Czytniki Zbliżeniowe EM 125 KHz Serii PRxxLT

Oprogramowanie firmowe: nd. Wersja dokumentu: Rev. M

(€

Dokument dotyczy następujących typów urządzeń:

- PRT12LT
- PRT12LT-BK
- PRT62LT
- PRT64LT
- PRT66LT

Instrukcja Obsługi

1. UWAGI WSTĘPNE

Czytniki serii PRTxxLT są zubożoną wersją czytników serii PRTxxEM i w odróżnieniu od nich nie mogą pracować w trybie autonomicznym a jedynie w trybie terminalowym jako urządzenia podrzędne podłączone do zewnętrznego kontrolera dostępu. Fabrycznie nowy czytnik serii PRTxxLT jest skonfigurowany do trybu **RACS adres ID=0** nie mniej może być później przekonfigurowany do jednego z kilkunastu dostępnych formatów wyjściowych. Programowanie formatu transmisji przeprowadza się w trakcie procedury Resetu Pamięci.

Uwaga: Jeśli po załączeniu zasilania świeci LED SYSTEM **2** oraz towarzyszy mu cyklicznie powtarzany sygnał akustyczny, oznacza to że pamięć czytnika uległa rozprogramowaniu i czytnik wymaga ponownego zaprogramowania (wymagany jest Reset Pamięci).

1.1. O TEJ INSTRUKCJI

Instrukcja ta odnosi się do wszystkich typów czytników serii PRTxxLT. Funkcjonalnie, wszystkie czytniki serii LT są zgodne tzn. posiadają identyczną logikę działania a różnice pomiędzy nimi dotyczą jedynie ich konstrukcji mechanicznej (kształt obudowy, wytrzymałość), środowiska pracy (praca wewnątrz lub na zewnątrz budynków) oraz obecnością klawiatury, która jest dostępna tylko w niektórych modelach.

Uwaga: Zawsze używaj właściwej instrukcji do posiadanego urządzenia – sprawdź czy typ, wersja czytnika oraz jego oprogramowania pasują do instrukcji.

2. OPIS OGÓLNY

Czytniki serii PRTxxLT zostały zaprojektowane do stosowania w systemach kontroli dostępu opartych na identyfikatorach zbliżeniowych standardu EM 125 KHz oraz kodach PIN. Czytnik działa jako urządzenie podrzędne względem kontrolera dostępu i jego rola ogranicza się do odczytu numeru karty lub kodu PIN i przesłaniu odczytanych danych do kontrolera dostępu.

2.1. CHARAKTERYSTYKA

2.1.1. Cechy Ogólne

- Odczyt kart EM 125 KHz (kompatybilnych z EM 4100/4102)
- Ochrona antysabotażowa (detekcja oderwania od podłoża oraz otwarcia obudowy)
- Praca w warunkach zewnętrznych (wybrane modele)
- Wiegand 26-66bit
- Magstripe (emulacja ABA Track II)
- RACS CLK/DTA (do współpracy z kontrolerami Roger)
- Różne opcje transmisji klawiszy i kodów PIN w formatach Wiegand i Magstripe
- Dwie linie wejściowe do sterowania wskaźnikami LED oraz głośnikiem
- Znak CE

2.2. KARTY ZBLIŻENIOWE

Czytniki PRTxxLT zostały zaprojektowany do współpracy z kartami zbliżeniowymi standardu EM 125 KHz kompatybilnymi z układami EM 4100/4102. Czytnik przesyła numer karty bez bitów kontrolnych. Numer karty jest transmitowany od pozycji LSB do MSB i w zależności od wybranego formatu danych uzupełniany o wiodące zera lub redukowany na pozycjach MSB.

2.3. KLAWISZE FUNKCYJNE

Niektóre typy czytników PRTxxLT posiadają jeden lub dwa klawisze funkcyjne: [F1] oznaczony symbolem dzwonka oraz [F2] oznaczony symbolem żarówki. Funkcje przypisane tym klawiszom zależą od ustawionego trybu pracy czytnika jak też od jego bieżącej konfiguracji.

W trybach RACS naciśnięcie klawisza funkcyjnego powoduje transmisję kodu tego klawisza do kontrolera dostępu, który następnie podejmuje odpowiednią akcję uzależnioną od swoich ustawień (np. wyzwala wyjście *Dzwonek*).

W trybach Wiegand użycie klawiszy F1/F2 powoduje transmisję następujących kodów:

• F1=C hex

• F2=D hex

W trybie Magstripe czytnik wysyła:

- F1=FF FF FF FF BC hex (1099511627708 dec)
- F2=FF FF FF FF BD hex (1099511627709 dec)

2.4. TRYBY PRACY

Czytniki PRTxxLT oferują następujące formaty transmisji danych:

- Wiegand 26bit
- Wiegand 32bit, tryb normalny (od MSB do LSB)
- Wiegand 32bit, tryb rewersyjny (od LSB do MSB)
- Wiegand 34bit
- Wiegand 42bit
- Wiegand 66bit
- Magstripe (emulacja ABA Track II alternatywnie zwany Clock & Data)
- RACS adres ID0..3 (protokół adresowalny do współpracy z kontrolerami produkcji Roger)

Format Wiegand

Interfejs Wiegand

W formacie tym dane z czytnika są przesyłane do urządzenia nadrzędnego za pośrednictwem linii CLK i DTA (w formacie Wiegand linie te są nazywane odpowiednio: DATA1 i DATA0). W zależności od wybranego formatu transmisji czytnik może transmitować 26, 32, 34, 42 lub 66 bitów. Kod PIN może być transmitowany w całości (transmisja następuje po naciśnięcie klawisza [#]) lub każdy naciśnięty klawisz może być transmitowany osobno – patrz podpunkt 3.2.

W trybie Wiegand sterowanie wskaźnikami (LED STATUS , LED SYSTEM , LED OTWARTE) oraz głośnikiem jest realizowane z poziomu linii wejściowych IN1 i IN2. Programowanie funkcji sterującej wejść IN1 i IN2 można realizować w trakcie procedury Resetu Pamięci. Dodatkowo za każdym razem gdy karta lub PIN zostaną odczytane czytnik chwilowo załącza wskaźnik LED SYSTEM oraz głośnik.

Transmisja w formacie Wiegand ma charakter jednokierunkowy tzn. odbywa się tylko w kierunku od czytnika do urządzenia nadrzędnego bez potwierdzenia poprawności.

Uwaga: W przypadku gdy ilość bitów potrzebna do przesłania kodu PIN lub karty jest większa niż ilość bitów w wybranym formacie czytnik pomija najbardziej znaczące bity numeru karty/kodu co powoduje że dane odebrane przez urządzenie nadrzędne mogą się różnić się od danych zawartych na karcie.

Format Magstripe

Interfejs Magstripe

W formacie Magstripe numer karty/PIN-u jest transmitowany za pomocą sygnałów elektrycznych na liniach CLK i DTA. W trybie Magstripe sterowanie wskaźnikami (LED STATUS 6, LED SYSTEM 6, LED OTWARTE 2) oraz głośnikiem jest realizowane z poziomu linii wejściowych IN1 i IN2. Programowanie funkcji sterującej wejść IN1 i IN2 można realizować w trakcie procedury Resetu Pamięci. Dodatkowo za każdym razem gdy karta lub PIN zostaną odczytane czytnik chwilowo załącza wskaźnik LED SYSTEM 6 oraz głośnik.

Kod karty jest zawsze transmitowany w całości (nie występuje usuwanie bitów MSB) natomiast kody PIN mogą być transmitowane w całości w postaci liczby lub każdy klawisz może być transmitowany osobno - patrz podpunkt 3.2.

Format RACS

Interfejs RACS

W formacie **RACS** czytnik komunikuje się z kontrolerem dostępu za pośrednictwem linii CLK i DTA. W odróżnieniu od formatów Wiegand i Magstripe w formacie RACS czytnik musi posiadać swój indywidualny adres (numer ID=0...3) a adres czytnika programuje się przy okazji programowania jego trybu pracy (procedura Resetu Pamięci). Komunikacja w tym formacie pomiędzy czytnikiem i kontrolerem ma Sterowanie wskaźnikami charakter dwustronny. czytnika oraz głośnikiem jest realizowane przez kontroler dostępu do którego czytnik jest podłączony, wyjątkiem od tej zasady jest sytuacja gdy czytnik straci komunikację z kontrolerem – wtedy stan ten sygnalizuje jednoczesnym pulsowaniem wszystkich wskaźników LED. W trybie RACS podanie minusa zasilania na wejście IN1 blokuje odczyt kart oraz kodów PIN natomiast wejście IN2 nie posiada żadnej funkcji, kody PIN są transmitowane w całości w momencie naciśnięcia klawisza [#].

PROGRAMOWANIE

3.1. RESET PAMIĘCI – PROGRAMOWANIE TRYBU PRACY

Operacja **Resetu Pamięci** kasuje całą zawartość pamięci czytnika, przywraca wartości domyślne ustawieniom i umożliwia wybór trybu pracy czytnika oraz ewentualnie zaprogramowanie funkcji linii wejściowych IN1 i IN2 dla trybów terminalowych Wiegand i Magstripe.

Procedura Resetu Pamięci (Schemat 1dla trybu terminalowego RACS):

- 1. Usuń wszystkie połączenia z linii CLK, IN1 oraz RTS.
- 2. Połacz linie CLK i IN1.
- Wykonaj restart czytnika (wyłącz/załącz zasilanie lub zewrzyj na moment kontakty RST).
- 4. Gdy LED OTWARTE **2** (zielony) błyska usuń połączenie pomiędzy liniami CLK i IN1. Czytnik zacznie wydawać ciągły dźwięk.
- 5. Gdy LED SYSTEM **2** zacznie migać wprowadź trzy cyfry które skonfigurują czytnik do pożądanego trybu pracy (kody: 000..003).
- 6. Po tym kroku czytnik samoczynnie kończy procedurę **Resetu Pamięci** i się restartuje z nowymi ustawieniami.

Uwaga: Jeśli w kroku 5 podasz kod który nie odpowiada żadnemu trybowi pracy czytnika lub odczekasz 20 s to czytnik samoczynnie wyjdzie z procedury Resetu Pamięci.

Procedura Resetu Pamięci (Schemat 2 dla trybów Wiegand i Magstripe):

- 1. Usuń wszystkie połączenia z linii CLK i IN1.
- 2. Połącz linie CLK i IN1.
- Wykonaj restart czytnika (wyłącz/załącz zasilanie lub zewrzyj na moment kontakty RST).
- 4. Gdy LED OTWARTE **2** (zielony) błyska usuń połączenie pomiędzy liniami CLK i IN1. Czytnik zacznie wydawać ciągły dźwięk.
- 5. Gdy LED SYSTEM **2** zacznie pulsować wprowadź trzy cyfry które skonfigurują czytnik do pożądanego trybu pracy terminalowej (kody: 020, 021, 1xx).
- 6. Gdy LED SYSTEM **%** świeci wprowadź dwie cyfry definiujące funkcję linii wejściowej IN1:
 - [11]: Linia nieaktywna
 - [25]: Linia steruje wskaźnikiem LED STATUS 🗳
 - [28]: Linia steruje wewnętrznym głośnikiem
 - [29]: Linia steruje wskaźnikiem LED OTWARTE **9**
 - [30]: Linia steruje wskaźnikiem LED SYSTEM **%**.
- 7. Następnie wprowadź dwie cyfry określające funkcję linii wejściowej IN2 na identycznych zasadach jak programowanie funkcji linii IN1.
- 8. Po tym kroku czytnik samoczynnie opuści procedurę **Resetu Pamięci** i się restartuje z nowymi ustawieniami.

Uwaga: Jeśli w kroku 6 nie wykonasz żadnych czynności programujących przez 9 s to czytnik samoczynnie zakończy procedurę **Resetu Pamięci** z ustawieniami domyślnymi tzn. IN1=[29] oraz IN2=[28]. Zabronione jest definiowanie tej samej funkcji dla obu linii wejściowych IN1 oraz IN2 za wyjątkiem funkcji [11]: Linia nieaktywna.

3.2. PROGRAMOWANIE CZYTNIKA BEZ KLAWIATURY

Czytniki nie posiadające klawiatury mogą być programowane manualnie według tych samych funkcji i procedur programujących co czytniki z klawiaturą a jedyna różnica polega na tym że w czytniku bez klawiatury naciskanie klawiszy emuluje się metodą wielokrotnego zbliżania odpowiedniej karty zbliżeniowej zwanej **Kartą Programującą**. Dla przykładu aby emulować naciśnięcie klawisza [9] należy 9-krotnie odczytać **Kartę Programującą** a następnie odczekać do momentu gdy czytnik wygeneruje sygnał zachęty (dwa bip-y), które oznaczają że seria 9 odczytów została zaakceptowana jako ekwiwalent naciśnięcia klawisza [9]. **Karta Programującą** może być dowolna karta standardu EM125kHz.

Klawisz	Metoda emulacji
[1][9]	[N]-krotny odczyt Karty Programującej gdzie N równe jest emulowanej cyfrze
[0]	10-krotny odczyt Karty Programującej

Uwaga: Za każdym razem gdy zakończysz wprowadzanie serii odczytów przy pomocy **Karty Programującej** odczekaj ok. 3 s aż czytnik wygeneruje sygnał zachęty (dwa bip-y), który potwierdzi że seria odczytów została zaakceptowana jako ekwiwalent naciśnięcia odpowiedniego klawisza.

Przykład: Sposób emulacji trybu pracy [001]:

- 1. [0]: Odczytaj 10-krotnie **Kartę Programującą** i odczekaj na dwa bip-y
- 2. [0]: Odczytaj 10-krotnie **Kartę Programującą** i odczekaj na dwa bip-y
- 3. [1]: Odczytaj 1-krotnie **Kartę Programującą** i odczekaj na dwa bip-y

3.2.1. Tryby Pracy

Fabrycznie nowy czytnik jest skonfigurowany do trybu terminalowego **RACS adres ID=0** niemniej może być przeprogramowany do dowolnego z niżej wymienionych trybów pracy.

Kod	Nazwa Trybu Pracy	Opis
000	RACS adres ID=0	Czytnik pracuje jako urządzenie podrzędne z
001	RACS adres ID=1	wykorzystaniem protokołu komunikacyjnego RACS CLK/DTA. Tryb ten jest wykorzystywany do współpracy z
002	RACS adres ID=2	kontrolerami prod. Roger.
003	RACS adres ID=3	
020	Magstripe (Clock&Data)	Czytnik jest podłączony do urządzenia nadrzędnego które wymaga formatu Magstripe.
021	Magstripe UNITEK (Clock&Data)	Czytnik jest podłączony do urządzenia nadrzędnego które wymaga formatu Magstripe, odmiana UNITEK (z przesyłaniem kodów PIN).
10x	Wiegand 26bit	
11x	Wiegand 34 bit	
12x	Wiegand 42 bit	
13x	Wiegand 66 bit	Czytnik jest podłączony do urządzenia nadrzędnego które wymaga formatu Wiegand.
14x	Wiegand 32 bit, bez parzystości	
15x	Wiegand 32bit, bez parzystości, rewersyjny	

Uwaga: W miejscach oznaczonych przez "x" należy wstawić odpowiednią cyfrę która będzie określała zasady transmisji klawiszy lub kodów PIN. Zasady kodowania opisano poniżej.

Opcje	Opcje transmisji klawiatury i kodów PIN		
Kod	Nazwa	Opis	
X=0	Kody PIN od 1 do 10 cyfr transmitowanych w postaci BCD	, , , , , , , , , , , , , , , , , , , ,	
X=1	Kody PIN od 1 do 12 cyfr transmitowanych w postaci binarnej	Każdy naciśnięty klawisz jest zapamiętywany w 6-znakowym buforze, transmisja całego kodu następuje z chwilą naciśnięcia klawisza [#] który oznacza koniec kodu PIN (znak [#] nie jest transmitowany). Kod PIN jest przesyłany jako liczba w kodzie binarnym.	
X=2	Każdy naciśnięty klawisz transmitowany osobno w postaci liczby 4-bitowej plus 2 bity kontrolne	(EXXXXP) reprezentujących kod naciśniętego klawisza (bity XXXX) oraz	
X=3	Każdy naciśnięty klawisz transmitowany osobno w postaci liczby 4-bitowej bez bitów kontrolnych	Każdy naciśnięty klawisz jest natychmiast wysyłany w postaci ciągu 4 bitów (XXXX) reprezentujących kod naciśniętego klawisza bez dodatkowych bitów kontrolnych (brak bitów E i P), format ten jest zgodny z czytnikiem HID 5355, opcja "without parity". Kodowanie klawiszy wg tabeli B.	
X=4	Każdy naciśnięty klawisz transmitowany osobno w postaci liczby 8-bitowej plus 2 bity kontrolne	Każdy naciśnięty klawisz jest natychmiast wysyłany w postaci ciągu 10 bitów (EXXXXXXXP) reprezentujących kod naciśniętego klawisza (bity XXXXXXXX) oraz dwóch bitów kontrolnych (E-even i P-parity), każdy z bitów kontrolnych odnosi się do połowy przekazu. Kodowanie klawiszy wg tabeli A.	

X=5	Każdy naciśnięty klawisz transmitowany osobno w postaci liczby 8-bitowej bez bitów kontrolnych	, , , , , , , , , , , , , , , , , , , ,
X=6	a następnie wysłane w	transmisja całego kodu następuje z chwilą naciśnięcia szóstego klawisza lub wcześniej po naciśnięciu klawisza [#]. Każda cyfra kodu jest kodowane na czterech bitach. Jeśli w przeciągu 15s nie zostanie naciśnięty żaden klawisz
X=7	klawisze są buforowane a następnie wysłane w	Każdy naciśnięty klawisz jest zapamiętywany w 4-znakowym buforze, transmisja całego kodu następuje z chwilą naciśnięcia czwartego klawisza lub wcześniej po naciśnięciu klawisza [#]. Każda cyfra kodu jest kodowana na ośmiu bitach. Jeśli w przeciągu 15s nie zostanie naciśnięty żaden klawisz czytnik kasuje wcześniej zapamiętane klawisze. Czytnik wysyła zawsze 4 cyfry, jeśli wciśnięto mniej klawiszy to brakujące pozycje są uzupełniane zerami. Kodowanie klawiszy wg tabeli A (poniżej). Przykład: Wprowadzono "123#' - czytnik wysłał 0123 Wprowadzono "1234' – czytnik wysłał 1234

Tabela A: Kodowania klawiszy na ośmiu bitach		
Klawisz	Kod HEX (szesnastkowy)	Kod BIN (binarny)
0	F0	11110000
1	E1	11100001
2	D2	11010010
3	C3	11000011
4	B4	10110100
5	A5	10100101
6	96	10010110
7	87	10000111
8	78	01111000
9	69	01101001
*	5A	01011010
#	4B	01001011
F1	3C	00111100
F2	2D	00101101

Tabela B: Kodowania klawiszy na czterech bitach			
Klawisz Kod ASCI Kod BIN (binarny)			

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
*	А	1010
#	В	1011

4. Uwagi Instalacyjne

- Instalator powinien tak zainstalować urządzenie aby w razie potrzeby mieć dostęp do kabla podłączeniowego i zacisków śrubowych
- Nowy fabrycznie czytnik jest skonfigurowany do trybu RACS adres ID=0
- Czytnik powinien być zamontowany na pionowym fragmencie konstrukcji (ściany) w pobliżu kontrolowanych drzwi
- Wszystkie połączenia elektryczne powinny być wykonywane bez obecności napięcia zasilającego
- W przypadku instalacji na metalowym podłożu zaleca się umieszczenie pod czytnikiem niemetalicznej podkładki dystansowej o grubości min. 10mm
- W przypadku konieczności instalacji po dwóch stronach ściany i w jednej osi geometrycznej należy pomiędzy czytnikami umieścić metalową płytkę a czytniki zamontować na niemetalicznej podkładce o grubości min. 10mm
- Zaleca się aby czytniki były zainstalowane w odległości nie mniejszej niż 0.5m od siebie
- Wszystkie urządzenia komunikujące się pomiędzy sobą (czytniki, moduły rozszerzeń, kontrolery) powinny mieć wspólny minus zasilania
- Z powodu relatywnie słabego pola elektrycznego czytnik nie powinien zakłócać działania innych urządzeń jednakże może być on zakłócany przez urządzenia generujące silne pole elektromagnetyczne
- W przypadku gdy zasięg odczytu kart jest wyraźnie mniejszy od wykazywanego w specyfikacji technicznej można rozważyć zmianę miejsca instalacji czytnika

Zaciski śrubowe i przewody		
Kolor	Nazwa	Funkcja
Zielony	CLK	Linia DATA 0 w formacie Wiegand lub linia CLOCK w formatach Magstripe i RACS
Brązowy	DTA	Linia DATA 1 w formacie Wiegand lub linia DATA w formatach Magstripe i RACS
Żółty	IN1	W formatach Wiegand i Magstripe linia ta domyślnie steruje wskaźnikiem LED OTWARTE 3 , w trybie RACS umożliwia blokowanie odczytu kart i kodów PIN. Wyzwalanie linii następuje przez podanie minusa zasilania
Różowy	IN2	W formatach Wiegand i Magstripe linia ta domyślnie steruje wewnętrznym

		głośnikiem natomiast w trybie RACS nie posiada żadnej funkcji. Wyzwalanie linii następuje przez podanie minusa zasilania
Czerwony	+12V	Plus zasilania
Niebieski	GND	Minus zasilania
Szary	TAMP	Łącznik ochrony anty-sabotażowej, normalnie zwarty kiedy obudowa jest
Biały		zamknięta i przylega do podłoża, styki bezpotencjałowe, 24V/50mA, IP67

Podłączenie czytnika PRT-LT dla różnych formatów danych wyjściowych

Sposób podłączenia jednego czytnika serii PRT-LT do kontrolera z interfejsem RACS (Roger)

Sposób podłączenia czytnika PRT-LT do kontrolera z interfejsem Wiegand

Sposób podłączenia czytnika serii PRT-LT do kontrolera z interfejsem Magstripe (Clock & Data - emulacja czytnika kart magnetycznych)

rcdr114

Dane techniczne		
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15 VDC	
Pobór prądu (średni)	PRT12LT: 65mA PRT12LT-BK: 45mA PRT62LT: 45mA PRT64LT: 65mA PRT66LT: 45 mA	
Zasięg odczytu	PRT62LT: do 12 cm, pozostałe: do 15 cm Uwaga: Zasięg odczytu jest definiowany dla kart zbliżeniowych dobrej jakości w optymalnym położeniu względem czytnika. Dla wszystkich czytników serii PRTxxLT pozycja optymalna karty znajduje się od czoła czytnika	
Ochrona anty-sabotażowa (Tamper)	Kontakt NC, 50mA/24V	
Karty	EM 125KHz (kompatybilne z EM4100/4102)	
Odległości	Pomiędzy czytnikiem i kontrolerem: maks. 150 m	
Stopień ochrony	PRT12LT/PRT12LT-BK: IP65 PRT62LT: IP65 PRT64LT: IP65 PRT66LT: IP65 Uwaga: Zachowanie stopnia IP65 jest gwarantowane przy założeniu szczelnego przylegania spodu obudowy do podłoża, na którym jest urządzenie zainstalowane. Po stronie instalatora leży uszczelnienie przestrzeni pomiędzy spodem obudowy a podłożem, na którym urządzenie jest zamontowane	
Klasa środowiskowa (wg EN 50131-1)	Klasa IV, warunki zewnętrzne ogólne, temperatura otoczenia: -25°C-+60°C, wilgotność względna: 10 to 95% (bez kondensacji) Klasa I, warunki wewnętrzne, temperatura otoczenia: +5°C- +40°C, wilgotność względna: 10 to 95% (bez kondensacji) PRT12LT/PRT12LT-BK: Klasa IV PRT62LT: Klasa IV PRT64LT: Klasa IV PRT66LT: Klasa IV	
Wymiary W x S x G	PRT12LT/PRT12LT-BK: 152.5 X 46 X 23 mm PRT62LT: 100 X 45 X 25 mm PRT64LT: 115 X 80 X 35 mm PRT66LT: 85 X 85 X 27 mm	
Waga	PRT12LT/PRT12LT-BK: 150g PRT62LT: 100g PRT64LT: 120g PRT66LT: 120g	
Certyfikaty	CE	

Oznaczenia handlowe	
PRT12LT	Zewnętrzny czytnik zbliżeniowy z klawiaturą, klawiatura silikonowa grawerowana laserowo z podświetleniem, dwa klawisze funkcyjne, kolor ciemno-szary, kabel podłączeniowy 0.5m

PRT12LT-BK	Zewnętrzny czytnik zbliżeniowy bez klawiatury, kolor ciemno-szary, kabel podłączeniowy 0.5m
PRT62LT	Miniaturowy zewnętrzny czytnik zbliżeniowy bez klawiatury, obudowa ABS kolor ciemno-szary, kabel podłączeniowy 0.5m
PRT64LT	Zewnętrzny czytnik zbliżeniowy z klawiaturą, obudowa ABS kolor ciemno-szary, zaciski śrubowe
PRT66LT	Zewnętrzny czytnik zbliżeniowy bez klawiatury, obudowa ABS kolor ciemno-szary, zaciski śrubowe

Historia produktu			
Hardware	Firmware	Data	Opis
v1.0	fv1.20	29/10/09	Pierwsza wersja handlowa produktu
v1.0	fv1.38	28/07/11	Dodano możliwość definiowania funkcji linii wejściowych IN1 i IN2 dla trybów Magstripe i Wiegand

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt:

Roger sp. z o.o. sp.k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133

Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczna@roger.pl

Web: www.roger.pl

