Ćwiczenia 2025/26 – **Podstawy nauki o danych** – lista nr 2

Polecenie wstępne. Przypomnij sobie znaczenie parametrów m i σ w rozkładzie normalnym. Jak wpływają one na kształt wykresu gęstości rozkładu?

Zadanie 1. W celu kontroli ruchu samochodowego na wybranym odcinku drogi przeprowadzono pomiary prędkości. Zebrano następujące dane o prędkościach w km/h.

Pojazd nr 1	Pojazd nr 2	Pojazd nr 3	Pojazd nr 4	Pojazd nr 5	Pojazd nr 6	Pojazd nr 7	Pojazd nr 8	Pojazd nr 9	Pojazd nr 10	Pojazd nr 11	Pojazd nr 12	Pojazd nr 13	Pojazd nr 14	Pojazd nr 15	Pojazd nr 16	Pojazd nr 17	Pojazd nr 18	Pojazd nr 19	Pojazd nr 20	Pojazd nr 21	Pojazd nr 22	Pojazd nr 23	Pojazd nr 24	Pojazd nr 25
32	22	38	51	37	47	53	42	44	41	35	47	39	46	47	41	31	44	73	75	48	39	57	33	42

- **1.1.** Zaznacz obserwacje (punkty) na osi poziomej.
- **1.2.** Wypełnij poniższą tabelę kontyngencji i na jej podstawie narysuj histogram. Sprawdź, czy pole zajmowane przez histogram jest równe 1. Zaproponuj rozkład prawdopodobieństwa, którego gęstość można dopasować do tego histogramu.

Prędkość w km/h	22-32	33-43	44–54	55–65	66-76
Liczba pojazdów					

1.3. Wypełnij poniższą tabelę kontyngencji i na jej podstawie narysuj histogram. Sprawdź, czy pole zajmowane przez histogram jest równe 1. Zaproponuj rozkład prawdopodobieństwa, którego gęstość można dopasować do tego histogramu.

Prędkość w km/h	<36	36–40	41–45	46–50	>50	
Liczba pojazdów						

1.4. Wypełnij poniższą tabelę kontyngencji i na jej podstawie narysuj histogram. Skomentuj.

Prędkość w km/h	30–34	35–39	40–44	45–49	50–54	55–59	60–64	65–69	70–74	75–79	80–84	85–89
Liczba pojazdów												

Zadanie 2. [JD-KDE] Zadanie dotyczy gaussowskich estymatorów jądrowych dla gęstości.

- **2.1.** Zaobserwowano dwie wartości: 32 i 22. Napisz wzór na estymator jądrowy gęstości rozkładu na podstawie tych obserwacji. Naszkicuj ten estymator dla wybranego parametru wygładzania (ang. bandwidth) h, na przykład dla h=3.
- **2.2.** Zaobserwowano trzy wartości: 32, 22, 28. Napisz wzór na estymator jądrowy gęstości rozkładu na podstawie tych obserwacji. Naszkicuj ten estymator dwukrotnie dla dwóch wybranych parametrów h, na przykład dla h=1 oraz h=3.
- **2.3.** Wykorzystaj oprogramowanie komputerowe, np. skrypt [JD-KDE] lub metodę kdeplot z biblioteki seaborn Pythona, aby naszkicować estymator jądrowy gęstości rozkładu na podstawie obserwacji z zadania 1. Porównaj z wynikami zadań 1.2-1.4.

[JD-KDE] J. Drapała https://medium.com/data-science/kernel-density-estimation-explained-step-by-step-7cc5b5bc4517

Zadanie 3. Funkcja $K: \mathbf{R} \to \mathbf{R}^+$ jest nazywana jądrem (ang. *kernel*), jeżeli jest parzysta i całkowalna do 1. Napisz wzory na funkcje jądra o nośniku w odcinku [-1,1], które mają następujące wykresy:

3.1. jednostajny

3.2. trójkątny

3.3. paraboliczny

3.4. kosinusowy

3.5. Sprawdź w dokumentacji funkcji KernelDensity z biblioteki Scikit Learn dla Pythona, jakie jądra są w niej zaimplementowane. Porównaj je z tymi z zadań wcześniejszych. Podaj wzór na jądro wykładnicze, naszkicuj jego wykres.

Zadanie 4. Mamy do czynienia z dwuwymiarowym rozkładem normalnym o wektorze średnich m=(0,0) i macierzy kowariancji Σ . Napisz wzór na gęstość rozkładu. Podaj rozkłady brzegowe. Naszkicuj na płaszczyźnie "zagęszczenie" obserwacji z tego rozkładu dwuwymiarowego. Wyznacz wartości własne macierzy kowariancji i nanieś wektory własne na szkic.

4.1.
$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 4.2. $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ **4.3.** $\Sigma = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ **4.4.** $\Sigma = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ **4.5.** $\Sigma = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$

Zadanie 5. Niech dwuwymiarowy wektor losowy X ma rozkład normalny z m=(0,0) i identycznościową macierzą kowariancji. Wyznacz macierz kowariancji dla wektora Y=AX, gdy

5.1. A=
$$\begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$$
 5.2. A= $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ **5.3.** A= $\begin{pmatrix} \sqrt{2} & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} \end{pmatrix}$ **5.4.** A= $\begin{pmatrix} \sqrt{2} & 0 \\ -\frac{\sqrt{2}}{2} & \sqrt{\frac{7}{2}} \end{pmatrix}$

5.5. A=
$$\begin{vmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{vmatrix}$$

Zadanie 6. Niech dwuwymiarowy wektor losowy X ma rozkład normalny z m=(0,0) i macierzą kowariancji $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$. Wyznacz macierz kowariancji dla wektora

$$Y = \begin{pmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix} X.$$

Naszkicuj "zagęszczenie" obserwacji z rozkładu wektora Y.