Josh Wattay Machine Learning with Python Task 2.2 CareerFoundry

Best performance currently achieved with hyperparameters of 20, 32, 128. Softmax is the best performing activation function at this point and the most stations identified was 6.

Convolution Neural Network (CNN) Models

Hyperparameters (epochs, batch_size, n_hidden)	Activation Function	Accuracy	Stations Identified
8, 16, 32	softmax	10.34%	4
16, 32, 64	softmax	9.65%	4
32, 64, 128	softmax	12.72%	4
50, 64, 128	Relu	8.48%	4
64, 64, 128	softmax	11.52%	4

Recurrent Neural Network (RNN)

Hyperparameters (epochs, batch_size, n_hidden)	Activation Function	Accuracy	Stations Identified
8, 16, 32	Softmax	13.66%	5
20, 32, 128	Softmax	10.30%	6
32, 32, 128	Sigmoid	10.54%	2

Both models have terrible accuracy at the moment, and I was not able to have either model identify all 15 weather stations.

```
# Create a Keras leyered model. Use initial hyperparameters: 8, 16, 32, softmax
epochs = 8
batch_size = 16
n_hidden = 32

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
```

```
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=2)
Epoch 1/8
1122/1122 - 6s - 5ms/step - accuracy: 0.1034 - loss: 4109.7939
Epoch 2/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0926 - loss: 16371.8750
Epoch 3/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0948 - loss: 21831.8066
Epoch 4/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0917 - loss: 34837.9805
Epoch 5/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0940 - loss: 53474.6445
Epoch 6/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0938 - loss: 69176.7266
Epoch 7/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0909 - loss: 95894.3828
Epoch 8/8
1122/1122 - 3s - 3ms/step - accuracy: 0.0917 - loss: 99429.1250
<keras.src.callbacks.history.History at 0x190594412d0>
# Create a Keras leyered model. Use hyperparameters: 16, 32, 64, softmax
epochs = 16
batch_size = 32
n hidden = 64
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])
model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
```

```
model.fit(X train, y train, batch size=batch size, epochs=epochs, verbose=2)
Epoch 1/16
561/561 - 5s - 10ms/step - accuracy: 0.0956 - loss: 1688.6029
Epoch 2/16
561/561 - 2s - 3ms/step - accuracy: 0.0965 - loss: 8821.6807
Epoch 3/16
561/561 - 2s - 3ms/step - accuracy: 0.0952 - loss: 15359.5596
Epoch 4/16
561/561 - 2s - 3ms/step - accuracy: 0.0917 - loss: 27884.2246
Epoch 5/16
561/561 - 2s - 3ms/step - accuracy: 0.0934 - loss: 41676.1992
Epoch 6/16
561/561 - 2s - 4ms/step - accuracy: 0.0894 - loss: 47221.6758
Epoch 7/16
561/561 - 2s - 3ms/step - accuracy: 0.0903 - loss: 61723.9727
Epoch 8/16
561/561 - 2s - 3ms/step - accuracy: 0.0917 - loss: 70095.1641
Epoch 9/16
561/561 - 2s - 3ms/step - accuracy: 0.0930 - loss: 96362.1953
Epoch 10/16
561/561 - 2s - 4ms/step - accuracy: 0.0919 - loss: 111852.8828
Epoch 11/16
561/561 - 2s - 4ms/step - accuracy: 0.0931 - loss: 122734.4297
Epoch 12/16
561/561 - 2s - 4ms/step - accuracy: 0.0949 - loss: 140448.1562
Epoch 13/16
561/561 - 2s - 4ms/step - accuracy: 0.0950 - loss: 162840.9531
Epoch 14/16
561/561 - 2s - 4ms/step - accuracy: 0.0922 - loss: 176293.3125
Epoch 15/16
561/561 - 2s - 3ms/step - accuracy: 0.0938 - loss: 198541.7344
Epoch 16/16
561/561 - 2s - 3ms/step - accuracy: 0.0905 - loss: 225486.2031
<keras.src.callbacks.history.History at 0x190671bbf10>
```

```
# Create a Keras Leyered model. Use hyperparameters: 32, 64, 128, softmax
epochs = 32
batch_size = 64
n_hidden = 128

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
```

```
# Evaluate
print(confusion_matrix(y_test, model.predict(X_test)))
```

141/141			1s 4ms/st	ер
Pred	BASEL	BELGRADE	HEATHROW	MUNCHENB
True				
BASEL	2895	28	2	2
BELGRADE	804	8	1	0
BUDAPEST	149	1	1	0
DEBILT	71	0	0	0
DUSSELDORF	31	0	0	0
HEATHROW	82	0	0	0
KASSEL	8	0	0	0
LJUBLJANA	46	0	0	0
MAASTRICHT	6	0	0	0
MADRID	331	8	0	0
MUNCHENB	5	0	0	0
OSLO	6	0	0	0
STOCKHOLM	2	0	0	0
VALENTIA	1	0	0	0

```
# Create a Keras Leyered model. Use hyperparameters: 50, 64, 128, relu
epochs = 50
batch_size = 64
n_hidden = 128

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='relu'))
```

```
# Create a Keras leyered model. Use hyperparameters: 64, 64, 128, softmax
epochs = 64
batch_size = 64
n_hidden = 128

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
```

Josh Wattay Machine Learning with Python Task 2.2 CareerFoundry

```
# Evaluate
print(confusion_matrix(y_test, model.predict(X_test)))
141/141 ---- 1s 3ms/step
Pred BASEL BELGRADE KASSEL LJUBLJANA
True
BASEL
       16
               24 12
                         2875
        1
BELGRADE
               10
                    1
                          801
               0
BUDAPEST
         0
                     0
                           151
DUSSELDORF 0
HEATHROW 1
KASSEI
               1
                     0
                           69
               0
                     0
                           31
               2
                    0
                           79
0
                           8
                    0
                           46
                     0
                           5
                          330
                    1
                    0
                           5
                     0
                           6
STOCKHOLM 0
VALENTIA 0
                     0
                            2
             0
                     0
                           1
```

```
# Create a Keras Leyered model. Use initial hyperparameters: 8, 16, 32, softmax
epochs = 8
batch_size = 16
n_hidden = 32

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax')) #Don't use relu here!
```

Josh Wattay Machine Learning with Python Task 2.2 CareerFoundry

MAASTRICHT

MADRID

0SL0

MUNCHENB

STOCKHOLM

VALENTIA

0

0

0

0

0

0

```
model.fit(X_train,
        y_train,
        batch size=batch size,
        validation_data=(X_test, y_test),
       epochs=epochs)
Epoch 1/8
                      1122/1122 -
Epoch 2/8
1122/1122 -
                        - 7s 6ms/step - accuracy: 0.1151 - loss: 10.5950 - val accuracy: 0.0760 - val loss: 9.7343
Epoch 3/8
1122/1122 -
                       -- 7s 6ms/step - accuracy: 0.1019 - loss: 10.4840 - val_accuracy: 0.0758 - val_loss: 10.1375
Epoch 4/8
                    ---- 7s 6ms/step - accuracy: 0.1015 - loss: 11.0031 - val_accuracy: 0.0758 - val_loss: 10.5062
1122/1122 -
Epoch 5/8
1122/1122 -
                       -- 7s 6ms/step - accuracy: 0.0871 - loss: 10.7622 - val_accuracy: 0.0758 - val_loss: 10.8642
Epoch 6/8
1122/1122 -
                       — 7s 6ms/step - accuracy: 0.0808 - loss: 11.1825 - val_accuracy: 0.0755 - val_loss: 11.3190
Fnoch 7/8
                       — 7s 6ms/step - accuracy: 0.0773 - loss: 11.7268 - val_accuracy: 0.0755 - val_loss: 11.6791
1122/1122 -
Epoch 8/8
                 1122/1122 -
<keras.src.callbacks.history.History at 0x1906acd3810>
```

<pre># Evaluate print(confusion_matrix(y_test, model.predict(X_test)))</pre>							
141/141 1s 6ms/step							
Pred	KASSEL	MADRID	0SL0	SONNBLICK	VALENTIA		
True							
BASEL	1	2914	1	10	1		
BELGRADE	0	811	0	2	0		
BUDAPEST	0	151	0	0	0		
DEBILT	0	71	0	0	0		
DUSSELDORF	0	31	0	0	0		
HEATHROW	0	81	0	1	0		
KASSEL	0	8	0	0	0		
LJUBLJANA	0	46	0	0	0		

6

5

6

2

1

339

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

```
# Create a Keras leyered model. Change hyperparameters: 20, 32, 128, softmax
epochs = 20
batch_size = 32
n_hidden = 128

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax')) #Don't use relu here!
```

```
# Evaluate
print(confusion_matrix(y_test, model.predict(X_test)))
```

141/141		2s	10ms/step			
Pred	BELGRADE	BUDAPEST	MAASTRICHT	MADRID	SONNBLICK	VALENTIA
True						
BASEL	2	1	1	2920	3	0
BELGRADE	0	0	0	811	2	0
BUDAPEST	0	0	0	151	0	0
DEBILT	0	0	0	71	0	0
DUSSELDORF	0	0	0	31	0	0
HEATHROW	0	0	0	82	0	0
KASSEL	0	0	0	8	0	0
LJUBLJANA	0	0	0	46	0	0
MAASTRICHT	0	0	0	6	0	0
MADRID	0	0	0	338	0	1
MUNCHENB	0	0	0	5	0	0
OSLO	0	0	0	6	0	0
STOCKHOLM	0	0	0	2	0	0
VALENTIA	0	0	0	1	0	0

		25	9ms/st
BASEL	SONNBLICK		
2925	2		
812	1		
151	0		
71	0		
31	0		
82	0		
8	0		
46	0		
6	0		
339	0		
5	0		
6	0		
2	0		
1	0		
	2925 812 151 71 31 82 8 46 6 339 5 6	BASEL SONNBLICK 2925 2 812 1 151 0 71 0 31 0 82 0 8 0 46 0 6 0 339 0 5 0 6 0 2 0	2925 2 812 1 151 0 71 0 31 0 82 0 8 0 46 0 6 0 339 0 5 0 6 0 2 0