תרגיל בית 6, אלגברה לינארית 2א

2025 במאי 3

ו. נסמן:

$$SYM_n(\mathbb{R})\{A \in M_n(\mathbb{R})|A^T = A\}$$

$$\operatorname{Asym}_n(\mathbb{R})\{A \in M_n(\mathbb{R}) | A^T = -A\}.$$

הוכיחו שאלו תתי מרחבים של $M_n(\mathbb{R})$ וחשבו את המימדים שלהם. בת"ל ותהי $v_1,...,v_k$ בת"ל ותהי A המטריצה ששורותיה הן $v_1,...,v_k \in \mathbb{F}^n$ בת"ל.

$$\dim\{x \in \mathbb{F}^n | Ax = 0\} = n - k$$

.3 מטריצה המקיימת $A^k=0$ הוכיחו שהקבוצה הבאה תלויה לינארית: $A\in M_n(\mathbb{R})$

$$\{(A+I)^0, (A+I)^1, ..., (A+I)^k\}$$

רמז - הוכיחו באינדוקציה.

4. נגדיר:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -2 & -3 \end{pmatrix}, C = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 5 & -1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}, D = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

חשבו אם לא ניתן לבצע חלק אם $3A-4B,CD,B^TA,DD^T,AC,BD$ חשבו את המטריצות

- . הוכיחו: tr(A) נגדיר את העקבה שלה להיות סכום איברי האלכסון הראשי ונסמנה tr(A). הוכיחו:
 - tr(A+B)=tr(A)+tr(B) מאותו הסדר מתקיים A,B מאותו ריבועיות מאריצות לכל שתי מטריצות ו
 - tr(CD)=tr(DC) מתקיים $C\in M_{m imes n}(\mathbb{F}), D\in M_{n imes m}(\mathbb{F})$ (ב)
 - .6 יהיו $C \in M_n(\mathbb{F})$ הפיכות ותהיי $A,B \in M_n(\mathbb{F})$ הוכיחו/הפריכו:
 - הפיכה A+B (א)
 - הפיכה AC (ב)
 - ABA (ג)
- A אז $\mathbb F$ אות הקבוצה $\mathbb F$ נותן את פעולות $\mathbb F$ אז $\mathbb F$ אם $\mathbb F$ אם און איז אם $\mathbb F$ שדה שמרחיב את $M_n(\mathbb{K})$ הפיכה גם ב
 - A=B אז AC=BC ה)
- 7. בסעיפים הבאים מצאו את המטריצה ההופכית למטריצה הנתונה או קבעו כי איננה הפיכה מעל השדה

$$\mathbb{R}$$
 מעל $\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix}$ (ב) $\begin{pmatrix} 0 & 1 & 2 \ 2 & 5 & 1 \ 1 & -4 & 3 \end{pmatrix}$ מעל

$$\mathbb R$$
 מעל $egin{pmatrix} 0 & 1 & 2 \ 2 & 5 & 1 \ 1 & -4 & 3 \end{pmatrix}$ (ב)

$$\mathbb{Z}_7$$
 מעל $egin{pmatrix} 0 & 1 & 2 \ 2 & 5 & 1 \ 1 & -4 & 3 \end{pmatrix}$ (ג)

$$\mathbb R$$
 מעל $egin{pmatrix} 1 & -\overset{\cdot}{1} & 1 & 1 \ 1 & 1 & 2 & -1 \ 2 & 1 & 2 & 1 \ -1 & 1 & 1 & 1 \end{pmatrix}$ מעל

$$\mathbb{Z}_7$$
 מעל $\begin{pmatrix} 0 & 1 & 2 \ 2 & 5 & 1 \ 1 & -4 & 3 \end{pmatrix}$ (ג) \mathbb{R} אינו $\begin{pmatrix} 1 & -1 & 1 & 1 \ 1 & 1 & 2 & -1 \ 2 & 1 & 2 & 1 \ -1 & 1 & 1 & 1 \end{pmatrix}$ (ד) $\lambda \in \mathbb{R}$ מעל \mathbb{R} (פצלו למקרים לפי הערכים האפשריים של \mathcal{R} מעל \mathcal{R} (ד) \mathcal{R} מעל $\mathcal{R$

.8 (ממבחן) תהיינה I-Bו I+A כי הוכיחו הוכיחו $A^2=A,B^k=0$ הפיכות. מטריצות ריבועיות מטריצות מטריצות המקיימות .8