

Page number:158 of 168

D1800V2 Sn:2d084

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013. "IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Assorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 20 13
b) IEC 62200-1: "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
devices used in close proximity to the ear (frequency range of 300MHz to 36Hz)." February
2005.

devices used in close proximity to the ear (requency range to 300min. 20 30 32).

C) IEC 82209-2. "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6 GHz)", March 2010

d) KDB86964, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation: e) DASY4/5 System Handbook

- ethods Applied and Interpretation of Parameters:

 Measurement Conditions: Further details are available from the Validation Report at the end Measurement Conditions: Further details are available from the Validation Report at the end Antenna Parameters with 7.5%: In the certificate are valid at the frequency indicated. Antenna Parameters with 7.5%: In the certificate are valid at the frequency indicated. Antenna Parameters are with 7.5%: One the flat planton section, with the arms oriented parallel to the body axis.

 Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

 No uncertainty required.

 No uncertainty required.

 SAR measured at the stated antenna input power.

 AND the confidence of the amenus and the stated antenna input power of 1 W at the antenna connection.

- SAR normalization of the instance of the connector.
 SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

ASY system configuration, as far as DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	32.10.0.1440
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.42 mho/m ± 6 9
Head TSL temperature change during test	<1.0 °C	****	-

SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW /g ± 18.7 % (k=2)
SAR measured	250 mW input power	5.12 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	38.9 mW /g ± 18.8 % (k=2)
SAR measured	250 mW input power	9.79 mW / g
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR averaged over 1 CM (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.84 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.7 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.18 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW /g ± 18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49. 3Ω- 1.55jΩ	
Return Loss	- 35.4dB	

Antenna Parameters with Body TSL

46.0Ω- 1.32jΩ	
- 27.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1 210

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97138

Page 4 of 8

Page number:160 of 168

D2000V2 Sn:1009

LIn Hao SAR Test Engineer TAS

Qi Dianyuan SAR Project Leader &

Issued: February 4, 2018

Calibration is Performed According to the Following Standards:
a) IEEE 8d 1528-2013, IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Asseption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques*, June 2013
b) IEC 6220-14. "Measurement Techniques*, June 2013
b) IEC 6220-14. "Measurement Techniques*, June 2013
communication devices Peats 1: Device used next both-mounted wireless
communication devices - Part 1: Device used next to the ear (Frequency range of 300MHz to 63Hz/Y, July 2016
c) IEC 6220-2. "Procedure to measure the Specific Absorption Rate (SAR) For wireless
communication devices used in close proximity to the human body (frequency range of 300MHz to 64Dtz/Y, March 2010)
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Methods Applied and Interpretation of Parameters:

• Messurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

• Antenian Parameters with TSL. The dipple is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

• Feed Point Impedance and Rehum Loss: These parameters are measured with the dippole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SIAA connector to the feed point. The Return Loss ensures two reflected power. No uncertainty required.

• Electrical Delay: One-way delay between the SIAA connector and the antenna feed point. No uncertainty required.

• \$AR measured: SAR measured at the stated antenna input power.

• \$AR nonmitted: SAR as measured, normalized to an input power of tW at the antenna connector.

• \$AR for norminal TSL parameters: The measured TSL parameters are used to calculate the

SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-97021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 8

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	2,000
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2000 MHz ± 1 MHz	

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mholm
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 8 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	100	

R result with Head TSL		10
SAR averaged over 1 cm² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.5 mW/g ± 18.7 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.56 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.4 mW/g ± 18.7 % (k=2)

Certificate No: Z18-97021 Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570) ntenna Parameters with Head TSL

Impedance, transformed to feed point	49.8Ω- 2.08μΩ
Return Loss	+ 33.6dB

Impedance, transformed to feed point	46.3Q- 1.63(Q	
Return Loss	- 27.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.047 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard seminigal coastal cable. The order conductor of the feeding line is discovered to the second amon of the dipole. The exterior is therefore short-forcitied for Dicagnation of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded excerning to the position are explained in the "Measurement Conditions" paragraph. The SAR date are not effected by this change. The overall dipole length is still according to the Sarahyah. The SAR date are not effected by this change. The overall dipole length is still according to the Sarahyah. The SAR date are not effected by this change. The overall dipole length is still according to the Sarahyah.

Additional EUT Data

Manufactured by SPEAG

Certificate No: Z18-97021

Page 4 of 8

Page number:162 of 168

D2450V2 Sn:738

issue simulating liquid sensitivity in TSL / NORMx,y,z

Calibration is Performed According to the Following Standards:
a) IEEE Bd 1528-2013, IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Abeoption Rate (SAA)) the the standard Practice for Determining the Peak
Spatial-Averaged Specific Abeoption Rate (SAA)) the the standard Practice of Spatial Practi

- ethods Applied and Interpretation of Parameters:

 Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

 Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented
- point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

 Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

 Federical Deliver, One-way delay between the SMA connector and the antenna feed point. No uncertainty required.

 No uncertainty required.

 SAR measured SRR measured at the stated antenna input power.

- SAR normalized. Grant Section 1.
 SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz + 1 MHz	

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.79 mho/m ± 6 %
lead TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL
SAR averaged over 1 cm² 11 g) of Head TSL
Condition
SAR measure over 1 cm² 11 g) of Head TSL
SAR averaged over 1 cm² 11 g) of Head TSL
SAR measure
SAR measure
SAR measure
SAR measure
SAR measure
SAR to nominal Head TSL parameters
normalized to 1W
S2.4 mW/g ± 18.8° normalized to 1W 52.4 mW /g ± 18.8 % (k=2)
 SAR averaged over 10 cm² (10 g) of Head TSL
 Condition

 SAR measured
 250 mW input power
 6.10 mW / g

 SAR for nominal Head TSL parameters
 normalized to 1W
 24.4 mW / g ± 18.7 % (k=2)

 V TSL narameters
 normalized to 1W
 24.4 mW / g ± 18.7 % (k=2)

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mhg/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

8AR averaged over 10 $\ m^3$ (10 g) of Body TSL Condition

SAR measured 250 mW input power 6.10 mW / g

SAR for nominal Body TSL parameters normalized to 1W 24.3 mW / g \pm 18.7 % (b=2)

Certificate No: Z17-97140

Appendix (Additional assessments outside the scope of CNAS L0570)

51.3Ω+ 5.92jΩ	
- 24.5dB	
24,300	

Impedance, transformed to feed point	47.6Ω+6.39 Ω	
Return Loss	- 23.1dB	

seneral Antenna Parameters and Design		
Electrical Delay (one direction)	1.268 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly sected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some dipoles, small end caps are added to the dipole arms in order to improve matching when foader driding to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not feed by this change. The overall dipole length is still according to the Standard, accessive force must be applied to the dipole arms, because they might bend or the soldered dections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97140

Page number:164 of 168

D5GHzV2-SN1079

tissue simulating liquid sensitivity in TSL / NORMx.y.z not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Recommended Practice for Determining the Peak
Spatial-Averaged Specific Absorption Role (SAR) in the Human Head from Wireless
Communications Devices; Measurement (SAR) in the Human Head from Wireless
Communications Devices; Measurement (SAR) in the Human Head from Wireless
Communications Devices; Measurement procedure for assessment of SAR Promounted wireless
communication devices - Part 1: Device used next to the err (Frequency range of 300MHz to 66Hz)', July 2016
[SIEC 6229-2; "Procedure to measure the Specific Absorption Rate (SAR) For wireless
communication devices used in close proximity to the human body (frequency range of 300MHz to 66Hz)', March 2011
G) KDB865694, SAR Measurement Requirements for 100 MHz to 6 GHz

- Methods Applied and Interpretation of Parameters:

 Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

 Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

 Feed Point Impodance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.

 Fletchright Opiday: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.

 SAR measured: SAR measured at the stated antenna input power.

- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97133

DASY Version	DASY52	52.10.0 1448
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

	Temporature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.62 mho/m ± 6 %
Head TSL temperature change during test	<1.0.50		-

SAR result with Head TSI at 5200 MU-

SAR averaged over 1 cm ³ (1 g) of Head TSL	Cond/tion	
SAR measured	100 mW input power	7.77 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.24 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.3 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97133 Page 3 of 16

Temperature	Perm Ittivity	Conductivity
22.0 °C	35.9	4.76 mho/m
(22.0 ± 0.2) °C	38.1 ±6 %	4.67 mho/m ± 6 %
<1.0 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 35.9 (22.0 ± 0.2) °C 36.1 ± 6 %

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.3 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.32 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.2 mW/g ± 24.2 % (k=2)

Head TSL parameters at 5500 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm2 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.5 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ¹ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.37 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.8 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 4 of 16

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		****

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.6 mW /g ± 24.4 % (k=2
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.34 mW/g
SAR for nominal Head TSL parameters	normalizad to 410/	00.4 101.5 10.0 10.0

Head TSL parameters at 5800 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

AR result with Head TSL at 5800 MHz SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 mW/a
SAR for nominal Head TSL parameters	normalized to 1W	78.7 mW /g ± 24.4 % (k=2
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.25 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.6 mW /g ± 24.2 % (k=2)

Cortificate No: Z17-97133

Page 5 of 16

Body TSL parameters at 5200 MHz
The following parameters and calculations were employed.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.5 ±6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	-

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	75.4 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.12 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW/g ± 24.2 % (k=2)

Body TSL parameters at 5300 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.2 ± 6 %	5.50 mho/m ± 8 9
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	76.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 6 of 16

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chinn Tel: +86-10-62364631-2079 Fax: 186-10-62364633-2534

Body TSL parameters at 5500 MHz
The following parameters and calculations w

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 5 %	5.72 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.22 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	82.4 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.35 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.6 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.73 mho/m ± 6 %
Body TSL temperature change during	test <10°C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	80.7 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.30 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.0 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 7 of 16

Add: No.51 Xuoyuun Road, Haidim District, Berjing, 100191, Chi Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mail: ethigichinatd.com http://www.chimetl.cn

Body TSL parameters at 5800 MHz
The following parameters and calculations were

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.73 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	77.5 mW/g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW/g ± 24.2 % (k=2)

Certificate No: Z17-97133

Page 8 of 16

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47 ΘΩ - 8.77jΩ	
Return Loss	- 20.7dB	

Antenna Parameters with Head TSL at 5300 MHz

45.5Ω - 6.82μΩ
- 21.4dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.7 Ω - 7.14 μΩ
Return Loss	- 23.0dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.2Ω - 4.00jΩ	
Return Loss	- 24.1dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.2Ω - 8.20jΩ
Return Loss	- 21.8dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.8Ω - 10.1μΩ
Return Loss	-20.0dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48 5Ω - 8.56 Ω	
Return Loss	-21.1dB	-

Certificate No: Z17-97133

Page 9 of 16

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.9 \O - 6.85 \O	
Return Loss	- 21 9dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.6Ω - 2.29jΩ	
Return Loss	- 23.7dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	58.7Ω - 8.10 _j Ω	
Return Loss	- 20.2dB	

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small and cape are added to the dipole arms in order to Improve maching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No accessive force must be applied to the dipole erms. because they might bend or the soldcred connections near the feedport may be demaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97133

Page 10 of 16

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1,4mm (8x8z)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1,4mm Reference Value = 58.81 Vm; Power Drift = 0.0 1d B Peak SAR (extrapolated) = 30.8 WWkg Peak SAR (extrapolated) = 30.8 WWkg SAR(1 g) = 7.7 WWkg; SAR(1 g) = 2.24 WWkg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.19 V/m. Power Drift = 0.05 d8 Peak SAR (extrapolated) = 33.7 W/kg
Peak SAR (extrapolated) = 33.7 W/kg
SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.32 W/kg
Maximum value of SAR (measured) = 19.3 W/kg

Page 11 of 16

Dipole Calibration /Pin=100mW, d=10mm, f=500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.80 Vim, Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.3 Wikg SAR(1 g) = 8.2 Wikg; SAR(10) = 9.2 3.7 Wikg Maximum value of SAR (measured) = 19.6 Wikg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.89 V/m; Power Drift = 0.04 dB Peak SAR (xtranolated) = 3.7 W/kn Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1,4mm (8x8x7)Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 53.56 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.0 W/kg; SAR(10 g) = 7.85 W/kg; SAR(10 g) = 2.55 W/kg Maxmum value of SAR (measured) = 19.7 W/kg

Certificate No: Z17-97133

Page 12 of 16

-----End of the test report------