VERSUCH NUMMER

TITEL

Maximilian Sackel philip.schaefers@udo.edu Maximilian.sackel@udo.edu

Durchführung: DATUM Abgabe: DATUM

Philip Schäfers

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theoretische Grundlage 1.1 Fehlerrechnung							
	1.1	1 Mittelwert	3					
	1.1	2 Gauß'sche Fehlerfortpflanzung	3					
	1.1	3 Lineare Regression	3					
2	Durchfü	hrung und Aufbau	4					
3	Auswert	ung	4					
4	Diskussi	on	6					

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
 (2)

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1, ..., x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

2 Durchführung und Aufbau

3 Auswertung

Tabelle 1: Messwerte

$\overline{I_{10MHz} \ / \ \mathrm{mA}}$	Pixel	$\mid I_{15MHz} \mid$ mA	Pixel	I_{20MHz} / mA	Pixel
0	5911	201	5980	200	5928
100	4572	300	4763	303	5018
200	3351	403	3477	401	4064
300	2070	500	2245	499	3138
400	792	600	960	600	2245
460	52	670	120	700	1246
_				801	362

Tabelle 2: <+Caption text+>

I_{25MHz} / mA	Pixel	$\mid I_{30MHz} \mid$ mA	Pixel
300	5823	300	6062
404	4830	400	5220
496	3815	496	4308
602	2870	601	3470
700	1953	700	2528
805	896	800	1624
_	_	900	762

<++>

Abbildung 1: Pictures of animals

4 Diskussion