```
import tensorflow as tf
import tensorflow_decision_forests as tfdf
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Comment this if the data visualisations doesn't work on your side
%matplotlib inline
```

In [3]: train_file_path = "train.csv"
 dataset_df = pd.read_csv(train_file_path)
 print("Full train dataset shape is {}".format(dataset_df.shape))

Full train dataset shape is (1460, 81)

In [4]: dataset_df.head(10)

Out[4]:		ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCor
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	
	5	6	50	RL	85.0	14115	Pave	NaN	IR1	
	6	7	20	RL	75.0	10084	Pave	NaN	Reg	
	7	8	60	RL	NaN	10382	Pave	NaN	IR1	
	8	9	50	RM	51.0	6120	Pave	NaN	Reg	
	9	10	190	RL	50.0	7420	Pave	NaN	Reg	

10 rows × 81 columns

→

Warning: Total number of columns (81) exceeds max_columns (20) limiting to first (20) columns.

```
In [5]: dataset_df = dataset_df.drop('Id', axis=1)
    dataset_df.head(10)
```

Out[5]:		MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContou
	0	60	RL	65.0	8450	Pave	NaN	Reg	Lv
	1	20	RL	80.0	9600	Pave	NaN	Reg	Lv
	2	60	RL	68.0	11250	Pave	NaN	IR1	Lv
	3	70	RL	60.0	9550	Pave	NaN	IR1	Lv
	4	60	RL	84.0	14260	Pave	NaN	IR1	Lv
	5	50	RL	85.0	14115	Pave	NaN	IR1	Lv
	6	20	RL	75.0	10084	Pave	NaN	Reg	Lv
	7	60	RL	NaN	10382	Pave	NaN	IR1	Lv
	8	50	RM	51.0	6120	Pave	NaN	Reg	Lv
	9	190	RL	50.0	7420	Pave	NaN	Reg	Lv

10 rows × 80 columns

Distributions

Categorical distributions

2-d distributions

Time series

Values

2-d categorical distributions

Faceted distributions

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

In [6]: dataset_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 80 columns):

Data	columns (total	80 columns):	
#	Column	Non-Null Count	Dtype
0	MSSubClass	1460 non-null	int64
1	MSZoning	1460 non-null	object
2	LotFrontage	1201 non-null	float64
3	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	Alley	91 non-null	object
6	LotShape	1460 non-null	object
7	LandContour	1460 non-null	object
8	Utilities	1460 non-null	object
9	LotConfig	1460 non-null	object
10	LandSlope	1460 non-null	object
11	Neighborhood	1460 non-null	object
12	Condition1	1460 non-null	object
13	Condition2	1460 non-null	object
14		1460 non-null	object
15	BldgType	1460 non-null	-
	HouseStyle		object int64
16	OverallQual		
17	OverallCond	1460 non-null	int64
18	YearBuilt	1460 non-null	int64
19	YearRemodAdd	1460 non-null	int64
20	RoofStyle	1460 non-null	object
21	RoofMatl	1460 non-null	object
22	Exterior1st	1460 non-null	object
23	Exterior2nd	1460 non-null	object
24	MasVnrType	588 non-null	object
25	MasVnrArea	1452 non-null	float64
26	ExterQual	1460 non-null	object
27	ExterCond	1460 non-null	object
28	Foundation	1460 non-null	object
29	BsmtQual	1423 non-null	object
30	BsmtCond	1423 non-null	object
31	BsmtExposure	1422 non-null	object
32	BsmtFinType1	1423 non-null	object
33	BsmtFinSF1	1460 non-null	int64
34	BsmtFinType2	1422 non-null	object
35	BsmtFinSF2	1460 non-null	int64
36	BsmtUnfSF	1460 non-null	int64
37	TotalBsmtSF	1460 non-null	int64
38	Heating	1460 non-null	object
39	HeatingQC	1460 non-null	object
40	CentralAir	1460 non-null	object
41	Electrical	1459 non-null	object
42	1stFlrSF	1460 non-null	int64
43	2ndFlrSF	1460 non-null	int64
44	LowQualFinSF	1460 non-null	int64
45	GrLivArea	1460 non-null	int64
46 47	BsmtFullBath	1460 non-null	int64
47 40	BsmtHalfBath	1460 non-null	int64
48	FullBath	1460 non-null	int64
49	HalfBath	1460 non-null	int64
50	BedroomAbvGr	1460 non-null	int64
51	KitchenAbvGr	1460 non-null	int64
52	KitchenQual	1460 non-null	object
53	TotRmsAbvGrd	1460 non-null	int64
54	Functional	1460 non-null	object

```
55 Fireplaces
                         1460 non-null
                                        int64
       56 FireplaceQu
                         770 non-null
                                        object
       57 GarageType
                         1379 non-null
                                        object
       58 GarageYrBlt
                         1379 non-null
                                        float64
       59 GarageFinish
                         1379 non-null
                                        object
       60 GarageCars
                         1460 non-null
                                        int64
                        1460 non-null
       61 GarageArea
                                        int64
       62 GarageQual
                        1379 non-null
                                        object
       63 GarageCond
                        1379 non-null
                                        object
       64 PavedDrive
                        1460 non-null
                                        object
       65 WoodDeckSF
                        1460 non-null
                                        int64
       66 OpenPorchSF 1460 non-null
                                        int64
       67 EnclosedPorch 1460 non-null
                                        int64
                        1460 non-null
       68 3SsnPorch
                                        int64
       69 ScreenPorch 1460 non-null
                                        int64
       70 PoolArea 1460 non-null int64
       71 PoolQC
                        7 non-null
                                        object
       72 Fence
                        281 non-null
                                        object
       73 MiscFeature 54 non-null
                                        object
                      1460 non-null
       74 MiscVal
                                        int64
                        1460 non-null
       75 MoSold
                                        int64
       76 YrSold
                        1460 non-null
                                        int64
                        1460 non-null
       77 SaleType
                                        object
       78 SaleCondition 1460 non-null
                                        object
       79 SalePrice
                         1460 non-null
                                        int64
       dtypes: float64(3), int64(34), object(43)
      memory usage: 912.6+ KB
In [7]:
       print(dataset_df['SalePrice'].describe())
        plt.figure(figsize=(9, 8))
        sns.distplot(dataset_df['SalePrice'], color='g', bins=100, hist_kws={'alpha': 0.
      count
                 1460.000000
      mean
               180921.195890
               79442.502883
      std
      min
                34900.000000
      25%
               129975.000000
      50%
               163000.000000
      75%
               214000.000000
               755000.000000
      Name: SalePrice, dtype: float64
       <ipython-input-7-dc911a47893e>:3: UserWarning:
       `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
       Please adapt your code to use either `displot` (a figure-level function with
      similar flexibility) or `histplot` (an axes-level function for histograms).
      For a guide to updating your code to use the new functions, please see
      https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
        sns.distplot(dataset_df['SalePrice'], color='g', bins=100, hist_kws={'alpha':
      0.4);
```



```
In [8]: list(set(dataset_df.dtypes.tolist()))
```

Out[8]: [dtype('float64'), dtype('int64'), dtype('0')]

Out[9]:		MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemod/
	0	60	65.0	8450	7	5	2003	2
	1	20	80.0	9600	6	8	1976	1
	2	60	68.0	11250	7	5	2001	2
	3	70	60.0	9550	7	5	1915	1
	4	60	84.0	14260	8	5	2000	2

5 rows × 37 columns

Warning: Total number of columns (37) exceeds max_columns (20) limiting to first (20) columns.

```
In [10]: df_num.hist(figsize=(16, 20), bins=50, xlabelsize=8, ylabelsize=8);
```



```
In [11]: import numpy as np

def split_dataset(dataset, test_ratio=0.30):
    test_indices = np.random.rand(len(dataset)) < test_ratio
    return dataset[~test_indices], dataset[test_indices]

train_ds_pd, valid_ds_pd = split_dataset(dataset_df)
print("{} examples in training, {} examples in testing.".format(
    len(train_ds_pd), len(valid_ds_pd)))</pre>
```

1017 examples in training, 443 examples in testing.

```
In [12]: label = 'SalePrice'
    train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label, task
    valid_ds = tfdf.keras.pd_dataframe_to_tf_dataset(valid_ds_pd, label=label, task
```

```
In [13]:
         tfdf.keras.get_all_models()
Out[13]: [tensorflow_decision_forests.keras.RandomForestModel,
           tensorflow_decision_forests.keras.GradientBoostedTreesModel,
           tensorflow_decision_forests.keras.CartModel,
           tensorflow_decision_forests.keras.DistributedGradientBoostedTreesModel]
In [14]: rf = tfdf.keras.RandomForestModel(task = tfdf.keras.Task.REGRESSION)
         rf.compile(metrics=["mse"])
        Use /tmp/tmp90d7frb1 as temporary training directory
In [15]: rf.fit(x=train_ds)
        Reading training dataset...
        Training dataset read in 0:00:10.971011. Found 1017 examples.
        Training model...
        Model trained in 0:00:03.811701
        Compiling model...
        Model compiled.
Out[15]: <tf_keras.src.callbacks.History at 0x7aaca12398a0>
In [16]: tfdf.model_plotter.plot_model_in_colab(rf, tree_idx=0, max_depth=3)
Out[16]:
In [17]:
         import matplotlib.pyplot as plt
         logs = rf.make_inspector().training_logs()
         plt.plot([log.num_trees for log in logs], [log.evaluation.rmse for log in logs])
         plt.xlabel("Number of trees")
         plt.ylabel("RMSE (out-of-bag)")
         plt.show()
           46000
           44000
           42000
        RMSE (out-of-bag)
            40000
           38000
           36000
           34000
           32000
                                50
                     0
                                          100
                                                                          250
                                                     150
                                                                200
                                                                                     300
                                              Number of trees
```

```
In [18]: inspector = rf.make inspector()
         inspector.evaluation()
Out[18]: Evaluation(num_examples=1017, accuracy=None, loss=None, rmse=31358.87495781327,
         ndcg=None, aucs=None, auuc=None, qini=None)
In [19]: evaluation = rf.evaluate(x=valid_ds,return_dict=True)
         for name, value in evaluation.items():
           print(f"{name}: {value:.4f}")
        1/1 [=============== ] - 9s 9s/step - loss: 0.0000e+00 - mse: 55074
        5088.0000
        loss: 0.0000
        mse: 550745088.0000
In [20]: print(f"Available variable importances:")
         for importance in inspector.variable_importances().keys():
           print("\t", importance)
        Available variable importances:
                 SUM_SCORE
                 NUM_AS_ROOT
                 INV_MEAN_MIN_DEPTH
                 NUM NODES
In [21]: inspector.variable_importances()["NUM_AS_ROOT"]
Out[21]: [("OverallQual" (1; #62), 96.0),
          ("ExterQual" (4; #22), 61.0),
          ("Neighborhood" (4; #59), 42.0),
          ("GarageCars" (1; #32), 38.0),
          ("GarageArea" (1; #31), 15.0),
          ("GrLivArea" (1; #38), 13.0),
          ("KitchenQual" (4; #44), 9.0),
          ("YearBuilt" (1; #76), 8.0),
          ("BsmtQual" (4; #14), 7.0),
          ("TotalBsmtSF" (1; #73), 4.0),
          ("1stFlrSF" (1; #0), 2.0),
          ("Foundation" (4; #28), 2.0),
          ("BsmtFinSF1" (1; #8), 1.0),
          ("GarageYrBlt" (1; #37), 1.0),
          ("YearRemodAdd" (1; #77), 1.0)]
In [22]: plt.figure(figsize=(12, 4))
         # Mean decrease in AUC of the class 1 vs the others.
         variable_importance_metric = "NUM_AS_ROOT"
         variable_importances = inspector.variable_importances()[variable_importance_metr
         # Extract the feature name and importance values.
         # `variable_importances` is a list of <feature, importance> tuples.
         feature_names = [vi[0].name for vi in variable_importances]
         feature_importances = [vi[1] for vi in variable_importances]
         # The feature are ordered in decreasing importance value.
         feature_ranks = range(len(feature_names))
         bar = plt.barh(feature_ranks, feature_importances, label=[str(x) for x in featur
         plt.yticks(feature_ranks, feature_names)
```

```
plt.gca().invert_yaxis()

# TODO: Replace with "plt.bar_label()" when available.

# Label each bar with values

for importance, patch in zip(feature_importances, bar.patches):
    plt.text(patch.get_x() + patch.get_width(), patch.get_y(), f"{importance:.4f}"

plt.xlabel(variable_importance_metric)
plt.title("NUM AS ROOT of the class 1 vs the others")
plt.tight_layout()
plt.show()
```



```
In [24]: plt.figure(figsize=(22, 8))
    sns.boxplot(x='Neighborhood', y='SalePrice', data=dataset_df)
    plt.xticks(rotation=45)
    plt.title('Box Plot of House Prices by Neighborhood')
    plt.xlabel('Neighborhood')
    plt.ylabel('Sale Price')
    plt.grid(True)
    plt.show()
```



```
In [27]: numerical_cols = dataset_df.select_dtypes(include=['number']).columns
    numerical_df = dataset_df[numerical_cols]

# Calculate the correlation matrix
    correlation_matrix = numerical_df.corr()

# Plot the heatmap
    plt.figure(figsize=(22, 10))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title('Correlation Heatmap')
    plt.show()
```


Distributions

2-d distributions

Time series

Values


```
In [34]: sample_submission_df = pd.read_csv('sample_submission.csv')
    sample_submission_df['SalePrice'] = rf.predict(test_ds)
```

```
sample_submission_df.to_csv('submission.csv', index=False)

2/2 [=======] - @s 28ms/step

In []:
```