Lectures 1 & 2

Topics

- Introduction to Modulation
- Amplitude Modulation
- DSB-SC: Modulation & Demodulation
- Nonlinear Modulation

Reference Book

Modern Digital and Analog Communication Systems (B. P. Lathi)

Baseband Communication

Baseband Communication: The term *baseband* is used to designate the band of frequencies of the signal delivered by the source. In *baseband communication*, baseband signals are transferred directly, i.e., without any change in the range of frequencies of the signal.

Modulation/Carrier Communication

Modulation: During modulation, the baseband signal is shifted to a different frequency range using a carrier.

Why do we need modulation?

- To utilize the vast spectrum of frequencies available
- To use all the available bandwidth by modulating several baseband signals and shifting their spectra to non-overlapping bands (using Frequency Division Multiplexing (FDM))
- If the channel is a bandpass filter (cuts off high + low frequencies)
- If the wavelength of the signal to transmit is too large, a larger antenna is needed (length of an efficient antenna= 1/10th of wavelength)

Modulation/Carrier Communication

Carrier Communication: Communication that uses modulation to shift the frequency spectrum of a signal is known as carrier communication

Baseband Signal: m(t)

A m(+)

Carrier:

In baseband communication, m(t) is transmitted directly. In carrier communication, a high frequency carrier will be used. One of the basic parameters of the carrier (amplitude/phase/frequency) will be varied in proportion to the baseband signal m(t).

Amplitude Modulation

The amplitude of the carrier is varied w.r.t m(t)

Phase Modulation

The phase of the carrier is varied w.r.t m(t)

Frequency Modulation

The frequency of the carrier is varied w.r.t m(t)

Phase modulation and frequency modulation are similar in nature. Together, they are known as **angle modulation**.

Signal Multiplication

• **Amplitude Modulation:** The amplitude of the carrier is varied w.r.t m(t)

(phase + frequency constant) the original signal of the mc+ carrier this is the tion

• **Frequency Modulation:** The frequency of the carrier is varied w.r.t m(t)

(phase + amplitude constant)

A signal can be expressed as the summation of some other signals

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

 Similarly, a signal can be expressed as a summation of sine and cosine components. However, the actual components are unknown.

sinxsin2x -> If integrated within appropriate interval $sinexsin x \longrightarrow sin^2 x \longrightarrow |off(x)|$, then Integration will yield a nonzeno value

Let, mootigaz $f(\alpha) = \alpha_1 + \alpha_2$ If cosx is a component $|\cos x(f(x))| \neq 0$ => (cosx (x1+x2) 7 0 And, if cosx is not a component of f(x), then $(\cos x (x_1 + x_2) = 0$

Let, $m(+) = 15\cos 3x + 14\cos 2x$ By applying Brute force : 1 Multiplying with cosx: 15 cos 3x cosx + 14cos 2x cosx After integration -> 0 2 Multiplying with cos3x: 15 cos23x + 14 cos2x cos3x This part will yield nonzero result after integration Now that we already know that m(+) contains cos 3x, we can use this knowledge to find the coefficient of cos3x. 15 cos23x Cos232

```
Baseband signal = m(t)
M(\omega) = \int_{-\infty}^{\infty} m(t) e^{-j\omega t} dt 80 e^{j\theta} = \cos\theta + j\sin\theta
 Cannier = Acos (wc++ 0)
           For simplification, we will only consider cos(we++)
           If phase is constant, then we can only use
           coswat
So, the signal to be transmitted is: m(t) coswct
```

Now,
$$e^{j\theta} = \cos\theta + j\sin\theta$$

50, $e^{j\omega_c t} = \cos\omega_c t + j\sin\omega_c t$
 $(t) e^{-j\omega_c t} = \cos\omega_c t - j\sin\omega_c t$
 $e^{j\omega_c t} + e^{-j\omega_c t} = 2\cos\omega_c t$
 $\Rightarrow \cos\omega_c t = \frac{1}{2} (e^{j\omega_c t} + e^{-j\omega_c t})$

Now, the transmitted signal $\Rightarrow m(t)\cos\omega_c t$
 $= \frac{1}{2} m(t) (e^{j\omega_c t} + e^{-j\omega_c t})$
 $= \frac{1}{2} m(t) e^{j\omega_c t} + \frac{1}{2} m(t) e^{-j\omega_c t}$

1st component 2nd component

For the 1st component, if we take four ier transform
$$\Rightarrow$$
 $M_1(\omega) = \int_{-\infty}^{\infty} \frac{1}{2} m(t) e^{j\omega_c t} e^{-j\omega_c t} dt$
 $= \frac{1}{2} \int_{-\infty}^{\infty} m(t) e^{-j(\omega_c t)} dt$
 $= \frac{1}{2} \int_{-\infty}^{\infty} m(\omega_c t) e^{-j(\omega_c t)} dt$

For the second component, after taking tourier transform
$$M_2(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} m(t) e^{-j\omega_c t} e^{-j\omega_c t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} m(t) e^{-j(\omega_c t)} dt$$

$$= \frac{1}{2} M(\omega + \omega_c)$$
After modulation,
$$\frac{1}{2} M(\omega - \omega_c) + \frac{1}{2} M(\omega + \omega_c)$$

```
Demodulation:
   m(+) cosunt of cosuct
 = m(+) \cos^2 \omega c +
= m(t) \left[ \frac{1}{2} \left( 1 + \cos 2w_{c} t \right) \right]
 =\frac{1}{2}m(t)+\frac{1}{2}m(t)\cos 2w_ct
\Rightarrow \frac{1}{2}M(\omega) + \frac{1}{4}M(\omega + 2\omega_c) + \frac{1}{4}M(\omega - 2\omega_c)
                   In frequency domain
```


DSB-SC: Double Sideband - Suppressed Carrier

Here, the carrier is not sent separately

Modulation: Multiplying with cosωct

Demodulation: Multiplying with cosωct

Here,

- Demodulation needs multiplication (but multiplication is costly!!)
- Multiplier has to be a perfect match
- Also known as synchronized/coherent detection

To solve the problems associated with synchronized detection

- **DSB-WC (with carrier):** Demodulation can also be done using envelope detection, which is less costly compared to coherent detection
- Next Class (Lecture 3)

Amplitude Modulation: Nonlinear DSB-SC Modulation

If we want to eliminate multiplication from the modulation part, we can use a nonlinear DSB-SC modulator

Nonlinear modulators! i multiply without multiply in a. y, (+) = a x, (+) + b x, 2 (+) - (i) $/2(+) = a \times_2(+) + b \times_2(+) - (ii)$ Now) Z(+) = y,(+) - y2(+) $= \left[a_{x_1}(t) + b_{x_1}^2(t) - \left[a_{x_2}(t) + b_{x_2}^2(t) \right] \right]$ Now, x1 = coswet + m(+) x2 = cos wet - mct) Z(+) = a cosfuct - a cosfuct + a m(+) + a m(+) +b (eos wet + m(+))2-b(cos wet-mc+) = 2 am(t) + b (coswet +m(t))2 - (coswet-m(t)) = 2 amct) + Am 4 b mct) cos coct -> (effectively , no multiplying

Amplitude Modulation: Nonlinear DSB-SC Modulation

