



# RAMA ESTUDIANTIL IEEE ESPE CAPÍTULO ESTUDIANTIL RAS

### SYLLABUS DEL CURSO CURSO DE INTRODUCCIÓN A ROS

# **DESCRIPCIÓN DEL CURSO**

### 1. PRERREQUISITOS Y MATERIALES

| PRERREQUISITOS | Tener instalado Ubuntu 20.02  |
|----------------|-------------------------------|
|                | Conocimiento Básico de Python |
| MATERIALES     | • ESP32                       |
|                | 2 servomotores (Opcional)     |
|                | 3 potenciómetros              |

#### 2. RESULTADOS DE APRENDIZAJE DEL CURSO

El estudiante al final del curso estará en capacidad de:

- 1. Comprender y crear tus propios programas ROS (Robot Operating System)
- 2. Aprender los conceptos claves de ROS
- 3. Programación de Tópicos, Servicios, Acciones en ROS
- 4. Visualizar el comportamiento de sensores mediante la interfaz Rviz.
- 5. Simulación de un robot de 3 grados: cinemática inversa y directa.
- 6. Implementación con Arduino IDE y MQTT.

## 3. PROGRAMA DEL CURSO

## 1. Dia 1

- 1.1. Introducción al curso, instalación y familiarización del software (ROS).
- 1.2. Explicación de comandos básicos y herramientas.
- 1.3. Creación del espacio de trabajo y paquetes.

#### 2. Dia 2

- 2.1. Nodo publicar y suscriptor
- 2.2. Services y Actions
- 2.3. Ejemplos Básicos. (Turtlesim, Find Object 2d)





- 3. Dia 3
  - 3.1. Creación y ejecución de archivos .launch
  - 3.2. Creación de archivos URDF
  - 3.3. Rviz y MovelT (Introducción)
- 4. Dia 4
  - 4.1. Ronda de preguntas y recomendaciones.
- 5. Dia 5
  - 5.1. Cinemática Inversa y directa.
  - 5.2. Scripts en Python.
- 6. Dia 6
  - 6.1. Implementación del robot de 3 GDL en MoveIT
  - 6.2. Conceptos básicos de uso entre QtDesigner y ROS
- 7. Dia 7
  - **7.1.** Visualización de sensores en Rviz (Arduino IDE)
  - 7.2. Movimiento de actuadores (Arduino IDE) usando MoveIT
- 8. Dia 8
  - 8.1. MQTT y ROS
- 9. Dia 9
  - 9.1. Ronda de preguntas y recomendaciones.
- 10. Dia 10
  - 10.1. Proyecto Final

#### 4. CARGA HORARIA: TEORÍA/PRÁCTICA

Número de sesiones por semana: 4 sesiones

Duración de cada sesión: 2 horas

Número de Días: 10

# 5. CONTRIBUCIÓN DEL CURSO EN LA FORMACIÓN DEL ESTUDIANTES

a. Obtener conocimiento básico del uso e implementación de las herramientas existentes en ROS en proyectos robóticos.

#### 6. CAMPOS DE APLICACIÓN

| Educación Básica | Educación Media | Educación Superior |
|------------------|-----------------|--------------------|
|                  |                 | X                  |



# 7. EVALUACIÓN DEL CURSO

| Actividades de Evaluación  |   |  |
|----------------------------|---|--|
| Exámenes                   |   |  |
| Lecciones                  |   |  |
| Tareas                     | Х |  |
| Proyectos                  | Х |  |
| Laboratorios/ Experimental |   |  |
| Participación en Clase     | Х |  |
| Asistencia                 | Х |  |
| Otros                      |   |  |