DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat (c) 2003 EPO. All rts. reserv.

17312084

Basic Patent (No,Kind,Date): JP 2001267264 A2 20010928 <No. of Patents: 001>

EQUIPMENT AND METHOD FOR HEAT TREATMENT (English)

Patent Assignee: SONY CORP

Author (Inventor): HORIUCHI ATSUSHI; UGAJIN HAJIME

IPC: *H01L-021/26; C21D-001/34; C21D-001/74; C21D-001/76; F27D-007/02

Derwent WPI Acc No: C 02-100192 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

APR 257003 JP 2001267264 A2 20010928 20000322 (BASIC) JP 200079481

Priority Data (No,Kind,Date): JP 200079481 A 20000322 DIALOG(R)File 347:JAPIO

(c) 2003 JPO & JAPIO. All rts. reserv.

07039630

Image available

EQUIPMENT AND METHOD FOR HEAT TREATMENT

PUB. NO.:

2001-267264 [JP 2001267264 A]

PUBLISHED:

September 28, 2001 (20010928)

INVENTOR(s): HORIUCHI ATSUSHI

UGAJIN HAJIME

APPLICANT(s): SONY CORP

APPL. NO.:

2000-079481 [JP 200079481]

FILED:

March 22, 2000 (20000322)

INTL CLASS:

H01L-021/26; C21D-001/34; C21D-001/74; C21D-001/76;

F27D-007/02

ABSTRACT

PROBLEM TO BE SOLVED: To enhance uniformity in the in-plane temperature distribution of a substrate at the time of heat treatment without sacrifice of the substitutability or controllability of atmosphere in a heat treatment furnace.

SOLUTION: A first introduction pipe 7 for introducing an inert gas of a temperature higher than normal temperature to the side of a quartz chamber 2 and a second introduction pipe 8 for introducing an inert gas of normal temperature into the quartz chamber 2 are provided while being connected at the parts of first and second gas introduction holes 7a, 8a, respectively. When a wafer 1 is irradiated with light emitted from halogen lamps 3, 4 and heated, preheated inert gas having a temperature higher than normal temperature is supplied through the second introduction pipe 8 and the second gas introduction hole 8a into the quartz chamber 2.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-267264 (P2001-267264A)

(43)公開日 平成13年9月28日(2001.9.28)

(51) Int.Cl.7		徽別記号		FI			テーマコード(参考)	
H01L	21/26			C 2 1	D 1/34		R	4K063
C 2 1 D	1/34						101	
		101			1/74		K	
	1/74						R	
					1/76		L	
			審查請求	未請求	請求項の数20	OL	(全 7 頁)	最終頁に続く

(21)出願番号 特顧2000-79481(P2000-79481)

(22)出顧日 平成12年3月22日(2000.3.22)

(71)出題人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 堀内 淳

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 宇賀神 肇

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100082762

弁理士 杉浦 正知

Fターム(参考) 4K063 AA05 AA12 BA12 CA03 CA08

DA05 DA13

(54) 【発明の名称】 熱処理装置および熱処理方法

(57)【要約】

【課題】 熱処理炉内の雰囲気の置換性や制御性を損なうことなく、熱処理における基板の面内温度分布の均一性の向上を図る。

【解決手段】 石英チャンバー2の側部に、常温より高温の不活性ガスを導入するための第1の導入管7および、常温の不活性ガスを石英チャンバー2内に導入するための第2の導入管8を、それぞれ第1のガス導入孔7aおよび第2のガス導入孔8aの部分で接続して設ける。ハロゲンランプ3、4から放射光を照射してウェーハ1を加熱する際に、あらかじめ加熱された常温より高温の不活性ガスを、第1の気体導入管8および第1の気体導入孔8aを通じて石英チャンバー2内に供給する。

【特許請求の範囲】

【請求項1】 基板の熱処理を行う熱処理炉と、

上記熱処理炉内にガスを供給するガス導入孔とを有する 熱処理装置において。

第1のガス導入孔を通じて、室温より高温のガスを上記 熱処理炉内に供給可能に構成されていることを特徴とす る熱処理装置。

【請求項2】 上記熱処理炉の外側に、基板加熱用のランプが設けられていることを特徴とする請求項1記載の熱処理装置。

【請求項3】 上記室温より高温のガスの温度が、上記 基板の熱処理温度とほぼ等しい温度であることを特徴と する請求項1記載の熱処理装置。

【請求項4】 上記熱処理炉内にガスを導入する第2のガス導入孔をさらに有し、上記第2のガス導入孔を通じて室温のガスを上記熱処理炉内に供給可能に構成されていることを特徴とする請求項1記載の熱処理装置。

【請求項5】 熱処理炉内に供給されるガスを、500 ℃以上1100℃以下の温度に加熱可能に構成されるガス加熱手段を有することを特像とする請求項1記載の熱 20 処理装置。

【請求項6】 上記室温より高温のガスを、5リットル /分以上の流量で上記熱処理炉内に供給可能に構成され ていることを特徴とする請求項1記載の熱処理装置。

【請求項7】 上記第1のガス導入孔にガス導入管が接続され、上記ガス導入管の内部に上記ガスを流しつつ上記ガス導入管の部分を加熱可能に構成されていることを特徴とする請求項1記載の熱処理装置。

【請求項8】 上記第1のガス導入孔にガス導入管が接続され、上記ガス導入管がらせん状の部分を有し、上記 30 ガス導入管内にガスを流しつつ、上記ガス導入管の部分を加熱可能に構成されていることを特徴とする請求項1 記載の熱処理装置。

【請求項9】 上記熱処理を、上記基板を静止させた状態で行うように構成されていることを特徴とする請求項 1記載の熱処理装置。

【請求項10】 上記熱処理装置が枚葉式であることを 特徴とする請求項1記載の熱処理装置。

【請求項11】 上記室温より高温のガスが不活性ガスであることを特徴とする請求項1記載の熱処理装置。

【請求項12】 熱処理炉内において基板の熱処理を行うようにした熱処理方法において、

少なくとも上記基板の熱処理を行う間、上記熱処理炉内 に、室温より高温のガスを供給するようにしたことを特 徴とする熱処理方法。

【請求項13】 上記熱処理を、加熱用ランプを用いて 行うようにしたことを特徴とする請求項12記載の熱処 理方法。

【請求項14】 上記加熱用ランプを用いた熱処理後、 上記基板の温度が所定の温度になるまでの間に、上記熱 50 理炉内に供給するガスを、上記室温より高温のガスから 室温のガスに切り替えるようにしたことを特徴とする請 求項13記載の熱処理方法。

【請求項15】 上記室温より高温のガスの温度が、上記基板の熱処理温度とほぼ等しい温度であることを特徴とする請求項12記載の熱処理方法。

【請求項16】 上記室温より高温のガスの温度が50 0℃以上1100℃以下であることを特徴とする請求項 12記載の熱処理方法。

【請求項17】 上記室温より高温のガスを、5リットル/分以上の流量で上記熱処理炉内に供給するようにしたことを特徴とする請求項12記載の熱処理方法。

【請求項18】 上記熱処理を始める時点まで上記熱処理炉内に室温のガスを導入し、上記熱処理を始めた時点から、上記基板が所定の温度になるまでの間に、上記室温のガスから上記室温より高温のガスに切り替えるようにしたことを特徴とする請求項12記載の熱処理方法。

【請求項19】 上記基板の熱処理を枚葉式に行うようにしたことを特徴とする請求項12記載の熱処理方法。 【請求項20】 上記室温より高温のガスが不活性ガス

であることを特徴とする請求項12記載の熱処理方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、熱処理装置に関し、特に、高温において急速熱処理を行う際に用いられるランプ加熱装置に適用して好適なものである。

[0002]

40

【従来の技術】半導体デバイスにおける素子の微細化に 伴い、サーマルバジェットを低減させるために、高温で 短時間の熱処理を行うランプ加熱装置が用いられてきて いる。

【0003】このようなランプ加熱装置の従来技術によるものを以下に具体的に説明する。図4に従来技術による枚葉式ランプ加熱装置を示す。図4Aは、この枚葉式ランプ加熱装置の横断面を示し、図4Bはその上面図を示す。

【0004】図4Aおよび図4Bに示すように、従来の枚葉式ランプ加熱装置は、ウェーハ101を載置するための石英からなるサセプタ102aが設けられた石英チャンバー102を有し、この石英チャンバー102の上方および下方にそれぞれハロゲンランプ103、104が設けられている。石英チャンバー102の一方の側部には、フランジを兼用した開閉可能なウェーハ搬送用ドア105が設けられており、その下部にガス排気管106が設けられている。また、石英チャンバー102の他方の側部には、所定のガスを導入するためのガス導入孔107aにガス導入管107が接続されている。

【0005】このランプ加熱装置を用いて、ウェーハ1 01を加熱する場合には、まず、ウェーハ101を石英 チャンバー102の内部に搬送し、サセプタ102a上に載置する。その後、上方のハロゲンランプ103と下方のハロゲンバルブ104とからの放射光をウェーハ101に照射することにより、加熱を行う。

【0006】上述の枚葉式ランプ加熱装置の主な特徴としては、石英チャンバー102がコールドウォールである点、石英チャンバー102の容積が小さい点などが挙げられる。これらの点により、バッチ式の拡散炉のように酸素を巻き込むことがないので、石英チャンバー102内の置換性および制御性が非常に優れているという利にを有する。例えば、窒素(N2)アニールを行う場合、石英チャンバー102の内部のO2ガスは、数10秒間のN2パージを行うことによって1ppm以下に制御することが可能である。そのため、ランプ加熱装置は、チタン(Ti)やコバルト(Co)などの酸素フリーのアニールプロセスに用いられる。

【0007】ところで、図4に示すように、石英チャンバー102の内部の雰囲気ガスは、ガス導入管107およびガス導入孔107aを順次通じて石英チャンバー102内に供給される。この雰囲気ガスの流量は、パージ20中およびクーリング中において、10~301/minであり、加熱処理中において、2~51/minである。なお、図4中に示す矢印は、石英チャンバー102の内部においてN2ガスの流れる向きを示す。

[0008]

【発明が解決しようとする課題】しかしながら、上述の 枚葉式ランプ加熱装置には次のような問題があった。す なわち、ウェーハ101の加熱処理においては、コール ドウォールの石英チャンバー102内に室温以下の温度 の不活性ガスを流している。これにより、ウェーハ10 1の加熱処理に影響を与える場合がある。

【0009】具体的に、例えば、表面にCoが成膜されたウェーハ101に対して、上述の従来のランプ加熱装置を用いて500℃の温度で30秒間、加熱処理を行った後、そのシート抵抗分布を測定した場合を考える。この加熱処理後のシート抵抗分布を図5に示す。なお、図5において、矢印は不活性ガスの流れる方向であり、その上流にガス導入孔107aが設けられている。また、+が記された領域はシート抵抗の高い領域、-が記された領域はシート抵抗の低い領域を示す。

【0010】図5から、Coが成膜されたウェーハ101において、ガス導入孔107aに近いほどシート抵抗の値が高くなっており、さらにシート抵抗の変化も急峻であることがわかる。そして、ウェーハ101表面のシート抵抗に不均一性が生じていることがわかる。

【0011】この点に関する本発明者の知見によれば、シート抵抗の高い領域がウェーハ101の温度の低い領域、シート抵抗の低い領域がウェーハ101の温度の高い領域であることから、図5に示すシート抵抗の不均一性は、石英チャンバー102の内部に導入される雰囲気

ガスにより、ウェーハ101が冷却され、ウェーハ10 1面内において温度差が生じてしまうことが原因の一つ である。

【0012】そこで、この温度差を解消し、温度分布の 劣化を補正するために、加熱用ランプの強度分布を変え る方法や、加熱中にウェーハ101を回転させる方法が 提案されている。

【0013】しかしながら、加熱用ランプの強度分布を変える方法においては、加熱用ランプの強度分布を、温度別、ガス流量別に変える必要が生じる。また、加熱中にウェーハ101を回転させる方法においては、温度分布の均一性を確保することができる反面、石英チャンバー102内に回転機構を設ける必要が生じ、その内部の構造が複雑になってしまう。この内部構造の複雑化により、枚葉式ランプ加熱装置の利点である、石英チャンバー102内の雰囲気の置換性や制御性を損なうことになってしまう。

【0014】そのため、石英チャンバー102などの熱処理炉を有する熱処理装置において、その内部の雰囲気の置換性や制御性を損なうことなく、ウェーハ101などの基板表面の温度分布の均一性を向上することができる技術の開発が望まれている。

【0015】したがって、この発明の目的は、複雑な機構を用いることなく、熱処理炉内の雰囲気の置換性や制御性を損なわずに、基板における温度分布の均一性を向上させることができる熱処理装置および熱処理方法を提供することにある。

[0016]

【課題を解決するための手段】上記目的を達成するために、この発明の第1の発明は、基板の熱処理を行う熱処理炉と、熱処理炉内にガスを供給するガス導入孔とを有する熱処理装置において、第1のガス導入孔を通じて、室温より高温のガスを熱処理炉内に供給可能に構成されていることを特徴とするものである。

【0017】この第1の発明において、典型的には、熱処理炉の外側に、基板を加熱するための加熱用ランプが設けられている。また、この第1の発明において、典型的には、加熱用ランプはハロゲンランプであるが、アークランプを用いることも可能であり、必要に応じて、キセノンフラッシュランプを用いることも可能である。

【0018】この第1の発明において、加熱時における 基板の温度分布の均一性を向上させるために、典型的に は、室温より高温のガスの温度は、基板の熱処理温度と ほぼ等しい温度である。

【0019】この第1の発明において、典型的には、熱処理装置は、熱処理炉内にガスを導入する第2のガス導入孔をさらに有し、第2のガス導入孔を通じて室温のガスを熱処理炉内に供給可能に構成されている。

【0020】この第1の発明において、典型的には、熱処理装置は、熱処理炉内に供給されるガスを500℃以

上1100℃以下の温度に加熱可能に構成されるガス加 熱手段を有する。

【0021】この第1の発明において、典型的には、熱処理装置は、室温より高温のガスを、その流量が5リットル/分以上になるように熱処理炉内に供給可能に構成されている。

【0022】この第1の発明において、典型的には、熱処理装置は、第1のガス導入孔に接続されているガス導入管の内部にガスを流しつつ、このガス導入管の部分を加熱することにより、室温より高温のガスを熱処理炉内 10に供給可能に構成されている。

【0023】この第1の発明において、典型的には、熱処理装置は、第1のガス導入孔に接続されたガス導入管が、らせん状の部分を有し、このガス導入管にガスを流しつつ、ガス導入管のらせん状の部分を加熱することにより、室温より高温のガスを熱処理炉内に供給可能に構成されている。

【0024】この第1の発明において、典型的には、熱処理装置は、枚葉式熱処理装置であり、好適には枚葉式ランプ加熱装置であるが、必要に応じて、バッチ式の熱 20 処理装置とすることも可能である。

【0025】この発明の第2の発明は、熱処理炉内において基板の熱処理を行うようにした熱処理方法において、基板の熱処理を行う間、熱処理炉内に、室温より高温のガスを供給するようにしたことを特徴とするものである。

【0026】この第2の発明において、典型的には、室温より高温のガスの温度は、500℃以上1100℃以下である。

【0027】この第2の発明において、典型的には、室 30 温より高温のガスを、5リットル/分以上の流量で熱処理炉内に供給する。

【0028】この第2の発明において、典型的には、基板に対する熱処理を行う間、熱処理炉内に室温より高温のガスを供給し、基板に対する熱処理を行った後、基板が降温されている間に室温より高温のガスから室温のガスに切り替えるようにする。

【0029】この第2の発明において、典型的には、基板の熱処理を、加熱用ランプを用いて行うようにする。 また、基板の熱処理は、基板を静止させた状態で行うようにする。

【0030】この第2の発明において、典型的には、加熱用ランプを用いた熱処理を停止した後、少なくとも基板が熱処理前の温度になるまでの間に、熱処理炉内に供給するガスを、室温より高温のガスから室温のガスに切り替えるようにする。

【0031】この第2の発明において、典型的には、基板の熱処理を枚葉式に行うようにする。

【0032】この第2の発明において、好適には、加熱 用ランプによる基板の加熱を開始した後から停止するま 50 での間、熱処理炉内に室温より高温のガスを供給する。 【0033】この発明において、典型的には、基板に対する熱処理を、基板を静止させた状態で行うようにする。

【0034】この発明において、典型的には、室温より 高温のガスの温度は、基板の熱処理温度とほぼ等しい温 度である。

【0035】この発明において、基板と反応させることなく基板の熱処理を行うために、典型的には、室温より高温のガスは、窒素ガスやアルゴンガスなどの不活性ガスであるが、加熱することによる支障がないガスであれば、これらのガス以外のガスを用いることも可能である。

【0036】上述のように構成された、この発明による 熱処理装置および熱処理方法によれば、熱処理炉内において基板の熱処理を行っている間、この熱処理炉内に室 温より高温のガスを導入するようにしていることによ り、導入されたガスによって基板が部分的に冷却される のを防止することができるので、基板自体の部分的な温 度低下を抑制することができる。

[0037]

【発明の実施の形態】以下、この発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。

【0038】まず、この発明の一実施形態による枚葉式ランプ加熱装置について説明する。図1Aはこの一実施形態による枚葉式ランプ加熱装置の横断面を示し、図1Bはその上面図を示す。

【0039】図1Aおよび図1Bに示すように、この一 実施形態によるランプ加熱装置においては、ウェーハ1 を載置するための、例えば石英からなるサセプタ2aが 設けられた石英チャンバー2を有する。また、石英チャ ンバー2の外部には、ウェーハ1を載置した状態で、ウ エーハ1の主面および裏面に対して平行に、それぞれハ ロゲンランプ3、4が設けられている。石英チャンバー 2の一方の側面には、フランジを兼用した開閉可能なウ ェーハ搬送用ドア5が設けられており、その下部にガス 排気管6が設けられている。また、石英チャンバー2の 他方の側部に第1のガス導入孔7aが設けられている。 そして、この第1のガス導入孔7aに接続されて、例え ば室温より高温の不活性ガスを石英チャンバー2に導入 するための第1のガス導入管7が設けられている。ま た、この石英チャンバー2の他方の側部に、第2のガス 導入孔8aが設けられている。そして、この第2のガス 導入孔8aに接続されて、例えば室温の不活性ガスを石 英チャンバー2内に導入するための第2のガス導入管8 が設けられている。

【0040】また、図2に、第1のガス導入管7の内部のガスを室温より高温に加熱するための、ガス加熱手段

30

を示す。このガス加熱手段は、例えば円柱状の熱伝導ヒータ11の周辺に第1のガス導入管7がらせん状に巻き付けられている。そして、このガス加熱手段により加熱されたN2ガスなどの不活性ガスを、石英チャンバー2内に導入可能になっている。

【0041】次に、上述のように構成されたこの一実施 形態による枚葉式ランプ加熱装置によるウェーハの加熱 方法について説明する。このときの加熱シーケンスを図 3に示す。

【0042】すなわち、まず、ウェーハ1を石英チャンバー2の内部に搬送し、サセプタ2a上に載置する。

【0043】次に、時点 $t < t_1$ において、第2のガス 導入管8を通じて石英チャンパー2内に例えば N_2 ガス などの不活性ガスを導入する。これにより、石英チャン パー2内のパージが行われる。ここで、図3に示すように、このパージ用の N_2 ガスの温度は室温(常温)であり、このときの流量は、例えば201/ m_1 nである。

【0044】次に、時点 $t=t_1$ において、ウェーハ1 の主面に対向したハロゲンランプ3と、裏面に対向したハロゲンランプ4とから、ウェーハ1 に放射光を照射する。これにより加熱を始める。この加熱において、石英チャンバー2内に導入する N_2 ガスを、第2のガス導入管8を通じて供給される室温の N_2 ガスから、第2のガス導入管8を通じて供給される室温より高温の N_2 ガスに徐々に切り替える。

【0045】すなわち、図2に示すように、加熱を始めた時点 $t=t_1$ と、所定の温度(例えば $T_1=1000$ C)にまで上昇する時点 $t=t_2$ との間に、第10 ガス導入管7を通じて供給される室温の N_2 ガスを停止させ、これとともに、第20 ガス導入管8を通じて、雰囲気ガスとしての室温より高温の N_2 ガスなどの不活性ガスを、石英チャンバー2内に供給する。ここで、この第20 ガス導入管8を通じて石英チャンバー2内に選ばれる。ここで、この第100 でる100 での選ばれる。この一実施形態においては、ウェーハ100 加熱温度が例えば1000 Cであるので、100 での独温度が例えば1000 Cであるので、100 での独温度が例えば1000 Cであるので、100 での独温度が例えば1000 Cとする。また、この室温より高温の100 ガスの流量は、100 では、100 では、100 であるので、100 であるので、100 であるので、100 でから選ばれる。この下とする。また、この室温より高温の100 でが形態においては、例えば100 では、100 では、100

【0046】その後、t=t2~t3の間、すなわちハロゲンランプ3、4によりウェーハ1を加熱し始めた時点からウェーハ1の温度が例えば1000℃になるまでの間、石英チャンバー2内に、第2のガス導入管8および第2のガス導入孔8aを順次通じて、温度が例えば1000℃の不活性ガスを雰囲気ガスとして導入し続ける。

【0047】次に、t=t3において、ハロゲンランプ 3、4によるウェーハ1への照射を停止することによ り、加熱を停止する。これとともに、石英チャンバー2内に導入する N_2 ガスを、高温の N_2 ガスから室温の N_2 ガスに徐々に切り替える。すなわち、 $t=t_3$ において、第1のガス導入管7を通じて、室温より高温の N_2 ガスの供給を続けるとともに、第2のガス導入管3を通じて、石英チャンバー32の内部に、室温の32 ガスの供給をのいるが、第32 ガスの流量を33 がら供給さい、第34 がらは、35 がら供給さい。ここで、第37 がら供給さい。2 ガスの流量を37 がら供給さい。2 ガスの流量を38 が 39 が 31 が 31 が 32 が 32 が 33 が 34 が 35 が 35 が 35 が 35 が 37 が 37 が 38 が 38 が 39 が 39 が 39 が 31 が 31 が 32 が 32 が 33 が 34 が 35 が 35

【0048】次に、加熱処理前の温度(To)となった時点 $t=t_4$ において、室温より高温の N_2 ガスの供給を停止させるとともに、室温の N_2 ガスの流量を例えば 201/m inに増加させる。この間、石英チャンバー 2内の温度をTo に保持するために、必要に応じてハロゲンランプ3、4を適時照射する。

【0049】次に、石英チャンバー2内がほぼ完全に室温のN2ガスにより置換され、ウェーハ1の温度が室温となった後、ウェーハ1を、ウェーハ搬送用ドア5を通じて、石英チャンバー2の外部に搬出する。

【0050】以上のようにして、この一実施形態による加熱処理が行われる。

【0051】以上説明したように、この一実施形態によ る枚葉式ランプ加熱装置およびその熱処理方法によれ ば、ランプ加熱装置に加熱した不活性ガスを導入するた めの第1のガス導入孔7aと、これに接続された第1の ガス導入管7を設け、石英チャンバー2内においてウェ ーハ1の熱処理を行っている間、この石英チャンバー2 内に、あらかじめ加熱されたN2 ガスなどの不活性ガス を導入するようにしていることにより、導入されたガス によるウェーハ1の部分的な温度低下を抑制することが できるとともに、石英チャンバー2の内部における雰囲 気の置換性、制御性を損なうことなく、ウェーハ1にお ける温度分布の均一性の向上を図ることができる。ま た、第2のガス導入孔8aと、これに接続された第2の ガス導入管8とを設け、室温のガスを石英チャンバー2 内に導入するようにしていることにより、ウェーハ1の 降温の速さも従来と変わらない速さに維持することがで きる。

【0052】以上、この発明の一実施形態について具体的に説明したが、この発明は、上述の一実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。

【0053】例えば、上述の一実施形態において挙げた数値、ガス種はあくまでも例に過ぎず、必要に応じてこれと異なる数値、ガス種を用いてもよい。

【0054】また、例えば、上述の一実施形態においては、加熱した不活性ガスを導入する第2のガス導入管8を石英チャンバー2の側部に設け、不活性ガスの導入方向をウェーハ1の面に平行になるようにしているが、石英チャンバー2の内部に加熱した不活性ガスを導入するための第2のガス導入孔8aを、ウェーハ1の主面と対向する位置に設けるようにし、加熱された不活性ガスをウェーハ1の主面に対して垂直方向に吹きつけるようにすることも可能である。

[0055]

【発明の効果】以上説明したように、この発明によれば、熱処理炉内において基板の熱処理を行っている間、この熱処理炉内に室温より高温のガスを導入するようにしていることにより、構造を複雑化することなく、導入されたガスによる基板の部分的な温度低下を抑制することができ、熱処理炉内の雰囲気の置換性や制御性を損なうことなく、基板における温度分布の均一性の向上を図ることができる。

【図面の簡単な説明】

【図1】

【図1】この発明の一実施形態によるランプ加熱装置の 上面および横断面を示す略線図である。

【図2】この発明の一実施形態による加熱方法によるシーケンスを示すグラフである。

【図3】この発明の一実施形態による石英チャンバー内 に供給される不活性ガスを加熱するための装置を説明す るための略線図である。

【図4】従来技術によるランプ加熱装置の上面および横断面を示す略線図である。

【図5】従来技術によるランプ加熱装置により加熱されたウェーハのシート抵抗分布を示す平面図である。

【符号の説明】

1・・・ウェーハ、2・・・石英チャンバー、2a・・・サセプタ、3・・・ハロゲンランプ、4・・・ハロゲンランプ、5・・・ウェーハ搬送用ドア、6・・・ガス排気管、7a・・・第1のガス導入孔、7・・・第1のガス導入管、8a・・・第2のガス導入孔、8・・・第2のガス導入で、11・・・熱伝導ヒータ

[図2]

フロントページの続き

(51) Int.C1.7

識別記号

C 2 1 D 1/76

F 2 7 D 7/02

FΙ

F 2 7 D 7/02

H 0 1 L 21/26

テーマコード(参考)