

Lecture Content

- 1 Neural Network
- **2** Activation Function
- 3 MNIST
- 4 Batch Training

Activation Function

MNIST

Batch Training

■ 강의 자료

- Books
 - Pattern Classification Second Edition [Duda, 2001]
 - Pattern Recognition And Machine Learning [Bishop, 2006]
 - 밑바닥부터 시작하는 딥러닝 [사이토 고키, 2017]
 - 머신러닝, 딥러닝 실전개발 입문 [쿠지라 히코우즈쿠에, 2017]

Online

- UVA DEEP LEARNING COURSE [University of Amsterdam, 2018]
- CS231n [http://cs231n.stanford.edu/, 2018]
- Machine Learning [https://ko.coursera.org/learn/machine-learning, 2018]

Activation Function

MNIST

Batch Training

1. Neural Network

Neural Network

Activation Function

MNIST

Batch Training

■ Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)

■ 선형 회귀식은 하나의 퍼셉트론으로도 구현 가능

■ 퍼셉트론 : 다수의 신호를 입력받아 하나의 신호를 출력

■ x,1: 입력 신호

■ *w,b*: 가중치

■ y: 출력 신호

$$y = wx + b$$

Neural Network

Activation Function

MNIST

Batch Training

- Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)
 - 선형 회귀식은 하나의 퍼셉트론으로도 구현 가능
 - 퍼셉트론 : 다수의 신호를 입력받아 하나의 신호를 출력
 - x,1: 입력 신호
 - *w,b*: 가중치
 - y: 출력 신호

$$y = wx + b$$

역전파를 활용하여 좋은 가중치(w, b)를 찾는 것이 목표

Neural Network

■ Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)

Activation Function

MNIST

- 순전파(Forward)
 - 데이터 처리

Neural Network

■ Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)

Activation Function

MNIST

- 순전파(Forward)
 - 데이터 처리 > 모델 구현

순전파(Forward)

Neural Network

■ Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)

Activation Function

MNIST

Batch Training

■ 데이터 처리 > 모델 구현 > 예측값 도출

Neural Network

Activation Function

MNIST

- Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)
 - 순전파(Forward)
 - 데이터 처리 > 모델 구현 > 예측값 도출 > 손실함수 계산

Neural Network

Activation Function

MNIST

- Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)
 - 순전파(Forward)
 - 데이터 처리 > 모델 구현 > 예측값 도출 > 손실함수 계산
 - 역전파(Backward)
 - 기울기 계산

Neural Network

Activation Function

MNIST

- Prev: 선형 회귀(Linear Regression)와 신경망(Neural Network)
 - 순전파(Forward)
 - 데이터 처리 > 모델 구현 > 예측값 도출 > 손실함수 계산
 - 역전파(Backward)
 - 기울기 계산 > 개선 방향 확정

Neural Network

Activation Function

MNIST

- Prev : 선형 회귀(Linear Regression)와 신경망(Neural Network)
 - 순전파(Forward)
 - 데이터 처리 > 모델 구현 > 예측값 도출 > 손실함수 계산
 - 역전파(Backward)
 - 기울기 계산 > 개선 방향 확정 > **가중치 개선 = change w**!!!

Neural Network

Activation Function

MNIST

Batch Training

- 입력층(Input Layer)
- 은닉층(Hidden Layer)
- 출력층(Output Layer)

Neural Network

Activation Function

MNIST

Batch Training

■ 선형 신경망(Neural Network with Linear Module)

- 입력층(Input Layer)
- 은닉층(Hidden Layer)
- 출력층(Output Layer)

Q) 모든 뉴런(퍼셉트론)을 선형(Linear)으로 구현하면?

Neural Network

■ 선형 신경망(Neural Network with Linear Module)

Activation Function

MNIST

Neural Network

■ 선형 신경망(Neural Network with Linear Module)

Activation Function

MNIST

Neural Network

Activation Function

MNIST

Batch Training

Neural Network

Activation Function

MNIST

Batch Training

Activation Function

MNIST

Batch Training

Neural Network

Activation Function

MNIST

Batch Training

$$z = 1 * y_1 + 1 * y_2$$

$$= 1 * (2x_1 + 1)$$

$$+1 * (3x_2 - 1)$$

$$= 2x_1 + 1 + 3x_2 - 1$$

$$= 2x_1 + 3x_2$$

Neural Network

Activation Function

MNIST

Batch Training

Neural Network

Activation Function

MNIST

Batch Training

- *x* : 입력값
- $w_l: l$ 번째 층의 가중치
- $a_l = f_l(x|w_l) = w_l x + b_l : l \text{ \hat{g} }$ 결과값

Neural Network

Activation Function

MNIST

Batch Training

- *x* : 입력값
- $w_l: l$ 번째 층의 가중치
- $a_l = f_l(x|w_l) = w_l x + b_l : l \text{ \hat{g} }$ 결과값

$$a_L(x|w_{1,...,L}) = f_L(f_{L-1}(...f_1(x|w_1)|...w_{L-1})|w_L)$$

= $f_L(f_{L-1}(...f_2(w_1x + b_1|w_2)...w_{L-1})|w_L)$

Neural Network

Activation Function

MNIST

Batch Training

- *x* : 입력값
- $w_l: l$ 번째 층의 가중치
- $a_l = f_l(x|w_l) = w_l x + b_l : l \text{ ënd } 2$

$$a_{L}(x|w_{1,...,L}) = f_{L}(f_{L-1}(...f_{1}(x|w_{1})|...w_{L-1})|w_{L})$$

$$= f_{L}(f_{L-1}(...f_{2}(w_{1}x + b_{1}|w_{2})...w_{L-1})|w_{L})$$

$$= f_{L}(f_{L-1}(...w_{2}(w_{1}x + b_{1}) + b_{2})...w_{L-1})|w_{L})$$

Neural Network

Activation Function

MNIST

Batch Training

- *x* : 입력값
- $w_l: l$ 번째 층의 가중치
- $a_l = f_l(x|w_l) = w_l x + b_l : l \in A$ 결과값

$$a_{L}(x|w_{1,...,L}) = f_{L}(f_{L-1}(...f_{1}(x|w_{1})|...w_{L-1})| w_{L})$$

$$= f_{L}(f_{L-1}(...f_{2}(w_{1}x + b_{1}|w_{2}) ...w_{L-1})| w_{L})$$

$$= f_{L}(f_{L-1}(...w_{2}(w_{1}x + b_{1}) + b_{2}) ...w_{L-1})| w_{L})$$

$$= \cdots$$

$$= w_{L}w_{L-1} ...w_{1}x + (w_{L}w_{L-1} ...w_{2}b_{1} + w_{L}w_{L-1} ...w_{3}b_{2} + \cdots)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 선형 신경망(Neural Network with Linear Module)

- *x* : 입력값
- $w_l: l$ 번째 층의 가중치
- $a_l = f_l(x|w_l) = w_l x + b_l : l \text{ ëulling}$

$$f_L(f_{L-1}(...f_1(x|w_1)|...w_{L-1})| w_L) = wx + b$$

■ 따라서, 선형 신경망을 여러 번 쌓는 것은 의미 없음

Activation Function

MNIST

Batch Training

2. Activation Function

Neural Network

Activation

MNIST

Function

Batch Training

■ 활성화 함수(Activation Function)

$$a_{L}(x|w_{1,...,L}) = f_{L}(f_{L-1}(...f_{1}(x|w_{1})|...w_{L-1})|w_{L})$$

$$= f_{L}(f_{L-1}(...f_{2}(w_{1}x + b_{1}|w_{2})...w_{L-1})|w_{L})$$

$$= f_{L}(f_{L-1}(...w_{2}(w_{1}x + b_{1}) + b_{2})...w_{L-1})|w_{L})$$

$$= \cdots$$

$$= wx + b (...?)$$

- \blacksquare f가 선형이면 여러 번 쌓는 것이 의미 없음
- **선형이 아닌 다른 무언가**가 필요함

Neural Network

Activation Function

MNIST

- 활성화 함수(Activation Function)
 - 선형이 아닌 다른 무언가 = 활성화 함수

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 계단 함수(Step Function)

$$h(a) = \begin{cases} 1 & (a > 0) \\ 0 & (a \le 0) \end{cases}$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 계단 함수(Step Function)

$$h(a) = \begin{cases} 1 & (a > 0) \\ 0 & (a \le 0) \end{cases}$$

- 너무 극단적인 변화
- 기울기가 무한 or 0
- 0에서 미분 불가능

Neural Network

Activation Function

MNIST

- 활성화 함수(Activation Function) 시그모이드(Sigmoid)
 - 로지스틱 함수(Logistic Function) or 시그모이드 함수(Sigmoid Function)

$$h(a) = \frac{1}{1 + \exp(-a)}$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$h(a) = \frac{1}{1 + \exp(-a)}$$

- 계단 함수보다 더 부드러워진 변화
- 미분 가능
- 하지만, 기존 계단 함수와 똑같이 왼쪽/오른쪽으로 갈수록 기울기가 0에 가까워짐

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

■ 어느 점에서나 **기울기가 1보다 작음**

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

■ 어느 점에서나 **기울기가 1보다 작음**

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

$$0.22 * (1 - 0.73) * 0.73$$
 $1 * (1 - 0.67) * 0.67$
= 0.043 = 0.22

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

$$\frac{\partial h(a)}{\partial a} = (1 - h(a)) * h(a)$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 시그모이드(Sigmoid)

- 어느 점에서나 기울기가 1보다 작음
 - → 여러 층을 쌓으면 기울기 ~ 0 (0.01 * 0.01 = 0.0001)
 - → 기울기 소실(Vanishing Gradient) 문제로 이어짐

Vanishing gradient (NN winter2: 1986-2006)

Neural Network

Activation Function

MNIST

Batch Training

- 활성화 함수(Activation Function) ReLU Function
 - AlexNet에서 사용

$$h(a) = \begin{cases} a & (a > 0) \\ 0 & (a \le 0) \end{cases}$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – ReLU Function

- 함수의 기울기가 0 or 1
- 그대로 값을 내보냄
 - 계산 및 학습이 빠름
 - 기울기 소실 문제 해결
- 하지만
 - 대칭적이지 않음
 - 0에서 미분 불가능
 - 0보다 작은 값들은 '죽을' 수 있다

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – ReLU Function

- 함수의 기울기가 0 or 1
- 그대로 값을 내보냄
 - 계산 및 학습이 빠름
 - 기울기 소실 문제 해결
- 하지만
 - 대칭적이지 않음
 - 0에서 미분 불가능
 - sub-gradient descent로 해결 가능
 - x = 0, it has *subdifferential* [0,1]
 - 0보다 작은 값들은 '죽을' 수 있다

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – Leaky ReLU Function

$$h(a) = \begin{cases} a & (a > 0) \\ 0.1 * a & (a \le 0) \end{cases}$$

Neural Network

Activation Function

MNIST

Batch Training

- 활성화 함수(Activation Function) Softplus Function
 - $h(a) = \log(1 + \exp(a))$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) - 출력층

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 출력층

- 회귀 항등 함수(Identity Function)
- 분류 소프트맥스 함수(Softmax Function)

$$y_k = \frac{\exp(a_k + C)}{\sum_{i=1}^n \exp(a_i + C)}$$

Neural Network

Activation Function

MNIST

Batch Training

■ 활성화 함수(Activation Function) – 출력층

- 회귀 항등 함수(Identity Function)
 - $y_k = a_k$
- 분류 소프트맥스 함수(Softmax Function)

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$

- $\bullet \quad [0.3, 2.9, 4.0] \rightarrow [0.018, 0.245, 0.737]$
- -0.018 + 0.245 + 0.737 = 1

Neural Network

Activation Function

MNIST

Batch Training

3. MNIST

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST : 손글씨 숫자 이미지 데이터

- 60000장의 Training Set
- 10000장의 Test Set
- Size : 28 X 28
- Color : Gray

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST를 위한 Neural Network

• Size : 28 X 28 = 784

http://lucenaresearch.com/deep-neural-networks/

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST를 위한 Neural Network

• Size : 28 X 28 = 784

■ Output : 10개의 값 (확률) = 이미지가 [0일 확률, 1일 확률, ..., 9일 확률]

https://achintavarna.wordpress.com/2017/11/17/keras-tutorial-for-beginners-a-simple-neural-network-to-identify-numbers-mnist-data/

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST를 위한 Neural Network

- Size : 28 X 28 = 784
- Output : 10개의 값 (확률) = 이미지가 [0일 확률, 1일 확률, ..., 9일 확률]

■ 각 층의 배열 형상

- $\bullet \qquad X \rightarrow \qquad W1 \qquad \rightarrow \qquad W2 \qquad \rightarrow \ Y$
- $784 \rightarrow 784 \times 512 \rightarrow 512 \times 10 \rightarrow 10$

Neural Network

Activation Function

MNIST

Batch Training

MNIST를 위한 Neural Network

■ 학습 방법

Class

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

MNIST를 위한 Neural Network

■ 학습 방법

Class 1

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

MNIST를 위한 Neural Network

■ 학습 방법

Class 1

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST를 위한 Neural Network

■ 학습 방법

Class 1

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

MNIST를 위한 Neural Network

■ 학습 방법

Class

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

MNIST를 위한 Neural Network

■ 학습 방법

Class

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

■ MNIST를 위한 Neural Network

■ 학습 방법

Class 1

Layer 2 10

Layer 1 512

Neural Network

Activation Function

MNIST

Batch Training

4. Batch Training

Neural Network

Activation Function

MNIST

Batch Training

- 배치 학습(Batch Training)
 - 이미지를 1개씩 학습시킬 것이냐?
 - 학습 속도 너무 느림
 - 컴퓨터는 큰 배열을 한꺼번에 계산하는 것이 빠름
 - 이미지를 모두다 학습시킬 것이냐?
 - Out of Memory Error
 - 학습을 시키기 위해서는 메모리에 담아야 하는데,
 - 메모리는 용량이 한정되어 있음

Neural Network

Activation Function

MNIST

Batch Training

■ 배치 학습(Batch Training)

- 적당한 양의 데이터들을 묶어 한 번에 학습시킴
- Batch size = 100 :
 - $\blacksquare \qquad \qquad X \qquad \rightarrow \qquad W1 \qquad \rightarrow \qquad W2 \qquad \rightarrow \qquad Y$
 - $100 \times 784 \rightarrow 784 \times 512 \rightarrow 512 \times 10 \rightarrow 100 \times 10$

$$\frac{\partial L}{\partial \mathbf{B}} = \frac{\partial L}{\partial \mathbf{Y}}$$
 의 첫 번째 축(0축, 열방향)의 합
(3) (N, 3)

Neural Network

Activation Function

MNIST

Batch Training

■ 배치 학습을 위한 용어

- 에폭(Epoch)
 - **한 데이터**가 **총 몇 번 학습**에 사용되는가?
- 반복(Iteration)
 - **1 에폭**에 **몇 개의 배치**를 사용해서 학습할 것인가?

Neural Network

Activation Function

MNIST

Batch Training

■ 배치 학습을 위한 용어

- EX1) 총 Data 60000개
 - Batch size = 100 : 한 번 학습에 100개씩 학습
 - **Epoch = 1** : 모든 데이터를 1번씩 학습에 사용
 - Iter = 60000/100 = 600 : 1 에폭은 600개의 배치로 학습

Epoch 1

Neural Network

Activation Function

MNIST

Batch Training

▪ 배치 학습을 위한 용어

- EX2) 총 Data 60000개
 - Batch size = 100 : 한 번 학습에 100개씩 학습
 - **Epoch** = **5** : 모든 데이터를 5번씩 학습에 사용
 - Iter = 60000/100 = 600 : 1 에폭은 600개의 배치로 학습

Epoch 1

Epoch 5

Neural Network

Activation Function

MNIST

Batch Training

■ 배치 학습을 위한 용어

- EX3) 총 Data 60000개
 - Batch size = 200 :
 - Epoch = 10 :
 - Iter = ?:

Neural Network

Activation Function

MNIST

Batch Training

■ 배치 학습을 위한 용어

- EX3) 총 Data 60000개
 - Batch size = 200 : 한 번 학습에 200개씩 학습
 - Epoch = 10 : 모든 데이터를 10번씩 학습에 사용
 - Iter = 60000/200 = 300 : 1 에폭은 300개의 배치로 학습