

Design and Validation of Low Noise Airfoil Inspired by Flight of Owl

Minsin Kim†, Chan-Young Ahn, Yujin Im, Yoon Seong Park, Kyung Chun Kim

School of Mechanical Engineering Pusan National University, Korea

Presenter: Minsin Kim

Introduction

Research Background

올빼미는 다른 조류에 비해 저소음 비행을 함.

올빼미의 저소음 비행의 특성을 분석하고 이용 💮 회전체 및 비행체에서 발생하는 유동여기 소음 문제 개선

2019.11.15(금)

Literature survey

● 올빼미 저소음 비행 요인

올빼미 날개의 특성[3]

- Leading edge serrations
- Trailing edge fringes
- Velvet-like surface
- Porous and pliant plumage

유동 박리 지연, 후류영역 발달 억제 🕮

→ 저소음 비행 가능

● 익형 주위의 경계층 유동

익형 주위 유동가시화, 유동 박리

박리의 위치, 물체 뒤 후류영역의 폭, 그리고 표면의 압력구배는 경계층 유동의 특성에 의존함.

→ 박리점 위치의 확인을 통해 유동의 특성을 **유추**할 수 있음.

^[2] Winzen, A., B. Roidl, and W. Schröder, 2015, "Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing." Bioinspiration & biomimetics 10.5

^[3] Hermann Wagner, Matthias Weger, Michael Klaas and Wolfgang Schroder, 2016, "Features of owl wings that promote silent flight," Interface focus, Vol.7, No.1, pp. 5-9

^[4] Rao, C. and Liu, H., 2018, "Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model," Bioinspiration & biomimetics, Vol. 13, No. 5, 056002

^[5] Munson, Okiishi, Huebsch, Rothmayer, 2013, "Fluid Mechanics", John & Sons Singapore Pte. Ltd

Introduction

Research Objective

- •올빼미 날개의 특성을 반영한 개선 익형 두가지를 설계한 후, 2D PIV를 통해 기본 익형과의 유동 특성 비교
- •유선, 속도장 분석을 통한 소음 저감 효과 판별

Model

• Moment사의 'Moment2' 3D프린터 사용 (FDM타입)

C0 (기본 익형)

S0 (Serrated model)

H1 (Serrated hairy model)

Serration 규격 ^{[6][7]}

Experimental setup

실험 장치 구상 이미지

실제 실험 이미지

실험 준비 요소	설정값
풍동에서 나오는 공기의 평균 속도	2.6 m/s
카메라 (Phantom VEO410L)	5,200 fps (exposure time : 190ms)
이미지 크기	1280*800 pixel 0.16mm/pixel
상사 조건	설정값
상사 조건 올빼미 비행 속도 _[8]	설정값 2.5~7.5 m/s
올빼미 비행 속도 _[8]	2.5~7.5 m/s
올빼미 비행 속도 _[8] 특성 길이(Lc)	2.5~7.5 m/s 0.1 m

(* T=15°C 일 때, 표준대기압 공기의 물성치)

$$Re_L = \frac{\rho V L_c}{\mu} = 17,800$$

Results Video

AoA=0°

Ideo C0(기본 익형)

Flow direction
Airfoil

S0(Serrated model)

H1(Serrated hairy model)

AoA=4°

Flow direction

Airfoil

Results Streamline

Results

Separation point

• 평균 속도장에서 벽면 속도 구배가 0인 지점을 찾고 역류 발생을 확인함.

Coordinates of Separation point

	AoA (°)	x/c	y/c
CO	0	0.812	0.043
C0	4	0.72	-0.013
CO	0	-	-
S0	4	0.589	0.006
1.14	0	-	-
H1	4	-	-

Noise mesurement

Experimental setup

- 2D PIV 실험과 동일하게 실험장비를 설치함.
- 소음 측정을 위해 카메라와 레이저 대신 마이크로폰을 사용함.

실험 준비 요소	설정값
Туре	Microphone
풍동에서 나오는 공기의 유속	2.6 m/s
Weighting	A-Weighting
Freq. Resolution	1 Hz
Measurement Time	1 sec
Ref. Pressure	20 μPa

실제 실험 이미지

Noise mesurement

Results

SPL-Frequency(A-Weighting)

소음 측정 대상	Overall [dB]
풍동	70.788
C0	70.715
S0	70.785
H1	70.478

AoA=4°

소음 측정 대상	Overall [dB]
풍동	70.788
C0	70.707
S0	70.563
H1	70.693

Conclusion

■ Visualization을 통해 Serration 적용에 따른 유동장 변화 확인

■ Serration 적용 익형에서 유동박리 억제 및 후류영역의 폭과 와류 감소

■ Microphone을 사용한 소음 측정 실험 결과, 유의미한 데이터를 얻지 못하여 추후 무향실에서의 후속 연구 예정

	소음 측정 대상	Overall [dB]
	풍동	70.788
AoA=0°	C0	70.715
7.07.	S0	70.785
	H1	70.478

소음 측정 대상	Overall [dB]
풍동	70.788
C0	70.707
S0	70.563
H1	70.693

AoA=4°

