Elektronischer Verpolungsschutz und -anzeige für die iSpindel mit Batteriehalter für ungeschützte 18650 Akkus

Beschreibung für **elektronischen Verpolungsschutz**:

Da die Batteriehalter für ungeschützte 18650 Li-Ion Akkus über keinen mechanischen Verpolungsschutz verfügen, wurde eine elektronische Lösung gesucht. Getestete Lösung ist ein zwischen Akku und Lademodul geschalteter N-CH MOSFET Transistor. Der Transistor ist preislich attraktiv und kann obwohl SMD, aufgrund seiner Größe, gut händisch verlötet werden.

Der verwendete Transistor ist ein N-LogL MOSFET IRLR8726PbF im TO-252AA Gehäuse mit einem Innenwiderstand R_{DS} von nur 0,0058 Ohm. Die V_{GSth} (Gate-Source Threshold Voltage) liegt zwischen 1,35 und 2,35V und kann aufgrund der niedrigen Akku Spannung direkt angesteuert werden. Im Sleep-Modus liegt der Spannungsverlust bei 0 mV und im Config Modus bei

Wenn jemand auf die Idee kommt, bei verkehrt eingelegtem Akku und ausgeschalteter iSpindel das Lademodul zu aktivieren, würde der Akku über den Transistor mit ca. 100 mA komplett entladen werden (Tiefentladung). Ohne Verpolungsschutz wäre die iSpindel zu diesem Zeitpunkt bereits defekt.

Aus Platzproblemen und um für die Selbstbauer die Assemblierung nicht zu verkomplizieren (zusätzliche Bauteile), wurde dieses Manko belassen.

Testumgebung: Lademodul TP4056 mit Schutz Micro-USB / USB-C + D1 mini v3.x / v4.0

iSpindel Messungen Verpolungsschutz (ohne Verpolungsanzeige):

2,3mV, also vernachlässigbar und die Akkulaufzeit bleibt unverändert.

iSpindel:	Ohne Schutz	IRLR8726PbF Stromfluss - <> D	IRLR8726PbF Spannung DS	IRLR8726PbF Spannung GS (B- <> B+)	IRLR8726PbF Spannung BT1
Ausgeschaltet	2,5 γΑ	2,5 γΑ	0,0 mV	3,53 V	3,53 V
On - Sleep	0,17 mA	0,17 mA	0,0 mV	3,53 V	3,53 V
Config ohne Zugriff	77,7 mA	77,7 mA	1,9 mV	3,53 V	3,53 V
Ladung (On-Sleep)	-971 mA	-971 mA	-11 mV	3,70 V	3,62 V
Verpolung (On/Off)		0,x γΑ	-3,24 V	-0,6 mV	-3,53 V
Verpolung + USB>TP4056 (Off)		-105 mA	-5,49 V	2,18 V	-3,53 V
Verpolung + USB>TP4056 (On)		- 0,5 γA	-4,9 V	1,37 V	-3,53 V

Schaltplanauszug:

Der N-Kanal-MOSFET leitet, wenn das Gate um VGSth positiver als die Source wird. Beim Anlegen einer korrekt gepolten Spannung am Eingang leitet erst mal die Bulk-Diode, so dass an der Source die Eingangsspannung ankommt. Weil die Spannung an der Source nun negativer ist als VGSth, leitet der MOSFET, und dem Strom steht nur noch der kleine Kanalwiderstand im Weg.

Beim Anlegen einer "verpolten" positiven Spannung sperrt die Bulk-Diode und der MOSFET kommt nicht in den leitenden Zustand.

Alternative N-LogL MOSFET Transistoren:

IRLR8743PbF R_{DS} 0,0031 Ohm im SOT-252AA Gehäuse IRLR3103PbF R_{DS} 0,019 Ohm im SOT-252AA Gehäuse IRLL024NTRPbF R_{DS} 0,065 Ohm im SOT-223 Gehäuse

Das Ergebnis ist die iSpindel "hobipivo PCB v2.0" Platine und neuer.

Erweiterung mit Verpolungsanzeige:

Zum Einsatz kommt eine "LED 3mm wasserklar Hyper Red THT (2000mcd / 1,8 - 2,2V / 20 - 30mA / RV 5V)" und ein 100-150 Ohm Vorwiderstand.

Da die LED einen ReverseVoltage von 5V besitzt und die Batteriespannung diese nicht erreicht, wird die LED im Normalbetrieb in Sperrrichtung (ohne zusätzlichen Stromverbrauch) betrieben.

Wenn der Akku falsch eingelegt wird, wird die LED in Durchlassrichtung betrieben und es fließt bei 4V Batteriespannung ein I_V von 20mA bei 100 Ohm und 14mA bei 150 Ohm Vorwiderstand.

Das Ergebnis ist die iSpindel "hobipivo PCB v2.1" Platine und neuer.

- 1 > Vorwiderstand (R3) THT axial 100 150 Ohm
- 2 > LED (D2) THT radial 3mm wasserklar Hyper-Red

