CS 660: Mathematical Foundations of Analytics

Dr. Francis Parisi

Pace University

Spring 2018

IMS Chapter 4 – Statistical Inference

Sampling and Statistics

- In this chapter we will look at some of the tools used in statistical inference
- Typically in a statistical problem we have som erandom variable X but don't know anything about its pmf or pdf
- Basically there's two degrees of ignorance
 - 1. We don't know anything about f(x) or p(x)
 - 2. We know the form of f(x) or p(x) but don't know some parameter say θ

Focusing on the second scenario above, we have some examples

- (a) X has an exponential distribution, $Exp(\theta)$, where θ is unknown
- (b) X has a binomial distribution b(n,p), where n is known but p is unknown
- (c) X has a gamma distribution $\Gamma(\alpha, \beta)$, where both α and β are unknown
- (d) X has a normal distribution $N(\mu^2, \sigma^2)$, where both the mean μ and the variance 2 of X are unknown

We address this problem by saying X has a pdf or pmf of the form $f(x;\theta)$ or $p(x;\theta)$

- $\theta \in \Omega$ for some set Ω
- In this example, $\Omega = \{\theta \mid \theta > 0\}$
- \blacktriangleright θ is the **parameter** of the distribution
- ▶ Because θ is unknown, we use statistical inference to estimate it

- What we learn about the distribution of X and the parameters of the distribution comes from a sample on X
- ▶ The observations from the have the same distribution as X, denoted as the random variables X_1, X_2, \ldots, X_n , where n denotes the **sample size**
- ▶ We use lower case letters $x_1, x_2, ..., x_n$ to denote the values or **realizations** of the sample
- ▶ We often assume that the sample observations $X_1, X_2, ..., X_n$ are also mutually independent, so we call the sample a **random sample**

Definition (4.1.1)

If the random variables X_1, X_2, \ldots, X_n are independent and identically distributed (*iid*), then these random variables constitute a **random sample** of size n from the common distribution.

Definition (4.1.2)

Let X_1, X_2, \ldots, X_n denote a sample on a random variable X. Let $T = T(X_1, X_2, \ldots, X_n)$ be a function of the sample. Then T is called a **statistic**.

Using the above terminology our problem becomes:

Let X_1, X_2, \ldots, X_n denote a *random sample* on a random variable X with a density or mass function of the form $f(x; \theta)$ or $p(x; \theta)$, where $\theta \in \Omega$ for a specified set Ω .

It makes sense to consider a *statistic* T, which is an **estimator** of θ . More formally, T is called a **point estimator** of θ . While we call T an estimator of θ , we call its realization t an **estimate** of θ .

Definition

Let X_1, X_2, \ldots, X_n denote a sample on a random variable X with pdf $f(x;\theta)$, $\theta \in \Omega$. Let $T = T(X_1, X_2, \ldots, X_n)$ be a statistic. We say that T is an unbiased estimator of θ if $\mathbb{E}(T) = \theta$.

Estimating θ

- We'll look at the maximum likelihood estimator (mle) to find point estimators
- ► To proceed we consider the joint distribution of our sample; since the observations are *iid* the joint distribution function is the product of the pdfs $\prod_{i=1}^{n} f(x_i; \theta)$
- ▶ Then as a function of θ we have

$$L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta)$$

▶ This is the **likelihood function** of the random sample

- ▶ We often seek as an estimate the value of θ that maximizes the value of $L(\theta)$
- If we find a unique estimate we call it the **maximum** likelihood estimator (mle) and denote it $\hat{\theta}$ or

$$\hat{\theta} = \operatorname{Argmax} L(\theta)$$

- ▶ Since the likelihood function is a product it is easier to work with the [natural] log of the likelihood, $l(\theta) = \log L(\theta)$
- For most of the models we'll discuss, the pdf (or pmf) is a differentiable function of θ , and frequently $\hat{\theta}$ solves the equation

$$\frac{\partial l(\theta)}{\partial \theta} = 0$$

For vector valued θ the results is a system of equations referred to as the **estimating equations**

Example

Suppose the common pdf of the random sample X_1, X_2, \ldots, X_n is the $\Gamma(1,\theta)$ density $f(x) = \theta^{-1} \exp{-x/\theta}$ with support $0 < x < \infty$. This is the exponential distribution. The log of the likelihood function is given by

$$l(\theta) = \log \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_i/\theta} = -n \log \theta - \theta^{-1} \sum_{i=1}^{n} x_i$$

Example (continued)

The partial with respect to θ is

$$\frac{\partial l(\theta)}{\partial \theta} = -n\theta^{-1} + \theta^{-2} \sum_{i=1}^{n} x_i$$

Set this equal to zero and solve for θ to get the statistic $\hat{\theta} = \overline{X}$ as the mle of θ

Now $\mathbb{E}[X] = \theta$ and $\mathbb{E}[\,\overline{X}\,] = \theta$ so $\hat{\theta}$ is an unbiased estimator of θ

- We can visually estimate the pmf or pdf of a random variable using a histogram which is a nonparametric estimator
- In the discrete case we can consider the frequency with which the observations fall into specific classes
- In the continuous case we count the observations that fall within specific ranges
- For the coninuous case we use a kernel density to smooth the empirical distribution

Figure 4.1.1: Barchart for discrete *X*

Figure 4.1.2: Histogram of Sulfur Dioxide concentrations with density overlaid (solid line) and a normal density (dashed)

Confidence Intervals

- When we estimate a parameter from data we make a point estimate
- ▶ But how can we decide just how good this estimate is of the population parameter in which we're interested?
- We can assess the error of this estimate in terms of a confidence interval

Definition

Let X_1, X_2, \ldots, X_n be a sample on a random variable X, where X has pdf $f(x;\theta)$, $\theta \in \Omega$. Let $0 < \alpha < 1$ be specified. Let $L = L(X_1, X_2, \ldots, X_n)$ and $U = U(X_1, X_2, \ldots, X_n)$ be two statistics. We say that the interval (L, U) is a $(1 - \alpha)100\%$ confidence interval for θ if

$$1 - \alpha = P_{\theta}[\theta \in (L, U)].$$

That is, the probability that the interval includes θ is $1 - \alpha$, which is called the **confidence coefficient** or **confidence level** the of the interval.

Another way to interpret the confidence interval is that we repeatedly draw samples and make confidence intervals, say M times, we would expect $(1-\alpha)M$ of these intervals to contain the true value of θ

That is we are $(1-\alpha)100\%$ confident that the true value of θ lies in the interval (l,u)

Example (4.2.1)

Suppose the random variables X_1, X_2, \dots, X_n are a random sample from a $N(\mu, \sigma^2)$ distribution

Let \overline{X} and S^2 denote the sample mean and sample variance, respectively and \overline{X} is the mle of μ and $\lceil (n-1)/n \rceil S^2$ is the mle of σ^2

The random variable $T = (\overline{X} - \mu)/(S/\sqrt{n})$ has a t-distribution with n-1 degrees of freedom

Example (4.2.1 Continued)

For $0<\alpha<1$, define $t_{\alpha/2,n-1}$ to be the upper $\alpha/2$ critical point of a t-distribution with n-1 degrees of freedom; i.e., $\alpha/2=P\left[T>t_{\alpha/2,n-1}\right]$

From this we get

$$\begin{split} 1 - \alpha &= P \left[-t_{\alpha/2, n-1} < T < t_{\alpha/2, n-1} \right] \\ &= P_{\mu} \left[-t_{\alpha/2, n-1} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2, n-1} \right] \\ &= P_{\mu} \left[-t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} < \overline{X} - \mu < t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \right] \\ &= P_{\mu} \left[\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \right] \end{split}$$

Example (4.2.1 Continued)

Once the sample is drawn, let \overline{x} and s denote the realized values of the statistics \overline{X} and s, respectively. Then a $(1-\alpha)100\%$ confidence interval for μ is given by

$$\left(\overline{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right)$$

Hypothesis Testing

- Hypothesis testing is a frequently used method of inference
- ▶ We start by stating the null hypothesis, H₀, and the alternative hypothesis, H₁ (sometimes denoted by H_a)
- For example $H_0: \mu = 0$, and $H_1: \mu \neq 0$ this is a two-sided of two-tailed test
- Or $H_1: \mu < 0$ (one-sided or one-tailed test, left tail), $H_1: \mu > 0$ (right tail test)
- ► There are several steps to complete the hypothesis test

Steps in hypothesis testing:

- Step 1: State the null and alternative hypotheses, H_0 , and H_1 , determine if this is a one-tailed or two-tailed test
- Step 2: State α , the level of significance
- Step 3: Calculate the test statistic from the sample mean and variance

$$t = \frac{\overline{X} - \mu}{\sqrt{s^2/n}}$$

- Step 4: Compare the calculated test statistic to the critical value
- Step 5: Accept H_0 if t is in the acceptance region, or reject H_0 if t is in the critical or rejection region

- ▶ We set the level of significance α before we do the test
- ▶ Often $\alpha = 0.05$ and represents the **size** of the critical region
- ▶ If the test statistics t falls in the critical region, we reject H_0 , otherwise we do not reject H_0
- ► There's always a risk of making a wrong decision and these are known as Type I and Type II errors

Decision Reject H_0 DO NOT Reject H_0

Reality	
H_0 is True	H_0 is NOT True
Type I Error	Correct Decision
Correct Decision	Type II Error

Example

Suppose we sample 26 water bottles for some known chemical. The mean level of the chemical is believed to be 0 mg/dl. We measure each sample and find a sample mean \overline{X} of 1.9 mg/dl of the chemical, with a standard deviation, S equal to 4.2122. Is there sufficient evidence at a $\alpha=0.05$ level of significance to say the average amount of chemical in the water is not zero?

We have $H_0: \mu = 0, H_1: \mu \neq 0, \alpha = 0.05, \overline{X} = 1.9, S = 4.2122,$ and n = 26

therefore,

$$t = \frac{1.9 - 0}{4.2122/\sqrt{26}} = 2.3$$

We compare this t to the critical value for $t_{\alpha/2,n-1}$

We find that $t_{\alpha/2,n-1} = 2.06$, thus we reject H_0 since $t > t_{critical}$

What does the critical value mean?

p-values

For a one-tailed test we have

p-values

- ► The tail probability associated with the t-statistic from our hypothesis test is called the p-value
- If we consider α as our theoretical level of significance then the p-value is the *observed* level of significance
- ► For a one-tailed test the *p*-value is the tail probability
- For a two-tailed test it is twice the tail probability
- ▶ We reject the null hypothesis when $p < \alpha$

References

Hogg, R. V., McKean, J. W. and Craig, A. T. (2018).Introduction to Mathematical Statistics.Pearson, Boston, eighth edition.

Ross, S. (2010).

A First Course in Probability.

Prentice Hall, Upper Saddle River, eigth edition.

Wu, J. and Coggeshall, S. (2012).

Foundations of Predictive Analytics.

CRC Press, Boca Raton, FL.