

# JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

**FORMULIR** 

**EVALUASI TENGAH SEMESTER (ETS)** 

NO. DUKUMEN K8.0803.IK.01.06.FFNU

NAMA MATA KULIAH : MATEMATIKA TERAPAN 2 PROGRAM STUDI : TEKNIK INFORMATIKA

KODE MATA KULIAH : 16TIN3043 JENJANG : D-IV

PERKULIAHAN : TEORI/<del>PRAKTIKUM</del>\* BENTUK UJIAN : TEORI/<del>PRAKTIKUM</del>\*

TANGGAL UJIAN : 24 NOVEMBER 2020 SIFAT UJIAN : TUTUP BUKU WAKTU : 13.00 – 15.00 TAHUN AKADEMIK : 2020/2021 NAMA DOSEN : SITI DWI SETIARINI SEMESTER : GANJIL KODE DOSEN : KO075N KELAS : 2A/2B

## Jawablah pertanyaan berikut dengan tepat, logis, dan terstruktur!

1. (5) Sebutkan masing-masing minimal 2 penerapan dalam bidang informatika dari:

a. Konvergensi barisan tak hingga

b. Persamaan diferensial

2. (20) Buktikan konvergensi dari barisan  $(a_n)$  dan deret tak hingga  $(S_n)$  berikut! Jelaskan pula alasan pemilihan metode uji konvergensinya!

a. 
$$\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \frac{1}{5^4} + \cdots$$

b. 
$$\sum \frac{1}{n^3}$$

c. 
$$\sum \frac{n}{n^2+1}$$

3. (20) Tentukan solusi Persamaan Diferensial berikut! Jelaskan pula alasan pemilihan teknik penyelesaiannya!

a. 
$$y' + \frac{\sin x}{\cos y} = 0$$

b. 
$$2 xy y' = x^2 - y^2$$

4. (25) Bagaimana teknik solusi PDB terpisah diterapkan pada teknik solusi PDB dengan koefisien fungsi homogen?

Petunjuk: Boleh dideskripsikan atau dengan memberikan contoh, lalu ditandai bagian mana teknik solusi PDB terpisah diterapkan.

- 5. (30) Diketahui terdapat suatu fungsi  $f(x) = \frac{1}{1-x}$ . Tentukan
  - a. Deret taylor dari f(x) untuk x = 0
  - b. Jika turunan dari suatu deret taylor

$$f'(x) = \sum_{n=0}^{\infty} na_n (x-c)^{n-1}$$

Tentukaan turunan (f'(x)) dari deret taylor f(x)

c. Apakah f'(x) mempunyai selang kekonvergenan? Jika iya, tentukan  $a_n$  dan b pada f'(x)

DISAHKAN TANGGAL: .....

KETUA PROGRAM STUDI D-IV, DOSEN PENGAMPU,

SANTI SUNDARI, S.Si., M.T.

NIP 197109031999032001

SITI DWI SETIARINI, S.Si., M.T.

NIP 199112182019032014

| Terbitan | A | Tanggal | 5 April 2011 |
|----------|---|---------|--------------|
| Revisi   | 1 | Halaman | 1 dari 1     |



# JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

**FORMULIR** 

# **EVALUASI TENGAH SEMESTER (ETS)**

NO. DUKUMEN K8.0803.IK.01.06.FFNU

#### LEMBAR JAWABAN

| NIM:   | 191524027               |
|--------|-------------------------|
| Nama:  | Muhammad Hargi Muttaqin |
| Kelas: | 2A                      |

#### NOMOR 1

A.Digunakan pada AI (Artificial Intelligent) dan digunakan juga pada kekonvergenan data

B. Persamaan diferensial digunakan pada saat membuat suatu logo, membuat grafik saat membuat program.

#### NOMOR 2

A.an = 
$$\frac{1}{5^n} = \frac{1}{5}$$
,  $\frac{1}{25}$ ,  $\frac{1}{125}$ , ...

$$bn = \frac{1}{n} = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

Karena an <= bn maka deret tersebut divergen karena bnnya adalah deret harmonic yang mana deret harmonic adalah deret divergen, alasan menggunakan tes banding deret lain karena lebih mudah dalam pengerjaannya.

$$a1 = \frac{1}{5^1} = \frac{1}{5}$$

$$a2 = \frac{1}{5^2} = \frac{1}{25}$$

$$=\frac{\frac{1}{25}}{\frac{1}{55}}=\frac{5}{25}=0.2$$

Namun jika menggunakan hasil bagi menjadi konvergen karena  $\rho$  < 1.Menggunakan cara ini karena bisa digunakan karena di ketahui suku ke 1 dan suku ke 2.

B.  $\sum \frac{1}{n^3}$  = konvergen karena n<sup>p</sup> dimana p < 1 yang berarti konvergen, menggunakan uji deret ke-p karena dilihat dari bentuknya dapat digunakan uji deret ke-p karena 1/n<sup>p</sup>.

$$C.\sum \frac{n}{n^2+1} = \lim_{n\to\infty} \frac{n}{n^2+1} = \frac{\frac{n}{n}}{\frac{n^2+1}{n^2}} = \frac{1}{1+\frac{1}{n^2}} = \frac{1}{1} = \text{Konvergen ke } \frac{1}{1}, \text{ Menggunakan substitusi limit karena}$$

dilihat dari soalnya n/n<sup>2</sup>+1 bisa menggunakan substitusi limit.

# NOMOR 3

$$A. \quad y' = -\frac{\sin x}{\cos x}$$

$$\frac{dy}{dx} = -\frac{\sin x}{\cos y}$$

| Terbitan | A | Tanggal | 5 April 2011 |
|----------|---|---------|--------------|
| Revisi   | 1 | Halaman | 1 dari 1     |



# JURUSAN TEKNIK KOMPUTER DAN INFORMATIKA POLITEKNIK NEGERI BANDUNG

**FORMULIR** 

# **EVALUASI TENGAH SEMESTER (ETS)**

NO. DUKUMEN K8.0803.IK.01.06.FFNU

$$\cos y \, dy = -\sin x \, dx$$

$$\int \cos y \, dy = \int -\sin x \, dx$$

$$\sin y + c = \cos x + c$$

B.

#### NOMOR 4

### NOMOR 5

a. 
$$f(x) = \frac{1}{1-x}$$
  
 $f'(x) = \frac{1}{x^2}$   
 $f''(x) = -\frac{2}{x^3}$ 

Deret taylor

$$= f(x_0) + f'(x_0) + f''(x_0) \frac{(x - x_0)^n}{n!} + \dots + f^{n-1} \frac{(x - x_0)^n}{n!}$$

$$= \frac{1}{1 - x} + \frac{1}{x^2} + \left(-\frac{2}{x^3}\right) \cdot \frac{(x - 0)^2}{2!} + \dots + f^{n-1} \frac{(x - 0)^n}{n!}$$

| Terbitan | A | Tanggal | 5 April 2011 |
|----------|---|---------|--------------|
| Revisi   | 1 | Halaman | 1 dari 1     |