## 处理器设计

指令流水线的实现

主讲人: 邓倩妮

上海交通大学

部分内容来自:

Computer Organization and Design, 4th Edition, Patterson & Hennessy



#### 单周期处理器数据通路示意图



#### MIPS 流水线数据通路



■ 在MIPS 的数据通路上增加段寄存器, 将各流水段隔离开

#### 取指令单元

• 10: : lw \$1, 0x100(\$2)



不需要控制信号,因为所有的指令执行的第一步都是取指令

#### 新的PC:如果有转移指令



• 把所有改变PC值的操作都放在IF段进行

#### 译码/读寄存器阶段,同时生成控制信号



- 所有控制信号在译码(Decode)阶段生成
  - 通过段寄存器 (stage register) 逐级流水传递

#### 回顾:单周期处理器控制信号的生成



#### 流水线数据通路上需要的控制信号

- PC 不需要控制信号
- Ifecth (取指)段和 Dec/Reg (译码)段不需要控制信号
- Exec phase (执行段)
  - ExtOp: 1- 带符号位扩展; 0- 无符号数, 高位填零扩展
  - ALUSrc: 1-来自于扩展器; 0-来自于 bus B
  - ALUOp: 用于控制ALU完成的功能
  - RegDst: 1- Rd; 0- Rt
- Mem (访存段)
  - MemWr: 1: 写, 0: 其他
  - Branch: 1:转移, 0:其他
- Wr (写回段)
  - MemtoReg: 1-数据存储器的输出; 0-ALU的输出
  - RegWr: 1: 写寄存器, 0:其他

#### MIPS Pipeline Control Path Modifications

- All control signals can be determined during Decode
  - and held in the state registers between pipeline stages



### 流水线数据通路上的控制信号

- IF Stage 取指段: 取指令, 计算新PC
- ID Stage 译码段: 不需要控制信号

|     | EX Stage   |            |            |            | MEM Stage |             |              | WB Stage     |              |
|-----|------------|------------|------------|------------|-----------|-------------|--------------|--------------|--------------|
|     | Reg<br>Dst | ALU<br>Op1 | ALU<br>Op0 | ALU<br>Src | Brch      | Mem<br>Read | Mem<br>Write | Reg<br>Write | Mem<br>toReg |
| R   | 1          | 1          | 0          | 0          | 0         | 0           | 0            | 1            | 0            |
| lw  | 0          | 0          | 0          | 1          | 0         | 1           | 0            | 1            | 1            |
| SW  | X          | 0          | 0          | 1          | 0         | 0           | 1            | 0            | Х            |
| beq | Х          | 0          | 1          | 0          | 1         | 0           | 0            | 0            | X            |

#### 通过段寄存器传递控制信号

- 主控制单元在译码段(Reg/Dec )产生所有控制信号
  - Exec (ExtOp, ALUSrc, ...)段需要的控制信号, 在一周期后使用
  - Mem (MemWr Branch)段需要的控制信号,在两周期后使用
  - Wr (MemtoReg MemWr))段需要的控制信号,在三周期后使用





How many bits wide is each pipeline register?

Paths **PCSrc** ID/EX EX/MEM Control IF/ID Add MEM/WB Branch Add Shift RegWrite left 2 Read Addr 1 Instruction Data Register Read Memory Memory Read Addr 2 Data 1 MemtoReg **ALUSrc** Read File Read **→**Address Address ►Write Addr ALU Data Read Data 2 → Write Data Write Data ALU cntrl MemWrite MemRead Sign Extend **ALUOp** RegDst



IF/ID – 64 bits (PC+4, instruction)



ID/EX - 9 + 32x4 + 10 = 147 (control signal, PC+4 (32), IMM (32), RS(32), RT(32), RT (5), RD(5))



5 + 1 + 32x3 + 5 = 107 (control signal, zero, ALUout, Branch address, rt, (rt or rd's address))



MEM/WB - 2 + 32x2 + 5 = 71 (WB地址+MEM+ALUout+(rt or rd's address)))

# 谢谢!

