# Kitsune Network Attack Classification Using Machine Learning

# Kyungbin Lee, Nahid Ebrahimi Majd

Department of Computer Science and Information System California State University, San Marcos, United States

#### **ABSTRACT**

The rise of network attacks has emerged as a pressing concern for the technology industry. Either an IP-based commercial surveillance system or a network full of IoT devices are required to identify new types of network attacks or utilize a dynamic analysis. The term "Kitsune" is known for the intelligence and trickery of fox spirits in Japanese folklore. We performed filter methods of feature selection and then applied Decision Tree(DT), Random Forest(RF), Naïve Bayes (NB), Logistic Regression(LR), Support Vector Machine(SVM), k-Nearest Neighbor (KNN), Extreme Gradient Boost(XGB), Gradient Boosting (GB) and Extra Trees (ET) on a Kitsune network Attack dataset that contains 9 types network attack. The experimental results demonstrate that RF classifier with ANOVA feature selection outperforms either in binary classification or in multilabel(family) classification than other ML models.

### **OBJECTIVE**

The number of network attacks on computer system has been increasing over the years. In the technology industry, network attacks on businesses have become an increasing concern. It is important to build the system to detect various types of network attacks. A successful network attack can have serious implications, including the loss of crucial data, financial losses, and legal liability. Kitsune network attack dataset is a collection of the traffic of 9 types of network attacks captured from either an IP-based commercial surveillance system or a network full of IoT devices. This research investigates the efficiency of various ML models to predict network attack in binary classification and multi-label classification as Figure 2 & 3.

| Attack<br>Type       | Attack Name          | Tool               | Description: The attacker                                                                                                | Violation | Vector | # Packets | Time<br>[min.] |
|----------------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----------|----------------|
| Recon.               | OS Scan              | Nmap               | scans the network for hosts, and their operating systems, to reveal possible vulnerabilities.                            | С         | 1      | 1,697,851 | 52.2           |
|                      | Fuzzing              | SFuzz              | searches for vulnerabilities in the camera's web servers by sending random commands to their cgis.                       | C         | 3      | 2,244,139 | 85.5           |
| Man in the<br>Middle | Video Injection      | Video Jack         | injects a recorded video clip into a live video stream.                                                                  | C, I      | 1      | 2,472,401 | 33.4           |
|                      | ARP MitM             | Ettercap           | intercepts all LAN traffic via an ARP poisoning attack.                                                                  | С         | 1      | 2,504,267 | 28.2           |
|                      | Active Wiretap       | Raspberry<br>PI 3B | intercepts all LAN traffic via active wiretap (network bridge) covertly installed on an exposed cable.                   | C         | 2      | 4,554,925 | 95.6           |
| Denial of<br>Service | SSDP Flood           | Saddam             | overloads the DVR by causing cameras to spam the server with UPnP advertisements.                                        | A         | 1      | 4,077,266 | 40.8           |
|                      | SYN DoS              | Hping3             | disables a camera's video stream by overloading its web server.                                                          | A         | 1      | 2,771,276 | 52.8           |
|                      | SSL<br>Renegotiation | THC                | disables a camera's video stream by sending many SSL renegotiation packets to the camera.                                | A         | 1      | 6,084,492 | 65.6           |
| Botnet<br>Malware    | Mirai                | Telnet             | infects IoT with the Mirai malware by exploiting default credentials, and then scans for new vulnerable victims network. | C, I      | X      | 764,137   | 118.9          |

Figure 1: Kitsune network attack dataset.

# Binary Classification



Figure 2: Binary classification in Kitsune.

# Multi-label Classification



Figure 3: Multi-label classification in Kitsune.



### **METHODS**

### Dataset

Since each dataset contains millions of network packets, we extract a subset dataset and make samples as Figure 4. Each Attack includes 6,500 benign and 6,500 malicious rows. In the training set, there are total 117,000 rows.

# Samples of majority class

Figure 4: Undersampling method in machine learning.

# Data preprocessing

Original dataset

**Data Split:** We split the dataset into training data and test data in the ratio of 70:30, using 5-fold validation to generalize the models.

**Standardization:** Normalization technique is used to convert each of the variables into a similar scale by centering each variable at zero with a standard deviation of 1.

### • Feature Selection Techniques

We use ANOVA(Analysis of Variance F-value) to calculate the F-value for each feature by comparing the variance of the target variable explained by the feature. There are 115 features in the dataset. In Table 1, we list the feature's number, name, and score from highest to lowest score.

| Feature     | Name             | Score        |  |
|-------------|------------------|--------------|--|
| Feature 49  | HH_L1_radius     | 13502.728850 |  |
| Feature 42  | HH_L3_radius     | 13496.757285 |  |
| Feature 102 | HpHp_L0.1_weight | 13470.305291 |  |
| Feature 35  | HH_L5_radius     | 13408.138259 |  |
| Feature 40  | HH_L3_std        | 12821.612847 |  |
| Feature 47  | HH_L1_std        | 12805.166998 |  |
| Feature 33  | HH_L5_std        | 12764.105476 |  |
| Feature 56  | HH_L0.1_radius   | 12556.895291 |  |
| Feature 95  | HpHp_L1_weight   | 12313.862233 |  |
| Feature 54  | HH_L0.1_std      | 11892.144859 |  |

Table 1: Top 10 Features F-values applying ANOVA F-test feature selection.

| Stream      | Н                                                    | Traffic from packet's host (IP)                             |  |  |
|-------------|------------------------------------------------------|-------------------------------------------------------------|--|--|
| aggregation | MI                                                   | Traffic from packet's host (IP + MAC)                       |  |  |
|             | НН                                                   | Traffic going from packet's host to destination host (IP)   |  |  |
|             | HH_jit                                               | Jitter of the HH                                            |  |  |
|             | НрНр                                                 | Traffic going from packet's host to destination host & port |  |  |
| Time frame  | L                                                    | How much recent history of the stream is capture            |  |  |
| Statistics  | weight                                               | Weight of the stream                                        |  |  |
|             | mean                                                 | Mean of the stream                                          |  |  |
|             | std                                                  | Standard deviation of the stream                            |  |  |
|             | radius Root squared sum of the two streams' variance |                                                             |  |  |
|             | magnitude                                            | Root squared sum of the two streams' means                  |  |  |
|             | cov                                                  | Approximated covariance between two streams                 |  |  |
|             | pcc                                                  | Approximated correlation coefficient between two streams    |  |  |

Table 2: Description of feature name.

# GridSearchCV

We use the hyperparameter from GridSearchCV method to get higher accuracy for each ML model. We describe 9 supervised ML algorithms with their hyperparameters in Table 3.

| ML algorithm                        | Hyperparameter                                       |  |  |
|-------------------------------------|------------------------------------------------------|--|--|
| LG                                  | C=100, penalty='none', solver='newton-cg'            |  |  |
| DT                                  | criterion='entropy', max_depth=20, min_sample_leaf=9 |  |  |
| RF                                  | criterion='entropy', max_depth=20, n_estimators=90   |  |  |
| GB                                  | learning_rate=0.1, n_estimators=90                   |  |  |
| SVM C=1000, kernel='rbf', gamma=3.0 |                                                      |  |  |
| KNN                                 | n_neighbors=6                                        |  |  |
| XGB                                 | learning_rate=0.1, n_estimators=90                   |  |  |
| NB                                  | NB priors='none', var_smoothing=0.1                  |  |  |
| ET                                  | criterion='entropy', max_depth=90, n_estimators=30   |  |  |

Table 3: ML models with their hyperparameters.

### RESULTS

We train each model with the different number of features with ANOVA feature selection method. RF shows the highest AUC score and accuracy in Figure 5 & 6. We describe the confusion matrix of RF for both classifications in Figure 7.

ROC curve for models using ANOVA feature selection in binary classification



Figure 5: ROC curve for binary classification.

ROC curve for models using ANOVA feature selection in Multi-label classification



Figure 6: ROC curve for multi-label classification.



Figure 7: Confusion Matrix of RF

# CONCLUSION

With the increasing threat of various types of network attacks, it is important to detect known and new forms of network attacks effectively. In this research, we designed ML models and performed extensive experiments by filtering method, feature selection method, and ML algorithms along with hyperparameter. The experimental results demonstrate that RF with ANOVA feature selection outperforms.

# REFERENCE

- [1] Kim, YeaSul, YeEun Kim, & Hwankuk Kim. "A Comparison Experiment of Binary Clas sification for Detecting the GTP Encapsulated IoT DDoS Traffics in 5G Network." *Journal of Internet Technology* [Online], 23.5 (2022): 1049-1060. Web. 12 Jul. 2023
- [2] Y.Mirsky, T. Doitshman, Y.Elovici, and A. Shabtai, "Kitsune: An Ensemble of Autoencod ers for Online Network Intrusion Detection," arXiv.org, May 27, 2018. http://arxiv.org/abs/1802.09089 13 Jul. 2023
- [3] Kitsune Network Attack Dataset. (2019). UCI Machine Learning Repository. https://doi.org/10.24432/C5D90Q.

# ACKNOWLEDGEMENT

This research was funded by grants from the following agency:

San Diego Foundation

