2.2 и 2.3 Изучение спектров атома водорода и молекулы йода.

Калиничев И.А. Группа Б02-928

В работе исследуются: сериальные закономерости в оптическом спектре водорода; спектр поглощения паров йода в видимой области.

Теория

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где $R=109677.6~{\rm cm^{-1}}$ – константа, называемая постоянной Ридберга, а m и n – целые числа. Мы будем изучать серию Бальмера, линии которой лежат в видимой области. Для неё n=2, а $m=3,\ 4,\ 5,\ 6\dots$ Первые четыре линии обозначаются соответственно $H_{\alpha},\ H_{\beta},\ H_{\gamma},\ H_{\delta}$. Для молекулы йода мы рассматриваем только нулевую серию, энергетическое положение линий поглощения определяется выражением

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2\left(n_2 + \frac{1}{2}\right) - \frac{1}{2}h\nu_1.$$
 (2)

Рис. 1: Линии молекулы йода.

Описание установки

Для наблюдения спектра водорода используется установка, изображённая на Рис. 2А. Источником света для наблюдения служит водородная трубка H-образной формы, в состав газа которой добавлены водные пары для увеличения яркости интересующих нас линий. Источник Π помещается на оптическую скамью вместе с конденсером Π , так что свет концентрируется на входной щели 1. Далее через коллиматорный объектив 2 свет попадает на сложную спектральную призму, состояющую из призм Π_1 , Π_2 и Π_3 . Первые две призмы обладают большой дисперсией, а промежуточная Π_3 поворачивает лучи — такое устройство позволяет складывать дисперии Π_1 и Π_2 . После прохождения призмы свет попадает в зрительную трубу 4-5, объектив которой даёт изображение входной щели различных пветов.

Рис. 2: Установки для наблюдения линий А. водорода; Б. йода.

На Рис. 2Б изображена схема установки, используемой для наблюдения спектра йода. Спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключённой вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор. В результате подогрева кристаллы йода частично возгоняются, образуя пары с лёгкой фиолетовой окраской. Спектрометр 5 позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

Ход работы

Сначала произведём градуировку монохроматора. Для этого проведём измерения линий спектра неона и ртути, сняв зависимость длины волны наблюдаемого света λ от параметра θ барабана монохроматора. Погрешность измерения θ примем половиной цены деления $\sigma_{\theta} = 5^{\circ}$. Измерения представлены в Таблице 1.

λ , Å	6402	6334	5852	5945	6030	6096	6164	6217	6267
θ , °	2446	2426	2208	2256	2294	2320	2352	2376	2394
λ , Å	6507	6717	5461	5770	5791	4358	4047	4916	
θ , °	2484	2560	1990	2168	2180	910	360	1568	

Таблица 1: Измерения для градуировки.

Аппроксимируем зависимость $\lambda=\lambda(\theta)$ полиномом График аппроксимации представлен на Рис. 3

Рис. 3: Зависимость $\lambda = \lambda(\theta)$.

Произведём непосредственно измерения для серий водорода. H_{δ} у водорода снять не удалось. Измеренные значения параметра барабана для H_{α} , H_{β} и H_{γ} :

$$\theta_{32} = 2504^{\circ} \pm 5^{\circ}, \ \theta_{42} = 1520^{\circ} \pm 5^{\circ}, \ \theta_{52} = 884^{\circ} \pm 5^{\circ}.$$

Соответствующие им длины волн:

$$\lambda_{32} = 655 \pm 3$$
 нм, $\lambda_{42} = 484 \pm 3$ нм, $\lambda_{52} = 436 \pm 3$ нм.

Воспользовавшись формулой (1), рассчитаем константу Ридберга для каждой из линий

$$R_{32} = 109.9 \pm 0.5 \ 10^{3} cm^{-1}, \ R_{42} = 110.2 \pm 0.6 \ 10^{3} cm^{-1}, \ R_{32} = 109.2 \pm 0.5 \ 10^{3} cm^{-1}$$

итоговое значение:

$$R = 109.7 \pm 0.4 \ 10^3 cm^{-1}$$
.

Перейдём к измерениям для йода. Параметры, соответствующие самой длинноволновой линии, линии, отстоящей от неё на 6, и границе спектра:

$$\theta_{1,0} = 2366^{\circ} \pm 5^{\circ}, \ \theta_{1,5} = 2260^{\circ} \pm 5^{\circ}, \ \theta_{rp} = 1740^{\circ} \pm 5^{\circ}.$$

Тогда длины волн

$$\lambda_{1,0} = 620 \pm 3$$
 HM, $\lambda_{1,5} = 596 \pm 3$ HM, $\lambda_{rp} = 509 \pm 3$ HM.

Энергии колебательного кванта возбуждённого состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{2} = 0.04 \pm 0.02 \text{ pB}.$$

Учитывая, что $h\nu_1=0.027$ эВ, с помощью формулы (2) рассчитаем энергию перехода

$$h\nu_{\text{эл}} = h\nu_{(1,0)} - \frac{1}{2}h\nu_2 + \frac{3}{2}h\nu_1 = 2.03 \pm 0.03 \text{ sB}.$$

Тогда энергии диссоциации частиц в основном и возбуждённом состоянии, с учётом того, что энергия возбуждения атома $E_A = 0.94$ эВ:

$$D_1 = h\nu_{\rm rp} - E_A = 1.5 \pm 0.02 \text{ 9B},$$

$$D_2 = h\nu_{\rm rp} - h\nu_{\rm эл} = 0.39 \pm 0.03$$
 эВ.

Вывод

Мы получили спектральные линии водорода, по которым смогли измерить постоянную Ридберга и убедились в теоретическом значении этой константы. Так же мы измерили некоторые энергии возбуждения йода.