Ch14-Maps

August 7, 2020

1 14 Maps

https://en.cppreference.com/w/cpp/container/map

1.1 Topics

- Section ??
- Section 1.4

14.1 Map - the containers such as **array** and **vector** are linear and the keys are fixed integer indices - at times problems may require a dictionary like data-structure where you need to select your own key that is associated with some value - \mathbf{map} is such a data structure where you store key-value pairs of your choosen types - \mathbf{map} is also called associative container that contains key-value pairs with unique keys - map is automatically sorted based on keys - all keys are of the same type and all values are of the same type - key and value can be of the same type or can be different types - the following figure depicts a map data structure that maps English numbers (string) to Spanish numbers (string) - keys are mapped to values (one-way) - values are not mapped to the keys - under the hood \mathbf{map} is implemented as red-black trees - the complexity (efficiency) of common operations such as search, removal, and insertion operations is $O(\log_2 n)$ - simply put, if there are about 4 billion key-value pairs in a map, these common tasks can be completed in about 32 iterations (operations) - oder of operations is something discussed in more details in Data structures and Algorithm courses

14.2 Map objects - must include header file <map> and use namespace std - a template class designed to store key of any data type that can be compared - value can be of any type - map objects must be declared before they can be used - syntax

map<type, type> object;

```
[1]: // include header files
#include <iostream>
#include <string>
#include <map>
```

```
using namespace std;
 [4]: // declare map containers without initialization
      map<string, string> eng2Span;
      map<char, int> charToNum;
      map<int, char> numToChar;
 []: // declare and initialize
      map<string, int> words = {
              {"i", 10},
              {"love", 20},
              {"C++", 30},
              {"!", 40},
          };
      map<string, float> prices = {{"apple", 1.99}, {"orange", 1.99}, {"banana", 2.
       \rightarrow99}, {"lobster", 20.85}};
      map<string, float> dupPrices = prices;
[16]: // contents of words
      words
[16]: { "!" => 40, "C++" => 30, "i" => 10, "love" => 20 }
[17]: // prices contents:
      prices
[17]: { "apple" => 1.99000f, "ball" => 0.00000f, "banana" => 2.99000f, "lobster" =>
      20.8500f, "orange" => 1.99000f }
     1.1.1 values can be user-defined type
 [8]: // define Rectangle type
      // Note - the word Type is redundant! Rectangle by itself would mean a type
      struct RectangleType {
          float length, width;
      };
 [9]: // create a map that maps ints to RectangleType
      map<int, RectangleType> myRects;
[10]: // declare and initialize
      map<char, RectangleType> rectMap = {{'A', {20, 10}}, {'x', {3.5, 2.1}}};
```

14.3 Accessing existing elements - elements are accessed using keys and NOT the values - must know the key to get the corresponding values - can't get key from its value - at(key): access specified element with bounds checking - operator[key]: access or insert specified element based on key - similar to vector, but use actual key not index

```
[11]: // accessing elements using [] bracket operator
      cout << "love = " << words["love"] << endl;</pre>
      cout << "apple = " << prices["apple"] << endl;</pre>
      cout << "ball = " << prices["ball"] << endl; // "ball doesn't exist; returns 0"</pre>
     love = 20
     apple = 1.99
     ball = 0
[11]: @0x105af2ec0
[20]: // key must exist; value is unpredictable if key doesn't exist
      cout << "cost of kite = " << prices["kite"];</pre>
     cost of kite = 0
[12]: // accessing elements using at() member function
      cout << "love = " << words.at("love") << endl;</pre>
      cout << "apple = " << prices.at("apple") << endl;</pre>
      cout << "ball = " << prices.at("ball") << endl; // "ball doesn't exist; returns"
       →0"
     love = 20
     apple = 1.99
     ball = 0
[12]: @0x105af2ec0
[21]: // key must exist; value is unpredictable if key doesn't exist
      cout << "cost of kite = " << prices.at("kite");</pre>
     cost of kite = 0
[14]: // declared above, but should be empty map
      eng2Span
[14]: {}
[24]: // accessing user-defined type as value
      rectMap['x'].length
[24]: 3.50000f
[25]: cout << "area of rectangle x = " << rectMap['x'].length * rectMap['x'].width;
     area of rectangle x = 7.35
```

1.1.2 inserting key->value pairs

- new key value pairs can be inserted to a map container
- if the key exists, existing value will be replaced with the new value
- if the key doesn't exist, new key-value pair will be inserted in the right location making sure keys are always sorted

five in English is cinco in Spanish.

14.4 Capacity - similar to vecotr, map provides member functions to find the capacity of map containers - empty(): checks whethere the container is empty - size(): returns the number of elements - recall, each element of map is key->value pair - max_size(): returns the maximum possible number of elements

```
[31]: cout << boolalpha; // convert boolean to text true/false
cout << "is eng2Span empty? " << eng2Span.empty() << end1;
cout << "is prices map empty? " << prices.empty() << end1;
cout << "total number of key->value pairs in prices: " << prices.size() << end1;
cout << "max_size of prices: " << prices.max_size() << end1;
```

```
is eng2Span empty? false
is prices map empty? false
total number of key->value pairs in prices: 6
max_size of prices: 288230376151711743
```

14.5 Modifying maps - map objects also provide some member functions to modify the contents of the containers - clear(): clears the contents - [key]: modifies value at the specified key

```
[36]: cout << adultsage << endl;
      adultsage.clear(); // delete all the elements
      {Jenny:46, John:21, Jordan:48, Maya:74, Mike:46}
[37]: // should be empty
      adultsage
[37]: {}
      ## 14.6 Aggregate comparisons - comparison operators ==, !=, <, >, <=, and >= are overloaded
      and works between two maps - elements are compared lexicographically
      ## 14.7 Traversing maps - map containers can be traveresed from the first element to the last
      (similar to array, string and vector) - map provides iterators similar to iterators in string or vector
      - let's you iterate over all the elements - iterator of map is a special pointer that has two elements
      first and second - first is the key and second is the value - begin - returns an iterator to the
      beginning (first element) - end - returns an iterator to the end (past the last element) - rbegin -
      returns a reverse iterator to the beginning (past the last element) - rend - returns a reverse iterator
      to the end (past the first element)
[39]: map<int, string> amap = {{10, "val1"}, {15, "val2"}, {20, "val3"}, {30, |

¬"val4"}, {35, "val5"}};
[40]: for(auto iterator = amap.begin(); iterator != amap.end(); iterator++)
           cout << (*iterator).first << " => " << iterator->second << endl;</pre>
      10 => val1
      15 => val2
      20 \Rightarrow val3
      30 \Rightarrow val4
      35 => val5
[41]: // iterate using range-based loop
      for (auto e : amap)
           cout << e.first << " -> " << e.second << endl;</pre>
      10 -> val1
      15 -> val2
      20 -> val3
      30 -> val4
      35 -> val5
[27]: // type alias
      using mii = map<int, int>;
[28]: mii map1 = \{\{1,10\}, \{2,20\}, \{3,30\}, \{4,40\}, \{5,50\}\};
      cout << map1 << endl;</pre>
```

```
{1:10, 2:20, 3:30, 4:40, 5:50}
```

14.8 Lookup lements - map containers provide member functions to search for element with given key in a map container - is typically used if you're not sure if a given key exists or not - count(key): returns the number of elements matching specific key (always 1 if exists, 0 otherwise) - find(key): finds elements with specific key, returns iterator

```
[2]: // map char to its ASCII value
map<char, int> mapci = {{'a', 'a'}, {'b', 'b'}, {'c', 'c'}, {'A', 'A'}, {'B', \

→'B'}, {'1', '1'}};
```

```
[3]: mapci
```

```
[3]: { '1' => 49, 'A' => 65, 'B' => 66, 'a' => 97, 'b' => 98, 'c' => 99 }
```

```
[4]: cout << mapci.count('a') << endl;
```

1

```
[5]: cout << mapci.count('z') << endl;
```

0

```
[6]: if (mapci.count('a') == 1)
    cout << "Found!";
else
    cout << "Not found!";</pre>
```

Found!

```
[7]: // find method; returns iterator
auto it = mapci.find('c');
if (it != mapci.end())
    cout << "found " << it->first << " => " << it->second << endl;
else
    cout << "NOT found!";</pre>
```

found $c \Rightarrow 99$

```
[8]: // erase using iterator
it = mapci.erase(it);
```

```
[9]: // it points to key 'c', so it must be erased mapci
```

```
[9]: { '1' => 49, 'A' => 65, 'B' => 66, 'a' => 97, 'b' => 98 }
```

1.2 14.9 Passing map objects to functions

- map objects can be passed by value and by reference
 - by reference is preferred to prevent copying all the elements unless it's necessary

```
[18]: // linear search function that returns true if key is found in someMap
bool searchMap(const map<char, int> & someMap, char key) {
    auto it = someMap.find(key);
    return it != someMap.end();
}
```

```
[20]: cout << boolalpha << "A exists as key? " << searchMap(mapci, 'A');
```

A exists as key? true

```
[21]: cout << boolalpha << "$ exists as key? " << searchMap(mapci, '$');
```

\$ exists as key? false

1.3 14.10 Returning map objects from functions

- map objects can be returned from functions
- however, pass by reference is preferred to get the data out of function instead of explictly returning a map

```
[22]: // function updates the map using pass-by-reference
void createMap(map<int, string> & m) {
    m[1] = "one";
    m[2] = "two";
    m[3] = "three";
    m[4] = "four";
    // ...etc.
}
```

```
[23]: // create an empty map map<int, string> numbers;
```

```
[24]: // let's create the map using function createMap(numbers);
```

```
[26]: // check the contents if the function inserted elements into map numbers
```

```
[26]: { 1 => "one", 2 => "two", 3 => "three", 4 => "four" }
```

1.4 14.11 Applications

• map can be applied to many problems ### keep track of menu items and the customers who ordered those items

• https://open.kattis.com/problems/baconeggsandspam

```
[10]: #include <map>
      #include <vector>
      #include <algorithm>
      #include <string>
      using namespace std;
[11]: map<string, vector<string> > items;
[12]: // bacon is ordered by John
      items["bacon"].push_back("John");
[13]: // bacon is ordered by Jim
      items["bacon"].push_back("Jim");
[14]: // see all the custumers who ordered bacon
      items["bacon"]
[14]: { "John", "Jim" }
[15]: for (auto menu : items) {
          cout << menu.first; // print key (menu item)</pre>
          // sort value (vector of customers)
          sort(menu.second.begin(), menu.second.end());
          // print each value in the vector which is the second element of p
          for (auto customer: menu.second)
              cout << " " << customer;</pre>
      }
     bacon Jim John
[16]: // sort the vector with the key 'bacon' in descending (non-increasing) order
      sort(items["bacon"].begin(), items["bacon"].end(), greater<string>());
[17]: // see the sorted vector
      items["bacon"]
[17]: { "John", "Jim" }
     1.5 14.12 Exercises
        1. Write a function that finds and returns the letter frequency in a given word.
            • write 3 automated test cases
 [1]: // Sample solution for Exercise 1
```

#include <cctype>

```
#include <string>
     #include <map>
     #include <vector>
     #include <iostream>
     #include <cassert>
     using namespace std;
[2]: // linear search function that searches given key in given map
     // returns true if key is found; false otherwise
     bool searchMap(const map<char, int> m, char key) {
         auto find = m.find(key);
         return (find != m.end());
     }
[3]: void test_searchMap() {
         assert(searchMap(\{\{'a', 1\}, \{'b', 5\}, \{'!', 1\}\}, 'a') == true);
         assert(searchMap(\{\{'q', 2\}, \{'Z', 1\}\}, 'm') == false);
         cerr << "all test cases passed for searchMap\n";</pre>
     }
[4]: test_searchMap();
    all test cases passed for searchMap
[5]: // function finds and returns frequency of each character
     void letterFrequency(string text, map<char, int> & freq) {
         for (char ch: text) {
             ch = char(tolower(ch)); // make case insensitive
             // find each c in freq map
             if (searchMap(freq, ch)) // found
                 freq[ch] += 1; // update frequency by 1
             else
                 freq[ch] = 1; // add new element
         }
     }
[6]: void test_letterFrequency() {
         map<char, int> ans;
         letterFrequency("Hi!", ans);
         map<char, int> expected = {{'!', 1}, {'h', 1}, {'i', 1}};
         assert(ans == expected);
         ans.clear();
         letterFrequency("Yo y0", ans);
         map<char, int> expected1 = {{' ', 1}, {'o', 2}, {'y', 2}};
         assert(ans == expected1);
         ans.clear();
```

```
letterFrequency("Mississippi", ans);
          map<char, int> expected2 = {{'i', 4}, {'m', 1}, {'p', 2}, {'s', 4}};
          assert(ans == expected2);
          cerr << "all test cases passed for letterFrequency()\n";</pre>
      }
 [7]: test_letterFrequency();
     all test cases passed for letterFrequency()
 [8]: string input;
[10]: cout << "Enter some text:";</pre>
      getline(cin, input);
     Enter some text: This is some text!
[11]: input
[11]: "This is some text!"
[12]: map<char, int> answer;
[13]: letterFrequency(input, answer);
[22]: answer
[22]: { ' ' => 3, '!' => 1, 'e' => 2, 'h' => 2, 'i' => 3, 'm' => 1, 'o' => 1, 's' =>
      4, 't' \Rightarrow 4, 'x' \Rightarrow 1
```

1.5.1 complete sample solution for Exercise 1 is at demo_programs/Ch14/exercise1.cpp

- 2. Write a function that finds and returns the frequency of vowels in a given word.
 - write 3 automated test cases
- 3. Write a program that reads some text data and prints a frequency table of the letters in alphabetical order. Case and punctionals should be ignored. A sample output of the program when the user enters the data "ThiS is String with Upper and lower case Letters", would look this:
 - design your program in such a way that you write automated test cases
 - prompt user to enter some text
 - use as many functions as possible
 - write at least 3 test cases for each function that computes some results

1.6 14.13 Kattis problems

- several problems in Kattis can be solved easier if map is used
- here are some of the programs that use map data structure

- 1. I've Been Everywhere, Man https://open.kattis.com/problems/everywhere
- Seven Wonders https://open.kattis.com/problems/sevenwonders
- ACM Contest Scoring https://open.kattis.com/problems/acm
- Stacking Cups https://open.kattis.com/problems/cups
- A New Alphabet https://open.kattis.com/problems/anewalphabet
- Words for Numbers https://open.kattis.com/problems/wordsfornumbers
- Babelfish https://open.kattis.com/problems/babelfish
- Popular Vote https://open.kattis.com/problems/vote
- Adding Words https://open.kattis.com/problems/addingwords
- Grandpa Bernie https://open.kattis.com/problems/grandpabernie
- Judging Troubles https://open.kattis.com/problems/judging
- Not Amused https://open.kattis.com/problems/notamused
- Engineering English https://open.kattis.com/problems/engineeringenglish
- Hardwood Species https://open.kattis.com/problems/hardwoodspecies
- Conformity https://open.kattis.com/problems/conformity
- Galactic Collegiate Programming Contest https://open.kattis.com/problems/gcpc
- Simplicity https://open.kattis.com/problems/simplicity

1.7 14.14 Summary

- learned a very useful associative data structure called map
- each element of map is a key-value pair
- · elements of map are sorted based on key
- went through various member functions of map objects and their applications
- learned that maps can be passed to functions and can be returned from them as well
- exercises and sample solutions

[]: