Examen PED septiembre 2008

Normas: •

- Tiempo para efectuar el ejercicio: 2 horas
- En la cabecera de cada hoja Y EN ESTE ORDEN hay que poner: APELLIDOS, NOMBRE.
- Cada pregunta se escribirá en hojas diferentes.
- Se dispone de 20 minutos para abandonar el examen sin que corra convocatoria.
- Las soluciones al examen se dejarán en el campus virtual.
- Se puede escribir el examen con lápiz, siempre que sea legible
- Todas las preguntas tienen el mismo valor. Este examen vale el 60% de la nota de teoría.
- Publicación notas: 12 de septiembre. Revisión exámenes: 17 de septiembre (se publicará lugar y hora en el campus virtual)
- Los alumnos que estén en 5ª o 6ª convocatoria deben indicarlo en la cabecera de todas las hojas
- 1. Definir la sintaxis y la semántica de las siguientes operaciones utilizando exclusivamente operaciones constructoras generadoras:
 - a) Operación *InsertarDetras*(*lista*, e1, e2) que recibe como parámetros una lista de naturales y dos elementos de tipo natural y devuelve una lista. Esta función inserta en la lista pasada como parámetro el elemento e1 detrás de todas las ocurrencias del elemento e2.
 - b) Operación BorrarTodos(lista, el) que recibe como parámetros una lista de naturales y un elemento de tipo natural y devuelve una lista. Esta función borra todas las ocurrencias del elemento el de la lista.

Nota: La lista puede contener elementos repetidos.

- 2. a) Sobre el siguiente árbol Rojo-Negro insertar los siguientes elementos: 87, 45, 43, 86. Detallar los cambios de color y rotaciones realizadas. No será válido realizar la inserción como si fuera un árbol 2-3-4 y realizar la transformación final a Rojo-Negro, por ello, se deberán detallar claramente los cambios de color y rotaciones (en caso contrario no se puntuará la pregunta).
- b) Dado un árbol 2-3-4 con $(2^h 1)$ elementos (donde h es la altura). Su equivalente árbol Rojo-Negro, ¿cuántos hijos rojos tendría?

Y si tuviéramos un árbol 2-3-4 con $(4^h - 1)$ elementos, ¿cuántos hijos rojos tendría?

- a) Combina los dos árboles izquierdistas mínimos.
- b) El árbol resultado del apartado a): ¿es un montículo mínimo (Heap mínimo)? Define qué es un montículo mínimo.
- Del árbol izquierdista mínimo resultante del apartado a):
 - Realiza un borrado utilizando el mecanismo de borrado del árbol izquierdista mínimo.
 - b. Si el resultado del apartado *a)* es un montículo mínimo, borra un elemento utilizando el mecanismo de borrado del montículo.

- 4. Sea el grafo no dirigido representado por la lista de adyacencia que aparece a continuación, donde cada lista estará ordenada y se almacenará una sola vez cada arco (v, w), concretamente se almacenará sólo (v, w) tal que v < w. Realiza:
 - a) El bosque extendido en profundidad (siguiendo el recorrido en profundidad) de dicho grafo y la clasificación de arcos, partiendo del vértice 1.
 - b) El bosque extendido en anchura (siguiendo el recorrido en anchura) de dicho grafo y la clasificación de arcos, partiendo del vértice 1.

NOTA: Para cada vértice se continuará el recorrido escogiendo el menor vértice no visitado de su adyacencia.

Apellidos:	
Nombre:	
Convocatoria:	
DNI:	

Examen PED diciembre 2009 Modalidad 0

Nutmas: . I a entrepa del test no corre convocatoria · Frempo para efectuar el test 22 minutos.

. Una pregunta mai contestada elimina una correcta

Una yez emperado el examen no se puede salir del aula hasta finalizario. * Una yez emperado el examen no se puede salir del aula hasta finalizario. * Una yez emperado el examen no se puede salir del aula hasta finalizario.				
Bit la lioja de contextaciones el ventadent se corresponderá con la A viel falso con la B				
		¥**		
Darry all the state of the stat	V	ľ		
Para el siguiente fragmento de código C++ de un posible método perteneciente a la conocida clase TCoordenada, la linea "delete b," liberaria correctamente la memoria dinamica de h void Funcionfroid) { 1. **Coordenada *a = new TCoordenada:**	U		l	F
TCoordenada *h new PCoordenada[5];				
for all				
délete h				
}				
El resultado del cálcula de la complejidad temporal en el mejor caso de un algoritmo X , da como resultado $u+n^*\log(n)$. Por lo tanto, diremos que la complejidad del algoritmo X cuando $n\to\infty$ pertenece a $\Omega(n)$	O		2	F
Las pilas también se conocen como listas LIFO	123		3	V
Dado un único recorrido de un arbol binario lleno, es posible reconstruir dicho árbol	0	$\overline{\Box}$	4	V
A los árboles generales también se les llama árboles multicamino de búsqueda	ō	110	5	J:
Cuando se realiza una inserción en un AVL, en el camino de vuelta atras para actualizar los			6	V
factores de equilibrio, como mucho solo se va a efectuar una rotación	••••	hand		
La altura de un arbol 2-3 únicamente crece cuando se inserta un elemento y todos los nodos del árbol son 3-nodo.	۵		7	F
Con las operaciones de inserción y burrado es posible conseguir un árbol 2-3-4 de altura 4 con todos sus nodos de tipo 2-nodo.			8	F
Las operaciones de transformación cuando se inserta un elemento en un arbol 2-3-4, en el caso de un arbol rojo-negro, se reducen a cambios de colores o rotaciones			O	V
El árbol 2-3 es un árbol B m-camino de hosqueda con m=2			10	F
La dispersión abierta elimina el problema del clustering secundario.	-		11	V
Sea una tabla de dispersión cerrada con estrategia de redispersión $h_i(x) = (H(x) + C^*i) \text{ MOD B}$,		100	12	F
can B=1000 y C=74 Para cualquier clave "x" se recorrerán todas las posiciones de la tabla		****		
buscando una posición libre cuando se inserta el elemento				
El signiente arbol es un montículo máximo:			13	F
S RO				
<u> </u>				
Para todo nodo de un árbol Lettist, se cumple que el número de nodos de su hijo izquierdo es			14	F
mayor o igual que el de su hijo derecho				
In grafo no ditiguido de a vértices es un árbol si está libre de riolos y tiene a. / recetas	2503	1 3	1.5	7.7

Examen PED diciembre 2009

- Norman:

 Thempo para effectuar el ejuncion 2 horse

 Fir la cabecera de cada hoja Y EN ESTE ORDEN how que pener APELLIDOS, NOMBRE
 - Cada pregunta se escribirá en liojas diferentes
 - Se dispone de 20 numitos para abandonar el examen sin que coma convocatoria.
 - Las soluciones al examen se desarán en el campos virtual.
 - Se puede escriba el examen con lapiz, nompre que sen legible.
 - * Todas las preguntas tienen el mismo valor. Este examen vale el 69% de la nota de teoria.
 - Publicación tustas el preves 5 de noviembre. Revienon de escimenes el martes 10 de noviembre de 9 30 a 10 30 en la sala de nominores Ulande. Shannon' (salano de la FPS IV). Examen de prácticas el preves 12 de noviembre de 15 00 a 17 00 en los taboratorios 1.25 v 1.27 de la UPS I.

 - Lus alumnos que estén en S' o 6º convocatoria deben indicarlo en la cabecera de todas las bujas
- I. A partir de la especificación algebraica de la cola, escribe la sintaxis y semántica de la operación M() que recibe dos colas y devuelve una cola nueva en la que se han encolado de forma alternada los elementos de las dos colas, empezando par la primera cola Por ejemplo

$$CI = (a, b, c, (b)) - C2 - (1, 2, 3)$$

 $M(CI, C2) - (a, 1, b, 2, c, 3, d)$

2. De los siguientes arboles determinar cuáles son R-N razonando la respuesta

- (3) Insertar en una tabla de dispersión cerrada de tamaño B 2 los siguientes elementos: 10, 3, 17, 23, 21, 29 y 28. Mostrar el cálculo para insertar cada elemento y la tabla final con la inserción de todos los elementos.
 - a) Con estrategia de redispersión aleatoria (c=2).
 - b) Con estrategia de redispersión segunda función hash
- 4. Escribe en C++ la forma canonica de las clases de un trie (junto con las clases de los objetos que êste contenga) que tiene las siguientes complejidades para la operación de búsqueda de una palabra: Ω(1) y O(n * L), siendo n el número de letras diferentes que pueden formar parte de una palabra (por ejemplo las letras del alfabeto y los números), y 1. la longitud máxima de una palabra (por ejemplo de la palabra "maxilofacial", L-12)

NOTA:

- · Hay que explicar en forma de comentarios cada campo privado de la clase
- En la representación propuesta, explicar cuándo se producen los casos de complejidad mínima y máxima.
- El código C++ que se presente ha de ser directamente compilable, es decir, los errores de sintaxis de C++ se puntuaran negativamente.