What is claimed is:

- 1 1. An improved frequency standard of the type wherein a beam of circularly-
- 2 polarized light passes through an alkali vapor resonance cell,
- 3 the improved frequency standard being characterized in that:
- 4 the beam of circularly-polarized light is produced by passing a beam of
- 5 linearly-polarized light through a circular polarizer, the circular polarizer being
- 6 rotatable around an axis that is parallel to the beam of light,
- 7 whereby the intensity of the circularly-polarized beam is controlled by rotating the
- 8 circular polarizer.
- 2. The improved frequency standard set forth in claim 1 further characterized in that:
- the beam of linearly-polarized light is produced by a laser.
- 1 3. The improved frequency standard set forth in claim 1 further characterized in that:
- 3 the beam of linearly-polarized light is produced by a linear polarizer.
- 4. The improved frequency standard set forth in claim 1 further characterized in that:
- the circular polarizer includes a linear polarizer and a quarter wave retarder;
- 4 and

2

2

- during rotation, the linear polarizer and the quarter wave retarder are oriented
- 6 to each other such that the conversion of light which reaches the quarter wave retarder
- 7 to circular polarization is maximized.
- 5. The improved frequency standard set forth in claim 4 further characterized in that:
- 3 the linear polarizer and the quarter wave retarder are oriented to each other
- 4 such that the axis of polarization of the linear polarizer is oriented at an angle of 45°
- 5 to the fast axis of the quarter wave retarder.
- 1 6. The improved frequency standard set forth in claim 1 wherein:
- during rotation, the axis of polarization of the linear polarizer and the fast axis
- 3 of the quarter wave retarder have a fixed orientation to each other.

1	7. The improved frequency standard set forth in claim 6 wherein:
2	during rotation, the linear polarizer and the quarter wave retarder are
3	oriented to each other such that the conversion of light which reaches the quarter
4	wave retarder to circular polarization is maximized.
5	
1	8. The improved frequency standard set forth in claim 7 wherein:
2	the axis of polarization of the linear polarizer and the fast axis of the quarter
3	wave retarder are oriented to each other at an angle of 45°.
1	9. The improved frequency standard set forth in claim 6 wherein:
2	the linear polarizer and quarter wave retarder are rotated as a unit.
1	10. A method employed in a frequency standard of the type wherein a beam of
2	circularly-polarized light passes through an alkali vapor resonance cell to control the
3	intensity of the beam of circularly-polarized light, the circularly-polarized light being
4	produced by passing a linearly polarized beam of light through a circular polarizer,
5	the circular polarizer being rotatable about an axis that is parallel to the beam of light,
6	and
7	the method comprising the steps of:
8	rotating the circular polarizer; and
9	determining the intensity of the beam,
10	the steps being repeated until a desired intensity has been obtained.
1	11. The method set forth in claim 10 further comprising the step of:
2	preventing further rotation of the circular polarizer after the desired intensity
3	has been obtained.

12. The method set forth in claim 10 wherein:

the beam of circularly polarized light strikes a device which measures the intensity of the beam; and

the steps of the method are automatically performed in response to changes in the intensity of the beam as measured by the device.