Assignment No: 3.

Title: Assignment based on logistic Regre-Ssion for classification using python. Asses the performance of the model using evaluation metrics.

software Requirements:

vs code

Theory

1. Introduction to Logistic Regression

Learning augorithm used for classification problems. It predicts the probablity of a data point belonging to a particular category using the sigmoid function.

2 Logistic Function

The logistic (sigmoid) function is 6(z) = 1 $1+e^{-z}$

· Logistic Regression (sigmoid function.

		C-ON TREM	Page No.
3.	Difference between Target Variable in Logistic and Linear Regression. 4.		
	Aspect	Linear Regression	2000
	Tonget	continuous value	categorical value
	output	Any real number	0 to 1
201010	Use	prediction of numbers	classification stasts.
			obs

4. sigmoid function in Logistic Regression.

The sigmoid function outputs probability values that can be threshold.

e.g > 0.5 class 1

Formula :

$$6(z) = 1$$
 $1+e^{-z}$

5. categorical value voriable in batabase

categorical variable represent categories or groups (e.g. gender = male/ female)

These are often converted to numeric form using encoding techniques (label Encoding, one Hot encoding) before applying logistic Regression.

6. Evalution metrics:

1 confusion matrix

Table showing correct & incorrect prediction

Accuracy = TP+TN

TP+TN+FP+FN

2. Precision:-

correct positive predictions out of all predicted positives

precision = TP

TP+FP.

3. Recall (sensitivity):

correct positive predictions out of all actual

Recall = TP

TP+ EN.

4. F1 - Score

Harmonic mean of predision and recall

F1 = 2 × Precision x Recall

precision + Recall.

5 · Accuracy :

overall correctness of the model.

Accuracy = correct predictions
Total prediction.

conclusion:

thus, we implemented logistic Regression using python, trained a classification model and evaluated its performance using accuracy precision, recall, F1-score and confusion matrix

Reference:

python official Documentation.