Training Prosumer Agents with Reinforcement Learning.

>>> Biweekly Report 7. ($2^{nd} June - 26^{th} June: 2024$)

1. Status/ Progress

Current Iteration

- Search params, train/eval, and sample action iteration.
- collection of observations

Next Iteration (Plan)

- performance metrics (policy based) and rule based actions comparisons
- collection of observations

Documenting different components with graphi	Documenting	different	components	with	graphics
--	-------------------------------	-----------	------------	------	----------

2. Components

Taking feedback from weekly catchups into account and updated understanding of the system following changes were made to different components.

2.1. Environment Development

2.1.1 Train/Eval/Test Env

• the pv power sign is inverted.

2.1.2 Rewards Estimation

• the reward calculation is updated according to the change in sign of pv power.

2.2. Battery Module

• no change were made to the battery module.

2.3. Agent

- Algorithm in use:
 - Proximal Policy Optimization (PPO)
 - Soft Actor Critic (SAC)
 - Twin Delayed Deep Deterministic Policy Gradient (TD3)
- Different parameters for initialization(model.init()) and learning(model.learn()) were added and experimented, the results are shown in the graphics/logs section below.

2.4. Graphics/Logs

parameters config

```
data config["train test split ratio"] = 0.9 # (train 90% test 10%)
env config: dict = {
    "observation window": int(4096),
    "num envs": 1,
    . . . ,
}
policy config: dict = {
    "policy nw": "MlpPolicy",
    "reset num timesteps": False,
    "num train eval cycles": 25,
    "num retrain eval cycles": 25,
    "num eval episodes": 3,
    "num test episodes": 5,
    "train timesteps": data config["observation window train"],
    "retrain_timesteps": data_config["observation_window_train"],
}
ppo:
    - learning_rate: 0.0004,
    - gamma: 0.99,
    - n steps: 4096,
    - clip_range: 0.25,
    - batch size: 64,
    - net_arch: (pi, vf) [64, 32, 16],
sac:
    - learning_rate: 0.009,
    - gamma: 0.99,
    - tau: 0.074,
    - net_arch: (pi, qf) [64, 32, 16],
td3:
    - learning rate: 0.003,
    - gamma: 0.99,
    - tau: 0.072,
    - net_arch: (pi, qf) [64, 32, 16],
```

During Learning/ Evaluation

Evaluation of Mean Rewards per iteration: 25, with each model.

PPO

SAC

TD3

During Sampling Actions from trained policy (deterministic)

PPO

SAC

TD3

RBC

Total Cost Comparison

Initial comparison with rule based vs rl models(PPO, SAC, TD3) was made on first 7 days of timesteps of test set as shown in the table below.

Models	PPO	SAC	TD3	RBC
Total Cost	2068.596	2068.223	2177.3386	2069.1265