COLLOQUIUM MATHEMATICUM

VOL . LXVI

1 993

FASC.1

SQUARE LEHMER NUMBERS

 $_{
m BY}$

WAYNE L. M C D A N I E L (ST. LOUIS, MISSOURI)

1. Introduction. Let R and Q be relatively prime integers, and α and β denote the zeros of $x^2 - \sqrt{Rx} + Q$.

In 1930, D. H. Lehmer [4] extended the arithmetic theory of Lucas sequences by defining $u_n = (\alpha^n - \beta^n)/(\alpha - \beta)$ and $v_n = \alpha^n + \beta^n$ for $n \ge 0$. If R is a perfect square, $\{u_n\}$ and $\{v_n\}$ are Lucas sequences and "associated" Lucas sequences, respectively. If R is not a square, then u_{2n+1} and v_{2n} are integers, while u_{2n} and v_{2n+1} are integral multiples of \sqrt{R} . If one defines

$$U_n = U_n(\sqrt{R}, Q) = \begin{cases} (\alpha^n - \beta^n)/(\alpha - \beta) & \text{if } n \text{is odd,} \\ (\alpha^n - \beta^n)/(\alpha^2 - \beta^2) & \text{if } n \text{is even,} \end{cases}$$
(1)

and

$$V_n = V_n(\sqrt{R}, Q) = \begin{cases} (\alpha^n + \beta^n)/(\alpha + \beta) & \text{if } n \text{ is odd,} \\ \alpha^n + \beta^n & \text{if } n \text{ is even,} \end{cases}$$
 (2)

then $\{U_n\}$ and $\{V_n\}$ are seen to be the sequences $\{u_n\}$ and $\{v_n\}$ with the \sqrt{R} factor in u_{2n} and v_{2n+1} suppressed, and are therefore integer sequences. The sequences $\{U_n\}$ and $\{V_n\}$ are known as Lehmer and "associated" Lehmer sequences, respectively.

In this paper , we examine these sequences for the existence of p erfect square t erms and terms which are twice a perfect square . Using congruences , with extensive reliance upon the Jacobi symbol , we determine that the square t erms of those Le $line-h_{\rm mer}$ sequences $\{U_n(\sqrt{R},Q)\}$ for which R is odd and $Q-line\equiv 3\pmod 4$, and $line-f_{\rm or}$ which $Q\equiv R\equiv 5\pmod 8$, may occur

only for n=0,1,2,3,4 or 6. We obtain a similar result for the associated Lehmer $\{ V_n \{ V_n(R,Q) \} \}_{n=0}^{(\sqrt{R},Q)} \}$ and corresponding results for the sequences

Interest in the factors of $U-line_n$ and V_n began with Lehmer [4] who described the divisors of U_n and V_n and gave their forms in terms of n. In 1983

 $\text{Rotkiewicz}_{\text{Lehmersequence}}^{\text{[7]}} \overset{\text{used}}{\overset{\text{Lehmersequence}}{\overset{\text{Lehmersequence}}{\overset{\text{local}}}{\overset{\text{local}}{\overset{\text{local}}}{\overset{\text{local}}{\overset{\text{local}}}{\overset{\text{local}}{\overset{\text{local}}{\overset{\text{local}}{\overset$

on R and Q are satisfied. Each of Rotkiewicz's results involves $R\equiv 3\pmod 4, Q\equiv 0\pmod 4$, or $R\equiv 0\pmod 4, Q\equiv 1\pmod 4$, and in either

case it is shown that the term U_n is not a square if n is odd and not a square, or n is an even integer, not a power of 2, whose greatest odd prime factor does not divide $\Delta = R - 4Q^2$.

The problem of determining the square t erms when R is a p erfect square, i. e. , in Lucas sequences and associated Lucas sequences , has been solved in certain cases: When $Q=\pm 1$, and $\sqrt{R}=P$ is odd or has certain even values [1] [2], [3], and recently [6] for all Lucas sequences for which Pand Q are odd. The previously mentioned paper by Rotkiewicz contains a partial solution for the Lucas sequence with P even and $Q \equiv 1 \pmod{4}$.

results. From the definition of α and β , Preliminary $Q = \alpha \beta, R = (\alpha + \beta)^2$ and we define $\Delta = R - 4Q = (\alpha - \beta)^2$. It follows readily from (1) that $U_0 = 0, U_1 = 1, V_0 = 2, V_1 = 1$, and these recurrence relations hold for $n \geq 2$:

$$U_{n+2} = \begin{cases} RU_{n+1} - QU_n & \text{if } n \text{is odd,} \\ U_{n+1} - QU_n & \text{if } n \text{is even,} \end{cases}$$
 (3)

$$U_{n+2} = \begin{cases} RU_{n+1} - QU_n & \text{if } n \text{is odd,} \\ U_{n+1} - QU_n & \text{if } n \text{is even,} \end{cases}$$

$$V_{n+2} = \begin{cases} V_{n+1} - QV_n & \text{if } n \text{is odd,} \\ RV_{n+1} - QV_n & \text{if } n \text{is even.} \end{cases}$$

$$(3)$$

The definitions of U_n and V_n can be extended to n negative : (1) and (2)immediately imply that $U_{-n} = -U_n/Q^n$ and $V_{-n} = V_n/Q^n$; we see easily that if $n \neq 0$, $\gcd(U_n,Q)=\gcd(V_n,Q)=1$, so U_{-n} and V_{-n} are integers only when $Q=\pm 1$. We shall require the following properties which hold for all n and all integers R and Q, except as noted:

(5) If R and Q are odd and $n \geq 0$, then U_n is even iff $3 \mid n$ and V_n is even iff $3 \mid n$.

$$U_{2n} = U_n V_n$$
 and $V_{2n} = \begin{cases} RV_n^2 - 2Q^n & \text{if } n \text{is odd,} \\ V_n^2 - 2Q^n & \text{if } n \text{is even.} \end{cases}$

$$(6)$$

$$U_{3n} = \begin{cases} U_n(RV_n^2 - Q^n) = U_n(\Delta U_n^2 + 3Q^n) & \text{if } n \text{is odd,} \\ U_n(V_n^2 - Q^n) = U_n(R\Delta U_n^2 + 3Q^n) & \text{if } n \text{is even.} \end{cases}$$

$$(7)$$

$$V_{3n} = \begin{cases} V_n(RV_n^2 - 3Q^n) & \text{if } n \text{isodd,} \\ V_n(V_n^2 - 3Q^n) & \text{if } n \text{iseven.} \end{cases}$$

$$(8)$$

 $2U_{m\pm n} = \{U_m V_{\pm n} + U_{\pm n} V_m^{U_m V_{\pm n} + RU_{\pm n} V_m}{}_{RU_m V_{\pm n} + U_{\pm n} V_m} \quad \text{if if } m_m^m \text{and} n \text{have the same isodd and } n \text{is even and }$

 $2V_{m\pm n} = \{RV_mV_{\pm n} + \Delta U_mU_{\pm n}^{U_mV_{\pm n} + R\Delta U_mU_{\pm n}} V_{mV_{\pm n} + \Delta U_mU_{\pm n}} \quad \text{if} \\ \text{if} \\ \text{if} \\ m_m \\ \text{and} \\ n_n \\ \text{areodd, } \\ \text{have opposite parity,} \\ \text{are } \\ \text{the } \\$

(11) If $j = 2^u k, u \ge 1, k \text{ odd }, k > 0, \text{ and } m > 0, \text{ then }$

$$(a)U_{2i+m} \equiv -Q^j U_m \pmod{V_{2u}},$$

(b)
$$U_{2j-m} \equiv Q^{j-m}U_m \pmod{V_{2u}}$$
 if $j \ge m$,

$$(c)V_{2j+m} \equiv -Q^j V_m \pmod{V_{2u}},$$

(d) $V_{2j-m} \equiv -Q^{j-m}V_m$ (mod V_{2u}) if $j \geq m$.

If $d = \gcd(m, n)$, then $\gcd(U_m, U_n) = U_d$. (13) If $d = \gcd(m, n)$, then $\gcd(V_m, V_n) = V_d \text{ if } m/d \text{ and } n/d \text{ are odd}, \text{ and } 1 \text{ or } 2 \text{ otherwise}.$

(14) If $d = \gcd(m, n)$, then $\gcd(U_m, V_n) = V_d$ if m/d is even, and 1 or 2 otherwise

Properties (5) through (10) are proven precisely as

quences ((6) through (10) are immediately verifiable using (1) and (2)), and (12) is well-known. Property (11) follows readily from (6), (9), (10) , (13)

and (14). Properties (13) and (14) are proven in [5].

We list, for reference purposes, the first few values of U_n and V_n : $U_0 = 0$,

$$U_1 = 1, U_2 = 1, U_3 = R - Q; V_0 = 2, V_1 = 1, V_2 = R - 2Q, V_3 = R - 3Q.$$

3 . Some preliminary lemmas. For the remainder of the paper , it i s assumed that R and Q are relatively prime odd integers, R is positive and not a square, and that $\Delta = R - 4Q > 0$. (The latter condition assures that

$$U_n > 0$$
 and $V_n > 0$ for $n > 0$.)

Lemma 1. Let m be an odd positive integer and $u \ge 1$.

(a) If
$$3 \mid m$$
, then $V_{2n} \equiv \pm 2 \pmod{8}$.

(a) If
$$3 \mid m$$
, then $V_{2u_m} \equiv \pm 2 \pmod{8}$.
(b) If $3 \nmid m$, then $V_{2u_m} \equiv \begin{cases} -1 \pmod{8} & ifu > 1, \\ R - 2Q \pmod{8} & ifu = 1. \end{cases}$
Proof. (a) If $3 \mid m$, then by (5) and (6), $V_{2m} = RV_m^2 - 2Q^m \equiv -2Q$ or $Q = \pm 2$ (read 8), and the result is impredicted by induction

 $4R - 2Q \equiv \pm 2 \pmod{8}$, and the result is immediate by induction.

(b) If $3 \nmid m$, then $V_{2m} = RV_m^2 - 2Q^m \equiv R - 2Q \pmod{8}$ is odd , so

 $V_{4m} = V_{2m}^2 - 2Q^{2m} \equiv -1 \pmod{8}$, and the result for V_{2u_m} follows by

It is also readily shown by induction on u that (15) $V_{2u} \equiv -Q^{2^{u-1}} \pmod{V_3}$ if u > 1, and

$$V_{2u} \equiv -Q^{2^{u-1}} \pmod{U_3} \quad \text{if } u \ge 1. \tag{16}$$

Lemma 2. Let $t > 0, m \ge 0,$ and 12t - m > 0.(i) $V_{12t+m} \equiv V_m \pmod{8}$ and $V_{12t-m} \equiv Q^m V_m \pmod{8}$, (ii) $U_{12t+m}\equiv U_m$ (mod 8) and $U_{12t-m}\equiv -Q^mU_m$ (mod 8) . Proof. (i) By repeatedly using (4), we obtain

$$V_{6+m} = a_0 V_{1+m} + a_1 V_m,$$

 $88 \qquad \text{W.L.M C DANIEL}$

where $a_0=(R-Q)(R-3Q)$ if m is odd , $a_0=R(R-Q)(R-3Q)$ if m is even , and $a_1=-Q(R^2-3QR+Q^2)$. For all odd R and Q, $a_0\equiv 0$ (mod 8) , so $V_{6+m}\equiv a_1V_m$ (mod 8) , and it readily follows by induction that $V_{6r+m}\equiv ar_1V_m$ (mod 8) , for $r\geq 1$. Upon letting r=2t, we have the first congruence of (i) , since a_1 i s odd , and the second congruence of (i) i s readily

establishedusing
$$V_{-n} = V_n/Q$$

(ii) The proof of (ii) is similar to that of (i).

LEMMA 3. If u > 1, the Jacobi symbol $J = (V_3 \mid V_{2u})$ equals +1.

Proof. Since V_{2u} is odd, $\gcd(V_3, V_{2u}) = 1$ so $(V_3 \mid V_{2u})$ is defined. Let $V_3 = 2^e N$, $e \ge 1$ and N odd. Then $J = (2^e \mid V_{2u})(N \mid V_{2u})$. Since $V_{2u} \equiv -1 \pmod{8}$ for u > 1, $(2^e \mid V_{2u}) = +1$, for all e. Hence, $J = (-1)^{(N-1)/2}(V_{2u} \mid N)$. By (15), $V_{2u} \equiv -Q^{2^{u-1}} \pmod{N}$, so

$$J = (-1)^{(N-1)/2} (-Q^{2^{u-1}} \mid N) = (-1)^{(N-1)/2} (-1)^{(N-1)/2} = +1.$$

Lemma 4. If u > 1, then $(U_3 \mid V_{2u})$ equals +1.

Proof. By (5) and (14), gcd $(U_3, V_{2u}) = 1$, so $(U_3 \mid V_{2u})$ is defined. We let $U_3 = 2^e N, e \ge 1, N$ odd, and proceed as in Lemma 3, using (16), to find

that
$$(U_3 | V_{2u}) = +1$$
.

Lemma 5. If n is a positive integer, then

(i) $3 \mid U_n$ if and only if $3 \mid n$ and $R \equiv Q \not\equiv 0 \pmod{3}$, or $4 \mid n$ and

(mod3), and
$$R \equiv 2Q$$

(ii) $3 \mid V_n$ if and only if n is odd , $3 \mid n$ and $R \equiv 0 \pmod{3}$, or $n \equiv 2 \pmod{4}$ and $R \equiv 2Q \pmod{3}$.

P r o o f . Assume n>0 is odd . We note first that if $3\mid Q$, then $3\nmid U_n$ and $3\nmid V_n$, since gcd $(U_n,Q)=\gcd(V_n,Q)=1$. Assume $3\nmid Q$. Then either $R\equiv 0$ (mod 3), $R\equiv Q\pmod 3$, or $R\equiv 2Q\pmod 3$.

(i) If
$$R \equiv 0 \pmod{3}$$
,

$$U_n = RU_{n-1} - QU_{n-2} \equiv -QU_{n-2} \equiv (-Q)^2 U_{n-4}$$

 $\equiv \dots \equiv (-Q)^{(n-1)/2} U_1 equivalence - negations lash 0 \pmod{3}.$

If $R\equiv Q\pmod 3$, then 3 divides $U_3=R-Q$, and it follows from (1 2) that 3 | U_n iff 3 | n. And , if $R\equiv 2Q\pmod 3$, then 3 divides $U_4=U_2V_2=R-2Q$ and , since by (1 2), gcd $(U_4,U_n)=U_1,U_2$ or $U_4,3\mid U_n$ iff 4 | n.

(ii) If $R \equiv 0 \pmod{3}$, then $V_3 = V_1(RV_1^2 - 3Q) \equiv 0 \pmod{3}$ and by (1 3), $\gcd{(V_3,V_n)}$ is divisible by 3 iff n is an odd multiple of 3. If $R \equiv Q \pmod{3}$, then $3 \mid U_3$; however, by (14), $\gcd{(U_3,V_n)}$ is 1 or 2 for all n, so $3 \nmid V_n$. If $R \equiv 2Q \pmod{3}$, then 3 divides $V_2 = R - 2Q$ and again, by (1 3), $\gcd{(V_2,V_n)}$ is divisible by 3 iff n is an odd multiple of 2.

4. Squares in $\{U_n\}$ and $\{V_n\}$. In this line-s-line ection , we use for the words "a square".

Lemma 6. Let n be a positive odd integer.

- (i) If $Q\equiv 3$ (mo line -d-line 4), then $U_n=$ if and o line -line-n l y-line if n=1, or n=3 an line -line-d R-Q= , and $U_n=2$ if and only if n=3 and R-Q=2 .
- (ii) If $Q \equiv 1 \pmod{4}$, then $V_n = if$ and only if n = 1, or n = 3 and

R-3Q = , and $V_n = 2$ if and only if n = 3 and R-3Q = 2

Proof. (i) Assume $Q\equiv 3\pmod 4$ and n>0 is odd. We note that

 $U_1=1=\neq 2$ and clearly, U_3 equals or 2 iff R-Q= or 2. Assume n>3 and let $n=2j+m, j=2^uk, u\geq 1, k \text{ odd }, k>0$, and m=1

Table ignored!

wehave(
$$\lambda \mid V_{2u}$$
) = +1.

$$\lambda U_{2j+m} \equiv -\lambda Q^j U_m \pmod{V_{2u}}.$$

Now, $\lambda U_n = \text{only if the Jacobi symbol } (-\lambda Q^j U_m \mid V_{2u}) \text{ is } +1.$ However, if u > 1, then $(-\lambda Q^j U_m \mid V_{2u}) = (\lambda \mid V_{2u})(-U_m \mid V_{2u}) \text{ is clearly } -1 \text{ if } m = 1, \text{ and , by Lemma } 4$, is s-1 if m=3. If u=1, then n=4k+m,k odd, implies that $n\equiv -1$ or $-3\pmod 8$; let $n=2i-t, i=2^w r, w\geq 2, r \text{ odd and } t=1 \text{ or } 3$. By (1 1 b),

$$\lambda U_n = \lambda U_{2i-t} \equiv \lambda Q^{i-1} U_1 \text{or} \lambda Q^{i-3} U_3 \pmod{V_{2w}}.$$

Since $Q \equiv 3 \pmod{4}$.

$$(\lambda Q^{i-1}U_1 \mid V_{2w}) = (+1)(Q \mid V_{2w}) = (-1)(V_{2w} \mid Q)$$
$$= -(V_{2w-1}^2 - 2Q^{2^{w-1}} \mid Q) = -1,$$

and, using Lemma 4,

$$(\lambda Q^{i-3}U_3 \mid V - line_{line-twow}) = (\lambda Q^{i-3} \mid V_{2w})(U_3 \mid V_{2w}) = -1.$$

This proves that $\lambda U_n \neq -$ and therefore that $U_n \neq \lambda -$.

(ii) Assume $Q\equiv 1\pmod 4$ and n is a positive odd integer . If n=1, then $V_n=1=\neq 2$, and if n=3, then $V_n=R-3Q$ could be or 2 . If n>3, let $n=2j+m, j=2^uk, u\geq 1, k$ odd ,k>0, and m=1 or 3 . As in (i) , let $\lambda=1$ or 2 . By (1 1 c) ,

$$\lambda V_{2j+m} \equiv -\lambda Q^j V_m \pmod{V_{2u}}.$$

We see from Lemma 1 that if u > 1, then $V_{2u} \equiv -1 \pmod{8}$; hence, in this case, if m = 1, then $J = (-\lambda Q^j V_m \mid V_{2u}) = -1$, and if m = 3, then, by Lemma 3, J = -1. If u = 1, then n = 4k + m with k odd, so $n \equiv -1$ or -3 (mod 8); let n = 2i - t, $i = 2^w r$, $w \geq 2$, r odd and t = 1 or 3. By (1 1 d),

$$\lambda V_n = \lambda V_{2i-t} \equiv -\lambda Q^{i-t} V_t \equiv -\lambda Q^{i-1} V_1 \text{or} \quad -\lambda Q^{i-3} V_3 \pmod{V_{2w}}.$$

$$(-\lambda Q^{i-1}V_1 \mid V_{2w}) = -(\lambda \mid V_{2w})(Q \mid V_{2w}) = -(V_{2w} \mid Q) = -1,$$

and, using Lemma 3,

$$(-\lambda Q^{i-3}V_3 \mid V_{2w}) = -(Q \mid V_{2w})(V_3 \mid V_{2w}) = (-1)(+1) = -1,$$

so $\lambda V_n \neq$, and therefore $V_n \neq \lambda$. Theorem 1 . Let $n \geq 0$. If $Q \equiv 1 \pmod 4$ and $R \equiv 1,5,$ or 7 (mod 8),

or $Q \equiv 3 \pmod{4}$ and $R \equiv 1 \pmod{8}$ parenright - line - line then $V_n = iff$ n=1,

andR - 3Q =

Proof. If n is even, then $V_n = \text{only if } V_n \equiv 0, 1, 4 \pmod{8}$, and by Lemma 1 this is possible for Q and R odd only if $R-2Q\equiv 1\pmod 8$. Hence, for $Q \equiv 1 \pmod{4}$ and $R \equiv 1, 5, \text{ or } 7 \pmod{8}$, or for $Q \equiv 3 \pmod{4}$ and $R \equiv 1, 3, \text{ or } 5 \pmod{8}, V_n \neq$

Assume n is odd. If $Q \equiv 1 \pmod{4}$ and $R \equiv 1, 5, \text{ or } 7 \pmod{8}$, the theorem is true by Lemma 6.

Assume $Q \equiv 3 \pmod{4}$ and $R \equiv 1 \pmod{8}$. If n = 1, then $V_n = V_1 = 1$ 1= , and if n=3, then $V_n=V_3=R-3Q$ is a square iff R-3Q is a square . Let $n=2j+m, j=2^uk, u\geq 1, k \text{ odd }, k>0,$ and m=1 or 3 . Then

$$V_{2i+m} \equiv -Q - line^j V_m \equiv -Q^j V_1 \text{ or } -Q^j V_3 \pmod{V_{2i}}.$$

By Lemma 1, $V_{2u} \equiv -1 \pmod{8}$ for u > 1 and $V_2 = R - 2Q \equiv 3 \pmod{4}$. Hence , $(-Q^jV_1 \mid V_{2u}) = -1$ if $u \ge 1$ and by Lemma 3, $(-Q^jV_3 \mid V_{2u}) = -1$ if u > 1. That is $V_n \ne 0$ if v = 1 if v = 1 for v = 1, v = 1, v = 1 for v = 1.

It remains to show that $V_n \neq \text{if } n = 4k+3, k \text{ odd}$. In this case , $n \equiv -5, -1$ or $3 \pmod{1}$. By Lemma 2,

$$V_{12t-5} \equiv Q^5 V_5 \equiv Q(R^2 - 5RQ + 5Q^2) \equiv 5 \pmod{8}$$

and

$$V_{12t-1} \equiv QV1 \equiv 3\text{or}7 \pmod{8},$$

 $V_n \neq \text{in each case}$. If $n \equiv 3 \pmod{12}$, we and it is clear that write $n = 3^e h, e \ge 1, h \text{ odd } 3 \nmid h$. By using (8) repeatedly, we have

$$V_{3eh} = V_3 j_h \cdot \prod (RV_{3^i h}^2 - 3Q^{3^i h}),$$

$$i = j$$

Table ignored!

 $3Q^{3^ih}$)) is 1 or a power of 3. Hence, $V_{3eh} =$ only if $V_3 j_h =$ for $0\leq j\leq line-e-1, \quad \text{and}$, in particular , $\ V_h=\text{or}\ 3$. However , we have just shown that , for h not divisible by $3, V_h=$ only if h=1, and , by Lemma 5 ,

. $V_h \neq 3$

Taking h=1, we have $V_n=V_{3e}=$ only if $V_3j=$ or 3 , for

j=1,...,u-1. Now , since gcd $(^{R-line-line},R^2-3Q)=1$ or $3,=V_3=R(R^2-3Q)$ is possible only if R= or 3 . However , R is not a square , by assumption , and $R\neq 3$ since $R\equiv 1\pmod 8$. It follows that $-\mathrm{line}V_{3e}\neq -\mathrm{for}\ e\geq 1$, proving that $V_n=$ if and only if n=1.

Theorem 2. Let $n \geq 0$ and $Q \equiv 3 \pmod{4}$, or $Q \equiv 5 \pmod{8}$ and $R \equiv 5 \pmod{8}$. Then $U_n = \textit{iff}$

(i) $n = 0, 1, 2, \text{ or } n = 3 \text{ and } R - Q = \text{ , or } n = 4 \text{ and } R - 2Q = \text{ , or } (\text{ ii}) n = 6, R - Q = 2 \text{ and } R - 3Q = 2 \text{ (this implies } Q - line \equiv 3 \text{ (mod } 4 \text{) , }$

(mod8parenright – line).
$$R \equiv Q$$

Proof. That $U_n = \text{if (i) holds i s obvious}$. Suppose n > 4.

C as e 1: n odd and $n \ge 5$. Assume that $U_n = .$ If $Q \equiv 3 \pmod 4$, then $U_n \ne .$ by Lemma 6. Assume that $Q \equiv R \equiv 5 \pmod 8$ and let n = 2j plus - linem, where j and m are defined as in the proof of Theorem 1. Then

$$U_{2i+m} \equiv -Q^j U_m \equiv -Q^j U_1 \text{ or } -Q^j U_3 \pmod{V_{2u}},$$

and exactly as in the proof of Theorem 1 (and using Lemma 4), we have $U_n \neq$ except possibly if n=4k+3,k odd.

If n = 4k + 3, k odd , then $n \equiv -5$, -1 or $3 \pmod{1}$, and by Lemma 2 ,

$$U_{12t-5} \equiv -Q^5 U_5 \equiv -Q(R^2 - 3RQ + Q^2) \equiv 5 \pmod{8}$$

and

$$U_{12t-1} \equiv -QU1 \equiv 3 \pmod{8};$$

it is clear that $U_n \neq 0$ in each case. If n = 12t + 3, we write $n = 3^e h, e \geq 1$, h odd $0, 3 \nmid h$. By using (7) repeatedly, we have

$$e-1$$

$$U_{3eh} = U_{3}j_{h} \cdot \prod (\Delta U_{3^{i}h}^{2} line - plus - line 3Q^{3^{i}h}),$$

$$i = i$$

for $0 \le j \le e-line-one$. By an argument essentially identical to that in Theorem 1 , we see that $U_{3eh} = \text{ only if } U_3 j_h = \text{ or } 3 \text{ for } 0 \le j \le e-1, \text{ and },$ in particular , $U_h = \text{ or } 3$. We just showed above that for h not divisible by $3, U_h =$

92 W.L.M.C.DANIEL

C as e 2: n even. Assume n > 4 and $U_n = 0$, and let $n = 2^u m, u \ge 1, m$ odd. By rep eated application of (6), we have

$$U_{2u_m} = U_2 j_m V_2 j_m^{V-line-line} \text{two} - \text{line} j + 1_m \dots V_{2u-} 1_m, \quad \text{for} 0 \leq j \leq u-1.$$

Now , by (1 3) and (14), g – line cd $(U_2j_m,V_2j_m)=1$ or 2 , and gcd $(V_2j_m,V_2i_m)=1$ or 2 for $i\neq j$. Hence , gcd $(U_2j_m,V_2j_m...V_{2u-}$ one – line $_m$) is line – e qual t o 1 or a power of 2 , and gcd $(V_2j_m,U_2j_mV_2j+1_m...V_{2u-}1_m)=1$ or a power of 2 . It follows that $U_2j_m=$ or 2 and $V_2j_m=$ line – o_r2 for $0\leq j\leq u-1$. In particular , $U_m=$ or 2 and $V_m=$ or 2 . If $Q\equiv 3\pmod 4$, then , by Lemma 6 and Case 1 above , $U_m=$ or 2 only if m=1 or m=3, and if $Q\equiv 1\pmod 4$ then , by Theorem 1 and Lemma 6, $V_m=$ or r – line 2 only if m=1 or m=3.

We assume now that $Q\equiv 3\pmod 4$ or $Q\equiv R\equiv 5\pmod 8$. If m=1, $U_2j_m=U_2j$ is odd, so $U_2j\neq 2$. If j=1, then $U_2j=U_2=1=$, and, if j=2, then $U_4=R-2Q$ could be a square if R______ $\equiv 3\pmod 4$. If j=3, then $U_2j=U_8=U_4V_4$ is not a square since $\gcd(U_4,V_4)=1$ and $V_4\neq 0$ by Lemma 1. Hence, if m=1, the n-1- if and only if n=2 or n=4 and

R-2Q=

If m=3, we show first that $U_{24}\neq$ or 2, implying that $u\leq 2$. Now, by (7), $U_{24}=U_8(R\Delta U_8^2+3Q^8)$. Since gcd $(U_8,Q)=1$, gcd $(U_8,R\Delta U_8^2+3Q^8)=1$ or 3. If $U_{24}=$ or 2, then since by (5), U_8 is odd, we have

or3; however, $U_8 \neq U_8 =$

Table ignored!

for h even by Theorem 1 and $3line - line = V_h \equiv R - 2Q \pmod{8}$, by L e - line mma 1,

and this is not possible for $Q \equiv 1 \pmod{4}$ and $R \equiv 1$ or 7 $\pmod{8}$. Theorem 4. Let $n \geq 0$ and $Q \equiv 3 \pmod{4}$. Then $U_n = 2$

$$(i)n = 0,$$

(ii)
$$n=3$$
 and $R-Q=2$. or

(ii) n=3 and R-Q=2 , or and R-Q=0 or 2 and R-3Q=0 or

We omit the proof, since the argument is similar to those of the preceding theorems

We remark, in closing, that it appears likely that a different approach may be required to prove the theorems of this paper for additional values of Q and R. difficulty in obtaining the result for the remaining values is related, primarily, t o the failure of Lemma 1 t o hold for those additional values, and this lemma played a key role in our proofs.

REFERENCES

- [1]J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153 - 166.
- ---, Five Diophantine equations , Math . Scand . 2 1 (1 967) , 61 70 .
- ---, Squares in some recurrent sequences , Pacific J. Math. (3) 41 (1972), 63 1 - 646 .
- [4] D. H. Lehmer, An e x-t ended theory of Lucas' functions, Ann. of Math. 31 (1930), 419 - 448.
- [5] W.L.McDaniel, The g . c . d . in Lucas sequences and Lehmer number sequences ,

Fibonacci Quart . 29 (1 99 1) ,
$$24-29$$
 .

- [6] W. L. McD aniel and P. Ribenboim, The square terms in Lucas sequences,
- A . Rot k i ew i c z , Applications of Jacobi 's symbol to Lehmer 's numbers appear. [7] , Acta Arith .

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

UNIVERSITY OF MISSOURI - ST . LOUIS

 ST . LOUIS , MISSOURI 6 3 1 2 1 - 449 9

U . S . A .

E - mail : MCDANIEL @ ARCH . UMSL . EDU

Re cedilla - c u par la R é daction le 2 . 1 2 . 1 991; en version modifi \acute{e} e le 10.8.1992 et 4.3.1993