Rank-65760 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431676586

General information

Number of lines	9
Number of points	33
Number of singular points	0
Number of Eckardt points	1
Number of double points	15
Number of single points	12
Number of points off lines	5
Number of Hesse planes	0
Number of axes	0
Type of points on lines	59
Type of lines on points	$3, 2^{15}, 1^{12}, 0^5$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{129}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{339} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{339} = \mathbf{Pl}(0, 0, 0, 3, 0, 1)_{143}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

$$\ell_{3} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{82} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{82} = \mathbf{Pl}(0,0,2,3,1,1)_{205}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & 1 & \omega \end{bmatrix}_{156} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{156} = \mathbf{Pl}(3,0,3,2,3,1)_{335}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & 1 & \omega^{2} \end{bmatrix}_{139} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{139} = \mathbf{Pl}(2,0,2,3,2,1)_{267}$$

$$\ell_{6} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{60} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{60} = \mathbf{Pl}(0,0,3,2,1,1)_{212}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega^{2} & \omega^{2} \end{bmatrix}_{36} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 3 \end{bmatrix}_{36} = \mathbf{Pl}(2,3,1,0,3,1)_{301}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & \omega & \omega \end{bmatrix}_{31} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 2 \end{bmatrix}_{31} = \mathbf{Pl}(3,2,1,0,2,1)_{242}$$

Rank of lines: (337, 339, 338, 82, 156, 139, 60, 36, 31)

Rank of points on Klein quadric: ($129,\,143,\,136,\,205,\,335,\,267,\,212,\,301,\,242$)

Eckardt Points

The surface has 1 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0).$

Double Points

The surface has 15 Double points: The double points on the surface are:

$$\begin{split} P_{45} &= (0,2,1,1) = \ell_0 \cap \ell_7 \\ P_{49} &= (0,3,1,1) = \ell_0 \cap \ell_8 \\ P_{53} &= (0,0,2,1) = \ell_1 \cap \ell_3 \\ P_{61} &= (0,2,2,1) = \ell_1 \cap \ell_5 \\ P_{81} &= (0,3,3,1) = \ell_2 \cap \ell_4 \\ P_{69} &= (0,0,3,1) = \ell_2 \cap \ell_6 \\ P_6 &= (2,1,0,0) = \ell_3 \cap \ell_4 \\ P_{59} &= (2,1,2,1) = \ell_3 \cap \ell_5 \end{split}$$

$$\begin{split} P_{64} &= (3,2,2,1) = \ell_3 \cap \ell_7 \\ P_{76} &= (3,1,3,1) = \ell_4 \cap \ell_6 \\ P_{79} &= (2,2,3,1) = \ell_4 \cap \ell_7 \\ P_7 &= (3,1,0,0) = \ell_5 \cap \ell_6 \\ P_{68} &= (3,3,2,1) = \ell_5 \cap \ell_8 \\ P_{83} &= (2,3,3,1) = \ell_6 \cap \ell_8 \\ P_8 &= (1,0,1,0) = \ell_7 \cap \ell_8 \end{split}$$

Single Points

The surface has 12 single points: The single points on the surface are:

$$\begin{array}{l} 0: \ P_{31} = (1,2,0,1) \ \text{lies on line} \ \ell_7 \\ 1: \ P_{35} = (1,3,0,1) \ \text{lies on line} \ \ell_8 \\ 2: \ P_{38} = (0,0,1,1) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_5 \\ 5: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{65} = (0,3,2,1) \ \text{lies on line} \ \ell_1 \end{array}$$

7:
$$P_{66} = (1, 3, 2, 1)$$
 lies on line ℓ_3
8: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_4
9: $P_{73} = (0, 1, 3, 1)$ lies on line ℓ_2
10: $P_{77} = (0, 2, 3, 1)$ lies on line ℓ_2
11: $P_{78} = (1, 2, 3, 1)$ lies on line ℓ_6

The single points on the surface are:

Points on surface but on no line

The surface has 5 points not on any line: The points on the surface but not on lines are:

 $\begin{array}{ll} 0: \, P_9 = (2,0,1,0) & 3: \, P_{21} = (2,3,1,0) \\ 1: \, P_{10} = (3,0,1,0) & 4: \, P_{39} = (1,0,1,1) \\ 2: \, P_{18} = (3,2,1,0) & \end{array}$

Line Intersection Graph

 $\begin{array}{c|c} 012345678 \\ \hline 0 & 011000011 \\ 1 & 101101000 \\ 2 & 110010100 \\ 3 & 010011010 \\ 4 & 001100110 \\ 5 & 010100101 \\ 6 & 001011001 \\ 7 & 100110001 \\ 8 & 100001110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_7	ℓ_8
in point	P_1	P_1	P_{45}	P_{49}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5
in point	P_1	P_1	P_{53}	P_{61}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6
in point	P_1	P_1	P_{81}	P_{69}

Line 3 intersects

Line	ℓ_1	ℓ_4	ℓ_5	ℓ_7
in point	P_{53}	P_6	P_{59}	P_{64}

Line 4 intersects

Line	ℓ_2	ℓ_3	ℓ_6	ℓ_7
in point	P_{81}	P_6	P_{76}	P_{79}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_8
in point	P_{61}	P_{59}	P_7	P_{68}

Line 6 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_8
in point	P_{69}	P_{76}	P_7	P_{83}

Line 7 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_8
in point	P_{45}	P_{64}	P_{79}	P_8

Line 8 intersects

Line	ℓ_0	ℓ_5	ℓ_6	ℓ_7
in point	P_{49}	P_{68}	P_{83}	P_8

The surface has 33 points: The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$12: P_{42} = (0, 1, 1, 1)$	$24: P_{69} = (0,0,3,1)$
$1: P_6 = (2, 1, 0, 0)$	$13: P_{45} = (0, 2, 1, 1)$	$25: P_{70} = (1,0,3,1)$
$2: P_7 = (3, 1, 0, 0)$	$14: P_{49} = (0, 3, 1, 1)$	$26: P_{73} = (0, 1, 3, 1)$
$3: P_8 = (1,0,1,0)$	15: $P_{53} = (0, 0, 2, 1)$	$27: P_{76} = (3, 1, 3, 1)$
$4: P_9 = (2,0,1,0)$	$16: P_{54} = (1, 0, 2, 1)$	$28: P_{77} = (0, 2, 3, 1)$
$5: P_{10} = (3, 0, 1, 0)$	$17: P_{57} = (0, 1, 2, 1)$	$29: P_{78} = (1, 2, 3, 1)$
$6: P_{18} = (3, 2, 1, 0)$	$18: P_{59} = (2, 1, 2, 1)$	$30: P_{79} = (2, 2, 3, 1)$
$7: P_{21} = (2, 3, 1, 0)$	$19: P_{61} = (0, 2, 2, 1)$	$31: P_{81} = (0, 3, 3, 1)$
$8: P_{31} = (1, 2, 0, 1)$	$20: P_{64} = (3, 2, 2, 1)$	$32: P_{83} = (2,3,3,1)$
$9: P_{35} = (1, 3, 0, 1)$	$21: P_{65} = (0, 3, 2, 1)$	
$10: P_{38} = (0,0,1,1)$	$22: P_{66} = (1, 3, 2, 1)$	
$11: P_{39} = (1, 0, 1, 1)$	$23: P_{68} = (3, 3, 2, 1)$	