EE 250 Mid Sem Solution sheet

i. I, =
$$\frac{V_1 - V_L}{R}$$
 (Laplace domain)
 $I = \frac{V_L - V_C}{R} = \frac{V_L - V_C}{V_L - V_C}$

$$I_2 = \frac{V_c - V_c}{R} = \frac{V_L - V_c}{R} - 2$$

$$(\frac{1}{2} \text{ marrks})$$

$$V_{L} = LS(I_1 - I_2) - (2) (1 mark)$$

$$V_{c} = (1+CRS) = I_{z}R + V_{z} - (4)$$

 $V_{c} = (1+CRS) = (3 \text{ marks})$

ii. Signal Flow Graphy (3 marks)

Vi o 1 Vi to II LS VL 1 VL I IZ R JI HERS VC 1 o VC

One can check that all four egus are accounted in this SFG.

```
There are two feed forward paths
     V, -> Vc. + M, Path gain
   2. V2 -> VC -D N2 Path gain
There are three individual loops
There is one two nontouching
iii Forward path gains
     W, = k, LS. L. R, 1+CRS
        =\frac{S}{S+1} as R=L=C=1 unit
     M_2 = \frac{1}{1+CRS} = \frac{1}{1+CRS} = \frac{1}{S+1}
   Individual loop gain
    L11 = - LS
    L_{21} = -\frac{LS}{R}
    L31 = - 1+ CRS
    Gains associated with two non-touching
      L12 = L11 x L31
          = LS
P(1+CRS)
```

EE250 Mid Sem Solution sheet

Q2 a.

$$T(s) = \frac{G(s)}{1 + a \cdot s \cdot G(s)}$$

$$= \frac{(a \cdot s)}{(1 + 0 \cdot a \cdot s)} \frac{(1 + 0 \cdot a \cdot s)}{(1 + 0 \cdot a \cdot s)}$$

Part L Cont.

$$\omega_{N} = \sqrt{3.3}$$
 $22\omega_{N} = 4.2$
 $2e = 1.156$

The system is overdanted. Hence the overshoot = 0 Pont system response will be Aluggish (slow).

[5 marks]

Part
$$24 = \omega$$
, $x_2 = ia$, $h = 2a$

$$\frac{d\omega}{dt} = -\frac{B}{J}\omega + \frac{kT}{J}ia$$

$$\frac{dia}{dt} = -\frac{kb}{La}\omega - \frac{Ra}{La}ia + \frac{1}{La}2a$$

$$\frac{B}{J} = \frac{2}{10} = 0.2$$

$$\frac{kT}{J} = \frac{2.5}{10} = 0.25$$

$$\frac{kB}{La} = \frac{2.5}{0.25} = 10$$

$$\frac{Ra}{La} = \frac{1}{0.25} = 4$$

State equs are;
$$\frac{dx}{dt} = -0.2x4 + 0.2xx2$$

$$\frac{dx}{dt} = -10x4 - 4x2 + 4u$$

$$\frac{dx}{dt} = -1$$

$$\frac{1}{\sqrt{(5+3\cdot15)(5+1\cdot05)}} = \frac{1}{\sqrt{(5+3\cdot15)}} + \frac{1\cdot4}{5+1\cdot05}$$

$$= -0.4 e^{-3\cdot15t} + 1.4 e^{-1\cdot05t}$$

$$= -0.4 e^{-3\cdot15t} + 1.4 e^{-1\cdot05t}$$

$$= -0.119 e^{-3\cdot15t} + 0.119 e^{-1\cdot05t}$$

$$= -0.119 e^{-3\cdot15t} + 0.119 e^{-1\cdot05t}$$

$$= -0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

$$= -0.4 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t} + 0.119 e^{-3\cdot15t}$$

14 Marks 7

EE250 Mid sem Solution Shoet

Q3 a.
$$S^4 + 1 = 0$$

 $S^4 + 0S^3 + 0S^2 + 0S + 1 = 0$
Donte Array

Routh Array

$$5^4$$
 1 0 1 $\frac{1}{4}$ $\frac{$

$$S^{2}$$
 O(6) 1 S^{3} now is computed using $S^{4} - \frac{4}{\epsilon}$ 0. Using Aux equivalend S^{3} is obtained using S^{4} network.

There are two non changes in the first Column indiations there are two poles in right half of the [4 marks] s- plane

Q26. :
$$G(S) = \frac{1}{(S-2)^2}$$

$$C(S) = Kp + \frac{KI}{S} + KDS$$

$$C(S) G(S) = \frac{KpS + K_I + KDS^2}{S(S-2)^2}$$
Char psky $1 + C(S)G(S) = 0$

Q3 C.
$$d6$$
 = $s7 + as6 - 4s^{2} - 8s^{4} - ass^{2} - sos^{2} + 100s + aon$
 $s^{7} - 1 - 4 - as - 100$
 $s^{6} - 2 - 8 - 50 = av$
 $s^{9} - 0 = 0$

Ax eqn $as6 - 8s^{4} - sos^{5} + av = 0$

is a factor of $d(s)$
 $s^{6} - 4s^{4} - ass^{5} + 100 = 0$
 $(s^{4} - a^{5}) \cdot (s^{5} - b^{5}) = 0$

Comparing $cool = a^{5} - b^{5} = 100$
 $s^{7} - as^{5} \cdot (s^{5} - 4)$ are factors.

 $s^{7} - as^{5} \cdot (s^{5} - 4)$ are factors.

 $s^{7} - as^{5} \cdot (s^{5} - 4)$ are $s^{7} - as^{5} \cdot (s^{5} - as^{5} - as^{5} \cdot (s^{5} - as^{$

Ronth Array S^{7} 1 - 4 - 25 100 S^{6} 2 - 8 - 50 200 S^{5} 0 (12) 0(-32) 0(-32) 0(-32) $0 (100) 0 A = 125^{5} - 325^{3} - 1005$ S^{4} -321/2 -42 80 0 5^{7} -182 80 0 5^{7} -95^{7} 200^{7} 5^{1} 36^{1} 0 5^{2} 200

There are two sign changes.

There are two poles s= + vs: 4 s= +2
in RHS plane - Validated.

Q4 solution	
part(a)	
08	
$G(s) = S(s+2)(s^2+2s+2)$	
09	
10 poles are 5=0, 5=-2, 53,4 = -1 ±	j1
n=4, m=0, 4 noot locus bra	aches
12 converging at infinity.	
1 1 1 1 1 mole to 18	v+360(l-1)
Asymphote angles $\phi_0 = 18$	4
02	
$\phi_1 = 45^{\circ}, \phi_2 = 135^{\circ}, \phi_3 = 225$	$\phi_{0} = 315^{\circ}$
03	
-0-2-1-1	•
Centroid = $\frac{-0-2}{4}$ = -:	1
*	
Break away points	4
06 15 rear way porces	
$K = - S(S+2)(S^2+2S+2)$	
07	1
= - (57+45"+65+45	26 Sunday
Notes $\frac{dK}{ds} = -(4s^3 + 12s^2 +$	4)=0
Birthday / Applyersary \rightarrow $3 + 35 + 1 =$: 0
billiady / / lillivolodiy	· · · · · · · · · · · · · · · · · · ·
$\frac{(S+1)^3=0}{\text{MAR SMTWTFS SMTWTFS SMTWT}}$	FS SMTWTFS
IVIAN : 10 W F W F E OF 10 W F W F O O O O O O O O O O O O O O O O	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, part (b)		
on Char poly nomial		
- 4 · 1 · 3 · C · 2 · 1 · C + 16	$\zeta = 0$	
5 + 45 + 65 + 45 + 15		
10 S I 6 K.		
	for cross over	
11 53 4 4 0		
	4K-20=0	
12 5 - 4-24 K O	$K = 20_{-5}$	
01 1 6 14 2 2	4=5	
S - 4K-20 0	52+5=0	
02 5		
S K	5+1=0	
03	181,2 = ±11	
• 3		
04		
part (c)		
$\frac{6}{C(C)} = \frac{(C+1)}{C(C)}$		
90)-	+2)	
$\frac{S(\zeta+2)(\zeta+2)}{S(\zeta+2)}$		
or n=4, m=1, 3 ro	77 Cocus Grandes	
Asymptote angles 60°, 180°, 300°		
Notes		
Centroid = $\frac{-2-1-1+1}{4-1} = -1$		
<u> </u>		

Birthday / Anniversary

