

Does a Q-Learning NetLogo Extension Simplify the Development of Agent-based Simulations?

Eloísa BazzanellaAluna de Engenharia de Software / CEAVI elobazzanella@gmail.com

Fernando dos Santos Professor / CEAVI fernando.santos@udesc.br

Introdução

- Agentes: autônomos em sua tomada de decisão e aptos a interação com outros agentes.
- Simulações com agentes: compreender comportamentos de sistemas complexos
- Técnicas de inteligência artificial: aperfeiçoar sua tomada de decisão
- Q-Learning: possibilita ao agente determinar, de maneira autônoma e interativa, uma política comportamental

Introdução

- Extensão Q-Learning: plataforma NetLogo
 - Oferece comandos para uso do Q-Learning
 - Trabalho de Conclusão de Curso, UDESC CEAVI
 - Kevin Kons, 2019

- Objetivo: validar as melhorias proporcionadas pela extensão através de uma avaliação quantitativa
 - Simulação Cliff Walking
 - Simulação de Controle Adaptativo de Tráfego (ATSC)

Q-Learning

Q-Learning

- É um algoritmo de aprendizado por reforço
- Objetivo: aprender uma política, que diga a um agente que ação tomar em que circunstâncias
- Q-Table: Matriz de transição estado-ação
- Elementos: Taxa de aprendizagem, fator de desconto, recompensa, estados, ações, método de seleção da próxima ação (random-normal, e-greedy)

Q-Learning

```
Input: S, A, \alpha \in (0,1) \ \gamma \in (0,1)
foreach episode do
    s \leftarrow initial\_state
    repeat
        choose an action a for state s using a selection policy (e.g., \epsilon-greedy)
        perform the action a
        observe the new state s' and the reward r received
        update Q-table:
         Q(a,s) \leftarrow Q(a,s) + \alpha(r + \gamma \max_{a} Q(a',s') - Q(a,s))
    until s \neq terminal\_state;
end
```


Extensão Q-Learning

Comandos para usar Q-Learning no NetLogo

```
to setup
         clear-all
         ask Walkers [
             qlearningextension:state-def ["xcor" "ycor"]
             (qlearningextension:actions [goUp] [goDown] [goLeft] [goRight])
             qlearningextension:reward [rewardFunc]
 6
             qlearningextension:learning-rate 0.4
             qlearningextension:discount-factor 0.2
             qlearningextension:action-selection "e-greedy" [0.8 0.99]
10
11
    end
12
13
    to go
14
         ask Walkers [
15
            qlearningextension:act
16
            qlearningextension:learn
    end
```


Simulações Analisadas

Simulação Cliff Walking

- Ambiente: Grade de células
 - Subconjunto de células representa o penhasco

Objetivo

 Sair da célula inicial S, chegar a célula final G, com o menor trajeto possível sem cair no penhasco

2	r = -1	r = -1	r = -1	r = -1	r = -1	r=-1
1	r = -1	r = -1	r = -1	r = -1	r = -1	r=-1
0	S r = -1	r = -100	r = -100	r = -100	r = -100	G r = -1

- Semáforos Inteligentes
 - Modelagem do problema Traffic Lights Control utilizado no artigo de Oliveira e Bazzan (2009)
- Elementos: a malha viária, os veículos e os semáforos

- Malha Viária: duas vias:
 - sentido norte-sul (vertical)
 - sentido leste-oeste (horizontal)
- Veículos: percorrem as vias vindos do sentido norte e oeste, de cima e do lado esquerdo

Ações: Planos Semafóricos

- Plano 1 = 30 seg. de sinal verde no sentido vertical e 15 seg. de sinal verde no sentido horizontal
- Plano 2 = 15 seg. de sinal verde no sentido vertical e 30 seg. de sinal verde no sentido horizontal

Estados

quantidade de veículos parados nas vias norte e oeste

Recompensa

- recebe ao final de cada ciclo
- quantidade de carros parados em ambas as vias multiplicado por -1

Avaliação Quantitativa

Implementações Utilizadas

Duas versões das simulações

- Utilizando a extensão vs. codificada manualmente
- Em ambas foram utilizados os mesmos parâmetros de aprendizagem e de ambiente para comparação de resultados

Análise de Consistência

- Verificar se a aprendizagem usando a extensão é consistente:
 - Inspeção da política aprendida após execução das simulações.
 - Uso dos mesmos parâmetros e tempo de execução.
- ATSC: 5 execuções de 86400 ticks
- Cliff Walking: 5 execuções de 350 ticks.

Análise de Consistência Cliff Walking

Estados		Ações		
(x,y)	Direita	Baixo	Esquerda	Cima
(0, 0)	-99,9999	-1,4281	-1,4282	-1,4277
(0, 1)	-1,4259	-1,4280	-1,4272	-1,4267
(0, 2)	-1,4248	-1,4255	-1,4254	-1,4252
(1, 1)	-1,4207	-99,8333	-1,4253	-1,4235
(1, 2)	-1,4209	-1,4217	-1,4237	-1,4214
(2, 1)	-1,4075	-99,5073	-1,4138	-1,4109
(2, 2)	-1,4123	-1,4134	-1,4174	-1,4146
(3, 1)	-1,3727	-96,9192	-1,3873	-1,3869
(3, 2)	-1,3931	-1,3941	-1,4004	-1,3991
(4, 1)	-1,2776	-91,2390	-1,3335	-1,3335
(4, 2)	-1,3505	-1,3535	-1,3697	-1,3548
(5, 1)	-1,1439	-0,9911	-1,1997	-1,2276
(5, 2)	-1,3006	-1,2678	-1,3006	-1,2976

Análise de Consistência ATSC

Estados veículos parados	Ações		Estados veículos parados	Ações	
(norte, oeste)	Plano 1	Plano 2	(norte, oeste)	Plano 1	Plano 2
(4, 2)	-9,8587	-13,9570	(10, 2)	-9,6641	-16,1368
(5, 2)	-9,5479	-13,5261	(11, 1)	-2,5743	-4,7753
(6, 2)	-8,6826	-10,6698	(11, 2)	-9,8594	-18,6116
(7, 2)	-1,1338	-1,7662	(12, 1)	-2,1176	-5,0304
(8, 2)	-4,2193	-7,3978	(13, 1)	-7,9200	-11,5943
(9, 1)	-8,8922	-18,0331	(14, 1)	-13,7738	-21,0598
(9, 2)	-9,4045	-15,6132	(15, 1)	-14,2968	-19,0880
(10, 1)	-9,8652	-19,4982	(16, 1)	-15,6289	-21,1684

Avaliação Quantitativa: Resultados

 Métrica: Linhas de Código (LoC) - Mensurar o tamanho do sistema e a simplicidade para desenvolver simulações

Implementação	Tipos e Variáveis	Inicialização	Execução	Total	
Controle Adaptativo de Tráfego (ATSC)					
Manualmente	27	23	119	170	
Utilizando a Extensão Q-Learning	9	30	44	97	
Cliff Walking					
Manualmente	15	30	51	96	
Utilizando a Extensão Q-Learning	9	30	44	83	

Avaliação Quantitativa: Resultados

- Redução de 42.94% de linhas de código na simulação ATSC, ao utilizar extensão
- Redução de 13.54% de linhas de código na simulação Cliff Walking, ao utilizar extensão

Implementação	Total				
Controle Adaptativo de Tráfego (ATSC)					
Manualmente	170				
Utilizando a Extensão Q-Learning	97				
Cliff Walking					
Manualmente	96				
Utilizando a Extensão Q-Learning	83				

 Vantagem de utilizar a Extensão Q-Learning no desenvolvimento de agentes inteligentes em NetLogo

Conclusão

Conclusão

- Avaliação Quantitativa da Extensão Q-Learning para NetLogo
- Resultados: ao utilizar a Extensão Q-Learning, houve uma redução nas linhas de código
 - Simplifica o desenvolvimento de simulações

Trabalhos Futuros

- Análise de tempo de execução e escalabilidade
- Análise com desenvolvedores e tempo de implementação

Does a Q-Learning NetLogo Extension Simplify the Development of Agent-based Simulations?

Eloísa BazzanellaAluna de Engenharia de Software / CEAVI elobazzanella@gmail.com

Fernando dos Santos Professor / CEAVI fernando.santos@udesc.br

