

- 1. Logistic Regression
- 2. KNN
- 3. Decision Tree
- 4. Random Forest
- 5. SVM

14 Project goals

Final Ensembled model should predict correctly and should give desired metrics.

Ensemble learning is a machine learning technique that involves combining multiple models to improve the overall performance and accuracy of a prediction or classification task

Stacking

Problem statement

To detect Person has Diabetes or Not based on the following features in the dataset.

- No. of pregnancies
- Glucose
- Blood Pressure
- Skin Thickness
- Insulin
- Body Mass Index (BMI)
- Diabetes Pedigree Function
- Age

Data Preprocessing

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
0	2	138	62	35	0	33.6	0.127	47	1
1	0	84	82	31	125	38.2	0.233	23	0
2	0	145	0	0	0	44.2	0.630	31	1
3	0	135	68	42	250	42.3	0.365	24	1
4	1	139	62	41	480	40.7	0.536	21	0
1995	2	75	64	24	55	29.7	0.370	33	0
1996	8	179	72	42	130	32.7	0.719	36	1
1997	6	85	78	0	0	31.2	0.382	42	0
1998	0	129	110	46	130	67.1	0.319	26	1
1999	2	81	72	15	76	30.1	0.547	25	0

2000 rows × 9 columns

	Corre	elation	Table						
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcom
Pregnancies	1.000000	0.120405	0.149672	-0.063375	-0.076600	0.019475	-0.025453	0.539457	0.22443
Glucose	0.120405	1.000000	0.138044	0.062368	0.320371	0.226864	0.123243	0.254496	0.45842
BloodPressure	0.149672	0.138044	1.000000	0.198800	0.087384	0.281545	0.051331	0.238375	0.07595
SkinThickness	-0.063375	0.062368	0.198800	1.000000	0.448859	0.393760	0.178299	-0.111034	0.07604
Insulin	-0.076600	0.320371	0.087384	0.448859	1.000000	0.223012	0.192719	-0.085879	0.12092
BMI	0.019475	0.226864	0.281545	0.393760	0.223012	1.000000	0.125719	0.038987	0.27672
abetesPedigreeFunction	-0.025453	0.123243	0.051331	0.178299	0.192719	0.125719	1.000000	0.026569	0.15545
Age	0.539457	0.254496	0.238375	-0.111034	-0.085879	0.038987	0.026569	1.000000	0.23650

0.076040

Logistic Regression

0.075958

This algorithm comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables.

0.120924 0.276726

Outcome

0.224437 0.458421

0.236509 1.000000

KNN model

- Graphical Representation of all the possible solutions to a decision.
- Decisions are based on conditions.
- Compared to other algorithms decision trees requires less effort for data preparation during preprocessing.
- A Decision tree model is very intuitive

Random Forest

- Builds with multiple decision trees and merges them together.
- More accurate and stable prediction.
- Solves the problem of Overfitting.

Badinard with the "Bagging" method.

Bagging, short for "Bootstrap Aggregating," is a machine learning ensemble technique that involves training multiple models on different subsets of the training data, and then combining their predictions to produce a final output. The idea behind bagging is to reduce the variance of the model and improve its generalization performance.

Works well with exact Linearly separable data. It performs well for dataset with higher dimensions also.

SVM does not perform very well when the data set has more noise i.e. target classes are overlapping

Confusion matrix

Logistic Regression

[[356 41] [87 116]]

0.7866666666666666

Random Forest

[[394 3] [16 187]]

0.9683333333333334

KNN

[[346 51] [73 130]]

SVM

[[350 47] [89 114]]

0.7733333333333333

Decision Tree

· [[382 15] [9 194]]

0.96

Logistic regression

Train Result:

Accuracy Score: 77.57%

CLASSIFICATION REPORT:

macro avg weighted avg 1 accuracy 0.792271 0.728767 0.775714 0.760519 0.770453 precision recall 0.553015 0.775714 0.775714 0.892274 0.722644 0.628842 0.775714 0.766995 f1-score 0.839304 0.734073 919.000000 481.000000 0.775714 1400.000000 1400.000000 support

Test Result:

Accuracy Score: 78.67%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	0.803612	0.738854	0.786667	0.771233	0.781702
recall	0.896725	0.571429	0.786667	0.734077	0.786667
f1-score	0.847619	0.644444	0.786667	0.746032	0.778878
support	397.000000	203.000000	0.786667	600.000000	600.000000

KNN

Train Result:									
Accuracy Score: 88.93%									
CLASSIFICA	CLASSIFICATION REPORT:								
	0	1	accuracy	macro avg	weighted avg				
precision	0.917031	0.836777	0.889286	0.876904	0.889458				
recall	0.914037	0.841996	0.889286	0.878016	0.889286				
f1-score	0.915531	0.839378	0.889286	0.877455	0.889367				
support	919.000000	481.000000	0.889286	1400.000000	1400.000000				
Test Result:									
Accuracy Score: 79.33%									
CLASSIFICATION REPORT:									
	0	1	accuracy	macro avg	weighted avg				
precision	0.825776	0.718232	0.793333	0.772004	0.789390				
recall	0.871537	0.640394	0.793333	0.755965	0.793333				
f1-score	0.848039	0.677083	0.793333	0.762561	0.790199				
support	397.000000	203.000000	0.793333	600.000000	600.000000				

Train Result:

Accuracy Score: 100.00%

CLASSIFICATION REPORT:

1 accuracy macro avg weighted avg 1.0 precision 1.0 1.0 1.0 recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 f1-score 1.0 1.0 919.0 481.0 1400.0 1400.0 support

Test Result:

Accuracy Score: 96.00%

CLASSIFICATION REPORT:

macro avg weighted avg 1 accuracy 0.976982 precision 0.928230 0.96 0.952606 0.960488 recall 0.962217 0.955665 0.96 0.958941 0.960000 0.969543 0.941748 0.955645 0.960139 f1-score 0.96 support 397,000000 203.000000 0.96 600.000000 600.000000

Random Forest

Train Result:

Accuracy Score: 99.86%

CLASSIFICATION REPORT:

1 accuracy macro avg weighted avg 0.997828 1.000000 0.998571 0.998914 0.998575 precision recall 1.000000 0.995842 0.998571 0.997921 0.998571 0.998913 0.997917 0.998571 0.998415 0.998571 f1-score

Test Result:

support

481.000000

Accuracy Score: 96.83%

919.000000

CLASSIFICATION REPORT:

macro avg weighted avg 1 accuracy 0.960976 0.984211 0.968333 0.972593 0.968837 precision recall 0.921182 0.968333 0.956813 0.968333 0.992443 0.976456 0.951654 0.968333 0.964055 0.968065 f1-score 600.000000 support 397.000000 203.000000 0.968333 600.000000

0.998571 1400.000000

1400.000000

SVM

Train Result:

Accuracy Score: 76.86%

CLASSIFICATION REPORT:

1 accuracy weighted avg macro avg precision 0.791381 0.707124 0.768571 0.749253 0.762433 recall 0.879217 0.557173 0.768571 0.718195 0.768571 f1-score 0.832990 0.623256 0.768571 0.728123 0.760931 919.000000 481.000000 0.768571 1400.000000 1400.000000 support

Test Result:

Accuracy Score: 77.33%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	0.797267	0.708075	0.773333	0.752671	0.767090
recall	0.881612	0.561576	0.773333	0.721594	0.773333
f1-score	0.837321	0.626374	0.773333	0.731847	0.765950
support	397.000000	203.000000	0.773333	600.000000	600.000000

Thank you

