SOUTENANCE DE PROJET SYSTEME LINEAIRE A GRANDE DIMENSION

BEN KHALIFA EMNA - HONAKOKO GIOVANNI

4 METHODES DE RESOLUTION NUMERIQUE

JACOBI DENSE

utilise uniquement la valeur d'itération précédente Simple à implémenter Convergence lente 2

JACOBI SPARSE

Optimisée pour les matrices
creuses
Réduit la mémoire, plus
efficace
Plus complexe à
implémenter

3

GAUSS-SEIDEL

Mise à jour séquentielle, utilise immédiatement les nouvelles valeurs

SOR

Amélioration de Gauss-Seidel avec facteur de relaxation ω

CRITERE DE CONVERGENCE RAYON SPECTRALE

 $n = 2000 \omega = 1.3$

rayon JS pour 2000 : 0.9999987675324825 rayon GS pour 2000 : 0.9999975350664795 rayon SOR pour 2000 : 0.6911813876372063 $n = 2000 \omega = 1.8$

rayon JS pour 2000 : 0.9999987675324825 rayon GS pour 2000 : 0.9999975350664795 rayon SOR pour 2000 : 4.49483373991288

JACOBI DENSE

n = 110

erreur vs iterations

temps en fonction de la taille

MERCI DE VOTRE ATTENTION!