Análise

Princípios de Resolução de Problemas

Preferimos dizer que o problema é o desvio de um percurso, o qual impede de atingir com o sucesso um determinado objetivo com eficiência e eficácia.

Diferentes das diagramações clássicas, os diagramas de bloco são realmente o melhor instrumento para avaliação do problema do fluxo de informação de um dado sistemas.

Para desenvolver um diagrama correto, devemos:

- Devem ser feitos e quebrados em vários níveis. Devem conter apenas as idéias gerais;
- Deve ser desenvolvido de cima para baixo e da esquerda para direita;
- É incorreto e "proibido" ocorrer cruzamento das linhas de fluxo de dados.

Particularidades entre Lógicas

As representações gráficos de um diagramas de blocos podem ser feitas de várias maneiras e possuírem estruturas diferenciadas. A seguir, são apresentados alguns tipos de procedimentos individualmente.

Linear

A técnica lógica linear é conhecida como um modelo tradicional de desenvolvimento e resolução de um problema. Devemos entender que esse tipo de procedimento está voltado à técnica matemática, a qual permite determinar a atribuição de recursos limitados, utilizando uma coleção de elementos organizados ou ordenados por uma só propriedade.

Exemplo de lógica linear.

Estruturada

A técnica da lógica estrutura é a mais usada pelos profissionais de processamento eletrônico de dados. Tem como pontos fortes para elaboração futura de um programa, produzi-lo com alta qualidade e baixo custo.

A sequência, a seleção e a iteração são as três estruturas básicas para a construção do diagrama em blocos.

N S

N
Sequence
If Then Else
N
S
N
S N
S
DoWhille N
Do Until (repeat) S
S
N
S
. N
. S
N
Xase
Exemplo de lógica estruturada

exemple de logica estruta

Modular

A técnica da lógica modular deve ser elaborada como uma estrutura de independentes, denominada de módulos. Segundo James Martin, suas metas são as seguintes:

- Compor um diagrama em partes independentes;
- Dividir um problemas menores e mais simples

\bullet
A modularização deve ser desenvolvida, se possível, em diferentes níveis.
O modelo padrão de um módulo consiste em três partes: entrada, processamento e saída
S
S
N
N

Diagrama de Chapin

Exemplo de lógica Modular

O diagrama foi desenvolvido por Nassi e Sheneiderman e ampliado por Ned Chaplin, substituíram o diagrama de blocos tradicional por um diagrama em quadros que permite apresentar uma visão hierárquica e estruturada da lógica. A grande vantagem, é a representação das estruturas que tem um ponto de entrada e u ponto de saída e são compostos pelas estruturas básicas de controle de seqüência e repartição.

Português Estruturado

Está técnica de algoritmização é baseada em uma PDL – Program Design Language (linguagem de Projeto de Programação). A forma original de escrita é conhecida como inglês estruturado, é usada como conferência genérica para uma linguagem de projeto de programação, tendo como finalidade mostra uma notação para elaboração de algoritmos, os quais serão utilizados na definição, criação e desenvolvimento de uma linguagem computacional.

Símbolo para a Tomada de decisões

Estrutura do símbolo para a instrução se...então...fim_se

Operadores Relacionais

Ao ser utilizado a instrução **se...então...fim_se**, ela implica na utilização de condições para verificar o estado de uma determinada variável quanto verdadeiro ou falso. Estas verificações são efetuados conforme a tabela seguinte:

Símbolo	Significado				
=	Igual a				
<>	Diferente de				
>	Maior que				
<	Menor que				
>=	Maior ou igual a				
<=	Menor ou igual a				

Desvio condicional Composto

O uso da instrução **se...então...senão...fim_se**, que sendo a condição Verdadeira, serão executadas todas as instruções que estejam posicionadas entre o **se...então** e a instrução **senão**. Sendo a condição *Falsa*, serão executadas as instruções que estejam entre o **senão** e a instrução **fim_se**.

N S

Estrutura do símbolo para a instrução se... então...senão...fim_se.

Desvios Condicionais Encadeados

Existem casos em que é necessário estabelecer verificação de condições sucessivas, em que uma determinada ação poderá ser executada se um conjunto anterior de instruções ou condições for satisfeito. Sendo a ação executada, ela poderá ainda estabelecer novas condições. Este tipo de estrutura são chamadas de aninhamentos ou encadeamentos.

N S

N S

Estrutura condicional composta ou encadeada

Operadores Lógicos

Pode ser que necessite trabalhar com o relacionamento de duas ou mais condições ao mesmo tempo na mesma instrução **se**, efetuando desta forma teste múltiplos. Para estes casos é necessário trabalhar com a utilização dos operadores lógicos, também conhecidos como operadores booleanos. Os mais conhecidos são:.e., .ou. e .não..

Operador lógico: .e. Operador lógico: .ou. Operador lógico: .não.

C1	C2	R	C1	C2	R	С	R
F	F	F	F	F	F	V	F
V	F	F	V	F	V	F	V
F	V	F	F	V	V		
V	٧	V	V	V	V		

Para demostrar a utilização de operadores lógicos em um exemplo um pouco maior, considere o seguinte exemplo:

Exemplo

Ler três valores para os dados de um triângulo, considerando lados como: A, B e C. verificar se os lados fornecidos formam realmente um triângulo, esse for esta condição verdadeira, deverá ser indicada qual tipo de triângulo foi formado: isósceles escaleno ou equilátero. Veja o algoritmo, diagrama de blocos e a codificação em português estruturado, prestando atenção na utilização dos operadores lógicos.

Algoritmo

Para estabelecer este algoritmo, é necessário em primeiro lugar saber o que realmente é um triângulo. Triângulo é uma forma geométrica (polígono) composta por três lado, sendo que cada lado é menor que a dos outros dois lados. Perceba que isto é uma regra (uma condição) e devera ser considerada. É um triângulo quando A<B+C, quando B<A+C e quando C<A+B.

Tendo certeza de que os valores informados para três lados formam um triângulo será formado: isósceles, escaleno ou equilátero.

Um triângulo é isósceles quando possui dois lados iguais, sendo A=B ou A=C ou B=C; é escaleno quando possui todos os lados diferentes, sendo A<>Be B<>C e é equilátero quando possui todos os lados iguais, sendo A=B e B=C.

- 1. ler três valores para os lados de um triângulo: A, B e C;
- 2. verificar se cada lado é menor que a soma dos outros dois lados. Se sim, saber se A=B e se B=C, sendo verdadeiro o triângulo é escaleno;
- 3. caso os lados fonercidos não caracterizam um triângulo, avisar a ocorrência.

Diagramas de Blocos

N S

N S

N S

Português Estruturado

programa TRIÂNGULO

var

A, B, C: **real**

início

leia A, B, C

se (A < B + C) .e. (B < A + C) .e. (C < A + B) então

TIPOS DE DADOS E INSTRUÇÕES PRIMITIVAS

Tipos de informação

O computador nada mais é do que uma ferramenta utilizada para solucionar problemas que envolvam a manipulação de informações, sendo essas, classificadas em: dados e instrução.

Tipos de dados

Os **dados** são representados por três tipos: dados numéricos (inteiros e reais), dados caracteres e dados lógicos.

Tipos Interinos

São os dados numéricos positivos ou não excluindo-se destes qualquer número fracionário.

Tipos reais

São os dados numéricos positivos, negativos e números fracionários.

Tipos caracteres

São as sequências contendo letras, números e símbolos especiais.

Tipos lógicos

São os dados com valores **verdadeiro** e **falso**, sendo que este tipo de dado poderá representar apenas um dos dois valores. Ele é chamado por alguns de **tipo booleano**.

O uso de variáveis

Tem-se como definição de variável tudo aquilo que é sujeito a variações, que é incerto, instável ou constante.

Todo dado a ser armazenado deve ser necessário saber qual o seu tipo para depois fazer o seu armazenamento adequado.

É necessário estabelecer algumas regras de utilização das variáveis, como

- Nomes de uma variável poderão ser atribuídos com um ou mais caracteres;
- O primeiro caractere do nome de uma variável não poderá ser, hipótese alguma, um número;
- Não poderá ser nome de uma variável uma palavra reservada a uma instrução de programa;
- Não poderão ser utilizados outros caracteres a não ser letras e números.

O uso de Constantes

Tem-se como definição de constante tudo aquilo que é fixo ou estável. E existem vários momentos em que este conceito deverá estar em uso.

Os Operadores Aritméticos

Tanto variável como constantes poderão ser utilizadas na elaboração de expressões aritméticas, e para que isto ocorra é necessária a utilização de operadores aritméticos.

Os operadores aritméticos são classificados em **binários** ou **unários**.

Operad or	Operação	Tipo	Prioridade Matemátic a	Tipo de Retorno de Resultado
+	Manutenção de Sinal	Unário	1	Positivo
-	Inversão de Sinal	Unário	1	Negativo
?	Exponenciação	Binário	2	Inteiro ou real
/	Divisão	Binário	3	Real
Div	Divisão	Binário	3	Inteiro
*	Multiplicação	Binário	3	Inteiro ou real
+	Adição	Binário	4	Inteiro ou real
-	Subtração	Binário	4	Inteiro ou real

As Expressões aritméticas ou Fórmulas Matemáticas

Será muito comum trabalharmos com **expressões aritméticas** ou **fórmulas matemáticas**. Estas expressões são definidas pelo relacionamento existente entre variáveis e constantes numéricas por meio da utilização dos operadores aritméticos.

Instrução Básicas

As **instruções** são representadas pelo conjunto de palavras-chave, que tem por finalidade comandar em um computador o seu funcionamento e a forma como dados armazenadas deverão ser tratadas. Deve-se ainda considerar que existem várias linguagens de programação.

Deste ponto você terá contato com instrução do pseudocódigo, português estruturados, tais como: início, fim, var, programa, enquanto, e até_que, conjunto, inteiro, real, caractere, lógico, tipo, registro, fim_registro, procedimento, função, caso, fim_caso.

Algumas Regras Antes de Começar

Teremos Ter algum cuidado quando estivermos fazendo referência a uma instrução ou a uma variável. Termos algumas regras a saber:

- Todo problema a ser resolvido será passado para um algoritmo, para depois ser representado por diagramas de blocos;
- Toda referência feita a uma instrução será escrita em letra minúscula em formato negrito. As instruções não serão indicadas dentro dos diagramas de blocos;
- Toda referência feita a uma variável será escrita em letra maiúscula em formato itálico, sendo que serão sempre indicadas dentro dos diagramas de blocos;
- Qualquer valor atribuído a um a variável será feito com o símbolo ?, tanto no diagrama de blocos quanto em código português estruturados.

Entrada, Processamento e Saída

Para criar um programa que seja executável dentro de um computador, deve-se Ter em mente três pontos de trabalhos: a entrada de dados, o seu processamento e a saída deles. Se os dados forem entrados de forma errada, serão consequentemente processados de forma errada e resultarão em resposta erradas.

O processo de execução de um programa ocorre segundo o exposto, após a entrada de dados com a instrução **leia** e a sua saída com a instrução **escreva**. O processamento será uma consegüência da manipulação das variáveis de ação.

Uma entrada e uma saída poderão ocorrer dentro de um computador de diversas formas. Devido a esta grande variedade, nossos programas escritos em português estruturado farão menção às instruções **leia** e **Escreva.**

Abaixo é relacionado um exemplo que aplica os conceitos ate aqui estudados

Exemplo

Construir um programa que efetue o cálculo do salário líquido de um professor. Para fazer este programa, você deverá possuir alguns dados, tais como: valor da hora aula, número de horas trabalhadas no mês e percentual de desconto do INSS. Em primeiro lugar, deve-se estabelecer qual será o seu salário bruto para efetuar o desconto e ter o valor do salário líquido.

Algoritimo

escreva SL

fim

- Estabelecer a leitura da variável HT (horas trabalhadas no mês);
- Estabelecer a leitura da variável VH (valor hora aula);
- Estabelecer a leitura da variável PD (percentual de descontos);
- Calcular o salário bruto, sendo este a multiplicação das variáveis HT e VH;
- Clacul; ar o total de desconto (TD) com base no valor de PD dividido por 100;
- Calcular o salário líquido (SL), deduzindo o desconto do salário bruto;
- Apresentar os valores dos salários bruto e líquido.

Diagrama de Bloco **Português Estruturado** programa SALARIO_PROFESSOR var HT: inteiro VH, PD, TD, SB: real início leia HT leia VH leia PD SB ? HT * VH Td? (PD/100) * SB SL ? SB - TD escreva SB

Outros Autores: Denilson, Wallyson e Robert

Capítulos 2 e 3