Trabalho 1 - Zero de Funções

Felipe de Avila, Leonardo Valerio Anastácio, Lucas Pires Cobucci

Curso de Bacharelado em Ciência da Computação – Universidade do Estado de Santa Catarina(UDESC) – CCT

felipedeavila5@gmail.com, leonardovalerio@live.com, lucascobucci@hotmail.com

1. Introdução

Este relatório tem como objetivo mostrar o processo para calcular e encontrar o zero de funções utilizando o método de iteração do ponto fixo.

2. Contexto

Como ponto de partida, foram apresentadas três funções para o cálculo de suas respectivas raízes, para isso, foi solicitado a utilização do método de iteração de ponto fixo. O método resume-se em iterar uma função g(x), encontrada por meio dos pontos fixos de f(x), n vezes até que um desvio de erro seja respeitado.

As funções disponibilizadas foram:

1.
$$f(x) = x + arctg(x-1)$$

2.
$$f(x) = 9 * \sqrt[3]{x} - e^x$$

3.
$$f(x) = 2^x - 6 * ln(x)$$

3. Método de iteração do ponto fixo

O método consiste em transformar uma equação f(x) = 0 (onde f(x) é uma função contínua em um intervalo [a,b], que possui a raiz desta equação, em uma equação equivalente $x = \phi(x)$. A partir de uma aproximação inicial, gerar outras aproximações, onde $f(\xi) = 0$ se e somente se $\phi(\xi) = \xi$. Passando o problema de encontrar f(x) em um problema de encontrar o ponto fixo de $\phi(x)$, essa função chamada de função de iteração.

3.1 Critério de convergência

Seja ξ uma raiz da equação f(x) = 0, isolada num intervalo I centrado em ξ . Seja $\varphi(x)$ uma função de iteração para a equação f(x) = 0. Além disso, se:

i) $\varphi(x) e \varphi'(x)$ são contínuas em I,

ii)
$$|\varphi'(x)| \leq M < 1$$
, $\forall x \in I e$

iii) x inicial εI ,

então a sequência gerada na iteração converge para ξ .

4. Funções de iteração encontradas

4.1 Análise da função 7

Considere a função 7 definida por f(x) = x + arctg(x - 1), obtemos como função de iteração $\varphi(x) = x = -arctg(x-1)$, que possui como derivada $\varphi'(x) = (-x^2 + 2x - 2)^{-1}$. Logo, é feita análise de convergência $|\varphi'(x)| < 1$: $|\varphi'(x)| = |(-x^2 + 2x - 2)^{-1}| < 1$

A inequação é satisfeita para os intervalos $(-\infty, 1/2)$ e $(3/2, \infty)$. Portanto, ao escolher um ponto inicial pertencente à este intervalo, a função de iteração irá convergir para uma raíz de f(x).

4.2 Análise da função 18

Considere a função 18 definida por $f(x) = 9 * \sqrt[3]{x} - e^x$, para obtenção da função de iteração $\varphi(x)$ foram necessário alguns passos:

1.
$$\varphi(x) = e^x = 9 * \sqrt[3]{x} \in \text{multiplicando os dois lados por } \frac{x^5}{3}$$

2.
$$e^x * \frac{x^5}{3} = 9 * \frac{x}{3} * \frac{x^5}{3}$$

3.
$$e^x * \sqrt[3]{x^5} = 9 * x^2$$

$$4. \quad \frac{e^x * \sqrt[3]{x^5}}{9} = x^2$$

5.
$$\varphi(x) = \sqrt{(e^x * \sqrt[3]{x^5})/9}$$

Passos para encontrar a derivada de $\varphi(x)$:

1.
$$\varphi'(x) = \frac{1}{3} * \sqrt{u} \in \text{sendo } u = e^x * x^{\frac{5}{3}}$$

2.
$$\varphi'(x) = \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial u} * \frac{\partial u}{\partial x}$$

3.
$$\frac{\partial \varphi}{\partial x} = \frac{1}{3} * \frac{1}{2} * u^{-\frac{1}{2}} * \frac{1}{3} * e * x^{\frac{2}{3}} * (3x+5)$$

2.
$$\varphi'(x) = \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial u} * \frac{\partial u}{\partial x}$$

3. $\frac{\partial \varphi}{\partial x} = \frac{1}{3} * \frac{1}{2} * u^{-\frac{1}{2}} * \frac{1}{3} * e * x^{\frac{2}{3}} * (3x+5)$
4. $\frac{\partial \varphi}{\partial x} = \frac{1}{18} * (e^x * x^{\frac{5}{3}})^{\frac{-1}{2}} * e^x * x^{\frac{2}{3}} * (3x+5) \in \text{multiplicando por } \frac{x}{x}$
5. $\frac{\partial \varphi}{\partial x} = \frac{1}{18x} * (e^x * x^{\frac{5}{3}})^{\frac{-1}{2}} * e^x * x^{\frac{5}{3}} * (3x+5)$

5.
$$\frac{\partial \varphi}{\partial x} = \frac{1}{18x} * (e^x * x^{\frac{5}{3}})^{\frac{-1}{2}} * e^x * x^{\frac{5}{3}} * (3x+5)$$

6.
$$|\varphi'(x)| = \left|\frac{\partial \varphi}{\partial x}\right| = \left|\frac{1}{18x} * (e^x * x^{\frac{5}{3}})^{\frac{1}{2}} * (3x+5)\right| < 1$$

imagem 1: Visualização do intervalo de convergência, sendo a curva o módulo derivada de $\varphi(x)$

Com a utilização do software Geogebra, percebe-se que no intervalo (0, 1.43856) a inequação é respeitada. Portanto, ao escolher um ponto inicial pertencente à este intervalo, a função de iteração irá convergir para uma raíz de f(x).

4.2 Análise da função 20

Considere a função 20 definida por $f(x) = 2^x - 6 * ln(x)$, para obtenção da função de iteração $\varphi(x)$ foram necessário alguns passos:

1.
$$\phi(x) = 2^x = 6ln(x)$$

2.
$$\phi(x) = \ln(2^x) = \ln(6\ln(x))$$

3.
$$\phi(x) = x \ln(2) = \ln(6 \ln(x))$$

3.
$$\phi(x) = x \ln(2) = \ln(6 \ln(x))$$

4. $\phi(x) = \frac{\ln(6 * \ln(x))}{\ln(2)}$

Passos para encontrar a derivada de $\varphi(x)$:

1.
$$\varphi'(x) = \frac{1}{\ln(2)} * \ln(u)' \in considere \ u = 6 * \ln(x)$$

2. $\varphi'(x) = \frac{1}{\ln(2)} * \frac{6}{u} * \frac{1}{x}$
3. $\varphi'(x) = \frac{1}{\ln(2)} * \frac{6}{6*\ln(x)} * \frac{1}{x}$
4. $\varphi'(x) = \left| \frac{1}{\ln(2) * x * \ln(x)} \right| < 1$

2.
$$\varphi'(x) = \frac{1}{\ln(2)} * \frac{6}{u} * \frac{1}{x}$$

3.
$$\varphi'(x) = \frac{1}{\ln(2)} * \frac{6}{6*\ln(x)} * \frac{1}{x}$$

4.
$$\varphi'(x) = \left| \frac{1}{\ln(2) * x * \ln(x)} \right| < 1$$

imagem 1: Visualização do intervalo de convergência, sendo a curva o módulo da derivada de $\varphi(x)$

Com auxílio do software Geogebra é possível visualizar que a inequação é satisfeita para o intervalo $(2.03315, \infty)$. Portanto, ao escolher um ponto inicial pertencente à este intervalo, a função de iteração irá convergir para uma raíz de f(x).

6. Conclusão

Como síntese do conteúdo apresentado neste trabalho, foi implementado, em Python, um software o qual realiza aproximações de raízes de funções utilizando iterações do método do ponto fixo. Em sua execução, na função 7, com a escolha do valor inicial de x igual 2, foram necessárias 99 interações para se encontrar a raiz aproximada. Já para a função 18, com a definição do valor inicial de x como 0.5, foram necessárias 92 interações para se chegar em uma raiz aproximada da função. Por fim, função 20, foi escolhido o valor inicial de x igual a 5, logo 60 interações foram computadas para se chegar no zero da função com erro absoluto estimado de 10^{-10} .

Referências

RUGGIERO, Marcia A. Gomes; LOPES, Vera Lucia da Rocha. Cálculo numérico: aspectos teóricos e computacionais. 2. ed. Joinville: Makron Books do Brasil, 1996. 406 p.