시스템 프로그래밍을 위한 C언어

 Hardware Memory Allocation to Access On-Chip Hardware via Memory Mapped I/O

> 현대자동차 입문교육 박대진 교수

Real World Interfacing by using MCU

Analog or Digital

Bit or Bus

Discrete

GPIO and Internal Bus

- General Purpose Input/Output
 - Interface Between Internal Bus and Outside world
 - Time-multiplexed Data Path (Input, output)
 - GPIO Port is mapped to registers in Memory Map

Interfacing via PORT Register on Memory Map: Write Mode

Write value on Register → Control the output voltage

Interfacing via PORT Register on Memory Map: Read Mode

Reading Register Value → Can Identify the input voltage

- 보드의 LED, 버튼을 사용하기 위한 하드웨어 회로 파악
 - 4개 LED: LD3~6는 PD12~15에 연결되어 있음 (PD, Port D)
 - 버튼 B1은 PA0에 연결되어 있음 (PA, **Port A**)

LEDs 6.3

- LD1 COM: LD1 default status is red. LD1 turns to green to indicate that communications are in progress between the PC and the ST-LINK/V2.
- LD2-PWR: red LED indicates that the board is powered. User LD3: orange LED is a user LED connected to the I/O PD13 of tile STM32F407VGT6.
- User LD4: green LED is a user LED connected to the I/O PD12 of the STM32F407 /GT6.
- User LD5: red LED is a user LED connected to the I/O PD14 of the STM32F407VGT6.
- User LD6: blue LED is a user LED connected to the I/O PD15 of the SI M32F407VGT6.
- USB LD7: green LED indicates when VBUS is present on CN5 and is connected to PA9 of the STM32F407VGT6
- USB LD8: red LED indicates an overcurrent from VBUS of CN5 and is connected to the I/O PD5 of the STM32F407VGT6.

6.4

- B1 USER: User and Wake-Up buttons are connected to the I/O PA0 of the

GPIO Port A, Port D를 사용하기 위한 GPIO 레지스터 설정

Table 1. STM32F4xx register boundary addresses (continued)
--

Table 1.	STM32F4xx register	r bound	ary addresses (continued)							
Boundary address	Peripheral	Bus	Register map							
0x5006 0800 - 0x5006 0BFF	RNG		Section 24.4.4: RNG register map on page 772							
0x5006 0400 - 0x5006 07FF	HASH		Section 25.4.9: HASH register map on page 796							
0x5006 0000 - 0x5006 03FF	CRYP	AHB2	Section 23.6.13: CRYP register map on page 764							
0x5005 0000 - 0x5005 03FF	DCMI	,	Section 15.8.12: DCMI register map on page 476							
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 34.16.6: OTG_FS register map on page 1326							
0x4004 0000 - 0x4007 FFFF	USB OTG HS		Section 35.12.6: OTG_HS register map on page 1469							
0x4002 B000 - 0x4002 BBFF	DMA2D		Section 11.5: DMA2D registers on page 352							
0x4002 8000 - 0x4002 93FF	ETHERNET MAC		Section 33.8.5: Ethernet register maps on page 1240							
0x4002 6400 - 0x4002 67FF	DMA2		Section 40 5 44: DMA register man on any 225							
0x4002 6000 - 0x4002 63FF	DMA1		Section 10.5.11: DMA register map on page 335							
0x4002 4000 - 0x4002 4FFF	BKPSRAM									
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.9: Flash interface registers							
0x4002 3800 - 0x4002 3BFF	RCC	1	Section 7.3.24: RCC register map on page 265							
0x4002 3000 - 0x4002 33FF	CRC	ALIDA	Section 4.4.4: CRC register map on page 115							
0x4002 2800 - 0x4002 2BFF	GPIOK	AHB1	Section 8.4.11: GPIO register map on page 286							
0x4002 2400 - 0x4002 27FF	GPIOJ		Section 8.4.11: GPIO register map on page 286							
0x4002 2000 - 0x4002 23FF	GPIOI	1								
0x4002 1C00 - 0x4002 1FFF	GPIOH									
0x4002 1800 - 0x4002 1BFF 0x4002 1407 - 0x 002 17FF	THE E	+								
0x4002 1000 - 0x4002 13FF	GPIOE		Section 8.4.11: GPIO register map on page 286							
0x4002 0C00 - 0x4002 0FFF	GPIOD									
0x4002 0800 - 0x4002 0BFF	GPIOC									
0x4002 0400 - 0x4002 07FF	GPIOB									
0x4002 0000 - 0x4002 03FF	GPIOA	1								
0x4001 6800 - 0x4001 6BFF	LCD-TFT	APB2	Section 16.7:26: LTDC register map on page 510							
0x40016800-0x6001 ABFF	- 大saixへ E	APBZ	Section 29.17.9: SAITe sister map on page 966							
0x4001 5400 - 0x4001 57FF	SPI6	APB2	Section 28.5.10: SPI register map on page 928							
0x4001 5000 - 0x4001 53FF	SPI5		Course Day of Page 320							

8.4.11 **GPIO** register map

The following table gives the GPIO register map and the reset values.

Table 39. GPIO register map and reset values

Offset	Register	31	8 8	28	27	25	24	23	22	20	19	18	17	16	15	13	12	- 5	2 0	, ω	7	9	5	4	60 0	-	0
0x00	GPIOA_ MODER	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]	MODER12(1:0)	51	MODER11[1:0]	'	MODER10[1:0]	MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODEP#1-01	To love	MODER5[1:0]		MODER4[1:0]	MODED 314-01	[a:]culación	MODER 211:01		MODER1[1:0]	MODER0[1:0]	In charles
	Reset value	1 0	1	0	1 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 0	0	0
0x00	GPIOB_ MODER	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]	MODER12(1:0)		MODER11[1:0]		MODER10[1:0]	MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODED671-01	MODERAL I.O.	MODER5[1:0]		MODER4[1:0]	MODED3[1:0]	in correction	MODER2[1:0]		MODER1[1:0]	MODEROIT-01	MODEL NO.
	Reset value	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	1	0	1	0	0	0	0 0	0	0
0x00	GPIOx_MODER (where x = Cl/J/K)	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]	MODER 12[1:0]	5::1	MODER11[1:0]		MODER10[1:0]	MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODE PRITO	WODENO I SO	MODER5[1:0]		. MODER4[1:0]	MODED3(1-0)	WOOLN'S I'V'	MODER2(1:01		MODER1[1:0]	MODER0[1:0]	in land on the
	Reset value	0 0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 0	0	0

전체 레지스터 map에서 base address를 찾아 GPIO 모듈의 세부 레지스터 map으로 이동

- 레지스터 설정 값을 결정하기 위한 스펙 문서 이해
 - GPIO의 여러 레지스터 중, 1개의 예시

GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) 8.4.1

Address offset: 0x00

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	MODER15[1:0]		:0] MODER14[1:0]		MODER13[1:0]		MODER	R12[1:0]	MODER	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODER8[1:0]		
			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
	15	15 14		13 12 11 10 9		9	8	7	6	5	4	3	2	1	0		
	MODER7[1:0]		MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]	
	rw rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

2. 사용하려는 component를 위해서 전체 레지스터 중, 어디에 write해야 하는지 파악

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

- 00: Input (reset state)
- 01: General purpose output mode
- 10: Alternate function mode
- 11: Analog mode

1. 원하는 동작을 위해서 어떤 값을 사용해야 하는지 파악

GPIO 레지스터를 설정하는 코드

```
31 int main (void) {
      clk();
      RCC CFGR |= 0x046000000;
      RCC AHB1ENR
                    |= 1<<0; //RCC clock enable register
      GPIOA MODER
                    |= 0<<0; // input mode
      GPIOA OTYPER |= 0<<0; // output push-pull
      GPIOA PUPDR
                    |= 0<<0; // no pull-up, pull-down
      RCC AHB1ENR
                    l= 1<<3:
      GPIOD MODER |= 1<<24;
      GPIOD MODER
                    |= 1<<26;
                    |= 1<<28;
      GPIOD MODER
      GPIOD MODER
                    |= 1<<30;
      GPIOD OTYPER |= 0x000000000;
      GPIOD PUPDR
                    = 0x000000000;
      GPIOD ODR |= 1<<12;
      while(1) {
          if( GPIOA IDR & 0x00000001 ) {
               GPIOD ODR ^= 1 << 13;
              GPIOD ODR ^= 1 << 14;
               GPIOD ODR ^= 1 << 15;
```

PAO (Port A의 pin 0)을 입력으로 사용하기 위한 설정

- Port A 모듈에 clock 인가
- 핀 입출력 방향 설정

PD12~15 (Port D의 pin 12~15)을 입력으로 사용하기 위한 설정

- Port D 모듈에 clock 인가
- 핀 입출력 방향 설정

출력 핀에 원하는 값 인가

코드 설명 – 전체 동작

버튼으로 입력되는 값에 따라 LED toggle 여부를 결정

```
31 int main (void) {
     clk();
     RCC CFGR |= 0x046000000;
     RCC AHB1ENR
                 |= 1<<0; //RCC clock enable register
     GPIOA MODER
                 |= 0<<0; // input mode
     GPIOA OTYPER |= 0<<0; // output push-pull
     GPIOA PUPDR
                 |= 0<<0; // no pull-up, pull-down
      RCC AHB1ENR
                 |= 1<<3;
                                                                  버튼으로 입력되는 값이 1이라면,
     GPIOD MODER |= 1<<24;
      GPIOD MODER
                 |= 1<<26;
      GPIOD MODER
                 |= 1<<28:
      GPIOD MODER
                 |= 1<<30;
      GPIOD OTYPER
                 = 0x000000000;
      GPIOD PUPDR
                 = 0x000000000;
                                                                 3개의 LED (PD13, PD14, PD15)의
     GPIOD ODR |= 1<<12;
                                                                 상태를 toggle
     while(1) {
                                                                  - on되어 있으면 off
         if( GPIOA IDR & 0x000000001 ) {
            GPIOD ODR ^= 1 << 13;
            GPIOD ODR ^= 1 << 14;
                                                                  - off되어 있으면 on
            GPIOD ODR ^= 1 << 15;
```


여러가지 SFR 접근 방법

Memory Mapped된 하드웨어 영역의 특정 주소를 define

여러가지 SFR 접근 방법

공용체를 이용한 SFR의 필드 별 접근

여러가지 SFR 접근 방법

Memory Mapped된 하드웨어 영역을 구조체로 정의

unsigned int → 32-bit 크기

```
88 volatile struct SFR{
        unsigned int REG_A;
90
        unsigned int REG_B;
        unsigned int REG_C;
91
92
        unsigned int REG_D;
        unsigned int REG_E;
94 };
95
97 #define BASE_ADDR 0x61FDF0
98 #define SFR ((struct SFR*)BASE_ADDR)
```

하드웨어 SFR 영역의 시작 주소만 필요 (Base address)

각 멤버 변수가 32-bit 크기를 점유하는 구조체를 메모리에 할당

+4 +4

0x61FDF0

+4

+4

REG B

REG A

하드웨어 제어를 위한 32-bit SFR

REG_C

REG D = 0×12345678

 $REG_E = 0xABCD$

 $SFR.REG_D = 0x12345678;$ SFR.REG_E = 0xABCD;

구조체 시작주소로부터 상대 거리로 접근 (맴버 변수 접근시 자동으로 주소 계산됨)

