Engagement Decision Support for Beyond Visual Range Air Combat

Joao P. A. Dantas

Andre N. Costa

Diego Geraldo

Marcos R. O. A. Maximo

Takashi Yoneyama

MOTIVATION

- Within Visual Range (WVR)
- Beyond Visual Range (BVR)
- Situational Awareness
- Simulation
- Decision Support Tool

LITERATURE REVIEW

- Bayesian Networks (Du and Liu, 2010; Rao et al, 2011)
- 2. Fuzzy Logic (Akabari et al, 2005; Prahu et al, 2014)
- Agent-based Modeling (Heinze et al, 1998)
- Influence Diagrams (Lin et al, 2007)
- Reinforcement Learning (Toubman et al, 2016; Weilin et al, 2018; Hu et al, 2021)
- 6. Artificial Neural Networks (Yao et al, 2021)
- Evolutionary Algorithms (Yang et al 2020; Li et al 2020)
- MiniMax Method (Kang et al, 2019)
- 9. Behavior Trees (Yao et al, 2015)
- 10. Game Theory (Mukai et al, 2003; Karelahti et al, 2006; Ha et al, 2018)

OBJECTIVES

- Supervised Machine Learning model
- Based on Decision Trees (XGBoost)
- Features:
 - 1. 6DOF
 - 2. Multi-role combat aircraft
 - 3. Electronic Warfare Devices
 - 4. Datalink communications
 - 5. Active radar-guided missiles
- Sujects:
 - 1. BVR air combat scenarios
 - 2. Carrying out simulations
 - 3. Collecting and analysing data
 - 4. Using machine learning techniques

FIGHTER AGENT

- Finite State Machine
- CAP, Commit, Break, Abort

DCA INDEX

- Index as a probability of success
- Ranging from 0% to 100%
- Principles
 - 1. Minimize the number of missile launched in the mission
 - 2. Minimize the reference distance from its CAP point
 - 3. Maximize the distance of each enemy to the CAP point

DCA INDEX

$$d_i = \frac{(y_{99\%,i} - y_{1\%,i})}{(x_{99\%,i} - x_{1\%,i})} \cdot [D(i,CAP) - x_{1\%,i}] + y_{1\%,i}$$

where: i = r (reference) or e_n (enemy)

 D_i = measured distance from the CAP point

 d_i = interpolated distance for sigmoid input

$$d_i = \frac{(y_{99\%,i} - y_{1\%,i})}{(x_{99\%,i} - x_{1\%,i})} \cdot [D(i,CAP) - x_{1\%,i}] + y_{1\%,i} \qquad I_{DCA} = w_1 \cdot \frac{m_{avail}}{m_{total}} + w_2 \cdot \frac{1}{1 + \exp(-d_r)}$$
 where: $i = r$ (reference) or e_n (enemy)
$$D_i = \text{measured distance from the CAP point}$$

$$d_i = \text{interpolated distance for sigmoid input}$$

$$+ w_3 \cdot \frac{1}{N} \sum_{n=1}^{N} \frac{1}{1 + \exp(-d_{e_n})}$$

SIMULATIONS SAMPLING

- Latin Hypercube Sampling
- 3,729 construtive simulations
- 10,316 engagements
- 12-minutes scenario
- 10 days (3x)
- Scenario: BVR 2x2

MODEL INPUTS AND OUTPUT

Parameter	Description
distance [m]	Distance between the reference and the target
aspect [deg]	Angle between the longitudinal axis of the target
	(projected rearward) and the line-of-sight to the
	reference
delta_head [deg]	Angle between the longitudinal axis of both aircraft
delta_alt [m]	Difference of altitude between the reference and
	the target
delta_vel [kn]	Difference of absolute velocity between the refer-
	ence and the target
wez_max_o2t [m]	Maximum range of the reference's weapon (non-
	maneuverable target)
wez_nez_o2t [m]	No-escape zone range of the reference's weapon
	(target performing high performance maneuver)
wez_max_t2o [m]	Estimated maximum range of the target's weapon
	(non-maneuverable reference)
wez_nez_t2o [m]	No-escape zone range of the target's weapon (ref-
	erence performing high performance maneuver)
vul_thr_bef_shot	Level of risk acceptance before shooting
vul_thr_aft_shot	Level of risk acceptance after shooting
shot_point	Missile firing point between the maximum range
	and the no-escape zone range of the reference
rwr_warning	Boolean indicating whether the aircraft is equipped
	with an active RWR
hp_tgt_off	High priority target offense index of the reference
hp_thr_vul	High priority threat vulnerability index of the air-
	craft that is threatening the reference
own_shot_phi	Reference shot philosophy
enemy_shot_phi	Estimated enemy's shot philosophy

SUPERVISED MODEL

- XGBoost
- Data Preprocessing
- Feature Engineering
- Hyperparameters Tuning
- Metrics: RMSE and R²
- Cross Validation (80% and 20%)

MODEL RESULTS

- RMSE 0.0543 ± 0.0009
- $R^2 0.8020 \pm 0.0077$

CONCLUSIONS

- Improve the employment of the best operational tactics for each situation
- Avoiding the incorrect and careless use of weapons
- Decrease the number of friendly aircraft lost in real-life

FUTURE WORK

- Number of simulations
- More variables to define the agent state
- Compare XGBoost with other regression algorithms
- Conception of other operational metrics

ACKNOWLEDGMENTS

- Finep (Reference n° 2824/20)
- CNPq National Research Council of Brazil (grant 303134/2-18-0)

