Proof by Induction: Divisibility Proofs

In this type of induction, you are asked to prove that an n^{th} term formula always gives values that are divisible by some given number p. The basic structure of the proof is the same as before (base case, induction step, bullet point conclusion). There are two slightly different approaches for the induction step:

- Show directly that if we assume the k^{th} term can be written as a multiple of p then the $k+1^{th}$ term can also be written as a multiple of p
- Assume that the k^{th} term can be written as a multiple of p and then show that the difference between the $k+1^{th}$ and k^{th} terms is divisible by p

Sometimes the question will guide you to one method or another so I will show both styles of solution for the first example. I prefer the first method and will afterwards stick to that throughout these notes.

The trick to the first method is to write the $k+1^{th}$ term as a multiple of the k^{th} term plus some remainder, then use your assumption and your algebraic skills to take out a factor of p.

e.g. Prove that $7^n - 1$ is divisible by 6 for all positive integers n

Base case			
$ \frac{\text{Dase case}}{\text{If } n = 1} $	$7^{1} - 1 = 6 = 6 \times 1$ i.e. a multiple of 6	The statement is true for $n=1$	
	i.e. a multiple of o		
Induction step			
Assume true for $n = k$	i.e. $7^k - 1 = 6p$ for some integer p	If the statement is true for $n = k$	
Then for $n = k + 1$	$7^{k+1} - 1$		
$\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i$	$=7\times7^k-1$		
		•••	
	$=7(7^k-1)+6$		
	= 7(6p) + 6		
	=6(7p+1)		
	Since $7p + 1$ is an integer, this is a		
	multiple of 6	then it is also true for $n = k + 1$	
Conclusion	• True for $n=1$		
	• If true for $n = k$ then true for $n = k + 1$		
	 Hence true for all positive integers n 		

If you were using the second method, you might write it like this:

Let $f(n) = 7^n - 1$. We need to prove that f(n) is a multiple of 6 for all positive integers n.

Page sage		
Base case		
If $n = 1$	$f(1) = 7^1 - 1 = 6 = 6 \times 1$	The statement is
	i.e. a multiple of 6	true for $n = 1$
Induction step		
Assume true for $n = k$	i.e. $f(k)$ is a multiple of 6	If the statement is
		true for $n = k$
Then	f(k+1) - f(k)	
	$=(7^{k+1}-1)-(7^k-1)$	
	$=7^{k+1}-7^k$	
	$= 7 \times (7^k) - 1 \times (7^k)$	•••
	$=6\times7^k$	
	Which is a multiple of 6.	
	Since $f(k)$ is a multiple of 6 and	then it is also
	f(k+1) - f(k) is a multiple of 6	true for $n = k + 1$
	then $f(k+1)$ is a multiple of 6	
Conclusion	• True for $n=1$	
	• If true for $n = k$ then true for $n = k + 1$	
	 Hence true for all positive integers n 	

Here is another example of the first method, just to show you the algebra trick a second time:

e.g. Prove that $n^3 + 2n$ is divisible by 3 for all positive integers n

Base case		
If $n = 1$	$1^3 + 2 \times 1 = 3 = 3 \times 1$	The statement is true for $n=1$
	i.e. a multiple of 3	
Induction step		
Assume true for $n = k$	i.e. $k^3 + 2k = 3p$ for an integer p	If the statement is true for $n = k$
Then for $n = k + 1$	$(k+1)^3 + 2(k+1)$	
	$= k^3 + 3k^2 + 3k + 1 + 2k + 2$	
	$= (k^3 + 2k) + 3k^2 + 3k + 3$	
	$= 3p + 3k^2 + 3k + 3$	
	$=3(p+k^2+k+1)$	
	Since $p + k^2 + k + 1$ is an integer,	
	this is a multiple of 3	then it is also true for $n = k + 1$
Conclusion	• True for $n=1$	
	• If true for $n = k$ then true for $n = k + 1$	
	ullet Hence true for all positive integers n	

One last example which is quite a common setup in exams:

e.g. Prove by induction that $2^{3n} - 3^n$ is a multiple of 5 for all positive integers n

Page ages		
Base case		
If $n = 1$	$2^3 - 3^1 = 8 - 3 = 5 = 5 \times 1$	The statement is true for $n=1$
	i.e. a multiple of 5	
Induction step		
Assume true for $n = k$	i.e. $2^{3k} - 3^k = 5p$ for an integer p	If the statement is true for $n = k$
Then for $n = k + 1$	$2^{3(k+1)} - 3^{k+1}$	
	$=2^{3k+3}-3^{k+1}$	
	$=2^3 \times 2^{3k} - 3^1 \times 3^k$	
	$= 8 \times 2^{3k} - 3 \times 3^k$	
	$=3(2^{3k}-3^k)+5\times(2^{3k})$	
	$=3(5p)+5\times 2^{3k}$	
	$=5(3p+2^{3k})$	then it is also true for $n = k + 1$
	Since $3p + 2^{3k}$ is an integer, this is	
	a multiple of 5	
Conclusion	• True for $n=1$	
	• If true for $n = k$ then true for $n = k + 1$	
	 Hence true for all positive integers n 	

The three steps in yellow are the key here.

- The first two lines use the index laws to split the exponential terms so that we can write them as multiples of the two exponential terms which appeared when n=k
- In the third line, we reason that since we have 8 of the first exponential term and 3 of the second, we can make 3 pairs (i.e. 3 lots of everything we had when n=k) with 5 of the second exponential term left over