MobileNet

随着深度学习的发展,卷积神经网络变得越来越普遍。当前发展的总体趋势是,通过更深和更复杂的网络来得到更高的精度,但是这种网络往往在模型大小和运行速度上没多大优势。一些嵌入式平台上的应用比如机器人和自动驾驶,它们的硬件资源有限,就十分需要一种轻量级、低延迟(同时精度尚可接受)的网络模型,于是MobileNet应运而生。

网络简介

MobileNets模型基于深度可分解的卷积,它可以将标准卷积分解成一个深度卷积和一个点卷积 (1×1卷积核)。深度卷积将每个卷积核应用到每一个通道,而1×1卷积用来组合通道卷积的输出。后文证明,这种分解可以有效减少计算量,降低模型大小。图2说明了标准卷积是如何进行分解的。

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution http://blog.csdn.net/

MobileNets使用了大量的3×3的卷积核,极大地减少了计算量(1/8到1/9之间),同时准确率下降的很少,相比其他的方法确有优势。

网络结构

MobileNets结构建立在上述深度可分解卷积中(只有第一层是标准卷积)。该网络允许我们探索网络拓扑,找到一个适合的良好网络。其具体架构在表1说明。除了最后的全连接层,所有层后面跟了batchnorm和ReLU,最终输入到softmax进行分类。图3对比了标准卷积和分解卷积的结构,二者都附带了BN和ReLU层。按照作者的计算方法,

MobileNets总共28层 (1+2×13+1=28)。

具体网络结构如下图所示。

首先输入的是224x224x3的三通道图像,然后经过若干个3x3、1x1的卷积层提取特征,最终输入到softmax层进行分类。

Table 1. MobileNet Body Architecture		
Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
$5 \times \text{Conv dw / s1}$	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	1.0×1.000 net

训练过程

总准确率

total_acc

损失函数

total_test_loss

我们的MobileNet网络一共训练了50个epoch。

根据上图训练的总准确率和损失函数变化过程的曲线所示,可以看到,准确率随着训练轮数的增长而快速增长,最终趋于平稳,达到98.5%左右;损失值则随着训练轮数的增长而整体呈现下降趋势,最终趋于0.15左右。