

Analysis of 24 years of geo-referenced wildfire records.





#### TABLE OF CONTENTS



000

#### INTRODUCTION

Problem statement and objectives.



### 02 METHODOLOGY

Dataset, technologies and algorithms.

RESULTS

Results.

14 CONCLUSIONS

Limitations and future work.





#### PROBLEM STATEMENT



#### **OBJECTIVES**



Fire size prediction

Clustering based on wildfire attributes

Fire Cause prediction

#### **RELATED WORK**

 Analysis of Machine Learning Methods for Wildfire Security Monitoring with an Unmanned Aerial Vehicles

- Machine learning to predict final fire size at the time of ignition-International Journal of Wildland Fire(https://www.publish.csiro.au/WF/WF19023)-Dmitriy Alexandrov, Elizaveta Pertseva, Ivan Berman, Igor Pantiukhin, Aleksandr Kapitonov
- Data-driven Forest Fire analysis, Jerry Gao, Kshama Shalini, Navit Gaur, Xuan Guan

# O2 METHODOLOGY



#### DATASET

- ...
  - Source: <u>Kaggle</u>
- Features:
  - Real Valued and String
  - Feature Count: 39
  - The wildfire records were acquired from the reporting systems of federal, state, and local fire organizations.
  - The dataset, referred to as the Fire Program Analysis fire-occurrence database (FPA FOD), includes 1.88 million geo-referenced wildfire records, representing a total of 140 million acres burned from 1992 to 2015.

#### DATASET

| OBJECTID FOD ID | FPA ID SOURCE S | SOURCE SY! NWCG RE | NWCG REI | NWCG REPORTING UNIT N      | SOURCE | SOURCE REPORTING UN      | LOCAL FI | LOCAL  | FIRE COD | FIRE NAME | ICS 209 IN | ICS 209 | MTBS IC | MTBS FIR | COM  | FIRE |
|-----------------|-----------------|--------------------|----------|----------------------------|--------|--------------------------|----------|--------|----------|-----------|------------|---------|---------|----------|------|------|
| 1               | FS-1418826 FED  | FS-FIRESTAT FS     | USCAPNF  | Plumas National Forest     | 0511   | Plumas National Forest   | 1        | PNF-47 | BJ8K     | FOUNTAIN  | NULL       | NULL    | NULL    | NULL     | NULL | 2005 |
| 2 2             | FS-1418827 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 13       | 13     | AAC0     | PIGEON    | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 3 3             | FS-1418835 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 27       | 021    | A32W     | SLACK     | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 4 4             | FS-1418845 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 43       | 6      | NULL     | DEER      | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 5 5             | FS-1418847 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Éldorado National Forest | 44       | 7      | NULL     | STEVENOT  | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 6 6             | FS-1418849 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 54       | 8      | NULL     | HIDDEN    | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 7 7             | FS-1418851 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 58       | 9      | NULL     | FORK      | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 8 8             | FS-1418854 FED  | FS-FIRESTAT FS     | USCASHF  | Shasta-Trinity National Fo | 0514   | Shasta-Trinity National  | 3        | 02     | BK5X     | SLATE     | NULL       | NULL    | NULL    | NULL     | NULL | 2005 |
| 9 9             | FS-1418856 FED  | FS-FIRESTAT FS     | USCASHF  | Shasta-Trinity National Fo | 0514   | Shasta-Trinity National  | 5        | 03     | BLPQ     | SHASTA    | NULL       | NULL    | NULL    | NULL     | NULL | 2005 |
| 10 10           | FS-1418859 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 61       | 10     | NULL     | TANGLEF   | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |
| 11 11           | FS-1418861 FED  | FS-FIRESTAT FS     | USCAENF  | Eldorado National Forest   | 0503   | Eldorado National Forest | 64       | 11     | NULL     | FORK #2   | NULL       | NULL    | NULL    | NULL     | NULL | 2004 |

#### **TECHNOLOGIES**



#### **PySpark**

https://spark.apache.org/docs/la test/api/python/pyspark.html



#### scikit-learn

https://scikit-learn.org/stable/



#### matplotlib

https://matplotlib.org/

#### **PROCESS**



#### DATA PREPROCESSING

- Dropped
  Columns: "FIRE\_YEAR", "DISCOVERY\_DATE", "DISCOVERY\_DOY", "DISCOVERY\_TIME","
  CONT\_DATE", 'CONT\_TIME', 'STAT\_CAUSE\_DESCR', 'CONT\_DAY', 'CONT\_DOY'
- Created feature Duration using discovery day and containment day.

#### **Classification Set**



#### **FEATURE SELECTION**



#### ALGORITHM 1: K-means

- The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-squares (see below). This algorithm requires the number of clusters to be specified. It scales well to large number of samples and has been used across a large range of application areas in many different fields.
- Number of clusters: 6
- Result:Clustering based on Lattitude, Longitude, Duration and Fire Size

#### Determining K





#### **ALGORITHM 2: Random Forest**



- Random forests train a set of decision trees separately, so the training can be done in parallel. The algorithm injects randomness into the training process so that each decision tree is a bit different. Combining the predictions from each tree reduces the variance of the predictions, improving the performance on test data.
- Configuration: 10
- Fire Size prediction accuracy: 78%
- Fire Cause prediction accuracy: 55%

# RESULTS



#### Classification

•••

Objectives 1 & 2 were achieved using randomforests.

- Fire Size prediction accuracy: 78%
- Fire Cause prediction accuracy: 55%



#### Clustering



## 04

### CONCLUSIONS



#### CONCLUSIONS

- The proposed solution can be adopted for other natural disasters like earthquakes, hurricanes which depend on similar features etc.
- Limitations:
  - Not enough data
  - Unbalanced data
  - Empty values
- Future work:
  - Combining weather data and sensor data to provide real time analysis.



## THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

