APUNTES DE LA UNIDAD 1

REYNA YAMILE CALZADA CAMPOS

SISTEMAS OPERATIVOS II

211050221

TICS

04 DE SEEPTIEMBRE 2024

APUNTES UNIDAD 1

Sistema operativo es:

un sistema operativo es un programa que controla ejecución de aplicaciones y programas y actúa como interfaz entre las aplicaciones y el hardware de la computadora

controla de sistemas operativos de salida son:

- 1. dispositivos de entrada y salida
- 2. memoria física
- 3. componentes de un SO
- 4. memoria RAM
- 5. procesador
- 1. funciones : administración de dispositivos , administración de redes y interfaz de usuario
- 2. funciones : administración de archivos

PROCESADOR

una de las funciones del procesador es el intercambio de datos con la memoria . para este fin se utiliza normalmente dos registros internos (al procesador) : un registro de dirección de memoria (RAM), que especifica la dirección de memoria de la siguiente lectura o escritura ; y un registro de datos de memoria (RDAM), que contiene los datos que se van a escribir en la memoria o que recibe los datos leídos de la memoria .

principales procesadores:

- 1. ADM
- 2. INTEL

MEMORIA RAM

memoria RAM: almacena datos y programas . esta memoria es habitualmente volátil; es decir , cuando se apaga la computadora, se pierda su contenido .

CLASIFICCAION DEL SO

clasificación de los SO:

- 1. según sus usuarios
- 2. manejor de recursos
- 3. mono usuario
- 4. multiusuario
- 5. centralizado
- 6. distribuido

MODULO DE E Y S

modulo de e-s:

se transfiere los datos entre el computador y su entorno externo . el entorno externo esta formado por diversos dispositivos, incluyendo dispositivos de memorias secundarias por ejemplo, discos, equipos de computaciones y terminales.

TIPOS DE COMPUTADORAS

Estos son los tipos de computadoras:

- 1. computadoras personales
- 2. micro-computadoras
- 3. servidores
- 4. super-computadoras
- 5. computo embebido
- 6. computación cuántica

TRES OBJETIVOS DE SISTEMAS OPERATIVOS

tres objetivos del sistema operativo:

- 1. facilidad de uso: un sistema operativo facilita el uso de una computadora
- 2. eficiencia: un sistema operativo permite que los recursos de un sistema de computación se puedan utilizar de una manera eficiente .
- 3. capacidad para evolucionar: un sistema operativo se debe construir de tal forma que se puedan desarrollar, probar e introducir nuevas funciones en el sistema sin interferir con su servicio.

UNIDAD DE ALAMCENIMIENTO

unidades de almacenamiento:

en contraste, el contenido de la memoria del disco se mantiene incluso cuando se apaga la computadora .

SISTEMA OPERATIVO DISTRIBUIDO

un sistema operativo distribuido es un tipo de sistema operativo que gestiona un conjunto de computadoras independientes y las presenta a los usuario como único sistema unificado

Actividad realizar el cuadro comparativo de los SO y los SOD

ACTIVIDAD 1

	SO	SOD	DEFINICION				
COSTO	~	X	Entidad que se da o se paga por algo				
VELOCIDAD	X	~	La velocidad de un sistema operativo se refiere a la eficiencia y rapidez con la que este gestiona y ejecuta las tareas en un computador.				
DISTRIBUCION	x	~	La accion y ele efecto de distribuir, es decir , de repartir a dividir algo entre varios distinatarios o ubicacione.				
FIABILIDAD	X	~	probabilidad de buen funcionamiento.				
ESCALABILIDAD	Х	~	Capacidad de una empresa , proyecto o sistema para alcanzar un crecimiento exponencial.				
DATOS COMPARTIDOS	х	~	información ,archivos o recursos que pueden ser accedidos y utilizados por múltiples usuarios.				
COMUNICACION	~	X	Es el mecanismo que posibilito que dos o mas procesos intercambio información.				
FLEXIBILIDAD			Habilidad del sistema de manufactura para producir un numero determinado de productos.				
SOFTWARE	~	x	Conjunto de programas instrucciones y reglas informáticas para ejecutar cierta en una computadora				
REDES	~	х	Interconexion de distintos numeros de sitemas inform,ativos a traves de una serie de dispositivos de telecomunicacion y un medio fisico .				
SEEGURIDAD	~	X	Capacidad de un sistema para proteger sus recursos, datos y funcionalidades contra amenazas.				

Actividad 1.3 realizar el cuadro comparativo de 10 Supercomputadoras

Supercomputadora	putadora Institución		País Pro		cesadores Acel		leradores PFLO S		P- SO		
Frontier	tier Oak Ridge National Laboraty		3 E		AMD Optimized 3rd Gen EPYC 64C 2GHZ		AMD Instintict MI250X		P\S	Cray (Os
Aurora	Argone Leadership Computing Facility	EE.	EE.UU		Intel Xeon CPU MAX 9470 52C 2.4GHZ		Intel Data 1, Center GPU EF Max		P\S	Cray (Os
Eagle	Microsoft Azure Cloud		EE.UU		Intel Xeon Platinum 8480C 48C 2GHZ		DIA H100	561.2 PFLO		Linux	
Fugaku	RIKEN Center for Computational Science	Jap	oon		tsu FX 48C GHZ	N\A		442 PFLO	P\S	Custo Linux	m link /2 20
Lumi	umi EuroHPC\CSC		Filandia		AMD Optimize 3rd Gen EPYC 64C 2GHXZ		AMD Instinct MI250X		380 PFL S) .OP-	Cray OS
Leonardo	Leonardo CINECA		Italia		Intel Xeor Platinum 8358 32C 2.6GHZ	A100 SX		M4	PFL S	9.9 .OP-	Custom Linux
Alps Swiss National Supercomputin Centre(CSCS)			Suiza		NVDIA Grace 72C 3.1GHZ		NVIDIA GH200 Superch	ip	270 PFL S) _OP-	Custom Linux
MareNostrum 5 Barcelona ACC Supercomputir Center		ing	España		Intel Xeor Plantinum 8460y + 3 2.3GHZ	n	NVDIA F 64GB	1100	205 PFL S	5.3 _OP-	Linux
Summit Oak Ridge			EE.U	U	IBM		NVDIA V	/olta	148	3.6	Red Hat

POWER9

EE.UU

22C3.07GHZ

Intel Xeon

8480C56C

Platium

3.8GHZ

GV100

NVDIA H100

PFLOP-

PFLOP-

S

S

135

Enterpri

Custom

Linux

Linux

Herramientas SOD

Eos NVDIA DGX

SuperPOD

National

NVDIA

Laboratory

Corporation

- 1. MPI(Message Passing interface)
- 2. Apache Hadoop
- 3. Apache Speak
- 4. OpenMP (open Multi-Processing)
- 5. MPICH(high per5formance Message Passing Interface)

Beneficios de lo SOD

- 1. Alta flexibilidad
- 2. Flexibilidad
- 3. Eficiencia

Características clave de un Sistema Operativo Distribuido

- 1. Transparencia
- 2. Recursos compartidos
- 3. Escalabilidad
- 4. Tolerancia a fallos
- 5. Concurrencia
- 6. Comunicación y coordinación

INTRODUCCION DE TRASPARENCIA

1. **acceso transparente :** los usuarios y aplicaciones pueden acceder a recursos (archivos, dispositivos) sin preocuparse de donde esta físicamente ubicados.

- 2. **ubicación transparente :** los usuarios no necesitan conocer la ubicación física de los recursos ; todo se presenta como si estuviera en un solo lugar.
- 3. **migración transparente :** los procesos o datos pueden moverse entre diferentes nodos sin que los usuarios o aplicaciones se den cuenta .

Recursos compartidos

- 1. Todos los recursos en un sistema operativo distribuido pueden ser compartidos entre los diferentes nodos. esto incluye archivos, dispositivos de entrada y salidas y poder de procesamiento .
- 2. Esto maximiza la eficiencia del sistema al distribuidor las cargas de trabajo y utilizar los recursos disponibles de manera optima.

Escalabilidad

- 1. Un sistema operativo distribuido puede escalar fácilmente añadiendo mas nodos al sistema. esto permite manejar mayores cargas de trabajo sin sacarificación el rendimiento
- 2. Es ideal para entornos en crecimiento, como servidores en la nube , donde la demanda de recursos pueden aumentar rápidamente

Tolerancia a fallos

1. Los sistemas operativos distribuidos están diseñados para ser tolerantes a fallos. si un nodo falla, el sistema puede re

^{**}Concurrencia**

- 1. Múltiples procesos pueden ejecutarse simultáneamente en diferentes nodos , lo que mejora el rendimiento general del sistema.
- 2. El sistema operativo gestiona la sincronización y la comunicación entre estos procesos para asegurar la coherencia y la integridad de los datos.

Comunicación y coordinación

- 1. Los nodos en un sistema distribuidos necesitan comunicarse y coordinarse entre si . esto se logra a través de protocolos de comunicación como RPC (Remote Procedure Call) o mensajes.
- 2. La coordinación asegura que las tareas distribuidas se completen de manera eficiente y que los recursos no se usen en exceso o de manera ineficiente .

Ejemplos de SOD

- 1. google file system(GFS)
- 2. Apache Hadoop HDFS(Hadoop Distribuited file Sys)

GUIA DE EXAMEN UNIDAD 1

- 1. sistemas operativos introducción que es
- 2. por que es importante un sistema operativo
- 3. como funciona un sistemas
- 4. componentes de un sistema operativo
- 5. que es un sistema operativo distribuido
- 6. beneficios de sistemas operativos R: alta disponibilidad

7. características clave de los sistemas operativos distribuidos 8. que es transparencia 9. que son los recursos compartidos 10. que es escalabilidad 11. que es la tolerancia fallos R: un ejemplo es el sistema rait 12. Que es LVM R: ES gestionar la memoria de los discos numero 13. que es concurrencia 14. comunicación y coordinación 15. las herramientas SOD 16. la siguiente definición de introducción a los sistemas operativos 17. los componentes y los controladores 18. procesador 19. memoria RAM 20. bus del sistema 21. cuáles son los tres objetivos de los sistemas operativos 22. que s un kernel **DIRECTORIO DE LINUX** investigar los directorios Linux /home /boot /etc /var /swap

BUS DE SISTEMA

proporciona comunicación entre los procesadores , la memoria principal y los módulos de entrada y salidas $\frac{1}{2}$

.