CS 341 Automata Theory Elaine Rich Homework 6

Due: Tuesday, February 21

This assignment covers Chapter 9 and a review of regular languages.

Chapter	9
---------	---

that is actually in L.)

,		efine a decision procedure for each of the following questions. Argue that each of your decision procedures zes the correct answer and terminates.
	a)	Given two DFSMs M_1 and M_2 , is $L(M_1) = L(M_2)^R$?
		Procedure. First, take M_1 and construct a new machine M_1' as follows. Create a new start state and provide epsilon transitions to every accepting state of M_1 . Then mark these states as non accepting and mark the old start state as accepting. Now take every state transition and reverse it. Now minimize M_1' and M_2 and compare them. If they are the same machine, then $L(M_1) = L(M_2)^R$ so return $True$. Otherwise return $False$.
		Proof.
Ī	b)	Given an FSM M and a regular expression α , is it true that $L(M)$ and $L(\alpha)$ are both finite and M accepts exactly two more strings than α generates.
		Procedure. First, determine if $L(M)$ and $L(\alpha)$ are both finite. For M , $L(M)$ is finite iff M has no loops, and for α , $L(\alpha)$ is finite iff α contains neither $*$ nor $+$. Now, if both of them are finite, count all the strings each generates. If $ L(M) = 2 + L(\alpha) $ then return $True$, else return $False$.
		Proof.
Re	vi	${f ew}$
2)	Fo	r each of the following languages L , state whether or not L is regular. Prove your answer.
	a)	$\{w\in\{0,1,\#\}^*\ :\ w=x\#y, \text{where } x,y\in\{0,1\}^* \text{ and } x \cdot y \equiv_5 0\}. \text{ (Let \cdot mean integer multiplication)}.$
		Answer. \Box
		Proof.
1	b)	$\{w \in \{1\}^* : w \text{ is, for some } n \geq 1, \text{ the unary encoding of } 10^n\}. \text{ (So } L = \{1111111111, \ 1^{100}, \ 1^{1000}, \ \ldots\}.)$
		Answer. \Box
		Proof.
	are of a s wo	Efine a color word to be an English word that is the name of a color. So some example color words a red, fuschia, and ochre. Define an animal word to be an English word that is the common name an animal. So some example animal words are cow, cats, and hippopotamus. Let $L = \{w : w \text{ is sentence with legal English syntax and the number of color words in } w \text{ equals the number of animal ords in } w\}$. As examples, observe that red cats like catnip $\in L$, but red cats like blue green $\text{lls } \notin L$. Note that, to be in L , w must satisfy the syntactic rules of English. It is not necessary for w make sense. So, for example, red red blue red cats like dogs and dogs and dogs $\in L$. Prove

that L is not regular. (Be particularly careful if you use the Pumping Theorem. You must choose a w

	Proof.			
4)	one of the four symbols: \neg , \wedge ,	\vee , and \rightarrow . Define a variational value actically legal Boolean ϵ	Boolean expressions. Define an operator riable to be one of the five symbols: P , \mathbb{Q} , expression without parentheses and the number in w . Examples:	R, S
			is in L . is in L . is not in L . is not in L .	
	Is L regular? Prove your answer	·.		
	Answer.			
	Proof.			
5)	For each of the following claims,	, state whether it is Tr	ue or False. Prove your answer.	
	a) If $L = L_1 L_2$ and L is regular	then L_1 and L_2 must l	pe regular.	
	Answer.			
	Proof.			
	b) $(\neg(\neg L) \text{ is regular}) \rightarrow (L \text{ is re})$	egular).		
	Answer.			
	Proof.			
	c) $(L_1 - L_2 \text{ is regular}) \to (L_1 \text{ is})$	s regular).		
	Answer.			
	Proof.			
	d) $(L^R \text{ is regular}) \to (L \text{ is regul})$	lar).		
	Answer.			
	Proof.			
	e) For any language $L, L \cup \{a^n e^{-n}\}$	$b^n : n \ge 0$ must not r	egular.	
	Answer.			
	Proof.			
	f) Given any language L , it can	anot be true that $L - \{e$	$a^n b^n : n \ge 0$ is regular.	
	Answer.			
	Proof.			

g) The finite languages are closed under Kleene star.					
	Answer.				
	Proof.				