

Maestría en Ciencias Naturales y Matemáticas Clase 5 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

15 de diciembre de 2022

Topología en \mathbb{R}^n - Puntos de acumulación y clausura de un conjunto

Definición (bola agujereada).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n , $a \in \mathbb{R}^n$ y $\varepsilon > 0$. Entonces definimos la bola agujereada en \mathbb{R}^n con centro a y radio ε como

$$B_d^*(a;\varepsilon) := \{x \in \mathbb{R}^n : 0 < d(a,x) < \varepsilon\} = B_d(a;\varepsilon) - \{a\}.$$

Definición (punto de acumulación de un conjunto).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n , $A \subseteq \mathbb{R}^n$ y $x_0 \in \mathbb{R}^n$. Decimos que x_0 es un punto de acumulación de A relativo a la métrica d, si para todo $\varepsilon > 0$, tenemos que

$$B_d^*(a;\varepsilon)\cap A\neq\emptyset$$

Y denotaremos los puntos de acumulación de A como ac(A).

Definición (clausura de un conjunto).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n , $A \subseteq \mathbb{R}^n$. Definimos la clausura de A como el siguiente conjunto

$$\overline{A} = \{ a \in \mathbb{R}^n : B_d(a; \varepsilon) \cap A \neq \emptyset \text{ para todo } \varepsilon > 0 \}.$$

Observación (definiciones anteriores).

(1) $A \subseteq \overline{A}$.

Si $a \in A$, entonces $a \in B_d(a; \varepsilon)$ para todo $\varepsilon > 0$. Además $a \in B_d(a; \varepsilon) \cap A$ para todo $\varepsilon > 0$ implicando que $a \in \overline{A}$.

- (2) $ac(A) \subseteq \overline{A}$.
- Si $a \in ac(A)$, entonces $B_d^*(a; \varepsilon) \cap A \neq \emptyset$ para todo $\varepsilon > 0$, lo cual implica que $a \in B_d(a; \varepsilon) \cap A \neq \emptyset$ para todo $\varepsilon > 0$, ya que $B_d^*(a; \varepsilon) \cap A \subseteq B_d(a; \varepsilon) \cap A$. Así, tenemos que $a \in \overline{A}$.
- (3) $\overline{A} = ac(A) \cup A$

Supongamos que $a \in \overline{A}$, entonces podemos decir que $a \in ac(A)$ ó $a \notin ac(A)$. Si $a \notin ac(A)$ entonces debe existir $\varepsilon > 0$ tal que $B_d^*(a;\varepsilon) \cap A = \emptyset$. Pero al tener $a \in \overline{A}$ tenemos también que $B_d(a;\varepsilon) \cap A \neq \emptyset$ y así

$$B_d(a;\varepsilon)\cap A = \left(B_d^*(a;\varepsilon)\cup\{a\}\right)\cap A = \left(B_d^*(a;\varepsilon)\cap A\right)\cup\left(\{a\}\cap A\right) = \emptyset\cup\left(\{a\}\cap A\right) = \{a\}\cap A = \begin{cases} \{a\} & \text{ si } a\in A, \\ \emptyset & \text{ si } a\notin A \end{cases}$$

lo cual muestra que $a \in A$. Lo anterior nos dice que si $a \in \overline{A}$, entonces $a \in ac(A)$ ó $a \in A$, y esto es equivalente a tener que $\overline{A} \subseteq ac(A) \cup A$. Además como ya sabíamos que $ac(A) \cup A \subseteq \overline{A}$, entonces concluimos que $\overline{A} = ac(A) \cup A$.

Nota (siguiente teorema).

El siguiente teorema nos dice una de las características principales de la clausura de un conjunto.

Teorema (la clausura de un conjunto es un conjunto cerrado).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica sobre \mathbb{R}^n y $A \subseteq \mathbb{R}^n$. Entonces \overline{A} es un conjunto cerrado en \mathbb{R}^n bajo la métrica d.

Demostración:

Para probar que \overline{A} es un conjunto cerrado en \mathbb{R}^n , es suficiente probar que $(\overline{A})^c$ es un conjunto abierto en \mathbb{R}^n . Sea $a \in (\overline{A})^c$, entonces por definición de \overline{A} , tenemos que debe existir $\varepsilon > 0$ tal que

$$B_d(a;\varepsilon) \cap A = \emptyset$$
.

Por lo tanto $B_d(a; \varepsilon) \subseteq (\overline{A})^c$, ya que:

- (\checkmark) Para cada $x \in B_d(a; \varepsilon)$, existe $\delta_x > 0$ tal que $B_d(x; \delta_x) \subseteq B_d(a; \varepsilon)$.
- (\checkmark) $B_d(x;\delta_x) \cap A \subseteq B_d(a;\epsilon) \cap A = \emptyset$, lo que implica que $B_d(x;\delta_x) \cap A = \emptyset$ para cada $x \in B_d(a;\epsilon)$. Así, es necesario que $B_d(a;\epsilon) \subseteq [\overline{A}]^c$.

Lo anterior muestra que para todo $a \in (\overline{A})^c$, existe $\varepsilon > 0$ tal que $B_d(a;\varepsilon) \subseteq (\overline{A})^c$. Es decir que $(\overline{A})^c$ es un conjunto abierto.

Nota (siguiente teorema).

El siguiente teorema demuestra que dado $A \subseteq \mathbb{R}^n$, la clausura de A es el conjunto cerrado más pequeño que contiene a A.

Teorema (propiedad caracteristica de la clausura).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica sobre \mathbb{R}^n y $A \subseteq \mathbb{R}^n$ Entonces

$$\overline{A} = \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C.$$

Demostración:

Para probar que $\overline{A} = \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C$, es necesario verificar que:

Mg: Julián Uribe Castañeda (UPB)

^aTodo esto es respecto a la métrica *d*.

- $(1) \overline{A} \subseteq \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C.$
- $(2) \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C \subseteq \overline{C}$

Prueba de (1): Sea $a \in \overline{A}$ y C un conjunto cerrado en \mathbb{R}^n tal que $A \subseteq C$. Veamos que $a \in C$. Si $a \notin C$, entonces $a \in C^c$ que es abierto, y por tanto existe $\varepsilon > 0$ tal que

$$B_d(a;\varepsilon) \subseteq C^c \iff B_d(a;\varepsilon) \cap C = \emptyset$$

Pero esto es imposible, puesto que:

$$\begin{cases} B_d(a;\varepsilon) \cap A \subseteq B_d(a;\varepsilon) \cap C = \emptyset & \text{ ya que } A \subseteq C, \\ B_d(a;\varepsilon) \cap A \neq \emptyset & \text{ ya que } a \in \overline{A}. \end{cases} \Rightarrow \begin{cases} B_d(a;\varepsilon) \cap A = \emptyset, \\ B_d(a;\varepsilon) \cap A \neq \emptyset. \end{cases}$$

Esto muestra que $a \in C$ y así $\overline{A} \subseteq \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C$.

Prueba de (2): Como ya probamos que \overline{A} es un conjunto cerrado y $A \subseteq \overline{A}$, entonces es claro que $\bigcap_{A \subset C \subset \mathbb{R}^n} C \subseteq \overline{A}$.

Ccerrado

Corolario (equivalencias de conjuntos cerrados).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica sobre \mathbb{R}^n y $A \subseteq \mathbb{R}^n$, entonces las siguientes afirmaciones son equivalentes:

- (1) A es un conjunto cerrado en \mathbb{R}^n bajo la métrica d.
- $(2) \overline{A} = A.$
- (3) $ac(A) \subseteq A$

Demostración:

Para probar este resultado, es suficiente verificar que $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$ y $(3) \Rightarrow (1)$.

- $(1)\Rightarrow (2)$ Supongamos que A es un conjunto cerrado en \mathbb{R}^n bajo la métrica d. Entonces es sencillo notar las siguientes cosas:
- (\checkmark) $\overline{A} = \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C$, esto es consecuencia del teorema anterior.
- $(\checkmark) \bigcap_{\substack{A \subseteq C \subseteq \mathbb{R}^n \\ C \text{ cerrado}}} C \subseteq A, \text{ esto se debe a que } A \text{ es cerrado y } A \subseteq A.$

Así, tenemos que $\overline{A} \subseteq A$ y ya sabíamos que $A \subseteq \overline{A}$, lo cual prueba que $\overline{A} = A$.

- (2) \Rightarrow (3) Supongamos que $\overline{A} = A$, entonces como $\overline{A} = ac(A) \cup A$, tenemos que $ac(A) \cup A = A$ y esto implica que $ac(A) \subseteq A$.
- $(3) \Rightarrow (1)$ Supongamos que $ac(A) \subseteq A$, entonces $A = ac(A) \cup A = \overline{A}$ y \overline{A} es cerrado, lo cual implica que A es un conjunto cerrado.

Ejemplo ($ac(A) = ac(\overline{A})$).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica sobre \mathbb{R}^n y $A \subseteq \mathbb{R}^n$. Probar que $ac(A) = ac(\overline{A})$.

Solución:

Para probar que $ac(A) = ac(\overline{A})$ es suficiente verificar que

- (1) $ac(A) \subseteq ac(\overline{A})$.
- (2) $ac(\overline{A}) \subseteq ac(A)$.

Prueba de (1): Sea $a \in ac(A)$, entonces para todo $\varepsilon > 0$ tenemos que

$$B^*(a;\varepsilon) \cap A \neq \emptyset$$
.

Además como $A \subseteq \overline{A}$, tenemos que

$$B^*(a;\varepsilon)\cap A\subseteq B^*(a;\varepsilon)\cap \overline{A}$$

lo cual implica que $B^*(a;\varepsilon) \cap \overline{A} \neq \emptyset$ y así $a \in \overline{A}$. Esto muestra que $ac(A) \subseteq ac(\overline{A})$.

Prueba de (2): Dado $a \in ac(\overline{A})$, veamos que $a \in ac(A)$. Si $a \notin ac(A)$, entonces por la definición de punto de acumulación, debe existir $\varepsilon > 0$ tal que

$$\begin{cases} B^*(a;\varepsilon) \cap \overline{A} \neq \emptyset & \text{ya que } a \in ac(\overline{A}), \\ \\ B^*(a;\varepsilon) \cap A = \emptyset & \text{ya que } a \notin ac(A). \end{cases}$$

Por lo tanto, si $x \in B^*(a; \varepsilon) \cap \overline{A}$, entonces es necesario que $x \in ac(A)$ (recordar que $\overline{A} = ac(A) \cup A$). Además como $x \in B^*(a; \varepsilon)$, es fácil probar que existe $\delta > 0$ tal que $B^*(x;\delta) \subseteq B^*(a;\varepsilon)$ y por lo tanto:

$$\begin{cases} B^*(x;\delta) \cap A \subseteq B^*(a;\epsilon) \cap A = \emptyset & \text{ya que } B^*(x;\delta) \subseteq B^*(a;\epsilon), \\ B^*(x;\delta) \cap A \neq \emptyset & \text{ya que } x \in ac(A). \end{cases} \Rightarrow \begin{cases} B^*(x;\delta) \cap A = \emptyset, \\ B^*(x;\delta) \cap A \neq \emptyset \end{cases}$$

lo cual es imposible. De esta forma, es necesario que $a \in ac(A)$ y así $ac(A) \subseteq ac(A)$.

Ejemplo (puntos de acumulación).

Suponiendo que $\mathbb R$ tiene la métrica Euclídea, hallar los puntos de acumulación de los siguientes conjuntos:

- (1) $A = \mathbb{Z} = \{x \in \mathbb{R} : x \text{ es un número entero}\}.$
- (2) $B = (0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$
- (3) $C = \mathbb{Q} = \{x \in \mathbb{R} : x \text{ es un número racional}\}.$
- (4) $D = \left\{ x \in \mathbb{R} : x = \frac{1}{2n} \text{ para algún } n \in \mathbb{N} \right\}.$
- (5) $E = \left\{ x \in \mathbb{R} : x = \frac{1}{2n} + \frac{1}{6m} \text{ con } n, m \in \mathbb{N} \right\}.$

Solución:

- (1) $ac(A) = \emptyset$.
- (2) $ac(B) = [0,1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$
- (3) $ac(C) = \mathbb{R}$.
- (4) $ac(D) = \{0\}.$
- (5) $ac(E) = \left\{ x \in \mathbb{R} : x = \frac{1}{2n} \text{ con } n \in \mathbb{N} \right\} \cup \left\{ x \in \mathbb{R} : x = \frac{1}{5m} \text{ con } m \in \mathbb{N} \right\} \cup \{0\}.$

La verificación de estos hechos se dejan como ejercicio.

Ejemplo (puntos de acumulación).

Suponiendo que \mathbb{R}^2 tiene la métrica Euclídea, hallar los puntos de acumulación de los siguientes conjuntos:

- (1) $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$
- (2) $B = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1\}$
- (3) $C = \{(x,y) \in \mathbb{R}^2 : x \text{ es un número racional } y -2 < y \le 3\}.$
- (4) $D = \left\{ (x,y) \in \mathbb{R}^2 : x = \frac{1}{2^n} \text{ y } y = \frac{1}{3^m} \text{ para } n, m \in \mathbb{N} \right\}.$

Solución:

- (1) $ac(A) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
- (2) $ac(B) = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1\}.$
- (3) $ac(C) = \{(x,y) \in \mathbb{R}^2 : -2 \le y \le 3\}.$
- (4) $ac(D) = \{(0,0)\}.$

La verificación de estos hechos se dejan como ejercicio.

Problemas.

- (1) Suponiendo que $\mathbb R$ tiene la métrica Euclídea, verificar si los siguientes conjuntos son cerrados respecto a esta métrica:
- (a) $A = \mathbb{Z} = \{x \in \mathbb{R} : x \text{ es un número entero}\}.$
- (b) $B = (0,1) = \{x \in \mathbb{R} : 0 < x < 1\}.$
- (c) $C = \mathbb{Q} = \{x \in \mathbb{R} : x \text{ es un número racional}\}.$
- (d) $D = \left\{ x \in \mathbb{R} : x = \frac{1}{2^n} \text{ para algún } n \in \mathbb{N} \right\}.$
- (e) $E = \left\{ x \in \mathbb{R} : x = \frac{1}{2n} + \frac{1}{5m} \text{ con } n, m \in \mathbb{N} \right\}.$
- (2) Suponiendo que \mathbb{R}^2 tiene la métrica Euclídea, verificar si los siguientes conjuntos son cerrados respecto a esta métrica:
- (a) $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$
- (b) $B = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1\}.$
- (c) $C = \{(x,y) \in \mathbb{R}^2 : x \text{ es un número racional } y -2 < y \le 3\}.$
- (d) $D = \left\{ (x,y) \in \mathbb{R}^2 : x = \frac{1}{2^n} \text{ y } y = \frac{1}{3^m} \text{ para } n, m \in \mathbb{N} \right\}.$