FIZIKA PLAZME

Povijesni pregled

Empedoklo prepoznaje postojanje četiri elementa, vatra, voda, zemlja, zrak.

Sir William Crookes prvi je plazmu znanstveno opisao 1879. godine.

Jan Evangelista Purkinje – sredinom 19og stoljeća prvi upotrijebio izraz "plazma"

Definicija plazme

Ionizirani plin, posebno agregatno stanje tvari.

Barem jedan elektron je odvojen od svojeg atoma ili svoje molekule. Zbog slobodnih nabijenih čestica dobar je vodič električne struje

Kvazineutralna – u cjelini ne posjeduje naboj, ali dijelovi su električki nabijeni.

Čestice u plazmi tvore zajedničko elektromagnetsko polje, svaka čestica reagira sa svim ostalim česticama - **skupno međudjelovanje.**

Plazma se definira sljedećim uvjetima

- Električki nabijene čestice trebaju biti dovoljno blizu da bi mogle međusobno djelovati –
 Deby-eva sfera
- Plazma je kvazineutralna
- Plazmena frekvencija je mnogo veća od sudarne frekvencije

Plazma je u termodinamičkoj ravnoteži ako sve vrste čestica imaju istu temperaturu. Ako je u ravnoteži i u Deby-evoj sferi se nalazi veliki broj čestica, ponaša se kao **idealni plin.**

Plazma je **magnetizirana** ako je sudarna frekvencija mnogo manja od ciklotronske frekvencije.

Niskotemperaturna plazma – relativno niska temperatura, postoji i visokotemperaturna.

Karakteristični parametri plazme

Opisi plazmenih sustava

- Jednočestični pristup prati se gibanje jedne čestice u zadanom električnom i magnetskom polju i na temelju toga se zaključuje o ponašanju cijelog sustava, može ako je plazma niske gustoće
- 2. Kad su dimenzije plazmenog sustava mnogo veće od srednje udaljenosti čestica, imamo **hidrodinamički pristup**. Najjednostavniji je magnetohidrodinamički pristup. Ako nema promjena temperature, gustoće, tlaka ili brzine u vremenu, sustav je stacionaran i opisuje se magnetohidrostatičkom aproksimacijom.
- 3. Kad plazmu opisujemo hidrodinamikom, potrebno je voditi brigu o različitom ponašanju različitih vrsta čestica. To se može raditi dvokomponentnim ili višekomponentnim modelima, najpoznatiji je **Schutlerov 2-komponentni opis**
- 4. Kinetička teorija

Procesi ionizacije i rekombinacije

Pri ionizaciji atoma potrebno je elektronu predati energiju dovoljnu za prijelaz iz vezanog u slobodno stanje, imamo više načina:

- 1. Neelastični sudar dvaju atoma
- 2. Neelastični sudar atoma i elektrona
- 3. Apsorpcijom fotona

Procesi su i reverzibilni, rekombinacija. Ionizacija može biti **sudarna**, ako nastaje sudarima ili **fotoionizacija**, ako nastaje apsorpcijom fotona.

Glavni kvantni broj – n, broj neke staze u atomu, na koju dolazi čestica nakon dovedene određene količine energije.

Energija osnovnog stanja (n=1) – energija vezanja elektrona u atomu vodika ili energija koju je potrebno uložiti da bi se elektron oslobodio iz atoma. Energija ionizacije.

Osnovni parametri plazmenih sustava

Gustoća čestica:

Elektroni i ioni drugačije reagiraju na elektromagnetske sile, njihove gustoće se razmatraju kao neovisne varijable. Plazma ne može biti okarakterizirana samo jednom gustoćom.

Temperatura:

Proporcionalna srednjoj kinetičkoj energiji čestice. Mjeri se u elektronvoltima.

Magnetsko polje:

Mjeri se u T (Tesla).

Bezdimenzionalni parametri

Plazmeni parametar:

Omjer tlaka plazme i magnetskog tlaka.

Reynoldsov broj:

Odnos konvektivnog gibanja magnetoplazme i difuzije magnetskog polja.

Alfvenov broj:

Omjer dinamičkog tlaka plazme i magnetskog tlaka.

Omjer elektronske plazmene frekvencije i elektronske ciklotronske frekvencije.

Kolektivna svojstva plazme

Elektronska plazmena frekvencija

Ako premjestimo elektron u neku poziciju, on se vraća natrag i nastavlja titrati oko ravnotežnog položaja. Frekvencija tog titranja je elektronska plazmena frekvencija.

Deby-eva duljina

Doseg električnog polja nekog naboja u plazmi.

Elektrostatski plazmeni valovi

Ako zatitramo grupu elektrona u nekoj točki prostora, stvara se promjenjivo električno polje i dolazi do poremećaja naboja. Nastaje elektrostatski val koji titra plazmenom frekvencijom- Langmuirov val

Landauovo prigušenje

Čestica se giba brzinom bliskom brzini gibanja langmuirova vala. To je slučaj rezonancije, pa val i čestica međudjeluju. Landauovo prigušenje – dolazi do razmjene energije jedne čestice i kolektivnog poremećaja koji predstavlja val.

Ponašanje jedne čestice – dvočestični sudar

Svaka nabijena čestica u plazmi istodobno doživljava sudar s mnoštvom čestica podjednakim intenzitetom. Tek vrlo rijetko dolazi do dvočestičnog sudara. Ovo svojstvo nam pokazuje da je za opis plazmenog sustava pogodniji kolektivni pristup.

Spitzerova vodljivost

Vodljivost koja se temelji samo na razmatranju dvojnih sudara.

Anomalna vodljivost – kad su pobuđeni elektrostatski valovi te dolazi do raspršenja elektrona i na električnom polju vala, povećava se efektivna učestalost sudara pa je vodljivost manja od spitzerove.

Proces bježanja elektrona

Pojavi li se dovoljno jako vanjsko električno polje i ako se elektroni dovoljno ubrzaju, oni pobjegnu iz sustava. Elektroneutralnost se uspostavlja povratnom strujom u ostatku plazme za koju nije uspostavljen režim bježanja – tzv. **pozadinska plazma.**

Efekt masovnog bježanja počinje ako elektroni između dva uzastopna sudara dobiju energiju veću od termičke.

Gibanje nabijene čestice u homogenom magnetskom polju

Na česticu djeluje Lorentzova sila, koja je okomita na smjer brzine, pozitivno nabijene čestice kruže u smjeru kazaljke na satu. U smjeru silnica čestica se giba konstantnom brzinom. Superpozicijom ovih dvaju gibanja dobijemo helikoidu.