第三章 Windows 驱动程序概述

3.1 Windows 驱动程序发展概述

美国微软公司已经发布了很多版本的 Windows 操作系统,从开始的 Windows 3.0 到 Windows 2000 和 Windows XP。一些底层的技术一直在各个 Windows 平台下共享,而其他的一些技术随版本的不同有了很大的变化。微软发布 Win32 API 的目的之一,就是鼓励开发者能够编制出在 Windows 平台之间兼容的应用程序。由于设备驱动程序是与操作系统最低层的功能发生交互,因此,如果要实现跨平台的兼容,首先必须在不同平台的底层结构上做到兼容。设备驱动程序就是控制硬件设备的一组函数。在 Windows 环境下,如果要处理硬件中断,实现 DMA 操作,就一定要用到设备驱动程序,开发即插即用(PnP)设备(如 USB 接口设备、PCI 接口卡)更是这样。

Windows 环境下驱动程序共有三类,一类是 VxD (Virtual Device Driver,虚拟设备驱动程序),起源于 Windows 3.1 时代,用于 Windows 95/98/Me 操作系统中;一类是 KMD (Kernel Mode Driver,内核模式驱动程序),用于 Windows NT下;还有一类就是 WDM (Win32 Driver Mode,Win32 驱动程序模型),是微软从 Windows 98 开始,推出的一个新的驱动类型,它是一个跨平台的驱动程序模型,WDM 驱动程序还可以在不修改源代码的情况下经过重新编译后在非 Intel 平台上运行。

Windows3.0 的基本结构一直延续到 Windows9x 家族,虽然后来的操作系统在驱动程序的开发和管理上有了非常大的改变,但底层的基本结构没有变化。也就是说,一个为 Windows3.0 开发的设备驱动程序,在大多数情况下,可以不加修改的使用在 Windows95 和 Windows98 平台下。在 Windows3.x,Windows95,Windows98 下使用的是虚拟设备驱动(Virtual Device Driver),也称为 VxD。虚拟设备驱动程序,原来的设计目标是为了支持在 Windows 平台下的设备,它作为动态连接库(DLL)链接到操作系统里,工作在保护模式下。VxD 解决了那些常规应用程序不能完成的工作,比如直接硬件的读写,也可以说,使用 VxD 是扩展操作系统内核的一种方法。VxD 最初的编写采用的是 Intel 汇编语言,后

来随着 VtoolsD 的使用,使用 C 和 C++也开始流行起来。

Windows NT 的设计体现了更现代和模块化的内部体系,它的目标是更好的灵活性和更加的健壮,兼容 Windows3.x 和 Windows9x 并不是它的设计目标,因此,Windows NT 的内部体系中没有提供对以前 Windows 平台的兼容。NT 采用了一种特有的内核模式驱动程序体系,一般也采用 C 语言来编写。当 NT 下的驱动程序需要直接控制机器时,它会向硬件抽象层(HAL)发出请求。硬件抽象层建立在驱动程序和实际的硬件之间,为驱动程序隐藏了硬件的不同,这样就可以编制出跨处理器(比如 Pentium 和 Alpha)、源代码兼容的设备驱动程序。因为Windows NT 可以工作在单处理器和多处理器环境中,驱动程序必须十分小心的保护关键的数据结构。Windows NT 提供了一种分层的体系结构,每一个 NT 设备驱动程序有一个低层和一个上层接口。低层的驱动程序直接控制硬件。在低层和上层驱动程序之间的是中间层驱动程序。Windows NT 也定义了一种类驱动程序体系,并且支持某些设备类。比如,系统中有 SCSI 类驱动程序支持 SCSI 磁带设备和 SCSI 磁盘。Windows NT 的这种驱动程序体系,在 Windows 98 和Windows 2000 中得到了继承和扩展,形成了现在的 WDM 体系

认识到跨平台兼容能力的价值后,微软开始尝试统一设备体系,给未来的驱动程序开发提供一个简单的平台。微软的做法,不是重新开发一套新的体系,而是在更合理的 Windows NT 体系的基础上,进行必要的完善,从而形成一个新的设备驱动程序体系,称为 Windows driver model,或 WDM,在更早的技术文档中,微软也曾用过 Win32 Driver Model 这个名字。Windows 98 最先支持 WDM,微软随后推出的操作系统中也都支持 WDM,包括 Windows 2000 系列,Windows Me,Windows XP,但不包括 Win CE。

3.2 WDM 驱动程序

WDM (Windows Driver Model)模型是从 WinNT3.51 和 WinNT4 的内核模式设备驱动程序发展而来的。WDM 主要的变化是增加了对即插即用、电源管理、Windows Management Interface(WMI)、设备接口的支持。WDM 模型的主要目标,是实现能够跨平台使用、更安全、更灵活、编制更简单的 Windows 设备驱动程序。WDM 采用了"基于对象"的技术,建立了一个分层的驱动程序结构。WDM首先在 Windows98 中实现,在 Windows2000 中得到了进一步的完善,并在后续