

Supervised Learning: Prediction of the ECU911 centers with the greatest number of police incidents in Ecuador for 2020

Facultad de Energía, Carrera de Ingeniería en Sistemas

Raúl Romero-Vega

Abstract

Using artificial intelligence, through machine learning models, it has been predicted which will be the ECU 911 Centres with the greatest number of police incidents by the year 2020, carrying it out through 6 stages carried out sequentially; The first step was to define the problem and collect data from the Ecuadorian Open Data Portal and ECU911, which were then processed one by one to represent them categorically in order to apply classification models, finally, the results have been interpreted to answer the research question, predicting that the centres with the greatest number of police incidents by 2020 will be Quito and Samborondon, and using the confusion matrices, two models with the best performance have been contrasted.

1. Problem

Research question

¿Cuáles serán los Centros del ECU 911 con mayores incidentes policiales cometidos en Ecuador para el 2020, de acuerdo a los registros del ECU 911?

Type of problem

Supervised Learning

2. Data collection

Data set used for machine learning

http://catalogo.datosabiertos.gob.ec/dataset/bf5970ed-16fb-40af-9e78-910df47ac86a/resource/14980edc-e7e8-4f33-9fd5da435f3734b9/download/estadisticas-enero.xlsx

Later statistics to evaluate the results

https://www.ecu911.gob.ec/wp-content/uploads/2017/06/Estadisticas.pdf

3. Data preparation

CENTRO Category	AÑO Number	MES Category	# INCIDENTE Category	# INCIDENTE Category	# INCIDENTE Category	. # INCIDENTE Category	# INCIDENTE Category	# INCIDENTE Category		
SAMBORONDÓN	2012	FEBRERO	17,684	2,602	2,762	3,439	690	327		
SAMBORONDÓN	2012	MARZO	21,836	2,945	3,568	3,171	700	219		
SAMBORONDÓN	2012	ABRIL	20,856	3,161	3,114	2,541	730	34		
Class	Muy Bajo	Bajo	Medio Alto	Muy Alto		Range = Max - Min $Sturges rule$				
Range	Maximum Value		Minimum Value	Amplitude		N = 1 + 3.322 * Log(440)				
59092	59331		239	11819		$Amplitude = \frac{Range}{N}$				
CENTRO Category	ANIO Category	MES Category	INCIDEN Category	TE_PO INCII		INCIDENTE_SA Category	INCIDENTE_BO. Category	INCIDENTE_G		
Samhorondón	2012	2012 Febrero		Bair		Bain	Muy Baio	Medio		

4. Data splitting

Samborondón

Samhorondón

It was not necessary to divide the data because there is another 2016 data set that will be used for the validation of the models that will be applied during the training.

Bajo

Baio

Training

• ECU911 data available from 2012 to 2015

Bajo

Bajo

Baio

Muy Bajo

Muy Baio

Bajo

Muy Baio

Test

Marzo

• ECU911 2016 data available

5. Training a model

6. Model validation

Performance of the Decision Tree model							Performance of the Fast Large Margin model						
Accuracy				92,8%			Accuracy				92,0%		
Classification error				7,2%			Classification error				8%		
Confusion matrix						Confusion matrix							
	True Bajo	True Medio	True Alto	True Muy Alto	True Muy Bajo	Class Precision		True Bajo	True Medio	True Alto	True Muy Alto	True Muy Bajo	Class Precision
Pred. Bajo	3	1	0	0	0	75%	Pred. Bajo	3	0	0	0	0	100%
Pred. Medio	0	6	0	0	0	100%	Pred. Medio	0	8	4	0	0	66,67%
Pred. Alto	0	4	5	2	0	45,45%	Pred. Alto	0	0	4	3	0	57,14%
Pred. Muy Alto	0	0	0	3	0	100%	Pred. Muy Alto	0	0	0	2	0	100%
Pred. Muy Bajo	2	0	0	0	99	98,02%	Pred. Muy Bajo	3	0	0	0	98	97,03%
Class Recall	60%	54,55%	100%	60%	100%		Class Recall	50%	100%	50%	40%	100%	

Repository: https://github.com/raulrrv/MachineLearning-ECU911.git