→ Mengambil Data

```
# import library
import pandas as pd
import numpy as np

# load dataset
path = "data-kasus-penyakit-menular-bulan-maret-tahun-2018.csv"
data1 = pd.read_csv(path)

path2 = "data-kasus-penyakit-menular-bulan-september-tahun-2018.csv"
data2 = pd.read_csv(path2)

path3 = "data-kasus-penyakit-menular-bulan-desember-tahun-2018.csv"
data3 = pd.read_csv(path3)

# menggabungkan semua data yang didapatkan dari 3 file dataset
data = pd.concat([data1,data2,data3]).drop_duplicates()
```

menampilkan statistik data secara umum
data.describe()

	tahun	bulan	tahun
count	60.0	90.000000	30.0
mean	2018.0	8.000000	2018.0
std	0.0	3.762619	0.0
min	2018.0	3.000000	2018.0
25%	2018.0	3.000000	2018.0
50%	2018.0	9.000000	2018.0
75%	2018.0	12.000000	2018.0
	2010.0	10 000000	2010 0

[#] memunculkan 5 data awal
data.head()

menampilkan 5 baris akir data
data.tail()

	tahun	bulan	wilayah	jenis_penyakit	jumlah	tahun
25	2018.0	12	wilayah kep. seribu	tb	37	NaN
26	2018.0	12	wilayah kep. seribu	dbd	8	NaN
27	2018.0	12	wilayah kep. seribu	difteri	-	NaN
28	2018.0	12	wilayah kep. seribu	hiv	3	NaN
29	2018.0	12	wilayah kep. seribu	aids	0	NaN

→ Menelaah Data

mengungkap tipe-tipe data dari setiap kolom
print(data.dtypes)

tahun	float64
bulan	int64
wilayah	object
jenis_penyakit	object
jumlah	object
tahun	float64
Alexander of the Control	

dtype: object

Karena data tahun dan bulan adalah sesuatu yang bersifat konstan (sekitaran bulan Maret, September dan Desember tahun 2018). Kita ambil langkah untuk menghitung jumlah penyakit saja terlebih dahulu.

```
# menghapus kolom yang berlebih
data = data.drop(columns=['tahun'])
print(data.dtypes)
    tahun
                       float64
    bulan
                        int64
    wilayah
                       object
    jenis_penyakit
                       object
    jumlah
                        object
    dtype: object
data_clean = data.iloc[:,-3:]
data clean
```

	wilayah	jenis_penyakit	jumlah
0	Wilayah Jakarta Pusat	ТВ	129
1	Wilayah Jakarta Pusat	DBD	8
2	Wilayah Jakarta Pusat	Difteri	6
3	Wilayah Jakarta Pusat	HIV	2240
4	Wilayah Jakarta Pusat	AIDS	279
•••			
25	wilayah kep. seribu	tb	37
26	wilayah kep. seribu	dbd	8
27	wilayah kep. seribu	difteri	-
28	wilayah kep. seribu	hiv	3
29	wilayah kep. seribu	aids	0
clea	n.describe()		

data_clean.describe()

	wilayah	jenis_penyakit	jumlah
count	90	90	90
unique	13	12	77
top	Wilayah Jakarta Selatan	DBD	-
freq	10	12	3

```
# mencari data yang hilang
jumlah = data['jumlah']
none = jumlah.str.contains('-')
none.sum()
```

4

ada 4 data yang mengandung '-'

data[jumlah.str.contains('-')]

	tahun	bulan	wilayah	jenis_penyakit	jumlah
27	2018.0	3	Wilayah Kep. Seribu	Difteri	-
29	2018.0	3	Wilayah Kep. Seribu	AIDS	-
17	NaN	9	Wilayah Kep Seribu	DIFTERI	-
27	2018.0	12	wilayah kep. seribu	difteri	-

Terdapat nilai NaN pada bulan 9 di wilayah kep. seribu sehingga kita perlu menggantinya dengan tahun 2018 karena ini adalah data tahun 2018

```
# mengganti data yang hilang dengan tahun 2018
data = data.fillna(2018)

# cek kembali data yang mengandung non angka '-'
data[data['jumlah'].str.match('[^0-9]')]
```

	tahun	bulan	wilayah	jenis_penyakit	jumlah
27	2018.0	3	Wilayah Kep. Seribu	Difteri	-
29	2018.0	3	Wilayah Kep. Seribu	AIDS	-
17	2018.0	9	Wilayah Kep Seribu	DIFTERI	-
27	2018.0	12	wilayah kep. seribu	difteri	-

oke sekarang data sudah bersih, namun untuk kata difteri masih belum seimbang, kita abaikan saja dulu untuk sementara waktu kita gantikan nilai '-' pada jumlah.

data[data['jumlah'].str.match('[^0-9]')]

	tahun	bulan	wilayah	jenis_penyakit	jumlah
27	2018.0	3	Wilayah Kep. Seribu	Difteri	-
29	2018.0	3	Wilayah Kep. Seribu	AIDS	-
17	2018.0	9	Wilayah Kep Seribu	DIFTERI	-
27	2018.0	12	wilayah kep. seribu	difteri	-

Semua data jumlah sudah dalam bentuk numerik sehingga kita bisa mengubah dtype dari datanya sebagai numerik dengan perintah .astype()

```
# ubah data kolom jumlah menjadi bentuk int64
data_clean['jumlah'] = data_clean['jumlah'].astype('int64')
data_clean.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 90 entries, 0 to 29 Data columns (total 3 columns):

Data	COTUMNIS (COCAT	5 COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	wilayah	90 non-null	object
1	jenis_penyakit	90 non-null	object
2	jumlah	90 non-null	int64

dtypes: int64(1), object(2)

memory usage: 2.8+ KB

lihat statistik data_clean.describe()

	jumlah
count	90.000000
mean	447.111111
std	881.657191
min	0.000000
25%	8.000000
50%	44.500000
75%	615.250000
max	5507.000000

Kita lihat kembali bentuk data

lihat perkembangan data berdasarkan wilayah data_clean.groupby('wilayah')['jumlah'].std()

wilayah	
Wilayah Jakarta Barat	1176.678206
Wilayah Jakarta Pusat	1001.275431
Wilayah Jakarta Selatan	867.235871
Wilayah Jakarta Timur	1665.461461
Wilayah Jakarta Utara	702.810777
Wilayah Kep Seribu	14.909728
Wilayah Kep. Seribu	6.379655
wilayah jakarta barat	370.661975
wilayah jakarta pusat	85.915656
wilayah jakarta selatan	406.378764
wilayah jakarta timur	350.947717
wilayah jakarta utara	391.121081
wilayah kep. seribu	15.662056
Name: jumlah, dtype: float	64

Ternyata masih belum pas, setelah ini kita akan kembali membersihkan data.

lihat perkembangan data berdasarkan jenis penyakit
data_clean.groupby('jenis_penyakit')['jumlah'].std()

```
jenis_penyakit
AIDS
           79.473790
DBD
          294.065894
          11.303392
DIFTERI
Difteri
           4.119061
HIV
          476.287063
HIV
          757.039167
TB
         1728.767793
aids
          69.700550
dbd
          367.214923
difteri
          12.937027
hiv
          470.706136
tb
           15.105187
```

Name: jumlah, dtype: float64

Untuk jenis penyakit juga sama, setelah ini kita juga akan kembali membersihkan data