CS180 Discussion

Week 2

Lecture Recap

- Intro to graphs
 - Directed
 - Undirected
 - Finding graph diameter
 - Clique
 - Independent set
- Graph traversal
 - BFS
 - DFS

Directed graphs

Undirected graphs

Connected graphs

Fully connected graphs

BFS

DFS

DFS

Diameter of graph by leaf pruning

Graph Coloring

Graph Coloring

Clique

Clique

Independent set

Independent set

Binary Search Tree

A binary search tree is a rooted binary tree, whose internal nodes each store a key and each have two distinguished sub-trees, commonly denoted left and right. The tree additionally satisfies the binary search property, which states that the key in each node must be greater than or equal to any key stored in the left subtree, and less than or equal to any key stored in the right subtree

Question

ilisuolie mo melule Ritarian Ouestions!!!

Validate BST

Implement a function to check if a binary tree is a binary search tree.

