Sia
$$L = \{f, g, c\}$$
, con:

- f,g simboli funzionali binari
- c simbolo di costante

Sia
$$\mathcal{A} = (\mathbb{R}, +, \cdot, 0)$$
.

Interpretare in ${\mathcal A}$ mediante l'assegnazione $x/\frac{2}{3},y/-2,z/\sqrt{2}$ i termini

- t_1 : f(g(z,z),y)
- t_2 : g(f(c,c),g(c,c))
- t_3 : f(c, f(g(x, c), y))

$$t_1^{\mathcal{A}} \left[x / \frac{2}{3}, y / -2, z / \sqrt{2} \right] = (\sqrt{2} \cdot \sqrt{2}) + (-2) = 0$$

$$t_2^{\mathcal{A}} \left[x / \frac{2}{3}, y / -2, z / \sqrt{2} \right] = (0+0) \cdot (0 \cdot 0) = 0$$

$$t_3^{\mathcal{A}} \left[x / \frac{2}{3}, y / -2, z / \sqrt{2} \right] = 0 + \left(\left(\frac{2}{3} \cdot 0 \right) + (-2) \right) = -2$$

Siano

- $L = \{f, g, c\}$, con:
 - f,g simboli funzionali binari
 - c simbolo di costante
- $\varphi(x,y)$ la formula

$$\exists z \ f(f(g(z,z),g(x,z)),y)=c$$

- $\mathcal{A} = (\mathbb{R}, +, \cdot, 0)$
- Stabilire se $\mathcal{A} \models \varphi[x/-2,y/-1]$
- Stabilire se $\mathcal{A} \models \varphi[x/1, y/1]$
- Determinare l'insieme di verità di φ in \mathcal{A} e disegnarlo

La formula $\varphi(x,y)$ in \mathcal{A} asserisce che esiste un numero reale z tale che

$$z^2 + xz + y = 0$$

cioè che l'equazione $z^2+xz+y=0$ ha soluzione nell'incognita z. Questo succede se e solo se $x^2-4y\geq 0$, cioè l'insieme di verità della formula $\varphi(x,y)$ in $\mathcal A$ è l'insieme

$$\varphi(\mathcal{A}) = \{(x,y) \in \mathbb{R}^2 \mid x^2 - 4y \ge 0\}$$

che è la parte del piano al di sotto della parabola di equazione $x^2 - 4y = 0$ (parabola compresa).

Svolgimento (cont.)

In particolare:

- $(-2,-1) \in \varphi(A)$, quindi $A \models \varphi[x/-2,y/-1]$
- $(1,1) \notin \varphi(A)$, quindi $A \not\models \varphi[x/1,y/1]$

Siano:

- $L = \{P, Q, R\}$, dove
 - P, Q sono simboli relazionali unari
 - R è simbolo relazionale binario

•
$$\varphi(x,y): R(x,y) \to \neg P(x) \lor Q(y)$$

•
$$A = (A, P^A, Q^A, R^A)$$
, dove

$$A = \{0, 1, 2, 3, 4\}$$

$$P^{A} = \{0, 2, 3\}$$

$$Q^{A} = \{0, 1\}$$

$$R^{A} = \{(0, 0), (0, 2), (1, 2), (1, 3), (1, 4), (3, 0), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}$$

Determinare l'insieme di verità di φ in \mathcal{A} , e stabilire se $\mathcal{A} \models \forall x \forall y \varphi$.

Data $(a, b) \in A^2$, si ha che $(a, b) \in \varphi(A)$ se e solo se almeno una delle seguenti condizioni è verificata:

- $(a,b) \notin R^A$
- a ∉ P^A
- $b \in Q^A$

Per ispezione diretta, segue che

$$\varphi(\mathcal{A}) = \{(0,0), (0,1), (0,3), (0,4), (1,0), (1,1), (1,2), (1,3)$$

$$(1,4), (2,0), (2,1), (2,2), (2,3), (2,4), (3,0)$$

$$(3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4)\}$$

Poiché $\varphi(A) \neq A^2$, si ha che

$$\mathcal{A}\not\models\forall x\forall y\varphi$$

Si consideri il linguaggio del prim'ordine $\mathcal{L}=\{+,\cdot\}$, dove $+,\cdot$ sono simboli funzionali binari. Siano $\mathbb{N}=\{0,1,2,3,\ldots\}$ l'insieme dei numeri naturali, $\mathbb{P}=\{0,2,4,6,\ldots\}$ l'insieme dei naturali pari, $\mathbb{D}=\{1,3,5,\ldots\}$ l'insieme dei naturali dispari.

a Determinare quali tra

$$\mathcal{N}=(\mathbb{N},+,\cdot), \quad \mathcal{P}=(\mathbb{P},+,\cdot), \quad \mathcal{D}=(\mathbb{D},+,\cdot)$$

sono \mathcal{L} -strutture, dove i simboli $+,\cdot$ sono interpretati come le usuali operazioni d'addizione e moltiplicazione.

b Per ognuna delle strutture determinate al punto a) trovare un \mathcal{L} -enunciato soddisfatto da tale struttura e da nessuna delle altre.

- a \mathcal{N} e \mathcal{P} sono \mathcal{L} -strutture, perché le operazioni di addizione e moltiplicazione sono definite nei loro universi. Invece \mathcal{D} non è una \mathcal{L} -struttura, perché addizione e moltiplicazione non sono ovunque definite sui numeri dispari.
- b Tra i numeri naturali c'è un elemento neutro per il prodotto, ciò che non vale per i numeri pari. Questo fornisce un enunciato vero in $\mathcal N$ e falso in $\mathcal P$:

$$\mathcal{N} \models \exists x \forall y \ x \cdot y = y, \qquad \mathcal{P} \not\models \exists x \forall y \ x \cdot y = y$$

La negazione di tale enunciato è quindi vera in ${\mathcal P}$ e falsa in ${\mathcal N}$:

$$\mathcal{N} \not\models \neg \exists x \forall y \ x \cdot y = y, \qquad \mathcal{P} \models \neg \exists x \forall y \ x \cdot y = y$$

Determinare, se esiste, una struttura ${\cal A}$ che soddisfi l'enunciato

$$\forall y \exists x \ \neg R(y,x) \land \forall x \ (\exists y \ R(y,x) \rightarrow \exists z \exists w \ (w \neq z \land R(x,z) \land R(x,w)))$$

e si disegni tale struttura.

Svolgimento (parziale)

La prima sottoformula principale della congiunzione asserisce che per ogni elemento della struttura (da determinare) c'è un elemento che non è in relazione a destra con l'elemento di partenza. La seconda sottoformula prinicipale asserisce che se un elemento x è in relazione a destra con qualcosa, allora è in relazione a sinistra con almeno due elementi distinti.

È pertanto sufficiente considerare una struttura $\mathcal{A}=(A,R^{\mathcal{A}})$ con

- $A = \{a\}$ è un insieme con un solo elemento
- $R^{\mathcal{A}} = \emptyset$

Infatti in \mathcal{A} per ogni elemento (cioè solo a) esiste un elemento (di nuovo, a) tale che $(a,a) \notin R^{\mathcal{A}}$, quindi la prima sottoformula principale è soddisfatta.

Inoltre, per ogni elemento (cioè solo *a*) la premessa della sottoformula principale del secondo congiungendo è falsa, quindi anche il secondo congiungendo è vero.

Determinare, se esiste, una struttura che soddisfi l'enunciato

$$\forall x \forall y \ (\neg R(x,y) \rightarrow R(y,x))$$

dove R è un simbolo relazionale binario.

Una struttura $\mathcal{A}=(A,R^{\mathcal{A}})$ che soddisfi l'enunciato deve essere tale che ogni volta che una coppia di elementi (a,b) non appartiene alla relazione $R^{\mathcal{A}}$, si deve avere che (b,a) ci appartiene. In particolare, per ogni elemento $a\in A$ si deve avere $(a,a)\in R^{\mathcal{A}}$, perché da $(a,a)\notin R^{\mathcal{A}}$ seguirebbe $(a,a)\in R^{\mathcal{A}}$, una contraddizione.

Posto allora

- $A = \{a\}$, universo con un solo elemento
- $R^{A} = \{(a, a)\}$

si ha che di assegnazioni di valori alle variabili x,y ce n'è una sola: x/a,y/a. Mediante tale assegnazione, la formula $\neg R(x,y)$ è falsa in \mathcal{A} , e quindi l'implicazione è vera. Allora

$$\mathcal{A} \models \varphi$$

Sia φ l'enunciato

$$\forall x \; \exists y \; S(x,y) \land \neg S(a,a) \rightarrow S(a,b).$$

Trovare, se esistono, un modello per φ il cui universo sia l'insieme $\mathbb N$ dei numeri naturali, e un modello per $\neg \varphi$ il cui universo sia l'insieme $\mathbb C$ dei numeri complessi.

Le strutture che si cercano sono della forma

$$\mathcal{A} = (\mathbb{N}, S^{\mathcal{A}}, a^{\mathcal{A}}, b^{\mathcal{A}}), \qquad \mathcal{B} = (\mathbb{C}, S^{\mathcal{B}}, a^{\mathcal{B}}, b^{\mathcal{B}})$$

Poiché l'enunciato da soddisfare in \mathcal{A} è un implicazione, si osserva che è sufficiente che in \mathcal{A} sia soddisfatto il conseguente: S(a,b). Si può allora definire

$$a^{\mathcal{A}} = b^{\mathcal{A}} = 0, \qquad S^{\mathcal{A}} = \{(0,0)\}$$

Affinché $\mathcal{B} \models \neg \varphi$, è necessario e sufficiente che

$$\mathcal{B} \models \forall x \exists y S(x, y), \quad \mathcal{B} \models \neg S(a, a), \quad \mathcal{B} \not\models S(a, b)$$

Si può allora definire

$$S^{\mathcal{B}} = \{(u, u+1) \mid u \in \mathbb{C}\}, \qquad a^{\mathcal{B}} = b^{\mathcal{B}} = 0$$

Sia φ l'enunciato

$$\forall x \ (\neg R(c,x) \rightarrow \neg R(x,c)),$$

dove R è simbolo relazionale binario, c è simbolo di costante. Trovare, se esistono, un modello per φ il cui universo sia l'insieme $\mathbb R$ dei numeri reali e un modello per $\neg \varphi$ con esattamente 3 elementi.

- Il modello per φ cercato è della forma $\mathcal{A}=(\mathbb{R},R^{\mathcal{A}},c^{\mathcal{A}})$. È sufficiente fare in modo che il conseguente della implicazione sia vero per ogni valore associato a x. Basta allora porre, per esempio, $R^{\mathcal{A}}=\emptyset$, $c^{\mathcal{A}}=0$
- Il modello per $\neg \varphi$ cercato è della forma $\mathcal{B} = (\mathcal{B}, \mathcal{R}^{\mathcal{B}}, c^{\mathcal{B}})$, dove \mathcal{B} ha tre elementi, per esempio $\mathcal{B} = \{0,1,2\}$, di cui uno sia l'interpretazione del simbolo di costante c, per esempio $c^{\mathcal{B}} = 0$. Affinché $\mathcal{B} \models \neg \varphi$, cioè $\mathcal{B} \not\models \varphi$, si deve definire $\mathcal{R}^{\mathcal{B}}$ in modo che ci sia un valore, per esempio 1, che assegnato alla variabile x renda vera la premessa dell'implicazione e falsa la conseguenza, cioè $(0,1) \notin \mathcal{R}^{\mathcal{B}}, (1,0) \in \mathcal{R}^{\mathcal{B}}$. Si può quindi porre

$$B = \{0, 1, 2\}, \quad R^{\mathcal{B}} = \{(1, 0)\}, \quad c^{\mathcal{B}} = 0$$

Sia φ l'enunciato

$$\forall x \ (P(x) \rightarrow \exists y \ (R(y,x) \land P(y)) \land \neg R(x,c)),$$

dove P è simbolo relazionale unario, R è simbolo relazionale binario, c è simbolo di costante. Trovare, se esistono, un modello per φ con esattamente 4 elementi e un modello per $\neg \varphi$ con esattamente 3 elementi.

• Per l'enunciato φ , si cerca un modello della forma $\mathcal{A}=(A,P^{\mathcal{A}},R^{\mathcal{A}},c^{\mathcal{A}})$, dove #(A)=4, per esempio $A=\{0,1,2,3\}$. È sufficiente che in \mathcal{A} l'antecedente dell'implicazione risulti falso per ogni possibile valore assegnato alla variabile x, cioè $P^{\mathcal{A}}=\emptyset$. Pertanto basta definire:

$$A = \{0, 1, 2, 3\}, \quad P^{\mathcal{A}} = \emptyset, \quad R^{\mathcal{A}} = \emptyset, c^{\mathcal{A}} = 0$$

Per l'enunciato ¬φ, si cerca un modello della forma B = (B, P^B, R^B, c^B), dove #(B) = 3, per esempio B = {0,1,2}. Si ponga, per esempio, c^B = 0.
Si vuole che esista un valore a che, assegnato alla variabile x, renda vero l'antecedente dell'implicazione (cioè tale valore deve appartenere a P^B) e falso il conseguente. Poiché tale conseguente è una congiunzione, è sufficiente che sia reso falso il secondo congiungendo, cioè che (a, 0) ∈ R^B.

In definitiva, si può porre:

$$B = \{0, 1, 2\}, \quad P^{\mathcal{B}} = \{0\}, \quad R^{\mathcal{B}} = \{(0, 0)\}, \quad c^{\mathcal{B}} = 0$$

(allora il valore a di cui sopra è 0).

Sia φ l'enunciato

$$\forall x \ P(x) \land \exists x \ (Q(x) \rightarrow \neg P(x)) \rightarrow \forall x \ \neg Q(x)$$

Trovare, se esistono, un modello per φ con esattamente 4 elementi e un modello per $\neg \varphi$ con esattamente 3 elementi.

• Per φ , si cerca un modello della forma $\mathcal{A}=(A,P^{\mathcal{A}},Q^{\mathcal{A}})$, con $\#(\mathcal{A})=4$, per esempio $\mathcal{A}=\{0,1,2,3\}$. Poiché l'enunciato è un'implicazione, è sufficiente che \mathcal{A} non ne soddisfi l'antecedente; poiché tale antecedente è una congiunzione, è sufficiente che \mathcal{A} non ne soddisfi il primo congiungendo. Si può allora porre, per esempio:

$$A = \{0, 1, 2, 3\}, \quad P^{\mathcal{A}} = \emptyset, \quad R^{\mathcal{A}} = \emptyset$$

Svolgimento (cont.)

- Per $\neg \varphi$, si cerca un modello della forma $\mathcal{B} = (B, P^{\mathcal{B}}, Q^{\mathcal{B}})$ tale che #(B) = 3, per esempio $B = \{0, 1, 2\}$. La struttura \mathcal{B} dev'essere tale che

 - ③ $\mathcal{B} \models \exists x (Q(x) \rightarrow \neg P(x))$, cioè deve esistere un valore $a \in B$ tale che o $a \notin Q^{\mathcal{B}}$ o $a \in P^{\mathcal{B}}$

Si osservi che la condizione (1) implica automaticamente anche la (2). Basta allora definire:

$$B = \{0, 1, 2\}, \quad P^{\mathcal{B}} = \{0, 1, 2\}, \quad Q^{\mathcal{B}} = \{0\}$$

Sia $L = \{f\}$, dove f è un simbolo funzionale unario. Si considerino le L-strutture

$$A = (\mathbb{C}, f^A), \qquad \mathcal{B} = (\mathbb{C}, f^B)$$

dove:

• $f^{\mathcal{A}}$ è la moltiplicazione per l'unità immaginaria i, cioè

$$f^{\mathcal{A}}(u) = iu$$
, per ogni $u \in \mathbb{C}$

• $f^{\mathcal{B}}$ è l'operazione di raddoppio, cioè

$$f^{\mathcal{B}}(u) = 2u$$
, per ogni $u \in \mathbb{C}$

Determinare, se esiste, un enunciato φ che distingua ${\mathcal A}$ da ${\mathcal B}$, cioè tale che

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Poiché $i^4=1$, ogni numero complesso moltiplicato quattro volte di seguito per i rimane invariato.

Invece raddoppiando quattro volte un numero, questo cambia, salvo che sia il numero 0.

Quindi, se φ è l'enunciato

$$\forall x \ f(f(f(f(x)))) = x$$

si ha che

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Sia $\mathcal{L} = \{F\}$ un linguaggio del prim'ordine consistente d'un simbolo funzionale unario F. Siano Q l'insieme di tutti i quadrati del piano e R l'insieme di tutti i rettangoli del piano. Si considerino le \mathcal{L} -strutture seguenti:

$$\begin{array}{rcl} \mathcal{Q} & = & (Q, F^{\mathcal{Q}}) \\ \mathcal{R} & = & (R, F^{\mathcal{R}}), \end{array}$$

dove $F^\mathcal{Q}$, $F^\mathcal{R}$ sono entrambe l'operazione di rotazione di una figura geometrica di $\frac{\pi}{4}$ rispetto al suo baricentro. Si trovi, se esiste, un \mathcal{L} -enunciato φ che distingua \mathcal{Q} da \mathcal{R} , ovvero tale che $\mathcal{Q} \models \varphi, \mathcal{R} \not\models \varphi$.

La rotazione di $\frac{\pi}{2}$ di un quadrato rispetto al suo baricentro lo lascia invariato.

Ciò invece non è vero per tutti i rettangoli (in effetti, nell'insieme dei rettangoli, tale proprietà vale esattamente per i quadrati).

Quindi, se φ è l'enunciato

$$\forall x \ F(F(x)) = x$$

si ha che

$$Q \models \varphi, \qquad \mathcal{R} \not\models \varphi$$

Sia $\mathcal{L} = \{1, +, \cdot, \leq\}$. Interpretando i simboli di \mathcal{L} nel modo usuale, determinare un enunciato φ che distingua le strutture

$$\begin{array}{rcl} \mathcal{A} & = & (\mathbb{Q},1,+,\cdot,\leq) \\ \mathcal{B} & = & (\mathbb{R}_0^+,1,+,\cdot,\leq) \end{array}$$

(dove \mathbb{R}_0^+ indica l'insieme dei numeri reali non negativi) cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

In $\mathbb Q$ non esiste un numero che al quadrato faccia 2; un tale numero esiste in $\mathbb R$.

Quindi se φ è l'enunciato

$$\neg \exists x \ x \cdot x = 1 + 1$$

si ha che

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Sia $\mathcal{L} = \{*\}$ un linguaggio del prim'ordine, dove * è un simbolo funzionale ternario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (A, *^{\mathcal{A}}), \mathcal{B} = (\mathbb{R}, *^{\mathcal{B}}),$ dove:

- A è l'insieme dei punti dello piano euclideo e *^A è l'operazione che associa a ogni terna di punti il loro baricentro;
- $*^{\mathcal{B}}$ è l'operazione che a ogni terna (u, v, w) di numeri reali associa il numero $*^{\mathcal{B}}(u, v, w) = u + 2v 3w$.

Determinare, se esiste, un enunciato φ che distingua $\mathcal A$ da $\mathcal B$, cioè tale che $\mathcal A\models\varphi,\mathcal B\not\models\varphi.$

Data una terna di punti P_0, P_1, P_2 nel piano euclideo, con $P_0 = P_1 \neq P_2$, il loro baricentro è sempre diverso da P_0 .

Invece esistono terne di numeri u, v, w con $u = v \neq w$ e u + 2v - 3w = u, perché se u = v questa equazione diventa 2u = 3w; una soluzione con $u = v \neq w$ è quindi u = v = 3, w = 2.

Quindi, se φ è l'enunciato

$$\neg \exists x \exists y (x \neq y \land *(x, x, y) = x)$$

si ha

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Sia $\mathcal{L} = \{*\}$ un linguaggio del prim'ordine, dove * è un simbolo funzionale binario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (A, *^{\mathcal{A}}), \mathcal{B} = (B, *^{\mathcal{B}}),$ dove:

- A è l'insieme dei punti dello spazio ordinario e $*^{\mathcal{A}}$ è l'operazione che associa a ogni coppia di punti il loro punto medio;
- B è l'insieme delle funzioni reali di variabile reale e $*^{\mathcal{B}}$ è l'operazione di differenza tra funzioni, definita da $(f *^{\mathcal{B}} g)(x) = f(x) g(x)$, per ogni $x \in \mathbb{R}$.

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Dati due punti distinti dello spazio ordinario, il loro punto medio è diverso da entrambi.

Invece l'insieme delle funzioni $\mathbb{R} \to \mathbb{R}$ con l'operazione di differenza ha un elemento neutro a destra: la funzione costante nulla.

Quindi se φ è l'enunciato

$$\forall x \forall y (x \neq y \rightarrow x * y \neq x)$$

si ha che

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Sia $\mathcal{L}=\{F\}$ un linguaggio del prim'ordine consistente d'un simbolo funzionale unario F. Siano \mathbb{N}^* l'insieme dei numeri naturali positivi e $C^\infty(\mathbb{R})$ l'insieme delle funzioni reali di variabile reale derivabili infinite volte. Si considerino le \mathcal{L} -strutture seguenti:

$$\begin{array}{rcl}
\mathcal{A} & = & (\mathbb{N}^*, F^{\mathcal{A}}) \\
\mathcal{B} & = & (C^{\infty}(\mathbb{R}), F^{\mathcal{B}}),
\end{array}$$

dove

- $F^{\mathcal{A}}$ è l'operazione di raddoppio sui numeri (cioè $F^{\mathcal{A}}(n) = 2n$),
- $F^{\mathcal{B}}$ è l'operazione di derivazione sulle funzioni (cioè $F^{\mathcal{B}}(g)=g'$).

Si trovi, se esiste, un \mathcal{L} -enunciato φ che distingua \mathcal{A} da \mathcal{B} , ovvero tale che $\mathcal{A}\models\varphi,\mathcal{B}\not\models\varphi$.

Il doppio di un numero positivo è sempre differente dal numero di partenza.

Invece ci sono funzioni che sono uguali alla loro derivata (sono le funzioni esponenziali $x \mapsto ke^x$).

Quindi se φ è l'enunciato

$$\forall x \ F(x) \neq x$$

si a che

$$\mathcal{A} \models \varphi, \qquad \mathcal{B} \not\models \varphi$$

Definizioni

Sia φ un L-enunciato

- Se \mathcal{A} è una L-struttura tale che $\mathcal{A} \models \varphi$, si dice che φ è vero in \mathcal{A} , o che \mathcal{A} soddisfa φ , o che \mathcal{A} è un modello di φ .
- Se esiste almeno un modello di φ (cioè, se esiste almeno una L-struttura $\mathcal A$ tale che $\mathcal A \models \varphi$) si dice che φ è soddisfacibile, o consistente.
- Se non esiste alcun modello di φ (cioè, se non esiste alcuna L-struttura $\mathcal A$ tale che $\mathcal A\models\varphi$) si dice che φ è insoddisfacibile, o inconsistente, o una contraddizione.
- Se ogni L-struttura è un modello di φ (cioè se per ogni L-struttura \mathcal{A} si ha che $\mathcal{A} \models \varphi$) si dice che φ è *valido*, o una *tautologia*. Si scrive anche

Definizioni

Le precedenti nozioni si estendono a insiemi di enunciati.

Sia Γ un insieme di enunciati

• Se \mathcal{A} è una L-struttura tale che $\mathcal{A} \models \varphi$ per ogni $\varphi \in \Gamma$, si dice che \mathcal{A} soddisfa Γ , o che \mathcal{A} è un modello di Γ . Si scrive anche

$$A \models \Gamma$$

- Se esiste almeno un modello di Γ, si dice che Γ è soddisfacibile, o consistente.
- Se non esiste alcun modello di Γ (cioè, se per ogni L-struttura A esiste un enunciato φ ∈ Γ tale che A ⊭ φ), si dice che Γ è insodddisfacibile, o inconsistente.
- Se tutte le L-strutture soddisfano Γ , si dice che Γ è *valido*.

Osservazioni

Se

$$\Gamma = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

è un insieme finito di enunciati, allora Γ è soddisfacibile/insoddisfacibile/valido se e solo se la congiunzione

$$\varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_n$$

è soddisfacibile/insoddisfacibile/valida.

- Se un enunciato della *logica proposizionale* è valido (o se è una contraddizione), c'è un numero finito di interpretazioni da controllare per verificarlo: esattamente 2ⁿ se n è il numero di lettere distinte che occorrono nell'enunciato.

 Invece, se un enunciato *del prim'ordine* è valido (o se è insoddisfacibile) se ne deve in generale verificare la verità (o la falsità) in tutte le infinite strutture del linguaggio.
- Per determinare se un enunciato φ del prim'ordine è soddisfacibile, basta trovare *una* struttura in cui sia vero; similmente, per verificare che un enunciato del prim'ordine non è valido, basta trovare *una* struttura in cui sia falso.

Conseguenza logica

Definizione

Siano:

- L un linguaggio del prim'ordine
- Γ un insieme di L-enunciati
- $\bullet \varphi$ un *L*-enunciato

Si dice che Γ ha come conseguenza logica φ (o che φ è conseguenza logica di Γ) se per ogni L-struttura \mathcal{A} tale che $\mathcal{A} \models \Gamma$, si ha anche $\mathcal{A} \models \varphi$; cioè se:

ogni modello di Γ è modello anche di φ

Si denota

$$\Gamma \models \varphi$$

Conseguenza logica

• Se $\Gamma = \{\psi_1, \psi_2, \dots, \psi_n\}$ è un insieme finito, anziché $\{\psi_1, \psi_2, \dots, \psi_n\} \models \varphi$, si può scrivere più semplicemente

$$\psi_1, \psi_2, \ldots, \psi_n \models \varphi$$

• In particolare, se $\Gamma = \{\psi\}$ consiste di un solo elemento, la notazione diventa

$$\psi \models \varphi$$

Si ha

$$\psi_1, \dots, \psi_n \models \varphi$$
 se e solo se $\models \psi_1 \wedge \dots \wedge \psi_n \rightarrow \varphi$

La notazione ⊨

Nota: Il simbolo ⊨ nella logica del prim'ordine è usato in tre modi differenti:

- $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ significa che la struttura \mathcal{A} soddisfa la formula φ mediante l'assegnazione $x_1/a_1, \dots, x_n/a_n$ di valori alle variabili libere di φ .
 - In particolare, se φ è un enunciato, ciò diventa $\mathcal{A} \models \varphi$.
 - In questo uso, \models è una relazione che coinvolge strutture, formule e assegnazioni.
- $\models \varphi$ significa che φ è un enunciato valido, o tautologia. In questo uso, \models è una relazione sugli enunciati, cioè una proprietà che ogni singolo enunciato ha o non ha.
- $\Gamma \models \varphi$ significa che in ogni struttura che soddisfi tutti gli elementi dell'insieme di enunciati Γ , anche l'enunciato φ è soddisfatto.
 - In questo uso, \models è una relazione tra insiemi di enunciati e singoli enunciati: è la relazione di conseguenza logica.