

Machine Learning

Chapter 3 지도 학습

(Decision Tree, Label Encoding, One-hot Encoding, Cross validation, 정규화)

학습목표

- Decision Tree 알고리즘을 이해 할 수 있다.
- 결측치가 있는지 확인할 수 있다.
- Label 인코딩과 One-hot 인코딩을 이해 할 수 있다.
- 교차 검증 기법을 이해 할 수 있다.
- 정규화 (Normalization)을 이해할 수 있다.

- Tree를 만들기 위해 예/아니오 질문을 반복하며 학습한다.
- 분류와 회귀에 모두 사용 가능

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

- 의사결정 트리는 설계전에 정확한 목적이 필요 (동물 분류 등)
- 트리 분류 조건은 가장 중요한 특성을 대상으로 조건을 부여

Decision Tree(결정트리) 직접 만들어보기

• 사용 데이터

Decision Tree(결정트리) 직접 만들어보기

• 나무의 건강이 좋은지 나쁜지 여부를 판단하는 모델 만들기

	건강한 나무의 주요 징후		
1	나무 구조의 강인함과 안정성이 있는가 ?		
2	해마다 성장하는가 ?		
3	가지가 죽거나(Dead) 부러진 곳은 없는가 ?		
4	줄기의 상태는 양호한가 ?		
5	잎이 없는 부분은 없는가 ?		
6	시들음(Wilting)은 없는가 ?		
7	잎 색상, 모양, 크기는 적합한가 ?		
8	곤충(Insect) 또는 질병(Disease)의 신호는 없는가 ?		

Decision Tree(결정트리) 직접 만들어보기

• 데이터셋

	Insect	Dead	Wilting	Disease	Health
0	0	0	0	0	Good
1	0	0	0	0	Good
2	0	1	0	1	Poor
3	1	0	0	0	Good
4	0	0	0	0	Good
5	0	0	0	0	Good
6	0	1	1	1	Poor
7	0	1	0	1	Poor
8	0	0	0	0	Good
9	1	1	1	0	Poor

Decision Tree(결정트리) 직접 만들어보기

• Dead 컬럼을 기준으로 분류하기 - 이상적인 트리

Decision Tree(결정트리) 직접 만들어보기

• Disease 컬럼을 기준으로 분류하기

Decision Tree(결정트리) 직접 만들어보기

• Disease 컬럼이 0인 데이터를 Insect 컬럼을 기준으로 분류하기

Good

Decision Tree(결정트리) 직접 만들어보기

• Insect 컬럼이 1인 데이터를 Wilting 컬럼을 기준으로 분류하기

Decision Tree(결정트리) 직접 만들어보기

Gini Impurity(지니 불순도)

Gini Impurity(지니 불순도)

$$GI = \sum_{i=1}^{d} (R_i(1 - \sum_{k=1}^{m} p_{ik}^2))$$

전체 집단

- i : 분리된 집단의 수 (A, B)

- k: 전체 집단에 포함된 클래스의 수

- R_i: 전체 집단에서 분리된 집단의 비율

- p_k: 분리된 집단에서 각 클래스의 비율

분리된 집단 A에서 ○ 클래스의 비율: 2/3

전체 집단에서 분리된 집단 A의 비율: 3/6

Gini Impurity(지니 불순도)

○의 GI

전체집단에서 ○의 비율

$$GI = 1 - \left(\frac{10}{16}\right)^2 - \left(\frac{6}{16}\right)^2 \approx 0.47$$

전체집단에서 △의 비율

Gini Impurity(지니 불순도)

잘 분류가 된
$$\bigcirc$$
의 GI $\stackrel{\text{A집단에서}}{\bigcirc$ 의 비율} $GI = 0.5 \times (1 - \left(\frac{10}{10}\right)^2) + 0.5 \times (1 - \left(\frac{10}{10}\right)^2) = 0$ B집단에서 \bigcirc 의 비율

반반씩 섞인 데이터라면 ○의 GI

전체집단에서 ○의 비율

$$GI = 1 - \left(\frac{10}{20}\right)^2 - \left(\frac{10}{20}\right)^2 = 0.5$$

전체집단에서 △의 비율

다른 불순도 계산방법 비교

Gini 불순도가 다른 방법에 비해 빠르게 불순도 변화

- 순수 노드 : 타깃 값이 한 개인 리프 노드
- 모든 노드가 순수 노드가 될 때 까지 학습 → 복잡, 과대적합
- 새로운 데이터 포인트가 들어오면 해당하는 노드를 찾아 분류라
 면 더 많은 클래스를 선택하고, 회귀라면 평균을 구함

Decision Tree(결정트리) 과대적합 제어

- 노드 생성을 미리 중단하는 사전 가지치기(pre-pruning)와 트리를 만든 후에 크기가 작은 노드를 삭제하는 사후 가지치기(post-pruning)가 있다 (sklearn은 사전 가지치기만 지원)
- 트리의 최대 깊이나 리프 노드의 최대 개수를 제어 (max_depth, max_leaf_nodes)
- 노드가 분할 하기 위한 데이터 포인트의 최소 개수를 지정 (min_sample_split)

Decision Tree(결정트리) 과대적합 제어

아래쪽 노드로 분할되지 않는다는 개념

주요 매개변수(Hyperparameter)

scikit-learn의 경우

DecisionTreeClassifier(max_depth, max_leaf_nodes, min_sample_split, min_sample_leaf, criterion)

- 트리의 최대 깊이: max_depth (값이 클수록 모델의 복잡도가 올라간다.)
- 리프 노드의 최대 개수: max_leaf_nodes
- 리프 노드로 분리 가능한 최소 샘플의 개수: min_sample_split
- 리프 노드를 구성하는 최소 샘플의 개수 : min_samples_leaf
- criterion : 불순도 측정 방법 (gini, entropy)

사전가지치기 (max_depth=3)

사전가지치기 (max_leaf_nodes=6)

사전가지치기 (min_sample_split=3000)

사전가지치기 (min_samples_leaf=500)

사후 가지치기 (post-pruning)

- 초기에 트리를 최대 크기로 만듬 → 마지막 노드의 불순도가 최소가 되도록 분할
 → 복잡도 최대
- 교차검증 점수가 최소가 되는 분할이 되도록 트리를 줄임
- 사전 가지치기가 위 층부터 노드를 분리하는 과정이라면 사후 가지치기는 아래 층 노드부터 합해가는 과정

사후 가지치기 (post-pruning)

- 링크강도 ccp_alpha 값을 제어
- ccp_alpha 값이 증가하면 불순도가 증가
- ccp_alpha 값이 증가하면 노드수 / depth 감소

장단점

- 만들어진 모델을 쉽게 시각화할 수 있어 이해하기 쉽다. (white box model)
- 각 특성이 개별 처리되기 때문에 데이터 스케일에 영향을 받지 않아 특성의 정규화나 표준화가 필요 없다.
- 트리 구성 시 각 특성의 중요도를 계산하기때문에 특성 선택 (Feature selection)에 활용될 수 있다.

장단점

- 훈련데이터 범위 밖의 포인트는 예측 할 수 없다. (ex: 시계열 데이터)
- 가지치기를 사용함에도 불구하고 과대적합되는 경향이 있어 일반화 성능이 좋지 않다.

장단점

- 의사결정나무는 선형모형에는 적합하지 않음

출처 : http://blog.hyeongeun.com/21

Decision Tree 실습

Mushroom 데이터 활용 Decision Tree 분류 실습

Decision Tree 실습

Mushroom 데이터셋

- 8124개의 버섯 종류 데이터
- 22개의 특징 (18개의 버섯 특징, 4개의 다른 특징 (Habitat (서식지), Population(분포 형태), Bruises(타박상), Odor(냄새)))

Decision Tree 실습

Mushroom 데이터셋

poisonous: 독버섯(poisonous), 식용버섯(edible)

cap-shape : 갓 모양(b,c,x,f,k,s) : 원뿔/평면/볼록 등

cap-surface : 갓 표면(f.g.u.s) : 섬유질/비늘모양/부드러움 등

cap-color : 갓 색(n,b,c,g,r,p,u,e,w,u) : 계피/회색/노란색 등

bruises: 타박상(t,f): 예/아니오

odor: 냄새(a,l,c,y,f,m,n,p,s): 아몬드,생선,매운 등

gill-attachment(자실층 위치), gill-spacing(자실층 간격), gill-size(자실층 크기), gill-color(자실층 색), stalk-shape(자루 모양), stalk-root(자루 뿌리), stalk-surface-above-ring(자루 표면 위 자루테), stalk-surface-below-ring(자루 표면 아래 자루테), stalk-color-above-ring(자루 색 위 자루테), stalk-color-below-ring(자루 색 아래 자루테), veil-type(베일 유형), veil-color(베일 색), ring-number(링 번호), ring-type(링 타입), spore-pring-color(포자 색), population(인구), habitat(서식지)

Mushroom 데이터셋

결측치 확인 - info() 함수

전체 데이터 개수와 일치하지 않는 특성(컬럼)이 있는지 확인

RangeIndex: 8124 entries, 0 to 8123 Data columns (total 23 columns): 8124 non-null object poisonous 8124 hon-null object cap-shape cap-surface 8124 hon-null object 8124 hon-null object cap-color 8124 hon-null object bruises 8124 hon-null object odor gill-attachment 8124 hon-null object 8124 non-null object gill-spacing gill-size 8124 non-null object gill-color 8124 non-null object 8124 hon-null object stalk-shape 8124 non-null object stalk-root stalk-surface-above-ring 8124 non-null object stalk-surface-below-ring 8124 hon-null object stalk-color-above-ring 8124 non-null object stalk-color-below-ring 8124 non-null object veil-type 8124 hon-null object 8124 hon-null object veil-color 8124 hon-null object ring-number 8124 hon-null object ring-type 8124 non-null object spore-print-color population 8124 non-null object habitat 8124 hon-null object dtypes: object(23) memory usage: 1.4+ MB

<class 'pandas core.frame.DataFrame'>

데이터 표현

- 숫자형(연속형) 특성 : 숫자로 이루어진 순서가 있는 데이터
- 범주형 특성 : 문자 형태로 된 값을 구분하기 위한 데이터
- Encoding : 범주형 데이터를 숫자형 데이터로 변환 (Label Encoding, One-hot Encoding, Word Embedding)
- Binning : 숫자형 데이터를 범주형 데이터로 변환

범주형 특성 ——

		А	В	С	D		
	1	Gender	Height	Weight	Label		
	2	Male	174	96	Obesity		
	3	Male	189	87	Normal		
	4	Female	185	110	Obesity		
_	5	Female	195	104	Överweight		
	6	Male	149	61	Overweight		
	7	Male	189	104	Overweight		
	8	Male	147	92	Extreme Obesity		
	9	Male	154	111	Extreme Obesity		
	10	Male	174	90	Overweight		
	11	Female	169	103	Obesity		
	12	Male	195	81	Normal		
	13	Female	159	80	Obesity		
	14	Female	192	101	Overweight		
	15	Male	155	51	Normal		
	16	Male	191	79	Normal		
	17	Female	153	107	Extreme Obesity		
	18	Female	157	110	Extreme Obesity		
	19	Male	140	129	Extreme Obesity		
	20	Male	144	145	Extreme Obesity		

__연속형 특성

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
1	poisonous	cap-shape	cap-surfac	cap-color	bruises	odor	gill-attach	gill-spacin	gill-size	gill-color	stalk-shap	stalk-root	stalk-surfa	stalk-surfa	stalk-color
2	p	X	s	n	t	p	f	С	n	k	е	e	S	s	w
3	e	X	S	y	t	a	f	С	b	k	e	С	S	S	w
4	e	b	S	W	t	I	f	С	b	n	e	С	S	S	W
5	p	X	y	W	t	p	f	С	n	n	e	e	S	S	W
6	e	X	S	g	f	n	f	w	b	k	t	e	S	S	W
7	e	X	y	y	t	a	f	С	b	n	e	С	S	S	W
8	e	b	S	W	t	a	f	С	b	g	e	С	S	S	W
9	e	b	y	W	t	I	f	С	b	n	e	С	S	S	W
10	p	X	y	W	t	p	f	С	n	p	e	e	S	S	W
11	e	b	S	y	t	a	f	С	b	g	e	С	S	S	W
12	e	X	y	y	t	I	f	С	b	g	e	С	S	S	W
13	e	X	y	y	t	a	f	С	b	n	e	С	S	S	W
14	e	b	S	y	t	a	f	С	b	W	e	С	S	S	W
15	p	X	y	W	t	p	f	С	n	k	e	e	S	S	W

범주형(이산형) 특성이기 때문에 인코딩 필요

categorical feature

Label 인코딩 or One-hot 인코딩 방식을 이용해 수치화한다.

특성의 클래스 종류 확인 - unique() 함수

해당 특성(클래스)이 범주형 데이터인 경우 값의 종류를 확인

X['cap-shape'].unique()

array(['x', 'b', 's', 'f', 'k', 'c'], dtype=object)

특성의 클래스 수 확인 - value_counts() 함수

해당 특성(클래스)이 범주형 데이터인 경우 값의 종류와 개수를 확인

X['cap-shape'].value_counts()

```
x 3656
f 3152
k 828
b 452
s 32
c 4
Name: cap-shape, dtype: int64
```


Label Encoding : 수치 값으로 mapping하는 작업

X1["cap-shape"] = X1["cap-shape"] .map({"x":0, "f":1, "k":2, "b":3, "s":4, "c":5})

cap-shape
×
b
×
k
f
S
b
S
С

cap-shape
0
3
0
2
1
4
3
4
5

One-hot Encoding: 0 or 1의 값을 가진 여러 개의 새로운 특성으로 변경하는 작업

X_one_hot = pd.get_dummies(X2)

cap-shape
×
b
×
k
f
S
b
S
С

cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_k	cap- shape_s	cap- shape_x
0	0	0	0	0	1
1	0	0	0	0	0
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	0
0	0	0	0	1	0
1	0	0	0	0	0
0	0	0	0	1	0
0	1	0	0	0	0

Feature Selection : 라벨과 연관관계가 높은 특성을 선택하는 작업

fi = tree_model.feature_importances_
df = pd.DataFrame(fi, index=X_one_hot.columns)
df.sort_values(by=0, ascending=False)

odor_n	0.623863
stalk-root_c	0.170163
stalk-root_r	0.082323
spore-print-color_r	0.036219
odor_a	0.023723
•••	

사전 가지치기 (pre-pruning)을 이용해서 모델의 성능을 향상시켜 보세요.

테스트 세트에 맞게 학습 될 수 있다.

Cross validation

(교차검증)

학습-평가 데이터 나누기를 여러 번 반복하여 일반화 에러를 평가하는 방법

K-fold cross-validation 동작 방법

- 1. 데이터 셋을 k개로 나눈다.
- 2. 첫 번째 세트를 제외하고 나머지에 대해 모델을 학습한다. 그리고 첫 번째 세트를 이용해서 평가를 수행한다.
- 3. 2번 과정을 마지막 세트까지 반복한다.
- 4. 각 세트에 대해 구했던 평가 결과의 평균을 구한다.

K-fold cross-validation 동작 방법

Train Data

1번 세트

2번 세트

3번 세트

4번 세트

5번 세트

K-fold cross-validation 동작 방법

test	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	train
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	
	1번 세트	2번 세트	3번 세트	4번 세트	5번 세트	

cross-validation 장/단점

- 데이터의 여러 부분을 학습하고 평가해서 일반화 성능을 측정하기 때문에 안정적이고 정확하다. (샘플링 차이 최소화)
- 모델이 훈련 데이터에 대해 얼마나 민감한지 파악가능 (점수 대역 폭이 넓으면 민감)
- 데이터 세트 크기가 충분하지 않은 경우에도 유용하게 사용 가능하다.
- 여러 번 학습하고 평가하는 과정을 거치기 때문에 계산량이 많아진다

cross_val_score() 함수

from sklearn.model_selection import cross_val_score

score = cross_val_score(모델, 특성, 라벨, cv=나눌 개수)

score

[0.86680328 0.87704918 0.875

0.90554415 0.8788501 1

Decision Tree를 활용해 Mushroom 데이터를 학습하고 교차검증을 적용해보자.

정규화 (Normalization)

Normalization: 컬럼 데이터의 분포를 정규분포로 만드는 작업

data_skew 데이터: 포아송 분포의 회귀용 데이터

정규화

X_train_log = np.log(X_train + 1)

정규화를 하지 않는 경우와 정규화를 한 경우 KNeiborsRegressor를 이용하여 정확도가 개선되었는지 확인해보자