How Data Used for discovery

General Methods (Supervised Learning, Unsupervised learning)

Wy Estimate *F?(Machine learning Idea which finds function for dependent variable)*

How do we estimate *F*?

• Statistics and Linear Algebra for Machine Learning

- Sample mean, variance
- Normal Distribution (not mandatory just need some brief)
- Vectors and matrices
- Matrix operations (multiplication, dot product, Cross product, inverse, Transpose)
- Multi dimensional data

>> Introduction to Python/R

- What is machine learning
 - Supervised Learning
 - Unsupervised Learning
- Model Based Learning and Instance Based Learning
- Main challenge In machine learning (Testing and Validating)

Calculus for Machine Learning

- Idea of Minimization and maximization of function
- First and second derivative test
- o Chain Rule
- Partial Derivatives
- Gradients
- Gradient descent
- Gradient ascent
- o Multivariate Gradient descent/ ascent
- Linear Algebra Basics (Matrix/ Dot Product)

• Classification using K Nearest Neighbours Algorithm

- Idea of similarity between samples
- o Euclidean distance
- Hamming distance
- Cosine Distance
- Manhattan Distance
- Detailed algorithm

- Code using Package
- Hyper parameter tuning (Number of K)

Linear Regression

- Idea of Curve fitting
- Least Square Regression
- Correlation
- o R squared
- Ridge Regression and Lasso Regression
- Linear Regression code
- Polynomial regression

Model validation

- Test train split
- Cross validation /Leave one out validation
- o Bias variance tradeoff
- o Hyper parameter tuning

Basics of Statistical Inference

- o Continuous statistical distribution
- Normal distribution
- Law of Large Numbers
- Central Limit Theorem
- Bootstrap
- Maximum Likelihood Estimator (EM algorithm)

Classification Models

- Why not linear regression for Classification?
- Logistic Regression
 - Estimating regression Coefficient
 - Making Prediction
 - Multiple Logistic Regression
 - Odds Ratio
 - Logistic regression for more than 2 classes
- Naive Bayes Classifier
- Linear Discriminant analysis
- Quadratic Discriminant analysis

• Tree Based Methods

- Entropy
- Information Gain
- Decision Tree
- Decision Tree Use Case

o Random Forests

Unsupervised Learning

- Introduction to Clustering
- K-means Clustering
- Hierarchical Clustering

• Principal Component Analysis

- Variance as a proxy for interest
- Principal component analysis
- o Choosing D
- Limitation in PCA

Time Series

- Serial Correlation in time series
- Whaite noise and Random Walks in Time Series
- Trends and Seasonality in time series
- Time series Forecasting
- Autoregressive Moving Averages -1
- Autoregressive Moving Averages -2
- Autoregressive Moving Averages -3
- Autoregressive Integrated Moving averages
- Hidden Markov Models for Time Series

(Following are some Dense Topics will take at least 15 to 20 hours)

- Random Forest and Support Vector Machines (SVM)
- Gausian Mixture Models
- Outlier Detection
- Handling Imbalance Data

Neural Networks

- Applications of neural networks
- o Perceptron
- Feed forward Neural networks
- Back propagation in basic form
- Introduction to Keras