From Visualization to Coding: Practicing Graphical Loop Invariants in CAFÉ 2.0

Géraldine Brieven, Benoit Donnet

Introduction

Context : CS1 Course

Skills: Problem Solving and Abstract thinking skills

How?: The Graphical Loop Invariant (GLI)

Each time you implement a loop, all the variables that are handled are characterized (individually and/or with respect to each other).

That variables' state must be true at each evaluation of the guard loop.

Level of abstraction where the GLI stands

Graphical Loop Invariant

through an example

Problem: Compressing an array brut of size MAX based on sums of 10. The last element of brut is always 11.

From the output to the intermediate solution (GLI)

Finding a GLI: constant relaxation

Rules 1 & 2:

Rules 3 & 4:

<u>Rule 5:</u>

Rule 6:

Different possible patterns

Initial State:

Resulting Code:

```
unsigned int i = 0, j = 0, k=0, sum = 0; from Initial State
while ((! (i==MAX \&\& j==MAX))
                                                from Final State
     sum += brut[j];
    j++;
                                                                                             MAX
     if(sum<=10){
          if (sum == 10) { //Compression
                                                     brut:
               compress[k] = 10;
               i = j;
                                             From in-loop state
                                                                        sum < 10
                                                             Already
          }else{ // Copy of element
                                                                                   To compress
                                                           compressed in
               compress[k] = brut[i];
                                                            compress
              i++;
               j = i;
                                                                                             MAX
          k++;
          sum = 0;
                                               compress:
                                                            Result of the compression
                                                                                  Free space
```


Learning Tools

PCA = Programming Challenge Activity

GLIDE = Graphical Loop Invariant Drawing Editor

CAFÉ = Correction et Feedback Automatique pour les Étudiants

GLIDE (graphical editor)

Programming Challenges Activity

Activity Diagram:

Programming Challenges Activity

Screenshot:

Preliminary Results: Errors

Further Work & Conclusion

?
How students actually manage the GLIBP?
How to smoothly bridge the GLIBP to the Formal Invariant?

Our Research

Visit our research

Contribute to our research (survey for CS1 teachers) (It takes 10min to fill in ②)

Preliminary Results: General

Preliminary Results: Students Perception

Preliminary Results: Students performance

