Decision Trees

Chris made these slides :D Thanks Chris! 💀 💀 💀 💀 💀 💀 💀

I would probably make it blue...

But talk me through the process—why did we pick blue for this spot?

humidity

If... then

You probably thought something like:

"If the point is to the left of the yellow line, it is red. If it is to the right, then it is blue."

This is a selection statement. A decision, mayhaps.

Constructing a decision tree

We can construct rather simple decision trees like this:

For the sake of communicating ideas, this is enough.

Formal decision tree structure

samples = 1041 value = [905. 136.]

error = 0.4458 samples = 507 value = [424. 83.1 \ error = 0.3234

samples = 534 value = [481. 53.]

error = 0.2954 samples = 598

value = [546. 52.]

smaller end, but I don't want to bloat this presentation

A "normal" decision tree

Oh shit what is this?121212121212

Let's focus on this part

Tree's Anatomy

Some notes

You may notice that it doesn't actually say what the decision made is (which class it is put into). That's because... classification is ambiguous. It could be:

- Always guessing the one with the higher incidence (bad)
- Guessing with a rate dependent on the incidence (better)

In this case, it's the latter.

Also, another name for the error is "gini"

An ideal tree

Coding resources

I use sklearn. It includes compatibility with matplotlib to easily show structures like above.

sklearn.tree.DecisionTreeClassifier handles classification very easily. There are many tutorials online on how to use it.

https://colab.research.google.com/drive/1eKXB2wel0hmKFZGRmLUEydJpXNM8r P8T?usp=sharing