Revision

- BFS, DFS on paper: Sequence of tuples.
- Fleury: Algorithm for Euler path finding.
- Dijkstra: Shortest path finding.

Day 10: Minimum spanning tree search

Lecturer: Msc. Minh Tan Le

Today's lesson

- I. Negative cycle strategies: Ford-Bellman & Floyd
- II. Minimum spanning tree concepts
- III. Kruskal: Edge-based finding
- IV. Jarnik Prim: Vertice-base finding

- Use DFS to find the path from A to E that passes
 visited vertices.
- 2. Use Fleury to find the Euler path.

Note: Use tuple to demonstrate.

We need an algorithm that:

- Detect negative cycle.
- If there's no negative cycle, find the shortest path which may have negative weights.

Ford-Bellman

(Bellman-Ford)

 $D = \{0, \infty, \infty, \infty\}$ $P = \{Null, Null, Null, Null\}$

$$D = \{0, \infty, \infty, \infty\}$$

$$P = \{Null, Null, Null, Null\}$$

Step 1: For each edge (u, v) with weight w:

if
$$D[u] + w < D[v]$$
:

$$D[v] = D[u] + w$$

$$P[v] = u$$

Repeat step 1|V| - 2 more times.

Step	Α	В	С	D
0	0	-201	0	99
1	0	-201	-102	99
2	0	-201	-102	99

$D = \{0$,-201,	-102,99
P =	${Null, I}$	D, B, A

 $D = \{0, -201, -102, 99\}$ $P = \{Null, D, B, A\}$

Step 2: For each edge (u, v) with weight w:

if
$$D[u] + w < D[v]$$
:

Error: Graph contains neg. cycle.

Floyd algorithm

0	∞	∞	∞
∞	0	∞	∞
∞	∞	0	∞
∞	∞	∞	0

Exercise 4

For *i* from 1 to |*V*|: For *i* from 1 to |*V*|: For *j* from 1 to |*V*|: if D[i][j] > D[i][k] + D[k][j]: D[i][j] = D[i][k] + D[k][j]

Exercise 4

0	1	0	99
∞	0	99	∞
∞	∞	0	∞
∞	-300	∞	0
D			

Α	А	А	Α
В	В	В	В
С	С	С	С
D	D	D	D
		\Box	

For k from 1 to |V|: For i from 1 to |V|: For j from 1 to |V|: if D[i][j] > D[i][k] + D[k][j]: D[i][j] = D[i][k] + D[k][j]P[i][j] = P[k][j]

Exercise 4

Negative cycle detection

• If D[i][i] < 0

The graph contains negative cycle.

II. Concepts

Spanning tree

Spanning forest

Min. spanning tree

Min. spanning forest

A spanning tree of graph G is a ____ (4) which include all the ____ (8) of G.

A spanning forest of graph G is a _____ (6) that consists of multiple disjoint ____ (8) trees.

A min-spanning ... is a spanning ... that has the minimum

____ (6).

Why min-spanning tree anyway?

Exercise #5

Find the min-spanning tree in this graph?

Remember: All vertices must be met

Kruskal Jarnik-Prim

III. Kruskal

$$F = \{(E, F), (A, D), ...\}$$

 $R = \{\}$

$$F = \{(E, F), (A, D), ...\}$$

 $R = \{\}$

Step 1: Get e = F[0], then remove e from F.

Step 2: Check if $\{e\} \cup R$ has cycle? If it's true, move to step 1.

Step 3: Add *e* to *R*.

Step 4: If all vertices were met, stop.

Else, go to step 1.

Step	Edge	Weight
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
	Sum:	

Step	Edge	Weight
0	$\{E,F\}$	1
1	$\{A,D\}$	2
2	$\{H,I\}$	2
3	$\{B,D\}$	3
4	$\{C,F\}$	3
5	$\{E,H\}$	3
6	$\{B,C\}$	4
7	$\{F,I\}$	
8	$\{F,H\}$	
9	$\{H,G\}$	4
	Sum:	22

 $\{(E,F),(A,D),(H,I),(B,D),(C,F),(E,H),(B,C),(F,I),(F,H),(H,G),(A,B),(B,E),(B,F),(D,G),(D,E),(D,H)\}$

Step	Edge	Weight
0	$\{E,F\}$	1
1	$\{A,D\}$	2
2	$\{H,I\}$	2
3	$\{B,D\}$	3
4	$\{C,F\}$	3
5	$\{E,H\}$	3
6	$\{B,C\}$	4
7	$\{F,I\}$	
8	$\{F,H\}$	
9	$\{H,G\}$	4
	Sum:	22

2

Does Kruskal use edges or vertices?

IV. Jarnik -Prim

$$W = \{A\}$$
$$R = \{\}$$

 $W = \{A\}$ $R = \{\}$

Step 1: Find $u \in W$, $v \notin W$ so that $w_{u,v}$ is minimum.

Step 2: If $\{u, v\}$ exists, add v to W, $\{u, v\}$ to R. Else, stop.

Step 3: Go to step 1.

$$W = \{A\}$$
$$R = \{\}$$

$$W = \{A, D\}$$
$$R = \{\{A, D\}\}$$

$$W = \{A, D, B\}$$

 $R = \{\{A, D\}, \{D, B\}\}$

$$W = \{A, D, B, C\}$$

 $R = \{\{A, D\}, \{D, B\}, \{B, C\}\}$

 $W = \{A, D, B, C, F\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}\}$

 $W = \{A, D, B, C, F, E\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}\}$

 $W = \{A, D, B, C, F, E, H\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}\}$

 $W = \{A, D, B, C, F, E, H, I\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}, \{H, I\}\}$

 $W = \{A, D, B, C, F, E, H, I, G\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}, \{H, I\}, \{H, G\}\}\}$

 $W = \{A, D, B, C, F, E, H, I, G\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}, \{H, I\}, \{H, G\}\}\}$

Step	Edge	Weight
0		
1		
2		
3		
4		
5		
6		
7		
	Sum:	

 $W = \{A, D, B, C, F, E, H, I, G\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}, \{H, I\}, \{H, G\}\}\}$

Step	Edge	Weight
0	$\{A,D\}$	2
1	$\{D,B\}$	3
2	$\{B,C\}$	4
3	$\{C,F\}$	3
4	$\{F,E\}$	1
5	$\{E, H\}$	3
6	$\{H,I\}$	2
7	$\{H,G\}$	4
	Sum:	22

 $W = \{A, D, B, C, F, E, H, I, G\}$ $R = \{\{A, D\}, \{D, B\}, \{B, C\}, \{C, F\}, \{F, E\}, \{E, H\}, \{H, I\}, \{H, G\}\}\}$

Step	Edge	Weight
0	$\{A,D\}$	2
1	$\{D,B\}$	3
2	{ <i>B</i> , <i>C</i> }	4
3	$\{C,F\}$	3
4	$\{F,E\}$	1
5	$\{E,H\}$	3
6	$\{H,I\}$	2
7	$\{H,G\}$	4
	Sum:	22

Kruskal

✓ Better with sparse graph O(|E|log|E|)

Jarnik-Prim

✓ Better with dense graph $O(|V|^2)$

Exercise #6: Jarnik - Prim

$$W = \{H\}$$
$$R = \{\}$$

No.	Algorithms	How to demonstrate on paper?
1	DFS	Sequence of tuple: (A, B), (B, C), (day 7, 8)
2	BFS	Sequence of tuple: (A, B), (B, C), (day 7, 8)
3	Fleury	Sequence of tuple: (A, B), (B, C), (day 8)
4	Dijkstra	Progress table (day 9, slide 23)
5	Ford-Bellman	Progress table (day 9, slide 33)
6	Floyd	Matrix (day 9, slide 41)
7	Kruskal	Progress table, tree (day 10, slide 20)
8	Jarnik - Prim	Progress table, tree (day 10, slide 35)

Homework

- •Implement:
 - 1. Dijkstra
 - Print out the progress table
 - 2. Ford-Bellman
 - Print out the progress table
 - 3. Floyd
 - Print out the matrix