Discrete Mathematics

(Not only) Regular Languages — Spring 2025

Konstantin Chukharev

§1 Regular Languages

Regular Expressions

Regular languages can be composed from "smaller" regular languages.

- Atomic regular expressions:
 - Ø, an empty language
 - ε , a singleton language consisting of a single ε word
 - a, a singleton language consisting of a single 1-letter word a, for each $a \in \Sigma$
- Compound regular expressions:
 - R_1R_2 , the concatenation of R_1 and R_2
 - $R_1 \mid R_2$, the union of R_1 and R_2
 - $R^* = RRR...$, the Kleene star of R
 - ightharpoonup (R), just a bracketed expression
 - ▶ Operator precedence: $ab*c|d \triangleq ((a (b*)) c) | d$

Re-visiting States

- Let D be a DFA with n states.
- Any string w accepted by D that has length at least n must visit some state twice.
- Number of states visited is equal to |w| + 1.
- By the pigeonhole principle, some state is "duplicated", i.e. visited more than once.
- The substring of w between those *revisited states* can be removed, duplicated, tripled, etc. without changing the fact that D accepts w.

Informally:

- Let L be a regular language.
- If we have a string $w \in L$ that is "sufficiently long", then we can *split* the string into *three pieces* and "pump" the middle.
- We can write w = xyz such that xy^0z , xy^1z , xy^2z , ..., xy^nz , ... are all in L.
 - Notation: y^n means "n copies of y".

Weak Pumping Lemma

Theorem 1 (Weak Pumping Lemma for Regular Languages):

- For any regular language L,
 - ightharpoonup There exists a positive natural number n (also called *pumping length*) such that
 - For any $w \in L$ with $|w| \ge n$,
 - There exists strings x, y, z such that
 - ▶ For any natural number *i*,
 - w = xyz (w can be broken into three pieces)
 - $y \neq \varepsilon$ (the middle part is not empty)
 - $xy^iz \in L$ (the middle part can repeated any number of times)

Example: Let $\Sigma = \{0, 1\}$ and $L = \{w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring}\}$. Any string of length 3 or greater can be split into three parts, the second of which can be "pumped".

Example: Let $\Sigma = \{0, 1\}$ and $L = \{\varepsilon, 0, 1, 00, 01, 10, 11\}$. The weak pumping lemma still holds for finite languages, because the pumping length n can be longer than the longest word in the language!

Testing Equality

Definition 1: The *equality problem* is, given two strings x and y, to decide whether x = y.

Example: Let $\Sigma = \{0, 1, \#\}$. We can *encode* the equality problem as a string of the form x # y.

- "Is *001* equal to *110*?" would be 001#110.
- "Is 11 equal to 11?" would be 11#11.
- "Is 110 equal to 110?" would be 110#110.

Let EQUAL = $\{w \# w \mid w \in \{0, 1\}^*\}$.

Question: Is EQUAL a *regular* language?

A typical word in EQUAL looks like this: 001#001.

- If the "middle" piece is just a symbol #, then observe that $001\,001 \notin EQUAL$.
- If the "middle" piece is either completely to the left or completely to the right of #, then observe that any duplication or removal of this piece is not in EQUAL.
- If the "middle" piece includes # and any symbols from the left/right of it, then, again, observe that any duplication or removal of this piece is not in EQUAL.

Testing Equality [2]

Theorem 2: EQUAL is not a regular language.

Proof: By contradiction. Assume that EQUAL is a regular language.

Let n be the pumping length guaranteed by the weak pumping lemma. Let $w=0^n\#0^n$, which is in EQUAL and $|w|=2n+1\geq n$. By the weak pumping lemma, we can write w=xyz such that $y\neq \varepsilon$ and for any $i\in \mathbb{N}$, $xy^i\#z\in \text{EQUAL}$. Then y cannot contain #, since otherwise if we let i=0, then $xy^0\#z=x\#z$ does not contain # and would not be in EQUAL. So y is either completely to the left of # or completely to the right of #.

Let |y| = k, so k > 0. Since y is completely to the left or right of #, then $y = 0^k$.

Now, we consider two cases:

Case 1: y is to the left of #. Then $xy^2z = 0^{n+k}\#0^n \notin \text{EQUAL}$, contradicting the weak pumping lemma.

Case 2: y is to the right of #. Then $xy^2z=0^n\#0^{n+k}\notin \mathrm{EQUAL}$, contradicting the weak pumping lemma.

In either case we reach a contradiction, so our assumption was wrong. Thus, EQUAL is not regular.

§2 Non-regular Languages

(Not only) Regular Languages

- The weak pumping lemma describes a property common to *all* regular languages.
- Any language L which does not have this property *cannot be regular*.
- What other languages can we find that are not regular?

Example: Consider the language $L = \{0^n1^n \mid n \in \mathbb{N}\}.$

- $L = \{\varepsilon, 01, 0011, 000111, 00001111, ...\}$
- L is a classic example of a non-regular language.
- **Intuitively:** if you have *only finitely many states* in a DFA, you cannot *"remember"* an arbitrary number of 0s to match *the same* number of 1s.

How would we prove that L is non-regular?

Use the Pumping Lemma to show that L *cannot* be regular.

Pumping Lemma as a Game

The weak pumping lemma can be thought of as a *game* between you and an adversary.

- You win if you can prove that the pumping lemma *fails*.
- The adversary wins if the adversary can make a choice for which the pumping lemma succeeds.

The game goes as follows:

- The adversary chooses a pumping length n.
- You choose a string w with $|w| \ge n$ and $w \in L$.
- The adversary breaks it into x, y, and z.
- You choose an i such that $xy^iz \notin L$ (if you can't, you lose!).

Pumping Lemma as a Game [2]

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Adversary	You
Maliciously choose	
pumping length n	
	Cleverly choose a string
	$w \in L, w \ge n$
Maliciously split	
$w=xyz,y\neq\varepsilon$	
	Cleverly choose an i
	such that $xy^iz \notin L$
Lose	Win
$\{0^n1^n\}$ is not regular	

Formal Proof of Non-regularity

Theorem 3: $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof: By contradiction. Assume that L is regular.

Let n be the pumping length guaranteed by the weak pumping lemma ("there exists n..."). Consider the string $w=0^n1^n$. Then $|w|=2n\geq n$ and $w\in L$, so we can write (split) w=xyz such that $y\neq \varepsilon$ and for any $i\in \mathbb{N}$, we have $xy^iz\in L$.

We consider three cases:

Case 1: y consists solely of 0s. Then $xy^0z = xz = 0^{n-|y|}1^n$, and since |y| > 0, $xz \notin L$.

Case 2: y consists solely of 1s. Then $xy^0z=xz=0^n1^{n-|y|}$, and since |y|>0, $xz\notin L$.

Case 3: y consists of k > 0 0s followed by m > 0 1s. Then $xy^2z = 0^n1^m0^k1^n$, so $xy^2z \notin L$.

In all three cases we reach a contradiction, so our assumption was wrong and L is not regular.

§3 Pumping Lemma

Pumping

Consider the language L over $\Sigma = \{0, 1\}$ of strings $w \in \Sigma^*$ that contain an equal number of 0s and 1s.

For example:

- 01 in *L*
- 11011 not in *L*
- 110010 in *L*

Question: Is L a *regular* language?

Let's use the weak pumping lemma to show it is by pumping all the strings in this language.

Proof (incorrect): We are going to show that L satisfies the conditions of the weak pumping lemma. Let n=2. Consider any string $w\in L$ (i.e., w contains the same number of 0s and 1s) with $|w|\geq 2$.

We can split w=xyz such that $x=z=\varepsilon$ and y=w, so $y\neq \varepsilon$. Then, for any natural number $i\in \mathbb{N}$, $xy^iz=w^i$, which has the same number of 0s and 1s.

Since L passes the conditions of the weak pumping lemma, L is regular.

A word of Caution

- The weak and full pumping lemmas describe the *necessary* condition of regular languages.
 - ightharpoonup If L is regular, then it passes the conditions of the weak pumping lemma.
- The weak and full pumping lemmas are not a sufficient condition of regular languages.
 - ▶ If *L* is not regular, then it does *not* pass the conditions of the weak pumping lemma.
- If a language *fails* the pumping lemma, it is *definitely not regular*.
- If a language *passes* the pumping lemma, we *learn nothing* about whether it is regular or not.

The Stronger Pumping Lemma

The language L can be proven to be non-regular using a stronger version of the pumping lemma.

For the intuition behind the "full" pumping lemma, let's revisit our original observation.

- Let D be a DFA with n states.
- Any string w accepted by D of length at least n must visit some state twice within its first n symbols.
 - The number of visited states is equal to n + 1.
 - ▶ By the pigeonhole principle, some state is *duplicated*.
- The substring of w between those *revisited states* can be removed, duplicated, tripled, etc. without changing the fact that D accepts w.

Overall, we can add the following condition to the weak pumping lemma:

$$|xy| \le n$$

This restriction means that we can limit where the string to pump must be. If we specifically choose the first n characters of the string to pump, we can ensure y (middle part) to have a specific property.

We can then show that *y* cannot be pumped arbitrarily many times.

The Stronger Pumping Lemma [2]

$$q_0 \stackrel{0}{\longrightarrow} q_1 \stackrel{1}{\longrightarrow} q_2 \stackrel{1}{\longrightarrow} q_3 \stackrel{1}{\longrightarrow} q_4$$

Formal Proof of Non-regularity

Theorem 4: $L = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is *not regular*.

Proof: By contradiction. Assume that L is regular.

Let n be the pumping length guaranteed by the weak pumping lemma. Consider the string $w=0^n1^n$. Then $|w|=2n\geq n$ and $w\in L$. Therefore, there exist strings x,y, and z such that $w=xyz, |xy|\leq n$, $y\neq \varepsilon$, and for any $i\in \mathbb{N}$, we have $xy^iz\in L$.

Since $|xy| \le n$, y must consist solely of 0s. But then $xy^2z = 0^{n+|y|}1^n$, and since |y| > 0, $xy^2z \notin L$.

We have reached a contradiction, so our assumption was wrong and L is not regular.

Summary of the Pumping Lemma

- **1.** Using the *pigeonhole principle*, we can prove the weak and full *pumping lemma*.
- **2.** These lemmas describe essential properties of the *regular* languages.
- **3.** Any language that *fails* to have these properties *can not be regular*.