1 nalen

א. תנאי התחלה:

(סדרה ריקה! נוח להיעזר ב- מסעיף ב) (סדרה ריקה מוח להיעזר ב- $a_0=1$

(רק בלוק 2 × 1 עומד אפשרי) $a_1 = 1$

. (בים 2 × 1 שוכבים או שני בלוקים 2 × 2 עומדים, או שני בלוקים 3 או שני בלוקים $a_{_2}$ = 3

n+1 יחס נסיגה: נתבונן בריצוף באורך

- , n אם הוא מסתיים בבלוק 2×1 עומד, אז לפני הבלוק הזה יכול לבוא כל ריצוף באורך * כלומר a_n ריצופים אפשריים.
- , n-1 באורך באורך לבוא כל ריצוף באורך 2×2 , אז לפני הבלוק הזה יכול לבוא כל ריצוף באורך * כלומר a_{n-1} ריצופים אפשריים.
- אם הוא מסתיים בבלוק 2×1 שוכב, אז בהכרח מדובר בשני בלוקים 2×1 שוכבים זה מעל * a_{n-1} היורך באורך באורך לבוא כל ריצוף באורך היורך , n-1

 $a_{n+1} = a_n + 2a_{n-1}$: בסה"כ קיבלנו

. $a_2 = a_1 + 2a_0 = 1 + 2 \cdot 1 = 3$ נבדוק שזה תנאי ההתחלה שרשמנו:

 $\lambda^2 - \lambda - 2 = 0$: ב. המשוואה האפיינית

. 2 , -1 כלומר $\lambda_{1,2}=\frac{1\pm\sqrt{1+8}}{2}=\frac{1\pm 3}{2}$: פתרונותיה הם

. $a_n = A \cdot 2^n + B \cdot (-1)^n$ לפיכך

: נקבל a_1 , a_0 ההתחלה נקבל

.2A - B = 1 , A + B = 1

. B=1/3 מכאן . A=2/3 כלומר , 3A=2 מחיבור שתי משוואות אלה לפיכך

$$a_n = \frac{2}{3} \cdot 2^n + \frac{1}{3} (-1)^n = \frac{1}{3} (2^{n+1} + (-1)^n)$$

 $a_4=a_3+2a_2=11$, $a_3=a_2+2a_1=5$: מיחס הנסיגה $a_4=\frac{1}{3}\left(2^5+(-1)^4\right)=11$: מהנוסחה המפורשת

2 nalen

בחישוב כל מקדם ניעזר בנוסחה (ii) לפיתוח מכפלה, שהופיעה בסוף הממ״ן ובמקדמים הקודמים שכבר חישבנו.

$$1 = c_0 = a_0 b_0 = 1 \cdot b_0$$

לכן $b_0 = 1$ כעת,

$$0 = c_1 = a_0 b_1 + a_1 b_0 = 1 \cdot b_1 + 3 \cdot 1$$

:נחלץ ונקבל $b_1 = -3$ נחזור ונציב

$$0 = c_2 = a_0b_2 + a_1b_1 + a_2b_0 = 1 \cdot b_2 + 3 \cdot (-3) + 2 \cdot 1$$

:נחלץ ונקבל $b_2 = 7$ נחזור ונציב

$$0 = c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_2 = 1 \cdot b_3 + 3 \cdot 7 + 2 \cdot (-3) + (-2) \cdot 1$$

 $b_3 = -13$ נחלץ ונקבל

3 nalen

א. לפי הדיון בעמי 124 - 127 בספר, הפונקציה היוצרת היא

$$f(x) = (1 + x + x^2 + x^3)^2 (1 + x + x^2 + x^3 + x^4 + \dots)^2$$

. בפיתוח פונקציה זו בפיתוח מקדם של a_n

ב. מסעיף א׳, בעזרת סכום טור הנדסי סופי וסכום טור הנדסי אינסופי נקבל:

$$f(x) = \left(\frac{1-x^4}{1-x}\right)^2 \left(\frac{1}{1-x}\right)^2 = (1-x^4)^2 \frac{1}{(1-x)^4} = (1-2x^4+x^8) \frac{1}{(1-x)^4}$$

. $\frac{1}{(1-x)^4} = \sum_{i=0}^{\infty} D(4,i) \, x^i$,(11), שהופיעה בממיין (עמי 11), שהופיעה לפי נוסחה

מכאן עייי קיבוץ איברים הנותנים מעלה n (נוסחה מכאן עייי קיבוץ איברים הנותנים מעלה f(x) בממיין. השווה גם השאלה הקודמת), המקדם של f(x) ב- x^n הוא

$$a_n = D(4, n) - 2D(4, n - 4) + D(4, n - 8) = \binom{n+3}{3} - 2\binom{n-1}{3} + \binom{n-5}{3}$$

. (20 אם n < 5 הביטוי הימני ביותר באגף ימין הוא (מקדמים בינומיים חריגים - רי עמי n < 5 בדומה, אם n - 1 < 3 הביטוי האמצעי באגף ימין מתאפס.

נקבל כך את המקרים $a_0=1$, $a_1=4$, $a_0=1$, שלא קשה לודא את נכונותם מתנאי $n\geq 5$ השאלה, אך הם אינם מהוים בדיקה טובה לביטוי בשלמותו. מצד שני, אם נניח $n\geq 5$ ונפתח את הביטוי, לאחר פיתוח וקיבוץ איברים מתקבל הביטוי הפשוט: $a_n=16n-32$ מומלץ - לחשב זאת). האם מישהו רואה דרך קצרה להגיע ישר לתוצאה זו י

4 22167

. $c_{2m}=\binom{n}{2m}$, המקדם של x^{2m} בפיתוח $(1+x)^n$ הוא, לפי נוסחת הבינום, x^{2m} של . המקדם של $(1-x^2)^n\cdot \frac{1}{(1-x)^n}$: את אגף שמאל של הזהות הנתונה בשאלה נראה כמכפלה של שני גורמים $b_i=D(n,i)$ בממ"ן , מנוסחה $a_i=a_i$ מנוסחה $a_i=a_i$ מנוסחה $a_i=a_i$

.
$$(1-x^2)^n = \sum_{i=0}^{\infty} (-1)^i \binom{n}{i} (x^2)^i = \sum_{i=0}^{\infty} (-1)^i \binom{n}{i} x^{2i}$$
 : נפתח גם

נסמן ב- a_i את המקדם של מון בביטוי זה.

 \pm מכיוון שמופיעות רק חזקות זוגיות של \pm , כל המקדמים בעלי אינדקס אי-זוגי מתאפסים

.
$$a_{2i} = (-1)^i \binom{n}{i}$$
 -ש גם אים אנו אנו אנו $a_{2i+1} = 0$

. 2i אולא i מופיע, מופיע (-1) מופיע במקדם הבינומי ובחזקה של (a_{2i} ולא מימו לב שזהו לב שזהו אימו למציאת המקדמים בכפל פונקציות יוצרות: כעת ניעזר בנוסחה (ii) שבסוף הממיין למציאת המקדמים בכפל פונקציות יוצרות

$$c_{2m} = \sum_{i=0}^{2m} a_i b_{2m-i}$$

 a_{2i} ונוכל לרשום עבור המקרה שלנו , a_{2i+1} ולא מקדמים יש לנו רק יש לנו רק - a

$$c_{2m} = \sum_{i=0}^{m} a_{2i} b_{2m-2i}$$

שימו לב לשינוי גבול הסכימה כאן והבינו מדוע הוא נדרש. נציב בשוויון זה את הביטויים שקיבלנו עבור המקדמים:

$$\binom{n}{2m} = \sum_{i=0}^{m} (-1)^{i} \binom{n}{i} D(n, 2m - 2i)$$

i במקום i כדי להתאים לנדרש בשאלה). זו הזהות המבוקשת (נקרא למשתנה הסכימה k

בדיקה: כאשר $\binom{5}{4}=5$, אגף שמאל הוא $\binom{5}{4}=5$, ואגף ימין הוא

$$\binom{5}{0}D(5,4) - \binom{5}{1}D(5,2) + \binom{5}{2}D(5,0) = \binom{8}{4} - 5 \cdot \binom{6}{2} + 10 \cdot 1 = 70 - 75 + 10 = 5$$

.
$$D(j,0) = \binom{j+0-1}{j-1} = \binom{j-1}{j-1} = 1$$
 שימו לב ש-

את הבדיקה השניה אנא השלימו בעצמכם.

איתי הראבן