

Fundamental Inlet Bleed Experiments (FIBE)

David Davis

Manan Vyas

John Slater

NASA GRC Research Center

Michael Eichorn
Case Western Reserve University

6th Annual Shock Wave/Boundary Layer Interaction (SBLI) Workshop April 24-25, 2013

NASA

Agenda

- FIBE Overview
- Facility Overview
- Phase I Summary
- Phase II Results
- Phase III Planning
 - 15x15cm Bleed Capacity Upgrade
 - 15x15cm Axisymmetric Test Section

FIBE Overall Objective

- The Fundamental Inlet Bleed Experiments (FIBE) project is primarily an experimental program to establish a comprehensive experimental bleed database to advance the understanding of how bleed systems can be improved through:
 - Improved bleed modeling (Design and CFD)
 - Bleed placement within a high-speed inlet
 - Alternate bleed configurations
 - · Bleed orifice inlet conditioning
 - Non-circular bleed orifices
 - Bleed patterns

Radiused Edges

Bleed Hole Parameters

"Thick" Bleed Plate

$$\frac{t}{D} \ge \cos \alpha$$

$$A_{\min,thick} = A_b = \frac{\pi}{4} D^2$$

"Thin" Bleed Plate

$$\frac{t}{D} < \cos \alpha$$

FIBE Phase Objectives

- The FIBE program will be conducted in three phases. The primary objectives for each phase are:
 - Phase I 15x15cm Supersonic Wind Tunnel (SWT)
 - Checkout of facility, bleed system, and instrumentation.
 - Document approach flow conditions for this and subsequent Phases.
 - Obtain flow coefficient data for pre-existing single-hole test articles.
 - Phase II 15x15cm SWT
 - Obtain flow coefficient data for single-hole or non-interacting multi-hole configurations.
 - Inclination Angle
 - L/D
 - D/δ*
 - Dynamic Plenum Pressure Measurements

FIBE Phase Objectives

- Phase III 15x15cm SWT
 - Full bleed regions without and with oblique or normal shock using multi-hole patterns with similar geometry as Phase II single-hole tests.
 - Flow coefficient
 - Downstream flow-field measurements
 - Dynamic Plenum and Surface Pressure Measurements
 - Facility Upgrades
 - Reinstall and upgrade ejector system.
 - · Larger bleed lines.
- Phase III 1x1ft SWT
 - Similar data as above but also:
 - Glancing interaction
 - Corner interaction
 - Bleed system/shock generator assembly require some minor additional component fabrication.

20% Porosity

Flow Coefficient Scaling

Correlations based on multi-hole data of Willis et al.

Pplen,scaled

FACILITY OVERVIEW

15x15cm Supersonic Wind Tunnel

15x15cm Supersonic Wind Tunnel

15x15 cm Supersonic Wind Tunnel

- Continuous Flow
- Fixed Geometry Nozzle Blocks
 - Blocks rotatable so "good" B.L. can be on horizontal or vertical walls.
- 40psig Combustion Air Supply
- Ambient Total Temperature

Test Section Window Configuration

Top Window Static Taps

FIBE Test Schematic

"Method-of-Mixtures"

$$w_{air} = \left(\frac{M_{air}}{M_{met}}\right) \left(\frac{1 - v_{met}}{v_{met}}\right) w_{met}$$

FIBE PHASE I SUMMARY

Results Summarized in AIAA Paper 2012-0272

Pre-Existing Test Articles

 $\begin{array}{c} \underline{\text{C01}} \\ \text{D=6.010mm} \\ \alpha \text{=} 90^{\circ} \\ \text{L/D=2.0} \\ \text{t/D=2.0} \\ \text{A/A}_{\text{b}} \text{=} 1.00 \end{array}$

 $\frac{\text{C02}}{\text{D=6.029mm}}$ α =20° L/D=2.0 t/D=0.684 A/A_{b} =1.248

 $\begin{array}{c} \underline{\text{C03}} \\ \text{D=5.018mm} \\ \alpha \text{=} 20^{\circ} \\ \text{L/D=2.92} \\ \text{t/D=1.0} \\ \text{A/A}_{\text{b}} \text{=} 1.0 \end{array}$

Approach Boundary-Layer Profiles

Displacement thickness variation is consistent with Reynolds number.

Reynolds Number Dependence

- Tail-up behavior due to sample pump limitation
- Generally there is only a small Reynolds number dependence.

Flow Coefficient Scaling

Phase I Conclusions

- Approach flow conditions established for all Mach numbers and Reynolds numbers.
- Results only weakly dependent on Reynolds number.
- Static pressure scaling:
 - α =90° Data collapses but not quite as good as multi-hole data of Willis et al.
 - α =20° As anticipated, data does not collapse.

FIBE PHASE II RESULTS

Results Summarized in AIAA Paper 2013-0272

and

M. Eichorn's MS Thesis (CWRU, In Progress)

NASA

Geometry Variavles

- Parameters: α, D, t/D
- Ranges permitted:
 - $\alpha 20^{\circ}$ to 90°
 - D 0.794 to 6.35 mm (0.0313 to 0.250 in)
 - t 0.893 to 12.7 mm (0.0352 to 0.500 in)
 - t/D 0.250 to 2.000
- Results in:
 - L/D 0.250 to 5.85
 - $D/\delta^* 0.210$ to 2.68

FIBE Phase II Hardware

 Bleed "Plugs" from Phase I were replaced with Bleed "Plates" for Phase II which will allow more flexibility in bleed configurations.

FIBE Phase II Hardware

 Phase I top wall is being modified to accept new Bleed Plates. Either Plug or Plate can be used by reversing top wall.

Test Configurations

Config.	Alpha	D (mm)	t (mm)	t/D	L/D	N	Amin/Ab
101	90	6.350	12.700	2.000	2.000	1	1.0
102	90	6.350	7.144	1.125	1.125	1	1.0
103	90	6.350	1.588	0.250	0.250	1	1.0
104	55	6.350	12.700	2.000	2.442	1	1.0
105	55	6.350	7.144	1.125	1.373	1	1.0
106	55	6.350	1.588	0.250	0.305	1	1.1
107	20	6.350	12.700	2.000	5.848	1	1.0
108	20	6.350	7.144	1.125	3.289	1	1.0
109	20	6.350	1.588	0.250	0.731	1	2.3
301	90	3.572	7.144	2.000	2.000	3	1.0
302	90	3.572	4.018	1.125	1.125	3	1.0
303	90	3.572	0.893	0.250	0.250	3	1.0
304	55	3.572	7.144	2.000	2.442	3	1.0
305	55	3.572	4.018	1.125	1.373	3	1.0
306	55	3.572	0.893	0.250	0.305	3	1.1
307	20	3.572	7.144	2.000	5.848	3	1.0
308	20	3.572	4.018	1.125	3.289	3	1.0
309	20	3.572	0.893	0.250	0.731	3	2.3
1501	90	0.794	1.588	2.000	2.000	15	1.0
1504	55	0.794	1.588	2.000	2.442	15	1.0
1507	20	0.794	1.588	2.000	5.848	15	1.0

FIBE Phase II – Test Article Matrix

FIBE Phase II Data

Effect of Mach Number

Effect of Hole Inclination Angle

Effect of Hole Inclination Angle (cont).

Thick vs. Thin Plate

Effect of t/D

Effect of D/δ^*

Unsteady Observation

9307 has outboard holes of 307 plugged

C307, 20 deg., t/D=2

M=3, 20 deg., t/D=2

Preliminary Statistical Model

(a) Plate 101: $\alpha=90^{\rm o},\,D=6.339\,{\rm mm},\,t/D=2.011$

(b) Plate 103: $\alpha = 90^{\circ}$, $D = 6.337 \,\mathrm{mm}$, t/D = 0.259

(c) Plate 104: $\alpha = 55^{\circ}$, $D = 6.354 \,\mathrm{mm}$, t/D = 2.005

(d) Plate 301: $\alpha=90^{\circ},\ D=3.585\,\mathrm{mm},$ t/D=1.984

(e) Plate 303: $\alpha = 90^{\circ}$, $D = 3.561 \,\mathrm{mm}$, t/D = 0.266

(f) Plate 304: $\alpha = 55^{\circ}$, $D = 3.545 \,\mathrm{mm}$, t/D = 2.002

(g) Plate 1501: $\alpha = 90^{\circ}$, $D = 0.794 \,\text{mm}$, t/D = 2.115

(h) Plate 1504: $\alpha = 55^{\circ}$, $D = 0.794 \,\text{mm}$, t/D = 2.003

$$Q_{scaled} = \sum_{i=1}^{N_t} c_i \cdot I_i$$

Model excludes 20° data

$$----$$
 Nt = 43

Flow Coefficient Scaling

FIBE Phase III testing to look at multi-hole arrays under same conditions as isolated holes.

Phase II Summary

- Comprehensive isolated-hole flow coefficient database obtained.
 - Some cases incomplete surveys due to bleed capacity limitations.
 - Plenum dynamic pressures recorded.
- Analysis and model development continues at CWRU
 - M. Eichorn MS Thesis (Summer 2013)
 - Improved statistical model
 - Flow physics based model
 - Unsteady pressure data analysis

FIBE PHASE III TEST PLANNING

FIBE Phase III

- Near Term Flow Coefficient for Hole Arrays
 - 15x15cm SWT Same flow conditions as Phase II
 - Initially focus on 90° holes with same parameters as Phase II
 - Porosity 10, 20, 30, 40%
 - Accumulate data with N_{row}=1, 2, 3, etc

Rows filled with Cerrobend (low melting point alloy)

NASA

FIBE Phase III

- 15x15cm SWT Bleed Capacity Upgrade
 - Current mechanical Stokes pump capacity limits bleed configurations to isolated-hole.
 - Not adequate for all the configurations of Phase II
 - To perform Phase III testing, target is to have ability to remove 100% of the boundary layer on two walls of the tunnel over Mach number range from 1.4 to 3.0.
 - Proposal submitted to NASA GRC Technology Investment Fund
 - TIF funds \$100K (later augmented to a higher level)
 - Proposal total cost \$57K (excludes some installation costs)

FIBE Phase III

FIBE Phase III

- 15x15cm SWT Axisymmetric Test Section
 - Genesis from CFD Turbulence Model Validation Experiments
 - NASA FAP Aero Sciences Project study.
 - Also appropriate for "Cornerless Bleed Experiments"
 - Test Section Diameter ~ 17cm (6.7in)
 - Still need enhanced bleed capacity.

Questions?