Measure Theory Homework 7

Michael Nelson

Problem 2

Proposition 0.1. Let $(X, \mathcal{M}, \mathcal{N})$ and (Y, \mathcal{N}, ν) be two finite measure spaces, and let $A \subseteq X$ and $B \subseteq Y$ be nonempty subsets of X and Y respectively. Then $A \times B \in \mathcal{M} \otimes \mathcal{N}$ if and only if $A \in \mathcal{M}$ and $B \in \mathcal{N}$.

Proof. One direction is clear since $\mathcal{M} \otimes \mathcal{N}$ contains all measurable rectangles. For the reverse direction, suppose $A \times B \in \mathcal{M} \otimes \mathcal{N}$. Choose $x \in A$ and $y \in B$. Then observe that $B = (A \times B)_x$. Moreover, since

$$(A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \in A^c \end{cases}$$

we see that $B = (A \times B)_x \in \mathcal{N}$. By a similar argument, we have $A = (A \times B)^y \in \mathcal{M}$.

Problem 3

Proposition o.2. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two finite measure spaces. Let $f: X \times Y \to \mathbb{R}$ be a μ -integrable functions and let $g: X \times Y \to \mathbb{R}$ be a ν -integrable function. Define $h: X \times Y \to \mathbb{R}$ by

$$h(x,y) = f(x)g(y)$$

for all $(x,y) \in X \times Y$. Then h is a $(\mu \otimes \nu)$ -integrable function. Moreover we have

$$\int_{X\times Y} h d(\mu \otimes \nu) = \left(\int_X f d\mu\right) \left(\int_Y g d\nu\right).$$

Proof. Define $\tilde{f}: X \times Y \to \mathbb{R}$ and $\tilde{g}: X \times Y \to \mathbb{R}$ by

$$\widetilde{f}(x,y) = f(x)$$
 and $\widetilde{g}(x,y) = g(y)$

for all $(x,y) \in X \times Y$. Observe that both \widetilde{f} and \widetilde{g} are $(\mathcal{M} \otimes \mathcal{N})$ -measurable. Indeed, if $c \in \mathbb{R}$, then we have

$$\{\widetilde{f} < c\} = \{f < c\} \times Y \text{ and } \{\widetilde{g} < c\} = X \times \{g < c\}.$$

It follows that $h = \widetilde{f}\widetilde{g}$ is $(\mathcal{M} \otimes \mathcal{N})$ -measurable since it is the product of two $(\mathcal{M} \otimes \mathcal{N})$ -measurable functions. Now observe that for each $x \in X$, we have

$$\int_{Y} h_{x} d\nu = \int_{Y} f(x) g d\nu$$
$$= f(x) \int_{Y} g d\nu,$$

where we were allowed to pull the constant f(x) out of the integral from the fact that g is ν -integrable. Therefore as functions on X, we have $\int_Y h_{(-)} d\nu = \int_Y g d\nu$. By a similar calculation, we also have $\int_Y |h_{(-)}| d\nu = |f| \int_Y |g| d\nu$. It follows from Tonelli's theorem that

$$\int_{X\times Y} |h| d(\mu \otimes \nu) = \int_{X} \left(\int_{Y} |h|_{(-)} d\nu \right) d\mu$$

$$= \int_{X} \left(|f| \int_{Y} |g| d\nu \right) d\mu$$

$$= \left(\int_{X} |f| d\mu \right) \left(\int_{Y} |g| d\nu \right)$$

$$< \infty.$$

Thus h is $(\mu \otimes \nu)$ -integrable. Therefore by Fubini's theorem, we have

$$\int_{X\times Y} h d(\mu \otimes \nu) = \int_{X} \left(\int_{Y} h_{(-)} d\nu \right) d\mu
= \int_{X} \left(f \int_{Y} g d\nu \right) d\mu
= \left(\int_{X} f d\mu \right) \left(\int_{Y} g d\nu \right),$$

where we were allowed to pull the constant $\int_{Y} g d\nu$ out of the integral from the fact that f is μ -integrable. \square

Problem 5

Proposition 0.3. Let \mathcal{B} be the σ -algebra of all Borel measurable subset of [0,1] and let m be the Lebesgue measure. Define the function $f:[0,1]\times[0,1]\to\mathbb{R}$ by

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

for all $(x,y) \in [0,1] \times [0,1]$. Then f is not $(m \otimes m)$ -integrable.

Proof. Assume for a contradiction that f is $(m \otimes m)$ -integrable. Then by Fubini's theorem, we must have

$$\int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right) dx = \int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right) dy.$$

However, note that

$$\frac{x^2 - y^2}{(x^2 + y^2)^2} = -\partial_x \partial_y \arctan\left(\frac{y}{x}\right).$$

Thus, on the one hand, we have

$$\int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right) dx = \int_0^1 \left(-\partial_x \arctan\left(\frac{y}{x}\right)|_0^1 \right) dx$$

$$= -\int_0^1 \partial_x \arctan\left(\frac{1}{x}\right) dx$$

$$= -\arctan\left(\frac{1}{x}\right)|_0^1$$

$$= -\frac{\pi}{4} + \frac{\pi}{2}$$

$$= \frac{\pi}{4}.$$

On the other hand, we have

$$\int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right) dy = \int_0^1 \left(-\partial_y \arctan\left(\frac{y}{x}\right) |_0^1 \right) dy$$

$$= -\int_0^1 \partial_y \arctan y dy$$

$$= -\arctan y |_0^1$$

$$= -\frac{\pi}{4}.$$

This is a contradiction.

Problem 6

Proposition 0.4. Let \mathcal{B} be the Borel σ -algebra of all Borel measurable subsets of I = [0,1] equipped with the Lebesgue measure, and let $\mathcal{P}(\mathbb{N})$ denote the power set of \mathbb{N} equipped with the counting measure μ . Then we have the following:

1. (Tonelli) Suppose $(f_n: I \to [0, \infty])$ is a sequence of nonnegative Borel-measurable functions. Then the function $f: I \to [0, \infty]$, defined by

$$f(t) = \sum_{n=1}^{\infty} f_n(t)$$

for all $t \in I$, is Borel-measurable. Furthermore, we have

$$\int_0^1 f \mathrm{d}t = \sum_{n=1}^\infty \int_0^1 f_n \mathrm{d}t.$$

2. (Fubini) Suppose $(f_n: I \to \mathbb{R})$ is a sequence of Borel-integrable functions. Then for m almost all $t \in [0,1]$, the series $\sum_{n=1}^{\infty} f_n(t)$ is absolutely convergent. Also, the series $\sum_{n=1}^{\infty} \int_0^1 f_n dt$ is absolutely convergent. Furthermore, we have

$$\int_{0}^{1} \sum_{n=1}^{\infty} f_{n} dt = \sum_{n=1}^{\infty} \int_{0}^{1} f_{n} dt,$$
 (1)

Remark 1. We want to explain in a little more detail how to interpret the integral on the left-hand side in (1). The integrand $\sum_{n=1}^{\infty} f_n$ in (1) is only a partially defined function. However, it is defined almost everywhere. Indeed, let

$$E = \left\{ t \in [0,1] \mid \sum_{n=1}^{\infty} |f_n(t)| < \infty \right\}.$$

Then the function $\sum_{n=1}^{\infty} f_n$ is defined on all of E and $m(E^c) = 0$. In order to compute integral on the left-hand side in (1), we choose any function $f: I \to \mathbb{R}$ such that $f|_E = \sum_{n=1}^{\infty} f_n$, for instance, say

$$f(t) = \begin{cases} \sum_{n=1}^{\infty} f_n(t) & \text{if } \sum_{n=1}^{\infty} |f_n(t)| < \infty \\ 0 & \text{else} \end{cases}$$

Then we define

$$\int_0^1 \sum_{n=1}^\infty f_n dt = \int_0^1 f dt.$$
 (2)

where the integral on the right-hand side in (2) is computed via Lebesgue integration. Note that (2) is well-defined for two reasons. First, the Lebesgue measure m on the collection of all Borel-measurable subsets of I extends uniquely to a measure on the collection of all Lebesgue-measurable subsets of I. Second, if $g: I \to \mathbb{R}$ is another choice of a function such that $g|_E = \sum_{n=1}^{\infty} f_n$, then $m\{g - f \neq 0\} \subseteq m(E^c) = 0$. Therefore $\int_0^1 f dt = \int_0^1 g dt$, and hence (2) is well-defined.

Problem 7

Proposition 0.5. Let (X, \mathcal{M}, μ) be a measure space and let f be a μ -integrable function. Define $\nu \colon \mathcal{M} \to \mathbb{R}$ by

$$\nu(E) = \int_X f 1_E \mathrm{d}\mu$$

for all $E \in \mathcal{M}$. Then ν is a finite signed measure.

Proof. Write $f = f^+ - f^-$ in terms of of its positive and negative parts. We define $\nu^+ \colon \mathcal{M} \to \mathbb{R}$ and $\nu^- \colon \mathcal{M} \to \mathbb{R}$ by

$$\nu^{+}(E) = \int_{X} f^{+} 1_{E} d\mu$$
 and $\nu^{-}(E) = \int_{X} f^{-} 1_{E} d\mu$

for all $E \in \mathcal{M}$. By a previous HW, it was shown that ν^+ and ν^- are measures on \mathcal{M} . In fact, they are finite

measures on \mathcal{M} since f is μ -integrable. Now observe that

$$\nu(E) = \int_{X} f 1_{E} d\mu$$

$$= \int_{X} (f 1_{E})^{+} d\mu - \int_{X} (f 1_{E})^{-} d\mu$$

$$= \int_{X} f^{+} 1_{E} d\mu - \int_{X} f^{-} 1_{E} d\mu$$

$$= \nu^{+}(E) - \nu^{-}(E)$$

for all $E \in \mathcal{M}$. It follows that ν is a signed measure since it is a difference of two finite measures: clearly $\nu(\emptyset) = 0$ and $\nu(X) = \nu^+(X) - \nu^-(X) < \infty$, also if (E_n) is a pairwise disjoint sequence of members in \mathcal{M} , then

$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \nu^+ \left(\bigcup_{n=1}^{\infty} E_n\right) - \nu^- \left(\bigcup_{n=1}^{\infty} E_n\right)$$
$$= \sum_{n=1}^{\infty} \nu^+(E_n) - \sum_{n=1}^{\infty} \nu^-(E_n)$$
$$= \sum_{n=1}^{\infty} \nu^+(E_n) - \nu^-(E_n)$$
$$= \sum_{n=1}^{\infty} \nu(E_n).$$

Finally, note that (ν^+, ν^-) is a Jordan decomposition of ν . Indeed, let $A = \{f \ge 0\}$ and $B = \{f < 0\}$. Then clearly $A \cup B = X$ and $A \cap B = \emptyset$. Furthermore, if $E \subseteq A$, then we have

$$\nu^{-}(E) = \int_{X} f^{-} 1_{E} d\mu$$

$$\leq \int_{X} f^{-} 1_{A} d\mu$$

$$= \int_{X} 0 d\mu$$

$$= 0.$$

Similarly, if $E \subseteq B$, then we have

$$\nu^{+}(E) = \int_{X} f^{+} 1_{E} d\mu$$

$$\leq \int_{X} f^{+} 1_{B} d\mu$$

$$= \int_{X} 0 d\mu$$

$$= 0$$

Therefore $\nu^+ \perp \nu^-$. Thus (ν^+, ν^-) gives the Jordan decomposition of ν with (A, B) being a Hahn decomposition ν .

Problem 9

For problems 9 and 13.i, we use the following notation:

Definition 0.1. Let (X, \mathcal{M}) be a measurable space, let μ and ν be two (possibly signed) measures on \mathcal{M} , and let $A, B \subseteq X$. We say (A, B) is a **singular pair** for μ, ν if $A \cup B = X$, $A \cap B = \emptyset$, A is a ν -null set, and B is a μ -null set.

Proposition o.6. Let (X, \mathcal{M}, μ) be a measure space and let ν be a (finite) signed measure on \mathcal{M} . Then $\nu \perp \mu$ if and only if $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

Proof. Suppose $v^+ \perp \mu$ and $v^- \perp \mu$. Let (A, B) be a singular pair for (v^+, μ) and let (C, D) be a singular pair for (v^-, μ) . We claim that $(A \cup C, B \cap D)$ is a singular pair for (v, μ) . Indeed, clearly we have $(A \cup C) \cup (B \cap D) = X$ and $(A \cup C) \cap (B \cap D) = \emptyset$. Also, if $E \subseteq B \cap D$, then we have

$$\nu(E) = \nu^{+}(E) - \nu^{-}(E)$$

= 0 - 0
= 0.

Similarly, if $E \subseteq A \cup C$, then we have

$$\mu(E) = \mu((A \cup C) \cap E))$$

$$= \mu((A \cap E) \cup (C \cap E))$$

$$= \mu(A \cap E) + \mu(C \cap E)$$

$$= 0 + 0$$

$$= 0.$$

This proves our claim, and thus $\nu \perp \mu$.

Now suppose $\nu \perp \mu$. Let (A, B) be a singular pair for (ν, μ) and let (C, D) be a singular pair for (ν^+, ν^-) . We claim that $(A \cap C, B \cup D)$ is a singular pair for (ν^+, μ) . Indeed, clearly we have $(A \cap C) \cup (B \cup D) = X$ and $(A \cap C) \cap (B \cup D) = \emptyset$. Also, if $E \subseteq A \cap C$, then we have $\mu(E) = 0$. Similarly, if $E \subseteq B \cup D$, then we have

$$\nu^{-}(E) = \nu^{-}((E \cap B) \cup (E \cap D))
= \nu^{-}(E \cap B) + \nu^{-}(E \cap D)
= \nu^{+}(E \cap B) + \nu^{-}(E \cap D) + \nu^{-}(E \cap C)
= \nu^{+}(E \cap B) + \nu^{-}((E \cap D) \cup (E \cap C))
= \nu^{+}(E \cap B) + \nu^{-}(E)
= \nu^{+}(E \cap B) + \nu^{+}(E \cap D) + \nu^{-}(E)
= \nu^{+}(E \cap B) \cup (E \cap D)) + \nu^{-}(E)
= \nu^{+}(E) + \nu^{-}(E)$$

Canceling $\nu^-(E)$ from both sides gives us $\nu^+(E) = 0$. This proves our claim, and thus $\nu^+ \perp \mu$. A similar computation shows that $(A \cap D, B \cup C)$ is a singular pair for (ν^-, μ) . Thus $\nu^- \perp \mu$.

Problem 10

Proposition 0.7. (X, \mathcal{M}) be a measurable space and let v be a signed measure on \mathcal{M} and let f be a |v|-integrable function. Then we have

$$\left| \int_X f \mathrm{d} \nu \right| \le \int_X |f| \mathrm{d} |\nu|$$

Proof. We have

$$\left| \int_{X} f d\nu \right| = \left| \int_{X} f d\nu^{+} - \int_{X} f d\nu^{-} \right|$$

$$\leq \left| \int_{X} f d\nu^{+} \right| + \left| \int_{X} f d\nu^{-} \right|$$

$$\leq \int_{X} |f| d\nu^{+} + \int_{X} |f| d\nu^{-}$$

$$= \int_{X} |f| d|\nu|.$$

Problem 13(i)

Proposition o.8. Let (X, \mathcal{M}) be a measure space and let v be a signed measure no \mathcal{M} . Then

$$\nu^{+}(E) = \sup\{\nu(F) \mid F \in \mathcal{M} \text{ and } F \subseteq E\}$$
(3)

for all $E \in \mathcal{M}$. Similarly,

$$-\nu^{-}(E) = \inf\{\nu(F) \mid F \in \mathcal{M} \text{ and } F \subseteq E\}$$
 (4)

for all $E \in \mathcal{M}$.

Proof. Let (A, B) be a singular pair with respect to $\nu^+ \perp \nu^-$ and let $E \in \mathcal{M}$. We will first show (3). Let $F \in \mathcal{M}$ such that $F \subseteq E$. Then

$$\nu(F) = \nu^{+}(F) - \nu^{-}(F)$$

$$\leq \nu^{+}(F)$$

$$\leq \nu^{+}(E).$$

This implies \geq in (3). Conversely, we have

$$\nu(A \cap E) = \nu^{+}(A \cap E) - \nu^{-}(A \cap E)$$

$$= \nu^{+}(A \cap E)$$

$$= \nu^{+}(A \cap E) + \nu^{+}(B \cap E)$$

$$= \nu^{+}((A \cap E) \cup (B \cap E))$$

$$= \nu^{+}(E).$$

This implies \leq in (3).

Now we will show (4). Let $F \in \mathcal{M}$ such that $F \subseteq E$. Then

$$\nu(F) = \nu^{+}(F) - \nu^{-}(F)$$

$$\geq -\nu^{-}(F)$$

$$\geq -\nu^{-}(E).$$

This implies \leq in (4). Conversely, we have

$$\nu(B \cap E) = \nu^{+}(B \cap E) - \nu^{-}(B \cap E)
= -\nu^{-}(B \cap E)
= -\nu^{-}(A \cap E) - \nu^{-}(B \cap E)
= -\nu^{-}((A \cap E) \cup (B \cap E))
= -\nu^{-}(E).$$

This implies \geq in (4).