194.050 Social Network Analysis

Topic 04: Equivalence-based role mining

Intermediate presentation

Babiy, Ivan
Chan, Yat Hin
Fan, Wing Yan
Muriasova, Karina
Olsiakova, Terezia

Content

Motivation

Theoretical background

- Definition of role equivalences
- Techniques for finding or quantifying equivalences

Proposed approach

- Which edge lists to use
- Methods for role mining
- Expected results

Motivation and Task Description

Task: Grouping users into equivalence classes that define roles

No prior knowledge of user roles

Equivalences are designed in a way that the results may carry a sociological interpretation [1]

Theoretical background – Equivalence definitions

Comparing Positions: how nodes are embedded in its ego-network [2]

Most

restrictive

Structural equivalence Automorphic equivalence Regular equivalence

Least

restrictive

Theoretical background — Structural equivalence

Exactly identical composition of neighbourhood

{8, 9}

Approximated by K-means with compatible similarity measure (corrected Euclidian or Manhattan distance function)

Theoretical background – Automorphic equivalence

Identically-shaped neighbourhoods with same degree

The connected neighbours can be different entities

RoleSim [3]

Compute RoleSim score matrix of maximal weighted matching of the two vertices' neighbourhood

Iterate until convergence of the maximal weighted matching value

Output: a similarity matrix for performing clustering

Theoretical background - Regular equivalence

Existence of connections with neighbour(s) of the same class

The connected neighbours can be different entities
The degree can be different

REGE [4]

Compute similarity score matrix that quantifies matching edge type (incoming/outgoing/bidrectional) exists in the two vertices' neighbourhood

Iteratively update matrix with the previous matching score as a weight for fixed iteration

Output: a similarity matrix for performing clustering

Proposed approach – Graphs to create

We will create 3 directed graphs with users as nodes as follows:

Network of Users Who Vote on Postings

- Edge list: df_edge_list_directed_users_votes_to_postings_net.parquet
- Edge weights: Number of votes

Network of Users Who Reply to Postings

- Edge list: df_edge_list_directed_users_postings_replies.parquet
- Edge weights: Number of replies

Network of Users Who Follow Other Users

- Edge list: df_edge_list_directed_users_combined_postings_replies_and_votes_to_postings_net_and_follow_connections.parquet
- Edge weights: 1 (Unweighted)

We do not plan to use the weight total column in the edge lists since it hides the nature of user interactions

Proposed approach - Role mining

Role Identification

✓ Use equivalence clustering metrics to determine if distinct roles emerge

Role Interpretation

- Activity Patterns: Voting, replying, following
- ✓ **Ego-Network Structure**: Neighborhood composition and characteristics

Role Characteristics

- ✓ **Degree Distributions**: In-degree, out-degree
- ✓ Network Metrics: Centrality, connectivity
- ✓ **Equivalence Properties**: Structural, automorphic, regular

Common Features

- ✓ Neighborhood Structure: Connections and configurations
- **▼ Behavioral Patterns:** Interactional or functional similarities

Expected Results

References

- [1] Doran, D. (2017). Network Role Mining and Analysis. Springer International Publishing, p. 31.
- [2] Doran, D. (2017). Equivalence-Based Role Mining. *Network Role Mining and Analysis*. Springer International Publishing.
- [3] Jin, R., Lee, V. E., & Hong, H. (2011). Axiomatic ranking of network role similarity. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 922–930. ACM.
- [4] Borgatti, S. P., & Everett, M. G. (1993). Two algorithms for computing regular equivalence. Social Networks, 15(4), 361–376.