CS5284 Graph Machine Learning

Coding sample

```
Instructions
Name: Please, add your name here : e.g. JOHN SMITH
```

Answers: Please write your answers directly in this notebook by completing the code sections marked with

YOUR CODE STARTS HERE

YOUR CODE (it can span one or multiple lines)

YOUR CODE ENDS HERE

Remark: If certain conditions of the questions (for eg. hyperparameter values) are not stated, you are free to choose anything you want.

Exercise: Graph Clustering with World Happiness Dataset

Import libraries and utility functions

```
In []: % reset -f
import datetime
print('Timestamp:',datetime.datetime.now().strftime("%y-%m-%d--%H-%M-%S"))
import numpy as np
import scipy.sparse
import pands as pd
import sklearn.metrics.pairwise
import networkx as nx
import sys; sys.path.insert(0, 'lib/')
from lib.utils import compute_ncut
from lib.utils import tompute_ncut
from lib.utils import print_neighboring_countries
from lib.utils import get_same_label_countries
```

Load and visualize the dataset

```
In []: wh = pd.read_csv("datasets/2019.csv") # load the dataset
# Features GDP per capita, Social support, Healthy life expectancy, Freedom to make life choices, Generosity, Perceptions of corruption
data = wh.iloc[:,3:].to_numpy()
print('Number of data points is', data.shape[0], 'and the number of features is', data.shape[1])
print('\nFirst three data points:\n', str(data[:3]))
print('\nPatas statistics:')
wh.describe()
```

Question 1: Data normalization

Normalize the dataset data so that it has a mean of zero and a standard deviation of one along each data dimension.

After normalization, print both the mean and standard deviation of the normalized dataset.

Hint: You can use the functions numpy.mean() and numpy.std() for this task.

Question 2: Construct a k-nearest neighbors (kNN) graph

Follow the instructions below to construct a k-nearest neighbors (kNN) graph from the given dataset.

```
In [ ]: def construct_knn_graph(M, k):
              'Construct a graph using KNN
              M: Data matrix as ndarray of size [n, d], n being the number of data points, d the number of features k: the number of nearest neighbors
           A: Adjacency graph as scipy.sparse matrix of size [n, n]
           # `dist_mat` is a n x n matrix with the pairwise distance between the data points
dist_mat = sklearn.metrics.pairwise.pairwise_distances(M, metric='euclidean', n_jobs=1)
           # YOUR CODE STARTS HERE
           # YOUR CODE ENDS HERE
           # Adjacency matrix values `adj_val`
sigma2 = np.mean(dist_sorted[:,-1])**2 # graph scale
adj_val = np.exp(- dist_sorted**2 / sigma2)
           # Compute the n \times n sparse adjacency matrix `A
           # YOUR CODE ENDS HERE
           A = scipy.sparse.csr_matrix((data, (row_idx, col_idx)), shape=(n, n))
           # Make A symmetric bigger = A.T > A A = A - A.multiply(bigger) + A.T.multiply(bigger)
           return A
```

```
In []: # Construct the graph
A = construct_knn_graph(data, k=3)

# Visualize the graph of countries
countries = wh.iloc[:,1].values
labels = dict(zip(range(data.shape[0]), countries))
```

```
G_nx = nx.from_scipy_sparse_array(A)
G_nx.remove_edges_from(nx.selfloop_edges(G_nx)) # Remove self-loops
interactive_vis_graph(G_nx, countries, np.ones(data.shape[0]))
print_neighboring_countries(G_nx, countries, 'Finand')
print_neighboring_countries(G_nx, countries, 'Thailand')
print_neighboring_countries(G_nx, countries, 'Singapore')
```

Question 3: Compute and visualize clusters of similar countries according to the features

Identify at least three countries that belong to the same cluster as Singapore.

Hint: Use the get_same_label_countries(countries, C, 'Singapore') function to display the countries in the same cluster as Singapore.

End of coding test

In []: