HW02

2.1.1

图 2.1.4 和 2.1.5 中收敛缓慢的原因在于初始数据 f(x) 是分段线性函数 (在 $0 \le x \le \pi$ 和 $\pi \le x \le 2\pi$ 上线性), 在 $x = \pi$ 处存在角点. 这种不光滑性导致初始数据的傅里叶级数包含高频分量, 且高频系数的衰减速率较慢 (如 $1/\omega^2$). 在定理 2.1.1 的证明中, 误差被分解为三项:

- (I) 低频误差 ($\omega \leq M$),
- (II) 高频初始数据的能量 ($\omega > M$),
- (III) 高频放大误差 ($\omega > M$).

由于初始数据的不光滑性, 项 (II)(即 $\sum_{\omega>M} \hat{f}(\omega)^2$) 较大, 因为高频分量的贡献显著. 即使增加网格点数 N, 项 (II) 的衰减也较慢, 从而主导了整体误差, 导致收敛缓慢. 项 (I) 和 (III) 在 M 较大时可能较小, 但对于固定网格, 项 (II) 是主要误差源.

2.1.2

原格式 (2.1.11) 用于近似 $u_t = u_x$:

$$v_i^{n+1} = (I + kD_0)v_i^n + \sigma khD_+D_-v_i^n.$$

要近似 $u_t = -u_x$, 需修改空间导数的符号, 得到:

$$v_j^{n+1} = (I - kD_0)v_j^n + \sigma khD_+D_-v_j^n.$$

进行傅里叶稳定性分析, 令 $\lambda = k/h$, 符号为:

$$\hat{Q} = 1 - i\lambda \sin \xi - 4\sigma\lambda \sin^2(\xi/2).$$

放大因子为:

$$|\hat{Q}|^2 = (1 - 4\sigma\lambda\sin^2(\xi/2))^2 + \lambda^2\sin^2\xi.$$

这与原格式的符号相同 (因为 sin² ξ 是偶函数), 因此稳定性条件不变:

- 如果 $2\sigma \le 1$, 则需 $0 < \lambda \le 2\sigma \le 1$ (条件 2.1.14).
- 如果 $1 \le 2\sigma$, 则需 $2\sigma\lambda \le 1$ (条件 2.1.15).

这些条件对于稳定性是必要的, 可通过令 $\xi \to 0$ 或 $\xi \to \pi$ 验证.

2.1.3

方程 (2.1.11) 为:

$$v_j^{n+1} = v_j^n + kD_0 v_j^n + \sigma kh D_+ D_- v_j^n.$$

展开差分算子:

$$v_{j}^{n+1} = v_{j}^{n} + \frac{\lambda}{2}(v_{j+1}^{n} - v_{j-1}^{n}) + \sigma\lambda(v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}),$$

其中 $\lambda = k/h$. 整理系数:

$$v_j^{n+1} = (1 - 2\sigma\lambda)v_j^n + \left(\frac{\lambda}{2} + \sigma\lambda\right)v_{j+1}^n + \left(-\frac{\lambda}{2} + \sigma\lambda\right)v_{j-1}^n.$$

要使格式仅使用两个网格点,需消除一个邻居点. 对于 $u_t=u_x$,正确的迎风格式使用 v_j^n 和 v_{j+1}^n ,因此令 v_{j-1}^n 的系数为零:

$$-\frac{\lambda}{2} + \sigma\lambda = 0 \implies \sigma = \frac{1}{2}.$$

代入得:

$$v_j^{n+1} = (1 - \lambda)v_j^n + \lambda v_{j+1}^n,$$

这确实是迎风格式, 仅使用两个点. 稳定性条件为 $0<\lambda\leq 1$. 如果选择 $\sigma=-\frac{1}{2}$, 会得到使用 v_j^n 和 v_{j-1}^n 的格式, 但对于 $u_t=u_x$ 不稳定.