ПРАКТИЧЕСКОЕ ЗАНЯТИЕ ОСВОЕНИЕ МЕТОДИК РАСЧЕТА КОЛИЧЕСТВА ОБРАЗОВАНИЯ ОТХОДОВ РАЗЛИЧНЫХ ПРОИЗВОДСТВ

Образование отходов неизбежно сопровождает функционирование любых систем, в том числе природных. Но отходы, образующиеся в результате функционирования экосистем, трансформируются и вновь встраиваются в круговороты веществ, не накапливаясь. В результате же хозяйственной деятельности образуются отходы с такими свойствами и в таких количествах, которые не позволяют им так же успешно встраиваться в природные круговороты, поэтому отходы от хозяйственной деятельности имеют тенденцию к накоплению в постоянно увели-чивающихся объёмах, что влечёт за собой отчуждение земельных участков под обустройство полигонов, а также риск поступления загрязняющих веществ в природную среду.

Ежегодно в стране образуется огромное количество отходов. Регулировать процесс их образования, правильную и своевременную утилизацию позволяет оценка количества образующихся отходов.

Оценка образования возможна с использованием методов оценки в виде расчетных методик и удельных норм образования отходов.

РАСЧЕТ КОЛИЧЕСТВА ОБРАЗУЮЩИХСЯ ОТХОДОВ НА ПРОМПРЕДПРИЯТИИ, ИМЕЮЩЕМ КОТЕЛЬНУЮ

1) Бой отработанного огнеупорного кирпича от котельных агрегатов

$$M = P \cdot n \cdot k$$
, т/год

где P – вес изоляции, заменяемой при ремонте одного котла, т;

n — число котлов, шт.;

k – количество ремонтов котлов в год.

Таблица 1

No	Bec,	Число	Кол-во	No	Bec,	Число	Кол-во
	заменяемой	котлов,	ремонтов		заменяемой	котлов,	ремонтов
вар.	изоляции, т	шт.	в год	вар.	изоляции, т	шт.	в год
1	2,720	1	4	19	2,220	7	4
2	1,500	5	2	20	3,356	4	2
3	1,000	9	1	21	1,562	5	1
4	0,200	6	4	22	2,230	9	4
5	4,000	3	2	23	5,000	7	2
6	0,500	4	1	24	1,230	3	1
7	0,100	7	4	25	4,000	4	4
8	0,900	8	2	26	0,700	6	2
9	0,100	1	1	27	3,400	10	1
10	0,300	2	4	28	1,321	7	4
11	3,800	5	2	29	1,205	2	2
12	2,890	9	1	30	5,060	9	1
13	0,600	3	4	31	1,080	3	4
14	0,840	5	2	32	1,296	5	2
15	5,600	7	1	33	2,490	4	1
16	1,150	2	4	34	0,954	6	4
17	4,500	4	2	35	1,097	1	2
18	3,800	8	1	36	3,570	2	1

2) Зола и золошлаковая смесь от сжигания твердых топлив

$$M = 0.01 \cdot A^r \cdot (100 - a_{vh}) \cdot B^{rod}, \text{т/год}$$

где A^r — зольность топлива, %. Зольность древесины до 1,0%; топливного торфа 2-5%; бурых и каменных углей 10-35%;

 a_{yh} — доля уноса золы из топки, %. В дровах содержание золы уноса равно 0,5-2%; в топливном торфе 2-30%; в буром и каменном угле 1-45%;

 B^{rog} — годовой расход топлива, т/год.

Таблица 2

No	Зольность	Доля	Годовой	No	Зольность	Доля	Годовой
	топлива,	уноса	расход угля,		топлива,	уноса	расход уг-
вар.	%	золы, %	т/год	вар.	%	золы, %	ля, т/год
1	0,6	2	5,600	19	19,4	16	5,050
2	3,3	18	3,300	20	0,3	1,5	14,360
3	18,0	20	2,000	21	0,8	0,7	2,820
4	4,7	21	1,300	22	4,0	5	5,848
5	0,7	1,8	0,500	23	32,1	41	0,630
6	15,5	19	6,400	24	2,0	29	6,440
7	27,0	35	4,100	25	24,3	27	2,170
8	0,4	1,1	13,400	26	14,9	36	1,920
9	16,8	32	8,500	27	22,1	8	3,300
10	12,8	30	2,700	28	2,3	6	1,820
11	14,8	45	0,850	29	12,5	11	4,700
12	2,2	21	1,250	30	4,1	22	5,180
13	29,6	35	8,300	31	17,0	22	9,120
14	1,6	23	2,900	32	3,7	11	3,640
15	0,9	1,7	0,730	33	0,5	1,5	8,750
16	26,8	13	2,120	34	2,9	17	7,390
17	29,6	9	10,600	35	21,2	31	1,540
18	3,9	15	0,280	36	34,1	7	7,040

3) Кусковые отходы древесины

$$M_{\scriptscriptstyle K} = Q \cdot \rho \cdot \frac{C}{100}$$
, т/год

где Q – количество обрабатываемой древесины, м 3 /год;

 ρ – плотность древесины в зависимости от вида, т/м³, вид древесины принять самостоятельно (Приложение 1);

C — количество кусковых отходов древесины от расхода сырья, % (Приложение 2).

Таблица 3

№ вар.	Кол-во обрабатываемой древесины м ³ /год	Вид производства (Приложение 2)	№ вар.	Кол-во обрабатываемой древесины м ³ /год	Вид производства (Приложение 2)
1	360,0	1, 7	19	214,2	8, 3
2	56,0	2, 8	20	875,2	9, 4
3	458,0	3, 9	21	214,3	10, 5
4	99,0	4, 10	22	28,1	11, 6
5	65,0	5, 11	23	94,0	1, 7
6	12,0	6, 1	24	57,9	2, 8
7	255,0	7, 2	25	54,6	3, 9
8	547,0	8, 3	26	23,1	4, 10
9	36,1	9, 4	27	456,7	5, 11
10	38,2	10, 5	28	856,3	6, 1
11	654,0	11, 6	29	452,0	7, 2
12	25,0	1, 7	30	557,0	8, 3
13	632,0	2, 8	31	159,0	9, 4
14	254,3	3, 9	32	65,8	10, 5
15	23,6	4, 10	33	712,4	11, 6
16	95,4	5, 11	34	224,4	1, 7
17	458,5	6, 1	35	88,6	2, 8
18	236,5	7, 2	36	368,0	3, 9

4) Масла отработанные:

- отходы минеральных масел индустриальных;
- отходы синтетических и полусинтетических масел индустриальных;
 - отходы минеральных масел компрессорных;
 - отходы синтетических масел компрессорных.

$$M = V \cdot n \cdot \rho \cdot k_c \cdot 10^{-3}$$
, т/год

где V – объем картера станка, компрессора, пресса, л;

n – количество замен в течение года;

 ρ – плотность сливаемого масла, 0,91 кг/л;

 k_c – коэффициент сбора отработанного масла, 0,9.

Таблица 4

№ вар.	Вид масла	Наименование, тип,	Кол-во,	Объем	Количество
t in Bup.	энд насна	марка оборудования	шт.	картера, л	замен
1, 32, 35		Станок токарный 1К62	12	28,5	1 раз в 40 дней
2 31, 36		Станок токарный 16к20	18	18,5	1 раз в полгода
3, 30, 33		Станок радиально- сверлильный 2H-135	24	20,0	каждые 3 месяца
4, 29	Индуст-	Станок фрезерный	7	28,0	каждые 3 месяца
36	риальное	6Р82Ш	/	0,6	1 раз в месяц
5, 28				0,6	каждые 5 дней
33		Пресс П6334А	12	1,0	1 раз в месяц
33				3,0	1 раз в год
6 27				0,8	каждые 5 дней
6, 27, 35		Пресс КД	10	1,1	1 раз в месяц
33				3,0	1 раз в год
7, 26, 34	Компрес-	Компрессор ВУ-06/16	5	13,5	каждые 4 дня
8, 25, 34	сорное	Компрессор 2ВУ- 2,5/13	8	67,5	каждые 4 дня
9, 24		Станок токарный 1К62	10	28,5	1 раз в 40 дней
10, 23		Станок токарный 16к20	16	18,5	1 раз в полгода
11, 22		Станок радиально- сверлильный 2H-135	22	20,0	каждые 3 месяца
12, 21	Индуст-	Станок фрезерный	8	28,0	каждые 3 месяца
12, 21	•	6Р82Ш	0	0,6	1 раз в месяц
	риальное			0,6	каждые 5 дней
13, 20		Пресс П6334А	14	1,0	1 раз в месяц
				3,0	1 раз в год
				0,8	каждые 5 дней
14, 19		Пресс КД	12	1,1	1 раз в месяц
				3,0	1 раз в год

15, 17		Компрессор ВУ-06/16	7	13,5	каждые 4 дня
16, 18	Компрес-	Компрессор 2ВУ-2,5/13	6	67,5	каждые 4 дня
17, 16	Индуст-	Станок токарный 1К62	11	28,5	1 раз в 40 дней
18, 15	риальное	Станок токарный 16к20	17	18,5	1 раз в полгода
19, 14		Станок радиально- сверлильный 2H-135	23	20,0	каждые 3 месяца
20, 13		Станок фрезерный 6Р82Ш	7	28,0 0,6	каждые 3 месяца 1 раз в месяц
	11	01.62111		·	-
21 12	Индуст-	П П(224)	10	0,6	каждые 5 дней
21, 12	риальное	Пресс П6334А	13	1,0	1 раз в месяц
				3,0	1 раз в год
				0,8	каждые 5 дней
22, 11		Пресс КД	11	1,1	1 раз в месяц
				3,0	1 раз в год
23, 10	Компрес-	Компрессор ВУ-06/16	6	13,5	каждые 4 дня
24, 9	сорное	Компрессор 2ВУ- 2,5/13	7	67,5	каждые 4 дня
25, 8		Станок токарный 1К62	13	28,5	1 раз в 40 дней
26, 7		Станок токарный 16к20	19	18,5	1 раз в полгода
27, 6		Станок радиально- сверлильный 2H-135	25	20,0	каждые 3 месяца
28, 5	Индуст-	Станок фрезерный	8	28,0	каждые 3 месяца
20, 3	риальное	6Р82Ш	O	0,6	1 раз в месяц
	риальнос			0,6	каждые 5 дней
29, 4		Пресс П6334А	13	1,0	1 раз в месяц
				3,0	1 раз в год
				0,8	каждые 5 дней
30, 3		Пресс КД	11	1,1	1 раз в месяц
				3,0	1 раз в год
31, 2	I/ an service	Компрессор ВУ-06/16	6	13,5	каждые 4 дня
32, 1	Компрес- сорное	Компрессор 2ВУ- 2,5/13	9	67,5	каждые 4 дня

5) Обтирочный материал, загрязненный нефтепродуктами

$$M = K_{yo} \cdot N \cdot D \cdot 10^{-3}$$
, т/год

где $K_{y\partial}$ – удельный норматив ветоши на 1 работающего, 0,1 кг/сут · чел; N – количество рабочих основных и вспомогательных производств, чел;

D – число рабочих дней в году.

Таблица 5

	Количество рабочих	Число		Количество рабочих	Число
No non	основных и вспомо-	рабочих	No pop	основных и вспомо-	рабочих
№ вар.	гательных произ-	дней	№ вар.	гательных	дней
	водств, чел	в году		производств, чел	в году
1	66	251	19	163	251
2	34	250	20	145	260
3	119	250	21	49	251
4	138	251	22	28	250
5	43	260	23	53	251
6	175	251	24	18	260
7	60	251	25	29	251
8	27	250	26	37	250
9	62	251	27	44	260
10	42	250	28	39	251
11	29	251	29	45	260
12	68	260	30	30	250
13	74	251	31	120	251
14	152	250	32	38	250
15	76	251	33	54	250
16	147	260	34	172	251
17	54	251	35	188	260
18	109	250	36	84	251

6) Опилки и стружка из чистой несортированной древесины

$$M=M_{\it cm}+M_{\it on}$$
 , т/год

$$M_{cm} = \frac{Q \cdot \rho \cdot C_{cn}}{100}, \qquad M_{on} = \frac{Q \cdot \rho \cdot C_{on}}{100},$$

где M_{cm} – количество отходов стружки, т/год;

 M_{on} — количество отходов опилок, т/год;

Q – количество обрабатываемой древесины, м³/год;

 ρ – плотность древесины в зависимости от вида, т/м³;

 C_{cn} – количество отходов стружек от расхода сырья в зависимости от вида продукции, % (Приложение 2);

 C_{on} — количество отходов опилок от расхода сырья в зависимости от вида продукции, % (Приложение 2).

7) Опилки, песок загрязненные нефтепродуктами

$$M = Q \cdot \frac{n}{100}$$
, т/год

где Q — количество используемых опилок или песка (выбрать рассчитываемый материал самостоятельно), т/год;

n – увеличение массы за счет сорбции нефтепродуктов, 15 %.

Таблица 6

№ вар.	Количество используемого материала, т/год	№ вар.	Количество используемого материала, т/год
1	0,120	19	0,108
2	0,168	20	0,151
3	0,235	21	0,212
4	0,329	22	0,296
5	0,461	23	0,415
6	0,645	24	0,581
7	0,904	25	0,813
8	1,265	26	1,138
9	1,771	27	1,594
10	2,479	28	2,231
11	3,471	29	3,124
12	4,859	30	4,374
13	2,803	31	1,123

14	3,525	32	3,572
15	3,334	33	2,001
16	1,668	34	1,801
17	2,135	35	3,522
18	3,590	36	2,931

8) Осадок очистных сооружений

Расчет количества осадка, улавливаемого очистными сооружениями, производится по формуле:

$$Q = V \cdot (C_i^1 - C_i^2) \cdot 10^{-3}$$
, т/год

где V – объем очищаемых сточных вод, куб.м./год;

 C_i^1 — концентрация і-того загрязняющего вещества до очистки, мг/л;

 C_i^2 — концентрация і-того загрязняющего вещества после очистки, мг/л.

С учетом влажности образующегося осадка, его количество рассчитывается по формуле:

$$M = \frac{Q}{1-B/100} \cdot 10^{-3}, \text{ т/год}$$

где B – влажность осадка, 97-99,5 %.

Таблица 7

№	Объем сточных вод,	-	онцентрация загрязня- ощего вещества, мг/л		Объем сточных вод,	Концентрация загрязняющего вещества, мг/л	
вар.	м ³ /год	до очистки	после очистки	вар.	м ³ /год	до очистки	после очистки
1	15800	350	29	19	18960	308	31
2	13700	50	7	20	16440	44	7,6
3	2600	4	0,2	21	3120	3,5	0,2
4	75000	450	18	22	90000	396	19
5	36700	1,3	0,2	23	44040	1,1	0,2
6	1800	2,6	0,7	24	2160	2,3	0,8
7	107000	39	0,4	25	128400	34,3	0,4

8	17400	233	2	26	20880	205	2
9	14100	3	0,4	27	16920	2,6	0,4
10	123000	42	1,8	28	147600	37	1,9
11	69000	360	18,0	29	66000	522	21
12	33700	1	0,21	30	32200	1,5	0,2
13	1650	2,1	0,7	31	1580	3	0,8
14	98440	31	0,4	32	94000	45	4,6
15	16000	186	3,3	33	15300	270	23,2
16	40500	0,9	0,12	34	38700	1,3	0,2
17	1900	1,8	0,62	35	1980	2,7	0,91
18	118000	27,4	4,1	36	113000	39,8	4,6

9) Отходы абразивных материалов и инструментов без примесей

$$M = Q \cdot m \cdot (1-n) \cdot 10^{-3}$$
, т/год

где Q – количество израсходованных кругов, ед/год;

m– масса нового абразивного круга, кг (Приложение 3);

n – коэффициент износа абразивных кругов до их замены, 07.

Таблица 8

№ вар.	Типоразмер круга	Количество израсходованных кругов, ед./год	№ вар.	Типоразмер круга	Количество израсходованных кругов, ед./год
	115x1,2x22,23	8		230x2,0x22,23	13
1	500-63-305	1	19	40-50-13	7
	32-16-10	16		150-63-51	5
	180x2,5x22,23	6		150x2,0x22,23	12
2	150-63-51	4	20	50-16-13	20
	300-63-127	10		250-20-76	8
	230x2,0x22,23	10		180x2,5x22,23	8
3	40-50-13	6	21	100-63-20	5
	100-63-20	4		300-63-127	11
	300x3,2x32	4		400x4,0x32	4
4	25-40-8	16	22	25-40-8	19
	250-20-76	9		100-63-20	6

Продолжение табл. 8

				11p0	должение табл. 8
	150x2,0x22,23	10		300x3,2x32	6
5	600-82-305	4	23	600-82-305	4
	175-40-76	10		400-4,0-32	11
	355x4,0x25,4	5		355x4,0x25,4	8
6	32-16-10	17	24	250-20-76	12
	450-13-203	10		200-63-32	14
	400x4,0x32	2		115x1,2x22,23	14
7	25-40-8	17	25	500-63-305	1
	900-80-305	1		900-80-305	1
	180x2,5x22,23	7		400x4,0x32	5
8	300-63-127	12	26	25-40-8	20
	150-63-51	9		250-20-76	13
	355x4,0x25,4	6		150x2,0x22,23	13
9	50-16-13	21	27	40-50-13	8
	100-63-20	7		150-63-51	6
	115x1,2x22,23	18		180x2,5x22,23	9
10	175-40-76	8	28	32-16-10	18
	450-13-203	11		600-82-305	5
	230x2,0x22,23	11		230x2,0x22,23	14
11	500-63-305	2	29	40-50-13	9
	900-80-305	1		200-63-32	8
	150x2,0x22,23	11		300x3,2x32	7
12	100-63-20	8	30	175-40-76	10
	600-82-305	5		600-82-305	6
	300x3,2x32	5		150x2,0x22,23	14
13	40-50-13	10	31	900-80-305	1
	200-63-32	7		450-13-203	14
	400x4,0x32	3		355x4,0x25,4	9
14	25-40-8	18	32	500-63-305	2
	50-16-13	22		50-16-13	25
	230x2,0x22,23	12		180x2,5x22,23	10
15	32-16-10	19	33	300-63-127	13
	175-40-76	9		600-82-305	8
	400x4,0x32	7		300x3,2x32	8
16	500-63-305	1	34	40-50-13	11
	50-16-13	23		50-16-13	24
	355x4,0x25,4	7		115x1,2x22,23	30
17	32-16-10	20	35	175-40-76	11
	200-63-32	3		300-63-127	14
	1		U	1	1

	115x1,2x22,23	28		400x4,0x32	6
18	450-13-203	12	36	32-16-10	21
	600-82-305	7		200-63-32	9

10) Отходы минерального волокна

$$M = Q \cdot \rho \cdot 10^{-3}$$
, т/год

где Q — количество минерального волокна, используемого для ремонта тепловой изоляции, м 3 ;

ho – плотность минерального волокна, 200 кг/ м³.

Таблица 9

	Кол-во минерального волокна,		Кол-во минерального волокна,
№ вар.	используемого для ремонта	№ вар.	используемого для ремонта
	тепловой изоляции, ${ m M}^3$		тепловой изоляции, м ³
1	23,0	19	8,0
2	46,0	20	44,0
3	12,0	21	53,0
4	26,0	22	21,0
5	52,0	23	4,0
6	39,0	24	9,5
7	41,0	25	4,2
8	31,0	26	23,0
9	26,0	27	26,0
10	43,0	28	18,0
11	33,0	29	17,0
12	22,0	30	26,0
13	56,0	31	10,0
14	7,0	32	16,0
15	15,0	33	37,0
16	14,0	34	22,0
17	9,0	35	6,0
18	11,0	36	11,0

11) Отходы органических растворителей и их смесей

$$M = V \cdot k \cdot \rho \cdot k_c \cdot n$$
 , т/год

где V – объем ванны, используемой для промывки, закалки деталей, м 3 ;

k – коэффициент заполнения ванны растворителем, равен 1;

n — число замен растворителя в год;

 k_c – коэффициент сбора отработанных растворителей, 0,5;

 ρ – плотность растворителя, 0,87 т/м³.

Таблица 10

№ вар.	Объем ванны, м ³	Число замен растворителя в год	№ вар.	Объем ванны, м ³	Число замен растворителя в год
1	15	12	19	30	12
$\frac{1}{2}$					
	45	6	20	60	6
3	30	24	21	15	24
4	60	12	22	45	6
5	15	6	23	30	24
6	45	6	24	60	12
7	30	12	25	15	6
8	60	6	26	45	24
9	15	24	27	30	12
10	45	12	28	60	24
11	30	6	29	15	12
12	60	24	30	45	12
13	15	12	31	30	24
14	45	24	32	60	6
15	30	6	33	15	24
16	60	12	34	46	12
17	15	12	35	30	6
18	45	24	36	60	6

12) Отходы угля (химводоочистка)

$$M = N \cdot m \cdot \frac{n}{100}$$
 , т/год

где N – количество фильтрующего материала, шт.;

m – вес загрузки одного фильтра, т;

n — усредненный годовой расход материала (общий), от количества находящегося в эксплуатации, %.

Таблица 11

				D
NC.	11	10	D	Расход материала,
№	Наименование	Кол-во,	Вес загрузки одного	от количества,
вар.	материала	шт.	фильтра, т	находящегося
				в эксплуатации, %
1	A	4	14,56	10
2	A	2	14,56	100
3	СУ	4	15,90	20
4	СУ	1	1,10	10
5	КУ-2-8	1	8,00	10
6	КУ-2-8	4	1,64	10
7	КУ-2-8	1	1,64	10
8	A	5	14,56	10
9	A	3	14,56	100
10	СУ	5	15,90	20
11	СУ	2	1,10	10
12	КУ-2-8	2	8,00	10
13	КУ-2-8	5	1,64	10
14	КУ-2-8	2	1,64	10
15	A	6	14,56	10
16	A	4	14,56	100
17	СУ	6	15,90	20
18	СУ	3	1,10	10
19	КУ-2-8	3	8,00	10
20	КУ-2-8	6	1,64	10
21	КУ-2-8	3	1,64	10
22	A	7	14,56	10
23	A	5	14,56	100
24	СУ	7	15,90	20
25	СУ	4	1,10	10
26	КУ-2-8	4	8,00	10
27	КУ-2-8	7	1,64	10
28	КУ-2-8	8	1,64	10
29	A	6	14,56	10

30	A	8	14,56	100
31	СУ	5	1,64	20
32	СУ	2	14,56	10
33	КУ-2-8	2	14,56	10
34	КУ-2-8	5	15,90	10
35	КУ-2-8	2	1,10	10
36	A	6	8,00	100

Примечание: А – антрацит, СУ – сульфо-уголь, КУ-2-8 – катионит отработанный.

13) Отходы электродов

$$M=G\! imes\!rac{n}{100}$$
 , т/год

где G – количество используемых электродов, т/год;

n- норма отхода в соответствии с требованиями техники безопасности, 15 %.

Таблица 12

№ вар.	Количество используемых	№ вар.	Количество используемых
л⊻ вар.	электродов т/год	л⊻ вар.	электродов т/год
1	0,990	19	4,120
2	4,200	20	1,300
3	0,280	21	3,970
4	3,082	22	0,420
5	0,412	23	0,238
6	3,200	24	1,950
7	2,000	25	2,727
8	3,060	26	2,840
9	0,580	27	6,531
10	1,220	28	3,074
11	1,050	29	0,438
12	0,650	30	2,436
13	0,718	31	0,614
14	0,350	32	1,282
15	0,425	33	2,267
16	0,408	34	3,152
17	0,302	35	2,216
18	0,230	36	0,912

14) Пыль газоочистки (абразивная, древесная, керамзитовая, цементная, от шлифовки металлов, и др.).

Количество пыли, образующейся при работе станков и обрабатывающего оборудования, собирающейся в бункере пылеулавливающего аппарата, определяется по формуле:

$$\mathbf{M} = \mathbf{B} \cdot \frac{\eta}{1-\eta}$$
, т/год

где B — валовый выброс пыли (по данным нормативно-допустимых выбросов), т/год;

 η — степень очистки в пылеулавливающем аппарате, доля от 1. Исходные данные в расчете принять самостоятельно.

15) Спецодежда, утратившая потребительские свойства

$$M = N \cdot m \cdot 10^{-3}$$
, т/год

где N – число рабочих, чел.;

m — вес спецодежды, в зависимости от вида изделия, кг/ед. (Приложение 4)

Таблица 13

№ вар.	Выдаваемая спецодежда	Число рабочих, чел.	№ вар.	Выдаваемая спецодежда	Число рабочих, чел.
1	халат х/б ботинки рабочие перчатки х/б защитные очки	160	19	костюм х/б ботинки рабочие перчатки х/б защитные очки	111
2	костюм х/б ботинки рабочие перчатки х/б респиратор	75	20	полукомбинезон х/б пояс монтажный ботинки рабочие защитные очки	555

Продолжение табл. 13

	Продолжение табл. 13				
	костюм х/б			халат х/б	
3	ботинки рабочие	395	21	рукавицы х/б	394
	перчатки х/б	373		ботинки рабочие	571
	защитные очки			респиратор	
				куртка рабочая	
	полукомбинезон х/б			РИНИИ	
4	пояс монтажный	86	22	сапоги	489
'	перчатки х/б	00	22	каска	107
	респиратор			рукавицы	
				брезентовые	
	полукомбинезон х/б			полукомбинезон х/б	
5	ботинки рабочие	102	23	рукавицы х/б	379
	перчатки х/б	102	23	ботинки рабочие	317
	респиратор			защитные очки	
				куртка рабочая	
	халат х/б			РЕМИИЕ	
6	рукавицы х/б	699	24	сапоги	86
	ботинки рабочие		21	каска	00
	респиратор			рукавицы	
				брезентовые	
	костюм х/б			халат х/б	
7	ботинки рабочие	86	25	ботинки рабочие	73
,	защитные очки	00	25	перчатки х/б	7.5
	рукавицы х/б			респиратор	
	полукомбинезон х/б			костюм х/б	
8	рукавицы х/б	156	26	ботинки рабочие	316
	ботинки рабочие	100		перчатки х/б	010
	респиратор			защитные очки	
	полукомбинезон х/б			полукомбинезон х/б	
9	пояс монтажный	319	27	пояс монтажный	599
	ботинки рабочие		_,	ботинки рабочие	
	перчатки х/б			перчатки х/б	
	куртка рабочая			куртка рабочая	
	RRHMN E			РИНИИ	
10	сапоги	81	28	сапоги	294
	каска			каска	
	рукавицы			рукавицы	
	брезентовые			брезентовые	

		•	II.	Окончан	ие табл. 13
11	куртка рабочая зимняя сапоги каска рукавицы брезентовые	86	29	полукомбинезон х/б ботинки рабочие перчатки х/б респиратор	312
12	халат х/б рукавицы х/б ботинки рабочие защитные очки	132	30	костюм х/б ботинки рабочие перчатки х/б защитные очки	78
13	костюм х/б ботинки рабочие перчатки х/б защитные очки	668	31	полукомбинезон х/б рукавицы х/б ботинки рабочие респиратор	144
14	полукомбинезон х/б пояс монтажный перчатки х/б защитные очки	442	32	куртка рабочая зимняя сапоги каска перчатки х/б	137
15	полукомбинезон х/б рукавицы х/б ботинки рабочие защитные очки	104	33	костюм х/б рукавицы х/б защитные очки	287
16	куртка рабочая зимняя сапоги каска рукавицы брезентовые	181	34	халат х/б ботинки рабочие перчатки х/б защитные очки	238
17	халат х/б рукавицы х/б ботинки рабочие защитные очки	71	35	полукомбинезон х/б перчатки х/б рукавицы х/б респиратор	344
18	куртка рабочая зимняя сапоги каска рукавицы брезентовые	158	36	куртка рабочая зимняя сапоги каска рукавицы брезентовые	165

16) Тара разнородная загрязненная

$$M=rac{G}{g}\cdot m\cdot 10^{-3}$$
, т/год

где G — годовой расход материала (лаки, краски, сырье и др.), кг/год;

g – количество материала в одной емкости, кг;

m – масса одной емкости в среднем, кг.

Таблица 14

№	Годовой расход	Количество материала	Масса одной емкости
вар.	материала, кг /год	в одной емкости, кг	в среднем, кг
1	31140	180,0	20,0
2	2520	180,0	20,0
3	1248	5,2	0,8
4	7380	180,0	20,0
5	577,2	5,2	0,8
6	2948,4	5,2	0,8
7	300	180,0	20,0
8	561,6	5,2	0,8
9	3240	180,0	20,0
10	540	180,0	20,0
11	4500	180,0	20,0
12	2340	5,2	0,8
13	639,6	5,2	0,8
14	2600	5,2	0,8
15	360	180,0	20,0
16	2880	180,0	20,0
17	520	5,2	0,8
18	6760	5,2	0,8
19	900	180,0	20,0
20	1201	5,2	0,8
21	4320	180,0	20,0
22	6802	5,2	0,8
23	91800	180,0	20,0
24	749	5,2	0,8
25	5252	5,2	0,8
26	5996	5,2	0,8
27	5760	180,0	20,0

28	3420	180,0	20,0
29	6480	180,0	20,0
30	1080	180,0	20,0
31	530	5,2	0,8
32	6947	5,2	0,8
33	540	180,0	20,0
34	7200	180,0	20,0
35	395	5,2	0,8
36	1440	180,0	20,0

17) Шлак сварочный

$$oldsymbol{M} = oldsymbol{G} \cdot rac{n}{100}$$
 , т/год

где G — количество используемых электродов, т/год; n — норматив на образование шлака, 15 %.

Таблица 15

№ вар.	Количество используемых электродов т/год	№ вар.	Количество используемых электродов т/год
1	0,990	19	4,120
2	4,200	20	1,300
3	0,280	21	3,970
4	3,082	22	0,420
5	0,412	23	0,238
6	3,200	24	1,950
7	2,000	25	2,727
8	3,060	26	2,840
9	0,580	27	6,531
10	1,220	28	3,074
11	1,050	29	0,438
12	0,650	30	2,436
13	0,718	31	0,614
14	0,350	32	1,282
15	0,425	33	2,267
16	0,408	34	3,152
17	0,302	35	2,216
18	0,230	36	0,912