Introduction to Machine Learning

Evaluation: Training Error

Learning goals

- Understand the definition of training error
- Understand why training error is no reliable estimator of future performance

TRAINING ERROR

(also: apparent error / resubstitution error)

EXAMPLE: POLYNOMIAL REGRESSION

Sample data from sinusoidal function $0.5 + 0.4 \cdot \sin(2\pi x) + \epsilon$ with measurement error ϵ .

Assume data-generating process unknown. Try to approximate with a a^{th} -degree polynomial:

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \dots + \theta_d x^d = \sum_{i=0}^d \theta_i x^i.$$

EXAMPLE: POLYNOMIAL REGRESSION

Models of different *complexity*, i.e., of different orders of the polynomial are fitted. How should we choose *d*?

• d=1: MSE = 0.036: Clear underfitting

• d=3: MSE = 0.003: Pretty OK?

• d=9: MSE = 0.001: Clear overfitting

Simply using the training error seems to be a bad idea.

TRAINING ERROR PROBLEMS

- Unreliable and overly optimistic estimator of future performance.
 E.g., training error of 1-NN is always zero as each observation is its own NN during test time.
- Goodness-of-fit measures like (classic) R², likelihood, AIC, BIC, deviance are all based on the training error.
- For models of restricted capacity, and given enough data, the training error may provide reliable information.
 E.g., LM with p = 5 features, 10⁶ training points.
 But: impossible to determine when training error becomes unreliable.