(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-187842 (P2000-187842A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G11B 7/0045 7/125

G 1 1 B 7/00

631A 5D090

7/125

5 C 5D119

審査請求 未請求 請求項の数14 OL (全 17 頁)

(21)出願番号

特願平10-362028

(22)出願日

平成10年12月21日(1998, 12, 21)

(71)出願人 000204284

太陽誘電株式会社

東京都台東区上野6丁目16番20号

(72)発明者 砂川 隆一

東京都台東区上野6丁目16番20号 太陽誘

電株式会社内

(74)代理人 100069981

弁理士 吉田 精孝 (外1名)

Fターム(参考) 5D090 BB04 CC01 CC07 CC18 DD03

DD05 EE02 FF21 HH01 JJ12

KK03 KK12 KK14

5D119 AA24 BB03 DA01 DA09 EC43

FA02 HA19 HA27 HA45

(54) 【発明の名称】 光情報記録方法及びその装置

(57)【要約】

【課題】 高出力レーザを設けることなく高速記録を可能にする光情報記録方法及びその装置を提供する。

【解決手段】 情報の記録時において、光ディスク等の 光情報記録媒体に対するレーザ光射出手段の相対速度

(例えば、線速度)が大きくなるに従って、ピットを形成しない期間にレーザ光射出手段から射出するレーザ光の強度を大きく設定する。これにより、線速度が大きくなっても媒体に十分な予熱を与えることができ、ピット形成期間のレーザ光強度を極度に増加することなくピットを形成することができる。

【特許請求の範囲】

【請求項1】 記録対象の情報に対応すると共にピット形成可能な第1強度のレーザ光を照射する期間を表す第1の信号レベルと前記ピット形成には至らない第1強度よりも低い第2強度のレーザ光を照射する期間を表す第2の信号レベルとを有するディジタル信号に基づき、光情報記録媒体に対して相対的に移動するレーザ光射出手段からパルス状のレーザ光を前記光情報記録媒体に照射して熱エネルギー与えることにより複数種の長さのピットとランドを形成する光情報記録方法において、

前記光情報記録媒体に対する前記レーザ光射出手段の相対速度が大きくなるにしたがって前記第2の信号レベル時にレーザ光射出手段から射出するレーザ光の第2強度を大きく設定することを特徴とする光情報記録方法。

【請求項2】 形成対象となるランドの長さが大きくなるほど該ランド形成時におけるレーザ光の第2強度を大きく設定することを特徴とする請求項1記載の光情報記録方法。

【請求項3】 前記光情報記録媒体と前記レーザ光射出 手段との間の相対速度と該相対速度に対応した前記第1 強度の初期値及び前記第2強度の初期値とを関連づけた 光強度初期値情報を予め求めておき、

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度及び第2強度の初期値を選択し、

該選択した第1強度及び第2強度の初期値を用いて前記 光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行うことにより前記第1強度及び第2強度を 決定し、該決定した第1強度及び第2強度を用いて情報 の記録を行うことを特徴とする請求項1記載の光情報記録方法。

【請求項4】 前記光情報記録媒体と前記レーザ光射出 手段との間の相対速度と該相対速度に対応した前記第1 強度の初期値とを関連づけた光強度初期値情報を予め求 めておき、

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度の初期値を選択し、

該選択した第1強度の初期値を用いると共に、前記第2 強度として記録情報を再生するために必要な光強度を用いて、前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い前記第1強度を決定した後、該第1強度を用いると共に、該第1強度の5%から15%程度の光強度を前記第2強度として用い、再び前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行うことにより第2強度を決定し、前記決定した第1強度及び第2強度を用いて情報の記録を行うことを特徴とする請求項1又は2記載の光情報記録方法。

【請求項5】 前記光情報記録媒体と前記レーザ光射出 手段との間の相対速度と該相対速度に対応した前記第1 強度の初期値とを関連づけた光強度初期値情報を予め求めておき。

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度の初期値を選択し、

該選択した第1強度の初期値を用いると共に、前記第2 強度として記録情報を再生するために必要な光強度を用いて、前記光情報記録媒体への試験情報の記録及び記録 した試験情報の再生を行い前記第1強度の概略値を決定 した後、

該第1強度の概略値を用いると共に、該第1強度の概略値の5%から15%程度の光強度を前記第2強度として用い、再び前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行うことにより第1強度と第2強度を決定し、前記決定した第1強度及び第2強度を用いて情報の記録を行うことを特徴とする請求項1又は2記載の光情報記録方法。

【請求項6】 前記光情報記録媒体の種別毎に前記光強度初期値情報を求めておき、情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報を選択して用いることを特徴とする請求項3乃至5の何れかに記載の光情報記録方法。

【請求項7】 前記光情報記録媒体の種別毎に、前記光情報記録媒体と前記レーザ光射出手段との間の相対速度に対応した前記ディジタル信号の補正形態を含む光強度初期値情報を予め求めておき、

情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報を選択して用いると共に、該選択した光強度初期値情報によって規定されるディジタル信号の補正形態に対応して前記ディジタル信号を補正した補正ディジタル信号を用いて情報の記録を行うことを特徴とする請求項3乃至5の何れかに記載の光情報記録方法。

【請求項8】 記録対象の情報に対応すると共にピットを形成できる第1強度のレーザ光を照射する期間を表す第1の信号レベルと前記ピット形成には至らない第1強度よりも低い第2強度のレーザ光を照射する期間を表す第2の信号レベルとを有するディジタル信号に基づき、光情報記録媒体に対して相対的に移動するレーザ光射出手段からパルス状のレーザ光を前記光情報記録媒体に照射して熱エネルギー与えることにより複数種の長さのピットとランドを形成する光情報記録装置において、

前記光情報記録媒体に対する前記レーザ光射出手段の相 対速度が大きくなるにしたがって前記第2の信号レベル 時にレーザ光射出手段から射出するレーザ光の第2強度 を大きく設定する第2強度設定手段を備えたことを特徴 とする光情報記録装置。

【請求項9】 前記第2強度設定手段は、形成対象となるランドの長さが大きくなるほど該ランド形成時におけるレーザ光の第2強度を大きく設定する手段を備えていることを特徴とする請求項8記載の光情報記録装置。

【請求項10】 前記第2強度設定手段は、前記光情報記録媒体と前記レーザ光射出手段との間の相対速度と該相対速度に対応した前記第1強度の初期値及び前記第2強度の初期値を関連づけた光強度初期値情報が記憶されている初期値情報記憶手段と、

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度及び第2強度の初期値を選択する初期値選択手 段と、

前記光情報記録媒体への情報記録開始時に、前記初期値 選択手段によって選択された第1強度及び第2強度の初 期値を用いて前記光情報記録媒体への試験情報の記録及 び記録した試験情報の再生を行い、前記第1強度及び第 2強度を決定する最適光強度決定手段と、

該最適光強度決定手段によって決定された第1強度及び 第2強度を前記レーザ光射出手段に設定する強度設定手 段とからなることを特徴とする請求項8記載の光情報記 録装置。

【請求項11】 前記第2強度設定手段は、前記光情報 記録媒体と前記レーザ光射出手段との間の相対速度と該 相対速度に対応した前記第1強度の初期値を関連づけた 光強度初期値情報が記憶されている初期値情報記憶手段 と

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度の初期値を選択する初期値選択手段と、

前記光情報記録媒体への情報記録開始時に、前記初期値 選択手段によって選択された第1強度の初期値と、記録 情報を再生するために必要な光強度を前記第2強度とし て用いて、前記光情報記録媒体への試験情報の記録及び 記録した試験情報の再生を行い前記第1強度を決定する 第1強度決定手段と、

該第1強度決定手段によって決定された第1強度を用いると共に、該第1強度の5%から15%程度の光強度を前記第2強度として用い、前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い第2強度を決定する第2強度決定手段と、

前記第1強度決定手段及び第2強度決定手段によって決定された第1強度及び第2強度を前記レーザ光射出手段に設定する強度設定手段とからなることを特徴とする請求項8又は9記載の光情報記録装置。

【請求項12】 前記第2強度設定手段は、前記光情報 記録媒体と前記レーザ光射出手段との間の相対速度と該 相対速度に対応した前記第1強度の初期値を関連づけた 光強度初期値情報が記憶されている初期値情報記憶手段 と、

前記光情報記録媒体への情報記録開始時に、前記光強度 初期値情報に基づいて情報記録時の相対速度に対応した 第1強度の初期値を選択する初期値選択手段と、

前記光情報記録媒体への情報記録開始時に、前記初期値

選択手段によって選択された第1強度の初期値と、記録情報を再生するために必要な光強度を前記第2強度として用いて、前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い前記第1強度の概略値を決定する概略値決定手段と、

該概略値決定手段によって決定された第1強度の概略値を用いると共に、該第1強度の概略値の5%から15%程度の光強度を前記第2強度として用い、前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い第1強度と第2強度を決定する強度決定手段と、該強度決定手段によって決定された第1強度及び第2強度を前記レーザ光射出手段に設定する強度設定手段とからなることを特徴とする請求項8又は9記載の光情報記録装置。

【請求項13】 前記初期値情報記憶手段には前記光情報記録媒体の種別に対応した複数の光強度初期値情報が記憶されていると共に、

情報記録対象となる光情報記録媒体の種別に対応した光 強度初期値情報を前記初期値情報記憶手段に記憶されて いる複数の光強度初期値情報から選択する初期値情報選 択手段を備え、

前記初期値選択手段は、前記初期値情報選択手段によって選択された光強度初期値情報に基づいて初期値を選択することを特徴とする請求項10乃至12の何れかに記載の光情報記録装置。

【請求項14】 前記初期値情報選択手段には、前記光情報記録媒体と前記レーザ光射出手段との間の相対速度に対応した前記ディジタル信号の補正形態を含む光強度初期値情報が前記光情報記録媒体の種別に対応して複数記憶されていると共に、

情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報を前記初期値情報記憶手段に記憶されている複数の光強度初期値情報から選択する初期値情報選択手段と、

該初期値情報選択手段によって選択された光強度初期値 情報によって規定されるディジタル信号の補正形態を用 いて前記ディジタル信号を補正した補正ディジタル信号 を生成する補正ディジタル信号生成手段とを備え、

前記初期値選択手段は、前記初期値情報選択手段によっ て選択された光強度初期値情報に基づいて初期値を選択 1.

前記レーザ光射出手段は前記補正ディジタル信号に対応 してレーザ光を射出することを特徴とする請求項10万 至12の何れかに記載の光情報記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報の高速記録に 対応可能な光情報記録方法及びその装置に関するもので ある。

[0002]

【従来の技術】従来、光情報記録媒体、例えば追記型光ディスク(CD-R)等の光ディスクに大容量の情報を記録する技術が用いられ、近年においては2~6倍速或いはさらに早い記録速度で情報を記録する技術が一般に普及してきた。

【0003】光ディスクに情報を記録する際には、記録対象の情報をディジタル化したディジタル信号に基づいて、回転している光ディスクにパルス状のレーザ光を照射してピットを形成している。

【0004】記録対象の情報をディジタル化したディジタル信号を用いて光ディスク上にピットをピットを形成するときは、例えばディジタル信号のハイレベルの期間に光ディスクに照射するレーザ光の強度を高強度にし、このレーザ光エネルギーによって記録層の状態を変化させてピットを形成している。また、ローレベルの期間にはトラッキングを行うために必要な低い光強度のレーザ光を照射している。

【0005】一方、光ディスクの回転速度を増加し、これに対応させてディジタル信号の周期を早めることにより高速記録が可能になる。

[0006]

【発明が解決しようとする課題】しかしながら、色素系の追記型光ディスクにおいては、レーザ光を照射して与えた熱によって光ディスク上の記録層にピットを形成しているため、高速情報記録を行う場合にレーザの光強度が不足してピットの形成が不十分であったり、ピットを形成できないことがあった。

【0007】即ち、光ディスクへの情報記録時には、図2に示すように、ディジタル信号101に対応して光ディスクに照射されるレーザ光強度が変化される。例えば、光ディスクに照射されるレーザ光強度102がディジタル信号101のハイレベル(H)の期間に高強度設定されると、光ディスク上に与えられた熱エネルギー103は徐々に大きくなっていきレーザ光強度が低強度にされた後に徐々に低下し、記録層の状態を変化できる温度以上になったときにピット104が形成される。

【0008】また、ピット104を形成するときに、ピット104の周縁部には余熱が伝達され、この余熱は次のピットが形成される媒体(記録層)部分の予熱となる。

【0009】しかし、光ディスクの回転数が高速になるに従って、即ち光ディスクとレーザ光射出手段との間の相対速度が大きくなるに従って、図3に示すように、レーザ光照射によって光ディスク上に与えられる熱エネルギー103'による余熱が小さくなる。このため、ピット104'の形成が不完全になったり、レーザ光強度を極度に増加しなくてはピットを形成することができなかった。さらに、レーザ光強度を高めるためには高出力レーザを備える必要があり、コスト高を招いていた。

【0010】本発明の目的は上記の問題点に鑑み、高出

カレーザを散けることなく高速記録を可能にする光情報 記録方法及びその装置を提供することにある。

[0011]

【課題を解決するための手段】本発明は上記の目的を達成するために請求項1では、記録対象の情報に対応すると共にピット形成可能な第1強度のレーザ光を照射する期間を表す第1の信号レベルと前記ピット形成には至らない第1強度よりも低い第2強度のレーザ光を照射する期間を表す第2の信号レベルとを有するディジタル信号に基づき、光情報記録媒体に対して相対的に移動するレーザ光射出手段からパルス状のレーザ光を前記光情報記録媒体に照射して熱エネルギー与えることにより複数種の長さのピットとランドを形成する光情報記録方法において、前記光情報記録媒体に対する前記レーザ光射出手段の相対速度が大きくなるにしたがって前記第2の信号レベル時にレーザ光射出手段から射出するレーザ光の第2強度を大きく設定する光情報記録方法を提案する。

【0012】該光情報記録方法によれば、図1に示すように、前記ディジタル信号が第2の信号レベル(例えば、ローレベルL)のときに前記光情報記録媒体に照射するレーザ光強度(第2強度)を前記相対速度が大きくなるに従って増加することにより、前記相対速度が変化しても前記光情報記録媒体に十分な予熱を与えることができる。

【0013】これにより、前記第1強度を極度に増加することなくピットを形成することができる。即ち、前記第1強度のレーザ光によって光情報記録媒体にピットを形成するときに、ピットの周縁部には余熱が伝達される。この余熱は次のピットが形成される媒体部分の予熱となる。

【0014】しかし、前記第2強度を従来通りの低強度とした場合、光情報記録媒体とレーザ光射出手段との間の相対速度が大きくなるに従って、前記第1強度のレーザ光照射によってピット周縁部に与えられる余熱が小さくなる。このため、ピットの形成が不完全になったり、前記第1強度を極度に増加しなくてはピットを形成することができない。しかし、ピットとピットとの間における前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与えることにより上記課題が解決される。

【0015】また、請求項2では、請求項1記載の光情報記録方法において、形成対象となるランドの長さが大きくなるほど該ランド形成時におけるレーザ光の第2強度を大きく設定する光情報記録方法を提案する。

【0016】該光情報記録方法によれば、情報記録時においてピット間に形成するランドの長さが大きくなるほど前記第2強度を大きく設定することにより、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができる。

【0017】また、請求項3では、請求項1記載の光情

報記録方法において、前記光情報記録媒体と前記レーザ 光射出手段との間の相対速度と該相対速度に対応した前 記第1強度の初期値及び前記第2強度の初期値を関連づ けた光強度初期値情報を予め求めておき、前記光情報記 録媒体への情報記録開始時に、前記光強度初期値情報に 基づいて情報記録時の相対速度に対応した第1強度及び 第2強度の初期値を選択し、該選択した第1強度及び第 2強度の初期値を選択し、該選択した第1強度及び第 2強度の初期値を開いて前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行うことにより 前記第1強度及び第2強度を決定し、該決定した第1強 度及び第2強度を用いて情報の記録を行う光情報記録方 法を提案する。

【0018】該光情報記録方法によれば、光情報記録媒体とレーザ光射出手段との間の相対速度と該相対速度に対応した前記第1強度の初期値及び前記第2強度の初期値を関連づけた光強度初期値情報を予め求めておく。これにより、実際の情報記録時に行う記録レーザ光強度の調整時間短縮を図っている。実際に情報の記録を行う際には、光情報記録媒体への情報記録開始時に前記記録レーザ光強度の調整を行う。

【0019】即ち、前記光強度初期値情報に基づいて情報記録時の相対速度に対応した第1強度及び第2強度の初期値を選択し、該選択した第1強度及び第2強度の初期値を用いて前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い、再生した情報が記録対象情報に一致するように第1強度及び第2強度を決定する。

【0020】こうして決定した第1強度及び第2強度を用いて情報の記録を行うことにより、前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与え、適切なピットを形成することができる。

【0021】また、請求項4では、請求項1又は2記載 の光情報記録方法において、前記光情報記録媒体と前記 レーザ光射出手段との間の相対速度と該相対速度に対応 した前記第1強度の初期値とを関連づけた光強度初期値 情報を予め求めておき、前記光情報記録媒体への情報記 録開始時に、前記光強度初期値情報に基づいて情報記録 時の相対速度に対応した第1強度の初期値を選択し、該 選択した第1強度の初期値を用いると共に、前記第2強 度として記録情報を再生するために必要な光強度を用い て、前記光情報記録媒体への試験情報の記録及び記録し た試験情報の再生を行い前記第1強度を決定した後、該 第1強度を用いると共に、該第1強度の5%から15% 程度の光強度を前記第2強度として用い、再び前記光情 報記録媒体への試験情報の記録及び記録した試験情報の 再生を行うことにより第2強度を決定し、前記決定した 第1強度及び第2強度を用いて情報の記録を行う光情報 記録方法を提案する。

【0022】該光情報記録方法によれば、光情報記録媒体とレーザ光射出手段との間の相対速度と該相対速度に

対応した前記第1強度の初期値の初期値を関連づけた光 強度初期値情報を予め求めておく。これにより、実際の 情報記録時に行う記録レーザ光強度の調整時間短縮を図 っている。実際に情報の記録を行う際には、光情報記録 媒体への情報記録開始時に前記記録レーザ光強度の調整 を行う。

【0023】即ち、前記光強度初期値情報に基づいて情報記録時の相対速度に対応した第1強度の初期値を選択し、該選択した第1強度の初期値と記録情報を再生するために必要な第2強度を用いて前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い、再生した情報が記録対象情報にほぼ一致するように前記第1強度を決定する。

【0024】この後、前記決定した第1強度を用いると共に、該第1強度の5%から15%程度の光強度を前記第2強度として用い、再び前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い、再生した情報が記録対象情報に一致するように第2強度を決定する。

【0025】こうして決定した第1強度及び第2強度を用いて情報の記録を行うことにより、前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与え、適切なピットを形成することができる。

【0026】さらに、前記第2強度を決定する際にランドの長さが大きくなるほど第2強度を大きく設定することにより、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができる。

【0027】また、請求項5では、請求項1又は2記載 の光情報記録方法において、前記光情報記録媒体と前記 レーザ光射出手段との間の相対速度と該相対速度に対応 した前記第1強度の初期値とを関連づけた光強度初期値 情報を予め求めておき、前記光情報記録媒体への情報記 録開始時に、前記光強度初期値情報に基づいて情報記録 時の相対速度に対応した第1強度の初期値を選択し、該 選択した第1強度の初期値を用いると共に、前記第2強 度として記録情報を再生するために必要な光強度を用い て、前記光情報記録媒体への試験情報の記録及び記録し た試験情報の再生を行い前記第1強度の概略値を決定し た後、該第1強度の概略値を用いると共に、該第1強度 の概略値の5%から15%程度の光強度を前記第2強度 として用い、再び前記光情報記録媒体への試験情報の記 録及び記録した試験情報の再生を行うことにより第1強 度と第2強度を決定し、前記決定した第1強度及び第2 強度を用いて情報の記録を行う光情報記録方法を提案す

【0028】該光情報記録方法によれば、光情報記録媒体とレーザ光射出手段との間の相対速度と該相対速度に対応した前記第1強度の初期値の初期値を関連づけた光強度初期値情報を予め求めておく。これにより、実際の

情報記録時に行う記録レーザ光強度の調整時間短縮を図っている。実際に情報の記録を行う際には、光情報記録 媒体への情報記録開始時に前記記録レーザ光強度の調整 を行う。

【0029】即ち、前記光強度初期値情報に基づいて情報記録時の相対速度に対応した第1強度の初期値を選択し、該選択した第1強度の初期値と記録情報を再生するために必要な第2強度を用いて前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い、再生した情報が記録対象情報にほぼ一致するように前記第1強度の概略値を決定する。

【0030】この後、前記決定した第1強度の概略値を用いると共に、該第1強度の概略値の5%から15%程度の光強度を前記第2強度として用い、再び前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生を行い、再生した情報が記録対象情報に一致するように第1強度と第2強度を決定する。

【0031】こうして決定した第1強度及び第2強度を用いて情報の記録を行うことにより、前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与え、適切なピットを形成することができる。

【0032】さらに、前記第2強度を決定する際にランドの長さが大きくなるほど第2強度を大きく設定することにより、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができる。

【0033】また、請求項6では、請求項3乃至5の何れかに記載の光情報記録方法において、前記光情報記録 媒体の種別毎に前記光強度初期値情報を求めておき、情 報記録対象となる光情報記録媒体の種別に対応した光強 度初期値情報を選択して用いる光情報記録方法を提案する

【0034】該光情報記録方法によれば、前記光強度初期値情報を光情報記録媒体の種別毎に予め求めておく。 実際に情報記録を行う際には、情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報を選択して用いる。これにより、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能となる。

【0035】また、請求項7では、請求項3乃至5の何れかに記載の光情報記録方法において、前記光情報記録 媒体の種別毎に、前記光情報記録媒体と前記レーザ光射 出手段との間の相対速度に対応した前記ディジタル信号 の補正形態を含む光強度初期値情報を予め求めておき、 情報記録対象となる光情報記録媒体の種別に対応した光 強度初期値情報を選択して用いると共に、該選択した光 強度初期値情報によって規定されるディジタル信号の補 正形態に対応して前記ディジタル信号を補正した補正ディジタル信号を用いて情報の記録を行う光情報記録方法 を提案する。

【0036】該光情報記録方法によれば、前記光情報記 録媒体の種別毎に、前記光情報記録媒体と前記レーザ光 射出手段との間の相対速度に対応した前記ディジタル信 号の補正形態を含む光強度初期値情報を予め求めてお く。実際に情報記録を行う際には、情報記録対象となる 光情報記録媒体の種別に対応した光強度初期値情報を選 択して用いる。これにより、情報記録対象となる光情報 記録媒体の種別に対応した第1強度及び第2強度を短時 間で設定可能となる。さらに、前記選択した光強度初期 値情報によって規定されるディジタル信号の補正形態に 対応して前記ディジタル信号を補正した補正ディジタル 信号を用いて情報の記録を行う。これにより、情報記録 対象となる光情報記録媒体の種別に対応した補正が施さ れた前記補正ディジタル信号に基づいてレーザ光が射出 されピットが形成されるため、ピットを最適な形状に形 成することができると共に前記光情報記録媒体への情報 記録開始時に行う記録レーザ光強度の調整時間を短縮す ることができる。

【0037】また、請求項8では、記録対象の情報に対応すると共にピットを形成できる第1強度のレーザ光を照射する期間を表す第1の信号レベルと前記ピット形成には至らない第1強度よりも低い第2強度のレーザ光を照射する期間を表す第2の信号レベルとを有するディジタル信号に基づき、光情報記録媒体に対して相対的に移動するレーザ光射出手段からパルス状のレーザ光を前記光情報記録媒体に照射して熱エネルギー与えることにより複数種の長さのピットとランドを形成する光情報記録装置において、前記光情報記録媒体に対する前記レーザ光射出手段の相対速度が大きくなるにしたがって前記第2の信号レベル時にレーザ光射出手段から射出するレーザ光の第2強度を大きく設定する第2強度設定手段を備えた光情報記録装置を提案する。

【0038】該光情報記録装置によれば、前記第2強度 設定手段によって前記ディジタル信号が第2の信号レベ ルのときに前記光情報記録媒体に照射するレーザ光の第 2強度が前記相対速度が大きくなるに従って増加され る。これにより、前記相対速度が変化しても前記光情報 記録媒体に十分な予熱を与えることができ、前記第1強 度を極度に増加することなくピットを形成することができる。

【0039】即ち、前記第1強度のレーザ光によって光情報記録媒体にピットを形成するときに、ピットの周縁部には余熱が伝達される。この余熱は次のピットが形成される媒体部分の予熱となる。しかし、前記第2強度を従来通りの低強度とした場合、光情報記録媒体とレーザ光射出手段との間の相対速度が大きくなるに従って、前記第1強度のレーザ光照射によってピット周縁部に与えられる余熱が小さくなる。このため、ピットの形成が不完全になったり、前記第1強度を極度に増加しなくてはピットを形成することができない。しかし、ピットとピ

ットとの間における前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与えることにより上記課題が解決される。

【0040】また、請求項9では、請求項8記載の光情報記録装置において、前記第2強度設定手段は、形成対象となるランドの長さが大きくなるほど該ランド形成時におけるレーザ光の第2強度を大きく設定する手段を備えている光情報記録装置を提案する。

【0041】該光情報記録装置によれば、前記第2強度 設定手段によって、情報記録時においてピット間に形成 するランドの長さが大きくなるほど前記第2強度が大き く設定されるので、ランドの長さが長くなるに従って増 加する前段のピット形成時の余熱の発散分を補って光情 報記録媒体に予熱を与えることができる。

【0042】また、請求項10では、請求項8記載の光 情報記録装置において、前記第2強度設定手段は、前記 光情報記録媒体と前記レーザ光射出手段との間の相対速 度と該相対速度に対応した前記第1強度の初期値及び前 記第2強度の初期値を関連づけた光強度初期値情報が記 憶されている初期値情報記憶手段と、前記光情報記録媒 体への情報記録開始時に、前記光強度初期値情報に基づ いて情報記録時の相対速度に対応した第1強度及び第2 強度の初期値を選択する初期値選択手段と、前記光情報 記録媒体への情報記録開始時に、前記初期値選択手段に よって選択された第1強度及び第2強度の初期値を用い て前記光情報記録媒体への試験情報の記録及び記録した 試験情報の再生を行い、前記第1強度及び第2強度を決 定する最適光強度決定手段と、該最適光強度決定手段に よって決定された第1強度及び第2強度を前記レーザ光 射出手段に設定する強度設定手段とからなる光情報記録 装置を提案する。

【0043】該光情報記録装置によれば、光情報記録媒 体とレーザ光射出手段との間の相対速度と該相対速度に 対応した前記第1強度の初期値及び前記第2強度の初期 値を関連づけた光強度初期値情報を予め実験等を行って 求めておき、この光強度初期値情報が初期値情報記憶手 段に記憶されている。これにより、実際の情報記録時に 行う記録レーザ光強度の調整時間短縮が図られる。実際 に情報の記録を行う際には、光情報記録媒体への情報記 録開始時に、前記記録レーザ光強度の調整を行う。この 際、初期値選択手段によって前記光強度初期値情報に基 づいて情報記録時の相対速度に対応した第1強度及び第 2強度の初期値が選択された後、最適光強度決定手段に よって、前記選択された第1強度及び第2強度の初期値 を用いて光情報記録媒体への試験情報の記録及び記録し た試験情報の再生が行われ、再生した情報が記録対象情 報に一致するように第1強度及び第2強度が決定され る。こうして決定された第1強度及び第2強度が、強度 設定手段によってレーザ光射出手段に設定され、情報の 記録が行われる。これにより、情報記録時には前記第2

強度のレーザ光照射によって光情報記録媒体に予熱を与え、適切なピットを形成することができる。

【0044】また、請求項11では、請求項8又は9記 載の光情報記録装置において、前記第2強度設定手段 は、前記光情報記録媒体と前記レーザ光射出手段との間 の相対速度と該相対速度に対応した前記第1強度の初期 値を関連づけた光強度初期値情報が記憶されている初期 値情報記憶手段と、前記光情報記録媒体への情報記録開 始時に、前記光強度初期値情報に基づいて情報記録時の 相対速度に対応した第1強度の初期値を選択する初期値 選択手段と、前記光情報記録媒体への情報記録開始時 に、前記初期値選択手段によって選択された第1強度の 初期値と、記録情報を再生するために必要な光強度を前 記第2強度として用いて、前記光情報記錄媒体への試験 情報の記録及び記録した試験情報の再生を行い前記第1 強度を決定する第1強度決定手段と、該第1強度決定手 段によって決定された第1強度を用いると共に、該第1 強度の5%から15%程度の光強度を前記第2強度とし て用い、前記光情報記録媒体への試験情報の記録及び記 録した試験情報の再生を行い第2強度を決定する第2強 度決定手段と、前記第1強度決定手段及び第2強度決定 手段によって決定された第1強度及び第2強度を前記レ ーザ光射出手段に設定する強度設定手段とからなる光情 報記録装置を提案する。

【0045】該光情報記録装置によれば、光情報記録媒体とレーザ光射出手段との間の相対速度と該相対速度に対応した前記第1強度の初期値を関連づけた光強度初期値情報を予め実験等を行って求めておき、この光強度初期値情報が初期値情報記憶手段に記憶されている。これにより、実際の情報記録時に行う記録レーザ光強度の調整時間短縮が図られる。

【0046】実際に情報の記録を行う際には、光情報記録媒体への情報記録開始時に、前記記録レーザ光強度の調整を行う。この際、初期値選択手段によって前記光強度初期値情報に基づいて情報記録時の相対速度に対応した第1強度の初期値が選択された後、第1強度決定手段によって、前記選択された第1強度の初期値を用いて光情報記録媒体への試験情報の記録及び記録した試験情報の再生が行われ、再生した情報が記録対象情報にほぼ一致するように第1強度が決定される。

【0047】この後、第2強度決定手段によって、前記 決定した第1強度を用いると共に、該第1強度の5%か ら15%程度の光強度を第2強度として用いて再び前記 光情報記録媒体への試験情報の記録及び記録した試験情 報の再生が行われ、再生した情報が記録対象情報に一致 するように第2強度が決定される。

【0048】こうして決定された第1強度及び第2強度が、強度設定手段によってレーザ光射出手段に設定され、情報の記録が行われる。これにより、情報記録時には前記第2強度のレーザ光照射によって光情報記録媒体

に予熱を与え、適切なピットを形成することができる。 【0049】さらに、前記第2強度を決定する際にランドの長さが大きくなるほど第2強度を大きく設定することにより、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができる。

【0050】また、請求項12では、請求項8又は9記 載の光情報記録装置において、前記第2強度設定手段 は、前記光情報記録媒体と前記レーザ光射出手段との間 の相対速度と該相対速度に対応した前記第1強度の初期 値を関連づけた光強度初期値情報が記憶されている初期 値情報記憶手段と、前記光情報記録媒体への情報記録開 始時に、前記光強度初期値情報に基づいて情報記録時の 相対速度に対応した第1強度の初期値を選択する初期値 選択手段と、前記光情報記録媒体への情報記録開始時 に、前記初期値選択手段によって選択された第1強度の 初期値と、記録情報を再生するために必要な光強度を前 記第2強度として用いて、前記光情報記録媒体への試験 情報の記録及び記録した試験情報の再生を行い前記第1 強度の概略値を決定する概略値決定手段と、該概略値決 定手段によって決定された第1強度の概略値を用いると 共に、該第1強度の概略値の5%から15%程度の光強 度を前記第2強度として用い、前記光情報記録媒体への 試験情報の記録及び記録した試験情報の再生を行い第1 強度と第2強度を決定する強度決定手段と、該強度決定 手段によって決定された第1強度及び第2強度を前記レ ーザ光射出手段に設定する強度設定手段とからなる光情 報記録装置を提案する。

【0051】該光情報記録装置によれば、光情報記録媒体とレーザ光射出手段との間の相対速度と該相対速度に対応した前記第1強度の初期値を関連づけた光強度初期値情報を予め実験等を行って求めておき、この光強度初期値情報が初期値情報記憶手段に記憶されている。これにより、実際の情報記録時に行う記録レーザ光強度の調整時間短縮が図られる。

【0052】実際に情報の記録を行う際には、光情報記録媒体への情報記録開始時に、前記記録レーザ光強度の調整を行う。この際、初期値選択手段によって前記光強度初期値情報に基づいて情報記録時の相対速度に対応した第1強度の初期値が選択された後、概略値決定手段によって、前記選択された第1強度の初期値を用いて光情報記録媒体への試験情報の記録及び記録した試験情報の再生が行われ、再生した情報が記録対象情報にほぼ一致するように第1強度の概略値が決定される。

【0053】この後、強度決定手段によって、前記決定した第1強度の概略値を用いると共に、該第1強度の概略値の5%から15%程度の光強度を第2強度として用いて再び前記光情報記録媒体への試験情報の記録及び記録した試験情報の再生が行われ、再生した情報が記録対象情報に一致するように第1強度と第2強度が決定され

る。

る。

【0054】こうして決定された第1強度及び第2強度が、強度設定手段によってレーザ光射出手段に設定され、情報の記録が行われる。これにより、情報記録時には前記第2強度のレーザ光照射によって光情報記録媒体に予熱を与え、適切なピットを形成することができる。【0055】さらに、前記強度決定手段によって第2強度を決定する際に、ランドの長さが大きくなるほど第2強度を大きく設定することにより、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散

分を補って光情報記録媒体に予熱を与えることができ

【0056】また、請求項13では、請求項10万至12の何れかに記載の光情報記録装置において、前記初期値情報記憶手段には前記光情報記録媒体の種別に対応した複数の光強度初期値情報が記憶されていると共に、情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報を前記初期値情報記憶手段に記憶されている複数の光強度初期値情報から選択する初期値情報選択手段を備え、前記初期値選択手段は、前記初期値情報選択手段によって選択された光強度初期値情報に基づいて初期値を選択する光情報記録装置を提案する。

【0057】該光情報記録装置によれば、前記光強度初期値情報を光情報記録媒体の種別毎に予め実験等を行って求めておき、これら複数の光強度初期値情報が初期値情報記憶手段に記憶されている。実際に情報記録を行う際には、情報記録対象となる光情報記録媒体の種別に対応した光強度初期値情報が選択されて用いられる。これにより、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能となる。

【0058】また、請求項14では、請求項10乃至1 1の何れかに記載の光情報記録装置において、前記初期 値情報選択手段には、前記光情報記録媒体と前記レーザ 光射出手段との間の相対速度に対応した前記ディジタル 信号の補正形態を含む光強度初期値情報が前記光情報記 録媒体の種別に対応して複数記憶されていると共に、情 報記録対象となる光情報記録媒体の種別に対応した光強 度初期値情報を前記初期値情報記憶手段に記憶されてい る複数の光強度初期値情報から選択する初期値情報選択 手段と、該初期値情報選択手段によって選択された光強 度初期値情報によって規定されるディジタル信号の補正 形態を用いて前記ディジタル信号を補正した補正ディジ タル信号を生成する補正ディジタル信号生成手段とを備 え、前記初期値選択手段は、前記初期値情報選択手段に よって選択された光強度初期値情報に基づいて初期値を 選択し、前記レーザ光射出手段は前記補正ディジタル信 号に対応してレーザ光を射出する光情報記録装置を提案

【0059】該光情報記録装置によれば、前記光情報記

射出手段との間の相対速度に対応した前記ディジタル信 号の補正形態を含む光強度初期値情報を予め実験等を行 って求めておき、これら複数の光強度初期値情報が初期 値情報記憶手段に記憶されている。 実際に情報記録を行 う際には、情報記録対象となる光情報記録媒体の種別に 対応した光強度初期値情報が選択されて用いられる。こ れにより、情報記録対象となる光情報記録媒体の種別に 対応した第1強度及び第2強度を短時間で設定可能とな る。さらに、補正ディジタル信号生成手段により、前記 選択した光強度初期値情報によって規定されるディジタ ル信号の補正形態に基づいて前記ディジタル信号が補正 され、補正ディジタル信号が生成される。これにより、 情報記録対象となる光情報記録媒体の種別に対応した補 正が施された前記補正ディジタル信号に基づいてレーザ 光射出手段によってレーザ光が射出されピットが形成さ れるため、ピットを最適な形状に形成することができる と共に前記光情報記録媒体への情報記録開始時に行う記 録レーザ光強度の調整時間を短縮することができる。

[0060]

【発明の実施の形態】以下、図面に基づいて本発明の一 実施形態を説明する。

【0061】図4は、本発明の第1の実施形態における 光情報記録装置を示す電気系回路のブロック図である。 図において、1は一般にCD-Rと称されている色素系 **追記型の光ディスク、2は光情報記録装置である。**

【0062】光情報記録装置2は、光ピックアップ2 1、ウォブル検出回路22、ATIPデコーダ23、記 憶部24、CPUを主体とする中央制御部25、ストラ テジジェネレータ回路26、及びLD駆動回路27等か ら構成されている。

【0063】光ディスク1には、その記録領域に予め僅 かな振幅でうねっている(蛇行している)トラックがス パイラル状に形成されている。このトラックのうねり は、一般的にウォブルと称され、ATIP(Absolute T ime In Pregroove) データと呼ばれる絶対時間情報を表 すものであり、22.05KHzを基本周波数とし、その周波数 はATIPデータの1ビットに対応する長さ(周波数4 4.1KHz の7周期分)毎にビットの内容、即ちこのビッ トが「1」であるか「0」であるかに応じて±1KHz 変化するようにFSK(Frequency Shift Keying)変調さ れている。

【0064】また、ATIPデータは、1フレームが1 定数(84ビット)のビットを含み且つ所定の位置に固 定パターンのフレーム同期信号を備えたビット列からな る多数の連続したフレームで構成され、各フレームは周 波数75Hzの周期で繰り返されている。 さらに、AT IPデータにはDISCコードが記録されており、これ によって光ディスク1の種別を判定することができる。 【0065】光ピックアップ21は、レーザダイオード

(LD) 、周知の4分割のフォトディテクタ、対物レン ズアクチュエータ等を備えたものである。さらに、光ピ ックアップ21は、例えば周知のリニアモータ方式によ るスライド送り機構(図示せず)によって、中央制御部 25の制御により光ディスク1の半径方向に移動可能に なっている。

【0066】ウォブル検出回路22は、光ピックアップ 21から出力される再生信号から上記ウォブルを検出し てウォブル信号をATIPデコーダ23に出力する。

【0067】ATIPデコーダ23は、ウォブル信号か ら上記ATIPデータを再生して中央処理部25に出力 する。

【0068】記憶部24は、半導体メモリ素子、磁気デ イスク、光ディスク等の記憶媒体及びその制御回路など から構成され、本実施形態においては、予め実験等を行 うことによって求められた光強度初期値情報が格納され ている。

【0069】この光強度初期値情報は、異なる複数のD ISCコードのそれぞれに対応して設けられている。さ らに、各光強度初期値情報には、光ディスクに対する情 報の記録速度(例えば線速度)毎に、ストラテジ情報、 記憶パワー初期値、 $oldsymbol{eta}$ 及びボトムパワー初期値が表され ている。ここで、ストラテジ情報とは、記録パルスの補 正形態を表すものであり、例えば櫛歯状パルス等の設定 に必要な情報である。また、記録パワーとは光ディスク 1への情報記録中におけるピットを形成するときのレー ザ光の強度(パワー)であり、ボトムパワーとは光ディ スク1への情報記録中におけるピットを形成しないとき のレーザ光の強度 (パワー) である。さらに、光強度初 期値情報では、上記ボトムパワー初期値は上記線速度が 増加するに従って高い値に設定されている。

【0070】尚、本願請求項における光情報記録媒体に 対するレーザ光射出手段の相対速度は、本実施形態にお いては上記線速度である。

【0071】中央処理部25は、ATIPデータから絶 対時間及びDISCコードを抽出し、DISCコードか 5光ディスクの種別を特定すると共に、このDISCコ ードに対応した光強度初期値情報を選択し、これに基づ いて記録パワー初期値、ボトムパワー初期値をLD駆動 回路27に設定する。次いで、中央処理部25は、記録 レーザパワー最適化(OPC:Optimun Power Control ,以下OPCと称する)を行う。この後、OPCによ って決定した記録パワー及びボトムパワーの値をLD駆 動回路27に設定すると共に、選択した光強度初期値情 報に基づいて記録対象情報に対応したディジタル信号 (記録信号) を生成し、この記録信号とストラテジ情報 とをストラテジジェネレータ26に出力して情報の記録 を行う。

【0072】ストラテジジェネレータ26は、中央制御 部25から指定されたストラテジ情報に基づいて記録信

号の補正を行い補正したディジタル信号(以下、補正記録信号と称する)をLD駆動回路27に出力する。

【0073】LD駆動回路27は、ストラテジジェネレータ26から入力した補正記録信号に基づいてレーザダイオードを駆動して光ディスク1にレーザ光を照射する。この際、記録パワー及びボトムパワーは中央制御部25から設定された値とする。またここでは、情報記録時においてLD駆動回路27は、補正記録信号がハイレベルのときにピットを形成可能な記録パワーのレーザ光を射出し、補正記録信号がローレベルのときにピットを形成不可能であり(即ち、ランド形成可能であり)、光ディスク1に予熱を与えるだけのボトムパワーのレーザ光を射出する。さらに、LD駆動回路27は、情報記録を行わない情報再生時においては、上記ボトムパワーよりもさらに低い光強度の、例えば0.7mW程度のレーザ光を射出する。

【0074】次に、前述の構成よりなる光情報記録装置 2の動作を図5に示すフローチャートを参照して詳細に 説明する。

【0075】記録対象情報が設定され操作者によって記録開始が指示されると、中央制御部25は、ATIPデータからDISCコードを読み取り(SA1)、このDISCコードに対応した光強度初期値情報を記憶部24内の情報から選択する(SA2)。次いで、中央制御部25は、選択した光強度初期値情報に規定されているストラテジ情報をストラテジジェネレータ26に設定する(SA3)。ここで、光強度初期値情報内には、複数の線速度毎にストラテジ情報、記憶パワー初期値、 β 及びボトムパワー初期値が規定されているので、情報記録に用いる線速度に対応して規定されているストラテジ情報を選択して設定する。これにより、光ディスク1の種別に好適なストラテジが設定される。

【0076】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定する(SA4)と共に、上記選択した光強度初期値情報内に、情報記録に用いる線速度に対応して規定されている記録パワー初期値とボトムパワー初期値をLD駆動回路27に設定して(SA5)、OPCを実行する(SA6)。

【0077】OPCは光ディスク1のパワーキャリブレーションエリア(PCA: Power Calibration Area,以下、PCAと称する)に所定の情報を記録すると共に、記録した情報を再生することによって行う。PCAはテストエリアとカウントエリアに分けられ、それぞれ100個のパーティションに分けられている。テストエリアの1パーティションは15フレームで構成され、1回の試し書きにおいて1パーティションが使用される。本実施形態では、追記型光ディスクの規格書であるオレンジブックに記載されているように、15フレームの間で、15段階のレーザパワーで試し書きを行い、その中で最

も記録状態の良かったレーザパワーを選択して以降の情 報記録を行っている。

【0078】次いで、中央制御部25は、OPCの結果に基づいて記録パワーとボトムパワーを決定し(SA7)、これらをLD駆動回路27に設定する(SA8)。

【0079】この後、中央制御部25は、記録対象情報に対してEFM変調等を施してディジタル信号(記録信号)を生成し(SA9)、このディジタル信号をストラテジジェネレータ26に出力することにより情報記録を行う(SA10)。

【0080】これにより、記録パワーを極度に増加することなくピットを形成することができる。即ち、記録パワーのレーザ光によって光ディスク1にピットを形成するときに、ピットの周縁部には余熱が伝達され、この余熱は次のピットが形成される媒体部分の予熱となる。しかし、ボトムパワーを従来通りの低強度として、線速を大きくし高速記録をた場合、図6に示すように、光ディスク1と光ピックアップ21との間の相対速度(線速度)が大きくなるに従って、記録パワーのレーザ光スポットの中心温度が低下する。このため、ピット周縁部に与えられる余熱が小さくなり、ピット形成の遅れが大きくなったり、ピットの形成が不完全になったりする。

【0081】しかし、本実施形態では、図7に示すように、ピットとピットとの間におけるボトムパワーを大きく設定したレーザ光を照射しているので、光ディスク1に予熱を与えることができる。

【0082】従って、本実施形態では、ストラテジジェネレータ26が出力する補正記録信号(ディジタル信号)がローレベルのときに光ディスク1に照射するレーザ光強度(ボトムパワー=第2強度)を線速度が大きくなるに従って増加し、大きな値に設定しているので、線速度を速めて2倍~6倍速等の高速で情報記録を行っても、光ディスク1に対してピット形成に十分な予熱を与えることができる。これにより、ピット形成時のレーザ光強度(記録パワー=第1強度)を極度に増加することなくピットを形成することができる。

【0083】また、上記光強度初期値情報を予め求めてこれを記憶部24に蓄積し、情報記録開始時に使用しているので、実際の情報記録開始時に行う記録レーザ光強度の調整時間の短縮を図ることができる。

【0084】また、上記光強度初期値情報を光ディスク 1の種別毎に記憶部24に蓄積してあるので、情報記録 対象となる光ディスクが変わっても、光ディスクの種別 に対応した第1強度及び第2強度を短時間で設定するこ とができる。

【0085】さらに、ストラテジジェネレータ26によって、光ディスク1の種別に応じてディジタル信号を補正しているので、ピットを最適な形状に形成することが

できると共に、これによっても記録レーザ光強度の調整 時間を短縮することができる。

Ti 🛎

【0086】次に、本発明の第2の実施形態を説明する。

【0087】第2の実施形態における光情報記録装置の構成は、図4に示した第1の実施形態の装置構成と同じである。また、第1の実施形態と第2の実施形態との相違点は、光強度初期値情報に前記ボトムパワーの初期値を設定していない点である。

【0088】即ち、第2の実施形態では、異なる複数の DISCコードのそれぞれに対応して光強度初期値情報 が記憶部24に格納されている。

【0089】各光強度初期値情報には、光ディスクに対する情報の記録速度(例えば線速度)毎に、ストラテジ、記録パワー初期値、β、ボトムパワー比率が表されている。ここで、ボトムパワー比率とは、光ディスク1への情報記録中におけるピットを形成するときのレーザ光の強度(記録パワー)に対するピットを形成しないとき(ランドを形成するとき)のレーザ光の強度(ボトムパワー)の比率である。さらに、光強度初期値情報では、上記ボトムパワー比率は、実験によって最も好ましい範囲であると結論された5%~15%の範囲の値に設定されると共に、上記線速度が増加するに従って高い値に設定されている。

【0090】また、情報記録開始時の第1回OPCではボトムパワーの値として任意の値を使用し、第1回OPCによって求まった最適記録パワーにボトムパワー比率を乗した値をボトムパワーとして用いて第2回OPCを行い、ボトムパワーを決定している。

【0091】次に、記録パワー及びボトムパワーの決定の詳細並びに情報記録動作について図8のフローチャートを参照して説明する。

【0092】記録対象情報が設定され操作者によって記録開始が指示されると、中央制御部25は、ATIPデータからDISCコードを読み取り(SB1)、このDISCコードに対応した光強度初期値情報を記憶部24内の情報から選択する(SB2)。

【0093】次いで、中央制御部25は、選択した光強度初期値情報内に、情報記録に用いる線速度に対応してに規定されているストラテジ情報をストラデジジェネレータ26に設定する(SB3)。これにより、光ディスク1の種別に好適なストラテジが設定される。

【0094】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定する(SB4)と共に、上記選択した光強度初期値情報に規定されている記録パワー初期値をLD駆動回路27に設定して(SB5)、第1回OPCを実行する(SB6)。このとき、本実施形態では、ボトムパワー初期値として例えば0.7mWを設定している。

【0095】中央制御部25は、上記第1回0PCによ

って記録パワーを決定する(SB7)。

【0096】次に、中央制御部25は、光強度初期値情報に規定されているボトムパワー比率を上記決定した記録パワーに乗じてボトムパワー初期値を算出し、このボトムパワー初期値と前記決定した記録パワーをLD駆動回路27に再設定する(SB8)。

【0097】この後、中央制御部25は、OPCを行う ために使用する光ディスク1上のOPCエリアを特定し て(SB9)、第2回OPCを実行する(SB10)。

【0098】中央制御部25は、上記第2回OPCによってボトムパワーを決定する(SB11)。例えば、記録パワーの5~15%の範囲で、5%を初期値とし、5%年にボトムパワーを増加し、各段階を通じて最適なボトムパワーを求めている。

【0099】次いで、中央制御部25は、第1回及び第2回のOPCの結果に基づいて決定した記録パワーとボトムパワーをLD駆動回路27に設定する(SB12)。

【0100】この後、中央制御部25は、記録対象情報に対してEFM変調等を施してディジタル信号(記録信号)を生成し(SB13)、このディジタル信号をストラテジジェネレータ26に出力することにより情報記録を行う(SB14)。

【0101】上記第2の実施形態においても第1の実施 形態と同様の効果を得ることができる。

【0102】次に、本発明の第3の実施形態を説明する。

【0103】第3の実施形態における光情報記録装置の構成は、図4に示した第1の実施形態の装置構成と同じである。また、第2の実施形態と第3の実施形態との相違点は、2回のOPCを行いボトムパワーの決定と同時に記録パワーを決定するようにした点である。

【0104】即ち、第3の実施形態では、異なる複数の DISCコードのそれぞれに対応して光強度初期値情報 が記憶部24に格納されている。

【0105】各光強度初期値情報には、光ディスクに対する情報の記録速度(例えば線速度)毎に、ストラテジ、記録パワー初期値、β、ボトムパワー比率が表されている。ここで、ボトムパワー比率とは、光ディスク1への情報記録中におけるピットを形成するときのレーザ光の強度(記録パワー)に対するピットを形成しないとき(ランドを形成するとき)のレーザ光の強度(ボトムパワー)の比率である。さらに、光強度初期値情報では、上記ボトムパワー比率は、実験によって最も好ましい範囲であると結論された5%~15%の範囲の値に設定されると共に、上記線速度が増加するに従って高い値に設定されている。

【0106】また、情報記録開始時の第1回OPCではボトムパワーの値として任意の値を使用し、第1回OPCによって求まった記録パワーの概略値にボトムパワー

比率を乗した値をボトムパワーとして用いて第2回OP Cを行い、記録パワーとボトムパワーを決定している。

7: 🛎

る。

【0107】次に、記録パワー及びボトムパワーの決定の詳細並びに情報記録動作について図9のフローチャートを参照して説明する。

【0108】記録対象情報が設定され操作者によって記録開始が指示されると、中央制御部25は、ATIPデータからDISCコードを読み取り(SC1)、このDISCコードに対応した光強度初期値情報を記憶部24内の情報から選択する(SC2)。

【0109】次いで、中央制御部25は、選択した光強度初期値情報内に、情報記録に用いる線速度に対応してに規定されているストラテジ情報をストラテジジェネレータ26に設定する(SC3)。これにより、光ディスク1の種別に好適なストラテジが設定される。

【0110】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定する(SC4)と共に、上記選択した光強度初期値情報に規定されている記録パワー初期値をLD駆動回路27に設定して(SC5)、第1回OPCを実行する(SC6)。このとき、本実施形態では、ボトムパワー初期値として例えば0.7mWを設定している。

【0111】中央制御部25は、上記第1回OPCによって記録パワーの概略値を決定する(SC7)。

【0112】次に、中央制御部25は、光強度初期値情報に規定されているボトムパワー比率を上記決定した記録パワーの概略値に乗じてボトムパワー初期値を算出し、このボトムパワー初期値と前記決定した記録パワーの概略値をLD駆動回路27に再設定する(SC8)。【0113】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定して(SC9)、第2回OPCを実行する(SC10)。【0114】中央制御部25は、上記第2回OPCによって記録パワーとボトムパワーを決定する(SC11)。例えば、記録パワーの5~15%の範囲で、5%を初期値とし、5%毎にボトムパワーを増加し、各段階を通じて最適な記録パワーとボトムパワーを求めてい

【0115】次いで、中央制御部25は、第2回のOP Cの結果に基づいて決定した記録パワーとボトムパワー をLD駆動回路27に設定する(SC12)。

【0116】この後、中央制御部25は、記録対象情報に対してEFM変調等を施してディジタル信号(記録信号)を生成し(SC13)、このディジタル信号をストラテジジェネレータ26に出力することにより情報記録を行う(SC14)。

【0117】上記第3の実施形態においても第1の実施 形態と同様の効果を得ることができる。

【0118】次に、本発明の第4の実施形態を説明する。

【0119】第4の実施形態における光情報記録装置の構成は、図4に示した第1の実施形態の装置構成と同じである。また、第3の実施形態と第4の実施形態との相違点は、ボトムパワーを決定する際に、このボトムパワーにより形成対象となるランドの長さが大きくなるほどボトムパワーを大きく設定するようにした点である。

【0120】即ち、前述したようにボトムパワーを大き く設定することにより、線速度の増加に伴う余熱不足の 問題を解消した。しかし、光ディスク1への情報記録時 においてピット間に形成するランドの長さが大きくなる ほど次のピットを形成するまでの間の時間が長くなるた め、この間に光ディスク1が保持する熱量(熱エネルギ 一) が空気中に発散され、光ディスク1の保持熱量が減 少する。このように、ランドの長さの違いによって生じ る光ディスク1の保持熱量の違いを無くすため、図10 に示すように、ランドの長さが大きくなるほどボトムパ ワーを大きく設定するようにした。例えば、図10にお いては、長さが3Tのピット204の前段に存在する長 さが12Tのランド205を形成するためのボトムパワ 一BPW12は、長さが3Tのピット204の前段に存在す る長さが3Tのランド205を形成するためのボトムパ ワーBPW3よりも大きく設定される。

【0121】これにより、ランド205の長さが長くなるに従って増加する前段のピット204形成時の余熱の発散分を補って光ディスク1に予熱を与えることができ、さらに良好なピット204を形成することができる。

【0122】第4の実施形態では、異なる複数のDIS Cコードのそれぞれに対応して光強度初期値情報が記憶 部24に格納されている。

【0123】各光強度初期値情報には、光ディスクに対する情報の記録速度(例えば線速度)毎に、ストラテジ、記録パワー初期値、β、ボトムパワー比率及びボトムパワーの補正比率が表されている。

【0124】ここで、ボトムパワー比率とは、光ディスク1への情報記録中におけるピットを形成するときのレーザ光の強度(記録パワー)に対して長さが3Tのランドを形成するときのレーザ光の強度(以下、3Tボトムパワーと称する)の比率である。

【0125】さらに、光強度初期値情報では、上記ボトムパワー比率は、実験によって最も好ましい範囲であると結論された5%~15%の範囲の値に設定されると共に、上記線速度が増加するに従って高い値に設定されている。

【0126】また、ボトムパワー補正比率とは、OPC によって求めた3Tボトムパワーに対する他の長さのランド形成用のボトムパワーの比率である。ここでは、ランドの各長さ毎に設定され、長さが大きくなるほど補正比率も大きな値となる。

【0127】また、情報記録開始時の第1回OPCでは

31.)

ボトムパワーの値として任意の値を使用し、第1回OP Cによって求まった記録パワーの概略値にボトムパワー 比率を乗した値をボトムパワーとして用いて第2回OP Cを行い、記録パワーとボトムパワーを決定している。

【0128】次に、記録パワー及びボトムパワーの決定の詳細並びに情報記録動作について図11のフローチャートを参照して説明する。

【0129】記録対象情報が設定され操作者によって記録開始が指示されると、中央制御部25は、ATIPデータからDISCコードを読み取り(SD1)、このDISCコードに対応した光強度初期値情報を記憶部24内の情報から選択する(SD2)。

【0130】次いで、中央制御部25は、選択した光強度初期値情報内に、情報記録に用いる線速度に対応してに規定されているストラテジ情報をストラテジジェネレータ26に設定する(SD3)。これにより、光ディスク1の種別に好適なストラテジが設定される。

【0131】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定する(SD4)と共に、上記選択した光強度初期値情報に規定されている記録パワー初期値をLD駆動回路27に設定して(SD5)、第1回OPCを実行する(SD6)。このとき、本実施形態では、ボトムパワー初期値として例えば0.7mWを設定している。

【0132】中央制御部25は、上記第1回OPCによって記録パワーの概略値を決定する(SD7)。

【0133】次に、中央制御部25は、光強度初期値情報に規定されているボトムパワー比率を上記決定した記録パワーの概略値に乗じてボトムパワー初期値を算出し、このボトムパワー初期値と前記決定した記録パワーの概略値をLD駆動回路27に再設定する(SD8)。【0134】この後、中央制御部25は、OPCを行うために使用する光ディスク1上のOPCエリアを特定して(SD9)、第2回OPCを実行する(SD10)。【0135】中央制御部25は、上記第2回OPCによって記録パワーと3Tボトムパワーを決定する(SD11)。

【0136】ここで本実施形態では、例えば、記録パワーの5~15%の範囲で、5%を初期値とし、5%毎にボトムパワーを増加し、各段階を通じて長さが3Tのランドに続いて形成されているピットの形成状態が最適な記録パワーとボトムパワーを求め、この求めた記録パワーに決定する。さらに、ここで求まったボトムパワーを長さが3Tのランド形成用のボトムパワーBPW3(3Tボトムパワー)として決定している。

【0137】次いで、中央制御部25は、SD11の処理で決定した3Tボトムパワーに対して、前記ボトムパワー補正比率を乗じた値を算出し、他の長さのランド形成用ボトムパワーとして決定する(SD12)。

【0138】次いで、中央制御部25は、第2回のOP

Cの結果に基づいて決定した記録パワーとボトムパワーをLD駆動回路27に設定する(SD13)。

【0139】この後、中央制御部25は、記録対象情報に対してEFM変調等を施してディジタル信号(記録信号)を生成し(SD14)、このディジタル信号をストラテジジェネレータ26に出力することにより情報記録を行う(SD15)。

【0140】上記第4の実施形態においても第1の実施 形態と同様の効果を得ることができる。

【0141】尚、前述した第1乃至第4の実施形態は本願発明の一具体例であり、本願発明がこれらに限定されることはない。

[0142]

【発明の効果】以上説明したように本発明の請求項1記載の光情報記録方法によれば、光情報記録媒体とレーザ光射出手段との間の相対速度が大きくなってもピットとピットとの間における第2強度のレーザ光照射によって光情報記録媒体に予熱を与えているので、ピットの形成が不完全になることがない。さらに、前記相対速度が大きくなっても前記第1強度を極度に増加することなくピットを形成することができる。

【0143】また、請求項2記載の光情報記録方法によれば、上記の効果に加えて、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができるので、さらに良好なピットを形成することができる。

【0144】また、請求項3乃至5記載の光情報記録方法によれば、上記の効果に加えて、光強度初期値情報を使用することによって実際の情報記録開始時に行う記録レーザ光強度の調整時間短縮を図ることができると共に、前記記録レーザ光強度の調整によって前記第1強度及び第2強度を最適に設定することができる。

【0145】また、請求項6記載の光情報記録方法によれば、上記の効果に加えて、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能となる。

【0146】また、請求項7記載の光情報記録方法によれば、上記の効果に加えて、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能になると共に、光情報記録媒体の種別に応じたディジタル信号の補正によって、ピットを最適な形状に形成することができると共に光情報記録媒体への情報記録開始時に行う記録レーザ光強度の調整時間を短縮することができる。

【0147】また、請求項8記載の光情報記録装置によれば、第2強度設定手段によってディジタル信号が第2の信号レベルのときに光情報記録媒体に照射するレーザ光の第2強度が光情報記録媒体に対するレーザ光射出手段の相対速度が大きくなるに従って増加されるため、光情報記録媒体とレーザ光射出手段との間の相対速度が大

きくなってもピットとピットとの間における第2強度のレーザ光照射によって光情報記録媒体に予熱を与えているので、ピットの形成が不完全になることがない。さらに、前記相対速度が大きくなっても前記第1強度を極度に増加することなくピットを形成することができる。

【0148】また、請求項9記載の光情報記録装置によれば、上記の効果に加えて、ランドの長さが長くなるに従って増加する前段のピット形成時の余熱の発散分を補って光情報記録媒体に予熱を与えることができるので、さらに良好なピットを形成することができる。

【0149】また、請求項10乃至12記載の光情報記録装置によれば、上記の効果に加えて、光強度初期値情報を使用することによって実際の情報記録開始時に行う記録レーザ光強度の調整時間短縮を図ることができると共に、前記記録レーザ光強度の調整によって前記第1強度及び第2強度を最適に設定することができる。

【0150】また、請求項13記載の光情報記録装置によれば、上記の効果に加えて、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能となる。

【0151】また、請求項14記載の光情報記録装置によれば、上記の効果に加えて、情報記録対象となる光情報記録媒体の種別に対応した第1強度及び第2強度を短時間で設定可能になると共に、光情報記録媒体の種別に応じたディジタル信号の補正によって、ピットを最適な形状に形成することができると共に光情報記録媒体への情報記録開始時に行う記録レーザ光強度の調整時間を短

【図1】

縮することができる。

【図面の簡単な説明】

【図1】本発明の光情報記録方法の基本原理を説明する 図

【図2】従来例の光情報記録方法を説明する図

【図3】従来例における問題点を説明する図

【図4】本発明の第1の実施形態における光情報記録装置を示す電気系回路のブロック図

【図 5】本発明の第 1 の実施形態における光情報記録方法を説明するフローチャート

【図6】従来例における高速記録時のピット形成状態を 説明する図

【図7】本発明の第1の実施形態における高速記録時の ピット形成状態を説明する図

【図8】本発明の第2の実施形態における光情報記録方 法を説明するフローチャート

【図9】本発明の第3の実施形態における光情報記録方 法を説明するフローチャート

【図10】本発明の第4の実施形態における光情報記録 方法の概要を説明する図

【図11】本発明の第4の実施形態における光情報記録 方法を説明するフローチャート

【符号の説明】

1…光ディスク、2…光情報記録装置、21…光ピックアップ、22…ウォブル検出回路、23…ATIPデコーダ、24…記憶部、25…中央制御部、26…ストラテジジェネレータ、27…LD駆動回路。

【図2】

· 【図8】

3] 【図 9]

【図11】

