Πανεπιστήμιο Δυτικής Αττικής Σχολή Μηχανικών Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Εργαστήριο Σχεδίασης Ψηφιακών Συστημάτων

Εργαστηριακή Άσκηση 3: Γνωριμία με το περιβάλλον προσομοίωσης

1. Γνωριμία με το εργαλείο (1)

Ακολουθώντας τις οδηγίες του αρχείου «Προσομοίωση στο εργαλείο Modelsim Altera Starter edition 6 uniwa» (Μέρος Α) υλοποιήστε και προσομοιώστε ένα κύκλωμα πολυπλέκτη 2-σε-1

2. Γνωριμία με το εργαλείο (2)

Ακολουθώντας τις οδηγίες του αρχείου «Προσομοίωση στο εργαλείο Modelsim Altera Starter edition 6 uniwa» (Μέρος Β) υλοποιήστε και προσομοιώστε ένα κύκλωμα πολυπλέκτη 2-σε-1 με χρήση testbench

3. Τριπλός πολυπλέκτης 2-σε-1

Υλοποιήστε κύκλωμα τριπλού πολυπλέκτη 2-σε-1, ο οποίος παίρνει δύο 3-bit εισόδους a και b, μία είσοδο επιλογής s και δίνει στην έξοδο ένα 3-bit σήμα d, ανάλογα με το εάν η είσοδος s είναι 1 ή 0. Η περιγραφή του entity είναι η ακόλουθη:

```
entity mux_double_2to1 is
port
(a, b: in std_logic_vector(2 downto 0);
    s: in std_logic;
    d: out std_logic_vector(2 downto 0));
end mux double 2to1;
```

Προσομοιώστε το κύκλωμα για τους ακόλουθους συνδυασμούς εισόδων:

προσομοίωστο το κοικιωμά για τους ακοπούσσος συνσυασμούς οισσοων:				
S	a	b	d	
0	001	010		
0	010	100		
0	111	011		
0	101	111		
1	010	001		
1	000	101		
1	101	010		
1	111	101		

Χρησιμοποιώντας tb που θα αναπτύξετε για το σκοπό αυτό.

4. Πολυπλέκτης 4-σε-1

Ένας πολυπλέκτης 4-σε-1 παίρνει μια 4-ψήφια είσοδο δεδομένων και μια 2-ψήφια είσοδο ελέγχου και έχει μια μονοψήφια είσοδο η οποία είναι κάποια από τις εισόδους δεδομένων ανάλογα με το συνδυασμό τιμών της εισόδου επιλογής. Η περιγραφή του entity είναι η ακόλουθη:

```
entity mux_4to1 is port (
    a: in std_logic_vector(4 downto 1);
    s: in std_logic_vector(2 downto 1);
    d: out std_logic);
end mux_4to1;
```

Προσομοιώστε το κύκλωμα για τους ακόλουθους συνδυασμούς εισόδων:

Ī	a	S	d
	0000	00	

0101	01	
1010	10	
1100	11	

5. Αποκωδικοποιητής 2-σε-4

Υλοποιήστε κύκλωμα αποκωδικοποιητή 2-σε-4. Η περιγραφή του entity είναι η ακόλουθη:

```
entity dec2to4 is
port (
  a: in std_logic_vector(2 downto 1);
  d: out std_logic_vector(4 downto 1));
end dec2to4;
```

Υλοποιήστε το κύκλωμα χρησιμοποιώντας μόνο την εντολή <= (με βάση το λογικό κύκλωμα)

Ελέγξτε το κύκλωμα για τους ακόλουθους συνδυασμούς χρησιμοποιώντας εντολές force:

а	d
00	
01	
10	
11	

6. Αποκωδικοποιητής 2-σε-4 με επίτρεψη

Υλοποιήστε κύκλωμα αποκωδικοποιητή 2-σε-4 με επίτρεψη. Αν η είσοδος επίτρεψης είναι 0, όλες οι έξοδοι είναι 0. Η περιγραφή του entity είναι η ακόλουθη:

```
entity dec_2to4 is
port (
  a: in std_logic_vector(2 downto 1);
  en: in std_logic;
  d: out std_logic_vector(4 downto 1) );
end dec2to4;
```

Υλοποιήστε το κύκλωμα χρησιμοποιώντας μόνο την εντολή <= (με βάση το λογικό κύκλωμα)

Ελέγξτε το κύκλωμα για τους ακόλουθους συνδυασμούς

	, ,	,
а	en	d
00	0	
01	0	
10	0	
11	0	
00	1	
01	1	
10	1	
11	1	

7. Αποκωδικοποιητής 4-σε-16

Υλοποιήστε κύκλωμα αποκωδικοποιητή 4-σε-16. Η περιγραφή του entity είναι η ακόλουθη:

```
entity dec_4to16 is port (
  a: in std_logic_vector(4 downto 1);
  d: out std_logic_vector(16 downto 1));
end dec4to16;
```

Υλοποιήστε το κύκλωμα χρησιμοποιώντας μόνο την εντολή <= (με βάση το λογικό κύκλωμα)

Ελέγξτε το κύκλωμα για τους ακόλουθους συνδυασμούς με εντολές force

а	d
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

8. Ημιαθροιστής

Υλοποιήστε κύκλωμα ημιαθροιστή. Η περιγραφή του entity είναι η ακόλουθη:

Ελέγξτε το κύκλωμα για του ακόλουθους συνδυασμούς:

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

9. Πλήρης αθροιστής

Υλοποιήστε κύκλωμα πλήρους αθροιστή. Η περιγραφή του entity είναι η ακόλουθη:

Ελένξτε το κύκλωμα για τους ακόλουθους συνδυασμούς

Energie to notificação fue toos anonocos ou tou acques s				
Α	В	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1

0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

10. Αθροιστής 4 bit

Υλοποιήστε κύκλωμα αθροιστή 4 bit. Η περιγραφή του entity είναι η ακόλουθη:

```
ENTITY adder4 IS PORT (
   Cin : IN STD_LOGIC;
   X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
   S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
   Cout : OUT STD_LOGIC);
END adder4;
```

Ελέγξτε το κύκλωμα για τους ακόλουθους συνδυασμούς

Α	В	Cin	Cout	S
0000	0000	0	0	0000
1111	1111	0	1	1110
1111	1111	1	1	1111

Στη συνέχεια ελέγξτε το κύκλωμα για την πρόσθεση των ακόλουθων αριθμών

- 3+5
- -2 + (3)
- -8 + (+7)