

□UR TEAM **◄◄◄**

Alexander Gorelik

Oren Avidan

Shahar Ehrenhalt

Mayan Stroul

TABLE OF CONTENTS

1 The Client

14 The Results

12 The Problem

O5 Demo

13 The Solution

Summary & Feature Steps

AquaFlow Technologies has established itself as a leader in the water treatment and management industry.

With a commitment to innovation and sustainability, AquaFlow specializes in developing advanced solutions for water purification, recycling, and conservation.

The company's portfolio includes state-of-the-art filtration systems, efficient wastewater treatment plants, and cutting-edge desalination technologies.

Minimal operational disruptions from unnecessary alerts, thus optimizing resources and maintaining operational continuity

Missing Anomalies

Lead to severe consequences, including critical system failures like water pipe blowouts, resulting in water shortages and extensive repair costs (~10,000\$)

Cost Implications

The financial impact of a missed anomaly is significantly higher, estimated to be twice as costly, compared to the expense incurred in responding to a false alarm.

DATA SCIENCE METRICS

Unnecessary Alerts - FP

Low False Positive (FP) rate leads to minimal operational disruptions from incorrect alerts

Missing Anomalies - FN

False Negative (FN) are potentially causing critical system failures and leading to significant repair costs and operational downtime.

Cost Implications

False Negative (FN) is twice as costly, compared to the expense incurred in responding to False Positive (FP)

F SCORE

$$F1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$F_{eta} = \left(1 + eta^2
ight) \cdot rac{ ext{precision} \cdot ext{recall}}{\left(eta^2 \cdot ext{precision}
ight) + ext{recall}}$$

BASELINE PERFORMANCE

SHAP (SHapley Additive exPlanations) is a machine learning interpretability method that explains the output of any model by quantifying the impact of each feature on the prediction. It uses game theory principles, attributing an average contribution of each feature across all possible combinations.

LOCAL FEATURE CONTRIBUTION

GLOBAL FEATURE CONTRIBUTION

4444

Drop 15% least impactful features

ARCHITECTURE

BASELINE VS IMPROVED

Predicted Predicted Non-Anomaly Anomaly

True Non-Anomaly

True Anomaly

1041 TN 0 FP 145 FN 658 TP

	Predicted Non-Anomaly	Predicted Anomaly
True Non-Anomaly	1041 TN	O FP
True Anomaly	145 FN	658 TP

Accuracy	0.92
Precision	1
Recall	0.81
F2 Score	0.85

Accuracy	0.92
Precision	1
Recall	0.81
F2 Score	0.85
1 6 36016	0.00

GLOBAL FEATURE CONTRIBUTION

4444

LOCAL CONTRIBUTION

LOCAL CONTRIBUTION

Non-Anomaly

Anomaly

CONTRIBUTION

CONTRIBUTION

<u> </u>	< 24 rows	V > > 24	rows × 9 colum	ns	·	·			
	123 TP ‡	<u>123</u> FP	123 TN ‡	123 FN \$	123 recall ‡	123 precision ÷	123 f_beta	123 contrib_coef ÷	f_beta_score_normed \$
Flow_min	3858	175	8219	451	0.895335	0.956608	0.906954	1.	0.906954
Temp_mean	3759	6115	2279	550	0.872360	0.380697	0.693287	1.	0 0.693287
Temp_min	3760	6286	2108	549	0.872592	0.374278	0.689099	1.	0.689099
A1_mean	3471	6518	1876	838	0.805523	0.347482	0.637466	1.	0.637466
Vol_mean	2970	5273	3121	1339	0.689255	0.360306	0.582833	1.	0 0.582833
Cur_min	2954	5386	3008	1355	0.685542	0.354197	0.577495	1.	0 0.577495
Cur_mean	2765	5541	2853	1544	0.641680	0.332892	0.541265	1.	0.541265
A2_max	2573	4523	3871	1736	0.597122	0.362599	0.528728	1.	0.528728
Ther_max	2447	4053	4341	1862	0.567881	0.376462	0.515462	1.	0.515462
A2_min	2605	5716	2678	1704	0.604549	0.313063	0.509645	1.	0.509645
A1_min	2341	3760	4634	1968	0.543282	0.383708	0.501564	1.	0.501564
Ther_min	1904	2495	5899	2405	0.441866	0.432826	0.440028	1.	0.440028
Pre_max	1538	3033	5361	2771	0.356927	0.336469	0.352639	1.	0 0.352639
Ther_mean	1082	1198	7196	3227	0.251102	0.474561	0.277208	1.	0 0.277208
Temp_max	956	5258	3136	3353	0.221861	0.153846	0.203838	1.	0.203838
Cur_max	764	1415	6979	3545	0.177303	0.350620	0.196755	1.	0 0.196755
A1_max	450	903	7491	3859	0.104433	0.332594	0.121039	1.	0.121039
Flow_max	504	4617	3777	3805	0.116964	0.098418	0.112716	1.	0.112716
Vol_max	142	296	8098	4167	0.032954	0.324201	0.040172	1.	0.040172
A2_mean	0	0	0	0	0.000000	0.000000	0.000000	0.	0.000000
Pre_min	0	0	0	0	0.000000	0.000000	0.000000	0.	0.000000
Pre_mean	0	0	0	0	0.000000	0.000000	0.000000	0.	0.000000
Vol_min	0	0	0	0	0.000000	0.000000	0.000000	0.	0.000000
Flow_mean	0	0	0	0	0.000000	0.000000	0.000000	0.	0.000000

ARCHITECTURE

BASELINE VS IMPROVED 2.0

Predicted Non-Anomaly Anomaly

True Non-Anomaly 1041 0

True Anomaly 145 658

	Predicted Non-Anomaly	Predicted Anomaly
True Non-Anomaly	1041	
True Anomaly	139	664

Accuracy	0.92
Precision	1
Recall	0.82
F2 Score	0.85

Accuracy	0.93
Precision	1
Recall	0.83
Recall	
F2 Score	0.86

Representative test set period

Decrease of missing anomalies during test period

10,000\$

Potential cost of missing anomaly

IMPROVED VS IMPROVED 2.0

performance

	123 f_beta_score_normed	\$
Flow_min	0.9069)54
Temp_mean	0.6932	287
Temp_min	0.6896	99
\1_mean	0.6374	166
/ol_mean	0.5828	333
ur_min	0.5774	195
ur_mean	0.5412	265
A2_max	0.5287	/28
her_max	0.5154	162
2_min	0.5096	345
l_min	0.5015	64
her_min	0.4400	28
re_max	0.3526	339
her_mean	0.2772	208
Temp_max	0.2038	338
ur_max	0.1967	755
1_max	0.1210)39
low_max	0.1127	/16
ol_max	0.040	172
12_mean	0.000	000
re_min	0.000	000
re_mean	0.000	000
/ol_min	0.000	000
Flow_mean	0.000	000

FEATURE STEPS

Magnitude Use

Take the magnitude of each feature into account and not only the direction of each feature

Optimization

Adding the optimization step for optimal number of features selection for drop

□mniXAI

Using "temporal context"
- explaining a sample by
features from other
timestamp as well

THANKYOU Questions?

