Elementi di calcolabilità e complessità

🗘 matteogiorgi.github.io

a.a. 2020

Beep-boop

Queste note sono state redatte dal sottoscritto durante le lezioni del corso di *Elementi di calcolabilità e complessità* tenuto dal prof. Pierpaolo Degano con l'ausilio del dott. Giulio Masetti per l'anno accademico 2019-2020.

Il materiale usato per la stesura, oltre alle note distribuite dal professore, comprende, in maniera più o meno estensiva, i seguenti testi:

- M. Sipser Introduction to the theory of computation
- R.G. Taylor Models of computation and formal languages
- N.J. Cutland Computability, introduction to recursive function theory
- A. Bernasconi, B. Codenotti Introduzione alla complessità computazionale
- G. Ausiello, F. D'Amore, G. Gambosi Linguaggi, modelli, complessità

Algoritmi e macchine

Idea intuitiva di algoritmo

Il punto di partenza della teoria della calcolabilità è l'esigenza di formalizzare l'idea intuitiva di funzione calcolabile da un algoritmo, ovvero di funzione algoritmica¹.

Si può dire che un algoritmo sia un procedimento di calcolo che consente di pervenire alla soluzione di un problema, numerico o simbolico, mediante una sequenza finita di operazioni, completamente e univocamente determinate: una serie di istruzioni la cui esecuzione consente di trasformare l'insieme finito di dati simbolici che descrivono il problema, nella soluzione del problema stesso.

Caratteristiche distintive²

- 1. l'insieme delle istruzioni che definisce l'algoritmo è finito
- 2. l'insieme delle informazioni che rappresentano il problema
 - ha cardinalità finita
 - ha un effetto limitato su dati discreti
 - è descritta da dati finiti
- 3. il procedimento di calcolo (o *computazione*) è suddiviso in passi discreti e non fa uso di dispositivi analogici
- 4. ogni passo di computazione dipende solo dai precedenti e da una porzione finita dei dati in modo deterministico (è determinato senza ambiguità non è soggetto ad alcuna distribuzione probabilistica non banale)
- 5. non c'è limite al numero di passi necessari all'esecuzione di un algoritmo, nè alla memoria richiesta per contenere i dati iniziali, intermedi e finali

In conclusione, una procedura algoritmica riceve in ingresso una descrizione finita dei dati del problema e restituisce, dopo un tempo finito, una descrizione finita del

¹la nozione di funzione algoritmica sarà poi formalizzata dal concetto di funzione ricorsiva

 $^{^2\}mathrm{pu}\grave{\mathrm{o}}$ essere utile aggiungere una ulteriore caratteristica a quelle elencate dal prof: esiste un agente di calcolo in grado di eseguire le istruzioni (un calcolatore)

risultato. La sua natura deterministica fa sì che l'algoritmo fornisca sempre lo stesso risultato ogni volta che riceve in ingresso gli stessi dati: così facendo l'algoritmo stabilisce una relazione funzionale tra l'insieme dei dati e quello dei risultati.

Macchina di Turing

Esattamente come funzioni ricorsive e λ -calcolo, le Macchine di Turing sono un modello di calcolo. Nella sua versione più tradizionale una MdT si presenta come un dispositivo che accede ad un nastro potenzialmente illimitato diviso in celle, ciascuna contenente un simbolo appartenente ad un dato alfabeto Σ (alfabeto della macchina), comprendente i simboli # e \triangleright che denotano rispettivamente l'assenza di informazione nella cella e la marca di inizio stringa.

- la MdT opera tramite un *cursore*, che può scorrere sul nastro in entrambe le direzioni e scrivere i caratteri σ_i appartenenti all'alfabeto Σ
- gli $stati\ q_i$ della macchina appartengono all'insieme finito degli stati Q e identificano istante per istante le informazioni contenute nella computazione

$$\triangleright a \ b \ \dots \ a \ \underline{a} \ b \ \# \ \#$$

• il meccanismo che fa evolvere la computazione della macchina è detta funzione di transizione 3 δ e consente, partendo dallo stato q_x e dal carattere σ_x presente sulla cella puntata dalla testina, di portare la macchina in un altro stato q_y , scrivere un carattere σ_y su tale cella precedentemente occupata da σ_x ed eventualmente spostare la testina (\Leftarrow , \Rightarrow , \equiv)

Def. Una Macchina di Turing è definita formalmente come la quadrupla

$$M = (Q, \Sigma, \delta, q_0)$$

- Q è l'insieme finito degli stati q_i che non contiene lo stato di accettazione h
- ∑ è l'insieme finito dei simboli (alfabeto della macchina) al quale non appartengono i simboli di spostamento ⇐, ⇒, ≡
- $\delta \subseteq (Q \times \Sigma) \times (Q \cup h) \times \Sigma \times \{\Leftarrow, \Rightarrow, \equiv\}$ è la relazione di transizione, tale che il carattere puntato dal cursore non possa mai trovarsi a sinistra di \triangleright
- $q_0 \in Q$ è lo stato iniziale

Potrebbe essere conveniente modificare la definizione di MdT estendendo la quadrupla ad una quintupla togliendo gli stati di accettazione e rifiuto dall'insieme Q, aggiungendoli in un insieme a parte: $M = (Q \setminus \{q_A, q_B\}, \Sigma, \delta, q_0, \{q_A, q_B\})$.

 $^{^3}$ fintanto che verranno trattare MdT deterministiche non è errato considerare δ una funzione piuttosto che una relazione come invece è specificato nella definizione formale

Configurazione, transizione e computazione

Def. Una configurazione (istantanea) C di una MdT è definita dalla quadrupla

$$(q,u,\sigma,v) \in (Q \cup \{h\}) \times \Sigma^* \times \Sigma \times \Sigma^F$$

- q è lo stato corrente
- σ è il simbolo corrente
- u è la stringa di caratteri a sinistra del simbolo corrente
- ullet v è la stringa di caratteri a destra del simbolo corrente

Ne viene intutitivo dedurre che Σ^* rappresenti l'insieme di cardinalità infinita delle stringhe generabili dalla *giustapposizione* (\circ) dei caratteri dell'alfabeto della macchina Σ , mentre Σ^F è più facile a scriversi che a dirsi: $\Sigma^* \circ (\Sigma \setminus \{\#\}) \cup \{\epsilon\}^4$.

In generale una configurazione di una MdT non è altro che la coppia formata dallo stato corrente della macchina più la stringa⁵ rappresentante la situazione sul nastro.

δ come funzione

Alla luce delle definizioni di MdT e configurazione, è importante analizzare meglio la relazione di transizione δ , definita precedentemente come la quadrupla

$$((q_x,\sigma_x),q_y,\sigma_y,D)$$

- (q_x,σ_x) è la coppia stato di partenza, carattere puntato dal cursore
- q_u è lo stato di arrivo
- σ_y è il carattere scritto nella cella precedentemente occupata da σ_x
- D è lo spostamento del cursore (\Leftarrow , \Rightarrow , \equiv)

Adesso è facilmete intuibile che, una macchina nella medesima configurazione di partenza che compie il medesimo spostamento del cursore, si troverà nella medesima configurazione di arrivo.

Questa constatazione permette di restringere la relazione δ in modo che sia una funzione rispetto al suo primo argomento (coppia stato corrente, carattere letto):

$$\delta(q_x,\sigma_x)=(q_y,\sigma_y,D)$$

 $^{^4}$ quando definiremo meglio cos'è un linguaggio accettato da una MdT (o da un automa a stati finiti) sarà più chiaro come costruire un insieme di stringhe

 $^{^5}$ quando verranno trattate macchine a k nastri, si parlerà di una k-upla di stringhe, ciascuna delle quali riferita ad un nastro della macchina

Computazione e passo di computazione

Def. Una <u>computazione</u> di una MdT è costituita da una sequenza di configurazioni, tale che C_0 rappresenti la configurazione iniziale e C_{i+1} il risultato dell'applicazione della funzione δ alla configurazione C_i (ovvero il <u>passo di computazione</u> $C_i \rightarrow C_{i+1}$). Si dirà inoltre che la computazione converge \downarrow se, per $n \ge 1$ tale che

$$C_0 \to C_1 \to \dots \to C_n$$

 C_n è una configurazione finale, in caso contrario si dirà che diverge \uparrow .

Per completezza, dato che un passo di computazione di una macchina M può essere visto come una relazione \to_M tra C_i e C_{i+1} , una computazione di M è definibile come la chiusura riflessiva e transitiva di \to_M che, in accordo con la notazione usata precedentemente, può essere scritta come

$$C_0 \to_M^* C_n$$

Macchima per l'addizione

Consideriamo una MdT che calcoli la somma di due numeri naturali rappresentati in notazione unaria con il simbolo | e separati dal simbolo +. La successione

$$\begin{aligned} (q_0, & \, \underline{\triangleright} | + || \#) \to (q_0, \triangleright \underline{|} + ||) \to (q_0, \triangleright |\underline{+}||) \to (q_1, \triangleright ||\underline{|}||) \to \\ & \to (q_1, \triangleright |||\underline{|}|) \to (q_1, \triangleright ||||\underline{\#}|) \to (q_2, \triangleright |||\underline{|}|) \to (h, \triangleright |||\underline{\#}|) \end{aligned}$$

rappresenterà la computazione $(q_0, \underline{\triangleright}| + ||\#) \rightarrow_M^* (h, \triangleright|||\underline{\#})$, mentre la funzione δ può essere tabellata come segue:

\overline{q}	δ	σ
$\overline{q_0}$	\triangleright	$q_0, \triangleright, \Rightarrow$
q_0		q_0, \mid, \Rightarrow
q_0	+	q_1, \mid, \Rightarrow
q_1		q_1, \mid, \Rightarrow
q_1	#	$q_2, \#, \Leftarrow$
q_2		$h, \#, \equiv$

⁶la chiusura riflessiva e transitiva \bar{R} di una relazione R è la più piccola relazione definita per induzione con le proposizioni: $\boxed{\forall a \in A, \exists \bar{R}(a,a)}, \boxed{R(a,b) \Rightarrow \bar{R}(a,b)}, \boxed{\bar{R}(a,b), \bar{R}(b,c) \Rightarrow \bar{R}(a,c)}$