

Machine Learning

Foundations of machine learning The linear classifier

Alexander Gepperth, November 2021

Recap: foundations of machine learning

Mathematical formalization

- Machine learning is about:
 - data: matrix $X \in \mathbb{R}^{N,n}$ with rows $\vec{x}_i \in \mathbb{R}^n$
 - targets ("labels"): matrix $T \in \mathbb{R}^{N,k}$ with row vectors $\vec{t_i} \in \mathbb{R}^k$ (why vectors? later!)
 - we wish to find a "good" model function …

$$\vec{f}: X \in \mathbb{R}^{N,n}, \vec{w} \in \mathbb{R}^m \mapsto Y \in \mathbb{R}^{N,k}$$

such that correct target values are obtained

How to represent model function?

- Choose a function family with parameter vector \vec{w} $\vec{f}(X, \vec{w})$
- parameters controls behavior of model function
- better parameters → better model!
- after functional form is fixed, improving the model is done by finding a better \vec{w} \rightarrow **LEARNING**

Loss functions

- Learning: adapt parameters in $\vec{f}(X,\vec{w}) \in \mathbb{R}^{N,k}$ in order to find best (or better) model
- "better": measured by loss function $\mathcal{L}\left(\vec{f},X,T,\vec{w}\right) \equiv \mathcal{L}(\vec{w})$
- so, effectively: learning means adapting the parameters \vec{w} so that $\mathcal{L}(\vec{w})$ is minimized!
- Loss function must be chosen according to the problem

Summary

- For supervised machine learning:
 - we need data samples
 - we need targets
 - we must specify a model function
 - we must specify a loss function

CUT: Q&A

Classification problems

What are classification problems?

7 Jabel - 2

- Model should group samples into one out of a finite number of distinct classes or categories
- Examples:
 - cars or non-cars
 - cats, dogs or horses
 - hand-written digits (0 9)

What are classification problems?

- Terminology:
 - binary classification problems: 2 classes
 - multi-class classification problems: >2 classes
 - classifier: model that (learns to) perform classification

Classification problems: target encoding

Classification problems: Scalar target encoding

- Encode class as a single scalar
- Car classification example: assign to each image one of two possible values $t_i \in \{1,2\}$ (binary classification)
- Also possible: multi-class classification with K classes:

$$t_i \in \{1, \dots, K\}$$

Classification problems: One-hot target encoding

• Encode individual scalar targets $t_i \in \{1, ..., K\}$ as "one- hot"-vectors: $\rightarrow \vec{t_i} \in \mathbb{R}^k$

• Target matrix form:
$$T_{ij} = \begin{cases} 1 & \text{if } j = t_i \\ 0 & \text{else} \end{cases}$$

• for K=3 classes:
$$t_i = 3 \rightarrow \vec{t_i} = (0, 0, 1,)$$

 $t_i = 1 \rightarrow \vec{t_i} = (1, 0, 0)$

- If targets are vectors, model outputs should also be vectors: $Y = \vec{f}(X) \in \mathbb{R}^{N,k}$
- Interpretation: largest vector component determines class: $c_i = \operatorname{argmax}_k Y_{ik}$
- advantage: separate confidence for each class! $t_i = 3 \rightarrow \vec{t}_i^T = (0,0,1,)$ $\vec{y}_i^T = (0.45,0.05,0.5)$

- If targets are vectors, model outputs should also be vectors: $Y = \vec{f}(X) \in \mathbb{R}^{N,k}$
- Interpretation: largest vector component determines class: $c_i = \operatorname{argmax}_k Y_{ik}$
- advantage: separate confidence for each class! $t_i = 3 \rightarrow \vec{t}_i^T = (0,0,1,)$ $\vec{y}_i^T = (0.45,0.05,0.5)$

- If targets are vectors, model outputs should also be vectors: $Y = \vec{f}(X) \in \mathbb{R}^{N,k}$
- Interpretation: largest vector component determines class: $c_i = \operatorname{argmax}_k Y_{ik}$
- advantage: separate confidence for each class! $t_i = 3 \rightarrow \vec{t}_i^T = (0,0,1,)$ $\vec{y}_i^T = (0.5,0.05,0.45)$

NO!

Classification problems: loss functions

Classification error

- For binary/multi-class problems
- Assumes that model output matrix Y = f(X) tries to approximate one-hot-coded target vectors

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 1 & \operatorname{argmax}_{k} Y_{ik} \neq \operatorname{argmax}_{k} T_{ik} \\ 0 & \text{else} \end{cases}$$

- Example!
- not differentiable, constant almost everywhere Seite 20

Cross-entropy

- For binary/multi-class classification problems
- Assumes: $Y_{ik} \in]0,1]$ and $\sum Y_{ik} = 1 \, \forall i$
- Cross-entropy for single sample \vec{x} and target \vec{t}

$$\tilde{\mathcal{L}}^{CE} = -\sum_{k} t_k \log y_k$$

• Cross-entropy for multiple samples X and targets T

$$\mathcal{L}^{CE} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k} T_{ik} \log Y_{ik}$$

Seite 21

What does cross-entropy express?

• Cross-entropy is determined by log of model output at the place k^* where label = 1:

$$\tilde{\mathcal{L}}^{CE} = -\sum_{k} t_k \log y_k = -\log y_{k^*}$$

- log is always negative (since model ouputs $y_k \le 1$)
- lowest value is 0, unbounded from above
- if model has nonzero values aside from k^*
 - \rightarrow lower value at $k^* \rightarrow$ lower cross-entropy

Demo: cross-entropy

The linear classifier model

- preliminaries: softmax function $S_l(\vec{x}) = \frac{\exp(x_l)}{\sum_k \exp(x_k)}$ -ensures normalization: $\sum S_l(\vec{x}) = 1$

 - -positive and bounded: $S_l(\vec{x}) \in [0,1]$
 - -enhances biggest values, suppresses smallest values
- Simple partial derivatives: $\frac{\partial S_i}{\partial x_j} = \delta_{ij}S_i S_iS_j$

Vector-to-vector!

- preliminaries: softmax function $S_l(\vec{x}) = \frac{\exp(x_l)}{\sum_k \exp(x_k)}$ -ensures normalization: $\sum S_l(\vec{x}) = 1$

 - -positive and bounded: $S_l(\vec{x}) \in [0,1]$
 - -enhances biggest values, suppresses smallest values
- Simple partial derivatives: $\frac{\partial S_i}{\partial x_j} = \delta_{ij} S_i S_j$ Seite 26

- Model takes a matrix $X \in \mathbb{R}^{N,n}$ and produces an output matrix $Y = \vec{f}(X) \in \mathbb{R}^{N,k}$ (k: # classes)
- normalization and boundedness ensured by softmax
- Model formula: $\vec{f}(\vec{X},W,\vec{b}) = \vec{S} \Big(XW + \vec{b}^T \Big)$ weights biases
- Cross-entropy loss

- Model takes a matrix $X \in \mathbb{R}^{N,n}$ and produces an output matrix $Y = \vec{f}(X) \in \mathbb{R}^{N,k}$ (k: # classes)
- normalization and boundedness ensured by softmax
 perfect for cross-entropy!!
- Model formula: $\vec{f}(\vec{X},W,\vec{b}) = \vec{S} \Big(XW + \vec{b}^T \Big)_{\text{weights}}$
- Cross-entropy loss

The linear softmax MC classifier as a simple DNN

Layered model:

Affine layer:
$$A = XW + \vec{b}^T$$

Softmax layer: $Y = \vec{S}(A)$

ullet Loss computed from model outputs Y

Demo: The linear softmax MC classifier on MNIST

- K=10, loss function: cross-entropy
- model outputs look like probabilities, are they?
- why such a complex model? Why one-hot coding of targets?
 - more information in classifier outputs
 - more free parameters in model, one set per class

How to optimize linear softmax MC?

- Obviously: need to adapt all the weights W and biases \vec{b}
- How?

How to optimize linear softmax MC?

- Obviously: need to adapt all the weights W and biases \vec{b}
- How?
- Gradient descent!!