#### Riešenie problémov rozkladom



A-ALEBO graf

\*hanba!

#### Riešenie problémov rozkladom

#### Rozložiteľný problém

- reprezentácia problémov a ich riešení:
  - rozklad problému na podproblémy
  - priestor rozkladov: konjunkcia podproblémov

Riešenie problémov rozkladom - A / ALEBO graf



- hrany ALEBO spájajú uzol s alternatívami riešenia.
- hrany A spájajú uzol s uzlami, ktoré spolu predstavujú riešenie

## Riešenie problémov rozkladom – A / ALEBO graf

- Problém je v podstate daný
  - začiatočným stavom a
  - množinou rozkladajúcich operátorov.
- Riešenie v A/ALEBO grafe
  - jeho podgraf a nie cesta

Riešenie problémov rozkladom

function RIEŠENIE-ROZKLADOM(problém)

returns graf\_riešenia alebo neúspech if problém ie elementárny then

if problém je riešiteľný then

return VYTVOR-GRAF-RIEŠENIA(problém)

else return neúspech

loop do

rozlož problém na podproblémy

if RIEŠENIE-ROZKLADOM je pre všetky podproblémy je úspešné then return VYTVOR-GRAF-RIEŠENIA(problém,

množina grafov riešenia pre podproblémy)

5

#### Proces značkovania uzlov v grafe priestoru rozkladov

- Uzly značkujeme ako "vyriešené" takto:
  - každý koncový uzol, predstavujúci elementárny problém sa označí za "vyriešený";
  - každý nie koncový uzol, z ktorého vychádzajú hrany ALEBO a aspoň jeden z jeho nasledovníkov je označený ako "vyriešený" sa označí za "vyriešený";
  - každý nie koncový uzol, z ktorého vychádzajú hrany A a všetky jeho nasledovníky sú označené ako "vyriešený" sa označí za "vyriešený"

#### Proces značkovania uzlov v grafe priestoru rozkladov

- Uzly sa značkujú ako "neriešiteľné" takto:
  - úlohy hrán A a ALEBO sa vymenia.
  - Tiež každý uzol, ktorý nereprezentuje elementárny problém a nemá žiadnych nasledovníkov sa označí za "neriešiteľný".

#### Cieľový test

• testovanie, či je začiatočný stav "vyriešený" alebo "neriešiteľný".

# A/O\* algoritmus

- · dátová štruktúra
  - graf
  - označkované spojenia (hrany alebo dvojice hrán) (orientované značky; nie ako A\*)
  - ceny q() sa udržiavajú na uzloch
  - označenie vyriešené
  - obmedzíme sa na acyklické grafy



A/ALEBO graf



## podgraf riešenia



## iný podgraf riešenia



#### podgraf riešenia G' A/ALEBO grafu G

- · z uzla n do koncových (vyriešených) uzlov T:
- ak n je v T, G' je len uzol n.
- inak n má jednu spojku do množiny uzlov  $n_1, n_2, ..., n_k$ .
  - pre každý uzol n<sub>i</sub> jestvuje graf riešenia z neho do T.
  - G' je n, tá spojka, uzly  $n_1, n_2, ..., n_k$
  - a k tomu grafy riešenia z každého uzla n<sub>i</sub>.

13

### heuristické hodnoty: odhad ceny do množiny vyriešených



#### obmedzenie monotónnosti

•  $h(n) \le c + h(n_1) + h(n_2) + ... h(n_k)$ 

kde c je cena spojky medzi n a množinou n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>.

toto obmedzenie zaručuje, že h(n) <= h\*(n).

15

#### hodnoty ceny (q(n))

- ak n nemá nasledovníky, tak q(n) = h (n)
- · inak počítajúc hodnoty odspodu,
  - q(n) = cena spojky + súčet ohodnotení q(nasledovníkov)
  - z ohodnotení q(n) uzla n vyber najmenšie a označ smer spojenia.
  - ak v označenom smere sú všetky nasledovníky vyriešené tak označ n vyriešený.

16

## základná myšlienka A/O\*

- najprv sa prechádza graf zhora nadol tak, že sa vyberajú najlepšie čiastočné podgrafy riešenia.
- rozvinie sa jeden listový uzol tohto grafu
- potom sa prechádza zdola nahor, upravujú sa ohodnotenia, podľa toho smerovania a značkuje sa vyriešené.

## AO\* algoritmus

- . vytvor G = <s>; q(s) = h(s) ak s ε TERM tak označ s *vyriešený*
- kým nie je s vyriešený:
- vypočítaj G' podgraf čiastočného riešenia sledovaním označených spojok v G z s.
- vyber n v G', n nie je v TERM, n je list.
- rozvíň n, prídaj jeho nasledovníky do G a pre každý nasledovník, ktorý nie je ešte v G, príraď q(nasledovník),=h(nasledovník).
   Označ vyriešené všetky nasledovníky v TERM. (ak nie sú nasledovníkytak nastav q(n) := ∞).

17

# AO\* algoritmus

- 4. prirad S := {n}.
- pokiaľ nie je S =  $\phi$ :
  - odstráň uzol m z množiny S taký, že žiadny z jeho potomkov (nielen priamych nasledovníkov) v grafe G nie je aj v množine S. ak taký uzol nejestvuje v S, odstráň z S ľubovoľný uzol.
  - vypočítaj cenu každej spojky vychádzajúcej z m. oprav cenu uzla
  - m:
    q(m)=min [c +q(n,)+...+q(n<sub>k</sub>)].
    cznač zvolenú spojku.
    ak všetky nasledovníky spojené práve označenou spojkou sú
    vyněšené tak označ m vyriešený.
    ak bol práve označený vyriešený alebo sa práve menilo
    ohodnotenie q(m) tak pridaj do Š všetkých "spojených"
    predchodcov uzla m.
- 6. koniec

stopa algoritmu



## stopa algoritmu



21

## stopa algoritmu



stopa algoritmu



stopa algoritmu



## stopa algoritmu



## optimálnosť of A/O\*?

ak h(n) <= c + h(n1) + ... h(nk)
 pre všetky uzly n a spojky
 tak cena riešenia je optimálna.</li>

26

## poznámky

- Acykličnosť grafu znamená, že množina S sa nakoniec vyprázdni.
- Ako vybrať ne-elementárny uzol v grafe čiastočného riešenia na rozvitie?
  - najlepšia voľba je uzol s najvyšším ohodnotením h\* (aj tak sa bude musieť rozvinúť)

27

# Riešenie problémov rozkladom : AO\*



28

# Riešenie problémov rozkladom: AO\*



### Problém Hanojskej veže

- Problém Hanojskej veže možno opísať takto:
- stavy: umiestnenie troch diskov na troch stojanoch tak, že disk s menším priemerom leží vždy na disku s väčším priemerom;
- začiatočný stav: všetky disky na prvom (ľavom) stojane tak, že disk s menším priemerom leží vždy na disku s väčším priemerom;
- operátory: presun disku na iný stojan, pričom nesmie nikdy vzniknúť situácia, aby na nie-ktorom stojane ležal väčší disk na menšom;
- cieľový test: všetky disky na poslednom (pravom) stojane tak, že disk s menším priemerom leží vždy na disku s väčším priemerom:
- cena cesty: každá aplikácia operátora má cenu 1.

# Problém Hanojskej veže

