Abstract homomorphisms of non-quasi-split special unitary groups

Joshua Ruiter

November 1, 2024

Contents

1	Gen	neralizing the construction of Kassabov and Sapir	2
	1.1	Original construction	2
	1.2	Replace SL_3 with arbitrary group	3
	1.3	Replace some notation	4
	1.4	Generalize commutator relation	6

1 Generalizing the construction of Kassabov and Sapir

1.1 Original construction

Example 1. Let k be a field. For $1 \le i \ne j \le 3$, let $e_{ij} : k \to \mathrm{SL}_3(k)$ be the map which takes $u \in k$ to the transvection matrix $e_{ij}(u)$. For example,

$$e_{13}: k \to \mathrm{SL}_3(k)$$
 $e_{13}(u) = \begin{pmatrix} 1 & u \\ & 1 \\ & & 1 \end{pmatrix}$

Note that e_{ij} is a group homomorphism from (k, +) into $SL_3(k)$, i.e. $e_{ij}(u) \cdot e_{ij}(v) = e_{ij}(u + v)$. Let $U_{ij} = e_{ij}(k)$, so e_{ij} gives an isomorphism between (k, +) and U_{ij} . Let

$$w_{12} = \begin{pmatrix} & -1 \\ 1 & & \\ & & 1 \end{pmatrix} \qquad w_{23} = \begin{pmatrix} 1 & & \\ & & 1 \\ & -1 & \end{pmatrix}$$

and note that

$$w_{12} \cdot e_{13}(u) \cdot w_{12}^{-1} = e_{23}(u) \tag{1}$$

$$w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1} = e_{12}(u) \tag{2}$$

Let K be an algebraically closed field, and let

$$\rho: \mathrm{SL}_3(k) \to \mathrm{GL}_m(K)$$

be a group homomorphism (not necessarily well-behaved with respect to any kind of geometric structure). Let $U = e_{13}(k)$, so e_{13} is an isomorphism between (k, +) and U.

Let $V = \rho(U)$ and let $A = \overline{V}$ be the Zariski closure of V. Since V is a subgroup of $GL_m(K)$, so is A. That is, A is closed under matrix multiplication. We define another binary operation on A as follows:

$$\mu_{\rho}: A \times A \to GL_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{23}) \cdot a \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot b \cdot \rho(w_{12}^{-1})\right]$

A calculation involving the relations (1), (2), and the commutator relation

$$\left[e_{12}(u), e_{23}(v)\right] = e_{13}(uv)$$

shows that

$$\mu_{\rho}\Big(\rho\big(e_{13}(u)\big),\rho\big(e_{13}(v)\big)\Big)=e_{13}(uv)$$

From this, it follows that μ_{ρ} maps the subset $V \times V$ (a dense subset of $A \times A$) to V. Since μ_{ρ} is continuous, it follows that μ_{ρ} maps $A \times A$ to A.

1.2 Replace SL_3 with arbitrary group

Definition 1. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \operatorname{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{12}, e_{13}, e_{23}: k \to G(k)$ such that

$$\left[e_{12}(u), e_{23}(v)\right] = e_{13}(uv)$$

and suppose have elements $w_{12}, w_{23} \in G(k)$ such that

$$w_{12} \cdot e_{13}(u) \cdot w_{12}^{-1} = e_{23}(u)$$

$$w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1} = e_{12}(u)$$

Let $U = e_{13}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to GL_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{23}) \cdot a \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot b \cdot \rho(w_{12}^{-1}) \right]$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{23})$ and $\rho(w_{12})$ in $GL_m(K)$.

Lemma 1.
$$\mu_{\rho} \Big(\rho \circ e_{13}(u), \rho \circ e_{13}(v) \Big) = \rho \circ e_{13}(uv)$$

Proof.

$$\mu_{\rho}\Big(\rho \circ e_{13}(u), \rho \circ e_{13}(v)\Big) = \Big[\rho(w_{23}) \cdot \rho(e_{13}(u)) \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot \rho(e_{13}(v)) \cdot \rho(w_{12}^{-1})\Big]$$

$$= \rho\Big[w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1}, w_{12} \cdot e_{13}(v) \cdot w_{12}^{-1}\Big]$$

$$= \rho\Big[e_{12}(u), e_{23}(v)\Big]$$

$$= \rho \circ e_{13}(uv)$$

Corollary 1. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 1. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_{ρ} .

Proof. Immediate from Lemma 3.2 from *Linear representations of Chevalley groups over commutative rings.* \Box

1.3 Replace some notation

Definition 2. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \mathrm{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{\alpha}, e_{\beta}, e_{\gamma}: k \to G(k)$ such that

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}(uv)$$

and suppose have elements $w_{\gamma \to \beta}, w_{\gamma \to \alpha} \in G(k)$ such that

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$
$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

Let $U = e_{\gamma}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to \mathrm{GL}_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{\gamma \to \alpha}) \cdot a \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot b \cdot \rho(w_{\gamma \to \beta}^{-1}) \right]$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{\gamma \to \alpha})$ and $\rho(w_{\gamma \to \beta})$ in $\mathrm{GL}_m(K)$.

Lemma 2.
$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho \circ e_{\gamma}(uv)$$

Proof.

$$\begin{split} \mu_{\rho}\Big(\rho\circ e_{\gamma}(u),\rho\circ e_{\gamma}(v)\Big) &= \Big[\rho(w_{\gamma\to\alpha})\cdot\rho\circ e_{\gamma}(u)\cdot\rho(w_{\gamma\to\alpha})^{-1},\rho(w_{\gamma\to\beta})\cdot\rho\circ e_{\gamma}(v)\cdot\rho(w_{\gamma\to\beta}^{-1})\Big] \\ &= \rho\Big[w_{\gamma\to\alpha}\cdot e_{\gamma}(u)\cdot w_{\gamma\to\alpha}^{-1},w_{\gamma\to\beta}\cdot e_{\gamma}(v)\cdot w_{\gamma\to\beta}^{-1}\Big] \\ &= \rho\Big[e_{\alpha}(u),e_{\beta}(v)\Big] \\ &= \rho\circ e_{\gamma}(uv) \end{split}$$

Corollary 2. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 2. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_{ρ} .

Proof. Immediate from Lemma 3.2 from *Linear representations of Chevalley groups over commutative rings.* \Box

Example 2. Let $G = \operatorname{SL}_n$ and let $e_{\alpha} = e_{12}$ and $e_{\beta} = e_{23}$ and $e_{\gamma} = e_{13}$. Then we have

$$[e_{\alpha}(u), e_{\beta}(v)] = e_{\gamma}(uv)$$

Then with

$$w_{\gamma \to \beta} = w_{12}$$
$$w_{\gamma \to \alpha} = w_{23}$$

we have

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$
$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

(a) Suppose $k = K = K^{\text{alg}}$ and ρ is the inclusion $\operatorname{SL}_n(k) \hookrightarrow \operatorname{GL}_n(k)$. Then $U = V = e_{13}(k)$, and V is already closed so A = V = U (technically U is a subset of a different group than V = A, but whatever). As an abelian group (under the operation of matrix multiplication), A is isomorphic to (k, +). Since ρ is just inclusion, Lemma 3 says that

$$\mu_{\rho}\Big(e_{\gamma}(u), e_{\gamma}(v)\Big) = e_{\gamma}(uv)$$

i.e. e_{γ} is a ring isomorphism $(k, +, \cdot) \to (A, \cdot, \mu_{\rho})$.

(b) Suppose $k = K = \mathbb{C}$ and $\rho : \mathrm{SL}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ is the composition of inclusion with entrywise complex conjugation. As in the previous example, A = V = U. Also as above, A is isomorphic to (k, +) as an abelian group under matrix multiplication. Now Lemma 3 tells us

$$\mu_{\rho}\Big(e_{\gamma}(\overline{u}), e_{\gamma}(\overline{v})\Big) = e_{\gamma}(\overline{u}\overline{v})$$

i.e. the map

$$f: \mathbb{C} \to A$$
 $f(u) = e_{\gamma}(\overline{u})$

is a ring isomorphism.

(c) Let L/k be a Galois extension, and let $K = L^{\text{alg}} = k^{\text{alg}}$ be the algebraic closure. Fix an embedding $L \hookrightarrow K$. Let $\sigma \in \text{Gal}(L/k)$, and let $\rho : \text{SL}_n(L) \to \text{GL}_n(K)$ be the composition of inclusion and entrywise application of σ . Then again A = V = U, though technically $U = e_{13}(L) \subseteq \text{SL}_n(L)$, and $A = V = e_{13}(L) \subseteq \text{GL}_n(K)$. As abelian groups, $(L, +) \cong (A, \cdot)$. Lemma 3 says

$$\mu_{\rho}\Big(e_{\gamma}(\sigma u), e_{\gamma}(\sigma v)\Big) = e_{\gamma}\Big(\sigma(uv)\Big)$$

so the map

$$f: L \to A$$
 $f(u) = e_{\gamma}(\sigma u)$

gives a ring isomorphism $(L, +, \cdot) \cong (A, \cdot, \mu_{\rho})$.

1.4 Generalize commutator relation

Definition 3. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \operatorname{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{\alpha}, e_{\beta}, e_{\gamma} : k \to G(k)$ such that

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}\left(N_{\alpha\beta}(u, v)\right)$$

and suppose we have an element $h_{\gamma} \in G(k)$ such that

$$h_{\gamma} \cdot e_{\gamma} \Big(N_{\alpha\beta}(u, v) \Big) \cdot h_{\gamma}^{-1} = uv$$

and suppose we have elements $w_{\gamma \to \beta}, w_{\gamma \to \alpha} \in G(k)$ such that

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$

$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

Let $U = e_{\gamma}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to \mathrm{GL}_{m}(K) \qquad \mu_{\rho}(a,b) = \rho(h_{\gamma}) \cdot \left[\rho(w_{\gamma \to \alpha}) \cdot a \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot b \cdot \rho(w_{\gamma \to \beta}^{-1}) \right] \cdot \rho(h_{\gamma})^{-1}$$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{\gamma \to \alpha})$ and $\rho(w_{\gamma \to \beta})$ in $\mathrm{GL}_m(K)$.

Lemma 3.
$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho \circ e_{\gamma}(uv)$$

Proof.

$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho(h_{\gamma}) \cdot \Big[\rho(w_{\gamma \to \alpha}) \cdot \rho \circ e_{\gamma}(u) \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot \rho \circ e_{\gamma}(v) \cdot \rho(w_{\gamma \to \beta}^{-1})\Big] \cdot \rho(h_{\gamma})^{-1}$$

$$= \rho\Big(h_{\gamma} \cdot \Big[w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1}, w_{\gamma \to \beta} \cdot e_{\gamma}(v) \cdot w_{\gamma \to \beta}^{-1}\Big] \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(h_{\gamma} \cdot \big[e_{\alpha}(u), e_{\beta}(v)\big] \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(h_{\gamma} \cdot e_{\gamma}(N_{\alpha\beta}(u, v)) \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(e_{\gamma}(uv)\Big)$$

$$= \rho \circ e_{\gamma}(uv)$$

Corollary 3. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 3. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_{ρ} .

Proof. Immediate from Lemma 3.2 from *Linear representations of Chevalley groups over commutative rings.* \Box