

QSG106: Getting Started with EmberZNet PRO

This quick start guide provides basic information on configuring, building, and installing applications for the EM35x and Mighty Gecko (EFR32MG) family of SoCs using the EmberZNet PRO stack v. 5.9 and higher and Simplicity Studio version 4. While the focus is on development with the Wireless Gecko (EFR32) portfolio on the Wireless Starter Kit (WSTK), the instructions also apply to development for the EM35x/ISA3.

This guide is designed for developers who are new to EmberZNet PRO and the Silicon Labs development hardware. It provides instructions to get started using the example applications provided with the EmberZNet PRO stack.

KEY FEATURES

- Product overview
- Setting up your development environment
- Installing Simplicity Studio and EmberZNet PRO
- Creating an example application network
- Using the Network Analyzer

1 Product Overview

Before following the procedures in this guide you must have

- Purchased your development hardware (see http://www.silabs.com/products/wireless/mesh-networking/zigbee/Pages/zigbee.aspx):
 - Mighty Gecko (EFR32MG) Mesh Networking Kit

or

- EM35x Development Kit
- Downloaded the required software components, as described below. A card included in your development hardware kit contains a link to a Getting Started page, which will direct you to links for the Silicon Labs software products.

Note: If you are installing an EM3x development kit, do not install Ember Desktop as documented in the Quick Start Guide. Instead, install Simplicity Studio as noted below.

1.1 Software Components

See the stack release notes for version restrictions and compatibility constraints for the stack and these components. To develop EmberZNet PRO applications, you will need the following. Installation instructions are provided in section **Install Simplicity Studio and the EmberZNet PRO Stack.**

- IAR Embedded Workbench for ARM (IAR-EWARM) 7.80, used as a compiler in the Simplicity Studio development environment.
 Download the supported version from the Silicon Labs Support Portal, as described at the end of section <u>Install Simplicity Studio and the EmberZNet PRO Stack</u>. Refer to the "QuickStart Installation Information" section of the IAR installer for additional information about the installation process and how to configure your license. Once IAR-EWARM is installed, the next time Simplicity Studio starts it will automatically detect and configure the IDE to use IAR-EWARM.
- The Simplicity Studio version 4 development environment, which incorporates AppBuilder. If you do not have version 4, please connect to http://www.silabs.com/products/mcu/Pages/simplicity-studio-v4.aspx to download it. AppBuilder is an interactive GUI tool that allows you to configure a body of Silicon Labs-supplied code to implement applications. Online help for AppBuilder and other Simplicity Studio modules is provided.
- The EmberZNet PRO stack, an advanced implementation of a zigbee stack, installed through Simplicity Studio. The stack API is
 documented in an online API reference. The stack is delivered as a collection of libraries that you can link to your applications. A
 description of each library is provided in the development environment. The release notes contain details on the folders installed along
 with their contents.
- Simplicity Commander, installed along with Simplicity Studio. A GUI with limited functionality can be accessed through Simplicity Studio's Tools menu. Most functions are accessible through a CLI invoked by opening a command prompt in the Simplicity Commander directory (\SiliconLabs\SimplicityStudio\v4\developer\adapter_packs\commander). See UG162: Simplicity Commander Reference Guide for more information.

While Simplicity Studio and Simplicity Commander can be run on a Mac OS or Linux machine, these instructions assume you are working with a Microsoft Windows-based PC. If you are using a non-Windows system, IAR-EWARM must be run via WINE or some other form of emulator or virtual machine.

Although you will not need them for the tasks in this Getting Started guide, you may wish to become familiar with the ISA3 manufacturing utilities available for the EM35x environment. The ISA3 utilities are installed by Simplicity Studio automatically as an "adapter pack" when EMxxx part support is enabled in your installation. If these tools were installed as part of your Simplicity Studio setup, you can find them at $\{\text{SimplicityStudio_root}\}/\text{v4/developer/adapter_packs/em3xx/utils}$. These utilities may also be downloaded separately from the support portal. If you have installed them separately from a standalone, executable package, the installer modifies your PATH environment variable so that the command line utilities can be easily executed from a Windows Command Prompt. Note that, if you are using an EM35x Development Kit, you may have already installed these utilities during initial setup if you connected directly to your PC and needed to configure a static IP. See UG107: ISA3 Utilities Guide, for detailed information on the ISA3 utilities.

Finally, if you are working with an EM35x development kit and you want to use the USB interface of the breakout board for UART connectivity, download a driver for the FTDI USB <-> Serial converter from http://www.ftdichip.com/Drivers/VCP.htm

1.2 Support

You can access the Silicon Labs support portal at https://www.silabs.com/support through Simplicity Studio's Resources tab, as described in section Accessing Documentation and Other Resources. Use the support portal to contact Customer Support for any questions you might have during the development process.

1.3 Documentation

Stack documentation is accessed through Simplicity Studio, as described in section <u>Accessing Documentation and Other Resources</u>. Simplicity Studio also provides links to hardware documentation and other application notes. See the release notes for further details about your EmberZNet PRO software.

2 Setting Up Your Development Environment

2.1 Connect your Hardware

Connect your development hardware to the PC on which you will install Simplicity Studio. By having it connected when Simplicity Studio installs, Simplicity Studio will automatically obtain the relevant additional resources it needs.

Note: Throughout this document, the term 'debug adapter' refers to either the ISA3 (for the EM35x) or WSTK (for the EFR32).

2.1.1 EFR32 Wireless Starter Kit (WSTK)

Connect your WSTK, with radio board mounted, to your PC using a USB cable.

Note: For best performance in Simplicity Studio, be sure that the power switch on your WSTK is in the Advanced Energy Monitoring or "AEM" position as shown in the following figure.

Figure 1. EFR32MG12 on a WSTK

2.1.2 EM35x Development Kit

Follow the instructions in the Quick Start Guide included in the development kit to set up a development environment connected to your computer.

2.2 Register your Development Kit

Before you install Simplicity Studio, you need to create an account on the support portal. Be sure to record your account username and password as you will use it to log in to Simplicity Studio. In order to install the EmberZNet PRO stack from Simplicity Studio, you must also register your kit on https://siliconlabs.force.com/KitRegistration, using your Mighty Gecko Kit or EM35x Development Kit serial number. You can register your kit through Simplicity Studio during installation if you prefer.

2.3 Install Simplicity Studio and the EmberZNet PRO Stack

- 1. Run the Simplicity Studio installation application.
- 2. When Simplicity Studio first launches, it presents a Terms of Use dialog. Click Accept to continue.

3. Next you are invited to log in. Log in using your support account username and password. Although you can skip log in here, you must be logged in and have registered your development kit to download a protected stack such as EmberZNet PRO.

4. After login, Simplicity Studio adds software information. Once initial software installation is complete, Simplicity Studio checks for connected hardware. If you have the WSTK connected by USB cable, Simplicity Studio will detect the USB cable and prompt you to download a Device Inspector. Click **Yes**.

5. An Install Device Support dialog appears. After a short delay, it shows your connected device. If the connected device does not show, click **Refresh**. The following figure shows the Install Device Support dialog before and after the connected device is displayed.

6. Click the checkbox next to the device to select it. Selecting the device allows Simplicity Studio to present the relevant software packages for you to install. Click **Next**.

Note: You can also click the **Select by Product Group** tab to install device support for all devices in one or more product groups.

7. The next dialog varies depending on whether you have signed in and registered your kit. If you have not signed in, you have no access to restricted content and must sign in first (see the following figure a). If you If you have signed in but not registered the kit, you can see some restricted content but not EmberZNet (see the following figure b). Click **Register Kit**.

Note: Although registration appears to happen immediately, some back end processing is occurring. If you do not see EmberZNet as an accessible option, wait a minute and then click the sign in link and click Log In. This refreshes the accessible content.

8. If you have already signed in and registered your kit, and see EmberZNet on the list of accessible components, click Next.

9. The Installation Options dialog shows the tools and software packages that can be installed. By default the list is filtered by the product connected to your computer, or that you selected in the Solutions area of the Launcher view. Required items are listed first. Scroll down to see Recommended options, including the current versions of all SDKs. All SDKs are checked by default. Uncheck any you do not wish to install. This makes it easier to find documentation and examples, and reduces the time Simplicity Studio spends checking for updates on startup. Simplicity Studio recalculates installation size requirements, which may take several seconds. Once the Finish control is enabled, click Finish.

Installation will take several minutes. During installation, Simplicity Studio offers you viewing and reading options to learn more about the environment.

- 10. After installation is complete, restart Simplicity Studio.
- 11. When Simplicity Studio restarts, you are invited to take a tour. To clear this option now or at any time during or after the tour, click **Exit tour**.

12. The Launcher perspective opens, but it is not yet fully populated. Click the connection entry in the devices tab. Note that USB-connected WSTK devices are identified as J-Links as shown, whereas Ethernet-connected devices are identified by name and IP address.

13. The Launcher perspective then is populated with the software components and functionality associated with your hardware and stack, Update your device firmware as described in section **Updating Adapter Firmware**.

Finally, open the Release Notes listed under Document Index and check for software version requirements, in particular for IAR-EWARM. To install IAR-EWARM:

- 1. On the Launcher page's Resources tab, click **Technical Support**.
- 2. Scroll down to the bottom of the page, and click Contact Support
- 3. If you are not already signed in, sign in.
- 4. Click the Software Releases tab. In the View list select **_Latest EmberZNet Software**. In the results is a link to the appropriate IAR-EWARM version.
- 5. Download the IAR package (takes approximately 1 hour).
- 6. Install IAR.
- 7. In the IAR License Wizard, click Register with IAR Systems to get an evaluation license.
- 8. Complete the registration and IAR will provide a 30-day evaluation license.

3 Functionality in the Launcher Perspective

Perspectives are made up of a number of tiles or panes, called views, as well as the content in those views. You can perform a number of functions in the Launcher Perspective. Additional information on some of these is provided later in the section.

On the toolbar (1) you can:

- · Sign in or out
- Open application settings (*)
- Update your software and firmware (, see section <u>Updating Adapter Firmware</u> for more information)
- Open the Tools menu () to access tools such as Simplicity Commander or Energy Profiler.
- Search for information on line, including entries in the Community forums.
- Change perspectives (2). As you open the Simplicity IDE or other tools, buttons for their perspectives are displayed in the upper right.
 Use those buttons to easily navigate back to the Launcher perspective or to other perspectives. You can change the layouts of various perspectives by expanding or relocating views, or adding or removing views. To return to the default layout, right-click the perspective button in the upper right and select Reset.

In the main view you can:

- Change your preferred SDK (3, see <u>Changing the Preferred SDK</u> for more information legacy functionality, rarely used).
- Change debug mode (4).
- Update adapter firmware (5, see <u>Updating Adapter Firmware</u> for more information).
- Create solutions of multiple parts (6). If you developing for complex networks with a number of different parts involved, you can add
 them all to the solution and then select the one you are working on from the list. You do not need to have the hardware connected to
 your computer.
- Access demos, examples, documentation, and other resources from the Getting Started and other tabs (7).

- + ☑ = Use these controls to manage groups of items (Collapse All, Expand All, Customize, and Show All, respectively). See Accessing Documentation and Other Resources for more information.

3.1 Downloading Updates

The Download Update icon will be red if updates are available. If Simplicity Studio detects an available update, and you are in another perspective, you will be notified that an update is available.

When you click the Download Update icon or accept updates in the notification dialog, Simplicity Studio shows you available updates in the Package Manager dialog. You can update all or select individual updates for installation. Click the tabs in the Package Manager dialog to see other components available for installation. Use the filters to reduce long lists.

Note: If you are using a new device or product family, you can use the Install Wizard button to access the installation interface provided during initial installation. This makes installation of all components related to a selected device(s) or an entire family easier.

3.2 Changing the Preferred SDK

This is a legacy function. In general, most Silicon Labs protocol stack users will have one SDK available to them, the Gecko SDK Suite.

Within that suite you can have multiple protocols installed. The protocol used in any given instance is controlled either by the example you select, or the stack you select if you go through the 'New Project' interface. In general, you should add or remove protocol stacks through the Simplicity Studio update manager. If you need to install a stack or the Gecko SDK Suite outside of the normal installation process, you will receive separate instructions.

3.3 Updating Adapter Firmware

Initially the Launcher perspective may display "No local adapter firmware available." Click Download to download any updates.

If an update is available, click Install to install the firmware.

Once you have installed a current update, the version is displayed. Studio will notify you if another firmware update is available.

3.4 Accessing Documentation and Other Resources

The **Getting Started** tab provides access to demos, example applications, and stack related documentation. To show/hide specific categories, click . Select or deselect categories, then click **OK**. If you have more than one protocol SDK installed, categories are grouped by protocol, as shown for software examples in (b) below.

The **Documentation** tab lists documentation about the stack and about the hardware. Click the star icon on any document to move it to the My Favorite Documents list.

The Compatible Tools tab is an alternative way to access the tools available through the Tools dropdown.

The Resources tab provides access to support, marketing collateral, and the Silicon Labs community.

4 About Demos and Examples

Because starting application development from scratch is difficult, the EmberZNet SDK comes with a number of built-in demos and examples covering the most frequent use cases. Demos are pre-built application images that you can run immediately. Software examples can be modified before building the application image. The software examples with the same names as the demos provide the demo functionality. The demos and examples you see are determined by the part selected. If you are using a custom solution with more than one part, be sure to click on the part you are working with to see only those items applicable to that part.

Silicon Labs recommends that you start with an example and modify it according to your needs instead of starting with a blank project. The examples provide default configurations needed by the stack and a basic application structure that you can build on. However, if you want to start with a blank project you can.

4.1 Demos

Demos are prebuilt application examples that can be directly downloaded to your device. The EmberZNet demos are:

Z3Light: Zigbee 3.0 Light application

Z3Switch: Zigbee 3.0 Switch application.

To download and run a demo on your device, click the demo. In the Mode drop-down in the next dialog, select **Run**. Click **Start**. Pressing Button0 on the Switch device to initiate the network. The light device should bind to the network automatically. Once the switch has finished finding and binding, you can use button0 as an On/Off toggle, and Button1 to send level commands. The level changes are difficult to detect on the board.

4.2 Software Examples

Note: Examples provided for the EFR32xG12 and newer parts include Silicon Labs Gecko Bootloader examples. Examples are provided for all compatible Simplicity Studio SDKs. When configuring security for a Gecko Bootloader example, you must use Simplicity Commander, not the Simplicity Studio IDE interface. For more information on using the Gecko Bootloader see *UG266:* Silicon Labs Gecko Bootloader User Guide.

The EmberZNet software examples grouped by category, as follows:

Network Coprocessor (NCP) Application Framework Examples

SecureEZSPNCP: Demonstration of an NCP application that securely communicates with the Host.

xNCP LED: An extensible network co-processor (xNCP) application with an LED controlled by a HOST.

SoC Examples

SwitchedMultiprotocolJoiningDevice: Demonstrates switched multiprotocol, acting as a joining device. This application uses zigbee 3.0 security.

Z3CapSenseDimmerSwitch: Zigbee 3.0 Reference software for use with the dimmer switch IST-A39. This implements a dimmer switch capable of sending on/off, dimmer, color temperature, and HSV color control messages to a light bulb.

Z3ColorControlLight: Zigbee 3.0 Reference software for use with the lighting reference design. Use board header ist_a0085 with the RD-0085-0401 using the EFR32MG1P732F256GM32, and ist-a22-rgb with the RD-0020-0601 with EM357 and RD-0035-0601 with EM3585. This implements a dimmable color controllable light bulb. This is zigbee 3.0 certifiable.

Z3ColorTempLight: Zigbee 3.0 Reference software for use with the lighting reference design. Use board header ist_a0085 with the RD-0085-0401 using the EFR32MG1P732F256GM32, and ist-a22-rgb with the RD-0020-0601 with EM357 and RD-0035-0601 with EM3585. This implements a dimmable color-temperature controllable light bulb. This is zigbee 3.0 certifiable.

Z3ContactSensor: Zigbee 3.0 Reference software for use with the contact sensor IST-A30. This implements a magnetic reed switch based contact sensor for a security system.

Z3DimmableLight: Zigbee 3.0 Reference software for use with the lighting reference design. Use board header ist_a0085 with the RD-0085-0401 using the EFR32MG1P732F256GM32, and ist-a22-bw with the RD-0020-0601 with EM357 and RD-0035-0601 with EM3585. This implements a dimmable white light bulb. This is zigbee 3.0 certifiable.

Z3Light: a ZigBee 3.0 light application

Z3OccupancySensor: Zigbee 3.0 Reference software for use with the occupancy sensor reference design. This implements an occupancy sensor capable of supporting the Occupancy Measurement server, Temperature Measurement server, Relative Humidity Measurement server, and Illuminance Measurement server clusters.

Z3SmartOutlet: Zigbee 3.0 Reference software for use with the smart outlet reference design IST-A51. This implements a smart outlet capable of supporting On/Off server, Simple Metering server, Temperature Measurement server, Relative Humidity Measurement server, and Illuminance Measurement server clusters.

Z3Switch: A zigbee 3.0 switch application.

4.3 Starting with a Blank Application

While Silicon Labs strongly recommends starting development from one of the example applications, if you want to start with a blank application you can.

- 1. On the launcher page click New Project.
- 2. Click ZCL Application Framework V2, and click Next.
- 3. Click EmberZNet 5.10.0.0 GA SoC 5.10.0.0, and click Next.
- 4. Check Start with a blank application, and click Next.
- 5. Name your application, and click Next.
- 6. Click **Finish**. The Simplicity IDE opens, but nothing is configured.

5 Working with Example Applications

In these instructions you will compile and load two example applications, Z3Light and Z3Switch, to create a simple zigbee network. When the applications are loaded, pressing Button0 on the Switch device will initiate the network. The light device should bind to the network automatically. Once the switch has finished finding and binding, you can use button0 as an On/Off toggle, and Button1 to send level commands. Note that the level changes are difficult to detect on the board, but are reflected in the console.

When working with example applications in Simplicity Studio, you will execute the following steps:

- 1. Select an example application.
- 2. Generate application files.
- 3. Compile and flash the application (and, the first time, a bootloader) to the radio board.
- 4. Interact with the application.

These steps are described in detail in the following sections. These procedures are illustrated for a WSTK with an EFR32MG. Except as noted, the procedure for an ISA3 connected to an EM35x is the same.

5.1 Selecting an Example Application

1. In the Launcher perspective, click an example application, in this case Z3Switch. Your project will be based on this example, and on the device you have selected in the Devices or Solutions tabs on the left.

2. You are asked if you want to switch to the Simplicity IDE. Click Yes.

3. Simplicity IDE opens with the new project in AppBuilder view, and the focus on the General tab.

Note: You now have a Simplicity IDE button next to the Launcher button in the upper right.

5.2 Generating the Application Source Files

1. In the Simplicity IDE, click Generate.

Once generation is complete, a dialog reporting results is displayed. Click OK.

The generated files are shown in the Project Explorer view.

5.3 Compiling and Flashing the Application

5.3.1 About Bootloading

Because this sample application is built with a bootloader (configured under HAL configuration tab), you will need to load a bootloader before you run the application for the first time.

A bootloader is a program stored in reserved flash memory that can initialize a device, update firmware images, and possibly perform some integrity checks. Silicon Labs networking devices use bootloaders that perform firmware updates in two different modes: standalone (also called standalone bootloaders) and application (also called application bootloaders). An application bootloader performs a firmware image update by reprogramming the flash with an update image stored in internal or external memory. Silicon Labs recommends that you always flash a bootloader image along with your application, so that flash memory usage is appropriately allocated from the beginning. For more information about bootloaders see *UG103.6: Application Development Fundamentals: Bootloading*.

In March of 2017, Silicon Labs introduced the Gecko Bootloader, a code library configurable through Simplicity Studio's IDE to generate bootloaders that can be used with a variety of Silicon Labs protocol stacks. The Gecko Bootloader can be used with EFR32MG1/EFR32BG1 (EFR32xG1). However, beginning with the EFR32MG12/ EFR32BG12/ EFR32FG12 (EFR32xG12) platform, it and all future Mighty Gecko, Flex Gecko, and Blue Gecko releases will use the Gecko Bootloader only. Legacy Ember bootloader applications for use with specific protocols such as EmberZNet PRO and platforms including the EM3x will continue to be provided for use with those platforms.

The bootloaders work with specialized firmware update image formats. The legacy Ember bootloader update images end in extension .ebl; Gecko Bootloader update images end in extension .gbl. When you build an application both .s37 and update image files are generated. The update image file format depends on the hardware you selected. EBL files are generated for EM3x and EFR32xG1. GBL files are generated for EFR32xG12 and later devices. If you want to use the Gecko Bootloader on EFR32xG1 devices, you must convert the .S37 file using Simplicity Commander, as described in *UG162*: *Simplicity Commander User Guide*.

Note: When working with the Gecko Bootloader, you must use Simplicity Commander to enable some configuration option such as security features. See *UG266: Simplicity Studio Gecko Bootloader User's Guide*.

5.3.2 Building and Flashing Files

Note: The following procedure differs slightly depending on whether you have connected your debug adapter to your computer by USB (the default for the WSTK/EFR32 configuration) or by Ethernet (the default using an EM3x/ISA3 configuration).

If the Build control is not enabled, click the device. Your example application will compile based on its build configuration. You can change the build configuration at any time in the Project Explorer View by right clicking on the project and going to **Build Configurations > Set Active**.

During the build, progress is reported both in a window, which can be run in the background, and also in the lower right. The process may take over a minute.

Build completion is reported in the Build Console.

The build should complete with no errors. The line above the completion line is not an error. It refers to an option, not enabled in the default example configuration, to build a special application image used by the zigbee Cluster Library Over-the-Air (OTA) bootload functionality.

If any errors occur they are highlighted in the console. Contact technical support for assistance.

2. To load the application and the bootloader images, first make sure your hardware is displayed in the Device perspective. Expand the radio board to show the part number, as you will need that to find the correct bootloader file. Note that the folder in which the example was generated is displayed on the General tab.

- 3. Only if you are connected by Ethernet (typical when using an EM3x development kit), right-click on your device and select **Connect**. Then go to the next step.
- 4. Right-click the device and select **Upload Application**. The Application Image Upload dialog is displayed.
- 5. Browse to the folder with your compiled application (<folder on General tab>\app\builder\<projectName>\IAR ARM <qualifier>) and select the .ebl or .gbl file.

- 6. If you have not already loaded a bootloader, check **Bootloader image**, then browse to the folder containing a prebuilt bootloader image corresponding to the part number for your radio board.
 - For legacy bootloaders: Images are located in the stack folder, which by default is installed under Simplicity Studio (for example, C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\<version>\proto-col\zigbee_<version>\). Browse to the Tool folder, then to the bootloader folder that is specific to your radio board part number. Open the app-bootloader-spiflash folder and select the .s37 file.
 - For the Gecko bootloader: Images are located in the Simplicity Studio bootloader folder under platform (for example: C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\<version>\platform\bootloader\). Browse to sample-apps and the bootloader-storage-spiflash folder. Select the .s37 file corresponding to the radio board part number, for example 'bootloader-storage-spiflash-efr32mg12p432f1024gl125.s37'.

Check Erase Chip, to make sure that the main flash block is erased before your new image is uploaded. New users will typically always check this. Your completed dialog should resemble the following:

- 8. The **After uploading** options are **Run** (begin executing the code immediately) and **Halt** (wait for an event, such as a debugger to connect or manual initiation of a boot sequence). During initial development you will typically leave this set to **Run**.
- 9. The Flash options determine the storage location, and are Internal and External SPI. Leave the option set to Internal.
- 10. Click **OK.** Load progress is shown in the lower right. When the load progress clears, on the WSTK you know that the application has loaded if LED1 is slowly turning on and off.

11. You can also right-click on the device and select **Launch Console**. In the console window, click the **Serial 1** tab, and press enter. You should see a prompt that corresponds to the project name. Note that the icons next to the device are now green, indicating a serial connection to the console.

Note: In the future, before you can load a different application, you must disconnect from the console. Right-click the device and select **Disconnect**.

Now repeat the procedure for the Z3Light example, by clicking Launcher in the upper right, and following the steps beginning in section **Selecting an Example Application**.

Since Simplicity Studio remembers your last download location and you are using identical parts for the light and switch devices, it is more efficient to download the bootloader image first, and then browse to your application.

Z3Light also illuminates LED0, with a more rapid flash than Z3Switch, and after you launch the console you can see the name of the project in a prompt on the Serial1 tab of a connected console.

Rev. 0.7 | 29

6 Creating a Network

Once you have downloaded both the light and switch applications to different devices, you can create a network. Make sure that the switch device is close to the light device.

When the light application boots it immediately forms its own distributed network and advertises itself as a find-and-bind target. Go back to the switch console so you can observe the events. On the switch device, press button 1 to initiate commissioning. You'll see the process occur and then an indicator that commissioning has been successful. The results should indicate 0x00 (success), not 0x01 (failure).

Note: The light only advertises for a three minute window, so if you got interrupted and then commissioning fails, try pressing any button on the light device to re-start advertising.

silabs.com | Building a more connected world.

Now, if you press button 0 on the switch, you'll notice that LED0 on the light toggles on and off, and you can see the activity on both the switch console and the light console.

you can see a message such as the following, indicating you are sending an On/Off toggle command to the light:

T000000000:RX len 5, ep 01, clus 0x0006 (On/off) FC 08 seq 0C cmd 0B payload[02 00]

7 Using the Network Analyzer

Now that your network is set up, you can evaluate the data being transmitted using the Network Analyzer tool.

1. Click the Launcher button in the upper right, and select Network Analyzer from the Tools menu. The Network Analyzer opens with your console window(s) still displaying data.

Make sure that Network Analyzer is set to decode the correct protocol. Select File > Preferences > Stack, and verify it is set correctly.
 If you need to change it, click the correct stack, click Apply, and then OK.

To make sure that packets decode correctly, manually enter the NWK key. In either the Switch or Light console window, type the following, being sure to include the 's' in 'keys':

Keys print

4. In the information returned, find the network key and copy it:

NWK Key: EF DE OC 69 5B 72 6E C4 41 27 C6 E6 F1 36 26 26

 In File > Preferences, open Network Analyzer > Decoding > Security Keys, click New, name the new entry, and paste the copied key into it. Click Apply. Click OK to leave.

Right-click on the light or the switch device, and select Start Capture. Do the same for the other device.

7. If you are in an environment with a number of wireless devices, you may have a very noisy Network Analyzer environment, as reflected both in the event traffic and in the map. To show additional information in the map, click on the map.

On the toolbar, click the PAN ID button:

8. Right-click on the representation of your Switch device (the dot that has the same ISA3 adapter name or WSTK name or J-Link serial number as the device) and select **Show only this PAN**.

To filter transactions:

Press button 0 on the switch to get a complete transaction (in blue).

- 2. Click on one of the blue transactions.
- 3. In the Event Detail, expand IEEE802.15.4 and scroll down until you see the Destination PAN ID
- Right-click on it, and select Add to filter.

5. Apply the filter by clicking inext to the green filter expression field.

Now when you press button 0 you can clearly see each event associated with the transaction.

When analyzing more complex networks, you can drag and reposition the items shown in the map. By right-clicking on a device, you can also show connectivity and add labels. Labelling is useful not only in map, but also in the log. To label the full log, click **From beginning**.

Products www.silabs.com/products

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA