Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:		
	Herbst	47111
Kennwort:	1999	46111
Arbeitsplatz-Nr.:		

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach:

Informatik (nicht vertieft studiert)

Einzelprüfung:

Programmentw./Systempr./Datenbanksys.

Anzahl der gestellten Themen (Aufgaben):

Anzahl der Druckseiten dieser Vorlage:

3

Bitte wenden!

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe 1 (B-Bäume):

Wir betrachten B-Bäume vom Typ m. In einem solchen Baum speichert also jeder Knoten zwischen m und $2 \cdot m$ Schlüsselwerten.

- a) Geben Sie eine Typvereinbarung für einen einzelnen Knoten eines B-Baumes vom Typ m=2 in einer Programmiersprache an, wobei die Schlüsselwerte vom Typ Integer sein sollen.
- b) Geben Sie ein Programm in der Programmiersprache aus a) zum LWR-Durchlauf eines B-Baumes an. Dabei soll für einen Knoten v mit k Schlüsselwerten s_1, \ldots, s_k und k+1 Teilbäumen T_1, \ldots, T_{k+1} folgende Durchlaufreihenfolge vorliegen:

$$T_1, s_1, T_2, s_2, \dots, T_i, s_i, T_{i+1}, \dots T_k, s_k, T_{k+1}.$$

Beim Durchlaufen eines Schlüsselwerts s_i soll dieser ausgegeben werden.

Benutzen Sie beispielsweise eine der folgenden Programmiersprachen: Pascal, C, C++, Java.

Teilaufgabe 2 (Lineare Listen):

- a) Implementieren Sie das bekannte Sortierverfahren *Quicksort* auf einfach verketteten linearen Listen.
- b) Implementieren Sie ein Verfahren zur Invertierung einfach verketteter linearer Listen. Aus einer linearen Liste $L = (a_1, a_2, ..., a_n)$ soll die inverse lineare Liste $L^i = (a_n, ..., a_2, a_1)$ erzeugt werden. Dabei darf die alte Listenstruktur von L zerstört werden.

Benutzen Sie beispielsweise eine der folgenden Programmiersprachen: Pascal, C, C++, Java.

Teilaufgabe 3 (SQL-Anfragen):

Gegeben sei eine relationale Datenbank mit den Relationen Buch, Entleiher und Ausleihe mit den Attributmengen U_b , U_e , und U_a :

```
U_b = \{ Buch\_Nr, Buch\_Titel, Standort \},
U_e = \{ Entleiher\_Nr, Name, Vorname, Anschrift, Alter, Geschlecht, Hauptfach \},
U_a = \{ Entleiher\_Nr, Buch\_Nr, Entleih Datum, Rückgabe Datum \}.
```

Geben Sie SQL-Statements an für folgende Anfragen:

- a) Entleiher mit Name, Vorname, Alter und Anschrift
- b) Hauptfächer der Entleiher des Buches "Objektorientierte Datenbanken"
- c) Entleiher mit Name und Vorname sowie den Buchtiteln und den Rückgabedaten ihrer entliehenen Bücher
- d) Anzahl der weiblichen Entleiher zwischen 25 und 30 Jahren
- e) Durchschnittliches Alter der Entleiher der gespeicherten Bücher gruppiert nach Buchtiteln