### Display

# What is a Display?

- A display is a computer output surface and projecting mechanis shows text and often graphic images to the computer user.
- Using a cathode ray tube (CRT) or
- Using liquid crystal display (LCD) or
- Using light-emitting diode or
- Using gas plasma or other image projection technology.

### **CRT Display**

### **CRT Fundamentals:**

- $\checkmark$ In the CRT system, an electron gun at the backside of the tube ger beam of electrons.
- ✓The electron beam is directed towards the screen in the front of the tu a high voltage.
- ✓The screen is coated with a phosphor substance, which emits light v electrons strike the substance.
- ✓The color of the emitted light is the characteristics of the phosphor sub

# **CRT Display System**



### Raster-scan

# How Images are produced on CRT screen:

- ✓The electron beam is swept from left to right in the 'X' direction ac screen by applying a sweep voltage to the horizontal plates of the tube.
- ✓ After that it return back to the left immediately.
- Simultaneously, the beam is swept slowly in the 'Y' direction from the to bottom of the screen by applying another sweep voltage to the vertical the tube.
- It makes the beam to trace a new line every time it scans from left to rig

### Raster-scan

- The beam is switched off when it reaches the right bottom corner.
- Then return back to the left top corner to start over.
- A CRT display system sweeps the beam at the rate of 15,600 H horizontal direction and 60 Hz in the vertical direction.
- This is known as raster-scan.
- The X and Y sweeps make the entire screen light.
- The image is produced on the screen by controlling the intensity of t while it sweeps across the screen.

### Raster-scan

- The display system generates three signals to produce an image
- Horizontal sweep signal,
- Vertical sweep signal, and
- Video signal
- The horizontal and vertical oscillator within CRT monitor g

the horizontal sweep signal and vertical sweep signal respe

A video amplifier within the CRT monitor generates vide that controls the intensity of the beam and produces an i the screen.

### **Character Generation:**

- Characters are formed on a CRT screen in a dot matrix format.
- ✓ Each character is generated with 35 dots (5X7 matrix).
- ✓The characters are formed on the screen by tuning on the beam at plac the dots are to be illuminated in each scan line.
- The dot information is serially input to the CRT display.
- $\checkmark$ CRT displays can generally display 25 rows of characters with 80 char each row.
- ✓ High quality monitors use 7X9, 7X12, or 9X14 matrix size for each chara

### 5 X 7 dot matrix



### Signal Generation:

- ✓The ASCII codes of the characters to be displayed on the entire sc stored in a RAM called data buffer, screen memory or display memory.
- ✓The character generator ROM provides dot patterns for each scan line
- $\checkmark$ The ROM in the figure forms the character of size 7X9 matrix in 9X14 m $_{\circ}$ ✓ Extra dots introduce the space between characters.

# Signal Generation – Circuit Operation:

- ✓The character counter and the row counter provides the address of the in screen memory where the ASCII code is stored.
- ✓ The ASCII code is given at the address input of the character generator
- ✓The scan line counter provides the line number for which the dot patt be generated.
- ✓ SCL also generates four additional address inputs to the ROM.
- by the RAM and for the scan line number provided by the scan line cour ✓The ROM outputs the dot pattern of the character for the ASCII code
- ✓ The parallel dot pattern is converted to serial form.

# Signal Generation - Circuit Operation:

- After the nine dots are swept out, the character counter is incremented
- ✓The screen memory now provides the ASCII code for the next character
- ✓ As the scan line counter continues to output the same line number, now outputs the dot pattern of the next character for the same line.
- ✓This process is repeated till the dot patterns of the scan line for al characters in the row are swept out.
- $\checkmark$ A HSYNC pulse is produced to bring back the beam to the start of the ne
- The character counter is now reset and the scan line counter is increme

# Signal Generation – Circuit Operation:

- Scanning of the next line begins.
- ✓This process continues to complete all the scan lines of all the characte
- ✓The character row counter is now incremented and the above p repeated till all the scan lines of all the characters to be displayed in row are swept out.
- ✓ The same is repeated till all the scan lines of all the characters in all the swept out.
- ✓ When the beam reaches the right bottom, a VSYNC pulse is produced back the beam to left top corner to start of new frame.
- The scanning of entire screen is repeated 60 times in one second.

# Signal Generation



### Signal Generation:

- ✓ As the screen displays characters in 80 columns and 25 rows, the siz screen memory would be 2KB (25X80).
- ✓ Additional 2KB memory is used in CRT interfaces to hold attribute each character.

- For displaying graphics information in the screen, dot patterns of im stored in the display RAM and sent directly to the shift register in se
- Then it turn swept out on VIDEO line.
- The character generator ROM is not used in graphics display.
- Each byte in the RAM providers pattern for eight dots.
- As a dot represents the smallest possible picture element on the each dot is called as a *picture element* or simply a *pixel*.
- The number of pixels on the screen depicts the resolution of the scr
- The resolution is denoted as number of horizontal pixels by nu vertical pixels.

#### Contd...

- Typical resolutions for common monitors are:
- 320X200 (CGA Colour Graphics Adapter),
- ☐ 640X480 (VGA Video Graphics Array),
- 800X600 (SVGA Super VGA) and
- □ 1024X768 (XGA Extended VGA).
- High resolution screens are capable of displaying detailed graphic in

#### Contd...

### Monochrome Graphics:

- ✓The pixels are simply illuminated or blackened to display a graphic imag
- ✓ Each pixel uses one bit of data in the RAM.
- $\checkmark$ The eight bits from each location in the screen memory provide dot pa eight successive pixels.
- ✓ Each byte is loaded into the shift register in sequence and shifted ou clock rate.
- Known as bit-mapped raster-scan display.
- An image of 320X200 resolution requires 320X200 bits = 64,000 bits = 8
- ✓ More space than for text displaying.

#### Contd...

#### Colour Graphics:

- Three primary colours: Red, Green, Blue.
- ✓R, G, B can be mixed in different intensities to obtain any desired colour
- Each pixel on the screen of a colour CRT tube is divided into three sma rectangles and coated with red, green, and blue phosphors.
- ✓ Three different electron guns are used to illuminate the dots.
- When the dots coated with red, green, and blue phosphor are hit by beams, they emit respective colours.
- ✓ Three dots are very closely spaced, appear as a single pixel.

Contd...

#### Colour Graphics:

✓To represent 16 colours, we need 4 bits.

✓To represent 256 colours, we need 8 bits.

√16 bits = 65,536 colours (high colour)

 $\checkmark$  24 bits = 16,777,216 colours (true colour).

#### Exercise

#### (1/2)

Example 8.1 V

Determine the amount of memory needed to display an image in (i) 16 colours a resolution, and (ii) 256 colours and 640 × 480 resolution.

#### Solution

- (i) Memory needed is  $640 \times 480 \times 4 = 1,228,800$  bits = 153,600 bytes  $\approx 15$ (ii) Memory needed is  $640 \times 480 \times 8 = 2,457,600$  bits = 307,200 bytes  $\approx 30$

### Exercise

#### (2/2)

#### Example 8.2

Compute the dot clock frequency required for refreshing graphics screen resolution with 256 colours at frame refresh rate of 50 Hz.

#### Solution

Memory required for displaying the image in  $640 \times 480$  resolution and 256 color The whole memory should be read 50 times in one second for refreshing the sc refresh rate. Hence, the frequency is  $300 \times 10^3 \times 50 = 15 \text{MHz}$ . W

### References

- 1. Microprocessors, PC Hardware and Interfacing by N. Mathivanan
- 2. Online materials