Nanomagnetism and Spintronics

Lecture 1 Basic magnetostatics

Prof. Riccardo Bertacco

Department of Physics – Politecnico di Mllano

E-mail: <u>riccardo.bertacco@polimi.it</u>

Tel: 02 23999663

Demanstrate hot	The boundary carditions	
		2
followhing condit	ion on the scoler potential U	
1 U ûn = Vout		
OUin _ OUart = 4	7.M at MA (H+17).MdS=	=O
· OM OM	M (-) X	
Béu_ = Bett_ (1)	Hun = Houtp(E))
	The isaltentitally solly	ed
	as H= \for v \s that \for xH=0	. 1
OM DM	from which (2) can be sta	rilid
u Duat _ M-M	However, we should avoid	
	any divergence of #=- FU	
	of the arterfee => U must	
	De continuous	
	Hout and followhing condite of the Din = Voit = Fort (1) Letter = Hout and DM Letter = Hout July = Dout = Fort Letter = Hout July = Dut Letter = Hout	Du Du = H.M Du Du = H.M Du Du = Hatre (E) Letter = Du Lot Fixth = O Letter = Hatre (E) Letter = Du Lot Fixth = O Letter = Du Lot Fixth = D Letter =

Solution of the differential equation for the scalar potential

Hoguetoc moteriols B=10(H+H) H=-VU \overline \overlin

The same exuations have be same solitions:

By anology:

-VIT : VOLUME WAGNETIC CHARGES

M.M : SURFACE MAGNETIC CHARGES

Dielectrics

The solution for Vid Kled-Knaxh.

Example 1: infinite circular cylinder uniformly magnetized along z

$$\begin{array}{ll}
\overline{V}.\overline{H} = 0 &= D \quad \overline{V} = 0 \quad \text{alorywherl} \\
\overline{L} \quad \overline{V} = 0 \\
\overline{L} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{L} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V} = 0 \\
\overline{V} \quad \overline{V$$

$$O = O$$

Example 2: infinite circular cylinder uniformly magnetized along x

Example 3: sphere uniformly magnetized along z

The solution is:
$$U = \frac{Ms}{3} = \frac{1}{3} = \frac{$$

Ellipsoid uniformly magnetized

THEOREM 1: if and only if the surface of a FM body is of a second degree, he internal field is uniform their Misum,

For an ellipsoid: $(x)^2 + (y)^2 + (z)^2 = 1$

Hu = - N F

L DEMAGNETIZING TENSOR

THEOREM 2: The trace of N is = 1

For explien: $N = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{9} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$

For a cylinder (infinite along 2): N= (1/2 1/2)

EM = 10 V (NxMx2+NyMy2+N2M2)

SHAPE ANISOTROPY ENERGY

PROLATE SPHEROID

$$C>Q=b = N_{x} = N_{y} > N_{z}$$

$$E_{M} = N_{y} \sqrt{N_{x} + N_{y}^{2}} + N_{z} M_{z}^{2} =$$

$$= N_{y} \sqrt{N_{z} - N_{x}} M_{z}^{2} + N_{z} N_{x} (M_{x} + M_{y}^{2} + M_{z}^{2})$$

$$= N_{z} \sqrt{N_{z} - N_{x}} M_{s} co^{2}Q$$

$$= N_{z} \sqrt{N_{z} - N_{x}$$

OBLATE SPHEROID

$$C < Q = D = D N_{x} = N_{y} < N_{z}$$

PLANE ANISOTROPY

Demagnetizing tensor components along the three axis for a prolate spheroid

$$a = b$$

$$p = \frac{c}{a} (> 1), \qquad \xi = \frac{\sqrt{p^2 - 1}}{p}$$

$$N_z = \frac{1}{p^2 - 1} \left[\frac{1}{2\xi} ln \left(\frac{1 + \xi}{1 - \xi} \right) - 1 \right]; \quad N_x = N_y = \frac{1 - N_z}{2}$$

Osborn, J. A., Demagnetizing factors of the general ellipsoid, Phys. Rev., 67, 351-7 (1945)

Demagnetizing factors for non-ellipsoidal shapes

JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 6 15 MARCH 1998

Demagnetizing factors for rectangular ferromagnetic prisms

Amikam Aharoni^{a)}

Department of Electronics, Weizmann Institute of Science, 76100 Rehovoth, Israel

We consider a uniform and homogeneous ferromagnetic particle in the shape of a rectangular prism, and we define the origin of a Cartesian coordinate system at the center of this prism. More specifically, we assume (as in Ref. 5) that the prism extends over the volume $-a \le x \le a$, $-b \le y \le b$ and $-c \le z \le c$, see Fig. 1. If this prism is saturated along z, a surface charge is created on its faces $z = \pm c$. The potential due to this charge can be calculated by well-known integrals on these surfaces, and the magnetic field is the gradient of that potential. It takes another integration of this field over the prism volume to obtain the magnetostatic self-energy, but all these integrations are nearly the same as in Ref. 9. On the whole, the algebra is non-trivial but straightforward in principle. The magnetometric demagnetizing factor in the z-direction, D_z , is defined as the factor that makes the magnetostatic self-energy per unit volume equal to $2\pi D_z M_s^2$.

TABLE I. The demagnetizing factor, D_z^p , of a prolate spheroid and the magnetometric demagnetizing factor, D_z^p , of a square prism, for an aspect ratio, p.

p	D_z^s	D_z^p
2.0	0.17356	0.19832
3.0	0.10871	0.14036
4.0	0.075407	0.10845
5.0	0.055821	0.088316
6.0	0.043230	0.074466
7.0	0.034609	0.064363
8.0	0.028421	0.056670
9.0	0.023816	0.050617
10.0	0.020286	0.045731
11.0	0.017515	0.041705

$$\begin{split} \pi D_z &= \frac{b^2 - c^2}{2bc} \ln \left(\frac{\sqrt{a^2 + b^2 + c^2} - a}{\sqrt{a^2 + b^2 + c^2} + a} \right) + \frac{a^2 - c^2}{2ac} \ln \left(\frac{\sqrt{a^2 + b^2 + c^2} - b}{\sqrt{a^2 + b^2 + c^2} + b} \right) + \frac{b}{2c} \ln \left(\frac{\sqrt{a^2 + b^2} + a}{\sqrt{a^2 + b^2} - a} \right) + \frac{a}{2c} \ln \left(\frac{\sqrt{a^2 + b^2} + b}{\sqrt{a^2 + b^2} - b} \right) \\ &+ \frac{c}{2a} \ln \left(\frac{\sqrt{b^2 + c^2} - b}{\sqrt{b^2 + c^2} + b} \right) + \frac{c}{2b} \ln \left(\frac{\sqrt{a^2 + c^2} - a}{\sqrt{a^2 + c^2} + a} \right) + 2 \arctan \left(\frac{ab}{c\sqrt{a^2 + b^2} + c^2} \right) + \frac{a^3 + b^3 - 2c^3}{3abc} \\ &+ \frac{a^2 + b^2 - 2c^2}{3abc} \sqrt{a^2 + b^2 + c^2} + \frac{c}{ab} \left(\sqrt{a^2 + c^2} + \sqrt{b^2 + c^2} \right) - \frac{(a^2 + b^2)^{3/2} + (b^2 + c^2)^{3/2} + (c^2 + a^2)^{3/2}}{3abc}. \end{split}$$

The other two demagnetizing factors, D_x and D_y , can be derived from this equation by applying twice the cyclic permutation $c \rightarrow a \rightarrow b \rightarrow c$. It is readily seen that these factors obey the relation

$$D_x + D_y + D_z = 1, (2)$$