Kähler Manifolds

Labix

January 19, 2024

Abstract

Kähler Manifolds Labix

Contents

1	Käh	nler Manifolds	3
	1.1	Kähler Manifolds	3

Kähler Manifolds Labix

1 Kähler Manifolds

1.1 Kähler Manifolds

Definition 1.1.1: Kähler Manifolds

A Kähler metric is a Hermitian metric h whose associated (1,1)-form ω is closed.

Definition 1.1.2: Kähler Manifolds

A Kähler manifold is a complex manifold M with a Hermitian metric h whose associated (1,1)-form ω is closed.

Proposition 1.1.3

Every Kähler manifold M is a Riemannian manifold.

Proof. We have seen that every hermitian metric induces a Riemannian metric.

Let M be a Kähler manifold with associated (1,1)-form ω . Recall that we can write ω in local coordinates in $(U, \phi = (z_1, \dots, z_n))$ as

$$\omega = \frac{i}{2} \sum_{i,i=1}^{n} h_{ij} dz_i \wedge d\overline{z}_j$$

where $h_{ji} = \overline{h}_{ij}$. This is the case even when M is just a Hermitian manifold. With the Kähler structure, we can do more.

$$\omega = \frac{i}{2} \sum_{i=1}^{n} \chi_i \wedge \overline{\chi}_i$$

Proposition 1.1.4

Let M be a Kähler manifold with associated (1,1)-form ω . Then $\omega^d/d!$ is the volume element of the Riemannian metric g defined by the Kähler form ω .

Proposition 1.1.5

Let M be a Kähler manifold of complex dimension n. Then

$$\dim(H^{2k}(M,\mathbb{R})) > 0$$

for all $k = 0, \ldots, n$.