PH126 Logic I Fast Lecture 4

Lecturer: s.butterfill@warwick.ac.uk

Truth table for →

Assuming that the rules of Fitch are such that it is impossible to prove an argument which is not logically valid, the truth-table for \rightarrow is fixed if we accept \rightarrow Elim and \rightarrow Intro.

How do the rules of proof for \rightarrow fix its truth table?

Α	В	$A \rightarrow B$
Т	Т	
Т	F	
F	T	
F	F	

'If' and →

Quantifiers

Everything is broken: $\forall x \text{ Broken}(x)$

Something is broken: $\exists x \text{ Broken}(x)$

What does \exists mean? We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ANY OF the new sentences are true, so is the original.

∃ and ∧ work together

Some object is F and G: $\exists x (F(x) \land G(x))$

I met a philosopher:

Some object is a philosopher and I met it:

$$\exists x (Philr(x) \land Met(a,x))$$

Some square is blue: $\exists x (Square(x) \land Blue(x))$

Rooney scored a goal:

 $\exists x (Goal(x) \land Scored(a,x))$

Obama won an election:

 $\exists x (Election(x) \land Won(a,x))$

\forall and \rightarrow work together

All my things are broken: $\forall x \text{ (Belongs(a,x)} \rightarrow \text{Broken(x))}$

Everything I do turns bad:

 $\forall x (Does(a,x) \rightarrow TurnsBad(x))$

All squares are blue:

 $\forall x (Square(x) \rightarrow Blue(x))$

Substitution of logical equivalents

Two sentences are *logically equivalent* when each is a logical consequence of the other.

 $\phi \neq \psi$ means ϕ and ψ are logically equivalent.

Terminology: let $\chi[\psi/\phi]$ be the result of replacing ϕ with ψ

E.g.
$$(Q \neg \neg \lor P) [P / \neg \neg P] = Q \lor P$$

Theorem: If $\varphi = \psi$ then $\chi = \chi[\psi/\varphi]$

Exercises 05

For your fifth seminar Only for fast groups

A. From the LPL textbook:

9.12-13 9.18-19 (trans.) 10.20, *10.24-7 10.28-9 13.2-3, 13.8-9 (quantifier proofs) 13.11, 13.13, 13.15 NEVER USE TAUT CON.

B. For each of the following sentences of FOL, give a logically equivalent sentence of idiomatic English using the specified interpretation. Your English sentences should be as concise as possible.

Domain: people and actions D(x) : x is desirable V(x) : x is desirable V(x) : x is virtuous A(x) : x is an action H(x) : x is an action H(x) : x is a person P(x,y) : x performed y $i. \forall x [D(x) \rightarrow V(x)]$ $ii. \forall x [[A(x) \land D(x)] \rightarrow V(x)]]$ $iii. \exists x [A(x) \land \neg [D(x) \rightarrow V(x)]]$ $*iv. \exists x \forall y [[[H(x) \land A(y)] \land P(x,y)] \rightarrow V(y)]$ $^*v. \neg \exists x [\exists y [H(x) \land P(x,y) \land A(y) \land \neg V(y)]$ $^* \neg \exists z [P(x,z) \land A(z) \land V(z)]]$