第5章课后作业

1. 扩展右图中的 SDD, 使它可以像左图所示的那样处理表达式:

产生式	语义规则		产生式	语义规则
1) $L \to E \mathbf{n}$ 2) $E \to E_1 + T$	L.val = E.val $E.val = E_1.val + T.val$	1)	$T \to F T'$	T'.inh = F.val
3) $E \to T$	E.val = T.val	2)	$T' \to *F T_1'$	$T.val = T'.syn$ $T'_1.inh = T'.inh \times F.val$
4) $T \to T_1 * F$ 5) $T \to F$	$T.val = T_1.val \times F.val$ T.val = F.val			$T'.syn = T'_1.syn$
$6) F \to (E)$	F.val = E.val	3)	$T' \to \epsilon$	T'.syn = T'.inh
7) $F \to \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$	4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

2. 对于图中的 SDD, 给出 int x,y,z 对应的注释语法分析树:

产生式		语义规则		
1)	$D \to T L$	L.inh = T.type		
2)	$T o \mathbf{int}$	T.type = integer		
3)	$T \to \mathbf{float}$	T.type = float		
4)	$L \to L_1$, id	$L_1.inh = L.inh$		
		$addType(\mathbf{id}.entry, L.inh)$		
5)	$L o \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$		

3. 图中的 SDT 计算了一个由 0 和 1 组成的串的值,它把输入的符号串当做按照正二进制数来解释。改写这个 SDT,使得基础文法不再是左递归的,但仍然可以计算出整个输入串的相同的 B.val 的值:

$$B \rightarrow B_1 \ 0 \ \{B.val = 2 \times B_1.val\}$$

| $B_1 \ 1 \ \{B.val = 2 \times B_1.val + 1\}$
| $1 \ \{B.val = 1\}$