

slido

Join at slido.com #1565862

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

LECTURE 25

Principal Component Analysis II

PCA: A technique for EDA and feature generation.

Data 100/Data 200, Spring 2025 @ UC Berkeley

Narges Norouzi and Josh Grossman

Content credit: Acknowledgments

Incoming Tsunami of Conceptual Challenges!

Be kind to yourself 💙

PCA as Loss Minimization

Lecture 25, Data 100 Spring 2025

PCA as Loss Minimization

Singular Value Decomposition

PCA with SVD

Centering Data and Computing Variance

Useful reference for this lecture:

stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca

Maximizing variance = **Spreading out red dots**

Equivalent: Minimize sum of squared **perpendicular** distances from points to projected point

This **length 1 vector** shows the direction of the **first principal component** (PC1). This is the direction of **maximal variance** in the data.

Visual guide to covariance matrix

Derive PCA using Loss Minimization

Goal: Minimize the reconstruction loss of our matrix factorization model:

Simplified Derivation: consider (k=1)

Let consider the situation when k=1 (i.e., we construct only **one latent feature**):

$$L(z, w) = \frac{1}{n} \sum_{i=1}^{n} (X_i - z_i w) (X_i - z_i w)^T$$

Derivation based on Kevin Murphy's derivation in the excellent PML Textbook.

Simplified Derivation: Optimizing for w

Minimize the loss with respect to w:

$$L(w) = -w\Sigma w^T$$

Make w really big (to infinity) ... but we have the orthonormality constraint ww^T=1

Use <u>Lagrange multiplier λ </u> to introduce the constraint **ww^T=1** to our optimization problem:

i.e., make w length 1

$$L(w,\lambda) = -w\Sigma w^T + \lambda \left(ww^T - 1\right)$$

Intuition for Lagrange multiplier: When we take the partial derivative with respect to λ and set equal to 0 to minimize L, we will recover the constraint:

$$\frac{\partial}{\partial \lambda}L(w,\lambda) = ww^T - 1 = 0$$

See skipped slides of Lecture 24 to see how the covariance matrix (Σ) shows up!

Simplified Derivation: Optimizing for w

$$L(w,\lambda) = -w\Sigma w^T + \lambda \left(ww^T - 1\right)$$

Take **derivative with respect to w** (vector calculus – out of scope for Data 100):

$$\frac{\partial}{\partial w} \left(-w \Sigma w^T + \lambda \left(w w^T - 1 \right) \right) = -2 \Sigma w^T + 2 \lambda w^T$$

Think of ww^T like squaring \rightarrow Derivative is $2w^T$

Setting equal to zero:
$$-2\Sigma w^T + 2\lambda w^T = 0$$

$$\Sigma w^T = \lambda w^T$$

What is this?

Remember that λ is a scalar!

slido

What is this?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Simplified Derivation: Optimizing for w

$$L(w,\lambda) = -w\Sigma w^T + \lambda \left(ww^T - 1\right)$$

Eigenvalue of Σ

$$\Sigma w^T = \lambda w^T$$

Eigenvector of $\pmb{\Sigma}$

w is a unit (i.e., length 1) eigenvector of the covariance matrix. When we multiply a matrix by one of its eigenvectors, it's equivalent to multiplying the eigenvector by its (scalar) eigenvalue.

L(w, λ) is minimized when $w\Sigma w^T = w\lambda w^T = \lambda ww^T = \lambda$ is big. So, the optimal w is the eigenvector with the largest eigenvalue λ .

In other words, the **optimal w** points in the direction of the **greatest variance** of the data (PC1!), and λ is the variance in that direction (so long as X is centered!).

Eigenvectors and eigenvalues of covariance matrix

Same data rotated four ways.

 $v_1/5$ is PC1. **Unit-length** eigenvector with largest eigenvalue points in direction of maximum variance. Eigenvalue (λ_1 =5) is variance.

v₂/1 is PC2. Unit-length eigenvector with second largest eigenvalue points in direction of maximum variance that is **orthogonal** to first eigenvector.

visiondummy.com/2014/0 4/geometric-interpretationcovariance-matrix

Singular Value Decomposition

Lecture 25, Data 100 Spring 2025

PCA as Loss Minimization

Singular Value Decomposition

PCA with SVD

Centering Data and Computing Variance

Useful reference for this lecture:

<u>stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca</u>

SVD Pep Talk

Singular value decomposition (SVD) decomposes a matrix into a product of three matrices.

- We assume you have taken (or are taking) a linear algebra course.
- We will not explain SVD in its entirety—in particular, we will not prove:
 - How the SVD is computed
 - Why SVD is a valid decomposition of rectangular matrices

Today, we will only cover **what** is needed for PCA.

Checkout the EE16 notes for a deeper study of SVD: https://eecs16b.org/notes/sp24/note15.pdf

Singular Value Decomposition

Singular value decomposition (SVD) describes a matrix decomposition into three matrices:

X = U $X \in \mathbb{R}^{n \times d} = U \in \mathbb{R}^n$

rank $r \le d$

Assume d < n.

 $U \in \mathbb{R}^{n \times d}$ columns of U are

length and orthogonal)

orthonormal (i.e., unit

Columns of U are eigenvectors of XX^T

S

 $S \in \mathbb{R}^{d \times d}$

of **singular values**, ordered from **largest to smallest.**

diagonal matrix

r positive singular values. Remaining **d-r** singular values are 0.

T

 $V \subset \mathbb{K}$ columns+rows of V

Columns of V (rows of V^T) are eigenvectors of X^TX

are orthonormal

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} X_i^T X_i$$

There are technically infinite possible factorizations, but if singular values are distinct + in decreasing order then solution space is constrained to shuffling columns of U and V.

Looks like covariance matrix without 1/n!

SVD One-by-One: $oldsymbol{U}$

- ullet Columns of U are **orthonormal**: $ec{u}_i^ op ec{u}_j = 0$ for all i,j and all vectors $ec{u}_i^ op$ 1565862 are unit vectors
- Columns of U are called the **left singular vectors**
- $UU^T = I_n$ and $U^TU = I_d$
 - ullet Can think of $oldsymbol{U}$ as a rotation

Eigenvectors of XX^T:

$$XX^{T} = USV^{T} (USV^{T})^{T} = USV^{T}VS^{T}U^{T}$$
$$= USS^{T}U^{T}$$

Right multiply by U: $XX^TU = US^TSU^TU$

SVD One-by-One: S

- S

- Diagonal values (**singular values**), are ordered from **greatest to least**
- r non-zero singular values

- ullet $m{r}$ is the rank of $m{X}$
- The majority of the matrix is zero
- The singular values s₁, s₂, ..., s_r are
 non-negative and sorted s₁ ≥ s₂ ≥ ... ≥ s_r
- ullet Can think of $oldsymbol{S}$ as a scaling operation

SVD One-by-One: V^T

- $V \in \mathbb{R}^{d \times d}$
- Columns of V are orthonormal \rightarrow rows of V^T are orthonormal
- \bullet Rows of V are also orthonormal
- ullet Columns of V are called the **right singular vectors**
- $VV^T = V^TV = I_A$
- Can think of V as a rotation

Eigenvectors of X^TX:

$$X^{T}X = (USV^{T})^{T} USV^{T} = VS^{T}U^{T}USV^{T}$$
$$X^{T}X = VS^{T}SV^{T}$$

NumPy SVD

U, S, Vt = np.linalg.svd(X, full_matrices = False)

[documentation]

"economy" or "compact" SVD

 $U \in \mathbb{R}^{n \times d}$

X

		J
	ン	,

S

width	height	area	Perim.
2.97	1.35	24.78	8.64
-3.03	-0.65	-15.22	-7.36
-4.03	-1.65	-20.22	-11.36
3.97	-1.65	3.78	4.64
3.97	3.35	48.78	14.64
-2.03	-3.65	-20.22	-11.36
-1.03	-2.65	-15.22	-7.36
0.97	0.35	6.78	2.64
1.97	-3.65	-16.22	-3.36
2.97	-2.65	-7.22	0.64

-0.13	0.01	0.03	-0.21
0.09	-0.08	0.01	0.56
0.12	-0.13	0.09	-0.07
-0.03	0.18	0.01	-0.05
-0.26	-0.09	0.09	-0.06
0.12	-0.05	0.17	-0.05
0.09	0	0.1	-0.08
-0.04	0.01	0	-0.08
0.08	0.18	0.04	-0.05
0.03	0.19	0.02	-0.05

197.39			
	27.43		
		23.26	
			0

d x d

X is therefore rank 3.

-0.1	-0.07	-0.93	-0.34
0.67	-0.37	-0.26	0.59
0.31	-0.64	0.26	-0.65
0.67	0.67	0	-0.33

d x d

 $n \times d$

n x d

From SVD to PCA

- Center the data matrix by subtracting the mean of each attribute column.
- 2. To find **v**_i, the i-th **principal component**:
 - v is a unit vector that linearly combines the attributes.
 - v gives a one-dimensional projection of the data.
 - v is chosen to minimize the sum of squared distances between each point and its projection onto v.
 - Choose v such that it is orthogonal to all previous principal components.

Let's now use SVD to compute the **principal components**.

PCA as Loss Minimization
Singular Value Decomposition

PCA with SVD

Centering Data and Computing Variance

PCA with SVD

Lecture 25, Data 100 Spring 2025

Assume we have constructed the Singular Value Decomposition (SVD) of X:

$$X = USV^T$$

If X is **centered**, the **covariance matrix (\Sigma)** of X is:

回数を回 表別の第 回るがあ

Assume we have constructed the Singular Value Decomposition (SVD) of X:

$$X = USV^T$$

If X is **centered**, the **covariance matrix** (Σ) of X is:

$$\nabla$$
 (1 / \sim) VTV

$$\Sigma = (1/n) \ X^T X$$

$$(-/\cdot\cdot)$$

$$= (1/n) (USV^T)^T USV^T$$
 Substitution.

$$= (1/n) VS^T U^T USV^T$$

$$(OBV)$$
 OBV

$$V = (AB)^{T} = B^{T}A^{T}$$
Matrix transpose rule. $(AB)^{T} = B^{T}A^{T}$

$$= (1/n) VS^TSV^T$$

U is orthonormal.
$$U^TU = \mathbf{I}$$

$$= (1/n) VS^2V^T$$

S is diagonal. Square diagonal elements.

Assume we have constructed the Singular Value Decomposition (SVD) of X:

$$X = USV^T$$

If X is **centered**, the **covariance matrix (\Sigma)** of X is:

Assume we have constructed the Singular Value Decomposition (SVD) of X:

$X = USV^T$

If X is **centered**, the **covariance matrix** (Σ) of X is:

$$\Sigma = (1/n) \ V S^2 V^T$$

Where we left off.

$$\Sigma V = (1/n) \ V S^2 V^T V$$

Right multiply by V.

$$\Sigma V = \frac{S^2}{N}V$$

V is orthonormal. $V^TV = \mathbf{I}$. S^2 can be moved.

Looks like our loss minimization solution!

Principal Components (PCs) are the Eigenvectors of the Covariance Matrix

Assume we have constructed the Singular Value Decomposition (SVD) of X:

$$X = USV^T$$

$$\Sigma V = \frac{S^2}{n}V$$

The **columns of V** (rows of V^T) are the **eigenvectors** of the **covariance matrix** (Σ) and therefore the **PCs**. Orthogonal **directions** of greatest variance of the data.

The (singular values) 2 / n are the eigenvalues of Σ . Variance of the data in each of the directions given by the PCs.

$$\Sigma w^T = \lambda w^T$$

← Same as definitions of corresponding terms (<u>earlier slide</u>)

Computing Latent Vectors Using X * V

Constructing a 2 PC approximation (k=2). PCs as a "recipe" to make Z from features in X.

X

area

24.78

-15.22

-20.22

3.78

48.78

-20.22

height

1.35

-0.65

-1.65

-1.65

3.35

-3.65

. . .

*

=

Z

	PC1	PC2
--	-----	-----

Perim.
8.64
-7.36
-11.36
4.64
14.64
-11.36

	. 02		
-0.1	0.67	0.31	0.67
-0.07	-0.37	-0.64	0.67
-0.93	-0.26	0.26	0
-0.34	0.59	-0.65	-0.33

-26.43	0.16
17.05	-2.18
23.25	-3.54
-5.38	5.03
-51.09	-2.59
23.19	-1.45

width

2.97

-3.03

-4.03

3.97

3.97

-2.03

. . .

From SVD to PCA

We have now shown that if we construct the singular value decomposition of X:

$X = USV^T$

The **first k** columns of V (rows of V^T) are the **first k PCs**. We construct the **latent features (Z)** of X by projecting X onto the **k PCs**. We choose k! Often, k=2.

Computing Latent Vectors Using U * S

Equivalent construction of Z! **U cols are normalized Z cols**. S "scales up" U cols to Z cols.

U

*

S

Z

-0.13 0.01	0.03 -0.21
0.09 -0.08	0.01 0.56
0.12 -0.13	0.09 -0.07
-0.03 0.18	0.01 -0.05
-0.26 -0.09	0.09 -0.06
0.12 -0.05	0.17 -0.05

197.39			
	27.43		
		23.26	
			0

0.16
-2.18
-3.54
5.03
-2.59
-1.45

Recovering the Data

Given the entire Z matrix we can recover the **centered X** by **multiplying by V**^T:

$$ZV^T = XVV^T = USV^T = X$$

This is like **inverting** our PC recipe \rightarrow How do we combine our latent features (Z) to get back our original features (X)?

If you choose $\mathbf{k} < \mathbf{r}$, where r is rank(X), you will only recover X **approximately.**

A Great Resource on This Topic: Steve Brunton's SVD Video Series (UW Prof)

Singular Value Decomposition Playlist

- Extraordinarily clear.
- Videos cover the foundations, applications, linear algebra, stats and code.
- A masterpiece of teaching.
- Note: our d is his m (# of features).

S. Brunton's video on SVD

S. Brunton's video on PCA

Unfortunately, his definition of the **Principal Components** is wrong (~8:30).

Demo Computing PCA using SVD

Centering Data and Computing Variance

Lecture 25, Data 100 Spring 2025

PCA as Loss Minimization
Singular Value Decomposition
PCA with SVD

Centering Data and Computing Variance

PCA Plot

We often construct a scatter plot of the data projected onto the **first two principal components**. This is often called a **PCA plot**.

• PCA plots allow us to visually assess similarities between our data points and if there are any clusters in our dataset.

If PC1+PC2 explain a large % of the **total variance**, then the PCA plot is a good representation. If not, then a **PCA plot** is omitting lots of information.

Capturing Total Variance

(from before)

We define the **total variance** of a data matrix as the sum of variances of attributes.

width	length	area	perimeter
20	20	400	80
16	12	192	56
24	12	288	72

Total Variance: **402.56** = 7.69 5.35 50.79 338.73

Variance and Singular Values

We define the **total variance** of a data matrix as the sum of variances of attributes.

width	length	area	perimeter
20	20	400	80
16	12	192	56
24	12	288	72

50.79

$$\Sigma V = \frac{S}{n} V$$

The **component score** tells us the

Total Variance: 402.56

variance captured by the ith principal component. The component scores are the eigenvalues of the covariance matrix.

score

N is # of datapoints.

$$i^{th}$$
 component = $(i^{th}$ singular value)²

5.35

338.73

Variance captured by **PC1**

 \rightarrow 197.39²/100 = **389.63**

 $\rightarrow 27.43^2/100 = 7.52$

 $\rightarrow 23.26^2/100 = 5.41$

Variance Ratios

How do we compute an array of variance ratios, where each element is the fraction that each PC contributes to total data variance?

$$X = USV^T$$

- A. s / n # n is len(X), num features
- B. s ** 2 / n
- C. s / sum(s)
- D. s**2 / sum(s**2)
- E. Something else

slido

How do we compute an array of variance ratios?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Variance Ratios

$$i$$
-th component score = $\begin{cases} Variance \\ captured \\ by i$ -th PC = $\begin{cases} (i$ -th singular value)^2 \\ n \end{cases}

total variance = sum of all the component scores = $\sum_{i=1}^{k} \frac{s_i^2}{N}$

$$X = USV^T$$

variance ratio of principal component
$$j = \frac{\text{component score } j}{\text{total variance}} = \frac{s_j^2/N}{\sum_{i=1}^k s_i^2/N} = s**2 / sum(s**2)$$

How do we compute an array of **variance ratios**, where each element is the **fraction** that each principal component contributes to total data variance?

u, s, vt = np.linalg.svd(X, full_matrices = False)

A. s / n # n is len(X), num features

B. s ** 2 / n

C. s / sum(s)

✓ s**2 / sum(s**2)

E. Something else

Scree Plot

If PC1+PC2 explain a large % of the total variance, then the PCA plot is a good representation. If not, then a **PCA plot** is omitting lots of information.

A **scree plot** shows the variance ratio captured by each principal component, largest first.

Scree [wikipedia]

How PCA Transforms Data, Visually

PCA first centers the data matrix, then rotates it so that the direction with the **greatest** variance is aligned with the x-axis. [We saw this "changing frame of reference" last lecture.]

Principal Components

- Principal components are all orthogonal to each other
 - Why? Recall that the columns of V are orthonormal!
- Principal Components are axis-aligned
 - o If we plot two PCs on a 2D plane, one will lie on the x-axis, the other on the y-axis
- ullet The **latent factors** are obtained by **projecting** X onto the principal components

Centering and Standardizing the Data

When running PCA it is important to **center the data** (ensure data is centered at 0):

$$X = X - np.mean(X, axis = 0)$$

• The sklearn PCA code does this automatically!

You should also *consider* **standardizing** your data:

$$X = (X - np.mean(X, axis = 0)) / np.std(X, axis = 0)$$

- The **sklearn** PCA code does <u>not</u> do this automatically
- Standardizing puts all cols on same scale (e.g., X=0.5 has same meaning across cols)
- You should not standardize your data if the units are all the same (e.g., all 0/1 cols)

Demo

Congressional Vote Data

Let's examine how the **House of Representatives** (of the 116th Congress, 1st session) voted in the month of **September 2019**.

Specifically, we'll look at the records of Roll call votes. From the U.S. Senate (link):

Roll call votes occur when a representative or senator votes "yea" or "nay," so that the names of members voting on each side are recorded.

Do legislators' roll call votes show a relationship with their political party?

Biplot

The i-th row of V indicates how much feature i contributes to each PC. Cols of V are the PCs ("recipes").

"First row of V = $[0.9,-0.44] \rightarrow PC1$ linear combo is 0.9 parts feature 1, and PC2 has -0.44 parts feature 1."

Biplots superimpose **feature influence** on plot of PC1 vs. PC2.

Biplots help us interpret how features influence the PCs: positively, negatively, or not much at all.

Simplest biplot: Plot the rows of V with no scaling.

 For other scalings, which can lead to more interpretable directions/loadings, see [SAS biplots].

Image Classification

Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Han Xiao, Kashif Rasul, Roland Vollgraf. arXiv:1708.07747

https://github.com/zalandoresearch/fashion-mnist

Sneaker

Demo

Time permitting!

Summary: Plots Based on PCA

PCA Plot

Scatter plot of PC1 against PC2

• Similarities of data points; identifying clusters.

Scree Plot

Variance ratio captured by each PC, with largest first.

- If first two ratios large, PCA plot is good representation
- "Elbow" method to assess how many PCs to use

Biplot

PCA plot + **influence of features** on PC1 and PC2.

LECTURE 25

Principal Component Analysis II

Data 100/Data 200, Spring 2025 @ UC Berkeley

Narges Norouzi and Josh Grossman

Content credit: Acknowledgments

