Теория категорий Естественные преобразования

Валерий Исаев

17 марта 2021 г.

План лекции

Подкатегории

Естественные преобразования

Рефлективные подкатегории

Подкатегории

- ▶ Подкатегория \mathbf{C}' категории \mathbf{C} это подкласс объектов \mathbf{C} и для каждой пары объектов X,Y в \mathbf{C}' подкласс множества $\mathrm{Hom}_{\mathbf{C}}(X,Y)$ такие, что \mathbf{C}' содержит тождественные морфизмы для любого $X \in \mathbf{C}'$ и замкнут относительно композиции.
- ▶ Подкатегории категории С классы эквивалентности строгих инъективных на объектах функторов.
- Понятие подкатегории не очень полезное.

Полные подкатегории

- ▶ Подкатегория \mathbf{C}' категории \mathbf{C} называется *полной*, если для любых объектов X,Y в \mathbf{C}' множества $\mathrm{Hom}_{\mathbf{C}'}(X,Y)$ и $\mathrm{Hom}_{\mathbf{C}}(X,Y)$ равны.
- ▶ Полные подкатегории категории С классы эквивалентности полных строгих функторов.
- ▶ Полные строгие функторы мы будем называть вложениями категорий.

Примеры

- ► FinSet полная подкатегория Set.
- ▶ Ab полная подкатегория Grp.
- Категория частичных порядков полная подкатегория предпорядков.
- Категория предпорядков вкладывается в категорию категорий.
- Категория моноидов вкладывается в категорию категорий.
- ► Существует не полное вложение Л в Set.

План лекции

Подкатегории

Естественные преобразования

Рефлективные подкатегории

Определение

- ▶ Можно определить понятие морфизма между функторами $F, G: \mathbf{C} \to \mathbf{D}.$
- ▶ Естественное преобразование $\alpha : F \to G$ это функция, сопоставляющая каждому объекту X из \mathbf{C} морфизм $\alpha_X : F(X) \to G(X)$, удовлетворяющая условию, что для любого морфизма $f : X \to Y$ в \mathbf{C} следующий квадрат коммутирует:

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\alpha_X} G(Y)$$

Категория функторов

- Естественных преобразование отображает только объекты, но можно показать, что оно задает действие и на морфизмах.
- Если $\alpha: F \to G$ естественное преобразование, то каждому морфизму $f: X \to Y$ в ${\bf C}$ можно сопоставить морфизм $\alpha_f: F(X) \to G(Y)$ в ${\bf D}$.
- ▶ Морфизм α_f определяется как композиция $F(f) \circ \alpha_Y$, что равно $\alpha_X \circ G(f)$ по естественности.
- ▶ Этот морфизм это диагональ в коммутативном квадрате, который появляется в определении естественности.

Композиция естественных преобразований

- ▶ Если $\alpha: F \to G$ и $\beta: G \to H$ пара естественных преобразований, то можно определить их композицию $\beta \circ \alpha: F \to H$ как функцию, сопоставляющую каждому X из \mathbf{C} морфизм $\beta_X \circ \alpha_X: F(X) \to H(X)$.
- ► Композиция $\beta \circ \alpha$ естественна:

$$F(X) \xrightarrow{\alpha_X} G(X) \xrightarrow{\beta_X} H(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f) \qquad \qquad \downarrow H(f)$$

$$F(Y) \xrightarrow{\alpha_Y} G(Y) \xrightarrow{\beta_Y} H(Y)$$

Категория функторов

- ▶ Для любого функтора $F: \mathbf{C} \to \mathbf{D}$ существует тождественное естественное преобразование, сопоставляющее каждому X тождественный морфизм $id_{F(X)}: F(X) \to F(X)$.
- Композиция ассоциативна, тождественное преобразование является единицей для композиции.
- ▶ Таким образом, для любой пары категорий С и D существует категория функторов, которая обозначается D^C.

Эквивалентность категорий

- lackbrack Функтор $F: {f C}
 ightarrow {f D}$ называются *эквивалентностью* категорий, если существует функтор $G: \mathbf{D} \to \mathbf{C}$, такой что $G \circ F$ изоморфен Id_C в категории C^C , и $F \circ G$ изоморфен $Id_{\mathbf{D}}$ в категории $\mathbf{D}^{\mathbf{D}}$.
- ► Категории **С** и **D** называются *эквивалентными*, если существует эквивалентность $F: \mathbf{C} \to \mathbf{D}$.
- Чтобы убедиться, что функтор является. эквивалентностью, нужно проверять много условий.
- ightharpoonup Функтор $F: \mathbf{C} o \mathbf{D}$ является эквивалентностью, если он полный, строгий и существенно сюръективен на объектах.
- ightharpoonup Последнее условие означает, что для любого объекта X в \mathbf{D} существует объект Y в \mathbf{C} , такой что F(Y) изоморфен X.

Пример

- lackbox Определим функтор $F: \mathbf{Mat} o \mathbf{Vec}$, такой что $F(n) = \mathbb{R}^n$ и $F(A)(v) = A \cdot v$.
- Из линейной алгебры мы знаем, что между линейными операторами и матрицами есть биекция, которая описывается указаным выше способом.
- Таким образом, этот функтор полный и строгий.
- ightharpoonup Из линейной алгебры мы знаем, что любое конечномерное векторное пространство V изоморфно пространству $\mathbb{R}^{dim(V)}$.
- ► Таким образом, *F* существенно сюръективен на объектах, и, следовательно, является эквивалентностью.

Доказательство

Proposition

Функтор является эквивалентностью тогда и только тогда, когда он полный, строгий и существенно сюръективен на объектах.

Доказательство.

Пусть $F: \mathbf{C} \to \mathbf{D}$ — эквивалентность категорий. Пусть $G: \mathbf{D} \to \mathbf{C}$ — обратный к нему, $\alpha: G \circ F \simeq Id_{\mathbf{C}}$ и $\beta: F \circ G \simeq Id_{\mathbf{D}}$. Тогда F — существенно сюръективен на объектах. Действительно, для любого $X \in \mathrm{Ob}(\mathbf{D})$ возьмём Y = G(X), тогда $\beta_X: F(G(X)) \simeq X$. Покажем, что F — строгий. Пусть F(f) = F(f') для некоторых $f, f': X \to Y$. Тогда по естественности α получается, что $f = \alpha_Y \circ G(F(f)) \circ \alpha_X^{-1} = \alpha_Y \circ G(F(f')) \circ \alpha_X^{-1} = f'$. Аналогично доказывается, что G — строгий.

Доказательство (продолжение)

Докажем, что F – полный. Пусть $h:F(X)\to F(Y)$ – некоторая стрелка. Тогда определим стрелку $f:X\to Y$ как следующую композицию:

$$X \xrightarrow{\alpha_X^{-1}} G(F(X)) \xrightarrow{G(h)} G(F(Y)) \xrightarrow{\alpha_Y} Y$$

Тогда $\alpha_Y^{-1} \circ f \circ \alpha_X = G(h)$. С другой стороны, по естественности α у нас есть равенство $\alpha_Y^{-1} \circ f \circ \alpha_X = G(F(f))$. Следовательно G(h) = G(F(f)). По строгости G мы получаем, что h = F(f). Таким образом, f – прообраз h, то есть F – полный.

Доказательство (в обратную сторону)

Пусть F — полный, строгий и существенно сюръективен на объектах. Тогда для любого $X \in \mathrm{Ob}(\mathbf{D})$ существует объект $Y \in \mathrm{Ob}(\mathbf{C})$ и изоморфизм $\alpha_X : F(Y) \simeq X$. Определим $G : \mathrm{Ob}(\mathbf{D}) \to \mathrm{Ob}(\mathbf{C})$ как функцию, возвращающую на каждом X такой Y (не важно какой конкретно).

$$F(G(X)) \xrightarrow{\alpha_X} X$$

$$F(f') \mid \qquad \qquad \downarrow f$$

$$F(G(Y)) \xrightarrow{\alpha_Y} Y$$

Так как F полон, то для каждого $f:X\to Y$ существует $f':G(X)\to G(Y)$, такая что $F(f')=\alpha_Y^{-1}\circ f\circ \alpha_X$. Так как F строг, то такая стрелка уникальна. Положим G(f)=f'. Из уникальности f' следует, что G сохраняет id и \circ .

Доказательство (продолжение)

Осталось проверить, что $G\circ F\simeq Id_{\mathbf{C}}$ и $F\circ G\simeq Id_{\mathbf{D}}$. Преобразование $\alpha_X:F(G(X))\simeq X$ естественно, так как коммутативный квадрат на предыдущем слайде — в точности квадрат естественности α .

Так как F — полный, то для любой стрелки $lpha_{F(Y)}: F(G(F(Y))) o F(Y)$ существует прообраз $eta_Y: G(F(Y)) o Y$. Все eta_Y — изоморфизмы, так как обратные к ним — это прообразы $lpha_{F(Y)}^{-1}: F(Y) o F(G(F(Y)))$.

Доказательство (окончание)

Осталось проверить, что β естественен.

$$G(F(X)) \xrightarrow{\beta_X} X$$

$$G(F(f)) \downarrow \qquad \qquad \downarrow_f$$

$$G(F(Y)) \xrightarrow{\beta_Y} Y$$

Применив F к диаграмме выше, она начинает коммутировать, так как α естественен. Но так как F – строгий, исходная диаграмма также коммутирует.

План лекции

Подкатегории

Естественные преобразования

Рефлективные подкатегории

Рефлективные подкатегории

- ▶ Пусть **D** полная подкатегория **C**. Допустим мы хотим доказать, что вложение **D** \rightarrow **C** эквивалентность.
- Тогда нам нужно найти для каждого объекта X из C объект из D, изоморфный X.
- Иногда бывает так, что эти категории не эквивалентны, но мы всё же можем найти некоторый объект Y в D, который является в некотором смысле лучшим приближением к X.
- ightharpoonup Конкретно, должна существовать стрелка $f:X \to Y$, которая может не быть изоморфизмом, но всё же является в каком-то смысле наилучшей такой стрелкой.

Определение

▶ Пусть \mathbf{D} — полная подкатегория \mathbf{C} . Мы говорим, что \mathbf{D} — $pe\phi$ лективная подкатегория \mathbf{C} , если для любого объекта X из \mathbf{C} существует стрелка $\eta_X: X \to Y$, где $Y \in \mathbf{D}$, такая что для любой стрелки $f': X \to Y'$, где $Y' \in \mathbf{D}$, существует уникальный морфизм $h: Y \to Y'$, такой что следующая диаграмма коммутирует:

lackbox Функция $\mathrm{Ob}(\mathbf{C}) o \mathrm{Ob}(\mathbf{D})$, сопоставляющая объекту X кодомен η_X называется $pe \phi$ лектором.

Примеры

Все стрелки в следующей диаргамме являются вложениям рефлективных подкатегорий:

Например, чтобы по группе G построить соответствующую ей абелеву группу, нужно взять фактор по коммутанту G/[G,G].