32.1

ED 115 482

SE 019 747

AUTHOR TITLE Prigge, Glenn, Ed. Metric Measurement.

INSTITUTION

North Dakota Univ., Grand Forks. Dept. of

Mathematics.

PUB DATE

75 101p.

EDRS PRICE DESCRIPTORS

MF-\$0.76 HC-\$5.70 Plus Postage

*Elementary School Mathematics; Instruction;

Mathematics Materials: *Measurement: *Metric System:
*Resource Materials: *Secondary School Mathematics:

Teacher Developed Materials

ABSTRACT

This resource book of metric lessons was prepared by the Metric Systems Class at the University of North Dakota. Length, area, volume and capacity, mass and weight and temperature are developed through techniques such as puzzles, manipulative devices, and experiments. Activities are described in terms of materials needed, directions, and follow-up questions and/or activities. There is a wide variety of useful metric activities for each measurement concept. (JBW)

C

U.S DEPARTMENT OF HEALTH, EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-DUCED EXACTLY AS RECEIVED PROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

METRIC MEASUREMENT

bу

UND MATHEMATICS DEPARTMENT

1975

EDITOR DR. GLENN PRIGGE

PERMISSION FO HEPRODUCE CHIS COPY RIGHTED MATERIAL HAS BEEN GHANTED BY

Ronald C. Bzoch

Chrm., UND Math Dept to end and organizations operating under agreements afth the national institute of education to their hermitiation outside the end by the hermitian owner remains the course of the course of the course owner.

Introduction

The following lessons were written by the Metric System class taught by the Mathematics Department at the University of North Dakota during the summer of 1975. The class was composed of the following elementary school personnel:

Hope Halvorson
Cheryl Henry
Dale Kasowski
Peggy Kjelgaard
Laurie McEnroe
Rhoda Miller
Jonathan Penry
Barbara Pietron
Mary Ross
Rebecca Wayne
Robert Bower

Virginia Ellwood
Elaine Incognito
Lucinda Klevay
Barbara Nord
Larry Sanders
Louise Schmidt
Linda Starr
Warren Steinhaus
Gayie Stettler
Betty Tengesdal
Celeste Whitebear

The manuscript was typed by the Mathematics Department work study student Wendy Bush.

Copyright 1975 UND Mathematics Department all rights reserved. No part of this booklet may be reproduced for profit without the written permission of the publisher.

TABLE OF CONTENTS

LENG	TH AND AREA	1
	Seeing the Need for a Standard Measure P	2
	Head and Hand Measurement P	:3
	Standard Measurement - Making a Metric Ruler	5
,	Metric Airplane P	7
	Areas	9
		12
e odeg	To Become Acquainted with the Square Centimeter	13
	Map Measures P	15
	Using a Metric Trundle Wheel P	17
	Floor Plan Area P	19
	Constructing a Centimeter Using a Straight Edge, Compass and i" Length P	21
	Dot to Dot	22
	Measure the Animals P	23
	Measure Parts of the Body P	25
	Estimating and Measuring Your School P	26
	Perimeter	27
	Making a Caliper P	28
	A Metric Puzzle P	30
	Metric Baseball Throw P	31
	Area or Perimeter Activities P	32
	Area	34
	Trundle Wheel P	35
VOLU	THE AND CHINGS!!	36
	Exploring VolumeIncluding Conservation and Invariance	37
	Measuring with a liter	38
	STREET STREET WILLIAM STREET	

	Centimeter Cubes	4	40
	Volume	٠,	42
	Volume - Sizing Containers P	4	43
	Cubic Centimeter for Measuring		
			44
			46
	_		47
			48
			49
	Cross-Number Puzzle P	!	50
	Metric Recipes P	!	51
	Volume		52
	Metric Oatmeal Cookies		53
	Capacity		54
	Written Problems P	'	55
	Finding the Volume	' !	56
	Cook Ala Metric P	١ !	57
	Capacity)	58
	To Become Familiar With the Different		
	The second secon		59
	Musical Measurements)	60
	Concept of Volume as Inside Space,	,	61
	Comparing Volumes P		01
MACC	AND WEIGHT)	62
MASS			63
			65 63
	3		67 62
	3		69 7 0
			70
	/		71
	3		72
	Water Masses)	73

Th	ninki	ng Me	tr	ic																	Р	74
Cr	oss-l	Numbe	r	Puz	z٦	e						•									Р	76
Ec	uiva	lent	We	igh	ts																Р	77
De	eterm	ining	j W	eig	jht						•					•					Р	78
Zo	o Pai	rade									•								•,		Р	79
Me	etric	Ton																			Р	80
Es	tima	te th	ıe	Wei	gh	t	óf	0t	jε	2C1	ţs											
	C	ommor	ıly	Se	en	١.			•		•					•	•				Р	81
Má	ass M	inded	i									•				•	•				Р	82
To	Dise	cover	· t	he	Αp	pr	OX.	imá	ate	۱ د	le-	i gł	nt	of	:							» >
	F	amili	ar	0b	je	ct	S	in	Gr	an	ns	•			•			•	•	•	Р	83
Me	etric	Reci	pe	•	•		•	•	•				•			•		•			Р	84
TEMPERA	ITURE				•	•	•	•	•	•		•	•	•	•			•	•	•	Р	85
Ce	elsiu	s.						•				•									Р	86
Te	emper	ature	? S						•				•								Р	88
L.	ive M	etric	: -	Má	ike	a	C	els	siu	ıs	TI	nei	rmo	om€	ete	er					Р	89
Ce	elsiu	s Ten	npe	rat	tur	e											•				Р	90
Te	emper	ature	<u> </u>																		Р	91
Wo	orkin	g Wit	th	the	? T	he	rm	ome	ete	er											Р	93
ті	nings	to c	do.	Wi 1	-h	٧٥	ur	۲۵	ם 1 כ	: 1:	10	T	ופו	cmc	nme) † c	מנ				Р	94

P 1

LENGTH

AND

AREA

SEEING THE NEED FOR A STANDARD MEASURE

<u>Materials</u>: Ball of string, dry beans approximately one centimeter in size, and unmarked sticks of varying lengths up to one meter; paper for students' recordings.

Have the children cut a string, any length.

In the classroom have them find:

ORAL:

two things longer than your string two things shorter than your string two things the same length as your string

Using the same string, first guess how many times your string will be needed to measure the following things.
Record your guesses on your paper.

how long your pencil is how wide your desk is how high the blackboard is

Now measure them to see how close your guess was and record it.

Using the beans estimate and measure the following: record.

the width of an eraser the length of your foot the width of the doorway

Take one of the colored sticks from the box. Estimate and measure as you have been doing. Remember to record.

how long your reading book is how wide the room is how long the room is

Questions for discussion:

- 1. Which unit was the easiest with which to measure, the string, bean, or stick? Why? Did it depend upon what you were measuring?
- 2. What happened when you compared your measurement findings with your neighbor's findings? What could you do to change this difference?
- 3. How could you tell someone outside of this classroom how wide your desk is?
- 4. Can you think of a better way we could measure?

HEAD AND HAND MEASUREMENT

Materials: Pencils, paper, string, scissors, metric rule.

Instructions to the teacher:

- 1. Ask each student to draw his left hand, as the example has been drawn, omitting the numbered string lines.
- 2. Ask each student to draw a profile of his partner's head, as the example has been drawn, omitting the string lines.
- 3. Show the students the appropriate metric measure and ask them to "guess" the length of the strings in each example.
- 4. Working in teams of two or three have the students measure their hand as the numbered string line is drawn.

5. Using the same "buddy" system, ask the students to measure their head as the numbered string line is drawn.

1. cm

3. ____ cm

2. cm

4. cm

STANDARD MEASUREMENT - MAKING A METRIC RULER

Materials: Tagboard or poster, paper 20cm x 3cm to back rulers

A centimeter is a standard unit of measure

This is a centimeter

1 Centimeter

Find something that measures 1 centimeter.

How wide is the tip of your little finger?

Find something that measures less than 1 centimeter.

How wide is your pencil?

Find something that measures more than 1 centimeter.

Let's make a device that we can use to measure things that are more than I centimeter.

This is a ruler.

The spaces between the small lines are centimeters.

1 centimeter

CENTIMETER RULER

How many spaces are there? _____ How many centimeters are there? _____

There are 20 spaces or centimeters on this ruler.

Number the centimeters by writing the numbers from 1 to 20 under the small lines on the ruler. The numbers 1 and 20 are already there.

Cut out your centimeter ruler.

Paste your centimeter ruler to the paper strip that your teacher has given you. This will make it stronger.

Use your centimeter ruler to make the measurements on the following page.

Guess how long the lines are. Then measure them to see how close your guess was.

Record your			Record y	
<u>Guess</u>			Measur	<u>e</u>
cm		 	. ·	cm
cm	 		<u> </u>	cm
cm	· .	•		cm
cm	 	દ	<i>A</i>	_ Cm
Cm	├			_ cm
cm *	How long is your pencil?			_ CM
cm	How long is your foot?	£.		_ CM
cm	Measure a book.			_ cm
cm	Measure your desk top.			_ Cm

METRIC AIRPLANE

1. Make a paper airplane any size from a square piece of paper.

Folding directions:

2. Measure your airplane from the tip (point A) to the end (point B). How many centimeters long is it? _____ cm

3.	Ιs	it	longer	or	shorter	than	the	person	's	next	to	you?	
												-	

4. Throw your airplane three times and record the distance it flies each time in the chart below.

1	2	3
cm	Cm	cm
m	m	m

cm - centimeters

m - meters

- 5. Which throw went the longest distance? _____
- 6. Which throw went the shortest distance?
- 7. Compare with a friend.

AREAS

Cut the centimeter grid (on the following page) into squares along the solid lines. I square = 1 sq. cm or 1 cm 2 . Glue enough squares on each geometric shape to cover it. Disregard parts of a sq. cm. Determine the area of each shape by counting the number of glued-on squares and record the areas in the chart.

	1	<u>Ce</u>	ntim∈	eter (Grid	_ ,				1	1		1	1	1	}	1	1	1	_
	<u> </u>																			
						,	·								- 45					
	1																			_
	1																			
	\int							·					,							-
		_	-																·	
	3					-	-									- 1				
	_			ļ			,													
	_							,	-	-										
	_				-				-	-		-			-					_
		ander Stand				-	<u>.</u>	 -	-				-			-				<u></u>
	_			-	ļ. ——	-		*	-	-		-	-				-			
-	_		-		-	-		-	-			-					-			-
		•	8 4	-		+			_	_	-	_	-		_				•	-
•	-				-	-	-	-	-		-				-					-
	-		-	-	-	-	-		-	-	 	_	74. 5	-		,	_	-		-
	-		-	-	-	-		1.		_		 	-	-	<u> </u>		_	_	-	-
	-			-		-	-	+-		+	-	-				 	 	 	 	
				+	 		+	-	-	+-	-	-	-	 			-	 		
-			-	+	-	+-	+-	 	+	+	-		 		 			 	 	
			-	+-			+-			+	+	 	+-						 	
eric E	_	<u></u>	+	+-	+-	+	+-	+	110		 	+	+	+	+	+	:	+	 	+-

Complete the chart.

SHAPE	AREA (cm ²)
А	
В	
С	
D	
E	
F	
G	
Н	
· I	
J	,

MATCHING LENGTHS

By estimation draw a line to the one with the same length, then check with the use of a centimeter rule.

2._____

3. ———

4.

5.

5.

7.

8.

9.

TO BECOME ACQUAINTED WITH THE SQUARE CENTIMETER

Materials: Cuisenaire rods; centimeter squared paper

Metric measurement of areas is done exactly the same way as with the American measurements - you find how many unit areas it takes to cover the area you are measuring. The only difference is that you use different unit areas than with American measurements. One metric unit that is good for measuring fairly small areas is the <u>square centimeter</u>. This is a unit area with each side being one centimeter long. Square centimeters can also be written as <u>sq. cm.</u> to save writing. On a sheet of centimeter squared paper, check to see that the squares are really one centimeter on a side by measuring one of the squares with your ruler. With your pencil, shade in one square centimeter (1 sq. cm.). Try comparing 1 sq. cm. with some things like your fingernails or your pencil eraser. List some things that are about the same area as 1 sq. cm.

You need a set of rods if you don't already have some. Compare the rods to the centimeter squared paper. You can see that the rods have metric measurements. Notice that the <u>unit rod</u> (and the square ends of all the other rods) exactly covers 1 sq. cm. Each face of the <u>unit rod</u> has an area of 1 sq. cm. How many sq. cm. can you cover with the other rods? You will find the rods with different colors cover different areas, and that rods with the same color cover the same area. Can you prove that? Explain

The things you already know about the rods work for area. For instance, you know that a dark green (D) rod is as long as a train of one purple (P) and one red (R) rod. On the centimeter squared paper trace around a D rod and shade in the area it covered up. Now you can prove a train of one P and one R has the same area as the D rod by exactly covering up the shaded area with the P and R rods. Try this same thing with other color rods, until you are sure the things you already know about the rods work for area.

If you had to find out the area of something, one way you could do it is to cover the outline of the thing with unit rods and then count how many rods it took. Find the area of your pencil, or your eraser, or something fairly small like the lense of your glasses (if you have a pair), by first tracing the outline of the object on a piece of paper and then covering the outline as exactly as you can with unit rods. What did you trace? How many unit rods What was the area? did it take to cover the outline? If you were lucky and the object you picked wasn't too big, you had enough unit rods to cover the outline. But for something bigger like a book, you would run out of rods to cover the outline. Something you might do instead is to trace the outline on centimeter squared paper and then count how many squares are inside the outline. Try it using the outline of your hand on the centimeter squared paper. How many sq. cm. are in the outline of your hand? If someone else has finished this, compare the area of your hand with his. Are the areas nearly the same? Why or why not? Try finding the area of something else using the centimeter squared paper. object: area:

QUESTIONS FOR THINKING AND EXPERIMENTING

	cm. be a good unit for measuring the area of a postage stamp? Why or why not?
	cm. be a good unit for measuring the area of your footprint? Why or why not?
	n. be a good unit for measuring the area of a tabletop? Why or why not?
	cm. be a good unit for measuring the area of the floor of your room? Why or why not?
different o	ake sense to have some different units for measuring the areas of objects? Can you guess what sort of metric unit might be used to e area of the floor of your room? Why that unit?
	ess what sort of <u>metric</u> unit might be used to measure the area North Dakota? Why?

MAP MEASURES

Johnny lives in a very small town. Below is a small drawing showing some of the places in his town. Use your metric ruler and answer the questions on the next sheet of paper about the picture. Be sure to stay on the lines that are drawn for you, when you measure.

JOHNNY'S HOME TOWN

ANSWER THE	FOLI	LOWING	OUESTIONS
------------	------	--------	-----------

1.	How many centimeters from Johnny's house to the park?
	How many millimeters is this?
2.	How many centimeters from Johnny's house to the church?
3.	Johnny is on his way to the park, but he has to stop at the corner store first. How many centimeters will he have to go?
4.	Who lives the closest to the school, Johnny, Dick, or sue?
5.	Johnny has to go and get the mail. How many centimeters will he have to go? How many millimeters is this?
6.	Mary and Patty are going to meet at the corner store on their way to school How many centimeters will Mary have to go? How many will Patty have to go?
7.	How many centimeters is it from Peter's house to Sue's house? Who lives closest to the Post Office?
8.	Johnny's family is going to eat at the cafe. First they have to stop at the school to pick up Johnny, and then they have to stop at Sue's house to get Johnny's sister. How many centimeters will they have to go before they get to the cafe?
9.	How many centimeters do you think it is from Johnny's house to the fire station. Estimate Now measure it. How far is it?
10.	How many millimeters is it from the the post office to the Cafe? How many millimeters from the cafe to Patty's house?
11.	How many centimeters is it from Dick's house to church going by way of the school?

USING A METRIC TRUNDLE WHEEL

A trundle wheel will help you measure straight lines, curved lines and many kinds of shapes that would be difficult to measure with a tape measure. The large trundle wheel that you have in your classroom is exactly I meter around the outside of the circle. The smaller marks are decimeters and the smallest markings are centimeters. Place the zero on the starting point and begin to roll the wheel using the handle to guide it. Count the number of "clicks" (this will tell you how many meters you have measured). When you are at the end of the distance you are measuring look at what mark is on the wheel. Add the number of centimeters or decimeters to the number of clicks to find the distance.

Example: 5 clicks = 5 meters

Example: 9 clicks + 35 centimeters = 9 meters 35 centimeters

OR

(935 centimeters)

OR

(9.35 meters)

١.	Measure the distances that your teacher has marked off for you.
	Record your answers below.
	A
	B
	C
2.	Take the colored tape and make a design on the floor. Mark a starting
	point and roll over the whole pattern, counting the "clicks" as you go
	Record the answer below.
	clicks + centimeters =
	meters centimeters

3. On a sheet of paper draw a closed curve in crayon. Make a trundle with the pieces below. Cut them out and paste them to cardboard. Use a paper fastener to join them together through the black dots, keep it loose enough so that the wheel can turn. You can now measure your design in decimeters. Place the arrow on your starting point and roll it along counting the number of times the arrow touches the line again. Don't forget to check for extra centimeters at the end of the line. Record your measurements below.

The length of my closed curve was ______ decimeters + _____ centimeters.

FLOOR PLAN AREA

- 1. Draw a rectangle shaped shoe store with an area of 18 sq. cm. with 2 and 3 as the starting points on the centimeter grid sheet.
- 2. Draw a rectangle shaped clothing store with an area of 39 sq. cm. with 3 and 6 as the starting points.
- 3. Draw a square shaped dimestore with an area of 49 sq. cm. with 7 and 14 as the starting points.
- 4. Draw a rectangle shaped drugstore with an area of 48 sq. cm. with 14 and 20 as the starting points.
- 5. Draw a rectangle shaped department store with an area of 60 sq. cm. with 20 and 24 as the starting points.
- 6. Draw a rectangle shaped hardware store with an area of 33 sq. cm. with 24 and 27 as the starting points.
- 7. Draw the rectangular shaped Skyline Restaurant behind the dimestore and make it 18 sq. cm. in area.

CONSTRUCTING A CENTIMETER USING A STRAIGHT EDGE, COMPASS AND 1" LENGTH

Materials: Straight edge, compass, 1" length, centimeter ruler, piece of paper.

Directions

- 1. Construct a line segment of any length using your straight edge. Mark two points A and B.
- 2. Find the midpoint of \overline{AB} and label it M.
- 3. Construct a perpendicular to \overline{AB} at point A.
- 4. Using point A as center and the length of AM as radius, construct a circle using your compass placing the point of it on point A. Label the intersection of the circle and the perpendicular point P.
- 5. Draw a line segment connecting points P and B.
- 6. Construct line I parallel to \overline{AB} through point Q (the intersection of the circle and \overline{PB}).
- 7. Mark off 1" on \overline{AB} from point A and label it N. Then construct a line segment through points P and N.
- 8. The distance from the intersection of 1 and \overline{PA} to the intersection of 1 and \overline{PN} is 1 centimeter in length.

Now that you know the length of a centimeter, first estimate the length of the objects your teacher has provided to the nearest centimeter, and then measure them to the nearest centimeter to see how accurate your estimates are.

		ESTIMATE	MEASURE
1.	Pencil	cm	cm _
2.	Paper clip	cm	<u>cm</u>
3.	Screw	cm	cm
4.	Key	cm	cm
5.	Screw driver	cm	cm
6.	Half dollar	cm	cm
7.	Nail	cm	cm

DOT TO DOT

<u>Materials</u>: A pencil and a metric ruler with millimeter and centimeter calibrations.

Activity: Carefully follow the directions at the bottom of this page. If you do, you'll get the message!

Start at point 1.

- 1. Draw a line segment to the point that is 2 cm away.
- 2. From there go upward to a point 34mm distant.
- 3. Continue generally upward to a point 24 mm away.
- 4. Then, draw a line segment to a point 26 mm away.
- 5. Now, skip upward to a point 33 mm distant.
- 6. From there draw a line segment downward to a point 7 cm distant.
- 7. Next, back up 33 mm;
- 8. then, up 4 cm;
- 9. and back 23 mm.
- 10. Next, find a point 43 mm away and draw a line segment to it;
- 11. now down 6 mm;
- 12. then, to the left 72 mm.
- 13. and up 3 cm from there;
- 14. and finally, up 23 mm.

Use	your centimeter and millimeter ruler to measure the following:
1.	How long is the calf?centimeters
2.	Measure the width of a hoof. How wide is it?centimeter(s)
3.	How wide is the butterfly?millimeters
4.	How wide is the barn?centimeters
5.	How high is the barn?centimeters
6.	How many millimeters long is the bigger bird from the tip of the tail to the tip of the beak?millimeters
7.	What is the distance from wingtip to wingtip on the seagull?centimeters
8.	Measure the chipmunk's (standing on two legs) front ear. How long is it?centimeter(s)
9.	How many millimeters long is the standing chipmunk's eye?millimeters.
0.	How long is the tail of the chipmunk (on all fours)?centimeters
11.	How long is the fish from the tip of the tail to the tip of the head?millimeters
12.	How long is the ladybug?millimeters
13.	Measure the largest dot on the lady bug. How long is it?milli-meter
1 4	Measure the cap of the acorn How long is it? millimeters

MEASURE PARTS OF THE BODY

Materials: Paper, pencils, metric ruler, string

Guess and Measure

Students will draw the outline of his hand and foot on the paper.

Find the measurement of the perimeter of the foot and the hand. Use the string.

With the same piece of string, measure your (1) head, (2) ankle, (3) wrist, (4) neck, (5) waist.

	OBJECT	Gu e ss	Answer
1.	Foot		
2.	Hand		
3.	Head		
4.	Ankle	·	· ·
5.	Wrist		
6.	Neck		·
7.	Waist		

Compare your answers with a partner.

ESTIMATING AND MEASURING YOUR SCHOOL

Using a centimeter ruler estimate the following and then find the actual measurement.

OBJECT	ESTIMATE	ANSWER
1. Desk top length		·
2. Length of pencil		
3.—Longest piece of hair		
4. Side of a book		
5. Sheet of paper		

Estimate the following, then using a meter stick find the actual measurement.

		ESTIMATE	ANSWER
1.	Gym length		
2.	Gym width		
3.	Counter in kitchen		1
4.	Stage length		
5.	Stage width		,
6.	Blackboard width		
7.	Blackboard height		

PERIMETER

Perimeter is the measure around the figure.

The perimeter is 9cm

Find the perimeters of these figures:

MAKING A CALIPER

Constructing the Metric Caliper:

Carefully cut out the slide and scale on the next page.
Fold the scale as shown.

Insert the scale through the slits cut in the slide.

Fold slide along fold line so slide fits snug on scale:

To measure the thickness of an object with the Metric Caliper

Fit object between leg on scale and slide. Push slide until object fits snug.

Read measure on scale using edge of slide.

USING THE CALIPER:

Estimate the thickness or width of each object listed to the nearest tenth of a centimeter then measure using the Metric Caliper. In the "Error" column place a + sign in front of errors resulting from estimates larger than actual measures and a - sign in front of errors if the estimate is smaller than actual measures.

OBJECT	Estimate	Measure	Error
Width of pencil			
Width of finger			
Thickness of textbook			
Diameter of piece of chalk			
Width of paper clip			
Thickness of desk top			
Width of palm of hand			
Width of chalkboard eraser			
Diameter of chair leg			

A METRIC PUZZLE

ACROSS

$4.2m = ___m$ cm ٦. 7hm + 65m = m 1dm + 14cm = cm 3km + 521m = m7.

- 480mm = ____cm
- 8m + 221mm = mm9.
- 11. 6000m = km 12. 57.5cm = mm
- 15. $8hm + 4dkm + 5m = ___m$
- 17. 12.6m = dm18. $184km \times 16km = km^2$
- $20. \quad 1m = mm$ 21. $3m \times 3m \times 3m = m^3$

DOWN

- 4km + 218m = m 6cm x 4cm = cm² 7dm + 5cm = cm .624m = mm 5m + 1dm = dm 3m + 815mm = mm .42m = cm 3. 4. 7. 8. 2m + 3dm + 4cm = cm10. 11. 60m = dkm13. 7m + 1dm + 4cm = cm14. $5m + 2dm + 4cm + \frac{2mm}{2} =$ 15. 86dm + 1cm = cm
- 16. 52dm = cm19. 9dkm = m

METRIC BASEBALL THROW

(This is a seasonal activity. In October and November try a football pass.)

In succession, each student will throw a baseball as far as he or she possibly can from home plate. Each pupil will be allowed two tries. The most distant of the two will be recorded by the scorekeeper. Five pupils must be present in the outfield while the throws are being tossed. A rotation system may be devised so that everyone gets equal time being an outfielder. After the contestant throws the ball, the closest outfielder should stand on the spot where the ball drops. Four students should be designated linepersons. They will be equipped preferably with metric steel tapes. Measure to the nearest centimeter, the distance from home plate to the location where the ball drops. Any ball landing in foul territory will not be measured. A method for the rotation of linepersons may also be devised.

NAME		MON.	TUES.	WED.	THUR.	FRI.	AVERAGE
	à						
					-		
	•				•		
	-	·					_
	· ·						
ne aver in				,			

Try this activity everyday for one week. At the end of the week each student will find his average to the nearest centimeter. Find the class average.

AREA OR PERIMETER ACTIVITIES

Find the area or perimeter from the data given and fill in the answer in the unit asked for. After the answer is found, use the number of the problem and the answer to connect a line segment to the two on the grid below to form the MUST words on the following page.

1.	rectangle: L=45mm; W=20mm	perimeter=cm
2.	square: S=150cm	perimeter= <u> </u>
3.	rectangle: L=50mm; W=2mm	area=mm ²
4	triangle: B=17m; A=2m	area= <u></u> m ²
5.	rectangle: L=4cm; W=2cm	area=cm ²
6.	triangle: S1=2m; S2=7m; S3=3m	perimeter <u> </u>
7.	rectangle: L=8cm; W=.5cm	area=cm ²
8.	square: S=35mm	perimeter=cm
9.	parallelogram: B=.4cm; A=5cm	area=cm ²
10.	rectangle: L=55mm; W=25mm	perimeter=cm
11.	square: S=375cm	perimeter= <u> </u>
12.	triangle: B=6mm; A=3mm	area=mm ²
13.	rectangle: L=2.5cm; W=2.8cm	area=cm ²
14.	parallelogram: B=2.5m; A=2m	area=m ²
15.	square: S=1cm	area=cm ²
16.	triangle: S1=98cm; S2=86cm; S3=116cm	perimeter=m
17.	rectangle: L=29mm; W=26mm	perimeter=cm
18.	parallelogram: B=2.5cm; A=3.2cm	area=cm ²
1.9.	triangle: S1=4,500mm; S2=6,900mm; S3=3,600mm	perimeter=cm
20.	rectangle: L=6.5cm; W=1.8cm	area=cm ²
21.	square: S=300cm	perimeter=m
22.	triangle: S1=120cm; S2=149cm; S3=31cm	perimeter=cm
23.	square: S=75cm	perimeter=cm

5m2

60dns \$ **6 ₽** 300cm • ÿ 100 • 80 39 ≥. 15m

71.

ERIC

Full Text Provided by ERIC

AREA

<u>Materials</u>: Construction paper, paste or tape, scissors, meter stick

Procedure: 1) Children will work in small groups. Using the construction

paper have the groups construct a number of square centimeters,
square decimeters, and square meters.

2) Using their constructed units of area have children measure the surface areas of such things as the blackboard, desk or table tops, floor, windows, books, or other articles you may have in the classroom. Have each group measure each area with each unit of measure they have constructed. Have students tabulate their results in a table such as the one that follows. Let groups compare answers.

OBJECT	Area in cm3	Area in dm3	Area in m3
1)			
2)		•	
3)	•		

Discussion: What unit worked best for measuring the area of the blackboard? the floor? the desk or table tops? What unit of area works best for measuring small areas? for measuring larger areas?

TRUNDLE WHEEL

		4
Materia	als: Trundle wheel, metric stick, cloth me	etric tape, steel metric tape
Instruc	ctions for the Teacher: The children shou	ld be divided into four groups.
	roup will go to the different stations to a	· ·
Using t	the trundle wheel, measure the following i	tems and record your answers
in the	following blanks.	
Α.	the length of the hall outside our room	meters
В.	the width of the hall outside our room	meters
Using t	the metric stick, measure the following obj	jects and record your answer.
Α.	frame of the box that encloses the fire extinguisher	width in cmlength in cm.
В.	width of the display case by the principal's office	width in cm.
C .	. height of the door frame of our room	cm. high
Measure	e the following parts of the teacher with a	a cloth metric tape.
А	. foot cm mm	cm = centimeter
В	100 100 100 100 100 100 100 100 100 100	mm = millimeter m = meter
C	. arm span cm mm	
Measure	e the following school equipment with a ste	eel metric méasuring tape.
A	. width of the bike rack cm	m
В	. length of the teeter totter board	m

VOLUME

AND

CAPACITY

EXPLORING VOLUME...INCLUDING CONSERVATION AND INVARIANCE

Using many different containers, allow free play for several days before the following exercise.

Material: 4 cups of equal size, 1 small jar, 1 small bottle, 2 cans; 1 small and
1 large milk carton (qt. size), small bucket, funnel and water.

*Teacher or delegated student records findings on board.

Oral directions: Using the different containers see if you can find:

- 1. How many cupfuls fill the milk carton
- 2. How many cupfuls fill the small can
- 3. How many small canfuls fill the milk carton

Discuss findings

- 4. How many milk cartonfuls fill the bucket
- 5. How many milk cartonfuls you can fill with a full bucket
- 6. Fill the milk carton, pour it into the cups until it is all gone.

 How many cups does it fill? Now pour all the cupfuls back into the milk carton.

Discuss findings

- * (Make certain that the large can along with the milk carton will completely fill the bucket.)
- 7. Fill the bucket, pour enough into the milk carton to fill it and the rest into the can. Now pour the water from both the milk carton and the can back into the bucket. What do you find?
- * (Have jar, small can and bottle equal in volume.)
- 8. Fill the jar, pour it into the small can. What do you find? Pour the canful into the bottle. What happens? Pour the bottleful into the jar. What do you discover?

Discuss findings

* = Teacher Note

MEASURING WITH A LITER

1. Circle the things we measure by the liter.

2. Draw two of your own in the boxes.

Questions by the teacher:

- 1. Do each of the following containers represent a liter measure?
- 2. If we pour the milk from A and it fills B and empties A what part of a liter does B hold?
- 3. Which container holds more, B or C?
- 4. Which container holds less, B or C? `

CENTIMETER CUBES

This is a centimeter cube.

How many centimeter cubes can you count in this solid? _____

If you place two of these solids on top of each other, how many centimeter cubes do you get?

Now place three of these solids, in 1 above, on top of each other. How many centimeter cubes are there?

You are finding the volume of these solids.

You can write centimeter cubes as cm³.

Write the volumes of the solids in the following chart.

1.	cm ³
2.	cm ³
3.	cm ³

VOLUME

<u>Materials</u>: Wheat for dry measure, pop cans, show boxes, ice cream pails, coffee cans, cereal boxes, milk cartons.

Determine the number of handfuls of grain it takes to fill the following items (use one of your own hands).

l pop can = ____ handfuls

1 shoe box = ____ handfuls

lice cream pail = ____ handfuls

l coffee can = ____ handfuls

l cereal box = _____ handfuls

l milk carton = handfuls

Do your amounts agree with those of your classmates? Why or why not?

In groups of 2 or 3 determine the number of pop cans full of grain there are in the following items.

1 shoe box = ____ pop cans

l ice cream pail = _____ pop cans

1 coffee can = ____ pop cans

1 cereal box = ____ pop cans

1 milk carton = ____ pop cans

Is it easier to compare measures if every one uses the same size unit to measure?

VOLUME - SIZING CONTAINERS.

Materials: Containers of various sizes, dry measure medium (wheat or sand).

Place the following containers in the order from smallest to largest - (milk cartons)

After placing in order use the standard measuring cup - 1 ℓ measure and sand or grain - to find out if you are correct. Record your findings in the chart.

Size	Guess Container Order	Actual Container Order			
largest					
large					
medium					
small	:				
smallest					

CUBIC CENTIMETERS FOR MEASURING SMALL VOLUMES

<u>Materials</u>: Cuisenaire rods, centimeter squared paper, scissors, rulers, sticky tape, sand (about 1 ℓ per 3 students), 5 cc spoons (teaspoons will do), various shapes and sizes of small containers.

1. Find a unit rod (W). Measure the rod with your ruler. You should discover that the rod is 1 cm long, 1 cm wide and 1 cm high. The space that 1 unit rod takes up is 1 CUBIC CENTIMETER. A shorter way to write cubic centimeters is either cc or cm³. Cubic centimeters are used to measure fairly small volumes. For instance, medicine is usually measured in cc's. You may find it useful to have a personal measurement for a cubic centimeter. One good measurement is the end of your finger. Try it. Which of your fingers makes the best cubic centimeter?

3. Cut out the figure.	Fold the	flaps u	p and	tape	the edges	together	so you
have a little box.							

4.	Wi thout	using the r	ods but us	ing one unit	rod for c	omparisor	, try t	o guess
now	many uni	t rods will	exactly f	it inside you	r box		_rods.	
WOV	use the	unit rods a	nd exactly	fill your bo	x with th	em. How	many ro	ds did
you	use?	rod	s. Was th	at pretty clo	se to you	r guess?		
Duri	ng this	lab you wil	1 get some	practice gue	ssing vol	umes. It	you us	
•	u	nit rods to	fill the	box, that mea	ns the bo	x takes _		$_{}$ cm ³
to f	ill it.	Hold the r	ods in you	r hand to get	an idea	of that a	mount o)f
				or are there			łow many	rods
nake	a handf	ul?	This i	s how many cm	رة. 	cm ³ .		

5. A rounded teaspoon of sand is about 5 cm in volume. Exactly fill up your
box with sand, keeping count of how many spoonfuls of sand you use. Fill the
box level with the top. How many spoonfuls of sand did you need?
To get the volume of the box, multiply the number of spoonfuls by 5.
spoonfuls times 5 equals cm^3 . You should have used about
5 spoonfuls of sand, and the volume should be close to the volume you got by
filling the box with unit rods.
6. Using at least 4 other containers, first guess how many cm ³ each will hold.
Then fill the container with spoonfuls of sand to find out how many ${\sf cm}^3$ it holds.
Record your data below:

ОВЈЕСТ	ESTIMATED VOLUME	SPOONFULS OF SAND NEEDED	VOLUME IN cm ³
w. s			

LITERS

<u>Materials</u>: Teacher should bring different containers from home such as glasses, cans, square containers, etc. There should be a number on each container. There should be available 3 or 4 graduated beakers and about a bushel of dry measure of some type (example - wheat). Water may be used if teacher finds it convenient. Children should work in pairs, 6 or 8 at a time working out the table below.

<u>Student Directions</u>: First of all, look at the container and the number that is on it. Then guess how many milliliters or liters that the container contains. Put your guess on the first line and then measure it using the beaker and see how close you were. Fill in the table

Container	Guess	Measure	
1.			
2.		· .	
3.			
4.	· ·		
5.			
6.			
7.			
. 8.	·	.	

DO THESE STORY PROBLEMS BEFORE IT IS YOUR TURN OR WHEN YOU ARE FINISHED.

1.	Betty had 1 1	iter	of water	in her	pail.	Susan h	nad 500	milliliters	of water
	in her pail.	How	many mil	liliters	of wat	er did	the two	girls have	together?

Mary has 40 milliliters of orange juice and Patty has 60 milliliters of
orange juice. How many milliliters do the two girls have together?
How many deciliters is this?

3.	John has 2	28 liters of gas	in his tank.	Jim has 45	liters of	gas in his tank.
	How many m	more liters does	Jim have than	John?	How	many centiliters
	is this?	•		· –		•

4.	. Mrs. Brown was making a cake that called for 5 millilite	rs of	soda, 5	milli-
	liters of salt, 250 ml of milk, 250 ml of sugar and 750	ml of	flour.	How many
	milliliters is this all together? How many li	ters?		

HIDDEN WORD PUZZLE

Circle the metric, measurement, and shape words found in the puzzle.

D A E R Y K N Z A W P N
C I R C L E I S H A P E
F O R N O M A K T T O L
C E N T I I M E T E X N
M U K T C L I T E R D Y
N E O K A L I Q U I D L
C O T M O I Y P Z F E E
E K A E P L N M A Z C P
G I N A E I M E G A I G
V L O S R T A T R Y L E
V O L U M E A E A D I E
P E T R T R K I M A T N
I K R E C T A N G L E T
M O R N Y D K E T K R A

DISPLACEMENT

Materials: Displacement pail

Water

- 3 500 ml articles of different shapes that do not float
- 2 400 ml articles of different shapes that do not float
- 2 1 & articles of different shapes that do not float
- A few miscellaneous articles does not matter if they float
 All of the above articles should be of different weights so that
 the children realize that the objects do not have to weigh the
 same in order to have the same volume. Also, these articles can
 be made out of milk cartons, potato chip cans, pop cans, etc. with
 rocks or something heavy in them.
- 1. Fill the pail with water to the bottom edge of the spout and place a catch can under the spout. Let some water run through to make sure it is to the bottom of the spout.
- 2. First have the children try and guess which of the articles have the same volumes between the 500 ml, 400 ml, and $1 \, \ell$ ones. They could also make an estimate of the volumes.
- 3. Have them measure the volume of each one by placing it in the displacement pail and measuring the amount of water that comes out.
- 4. Did they guess right? Have them group the articles according to volume and point out that they do not have to have the same shape to have the same volume.
- 5. Let them measure the volumes of other miscellaneous articles for practice in finding volumes by the water displacement method. This is also a good time for them to practice using metric units for measuring.

EQUIVALENT VOLUMES

Find the equivalent volumes that name a tic-tac-toe.

1	1000 cm ³	1 dm ³
1 cm ³	. cm ³	4 m1
1	10 dm3	10,000 cm ³

100 hm3	100 - cm ³	m3 .
100	10	1000
_{mm} 3	km ³	dm ³
1000	100	1,000,000
m1	&	cm ³

1	10	1
	m1	cm ³
1 cm3	.001 .	.01 dl
l	10	1
ml	cm ³	dm ³

1	1	1
2	cm3	d m ³
100	1000	10
&	m1	Ł
100 cm ³	1	10 d1

1.25	12.5	.125
cm ³	cm ³	d1
125	.125	125
cm ³	&	ml
12.5	1250	1.25
dm ³	cm ³	&

+.iñ	50	5000	500
	&	m1	c1
	500	50	5
	d1	d1	d1 .*
	5	500	50
	dal	c1	m1

CROSS-NUMBER PUZZLE

Converting from one metric unit of liquid to another, complete the crossnumber puzzle using the clues below.

Down

c.
$$2 l + 11.57 d1 = ___ m1$$

d.
$$300 d1 + 1500 c1 =$$
___ &

f.
$$3 l + 11.7 d1 = ___ c1$$

g.
$$0.26 \ \ell + 1.3 \ c1 = m1$$

$$_{\circ}$$
 h. 1.2 d1 + 0.121 ℓ = ____ m1

i. 50
$$\ell$$
 + 1680 ml = ___ cl

k. 6000 d1 + 3800 c1 =
$$_{--}$$
 &

Across

a.
$$2 d1 + 11.4 c1 = ___ m1$$

d.
$$400 \ \ell + 81,000 \ m1 = \ell$$

h.
$$2.7 \& + 4.7 cl = ___ ml$$

i. 57
$$\ell$$
 + 240 ml = ___ cl

j.
$$100,000 \text{ ml} + 6500 \text{ cl} =$$
___ &

1.
$$3 l + 16.27 d1 = ___ m1$$

m.
$$0.15 \ell + 13.7 c1 = m1$$

METRIC RECIPES

<u>Materials</u>: A measuring cup for liters and milliliters, measuring spoons for milliliters, mixing bowl

Drop Biscuits

480 ml flour

15 ml baking powder

5 ml saît

60 ml shortening

180 ml milk

Mix flour, baking powder and salt. Add shortening and mix well. Mix in milk. Drop by spoonfuls on a greased baking pan. Bake at 210°C, 10 to 12 minutes or until lightly brown. Makes about 12 biscuits.

Sugar Cookies

480 ml sugar

240 ml butter

240 ml sour cream

3 eggs

5 ml soda

960 ml flour

5 ml vanilla

Mix. Place on cookie sheet (greased). Bake at 175°C about 10 minutes. Makes about four dozen.

VOLUME:

Materials: Cup, jar, trash can, cuisenaire rods, paper and pencils.

I. Guess the volume of these objects:

Object	Guess	Acutal
cup	2	
classroom		
jar		
trash can		
sink		
book shelf		

II. What is the most common cubic measure in the metric system?

111.			
	٦.	Use the cuisenaire rods to build a staircase 10 steps	high
		Volume of your staircase is	
		· •	

Use the cuisenaire rods. Build a one story home.
 The volume of your home is ______.

							54114	<u>~</u>	fence.	
The	vol	lume	of y	our	fenc	e ic				

4. Use the cuisenaire rods to measure the volume of your math book.
The volume of your math book is ______.

METRIC OATMEAL COOKIES

	<u>Volume</u>
Sugar	600 ml
Butter	120 ml
Salt .	.3 ml
Cocoa	60 ml
Milk	120 ml
Peanut butter	120 ml
Rolled Oats	800 ml
Vanilla	5 ml

Measure first five ingredients into large pan. Heat and stir until sugar dissolves. Continue to stir until boiling. Let boil 30 seconds. Remove from heat. Stir in peanut butter, oats, and vanilla. Mix well. Quickly spoon on waxed paper. Cool. Makes 50.

METRIC HAYSTACKS

· ·	<u>Volume</u>	Weight
Butterscotch Morsels	450 ml	350 g
Chow Mein Noodles	400 ml	90 g
Salted Peanuts	250 ml	140 g

Melt butterscotch morsels. Stir in chow mein noodles and peanuts. Drop by teaspoonfuls on waxed paper. Let stand until set, approximately 20 minutes. Makes 40.

CAPACITY

The volume of a container tells you two things:

- 1. the amount of space inside
- 2. the amount it will hold

Capacity is the amount a container will hold.

Capacity can be given in units of liquid (ℓ) or in cubic units.

$$1 \text{ dm}^3 = 1 \text{ l (liter)}$$

The capacity of 1 cubic decimeter is 1 liter.

1 cubic decimeter (1 dm³)

Using a liter cup, a quart container, a gallon container, and wheat, answer these questions.

- 1. Which is larger, 1 quart or 1 liter?
- 2. Could you put 1 liter of wheat into a quart container?
- 3. Could you put 1 quart of wheat into a liter container?
- 4. Could you put 4 liters of wheat into a gallon container?
- 5. **Could you put 1 gallon of wheat into a 4 liter container?

Complete the following table:

l kiloliter (kl) = ____ liters

l hectoliter (hl) = ____ liters

1 dekaliter (dal) = ____ liters

l deciliter (dl) = ____ liter

l centiliter (cl) = liter

1 milliliter (ml) = ____ liter

WRITTEN PROBLEMS

1.	Larry bought 6 1	liters of oil	for his car.	He paid \$3. 54	for the oil.
	How much did he	pay for each	liter?		

2.	If	there	are '	10 m	illi	liters	of	ĆΟ	ugh	medic	ine	in	a	bottle	(sm all	sia	ze),
	how	many	smal	l si	zed	bottle	s C	an	be	filled	_* fro	m a	1	liter	bottle	of	medicine?
	bottles										`			*			

3. My car holds 60 liters of gasoline and can travel 12 kilometers on a liter of gas. How far can it travel on a full tank of gas? ____ km

If I dug a hole in the ground with the following dimensions, what is the volume of earth removed? m^3

Larry compared two cans of orange juice in a grocery store. A 300 ml can sold for \$.60 and a 100 ml can sold for \$.22. Which was more economical?

100 ml

FINDING THE VOLUME

Use the given dimensions to find the volume of each object.

COOK ALA METRIC

<u>Materials</u>: The equipment needed for this activity includes graduated milliliter pitchers, milliliter spoon sets, English spoon sets, English measuring cups, hot plates, and the ingredients and materials called for in the recipe.

Convert the following recipe to the metric system. To accomplish this task, transfer the volume in the English system containers to the metric devices. Record the measurements. (If you are not going to try the recipe, you may use sand or another usable material to find the conversion.)

CANDIED POPCORN

l cup sugar	ml	of	sugar
1/2 cup molasses	ml	of	molasses
l tablespoon of soft butter	m1	of	soft butter
l tablespoon of cider vinegar	ml	of	cider vinegar
1/4 teaspoon of baking soda	m1	of	baking soda
1 cup popcorn	m ₃	۶	popcorn

TRY IT OUT. Butter a 39 cm by 28 cm jelly roll pan and a large bowl. Pop the popcorn. Place 1/2 of it in the large buttered bowl and save the rest. In a heavy saucepan, over medium heat, cook the sugar, molasses, butter and vinegar until a small amount of the mixture forms a firm ball in very cold water. With a spoon, beat the baking soda into the molasses mixture until well combined. Pour 1/2 of the mixture into the large buttered bowl with the popcorn. Stir quickly until the popcorn is coated. With buttered hands, spread mixture onto 1/2 of the jelly roll pan. Repeat with the remaining popcorn and molasses mixture. Cool. Break it into pieces. HOW DOES IT TASTE!

CAPACITY

Get a half-gallon carton. The length and width are approximately 10cm. Cut down the carton so that the height is also 10cm. The volume of the container is now ____ cm³.

10 cm = $\underline{\hspace{1cm}}$ dm. The volume in dm³ is $\underline{\hspace{1cm}}$ dm³ because the volume of a rectangular solid is V = LxWxH so the volume of the carton is ___ cm x __ cm or $\underline{\hspace{1cm}}$ cm³ or $\underline{\hspace{1cm}}$ dm³.

Fill your container with water. Liquid capacity is measured in liters (ℓ) . The capacity of your container is approximately 1 liter. 1 liter is 1 dm^3 .

Name the capacity of these containers in liters

2000cm³ 500cm³ 250cm³ 80,000cm³ Volume Capacity

ON YOUR OWN:

If a car averages 5km per liter of gas, how far can it travel on 20 l? ____ km, The dimensions of the gas tank are 100 cm x 40 cm x 20 cm. How far can this car travel on a full tank? km

TO BECOME FAMILIAR WITH THE DIFFERENT METRIC UNITS OF VOLUME.

Procedure: To be able to concretely visualize the units of a cm³, liter, dekaliter, and a cubic meter the class will participate in creating these units. One cubic meter will be enough for a whole class. This could be made from pieces of dowel rods cut to a meter length. Something to fasten the rods at the corners will have to be devised. Clay would work if nothing else is available. A number of the other units could be constructed. Blocks of wood for the cm³ would work best. After the construction of the units and the children have had ample free play with the units have them answer the following questions.

1)	volume of a swimming pool?
2)	Which unit would be most efficient for measuring the volume of a drinking glass?
	Which of the units would you probably use to measure the volume of your bathtub?
4) ·	Which of the units would you use to measure the volume of the sink?

If possible, obtain graduated cylinders that are marked off in ml. On a chart such as the one below have children first estimate then accurately measure the volume of various containers. A dry measure such as sand or wheat would be most practicable.

Object	Estimated Capacity in ml	Actual Capacity in ml.	Capacity in
1.			
2			·
3.			
4.			
5		•	

MUSICAL MEASUREMENTS

Materials: 8 glasses, piano, liter beaker.

Place 8 glasses of the same height, width and volume in a row. Fill each glass with water until all of the following musical notes have been found. Use the piano to tune your glasses.

Measure each of the glasses' contents with a graduated cylinder and fill out the following chart.

 C =
 ml of water

 D =
 ml of water

 E =
 ml of water

 F =
 ml of water

 G =
 ml of water

 A =
 ml of water

 B =
 ml of water

 C =
 ml of water

Label each of the glasses of water with the note it was 'tuned to.

Using the end of a spoon and tapping the rim of a glass, play your favorite tune.

(Teacher's note: provide some songs with the musical letters so the child may enjoy the end product.)

CONCEPT OF '	VOLUME	AS	INSIDE	SPACE,	COMPARING	VOLUMES
--------------	--------	----	--------	--------	-----------	---------

<u>Materials</u>: Various sized small boxes, centimeter cubes, small cans (cylinders), sand.

l. Take a few boxes and some centimeter cubes. Build a solid form with your cubes by arranging them in rows and layers.
How many cubes did you use to make your solid?
2. Put the cubes from your solid form into one of the small boxes. Arrange them in rows and layers. Do you think they will fill the box? Will there be too many, or too few? Estimate: It will take centimeter cubes to fill the box. Now fill the box. How many cubes did it take?
3. Use another small box. Will it hold the same number, more, or less cubes than the first box? Estimate the number of cubes you think will be needed to fill the second box Fill the second box using cubes from the first. Did you use all the cubes to fill the second box? Did you have too many or not enough cubes? Which box is larger (which box holds more cubes?) Leave the cubes in the box.
4. Take a can and fill it with cubes. Compare the can of cubes with the box of cubes. How do the cubes fit into the box? the can? Can you tell which holds more, the can or the box? Dump the cubes from the can and the box back onto the table. Fill the can with sand. Will the box hold the same amount of sand, more or less? Discuss how we can find out which will hold more sand. Can we count the sand like we counted the cubes?
5. Pour the sand from the can into the box. Does it fill the box? Which holds more sand the can or the box? Which is larger?
6. Do the same as above using different containers. First estimate then measure to find out which containers are larger.

MASS

AND

WEIGHT

BUILDING A BALANCE

Materials: 6 tinkertoy knobs, 1 long green tinkertoy stick, 4 red tinkertoy sticks, 1 thumb tack, 2 paper clips, 1 30 cm ruler (with looseleaf binder holes). 2 small paper cups, paper clips, beans, chalk, crayons, various small articles.

Which is heavier a color crayon or a pencil? We can build a device to compare the weights of these and other small objects. This device is called a balance.

- 1. Get a set of materials from your teacher.
- 2. Take one tinkertoy knob. Put a red stick into one of the side holes. Put another red stick into the side hole opposite the first red stick. It should look like this
- 3. Now put another red stick into the middle hole between the other two red sticks. It will go here Take the last red stick from the set of materials and put it into the side hole opposite the third red stick.
- 4. Put a knob on the end of each red stick. So far your balance should look like this-
- Stand the long green stick up in the center hole and put a knob on the top of it.
- 6. Put a tack through the center hole of the ruler and fasten it to the top knob. You may need help from your teacher to fasten the ruler securely.
- 7. Bend your paper clips out so they look like this.
- 8. Make a hole near the top of the paper cup and hook one end of the paper clip through the hole like this.

 Do the same with the other paper cup and clip.
- 9. Hook the free ends of the clips into the holes at the ends of the ruler. Now your balance is completed. It should look like the illustration on the following page.

10.	Put your	crayon	in	one	paper	cup.	Put	your	pencil	into	the	other.	
	Which we	iahs mon	re?		N								

- Put a piece of chalk in one cup. Put a crayon in the other. 11. Which weighs more?
- Guess which is heavier, a paper clip or a bean. ____ Put a paper clip into one cup. Put a bean in the other. Which weighs more?
- 13. Compare other small objects:
- Guess which is heavier, three beans or your pencil. Which does weigh more? How many beans does it take to equal the weight of your pencil?
- How many beans does it take to equal the weight of your eraser? Which weighs more, your pencil or your eraser?

INTRODUCTION TO WEIGHT

see relationships.

Start off with a discussion concerning what pupils have observed concerning balance, e.g. a see-saw, walking on a fence, a tight-rope walker, making a mobile; etc.

<u>Materials</u>: Provide a wide range of improvised balances, contrived from coat hangers, tins, plastic bowls, suspended firmly or commercially produced balances. A wide variety of materials to weigh.

Oral directions - teacher's guide

Using any of these materials see if you can discover what items are heavier or lighter than each other.

Discover and jot down at least three different groups.

Discuss, record on board using colored chalk to help students

Put an eraser in one dish of the balance. See what group of things together in the opposite cup can balance the scale. Record

In the same way balance and record the following:

five pieces of chalk ten paper clips six orange Cuisenaire rods one level spoonful of sand

8 marbles
1 key Eraser
4 pencils

Discuss and record on board in drawing form.

Provide some assorted color-coded containers, differing size, shape and weight, with no obvious relationship between size and weight.

See if you can put these containers in order, just by looking, according to their weight from the lightest to the heaviest. Record estimations on board.

Now weigh just by handling. Record order on board.

Could you tell just by looking which was the heaviest or lightest? Which ones fooled you? Why? How many orders did you correctly guess? Is it easy or difficult to estimate weight?

Provide some seemingly identically number-coded containers, each of a different weight.

By just looking again, can you guess which order these containers would be in if we wanted to place them in order starting with the **light**est and going to the heaviest? Why not? What would you have to do to find out? What do you think they might contain? Would this (content mentioned) make it heavy or light?

Let's weigh them on the scale.

Record on board or have students make a graph.

Questions

Do you know the names of some of our weight measurements?

How is pop sold at the grocery store (gram).

How much do you weigh? (kilograms) - most children should have some idea how much they weigh, if not, you could weigh a few to demonstrate.

Other items at the store: Kool-Aid, box of chips, a big bag of flour, tooth-picks?

The unit of measure for the small items is called a gram.

Some items which have a lot of grams (bag of flour) are sold by kilograms or thousands of grams.

Let's try to remember the name of this unit of measure, gram.

WEIGHT USING CM3 CUBES

<u>Materials</u>: Balance scale, sugar cubes, I gram colored cubes (yellow and blue), chalk, spoon, knife, fork, plastic cup or glass, empty pop can, pencil, bar of soap.

Le	esson:	Fill i	n the	empty	blanks.
1	yellow	or blu	e cub	e = 1	gram
2	yellow	or blu	e cub	e s =	gr a ms
3	yellow	or blu	e cub	es = _	gr a ms
4	yellow	or blu	e cub	es =	gr a ms
1	sugar (cube =	2 gr	ams	
2	sugar o	cubes =		gr a ms	
3	sugar o	cubes =		gr a ms	
4	sugar o	cubes =		gr a ms	

Using sugar cubes and the little yellow and blue cubes as weights, weigh the following objects on a balance scale and record everything on the chart.

Objects	Guess - g of Y		Number of Yellow and Blue Cubes	Total in Grams
CHALK	·			
SPOON .				
KNIFE				
FORK				
PLASTIC GLASS	. ,	·		
EMPTY POP CAN				
PENCIL				
BAR OF SOAP				

Which object weighed the most grams?	<u>.</u> .
Which object weighed the fewest grams?	_
Did any objects weigh the same?	
Which weighed more, the knife or the plastic glass?	
How much more?	

Find other things in the room to weigh and compare them.

WEIGHT ---

Material: Bathroom metric scale

WHAT DOES THE SCALE READ WHEN:

I stand on it	_ kg ··		
I stand on it carrying 3 books	kg		
How much do the books weigh?	kg		
I stand on it without my shows		_ kg	
How much do my shoes weigh?	kg		
I stand on it with my friend	k	g	
How much does my friend weigh?		_ kg	
Who weighs more? Me or my friend	i? _.	kg	
I stand on it carrying a class pe	t	kg	
How much does the class pet weigh	ı?	kg	
I squeeze the scale between my fi	ngers		kg

75

WEIGHT

Material: A compression scale

Using the scale, weigh five or six different objects in the classroom. Record your findings on the following chart from lightest to heaviest.

0 bject s		Weight g Guess	Weight g Actual
1.	·		
2.			
3.	· · · · · · · · · · · · · · · · · · ·		
4.			, , , , , , , , , , , , , , , , , , ,
5.	• '		
6.	·		:

With the following objects, guess between the two which one is lighter or heavier than the other. Record the findings on the following chart. (Use the scale to see if your answer is correct.)

		Weight		
Estimate	Objects	Lighter - g	Heavier - g	
	book - wooden block			
	pop can - cup (with sand)			
	cup of wet sand - to dry sand		·	
	softball - baseball			
	eraser - box of chalk			

MASS - WEIGHT

What would you guess the weight of a nickel to be? A nickel is equal to about 5 grams. Use it as the unit of measurement when weighing five objects. First, make a guess about the weight of each object. Record it below. Next, using a simple balance scale, weigh five light objects that can be found around you. Record the weights below.

Object	Gu	Guess		ht
	(in nickels)	(in grams)	(in nickels)	(in grams)
				ee ee
1.				
		•		
2.			t.	
				\$ 5 \$
3.			·	· · · · · · · · · · · · · · · · · · ·
•				
4.				
5			`	

Use this code to help you find out what this metric measurement message says.

23 5 9 7 8 15 20 8 5 18 20 8 9 14 7 19

Make a metric message using this code and give it to a classmate to figure out.

DETERMINING WEIGHT

<u>Materials</u>: Metric compression scale, 1 can tuna fish, 1 can soda pop, a flash-light battery, a nickel, a ruler and 3 - 5 objects chosen by children from the classroom.

<u>Directions</u>: Weigh the different objects given to you and the ones you chose. Fill in the table below and answer the questions below the table.

Object .	Estimate Grams	Actual Grams
l. Tuna fish		
2. Soda pop		· .
3. Battery		
4. Nickel		
5. Ruler		
6.		
7.		
8.		
9.		
10.		

١.	Which object weighed the most?			
2.	Which object weighed the least?		-	
3 [.] .	How many grams would 2 cans of tuna fish weigh?			and the second
4.	How many grams would 6 cans of pop weigh? How many	kg?	· · · · · · · · · · · · · · · · · · ·	
5.	How much would 5 nickels weigh?		4) 3 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1	
6.	How much would 4 batterys weigh?	,		
7.	Would all rulers weigh the same number of grams?			
8.	Of the objects you chose, which one weighed the least?		·	

WATER MASSES

Materials: Weights, water, balance with cup like pans, liquid measuring utensils

- 1. Put one ml of water in a pan on the balance and weigh it. Record the weight on the chart below.
- 2. Put 10 ml of water in a pan and weigh it record the weight.
- 3. Put 25 ml of water in a pan and weigh it record the weight.
- 4. Put 50 ml of water in a pan and weigh it record the weight.

	Weight in g
l ml water	
10 ml water	
25 ml water	
50 ml water	

What kind of relationship is there between the volume and weight of water?

- 1. What is the weight of 9,346 ml of water?
- 2. How much does 90,134 ml of water weigh?
- 3. How much water do you have if it weighs 1 kg?
- 4. How much water do you have if it weighs .lg?
- 5. What is the volume of 612 g of water?
- 6. What is the weight of 934 ml of water?
- 7. How much does 7000 ml of water weigh in kg?

THINKING, METRIC!

Materials: Sticky labels, scissors, bathroom scale

- 1. Take the window off the scale by peeling back the material around the window. On some scales the top cover must be unscrewed. Call a local appliance shop for advice if uncertain.
- 2. Make 22 labels for the numbers, starting with 5, 10, 15, 20 and so on to 110. A label might look like this:

- 3. Using the table, stick your labels on the dial at the appropriate places. For example, the 25 would be stuck on the dial at 55 pounds, 30 at 66 pounds, 35 at 77 and so forth.
- 4. Use blank sticky label material to cover up all the old numbers and division marks.
- 5. Measure the distance between the 5 kg marks. Using that distance, go to Figure 1 and draw a line from point A to line B that is exactly as long as the distance between the 5 kg marks. Put the edge of a piece of paper on your line and mark at point A and at each place the vertical lines intersect your line. Use the paper to draw on the 1 kg subdivisions between the 5 kg marks:
- 6. Replace the window.

ACTIVITIES

- 1. Have everyone weigh themselves to see how many kg they weigh. (This can lead to a number of topics, for instance a discussion of mean, average, mode, range and other statistical concepts.)
- 2. Can several kids add their weights to exactly equal the teacher's weight? You could prove it on a seesaw. This could lead to a discussion of levers and moments.

3. Stack up books exactly as high as the scale. Have a person stand very straight with one foot on the books and one foot on the scale. Record the scale reading. Then change feet and take another reading. Add the two readings. What do you get, and why? Could you use this method to weigh something like a table or the teacher's desk? Which legs of the table should you use? Why? (This could lead to a discussion of how big things like tractor-trailer trucks and airplanes are weighed.)

POUNDS
0
11
22
33
45
55
66
77
88
99
1 10
121
132
143
154
165
176
187
198
209
220
231
243

CROSS-NUMBER PUZZLE

A puzzle converting from one metric unit of weight to another.

Complete the cross-number puzzle using the clues below.

EQUIVALENT WEIGHTS

Find the equivalent weights that name a tic-tac-toe.

							1	
	1 kg	10 g	l hg		l cg	l dg	_1 _g	
_	2 hg	1000 g	l kg		l mg	10 dg	100 cg	
_	10 dag	1000 mg	10 , 000 dg		1000 mg	, 100 cg	100 dg	
	1							
	20 dag (2000 g	200,000 mg.		10 d a g	100 g	1 ⁰ 00 -	
	200 hg	2 kg	20 g	-	100 cg	l d a g	10 dg	
-	200 g	2,000,000 mg	.2 kg		l d a g	10 g	1000 mg	
	1. " kg	.1 hg	10 g		1000 mg	l dag	dag	
	10 hg	.01 kg	100 , dg	_	10 dg	10 g	.01 cg	_
	100 d a g	10 kg	d a g	83	100 g	100 dg	.001 kg	

DETERMINING WEIGHT

Unit of weight: gram 1000 grams (g) = 1 kilogram (kg) 1000 kilograms = 1 metric ton

Objec	ts	:	
	3	ו	

- a 1 gram jelly bean
- a 2 1/2 gram hummingbird
- a 340 gram package of cereal
- a 1 metric ton pair of bears

- a l kilogram sack of apples
- a 4 1/2 kilogram sack
- a 56 kilogram teacher
- a 115 metric ton blue whale (same as 115,000 kilograms or 115,000,000 grams)

١.	What things could you carry?
2.	What things are too heavy to carry?
3.	How much would one sack of apples weigh?
	four sacks of apples?
4.	How many grams would a sack of 500 jelly beans weigh?
5.	What would three pairs of bears weigh?
6.	How many pairs of bears is equal to the weight of one blue whale?
7.	How many jelly beans would you need to equal the weight of one blue whale?
8.	How many jelly beans would you need to equal two boxes of cereal?
9.	How many kilograms does one bear weigh?
10.	How many tons would ten bears weigh?
11.	How many grams would a jelly bean, hummingbird, and package of cereal weigh
	altogether?
12.	How many kilograms would a bag of apples, a 4 1/2 kilogram sack and a teacher
	weigh altogether?
* 13.	If you can, find out how much everything weighs altogether!

ZOO PARADE

Tiger	African Elephant	Asian Elephant	Hippopotamus
180 kg	5,400 kg	3,150 kg	3,600 kg
Marian Ma	The state of the s		
Camel	Gorilla	Zebra	Lion
450 kg	200 kg	410 kg	225 kg

١.	How many grams does each of these animals weigh?		. * *
	tiger gorilla	_hippopotamus	
Ĺ	camellion	zebra	•
2.	Find the total weight of the two lightest animals	·	
3.	Find the total weight of the three heaviest animal	als	
1.	What is the total weight of the Asian elephant a	nd the lion?	
5.	What is the total weight of the zebra and the can	mel?	ø.
ŝ.	How much more does the African elephant weigh the	an the Asian elephant?	
7.	A metric ton (t) is 1,000 kilograms. Which anima	als weigh more than a metr	ic
	ton?	<u> </u>	
	What is their total weight in metric tons?		8
3.	How many metric tons do the tiger, gorilla, zebr	a, 1 lion, and camel weigh?	
€.	How many camels would equal the weight of the hi	ppopotamus?	

METRIC TON

Think of building this tank shown below.

- The volume of the tank is $_{--}$ m^3 .
- The volume is also $_{---}$ dm³. Suppose you filled the tank with water.
- 3. Since $1 dm^3 = 1$ liter, it can hold
- 1000 liters = ____ kg.
- Since 1 liter of water weighs 1 kg, the water in the tank would weigh kg.

Another name for 1000kg is 1 metric ton (t)

$$1 t = 1000 kg$$

6. A storage tank has the dimensions shown. It is completely filled with water. What

is the weight of the water? ____ t

The weight of each player on a football team is given:

Is their combined weight more or less than 1 metric ton? By how many grams?

Complete the following:

1000
$$mg = 1000 kg = ___ t$$

$$1000 g = ___ kg$$

ESTIMATE THE WEIGHT OF OBJECTS COMMONLY SEEN

<u>Materials</u>: Counterbalance scale, metric weights, collection of items with a wide range in mass. Some examples: paperclips, pennies, arithmetic book, empty liter flask, liter flask filled with water, 300 kernels of unpopped corn, 300 kernels of popped corn, bottle of ink, bottle of glue, chunk of lead, bag of feathers, an apple and an orange, baseball and football, etc.

Activity:

- 1. Divide the class into three teams.
- 2. Select ten or twelve items from your collection of objects. Ask each team to prepare a list of the items, agree upon an estimate of the weight of each item before weighing it, then record their estimate and not change it.
- 3. Ask each team to weigh each item on the list, record the weights and find the difference between its estimate and the actual weight of each item.
- 4. When the weighing is finished, compare the lists of objects, estimates and weights. The team whose estimate of an object comes closest to its actual weight wins three points, the second ranking team wins two points, and the third ranking team wins one point. After all objects on the list have been considered, the team with the most points is declared the winner.

MASS MINDED

<u>Materials</u>: One-piece balance, liter pitcher graduated in milliliters, sand, peas, pinto beans, wheat, popcorn, water, any comparable substance.

We know that one liter of water has a mass of kilogram. Do different substances of like volume have the same mass? In order to find out, gather together a group of different substances. One by one measure 100 ml of each substance and weigh it.

Substance	Volume	Mass
	100 m1	
	100 m1	
	100 ml	
	100 m1	
	100 ml	
	100 m1	
	100 m1	

Which	substance	has	the	greatest mass per 100 ml?	
Which	substance	has	the	least mass per 100 ml?	

TO DISCOVER THE APPROXIMATE WEIGHT OF FAMILIAR OBJECTS IN GRAMS

<u>Materials</u>: Large number of nickels (approximately 5 grams each), a number of size "D" flashlight batteries (approximately 100 grams each), straight pins (approximately .5 grams each), balances or scales.

Procedure:

To begin to get a feel for measuring weight in the metric system the children should create a chart as the one below. Children should at first be encouraged to measure or weigh things that are common or familiar to them. They can then use these objects as easy references. After their experiences using metric units of mass (weight) they should be confronted with guestions like the following:

١.	Would grams or kilograms be more practical to measure the weight of a man or woman?
2.	Would the weight of an automobile best be stated in grams, kilograms, or metric tons?
3.	Would you be more accurate measuring the mass of a can of pop in grams or kilograms?
4.	How much do you think you weigh in kilograms? How can you find out?

Object	Weight in Grams	Weight in Kilograms	Weight in Milligrams
1.			-
2.	·		
3.			
4.	graf.		
5.			
6.			
7.			. An

METRIC RECIPE

Before making the candy weigh out your ingredients on the gram scale.

- Put the peanut butter, honey, nutmeg, powdered milk, and wheat germ into a bowl.
- 2. Mix well.
- 3. Shape mixture into little balls.
- 4. Put the corn flakes into a plastic bag. Crush the corn flakes in the bag. with a rolling pin.
- 5. Roll the balls in the corn flakes. Now they're ready to eat.

TEMPERATURE

CELSIUS

Materials: | kettle (about | liter), water, hot plate, Celsius thermometer,
Bowl of ice cubes.

Activity:

Place the thermometer in the bowl of ice cubes. When the mercury stops receding, record the temperature on the chart provided.

Fill the kettle about half full of water. Place it on the burner and turn the burner on. Record the temperatures on the thermometers below at the times given and record them on the chart.

ice freezing	°C
right away	°C
5 minutes	°C
10 minutes	°C
ll minutes	°C
12 minutes	°C
13 minutes	°C
14 minutes	°C
hoiling	

TEMPERATURES

 $\underline{\text{Materials}}$: Celsius ribbon thermometer, Celsius thermometers (indoors, outdoor, body), calendar.

Temperature is the degree of hotness or coldness of anything. Everything has a temperature. We can measure temperature with a device called a thermometer. Your teacher will show you how to use and read a thermometer.

١.	Mea	sure and record the following temperatures:
	Α [˙] .	What is the temperature inside our classroom today?
	В.	What is the temperature outside today?
	С.	Is the outside temperature the same in the winter as in the summer?
	D.	Which temperatures do you like best, winter or summer?
		Why?
2.	Est	imate, measure and record:
	Α.	What do you think the temperature of the water is when you wash your hands
		Check with thermometer and record
	В.	What do you think the temperature of the water is when you take a drink?
		Check with thermometer and record.
	С.	What is the temperature of the water when it is too hot to wash your
		hands?
3.	Wha	t do you think the temperature of your body is?
	Nor	mal body temperature is 37°C. Take your temperature and record it here
	d	

- 4. Keep a record of the daily outside temperature.
 - A. Check the outside temperature.
 - B. Duplicate the reading of the outdoor thermometer on the ribbon thermometer.
 - C. Record the temperature on the calendar daily...

LIVE METRIC - MAKE A CELSIUS THERMOMETER

Materials: Fahrenheit thermometer, sticky labels.

Cover the degrees of your Fahrenheit thermometer with the sticky labels. Using the chart below write in the Celsius degrees. For example, where $32^{\circ}F$ was put $0^{\circ}C$; where $50^{\circ}F$ was put $10^{\circ}C$, and so on.

<u>Fahrenheit</u>
-4 0
- 22
- 4
14
32
50
68 .
86
104
122

Now cover up the subdivision marks on the old scale with sticky labels. You can estimate the subdivisions on your new Celsius thermometer.

CELSIUS TEMPERATURE

When we compare the Celsius scale with the Fahrenheit scale of temperature, we see that the Celsius scale goes from freezing to boiling with a change of only 100°, whereas the Fahrenheit scale goes from freezing to boiling in 180°. The mercury does cover the same distance on the scale. This means that the Fahrenheit scale would be the smaller unit, since it needs more marks than the Celsius scale to cover an equal distance.

For the next week, listen to a radio station or on the television to get the temperature for the day in Celsius degrees.

Monday	°C
Tuesday	°C
Wednesday	°C
Thrusday	°C
Friday .	°C
Saturday	°C
Sunday	°C

Read the classroom's thermometer and record the answer in Celsius degrees.

Today's temperature in the room is _____°C

Take a glass and fill it with ice cubes and use the Celsius scale to get the temperature of the ice. Then place the ice cubes in water and record that answer. Place the water and ice cubes in a pan and place them on the burner until the water begins to boil. Remove the pan from the burner, and take the temperature.

ice cubes	°C
water and ice cub	es°(
boiling water	°C

TEMPERATURE

It's the year 1980. You are living in the United States, now a completely metricated country. For the past week you have been visiting Terry and Kristi. Although you have done your homework and know the metric system, Terry and Kristi are not as well prepared, especially about weather reports. Fill in the blanks for the answers Terry and Kristi need help with.

Early Spring Morning

Arghhh. Terry sounds tired. His sister Kristi flips	on the radio. Good
morning all you happy listeners in KFJM land! It's a	lovely day. The wind
is 15 Kilometers an hour with gusts up to 40 kilomete	rs. The temperature is
now 15°."	
"Hmm, 15°. That sounds pretty cold," said Terry.	
You say, ""	*
The weatherman said it's a lovely day," said Kristi.	She puts on a light
jacket. You put on	
Jacket. You put on Terry zips up his parka. You all go outside. Kristi	shivers, lerry sweats,
and you	

Dreary Fall Day

"It's raining," said Terry. "I feel lazy today."	
"Don't be glum," said Kristi. "I made up a quiz to get you awak	e."
"O.K., what's the first question?" Terry asked.	
"Would I feel great in a 98° bath?"	
"Well, ah," Terry dawdled.	
You say, ""	
"Second question - is 37° a fever?"	
"Why! That's way below normal," yelled Terry.	
You say,""	
"Third question. Is 18° a good temperature for football?"	
You say,""	

Fourth of July

"I'm so hot," complained Terry. "The thermometer says it's 35°."

Kristi brings in a liter of lemonade. She gives you each a glass and says,

"I'll put the rest in the freezer to keep it cold." An hour later she takes it out and you hear her saying, "Oh no! It's frozen stiff as a brick! The temperature must have gone below...below...

You say,"

The pitcher is left on the table until hours later you pour some out for yourself. "Yich. It's warm! It must be as hot as the air around us so that makes it about degrees."

98

WORKING WITH THE THERMOMETER

Write the temperatures.

Show the temperatures.

Circle the correct temperature.

- A hot summer day
 35°C 100°C 85°C
- 2. John is sick: 102°C 98°C 38°C
- 3. Ice skating weather: -10°C 10°C 5°C

- 4. Baking a cake: 190°C 350°C 100°C
- 5. The water is boiling: 212°C 100°C 50°C
- 6. The room is too warm: 20°C 78°C 25°C
- A. The temperature was 25°C. It dropped 30°. What is the temperature?
- B. The temperature was -12° . It rose 27 $^{\circ}$. What is the temperature?
- C. The temperature was -15°. It rose 15°. What is the temperature?
- D. The temperature was -5°. It rose 10°. Then it rose 25°. What is the temperature?

THINGS TO DO WITH YOUR CELSIUS THERMOMETER

<u>Materials</u>: Homemade Celsius thermometer, extended-scale commercial instrument (optional), wet-bulb thermometer/sling psychrometer (optional), books on weather instruments (optional), ice/hot plate (optional).

- 1. Record the temperature at different times during the day. What temperature seems 'just right' to you? At what temperature do you start to feel hot? cold?
- 2. Mount thermometers on one wall, one near the floor, one at eye level, and one near the ceiling. Compare the readings. Are there differences? Why?
- 3. Mount one thermometer on the outside of a window, and another thermometer inside the window. Do they always read the same? Why?
- 4. Hang one thermometer in the sun and another in the shade. Do they read the same? Why? Which method (sun or shade) does the weatherman use?
- 5. In winter (or in air conditioned buildings, also in summer) mount one thermometer on an outside wall (one whose other side is the outside of the building) and mount another thermometer on an inside wall at least a meter from an outside wall or a window. Do they read the same? Why? (can lead to a discussion of insulation.)
- 6. If you have a fan, compare the reading of a thermometer being blown on with a thermometer that is in calm air. Do you think there will be a difference in readings? Why? Prove it. Was your guess correct? Why? Is <u>your</u> temperature different if you are standing in front of the fan or not? Why? (could lead to a discussion of the function of perspiration, or wet-bulb thermometers used by weathermen.)
- 7. Have everyone hold his thermometer inside his hand. Do all the thermometers read the same? Why? Do you think the teacher's thermometer will read higher or lower than yours? Why? Prove it.
- 8. Some people can change the temperature of their body by thinking very hard about hot things or cold things. Can you change your body temperature? How many degrees?
- 9. Get two identical pans of water at the same temperature. Feel each pan to be sure they are the same. Add enough hot water to one pan to raise the temperature 1°C. Have someone else switch the pans around so you don't know which one is hotter. Can you feel the difference between pans? If not, add more hot water to

the warmer pan to make the temperature 2°C higher, and so on until you can definitely tell one is hotter than the other. How much difference in temperature was needed before you could tell the difference? Do the same thing, only adding cold water. Compare results.

10. Measure and record the temperature of: water from the cold water fountain, cold tap water, hot tap water, aquarium water, boiling water, ice water, your lunch milk, and other things you can think of. Some thermometers can't measure very hot things, so use caution. (Mercury, which is always silver, is highly poisonous. If a mercury thermometer gets broken, don't mess around with the mercury.)