

BACKFILE DOCUMENT INDEX SHEET

A DOCPHOENIX

APPL PARTS

IMIS	NPL
Internal Misc. Paper	Non-Patent Literature
LET.	OATH
Misc. Incoming Letter	Oath or Declaration
371P	PET.
PCT Papers in a 371Application	Petition
A...	RETRAIL
Amendment Including Elections	Mail Returned by USPS
ABST	SEQLIST
Abstract	Sequence Listing
ADS	SPEC
Application Data Sheet	Specification
AF/D	SPEC NO
Affidavit or Exhibit Received	Specification Not in English
APPENDIX	TRNA
Appendix	Transmittal New Application

NPL	CTNF
Non-Patent Literature	Count Non-Final
OATH	CTRS
Oath or Declaration	Count Restriction
PET.	EXIN
Petition	Examiner Interview
RETRAIL	M903
Mail Returned by USPS	DO/EO Acceptance
SEQLIST	M905
Sequence Listing	DO/EO Missing Requirement
SPEC	NFDR
Specification	Formal Drawing Required
SPEC NO	NOA
Specification Not in English	Notice of Allowance
TRNA	PETDEC
Transmittal New Application	Petition Decision

OUTGOING

CTMS	AP.B
Misc. Office Action	Appeal Brief
1449	C.AD
Signed 1449	Change of Address
892	N/AP
892	Notice of Appeal
ABN	PA..
Abandonment	Change in Power of Attorney
APDEC	REM
Board of Appeals Decision	Applicant Remarks in Amendment
APEA	XT/
Examiner Answer	Extension of Time filed separate
CTAV	
Count Advisory Action	
CTEQ	
Count Ex parte Quayle	
CTFR	
Count Final Rejection	

INCOMING

AP.B	
Appeal Brief	
C.AD	
Change of Address	
N/AP	
Notice of Appeal	
PA..	
Change in Power of Attorney	
REM	
Applicant Remarks in Amendment	
XT/	
Extension of Time filed separate	

Internal

SRNT	ECBOX
Examiner Search Notes	Evidence Copy Box Identification
CLMPTO	WCLM
PTO Prepared Complete Claim Set	Claim Worksheet
	WFEE
	Fee Worksheet

File Wrapper

FwCLM	
File Wrapper Claim	
IIFW	
File Wrapper Issue Information	
SRFW	
File Wrapper Search Info	

#1185133

#4

本 国 特 許 庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出 願 年 月 日

Date of Application:

2 0 0 1 年 3 月 3 0 日

出 願 番 号

Application Number:

特願 2 0 0 1 - 1 0 1 0 8 2

出 願 人

Applicant(s):

戸田工業株式会社

2 0 0 1 年 8 月 2 4 日

特 許 庁 長 官
Commissioner,
Japan Patent Office

及 川 耕 強

出証番号 出証特 2 0 0 1 - 3 0 7 4 8 8 9

【書類名】

特許願

【整理番号】

F1084

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】 広島県大竹市明治新開1番4 戸田工業株式会社大竹創造センター内

【氏名】 林 一之

【発明者】

【住所又は居所】 広島県大竹市明治新開1番4 戸田工業株式会社大竹創造センター内

【氏名】 大杉 峰子

【発明者】

【住所又は居所】 広島県大竹市明治新開1番4 戸田工業株式会社大竹創造センター内

【氏名】 森井 弘子

【特許出願人】

【識別番号】 000166443

【氏名又は名称】 戸田工業株式会社

【代表者】 戸田 俊行

【手数料の表示】

【予納台帳番号】 001029

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 有機無機複合顔料並びに該有機無機複合顔料を用いた塗料及び該有機無機複合顔料を用いた樹脂組成物

【特許請求の範囲】

【請求項1】 白色無機粒子粉末の粒子表面に、アルコキシシランから生成するオルガノシラン化合物又はポリシリコキサンが被覆され、該被覆に有機顔料が付着している有色付着層が2層以上形成されている平均粒子径0.01~10.0μmの複合粒子粉末からなり、前記有機顔料の付着量の総量が前記白色無機粒子粉末100重量部に対して1~500重量部であることを特徴とする有機無機複合顔料。

【請求項2】 請求項1記載の白色無機粒子粉末の粒子表面が、あらかじめアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物より選ばれる少なくとも一種からなる中間被覆物によって被覆されていることを特徴とする有機無機複合顔料。

【請求項3】 請求項1又は請求項2のいずれかに記載の有機無機複合顔料を塗料構成基材中に配合したことを特徴とする塗料。

【請求項4】 請求項1又は請求項2のいずれかに記載の有機無機複合顔料を用いて着色したことを特徴とする樹脂組成物。

【発明の詳細な説明】

【0001】

【産業上の利用分野】

本発明は、白色無機粒子粉末の粒子表面からの有機顔料の脱離が抑制されており、且つ、有害な元素を含有しない有機無機複合顔料を提供する。

【0002】

【従来の技術】

周知のとおり、樹脂、塗料、印刷インキ等の着色顔料として、無機顔料及び有機顔料が用途に応じて使用されている。

【0003】

無機顔料は、一般に耐光性は優れているが、着色力が小さく、鮮明な色相が得

られにくいことが知られている。また、無機顔料の中には鮮明な色相を有するものもあるが、それらの多くは構成元素として鉛、水銀、カドミウム、クロム等の有害金属を含有しているため、衛生面、安全性面及び環境汚染防止の観点から、鮮明な色相を有する代替顔料が強く要求されている。

【0004】

一方、有機顔料は、一般に色相は鮮明であるが、隠蔽力が小さく、耐光性が劣ることが知られている。

【0005】

これまでに、着色顔料として優れた特性を有する顔料を得るために、無機顔料と有機顔料とを組み合わせる技術が試みられており、例えば、黄鉛とフタロシアニンブルーとを共沈させる方法や無機顔料の粒子表面に有機顔料を付着させる方法（特開平4-132770号公報、特開平11-181329号公報等）等が提案されている。

【0006】

【発明が解決しようとする課題】

白色無機粒子粉末の粒子表面からの有機顔料の脱離が抑制されており、且つ、有害な元素を含有しない有機無機複合顔料は、現在最も要求されているところであるが、未だ得られていない。

【0007】

即ち、前出の黄鉛とフタロシアニンブルーを共沈させる方法は、黄鉛を用いているために毒性を有しているとともに、共沈によって製造されているために得られた顔料を塗料化した場合には、貯蔵安定性が十分とは言い難く、これを用いて塗膜とした場合には、色浮きが生じる場合があるため好ましくない。

【0008】

また、前出特開平4-132770号公報に記載の方法は、無機顔料の存在下で有機顔料を析出させる方法であるため、有機顔料の付着強度が十分とは言い難いものである。

【0009】

また、前出特開平11-181329号公報に記載の方法は、オルガノポリシ

ロキサンを環状シリコーンに溶解し、得られた溶液に有機顔料を添加して微粒化処理した後、高吸油性無機顔料を含浸し、次いで、環状シリコーンを揮発させる方法であり、有機顔料の付着強度が十分とは言い難いものである。

【0010】

なお、特開平11-323174号公報には、黒色酸化鉄粒子粉末又は黒色含水酸化鉄粒子粉末の粒子表面にアルコキシランから生成するオルガノシラン化合物が被覆されており、該オルガノシラン化合物被覆にカーボンブラック微粒子粉末が付着している鉄系黒色複合粒子粉末が記載されているが、黒色無機粒子に黒色のカーボンブラックを固着させる技術であり、彩度の高い有色顔料を得る技術とは異なるものである。

【0011】

そこで、本発明は、白色無機粒子粉末の粒子表面からの有機顔料の脱離が抑制されており、且つ、有害な元素を含有しない有機無機複合顔料を提供することを技術的課題とする。

【0012】

【課題を解決する為の手段】

前記技術的課題は、次の通りの本発明によって達成できる。

【0013】

即ち、本発明は、白色無機粒子粉末の粒子表面に、アルコキシランから生成するオルガノシラン化合物又はポリシロキサンが被覆され、該被覆に有機顔料が付着している有色付着層が2層以上形成されている平均粒子径0.01~10.0μmの複合粒子粉末からなり、前記有機顔料の付着量の総量が前記白色無機粒子粉末100重量部に対して1~500重量部であることを特徴とする有機無機複合顔料である（本発明1）。

【0014】

また、本発明は、本発明1の白色無機粒子粉末の粒子表面が、あらかじめアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物より選ばれる少なくとも一種からなる中間被覆物によって被覆されていることを特徴とする有機無機複合顔料である（本発明2）。

【0015】

また、本発明は、本発明1又は本発明2の有機無機複合顔料を塗料構成基材中に配合したことを特徴とする塗料である。

【0016】

また、本発明は、本発明1又は本発明2の有機無機複合顔料を用いて着色したことと特徴とする樹脂組成物である。

【0017】

本発明の構成をより詳しく説明すれば次の通りである。

【0018】

先ず、本発明に係る有機無機複合顔料について述べる。

【0019】

本発明に係る有機無機複合顔料は、芯粒子である白色無機粒子の粒子表面に、アルコキシシランから生成するオルガノシラン化合物又はポリシロキサンが被覆され、該被覆に有機顔料が付着している有色付着層（以下、「第一有色付着層」という）が形成されており（以下、第一有色付着層が形成されている白色無機粒子を「中間顔料」という）、更に、中間顔料の表面にアルコキシシランから生成するオルガノシラン化合物又はポリシロキサンが被覆され、当該被覆に有機顔料が付着している有色付着層（以下、「第二有色付着層」という）が形成されている複合粒子からなる。必要に応じて、同様にして、更に、有色付着層を形成してもよい。

【0020】

本発明における白色無機粒子としては、二酸化チタン、酸化亜鉛等の白色顔料、雲母チタン、白雲母等のパール顔料、クレー、炭酸カルシウム、硫酸バリウム、アルミナホワイト、ホワイトカーボン、タルク等の体质顔料が挙げられる。白色無機粒子は要求される特性や用途に応じて選択すればよく、隠蔽力が必要とされる用途には白色顔料が好ましく、真珠様の光沢が必要とされる用途にはパール顔料が好ましく、透明性が必要とされる用途には体质顔料が好ましい。

【0021】

白色無機粒子の粒子形状は、球状、粒状、多面体状、針状、紡錘状、米粒状、

フレーク状、鱗片状及び板状等のいずれの形状であっても良い。

【0022】

白色無機粒子粉末の粒子サイズは、平均粒子径が $0.009\sim9.95\mu\text{m}$ 、好ましくは $0.025\sim9.45\mu\text{m}$ 、より好ましくは $0.045\sim8.95\mu\text{m}$ である。

【0023】

平均粒子径が $9.95\mu\text{m}$ を超える場合には、得られる有機無機複合顔料が粗大粒子となるため着色力が低下し、 $0.009\mu\text{m}$ 未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすくなるため、粒子表面へのアルコキシラン又はポリシロキサンによる均一な被覆処理及び有機顔料による均一な付着処理が困難となる。

【0024】

白色無機粒子粉末のBET比表面積値は $0.5\text{m}^2/\text{g}$ 以上である。BET比表面積値が $0.5\text{m}^2/\text{g}$ 未満の場合には、白色無機粒子が粗大であったり、粒子及び粒子相互間で焼結が生じた粒子となっており、得られる有機無機複合顔料もまた粗大粒子となり着色力が低下する。有機無機複合顔料の着色力を考慮すると、BET比表面積値は、好ましくは $1.0\text{m}^2/\text{g}$ 以上、より好ましくは $1.5\text{m}^2/\text{g}$ 以上である。白色無機粒子粉末の粒子表面へのアルコキシラン又はポリシロキサンによる均一な被覆処理及び有機顔料による均一な付着処理を考慮すると、その上限値は $9.5\text{m}^2/\text{g}$ であり、好ましくは $9.0\text{m}^2/\text{g}$ 、より好ましくは $8.5\text{m}^2/\text{g}$ である。

【0025】

白色無機粒子粉末の色相は、 L^* 値が 70.00 以上、 C^* 値が 18.00 以下の範囲のものが好ましく、より好ましくは L^* 値が 75.00 以上、 C^* 値が 16.00 以下である。 L^* 値、 C^* 値が上記範囲外の場合には、色相が白色を呈しているとは言い難く、本発明の目的とする有機無機複合顔料を得ることが困難となる。

【0026】

本発明における白色無機粒子粉末の隠蔽力は、白色顔料を用いた場合は、後述

する評価法により $600\text{ cm}^2/\text{g}$ 以上が好ましく、パール顔料及び体质顔料を用いた場合は、 $600\text{ m}^2/\text{g}$ 未満が好ましい。

【0027】

白色無機粒子粉末の耐光性は、後述する評価方法により、 ΔE^* 値の下限値が 5.0 を超え、上限値が 12.0、好ましくは 11.0、より好ましくは 10.0 である。

【0028】

本発明における各有色付着層は、アルコキシランから生成するオルガノシラン化合物又はポリシロキサンに有機顔料が付着した層からなる。

【0029】

本発明におけるアルコキシランから生成するオルガノシラン化合物又はポリシロキサンは、化 1 で表わされるアルコキシランから生成するオルガノシラン化合物、並びに、化 2 で表わされるポリシロキサン、化 3 で表わされる変成ポリシロキサン、化 4 で表わされる末端変成ポリシロキサンを使用することができる。

【0030】

【化 1】

R : $-C_6H_5$, $-(CH_3)_2CHCH_2$, $-n-C_mH_{2m+1}$

X : $-OCH_3$, $-OC_2H_5$

m : 1 ~ 18 の整数

a : 0 ~ 3 の整数

【0031】

アルコキシランとしては、具体的には、メチルトリエトキシラン、ジメチルジエトキシラン、フェニルトリエトキシラン、ジフェニルジエトキシラン、ジメチルジメトキシラン、メチルトリメトキシラン、フェニルトリメトキシラン、ジフェニルジメトキシラン、イソブチルトリメトキシラン、デシルトリメトキシラン等が挙げられる。

【0032】

有機顔料の付着効果及び脱離率を考慮すると、メチルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、イソブチルトリメトキシシラン、フェニルトリエトキシシランから生成するオルガノシラン化合物が好ましく、メチルトリエトキシシラン、メチルトリメトキシシランから生成するオルガノシラン化合物がより好ましい。

【0033】

【化2】

$\text{R}^1 : \text{H}, \text{CH}_3 \qquad v : 15 \sim 450$

【0034】

【化3】

$\text{R}^3, \text{R}^6, \text{R}^7 : -(-\text{CH}_2-)_1-$

(R^3, R^6 及 R^7 は同じであっても異なつていてもよい)

$\text{R}^4, \text{R}^8 : -(-\text{CH}_2-)_m-\text{CH}_3$

$\text{R}^5 : \text{OH}, \text{COOH}, -\text{CH}=\text{CH}_2, -\text{C}=\text{CH}_3, -(-\text{CH}_2-)_n-\text{CH}_3$

1 : 1~15

$m, n : 0 \sim 15$

$w : 1 \sim 50$

$x : 1 \sim 300$

【0035】

【化4】

$\text{R}^9, \text{R}^{10} : -\text{OH}, \text{R}^{12}\text{OH}, \text{R}^{13}\text{COOH}$

(R^9 及び R^{10} は同じであっても異なっていてもよい)

$\text{R}^{11} : -\text{CH}_3, -\text{C}_6\text{H}_5$

$\text{R}^{12}, \text{R}^{13} : -(-\text{CH}_2-)_p-$

$1 : 1 \sim 15$

$y : 1 \sim 200$

$z : 0 \sim 100$

【0036】

有機顔料の付着効果及び脱離率を考慮すると、メチルハイドロジエンシロキサン単位を有するポリシロキサン、ポリエーテル変成ポリシロキサン及び末端がカルボン酸で変成された末端カルボン酸変成ポリシロキサンが好ましい。

【0037】

各層におけるアルコキシランから生成するオルガノシラン化合物又はポリシロキサンの被覆量は、オルガノシラン化合物被覆白色無機粒子粉末又はポリシロキサン被覆白色無機粒子粉末に対して Si換算で 0.02~5.0 重量%であることが好ましく、より好ましくは 0.03~4.0 重量%であり、更により好ましくは 0.05~3.0 重量%である。

【0038】

0.02 重量%未満の場合には、白色無機粒子粉末 100 重量部に対して 1 重量部以上の有機顔料を付着させることが困難である。5.0 重量%を超える場合には、白色無機粒子粉末 100 重量部に対して有機顔料を 1~200 重量部付着させることができるために、必要以上に被覆する意味がない。

【0039】

本発明における有機顔料としては、一般に塗料及び樹脂組成物の着色剤として用いられている赤色系有機顔料、青色系有機顔料、黄色系有機顔料及び緑色系有

機顔料等の各種有機顔料を使用することができる。

【0040】

赤色系有機顔料としては、キナクリドンレッド等のキナクリドン顔料、パーマネントレッド等のアゾ系顔料、縮合アゾレッド等の縮合アゾ顔料及びペリレンレッド等のペリレン顔料を用いることができる。青色系有機顔料としては、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー等のフタロシアニン系顔料を用いることができる。黄色系有機顔料としては、ハンザエロー等のモノアゾ系顔料、ベンジンエロー、パーマネントエロー等のジスアゾ系顔料及び縮合アゾイエロー等の縮合アゾ顔料を用いることができる。緑色系顔料としては、フタロシアニングリーン等のフタロシアニン系顔料を用いることができる。

【0041】

なお、第一有色付着層に付着させる有機顔料と第二有色被覆層以降に付着させる有機顔料は同一であっても、同色で異種類の有機顔料、異色の有機顔料でもいすれでもよい。また、組み合わせる有機顔料として、耐光性等の機能を有するものを選択することにより、複数の機能を有する有機無機複合顔料を得ることが可能となる。

【0042】

有機顔料の全付着量は、粒子全体で白色無機粒子粉末100重量部に対して1～500重量部である。

【0043】

各有色付着層における有機顔料の付着量は、所望の色相及び特性に応じて前記有機顔料全体での付着量の上限値を超えない範囲で適量を付着させればよく、その上限値は、白色無機粒子粉末100重量部に対して200重量部である。200重量部を超える場合には、付着量が多いため、有機顔料が脱離しやすくなり、その結果、塗料や樹脂組成物の製造時において、脱離した有機顔料によりビヒクル中や樹脂組成物中の均一な分散が阻害される場合がある。

【0044】

本発明に係る有機無機複合顔料の粒子形状や粒子サイズは、芯粒子である白色

無機粒子の粒子形状や粒子サイズに大きく依存し、芯粒子に相似する粒子形態を有している。

【0045】

即ち、本発明に係る有機無機複合顔料は、平均粒子径が0.01~10.0μm、好ましくは0.03~9.5μm、より好ましくは0.05~9.0μmである。

【0046】

有機無機複合顔料の平均粒子径が10.0μmを超える場合には、粒子サイズが大きすぎるため、着色力が低下する。平均粒子径が0.01μm未満の場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、塗料ビヒクル中や樹脂組成物中への分散が困難となる。

【0047】

有機無機複合顔料のBET比表面積値は、1.0~100m²/gであり、好ましくは1.5~95m²/g、より好ましくは2.0~90m²/gである。BET比表面積値が1.0m²/g未満の場合には、粒子が粗大であったり、粒子及び粒子相互間で焼結が生じた粒子となっており、着色力が低下する。BET比表面積値が100m²/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、塗料ビヒクル中や樹脂組成物中への分散性が低下する。

【0048】

有機無機複合顔料の有機顔料の脱離率は10%以下が好ましく、より好ましくは9%以下である。有機顔料の脱離率が10%を超える場合には、脱離した有機顔料により塗料ビヒクル中や樹脂組成物中での均一な分散が阻害される場合があるとともに、脱離した部分の白色無機粒子粉末の色相が粒子表面に現れるため、均一な色相を得ることが困難となる。

【0049】

本発明に係る有機無機複合顔料の着色力は、後述する評価方法により115%以上が好ましく、より好ましくは120%以上である。

【0050】

本発明に係る有機無機複合顔料の隠蔽力は、白色無機粒子粉末として白色顔料を用いた場合、後述する評価方法により $600 \text{ cm}^2/\text{g}$ 以上が好ましく、より好ましくは $700 \text{ cm}^2/\text{g}$ 以上であり、白色無機粒子粉末として体质顔料又はパール顔料を用いた場合、 $600 \text{ cm}^2/\text{g}$ 未満が好ましく、より好ましくは $500 \text{ cm}^2/\text{g}$ 以下である。

【0051】

有機無機複合顔料の耐光性は、後述する評価方法において、 ΔE^* 値で 5.0 以下、好ましくは 4.0 以下である。殊に、紫外線防御効果のある酸化チタン及び酸化亜鉛等を芯粒子として用いた場合には、 ΔE^* 値が 3.0 以下が好ましく、より好ましくは 2.0 以下である。

【0052】

本発明に係る有機無機複合顔料は、必要により、白色無機粒子粉末の粒子表面をあらかじめ、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物より選ばれる少なくとも 1 種からなる中間被覆物で被覆しておいてもよく、中間被覆物で被覆しない場合に比べ、白色無機粒子粉末の粒子表面からの有機顔料の脱離をより低減することができるとともに、耐光性が向上する。

【0053】

中間被覆物による被覆量は、中間被覆物が被覆された白色無機粒子粉末に対して Al 換算、 SiO_2 換算又は Al 換算量と SiO_2 換算量との総和で 0.01 ~ 2.0 重量% が好ましい。

【0054】

0.01 重量% 未満である場合には、有機顔料の脱離率の低減効果及び耐光性向上効果が得られない。0.01 ~ 2.0 重量% の被覆量により、有機顔料の脱離率低減効果及び耐光性向上が十分に得られるので、2.0 重量% を超えて必要以上に被覆する意味がない。

【0055】

中間被覆物で被覆されている本発明に係る有機無機複合顔料は、中間被覆物で被覆されていない本発明に係る有機無機複合顔料の場合とほぼ同程度の粒子サイ

ズ、BET比表面積値、色相(L^* 値、 a^* 値、 b^* 値)、着色力及び隠蔽力を有している。また、有機顔料の脱離率は中間被覆物を被覆することによって向上し、脱離率は8%以下が好ましく、より好ましくは6%以下であり、耐光性は ΔE^* 値で4.0以下、好ましくは3.0以下である。

【0056】

次に、本発明に係る有機無機複合顔料を配合した塗料について述べる。

【0057】

本発明に係る有機無機複合顔料を配合した塗料は、貯蔵安定性が ΔE^* 値で1.5以下が好ましく、より好ましくは1.2以下である。塗膜にした場合には、光沢度は75~110%、好ましくは80~110%であり、塗膜の耐光性 ΔE^* 値は5.0以下、好ましくは4.0以下であることが好ましい。なお、白色無機粒子粉末として体质顔料又はパール顔料を用いた場合の塗膜の透明性は、線吸収係数が $0.10 \mu m^{-1}$ 以下、好ましくは $0.09 \mu m^{-1}$ 以下である。

【0058】

本発明に係る粒子表面が中間被覆物によって被覆された有機無機複合顔料を配合した塗料は、貯蔵安定性が ΔE^* 値で1.5以下が好ましく、より好ましくは1.2以下である。塗膜にした場合、光沢度は80~115%、好ましくは85~115%であり、塗膜の耐光性 ΔE^* 値は4.0以下、好ましくは3.0以下であることが好ましい。なお、白色無機粒子粉末として体质顔料又はパール顔料を用いた場合の塗膜の透明性は、線吸収係数が $0.10 \mu m^{-1}$ 以下、好ましくは $0.09 \mu m^{-1}$ 以下である。

【0059】

本発明に係る有機無機複合顔料を配合した水系塗料は、貯蔵安定性が ΔE^* 値で1.5以下が好ましく、より好ましくは1.2以下である。塗膜にした場合には、光沢度は70~110%、好ましくは75~110%であり、塗膜の耐光性 ΔE^* 値は5.0以下、好ましくは4.0以下であることが好ましい。なお、白色無機粒子粉末として体质顔料又はパール顔料を用いた場合の塗膜の透明性は、線吸収係数が $0.11 \mu m^{-1}$ 以下、好ましくは $0.10 \mu m^{-1}$ 以下である。

【0060】

本発明に係る粒子表面が中間被覆物によって被覆された有機無機複合顔料を配合した水系塗料は、貯蔵安定性が ΔE で1.5以下が好ましく、より好ましくは1.2以下である。塗膜にした場合、光沢度は75~115%、好ましくは80~115%であり、塗膜の耐光性 ΔE^* 値は4.0以下、好ましくは3.0以下であることが好ましい。なお、白色無機粒子粉末として体質顔料又はパール顔料を用いた場合の塗膜の透明性は、線吸収係数が $0.11\mu m^{-1}$ 以下、好ましくは $0.09\mu m^{-1}$ 以下である。

【0061】

本発明に係る塗料中における有機無機複合顔料の配合割合は、塗料構成基材100重量部に対して0.5~100重量部の範囲で使用することができ、塗料のハンドリングを考慮すれば、好ましくは1.0~100重量部である。

【0062】

塗料構成基材としては、樹脂、溶剤、必要により消泡剤、体質顔料、乾燥促進剤、界面活性剤、硬化促進剤、助剤等が配合される。

【0063】

樹脂としては、溶剤系塗料用として通常使用されているアクリル樹脂、アルキッド樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アミノ樹脂等を用いることができる。水系塗料用としては、通常使用されている水溶性アルキッド樹脂、水溶性メラミン樹脂、水溶性アクリル樹脂、水溶性ウレタンエマルジョン樹脂等を用いることができる。

【0064】

溶剤としては、溶剤系塗料用として通常使用されているトルエン、キシレン、シンナー、ブチルアセテート、メチルアセテート、メチルイソブチルケトン、ブチルセロソルブ、エチルセロソルブ、ブチルアルコール、脂肪族炭化水素等を用いることができる。

【0065】

水系塗料用溶剤としては、水と水系塗料に通常使用されているブチルセロソルブ、ブチルアルコール等とを混合して使用することができる。

【0066】

消泡剤としては、ノプコ8034（商品名）、SNデフォーマー477（商品名）、SNデフォーマー5013（商品名）、SNデフォーマー247（商品名）、SNデフォーマー382（商品名）（以上、いずれもサンノプコ株式会社製）、アンチホーム08（商品名）、エマルゲン903（商品名）（以上、いずれも花王株式会社製）等の市販品を使用することができる。

【0067】

次に、本発明に係る有機無機複合顔料を用いて着色した樹脂組成物について述べる。

【0068】

本発明に係る有機無機複合顔料を用いて着色した樹脂組成物は、目視観察による分散状態は、後出評価法による4又は5、好ましくは5であり、樹脂組成物の耐光性 ΔE^* 値は5.0以下、好ましくは4.0以下であることが好ましい。なお、白色無機粒子粉末として体质顔料を用いた場合の樹脂組成物の透明性は、線吸収係数が $0.10 \mu m^{-1}$ 以下、好ましくは $0.09 \mu m^{-1}$ 以下である。

【0069】

本発明に係る粒子表面が中間被覆物によって被覆された有機無機複合顔料を用いて着色した樹脂組成物は、目視観察による分散状態は、後述する評価法により4又は5、好ましくは5であり、樹脂組成物の耐光性 ΔE^* 値は4.0以下、好ましくは3.0以下であることが好ましい。なお、白色無機粒子粉末として体质顔料を用いた場合の樹脂組成物の透明性は、線吸収係数が $0.10 \mu m^{-1}$ 以下、好ましくは $0.09 \mu m^{-1}$ 以下である。

【0070】

本発明に係る樹脂組成物中における有機無機複合顔料の配合割合は、樹脂100重量部に対して0.01～200重量部の範囲で使用することができ、樹脂組成物のハンドリングを考慮すれば、好ましくは0.05～150重量部、更に好ましくは1.0～100重量部である。

【0071】

本発明に係る樹脂組成物における構成基材としては、有機無機複合顔料と周知の熱可塑性樹脂とともに、必要により、滑剤、可塑剤、酸化防止剤、紫外線吸収

剤、各種安定剤等の添加剤が配合される。

【0072】

樹脂としては、天然ゴム、合成ゴム、熱可塑性樹脂（例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリイソブチレン等のポリオレフィン、ポリ塩化ビニル、スチレン重合体、ポリアミド等）等を用いることができる。

【0073】

添加剤の量は、有機無機複合顔料と樹脂との総和に対して50重量%以下であればよい。添加剤の含有量が50重量%を超える場合には、成形性が低下する。

【0074】

本発明に係る樹脂組成物は、樹脂原料と有機無機複合顔料をあらかじめよく混合し、次に、混練機もしくは押出機を用いて加熱下で強いせん断作用を加えて、有機無機複合顔料の凝集体を破壊し、樹脂組成物中に有機無機複合顔料を均一に分散させた後、目的に応じた形状に成形加工して使用する。

【0075】

次に、本発明に係る有機無機複合顔料の製造法について述べる。

【0076】

本発明に係る有機無機複合顔料は、白色無機粒子粉末とアルコキシラン又はポリシロキサンとを混合し、白色無機粒子粉末の粒子表面をアルコキシラン又はポリシロキサンによって被覆し、次いで、アルコキシラン又はポリシロキサンによって被覆された白色無機粒子粉末と有機顔料とを混合してアルコキシラン又はポリシロキサン被覆に有機顔料を付着させて第一有色付着層を形成して中間顔料とし、次いで、前記中間顔料とアルコキシラン又はポリシロキサンとを混合し、更に、有機顔料を付着させることによって得ることができる。なお、必要に応じてアルコキシラン又はポリシロキサンによる被覆及び有機顔料の付着を繰り返すことによって3層以上の有色付着層を形成した有機無機複合顔料を得ることができる。

【0077】

白色無機粒子粉末の粒子表面及び各有色付着層へのアルコキシラン又はポリシロキサンによる被覆は、各粒子粉末とアルコキシランの溶液又はポリシロキ

サンとを機械的に混合攪拌したり、各粒子粉末にアルコキシランの溶液又はポリシロキサンを噴霧しながら機械的に混合攪拌すればよい。添加したアルコキシラン又はポリシロキサンは、ほぼ全量が各粒子粉末の粒子表面に被覆される。

【0078】

なお、被覆されたアルコキシランは、その一部が被覆工程を経ることによって生成する、アルコキシランから生成するオルガノシラン化合物として被覆されていてもよい。この場合においてもその後の有機顔料の付着に影響することはない。

【0079】

アルコキシラン又はポリシロキサンを均一に白色無機粒子粉末の粒子表面に被覆するためには、白色無機粒子粉末の凝集をあらかじめ粉碎機を用いて解きほぐしておくことが好ましい。

【0080】

白色無機粒子粉末とアルコキシラン又はポリシロキサンとの混合攪拌、有機顔料と粒子表面にアルコキシラン又はポリシロキサンが被覆されている白色無機粒子粉末との混合攪拌、アルコキシラン又はポリシロキサンと中間顔料との混合攪拌及び有機顔料と第一有色付着層上にアルコキシラン又はポリシロキサンが被覆されている白色無機粒子粉末との混合攪拌をするための機器としては、粉体層にせん断力を加えることのできる装置が好ましく、殊に、せん断、へらなで及び圧縮が同時に行える装置、例えば、ホイール型混練機、ボール型混練機、ブレード型混練機、ロール型混練機を用いることができる。本発明の実施にあたっては、ホイール型混練機がより効果的に使用できる。

【0081】

前記ホイール型混練機としては、エッジランナー（「ミックスマラー」、「シンプソンミル」、「サンドミル」と同義語である）、マルチマル、ストッツミル、ウェットパンミル、コナーミル、リングマラー等があり、好ましくはエッジランナー、マルチマル、ストッツミル、ウェットパンミル、リングマラーであり、より好ましくはエッジランナーである。前記ボール型混練機としては、振動ミル等がある。前記ブレード型混練機としては、ヘンシェルミキサー、プラネタリー

ミキサー、ナウタミキサー等がある。前記ロール型混練機としては、エクストルーダー等がある。

【0082】

白色無機粒子粉末とアルコキシラン又はポリシロキサンとの混合攪拌時における条件は、粒子表面にアルコキシラン又はポリシロキサンができるだけ均一に被覆されるように、線荷重は19.6~1960N/cm(2~200Kg/cm)、好ましくは98~1470N/cm(10~150Kg/cm)、より好ましくは147~980N/cm(15~100Kg/cm)、処理時間は5~120分、好ましくは10~90分の範囲で処理条件を適宜調整すればよい。なお、攪拌速度は2~2000rpm、好ましくは5~1000rpm、より好ましくは10~800rpmの範囲で処理条件を適宜調整すればよい。

【0083】

アルコキシラン又はポリシロキサンの添加量は、白色無機粒子粉末100重量部に対して0.15~4.5重量部が好ましい。0.15~4.5重量部の添加量により、白色無機粒子粉末100重量部に対して有機顔料を1~200重量部付着させることができる。

【0084】

白色無機粒子粉末の粒子表面にアルコキシラン又はポリシロキサンを被覆した後、有機顔料を添加し、混合攪拌してアルコキシラン被覆又はポリシロキサン被覆に有機顔料を付着させる。

【0085】

有機顔料は、少量ずつを時間をかけながら、殊に5分~20時間程度をかけて添加するのが好ましい。

【0086】

第一有色付着層を形成するための混合攪拌時における条件は、有機顔料が均一に付着するように、線荷重は19.6~1960N/cm(2~200Kg/cm)、好ましくは98~1470N/cm(10~150Kg/cm)、より好ましくは147~980N/cm(15~100Kg/cm)、処理時間は5分~24時間、好ましくは10分~20時間の範囲で処理条件を適宜調整すればよ

い。なお、攪拌速度は2~2000 rpm、好ましくは5~1000 rpm、より好ましくは10~800 rpmの範囲で処理条件を適宜調整すればよい。

【0087】

第一有色付着層における有機顔料の付着量の上限値は、白色無機粒子粉末100重量部に対して200重量部である。200重量部を超える場合には、付着量が多いため有機顔料が脱離しやすくなり、その結果、塗料や樹脂組成物の製造時において、脱離した有機顔料によりビヒクル中や樹脂組成物中の均一な分散が阻害される場合がある。

【0088】

次いで、中間顔料とアルコキシラン又はポリシロキサンとを混合攪拌した後、更に有機顔料を添加して混合攪拌し、第一有色付着層にアルコキシラン又はポリシロキサンを介して有機顔料が付着した第二有色付着層を形成させる。必要により更に、乾燥乃至加熱処理を行ってもよい。

【0089】

中間顔料とアルコキシラン又はポリシロキサンとの混合攪拌時における条件は、中間顔料の粒子表面にアルコキシラン又はポリシロキサンが均一に接着するように、線荷重は19.6~1960 N/cm (2~200 Kg/cm)、好ましくは98~1470 N/cm (10~150 Kg/cm)、より好ましくは147~980 N/cm (15~100 Kg/cm)、処理時間は5~120分、好ましくは10~90分の範囲で処理条件を適宜調整すればよい。なお、攪拌速度は2~2000 rpm、好ましくは5~1000 rpm、より好ましくは10~800 rpmの範囲で処理条件を適宜調整すればよい。

【0090】

アルコキシラン又はポリシロキサンの添加量は、白色無機粒子粉末100重量部に対して0.15~4.5重量部が好ましい。0.15~4.5重量部の添加量により、白色無機粒子粉末100重量部に対して有機顔料を1~200重量部付着させることができる。

【0091】

第二有色付着層を形成するための混合攪拌時における条件は、アルコキシラ

ン又はポリシロキサンと有機顔料とが均一に接着するように、線荷重は19.6～1960N/cm(2～200Kg/cm)、好ましくは98～1470N/cm(10～150Kg/cm)、より好ましくは147～980N/cm(15～100Kg/cm)、処理時間は5分～24時間、好ましくは10分～20時間の範囲で処理条件を適宜調整すればよい。なお、攪拌速度は2～2000rpm、好ましくは5～1000rpm、より好ましくは10～800rpmの範囲で処理条件を適宜調整すればよい。

【0092】

第二有色付着層を形成するための有機顔料の添加量は、所望の色相及び特性に応じて前記有機顔料全体での付着量の上限値を超えない範囲で適量を付着させればよく、その上限値は白色無機粒子粉末100重量部に対して200重量部である。200重量部を超える場合には、付着量が多いため、有機顔料が脱離しやすくなり、その結果、塗料や樹脂組成物の製造時において、脱離した有機顔料によりビヒクル中や樹脂組成物中の均一な分散が阻害される場合がある。

【0093】

乾燥乃至加熱処理を行う場合の加熱温度は、通常40～200℃が好ましく、より好ましくは60～150℃であり、加熱時間は、10分～12時間が好ましく、30分～3時間がより好ましい。

【0094】

得られた有機無機複合顔料の被覆に用いられたアルコキシランは、これらの工程を経ることにより、最終的にはアルコキシランから生成するオルガノシリコン化合物となって被覆されている。

【0095】

白色無機粒子粉末は、必要により、アルコキシラン又はポリシロキサンとの混合攪拌に先立って、あらかじめ、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物より選ばれる少なくとも一種からなる中間被覆物で被覆しておいてもよい。

【0096】

中間被覆物による被覆は、白色無機粒子粉末を分散して得られる水懸濁液に、

アルミニウム化合物、ケイ素化合物又は当該両化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記白色無機粒子粉末の粒子表面を、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物より選ばれる少なくとも一種からなる中間被覆物で被覆し、次いで、濾別、水洗、乾燥、粉碎する。必要により、更に、脱気・圧密処理等を施してもよい。

【0097】

アルミニウム化合物としては、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ナトリウム等のアルミン酸アルカリ塩等が使用できる。

【0098】

ケイ素化合物としては、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム等が使用できる。

【0099】

【発明の実施の形態】

本発明の代表的な実施の形態は、次の通りである。

【0100】

粒子の平均粒子径は、電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。

【0101】

比表面積値は、BET法により測定した値で示した。

【0102】

白色無機粒子粉末の粒子表面に存在しているAl量、Si量及びアルコキシランから生成するオルガノシラン化合物又はポリシリコキサンに含有されているSi量のそれぞれは、「蛍光X線分析装置3063M型」（理学電機工業株式会社製）を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。

【0103】

なお、白色無機粒子粉末の粒子表面を被覆しているケイ素の酸化物、ケイ素の

水酸化物及びアルコキシランから生成するオルガノシラン化合物に含有される Si 又はポリシリコサンに含有される Si の各 Si 量は、処理工程後の各段階で Si 量を測定し、その測定値から処理工程前の段階で測定した Si 量を差し引いた値で示した。

【0104】

白色無機粒子粉末に付着している有機顔料の被覆量は、「堀場金属炭素・硫黄分析装置 E M I A - 2200 型」（株式会社堀場製作所製）を用いて炭素量を測定することにより求めた。

【0105】

白色無機粒子粉末に付着している有機顔料の脱離率（%）は、下記の方法により求めた値で示した。有機顔料の脱離率が 0 % に近いほど、白色無機粒子粉末の粒子表面からの有機顔料の脱離量が少ないことを示す。

【0106】

被測定粒子粉末 2 g とジブロモメタン 20 mL を 50 mL の三角フラスコに入れ、20 分間超音波分散を行った後、3 日間静置し、被測定粒子粉末と有機顔料の比重差によって被測定粒子粉末と上澄み液を分離した。次いで得られた上澄み液の光透過率を「自記光電分光光度計 UV-2100」（株式会社島津製作所）を用いて測定し、予め算出したジブロモメタン中の有機顔料の濃度と光透過率との検量線より、ジブロモメタン中に存在する脱離した有機顔料の濃度を計算し、下記数 1 に従って求めた値を有機顔料の脱離率（%）とした。

【0107】

【数 1】

$$\text{有機顔料の脱離率 (\%)} = \{ (W_a - W_e) / W_a \} \times 100$$

W_a : 白色無機粒子粉末の有機顔料付着量

W_e : 脱離テスト後の白色無機粒子粉末の有機顔料付着量

【0108】

白色無機粒子粉末、有機顔料及び有機無機複合顔料の色相は、試料 0.5 g とヒマシ油 0.5 mL とをフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカー 4.5 g を加え、混練、塗料化してキャストコート紙上に

150 μm (6 mil) のアプリケーターを用いて塗布した塗布片（塗膜厚み：約30 μm）を作製し、該塗布片について、多光源分光測色計（M S C - I S - 2 D、スガ試験機株式会社製）「Multi-spectro-colour-Meter」を用いて、L* 値、a* 値及びb* 値を測定した。なお、C* 値は彩度を表し、下記数2に従って求めることができる。

【0109】

【数2】

$$C^* = ((a^*)^2 + (b^*)^2)^{1/2}$$

【0110】

有機無機複合顔料の着色力は、まず下記に示す方法に従って作製した原色エナメルと展色エナメルのそれぞれを、キャストコート紙上に150 μm (6 mil) のアプリケーターを用いて塗布して塗布片を作製し、該塗布片について、多光源分光測色計（M S C - I S - 2 D、スガ試験機株式会社製）「Multi-spectro-colour-Meter」を用いてL* 値を測色し、その差を△L* 値とした。

【0111】

次いで、有機無機複合顔料の標準試料として、有機無機複合顔料と同様の割合で有機顔料と白色無機粒子粉末とを単に混合した混合顔料を用いて、上記と同様にして原色エナメルと展色エナメルの塗布片を作製し、各塗布片のL* 値を測色し、その差を△Ls* 値とした。

【0112】

得られた有機無機複合顔料の△L* 値と標準試料の△Ls* 値を用いて下記数3に従って算出した値を着色力（%）として示した。

【0113】

【数3】

$$\text{着色力（%）} = 100 + \{ (\Delta L_s^* - \Delta L^*) \times 10 \}$$

【0114】

原色エナメルの作製：

上記試料粉体10 gとアミノアルキッド樹脂16 g及びシンナー6 gとを配合

して3mmφガラスピーズ90gと共に140mlのガラスビンに添加し、次いで、ペイントシェーカーで45分間混合分散した後、アミノアルキッド樹脂50gを追加し、更に5分間ペイントシェーカーで分散させて、原色エナメルを作製した。

【0115】

展色エナメルの作製：

上記原色エナメル12gとアミラックホワイト（二酸化チタン分散アミノアルキッド樹脂）40gとを配合し、ペイントシェーカーで15分間混合分散して、展色エナメルを作製した。

【0116】

白色無機粒子粉末、有機顔料及び有機無機複合顔料の隠蔽力は、上記で得られた原色エナメルを用いて、JIS K 5101 8.2のクリプトメーター法に従って得られた値で示した。

【0117】

白色無機粒子粉末、有機顔料及び有機無機複合顔料の耐光性は、前述の着色力を測定するために作製した原色エナメルを、冷間圧延鋼板（0.8mm×70mm×150mm）（JIS G-3141）に150μmの厚みで塗布、乾燥して塗膜を形成し、得られた測定用塗布片の半分を金属性フォイルで覆い、「アイスーパーUVテスター」（SUV-W13（岩崎電気株式会社製））を用いて、紫外線を照射強度100mW/cm²で6時間連続照射した後、金属製フォイルで覆うことによって紫外線が照射されなかった部分と紫外線照射した部分との色相（L*値、a*値、b*値）をそれぞれ測定し、紫外線が照射されなかった部分の測定値を基準に、下記数4に従って算出した△E*値によって示した。

【0118】

【数4】

$$\Delta E^* \text{ 値} = ((\Delta L^* \text{ 値})^2 + (\Delta a^* \text{ 値})^2 + (\Delta b^* \text{ 値})^2)^{1/2}$$

△L*値： 比較する試料の紫外線照射有無のL*値の差

△a*値： 比較する試料の紫外線照射有無のa*値の差

△b*値： 比較する試料の紫外線照射有無のb*値の差

【0119】

有機無機複合顔料を用いた溶剤系塗料及び水系塗料の各色相は、後述する処方によって調製した各塗料を冷間圧延鋼板（0.8 mm × 70 mm × 150 mm）（JIS G-3141）に150 μmの厚みで塗布、乾燥して塗膜を形成して得られた測定用塗布片について、多光源分光測色計（MSC-IS-2D、スガ試験機株式会社製）Multi-spectro-colour-Meterを用いて、L*値、a*値及びb*値を測定した。また、有機無機複合顔料を用いて着色した樹脂組成物の色調は、後述する処法によって作製した着色樹脂プレートを、多光源分光測色計（MSC-IS-2D、スガ試験機株式会社製）「Multi-spectro-colour-Meter」を用いて前記と同様にして測定した。

【0120】

塗膜の光沢度は、前記測定用塗布片を「グロスマーティー UGV-5D」（スガ試験機株式会社製）を用いて入射角60°の時の光沢度で示した。光沢度が高いほど、有機無機複合顔料を配合した塗料の分散性が優れていることを示す。

【0121】

各塗料を用いた塗膜の耐光性は、前述の塗料の色相を測定するために作製した測定用塗布片の半分を金属性フォイルで覆い、「アイ スーパーUVテスター」（SUV-W13（岩崎電気株式会社製））を用いて、紫外線を照射強度100 mW/cm²で6時間連続照射した後、金属製フォイルで覆うことによって紫外線が照射されなかった部分と紫外線照射した部分との色相（L*値、a*値、b*値）をそれぞれ測定し、紫外線が照射されなかった部分の測定値を基準に、前記数4に従って算出したΔE*値によって示した。

【0122】

また、各樹脂組成物の耐光性は、前述の樹脂組成物の色相を測定するために作製した樹脂プレートの半分を金属性フォイルで覆い、「アイ スーパーUVテスター」（SUV-W13（岩崎電気株式会社製））を用いて、紫外線を照射強度100 mW/cm²で6時間連続照射した後、金属製フォイルで覆うことによって紫外線が照射されなかった部分と紫外線照射した部分との色相（L*値、a*

値、 b^* 値) をそれぞれ測定し、紫外線が照射されなかった部分の測定値を基準に、前記数4に従って算出した ΔE^* 値によって示した。

【0123】

有機無機複合顔料を用いた塗膜の透明性は、後述する処法によって調製した塗料を厚さ $100\text{ }\mu\text{m}$ のクリアベースフィルムに塗布して得られた塗膜について、「自記光電分光光度計UV-2100」(株式会社島津製作所製)を用いて測定した光透過率から、下記数5によって定義される線吸収係数で示した。樹脂組成物の透明性は後述する組成から成る樹脂プレートについて、「自記光電分光光度計UV-2100」(株式会社島津製作所製)を用いて前記と同様にして測定した。線吸収係数は値が小さいほど光を透しやすく透明性が高いことを示す。

【0124】

【数5】

$$\text{線吸収係数 } (\mu\text{m}^{-1}) = \ln (1/t) / FT$$

$t : \lambda = 900\text{ nm}$ における光透過率 (-)

FT : 測定に用いたフィルムの塗膜又は樹脂プレートの厚み (μm)

【0125】

透明性評価用塗料の作製 :

250mlのガラスビンに試料粉体5gを用い、塗料組成を下記割合で配合して3mmφガラスピーツ160gとともにペイントシェーカーで120分間混合分散し、ミルベースを作製した。

試料粉体 9.9 重量部、

メラミン樹脂 (スーパー・ペッカミン J-820-60 : 商品名 : 大日本インキ化学工業株式会社製) 19.8 重量部、

アルキッド樹脂 (ベッコゾール 1307-60EL : 商品名 : 大日本インキ化学工業株式会社製) 39.6 重量部、

キシレン 29.7 重量部、

ブタノール 1.0 重量部。

【0126】

透明性評価用水系塗料の作製 :

250mlのガラスビンに試料粉体5gを用い、塗料組成を下記割合で配合して3mmφガラスビーズ160gとともにペイントシェーカーで120分間混合分散し、ミルベースを作製した。

試料粉体	10.1 重量部、
水溶性メラミン樹脂	9.3 重量部、
(商品名: S-695:大日本インキ化学工業株式会社製)	
水溶性アルキッド樹脂	40.7 重量部、
(商品名: S-118:大日本インキ化学工業株式会社製)	
消泡剤	0.2 重量部、
(商品名: ノプロ8034:サンノプロ株式会社製)	
水	28.2 重量部、
ブチルセロソルブ	11.5 重量部。

【0127】

透明性評価用樹脂組成物の作製:

試料粉体0.5gとポリ塩化ビニル樹脂粉末(103EP8D:商品記号:日本ゼオン株式会社製)49.5gとを秤量し、これらを100mlポリビーカーに入れ、スパチュラでよく混合して混合粉末を得た。

【0128】

得られた混合粉末にステアリン酸カルシウムを1.0g加えて混合し、160℃に加熱した熱間ロールのクリアランスを0.2mmに設定した後、上記混合粉末を少しづつロールにて練り込んで樹脂組成物が一体となるまで混練を続けた後、樹脂組成物をロールから剥離して着色樹脂プレート原料として用いた。次に、表面研磨されたステンレス板の間に上記樹脂組成物を挟んで180℃に加熱したホットプレス内に入れ、 $9.8 \times 10^7 \text{ Pa}$ (1トン/cm²)の圧力で加圧成形して厚さ1mmの着色樹脂プレートを得た。

【0129】

塗料の貯蔵安定性は、後述する処方によって調製した各塗料を冷間圧延鋼板(0.8mm×70mm×150mm)(JIS-G-3141)に150μmの厚みで塗布、乾燥して製造した塗膜のL*値、a*値及びb*値と、該塗料を2

5°Cにおいて1週間静置して得られた塗料を冷間圧延鋼板に塗布、乾燥して製造した塗膜のL*値、a*値及びb*値を測定し、下記数6に従って得られたΔE*値で示した。

【0130】

【数6】

$$\Delta E^* \text{ 値} = ((\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2)^{1/2}$$

ΔL*値： 比較する塗膜の静置前後のL*値の差

Δa*値： 比較する塗膜の静置前後のa*値の差

Δb*値： 比較する塗膜の静置前後のb*値の差

【0131】

塗料粘度については、後述する処方によって調製した塗料の25°Cにおける塗料粘度をE型粘度計（コーンプレート型粘度計）EMD-R（株式会社東京計器製）を用いて、ずり速度D=1.92 sec⁻¹における値を求めた。

【0132】

有機無機複合顔料の樹脂組成物への分散性は、得られた着色樹脂プレート表面における未分散の凝集粒子の個数を目視により判定し、5段階で評価した。5が最も分散状態が良いことを示す。

5： 未分散物認められず、

4： 1 cm²当たり1個以上5個未満、

3： 1 cm²当たり5個以上10個未満、

2： 1 cm²当たり10個以上50個未満、

1： 1 cm²当たり50個以上。

【0133】

<有機無機複合顔料の製造>

酸化チタン粒子粉末（粒子形状：粒状、平均粒子径0.24 μm、BET比表面積値11.6 m²/g、L*値94.15、C*値2.46、隠蔽力1490 cm²/g、耐光性ΔE*値6.86）20kgを凝集を解きほぐすために、純水150lに攪拌機を用いて邂逅し、更に「TKパイプラインホモミクサー」（特殊機化工業株式会社製）を3回通して酸化チタン粒子粉末を含むスラリーを得

た。

【0134】

次いで、この酸化チタン粒子粉末を含むスラリーを横型サンドグラインダー「マイティーミルMHG-1. 5L」（井上製作所株式会社製）を用いて軸回転数2000 rpmにおいて5回パスさせて、酸化チタン粒子粉末を含む分散スラリーを得た。

【0135】

得られた分散スラリーの325 mesh（目開き44 μm）における篩残分は0%であった。この分散スラリーを濾別、水洗して、酸化チタン粒子粉末のケーキを得た。この酸化チタン粒子粉末のケーキを120°Cで乾燥した後、乾燥粉末11.0 kgをエッジランナー「MPUV-2型」（製品名、株式会社松本鋳造鉄工所製）に投入し、294 N/cm（30 Kg/cm）で30分間混合攪拌を行い、粒子の凝集を軽く解きほぐした。

【0136】

次に、メチルトリエトキシシラン（商品名：TSL8123：GE東芝シリコン株式会社製）110 gを200 mlのエタノールで混合希釈して得られるメチルトリエトキシシラン溶液を、エッジランナーを稼動させながら上記酸化チタン粒子粉末に添加し、588 N/cm（60 Kg/cm）の線荷重で20分間混合攪拌を行った。なお、このときの攪拌速度は22 rpmで行った。

【0137】

次に、有機顔料B-1（種類：フタロシアニン系顔料、粒子形状：粒状、平均粒子径0.06 μm、BET比表面積値71.6 m²/g、隠蔽力240 cm²/g、L*値17.70、a*値9.72、b*値-23.44、耐光性ΔE*値10.84）2200 gを、エッジランナーを稼動させながら20分間かけて添加し、更に392 N/cm（40 Kg/cm）の線荷重で60分間、混合攪拌を行い、メチルトリエトキシシラン被覆の上にフタロシアニンブルーが付着している中間顔料を得た。なお、このときの攪拌速度は22 rpmで行った。

【0138】

メチルトリエトキシシランの被覆量と有機顔料B-1の付着量とを確認するた

めに、得られた中間顔料の一部を採取し、乾燥機を用いて105℃で60分間加熱処理を行った。メチトリエトキシシランの被覆量は、S_i換算で0.31重量%であり、有機顔料B-1の付着量はC換算で10.96重量%（酸化チタン粒子粉末100重量部に対して20重量部に相当する）であった。電子顕微鏡写真観察の結果、有機顔料B-1がほとんど認められることから、有機顔料B-1のほぼ全量がメチルトリエトキシシランから生成するオルガノシラン化合物被覆層に付着していることが認められた。

【0139】

次に、ジメチルポリシロキサン（商品名：T S F 4 5 1 : G E 東芝シリコーン株式会社製）220gを、エッジランナーを稼動させながら上記中間顔料に添加し、588N/cm（60Kg/cm）の線荷重で60分間混合攪拌を行って、表面にジメチルポリシロキサンが均一に被覆されている中間顔料を得た。なお、この時の攪拌速度は22rpmで行った。

【0140】

次に、有機顔料B-2（種類：フタロシアニン系顔料、粒子形状：粒状、平均粒子径0.08μm、BET比表面積値56.3m²/g、隠蔽力272cm²/g、L*値17.32、a*値-11.60、b*値-26.53、耐光性ΔE*値10.21）2200gを、エッジランナーを稼動させながら20分間かけて添加し、更に392N/cm（40Kg/cm）の線荷重で60分間混合攪拌を行い、有機顔料B-1付着層にジメチルポリシロキサンを介して有機顔料B-2を付着させた後、乾燥機を用いて105℃で60分間熱処理を行って、有機無機複合粒子粉末を得た。なお、この時の攪拌速度は22rpmで行った。

【0141】

得られた有機無機複合顔料は、平均粒子径が0.25μmの粒状粒子粉末であった。BET比表面積値は11.8m²/g、L*値は62.67、a*値は7.24、b*値は-23.07、着色力は217%、隠蔽力は1,810cm²/g、耐光性ΔE*値は2.36であり、有機顔料の脱離率は6.2%であった。ジメチルポリシロキサンの接着量がS_i換算で0.70重量%、有機顔料の総付着量がC換算で18.84重量%（酸化チタン粒子粉末100重量部に対して

40重量部に相当する)であった。

【0142】

電子顕微鏡写真観察の結果、有機顔料がほとんど認められないことから、有機顔料のほぼ全量が、メチルハイドロジェンポリシロキサン被覆層に付着していることが認められた。

【0143】

＜有機無機複合顔料を含む溶剤系塗料の製造＞

上記有機無機複合顔料10gとアミノアルキッド樹脂及びシンナーとを下記割合で配合して3mmφガラスビーズ90gと共に140mlのガラスビンに添加し、次いで、ペイントシェーカーで90分間混合分散し、ミルベースを作製した

【0144】

有機無機複合顔料	12.2重量部、
アミノアルキッド樹脂	19.5重量部、
(アミラックNo. 1026:関西ペイント株式会社製)	
シンナー	7.3重量部。

【0145】

上記ミルベースを用いて、下記割合となるようにアミノアルキッド樹脂を配合し、ペイントシェーカーで更に15分間混合分散して、有機無機複合顔料を含む溶剤系塗料を得た。

【0146】

ミルベース	39.0重量部、
アミノアルキッド樹脂	61.0重量部。
(アミラックNo. 1026:関西ペイント株式会社製)	

【0147】

得られた溶剤系塗料の塗料粘度は1, 280cP、塗料の貯蔵安定性は、ΔE*値で0.78であった。

【0148】

次いで、上記溶剤系塗料を冷間圧延鋼板(0.8mm×70mm×150mm

) (J I S G - 3 1 4 1) に 1 5 0 μm の厚みで塗布、乾燥して得られた塗膜の光沢度は 9 3 %、色相は L * 値が 6 4. 9 1、a * 値が 6. 6 0、b * 値が - 2 4. 3 2、耐光性 ΔE^* 値が 2. 6 8 であった。

【0149】

<有機無機複合顔料を含む水系塗料の製造>

上記有機無機複合顔料 7. 6 2 g と水溶性アルキッド樹脂等とを下記割合で 3 mm φ ガラスビーズ 9 0 g と共に 1 4 0 m l のガラスピンに添加し、次いでペイントシェーカーで 9 0 分間混合分散し、ミルベースを作製した。

【0150】

有機無機複合顔料 1 2. 4 重量部、

水溶性アルキッド樹脂 9. 0 重量部、

(商品名: S - 1 1 8 : 大日本インキ化学工業株式会社製)

消泡剤 0. 1 重量部、

(商品名: ノプロ 8 0 3 4 : サンノプロ株式会社製)

水 4. 8 重量部、

ブチルセロソルブ 4. 1 重量部。

【0151】

上記ミルベースを用いて、塗料組成を下記割合で配合してペイントシェーカーで更に 1 5 分間混合分散し水溶性塗料を得た。

【0152】

ミルベース 3 0. 4 重量部、

水溶性アルキッド樹脂 4 6. 2 重量部、

(商品名: S - 1 1 8 : 大日本インキ化学工業株式会社製)

水溶性メラミン樹脂 1 2. 6 重量部、

(商品名: S - 6 9 5 : 大日本インキ化学工業株式会社製)

消泡剤 0. 1 重量部、

(商品名: ノプロ 8 0 3 4 : サンノプロ株式会社製)

水 9. 1 重量部、

ブチルセロソルブ 1. 6 重量部。

【0153】

得られた水系塗料の塗料粘度は2, 840 cP、貯蔵安定性は ΔE^* 値で0.78であった。

【0154】

次いで、上記水系塗料を冷間圧延鋼板(0.8 mm × 70 mm × 150 mm)(JIS G-3141)に150 μmの厚みで塗布、乾燥して得られた塗膜の光沢度は89%、色相はL*値が64.96、a*値が6.12、b*値が-23.74、耐光性は ΔE^* 値で2.56であった。

【0155】

<樹脂組成物の製造>

上記有機無機複合顔料2.5 gとポリ塩化ビニル樹脂粉末103EP8D(日本ゼオン株式会社製)47.5 gとを秤量し、これらを100 mlポリビーカーに入れ、スパチュラでよく混合して混合粉末を得た。

【0156】

得られた混合粉末にステアリン酸カルシウムを0.5 g加えて混合し、160°Cに加熱した熱間ロールのクリアランスを0.2 mmに設定した後、上記混合粉末を少しづつロールにて練り込んで樹脂組成物が一体となるまで混練を続けた後、樹脂組成物をロールから剥離して着色樹脂プレート原料として用いた。

【0157】

次に、表面研磨されたステンレス板の間に上記樹脂組成物を挟んで180°Cに加熱したホットプレス内に入れ、98,000 kPa(1トン/cm²)の圧力で加圧成形して厚さ1 mmの着色樹脂プレートを得た。得られた着色樹脂プレートの分散状態は5であり、色相はL*値が65.44、a*値が6.63、b*値が-24.32、耐光性は ΔE^* 値で2.82であった。

【0158】

【作用】

本発明において最も重要な点は、白色無機粒子粉末の粒子表面が、アルコキシランから生成するオルガノシラン化合物又はポリシロキサンによって被覆されていると共に、該被覆に有機顔料が付着している有色付着層を2層以上形成した

有機無機複合顔料は、白色無機粒子粉末の粒子表面に多量の有機顔料を付着させることができると共に、付着した有機顔料の脱離が抑制されており、しかも、有害な元素を含有しない有機無機複合顔料であるという事実である。

【0159】

本発明において、白色無機粒子粉末の粒子表面に有機顔料が脱離することなく多量の有機顔料を付着させることができるのは、各有色付着層におけるアルコキシシラン又はポリシリコキサン被覆に付着させる有機顔料の付着量を特定し、有色付着層を2層以上形成することによるものと考えている。多量の有機顔料を付着させることができるので、鮮明な色相を有する複合顔料を得ることができると共に、種々の有機顔料を組み合わせることができるので、所望の色相を容易に得ることが可能となる。また、組み合わせる有機顔料に耐光性等の機能を持たせることにより、単層付着では得られなかった機能を付与することが可能となる。

【0160】

本発明において、有機顔料の脱離が抑制される理由について、本発明者は下記のように推定している。

【0161】

まず、アルコキシシランを用いた場合には、白色無機粒子粉末の粒子内部や粒子表面に含有されている金属元素と有機顔料が付着しているアルコキシシランが有しているアルコキシ基との間で、メタロキサン結合（S i - O - M (Mは白色無機粒子に含まれている金属粒子である)）が形成されることにより、有機顔料が付着しているアルコキシシランから生成するオルガノシラン化合物が白色無機粒子粉末の粒子表面に強固に結合し、また第二有色付着層は中間顔料と第二層の有機顔料とがアルコキシシランから生成するオルガノシランを介して強固に結合することによるものと考えている。また、ポリシリコキサンを用いた場合には、有機顔料が付着しているポリシリコキサンが有している各種官能基が、白色無機粒子粉末の粒子表面へ強固に結合し、また、第二有色付着層は第一付着層に付着している有機顔料と第二有色付着層の有機顔料とがポリシリコキサンを介して強固に結合することによるものと考えている。

【0162】 そして、上記有機無機複合顔料を配合した塗料は塗料安定

性及び分散性が優れており、また、上記有機無機複合顔料を配合して得られた樹脂組成物は分散性が優れているという事実である。

【0163】 本発明に係る塗料の塗料安定性及び分散性、樹脂組成物の分散性が優れている理由について、本発明者は、白色無機粒子粉末の粒子表面から脱離する有機顔料が抑制された有機無機複合顔料を着色剤として用いていることによるものと考えている。

【0164】

また、本発明に係る有機無機複合顔料は、有害な元素及び化合物を含有していないので、衛生面や安全性に優れ、また、環境汚染防止に配慮した顔料である。

【0165】

【実施例】

次に、実施例及び比較例を示す。

【0166】

芯粒子1～4：

芯粒子粉末として表1に示す特性を有する白色無機粒子粉末を用意した。

【0167】

【表1】

芯粒子の種類	種類	形状	平均粒子径(μm)	BET比 表面積値 (m ² /g)	白色無機粒子粉末の特性			
					L*値 (-)	a*値 (-)	b*値 (-)	C*値 (-)
芯粒子1	酸化チタン	粒状	0.25	10.3	96.63	-0.58	-0.69	0.90
〃2	酸化亜鉛	粒状	0.18	18.3	90.27	-2.14	4.13	4.65
〃3	クレー	粒状	0.83	2.6	78.96	1.22	10.66	10.73
〃4	バーレマイカ	板状	8.23	5.8	87.71	1.65	2.12	2.69
							280	9.11

【0168】

芯粒子5：

芯粒子1の酸化チタン粒子粉末20kgと水150lとを用いて、酸化チタン粒子粉末を含むスラリーを得た。得られた酸化チタン粒子粉末を含む再分散スラリーのpH値を、水酸化ナトリウム水溶液を用いて10.5に調整した後、該スラリーに水を加えスラリー濃度を98g/lに調整した。このスラリー150lを加熱して60℃とし、このスラリー中に1.0mol/lのアルミニン酸ナトリウム溶液5444ml（酸化チタン粒子粉末に対してA1換算で1.0重量%に相当する）を加え、30分間保持した後、酢酸を用いてpH値を7.5に調整した。この状態で30分間保持した後、濾過、水洗、乾燥、粉碎して粒子表面がアルミニウムの水酸化物により被覆されている酸化チタン粒子粉末を得た。

【0169】

このときの製造条件を表2に、得られた表面処理済酸化チタン粒子粉末の諸特性を表3に示す。

【0170】

芯粒子6～8：

芯粒子2～4の各白色無機粒子粉末を用い、表面被覆物の種類及び量を種々変化させた以外は、前記芯粒子5と同様にして粒子表面が中間被覆物で被覆されている白色無機粒子粉末を得た。

【0171】

このときの製造条件を表2に、得られた表面処理済白色無機粒子粉末の諸特性を表3に示す。

【0172】

【表2】

芯粒子	芯粒子 の種類	表面処理工程					
		添加物			被覆物		
		種類	換算 元素	量 (重量%)	種類	換算 元素	量 (重量%)
芯粒子5	芯粒子1	アルミニ酸ナトリウム	Al	1.0	A	Al	0.98
〃6	〃2	アルミニ酸ナトリウム	Al	2.0	A	Al	1.96
〃7	〃3	3号水ガラス	SiO ₂	0.5	S	SiO ₂	0.48
〃8	〃4	硫酸アルミニウム	Al	0.5	A	Al	0.50

【0173】

【表3】

芯粒子 の種類	平均 粒子径 (μ m)	BET比 表面積 値 (m^2/g)	色相			遮蔽力 (cm ² /g)	耐光性 ΔE^* 値 (-)	
			L* 値 (-)	a* 値 (-)	b* 値 (-)	C* 値 (-)		
芯粒子-S	0.25	12.1	96.49	-0.46	-0.54	0.71	1,480	5.86
" 6	0.18	18.6	89.69	-1.86	5.07	5.40	710	5.12
" 7	0.83	3.1	79.69	1.32	10.46	10.54	100	9.44
" 8	8.23	5.6	87.91	1.46	1.80	2.32	260	8.71

【0174】

尚、表面処理工程における被覆物の種類のAはアルミニウムの水酸化物であり、Sはケイ素の酸化物を表わす。

【0175】

有機顔料：

有機顔料として表4に示す諸特性を有する有機顔料を用意した。

【0176】

【表4】

有機顔料	有機顔料の特性							
	種類	粒子形状	平均粒径(μm)	BET比表面積値(m ² /g)	遮蔽力(cm ² /g)	L*値	a*値	b*値
有機顔料B-1 ピグメントブルー (フタロシアン系顔料)	粒状	0.06	71.6	240	17.70	9.72	-23.44	10.84
" B-2 ピグメントレッド (キナクリドン系顔料)	粒状	0.08	56.3	272	17.32	11.60	-26.53	10.21
" R-1 ピグメントイエロー (アゾ系顔料)	粒状	0.58	19.3	480	36.99	51.88	20.57	14.65
" R-2 ピグメントイエロー (アゾ系顔料)	粒状	0.50	21.6	220	28.30	58.26	20.61	16.36
" Y-1 ピグメントイエロー (アゾ系顔料)	粒状	0.73	10.5	320	66.80	0.78	70.92	17.33
" Y-2	"	0.65	12.3	280	68.58	0.65	72.86	19.65

【0177】

中間顔料1～11：

アルコキシシラン、ポリシロキサンによる被覆工程における添加物の種類、添加量、エッジランナー処理の線荷重及び時間、第一有色付着層の付着工程における有機顔料の種類、添加量、エッジランナー処理の線荷重及び時間を種々変化させた以外は、前記発明の実施の形態と同様にして中間顔料を得た。

【0178】

このときの製造条件を表5に示す。

【0179】

【表5】

中間顔料	芯粒子の種類	中間顔料の製造									
		アルコキシジンラン、ポリシロキサンによる被覆工程					第一有色付着層の付着工程				
		添加物		エッジランナー処理			被覆量		有機顔料		付着量
		種類	添加量 (重量部)	線荷重 (N/cm)	時間 (min)	(Si換算) (重量%)	種類	添加量 (重量部)	線荷重 (N/cm)	エッジランナー処理 時間 (min)	(C換算) (重量%)
中間顔料1	芯粒子1	メチルトリエキシシラン	2.0	392	40	0.30	B-1	20.0	588	60	60
" 2	" 2	メチルトリエキシシラン	4.0	392	40	0.79	R-1	40.0	784	80	60
" 3	" 3	フェニルトリエキシシラン	3.0	588	60	20	Y-1	60.0	784	80	120
" 4	" 4	メチルハイドロジエンポリシロキサン	1.0	392	40	0.42	B-1	80.0	784	80	180
" 5	" 5	メチルトリエキシシラン	3.0	784	80	50	0.45	R-1	100.0	588	60
" 6	" 6	メチルトリエキシシラン	1.5	588	60	60	0.30	Y-1	150.0	588	60
" 7	" 7	フェニルトリエキシシラン	5.0	392	40	20	0.67	R-1	20.0	784	80
" 8	" 8	メチルハイドロジエンポリシロキサン	2.0	588	60	40	0.83	Y-1	50.0	784	80
" 9	" 1	---	---	---	---	---	---	Y-1	10.0	588	60
" 10	" 1	メチルトリエキシシラン	0.005	588	60	30	6×10^{-4}	Y-1	10.0	588	60
" 11	" 1	メチルトリエキシシラン	1.0	588	60	30	0.15	Y-1	0.1	588	60
										0.04	

【0180】

実施例1～16、比較例1～10：

アルコキシシラン、ポリシロキサンによる被覆工程における添加物の種類、添加量、エッジランナー処理の線荷重及び時間、第二有色付着層の付着工程における有機顔料の種類、添加量、エッジランナー処理の線荷重及び時間を種々変化させた以外は、前記発明の実施の形態と同様にして有機無機複合顔料を得た。

【0181】

このときの製造条件を表6及び表7に、得られた有機無機複合顔料の諸特性を表8及び表9に示す

【0182】

【表6】

実施例	中間顔料の種類	有機無機複合顔料の製造									
		アルコキシシラン、ポリシロキサンによる被覆工程				第二有色付着層の付着工程				エッジランナー処理時間 (min)	(C換算)付着量(重量%)
		添加物種類	添加量(重量部)	エッジランナー処理線荷重(N/cm)	時間(min)	被覆量(SI換算重量%)	添加物種類	添加量(重量部)	線荷重(N/cm)		
実施例1	中間顔料1	エチルトリエキシシラン	3.0	588	60	0.45	B-2	50.0	588	60	120
" 2	" 2	メチルトリメキシシラン	5.0	294	30	0.97	R-2	25.0	392	40	60
" 3	" 3	フェニルトリエキシシラン	1.0	392	40	0.13	Y-2	50.0	490	50	120
" 4	" 4	メチルハイドロジェンボリシロキサン	2.0	784	80	0.82	B-2	75.0	588	60	150
" 5	" 5	エチルトリエキシシラン	3.5	735	75	20	0.52	R-2	40.0	294	30
" 6	" 6	メチルトリメキシシラン	1.0	588	60	30	0.20	Y-2	60.0	441	45
" 7	" 7	フェニルトリエキシシラン	2.5	294	30	20	0.34	R-2	100.0	637	65
" 8	" 8	メチルハイドロジェンボリシロキサン	1.0	441	45	30	0.42	Y-2	80.0	735	75
" 9	" 1	エチルトリエキシシラン	5.0	588	60	20	0.53	R-2	60.0	784	80
" 10	" 2	メチルトリメキシシラン	3.0	735	75	30	0.59	Y-2	150.0	637	65
" 11	" 3	フェニルトリエキシシラン	2.0	784	80	20	0.27	B-2	60.0	490	50
" 12	" 4	メチルハイドロジェンボリシロキサン	0.5	588	60	30	0.21	Y-2	200.0	392	40
" 13	" 5	エチルトリエキシシラン	3.0	294	30	20	0.45	B-2	80.0	539	55
" 14	" 6	メチルトリメキシシラン	10.0	441	45	30	1.87	R-2	40.0	588	60
" 15	" 7	フェニルトリエキシシラン	5.0	392	40	20	0.67	B-2	20.0	735	75
" 16	" 8	メチルハイドロジェンボリシロキサン	1.0	588	60	30	0.42	B-2	15.0	392	40

特2001-101082

【0183】

【表7】

比較例	中間顔料 の種類	有機無機複合顔料の製造										
		アルコキシシラン、ポリシロキサンによる被覆工程					第二有色付着層の付着工程					
		添加物		エッジランナー処理		被覆量 (S換算) (重量%)	有機顔料		エッジランナー処理		付着量 (C換算) (重量%)	
種類		添加量 (重量部)	(N/cm)	線荷重 (Kg/cm)	時間 (min)		種類	添加量 (重量部)	(N/cm)	線荷重 (Kg/cm)		
比較例1	中間顔料9	メチルトリエキシシラン	1.0	392	40	30	0.15	Y-2	10.0	588	60	60
" 2	" 10	メチルトリエキシシラン	1.0	588	60	20	0.15	Y-2	10.0	784	80	60
" 3	" 11	メチルトリエキシシラン	1.0	441	45	30	0.15	Y-2	0.1	588	60	20
" 4	" 1	---	---	---	---	---	---	B-2	10.0	441	45	120
" 5	" 1	メチルトリエキシシラン	0.005	588	60	20	6×10^{-4}	B-2	10.0	588	60	60
" 6	" 9	メチルトリエキシシラン	1.0	588	60	30	0.15	B-2	10.0	441	45	30
" 7	" 10	メチルトリエキシシラン	1.0	441	45	30	0.15	B-2	10.0	588	60	20
" 8	" 1	メチルトリエキシシラン	1.0	490	50	30	0.15	B-2	0.1	490	50	60
" 9	" 1	---	---	---	---	---	---	Y-2	10.0	588	60	60
" 10	" 1	メチルトリエキシシラン	0.005	441	45	30	6×10^{-4}	Y-2	10.0	588	60	30

【0184】

【表8】

実施例	有機無機複合顔料の特性							
	平均粒子径(μm)	BET比	表面積値(m ² /g)	L*値(-)	a*値(-)	b*値(-)	着色力(%)	遮蔽力(cm ² /g)
実施例1	0.27	11.6	19.86	8.26	-23.22	240	1,610	2.10
〃2	0.19	18.8	35.35	49.62	16.39	223	780	2.88
〃3	0.84	3.6	64.66	0.83	68.67	216	180	3.12
〃4	8.25	7.1	21.14	6.36	-22.44	254	410	2.16
〃5	0.27	12.3	34.32	51.33	15.68	238	1,530	1.66
〃6	0.20	18.8	63.67	1.26	72.87	232	790	1.68
〃7	0.85	3.9	39.00	53.66	13.80	227	190	1.96
〃8	8.26	5.9	71.59	0.91	74.65	218	450	1.14
〃9	0.27	12.8	27.58	31.32	5.97	225	1,890	2.32
〃10	0.20	19.1	45.44	21.32	44.52	230	830	2.16
〃11	0.84	4.3	38.92	5.16	25.76	232	250	2.41
〃12	8.25	7.9	35.80	3.24	-19.23	244	430	2.32
〃13	0.27	13.3	24.93	26.33	6.25	255	2,130	1.68
〃14	0.20	18.9	28.65	31.53	40.08	231	990	1.65
〃15	0.85	4.3	21.14	21.65	-0.14	220	320	1.13
〃16	8.26	6.1	36.71	3.24	-20.08	217	560	1.62
								3.1

【0185】

【表9】

比較例	平均 粒子径 (μm)	BET比 表面積値 (m ² /g)	色相			着色力 (%)	遮蔽力 (cm ² /g)	耐光性 △E*値 (-)	有機顔料 脱離率 (%)
			L*値 (-)	a*値 (-)	b*値 (-)				
比較例1	0.26	11.3	63.01	0.90	69.64	106	1,460	6.56	64.3
〃2	0.26	12.6	65.67	0.69	70.60	103	1,400	6.34	56.2
〃3	0.25	13.2	92.85	1.26	2.68	101	1,460	7.13	---
〃4	0.26	14.3	66.62	5.26	-24.59	131	1,510	8.12	71.3
〃5	0.26	10.6	64.66	3.10	-21.83	131	1,500	6.15	73.8
〃6	0.26	11.6	63.48	1.32	-19.32	121	1,420	8.36	61.6
〃7	0.26	17.3	58.93	0.18	-22.72	124	1,460	7.36	73.2
〃8	0.25	18.1	61.78	1.96	-19.71	101	1,480	6.53	---
〃9	0.26	12.6	35.86	15.14	-14.42	116	1,510	7.01	68.6
〃10	0.26	13.6	33.81	20.12	-12.54	116	1,460	7.81	67.2

【0166】

実施例17～32、比較例11～20：

有機無機複合顔料の種類を種々変化させた以外は、前記発明の実施の形態と同様にして塗料を得た。

【0187】

得られた塗料の諸特性及び塗膜の諸特性を表10及び表11に示す。

【0188】

【表10】

実施例	塗料の製造		塗料特性		塗膜の特性					
	有機無機複合顔料の種類	粘度(cP)	貯蔵安定性(%)	光沢度(%)	60°	L*値(-)	a*値(-)	b*値(-)	耐光性△E*値(-)	透明性(線吸収係数)(μm ⁻¹)
実施例17	実施例1	973	0.86	94	20.30	7.21	-24.33	2.68	---	---
〃18	〃2	1,050	0.83	93	37.65	49.21	17.13	2.13	---	---
〃19	〃3	1,075	0.76	90	68.48	1.62	69.53	2.36	0.0716	
〃20	〃4	1,024	0.78	94	21.83	7.34	-23.74	2.13	0.0812	
〃21	〃5	998	0.43	98	36.09	49.63	10.98	1.68	---	---
〃22	〃6	1,024	0.42	96	66.67	1.26	75.22	1.66	---	---
〃23	〃7	947	0.36	98	41.33	53.62	14.73	1.52	0.0732	
〃24	〃8	896	0.36	97	78.15	0.93	71.33	1.69	0.0738	
〃25	〃9	922	0.78	90	31.21	34.62	7.20	2.73	---	---
〃26	〃10	1,050	0.68	91	46.14	25.66	49.80	2.16	---	---
〃27	〃11	1,101	0.69	91	40.85	5.19	27.54	2.21	0.0765	
〃28	〃12	1,152	0.71	94	35.81	4.62	-21.30	2.36	0.0812	
〃29	〃13	998	0.36	99	26.31	27.83	9.75	1.51	---	---
〃30	〃14	1,050	0.41	101	30.84	29.65	37.38	1.53	---	---
〃31	〃15	1,101	0.23	96	23.78	24.69	0.15	1.61	0.0836	
〃32	〃16	973	0.21	99	39.00	5.62	-22.75	1.67	0.0791	

【0189】

【表11】

比較例	塗料の製造		塗料特性		塗膜の特性						
	有機無機複合顔料の種類	粘度(cP)	貯藏安定性(-)	光沢度(%)	60°	L*値	a*値	b*値	色相	耐光性ΔE*値(-)	透明性(線吸収係数) (μm^{-1})
比較例11	比較例1	4,832	2.31	61	63.53	1.93	68.51	6.82	—	—	—
〃12	〃2	16,212	2.31	65	66.40	2.62	65.23	6.56	—	—	—
〃13	〃3	2,164	2.16	66	90.70	3.82	2.97	6.25	—	—	—
〃14	〃4	13,212	2.46	68	62.06	5.21	-22.77	5.83	—	—	—
〃15	〃5	4,321	2.13	71	66.41	2.92	-19.67	6.58	—	—	—
〃16	〃6	5,662	2.13	66	62.07	2.16	-16.20	7.32	—	—	—
〃17	〃7	8,962	2.46	63	64.44	1.68	-23.74	8.16	—	—	—
〃18	〃8	2,011	2.52	66	65.42	2.34	-20.08	7.77	—	—	—
〃19	〃9	9,099	2.18	62	36.90	16.12	-17.53	6.21	—	—	—
〃20	〃10	10,113	2.29	65	35.74	21.11	-14.22	5.92	—	—	—

【0190】

実施例33～48、比較例21～30：

有機無機複合顔料の種類を種々変化させた以外は、前記発明の実施の形態と同様にして水系塗料を得た。

【0191】

得られた水系塗料の諸特性及び塗膜の諸特性を表12及び表13に示す。

【0192】

【表12】

実施例	水系塗料の製造 有機無機複合 顔料の種類	塗料特性				塗膜の特性			
		粘度 (cP)	貯蔵 安定性 (-)	60° 光沢度 (%)	L*値 (-)	a*値 (-)	b*値 (-)	耐光性 △E*値 (-)	透明性 (吸収係数) (μm ⁻¹)
実施例33	実施例1	2,048	0.76	93	20.32	9.21	-22.43	2.56	---
" 34	" 2	1,920	0.56	91	35.70	49.63	17.18	2.63	---
" 35	" 3	1,869	0.63	92	67.49	1.92	65.22	3.26	0.0886
" 36	" 4	1,818	0.75	90	23.78	8.26	-23.66	2.65	0.0832
" 37	" 5	1,997	0.44	103	32.45	52.62	15.18	1.86	---
" 38	" 6	1,971	0.42	100	62.57	3.26	72.53	1.77	---
" 39	" 7	1,920	0.38	99	41.72	52.96	12.13	1.68	0.0826
" 40	" 8	1,741	0.22	98	72.62	0.03	73.66	1.72	0.0893
" 41	" 9	1,946	0.65	86	27.83	28.65	9.74	2.32	---
" 42	" 10	1,997	0.68	87	47.14	22.11	46.80	2.16	---
" 43	" 11	2,048	0.56	89	41.31	6.13	24.51	2.31	0.0877
" 44	" 12	2,074	0.53	95	33.85	1.68	-21.02	2.09	0.0892
" 45	" 13	1,971	0.21	98	26.27	21.68	7.26	1.78	---
" 46	" 14	1,920	0.16	99	29.76	32.65	38.29	1.68	---
" 47	" 15	2,022	0.25	102	21.18	22.18	5.32	1.65	0.0831
" 48	" 16	2,074	0.33	99	37.33	4.69	-22.71	1.86	0.0864

【0193】

【表13】

比較例	水系塗料の製造		塗料特性		塗膜の特性					
	有機無機複合 顔料の種類	(cP)	粘度 安定性 (-)	貯蔵 (%)	60° 光沢度 (%)	L*値 (-)	a*値 (-)	b*値 (-)	耐光性 △E*値 (-)	透明性 (線吸収係数) (μm ⁻¹)
比較例21	比較例1	5,652	1.68	56	63.53	1.86	68.35	7.32	---	---
〃22	〃2	18,683	2.32	58	68.39	1.21	67.13	6.83	---	---
〃23	〃3	3,162	2.15	63	82.37	1.58	5.77	5.21	---	---
〃24	〃4	19,683	2.56	54	69.10	6.68	-22.72	6.38	---	---
〃25	〃5	4,683	1.63	63	66.97	2.19	-23.76	7.62	---	---
〃26	〃6	5,862	1.86	61	66.13	2.22	-20.56	6.66	---	---
〃27	〃7	15,623	2.92	56	60.50	1.01	-21.96	5.92	---	---
〃28	〃8	2,836	2.33	61	59.68	2.38	-20.36	6.31	---	---
〃29	〃9	18,632	2.14	53	38.44	15.24	-14.57	5.73	---	---
〃30	〃10	21,621	2.56	48	35.70	22.68	-11.49	7.83	---	---

【0194】

実施例49～64、比較例31～40：

有機無機複合顔料の種類を種々変化させた以外は、前記発明の実施の形態と同様にして樹脂組成物を得た。

【0195】

このときの製造条件及び得られた樹脂組成物の諸特性を表14及び表15に示す。

【0196】

【表14】

実施例	樹脂組成物の製造 有機無機複合 顔料の種類	樹脂組成物の特性					
		分散 状態 (-)	L*値 (-)	a*値 (-)	b*値 (-)	耐光性 △E*値 (-)	透明性 (線吸収係数) (μm ⁻¹)
実施例49	実施例1	5	18.62	8.93	-22.69	2.66	---
" 50	" 2	5	31.98	43.11	15.24	2.62	---
" 51	" 3	5	61.01	0.66	65.23	2.31	0.0832
" 52	" 4	5	19.85	5.24	-22.72	2.43	0.0816
" 53	" 5	5	32.29	46.32	14.73	1.86	---
" 54	" 6	5	60.61	1.16	64.24	1.63	---
" 55	" 7	5	35.00	51.63	8.76	1.65	0.0821
" 56	" 8	5	66.94	-1.03	65.20	1.32	0.0888
" 57	" 9	5	27.23	25.62	2.17	2.58	---
" 58	" 10	5	42.93	20.66	39.95	2.61	---
" 59	" 11	5	38.83	5.13	21.24	2.34	0.0862
" 60	" 12	5	33.79	2.16	-16.20	2.16	0.0832
" 61	" 13	5	21.16	21.21	5.13	1.12	---
" 62	" 14	5	27.49	30.66	35.18	1.44	---
" 63	" 15	5	18.09	19.62	-2.17	1.28	0.0813
" 64	" 16	5	33.79	1.68	-16.17	1.62	0.0883

【0197】

【表15】

比較例	樹脂組成物の製造 有機無機複合 顔料の種類	分散 状態 (-)	樹脂組成物の特性			
			L*値 (-)	a*値 (-)	b*値 (-)	耐光性 △E*値 (-)
比較例31	比較例1	2	58.93	0.08	67.57	7.62
" 32	" 2	3	60.16	0.19	65.23	7.82
" 33	" 3	2	90.31	1.01	-0.15	6.91
" 34	" 4	2	63.53	3.32	-23.25	6.66
" 35	" 5	2	57.32	1.68	-20.39	7.31
" 36	" 6	2	61.17	0.09	-18.19	7.26
" 37	" 7	3	59.44	0.29	-19.03	7.25
" 38	" 8	2	60.65	-0.88	-17.25	7.88
" 39	" 9	2	33.79	12.11	-12.54	6.96
" 40	" 10	3	31.32	16.23	-9.91	6.83

【0198】

【発明の効果】

本発明に係る有機無機複合顔料は、粒子表面に付着している有機顔料の脱離が抑制されており、しかも、無害であることから各種用途における着色顔料として好適である。

【0199】

本発明に係る塗料及び樹脂組成物は、有機顔料の脱離が抑制され、且つ、無害である有機無機複合顔料を着色顔料として用いることから、環境汚染を配慮した塗料及び樹脂組成物として好適である。

【書類名】 要約書

【要約】

【課題】 本発明は、白色無機粒子粉末の粒子表面からの有機顔料の脱離が抑制されており、且つ、有害な元素を含有しない有機無機複合顔料を提供する。

【解決手段】 白色無機粒子粉末の粒子表面に、アルコキシシランから生成するオルガノシラン化合物又はポリシリコサンが被覆され、該被覆に有機顔料が付着している有色付着層が2層以上形成されている平均粒子径0.01~10.0μmの複合粒子粉末からなり、前記有機顔料の付着量の総量が前記白色無機粒子粉末100重量部に対して1~500重量部である有機無機複合顔料並びに該有機無機複合顔料を塗料構成基材中に配合した塗料及び有機無機複合顔料を用いて着色した樹脂組成物である。

認定・付加情報

特許出願の番号	特願2001-101082
受付番号	50100476092
書類名	特許願
担当官	吉野 幸代 4243
作成日	平成13年 4月 3日

<認定情報・付加情報>

【提出日】 平成13年 3月30日

次頁無