COMS 4721: Machine Learning for Data Science

Lecture 13, 3/9/2021

Prof. John Paisley

Department of Electrical Engineering
Columbia University

BOOSTING

BAGGING CLASSIFIERS

Algorithm: Bagging binary classifiers

Given
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}$$

- ightharpoonup For $b = 1, \dots, B$
 - ▶ Sample a bootstrap dataset \mathcal{B}_b of size n. For each entry in \mathcal{B}_b , select (x_i, y_i) with probability $\frac{1}{n}$. Some (x_i, y_i) will repeat and some won't appear in \mathcal{B}_b .
 - ▶ Learn a classifier f_b using data in \mathcal{B}_b .
- ▶ Define the classification rule to be

$$f_{bag}(x_0) = \operatorname{sign}\left(\sum_{b=1}^{B} f_b(x_0)\right).$$

- ▶ With bagging, we observe that a *committee* of classifiers votes on a label.
- ► Each classifier is learned on a *bootstrap sample* from the data set.
- ▶ Learning a collection of classifiers is referred to as an *ensemble method*.

BOOSTING

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions, despite the weak judgment of the individual members?

- Schapire & Freund, "Boosting: Foundations and Algorithms"

Boosting is another powerful method for ensemble learning. It is similar to bagging in that a set of classifiers are combined to make a better one.

It works for any classifier, but a "weak" one that is easy to learn is usually chosen. (weak = accuracy a little better than random guessing)

Short history

1984: Leslie Valiant and Michael Kearns ask if "boosting" is possible.

1989: Robert Schapire creates first boosting algorithm.

1990: Yoav Freund creates an optimal boosting algorithm.

1995: Freund and Schapire create AdaBoost (Adaptive Boosting), the major boosting algorithm.

BAGGING VS BOOSTING (OVERVIEW)

THE ADABOOST ALGORITHM (SAMPLING VERSION)

THE ADABOOST ALGORITHM (SAMPLING VERSION)

Algorithm: Boosting a binary classifier

Given
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}, \text{ set } w_1(i) = \frac{1}{n} \text{ for } i = 1:n$$

- ▶ For t = 1, ..., T
 - 1. Sample a new dataset \mathcal{B}_t of size n according to distribution w_t . Notice that we now pick (x_i, y_i) with probability $w_t(i)$ and not $\frac{1}{n}$.
 - 2. Learn a classifier f_t using data in \mathcal{B}_t .
 - 3. Set $\epsilon_t = \sum_{i=1}^n w_t(i) \mathbb{1}\{y_i \neq f_t(x_i)\}$ and $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$.
 - 4. Scale $\widehat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$ and set $w_{t+1}(i) = \frac{\widehat{w}_{t+1}(i)}{\sum_i \widehat{w}_{t+1}(j)}$.
- ► Set the classification rule to be

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

Original data

Uniform distribution, w_1 Learn weak classifier

Here: Use a decision stump

Round 1 classifier

Weighted error: $\epsilon_1 = 0.3$ Weight update: $\alpha_1 = 0.42$

Weighted data

After round 1

Round 2 classifier

Weighted error: $\epsilon_2 = 0.21$ Weight update: $\alpha_2 = 0.65$

Weighted data

After round 2

Round 2 classifier

Weighted error: $\epsilon_3 = 0.14$ Weight update: $\alpha_3 = 0.92$

Example problem

Random guessing 50% error

Decision stump 45.8% error

Full decision tree 24.7% error

Boosted stump 5.8% error

BOOSTING

Point = one dataset. Location = error rate w/ and w/o boosting. The boosted version of the same classifier almost always produces better results.

BOOSTING

(left) Boosting a bad classifier is often better than not boosting a good one. (right) Boosting a good classifier is often better, but can take more time.

BOOSTING AND FEATURE MAPS

Q: What makes boosting work so well?

A: This is a well-studied question. We will present one analysis later, but we can also give intuition by tying it in with what we've already learned.

The classification for a new x_0 from boosting is

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

Define $\phi(x) = [f_1(x), ..., f_T(x)]^{\top}$, where each $f_t(x) \in \{-1, +1\}$.

- We can think of $\phi(x)$ as a high dimensional feature map of x.
- ▶ The vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_T]^{\top}$ corresponds to a hyperplane.
- ▶ So the classifier can be written $f_{boost}(x_0) = \text{sign}(\phi(x_0)^{\top} \alpha)$.
- ▶ Boosting learns the feature mapping and hyperplane simultaneously.

APPLICATION: FACE DETECTION

FACE DETECTION (VIOLA & JONES, 2001)

Problem: Locate the faces in an image or video.

Processing: Divide image into patches of different scales, e.g., 24×24 , 48×48 , etc. Extract *features* from each patch.

Classify each patch as face or no face using a *boosted decision stump*. This can be done in real-time, for example by your digital camera (at 15 fps).

- ▶ One patch from a larger image. Mask it with many "feature extractors."
- ► Each pattern gives one number, which is the sum of all pixels in black region minus sum of pixels in white region (total of 45,000+ features).

FACE DETECTION (EXAMPLE RESULTS)

ANALYSIS OF BOOSTING

ANALYSIS OF BOOSTING

Training error theorem

We can use *analysis* to make a statement about the accuracy of boosting *on* the training data.

Theorem: Under the AdaBoost framework, if ϵ_t is the weighted error of classifier f_t , then for the classifier $f_{boost}(x_0) = \text{sign}(\sum_{t=1}^{T} \alpha_t f_t(x_0))$,

training error
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\} \leq \exp\Big(-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_t)^2\Big).$$

Even if each ϵ_t is only a little better than random guessing, the sum over T classifiers can lead to a large negative value in the exponent when T is large.

For example, if we set:

$$\epsilon_t = 0.45, \ T = 1000 \ \rightarrow \ \text{training error} \ \leq \ 0.0067.$$

PROOF OF THEOREM

Setup

We break the proof into three steps. It is an application of the fact that

if
$$\underbrace{a < b}_{\text{Step 2}}$$
 and $\underbrace{b < c}_{\text{Step 3}}$ then $\underbrace{a < c}_{\text{conclusion}}$

- ▶ Step 1 calculates the value of *b*.
- ▶ Steps 2 and 3 prove the two inequalities.

Also recall the following step from AdaBoost:

- ▶ Update $\widehat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$.
- ► Normalize $w_{t+1}(i) = \frac{\widehat{w}_{t+1}(i)}{\sum_{j} \widehat{w}_{t+1}(j)}$ \longrightarrow Define $Z_t = \sum_{j} \widehat{w}_{t+1}(j)$.

Proof of Theorem $(a \le \mathbf{b} \le c)$

Step 1

We first want to expand the equation of the weights to show that

$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i)}}{\prod_{t=1}^{T} Z_t} := \frac{1}{n} \frac{e^{-y_i h_T(x_i)}}{\prod_{t=1}^{T} Z_t} \rightarrow h_T(x_i) := \sum_{t=1}^{T} \alpha_t f_t(x_i)$$

Derivation of Step 1:

Notice the update rule: $w_{t+1}(i) = \frac{1}{Z_t} w_t(i) e^{-\alpha_t y_i f_t(x_i)}$

Do the same expansion for $w_t(i)$ and continue until reaching $w_1(i) = \frac{1}{n}$,

$$w_{T+1}(i) = w_1(i) \frac{e^{-\alpha_1 y_i f_1(x_i)}}{Z_1} \times \dots \times \frac{e^{-\alpha_T y_i f_T(x_i)}}{Z_T}$$

The product $\prod_{t=1}^{T} Z_t$ is "b" above. We use this form of $w_{T+1}(i)$ in Step 2.

Proof of Theorem $(a \le b \le c)$

Step 2

Next show the training error of $f_{boost}^{(T)}$ (boosting after T steps) is $\leq \prod_{t=1}^{T} Z_t$. Currently we know

$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i h_T(x_i)}}{\prod_{t=1}^T Z_t} \implies w_{T+1}(i) \prod_{t=1}^T Z_t = \frac{1}{n} e^{-y_i h_T(x_i)} \quad \& \quad f_{boost}^{(T)}(x) = \operatorname{sign}(h_T(x))$$

Derivation of Step 2:

Observe that $0 < e^{z_1}$ and $1 < e^{z_2}$ for any $z_1 < 0 < z_2$. Therefore

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ y_i \neq f_{boost}^{(T)}(x_i) \}}_{a} \leq \underbrace{\frac{1}{n} \sum_{i=1}^{n} e^{-y_i h_T(x_i)}}_{i=1} \\
= \sum_{i=1}^{n} w_{T+1}(i) \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} Z_t$$

"a" is the training error – the quantity we care about.

Proof of Theorem $(a \leq b \leq c)$

Step 3

The final step is to calculate an upper bound on Z_t , and by extension $\prod_{t=1}^T Z_t$.

Derivation of Step 3:

This step is slightly more involved. It also shows why $\alpha_t := \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$.

$$Z_t = \sum_{i=1}^n w_t(i)e^{-\alpha_t y_i f_t(x_i)}$$

$$= \sum_{i: y_i = f_t(x_i)} e^{-\alpha_t} w_t(i) + \sum_{i: y_i \neq f_t(x_i)} e^{\alpha_t} w_t(i)$$

$$= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

Remember we <u>defined</u> $\epsilon_t = \sum_{i: y_i \neq f_t(x_i)} w_t(i)$, the probability of error for w_t .

Proof of Theorem $(a \le b \le c)$

Derivation of Step 3 (continued):

Remember from Step 2 that

training error
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\} \leq \prod_{t=1}^{T}Z_t$$
.

and we just showed that $Z_t = e^{-\alpha_t}(1 - \epsilon_t) + e^{\alpha_t}\epsilon_t$.

We want the training error to be small, so we pick α_t to *minimize* Z_t . Minimizing, we get the value of α_t used by AdaBoost:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right).$$

Plugging this value back in gives $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$.

Proof of Theorem $(a \leq b \leq c)$

Derivation of Step 3 (continued):

Next, re-write Z_t as

$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$
$$= \sqrt{1-4(\frac{1}{2}-\epsilon_t)^2}$$

Then, use the inequality $1 - x \le e^{-x}$ to conclude that

$$Z_t = \left(1 - 4(\frac{1}{2} - \epsilon_t)^2\right)^{\frac{1}{2}} \le \left(e^{-4(\frac{1}{2} - \epsilon_t)^2}\right)^{\frac{1}{2}} = e^{-2(\frac{1}{2} - \epsilon_t)^2}.$$

PROOF OF THEOREM

Concluding the right inequality $(a \le b \le c)$

Because both sides of $Z_t \le e^{-2(\frac{1}{2} - \epsilon_t)^2}$ are positive, we can say that

$$\prod_{t=1}^{T} Z_t \leq \prod_{t=1}^{T} e^{-2(\frac{1}{2} - \epsilon_t)^2} = e^{-2\sum_{t=1}^{T} (\frac{1}{2} - \epsilon_t)^2}.$$

This concludes the " $b \le c$ " portion of the proof.

Combining everything

training error
$$= \overbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{y_i \neq f_{boost}(x_i)\}}^{a} \leq \overbrace{\prod_{t=1}^{T} Z_t}^{b} \leq e^{-2\sum_{t=1}^{T} (\frac{1}{2} - \epsilon_t)^2}.$$

We set out to prove " $a \le c$ " and we did so by using "b" as a stepping-stone.

TRAINING VS TESTING ERROR

Q: Driving the training error to zero leads one to ask, does boosting overfit?

A: Sometimes, but very often it doesn't!

