I.S.F.A. Année 2008.

Concours d'Entrée

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES : ÉLEMENTS DE CORRECTION

Durée 4h, calculatrices interdites.

OPTION A

Le sujet est composé de deux problèmes indépendants

Problème 1 : Relations de récurrences

Partie I Séries génératrices.

À toute suite réelle $u=(u_n)_{n\in\mathbb{N}}$ on associe la série entière, appelée série génératrice :

$$g_u(z) = \sum_{n \in \mathbb{N}} u_n z^n \ z \in D(0, r_u)$$

 $r_u \geq 0$ est le rayon de convergence et pour $r \geq 0$, $D(0,r) \subset \mathbb{C}$ désigne le disque ouvert centré en 0 et de rayon r.

On rappelle que pour $k, n \in \mathbb{N}, k \leq n, C_n^k$ désigne le nombre de combinaisons d'un ensemble à k éléments dans un ensemble à n éléments :

$$C_n^k = \frac{n!}{k!(n-k)!}$$
 0! = 1.

On rappelle aussi la formule de Stirling:

$$n! \sim \sqrt{2\pi n}e^{-n}n^n$$
 quand $n \to \infty$.

I.1 On considère deux suites $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$. On suppose qu'il existe r>0 $r_u \ge r \text{ et } r_v \ge r.$

Montrer que si

$$g_u(z) = g_v(z) \ \forall z \in D(0,r)$$

alors $u_n = v_n$ pour tout $n \in \mathbb{N}$.

I.2.a On considère les suites :

- $-u_n=1, n\in\mathbb{N},$
- $-u_n=n, n\in\mathbb{N}.$

Dans chaque cas, déterminer le rayon de convergence de la série génératrice associée, puis donner une expression de la série génératrice.

I.2.b Montrer que

$$g(z) = \frac{1}{\sqrt{1 - 4z}}$$

peut s'écrire comme la série génératrice associée à la suite

$$u_n = C_{2n}^n, \ n \ge 0.$$

On déterminera le rayon de convergence de la série entière associée.

I.3 On considère la suite $(u_n)_{n\in\mathbb{N}}$ déterminée par :

$$nu_n = 2nu_{n-1} + 1$$
 pour $n \ge 1$, $u_0 = 0$.

I.3.a. Montrer que la série génératrice $g_u(z) = \sum_{n \ge 0} u_n z^n$ est bien définie sur $D(0, \frac{1}{2})$.

I.3.b Montrer que g_u est solution de l'équation différentielle :

$$(1 - 2z)g'_u(z) = 2g_u(z) + \frac{1}{1 - z}.$$

I.3.c. Résoudre cette équation différentielle, en déduire que pour $n \geq 1$,

$$u_n = 2^n \sum_{k=1}^n \frac{1}{2^k k}.$$

I.3.d Déterminer un équivalent de u_n quand $n \to \infty$.

Partie II. Arbres binaires.

On définit un arbre binaire de manière récursive : un arbre binaire est soit un nœud externe, soit un nœud interne auquel sont rattachés deux arbres binaires ordonnés, appelés respectivement sous-arbre gauche et sous-arbre droit.

On note T_N le nombre d'arbres binaires possédant N nœuds internes, que l'on peut numéroter en partant du haut et de gauche à droite. L'arbre binaire ci-dessus a 6 nœuds internes.

II.1 Déterminer T_0, T_1, T_2 .

II.2 Montrer que $T_N \leq 4^N$, en déduire que la série génératrice

$$S_T(z) = \sum_{N>0} T_N z^N$$

a un rayon de convergence strictement positif.

II.3 Pour N > 0, montrer

$$T_N = \sum_{k=1}^{N} T_{k-1} T_{N-k}.$$

 ${\bf II.4}$ Montrer que la fonction S_T vérifie l'équation fonctionnelle :

$$z [S_T(z)]^2 - S_T(z) + 1 = 0.$$

Résoudre cette équation et en déduire que

$$T_N = \frac{1}{N+1} C_{2N}^N.$$

Déterminer un équivalent de T_N quand $N \to \infty$.

Problème 2 : Analyse en composantes principales

Le but de ce problème est de proposer des outils d'étude d'un nuage de points. Toutes les matrices sont écrites dans les bases canoniques. On considère X une matrice réelle $n \times p$. Les vecteurs colonnes, appelés variables, sont notés $x^j \in \mathbb{R}^n$, $j = 1, \ldots, p$

$$x^j = \left(\begin{array}{c} x_1^j \\ \vdots \\ x_n^j \end{array}\right);$$

les vecteurs lignes, appelés individus, sont notés $(e_i)^t$, $i = 1, \ldots, n, 1$

$$(e_i)^t = (x_i^1, \cdots, x_i^p) \quad e_i \in \mathbb{R}^p.$$

Partie I. Manipulations de base.

On considère l'espace euclidien \mathbb{R}^n muni du produit scalaire standard :

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \ z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{R}^n, \ \langle y, z \rangle_n = \sum_{i=1}^n y_i z_i.$$

I.1 La matrice V, appelée matrice de variance, est la matrice des produits scalaires des variables :

$$v_{i,j} = \langle x^i, x^j \rangle_n.$$

Vérifier que

$$V = X^t X$$
.

I.2 Montrer que V est une matrice symétrique positive (i.e. $\langle Vy, y \rangle_n \ge 0$ pour tout $y \in \mathbb{R}^n$). Que peut-on dire des valeurs propres et des vecteurs propres de V?

I.3 L'espace des individus est \mathbb{R}^p muni lui aussi du produit scalaire standard sur \mathbb{R}^p , noté \langle , \rangle_p , la norme associée est notée $\| \|_p$.

L'inertie du nuage de points des individus est la somme des normes des individus :

$$I = \sum_{i=1}^{n} ||e_i||_p^2.$$

Vérifier que

$$I = \operatorname{trace}(V)$$
.

Partie II. Nuage projeté.

On veut obtenir une représentation approchée du nuage des n individus (n points de \mathbb{R}^p) dans un sous espace de dimension plus petite.

II.1 Soit P un projecteur² de l'espace euclidien $(\mathbb{R}^p, \langle , \rangle_p)$, sa matrice dans la base canonique sera aussi notée P. Montrer $||P||_p = 1$.

canonique sera aussi notée P. Montrer $||P||_p = 1$. On note P_F un projecteur sur son image F. Si le sous-espace F est de dimension k, on dira que P_F est un k-projecteur.

II.2 Étant donné P un projecteur, le nuage projeté est l'ensemble des (Pe_i) , \widetilde{X} est la matrice dont les vecteurs lignes sont les $(Pe_i)^t$.

Écrire \widetilde{X} en fonction de X et P. On note \widetilde{V} la matrice de variance des individus projetés. Montrer que :

$$\tilde{V} = PVP$$
.

Puis que l'inertie du nuage projeté est :

$$\widetilde{I} = \operatorname{trace}(VP).$$

Pour k < p, on cherche un k-projecteur tel que l'inertie du nuage projeté soit maximale. **II.3.a** Pour F un sous espace de \mathbb{R}^p , on note P_F le projecteur sur F et I_F l'inertie du nuage projeté sur F. Si F et G sont deux sous espaces orthogonaux, montrer que $I_{F \oplus G} = I_F + I_G$. **II.3.b** Soit k < p fixé. On considère \mathcal{E}_k l'ensemble des k-projecteurs de \mathbb{R}^p . Montrer que \mathcal{E}_k est un ensemble compact de l'ensemble des endomorphismes de \mathbb{R}^p .

Montrer qu'il existe un sous espace F de dimension k pour lequel l'inertie I_F est maximale (parmi les sous espaces de dimension k).

II.3.c Soit F_k un sous espace de dimension k, d'inertie maximale. Montrer que tout sous espace de dimension k+1, d'inertie maximale (parmi les sous espaces de dimension k+1)

¹Pour A une matrice, A^t désigne sa transposée.

²Dans tout le problème, on entend par *projecteur de l'espace euclidien* un projecteur orthogonal.

s'écrit : $F_k \oplus E$ où E est un sous espace de dimension 1.

Partie III Sous espaces d'inetrie maximale

III.1 Soit $a \in \mathbb{R}^p$, $a \neq 0$. On note P_a le projecteur sur la droite vectorielle engendrée par a. Vérifier que pour $x \in \mathbb{R}^p$,

$$P_a x = \frac{\langle a, x \rangle_p}{\|a\|_p^2} \ a.$$

Montrer que l'inertie du nuage projeté sur la droite engendrée par a est

$$I_a = \frac{\langle a, Va \rangle_p}{\|a\|_p^2}.$$

III.2 Montrer que I_a est maximum pour a un vecteur propre de V, associé à la plus grande valeur propre de V.

III.3 Pour k < p fixé, déterminer un sous-espace de dimension k d'inertie maximale.