Optimizing Dillard's Expansion: Using Sales Data and Consulting-Backed Estimation to Select the Next Local Store Location(s)

•••

MLDS 400 Group 5 Xiyi Lin, Omar Shatrat, Fanqi Song, Tianyu Wu

Outline

- Overview of Dillard's
- Motivation & Business Question
- Our Data Science Pipeline
 - Data Cleansing and Exploratory Data Analysis (EDA)
 - Feature Selection and Engineering
 - Model Development and Selection
 - Recommendation Decision Region
- ROI Spreadsheet and Analysis

Overview of Dillard's

- American department store chain
- Found in 1938
- Operated over 300 Dillard's locations as of 2005
- Online Store at Dillars.com complements the physical retail spaces

Motivation & Business Question

Identify promising location(s) for Dillard's next local store by leveraging sales data and consulting-backed estimation

- <u>Why?</u> Poor store location choices directly impact a store's long-term success and lead to operational inefficiencies affecting overall profitability
- Our Goal: Minimize risks in new store opening and ensure investments are directed for optimal returns

Our Data Science Pipeline

Data Science Pipeline - Data Cleansing

- Missing values Imputation
 - Typically in cost, retail price, sale price, and AMT columns
 - \circ Fill by the mathematical relationship: $\overline{AMT} = sale\ price^*$ quantity
 - Fill by average value: *Cost <-* groupby('SKU')['COST'].transform('mean')
- Capture temporal patterns
 - o Fetch 'YYYY-MM' via *Sale Date* column
- Geo-encoding
 - using city and state columns to generate latitude & longitude columns

Data Science Pipeline - Data Preparation

- Tables of Interest
 - Ensure a comprehensive view of transaction, SKU, and store information

EDA: Store Location Distribution

Stores across 30 states and 299 cities

Number of Stores			
Top 5 by States	Top 5 by Cities		
Texas (TX)	Little Rock (AR)		
Florida (FL)	Gilbert (AZ)		
Arkansas (AR)	Olathe (KS)		
Arizona (AZ)	San Antonio (TX)		
Ohio (OH)	Houston (TX)		

Plausible Reason:

Heightened consumer demand and meticulous strategic planning

EDA: Cost and Retail Price

- A well-balanced distribution: moderate cost and retail price values
- Correlation (0.896): higher product costs correlate with elevated retail prices
- Insight: Having formulated effective pricing strategies

EDA: Profit Margins (PM)

- A metric that delineates the disparity between retail price and cost
- PM = (Retail Price Cost) / Cost
- Insight: a significant store presence, efficient cost management, and wellexecuted pricing strategies

Profit Margin

['prä-fət 'mär-jən]

A measure of a company's profitability, expressed as the percentage of revenue that the company keeps as profit.

Top 5 Cities with the highest PM

Arkansas (AR)

Oklahoma (OK)

Ohio (OH)

Texas (TX)

Tennessee (TN)

Feature Selection and Engineering: KPIs

 Average Cost of Goods Sold (COGS) per Item Sold

Indicating profitability by balancing sales with production costs. Lower values signify efficient sales generation with minimized production expenses.

• MoM Growth

Calculating the percentage change in gross profit from the previous month. A positive MoM Gross Profit Growth indicates an increase in gross profit.

Return Percentage
 Expressing the *proportion of sales revenue returned* to the business as product returns. A higher percentage implies a larger share of sales being returned.

Feature Engineering: KPIs

	STORE	AvgCOGS_peritem	MoMGrowth	ReturnPercentage	CITY
0	102	18.656348	0.102883	7.297510	TAMPA
1	103	17.761179	-1.857504	8.766210	ST LOUIS
2	107	16.975893	0.350877	8.382016	HURST
3	202	15.533738	0.190422	8.271629	TAMPA
4	203	16.687797	-0.614171	10.119624	CHESTERFIELD
326	9709	13.221052	-1.186029	6.835200	GREELEY
327	9804	14.891369	0.068109	7.260616	LAWTON
328	9806	17.679472	0.040775	4.250364	MABELVALE
329	9906	5.600000	NaN	0.000000	LITTLE ROCK
330	9909	13.783600	-0.668611	5.773841	CHEYENNE

how?

Demo of KPI Values

Feature Engineering Visualization

But ... how to define success?

Store is **successful** if and only if:

- MoM Growth is among the highspread interval, i.e., above the median.
- Average Cost of Goods Sold
 (COGS) per Item Sold and Return
 Percentage is among the low-spread
 interval, i.e. below the median.

Pairplot of newly created features (KPIs)

Attention!

Our Decision:
Drop Average Cost
of Goods Sold
(COGS) per Item
Sold feature when
developing models

Irregular Correlation Heatmap

Successful Stores over the States

Now the success rate distribution is hence calculated as follows:

Successful	Not Successful
15.3%	84.7%

=> The ratio between successful and unsuccessful stores appears to be **reasonable**

Demo of Store Success Distribution On Map

Model Development

Model Comparison & Selection

Models	Metrics				
Models	Accuracy	Macro Precision	Macro Recall	Macro F-1 Score	
Logistic Regression	0.76	0.64	0.77	0.65	
Decision Tree	0.89	0.78	0.75	0.76	
Random Forest	0.91	0.80	0.85	0.82	
SVM	0.65	0.56	0.61	0.54	
K-NN	0.70	0.62	0.73	0.60	

=> We will then use **Random Forest** model to select the *promising location(s)* for Dillard's next local store.

Recommendation - Decision Region

Based on consulting-backed estimations, our model shows that **COLUMBIA** and **PHOENIX** emerge as the most promising locations among the five of interest below

	MoMGrowth	ReturnPercentage	Latitude	Longitude	CITY	Success
1	20.4012	0.002	35.395	-95.814	OKLAHOMA	0
2	0.8123	4.28038	39.204	-76.690	COLUMBIA	1
3	-0.12595	10.2903	32.380	-86.312	MONTGOMERY	0
4	0.067734	6.32	33.415	-111.835	MESA	0
5	0.4729	5.2039	33.451	-112.016	PHOENIX	1

ROI Spreadsheet

US Clothing Market Size	\$ 351,400,000,000.00
CAGR	1.93%
Proj. Annual Mkt.	\$ 358,182,020,000.00
Dillards 2022 Revenue	\$ 6,900,000,000.00
Dillards 2022 OpEx	\$ 1,674,000,000.00
# of Dillards Stores	277
Revenue / location	\$ 24,909,747.29
OpEx / location	\$ 6,043,321.30
Margin / location	\$ 18,866,425.99
Planned Expansion	5.3461
Fixed opening costs	\$ 100,000.00
Rent / sq ft.	\$ 61.40
Typical sq. ft. of store	250,000.00
Yearly Lease	\$ 15,350,000.00
Annual Profit / store	\$ 3,416,425.99
% Stores Successful	15.30% from model
Proj. Successful Stores	0.8179533
ROI	\$ 2,794,476.92

ROI Analysis

- The market opportunity for Dillard's is significant:
 - Total Market for Clothing: \$351.4bn
 - Annual Avg. Growth: 1.93%
- Being able to assess which stores will be strong performers can help Dillard's cut down on fixed costs and lease expenses.
- If Dillard's grows at a similar pace with the market, ROIs in the neighborhood of **~\$2.8bn** are attainable.

Thanks for Listening!