Wallman コンパクト化*

ゆう†

2022年12月7日

目次

1	ultrafilter	1
2	Wallman コンパクト化	4
2.1	定義と性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.2	Hausdorff 性	10
2.3	Stone-Čech コンパクト化との関係	12

1 ultrafilter

X を集合とする. 冪集合 $\mathcal{P}(X)$ の部分集合 \mathcal{S} について, \mathcal{S} の有限個の元の共通部分が空でないとき, \mathcal{S} は有限交差性をもつという. $\mathcal{E} \subseteq \mathcal{P}(X)$ を有限個の元の共通部分について閉じている部分集合とする.(0 個の共通部分として $X \in \mathcal{E}$ である.) \mathcal{E} の部分集合 \mathcal{F} で次をみたすものを(X 上の) \mathcal{E} -filter という:

- (1) $\emptyset \notin \mathcal{F}, X \in \mathcal{F}$.
- (2) $F, F' \in \mathcal{F}$ ならば $F \cap F' \in \mathcal{F}$.
- (3) $F \in \mathcal{F}, F' \in \mathcal{E}, F \subseteq F'$ ならば $F \in \mathcal{F}$.

^{*} 本稿は Math Advent Calendar 2022 (https://adventar.org/calendars/7662) の 7 日目の記事です。

[†] https://yuu7269.github.io/notes.

 \mathcal{E} -filter 全体の集合は包含関係により順序集合となり,この集合の極大元を \mathcal{E} -ultrafilter という。 \mathcal{E} -filter や \mathcal{E} -ultrafilter を単に filter,ultrafilter ということもある。定義から filter は有限交差性をもつ。有限交差性をもつ空でない部分集合 $\mathcal{S}\subseteq\mathcal{E}$ に対して, \mathcal{S} の有限個の元の共通部分全体の集合を \mathcal{H} とし,

$$\mathcal{F} = \{ F \in \mathcal{E} \mid \exists H \in \mathcal{H} (H \subseteq F) \}$$

とすると、 \mathcal{F} は filter である. このことから次が成り立つ.

命題 1. 有限交差性をもつ部分集合 $S\subseteq \mathcal{E}$ が ultrafilter \mathcal{F} を含むとき, $S=\mathcal{F}$ である.

命題 2. \mathcal{F} , \mathcal{F}' を \mathcal{E} -ultrafilter とする. このとき次が成り立つ.

- (1) $A \in \mathcal{E}$ について、任意の $F \in \mathcal{F}$ に対して $A \cap F \neq \emptyset$ ならば $A \in \mathcal{F}$ である.
- (2) $A, A' \in \mathcal{E}, A \cup A' \in \mathcal{F}$ $x \in \mathcal{F}, A \in \mathcal{F}$ $x \in \mathcal{F}$ $x \in \mathcal{F}$ $x \in \mathcal{F}$ $x \in \mathcal{F}$
- (3) $\mathcal{F} \neq \mathcal{F}'$ ならば、 $F \cap F' = \emptyset$ をみたす $F \in \mathcal{F}$, $F' \in \mathcal{F}'$ が存在する.

証明. (1) $F \cup \{A\}$ は F を含み有限交差性をもつから $F \cup \{A\} = F$ となり, $A \in F$ が 従う.

(2) $A, A' \in \mathcal{E}, A \cup A' \in \mathcal{F}, A \notin \mathcal{F} \succeq \mathcal{U}$

$$\mathcal{G} = \{ F \in \mathcal{E} \mid A \cup F \in \mathcal{F} \}$$

とおく. $\mathcal{F} \cup \{A'\} \subseteq \mathcal{G}$ である. \mathcal{G} が有限交差性をもつことを示そう. $F_0, \dots, F_{n-1} \in \mathcal{G}$ とすると、

$$A \cup \left(\bigcap_{i=0}^{n-1} F_i\right) = \bigcap_{i=0}^{n-1} (A \cup F_i) \in \mathcal{F}$$

である. もし $\bigcap_{i=0}^{n-1} F_i = \emptyset$ ならば $A \in \mathcal{F}$ となり, $A \notin \mathcal{F}$ であることに反する.故に $\bigcap_{i=0}^{n-1} F_i \neq \emptyset$ が従う.したがって \mathcal{G} は有限交差性をもち, $\mathcal{F} = \mathcal{G}$ となり, $A' \in \mathcal{F}$ が従う.

(3) 対偶を示す. 任意の $F \in \mathcal{F}$, $F' \in \mathcal{F}'$ に対して $F \cap F' \neq \emptyset$ とする. $\mathcal{F} \cup \mathcal{F}'$ は \mathcal{F} と \mathcal{F}' を含み有限交差性をもつから $\mathcal{F} = \mathcal{F} \cup \mathcal{F}' = \mathcal{F}'$ が従う.

 $x \in X$ に対して $\mathcal{F}(x) = \{ A \in \mathcal{E} \mid x \in A \}$ とおく. これは filter である.

命題 3. $x \in X$ に対して以下は同値である.

- (1) $\mathcal{F}(x)$ は \mathcal{E} -ultrafilter である.
- (2) x を含まない任意の $A \in \mathcal{E}$ に対して, $x \in F$, $F \cap A = \emptyset$ をみたす $F \in \mathcal{E}$ が存在する.

証明. $(1 \Rightarrow 2)$ x を含まない $A \in \mathcal{E}$ に対して, $A \notin \mathcal{F}(x)$ であるから $A \cap F = \emptyset$ をみたす $F \in \mathcal{F}(x)$ が存在する. $\mathcal{F}(x)$ の定義から $x \in F$ である.

 $(2 \Rightarrow 1)$ $F(x) \subsetneq F$ をみたす $F \subseteq \mathcal{E}$ について考える. $A \notin F(x)$ をみたす $A \in F$ が存在する. $x \in X \setminus A$ である. 条件 2 により $x \in F$, $A \cap F = \emptyset$ をみたす $F \in \mathcal{E}$ が存在する. $F \in \mathcal{F}(x) \subseteq \mathcal{F}$ であり, $A \cap F = \emptyset$ であるから \mathcal{F} は有限交差性をもたない.

例 4. X を T_1 空間, \mathcal{E} として X の閉集合系 $\mathcal{A}(X)$ を考える.このとき任意の $x \in X$ に対して $\mathcal{F}(x)$ は ultrafilter である.

命題 5. X 上の \mathcal{E} -ultrafilter \mathcal{F} に対して以下は同値である.

- (1) $\mathcal{F} = \mathcal{F}(x)$ をみたす $x \in X$ が存在する.
- (2) $\bigcap \mathcal{F} \neq \emptyset$.

証明. $(1 \Rightarrow 2)$ 明らか.

 $(2 \Rightarrow 1)$ $x \in \bigcap \mathcal{F}$ とする. $\mathcal{F} \subseteq \mathcal{F}(x)$ であるから \mathcal{F} の極大性により $\mathcal{F} = \mathcal{F}(x)$ が従う.

集合 X 上の \mathcal{E} -ultrafilter 全体の集合を $\mathcal{W}(X,\mathcal{E})$ と書く. 任意の $x \in X$ に対して $\mathcal{F}(x) \in \mathcal{W}(X,\mathcal{E})$ であるとき,写像 $w_{\mathcal{E}} \colon X \to \mathcal{W}(X,\mathcal{E})$ を $x \mapsto \mathcal{F}(x)$ によって定める. これを単に w と書くこともある.

命題 6. 任意の $x \in X$ に対して $\mathcal{F}(x) \in \mathcal{W}(X, \mathcal{E})$ であるとする. このとき,以下は同値である.

- (1) 任意の $x \in X$ に対して $\bigcap \mathcal{F}(x) = \{x\}$ である.
- (2) $w: X \to \mathcal{W}(X, \mathcal{E})$ は単射である.

証明. $(1 \Rightarrow 2)$ $x, x' \in X$, $\mathcal{F}(x) = \mathcal{F}(x')$ とすると,

$$\{ x \} = \bigcap \mathcal{F}(x) = \bigcap \mathcal{F}(x') = \{ x' \}$$

であるから x = x' が従う.

 $(2 \Rightarrow 1)$ $x \in X$ とする. $x \neq x'$ となる点 $x' \in X$ に対して, w が単射であるから

 $\mathcal{F}(x) \neq \mathcal{F}(x')$ となる。故に $F \cap F' = \emptyset$ をみたす $F \in \mathcal{F}(x)$, $F' \in \mathcal{F}(x')$ が存在する。 よって $\bigcap \mathcal{F}(x) = \{x\}$ となる.

2 Wallman コンパクト化

2.1 定義と性質

定義. X を位相空間, $\mathcal{B} \subseteq \mathcal{A}(X)$ とする. 任意の $A \in \mathcal{A}(X)$ に対して $A = \bigcap \mathcal{B}'$ をみたす $\mathcal{B}' \subseteq \mathcal{B}$ が存在するとき, \mathcal{B} を閉基という.

 \mathcal{B} が閉基であることの必要十分条件は $\{A^c \mid A \in \mathcal{B}\}$ が開基となることである.

定義. X を T_1 空間, $\mathcal{C} \subseteq \mathcal{A}(X)$ とする. \mathcal{C} が以下をみたすとき, \mathcal{C} を T_1 基底という.

- (1) *C* は閉基である.
- (2) \mathcal{C} は有限個の元の和および共通部分について閉じている.
- (3) 任意の $x \in X$ と,x を含まない任意の $A \in \mathcal{C}$ に対して, $x \in F$, $F \cap A = \emptyset$ をみた す $F \in \mathcal{C}$ が存在する.

 T_1 空間 X の T_1 基底を C とする. C-ultrafilter 全体の集合を $\mathcal{W}(X,C)$ と書き,特に $C = \mathcal{A}(X)$ のとき $\mathcal{W}(X)$ と書く. $A \in \mathcal{C}, U = X \setminus A$ に対して

$$A_* = \{ \mathcal{F} \in \mathcal{W}(X, \mathcal{C}) \mid A \in \mathcal{F} \}$$

$$U^* = \{ \mathcal{F} \in \mathcal{W}(X, \mathcal{C}) \mid \exists F \in \mathcal{F} (F \subseteq U) \}$$

とおく.

命題 7. $A \in C$, $U = X \setminus A$ とする. $F \in W(X,C)$ に対して以下は同値である.

- (1) $F \subseteq U$ をみたす $F \in \mathcal{F}$ が存在する.
- (2) $A \notin \mathcal{F}$.

証明.

$$F\subseteq U$$
 をみたす $F\in \mathcal{F}$ が存在する $\iff F\cap A=\emptyset$ をみたす $F\in \mathcal{F}$ が存在する $\iff A\notin \mathcal{F}.$

系 8. C を T_1 空間 X の T_1 基底, $A \in C$, $U = X \setminus A$ とする.このとき次が成り立つ.

(1) $A_* = \mathcal{W}(X, \mathcal{C}) \setminus U^*$.

$$(2) U^* = \mathcal{W}(X, \mathcal{C}) \setminus A_*.$$

命題 9. C を T_1 空間 X の T_1 基底, $A \in C$ とする.このとき次が成り立つ.

- $(1) A = \emptyset \iff A_* = \emptyset.$
- (2) $A = X \iff A_* = \mathcal{W}(X, \mathcal{C}).$

証明. (1) $A \neq \emptyset$ とすると, $x \in A$ をみたす x が存在する. 故に $\mathcal{F}(x) \in A_*$ となり, $A_* \neq \emptyset$ が従う. 逆は明らかである.

(2) $A \neq X$ とすると、 $x \notin A$ をみたす $x \in X$ が存在する.故に $\mathcal{F}(x) \notin A_*$ となり、 $A_* \neq \mathcal{W}(X,\mathcal{C})$ が従う.逆は明らかである.

系 10. C を T_1 空間 X の T_1 基底, $X \setminus U \in C$ とする.このとき次が成り立つ.

$$(1) \ U = \emptyset \iff U^* = \emptyset.$$

(2)
$$U = X \iff U^* = \mathcal{W}(X, \mathcal{C}).$$

命題 11. C を T_1 空間 X の T_1 基底, $A_i \in C$ (i = 0, 1) とする.このとき次が成り立つ.

- $(1) (A_0 \cup A_1)_* = (A_0)_* \cup (A_1)_*.$
- $(2) (A_0 \cap A_1)_* = (A_0)_* \cap (A_1)_*.$

証明. (1)

$$\mathcal{F} \in (A_0 \cup A_1)_* \iff A_0 \cup A_1 \in \mathcal{F}$$

$$\iff (A_0 \in \mathcal{F}) \lor (A_1 \in \mathcal{F})$$

$$\iff (\mathcal{F} \in (A_0)_*) \lor (\mathcal{F} \in (A_1)_*)$$

$$\iff \mathcal{F} \in (A_0)_* \cup (A_1)_*.$$

(2)

$$\mathcal{F} \in (A_0 \cap A_1)_* \iff A_0 \cap A_1 \in \mathcal{F}$$

$$\iff (A_0 \in \mathcal{F}) \wedge (A_1 \in \mathcal{F})$$

$$\iff (\mathcal{F} \in (A_0)_*) \wedge (\mathcal{F} \in (A_1)_*)$$

$$\iff \mathcal{F} \in (A_0)_* \cap (A_1)_*.$$

系 12. \mathcal{C} を T_1 空間 X の T_1 基底, $X\setminus U_i\in\mathcal{C}$ (i=0,1) とする.このとき次が成り立つ.

(1)
$$(U_0 \cup U_1)^* = (U_0)^* \cup (U_1)^*$$
.

(2)
$$(U_0 \cap U_1)^* = (U_0)^* \cap (U_1)^*$$
.

X を T_1 空間,C を X の T_1 基底とする。 $\mathcal{B} = \{A_* \mid A \in \mathcal{C}\}$ とおくと, $\emptyset_* = \emptyset$, $(A_0 \cup A_1)_* = (A_0)_* \cup (A_1)_*$ であるから \mathcal{B} が生成する位相 $T_{\mathcal{W}(X,\mathcal{C})}$ は \mathcal{B} を閉基としても つ.位相空間 $\langle \mathcal{W}(X,\mathcal{C}), T_{\mathcal{W}(X,\mathcal{C})} \rangle$ を単に $\mathcal{W}(X,\mathcal{C})$ と書く.

定義. X,Y を位相空間, $f:X\to Y$ を連続写像とする.f によって X と f(X) が同相になるとき,f を埋め込みという.埋め込み f が $\operatorname{Cl}_Y(f(X))=Y$ をみたすとき,組 $\langle Y,f\rangle$ を X の拡張空間という.特に Y がコンパクトであるとき, $\langle Y,f\rangle$ を X のコンパクト化という. $\langle Y,f\rangle$ を単に Y と書くこともある.

定理 13. 任意の T_1 空間 X, その任意の T_1 基底 C に対して $\langle \mathcal{W}(X,C), w \rangle$ は X の T_1 コンパクト化である.

証明. X を T_1 空間,C を X の T_1 基底とする。まず, $\mathcal{W}(X,\mathcal{C})$ が T_1 空間であることを示す。任意の $\mathcal{F} \in \mathcal{W}(X,\mathcal{C})$ に対して $\{\mathcal{F}\} = \bigcap_{A \in \mathcal{F}} A_*$ であることを示せばよい。 $\mathcal{F} \in \bigcap_{A \in \mathcal{F}} A_*$ であることは明らか。 $\mathcal{F}' \in \bigcap_{A \in \mathcal{F}} A_*$ とすると $\mathcal{F} \subseteq \mathcal{F}'$ が従い, \mathcal{F} の極大性により $\mathcal{F} = \mathcal{F}'$ となる。故に $\{\mathcal{F}\} = \bigcap_{A \in \mathcal{F}} A_*$ が従う.

次に、 $w:X\to \mathcal{W}(X,\mathcal{C})$ が埋め込みであることを示す. $A\in\mathcal{C}$ に対して $w(A)=w(X)\cap A_*$ である.

- (\subseteq) $x \in A$, $\mathcal{F}(x) \in w(A)$ とする. $A \in \mathcal{F}(x)$ であるから $\mathcal{F}(x) \in A_*$ が従う.
- (\supseteq) $\mathcal{F} \in w(X) \cap A_*$ とする. $\mathcal{F} \in w(X)$ から $\mathcal{F} = \mathcal{F}(x)$ をみたす $x \in X$ が存在し、 $\mathcal{F} \in A_*$ から $A \in \mathcal{F}$ が従う. 故に $x \in A$ となり、 $\mathcal{F} \in w(A)$ が従う.

 $G \subseteq X$ を閉集合とする. \mathcal{C} は X の閉基であるから,ある部分集合 $\mathcal{C}' \subseteq \mathcal{C}$ が存在し $G = \bigcap \mathcal{C}'$ となる. $w(\bigcap \mathcal{C}') = w(X) \cap \bigcap \{A_* \mid A \in \mathcal{C}'\}$ である.

$$w\left(\bigcap \mathcal{C}'\right) \subseteq \bigcap \{ w(A) \mid A \in \mathcal{C}' \}$$

$$= \bigcap \{ w(X) \cap A_* \mid A \in \mathcal{C}' \}$$

$$= w(X) \cap \bigcap \{ A_* \mid A \in \mathcal{C}' \} .$$

 (\supseteq) $\mathcal{F} \in w(X) \cap \bigcap \{A_* \mid A \in \mathcal{C}'\}$ とする. $\mathcal{F} \in w(X)$ 故, $\mathcal{F} = \mathcal{F}(x)$ をみたす $x \in X$ が存在する. $\mathcal{F} \in \bigcap \{A_* \mid A \in \mathcal{C}'\}$ 故, 任意の $A \in \mathcal{C}'$ に対して $A \in \mathcal{F}$ である. したがって $x \in \bigcap \mathcal{C}'$ となり, $\mathcal{F} = \mathcal{F}(x) \in w(\bigcap \mathcal{C}')$ が従う.

 \bigcap { $A_* \mid A \in \mathcal{C}'$ } は $\mathcal{W}(X,\mathcal{C})$ の閉集合であるから $w(X) \cap \bigcap$ { $A_* \mid A \in \mathcal{C}'$ } は部分空間 w(X) の閉集合である.故に w が閉写像であることが従う.また, $A \in \mathcal{C}$ に対して

$$x \in w^{-1}(A_*) \iff \mathcal{F}(x) \in A_*$$

 $\iff A \in \mathcal{F}(x)$
 $\iff x \in A$

であるから $w^{-1}(A_*) = A$ が従い,w が連続であることがわかる. \mathcal{C} は T_1 空間 X の閉基であるから $\{x\} = \operatorname{Cl}(\{x\}) = \bigcap \mathcal{F}(x)$ となり,命題 G によって W は単射となる.よって W は埋め込みである.

次に、 $\operatorname{Cl}(w(X)) = \mathcal{W}(X,\mathcal{C})$ であることを示す。F を $\mathcal{W}(X,\mathcal{C})$ の閉集合で $F \neq \mathcal{W}(X,\mathcal{C})$ をみたすものとする。このとき $F \notin F$ をみたす $F \in \mathcal{W}(X,\mathcal{C})$ が存在する。 $\{A_* \mid A \in \mathcal{C}\}$ は $\mathcal{W}(X,\mathcal{C})$ の閉基であるから $F \notin A_*$, $F \subseteq A_*$ をみたす $A \in \mathcal{C}$ が存在する。 $A \notin F$ であるから $A \neq X$ が従い, $x \notin A$ をみたす $x \in X$ が存在する。 $A \notin F(x)$ であるから $F(x) \notin A_*$ となる。故に $w(X) \nsubseteq F$ が従い, $\operatorname{Cl}(w(X)) = \mathcal{W}(X,\mathcal{C})$ となることがわかる。

最後に、 $\mathcal{W}(X,\mathcal{C})$ がコンパクトであることを示す。 $\{F_s \mid s \in S\}$ を $\mathcal{W}(X,\mathcal{C})$ の空でない閉集合族で有限交差性をもつものとする。 $\{A_* \mid A \in \mathcal{C}\}$ は $\mathcal{W}(X,\mathcal{C})$ の閉基であるから $A_t \in \mathcal{C}$ によって $F_s = \bigcap_{t \in T_s} (A_t)_*$ と書ける。 $T = \bigcup_{s \in S} T_s$ とおくと $\{A_t \mid t \in T\}$ は X の空でない閉集合族で有限交差性をもつから、これを含む $F \in \mathcal{W}(X,\mathcal{C})$ が存在する。

$$\mathcal{F} \in \bigcap_{A \in \mathcal{F}} A_* \subseteq \bigcap_{t \in T} (A_t)_* = \bigcap_{s \in S} F_s$$

故 $\bigcap_{s\in S}F_s\neq\emptyset$ が従う. よって $\mathcal{W}(X,\mathcal{C})$ はコンパクトである.

埋め込み $w: X \to \mathcal{W}(X,\mathcal{C})$ によって X と w(X) を同一視する.定理 13 と選択公理は ZF 上同値である ([KT13, Theorem 4.1]). $\mathcal{W}(X,\mathcal{C})$ を T_1 空間 X の T_1 基底 \mathcal{C} に関する Wallman コンパクト化という.特に $\mathcal{C} = \mathcal{A}(X)$ のとき, $\mathcal{W}(X)$ を X の Wallman コンパクト化という. $\langle \mathcal{W}(X), w \rangle$ は定理 15 のような普遍性をもつ.

補題 14. A を位相空間 X の稠密部分集合, $\iota: A \to X$ を包含写像,f を A からコンパクト Hausdorff 空間 Y への連続写像とする.このとき,以下は同値である.

(1) 図式

を可換にする連続写像 $h: X \to Y$ が存在する.

(2) Y の交わりをもたない任意の閉集合 B_0, B_1 に対して

$$\operatorname{Cl}_X(f^{-1}(B_0)) \cap \operatorname{Cl}_X(f^{-1}(B_1)) = \emptyset.$$

証明. $(1 \Rightarrow 2)$ B_0, B_1 を Y の交わりをもたない閉集合とすると, $h^{-1}(B_0), h^{-1}(B_1)$ は X の交わりをもたない閉集合であるから

$$\operatorname{Cl}_X(f^{-1}(B_0)) \cap \operatorname{Cl}_X(f^{-1}(B_1)) \subseteq h^{-1}(B_0) \cap h^{-1}(B_0) = \emptyset.$$

が従う.

 $(2 \Rightarrow 1)$ $x \in X$ とする. x の開近傍全体の集合を $\mathcal{N}(x)$ と書く. Y の閉集合族

$$\{ \operatorname{Cl}(f(A \cap U)) \mid U \in \mathcal{N}(x) \}$$

は有限交差性をもつ.

::) A の稠密性により,任意の $U \in \mathcal{N}(x)$ に対して $\mathrm{Cl}(f(A \cap U))$ は空でない. $U_0, \ldots, U_{n-1} \in \mathcal{N}(x)$ に対して $\bigcap_{i=0}^{n-1} U_i \in \mathcal{N}(x)$ であり,

$$\operatorname{Cl}\left(f\left(A\cap\bigcap_{i=0}^{n-1}U_i\right)\right)\subseteq\operatorname{Cl}\left(\bigcap_{i=0}^{n-1}f(A\cap U_i)\right)\subseteq\bigcap_{i=0}^{n-1}\operatorname{Cl}(f(A\cap U_i))$$

である.

Y がコンパクト故 $\bigcap_{U\in\mathcal{N}(x)}\mathrm{Cl}(f(A\cap U))\neq\emptyset$ である. $\bigcap_{U\in\mathcal{N}(x)}\mathrm{Cl}(f(A\cap U))$ は一点集合である.

(x) $y_0, y_1 \in \bigcap_{U \in \mathcal{N}(x)} \mathrm{Cl}(f(A \cap U)), y_0 \neq y_1$ と仮定する. Y はコンパクト Hausdorff 空間であるから正規空間である. 故に $\mathrm{Cl}(V_0) \cap \mathrm{Cl}(V_1) = \emptyset$ をみたす $V_0 \in \mathcal{N}(y_0)$,

 $V_1 \in \mathcal{N}(y_1)$ が存在する. f の連続性によって

$$\operatorname{Cl}_X(f^{-1}(V_i)) \subseteq \operatorname{Cl}_X(\operatorname{Cl}_A(f^{-1}(V_i))) \subseteq \operatorname{Cl}_X(f^{-1}(\operatorname{Cl}(V_i))) \quad (i = 0, 1)$$

となり、条件 2 によって

$$\operatorname{Cl}_X(f^{-1}(V_0)) \cap \operatorname{Cl}_X(f^{-1}(V_1)) = \emptyset$$

となる. 故に

$$x \notin \operatorname{Cl}_X(f^{-1}(V_0)) \vee x \notin \operatorname{Cl}_X(f^{-1}(V_1))$$

が従う.一般性を損なわないため $x \notin \operatorname{Cl}_X \big(f^{-1}(V_0) \big)$ とする. $X \setminus \operatorname{Cl}_X \big(f^{-1}(V_0) \big) \in \mathcal{N}(x)$ であるから

$$y_0 \in \bigcap_{U \in \mathcal{N}(x)} \mathrm{Cl}(f(A \cap U)) \subseteq \mathrm{Cl}(f(A \setminus \mathrm{Cl}_X(f^{-1}(V_0))))$$

となる. 一方, $f(A \setminus \operatorname{Cl}_X(f^{-1}(V_0))) \subseteq Y \setminus V_0$ である.

(x) $y \in f(A \setminus \operatorname{Cl}_X(f^{-1}(V_0)))$ とする. f(x) = y をみたす $x \in A \setminus \operatorname{Cl}_X(f^{-1}(V_0))$ が存在する. $x \in A \setminus f^{-1}(V_0)$ 故 $y = f(x) \in Y \setminus V_0$ となる.

故に $y_0 \notin \operatorname{Cl}(f(A \setminus \operatorname{Cl}_X(f^{-1}(V_0))))$ となり矛盾する. よって $y_0 = y_1$ が従う.

 $\bigcap_{U\in\mathcal{N}(x)}\mathrm{Cl}(f(A\cap U))=\{\,h(x)\,\}$ とする. 特に $x\in A$ ならば f(x)=h(x) であるから図式

は可換である. h が連続であることを示す. $x \in X, V \in \mathcal{N}(h(x))$ とする.

$$\{ h(x) \} = \bigcap_{U \in \mathcal{N}(x)} \mathrm{Cl}(f(A \cap U)) \subseteq V$$

である. Y がコンパクトであるから閉集合 $Y\setminus V$ はコンパクトであり,有限集合 $\{U_0,\ldots,U_{k-1}\}\subseteq\mathcal{N}(x)$ で $\bigcap_{j=0}^{k-1}\mathrm{Cl}(f(A\cap U_j))\subseteq V$ をみたすものが存在する. $U'=\bigcap_{j=0}^{k-1}U_j$ とおくと $U'\in\mathcal{N}(x)$ である. U' は開集合であるから任意の $x'\in U'$ に対して

 $U' \in \mathcal{N}(x')$ であり,

$$h(x') \in \bigcap_{U \in \mathcal{N}(x')} \mathrm{Cl}(f(A \cap U)) \subseteq \mathrm{Cl}(f(A \cap U'))$$

$$\subseteq \operatorname{Cl}\left(\bigcap_{j=0}^{k-1} f(A \cap U_j)\right) \subseteq \bigcap_{j=0}^{k-1} \operatorname{Cl}(f(A \cap U_j)) \subseteq V$$

となる. 故に $h(U') \subseteq V$ が従う.

定理 15. X からコンパクト Hausdorff 空間 Y への任意の連続写像 f に対して、図式

$$X \xrightarrow{w} \mathcal{W}(X)$$

$$\downarrow h$$

$$V$$

を可換にする連続写像 $h: \mathcal{W}(X) \to Y$ が一意的に存在する.

証明. 一意性は Y が Hausdorff 空間であることから従う. B_0 , B_1 を Y の閉集合で交わりをもたないものとする. $f^{-1}(B_0)$, $f^{-1}(B_1)$ は X の閉集合で交わりをもたない.

$$\operatorname{Cl}_{\mathcal{W}(X)}(f^{-1}(B_0)) \cap \operatorname{Cl}_{\mathcal{W}(X)}(f^{-1}(B_1)) \subseteq (f^{-1}(B_0))_* \cap (f^{-1}(B_1))_*$$

= $(f^{-1}(B_0) \cap f^{-1}(B_1))_* = \emptyset$

であるから、補題 14 により図式

$$X \xrightarrow{w} \mathcal{W}(X)$$

$$\downarrow h$$

$$Y$$

を可換にする連続写像 $h: \mathcal{W}(X) \to Y$ が存在する.

2.2 Hausdorff 性

定義. C を T_1 空間 X の T_1 基底とする. C が「A, A' を $A \cap A' = \emptyset$ となる C の元とすると, $A \cap F = \emptyset$, $A' \cap F' = \emptyset$, $F \cup F' = X$ をみたす F, $F' \in C$ が存在する」をみたすとき,C を正規基底という.

例 16. 正規空間 X の閉集合系 A(X) は X の正規基底である.

命題 17. T_1 空間 X が正規基底 C をもつとき,X は Hausdorff 空間である.

証明. $x, x' \in X, x \neq x'$ とする. X が T_1 空間だから一点集合は閉集合であり, $x' \notin \{x\}$ である. C は X の正規基底であるから $x' \notin F$, $\{x\} \subseteq F$ をみたす $F \in C$ が存在し,この F と x' に対して $x' \in F'$, $F' \cap F = \emptyset$ をみたす $F' \in C$ が存在する.再び C が X の正規基底であることを用いると

$$F \cap G = \emptyset$$
, $F' \cap G' = \emptyset$, $G \cup G' = X$

をみたす $G, G' \in \mathcal{C}$ が存在する. $X \setminus G, X \setminus G' \subseteq X$ は

$$F \subseteq (X \setminus G), \quad F' \subseteq (X \setminus G'), \quad (X \setminus G) \cap (X \setminus G') = \emptyset$$

をみたす開集合である.

命題 18. C を T_1 空間 X の正規基底とすると,W(X,C) は Hausdorff 空間である.

証明. $\mathcal{F}, \mathcal{F}' \in \mathcal{W}(X, \mathcal{C}), \mathcal{F} \neq \mathcal{F}'$ とする. このとき $F \cap F' = \emptyset$ をみたす $F \in \mathcal{F}, F' \in \mathcal{F}'$ が存在する. \mathcal{C} は X の正規基底であるから

$$F \cap G = \emptyset$$
, $F' \cap G' = \emptyset$, $G \cup G' = X$

をみたす $G,G'\in\mathcal{C}$ が存在する. $U=X\setminus G,V=X\setminus G'$ とおくと, $U^*,V^*\subseteq\mathcal{W}(X,\mathcal{C})$ は $\mathcal{F}\in U^*,\quad \mathcal{F}'\in V^*,\quad U^*\cap V^*=(U\cap V)^*=\emptyset$

特に $\mathcal{C} = \mathcal{A}(X)$ の場合, 逆が成り立つ.

命題 19. X を T_1 空間とし, $\mathcal{W}(X)$ が Hausdorff 空間であるとする.このとき,X は正規空間である.

証明. $A,B\subseteq X$ を交わりをもたない閉集合とする.このとき $A_*,B_*\subseteq \mathcal{W}(X)$ は交わりをもたない閉集合である. $\mathcal{W}(X)$ はコンパクト Hausdorff 空間であるから正規空間であり,

$$A_* \subseteq U$$
, $B_* \subseteq V$, $U \cap V = \emptyset$

をみたす開集合 $U, V \subseteq W(X)$ が存在する. $X \cap U, X \cap V$ は X の開集合であり,

$$A \subseteq (X \cap U), \quad B \subseteq (X \cap V), \quad (X \cap U) \cap (X \cap V) = \emptyset$$

をみたす. □

2.3 Stone-Čech コンパクト化との関係

定義. X を T_1 空間とする. 任意の $x \in X$ と, x を含まない任意の閉集合 F に対して, X 上の連続関数 $f\colon X \to [0,1]$ で

$$f(x) = 0, \quad \forall y \in F(f(y) = 1)$$

をみたすものが存在するとき、 X を完全正則空間という.

正規空間は完全正則空間であり、完全正則空間は正則空間である.

定理 20 (Stone-Čech コンパクト化). 任意の位相空間 X に対して、コンパクト Hausdorff 空間 $\beta(X)$ と連続写像 $\eta_X \colon X \to \beta(X)$ の組 $\langle \beta(X), \eta_X \rangle$ で次の普遍性をみたすものが存在する:任意のコンパクト Hausdorff 空間 Y と任意の連続写像 $f \colon X \to Y$ に対して、 $f = \widetilde{f} \circ \eta_X$ をみたす連続写像 $\widetilde{f} \colon \beta(X) \to Y$ が一意的に存在する.

$$X \xrightarrow{\eta_X} \beta(X) \qquad \beta(X)$$

$$\downarrow \tilde{f} \qquad \qquad \downarrow \tilde{f}$$

$$Y \qquad Y$$

X が完全正則空間のとき、 $\langle \beta(X), \eta_X \rangle$ は X の T_2 コンパクト化となる.

定理 21. X を正規空間としたとき、X の Wallman コンパクト化 $\langle \mathcal{W}(X), w \rangle$ と X の Stone-Čech コンパクト化 $\langle \beta(X), \eta_X \rangle$ について、図式

$$X \xrightarrow{w} \mathcal{W}(X)$$

$$\downarrow^{\cong}$$

$$\beta(X)$$

を可換にする同相写像 $W(X) \rightarrow \beta(X)$ が存在する.

参考文献

[Eng89] Ryszard Engelking. General Topology, Vol. 6 of Sigma Series in Pure Mathematics. Heldermann, Berlin, 1989.

- [KT13] Kyriakos Keremedis and Eleftherios Tachtsis. Wallman compactifications and Tychonoff's compactness theorem in ZF. Topology Proceedings, Vol. 42, pp. 275–297, January 2013.
- [児玉 74] 児玉之宏, 永見啓応. 位相空間論. 岩波書店, 1974.