ACADEMIC TASK-2 MTH-302

(PROBABILITY AND STATISTICS)

Lovely Professional University, Punjab Phagwara

Name: JeevanSingh

Registration Number: 12306128

Roll Number: 29

Section: **K23TB**

Submitted to: Dr. Rakesh Yadav

BTECH

Name Of School: SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Question 1.

Draw the histogram using the following data set and find bins.

Note -Ensure no two students use the same dataset; violations will result in UMC.

First data set (X)-

$$X = Random \ number \ (\frac{Last \ two \ digist \ of \ your \ registration \ number}{15} + Your \ roll \ no) + 15$$

Total no of observations = $11^2 + Last digit o your roll number$

$$\textit{Y} = \textit{Random number} \; (\frac{\textit{Last three digist of your registration number}}{24} + \textit{Your roll no}) + 16$$

Total no of observations = $12^2 + Sum of Last two digits of your roll numbe$

Tasks:

- 1. Visualize the data on the histogram
- 2. Write the Used Excel commands to find bins
- 3. Attach the screen print with dialogue box showing the commands.

Ans:

X = Random number ((28/15) + 29) + 15 Y = Random ((128/24) + 29) + 16 Y = Random ((128/24) + 29) + 16 Y = Random (5.333 + 29) + 16 Y = RAND()*30.86 + 15 Y = RAND()*30.86 + 15 Y = RAND()*30.86 + 15 Total Observation = 11^2 + 9 = 130 Total Observation = 12^2 + 11 = 155

To find freq -> =FREQUENCY(data_array, bins_array)

Question 2.

Find Descriptive Statistics of following Dataset

Analyze central tendencies (mean, median, mode) and measures of dispersion (variance, standard deviation).

Note -Ensure no two students use the same dataset; violations will result in UMC.

First data set (X)-

$$X = Random\ number\ (\frac{Last\ two\ digist\ of\ your\ registration\ number}{15} + Your\ roll\ no) + 10$$

Total no of observations = $11^2 + Last digit o your roll number$

$$Y = Random\ number\ (\frac{Last\ three\ digist\ of\ your\ registration\ number}{20} + Your\ roll\ no) + 13$$

Total no of observations = $14^2 + Sum of Last two digits of your roll numbe$

Tasks:

4.	Calculate mean, median, and mode using both conventional and automated processes.

5. Comment on the central tendency analysis.

Use Excel commands to find maximum, minimum, sum, and count.

X = Random number ((28/15) + 29) + 10

Y = Random ((128/20) + 29) + 13

X = Random number (44.6)

Y = Random (6.4+29)+13

X => 0,44.6

Y => (0, 48.4)

Total Observation = $11^2 + 9 = 130$

Total Observation = $14^2 + 11 = 207$

	× ✓ fx										
									M	N	
Y											
6.1596604	87.03970056	Х		Mean(x)	65.90503839		Y		Mean(x)	87.32488681	
5.91149473	87.37382898			Meadian(x)	65.88444946				Meadian(x)	87.35220625	
5.6590583	87.66275729	Mean	65.90503839	Mode(x)	#N/A		Mean	87.32488681	Mode(x)	#N/A	
.23936458	87.68392818	Standard Error	0.026013952				Standard Error	0.020251977			
5.06897908	87.2908022	Median	65.8861799				Median	87.35220625			
5.79147411	87.37237006	Mode	#N/A				Mode	#N/A			
5.11513763	87.67094881	Standard Deviation		Formula Used for Conve	_		Standard Deviation	0.29277943	Formula Used for	Conventional	
5.82551515	87.59941796	Sample Variance	0.087974339		AVERAGE(A2:A131)		Sample Variance	0.085719794	Mean	AVERAGE(B2:B	
5.57535088	87.26045348	Kurtosis	-1.189439594	Median	MEDIAN(A2:A131)		Kurtosis	-1.252625172	Median	MEDIAN(B2:B21	10)
.45372006	86.92084521	Skewness	-0.016638559	Mode	MODE.SNGL(A2:A131)		Skewness	-0.163169299	Mode	MODE.SNGL(B	2:B210)
.99547983	87.64892014	Range	0.99527261				Range	0.99117677			
.34678435	86.80805231	Minimum	65.40003569				Minimum	86.80805231			
.02168858	86.87464637	Maximum	66.3953083				Maximum	87.79922908			
.37734143	87.32360543	Sum	8567.65499				Sum	18250.90134			
.46537033	87.70220718	Count	130				Count	209			
.56666058	87.68132618										
.07090389	87.02617237										
.80979841	87.40032995										
.31616044	87.50784592										
.20795373	87.55344252										
.84471036	86.8952809										
.28199372	87.63095954										
.58281937	87.79100434										
.86880694	87.33724994										
.32914127	87.7578031										
.01217046	86.87534387										
.66527923	87.78461836										
.32797781	87.75301123										
.04649596	87.4016013										
.26898721	87.6058701										

Question 3.

• Find regression statistics and analyze correlation coefficients also plot the required graph

Note -Ensure no two students use the same dataset; violations will result in UMC.

First data set -

Study hours (X)

= Genrate random number between 2 to 10 + 7th digit of your registration no number

 $Marks(Y) = Genrate \ random \ number \ beteen 30 \ to 80 + last \ digit \ of \ your \ registration \ number$

 $Total\ no\ of\ observations = 100 + sum\ of\ loas\ two\ digis\ of\ your\ registration\ number$

Note Attach the screen print with dialog box for every step.

Total number of observations = 100 + 10 = 110

Study Hours (X) =RANDBETWEEN(2,10)+2

Marks (Y) =RANDBETWEEN(30,80)+8

Correlation->

Question 4.

Find the pmf and cdf for Binomial and Poisson distribution also plot the required graph

Note -Ensure no two students use the same dataset; violations will result in UMC.

Data set -

X=Generate random number +7th digit of your registration no number

N (Number of trials)=25 +last two digit of your registration number p=Probability of success=1/(sum of last two digits of your registration number)

Mean=λ=Your roll number

Note - Attach the screen print with dialog box for every step.

Solution ->

X = rand() + 2

Number of trails = 25 + 28 = 53

P = 1/(2+8)

P= 1/10

Formula is used ->

- . Binomial PMF = BINOM.DIST(A2, 53, 1/10, FALSE)
- . Binomial CDF = BINOM.DIST(A2, 53, 1/10, TRUE)
- . Poisson PMF = POISSON.DIST(A2, 29, FALSE)
- . Poisson CDF = POISSON.DIST(A2, 29, TRUE)

Binomial_PMF And Binomial_CDF ->

Possion_PMF and Possion_CDF:

All Four Graphs ->

Question 5.

Solution 5.->

1. Total Data Points (N):

$$N=1000 + (23\times200) + 29 = 1000 + 4600 + 29 = 5629$$

2. Mean (μ):

$$\mu = (23 \times 15) + 29 = 345 + 29 = 374$$

3. Standard Deviation (σ):

$$\sigma = (29 \times 0.25) + (23 \times 0.1) = 12.25 + 2.3 = 9.55$$

Formula To Generate Random Normal Dataset ->

.=NORM.INV(RAND(), 374, 9.55)

Descriptive Statistics:

C2	7	- : []	× ✓ fx		
CZ					_
4	A	В	C	D	E
1	DATA		B	C: .: .:	
2	395.2007		Discriptive	Statistics	
3	416.1282		NA	202.0040026	
4	379.5967		Mean	393.9919026	
5	381.4481		Standard Error	0.193307218	
6	391.6101		Median	393.8597534	
7	405.9693		Mode	401.4519164	
8	400.2712		Standard Deviation	14.52765155	
9	375.7495		Sample Variance	211.0526597	
10	390.2439		Kurtosis	0.047109132	
11	411.2885		Skewness	0.029622283	
12	385.3173		Range	112.7760625	
13	383.8045		Minimum	339.5598881	
14	388.7629		Maximum	452.3359506	
15	375.6538		Sum	2225266.266	
16	399.0192		Count	5648	
17	373.6532				
18	377.521				
19	406.8632				
20	408.055				
21	390.8165				
22	400.5656				
23	396.9707				
24	382.2449				
25	395.0857				
26	401.2206				
27	377.4107				
28	402.4523				
20	404 2707				

bins and construct frequency table:

-	<mark>≓</mark>		Calibri	▼ 11	三三	≡ ≫ •	ab c∉ Wrap	Text
Pa	ste E Cop		B I <u>U</u> -			= € →	■ Mero	e & Center
`		mat Painter						,
	Clipboard	d I	Fon	t 🗓		Alig	ınment	
C2	7	- : >	< √ f _x					
				-	-	-		
1	A DATA	В	С	D	Е	F	G	Н
2	395.2007		Discriptive	Ctatiotics		Bins	Dino	Fraguana
3	416.1282		Discriptive	Statistics		340	Bins 340	Frequency 2
4	379.5967		Mean	393.9919026		346	346	1
5	381.4481		Standard Error	0.193307218		352	352	6
6	391.6101		Median	393.8597534		358	358	27
7	405.9693		Mode	401.4519164		364	364	72
8	400.2712		Standard Deviation	14.52765155		370	370	158
9	375.7495		Sample Variance	211.0526597		376	376	
10	390.2439		Kurtosis	0.047109132		382	382	568
11	411.2885		Skewness	0.029622283		388	388	
12	385.3173		Range	112.7760625		394	394	918
13	383.8045		Minimum	339.5598881		400	400	869
14	388.7629		Maximum	452.3359506		406	406	803
15	375.6538		Sum	2225266.266		412	412	528
16	399.0192		Count	5648		418	418	
17	373.6532					424	424	177
18	377.521					430	430	78
19	406.8632					436	436	28
20	408.055					442	442	10
21	390.8165					448	448	1
22	400.5656					454	454	1
23	396.9707						More	0
24	382.2449							
25	395.0857							
26	401.2206							
27	377.4107							
28	402.4523							
20	404 2707	Sheet1						
	· •		⊕					
Rea	idy (🚼 Acc	cessibility: In	nvestigate					

Normal Approximation and Graph->

Clipboard		[2]	Font 5		Alig	nment		IŽ	Number 😼	
,	: [× ✓ fx	=NORM.DIST(F4+0.5,\$	D\$4,\$D\$8,	TRUE)-NORI	M.DIST(F4-	0.5,\$D\$4,\$[)\$8,TRUE)		
Α	В	С	D	E	F	G	Н	1	J	K
DATA										
395.2007		Discript	ive Statistics		Bins	Bins	Frequency	F(X)	Normal Approximation	
416.1282					340	340	2	0.000354	2.75744E-05	
379.5967		Mean	393.9919026		346	346	1	0.000177	0.000117444	
381.4481		Standard Error	0.193307218		352	352	6	0.001062	0.000421799	
391.6101		Median	393.8597534		358	358	27	0.00478	0.001277409	
405.9693		Mode	401.4519164		364	364	72	0.012746	0.003262156	
400.2712		Standard Deviation	on 14.52765155		370	370	158	0.02797	0.007024725	
375.7495		Sample Variance	211.0526597		376	376	322	0.057001	0.012755694	
390.2439		Kurtosis	0.047109132		382	382	568	0.100549	0.019531199	
411.2885		Skewness	0.029622283		388	388	774	0.137015	0.025217605	
385.3173		Range	112.7760625		394	394	918	0.162507	0.027455468	
383.8045		Minimum	339.5598881		400	400	869	0.153833	0.025206002	
388.7629		Maximum	452.3359506		406	406	803	0.142149	0.01951323	
375.6538		Sum	2225266.266		412	412	528	0.093468	0.012738095	
399.0192		Count	5648		418	418	305	0.053992	0.007011805	
373.6532					424	424	177	0.031333	0.003254658	
377.521					430	430	78	0.013808	0.001273887	
406.8632					436	436	28	0.004957	0.000420442	
408.055					442	442	10	0.00177	0.000117012	
390.8165					448	448	1	0.000177	2.74605E-05	
400.5656					454	454	1	0.000177	5.43417E-06	
396.9707						More	0			
382.2449										
395.0857										
401.2206										
377.4107										
402.4523										
404 2707	Sheet1	0								
	Sneeti	①								

Summary:

- In this activity, I generated a unique random normal distribution dataset in Excel using the provided formulas for N, μ , and σ based on my section and roll number. I used the Excel NORMINV (or NORM.INV) function to create random values from a normal distribution. I captured screenshots of the formula used, as well as the top and bottom of the generated dataset. I then calculated descriptive statistics (mean, standard deviation, minimum, maximum, etc.) using the Data Analysis tool and formulas like AVERAGE, STDEV.S, MIN, and MAX.
- Following that, I constructed a frequency table by selecting appropriate bins based on the descriptive statistics. I computed the empirical probability distribution by dividing the frequency of each bin by the total number of observations. Screenshots of the formulas used were captured at each step.
- I then applied the normal approximation using continuity correction by calculating the probabilities for each bin range using the normal distribution formula in Excel. Screenshots of the applied formulas and the resulting probabilities were also taken.
- Finally, I plotted a scatter graph with smooth lines and markers, comparing the empirical probability distribution and the normal approximation. The complete Excel workbook was saved with all steps properly documented through screenshots.

Conclusion:

 This activity helped me understand the process of generating random normal data and analyzing it statistically. It strengthened my skills in Excel functions related to probability distributions and descriptive statistics. Additionally, the comparison between empirical and theoretical (normal approximation) probabilities demonstrated how closely real-world data can fit the ideal normal distribution under certain conditions. The graph provided a visual confirmation of the alignment between empirical data and the theoretical curve.

Question 6:

Solution:

- N (Population Size) = 1100 + (Section number × 100) + Roll number
 N = 1100 + (23 × 100) + 29
 = 1100 + 2300 + 29
 = 3429
- n (Sample Size) = 500 + Roll number
 n = 500 + 29
 = 529
- Total no. of samples = 100 + Roll number
 Total samples = 100 + 29
 = 129

Normal Random Data Screenshots: = NORM.INV(RAND(),65,5)

Descriptive Statistics Screenshots:

Bin and Frequency table:

- Bin = MIN(Data) + (n * Bin Width)
- =FREQUENCY(Data Range, Bin Range)

Empirical Probability: = frequency_cell/total_N

	Get & Tran	sform Data		Queries & Connections Sort & Filter									
3	· i ×		<i>f</i> x =H3/4449										
4	А	В	С	D	Е	F	G	Н	ı	J			
_	ation Data												
	66.44013565		Population	Data		bin	bin	Frequency					
	59.51119413					45	45		0.000225				
	58.44761474		Mean	65.06056856		47	47	0	-				
	53.44904711		Standard Error	0.07288099		49	49	2	0.00045				
	64.11869305		Median	65.03580367		51	51						
	65.97254691		Mode	#N/A		53	53		0.00517				
	64.67663563		Standard Deviation	4.861222116		55	55	53	0.011913				
	66.03714021		Sample Variance	23.63148046		57	57	124	0.027871				
)	66.28883697		Kurtosis	0.020405667		59	59	275	0.061812				
	64.27725769		Skewness	0.02401787		61	61	411	0.09238				
	62.705778		Range	37.44393804		63	63	609	0.136885				
3	60.71571719		Minimum	43.78680101		65	65	709	0.159362				
4	73.92359494		Maximum	81.23073905		67	67	731	0.164307				
	63.55945252		Sum	289454.4695		69	69	582	0.130816				
5	66.94395277		Count	4449		71	71	424	0.095302				
7	65.33970442					73	73	268	0.060238				
3	64.82624932					75	75	146	0.032816				
9	61.67024771					77	77	57	0.012812				
)	64.11371303					79	79	21	0.00472				
	65.80756596					81	81	8	0.001798				
2	72.457945					83	83	2	0.00045				
3	59.51130714						More	0					
	52.73881094										Ť		
5	68.63986983										Ť		
5	71.73151387										\top		
, ← →	1 2 3	3 4 6	Sheet2 +										
eady (estigate											

Normal Approximation Probability with Continuity Correction:

=NORM.DIST(bin+0.5, mean, standard deviation, TRUE) - NORM.DIST(bin-0.5,

mean, standard deviation, TRUE)

Clipboard 5		Font	F ₂		Alignment		P)	Nui	mber וע
13 · I X	√ f _x	=NORM.DIST	(F3+0.5,\$D\$4,\$D	\$8,TRUE) ·	- NORM.DI	ST(F3-0.5,\$	D\$4,\$D\$8,T	RUE)	
A	В	С	D	Е	F	G	Н		J
Population Data									
66.44013565		Population	n Data		bin	bin	Frequency	f(x)	Normal Appoximation
59.51119413					45	45	1	0.000225	1.69235E-05
58.44761474	Me	an	65.06056856		47	47	0	0	8.44561E-05
53.44904711	Sta	ndard Error	0.07288099		49	49	2	0.00045	0.000356051
64.11869305	Me	dian	65.03580367		51	51	3	0.000674	0.001268051
65.97254691	Мо	de	#N/A		53	53	23	0.00517	0.00381508
64.67663563	Sta	ndard Deviatior	4.861222116		55	55	53	0.011913	0.0096965
66.03714021	Sar	nple Variance	23.63148046		57	57	124	0.027871	0.020819567
0 66.28883697	Kur	tosis	0.020405667		59	59	275	0.061812	0.037763702
1 64.27725769	Ske	wness	0.02401787		61	61	411	0.09238	0.057866106
62.705778	Rar	nge	37.44393804		63	63	609	0.136885	0.074906801
60.71571719	Mir	nimum	43.78680101		65	65	709	0.159362	0.081915447
73.92359494	Ma	ximum	81.23073905		67	67	731	0.164307	0.075675977
63.55945252	Sur	n	289454.4695		69	69	582	0.130816	0.059060599
66.94395277	Col	unt	4449		71	71	424	0.095302	0.038939016
65.33970442					73	73	268	0.060238	0.021687973
8 64.82624932					75	75	146	0.032816	0.010204675
9 61.67024771					77	77	57	0.012812	0.00405625
0 64.11371303					79	79	21	0.00472	0.001362055
1 65.80756596					81	81	8	0.001798	0.000386374
72.457945					83	83	2	0.00045	9.25898E-05
3 59.51130714						More	0		
52.73881094									
5 68.63986983									
71 73151387									

Graph Screenshot:

Clipboard S		Font	Į,		Alignment		Ŋ	Nu	mber l _a l	Styles		1	Cells	,h	Edit	ng	Add	i-ins	
		f _t																	
A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	
opulation Data																			
66.44013565		Population	Data		bin	bin	Frequency	f(x)	Normal Appoximation										
59.51119413					45	45	1	0.000225	1.69235E-05										
58.44761474		Mean	65.06056856		47	47	0	0	8.44561E-05										
53.44904711		Standard Error	0.07288099		49	49	2	0.00045	0.000356051										
64.11869305		Median	65.03580367		51	51	3	0.000674	0.001268051						t Title				
65.97254691		Mode	#N/A		53	53	23	0.00517	0.00381508										
64.67663563		Standard Deviation	4.861222116		55	55	53	0.011913	0.0096965		0.18								
66.03714021		Sample Variance	23.63148046		57	57	124	0.027871	0.020819567		0.16					.0			
66.28883697		Kurtosis	0.020405667		59	59	275	0.061812	0.037763702		0.14								
64.27725769		Skewness	0.02401787		61	61	411	0.09238	0.057866106		0.14					7			
62.705778		Range	37.44393804		63	63	609	0.136885	0.074906801		0.12								
60.71571719		Minimum	43.78680101		65	65	709	0.159362	0.081915447		0.08						•		
73.92359494		Maximum	81.23073905		67	67	731	0.164307	0.075675977		0.06								
63.55945252		Sum	289454.4695		69	69	582	0.130816	0.059060599		0.04								
66.94395277		Count	4449		71	71	424	0.095302	0.038939016		0.02					•	*		
65.33970442					73	73	268	0.060238	0.021687973		0.02					•	-		
64.82624932					75	75	146	0.032816	0.010204675			10	20	30 40	50	60 7	0 80	90	
61.67024771					77	77	57	0.012812	0.00405625					m.)					
64.11371303					79	79	21	0.00472	0.001362055					f(x) -	Normal Appo	cimation			
65.80756596					81	81	8	0.001798	0.000386374										
72,457945					83	83	2	0.00045	9.25898E-05										
59.51130714						More	0												
52.73881094																			
68.63986983																			
71.73151387																			
64 00155201 1 2 3	1 01 2	Sheet2 ①								: (1									

Summary And Conclusion:

- In this assignment, we calculated descriptive statistics like mean, standard deviation, and range.
- We created class intervals (bins) and calculated frequencies using formulas, not the histogram tool.
- Then, we plotted the actual frequency curve and compared it with the normal approximation curve.
- The graph shows that the data is approximately normally distributed, with minor variations.
- Thus, we conclude that real-world data often follows a normal distribution with slight deviations.