20074030 CSE (IDD) SHRUTI T. AVHAD Q1. Initial Configuration Final Configuration Ans-1 Using A* algorithm with the Manhattan distance heuristic, we will compute f(n), g(n) and h(n), where h(n) = heuristic wst = distance of woverd node n wit goal node g(n) = (nenerating cost = distance of wortent node n wat starting node f(n) = wst function = g(n) + h(n). q(n)=0 open: BEFG h(n)= 1+1+1=3 2 4(n)=0+3=3 closed: ABEF 3 q(n) = 1h(n) = 1+0+1 = 2 h(n)=1+1+2=4 f(n) = 1+2 = 3 f(n) = 1+4=5 g(n) = 2 q(n)=2h(n)=1+1+1=3 h(n) =0+0+1=1 f(n) = 2+3=5 f(n)=2+1=3 g(n)=3 q(n)=3 h(n) = 1 + 0 + 1 = 2h(n)=0+0+0=0 f(n)=3+2=5 fln)= 8+0=3 CTIOAL STATE The order of node traversal--> (F) $\rightarrow (B) \rightarrow (E)$ f=3

Artificial Intelligence - Quiz

Qa.	· ·	ork trast			. ,			
Ans-	Griven	Table:						
		Xo	λ ₁	22	la	bel	d.	
(2004)	Aughtrah	La Judicipa		111 (13)			(SKAKIN	
		1	0	0		1	-1	
	(1,0,0)	1	0	1	2	2	10	
	69.63	1	1	0	2	1000	100	
	(0,0,0)	1	1	1	2		1	
	1000					2	6,6,0	
	Representing		Single	Perce	Perceptson Model.			
	(00.00							

* All weights are initialised to o and thus:

$$\phi(v) = \begin{cases} +1 & if & v > 0 \\ 0 & if & v = 0 \\ -1 & if & v < 0 \end{cases}$$

SLP training via stochastic gradient descent

$(\omega_0,\omega,\omega_2)$	(70, 71, 72)	V	y= \(\psi(\nu) \)	d	e=d-y	Dw = (Dwo, Duz, Awz)			
$(\omega_0,\omega_1,\omega_2)$	(2017(13/2)		J	0					
(0,0,0)	(1,0,0)	0	0	-1	-1	(-1,0,0)			
(-1,0,0)	(1,0,1)	-1	-1 0	1	2	(2,0,2)			
(1,0,2)	(1,1,0)	1	1	1	D	(0,0,0)			
(1,0,2)	(1, 1,1)	3		,	0	(0,0,0)			
(1,0,0)	, , , , , ,								
(1,0,2)	(1,0,0)		Bech south	-1	-2	(-2,0,0)			
(-1,0,2)	(1,0,1)	1			0	(0,0,0)			
(-1,0,2)	(1,1,0)	-(-1		2	(2,2,0)			
(1, 2, 2)	(1,1,1)	5	1		0	(0,0,0)			
			1 - 9		>0 h				
(1,2,2)	(1,0,0)	(1	-1	-2	(-2,0,0)			
(-1,2,2)	(1,0,1)	1	1	1	0	(0,0,0)			
(1,2,2)	(1,10)	1	1	1	0	(0,0,0)			
(1,2,2)	(1,1,1)	3	(1	b	(0,0,0)			
		beat	H 1990	litter bu	Talpho.				
(-1,2,2)	(1,0,0)	-1	-1	-1	0	(0,0,0).			
Hence, general weights are $\omega_0 = -1$, $\omega_1 = 2$, $\omega_2 = 2$.									
Trained OLD SILL VA									

Equation of hyperplane $y = \omega_0 + \omega_1 \alpha_1 + \omega_2 \alpha_2$ $y = -1 + 2\alpha_1 + 2\alpha_2$

Q3. Ans -Cost Function (F): $F(\omega_1, \omega_2) = \omega_1 - \omega_2 + 2\omega_1^2 + \omega_2^2 + 2\omega_1\omega_2$ & $\omega(1) = (0,0)$. To find the optimum weight vector w:

df =0, since the cost function f

dw* we will take the partial derivatives of F wat w, and w. Home and equate them to zero =0 $\frac{\partial F}{\partial \omega_i} = 1 + 4\omega_i + 2\omega_j = 0$ $\frac{\partial f}{\partial \omega_1} = -1 + 2\omega_2 + 2\omega_1 = 0$ - (ii) solving (i)) (ii) , we have, $\omega_1 = -1$ and $\omega_2 = \frac{3}{3}$. Hence, The suitable optimum weight vector is W=[-1, 3]