Microprocessors & Interfacing

Serial Input/Output (I)

Lecturer: Annie Guo

Lecture Overview

- Serial Communication
 - Concepts
 - Standards*

Why Serial I/O?

- Problems with Parallel I/O:
 - Needs one wire for each bit.
 - When the source and destination are far from each other the parallel cable can be bulky and expensive.
 - Susceptible to reflections and induced noises for long distance communication.
- Serial I/O overcomes these problems.

Serial Communication System Structure

Serial Communication System Structure (cont.)

- At the communication source:
 - The parallel interface transfers data to the transmit data buffer.
 - The data is loaded into the Parallel In Serial Out (PISO) register and T_{clock} shifts the data bits out from the register to the receiver.

Serial Communication System Structure (cont.)

- At the communication destination:
 - R_{clock} shifts each bit received into the Serial In Parallel Out (SIPO) register.
 - After all data bits have been shifted in, they are transferred to the received data buffer.
 - The data in the received data buffer can be read by an input operation via the parallel interface.

Synchronous vs Asynchronous Transmission

Synchronous

- Transmitter and receiver clocks are synchronized
 - Need extra hardware for clock synchronization
- Having faster data transfer rate

Asynchronous

- Transmitter and receiver use different clocks. No clock synchronization is required.
- Used in many applications, such as keyboard, mouse and modem.
- The rest of this lecture mainly focuses on Asynchronous communication

UART

- UART is a basic serial communication hardware
- It has both transmitter and receiver
- Data are transmitted asynchronously
 - Clocks on both sides are not synchronized
 - But the receiver has a way to synchronise the data receiving operation with the data transmission operation
- Hence called UART (Universal Asynchronous Receiver/Transmitter).

Communication Logic Structure with UART

UART Data Frame Format

- Before transmission, data should be encoded
 - Use an encoding scheme, such as ASCII
- Each encoded data item is encapsulated with two types of bits
 - Start bit and stop bit
- Mark and space: the logic one and zero levels are, respectively, called mark and space.
 - When the transmitter is not sending anything, it holds the line at mark level, also called idle level.

UART Data Frame Format (cont.)

Typical bits in data transmission:

– Start bit:

 When the transmitter has data to send, it first changes the line from the mark to the space level for one-bit time. This is to synchronise the receiver with the transmitter. When the receiver detects the start bit, it starts to clock in the serial data bits.

- Data bits:

representing a data item, such as a character

UART Data Frame Format (cont.)

- Typical bits in data transmission:
 - Parity bit: used to detect errors in the data
 - For odd parity: this bit added to the data to make the total number of 1s in the data odd
 - For even parity: this bit added to the data to make the total number of 1s in the data even.

```
• E.g. '9' → ASCII: 0x39=0b00111001
P_even = 0
P_odd = 1
```

- Stop bit: added at the end of data frame.
 - It separates successive data transmissions.
 - Some systems require more than one stop bit.

Data Transmission Rate

 The rate at which bits are transmitted, also called *baud rate*, measured in *bits per* second.

Communication Connection Types

- Three serial communication connection types:
 - Simplex
 - Full-duplex (FDX)
 - Half-duplex (HDX)

Simplex Connection

- Data are sent in one direction only
 - For example, computer to a serial printer.
- Simple
 - If the sender does not send data faster than the receiver can accept it, no handshaking signals are required.

Full-Duplex (FDX) Connection

 Data are transmitted in two directions, each with a separate data line.

Half-Duplex (HDX) Connection

 Data are transmitted in two directions with only one data line.

Standards for the Serial I/O Interface*

- Interface standards are needed to allow different manufacturers' equipment to be interconnected
 - E.g. modem to computer
- Must define the following elements:
 - Handshaking signals
 - Direction of data flow
 - Types of communication devices.
 - Physical interface
 - Electrical signal levels.

Standards for the Serial I/O Interface*

- Typical standards include RS-232-C, RS-422, RS-423 and RS-485.
 - RS-232-C standard is used in most serial interface.
 - Standard interconnection cable should be used.
 - E.g. 9-pins
 - Can be in different connection types

RS-232-C Interconnection*

- Example: minimal null modem cable
 - Used in our lab board

Example of UART to USB Connection*

Reading Material

- Chapter 12: Serial Input/Output.
 Microcontrollers and Microcomputers by Fredrick M. Cady.
- Mega2560 Data Sheet
 - USART