NASA TECHNICAL NOTE

NASA TN D-5635

C. 1

OLJEHJO N

CALCULATED WIND-TUNNEL-BOUNDARY
LIFT-INTERFERENCE FACTORS FOR
RECTANGULAR PERFORATED TEST SECTIONS

by Benferd L. Schilling and Ray H. Wright Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - JANUARY 1970

1.	Report No. NASA TN D-5635	2. Government Acc	ession No. 3	. Recipient's Catalo	g No.
4.	Title and Subtitle CALCULATED WIND-TUNNEL-BOUNDA FOR RECTANGULAR PERFORATED TES		NCE FACTORS	Report Date February 1970 Performing Organia	ration Code
7.	Author(s) Benferd L. Schilling and Ray H. Wr	ight		Performing Organiz L-6832	ration Report No.
9.	Performing Organization Name and A NASA Langley Research Center	ddress	11	126-63-11-31-23 . Contract or Grant I	No.
12.	Hampton, Va. 23365 Sponsoring Agency Name and Addres National Aeronautics and Space Adr Washington, D.C. 20546			Technical Note	
15.	Supplementary Notes		14	I. Sponsoring Agency	
16.	Equations developed and press bution of wind-tunnel-boundary int modified slightly to facilitate machin factors for a variety of wind-tunnel tions of small-span and large-span tunnel width-height ratio varying f ranging from 0.1 to 25.0. Spanwise the tables requires knowledge of th which lift interference factors are as an appendix.	erference on lift of ne calculations and and wing paramete wings mounted at the rom 0,5 to 2,0 and we distributions of up e values of permeab	wings in rectangular pe are then used to genera rs. Data are presented t he center of rectangular with the ratio of permeal wash interference factor ility factor applicable to	rforated-wall test sect te extensive tables of for horseshoe-vortex in test sections with five collity factor to comprest are given for each of the perforated test sect	ions are interference representa- ve values of ssibility factor ase. Use of
17.	17. Key Words Suggested by Author(s) Wind-tunnel-boundary lift interference Perforated-wall test sections 18. Distribution Statement Unclassified - Unlimited				
19.	Security Classif. (of this report) Unclassified	20. Security Clas Unclassified		21. No. of Pages 62	22. Price* \$3.00

CALCULATED WIND-TUNNEL-BOUNDARY LIFT-INTERFERENCE FACTORS FOR RECTANGULAR PERFORATED TEST SECTIONS

By Benferd L. Schilling and Ray H. Wright Langley Research Center

SUMMARY

Equations developed and presented in NASA Technical Report R-285 for approximating the spanwise distribution of wind-tunnel-boundary interference on lift of wings in rectangular perforated-wall test sections are modified slightly to facilitate machine calculations and are then used to generate extensive tables of interference factors for a variety of wind-tunnel and wing parameters. Data are presented for horseshoe-vortex representations of small-span and large-span wings mounted at the center of rectangular test sections with five values of tunnel width-height ratio varying from 0.5 to 2.0 and with the ratio of permeability factor to compressibility factor ranging from 0.1 to 25.0. Spanwise distributions of upwash interference factor are given for each case. Use of the tables requires knowledge of the values of permeability factor applicable to the perforated test section for which lift interference factors are desired. Machine computer programs used in the calculations are presented as an appendix.

INTRODUCTION

During the last two decades, a number of wind tunnels have been constructed with test sections having perforated walls. Such walls are of particular advantage in testing through sonic speeds and at speeds slightly supersonic because they may reduce the severity of shock-wave disturbances reflected from the walls and impinging on the test models. However, these wind tunnels are commonly used also for subsonic testing, and if winged models are of appreciable size relative to the cross section of the tunnel at the test location, it is desirable to correct for the modification of test conditions due to the upwash interference of the tunnel boundaries.

For constructional and operational convenience and for avoidance of focusing of reflected shocks in the transonic speed range, perforated-wall test sections are commonly made rectangular in cross section. An approximation method for estimating the wind-tunnel-boundary upwash interference along the span of a lifting wing mounted at the center of such a perforated-wall test section was developed in reference 1. However, the extensive calculations required to obtain numerical values of upwash interference factors

involve the numerical evaluation of multiple infinite integrals containing integrands singular at the zero point of the domain of integration. In order to facilitate the application of the theory of reference 1, machine computing programs for calculation of upwash factors were prepared and are presented herein along with tables of upwash factors applicable to a range of practical configurational and operational parameters. Figures constructed from the tables illustrate the variation of upwash interference factor with effective permeability of the test-section walls, with spanwise location along the wing, and with ratio of width to height of the test section. Although the theory of reference 1 provides for the possibility that the permeability of the top and bottom walls is different from that of the side walls, it is assumed uniform for these calculations.

SYMBOLS

A cross-sectional area of test section

a variable used for convenience to represent more complicated expression in equation (A12)

b semiwidth of test section

C_I lift coefficient

$$F_{i}(q), F_{i}'(q)$$

$$G(q,r), G'(q,r)$$

$$G_{i}(q,p), G_{i}'(q,r), G_{i}''(q,r)$$

$$K_{i}(q,r), K_{i}'(q,r)$$

$$H(q,r,p), H'(q,r,p)$$

$$H_{i}(q,r,p), H_{i}'(q,r,p), H_{i}''(r,\rho,\theta)$$

$$H_{i,j}(q,r,p), H_{i,j}'(q,r,p), H_{i,j}'(r,\rho,\theta)$$

$$L_{i}(q,r,p), L_{i}'(q,r,p)$$

$$L_{i,j}(r,\rho), L_{i,j}'(r,\rho)$$

Symbols used for convenience to represent functions of the indicated dummy variables

h semiheight of test section

M Mach number

p,p' dummy variables of integration

q dummy variable of integration

R permeability factor

r dummy variable of integration

S area on which lift coefficient is based

s semispan of horseshoe vortex representing wing

V velocity of tunnel test stream

v upwash interference velocity, positive in direction of Z-axis

X,Y,Z axes of rectangular Cartesian coordinates

x,y,z rectangular Cartesian coordinates, x in direction of tunnel flow, y along direction of wing span, and z vertical

$$\beta = \sqrt{1 - M^2}$$

Γ circulation

δ upwash interference factor

 θ dummy variable of integration

 ρ dummy variable of integration

Subscripts:

The subscript j is used as a secondary subscript only as a bookkeeping device. The subscript i is used as a primary subscript with the following definitions:

2 pertaining to vertical boundaries

3 pertaining to horizontal boundaries

- 4 pertaining to effect of horizontal boundaries on interference potential inside test section due to vertical boundaries
- 5 pertaining to effect of horizontal boundaries on interference potential outside test section due to horizontal boundaries

UPWASH INTERFERENCE APPROXIMATION EQUATIONS

Approximation equations for calculating the upwash interference velocity v due to the boundaries of a perforated wind tunnel along a wing mounted at the center were derived in reference 1. The wind tunnel was assumed rectangular with semiheight h and semiwidth h, and the wing was represented by a horseshoe vortex with span 2s and circulation h. A rectangular Cartesian coordinate system was used with coordinates h positive in the direction of lift, h lying along the wing span, and h positive downstream in the direction of the trailing vortices. A schematic diagram showing the relationships between the various parameters is given in figure 1.

The equations of interest in reference 1 are equations (A14), which gives the interference velocity due to infinite vertical boundaries; equation (B10), which gives the interference velocity due to infinite horizontal boundaries; and equations (C10) and (C12), which give increments of interference velocity to satisfy more nearly the boundary conditions when both horizontal and vertical boundaries are present. These equations involve the permeability factors R_2 along the vertical boundaries and R_3 along the horizontal boundaries. If $R_2 = R_3 = R$; that is, if the permeability factor is assumed uniform and equal on all boundaries, then the equations approximating the various components of the interference velocity can be written in terms of R/β (where $\beta = \sqrt{1 - M^2}$ and M is Mach number) instead of separately in terms of R_2 , R_3 , and β .

The upwash interference factors δ_i , which are obtained from their respective upwash interference velocities by the relationship

$$\delta_{\mathbf{i}} = \frac{Av_{\mathbf{i}}}{SVC_{\mathbf{L}}}$$

can be put in the form

$$\delta_{i} = \frac{b/h}{s/h} \frac{h}{\Gamma} v_{i} \tag{1}$$

from which the total upwash interference factor is calculated as

$$\delta = \sum_{i} \delta_{i}$$
 (2)

The four equations referred to in reference 1 have been rewritten by means of equation (1) to give their respective upwash interference factors. These have also been rewritten so that the terms R and β never appear singly, but always appear in the form R/β . Finally, the equations have been rearranged and transformed to the extent necessary to present them in forms more readily adaptable to machine calculations. The details of these manipulations are given in appendix A. The machine computer programs are presented in appendix B.

RESULTS AND DISCUSSION

As mentioned in the preceding section, the approximation equations have been rewritten so that the upwash interference factors are expressed in terms of R/β rather than singly in either the permeability factor R or in β . For the purposes of calculation, β was allowed to take the values 1.0, 0.8, 0.6, 0.45, and 0.3 for each of the values of R, which were 0.1, 0.45, 2.0, and 7.5. Thus, upwash interference factors were calculated for 20 values of R/β ranging from 0.1 to 25.0. The calculations were made for this range of R/β for each of five different values of tunnel width-height ratio b/h, which were 0.5, 0.75, 1.0, 1.5, and 2.0, for both a small-span wing (s/b = 0.3), where s/b is the ratio of wing span to tunnel width, and a large-span wing (s/b = 0.7). Finally, the interference factors were calculated for three locations along the wing span (y/s = 0.0, 0.5, and 1.0) for each value of the parameters s/b, b/h, and R/β .

The resulting calculated upwash interference factors for a small-span wing mounted in the center of a rectangular perforated wind tunnel are presented in table I. Each page of the table presents the variation of upwash interference factors along the wing span for the entire range of R/β for one of the five values used for b/h. Table II presents the corresponding calculations for a large-span wing. Values are given for each of the individual upwash interference factors δ_2 , δ_3 , δ_4 , and δ_5 (as defined by eq. (1) in conjunction with subscript definitions in the list of symbols) as well as for the total upwash interference factor δ .

There is always the possibility of calculation errors (such as round-off errors) in calculations of this type, and a certain amount of effort is required to ascertain the extent of these errors in order to decide what level of confidence to place in the final calculations. The infinite integration limits in these particular calculations necessitated an arbitrary truncation of the calculating procedure beyond a certain point in order to conserve computer time. To some extent with the double integrals, and especially with the triple integrals, compromises had to be made between the level of accuracy desired and the calculating time used. Therefore, the integration range was broken up into small equal intervals the lengths of which were chosen from information obtained in preliminary

computer runs of the program. Integrations were then made successively over each of the intervals, the integration limits increasing by the interval length with each integration step. When the integral over the last interval was less than some arbitrarily chosen small number (a change of one unit in the fifth decimal place in this case), the integral was assumed to have converged and the integration procedure was terminated. In these calculations, the rapid approach of the integrands toward zero with increase of the integration variables lent credence to this criterion of convergence.

The accuracy of machine calculations also depends upon the number of points per integration interval used in the machine integration routine (the Gaussian quadrature method was used for these calculations). Here, again, compromises had to be made between desired accuracy and calculating time. For the calculations herein, the number of points used was increased over several preliminary runs of the program, and the final number of integration points chosen was that for which the value of the integral changed by no more than one unit in the fifth decimal place between successive trials with increasing numbers of points.

Special consideration and handling must be given to integrals whose integrands contain terms causing the integrands to oscillate about zero as the integration variable increases. In several instances in the integrals reported herein (as discussed in appendix A), the integrands contained products of sines and cosines whose arguments contained the same variable but differed in the constants by which the variable was multiplied. Thus, several terms in the integrand were oscillating about zero at different frequencies. This behavior indicates the possibility that oscillations might combine within some particular integration interval in such a way as to cause the integral over that interval to be very small. The calculation process might then be truncated prematurely because of a spurious indication of convergence of the integral. The approach used in handling this problem was to combine the sine-cosine product terms by means of multipleangle trigonometric identities into sums of sine and cosine terms whose arguments were the same and then to choose the integration interval to extend over some multiple of a half-cycle of the new argument. Tables I and II present data only to three decimal places, but the tests on convergence and number of points per integration interval were to five decimal places; therefore, the values in the tables are assumed free of arithmetic truncation errors.

If the approximation equations for the various components of upwash interference factors are valid, then the total upwash interference factors should approach the values for the completely closed tunnel as R/β approaches zero and the value for the completely open tunnel as R/β becomes very large. Such behavior is confirmed by the curves of figure 2 which show the variation of total upwash interference factor at the center of a small-span wing mounted in the center of a rectangular perforated wind tunnel

as a function of R/β for several values of tunnel width-height ratio b/h. Figure 3 shows the corresponding curves for a large span wing, and again the calculated values tend toward the closed-tunnel values for small R/β and toward the open-tunnel values for large R/β . Note that on the logarithmic scale of figures 2 and 3, the point on the abscissa corresponding to the closed tunnel $(R/\beta = 0)$ lies infinitely far to the left, and the point corresponding to the open tunnel $(R/\beta \to \infty)$ lies infinitely far to the right.

The open-tunnel and closed-tunnel upwash interference factors at the center of the test section, which are given for comparison, were calculated from equations independently derived by the method of images as in reference 2. For the closed test section, $\,\delta$ at the center of the wing is

$$\delta = \frac{1}{2\pi \frac{b}{h} \left(\frac{s}{b}\right)^2} - \frac{\operatorname{cosech}\left(\frac{\pi}{2} \frac{b}{h} \frac{s}{b}\right)}{4\frac{s}{b}} + \frac{1}{4\frac{s}{b}} \sum_{n=1}^{\infty} \left\{ \operatorname{cosech}\left[\frac{\pi}{2} \frac{b}{h} \left(2n - \frac{s}{b}\right)\right] - \operatorname{cosech}\left[\frac{\pi}{2} \frac{b}{h} \left(2n + \frac{s}{b}\right)\right] \right\}$$
(3)

and for the open test section, δ at the center of the wing is

$$\delta = \frac{1}{2\pi \frac{b}{h} \left(\frac{s}{b}\right)^2} - \frac{\operatorname{cotanh}\left(\frac{\pi}{2} \frac{b}{h} \frac{s}{b}\right)}{4\frac{s}{b}} + \frac{1}{4\frac{s}{b}} \sum_{n=1}^{\infty} (-1)^n \left(\operatorname{cotanh}\left[\frac{\pi}{2} \frac{b}{h} \left(2n - \frac{s}{b}\right)\right] - \operatorname{cotanh}\left[\frac{\pi}{2} \frac{b}{h} \left(2n + \frac{s}{b}\right)\right] \right)$$
(4)

Machine computer programs corresponding to these equations are given in appendix B.

Plots and cross plots made from the extensive data presented in tables I and II afford a great deal of insight into the variation of upwash interference factors with various tunnel and wing parameters. No attempt will be made in this paper to present a comprehensive set of figures showing the interrelationships of the upwash interference factors with the various other parameters. Two figures (figs. 4 and 5) illustrative of the type of information available are given. Figure 4 shows the variation of total upwash interference factor along the spans of both small-span and large-span wings for several values of R/β and for several tunnel width-height ratios. Figure 5 shows the variation of upwash interference factor with tunnel width-height ratio for several values of R/β for both the small-span and large-span wings.

A comparison of figures 4(a) and 4(b) shows that the variation of the interference along the span is small for the small-span wing but substantial for the wing spanning 0.7 of the test-section width. Also, the largest spanwise variation occurs for the test section having the smallest width-height ratio, an effect that might have been anticipated since in this case a large part of the interference is produced by the side walls. Note however, that in all cases for which the permeability is such as to produce nearly zero

interference at the center of the wing, the interference at the wing tips is also nearly zero.

Figure 5 shows that except for the nearly open tunnel with height greater than the width, the downwash interference at the center of a wing spanning a given fraction of the width of the test section increases with increase of the test-section width-height ratio.

CONCLUDING REMARKS

Equations developed in NASA Technical Report R-285 for approximating the spanwise distribution of wind-tunnel-boundary interference on lift of wings in rectangular perforated-wall test sections have been modified to facilitate machine calculations and then used to generate tables of interference factors for a variety of wind-tunnel and wing parameters.

The upwash interference factors presented in the tables are applicable only if the permeability factor R is known. Inasmuch as R depends not only on the geometry of the perforated walls but also on operating conditions such as Reynolds number, Mach number, and boundary-layer thickness, it cannot be calculated but must be experimentally determined. The effective permeability factor may also vary from place to place over the perforated walls so that the use of some average values may be required.

The approximation method used in the calculations is believed to yield upwash interference factors of adequate accuracy. Because the wing is represented by a single horse-shoe vortex, the calculated upwash interference factors are applicable only to wings of reasonably small chord.

Langley Research Center,

National Aeronautics and Space Administration, Langley Station, Hampton, Va., October 16, 1969.

ADAPTATION OF UPWASH INTERFERENCE EQUATIONS TO MACHINE CALCULATIONS

Equation (A14) of reference 1, which represents the upwash interference velocity due to infinite vertical boundaries, can be rewritten by means of equation (1) in the body of the present report to give the upwash interference factor

$$\delta_{2} = \frac{1}{2\pi^{2}} \frac{b/h}{s/h} \left[\int_{0}^{\infty} F_{2}(q) dq - \frac{2}{R} \int_{0}^{\infty} \int_{0}^{\infty} G_{2}(q,p) dp dq \right]$$
 (A1)

where

$$F_{2}(q) = \frac{\pi \sinh\left(\frac{s}{h}q\right) \cosh\left(\frac{y}{h}q\right)}{e^{\frac{b}{h}q} \sinh\left(\frac{b}{h}q\right)}$$

and

$$G_2(\mathbf{q},\mathbf{p}) = \frac{\mathbf{q}^2 \sinh \left(\frac{\mathbf{s}}{h} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right) \cosh \left(\frac{\mathbf{y}}{h} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right)}{\sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2} \left[\frac{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}{\mathbf{R}^2} \sinh^2 \left(\frac{\mathbf{b}}{h} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right) + \mathbf{p}^2 \cosh^2 \left(\frac{\mathbf{b}}{h} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right)\right]}$$

If the transformation of variables

$$\beta p = r \cos \theta$$
 $q = r \sin \theta$

is made in the double-integral portion of equation (A1), then the differential element β dp dq is replaced by r dr d θ and the double integral becomes

$$\frac{2\beta}{R} \int_0^\infty \frac{\sinh\left(\frac{s}{h}r\right)\cosh\left(\frac{y}{h}r\right)}{\cosh^2\left(\frac{b}{h}r\right)} \int_0^{\pi/2} \frac{\sin^2\theta \ d\theta \ dr}{\left(\frac{\beta}{R}\right)^2 \tanh^2\left(\frac{b}{h}r\right) + \cos^2\theta}$$

Rearrangement of the integral over θ by means of the double-angle trigonometric identities gives an integral in θ which can be integrated analytically. If the dummy variable of integration r is replaced by q, the result can be combined with the single-integral portion of equation (A1) to give the upwash interference factor

$$\delta_2 = \frac{1}{2\pi} \frac{b/h}{s/h} \int_0^\infty F_2^{\dagger}(q) dq$$
 (A2)

where

$$F_{2}^{\dagger}(q) = \frac{\sinh\left(\frac{s}{h}q\right)\cosh\left(\frac{y}{h}q\right)}{\sinh\left(\frac{b}{h}q\right)} \left\{ e^{-\frac{b}{h}q} + \operatorname{sech}\left(\frac{b}{h}q\right) \left[\frac{\beta}{R}\tanh\left(\frac{b}{h}q\right) - \sqrt{\left(\frac{\beta}{R}\right)^{2}\tanh^{2}\left(\frac{b}{h}q\right) + 1}\right] \right\}$$

In the limits, as the permeability factor R approaches zero (closed-tunnel case) and infinity (open-tunnel case), equation (A2) approaches the same limits as those obtained in reference 1.

The upwash interference velocity due to infinite horizontal boundaries, given by equation (B10) of reference 1, is written in terms of the upwash interference factor as

$$\delta_{3} = \frac{1}{2\pi^{2}} \frac{b/h}{s/h} \left[\int_{0}^{\infty} F_{3}(q) dq - \frac{2}{R} \int_{0}^{\infty} \int_{0}^{\infty} G_{3}(q, p) dp dq \right]$$
 (A3)

where

$$F_3(q) = \frac{\pi \cos(\frac{y}{h}q)\sin(\frac{s}{h}q)}{e^q \cosh q}$$

and

$$G_{3}(q,p) = \frac{\cos\left(\frac{y}{h}q\right)\sin\left(\frac{s}{h}q\right)}{q\left[\frac{1}{R^{2}}\cosh^{2}\left(\sqrt{\beta^{2}p^{2}+q^{2}}\right) + \frac{p^{2}}{\beta^{2}p^{2}+q^{2}}\sinh^{2}\sqrt{\beta^{2}p^{2}+q^{2}}\right]}$$

In order to write the second integral in terms of R/β , the transformation p = r/R (where R is a finite constant) is made. The machine calculations are made more accurate if the product $cos(\frac{y}{h}q)sin(\frac{s}{h}q)$ is written as

$$\cos\left(\frac{y}{h}q\right)\sin\left(\frac{s}{h}q\right) = \frac{1}{2}\left\langle\sin\left[\left(\frac{s}{h} + \frac{y}{h}\right)q\right] + \sin\left[\left(\frac{s}{h} - \frac{y}{h}\right)q\right]\right\rangle$$

Finally, using the identity $\sinh^2 x = \cosh^2 x - 1$ and simplifying give equation (A3) in the form

$$\delta_{3} = \frac{1}{2\pi^{2}} \frac{b/h}{s/h} \left[\int_{0}^{\infty} F_{3}'(q) dq - \int_{0}^{\infty} \int_{0}^{\infty} G_{3}'(q, r) dq dr \right]$$
 (A4)

where

$$F_{3}'(q) = \frac{\pi}{2} \frac{\sin\left[\left(\frac{s}{h} + \frac{y}{h}\right)q\right] + \sin\left[\left(\frac{s}{h} - \frac{y}{h}\right)q\right]}{e^{q} \cosh q}$$

and

$$G_3'(q,r) = \frac{\left(\frac{\beta^2 r^2}{R^2} + q^2\right) \left\{ \sin\left[\left(\frac{s}{h} + \frac{y}{h}\right)q\right] + \sin\left[\left(\frac{s}{h} - \frac{y}{h}\right)q\right] \right\}}{q \left\{ \left[\left(\frac{\beta^2}{R^2} + 1\right)r^2 - q^2\right] \cosh^2\left(\sqrt{\frac{\beta^2 r^2}{R^2} + q^2}\right) - r^2\right\}}$$

The upwash interference factors due to the effect of horizontal boundaries on the interference velocity potential inside the test section due to vertical boundaries δ_4 (from eq. (C10) of ref. 1) and to the effect of horizontal boundaries on the interference velocity potential outside the test section due to horizontal boundaries δ_5 (from eq. (C12) of ref. 1) are given by

$$\delta_{4} = \frac{1}{\pi^{2}} \frac{b/h}{s/h} \left[-\int_{0}^{\infty} \int_{0}^{\infty} G(q,r)G_{4}^{\dagger}(q,r)dq dr + \frac{2}{\pi R} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} H(q,r,p)H_{4}(q,r,p)dq dr dp \right]$$
(A5)

and

$$\delta_{5} = \frac{1}{\pi^{2}} \frac{b/h}{s/h} \left[\int_{0}^{\infty} \int_{0}^{\infty} G(q,r)G_{5}^{t}(q,r)dq dr + \frac{2}{\pi R} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} H(q,r,p)H_{5}(q,r,p)dq dr dp \right]$$
(A6)

where the symbols common to both equation (A5) and equation (A6), that is, G(q,r) and H(q,r,p) represent

$$G(q,r) = \frac{\sinh\left(\frac{s}{h}q\right)\cos\left(\frac{y}{h}r\right)\cos q}{\left(q^2 + r^2\right)e^{\frac{b}{h}q}\cosh r}$$

and

$$H(q,r,p) = \frac{q \; \sinh \left(\frac{s}{h} \sqrt{\beta^2 p^2 + q^2} \right) \cos \left(\frac{y}{h} r \right)}{\left(\beta^2 p^2 + q^2 + r^2 \right) \left(\frac{p^2 \sinh^2 \sqrt{\beta^2 p^2 + r^2}}{\beta^2 p^2 + r^2} + \frac{1}{R^2} \cosh^2 \sqrt{\beta^2 p^2 + r^2} \right) e^{\left(\frac{b}{h} \sqrt{\beta^2 p^2 + q^2} \right)}}$$

The symbols $G'_4(q,r)$ and $H_4(q,r,p)$ in equation (A5) represent

$$G_{4}'(q,r) = \frac{q \sinh\left(\frac{b}{h}q\right)\cos\left(\frac{b}{h}r\right) + r \cosh\left(\frac{b}{h}q\right)\sin\left(\frac{b}{h}r\right)}{\sinh\left(\frac{b}{h}q\right)}$$

and

$$H_4(q,r,p) = H_{4,1}(q,r,p) \left[H_{4,2}(q,r,p) H_{4,3}(q,r,p) - H_{4,4}(q,r,p) H_{4,5}(q,r,p) \right]$$

where

$$H_{4,1}(\mathbf{q},\mathbf{r},\mathbf{p}) = \frac{\sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2} \, \sinh\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\!\right) \! \cos\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \mathbf{r}\right) + \mathbf{r} \, \cosh\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\!\right) \! \sin\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \mathbf{r}\right)}{\frac{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}{\mathbf{R}^2} \, \sinh^2\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right) + \mathbf{p}^2 \! \cosh^2\!\left(\!\frac{\mathbf{b}}{\mathbf{h}} \sqrt{\beta^2 \mathbf{p}^2 + \mathbf{q}^2}\right)}$$

$$\mathrm{H_{4,2}(q,r,p)} = \frac{\sinh\left(\frac{b}{h}\sqrt{\beta^2p^2+q^2}\right) + \cosh\left(\frac{b}{h}\sqrt{\beta^2p^2+q^2}\right)}{\sqrt{\beta^2p^2+q^2}}$$

$$H_{4,3}(q,r,p) = \frac{p^2 \sin q \sinh \sqrt{\beta^2 p^2 + r^2}}{\sqrt{\beta^2 p^2 + r^2}} + \frac{q}{R^2} \cos q \cosh \sqrt{\beta^2 p^2 + r^2}$$

$$H_{4,4}(q,r,p) = \frac{\sinh\left(\frac{b}{h}\sqrt{\beta^{2}p^{2} + q^{2}}\right)}{R^{2}} - \frac{p^{2}\cosh\left(\frac{b}{h}\sqrt{\beta^{2}p^{2} + q^{2}}\right)}{\beta^{2}p^{2} + q^{2}}$$

and

$$H_{4,5}(q,r,p) = \sin q \cosh \sqrt{\beta^2 p^2 + r^2} - \frac{q \cos q \sinh \sqrt{\beta^2 p^2 + r^2}}{\sqrt{\beta^2 p^2 + r^2}}$$

In equation (A6), the symbols $G'_5(q,r)$ and $H_5(q,r,p)$ represent

$$G_5'(q,r) = q \cos\left(\frac{b}{h}r\right) - r \sin\left(\frac{b}{h}r\right)$$

and

$$H_5(q,r,p) = \frac{H_{4,5}(q,r,p)}{\beta^2 p^2 + q^2} \left[\sqrt{\beta^2 p^2 + q^2} \cos\left(\frac{b}{h}r\right) - r \sin\left(\frac{b}{h}r\right) \right]$$

Consider for a moment only the double-integral portions of equations (A5) and (A6). These represent the case of the completely closed tunnel. As with equation (A3), the calculation procedures are made more accurate by writing the product $\cos\left(\frac{y}{h}r\right)\sin\left(\frac{b}{h}r\right)$ and the product $\cos\left(\frac{y}{h}r\right)\cos\left(\frac{b}{h}r\right)$ as sines and cosines with arguments $\left(\frac{b}{h}+\frac{y}{h}\right)r$ and $\left(\frac{b}{h}-\frac{y}{h}\right)r$. The double integrals of equations (A5) and (A6) can thus be written

$$\delta_4 \text{ (double-integral portion)} = -\frac{1}{2\pi^2} \frac{b/h}{s/h} \int_0^\infty \int_0^\infty G'(q,r) G''_4(q,r) dq dr$$
 (A7)

and

$$\delta_5 \text{ (double-integral portion)} = -\frac{1}{2\pi^2} \frac{b/h}{s/h} \int_0^\infty \int_0^\infty G'(q,r)G''_5(q,r)dq dr$$
 (A8)

where

$$\begin{split} G'(q,r) &= \frac{\cos q \, \sinh \left(\frac{s}{h}q\right)}{\left(q^2 + r^2\right) e^{\frac{b}{h}q} \cosh r} \\ G''_4(q,r) &= \frac{K'_4(q,r) + K_4(q,r)}{\sinh \left(\frac{b}{h}q\right)} \\ K'_4(q,r) &= q \, \sinh \left(\frac{b}{h}q\right) \cos \left[\left(\frac{b}{h} - \frac{y}{h}\right)r\right] + r \, \cosh \left(\frac{b}{h}q\right) \sin \left[\left(\frac{b}{h} - \frac{y}{h}\right)r\right]} \\ K_4(q,r) &= q \, \sinh \left(\frac{b}{h}q\right) \cos \left[\left(\frac{b}{h} + \frac{y}{h}\right)r\right] + r \, \cosh \left(\frac{b}{h}q\right) \sin \left[\left(\frac{b}{h} + \frac{y}{h}\right)r\right] \end{split}$$

$$\begin{split} G_5''(q,r) &= K_5'(q,r) - K_5(q,r) \\ K_5'(q,r) &= q \cos \left[\left(\frac{b}{h} - \frac{y}{h} \right) r \right] - r \sin \left[\left(\frac{b}{h} - \frac{y}{h} \right) r \right] \\ K_5(q,r) &= q \cos \left[\left(\frac{b}{h} + \frac{y}{h} \right) r \right] - r \sin \left[\left(\frac{b}{h} + \frac{y}{h} \right) r \right] \end{split}$$

The triple-integral portions of equations (A5) and (A6) are formulated in terms of R/β by writing the dummy variable p as p'/R. If the obvious cancellations are made and the expression for $H_{4,2}(q,r,p)$ is simplified by writing it in terms of exponentials rather than as the sum of hyperbolic terms, triple integrals in terms of the dummy variables q, r, and p' are obtained. For convenience, the prime on the variable p' is dropped, and the triple-integral portions of equations (A5) and (A6) become

$$\delta_4 \text{ (triple-integral portion)} = \frac{2}{\pi^3} \frac{b/h}{s/h} \int_0^\infty \int_0^\infty \int_0^\infty H'(q,r,p) H'_4(q,r,p) dq dr dp$$
 (A9)

and

$$\delta_5 \text{ (triple-integral portion)} = \frac{2}{\pi^3} \frac{b/h}{s/h} \int_0^\infty \int_0^\infty \int_0^\infty H'(q,r,p) H'_5(q,r,p) dq dr dp \qquad (A10)$$

where

$$H'(q,r,p) = \frac{q \cos\left(\frac{y}{h}r\right) \sinh\left(\frac{s}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right)}{e^{\left(\frac{b}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right)\left(\frac{\beta^2p^2}{R^2} + q^2 + r^2\right)} \left(\frac{\beta^2p^2}{R^2} + q^2 + r^2\right) \left(\frac{\beta^2p^2}{R^2} + r^2\right) + \cosh^2\sqrt{\frac{\beta^2p^2}{R^2} + r^2}\right)} + \cosh^2\sqrt{\frac{\beta^2p^2}{R^2} + r^2}$$

$$H_{4}^{\prime}(q,r,p) = H_{4,1}^{\prime}(q,r,p) \left[H_{4,2}^{\prime}(q,r,p) - H_{4,3}^{\prime}(q,r,p) H_{4,4}^{\prime}(q,r,p) \right]$$

$$H_{4,1}^{\prime}(q,r,p) = \frac{\sqrt{\frac{\beta^2p^2}{R^2} + q^2} \sinh\left(\frac{b}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right) \cos\left(\frac{b}{h}r\right) + r \cosh\left(\frac{b}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right) \sin\left(\frac{b}{h}r\right)}{\left(\frac{\beta^2p^2}{R^2} + q^2\right) \sinh^2\left(\frac{b}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right) + p^2 \cosh^2\left(\frac{b}{h}\sqrt{\frac{\beta^2p^2}{R^2} + q^2}\right)}$$

$$\text{H}_{4,2}^{\prime}(\mathbf{q},\mathbf{r},\mathbf{p}) = \frac{e^{\left(\frac{b}{h}\sqrt{\frac{\beta^{2}p^{2}}{R^{2}}} + \mathbf{q}^{2}\right)}}{\sqrt{\frac{\beta^{2}p^{2}}{R^{2}} + \mathbf{q}^{2}}} \sqrt{\frac{p^{2}\sin q \sinh\sqrt{\frac{\beta^{2}p^{2}}{R^{2}}} + \mathbf{r}^{2}}{\sqrt{\frac{\beta^{2}p^{2}}{R^{2}} + \mathbf{r}^{2}}}} + q \cos q \cosh\sqrt{\frac{\beta^{2}p^{2}}{R^{2}} + \mathbf{r}^{2}}}$$

$$H_{4,3}^{\prime}(\mathbf{q},\mathbf{r},\mathbf{p}) = \sinh\left(\frac{\mathbf{b}}{\mathbf{h}}\sqrt{\frac{\beta^{2}\mathbf{p}^{2}}{\mathbf{R}^{2}} + \mathbf{q}^{2}}\right) - \frac{\mathbf{p}^{2}\cosh\left(\frac{\mathbf{b}}{\mathbf{h}}\sqrt{\frac{\beta^{2}\mathbf{p}^{2}}{\mathbf{R}^{2}} + \mathbf{q}^{2}}\right)}{\frac{\beta^{2}\mathbf{p}^{2}}{\mathbf{R}^{2}} + \mathbf{q}^{2}}$$

$$H_{4,4}^{\prime}(q,r,p) = \sin q \cosh \sqrt{\frac{\beta^2 p^2}{R^2} + r^2} - \frac{q \cos q \sinh \sqrt{\frac{\beta^2 p^2}{R^2} + r^2}}{\sqrt{\frac{\beta^2 p^2}{R^2} + r^2}}$$

and

$$H_5'(q,r,p) = \frac{H_{4,4}'(q,r,p)}{\frac{\beta^2 p^2}{R^2} + q^2} \left[\sqrt{\frac{\beta^2 p^2}{R^2} + q^2} \cos\left(\frac{b}{h}r\right) - r \sin\left(\frac{b}{h}r\right) \right]$$

Investigation of the integrand of equation (A9) reveals a singularity at the simultaneous zero of all three integration variables. For small values of R/β this singularity can be ignored in the numerical integrations, but for moderate and large values it leads to difficulties in the calculation. In order to carry out the machine calculations for the entire range of R/β considered herein, it is necessary to break the triple integral of equation (A9) into several integrals, one of which is used to obtain an approximation for the integral near the simultaneous zero of the integration variables, and the others are used to calculate the integral over the remainder of the integration range. Thus in equation (A9), assume that the integration variables p, q, and r are all so close to zero that the transcendental functions in the integrand can be well approximated by the first-order terms in their series representations. After the indicated substitutions and simplifications are made, equation (A9) becomes

$$\delta_{4} \text{ (triple-integral portion)} \begin{vmatrix} = \frac{2}{\pi^{3}} \left(\frac{b}{h} \right)^{2} \int_{0}^{\epsilon_{1}} \int_{0}^{\epsilon_{2}} \int_{0}^{\epsilon_{3}} \frac{q^{2} dr \ dq \ dp}{\left(\frac{b}{h} \right)^{2} \left(\frac{\beta^{2} p^{2}}{R^{2}} + q^{2} \right)^{2} + p^{2}} \\ = \frac{2}{\pi^{3}} \epsilon_{1} \int_{0}^{\epsilon_{2}} \int_{0}^{\epsilon_{3}} \frac{q^{2} dq \ dp}{\left(\frac{\beta^{2} p^{2}}{R^{2}} + q^{2} \right)^{2} + \left(\frac{p}{b/h} \right)^{2}}$$
(A11)

where the integration limits ϵ_1 , ϵ_2 , and ϵ_3 must be chosen small enough to make the approximation to equation (A9) valid. Equation (A11) becomes more amenable to integration by use of the transformation of variables

$$\frac{\beta p}{R} = \rho \sin \theta \qquad q = \rho \cos \theta$$

Whence,

$$\frac{\beta^2 p^2}{R^2} + q^2 = \rho^2$$

and the differential element is $\frac{R}{\beta}\rho \ d\rho \ d\theta$. As a result of applying this transformation and using the identity $\sin^2\theta + \cos^2\theta = 1$, equation (A11) becomes

$$\delta_4 \text{ (triple-integral portion)} \begin{vmatrix} = \frac{2\epsilon_1}{3} \frac{R}{\beta} & \int_0^{\epsilon_2} \rho \, d\rho & \int_0^{\frac{\pi}{2}} \frac{\cos^2 \theta \, d\theta}{a^2 \sin^2 \theta + \rho^2 \cos^2 \theta} \\ \text{origin} \end{vmatrix}$$
 (A12)

where $a^2 = \rho^2 + \left(\frac{R/\beta}{b/h}\right)^2$. In this expression, the integration limit ϵ_2 is the equivalent in the transformed coordinate system of ϵ_2 and ϵ_3 in the former system, but the integration region is now a quarter of a circular disk instead of a rectangle. Equation (A12) is a standard integral form in θ which can be integrated to give

$$\begin{split} \delta_4 \text{ (triple-integral portion)} & \left| \underset{\text{origin}}{\text{near}} \right| = \frac{\epsilon_1}{\pi^2} \frac{R}{\beta} \int_0^{\epsilon_2'} \frac{\mathrm{d}\rho}{\rho + \sqrt{\rho^2 + \left(\frac{R/\beta}{b/h}\right)^2}} \\ & = \frac{\epsilon_1}{\pi^2} \frac{(b/h)^2}{R/\beta} \left[\int_0^{\epsilon_2'} \sqrt{\rho^2 + \left(\frac{R/\beta}{b/h}\right)^2} \mathrm{d}\rho - \int_0^{\epsilon_2'} \rho \ \mathrm{d}\rho \right] \end{split}$$

This expression may then be integrated over ρ to yield

$$\begin{split} \delta_4 \text{ (triple-integral portion)} & \left| \underset{\text{origin}}{\text{near}} \right| = \frac{\epsilon_1}{2\pi^2} \frac{(\text{b/h})^2}{\text{R/\beta}} \left\langle \epsilon_2^{'} \sqrt{\left(\epsilon_2^{'}\right)^2 + \left(\frac{\text{R/\beta}}{\text{b/h}}\right)^2} \right. \\ & \left. + \left(\frac{\text{R/\beta}}{\text{b/h}}\right)^2 \ln \left[\epsilon_2^{'} + \sqrt{\left(\epsilon_2^{'}\right)^2 + \left(\frac{\text{R/\beta}}{\text{b/h}}\right)^2} \right] \\ & \left. - \left(\frac{\text{R/\beta}}{\text{b/h}}\right)^2 \ln \left(\frac{\text{R/\beta}}{\text{b/h}}\right) - \left(\epsilon_2^{'}\right)^2 \right\rangle \end{split} \tag{A13}$$

In order to perform the integration of equation (A9) over the remainder of its integration range, it is necessary first to apply the same coordinate transformation used to obtain equation (A12). The following equation results:

$$\delta_{4} \text{ (triple-integral portion)} = \left[\text{Eq. (A13)} \right] + \frac{2}{\pi^{3}} \frac{\text{b/h}}{\text{s/h}} \left[\int_{0}^{\infty} d\mathbf{r} \int_{\epsilon_{2}^{'}}^{\infty} d\rho \int_{0}^{\frac{\pi}{2}} H_{4}^{"}(\mathbf{r},\rho,\theta) d\theta \right]$$

$$+ \int_{\epsilon_{1}}^{\infty} d\mathbf{r} \int_{0}^{\epsilon_{2}^{'}} d\rho \int_{0}^{\frac{\pi}{2}} H_{4}^{"}(\mathbf{r},\rho,\theta) d\theta \right]$$
(A14)

where

$$\begin{split} & H_{4}''(\mathbf{r},\rho,\theta) = H_{4,1}''(\mathbf{r},\rho,\theta)H_{4,2}''(\mathbf{r},\rho,\theta) \left[H_{4,3}''(\mathbf{r},\rho,\theta) + H_{4,4}''(\rho,\theta)H_{4,5}''(\mathbf{r},\rho,\theta) \right] \\ & \qquad \qquad \qquad \frac{\cos\theta \, \sinh\left(\frac{s}{h}\rho\right)}{e^{\frac{h}{h}\rho}\left(\rho^2 + \mathbf{r}^2\right) \left[\sinh^2\left(\frac{b}{h}\rho\right) + \left(\frac{R}{\beta}\right)^2 \sin^2\theta \, \cosh^2\left(\frac{b}{h}\rho\right)\right]} \\ & \qquad \qquad \qquad \qquad \frac{L_{4,2}'(\mathbf{r},\rho) + L_{4,2}'(\mathbf{r},\rho)}{\left(\frac{R}{\beta}\right)^2 \, \sin^2\theta \, \sinh^2\sqrt{\rho^2 \sin^2\theta + \mathbf{r}^2}} + \cosh^2\sqrt{\rho^2 \sin^2\theta + \mathbf{r}^2} \\ & \qquad \\ L_{4,2}'(\mathbf{r},\rho) = \rho \, \sinh\left(\frac{b}{h}\rho\right) \cos\left[\left(\frac{b}{h} - \frac{y}{h}\right)\mathbf{r}\right] + \mathbf{r} \, \cosh\left(\frac{b}{h}\rho\right) \sin\left[\left(\frac{b}{h} - \frac{y}{h}\right)\mathbf{r}\right] \end{split}$$

$$\mathbf{L_{4,2}(r,\rho)} = \rho \ \sinh\left(\frac{b}{h}\rho\right) \cos\left[\left(\frac{b}{h} + \frac{y}{h}\right)\mathbf{r}\right] + \mathbf{r} \ \cosh\left(\frac{b}{h}\rho\right) \sin\left[\left(\frac{b}{h} + \frac{y}{h}\right)\mathbf{r}\right]$$

$$\mathrm{H_{4,3}^{\prime\prime}(r,\rho,\theta)} = \mathrm{e}^{\frac{\mathrm{b}}{\mathrm{h}}\rho} \left[\left(\frac{\mathrm{R}}{\beta} \right)^{2} \frac{\rho \, \sin^{2}\theta \, \sin(\rho \, \cos \, \theta) \sinh\sqrt{\rho^{2} \sin^{2}\theta \, + \, \mathrm{r}^{2}}}{\sqrt{\rho^{2} \sin^{2}\theta \, + \, \mathrm{r}^{2}}} \right]$$

+
$$\cos \theta \cos(\rho \cos \theta) \cosh \sqrt{\rho^2 \sin^2 \theta + r^2}$$

$$H_{4,4}^{"}(\rho,\theta) = \sinh\left(\frac{b}{h}\rho\right) - \left(\frac{R}{\beta}\right)^2 \sin^2\theta \cosh\left(\frac{b}{h}\rho\right)$$

and

$$\begin{aligned} \text{H}_{4,5}^{\prime\prime}(\mathbf{r},\rho,\theta) &= \frac{\rho \, \cos \, \theta \, \cos(\rho \, \cos \, \theta) \sinh \sqrt{\rho^2 \sin^2 \theta \, + \, \mathbf{r}^2}}{\sqrt{\rho^2 \sin^2 \theta \, + \, \mathbf{r}^2}} \\ &- \sin(\rho \, \cos \, \theta) \cosh \sqrt{\rho^2 \sin^2 \theta \, + \, \mathbf{r}^2} \end{aligned}$$

In the expression for $H_{4,2}'(r,\rho,\theta)$, the terms $L_{4,2}'(r,\rho)$ and $L_{4,2}(r,\rho)$ are the result of the product $\cos\left(\frac{y}{h}r\right)\sin\left(\frac{b}{h}r\right)$ and the product $\cos\left(\frac{y}{h}r\right)\cos\left(\frac{b}{h}r\right)$, similar to the analogous expressions of equations (A7) and (A8). In a like manner, the integrand of equation (A10) may be written as

$$H'(q,r,p)H'_5(q,r,p) = H_{5,1}(q,r,p)H_{5,2}(q,r,p)$$

where

$$H_{5,1}(q,r,p) = \frac{q \sinh \left(\frac{s}{h} \sqrt{\frac{\beta^2 p^2}{R^2} + q^2} \right)}{e^{\left(\frac{b}{h} \sqrt{\frac{\beta^2 p^2}{R^2} + q^2} \right) \left(\frac{\beta^2 p^2}{R^2} + q^2 + r^2 \right) \left(\frac{p^2 \sinh^2 \sqrt{\frac{\beta^2 p^2}{R^2} + r^2}}{\frac{\beta^2 p^2}{R^2} + r^2} + \cosh^2 \sqrt{\frac{\beta^2 p^2}{R^2} + r^2} \right)}$$

$$H_{5,2}(q,r,p) = \frac{H_{4,4}^{\prime}(q,r,p)}{\frac{\beta^2 p^2}{R^2} + q^2} \left[L_{5}^{\prime}(q,r,p) + L_{5}(q,r,p) \right]$$

$$L_{5}'(q,r,p) = \sqrt{\frac{\beta^{2}p^{2}}{R^{2}} + q^{2}} \cos \left[\left(\frac{b}{h} - \frac{y}{h} \right) r \right] - r \sin \left[\left(\frac{b}{h} - \frac{y}{h} \right) r \right]$$

and

$$\mathbf{L_{5}(q,r,p)} = \sqrt{\frac{\beta^{2}p^{2}}{\mathbf{R}^{2}} + q^{2}} \cos \left[\left(\frac{b}{h} + \frac{y}{h} \right) \mathbf{r} \right] - \mathbf{r} \sin \left[\left(\frac{b}{h} + \frac{y}{h} \right) \mathbf{r} \right]$$

FORTRAN PREGRAM FOR CALCULATING SPANWISE VARIATIONS IN WIND-TUNNEL-BOUNDARY LIFT-INTERFERENCE FACTORS FOR WINGS OF VARYING SPAN CENTER-MOUNTED IN RECTANGULAR PERFORATED TEST SECTIONS OF VARYING WIDTH-TC-FEIGHT RATIOS.

THIS PROGRAM WAS WRITTEN IN CDC FCRTRAN, VERSION 2.1, TO RUN ON CDC 6000 SERIES COMPUTERS WITH THE SCOPE 3.0 CPERATING SYSTEM AND LIBRARY TAPE. MINOR MODIFICATIONS MAY BE REQUIRED PRIOR TO USE IN OTHER COMPUTERS. THIS PROGRAM HAS BEEN FOUND TO BE SATISFACTORY ON THE AFCREMENTIONED COMPUTERS WHICH CARRY THE EQUIVALENT OF APPROXIMATELY 15 DECIMAL DIGITS. COMPUTERS OF LESSER PRECISION MAY REQUIRE MODIFICATION TO DOUBLE PRECISION IN ORDER TO OBTAIN RESULTS OF EQUAL ACCURACY.

IN OPDER TO CONSERVE COMPLTER TIME AND SPACE, THIS PROGRAM IS WRITTEN AS A NUMBER OF SMALLER, INDEPENDENT PROGRAMS WHOSE PUNCHED-CARD CUIFUTS ARE COLLATED INTO FINAL FORM FOR PRODUCTION OF TABLES BY MEANS OF APPROPRIATE COMPUTER COLLATING PROGRAMS. FOR THE SAKE OF CONSISTENCY, TERMS COMMON TO ALL PROGRAMS HAVE BEEN ASSIGNED THE SAME NAMES IN ALL PROGRAMS. THESE TERMS FOLLOW

AP, AC, AR = LCWER LIMITS OF INTEGRATION ON THE INTEGRATION INTERVALS OVER THE DUMMY VARIABLES P, C, AND R.

3H = A CNE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF TUNNEL SEMI-WIDTH TO SEMI-HEIGHT RATIO, 8/H

BP, BQ, BR = UPPER LIMITS OF INTEGRATION ON THE INTEGRATION INTERVALS OVER THE DUMMY VARIABLES P, C, AND R.

BS = THE RECIPROCAL OF SB.

BT = A ONE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF BETA TO BE USED IN THE CALCULATIONS.

CNV = THE NUMBER WHICH DETERMINES INTEGRAL CONVERGENCE. IF THE EVALUATION OF THE INTEGRAL OVER A PARTICULAR INTERVAL IS LESS THAN CNV, CONVERGENCE IS ASSUMED AND THE INTEGRATION PROCESS TERMINATED.

FP, FQ, FR = CNE CIMENSIONAL ARRAYS IN WHICH ARE STORED THE VALUES OF INTEGRAND EVALUATIONS DURING THE INTEGRATION PROCESSES.

FUNCP, FUNCQ, FUNCR = NAMES OF SUBROUTINE SUBPROGRAMS WRITTEN TO EVALUATE THE INTEGRANDS IN THE DUMMY VARIABLES P, Q, AND R.

IR OR INH = INDEX ON THE VARIABLE BH

INFINTP, INFINTQ, INFINTR = NAMES OF SUBROUTINES WHICH USE MGAUSP, MGAUSQ, AND MGAJSR, RESPECTIVELY, TO EVALUATE THE #INFINITE# INTEGRALS OVER THE DUMMY VARIABLES P, Q, AND R.

IP = INCEX ON VARIABLE RP.

IS OR ISH = INDEX ON THE VARIABLE SH

IY OR IYH = INDEX ON THE VARIABLE YH

JP, JQ, JR = THE MAXIMUM NUMBER OF INTEGRATION INTERVALS USED BEFORE NCN-CONVERGENCE OF THE INTEGRALS IS ASSUMED.

MGAUSP, MGAUSC, MGAUSR = NAMES OF SUBROUTINES FOR EVALUATING INTEGRALS BY THE GAUSS QUADRATURE METHOD OVER THE DUMMY VARIABLES P, Q, AND R, RESPECTIVELY.

AFP, NFC, NFR = INTEGERS DEFINING THE NUMBER OF INTEGRANDS TO BE EVALUATED IN THE INTEGRATION SUBROUTINE CALL FOR ANY OF THE DUMMY VARIABLES P. G. OR R.

NMY = NUMBER CF PCINTS ALONG THE WING SPAN AT WHICH CALCULATIONS ARE TO BE MADE

NP, NQ, NP = INTEGERS DETERMINING THE NUMBER OF POINTS THE GAUSS QUADRATURE PROCEDURE USES PER INTEGRATION INTERVAL. THE NUMBER OF POINTS USED IS TEN TIMES THE VALUE OF NP, NQ, OR NR.

PI = 3.14159 26536

PNC, GMC, RNC = VARIABLES WHICH SET THE INTERVAL LENGTH FCR INTEGRATION OVER THE DUMMY VARIABLES P, Q, AND R.

P.C.R = DUMMY VARIABLES OF INTEGRATION

PNT, QNT, RNT = CNE-DIMENSIONAL ARRAYS IN WHICH ARE STORED THE VALUES OF THE ANSWERS TO THE INTEGRATIONS OVER THE DUMMY VARIABLES P, Q, AND R.

RB = KATIO OF TUNNEL PERMEABILITY FACTOR TO BETA, R/BETA

RP = A ONE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF THE PERMEABILITY FACTOR OF THE TUNNEL

SB = WING SEMI-SPAN TO TUNNEL SEMI-WIDTH RATIO, S/B

SH = A CNE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES CF THE RATIO OF WING SEMI-SPAN TO TUNNEL SEMI-HEIGHT, S/F.

SMP, SMQ, SMR = CNE-DIMENSICNAL ARRAYS IN WHICH THE INTERMEDIATE ANSWERS TO THE INTEGRATION PROCESSES ARE STORED.

YH = A TWO-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF THE RATIO OF THE CISTANCE ALONG THE WING SEMI-SPAN TO THE TUNNEL SEMI-HEIGHT, Y/H.

YS = NORMALIZED DISTANCE ALONG WING SPAN, Y/S

FORTRAN PROGRAM FOR CALCULATING UPWASH INTERFERENCE FACTORS AT THE CENTER OF WINGS CENTER-MOUNTED IN RECTANGULAR COMPLETELY CLOSED (FQUATION (3) IN MAIN BODY OF REPORT) AND COMPLETELY OPEN (EQUATION (4) IN MAIN BODY OF REPORT) TEST SECTIONS. THESE EQUATIONS ARE INFINITE SUMMATIONS DERIVED BY THE METHOD OF IMAGES AS IN REFERENCE 2.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY CEFINED,
THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

DLTC = CALCULATED UPWASH INTERFERENCE FACTOR FOR CLOSED TUNNEL

DLTO = CALCULATED UPWASH INTERFERENCE FACTOR FOR OPEN TUNNEL

I = INDEX ON VARIABLE SH

J = INDEX ON VARIABLE BH

K = INDEX ON SUMMATION. K IS THE SAME AS THE N OF EQUATIONS (3) AND (4).

KCO = THE VALUE OF K AT WHICH THE SUMMATION IS TRUNCATED.

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKEEPING DEVICES.

NAMELIST INPUTS ARE BH, SH

PROGRAMWI(INPUT, CUTPUT, TAPE5 = INPUT, TAPE6 = CUTPUT, TAPE1, TAPE2)	(B	1)
DIMENSION BH(5), SE(2) \$NAMELIST/INPT/BH, SB\$READ(5, INPT)	(B	2)
PI=2.*ASIN().)*PI2=PI/2.*DClI=1,2*DClJ=1,5*PBH=PI2*BH(J)	(B	3)
Δ:=PBH*SP(I)\$T:=\o/(4o*A1*SB(I))\$T2=1o/(4o*SB(I))\$TC1=-T2/SINH(A1)	(B	4)
$TO I = -T2/TANH(A_{\perp}) $A2 = A3 = 0.8D02K = 1.25$AR1 = PEH * (2.*K + SB(I))$	(B	51
AR2=PBH*(2.*K-SB(I))\$T4=1./SINH(AR2)+1./SINH(AR1)\$A2=A2+T4	(8	61
T5=((-1.)**K)*(1./TANH(AR2)-1./TANH(AR1))\$A3=A3+T5	(B	7)

T4 AND T5 REPRESENT THE SUMMATION TERMS IN EQUATIONS (3) AND (4), RESPECTIVELY, OF THE MAIN BODY OF THE REPORT. WHEN BOTH T4 AND T5 APPLIESS THAN 0.000C1, THE SERIES ARE ASSUMED TO HAVE CONVERGED AND THE SUMMATION PROCESS IS TERMINATED.

IF (ARS(T4).LTCCC)1.AND.ABS(T5).LTCJCC1)GCTO3\$IF (K.EQ.25)GOTC3 2 CONTINUE	(B 8) (B 9)
3 KCO=K\$TC2=T2*A2\$TOZ=T2*A3\$DLTC=T1+TC1+TC2\$DLTO=T1+T01+TC2	(B 1 j)
WRITE(6,4)SB(I),BH(J),KCO,DLTC,DLTO	(B 11)
wRITE(2,4)SR(I),BH(J),KCC,DLTC,DLTO	(B 12)
4 FORMAT(//3x*S/8=*F6.2,3x*B/H=*F6.2,3x*SUMMATION INTEGER=*I3,//3x*D	(B 13)
1FLT4,CENTER,CLOSED TUNNEL=*F8.4,5X*DELTA,CENTER,OPEN TUNNEL=*F8.4)	(B 14)
1 CONTINUESSTOPSEND	(B 15)
\$INPT BH=.5,.75,1.,2.5,2.,SB=.3,.7,\$	(B 16)

FORTRAN PROGRAM FOR EVALUATING THE CLOSED-TUNNEL PORTION OF EQUATION (A-2) OF APPENDIX A (THIS IS THE TERM CONTAINING THE EXPONENTIAL FACTOR). THE RESULTS GIVE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED BETWEEN INFINITE, VERTICAL, CLOSED BOUNDARIES.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY CEFINED,
THE FOLICWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

DLTC2 = THE UPWASH INTERFERENCE FACTOR CALCULATED FOR THE CLOSED-TUNNEL PERTICN OF EQUATION (A-2), WHICH REPRESENTS DELTA-SUB-2.

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTEC, ARE USED MERELY AS BOCKKEEPING DEVICES.

NAMELIST INPUTS ARE BH

PRUGRAMWT(INPLT, CUTPLT, TAPE5=INFLT, TAPE6=CUTPUT, TAPE1, TAPE2, PUNCH)	(B 17)
CCMMCNSH(2), ISH, YH(3,2), IYH, BH, IBH	(B 18)
DIMENSIONEQ()),SMG(1),QNT(1),EH(5)\$NAMELIST/INPT/BH\$READ(5,INPT)	(B 19)
NC=2\$NEQ=\\$JC=90\$PI=2.1415926536\$CNC=PI/4.\$CNV=1.E-G7\$NMY=3	(B 20)

THE FOLLOWING NEST OF CC-LCOPS INDEXES ON BH, SH, AND YH, CALCULATING THE VALUES OF SB, SP, YH, AND YS THEN USING THESE THROUGH THE SUBROLTINE SUBPROGRAMS INFINTQ, FUNCQ, AND MGAUSC TO FIND THE INTEGRAL AND, FROM THAT, DLTC2. THE RESULTING DATA ARE PRINTED OUT AND PUNCHED ONTO DATA-PROCESSING CARDS FOR LATER COLLATION IN ANOTHER PROGRAM WITH THE DATA REPRESENTING THE PROGRESSIVELY MORE OPEN TUNNEL.

DOLIBH=1, %\$\$H(1) = 3*BH(IBH) \$\$H(2) = 7*BH(IBH) \$DGLISH=1,2	(B 21)
\$B=\$H(ISH)/BH(IBH) \$B\$=1./\$B\$WRITE(6,2)BH(IBH),\$B	(B 22)
WRITE(2,1)BH(IBH),\$B	(B 23)
DOLIYH=1,NMY\$YH(IYH,ISH)=\$H(ISH)*FLOAT(IYH-1)/FLOAT(NMY-1)	(B 24)
YS=YH(IYH,ISH)/SH(ISH) \$CALLINFINTC(NC,SMG,FC,NFQ,JQ,CNC,CNV,QNT) DLTC2=BS*QNT/(2.*PI)\$WRITE(6,3)YS,DLTC2 EDRMAT(1H ,///6X4HB/H=F7.3,1CX4HS/B=F7.3,//5X3HY/S,6X*DELTA SUB C2 1*//) FORMAT(1H ,2XF6.2,3XF10.6) PUNCH4,8H(IPH),SE,YS,CLTC2 FORMAT(2(F7.3),F6.2,F1c.6) CONTINUE\$STOP\$END	(B 25) (B 26) (B 27) (B 28) (B 29) (B 30) (B 31) (B 32)

SUBROUTINE FUNCQ IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLE Q IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUSQ. ITS CALLING ARGUMENTS ARE Q, THE VARIABLE OF INTEGRATION WHOSE VALUE IS SUPPLIED BY MGAUSQ, AND FQ, THE NAME OF AN ARRAY THAT WILL CONTAIN VALUES OF THE INTEGRANDS COMPUTED DURING THE INTEGRATION.

SUBROUTINEFUNCQ(Q,FQ) \$DIMENSIONFQ(1),BH(5)	(8 33)
COMMONSH(2),ISH,YH(3,2),IYH,BH,IBH	(B 34)
SHQ=SH(ISH)*Q\$YHQ=YF(IYH,ISH)*C\$BHC=BH(IBH)*C	(B 35)
FQ=SINH(SHQ)*COSH(YHC)/(EXP(8HC)*SINH(BHQ))\$RETURN\$END	(B 36)

SUBROUTINE INFINTS IS A GENERALIZED SUBROUTINE SUPPROGRAM WRITTEN TO EVALUATE #INFINITE# INTEGRALS BY MAKING USE OF SUB-ROUTINE MGAUSQ (WHICH EMPLCYS THE GAUSS QUADRATURE METHOD IN INTEGRAL EVALUATION) IN SUCCESSIVE STEPS BEGINNING AT THE LOWER LIMIT OF INTEGRATION. THE INTEGRATION INTERVAL FOR EACH SUCCESSIVE INTEGRATION STEP IS SET EXTERNALLY BY THE VARIABLE QINC IN THE CALLING ARGUMENTS OF INFINTC. THE INTEGRAL VALUE IS INITIALIZED AT ZERC AND THE VALUE OF EACH SUCCESSIVE INTEGRATION STEP IS ADDED TO IT. THE INTEGER NFQ DETERMINES THE NUMBER OF INTEGRANDS TO BE EVALUATED, WITH ANSWERS STORED IN THE ARRAY QINT. WHEN THE SUMMED VALUES OF THE INTEGRALS CVER SCME PARTICULAR STEP ARE LESS THAN CONV, THEY ARE ALL ASSUMED TO HAVE CONVERGED AND THE INTEGRATION PROCESS IS TERMINATED. IF THE NUMBER OF INTEGRATION STEPS IS LARGER THAN THE INTEGER JQ, SET EXTERNALLY, THE INTEGRATION PROCESS IS TERMINATED AND AN EPROR MESSAGE THAT THE INTEGRAL IS NON-CONVERGENT WITH THE GIVEN UPPER LIMIT IS PRINTED. THE CALLING PROGRAM MUST DIMENSION THE ARRAYS SUMD, FCFQ, AND GINT AT THE MAXIMUM NUMBER TO BE USED IN THAT PROGRAM.

	SUBROUTINE INFINIG(NG, SUMG, FOFG, NFG, JG, GINC, CONV, QINT)	(B	37)
	DIMENSION SUMQ(1),FCFQ(1),QINT(1) \$DOII=1,NFQ	(B	38)
1	QINT(I)=0.\$AG=0.\$DD21Q=1,JG\$IF(IG-1)4,4,3	(B	391
3	AQ = BQ	(B	40)
4	RQ=FLOAT(IQ)*GINC\$CALLMGAUSQ(AG,FG,NG,SUMQ,FOFQ,NFQ)	(B	41)
	QCBNV=>.\$DO5I=}, NFQ\$QCONV=QCCNV+AES(SUMQ(I))	(B	42)
5	GINT(I)=GINT(I)+SUMG(I)\$IF(QCCNV.LT.CONV)GOTO5\$IF(IQ.EQ.JQ)GCTO7	(B	43)
	60102	(B	441
7	PRINTA \$GC TO 6	(B	45)
Я	FORMAT(1H ,2X*INTFGRAL NONCONVERGENT WITH GIVEN UPPER LIMIT ON Q*)	(B	46)
2	CONTINUE	(B	47)
5	RETURN\$END	(8	481

THE SUBROUTINE MGAUSQ EMPLOYS THE GAUSS QUADRATURE METHOD TO EVALUATE #NUMBER # NUMBER OF INTEGRANDS F(X)DX BETWEEN THE LIMITS A AND B. ANSWERS ARE STORED IN THE ARRAY SUM. FUNCQ IS THE NAME OF A SUBROUTINE SURPROGRAM USED TO EVALUATE THE INTEGRANDS. THE NUMBER OF POINTS USED WITHIN THE INTEGRATION LIMITS IS TEN TIMES THE INTEGER N. THIS SUBROUTINE SUBPROGRAM IS A PRELIMINARY VERSION OF THE SUBROUTINE MGAUSS NOW ON THE LIBRARY TAPE OF THE CDC COMPUTER SYSTEM AT LANGLEY RESEARCH CENTER. A MORE COMPLETE DISCUSSION OF IT THAN GIVEN HERE IS GIVEN IS SECTION D 1.1, VOLUME I, OF THE LANGLEY RESEARCH CENTER COMPUTER PROGRAMMING MANUAL.

	SUBRCUTINE MGAUSQ(A,B,N,SUM,FCFX,NUMBER)	(B	491
	DIMENSION U(5),R(5),SUM(1),FOFx(1)\$DO1LL=1,NLMBER	(B	50)
1	SUM(LL) = C. 0	(B	51)
	IF(A.EQ.B)RETURN\$U(1)=.425562830509184\$U(2)=.283302302985376	(B	521
	U(3)=.16(2952155504888U(4)=.067468316655508\$U(5)=.013046735741414	(B	53)
	R(1) = .147762112357376 R(2) = .134633359654998 R(3) = .109543181257991	(B	54)
	R(4)=.774725674575296 \$R(5)=.333335672154344 \$FINE=N	(B	55)
	DELTA=FINE/(3-A) \$D03K=1,N\$XI=K-1\$FINE=A+XI/DELTA\$D02II=1,5	(B	56)
	UU=U(II)/DELTA+FINE \$CALLFUNCG(LU,FCFX) \$D02JCYBOY=1,NUMBER	(B	57)
2	SUM(JDYBOY)=R(II)*FOFX(JOYBOY)+ SUM(JOYBCY)*DO3JJ=1,5	(B	58)
	UU=(i.O-U(JJ))/DELTA+FINE\$CALEFUNCQ(UU,FOFX)\$DO3NN=1,NUMBER	(B	591
3	SUM(NN)=R(JJ)*FNFX(NN)+SLM(NN)*DC7IJK=l,NUMBER	(B	691
7	SUM(IJK)=SUM(IJK)/DELTA \$RETURN\$ENC	(B	611
\$ I NPT	BH=.5,.75,1.,1.5,2.,\$	(B	62)

FORTRAN PREGRAM FOR EVALUATING THE CLCSED-TUNNEL PORTION OF EQUATION (A-4) OF APPENDIX A (THIS IS THE TERM CONTAINING THE SINGLE INTEGRAL). THE RESULTS GIVE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MCUNTED BETWEEN INFINITE, HORIZONTAL, CLGSED BOUNDARIES.

IN ACUITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

ARGYS = THE VARIABLE MULTIPLIED ONTO THE VARIABLE OF INTEGRATION TO MAKE UP THE ARGUMENT OF THE SINE TERM OF THE INTEGRAND.

DI = THE VALUE OF THE INTEGRAL RESULTING FROM USE OF A POSITIVE SIGN IN THE VARIABLE ARGYS.

D2 = THE VALUE OF THE INTEGRAL RESULTING FROM USE OF A NEGATIVE SIGN IN THE VARIABLE ARGYS.

OLIC3 = THE UPWASH INTERFERENCE FACTOR CALCULATED FOR THE CLOSED-TUNNEL PERTION OF EQUATION (A-4), WHICH REPRESENTS DELTA-SUB-3.

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOOKKFEPING DEVICES.

NAMELIST INPUTS ARE BH

PROGRAMWI(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE1,TAPE2,PUNCH)	(B 63)
DIMENSIONEQ(1),SMG(1),QNT(1),SH(2),YH(3,2),BH(5)	(B 64)
COMMONARGYSENAMELIS1/INPT/BH&REAC(5,INPT)	(8 65)
NQ=5\$NFQ=1\$JG=5)\$FI=3.1415926536\$CNV=1.E-07\$NMY=3	(B 66)

IN ADDITION TO THE OPERATIONS PERFORMED BY THE NESTED DO-LOOPS OF THE PRECEDING PROGRAM, THOSE OF THIS PROGRAM PERFORM TWO SEPARATE INTEGRATIONS. IN THE FIRST, THE VARIABLE MULTIPLYING THE INTEGRATION VARIABLE IN THE ARGUMENT OF THE SINE TERM OF THE INTECRAND HAS A POSITIVE SIGN. IN THE SECOND, IT HAS A NEGATIVE SIGN. FOR FACH INTEGRATION, ONC -- THE VARIABLE SETTING THE INTEGRATION INTERVAL -- IS A FUNCTION OF ARGYS. THIS PROCEDURE RESTRICTS THE INTEGRATION LIMITS ON ANY PARTICULAR INTEGRATION INTERVAL SUCH THAT THE ARGUMENT OF THE SINE TERM IN THE INTEGRAND IS SOME MULTIPLE OF PI AT THE LIMITS.

DCiIBH=1,5%SF())=.3*8F(IPH)\$SF(2)=.7*8F(IPH)\$DO1ISH=1,2	(B 67)
SB=SH(ISH)/BH(IBH)\$BS=l./SB\$WRITE(6,2)3H(IPH),SB	(8 68)
WRITE(2,2)BH(IBH),SB	(B 69)
2 FORMAT(IH ,///5X4H3/F=F7.3,1CX4HS/B=F7.3,//5X5HY/S,8X2HC1,12X2HD2,	(B 70)
18X*DELTA SUB C3*//)	(B 71)
DOLIYH=1,NMY\$YH(IYH,ISH)=SH(ISH)*FLOAT(IYH-1)/FLOAT(NMY-1)	(B 72)
ARGYS=YH(IYH,ISH)+SH(ISH) \$YS=YH(IYH,ISH)/SH(ISH)	(B 73)
QNC=PI/APGYS\$CALLINFINTQ(NG,SMG,FG,NFG,JQ,GNC,CNV,QNT)\$D1=QNT	(8 74)

IF IYH = NMY, THE VARIABLE ARGYS =) AND THE VALUE OF THE INTEGRAL IS ZERO.

	IF(IYH.EQ.NMY)GCTC6	(B	75)
	ARGYS=YH(IYH,ISH)-SH(ISH) & GNC=PI/AES (ARGYS) & YS=YH(IYH,ISH)/SH(ISH)	(8	761
	CALLINFINTG(NG, SMG, FG, NFG, JQ, GNC, CNV, QNT) \$D2=QNT\$GOTO7	(B	77)
6	D 2 =) •	(B	78)
7	DLTC3=BS*(D1-D2)/(4.*P1)\$WRITE(6,3)YS,D1,D2,DLTC3	(B	7 9)
	WRITE(2,3)YS,Di,D2,CLTC3	(8	821
3	FORMAT(1H ,2XF0,2,3(4XF13,6))	(B	811
	PUNC F4, BH (IBH), SB, YS, DLTC3	(B	821
4	FURMAT(2(F7.3), F6.2, F10.6)	(B	83)
1	CONTINUE \$ STOP \$END	(B	84)

SUBROUTINE FUNCO IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLE Q IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUSC. REFER TO DISCUSSION IN THE PRECEDING PROGRAM.

SUBROUTINE FUNCQ(Q,FQ)\$COMMON ARGYS\$ARG=ARGYS*Q	(B 85)
FQ=SIN(ARG)/(EXP(Q)*COSH(Q))\$RETURN\$END	(B 86)
\$INPT BH=.5,.75,1.,2.5,2.\$	(B 112)

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTO AND MGAUSC AS DEFINED AND DISCUSSED IN THE PRECEDING PROGRAM.

FCRTRAN PROGRAM FOR EVALUATING EQUATION (A-7) -- WHICH REPRESENTS THE UPWASH INTERFERENCE FACTORS DUE TO THE EFFECT OF HCRIZONTAL CLOSED BOUNDARIES ON THE INTERFERENCE VELOCITY POTENTIAL INSIDE THE TEST SECTION DUE TO VERTICAL CLOSED BOUNDARIES -- OF APPENDIX A AND EQUATION (A-8) -- WHICH REPRESENTS THE EFFECT OF HORIZONTAL CLOSED BOUNDARIES ON THE INTERFERENCE VELOCITY POTENTIAL OUTSIDE THE TEST SECTION DUE TO THE HORIZONTAL CLOSED BOUNDARIES. THIS PROGRAM CIFFERS FROM THE PRECEDING CNES IN THAT COUBLE INFINITE INTEGRALS IN TWO VARIABLES ARE CALCULATED RATHER THAN THE SINGLE INFINITE INTEGRAL IN ONE VARIABLE CALCULATED IN THE PRECEDING PROGRAMS.

IN ACDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

A1 = A ONE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF THE INTEGRALS RESULTING FROM USE OF A POSITIVE SIGN IN THE VARIABLE #BY#•

A2 = A ONE-DIMENSIONAL ARRAY IN WHICH ARE STORED THE VALUES OF THE
INTEGRALS RESULTING FROM USE OF A NEGATIVE SIGN IN THE VARIABLE #BY#.

BY = A VARIABLE WHICH SERVES THE SAME FUNCTION AS THE VARIABLE ARGYS IN THE PRECEDING PROGRAM.

DLTC4 = THE UPWASH INTERFERENCE FACTOR CALCULATED FCR EQUATION (A-7).

DLTC5 = THE UPWASH INTERFERENCE FACTOR CALCULATED FOR EQUATION (A-8).

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKEEPING DEVICES.

NAMELIST INPUTS ARE BE

	PROGRAMWT (INPUT, GUTPLT, TAPE5 = INPLT, TAPE6 ≈ CUTPUT, TAPE1, TAPE2, PUNCH) COMMONSH(2), IS, YH(3,2), IY, BH, IE, C, BY, PI DIMENSION A1(2), A2(2)	(B	113) 114) 115)
	DIMENSIONFQ(2), SMQ(2), QNT(2), BH(5) \$NAMEL IST/INPT/BH\$READ(5, INPT)	-	116)
	NQ=3\$NFQ=2\$JQ=5U\$PI=3.1415926536\$CNV=1.E~U7\$NMY=3	-	117)
	DO11B=1,5\$SH(1)=.3*EF(1B)\$SH(2)=.7*BF(1B)\$DC11S=1,2	(B	118)
	SB=SH(IS)/BH(IB) \$BS=1./SB\$WRITE(6,2)BH(IB),SP	(B	119)
	WRITE(2,2)BH(IB),SB	(B	120)
2	FORMAT(IH ,///6X4HB/h=F7.3,10X4HS/B=F7.3,//5X3HY/S,7X*DELTA SUB C4	(B	121)
3	<pre>!*,2X*DELTA SUB C5*//)</pre>	(B	1221
	$DOliY=\{,N^{M}Y\$YH(IY,IS)=SH(IS)*FLOAT(IY-1)/FLOAT(NMY-1)$	(B	1231
	BY=BH(IB)+YF(IY,IS)\$CNC=PI	(B	124)
	YS=YH(IY,IS)/SH(IS)\$CALLINFINTQ(NG,SMQ,FQ,NFQ,JQ,QNC,CNV,QNT)	(B	125)
	A1(1)=QNT(1)\$A1(2)=GNT(2)\$BY=EH(IE)-YH(IY,IS)	(8	126)
	CALLINFINTQ(NG, SMQ, FG, NFQ, JQ, GNC, CNV, GNT) \$42(1) = QNT(1)	(B	127)
	A2(2)=QNT(2) \$OLTC4=-B5*(A1(1)+A2(1))/(2.*PI*PI)	(B	129)
	DLTC5=BS*(A1(2)+A2(2))/(2.*PI*PI)\$WRITE(6,3)YS,DLTC4,DLTC5	(B	129)
	WRITE(2,3)YS,DLTC4,DLTC5	(B	1301
3	FORMAT(1H ,2XF6.2,2(4XF1?.6))	(B	131)
	PUNCH4, BH(IB), SB, YS, DLTC4, DLTC5	(B	1321
4	FORMAT(2(F7.3),F6.2,2(F1.J.6))	(B	1331
1	CCNTINUE \$ STCP \$ ENC	(B	134)

IN ACCITION TO PERFORMING THE FUNCTIONS PERFORMED BY SUBROUTINES OF THE SAME NAME IN PRECEDING PROGRAMS, THE SUBROUTINE FUNCQ IN THIS PROGRAM MAKES USE OF THE SUBROUTINES INFINTR AND MGAUSR IN ORDER TO PERFORM THE SECOND INTEGRATION OVER THE VARIABLE R REQUIRED BY EQUATIONS (A-7) AND (A-8).

SUBROUTINE FUNCQ(Q,FQ)*DIMENSIONFQ(2),SMR(2),FR(2),RNT(2),BH(5) (B 135)
COMMONSH(2),IS,YH(3,2),IY,BH,IE,S,BY,PI\$S=C\$NR=2\$NFR=2\$JR=50 (B 136)

IN THIS PROGRAM, THE INTEGRATION INTERVAL RNC IS A FUNCTION OF THE VARIABLE #BY # ANALOGOUSLY TO AND FOR THE SAME REASONS THAT THE INTEGRATION INTERVAL QNC IS A FUNCTION OF THE VARIABLE ARGYS IN THE PRECEDING PROGRAM FOR DLTC3.

RNC=PI/ABS(RY)\$CNV=1.6-07\$CALLINFINTR(NR,SMR,FR,NFR,JR,RNC,CNV,FQ) (B 137)
RETURN\$END (B 138)

SUBROUTINE FUNCR IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES & AND R IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINITY, INFINITY, MEAUSQ, AND MEAUSR.

SUBROUTINE FUNCR(R,FR)\$DIMENSIONFR(2),BH(5)	(B	139)
CO4MONSH(2), IS, YF(3,2), IY, BH, IE, C, BY, PI\$SHC=SH(IS) *Q\$BFQ=BH(IB) *Q	(B	1401
ARG1=COS(Q)*SINH(SHG)/(EXP(BHG)*(G*Q+R*R)*COSH(R))\$BYR=BY*R	(B	141)
ARG2=(Q*SINH(BHQ)*CCS(BYR)+R*CCSH(BHQ)*SIN(BYR))/SINH(BHC)	(B	142)
ARG3=G*COS(BYR)-R*SIN(BYR)\$FR(1)=ARG1*ARG2\$FR(2)=ARG1*ARG3	(B	143)
RETURN\$END	(B	1441

THE SUBROLTINE SUBPROGRAMS INFINTR AND MGAUSR IN THIS PROGRAM ARE NECESSARY TO ALLOW INTEGRATIONS OVER TWO VARIABLES RATHER THAN THE ONE VARIABLE OF PRECEDING PROGRAMS. EXCEPTING FOR THE SUBROUTINE NAMES AND WHATEVER VARIABLE NAME-CHANGES ARE NECESSARY TO ALLOW THE CALCULATIONS TO PROCEED WITHOUT CONFUSION, THEY ARE IDENTICAL WITH THE SUBROUTINES INFINTS AND MGAUSS AS DISCUSSED IN A PRECEDING PROGRAM.

£1

		SUBROUTINE INFINTRING, SUMM, FOFR, NEQ, JQ, GINC, CONV, QINT)		145)
		DIMENSION SUMQ(1), FCFR(1), GINT(1) \$DC1I=1, NFQ		146)
	1	$QINT(I) = c_0 \$AQ = c_0 \$DO2IQ = 1, JQ\$IF(IQ - 1)4, 4, 3$		147)
		AQ=8Q		148)
	4	BQ≃FLOAT(IQ)*QINC\$CALLMGAUSR(AG,BG,NG,SUMQ,FCFR,NFQ)		1491
		QCCNV=)。\$DC5I=1, NFQ\$QCONV=QCCNV+ABS(SUMQ(I))	(B	150)
	5	QINT(I)=QINT(I)+SUMQ(I)\$IF(QCCNV.LT.CCNV)GOTC6\$IF(IQ.EQ.JQ)GCTO7	(B	151)
		G0T02	(B	152)
	7	WRIIE (6,8) \$ WRITE (2,8) \$ GOTC6	(B	1531
	8	FORMAT(1H ,2X*INTEGRAL NONCONVERGENT WITH GIVEN UPPER LIMIT ON R*)	(B	154)
	2	CONTINUE	(B	155)
	6	RETURN\$END	(B	156)
		SUBROUTINE MGAUSR (A.B.N.SUM, FCFX, NUMBER)	l R	182)
		DIMENSION U(5).R(5).SUM(1).FOFX(1).DOILL=1.NLMBER		183)
	,	SUM(LL)=Lo?	•	184)
	3.	IF (A. EQ. B) RETURN \$U(1)=.42556283('5)9184\$U(2)=.2833^23C2985376		185)
		U(3) = 0.16(2.95215.55.4688)U(4) = 0.67468316655508\$U(5) = 0.13646735741414		186)
			• •	187)
		R(z) = .1477621)2357376\$k(2) = .134633355654998\$R(3) = .109543181257991		
		R(4)=.)74725674575290\$R(5)=. U33335672154344\$FINE=N		188)
		DELTA=FINF/(B-A) \$DO3K=), N\$XI=K+1\$FINE=A+XI/DELTA\$DO2II=1,5		189)
	_	UU≈U(II)/DELTA+FINE \$CALLFUNCR(UU, FOFX) \$DO2JOYBOY=1, NUMBER		190)
	_	SUM(JOYBCY)=R(II) *FCFx(JOYBOY)+ SUM(JCYBCY) \$D03JJ=1,5		191)
		UU=(1.57-U(JJ))/DELTA+FINE\$CALLFUNCR(UU,FOFX)\$DD3NN=1,NUMBER		1921
	-	SUM(NN)=P(JJ)*FOFX(NN)+SUM(NN)*DC7IJK=1,NUMBER	•	1931
	7	SUM(IJK)=SUM(IJK)/DELTA \$RETURN\$ENC	(B	1941
īΛ	DT	3H=05+075+10+105+20+\$	(B	1951
				2. 1. 2. 1

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTO AND MGAUSG AS DEFINED AND DISCUSSED IN A PRECEDING PROGRAM.

\$ I

FORTRAN PROGRAM FOR COLLATING DATA. THE PUNCHED-CARD OUTPUT OF THE THREE PRECEDING PROGRAMS -- WHICH REPRESENTS UPWASH INTER-FERENCE FACTORS FOR WINGS CENTER-MOUNTED IN CLOSED RECTANGULAR WIND TUNNELS AS DEFINED IN THOSE PROGRAMS AND APPENDIX A -- IS THE INPUT TO THIS PROGRAM. THE CATA AS READ INTO THE PROGRAM ARE PRINTED—OUT, THEN COLLATED AND RE-FRINTED AS A CHECK. THE COLLATED DATA ARE ALSO CUTPUT ON PUNCHED CATA-PROCESSING CARDS FOR LATER COLLATION WITH THE DATA REPRESENTING UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED IN PROGRESSIVELY MORE OPEN RECTANGULAR PERFORATED WIND TUNNELS.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED. THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

D2 = DLTC2 OF A PRECEDING PROGRAM.

D3 = DLTC3 OF A PRECEDING PROGRAM.

D4 = DLTC4 OF A PRECEDING PROGRAM.

D5 = DLTCF OF A PRECEDING PROGRAM.

ALL DIHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKFEPING DEVICES.

```
PROGRAMMT (INPUT, GUTPUT, TAPE5=INPUT, TAPE6=CLTPUT, TAPE1, TAPE2, PUNCH) (B 196)
   DIMENSIUNBH(36,3),SE(30,3),YS(30,3),D2(30),D3(30),D4(30),D5(30)
                                                                         (B 197)
                                                                         (B 198)
   READ(5,1)(RH(I,1),SB(I,1),YS(I,1),D2(I),I=1,30)
                                                                         (B 1991
   READ(5,1)(BH(I,2),SE(I,2),YS(1,2),D3(I),I=1,30)
1 FORMAT(2(F7.3), F6.2, F10.6)
                                                                         (B 200)
   READ(5,2)(BH(1,3),SE(1,3),YS(1,3),D4(1),D5(1),I=1,30)
                                                                         (B 201)
2 FORMAT(2(F7.3), F6.2,2(F10.6))
                                                                         (B 202)
   WRITE(6,3)(BH(I,1),SE(I,1),YS(I,1),D2(I),I=1,30)
                                                                         (B 203)
   WRITE (6,5) (BF(I,2), SB(I,2), YS(I,2), D3(I), I=1,30)
                                                                         (8 204)
   WRITE(6,4)(BH(I,3),SB(I,3),YS(I,3),D4(I),C5(I),I=1,30)
                                                                         (B 205)
   WRITE(6,6)(SB(1,1),BH(1,1),YS(1,1),D2(1),D3(1),D4(1),D5(1),I=1,30) (B 206)
   WRITE(2,\epsilon)(SF(1,1),EH(1,1),YS(1,1),D2(1),D3(1),D4(1),D5(1),I=1,30) (B 207)
 3 FORMAT(3P ,//2X*S/0*4X*B/H*3X*Y/S*2X*DELTA SUB C2*//(2(F7.3),F6.2, (8 208)
  1F12.611
                                                                         (B 209)
4 FURMAT(1H ,//2x*S/R*4x*B/H*3x*Y/S*2X*DELTA SUB C4*4X*DELTA SUB C5* (B 210)
  1//(2(F7.3),F6.2,F12.6,4XF12.6))
                                                                         (B 211)
 5 FORMAT(1H ,//2X*S/B*4X*B/H*3X*Y/S*2X*DELTA SLB C3*//(2(F7.3),F6.2,
                                                                         (B 212)
                                                                         (B 213)
 1F12.611
6 FORMAT(1H ,//2X*S/B*4X*B/H*3X*Y/S*4X*DELTA SUB C2*4X*DELTA SUB C3* (B 214)
  14X*DELTA SUB C4*4X*CELTA SUB C5*//(2(F7.3),F6.2,4(4XF12.6)))
                                                                         (B 215)
   IA=-2*DO1" J=1,2*IA=IA+3*M=IA-6*DC1CK=1,5*M=M+6*N=M+2
                                                                         (B 216)
   WRITE(6,7)(SB(I,1),BH(I,1),YS(I,1),D2(I),D3(I),D4(I),D5(I),I=M,N)
                                                                         (B 217)
   WRITE(2,7)(SA(I,1),BH(I,1),YS(I,1),D2(I),D3(I),D4(I),D5(I),I=M,N)
                                                                         (B 218)
 7 FORMAT(2(F7.3), F6.2,4(2XF12.6))
                                                                         (B 219)
   PUNCH8, (SB(I,1), BH(I,1), YS(I,1), C2(I), D3(I), D4(I), D5(I), I=M,N)
                                                                         (B 220)
 8 FORMAT(2(F7.3), F6.2,4(F12.6))
                                                                         (B 221)
10 CONTINUESSTOPSEND
                                                                         (8222)
```

FORTRAN PROGRAM FOR EVALUATING THE PROGRESSIVELY-MORE-OPEN-TUNNEL PORTION OF EQUATION (A-2) OF APPENDIX A (THIS IS THE TERM CONTAINING THE HYPERBOLIC SECANT IN THE INTEGRAND). THE RESULTS GIVE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED BETWEEN INFINITE, VERTICAL, PERFORATED BOUNDARIES.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

DLTOZ = THE UPWASH INTERFERENCE FACTOR CALCULATED FOR THE PROGRESS-IVELY-MORE-UPEN-PERFORATER-TUNNEL PORTION OF EQUATION (A-2).

ALL CIMER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOOKKEEPING DEVICES.

NAMELIST INPUTS ARE PE, ET, RP

PROGRAMMT(INPUT, CUT FUT, TAPE5=INPUT, TAPE6=CUTPUT, TAPE1, TAPE2, PUNCH)	(B	2231
COMM)NSH(2),IS,YH(3,2),IY,BH,IB,PI,RB	(B	2241
DIMENSIONEQ(1),SMG(2),QNT(1),BE(5),BT(5),FP(4)	(B	225)
NAMELIST/INPT/31,HT,RP\$READ(5,INPT)	(P	226)
NG=4\$NFQ=75JG=5),\$PI=3.62.5252625 E-V=1.6F-6.78NMY=3	(B	2271
DOTIS=1, ISD(, IB=_, 5	(B	228)
OO!IT=1,5	(B	2231

IN THIS FRUGRAM, THE INTEGRATION INTERVAL QNO IS MADE A FUNCTION OF THE VARIABLE RE AND THE INDEXING INTEGRA IP IN ORDER TO GIVE THE SAME NUMBER OF INTEGRATION POINTS PER UNIT LENGTH OF THE INTEGRATION VARIABLE Q IN THE ARGUMENTS OF THE TRANSCENDENTAL FUNCTIONS IN THE INTEGRAND. THIS ALSO PRODUCES APPROXIMATELY THE SAME AMOUNT OF COMPUTER PROCESSING TIME FOR THE EVALUATION OF EACH TEST CASE.

<pre>¿MC = 2B/F(CAT(IP) \$SB = SH(IS) /BH(IB) \$BS = 1.0/SE</pre>	(B	237)
WRITZ(2,2)PH(IB),SB,K9\$WRITE(6,2)BH(IB),SB,RB	(B	231)
2 FOHMAT(1H ,///6X443/H=F7.3,10X4HS/B=F7.3,"UX*R/BETA=*F7.3,//5X3HY/	(B	23?1
15,7X*CFLTA SUR 02*//)	(B	2331
O()[[Y=t,N*Y\$YH([Y,[S]=SH([S]*FLCAT([Y-])/FLCAT(NMY-])	(B	2341
YS=YH(IY,IS)/SH(IS) &CALLINFINTQ(NG,SMG,FQ,NFG,JQ,QNC,CNV,QNT)	(B	235)
OLTU2=35*UNT/(2.**PI)\$WRITE(6.3)YS,DLTC2\$WRITE(2.3)YS,DLTC2	(8	2361
PUNCH4,SB,RH(IR),KB,YS,PLTC2	(B	237)
4 FCRMAT(3(F7.2),F6.2,F10.6)	(B	2381
3 FORMAT(4×F6,2,6×Fl0,6)	(B	2391
7 CONTINUE SSTCPSEND	(B	240)

SUBROUTINE FUNCO IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLE G IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUSC. REFER TO DISCUSSION IN A PRECEDING PROGRAM.

SUBROUTINE FUNCQ(Q,FQ)\$DIMENSIONFQ(1),BH(5)	(B 241)
COMMONSH(2),IS,YH(3,2),IY,BH,IE,FI,RB	(B 242)
SQ=SH(IS)*Q\$YQ=YH(IY,IS)*Q\$BQ=BH(IB)*Q\$BR=1./RB	(B 243)
A1 = SINH(SQ) *CCSH(YQ) / (SINH(BC) *CCSH(BQ))	(B 244)
AZ=SQRT(BF *BR*TANH(BQ)*TANH(BG)+1。)	(8 245)
FQ=A1*(BF*TANF(BG)-A2)\$RETURN\$ENC	(B 246)
\$INPT_BH=05.075.10.1.05.20.BT=10.08.06.045.03.KP=01.045.20.705.\$	(8 272)

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTO AND MGAUSG AS DEFINED AND DISCUSSED IN A PRECEDING PROGRAM.

FORTRAN PROGRAM FOR EVALUATING THE PROGRESSIVELY-MORE-OPEN-TUNNEL PORTION OF EQUATION (A-4) OF APPENDIX A (THIS IS THE DOUBLE-INTEGRAL PORTION OF THE EQUATION). THE RESULTS GIVE UPWASH INTER-FERENCE FACTORS FOR WINGS CENTER-MOUNTED BETWEEN INFINITE, HORIZONTAL, PERFORATED BOUNDARIES.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

AYS = A VARIABLE wHICH SERVES THE SAME FUNCTION AS THE VARIABLE ARGYS IN A PRECEDING PREGRAM.

D1 = THE VALUE OF THE INTEGRAL RESULTING FROM USE OF A POSITIVE SIGN IN THE VARIABLE AYS.

D2 = THE VALUE OF THE INTEGRAL RESULTING FROM USE OF A NEGATIVE SIGN IN THE VARIABLE AYS.

DLTO3 = THE UPWASH INTERFERENCE FACTOR CALCULATED FOR THE PROGRESS-IVELY-MORE-OPEN-PERFORATED-TUNNEL PORTION OF EQUATION (A-4).

ALL CTHER VARIABLE NAMES, EXCEPT AS NOTEC, ARE USED MERELY AS BOOKKEPING DEVICES.

NAMELIST INPUTS ARE RE, BT, RP

PΗ	ROGRAMWT(INPUT,CUTPUT,TAPE5=INPLT,TAPE6=CUTPUT,TAPE1,TAPE2,PUNCH)	(B	2731
C	DMMONSH(2), IS, YH(3,2), IY, BH, IB, G, PI, RB, AYS, IP	(B	2741
DI	IMENSIONFQ(1),SMQ(1),QNT(1),BH(5),BT(5),RP(4)	(B	275)
NA	AMELIST/INPT/BH,BT,RP\$READ(5,INFT)	(B	2761
N(C=4\$NFQ=1\$JC=5D\$PI=3。1415926536\$CNV=1.E+36\$NMY=3	(B	277)
טמ	PIIS=1,2*DD1IB=1,5	(B	278)
D.C	DIIT=1,5	(B	2791
SE	3=SH(IS)/3H(IB)\$9S=1./SB\$WRITE(6,2)BH(IB),SB,RB	(B	280)
2 FC	DRMAT(1H ,///6X4HB/H=F7.3,10X4HS/B=F7.3,10X#R/BETA=#F7.3,//5X3HY/	(B	281)
ĩS,	,7X*D5LTA SUR ()3*//)	(B	282)
DC	DIIY=:,NMY\$YH(IY,IS)=SH(IS)*FLOAT(IY-l)/FLOAT(NMY-1)	(B	2831

IN THIS PROGRAM, THE INTEGRATION INTERVAL QNO IS A FUNCTION OF THE VARIABLE AYS ANALOGOUSLY TO AND FOR THE SAME REASONS THAT THE INTEGRATION INTERVAL QNO IS A FUNCTION OF THE VARIABLE ARGYS IN THE PRECEDING PROGRAM FOR DUTC3.

AYS=YH(IY,IS)+SH(IS)\$QNC=PI/ABS(AYS)\$YS=YH(IY,IS)/SH(IS)	(B 284)
CALLINFINTG(NG, SMG, FG, NFQ, JQ, QNC, CNV, QNT) \$D1=QNT	(B 285)

IF IY=1, YH=2 AND AYS IS THE SAME IN BOTH INTEGRALS. IF IY=NMY, AYS=2 AND THE INTEGRAL IS ZERC.

	IF(IY.EQ.1)GOTO6	(B	286)
	IF(IY.EG.NMY)GOTC4\$AYS=SH(IS)-YH(IY,IS)\$GNC=PI/ABS(AYS)	(8	287)
	CALLINFINTQ(NQ, SMQ, FQ, NFQ, JQ, CNC, CNV, QNT)\$D2=QNT\$GOTO5	(B	288)
6	D2 = D1 \$GOTO5	(B	289)
4	D2=0.	(B	2901
5	DLTC3=-BS*(D1+D2)/(2.*PI*PI)\$WRITE(6,3)YS,DLTO3	(B	291)
	PUNCH7,SB,8H(IB),RB,YS,DLTO3	(B	292)
7	FCRMAT(3(F7.3),F6.2,F1(.6)	(B	2931
3	FORMAT(4XF6.2,6XF10.6)	(B	2941
1	CONTINUE \$STCP \$END	(B	2951

SUBROUTINE FUNCQ IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLE & IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUS . REFER TO DISCUSSION IN A PRECEDING PROGRAM.

SUBROUTINE FUNCG(G,FG)&CIMENSICNFG(1),SMR(2),FR(2),RNT(2),BH(5)	(B 296)
COMMONSH(2), IS, YH(3,2), IY, BH, IE, S, PI, RB, AYS, IP\$S=Q\$NR=3\$NFR=2	(B 297)

IN THIS PROGRAM, THE INTEGRATION INTERVAL AND IS MADE A FUNCTION OF THE VARIABLE RE AND THE INDEXING INTEGER IP FOR THE SAME REASONS THAT THE INTEGRATION INTERVAL QNC WAS MADE A FUNCTION OF THE SAME VARIABLES IN THE PRECEDING PROGRAM FOR DLTD2.

RNC=5.*RB/IP\$CNV=1.F-~7\$JR=10C	(B 298)
CALLINFINTR(NR,SMR,FR,NFR,JR,RNC,CNV,RNT)\$\$YQ=AYS*Q	(8 299)
FQ=SIN(SYC)*(0*RNT(1)+RNT(2)/(RB*RE*Q))\$RETURN\$END	(B 300)

SUBROUTINE FUNCE IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES Q AND R IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINTQ, INFINTR, MGAUSQ, AND MGAUSR.

SUBROUTINE FUNCR(R, FR) \$ DIMENSION FR(2), BH(5)	(B 301)
COMMONSH(2),IS,YH(3,2),IY,BH,IB,C,PI,RB,AYS	(B 302)
AR = SQRT(F*R/(F3*RB)+Q*Q)*BRI=1./(RB*RB)+1.	(B 303)
FR(1)=1./((BR)*R*R+G*G)*COSH(AR)*CCSF(AR)-R*R)	(B 304)
$FR(2) =/((BR \pm + Q + Q/(R + R)) + COSH(AR) + CCSH(AR) - 1.) + RETURN + END$	(B 305)
\$INPT BH=.5,.75,,1.5,2.,BT=1.,.8,.6,.45,.3,RP=.1,.45,2.,7.5,\$	(B 358)

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTA, INFINTA, MGAUSQ, AND MGAUSR AS DEFINED AND CISCUSSED IN PRECEEDING PREGRAMS.

FORTRAN PROGRAM FOR EVALUATING EQUATION (A-13) OF APPENDIX A.
THE CALCULATIONS GIVE AN APPROXIMATION CLOSE TO THE SIMULTANEOUS
DRIGIN OF THE THREE VARIABLES OF INTEGRATION TO THE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED IN PROGRESSIVELY-MORE-OPENPERFORATED TEST SECTIONS. THE INTERFERENCE FACTORS CALCULATED
REPRESENT THE EFFECT OF HORIZONTAL BOUNDARIES ON THE INTERFERENCE
VELOCITY POTENTIAL INSIDE THE TEST SECTION DUE TO VERTICAL BOUNDARIES.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY CEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

D4 = THE UPWASH INTERFERENCE FACTOR CALCULATED.

FPS: = A SMALL NUMBER, EPSILON-SUB-1 IN EQUATION (A-13).

EPS2 = A SMALL NUMBER, EPSILON-SUB-2 IN EQUATION (A-13).

ALL CTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKEEPING DEVICES.

NAMELIST INPUTS ARE BE, BT, RP

	PROGRAMMI(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=CUTPUT, TAPE1, TAPE2, PUNCH)	(B	359)
	OIMENSION 3H(5),8T(5),RP(4)	(B	3671
	NAMELIST/INPI/3H,3T,FP\$READ(5,INFT)	(B	3611
	PI=3。14_89265265255EPS1=8PS2=。Ul\$wRITE(6,3)\$wRITE(2,3)	(B	3621
3	FORMAT(1H ,//5X3H8/H,5X6HR/BETA8X2HD4,//)	(P	3631
	DO2[8=2,5500][P=1,4500][T=1,55RB=RP(IP)/BT(IT)\$RBH=RB/BH(IB)	(B	3641
	KBS=R34*FB4\$API=SQPI(FPS2*EPS2+RBS)	(B	365)
	AR=EPS2*AR%+RdS*ALOG(EPS2+AR%)-RPS*ALCG(RBF)-EPS2*EPS2	(B	3661
	D4=FPS:*RH*AR/(2.*PI*PI*RHS)\$WRITE(5,2)BH(IH),RH,D4	(B	3671
	wRIT=(2,2)8H(IB),48,64	(B	368)
?	F/)kMAT(2(,XF7.3,2X),F32.9)	(B	369)
	PUNCH4,PH(IF),RB,D4	(B	3701
4	FORMAT(2(F7.3),Fic.8)	(8	371)
7	CUNTINUESSTOPSEND	(B	372)
\$INPT	「 BH=.5,.75,1.,1.5,2.,BT±1.,.8,.6,.45,.3,RP=.1,.45,2.,7.5,\$	(B	373)

FORTRAN PROGRAM FOR EVALUATING THE FIRST TRIPLE-INTEGRAL PORTION OF EQUATION (A-14) OF APPENDIX A. THIS CALCULATION BEGINS AT THE POINT THE IMMEDIATELY PRECEDING PROGRAM LEFT-OFF AND CARRIES THE INTEGRATION THROUGH PART OF THE REMAINDER OF THE INTEGRATION RANGE. THE CALCULATIONS GIVE AN APPROXIMATION AWAY FROM THE SIMULTANEOUS ORIGIN OF THE THREE INTEGRATION VARIABLES TO THE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED IN PROGRESSIVELY-MORE-OPEN PERFORATION TEST SECTIONS. THE INTERFERENCE FACTORS CALCULATED REPRESENT THE EFFECT OF HORIZONTAL BOUNDARIES ON THE INTERFERENCE VELOCITY POTENTIAL INSIDE THE TEST SECTION DUE TO VERTICAL BOUNDARIES.

IN ORDER TO COMPARE WITH EQUATION (A-14) OF APPENDIX A, NOTE THE FOLLOWING EQUIVALENCES.

≠Q≠ OF THIS PROGRAM = GREEK LETTER ≠THETA≠ OF EQUATION (A-14).

≠P≠ OF THIS PROGRAM = GREEK LETTER ≠RHC≠ OF EQUATION (A-14).

IN ACCITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED.

THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

DLT04 = THE UFWASH INTERFERENCE FACTOR RESULTING FROM THE CAL-CULATIONS OF THIS PROGRAM.

ALL CTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKEFFING DEVICES.

NAMELIST INPUTS ARE BE, BT, RE

	PROGRAMMT(INPUT, CUTFUT, TAPE5=INPUT, TAPE6=CUTPUT, TAPE1, TAPE2, PUNCH)	(B	374)
	COMMONSH(2),IS,YH(3,2),IY,BH(5),IE,Q,R,PI,RB,AYS	(B	3751
	DIMENSIONFQ(1),SMC(1),BT(5),RP(4)	(B	3761
	NAMELIST/INPT/64, PT, FP\$REAC(5, INPT)	(B	377)
	NFQ=1\$PI=5.1415926536\$NMY=3\$AG=C.\$BQ=PI/2.	(B	3781
	DODIS=1,2 % DODIR=1,5 % SH(1)=.3 % PH(IB) % SH(2)=.7 % BH(IB) % DODIP=1,4	(B	3791
	00)IT=1,55RB=RP(IP)/BT(IT)\$NG=1+IFIX(RB/4.)	(B	380)
	SB=SH(IS)/BH(IB)\$MS=2./SB\$WRITE(6,2)BH(IB),SB,RB	(B	3811
	WRITE(2,7)3H(IR),SB,RB\$C=RB*BS/(FI*PI*PI)		3821
2	FORMAT(3H ,///5X4FB/F=F7.3,13X4HS/B=F7.3,1CX*R/BETA=*F7.3,//5X3HY/		383)
1	LS,5X*DFLTA SUP 04*//)		3841
	DO[IY=1,NMY*Y+(IY,IS)=SH(IS)*FLOAT(IY-1)/FLCAT(NMY-1)	•	385)
	YS = YH(IY, IS)/SH(IS) \$CALLMCAUSG(AG, BG, NG, SMG, FQ, NFQ) \$DLTO4 = C*SMQ(1)		3861
	WRITE(6,3)YS,DLTC4%ARITE(2,3)YS,DLTO4	•	387)
3	FORMAT(2XF6.2,5XF1U.8)		3881
	PUNCH4, SP, BH(I3), PB, YS, DLTC4	,	3891
	FORMAT(3(F7.3), F6.2, F10.6)		390)
ì	CUNTIVE \$ 2 LC b \$ F V D	(B	3911

SUBROUTINE FUNCO IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLE C IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUSQ. REFER TO DISCUSSION IN A PRECEDING PROGRAM.

```
SUBROUTINE FUNCQ(Q,FQ)$DIMENSICNFQ(1),FR(1),RNT(1)
                                                                          (B 392)
  CUMMCNSH(2), IS, YH(3,2), IY, BH(5), IB, S, R, PI, RB, AYS$S=Q$NR=1$NFR=1
                                                                          (B 393)
  JR=5)$CNV=1.F->5$AYS=YH(IY,IS)+BH(IB)$RNC=PI/ABS(AYS)
                                                                          (B 394)
  CALLINFINTR(NR, FR, NFR, JR, RNC, CNV, RNT) $D41=RNT(1)
                                                                          (8 395)
  IF(IY.EQ.))GOTO& $AYS=BH(IB)-YH(IY,IS) $RNC=PI/ABS(AYS)
                                                                          (B 396)
  CALLINFINTR(NR,FR,NFR,JR,RNC,CNV,RNT) $C42=RNT(1) $GOTO5
                                                                          (B 397)
6 D42=D41
                                                                          (B 398)
5 FQ(1)=COS(Q)*(D41+D42)$RETURN$END
                                                                          (8 399)
```

SUBROUTINE FUNCR IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES & AND R IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINTR, MGAUSQ, AND MGAUSR.

SUBROUTINE FUNCR(R,FR) \$DIMENSIONFR(1),FP(1),PNT(1)	(B 400)
COMMONSH(2),IS,YH(3,2),IY,8H(5),IE,C,T,PI,RB,AYS	(B 401)
T=R\$NEP=?\$JP==(\$CNV=5.E+05\$PNC=PI/(2.*COS(G))	(B 402)
IF(PNC.GT.(2.*PI))PNC=2.*PI\$NF=IFIX(PNC*2./PI)\$IF(NP.LT.1)NP=1	(B 403)
CALLINFINTP(NP,FP,NFP,JP,PNC,CNV,PNT)\$FR(1)=PNT(1)\$RETURN\$END	(B 404)

SUBROUTINE FUNCP IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES P, Q, AND R IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINTP, INFINTR, MGAUSP, MGAUSQ, AND MGAUSR.

SUBROUTINE FUNCE(P,FP)\$DIMENSIONFF(1)	(B	405)
CCMMCNSH(2), IS, YH(3,2), IY, BH(5), IB, Q, R, PI, RB, AYS	(B	406)
AP=BH(IB)*P\$SP=SH(IS)*P\$A1=SQRT(P*P*SIN(Q)*SIN(Q)+R*R)\$A2=P*COS(Q)	(B	407)
AR=4YS*R\$SNAR=AR\$IF(AR.GTO5)SNAR=SIN(AR)\$CSAR=CCS(AR)	(B	4081
SHBP=BP\$1F(BP•GT••)5)SHBP=SINF(BF)\$CHEP=CCSH(BP)	(B	4091
AN=(P*SHBP*CSAR+R*CHBP*SNAR)/(P*P+R*R)\$SNQ=Q	(B	410)
IF(Q.GT:5)SNO=SIN(Q)\$D!=SHPP*SHFF+RE*RB*SNQ*SNQ*CHBP*CHBP	(B	411)
SHAL=1.\$IF(A,.6T)5)SHAJ=SINH(A1)/A1\$CHAL=CCSH(A1)	(B	4121
D2=(KB*P*SNG*SHA1)**2.+CHA1**2.*TRJ=SINH(SP)*AN/(EXP(BP)*D1*D2)	(B	413)
SNA2=A2\$IF(AzoGToo ·5)SNA2=SIN(A2)\$CSAz=CCS(A2)\$CSQ=CCS(Q)	(B	414)
A3=((RB*SNG)**L•)*P*SNA2*SHA1+CSG*CSA2*CHA1	(B	415)
A4=SHRP-KB*RR*SNG*SNG*CHBP\$A5=A2*CSA2*SHA1-SNA2*CHA1	(B	4161
FP(1)=TR: *(EXP(BP)*A3+A4*A5)\$RETURN\$END	(B	417)

THE SUBROLTINE SUBPROGRAMS INFINTP AND MGAUSP IN THIS PROGRAM ARE NECESSARY TO ALLOW INTEGRATIONS OVER THREE VARIABLES RATHER THAN THE TWO VARIABLES OF PRECEDING PROGRAMS. EXCEPTING FOR THE SUBROUTINE NAMES AND WHATEVER VARIABLE NAME-CHANGES ARE NECESSARY TO ALLOW THE CALCULATIONS TO PROCEED WITHOUT CONFUSION, THEY ARE IDENTICAL WITH THE SUBROUTINES INFINTQ AND MGAUSQ AS DISCUSSED IN A PRECEDING PROGRAM. ALSO NOTE THAT THE INITIAL VALUE OF THE LOWER LIMIT #AQ# HAS BEEN CHANGED FROM ZERO TO C.G1 IN ACCORDANCE WITH THE LIMITS ON THE INTEGRALS BEING PROGRAMMED.

3 4 9 5 7 8 2	SUBRCUTINE INFINTP(NQ,FOFP,NFC,JQ,QINC,CCNV,QINT) DIMENSION SUMQ()),FCFP(1),QINT(1) \$D01I=1,NFQ QINT(I)=0.\$AQ=.01\$DC2IQ=1,JQ\$IF(IQ-1)4,4,3 AQ=8Q\$GOTOQ BQ=0. BC=BQ+QINC\$CALLM(AUSP(AO,BQ,NQ,SUMC,FCFP,NFC) QCONV=0.\$DC5I=1,NFG\$CCONV=QCCNV+AES(SUMQ(I)) QINT(I)=QINT(I)+SUMQ(I)\$IF(QCCNV-LT-CCNV)GCT06\$IF(IQ.EQ.JQ)GCT07 GCT02 WRITE(6,8)\$WRITE(2,6)\$GOT06 FORMAT(1H,2X*!NTEGRAL NCNCCNVERGENT WITH GIVEN UPPER LIMIT CN P*) CONTINUE RETURNSEMD	(B)	418) 419) 420) 421) 422) 423) 424) 425) 425) 427) 428) 429) 430)
2	SUBROUTINE MGAUSP(A, E, N, SUM, FCFX, NUMBER) DIMENSION U(5), R(5), SUM(1), FOFX(1) \$DD1LL = 1, NUMBER SUM(LL) = () IF (A. EQ. B) RETURN \$U(1) = 425562 E 20 5 3 9 1 8 4 \$U(2) = 2 8 3 3 0 2 3 C 2 9 8 5 3 7 6 U(3) = 16' 29 5 2 15 5 5 3 4 8 8 \$U(4) = C 6 7 4 6 8 2 1 6 6 5 5 5 C 8 \$U(5) = 01 3 0 4 6 7 3 5 7 4 1 4 1 4 R(1) = 14 7 7 6 2 3 1 2 3 5 7 3 7 6 8 R(2) = 13 4 6 3 3 3 5 9 6 5 4 9 9 8 \$R(3) = 1 2 9 5 4 3 1 8 1 2 5 7 9 9 1 R(4) = 17 4 7 2 5 5 7 4 5 7 5 2 9 0 \$R(5) = 02 3 3 3 5 6 7 2 1 5 4 3 4 4 \$F INE = N DF LTA = FINE / (B - A) \$DO 3 K = 1, N \$XI = K + 1 \$F INE = A + XI / DEL TA \$DO 2 II = 1, 5 UU = U(II) / DFL TA + FINE \$CALL FUNCP(UU, FOFX) \$DO 2 JOYBOY = 1, NUMBER SUM(JDY3 0 Y) = R(II) * F CFX(JOYBOY) + SUM(JCYBCY) \$CO 3 JJ = 1, 5 UU = (1 2 + U(JJ)) / DEL TA + FINE \$CALL FUNCP(UU, F CFX) \$DO 3 NN = 1, NUMBER SUM(NN) = R(JJ) * F CFX(NN) + SUM(NN) \$ DC 7 J J K = 1, NUMBER SUM(IJK) = SUM(IJK) / DEL TA \$ RETURN \$ F ND	(B (B (B (B (B (B (B (B	4431 4441 4451 4461 4471 4491 4501 4511 451 4531 4551
\$INP	T BH=.5,.75,1.,1.5,2.,BT=1.,.P,.6,.45,.3,RP=.1,.45,2.,7.5,\$	(B	482)

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTR, MGAUSQ, AND MGAUSK AS DEFINED AND DISCUSSED IN PRECEECING PROGRAMS.

FORTRAN PROGRAM FOR EVALUATING THE SECOND TRIPLE-INTEGRAL PORTION OF EQUATION (A-14) OF APPENDIX A. THIS CALCULATION BEGINS AT THE POINT THE IMMEDIATELY PRECEDING PROGRAM LEFT-OFF AND CARRIES THE INTEGRATION THROUGH THE REMAINDER OF THE INTEGRATION RANGE.

EXCEPT FOR THE LIMITS OF INTEGRATION, THIS PROGRAM IS IDENTICAL WITH THE PROGRAM IMMEDIATELY PRECEDING. ONLY THE PORTION SHOWING THE CHANGE IN THE LIMITS OF INTEGRATION IS REPRODUCED HERE.

SUBROUTINE FUNCR(R,FR)*DIMENSIONER(1),FP(1)
CCMMCNSH(2),IS,YH(3,2),IY,BH(5),IE,Q,T,PI,RB,AYS

(B 509) (B 510)

SINCE THE INTEGRATION LIMITS ON THIS INTEGRAL ARE FINITE RATHER THAN INFINITE AS WITH THE INTEGRAL OF THE PROGRAM IMMEDIATELY PRECEDING. THE SUBROUTINE INFINITE IS NOT USED IN THIS PROGRAM.

T=K&NFP=[&NP=[&AP= (.&EP=.D]&CALLMGAUSP(AP,BP,NP,FR(1),FP,NFP)
RETURNSEND

(8 511) (8 512)

IN ACCORDANCE WITH THE INTEGRATION LIMITS OF EQUATION (A-14) OF APPENDIX A, THE INITIAL VALUE FOR THE LOWER LIMIT AQ IN THE SUBPOUTING INFINIR IS SET AT C.C. RATHER THAN ZERO.

FCRTPAN PREGRAM FOR CELLATING DATA. THE PUNCHED-CARD OUTPUT OF THE THREE PRECEDING PROGRAMS IS THE INPUT TO THIS FROGRAM. THE DATA ARE CELLATED, PRINTED OUT AS A CHECK, THEN PUNCHED ONTO DATA-PROCESSING CARDS FOR LATER CELLATION WITH THE DATA REPRESENTING WINGS CENTER-MOUNTED IN CLOSEC, RECTANGULAR, PERFORATED TEST-SECTIONS AND WITH THE CATA REPRESNTING VARIOUS COMPONENTS OF UFWASHINTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED IN PROGRESSIVELY-MORE-OPEN, RECTANGULAR, PERFORATED TEST-SECTIONS. THE COLLATED CATA OF THIS PROGRAM GIVE THE TOTAL COMPONENT FOR PROGRESSIVELY-MORE-OPEN TEST-SECTIONS OF UPWASH INTERFERENCE FACTORS DUE TO THE EFFECT OF HORIZONTAL BOUNDARIES ON THE INTERFERENCE VELOCITY POTENTIAL INSIDE THE TEST-SECTION DUE TO VERTICAL BOUNDARIES.

IN ACCITION TO THE COMMON VARIABLE NAMES ALREADY CEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

D41 = D4 CF THE FROGRAM EVALUATING EQUATION (A-13) OF APPENDIX A.

D4? = DLTC4 OF THE PROGRAM EVALUATING THE FIRST TRIPLE-INTEGRAL PORTION OF EQUATION (A-14) OF APPENDIX A.

D43 = DLTC4 OF THE PROGRAM EVALUATING THE SECOND TRIPLE-INTEGRAL PORTION OF EQUATION (A-14) OF APPENDIX A.

D45 = THE RESULT OF COLLATION OF THE FACTORS D41, D42, AND D43 INTO THE UPWASH INTERFERENCE FACTOR REPRESENTING WINGS CENTER-MOUNTED IN PROGRESSIVELY-MORE-OPEN, RECTANGULAR, PERFORATED TEST-SECTIONS DUE TO THE EFFECT OF HORIZONTAL BOUNDARIES ON THE INTERFERENCE VELOCITY PUTENTIAL INSIDE THE TEST-SECTION DUE TO VERTICAL BOUNDARIES.

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOCKKEEPING DEVICES.

```
(B 696)
  PROGRAMMI (INPUT, CUTFUT, TAFE5 = INPUT, TAFE6 = CUTPUT, PUNCH)
  DIMENSION BHY([00], BH2(600), BH3(600), RB1(100), RB2(600), RB3(600)
                                                                        (B 697)
  DIMENSION SP2(50 ), SP3(60 )), YS2(600), YS3(600), D41(100), D42(600)
                                                                        (B 698)
  DIMENSION 043(6 10), C44(600), D45(600)
                                                                        (B 699)
  REAC(5.1)(BH:(I).RE1(I).D41(I).I=1.1(C)
                                                                        (B 700)
1 FORMAT(2(F7.3),F10.8)
                                                                        (B 701)
                                                                        (B 702)
  RFAC(5,2)(SB2(I),BHZ(I),RB2(I),YSZ(I),D42(I),I=1,600)
                                                                        (B 703)
  READ(5,2)(SB3(I),RH3(I),RB3(I),YS3(I),D43(I),I=1,600)
                                                                        (8 734)
2 FORMAT(3(F7.3), F6.2, F10.6)
  wRITE(6,?)*WRITE(6,1)(BH1(I),R81(I),D41(I),I=1,100)
                                                                        (B 705)
3 FORMAT(2x*8/H*3x*R/BETA*3x*DLT41*//)
                                                                        (B 706)
  WRITE(6,4)$WRITE(6,2)(SB2(1),BH2(1),RB2(1),YS2(1),D42(1),I=1,60C)
                                                                        (B 707)
  WRITE(6,5) %WRITE(6,2)(SB3(1),BB3(1),RB3(1),YS3(1),D43(1),I=1,600)
                                                                        (B 708)
4 FORMAT(///2X*S/B*4X*8/H*3X*R/BETA*2X*Y/S*4X*CLT42*//)
                                                                        (B 709)
                                                                        (B 710)
5 FORMAT(///2X*S/B*4X*B/H*3X*R/BETA*2X*Y/S*4X*DLT43*//)
  J=0.5DC6IS=1,2.5D06I=1,100.5CC6K=1,2.5J=J+1.5D44(J)=D41(I)
                                                                        (B 711)
6 D45(J)≈D44(J)+D42(J)+D43(J)
                                                                        (8712)
  wRITE(6,7)$hRITE(6,8)(SB3(1),BH3(1),RH3(1),YS3(1),D42(1),D43(1),D4 (B 713)
                                                                        (8714)
 14(I),D45(I),I=1,60()
7 FORMAT(///2x*S/B*4X*B/H*3X*R/BETA*2X*Y/S*4X*DLT42*5X*DLT43*5X*DLT4 (B 715)
                                                                        (B 716)
 14*5X*DLT45*//)
                                                                        (B717)
8 FCRMAT(3(F7.3), F6.2,4(F10.6))
  PUNCH 2, (SB3(I), BH3(I), RB3(I), YS3(I), D45(I), I=1,6CJ)
                                                                        (B 718)
  STCP$END
                                                                         (B 719)
```

FORTRAN PREGRAM FOR EVALUATING EQUATION (A-1)) OF APPENDIX A. THE RESULTS GIVE UPWASH INTERFERENCE FACTORS FOR WINGS CENTER-MOUNTED IN PROGRESSIVELY-MCRE-CPEN, RECTANGULAR, PERFORATED TEST-SECTIONS DUE TO THE EFFECT OF HORIZONTAL BOUNDARIES ON THE INTERFERENCE VELOCITY POTENTIAL OUTSIDE THE TEST-SECTION DUE TO HORIZONTAL BOUNDARIES.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED, THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

OLTOS = THE UPWASH INTERFERENCE FACTOR CALCULATED

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOOKKEEPING DEVICES.

NAMELIST INPUTS ARE BE, BT, RP

	PROGRAMWI (INPUT, CUI PUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE1, TAPE2, PUNCH)	(B	578)
	COMMONSH(2), IS, YH(3,2), IY, BH, IB, F, C, PI, RB, AYS, IP, BPC, PQ, BC, NMY		579)
	DIMENSIONFQ(1),SMC(1),QNT(1),EH(5),BT(5),RP(4)	(B	580)
	NAMELIST/INPT/8H,8T,8P&READ(5,INPT)	(B	5811
	NG=1\$NFQ=:\$JG=5)\$PI=3.1415926536\$CNV=2.E-C3\$NMY=3\$QNC=PI	(B	582)
	DOLIS=2,2\$DOLIB=3,3\$SH(1)=.3*EH(IB)\$SH(2)=.7*BH(IB)\$DCLIP=3,4	(B	583)
	DOLIT=1,5\$RB=RP(IP)/BT(IT)	(B	5841
	SB=SH(IS)/BH(IB)\$RS=1./SB\$WRITE(6,2)BH(IB),SB,RB	(B	585)
	wRITE(2,2)8H(IB),SB,FE\$C=8S/(PI*PI*PI)		586)
2	FURMAT(1H ,///6X4HB/H=F7.3,1)X4HS/B=F7.3,1UX*R/BETA=*F7.3,//5X3HY/	(B	587)
:	IS,5X*DELTA SUR D5*//)	(B	588)
	DOLIY=1, NMY\$YH(IY,IS)=SH(IS)*FLCAT(IY-1)/FLOAT(NMY-1)	(B	5891
	YS=YH(IY,IS)/SH(IS)	(B	590)
	CALLINFINTS(NG,SMG,FQ,NFG,JQ,GNC,CNV,QNT)\$DLTD5=C*QNT(1)	(B	591)
	WRITF(5,3)YS,DLTC5\$WRITE(2,3)YS,CLTC5	(B	5921
3	FORMAT(2XF6.2,5XF1/.6)	(B	593)
	PUNCH4,SE,BH(IB),RB,YS,DLTC5	(B	594)
4	FURMAT(3(F7.3), F6.2, F1(.6)	(B	595)
1.	CONTINUE \$STOP\$END	(8	596)

SUBROUTINE FUNCQ IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTERFST OVER THE VARIABLE & IN ACCORDANCE WITH THE INTEGRATION SUBROUTINE MGAUS& REFER TO DISCUSSION IN A PRECEDING PROGRAM.

```
SUBROUTINF FUNCQ(Q,FQ)$CIMENSIONFQ(1),SMP(1),FP(1),PNT(1),BH(5)
COMMONSH(2),IS,YH(3,2),IY,BH,IB,F,S,PI,RE,AYS,IP,BP,BPQ,PQ,BQ,NMY
NP=3$NFP=1$PNC=5.*KB*FLOAT(IS)/FLCAT(IP)$CNV=1.E-G3$JP=5C$S=Q
CALLINFINTP(NP,SNP,FF,NFP,JP,FNC,CNV,PNT)$FQ(1)=G*PNT(1)
RETURN$END

(B 597)
(B 598)
(B 599)
(B 600)
```

SUBROLTINE FUNCP IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES P AND Q IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINTP, INFINTQ, MGAUSP, AND MGAUSQ.

SUBROUTINE FUNCP(P,FP) DIMENSICAFP(1),FR(1),SMR(1),RNT(1),BH(5)	(B	6021
COMMONSH(2), IS, YH(3,2), IY, BH, IE, T, C, PI, RE, AYS, IP, BP, BPQ, PQ, BQ, NMY	(B	603)
T=P\$NR=1.\$NFR=}\$JR=5C\$CNV=5.E-C4\$BPQ=SQRT(P*P/(RB*RB)+Q*Q)	(B	604)
8P=(:,o+i,o/(RB*KB))*F*P\$PQ=BP+C*Q\$SQ=SH(IS)*BPQ\$BQ=BH(IB)*BPQ	(B	605)
A_=SINH(SQ)/(EXP(8J)*8PQ*8PQ)	(B	606)
AYS=YH(IY,IS)+BH(IB)\$PNC=P1/ABS(AYS)	(B	607)
CALLINFINTR(NR, SMR, FR, NFR, JR, FNC, CNV, RNT) \$ C 5 1 = RNT(1)	(B	603)
IF(IY.EQ.:)GOTU6 \$AY S= BH(IB)-YF(IY,IS)\$RNC=PI/ABS(AYS)	(B	6091
CALLINFINTR(NR,SMR,FR,NFR,JR,FNC,CNV,FNT)\$C52=RNT(1)	(B	610)
GCTG5	(B	611)
052=05*.	(B	6121
FP(1)=A1*(C5:+D52)\$ReTURN\$END	(B	6131

SUBPOUTING FUNCE IS ONE WRITTEN TO EVALUATE THE INTEGRAND OF INTEREST OVER THE VARIABLES P, Q, AND R IN ACCORDANCE WITH THE INTEGRATION SUBROUTINES INFINTP, INFINTQ, INFINTR, MGAUSP, MGAUSQ, AND MGAUSR.

5

SUBROUTINE FUNCF(R,FR) & DIMENSION FR (1), BH (5)	(B	6141
COMMONSH(2),IS,YH(3,2),IY,BH,IR,F,Q,PI,RB,AYS,IP,BP,BPQ,PQ,BQ,NMY	(B	6151
BPR=SQRT(P*P/(KB*R!)+R*R)\$SR=SH(IS)*BPR\$BYR=AYS*R\$BPQR=BPQ*BPQ+R*R	(B	616)
PR=3P+R*K\$A}=BPR*BPR/(BPGR*(PR*CCSH(BPR)*CCSH(BPR)-P*P))	(B	6171
A51=SIN(Q)*CUSH(EPx)-Q*COS(Q)*SINH(BPR)/BPR	(B	6181
452=8PQ*COS(3YR)-R*SIN(BYR)\$FR(1)=A*A51*A52\$RETURN\$END	(B	6191
\$INPT BH=.5,.75,1.,1.5,2.,BT=1.,.8,.6,.45,.3,RF=.1,.45,2.,7.5,\$	(B	6951

THIS PROGRAM MAKES USE OF THE SUBROUTINE SUBPROGRAMS INFINTP, INFINTQ, INFINTR, MGAUSP, MGAUSC, AND MGAUSR AS DEFINED AND DISCUSSED IN PRECEDING PROGRAMS.

FURTRAN PROGRAM FOR COLLATING THE CATA CALCULATED BY MEANS OF EQUATIONS (A-2), (A-4), (A-7), (A-8), (A-10), (A-12), AND (A+14) OF APPENDIX A. THE PUNCHED-CARD CUTFUT OF SEVERAL PRECEDING PROGRAMS IS THE INPUT TO THIS PROGRAM. THE DATA ARE COMBINED, PRINTED-OUT AS A CHECK, THEN FUNCHED ONTO CATA-PROCESSING CARDS FOR USE IN A PROGRAM WHICH GENERATES FINAL TABLES OF THE DATA.

IN ACCITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED,
THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

DLT2 = THE UPWASH INTERFERENCE FACTOR DELTA-SUB-2 OF EQUATION (A-2) OF APPENDIX A.

DLT3 = THE JPWASH INTERFERENCE FACTOR DELTA-SUB-3 OF EQUATION (A-4) OF APPENDIX A.

DLT4 = THE UPWASH INTERFERENCE FACTOR DELTA-SUB-4 OF EQUATION (A-14) OF APPENDIX A.

DLTS = THE UPWASH INTERFERENCE FACTOR DELTA-SUB-5 OF EQUATION (A-10) OF APPENDIX A.

DLTT = THE TOTAL UPWASH INTERFERENCE FACTOR, THE SUMMATION OF DLT2, DLT3, DLT4, AND DLT5.

ALL CTHER VARIABLE NAMES, EXCEPT AS NOTEC, ARE USED MERELY AS BOOKKEEPING DEVICES.

```
PROGRAMWT (INPUT, CLTPLT, PLNCH)
                                                                           (8 720)
  DIMENSION SB((3)), BHC(30), YSC(30), D2C(30), D3C(3)), D4C(30), D5C(30)
                                                                           (B 721)
  DIMENSION SBU(544,4),8HO(600,4),RBC(600,4),YSO(600,4),DLT(600,4)
                                                                          (8 722)
  DIMENSION DET?(600), DET3(600), DET4(6(4), DET5(600), DETT(600)
                                                                          (B 723)
  READ^*, (SEC(1), BHC(1), YSC(1), D2C(1), D3C(1), D4C(1), D5C(1), I=1, 30)
                                                                          (8724)
1 FORMAT(2(F7.3), F6.2,4(F12.6))
                                                                          (B 725)
  PRINT2
                                                                           (8 726)
2 FORMAT(2x*S/B*4X*8/F*3X*Y/S*5X*DLTC2*7X*DLTC3*7X*DLTC4*7X*DLTC5*/) (B 727)
  PRINT1, (SBC(I), BHC(I), YSC(I), D2C(I), D3C(I), D4C(I), D5C(I), I=1,30)
                                                                          (8 728)
  KEAC?,(($BO(I,J),9HC(I,J),RHO(I,J),YSO(I,J),DLT(I,J),I=1,600),J=1, (B 729)
 14)
                                                                          (B 730)
3 FORMAT(3(F7.3), F6.2, F1(.6)
                                                                          (B 731)
  004J=1,45L=J+1
                                                                          (B 732)
  PRINT5, L, (S80(I, J), 8HO(I, J), R8C(I, J), YSO(I, J), DLT(I, J), I=1,60J)
                                                                          (8 733)
5 FCRMAT(///2×*S/B*4X*B/H*2X*R/BETA*2X*Y/S*2X*CELTA SUB @*Ii.//(3(F7 (B 734)
 1.3),F6.2,F1(.6))
                                                                          (B 735)
4 CCNTINUE
                                                                          (B 736)
  J= 1 $006I= 1, 1 U$MC = (I-1) *3+) $NC=MC+2 $DE6IRB=1, 2 \$006IY=MC, NC$J=J+1
                                                                          (8737)
                                                                          (B 738)
  DLT2(J) = D2C(IY) + DLT(J,1) + DLT3(J) = D3C(IY) + DLT(J,2)
  DLT4(J) = D4C(IY) + DLT(J,3) *DLT5(J) = C5C(IY) + DLT(J,4)
                                                                          (B 739)
6 DLTT(J)=DLT2(J)+DLT3(J)+DLT4(J)+DLT5(J)
                                                                          (B 743)
  PRINT7,(SBO(I,1),84C(I,1),RBC(I,1),YSC(I,1),CLT2(I),DLT3(I),CLT4(I (8 741)
 1),DLT5(I),DLTT(I),I=1,50.)
                                                                          (P 742)
7 FURMAT(///2X*S/B*4**B/H*2**R/BETA*3X*Y/S*3X*CELTA SUB 2*3X*DELTA S (B 743)
 1UB 3*3**CELTA SUP 4*3**DELTA SUB 5*3**TOTAL DELTA*//(3(F7.3),F6.2, (B 744)
 25(3XF8.6,5X)))
                                                                          (8745)
 PUNCH3, ($80(I,1),BHC(I,1),RBO(I,1),YSO(I,1),DLT2(I),DLT3(I),DLT4(I (B 746)
1),OLT5(I),OLTT(I),I=3,6(())
                                                                          (B 747)
8 FORMAT (3F7.3, F6.2,5F% 1.6)
                                                                          (B 748)
  STCP$END
                                                                          (B 749)
```

FORTRAN PROGRAM FOR GENERATING TABLES OF THE PREVIOUSLY CAL-CULATED AND COLLATED DATA. THE DATA CUTPUT FROM THE IMMEDIATELY PRECEDING PROGRAM ARE THE INFLT FOR THIS PROGRAM. THIS PROGRAM ARRANGES THE DATA AND PRINTS THEM IN TABULAR FORM.

IN ADDITION TO THE COMMON VARIABLE NAMES ALREADY DEFINED,
THE FOLLOWING NAMES ARE OF IMPORTANCE TO THIS PARTICULAR PROGRAM.

D2 = DLT2 CF THE IMMEDIATELY PRECEDING PROGRAM.

D3 = DLT3 CF THE IMMEDIATELY PRECEDING PROGRAM.

D4 = DLT4 OF THE IMMEDIATELY PRECEDING PROGRAM.

D5 = DLT5 OF THE IMMEDIATELY PRECEDING PROGRAM.

DT = OLTT (F THE IMMEDIATELY PRECEDING PROGRAM.

ALL OTHER VARIABLE NAMES, EXCEPT AS NOTED, ARE USED MERELY AS BOOKKEEPING DEVICES.

```
PROGRAM WIIN (INPLI, CLIPUT)
                                                                             (B 750)
   DIMENSION SR(\epsilon)), BH(\epsilon00), RB(\epsilon00), R(\epsilon00), YS(\epsilon00), D2(\epsilon00), D3(\epsilon00)
                                                                             (B 751)
   DIMENSION D4(& 0), D5(600), DT(600), BETA(600)
                                                                             (B 752)
                                                                             (B 753)
   DIMENSION X(21,5,2),Y(20,5,2),XP(22),YP(22)
  READ1,(SR(I),RH(I),RP(I),YS(I),D2(I),D3(I),D4(I),D5(I),DT(I),I=1,6 (8 754)
                                                                             (B 755)
 1 LL ) $NBH=-29$NR=-14$NPET=NYS=-2
 1 FORMAT(3F7.3,F6.2,5F10.6)
                                                                             (B 756)
                                                                             (B 757)
   DO2IS=1,2*DC2I8H=1,5*NRB=0*DC4IP=1,2*NPH=NPH+30
   PRINTS, BH(NBH), SB(NBH) $DC6IR=1,1C$NBET=NBET+3$NRB=NRB+1
                                                                             (B 758)
 5 FORMAT(1H1/8X*TUNNEL WIDTH-TC-HEICHT RATIO, B/H=*F6.2,PX*WING-SPAN (B 759)
 2-TC-TUNNEL-WIDTH RATIO, S/B=*F6.2///4X*R/BETA*8X*Y/S*GX*CELTA*8X*D (B 76)
 2ELTA*8X*DELTA*3X*DELTA*8X*TOTAL*5X*DELTA/DELTA*/31X*SUB 2*8X*SUB 3 (B 761)
  3#8X#SUB 4#8X#SUB 5#8X#DELTA#8X#SUB C#//)
                                                                             (B 762)
   PRINTY, RE(NBET)
                                                                             (B 763)
                                                                             (B 764)
   Y(NKB, IBH, IS)=DT(NBET) $X(NRB, IBH, IS)=RB(NBET) $MYS=NBET+2
   PRINTLO, (YS(I), D2(I), D3(I), D4(I), D5(I), DT(I), I=NBET, MYS)
                                                                             (8 765)
                                                                             (B 766)
 6 CUNTINUE
                                                                             (B 767)
4 CONTINUE
                                                                             (B 768)
   PKINT11, (X(I, IBH, IS), Y(I, IBH, IS), I≈1, NRB)
                                                                             (B 769)
 3 CCNTINUE
 2 CONTINUE
                                                                             (B 779)
7 FORMAT(1H+,1XF7.3)
                                                                             (B 771)
10 FORMAT(1H ,16xF4.),5(7xF6.3)/17xF4.1,5(7xF6.3)/17xF4.1,5(7xF6.3)/) (B 772)
                                                                             (B 773)
11 FORMAT(1H),1X*R/BETA*6X*TOTAL*/14X*DELTA*//(2XF7.3,3XF6.3))
   STOP $END
                                                                             (B 774)
```

REFERENCES

- 1. Wright, Ray H.; and Schilling, Benferd L.: Approximation of the Spanwise Distribution of Wind-Tunnel-Boundary Interference on Lift of Wings in Rectangular Perforated-Wall Test Sections. NASA TR R-285, 1968.
- 2. Theodorsen, Theodore: Interference on an Airfoil of Finite Span in an Open Rectangular Wind Tunnel. NACA Rep. 461, 1933.

TABLE I.- UPWASH INTERFERENCE FACTORS δ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO s/b OF 0.3

(a) Tunnel width-height ratio b/h of 0.50

R/β	y/s	δ ₂	δ ₃	δ ₄	δ ₅	Approximated $\delta_2 + \delta_3 + \delta_4 + \delta_5$
CLOSED	0.0	-		<u> </u>		.266
.100	0.0	.205	.027	014	002	•216
	.5	.208	.027	014	002	•219
	1.0	.216	.026	014	002	•227
•125	0.0	•194	.026	012	002	•206
	.5	•197	.026	012	001	•209
	1.0	•205	.025	012	001	•217
•167	0.0	.178	.023	010	001	.191
	.5	.180	.023	010	001	.193
	1.0	.188	.023	009	001	.201
.222	0.0	.159	.020	007	000	.172
	.5	.161	.020	007	000	.174
	1.0	.169	.020	007	.000	.181
.333	0.0	.127	.015	005	.002	.139
	.5	.129	.015	005	.002	.141
	1.0	.135	.014	004	.002	.147
.450	0.0	.100	.009	003	.003	.109
	.5	.101	.009	003	.003	.110
	1.0	.107	.009	003	.003	.116
• 56 2	0.0	.079	.004	002	.004	.084
	.5	.080	.004	302	.004	.086
	1.0	.084	.004	002	.005	.090
.750	0.0	.049	904	001	.006	• 05 1
	.5	.050	004	001	.006	• 05 2
	1.0	.053	004	001	.007	• 05 5
1.000	0.0 .5 1.0	.021 .021 .023	012 012 012	.000 .000	.009 .009	.017 .018 .019
1.500	0.0	017	024	.004	.011	026
	.5	017	024	.004	.012	026
	1.0	018	024	.004	.012	027
2.000	0.0	041	032	.008	.013	052
	.5	041	032	.008	.013	052
	1.0	044	032	.007	.013	054
2.500	0.0 .5 1.0	056 057 061	033 037 037	.011	.014 .014 .015	- •069 - •070 - •073
3.333	0.0 .5	074 075 079	044 044 043	.015 .015 .014	.015 .015 .016	087 088 093
4.444	0.0	087	049	.020	.016	100
	.5	089	048	.020	.016	102
	1.0	094	048	.020	.017	107
6.667	0.0	102	054	.024	.017	116
	.5	104	054	.024	.017	118
	1.0	111	053	.023	.017	124
7.500	0.0	106	055	.025	.017	119
	.5	108	055	.025	.017	121
	1.0	114	055	.024	.017	127
5.375	0.0	111	057	.027	.017	124
	.5	113	057	.027	.017	126
	1.0	120	056	.026	.017	133
12.500	0.0	117 119 127	059 059 058	.029 .029 .029	.017 .017 .018	130 132 139
1 6. 667	0.0 .5	121 124 131	061 060 060	.031 .031 .030	.017 .017 .018	134 136 144
25.000	0.0	125	062	.033	.017	138
	.5	123	062	.032	.017	140
	1.0	136	061	.032	.018	148
OPEN	0.0					140

TABLE I.- UPWASH INTERFERENCE FACTORS $\,$ $\,$ $\,$ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN-TEST-SECTION-WIDTH RATIO $\,$ s/b $\,$ OF 0.3 - Continued

(b) Tunnel width-height ratio b/h of 0.75

R/β	y/s	δ ₂	δ ₃	δ ₄	δ ₅	Approximated δ $\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0.0				İ	.178
•100	0.0	•137	.040	031	.002	•148
	.5	•138	.040	031	.002	•150
	1.0	•144	.038	030	.002	•155
•125	0.0	.129	.038	029	.002	.141
	.5	.131	.038	028	.002	.143
	1.0	.137	.036	028	.003	:148
.167	0.0	.119	.035	025	.003	•131
	.5	.120	.034	025	.003	•133
	1.0	.126	.033	024	.003	•137
.222	0.0	.106	.030	022	.003	.118
	.5	.107	.030	021	.003	.119
	1.0	.112	.029	021	.004	.124
.333	0.0	.085	.022	017	.004	.094
	.5	.086	.021	016	.004	.095
	1.0	.090	.023	016	.005	.099
•450	0.0 .5 1.0	•067 •068 •C71	.013 .013	013 013 012	.005 .005 .006	.072 .073 .077
•562	0.0	.052	•006	010	.006	.054
	.5	.053	•006	010	.006	.055
	1.0	.056	•005	010	.007	.058
.750	0.0	• 033	005	006	.037	.029
	.5	• 034	006	006	.007	.029
	1.0	• 035	006	006	.008	.031
1.000	0.0	.014	018	002	.009	•002
	.5	.014	018	002	.009	•003
	1.0	.015	018	002	.009	•004
1.500	0.0	011	036	•004	.010	033
	.5	012	036	•004	.010	033
	1.0	012	036	•004	.011	033
2.000	0.0	027	048	.010	.011	- •054
	.5	028	048	.010	.011	- • 054
	1.0	029	047	.010	.012	- •055
2.500	0.0	038	056	.015	.011	068
	.5	038	056	.014	.012	068
	1.0	040	055	.014	.012	069
3.333	0.0	049	065	• 02 C	.012	082
	.5	050	055	• 0 2 0	.012	083
	1.0	053	064	• 0 1 9	.013	085
4.444	0.0	058	073	•026	• 01 2	093
	.5	059	072	•026	• 01 2	093
	1.0	063	071	•026	• 01 3	096
6.667	0.0	068	080	.032	• 012	105
	.5	069	080	.032	• 012	106
	1.0	074	079	.031	• 013	108
7.500	0.0	070	082	.034	.012	107
	.5	072	082	.033	.012	108
	1.0	076	081	.033	.013	111
9.375	0.0	~•074	085	.037	.011	111
	.5	-•076	085	.036	.012	112
	1.0	-•080	083	.035	.013	115
12.500	0.0	078	088	.039	.011	115
	.5	079	088	.039	.012	116
	1.0	084	086	.038	.013	120
16.667	0.0	081	090	.042	.011	119
	.5	082	090	.041	.011	120
	1.0	087	088	.040	.013	123
25.00C	0.0	084	093	.044	.011	122
	.5	085	092	.043	.011	123
	1.0	091	091	.042	.012	127
OPEN	0.0					121

TABLE I.- UPWASH INTERFERENCE FACTORS δ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO s/b OF 0.3 - Continued

(c) Tunnel width-height ratio b/h of 1.00

R/β	y/s	δ_	δ_3 δ_4	۸	Approximated 6	
10/6	y/ 5	δ ₂	3	$^{\delta}_4$	δ ₅	$\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0.0					.138
.100	0.0	.102	.053	042	.004	•117
	• 5	.104	. 052	042	.004	-118
- 1	1.0	-109	•049	04C	.004	.121
.125	0.0	.097	.050	039	.004	.112
	. 5	•09B	. 049	039	.004	•113
1	1.0	-103	.046	03B	.004	-115
.167	0.0	.089	.046	036	.004	•103
•101	•5	.090	.045	035	.004	.104
i	1.0	.094	-042	034	.005	-107
.222	0.0	. (79	.040	031	-004	•092
• • • • •	• 5	.081	.039	031	.005	.093
1	1.0	.084	.036	030	.005	.096
.333	0.0	.C63	.029	025	.005	•072
• > > >		.064	.028	024	.005	.073
	.5 1.0	.068	.026	024	.006	.075
.450	0.0	.050	.017	020	.005	•053
• 7 2 0	•5	.051	.017	019	.006	.054
ļ	1.0	.053	.015	019	.006	•056
E4.2	0.0		007]	004	.037
. 562	0.0 .5	. C39 .040	.007	015 015	.006	.037
	1.0	.042	.005	015	.007	•039
75.6				1	004	-014
.750	0.0 •5	.025 .025	008 008	010 010	.006	.014
	1.0	.027	009	010	.007	•015
		210	024	004	.007	011
1.000	C.O	•010	024 024	004	.007	011
	1.0	.011	025	004	.008	010
			1 2/2	005	.008	044
1.500	0.0 .5	009	048 048	.005 .005	.008	044
	1.0	CC9	048	.004	•009	043
2.000	0.0	0.30	064	.011	.008	065
2.000	• 5	020	063	.011	.038	065
	1.0	022	063	.011	.009	064
2.500	0.0	029	075	.016	.008	079
2.500	•5	029	074	.016	.008	079
ł	1.0	030	073	.015	• 00 9	079
3.333	0.0	037	087	.022	.008	094
3.,,,	• 5	C37	086	.021	.008	094
	1.0	040	084	.021	• 009	094
4.444	0.0	044	095	.028	.008	105
4.444	• 5	045	096	.028	.008	104
	1.0	047	093	.027	.009	104
6.667	0.0	051	137	.034	.007	117
J. 55.	• 5	052	106	.033	.007	117
	1.0	055	103	.033	•009	117
7.500	0.0	053	139	.035	.007	120
	• 5	054	108	.035	.007	120
	1.0	057	105	.034	.009	119
9.375	0.0	056	113	.038	.007	124
-	•5	057	112	.038	.007	124
Į	1.0	060	109	.037	.009	123
12.500	0.0	058	117	.041	•006	128
İ	• 5	060	116	.041	•007	128
l	1.0	063	112	•040	.008	128
16.667	0.0	061	120	•043	.006	131
ļ	• 5	062	119	.043	.007	131
	1.0	066	115	•042	•008	131
25.000	C. 0	063	123	.045	•006	135
	.5	064	122	.045	.006	135 134
	1.0	068	118	•044	•008	134
	1	1	1	1	1	136

TABLE I.- UPWASH INTERFERENCE FACTORS δ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN-TEST-SECTION-WIDTH RATIO s/b OF 0.3 - Continued

(d) Tunnel width-height ratio b/h of 1.50

- /	 	1 .	1 .			Approximated δ
R/β	y/s	δ2	δ3	^δ 4	δ ₅	$\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0,0					.116
.100	0.0	• 068	.077	048	.003	•100
	.5	• 069	.074	048	.003	•098
	1.0	• 072	.065	047	.004	•094
.125	0.0	. C 65	.073	045	.003	.095
	.5	. 0 6 6	.070	045	.003	.094
	1.0	. 0 6 8	.061	044	.004	.089
.167	0.0	• C59	.066	041	.003	•087
	.5	•060	.063	041	.003	•086
	1.0	• 063	.055	040	.004	•082
.222	0.0	.053	• 058	037	.003	•077
	.5	.054	• 055	037	.003	•075
	1.0	.056	• 047	036	.004	•072
.233	0.0	.042	.041	03C	.003	•057
	.5	.043	.039	029	.004	•056
	1.0	.045	.032	029	.004	•052
-450	0.0	.033	.024	023	.003	•038
	.5	.034	.022	023	.004	•037
	1.0	.036	.017	023	.004	•034
.562	0.0	.026	.010	019	• 003	•021
	.5	.027	.038	019	• 004	•020
	1.0	.028	.003	018	• 004	•018
.750	0.0	.016	012	012	• 004	004
	.5	.017	013	012	•004	005
	1.0	.018	017	012	• 005	006
1.000	0.0	.007	037	005	• 004	032
	.5	.007	037	005	•004	032
	1.0	.008	039	005	• 005	032
1.500	0.0	006	072	•004	.003	- •070
	.5	006	071	•004	.004	-•069
	1.0	006	070	•004	.005	- •068
2. COO	0.0	014	095	.011	•003	095
	.5	014	094	.011	•004	093
	1.0	015	091	.011	•005	090
2.500	0.0	019	111	.015	.003	112
	.5	019	109	.015	.003	110
	1.0	020	105	.015	.005	106
3.333	0.0	025	128	.020	.003	130
	.5	025	126	.020	.003	129
	1.0	026	121	.020	.004	123
4.444	0.0	029	143	.025	.003	144
	.5	030	140	.025	.003	142
	1.0	031	133	.025	.004	136
€. 667	0.0	034	158	• 029	.002	160
	.5	035	155	• 029	.003	158
	1.0	037	146	• 030	.004	150
7. 500	0.0	035	161	.030	•002	164
	.5	036	158	.030	•002	161
	1.0	038	149	.031	•004	153
5 . 375	0.0	037	167	.033	.002	169
	.5	039	163	.033	.002	166
	1.0	040	154	.033	.003	158
12.500	0.0	039	172	.035	.002	175
	.5	040	169	.035	.002	172
	1.0	042	159	.035	.003	163
16.667	0.0	040	177	.036	.002	180
	.5	041	173	.036	.002	176
	1.0	044	163	.037	.003	167
25.000	0.0	042	181	.037	•001	184
	.5	043	177	.038	•002	181
	1.0	045	167	.038	•003	171
OPEN	0.0					191

TABLE I.- UPWASH INTERFERENCE FACTORS 6 IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO s/b OF 0.3 - Concluded

(e) Tunnel width-height ratio b/h of 2.00

1		_	T			Approximated &
R/β	y/s	δ ₂	δ ₃	δ ₄	δ ₅	Approximated δ $\begin{pmatrix} \delta_2 + \delta_3 + \delta_4 + \delta_5 \end{pmatrix}$
CLOSED	0.0	_				.125
•100	0.0	.051	.098	044	•002	•106
	.5	.052	.091	044	•002	•101
	1.0	.054	.074	044	•002	•086
•125	0.0	• C49	.093	042	.002	•101
	.5	• 049	.086	042	.002	•096
	1.0	• 051	.069	041	.002	•082
.167	0.0	.044	.084	038	.002	•092
	.5	.045	.078	038	.002	•087
	1.0	.047	.062	038	.002	•073
.222	0.0	.040	.073	034	.002	•080
	.5	.040	.067	034	.002	•075
	1.0	.042	.052	034	.002	•063
.333	0.0	.032	.051	027	• 002	•057
	.5	.032	.046	027	• 002	•053
	1.0	.034	.033	027	• 002	•042
•450	0.0	.025	.030	022	.002	•034
	.5	.025	.026	022	.002	•031
	1.0	.027	.015	022	.002	•022
.562	0.0	.020	.010	017	.002	.014
	.5	.020	.007	017	.002	.012
	1.0	.021	002	017	.002	.005
•750	0.0	.012	018	011	.002	015
	.5	.013	020	011	.002	017
	1.0	.013	026	011	.002	022
1.000	0.0	.005	050	005	.002	048
	.5	.005	051	005	.002	049
	1.0	.006	053	005	.002	050
1.500	0.0	004	095	.004	.001	- •094
	.5	004	094	.004	.002	- •093
	1.0	005	092	.004	.002	- •090
2.000	0.0	010	125	.009	.001	125
	.5	010	123	.009	.001	122
	1.0	011	116	.009	.002	116
2.500	0.0	014	146	.013	.001	146
	.5	014	142	.013	.001	142
	1.0	015	133	.013	.002	133
3.333	0.0	018	158	.017	.001	169
	.5	019	164	.017	.001	165
	1.0	020	152	.017	.002	153
4.444	0.0	022	187	.021	.001	187
	.5	022	181	.021	.001	162
	1.0	024	167	.021	.002	167
6.667	0.0	026	206	.024	.001	207
	.5	026	230	.024	.001	201
	1.0	028	182	.025	.001	184
7.500	0.0	026	210	.025	.001	211
	.5	027	204	.025	.001	205
	1.0	029	186	.026	.001	187
9.375	0.0	028	218	.026	.001	218
	.5	028	211	.027	.001	212
	1.0	030	192	.028	.001	193
12.500	0.0	029	225	.028	.000	226
	.5	030	218	.028	.001	219
	1.0	032	197	.029	.001	199
16.667	0.0	030	230	.029	.000	231
	.5	031	223	.029	.001	224
	1.0	033	202	.030	.001	203
25.000	0.0	031	236	.030	.000	237
	.5	032	228	.030	.000	229
	1.0	034	206	.032	.001	208
OPEN	0.0					248

TABLE II.- UPWASH INTERFERENCE FACTORS & IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN-TEST-SECTION-WIDTH RATIO s/b OF 0.7

(a) Tunnel width-height ratio b/h of 0.50

R/β	y/s	δ ₂	δ ₃	δ ₄	δ ₅	Approximated δ δ δ δ δ δ δ δ δ δ
CLOSED	0.0			1		.286
.100	0.0	.223	.026	012	003	.234
	.5	.246	.026	012	003	.256
	1.0	.344	.024	011	002	.354
.125	0.0	•211	•025	011	002	•223
	.5	•234	•024	010	002	•245
	1.0	•330	•022	010	002	•340
.167	0.0 .5 1.0	•194 •215 •307	.023 .022 .020	0C8 0C8	002 002 001	•207 •228 •318
.222	0.0 .5 1.0	.174 .194 .279	.020 .019 .017	006 006	001 001 000	• 187 • 206 • 290
.333	0.0 .5 1.0	.140 .157 .230	.014 .014 .012	004 004 003	.001 .001	.151 .168 .240
•450	0.0 .5 1.0	.111 .125 .186	.008 .007	002 002 002	.003 .003 .003	.119 .133 .194
.562	0.0	.087	•334	002	.004	.093
	.5	.099	•003	002	.004	.104
	1.0	.150	•002	001	.004	.155
.7 50	0.0	•055	004	001	.006	.057
	.5	•C64	004	001	.006	.065
	1.0	•099	005	001	.007	.100
1.000	0.0	• C24	012	.000	.008	.020
	.5	• 028	012	.000	.008	.024
	1.0	• 045	013	.001	.009	.042
1.500	0.0	C19	024	.004	•011	027
	.5	021	024	.004	•012	029
	.1.0	029	024	.004	•012	036
2.000	0.0	045	032	.008	.013	056
	.5	051	032	.008	.014	061
	1.0	075	331	.007	.015	086
2.500	0.0	C63	037	.011	•014	075
	.5	072	037	.011	•015	083
	1.0	109	036	.010	•016	119
3.333	0.0 .5 1.0	094 146	043 043 042	.015 .015 .013	.015 .016 .017	095 106 157
4.444	0.0	098	048	.020	.016	110
	.5	113	047	.019	.017	124
	1.0	175	046	.017	.018	186
6.667	0.0	115	053	.024	•017	127
	.5	132	052	.023	•017	144
	1.0	208	051	.021	•019	218
7.500	0.0	119	054	•025	.017	131
	.5	137	054	•024	.018	149
	1.0	215	052	•022	.020	226
9.375	0.0	125	056	.028	.017	137
	.5	144	056	.027	.018	155
	1.0	227	053	.024	.020	237
12.500	0.0	132	058	.030	.017	143
	.5	152	057	.029	.018	163
	1.0	240	055	.025	.020	249
16.667	0.0	137	060	.031	.017	148
	.5	158	059	.031	.018	168
	1.0	249	057	.027	.020	259
25.000	0.0	142	061	.033	.017	153
	.5	164	060	.032	.018	174
	1.0	259	058	.028	.021	268
OPEN	0.0			ŀ		157

TABLE II.- UPWASH INTERFERENCE FACTORS $\,\delta\,$ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO $\,$ s/b $\,$ OF 0.7 - Continued

(b) Tunnel width-height ratio b/h of 0.75

1 1		1	· •	1		Approximated δ
R/β	y/s	$^{\delta}2$	δ ₃	δ ₄	^δ 5	$\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0.0	-	}	-		.191
		140	•038	. 0.20	.001	•159
•100	0.0 .5	-148 -164	.036	028 027	.001	•173
1 1	1.0	.230	•030	023	.001	•238
-125	0.0	-141	.036	026	•001	• 152
	.5 1.0	•156 •220	• 034 • 028	025 021	.001 .002	•166 •228
.167	0.0	.129	•032	023	.002	•141
1	•5	-144	.030	022	• 002	•154
1	1.0	.204	•025	019	.002	•213
•222	0.0 .5	•116 •129	•328 •026	019 018	•002 •002	•127 •139
	1.0	.186	.022	016	.003	•194
.333	0.0	.093	.020	015	•003	.102
1	.5 1.0	•104 •153	.018 .014	014 012	•004 •004	•112 •160
		1				
•450	0.0 .5	.074	.012 .010	011 011	.004 .005	•078 • 088
	1.0	.124	• 007	009	.006	•128
.562	0.0	.058	.004	009	.005	•059
1	.5 1.0	.066	.003	008 007	.006 .007	•067 •100
750				i		
•750	0.0 .5	.042	006 007	006 005	.007 .007	•032 •037
[1.0	•066	009	004	.009	.061
1.000	0.0	.016	018	002	.008	•004
	.5 1.0	.018	019 020	002 001	.009 .011	•007 •020
1.500	0.0	012	036	•005	.010	033
1	• 5	C14	036	•005	.011	034
	1.0	019	035	•004	.013	036
2.000	0.0 .5	030 034	047 047	.011 .010	.011 .012	056 058
1 1	1.0	051	045	.009	.015	071
2.500	0.0	042	055	.015	.012	070
1 1	•5 1•0	048 073	054 051	.015 .013	.013 .016	074 095
] ,						Į.
3.333	0.0 .5	055 063	064	.021 .020	.012 .013	086 092
	1.0	097	059	.018	.017	121
4.444	0. C	065	071	.028	.012	097
1	.5 1.0	C75 117	069 055	.026 .023	.014 .018	104 141
6.667	0.0	C77	078	.034	•012	109
	. 5	088	076	.032	.014	118
	1.0	139	071	.028	.019	163
7.500	0.0	C79 091	080 078	.035	.012 .014	112 122
	•5 1•0	143	072	.029	.019	168
9.375	0.0	C84	083	.038	.012	116
	•5	096	080	.036	.014	1 26
1	1.0	151	075	1	•019	175
12.500	C.O .5	088 101	085 083	.041	.011 .014	121 131
j .	1.0	160	077	.034	•020	184
16.667	0.0	091	087	.043	.011	124
	•5 1•0	105 166	085 079	.041	.013	-•135 -•190
25.00C	0.0	095	090	.046	.011	128
, , , , , ,	•5	109	087	.044	.013	139
	1.0	173	080	.037	.020	196
OPEN	0.0	1	1	1	1	128

L.

TABLE II.- UPWASH INTERFERENCE FACTORS $\,$ $\,$ $\,$ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO $\,$ s/b $\,$ OF 0.7 - Continued

(c) Tunnel width-height ratio b/h of 1.00

F /0	/-		Ι .			Approximated δ
R/β	y/s	δ ₂	δ3	δ ₄	δ ₅	$\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0.0					. 145
.100	0.0	.111	•047 •043	039 037	• 002 • 003	•122 •132
İ	1.0	•123 •172	.033	030	.004	.178
.125	0.0	.106 .117	.045 .041	036 034	.003 .003	•116 •126
	1.0	.165	.031	028	.004	.171
.167	0.0	.097 .108	.040 .037	033 031	.003 .003	•107 •117
	1.0	.153	.027	026	.005	•159
. 272	0.0 .5	.C87	.035 .031	029 027	.003 .004	•096 • 105
	1.0	.139	• 022	022	•005	.145
.333	0.C .5	.C70	.024 .021	023 021	•004 •004	.075 .083
	1.C	.115	.014	018	•006	•117
.450	0.0 .5	.055 .062	.014	018 017	.005 .005	.055 .062
	1.0	• 093	.005	014	.007	•091
.562	0.0 .5	•044 •049	.004 .002	014 014	.005 .006	•039 •044
	1.0	.075	003*	011	.008	•069
•750	0.0 .5	.028	010 011	009 009	.006 .007	.015 .019
	1.0	.049	014	007	• 01 0	•038
1.000	0.0 .5	•012 •014	025 026	004 003	.007 .008	010 007
	1.0	.023	027	003	.011	•004
1.530	0.0 .5	009 010	047 047	.005 .005	.008 .009	044 043
	1.0	014	045	.004	•013	041
2.000	0.0 .5	023 025	062 061	.012	.008 .010	065 065
	1.0	039	056	.010	.015	070
2.500	0.0	031 036	072 070	.017 .016	.008 .010	078 079
	1.0	055	064	.014	.015	089
3.333	0.0 .5	041 047	083 080	.023	.008 .010 .016	093 095 110
	1.0	073	073	.019		i
4.444	0.0 .5 1.0	C49 055	092 089 030	.030 .029 .025	.008 .010	103 106 125
6.667	0.0	088	101	.036	.017	115
	.5 1.G	065 104	097 087	.035	.010	-,119 143
7.500	0.0	059	103	.038	.007	118
1,500	•5 1•0	068 108	099 088	.036	.010	122 147
9.375	0.0	063	107	.041	.007	122
	.5 1.0	072 114	103 091	.039 .034	.010 .018	126 153
12.500	0.0	066	111	.044	.007	126
	• 5 1 • 0	C76 120	106 094	.042	.009	130 159
16.667	0.0	068	113	.046	.006	129
	•5 1•0	C79 125	108 096	.045	.009 .018	133 164
25.000	0.0	071	116	•048	.006	132
	•5 1•0	C82 130	111 098	.047	.009 .018	137 169
OPEN	0.0					134

TABLE II.- UPWASH INTERFERENCE FACTORS $\,\delta\,$ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO $\,$ s/b OF 0.7 - Continued

(d) Tunnel width-height ratio b/h of 1.50

1 1		1	т .			Approximated δ
R/β	y/s	δ ₂	δ ₃	$^{\delta}_4$	δ ₅	$\left(\delta_2 + \delta_3 + \delta_4 + \delta_5\right)$
CLOSED	0.0	-	İ	j j		.106
.100	0.0	.074	.060	047	•002	.089
	.5 1.0	.082 .115	.052 .031	045 036	•003 •006	.092 .116
.125	0.0 .5	• C 70 • O 78	.056 .048	045 042	.002 .003	.085 .087
	1.0	.110	• 02 B	034	•006	-110
.167	0.0 .5	•065 •072	.051 .343	041 039	.003 .003	.077 .080
	1.0	-102	.024	~.031	.007	•102
.222	0.0 .5	•058 •065	.043	036 034	• 003 • 004	.067 .070
1	1.0	•093	.019	028	•007	•090
.333	0.0 .5	•047 •052	.028 .023	029 028	• 003 •004	.049 .051
]	1.0	•677	.008	023	- 008	•070
•450	0.0	•037 •042	.014 .009	023 022	• 003 •004	.030 .033
	1.0	•062	002	018	• 008	.050
.562	0.0	•029 •033	•001 -•003	019 018	•003 •004	.015 .017
!	1.0	•050	012	015	.009	.032
.7 50	0.0	•019	018 020	012 012	•003	009 006
	1.0	•021 •033	025	010	•005 •010	.008
1.000	0.0	•008	039	005	•004	033 030
	.5 1.0	•009 •015	040 040	005 004	•005 •011	019
1.500	0.0	006	070	.005	•004	068
	.5 1.0	-•007 -•010	067 051	.005	•005 •012	064 055
2.000	0.0	C15	089	.012	•003	089
	•5 1•0	-•017 -•025	085 074	.011	• 005 • 013	085 077
2.500	0.0	021	103	.016	•003	104
	.5 1.0	024 036	097 083	.016 .015	• 005 •013	099 092
3.333	0.0	027	117	.022	•003	120
	.5 1.0	031 049	111 093	.022 .020	•005 •013	115 108
4. 444	0.0	033	129	.028	• 003	132
	1.0	-•038 -•058	121 100	.028	•005 •014	126 119
6.667	0.0	C38	142	.032	•002	145
ŀ	1.0	044	132 108	.033 .031	•005 •014	139 132
7.500	0.0	040	144	.034	•002	148
ì	1.0	046 072	135 110	.034	• 005 •014	142 135
5.375	0.0	042	149	.036	•002	153
1	.5 1.0	049 076	139 113	.037 .035	• 004 • 014	146 140
12.500	0.0	044	154	.038	•002	157
	.5 1.0	051	143 116	.040 .038	•004 •014	150 144
16.667	0.0	C46	157	.040	•002	161
1	1.0	053 CE3	146 118	•041 •040	.004 .014	154 148
25.COO	0.0	047	161	.042	•001	165
	.5 1.0	055 086	150 120	.043 .042	•004 •013	157 151
OPEN	0.0	1				169
ļ		i			L . — . — . —	<u> </u>

TABLE II.- UPWASH INTERFERENCE FACTORS $\,\delta\,$ IN RECTANGULAR TEST SECTIONS CALCULATED BY APPROXIMATION PROCEDURE WITH VARYING PERMEABILITY FACTORS FOR WING-SPAN—TEST-SECTION-WIDTH RATIO $\,$ s/b $\,$ OF 0.7 - Concluded

(e) Tunnel width-height ratio b/h of 2.00

R/β	y/s	δ ₂	δ ₃	$^{\delta}_4$	δ ₅	Approximated δ $\begin{cases} \delta_2 + \delta_3 + \delta_4 + \delta_5 \end{cases}$
CLOSED	0.0	1		İ		.094
•100	0.0	.056	.065	045	.001	.077
	.5	.061	.054	044	.002	.074
	1.0	.086	.025	038	.006	.080
•125	0.0	•053	.061	043	•001	.072
	.5	•058	.051	042	•002	.070
	1.0	•082	.023	036	•007	.076
•167	0.0	.049	.054	039	.001	.065
	.5	.054	.044	038	.002	.062
	1.0	.077	.018	033	.007	.069
•222	0.0	.043	.045	035	.001	•055
	.5	.048	.036	035	.003	• 052
	1.0	.070	.012	030	.007	•059
.333	0.0	.035	.027	029	.002	.035
	.5	.039	.023	028	.003	.034
	1.0	.057	.001	024	.007	.042
.450	0.0	.C28	.010	-•023	.002	.016
	.5	.O31	.005	-•022	.003	.016
	1.0	.O47	010	-•020	.008	.025
.562	0.0	.022	006	018	.002	000
	.5	.025	009	018	.003	.000
	1.0	.037	020	016	.008	.010
.750	0.0	.014	029	012	.002	025
	.5	.016	030	012	.003	023
	1.0	.025	034	011	.008	012
1.000	0.0	.006	054	005	.002	051
	.5	.007	053	005	.003	048
	1.0	.011	050	005	.009	035
1.500	0.0	005	090	.004	.001	089
	.5	005	085	.004	.003	083
	1.0	007	072	.004	.010	066
2.000	0.0 .5 1.0	011 013 019	113 105 086	.01C .010	.001 .003 .010	112 105 085
2.500	0.0	016	128	.014	.001	129
	.5	018	119	.015	.003	119
	1.0	027	095	.015	.010	098
2.333	0.0	021	146	.015	.001	-,146
	.5	024	134	.020	.002	-,136
	1.0	036	105	.020	.010	-,111
4.444	0.0	025	159	•023	.001	160
	.5	028	146	•024	.002	148
	1.0	044	113	•025	.010	122
6.667	0.0	029	174	.027	.001	175
	.5	033	159	.029	.002	161
	1.0	052	121	.031	.010	132
7.500	0.0	030	177	.028	.001	178
	.5	034	162	.030	.002	164
	1.0	054	123	.032	.010	135
9.375	0.0	031	182	.030	.001	183
	.5	036	167	.032	.002	169
	1.0	057	126	.035	.010	138
12.500	0.0	033	137	.031	.001	188
	.5	038	171	.034	.002	174
	1.0	060	129	.037	.010	142
16.667	0.0	034	191	.033	•000	193
	.5	039	175	.035	•002	177
	1.0	062	131	.039	•009	145
25.00C	0.0	035	195	.034	•000	197
	.5	041	178	.037	•001	181
	1.0	065	133	.041	•009	148
OPEN	0.0		/-		,	204

Figure 1.- Schematic diagram showing relationships between various parameters in a rectangular perforated wind tunnel.

Figure 2.- Calculated total upwash interference factor δ as a function of R/ β at the center of a small-span (s/b = 0.3) wing mounted in the center of a rectangular perforated wind tunnel.

Figure 3.- Calculated total upwash interference factor δ as a function of R/ β at the center of a large-span (s/b = 0.7) wing mounted in the center of a rectangular perforated wind tunnel.

Figure 4.- Variation of total upwash interference factor along the span of a small-span (s/b = 0.3) and a large-span (s/b = 0.7) wing mounted in the center of a rectangular perforated wind tunnel for various tunnel width-height ratios b/h and various permeability factors R/β .

1 1

Figure 4.- Concluded.

Figure 5.- Calculated total upwash interference factor as a function of tunnel width-height ratio b/h at the center of a small span (s/b = 0.3) and a large-span (s/b = 0.7) wing mounted in the center of a rectangular perforated wind tunnel for three values of R/β .