DELAUNAY TRIANGULATIONS Chapter 9

because the addition of p_r can make some of the existing edges illegal. To a triangulation again, but not necessarily a Delaunay triangulation. This is

 p_r lies in the interior of a triangle

pr falls on an edge

The two cases when adding a point p_r Figure 9.7

 p_i

algorithm. It will be convenient for the analysis to let P be a set of n+1 points. edge. This procedure replaces illegal edges by legal ones through edge flips Before we come to the details of this, we give a precise description of the main remedy this, we call a procedure LEGALIZEEDGE with each potentially illegal

Algorithm DelaunayTriangulation(P)

Input. A set P of n+1 points in the plane.

Output. A Delaunay triangulation of P.

- among the points with largest y-coordinate. Let p_0 be the lexicographically highest point of P, that is, the rightmost
- 2 Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that Pis contained in the triangle $p_0p_{-1}p_{-2}$.
- S Initialize \mathcal{T} as the triangulation consisting of the single triangle $p_0p_{-1}p_{-2}$.
- Compute a random permutation p_1, p_2, \dots, p_n of $P \setminus \{p_0\}$.
- 9.87.65 for r ← - 1 to n
 - do (* Insert p_r into \mathfrak{T} : *)
 - Find a triangle $p_i p_j p_k \in \mathcal{T}$ containing p_r .
 - if p_r lies in the interior of the triangle $p_i p_j p_k$
- then Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathcal{T})$
- LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathfrak{T})$
- 10 12 13 14 else (* p_r lies on an edge of $p_i p_j p_k$, say the edge $\overline{p_i p_j}$ *)
- two triangles incident to $\overline{p_i p_j}$ into four triangles. other triangle that is incident to $\overline{p_i p_j}$, thereby splitting the Add edges from p_r to p_k and to the third vertex p_l of the
- $LegalizeEdge(p_r, \overline{p_ip_i}, \mathcal{T})$
- 15. 16. 17.
- LEGALIZEEDGE $(p_r, \overline{p_l p_l}, \mathfrak{T})$ LEGALIZEEDGE $(p_r, \overline{p_l p_k}, \mathfrak{T})$ LEGALIZEEDGE $(p_r, \overline{p_k p_l}, \mathfrak{T})$

18

- 19 Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T} .
- return T