Lecture11

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.

School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Notice

- No lecture on October 29
 - Currently, no make-up session will be provided.

- No lecture on December 3 and 5
 - One make-up session on October 31
 - We need one more!

How to find n(x, y, z)

- The total number is known. But, how can we find n(x, y, z)?
 - Each state, $\psi_{k_x,k_y,n}(x,y,z)$, contributes $|\psi_{k_x,k_y,n}(x,y,z)|^2$.
 - Recall that the wavefunction can be written as $\psi_{k_x,k_y,n}(x,y,z) = A_{k_x,k_y,n}e^{+ik_xx}e^{+ik_yy}\psi_{z,n}(z)$
 - Then, $\left| \psi_{k_x, k_y, n}(x, y, z) \right|^2 = \left| A_{k_x, k_y, n} \right|^2 \left| \psi_{z, n}(z) \right|^2$
 - Integration of $\left|\psi_{k_x,k_y,n}(x,y,z)\right|^2$ over the box should give unity.

$$L_x L_y |A_{k_x,k_y,n}|^2 \int_0^{L_z} dz |\psi_{z,n}(z)|^2 = 1$$

Normalization of $\psi_{z,n}(z)$

- If $\psi_{z,n}(z)$ is normalized in the 1D structure,
 - We have the following condition:

$$\left| A_{k_x, k_y, n} \right|^2 = \frac{1}{L_x L_y}$$

Therefore, each state contributes

$$\left| \psi_{k_x, k_y, n}(x, y, z) \right|^2 = \frac{1}{L_x L_y} \left| \psi_{z, n}(z) \right|^2$$

Note that every state in a subband has the same electron density.
 (In general, it does not hold.)

1D infinite potential well

- When $\psi_{z,n}(z) = A_{z,n} \sin\left(\frac{n\pi}{L_z}z\right)$,
 - The value of $A_{z,n}$ is $\sqrt{\frac{2}{L_z}}$.
 - Therefore, when fully occupied, a state in the n-th subband contributes an electron density of (per spin)

$$\frac{2}{L_x L_y L_z} \sin^2 \left(\frac{n\pi}{L_z} z \right)$$

 Finally, the electron density can be obtained by considering all subbands.

MATLAB example (1)

Preparing some constants (the same as before)

```
h = 6.626176e-34; % Planck constant, J s
hbar = h / (2*pi); % Reduced Planck constant, J s
q = 1.602192e-19; % Elementary charge, C
m0 = 9.109534e-31; % Electron rest mass, kg
k B = 1.380662e-23; % Boltzmann constant, J/K
T = 300.0; % Temperature, K
Lx = 100e-9; Ly = 100e-9; Lz = 5e-9; % Lenghs, m
mxx = 0.19; myy = 0.19; mzz = 0.91; % Masses, m0
nmax = 10;
coef = 2*Lx*Ly/(2*pi)*sqrt(mxx*myy)*m0/(hbar^2)*(k_B*T);
```

MATLAB example (2)

Calculation of elec

```
Electron density (cm<sup>-3</sup>)
totalNumber = 0;
Nz = 51;
z = transpose([0:Nz-1])*Lz/(Nz-1);
elec = zeros(Nz,1); % Electron density, /m^3
for n=1:nmax
  Ez = (hbar^2)/(2*mzz*m0)*(pi*n/Lz)^2;
                                                                z (nm)
  subbandNumber = coef*log(1+exp(-Ez/(k B*T)));
  totalNumber = totalNumber + subbandNumber;
  elec = elec + 2/(Lx*Ly*Lz)*(sin(n*pi*z/Lz).^2)*subbandNumber;
end
plot(z/1e-9,elec/1e6)
```

 4×10^{18}

Homework#7

- Due: AM08:00, October 22
- Problem#1
 - Up to now, we have assumed that the Fermi energy is 0 eV.
 - In this problem, a 5-nm-thick potential well is considered again.
 - You can set it to any value. (-1 eV to +1 eV)
 - Calculate the integrated electron density (/cm²) as a function of the gate voltage.
 - Show snapshots of the electron density for different Fermi energies.

Potential energy

- In the case of the infinite potential well, the potential energy is 0 eV.
 - Of course, in the realistic case, the potential energy is provided from the Poisson equation.
 - When the electro potential, $\phi(z)$, is given, the potential energy is written as

$$V(z) = -q\phi(z) + (E_c - E_i)$$

 $E_c - E_i$: Constant for a given material

Schrödinger equation

- For the *z*-directional Schrodinger equation,
 - We have the following form:

$$-\frac{\hbar^2}{2m_{zz}}\frac{d^2}{dz^2}\psi_{z,n}(z) + V(z)\psi_{z,n}(z) = E_{z,n}\psi_{z,n}(z)$$

After a simple manipulation,

$$\frac{d^2}{dz^2}\psi_{z,n}(z) - \frac{2m_{zz}}{\hbar^2}V(z)\psi_{z,n}(z) = -\frac{2m_{zz}}{\hbar^2}E_{z,n}\psi_{z,n}(z)$$

Discretized version

$$\psi_{z,n,i+1} - 2\psi_{z,n,i} + \psi_{z,n,i-1} - \frac{2m_{zz}}{\hbar^2}V(z_i)(\Delta z)^2\psi_{z,n,i} = -\frac{2m_{zz}}{\hbar^2}E_{z,n}(\Delta z)^2\psi_{z,n,i}$$

Simulation flow

- Anyway, we need the initial solution.
 - It can be obtained from the semi-classical simulation.
 - Then, under the given potential energy, we can calculate the electron density.

 Of course, the electron density is not fully consistent with the Poisson equation. It should be improved later.

MATLAB example (1)

Defining variables

```
h = 6.626176e-34; % Planck constant, J s
hbar = h / (2*pi); % Reduced Planck constant, J s
q = 1.602192e-19; % Elementary charge, C
m0 = 9.109534e-31; % Electron rest mass, kg
k B = 1.380662e-23; % Boltzmann constant, J/K
eps0 = 8.854187817e-12; % Vacuum permittivity, F/m
T = 300.0; % Temperature, K
thermal = k B*T/q; % Thermal voltage, V
mxx = 0.19; myy = 0.19; mzz = 0.91; % Masses, m0
Deltaz = 0.1e-9; % 0.1 nm spacing
Nz = 61; % 6 nm thick
z = Deltaz*transpose([0:Nz-1]); % real space, m
interface1 = 6; % At z=0.5 nm
interface2 = 56; % At z=5.5 nm
eps si = 11.7; eps ox = 3.9; % Relative permittivity
Nacc = 1e24; % 1e18 / cm^3
ni = 1.075e16; % 1.075e10 /cm^3
coef = Deltaz*Deltaz*q/eps0;
Ec_Ei = 0.561004; % E_c - E_i, eV
```

MATLAB example (2)

Semi-classical nonlinear Poisson solver

```
phi = zeros(Nz,1);
phi(:,1) = 0.33374;
for newton=1:10
   res = zeros(Nz,1);
   Jaco = sparse(Nz,Nz);
   res(1,1) = phi(1,1) - 0.33374;
   Jaco(1,1) = 1.0;
   res(Nz,1) = phi(Nz,1) - 0.33374;
   Jaco(Nz,Nz) = 1.0;
   for ii=2:Nz-1
            (ii< interface1 | | ii> interface2)
      i f
         res(ii,1) = eps_ox*phi(ii+1,1) - 2*eps_ox*phi(ii,1) + eps_ox*phi(ii-1,1);
         Jaco(ii,ii-1) = eps ox; Jaco(ii,ii) = -2*eps ox; Jaco(ii,ii+1) = eps ox;
      elseif (ii==interface1)
         res(ii,1) = eps si*phi(ii+1,1) - (eps si+eps ox)*phi(ii,1) + eps ox*phi(ii-1,1);
         Jaco(ii,ii-1) = eps_ox; Jaco(ii,ii) = -(eps_si+eps_ox); Jaco(ii,ii+1) = eps_si;
      elseif (ii==interface2)
         res(ii,1) = eps ox*phi(ii+1,1) - (eps ox+eps si)*phi(ii,1) + eps si*phi(ii-1,1);
         Jaco(ii,ii-1) = eps_si; Jaco(ii,ii) = -(eps_ox+eps_si); Jaco(ii,ii+1) = eps_ox;
      else
         res(ii,1) = eps_si*phi(ii+1,1) - 2*eps_si*phi(ii,1) + eps_si*phi(ii-1,1);
         Jaco(ii,ii-1) = eps\_si; Jaco(ii,ii) = -2*eps\_si; Jaco(ii,ii+1) = eps\_si;
      end
   end
```

MATLAB example (3)

end

Semi-classical nonlinear Poisson solver (continued)

```
for ii=interface1:interface2
   if
          (ii==interface1)
      res(ii,1) = res(ii,1) - coef*(Nacc+ni*exp(phi(ii,1)/thermal))*0.5;
      Jaco(ii,ii) = Jaco(ii,ii) - coef*ni*exp(phi(ii,1)/thermal)/thermal*0.5;
   elseif (ii==interface2)
      res(ii,1) = res(ii,1) - coef*(Nacc+ni*exp(phi(ii,1)/thermal))*0.5;
      Jaco(ii,ii) = Jaco(ii,ii) - coef*ni*exp(phi(ii,1)/thermal)/thermal*0.5;
   else
      res(ii,1) = res(ii,1) - coef*(Nacc+ni*exp(phi(ii,1)/thermal));
      Jaco(ii,ii) = Jaco(ii,ii) - coef*ni*exp(phi(ii,1)/thermal)/thermal;
   end
end
update = Jaco \ (-res);
phi = phi + update;
```

MATLAB example (3)

Schrödinger solver

Now we have the electrostatic potential. The potenti energy is

```
V = q*Ec_Ei - q*phi; % Potential energy, J
```

Only for bulk silicon nodes, the Hamiltonian is constructured.

```
Nbulk = interface2-interface1-1; % Number of bulk silicon nodes
Hamil = zeros(Nbulk,Nbulk);
Hamil(1,1) = -2; Hamil(1,2) = 1;
for ii=2:Nbulk-1
    Hamil(ii,ii+1) = 1;
    Hamil(ii,ii ) = -2;
    Hamil(ii,ii-1) = 1;
end
Hamil(Nbulk,Nbulk) = -2; Hamil(Nbulk,Nbulk-1) = 1;
```

MATLAB example (4)

- Schrödinger solver (continued)
 - The potential energy is added.

```
for ii=1:Nbulk
    Hamil(ii,ii) = Hamil(ii,ii) -2*mzz*m0*(Deltaz/hbar)^2*V(ii+interface1,1);
end
```

Get the solution.

```
[eigenvectors,eigenvalues] = eig(Hamil);
```

Scale the eigenenergies.

```
Ez = diag(eigenvalues)/(-2*mzz*m0*(Deltaz/hbar)^2); % Eigenenergy, J
```

The wavefunction should be scaled.

Normalization of $\psi_{z,n}(z)$

- Its normalization condition
 - Intergration form

$$\int_{0}^{L_{z}} dz \big| \psi_{z,n}(z) \big|^{2} = 1$$

Discretized version

$$\sum_{i} \Delta z \left| \psi_{z,n,i} \right|^2 = 1$$

Eigenfunctions should be normalized accordingly.

Modified MATLAB code (1)

Defining variables (1)

```
h = 6.626176e-34; % Planck constant, J s
hbar = h / (2*pi); % Reduced Planck constant, J s
q = 1.602192e-19; % Elementary charge, C
m0 = 9.109534e-31; % Electron rest mass, kq
k B = 1.380662e-23; % Boltzmann constant, J/K
eps0 = 8.854187817e-12; % Vacuum permittivity, F/m
T = 300.0; % Temperature, K
thermal = k B*T/q; % Thermal voltage, V
```

Modified MATLAB code (2)

Defining variables (2)

```
Lx = 100e-9; Ly = 100e-9; % Lenghs, m
mxx = 0.19; myy = 0.19; mzz = 0.91; % Masses, m0
Deltaz = 0.1e-9; % 0.1 nm spacing
Nz = 61; % 6 nm thick
z = Deltaz*transpose([0:Nz-1]); % real space, m
interface1 = 6; % At z=0.5 nm
interface2 = 56; % At z=5.5 nm
eps_si = 11.7; eps_ox = 3.9; % Relative permittivity
Nacc = 1e24; % 1e18 / cm^3
ni = 1.075e16; % 1.075e10 /cm^3
coef Poi = Deltaz*Deltaz*q/eps0;
coef Sch = 2*Lx*Ly/(2*pi)*sqrt(mxx*myy)*m0/(hbar^2)*(k B*T);
Ec_Ei = 0.561004; % E_c - E_i, eV
```

Modified MATLAB code (3)

Semi-classical nonlinear Poisson solver

```
phi = zeros(Nz,1);
phi(:,1) = 0.33374;
for newton=1:10
   res = zeros(Nz, 1);
   Jaco = sparse(Nz,Nz);
   res(1,1) = phi(1,1) - 0.33374;
   Jaco(1,1) = 1.0;
   res(Nz,1) = phi(Nz,1) - 0.33374;
   Jaco(Nz,Nz) = 1.0;
```

Modified MATLAB code (4)

Semi-classical nonlinear Poisson solver

```
for ii=2:Nz-1
    if (ii< interface1 | ii> interface2)
      res(ii,1) = eps ox*phi(ii+1,1) - 2*eps ox*phi(ii,1) + eps ox*phi(ii-1,1);
      Jaco(ii,ii-1) = eps ox; Jaco(ii,ii) = -2*eps ox; Jaco(ii,ii+1) = eps ox;
   elseif (ii==interface1)
      res(ii,1) = eps_si*phi(ii+1,1) - (eps_si+eps_ox)*phi(ii,1) + eps_ox*phi(ii-1,1);
      Jaco(ii,ii-1) = eps_ox; Jaco(ii,ii) = -(eps_si+eps_ox); Jaco(ii,ii+1) = eps_si;
   elseif (ii==interface2)
      res(ii,1) = eps_ox*phi(ii+1,1) - (eps_ox+eps_si)*phi(ii,1) + eps_si*phi(ii-1,1);
      Jaco(ii,ii-1) = eps_si; Jaco(ii,ii) = -(eps_ox+eps_si); Jaco(ii,ii+1) = eps_ox;
   else
      res(ii,1) = eps si*phi(ii+1,1) - 2*eps si*phi(ii,1) + eps si*phi(ii-1,1);
      Jaco(ii,ii-1) = eps_si; Jaco(ii,ii) = -2*eps_si; Jaco(ii,ii+1) = eps_si;
   end
 end
```

Modified MATLAB code (5)

Semi-classical nonlinear Poisson solver (continued)

```
for ii=interface1:interface2
   if
          (ii==interface1)
      res(ii,1) = res(ii,1) - coef Poi*(Nacc+ni*exp(phi(ii,1)/thermal))*0.5;
      Jaco(ii,ii) = Jaco(ii,ii) - coef Poi*ni*exp(phi(ii,1)/thermal)/thermal*0.5;
   elseif (ii==interface2)
      res(ii,1) = res(ii,1) - coef Poi*(Nacc+ni*exp(phi(ii,1)/thermal))*0.5;
      Jaco(ii,ii) = Jaco(ii,ii) - coef Poi*ni*exp(phi(ii,1)/thermal)/thermal*0.5;
   else
      res(ii,1) = res(ii,1) - coef Poi*(Nacc+ni*exp(phi(ii,1)/thermal));
      Jaco(ii,ii) = Jaco(ii,ii) - coef Poi*ni*exp(phi(ii,1)/thermal)/thermal;
   end
end
update = Jaco \ (-res);
phi = phi + update;
```

end

Modified MATLAB code (6)

Schrödinger solver

```
V = q*Ec_Ei - q*phi; % Potential energy, J
Nbulk = interface2-interface1-1; % Number of bulk silicon nodes
Hamil = zeros(Nbulk, Nbulk);
Hamil(1,1) = -2; Hamil(1,2) = 1;
for ii=2:Nbulk-1
   Hamil(ii,ii+1) = 1;
   Hamil(ii,ii) = -2;
   Hamil(ii,ii-1) = 1;
end
Hamil(Nbulk,Nbulk) = -2; Hamil(Nbulk,Nbulk-1) = 1;
for ii=1:Nbulk
  Hamil(ii,ii) = Hamil(ii,ii) -2*mzz*m0*(Deltaz/hbar)^2*V(ii+interface1,1);
end
```

MATLAB example (1)

- Continued discussion
 - Get the solution.

```
[eigenvectors, eigenvalues] = eig(Hamil);
```

Scale the eigen-energies.

```
scaledEz = diag(eigenvalues)/(-2*mzz*m0*(Deltaz/hbar)^2); % Eigenenergy, J
```

Sort the eigen-energies.

```
[sortedEz,sortedIndex] = sort(scaledEz);
```

MATLAB example (2)

Calculation of the electron density

```
nSubband = 10;
elec = zeros(Nz,1); % Electron density, /m^3
total Number = 0;
for n=1:nSubband
  Ez = sortedEz(n,1);
  wavefunction2 = eigenvectors(:,sortedIndex(n)).^2;
  normalization = sum(wavefunction2)*Deltaz;
  wavefunction2 = wavefunction2 / normalization;
  subbandNumber = coef Sch*log(1+exp(-Ez/(k B*T)));
  totalNumber = totalNumber + subbandNumber;
  elec(interface1+1:interface2-1,1) = elec(interface1+1:interface2-1,1) +
1/(Lx*Ly)*wavefunction2*subbandNumber;
end
```

Simulation flow

- Self-consistency
 - The electron density is not consistent with the Poisson equation.
 - Better way?

6 valleys in silicon

- Up to now, we have considered only one band.
 - In silicon, we need to consider three valley pairs.
 - They can be characterized by (for a certain channel direction)

$$m_{xx} = 0.91 m_0, m_{yy} = 0.19 m_0, m_{zz} = 0.19 m_0$$

 $m_{xx} = 0.19 m_0, m_{yy} = 0.91 m_0, m_{zz} = 0.19 m_0$
 $m_{xx} = 0.19 m_0, m_{yy} = 0.19 m_0, m_{zz} = 0.91 m_0$

Each of them has two-fold degeneracy.

MATLAB example

Pseudocode

```
(Defining constants. Copy-and-paste)
(Semi-classical nonlinear Poisson equation. Copy-and-paste)
for iNewton = 1:20
   totalNumber = 0;
   elec = zeros(Nz,1); % Electron density, /m^3
   for iValley = 1:3
      mass = ones(3)*0.19;
      mass(iValley) = 0.91;
      coef Sch = 2*Lx*Ly/(2*pi)*sqrt(mass(1)*mass(2))*m0/(hbar^2)*(k B*T);
      (Schrodinger solver. Now mzz becomes mass(3).)
      (Calculation of electron density. Add it to elec.)
   end
   (Poisson equation)
end
```