Relatório do EP 1 de MAC0209

Luiz Fernando de Freitas Fernandes, Adriano Elias Andrade, Francisco de Castro Leal Henriques, Davi Gonçalves Bezerra Coelho

22 de maio de 2023

Resumo

Neste exercício-programa, realizamos dois experimentos físicos, um sendo a queda livre de um celular e ou outro um pêndulo com um celular como extremidade, coletamos os dados e os comparamos com dados obtidos por simulações. Segue um link para o skit: https://youtu.be/gXTkrS3CH8E

Conteúdo

1	Introdução	3
2	Objetivos	3
3	Cronograma	3
4	Dados e métodos	3
5	Resultados experimentais	3
6	Conclusão	9

1 Introdução

Nesse EP, queríamos comparar experimentos reais com os modelos e simulações aprendidos em aula, então escolhemos realizar os experimentos de queda livre e de pêndulo, já que pareciam interessantes e fáceis de recriar e modelar.

2 Objetivos

- Conseguir modelar e simular experimentos físicos reais;
- Utilizar na prática os algoritmos e métodos de simulação vistos em aula;

3 Cronograma

4 Dados e métodos

Os dados usados foram coletados dos experimentos por meio do da utilização do aplicativo PhysicsToolbox, que registrou as leituras do acelerômetro do celular durante tais experimentos (já que o celular é que estava em queda livre e na ponta do pêndulo) e as salvou em um arquivo csv. Esse arquivo contém as aceleração do celular nas direções x, y e z e aceleração total. Baseado nesses dados, utilizamos o método de Euler para simular os experimentos e comparamos com dados obtidos analiticamente.

5 Resultados experimentais

• <u>Pêndulo</u>: primeiramente, seguem os gráficos dos dados coletados pelo celular nos experimentos:

Figura 1: $a_e(t)$ das 5 repetições em sequência

Figura 2: $a_e(t)$ das 5 repetições sobrepostas

Figura 3: $a_e(t)$ média das 5 repetições

Usando a componente z dessas leituras, convertemos a aceleração para aceleração angular e a utilizamos para realizar o método de Euler:

Figura 4: $\theta_s(t)$

Figura 5: $v_s(t)$

Figura 6: $a_s(t)$

Além disso, também há os dados obtidos analiticamente usando as mesmas condições iniciais do experimento(ângulo inicial de 90°, barbante de mesmo tamanho e gravidade na superfície da Terra $\approx -9.8m/s^2$):

Figura 7: $a_e(t)$

Figura 8: $v_e(t)$

Figura 9: $\theta_e(t)$

Comparando os gráficos, vemos que há similaridades entre eles, apesar dos gráficos gerados pelo método de Euler apresentarem irregularidades devido ao fato de serem calculados usando dados reais coletados experimentalmente.

• Queda livre: primeiramente, seguem os dados coletados pelo celular durante os experimentos:

Figura 10: $a_e(t)$ das 5 quedas em sequência

Figura 11: $a_e(t)$ das 5 quedas sobrepostas

Figura 12: Média das $a_e(t)$ das 5 quedas

Utilizamos desses dados para simular a queda usando o método de Euler (eixo x em centésimos de segundo):

Figura 13: $x_s(t)$

Figura 14: $v_s(t)$

Figura 15: $a_s(t)$

Também obtemos dados analiticamente considerando as condições iniciais dos experimentos (altura inicial de 3 metros, aceleração da gravidade na superfície da Terra $\approx -9.8m/s^2$)(como assumimos aceleração constante, não fizemos gráfico a representando)(eixo x=4*t com t em segundos):

Figura 16: $x_e(t)$

Figura 17: $v_e(t)$

Podemos perceber que em todos oss gráficos a queda tem aproximadamente a mesma duração (quase 1 segundo), seja observando o ponto no qual a posição fica nula, ou o ponto onde a velocidade para de decrescer, ou ainda o ponto onde há um grande pico de aceleração contrária ao movimento.

6 Conclusão

Após comparar os dados obtidos analiticamente com os dados obtidos pelo método de Euler usando as leituras dos experimentos, percebemos que eles são parecidos, portanto o método de Euler conseguiu simular bem o experimento.