Tibetan Plateau palaeoglaciology – exposure ages, glacier altitudes, and palaeoclimate

Jakob Heyman

Department of Earth and Atmospheric Sciences, Purdue University

Limited alpine style glaciation of Tibet

Extensive dataset of Tibetan Plateau exposure ages

Few plateau-scale studies

Many local/regional studies

Owen et al. (2008)

Aim:

Present a plateau-scale dataset of ¹⁰Be exposure ages and ΔELA estimates to enable large-scale evalutation of temporal and spatial glacier evolution patterns

Method: Exposure age compilation

Included: All ¹⁰Be exposure ages of boulders and pebbles deposited by former glaciers on the Tibetan Plateau (modified from Heyman et al. 2011: EPSL): **1544** samples, 355 sample groups

All exposure ages recalculated using the CRONUS online calculator (Balco et al. 2008: QG)

Method: ΔELA estimation

Toe to headwall altitude ratio

Method: ELA estimation

Altitudes and coordinates recorded using Google Earth

age data **AELA** and exposure

Problem: exposure age scatter

Strategy: reduced chi-squared statistics

$$\chi_R^2 = \frac{1}{n-1} \sum_{i=1}^n \left[\frac{t_i - \overline{t}_i}{\sigma t_i} \right]^2$$

From Balco (2011: QSR)

 $X_R^2 < 2$ (53 groups)

 $X_R^2 \ge 2$ (302 groups)

ΔELA and mean exposure ages

 $X_R^2 < 2$ (53 groups)

 $X_R^2 \ge 2$ (302 groups)

Seven regions

 $X_R^2 < 2$ $X_R^2 \ge 2$

 $X_R^2 < 2$ $X_R^2 \ge 2$

3D glacier modeling paleo-climate reconstructions

Conclusions

- Highly variable exposure ages and ΔELA estimates
- Large uncertainties in exposure ages geologic processes have altered the exposure ages of 302 out of 355 sample groups
- ΔELA range from 7 m to 1218 m (mean 360 m; median 320 m)
- Assuming a simple ΔELA-temperature relationship, past glacial climates were 0-7.6°C cooler than today (mean 2.2°C; median 2.0°C)

