NAVEEN BALARAJU MACULAR DEGENERATION – A PILOT STUDY

Case Vs Control

Balanced Accuracy: 1.0000

```
Console ~/Desktop/project/ 🚕
 randomForest(formula = ME_case_control ~ ., data = age_data,
                                                                      importance = TRUE, subset = train)
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 1
        00B estimate of error rate: 3.33%
Confusion matrix:
        case control class.error
          16
               0 0.00000000
control
                 13 0.07142857
          1
> pred.case.control = predict(rf.case.control, newdata=age_data[-train ,])
> resp.test=age_data[-train ,"ME_case_control"]
> caret::confusionMatrix(resp.test,pred.case.control)
Confusion Matrix and Statistics
          Reference
Prediction case control
   case
            11
   control
              0
               Accuracy: 1
                 95% CI : (0.8389, 1)
    No Information Rate : 0.5238
    P-Value [Acc > NIR] : 1.267e-06
                  Kappa : 1
 Mcnemar's Test P-Value : NA
            Sensitivity: 1.0000
            Specificity: 1.0000
         Pos Pred Value : 1.0000
         Neg Pred Value : 1.0000
             Prevalence: 0.5238
         Detection Rate: 0.5238
   Detection Prevalence: 0.5238
```

intermediate, control and advanced

Call:

randomForest(formula = AMD_ini_level_WS_c ~ ., data = age_data,

Type of random forest: classification

Number of trees: 500 importance = TRUE, subset = train)

No. of variables tried at each split: 1

00B estimate of error rate: 13.33%

Confusion matrix:

	Advanced AMD	Intermediate	AMD	None	or	early	AMD	class.error
Advanced AMD	5		3				0	0.375
Intermediate AMD	1		7				0	0.125
None or early AMD	0		0				14	0.000

> pred.ICA = predict(rf.ICA, newdata=age_data[-train ,])
> resp.ICA=age_data[-train ,"AMD_ini_level_WS_c"]

> caret::confusionMatrix(resp.ICA,pred.ICA)

Confusion Matrix and Statistics

Reference

Prediction	Advanced AMD	Intermediate A	AMD None	or early	AMD
Advanced AMD	2		0		0
Intermediate AMD	4		5		0
None or early AMD	0		0		10

Overall Statistics

Accuracy : 0.8095 95% CI : (0.5809, 0.9455) No Information Rate : 0.4762 P-Value [Acc > NIR] : 0.00185

Kappa : 0.7042 Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: Advanced AMD	Class: Intermediate AMD (Class: None or early AMD
Sensitivity	0.33333	1.0000	1.0000
Specificity	1.00000	0.7500	1.0000
Pos Pred Value	1.00000	0.5556	1.0000
Neg Pred Value	0.78947	1.0000	1.0000
Prevalence	0.28571	0.2381	0.4762
Detection Rate	0.09524	0.2381	0.4762
Detection Prevalence	0.09524	0.4286	0.4762
Balanced Accuracy	0.66667	0.8750	1.0000

Grouping control and intermediate into one class and advanced to other class

```
randomForest(formula = AMD_ini_level_WS_c ~ ., data = age_data,
                                                                    importance = TRUE, subset = train)
              Type of random forest: classification
                    Number of trees: 500
No. of variables tried at each split: 1
       OOB estimate of error rate: 23.33%
Confusion matrix:
 1 2 class.error
1 2 4 0.6666667
2 3 21 0.1250000
> pred.CIvsA = predict(rf.CIvsA, newdata=age_data[-train ,])
> resp.CIvsA=age_data[-train ,"AMD_ini_level_WS_c"]
> caret::confusionMatrix(resp.CIvsA,pred.CIvsA)
Confusion Matrix and Statistics
         Reference
Prediction 1 2
        1 2 1
        2 1 16
              Accuracy: 0.9
                95% CI: (0.683, 0.9877)
   No Information Rate: 0.85
   P-Value [Acc > NIR] : 0.4049
                 Kappa: 0.6078
Mcnemar's Test P-Value : 1.0000
           Sensitivity: 0.6667
           Specificity: 0.9412
        Pos Pred Value: 0.6667
        Neg Pred Value: 0.9412
            Prevalence: 0.1500
        Detection Rate: 0.1000
  Detection Prevalence: 0.1500
     Balanced Accuracy: 0.8039
```

Control vs Advanced

```
Call:
 randomForest(formula = AMD_ini_level_WS_c ~ ., data = dummy_data,
                                                                            importance = TRUE, subset = train)
               Type of random forest: classification
                      Number of trees: 500
No. of variables tried at each split: 1
        00B estimate of error rate: 10%
Confusion matrix:
                   Advanced AMD None or early AMD class.error
Advanced AMD
                              6
                                                 1 0.14285714
None or early AMD
                              1
                                                12 0.07692308
> pred.CvsA = predict(rf.CvsA, newdata=dummy_data[-train ,])
> resp.CvsA=dummy_data[-train ,"AMD_ini_level_WS_c"]
> caret::confusionMatrix(resp.CvsA,pred.CvsA)
Confusion Matrix and Statistics
                    Reference
Prediction
                     Advanced AMD None or early AMD
  Advanced AMD
                                3
  None or early AMD
                                0
                                                  12
               Accuracy: 1
                  95% CI: (0.782, 1)
    No Information Rate : 0.8
    P-Value [Acc > NIR] : 0.03518
                   Kappa : 1
 Mcnemar's Test P-Value : NA
            Sensitivity: 1.0
            Specificity: 1.0
         Pos Pred Value : 1.0
         Neg Pred Value : 1.0
             Prevalence: 0.2
         Detection Rate: 0.2
   Detection Prevalence: 0.2
      Balanced Accuracy: 1.0
```