3年後期ゼミ資料

齊藤 隆斗

j2200071@gunma-u.ac.jp

I. Introduction

Definition 1.1

n 次正方行列 $A \in \mathbb{R}^{n \times n}$ に対して、

$$AA^{-1} = A^{-1}A = E_n \tag{1}$$

を満たす正方行列 $A^{-1}\in\mathbb{R}^{n\times n}$ が存在するとき A は可逆行列という. ただし、 E_n は $n\times n$ の単位行列である.

Definition 1.2

• 階段行列とは以下のような行列 B のことである.

ある整数 $r \ge 1$ があって、B の第 1 行から第 r 行までの各行は ピボット とよばれる数 1 を含み、 次の条件 (1) - (3) を満たす.

- (1) B の第($\mathbf{r}+\mathbf{1}$)行から最後の行までの各行において、すべての成分が $\mathbf{0}$.
- (2) B の第 1 行から第 r 行までの各行では、ピボットより左の成分はすべて 0.
- (3) B 第 i のピボットが含まれる列の番号を p_i とすると、 $p_1 < p_2 < \cdots < p_r$ であり、B の第 p_i 列ではピボット以外の成分はすべて 0.
 - ここで、零行列 O も階段行列であるとする.

例:
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

II. Exercise

A. 問題 6

真か偽か(真ならば理由を説明し、偽ならば反例をあげよ)

(a) 正方行列には自由変数はない.

$$A = \begin{pmatrix} 1 & 2 \ 2 & 4 \end{pmatrix}, oldsymbol{b} = \begin{pmatrix} 0 \ 0 \end{pmatrix}$$
 について考える. $oldsymbol{x} = \begin{pmatrix} x_1 \ x_2 \end{pmatrix} \in \mathbb{R}^n$,とする. ここで $Aoldsymbol{x} = oldsymbol{b}$ を解く. $Aoldsymbol{x} = \begin{pmatrix} x_1 + 2x_2 \ 2x_1 + 4x_2 \end{pmatrix}$ であるから、 $\begin{pmatrix} x_1 + 2x_2 \ 2x_1 + 4x_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix}$ を解けば良い. これを解くと

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2c \\ c \end{pmatrix} \tag{2}$$

となる. ただし、 $c \in \mathbb{R}$ である. ここで、c は自由変数であるから、これは命題(a)に対する反例である.

(b) 可逆行列には自由変数はない.

真: (理由)

 $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^n$ とする. ここで A は可逆行列とする. A は可逆行列であるから、ある A^{-1} が存在して、

$$A^{-1}A = E_n \tag{3}$$

が成り立つ.

ここで、

$$Ax = b \tag{4}$$

を解く. 左から (4) の両辺に A-1 をかけると

$$x = A^{-1}b \tag{5}$$

となる. ここで、 A^{-1} , b はそれぞれ定数行列、定数ベクトルであるから、解x はただ一つに定まり、自由変数を含まない.

(c) $m \times n$ 行列に含まれるピボットは高々n個である. 真: (理由)

Definition 1.2 の (3) より、1 つの列に複数個のピボットは存在しないため、行列のそれぞれの列に存在するピボットの数は1以下となる. 行列の列の数はn であるから $m \times n$ 行列に含まれるピボットは高々n個である.

(d) $m \times n$ 行列に含まれるピボットは高々m個である. 真: (理由)

REFERENCES