MA1200 CALCULUS AND BASIC LINEAR ALGEBRA I LECTURE: CG1

Chapter 2 Sets and Functions

Dr. Emíly Chan Page 1

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Set Notation

A **set** is a collection of distinct objects. Each object in a set is called an **element** or a **member** of that set. A set may contain a finite number of elements, infinitely many elements, or even no elements.

For example,

- $V = \{a, e, i, o, u\}$ is the set of all vowels of the English alphabets.
- $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ is the set of all integers from 1 to 10.
- $B = \{2, 4, 6, 8, 10, \dots\}$ is the set of all positive even numbers.

They are all sets, and their elements are listed inside the brackets "{ }".

A set is a collection, but not a list. The order in which the elements are written is not important. For example, $S = \{a, b, c\} = \{b, a, c\} = \{c, b, a\}$.

In general, we use the notation

 $\{x | x \text{ processes certain properties}\}$

to denote a set of objects that share some common properties. The vertical line "|" means "such that".

Example 1

- $C = \{x \mid x \text{ is an odd number and } 0 < x < 10\} = \{1, 3, 5, 7, 9\}.$
- $D = \{x | x \text{ is negative and } x \text{ is a multiple of 5}\} = \{-5, -10, -15, -20, -25, \dots\}.$

A set can be represented using **Venn diagram**.

For example, a Venn diagram for the set $C = \{1, 3, 5, 7, 9\}$ is shown on the right.

Dr. Emíly Chan Page 3

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Some notations:

- " \in " means "belongs to" or "is an element of". If "a belongs to S" or "a is an element of S", we write $a \in S$.
- " \notin " means "does not belong to" or "is not an element of". If "b does not belong to S" or "b is not an element of S", we write $b \notin S$.
- "⊂" means "is a subset of".
 If every element in set A also belongs to set B, we say that "A is a subset of B" and we write A ⊂ B.
- "⊄" means "is not a subset of".
 If there is at least one element which belongs to set A but does not belong to set B, we say that "A is not a subset of B" and we write A ⊄ B.

Remarks:

- 1. Some authors use " \subseteq " to denote "is a subset of", and " \nsubseteq " to denote "is not a subset of".
- 2. By the definition of subsets, any set is a subset of itself.

Example 2

Given the sets $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $C = \{1, 3, 5, 7, 9\}$ and $E = \{2, 4, 11\}$. Then C is a subset of A, denoted by $C \subset A$, since every element in C also belongs to A. The set E is not a subset of A, because $11 \in E$ but $11 \notin A$. We write $E \not\subset A$.

Dr. Emily Chan

Page 5

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Equality of sets

Two sets A and B are equal (written as A=B) if they contain the same elements. For example, if $A=\{1,2,3\},\ B=\{3,2,1\}$ and $C=\{1,2\}$, then we have A=B but $A\neq C$.

Some commonly used sets in Mathematics include:

 $\emptyset = \{\}$ is called an "empty set", which contains no elements.

 $\mathbb{N} = \{1, 2, 3, 4, ...\}$ is the set of all natural numbers (positive integers).

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$ is the set of all integers.

 $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\} \text{ = the set of all rational numbers.}$

 \mathbb{R} = the set of all real numbers.

ℂ = the set of all complex numbers (will be discussed in MA1201)

Using notations of subsets, we have

$$\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

<u>Caution!!</u> Be careful when using the notations " \in " and " \subset ". For example, $1 \in \mathbb{Z}$ (which means "1 is an element of \mathbb{Z} ") and $\{1\} \subset \mathbb{Z}$ (which means "the set containing the number 1 is a subset of \mathbb{Z} "), but **never write** $1 \subset \mathbb{Z}$. (This doesn't make sense!!)

Example 3

Use set notations to represent each of the following sets.

- (a) The set of integers which are smaller than -6 and greater than -13.
- (b) The set of integers which are greater than 2 but less than or equal to 15.

Solution

(a)
$$\{-12, -11, -10, -9, -8, -7\}$$
 or $\{x | x \in \mathbb{Z} \text{ and } -13 < x < -6\}$ or $\{x \in \mathbb{Z} | -13 < x < -6\}$

(b)
$$\{3,4,5,6,7,8,9,10,11,12,13,14,15\}$$
 or $\{x | x \in \mathbb{Z} \text{ and } 2 < x \le 15\}$ or $\{x \in \mathbb{Z} | 2 < x \le 15\}$

Dr. Emíly Chan Page 7

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Operations of sets

Given two sets A and B. We can combine the two sets to form new sets by using set operations:

Intersection

The intersection of sets A and B, written as $A \cap B$, is a set whose elements belong to both A and B. That is, $A \cap B = \{x | x \in A \text{ and } x \in B\}$.

E.g. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cap B = \{2, 3\}$.

E.g. If $A = \{1, 2, 3\}$ and $C = \{4, 6\}$, then $A \cap C = \emptyset$. That is, A and C are disjoint sets.

Union

The union of sets A and B, written as $A \cup B$, is a set whose elements belong to <u>either</u> A or B or both of them. That is, $A \cup B = \{x | x \in A \text{ or } x \in B\}$.

E.g. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cup B = \{1, 2, 3, 4\}$.

E.g. If $A = \{1, 2, 3\}$ and $C = \{4, 6\}$, then $A \cup C = \{1, 2, 3, 4, 6\}$.

Dr. Emíly Chan Page 9

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Complement

The complement of A with respect to B, written as $B \setminus A$, is a set whose elements belong to B but not belong to A. That is, $B \setminus A = \{x \mid x \in B \text{ but } x \notin A\}$. The line "\" means "exclude".

E.g. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $B \setminus A = \{4\}$ and $A \setminus B = \{1\}$.

E.g. If $A = \{1, 2, 3\}$ and $C = \{4, 6\}$, then $C \setminus A = \{4, 6\} = C$ and $A \setminus C = \{1, 2, 3\} = A$.

E.g. $\mathbb{R}\setminus\{1,3\}$ is the set of all real numbers except 1 and 3.

E.g. $\mathbb{R}\setminus\mathbb{Q}$ is the set of all irrational numbers. For example, $\pi=3.14159\ldots$, $e=2.71828\ldots$ and $\sqrt{2}=1.4142\ldots$ are irrational numbers.

Example 4

Let $A = \{2, 4, 6, 8\}$ and $B = \{-3, 6, 8, 12.4\}$.

Write the set described by each of the following. List all the elements in the set.

- (a) $A \cup B$
- (b) $A \cap B$
- (c) $B \cap \mathbb{Z}$
- (d) $B \cap \mathbb{R}$

Solution

- (a) $A \cup B = \{-3, 2, 4, 6, 8, 12.4\}$
- (b) $A \cap B = \{6, 8\}$
- (c) $B \cap \mathbb{Z} = \{-3, 6, 8\}$
- (d) $B \cap \mathbb{R} = \{-3, 6, 8, 12.4\}$

Dr. Emily Chan Page 11

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

<u>Intervals</u>

Recall that $\mathbb R$ is the set of all real numbers. Let a and b be two distinct real numbers where a < b. We use the following notations to describe some <u>subsets of real numbers</u> (known as

intervals):

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$[a,c) = \{x \in \mathbb{R} \mid x \ge a\}$$

$$(a,\infty) = \{x \in \mathbb{R} \mid x > a\}$$

$$(-\infty,a] = \{x \in \mathbb{R} \mid x \le a\}$$

$$(-\infty,a) = \{x \in \mathbb{R} \mid x < a\}$$

$$\mathbb{R} = (-\infty,\infty)$$

Note: Never write $[a, \infty]$, $(a, \infty]$, $[-\infty, a]$ and $[-\infty, a)$.

Dr. Emíly Chan

Example 5

Express each of the following sets as interval notations:

- (a) "The set of all real numbers which are smaller than or equal to 6" =
- (b) $\{x \in \mathbb{R} | x > 2\} =$
- (c) $\{x \in \mathbb{R} | x < 3 \text{ and } x \ge 1\} =$
- (d) $\{x \in \mathbb{R} | x < 3 \text{ or } x \ge 1\} =$

Example 6

Simply each of the following:

- (a) $(1,4) \cap [2,6] =$
- (b) $[-2,0) \cap [0,3] =$
- (c) $[-2,0) \cup [0,3] =$
- (d) $[-2,3] \cup (3,\infty) =$
- (e) $(-\infty, 6] \cap (3, \infty) =$

Dr. Emíly Chan Page 13

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Functions

- \triangleright A **function** is a rule that assigns <u>a unique value</u> f(x) to any x from a set called the domain.
- The domain of a function is the <u>set of all possible input values</u> (i.e. all possible values of x) for which the function is defined.
- The **codomain** of a function is the set which contains <u>all possible output values</u>.
- The range is the <u>set of all output values</u> (i.e. all values of y or f(x)), which <u>actually result</u> from using the function formula.
- ➤ In general, the range of a function is a subset of its codomain but not necessarily the same set.

- Clearly, the range of a function depends on what you put into the function (domain) and the function itself.
- If set A is the domain of f and set B is the codomain of f, we write $f: A \to B$.

For example, we may write the following to define a function:

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = x^2 + x + 1$$
.

- ➤ If $x \in A$ and $y = f(x) \in B$ (for example, $y = x^2 + x + 1$), then x is called the **independent** variable and y is called the **dependent** variable.
- We use the term "largest possible domain" to denote the largest possible set of the input values x, not just the largest possible number that x can take.

Dr. Emily Chan Page 15

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

We use the notations Dom(f) and Ran(f) to denote the largest possible domain and the largest possible range of the function f, respectively. Then $x \in Dom(f)$ and $f(x) \in Ran(f)$.

In this course, we will mainly study those functions whose domains and codomains are subsets of \mathbb{R} , i.e. they are real-valued functions.

Summary of the domain, codomain and range of a function:

Domain: What can be put into the function?

Codomain: What may possibly come out of a function?

Range: What actually comes out of a function?

Note that every element of the domain A (input) must have <u>exactly one</u> output (in the codomain B).

Consider the following figures:

This is a well-defined function. (Why?)

This is not a well-defined function.

(Why?)

Here are some examples of equations which define y as a function of x (where $x \in \mathbb{R}$):

- $y = 3x^2 + 5x + 1$, y = 3x 1 (These are examples of polynomials (Ch.3))
- $y = \sin x$, $y = \cos x$ (These are examples of trigonometric functions (Ch.4))
- $y = e^x$, $y = 10^x$ (These are examples of **exponential functions** (Ch.5))
- $y = \ln x$, $y = \log x$ (for x > 0) (These are examples of logarithmic functions (Ch.5))

Dr. Emily Chan Page 17

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Examples of equations which do not define y as a function of x (where $x \in \mathbb{R}$):

•
$$x^2 + y^2 = 4$$
 (Why?)

•
$$x = y^2 + 1$$
 (Why?)

Example 7

For each of the following functions, determine the largest possible domain and the largest possible range of f.

(a)
$$f(x) = x^2 + 1$$

(b)
$$f(x) = 25 - x$$

(c)
$$f(x) = \sqrt{x+4}$$

(d)
$$f(x) = 3 + \frac{1}{x-5}$$

(e)
$$f(x) = 5 + \sin x$$

Solution

- (a) The function $f(x) = x^2 + 1$ is well-defined for every real number x.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$ (the set of all real numbers)

Since $x^2 \ge 0$ for any $x \in Dom(f) = \mathbb{R}$, we have $x^2 + 1 \ge 1$ for any $x \in \mathbb{R}$.

... The largest possible range of f is $Ran(f) = [1, \infty)$ (the set of all real numbers greater than or equal to 1)

Dr. Emíly Chan Page 19

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

- (b) The function f(x) = 25 x is well-defined for every real number x.
 - \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$.

For any $x \in Dom(f) = \mathbb{R}$, 25 - x can be any real number.

- \therefore The largest possible range of f is $Ran(f) = \mathbb{R}$.
- (c) The function $f(x) = \sqrt{x+4}$ is well-defined when $x+4 \ge 0$, i.e. $x \ge -4$.
 - \therefore The largest possible domain of f is $Dom(f) = [-4, \infty)$.

For any $x \in Dom(f) = [-4, \infty)$, we have $x + 4 \ge 0$ and therefore $\sqrt{x + 4} \ge 0$.

 \therefore The largest possible range of f is $Ran(f) = [0, \infty)$.

- (d) The function $f(x) = 3 + \frac{1}{x-5}$ is well-defined when $x 5 \neq 0$, i.e. $x \neq 5$.
 - ... The largest possible domain of f is $Dom(f) = \mathbb{R} \setminus \{5\}$. (The set of all real numbers except 5)

Since $\frac{1}{x-5} \neq 0$ for all $x \in Dom(f)$, we have $3 + \frac{1}{x-5} \neq 3 + 0$. Therefore, $3 + \frac{1}{x-5}$ cannot be equal to 3.

- \therefore The largest possible range of f is $Ran(f) = \mathbb{R} \setminus \{3\}$.
- (e) The function $f(x) = 5 + \sin x$ is well-defined for all $x \in \mathbb{R}$.

 \therefore The largest possible domain of f is $Dom(f) = \mathbb{R}$.

For any $x \in Dom(f)$, $-1 \le \sin x \le 1$ and therefore $5-1 \le 5+\sin x \le 5+1$, i.e. $4 \le f(x) \le 6$.

 \therefore The largest possible range of f is Ran(f) = [4, 6].

Dr. Emíly Chan Page 21

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

An alternative way to find the domain and range of a function is to sketch its graph first and then determine its domain and range from the graph. For example, the graphs of the first 4 functions in Example 7 are shown below (with **domain** highlighted in green and **range** highlighted in red):

(c)
$$f(x) = \sqrt{x+4}$$

(b)
$$f(x) = 25 - x$$

(d)
$$f(x) = 3 + \frac{1}{x-5}$$

Example 8 (A bit harder examples)

Find the largest possible domain and largest possible range for each of the following functions:

(a)
$$f(x) = \frac{3x+1}{x-1}$$

Semester A, 2020-2021

(b)
$$f(x) = 3 + \sqrt{x^2 - 16}$$

(c)
$$f(x) = 3 + \sqrt{x^2 + 16}$$

(d)
$$f(x) = 1 + 2x - x^2$$

Solution

(a)
$$f(x) = \frac{3x+1}{x-1}$$
 is well-defined only when $x-1 \neq 0$, i.e. $x \neq 1$.

 \therefore The largest possible domain of f is Dom(f) =

$$f(x) = \frac{3x+1}{x-1} = \frac{3(x-1+1)+1}{x-1} = \frac{3(x-1)+4}{x-1} = 3 + \frac{4}{x-1}$$

Since $\frac{4}{x-1} \neq 0$ for any $x \in Dom(f)$, it follows that $f(x) = 3 + \frac{4}{x-1}$ cannot be equal to

 \therefore The largest possible range of f is Ran(f) =

Dr. Emíly Chan Page 23

Semester A, 2020-2021 MA1200 Calculus and Basic Linear Algebra I Chapter 2

Alternative method to find its range:

Let $y = \frac{3x+1}{x-1}$. Then express x in terms of y:

$$y = \frac{3x+1}{x-1} \implies y(x-1) = 3x+1 \implies x(y-3) = 1+y \implies x = \frac{1+y}{y-3}$$
.

From this expression, y can be any real number except 3. Hence, $Ran(f) = \mathbb{R} \setminus \{3\}$.

(b) $f(x) = 3 + \sqrt{x^2 - 16}$ is well-defined only when $x^2 - 16 \ge 0$ $\Rightarrow x^2 \ge 16 \Rightarrow x \ge 4 \text{ or } x \le -4.$

 \therefore The largest possible domain of f is Dom(f) =

For any $x \in Dom(f)$, $x^2 - 16 \ge 0 \implies \sqrt{x^2 - 16} \ge 0 \implies 3 + \sqrt{x^2 - 16} \ge 3 + 0$, i.e. $f(x) \ge 3$.

 \therefore The largest possible range of f is Ran(f) =

(c) $f(x) = 3 + \sqrt{x^2 + 16}$ is well-defined only when $x^2 + 16 \ge 0$.

Clearly, $x^2 + 16 \ge 16 > 0$ for any real number x, thus the largest possible domain of f is Dom(f) =

Since $x^2 + 16 \ge 16$ for all $x \in Dom(f)$, we have $\sqrt{x^2 + 16} \ge \sqrt{16} = 4$ and thus $f(x) = 3 + \sqrt{x^2 + 16} \ge 3 + 4 = 7$.

- \therefore The largest possible range of f is Ran(f) =
- (d) $f(x) = 1 + 2x x^2$ is well-defined for all $x \in \mathbb{R}$.
 - \therefore The largest possible domain of f is Dom(f) =

By completing the square,

$$f(x) = 1 + 2x - x^2 = -(x^2 - 2x) + 1 = -[(x - 1)^2 - 1^2] + 1 = 2 - (x - 1)^2.$$

For any $x \in Dom(f)$, $(x-1)^2 \ge 0 \implies -(x-1)^2 \le 0 \implies 2-(x-1)^2 \le 2+0$, i.e.

 $f(x) \le 2$. Hence the largest possible range of f is Ran(f) =

Dr. Emily Chan Page 25

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 9 (More harder examples)

Find the largest possible domain for each of the following functions:

(a)
$$f(x) = \sqrt{x^2 - 3x + 2}$$

(b)
$$f(x) = \sqrt{3 + 2x - x^2}$$

(c)
$$f(x) = \frac{9}{x^2 + 4x - 5}$$

(d)
$$f(x) = \sqrt{\frac{x+1}{x+2}}$$

Solution

Two important things to remember when determining the largest possible domain of a function which involves square root or quotient:

- 1. We cannot take square root of a negative number.
- 2. We <u>cannot</u> divide by zero.

(a) The function $f(x) = \sqrt{x^2 - 3x + 2}$ is well-defined only when $x^2 - 3x + 2 \ge 0$, i.e. $(x-1)(x-2) \ge 0$. We want to find all those values of x which satisfy the inequality $(x-1)(x-2) \ge 0$.

One way is to draw a table like the one shown below:

	<i>x</i> < 1	x = 1	1 < x < 2	x = 2	x > 2
Sign of $(x-1)$	-	0	+	+	+
Sign of $(x-2)$	I	_	_	0	+
Sign of $(x-1)(x-2)$	+	0	_	0	+

i.e. we get $(x-1)(x-2) \ge 0$ only when $x \le 1$ or $x \ge 2$.

 \therefore The largest possible domain of f is Dom(f) =

Dr. Emily Chan Page 27

Semester A, 2020-2021 MA1200 Calculus and Basic Linear Algebra I

Chapter 2

(b)
$$f(x) = \sqrt{3 + 2x - x^2}$$
 is well-defined only when $3 + 2x - x^2 \ge 0$,

i.e. $(3-x)(1+x) \ge 0$. To solve this inequality, we draw the following table:

	<i>x</i> < -1	x = -1	-1 < x < 3	x = 3	<i>x</i> > 3
Sign of $(3-x)$	+	+	+	0	_
Sign of $(1+x)$	_	0	+	+	+
Sign of $(3 - x)(1 + x)$	_	0	+	0	_

i.e. we get $(3-x)(1+x) \ge 0$ only when $-1 \le x \le 3$.

 \therefore The largest possible domain of f is Dom(f) =

(c) $f(x) = \frac{9}{x^2 + 4x - 5}$ is NOT defined when the denominator is zero.

We want to find all those values of x which cause the denominator equal to zero, and then exclude all those numbers from the set of all real numbers.

$$x^{2} + 4x - 5 = 0 \implies (x+5)(x-1) = 0$$

$$\Rightarrow x+5 = 0 \text{ or } x-1 = 0$$

$$\Rightarrow x = -5 \text{ or } x = 1$$

 \therefore The largest possible domain of f is Dom(f) =

Dr. Emíly Chan Page 29

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

(d)
$$f(x) = \sqrt{\frac{x+1}{x+2}}$$
 is well-defined only when $\frac{x+1}{x+2} \ge 0$ and $x+2 \ne 0$.

For the second condition, we have $x + 2 \neq 0 \implies x \neq -2$.

For the first condition, we solve the inequality $\frac{x+1}{x+2} \ge 0$ by drawing the following table:

	x < -2	x = -2	-2 < x < -1	x = -1	x > -1
Sign of $(x+1)$	_		_	0	+
Sign of $(x+2)$	_		+	+	+
Sign of $\frac{x+1}{x+2}$	+		_	0	+

i.e. we get $\frac{x+1}{x+2} \ge 0$ and $x+2 \ne 0$ only when x < -2 or $x \ge -1$.

 \therefore The largest possible domain of f is Dom(f) =

<u>Remark:</u> To find the largest possible ranges of the functions in Example 9, one would require a little bit more knowledge on quadratic equation, which will be discussed in Chapter 3. We will find the ranges of these functions later in Chapter 3.

Operations on functions

Given a function f with domain A and a function g with domain B.

Define 1.)
$$(f + g)(x) = f(x) + g(x)$$

$$Dom(f+g) = A \cap B$$

2.)
$$(f - g)(x) = f(x) - g(x)$$

$$Dom(f-g) = A \cap B$$

3.)
$$(fg)(x) = f(x) \cdot g(x)$$

$$Dom(fg) = A \cap B$$

4.)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, where $g(x) \neq 0$ $Dom\left(\frac{f}{g}\right) = A \cap \{x \in B | g(x) \neq 0\}$

$$Dom\left(\frac{f}{g}\right) = A \cap \{x \in B | g(x) \neq 0\}$$

Example 10

Given two real-valued functions $f(x) = \sqrt{x}$ and g(x) = x - 1.

Determine the formulae of the following functions and state their largest possible domains:

(a)
$$(f+g)(x)$$
,

(a)
$$(f+g)(x)$$
, (b) $(f-g)(x)$, (c) $(fg)(x)$, (d) $(\frac{f}{g})(x)$

(c)
$$(fg)(x)$$
,

(d)
$$\left(\frac{f}{g}\right)(x)$$

Solution

First note that $f(x) = \sqrt{x}$ is defined when $x \ge 0$. Also g(x) = x - 1 is defined for all real

Dr. Emíly Chan Page 31

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

numbers x. Therefore, $Dom(f) = [0, \infty)$ and $Dom(g) = \mathbb{R}$. Then

(a)
$$(f+g)(x) = f(x) + g(x) = \sqrt{x} + (x-1)$$

 $Dom(f+g) = Dom(f) \cap Dom(g) = [0, \infty)$

(b)
$$(f - g)(x) = f(x) - g(x) = \sqrt{x} - (x - 1)$$

 $Dom(f - g) = Dom(f) \cap Dom(g) = [0, \infty)$

(c)
$$(fg)(x) = f(x) \cdot g(x) = \sqrt{x} (x - 1)$$

 $Dom(fg) = Dom(f) \cap Dom(g) = [0, \infty)$

(d)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x-1}$$

$$Dom\left(\frac{f}{g}\right) = Dom(f) \cap \{x \in Dom(g) | g(x) \neq 0\} = [0, \infty) \cap \{x \in \mathbb{R} | x - 1 \neq 0\}$$

$$= [0, \infty) \setminus \{1\} \quad \text{(or written as } [0,1) \cup (1, \infty).\text{)}$$

Example 11

Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = x^2$ be functions. Then

$$Dom(f) =$$

$$Ran(f) =$$

$$Dom(g) =$$

$$Ran(g) =$$

$$(fg)(x) =$$

$$Dom(fg) =$$

$$Ran(fg) =$$

Composition of functions

Let $f: A \to B$ and $g: B \to C$ be two functions.

Then the composite of g with f is defined by

$$(g \circ f)(x) = g(f(x)).$$

In general, $(f \circ g)(x) \neq (g \circ f)(x)$.

Dr. Emíly Chan Page 33

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 12

Let $f:[0,\infty)\to [0,\infty)$, $g:\mathbb{R}\to\mathbb{R}$, and $h:\mathbb{R}\to\mathbb{R}$ be functions defined by $f(x)=\sqrt{x}$, g(x)=x-1, and h(x)=3x. Then

(a)
$$(f \circ g)(x) = f(g(x)) =$$

The domain of $f \circ g$ is $Dom(f \circ g) =$

(b)
$$(g \circ f)(x) = g(f(x)) =$$

The domain of $g \circ f$ is $Dom(g \circ f) =$

(c)
$$(f \circ f)(x) = f(f(x)) =$$

The domain of $f \circ f$ is $Dom(f \circ f) =$

(d)
$$(f \circ g \circ h)(x) = f(g(h(x))) =$$

The domain of $f \circ g \circ h$ is $Dom(f \circ g \circ h) =$

Dr. Emily Chan

Example 13 (A bit tricky!)

Let $f: \mathbb{R} \to [0, \infty)$ and $g: [0, \infty) \to [0, \infty)$ be functions defined by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Then

- (a) $(f \circ g)(x) = f(g(x)) =$ The domain of $f \circ g$ is $Dom(f \circ g) =$ The range of $f \circ g$ is $Ran(f \circ g) =$
- (b) $(g \circ f)(x) = g(f(x)) =$ The domain of $g \circ f$ is $Dom(g \circ f) =$ The range of $g \circ f$ is $Ran(g \circ f) =$

Dr. Emíly Chan Page 35

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Here are some types of functions that are frequently used in this course:

1. Elementary functions

The following are examples of **elementary functions**:

> Constant function

A **constant function** is a function of the form f(x) = k, where k is a fixed real number. Its graph is a horizontal line.

> Identity function

The **identity function** is the function f(x) = x. It assigns to every real number x (in the domain) the same number x (in the codomain).

Dr. Emily Chan

> Polynomial functions

A **polynomial function** of **degree** n is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_n \neq 0$ and the a_i 's are real numbers and n is a <u>non-negative integer</u>. The constants a_i 's are called **coefficients** of the corresponding x^i terms.

Two commonly used polynomials include:

- f(x) = ax + b (where $a \neq 0$) is called a **linear** function (i.e. polynomial of degree 1).
- $f(x) = ax^2 + bx + c$ (where $a \ne 0$) is called a **quadratic** function (i.e. polynomial of degree 2)

The constant function f(x) = k is a polynomial of degree 0.

E.g. $x^{\frac{1}{2}}$, x^{-1} and $x^{\cos x}$ are <u>not</u> polynomials.

(Details of polynomial functions will be discussed in Chapter 3.)

Dr. Emíly Chan Page 37

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Rational functions

A rational function is a quotient of two polynomials. It is of the form

$$f(x) = \frac{p(x)}{q(x)},$$

where p(x) and q(x) are two polynomials and $q(x) \neq 0$.

E.g.
$$f_1(x) = \frac{1}{3x^2 + 5x - 2}$$
, $f_2(x) = \frac{4x + 3}{5x - 2}$, $f_3(x) = \frac{x^3 + 1}{x - 3}$ and $f_4(x) = 1 - x^2$ $\left(= \frac{1 - x^2}{1} \right)$

are all rational functions. (Details of rational functions will be discussed in Chapter 3.)

> Trigonometric functions

The six trigonometric functions that you will study in this course include sine, cosine, tangent, cosecant, secant and cotangent, written as

 $\sin x$, $\cos x$, $\tan x$, $\csc x = \frac{1}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\cot x = \frac{1}{\tan x}$, respectively. (Details of trigonometric functions will be discussed in Chapter 4.)

> Exponential functions

An **exponential function with base** a is a function of the form $f(x) = a^x$, where a > 0 is a constant and $a \ne 1$.

Note that if a = 1, we have $f(x) = 1^x = 1$ which is the constant function.

E.g. $f(x) = 2^x$, $f(x) = 10^x$ and $f(x) = e^x$ (where e = 2.7182818284...) are all exponential functions. (Details of exponential functions will be discussed in Chapter 5.)

Logarithmic functions

The logarithmic function with base a is a function of the form $f(x) = \log_a x$, where a > 0 and $a \ne 1$. It is a function such that if $y = \log_a x$, then this implies $x = a^y$.

 $f(x) = \log_a x$ is only defined when x > 0.

E.g. $f(x) = \log_2 x$, $f(x) = \log_{10} x$ and $f(x) = \log_e x = \ln x$ are logarithmic functions. (Details of logarithmic functions will be discussed in Chapter 5.)

Dr. Emíly Chan Page 39

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

2. Piecewise-defined function

A **piecewise-defined function** is a function whose domain is divided into different intervals and within each interval the function is defined by a different formula.

Example 14

Let f be a function which has domain $\{x \in \mathbb{R} | -2 \le x \le 3\}$, i.e. Dom(f) = [-2,3], and is defined by

$$f(x) = \begin{cases} 1 - x^2 & \text{if } -2 \le x < 0 \\ x^2 & \text{if } 0 \le x \le 1 \\ 2x - 1 & \text{if } 1 < x < 3 \\ 6 & \text{if } x = 3 \end{cases}$$

This is an example of **piecewise-defined function**.

Its graph is shown on the right.

Its largest possible range is Ran(f) =

The following functions are also examples of piecewise-defined functions:

> Absolute value function

The absolute value function is defined as

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

E.g.
$$|3.2| = 3.2$$
, $|-4.6| = 4.6$, $|0| = 0$.

Domain of $|x| = \mathbb{R}$

Range of $|x| = [0, \infty)$ (the set of all real numbers which are greater than or equal to zero.)

Properties: For any real numbers a and b,

1.
$$|ab| = |a||b|$$

2.
$$|a+b| \le |a| + |b|$$

3.
$$\sqrt{a^2} = |a|$$

Dr. Emíly Chan Page 41

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 15

Sketch the graph of $y = \frac{2x}{|x|} - 1$ for $x \neq 0$.

Solution

First note that $y = \frac{2x}{|x|} - 1$ is not defined when x = 0.

For
$$x \neq 0$$
, $y = \frac{2x}{|x|} - 1 = \begin{cases} \frac{2x}{-x} - 1, & \text{if } x < 0 \\ \frac{2x}{x} - 1, & \text{if } x > 0 \end{cases}$
$$= \begin{cases} -3, & \text{if } x < 0 \\ 1, & \text{if } x > 0 \end{cases}$$

The graph of $y = \frac{2x}{|x|} - 1$ is shown on the right:

Example 16

Sketch the graph of the function $f(x) = \left| 1 - x^2 \right|$. Then state the largest possible domain and range of f.

Solution

Domain =

Range =

Dr. Emíly Chan Page 43

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Unit step function

The unit step function at x = a (where $a \ge 0$) is defined as

$$u_a(x) = \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } x \ge a \end{cases}$$

 $Domain = \mathbb{R}$

 $Range = \{0, 1\}$ (the set containing the numbers 0 and 1)

Example 17

Sketch the graph of the function $f(x) = x^2 \cdot u_2(x)$. Then state the largest possible domain and range of f.

Solution

$$f(x) = x^{2} \cdot u_{2}(x) = \begin{cases} x^{2} \cdot 0 & \text{if } x < 2\\ x^{2} \cdot 1 & \text{if } x \ge 2 \end{cases}$$
$$= \begin{cases} 0 & \text{if } x < 2\\ x^{2} & \text{if } x \ge 2 \end{cases}$$

Dom(f) = Ran(f) =

Greatest integer function / Least integer function

The greatest integer function is defined as

$$f(x) = [x] =$$
 "the greatest integer $\leq x$ ".

It is also denoted as $f(x) = \lfloor x \rfloor$.

E.g.
$$f(2.8) = [2.8] = 2$$
, $f(1) = [1] = 1$, $f(-2.8) = [-2.8] = -3$.

 $Domain = \mathbb{R}$ (the set of all real numbers)

 $Range = \mathbb{Z}$ (the set of all integers)

The **least integer function** is defined as

$$f(x) = [x] =$$
 "the least integer $\ge x$ ".

E.g.
$$f(2.8) = \lceil 2.8 \rceil = 3$$
, $f(1) = \lceil 1 \rceil = 1$,

$$f(-2.8) = [-2.8] = -2.$$

 $Domain = \mathbb{R}$, $Range = \mathbb{Z}$.

Dr. Emíly Chan Page 45

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 18

Sketch the graph of the function f(x) = x - [x]. Then state the largest possible domain and range of f.

Solution:

Consider the graphs of y = x and y = [x] first:

The graph of f(x) = x - [x] is sketched below:

$$Dom(f) = Ran(f) =$$

3. Periodic functions

A function f(x) is called a **periodic function** with **period** T (> 0) if

$$f(x+T) = f(x)$$
 for all $x \in Dom(f)$.

The graph of a periodic function $\underline{\text{repeats}}$ itself at regular intervals of length T.

For example,

1. $f(x) = \sin x$ is **periodic** with period 2π .

$$\sin(x+2\pi) = \sin x$$

2. $f(x) = \cos x$ is **periodic** with period 2π .

$$\cos(x + 2\pi) = \cos x$$

Dr. Emíly Chan

Page 47

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

3. $f(x) = \sin 2x$ is **periodic** with period π .

$$\sin(2x + 2\pi) = \sin 2x$$

i.e.
$$\sin[2(x + \pi)] = \sin 2x$$

Dr. Emíly Chan

4. Even and Odd functions

The function f is called an <u>even function</u> if f(-x) = f(x)for all x in the domain of f. The graph of an even function is symmetric with respect to the y-axis.

For example, 1, x^2 , x^4 , $\cos x$ are even functions.

 \blacktriangleright The function f is called an odd function if |f(-x) = -f(x)|for all x in the domain of f. The graph of an odd function is symmetric with respect to the origin.

For example, x, x^3 , $\sin x$, $\tan x$ are odd functions.

Note that a function could be neither even nor odd. For example, $f(x) = 3 + 2x^5$ is neither odd nor even, since $f(-x) = 3 + 2(-x)^5 = 3 - 2x^5 \neq f(x)$ and $f(-x) \neq -f(x)$.

Dr. Emíly Chan Page 49

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 19

For each of the following functions, determine whether it is even, odd or neither of them.

(a)
$$f(x) = 2x^5 \cos x + \sin x$$

(b)
$$f(x) = \sin(x^2 + 1)$$
 (c) $f(x) = \frac{x-1}{x+1}$

(c)
$$f(x) = \frac{x-1}{x+1}$$

(d)
$$f(x) = |x^3|$$

(e)
$$f(x) = \frac{x^4 \sin^3 x}{1 + \cos^4 x}$$

Solution

(a)
$$f(-x) = 2(-x)^5 \cos(-x) + \sin(-x) = -2x^5 \cos x - \sin x = -(2x^5 \cos x + \sin x)$$

= $-f(x)$

 \therefore f(x) is an **odd** function.

(b)
$$f(-x) = \sin((-x)^2 + 1) = \sin(x^2 + 1) = f(x)$$

 \therefore f(x) is an even function.

(c)
$$f(-x) = \frac{(-x)-1}{(-x)+1} = \frac{-x-1}{-x+1}$$
 which is neither $f(x)$ nor $-f(x)$.

 \therefore f(x) is <u>neither even nor odd</u>.

(d)
$$f(-x) = |(-x)^3| = |-x^3| = |-1| \cdot |x^3| = 1 \cdot |x^3| = |x^3| = f(x)$$

 \therefore f(x) is an <u>even</u> function.

(e)
$$f(-x) = \frac{(-x)^4 \sin^3(-x)}{1 + \cos^4(-x)} = \frac{(-x)^4 [\sin(-x)]^3}{1 + [\cos(-x)]^4} = \frac{x^4 [-\sin x]^3}{1 + [\cos x]^4} = \frac{x^4 [-(\sin x)^3]}{1 + [\cos x]^4} = -\frac{x^4 \sin^3 x}{1 + \cos^4 x}$$
$$= -f(x)$$

 \therefore f(x) is an <u>odd</u> function.

Note: In the above example, we use $\sin(-x) = -\sin x$ and $\cos(-x) = \cos x$, since $\sin x$ is an odd function and $\cos x$ is an even function.

Dr. Emily Chan Page 51

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

<u>Some useful results:</u>

Let O be an odd function, and E be an even function. Then we have the following results:

$$O \times E = O$$
$$O \times O = E$$
$$E \times E = E$$

(To remember the above results, you may treat E as "+" and O as "-".

DON'T treat E as "even number" and O as "odd number".)

These results can be proved by using the definitions of odd and even functions.

5. Monotonic functions

Let f be a function. It is said to be a

- monotonic increasing function if $f(x_1) \le f(x_2)$ whenever $x_1 < x_2$.
- monotonic decreasing function if $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$.
- strictly increasing function if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- strictly decreasing function if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

Strictly increasing

Monotonic increasing

Strictly decreasing

Monotonic decreasing

Examples of strictly increasing function: x, x^3 , e^x , $\ln x$, etc.

Examples of strictly decreasing function: -x, e^{-x} , $-\ln x$, etc.

Dr. Emíly Chan Page 53

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 20

Show that $f(x) = x^3$ is a strictly increasing function over \mathbb{R} .

Solution

For any $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$, we consider

$$f(x_2) - f(x_1) = x_2^3 - x_1^3$$

$$= (x_2 - x_1)(x_2^2 + x_1x_2 + x_1^2)$$

$$= (x_2 - x_1) \cdot \frac{1}{2} (2x_2^2 + 2x_1x_2 + 2x_1^2)$$

$$= (x_2 - x_1) \cdot \frac{1}{2} [(x_2^2 + 2x_1x_2 + x_1^2) + x_2^2 + x_1^2]$$

$$= \frac{1}{2} \underbrace{(x_2 - x_1)}_{\begin{subarray}{c} x_2 > x_1 \\ \end{subarray}} \underbrace{[(x_2 + x_1)^2 + x_2^2 + x_1^2]}_{\end{subarray}}$$

$$> 0$$

That is, $f(x_2) > f(x_1)$ whenever $x_2 > x_1$.

Hence, f is a strictly increasing function over \mathbb{R} .

6. Inverse functions

A function f takes a number x from its domain Dom(f) and assigns to it a single value y from its range Ran(f). For some (but not all) functions, we can reverse f. That is, for any given y in Ran(f), we can go back and find the value of x which gives this value of y. This new function (which takes y and assigns an x to it) is denoted by f^{-1} and is called the **inverse** of f.

A function $f: A \to B$ (whose domain is A and codomain is B) is called <u>injective</u> (or <u>one-to-one</u>) if for every y in Ran(f), there is <u>exactly one</u> x in domain A for which y = f(x). Equivalently,

f is <u>one-to-one</u> if and only if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ is the <u>only</u> solution, where $x_1, x_2 \in A$.

Another equivalent definition is that f is one-to-one if

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$.

Dr. Emíly Chan Page 55

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

(Graphically, if you draw a horizontal line at **every** $y \in Ran(f)$ and all horizontal lines cross the curve of the function at **exactly one point**, then f is one-to-one.)

Example 21

The function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is **one-to-one** (or **injective**), since every horizontal line y = a (where $a \in \mathbb{R}$) cuts the graph of f at <u>exactly one point</u>, i.e. different values of x always give different values of f(x).

 $y = x^{2}$ 0

OR If
$$f(x_1) = f(x_2)$$
, then $x_1^3 = x_2^3 \Rightarrow x_1 = x_2$ is the only solution.

Example 22

ightharpoonup Let $f\colon \mathbb{R} \to \underbrace{[0,\infty)}_{\text{Domain}}$ be defined by $f(x)=x^2$.

Then f(x) is **not one-to-one** since for example, 1 and -1 are both elements of $Dom(f) = \mathbb{R}$ but they correspond to the same value of f(x) in $[0, \infty)$, the codomain of f, i.e. $f(1) = 1^2 = (-1)^2 = f(-1)$.

Let $g\colon [0,\infty)\to [0,\infty)$ be defined by $g(x)=x^2$. If $g(x_1)=g(x_2)$, then we have

 $x_1^2 = x_2^2 \implies x_1 = x_2$ is the <u>only</u> solution,

since g(x) is only defined for all non-negative values of x, i.e. $Dom(g) = [0, \infty)$.

Thus, g(x) is <u>one-to-one</u> (or <u>injective</u>).

Dr. Emíly Chan Page 57

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Important result #1:

A function f has an **inverse** if and only if it is **one-to-one** (**injective**). We denote the inverse function of f by f^{-1} .

Important result #2:

If f is either a strictly increasing or strictly decreasing function over the domain of f, then f is one-to-one and thus its inverse f^{-1} exists.

Methods for determining whether a function f is one-to-one:

You may use one of the following:

- 1. If $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ is the <u>only</u> solution (i.e. no two distinct values of x giving the same value of f(x)), then the function f is one-to-one.
- 2. Sketch its graph first. If you draw a horizontal line at every $y \in Ran(f)$ and all horizontal lines cross the graph of the function at exactly one point, then the function f is one-to-one.
- 3. If f is strictly increasing or strictly decreasing over Dom(f), then f is one-to-one.

Procedure for finding the inverse function f^{-1} of f:

Step 1: Check that f is one-to-one.

Step 2: Let y = f(x). Then express x in terms of y.

Step 3: To express f^{-1} as a function of x, replace x with $f^{-1}(x)$ and replace y with x.

Dr. Emíly Chan Page 59

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 23

Show that $f(x) = \sqrt{3x + 2}$ is one-to-one and find its inverse.

Solution:

If
$$f(x_1)=f(x_2)$$
, then $\sqrt{3x_1+2}=\sqrt{3x_2+2} \Rightarrow 3x_1+2=3x_2+2$ $\Rightarrow x_1=x_2$ is the only solution.

 $\therefore f(x)$ is one-to-one.

Let
$$y = \sqrt{3x + 2}$$
. (Note that $y \ge 0$.)

Then
$$y^2 = 3x + 2 \implies x = \frac{y^2 - 2}{3}$$
.

 \therefore The inverse function of $f(x) = \sqrt{3x+2}$ is given by

$$f^{-1}(x) = \frac{x^2 - 2}{3}.$$

Note that $f^{-1}(x) \neq [f(x)]^{-1}$.

 $f^{-1}(x)$ is the inverse function of f(x), whereas $[f(x)]^{-1} = \frac{1}{f(x)}$ is the reciprocal of f(x).

Properties of inverse function

- 1. $y = f^{-1}(x) \iff x = f(y)$
- 2. The domain of f^{-1} is the range of f, i.e. $Dom(f^{-1}) = Ran(f)$.
- 3. The range of f^{-1} is the domain of f, i.e. $Ran(f^{-1}) = Dom(f)$.
- 4. $f^{-1}(f(x)) = x$ for all $x \in Dom(f)$.
- 5. $f(f^{-1}(x)) = x$ for all $x \in Dom(f^{-1})$.
- 6. $(f^{-1})^{-1}(x) = f(x)$ for all $x \in Dom(f)$, i.e. the inverse of f^{-1} is f.
- 7. The graph of f^{-1} is the reflection of the graph of f in the straight line y = x.

Dr. Emíly Chan Page 61

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Example 24

For the function $f(x) = \sqrt{3x+2}$ in Example 23,

 $f(x) = \sqrt{3x+2}$ is defined only when $3x+2 \ge 0 \implies x \ge -\frac{2}{3}$.

 $\therefore Dom(f) = \left[-\frac{2}{3}, \infty\right).$

Moreover, for any $x \in Dom(f)$, $3x + 2 \ge 0 \implies \sqrt{3x + 2} \ge 0$.

 $\therefore Ran(f) = [0, \infty).$

Since $Dom(f^{-1}) = Ran(f)$ and $Ran(f^{-1}) = Dom(f)$, we get

 $Dom(f^{-1}) = [0, \infty)$ and $Ran(f^{-1}) = \left[-\frac{2}{3}, \infty\right)$.

Sketch:

Example 25

Determine whether $f(x) = \frac{x}{1+x}$ is one-to-one. Find f^{-1} and the largest possible domain and range of f^{-1} if f is a one-to-one function.

Solution

$$f(x_1) = f(x_2) \implies \frac{x_1}{1 + x_1} = \frac{x_2}{1 + x_2} \implies x_1(1 + x_2) = x_2(1 + x_1)$$

$$\implies x_1 + x_1 x_2 = x_2 + x_1 x_2 \implies x_1 = x_2 \text{ is the only solution.}$$

 \therefore f is one-to-one.

Let
$$y = \frac{x}{1+x}$$
. Then $y(1+x) = x \implies y + xy = x \implies x(1-y) = y \implies x = \frac{y}{1-y}$.

 \therefore The inverse of f is $f^{-1}(x) = \frac{x}{1-x}$.

The function $f^{-1}(x) = \frac{x}{1-x}$ is defined only when $1-x \neq 0 \implies x \neq 1$.

 $\therefore \operatorname{Dom}(f^{-1}) = \mathbb{R} \setminus \{1\}.$

The function $f(x) = \frac{x}{1+x}$ is defined only when $1 + x \neq 0 \implies x \neq -1$.

 $\therefore Dom(f) = \mathbb{R} \setminus \{-1\}.$

Thus, $\operatorname{Ran}(f^{-1}) = \operatorname{Dom}(f) = \mathbb{R} \setminus \{-1\}.$

Dr. Emíly Chan Page 63

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Exercise

1. The function f is defined by $f(x) = x^2 - 2x + 3$, for $x \in \mathbb{R}$.

Sketch the graph of $\,f\,$ and say whether or not it is a one-to-one function.

- 2. Consider the function $g(x) = x^2 2x + 3$, for $x \in [1, \infty)$.
 - (a) Find the largest possible domain and largest possible range of g.
 - (b) Is the function g a one-to-one function?
 - (c) Find g^{-1} and state its largest possible domain and largest possible range if g is a one-to-one function.
 - (d) Sketch the graphs of g and g^{-1} on the same graph.

Here are some common examples of inverse functions, which will be discussed in later chapters:

f(x)	Inverse of $f(x)$		
$f: \mathbb{R} \to (0, \infty), f(x) = 10^x$	$f^{-1}(x) = \log_{10} x$	Chapter 5	
$f: \mathbb{R} \to (0, \infty), f(x) = e^x$	$f^{-1}(x) = \log_{\mathbf{e}} x \ (= \ln x)$		
$f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to\left[-1,1\right], f(x)=\sin x$	$f^{-1}(x) = \sin^{-1} x$		
$f: [0, \pi] \to [-1, 1], f(x) = \cos x$	$f^{-1}(x) = \cos^{-1} x$	Chapter 4	
$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}, f(x)=\tan x$	$f^{-1}(x) = \tan^{-1} x$		

Dr. Emily Chan Page 65

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

<u>Transformation of functions</u> (For your reference)

Consider the function y = f(x). Let c be a <u>positive</u> constant. Then we can transform the function in the following ways:

Vertical translation

- If the graph of y = f(x) is **shifted (or translated)** c **units upward**, we obtain the graph of y = f(x) + c. (That is, we replace "y" with "y c" and the y-coordinate of each point of y = f(x) increases by c units.)
- If the graph of y = f(x) is **shifted (or translated)** c **units downward**, we obtain the graph of y = f(x) c. (That is, we replace "y" with "y + c" and the y-coordinate of each point of y = f(x) decreases by c units.)

Example 26 (i): Consider the graph of the function $y = e^{x}$.

(This is the exponential function, where $\ e \approx 2.71828$.)

Its graph is shown on the right.

• If the graph of $y = e^x$ is translated 1 unit upward, we obtain the graph of

• If the graph of $y = e^x$ is translated 1 unit downward, we obtain the graph of $v = e^x - 1$.

Dr. Emíly Chan

Page 67

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Horizontal translation

• If the graph of y = f(x) is **shifted** c units to the right, we obtain the graph of y = f(x - c).

(That is, we replace "x" with "x-c" and the x-coordinate of each point of y=f(x) increases by c units.)

• If the graph of y = f(x) is **shifted** c **units to the left**, (i.e. -c units to the right), we obtain the graph of y = f(x + c).

(That is, we replace "x" with "x+c" and the x-coordinate of each point of y=f(x) decreases by c units.)

Example 26 (ii): For the previous example $y = e^x$:

• If the graph of $y = e^x$ is translated 1 unit to the right, we obtain the graph of $y = e^{x-1}$.

• If the graph of $y = e^x$ is translated 1 unit to the left, we obtain the graph of $y = e^{x+1}$.

Dr. Emíly Chan Page 69

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Reflection about x-axis

• If the graph of y = f(x) is **reflected about the** x-axis, we obtain the graph of y = -f(x).

(That is, we replace "y" with "-y" so that the sign of y is reversed.)

Reflection about y-axis

• If the graph of y = f(x) is **reflected about the** y-axis, we obtain the graph of y = f(-x).

(That is, we replace "x" with "-x" so that the sign of x is reversed.)

Example 26 (iii): For the previous example $y = e^x$:

• If the graph of $y = e^x$ is reflected about the x-axis, we obtain the graph of $y = -e^x$.

♦ If the graph of $y = e^x$ is reflected about the y-axis, we obtain the graph of $y = e^{-x}$.

Dr. Emíly Chan Page 71

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Vertical Stretch / Shrink

• Vertical stretch (c > 1)

If the graph of y = f(x) is stretched vertically by a factor of c (where c > 1) from the x-axis, we obtain the graph of y = c f(x).

(That is, we multiply the y-coordinate of each point of y = f(x) by c.)

• Vertical shrink (0 < c < 1)

If the graph of y = f(x) is stretched vertically by a factor of c (where 0 < c < 1) from the x-axis, then this is the same as y = f(x) being compressed (or shrunk) vertically by a factor of $\frac{1}{c}$ (> 1) towards the x-axis and we obtain the graph of y = c f(x).

(That is, we multiply the y-coordinate of each point of y=f(x) by c, where 0 < c < 1.)

Example 26 (iv): For the previous example $y = e^x$:

♦ If the graph of $y = e^x$ is stretched vertically by a factor of 2, we obtain the graph of $y = 2e^x$.

♦ If the graph of $y = e^x$ is stretched vertically by a factor of $\frac{1}{2}$ (i.e. it is compressed vertically by a factor of 2), we obtain the graph of $y = \frac{1}{2}e^x$.

Dr. Emíly Chan Page 73

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Horizontal Shrink / Stretch

• Horizontal shrink (c > 1)

If the graph of y = f(x) is compressed (or shrunk) horizontally by a factor of c (where c > 1) towards the y-axis, we obtain the graph of y = f(cx).

(That is, we replace "x" with "cx". In other words, we divide the x-coordinate of each point of y = f(x) by c, and the graph of y = f(x) is stretched horizontally by a factor of $\frac{1}{c}$.)

• Horizontal stretch (0 < c < 1)

If the graph of y=f(x) is compressed (or shrunk) horizontally by a factor of c (where 0 < c < 1) towards the y-axis, then this is the same as y=f(x) being stretched horizontally by a factor of $\frac{1}{c}$ (> 1) and we obtain the graph of y=f(cx). (That is, we replace "x" with "cx". In other words, we divide the x-coordinate of each point of y=f(x) by c, where 0 < c < 1.)

Example 26 (v): For the previous example $y = e^x$:

• If the graph of $y = e^x$ is compressed horizontally by a factor of 2 towards the y-axis, we obtain the graph of $y = e^{2x}$.

• If the graph of $y=e^x$ is compressed horizontally by a factor of $\frac{1}{2}$ (i.e. it is being stretched horizontally by a factor of 2 from the y-axis), we obtain the graph of $y=e^{\frac{1}{2}x}$.

Dr. Emily Chan Page 75

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

Sometimes we may obtain the graph of a required function by performing a sequence of transformations.

Example 27

Given the function f(x) = |x|. By performing a sequence of transformations, sketch the graph of g(x) = 3 - |2x + 1|.

Solution

We start with the function f(x) = |x|, whose graph is shown below.

	Function obtained	Transformation
Step 1:	$f_1(x) = f(x+1)$	The graph of $y = f(x)$ is
	= x + 1	shifted 1 unit to the left.
Step 2:	$f_2(x) = f_1(2x)$	The graph of $y = f_1(x)$ is
	= 2x + 1	compressed horizontally by a
		factor of 2 towards the y -axis.
Step 3:	$f_3(x) = -f_2(x)$	The graph of $y = f_2(x)$ is
	= - 2x+1	reflected about the x -axis.
Step 4:	$f_4(x) = f_3(x) + 3$	The graph of $y = f_3(x)$ is
	=- 2x+1 +3	shifted 3 units upward.
	=g(x)	

Dr. Emíly Chan Page 77

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

The graph of g(x) = 3 - |2x + 1| is shown below:

Example 28

Given the function $f(x) = x^2$. By completing the square and then performing a sequence of transformations, sketch the graph of

$$h(x) = 3x^2 - 6x - 2.$$

Solution

By completing the square,

$$h(x) = 3x^2 - 6x - 2 = 3(x^2 - 2x) - 2 = 3[(x - 1)^2 - 1^2] - 2 = 3(x - 1)^2 - 5.$$

Chapter 2

We start with the function $f(x) = x^2$,

whose graph is shown on the right.

	Function obtained	Transformation
Step 1:	$f_1(x) = f(x-1)$	The graph of $y = f(x)$ is
	$=(x-1)^2$	shifted 1 unit to the right.
Step 2:	$f_2(x) = 3 f_1(x)$	The graph of $y = f_1(x)$ is
	$=3(x-1)^2$	stretched vertically by a
		factor of 3 from the x -axis.
Step 3:	$f_3(x) = f_2(x) - 5$	The graph of $y = f_2(x)$ is
	$= 3(x-1)^2 - 5$	shifted 5 units downward.
	=h(x)	

Dr. Emily Chan Page 79

Semester A, 2020-2021

MA1200 Calculus and Basic Linear Algebra I

Chapter 2

The graph of $h(x) = 3x^2 - 6x - 2 = 3(x - 1)^2 - 5$ is shown below:

