Concursul Fractal, Secțiunea Seniori a III-a Ediție din 19.01.2025

Problema 1. Pe o tablă sunt scrise numerele 1 și 2. La orice operație, Viorel poate schimba numerele de pe tablă a și b în a-b și a+b. Poate oare Viorel ajunge la numerele $2024 \cdot 2^{2024}$ și $2025 \cdot 2^{2025}$?

Problema 2. Găsiți toate tripletele de numere reale nenule a, b, c care satisfac simultan următoarele condiții:

$$\begin{cases} \frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{23}{6} \\ \frac{a}{c} + \frac{c}{b} + \frac{b}{a} = \frac{25}{6} \\ a + b + c = 6 \end{cases}$$

Problema 3. Găsiți toate pătratele perfecte N care nu conțin cifra 0 și cu proprietatea că oricum am schimba cu locul cifrele în reprezentarea decimală a lui N, obținem un pătrat perfect.

Problema 4. Este dat triunghiul ABC, cu cercul circumscris lui Ω și punctul magic M în interiorul acestuia. Punctul M are proprietatea că cercul ω_A prin M și A tangent la Ω intersectează AB în Z și AC în Y, cercul ω_B prin M tangent la Ω în B intersectează BC în X și AB în Z, iar cercul ω_C prin M tangent la Ω în C intersectează BC în X și AC în Y. Un alt cerc ω e tangent interior la ω_A și tangent exterior la ω_B și ω_C . Notăm punctul de tangență ale cercurilor ω și ω_A cu T. Arătați că cercul circumscris triunghiului MXT trece prin punctul diametral opus lui A pe Ω .