Raoult's law Derivation

We know that for ideal gas system

$$dG_{i}^{iS} = V_{i}^{iS} dP - S^{i}dT$$
at const. Temp.

$$dG_{i}^{iS} = V_{i}^{iS} dP = \frac{RT}{P} dP$$

$$\Rightarrow G_{i}^{iS} = RT ln P + \Gamma(T) \quad constant$$

$$G_{i}^{i} = RT ln f_{i}^{i} + \Gamma(T) \quad -\Omega$$
Similarly for ideal liquid SD_{i}^{i} .

$$G_{i}^{i} = RT ln f_{i}^{i} + \Gamma(T) \quad -\Omega$$

$$0 - \Omega \quad and vapour phase in ideal gestate
$$G_{i}^{i} - G_{i}^{i} = RT ln \left(\frac{f_{i}^{i}}{f_{i}^{i}}\right)$$
at equilibrium. $G_{i}^{i} - G_{i}^{i} = 0$ or, $G_{i}^{i} = G_{i}^{i}$

$$so, f_{i}^{i} = f_{i}^{i} \quad sat \quad (saturated pressur)$$

$$f_{i}^{sat} = \frac{f_{i}^{i}}{f_{i}^{sat}} \quad (f_{i}^{i}g_{i}^{c}_{i}^{i}^{i}_{j$$$$

Again we know that.

$$G_{i} - G_{i}^{Sat} = \int_{\rho_{i}^{Sat}}^{\rho} V_{i}^{1} d\rho - \mathfrak{F}$$

$$G_{i} - G_{i}^{Sat} = RT \ln \frac{H}{f_{i}^{Sat}} - \mathfrak{F}$$

$$Compone eqh \mathfrak{F} \mathcal{F}$$

$$In \frac{H}{f_{i}^{Sat}} = \frac{1}{RT} \int_{\rho_{i}^{Sat}}^{\rho} V_{i}^{1} d\rho$$

$$\int_{f_{i}^{Sat}}^{f_{i}^{Sat}} = \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{1} \left(\rho_{i}^{Sat} - \rho_{i}^{Sat}\right)\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat} - \rho_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat} - \rho_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat} - \rho_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat} - \rho_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat} = \int_{f_{i}^{Sat}}^{Sat} \exp\left(\frac{1}{RT} \times V_{i}^{Sat}\right)$$

$$\Rightarrow f_{i}^{Sat$$

Phase Equilibrium for Ideal Solution

$$\hat{f}_i^{id} = f_i \cdot x_i$$
 Lewis and Randall Rule

$$\gamma_i = \frac{\widehat{f_i}}{\widehat{f_i}^{id}} = \frac{\widehat{f_i}}{f_i \cdot x_i}$$

For liquid system

$$\widehat{f_i^l} = x_i \, \gamma_i^l \, f_i^l$$

For gas system

$$\widehat{f_i^v} = y_i \, \Phi_i^v \, P$$

Now vapour phase is assume to be ideal gas state and liquid phase is an ideal solution

$$\gamma_i = \Phi_i = 1$$

And if the system is in equilibrium and the pressure of the liquid system will be saturated pressure (P_i^{sat})

$$\widehat{f_i^l} = \widehat{f_i^v}$$

$$x_i \ \gamma_i^l \ f_i^l = y_i \ \Phi_i^v \ P$$

$$x_i \ \gamma_i^l \ \Phi_i^{sat} P_i^{sat} = y_i \ \Phi_i^v \ P$$

$$x_i \ \gamma_i^l \ P_i^{sat} = y_i \frac{\Phi_i^v}{\Phi_i^{sat}} P$$

$$x_i \ \gamma_i^l \ P_i^{sat} = y_i \Phi_i^p P$$

..... Raoult's law

Limitation:

- Ideal solution
- Low to moderate pressure

$$y_i P = x_i \gamma_i P_i^{sat}$$

Modified Raoult's Law

Vapour Liquid Equilibrium (VLE)

> Vapour pressure depends on the temperature and quantity of liquid and vapour

Vapour pressure can be calculated from Clausius-Clapeyron equation or Antoine equation

Clausius-Clapeyron equation:

$$\ln(\frac{p^{v}}{p_{1}^{v}}) = \frac{\lambda}{R}(\frac{1}{T_{1}} - \frac{1}{T})$$

 λ = molar latent heat $p^{v}_{,}p_{1}^{\,\mathrm{v}}$ = vapour pressure in pascal

Antoine equation:

$$\ln p^{v} = A - \frac{B}{T+C}$$

Parameterisation for T in °C and P in mmHg

	A	В	С	7 min. (°C)	T max. (°C)
Water	8.07131	1730.63	233.426	1	100
Water	8.14019	1810.94	244.485	99	374
Ethanol	8.20417	1642.89	230.300	-57	80
Ethanol	7.68117	1332.04	199.200	77	243

T-x-y diagram at Constant Pressure:

Fig. Constant pressure vapor liquid equilibria

Constant pressure Binary T-x-y and x-y diagram

> Vapor-liquid equilibria at increased pressures

Fig. Vapor liquid equilibria at increased pressures

Relative volatility (α)

This is the ratio of the concentration ratio of A and B in one phase to that in the other and is a measure of the separability.

the ratio of the concentration ratio of A and B in one phase to that it ability.
$$\alpha = \frac{\frac{y^*}{(1-y^*)}}{\frac{x}{(1-x)}} = \frac{y^*(1-x)}{x}$$

$$y^* = \frac{\alpha x}{1+(\alpha-1)x}$$
(1)

x – mole fraction of the more volatile substance in the liquid y^* – mole fraction of the more volatile substance in the vapor

- The value of α will ordinarily change as x varies from 0 to 1.
- If $y^* = x$ (except at x = 0 or 1), $\alpha = 1$ and no separation is posssible.
- The larger the value of α above unity, the greater the degree of separability.

> P-x-y diagram for methanol-water

Fig. Constant temperature vapor liquid equilibria

Raoult's Law: (Ideal gas-liquid system)

$$y^* = \frac{\text{distance FG}}{\text{distance EG}} = \frac{\overline{P_A^*}}{P_t} = \frac{P_A x}{P_t}$$
 (5)

$$1 - y^* = \frac{\overline{P_B^*}}{P_t} = \frac{P_B(1 - x)}{P_t}$$
 (6)

The relative volatility α is, by substitution in equation (1)

$$\alpha = \frac{P_A}{P_B} \tag{7}$$

> Positive deviations from ideality

 A mixture whose total pressure is greater than that computed for ideality (eq. 4) is said to show positive deviations from Raoult's law.

> Negative deviations from Ideality

• When the total pressure of a system at equilibrium is less than the ideal value, the system is said to deviate negatively from

Raoult's law.

Maximum boiling mixtures - azeotropes

Fig. Maximum-boiling azeotropism in the system acetone-chloroform: (a) at constant temperature; (b) and (c) at constant pressure.

Enthalpy Concentration Diagram

 40 wt% ethanol water mixture at 84 °C

$$\sqrt{x_{\text{ethanol}}} = 0.28$$

$$\checkmark$$
 y_{ethanol} = 0.28

$$\checkmark$$
 H_F = 165 Kcal/kg

$$\checkmark$$
 H_v = 380 Kcal/kg

$$\checkmark$$
 H_L = 70 Kcal/kg

Enthalpy-composition diagram for ethanol-water at a pressure of 1 kg/cm². (Bosn Technische Thermodynamik, T. Steinkopff, Leipzig, 1935)

Enthalpy Concentration Diagram to Equilibrium Diagram

Total material balance:

Component A balance:

Enthalpy balance:

$$M + N = P$$

$$Mz_M + Nz_N = Pz_P$$

$$MH_M + NH_N = PH_P$$

$$\frac{M}{N} = \frac{z_N - z_P}{z_P - z_M}$$
$$\frac{M}{N} = \frac{H_N - H_P}{H_P - H_M}$$

$$\frac{H_N-H_P}{z_N-z_P}=\frac{H_P-H_M}{z_P-z_M}$$