Institut québécois d'intelligence artificielle

MAJOR UPDATE

Horoma project Block 2

Francis Grégoire Mathieu Germain

Context

- While evaluating models, we found that we couldn't overfit on the training set (i.e. models were performing as well on the valid and test set).
- Why? Horoma used overlaps of 1 pixel (left→right, up→down) to generate 32 x 32 x 4 pixel patches (think of strides=(1, 1) in a CNN):

- It resulted in several pixel patches being extremely similar.
- Since training, valid and test sets were almost perfectly balanced, most pixel patches in the test set had almost identical pixel patches in the training set.

What's new?

- We created new (and simpler) datasets for you.
- Forget the confusing relative height/height in the inputs/outputs:
 - Inputs: each pixel in a pixel patch contains only RGB values (i.e. 32 x 32 x 3).
 - o Outputs: each pixel patch has a tree specie (no more density and height).
- However, the size of the labeled data is dramatically reduced:
 - 480 or 1331 (with ~50% overlaps) examples in valid set.
 - 498 examples in test set.
- The new objective is to predict the tree specie of a given 32 x 32 pixel patch.

Institut québécois d'intelligence artificielle

Updated slides

Data (pixel)

- Each pixel of an image has 3 4 values associated with it:
 - o **RGB colors** (3 values). Those values are in [0, 255].
 - Height (1 value). The height values were obtained using photogrammetry and were georeferenced; they are measured w.r.t. the sea level.

Data (pixel patches)

- 32 x 32 pixel patches were extracted from labeled image subsections.
- Inputs: each pixel in a 32 x 32 pixel patch has 3 4 dimensions.
- Outputs: each 32×32 pixel patch has $1\frac{3}{5}$ label:
 - o Tree species.
 - Tree density.
 - Tree height w.r.t. the forest floor.

Data (input format)

- Inputs are provided as binary numpy.memmap files in float32.
- Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire file into memory:
 - o train_x.dat: 150,900 x 32 x 32 x 3 1,614,216 x 32 x 32 x 4.
 - o train_overlapped_x.dat: 544,749 x 32 x 32 x 3 (pixel patches with 50% overlap).
 - valid_x.dat: 480 x 32 x 32 x 3 201,778 x 32 x 32 x 4.
 - o valid_overlapped_x.dat: 1331 x 32 x 32 x 3 (pixel patches with 50% overlap).
- You also have access to files containing the image and the pixel subregion where each pixel patch has been extracted:
 - train_regions_id.txt & train_overlapped_regions_id.txt.
 - valid_regions_id.txt & valid_overlapped_regions_id.txt.

Data (output format)

- Outputs are provided as 2 3 text files (can be easily read from a terminal).
- valid_y.txt: contains 480 tree species (2 characters).
- valid_overlapped_y.txt: contains 1331 tree species (2 characters).
- The *i*-th value in **valid_y.txt** and **valid_overlapped_y.txt** is associated to the *i*-th pixel patch in **valid_x.dat** and **valid_overlapped_x.dat**.

