9123: Data Structures & Algorithms
Abstract Data Types and Algorithm Analysis

Dr. Ravihansa Rajapakse

Dr. Karlos Ishac

School of Computer Science

Recap

- We discussed the structure of linked lists and operations
- List types
 - Singly linked lists
 - Doubly linked lists
 - Circular lists
- Operations
 - Insertion
 - Deletion
 - Traversal

Abstract Data Types

Abstract Data Types & Data Structures

An abstract data type (ADT) is a specification of the desired behaviour from the point of view of the user of the data.

A data structure is a concrete representation of data, and this is from the point of view of an implementer, not a user.

Distinction is subtle but similar to the difference between a computational problems and an algorithm.

Abstract Data Types (ADT)

Type defined in terms of its data items and associated operations, not its implementation.

Simple example: Driving a car

interface

implementation

Benefits of ADT Approach

- Code is easier to understand if different issues are separated into different places.
- Client can be considered at a higher, more abstract, level.
- Many different systems can use the same library, so only code tricky manipulations once, rather than in every client system.
- There can be choices of implementations with different performance tradeoffs, and the client doesn't need to be rewritten extensively to change which implementation it uses.

Example: Reservation System

We have a theatre with500 named seats, e.g., "N31"

- What kind of data should be stored?
 - Seats names
 - Seats reserved or available.
 - If reserved, name of the person who reserved the seat.

Operations needed?

Example: Reservation System

– Operations needed?

- capacity_available(): number of available seats (integer)
- capacity_sold(): number of seats with reservations
- customer(x): name of customer who bought seat x
- release(x): make seat x available (ticket returned)
- reserve(x, y): customer y buys ticket for seat x
- add(x): install new seat whose id is x
- get_available(): access available seats

ADT Challenges

- Specify how to deal with the boundary cases
 - what to do if reserve(x, y) is invoked when x is already occupied?
 - what other cases can you think of?

 Do we need a new ADT? Could we use an existing one, perhaps by renaming the operations and tweaking the error-handling?

Stacks and Queues

These ADTs are restricted forms of List, where insertions and removals happen only in particular locations:

- stacks follow last-in-first-out (LIFO)
- queues follows first-in-first-out (FIFO)

So why should we care about a less general data structures?

- operations and names are part of computing culture
- numerous applications
- simpler/more efficient implementations than Lists

Stacks

What is a Stack?

- A stack(sometimes called a "push-down stack") is an ordered collection of items where the addition of new items and the removal of existing items always takes place at the same end.
- This end is commonly referred to as the "top."
- Stack principle: Last In First Out (LIFO) which means the last element inserted is the first one to be removed
- Example: Which is the first element to pick up?

Stack Example

- A common model of a stack is a plate or coin stacker.
- Plates are "pushed" onto the top and "popped" off from the top
- Stacks form Last-In-First-Out (LIFO)

Stack Operations

Main stack operations:

- push(e): inserts an element, e
- pop(): removes and returns the last inserted element

Auxiliary stack operations:

- top(): returns the last inserted element without removing it
- size(): returns the number of elements stored
- isEmpty(): indicates whether no elements are stored

Stack Operations Example

Operation	Returns	Stack
push(5)	-	[5]
push(3)	-	[5, 3]
size()	2	[5, 3]
pop()	3	[5]
isEmpty()	False	[5]
pop()	5	
isEmpty()	True	
push(7)	-	[7]
push(9)	-	[7, 9]
top()	9	[7, 9]
push(4)	-	[7, 9, 4]
pop()	4	[7, 9]

Applications of Stacks

Direct applications

- Keep track of a history that allows undoing such as Web browser history or undo sequence in a text editor
- Chain of method calls in a language supporting recursion
- Parentheses checker-examine a file to see if its braces {}
 and other operators are matching

Indirect applications

- Auxiliary data structure for algorithms
- Component of other data structures

Method Stacks

The runtime environment keeps track of the chain of active methods with a stack, thus allowing recursion

When a method is called, the system pushes on the stack a frame containing

- Local variables and return value
- Program counter

When a method ends, we pop its frame and pass control to the method on top

def main()
 i = 5;
 foo(i);

def foo(j)
 k = j+1;
 bar(k);

def bar(m)

PC = 1 m = 6

foo PC = 2 j = 5 k = 6

main PC = 2 i = 5

Balanced Parentheses

 When analyzing arithmetic expressions, it is important to determine whether an expression is balanced with respect to parentheses

$$(a + b * (c / (d - e))) + (d / e)$$

- The problem is further complicated if braces or brackets are used in conjunction with parentheses
- The solution is to use stacks!

Steps to Check for Balanced Parentheses

- Initialize an empty stack.
- Iterate through each character in the expression.
 - If the character is an **opening bracket** ((, { , [), push it onto the stack
 - If the character is a closing bracket (), },]):
 - Check if the stack is empty. If yes, return false (unbalanced).
 - Otherwise, pop the top element from the stack.
 - Check if the popped opening bracket **matches** the current closing bracket. If not, return **false** (unbalanced).
- After iteration, check the stack:
 - If the stack is empty, return true (balanced).
 - If not, return false (unbalanced).

Expression: (w * [x + y] / z)

Balanced: true Index: 0

Expression: (w * [x + y] / z)

Balanced: true

Index : 1

Expression: (w * [x + y] / z)

Balanced: true Index: 2

Expression: (w * [x + y] / z)

Balanced: true

Index : 3

Expression: (w * [x + y] / z)

Balanced: true Index: 4

Expression: (w * [x + y] / z)

Balanced : true

Index: 5

Expression: (w * [x + y] / z)

Balanced: true

Index : 6

Expression: (w * [x + y] / z)

Expression: (w * [x + y] / z)

Balanced: true

Index: 8

Expression: (w * [x + y] / z)

Balanced : true

Index : 9

Expression: (w * [x + y] / z)

Expression: (w * [x + y] / z)

Stack

Balanced: true Index: 10

Since the stack is empty at the end, the expression is **balanced**

Expression: $\{ [x + y)] - z \}$

Balanced: true Index: 0

Expression: $\{ [x + y)] - z \}$

Balanced: true Index: 1

Expression: $\{ [x + y)] - z \}$

Balanced: true

Index : 2

Expression: $\{ [x + y)] - z \}$

Balanced: true Index: 3

Expression: $\{ [x + y)] - z \}$

Balanced: true Index: 4

Balanced Parentheses (Example 2)

Expression: $\{ [x + y)] - z \}$

Queues

Queue ADT

Main queue operations:

- enqueue(e): inserts an element, e, at the end of the queue
- dequeue(): removes and returns element at the front of the queue

Auxiliary queue operations:

- first(): returns the element at the front without removing it
- size(): returns the number of elements stored
- isEmpty(): indicates whether no elements are stored

Queue Example

Operation	Output	Queue
enqueue(5)	-	(5)
enqueue(3)	-	(5, 3)
dequeue()	5	(3)
enqueue(7)	-	(3, 7)
dequeue()	3	(7)
first()	7	(7)
dequeue()	7	()
isEmpty()	true	()
enqueue(9)	-	(9)
enqueue(7)	-	(9, 7)
size()	2	(9, 7)
enqueue(3)	-	(9, 7, 3)
enqueue(5)	-	(9, 7, 3, 5)
dequeue()	9	(7, 3, 5)

Queue applications

Buffering packets in streams, e.g., video or audio

Direct applications

- Waiting lists
- Access to shared resources (e.g., printer)
- Multiprogramming

Indirect applications

- Auxiliary data structure for algorithms
- Component of other data structures

Queue Application: Ticket Counter

Imagine a queue at a ticket counter where people stand in line to buy tickets. The first person in line gets served first, following the **FIFO** (**First in**, **First Out**) principle.

Operations in the queue:

- Enqueue (Add to queue): A person joins the end of the queue
- 2. Dequeue (Remove from queue): The person at the front gets served and leaves the queue

Algorithm Analysis

Why Do We Need a Performance Measure for Algorithms?

- Multiple Ways to Solve a Problem There are many different algorithms for the same task, and we need a way to evaluate them.
- Finding the Best Approach Algorithm analysis helps compare different solutions to determine which one is the most efficient.
- Estimating Resource Usage It allows us to predict how much time and memory an algorithm will require as input size grows.
- Ensuring Scalability & Performance Helps choose algorithms that work well for both small and large datasets without unnecessary slowdowns.

Early Attempts to Measure Algorithm Efficiency

Measuring Execution Time

 Initially, execution time was used to determine how efficient an algorithm was.

 Developers timed how long an algorithm took to complete a task and compared results.

 While straightforward, this method had significant drawbacks for reliable evaluation.

Why Execution Time is Not a Good Measure?

- Hardware Dependent Performance varies across different CPUs, RAM, and system configurations.
- Implementation Dependent Execution time is affected by programming language, compiler, and system optimizations.
- Input Size Variation Small inputs may run fast, but execution time doesn't predict behavior for large datasets.
- External Factors Background processes and multithreading can cause inconsistent results.

The Need for a Better Measure

Why do we need a new way to analyze algorithms?

- We need a method that is independent of hardware and implementation.
- It should focus on how an algorithm scales with input size.
- It must allow us to compare different algorithms objectively.

Introduction to Big-O Notation

What is Big-O Notation?

- A mathematical way to describe how the runtime of an algorithm grows with input size (n).
- Focuses on the worst-case scenario to ensure performance reliability.
- Ignores constant factors and lower-order terms. (e.g., $O(2n+4n^2) \rightarrow O(n^2)$)

Why is it useful?

- Provides a standardized method for analyzing efficiency.
- Helps choose the best algorithm for large-scale problems.

Understanding Growth Factor in Big-O

- The growth factor in time complexity refers to how the runtime of an algorithm increases as the input size (n) grows.
- Example:

 $Big-O = O(n^4)$

$$T_{(n)} = nc_1 + n^2c_2 + n^3c_3 + n^4c_4$$

$$n=1$$

$$T_1 = c_1 + c_2 + c_3 + c_4$$

$$n=10$$

$$T_{10} = 10c_1 + 100c_2 + 1000c_3 + 10000c_4$$

$$n=100$$

$$T_{100} = 100c_1 + 10000c_2 + 10000000c_3 + 100000000c_4$$

Why Worst-Case Matters?

- Predictability & Reliability Ensures the algorithm performs within known limits, crucial for real-time and critical applications.
- Avoids Unexpected Slowdowns Some algorithms perform well on average but degrade in the worst case (e.g., QuickSort: O(n log n) avg, O(n²) worst).
- Helps Choose the Right Algorithm Algorithms like Merge Sort (O(n log n)) are preferred over Bubble Sort (O(n²)) due to consistent worst-case performance.
- Optimizes Resource Allocation Knowing the worst-case complexity helps developers allocate the right amount of computational power, memory, and bandwidth, preventing system crashes and inefficiencies.

Big-O Notation

- Instead of exact times or operations, Big-O describes growth trends.
- It tells us the upper bound (worst-case scenario) of an algorithm's efficiency.

```
def print_items(n):
    for i in range(n):
        print(i) # Runs n times
```

 $O(n) \rightarrow Linear time complexity$

This gives a hardware-independent way to compare algorithms.

Scanning Items at a Supermarket (O(n)) - Linear Time

Scenario:

 A cashier scans items at checkout, and you have 50 items in your cart.

Approach:

- Each item is scanned one by one into the system. The total time taken grows directly with the number of items.
- If you double the items (100 items), it takes twice as long.

Complexity Analysis:

- The time required increases proportionally with the number of items. Works fine for moderate inputs, but scales linearly.
- Big-O Complexity: O(n) (Good, but not ideal for very large inputs).

Finding a Word in a Physical Dictionary (O(log n)) – Logarithmic Time

Scenario:

 You are looking for the word "Algorithm" in a 1,000-page dictionary.

Approach:

- You don't flip through each page one by one.
- Instead, you open the middle and check:
 - If the word comes before, search the left half.
 - If the word comes after, search the right half.
- You repeat this process until you find the word.

Finding a Word in a Physical Dictionary (O(log n)) – Logarithmic Time

Complexity Analysis:

- Each time, the search space halves (1,000 \rightarrow 500 \rightarrow 250 \rightarrow 125 \rightarrow ...).
- The number of searches needed grows logarithmically with the number of pages.
- Efficiency: Even with a million pages, you'd only need about 20 searches!
- Big-O Complexity: O(log n) (Very efficient for large datasets).

Checking for Duplicate Transactions in a Bank (O(n2))

- Quadratic Time

Scenario:

 A bank needs to check for duplicate transactions in a list of 1,000 payments.

Approach:

- The system compares each transaction with every other transaction to see if they match.
- This requires nested loops:
 - The first loop picks a transaction.
 - The second loop checks all other transactions for a duplicate.

Checking for Duplicate Transactions in a Bank (O(n2))

Quadratic Time

Complexity Analysis:

- If there are 1,000 transactions, the system performs 1,000 \times 1,000 = 1,000,000 comparisons.
- If transactions double to 2,000, comparisons become 4,000,000—this scales poorly!
- Big-O Complexity: $O(n^2)$ (Becomes too slow for large datasets).

Understanding Time & Space Complexity

Time Complexity

- Measures how execution time grows as input size (n) increases.
- Helps analyze algorithm efficiency.
- Example: Searching a name in an unsorted list O(n) vs. binary search in a phonebook O(log n).

Space Complexity

- Measures how much memory an algorithm needs as input size grows.
- Includes variables, recursion, and extra data structures.
- Example: Sorting an array in place O(1) vs. using extra memory for a copy O(n).

Common Big-O Examples with Real-World Analogies

Complexity	Example	Real-World Analogy
O(1) (Constant)	Accessing arr[i]	Finding a book by its shelf number
O(log n) (Logarithmic)	Binary search	Looking for a word in a dictionary
O(n) (Linear)	Looping through an array	Checking every page in a book
O(n log n) (Linearithmic)	Merge Sort	Efficiently organizing pizza orders
O(n²) (Quadratic)	Bubble Sort	Pairwise comparisons in a tournament
O(2 ⁿ) (Exponential)	Recursive Fibonacci	Brute-force password cracking

Big-O Complexity Growth Rates

Size of input data