Basi di Dati

Il modello relazionale dei dati

Basi di Dati – Dove ci troviamo?

Cronologia dei modelli per la rappresentazione dei dati

- Modello gerarchico (anni 60)
- Modello reticolare (anni 70)
- Modello relazionale (anni 80)
- Modello a oggetti (anni 90)

Esempio di modello reticolare

Esempio di modello gerarchico

Cronologia del modello relazionale

- Inventato da Codd nel 1970
 - (IBM Research di Santa Teresa, Cal)
- Primi progetti:
 - SYSTEM R (IBM), Ingres (Berkeley Un.)
- Prima versione del linguaggio SQL (allora SEQUEL): 1974
- Primi sistemi commerciali: inizio anni '80 (Oracle, IBM-SQL DS e DB2, Ingres, Informix, Sybase)
- Successo commerciale: dal 1985.

Definizione informale

Definizione formale

- ✓ Dominio D:
 - un qualunque insieme di valori
- Prodotto cartesiano su n domini (non necessariamente distinti), D1 x D2 x ...Dn:
 - insieme di tutte le n-ple (tuple) < d1, d2, ... dn >, con d_i∈Di, 1 ≤i ≤ n
- Relazione R su D1, D2, ..., Dn : un qualunque sottoinsieme di D1 x D2 x ... Dn $R \subseteq D1 \times D2 \times \cdots \times Dn$

Esempio

- \bullet D1 = (a,b)
- \bullet D2 = (1,2,3)
- \bullet D1 x D2 = (<a,1>, <b,1>, <a,2>, <b,2>, <a,3>, <b,3>)

- R1 = (<a,1>, <b,3>)
- R2 = (<a,2>, <b,1>, <b,3>)
- ❖ R3 = ()
- R4 = (<a,1>, <b,1>, <a,2>, <b,2>, <a,3>, <b,3>)

Proprietà

- Grado della relazione:
 - numero di domini (n)
- Cardinalità della relazione:
 - numero di tuple
- Attributo:
 - nome assegnato ad un dominio in una relazione

Proprietà

Schema di una relazione R:

[I nomi degli attributi in uno schema devono essere tutti distinti fra loro]

- \circ (Istanza della) relazione R:
 - un insieme r di tuple su (attr1, ..., attrN)
- t[attr] denota il valore della tupla t R1(A,B) sull'attributo attr

R2(C,D)

Α	В
а	1
b	3

С	D
С	1
b	3
а	2

Confronto della terminologia

DEFINIZIONE	DEFINIZIONE
FORMALE	INFORMALE
relazione	tabella
attributo	colonna
tupla, n-pla	riga
dominio	tipo di dato
cardinalita'	numero di righe
grado	numero di colonne

Una differenza significativa:

DEFINIZIONE FORMALE assenza di duplicati

DEFINIZIONE INFORMALE possibili duplicati

13

Base di dati

- Schema di base di dati:
 - un insieme di schemi di relazione

$$R = \{R_1(X_1), ..., R_k(X_k)\}$$

[tutti i nomi di relazioni della base di dati devono essere differenti]

- Istanza della base di dati su uno schema R= {R1(X1), ..., Rn(Xn)}:
 - insieme di relazioni $r = \{r_1, ..., r_n\}$ (con r_i relazione su R_i)

R1(A,B)

Α	В
а	1
b	3

R2(C,D)

С	D
С	1
b	3
a	2

studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

Interrogazioni

quali professori hanno esaminato Carlo?

studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

Interrogazioni

quali studenti hanno preso 30 in matematica? studente

MATR	NOME	CITTA'	C-DIP
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	VOTO
123	1	7-9-14	30
123	2	8-1-15	28
702	2	7-9-14	20

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Meo

Esempio: gestione personale

impiegato

MATR	NOME	DATA-ASS	SALARIO	MATR-MGR
1	Piero	1-1-12	1500 €	2
2	Giorgio	1-1-14	2000 €	null
3	Giovanni	1-7-13	1000 €	2

assegnamento

MATR	NUM-PROG	PERC
1	3	50
1	4	50
2	3	100
3	4	100

progetto

NUM-PROG	TITOLO	TIPO
3	Idea	Esprit
4	Wide	Esprit

Informazione incompleta nel modello relazionale

- Tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (ma non è un valore del dominio)
- t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo (che indichiamo qui con NULL)
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Interrogazioni

chi e' il manager di Piero? impiegato

MATR	NOME	DATA-ASS	SALARIO	MATR-MGR
1	Piero	1-1-12	1500 €	2
2	Giorgio	1-1-14	2000 €	null
3	Giovanni	1-7-13	1000€	2

assegnamento

MATR	NUM-PROG	PERC
1	3	50
1	4	50
2	3	100
3	4	100

progetto

NUM-PROG	TITOLO	TIPO
3	Idea	Esprit
4	Wide	Esprit

Interrogazioni

in quali tipi di progetti lavora Giovanni? impiegato

MATR	NOME	DATA-ASS	SALARIO	MATR-MGR
1	Piero	1-1-12	1500 €	2
2	Giorgio	1-1-14	2000€	null
3	Giovanni	1-7-13	1000€	2

assegnamento

MATR	NUM-PROG	PERC
1	3	50
1	4	50
2	3	100
3	4	100

progetto

NUM-PROG	TITOLO	TIPO
3	Idea	Esprit
4	Wide	Esprit

Esempio: gestione ordini

Interrogazioni

- quali ordini ha emesso Paolo?
- quanti ordini ha emesso Paolo?
- quante candele sono state ordinate il 5/7/15?
- calcolare per ciascun cliente la somma degli importi di tutti gli ordini
- estrarre l'ordine di importo più alto

Riflessioni

Differenza fra schema e istanza

- Due attività assai differenti:
 - progetto dello schema
 - gestione dell'istanza
- Passaggio dai dati all'informazione
 - query language

Una base di dati "scorretta"

Esami	Studente	Voto	Lode	Corso
	276545	32		01
	276545	30	e lode	02
	787643	27	e lode	03
	739430	24		04

Studenti

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Come arricchire lo schema?

VINCOLI DI INTEGRITA':

escludono alcune istanze in quanto, pur sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse

VINCOLI DI INTEGRITA', SCHEMI E ISTANZE

- corrispondono a proprietà del mondo reale modellato dalla base di dati
- o interessano a livello di schema (con riferimento cioè a tutte le istanze)
- ad uno schema associamo un insieme di vincoli e consideriamo corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- un'istanza può soddisfare altri vincoli ("per caso")
- CHIAVI
- VINCOLI SUI VALORI NULLI (poi)
- INTEGRITA' REFERENZIALE (poi)
- VINCOLI GENERICI (poi)

Nozione di CHIAVE

- Sottoinsieme degli attributi dello schema che ha la proprietà di unicità e minimalità
- unicità:
 - non esistono due tuple con chiave uguale
- minimalità:
 - sottraendo un qualunque attributo alla chiave si perde la proprietà di unicità

Definizione di SUPERCHIAVE e CHIAVE

- un insieme K di attributi è superchiave per r se r non contiene due ennuple distinte t₁ e t₂ con t₁[K] = t₂[K]
- K è chiave per r se è una superchiave minimale per r (cioè non contiene un'altra superchiave)

Chiavi nell'esempio: gestione degli esami universitari

studente

MATR	NOME	CITTA'	C-DIP

esame

MATR	COD-CORSO	DATA	VOTO

COD-CORSO	TITOLO	DOCENTE

Chiavi nell'esempio: gestione personale

impiegato

MATR	NOME	DATA-ASS	SALARIO	MATR-MIL

assegnamento

MATR	NUM-PROG	PERC

progetto

NUM-PROG	NOME	PREZZO

Chiavi nell'esempio: gestione ordini

cliente **COD-CLI INDIRIZZO** P-IVA ordine **COD-ORD COD-CLI DATA IMPORTO** dettaglio **COD-ORD COD-PROD** QTA prodotto **NOME PREZZO COD-PROD**

Con molteplici chiavi:

Una è definita CHIAVE PRIMARIA le rimanenti chiavi sono SECONDARIE (ALTERNATIVE)

CLIENTE (COD-CLIENTE, INDIRIZZO, P-IVA)

AK: P-IVA

Chiave primaria: COD-CLIENTE (indicata sottolineando i relativi attributi)

Chiave secondaria: P-IVA

(indicata a parte dalla sigla AK, Alternative Key)