Stata, Exemplo Prático I

Heitor Lima

Métodos Quantitativos para Avaliação de Políticas Públicas - MPP - 2023

Professora: Letícia Nunes

Insper Instituto de Ensino e Pesquisa

heitoraol@al.insper.edu.br

Informações Gerais

1. Links úteis

- Exemplo de teste de médias utilizado nestes slides: Link
- Base de dados utilizada nestes slides: Link (baixar a base de 2022)
- Documentação oficial do comando ttest do Stata: Link

Teste de Médias

Contexto e Base de Dados

Um teste de hipótese muito comum é o teste de diferença de média (mean difference)

- Dada uma amostra, dois subgrupos são selecionados
- Calcula-se a média de alguma v.a. para cada subgrupo
- Objetivo: Testar se a diferença entre as médias é significante

Usaremos os dados da *General Social Survey 2022*, uma pesquisa abrangente feita com americanos aleatoriamente selecionados

- Subgrupos: Homens e mulheres
- V.A. selecionada: horas trabalhadas
- Objetivo: Testar se a diferença entre as médias de horas trabalhadas entre homens e mulheres é significante

Médias de Horas Trabalhadas na Amostra

Pergunta de pesquisa: Homens trabalham mais do que mulheres?

- Usamos o comando table para verificar as médias de horas trabalhadas na amostra
- Na amostra, homens trabalham 4.5 horas a mais que mulheres, em média

Teste t para Dois Grupos

Podemos dizer que, em toda a população dos EUA, homens trabalham 4.5 horas a mais que mulheres?

ullet Para responder a esta pergunta, usaremos o teste t para dois grupos

A hipótese nula é definida como zero, ou seja, a diferença $(\hat{\mu})$ entre a média de horas trabalhadas por homens (μ_h) e mulheres (μ_m) é zero

•
$$H_0: \hat{\mu} = \mu_h - \mu_m = 0$$

Intuição: Se H_0 for verdadeira, e tomássemos amostras aleatórias de 1,927 indivíduos, com que frequência veríamos $\hat{\mu}=4.5$ apenas por acaso?

- A medida da frequência com que vemos tal diferença apenas por conta de amostragem aleatória (por acaso) é o valor-p (p-value)
 - → Bussab e Morettin (2017, cap. 12), Wooldridge (2013, Apêndice C)

Teste t para Dois Grupos

No Stata, usamos o comando ttest para calcular o $\emph{p-value}$ e a estatística \emph{t}

. ttest hrs1, by(sex)											
Two-sample t test with equal variances											
Variable	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]					
male female	953 974	42.48269 37.96201	.4627338 .4365433	14.28491 13.62407	41.57459 37.10534	43.39078 38.81869					
Combined	1,927	40.19772	.3219576	14.13317	39.56629	40.82914					
diff		4.520674	.6358263		3.273693	5.767655					
diff = mean(male) - mean(female) t = 7.109 H0: diff = 0 Degrees of freedom = 192											
	iff < 0) = 1.0000	Pr(Ha: diff != T > t) = (Ha: diff > 0 Pr(T > t) = 0.0000							

Teste t para Dois Grupos

A diferença média é de 4.521. A estatística t é obtida pela fórmula padrão:

$$t = \frac{\hat{\mu} - \mu_0}{\hat{SE}(\hat{\mu})} = \frac{4.521 - 0}{.636} = 7.11$$

Na parte de baixo da imagem, vemos os testes de significância

- Note que H_0 considera como verdade a hipótese de que $\hat{\mu}=0$
- O Stata mostra as três possibilidades de hipótese alternativa
- A mais importante é a do meio, que testa se o parâmetro estimado é diferente de zero
- O *p-value* é igual a 0.0000

Teste t para Dois Grupos: Interpretação

- Se nossa hipótese inicial fosse verdadeira, ou seja, se de fato a diferença entre horas trabalhadas por homens e mulheres fosse igual a zero...
- ... veríamos uma diferença de 4.521 menos de 1 vez a cada 10,000 amostragens aleatórias (por acaso)
 - Ou seja, veríamos $\hat{\mu}=4.521$ (ou algo próximo disso) várias vezes. Isso não é "por acaso", mas sim uma característica consistente da população
- Portanto, a conclusão mais razoável é que, de fato, há uma diferença de 4.521 também na população
- Se o p-value fosse 0.2534, veríamos uma diferença de 4.521 em 25 a cada 100 vezes, apenas devido à amostragem aleatória, mesmo que não houvesse tal diferença na população
- Nesses casos, não podemos rejeitar H_0 , pois pode ser que de fato a diferença na população seja zero

Regressão Linear Simples

Regressão Linear Simples

Com os mesmos dados, vamos regredir salário em educação

• Faremos a análise apenas para mulheres, controlando para número de filhos e idade

. global controls childs age													
. reg income educ \$controls if sex==2													
Source	SS	df	MS	Numbe	er of obs	=	1,591						
				- F(3,	1587)	=	39.49						
Model	535.067504	3	178.355835	Prob	> F	=	0.0000						
Residual	7167.43658	1,587	4.51634315	R-sq	uared	=	0.0695						
				- Adj I	R-squared	=	0.0677						
Total	7702.50409	1,590	4.84434219	Root	MSE	=	2.1252						
income	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]						
educ	.1884968	.01854	10.17	0.000	.15213	14	.2248622						
childs	0581465	.034842	-1.67	0.095	12648	77	.0101947						
age	.0031658	.0031323	1.01	0.312	00297	82	.0093097						
_cons	8.366243	.3090597	27.07	0.000	7.7600	34	8.972451						

Regressão Linear Simples: Interpretação

- Um ano adicional de educação está positivamente correlacionado com a renda: +0.188 desvio padrão de renda
 - p-value menor que 0.05, i.e., o parâmetro é estatisticamente significante a 5%
- Um(a) filho(a) a mais está negativamente correlacionado(a) com a renda: -0.058 desvio padrão de renda
 - p-value maior que 0.05, i.e., o parâmetro não é estatisticamente significante a 5%
- Um ano adicional na idade está positivamente correlacionado com a renda: +0.003 desvio padrão de renda
 - p-value maior que 0.05, i.e., o parâmetro não é estatisticamente significante a 5%
- Podemos dizer que estas relações são causais?
 - Dificilmente! Apesar de ser uma amostra dita aleatória, seria necessário realizar verificações adicionais que garantissem aleatoriedade de características específicas

Referências

Referências

 $\operatorname{Bussab}, \operatorname{W.}, \operatorname{e} \operatorname{P.}$ Morettin (2017). Estatística Básica. 9 ed. São Paulo: Saraiva.

WOOLDRIDGE, J. (2013). Introductory Econometrics: A Modern Approach. 5th ed. Andover, UK: Cengage.

Notas de aula da Profa. Letícia Nunes.