,pos==1] pred = clf.predict(s_xtest)</pre>	
<pre>pred = clf.predict(s_xtest) In [19]: mat = confusion_matrix(ytest,pred) sns.heatmap(mat, cmap="coolwarm",fmt='d',annot=True) Out[19]: <matplotlib.axessubplots.axessubplot 0x7f89f8cf0320="" at=""> 2</matplotlib.axessubplots.axessubplot></pre>	
-1.50 -1.25 -1.00 -0.75 -0.50 -0.25 -0.00	
In [20]: from sklearn.metrics import accuracy_score as ac print("Accuracy Score : ",ac(ytest,pred)) Accuracy Score : 0.6 Hyper Parameter Tunning	
As we see that after extracting the features with the help of PSO We were able to achieve 0.6 accuracy score. So now we will try to Tune our model so that we can increase our accuracy with the selected features. In [21]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix Some parameters for Tunning. We will create different combinations of parameters to check for best solution.	
<pre>In [22]: c_param = [0.001, 0.01, 0.1, 1, 10, 100] p_param = ['l1','l2'] param_list = [(c,p) for c in c_param for p in p_param] print("Combinations are : ",param_list) Combinations are : [(0.001, 'l1'), (0.001, 'l2'), (0.01, 'l1'), (0.01, 'l2'), (0.1, (0.1, 'l2'), (1, 'l1'), (1, 'l2'), (10, 'l1'), (10, 'l2'), (100, 'l1'), (100, 'l2')]</pre>	'11'),
We will keep a track of C , penality and accuracy so that we can use hyper parameters in our final Model. In [23]: C=None P=None Accu=0.0 In [24]: i,j=0,0 f, axes = plt.subplots(3, 4, figsize=(20, 15), sharex=True) sns.despine(left=True) s_xtrain = Xtrain[:,pos==1]	
<pre>s_xtrain = Xtrain[:,pos==1] s_xtest = Xtest[:,pos==1] for c,p in param_list: clf = LogisticRegression(solver='saga',penalty=p,C=c) clf.fit(s_xtrain,ytrain) pred = clf.predict(s_xtest) acc_score = accuracy_score(ytest,pred) if acc_score > Accu: Accu = acc_score C,P=c,p</pre>	
<pre>cm = confusion_matrix(ytest,pred) axes[i,j].set_title("{ 'c' : "+str(c)+" , 'penality' : "+p+" }") sns.heatmap(cm,cmap="coolwarm",fmt='d',annot=True,ax=axes[i,j]) if j == 3: i = (i+1)%4 j = (j+1)%4 plt.setp(axes, yticks=[]) plt.tight_layout() {'c':0.001,'penality':12}</pre>	
	- 3.5
0 4 0 -35 1 3 0 -25 2 2 0 -175 2 2 1 0 -150 -125 0 1 2 -05 0 1 2 -050 -00 -00 -00 -00 -00 -00 -00 -00 -0	0 - 3.5 0 - 3.6 - 2.5 0 - 2.6 - 1.5 - 1.6 0 - 0.5
{ 'c' : 10 , 'penality' : 11 }	0 - 3.5 0 - 2.5 0 - 2.5 0 - 2.6 0 - 1.6 0 - 0.7 - 1.7 - 1.7 0 - 1.7 - 1.
Result after Hyper Parameter Tunning In [25]: print("Best Accuracy: ", Accu) print("Penalty: ", P) print("C: ", C) Best Accuracy: 0.6	0 - 3.5 0 - 2.5 0 - 2.5 0 - 2.6 0 - 1.6 0 - 0.7 - 1.7 - 1.7 0 - 1.7 - 1.
Best Accuracy : 0.6 Penalty : 12 C : 100 As we can see that after Hyper Parameter Tunning the accuracy score os 0.6 which is quite good as per dataset. Finalizing the Hybrid Model	0 - 3.3 - 3.6 - 2.9 0 - 2.0 - 1.9 - 0.0 - 0.1 - 0.0 - 0.1
In [26]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix , accuracy_score, classification_report from sklearn.model_selection import cross_val_predict, cross_val_score, KFold	0 -3.3 0 -2.5 0 -2.5 0 -2.6 0 -1.5 -1.6 0 -1.7 0 -1
	0 -3.3 0 -2.5 0 -2.5 0 -2.6 0 -1.5 -1.6 0 -1.7 0 -1
<pre>In [27]: xtrain,xtest,ytrain,ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga')</pre>	0 -3.3 0 -2.5 0 -2.5 0 -2.6 0 -1.5 -1.6 0 -1.7 0 -1
<pre>In [27]: xtrain,xtest,ytrain,ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga') model.fit(xtrain,ytrain) pred = model.predict(xtest) print("Accuracy Score : ",accuracy_score(ytest,pred)) c_mat = confusion_matrix(ytest,pred) sns.heatmap(c_mat,cmap="coolwarm",fmt='d',annot=True) Accuracy Score : 0.5</pre>	0 -3.3 0 -2.5 0 -2.5 0 -2.6 0 -1.5 -1.6 0 -1.7 0 -1
<pre>In [27]: xtrain,xtest,ytrain,ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga') model.fit(xtrain,ytrain) pred = model.predict(xtest) print("Accuracy Score : ",accuracy_score(ytest,pred)) c_mat = confusion_matrix(ytest,pred) sns.heatmap(c_mat,cmap="coolwarm",fmt='d',annot=True) Accuracy Score : 0.5 Out[27]: <matplotlib.axessubplots.axessubplot 0x7f89f3e47320="" at=""></matplotlib.axessubplots.axessubplot></pre>	ision': '3': '3': '3': '4' '5' '6' '7' '8' '8' '9' '9' '1' '1' '1' '1
In [27]: xtrain,xtest,ytrain,ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga') model.fit(xtrain,ytrain) pred = model.predict(xtest) print("Accuracy Score : ",accuracy_score(ytest,pred)) c_mat = confusion_matrix(ytest,pred) sns.heatmap(c_mat,cmap="coolwarm",fmt='d',annot=True) Accuracy Score : 0.5 Out[27]: <matplotlib.axessubplots.axessubplot 0x7f89f3e4732e="" at=""> Out [27]: <matplotlib.axessubplots.axessubplot 0x7f89f3e4732e="" at=""> Out [27]: <matplotlib.axessubplots.axessubplot 0x7f89f3e4732e="" at=""> In [28]: cr = classification_report(ytest,pred,output_dict=True) print(cr) {'1': {'precision': 1.0, 'recall': 0.25, 'f1-score': 0.4, 'support': 4}, '2': {'precision': 0.65, 'recall': 0.333333333333333333333333333333333333</matplotlib.axessubplots.axessubplot></matplotlib.axessubplots.axessubplot></matplotlib.axessubplots.axessubplot>	ision': '3': '0'
In [27]: xtrain,xtest,ytrain,ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga') model.fit(xtrain,ytrain) pred = model.predict(xtest) print("Accuracy Score : ",accuracy_score(ytest,pred))	ision': '3': '0'
In [27]: xtrain, xtest, ytrain, ytest = train_test_split(X[:,pos==1],y,test_size=0.3) model = LogisticRegression(penalty=P,C=C,solver='saga') model.fit(xtrain,ytrain) pred = model.predict(xtest) print("Accuracy Score : ",accuracy_score(ytest,pred)) c_mat = confusion_matrix(ytest,pred) sns.heatmap(c_mat,cmap="coolwarm",fmt='d',annot=True) Accuracy Score : 0.5 Out[27]: <matplotlib.axes. 0x7f89f3e47328="" at="" subplots.axessubplot=""> o</matplotlib.axes.>	ision': '3': '0'

In [31]: cr_df

precision

1 1.000000 0.250000 0.400000

2 0.250000 0.333333 0.285714

3 0.600000 1.000000 0.750000

accuracy 0.500000 0.500000 0.500000

macro avg 0.616667 0.527778 0.478571

on the data to classify different type of Lung Cancer.

Check Model Perfomance over Selected Features

• Finalising Model with Logistic Regression

Main Concepts used in this are

• Preprocessing Dataset

• Feature Extraction using PSO

• Hyper Parameter Tunning

• Classification Report

• Visualizing Data

weighted avg 0.655000 0.500000 0.470714

Summary

recall f1-score support

During this project the main motive was to use Soft Computing to make Hybrid System. So i used **Particle Swarm Optimization - (PSO)** with **Logistic Regression** to create a Hybrid System which extract features using PSO and then apply logistic Regression

The data we used in this Project is available opensource on UCI Machine Learning Repository. At last i was able to create Hybrid model that i used on this dataset.

4.0

3.0

3.0

0.5

10.0

10.0

Out[31]:

Hybrid System for Lung Cancer Classification

Here i will create a Hybrid System using Particle Swarm Optimisation and Logistic Regression.

Created by : Harjinder Singh Email : hjbrar7@gmail.com