UCB working

UCB working for two coins with probability of head 0.9 (red) and 0.5 (blue)

UCB working

UCB working for two coins with probability of head 0.9 (red) and 0.5 (blue)

- ullet Suppose you have data sampled from a parametric distribution with parameter θ .
- ullet Our goal is to estimate θ , given the data samples.

$$\mathbb{P}(\theta | \text{data}) = \frac{\mathbb{P}(\text{data} | \theta) \times \mathbb{P}(\theta)}{\mathbb{P}(\text{data})}$$

- Posterior distribution: Represents what you know after having seen the data.
- \bullet Likelihood: How likely is the data generated from the distribution with parameter θ
- Prior: Represents what you know before seeing the data.
- $\mathbb{P}(\text{data}) = \int \mathbb{P}(\text{data}|\theta)\mathbb{P}(\theta)d\theta$: This is a normalisation factor, which is independent of θ . In general, this quantity is very difficult to compute.