

IN SLIDE EXERCISE FOR CHAPTER 2

GROUP 5
SECTION 03 - SEM 1, 2024/2025
SECI1013 (DISCRETE STRUCTURE)

LECTURER : DR. MUHAMMAD ALIIF BIN AHMAD

DATE : 5th NOVEMBER 2024

GROUP MEMBERS: (GROUP 5)

NAME	MATRICS NO.
1. MUHAMMAD ADAM ASHRAFF BIN ZAMRI	A24CS0119
2. MIKAEL HAQIMI BIN NAHAR JUNAIDI	A24CS0111
3. HENG ZHI QIANG	A24CS0081
4. SITI NUR IMAN NADHIRAH BINTI MOHD FAIZAL	A24CS0192

[&]quot;Finite sets, boundless utility."

Exercise

Define a relation R from **Z** to **Z** as follows: For all integer number m and n, $(m,n) \in \mathbf{Z} \times \mathbf{Z}$,

 $m R n \leftrightarrow m - n$ is even

- i) Is 4 R 0?
- ii) Is 2 *R* 6?
- iii) Is 3 *R* (-3)?
- iv) Is 5 *R* 2?
- v) List 5 integers that are related by R to 1.

innovative • entrepreneurial • glob

www.utm.mv

- i) Yes
- ii) Yes
- iii) Yes
- iv) No
- v) 3, 5, 7, 9, 11

i)
$$R = \{(c_1, c_2), (c_1, c_3), (c_1, c_4), (c_2, c_4), (c_3, c_1), (c_3, c_2), (c_4, c_3), (c_4, c_5), (c_5, c_2), (c_5, c_4)\}$$

ii)
$$C_{1} C_{2} C_{3} C_{4} C_{5}$$

$$C_{1} C_{2} \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ C_{4} C_{5} \begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

R is a relation from A to A such that $x \in A$, $y \in A$, $(x, y) \in A \times A$ and $R \subseteq A \times A$. R can be defined by $x, y \in A$, $x R y \leftrightarrow y > x$.

Matrix representation of R:

$$R = \begin{cases} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{cases}$$

	I	4	5
in-degree	L	3	2
out-degree	2	2	2

- (a) f is a function from set X to set Y, not one-to-one function and it is onto Y.
- (b) f is not a function. Not all elements in set X are mapped onto set Y.
- (c) f is not a function. Many-to-many function is not proper.

Exercise 1

A depositor deposits RM 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years? Let P_n denote the amount in the account after n years.

innovative • entrepreneurial • glob

www.utm.m

ANSWER:

Compound interest formula: $A = P (1 + \frac{r}{n})^{nt}$

$$P_n = 10000 (1 + \frac{0.05}{1})^n$$

$$P_n = 10000 (1.05)^n$$

 P_n = amount after n^{th} year

10000 = principal amount

0.05 = annual interest rate (decimal)

1 = number of times interest is compounded per year

n = time (year)

 $P_{30} = 10000 (1.05)^{(30)}$ = 43219.42375

 $P_{30} = RM43219.42$

Difference between terms = +4

Recurrence relation:

$$a_n = a_{n-1} + 4$$
, $n \ge 1$, $a_0 = 1$

Exercise 3

A basketball is dropped onto the ground from a height of 15 feet. On each bounce, the ball reaches a maximum height 55% of its previous maximum height.

a)Write a recursive formula, a_n , that completely defines the height reached on the $n_{\rm th}$ bounce, where the first term in the sequence is the height reached on the ball's first bounce.

b)How high does the basketball reach after the $4_{\rm th}$ bounce? Give your answer to two decimal places.

innovative • entrepreneurial • glob

www.utm.my

ANSWER:

(a)
$$a_n = 0.55a_{n-1}$$
, $n \ge 1$, $a_0 = 8.25$

(b) 4^{th} bounce, n = 3;

$$a_1 = 0.55a_0$$
 $a_2 = 0.55a_1$ $a_3 = 0.55a_2$ $= 0.55(8.25)$ $= 0.55(4.5375)$ $= 0.55(2.495625)$ $= 1.37259375$

 \therefore 4th bounce = 1.37 ft.