STSCI 4780 Relationships between variables: Preliminaries (Conditional dependence & independence, graphical models, regression)

Tom Loredo, CCAPS & SDS, Cornell University

© 2020-04-07

Agenda

1 Relationships between variables

2 Joint distributions and graphical models

3 Example: Binomial prediction

Agenda

1 Relationships between variables

2 Joint distributions and graphical models

3 Example: Binomial prediction

Relationships between variables

We're interested in settings where each case/item/object has *two* or more properties (x, y, ...); we want to learn how they are related

Goals

- Explanatory: Seek to understand the processes/mechanisms linking x and y...
- **Predictive:** Seek to predict a future *y* value from observing or controlling a future *x* value

We will develop tools and terminology for building and describing explanatory and predictive models for multivariate data

Terminology

Types of studies

- Correlation/dependence: Learn about the joint distribution, p(x, y), in settings where x and y are both potentially uncertain/random
- Regression/conditional density estim'n: Learn about the conditional distribution, p(y|x), in settings where x is controllable/deterministic, or in settings where x is random but becomes known

Names of variables (conditional/regression setting)

- x: covariate, regressor, predictor, explanatory variable, input, independent variable
- y: response, prediction, output, dependent variable
- Either/both may be vectors

Conditional distribution properties

 Regression function: The conditional expectation value (conditional mean) of y given x is the regression function

$$f(x) = \mathbb{E}(y|x) \equiv \int dy \ y \ p(y|x)$$

- Variance:
 - ightharpoonup Var(y|x) = Const: homoskedastic
 - ▶ $Var(y|x) \neq Const$: *heteroskedastic*

Regression = Learning a conditional expectation

Conditional density estimation = Learning a conditional distribution, $p(y|x, \cdots)$

(Joint) Density estimation = Learning p(x, y) (when x is also uncertain/random)

Examples with random *x*

Population studies

Contour of counts in cells

Galton (1885) "Regression Towards Mediocrity in Hereditary Stature"

Faber-Jackson relation for elliptical galaxies

Examples with deterministic *x*Curve fitting

Newton's 2nd law: $a = \frac{F}{m}$

Apply different forces to a fixed mass

Batesville HS AP Physics Class

Dose-response curve

Gale (2003), "Developing risk assessments of waterborne microbial contaminations"

Agenda

Relationships between variables

2 Joint distributions and graphical models

3 Example: Binomial prediction

Joint, conditional, and marginal distributions

Bayesian inference is largely about the interplay between *joint*, *conditional*, and *marginal* distributions for related quantities

Ex: Bayes's theorem relating hypotheses and data (||C|):

$$P(H_i|D) = \frac{P(H_i)P(D|H_i)}{P(D)} = \frac{P(H_i,D)}{P(D)} = \frac{\text{joint for everything}}{\text{marginal for knowns}}$$

The usual form identifies an available factorization of the joint

Express this via a directed acyclic graph (DAG):

Joint distribution structure as a graph

- Graph = nodes/vertices connected by edges/links
- Circular/square nodes/vertices = a priori uncertain/random quantities
 - Gray or square = quantity becomes known as data
- Directed edges specify conditional dependence
- Absence of an edge indicates conditional *in*dependence
 - \rightarrow a variable can be *dropped* in a factor in the joint
 - → the most important edges are the missing ones

p(x, y, z)

Cycles not allowed

We can focus on *directed acyclic graphs* (DAGs)

Conditional independence

Suppose for the problem at hand z is independent of of x when y is known:

$$p(z|x,y) = p(z|y)$$

"z is conditionally independent of x, given y"

Absence of an edge indicates conditional *in*dependence Missing edges indicate simplification in structure → the most important edges are the missing ones

DAGs with missing edges

Conditional independence

Conditional dependence

"Common effects"

Conditional vs. complete independence

"z is conditionally independent of x, given y" \neq "z is independent of x"

(Complete) independence would imply:

$$p(z|x) = p(z)$$
 (i.e., not a function of x)

Conditional independence is weaker:

$$p(z|x) = \int dy \ p(z, y|x)$$

$$= \int dy \ p(y|x) \ p(z|x, y)$$

$$= \int dy \ p(y|x) \ p(z|y) \quad \text{since } z \perp \!\!\! \perp x \mid y$$

Although x drops out of the last factor, x dependence remains in p(y|x)

x does provide information about z, but it only does so through the information it provides about y (which directly influences z)

Bayes's theorem with IID samples

For model with parameters θ predicting data $D = \{x_i\}$ that are IID given θ :

$$p(\theta, D) = p(\theta)p(\lbrace x_i \rbrace | \theta) = p(\theta) \prod_{i=1}^{N} p(x_i | \theta)$$

"IID" means each datum is conditionally independent of others, given θ

To find the posterior for the unknowns (θ) , divide the joint by the marginal for the knowns $(\{x_i\})$:

$$p(\theta|\{x_i\}) = \frac{p(\theta) \prod_{i=1}^{N} p(x_i|\theta)}{p(\{x_i\})} \quad \text{with} \quad p(\{x_i\}) = \int d\theta \ p(\theta) \prod_{i=1}^{N} p(x_i|\theta)$$

Agenda

Relationships between variables

2 Joint distributions and graphical models

3 Example: Binomial prediction

Binomial counts

 $\bullet \bullet \bullet$ n_1 heads in N flips

 n_2 heads in N flips

Suppose we know n_1 and want to predict n_2

Predicting binomial counts — known α

Success probability
$$\alpha \to p(n|\alpha) = \frac{N!}{n!(N-n)!} \alpha^n (1-\alpha)^{N-n} \qquad || N$$

Consider two successive runs of N=20 trials, known $\alpha=0.5$

$$p(n_2|n_1,\alpha)=p(n_2|\alpha)$$
 || N

 n_1 and n_2 are conditionally independent

DAG for binomial prediction — known α

$$p(\alpha, n_1, n_2) = p(\alpha)p(n_1|\alpha)p(n_2|\alpha)$$

$$p(n_2|\alpha, n_1) = \frac{p(\alpha, n_1, n_2)}{p(\alpha, n_1)}$$

$$= \frac{p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}{p(\alpha)p(n_1|\alpha)\sum_{n_2}p(n_2|\alpha)}$$

$$= p(n_2|\alpha)$$

Knowing α lets you predict each n_i , independently

Predicting binomial counts — uncertain α

Consider the same setting, but with α uncertain

Outcomes are *physically* independent, but n_1 tells us about $\alpha \rightarrow$ outcomes are *marginally dependent* (see Lec 12 for calculation):

$$p(n_2|n_1,N) = \int d\alpha \ p(\alpha,n_2|n_1,N) = \int d\alpha \ p(\alpha|n_1,N) \ p(n_2|\alpha,N)$$

Flat prior on α

Prior: $\alpha = 0.5 \pm 0.1$

DAG for binomial prediction

$$p(\alpha, n_1, n_2) = p(\alpha)p(n_1|\alpha)p(n_2|\alpha)$$

From joint to conditionals:

$$p(\alpha|n_1,n_2) = \frac{p(\alpha,n_1,n_2)}{p(n_1,n_2)} = \frac{p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}{\int d\alpha \ p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}$$

$$p(n_2|n_1) = \frac{\int d\alpha \, p(\alpha, n_1, n_2)}{p(n_1)}$$

Observing n_1 lets you learn about α Knowledge of α affects predictions for $n_2 \to$ dependence on n_1