SOLUTIONS SHEET 9

Exercise 24.

a. The source code can be found in listing 1. Remark: The code is based on the termination criterion given in [Kos89, p. 64] which states that for some user-specified tolerance $\varepsilon > 0$ the iteration will be stopped if for the (k+1)-th iterate $||F(x^{k+1})|| \le \varepsilon$ holds where $x^{(k+1)} := x^{(k)} - DF(x^{(k)})^{-1}F(x^{(k)})$ for $k = 0, 1, \ldots$

```
function [ x ] = newton( F,invDF,x0,epsilon )
1
      maxit = 1e+3;
2
      s = invDF(x0) * F(x0);
3
      x = x0 - s;
4
      x0 = x;
5
      it = 1;
6
      while norm(F(x0)) > epsilon && it < maxit
          s = invDF(x0) * F(x0);
8
          x = x0 - s;
9
          x0 = x;
10
          it = it + 1;
11
      end
12
      end
13
```

LISTING 1. src/newton.m

b. The source code for the implicit midpoint rule can be found in listing 2 and the source code for the symplectic euler method can be found in 3.

```
function [x,y] = IM(f,Df,x0,xN,y0,N)
1
     x = linspace(x0,xN,N+1);
2
     h = (x0 - xN)/N;
3
     y = zeros(length(y0), N+1);
4
     y(:,1) = y0;
5
     for k = 1:N
6
         F = 0(eta) y(:,k) + h * f(1/2 * (y(:,k) + eta)) - eta;
7
         determinant = Q(A) A(1,1) * A(2,2) - A(1,2) * A(2,1);
8
         inverse = Q(A) 1/determinant(A) * [A(2,2),-A(1,2);-A(2,1),A(1,1)];
         invDF = O(eta) inverse(h/2 * Df(1/2 * (y0 + eta)) - eye(2));
10
         y(:,k+1) = newton(F,invDF,y(:,k),1e-6);
11
     end
12
     end
13
```

LISTING 2. src/IM.m

First consider the *implicit midpoint rule* given by

```
function [ x,y ] = SEUL( a,b,aprime,x0,xN,y0,N )
1
      x = linspace(x0,xN,N+1);
2
     h = (x0 - xN)/N;
3
     y = zeros(length(y0),N+1);
4
      y(:,1) = y0;
5
      for k = 1:N
6
          F = 0(eta) y(1,k) + h * a(eta, y(2,k)) - eta;
7
          invDF = 0(eta) 1/(h * aprime(eta, y(2,k)) - 1);
8
          y(1,k+1) = newton(F,invDF,y(1,k),1e-6);
9
          y(2,k+1) = y(2,k) + h * b(y(1,k+1),y(2,k));
10
11
      end
12
```

LISTING 3. src/SEUL.m

(1)
$$y_{k+1} = y_k + hf\left(\frac{y_k + y_{k+1}}{2}\right) \qquad k = 0, 1, \dots$$

Since we consider only systems of two ordinary differential equations we may write

(2)
$$\begin{bmatrix} y_{k+1}^1 \\ y_{k+1}^2 \end{bmatrix} = \begin{bmatrix} y_k^1 \\ y_k^2 \end{bmatrix} + h \begin{bmatrix} f^1 \left(\frac{y_k + y_{k+1}}{2} \right) \\ f^2 \left(\frac{y_k + y_{k+1}}{2} \right) \end{bmatrix} \qquad k = 0, 1, \dots$$

the progressed discretization y_{k+1} occurs implicitly in equation (2) thus we may use the Newton method to solve it. We get that y_{k+1} is a root of the following function

(3)
$$F(\eta) := \begin{bmatrix} y_k^1 \\ y_k^2 \end{bmatrix} + h \begin{bmatrix} f^1\left(\frac{y_k + \eta}{2}\right) \\ f^2\left(\frac{y_k + \eta}{2}\right) \end{bmatrix} - \begin{bmatrix} \eta^1 \\ \eta^2 \end{bmatrix} \qquad k = 0, 1, \dots$$

and further

$$\begin{split} DF(\eta) &= \begin{bmatrix} \frac{\partial F^1}{\partial \eta^1}(\eta) & \frac{\partial F^1}{\partial \eta^2}(\eta) \\ \frac{\partial F^2}{\partial \eta^1}(\eta) & \frac{\partial F^2}{\partial \eta^2}(\eta) \end{bmatrix} \\ &= \begin{bmatrix} hDf^1\left(\frac{y_k+\eta}{2}\right)\begin{bmatrix}\frac{1}{2}\\0\end{bmatrix} - 1 & hDf^1\left(\frac{y_k+\eta}{2}\right)\begin{bmatrix}0\\\frac{1}{2}\end{bmatrix} \\ hDf^2\left(\frac{y_k+\eta}{2}\right)\begin{bmatrix}\frac{1}{2}\\0\end{bmatrix} & hDf^2\left(\frac{y_k+\eta}{2}\right)\begin{bmatrix}0\\\frac{1}{2}\end{bmatrix} - 1 \end{bmatrix} \\ &= \frac{h}{2}\begin{bmatrix} \left(Df\left(\frac{y_k+\eta}{2}\right)\right)_1^1 & \left(Df\left(\frac{y_k+\eta}{2}\right)\right)_2^2 \\ \left(Df\left(\frac{y_k+\eta}{2}\right)\right)_2^1 & \left(Df\left(\frac{y_k+\eta}{2}\right)\right)_2^2 \end{bmatrix} - \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} \end{split}$$

Hence

$$(DF(\eta))^{-1} = \frac{2}{hd} \begin{bmatrix} \left(Df\left(\frac{y_k + \eta}{2}\right) \right)_2^2 & -\left(Df\left(\frac{y_k + \eta}{2}\right) \right)_1^2 \\ -\left(Df\left(\frac{y_k + \eta}{2}\right) \right)_2^1 & \left(Df\left(\frac{y_k + \eta}{2}\right) \right)_1^1 \end{bmatrix}$$

where

(5)
$$d := \left(\left(Df \left(\frac{y_k + \eta}{2} \right) \right)_1^1 - 1 \right) \left(\left(Df \left(\frac{y_k + \eta}{2} \right) \right)_2^2 - 1 \right) - \left(Df \left(\frac{y_k + \eta}{2} \right) \right)_2^1 \left(Df \left(\frac{y_k + \eta}{2} \right) \right)_1^2$$

Now we consider the symplectic Euler method for a partitioned system

(6)
$$u' = a(u,v) \qquad v' = b(u,v) \label{eq:equation:equation}$$
 given by

(7)
$$u_{k+1} = u_k + ha(u_{k+1}; v_k) \qquad v_{k+1} = v_k + hb(u_{k+1}; v_k) \qquad k = 0, 1, \dots$$

Thus we get u_{k+1} is a root of the function

(8)
$$F(\eta) := u_k + ha(\eta; v_k) - \eta \qquad k = 0, 1, \dots$$

And hence

(9)
$$(DF(\eta))^{-1} = (ha'(\eta; v_k) - 1)^{-1}$$

Exercise 25. Let us identify those two ODE systems as follows

(10)
$$\dagger \begin{cases} \dot{u} = (v-2)/v \\ \dot{v} = (1-u)/u \end{cases} \qquad \ddagger \begin{cases} \dot{u} = u^2 v(v-2) \\ \dot{v} = v^2 u(1-u) \end{cases}$$

As can be seen in figure 1 to 4 the numerical solution of the system \dagger is periodical for the implicit midpoint rule as well as the symplectic Euler method for several initial values in a neighbourhood of $(u(0), v(0))^t = (1.5, 2.5)^t$. However the system \ddagger behaves much more chaotic. In figures 1, 2 and 4 the numerical solution provided by the symplectic Euler method is obviously not periodical whereas the numerical solution generated by the implicit midpoint rule is (to a certain extent) periodical. In figure 3 we see that for the choosen initial value also the implicit midpoint rule is not periodical. In conclusion I say that both the implicit midpoint rule and the symplectic Euler are not suitable (this may be due to the low order of the methods) for solving the system \ddagger numerically.

Exercise 26. • The *implicit Euler method* is given by $y_1 = y_0 + hf(x_1, y_1)$. Hence we have obviously s = 1. Further we immediately see that $b_1 = 1$ and $k_1 = f(x_1, y_1)$. We have

(11)
$$k_1 = f(x_1, y_1) = f(x_0 + c_1 h, y_0 + ha_{11} k_1)$$

Thus we get $c_1 = 1$ and $a_{11} = 1$. Summarized in a *Butcher tableaux* the implicit Euler method is characterized by

FIGURE 1. In the upper plot the discretized solution of the system \dagger on the interval [0,10] with initial conditions $(u(0),v(0))^t=(1.5,2.5)$ and h=10/35 is shown. In the lower plot the discretized solution of \ddagger with the same parameters is shown.

Table 1. Butcher tableaux of the implicit Euler method.

 $\bullet\,$ The derivation of Runge~2 follows standard text [HNW93, pp. 132–133]. Consider the IVP

(12)
$$y' = f(x) y(x_0) = y_0$$

with exact solution $y(x) = y_0 + \int_{x_0}^x f(\tau)d\tau$. By using the midpoint rule we get

FIGURE 2. In the upper plot the discretized solution of the system \dagger on the interval [0, 10] with initial conditions $(u(0), v(0))^t = (0.5, 1.5)$ and h = 10/35 is shown. In the lower plot the discretized solution of \ddagger with the same parameters is shown.

$$y(x_0 + h_0) \approx y_1 = y_0 + h_0 f\left(x_0 + \frac{h_0}{2}\right)$$
$$y(x_1 + h_1) \approx y_2 = y_1 + h_1 f\left(x_1 + \frac{h_1}{2}\right)$$
$$\vdots$$
$$y(x) \approx y_n = y_{n-1} + h_{n-1} f\left(x_{n-1} + \frac{h_{n-1}}{2}\right)$$

where $h_i = x_{i+1} - x_i$ and $x_0, x_1, \dots, x_n = x$ is a subdivision of the interval $[x_0, x]$. If f(x, y) is also dependent on the variable y, we can analogously consider for $x = x_0 + h$

(13)
$$y(x_0 + h) \approx y_1 := y_0 + hf\left(x_0 + \frac{h}{2}, y\left(x_0 + \frac{h}{2}\right)\right)$$

FIGURE 3. In the upper plot the discretized solution of the system \dagger on the interval [0,10] with initial conditions $(u(0),v(0))^t=(2.5,3.5)$ and h=10/35 is shown. In the lower plot the discretized solution of \ddagger with the same parameters is shown.

Since $y\left(x_0 + \frac{h}{2}\right)$ is unknown we may use explicit Euler for a further approximation. Thus we get $y\left(x_0 + \frac{h}{2}\right) \approx y_0 + \frac{h}{2}f(x_0, y_0)$. But now it is immediate that

$$k_1 = f(x_0, y_0)$$

 $k_2 = f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1\right)$
 $y_1 = y_0 + hk_2$

which is represented by the Butcher tableaux

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1/2 & 1/2 & 0 \\
\hline
& 0 & 1
\end{array}$$

Table 2. Butcher tableaux of Runge 2.

FIGURE 4. In the upper plot the discretized solution of the system \dagger on the interval [0,10] with initial conditions $(u(0),v(0))^t=(2.5,1.5)$ and h=10/35 is shown. In the lower plot the discretized solution of \ddagger with the same parameters is shown.

Exercise 27. By adding the equation $\dot{x} = 1$, we can assume without loss of generality that f(x, y) does not depend on x^* . Further we simplify notation by stipulating

(15)
$$k_i(h) = f(Y_i(h)), Y_i(h) := y_0 + h \sum_{j=1}^s a_{ij} k_j(h)$$

for i = 1, ..., s. Taylor expansion of the exact solution around h = 0 yields

(14)
$$\underbrace{\begin{bmatrix} y \\ x \end{bmatrix}'}_{=:z'} = \begin{bmatrix} y \\ y_{n+1} \end{bmatrix}' = \underbrace{\begin{bmatrix} f(y_{n+1}, y) \\ 1 \end{bmatrix}}_{=:\hat{f}(z)}$$

we get a new system $z'=\hat{f}(z)$ with $\hat{f}\in C(I\times\mathbb{R}^{n+1};\mathbb{R}^{n+1})$ which is autonomous.

^{*} Assume we have a first order ODE system $y' = f(x, y), f(x, y) \in C(I \times \mathbb{R}^n; \mathbb{R}^n)$ for some interval I := [a, b]. If we consider the first order system

$$y(x_0 + h) = y_0 + f(y_0)h + \frac{1}{2}f'(y_0)f(y_0)h^2 + \frac{1}{6} (f''(y_0)(f(y_0), f(y_0)) + (f'(y_0), f'(y_0))f(y_0))h^3 + O(h^4)$$

Taylor expansion of the discretized solution provided by the s-stage Runge-Kutta method yields

$$y_1(h) = y_0 + h \sum_{i=1}^{s} b_i k_i(h)$$

= $y_0 + \sum_{i=1}^{s} b_i k_i(0) h + \sum_{i=1}^{s} b_i \dot{k}_i(0) h^2 + \frac{1}{2} \sum_{i=1}^{s} b_i \ddot{k}_i(0) + O(h^4)$

Now we have

(16)
$$k_i(0) = f(Y_i(0)) = f(y_0)$$

Thus we get the condition $\left| \sum_{i=1}^{s} b_i = 1 \right|$ for order one. Next

(17)
$$\dot{k}_i(h) = f'\left(Y_i(h)\right)\dot{Y}_i(h)$$
 with $\dot{Y}_i(h) = \sum_{j=1}^s a_{ij}k_j(h) + h\sum_{j=1}^s a_{ij}\dot{k}_j(h)$. Thus we have $\dot{k}_i(0) = f'\left(y_0\right)\sum_{j=1}^s a_{ij}k_j(0) = f'\left(y_0\right)f(y_0)\sum_{j=1}^s a_{ij} = f'\left(y_0\right)f(y_0)c_i$ since by definition $c_i = \sum_{j=1}^s a_{ij}$ for $i = 1, \dots, s$. Hence we have the order condition $\sum_{i=1}^s b_i c_i = \frac{1}{2}$ for order two. Finally we have

(18)
$$\ddot{k}_{i} = \frac{d}{dh}\dot{k}_{i}(h) = \frac{d}{dh}f'\left(Y_{i}(h)\right)\dot{Y}_{i}(h) = f''\left(Y_{i}(h)\right)\left(\dot{Y}_{i}(h),\dot{Y}_{i}(h)\right) + f'\left(Y_{i}(h)\right)\ddot{Y}_{i}(h)$$

(19)
$$\ddot{Y}_i(h) = \frac{d}{dh}\dot{Y}_i(h) = 2\sum_{j=1}^s a_{ij}\dot{k}_j(h) + h\sum_{j=1}^s a_{ij}\ddot{k}_j(h)$$

Thus we get

(20)
$$\ddot{k}_i(0) = f''(y_0) \left(\dot{Y}_i(0), \dot{Y}_i(0) \right) + f'(y_0) \ddot{Y}_i(0)$$
 with

(21)
$$\ddot{Y}_i(0) = 2\sum_{j=1}^s a_{ij}\dot{k}_j(0) = 2f'(y_0)f(y_0)\sum_{j=1}^s a_{ij}c_j$$

and further

(22)
$$\ddot{k}_i(0) = f''(y_0) \left(f(y_0)c_i, f(y_0)c_i \right) + 2 \left(f'(y_0), f'(y_0) \right) f(y_0) \sum_{j=1}^s a_{ij}c_j$$

Hence we get the order conditions

(23)
$$\sum_{i=1}^{s} b_i c_i^2 = \frac{1}{3} \qquad \sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j = \frac{1}{6}$$

for order three.

Remark: I have used the notation (\cdot,\cdot) for $\cdot(\cdot,\cdot)$. Many thanks goes to Ernst Hairer[†] which sent me the essential proof steps on the 11^{th} of May, 2016 after electronic correspondence

Exercise 28. The implicit midpoint rule ‡ is given by the Butcher tableaux

$$\begin{array}{c|c|c}
 & 1/2 & 1/2 \\
\hline
 & 1
\end{array}$$

Table 3. Butcher tableaux of the implicit midpoint rule.

Equivalently

(24)
$$y_1 = y_0 + hk_1 \qquad k_1 = f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1\right)$$

Since the implicit midpoint method is a one-stage Runge Kutta method we have the ansatz $u(x) = y_0 + (x - x_0)k$ with $k = f(x_0 + c_1h, y_0 + hc_1k)$ for the collocation polynomial. Setting $c_1 = \frac{1}{2}$ we get the implicit midpoint rule since the numerical solution y_1 is given by $u(x_0 + h) = y_0 + hk$ (identical to the step provided by the implicit midpoint rule). Further we have

$$C(q): \sum_{j=1}^{s} a_{ij} c_j^{k-1} = \frac{c_i^k}{k}, \qquad i = 1, \dots, s, k = 1, \dots, q$$

$$B(p):$$
 $\sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{k}, \quad k = 1, \dots, p$

Consider q = s = 1. Then we have $C(1) = \sum_{i=1}^{s} a_{ij} c_j^{k-1} = \frac{1}{2} = c_i$ and

(25)
$$\sum_{i=1}^{s} b_i c_i^{k-1} = 1 = \frac{1}{k} \qquad \sum_{i=1}^{s} b_i c_i^{k-1} = \frac{1}{2} = \frac{1}{k}$$

for k = 1 and k = 2 respectively.

 $^{^\}dagger \rm http://www.unige.ch/{\sim} hairer/$

[‡] Consider $y_1 = y_0 + hf\left(x_0 + \frac{h}{2}, \frac{y_0 + y_1}{2}\right)$. Direct comparison with a one-stage Runge-Kutta scheme $y_1 = y_0 + hb_1k_1$ yields $b_1 = 1$ and $k_1 = f\left(x_0 + \frac{h}{2}, \frac{y_0 + y_1}{2}\right)$. Further comparison with $k_1 = f\left(x_0 + c_1h, y_0 + ha_{11}k_1\right)$ yields $c_1 = \frac{1}{2}$. Now we have $\frac{y_0 + y_1}{2} = \frac{1}{2}\left(y_0 + y_1 + y_0 - y_0\right) = y_0 + \frac{1}{2}\left(y_1 - y_0\right) = y_0 + \frac{h}{2h}\left(y_1 - y_0\right) = y_0 + \frac{1}{2}h\left(\frac{y_1 - y_0}{h}\right)$ and by using the definition of y_1 by the implicit midpoint rule we get $y_0 + \frac{1}{2}h\left(\frac{y_1 - y_0}{h}\right) = y_0 + \frac{1}{2}hf\left(x_0 + \frac{h}{2}, \frac{y_0 + y_1}{2}\right) = y_0 + \frac{1}{2}hk$. Thus $a_{11} = \frac{1}{2}$.

References

- [HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. New York, NY, USA: Springer-Verlag New York, Inc., 1993. ISBN: 0-387-56670-8.
- [Kos89] Peter Kosmol. Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben. B.G. Teubner Stuttgart, 1989.