Übungsblatt 8

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

- **Aufgabe 1.** a) Sei G eine Lie-Gruppe mit Lie-Algebra $\mathfrak{g} \cong T_1G$ und Exponentialabbildung exp: $\mathfrak{g} \to G$. Zeigen Sie, dass offene Umgebungen $U \subset \mathfrak{g}$ von $0 \in \mathfrak{g}$ und $V \subset G$ mit $1_G \in V$ existieren, sodass exp: $U \to V$ ein Diffeomorphismus ist. (Hinweis: Zeigen Sie, dass das Differential $d \exp_0 : T_0 \mathfrak{g} \cong \mathfrak{g} \to T_{1_G}G \cong \mathfrak{g}$ an der Stelle $0 \in \mathfrak{g}$ durch $d \exp_0 = \mathrm{id}_{\mathfrak{g}}$ gegeben ist.)
 - b) Seien $v, w \in \mathfrak{g}$. Zeigen Sie, dass ein $\epsilon > 0$ existiert und eine Funktion $z : (-\epsilon, \epsilon) \to \mathfrak{g}$ mit z(0) = 0, sodass

$$\exp(tv)\exp(tw) = \exp(t(v+w) + tz(t)), \quad \forall t \in (-\epsilon, \epsilon).$$

(Hinweis: benutzen Sie Teil a).)

- **Aufgabe 2.** Seien G und H Lie-Gruppen mit Lie-Algebren \mathfrak{g} und \mathfrak{h} und Exponentialabbildungen $\exp^G: \mathfrak{g} \to G$ und $\exp^H: \mathfrak{h} \to H$. Sei $F: G \to H$ ein Lie-Gruppenhomomorphismus (Das heißt F ist eine glatte Abbildung mit $F(g_1g_2) = F(g_1)F(g_2)$ für alle $g_1, g_2 \in G$.).
 - a) Sei $v \in \mathfrak{g}$. Zeigen Sie, dass die links-invarianten Vektorfelder $X^v \in \mathfrak{g}$ und $X^{dF_{1_G}(v)} \in \mathfrak{h}$ F-verwandt sind.
 - b) Zeigen Sie, dass das Differential $dF_{1_G}:\mathfrak{g}\to\mathfrak{h}$ ein Homomorphismus von Lie-Algebren ist, also

$$[dF_{1_G}(v), dF_{1_G}(w)]_{\mathfrak{h}} = dF_{1_G}([v, w]_{\mathfrak{g}}), \qquad \forall v, w \in \mathfrak{g}.$$

c) Zeigen Sie, dass für jedes $v \in \mathfrak{g}$ die Relation

$$F(\exp^G(tv)) = \exp^H(t(dF_{1_G}(v)))$$

gilt.

d) Folgern Sie aus Teil c), dass

$$\det(\exp(a)) = e^{\operatorname{tr}(a)}$$

gilt für alle $(n \times n)$ -Matrizen $a \in \mathfrak{gl}(n, \mathbb{R})$.

Aufgabe 3. a) Sei $M = \mathbb{R}^2$. Finden Sie Vektorfelder $X_1, X_2, Y \in \Gamma(TM)$, sodass folgendes gilt:

$$X_1(x,0) = X_2(x,0) = \frac{\partial}{\partial x}, \quad \forall x \in \mathbb{R}$$

und für $p = (0,0) \in \mathbb{R}^2$

$$(\mathcal{L}_{X_1}Y)_p \neq (\mathcal{L}_{X_2}Y)_p$$
.

b) Sei $M = \mathbb{R}^2$ und betrachten Sie die Vektorfelder $X, Y \in \Gamma(TM)$ gegeben durch

$$X(x,y) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}, \quad Y(x,y) = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}.$$

Bestimmen Sie die Flüsse Φ^X, Φ^Y und finden Sie $t, s \in \mathbb{R}$ sodass $\Phi^X_t \circ \Phi^Y_s \neq \Phi^Y_s \circ \Phi^X_t$.

Aufgabe 4. Betrachten Sie die folgenden Vektorfelder X, Y auf $M = \mathbb{R}^3$.

$$X(x,y,z) = \frac{\partial}{\partial x} + yz \frac{\partial}{\partial z}, \quad Y(x,y,z) = \frac{\partial}{\partial y}.$$

- a) Zeigen Sie, dass durch $E_p = \operatorname{span}(X_p, Y_p) \subset T_p M$ eine Distribution auf \mathbb{R}^3 definiert wird.
- b) Bestimmen Sie eine Integralmannigfaltigkeit zu Edurch $0\in\mathbb{R}^3.$
- c) Zeigen Sie, dass E nicht integrabel ist.
- d) Wie passen b) und c) mit dem Satz von Frobenius zusammen?

Abgabe Donnerstag, 09.06.2016 in der Vorlesung.