Gov 51: Inference for Experiments

Matthew Blackwell

Harvard University

Comparison between groups

- · More interesting to compare across groups.
 - · Differences in public opinion across groups
 - Difference between treatment and control groups.
- · Bedrock of causal inference!

Social pressure experiment

- Back to the Social Pressure Mailer GOTV example.
 - Primary election in MI 2006
- Treatment group: postcards showing their own and their neighbors' voting records.
 - Sample size of treated group, $n_T=360$
- · Control group: received nothing.
 - Sample size of the control group, $n_{\mathcal{C}}=1890$

Outcomes

- Outcome: $X_i = 1$ if i voted, 0 otherwise.
- Turnout rate (sample mean) in treated group, $\overline{X}_T = 0.37$
- Turnout rate (sample mean) in control group, $\overline{X}_C = 0.30$
- Estimated average treatment effect

$$\widehat{\mathrm{ATE}} = \overline{X}_T - \overline{X}_C = 0.07$$

Inference for the difference

- Parameter: population ATE $\mu_T \mu_C$
 - μ_T : Turnout rate in the population if everyone received treatment.
 - μ_C : Turnout rate in the population if everyone received control.
- Estimator: $\widehat{\text{ATE}} = \overline{X}_T \overline{X}_C$
- + \overline{X}_T is a r.v. with mean $\mathbb{E}[\overline{X}_T] = \mu_T$
- + \overline{X}_C is a r.v. with mean $\mathbb{E}[\overline{X}_C] = \mu_C$
- $\leadsto \overline{X}_T \overline{X}_C$ is a r.v. with mean $\mu_T \mu_C$
 - Sample difference in means is on average equal to the population difference in means.

Simulation

 What if these were the true population means? We would still expect some variation in our estimates:

```
xt.sims <- rbinom(1000, size = 360, prob = 0.37) / 360
xc.sims <- rbinom(1000, size = 1890, prob = 0.30) / 1890
hist(xt.sims - xc.sims, freq = FALSE, xlab = "Estimated ATEs",
    main = "Sampling Distribution")</pre>
```

Simulations

Standard error

- Is an $\widehat{ATE} = 0.07$ big?
- How much variation would we expect in the difference in means across repeated samples?
- · Variance of our estimates:

$$\begin{split} \mathbb{V}\left(\widehat{\mathsf{ATE}}\right) &= \mathbb{V}\left(\overline{X}_T - \overline{X}_C\right) \\ &= \frac{\mu_T(1 - \mu_T)}{n_T} + \frac{\mu_C(1 - \mu_C)}{n_C} \end{split}$$

• Standard error is the square root of this variance:

$$\widehat{\mathsf{SE}}_{\widehat{\mathsf{ATE}}} = \sqrt{\frac{\overline{X}_T(1-\overline{X}_T)}{n_T} + \frac{\overline{X}_C(1-\overline{X}_C)}{n_C}} = 0.028$$

• SE represents how far, on average, $\overline{X}_T - \overline{X}_C$ will be from $\mu_T - \mu_C$.

Confidence intervals

• We can construct confidence intervals based on the CLT like last time.

$$CI_{95} = \widehat{\text{ATE}} \pm 1.96 \times \widehat{\text{SE}}_{\widehat{\text{ATE}}}$$

= 0.07 \pm 1.96 \times 0.028
= 0.07 \pm 0.054
= [0.016, 0.124]

- Range of possibilities taking into account plausible chance errors.
- 0 not included in this CI → chance error as big as the estimated effect unlikely.