Q1

Given positive integers M and n compute M^n using only O(log n) many multiplications.

Answer:

This could be achieved using a recursive function which firstly writes n in binary i.e., as $n=2^{k1}+2^{k2}+2^{km}$ where $k_1>k_2>\dots k_m$. The function creates these bits by a recursive call where n = n/2 at each call and storing M^n in a temporary variable which is at most log_2n function calls.

At each call if n is even -> then the temp variable is **squared** $M^{2^j} = M^{2^i} * M^{2^i}$ since n is of the form $n = 2^{k1} + 2^{k2} + 2^{km}$

Else if n is odd $M^{2^{j}} = M * M^{2^{i}} * M^{2^{i}}$

That is enough to compute all of M^{2^j} where $1 \leq i < j \leq log_2 n$ with at most $log_2 n$ multiplications