Anushka Satav G

(623)547-9249 | linkedin.com/in/anushka-satav-g55555 | scholar.google.com/citations?hl=en&user=Jf1q8iIAAAAJ | github.com/anushka002

PROFILE

I am a passionate, research-driven robotics engineer, committed to solving real-world challenges by advancing autonomous navigation, motion planning, and robot manipulation to elevate robotics globally. With hands-on experience deploying autonomous behaviors and perception-driven control pipelines on aerial, aquatic, and ground robots, I specialize in integrating AI, perception, and control pipelines for intelligent robotic systems. My work focuses on advancing Sim2Real performance, autonomous decision-making, and practical deployment of robotics in complex environments. Fuelled by a desire to invent and simplify and deliver results, I design impactful solutions, learning daily to make robots agile and impactful.

EDUCATION

Masters in Robotics and Autonomous Systems (AI): Arizona State University, Tempe, AZ

August 2024 - May 2026

Achievements: CGPA: 4/4, NAMU Scholarship Holder (\$10,000), Engineering Graduate Fellowship Holder (\$1000)

Relevant coursework: Artificial Intelligence, Robotic Systems-I & II, Algebra, Experimentation & Deployment of Robots, Space Robotics & AI, NLP, Mechatronics

Bachelor of Technology in Robotics and Automation: MIT World Peace University, Pune, India

August 2019 - July 2023

Achievements: CGPA: 9.7/10, Silver Medalist, Second Rank holder, Merit Scholarship Holder 2019, 2020-21, 2021-22 (\$3000)

SKILLS

Programming and Robotics: Python, C, C++, ROS/ROS2, Linux (Ubuntu), MATLAB/Simulink, SolidWorks, Fusion 360, CAD, ABAOUS, ANSYS Workbench, FEA, Drones, Machine Learning (YOLO, OpenCV), Control System, Path Planning, NLP, Gazebo, MoveIt! Research and Tools: Prototyping, Robot Manipulation, Computer Vision, Microsoft Office tools, Git/GitHub, Docker Key Strengths: Problem-solving, Effective Communication, Technical/Verbal/Written Presentations, Teamwork, Leadership, Management

PUBLICATIONS AND PRESENTATIONS

Towards Robotic Trash Removal with Autonomous Surface Vessels

May 2025

IEEE International Conference on Robotics and Automation (ICRA)

- Paper accepted for "Robots in the Wild" Track at the IEEE International Conference on Robotics and Automation 2025, Atlanta, Georgia, USA.
- Developed an autonomous USV system for trash detection and collection in outdoor aquatic environments.
- Integrated YOLOv8 for trash detection, autonomous navigation, and real-time decision-making using ROS.

A State-of-the-Art Review on Robotics in Waste Sorting: Scope and Challenges

May 2023

Q2 Journal- International Journal on Interactive Design and Manufacturing (IJIDeM)

Demonstrated ownership by diving deep into investigating robotic systems' transformative potential in waste management.

Overview of Autonomous Vehicles and its Challenges

December 2022

Conference- Techno-Societal 2022: 4th International Conference on Advanced Technologies for Societal Applications

EXPERIENCE

Research Volunteer AAIR Lab, Arizona State University **January 2025 - August 2025**

Exploring robot motion planning and path planning pipelines, learning ROS, Gazebo, and simulation techniques.

Executed fundamental Movelt-based control tasks to test and understand ROS fundamentals.

Robotics Engineering Intern

May 2023 - November 2023

(Remote)

AZ, USA

- Tackled robotics tasks with Arduino libraries, Nav2 for autonomous navigation, and ROS2 software development, enhancing system
- Debugged and wrote reliable code, fostering team trust through consistent remote collaboration.
- Studied ROS 2 basics and advanced, Git and GitHub from scratch, and operated Linux with confidence.

Void Robotics

February 2023 - September 2023

Pune, India

- Hexagon Manufacturing Intelligence Pvt. Ltd.
 - Conducted simulations (static, linear, non-linear, and dynamic) of 10 different models creating non-linear materials on MSC Apex, Nastran, and Dytran, creating custom Python tools for FEA automation.
 - Created a tool to automate model building processes, constraints, boundary conditions, post-processing for Top Load Analysis on MSC Apex using Nastran for non-linear analysis, upholding high standards to reduce model creation time by 90% (from 20 to less than 2 min).

RESEARCH INTERESTS

Robotics: Autonomous Systems, Mobile Robots, Human-Robot Interaction, Sim2Real Transfer, Intelligent Motion Planning, Perception-driven Control, Robot Manipulation, Space Robotics.

Artificial Intelligence: Large Language Models (LLMs), Natural Language Processing (NLP), Deep Learning, Computer Vision, Reinforcement Learning, Multi-Modal AI.

Autonomous Drone - Rock Detection, Mapping & Landing in PX4 Gazebo

March 2025 - April 2025

Arizona State University | RAS 598 - Space Robotics and AI (A+)

Tempe, AZ

- Developed a ROS2-based autonomous drone system using PX4 SITL to identify, map, and analyze cylindrical rock formations in simulation.
- Implemented a boustrophedon (lawnmower) search strategy with real-time ArUco marker detection and precision landing on target cylinder.
- Designed a complete mission pipeline with state transitions:
 - $\mathsf{TAKEOFF} \to \mathsf{SURVEY} \to \mathsf{GOTO} \ \ \mathsf{MARKER} \to \mathsf{HOVER} \to \mathsf{DESCEND} \to \mathsf{LAND}.$
- Evaluated performance across multiple trials with partial success in precision landing, refined frame transformations and descent logic.

Parrot Minidrone - Autonomous Visual Tracking and Target Landing (Final Project)

March 2025 – April 2025

Arizona State University | RAS 546 - Robotic Systems II (A+)

Tempe, AZ

- Programmed the Parrot Mambo Minidrone in MATLAB Simulink to follow red square attached to Line Follower Robot with image processing.
- Designed Stateflow-based control logic for color tracking and correction, and adaptive descent with error thresholding.
- Tuned image preprocessing and centroid extraction for reliable navigation and smooth landing performance in dynamic conditions.

Parrot Minidrone - Red Line Following & Precision Landing

March 2025 - April 2025

Arizona State University | RAS 546 - Robotic Systems II (A+)

Tempe, AZ

- Programmed the Parrot Mambo Minidrone in MATLAB Simulink to autonomously follow a red line and land on a red circular target.
- Designed image processing logic for dynamic line tracking and color-based descent correction.
- Tuned adaptive control using centroid detection and error thresholding to ensure smooth trajectory and accurate landing.

PitchPerfect - Real-Time AI Feedback for Mock Interviews (24-Hour, 2nd Prize Winner, \$300 Award)

April 2025

Arizona State University | Innovation Hackathon 2025

Tempe, AZ

- Developed a Gradio-based NLP web application integrating whisper.cpp, Vander, and Olama to transcribe mock interview videos, analyze sentiment and relevance, and provide instant feedback to users.
- Designed a dynamic UI supporting video input, practice/interview modes, performance score & visual reports with color-coded insights.
- Delivered a fully functional prototype within 24 hours, demonstrating rapid development, AI integration, and teamwork.
- Created an innovative solution to help job seekers enhance interview skills with real-time, data-driven feedback.

Autonomous Surface Vessel – Vision-Guided Trash Detection & Scientific Survey

March 2025 - April 2025

Arizona State University | RAS 598 – Space Robotics and AI (A+)

Tempe, AZ

- Simulated **Heron** USV in **ROS**—**Gazebo** to perform opportunistic trash collection without disrupting a boustrophedon-based scientific survey.
- Designed logic for opportunistic collection during survey missions, preparing pipeline for future real-world deployment.
- Integrated a color-based proxy detector in simulation and fine-tuned YOLOv8n model for real-world trash object detection.
- Detour logic prioritizing scientific integrity: triggering collection if object within scan bounds & within 25% lateral offset from planned path.
- Validated survey coverage (avg. 108.47%) and lateral deviation (avg. 0.34 m) while achieving a 54% target interception rate.
- Contributed to pipeline design in ROS2, project report; co-authored an IEEE-ICRA 2025 workshop paper on the developed framework.

Intelligent TurtleBot4 - Voice-Guided Navigation & Object Detection (Final project)

January 2025 - April 2025

Arizona State University | RAS 598 – Experimentation and Deployment of Robots (A)

Tempe, AZ

- Developed and deployed an ROS2-based system on TurtleBot4 integrating a MyCobot Robotic Arm, transforming it into a mobile manipulator platform. Conducted system testing in simulation (Gazebo) and on real hardware, addressing Sim2Real challenges in perception, sensor data analysis, and motion execution.
- Implemented YOLOv8 object detection, LiDAR/IMU live data, and PyQt5 GUI with real-time feedback and control via voice commands transcribed using Whisper.cpp.
- Maintained and updated the complete <u>GitHub</u> repository and <u>project website</u>, documenting system architecture, visuals, and deployment progress.

Autonomous 4x4 Maze Navigation Using MyCobot Pro 600 (Final Project)

November 2024 – December 2024

Arizona State University | RAS 546 - Robotic Systems I (A)

Tempe, AZ

- Designed and implemented a **computer vision algorithm** to solve 4x4 mazes by detecting entrance, exit, and solution path using the AI Kit's camera in **Python**.
- Simulated and validated the robot's path planning in a digital twin in MATLAB before deploying it for execution.
- **Programmed** MyCobot Pro 600 to **autonomously navigate** the maze using straight-line paths for rapid, precise execution. Ensured compatibility with mazes generated by a maze generation tool for **real-time execution**.

Design & Prototyping of Robotic Arm for Waste Sorting

September 2022 - November 2022

MIT World Peace University | Final Year Project (100/100)

Pune, India

- Utilized engineering expertise to build a functional prototype of a 4-DOF robotic arm with vacuum gripper and payload of 200 grams.
- Deployed computer vision system using YOLOv7 deep learning to classify waste into recyclable items- glass, paper, metal, and plastic.

CO-CURRICULAR ACTIVITIES

- · Completed Biomechanics Course at SRM IST, Kattankulathur for National Student Exchange program during Bachelors.
- As a part time robotics instructor, led **online hands-on robotics sessions** for children aged 7 to 15, training fundamental concepts of robotics, and provided personalized summaries and feedback through interactions with parents.
- · Volunteered for ASU Robotics Southwest Robotics Symposium and conducted guest tours across various ASU robotics labs.
- Won 2nd Place (Qruil Track, \$300) and 1st Prize for "Best Use of MATLAB" at *InnovationHacks 2025*, organized by The Software Developers Association, AI Society, and GDSC at ASU, as part of Team *vAIKings*.
- Presented "Intelligent Voice-Guided Mobile Manipulator" at ASU's *Innovation Showcase* as the final project for RAS 598: Experimentation and Deployment of Robots, guided by Prof. Dan Aukes.