Database relazionali: normalizzazione

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Normalizzazione di uno schema relazionale

Partiamo dalle considerazioni seguenti:

- 1. <u>una relazione di uno schema relazionale dovrebbe derivare da una singola entità dello schema concettuale</u>
- 2. <u>uno schema relazionale dovrebbe essere semplice da spiegare in linguaggio naturale</u>

Normalizzazione di uno schema relazionale

emp_dept(emp_id, emp_name, emp_surname, dept_id, dept_name, dept_address)

<u>Difetto di progettazione</u>: 2 entità diverse tradotte in un'unica relazione

Update anomalies

- Lo schema logico precedente soffre di una **insertion anomaly** (anomalia di inserimento):
 - per inserire un dipendente, dovremmo specificare anche tutte le informazioni relative al reparto per cui lavora
 - se non lavora per nessun reparto, dovremmo inserire valori NULL per dept_id, dept_name e dept_address
 - e se volessimo archiviare le informazioni relative ad un reparto che non ha ancora dipendenti?

Update anomalies

- Lo schema logico precedente soffre di una deletion anomaly (anomalia di cancellazione):
 - se cancelliamo il record dell'ultimo dipendente rimasto in un reparto, scompariranno anche le informazioni relative al reparto

Update anomalies

- Lo schema logico precedente soffre di una modification anomaly (anomalia di modifica):
 - se la location di un reparto cambia, dobbiamo aggiornare tutte le tuple dei dipendenti che lavorano in quel reparto
 - se ci dimentichiamo di aggiornare anche solo una tupla, il database sarà in uno stato *inconsistente*

Dipendenze funzionali

- **Definizione**: una <u>dipendenza funzionale</u> X -> Y, dove X e Y sono due insiemi di attributi di una relazione R, è il seguente vincolo:
 - per ogni coppia di tuple t_1 e t_2 di R tali che $t_1[X] = t_2[X]$, vale anche $t_1[Y] = t_2[Y]$
- Esempio: relazione R(A, B, C, D), con una sua estensione

Α	В	С	D
a1	b4	c1	d1
a2	b4	c1	d2
a3	b1	c2	d3
a1	b4	c3	d4

Dipendenze funzionali

- **Definizione**: una <u>dipendenza funzionale</u> X -> Y, dove X e Y sono due insiemi di attributi di una relazione R, è il seguente vincolo:
 - per ogni coppia di tuple t_1 e t_2 di R tali che $t_1[X] = t_2[X]$, vale anche $t_1[Y] = t_2[Y]$
- **NB**: una FD (functional dependency) X -> Y sussiste se non è violata
- Esempio: relazione R(A, B, C, D), con una sua estensione

Α	В	С	D
a1	b4	c1	d1
a2	b4	c1	d2
a3	b1	c2	d3
a1	b4	с3	d4

Normalizzazione

- Gli obiettivi della **normalizzazione** sono:
 - 1. <u>la minimizzazione delle ridondanze</u>
 - 2. <u>la minimizzazione delle anomalie</u>

 Uno schema relazionale che non rispetta una forma normale verrà quindi scomposto in più schemi relazionali (conservando però le stesse informazioni)

First Normal Form (1NF)

• La **1NF** richiede che in una relazione i valori degli attributi siano tutti **atomici**

DEPARTMENT			
<u>id</u>	name	locations	
1	IT	San Francisco, Cupertino, Los Angeles	
2	Sales	San Diego	
3	HR	San Diego, Sacramento	

la relazione DEPARTMENT viola la 1NF: i valori di locations non sono tutti atomici

First Normal Form (1NF)

• La 1NF richiede che in una relazione i valori degli attributi siano tutti atomici

DEPARTMENT			
<u>id</u>	name		
1	IT		
2	Sales		
3	HR		

DEPT_LOCS			
<u>id_dept</u>	location		
1	San Francisco		
1	Cupertino		
1	Los Angeles		
2	San Diego		
3	San Diego		
3	Sacramento		

- questa progettazione logica rispetta la 1NF
- le informazioni della versione non normalizzata sono conservate

Second Normal Form (2NF)

- La **2NF** richiede che in una relazione R tutti gli attributi non parte della PK siano completamente funzionalmente dipendenti dalla PK
- X -> Y è una **full functional dependency** se X {A} -> Y non è più una functional dependency

doct_pat			
doct_ssn	pat_ssn	doct_name	pat_name
1	2	giovanni	maria
1	3	giovanni	mario
2	5	giuseppe	francesco

non è in 2NF, infatti:
doct_ssn -> doct_name
pat_ssn -> pat_name

la PK è {doct_ssn, pat_ssn}, ma gli altri attributi dipendono da sottoinsiemi della PK

Third Normal Form (3NF)

- Uno schema relazionale R è in **3NF** se rispetta la 2NF, e nessun attributo non primo di R è transitivamente funzionalmente dipendente dalla PK
- Una FD X -> Y è transitiva se esiste un insieme di attributi Z non primi tale che valgono le FD X -> Z e Z -> Y

DOCT_HSP_WARD				
<u>d ssn</u>	d_name	w_number	w_name	w_head_ssn
1	mario	3	cardiology	4
2	maria	3	cardiology	4
3	giuseppe	4	ER	6
4	francesca	4	ER	6

Dipendenze funzionali:

d_ssn -> w_head_ssn si
ma anche:
d_ssn -> w_number si
w_number -> w_head_ssn si

X: d_ssn, Y: w_head_ssn,

Z: w_number

DOCT_HSP_WARD viola la 3NF