Fast Functional Integrals with Applications to Stochastic Dynamical Systems

John Tillinghast
Adjunct Professor
Dept. of Mathematics and Statistics
American University

Overview

- Summary of functional integrals
- New method of calculating functional integrals
- New application: parameter estimation for dynamical systems
- Results for an infectious disease model (SIR) – equivalent results as Monte Carlo but much faster

Functional ("path") integrals

- Also called "sum over histories"
- Early application: Brownian motion (limit of random walks with infinitesimal steps)
- Gives likelihood of going from point A to point B in time t
 - Likelihood for individual paths is simple
 - Sum over all possible paths

A few of the infinite number of histories to integrate

Many other applications

- Quantum and statistical mechanics
- Probability (SDEs, finance)
- Computationally intensive, can require long simulations

The new method: Sparse Laplace Approximation Method (SLAM)

- Laplace approximation computes highdimensional integrals by fitting a multivariate Gaussian to the integrand
- Basic version uses second derivatives to get the integral of the Gaussian approximation
- Higher-order version uses the Gaussian combined with higher-order derivatives
- For functional integrals, the second- and higher-order derivative tensors are sparse (block-tridiagonal etc.)

What's new here?

- Efficient way to get the higher-order terms:
 O(Nd⁴) instead of O(N⁴d⁴)
- Variance-stabilizing transform to get critical path

Application: Estimating Parameters in Dynamical Systems

- Dynamical systems are everywhere (especially in life science)
- We want to estimate their parameters
- Traditional and recent methods
- How to use functional integrals for this
- Results and conclusions

Dynamical systems (differential equations models) are ubiquitous

- Life science, chemistry, economics
- These models incorporate:
 - Variables, which evolve over the time frame of the data
 - Parameters, which should be constant for the system – we want to estimate these.

Systems modeled by differential equations are ubiquitous

- Predator-prey models: numbers next year depend on numbers this year
 - Variables: numbers of predators and prey
 - Parameters: fertility and predation rate
- Chemical reactions
 - Variables are concentrations
 - Parameters are reaction rates

Systems modeled by differential equations are ubiquitous

- Infectious disease models
 - Variables: numbers of people who are susceptible, infected, recovered, etc.
 - Parameters: infectiousness, lethality, recovery rate, etc.
- Pharmacokinetics
 - Variables: blood level
 - Parameters: compartment volumes, clearance rates

A simple example illustrates some of the challenges

 In a bacterial colony a fixed fraction of cells divide every hour:

$$\frac{dy}{dt} = \theta y$$

where y is the number of bacteria, θ is the fraction that divide each hour, and t is time.

The traditional method solves the deterministic equations for different parameter values

Parameter
 values are
 chosen to
 optimize fit to
 data

Traditional method has significant limitations

- It is not stochastic
- It does not allow for imperfectly followed differential equations
- In some systems, there are multiple optima of the parameters

More recent work

 Ramsay, Hooker, et al (JRSSB 2007) use spline functions and cross-validation

 Campbell (2010) uses splines and MCMC (integrates over a space of splines using Monte Carlo)

Spline-based approach (Ramsay, Hooker, et al.)

- Find a good compromise between data fit and ODE fit
- For the bacteria example, this means minimize

$$\sum_{i} \left(y_{data}^{i} - \hat{y}(t_{i}) \right)^{2} + \lambda \int \left(\frac{d\hat{y}}{dt} - \theta \hat{y} \right)^{2} dt$$

Tradeoff (λ) is chosen by cross-validation or MCMC

Anatomy of the methods

- What all the approaches have in common:
- (1) for given params, find a "best guess" path \hat{y} by minimizing "inner" objective function
- (2) given \hat{y} , calculate derivatives of "outer" objective function wrt parameters
- (3) repeat until outer function has been minimized

Functional Integral Approach

Discretize time

```
N = \# time \ points, \ d = \# variables
```

- Treat true values as a latent, underlying Markov process
- This allows for rougher paths, more like Brownian motion

Overall likelihood as a functional integral

$$L(y_{data} | \theta, \sigma) = \int L_{data}(y_{data} | y_{true}, \sigma) L_{Markov}(y_{true} | \theta) d^{Nd} y_{true}$$

where

 y_{data} are the data values at whatever time points we have them y_{true} is a possible history of the system

 σ are parameters of measurement error

 θ are dynamical parameters

Rewrite in terms of log-likelihood

If we say

$$\begin{split} \ell_{data} &= -\log(L_{data}) \\ \ell_{Markov} &= -\log(L_{Markov}) \\ \ell &= \ell_{data} + \ell_{Markov} \end{split}$$

Then the second-order derivative matrix of ℓ is very sparse, and the higher-order derivative tensors are also sparse!

Example: bacteria colony

 L _{data} is the likelihood of the data given the true value

$$\log(y_{data}) \sim Normal(\log(y_{true}), \sigma^2)$$

• L_{Markov} is the likelihood of the sequence y_{true}^{i} assuming that the real system follows the Markov process

$$\Delta_i y_{true} \sim Poiss(\theta \cdot y_{true}^i \cdot \Delta_i t)$$

Bacterial colony example: "true" growth history

Data only at some time points, with measurement error

For given parameters, there is a most likely history ŷ

We use it to compute the integral over all paths

Expand around critical path

$$y = \hat{y} + \epsilon$$

$$\int_{\mathbb{R}^n} e^{-\ell(y)} d^n y = \int_{\mathbb{R}^n} e^{-\ell(\hat{y}+\epsilon)} d^n \epsilon$$

$$= \int_{\mathbb{R}^n} exp\left(-\ell(\hat{y}) - \frac{1}{2} \ell_{ij}^{(2)}(\hat{y}) \epsilon_i \epsilon_j$$

$$- \frac{1}{3!} \ell_{ijk}^{(3)}(\hat{y}) \epsilon_i \epsilon_j \epsilon_k - \dots \right) d^n \epsilon$$

All very good, unless this happens...

What's going on?

In the normal approximation, the Markov variance is proportional to y:

$$L_{Markov} = \prod_{i < N} \frac{1}{\sqrt{2\pi\theta y_i \Delta_i t}} \exp\left(-\frac{1}{2} \frac{(\Delta_i y - \theta y_i \Delta_i t)^2}{\theta y_i \Delta_i t}\right)$$

The $\frac{1}{\sqrt{y_i}}$ means that moving y to zero increases the likelihood.

Why this is not okay

- It moves the critical path away from the realistic paths
- Likelihood density is maximized in a region whose total likelihood is small
- With the right change of variable, this problem disappears

Variance-stabilizing transform

 The solution is to make a change of variable that stabilizes the variance.

$$v_y = \sqrt{y}$$

$$L_{Markov} \prod_{i} dy_{i} \propto \prod_{i} \frac{e^{-q_{i}}}{\sqrt{y_{i}}} dy_{i} = 2 \prod_{i} e^{-q_{i}} dv_{y} = 2 \exp\left(-\sum_{i} q_{i}\right) dv_{y}$$

Reducing $\sum_{i} q_{i}$ does not bias y toward zero.

Cumulant form of Laplace approximation (Shun & McCullagh, 1995)

$$\log \int e^{-\ell(y)} d^{N} y \sim -\ell(\hat{y}) + \frac{1}{2} \log \frac{(2\pi)^{N}}{|H|}$$

$$-\frac{3}{24} F_{ijkl} H_{ij}^{-1} H_{kl}^{-1}$$

$$+\frac{9}{72} T_{ijk} T_{lmn} H_{ij}^{-1} H_{kl}^{-1} H_{mn}^{-1}$$

$$+\frac{6}{72} T_{ijk} T_{lmn} H_{il}^{-1} H_{jm}^{-1} H_{kn}^{-1}$$

$$+ \dots$$

Basic approximation is the first line Other terms are higher-order

Watch your accounting: higher-order terms

- There are three distinct higher-order terms
- For the first two, it is "obvious" how to use sparsity and compute efficiently
- The last one involves a complicated analytical trick
- Total time is O(N d⁴) (N = time points, d = variables)
- Without sparsity, the total time would have been $O(N^4 d^4)$

Testing on a simple infectious disease model

- SIR Model (Kermack and McKendrick, 1927) has 3 states:
 - Susceptible followed by
 - Infected (and contagious)
 followed by
 - Recovered (and immune)

Usually this is solved deterministically

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

SLAM permits a stochastic approach

New Infections $(t_i \text{ to } t_{i+1}) \sim Poiss(\beta S_{true}^i I_{true}^i \Delta_i t)$ Recoveries $(t_i \text{ to } t_{i+1}) \sim Poiss(\gamma I_{true}^i \Delta_i t)$

Normal approximation to the Poisson distribution: write as SDE

$$dS = -\beta SIdt + \sqrt{\beta SI} dW_1$$

$$dI = -dS - \gamma Idt + \sqrt{\gamma I} dW_2$$

Variance-Stabilizing SIR

Bias is removed by this transformation:

$$v_S = \sqrt{S}$$

$$v_I = \log(I)$$

$$L_{Markov}dS_{i}dI_{i} \propto \frac{dS_{i}dI_{i}}{\sqrt{S_{i} \cdot I_{i}}} = 2dv_{S}dv_{I}$$

Comparison with STAN on a real data set

- STAN is a new (2012) general-purpose system for Hamiltonian Monte Carlo.
- You specify the model; then it generates
 C++ code and compiles with optimization.
- Developed by Andrew Gelman's group at Columbia; replaces BUGS
- Try it! http://mc-stan.org

Data set

- British boarding school data set: 14-day flu epidemic
- Data is only on number infected (number susceptible is latent!)
- Still possible to implement both in STAN and SLAM

Results (parameter estimates)

		β	γ	σ	Time (sec)	Opt steps
Initial guess		2.18E-03	0.440	(0.1)*	N/A	N/A
	5%	1.31E-03	0.667	0.122	267	
STAN	Mean	1.53E-03	0.760	0.152	325	N/A
	95%	1.77E-03	0.882	0.156	366	
SLAM basic		1.45E-03	0.777	0.156	6	23
SLAM higher		1.47E-03	0.770	0.157	42	4

^{*}Paper doesn't specify initial sigma, so we chose 0.1. STAN runs use 4 chains each with 2000 steps. There were 100 such runs.

Results (marginal likelihood)

	Log(L)	% diff from IS estimate
SLAM basic	5.353	5.7%
SLAMhigher	5.300	0.4%
Importance	LB: 5.295	-0.1%
Sampling	Est: 5.296	0.0%
(N=6.6e8)	UB: 5.298	0.2%
	(99+% CI)	

Day 0 removed to avoid a pathology that happens when I=1. Importance sampling uses multivariate T, df=2. Sample values constrained to sqrt(S) and log(I) positive.

Conclusion

- For this problem, SLAM gives nearidentical results to STAN, but is vastly faster
 - Basic is > 50 times faster
 - Basic + Higher is ~6 times faster
 - Real difference should be bigger, because
 STAN is compiled with high optimization

More to be done: methods

- Further efficiencies
- More independent variables (not just time) requires different algorithm
- Analytical error bounds
 - Notoriously hard for Laplace approximations, but methods exist
 - The usual, hand-waving explanation is not the real reason why they are so accurate (Olver, 1968)

More to be done: other applications

- Larger problems
- Bayesian model selection
- Graphical models
- Physics
 - "Likelihood" becomes complex (not that bad)
 - In some problems the path would be in a group, not Rⁿ

Acknowledgements

- Giles Hooker (Cornell) for piquing my interest and helpful discussion
- Karen Bandeen-Roche and Ravi Varadhan (Hopkins) for encouragement
- Tammy Kolda (Sandia) for help with the MATLAB Tensor Toolbox
- Neil Abernethy (UW SPH) for suggesting the data set
- Robert Rudnitsky (NIST) and Kelley Burridge (FDA) for editing ideas

Thank you!

Work was begun at the Hopkins School of Public Health under Training Grant T32 AG000247 (epidemiology and biostatistics of aging)

References

- Arxiv manuscript: http://arxiv.org/pdf/1504.06352.pdf
- Spline methods: Ramsay J., Hooker G., Campbell, D. and Cao, J. (2007) Parameter estimation in differential equations: A generalized smoothing approach. J. R. Statist. Soc. B 69, Part 5, pp. 741-96.
- Spline MCMC: Campbell, D. and Steele, R. (2012)
 Smooth Functional Tempering for Nonlinear Differential Equation Models. Statistics and Computing, 22(2), pp 429-43.
- STAN (and its papers) are available at http://mc-stan.org

More references

- Laplace approximation in cumulant form: Shun, Z. and McCullagh, P. (1995) Laplace approximation of highdimensional integrals, J. Royal Stat. Soc. B, 53, pp. 749-60.
- SIR Model: Kermack, W. O. and McKendrick, A. G. (1927), "A Contribution to the Mathematical Theory of Epidemics". Proc. Roy. Soc. Lond. A 115, pp. 700-721.
- British boarding school data: J.D. Murray (2002), Mathematical Biology I, An Introduction, pp. 325-326.
- Error bounds: Olver (1968). "Error Bounds for the Laplace Approximation for Definite Integrals", J. Approximation Theory v.1, pp. 293-313.