Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_4^2 = b_2 \cdot b_6 \Rightarrow 4^2 = 2b_6$	3 p
	$b_6 = 8$	2p
2.	$x_V = 1$, $y_V = m - 1$, unde $V(x_V, y_V)$ este vârful parabolei asociate funcției f	2p
	$y_V = 3x_V \iff m-1=3$, deci $m=4$	3p
3.	$2^{2x} - 2 \cdot 2^x - 3 = 0 \Rightarrow (2^x + 1)(2^x - 3) = 0$	3p
	Cum $2^x > 0$, obţinem $x = \log_2 3$	2p
4.	Numerele naturale de trei cifre care au exact două cifre egale sunt de forma \overline{aab} , \overline{aba} sau	2p
	baa, unde a și b sunt cifre distincte	
	Sunt $9 \cdot 9 = 81$ de numere de forma aab , $9 \cdot 9 = 81$ de numere de forma aba şi $9 \cdot 9 = 81$ de numere de forma \overline{baa} cu a şi b cifre distincte, deci numărul cerut este $81 \cdot 3 = 243$	3 p
5.	$\overrightarrow{AM} = \overrightarrow{MB}$ și $\overrightarrow{A'M} = \overrightarrow{MB'}$, unde M este mijlocul segmentelor AB , respectiv $A'B'$	2p
	$\overrightarrow{AB'} + \overrightarrow{BA'} = \overrightarrow{AM} + \overrightarrow{MB'} + \overrightarrow{BM} + \overrightarrow{MA'} = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}$	3p
6.	$2R = \frac{BC}{\sin A} = \frac{AC}{\sin B} = \frac{AB}{\sin C}$	2p
	$BC = 2R\sin A$, $AC = 2R\sin B$ şi $AB = 2R\sin C \Rightarrow AB + AC + BC = 2R(\sin A + \sin B + \sin C)$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$	
	$X(0,1) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow \det(X(0,1)) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{vmatrix} =$	2p
	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	
	=0+2+0-0-0-1=1	3p
b)	$\begin{vmatrix} a & a+1 & a+2 \end{vmatrix}$	
	$\det(X(a,b)) = \begin{vmatrix} b & b+1 & b+2 \\ 0 & 1 & 1 \end{vmatrix} = b-a, \text{ pentru orice numere reale } a \text{ și } b$	3p
		_
	Pentru $a \neq b$, $\det(X(a,b)) \neq 0$, deci sistemul de ecuații are soluție unică	2p
c)	Dacă $a \neq b$, sistemul are soluția unică $(0,2,-1)$ și $y_0^2 - z_0^2 - 2ax_0 = 2^2 - (-1)^2 - 2a \cdot 0 = 3$,	25
	pentru orice număr real a	2 p
	Dacă $a = b$, sistemul are soluțiile $(\alpha, 2 + a\alpha, -1 - a\alpha)$, unde $\alpha \in \mathbb{R}$, deci $y_0^2 - z_0^2 - 2ax_0 =$	
	$= (2 + a\alpha)^2 - (-1 - a\alpha)^2 - 2a\alpha = 4 + 4a\alpha + a^2\alpha^2 - 1 - 2a\alpha - a^2\alpha^2 - 2a\alpha = 3, \text{ pentru orice}$	3 p
	număr real <i>a</i>	
2.a)	$5*10 = (5-1)^{\log_3(10-1)} + 1 = 4^{\log_3 9} + 1 =$	3p
	$=4^2+1=17$	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	$x*e = x \Leftrightarrow (x-1)^{\log_3(e-1)} + 1 = x \Leftrightarrow (x-1)^{\log_3(e-1)} = x-1$, pentru orice $x \in M$, de unde obţinem $\log_3(e-1) = 1$, deci $e = 4 \in M$	Эр
	Cum $4*x = 3^{\log_3(x-1)} + 1 = (x-1) + 1 = x$, pentru orice $x \in M$, obținem că $e = 4$ este elementul neutru al legii de compoziție ,,*"	2p
c)	$x * x = (x-1)^{\log_3(x-1)} + 1$, $x * x * x = (x-1)^{\log_3^2(x-1)} + 1$, pentru orice $x \in M$	2p
	Cum $x \in M$, $(x-1)^{\log_3(x-1)} = (x-1)^{\log_3^2(x-1)} \Rightarrow \log_3(x-1) = \log_3^2(x-1)$, deci $\log_3(x-1) = 0$ sau $\log_3(x-1) = 1$ şi, cum $x > 2$, obținem $x = 4$	3 p

(30 de nuncte)

SUBI	ECTUL al III-lea (30 de pu	ıncte)
1.a)	$f'(x) = \frac{2e^{2x} + 4x^3}{2\sqrt{e^{2x} + x^4 + 2}} =$	3p
	$= \frac{2(e^{2x} + 2x^3)}{2\sqrt{e^{2x} + x^4 + 2}} = \frac{e^{2x} + 2x^3}{\sqrt{e^{2x} + x^4 + 2}}, \ x \in \mathbb{R}$	2p
b)	Panta tangentei la graficul funcției f în punctul de abscisă $x=0$, situat pe graficul funcției f , este egală cu $f'(0) = \frac{1}{\sqrt{3}}$	2p
	Cum dreapta de ecuație $x-\sqrt{3}y=0$ are panta egală cu $\frac{1}{\sqrt{3}}$, obținem că tangenta la graficul funcției f în punctul de abscisă $x=0$, situat pe graficul funcției f este paralelă cu dreapta de ecuație $x-\sqrt{3}y=0$	3 p
c)	$g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^{2x} + 2x^3 \Rightarrow g'(x) = 2e^{2x} + 6x^2 > 0$, pentru orice $x \in \mathbb{R}$, deci funcția g este strict crescătoare pe \mathbb{R} și, cum $\lim_{x \to -\infty} g(x) = -\infty$, $\lim_{x \to +\infty} g(x) = +\infty$ și g este continuă, există un unic număr real c cu $g(c) = 0$	2p
	f este continuă pe \mathbb{R} și $f'(x) < 0$, pentru orice $x \in (-\infty, c) \Rightarrow f$ este strict descrescătoare pe $(-\infty, c]$ și $f'(x) > 0$, pentru orice $x \in (c, +\infty) \Rightarrow f$ este strict crescătoare pe $[c, +\infty)$, deci f are un unic punct de extrem	3 p
2.a)	$\int_{0}^{1} \left(2f(x) + \frac{1}{x^2 + 3} \right) dx = \int_{0}^{1} \frac{1}{x^2 + 1} dx = \arctan x \Big _{0}^{1} =$	3 p
	$= \arctan 0 = \frac{\pi}{4}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = \frac{1}{2} \cdot \frac{x^2 + 3 - (x^2 + 1)}{(x^2 + 1)(x^2 + 3)} =$	3p
	$= \frac{1}{(x^2+1)(x^2+3)} > 0$, pentru orice număr real x, deci funcția F este strict crescătoare	2p
c)	$\int_{a}^{b} f(x)F^{2}(x)dx = \int_{a}^{b} F^{2}(x)F'(x)dx = \frac{1}{3}F^{3}(x)\Big _{a}^{b} = \frac{1}{3}(F^{3}(b) - F^{3}(a))$	3p
	Cum F este strict crescătoare, obținem că $F(a) < F(b)$, pentru orice numere reale $a \le b$, cu $a < b$, deci $\int_a^b f(x) F^2(x) dx > 0$	2p