Normalization

- Model design is an intuitive process
 - Group attributes into entity types
 - Relate entity types to each other
- Many models can fulfill the same set of requirements for data retrieval

Normalization

 Model needs to support ALL operations expected on a database

* CRUD

- Side effects (or anomalies) can easily occur when a system tried to modify data in the database
- These anomalies will impact every system that works with the database

Modification Anomalies

- Modification anomalies
 - Insert anomalies
 - Update anomalies
 - * Delete anomalies
- You want a database design that minimizes the potential for modification anomalies

Example

						CREDIT		
ID	NAME	OFFICE_NBR	PHONE_NBR	COURSE_NBR	DESCRIPTION	HOURS	DAYS	TIMES
1881	Dr Green	2142	6-7164	CGS1060	Intro to Microcomputers	4	TR	14:00
				COP1334	C++ Programming	4	TR	8:00
				COP2800	Java Programming	4	TR	10:30
2142	Dr Gonzalez	2111	6-5543	CGS1540	Database Concepts and Design	4	М	17:00
766	Dr Pierre	2144	6-7160	CGS1060	Intro to Microcomputers	4	MWF	10:00
641	Ms Osplant	2146	6-7140	COP2800	Java Programming	4	MWF	11:00
				COP2805	Adv Java Programming	4	MWF	15:30
2004	Dr Chen	2150	6-7141	CGS1060	Intro to Microcomputers	4	W	17:00

What are the problems with the professor table?

- If a course description is changed, the change must be made multiple times – Update Anomaly
- If we delete a professor, we lose course information Delete Anomaly
- A new course cannot be in database until a professor is identified – Insert Anomaly
- Chapter 7, section 7.1 has comprehensive example

Causes of Anomalies

- * Data redundancy The description of course CGS1060 is repeated many times
- * Missed entity types An OFFICE and COURSE entity types are probably needed
- * Misplaced attributes

 Professor's phone number might be an OFFICE attribute, not a PROFESSOR attribute

How to minimize modification anomalies

- * Make sure every entity type captures a different, single theme
- * This will lead to splitting up entity types into entity types with fewer attributes in each
- * This process is called Normalization

functional dependencies

Before diving into normalization, we need to understand functional dependencies

Definition:

A functional dependency is constraint in a relation schema of the form

$$A \rightarrow B$$

where a value of attribute B is dependent on the value of attribute A

A is called the determinant B is called the dependent

A determines B
B is dependent on A

functional dependencies

- * The initial set of functional dependencies come from the business rules
 - Expressed in normal language
 - If not refined they often have redundancies and contradictions
- * These functional dependencies have to be refined to the minimum necessary set

Functional Dependency Inference Rules

You can refine functional dependencies using Armstrong's Axioms (in page 368 in text)

Table 7.1 Inference rules for functional dependencies: Armstrong's axioms

Table 7.1 Interence rules for functional dependencies. Armstrong's axioms							
Rule	Definition						
Reflexivity	If Y is a subset of X [i.e., if X is (A,B,C,D) and Y is (A,C)], then $X \rightarrow Y$. (The reflexivity rule defines trivial dependency as a dependency that is impossible to <i>not</i> satisfy.)						
Augmentation	If $X \to Y$, then $\{X,Z\} \to \{Y,Z\}$; also, $\{X,Z\} \to Y$.						
Transitivity	If $X \to Y$, and $Y \to Z$, then $X \to Z$.						
Decomposition	If $X \to \{Y,Z\}$, then $X \to Y$ and $X \to Z$.						
Union (or additive)	If $X \to Y$, and $X \to Z$, then $X \to \{Y,Z\}$.						
Composition	If $X \to Y$, and $Z \to W$, then $\{X,Z\} \to \{Y,W\}$.						
Pseudotransitivity	If $X \to Y$, and $\{Y,W\} \to Z$, then $\{X,W\} \to Z$.						
References: Armstrong, W. W. "Dependence Structures of Data Base Relationships" Proc. IFIP Congress, Stockholm, Sweden (1974); Darwen, H. "The Role of Functional Dependencies in Query Decomposition," In C.J. Date and H. Darwen, Relational Database Writings 1989 – 1991, Addison-Wesley (1992).							

Normal Forms

- Normalization is the process of converting a relation from one normal form (NF) to a higher normal form (NF)
- Normal forms of a relation is determined by all the functional dependencies between its attributes
- * There are many NFs
 - * First Normal Form (1NF)
 - Second Normal Form (2NF)
 - * Third Normal Form (3NF)
 - * Boyce Codd Normal Form (BCNF)
 - Fourth Normal Form (4NF)
 - Domain-Key Normal Form (DKNF)
 - * And more

Normal Forms

 A best practice for a transactional database is that all tables conform to 3NF or BCNF

Normal Forms

First Normal Form (1NF):

A relation schema is in First Normal Form when all of its attributes are atomic and single-valued.

- no composite or molecular attributes
- no multi-valued attributes
- sound familiar?
 - a relational schema, by definition, is in 1NF

2nd Normal Form (2NF)

Second Normal Form (2NF) (no partial dependencies):

A relation schema is in 2^{nd} normal form if

1 - it is in 1NF and

2 - every attribute is **fully** functionally dependent on the primary key of the relation. No partial dependency.

3rd Normal Form (3NF)

Third Normal Form (3NF) (no transitive dependencies):

A relation schema is in $3^{\rm rd}$ normal form if no non-prime attribute is functionally dependent on another non-prime attribute

Boyce Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF):

- A relation schema is in BCNF if
- 1 it is in 3NF
- 2 all FD determinants are subset of the primary key

Normalization Sales Pitch

Any non-key attribute in a relation schema must be

about the key

the whole key

and nothing but the key

So help me Codd