Exercice 1: Question de cours et preuve (6 pt)

On considère l'alphabet $\{0, 1, \square, \$\}$.

Q1. (1 pt) Expliquez la différence entre une MT M_D qui décide le langage L et une MT M_R qui reconnaît le langage L.

SOLUTION

- La MT M_D termine pour tout mot de $\omega \in \{0,1\}^*$. Elle répond \mathbb{V} si $\omega \in L$ et \mathbb{F} si $\omega \notin L$. À partir de M_D on peut alors construire un machine qui reconnaît \overline{L} en inversant ses états \bigcirc et \bigotimes .
- La MT M_R termine dans l'état \bigcirc pour tout mot $\omega \in L$. Pour certains mots $\omega \notin L$ elle peut ne pas s'arrêter. On ne peut donc pas utiliser M_R pour construire une MT qui reconnaît \overline{L} .

Q2. (0.5 pt) Donnez une MT qui **décide** le langage $\{0^n \mid n \in \mathbb{N}\}$

SOLUTION

$$\begin{array}{c} 0:R \\ & \square:H \\ & \\ & \\ & \\ & \\ \end{array}$$

Q3. (0.5 pt) Donnez une MT qui reconnaît mais ne décide pas le langage $\{0^n \mid n \in \mathbb{N}\}$

SOLUTION

Q4. (0.5 pt) Donnez une MT qui **reconnaît** mais ne **décide pas** le langage $\overline{\{0^n \mid n \in \mathbb{N}\}}$

SOLUTION

Q5. (1.5 pt) Considérons un langage L.

Si une MT M_1 décide le langage L alors le langage \overline{L} est décidable.

Démontrez ce théorème :

- (a) Commencez par répondre à la question : Que doit-on montrer?
- (b) Rédigez la preuve.

SOLUTION

(a) On doit montrer qu'il existe une MT M_2 qui décide le langage \overline{L} , c'est-à-dire que

- (i) M_2 termine pour tout mot $\omega \in \{0,1\}^*$,
- (ii) M_2 s'arrête sur \bigcirc si $\omega \in \overline{L}$ ie. si $\omega \notin L$, ce qui correspond au cas où M_1 s'arrête en \bigotimes .
- (iii) M_2 s'arrête sur \bigotimes si $\omega \notin \overline{L}$ ie. si $\omega \in L$ ce qui correspond au cas où M_1 s'arrête en \bigotimes
- (b) On construit la machine de Turing M₂ en prenant une copie de M₁ dans laquelle on remplace l'état par ce changement n'affecte pas la terminaison puisqu'il n'y a pas de transitions sortantes de et ⊗, donc (i) est satisfait. Ce changement inverse la réponse de M₁ ce qui satisfait (ii) et (iii).

Q6. (2 pt) Considérons un langage L.

Si une MT M_1 reconnaît mais ne décide pas le langage L et si une MT M_2 reconnaît mais ne décide pas le langage \overline{L} alors on peut conclure que le langage L est décidable.

Démontrez ce théorème :

- (a) Commencez par répondre à la question : Que doit-on montrer?
- (b) Rédigez la preuve.

SOLUTION

- (a) On doit montrer qu'il existe une MT M qui décide le langage \overline{L} , c'est-à-dire que
 - (i) M termine pour tout mot $\omega \in \{0,1\}^*$,
 - (ii) M s'arrête sur \bigcirc si $\omega \in L$, ce qui correspond au cas où M_1 s'arrête en \bigcirc .
 - (iii) M s'arrête sur \bigotimes si $\omega \notin \overline{L}$, ce qui correspond au cas où M_2 s'arrête en \bigcirc
- (b) On construit une machine de Turing M à deux bandes sur lesquelles on recopie ω . On exécutera M_1 sur B_1 et M_2 sur B_2 . La MT M agit comme un ordonanceur qui exécute simultanément ou alternativement une transition de M_1 et une transition de M_2 . Elle s'arrête lorsqu'une de deux machines de Turing atteint un état accepteur; ce qui arrivera forcément quel que soit $\omega \in \{0,1\}^*$ puisque soit $\omega \in L$ et alors $M_1 \to^* \bigcirc$, soit $\omega \notin L$ et alors $M_2 \to^* \bigcirc$. Si c'est M_1 qui s'arrête la première en \bigcirc alors M passe en \bigcirc ; si c'est M_2 qui atteint la première l'état \bigcirc alors M passe en \bigcirc .

On garde pour un futur examen la construction précise de l'ordonanceur ...

Exercice 2 : Opérations sur les booléens (4.5 pt)

On considère l'alphabet $\{0,1,\square,\$\}$ et on adopte la convention que 0 représente le booléen faux et 1 représente vrai. Un mot binaire $\omega \in \{0,1\}^*$ représente une suite de booléens.

Q7. (1.25 pt) Donnez une MT M_{Neg} qui effectue la négation des booléens de ω puis se replace sur le symbole \$

Exemple:

 $M_{Neg} \stackrel{def}{=} \longrightarrow \begin{array}{c} 0/1:R & \Sigma \backslash \$:L \\ & \square:L \\ & \$:H \end{array}$

Q8. (2pt) Donnez une MT M_{Conj} qui effectue la conjonction des booléens de ω , efface les booléens au fur et à mesure, inscrit 1 puis se replace sur le symbole \$ et termine dans un état \bigotimes si la conjonction vaut \mathbb{V} , inscrit 0 puis se replace sur le symbole \$ et termine dans un état \bigotimes si la conjonction vaut \mathbb{F} .

Exemples:

Q9. (1.25 pt) Exploitez le loi de $DeMorgan \neg (b_1 \lor b_2 \lor \ldots \lor b_n) = \neg b_1 \land \neg b_2 \land \ldots \land \neg b_n$ pour construire à une MT M_{Disj} telle que

$$M_{Disj}(\underbrace{b_1b_2\dots b_n}_{\omega}) = b_1 \vee b_2 \vee \dots \vee b_n$$

 M_{Disj} doit effacer le ruban, inscrire le résultat sur le ruban, se replacer sur \$ et terminer dans un état correspond au résultat \bigcirc pour \mathbb{V} , \bigotimes pour \mathbb{F}

Exercice 3 : Tableaux et tri en Gamma (3.5 pt)

$$\mathcal{M} = \{ T(0,2), T(1,521), T(2,3), T(3,42), T(4,4), T(5,2) \}$$

où les éléments T(indice, valeur) flottent dans la solution chimique.

Q10. (0.5 pt) Donnez la propriété logique qui caractérise le fait que le tableau t[0..N] est trié dans l'ordre croissant sous la forme d'une formule commençant par \forall .

Q11. $(0.5\,\mathrm{pt})$ Donnez le multi-ensemble qui correspond au tableau T trié dans l'ordre croissant.

SOLUTION
$$= \{ T(0,2), T(1,2), T(2,3), T(3,4), T(4,42), T(5,521) \}$$

Q12. (1 pt) Donnez la/les règle(s) Gamma qui permettent d'obtenir un multi-ensemble d'éléments T(indice, valeur) trié dans l'ordre croissant.

SOLUTION ______
$$\mathsf{T}(i,v), \mathsf{T}(i',v') \xrightarrow{i \leq i' \land v > v'} \mathsf{T}(i,v'), \mathsf{T}(i',v)$$

Q13. (0.5 pt) Donnez la propriété logique qui caractérise le fait que le multi-ensemble \mathcal{M} d'élements T(indice, valeur) est trié dans l'ordre croissant sous la forme d'une formule commençant par \forall .

SOLUTION
$$\forall \, \mathrm{T}(i,v), \, \mathrm{T}(i',v') \in \mathscr{M}, \ i \leq i' \Rightarrow v \leq v'$$

Q14. (1 pt)

- (a) Donnez l'exécution la plus efficace de cet algorithme sur le multi-ensemble \mathcal{M} de l'exemple.
- (b) Combien d'applications des règles sont nécessaires pour obtenir un multi-ensemble trié;
- (c) Combien d'étapes sont nécessaires pour obtenir le multi-ensemble trié.

(a)
$$T(0,2), \underbrace{T(1,521), T(5,2)}_{\downarrow}, T(2,3), \underbrace{T(3,42), T(4,4)}_{\downarrow}$$

 $T(0,2), \underbrace{T(1,2), T(5,421)}_{\downarrow}, T(2,3), \underbrace{T(3,4), T(4,42)}_{\downarrow}$

- (b) 2 applications de la règle.
- (c) 1 étape puisque la règle s'applique en parallèle.

Exercice 4 : Codage des Automates à une pile en machines de Turing (8 pt)

L'objectif de l'exercice est de simuler un automate à une pile (AUP) par une machine de Turing à deux bandes. Le mot ω à reconnaître sera inscrit sur la bande B_1 et la pile de l'automate sera représentée par la bande B_2 .

Q15. (0.75 pt) Rappelez la définition de l'acceptation sur pile vide. Autrement dit, donnez les conditions à satisfaire pour qu'un mot ω soit accepté par un AUP.

SOLUTION ____

Un AUP A accepte un mot ω si **il existe** une **exécution** de A qui (i) commence dans l'**état initial** de A avec une **pile vide**; (ii) **consomme toutes** les lettres du mot; (iii) s'arrête dans un **état accepteur** avec une **pile vide**.

Autant de 0 que de 1 On considère le langage L formé des mots binaires qui ont autant de 0 que de 1 (sans tenir compte de l'ordre de 0 et des 1).

Q16. (0.5 pt) Donnez trois mots binaires qui appartiennent au langage L et trois mots binaires qui n'appartiennent pas à L. En particulier, que dire du mot ϵ ?

 $\begin{array}{c} \text{SOLUTION} \\ \epsilon, 01, 10 \in L \\ 0, 1, 011 \not\in L \end{array}$

Q17. (2 pt) Donnez un AUP qui reconnaît le langage L. Respectez les notations indiquées ci-après.

Indication : On notera $\mathbf{q} \xrightarrow{\ell} \mathbf{q}'$ une transition d'AUP où ℓ est le symbole lu, γ l'état de la pile avant la transition et γ' l'état de la pile après la transition. Une transition peut effectuer l'une opérations suivantes sur la pile :

- 1. empiler un symbole : $\gamma/\frac{s}{\gamma}$
- 2. lire le sommet de la pile sans modifier la pile : $\frac{s}{\gamma}/\frac{s}{\gamma}$
- 3. dépiler le sommet : $\frac{s}{\gamma}/\gamma$
- 4. lire le sommet et empiler un symbole $\frac{s}{\gamma}/\frac{s'}{\frac{s}{\gamma}}$

Exemples:

- La transition $\mathbf{q} frac{\ell}{\gamma/\frac{s}{2}} \mathbf{q}'$ lit le symbole ℓ et empile le symbole s
- La transition $\mathbf{q} \xrightarrow{\frac{\ell}{\frac{s}{\gamma}/\gamma}} \mathbf{q}'$ lit le symbole ℓ et dépile le symbole s à condition que le symbole s soit en sommet de pile.
- La transition $\mathbf{q} = \frac{\ell}{\frac{\ell}{\gamma}/\frac{\ell}{\gamma}} \mathbf{q}'$ lit le symbole ℓ et vérifie que le symbole en sommet de pile est le même que le symbole lu.

VERSION NON-DÉTERMINISTE

VERSION DÉTERMINISTE

Q18. (0.25 pt) Dessinez la bande B_2 correspondant à une pile vide.

SOLUTION

Q19. (1.5 pt) Donnez la traduction en MT de chacune des trois transitions d'AUP suivantes : 1. $\mathbf{q} \xrightarrow{\ell} \mathbf{q'}$ 2. $\mathbf{q} \xrightarrow{\frac{\ell}{s}/\gamma} \mathbf{q'}$ 3. $\mathbf{q} \xrightarrow{\ell} \mathbf{q''}$. Respectez les notations indiquées ci-après.

Indication : On notera les transitions de la MT à deux bandes de la manière suivante $\mathbf{q} \frac{\ell_1/e_1:d_1}{\ell_2/e_2:d_2} \mathbf{q}'$, c'est-à-dire au dessus de la flêche la *lecture*/*écriture :déplacement* sur la bande 1 et sous la flêche la *lecture*/*écriture :déplacement* sur la bande 2.

SOLUTION

1.
$$\mathbf{q} \xrightarrow{\ell} \mathbf{q}' \quad \rightsquigarrow \quad \mathbf{q} \xrightarrow{\ell:R} \mathbf{q}'$$

2.
$$\mathbf{q} \xrightarrow{\frac{\ell}{\frac{s}{\gamma}/\gamma}} \mathbf{q}' \quad \leadsto \quad \mathbf{q} \xrightarrow{\ell:R} \mathbf{q}'$$

3.
$$\mathbf{q} \xrightarrow{\ell} \mathbf{q}'' \quad \leadsto \quad \mathbf{q} \xrightarrow{\ell:H} \mathbf{q}_{\ell} \xrightarrow{\Box/\ell:H} \mathbf{q}''$$

Q20. (1.5 pt) Donnez les traductions en MT : (1) d'un état accepteur (q) de l'AUP, et (2) d'un état non-accepteur (q) de l'AUP de manière à simuler l'acceptation sur pile vide.

- Un état accepteur \bigcirc de l'Aup est traduit en un état \bigcirc dans la MT à laquelle on ajoute la transition suivante \bigcirc \bigcirc qui vérifie qu'on a consommé toutes les lettres de ω (partie $\stackrel{\square:H}{\Longrightarrow}$) et que la pile est vide (partie $\stackrel{\square:H}{\Longrightarrow}$). En réalité on ne vérifie pas que la pile est vide mais seulement que la tête de la bande 2 pointe sur le fond de la pile, symbolisé par le symbole \$.
- Les états non-accepteurs (\mathbf{q}) sont laissés tel que et on ajoute la transition : (\mathbf{q}) $\xrightarrow{\square:H}$ \otimes
- **Bonus :** La transition précédente ne suffit pas à capturer le cas où l'AUP se trouve coincé dans l'état \mathbf{q} avec encore des lettres de ω à lire et sans pouvoir effectuer aucune transition. Pour capturer ce cas il faut ajouter à la MT une transition sur \mathbf{q} qui consomme toutes les lettres du mot avant de prendre la transition vers \otimes .

$$\underbrace{\mathbf{q}}_{\Sigma:H} \longrightarrow \bigotimes$$

$$\Sigma:R$$

 Σ :H

La MT ainsi produite est alors non-déterministe. C'est la partie délicate de la traduction en MT.

Q21. (1.5 pt) Expliquez comment une MT peut simuler l'exécution d'un AUP A sur un mot ω de manière à accepter ω si A reconnaît ω .

Indication: Vous pouvez faire référence aux questions précédentes dans vos explications.

SOLUTION

Pour que la MT M_A simule l'exécution de l'AUP A sur le mot ω , on procède comme suit :

- 1. On copie le mot ω sur B_1 et on place T_1 sur le symbole \$. La bande 1 représente le mot à examiner.
- 2. On inscrit \$ sur B_2 et on place T_2 sur le symbole \$. La bande 2 représente la pile, qui est vide au départ puisque $B_2 = \$$
- 3. On traduit chacune des transitions de A en transitions de M_A comme indiquée dans les questions précédentes.
- 4. On ajoute les transitions vers © comme indiqué dans la question précédente. Les états non-accepteurs de l'Aup on les reproduit tels quels dans la MT.

- 5. On exécute la MT à deux bandes M_A .
- 6. Le mot ω est accepté si l'exécution $M_A(\omega, \epsilon)$ termine dans l'état \bigcirc .
- 7. **Bonus :** Pour un mot $\omega \notin \mathcal{L}(A)$ la MT pourra se trouver bloquée dans un état (\mathbf{q}) et ne rendra pas de résultat. Elle sera donc capable de reconnaître $\mathcal{L}(A)$ mais pas de décider $\mathcal{L}(A)$.