Ptolemy's sine lemma

Fedir Yudin and Nikita Skybytskyi

Abstract

We present a lemma that is sometimes useful in Olympiad geometry. It allows us to establish whether or not four points are concyclic. The proof of this lemma is based on the well-known, yet rarely used, Ptolemy's theorem. We therefore called it Ptolemy's sine lemma.

1 Introduction and main lemma

We start by recalling Ptolemy's theorem, a classical result and we present one of its proofs, which we regard as beautiful.

Theorem (Ptolemy's)

In a cyclic quadrilateral ABCD, the following relation holds:

$$AC \cdot BD = AB \cdot CD + AD \cdot BC$$

Proof. Let A', B' and C' be the images of A, B and C under the inversion with center D and radius 1. Then A', B' and C' are collinear, so A'B' + B'C' = A'C'. On the other hand, $\triangle DAB \sim \triangle DB'A'$, so $\frac{A'B'}{DB'} = \frac{AB}{DA}$. Since $DB' = \frac{1}{DB}$, we get $A'B' = \frac{AB}{DA \cdot DB}$. One can derive analogous expressions for B'C' and A'C'. Multiplying them by $DA \cdot DB \cdot DC$, one easily obtains the desired equality. \square

We are now ready to introduce the announced result.

Lemma (Ptolemy's sine lemma)

Points X, A, B and C in the Euclidean plane are concyclic if and only if

$$XA \cdot \sin \angle BXC + XB \cdot \sin \angle CXA + XC \cdot \sin \angle AXB = 0.$$

Proof. WLOG, we can assume that the ray $(XB \text{ lies between } (XA \text{ and } (XC, \text{ as in the diagram below. Let } B' \text{ be the point in which } XB \text{ intersects the circle } (XAC). Then by Ptolemy's theorem, <math>XA \cdot CB' + XC \cdot AB' = XB' \cdot AC$. By the law of sines,

$$2R = \frac{AB'}{\sin \angle AXB} = \frac{B'C}{\sin \angle BXC} = \frac{AC}{\sin \angle CXA},$$

so that we get $XA \cdot \sin \angle BXC + XB' \cdot \sin \angle CXA + XC \cdot \sin \angle AXB = 0$. Therefore, XB' = XB and B' = B, as desired.

We present the following alternative proof.

Proof. After an inversion with center X and radius 1, we get the following equivalent formulation: A, B and C are collinear if and only if

$$\frac{\sin \angle BXC}{XA} + \frac{\sin \angle CXA}{XB} + \frac{\sin \angle AXB}{XC} = 0.$$

Or, after a multiplication by $XA \cdot XB \cdot XC$

$$XB \cdot XC \cdot \sin \angle BXC + XC \cdot XA \cdot \sin \angle CXA + XA \cdot XB \cdot \sin \angle AXB = 0$$

This equality above is equivalent to

$$[BXC] + [CXA] + [AXB] = 0,$$

which is equivalent to

$$[ABC] = 0,$$

meaning that A, B and C are collinear. The expressions in square brackets stand for areas.

By presenting the following examples, we aim to convince the reader that Ptolemy's sine lemma is a very versatile tool in Olympiad geometry.

2 Example problems

Example 2.1 (ELMO 2013 SL G3)

In $\triangle ABC$, a point D is chosen on the side BC. The circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets AB at E (other than A). Prove that as D varies, the circumcircle of AEF always passes through a fixed point other than A, and that this point lies on the median from A to BC.

Solution. Let M be the midpoint of the side BC. Denote the length of the segment BD by t. One can verify that $BE = \frac{at}{c}$, so $AE = \frac{c^2 - at}{c}$. By a similar computation, one gets $AF = \frac{b^2 - a(a-t)}{b}$.

Let G be the second point of intersection between the circle (AEF) and the line AM (other than A). By our lemma, $AF \cdot \sin \angle BAM + AE \cdot \sin \angle MAC = AG \cdot \sin \angle BAC$. It is well-known known that

$$\frac{\sin \angle BAM}{b} = \frac{\sin \angle MAC}{c} = n.$$

Rearranging, we get $AG = \frac{n(b^2 + c^2 - a^2)}{\sin \angle BAC}$, and hence G does not depend on D.

Example 2.2 (Danylo Khilko)

Let BB_1 and CC_1 be altitudes in $\triangle ABC$. Let M and N be the midpoints of BB_1 and CC_1 , respectively. Let P and Q be the intersection points of (BC_1M) and (CB_1N) with BC. Prove that BP = CQ.

Solution. WLOG, we can assume that the diameter of the circle (ABC) is 1. Following the notation in the diagram below, one obtains

$$BB_1 = \sin \alpha \cdot \sin \gamma$$
, $BC_1 = \sin \alpha \cos \beta$.

By the main lemma,

$$BP \cdot \cos \alpha + BC_1 \cdot \cos \gamma = \frac{1}{2}BB_1 \cdot \sin \beta,$$

$$BP \cdot \cos \alpha + \sin \alpha \cos \beta \cos \gamma = \frac{1}{2}\sin \alpha \cdot \sin \gamma \cdot \sin \beta,$$

By an analogous computation, one can show that an equality identical to the one above holds if BP is replaced by CQ. The conclusion follows.

Example 2.3 (ISL 2012 G2)

Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions of the sides AD and BC meet at F. Let G be the point such that ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that D, H, F, G are concyclic.

Solution. Using Ptolemy's sine lemma, it remains to prove that

$$DH \cdot \sin \angle FDG + DG \cdot \sin \angle HDF = DF \cdot \sin \angle HDG$$
.

Note that DH = DE, DG = CE. Simple angle chasing gives that

$$\angle FDG = \angle DBC$$
, $\angle HDF = \angle ADB$, $\angle HDG = \angle DFC$.

Our condition can be rewritten as

$$DE \cdot \sin \angle DBC + CE \cdot \sin \angle ADB = DF \cdot \sin \angle DFC$$

By the law of sines,

$$DF \cdot \sin \angle DFC = DC \cdot \sin \angle FCD = DC \cdot \sin \angle BCD$$

$$CE \cdot \sin \angle ADB = CE \cdot \sin \angle ECB = EB \cdot \sin \angle EBC$$

and so

$$DE \cdot \sin \angle DBC + EB \cdot \sin \angle EBC = DB \cdot \sin \angle DBC = DC \cdot \sin \angle BCD$$

as desired. \Box

Example 2.4 (Ukraine RMM TST 2017)

In the acute-angled triangle ABC, let H be the orthocenter and M the midpoint of side BC. Let the line passing through H perpendicular to AM intersect BC at a point T, and the line passing through T parallel to AM intersect lines AB and CA at points K and L respectively. Prove that points A, K, L and H are cyclic.

Solution. Let AA_1 , BB_1 and CC_1 be the altitudes. Write P for the projection of H on AM. Then (AB_1HPC_1) and (HA_1MP) are circles with diameters AH and HM respectively, and $(A_1B_1MC_1)$ is the 9-point circle. By the radical axis theorem, the lines B_1C_1 , PH and $MA_1 = BC$ concur at T.

From Menelaus' theorem for line B_1C_1T , we find the ratio BT/CT so we also can derive expressions for BT and CT in terms of sides and angles of $\triangle ABC$.

From pairs of similar triangles ($\triangle ABM \sim \triangle KBT$, $\triangle ACM \sim \triangle LCT$) we find AK and AL.

Now, we just have to use Ptolemy's sine lemma to finish our proof. We leave the computation as an useful exercise for the reader. \Box

3 Practice problems

Problem 3.1. Let ABC be a triangle with orthocenter H and points X, Y and Z on lines AH, BH and CH respectively such that [XBC] + [AYC] + [ABZ] = [ABC], where [ABC] denotes oriented area. Prove that H, X, Y and Z are cyclic.

Problem 3.2 (APMO 2017). Let ABC be a triangle with AB < AC. Let D be the intersection point of the internal bisector of angle BAC and the circumcircle of ABC. Let Z be the intersection point of the perpendicular bisector of AC with the external bisector of angle $\angle BAC$. Prove that the midpoint of the segment AB lies on the circumcircle of triangle ADZ.

Problem 3.3 (Ukraine RMM TST 2013). Let ABC be a triangle with orthocenter H and points D, E and F on sides AB, CA and BC, respectively such that DB = DF and DC = DE. Prove that A, E, F and H are concyclic.

Problem 3.4 (Russia). Let ABC be a triangle with M being the midpoint of BC and H being the foot of altitude from A. Let the perpendicular from M to AC meet AB at P, and let the perpendicular from M to AB meet AC at Q. Let X be a point symmetric to H with respect to M. Prove that M, P, Q and X are cyclic.

Problem 3.5. Let ABCD be a circumscribed quadrilateral with T being an arbitrary point on side AB. Prove that incentres of ATD, BTC, CTD and T are cyclic.

Problem 3.6 (ELMO 2010 SL G6). Let ABC be a triangle with circumcircle Ω . X and Y are points on Ω such that XY meets AB and AC at D and E, respectively. Show that the midpoints of XY, BE, CD, and DE are concyclic.

Problem 3.7 (China TST 2006). Let ω be the circumcircle of $\triangle ABC$. P is an interior point of $\triangle ABC$. A_1 , B_1 and C_1 are the intersections of AP, BP and CP respectively with ω and A_2 , B_2 and C_2 are the symmetrical points of A_1 , B_1 and C_1 with respect to the midpoints of sides BC, CA and AB. Show that the circumcircle of $\triangle A_2B_2C_2$ passes through the orthocenter of $\triangle ABC$.

Problem 3.8 (ISL 2012 G6). Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB. The circumcircles of the triangles BFD and CDE intersect at $P \neq D$. Prove that OP = OI.

Problem 3.9 (ISL 2009 G8). Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the segment BC in M and the line CD in N. Denote by I_1 , I_2 and I_3 the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on g.