一.实验题目. 电路定理和运算放大器(A)

二、实验目的、活习测量线性有源-端口网络的戴维斯等效电路 参数石端口补货性的方法,加课对戴维南定理 的理解。

面过搭建电压跟随器了解运算放大器功能。

三实验仪器与横块名称:

DP832直流电压源,直流电流源, DPS 画域信号发送器 Fluke 190-104型测试仪 Fluke isos 电流钳表, 当它不同表。

以202烯元件X2, FU熔断器X1、田RP17(1ks/sw)电位器X1 电阻箱(10x/00)X1.电阻箱(10X1K)X2. AX3运算放大器X1

四.预习显考问趣解答

(1) B (2) C (3) B (4) C (3) A (6) A 五、实验过程

1. 基本任务

(1) 直流电压源.电流源,正数信号发生器正常.标称470只电阻万月表测得470只,200只电阻箱200.2只保险丝正常.元器件值工带 推

(2) 电位器残扰式的研究

1ka 电位器模块由在左至右有3个(用1.2.3表示)接线面孔、将数字不用表 11

的电阻挡测试线分别接入1.3;1.2;2.3插孔,调整 基旋钮,研究电阻的变化范围,记录测量结果,实验 中名儒像1~1以的可调电阻,应如何接线;闲文学说 呕或运 出色接承意图。

27721	
插孔	口电阻变化范围
1.3	0.994-> 0.989->0.99462
1.2	0.3s -> 0.994KS
ا رج	0.994KR -> 0.257

,式, 1~1kx 可调曲阻接线 催况 如图所承.

的戴维南定理的研究

实验电路如图1所示. Us =16V, R1=47052, R2=20052, Is=20~22mA RL为ON/KR可调电阻。将ab市侧支路取出、作为处电路, 与可调地阻决联的熔断器 FU, 可以防止电路接线错 没而损坏电位器。ab 左侧电路的含源上端中网络

, R,	
, + T	FU
U _s D L _s D	R ₁ U D R ₁
L	J b

R _L	电流/mA			地丘ル
~~	11/a	I断	1	U
1	337	281	Isc=\$6	0
_ a		/·	0.	Uc=7.85
3	318	280	38	2.53
4,	305	274	31	4.00
5	302	280	22	5.01
6/	288	272.	16	6.01
/-		-	_	-
测试	似设置	方法	METER	林士

1 1	倒ユ		
1>测量该 U/V↑	15 CD 36 CD 31	45-14 11- f17)	出社
IIIVA MIS ELIA	10 M2 M2 V	42.15 n= 1(1)	00/7
U/ V T			

(16, 6.01)6.00 (22,5*0*1) (31,4*0*0) 4.00

0,2785)

20

列Us, 通道B: DC耦合, 电压探针, 1:1衰减

龙带宽阳削,位置编号1

138,2.53)刷U, 通道C: DC耦合, 电压探针, 1:1表减 位置编号3 道D: DC 耥会 电流探针,1:1夏碱

I/mA 世际波 100mMA 56 (\$6.0) 8 24 40

2>测量含源一端口网络的等效电阻 Ri

电路原理图如图3.将电源置零,在a.b两端各外加电源 U=lox. 围电流钳表规端口电流,结果加下

$$U = 10.0 \text{ V}$$
 才楽-: R理论= $\frac{U0c}{Isc} = 140.17 \Omega$
1通= 345mA 方梁2: Ri = $\frac{U}{I} = 138.9 \Omega$.
1断= 2BmA

3).戴维南等效电路即指性U'=f(I')测量

想见题图4 金桂电路,电压源设置U=U∞=7.85V,用电阻箱 串联出 Ri=140Ω等效电阻, 因通道B 遥测 电源电压. 用道

道D测电流、测试仪设置方法同 12.

		ľ	
+	Ri	+	
Uac		U' DEU	
- T		PRI	
-	100	آلت	

٠,	7:	图	4
77	7/1	12	•

外特性U'=f(1')数据姑衷. 自变量 取电压值, 比较I'S

. 13 14	1	I'/mV		
R ₁	1′鱼	1半年	I'	U'
,	33 8	284	54	7.85
د	296	282	14	6.00
3	300	278	22	5,00
4	314	284	30	4.00
5	324	287	37	2.50

1的值,在误差允许范围内可近似认为相等

证明戴维南等叙电源定理成立

4> 测试仅设置方法: METER J用表模式,具体类型见承2>页.

[思考题] 戴维南等敌电路中,电压源的电压值调节的是使屏幕显 永值为Un. 还是使测试确议测量数值为Un?

答:使测试仪测量盖值为Ur. 原因是电压源有一定输出内 阻、分压,使真正输出电压小于 Urc.

2.研究任务、

(1) 安强电路如图上所示, 搭建电压跟随器

2>测量含源一端口网络的等效电阻 Ri

电路原理图如图3,将电源置腰,在a.b两端盛外加电源

U=lax_. 用电流钳表*测端口电流,结果加下

$$U = 10.0 V$$
 方案-: R理论= $\frac{U \propto}{15c} = 140.17 \Omega$
 $R = 345 \text{mA}$ 方案2: $Ri = \frac{U}{1} = 138.9 \Omega$

I = 1面-1断=72mA

3). 戴维南等效电路外指性U'=f(1')测量 要电路图4 金接电路,电压源设置U=U∝=7.85V,用电阻箱 串联出 Ri=140Ω等效电阻, 冈通道B遥测 电源电压. 闲道

道D测电流.测试包设置方法图 12.

		ı'
4	Ri	+
Uac		U´ DFU
-		DR
<u></u>	120	

•				
R	1′鱼	1/49	I'	U'
,	33 8	284	54	7.85
د	296	282	14	6.00
_ 3	300	278	22	2:20
4	314	284	30	4.00
5	2214	087	2.7	- (

ט'/ע

讨论: 图4 孙特性U'=f(2')数据如表. 自变量 取电压值,比较1/5

工的值,在误差允许范围内可近似认为相等

证明戴维南等叙电源定理成立

4>测试仪设置方法: METER 万用表模式,具体类型见最2>页.

思考题] 戴维南等敌电路中,电压源的电压值调节的是使屏幕显 永值为Un. 还是使测试概以测量数值为Un?

答:使测试似测量盖值的Ur.原因是电压源有一定输出内 阻、分压,使真正输出电压小于山北.

2.研究任务。

(1) 安致电路如图与所示, 塔建电压跟随器

12)·其中R=1KS2. Fluke 190-104 测试仪的 B通 道测输入电压UI. C通道测输出电压U。 0+·将直流稳压电源调至工止V电压,用于给 Uo 花片供电 ·记录测量结果并计算电压跟随器的电压 Иı 图 5 电压跟随器一放大倍离

测量结果: UI = 3.00 V U0 = 3,00 V 电压放大线 $A_{\text{U}} = \frac{U_{\text{I}}}{14n} = \frac{300V}{300V} = 1$

的通过实验验证电压跟陆器的隔离作用

图6两图中有截电阻凡均的300只, '翰入电压UI均的3V.左侧 的电路机了跟随器。利用测量RI电阻两端电压、比 · 敌负载消耗功率. 通过他压住 除泡阻值方法, 降四, 移输 入电流, 求两个电源的输及出功率, 并对结果进行讨论.

·将凡建入图5所示输出。

$$P_1 = \frac{U_0^2}{R} = \frac{3u_0^2}{3u_0} = 0.03 W$$

· at 图组 Uo =3V.

讨论: 电压跟随器 电源输出功率远小于对照组输出 功率,但是电压跟随器须对芯片供电。层功输 幺功率大30分人.

泉验结论

- ,原网络外特性曲线与戴维南等效外电路外特性曲线基本重合,在误差允许范围内,认为戴维南足理成立
- 2. 电压跟随器是实现输出电压跟随输入电压变化的一类电子件。整放大倍数为 1。 电压跟随器 超缓冲, 隔离 被3 带截触力的作用。 特点是,输出阻抗低,输入阻抗 3。 利用这个特点,电压跟随器常用作中间据,以"隔离" 前后报三间影响。
 - 3. 输入电流很小(微曲级)说明输入阻抗很大,输出电流大、说明输出阻抗低,具有隔离作用。

资源分享站

QQ: 2842305604

扫一扫二维码,加我QQ好友。