Kuratowski's Theorem

(Toán rời rạc)

Nguyễn Đức Huy *
Departement
Đại học Khoa học Tự Nhiên
mail@edu

Trần Thị Như Quỳnh †
Departement
Đại học Khoa học Tự Nhiên
mail@edu

Bùi Khánh Duy [‡]
Departement
Đại học Khoa học Tự Nhiên
mail@edu

Ngày 30 tháng 5 năm 2021

Tóm tắt nội dung

Đây là tóm tắt 1

 $[*]K64 \dots$

 $^{^{\}dagger}{\rm K}65$...

[‡]K65 ...

¹Quyền sao chép một phần hoặc toàn bộ bài viết này cho mục đích sử dụng cá nhân hoặc lớp học được cho phép với điều kiện bản sao không được tạo ra hoặc phân phối vì lợi nhuận hoặc mục đích thương mại và các bản sao đó phải trích dẫn đầy đủ thông báo này trên trang đầu tiên. Các bên thứ ba của bài viết này phải được tôn trọng. Đối với tất cả các mục đích sử dụng khác, hãy liên hệ với chủ sở hữu hoặc các tác giả

Mục lục

1	Introduction	1
2	Defination	1
3	Statement of the Theorem	1
4	Preliminaries4.1 Planar Graphs and their Properties4.2 Define K_5 and $K_{3,3}$	2 2 3 3 5
5	Graph Theory Background	5
6	Proof the Theorem	6
A	Acknowledgement	

1 Introduction

Theorems can easily be defined

Định lý 1. Let f be a function whose derivative exists in every point, then f is a continuous function.

 $\mathbf{Dinh}\ \mathbf{l\acute{y}}\ \mathbf{2}$ (Pythagorean theorem). This is a theorema about right triangles and can be summarised in the next equation

$$x^2 + y^2 \subsetneq z^2$$

And a consequence of theorem 2 is the statement in the next corollary.

Hệ quả 1. There's no right rectangle whose sides measure 3cm, 4cm, and 6cm.

You can reference theorems such as 2 when a label is assigned.

Bổ đề 1. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

Unnumbered theorem-like environments are also posible.

Nhận xét. This statement is true, I guess.

2 Defination

3 Statement of the Theorem

And the next is a somewhat informal definition

Định lý 3 (Kuratowski). A graph is nonplanar if and only if it has a subgraph which is a subdivision of K_5 or $K_{3,3}$

Hình 1: Nonplanar graph G

Hình 2: Nonplanar graph G

4 Preliminaries

4.1 Planar Graphs and their Properties

Dịnh nghĩa 1 (Planarity). A graph is planar if some embedding of it onto the plane has no edge intersections.

Planar graph

Nonplanar Embedding

Define K_5 and $K_{3,3}$ 4.2

 $K_{3,3}$

4.3 Subgraph and Subdivision

Định nghĩa 2. Subgraphs are subsets of vertices and egdes of some original graphs

Original graph

3 Subgraphs

Hệ quả 2. If graph is planar then all subgraphs are planar

Chứng minh. Contradiction

Subdivision graph

 $\mathbf{H}\mathbf{\hat{e}}$ quả 3. If some subdivision is planar then graph is planar

Chứng minh. Ai biết đâu.

Bổ đề 2. If graph is nonplanar then all subdivisions are nonplanar

4.4 2-Connected Graphs and their Properties

Dinh nghĩa 4. A graph is 2-connected if it cannot be separated into two components by removing a single vertex

Example 2-connected graph

Not 2-connected

Định lý 4. In a 2-connected graph, any pair of vertices is contained in a cycle

Chứng minh. Quy nạp:

Trường hợp cơ bản: u kề v

Quy nạp: u, v có khoảng cách d+1

5 Graph Theory Background

Định nghĩa 5 (Fibration). A fibration is a mapping between two topological spaces that has the homotopy lifting property for every space X.

6 Proof the Theorem

The first direction of Kuratowski's theorem states: If graph G contains a subdivision of K_5 or $K_{3,3}$ then G is nonplanar

Subdivision of Nonplanar is Nonplanar

If a Subgraph is nonplanar then graph is nonplanar

If a subgraph of graph G is a subdivision of nonplanar then G is nonplanar

 $\mathbf{B}\hat{\mathbf{o}}$ $\mathbf{d}\hat{\mathbf{e}}$ 3. $K_{3,3}$ is nonplanar

Chứng minh.

$$V - E + F = 2$$

$$6 - E + F = 2$$

$$6 - 9 + F = 2$$

$$F = 5$$

 $5 \le 4.5$

No 3 edge faces

$$4F \le 2E$$

$$4F \le 2 \times 9$$

$$F \le 4.5$$

$$\mathbf{B}\mathbf{\hat{o}}$$
 $\mathbf{d}\mathbf{\hat{e}}$ 4. K_5 is nonplanar

Chứng minh.

$$V - E + F = 2$$

$$5 - E + F = 2$$

$$5 - 10 + F = 2$$

$$F = 7$$

$$3F \le 2E$$

$$3F \le 2 \times 10$$

$$F \le \frac{20}{3}$$

 $7 \le \frac{20}{3}$

Tóm lại. K_5 và $K_{3,3}$ are nonplanar

- \Rightarrow All of their subdivisions are nonplanar
- \Rightarrow If graph G contains a subdivision of K_5 or $K_{3,3}$ then G is nonplanar

The second direction of Kuratowski's theorem states: If graph G is nonplanar then G contains a subdivision of K_5 or $K_{3,3}$

Chứng minh. Assume there exist nonplanar graphs which have no subdivisions of K_5 or $K_{3,3}$ as subgraphs.

Let G be the graph of this kind with the fewest edges. Then removing any edge from G gives a planar graph

1. G is 2-connected

- 2. $deg(v) \ge 3$ for all vertex v in GChúng minh phản chúng: assume some vertex $v \in G$ has $deg(v) \le 2$
- 3. for some $uv \in G$, G uv is 2-connected

Bổ đề 5. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

Chứng minh. To prove it by contradiction try and assume that the statement is false, proceed from there and at some point you will arrive to a contradiction. \Box

Acknowledgement

It is a pleasure to thank my mentor, Reid Harris, for his helpful guidance and advice. I would also like to thank Professor Babai for introducing me to graph theory and Professor May for organizing the REU.