Statistical Literacy

Problem Set 10

Rémi Viné Due December 4th, 2023 1. **Linearity.** Linear correlation is a useful tool, although, as a restriction, it requires linearity.

(a) Indicate, among the four scatter plots, which one (s) are showing a linear relationship.

- 2. Univariate regressions visually. Assume you are given the following univariate regression: $y = 6.8 0.5 \times x + e$. The explained variable y could be the number of children per woman in a community (country or group of countries, etc.) and the explanatory variable x the yearly income per capita in that community in USD 10 000. Assume the sample used to run regressions is representative of all these countries and/or groups of countries.
 - (a) What are the b_0 and the b_1 coefficients in this univariate regression?
 - (b) From this regression equation, would you conclude on a positive or a negative correlation coefficient between per capita income and the number of children per woman?
 - (c) Among the four scatter plots with the OLS fitted line, which one is in line with the regression equation shown above?

- (d) Assuming some households' income per capita can be approximated to be USD 0, what is the associated number of children per woman?
- (e) What is the predicted number of children per woman in a country with a per capita income of USD 40000?
- (f) Assume the per capita income of the European Union is USD 40000 (see source) and the fertility rate is 1.53 (see source). Would you conclude that the model overestimate or underestimate the fertility rate for the European Union? What would be the error?
- (g) Assume one country (one observation in the data set, call it A) is USD 20000 poorer than another country (call it B), what is the expected difference in the fertility rate?
- (h) Although the relationship between income and fertility tends to be strong (see for example this website), do you imagine any other factors playing an important role? (Just select one or two and discuss it/them briefly.)

3. Analyze univariate regressions. A data set (sample) on recidivism in the US is used and some univariate (linear) regressions are produced. The variables used are presented in table (1):

Variable Name (in Stata)	Label
priors	number of prior convictions
educ	years of schooling
rules	number of rules violations in prison
age	age in months
tserved	time served, rounded to months

Table 1: (Mini) Codebook

. sum tserved rules priors educ age

Variable	0bs	Mean	Std. dev.	Min	Max
tserved	1,445	19.18201	20.96378	0	219
rules	1,445	1.185467	2.295409	0	27
priors	1,445	1.431834	2.850443	Ø	28
educ	1,445	9.702422	2.441567	1	19
age	1,445	345.436	121.0505	198	933

Basic summary statistics (Stata output)

	tserved
tserved	1.0000
rules	0.5052
priors	0.1706
educ	-0.0538
age	0.0417

Linear correlation coefficients (Stata output)

- (a) Looking at the correlation table among the variables in the data set, comment briefly on the relationships based on the coefficients displayed (sign, strength, etc.).
- (b) The table labelled "A univariate regression output using Stata" shows a univariate regression. What is the explained variable? What is the explanatory variable?
- (c) Using the same table, what is the number of observations?

. reg tserved rules

Source	SS	df	MS		Number of obs F(1, 1443) Prob > F R-squared Adj R-squared Root MSE		1,445
Model Residual	161959.576 472649.556	1 1,443	161959.576 327.5464	6 Prob 7 R-sq			494.46 0.0000 0.2552
Total	634609.132	1,444	439.48000	_			0.2547 18.098
tserved	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
rules _cons	4.613809 13.71249	.2074879 .535889	22.24 25.59	0.000 0.000	4.206799 12.66128		5.02082 14.76369

A univariate regression output using Stata

- (d) Using the same table, what is the intercept (also called the *constant*)? Is the interpretation meaningful in this context?
- (e) Using the same table, what is the slope coefficient? Interpret it.
- (f) Using the same table, if you know that a prisoner violated 3 prison rules, what is the predicted time served of this prisoner?
- (g) Using the same table, would you conclude that the estimator b_1 of the explanatory variable is a statistically significant predictor in this model for the explained variable (at a level a significance of $\alpha = 1\%$)? Formulate the appropriate hypothesis test and use the p-value. Verify this by finding the appropriate critical value for the test (also at $\alpha = 1\%$) and compare it to the test-statistic attached to b_1 .
- (h) You are now given three more univariate regressions (output shown below). Are the signs of the slope coefficients in line with the correlation table depicted above?
- (i) You are now given three more univariate regressions (output shown below). Among these, which ones show a statistically significant relationship between the explanatory variables and the explained variable? Answer first using a 1% level of significance. Answer then using a 5% level of significance.
- (j) Comparing the 4 regressions displayed in this exercise, what regression model(s) capture(s) at least 10% of the variance of our explained variable (more than the empty model using only the average time served as predictor)? Would you have been able to answer this question with all the outputs displayed in this exercise APART from regression outputs?

. reg tserved age

Source	SS	df	MS		er of obs	=	1,445
Model Residual	1102.84606 633506.286	1 1,443	1102.84606	5 Prob 5 R-sq	F(1, 1443) Prob > F R-squared Adj R-squared Root MSE		2.51 0.1132 0.0017 0.0010
Total	634609.132	1,444	439.480008	-			20.953
tserved	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
age _cons	.0072195 16.68813	.004555 1.667225	1.58 10.01	0.113 0.000	001715 13.4176		.0161547 19.95858

. reg tserved priors

Source	SS	df	MS		of obs	=	1,445
Model Residual	18471.7473 616137.385	1 1,443	18471.7473 426.983635	Prob : R-squa	F(1, 1443) Prob > F R-squared Adj R-squared Root MSE		43.26 0.0000 0.0291
Total	634609.132	1,444	439.480008	_			0.0284 20.664
tserved	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
priors _cons	1.254752 17.38541	.1907698 .6083599	6.58 28.58	0.000 0.000	.88053 16.192		1.628968 18.57877

. reg tserved educ

Source	SS	df	MS		r of obs	=	1,445
Model Residual	1833.47622 632775.656	1 1,443	1833.47622 438.513968	2 Prob B R-squ	F(1, 1443) Prob > F R-squared Adj R-squared Root MSE		4.18 0.0411 0.0029 0.0022
Total	634609.132	1,444	439.480008	_			20.941
tserved	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
educ _cons	4615146 23.65982	.2257041 2.258103	-2.04 10.48	0.041 0.000	9042 19.23		0187713 28.08933