FRESNEL'S BIPRISM

EXPERIMENT

Aim/Objective

To determine the wavelength of sodium light by Fresnel's Biprism method.

Apparatus Required

- A monochromatic source of light (source of sodium light),
- Optical bench with 4 uprights,
- Biprism,
- Vertical slit,
- Convex lens of short focal length,
- Micrometer eyepiece.

Apparatus Setup

Formation of virtual sources and fringes

Formula used

In the case of biprism experiment the mean wavelength

$$\lambda = \beta \frac{2d}{D}$$

Where

 β = fringe width

2d = distance between the two virtual sources D

= distance between the slit and the eyepiece

Observation Tables

Observation of β: (fringe width)

No of division on the vernier scale = Least count of Vernier =

	Micrometer reading(a)				Micrometer reading(b)					Fringe width
No of fringe	MS	vs	Total (mm)	No of fringe	MS	VS	Total (mm)	Difference for 10 fringe	Mean for 10 fringe	(mm) β = [Mean/10]
1 2 3 4 5 6 7 8 9				11 12 13 14 15 16 17 18 19 20						

Measurement of D:

Position of the slit (a)	=cm
Position of the eyepiece (b)	=cm
Observation value of D (b-a)	=cm

Deviation method for 2d

We know for a prism of very small refracting angle, the deviation produced is given by $\delta = (\mu - 1)\alpha$ where $\mu = R.I$ (refractive index). of prism and α refracting angle, α is in radian.

Therefore total angle between S_1B and S_2B is $2\delta = 2(\mu - 1)\alpha$

From fig. 7,
$$\tan \delta = \frac{d}{a}$$
 or, $\delta = \frac{d}{a}$ [for small δ]
$$d = a\delta : 2d = 2a\delta \qquad ...(2)$$

or,
$$d = a\delta$$
 : $2d = 2a\delta$...(2)

...(3)

From equation (1) and (2) we have $2d = 2a(\mu - 1)\alpha$, here α is in radian hence 2d is calculated.

Results: The wavelength of sodium light as determined by calculation=......Å

Standard value of wavelength (A) = 5893 Å

Precautions

- The setting of uprights at the same level is essential.
- The slit should be vertical and narrow.
- Crosswire should be fixed in the center of the fringe while taking observations for fringe width.
- The micrometer screw should be rotated only in one direction to avoid backlash error.
- The fringe width should be measured at a fairly large distance.
- 6. Convex lens of shorter focal length should be used (f = 25 cms. approx.)
- Motion of eyepiece should be perpendicular to the lengths of the bench.

Viva questions

- 1. What is biprism?
- 2. Why fresnel biprism is used for?
- 3. Write the name of apparatuses used in experiment?
- 4. What is monochromatic light?
- 5. What are coherent sources?
- 6. How to determine wavelength by using fresnel's biprism experiment, explain with details?
- 7. Where are coherent sources situated in your experiment?
- 8. Is this experiment similar to Young's double slit experiment?
- 9. What do you mean by interference of light?
- 10. Is this experiment, satisfied the light is wave or particle?
- 11. How many types of interference are there?
- 12. What are two methods to find 2d?
- 13. What is fringe width?
- 14. Why should slit be narrow?
- 15. What is lateral shift?