MATH 355 Assignment 1

Liam Wrubleski

September 2019

Contents

Definitions	1
Question 1	3
Question 2	8
Question 3	10
Question 4	11
Question 5	12
Question 6	13
Question 7	14

Definitions

Injective

Given sets A and B, and a function $f: A \to B$,

$$f$$
 is injective $\iff \forall a_1, a_2 \in A, a_1 \neq a_2 \implies f(a_1) \neq (a_2)$

Surjective

Given sets A and B, and a function $f:A\to B$,

$$f$$
 is surjective $\iff \forall b \in B, \exists a \in A : f(a) = b$

Bijective

Given sets A and B, and a function $f:A\to B$,

f is bijective $\iff f$ is injective $\land f$ is surjective

Continuous

Given intervals A,B on \mathbb{R} , and a function $f:A\to B$

Continuous at a point f is continuous at a point $c \in A$ if and only if

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in A, |x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$$

Continuous on an interval f is continuous on an interval $(a,b)\subseteq A$ if and only if

 $\forall c \in A, a < c < b \implies f$ is continuous at c.

Continuous f is continuous if and only if

 $A = \mathbb{R} \land \forall c \in A, f$ is continuous at c.

Question Determine whether or not the following functions are injective, surjective, or bijective.

NOTE: The natural numbers \mathbb{N} exclude 0.

Part a

Function $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 1$

Injective? *f* is not injective.

Proposition Show that $\exists x_1, x_2 \in \mathbb{R} : x_1 \neq x_2 \land f(x_1) = f(x_2)$.

Proof Consider $x_1 = 1, x_2 = -1$. Then $f(x_1) = (1)^2 + 1 = 1 + 1 = 2$, and $f(x_2) = (-1)^2 + 1 = 1 + 1$. Therefore, $x_1 \neq x_2$, and $f(x_1) = f(x_2)$, as required. Therefore, f is not injective. \square

Surjective? f is not surjective.

Proposition Show that $\exists y \in \mathbb{R} : \forall x \in \mathbb{R}, f(x) \neq y$.

Proof Consider y = 0. Then suppose $x \in \mathbb{R}$ satisfies f(x) = y, so $x^2 + 1 = 0$. Solving this equation for x, we obtain the possible solutions $x = \pm \sqrt{-1} \notin \mathbb{R}$, which contradicts the supposition that $x \in \mathbb{R}$. Therefore, x does not exist, and so f is not surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is neither injective nor surjective, and it must be both injective and surjective in order to be bijective. Therefore, f is not bijective. \square

Part b

Function $f: \mathbb{R} \to [0, \infty), f(x) = (x-1)^2$

Injective? f is not injective.

Proposition Show that $\exists x_1, x_2 \in \mathbb{R} : x_1 \neq x_2 \land f(x_1) = f(x_2)$.

Proof Consider $x_1 = 0, x_2 = 2$. Then $f(x_1) = (0-1)^2 = (-1)^2 = 1$, and $f(x_2) = (2-1)^2 = (1)^2 = 1$. Therefore, $x_1 \neq x_2$, and $f(x_1) = f(x_2)$, as required. Therefore, f is not injective. \square

Surjective? f is surjective.

Proposition Show that $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : f(x) = y$.

Proof Let $y \in [0, \infty)$. Then consider $x = \sqrt{y} + 1$. Because $y \ge 0, \sqrt{y} \in \mathbb{R} \implies x \in \mathbb{R}$. Then

$$f(x) = (x-1)^2$$

$$= (\sqrt{y} + 1 - 1)^2$$

$$= (\sqrt{y})^2$$

$$= y$$

which shows that f is surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is not surjective, and it must be both injective and surjective in order to be bijective. Therefore, f is not bijective. \Box

Part c

Function $f: \mathbb{R} \to [-\frac{1}{20}, \frac{1}{20}], f(x) = \sin 5x$

Injective? f is injective.

Proposition Show that $\forall x_1, x_2 \in [-\frac{1}{20}, \frac{1}{20}], x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$

Proof Let $x_1, x_2 \in [-\frac{1}{20}, \frac{1}{20}]$. Then $5x_1, 5x_2 \in [-\frac{1}{4}, \frac{1}{4}]$, and sin is strictly increasing on $[-\frac{1}{4}, \frac{1}{4}]$, so $x_1 < x_2 \implies f(x_1) < f(x_2)$, and vice versa. Therefore, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$, and therefore f is injective. \square

Surjective? f is not surjective.

Proposition Show that $\exists y \in [-1,1] : \forall x \in [-\frac{1}{20}, \frac{1}{20}], f(x) \neq y.$

Proof Consider y=1. The values of x for which sin(5x)=1 are those values for which $5x=2\pi n, n\in\mathbb{Z}$, or $x=\frac{2\pi n}{5}$. The solutions to this equation with the smallest magnitudes are $x=\pm\frac{2\pi}{5}$, both of which are outside of $[-\frac{1}{20},\frac{1}{20}]$. Therefore, there does not exist $x\in[-\frac{1}{20},\frac{1}{20}]$ so that f(x)=1, and so f is not surjective. \square

Bijective? f is not bijective.

Proof f is not surjective, and so by definition it is not bijective.

Part d

Function $f: \mathbb{R} \to \mathbb{R}, f(x) = x^5 + 3x^3 + 2x + 1$

Injective? f is injective.

Proposition Show that $\forall x_1, x_2 \in \mathbb{R}, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.

Proof Suppose $x_1, x_2 \in \mathbb{R}$. Then suppose that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Then, as polynomials are continuous and differentiable everywhere, by Rolle's Theorem, there exists some $c \in (x_1, x_2)$ so that $\frac{df}{dx}(c) = 0$. However, taking the derivative of f, we obtain $\frac{df}{dx} = 5x^4 + 9x^2 + 2$, so $5c^4 + 9c^2 + 2 = 0$. This is impossible, because c^2 & c^4 are both non-negative (because c is real), and so the left side is always strictly positive. Therefore, f is injective.

Surjective? f is surjective.

Proposition Show that $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : f(x) = y$.

Proof The $\lim_{x\to\infty} f(x) = \infty$, and the $\lim_{x\to-\infty} f(x) = -\infty$, as the fifth order term dominates. Therefore, because f(x) is a polynomial, and thus continuous everywhere, by the Intermediate Value Theorem, for any $y\in\mathbb{R}, \exists x\in(-\infty,\infty)$ so that f(x)=y, and therefore f is surjective. \square

Bijective? f is bijective.

Proof The above results show that f is both injective and surjective, and is therefore bijective. \square

Part e

Function $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n^2 - n$

Injective? f is not injective.

Proposition Show that $\exists n_1, n_2 \in \mathbb{Z} : n_1 \neq n_2 \land f(n_1) = f(n_2).$

Proof Consider $n_1 = 1, n_2 = 0$. Then $n_1 \neq n_2$, but $f(n_1) = 1^2 - 1 = 0$ and $f(n_2) = 0^2 - 0 = 0$, so $f(n_1) = f(n_2)$. Therefore, f is not injective. \Box

Surjective? f is not surjective.

Proposition Show that $\exists m \in \mathbb{Z} : \forall n \in \mathbb{Z}, f(n) \neq m$.

Proof Consider m = 1. Then suppose that for some integer n, $f(n) = n^2 - n = m$. This, however, implies that $n^2 - n = n(n-1) = 1$, but n and n-1 are consecutive integers. As such, either n or n-1 is divisible by 2, so their product must also be divisible by 2. As 1 is not divisible by 2, this produces a contradiction, so n cannot exist, and so f is not surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is neither injective nor surjective, and is therefore not bijective. \square

Part f

Function $f: \mathbb{N} \to \mathbb{N} \cup \{0\}, f(n) = n^2 - n$

Injective? *f* is injective.

Proposition Show that $\forall n_1, n_2 \in \mathbb{N} : n_1 \neq n_2 \implies f(n_1) = f(n_2).$

Proof Suppose $n_1, n_2 \in \mathbb{N}$ so that $n_1 \neq n_2$. Without loss of generality, suppose $n_1 < n_2$. Then let $k = n_2 - n_1 \implies k > 0$. Then $f(n_2) = f(n_1 + k) = (n_1 + k)^2 - (n_1 + k) = n_1^2 + 2kn_1 + k^2 - n_1 - k = f(n_1) + k(2n_1 - 1)$. In order for the equality $f(n_1) = f(n_2)$ to hold, $k(2n_1 - 1) = 0$, so either $n_1 = 1/2$, or k = 0. However, n_1 is an integer, so the first case cannot hold, and we have already shown that k > 0. Therefore, $f(n_1) \neq f(n_2)$, so f is injective. \square

Surjective? f is not surjective.

Proposition Show that $\exists m \in \mathbb{N} \cup \{0\} : \forall n \in \mathbb{Z}, f(n) \neq m$.

Proof Consider m = 1. Then suppose that for some integer n, $f(n) = n^2 - n = m$. This, however, implies that $n^2 - n = n(n-1) = 1$, but n and n-1 are consecutive integers. As such, either n or n-1 is divisible by 2, so their product must also be divisible by 2. As 1 is not divisible by 2, this produces a contradiction, so n cannot exist, and so f is not surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is neither injective nor surjective, and is therefore not bijective. \square

Part g

Function $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n^3 - n$

Injective? f is not injective.

Proposition Show that $\exists n_1, n_2 \in \mathbb{Z} : n_1 \neq n_2 \land f(n_1) = f(n_2).$

Proof Consider $n_1 = 1, n_2 = 0$. Then $n_1 \neq n_2$, but $f(n_1) = 1^3 - 1 = 0$ and $f(n_2) = 0^2 - 0 = 0$, so $f(n_1) = f(n_2)$. Therefore, f is not injective. \square

Surjective? f is not surjective.

Proposition Show that $\exists m \in \mathbb{Z} : \forall n \in \mathbb{Z}, f(n) \neq m$.

Proof Consider m=1. Then suppose that for some integer n, $f(n)=n^3-n=m$. This, however, implies that $n^3-n=n(n^2-1)=n(n-1)(n+1)=1$, but n, n-1, and n+1 are consecutive integers. As such, at least one of them must be divisible by 2, so their product must also be divisible by 2. As 1 is not divisible by 2, this produces a contradiction, so n cannot exist, and so f is not surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is neither injective nor surjective, and is therefore not bijective. \square

Part h

Function $f: \mathbb{N} \to \mathbb{N} \cup \{0\}, f(n) = n^3 - n$

Injective? f is injective.

Proposition Show that $\forall n_1, n_2 \in \mathbb{N} : n_1 \neq n_2 \implies f(n_1) = f(n_2).$

Proof Suppose $n_1, n_2 \in \mathbb{N}$ so that $n_1 \neq n_2$. Without loss of generality, suppose $n_1 < n_2$. Then let $k = n_2 - n_1 \implies k > 0$. Then $f(n_2) = f(n_1 + k) = (n_1 + k)^3 - (n_1 + k) = n_1^3 + 3kn_1^2 + 3k^2n_1 + k^2 - n_1 - k = f(n_1) + (3kn_1^2 + 3k^2n_1 - 1)$. In order for the equality $f(n_1) = f(n_2)$ to hold, $k(2n_1 - 1) = 0$, so either $n_1 = 1/2$, or k = 0. However, n_1 is an integer, so the first case cannot hold, and we have already shown that k > 0. Therefore, $f(n_1) \neq f(n_2)$, so f is injective. \square

Surjective? f is not surjective.

Proposition Show that $\exists m \in \mathbb{N} \cup \{0\} : \forall n \in \mathbb{Z}, f(n) \neq m$.

Proof Consider m=1. Then suppose that for some integer n, $f(n)=n^2-n=m$. This, however, implies that $n^2-n=n(n-1)=1$, but n and n-1 are consecutive integers. As such, either n or n-1 is divisible by 2, so their product must also be divisible by 2. As 1 is not divisible by 2, this produces a contradiction, so n cannot exist, and so f is not surjective. \square

Bijective? f is not bijective.

Proof The above results show that f is neither injective nor surjective, and is therefore not bijective. \square

Question Suppose that f, g, h are functions from \mathbb{R} to \mathbb{R} .

Part a

Question Show that there does not exist f, g satisfying f(x) + g(y) = xy for all $x, y \in \mathbb{R}$.

Proposition $\forall f, g : \mathbb{R} \to \mathbb{R}, \exists x, y \in \mathbb{R} : f(x) + g(y) \neq xy.$

Proof Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are functions that do satisfy f(x) + g(y) = xy for all $x, y \in \mathbb{R}$. Then the following four equations must hold:

$$f(1) + g(1) = 1 * 1 = 1 \tag{1}$$

$$f(1) + g(2) = 1 * 2 = 2 \tag{2}$$

$$f(2) + g(1) = 2 * 1 = 2 \tag{3}$$

$$f(2) + g(2) = 2 * 2 = 4 \tag{4}$$

However, combining (1) and (2) gives that g(2) = g(1) + 1, and similarly combining (1) and (3) gives that f(2) = f(1) + 1. These two facts show that

$$f(2) + g(2) = (f(1) + 1) + (g(1) + 1)$$

= $f(1) + g(1) + 2$, which by equation (1)
= $1 + 2 = 3$

which contradicts equation (4) above. Therefore f,g cannot exist, and the proposition is true. \square

Part b

Question Show that there does not exist f, g satisfying f(x)g(y) = x + y for all $x, y \in \mathbb{R}$.

Proposition $\forall f, g : \mathbb{R} \to \mathbb{R}, \exists x, y \in \mathbb{R} : f(x)g(y) \neq x + y.$

Proof Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are functions that do satisfy f(x)g(y) = x + y for all $x, y \in \mathbb{R}$. Then the following four equations must hold:

$$f(1)g(1) = 1 + 1 = 2 \tag{5}$$

$$f(1)g(2) = 1 + 2 = 3 \tag{6}$$

$$f(2)g(1) = 2 + 1 = 3 \tag{7}$$

$$f(2)g(2) = 2 + 2 = 4 \tag{8}$$

However, combining (5) and (6) gives that $g(2) = \frac{3}{2}g(1)$, and similarly combining (5) and (7) gives that $f(2) = \frac{3}{2}f(1)$. These two facts show that

$$f(2)g(2) = \left(\frac{3}{2}f(1)\right)\left(\frac{3}{2}g(1)\right)$$

$$= \frac{9}{4}f(1)g(1), \text{ which by equation (5)}$$

$$= \frac{9}{4}(2) = \frac{9}{2}$$

which contradicts equation (8) above. Therefore f,g cannot exist, and the proposition is true. \square

Part c

Question Show that there does not exist three functions f, g, h which satisfy

$$f(x) + g(y) + h(z) = xyz$$

for all $x, y, z \in \mathbb{R}$.

Proposition $\forall f, g, h : \mathbb{R} \to \mathbb{R}, \exists x, y, z \in \mathbb{R} : f(x) + g(y) + h(z) \neq xyz$

Proof Suppose that f, g, h are functions that satisfy the above equation for all real numbers x, y, z. Then consider z = 0. In this case

$$f(x) + g(y) + h(0) = 0$$

 $f(x) + g(y) = -h(0), \forall x, y \in \mathbb{R}$

where -h(0) is some constant real number. Then consider x = (-h(0) + h(1) + 1), y = 1, z = 1. In this case, $x, y, z \in \mathbb{R}$, and in order for the equation to hold

$$f(-h(0) - h(1) + 1) + g(1) + h(1) = (-h(0) + h(1) + 1)(1)(1)$$

= $-h(0) + h(1) + 1f(-h(0) + h(1) + 1) + g(1) = -h(0) + 1$

which is a contradiction, as we have already seen that for any real numbers x, y, f(x) + g(y) = -h(0). Therefore, f, g, h cannot exist, and the proposition is true.

Question Show that the infinite product

$$\prod_{i=1}^{\infty} \{0,1\}$$

is uncountable (you can think of this as the set of infinite strings of 0s and 1s).

Proposition There does not exist a surjection from \mathbb{N} to $\prod_{i=1}^{\infty} \{0,1\}$.

Proof This proof will use a modified version of Cantor's Diagonalization argument. Let S represent the set in question. Suppose that the described set is countable, so there exists a surjection $f: \mathbb{N} \to S$. We will now construct an item $X \in S$, so that there does not exist $n \in \mathbb{N}$ such that f(n) = X. Regarding S as the set of infinite strings of 0s and 1s, for all $n \in \mathbb{N}$, let the nth character of X be the opposite of the nth character of f(n) (i.e. if the nth character of f(n) is 0, the nth character of X is 1, and vice versa). Then, for every $n \in \mathbb{N}$, $X \neq f(n)$, because it differs in at least one position. Therefore, the surjection f cannot exist, and so S is uncountable.

Question Suppose x_1, x_2, y_1, y_2 are real numbers. Show that

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}.$$

Fully describe the set of points for which the above inequality is an equality.

Answer Consider the vectors $\mathbf{x} = \langle x_1, x_2 \rangle$, $\mathbf{y} = \langle y_1, y_2 \rangle$. The dot product of these two vectors is $x_1y_1 + x_2y_2$, which is the left hand side of the inequality above. Then consider $||\mathbf{x}|| ||\mathbf{y}|| = \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$, which is the right hand side of the inequality above. Therefore, the proposition above is equivalent to

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2, \mathbf{x} \cdot \mathbf{y} \le ||\mathbf{x}||||\mathbf{y}||,$$

which is easy to show using the fact that $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos(\theta)$, where θ is the angle between the vectors \mathbf{x} and \mathbf{y} . As $\cos(\theta) \in [-1, 1]$ for $\theta \in [0, 2\pi)$, the inequality is always true.

The inequality holds as an equality when $\cos(\theta) = 1$, which has one solution in $[0, 2\pi)$, namely $\theta = 0$. Therefore, the inequality is an equality if and only if the vectors \mathbf{x}, \mathbf{y} are collinear, so when $y_1 = kx_1$ and $x_2 = kx_2$ for some real number k

Part a

Question Suppose x < y are real numbers. Show that there are infinitely many distinct rational numbers q such that x < q < y.

Answer Let n be the smallest integer so that $1 < 10^n(y-x) \le 10$. Then

$$a = \frac{\operatorname{sgn}(x)\lfloor 10^n |x| \rfloor + 1}{10^n}$$

is a rational number so that x < a < y. Then let m be the smallest integer so that $\frac{1}{m} < y - a$. Then, for all integers $i \ge m, x < a + \frac{1}{i} < y$, so there are infinitely many rational numbers between x and $y . \square$

Part b

Question Suppose x < y are real numbers. Show that there are infinitely many distinct irrational numbers w such that x < w < y. Are there uncountable many?

Answer Let n be the smallest integer so that $1 < 10^n (y - x) \le 10$. Then

$$a = \frac{\operatorname{sgn}(x)\lfloor 10^n |x| \rfloor + 1}{10^n}$$

is a rational number so that x < a < y. Then let m be the smallest integer so that $\frac{1}{m} < y - a$, and let S the set of all irrational numbers between 0 and 1. Note that S is uncountable. Now, for each element $k \in S, x < a + \frac{k}{m} < y$, and because a is rational and m is an integer, $a + \frac{k}{m}$ is irrational. Therefore, there are uncountably many irrational numbers between x and y.

Part a

Question Find an explicit injection $f: \mathbb{Q} \to \mathbb{Z}$.

Answer Given $\frac{p}{q}$, $p, q \in \mathbb{Z}$, $q \neq 0$, let $f(\frac{p}{q}) = 2^p 3^q$.

Part b

Question Find an explicit injection $g: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Z}$.

 $\textbf{Answer} \quad \text{Given } (\tfrac{n}{m}, \tfrac{p}{q}), n, m, p, q \in \mathbb{Z}, m, q \neq 0, \text{ let } g(\tfrac{n}{m}, \tfrac{p}{q}) = 2^n 3^m 5^p 7^q.$

Part c

Question Find an explicit injection $h: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$.

Answer Given $(a, b, c), a, b, c \in \mathbb{Z}$, let $h(a, b, c) = (2^a 3^b 5^c, 2^a 3^b 5^c)$.

Question Suppose A and B are both bounded subsets of \mathbb{R} . Find a property "X" so that the statement $\sup A = \inf B$ if and only if "X" holds is true.

Answer $|Conv(A \cup B) - A - B| = 1.$