Database Design and Normal Forms	
Database Design • coming up with a "good" schema is very important	
How do we characterize the "goodness" of a schema? If two or more alternative schemas are available how do we compare them? What are the problems with "bad" schema designs?	
Normal Forms: Each normal form specifies certain conditions If the conditions are satisfied by the schema certain kind of problems are avoided	
Details follow	
Prof P Sreenivasa Kumar 1 Department of CS&E, IITM	
An Example	
student relation with attributes: studName, rollNo, sex, studDept department relation with attributes: deptName, officePhone, hod	
Several students belong to a department. studDept gives the name of the student's department.	
Correct schema: Student StudName rollNo sex studDept deptName officePhone HOD Incorrect schema:	
Student-Dept studName rollNo sex deptName officePhone HOD	
What are the problems that arise ?	-
Prof P Sreenivasa Kumar 2 Department of CS&E, IITM	
Problems with bad schema	
Redundant storage of data: Office Phone & HOD info - stored redundantly once with each student that belongs to the department	
■ wastage of disk space	
A program that updates Office Phone of a department must change it at several places	
more running time error - prone	
Transactions running on a database must take as short time as possible to increase transaction throughput	
Prof P Sreenivasa Kumar 3 Denartment of CSSF, IITM	

Update Anomalies Another kind of problems with bad schema Insertion anomaly: No way of inserting info about a new department unless we also enter details of a (dummy) student in the department If all students of a certain department leave and we delete their tuples, information about the department itself is lost Update Anomaly: Updating officePhone of a department · value in several tuples needs to be changed · if a tuple is missed - inconsistency in data Prof P Sreenivasa Kumar Department of CS&E, IITM Normal Forms First Normal Form (1NF) - included in the definition of a relation Second Normal Form (2NF) defined in terms of Third Normal Form (3NF) functional dependencies Boyce-Codd Normal Form (BCNF) Fourth Normal Form (4NF) - defined using multivalued dependencies Fifth Normal Form (5NF) or Project Join Normal Form (PJNF) defined using join dependencies Prof P Sreenivasa Kumar Department of CS&E, IITM Functional Dependencies A functional dependency (FD) $X \rightarrow Y$ [where $(X \subseteq R, Y \subseteq R)$] (read as X determines Y) is said to hold on a schema R if in any instance r on R, if two tuples t_1 , t_2 ($t_1 \neq t_2$, $t_1 \in r$, $t_2 \in r$) agree on X i.e. $t_1[X] = t_2[X]$ then they also agree on Y i.e. $t_1[Y] = t_2[Y]$ $t_1[X]$ – the sub-tuple of t_1 consisting of values of attributes in XNote: If $K \subset R$ is a key for R then for any $A \in R$, holds because the above ifthen condition is vacuously true Prof P Sreenivasa Kumar Department of CS&E, IITM

Functional Dependencies – Examples	
Consider the schema:	-
Student(studName, rollNo, sex, dept, hostelName, roomNo)	
Since rollNo is a key, rollNo → {studName, sex, dept, hostelName, roomNo}	
Suppose that each student is given a hostel room exclusively, then hostelName, roomNo → rollNo	
Suppose boys and girls are accommodated in separate hostels, then	
hostelName → sex Does Sex → hostelName?	
FDs are additional constraints that can be specified by designers	-
Prof P Sreenivasa Kumar 7 Department of CS&E, IITM	
	-
	1
Trivial / Non-Trivial FDs and Notation	
An FD $X \rightarrow Y$ where $Y \subseteq X$ - called a <i>trivial</i> FD, as it always holds good	
An FD $X \to Y$ where $Y \nsubseteq X$	
- non-trivial FD	
An FD $X \rightarrow Y$ where $X \cap Y = \Phi$ - completely non-trivial FD	
Notational Convention:	
(Low-end alphabets) A, B, C, D, · · · and their subscripted versions	-
denote individual attributes (High-end alphabets) Z, Y, X, W, ··· and their subscripted versions	
denote sets of attributes Prof P Sreenivasa Kumar 8	
Prof P Sreenivasa Kumar 8 Department of CS&E, IITM	
	1
FDs - Examples	
Consider the scheme preRequisite(<u>preReqCourse, courseId</u>)	
Does preReqCourse → courseId ?	
No, as a course might be pre-requisite for many courses	
Does courseId → preReqCourse ?	
No, a course may have many pre-requisite courses	
So, it is possible that no FDs hold on some schema	
Prof P Sreenivasa Kumar 9	
Department of CS&E, IITM	-

	_
FDs - Examples	
Consider the scheme:	
Student-dept(rollNo, name, sex, deptName, officePhone, Hod)	
The key is rollNo, so	
rollNo → name, sex, deptName, officePhone, Hod	
Any more FDs hold? deptName → officePhone, Hod	
Hod → deptName, officePhone (Assuming that each professor heads at most one department)	
officePhone → deptName, Hod	
No other FDs hold Prof P Sreenivasa Kumar 10	
Department of CS&E, IITM	
	_
Deriving new FDs	
Given that a set of FDs F holds on R	
we can infer that a certain new FD must also hold on R	
For instance,	
given that $X \to Y$, $Y \to Z$ hold on R we can infer that $X \to Z$ must also hold	
How to systematically obtain all such new FDs ?	
Unless <i>all</i> FDs are known, a relation schema is not fully specified	
Cincio an 120 are morni, a realistic schema is not rany specimen	
Prof P Sreenivasa Kumar 11	
Department of CS&E, IITM	
	_
Entailment Relation	
We say that a set of FDs $F \models \{X \rightarrow Y\}$	
(read as F entails $X \rightarrow Y$ or	
F logically implies $X \rightarrow Y$ if in every instance r of R on which FDs F hold,	
$FD X \rightarrow Y$ also holds.	
Armstrong came up with several inference rules	
for deriving new FDs from a given set of FDs	
We define $F^+ = \{X \to Y \mid F \models X \to Y\}$ F^+ : Closure of F	
r: Closure of r	

12

Prof P Sreenivasa Kumar Department of CS&E, IITM

$\overline{}$							
	Armstrong' s Inference Rules (1/2) (aka Armstrong's Axioms) 1. Reflexive rule		_				
	$F \models \{X \rightarrow Y \mid Y \subseteq X\}$ for any X. Trivial FDs 2. Augmentation rule		_				
	$\{X \to Y\} \models \{XZ \to YZ\}, Z \subseteq R. \text{ Here, } XZ \text{ denotes } X \cup Z$ 3. Transitive rule						
	$\{X \to Y, Y \to Z\} \models \{X \to Z\}$						
	4. Decomposition or Projective rule $\{X \to YZ\} \models \{X \to Y\}$						
	5. Union or Additive rule $\{X \to Y, X \to Z\} \models \{X \to YZ\}$		_				
	6. Pseudo transitive rule $\{X \to Y, WY \to Z\} \models \{WX \to Z\}$		_				
	Prof P Sreenivasa Kumar 13 Department of CS&E, IITM		_				
		_					
	Armstrong's Inference Rules (2/2)		_				
	Rules 4, 5, 6 are not really necessary.						
	For instance, Rule 5: $\{X \to Y, X \to Z\} \models \{X \to YZ\}$ can be proved using 1, 2, 3 alone		_				
	(1) (X → Y) (2) (X → Z)		_				
	Similarly, 4, 6 can be shown to be unnecessary. But it is useful to have 4, 5, 6 as short-cut rules		_				
	Prof P Sreenivasa Kumar 14 Department of CS&E, IITM		_				
	Sound and Complete Inference Rules						
	Armstrong showed that		_				
	Rules (1), (2) and (3) are sound and complete. These are called Armstrong's Axioms (AA)		_				
	$F_{AA} = \{ X \rightarrow Y \mid X \rightarrow Y \text{ can be derived from F using AA } \}$		_				
	Soundness: $(F_{AA} \subseteq F^+)$ Every new FD X \rightarrow Y derived from a given set of FDs F		_				
	using Armstrong's Axioms is such that $F \vDash \{X \rightarrow Y\}$			 	 	 	
	Completeness: $(F^+ \subseteq F_{AA})$ Any FD X \rightarrow Y logically implied by F (i.e. $F \models \{X \rightarrow Y\})$						
	can be derived from F using Armstrong's Axioms						_

Г	_
Soundness and Completeness of AA	
Completeness	
Can be derived using AA $F^+ \subseteq F_{AA}$	-
T Fr	
$\left(\left(\begin{smallmatrix} \mathbf{F}_{\bullet} \\ D \end{smallmatrix} \right) \right)$	
$ \begin{array}{ c c c c } \hline derive using AA & F_{AA} \subseteq F^+ \end{array} $	
Soundness	
Department of CS&E, IITM	
Γ	٦
Proving Soundness	
Suppose $X \to Y$ is derived from F using AA in some <i>n</i> steps. If each step is correct then overall deduction would be correct.	
Single step: Apply Rule (1) or (2) or (3)	
Rule (1) – Reflexive Rule. Obviously results in correct FDs	
Rule (2) – $\{X \to Y\} \models \{XZ \to YZ\}, Z \subseteq R$ Suppose $t_1, t_2 \in r$ agree on XZ	
Suppose $t_1, t_2 \in I$ agree on XZ $\Rightarrow t_1, t_2$ agree on X	
$\Rightarrow t_1, t_2 \text{ agree on Y (since } X \to Y \text{ holds on r)}$ $\Rightarrow t_1, t_2 \text{ agree as YZ}$	
Hence Rule (2) gives rise to correct FDs	
Rule (3) – $\{X \to Y, Y \to Z\} \models X \to Z$	
Suppose t_1 , $t_2 \in r$ agree on $X \Rightarrow t_1$, t_2 , agree on Y (since $X \rightarrow Y$ holds)	
$\Rightarrow t_1, t_2 \text{ agree on } Y \text{ (since } X \to Y \text{ holds)}$ $\Rightarrow t_1, t_2 \text{ agree on } Z \text{ (since } Y \to Z \text{ holds)}$	
Prof P Sreenivasa Kumar 17 Department of CS&E, IITM	
	_
Proving Completeness of Armstrong's Axioms (1/4)	
Define X_F^T (closure of X wrt F) = $\{A \mid X \to A \text{ can be derived from F using AA}\}, A \in R$	
X _F is the set of all attributes that occur on	-
the rhs for an FD whose lhs is X, as per AA (wrt F) Claim1:	
$X \rightarrow Y$ can be derived from F using AA iff $Y \subseteq X^{+}$	
(If) Let $Y = \{A_1, A_2,, A_n\}$. $Y \subseteq X^+$ $\Rightarrow X \to A_i$ can be derived from F using AA $(1 \le i \le n)$	
By union rule, it follows that $X \to Y$ can be derived from F.	
(Only If) $X \rightarrow Y$ can be derived from F using AA	
By projective rule $X \to A_i$ $(1 \le i \le n)$	
Thus by definition of X^+ , $A_i \in X^+$ $\Rightarrow Y \subseteq X^+$	
Prof P Sreenivasa Kumar 18	
Department of CS&E, IITM	

Γ		
	Completeness of Armstrong's Axioms (2/4) Completeness:	
l	$(F \models \{X \rightarrow Y\}) \Rightarrow X \rightarrow Y \text{ follows from F using AA}$	
l	We will prove the contrapositive:	
l	$X \rightarrow Y$ can't be derived from F using AA	
l	$\Rightarrow F \not\models \{X \rightarrow Y\}$	
l	$\Rightarrow \exists$ a relation instance r on R st all the FDs of	
l	F hold on r but $X \rightarrow Y$ doesn't hold.	
l	Consider the relation instance r with just two tuples:	
l	X ⁺ attributes Other attributes	
l		
l	r: 1 1 11 1 1 11	
l	1 1 11 0 0 00	
l	Prof P Sreenivasa Kumar 19 Department of CS&E, IITM	
_		
_		_
ĺ	Completeness Proof (3/4)	
١	Completeness 1 1001 (5/4)	-
l	Claim 2: All FDs of F are satisfied by r	
l	Suppose not. Let $W \to Z$ in F be an FD not satisfied by r Then $W \subseteq X^+$ and $Z \nsubseteq X^+$	
l	Then $W \subseteq X$ and $Z \nsubseteq X$ Let $A \in Z - X^+$	
l	Now, $X \to W$ follows from F using AA as $W \subseteq X^+$ (claim 1)	
l	$X \rightarrow Z$ follows from F using AA by transitive rule	
l	$Z \rightarrow A$ follows from F using AA by reflexive rule as $A \in Z$ $X \rightarrow A$ follows from F using AA by transitive rule	
l	A → A Tollows from F using AA by transitive rule	
l	By definition of closures, A must belong to X ⁺	
l	- a contradiction. r: 1 1 11 1 1 11	
l	Hence the claim.	
l	X^+ $R - X^+$	
l	Prof P Sreenivasa Kumar 20 Department of CS&E, IITM	
L		
Γ	G 1	
١	Completeness Proof (4/4)	
١	Claim 3: $X \rightarrow Y$ is not satisfied by r	
l	Suppose not	-
l	Because of the structure of r, $Y \subseteq X^+$ $\Rightarrow X \to Y$ can be derived from F using AA	
l	contradicting the assumption about $X \rightarrow Y$	
١	Hence the claim	
١	Thus, whenever $X \rightarrow Y$ doesn't follow from F using AA,	
١	I hus, whenever $X \to Y$ doesn't follow from F using AA, F doesn't logically imply $X \to Y$	
١	Armstrong's Axioms are complete.	
١	r. 11111111	
l	1 1 11 0 0 00	
١	X^+ $R-X^+$	
١	Prof P Sreenivasa Kumar 21 Department of CS&E, IITM	
	Department of CS&E, ITTM	

Consequence of Completeness of AA	
$X^+ = \{A \mid X \rightarrow A \text{ follows from F using } AA\}$	
$= \{A \mid F \models X \rightarrow A\}$	
Similarly	
$F^{+} = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$	
$= \{X \to Y \mid X \to Y \text{ follows from F using AA}\}\$	
Prof P Sreenivasa Kumar Department of CS&E, IITM	22
<u> </u>	
Computing closures	
The size of F ⁺ can sometimes be exponential in the size of F.	
For instance, $F = \{A \rightarrow B_1, A \rightarrow B_2, \dots, A \rightarrow B_n\}$	
$F^+ = \{A \rightarrow X\}$ where $X \subseteq \{B_1, B_2,, B_n\}$. Thus $ F^+ = 2^n$	
Computing F ⁺ : computationally expensive	
Fortunately, checking if $X \to Y \in F^+$	
can be done by checking if $Y \subseteq X_F$	
Computing attribute closure (X_F^+) is computationally easier	
Prof P Sreenivasa Kumar	23
Department of CS&E, IITM	
a · **	
Computing X_F^+ We compute a sequence of sets $X_0, X_1,$ as follows:	
we compute a sequence of sets $X_0, X_1,$ as follows.	
$X_0 = X$; // X is the given set of attributes $X_{i+1} = X_i \cup \{A \mid \text{there is a FD Y} \rightarrow Z \text{ in F}$	
$ \text{such that } Y \subseteq X_i \text{ and } A \in Z \} $	
To get new attributes into X_{i+1} , we use Transitive Rule and	
we can only use that!	
Since $X_0 \subseteq X_1 \subseteq X_2 \subseteq \subseteq X_i \subseteq X_{i+1} \subseteq \subseteq R$, and R is finite,	
There is an integer i such that $X_i = X_{i+1} = X_{i+2} =$	
X_{F}^{+} is equal to such X_{i} .	
Computing X_F^+ can be done in polynomial time	
Prof P Sreenivasa Kumar Department of CS&E, IITM	24

Attribute Closures - An Example		
Consider a scheme R and the FDs: (Data redundancy exists in R)		
R = (rollNo, name, advisorId, advisorName, courseId, grade)	-	
FDs = { rollNo → name; rollNo → advisorId; advisorId → advisorName;		
rollNo, courseId → grade }		
{rollNo}*= {rollNo, name, advisorId, advisorName}		
{rollNo, courseId} ⁺ = {rollNo, name, advisorId, advisorName, courseId, grade} = R		
So {rollNo, courseld} is the key for R.		
Prof P Sreenivasa Kumar 25 Department of CS&E, IITM		
Normal Forms – 2NF		
Full functional dependency: An FD $X \rightarrow A$ for which there is <u>no</u> proper subset Y of X		
such that $Y \to A$		
(A is said to be <i>fully functionally</i> dependent on X or)		
2NF: A relation schema R is in 2NF if every <i>non-prime</i> attribute is fully functionally dependent		
on any key of R		
Prime attribute: A attribute that is part of some key		
Non-prime attribute: An attribute that is not part of any key		
Prof P Sreenivasa Kumar Department of CS&E. IITM	26	
Department of CSAE, III M		
Example 1: 2NF		
student(rollNo, name, dept, sex, hostelName, roomNo, admitYear)		
Assumptions: Each student is allotted a single-occupancy room.		
A room is identified by values of attributes hostelName, roomNo. Boys and girls are accommodated in separate hostels.	0.	
Keys: rollNo, (hostelName, roomNo)		
Not in 2NF as hostelName → sex		
Decompose:		
student(rollNo, name, dept, hostelName, roomNo, admitYear) hostelDetail(hostelName, sex)		
- These are both in 2NF Prof P Sreenivasa Kumar 27	27	
	1	

	Example 2: 2NF	<u> </u>	
	book(authorName, title, authorAffiliation, ISBN, publisher, pubYear)		
	Assumptions: A book has exactly one author. Author can be uniquely identified by value of attribute authorName AuthorAffiliation is the organization to which the author is <i>currently</i>		
	associated with. An author is associated with <i>exactly one</i> organization at any time.		
	Keys: (authorName, title), ISBN Not in 2NF as authorName → authorAffiliation (authorAffiliation is not fully functionally dependent on the first key)		
	Decompose: book(authorName, title, ISBN, publisher, pubYear) authorInfo(authorName, authorAffiliation) both in 2NF		
	Prof P Sreenivasa Kumar 28	_	
_	Department of CS&E, IITM		
	Transitive Dependencies	7	
	Transitive dependency: An FD $X \rightarrow Y$ in a relation schema R for which there is a set of		
	attributes $Z \subseteq R$ such that $X \to Z$ and $Z \to Y$ and Z is not a subset of any key of R		
	studentDept(rollNo, name, dept, hostelName, roomNo, headDept) Keys: rollNo, (hostelName, roomNo)		
	rollNo → dept; dept → headDept hold So, rollNo → headDept is a transitive dependency		
	Head of the dept of dept D is stored redundantly in every tuple where D appears.		
	Relation is in 2NF but redundancy still exists.		
	Prof P Sreenivasa Kumar 29 Department of CS&E, IITM		
			
	Normal Forms – 3NF		
	Relation schema R is in 3NF if it is in 2NF and no non-prime attribute of R is transitively dependent on any key of R		
	studentDept(rollNo, name, dept, hostelname, roomNo, headDept) is not in 3NF		
	Decompose: student(<u>rollNo</u> , name, dept, <u>hostelName, roomNo</u>) deptInfo(<u>dept</u> , headDept)		
	both in 3NF		
	Redundancy in data storage - removed		
	Prof P Sreenivasa Kumar 30		

Another definition of 3NF	
Relation schema R is in 3NF if for any nontrivial FD $X \rightarrow A$ either (i) X is a superkey or (ii) A is prime.	
Suppose some R violates the above definition ⇒ There is an FD X → A for which both (i) and (ii) are false ⇒ X is not a superkey and A is non-prime attribute	
Two cases arise: 1) X is contained in a key – A is not fully functionally dependent	
on this key - violation of 2NF condition 2) X is not contained in a key	-
$K \to X, X \to A$ is a case of transitive dependency $(K - any \text{ key of } R)$	
Prof P Sreenivasa Kumar 31 Department of CS&E, IITM	
	٦
Motivating example for BCNF	
gradeInfo (rollNo, studName, course, grade)	
Suppose the following FDs hold: 1) rollNo, course → grade Keys: 2) studName, course → grade (rollNo, course)	
3) rollNo → studName (studName, course) 4) studName → rollNo (Assumption: No two students have the same name)	
For 1, 2 lhs is a key. For 3, 4 rhs is prime; so gradeInfo is in 3NF	
But studName is stored redundantly along with every course being done by the student.	
Prof P Sreenivasa Kumar 32 Department of CS&E, IITM	
Бераппенто Сове, итм	
D C. H.V I F (DCVF)	7
Boyce - Codd Normal Form (BCNF) Relation schema R is in BCNF if for every nontrivial	
FD X → A, X is a <u>superkey</u> of R. In gradeInfo, FDs 3, 4 are nontrivial but lhs is not a superkey So, gradeInfo is not in BCNF	-
Decompose:	
gradeInfo (<u>rollNo, course</u> , grade) studInfo (<u>rollNo, studName</u>)	
Redundancy allowed by 3NF is disallowed by BCNF	
BCNF is stricter than 3NF 3NF is stricter than 2NF	
Prof P Sreenivasa Kumar 33 Department of CS&E, IITM	

Decomposition of a relation schema

If R doesn't satisfy a particular normal form, we decompose R into smaller schemas

What's a decomposition?

 $R = (A_1, A_2, ..., A_n)$

$$D = (R_1, R_2, ..., R_k)$$
 st $R_i \subseteq R$ and $R = R_1 \cup R_2 \cup ... \cup R_k$

(R_i's need not be disjoint)

Replacing R by $R_1, R_2, ..., R_k$ is the process of decomposing R

Ex: gradeInfo (rollNo, studName, course, grade) R₁: gradeInfo (<u>rollNo, course</u>, grade) R₂: studInfo (<u>rollNo</u>, studName)

Prof P Sreenivasa Kumar Department of CS&E, IITM

Desirable Properties of Decompositions

Not all decomposition of a relational scheme R are useful

We require two properties to be satisfied

- (i) Lossless join property
 - the information in an instance r of R must be preserved in the instances $r_1, r_2,...,r_k$ where $r_i = \prod_{R_i} (r)$
- (ii) Dependency preserving property
 - if a set F of dependencies hold on R it should be possible to enforce F on an instance r by enforcing appropriate dependencies on each r_i

Prof P Sreenivasa Kumar Department of CS&E, IITM

35

Lossless joins are also called

non-additive joins

Original info is distorted

l

Lossless join property

F – set of FDs that hold on R

 $R-decomposed \ into \ R_1, \ R_2, \ldots, R_k$

Decomposition is $\underline{\textit{lossless}}$ wrt F if

for every relation instance r on R satisfying F, $r = \Pi_{R_1}(r) * \Pi_{R_2}(r) * ... * \Pi_{R_k}(r)$

 $R = (A, B, C); R_1 = (A, B); R_2 = (B, C)$

A B C r: <u>A B C</u> r₁: <u>A B</u> r₂: <u>B C</u> r₁* r₂: $a_1 b_1 c_1$ $a_1 b_1$ $b_1 c_1$ $a_1 b_1 c_1$ $a_2\ b_2\ c_2$ a_2 b_2 $b_2 \ c_2$ $a_1\ b_1\ c_3$ a_3 b_1 c_3 $a_3 b_1$ $b_1 c_3$ a_2 b_2 c_2 \bullet a_3 b_1 c_1 Spurious tuples -Lossy join $a_3 b_1 c_3$

Prof P Sreenivasa Kumar Department of CS&E, IITM

Dependenc	y Preserving	Decom	positions

Decomposition $D = (R_1, R_2, ..., R_k)$ of schema R preserves a set of dependencies F if

$$\begin{split} &(\Pi_{R_1}(F) \cup \Pi_{R_2}(F) \cup \ldots \cup \Pi_{R_k}(F))^+ = \ F^+ \\ &\text{Here, } \Pi_{R_i}(F) = \{ \ (X \to Y) \in F^+ \ | \ X \subseteq R_i, \ Y \subseteq R_i \} \\ &\text{(called projection of } F \text{ onto } R_i) \end{split}$$

Informally, any FD that logically follows from F must also logically follow from the union of projections of F onto R_i's Then, D is called dependency preserving.

Prof P Sreenivasa Kumar Department of CS&E, IITM

An example

Schema R = (A, B, C)
FDs F =
$$\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$\begin{aligned} & \text{Decomposition D} = (R_1 = \{A, B\}, R_2 = \{B, C\}) \\ & \Pi_{R_1}(F) = \{A \rightarrow B, B \rightarrow A\} \\ & \Pi_{R_2}(F) = \{B \rightarrow C, C \rightarrow B\} \end{aligned}$$

$$\Pi_{R_1}(F) = \{A \rightarrow B, B \rightarrow A\}$$

 $\Pi_{R_2}(F) = \{B \rightarrow C, C \rightarrow B\}$

$$\begin{split} (\Pi_{R_1}(F) \, \cup \, \Pi_{R_2}(F))^+ &= \{A \rightarrow B, \, B \rightarrow A, \\ B \rightarrow C, \, C \rightarrow B, \\ A \rightarrow C, \, C \rightarrow A\} &= F^+ \end{split}$$

Hence Dependency preserving

Prof P Sreenivasa Kumar Department of CS&E, IITM

38

Testing for lossless decomposition property(1/6)

- R- given schema with attributes $A_1,A_2,\,\ldots,\,A_n$
- F given set of FDs
- $D \{R_1, R_2, ..., R_m\}$ given decomposition of R

Is D a lossless decomposition?

Create an $m \times n$ matrix S with columns labeled as $A_1, A_2, ..., A_n$ and rows labeled as $R_1, R_2, ..., R_m$

Initialize the matrix as follows:

set S(i,j) as symbol b_{ij} for all i,j. if A_j is in the scheme R_i , then set S(i,j) as symbol a_j , for all i,j

Prof P Sreenivasa Kumar Department of CS&E, IITM

Testing for lossless decomposition property(2/6)

After S is initialized, we carry out the following process on it:

for each functional dependency $U \rightarrow V$ in F do

for all rows in S which agree on U-attributes do

make the symbols in each V- attribute column

the same in all the rows as follows:

if any of the rows has an "a" symbol for the column

set the other rows to the same "a" symbol in the column

else I if no "a" symbol exists in any of the rows

choose one of the "b" symbols that appears

in one of the rows for the V-attribute and

set the other rows to that "b" symbol in the column

and the other rows to that "b" symbol in the column

until no changes to S

At the end, if there exists a row with all "a" symbols then D is lossless otherwise D is a lossy decomposition

Prof P Sreenivasa Kumar Department of CS&E, IITM

Testing for lossless decomposition property(3/6)

R = (rollNo, name, advisor, advisorName, course, grade)
FD's = { rollNo → name; rollNo → advisor; advisor →advisorName

rollNo, course → grade}
D: { R₁ = (rollNo, name, advisor), R₂ = (advisor, advisorName),
R₃ = (rollNo, course, grade) }

Matrix S : (Initial values)

	rollNo	name	advisor	advisor Name	course	grade
R ₁	a ₁	a_2	a_3	b ₁₄	b ₁₅	b ₁₆
R ₂	b ₂₁	b ₂₂	a_3	a ₄	b ₂₅	b ₂₆
R ₃	a ₁	b ₃₂	b ₃₃	b ₃₄	a ₅	a ₆

Prof P Sreenivasa Kumar Department of CS&E, IITM

Testing for lossless decomposition property(4/6)

R = (rollNo, name, advisor, advisorDept, course, grade)

FD's = { rollNo → name; rollNo → advisor; advisor → advisorName $rollNo, course \rightarrow grade\}$

D: { R₁ = (rollNo, name, advisor), R₂ = (advisor, advisorName), R₃ = (rollNo, course, grade) }

Matrix S : (After enforcing rollNo \rightarrow name & rollNo \rightarrow advisor)

	rollNo	name	advisor	advisor Name	course	grade
R ₁	a ₁	a_2	a_3	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a_3	a ₄	b ₂₅	b ₂₆
R ₃	a ₁	b ₃₂ a ₂	b ₃₃ a ₃	b ₃₄	a ₅	a ₆

Prof P Sreenivasa Kumar Department of CS&E, IITM

Testing for lossless decomposition property(5/6)

R = (rollNo, name, advisor, advisorDept, course, grade)

FD's = {rollNo → name; rollNo → advisor; advisor → advisorName rollNo, course → grade}

D : { R_1 = (rollNo, name, advisor), R_2 = (advisor, advisorName), R_3 = (rollNo, course, grade) }

 $Matrix \; S: (After \; enforcing \; \; advisor \rightarrow advisorName \;)$

	rollNo	name	advisor	advisor Name	course	grade
R ₁	a ₁	a ₂	a_3	ზ ₁₄ a₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a_3	a_4	b ₂₅	b ₂₆
R_3	a ₁	b ₃₂ a ₂	ხ _{ვვ} aვ	ზ ₃₄ a₄	a ₅	a_6

No more changes. Third row with all a symbols. So a lossless join.

Prof P Steenivasa Kumar
Department of CSSE, IITM

Testing for lossless decomposition property(6/6)

R – given schema. F – given set of FDs

The decomposition of R into R_1 , R_2 is lossless wrt F if and only if either $R_1 \cap R_2 \rightarrow (R_1 - R_2)$ belongs to F^+ or $R_1 \cap R_2 \rightarrow (R_2 - R_1)$ belongs to F^+

Example:

gradelnfo (rollNo, studName, course, grade)
with FDs = {rollNo, course → grade; studName, course → grade;
rollNo → studName; studName → rollNo}

decomposed into

grades (rollNo, course, grade) and studInfo (rollNo, studName) is lossless because rollNo → studName

onino → studiname

Prof P Sreenivasa Kumar Department of CS&E, IITM

A property of lossless joins

 D_1 : $(R_1, R_2, ..., R_K)$ lossless decomposition of R wrt F

 D_2 : $(R_{i1}, R_{i2}, ..., R_{ip})$ lossless decomposition of R_i wrt $F_i = \Pi_{R_i}(F)$

Then

 $D = (R_1, R_2, \dots, R_{i-1}, R_{i1}, R_{i2}, \dots, R_{ip}, R_{i+1}, \dots, R_k) \text{ is a }$ lossless decomposition of R wrt F

This property is useful in the algorithm for BCNF decomposition

Prof P Sreenivasa Kumar Department of CS&E, IITM

Algorithm for BCNF decomposition	
R – given schema. F – given set of FDs	
$\begin{split} D &= \{R\} \text{$/$} \text{ $/$} $	
}	
Decomposition of R_i is lossless as $R_{i1} \cap R_{i2} = X, R_{i2} - R_{i1} = A \text{ and } X \rightarrow A$	
Result: a lossless decomposition of R into BCNF relations	
Prof P Sreenivasa Kumar 46 Deoartment of CS&E. IITM	
Department of CS&E, III M	
Dependencies may not be preserved (1/2)	
Consider the schema: townInfo (stateName, townName, distName) with the FDs F: ST \rightarrow D (town names are unique within a state)	
$D \rightarrow S$ (district names are unique across states)	
Keys: ST, DT – all attributes are prime relation is in 3NF Relation is not in BCNF as D → S and D is not a key	
Decomposition given by algorithm: R1: TD R2: DS Not dependency preserving as $\Pi_{R1}(F)$ = trivial dependencies	
$\Pi_{R2}(F) = \{D \to S\}$ Union of these doesn't imply $ST \to D$ $ST \to D \text{ can't be enforced unless we perform a join.}$	
Prof P Sreenivasa Kumar 47	
Department of CS&E, IITM	
	_
Dependencies may not be preserved (2/2)	
Consider the schema: R (A, B, C) with the FDs F: AB \rightarrow C and C \rightarrow B	
Keys: AB, AC – relation in 3NF (all attributes are prime) – Relation is not in BCNF as C → B and C is not a key	
Decomposition given by algorithm: $R_1\colon CB \ R_2\colon AC$ Not dependency preserving as $\Pi_{R_1}(F) = \text{trivial dependencies}$ $\Pi_{R_2}(F) = \{C \to B\}$	
Union of these does not entail $AB \rightarrow C$	
All possible decompositions: {AB, BC}, {BA, AC}, {AC, CB} Only the last one is lossless!	
Lossless and dependency-preserving decomposition doesn't exist.	
Prof P Sreenivasa Kumar 48 Department of CS&E, IITM	

Equivalent Dependency Sets F, G – two sets of FDs on schema R F is said to $\underline{cover} \; G \; if \; \; G \subseteq F^{\scriptscriptstyle +} \mbox{(equivalently } G^{\scriptscriptstyle +} \subseteq F^{\scriptscriptstyle +} \mbox{)}$ F is equivalent to G if $F^+ = G^+$ (or, F covers G and G covers F) Note: To check if F covers G, it's enough to show that for each FD $X \to Y$ in $G, Y \subseteq X_F^+$ Prof P Sreenivasa Kumar Department of CS&E, IITM Canonical covers or Minimal covers It is of interest to reduce a set of FDs F into a 'standard' form F' such that F' is equivalent to F. We define that a set of FDs F is in 'minimal form' if (i) the rhs of any FD of F is a single attribute (ii) there are no redundant FDs in F that is, there is no FD $X \rightarrow A$ in F $s.t \ (F - \{X \to A\}) \ is \ equivalent \ to \ F$ (iii) there are no redundant attributes on the lhs of any FD in F that is, there is no FD $X \to A$ in F s.t there is $Z \subset X$ for which $F - \{X \to A\} \, \cup \, \{Z \to A\}$ is equivalent to FMinimal Covers useful in obtaining a lossless, dependency-preserving decomposition of a scheme R into 3NF relation schemas Prof P Sreenivasa Kumar Department of CS&E, IITM Algorithm for computing a minimal cover R – given Schema or set of attributes; F – given set of FDs on R Step 1: G := F Step 2: Replace every fd of the form $X \to A_1A_2A_3...A_k$ in G by $X \to A_1; X \to A_2; X \to A_3; ...; X \to A_k$ Step 3: For each fd $X \rightarrow A$ in G do for each B in X do if $(G - \{X \rightarrow A\} + \{(X - B) \rightarrow A\})^+ = F^+$ then replace $X \rightarrow A$ by $(X - B) \rightarrow A$ Step 4: For each fd $X \rightarrow A$ in G do if $(G - \{X \rightarrow A\})^+ = G^+$ then replace G by $G - \{X \rightarrow A\}$ Prof P Sreenivasa Kumar Department of CS&E, IITM 51

	Computing Minimal Covers Example from Elmasri and Navathe, Database Sytems (6th edition)					
	Determine the minimal cover for $F = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$					
	All rhs sets are single attributes. So, Step 2 changes nothing.					
	If $G = \{ B \rightarrow A, D \rightarrow A, B \rightarrow D \}$, we find that $G^+ = F^+$					
	In G, since $B \rightarrow D$, $AB \rightarrow AD$ and hence $AB \rightarrow D$					
	So AB → D belongs to G ⁺ Hence G covers F					
	In F, since $B \rightarrow A$, $B \rightarrow AB$.					
	Since $B \to AB$, $AB \to D$, we get $B \to D$. So $B \to D$ is in F^+ .					
	Hence F covers G.					
	Finally, in G, we find that $B \rightarrow A$ can be obtained for the other two.					
	Hence, $\{D \rightarrow A, B \rightarrow D\}$ is a minimal cover for F					
	Prof P Sreenivasa Kumar 52 Department of CS&E, IITM					
_						
	3NF Decomposition Algorithm					
	R – given Schema; F – given set of fd's on R in minimal form					
	Use BCNF algorithm to get a lossless decomposition $D = (R_1, R_2,,R_k)$					
	Note: each R _i is already in 3NF (it is in BCNF in fact!)					
	Algorithm: Let G be the set of fd's not preserved in D					
	For each fd $Z \rightarrow A$ that is in G Add relation scheme $S = (B_1, B_2,, B_s, A)$ to D. // $Z = \{B_1, B_2,, B_s\}$					
	As $Z \to A$ is in F which is a minimal cover,					
	there is no proper subset X of Z s.t $X \rightarrow A$. So Z is a key for S!					
	Any other fd $X \to C$ on S is such that C is in $\{B_1, B_2,, B_s\}$. Such fd's do not violate 3NF because each B_i 's is prime a attribute!					
	Thus any scheme S added to D as above is in 3NF.					
	D continues to be lossless even when we add new schemas to it!					
	Prof P Sreenivasa Kumar 53 Department of CS&E, IITM					
	Multi-valued Dependencies (MVDs) and 4NF					
	studCoursesAndFriends(<u>rollNo,courseNo,frndEmailAddr</u>)					
	A student enrolls for several courses and has several friends whose email addresses we want to record.					
	If rows (CS05B007, CS370, shyam@gmail.com) and					
	(CS05B007, CS376, radha@yahoo.com) appear then rows (CS05B007, CS376, shyam@gmail.com)		-			
	(CS05B007, CS370, radha@yahoo.com) should also appear!					
	For, otherwise, it implies that having "shyam" as a friend has something to do with doing course CS370!					
	Causes a huge amount of data redundancy! Since there are no non-trivial FD's, the scheme is in BCNF					
	We say that MVD rollNo →→ courseNo holds					
	(read as rollNo <i>multi-determines</i> courseNo) By symmetry, rollNo →→ frndEmailAddr also holds					
	Prof P Sreenivasa Kumar 54 Department of CS&E, IITM			 	 	
		- 1				

	\neg
More about MVDs]
Consider studCourseGrade(rollNo,courseNo,grade)	
Note that rollNo $\rightarrow \rightarrow$ courseNo <i>does not</i> hold here even though	-
courseNo is a multi-valued attribute of a student entity	
If (CS05B007, CS370, A)	
(CS05B007, CS376, B) appear in the data then	
(CS05B007, CS376, A)	
(CS05B007, CS370, B) will not appear!!	
Attribute 'grade' depends on (rollNo,courseNo)	
MVD's arise when two or more <i>unrelated</i> multi-valued attributes	
of an entity are sought to be represented together in a scheme.	
Prof P Sreenivasa Kumar 55 Department of CS&E, IITM	
	_
	\neg
More about MVDs	
Consider	
studCourseAdvisor(rollNo,courseNo,advisor)	
Note that rollNo $\rightarrow \rightarrow$ courseNo <i>holds</i> here	
If (CS05B007, CS370, Dr Ravi)	-
(CS05B007, CS376, Dr Ravi) appear in the data then	
swapping courseNo values gives rise to existing rows only.	
D. () IIN	
But, since rollNo → advisor and (rollNo, courseNo) is the key, this gets caught in checking for 2NF itself.	
Prof P Sreenivasa Kumar 56]
Department of CS&E, IITM	
	$\overline{\Box}$
MVD Definition	
Consider a scheme R(X, Y, Z),	
An MVD $X \rightarrow Y$ holds on R if, for in any instance of R,	
the presence of two tuples	
(xxx, y1y1y1, z1z1z1) and	-
(xxx, y2y2y2, z2z2z2)	
guarantaga the programes of tunion	

(xxx, y1y1y1, z2z2z2) and (xxx, y2y2y2, z1z1z1) Note that every FD on R is also an MVD!

- the notion of MVD's generalizes the notion of FD's

Prof P Sreenivasa Kumar
Department of CS&E, IITM

Alternative definition of MVDs]
Consider $R(X,Y,Z)$	
Suppose that $X \to Y$ and by symmetry $X \to Z$	
Then, decomposition $D = (XY, XZ)$ of R should be lossless	
That is, for any instance r on R, $r = \prod_{XX}(r) * \prod_{XZ}(r)$	
All V	
Prof P Sreenivasa Kumar 58 Department of CS&E, IITM	
Department of CS&E, III M	
MVDs and 4NF	
An MVD $X \rightarrow Y$ on scheme R is called <i>trivial</i> if either	
$Y \subseteq X$ or $R = X \cup Y$. Otherwise, it is called <i>non-trivial</i> .	
4NF : A relation R is in 4NF if it is in BCNF and for every	
nontrivial MVD $X \rightarrow \rightarrow A$, X must be a superkey of R.	
studCourseEmail(<u>rollNo,courseNo,frndEmailAddr</u>)	
is not in 4NF as	
rollNo $\rightarrow\rightarrow$ courseNo and rollNo $\rightarrow\rightarrow$ frndEmailAddr	
are both nontrivial and rollNo is not a superkey for the	
relation	
Prof P Sreenivasa Kumar 59 Department of CS&E, IITM	
	_
Join Dependencies and 5NF	1
A join dependency (JD) is generalization of an MVD	
A Join dependency (JD) is generalization of an MVD A JD $JD(R_1, R_2,, R_k)$ is said to hold on schema R if	
for every instance $r = *(\Pi_{R1}(r), \Pi_{R2}(r),, \Pi_{Rk}(r))$	
Here, $R = R_1 \cup R_2 \cup \cup R_k$ and Natural join * is a multi-way join.	
A JD is difficult to detect in practice. It occurs in rare situations.	
A relational scheme is said to be in 5NF wrt to a set of FDs, MVDs	
and JDs if it is in 4NF and for every non-trivial JD $(R_1, R_2,, R_k)$,	
each R_i is a superkey.	
	1.1

Join Dependencies – An Example	
Consider the following relation:	
studProjSkill(rollNo, skill, project) and the three relations	
studSkill(rollNo, skill) // who has what skill	
studProj(rollNo, project) // who is interested in what project	
skillProj(project, skill) // which project requires what skills	
Suppose there is a rule that:	
If a student r1 has skill s1, and r1 is interested in project p1 and	
project p1 requires skill s1 then (r1, s1, p1) <i>must be</i> in studProjSkill	
In other words, studProjSkill = * (studSkill, studProj, skillProj)	
Then, we say JD(studSkill, studProj, skillProj) holds	
Prof P Sreenivasa Kumar 61	
Department of CS&E, IITM	
	1
Example - Observations	
rollNo skill rollNo project project skill	
r1 s1 r1 p1 p1 s1	
r1 s2 r1 p2 p2 s3	
Size <= rs Size <= rp Size <= sp	
rollNo project skill There are no MVDs in 3-column table	
r1 $p1$ $s1$ $rps >> rp + sp + rs$ $rps >> rp + sp + rs$	
Size <= rps Huge amount of data redundancy exists	
Huge amount of data redundancy exists	
Prof P Sreenivasa Kumar 62 Department of CS&E, IITM	
Department of Odde, 111W	
Relational DB Design - Approaches	
Two Approaches: Bottom-up and Top-down Bottom-up Approach (aka Synthesis Approach)	
Keep all attributes in a universal relation	
- Reep an autibutes in a universal relation - Determine <i>all</i> the FDs, MVDs, applicable	
- Use the algorithms discussed to decompose the universal relation	
Obtain a design using the algorithms discussed	
Drawbacks of the approach	
1	
- Difficult to obtain <i>all</i> the FDs in a large DB with 100s of attributes	
- Algorithms are non-deterministic - Not popular in practice	
- Not popular in practice	

Prof P Sreenivasa Kumar Department of CS&E, IITM

Relational DB Design - Approaches	
Top-down Approach (aka Analysis Approach)	
- Represent Entities/Relationships as relations	
Group attributes that belong naturally together	
- Determine the FDs, MVDs, applicable among attributes	
- Analyze the relations individually and also collectively	
If necessary carry out decomposition to obtain desirable	
properties	
- More popular approach	
- Theoretical observations are applicable to both approaches	
Prof P Sreenivasa Kumar Department of CS&E, IITM	64