Numerical Computing

QASID AHMED ALEEM

COURSE TEACHER: DR. SHAHID QURESHI

BSC(HONOURS)

H-2 (MORNING)

INSTITUTE OF SPACE AND PLANETARY ASTROPHYSICS

UNIVERSITY OF KARACHI

Tasks

Task 1: Bisection Method

Code used:

```
    #include<stdio.h>

2. #include<math.h>

    //Bisection Method
    //Qasid Ahmed Aleem

5. //24 January
6.
7. double fun_c(double f);
8.
9. int main()
10. {
11.
        double a,b,m,fm;
        a=1;
12.
13.
        b=2;
14.
        int x,z;
15.
16.
        printf("how many iterations do you want(at least 40): ");
17.
        scanf("%d",&z);
        printf("\tcounter\t\ta\t\tb\t\tf(a)\t\tf(b)\t\tm\t\t f(m)\n");
18.
19.
        for(x=1;x<=z;x+=1)</pre>
20.
        if (fun_c(a)*fun_c(b)<0)</pre>
21.
22.
23.
            m=(a+b)/2;
24.
25.
            printf("\t%d\t\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\t",
26.
             x,a,b,fun_c(a),fun_c(b),m,fun_c(m));
27.
28.
            if (fun_c(a)*fun_c(m)<0)</pre>
29.
             {
30.
                 b=m;
31.
             }
32.
            else
33.
             {
34.
                 a=m;
35.
             }
36.
        }
37. }
38. printf("the approximate root is %.18f\n",m);
39. return (0);
40.}
41. double fun_c(double f)
42. {
43.
        return ((pow(f,3)) + f -5); //x^3-x-5
44.}
```

Result:

how many iterations do	you want(atleas	t 40): 55							
counter	a	b	f(a)	f(b)	m	f(m)			
1	1.0000000000	2.0000000000	-3.0000000000	5.0000000000	1.5000000000	-0.1250000000			
2	1.5000000000	2.0000000000	-0.1250000000	5.0000000000	1.7500000000	2.1093750000			
3	1.5000000000	1.7500000000	-0.1250000000	2.1093750000	1.6250000000	0.9160156250			
4	1.5000000000	1.6250000000	-0.1250000000	0.9160156250	1.5625000000	0.3771972656			
5	1.5000000000	1.5625000000	-0.1250000000	0.3771972656	1.5312500000	0.1216125488			
6	1.5000000000	1.5312500000	-0.1250000000	0.1216125488	1.5156250000	-0.0028038025			
7	1.5156250000	1.5312500000	-0.0028038025	0.1216125488	1.5234375000	0.0591254234			
8	1.5156250000		-0.0028038025	0.0591254234	1.5195312500	0.0280912519			
9		1.5234375000	-0.0028038025	0.0280912519	1.5175781250	0.0126263574			
_	1.5156250000	1.5195312500							
10	1.5156250000	1.5175781250	-0.0028038025	0.0126263574	1.5166015625	0.0049069384			
11	1.5156250000	1.5166015625	-0.0028038025	0.0049069384	1.5161132813	0.0010504836			
12	1.5156250000	1.5161132813	-0.0028038025	0.0010504836	1.5158691406	-0.0008769305			
13	1.5158691406	1.5161132813	-0.0008769305	0.0010504836	1.5159912109	0.0000867087			
14	1.5158691406	1.5159912109	-0.0008769305	0.0000867087	1.5159301758	-0.0003951278			
15	1.5159301758	1.5159912109	-0.0003951278	0.0000867087	1.5159606934	-0.0001542138			
16	1.5159606934	1.5159912109	-0.0001542138	0.0000867087	1.5159759521	-0.0000337536			
17	1.5159759521	1.5159912109	-0.0000337536	0.0000867087	1.5159835815	0.0000264773			
18	1.5159759521	1.5159835815	-0.0000337536	0.0000264773	1.5159797668	-0.0000036382			
19	1.5159797668	1.5159835815	-0.0000036382	0.0000264773	1.5159816742	0.0000114195			
20	1.5159797668	1.5159816742	-0.0000036382	0.0000114195	1.5159807205	0.0000038907			
21	1.5159797668	1.5159807205	-0.0000036382	0.0000038907	1.5159802437	0.0000001262			
22	1.5159797668	1.5159802437	-0.0000036382	0.0000001262	1.5159800053	-0.0000017560			
23	1.5159800053	1.5159802437	-0.0000017560	0.0000001262	1.5159801245	-0.0000008149			
24	1.5159801245	1.5159802437	-0.0000008149	0.0000001262	1.5159801841	-0.0000003443			
25	1.5159801841	1.5159802437	-0.0000003443	0.0000001262	1.5159802139	-0.0000001090			
26	1.5159802139	1.5159802437	-0.0000001090	0.0000001262	1.5159802288	0.0000000086			
27	1.5159802139	1.5159802288	-0.0000001090	0.0000000086	1.5159802213	-0.0000000502			
28	1.5159802213	1.5159802288	-0.0000000502	0.0000000086	1.5159802251	-0.0000000208			
29	1.5159802251	1.5159802288	-0.0000000208	0.0000000086	1.5159802269	-0.0000000061			
30	1.5159802269	1.5159802288	-0.0000000061	0.0000000086	1.5159802279	0.0000000012			
31	1.5159802269	1.5159802279	-0.0000000061	0.0000000012	1.5159802274	-0.0000000024			
32	1.5159802274	1.5159802279	-0.0000000024	0.0000000012	1.5159802276	-0.0000000006			
33	1.5159802276	1.5159802279	-0.0000000006	0.0000000012	1.5159802277	0.0000000003			
34	1.5159802276	1.5159802277	-0.0000000006	0.0000000003	1.5159802277	-0.0000000001			
35	1.5159802277	1.5159802277	-0.0000000001	0.0000000003	1.5159802277	0.0000000001			
36	1.5159802277	1.5159802277	-0.0000000001	0.0000000001	1.5159802277	-0.0000000000			
37	1.5159802277	1.5159802277	-0.0000000000	0.0000000001	1.5159802277	0.0000000000			
38	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
39	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
40	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
41	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
42	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
43	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
44	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
45	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
46	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
47	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
48	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
49	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
50	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
51	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
52	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	0.0000000000			
53	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
54	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
55	1.5159802277	1.5159802277	-0.0000000000	0.0000000000	1.5159802277	-0.0000000000			
the approximate root is 1.515980227692820500									

Task 2: Newton's Method

Code used:

```
#include<stdio.h>
#include<math.h>
//Newton's Method
//Qasid Ahmed Aleem
//24 January
//for x^3 - x -5
double func_f(double f);
double deri f(double f);
double x_func(double f);
int main()
     double x=1.5, xn=0;
     int i,z;
     printf("how many iterations do you want(at least 10): ");
     scanf("%d",&z);
     printf("\tcounter\t X\t f(x)\t f(x)\t x\"\n");
     for(i=0;i<z;i+=1)</pre>
         xn=x_func(x);
         printf("\t%d\t%.10f\t%.10f\t%.10f\t%.10f\t%.10f\n",
         i+1,x,func_f(x),deri_f(x),xn);
         x=xn;
     printf("\nThe approximate root is %.18f",x);
     return 0;
 double func_f(double f)
     return ((pow(f,3)) + f -5); //x^3-x-5
 double deri_f(double f)
     return ((3*pow(f,2))+1); //3x^2+1
 double x_func(double f)
     return f-(func_f(f)/deri_f(f)); //x - f(x)/f'(x)
```

Result:

how many iterations do you want(atleast 10): 20								
counter	X	f(x)	f'(x)	х"				
1	1.5000000000	-0.1250000000	7.7500000000	1.5161290323				
2	1.5161290323	0.0011748515	7.8959417274	1.5159802404				
3	1.5159802404	0.0000001007	7.8945882683	1.5159802277				
4	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
5	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
6	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
7	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
8	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
9	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
10	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
11	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
12	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
13	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
14	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
15	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
16	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
17	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
18	1.5159802277	0.0000000000	7.8945881523	1.5159802277				
19	1.5159802277	-0.0000000000	7.8945881523	1.5159802277				
20	1.5159802277	0.0000000000	7.8945881523	1.5159802277				

The approximate root is 1.515980227692820500