Math 635 Lecture 9

Thomas Cohn

2/8/21

An Example of Connections and Parallelism

Take $M = S^1$, with the coordinate $0 \le x \le 2\pi$. Let $\mathcal{E} = M \times \mathbb{R}^2 = S^1 \times \mathbb{R}^2$, with the global frame $(E_1 = (1, 0), E_2 = (0, 1))$, $\forall x \in S^1$. Then elements of $\Gamma(\mathcal{E})$ are functions $\vec{f}(x) = (f^1(x), f^2(x))$.

Suppose ∇ is given by ϑ , any 2×2 matrix of 1-forms on M. So $\theta_i^j = \alpha_i^j dx$, for $\alpha_i^j \in C^\infty(S^1)$. Thus,

$$\nabla_{\frac{\partial}{\partial x}} \vec{f} = \underbrace{\begin{pmatrix} \underline{df^1} \\ dx \\ \underline{df^2} \\ \underline{dx} \end{pmatrix}}_{=\frac{d}{dx} \vec{f}} + \underbrace{\begin{pmatrix} a_i^j \end{pmatrix} \vec{f}}_{\text{because } dx \, \left(\frac{\partial}{\partial x}\right) = 1}$$

Consider the simple case $\vartheta=\begin{pmatrix}0&c\\-c&0\end{pmatrix},$ for some $c\in\mathbb{R}\setminus\{0\}.$ Then

$$\vec{f} \text{ is parallel} \quad \Leftrightarrow \quad \nabla_{\frac{\partial}{\partial x}} \vec{f} = 0 \quad \Leftrightarrow \quad \left\{ \begin{array}{l} \frac{df^1}{dx} = cf^2 \\ \frac{df^2}{dx} = -cf^1 \end{array} \right. \\ \Leftrightarrow \quad \left\{ \begin{array}{l} f^1(x) = f^1(0)\cos(cx) + f^2(0)\sin(cx) \\ f^2(x) = -f^1(0)\sin(cx) + f^2(0)\cos(cx) \end{array} \right.$$

This final object is the solution to the parallel transport problem, starting at x = 0 with $\begin{pmatrix} f^1(0) \\ f^2(0) \end{pmatrix} = \vec{f}(0)$.

Additionally, we can map from $\vec{f}(0)$ to $\vec{f}(2\pi)$ with the holonomy matrix:

$$\begin{pmatrix} \cos(2\pi c) & -\sin(2\pi c) \\ \sin(2\pi c) & \cos(2\pi c) \end{pmatrix}$$

Thus, the holonomy is trivial (i.e., the holonomy matrix is the identity matrix I_2) iff $c \in \mathbb{Z}$.

Exer: Compute $\nabla_{\frac{\partial}{\partial x}} E_1$ and $\nabla_{\frac{\partial}{\partial x}} E_2$. Note: It won't be 0!

Curvature of a Connection on a Bundle

Say ∇ is a connection on the vector bundle $\mathcal{E} \to M$. Curvature is a local object, and there are two approaches to describe

First Approach

Begin with a moving frame (E_1, \ldots, E_r) (which leads to the connection matrix $\vartheta = (\theta_j^i)$).

Question: Can we change the moving frame to (F_1, \ldots, F_r) so that the new connection matrix, ϑ , is 0?

Well, if $A = (a_i^i)$ is defined so that $F_j = a_i^i E_i$ (using Einstein summation notation), then we saw (in homework) that

$$\tilde{\vartheta} = A^{-1}dA + A^{-1}\vartheta A$$

So

$$\tilde{\vartheta} = 0 \quad \Leftrightarrow \quad dA = -\vartheta A \quad \Leftrightarrow \quad \forall i, j, da_i^i = -\theta_k^i a_i^k$$

We suspect that we'll encounter problems from the fact that $d^2=0$. Assume such a solution A exists. Then, using the product rule, $0=-(d\theta_k^i)a_j^k+\theta_k^i\wedge da_j^k$. But we know $da_j^k=-\theta_\ell^ka_j^\ell$, so for the connection matrix to be trivial, we must have

$$(d\theta_k^i)a_i^k + \theta_k^i \wedge \theta_\ell^k a_i^\ell = 0, \quad \forall i, j$$

Note: $\theta_k^j \wedge \theta_\ell^k = (\vartheta \wedge \vartheta)_\ell^j$ by definition. So using matrix notation, we can write this necessary condition as

$$(d\vartheta)A + (\vartheta \wedge \vartheta)A = 0$$

A is invertible, so this condition is true iff $d\vartheta + \vartheta \wedge \vartheta = 0$.

Defn: $\Omega \stackrel{\text{def}}{=} d\vartheta + \vartheta \wedge \vartheta$ is a matrix of 2-forms, called the <u>curvature matrix</u> of ∇ with respect to the moving frame (E_1, \dots, E_r) .

The connection is trivializable only if $\Omega = 0$ (i.e. this is a necessary condition). There is no reason in principle this should happen, so it's very rare!

Second Approach

Fix $X, Y \in \mathfrak{X}(M)$. Consider $\nabla_X, \nabla_Y : \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$ as operators, acting linearly on smooth sections.

Question: What is their commutator (as operators)?

Well, if $\mathcal{E} = M \times \mathbb{R}^r$ and $\vartheta \equiv 0$, then $\nabla_X \vec{f} = X(f) + 0$. So $\nabla_X = X$. Therefore, $[\nabla_X, \nabla_Y] = [X, Y] = \nabla_{[X,Y]}$, by definition of the commutator of vector fields.

In general, let E_1, \ldots, E_r be a moving frame, and $\vartheta = (\theta_i^j)$ the connection matrix as before. Then $\nabla_X = X + \vartheta(X)$, acting on functions $\vec{f}: U \to \mathbb{R}^r$ ($\vartheta(X)$ is a matrix of functions). Likewise, $\nabla_Y = Y + \vartheta(Y)$. So we can compute:

$$[\nabla_X,\nabla_Y] = [X + \vartheta(X),Y + \vartheta(Y)] = [X,Y] + [\vartheta(X),\vartheta(Y)] + \underbrace{[X,\vartheta(Y)]}_{\text{(I)}} + \underbrace{[\vartheta(X),Y]}_{\text{(II)}}$$

For (I), we have

$$\left(\left[X,\vartheta(Y)\right](\vec{f})\right)^i = X\underbrace{\left(\theta^i_j(Y)f^j\right)}_{\substack{i \text{th component} \\ \text{of } \vartheta(Y)(\vec{f})}} - \theta^i_j(Y)X(f^j) = (X\theta^i_j(Y))f^j$$

by Leibniz's rule. So (I) is $X((\theta_i^i)(Y)) = X(\vartheta(Y))$ as a matrix. Similarly, (II) is $-Y((\theta_i^i)(X)) = -Y(\vartheta(X))$ as matrix.

Claim: This eventually leads to $[\nabla_X, \nabla_Y] = \nabla_{[X,Y]} + d\vartheta(X,Y) + [\vartheta(X), \vartheta(Y)]$. Proof: Use the fact that for any 1-form ω , and for any $X,Y \in \mathfrak{X}(M)$, $d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])$.

Observe: $[\vartheta(X), \vartheta(Y)] = (\vartheta \wedge \vartheta)(X, Y)$, by definition of \wedge . So we get the same object using both approaches!

Defn: $\mathcal{R}(X,Y) \stackrel{\text{def}}{=} d\vartheta(X,Y) + [\vartheta(X),\vartheta(Y)]$ is the curvature operator.