Conditioning on random variables: Summary

$$p_{X|A}(x) := \frac{\mathbb{P}(\{X=x\} \cap A)}{\mathbb{P}(A)}.$$

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

$$p_X(x) = \sum_{y} p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

 $p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$

$$E[X] = \sum_{i=1}^{n} \mathbb{P}(A_i) E[X|A_i]$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

How about all this for continuous X & Y?

$$\int_{x\in B} f_{X|A}(x) = \mathbb{P}(X\in B|A).$$

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$$

$$E[X/A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$

$$f_X(x) = \int_Y fX|Y(x|y)f_Y(y)dy$$

$$f_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) f_{X|A_i}(x)$$

$$E[X|Y=y] = \int_X x f_{X|Y}(x|y) dx$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$E[X] = \int_{Y} E[X|Y = y] f_{Y}(y) dy$$

Conditional expectation E[X|Y]

Recall that

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

- ightharpoonup E[X|Y=y] is a function of y.
- Now consider E[X|Y].
- ightharpoonup E[X|Y] is a function of Y, say g(Y).
- When Y takes the value y,(this happens with probability $p_Y(y)$)E[X|Y] takes the value E[X|Y=y].
- ightharpoonup What is the expectation of E[X|Y]?

Conditional expectation E[X|Y]

- ightharpoonup g(Y) = E[X|Y].
- ightharpoonup What is E[g(Y)] = E[E[X|Y]]?
- $ightharpoonup E[g(Y)] = \sum_{y} g(y) p_{Y}(y) = \sum_{y} E[X|Y=y] p_{Y}(y).$
- This implies E[g(Y)] = E[E[X|Y]] = E[X]. This is the law of iterated expectation.

$$E[E[X|Y]] = E[X]$$

Sampling from continuous random variables

Lemma

Let U be uniform random variable over [0,1]. Consider any continuous $cdf\ F(.)$. Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

Proof:

▶ Let $F_X(x)$ be the cdf of X, i.e., $F_X(x) := \mathbb{P}[X \le x]$. Then

$$F_X(x) = \mathbb{P}[F^{-1}(U) \le x]$$
$$= \mathbb{P}[U \le F(x)]$$
$$= F(x)$$

Sampling from continuous random variables

Lemma

Let U be uniform random variable over [0,1]. Consider any continuous cdf F(.). Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

- Using this lemma, how to generate samples of a continuous random variable X using samples of U?
- ▶ **Answer:** Draw $u \sim U$ and obtain $F^{-1}(u)$. This is a sample from X.

Convergence of Random Variables

Modes of Convergence $(X_n \rightarrow X)$

Pointwise or Sure convergence

 $\{X_n, n \geq 0\}$ converges to X pointwise or surely if for all $\omega \in \Omega$ we have $\lim_{n \to \infty} X_n(\omega) = X(\omega)$

- ► Consider $\Omega = \{H, T\}$.
- Further, $X_n = \begin{cases} \frac{1}{n} & \text{if } \omega = H \\ 1 + \frac{1}{n} & \text{if } \omega = T. \end{cases}$ and $X = \begin{cases} 0 & \text{if } \omega = H \\ 1 & \text{if } \omega = T. \end{cases}$

Almost sure convergence

 X_n converges to X almost surely if

$$P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1.$$

- The set of outcomes where the convergence does not happen has measure 0. $P\{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = 0$.
- Consider $\Omega = [0, 1]$ where you pick a number uniformly in [0, 1]. Let $X_n(\omega) = \omega^n$ for all $\omega \in \Omega$ and $X(\omega) = 0$ for all ω .
- $ightharpoonup X_n(\omega) o X(\omega)$ for $\omega \in [0,1)$.
- $ightharpoonup X_n(\omega) \nrightarrow X(\omega)$ for $\omega = 1$ and $\mathbb{P}\{\omega = 1\}$.
- ▶ This is almost sure convergence as $\mathbb{P}\{[0,1)\}=1$.

Example 2 (SLLN): Let $\{X_n, n \geq 0\}$ denote a sequence of i.i.d random variables with mean μ and denote $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ a.s.

Summary

Pointwise convergence

$$\lim_{n\to\infty} X_n(\omega) = X(\omega) \text{ for every } \omega$$

Almost sure convergence

$$\lim_{n\to\infty} X_n(\omega) = X(\omega) \text{ almost surely}$$

Convergence in probability

$$\lim_{n\to\infty} P(|X_n-X|>\epsilon)=0 \text{ for any } \epsilon>0$$

Mean-square convergence

$$\lim_{n\to\infty} E[(X_n - X)^2] = 0$$

Convergence in distribution

$$\lim_{n\to\infty} F_n(x) = F(x) \text{ for any continuity point } x$$

Relation between modes of convergence (no proofs)

https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables

Interchanging limits and expectation

Suppose $X_n \to X$ a.s. Then when is $\lim_{n\to\infty} E[X_n]$ equal to $E[\lim_{n\to\infty} X_n] = E[X]$?

► A counterexample where the exchange is not possible?

 $V \sim U(0,1) \text{ and } X_n = n1_{\{U < \frac{1}{n}\}}.$

In this example, $X_n \to 0$ but $E[X_n] = 1$ and hence the interchange is not possible.

Monotone Convergence Theorem

Theorem

Suppose X_n is an increasing sequence of non-negative random variables, i.e., $X_n(\omega) \leq X_{n+1}(\omega)$ for all n and $\omega \in \Omega$. Then $X = \lim_{n \to \infty} X_n$ exists and $E[X_n] \uparrow E[X]$ as $n \to \infty$.

Corollary

If
$$Y_i \geq 0$$
, then $E[\sum_{i=1}^{\infty} Y_i] = \sum_{i=1}^{\infty} E[Y_i]$.

Hint: Set $X_n = \sum_{i=1}^n Y_i$.

Dominated Convergence Theorem

Theorem

Suppose $X_n \to X$ a.s. and there exists a random variable Y with $E[Y] < \infty$ such that $|X_n| \le Y$ for all n. Then $E[\lim_{n\to\infty} X_n] = \lim_{n\to\infty} E[X_n]$.

- **Example** 1: $X \sim N(0,1)$ and $X_n = min(X,n)$.
- **Example** 2: $U \sim U(0,1)$ and $X_n = U/n$. The limit X = 0.
- ▶ If Y is a constant, we often call it the Bounded convergence theorem.