Números Complejos

1. Hallar la parte real y la parte imaginaria de los siguientes números complejos:

a)
$$\frac{1-i}{1+i}$$

a)
$$\frac{1-i}{1+i}$$
, b) $\frac{(3-i)(2+i)}{3+i}$, c) $\frac{(2-i)^2}{(3-i)^2}$, d) $\sum_{k=1}^{101} i^k$.

c)
$$\frac{(2-i)^2}{(3-i)^2}$$
,

$$d$$
) $\sum_{k=1}^{101} i^k$.

2. Calcular los valores

a)
$$|(2+i)(1-i)^4|$$

b)
$$\left| \frac{1 + \sqrt{3}i}{12 - 5i} \right|$$
,

a)
$$|(2+i)(1-i)^4|$$
, b) $\left|\frac{1+\sqrt{3}i}{12-5i}\right|$, c) $\left(\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^3$.

3. Determinar razonadamente para qué numeros complejos z y w de módulo 1 se cumple z+w=2. ¿Cuándo se cumple z + w = 1 con z y w de módulo 1?

4. Probar las fórmulas $\text{Im}(z) = \frac{1}{c^2 + d^2} \text{ y } \frac{|z - i|^2}{\text{Im}(z)} + 2 = a^2 + b^2 + c^2 + d^2 \text{ para } z = \frac{ai + b}{ci + d} \text{ con } a, b, c, d \in \mathbb{R}$ tales que ad - bc = 1.

5. a) Demostrar que si dos enteros positivos n y m son suma de dos cuadrados, entonces su producto también es suma de dos cuadrados.

b) Usando que $13 = 2^2 + 3^2$ y $29 = 2^2 + 5^2$, hallar $a, b \in \mathbb{N}$ tales que $377 = a^2 + b^2$.

6. Expresar en forma polar los siguientes números complejos:

a)
$$1+i$$
, b) $\frac{1}{2}-\frac{\sqrt{3}}{2}i$, c) $-\frac{\sqrt{3}}{2}-\frac{1}{2}i$, d) $-2-2i$.

$$-rac{\sqrt{3}}{2}-rac{1}{2}i\,, \qquad d) \; -2-$$

7. Calcular

$$a) \exp(\pi i/3)$$
,

$$b) \exp(-\pi i/4)$$

a)
$$\exp(\pi i/3)$$
, b) $\exp(-\pi i/4)$, c) $\exp(2019\pi i)$,

d)
$$\exp(3^{2020}\pi i/2)$$
.

8. Calcular las partes real e imaginaria de cada uno de los siguientes números:

a)
$$(1+i)^8$$
, b) $\left(\cos\frac{\pi}{12} + i \sin\frac{\pi}{12}\right)^{20}$, c) $\left(\frac{1}{1-i}\right)^{2020} + \left(\frac{1}{1+i}\right)^{2020}$.

9. Demostrar la siguiente identidad para x que no sea múltiplo entero de 2π y $N \in \mathbb{N}$.

$$\sum_{n=-N}^{N} e^{inx} = \frac{\operatorname{sen}\left((N + \frac{1}{2})x\right)}{\operatorname{sen}(x/2)}.$$

10. Calcular las raíces cuadradas (complejas) de los números:

a)
$$1+i$$
, b) $2-i$, c) $2+i$, d) $1+2i$.

$$i$$
. $c) 2 + i$

d)
$$1 + 2i$$
.

11. Calcular las raíces complejas de los siguientes polinomios cuadráticos:

a)
$$z^2 + 3iz - 3 + i$$
. b) $2z^2 + 4z + 2 + i$.

12. Calcular los diferentes valores de:

a)
$$\sqrt[3]{-8}$$
, b) $\sqrt[3]{-i}$,

b)
$$\sqrt[3]{-i}$$
.

c)
$$\sqrt[4]{16i}$$

c)
$$\sqrt[4]{16i}$$
, d) $(1+i)^n + (1-i)^n$, con $n \in \mathbb{N}$.

13. Para $n \in \mathbb{N}$, $n \neq 1$, demostrar $\sum_{i=1}^{n} e^{2\pi ki/n} = 0$.

14. Sea $z=2e^{2\pi i/5}+1+2e^{-2\pi i/5}$. Demostrar $z^2=5$. Deducir de ello una expresión para $\cos(2\pi/5)$, que utiliza sólo raíces cuadradas de números naturales.