DataCon 2024

Команда 5 | Падение Сов

ХИМИК Артемий Лобач

ХИМИК Артемий Лобач

Биоинформатик

Максим Щепетов

ХИМИК Артемий Лобач

Биоинформатик

Максим Щепетов

ML-щик Герман Кавкаев

ХИМИК Артемий Лобач

Биоинформатик

Максим Щепетов

ML-ЩИК Герман Кавкаев

Какой-то клоун

Тимофей Рыко

А бармен им говорит:

Разработаете модель для предсказания СРР?

Мы попробовали, и кое-что даже получилось!

Предобработка данных

Бинарный датасет:

- Обогатили последовательностями СРР из базы CPPsite 2.0 (удостоверившись, что дубликатов нет)
- Побороли Imbalanced Data, обогатив пептидами из протеома человека

Датасет POSEIDON для регрессии

- Разобрались с единицами измерения, по-возможности конвертировали
- Почистили Time и Temp., заполнили недостающие значения медианой
- Удалили «плохую» колонку Conc.
- И, главное, почистили **Uptake** целевую переменную

Чем же так плоха Conc.?

[31]

poseidon_df['Conc.'].unique()

Table Raw Visualize Statistics array(['12.5 uM', '1.8 uM', '44 uM', '40 uM', '2.5 uM', '200 uM', '1600 uM', '0.05 umol', '50 uM', '10 uM', '5 uM', '5 umol/L', 'Charge ratio = 5:1 (MPG/DNA)', 'Charge ratio = 10:1', '300 uM', '5 umol/l', '6 uM', '15 uM', '4 uM', '2 uM', nan, '100:1 molar excess of siRNAs', 'N/P ratio 20', '100 nM siRNA', '100 nM', '5 mM', 'N/P ratio 10', 'Equal to a DOX dose of 10 ug/mL', '3 uM', '1 uM', '10 umol/L', '100 uM siRNA', 'Charge ratio = 0.5 / Charge ratio 5', '10^4 particles', '2 ug/ml', '25 uM', '57 umol/L', '5 ug/ml', '1 nM', '200 ug/ml', '8 mM Trehalose', '13 uM', '8 uM', '16 uM', '8 uM MCoTI-II / 16 uM SFTI-1', '100 nmol/kg', '10 uM BSH-11R', '10 uM BSH-11R (Boron concentration)', '1.5 ug/mL lipossomes', '40 ug/ml', '30 ug/ml', '25 µg/ml', '4 uM CPP', '150 uM', 'Final Concentration between 1/5 uM', '10000 nM', '0.15 uM', '100 uM', '500 nM', 'Charge ratio = 10', '10 nM', '2.1 uM', '10 ug/ml', 'charge ratio = 2', '3 nmol', 'Molar ratio 50 (v/w) or (w/w) eGFP', '1.0 mg/ml', '1 umol', 'N/P ratio = 3', '100 ug/ml', '0.5 uM', 'N/P ratio 6', 'plasmid/PDL ratio 1:4', '1.5 nM', '5 ug', 'pDNA/peptide ratio 1:2500', '10 ug/mL', '2 uM dox equivalent concentration', '50 ug/ml', '0.5uM', '1uM', '2uM', '5uM', '10uM', '15uM', '20uM', '30uM', '40uM', '50uM', '1.9 uM', '5.6 uM', '16.7 uM', '6.3 uM', '25uM', '37 kBq', '20 uM', '12 uM', '0.2uM', '2.5uM', '7.5uM', '6uM', '100 ug/mL', '4uM', '100nM', '40 ug /mL', '0.1uM', '30 uM', '1.25uM', '9.0 uM', '25nM', '50nM', '200nM', '0.002ug/mL', '0.25uM', '25 ug/mL', '20 ug/ml', '100ug/ml', '0.1ug/ml', '100 mg/L', '20ug', '2ug/mL', '7uM', '3uM', '2.5', '3.9mg/ml', '16uM', '6ug/mL', '12ug/mL', '25ug/mL', '100uM', '0.01uM', '3000 pmol', '25ug/ml', '2mg/ml', '10ug', '600 ug/ml', '1 mg/ml', '2ug/ml', '5ug/ml', '100ug'], dtype=object)

И так везде...

25%

Последовательностей в датасете POSEIDON — странные

Вот лишь некоторые из последовательностей...

Mpa(luc)-KTRVLKRWKL-NH2

rXrrXrrXrrXr

(Acp)-KKKKKRFSFKKSFKLSGFSFKKNK

RRWWWRR-E12

C37H66N7O17P3S-rrrrrrrrrr

c[DKP-RGD]-PEG4-GLRKRLRK(CF)FRNKIKEK-CONH2

CH3(CH2)16-CONH-GGGGLRKRLRKFRNKIKEK-NH2

Мы чистили, чистили, и наконец почистили до...

21%

Остальное — удалили, потому что почти никакие тулы с такими последовательностями не работают

3121

Строк в бинарном датасете

1524

Строки в датасете POSEIDON для регрессии

EDA & Feature engineering

Распределение целевой переменной Uptake

- Изначально распределение было ужасным
- Поэтому мы его логафримировали (на сайте POSEIDON тоже это

Длина последовательности

Распределение по аминокислотам

Feature engineering

- Рассчитали дескрипторы PyBioMed и Biopython
- В некоторых подходах добавили доли важных АК

Анализ пространственных паттернов

- Многие CPPs имеют альфа-спирали в своей вторичной структуре, которые расположены в середине последовательности или на ее концах
- СРР, не имеющие регулярной вторичной структуры также встречаются
- В перспективе можно будет добавить предикторы:
 - Длина предсказанной (например при помощи alphaphold) самой длинной альфаспирали,
 - Количество предсказанных альфа-спиралей и процент последовательности, имеющий регулярную вторичную структуру
 - В целом, эта информация есть в дескрипторах

Красивое

```
[176]
```

```
view = py3Dmol.view(width=800, height=400)
view.addModel(pdb_file4, 'pdb')
view.addModel(pdb_file5, 'pdb')
view.setStyle({'cartoon': {'color':'spectrum'}})
view.show()
```


Красивое

```
view = py3Dmol.view(width=800, height=400)
view.addModel(pdb_file4, 'pdb')
view.addModel(pdb_file5, 'pdb')
view.setStyle({'cartoon': {'color':'spectrum'}})
view.show()
```

Молекулярный вес

Доля альфа-спиралей

Как мы работали с ML?

- Тестировали разные модели
- Все перспективные модели улучшали
 - Feature selection with correlation analysis
 - Hyperparameter Optimization with optuna (cross-validation)
- Для классификации смотрели на такие метрики:
 - F1 score
 - AUC
 - Precision (так как ложноположительные результаты стоят дороже в нашем случае)
- Для регрессии:
 - MSE
 - MAE
 - R^2 (идеально для сравнения самых разных подходов)

Классификация

Лучший — CatBoostClassifier

- Простой one-hot энкодинг аминокислот
- Предикторы BioPython

Final F1 Score: 0.9065255731922399

Final AUC: 0.9610230295033297

Регрессия

Попробовали разные подходы

- Попробовали разные подходы:
 - Удалить или оставить аутлаеры
 - Выбрать самые важные фичи или работать со всеми
- По итогу оказалось эффективнее использовать все данные и все фичи
- Протестированные модели: модели классификации и регрессии

Лучшая модель —

- Полные данные, без обрезки выбросов в параметрах
- Логарифмирование таргетного параметра
- Обрезка датасета по 95 перцентилю таргета
- Использование всех параметров в датасете
- XGBoost архитектура

Лучшие метрики

```
XGBoost Regression Model:
Mean Squared Error (MSE): 1.5975
Mean Absolute Error (MAE): 0.8404
Root Mean Squared Error (RMSE): 1.2639
R-squared (R^2): 0.7945
```

Наиболее важные фичи

- SolventAccessibility этот параметр описывает, насколько определенный участок пептида будет взаимодействовать с растворителем
- Polarizability описывает поляризуемость пептида
- SecondaryStr описывает наличие альфа-спиралей (бета-листов) пептида
- Charge, isoelectric_point, charge_at_ph Заряд пептида может существенно влиять на его взаимодействие с клеточной мембраной
- Polarity описывает полярность пептидов
- NormalizedVDWVT описывает Ван-дер-Ваальсовы взаимодействия
- Hydrophobicity, gravy являются мерой гидрофобности пептида
- Turn_fraction, sheet_fraction описывают гибкость и конформацию пептида
- Instability_index является мерой стабильности пептида

Эмбеддинги пептидных последовательностей

- Попробовали многое (альфафолд, ProtBert...)
- Не успели имплементировать (беды с зависимостями, слишком долго, не хватает вычислительных мощностей)
- Реализовали **blomap** эмбеддинги, основанные на BLOSUM
- Модель, казалось бы, получилась хорошая, но...

За час до дедлайна мы выяснили, что...

Судя по всему, произошла утечка из TRAIN в TEST

	TRAIN	TEST
MSE	0.00034	0.00303
MAE	0.00325	0.010895
R^2	0.99976	0.99793

- Модель видит в TEST такие же или очень похожие последовательности
- И предсказывает то, что видела в TRAIN
- Информация в BLOSUM эмбеддингах

Но модели без эмбеддингов тоже работают неплохо!

Генерация

Как оно работает?

- Реализовали прототип генетического алгоритма
- В качестве функции приспособленности использовали нашу регрессию

Genetics go brrrrr

SRWRWKSCKKVHLPPPVHLPPP

Predicted $\Delta\Delta F$: -7.909 kJ/mol

Predicted $\Delta\Delta F_L24$: -8.75 kJ/mol Predicted $\Delta\Delta F_adj$: -13.4 kJ/mol

Negatively charged membrane

Calculated from ΔΔF_adj:

Predicted ΔF_sm(R=50): -42.333 kJ/mol

Sequence length: 22

Sequence charge: 5

Hydrophobicity: 0.518

Hydrophobic moment: 0.119

Умеренное, но уверенное связывание

Non-redundant

- Длина пептида 22
- Найденный идентичный участок в CPPsite 2.0 длины 13

Спасибо за внимание! Давайте поговорим 🙂

