Sorting.

The table below summarizes the number of compares for a variety of sorting algorithms, as implemented in this textbook. It includes leading constants but ignores lower-order terms.

ALGORITHM	CODE	IN PLACE	STABLE	BEST	AVERAGE	WORST	REMARKS
selection sort	Selection.java	✓		$\frac{1}{2}n^2$	$\frac{1}{2}$ n^2	$\frac{1}{2} n^2$	<i>n</i> exchanges; quadratic in best case
insertion sort	Insertion.java	✓	√	n	$\frac{1}{4}n^2$	$\frac{1}{2} n^2$	use for small or partially-sorted arrays
bubble sort	Bubble.java	✓	√	n	$\frac{1}{2}$ n^2	$\frac{1}{2} n^2$	rarely useful; use insertion sort instead
shellsort	Shell.java	✓		$n \log_3 n$	unknown	c <i>n</i> ^{3/2}	tight code; subquadratic
mergesort	Merge.java		√	½ n lg n	$n \lg n$	n lg n	<i>n</i> log <i>n</i> guarantee; stable
quicksort	Quick.java	✓		n lg n	$2 n \ln n$	$\frac{1}{2} n^2$	n log n probabilistic guarantee;fastest in practice
heapsort	<u>Heap.java</u>	✓		n†	$2 n \lg n$	2 n lg n	n log n guarantee; in place

 $^{^{\}dagger}$ n lg n if all keys are distinct

Priority queues.

The table below summarizes the order of growth of the running time of operations for a variety of priority queues, as implemented in this textbook. It ignores leading constants and lower-order terms. Except as noted, all running times are worst-case running times.

DATA STRUCTURE	CODE	INSERT	DEL-MIN	MIN	DEC-KEY	DELETE	MERGE
array	BruteIndexMinPQ.java	1	n	n	1	1	n
binary heap	IndexMinPQ.java	$\log n$	$\log n$	1	$\log n$	$\log n$	n
d-way heap	IndexMultiwayMinPQ.java	$\log_d n$	$d \log_d n$	1	$\log_d n$	$d \log_d n$	n
binomial heap	IndexBinomialMinPQ.java	1	$\log n$	1	$\log n$	$\log n$	$\log n$
Fibonacci heap	IndexFibonacciMinPQ.java	1	$\log n^{\dagger}$	1	1 †	$\log n^{\dagger}$	1

[†] amortized guarantee

Symbol tables.

The table below summarizes the order of growth of the running time of operations for a variety of symbol tables, as implemented in this textbook. It ignores leading constants and lower-order terms.

			worst case			average case)
DATA STRUCTURE	CODE	SEARCH	INSERT	DELETE	SEARCH	INSERT	DELETE
sequential search (in an unordered list)	SequentialSearchST.java	n	n	n	n	n	n
binary search (in a sorted array)	BinarySearchST.java	$\log n$	n	n	$\log n$	n	n
binary search tree (unbalanced)	BST.java	n	n	n	$\log n$	$\log n$	sqrt(n)
red-black BST (left-leaning)	RedBlackBST.java	$\log n$	$\log n$	$\log n$	$\log n$	$\log n$	$\log n$
AVL	AVLTreeST.java	$\log n$	$\log n$	$\log n$	$\log n$	$\log n$	$\log n$
hash table (separate-chaining)	<u>SeparateChainingHashST.java</u>	n	n	n	1 [†]	1 †	1 [†]
hash table (linear-probing)	LinearProbingHashST.java	n	n	n	1 [†]	1 †	1 [†]

[†] uniform hashing assumption

Graph processing.

The table below summarizes the order of growth of the worst-case running time and memory usage (beyond the memory for the graph itself) for a variety of graph-processing problems, as implemented in this textbook. It ignores leading constants and lower-order terms. All running times are worst-case running times.

PROBLEM	ALGORITHM	CODE	TIME	SPACE
path	DFS	<u>DepthFirstPaths.java</u>	E + V	V
shortest path (fewest edges)	BFS	BreadthFirstPaths.java	E + V	V
cycle	DFS	Cycle.java	E + V	V
directed path	DFS	<u>DepthFirstDirectedPaths.java</u>	E + V	V
shortest directed path (fewest edges)	BFS	BreadthFirstDirectedPaths.java	E + V	V
directed cycle	DFS	<u>DirectedCycle.java</u>	E + V	V
topological sort	DFS	Topological.java	E + V	V
bipartiteness / odd cycle	DFS	Bipartite.java	E + V	V
connected components	DFS	<u>CC.java</u>	E + V	V
strong components	Kosaraju–Sharir	KosarajuSharirSCC.java	E + V	V
strong components	Tarjan	TarjanSCC.java	E + V	V
strong components	Gabow	<u>GabowSCC.java</u>	E + V	V
Eulerian cycle	DFS	EulerianCycle.java	E + V	E + V
directed Eulerian cycle	DFS	<u>DirectedEulerianCycle.java</u>	E + V	V
transitive closure	DFS	TransitiveClosure.java	V(E+V)	V^2
minimum spanning tree	Kruskal	KruskalMST.java	$E \log E$	E + V
minimum spanning tree	Prim	<u>PrimMST.java</u>	$E \log V$	V
minimum spanning tree	Boruvka	BoruvkaMST.java	$E \log V$	V
shortest paths (nonnegative weights)	Dijkstra	<u>DijkstraSP.java</u>	$E \log V$	V
shortest paths (no negative cycles)	Bellman–Ford	BellmanFordSP.java	V(V+E)	V
shortest paths (no cycles)	topological sort	AcyclicSP.java	V + E	V
all-pairs shortest paths	Floyd–Warshall	FloydWarshall.java	V^3	V^2
maxflow-mincut	Ford-Fulkerson	FordFulkerson.java	E V (E + V)	V
bipartite matching	Hopcroft-Karp	HopcroftKarp.java	$V^{\frac{1}{2}}\left(E+V\right)$	V
assignment problem	successive shortest paths	AssignmentProblem.java	$n^3 \log n$	n^2

Commonly encountered functions.

Here are some functions that are commonly encountered when analyzing algorithms.

NOTATION	DEFINITION
$\lfloor x \rfloor$	largest integer not greater than $oldsymbol{x}$
$\lceil x ceil$	smallest integer not smaller than $oldsymbol{x}$
$\lg x$ or $\log_2 x$	y such that $2^y=x$
$\ln x$ or $\log_e x$	y such that $e^y=x$
$\log_{10} x$	y such that $10^y=x$
$\lg^* x$	0 if $x \leq 1; \; \lg^*(\lg x)$ otherwise
H_n	$1+1/2+1/3+\ldots+1/n$
n!	$1\times 2\times 3\times \ldots + n$
$\binom{n}{k}$	$rac{n!}{k! \; (n-k)!}$
	$egin{array}{c} ig\lfloor xig floor \ ig x \ ig x \ ig r \ ig x \ ig r \ i$

Useful formulas and approximations.

Here are some useful formulas for approximations that are widely used in the analysis of algorithms.

- Harmonic sum: $1+1/2+1/3+\ldots+1/n\sim \ln n$
- ullet Triangular sum: $1+2+3+\ldots+n=n\left(n+1
 ight)/\left(2\sim n^2\right)/\left(2+1\right)$
- ullet Sum of squares: $1^2+2^2+3^2+\ldots+n^2\sim n^3\ /\ 3$
- ullet Geometric sum: If r
 eq 1 , then $1+r+r^2+r^3+\ldots+r^n=(r^{n+1}-1) \ / \ (r-1)$
- ullet Geometric sum (r = 1/2): $1+1/2+1/4+1/8+\ldots+1/2^n\sim 2$
- ullet Geometric sum (r = 2): $1+2+4+8+16+\ldots+n=2n-1\sim 2n$, when n is a power of 2
- ullet Stirling's approximation: $\lg(n!) = \lg 1 + \lg 2 + \lg 3 + \ldots + \lg n \sim n \lg n$
- Exponential: $(1-1/n)^n \sim 1/e$
- ullet Binomial coefficients: $inom{n}{k}\sim n^k \,/\, k!$ when k is a small constant
- Approximate sum by integral: If f(x) is a monotonically increasing function, then $\int_0^n f(x) \ dx \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \ dx$

Properties of logarithms.

- Definition: $\log_b a = c$ means $b^c = a$. We refer to b as the base of the logarithm.
- Special cases: $\log_b b = 1, \, \log_b 1 = 0$
- Inverse of exponential: $b^{\log_b x} = x$
- Product: $\log_b(x \times y) = \log_b x + \log_b y$
- Division: $\log_b(x \div y) = \log_b x \log_b y$
- Finite product: $\log_b(x_1 imes x_2 imes \ldots imes x_n) = \log_b x_1 + \log_b x_2 + \ldots + \log_b x_n$
- ullet Changing bases: $\log_b x = \log_c x \ / \ \log_c b$
- Rearranging exponents: $x^{\log_b y} = y^{\log_b x}$
- Exponentiation: $\log_b(x^y) = y \log_b x$

Aymptotic notations: definitions.

NAME	NOTATION	DESCRIPTION	DEFINITION
Tilde	$f(n) \sim g(n)$	f(n) is equal to $g(n)$ asymptotically (including constant factors)	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$
Big Oh	f(n) is $O(g(n))$	f(n) is bounded above by $g(n)$ asymptotically (ignoring constant factors)	there exist constants $c>0$ and $n_0\geq 0$ such that $0\leq f(n)\leq c\cdot g(n)$ for all $n\geq n_0$
Big Omega	$f(n)$ is $\Omega(g(n))$	f(n) is bounded below by $g(n)$ asymptotically (ignoring constant factors)	g(n) is $O(f(n))$
Big Theta	$f(n)$ is $\Theta(g(n))$	f(n) is bounded above and below by $g(n)$ asymptotically (ignoring constant factors)	$f(n)$ is both $O(g(n))$ and $\Omega(g(n))$
Little oh	f(n) is $o(g(n))$	f(n) is dominated by $g(n)$ asymptotically (ignoring constant factors)	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
Little omega	$f(n)$ is $\omega(g(n))$	f(n) dominates $g(n)$ asymptotically (ignoring constant factors)	g(n) is $o(f(n))$

Common orders of growth.

NAME	NOTATION	EXAMPLE		CODE FRAGMENT
Constant	O(1)	array access arithmetic operation function call	op();	

Logarithmic	$O(\log n)$	binary search in a sorted array insert in a binary heap search in a red-black tree	<pre>for (int i = 1; i <= n; i = 2*i) op();</pre>
Linear	O(n)	sequential search grade-school addition BFPRT median finding	<pre>for (int i = 0; i < n; i++) op();</pre>
Linearithmic	$O(n\log n)$	mergesort heapsort fast Fourier transform	<pre>for (int i = 1; i <= n; i++) for (int j = i; j <= n; j = 2*j) op();</pre>
Quadratic	$O(n^2)$	enumerate all pairs insertion sort grade-school multiplication	<pre>for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) op();</pre>
Cubic	$O(n^3)$	enumerate all triples Floyd–Warshall grade-school matrix multiplication	<pre>for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) for (int k = j+1; k < n; k++) op();</pre>
Polynomial	$O(n^c)$	ellipsoid algorithm for LP AKS primality algorithm Edmond's matching algorithm	
Exponential	$2^{O(n^c)}$	enumerating all subsets enumerating all permutations backtracing search	

Asymptotic notations: properties.

- Reflexivity: f(n) is O(f(n)).
- Constants: If f(n) is O(g(n)) and c>0, then $c\cdot f(n)$ is O(g(n)).
- Products: If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) \cdot f_2(n)$ is $O(g_1(n) \cdot g_2(n))$.
- Sums: If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n)+f_2(n)$ is $O(\max\{g_1(n),g_2(n)\})$.
- Transitivity: If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).
- ullet Polynomials: Let $f(n)=a_0+a_1n+\ldots+a_dn^d$ with $a_d>0$. Then, f(n) is $\Theta(n^d)$.
- Logarithms and polynomials: $\log_b n$ is $O(n^d)$ for every b>0 and every d>0.
- Exponentials and polynomials: n^d is $O(r^n)$ for every r>0 and every d>0.
- Factorials: n! is $2^{\Theta(n \log n)}$.
- Limits: If $\lim_{n o \infty} rac{f(n)}{g(n)} = c$ for some constant $0 < c < \infty$, then f(n) is $\Theta(g(n))$.
- Limits: If $\lim_{n o\infty}rac{f(n)}{g(n)}=0$, then f(n) is O(g(n)) but not $\Theta(g(n))$.
- Limits: If $\lim_{n o\infty}rac{f(n)}{g(n)}=\infty$, then f(n) is $\Omega(g(n))$ but not O(g(n)) .

Here are some examples.

Divide-and-conquer recurrences.

For each of the following recurrences we assume T(1)=0 and that $n \mathbin{/} 2$ means either $\lfloor n \mathbin{/} 2 \rfloor$ or $\lceil n \mathbin{/} 2 \rceil$.

RECURRENCE	T(n)	EXAMPLE
$T(n) = T(n \operatorname{/} 2) + 1$	$\sim \lg n$	binary search
$T(n) = 2T(n \operatorname{/} 2) + n$	$\sim n \lg n$	mergesort
T(n)=T(n-1)+n	$\sim rac{1}{2} n^2$	insertion sort
T(n)=2T(n / 2)+1	$\sim n$	tree traversal
T(n)=2T(n-1)+1	$\sim 2^n$	towers of Hanoi
$T(n) = 3T(n / 2) + \Theta(n)$	$\Theta(n^{\log_2 3}) = \Theta(n^{1.58})$	Karatsuba multiplication
$T(n) = 7T(n / 2) + \Theta(n^2)$	$\Theta(n^{\log_2 7}) = \Theta(n^{2.81})$	Strassen multiplication
$T(n) = 2T(n / 2) + \Theta(n \log n)$	$\Theta(n\log^2 n)$	closest pair

Master theorem.

Let $a \geq 1, b \geq 2$, and c > 0 and suppose that T(n) is a function on the non-negative integers that satisfies the divide-and-conquer recurrence

$$T(n) = a \ T(n \, / \, b) + \Theta(n^c)$$

with T(0)=0 and $T(1)=\Theta(1)$, where $n \mathbin{/} b$ means either $\lfloor n \mathbin{/} b \rfloor$ or either $\lceil n \mathbin{/} b \rceil$.

- $\begin{array}{l} \bullet \ \ \text{If} \ c < \log_b a \text{, then} \ T(n) = \Theta(n^{\log_b a}) \\ \bullet \ \ \text{If} \ c = \log_b a \text{, then} \ T(n) = \Theta(n^c \log n) \\ \bullet \ \ \text{If} \ c > \log_b a \text{, then} \ T(n) = \Theta(n^c) \end{array}$