Wstęp do Modelu Standardowego – zadania 1

- 1. Proszę zrobić transformację Lorentza czterowektora X do układu poruszającego się z prędkością $\vec{V}=(V,0,0)$ i policzyć iloczyn skalarny dwóch czterowektorów X i Y w obu układach. W ten sposób pokazać, że iloczyn skalarny jest niezmiennikiem transformacji Lorentza.
- 2. Policzyć $\det(\Lambda^T \Lambda)$, gdzie Λ to macierz transformacji Lorentza.
- 3. Tensor pola elektromagnetycznego zdefiniowany jest jako: $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$. Proszę napisać macierz z elementami tego tensora.
- 4. Proszę "wyprowadzić" równanie Kleina-Gordona, podstawiając operatory pędu i energii do niezmiennika relatywistycznego. Jakiej postaci mogą być rozwiązania równania Kleina-Gordona?
- 5. Wychodząc z równania Proca, pokazać, że $\partial_\mu A^\mu=0$ oraz, że każdy składnik A^μ spełnia równanie Kleina-Gordona $\Box A^\mu+\left(\frac{mc}{\hbar}\right)^2A^\mu=0$
- 6. Proszę zapisać równanie Kleina-Gordona we współrzędnych sferycznych, a następnie pokazać, ze funkcja (tzw. potencjał Yukawy) $\Psi(r)=\frac{g_0}{4\pi r}~e^{-r/R}$, gdzie g_0 , $R=\frac{1}{m}$ to stałe jest jego rozwiązaniem. Jak zinterpretować $\Psi(r)$ dla m=0?
- 7. Jakie warunki powinny spełniać macierze γ w równaniu Diraca $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$, aby było ono zgodne z równaniem Kleina-Gordona $\left(-\frac{\partial^{2}}{\partial t^{2}}\Psi+\nabla^{2}\right)=m^{2}\psi$?
- 8. Sprawdzić, czy podstawienie $\Psi \to e^{i\theta} \Psi$ (globalna zmiana fazy) zmienia lagranżian Diraca.
- 9. Pokazać jak lokalna symetria cechowania $\Psi \to e^{i\theta(x)}\Psi$ lagranżianu wprowadza oddziaływania elektronu z fotonem.