Lecture 23: Command Tracking Control System Design

Textbook Section 3.5

Dr. Jordan D. Larson

Introduction

- Chapter: methods for MIMO LTI feedback control systems to be analyzed:
 - Stability
 - Controllability & observability
 - Robust stability

Introduction

- Chapter: methods for MIMO LTI feedback control systems to be analyzed:
 - Stability
 - Controllability & observability
 - Robust stability
- Specific design of control systems varies widely

Introduction

- Chapter: methods for MIMO LTI feedback control systems to be analyzed:
 - Stability
 - Controllability & observability
 - Robust stability
- Specific design of control systems varies widely
- Lecture: introduces two additional control systems that augment the LTI or nonlinear plant dynamics to provide an architecture to design optimal MIMO LTI controllers alongside these augmentations:
 - Servomechanism augmentation → robust servomechanism control
 - $\bullet \ \ \text{Feedback linearization augmentation} \rightarrow \text{dynamic inversion control} \\$

Gain-Scheduling & Dynamic Inversion

- Flight vehicles not inherently LTI systems → adaptive technique: gain-scheduling
 - Linearize nonlinear, time-invariant dynamics over grid of flight conditions design MIMO LTI feedback controllers at those conditions
 - Interpolate gains between points
 - Necessitates smooth transitions between flight conditions, linearized model good approximation to dynamics, robustness to neglected higher-order terms (HOT) in dynamics about flight conditions

Gain-Scheduling & Dynamic Inversion

- Flight vehicles not inherently LTI systems → adaptive technique: gain-scheduling
 - Linearize nonlinear, time-invariant dynamics over grid of flight conditions design MIMO
 LTI feedback controllers at those conditions
 - Interpolate gains between points
 - Necessitates smooth transitions between flight conditions, linearized model good approximation to dynamics, robustness to neglected higher-order terms (HOT) in dynamics about flight conditions
- During some flight maneuvers, may not sufficiently neglect nonlinear dynamics for flight vehicles
 - Alternative: dynamic inversion (DI) control
 - Transforms nonlinear, time-invariant dynamical system into LTI system via inversion: can then be controlled using MIMO LTI controller

- Assume:
 - Assume square system, i.e. $n_u = n_y$
 - \vec{x} available for feedback

- Assume:
 - Assume square system, i.e. $n_u = n_y$
 - \vec{x} available for feedback
- Control-affine dynamical system

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(1)

Suitable for many flight vehicle dynamics

- Assume:
 - Assume square system, i.e. $n_u = n_y$
 - \vec{x} available for feedback
- Control-affine dynamical system

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(1)

- Suitable for many flight vehicle dynamics
- Desire to control output $\vec{y}(t)$ to track commanded reference signal, $\vec{r}(t)$
 - $\vec{y}(t)$ a.k.a. controlled variable

- Assume:
 - Assume square system, i.e. $n_u = n_y$
 - \vec{x} available for feedback
- Control-affine dynamical system

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(1)

- Suitable for many flight vehicle dynamics
- Desire to control output $\vec{y}(t)$ to track commanded reference signal, $\vec{r}(t)$
 - $\vec{y}(t)$ a.k.a. controlled variable
- Tracking error, \vec{e} :

$$\vec{e}(t) = \vec{r}(t) - \vec{y}(t) \tag{2}$$

Input-Output Feedback Linearization

- This type of dynamic inversion differentiates controlled variable, $\vec{y}(t)$, until control, $\vec{u}(t)$, appears in expression for derivative
 - A.k.a. input-output feedback linearization control
 - First presented for linear, time-invariant systems as introduction to concept
 - Second presented for linear-in-control systems, true usefulness

Input-Output Feedback Linearization

- This type of dynamic inversion differentiates controlled variable, $\vec{y}(t)$, until control, $\vec{u}(t)$, appears in expression for derivative
 - A.k.a. input-output feedback linearization control
 - First presented for linear, time-invariant systems as introduction to concept
 - Second presented for linear-in-control systems, true usefulness
- Note: method relies heavily on differentiation of dynamical system: may not be suitably robust to model uncertainties
 - Nonlinear dynamic inversion often used alongside adaptive control methods for linear-in-control systems to account for **matched uncertainties** in dynamics model, i.e. those that can be canceled by choosing some $\vec{u}(t)$, as opposed to **unmatched uncertainties**, i.e. those that can't

Input-Output Feedback Linearization

- This type of dynamic inversion differentiates controlled variable, $\vec{y}(t)$, until control, $\vec{u}(t)$, appears in expression for derivative
 - A.k.a. input-output feedback linearization control
 - First presented for linear, time-invariant systems as introduction to concept
 - Second presented for linear-in-control systems, true usefulness
- Note: method relies heavily on differentiation of dynamical system: may not be suitably robust to model uncertainties
 - Nonlinear dynamic inversion often used alongside adaptive control methods for linear-in-control systems to account for **matched uncertainties** in dynamics model, i.e. those that can be canceled by choosing some $\vec{u}(t)$, as opposed to **unmatched uncertainties**, i.e. those that can't
- Introduce basic control designs
 - Can be extended to be robust to unmatched uncertainties
 - · Exhaustive discussion including stability and robustness beyond scope of course
 - Typically addressed in nonlinear systems and/or adaptive control courses

LTI Dynamic Inversion Control

• Introduction to dynamic inversion control, consider LTI system:

LTI Dynamic Inversion Control

• Introduction to dynamic inversion control, consider LTI system:

$$\dot{\vec{x}} = A\vec{x} + B\vec{u}
\vec{y} = C\vec{x}$$
(3)

• Derivative of \vec{y} :

$$\dot{\vec{y}} = C\dot{\vec{x}} = CA\vec{x} + CB\vec{u} \tag{4}$$

LTI Dynamic Inversion Control

• Introduction to dynamic inversion control, consider LTI system:

$$\dot{\vec{x}} = A\vec{x} + B\vec{u}
\vec{y} = C\vec{x}$$
(3)

• Derivative of \vec{y} :

$$\dot{\vec{y}} = C\dot{\vec{x}} = CA\vec{x} + CB\vec{u} \tag{4}$$

• Define inner feedback linearization loop:

$$\vec{u} = (CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)$$
 (5)

• \vec{v} : virtual control input

• Substituting this control law for $\dot{\vec{y}}$:

$$\dot{\vec{y}} = CA\vec{x} + CB(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)$$
 (6)

• Substituting this control law for $\dot{\vec{y}}$:

$$\dot{\vec{y}} = CA\vec{x} + CB(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)$$
 (6)

$$\dot{\vec{y}} = CA\vec{x} - CA\vec{x} + \dot{\vec{r}} + \vec{v} \tag{7}$$

• Substituting this control law for $\dot{\vec{y}}$:

$$\dot{\vec{y}} = CA\vec{x} + CB(CB)^{-1}\left(-CA\vec{x} + \dot{\vec{r}} + \vec{v}\right) \tag{6}$$

$$\dot{\vec{y}} = CA\vec{x} - CA\vec{x} + \dot{\vec{r}} + \vec{v} \tag{7}$$

$$\vec{v} = \dot{\vec{y}} - \dot{\vec{r}} \tag{8}$$

• Substituting this control law for $\dot{\vec{v}}$:

$$\dot{\vec{y}} = CA\vec{x} + CB(CB)^{-1}\left(-CA\vec{x} + \dot{\vec{r}} + \vec{v}\right) \tag{6}$$

$$\dot{\vec{y}} = CA\vec{x} - CA\vec{x} + \dot{\vec{r}} + \vec{v} \tag{7}$$

$$\vec{\mathbf{v}} = \dot{\vec{\mathbf{y}}} - \dot{\vec{r}} \tag{8}$$

• Error dynamics:

$$\dot{\vec{e}} = -\vec{V} \tag{9}$$

• n_v poles at s=0

• Substituting this control law for $\dot{\vec{v}}$:

$$\dot{\vec{y}} = CA\vec{x} + CB(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)$$
 (6)

$$\dot{\vec{y}} = CA\vec{x} - CA\vec{x} + \dot{\vec{r}} + \vec{v}$$

$$\vec{v} = \dot{\vec{y}} - \dot{\vec{r}}$$

• Error dynamics:

$$\dot{\vec{e}} = -\vec{V} \tag{9}$$

- n_v poles at s=0
- Selecting this \vec{u} canceled $CA\vec{x}$ term and relates tracking error without CB term, making system from \vec{v} to \vec{y} appear like linear system with poles at origin

(7)

(8)

Outer Tracking Loop

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{\mathbf{v}} = \mathbf{K}\vec{\mathbf{e}} \tag{10}$$

Outer Tracking Loop

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{\mathbf{v}} = K\vec{\mathbf{e}} \tag{10}$$

Error dynamics

$$\dot{\vec{e}} = -K\vec{e} \tag{11}$$

- Stable if and only if K > 0, i.e. positive definite
- Typically diagonal matrix to keep control channels in outer-loop decoupled

Outer Tracking Loop

• Design **outer tracking loop** as state feedback control law, K, using MIMO LTI control on tracking error, \overrightarrow{e} :

$$\vec{V} = K\vec{e} \tag{10}$$

Error dynamics

$$\dot{\vec{e}} = -K\vec{e} \tag{11}$$

8/43

- Stable if and only if K > 0, i.e. positive definite
- Typically diagonal matrix to keep control channels in outer-loop decoupled
- Overall LTI dynamic inversion (LDI) controller:

$$\vec{u} = (CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + K\vec{e} \right)$$
 (12)

• Sums feedback linearization loop output, LTI control gain on tracking error, and

• Substituting LDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = A\vec{x} + B(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)
\dot{\vec{x}} = \left(I - B(CB)^{-1} \right) A\vec{x} + B(CB)^{-1} \left(\dot{\vec{r}} + \vec{v} \right)$$
(13)

• Substituting LDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = A\vec{x} + B(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)
\dot{\vec{x}} = \left(I - B(CB)^{-1} \right) A\vec{x} + B(CB)^{-1} \left(\dot{\vec{r}} + \vec{v} \right)$$
(13)

• System stability: error dynamics & **zero dynamics**, i.e. $\vec{y}(t) = 0$ or $\vec{v} = -\vec{r}$:

$$\dot{\vec{x}} = \left(I - B(CB)^{-1}\right) A \vec{x} = A_z \vec{x}$$
 (14)

• Substituting LDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = A\vec{x} + B(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)
\dot{\vec{x}} = \left(I - B(CB)^{-1} \right) A\vec{x} + B(CB)^{-1} \left(\dot{\vec{r}} + \vec{v} \right)$$
(13)

• System stability: error dynamics & **zero dynamics**, i.e. $\vec{y}(t) = 0$ or $\vec{v} = -\dot{\vec{r}}$:

$$\vec{x} = \left(I - B(CB)^{-1}\right)A\vec{x} = A_z\vec{x} \tag{14}$$

• Dimension of \vec{e} : $n_y < n_x$

• Substituting LDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = A\vec{x} + B(CB)^{-1} \left(-CA\vec{x} + \dot{\vec{r}} + \vec{v} \right)
\dot{\vec{x}} = \left(I - B(CB)^{-1} \right) A\vec{x} + B(CB)^{-1} \left(\dot{\vec{r}} + \vec{v} \right)$$
(13)

• System stability: error dynamics & **zero dynamics**, i.e. $\vec{y}(t) = 0$ or $\vec{v} = -\vec{r}$:

$$\dot{\vec{x}} = \left(I - B(CB)^{-1}\right) A \vec{x} = A_z \vec{x} \tag{14}$$

- Dimension of \vec{e} : $n_y < n_x$
- Remaining $n_x n_y$ system poles must be LHP stable for stable DI controller
 - Unobservable by selecting controlled variable $\vec{y} = C\vec{x}$
 - $I B(CB)^{-1}$: projection on null space of C along range of B
 - $(I B(CB)^{-1})A = A_z$: dynamics in null space of C & range perpendicular of B
 - Designing C, i.e. controlled variables of state: stable LDI

Previous design assumed CB invertible and non-zero

- Previous design assumed CB invertible and non-zero
- Note: n^{th} derivative of \vec{y}

$$\vec{y}^{[n]} = CA^{n+1}\vec{x} + C\begin{bmatrix} A^nB \cdots & AB & B \end{bmatrix} \begin{bmatrix} \vec{u} \\ \vdots \\ \vec{u}^{[n-1]} \\ \vec{v}^{[n]} \end{bmatrix}$$
(15)

- Previous design assumed CB invertible and non-zero
- Note: n^{th} derivative of \vec{v}

$$\vec{y}^{[n]} = CA^{n+1}\vec{x} + C\begin{bmatrix} A^nB \cdots & AB & B \end{bmatrix} \begin{bmatrix} \vec{u} \\ \vdots \\ \vec{u}^{[n-1]} \\ \vec{u}^{[n]} \end{bmatrix}$$
(15)

• If CB zero: take smallest nth derivative which has non-zero CAnB term

$$\vec{y}^{[n]} = CA^{n+1}\vec{x} + CA^nB\vec{u} \tag{16}$$

- Previous design assumed CB invertible and non-zero
- Note: n^{th} derivative of \vec{v}

$$\vec{y}^{[n]} = CA^{n+1}\vec{x} + C\begin{bmatrix} A^nB \cdots & AB & B \end{bmatrix} \begin{bmatrix} \vec{u} \\ \vdots \\ \vec{u}^{[n-1]} \\ \vec{u}^{[n]} \end{bmatrix}$$
(15)

If CB zero: take smallest nth derivative which has non-zero CAⁿB term

$$\vec{y}^{[n]} = CA^{n+1}\vec{x} + CA^nB\vec{u} \tag{16}$$

Form dynamic inversion controller:

$$\vec{u} = \left(CA^{n-1}B\right)^{-1}\left(-CA^n\vec{x} + \vec{r}^{[n]} + \vec{v}\right) \tag{17}$$

• Error dynamics:

$$\vec{e}^{[n]} = -\vec{v} \tag{18}$$

• $n_v \times n$ poles at origin

• Error dynamics:

$$\vec{e}^{[n]} = -\vec{v} \tag{18}$$

- $n_v \times n$ poles at origin
- If CB non-zero and singular, but system controllable: take $n = n_x$ and form controllability matrix:

$$C = \begin{bmatrix} A^{n_x} B \cdots & AB & B \end{bmatrix}$$
 (19)

- Rank n_x
- C matrix has rank n_u

Error dynamics:

$$\vec{e}^{[n]} = -\vec{v} \tag{18}$$

- $n_v \times n$ poles at origin
- If *CB* non-zero and singular, but system controllable: take $n = n_x$ and form controllability matrix:

$$C = \begin{bmatrix} A^{n_x} B \cdots & AB & B \end{bmatrix} \tag{19}$$

- Rank n_x
- C matrix has rank n_{ij}
- Define **pseudoinverse** of \mathcal{CC} :

$$(CC)^{+} = (CC)^{T} \left((CC) (CC)^{T} \right)^{-1}$$
(20)₃

• Form dynamic inversion controller:

$$\begin{bmatrix} \vec{u} \\ \vdots \\ \vec{u}[n_x-1] \\ \vec{u}[n_x] \end{bmatrix} = (CC)^+ \left(-CA^{n_x} \vec{x} + \vec{r}[n_x] + \vec{v} \right)$$
(21)

Error dynamics:

$$\vec{e}^{[n_x]} = -\vec{v} \tag{22}$$

• $n_y \times n_x$ poles at origin

• Design **outer tracking loop** as state feedback control law, K, using MIMO LTI control on tracking error, \vec{e} :

$$\vec{v} = K_{n-1} \vec{e}^{[n-1]} + \dots + K_0 \vec{e}$$
 (23)

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{\mathbf{v}} = K_{n-1} \vec{\mathbf{e}}^{[n-1]} + \dots + K_0 \vec{\mathbf{e}}$$
 (23)

Error dynamics:

$$\vec{e} + K_{n-1}\vec{e}^{[n-1]} + \dots + K_0\vec{e} = 0$$
 (24)

• Gain matrices, K_i for i = 0, ..., n designed to make error dynamics stable

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{v} = K_{n-1} \vec{e}^{[n-1]} + \dots + K_0 \vec{e}$$
 (23)

Error dynamics:

$$\vec{e} + K_{n-1}\vec{e}^{[n-1]} + \dots + K_0\vec{e} = 0$$
 (24)

- Gain matrices, K_i for i = 0, ..., n designed to make error dynamics stable
- Special cases require one to compute tracking error and its *n* derivatives

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{v} = K_{n-1} \vec{e}^{[n-1]} + \dots + K_0 \vec{e}$$
 (23)

Error dynamics:

$$\vec{e} + K_{n-1}\vec{e}^{[n-1]} + \dots + K_0\vec{e} = 0$$
 (24)

- Gain matrices, K_i for i = 0, ..., n designed to make error dynamics stable
- Special cases require one to compute tracking error and its *n* derivatives
- For *CB* as non-zero and singular: use dynamical system to extract $\vec{u}(t)$ from its derivative vector $[\vec{u} \cdots \vec{u}^{[n-1]} \vec{u}^{[n]}]^T$

Linear-In-Control, Time-Variant System

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(25)

Linear-In-Control, Time-Variant System

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(25)

• Derivative of \vec{y} :

$$\dot{\vec{y}} = \frac{\partial h}{\partial \vec{x}} \dot{\vec{x}} = \frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \frac{\partial h}{\partial \vec{x}} g(\vec{x}) \vec{u}$$
 (26)

• $\frac{\partial h}{\partial \vec{x}} f(\vec{x})$: Lie derivative of $h(\vec{x})$ along $f(\vec{x})$

Linear-In-Control, Time-Variant System

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u}
\vec{y} = h(\vec{x})$$
(25)

• Derivative of \vec{v} :

$$\dot{\vec{y}} = \frac{\partial h}{\partial \vec{x}} \dot{\vec{x}} = \frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \frac{\partial h}{\partial \vec{x}} g(\vec{x}) \vec{u}$$
 (26)

- $\frac{\partial h}{\partial \vec{x}} f(\vec{x})$: Lie derivative of $h(\vec{x})$ along $f(\vec{x})$
- Inner feedback linearization loop:

$$\vec{u} = \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + \vec{v}\right) \tag{27}$$

• Virtual control input: $\vec{v}(t)$

Error Dynamics

• Substituting this control law for $\dot{\vec{y}}$: **error dynamics**

$$\dot{\vec{e}} = -\vec{v} \tag{28}$$

Error Dynamics

• Substituting this control law for $\dot{\vec{y}}$: error dynamics

$$\dot{\vec{e}} = -\vec{V} \tag{28}$$

 Design outer tracking loop as state feedback control law, K, using MIMO LTI control on tracking error, e:

$$\vec{V} = K\vec{e} \tag{29}$$

Error Dynamics

• Substituting this control law for $\dot{\vec{y}}$: error dynamics

$$\dot{\vec{e}} = -\vec{V} \tag{28}$$

• Design **outer tracking loop** as state feedback control law, K, using MIMO LTI control on tracking error, \overrightarrow{e} :

$$\vec{V} = K\vec{e} \tag{29}$$

Error dynamics:

$$\dot{\vec{e}} = -K\vec{e} \tag{30}$$

- Stable if and only if K > 0, i.e. positive definite
- Typically diagonal matrix to keep control channels in outer-loop decoupled

Nonlinear Dynamic Inversion Controller

• Overall nonlinear dynamic inversion (NDI) controller:

$$\vec{u} = \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + K\vec{e}\right)$$
(31)

• Sums feedback linearization loop output, LTI control gain on tracking error, feedforward term on reference derivative \vec{r}

Nonlinear Dynamic Inversion Controller

• Overall nonlinear dynamic inversion (NDI) controller:

$$\vec{u} = \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + K\vec{e}\right)$$
(31)

- Sums feedback linearization loop output, LTI control gain on tracking error, feedforward term on reference derivative $\dot{\vec{r}}$
- Note: \vec{u} requires knowing nonlinear dynamics or available lookup tables to compute $\frac{\partial h}{\partial \vec{x}} f(\vec{x})$ and $\frac{\partial h}{\partial \vec{x}} g(\vec{x})$

Nonlinear Dynamic Inversion Controller

Overall nonlinear dynamic inversion (NDI) controller:

$$\vec{u} = \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + K\vec{e}\right)$$
(31)

- Sums feedback linearization loop output, LTI control gain on tracking error, feedforward term on reference derivative $\dot{\vec{r}}$
- Note: \vec{u} requires knowing nonlinear dynamics or available lookup tables to compute $\frac{\partial h}{\partial \vec{x}} f(\vec{x})$ and $\frac{\partial h}{\partial \vec{x}} g(\vec{x})$
- Similar to *CB* singular or zero for LDI: if $\frac{\partial h}{\partial \vec{x}}g(\vec{x})$ singular, must use successive Lie derivatives to form suitable feedback linearization controllers

Closed-Loop Dynamics

Substituting NDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x}) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x}) \right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + K \vec{e} \right)
\dot{\vec{x}} = (I - g(\vec{x})) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x}) \right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} \right) f(\vec{x}) + g(\vec{x}) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x}) \right)^{-1} \left(\dot{\vec{r}} + \vec{v} \right)$$
(32)

Closed-Loop Dynamics

• Substituting NDI controller into state equation, closed-loop system dynamics:

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x}) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} f(\vec{x}) + \dot{\vec{r}} + K \vec{e}\right)
\dot{\vec{x}} = (I - g(\vec{x})) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}}\right) f(\vec{x}) + g(\vec{x}) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x})\right)^{-1} \left(\dot{\vec{r}} + \vec{v}\right)$$
(32)

• Zero dynamics, i.e. $\vec{y}(t) = 0$ or $\vec{v} = -\dot{\vec{r}}$:

$$\dot{\vec{x}} = (I - g(\vec{x})) \left(\frac{\partial h}{\partial \vec{x}} g(\vec{x}) \right)^{-1} \left(-\frac{\partial h}{\partial \vec{x}} \right) f(\vec{x}) \tag{33}$$

- Linearized at specific flight conditions to check suitability of controlled variable, $\vec{y} = h(\vec{x})$
- OR simulated at different initial conditions and checked

Beyond Standard Nonlinear Dynamic Inversion

- To improve robustness to model uncertainty in NDI control strategy, alternatively design incremental nonlinear dynamic inversion (INDI) controller instead of full NDI
 - Calculates required change to control input as opposed to full control input
 - Full system model not required, only local part of model: INDI more robust

Beyond Standard Nonlinear Dynamic Inversion

- To improve robustness to model uncertainty in NDI control strategy, alternatively design incremental nonlinear dynamic inversion (INDI) controller instead of full NDI
 - Calculates required change to control input as opposed to full control input
 - Full system model not required, only local part of model: INDI more robust
- Another control strategy to improve performance of NDI to model uncertainty:
 NDI-Based Model Reference Adaptive Control (MRAC)
 - Reference signal, \vec{r} , and derivative, $\dot{\vec{r}}$, defined via specified dynamical system called reference model
 - Reference model tracks plant state, i.e. regulate error $\vec{e} = \vec{r} \vec{x}$ to zero
 - Control system incorporates additional adaptive feedback loop to account for matched uncertainties in dynamics

NDI-Based MRAC Example

• Consider linear-in-control dynamical system with additive uncertainty $\Delta(\vec{x})$:

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u} + \Delta(\vec{x}, \vec{u})$$
(34)

NDI-Based MRAC Example

• Consider linear-in-control dynamical system with additive uncertainty $\Delta(\vec{x})$:

$$\dot{\vec{x}} = f(\vec{x}) + g(\vec{x})\vec{u} + \Delta(\vec{x}, \vec{u})$$
(34)

Form NDI-based MRAC controller:

$$\vec{u} = g(\vec{x})^{-1} \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right)$$
(35)

- $\hat{\Delta}$: new adaptive control signal
- Depends on \vec{x} , \vec{u} , internal design parameters, $\vec{\theta}$
- Nominally used to cancel uncertainty $\Delta(\vec{x})$

NDI-Based MRAC Example

• Consider linear-in-control dynamical system with additive uncertainty $\Delta(\vec{x})$:

$$\dot{\vec{X}} = f(\vec{X}) + g(\vec{X})\vec{U} + \Delta(\vec{X}, \vec{U}) \tag{34}$$

Form NDI-based MRAC controller:

$$\vec{u} = g(\vec{x})^{-1} \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right)$$
(35)

- Δ: new adaptive control signal
- Depends on \vec{x} . \vec{u} , internal design parameters. $\vec{\theta}$
- Nominally used to cancel uncertainty $\Delta(\vec{x})$
- Error dynamics for model reference:

$$\dot{\vec{e}} = \dot{\vec{r}} - \dot{\vec{x}} \tag{36}$$

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - g(\vec{x})\vec{u} - \Delta(\vec{x}, \vec{u})$$

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right) - \Delta(\vec{x})$$
(38)

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right) - \Delta(\vec{x})$$
(38)

$$\dot{\vec{e}} = -K\vec{e} + \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) - \Delta(\vec{x}, \vec{u})$$
(39)

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right) - \Delta(\vec{x})$$
(38)

$$\vec{e} = -K\vec{e} + \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) - \Delta(\vec{x}, \vec{u})$$
(39)

• Ideal: design adaptive element $\hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta})$ to cancel uncertainty, $\Delta(\vec{x})$, design K to stabilize n_x system poles

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right) - \Delta(\vec{x})$$
(38)

$$\vec{e} = -K\vec{e} + \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) - \Delta(\vec{x}, \vec{u})$$
(39)

- Ideal: design adaptive element $\hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta})$ to cancel uncertainty, $\Delta(\vec{x})$, design K to stabilize n_x system poles
- Stability and performance of MRAC system dependent on nature of $\Delta(\vec{x}, \vec{u})$ and state trajectory $\vec{x}(t)$
 - Often $\hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta})$ may not even converge to true $\Delta(\vec{x}, \vec{u})$, but system still stable

$$\dot{\vec{e}} = \dot{\vec{r}} - f(\vec{x}) - \left(-f(\vec{x}) + \dot{\vec{r}} + K\vec{e} - \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) \right) - \Delta(\vec{x})$$
(38)

$$\dot{\vec{e}} = -K\vec{e} + \hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta}) - \Delta(\vec{x}, \vec{u})$$
(39)

- Ideal: design adaptive element $\hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta})$ to cancel uncertainty, $\Delta(\vec{x})$, design K to stabilize n_x system poles
- Stability and performance of MRAC system dependent on nature of $\Delta(\vec{x}, \vec{u})$ and state trajectory $\vec{x}(t)$
 - Often $\hat{\Delta}(\vec{x}, \vec{u}, \vec{\theta})$ may not even converge to true $\Delta(\vec{x}, \vec{u})$, but system still stable
- Adaptive neural networks have been used to perform the uncertainty cancellation term $\hat{\Delta}(\vec{x},\vec{u})$ & MRAC can be performed with and without NDI
 - Such control system design and analysis beyond scope of course, simply mentioned to highlight importance of linear feedback control design element present even in many nonlinear control systems

Single Input, Single Output (SISO) Plant

Dynamics:

$$\dot{x} = ax + b(u + f(x)) \tag{40}$$

- x: system state
- u: control input
- a, b: unknown constant parameters
- Sign of b known & controllable

Single Input, Single Output (SISO) Plant

Dynamics:

$$\dot{x} = ax + b(u + f(x)) \tag{40}$$

- x: system state
- u: control input
- a. b: unknown constant parameters
- Sign of b known & controllable
- System dynamics depend on unknown function f(x) defined as linear combination of N known basic functions $\phi_i(x)$ with N unknown constants, $\overrightarrow{\theta}_i$:

$$f(x) = \sum_{i=1}^{N} \overrightarrow{\theta}_{i} \phi_{i}(x) = \overrightarrow{\theta}^{T} \Phi(x)$$
 (41)

- $\Phi(x) = [\phi_1...\phi_N]^T \in \mathbb{R}^n$: known regressor vector
- Components $\phi_i(x)$ assumed Linschitz-continuous in x

Stable Reference Model

• SISO plant model:

$$\dot{x} = ax + b(u + \overrightarrow{\theta}^T \Phi(x)) \tag{42}$$

Stable Reference Model

SISO plant model:

$$\dot{x} = ax + b(u + \overrightarrow{\theta}^T \Phi(x)) \tag{42}$$

Stable reference model dynamics described by first-order differential equation:

$$\dot{x}_{ref} = a_{ref} x_{ref} + b_{ref} r(t) \tag{43}$$

- a_{ref} < 0 & b_{ref}: desired constants chosen to represent desired response due to bounded commands
- E.g. $b_{ref} = -a_{ref}$ for unity DC gain
- E.g. select *a_{ref}* such that reference time constant as small as desired and indirectly indicative of control effort possible

• Control objective of interest in SISO case: asymptotically track state x_{ref} of reference model driven by any bounded command r(t)

- Control objective of interest in SISO case: asymptotically track state x_{ref} of reference model driven by any bounded command r(t)
- Requires control law *u*(*t*) such that:
 - State tracking error $e(t) = x(t) x_{ref}(t)$ globally uniformly asymptotically tends to zero as $t \to \infty$
 - All other signals remain uniformly ultimately bounded
 - In presence of N+2 unknown constant parameters $\{a,b,\theta_1,...,\theta_N\}$

- Control objective of interest in SISO case: asymptotically track state x_{ref} of reference model driven by any bounded command r(t)
- Requires control law *u*(*t*) such that:
 - State tracking error $e(t) = x(t) x_{ref}(t)$ globally uniformly asymptotically tends to zero as $t \to \infty$
 - All other signals remain uniformly ultimately bounded
 - In presence of N+2 unknown constant parameters $\{a, b, \theta_1, ..., \theta_N\}$
- Define ideal feedback and feedforward control law as if unknown parameters known:

$$u_{ideal} = k_{x}x + k_{r}r - \theta^{T}\Phi(x)$$
 (44)

k_x & k_r: ideal feedback & feedforward gains

• Substitute into plant:

$$\dot{x} = (a + bk_x)x + bk_r r(t) \tag{45}$$

• Substitute into plant:

$$\dot{x} = (a + bk_x)x + bk_r r(t) \tag{45}$$

• Comparing with desired reference model dynamics \rightarrow ideal gains k_x and k_r must satisfy:

$$a + bk_x = a_{ref}$$
 $bk_r = b_{ref}$ (46)

A.k.a. matching conditions,

• Substitute into plant:

$$\dot{x} = (a + bk_x)x + bk_r r(t) \tag{45}$$

 Comparing with desired reference model dynamics → ideal gains k_x and k_r must satisfy:

$$a + bk_x = a_{ref}$$
 $bk_r = b_{ref}$ (46)

- A.k.a. matching conditions,
- Clear for SISO plants: unknown ideal gains, k_x and k_r , always exist
 - Not true for MIMO dynamics

Tracking Control Law

Tracking control law:

$$u = \hat{k}_x x + \hat{k}_r r - \hat{\theta}^T \Phi(x) \tag{47}$$

- Adaptive feedback gain: \hat{k}_x
- Adaptive feedforward gain: \hat{k}_r
- Vector of estimated parameters: $\vec{\theta}$
- ightarrow achieve global uniform asymptotic tracking of reference model trajectories

Tracking Control Law

Tracking control law:

$$u = \hat{k}_x x + \hat{k}_r r - \hat{\theta}^T \Phi(x) \tag{47}$$

- Adaptive feedback gain: \hat{k}_x
- Adaptive feedforward gain: \hat{k}_r
- Vector of estimated parameters: $\vec{\theta}$
- \rightarrow achieve global uniform asymptotic tracking of reference model trajectories
- To show → substitute into system dynamics:

$$\dot{x} = (a + b\hat{k}_x)x + b(\hat{k}_r r - (\hat{\theta} - \overrightarrow{\theta})^T \Phi(x)) \tag{48}$$

• Rewrite using matching conditions:

$$\dot{x} = a_{ref}x + bk_rr + b(\hat{k}_x - k_x)x + b(\hat{k}_r - k_r)r - b(\hat{\theta} - \overrightarrow{\theta})^T$$
(49)

• Rewrite using matching conditions:

$$\dot{x} = a_{ref}x + bk_rr + b(\hat{k}_x - k_x)x + b(\hat{k}_r - k_r)r - b(\hat{\theta} - \vec{\theta})^T$$
(49)

Gain estimation errors:

$$\Delta k_{x} = \hat{k}_{x} - k_{x} \tag{50}$$

$$\Delta k_r = \hat{k}_r - k_r \tag{51}$$

• Rewrite using matching conditions:

$$\dot{x} = a_{ref}x + bk_rr + b(\hat{k}_x - k_x)x + b(\hat{k}_r - k_r)r - b(\hat{\theta} - \vec{\theta})^T \tag{49}$$

Gain estimation errors:

$$\Delta k_{x} = \hat{k}_{x} - k_{x} \tag{50}$$

$$\Delta k_r = \hat{k}_r - k_r \tag{51}$$

Parameter estimation error vector:

$$\Delta \vec{\theta} = \hat{\theta} - \vec{\theta} \tag{52}$$

Tracking Error Dynamics

• Closed-loop dynamics of system tracking error signal:

$$e(t) = x(t) - x_{ref}(t) \tag{53}$$

Tracking Error Dynamics

Closed-loop dynamics of system tracking error signal:

$$e(t) = x(t) - x_{ref}(t) \tag{53}$$

Rewritten:

$$\dot{e}(t) = a_{ref}e + b(\Delta k_{x}x + \Delta k_{r}r - \Delta \theta^{T}\Phi(x))$$
 (54)

• Choose adaptive gains \hat{k}_x , \hat{k}_r , $\hat{\vec{\theta}}$ to enforce global uniform asymptotic stability of origin

Tracking Error Dynamics

Closed-loop dynamics of system tracking error signal:

$$e(t) = x(t) - x_{ref}(t) \tag{53}$$

Rewritten:

$$\dot{e}(t) = a_{ref}e + b(\Delta k_{x}x + \Delta k_{r}r - \Delta \theta^{T}\Phi(x))$$
 (54)

- Choose adaptive gains $\hat{k}_x,\hat{k}_r,\hat{ ilde{ heta}}$ to enforce global uniform asymptotic stability of origin
- Accomplished: inverse Lyapunov design approach
 - Choose Lyapunov function candidate
 - Select adaptive laws s.t. Lyapunov function time derivative evaluated along trajectories of error dynamics becomes nonpositive
 - By Lyapunov stability theory: tracking error asymptotically converges to origin
 - System state asymptotically tracks state of reference model

Lyapunov Function Candidate and Power

Quadratic Lyapunov function candidate:

$$V(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta}) = e^2 + |b|(\gamma_x^{-1} \Delta k_x^2 + \gamma_r^{-1} \Delta k_r^2 + \Delta \overrightarrow{\theta}^T \Gamma_{\theta}^{-1} \Delta \overrightarrow{\theta})$$
 (55)

- $\gamma_x > 0$, $\gamma_r > 0$, $\Gamma_\theta \in \mathbb{R}^{n \times n}$: rates of adaptation
- Tunable by control system designer

Lyapunov Function Candidate and Power

• Quadratic Lyapunov function candidate:

$$V(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta}) = e^2 + |b|(\gamma_x^{-1} \Delta k_x^2 + \gamma_r^{-1} \Delta k_r^2 + \Delta \overrightarrow{\theta}^T \Gamma_{\theta}^{-1} \Delta \overrightarrow{\theta})$$
 (55)

- $\gamma_x > 0$, $\gamma_r > 0$, $\Gamma_\theta \in \mathbb{R}^{n \times n}$: rates of adaptation
- Tunable by control system designer
- Time derivative of *V* along trajectories of current SISO MRAC problem:

$$\dot{V}(e, \Delta k_{x}, \Delta k_{r}, \Delta \vec{\theta}) = 2e\dot{e} + 2|b|(\gamma_{x}^{-1} \Delta k_{x} \dot{k}_{x} + \gamma_{r}^{-1} \Delta k_{r} \dot{k} + \Delta \vec{\theta}^{T} \Gamma_{\theta} \dot{\theta})$$

$$\dot{V}(e, \Delta k_{x}, \Delta k_{r}, \Delta \vec{\theta}) = 2e(a_{ref}e + b(\Delta k_{x}x + \Delta k_{r}r - \Delta \vec{\theta}^{T} \Phi(x)))$$

$$+ 2|b|(\gamma_{x}^{-1} \Delta k_{x} \dot{k} + \gamma_{r}^{-1} \Delta k_{r} \dot{k}_{r} + \Delta \vec{\theta}^{T} \Gamma_{\theta}^{-1} \dot{\theta})$$

$$\dot{V}(e, \Delta k_{x}, \Delta k_{r}, \Delta \vec{\theta}) = 2a_{ref}e^{2} + 2|b|(\Delta k_{x}(xe \operatorname{sign}(b) + \gamma_{x}^{-1} \dot{k}_{r}))$$

$$+ 2|b|(\Delta k_{r}(re\operatorname{sign}(b) + \gamma_{r}^{-1} \dot{k}_{r}))$$

$$+ 2|b|\Delta \vec{\theta}^{T}(-\Phi(x)e \operatorname{sign}(b) + \Gamma_{\theta}^{-1} \dot{\theta})$$
(56)

Lyapunov Stability Theory

• Sufficient to choose adaptive laws s.t. $\dot{V}(e, \Delta k_x, \Delta k_r, \Delta \vec{\theta}) \leq 0$ occur if

$$\dot{\hat{k}}_{x} = -\gamma_{x}xe \operatorname{sign}(b)$$

$$\dot{\hat{k}}_{r} = -\gamma_{r}re \operatorname{sign}(b)$$

$$\dot{\hat{\theta}} = \Gamma_{\theta}\Phi(x)e \operatorname{sign}(b)$$
(57)

Lyapunov Stability Theory

• Sufficient to choose adaptive laws s.t. $\dot{V}(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta}) \leq 0$ occur if

$$\dot{\hat{k}}_{x} = -\gamma_{x}xe \operatorname{sign}(b)$$

$$\dot{\hat{k}}_{r} = -\gamma_{r}re \operatorname{sign}(b)$$

$$\dot{\hat{\theta}} = \Gamma_{\theta}\Phi(x)e \operatorname{sign}(b)$$
(57)

Then,

$$\dot{V}(e, \Delta k_x, \Delta k_r, \Delta \vec{\theta}) = 2a_{ref}e(t)^2 \le 0$$
 (58)

a_{ref} < 0 as specified

• Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\overrightarrow{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\hat{\theta}$ uniformly bounded

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\overrightarrow{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\hat{\theta}$ uniformly bounded
- $\phi_i(x)$ of $\Phi(x)$ Lipschitz-continuous functions of x bounded
 - \rightarrow all $\phi_i(x)$ uniformly bounded

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\overrightarrow{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\hat{\theta}$ uniformly bounded
- $\phi_i(x)$ of $\Phi(x)$ Lipschitz-continuous functions of x bounded
 - \rightarrow all $\phi_i(x)$ uniformly bounded
 - ullet o u uniformly bounded

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\vec{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\hat{\theta}$ uniformly bounded
- $\phi_i(x)$ of $\Phi(x)$ Lipschitz-continuous functions of x bounded
 - \rightarrow all $\phi_i(x)$ uniformly bounded
 - ullet o u uniformly bounded
 - $\rightarrow \dot{x}$ and \dot{x}_{ref} bounded

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\vec{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\hat{\theta}$ uniformly bounded
- $\phi_i(x)$ of $\Phi(x)$ Lipschitz-continuous functions of x bounded
 - \rightarrow all $\phi_i(x)$ uniformly bounded
 - ullet o u uniformly bounded
 - $\rightarrow \dot{x}$ and \dot{x}_{ref} bounded
- Differentiating:

$$\ddot{V}(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta}) = 4a_{ref}e(t)\dot{e}(t)$$
(59)

• Bounded $\rightarrow \dot{V}$ continuous function of time

- Immediately implies $(e, \Delta k_x, \Delta k_r, \Delta \vec{\theta})$ bounded in time
- Coupled with x_{ref} and r bounded and $\overrightarrow{\theta}$ constant vector \rightarrow system state x and estimated vector of parameters $\widehat{\theta}$ uniformly bounded
- $\phi_i(x)$ of $\Phi(x)$ Lipschitz-continuous functions of x bounded
 - \rightarrow all $\phi_i(x)$ uniformly bounded
 - ullet o u uniformly bounded
 - $\rightarrow \dot{x}$ and \dot{x}_{ref} bounded
- Differentiating:

$$\ddot{V}(e, \Delta k_x, \Delta k_r, \Delta \overrightarrow{\theta}) = 4a_{ref}e(t)\dot{e}(t)$$
(59)

- Bounded $\rightarrow \dot{V}$ continuous function of time
- As V lower bounded and $\dot{V} \leq 0$, then V has finite limit and Barbalot's lemma:

$$\lim_{t \to \infty} \dot{V}(t) = 0 \tag{60}$$

• Thus, $e(t) \rightarrow 0$ as $t \rightarrow \infty$

Additional Notes

- ullet As Lyapunov function radially unbounded and does not depend explicitly on time ullet stability property global and uniform
 - I.e. closed-loop tracking error dynamics globally uniformly asymptotically stable
 - Command tracking problem solved

Additional Notes

- \bullet As Lyapunov function radially unbounded and does not depend explicitly on time \to stability property global and uniform
 - I.e. closed-loop tracking error dynamics globally uniformly asymptotically stable
 - Command tracking problem solved
- Note: estimated parameters $\hat{\theta}$ not guaranteed to converge to ideal parameters $\overrightarrow{\theta}$, but uniformly bounded
 - Persistency of excitation provides sufficient conditions for estimates to converge

Additional Notes

- \bullet As Lyapunov function radially unbounded and does not depend explicitly on time \to stability property global and uniform
 - I.e. closed-loop tracking error dynamics globally uniformly asymptotically stable
 - Command tracking problem solved
- Note: estimated parameters $\hat{\theta}$ not guaranteed to converge to ideal parameters $\overrightarrow{\theta}$, but uniformly bounded
 - Persistency of excitation provides sufficient conditions for estimates to converge
- Note: MRAC "tuning knobs" are rates of adaptation: γ_x , γ_r , Γ_θ
 - \bullet Larger rates \to faster adaptive laws evolve \to fast tracking
 - Can lead to undesirable oscillations during transient times as system output forced closer to command
 - Trade-off between fast tracking and smooth transients: design-dependent challenge

Consider nonlinear plant with dynamics of form:

$$\dot{\vec{X}} = A\vec{X} + B\Lambda(\vec{u} + f(\vec{X})) \tag{61}$$

- $\vec{x} \in \mathbb{R}^n$: system state
- $\vec{u} \in \mathbb{R}^p$: control input
- $B \in \mathbb{R}^{n \times p}$: known control matrix
- $A \in \mathbb{R}^{n \times n}$: unknown state matrix
- $\Lambda \in \mathbb{R}^{p \times p}$: unknown diagonal matrix of control uncertainties with diagonal elements $\lambda_i > 0$

Consider nonlinear plant with dynamics of form:

$$\dot{\vec{x}} = A\vec{x} + B\Lambda(\vec{u} + f(\vec{x})) \tag{61}$$

- $\vec{x} \in \mathbb{R}^n$: system state
- $\vec{u} \in \mathbb{R}^p$: control input
- $B \in \mathbb{R}^{n \times p}$: known control matrix
- $A \in \mathbb{R}^{n \times n}$: unknown state matrix
- $\Lambda \in \mathbb{R}^{p \times p}$: unknown diagonal matrix of control uncertainties with diagonal elements $\lambda_i > 0$
- Uncertainty due to modeling errors or model control failures

Consider nonlinear plant with dynamics of form:

$$\dot{\vec{X}} = A\vec{X} + B\Lambda(\vec{u} + f(\vec{X})) \tag{61}$$

- $\vec{x} \in \mathbb{R}^n$: system state
- $\vec{u} \in \mathbb{R}^p$: control input
- $B \in \mathbb{R}^{n \times p}$: known control matrix
- $A \in \mathbb{R}^{n \times n}$: unknown state matrix
- $\Lambda \in \mathbb{R}^{p \times p}$: unknown diagonal matrix of control uncertainties with diagonal elements $\lambda_i > 0$
- Uncertainty due to modeling errors or model control failures
- Assume pair $(A, B\Lambda)$ controllable

• Consider nonlinear plant with dynamics of form:

$$\dot{\vec{x}} = A\vec{x} + B\Lambda(\vec{u} + f(\vec{x})) \tag{61}$$

- $\vec{x} \in \mathbb{R}^n$: system state
- $\vec{u} \in \mathbb{R}^p$: control input
- $B \in \mathbb{R}^{n \times p}$: known control matrix
- $A \in \mathbb{R}^{n \times n}$: unknown state matrix
- $\Lambda \in \mathbb{R}^{p \times p}$: unknown diagonal matrix of control uncertainties with diagonal elements $\lambda_i > 0$
- Uncertainty due to modeling errors or model control failures
- Assume pair (A, BΛ) controllable
- Unknown nonlinear vector function $f(\vec{x}) : \mathbb{R}^n \to \mathbb{R}^n$ represents system matched uncertainty

$$f(\vec{x}) = \vec{\theta}^T \Phi(\vec{x}) \tag{62}$$

- Require: \vec{x} globally uniformly asymptotically track \vec{x}_{ref}
- Reference Model

$$\dot{\vec{x}}_{ref} = A_{ref} \vec{x}_{ref} + B_{ref} \vec{r}(t)$$
 (63)

- $A_{ref} \in \mathbb{R}^n$ chosen such that all eigenvalues in LHP
- $B_{ref} \in \mathbb{R}^{n \times m}$: reference input matrix
- $\vec{r}(t) \in \mathbb{R}^p$: external, bounded reference command

- Require: \vec{x} globally uniformly asymptotically track \vec{x}_{ref}
- Reference Model

$$\dot{\vec{x}}_{ref} = A_{ref} \vec{x}_{ref} + B_{ref} \vec{r}(t)$$
 (63)

- $A_{ref} \in \mathbb{R}^n$ chosen such that all eigenvalues in LHP
- $B_{ref} \in \mathbb{R}^{n \times m}$: reference input matrix
- $\vec{r}(t) \in \mathbb{R}^p$: external, bounded reference command
- Requires: all signals in system remain uniformly bounded

- Require: \vec{x} globally uniformly asymptotically track \vec{x}_{ref}
- Reference Model

$$\dot{\vec{X}}_{ref} = A_{ref} \vec{X}_{ref} + B_{ref} \vec{r}(t)$$
 (63)

- $A_{ref} \in \mathbb{R}^n$ chosen such that all eigenvalues in LHP
- $B_{ref} \in \mathbb{R}^{n \times m}$: reference input matrix
- $\vec{r}(t) \in \mathbb{R}^p$: external, bounded reference command
- Requires: all signals in system remain uniformly bounded
- Note: reference command has same dimension as plant control input

- Require: \vec{x} globally uniformly asymptotically track \vec{x}_{ref}
- **Reference Model**

$$\dot{\vec{X}}_{ref} = A_{ref} \vec{X}_{ref} + B_{ref} \vec{r}(t)$$
 (63)

- $A_{ref} \in \mathbb{R}^n$ chosen such that all eigenvalues in LHP
- $B_{ref} \in \mathbb{R}^{n \times m}$: reference input matrix
- $\vec{r}(t) \in \mathbb{R}^p$: external, bounded reference command
- Requires: all signals in system remain uniformly bounded
- Note: reference command has same dimension as plant control input
- Given any bounded $\vec{r}(t)$, control input $\vec{u}(t)$ chosen such that state tracking error. $\vec{e}(t) = \vec{x}(t) - \vec{x}_{ref}(t)$, globally uniformly asymptotically tends to zero

$$\lim_{t \to \infty} \|\vec{x}(t) - \vec{x}_{ref}(t)\| = 0 \tag{64}$$

Ideal Fixed-Gain Control

• If matrices A and Λ known \rightarrow ideal fixed-gain control law:

$$\vec{u} = K_x^T \vec{x} + K_r^T \vec{r} - \vec{\theta}^T \Phi(\vec{x})$$
 (65)

Ideal Fixed-Gain Control

• If matrices A and Λ known \rightarrow ideal fixed-gain control law:

$$\vec{u} = K_x^T \vec{x} + K_r^T \vec{r} - \vec{\theta}^T \Phi(\vec{x})$$
 (65)

• Obtain closed-loop system:

$$\dot{\vec{X}} = (A + B \wedge K_x^T) \vec{X} + B \wedge K_r^T \vec{r}$$
 (66)

Ideal Fixed-Gain Control

• If matrices A and Λ known \rightarrow ideal fixed-gain control law:

$$\vec{u} = K_x^T \vec{x} + K_r^T \vec{r} - \vec{\theta}^T \Phi(\vec{x})$$
 (65)

Obtain closed-loop system:

$$\dot{\vec{x}} = (A + B \wedge K_x^T) \vec{x} + B \wedge K_r^T \vec{r}$$
 (66)

• Comparing with desired reference dynamics: existence of controller of ideal fixed-gain form \rightarrow ideal unknown control gains, K_x and K_r , must satisfy **matching conditions**

$$A + B \wedge K_x^T = A_{ref}$$

$$B \wedge K_r^T = B_{ref}$$
(67)

 Assuming these hold, then ideal fixed-gain control law results in closed-loop system exactly same as reference model

- Assuming these hold, then ideal fixed-gain control law results in closed-loop system exactly same as reference model
- ullet \to any bounded $\vec{r}(t)$, fixed-gain control provides global uniform asymptotic tracking

- Assuming these hold, then ideal fixed-gain control law results in closed-loop system exactly same as reference model
- ullet \rightarrow any bounded $\vec{r}(t)$, fixed-gain control provides global uniform asymptotic tracking
- General A, B, Λ , A_{ref} , B_{ref} , no guarantee that K_x and K_r exist to satisfy matching conditions then adaptive control law may not be able to meet objective

- Assuming these hold, then ideal fixed-gain control law results in closed-loop system exactly same as reference model
- ullet \rightarrow any bounded $\vec{r}(t)$, fixed-gain control provides global uniform asymptotic tracking
- General A, B, Λ , A_{ref} , B_{ref} , no guarantee that K_x and K_r exist to satisfy matching conditions then adaptive control law may not be able to meet objective
- In practice, structure of A known and A_{ref} and B_{ref} chosen so system has at least one ideal solution for K_X and K_r

Adaptive Control Law

- Assuming these hold, then ideal fixed-gain control law results in closed-loop system exactly same as reference model
- ullet \to any bounded $\vec{r}(t)$, fixed-gain control provides global uniform asymptotic tracking
- General A, B, Λ , A_{ref} , B_{ref} , no guarantee that K_x and K_r exist to satisfy matching conditions then adaptive control law may not be able to meet objective
- In practice, structure of A known and A_{ref} and B_{ref} chosen so system has at least one ideal solution for K_x and K_r
- Assuming K_x and K_r exist \to adaptive control law (based on ideal fixed-gain control law)

$$\vec{u} = \hat{K}_x^T \vec{x} + \hat{K}_r^T \vec{r} - \hat{\theta}^T \Phi(\vec{x})$$
 (68)

• $\hat{K}_x \in \mathbb{R}^{n \times p}$, $\hat{K}_r \in \mathbb{R}^{p \times p}$, $\hat{\theta} \in \mathbb{R}^{N \times n}$: estimates of ideal unknown matrices K_x , K_r , $\overrightarrow{\theta}$

• Substitute into plant dynamics → closed-loop system dynamics:

$$\vec{X} = (A + B \wedge \hat{K}_X^T) \vec{X} + B \wedge \left(\hat{K}_r^T \vec{r} - (\hat{\theta} - \vec{\theta})^T \Phi(\vec{X}) \right)$$
(69)

Substitute into plant dynamics → closed-loop system dynamics:

$$\dot{\vec{X}} = (A + B\Lambda \hat{K}_X^T)\vec{X} + B\Lambda \left(\hat{K}_r^T\vec{r} - (\hat{\theta} - \vec{\theta})^T\Phi(\vec{X})\right)$$
(69)

 Subtracting reference model from closed-loop system dynamics → closed-loop tracking error dynamics:

$$\vec{e} = (A + B \wedge \hat{K}_{x}^{T}) \vec{x} + B \wedge \left(\hat{K}_{r}^{T} \vec{r} - (\hat{\theta} - \vec{\theta})^{T} \Phi(\vec{x}) \right)
- A_{ref} \vec{x}_{ref} - B_{ref} \vec{r}$$
(70)

Including matching conditions:

$$\vec{e} = \left(A_{ref} + B \Lambda(\hat{K}_{x} - K_{x}) \right) \vec{x} - A_{ref} \vec{x}_{ref}
+ B \Lambda(\hat{K}_{r} - K_{r}) \vec{r} - B \Lambda(\hat{\theta} - \vec{\theta})^{T} \Phi(\vec{x})
\vec{e} = A_{ref} \vec{e} + B \Lambda \left((\hat{K}_{x} - K_{x})^{T} \vec{x} + (\hat{K}_{r} - K_{r})^{T} \vec{r} - (\hat{\theta} - \vec{\theta})^{T} \Phi(\vec{x}) \right)$$
(71)

· Including matching conditions:

$$\dot{\vec{e}} = \left(A_{ref} + B \Lambda(\hat{K}_{x} - K_{x}) \right) \vec{x} - A_{ref} \vec{x}_{ref}
+ B \Lambda(\hat{K}_{r} - K_{r}) \vec{r} - B \Lambda(\hat{\theta} - \vec{\theta})^{T} \Phi(\vec{x})
\dot{\vec{e}} = A_{ref} \vec{e} + B \Lambda \left((\hat{K}_{x} - K_{x})^{T} \vec{x} + (\hat{K}_{r} - K_{r})^{T} \vec{r} - (\hat{\theta} - \vec{\theta})^{T} \Phi(\vec{x}) \right)$$
(71)

• Defining $\Delta K_x = \hat{K}_x$, $\Delta K_r = \hat{K}_r - K_r$, & $\Delta \vec{\theta} = \hat{\theta} - \vec{\theta}$: parameter estimation errors

$$\dot{\vec{e}} = A_{ref}\vec{e} + B\Lambda \left(\Delta K_X^T \vec{x} + \Delta K_r^T \vec{r} - \Delta \vec{\theta}^T \Phi(\vec{x})\right)$$
(72)

Lyapunov Function

• Define rates of adaptation: $\Gamma_x = \Gamma_x^T > 0$, $\Gamma_r = \Gamma_r^T > 0$, $\Gamma_\theta = \Gamma_\theta^T > 0$

Lyapunov Function

- Define rates of adaptation: $\Gamma_X = \Gamma_X^T > 0$, $\Gamma_r = \Gamma_r^T > 0$, $\Gamma_\theta = \Gamma_\theta^T > 0$
- Consider globally radially unbounded quadratic Lyapunov function candidate:

$$V(\vec{e}, \Delta K_x, \Delta K_r, \Delta \vec{\theta}) = \vec{e}^T P \vec{e} + \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \Delta K_x + \Delta K_r^T \Gamma_r^{-1} \Delta K_r + \Delta \vec{\theta}^T \Gamma_{\theta}^{-1} \Delta \vec{\theta} \right) \Lambda \right)$$
(73)

• $P = P^T > 0$ satisfies algebraic Lyapunov equation:

$$PA_{ref} + A_{ref}^{T}P = -Q (74)$$

• For some $Q = Q^T > 0$

Time Derivative of *V* Along Trajectories

$$\dot{V} = \dot{\vec{e}}^T P \vec{e} + \vec{e}^T P \dot{\vec{e}}
+ 2 \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \dot{\hat{K}}_x + \Delta K_r^T \Gamma_r^{-1} \dot{\hat{K}}_r + \Delta \vec{\theta}^T \Gamma_\theta^{-1} \dot{\hat{\theta}} \right) \Lambda \right)$$
(75)

Time Derivative of *V* Along Trajectories

$$\dot{V} = \dot{\vec{e}}^T P \vec{e} + \vec{e}^T P \dot{\vec{e}}
+ 2 \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \dot{\hat{K}}_x + \Delta K_r^T \Gamma_r^{-1} \dot{\hat{K}}_r + \Delta \vec{\theta}^T \Gamma_{\theta}^{-1} \dot{\hat{\theta}} \right) \Lambda \right)$$
(75)

$$\dot{V} = \left(A_{ref} \vec{e} + B \Lambda (\Delta K_x^T \vec{x} + \Delta K_r^T \vec{r} - \Delta \vec{\theta}^T \Phi(\vec{x})) \right)^T P \vec{e}
+ \vec{e}^T P \left(A_{ref} \vec{e} + B \Lambda (\Delta K_x^T \vec{x} + \Delta K_r^T \vec{r} - \Delta \vec{\theta}^T \Phi(\vec{x})) \right)
+ 2 \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \dot{\hat{K}}_x + \Delta K_r^T \Gamma_r^{-1} \dot{\hat{K}}_r + \Delta \vec{\theta}^T \Gamma_{\theta}^{-1} \dot{\hat{\theta}} \right) \Lambda \right)$$
(76)

Time Derivative of V Along Trajectories

 $\dot{V} = \dot{\vec{e}}^T P \vec{e} + \vec{e}^T P \dot{\vec{e}}$

$$+ 2\operatorname{Tr}\left(\left(\Delta K_{X}^{T}\Gamma_{X}^{-1}\dot{\hat{K}}_{X} + \Delta K_{r}^{T}\Gamma_{r}^{-1}\dot{\hat{K}}_{r} + \Delta \vec{\theta}^{T}\Gamma_{\theta}^{-1}\dot{\hat{\theta}}\right)\Lambda\right)$$

$$\dot{V} = \left(A_{ref}\vec{e} + B\Lambda(\Delta K_{X}^{T}\vec{x} + \Delta K_{r}^{T}\vec{r} - \Delta \vec{\theta}^{T}\Phi(\vec{x}))\right)^{T}P\vec{e}$$

$$(75)$$

$$+ \vec{e}^T P \left(A_{ref} \vec{e} + B \Lambda (\Delta K_x^T \vec{X} + \Delta K_r^T \vec{r} - \Delta \vec{\theta}^T \Phi(\vec{X}) \right)$$

$$+ 2 \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \dot{\hat{K}}_x + \Delta K_r^T \Gamma_r^{-1} \dot{\hat{K}}_r + \Delta \vec{\theta}^T \Gamma_{\theta}^{-1} \dot{\hat{\theta}} \right) \Lambda \right)$$

$$\dot{V} = \vec{e}^T (A_{ref} P + P A_{ref}) \vec{e} + 2 \vec{e}^T P B \Lambda (\Delta K_x^T \vec{x} + \Delta K_r \vec{r} - \Delta \vec{\theta}^T \Phi(\vec{x}))
+ 2 \text{Tr} \left(\left(\Delta K_x^T \Gamma_x^{-1} \dot{\hat{K}}_x + \Delta K_r^T \Gamma_r^{-1} \dot{\hat{K}}_r + \Delta \vec{\theta}^T \Gamma_\theta^{-1} \dot{\hat{\theta}} \right) \Lambda \right)$$
(77)

(76)

Time Derivative of V

$$\dot{V} = -\vec{e}^{T}Q\vec{e} + \left(2\vec{e}^{T}PB\Lambda\Delta K_{x}^{T}\vec{x} + 2\text{Tr}\left(\Delta K_{x}^{T}\Gamma_{x}^{-1}\dot{K}_{x}\Lambda\right)\right)
+ \left(2\vec{e}^{T}PB\Lambda\Delta K_{r}\vec{r} + 2\text{Tr}\left(\Delta K_{r}^{T}\Gamma_{r}^{-1}\dot{K}_{r}\Lambda\right)\right)
+ \left(-2\vec{e}^{T}PB\Lambda\Delta\vec{\theta}^{T}\Phi(\vec{x}) + 2\text{Tr}\left(\Delta\vec{\theta}^{T}\Gamma_{\theta}^{-1}\dot{\theta}\Lambda\right)\right)$$
(78)

Time Derivative of V

$$\dot{V} = -\vec{e}^{T}Q\vec{e} + \left(2\vec{e}^{T}PB\Lambda\Delta K_{x}^{T}\vec{x} + 2\text{Tr}\left(\Delta K_{x}^{T}\Gamma_{x}^{-1}\dot{\hat{K}}_{x}\Lambda\right)\right)
+ \left(2\vec{e}^{T}PB\Lambda\Delta K_{r}\vec{r} + 2\text{Tr}\left(\Delta K_{r}^{T}\Gamma_{r}^{-1}\dot{\hat{K}}_{r}\Lambda\right)\right)
+ \left(-2\vec{e}^{T}PB\Lambda\Delta\vec{\theta}^{T}\Phi(\vec{x}) + 2\text{Tr}\left(\Delta\vec{\theta}^{T}\Gamma_{\theta}^{-1}\dot{\hat{\theta}}\Lambda\right)\right)$$
(78)

• Use vector trace identity $\vec{a}^T \vec{b} = \text{Tr}(\vec{b} \vec{a}^T)$:

$$\dot{V} = -\vec{e}^T Q \vec{e} + 2 \text{Tr} \left(\Delta K_x^T \left(\Gamma_x^{-1} \dot{\hat{K}}_x + \vec{x} \vec{e}^T P B \right) \Lambda \right)
+ 2 \text{Tr} \left(\Delta K_r^T \left(\Gamma_r^{-1} \dot{\hat{K}}_r + \vec{r} \vec{e}^T P B \right) \Lambda \right)
+ 2 \text{Tr} \left(\Delta \vec{\theta}^T \left(\Gamma_x^{-1} \dot{\hat{\theta}} - \Phi(\vec{x}) \vec{e}^T P B \right) \Lambda \right)$$
(79)

Direct MIMO MRAC Adaptive Laws

$$\dot{\hat{K}}_{X} = -\Gamma_{X} \vec{X} \vec{e}^{T} P B
\dot{\hat{K}}_{r} = -\Gamma_{r} \vec{r}(t) \vec{e}^{T} P B
\dot{\hat{\theta}} = \Gamma_{\theta} \Phi(\vec{X}) \vec{e}^{T} P B$$
(80)

Direct MIMO MRAC Adaptive Laws

$$\hat{K}_{X} = -\Gamma_{X} \vec{X} \vec{e}^{T} P B$$

$$\dot{\hat{K}}_{r} = -\Gamma_{r} \vec{r}(t) \vec{e}^{T} P B$$

$$\dot{\hat{\theta}} = \Gamma_{\theta} \Phi(\vec{X}) \vec{e}^{T} P B$$

$$\dot{V} = -\vec{e}^{T} Q \vec{e} < 0$$
(81)

 $\dot{V} = -\vec{e}^T \Omega \vec{e} < 0$

Direct MIMO MRAC Adaptive Laws

$$\dot{\hat{K}}_{x} = -\Gamma_{x} \vec{x} \vec{e}^{T} P B
\dot{\hat{K}}_{r} = -\Gamma_{r} \vec{r}(t) \vec{e}^{T} P B
\dot{\hat{\theta}} = \Gamma_{\theta} \Phi(\vec{x}) \vec{e}^{T} P B$$
(80)

- Closed-loop error dynamics uniformly stable
 - $\rightarrow \vec{e}(t)$ and $\Delta K_x(t)$, $\Delta K_r(t)$, $\Delta \theta(t)$ uniformly bounded
 - $ightarrow \hat{K}_{x}(t),\,\hat{K}_{r}(t),\,\hat{ heta}(t)$ bounded

(81)

 $\dot{V} = -\vec{e}^T \Omega \vec{e} < 0$

Direct MIMO MRAC Adaptive Laws

$$\dot{\hat{K}}_{x} = -\Gamma_{x} \vec{x} \vec{e}^{T} P B
\dot{\hat{K}}_{r} = -\Gamma_{r} \vec{r}(t) \vec{e}^{T} P B
\dot{\hat{\theta}} = \Gamma_{\theta} \Phi(\vec{x}) \vec{e}^{T} P B$$
(80)

- Closed-loop error dynamics uniformly stable
 - $\rightarrow \vec{e}(t)$ and $\Delta K_x(t)$, $\Delta K_r(t)$, $\Delta \theta(t)$ uniformly bounded
 - $\rightarrow \hat{K}_x(t), \hat{K}_r(t), \hat{\theta}(t)$ bounded
- Since $\vec{r}(t)$ bounded and A_{ref} has all LHP eigenvalues
 - $\rightarrow \vec{x}_{ref}$ and $\dot{\vec{x}}_{ref}$ bounded
 - $\rightarrow \vec{x}(t)$ uniformly bounded, $\vec{u}(t)$ bounded, $\dot{\vec{x}}(t)$ bounded
 - $\rightarrow \vec{e}(t)$ bounded

(81)

• Second time derivative of V(t) bounded:

$$\ddot{V} = -2\vec{e}^T Q \dot{\vec{e}} \tag{82}$$

 $\rightarrow \dot{V}(t)$ uniformly continuous

• Second time derivative of *V*(*t*) bounded:

$$\ddot{V} = -2\vec{e}^T Q \dot{\vec{e}} \tag{82}$$

- $ightarrow \dot{V}(t)$ uniformly continuous
- V(t) lower bounded and $\dot{V}(t) \leq 0, o$ Barbalot's lemma: $\lim_{t \to \infty} \dot{V}(t) = 0$

• Second time derivative of V(t) bounded:

$$\ddot{V} = -2\vec{e}^T Q \dot{\vec{e}} \tag{82}$$

- $\rightarrow \dot{V}(t)$ uniformly continuous
- V(t) lower bounded and $\dot{V}(t) \leq 0, o$ Barbalot's lemma: $\lim_{t \to \infty} \dot{V}(t) = 0$
- Formally proven state tracking error $\vec{e}(t)$ tends to origin globally, uniformly, and asymptotically:

$$\lim_{t \to \infty} \|\vec{X}(t) - \vec{X}_{ref}(t)\| = 0 \tag{83}$$

• Second time derivative of V(t) bounded:

$$\ddot{V} = -2\vec{e}^T Q \dot{\vec{e}} \tag{82}$$

- $\rightarrow \dot{V}(t)$ uniformly continuous
- V(t) lower bounded and $\dot{V}(t) \leq 0, o$ Barbalot's lemma: $\lim_{t \to \infty} \dot{V}(t) = 0$
- Formally proven state tracking error $\vec{e}(t)$ tends to origin globally, uniformly, and asymptotically:

$$\lim_{t \to \infty} \| \overrightarrow{X}(t) - \overrightarrow{X}_{ref}(t) \| = 0$$
(83)

- Tuning knobs in MIMO case: Γ_X , Γ_r , Γ_θ , also Q for algebraic Lyapunov equation
 - All must be symmetric, positive definite matrices

- MIMO LTI state feedback control theory: foundational control theory
 - Often part of control system beyond LTI

End

- MIMO LTI state feedback control theory: foundational control theory
 - Often part of control system beyond LTI
- Common control problem: track command reference signal
 - May be specified signal order
 - May be specified dynamical system state

End

- MIMO LTI state feedback control theory: foundational control theory
 - Often part of control system beyond LTI
- Common control problem: track command reference signal
 - May be specified signal order
 - May be specified dynamical system state
- Command tracking control system designs:
 - Robust servomechanism (RS): state feedback with servomechanism
 - Dynamic inversion (DI): state feedback with feedback linearization loop and reference feedforward

End

- MIMO LTI state feedback control theory: foundational control theory
 - Often part of control system beyond LTI
- Common control problem: track command reference signal
 - May be specified signal order
 - May be specified dynamical system state
- Command tracking control system designs:
 - Robust servomechanism (RS): state feedback with servomechanism
 - Dynamic inversion (DI): state feedback with feedback linearization loop and reference feedforward
- Model reference adaptive control: track specified dynamical system reference under uncertainties
 - Model reference adaptive control (MRAC): often used with NDI