AMENDMENTS TO THE CLAIMS

1. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, wherein

heat of a warm section of the Stirling engine is transferred to a refrigerant in a gas-liquid twophase condition so as to be used for at least one of tasks of promoting evaporation in drainage, preventing dew condensation on a cold stocker wall, and defrosting of a compartment-cooling heat exchanger.

2. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, wherein

there are formed:

a first warm-side refrigerant circulation circuit for dissipating heat of a warm section of the Stirling engine outside the cold stocker; and

a second warm-side refrigerant circulation circuit for using the heat of the warm section for at least one of tasks of promoting evaporation in drainage, preventing dew condensation on a cold stocker wall, and defrosting of a compartment-cooling heat exchanger.

3. (Original) The cold stocker of the claim 2,

wherein

the first warm-side refrigerant circulation circuit and the second warm-side circulation circuit are designed to be independent of each other.

4. (Original) The cold stocker of claim 3, wherein

in the first warm-side refrigerant circulation circuit, the refrigerant is allowed to circulate naturally, and

in the second warm-side refrigerant circulation circuit, the refrigerant is made to circulate forcibly.

- 5. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, comprising:
- a warm-side heat exchanger arranged in a warm section of the Stirling refrigerating engine; a heat-dissipating heat exchanger for dissipating heat into an environment outside the cold stocker;
- a first warm-side refrigerant circulation circuit that is built as a loop thermosyphon formed between the warm-side heat exchanger and the heat-dissipating heat exchanger; a second warm-side refrigerant circulation circuit that uses heat of the warm section for at least one of tasks of promoting evaporation in drainage, preventing dew condensation on a cold stocker wall, and defrosting of a compartment-cooling heat exchanger; and a circulation pump for pumping out refrigerant in the warm-side heat exchanger into the second warm-side refrigerant circulation circuit.
- 6. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, wherein

there are formed:

a first warm-side refrigerant circulation circuit through which heat of a warm section of the Stirling refrigerating engine is dissipated outside the cold stocker; and

a second warm-side refrigerant circulation circuit that uses heat of the warm section for at least one of tasks of promoting evaporation in drainage, preventing dew condensation on a cold stocker wall, and defrosting of a compartment-cooling heat exchanger, and the first warm-side refrigerant circulation circuit and the second warm-side refrigerant circulation circuit are both connected, in parallel with each other, to a common warm-side heat exchanger arranged in the warm section.

(Original) The cold stocker of claim 6, wherein a plurality of the warm-side heat exchangers are arranged, and the first warm-side refrigerant circulation circuit and the second warm-side refrigerant

7.

- circulation circuit are connected in parallel with each of the plurality of the warm-side heat exchangers.
- 8. (Original) The cold stocker of claim 5, wherein a flow-back refrigerant pipe of the first warm-side refrigerant circulation circuit is connected to an inlet side of the circulation pump.
- 9. (Currently Amended) The cold stocker of one of claims 2 to 8 claim 2, wherein a refrigerant is used in gas-liquid two-phase in one of or both of the first and second warm-side refrigerant circulation circuits.
- 10. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, wherein

4 CG/sns

a heat exchange portion provided for promoting evaporation in drainage and a heat exchange portion provided for preventing dew condensation on a cold stocker wall are connected in parallel with each other, and

this parallel connection configuration is connected in series with a heat exchanger provided in a warm section of the Stirling refrigerating engine so as to form a warm-side refrigerant circulation circuit.

- 11. (Original) A cold stocker that uses a Stirling refrigerating engine to cool a compartment thereof, wherein
- a heat exchanger provided in a warm section of the Stirling refrigerating engine, a heat exchange portion provided for promoting evaporation in drainage, and a heat exchange portion provided for preventing dew condensation on a cold stocker wall are connected in series so as to form a warm-side refrigerant circulation circuit.
- 12. (Currently Amended) A cold stocker of one of claims 1 to 8, 10, and 11 claim 1, wherein a cold-side refrigerant circulation circuit is formed so as to comprise a heat exchanger arranged in a cold section of the Stirling refrigerating engine and a compartment-cooling heat exchanger, a heat exchange portion for defrosting is provided so as to face the compartment-cooling heat exchanger, and
- a warm-side refrigerant circulation circuit is formed so as to comprise the heat exchange portion for defrosting and the heat exchanger provided in a warm section of the Stirling refrigerating engine.
- 13. (Original) A cold stocker of claim 12, wherein

5 CG/sns

a heat storage portion is formed in the warm-side refrigerant circulation circuit that comprises the heat exchange portion for defrosting and the heat exchanger disposed in a warm section of the Stirling refrigerating engine.

14. (Original) A cold stocker of claim 9, wherein

a cold-side refrigerant circulation circuit is formed so as to comprise a heat exchanger provided in a cold section of the Stirling refrigerating engine and a compartment-cooling heat exchanger, a heat exchange portion for defrosting is provided so as to face the compartment-cooling heat exchanger, and

a warm-side refrigerant circulation circuit is formed so as to comprise the heat exchange portion for defrosting and the heat exchanger provided in a warm section of the Stirling refrigerating engine.

15. (Original) The cold stocker of claim 14, wherein

a heat storage portion is formed in the warm-side refrigerant circulation circuit that comprises the heat exchange portion for defrosting and the heat exchanger provided in a warm section of the Stirling refrigerating engine.

6 CG/sns