D'une méthode exacte pour l'ordonnancement de Workflows

11 mars 2013

Introduction

Table des matières

1	Mo	délisation du problème	
	1.1	Données du problème et notations adoptées	
	1.2	Modèle en nombres entiers	
		1.2.1 Variables	
		1.2.2 Contraintes	
	1.3	Estimation du nombre de contraintes	
2	Génération des points non dominés Remarques et commentaires		
3			
4	Cor	nclusion	

Modélisation du problème

1.1 Données du problème et notations adoptées.

Un workflow est représenté par la donnée de différents paramètres :

- n tâches représentées par un ensemble $T = \{t_1, ..., t_n\}$
- m machines (ou ressources) représentées par un ensemble $M = \{M_1, ..., M_m\}$
- La durée d'execution de la tâche i sur la machine k, notée $d_k^i, \forall i \in T, k \in M$
- La durée de transfert de la sortie générée par la tâche i de la machine k à la machine l, notée $D^i_{k,l}, \forall i \in T, (k,l) \in M^2$
- La donnée d'un graphe G=(X,U) où les sommets sont des tâches et un arc (i,j) modélise que la tâche j nécessite la sortie de la tâche i.

1.2 Modèle en nombres entiers

1.2.1 Variables

Nous considérons trois types de variables :

– Les variables $\forall i \in T, x^i$ définies par

$$x^{i} = \begin{cases} 0 & i \ n'est \ pas \ sur \ m \\ > 0 & sinon \end{cases}$$

– Les variables $\forall i \in T, \forall k \in M, y_k^i$ définies par

$$y_k^i = \left\{ \begin{array}{ll} 1 & si \; i \; est \; executee \; sur \; k \\ 0 & sinon \end{array} \right.$$

– Les variables $\forall (i,j) \in T^2, \forall (k,l) \in M^2, z^i_{k,l}$

 $z_{k,l}^{i,j} = \left\{ \begin{array}{ll} 1 & si~la~sortie~de~la~tche~i~passe~de~la~machine~k~a~la~machine~l~pour~la~tache~j\\ 0 & sinon \end{array} \right.$

1.2.2 Contraintes

Nous distinguons trois grandes familles de contraintes : les contraintes de précédences, les contraintes d'executions par machine et les contraintes de liaisons entre les variables.

Contraintes de précédences

Pour tout arc $(i, j) \in U$, nous imposons que la tâche j ne puisse commencer avant la tâche i, c'est à dire avant qu'elle ne soit executée et que la sortie n'ait étée transférée :

$$\sum_{k \in M} x_k^i + \sum_{k \in M} y_k^i d_k^i + \sum_{k \in M} \sum_{l \in M} z_{k,l}^{i,j} D_{k,l}^i \leq \sum_{k \in M} x_k^j$$

Contraintes d'exécution par machines

Contraintes de liaisons

1.3 Estimation du nombre de contraintes

Génération des points non dominés

Remarques et commentaires

Conclusion