1. Orders of ODE

Definition 0.1. An ODE is said to be of order n if the highest order derivative of the unknown function that appears in the ODE is of order n.

2. Degree of ODE

Definition 0.2. An ODE is said to be of degree n if the highest power of the highest order derivative of the unknown function that appears in the ODE is n.

Example 0.1. The ODE y'' + y = 0 is of order 2 and degree 1.

3. Linear ODE

Definition 0.3. An ODE is said to be linear if it can be written in the form

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x), \tag{1}$$

where $a_i(x)$ are functions of x and f(x) is a function of x.

4. Homogeneous ODE

Definition 0.4. An ODE is said to be homogeneous if the term that does not involve the unknown function is zero.

Example 0.2. The ODE y'' + y = 0 is homogeneous.

The ODE y'' + y = x is not homogeneous.

5. The superposition principle

Theorem 0.1. If $y_1(x)$ and $y_2(x)$ are solutions of a homogeneous linear ODE, then $c_1y_1(x) + c_2y_2(x)$ is also a solution of the ODE, where c_1 and c_2 are constants.

6. Series solution of ODE

Theorem 0.2. It is possible to construct a series solution for most ODEs.

For ODE:

$$P(x)y'' + Q(x)y' + R(x)y = 0 (2)$$

If we are interested in finding a solution around $x = x_0$, we can assume the solution to be of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (3)

Then expanding P, Q, and R in Taylor series around $x = x_0$, we can substitute the series solution into the ODE, and solve for the coefficients a_n .

Example 0.3. Find the series solution of the ODE

$$(1+x^2)y'' + xy' - y = 0 (4)$$

about x = 0.

We assume the solution to be of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \tag{5}$$

Substituting the series solution into the ODE, we have.

$$(1+x^2)\sum_{n=0}^{\infty} a_n n(n-1)x^{n-2} + x\sum_{n=0}^{\infty} a_n nx^{n-1} - \sum_{n=0}^{\infty} a_n x^n = 0$$
 (6)

$$\sum_{n=0}^{\infty} a_n n(n-1)x^n + \sum_{n=0}^{\infty} a_n nx^n - \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_n n(n-1)x^{n-2} = 0$$
 (7)

$$\sum_{n=0}^{\infty} a_n n(n-1)x^n + \sum_{n=0}^{\infty} a_n nx^n - \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1)x^n = 0$$
 (8)

$$\sum_{n=0}^{\infty} \left(\left(n(n-1) + n - 1 \right) a_n + (n+2)(n+1)a_{n+2} \right) x^n = 0 \tag{9}$$

Since the series must be zero for all x, the coefficients of x^n must be zero for all n. Therefore, we have:

$$((n+1)(n-1))a_n + (n+2)(n+1)a_{n+2} = 0, \quad n \ge 0$$
(10)

$$a_{n+2} = -\frac{(n+1)(n-1)}{(n+2)(n+1)}a_n$$

$$a_{n+2} = -\frac{n-1}{n+2}a_n$$
(11)

$$a_{n+2} = -\frac{n-1}{n+2}a_n (12)$$

And it is clear that the general solution depends on a_0 and a_1 , and has a degeneracy of 2.

7. Ordinary points and singular points

Definition 0.5. Given an ODE of the form:

$$P(x)y'' + Q(x)y' + R(x)y = 0 (13)$$

A point $x = x_0$ is said to be an ordinary point if Q(x)/P(x), and R(x)/P(x) are analytic

Otherwise, $x = x_0$ is said to be a singular point.

Trying to find a series solution around an ordinary point will result in a solution that has a degeneracy of 2.

8. Regular singular points

Definition 0.6. Given an ODE of the form:

$$P(x)y'' + Q(x)y' + R(x)y = 0 (14)$$

A singular point $x = x_0$ is said to be a regular singular point if $(x - x_0)Q(x)/P(x)$, and $(x-x_0)^2R(x)/P(x)$ are analytic at $x=x_0$. Otherwise, it is an irregular singular point.

Finding a solution around a regular singular point will need special treatment.

9. Euler Equation

Definition 0.7. An ODE of the form:

$$x^2y'' + axy' + by = 0 (15)$$

is called an Euler equation.

If the quadraric equation:

$$m^2 + (a-1)m + b = 0 (16)$$

has two distinct roots m_1 and m_2 , then the general solution of the Euler equation is:

$$y(x) = c_1 x^{m_1} + c_2 x^{m_2} (17)$$

If the quadratic equation has a single root m, then the general solution of the Euler equation is:

$$y(x) = c_1 x^m + c_2 x^m \ln x (18)$$

10. Frobenius method

Definition 0.8. The Frobenius method is a method to find the series solution of ODEs around regular singular points.

Given an ODE of the form:

$$P(x)y'' + Q(x)y' + R(x)y = 0 (19)$$

Assume the solution to be of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+m}$$
 (20)

Where m is the root of the indicial equation:

$$m^{2} + \left(\lim_{x \to x_{0}} \frac{xQ}{P} - 1\right)m + \lim_{x \to x_{0}} \frac{x^{2}R}{P} = 0$$
 (21)

Substituting the series solution into the ODE, we can solve for the coefficients a_n . If the indical equation has two same roots, then the general solution will be in the form

$$y(x) = \log(x) \sum_{n=0}^{\infty} a_n (x - x_0)^{n+m} + \sum_{n=0}^{\infty} b_n (x - x_0)^{n+m}$$
 (22)

If given $m_1 > m_2$ and $m_1 - m_2 \in \mathbb{Z}$, then the general solution will be in the form

$$y(x) = \log(x) \sum_{n=0}^{\infty} a_n (x - x_0)^{n+m_1} + \sum_{n=0}^{\infty} b_n (x - x_0)^{n+m_2}$$
 (23)

The Frobenius method is used when we try to find the series solution around a regular singular point.

Example 0.4. Find a series solution of the ODE:

$$2xy'' + (3-2x)y' + y = 0 (24)$$

It is easy to see that x = 0 is a regular singular point.

Solving the indicial equation:

$$m^2 + (\frac{3}{2} - 1)m = 0 (25)$$

we have m = 0 or m = 1.

Therefore, assume the general solution to be of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+m} \tag{26}$$

Substituting the series solution into the ODE, we have:

$$2x\sum_{n=0}^{\infty} a_n(n+m)(n+m-1)x^{n+m-2}$$
 (27)

$$+(3-2x)\sum_{n=0}^{\infty}a_n(n+m)x^{n+m-1} + \sum_{n=0}^{\infty}a_nx^{n+m} = 0 \quad (28)$$

$$2\sum_{n=0}^{\infty} a_n(n+m)(n+m-1)x^{n+m-1}$$
 (29)

$$+3\sum_{n=0}^{\infty} a_n(n+m)x^{n+m-1}$$
 (30)

$$-2\sum_{n=0}^{\infty} a_n(n+m)x^{n+m} + \sum_{n=0}^{\infty} a_n x^{n+m} = 0$$
 (31)

$$2a_0m(m-1)x^{m-1} + 3a_0mx^{m-1} (32)$$

$$+2\sum_{n=0}^{\infty} \left(\left((n+1+m)(2(n+m)+3) \right) a_{n+1} + \left(1 - 2(n+m) \right) a_n \right) x^{n+m} = 0 \quad (33)$$

 $2a_0m(m-1)x^{m-1} + 3a_0mx^{m-1}$ is automatically satisfied, as it is the same with the indicial equation.

Therefore, we have:

$$((n+1+m)(2(n+m)+3)) a_{n+1} + (1-2(n+m)) a_n = 0$$
(34)

As m has two values, the general solution will depend on a_0 and m, and has a degeneracy of 2.