Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Backpropagation

Backpropagation

¿Dónde se aplica la diferenciación automática? En Backpropagation (o simplemente Backprop), el algoritmo utilizado para entrenar redes neuronales.

Dada una entrada x y una salida esperada y, se puede calcular una función de error J. Para optimizar la red es necesario obtener la derivada de J respecto de $\it cada\ par\'ametro$.

¿Qué función cumple? Obtener $\frac{dJ}{d\theta}$ para cada parámetro θ de la red, a través del grafo de cómputo.

Redes Neuronales: capa lineal

La base de las redes neuronales es la capa lineal, que no es otra cosa que una transformación afín $z: \mathbb{R}^n \to \mathbb{R}^m$:

$$z(W,x,b)=W\cdot x+b$$

donde $x \in \mathbb{R}^n$, $W \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$? No es dificil llegar a que dado $\frac{dJ}{dz} = dz$, resulta:

$$\frac{dJ}{db} = dz \quad) \in \mathbb{R}^{m}$$

$$\frac{dJ}{dW} = dz \cdot x^{T} \in \mathbb{R}^{m+1}$$

$$\frac{dJ}{dx} = W^{T} \cdot dz \in \mathbb{R}^{m+1}$$

Redes Neuronales: función de activación

- • Composición de funciones lineales es lineal $\rightarrow z_2(z_1(x)) = z_3(x) \rightarrow se$
 - coloca "algo no lineal" en el medio. Suele ser una función escalar barata aplicada elemento a elemento.

Dada $g: \mathbb{R} \to \mathbb{R}$ no lineal, se define el campo vectorial $y: \mathbb{R}^n \to \mathbb{R}^n$ donde $y_i = g(x_i)$ o equivalentemente $\vec{y} = (g(x_1), \dots, g(x_n))$.

El jacobiano es una matriz diagonal, con diag. $D_v = (g'(x_i), \dots, g'(x_n)).$

Observar que entonces dado
$$\frac{dJ}{dy} = dy$$
, resulta:
$$\frac{dJ}{dx} = \begin{pmatrix} g'(x_1) & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & g'(x_n) \end{pmatrix} \cdot dy = D_y \odot dy$$

$$\frac{dJ}{dx} = \begin{pmatrix} g'(x_1) & \dots & 0 \\ 0 & \dots & g'(x_n) \end{pmatrix} \cdot dy = D_y \odot dy$$

El caso más conocido: $y = \text{ReLU}(x) = \max(0, x) \rightarrow Dy = 1 \cdot (x > 0)$.

Redes neuronales: resumen

- . FC: Sheed + act . conv: compt out of pool . ATT: It. + when deposit
- Una red neuronal es una función compuesta diferenciable punta a punta. end end
- Backpropagation es usar grafo de cómputo para obtener las derivadas del error para cada parámetro.
- Cada capa en una red neuronal es un bloque diferenciable. Existen distintos tipos de capa.
- La capa más conocida es la Fully Connected (FC): capa lineal + función de activación. La arquitectura MLP es muchas FC en serie.

Es muy fácil de plantear como código!

$$z1 = W1 @ x + b1$$
 $dy2 = dL(y2,y)$
 $y1 = g(z1)$ $dz2 = dy2 * g'(z2)$
 $z2 = W2 @ y1 + b2$ $dy1 = dx2 = W2.T @ dz2$
 $y2 = g(z2)$...
 $dz1 = dx2 * g'(z1)$
...