AUR 💂 RA

German Renewables Week

Virtual 2021

Industrial decarbonisation: The role of green power procurement and hydrogen

Kory Stycz - Senior Associate, Research and Publications Thekla von Bülow – Project Leader, Commissioned Projects

Around 40% of net zero power demand today comes from industry

Source: Aurora Energy Research

Green power procurement and hydrogen are key pillars of decarbonisation efforts

	Effects on power demand	Ease of implementation	Time frame	Impact on decarbonisation
Energy efficiency		****	Mid term	High
Green power procurement		****	Mid - long term	High
Hydrogen H ₂		****	Long term	Case specific applicability
Electrification		****	Long term	Case specific applicability
Carbon offsetting CO ₂		****	Short term	Small - None

Sources: Aurora Energy Research 3

PPAs have low market maturity in Germany

Green power procurement options	Guarantees of Origin (GoOs)	Power purchasing agreements (PPAs)	Own renewable assets
Additionality			
Market maturity	****	$\star\star\star\star\star$	****
Capital requirements	****	****	****
Price hedge	unfavourable	neutral	favourable
Capability building	****	****	****

Sources: Aurora Energy Research

Most existing PPAs in Germany are from solar PV

Technology Share PPAs in Germany

% of installed capacity

Tenor

Price clauses in Germany

Price clause	Occurrence today
Fixed price	High
Indexed	Low
Collared	Low - Medium

Strong industrial demand and corporates seeking green image suggest a strong demand for PPAs in Germany

Net industry electricity demand (2030 estimate)¹ TWh

Source: Aurora Energy Research 6

Rest of net electricity demand PPA demand potential

¹⁾ Excluding minor service and industry that could not be categorised in these segments

Corporate demand for PPAs may exceed merchant renewable supply in 2030

¹⁾ We assume that 20% of solar plants leaving the EEG between 2027 and 2030 will sign a PPA and supply of >20MW solar plants will grow to 10TWh by 2030, 20% of onshore parks leaving the EEG between 2027-2030 will sign a PPA, and that 20% of offshore capacity in 2030 (excluding zero bids from 17/18) will sign a PPA 2) Excluding minor service and industry that could not be categorised in these segments

Sources: Aurora Energy Research

Hydrogen is a promising emissions reduction pathway for hard-toabate industry sectors

Use case	Market readiness	
Steel	****	
High-Value Chemicals	****	
Ammonia	****	Industrial hydrogen demand today
Methanol	****	Total: 55 TWh
Petrochemicals	****	

Sources: Aurora Energy Research

By 2050, up to 80 TWh of hydrogen will be required annually for industrial processes

H₂ demand in 2050 will mostly be met by Steam Methane Reforming (SMR) + CCS and electrolysis

Source: Aurora Energy Research

