Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2015

Física

Sèrie 5

L'examen consta d'una part comuna (problemes P1 i P2), que heu de fer obligatòriament, i d'una part optativa, de la qual heu d'escollir UNA de les dues opcions (A o B) i fer els problemes P3, P4 i P5 corresponents.

Cada problema val 2 punts.

PART COMUNA

P1) El 1877, l'astrònom Asaph Hall va descobrir els satèl·lits del planeta Mart: Fobos i Deimos. El dia 6 d'agost de 2012, el robot *Curiosity* va arribar al planeta Mart i des de llavors envia informació a la Terra sobre les característiques d'aquest planeta. A partir de les dades subministrades, calculeu:

- *a*) La massa del planeta Mart.
- b) El radi de l'òrbita de Deimos i la velocitat d'escapament del robot Curiosity des de la superfície del planeta.

Radi de Mart, $R_{\text{Mart}} = 3390 \text{ km}$ DADES:

Acceleració de la gravetat en la superfície de Mart, $g_{\text{Mart}} = 3,71 \text{ m s}^{-2}$

Període orbital de Deimos, $T_{\text{Deimos}} = 30,35 \text{ h}$

Massa de Deimos, $m_{\text{Deimos}} = 2 \times 10^{15} \text{ kg}$ $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

P2) Hem construït aquesta gràfica a partir de dades de freqüència recollides quan una font de so es movia acostant-se a nosaltres (velocitats positives) o allunyant-se'n (velocitats negatives), a velocitats diferents.

- *a*) Com s'anomena el fenomen que hem estudiat en aquest experiment? La font de so s'acosta a nosaltres amb un moviment rectilini uniforme (MRU) a 100 m s⁻¹ i ens sobrepassa. Quin canvi de freqüència (expressada en Hz) sentirem en el moment en què passi just pel nostre costat? La freqüència que sentirem augmentarà o disminuirà?
- **b**) La taula següent mostra com disminueix la intensitat sonora quan ens situem a diferents distàncies d'un emissor puntual de so.

Distància (m)	5,0	10,0	15,0	20,0	25,0	30,0	35,0
$I (mW m^{-2})$	0,080	0,020	0,0089	0,0050	0,0032	0,0022	0,0016

Calculeu a quina distància, aproximadament, haurem d'estar perquè el nivell de sensació sonora sigui de 65 dB i calculeu la potència de la font sonora, suposant que emet igual en totes les direccions.

DADA: Intensitat del llindar d'audició (0 dB), $I_0 = 1,00 \times 10^{-12} \,\mathrm{W m^{-2}}$

OPCIÓ A

- **P3)** El radó 222, de símbol Rn, és un gas noble responsable de bona part de l'exposició de les persones a les radiacions ionitzants. El ²²²Rn es forma al subsòl a partir del radi (Ra) i a causa del seu estat gasós es difon cap a l'atmosfera.
 - *a*) Quan el ²²²Rn es desintegra emet partícules α. Escriviu l'equació nuclear d'aquest procés de desintegració.
 - **b**) A més de la radiació α , durant el procés de desintegració també s'emeten raigs γ (no cal que els inclogueu en l'equació de l'apartat anterior). Calculeu la freqüència i la longitud d'ona d'un fotó γ d'energia 5,50 MeV.

DADES: Nombres atòmics: Bi, 83; Po, 84; At, 85; Rn, 86; Fr, 87; Ra, 88; Ac, 89. $1 \text{ eV} = 1,60 \times 10^{-19} \text{ J}$ Constant de Planck, $h = 6,63 \times 10^{-34} \text{ J s}$ Velocitat de la llum, $c = 3,00 \times 10^8 \text{ m s}^{-1}$

P4) Dues esferes metàl·liques massisses pengen cadascuna d'un fil no conductor, com mostra la figura. Les dues esferes tenen la mateixa massa i la mateixa càrrega negativa de valor -5,80 μC i es troben en equilibri formant un angle de 30° amb la vertical. La distància des del punt *P* fins al centre de cada esfera és d'1,00 m.

- a) Calculeu el valor de la massa de cadascuna de les esferes.
- b) Calculeu el camp elèctric total (mòdul, direcció i sentit) en el punt P.

DADES:
$$g = 9.81 \text{ m s}^{-2}$$

$$k = \frac{1}{4\pi\varepsilon_0} = 8,99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

- **P5)** En un selector de velocitats, un protó es mou en la direcció x en una regió amb camps creuats, on $E = 2,00 \times 10^5 \text{ N/C } j \text{ i } B = 3,00 \times 10^3 \text{ G } k$.
 - a) Dibuixeu un esquema dels camps i també de les forces que actuen sobre el protó. Quina és la velocitat del protó si no es desvia de la seva trajectòria rectilínia?
 - b) Mentre el protó es mou sense desviar-se interrompem el camp elèctric. Calculeu el radi de curvatura de la trajectòria del protó.

Dades:
$$1 \text{ T} = 10^4 \text{ G}$$

Càrrega del protó,
$$Q_{\text{protó}} = 1,60 \times 10^{-19} \,\text{C}$$

Massa del protó, $m_{\text{protó}} = 1,67 \times 10^{-27} \,\text{kg}$

Massa del protó,
$$m_{\text{protó}} = 1,67 \times 10^{-27} \text{ kg}$$

OPCIÓ B

P3) El copernici $_{112}^{277}$ Cn va ser sintetitzat al laboratori del Centre per a la Recerca d'Ions Pesants (GSI) de Darmstadt (Alemanya) el 9 de febrer del 1999. El nom oficial data del febrer del 2010, en honor de Nicolau Copèrnic. Per a obtenir-lo, es bombardeja una diana de plom amb projectils d'àtoms de zinc. La reacció es pot escriure així:

$${}^{208}_{a}\text{Pb} + {}^{70}_{b}\text{Zn} \rightarrow {}^{277}_{112}\text{Cn} + ?$$

El $^{277}_{112}$ Cn es desintegra segons la seqüència següent:

$$^{277}_{112}$$
Cn $\rightarrow ^{273}_{110}$ X +?

$$^{273}_{110}X \rightarrow ^{269}_{108}X + ?$$

$$^{269}_{108}X \rightarrow ^{265}_{106}X + ?$$

$$^{265}_{106}X \rightarrow ^{261}_{104}X + ?$$

$$^{261}_{104}X \rightarrow ^{257}_{102}X + ?$$

$$^{257}_{102}$$
X $\rightarrow ^{253}_{100}$ Fm +?

El ²⁷⁷₁₁₂Cn té un període de semidesintegració de 0,17 ms.

- *a*) Completeu la reacció d'obtenció del ²⁷⁷₁₁₂Cn a partir de plom i de zinc. Quin tant per cent de ²⁷⁷₁₁₂Cn roman sense desintegrar-se al cap d'un minut d'haver-se produït la reacció d'obtenció d'aquest isòtop?
- **b**) Escriviu la seqüència o sèrie radioactiva (amb tots els símbols dels elements) fins a arribar al fermi.

DADES:

$_{82}$ Pb	₁₁₀ Ds	₁₀₈ Hs	₁₀₆ Sg	₁₀₄ Rf	₁₀₂ No	₁₀₀ Fm	$_{_{30}}$ Zn
plom	darmstadti	hassi	seaborgi	rutherfordi	nobeli	fermi	zinc

- **P4)** En una zona de l'espai hi ha dues càrregues elèctriques puntuals de la mateixa magnitud però de signe contrari separades 20,0 cm.
 - a) Calculeu l'energia potencial de la distribució de càrregues.
 - **b**) Quin treball cal fer per a separar les càrregues des d'una distància inicial de 20,0 cm fins a una distància final de 50,0 cm?

Dades: Valor absolut de cada càrrega = 1,00 μC

$$k = \frac{1}{4\pi\varepsilon_0} = 8,99 \times 10^9 \,\mathrm{N m}^2 \,\mathrm{C}^{-2}$$

P5) En una zona de l'espai hi ha un camp magnètic uniforme de 0,40 T. En aquesta regió hi ha una espira circular de 200 cm² d'àrea que gira a 191 rpm (revolucions per minut), tal com indica la figura.

- a) Si en l'instant inicial el camp magnètic és perpendicular al pla de l'espira, expresseu l'equació del flux magnètic que travessa l'espira en funció del temps.
- b) Quina és la força electromotriu (FEM) màxima generada per l'espira?