Source: [KBBiologyMasterIndex]

1 | Bio-Molecules Quiz Review

#disorganized

1.1 | Paul's Review Sheet

... is here

1.1.1 | Carbohydrates

- Set 1, carbs. See Luke De's video + [KBhBI0101Carbs]
 - Glucose vs. fructose both monosacharrides, one is a 6-carbon ring and one is a 5-carbon ring
 - Mono vs. di. vs. polysaccharide carbohydrates made out of a single, double, and multiple monomer (single-unit) carbohydrates
 - Starch vs. glycogen vs. cellulose lots of alpha glucose in less branches, lots of alpha glucose in more branches, lots of beta glucose in organized lattice respectively.
 - Starch plant food reserve
 - Glycogen animal energy reserve
 - Cellulose cell wall in plants
- Set 2, lipids. See Luke De's video + [KBhBI0101Lipids]
 - Triglyceride vs. fatty acid vs. phosophilid see [KBhBI0101StructuresofCarbs]
 - · Glycerol => a fatty acid
 - Triglyceride => three of 'em above
 - Phospholipid => two fatty acid + phosphate head
 - Saturated vs unsaturated fatty acids see also [KBhBIO101StructuresofCarbs]
 - Saturated Fats => no double bonds in the carbon chain of fatty acids think! butter
 - Unsaturated Fats => double bonds in the carbon chain of fatty acids think! olive oil
- · Identify functional groups
 - Amino acid groups see [KBhBIO101AminoAcids]
 - carboxyl O=C-R-OH
 - carboxylic acid H-O-C=O (left side of backbone)
 - carbonyl C=O part of carboxyl
 - amide RC(=O)NR'R" (frequently shown in side chains of amino acids see Amine)
 - amino/amine H3N+ (right side of backbone)
 - hydroxyl OH group. Need I say more?
 - ester take a carboxylic acid and replace the hydrogen with a R-O group #ASK
 - ether R-O-R structure. Commonly shown as as an alcohol group (H-O-C) as part of the carboxyl
- Monomers vs Polymers [KBhBIO101StructuresofCarbs]
 - Monomer single molecule (such as a monosacchride) that could be chained together to make polymers
 - Polymers complex molecues built from monomers
 - Building polymers dehydration reaction taking out water molecules
 - Destructing polymers hydration reaction adding in water molecules

1.1.2 | Cell Structures

- · Prokaryotic vs. Eukaryotic
 - Prokaryotic cells often in single-cellular cells, has a cell wall, and contained in capsules
 - Eukaryotic cells in multicellular cell elements, contains a plasma membranes and nucleus
- Compare and contrast a typical animal cell with a typical plant cell. Be able to label diagrams of each. (See... problem set 1)
 - Animal Cell
 - · No cell wall
 - No chloroplast
 - Has Cytoplasm
 - · Has Ribosomes
 - · Has Mitochondria
 - · No plastids organelle pigments
 - Has Cilla Hair-like items on the outer surface
 - Plant Cell
 - · Has cell wall
 - · Has chloroplast photosynthesis
 - · Has cytoplasm
 - · Has Ribosomes
 - · Has Mitochondria
 - Has plastics organelle pigments
 - Mostly has no Cilla
- · Endosymbiotic theory
 - Endosymbiotic theory states that organelles within our current eukaryotic cells the mitochondria and chloroplasts — are originally prokaryotic cells in their own right. This is because they divide independently through binary fission, and also contains circular DNA that is independent of the main cell itself.
- Organizing organelles based on membranes #ASK
 - Membranous organelles possess own plasma => regulates own macromolecure consumption, hormones, etc. Perhaps original prokarotic cells
 - Endoplasmic reticulum => forms the network of transferring proteins and other elements
 - Golgi body/Gioli apparatus => packs, sorts, and modifies proteins and other elements throughout the cell
 - Non-membranous organelles does not posess own plasma => mostly part of the cytoskeleton
 of a cell
 - Ribosomes => protein synthesizer in the cell
 - Centrosome => forms flangella, cilla, and handles cells divisions
 - Lysomoes => digesting large nutrients and changing them to what cells could process and work on energy metabolism
 - Mitochrondria => store ATP and extract energy from ATP
 - Vacuoles => storing water, nutrients, waste
 - Plastids => creates colours displayed in the chromoplasts
- · Cell Components. Basicall all of these exist only in Eukareotic cells
 - · chloroplast and mitochondria
 - Chloroplast found in plants + does photosynthesis
 - Mitochondria found in animals + store ATP and extract energy from ATP
 - · cell wall and plasma membrane

- Cell Wall found in plants => surround the cell: hard
- Plasma membrane found in animals => surround the cell: soft [KBhBio101Lipids]
- · rough endoplasmic reticulum (ER) and smooth ER
 - Rough ER covered by ribosomes and folds [KBhBIO101Proteins]
 - Smooth ER not covered by ribosomes and makes [KBhBI0101Lipids]
- · cytosol, cytoplasm and cytoskeleton
 - · Cytosol => liquid found inside cells; the "cytoplasm" floats within it
 - Cytoplasm => all the stuff within the cell
 - Cytoskeleton => complex network of proteins + fibres that organize the rest of the cell
- · nucleus and nucleolus
 - nucleus => centre of the cell, stores DNA
 - nucleolus => largest part of the nucleous that makes ribosomes
- · lysosomes and food vacuoles
 - Lysosomes => vesticles that contains enzymes that breaks down biomolecules
 - Food Vacoules => vesticels that stores food and other resources
- · cytoskeleton and microtubules
 - Cytoskeleton => complex network of proteins + fibres that organize the rest of the cell
 - Microtubulues => Polymers of tubulin protein that provides the main structure of eukarotic cells
- · flagella and cilia
 - Flagella => a bacteria's tail allow them to move and also act as an sensory organ. longer than a cilla, and moves in sinosoidial pattern.
 - Cilium => a cell's "hair" provides sensory and communications functions. Motil cilla could move about to "grab" things, and non-motile cilla can't move. more abundant that the flagella, and moves in circular pattern if they do move, and moves in circular pattern if they do move
- Ribosomes and Golgi apparatus
 - Ribosomes => synthesizes proteins
 - Golgi apparatus => packs, modifying, and moving proteins

1.1.3 | Plasma Membrane Structure + transport

- Lipid structure and substructures: [KBhBIO101Lipids]
- · Functions of cell membrane
 - Phosophilid structures [KBhBIO101StructuresOfLipids]
 - Transmembrane proteins KbhBIO101CellTransport
 - Hydrophobic + hydrophillic parts of a phosophilid [KBhBI0101StructuresOfLipids] + [KBhBI0101FluidMosaic]
- Passive + active transport KbhBIO101CellTransport
- · Cell transport process
 - Simple diffusion (#ASK same thing as passive transport + osmosis)=> non-polar molecules needed "fall in"
 - Facilitated diffusion => specific polar molecules go along the gradient to get into the cell through transporter proteins
 - Phagocytosis => take a piece of the membrane with you to form a vesticle to introduce large elements, recycling the membrane after done
 - Pinocytosis => take a piece of the membrane with you to form a vesticle to introduce large elements, recycling the membrane after done
 - Extocytosis => opposite of endocytosis

.

1.2 | Helpful review items

Figure 1: Screen Shot 2020-10-09 at 11.58.55 AM.png