2.44. Найти работу A, которую надо совершить, чтобы увеличить скорость движения тела массой m=1 т от $v_1=2$ м/с до $v_2=6$ м/с на пути s=10 м. На всем пути действует сила трения $F_{\rm rp}=2$ H.

Решение:

Часть совершенной работы пойдет на приращение кинетической энергии, а другая часть — на преодоление силы

трения.
$$A = \frac{mv_2^2}{2} - \frac{mv_1^2}{2} + A_{\rm rp} \,, \quad \text{где} \qquad A_{\rm rp} = F_{\rm rp} \cdot s \,, \quad \text{тогда}$$

$$A = \frac{m\left(v_2^2 - v_1^2\right)}{2} + F_{\rm rp} \cdot s \,; \quad A = 16,02 \; \text{кДж}.$$

2.45. На автомобиль массой M=1 т во время движения действует сила трения $F_{\rm \tau p}$, равная 0,1 действующей на него силе тяжести mg. Какую массу m бензина расходует двигатель автомобиля на то, чтобы на пути s=0.5 км увеличить скорость от $v_{\rm t}=10$ км/ч до $v_{\rm 2}=40$ км/ч? К.п.д. двигателя $\eta=0.2$, удельная теплота сгорания бензина q=46 МДж/кг.

Решение:

Полезная работа, совершаемая двигателем, идет на преодоление силы трения и на приращение кинетической энер-

гии.
$$A_{II} = F_{TP} \cdot s + \left(\frac{Mv_2^2}{2} - \frac{Mv_1^2}{2}\right)$$
 — (1). Затраченная работа

равна затраченному количеству теплоты: $A_3 = Q_3$;

$$Q_3=Q\cdot m$$
 — (2); К.п.д. двигателя $\eta=\frac{A_{\rm n}}{A_{\rm n}}$, откуда $A_3=$

$$=\frac{A_{\rm n}}{\eta}$$
 — (3). Подставив (3) в (2), получим: $\frac{A_{\rm n}}{\eta}=q\cdot m$,

отсюда
$$m = \frac{A_n}{q \cdot \eta}$$
. Подставив в данное выражение (1),

получим $m=\frac{1}{q\,\eta} \left[F_{\rm Tp} \cdot s + \left(\frac{M v_2^2}{2} - \frac{M v_1^2}{2} \right) \right]$. Т.к. $F_{\rm Tp}=0,1mg$, то $m=\frac{M}{2\,q\,n} \left[2\cdot 0,1g\cdot s + v_2^2 - v_1^2 \right]$. Подставляя числовые дан-

2.46. Какую массу m бензина расходует двигатель автомобиля на пути s=100 км, если при мощности двигателя N=11 кВт скорость его движения v=30 км/ч? К.п.д. двигателя $\eta=0.22$, удельная теплота сгорания бензина q=46 МДж/кг.

Решение:

ные, получим: $m = 0.06 \,\mathrm{K}$ г.

При перемещении автомобиля на расстояние s его двигатель совершает работу $A = \frac{Nt}{\eta} = \frac{Ns}{\eta v}$. При этом затрачивается масса бензина $m = \frac{A}{a} = \frac{Ns}{a \, \eta v}$; $m = 13 \, \mathrm{kr}$.

2.47. Найти к.п.д. η двигателя автомобиля, если известно, что при скорости движения v=40 км/ч двигатель потребляет объем V=13,5 л бензина на пути s=100 км и развивает мощность N=12 кВт. Плотность бензина $\rho=0,8\cdot 10^3$ кг/м³, удельная теплота сгорания бензина q=46 МДж/кг.

Решение:

К.п.д двигателя равен $\eta = \frac{A_{\rm n}}{A_{\rm s}}$ — (1). Мощность двигателя $N = \frac{A_{\rm n}}{t}$, где $t = \frac{s}{v}$, тогда $A_{\rm n} = \frac{Ns}{v}$ — (2); $A_{\rm s} = qm$, где $m = \rho V$, отсюда $A_{\rm s} = q\rho V$ — (3). Подставляя (2) и (3) в (1), получим: $\eta = \frac{Ns}{va\rho V}$; $\eta = 0.22$.

2.48. Камень массой m=1 кг брошен вертикально вверх с начальной скоростью $v_0=9.8$ м/с. Построить график зависимости от времени t кинетической $W_{\rm K}$, потенциальной $W_{\rm R}$ и полной W энергий камня для интервала $0 \le t \le 2$ с (см. решение 1.11).

Решение:

$$W_{\kappa} = \frac{mv^2}{2}$$
; $W_{\Pi} = mgh$; $v = v_0 - gt$; $h = \frac{-gt^2}{2} + v_0t$; $W_{\kappa} = \frac{m(v_0 - gt)^2}{2}$; $W_{\Pi} = mg\left(v_0t - \frac{gt^2}{2}\right)$; $W_{\kappa} = \frac{(9.8 - 9.8t)^2}{2}$; $W = W_{\kappa} + W_{\Pi} = const$; $W_{\Pi} = 9.8(9.8t - 4.9t^2) = 96t - 48t^2$. Характер зависимости кинетической, потенциальной и полной энергии камня от времени дан на графике.

t,c	W_{κ} , Дж	W_{n} , Дж
0	48	0
0,2	30,7	17,3
0,4	17,3	30,7
0,6	7,7	40,3
0,8	1,9	46,1
1	0	48
1,2	1,9	46,1
1,4	7,7	40,3
1,6	17,3	30,7
1,8	30,7	17,3
2	48	0

2.49. В условиях предыдущей задачи построить график зависимости от расстояния h кинетической W_{κ} , потенциальной W_{κ} и полной W энергий камня.

Решение:

Кинетическая энергия, которой обладал камень в момент броска, будет в дальнейшем убывать за счет увеличения

потенциальной энергии. $W_{\rm K}=\frac{mv_0^2}{2}-mgh$; $W_{\rm R}=mgh$. Для построения графика подставим числовые данные: $W_{\rm R}=9.8h$. Максимальную высоту, на которую поднимется камень, найдем из соотношения: $\frac{mv^2}{2}=mgh$, отсюда $h=\frac{v^2}{2g}$; $h=4.9\,{\rm M}$. Построим график при $0\leq h\leq 4.9$.

<i>h</i> , M	W_{κ} , Дж	W_{u} , Дж
0	48	0
2,7	21,6	26,4
4,9	0	48

2.50. Камень падает с некоторой высоты в течение времени t = 1,43 с. Найти кинетическую W_{κ} и потенциальную W_{κ} энергии камня в средней точке пути. Масса камня m = 2 кг.

Решение:

В верхней точке камень обладал потенциальной энергией $W_{\rm n}=mgH$, где $H=\frac{gt^2}{2}$ (t— время падения до земли). Потенциальная энергия камня в средней точке пути $W_{\rm n}=mgh$, где $h=\frac{H}{2}$. Таким образом $W_{\rm n}=mg\frac{H}{2}=\frac{mg^2t^2}{4}$;

 $W_{\rm n} = 98\,{\rm Дж}$. Кинетическую энергию камень приобрел за счет убыли потенциальной энергии. В средней точке пути $W_{\rm k} = W_{\rm n} = 98\,{\rm Дж}$, так как $mgH - mgh = mg\frac{H}{2} = W_{\rm k}$.

2.51. С башни высотой h = 25 м горизонтально брошен камень со скоростью $v_0 = 15$ м/с. Найти кинетическую W_{κ} и потенциальную W_{κ} энергии камня через время t = 1 с после начала движения. Масса камня m = 0,2 кг.

Решение:

В момент времени t кинетическая энергия камня $W_{\kappa} = \frac{mv^2}{2}$, а его потенциальная энергия $W_{\rm n} = mg(h-\Delta h)$. Поскольку $v_y = gt$, то $v^2 = v_0^2 + (gt)^2$. Тогда $W_{\kappa} = \frac{m(v_0^2 + (gt)^2)}{2}$;

 $W_{\kappa} = 32,2$ Дж. Вертикальная составляющая перемещения камня $\Delta h = \frac{gt^2}{2}$, отсюда $W_{\rm n} = mg \left(h - \frac{gt^2}{2} \right)$; $W_{\rm n} = 39,4$ Дж.

2.52. Камень брошен со скоростью $v_0 = 15\,\mathrm{m/c}$ под углом $\alpha = 60^\circ$ к горизонту. Найти кинетическую W_κ , потенциальную W_{u} и полную W энергии камня: а) через время $t=1\,\mathrm{c}$ после начала движения; б) в высшей точке траектории. Масса камня $m=0,2\,\mathrm{kr}$.

Решение:

Полная скорость камня $v = \sqrt{v_x^2 + v_y^2}$, где $v_x = v_0 \cos \alpha$; $v_y = v_0 \sin \alpha - gt$. В верхней точке траектории $v_y = 0$,

следовательно, $v_0 \sin \alpha = gt$. Отсюда время подъема камня до верхh ней точки $t = \frac{v_0 \sin \alpha}{g}$; t = 1,3 с, следовательно в момент времени

камень находится

подъеме. Его кинетическая энергия в этот момент $W_{\kappa} = \frac{mv^2}{2} = \frac{m(v_0^2 \cos^2 \alpha + (v_0 \sin \alpha - gt)^2)}{2}; \quad W_{\kappa} = 6.6 \,\text{Дж}.$

закону сохранения энергии $W_{\kappa 0} = W_{\kappa} + W_{n}$, где $W_{\kappa 0}$ — кинетическая энергия камня в начальный момент времени.

 $W_{\kappa 0} = \frac{m v_0^2}{2}$. Тогда $W_{\rm n} = \frac{m v_0^2}{2} - W_{\kappa}$; $W_{\rm n} = 15.9$ Дж. В верхней точке траектории кинетическая энергия камня $W_{\kappa 1} = \frac{m(v_0 \cos \alpha)^2}{2}$; $W_{\kappa 1} = 5.6 \, \text{Дж}$. Согласно закону сохранения энергии полная энергия камня останется неизменной, а его потенциальная энергия в верхней точке траектории $W_{n1} = W - W_{k1}$; $W_{n1} = 16.9 \, \text{Дж}$.

2.53. На толкание ядра, брошенного под углом $\alpha = 30^{\circ}$ к горизонту, затрачена работа $A = 216 \, \text{Дж}$. Через какое время t и на каком расстоянин s_x от места бросания ядро упадет на землю? Масса ядра m=2 кг.

Решение:

Работа, затраченная на толкание ядра, пошла на сообщение ему кинстической энергии.

$$A=W_{\rm K}=\frac{mv_0^2}{2}$$
, откуда

$$v_0 = \sqrt{\frac{2A}{m}}$$
 — (1). Время подъема ядра до верхней точки

 $t_1 = \frac{v_0 \sin \alpha}{g}$ (см. задачу 2.52). Полное время полета ядра $t = 2t_1 = \frac{2v_0 \sin \alpha}{g}$; подставив (1), получим: $t = \frac{2 \sin \alpha \sqrt{2A}}{g \sqrt{m}}$; t = 1.5 с. Расстояние от места бросания, которое пролетит ядро $s_x = t \cos \alpha \sqrt{\frac{2A}{m}}$; $s_x = 19.1$ м.

2.54. Тело массой m=10 г движется по окружности радиусом R=6,4 см. Найти тангенциальное ускорение $a_{\rm r}$ тела, если известно, что к концу второго оборота после начала движения его кинетическая энергия $W_{\rm k}=0.8$ МДж.

Решение:

Найдем угловое ускорение:
$$a_{t} = \varepsilon R$$
 — (1); $\varepsilon = \frac{\omega}{t}$ — (2). Угловая скорость $\omega = 2\pi n = \frac{2\pi N}{t}$, отсюда $t = \frac{2\pi N}{\omega}$ — (3). С другой стороны, $\omega = \frac{v}{R}$ — (4). Скорость v найдем из уравнения кинетической энергии: $W_{\kappa} = \frac{mv^{2}}{2}$, отсюда $v = \sqrt{\frac{2W_{\kappa}}{m}}$ — (5). Подставив уравнение (5) в (4), получим $\omega = \sqrt{\frac{2W_{\kappa}}{mR^{2}}}$ — (6). Подставив уравнение (3) в (2), с учетом (6), найдем: $\varepsilon = \frac{\omega^{2}}{2\pi N} = \frac{2W_{\kappa}}{mR\pi N}$. Тогда из (1): $a_{r} = \frac{W_{\kappa}R}{mR^{2}\pi N} = \frac{W_{\kappa}}{mR\pi N}$; $a_{r} \approx 0.2 \text{ m/c}^{2}$.

2.55. Тело массой m=1 кг скользит сначала по наклонной плоскости высотой h=1 м и длиной склона l=10 м, а затем по горизонтальной поверхности. Коэффициент трения на всем пути k=0.05. Найти: а) кинетическую энергию W_{κ} тела у основания плоскости; б) скорость v тела у основания плоскости; в) расстояние s, пройденное телом по горизонтальной поверхности до остановки.

Решение:

По закону изменения полной механической энергии $\Delta W = A$, где A — работа внешних сил. В нашем случае в верхней точке $W_{\kappa} = 0$; $W_{n} = mgh$, у основания

$$W_{\rm K} = \frac{mv^2}{2}$$
; $W_{\rm H} = 0$, следовательно, $\frac{mv^2}{2} - mgh = A_{\rm Hp}$, где $A_{\rm Tp}$ — работа сил трения. $\frac{mv^2}{2} - mgh = -F_{\rm Tp}l$, отсюда $mgh = \frac{mv^2}{2} + F_{\rm Tp}l$, т.е. потенциальная энергия гела при соскальзывании с наклонной плоскости переходит в кинетическую энергию и в работу против сил трения. Но $h = l \sin \alpha$, откуда $\sin \alpha = h/l = 0$,1, а $\cos \alpha = 0$,99, $F_{\rm Tp} = kmg\cos \alpha$, где α — угол наклона плоскости.

a)
$$W_{\kappa} = \frac{mv^2}{2}$$
; $W_{\kappa} = mgh - F_{\tau p}l$; $W_{\kappa} = mgl(\sin\alpha - k\cos\alpha)$;

$$W_{\rm K} = 4.9~{\rm Дж.}$$
 б) $v = \sqrt{\frac{2W_{\rm K}}{m}} = 3.1~{\rm M/c.}$ в) Кинетическая энергия, которую тело имеет у основания наклонной плоскости, переходит в работу против силы трения на

горизонтальной поверхности, т.е. $W_{\kappa} = F_{\tau D} s = kmgs$, откуда

найдем $s = \frac{W_{\kappa}}{km\sigma}$; s = 10 м.

2.56. Тело скользит сначала по наклонной плоскости составляющей угол $\alpha=8^\circ$ с горизонтом, а затем по горизонтальной поверхности. Найти коэффициент трения на всем пути, если известно, что тело проходит по горизонтальной плоскости то же расстояние, что и по наклонной плоскости.

Решение:

В начальный момент времени тело обладает потенциальной энергией $W_n = mgh$. Когда тело оказалось в нижней точке наклонной плоскости, часть его потенциальной энергии перешла

в кинетическую энергию, а оставшаяся часть пошла на работу против сил трения. $W_{\rm n}=W_{\rm k}+A_{\rm rp}$; $mgh=\frac{mv^2}{2}+F_{\rm rp}s_1$ — (1). Преобразуя уравнение (1), получим: $mgs_1\times\sin\alpha=\frac{mv^2}{2}+kmg\cos\alpha s_1$; $2gs_1(\sin\alpha-k\cos\alpha)=v^2$ — (2).

На горизонтальном участке пути вся кинетическая энергия тела пошла на совершение работы против сил трения.

$$W_{\rm k}=A_{
m mp}$$
; $\frac{mv^2}{2}=kmgs_2$, откуда $v^2=2kgs_2$ — (3). Решая совместно (2) и (3), получим: $2kgs_2=2gs_1\bigl(\sin\alpha-\cos\alpha\bigr)$; $k=\sin\alpha-k\cos\alpha$, отсюда $k\bigl(1+\cos\alpha\bigr)=\sin\alpha$; $k=\frac{\sin\alpha}{1+\cos\alpha}$; $k=\frac{0.125}{1.992}=0.06$.

2.57. Тело массой m=3 кг, имея начальную скорость $v_0=0$, **ск**ользит по наклонной плоскости высотой h=0.5 м и длиной . **склона** l=1 м и приходит к основанию наклонной плоскости со

скоростью v = 2,45 м/с. Найти коэффициент трения k тела о плоскость и количество теплоты Q, выделенное при трении.

Решение:

В начальный момент времени тело обладает потенциальной энергией $W_n = mgh$. Когда тело оказалось в нижней точке наклонной плоскости, часть его потенциальной энер-

гии перешла в кинетическую энергию, а оставшаяся часть пошла на работу против сил трения. $W_n = W_k + A_{\rm Tp}$;

$$mgh = \frac{mv^2}{2} + F_{\rm Tp}s_1$$
 — (1). Преобразуя (1), получим:

$$kg\cos\alpha l = gh - \frac{v^2}{2} = \frac{2gh - v^2}{2}$$
, откуда $k = \frac{2gh - v^2}{2g\cos\alpha}$;

k=0,22 . Количество выделившейся при трении теплоты равно $Q=F_{\rm rp}\cdot l=kmg\cos\alpha\cdot l$; Q=5,7 Дж.

2.58. Автомобиль массой m = 2 т движется в гору с уклоном 4 м на каждые 100 м пути. Коэффициент трения k = 0.08. Найти работу A, совершаемую двигателем автомобиля на пути s = 3 км, и мощность N развиваемую двигателем, если известно, что путь s = 3 км был пройден за время t = 4 мин.

Решение:

В случае равномерного движения автомобиля a=0, тогда согласно второму закону Ньютона сила тяги двигателя $F=F_{\rm TP}+mg\sin\alpha$ или $F=mg(k\cos\alpha+\sin\alpha)$, где $\sin\alpha=h/l$; $\sin\alpha=0.04$; $\cos\alpha=0.999$. Работа силы \bar{F} на пути s:

 $A = Fs = mgs(k\cos\alpha + \sin\alpha); \ A = 7$ МДж. Мощность двигателя $N = A/t; \ N = 29.2$ кВт.

2.59. Какую мощность N развивает двигатель автомобиля массой m=1 т, если известно, что автомобиль едет с постоянной скоростью v=36 км/ч: а) по горизонтальной дороге; б) в гору с уклоном 5 м на каждые 100 м пути; в) под гору с тем же уклоном? Коэффициент трения k=0.07.

Решение:

Требуется найти мощность, развиваемую двигателем автомобиля, т.е. мощность силы F. Выразим F для всех случаев из второго закона Ньютона. а) Т.к. v = const, то $F = F_{rp} = kmg$. При движении автомобиля по горизонтальной дороге мощность равна N = Fv = kmgv = 6.9 кВт.

б) При движении в гору сила тяги двигателя $F = mg \sin \alpha + F_{rp}$, где $F_{rp} = kmg \cos \alpha$; следовательно, $F = mg(k\cos \alpha + \sin \alpha)$, тогда мощность $N = mgv(k\cos \alpha + \sin \alpha)$; Угол наклона дороги найдем из соотно-

шения: $\sin \alpha = \frac{h}{l} = \frac{5}{100} = 0.05$; $\alpha \approx 3^{\circ}$; $\cos \alpha = 0.998$. N = 11.8 кВт.

в) При движении под гору сила тяги двигателя $F = F_{\rm Tp} - mg \sin \alpha$; где $F_{\rm Tp} = kmg \cos \alpha$, тогда получим $F = kmg \cos \alpha - mg \sin \alpha$; $F = mg(k \cos \alpha - \sin \alpha)$, мощность $N = mgv(k \cos \alpha - \sin \alpha)$; $N \approx 2$ кВт.

2.60. Автомобиль массой m = 1 т движется при выключенном моторе с постоянной скоростью v = 54 км/ч под гору с уклоном 4м на каждые 100 м пути. Какую мощность N должен развивать двигатель автомобиля, чтобы автомобиль двигался с той же скоростью в гору?

Решение:

Уравнение движения автомобиля под гору $mg \sin \alpha - F_{\rm rp} = 0$ или $F_{\rm rp} = mg \sin \alpha$. С другой стороны, $F_{\rm rp} = kmg \cos \alpha$, тогда $kmg \cos \alpha = mg \sin \alpha$, откуда $k = tg\alpha$. При движении автомобиля вверх по второму закону Ньютона сила

по второму закону Ньютона сила тяги двигателя $F_{\rm T} = F_{\rm Tp} + mg \times \sin \alpha$; $F_{\rm T} = mg(k\cos\alpha + \sin\alpha)$. Тогда мощность, развиваемая двигателем: $N = F_{\rm T}v = mgv \times (k\cos\alpha + \sin\alpha)$; $N = mgv \times \left(\frac{\sin\alpha}{\cos\alpha}\cos\alpha + \sin\alpha\right)$; $N = 2m \times gv\sin\alpha = 2mgv\frac{h}{I}$; $N = 11.8~{\rm kBT}$.

2.61. На рельсах стоит платформа массой $m_1 = 10$ т. На платформе закреплено орудие массой $m_2 = 5$ т, из которого производится выстрел вдоль рельсов. Масса снаряда $m_3 = 100$ кг; его начальная скорость относительно орудия $v_0 = 500$ м/с. Найти скорость u платформы в первый момент после выстрела, если: а) платформа стоит неподвижно; б) платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлении, противоположном направлению ее движения.

Решение:

а) При неподвижной платформе начальная скорость снаряда относительно земли равна его скорости v_0 относительно орудия. Систему «платформа — орудие — снаряд» можно

считать замкнутой в проекции на ось x при условии, что силой трения качения платформы можно пренебречь. Тогда в проекции на ось x импульс системы до выстрела $p_x = (m_1 + m_2 + m_3) \cdot v = 0$, т.к. v = 0. Импульс системы после выстрела $p_x' = m_3 v_0 + (m_1 + m_2) \cdot u$. По закону сохранения импульса $p_x = p_x'$ или $0 = m_3 v_0 + (m_1 + m_2) \cdot u$, откуда

$$u = -\frac{m_3 v_0}{m_1 + m_2}$$
; $u = -12$ км/ч. Знак «-» указывает, что плат-

форма стала двигаться в направлении, противоположном направлению движения снаряда.

6) Если выстрел был произведен в направлении движения платформы, то начальная скорость снаряда относительно земли равна $v_0 + v$. На основании закона сохранения импульса имеем: $(m_1 + m_2 + m_3) \cdot v = m_3(v_0 + v) + (m_1 + m_2) \cdot u$ — (2), откула $u = \frac{(m_1 + m_2 + m_3) \cdot v - m_3(v_0 - v)}{m_1 + m_2}$;

u = 6 км/ч.

в) Если выстрел был произведен в направлении, противоположном направлению движения платформы, то при $v_0 > 0$ имеем v < 0. Тогда уравнение (2) имеет вид: $-(m_1 + m_2 + m_3) \cdot v = m_3(v_0 - v) + (m_1 + m_2) \cdot u$, откуда $u = -\frac{(m_1 + m_2 + m_3) \cdot v + m_3(v_0 - v)}{m_1 + m_2};$

$$u = -30 \text{ км/ч}.$$

2.62. Из ружья массой $m_1 = 5$ кг вылетает пуля массой $m_2 = 5$ г со скоростью $v_2 = 600$ м/с. Найти скорость v_1 отдачи ружья.

Решение:

Согласно закону сохранения импульса $m_1 v_1 - m_2 v_2 = 0$, отсюда $v_1 = \frac{m_2 v_2}{m_1}$; $v_1 = 0.6 \, \text{m/c}$.

2.63. Человек массой $m_1 = 60 \, \mathrm{kr}$, бегущий со скоростью $v_1 = 8 \, \mathrm{km/4}$, догоняет тележку массой $m_2 = 80 \, \mathrm{kr}$, движущуюся со скоростью $v_2 = 2.9 \, \mathrm{km/4}$, и вскакивает на нее. С какой скоростью u будет двигаться тележка? С какой скоростью u' будет двигаться тележка, если человек бежал ей навстречу?

Решение:

Система «человек — тележка» замкнута в проекции на горизонтальную ось. а) Человек догоняет тележку. По закону сохранения импульса $m_1v_1+m_2v_2=\left(m_1+m_2\right)\cdot u$, откуда $u=\frac{m_1v_1+m_2v_2}{m_1+m_2}$; u=5,14 км/ч. б) Человек бежит навстречу тележке. По закону сохранения импульса $m_1v_1-m_2v_2=\left(m_1+m_2\right)\cdot u'$, откуда $u'=\frac{m_1v_1-m_2v_2}{m_1+m_2}$; u'=1,71 км/ч.

2.64. Снаряд массой $m_1 = 100 \, \mathrm{kr}$, летящий горизонтально вдоль железнодорожного пути со скоростью $v_1 = 500 \, \mathrm{m/c}$, попадает в вагон с песком, масса которого $m_2 = 10 \, \mathrm{T}$, и застревает в нем. Какую скорость u получит вагон, если: а) вагон стоял неподвижно; б) вагон двигался со скоростью $v_2 = 36 \, \mathrm{km/4}$ в том же направлении, что и снаряд; в) вагон двигался со скоростью $v_2 = 36 \, \mathrm{km/4}$ в направлении, противоположном движению снаряда?

Решение:

а) Будем считать удар абсолютно неупругим, тогда в проекции на горизонтальную ось по закону сохранения 78

ймпульса: $m_1 v_1 = (m_1 + m_2)u$, отсюда $u = \frac{m_1 v_1}{m_1 + m_2}$; $u \approx 5$ м/с.

6)
$$m_1v_1+m_2v_2=(m_1+m_2)u$$
, следовательно, $u=\frac{m_1v_1+m_2v_2}{m_1+m_2}$; $u\approx 15$ м/с. в) $m_1v_1-m_2v_2=(m_1+m_2)u$, следовательно, $u=\frac{m_1v_1-m_2v_2}{m_1+m_2}$; $u\approx -5$ м/с, т. е. вагон продолжает двигаться в том же направлении, но с меньшей скоростью.

2.65. Граната, летящая со скоростью $\nu = 10$ м/с, разорвалась на два осколка. Больший осколок, масса которого составляла 0,6 массы всей гранаты, продолжал двигаться в прежнем направлении, но с увеличенной скоростью $u_1 = 25$ м/с. Найти скорость u_2 меньшего осколка.

Решение:

При взрыве внутренние силы намного превышают внешние. Следовательно, можно считать, что система замкнута и закон сохранения импульса использовать в векторной форме. Импульс системы до разрыва $\vec{p} = m\vec{v}$. Импульс системы после разрыва $\vec{p}' = 0.6m\vec{u} + 0.4m\vec{u}_2$. В проекции на горизон-**Тальну**ю ось закон сохранения импульса: $mv = m_1u_1 + m_2u_2$ или $mv = 0.6m \cdot u_1 + 0.4m \cdot u_2$; $v = 0.6u_1 + 0.4u_2$, откуда $u_2 = \frac{v - 0.6u_1}{0.4} = -12.5 \text{ м/с.}$ Полученный результат от массы **не** зависит. Пусть масса всей гранаты m = 1 у.е., масса большего осколка $m_1 = 0.6$ у.е., масса меньшего осколка $m_2 = 0.4$ у.е. Тогда вектор импульса: всей гранаты mv = 10 у.е.; большего осколка — $m_1u_1 = 15$ у.е.; меньшего осколка — $m_2 u_2 = 5$ у.е. Направление векторов показано на рисунке.

2.66. Тело массой $m_1 = 1$ кг, движущееся горизонтально со скоростью $v_1 = 1$ м/с, догоняет второе тело массой $m_2 = 0.5$ кг и неупруго соударяется с ним. Какую скорость u получат тела, если: а) второе тело стояло неподвижно; б) второе тело двигалось со скоростью $v_2 = 0.5$ м/с в направлении, что и первое тело; в) второе тело двигалось со скоростью $v_2 = 0.5$ м/с в направлении, противоположном направлению движения первого тела.

Решение:

В каждом случае запишем закон сохранения импульса и выразим скорость u. a) $m_1v_1=\left(m_1+m_2\right)\cdot u$; $u=\frac{m_1v_1}{m_1+m_2}$; u=0.67 м/с. б) $m_1v_1+m_2v_2=\left(m_1+m_2\right)\cdot u$; $u=\frac{m_1v_1+m_2v_2}{m_1+m_2}$; u=0.87 м/с. в) $m_1v_1-m_2v_2=\left(m_1+m_2\right)\cdot u$; $u=\frac{m_1v_1-m_2v_2}{m_1+m_2}$; u=0.5 м/с.

2.67. Конькобежец массой M = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v = 8 м/с. На какое расстояние s откатится при этом конькобежец, если коэффициент трения коньков о лед k = 0.02?

Решение:

Движение конькобежца является равнозамедленным, пройденный им путь $s = v_0^2/2a$ — (1). По закону сохранения импульса $Mv_0 = mv$, откуда $v_0 = mv/M$ — (2). Ускорение a можно найти по второму закону Ньютона: $F_{\rm TP} = ma$. Т.к. $F_{\rm TP} = kmg$, то kmg = ma; a = kg — (3). Подставив (2) и (3) в (1), получим $s = \frac{m^2 v^2}{2M^2 kg}$; s = 0.3 м.