- (2) 每次访问都会导致缺失 缺失率为一号 = 100%
- (3) 类似于块交销或矩阵缓存的概念, 我们可以设计一个缓存块的数据是每隔8字节从内存中取的, 这样的话, 除了对于这种内存访问模式, 除了第一次访问0x0时会发生强制缺失, 随后数据都被加载到了同一缓存块里, 后面的访问都会命中
- (4) 全相联没有组的概念,只有1十组

2、 组数: 1

3. (a) ① X和Y不同: Miss Rate $L = \frac{2}{5} = 33.3\%$ Miss Rate $D = \frac{2}{50} = 5\% /0\% (\frac{2}{50} = \frac{1}{50})$

- (b) CPI= 理想 CPI+ M_L× M t_m + M_D×t_m× R_w
 = 2+ 33.3%×10 + (%× D× 5/3₀× 10
 = 1⁷/₃ (×和 Y 不同)
 - CPI = 2+ 計20+ 水10 = 35 (X和7相同)
- (C) 32字节的 I- cache 可以容纳 8条指金 陈第-次前问外将全部命中MI ≈ 0%
- - 二銭存块大小为128 B
- 5. (a) 宇偏移位: $log_2 \stackrel{?}{=} = 2$ 位块偏移位: $log_2 \stackrel{?}{=} = 2$ 位址: $log_2 \stackrel{?}{=} = 1$ 位 组: $log_2 \stackrel{?}{=} = 13$ 位 标签: 32-2-1-13=16 位
 - (b) 16x 翌 = 256K 位
 - (c) 数据位数: 2x2 x32=128位 标签位数: 2x16=32位 本态位: 2x2=4位 总位数 = 128+32+4=164位