TU Berlin - Institut für Mathematik Sommersemester 2024

Dozent: Dr. Nikolas Tapia

Assistentin: M.Sc. Claudia Drygala

Stochastik für Informatik(er) – Übung 0

Abgabe: Keine Abgabe

Hinweise zur Abgabe:

Das Übungsblatt 0 bieten wir zur selbstständigen Wiederholung von unendlichen Reihen, dem binomischen Lehrsatz und der Integralrechnung an. Das Blatt wird damit nicht korrigiert und auch nicht in den Tutorien besprochen.

Hausaufgabe 0.1

(a) Beweisen Sie folgende Formel für geometrische Summen:

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1} - 1}{q - 1}, \qquad n \in \mathbb{N}, q \neq 1.$$
 (1)

Hinweis: Betrachten Sie das Produkt $(1 + q + q^2 + \ldots + q^n)(1 - q)$.

(b) Zeigen Sie mit Hilfe von (1), dass für eine Zahl q mit |q| < 1 gilt:

$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}.$$
 (2)

(c) Berechnen Sie die nachfolgenden Reihen. Wenden Sie dabei die Gleichungen (1) und (2) an.

(i)
$$\sum_{n=0}^{\infty} \frac{1}{2^n}$$
 (ii) $0.999... = \sum_{n=1}^{\infty} \frac{9}{10}$

(i)
$$\sum_{n=0}^{\infty} \frac{1}{2^n}$$
 (ii) $0.999... = \sum_{n=1}^{\infty} \frac{9}{10^n}$ (iii) $\sum_{n=0}^{\infty} q^{2n}$, wobei $0 < q < 1$ (iv) $\sum_{n=0}^{\infty} (1-p)^n$, wobei 0

(d) Beweisen Sie, dass für |q| < 1 gilt:

$$\sum_{n=0}^{\infty} nq^n = \frac{q}{(q-1)^2}$$
 (3)

Hinweis: Betrachten Sie die Funktion $F(q) := \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ aus (2). Differenzieren Sie beide Seiten nach q; dabei darf man auf der linken Seite gliedweise differenzieren, da die Reihe absolut konvergiert.

(e) Berechnen Sie jeweils für |q| < 1 mittels Indexverschiebungen:

(i)
$$\sum_{n=3}^{\infty} q^{n-3}$$
, (ii) $\sum_{n=0}^{\infty} q^{n+1}$, (iii) $\sum_{n=4}^{\infty} q^{2n-2}$.

Hausaufgabe 0.2

Definiere

$$n! := \begin{cases} 1 & n = 0, \\ n \cdot (n-1) \cdots 2 \cdot 1 & n = 1, 2, \dots \end{cases}$$

und

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}, \quad \text{für } n = 0, 1, 2, \dots \text{ und } k \in \{0, \dots, n\}.$$

Betrachten Sie das Pascalsche Dreieck

(a) Beweisen Sie, dass für $n = 0, 1, 2, \dots$ und $k \in \{0, \dots, n\}$ gilt:

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \tag{4}$$

Was repräsentiert diese Formel im Pascalschen Dreieck?

(b) Beweisen Sie den Binomischen Satz:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Hinweis: Benutzen Sie vollständige Induktion und Gleichung (4). Was bedeutet dies im Pascalschen Dreieck?

Hausaufgabe 0.3

Sei $p \in [0, 1]$.

- (a) Zeigen Sie induktiv: $\sum_{i=1}^{n} i = \frac{n}{2}(n+1)$.
- (b) Berechnen Sie mit Hilfe des binomischen Satzes:
 - (i) $\sum_{k=0}^{n} \binom{n}{k}$ (Was bedeutet das in Bezug auf das Pascalsche Dreieck?)

(ii)
$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k}$$
.

(c) Zeigen Sie

$$\sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np.$$

Hinweis: Induktion macht hier das Leben schwer!

(i) Berechnen Sie

$$\sum_{k=0}^{\infty} p(1-p)^k.$$

Hinweis: Geometrische Reihe.

(d) Bestimmen Sie die nachfolgende Reihe unter Nutzung der Gleichung (3).

$$\sum_{k=0}^{\infty} kp(1-p)^k.$$

Hausaufgabe 0.4

Bestimmen Sie die nachfolgenden Integrale:

(a)
$$\int_a^b \lambda e^{-\lambda x} dx$$
 für $0 < a < b < \infty$ und $\lambda > 0$

(b)
$$\int_0^\infty \lambda e^{-\lambda x} dx$$
 für $\lambda > 0$

(c)
$$\int_0^\infty x \lambda e^{-\lambda x} dx$$
 für $\lambda > 0$

Sei nun r(t)=0.25 für $t\in[-1,3]$. Sonst nehme die Funktion den Wert Null an, also r(t)=0. Bestimmen Sie die uneigentlichen Integrale:

(i)
$$\int_{-\infty}^{\infty} r(t)dt$$

(ii)
$$\int_{-\infty}^{2} r(t)dt$$

(iii)
$$\int_{-\infty}^{x} r(t)dt$$
 für $x \in [-1, 3]$

(iv)
$$\int_{-\infty}^{\infty} tr(t)dt$$