Practice Test 1

Alex Iosevich

February 6, 2007

Please note that this practice test DOES NOT contain all possible problems that could appear on the test on Thursday, just a representative sample. Also, please study the definitions. They may well appear on the test and give you an opportunity to pick up points without calculating anything.

Problem 0.1. Let $f(x) = 7x^2 - 28x - 18$. Complete the square and graph the resulting parabola labeling the vertex. Indicate if the parabola opens up or down and briefly explain why.

Problem 0.2. Let $g(x) = \frac{x^2-4}{x-2}$ for $x \neq 2$. Is it possible to define g(2) in such a way that g(x) is continuous at x = 2. If it is possible, give the value of g(2) that makes it possible and explain why the resulting function is continuous. If it is not possible, explain why.

Problem 0.3. Determine if the following limits exist. If a given limit exists, determine its value. If it does not exist, explain why.

a)
$$\lim_{x \to 3} \frac{1}{(x-3)^5}$$
.

b)
$$\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$$
.

Problem 0.4. Compute the slope of the tangent line for the curve $y = 2x^2 + 3$ at the point (2,11). Do the same for the curve $y = \frac{1}{x-1}$ at the point (2,1).

Problem 0.5. Let $f(x) = \sin^2(x)$, $g(x) = \frac{2}{x^2 + 2^x}$, and $h(x) = \frac{x}{x+1}$. Compute f(g(h(x))).

Problem 0.6. (EXTRA CREDIT) Prove using the $\epsilon - \delta$ definition that $\lim_{x\to 2} x^3 + x = 10$.