Fysik

Jakob Tigerström/Eric Johansson

September 16, 2015

Contents

1	TO	DO	3
2	SI-S	Systemet	3
	2.1	Metern	3
	2.2	Massa	4
	2.3	Tidsenhet	4
	2.4	EX1	5
3	Ma	$\mathrm{ssa/volym}$	5
4	\mathbf{Pre}	fix	6
	4.1	EX1	7
	4.2	EX2	7
	4.3	EX3	7
5	Vik	tig regel	8
		EX1	8
6	Övı	ningar	8
	6.1	Densitet	8
	6.2	Mätning	8
7	Rer	petition	8
	7.1	Tyngd(tyngdkraft)	8
		7.1.1 Newtons allmänna gravitationslag	8
		7.1.2 EX1	9
		7.1.3 EX2	9
	7.2	Normalkraft	9
	7.3	Spännkraft(linkraft)	9
	7.4	Friktionskraft	9

8	Uppgifter				
	8.1	Rörelse 3	10		
	8.2	Uppgift 34 i Fysik	11		

1 TODO

- Fyll på SI-Systemet
- Skriv fler föreläsningar
- Strukturera upp föreläsningarna med section/subsection
- Lägg in uppgifts pappren.
- Skriv snyggare i allmänhet.
- Skriv mer om massa enhet.

2 SI-Systemet

SI-Systemet är en internationell standard för måttenheter och prefix. SI-Systemet består av 7 storheter som har en enhet som är noggrant definierad. Det finns även ett antal herledda enheter från SI-Systemet. SI-Systemet består av följande storheter:

- längd (l,s)
- massa (m)
- tid (t)
- elektrisk ström (I)
- temperatur (K)
- ljusstyrka (I)
- substandsmängd (n)

2.1 Metern

Från början var en metern definerad av distansen mellan Nordpolen och ekvatorn so man bestämde var 10^7 meter. Man gjorde kopior på metern som kallas arkivmetern. 1 meter är den sträcka som ljuset rör sig i vakum på $\frac{1}{299792458}$ sekund.

2.2 Massa

Från en början (år 1793) var måttenheten för massa grave och definitionen var $1dm^3$ vid 0°C är 1 grave. Dock ansångs det att grave var för stor enhet att mäta i och då skapades gramme vilket är en tusendel av 1 grave. Men dem insåg att gramme var för liten enhet att mäta i så dem återvände till grave, dock kunde det inte heta grave. Utan fick namnet kilogramme, 1000 gramme, och är den enda enheten i SI-Systemet med ett prefix.

År 1799 definerades kilogram till att 1 liter vatten vid 4°C har massan 1kg. 4°C är den temperaturen då vattnet är som "kompakt"/densitet. Sedan skapades en ren platinum-cylinder med samma vikt som definitionen för massa och placerades ut i arkiv runt om i värlen.

År 1889 uppgraderades cylindern till en platinum-iridium-mixad cylinder med samma massa och placerades ut i arkiv runt om i värlen.

År 1948 så samlades alla cylindrar för att vägas och det visade sig att massan hade ändrats med tiden.

År 1992 vägdes samltiga cylindrar igen och massan hade fortsatt sin förändring.

Massan är den enda enheten i SI-Systemet som har en fysisk definition, för tillfället.

Man håller på att göra en sfär av matriallet silikon-28 med massan 1kg. När den är skapad så kommer man ränka ut antalet silikon-28 atomer vilket kommer bilda den nya definitionen av massa. https://www.youtube.com/watch?v=ZMByI4s-D-Y

2.3 Tidsenhet

Ursprungligen var sekunden $\frac{1}{24*60*60}$ del av medelsoldygnet. Idag är ett visst antal perioder av en viss strålning.

Härledda enheter: m^2 Volymenheter: m^3 Hastighet: m/s

2.4 EX1

Vid en olje tanks rensning spreds 340 dm^3 olja ut på ett tunnt skikt på vattenytan. Oljeskiktet var 2.5nm tjockt.

Hur stor area hade oljebältet.

Storhet	Beteckning	Enhet	Beteckning
Längd	1	meter	\mathbf{m}
Massa	m	kilogram	kg
Tid	t	sekund	S

3 Massa/volym

Massa(g)	Volym i mätglaset(ml)	Stenarnas volym(ml)
0	62	0
16.6	68	6
29.9	73	11
46.2	79	17
62.9	85	23
73.3	88	26

$$\begin{split} m &= \rho * V \\ \rho &= \frac{m}{V} \\ \rho &= 2.714285714 = \frac{76}{28} \\ \rho &= 2,7g/ml = \frac{2,6g}{1ml} = \frac{2,6g}{0,001dm} \end{split}$$

4 Prefix

Femto	\mathbf{f}	10^{-15}
Piko	p	10^{-12}
Nano	n	10^{-9}
Mickro	μ	10^{-6}
Milli	m	$0,001 = 10^{-3}$
Centi	\mathbf{c}	$0,01 = 10^{-2}$
Deci	d	$0, 1 = 10^{-1}$
Deka	da	$10 = 10^1$
Hekto	h	$100 = 10^2$
Kilo	k	$1000 = 10^3$
Mega	Μ	10^{6}
Giga	G	10^{9}
Tera	${\rm T}$	10^{12}
Peta	P	10^{15}
Exa	\mathbf{E}	10^{18}
Zetta	\mathbf{Z}	10^{21}
Yotta	Y	10^{24}

4.1 $\mathbf{EX1}$

En kula med radien 12,5 mm har massan 61g. Bestäm kulans densitet.

$$m = 61g = 0,061kg$$

$$V = \frac{4\pi r^3}{3} = \frac{4\pi 0,0125^3}{3} \approx 8,181230869 * 10^{-6}m^3$$

$$\rho = \frac{m}{V} = \frac{0,061}{8,181230869*10^{-6}} \approx 7,5*10^3 kg/m^3$$

4.2EX2

Hur mycket korv kan man göra av Thomas?

$$V = A * l$$

Thomas volym?

Thomas massa: m = 110kg

$$V\rho = \frac{mV}{\rho}$$

$$\frac{V\rho}{\rho} = \frac{m}{\rho}$$

$$V^{\rho} = \frac{m'}{\rho}$$

Thomas massa. $m=110\kappa g$ $V\rho=\frac{mV}{\rho}$ $\frac{V\rho}{\rho}=\frac{m}{\rho}$ $V=\frac{m}{\rho}$ Thomas densitet \approx vattnets densitet.

$$\rho = 0,998g/cm^{3} = 998kg/m^{3}$$

$$V = \frac{m}{\rho} = 0,11m^{3}$$

$$r = 1,5cm \text{ Thomas korv}$$

$$V = \frac{m}{a} = 0,11m^3$$

$$A = r^2 \pi = (0,015)^2 = \approx 7,068 * 10^- 4$$

$$\rho = \frac{V}{A} = \frac{0,11}{7,068 * 10^- 4}$$

$$\rho = \frac{V}{A} = \frac{0.11}{7.068 \times 10^{-4}}$$

4.3 EX3

Uppskatta massan för luften i föreläsnings salen.

$$\rho = \frac{mV}{V}$$

$$m = \rho V = 1293 * 540 \approx 700 kg$$

$$\rho = 1,293kg/m^3$$

$$V = 12 * 15 * 3 \approx 540m^3$$
 Mätnoggranhet

Anger närmevärdet med felgränsen

$$A = 0,305m^2$$

$$0,3045 \leqslant A \leqslant 0,3055m^3$$
 3 gällande siffror

5 Viktig regel

Om du gör en multiplikation eller division ska svaret vara så många gällande siffror som det minst noggranna ingångs värde

5.1 EX1

En matta har längden(l) 12,71 m och bredden(b) 3,46 m. Vilken area har mattan?

$$A = lb = 12,71 * 3,46 \approx 43,9766m^2 \approx 44,0m^2$$

Om du gör en addition eller subtraktion ska svaret ha lika många decimaler som det ingångsvärde som har minst antal decimaler.

6 Övningar

6.1 Densitet

Koppar folie massa: m=13g=0,013kgKoppar folie densitet: $\rho=\frac{m}{V}$ $V=\frac{m}{\rho}=\frac{0,013}{8,96*10^3}$ $h=\frac{V}{A}=1,45*10^{-6}$

6.2 Mätning

$$t = \frac{13min}{2} = 6,5min \ v = 0,300 * 10^4 m/s$$

$$v = \frac{s}{t}$$

$$s = v * t = (0,300 * 10^9) * (6,5 * 60) = 1,2 * 10^{11} m$$

7 Repetition

7.1 Tyngd(tyngdkraft)

$$\begin{split} F &= m*g\\ g &= 9,82N/kg\\ \text{Tyngdkraft \"{a}r gravitationskraft vid jordytan}.\\ G &= 6,673*10^{-11}\frac{Nm^2}{kg^2} \end{split}$$

7.1.1 Newtons allmänna gravitationslag

$$F = G \frac{m_1 m_2}{r^2}$$

7.1.2 EX1

$$F = G \frac{m_1 m_2}{r^2} = 6,673 * 10^{-11}$$

$$F = G(\frac{90*100}{0.85^2}) = 8,3 * 10^{-7} N$$

7.1.3 EX2

Jordradien är 637 mil. Upskatta jordens massa.

$$F = G \frac{m_{Tomas} m_{Jorden}}{r^2} = m_{Tomas} * g$$

$$m_{Jorden} = \frac{gr^2}{G} = \frac{9.28*6370000}{6.673*10^{-11}} = 6,0*10^{24}$$

7.2 Normalkraft

Normalkraft = F_N =

Normal betyder vinkelrät mot.

I detta fall är normalkraften lika stor som tyngdkraften.

7.3 Spännkraft(linkraft)

7.4 Friktionskraft

Friktionskraft (F_f)

8 Uppgifter

8.1 Rörelse 3

- $\begin{array}{cc} 1. & \text{(a)} \ \ s=11, 3cm=0, 113m \\ t=0, 07s \\ \frac{0,113m}{0,07s}=1, 6m/s \\ \text{Svar: Medel hastigheten \"{a}r} \ 1, 6m/s. \end{array}$
 - (b) Vet ej.
- 2. 42,67+60=102,67s $\frac{800}{102.67}=7,79m/s$ $\frac{102,67}{3600}=0,0285=102,67s \text{ i timmar}(h)$ $\frac{0,8}{0,0285}=28,07km/h\approx 28,0km/h$

Svar: Han färdas 7,79m/s eller 28,0km/h

3. 3600s/h 86400s/d 86400*3, 3nm/s = 285120nm/d 0, 285mm/d $\frac{20mm}{0,285} = 70$ Syar: Det tar 70 dyan tills håret är 2cm

Svar: Det tar 70 dygn tills håret är 2cm längre.

- 4. (a) $V_m = \frac{21}{13,2} = 1,6m/s$
 - (b) $V_m = \frac{21*2}{13,2+8,5} = \frac{42}{21,7} = 1,935 \approx 1,9m/s$
- 5. $V_m = \frac{35}{30} = 1,2m/s$
- 6. (a) Fråga6

8.2 Uppgift 34 i Fysik

$$\begin{array}{l} t_{g\mathring{a}} = 50s \\ t_{rull} = 75s \\ t_{total} = ? \\ V_{g\mathring{a}} = \frac{s}{t_{g\mathring{a}}} = \frac{s}{50} \\ V_{rull} = \frac{s}{t_{rull}} = \frac{s}{75} \\ V_{tot} = V_{g\mathring{a}} + V_{rull} \\ V_{tot} = \frac{3s}{150} + \frac{2s}{150} = \frac{5s}{150} \\ s = V_{tot} * t_{tot} \\ t_{tot} = \frac{s}{V_{tot}} \\ t_{tot} = \frac{s}{150} = s / \frac{5s}{150} = \frac{s}{1} * \frac{150}{5s} = 30 \\ \text{Svar: } 30s \\ \end{array}$$