Chapter 2 - Matrices

Theorem 2.2.22

Let A be an m x n matrix

- 1. $(A^T)^T = A$
- 2. if be is also m x n matrix, then $(A + B)^T = A^T + B^T$
- 3. if c is a scalar, then $(cA)^T = cA^T$
- 4. if B is n x p matrix, then $(AB)^T = B^TA^T$

Matrix Inverse -

Let A be a square matrix of order n. Then A is said to be invertible if there exists a square matrix B of order n such that

AB= I and BA= I.

The matrix **B** here is called an inverse of **A**.

A square matrix is called singular if it has no inverse.

Remark 2.3.4 - Cancellation laws

- 1. Cancellation laws for matrix multiplication:
- Let **A** be an invertible $m \times m$ matrix.
- (a) If B_1 and B_2 are $m \times n$ matrices such that $AB_1 = AB_2$, then $B_1 = B_2$.
- (b) If C_1 and C_2 are $n \times m$ matrices such that $C_1A = C_2A$, then $C_1 = C_2$.
- If A is not invertible, the cancellation laws may not hold.

For example, let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
, $B_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$. Then $AB_1 = AB_2$ but $B_1 \neq B_2$.

Theorem 2.3.9 – properties of inverse

Let ${\it A}, {\it B}$ be two invertible matrices and ${\it c}$ a nonzero scalar.

- 1. cA is invertible and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- 2. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.
- 3. A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- 4. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

By Part 4, if A_1 , A_2 , ..., A_k are invertible matrices, then $A_1A_2 \cdots A_k$ is invertible and $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1} \cdots A_2^{-1} A_1^{-1}.$

Theorem 2.4.7 – Invertible matrices equivalence

Let A be a n×n matrix. The following statements are equivalent:

- 1. A is invertible.
- 2. The linear system Ax = 0 has only the trivial solution.
- 3. The reduced row-echelon form of A is an identity matrix. -> No zero rows
- 4. A can be expressed as a product of elementary matrices.
- 5. $det(A) \neq 0$.
- 6. The rows of A form a basis for n.
- 7. The columns of A form a basis for n.
- 8. Rank(A) = n
- 9. 0 is not an eigenvalue of A

Theorem 2.5.10

 $det(\mathbf{A}^{\mathsf{T}}) = det(\mathbf{A})$

Theorem 2.5.15 - Effect of elementary row operations on the determinant

Let $\mathbf{A} = (a_{ii})$ be an $n \times n$ matrix.

$$A \xrightarrow{R_i \leftrightarrow R_j} \mathbf{B_1} \quad \det(\mathbf{B_1}) = k \det(\mathbf{A})$$

$$A \xrightarrow{R_i \leftrightarrow R_j} \mathbf{B_2} \quad \det(\mathbf{B_2}) = -\det(\mathbf{A})$$

$$R_j + kR_i \longrightarrow \mathbf{B_3} \quad \det(\mathbf{B_3}) = \det(\mathbf{A})$$

Furthermore, if \mathbf{E} is an elementary matrix of the s size as \mathbf{A} , then $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E}) \det(\mathbf{A})$.

Theorem 2.5.22.3

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(A)}$$

Adjoints 2.5.24

Let \mathbf{A} be a square matrix of order n.

The (classical) adjoint of \mathbf{A} is the $n \times n$ matrix

$$\mathbf{adj}(\mathbf{A}) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

where A_{ij} which is the (i, j)-cofactor of A.

If **A** is an invertible matrix,

the
$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Theorem 2.5.27 - Cramer's Rule

Suppose Ax = b is a linear system

where
$$\mathbf{A} = (a_{ij})_{n \times n}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

Let A_i be the $n \times n$ matrix obtained from A by replacing the ith column of A by b,

i.e.
$$\mathbf{A}_{i} = \begin{bmatrix} a_{11} & \cdots & a_{1,i-1} & b_{1} & a_{1,i+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,i-1} & b_{2} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,i-1} & b_{n} & a_{n,i+1} & \cdots & a_{nn} \end{bmatrix}$$

If A is invertible, then the system has only one solution

$$\mathbf{x} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} \det(\mathbf{A}_1) \\ \det(\mathbf{A}_2) \\ \vdots \\ \det(\mathbf{A}_n) \end{bmatrix}$$

Proof: $Ax = b \Leftrightarrow x = A^{-1}b = \frac{1}{\det(A)} \operatorname{adj}(A) b$.

$$\mathbf{adj}(\mathbf{A}) \ \mathbf{b} = \begin{bmatrix} A_{11} \ A_{21} \cdots A_{n1} \\ A_{12} \ A_{22} \cdots A_{n2} \\ \vdots & \vdots & \vdots \\ A_{1n} \ A_{2n} \cdots A_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} b_1 A_{11} + b_2 A_{21} + \cdots + b_n A_{n1} \\ b_1 A_{12} + b_2 A_{22} + \cdots + b_n A_{n2} \\ \vdots \\ b_1 A_{1n} + b_2 A_{2n} + \cdots + b_n A_{nn} \end{bmatrix}$$

So the solution to the system is

$$\mathbf{x} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} b_1 A_{12} + b_2 A_{22} + \cdots + b_n A_{n2} \\ \vdots \\ b_1 A_{1n} + b_2 A_{2n} + \cdots + b_n A_{nn} \end{bmatrix}$$
 where for $i = 1, 2, ..., n$,
$$\det(\mathbf{A}_i) = \begin{bmatrix} a_{11} \cdots a_{1,i-1} & b_1 & a_{1,i+1} \cdots & a_{1n} \\ a_{21} \cdots a_{2,i-1} & b_2 & a_{2,i+1} \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} \cdots a_{n,i-1} & b_n & a_{n,i+1} \cdots & a_{nn} \end{bmatrix}$$
 cofactor expansion along the i^{th} column
$$\rightarrow = b_1 A_{1i} + b_2 A_{2i} + \cdots + b_n A_{ni}.$$

Chapter 3 – Vector Spaces

Discussion 3.2.5

To prove Span(S) = $R^n \rightarrow Use rref$

$$\text{Let } \mathbf{A} = \begin{bmatrix} u_1 & u_2 & u_k \\ a_{11} & a_{21} & \cdots & a_{k1} \\ a_{12} & a_{22} & \cdots & a_{k2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{kn} \end{bmatrix}$$

- If a row-echelon form of A has no zero row, then the linear system is always consistent regardless the values of v₁, v₂, ..., v₂ and hence span(S) = ℝⁿ.
- If a row-echelon form of A has at least one zero row, then the linear system is not always consistent and hence span(S) ≠ Rⁿ.

Definition 3.3.2 – Subspaces

Let V be a subset of Rⁿ

V is called a subspace of Rⁿ

If V = Span(S), where S = $\{u_1, u_2, u_k\}$ for $u_1, u_2, u_k \in R^n$

From theorem 3.2.9 – properties of subspace

Let V be a subspace of Rⁿ

- 1. $0 \in V$ (V must contain the origin)
- 2. For any v_1 , v_2 , ..., $v_r \in V$ and c_1 , c_2 , ..., $c_r \in R$,

$$c_1v_1 + c_2v_2 ... + c_rv_r \in V$$

Vector space

We adopt the following conventions:

- 1. A set V is called a vector space if either $V = \mathbb{R}^n$ or V is a subspace of \mathbb{R}^n .
- Let W be a vector space, say, W = Rⁿ or W is a subspace of Rⁿ.

A set V is called a subspace of W if

V is a vector space and $V \subseteq W$,

i.e. V is a subspace of \mathbb{R}^n which lies completely inside W.

Basis –

Let V be a vector space

Let $S = \{u_1, u_2, u_k\}$ a subset of VThen S is called a Basis for V if

- 1. S is linearly independent
- 2. S spans V

[Most Effective Span]

Coordinate System

You must understand yourself

Theorem 3.6.7

If we want to check that S is a basis for V, and we know the dimension of V is K. we only need to check any two of the three conditions:

- (i) S is linearly independent;
- (ii) S spans V;
- (iii) |S| = k.

Transition matrix -

Convert the coordinates from one basis to another basis.

 $S = \{u1, u2, u3 ... uk\}$

 $T = \{v1, v2, v3 ... vk\}$

MA1101R Cheat Sheet

 $[w]_T = P[w]_S \rightarrow convert a vector from basis$ S to basis T

 $P = [[u1]_T [u2]_T ... [uk]_T]$

Chapter 4 - Vector Spaces Associated with Matrices

Remark 4.1.9 => Finding Basis of A using Row Vectors.

Let A be a matrix and R a row-echelon form of A.

So, basis of A are the non-zero rows of R.

Properties of column Vectors

Linear Independence of Column Vectors are preserved after row operations

Finding Basis of A using Column Vectors.

A -Gaussian Elimination -> R

- Column space of R =/= column space of A
- The basis for the column space of A can be obtained by taking columns of A that correspond to the pivot columns in R
- Every non pivot column is a linear combination of other columns.

Definition 4.2.3 - Rank

The rank of a matrix is the dimension of its row space or its column space

Theorem 4.2.8 - Ranks of product of matrices

Let A and B be $m \times n$ and $m \times p$ matrices respectively. Then: $rank(AB) \leq min\{ rank(A), rank(B) \}.$

Nullspace

The solution space of the homogeneous linear system Ax = 0is known as the nullspace of A.

The dimension of the nullspace of A is called the nullity of A and is denoted by nullity(A).

Nullity -> the non pivot column of R

Here $\text{nullity}(\mathbf{A}) = 2$. Rank(A) + nullity(A) = no. of column of A

Chapter 5 - Orthogonality

Dot Product is like matrix multiplication. Should know by heart.

Distance
$$\rightarrow$$
 U1 . U1
Angle = $\cos^{-1} \left(\frac{u.v}{||u|| \, ||v||} \right)$

the nullspace of A.

Orthogonal – 90 degree between the two vectors (perpendicular)

Orthogonal sets are linearly independent

Orthonormal set: a set of vectors all of which are orthogonal with each other. and each have norm (length) 1.

Theorem 5.2.8.1 Orthogonal basis

It is easy to get the coordinate vector of w. If $S = \{u1, u2, ... uk\}$

$$W = \frac{w.u1}{u1.u1}u1 + \frac{w.u2}{u2.u2}u2 \dots + \frac{w.uk}{uk.uk}uk$$
$$[w]_{s} = (\frac{w.u1}{u1.u1}, \frac{w.u2}{u2.u2}, \dots \frac{w.uk}{uk.uk})$$

A vector u is said to be orthogonal to V if u is orthogonal to all vectors in V. (the Basis of V, or any spanning set). If u is orthogonal to these, then it is orthogonal to V.

Projection

Orthogonal bases & projections (Theorem 5.2.15.1)

Let V be a subspace of \mathbb{R}^n and $\{u_1, u_2, ..., u_k\}$ an orthogonal basis for V. Then for any $w \in \mathbb{R}^n$,

is the projection of w onto V.

Proof: Define $p = \frac{w \cdot u_1}{u_1 \cdot u_2} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{w \cdot u_2}{u_2 \cdot u_2} u_3 + \cdots + \frac{w \cdot u_2}{u_2 \cdot u_2} u_4 + \cdots + \frac{w \cdot u_2}{u$ and n = w - p

Since w = n + p where p is a vector in V, to show that p is a projection of w onto V, it suffices to show n is orthogonal to V.

P is clearly in V

To proof n is orthogonal to V

To show n is orthogonal to V:

For
$$i = 1, 2, ..., k$$
, $n \cdot u_i = (w - p) \cdot u_i$
 $= w \cdot u_i - p \cdot u_i$
 $= w \cdot u_i - \left[\frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k \right] \cdot u_i$
 $= w \cdot u_i - \frac{w \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_i) - \frac{w \cdot u_2}{u_2 \cdot u_2} (u_2 \cdot u_i) - \dots$
 $= w \cdot u_i - \frac{w \cdot u_i}{u_1 \cdot u_i} (u_i \cdot u_i)$
 $= 0$.
So n is orthogonal to V .

The projection of u to V is p.

The vector p is the best approximation of u in V.

Theorem 5.2.19

Gram – Schmidt process

Make any basis into an orthogonal Basis Let $\{u_1, u_2, ..., u_k\}$ be a basis for a vector space V.

Let $v_1 = u_1$, $\mathbf{v}_3 = \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_4 \cdot \mathbf{v}_4} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2,$

 $\mathbf{v}_{k} = \mathbf{u}_{k} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{1}}{\mathbf{v}_{*} \cdot \mathbf{v}_{*}} \mathbf{v}_{1} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{k-1}}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}} \mathbf{v}_{k-1}$

Then $\{v_1, v_2, ..., v_k\}$ is an orthogonal basis for V.

Furthermore, $\left\{ \frac{1}{||v_1||} \, v_1, \frac{1}{||v_2||} \, v_2, \, ..., \frac{1}{||v_k||} \, v_k \, \right\}$ is an orthonormal basis for V.

5.3 Best Approximations

Let Ax = b be a linear system where A is an $m \times n$

Austin Santoso

A vector $\mathbf{u} \in \mathbb{R}^n$ is called a least square solution to the linear system Ax = b if $||b - Au|| \le ||b - Av||$ for all $v \in \mathbb{R}^n$. (#)

Let $V = \{ Av \mid v \in \mathbb{R}^n \}$ and p = Au

Then (#) is rewritten as

 $d(\mathbf{b}, \mathbf{p}) \le d(\mathbf{b}, \mathbf{w})$ for all $\mathbf{w} \in V$, i.e. p = Au is the best

The best approximation to the equation Ax = b.

The least Square Solution is u

Where Au = p.

Where p is the span of the column space

To solve least square:

Alternatively, u is a solution to the equation

$$A^{T}Ax = A^{T}b$$

Using this method, we can find the projection of b onto A.

Since p = Ax. If x has infinitely many solution (an arbitrary parameter) take any solution to get Ax = p.

5.4 - Orthogonal Matrices

An orthogonal Matrix has the property $P^{-1} = P^T$

Given two orthonormal bases

 $E = \{e1. e2. ... ek\}$

 $S = \{u1, u2, ... uk\}$

The transition Matrix from E to S is P. The Transition matrix from S to E is Q.

P is OT

(By theorem 3.7.5) => Q = P^{-1} So. $P^{-1} = P^{T}$

To find:

Theorem 5.4.6 - orthogonal matrices

- A is orthogonal
- 2. The rows of A form an orthonormal basis for Rn
- The columns of A form an orthonormal basis for Rn