4. Computer Networks

Network, Transport, Session, Presentation, Application Layers

Summary

- Network Layer
- Packet Header Structure
- Routing Process
- Logical Addressing IP Address
- IPv4 Address Structure
- Subnet Mask Structure
- Transport Layer
- Sockets
- Segment Header Structure
- Session, Presentation, Application Layers

Network Layer

The **Network Layer** is the **third** layer in the **ISO/OSI model**. It determines how data is sent to the receiving devices across multiple networks. Specifically, it is responsible for **routing**, **forwarding**, and **addressing** data packets across different networks.

Functions of the Network Layer

• Routing:

Determines the optimal path for data to travel from source to destination.

• Forwarding:

Moves packets from the router's input to the appropriate output.

• Logical Addressing:

Uses IP addresses to identify devices on a network.

• Fragmentation and Reassembly:

Breaks down large packets into smaller fragments and reassembles them at the destination.

Packet Header Structure

IPv4 Packet Header Structure

Field	Length (bits)	Description
Version	4	IP version (4 for IPv4)
IHL	4	Internet Header Length (in 32-bit words)
Type of Service (ToS)	8	Quality of Service indicators and priority
Total Length	16	Total length of the packet (header + data)
Identification	16	Unique identifier for fragments of the original packet
Flags	3	Control flags for fragmentation
Fragment Offset	13	Position of this fragment in the original packet
Time to Live (TTL)	8	Maximum number of hops the packet can take
Protocol	8	Protocol used in the data portion (e.g., TCP, UDP)
Header Checksum	16	Error-checking of the header
Source IP Address	32	IP address of the sender
Destination IP Address	32	IP address of the receiver
Options	Variable (0-40 bytes)	Optional fields for additional functionality (e.g., security)
Padding	Variable	Extra bytes to ensure the header is a multiple of 32 bits

Routing Process/1

The routing process comprises these 3 steps:

- 1. Path Determination: Routers use routing tables and algorithms to determine the best path for data packets.
- 2. Packet Switching: Data packets are forwarded from one router to another based on the routing table.
- 3. Next-Hop Forwarding: Each router forwards the packet to the next router until it reaches the destination.

Path Determination

Path determination is the process by which routers decide the **best route** for data packets **to travel** from the source to the destination.

- Routing Tables: Routers maintain routing tables that contain information about **network topology** and **available routes**.
 - Static Routing: Routes are manually configured by network administrators.
 - **Dynamic Routing:** Routes are automatically learned and updated using routing protocols.
- Routing Algorithms: Algorithms such as Dijkstra's Shortest Path First (SPF) and Distance Vector are used to calculate the optimal path.
 - Shortest Path First (SPF): Calculates the shortest path to a destination based on cumulative cost metrics.
 - **Distance Vector:** Determines the best path based on distance metrics and updates from neighboring routers.

INFORMATION AND COMMUNICATIONS TECHNOLOGY

Packet Switching

Packet switching is the process of moving data packets from the input port of a router to the appropriate output port, based on routing decisions.

- Switching Fabric: The internal architecture of a router that connects input ports to output ports.
 - Store-and-Forward: Entire packet is received before it is forwarded to the next hop.
 - Cut-Through: Packet is forwarded as soon as the destination address is read.
- Buffering: Temporary storage of packets in memory if the output port is busy, preventing packet loss.
- Forwarding Decision: Based on the destination IP address and the routing table, the router decides the next hop for the packet.

Store-and-Forward Switching

The **entire packet** is received by the router before it is **forwarded** to the next hop.

Process:

- 1: The router receives the entire data packet.
- 2: The packet is stored temporarily in memory.
- 3: Error checking (such as CRC) is performed to ensure data integrity.
- 4: The packet is forwarded to the next hop based on the destination address.

Advantages: Ensures error-free transmission by checking the entire packet for errors before forwarding. Suitable for networks where data integrity is crucial.

Disadvantages: Higher latency due to the time taken to receive and process the entire packet. Requires more memory to store the packets.

Cut-Through Switching

The packet is **forwarded** as soon as the destination address is read, **without waiting** for the **entire packet** to be received.

Process:

- 1: The router begins forwarding the packet as soon as it reads the destination MAC address from the packet header.
- 2: The rest of the packet continues to be forwarded as it is received.

Advantages: Lower latency because forwarding begins almost immediately after the destination address is read. Faster data transfer suitable for high-performance networks.

Disadvantages: Does not check for errors in the packet, which means corrupted packets might be forwarded. Can lead to potential issues if the packet is corrupted during transmission.

Next-Hop Forwarding

Next-hop forwarding refers to the process of **sending** a data packet to the **next router** (or final destination) along the path determined by the routing algorithm.

• Hop-by-Hop Routing

Each router along the path makes an independent forwarding decision.

• Next-Hop Address

The IP address of the next router to which the packet should be sent.

• Address Resolution Protocol (ARP)

Translates IP addresses to MAC addresses for forwarding packets at the Data Link Layer

Routing Process/2

Logical Addressing – IP Address

Each device on a network has a unique **IP address** used for **identification** and **communication**.

IPv4 Addresses: 32-bit addresses, e.g., 192.168.1.1

IPv6 Addresses: 128-bit addresses, e.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334

IPv4 Structure

Format: Dotted decimal notation (e.g., 192.168.1.1)

Binary Representation: 32 bits divided into four 8-bit octets.

Example: 192.168.1.1 in binary is 11000000.10101000.00000001.00000001.

Classes (to define network size and purpose):

Class A: 0.0.0.0 to 127.255.255.255

Class B: 128.0.0.0 to 191.255.255.255

Class C: 192.0.0.0 to 223.255.255.255

Class D: 224.0.0.0 to 239.255.255.255 (Multicast)

Class E: 240.0.0.0 to 255.255.255.255 (Reserved)

Subnet Mask Structure

The **Subnet Mask** is a 32-bit number that **divides** the IP address into **network** and **host** portions.

• Function:

Determines which part of the IP address is the network address and which part is the host address.

Format: Dotted decimal notation (e.g., 255.255.255.0).

Binary Representation: Corresponds to the IP address, using 1s for the network part and 0s for the host part.

Combining IP Address and Subnet Mask

Network Address: The part of the IP address identified by the subnet mask's 1s.

Host Address: The part of the IP address identified by the subnet mask's 0s.

Example:

• IP Address: 192.168.1.10

• Subnet Mask: 255.255.255.0

• Network Address: 192.168.1.0

• Host Address: 10

IPv4 Class A and Class B

Class A Class B

Range: 0.0.0.0 to 127.255.255.255

Range: 128.0.0.0 to 191.255.255.255

First Octet Range: 0 to 127 First Octet Range: 128 to 191

Default Subnet Mask: 255.0.0.0 Default Subnet Mask: 255.255.0.0

Number of Networks: 128 (2⁷)

Number of Networks: 16.384 (2¹⁴)

Hosts per Network: Over 16 million $(2^{24} - 2)$ Hosts per Network: Over $65k (2^{16} - 2)$

Usage: Designed for very large networks with Usage: Suitable for medium-sized networks,

many devices, such as large corporations or ISPs. such as universities or large companies.

Example: 10.0.0.1 **Example:** 172.16.0.1

IPv4 Class C, Class D, and Class E

Class C

Range: 192.0.0.0 to 223.255.255.255

First Octet Range: 192 to 223

Default Subnet Mask: 255.255.255.0

Number of Networks: Over 2 million (2^{21})

Hosts per Network: 254 (2⁸ - 2)

Usage: Ideal for small networks, such as small

businesses or home networks.

Example: 192.168.1.1

Class E

Range: 240.0.0.0 to 255.255.255.255

First Octet Range: 240 to 255

Usage: Reserved for experimental purposes and

future use. Not used for general networking.

Class D

Range: 224.0.0.0 to 239.255.255.255

First Octet Range: 224 to 239

Default Subnet Mask: 255.255.255.255

Usage: Reserved for multicast groups. Allows a single packet to be sent to multiple destinations.

Example: 224.0.0.1

Private and Public IP Addresses

Private IP Addresses

IP addresses used within a private network. Not routable on the internet.

Example:

Home Network: 192.168.1.1

Office Network: 10.0.0.1

Public IP Addresses

IP addresses that are routable on the internet. Assigned by ISPs and regulated by regional internet registries.

Example:

Website IP: 93.184.216.34

Corporate Server: 203.0.113.10

Network Address Translation (NAT)

Purpose: Allows multiple private IP addresses to share a single public IP address for internet access.

Function: Translates private IP addresses to a public IP address and vice versa.

Example: A home router uses NAT to enable all devices in a home network (with private IP addresses) to access the internet using the router's public IP address.

Transport Layer

The **Transport Layer** is crucial for **end-to-end communication** between devices on a network.

Transport Layer - Analogy

Functions of the Transport Layer

• End-to-End Communication:

Manages data transfer between devices.

• Segmentation and Reassembly:

Splits large data streams into smaller segments and reassembles them at the destination.

• Error Detection and Correction:

Ensures data integrity and reliability.

• Flow Control:

Manages the rate of data transmission between devices.

Connection Management:

• Establishes, maintains, and terminates connections.

Sockets

Sockets are fundamental for enabling communication between devices over a network. They act as interfaces through which processes (applications) communicate across a computer network.

Combining IP addresses and port numbers uniquely identify a network connection (network, host, and applications).

Example: 192.168.1.1:80

Segment Header Structure

Source Port (16 bits): Port number of the sending application

Destination Port (16 bits): Port number of the receiving application

Other header fields: Fields depending on TCP or UDP protocols

Session Layer

The **Session Layer** manages and controls the connections between computers.

- Creates, maintains, and terminates sessions between applications.
- Manages dialogue (communication) between two devices, allowing them to communicate in either half-duplex or full-duplex mode.

Session Layer – Dialog Control

Half-Duplex Mode:

Communication can occur in both directions, but **not simultaneously**.

Example: A network printer and a computer communicate in half-duplex mode, where the computer sends a print job, and the printer sends an acknowledgment back, but they do not send data at the same time.

Full-Duplex Mode:

Communication can occur **simultaneously** in both directions.

Example: A video conferencing application where both participants can speak and listen at the same time, ensuring smooth two-way communication.

Presentation Layer

The **Presentation Layer** translates data between the application layer and the network.

- Translation: Converts data formats from application-specific formats to network formats, and vice versa.
- Encryption/Decryption:

 Ensures data security by encrypting data before transmission and decrypting it upon reception.
- Compression: Reduces the size of the data to be transmitted to optimize network resource usage.

Application Layer

The **Application Layer** provides network services directly to user applications.

- Functions: Network Services: Enables user applications to interact with the network (e.g., file transfers, email, remote login).
- Resource Sharing: Facilitates access to network resources.
- User Interface: Provides an interface for the user to interact with the network.

