

Fizyka 2 - laboratorium 1

Wyznaczanie przyspieszenia ziemskiego z wykorzystaniem wahadła matematycznego

Ćwiczenie nr 0

1 października 2024

Aleksander Jóźwik

Adrian Krawczyk

Wydział WI	Imię i nazwisko 1. Aleksander Jóźwik 2. Adrian Krawczyk		Rok II	Grupa 3	Zespół 3
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Opr	Nr ćwiczenia O			
Data wykonania 01.10.2024	Data oddania 06.10.2024	Zwrot do popr.	Data oddania	Data zaliczenia	Ocena

1. Wprowadzenie

1.1. Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego (matematycznego).

1.2. Wstęp teoretyczny

Wahadło matematyczne to teoretyczny model składający się z punktowej masy zawieszonej na nieważkiej, nierozciągliwej nici. W rzeczywistości używamy małego ciężarka na cienkiej nici, co stanowi odpowiednie przybliżenie modelu teoretycznego. To podejście jest poprawne, gdy $\sin\theta\approx\theta$ (gdzie θ to kąt wychylenia w radianach), co jest dobrym przybliżeniem dla kątów mniejszych niż około 5°.

Okres wahadła można wyliczyć ze wzoru:

$$T=2\pi\sqrt{\frac{l}{g}}$$

gdzie T to okres wahadła, l to długość nici mierzona od punktu zaczepienia do środka ciężkości ciężarka, a g to przyspieszenie ziemskie.

Powyższy wzór możemy przekształcić do następujących postaci:

$$T^2 = 4\pi^2 \frac{l}{g}$$

oraz:

$$g = 4\pi^2 \frac{l}{T^2}$$

2. Układ pomiarowy

- 1. **Zestaw wahadła prostego** (Rysunek 1)
- 2. **Sekundomierz** (stoper) z dokładnością do $0.01~\mathrm{s}$
- 3. **Przymiar milimetrowy** (linijka) działka elementarna 1 mm

Rysunek 1: Zestaw wahadła prostego [1].

3. Przebieg ćwiczenia

3.1. Sposób pierwszy - wahadło o stałej długości

W ramach ćwiczenia przeprowadzono serię pomiarów okresu wahadła przy zachowaniu stałej długości nici. Wykorzystano stoper do wykonania 10 niezależnych pomiarów. W celu zminimalizowania błędów wynikających z czasu reakcji człowieka, każdy pojedynczy pomiar obejmował czas trwania 10 pełnych cykli wahadła. Przed rozpoczęciem pomiarów czasowych, pierwszym etapem było określenie długości wahadła.

3.2. Sposób drugi - wahadło o zmiennej długości

Tym razem dla każdej z 3 zmierzonych długości wahadła, wykonano po 3 pomiary czasu trwania 10 okresów drgań. Czwarty zestaw danych opiera się na długości nici oraz średnim czasie jednego okresu, uzyskanym z pomiarów wykonanych w pierwszym sposobie.

4. Analiza danych pomiarowych

4.1. Sposób pierwszy

4.1.1. Długość wahadła lwraz z niepewnością standardową $\boldsymbol{u}_B(l)$

Zmierzona długość wahadła $l=64~\mathrm{cm}$

Najmniejsza działka przyrządu to $\Delta l=1~\mathrm{mm}$

Ze względu na problem z dokładnym ustaleniem środka ciężkości zawieszonego ciała oraz punktu zaczepienia nici, niepewność standardowa (typu B) została przyjęta na:

$$u_B(l)=3~\mathrm{mm}$$

Niepewność względna pomiaru wyniosła:

$$\frac{u_B(l)}{l} \cdot 100\% = \frac{0.003 \text{ m}}{0.64 \text{ m}} = 0.4688\% \approx 0.47\%$$

4.1.2. Pomiar okresów drgań

Nr pomiaru	Czas 10 okresów	Czas 1 okresu	Kwadrat odchyłki od	
			średniej	
i	$10T_i \; [\mathrm{s}]$	$T_{m{i}} \; [ext{s}]$	$(T_{m i}-T_{ m \acute{s}r})^{m 2}[s^{m 2}]$	
1	16.03	1.603	0.00006084	
2	16.11	1.611	0.00024964	
3	15.99	1.599	0.00000484	
4	15.77	1.577	0.00033124	
5	15.78	1.578	0.00029584	
6	15.90	1.590	0.00002704	
7	15.97	1.597	0.00000324	
8	15.89	1.589	0.00003844	
9	15.97	1.597	0.00000324	
10	16.11	1.611	0.00024964	

W wynikach pomiarów nie zaobserwowano żadnych błędów grubych.

$$N = 10$$

$$T_{\rm \acute{s}r} = 1.5952~{\rm s}$$

$$\sum_{i=1}^{10} \left(T_i - T_{\rm \acute{s}r}\right)^2 = 0.0012736~{\rm s}^2$$

4.1.3. Niepewność standardowa $u_A(T_{ m \acute{s}r})$

$$u_A(T_{\rm \acute{s}r}) = \sqrt{\frac{\sum (T_i - T_{\rm \acute{s}r})^2}{N(N-1)}}$$

$$u_A(T_{\rm \acute{s}r}) = \sqrt{\frac{0.0012736~{\rm s}^2}{10(10-1)}} = 0.00376~{\rm s} \approx 0.0038~{\rm s}$$

Niepewność względna:

$$\frac{u_A(T_{\rm \acute{sr}})}{T_{\rm \acute{sr}}} \cdot 100\% = \frac{0.0038~{\rm s}}{1.5952~{\rm s}} \cdot 100\% \approx 0.24\%$$

4.1.4. Obliczenie przyspieszenia ziemskiego wraz z niepewnością

$$g = \frac{4\pi^2 l}{T_{\text{sr}}^2}$$

$$g = \frac{4\pi^2 \cdot 0.64 \text{ m}}{(1.5952 \text{ s})^2} = \frac{25.26612 \text{ m}}{2.5447 \text{ s}^2} = 9.9289 \frac{m}{s^2}$$

Z prawa przenoszenia niepewności o ogólnym wzorze:

$$u_C(g) = \sqrt{\sum \left(\frac{\partial g}{\partial x_{k'}} u(x_{k'})\right)^2}$$

 u_c - niepewność złożona, w tym przypadku k' = 2, co daje:

$$u_C(g) = \sqrt{\left(\frac{\partial g}{\partial l}u_B(l)\right)^2 + \left(\frac{\partial g}{\partial T}u_A(T_{\operatorname{\acute{e}r}})\right)^2} = \sqrt{\left(\frac{4\pi^2}{T_{\operatorname{\acute{e}r}}^2}u_B(l)\right)^2 + \left(\frac{-8\pi^2 l}{T_{\operatorname{\acute{e}r}}^3}u_A(T_{\operatorname{\acute{e}r}})\right)^2}$$

$$u_C(g) = \sqrt{\left(\frac{4\pi^2}{\left(1.5952 \text{ s}\right)^2} \cdot 0.003 \text{ m}\right)^2 + \left(\frac{-8\pi^2 * 0.64 \text{ m}}{\left(1.5952 \text{ s}\right)^3} \cdot 0.0038 \text{ s}\right)^2} = 0.0664 \frac{m}{s^2} \approx 0.067 \frac{m}{s^2}$$

Niepewność rozszerzona:

$$U(g) = u_C(g) \cdot k$$

gdzie k to współczynnik rozszerzenia (przyjmujemy k = 2)

$$U(g) = 2 \cdot 0.067 \frac{m}{s^2} = 0.134 \frac{m}{s^2} \approx 0.14 \frac{m}{s^2}$$

4.1.5. Przyspieszenie ziemskie otrzymane przy pomocy sposobu pierwszego

Odpowiednio zaokrąglamy wynik:

$$g = 9.9289 \frac{m}{s^2} \approx 9.93 \frac{m}{s^2}$$

Porównanie wartości zmierzonej z teoretyczną:

$$g_0 = 9.811 \ \frac{m}{s^2}$$

$$|g - g_0| = \left|9.93 \frac{m}{s^2} - 9.811 \frac{m}{s^2}\right| = 0.118 \frac{m}{s^2} < U(g)$$

Otrzymany wynik jest zgodny z wartością przyspieszenia ziemskiego dla Krakowa.

$$g = (9.93 \pm 0.14) \; rac{m}{s^2}$$

4.2. Sposób drugi

4.2.1. Pomiar długości wahadła oraz okresów drgań

Nr	Długość	Czas	Czas 1	Średni okres	Kwadrat
pomiaru	wahadła	10 okresów	okresu	dla danego L	okresu
i	$L_i[m]$	$10T_i[s]$	$T_i[s]$	$T_{\mathrm{i\acute{s}r}}[s]$	$T_i^2[s^2]$
1	0.530	14.24	1.424	1.4187	2.0126
1		14.18	1.418		
1		14.14	1.414		
2	0.400	12.50	1.250	1.2510	1.5650
2		12.62	1.262		
2		12.41	1.241		
3	0.270	10.14	1.014	1.0257	1.0520
3		10.25	1.025		
3		10.38	1.038		
4	0.640	z poprzedniej części ćw.		1.5952	2.5447

W wynikach pomiarów nie zaobserwowano żadnych błędów grubych.

4.2.2. Wykres zależności okresu od długości wahadła T(l)

Rysunek 2: Wykres zależności okresu od długości wahadła T(l)

4.2.3. Zlinearyzowany wykres T^2 w funkcji l

Wzór $T=2\pi\sqrt{\frac{l}{g}}$ możemy przekształcić i zapisać jako zależność liniową $T^2=\frac{4\pi^2}{g}l$, gdzie typ zależności liniowej to y=Ax+B oraz odpowiednio $y\to T^2, x\to l, A\to \frac{4\pi^2}{g}$.

Wykorzystując dane z tabeli powyżej, na wykres naniesiono 4 punkty o współrzędnych (L_i, T_i^2) . Przy pomocy funkcji REGLINP programu $Microsoft\ Excel$ dopasowano do nich prostą regresji $T_i^2 = A \cdot l_i + B$.

Rysunek 3: Wykres dopasowanej prostej zależności $T^2(l)$

Otrzymano wartość współczynnika A oraz jej niepewność u(A):

$$A=3.96\ \frac{s^2}{m}, u(A)=0.19\ \frac{s^2}{m}$$

4.2.4. Obliczenie przyspieszenia ziemskiego wraz z niepewnością

Ze wzoru $A = \frac{4\pi^2}{g}$ można wyliczyć $g = \frac{4\pi^2}{A}$:

$$g = \frac{4\pi^2}{3.96 \frac{s^2}{m}} = 9.9693 \frac{m}{s^2}$$

Niepewność obliczamy z prawa przenoszenia niepewności:

$$u_C(g) = \sqrt{\left(\frac{4\pi^2}{-A^2}\right)^2 (u(A))^2} = \frac{4\pi^2 u(A)}{A^2}$$

$$u_C(g) = \frac{4\pi^2 \cdot 0.19 \; \frac{s^2}{m}}{\left(3.96 \; \frac{s^2}{m}\right)^2} = 0.4783 \; \frac{m}{s^2} \approx 0.48 \; \frac{m}{s^2}$$

Niepewność rozszerzona:

$$U(g) = u_C(g) \cdot k$$

$$U(g) = 0.48 \; \frac{m}{s^2} \cdot 2 = 0.96 \; \frac{m}{s^2}$$

4.2.5. Przyspieszenie ziemskie otrzymane przy pomocy sposobu drugiego

Odpowiednio zaokrąglamy wynik:

$$g = 9.9693 \frac{m}{s^2} \approx 9.97 \frac{m}{s^2}$$

Porównanie wartości zmierzonej z teoretyczną:

$$|g - g_0| = \left|9.97 \frac{m}{s^2} - 9.811 \frac{m}{s^2}\right| = 0.159 \frac{m}{s^2} < U(g)$$

Otrzymany wynik jest zgodny z wartością przyspieszenia ziemskiego dla Krakowa.

$$g = (9.97 \pm 0.96) \; rac{m}{s^2}$$

5. Wnioski

Wartości przyspieszenia grawitacyjnego $g_1=(9.93\pm0.14)~\frac{m}{s^2}$ oraz $g_2=(9.97\pm0.96)~\frac{m}{s^2}$ otrzymane kolejno z pierwszego i drugiego sposobu wykonania ćwiczenia są zgodne z przyspieszeniem dla Krakowa $g_0=9.811~\frac{m}{s^2}$ w granicach niepewności. Przyjęta metoda pozwala wyznaczyć dobre przyspieszenia ziemskiego. Na dokładność wpływ mogły mieć:

- czas reakcji człowieka podczas obsługi stopera,
- problem z dokładnym ustaleniem środka ciężkości zawieszonego ciała oraz punktu zaczepienia nici,
- niedoskonałe wprawianie wahadła w ruch,
- niewielka liczba pomiarów.

Bibliografia

AGH WFiIS, "Protokół wykonania ćwiczenia nr 0: Opracowanie danych pomiarowych". Dostęp: 6 październik 2024. [Online]. Dostępne na: https://pf.agh.edu.pl/home/wfiis/pracfiz/

[1] Opisy_cwiczen/00_protokol.pdf