$\mathbf{CSC487} : \ \mathrm{Data} \ \mathrm{Mining}$ - Homework #2

Cason Konzer

1. Find the distance between objects 1 and 3. Notice that we have mixed type of attributes. (25 points)

The following python code has will find the distance between any two objects for this dataset.

```
# Build the dataframe.
table1 = {
  "Object Identifier": [1,2,3,4],
  "test-1 (nominal)" : ["A", "B", "C", "A"],
  "test-2 (ordinal)" : ["excellent", "fair", "good", "excellent"],
  "test-3 (numeric)" : [45,22,64,28]
  }
df1 = pd.DataFrame(table1)
# Set the index.
df1.set_index("Object Identifier",inplace=True)
df1
##
                     test-1 (nominal) test-2 (ordinal) test-3 (numeric)
## Object Identifier
## 1
                                     Α
                                              excellent
                                                                        45
## 2
                                     В
                                                   fair
                                                                        22
## 3
                                     С
                                                                        64
                                                   good
## 4
                                              excellent
                                                                        28
# Replace nominal values.
df1["test-1 (nominal)"].replace("A",3,inplace=True)
df1["test-1 (nominal)"].replace("B",2,inplace=True)
df1["test-1 (nominal)"].replace("C",1,inplace=True)
t1 range = (df1["test-1 (nominal)"].max()-df1["test-1 (nominal)"].min())
df1["test-1 (nominal)"] = (df1["test-1 (nominal)"]-1)/t1 range
df1
                      test-1 (nominal) test-2 (ordinal) test-3 (numeric)
##
## Object Identifier
                                    1.0
                                                                         45
## 1
                                               excellent
## 2
                                    0.5
                                                    fair
                                                                         22
## 3
                                    0.0
                                                                         64
                                                    good
## 4
                                    1.0
                                                                         28
                                               excellent
# Replace ordinal values.
df1["test-2 (ordinal)"].replace("excellent",3,inplace=True)
df1["test-2 (ordinal)"].replace("good",2,inplace=True)
df1["test-2 (ordinal)"].replace("fair",1,inplace=True)
```

```
t2 range = (df1["test-2 (ordinal)"].max()-df1["test-2 (ordinal)"].min())
df1["test-2 (ordinal)"] = (df1["test-2 (ordinal)"]-1)/t2_range
df1
##
                      test-1 (nominal) test-2 (ordinal) test-3 (numeric)
## Object Identifier
                                    1.0
## 1
                                                      1.0
                                                                          45
## 2
                                                                          22
                                    0.5
                                                      0.0
## 3
                                    0.0
                                                      0.5
                                                                          64
## 4
                                    1.0
                                                      1.0
                                                                          28
# Replace numeric values.
t3 range = (df1["test-3 (numeric)"].max()-df1["test-3 (numeric)"].min())
df1["test-3 (numeric)"] = (
  df1["test-3 (numeric)"]-df1["test-3 (numeric)"].min()
  )/t3 range
df1
                      test-1 (nominal) test-2 (ordinal) test-3 (numeric)
##
## Object Identifier
## 1
                                    1.0
                                                      1.0
                                                                   0.547619
## 2
                                    0.5
                                                      0.0
                                                                   0.000000
## 3
                                    0.0
                                                      0.5
                                                                   1.000000
## 4
                                    1.0
                                                      1.0
                                                                   0.142857
# Define our distance function.
def dist(i,j, df):
  neum = 0
  denom = 0
  for col in df.columns:
    print(col)
    if 'nominal' in col:
      if df[col].iloc[j-1] != df[col].iloc[i-1]:
        dist = 1
      else:
        dist = 0
    else:
      dist = np.abs(df[col].iloc[j-1] - df[col].iloc[i-1])
    print('feature distance:',dist)
    neum += dist
    denom += 1
    print()
  print('numerator:',neum)
  print('denomenator:',denom)
  print('\ntotal distance:')
  return neum/denom
```

Compute the distance between object 1 & 3 dist(1,3, df1)

```
## test-1 (nominal)
## feature distance: 1
##
## test-2 (ordinal)
## feature distance: 0.5
##
## test-3 (numeric)
## feature distance: 0.45238095238095233
##
## numerator: 1.9523809523809523
##
## total distance:
## 0.6507936507936508
```

We can see that the distance between object 1 and object 3 is 0.651.

2. Write a program in any language which can compute Manhattan and Euclidean distances between any two given vectors with any length. You can pass the length to your function, but please don't limit the dimension to 2. You can test your function on vectors you fill in your code without asking user input. (25 points)

The following python code has independent functions that will find the Manhattan and Euclidean distance between any two given numpy vectors.

```
# Create test vector 1.
test v1 = np.array([0,1,2,3,5,4])
test v1
## array([0, 1, 2, 3, 5, 4])
# Create test vector 2.
test v2 = np.array([1,0,3,2,4,6])
test v2
## array([1, 0, 3, 2, 4, 6])
# Build our Manhattan Function
def manhattaan(v1,v2):
 return np.sum(np.abs(v2-v1))
# Test our Manhattan Function
manhattaan(test v1, test v2)
## 7
# Build our Euclidean function.
def euclidian(v1,v2):
 return np.sqrt(np.sum(np.square(v2-v1)))
# Test our Euclidean function.
euclidian(test v1,test v2)
```

3.0

We can see that the simple test vectors pass for both functions.

3. In the table below, determine whether passing a class has a dependency on attendance by using Chi-square test. (25 points)

```
# Build the dataframe.
table2 = {
  11.11
         : ["Attended", "Skipped", "Total"],
  "Pass" : [25,8,33],
  "Fail" : [6,15,21]
  }
df2 = pd.DataFrame(table2)
df2
##
                Pass
                      Fail
## 0
      Attended
                   25
                          6
                   8
                         15
## 1
       Skipped
## 2
         Total
                   33
                         21
# Total on attendance status.
df2["Total"] = df2["Pass"] + df2["Fail"]
df2
##
                Pass
                      Fail
                             Total
## 0
     Attended
                   25
                          6
                                31
## 1
       Skipped
                   8
                         15
                                23
## 2
         Total
                         21
                  33
                                54
# Create an expectation dataframe as a copy of the original.
expectation df2 = df2.copy()
expectation_df2
##
                Pass Fail
                             Total
## 0
                   25
                          6
                                31
      Attended
## 1
                   8
                         15
                                23
       Skipped
## 2
                  33
                         21
         Total
                                54
# Compute probabilities on attendance status
expectation df2["Total"] = expectation df2["Total"].apply(
  lambda x: x / expectation df2["Total"].max()
  )
expectation df2
##
                Pass Fail
                                Total
## 0
      Attended
                   25
                          6
                             0.574074
                         15
                             0.425926
## 1
       Skipped
                   8
         Total
## 2
                  33
                         21
                             1.000000
```

```
# Compute passing expectations.
expectation df2["Pass"] = (
  expectation_df2["Pass"].max()*expectation_df2["Total"])
expectation df2
##
                                   Total
                    Pass Fail
## 0 Attended 18.944444
                             6 0.574074
## 1
      Skipped 14.055556
                             15 0.425926
## 2
        Total 33.000000
                             21 1.000000
# Compute failing expectations
expectation df2["Fail"] = (
  expectation_df2["Fail"].max()*expectation_df2["Total"])
expectation df2
##
                               Fail
                                        Total
                    Pass
## 0 Attended 18.944444 12.055556 0.574074
## 1
      Skipped 14.055556
                           8.944444 0.425926
## 2
        Total 33.000000 21.000000 1.000000
# Trim our original dataframe.
df2 = df2.iloc[:-1,:-1]
df2
##
               Pass Fail
## 0 Attended
                  25
                        6
                        15
## 1
      Skipped
                  8
# Trim our expectation dataframe
expectation_df2 = expectation_df2.iloc[:-1,:-1]
expectation df2
##
                    Pass
                               Fail
## 0 Attended 18.944444 12.055556
      Skipped 14.055556
                           8.944444
# Compute passing portion of chi squared.
pass_ = np.sum(
 np.square(
    (df2["Pass"] - expectation df2["Pass"])
    )/expectation df2["Pass"]
 )
pass_
```

4.544562029835523

```
# Compute failing portion of chi square.
fail_ = np.sum(
   np.square(
        (df2["Fail"] - expectation_df2["Fail"])
        )/expectation_df2["Fail"]
   )
fail_
```

7.141454618312963

```
# Sum for our chi squared value.
chi_squared_ = pass_ + fail_
chi_squared_
```

11.686016648148486

We can see that we yield $\chi^2 = 11.686$.

4. In R, there is a built-in data frame called mtcars. Please calculate the correlation between mpg and wt attributes of mtcars by using cor() function. Then generate scatter plot based on these two attributes. (25 points)

Preview mtcars dataset.
mtcars

III U	Jais											
##		mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
##	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
##	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
##	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
##	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
##	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
##	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
##	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
##	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
##	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
##	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
##	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
##	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
##	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
##	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
##	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
##	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
##	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
##	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
##	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
##	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
##	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
	AMC Javelin	15.2	8				3.435		0	0	3	2
	Camaro Z28	13.3	8				3.840		0	0	3	4
	Pontiac Firebird	19.2	8	400.0			3.845		0	0	3	2
	Fiat X1-9	27.3	4	79.0			1.935		1	1	4	1
	Porsche 914-2	26.0	4	120.3			2.140		0	1	5	2
	Lotus Europa	30.4	4				1.513		1	1	5	2
	Ford Pantera L	15.8	8				3.170		0	1	5	4
	Ferrari Dino	19.7	6				2.770		0	1	5	6
	Maserati Bora	15.0	8				3.570		0	1	5	8
##	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

```
# Set variables for naming.
mpg = mtcars$mpg
weight = mtcars$wt
```

```
# Find Correlation.
cor(mpg, weight)
```

[1] -0.8676594

We can see that the correlation between vehicle miles per gallon and vehicle weight in the mtcars dataset is $r_{mpg,weight} = -0.868$. What this explains is that as one variable (weight/mpg) increases, the other (mpg/weight) decreases.

```
# Make scatterplot.
plot(mpg, weight)
```


To coincide with the example given in the assignment. (:
plot(weight, mpg)

