向量

有序向量:插值查找

邓俊辉 deng@tsinghua.edu.cn

.....那么在最后剩下的一万个猎手中,肯定有人会做出这样的选

择:向那个位置开一枪试试...

原理与算法

◇假设:已知有序向量中各元素随机分布的规律

比如:独立且均匀的随机分布

❖ 于是:[lo, hi]内各元素应大致呈线性趋势增长

$$\frac{mi-lo}{hi-lo} pprox \frac{e-A[lo]}{A[hi]-A[lo]}$$

❖ 因此:通过猜测轴点mi,可以极大地提高收敛速度

$$mi \approx lo + (hi - lo) \cdot \frac{e - A[lo]}{A[hi] - A[lo]}$$

❖ 以英文词典为例: binary大致位于2/26处

search大致位于19/26处

[lo]	0	A	1	[1,53)
	1	В	74	[53,104)
	2	С	158	[104,156)
0.00	3	D	292	[156,208)
	4	E	368	[208,259)
	5	F	409	[259,311)
	6	G	473	[311,363)
0 0	7	Н	516	[363,414)
	8	I	562	[414,466)
*	9	J	607	[466,518)
	10	К	617	[518,569)
2	11	L	628	[569,621)
	12	М	681	[621,673)
0	13	N	748	[673,724)
	14	0	771	[724,776)
	15	Р	806	[776,827)
	16	Q	915	[827,879)
*	17	R	922	[879,931)
	18	S	1002	[931,982)
2	19	T	1176	[982,1034)
	20	U	1253	[1034,1086)
	21	٧	1271	[1086,1137)
2 3	22	W	1289	[1137,1189)
	23	Х	1337	[1189,1241)
	24	Υ	1338	[1241,1292)
0 00	25	Z	1341	[1292,1344)
[hi]	26		1344	
C1		41		- 11-1

实例

```
❖ 查找目标:e = 50
                                19
                                    23
                                       29
                                          36
                                             39
                                                   44
                                                                      82
                                                                         86
                                                41
* lo = 0, hi = 18
 插值: mi = 0 + (18 - 0)*(50 - 5)/(92 - 5) = 9
 比较:A[9] = 41 < e
                                19
                                       29
                                          36
                                                            59
                                                                      82
                                                                         86
* lo = 10, hi = 18
                                             8
                                                   10
 插值:mi = 10 + (18 - 10)*(50 - 44)/(92 - 44) = 11
 比较:A[11] = 51 > e
\diamond lo = hi = 10
                                                                      82
 插值:mi = 10
 比较:A[10] = 44 < e , 故返回:NOT_FOUND
```

性能

❖最坏: $hi - lo = \mathcal{O}(n)$

//具体实例?

riangle 平均:每经一次比较,待查找区间宽度由 n 缩至 \sqrt{n} //[Yao76, PIA78],习题解析[2-24]

$$n \to \sqrt{n} \to \sqrt{\sqrt{n}} \to \sqrt{\sqrt{n}} \to \cdots \to 2$$

$$\underbrace{n \to n^{1/2^1} \to n^{1/2^2} \to n^{1/2^3} \to \cdots \to 2}_{\mathcal{O}(\log \log n)}$$

*每经一次比较,

待查找区间宽度的数值n开方,有效字长logn减半

- 插值查找 = 在字长意义上的折半查找
- 二分查找 = 在字长意义上的顺序查找

$$log(n/2) = logn - 1$$

综合评价

❖从Ø(logn)到Ø(loglogn),优势并不明显

(除非查找表极长,或比较操作成本极高)

比如
$$, n = 2^{(2^5)} = 2^32 = 4G时$$

- $-\log_2(n) = 32$
- $-\log_2(\log_2(n)) = 5$
- ❖ 须引入乘法、除法运算
- ❖ 易受小扰动的干扰和"蒙骗"

- * 实际可行的方法
 - 首先通过插值查找
 - 迅速将查找范围缩小到一定的尺度
 - 然后再进行二分查找
 - 进一步缩小范围
 - 最后(当数据项只有200~300时)
 - 使用顺序查找