Esercizi di teoria dei linguaggi

Indice

1. Lezione 01	
2. Lezione 02	3
2.1. Esercizio 01	3
2.2. Esercizio 02	
2.3. Esercizio 03	4
2.4. Esercizio 04	4
2.5. Esercizio 05	5
2.6. Esercizio 06	5
2.7. Esercizio 07	6
2.8. Esercizio 08	6
2.9. Esercizio 09	
3. Lezione 03	8
3.1. Esercizio 01	8
3.2. Esercizio 02	8
3.3. Esercizio 03	8
3.4. Esercizio 04	
4. Lezione 04	11
4.1. Esercizio 01	
4.2. Esercizio 02	
4.3. Esercizio 03	

2.1. Esercizio 01

Considerate l'alfabeto $\Sigma = \{a, b\}$.

• Fornite una grammatica context-free per il linguaggio delle stringhe palindrome di lunghezza pari su Σ , cioè per l'insieme $\mathrm{PAL}_{\mathrm{pari}} = \{ww^R \mid w \in \Sigma^*\}$.

Regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow aSa$;
- $S \longrightarrow bSb$.
 - Modificate la grammatica precedente per generare l'insieme PAL di tutte le stringhe palindrome su Σ .

Regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow aSa$;
- $S \longrightarrow bSb$;
- $S \longrightarrow L$;
- $L \longrightarrow a$;
- $L \longrightarrow b$.
 - Per ogni $k \in [0,3]$ rispondete alla domanda "il linguaggio PAL é di tipo k?" giustificando la risposta.
- Tipo 0: sì, ogni linguaggio é un linguaggio di tipo 0;
- Tipo 1: sì, per ogni regola di produzione $\alpha \longrightarrow \beta$ vale $|\beta| \ge |\alpha|$;
- Tipo 2: sì, ogni regola di produzione $\alpha \longrightarrow \beta$ vede $\alpha \in V$ e $\beta \in (V \cup \Sigma^*)$;
- Tipo 3: no, la regola $S \longrightarrow aSa$ non é nella forma $A \longrightarrow aB$ oppure $A \longrightarrow a$.

Se sostituiamo l'alfabeto con $\Sigma = \{a, b, c\}$, le risposte al punto precedente cambiano? E se lo sostituiamo con $\Sigma = \{a\}$?

Se $\Sigma = \{a, b, c\}$ le risposte non cambiano visto che vanno aggiunte le regole:

- $S \longrightarrow cSc$;
- $L \longrightarrow c$.

Se $\Sigma = \{a\}$ le regole di produzione diventano:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow a$;
- $S \longrightarrow aSa$;

ma questo non fa cambiare le risposte.

2.2. Esercizio 02

Non ancora spiegato

2.3. Esercizio 03

Sia $\Sigma = \{(,)\}$ un alfabeto i cui simboli sono la parentesi aperta e la parentesi chiusa.

Scrivete una grammatica context-free che generi il linguaggio formato da tutte le sequenze di parentesi correttamente bilanciate, come ad esempio (()(()))().

Regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow (S)$;
- $S \longrightarrow SS$.

Risolvete il punto precedente per un alfabeto con due tipi di parentesi, come $\Sigma = \{(,),[,]\}$, nel caso non vi siano vincoli tra i tipi di parentesi (le tonde possono essere contenute tra quadre e viceversa). Esempio [()([])[]], ma non [[][(])()].

Regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow (S)$;
- $S \longrightarrow [S]$;
- $S \longrightarrow SS$.

Risolvete il punto precedente con $\Sigma = \{(,),[,]\}$, con il vincolo che le parentesi quadre non possano mai apparire all'interno di parentesi tonde. Esempio [()(())[]]][](()()), ma non [()([])[]].

Regole di produzione:

- $S \longrightarrow \varepsilon$;
- $S \longrightarrow [S]$;
- $S \longrightarrow SS$;
- $S \longrightarrow I$;
- $I \longrightarrow \varepsilon$;
- $I \longrightarrow (I)$;
- $I \longrightarrow II$.

2.4. Esercizio 04

Sia $G=(V,\Sigma,P,S)$ la grammatica con $V=\{S,B,C\}, \Sigma=\{a,b,c\}$ e P contenente le seguenti produzioni:

- $S \longrightarrow aSBC \mid aBC$;
- $CB \longrightarrow BC$;
- $aB \longrightarrow ab$;
- $bB \longrightarrow bb$;
- $bC \longrightarrow bc$;
- $cC \longrightarrow cc$.

Dopo avere stabilito di che tipo é G, provate a derivare alcune stringhe. Riuscite a dire da quali stringhe é formato il linguaggio generato da G?

La grammatica G é di tipo 1.

Deriviamo qualche stringa:

- $S \longrightarrow aBC \longrightarrow abC \longrightarrow abc$;
- $\bullet \ S \longrightarrow aSBC \longrightarrow aaBCBC \longrightarrow aabCBC \longrightarrow aabBCC \longrightarrow aabbCC \longrightarrow aabbcC \longrightarrow aabbcC.$

Il linguaggio L(G) è l'insieme $\{a^nb^nc^n \mid n \geq 1\}$.

2.5. Esercizio 05

Sia $G=(V,\Sigma,P,S)$ la grammatica con $V=\{S,B,C\}, \Sigma=\{a,b,c\}$ e P contenente le seguenti produzioni:

- $S \longrightarrow aBSc \mid abc$;
- $Ba \longrightarrow aB$;
- $Bb \longrightarrow bb$.

Dopo avere stabilito di che tipo é G, provate a derivare alcune stringhe. Riuscite a dire da quali stringhe é formato il linguaggio generato da G?

La grammatica G é di tipo 1.

Deriviamo qualche stringa:

- $S \longrightarrow abc$;
- $S \longrightarrow aBSc \longrightarrow aBabcc \longrightarrow aaBbcc \longrightarrow aabbcc$.

Il linguaggio L(G) è l'insieme $\{a^nb^nc^n\mid n\geq 1\}$.

2.6. Esercizio 06

Sia $G=(V,\Sigma,P,S)$ la grammatica con $V=\{S,A,B,C,D,E\},$ $\Sigma=\{a,b\}$ e P contenente le seguenti produzioni:

- $S \longrightarrow ABC$;
- $AB \longrightarrow aAD \mid bAE \mid \varepsilon;$
- $DC \longrightarrow BaC$;
- $EC \longrightarrow BbC$;
- $Da \longrightarrow aD$;
- $Db \longrightarrow bD$;
- $Ea \longrightarrow aE$;
- $Eb \longrightarrow bE$;
- $C \longrightarrow \varepsilon$;
- $aB \longrightarrow Ba$;
- $bB \longrightarrow bB$.

Dopo avere stabilito di che tipo é G, provate a derivare alcune stringhe. Riuscite a dire da quali stringhe é formato il linguaggio generato da G?

La grammatica G é di tipo 1.

Deriviamo qualche stringa:

- $S \longrightarrow ABC \xrightarrow{*} \varepsilon$;
- $S \longrightarrow ABC \longrightarrow aADC \longrightarrow aABaC \stackrel{*}{\longrightarrow} aa;$

```
• S \xrightarrow{*} aABaC \longrightarrow aaADaC \longrightarrow aaAaDC \longrightarrow aaAaBaC \longrightarrow aaABaaC \xrightarrow{*} aaaa;
```

- $S \xrightarrow{*} aABaC \longrightarrow abAEaC \longrightarrow abAaEC \longrightarrow abAaBbC \longrightarrow abABabC \xrightarrow{*} abab;$
- $S \longrightarrow ABC \longrightarrow bAEC \longrightarrow bABbC \stackrel{*}{\longrightarrow} bb;$
- $S \xrightarrow{*} bABbC \longrightarrow bbAEbC \longrightarrow bbAbBbC \longrightarrow bbABbbC \xrightarrow{*} bbbb;$
- $S \xrightarrow{*} bABbC \longrightarrow baADbC \longrightarrow baAbDC \longrightarrow baAbBaC \xrightarrow{*} baba$.

Il linguaggio L(G) è l'insieme $\{a^{2n} \cup b^{2n} \cup (ab)^{2n} \cup (ba)^{2n} \mid n \geq 0\}$.

2.7. Esercizio 07

Sia $G = (V, \Sigma, P, S)$ la grammatica con $V = \{S, A, B, C, X, Y, L, R\}, \Sigma = \{a\}$ e P contenente le seguenti produzioni:

- $S \longrightarrow LXR$;
- $LX \longrightarrow LYYA \mid aC$;
- $AX \longrightarrow YYA$;
- $AR \longrightarrow BR$;
- $YB \longrightarrow BX$;
- $LB \longrightarrow L$;
- $CX \longrightarrow aC$;
- $CR \longrightarrow \varepsilon$.

Riuscite a stabilire da quali stringhe é formato il linguaggio generato da *G*?

Deriviamo qualche stringa:

- $S \longrightarrow LXR \longrightarrow aCR \longrightarrow a$;
- $\bullet \ S \longrightarrow LXR \longrightarrow LYYAR \stackrel{*}{\longrightarrow} LXXR \longrightarrow aCXR \longrightarrow aaCR \longrightarrow aa;$
- $\begin{array}{c} \bullet \; S \longrightarrow LXR \stackrel{*}{\longrightarrow} LXXR \longrightarrow LYYAXR \longrightarrow LYYYYAR \stackrel{*}{\longrightarrow} LXXXXR \stackrel{*}{\longrightarrow} aaaa. \\ \bullet \; S \longrightarrow LXR \stackrel{*}{\longrightarrow} LXXXXR \stackrel{*}{\longrightarrow} LYYYYYYYYAR \stackrel{*}{\longrightarrow} LXXXXXXXXR \stackrel{*}{\longrightarrow} aaaaaaaa. \end{array}$

Il linguaggio L(G) è l'insieme $\{a^{2^n} \mid n \geq 0\}$.

2.8. Esercizio 08

Modificate la grammatica dell'esercizio 07 in modo da ottenere una grammatica di tipo 1 che generi lo stesso linguaggio.

Modificando la regola $LB \longrightarrow L$ in $LB \longrightarrow CRL$ la grammatica diventa di tipo 1.

2.9. Esercizio 09

Dimostrate che la grammatica $G = (\{A, B, S\}, \{a, b\}, P, S)$, con l'insieme delle produzioni Pelencate sotto, genera il linguaggio $\{w \in \{a,b\}^* \mid \forall x \in \{a,b\}^* w \neq xx\}$:

- $S \longrightarrow AB \mid BA \mid A \mid B$
- $A \longrightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$
- $B \longrightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$

Consideriamo in primo luogo i "casi base":

- $S \longrightarrow A \longrightarrow a$ va bene perché di lunghezza dispari;
- $S \longrightarrow B \longrightarrow b$ va bene perché di lunghezza dispari;
- $S \longrightarrow AB \stackrel{*}{\longrightarrow} ab$ va bene perché $a \neq b$;
- $S \longrightarrow BA \stackrel{*}{\longrightarrow} ba$ va bene perché $b \neq a$.

Consideriamo poi $S \longrightarrow A \mid B$:

$$S \longrightarrow A \longrightarrow aAa \xrightarrow{*} a^n Aa^n \longrightarrow a^n aa^n;$$

$$aAa \xrightarrow{*} ab^n Ab^n a \longrightarrow ab^n ab^n a;$$

$$aAa \xrightarrow{*} a\{a,b\}^n A\{a,b\}^n a \longrightarrow a\{a,b\}^n a\{a,b\}^n a;$$

$$aAb \xrightarrow{*} \dots.$$

$$S \longrightarrow B \longrightarrow aBa \xrightarrow{*} a^n Ba^n \longrightarrow a^n ba^n;$$

$$aBa \xrightarrow{*} ab^n Bb^n a \longrightarrow ab^n bb^n a;$$

$$aBa \xrightarrow{*} a\{a,b\}^n B\{a,b\}^n a \longrightarrow a\{a,b\}^n b\{a,b\}^n a;$$

$$aBb \xrightarrow{*} \dots.$$

Tutte le stringhe che vengono generate vanno bene perché sono di lunghezza dispari.

Consideriamo infine $S \longrightarrow AB \mid BA$ in due casi:

- se eseguiamo su A e B lo stesso numero di passi di derivazione abbiamo altri due casi:
 - usiamo regole con lo "stesso contesto", ma alla fine avremo un carattere diverso nella posizione dove sono presenti A e B;
 - usiamo regole con "diverso contesto", ma la prima regola che rispecchia questa casistica ha almeno un carattere diverso (oltre ad avere il carattere in *A* e *B* diverso alla fine della derivazione);
- se eseguiamo su A e B un numero diverso di passi di derivazione, abbiamo due punti di partenza:
 - partiamo da AB e indichiamo con n la lunghezza della stringa derivata da A e con k la lunghezza della stringa derivata da B, con k > n. Per ottenere due stringhe della stessa lunghezza devo rimuovere da k un numero $\frac{n-k}{2}$ di caratteri e appenderli a n, ottenendo due stringhe di lunghezza t. Prima dell'ultimo passo di derivazione di A la variabile A era in posizione $\frac{n-1}{2}$, mentre ora si trova in posizione $\frac{t-1}{2} \frac{n-k}{4}$ perché prima mi devo prima posizionare nel "nuovo centro" e poi mi devo spostare di una posizione indietro ogni due caratteri che avevo aggiunto. Facciamo lo stesso ragionamento per trovare l'indice dell'ultima B di B. Le due posizioni trovate sono le stesse, ma prima dell'ultima derivazione in A si aveva una A e in B si aveva una B, che però generano rispettivamente a e b, quindi otteniamo due stringhe che sono sempre diverse.
 - partiamo da BA e facciamo lo stesso discorso, basta invertire l'ordine delle stringhe.

Abbiamo quindi dimostrato che $L(G) = \{w \in \{a,b\}^* \mid \forall x \in \{a,b\}^* w \neq xx\}.$

3.1. Esercizio 01

Costruite un automa a stati finiti che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{a,b\}$ nelle quali ogni a é seguita immediatamente da una b.

3.2. Esercizio 02

Costruite un automa a stati finiti che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{4,5\}$ che, interpretate come numeri in base 10, rappresentano numeri interi che *non sono* divisibili per 3.

3.3. Esercizio 03

Costruite un automa a stati finiti deterministico che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{0,1\}$ che, interpretate come numeri in notazione binaria, denotano multipli di 4.

Utilizzando il non determinismo si riesce a costruire un automa con meno stati? Generalizzate l'esercizio a multipli di 2k, dove k>0 é un intero fissato.

Utilizzando il non determinismo utilizziamo ancora 4 stati.

Generalizzando a multipli di 2k, con k > 0, abbiamo:

- per il DFA 2^k stati;
- per il NFA k+2 stati.

3.4. Esercizio 04

Costruite un automa a stati finiti che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{0,1\}$ che, interpretate come numeri in notazione binaria, rappresentano multipli di 5.

4.1. Esercizio 01

Considerate il linguaggio

 $L = \{w \in \{a, b\}^* \mid \text{il penultimo e il terzultimo simbolo di } w \text{ sono uguali}\}.$

Costruite un automa a stati finiti deterministico che accetta L.

Costruite un automa a stati finiti non deterministico che accetta L.

Dimostrate che per il linguaggio L tutte le stringhe di lunghezza 3 sono distinguibili tra loro.

	aaa	aab	aba	abb	baa	bab	bba	bbb
aaa	1	a	ε	ε	ε	ε	a	aa
aab	-	-	ε	ε	ε	ε	bb	b
aba	-	-	-	b	a	aa	ε	arepsilon

abb	1	ı	ı	ı	aa	b	ε	ε
baa	-	1	1	1	1	a	ε	ε
bab	-	-	-	-	-	-	arepsilon	ε
bba	-	-	-	-	-	-	-	a
bbb	-	-	-	-	-	-	-	-

Dimostrate che per il linguaggio L la parola vuota é distinguibile da tutte le stringhe di lunghezza 3.

	aaa	aab	aba	abb	baa	bab	bba	bbb
ε	ε	ε	ab	a	a	ba	ε	ε

Utilizzando i risultati precedenti, ricavate un limite inferiore per il numero di stati di ogni automa deterministico che accetta L.

L'insieme $X = \left\{w \in \left\{a,b\right\}^+ \mid |w| = 3\right\}$ é un insieme di parole tutte distinguibili tra loro rispetto al linguaggio L, come dimostrato nei punti precedenti, quindi ogni DFA per L deve avere almeno |X| stati, ovvero almeno 8 stati.

4.2. Esercizio 02

Costruite un insieme di stringhe distinguibili tra loro per ognuno dei seguenti linguaggi:

- $\bullet \ L_1 = \big\{ w \in \{a,b\}^* \mid \#_a(w) = \#_b(w) \big\},$
- $L_2 = \{a^n b^n \mid n \ge 0\},\$
- $L_3 = \{ww^R \mid w \in \{a,b\}^*\}$ dove, per ogni stringa w,w^R indica la stringa w scritta al contrario.

$$X_1 = \{\varepsilon, a, b, ab\}.$$

 X_2 ha cardinalità infinita.

 X_3 ha cardinalità infinita.

Per alcuni di questi linguaggi riuscite ad ottenere insiemi di stringhe distinguibili di cardinalità infinita? Cosa significa ciò?

I linguaggi che hanno insiemi di stringhe distinguibili di cardinalità infinita sono linguaggi non di tipo 3.

4.3. Esercizio 03

Considerate l'automa di Meyer e Fischer M_n presentato nella Lezione 4 (caso peggiore della costruzione per sottoinsiemi) e mostrato nella seguente figura:

Descrivete a parole la proprietà che deve soddisfare una stringa per essere accettata da M_n . Riuscite a costruire un automa non deterministico, diverso da M_n , per lo stesso linguaggio, basandovi su tale proprietà?

Non lo so fare.