19日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

 $\overline{\Psi}3-54479$

Sint. Cl. 3

識別記号

庁内整理番号

2040公告 平成3年(1991)12月2日

H 04 R 17/00

7436-5D

(全4頁)

50考案の名称 ペーパースピーカー

> 顧 昭61-54545 21)実

60公 開 昭62-167498

22出 願 昭61(1986)4月11日 43昭62(1987)10月23日

20考 案 者 岩 Ħ 洋

惠

三重県四日市市東邦町 1 番地 三菱油化株式会社四日市事

業所内

の出 願 人 三菱油化株式会社 東京都千代田区丸の内2丁目5番2号

個代 理 人 弁理士 石 戸 元

審査官 加藤

実開 昭60-32898 (JP, U) 図参考文献

1

匈実用新案登録請求の範囲

高分子系圧電膜の両面に膜状電極を設け、この 両膜状電極間に信号電圧を印加するようにしたペ ーパースピーカーにおいて、導体膜の両面に保護 膜を被着した長方形状の導体膜の一端を前記膜状 5 電極の一部に直接導電接続してリード線としたこ とを特徴とするペーパースピーカー。

考案の詳細な説明

(産業上の利用分野)

特にポスター、案内表示等のフレキシブルな表示 物の表示内容と共に音声で説明出来、あるいは音 声を出力することにより注意を換気し、表示内容 を読ませるためのフレキシブルスピーカーに関す

(従来の技術)

一般に圧電膜の両面に膜状電極を設けてなる素 子を使用して音声信号を音声に変換する場合、素 子の保持状態が重要である。素子を湾曲して保持 することが出来る。

従来圧電膜を利用したスピーカーは第3図示の ように圧電膜1の両面に膜状電極2a, 2bを接 合し、この素子を湾曲した剛体の固定板(基板) 4に添着してなる。5は支持台を示す。

しかし上記のスピーカーは素子が湾曲した剛体

2

の固定板 4 に添着されているので可撓性を有して いなく、設置場所に制限があり、広告、案内表示 等を行う場所で必ずしも利用出来ない場合があ

そこで本出願人は実願昭60-075552号及び実願 昭60-075553号でフレキシブルスピーカーを提案 した。第4図はこれらのフレキシブルスピーカー の素子8の断面図で、高分子系圧電膜1の両面に アルミ、銅等の膜状電極2a,2bを蒸着により 本考案は圧電膜を利用したスピーカーに係り、10 設け、この各膜状電極2a,2bの一端の表面に アルミ、リン青銅等の膜状の接続電極 6 a, 6 b を導電性接着剤により接着して設ける。これらの 接続電極6a,6bにそれぞれリード線7a,7 bをハンダ付け若しくは導電性接着剤16(第5 15 図参照) あるいはスポット溶接等により接続す る。その後にこれら全部の外面に保護膜3a,3 bが被着してある。

本出願人が提案した前記フレキシブルスピーカ ーの高分子系圧電膜1としては例えばポリアセタ すれば音声変換効率が向上して大きな音声に変換 20 ール樹脂とアクリロニトリル・ブタジエンラバー の混合物等のプラスチックにチタン酸・ジルコン 酸鉛やチタン酸鉛若しくはチタン酸パリウム等の 強誘電性セラミツクスの微粉末を分散させ、これ を高電圧下で分極処理して得られた圧電膜、ある 25 いはポリ弗化ピニリデン樹脂やポリ(シアン化ビ ニリデン・酢酸ビニル) 共重合体樹脂のキヤスト

フイルム若しくは加熱成形フイルムを延伸した配 向フィルム等を高電圧下で分極処理して得られた 圧電膜を用いることが出来る。また保護膜3a, 3 b としてはポリエチレン、ポリプロピレン、ポ リ塩化ピニール、ポリエステル、フツ素系樹脂等 5 のプラスチックシートあるいはシリコンゴム等の 可撓性ゴムシートや各種のコーテイング剤を用い ることが出来る。

第5図はリード線接続部分の断面図で膜状電極 6 bにリード線7a, 7 bをハンダ付け若しくは 導電性接着剤16あるいはスポット溶接で接続し たうえに、保護膜3a,3bを設けたものであ

第6図、第7図は実際の使用状態図で、第6図 15 は案内表示板9の支持筒10内にペーパースピー カーを円筒状にして設置したものである。第7図 は別個に設けた2個の支持台11a,11bに支 持筒12a, 12bを立て、この支持筒12a, 12 bで前記スピーカー素子8の両端を保持した 20 ものである。

(考案が解決しようとする問題点)

上述のようにフレキシブルであるので、このス ピーカーには次のような問題点がある。

- ド線に過度の力が懸かり断線などを起こしやす
- 2 リード線は丸線であり、接続電極との接続は 線接続となり、接続強度が不足することがあ
- 3 リード線の接続点の周囲に空隙が出来ること により、接着力が不足し易い。
- 4 外観トペーパースピーカーのイメージダウン となる。

(問題を解決するための手段)

本考案は上述の問題を解決して、より改良され たペーパースピーカーを提供することを目的とす る。

即ち導体膜の両面に保護膜を被着した長方形状 の導体膜の一端をペーパースピーカーの膜状電極 40 シブルスピーカーの使用状態図である。 の一部に直接導電接続してリード線としたもので ある。

(作用)

上述のように、リード線は薄い膜状の導体であ

るので屈曲に対しても断線し難く、さらに両面に は保護膜で補強してあるので引つ張りに対しても 断線しにくい。また膜状電極との接続は面接続で あるので接続強度も大きい。

なお上記の強度上、小型にしてスマートな形状 とすることが出来るので、ペーパースピーカーの イメージダウンを来すこともない。

(実施例)

第1図は本考案のペーパースピーカーのリード 2a, 2bの表面の一部に設けた接続電極 6a, 10 線部分の外観図であり、第2図はそのリード線の 外観図である。スピーカー素子自身は本出願人が 先に提案したものと同じであるが、本願では接続 電極を設けず、リード線を直接膜状電極2 a, 2 bに接続したものである。

> リード線13は第2図示のように銅箔14の両 面に両端が片面ずつ露出するように例えば合成 紙、フィラー入りプラスチック等のプラスチック シートの保護膜15a,15bを貼付したもので ある。

上記リード線は改良された従来例の接続電極6 a, 6 bを外方に大きくずらしたようなもので、 それぞれその一端の銅箔部分を前記スピーカー素 子の膜状電極2 a. 2 b に一端に導電性接着剤1 6で接続した後に保護膜(図示せず)を設けたも 1 フレキシブルであるために、設置の都度リー 25 ので、圧電膜の一部とリード線の機能を兼ねる構 造としたものである。

(考案の効果)

上述のように本考案のリード線を設けたペーパ ースピーカーは、リード線部分が従来のペーパー 30 スピーカー(フレキシブルスピーカー)に比べて 強度も大きく、かつ目障りにならないので装飾性 の上からも好ましいものである。

図面の簡単な説明

第1図は本考案のペーパースピーカーのリード 35 線部分の外観図、第2図はリード線の外観図、第 3図は従来の圧電型スピーカーの外観図、第4図 は従来のフレキシブルスピーカーの素子の断面 図、第5図は従来のフレキシブルスピーカーのリ ード線部分の断面図、第6図及び第7図はフレキ

1: 高分子系圧電膜、2a, 2b: 膜状電極、 3 a, 3 b:保護膜、6 a, 6 b:接続電極、7 a, 7b:リード線、8:スピーカー素子、1 3:リード線、14:銅箔、15a, 15b:保

(3)

実公 平 3-54479

5

護膜、16:導電性接着剤。

第1图

筝?图

