Devoir à la maison $n^{\circ}07$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - Centrale MP 2019

Notations et définitions

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , \mathbb{N} désigne l'ensemble des entiers naturels et n est un entier naturel.

On note $\mathbb{K}_n[X]$ le sous-espace vectoriel de $\mathbb{K}[X]$ des polynômes de degré inférieur ou égal à n à coefficients dans \mathbb{K} et, pour $n \geq 1$, $\mathcal{M}_n(\mathbb{K})$ la \mathbb{K} -algèbre des matrices carrées de taille n à coefficients dans \mathbb{K} . La matrice unité est notée I_n et on désigne par $GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on note A^T la transposée de la matrice A, rg(A) son rang, tr(A) sa trace, $\chi_A = \det(XI_n - A)$ son polynôme caractéristique, π_A son polynôme minimal et Sp(A) l'ensemble de ses valeurs propres dans \mathbb{K} .

Dans tout le problème, E désigne un espace vectoriel sur le corps \mathbb{K} de dimension finie n supérieure ou égale à 2, et $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E. On note f un endomorphisme de E.

On note
$$f^0 = \operatorname{Id}_{E}$$
 et $\forall k \in \mathbb{N}, \ f^{k+1} = f^k \circ f$.

Si $Q \in \mathbb{K}[X]$ avec $Q(X) = a_0 + a_1 X + \dots + a_m X^m$, Q(f) désigne l'endomorphisme a_0 $\mathrm{Id}_E + a_1 f + \dots + a_m f^m$. On note $\mathbb{K}[f]$ la sous-algèbre commutative de $\mathcal{L}(E)$ constituée des endomorphismes Q(f) quand Q décrit $\mathbb{K}[X]$.

De même, on utilise les notations suivantes, similaires à celles des matrices, pour un endomorphisme f de $E : rg(f), tr(f), \chi_f, \pi_f$ et Sp(f).

Enfin, on dit que f est cyclique si et seulement s'il existe un vecteur x_0 dans E tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E.

I Matrices compagnons et endomorphismes cycliques

I.A

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

- 1 Montrer que M et M^T ont même spectre.
- $\fbox{2}$ Montrer que M^T est diagonalisable si et seulement si M est diagonalisable.

I.B Matrices compagnons

Soit $(a_0, a_1, \dots, a_{n-1}) \in \mathbb{K}^n$ et $Q(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0$. On appelle matrice compagnon de Q la matrice

$$C_{Q} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_{0} \\ 1 & 0 & \dots & \dots & 0 & -a_{1} \\ 0 & 1 & \ddots & \vdots & -a_{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & -a_{n-2} \\ 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Déterminer en fonction de Q le polynôme caractéristique de CO

4 Soit λ une valeur propre de C_0^T . Déterminer la dimension et une base du sous-espace propre associé.

I.C Endomorphismes cycliques

- Montrer que f est cyclique si et seulement s'il existe une base \mathcal{B} de E dans laquelle la matrice de f est de la forme C_O , où Q est un polynôme unitaire de degré n.
- Soit f un endomorphisme cyclique. Montrer que f est diagonalisable si et seulement si χ_f est scindé sur \mathbb{K} et a toutes ses racines simples.
- Montrer que si f est cyclique, alors $(\mathrm{Id}_{\mathrm{E}}, f, f^2, \dots, f^{n-1})$ est libre dans $\mathcal{L}(\mathrm{E})$ et le polynôme minimal de f est de degré n.

I.D Application à une démonstration du théorème de Cayley-Hamilton

Soit x un vecteur non nul de E. Montrer qu'il existe un entier p strictement positif tel que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ soit libre et qu'il existe $(\alpha_0, \alpha_1, \dots, \alpha_{p-1}) \in \mathbb{K}^p$ tel que :

$$\alpha_0x+\alpha_1f(x)+\cdots+\alpha_{p-1}f^{p-1}(x)+f^p(x)=0$$

- **9** Justifier que Vect $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est stable par f.
- 10 Montrer que $X^p + \alpha_{p-1}X^{p-1} + \cdots + \alpha_0$ divise le polynôme χ_f .
- 11 Démontrer que $\chi_f(f)$ est l'endomorphisme nul.

II Etude des endomorphismes cycliques

II.A Endomorphismes cycliques nilpotents

Dans cette sous-partie, on suppose que f est un endomorphisme nilpotent de E. On note r le plus petit entier naturel tel que $f^r = 0$.

12 Montrer que f est cyclique si et seulement si r = n. Préciser alors la matrice compagnon.

II.B

Dans cette sous partie, on suppose $\mathbb{K} = \mathbb{C}$.

On suppose que $(\mathrm{Id},f,f^2,\ldots,f^{n-1})$ est libre et on se propose de montrer que f est cyclique.

On factorise le polynôme caractéristique de f sous la forme

$$\chi_f(\mathbf{X}) = \prod_{k=1}^p (\mathbf{X} - \lambda_k)^{m_k}$$

où les λ_k sont les p valeurs propres deux à deux distinctes de f et les m_k de \mathbb{N}^* leurs ordres de multiplicité respectifs.

Pour $k \in [1, p]$, on pose $F_k = \ker((f - \lambda_k \operatorname{Id}_E)^{m_k})$.

13 Montrer que les sous-espaces vectoriels F_k sont stables par f et que $E = F_1 \oplus \cdots \oplus F_p$.

Pour $k \in [1, p]$, on note φ_k l'endomorphisme induit par $f - \lambda_k \operatorname{Id}_E$ sur le sous-espace vectoriel F_k ,

$$\varphi_k: \left\{ \begin{array}{ccc} F_k & \longrightarrow & F_k \\ x & \longmapsto & f(x) - \lambda_k x \end{array} \right.$$

14 Justifier que φ_k est un endomorphisme nilpotent de F_k .

On note v_k le plus petit entier naturel tel que $\varphi_k^{v_k} = 0$.

- 15 Pourquoi a-t-on $v_k \le \dim(F_k)$?
- Montrer, avec l'hypothèse proposée, que pour tout $k \in [1, p]$, on a $v_k = m_k$.
- Expliciter la dimension de \mathbb{F}_k pour $k \in [[1, p]]$, puis en déduire l'existence d'une base $\mathcal{B} = (u_1, \dots, u_n)$ de E dans laquelle f a une matrice diagonale par blocs, ces blocs appartenant à $\mathcal{M}_{m_k}(\mathbb{C})$ et étant de la forme

$$\begin{pmatrix} \lambda_{k} & 0 & \dots & \dots & 0 \\ 1 & \lambda_{k} & \ddots & & \vdots \\ 0 & 1 & \lambda_{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \lambda_{k} & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_{k} \end{pmatrix}$$

On pose $x_0 = u_1 + u_{m_1+1} + \dots + u_{m_1+\dots+m_{p-1}+1}$.

- **18** Déterminer les polynômes $Q \in \mathbb{C}[X]$ tels que $Q(f)(x_0) = 0$.
- 19 Justifier que f est cyclique.

III Endomorphismes commutants, décomposition de Frobenius

On appelle commutant de f l'ensemble $C(f) = \{g \in \mathcal{L}(E), f \circ g = g \circ f\}.$

20 Montrer que C(f) est une sous-algèbre de $\mathcal{L}(E)$.

III.A Commutant d'un endomorphisme cyclique

On suppose que f est cyclique et on choisit un vecteur x_0 dans E tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.

Soit $g \in C(f)$, un endomorphisme qui commute avec f.

21 Justifier l'existence de $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ de \mathbb{K} tels que

$$g(x_0) = \sum_{k=0}^{n-1} \lambda_k f^k(x_0)$$

- 22 Montrer alors que $g \in \mathbb{K}[f]$.
- **23** Établir que $g \in C(f)$ si et seulement s'il existe un polynôme $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f).

III.B Décomposition de Frobenius

On se propose de démontrer le théorème de décomposition de Frobenius : toute matrice est semblable à une matrice diagonale par blocs, ces blocs étant des matrices compagnons.

Montrer que si la réunion d'un nombre fini de sous-espaces vectoriels $F_1, ..., F_r$ de E est un sous-espace vectoriel, alors l'un des sous-espaces F_r contient tous les autres.

On note d le degré de π_f .

Justifier l'existence d'un vecteur x_1 de E tel que $(x_1, f(x_1), \dots, f^{d-1}(x_1))$ est libre. Pour tout x non nul de E, on pourra remarquer que $I_x = \{P \in \mathbb{K}[X], P(f)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$ engendré par un polynôme unitaire $\pi_{f,x}$ diviseur de π_f et considérer les sous-espaces vectoriels $\ker(\pi_{f,x}(f))$.

On pose $e_1 = x_1, e_2 = f(x_1), ..., e_d = f^{d-1}(x_1)$ et $E_1 = \text{Vect}(e_1, e_2, ..., e_d)$.

26 Montrer que E_1 est stable par f et que $E_1 = \{P(f)(x_1), P \in \mathbb{K}[X]\}$.

On note ψ_1 l'endomorphisme induit par f sur le sous-espace vectoriel E_1 ,

$$\psi_1: \left\{ \begin{array}{ccc} \mathrm{E}_1 & \longrightarrow & \mathrm{E}_1 \\ x & \longmapsto & f(x) \end{array} \right.$$

27 Justifier que ψ_1 est cyclique.

On complète, si nécessaire, (e_1, e_2, \dots, e_d) en une base (e_1, e_2, \dots, e_n) de E. Soit Φ la d-ième forme coordonnée qui à tout vecteur x de E associe sa coordonnée suivant e_d . On note $F = \{x \in E, \ \forall i \in \mathbb{N}, \ \Phi(f^i(x)) = 0\}$.

28 Montrer que F est stable par f et que E_1 et F sont en somme directe.

Soit Ψ l'application linéaire de E dans \mathbb{K}^d définie, pour tout $x \in \mathbb{E}$, par

$$\Psi(x) = (\Phi(f^{i}(x)))_{0 \le i \le d-1} = (\Phi(x), \Phi(f(x)), \dots, \Phi(f^{d-1}(x)))$$

- **29** Montrer que Ψ induit un isomorphisme entre E_1 et \mathbb{K}^d .
- **30** Montrer que $E = E_1 \oplus F$.
- $\boxed{\bf 31}$ En déduire qu'il existe r sous-espaces vectoriels de E, notés E_1,\ldots,E_r , tous stables par f, tels que :
 - $E = E_1 \oplus \cdots \oplus E_r$;
 - pour tout $1 \le i \le r$, l'endomorphisme ψ_i induit par f sur le sous-espace vectoriel E_i est cyclique;
 - si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le r-1$.

III.C Commutant d'un endomorphisme quelconque

- 32 Montrer que la dimension de C(f) est supérieure ou égale à n.
- 33 On suppose que f est un endomorphisme tel que l'algèbre C(f) est égale à K[f]. Montrer que f est cyclique.

IV Endomorphismes orthocycliques

Dans cette partie, on suppose que $\mathbb{K} = \mathbb{R}$ et que E est un espace euclidien. Le produit scalaire de deux vecteurs x, y de E est noté (x|y) et on désigne par O(E) le groupe des isométries vectorielles de E.

On dit qu'un endomorphisme est *orthocyclique* s'il existe une base orthonormale de E dans laquelle la matrice de f est de la forme C_Q (matrice compagnon).

IV.A Isométries vectorielles orthocycliques

Soit $f \in O(E)$.

Soit $f' \in O(E)$ ayant le même polynôme caractéristique que f. Montrer qu'il existe des bases orthonormales \mathcal{B} et \mathcal{B}' de E pour lesquelles la matrice de f dans \mathcal{B} est égale à la matrice de f' dans \mathcal{B}' .

35 En déduire que f est orthocyclique si et seulement si $\chi_f = X^n - 1$ ou $\chi_f = X^n + 1$.

IV.B Endomorphismes nilpotents orthocycliques

Soit f un endomorphisme nilpotent de E.

|36| Montrer qu'il existe une base orthonormale de E dans laquelle la matrice de f est triangulaire inférieure.

|37| En déduire que f est orthocyclique si et seulement si

f est de rang n-1 et $\forall x, y \in (\ker f)^{\perp}$, (f(x)|f(y)) = (x|y)