Skisockenwärmer Optimierung der Leistungsregelung

Laurin Weitzel

Simulation mit pSpice

3. Februar 2023

Übersicht

- Einleitung
 - Problemstellung
 - Optimierungsparameter
- 2 Lösungsansätze
 - Widerstandsregler
 - Operationsverstärker
 - Verbesserungsvorschlag
- 3 Auswertung
 - Vergleich der Ansätze
 - Fazit

Problemstellung

- Kalte Füße beim Skifahren
 - Elektronisch beheizte Skisocken
 - ► Integrierte Batterie
- Verbrannte Füße beim Skifahren
- Begrenzte Batteriekapazität
 - Maximierung des Wirkungsgrades

Abbildung: Definitiv nicht ich. Zur Verfügung gestellt von: www.pexels.com/de-de/@visitalmaty/

Optimierungsparameter

- Kosten
 - Leistungselektronik
 - Batterie
 - Optimierung des Wirkungsgrades
- Nutzerfreundlichkeit
 - Batterie soll den ganzen Tag lang halten
 - Regelung möglichst einfach gestalten

Widerstandsregler

Spannungsteilers als Leistungsregelung.

Abbildung: Aufbau eines einfachen

- Einfache Leistungsanpassung
 - z.B. durch Potentiometer
 - Keine zusätzlichen Bauteile
- Schlechter Wirkungsgrad
 - Viel Leistung an R1

Widerstandsregler

Abbildung: Aufbau eines einfachen Spannungsteilers als Leistungsregelung.

$$egin{align*} R_{ges} &= R_1 + 6\,\Omega \ I_{ges} &= rac{12\,V}{R_{ges}} \ P_{heiz} &= I_{ges}^2 R_2 = 12\,V rac{6\,\Omega}{\left(R_1 + 6\,\Omega
ight)^2} \ P_{verlust} &= I_{ges}^2 R_1 = 12\,V rac{R_1}{\left(R_1 + 6\,\Omega
ight)^2} \ \eta &= rac{P_{heiz}}{P_{heiz} + P_{verlust}} \end{split}$$

Leistungsregelung durch Widerstand

Operationsverstärker (OPV)

PARAMETERS:					
f1 .				50.	
DW				50	

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung.

Operationsverstärker (OPV)

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung.

- Präzise Leistungsanpassung
 - Ausgangsleistung linear von Schwellspannung abhängig
- Hoher Wirkungsgrad
 - Leistung der OPV verschwindend klein

Operationsverstärker (OPV)

Abbildung: Aufbau mit Operationsverstärkern als Leistungsregelung.

$$P_{heiz} = U_{R5}I_{R5}$$

Vereinfacht gilt

$$P_{verlust} = U_{Q1_{ds}}I_{R5}$$

und daraus folgt

$$\eta = rac{P_{ extit{heiz}}}{P_{ extit{heiz}} + P_{ extit{verlust}}}$$

für eine Einschaltdauer(\underline{d} uty \underline{c} ycle) von $dc \gg 0 \%$

Leistungsregelung durch Operationsverstärker

Verlustleistungen im Aufbau 2

Abbildung: Verlustleistungen im Aufbau 2 über der Einschaltdauer.

Legende: $P_{Q1_{ds}}$, P_{R3} , P_{R4} , P_{R2} , P_{R1}

Verbesserungsvorschlag

Abbildung: Leistungs MOSFET (AON6266E) für besseren Wirkungsgrad.

- Wirkungsgrad
 - $P_{R3} \approx 0$ (Geringe Leistung am Gate)
 - $P_{Q2_{ds}} \ll P_{Q1_{ds}}$
- Kosten bei Stückzahl 3000: 0, 20876 €

Vergleich des Wirkungsgrades

Fazit

Potentiometer

- Schlechter Wirkungsgrad
- Unwirtschaftlich

Operationsverstärker

- Konstanter Wirkungsgrad
- Günstig

OPV mit MOSFET

- Bester Wirkungsgrad
- Am günstigsten

Viel Aufmerksamkeit für Ihren Dank!

Projekt:

https://www.github.com/stienek/pspice-abschlussprojekt