3.E: Multiple Integrals (Exercises)

3.1: Double Integrals

Α

For Exercises 1-4, find the volume under the surface z = f(x, y) over the rectangle R.

3.1.1.
$$f(x,y) = 4xy$$
, $R = [0,1] \times [0,1]$

3.1.2.
$$f(x,y) = e^{x+y}, R = [0,1] \times [-1,1]$$

3.1.3.
$$f(x,y) = x^3 + y^2$$
, $R = [0,1] \times [0,1]$

3.1.4.
$$f(x,y) = x^4 + xy + y^3$$
, $R = [1,2] \times [0,2]$

For Exercises 5-12, evaluate the given double integral.

3.1.5.
$$\int_0^1 \int_1^2 (1-y)x^2 dx dy$$

3.1.6.
$$\int_0^1 \int_0^2 x(x+y) dx dy$$

3.1.7.
$$\int_0^2 \int_0^1 (x+2) dx dy$$

3.1.8.
$$\int_{-1}^{2} \int_{-1}^{1} x(xy + \sin x) dx dy$$

3.1.9.
$$\int_0^{\pi/2} \int_0^1 xy \cos(x^2y) \, dx \, dy$$

3.1.10.
$$\int_0^{\pi} \int_0^{\pi/2} \sin x \cos(y-\pi) dx dy$$

3.1.11.
$$\int_0^2 \int_1^4 xy \, dx \, dy$$

3.1.12.
$$\int_{-1}^{1} \int_{-1}^{2} 1 \, dx \, dy$$

3.1.13. Let M be a constant. Show that $\int_c^d \int_a^b M \, dx \, dy = M(d-c)(b-a)$.

3.2: Double Integrals Over a General Region

Α

For Exercises 1-6, evaluate the given double integral.

3.2.1.
$$\int_0^1 \int_{\sqrt{x}}^1 24x^2y \,dy \,dx$$

3.2.2.
$$\int_0^{\pi} \int_0^y \sin x \, dx \, dy$$

3.2.3.
$$\int_{1}^{2} \int_{0}^{\ln x} 4x \, dy \, dx$$

3.2.4.
$$\int_0^2 \int_0^{2y} e^{y^2} dx dy$$

3.2.5.
$$\int_0^{\pi/2} \int_0^y \cos x \sin y \, dx \, dy$$

3.2.6.
$$\int_0^\infty \int_0^\infty xy e^{-(x^2+y^2)} dx dy$$

3.2.7.
$$\int_0^2 \int_0^y 1 \, dx \, dy$$

3.2.8.
$$\int_0^1 \int_0^{x^2} 2 \, dy \, dx$$

3.2.9. Find the volume *V* of the solid bounded by the three coordinate planes and the plane x + y + z = 1.

3.2.10. Find the volume V of the solid bounded by the three coordinate planes and the plane 3x + 2y + 5z = 6.

В

3.2.11. Explain why the double integral $\iint_R 1 \, dA$ gives the area of the region R. For simplicity, you can assume that R is a region of the type shown in Figure 3.2.1(a).

C

3.2.12. Prove that the volume of a tetrahedron with mutually perpendicular adjacent sides of lengths a, b, and c, as in Figure 3.2.6, is $\frac{abc}{6}$. (Hint: Mimic Example 3.5, and recall from Section 1.5 how three noncollinear points determine a plane.)

Figure 3.2.6

3.2.13. Show how Exercise 12 can be used to solve Exercise 10.

3.3: Triple Integrals

Α

For Exercises 1-8, evaluate the given triple integral.

3.3.1.
$$\int_0^3 \int_0^2 \int_0^1 xyz \, dx \, dy \, dz$$

3.3.2.
$$\int_0^1 \int_0^x \int_0^y xyz \, dz \, dy \, dx$$

3.3.3.
$$\int_0^{\pi} \int_0^x \int_0^{xy} x^2 \sin z \, dz \, dy \, dx$$

3.3.4.
$$\int_0^1 \int_0^z \int_0^y z e^{y^2} dx dy dz$$

3.3.5.
$$\int_1^e \int_0^y \int_0^{1/y} x^2 z \, dx \, dz \, dy$$

3.3.6.
$$\int_{1}^{2} \int_{0}^{y^{2}} \int_{0}^{z^{2}} yz \, dx \, dz \, dy$$

3.3.7.
$$\int_{1}^{2} \int_{2}^{4} \int_{0}^{3} 1 \, dx \, dy \, dz$$

3.3.8.
$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} 1 \, dz \, dy \, dx$$

3.3.9. Let
$$M$$
 be a constant. Show that $\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} M \, dx \, dy \, dz = M(z_2-z_1)(y_2-y_1)(x_2-x_1)$.

В

3.3.10. Find the volume V of the solid S bounded by the three coordinate planes, bounded above by the plane x+y+z=2 , and bounded below by the plane z=x+y .

C

3.3.11. Show that $\int_a^b \int_a^z \int_a^y f(x) \, dx \, dy \, dz = \int_a^b \frac{(b-x)^2}{2} f(x) \, dx$. (Hint: Think of how changing the order of integration in the triple integral changes the limits of integration.)

3.4: Numerical Approximation of Multiple Integrals

C

- **3.4.1.** Write a program that uses the Monte Carlo method to approximate the double integral $\iint_R e^{xy} dA$, where $R = [0,1] \times [0,1]$. Show the program output for N = 10, 100, 1000, 10000, 100000 and 1000000 random points.
- **3.4.2.** Write a program that uses the Monte Carlo method to approximate the triple integral \iiint\limits_S e^{ $x yz}\$, dV\), where $S = [0,1] \times [0,1] \times [0,1]$. Show the program output for N = 10, 100, 1000, 10000, 100000 and 1000000 random points.
- **3.4.3.** Repeat Exercise 1 with the region $R=(x,y):-1\leq x\leq 1,\ 0\leq y\leq x^2$.
- **3.4.4.** Repeat Exercise 2 with the solid $S=(x,y,z):0\leq x\leq 1,\ 0\leq y\leq 1,\ 0\leq z\leq 1-x-y$.
- **3.4.5.** Use the Monte Carlo method to approximate the volume of a sphere of radius 1.
- **3.4.6.** Use the Monte Carlo method to approximate the volume of the ellipsoid $\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{1} = 1$.

3.5: Change of Variables in Multiple Integrals

Α

- 3.5.1. Find the volume V inside the paraboloid $z=x^2+y^2$ for $0\leq z\leq 4$.
- 3.5.2. Find the volume V inside the cone $z=\sqrt{x^2+y^2}$ for $0\leq z\leq 3$.

R

3.5.3. Find the volume V of the solid inside both $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$.

3.5.4. Find the volume V inside both the sphere $x^2+y^2+z^2=1$ and the cone $z=\sqrt{x^2+y^2}$.

3.5.5. Prove Equation (3.25).

3.5.6. Prove Equation (3.26).

3.5.7. Evaluate $\iiint_R \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) dA$, where R is the triangle with vertices (0,0), (2,0) and (1,1). (Hint: Use the change of variables $u=(x+y)/2, \ v=(x-y)/2$.)

3.5.8. Find the volume of the solid bounded by $z = x^2 + y^2$ and $z^2 = 4(x^2 + y^2)$.

3.5.9. Find the volume inside the elliptic cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for $0 \le z \le 2$.

(

3.5.10. Show that the volume inside the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{4\pi abc}{3}$. (Hint: Use the change of variables x = au, y = bv, z = cw, then consider Example 3.12.)

3.5.11. Show that the Beta function, defined by

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, ext{ for } x>0, \ y>0,$$
 (3.E.1)

satisfies the relation B(y, x) = B(x, y) for x > 0, y > 0.

3.5.12. Using the substitution t = u/(u+1) , show that the Beta function can be written as

$$B(x,y) = \int_0^\infty rac{u^{x-1}}{(u+1)^{x+y}} \, du, ext{ for } x > 0, \, y > 0.$$
 (3.E.2)

3.6: Application: Center of Mass

Α

For Exercises 1-5, find the center of mass of the region R with the given density function $\delta(x,y)$.

3.6.1.
$$R = (x, y) : 0 \le x \le 2, \ 0 \le y \le 4, \ \delta(x, y) = 2y$$

3.6.2.
$$R = (x, y) : 0 \le x \le 1, \ 0 \le y \le x^2, \ \delta(x, y) = x + y$$

3.6.3.
$$R = (x, y) : y \ge 0, x^2 + y^2 \le a^2, \delta(x, y) = 1$$

3.6.4.
$$R = (x, y) : y \ge 0, x \ge 0, 1 \le x^2 + y^2 \le 4, \delta(x, y) = \sqrt{x^2 + y^2}$$

3.6.5.
$$R = (x, y) : y \ge 0, x^2 + y^2 \le 1, \delta(x, y) = y$$

В

For Exercises 6-10, find the center of mass of the solid S with the given density function $\delta(x, y, z)$.

3.6.6.
$$S = (x, y, z) : 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1, \ \delta(x, y, z) = xyz$$

3.6.7.
$$S = (x, y, z) : z > 0, x^2 + y^2 + z^2 \le a^2, \delta(x, y, z) = x^2 + y^2 + z^2$$

3.6.8.
$$S = (x, y, z) : x > 0, y > 0, z > 0, x^2 + y^2 + z^2 < a^2, \delta(x, y, z) = 1$$

3.6.9.
$$S = (x, y, z) : 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1, \ \delta(x, y, z) = x^2 + y^2 + z^2$$

3.6.10.
$$S = (x, y, z) : 0 < x < 1, 0 < y < 1, 0 < z < 1 - x - y, \delta(x, y, z) = 1$$

3.7: Application: Probability and Expected Value

В

3.7.1. Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^2} dx$ using anything you have learned so far.

3.7.2. For
$$\sigma>0$$
 and $\mu>0$, evaluate $\int_{\infty}^{-\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} dx$.

3.7.3. Show that
$$EY = \frac{n}{n+1}$$
 in Example 3.18

C

- **3.7.4.** Write a computer program (in the language of your choice) that verifies the results in Example 3.18 for the case n=3 by taking large numbers of samples.
- **3.7.5.** Repeat Exercise 4 for the case when n = 4.
- **3.7.6.** For continuous random variables X, Y with joint p.d.f. f(x, y), define the second moments $E(X^2)$ and $E(Y^2)$ by

$$E(X^{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{2} f(x, y) \, dx \, dy \text{ and } E(Y^{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^{2} f(x, y) \, dx \, dy, \tag{3.E.3}$$

and the *variances* Var(X) and Var(Y) by

$$Var(X) = E(X^2) - (EX)^2$$
 and $Var(Y) = E(Y^2) - (EY)^2$. (3.E.4)

Find Var(X) and Var(Y) for X and Y as in Example 3.18.

3.7.7. Continuing Exercise 6, the correlation ρ between X and Y is defined as

$$\rho = \frac{E(XY) - (EX)(EY)}{\sqrt{\text{Var}(X)\text{Var}(Y)}},$$
(3.E.5)

where $E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f(x,y) \, dx \, dy$. Find ρ for X and Y as in Example 3.18. (Note: The quantity E(XY) - (EX)(EY) is called the covariance of X and Y.)

3.7.8. In Example 3.17 would the answer change if the interval (0,100) is used instead of (0,1)? Explain.

This page titled 3.E: Multiple Integrals (Exercises) is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Michael Corral via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

• 3.E: Multiple Integrals (Exercises) has no license indicated.

☐ Toggle block-level attributions