PWM Drawer ATmega32

Using GLCD

Graduation Project
Presented By: **Nour Kandil**

Layered Architecture

Detailed Explanation

- 1. General Purpose Timer (GPT): GPT provides the timing base for PWM generation. It generates *delays* to correctly space out the waveform on the GLCD.
- 2. Digital Input/Output (DIO): The microcontroller toggles a digital pin (HIGH or LOW) based on the duty cycle of the PWM.
- 3. Input Capture Unit (ICU): measures the characteristics of an incoming PWM signal. It records timestamps when an external PWM signal changes state (rising or falling edges). the ICU can measure the duty cycle and period to adjust control.
- 4. PWM Module: It uses a timer (GPT) to generate a PWM waveform directly. The user only needs to configure parameters like frequency and duty cycle.

Flowchart Detailed (2): Measure Signal using ICU

Clear input capture
flag
Set trigger edge:
RISING_EDGE
Wait for first captur
(Start of PWM cycle

Clear input capture flag & Timer counter Set trigger edge: FALLING_EDGE

Wait for input capture (HIGH count)

- Duty Cycle (%) = (High Time / Period Time) x
 100
 - **High Time (ms) =** (High Count × Prescaler × 1000) / F_CPU
- Period Time (ms) = (High Count + Low Count) x
 Prescaler x 1000 / F_CPU

Wait for last capture (LOW count)

Clear input capture flag & Timer counter Set trigger edge: RISING_EDGE

Flowchart Explanation (2): Measure Signal using ICU

ICU_GetDutyCycle();

1. Detect the Start of the Signal (Rising Edge)

Clear the Input Capture Flag.
Set the trigger to **detect a rising edge** (start of the high pulse).
Wait for the first capture (this marks the beginning of the PWM cycle).

2. Measure High Time (Falling Edge)

Clear the Input Capture Flag and reset the timer.

Set the trigger to **detect a falling edge** (end of the high pulse).

Wait for the second capture (this marks the end of the high pulse).

Store this time as **High Count – how long signal stays ON**.

3. Measure the Full Period (Next Rising Edge)

Clear the Input Capture Flag and reset the timer.
Set the trigger back to **rising edge** (end of the low pulse).
Wait for the third capture (this marks the end of the PWM cycle).
Store this as **Low Count - how long signal stays OFF**.

4. Calculate Duty Cycle

Duty Cycle (%) = (High Time / Period Time) x 100

High Time (ms) = (High Count x Prescaler x 1000) / F_CPU

Period Time (ms) = (High Count + Low Count) x Prescaler x 1000 / F_CPU

Flowchart Detailed (3.1): Draw signal Using GLCD

Choosing scale (ms to pixel) by Period Time/5

GLCD Line 0: Displays frequency of signal in kHz GLCD Line 1: Displays duty cycle of signal in % GLCD Line 4: Displays period time of signal in ms

Functions Used:

- GLCD_DisplayString() → Displays text.
- GLCD_DisplayFloatingPoint() → Displays decimal values (e.g., duty cycle %).
- GLCD_DisplayInteger() → Displays whole numbers (e.g., frequency, period).
- GLCD_DisplaySpecialPattern() → Draws the waveform and the arrow.

GLCD Line 6:
DisplaysPWM signal
waveform based on
duty cycle

GLCD Line 5: Displays line at the start of first cycle

Flowchart Detailed (3.2): Draw signal Using GLCD

I/O List

Input

Signal Name	Туре	Description
PWM Signal Input	Digital (I)	The PWM signal source to be displayed on GLCD (could be from a microcontroller or external generator).
Microcontroller Clock (System Clock)	Internal	Provides the clock signal for timers and display refresh.

Output

Signal Name	Туре	Description
GLCD Data Lines (DB0- DB7)	Digital (O)	Used to send waveform pixel data to the GLCD.
GLCD RS (Register Select)	Digital (O)	Controls command/data mode of GLCD.
GLCD RW (Read/Write)	Digital (O)	Selects read or write operation.
GLCD E (Enable)	Digital (O)	Triggers data transfer to GLCD.
PWM Waveform Display	Visual (O)	Displays the waveform pattern corresponding to the input signal.

I/O List

Signal Name	Туре	Description
GPT Timer Output	Digital (O)	Generates timing delays for GLCD waveform updates.
DIO Pins (for GLCD Control)	Digital (I/O)	Used for controlling and updating the GLCD screen.

