Programme n°18

MECANIQUE

M1 Cinématique Newtonienne du point

Cours et exercices

M2 Introduction à la cinématique du solide

Cours uniquement

M3 Bases de la dynamique newtonienne (Cours et exercices simples)

Première loi de Newton - La masse

- La quantité de mouvement

- Notion de forces

- Le principe d'inertie → Particule libre, isolée

→ Principe d'inertie

• Deuxième loi de Newton - Principe fondamentale de la dynamique

Particules isoléesNotions d'équilibre

• Troisième loi de Newton - Le principe

- Conservation de la quantité de mouvement

ullet Classification des forces - Interaction à distance o Interaction gravitationnelle

→ Interaction électromagnétique

- Forces de contact \rightarrow Forces de liaison

→ Forces de contact

→ Action exercée par un fluide : LA poussée d'Archimède

• Résoudre un problème de mécanique

• Chute libre dans un champ de pesanteur - Chute libre dans le vide

- Chute libre avec frottements fluides $\rightarrow \vec{f} = -k\vec{v}$ (méthode d'Euler)

 $\rightarrow \vec{f} = -kv\vec{v}$ (méthode d'Euler)

Système oscillant - Le ressort uniaxe

→ Présentation

→ Mise en équation et solution

- Le pendule simple

→ Mise en équation→ Cas de mouvement de faibles amplitudes

→ Portrait de phase.

Les analogies entre mécanique et oscillateurs seront vues dans un prochain chapitre

· · · · · · · · · · · · · · · · · · ·	
2.1 Loi de la quantité de mouvement	
Forces. Principe des actions réciproques.	Établir un bilan des forces sur un système, ou
	plusieurs systèmes en interaction et en rendre
	compte sur une figure.
	Proposer un protocole expérimental permettant
	d'étudier une loi de force.
Quantité de mouvement d'un point et d'un système	Établir l'expression de la quantité de mouvement
de points. Lien avec la vitesse du centre d'inertie	d'un système restreint au cas de deux points sous la
d'un système fermé.	forme $\vec{p} = m\vec{v}(G)$.
Référentiel galiléen. Principe de l'inertie.	Décrire le mouvement relatif de deux référentiels
	galiléens.
Loi de la quantité de mouvement dans un	Déterminer les équations du mouvement d'un point
référentiel galiléen.	matériel ou du centre d'inertie d'un système fermé.
Mouvement dans le champ de pesanteur uniforme.	Mettre en équation le mouvement sans frottement et
	le caractériser comme un mouvement à vecteur-
	accélération constant.
Poussée d'Archimède.	Exploiter la loi d'Archimède.

Influence de la résistance de l'air.	Approche numérique : Prendre en compte la trainée pour modéliser une situation réelle.
	Approche numérique: Exploiter une équation différentielle sans la résoudre analytiquement: analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats fournis par un logiciel d'intégration numérique.
Pendule simple.	Établir l'équation du mouvement du pendule simple.

SOLUTIONS AQUEUSES

AQ1 Réactions acide- base en solution aqueuse (Cours et exercices)

- Etude d'une réaction acidobasique
- Calcul de la constante d'équilibre
- La réaction prépondérante
- Exemples

Calcul de pH: uniquement des simples et réalistes: un acide ou une base ou un acide et une base.

Dosages (Cours uniquement)

- Généralités
- Principe
- Réaction de dosage
- Méthode de dosage
- Le point d'équivalence
- Dosage conductimétrique
- Présentation définition
- Conductivité
- Ce qu'il faut savoir
- Méthode
- Exemples
 - ples → Dosage d'un acide fort par une base forte
 - → Dosage d'un acide faible par une base forte
- Dosage pH métrique Principe d'un pH-mètre
 - Etalonnage
 - Dosage d'un acide fort par une base forte
 - Dosage d'un acide faible par une base forte

<u>TP</u>

Réponse à différentes tensions d'un filtre RC Suivi par conductimétrie d'une cinétique d'ordre 2