

Text Generation by Learning from Demonstrations

Richard Yuanzhe Pang NEW YORK UNIVERSITY yzpang.me

He He NEW YORK UNIVERSITY hhexiy.github.io

Motivation and Takeaways

The most widespread approach for supervised conditional text generation:

MLE + teacher forcing

Motivations

- 1. Train-test mismatched history (gold vs. model-generated) ⇒ repetitions and hallucinations; "exposure bias"
- 2. Train-test mismatched objectives (high recall vs. high precision) High recall: encourages high probability on every reference High precision: model generations should be rated highly by humans

TAKEAWAYS!

- 1. GOLD is an offline + off-policy algorithm; there's no interaction with the environment
- 2. GOLD's intuition: weighted MLE; upweights "confident" tokens and downweights "unconfident" ones
- 3. GOLD encourages high-precision generation (instead of distribution matching) for generation tasks where "one good output is sufficient"

Background: RL formulation for text generation

Prior approach Directly optimize a sequence-level metric like BLEU, ROUGE, etc. using policy gradient (e.g., REINFORCE)

- Pros: no exposure bias, may discover high-quality outputs outside refs
- Cons: degenerate solutions; difficult optimization

Offline objective: GOLD (generation by offline+off-policy learning from demonstrations)

(Traditionally:) online + on-policy policy gradient

Step 1: sample outputs from the model Step 2: get seq-level rewards like BLEU Step 3: use policy gradient to optimize $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \mathbf{p}_{\theta}} \sum \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \hat{Q}(s_t, a_t)$

Offline + off-policy policy gradient (NO INTERACTION w/ environment)

Step 1: sample from demonstrations (i.e., gold supervised data) Step 2: get token-level rewards based on p_{MLF} (discussed below) Step 3: use policy gradient with importance weights to optimize

use empirical distn model "confidence"

 p_{MLF} based reward (see below)

Intuition: upweights more "confident" tokens

Reward function

- (1) Use dirac-delta function: Q is 1 for all training data, o for other data GOLD-delta
- (2) Use estimated p_{human} : find p that min $KL(\pi_b || p)$

The p is p_{MLF} ! Good for demonstrations, but not in general.

(2.1) product of estimated p_{human} (a sequence is good if all words are good) GOLD-p

$$\hat{Q}(s_t, a_t) = \sum_{t'=t}^{T} \log \hat{p}_{\text{human}}(a_t | s_t)$$

(2.2) sum of estimated p_{human} (a sequence is good if most words are good) GOLD-s

$$\hat{Q}(s_t, a_t) = \sum_{t'=t}^{T} \hat{p}_{\text{human}}(a_t | s_t)$$

Full algorithm: GOLD

Algorithm 1: GOLD

- 1 $\pi_{\theta} \leftarrow p_{\text{MLE}}, \tilde{\pi}_{\theta} \leftarrow p_{\text{MLE}}$ 2 for step = 1, 2, ..., M do
- Sample a minibatch $B = \{(\boldsymbol{x}^i, \boldsymbol{y}^i)\}_{i=1}^{|B|}$
- foreach (s_t^i, a_t^i) do
 - Compute importance weights $\max(u, \tilde{\pi}_{\theta})$, and compute returns $\hat{Q}(s_t^i, a_t^i) - b$
- Update θ by \square using gradient descent
- if step % k = 0 then $\tilde{\pi}_{\theta} \leftarrow \pi_{\theta} \leftarrow$
- **Return:** π_{θ}

Paper + code + more info: yzpang.me

Two sources of variance...

- (1) from importance weights
- fix: periodic synchronization of policy fix: lower bound importance weights
- (2) from the return Q
 - fix: subtract by baseline (popular trick)
 - fix: lower bound Q by lower bounding p_{MLE}

Experiments

Tasks Conditional text generation tasks where "one good generation is sufficient": (1) NQG (natural question generation); (2) CNN/DM (extractive summarization); (3) **XSum** (abstractive summarization); (4) IWSLT14 De-En (machine translation)

Discussion on "diversity" can be found in the paper

Hypothesis 1: GOLD improves generation quality

<u>Auto evals</u>	NQG (BART) (BLEU)	CNN/DM (BART) (ROUGE-2)	XSum (BART) (ROUGE-2)	IWSLT14 De-En (Transformer) (BLEU)
MLE	20.68	21.28	22.08	34.64
GOLD-p	21.42	22.01	22.26	35.33
GOLD-s	21.98	22.09	22.58	35.45
<u>Human evals</u>	NQG (BART) win/lose/tied	CNN/DM (BART) win/lose/tied	XSum (BART) win/lose/tied	
GOLD-s vs. MLE	38.0/28.5/33.5	37.5/24.5/38.0	35.0/21.5/43.5	

Hypothesis 2: GOLD improves precision at the cost of recall

Without exposure bias

With exposure bias

- (Left) Given reference prefix, both losses do not change with lengths
- (Right) Given generated prefix, MLE outputs degrade with length while GOLD stays relatively stable
- More exposure bias related analysis in the paper and the appendix