OCM modelvalidation

Elizabeth Chase

7/27/2020

This script demonstrates how the model was validated in PLCO. Unfortunately, the PLCO data cannot be shared, and therefore this script cannot be run. However, we provide the code for transparency.

Validation

Now we validate each model. First, we look at C-index for the cause-specific formulation:

```
load("cox_55.RData")
load("cox 40.RData")
load("rforest_40.RData")
times <- seq(6, 168, by=6)
plco_clean$age_ctr_40 <- plco_clean$age - 60.34387 #scaling the age 40+ cohort
plco_clean$age_ctr_55 <- plco_clean$age - 68.35788 #scaling the age 55+ cohort
cox55_plco <- pec::cindex(object=cox_55, Surv(permth_exm, mortstat) ~ age_ctr_55 +
                            race2 + educ + marital2 + emphysema + diabetic +
                            stroke + smoker + underweight + overweight2 + obese2 +
                            pc + age_ctr_55*diabetic + age_ctr_55*educ +
                            age_ctr_55*marital2 + race2*educ, data = plco_clean,
                          eval.times = times)
cox40_plco <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                            age_ctr_40 + diabetic + educ + hypertension + marital2 +
                            underweight + overweight2 + obese2 + smoker + stroke +
                            age ctr 40*diabetic + age ctr 40*educ +
                            age_ctr_40*hypertension + age_ctr_40*stroke + pc,
                          data=plco_clean, eval.times = times)
forest_plco <- pec::cindex(object=rforest_40, formula = Surv(permth_exm, mortstat) ~
                             age + arthritis + bronch + diabetic + educ +
                             emphysema + hypertension + single + sep + mi_chd +
                             underweight + overweight_ex + obese + liver + black +
                             other + smoker + stroke + pc, data=plco_nf, eval.times = times)
valid_perf <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                         "Model" = c(rep("Cox 55", 28), rep("Cox 40", 28),
                                     rep("Random Forest", 28)),
                         "C" = c(cox55_plco$AppCindex$coxph, cox40_plco$AppCindex$coxph,
                                 forest_plco$AppCindex$rfsrc))
performance_plot <- ggplot(data=valid_perf, aes(x=Time, y=C)) + geom_point(size=0.1) +</pre>
```

Table 1: Time-dependent C-index in PLCO

Model	Year5	Year10	Year14
Cox 55	0.685	0.696	0.693
Cox 40	0.687	0.698	0.697
Random Forest	0.666	0.688	0.680

```
geom_line(data=valid_perf, aes(group=Model, color=Model)) + xlab("Time (months)") +
ylab("Time-dependent C-index in PLCO")
performance_plot
```


Based on C-index, our strongest performing model is the Cox model fit to men ages 40+. Now we look at time-dependent AUC:

```
cox40predict <-
  predict(object = cox_40,
          newdata = plco_clean,
          type = "lp")
cox55predict <-
  predict(object = cox_55,
          newdata = plco_clean,
          type = "lp")
rforestpredict <-
  predict(object=rforest_40,
          newdata = plco_nf)
cox40roc <-
  timeROC(
   T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
   marker = cox40predict,
    cause = 1,
   weighting = "marginal",
   times = seq(0, 168, by = 6)
  )
cox55roc <-
 timeROC(
   T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = cox55predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
rforestroc <-
  timeROC(
    T = plco_nf$permth_exm,
    delta = plco_nf$mortstat,
    marker = rforestpredict$predicted,
    cause = 1,
   weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
aucdat <-
  data.frame("Time" = rep(seq(6, 168, by = 6), 3),
             "Model" = c(rep("Cox 55", 28), rep("Cox 40", 28),
                                      rep("Random Forest", 28)),
             "AUC" = c(cox55roc\$AUC[-1], cox40roc\$AUC[-1],
                       rforestroc$AUC[-1]))
aucplot <-
  ggplot(data = aucdat, aes(x = Time, y = AUC, group = Model, color=Model)) +
  geom_line() + xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot
```

Table 2: Time-Dependent AUC in PLCO

Model	Year5	Year10	Year14
Cox 55	0.698	0.748	0.772
Cox 40	0.700	0.750	0.777
Random Forest	0.695	0.731	0.734

Based on time-dependent AUC, the Cox model fit to men ages 40+ is still the strongest performing model. We will now focus our attention on the Cox ages 40+ model for the rest of our model validation/performance assessment.

We look at C-index and time-dependent AUC stratified by treatment group:

```
age_ctr_40*educ + age_ctr_40*hypertension +
                                     age_ctr_40*stroke + pc,
                                    data=plco clean[plco clean$primary tx=="Prostatectomy",],
                                    eval.times = times)
cox40_radiation <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                                 age_ctr_40 + diabetic + educ + hypertension +
                                 marital2 + underweight + overweight2 + obese2 +
                                 smoker + stroke + age_ctr_40*diabetic +
                                 age_ctr_40*educ + age_ctr_40*hypertension +
                                 age_ctr_40*stroke + pc,
                               data=plco_clean[plco_clean$primary_tx=="Radiation alone",],
                               eval.times = times)
cox40_rtadt <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~</pre>
                             age_ctr_40 + diabetic + educ + hypertension +
                             marital2 + underweight + overweight2 + obese2 +
                             smoker + stroke + age_ctr_40*diabetic +
                             age_ctr_40*educ + age_ctr_40*hypertension +
                             age_ctr_40*stroke + pc,
                           data=plco_clean[plco_clean$primary_tx=="Radiation + hormone",],
                           eval.times = times)
valid_perf_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                             "Treatment" = c(rep("Prostatectomy", 28),
                                              rep("Radiation alone", 28),
                                              rep("Radiation + hormone", 28)),
                             "C" = c(cox40_prostatectomy$AppCindex$coxph,
                                     cox40_radiation$AppCindex$coxph,
                                     cox40_rtadt$AppCindex$coxph))
performance_plot_trt <- ggplot(data=valid_perf_trt, aes(x=Time, y=C)) +</pre>
  geom_point(size=0.1) + geom_line(data=valid_perf_trt, aes(group=Treatment,
                                                             color=Treatment)) +
  xlab("Time (months)") + ylab("C-index in PLCO")
performance_plot_trt
```

Table 3: PLCO Time-Dependent C-index, by Treatment

Treatment	Year5	Year10	Year14
Prostatectomy	0.674	0.667	0.680
Radiation alone	0.644	0.661	0.665
Radiation + hormone	0.624	0.659	0.650


```
subperf_trt <- data.frame("Treatment" = c("Prostatectomy", "Radiation alone",</pre>
                                           "Radiation + hormone"),
                           "Year5" = round(c(cox40_prostatectomy$AppCindex$coxph[10],
                                             cox40_radiation$AppCindex$coxph[10],
                                             cox40_rtadt$AppCindex$coxph[10]), digits=3),
                           "Year10" = round(c(cox40_prostatectomy$AppCindex$coxph[20],
                                              cox40_radiation$AppCindex$coxph[20],
                                              cox40_rtadt$AppCindex$coxph[20]), digits=3),
                           "Year14" = round(c(cox40 prostatectomy$AppCindex$coxph[28],
                                              cox40_radiation$AppCindex$coxph[28],
                                              cox40 rtadt$AppCindex$coxph[28]), digits=3))
kable(subperf_trt, caption = "PLCO Time-Dependent C-index, by Treatment")
cox40predict_prostatectomy <- predict(object=cox_40, newdata =</pre>
                                         plco_clean[plco_clean$primary_tx=="Prostatectomy",],
                                       type="lp")
cox40predict_radiation <- predict(object=cox_40, newdata =</pre>
                                     plco_clean[plco_clean$primary_tx=="Radiation alone",],
                                   type="lp")
```

```
cox40predict_rtadt <- predict(object=cox_40, newdata =</pre>
                                plco_clean[plco_clean$primary_tx=="Radiation + hormone",],
                              type="lp")
prostatectomy_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Prostatectomy"],</pre>
                             delta = plco_clean$mortstat[plco_clean$primary_tx=="Prostatectomy"],
                             marker = cox40predict_prostatectomy, cause = 1,
                             weighting="marginal", times = seq(0, 168, by=6))
radiation_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Radiation alone"],</pre>
                         delta = plco_clean$mortstat[plco_clean$primary_tx=="Radiation alone"],
                         marker = cox40predict_radiation, cause = 1,
                         weighting="marginal", times = seq(0, 168, by=6))
rtadt_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Radiation + hormone"],
                     delta = plco_clean$mortstat[plco_clean$primary_tx=="Radiation + hormone"],
                     marker = cox40predict_rtadt, cause = 1, weighting="marginal",
                     times = seq(0, 168, by=6))
aucdat_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                         "AUC" = c(prostatectomy roc$AUC[-1], radiation roc$AUC[-1],
                                   rtadt_roc$AUC[-1]),
                         "Treatment" = c(rep("Prostatectomy", 28),
                                          rep("Radiation alone", 28),
                                          rep("Radiation + hormone", 28)))
aucplot_trt <- ggplot(data=aucdat_trt, aes(x=Time, y=AUC, group=Treatment,
                                            color=Treatment)) + geom_line() +
 xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot_trt
```

Table 4: Time-Dependent AUC in PLCO, by Treatment

Years	Prostatectomy	Radiation	Radiation_hormone
5	0.682	0.654	0.630
10	0.693	0.710	0.713
14	0.722	0.736	0.731


```
auc_table_trt <- data.frame("Years" = c(5, 10, 14),</pre>
                             "Prostatectomy" = round(c(prostatectomy_roc$AUC[11],
                                                       prostatectomy_roc$AUC[21],
                                                       prostatectomy_roc$AUC[29]),
                                                     digits = 3),
                             "Radiation" = round(c(radiation_roc$AUC[11],
                                                   radiation_roc$AUC[21],
                                                   radiation_roc$AUC[29]),
                                                 digits = 3),
                             "Radiation_hormone" = round(c(rtadt_roc$AUC[11],
                                                            rtadt_roc$AUC[21],
                                                           rtadt_roc$AUC[29]),
                                                          digits = 3))
rownames(auc_table_trt) <- NULL</pre>
kable(auc_table_trt, caption="Time-Dependent AUC in PLCO, by Treatment")
cutTime <- 14*12 #14 yr cutoff point
plco_clean$pc_time_14yr <- ifelse(plco_clean$permth_exm > cutTime, cutTime,
                                   plco_clean$permth_exm)
```

```
plco_clean$pc_status <- ifelse(plco_clean$permth_exm >= cutTime, 0,
                                 plco_clean$mortstat2)
plco_clean$linpred <- cox40predict</pre>
dat <- plco_clean[, c("pc_status", "pc_time_14yr", "linpred")]</pre>
dat <- dat[complete.cases(dat), ]</pre>
eve.ocm <- dat$pc_status == 1</pre>
eve.pcsm <- dat$pc_status == 2</pre>
eve.cens <- dat*pc_status == 0
fstatus <- rep(0,times = nrow(dat))</pre>
fstatus[which(eve.ocm)] <- 1</pre>
fstatus[which(eve.pcsm)] <- 2</pre>
ftime <- dat*pc_time_14yr
fg_covariates <- dat$linpred</pre>
finegray_pc <- crr(ftime = ftime, fstatus = fstatus, cov1 = fg_covariates)</pre>
summary(finegray_pc)
## Competing Risks Regression
##
## Call:
## crr(ftime = ftime, fstatus = fstatus, cov1 = fg_covariates)
##
                   coef exp(coef) se(coef) z p-value
## fg_covariates1 1.02
                             2.76 0.0346 29.3
##
##
                   exp(coef) exp(-coef) 2.5% 97.5%
                      2.76
                               0.362 2.58 2.95
## fg_covariates1
## Num. cases = 8220
## Pseudo Log-likelihood = -17432
## Pseudo likelihood ratio test = 936 on 1 df,
finegray_predictions <- predict(finegray_pc, cov1 = fg_covariates)</pre>
predict_5 <- finegray_predictions[finegray_predictions[,1]==60,-1]</pre>
predict_10 <- finegray_predictions[finegray_predictions[,1]==120,-1]</pre>
predict_14 <- finegray_predictions[finegray_predictions[,1]==167,-1]</pre>
group_5 <- case_when(</pre>
  predict_5 < 0.2 ~ 0.1,
  predict_5 >= 0.2 & predict_5 < 0.4 ~ 0.3,</pre>
  predict_5 >= 0.4 & predict_5 < 0.6 ~ 0.5,</pre>
  predict_5 >= 0.6 & predict_5 < 0.8 ~ 0.7,</pre>
  predict_5 >= 0.8 ~ 0.9
group_10 <- case_when(</pre>
  predict_10 < 0.2 ~ 0.1,
  predict_10 >= 0.2 & predict_10 < 0.4 ~ 0.3,</pre>
  predict_10 >= 0.4 & predict_10 < 0.6 ~ 0.5,</pre>
```

```
predict_10 >= 0.6 & predict_10 < 0.8 ~ 0.7,</pre>
  predict_10 >= 0.8 ~ 0.9
group 14 <- case when(
  predict_14 < 0.2 ~ 0.1,
  predict_14 >= 0.2 & predict_14 < 0.4 ~ 0.3,</pre>
 predict_14 >= 0.4 & predict_14 < 0.6 ~ 0.5,
 predict_14 >= 0.6 & predict_14 < 0.8 ~ 0.7,</pre>
  predict_14 >= 0.8 ~ 0.9
cuminc_5 <- cuminc(ftime, fstatus, group = group_5)</pre>
cuminc_10 <- cuminc(ftime, fstatus, group = group_10)</pre>
cuminc_14 <- cuminc(ftime, fstatus, group = group_14)</pre>
calibration5_data <- data.frame("Year" = rep("5 Years", 3),</pre>
                                  "Group" = c(0.1, 0.3, 0.5),
                                  "Est" = c(cuminc_5$`0.1 1`$est[cuminc_5$`0.1 1`$time==60][1],
                                             cuminc_5$`0.3 1`$est[cuminc_5$`0.3 1`$time==59][1],
                                             cuminc 5$\`0.5 1\`\$est[cuminc 5\$\`0.5 1\`\$time==57][1]),
                                  "Var" = c(cuminc 5\$^0.1 1\$var[cuminc 5\$^0.1 1\$time==60][1],
                                             cuminc_5$`0.3 1`$var[cuminc_5$`0.3 1`$time==59][1],
                                             cuminc_5$`0.5 1`$var[cuminc_5$`0.5 1`$time==57][1]))
calibration10_data <- data.frame("Year" = rep("10 Years", 4),</pre>
                                   "Group" = c(0.1, 0.3, 0.5, 0.7),
                                   "Est" = c(cuminc_10\$\cdot 0.1 1\$est[cuminc_10\$\cdot 0.1 1\$time==120][1],
                                              cuminc_10$\cdot0.3 1\sest[cuminc_10$\cdot0.3 1\stime==120][1],
                                              cuminc_10$`0.5 1`$est[cuminc_10$`0.5 1`$time==119][1],
                                              cuminc_10$\cdot 0.7 1\time==118][1]),
                                   "Var" = c(cuminc_10$`0.1 1`$var[cuminc_10$`0.1 1`$time==120][1],
                                              cuminc_10$\cdot0.3 1\stime==120][1],
                                              cuminc_10$\`0.5 1\`$var[cuminc_10$\`0.5 1\`$time==119][1],
                                              cuminc_10$`0.7 1`$var[cuminc_10$`0.7 1`$time==118][1]))
calibration14_data <- data.frame("Year" = rep("10 Years", 5),</pre>
                                   "Group" = c(0.1, 0.3, 0.5, 0.7, 0.9),
                                   "Est" = c(cuminc_14$^0.1 1`$est[cuminc_14$^0.1 1`$time==168][1],
                                              cuminc_14$\`0.3 1\`\$est[cuminc_14\$\`0.3 1\`\$time==168][1],
                                              cuminc_14$`0.5 1`$est[cuminc_14$`0.5 1`$time==168][1],
                                              cuminc_14$`0.7 1`$est[cuminc_14$`0.7 1`$time==168][1],
                                              cuminc_14$`0.9 1`$est[cuminc_14$`0.9 1`$time==157][1]),
                                   "Var" = c(cuminc_14$\cdot 0.1 1\cdot $var[cuminc_14$\cdot 0.1 1\cdot $time==168][1],
                                              cuminc_14$\`0.3 1\`$var[cuminc_14$\`0.3 1\`$time==168][1],
                                              cuminc_14$\`0.5 1\`\$var[cuminc_14\\$\`0.5 1\`\$time==168][1],
                                              cuminc_14$\`0.7 1\`\$var[cuminc_14\$\`0.7 1\`\$time==168][1],
                                              cuminc_14$\cdot 0.9 1\cdot \text{var}[cuminc_14$\cdot 0.9 1\cdot \text{$time}==157][1]))
calibration5_data$Upper <- calibration5_data$Est + 1.96*sqrt(calibration5_data$Var)</pre>
calibration10_data$Upper <- calibration10_data$Est + 1.96*sqrt(calibration10_data$Var)
calibration14_data$Upper <- calibration14_data$Est + 1.96*sqrt(calibration14_data$Var)</pre>
calibration5_data$Lower <- calibration5_data$Est - 1.96*sqrt(calibration5_data$Var)</pre>
```

```
calibration10_data$Lower <- calibration10_data$Est - 1.96*sqrt(calibration10_data$Var)</pre>
calibration14_data$Lower <- calibration14_data$Est - 1.96*sqrt(calibration14_data$Var)
calibration5_data$Upper[calibration5_data$Upper>1] <- 1</pre>
calibration5_data$Lower[calibration5_data$Lower<0] <- 0</pre>
calibration10_data$Upper[calibration10_data$Upper>1] <- 1</pre>
calibration10_data$Lower[calibration10_data$Lower<0] <- 0</pre>
calibration14 data$Upper[calibration14 data$Upper>1] <- 1</pre>
calibration14 data$Lower[calibration14 data$Lower<0] <- 0</pre>
myplot <- ggplot() + geom_line(data = calibration5_data, aes(x=Group, y=Est),</pre>
                                color = "darkblue") +
  geom_errorbar(data = calibration5_data, aes(x = Group, ymin = Lower,
                                               ymax = Upper, width = 0.05),
                color = "darkblue") + geom_line(data = calibration10_data,
                                                 aes(x=Group, y=Est),
                                                 color = "mediumpurple4") +
  geom_errorbar(data = calibration10_data, aes(x = Group, ymin = Lower,
                                                ymax = Upper, width = 0.05),
                color = "mediumpurple4") + geom_line(data = calibration14_data,
                                                       aes(x=Group, y=Est),
                                                       color = "gray74") +
  geom_errorbar(data = calibration14_data, aes(x = Group, ymin = Lower,
                                                ymax = Upper), color = "gray74",
                width = 0.05) + scale x continuous(name = "Predicted Risk of OCM",
                                                    limits = c(0, 1),
                                                    breaks = seq(0, 1, by=0.2)) +
  scale_y_continuous(name = "Observed Risk of OCM", limits = c(0, 1),
                     breaks = seq(0, 1.2, by=0.2)) + theme_bw() +
  geom_abline(slope = 1, intercept = 0) +
  labs(caption = "Black line: perfect calibration. Blue line: calibration at
       5 years. Purple line: calibration at 10 years. Gray line: calibration
       at 14 years.")
#myplot
#save(list=c("plco_clean", "plco_nf"), file = "~/Box/PLCO_Data/Prostate/plco_data_clean.RData")
```

Variable Importance

We assess the variable importance of our Cox model:

```
load("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nhanes_data_clean.RData")
f <-
    cph(
    Surv(permth_exm, mortstat) ~ age_ctr_40 + diabetic + educ + hypertension +
        marital2 + underweight + overweight2 + obese2 + smoker + stroke +
        age_ctr_40 * diabetic + age_ctr_40 * educ + age_ctr_40 * hypertension +
        age_ctr_40 * stroke + pc,
    data = mydata[mydata$inmodel4 == 1, ],
    x = TRUE,
    y = TRUE</pre>
```


Comparison to SSA and NVSS Life Tables

We compare to the SSA and NVSS life tables:

```
ssa <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/ssa_2000.csv")</pre>
ssa$age <- seq(0, 119, by = 1)
nvss_black <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_blackm
nvss_white <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_whitem
nvss_other <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_allmal
nvss_other <- nvss_other[-102,]</pre>
nvss <- data.frame("Age" = seq(0, 100, by = 1), "White" = nvss_white$Expectancy, "Black" = nvss_black$E
plco_clean$ssa <- NA
plco_clean$nvss <- NA</pre>
for (i in 1:nrow(plco_clean)){
  plco_clean$ssa[i] <- ssa$Expectancy[which(ssa$age==plco_clean$age[i])]</pre>
  if (plco_clean$race2[i] == "NHW"){
    plco_clean$nvss[i] <- nvss$White[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="NHB"){
    plco_clean$nvss[i] <- nvss$Black[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="Other"){
    plco_clean$nvss[i] <- nvss$0ther[which(nvss$Age==plco_clean$age[i])]
}
ssa_roc <-
  timeROC(
    T = plco_clean permth_exm,
    delta = plco_clean$mortstat,
```

```
marker = 1/plco_clean$ssa,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
nvss_roc <-
  timeROC(
    T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = 1/plco_clean$nvss,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
aucdat <-
  data.frame("Time" = rep(seq(6, 168, by = 6), 2),
             "Model" = c(rep("SSA", 28), rep("NVSS", 28)),
             "AUC" = c(ssa_roc$AUC[-1], nvss_roc$AUC[-1]))
aucplot <-</pre>
  ggplot(data = aucdat, aes(x = Time, y = AUC, group = Model, color=Model)) +
  geom_line() + xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot
```


Table 5: Time-Dependent AUC in PLCO

Model	Year5	Year10	Year14
SSA	0.647	0.708	0.746
NVSS	0.650	0.711	0.748

expectancy_dat\$NVSS[expectancy_dat\$NVSS > 17] <- 17

comparison_plot <- ggplot(data=expectancy_dat, aes(x = SSA, y = Cox_40, color = factor(Outcome))) + geometric data = geomet

comparison_plot


```
comparison_plot2 <- ggplot(data=expectancy_dat, aes(x = NVSS, y = Cox_40, color = factor(Outcome))) + g
comparison_plot2</pre>
```


Performance Assessment in Presence of Competing Risks

Now we redo all of the above analyses, but accounting for the competing risks using the lengthened survival time:

```
plco_clean2 <- plco_nf

plco_nf2 <- plco_nf

plco_clean2$permth_exm <- case_when(
    plco_clean$mortstat2==0 | plco_clean$mortstat2==1 ~ plco_clean$permth_exm,
    plco_clean$mortstat2==2 ~ 1000
)

plco_nf2$permth_exm <- case_when(
    plco_nf$mortstat2==0 | plco_nf$mortstat2==1 ~ plco_nf$permth_exm,
    plco_nf$mortstat2==0 | plco_nf$mortstat2==1 ~ plco_nf$permth_exm,
    plco_nf$mortstat2==2 ~ 1000
)

obs_surv <- Surv(plco_clean2$permth_exm, plco_clean2$mortstat)
rf_predictor <- predict(rforest_40, plco_nf2)
cox_40_predictor <- survfit(cox_40, plco_clean2)
cox_55_predictor <- survfit(cox_55, plco_clean2)

cox_40_5 <- rcorr.cens(cox_40_predictor$surv[cox_40_predictor$time==60,], obs_surv)</pre>
```

```
cox_40_10 <- rcorr.cens(cox_40_predictor\surv[cox_40_predictor\stime==120,], obs_surv)</pre>
cox_40_14 <- rcorr.cens(cox_40_predictor\surv[cox_40_predictor\stime==168,], obs_surv)</pre>
cox_55_5 <- rcorr.cens(cox_55_predictor$surv[cox_55_predictor$time==60,], obs_surv)</pre>
cox_55_10 <- rcorr.cens(cox_55_predictor\$surv[cox_55_predictor\$time==120,], obs_surv)</pre>
cox_55_14 <- rcorr.cens(cox_55_predictor\$surv[cox_55_predictor\$time==168,], obs_surv)</pre>
rforest 40 5 <- rcorr.cens(rf predictor$survival[, rf predictor$time.interest==60], obs surv)
rforest_40_10 <- rcorr.cens(rf_predictor\survival[, rf_predictor\stime.interest==120], obs_surv)
rforest_40_14 <- rcorr.cens(rf_predictor$survival[, rf_predictor$time.interest==168], obs_surv)
cox55_plco <- pec::cindex(object=cox_55, Surv(permth_exm, mortstat) ~ age_ctr_55 +</pre>
                             race2 + educ + marital2 + emphysema + diabetic +
                             stroke + smoker + underweight + overweight2 + obese2 +
                             pc + age_ctr_55*diabetic + age_ctr_55*educ +
                             age_ctr_55*marital2 + race2*educ, data = plco_clean2,
                           eval.times = times)
cox40_plco <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                             age_ctr_40 + diabetic + educ + hypertension + marital2 +
                             underweight + overweight2 + obese2 + smoker + stroke +
                             age_ctr_40*diabetic + age_ctr_40*educ +
                             age_ctr_40*hypertension + age_ctr_40*stroke + pc,
                           data=plco_clean2, eval.times = times)
forest_plco <- pec::cindex(object=rforest_40, formula = Surv(permth_exm, mortstat) ~
                              age + arthritis + bronch + diabetic + educ +
                              emphysema + hypertension + single + sep + mi_chd +
                              underweight + overweight_ex + obese + liver + black +
                              other + smoker + stroke + pc, data=plco_nf2, eval.times = times)
valid_perf <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                          "Model" = c(rep("Cox 55", 28), rep("Cox 40", 28),
                                      rep("Random Forest", 28)),
                          "C" = c(cox55_plco$AppCindex$coxph, cox40_plco$AppCindex$coxph,
                                  forest_plco$AppCindex$rfsrc))
performance_plot <- ggplot(data=valid_perf, aes(x=Time, y=C)) + geom_point(size=0.1) +
  geom_line(data=valid_perf, aes(group=Model, color=Model)) + xlab("Time (months)") +
  ylab("IPCW C-index in PLCO, Competing Risks")
performance_plot
```

Table 6: IPCW C-index in PLCO, Competing Risks

Model	Year5	Year10	Year14
Cox 55	0.683	0.690	0.681
Cox 40	0.685	0.691	0.685
Random Forest	0.664	0.682	0.669

 $cox_{40_{10}[1]}$,

"Year10" = round(c(cox 55 10[1],

"Year14" = $round(c(cox_55_14[1],$

rforest_40_5[1]), digits=3),

rforest_40_10[1]), digits=3),

Table 7: No IPCW C-index in PLCO, Competing Risks

Model	Year5	Year10	Year14
Cox 55	0.680	0.680	0.680
Cox 40	0.683	0.683	0.683
Random Forest	0.652	0.670	0.673

Based on C-index, our strongest performing model is the Cox model fit to men ages 40+. Now we look at time-dependent AUC:

```
cox40predict <-
  predict(object = cox_40,
          newdata = plco_clean2,
          type = "lp")
cox55predict <-
  predict(object = cox_55,
          newdata = plco_clean2,
          type = "lp")
rforestpredict <-
  predict(object=rforest_40,
          newdata = plco_nf2)
cox40roc <-
  timeROC(
   T = plco_clean2$permth_exm,
    delta = plco_clean2$mortstat,
    marker = cox40predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
cox55roc <-
  timeROC(
    T = plco_clean2\permth_exm,
    delta = plco_clean2$mortstat,
    marker = cox55predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
rforestroc <-
  timeROC(
    T = plco_nf2$permth_exm,
    delta = plco_nf2$mortstat,
    marker = rforestpredict$predicted,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
```


Based on time-dependent AUC, the Cox model fit to men ages 40+ is still the strongest performing model. We will now focus our attention on the Cox ages 40+ model for the rest of our model validation/performance

Table 8: Time-Dependent AUC in PLCO, Competing Risks

Model	Year5	Year10	Year14
Cox 55	0.695	0.735	0.735
Cox 40	0.697	0.736	0.739
Random Forest	0.691	0.718	0.701

assessment.

We look at C-index and time-dependent AUC stratified by treatment group:

```
cox40 prostatectomy <- pec::cindex(object=cox 40, formula = Surv(permth exm, mortstat) ~
                                     age_ctr_40 + diabetic + educ + hypertension +
                                     marital2 + underweight + overweight2 + obese2 +
                                     smoker + stroke + age_ctr_40*diabetic +
                                     age_ctr_40*educ + age_ctr_40*hypertension +
                                     age ctr 40*stroke + pc,
                                    data=plco_clean2[plco_clean2$primary_tx=="Prostatectomy",],
                                    eval.times = times)
cox40_radiation <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~</pre>
                                 age_ctr_40 + diabetic + educ + hypertension +
                                 marital2 + underweight + overweight2 + obese2 +
                                 smoker + stroke + age_ctr_40*diabetic +
                                 age_ctr_40*educ + age_ctr_40*hypertension +
                                 age_ctr_40*stroke + pc,
                               data=plco_clean2[plco_clean2$primary_tx=="Radiation alone",],
                               eval.times = times)
cox40_rtadt <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                             age_ctr_40 + diabetic + educ + hypertension +
                             marital2 + underweight + overweight2 + obese2 +
                             smoker + stroke + age_ctr_40*diabetic +
                             age_ctr_40*educ + age_ctr_40*hypertension +
                             age ctr 40*stroke + pc,
                           data=plco_clean2[plco_clean2$primary_tx=="Radiation + hormone",],
                           eval.times = times)
valid_perf_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                             "Treatment" = c(rep("Prostatectomy", 28),
                                              rep("Radiation alone", 28),
                                              rep("Radiation + hormone", 28)),
                             "C" = c(cox40_prostatectomy$AppCindex$coxph,
                                     cox40_radiation$AppCindex$coxph,
                                     cox40_rtadt$AppCindex$coxph))
performance_plot_trt <- ggplot(data=valid_perf_trt, aes(x=Time, y=C)) +</pre>
  geom point(size=0.1) + geom line(data=valid perf trt, aes(group=Treatment,
                                                             color=Treatment)) +
  xlab("Time (months)") + ylab("IPCW C-index in PLCO, Competing Risks")
performance plot trt
```

Table 9: PLCO Time-Dependent C-index, by Treatment, Competing Risks

Treatment	Year5	Year10	Year14
Prostatectomy	0.675	0.667	0.679
Radiation alone	0.644	0.660	0.659
Radiation + hormone	0.622	0.654	0.637


```
subperf_trt <- data.frame("Treatment" = c("Prostatectomy", "Radiation alone",</pre>
                                           "Radiation + hormone"),
                           "Year5" = round(c(cox40_prostatectomy$AppCindex$coxph[10],
                                             cox40_radiation$AppCindex$coxph[10],
                                             cox40_rtadt$AppCindex$coxph[10]), digits=3),
                           "Year10" = round(c(cox40_prostatectomy$AppCindex$coxph[20],
                                              cox40_radiation$AppCindex$coxph[20],
                                              cox40_rtadt$AppCindex$coxph[20]), digits=3),
                           "Year14" = round(c(cox40 prostatectomy$AppCindex$coxph[28],
                                              cox40_radiation$AppCindex$coxph[28],
                                              cox40 rtadt$AppCindex$coxph[28]), digits=3))
kable(subperf_trt, caption = "PLCO Time-Dependent C-index, by Treatment, Competing Risks")
cox40predict_prostatectomy <- predict(object=cox_40, newdata =</pre>
                                         plco_clean2[plco_clean2$primary_tx=="Prostatectomy",],
                                       type="lp")
cox40predict_radiation <- predict(object=cox_40, newdata =</pre>
                                     plco_clean2[plco_clean2$primary_tx=="Radiation alone",],
                                   type="lp")
```

```
cox40predict_rtadt <- predict(object=cox_40, newdata =</pre>
                                plco_clean2[plco_clean2$primary_tx=="Radiation + hormone",],
                              type="lp")
prostatectomy_roc <- timeROC(T = plco_clean2$permth_exm[plco_clean2$primary_tx=="Prostatectomy"],</pre>
                             delta = plco_clean2$mortstat[plco_clean2$primary_tx=="Prostatectomy"],
                             marker = cox40predict_prostatectomy, cause = 1,
                             weighting="marginal", times = seq(0, 168, by=6))
radiation_roc <- timeROC(T = plco_clean2$permth_exm[plco_clean2$primary_tx=="Radiation alone"],
                         delta = plco_clean2$mortstat[plco_clean2$primary_tx=="Radiation alone"],
                         marker = cox40predict_radiation, cause = 1,
                         weighting="marginal", times = seq(0, 168, by=6))
rtadt_roc <- timeROC(T = plco_clean2$permth_exm[plco_clean2$primary_tx=="Radiation + hormone"],
                     delta = plco_clean2$mortstat[plco_clean2$primary_tx=="Radiation + hormone"],
                     marker = cox40predict_rtadt, cause = 1, weighting="marginal",
                     times = seq(0, 168, by=6))
aucdat_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                         "AUC" = c(prostatectomy roc$AUC[-1], radiation roc$AUC[-1],
                                   rtadt_roc$AUC[-1]),
                         "Treatment" = c(rep("Prostatectomy", 28),
                                          rep("Radiation alone", 28),
                                          rep("Radiation + hormone", 28)))
aucplot_trt <- ggplot(data=aucdat_trt, aes(x=Time, y=AUC, group=Treatment,
                                            color=Treatment)) + geom_line() +
  xlab("Time (months)") + ylab("Time-dependent AUC in PLCO, Competing Risks")
aucplot_trt
```

Table 10: Time-Dependent AUC in PLCO, by Treatment, Competing Risks

Years	Prostatectomy	Radiation	Radiation_hormone
5	0.683	0.654	0.628
10	0.692	0.704	0.700
14	0.717	0.715	0.688

We compare to the SSA and NVSS life tables:

```
ssa <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/ssa_2000.csv")
ssa$age <- seq(0, 119, by = 1)</pre>
```

```
nvss_black <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_blackm
nvss_white <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_whitem
nvss_other <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_allmal
nvss_other <- nvss_other[-102,]</pre>
nvss <- data.frame("Age" = seq(0, 100, by = 1), "White" = nvss_white$Expectancy, "Black" = nvss_black$E
plco clean$ssa <- NA
plco_clean$nvss <- NA</pre>
for (i in 1:nrow(plco_clean)){
  plco_clean$ssa[i] <- ssa$Expectancy[which(ssa$age==plco_clean$age[i])]</pre>
  if (plco_clean$race2[i] == "NHW"){
    plco_clean$nvss[i] <- nvss$White[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="NHB"){
    plco_clean$nvss[i] <- nvss$Black[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="Other"){
    plco_clean$nvss[i] <- nvss$Other[which(nvss$Age==plco_clean$age[i])]</pre>
}
ssa_roc <-
  timeROC(
    T = plco_clean2$permth_exm,
    delta = plco_clean2$mortstat,
    marker = 1/plco_clean$ssa,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
nvss_roc <-
  timeROC(
    T = plco_clean2\permth_exm,
    delta = plco_clean2$mortstat,
    marker = 1/plco_clean$nvss,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
aucdat <-
  data.frame("Time" = rep(seq(6, 168, by = 6), 2),
             "Model" = c(rep("SSA", 28), rep("NVSS", 28)),
             "AUC" = c(ssa_roc$AUC[-1], nvss_roc$AUC[-1]))
aucplot <-
  ggplot(data = aucdat, aes(x = Time, y = AUC, group = Model, color=Model)) +
  geom_line() + xlab("Time (months)") + ylab("Time-dependent AUC in PLCO, Competing Risks")
aucplot
```

Table 11: Time-Dependent AUC in PLCO, Competing Risks

Model	Year5	Year10	Year14
SSA	0.643	0.694	0.709
NVSS	0.646	0.697	0.710

PCSM Prediction

We get the C-index for the linear predictor for PCSM:

```
#Indicator for death from prostate cancer (other cause mortality censored)
plco_clean$mortstat2==2 ~ 1,
   plco_clean$mortstat2==1 | plco_clean$mortstat2==0 ~ 0
)
times <- seq(6, 168, by=6)</pre>
```

Table 12: Time-dependent C-index for PCSM

Model	Year5	Year10	Year14
Cox 40	0.62	0.619	0.624


```
cox40predict <-
  predict(object = cox_40,
          newdata = plco_clean,
          type = "lp")
cox40roc <-
  timeROC(
    T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = cox40predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
aucdat <-
  data.frame("Time" = seq(6, 168, by = 6),
             "AUC" = cox40roc$AUC[-1])
aucplot <-
  ggplot(data = aucdat, aes(x = Time, y = AUC)) + geom_line() +
  xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot
```


Table 13: Time-Dependent AUC for PCSM

	Model	Year5	Year10	Year14
t=60	Cox 40	0.633	0.678	0.716

kable(auc_table, caption="Time-Dependent AUC for PCSM")