Introduction to Quantum Software and TKET

Callum Macpherson

Why do Quantum Computing?

- Shor's Algorithm near exponential advantage for factoring
- Grover's Algorithm Unstructured search
- Quantum Chemistry/Materials Simulating quantum systems
- Others Machine learning, industrial optimisation, differential equations...

Note: Many of the most interesting applications of quantum computing require quantum error correction. Errors correction codes typically require many additional physical qubits to implement logical operations.

Quantum Software?

System software

- Compiler TKET, qiskit
- Online services AWS Braket, Azure quantum
- Quantum Error Correction/Mitigation Qermit, others
- Quantum Programming languages Q#, Silq, quipper

Applications Software

- Quantum chemistry/materials science InQuanto
- Machine learning Pennylane, others
- Industrial optimisation

Quantum Hardware?

- Trapped ions Quantinuum, IONQ, AQT
- Superconductors IBM, Google, Rigetti, IQM
- Photonics PsiQuantum, Quandela...
- Neutral atoms Pasqal, Infleqtion...
- Others Semiconductors, topological qubits...

H-series Ion traps

Superconducting circuits - IBM

Some Challenges with Quantum computing

- Not enough qubits for many of the exciting applications
- The qubits we do have are subject to noise
- Complicated error channels which are hard to model
- Quantum error correction at an early stage
- **♦ Low-level details greatly influence performance -** gate count, connectivity

A Real Quantum device

Source: IBM Quantum

Quantum compilation

Example: Quantum Fourier Transform Circuit

Complete connectivity graph

Target device: IBMQ Belem

- ❖ Nearest neighbour interaction only
- Limited gateset {X, SX, Rz, CX}
- CNOT error

Belem qubit topology

Quantum compilation II

Compiled QFT Circuit (incomplete) - meets device constraints

What is TKET?

A quantum software library developed by Quantinuum

- ❖ A high performance quantum compiler
- Open source! https://github.com/CQCL/tket
- "Hardware agnostic" Targets a range of devices and simulators
- Compatible with popular libraries Qiskit, Cirq, Braket, pennylane + more

pip install pytket

Note: Cloud access through Azure and AWS Braket is also available

Front ends

High level interface

pytket python

TKET

C++ library

Rewrite Circuits

Solve for device constraints Perform optimisations

Backends

Quantum devices/simulators

