TwoSpeciesStateSpace.R

Administrator

Tue Mar 15 14:15:00 2016

```
# Generating state space graph for two-species Lotka-Volterra competition Models
# Parameter list:
# Ka = carrying capacity of species A
# Kb = carrying capacity of species B
# ra = growth rate of species A (constant)
# rb = growth rate of species B (constant)
# alpha = effect of species B on growth of species A
# beta = effect of species A on growth of species B
# PopLim = vector of state space sizes
LV_Comp_SS <- function (ra=0.1,
                         rb=0.1,
                         Ka = 400,
                         Kb=200,
                      alpha=0.3,
                      beta=0.6,
                      PopLim=seq(0,100,length=10),
                      ret=TRUE) {
dNadt = rep(0,length(PopLim)^2)
dNbdt = rep(0,length(PopLim)^2)
z <- 1
for (i in PopLim) {
  for (j in PopLim) {
  dNadt[z] <- ra*i*((Ka - i - alpha*j)/Ka)</pre>
  dNbdt[z] \leftarrow rb*j*((Kb - j - beta*i)/Kb)
  z < -z + 1
  }
}
x <- rep(PopLim, each=length(PopLim))</pre>
y <-rep(PopLim,length(PopLim))</pre>
m <- cbind(x,y,dNadt,dNbdt)</pre>
if(ret==TRUE) return(m)
}
m <- LV_Comp_SS()
# create plot of joint growth vectors
StateSpacePlotter <- function(m,Mag=1,ret=TRUE) {</pre>
  plot(x=m[,1],
       y=m[,2],
       xlab="Species A",
       ylab="Species B",
       type="n")
```

```
## Warning in arrows(x0 = m[, 1], y0 = m[, 2], x1 = m[, 1] + m[, 3] * Mag, : ## zero-length arrow is of indeterminate angle and so skipped
```

