ALGORITMICA GRAFURILOR **Săptămâna 9**

C. Croitoru

croitoru@info.uaic.ro

FΙΙ

November 23, 2013

OUTLINE

• Fluxuri (ag 13-14 allinone.pdf pag. 212 $\longrightarrow \dots$)

Problemele pentru seminarul 9

Prezentarea temei pentru acasă

Problema fluxului maxim

Numim rețea (de transport) cu intrarea s și ieșirea t, 4-uplul

$$\mathbf{R} = (\mathbf{G}, \mathbf{s}, \mathbf{t}, \mathbf{c})$$
 unde: $\mathbf{G} = (V, E)$ este un digraf,

$$-s, t \in V; \quad s \neq t; \quad d_G^+(s) > 0; \quad d_G^-(t) > 0,$$

- $c: E \to \mathbf{R}_+$; c(e) este **capacitatea** arcului e.

$$V=\{1,2,\ldots,n\} \quad (n\in \mathbf{N}^*)$$
 și $|E|=m$. Extindem funcția c la

$$c: V imes V o \mathbf{R}_+ ext{ prin } c((i,j)) = egin{cases} c(ij) & ext{dacă} & ij \in E \ 0 & ext{dacă} & ij \notin E \end{cases} = c_{ij}.$$

Numim flux în rețeaua R = (G, s, t, c) o funcție $x : V \times V \rightarrow \mathbf{R}$, a.î.:

(i)
$$0 \le x_{ij} \le c_{ij} \quad \forall ij \in V \times V$$

(ii)
$$\sum_{i\in V} x_{ji} - \sum_{i\in V} x_{ij} = 0 \quad \forall i\in V - \{s,t\}.$$

Dacă $ij \in E$ atunci x_{ij} se numește fluxul (transportat) pe arcul ij. Evident, condiția (i) cere ca fluxul pe orice arc să fie nenegativ și subcapacitar, iar condiția (ii) (legea de conservare a fluxului) cere ca suma fluxurilor pe arcele care intră în vîrful i să fie egală cu suma fluxurilor pe arcele care ies din vîrful i.

Problema fluxului maxim

Definiție: Dacă x este un flux în rețeaua R = (G, s, t, c), se numește valoarea fluxului x numărul

$$v(x) = \sum_{j \in V} x_{jt} - \sum_{j \in V} x_{tj}.$$

v(x) este fluxul net care ajunge în ieșirea rețelei și este egal cu fluxul net care iese din intrarea rețelei.

Problema fluxului maxim:

Dată R = (G, s, t, c) o rețea, să se determine un flux de valoare maximă.

Problema fluxului maxim

Definiție. Dacă P este un drum în \overline{G} , multigraful suport al digrafului G, și $e = v_i v_j$ este o muchie a lui P atunci: dacă e corespunde arcului $v_i v_j$ al lui G, e se numește arc direct al drumului P; dacă e corespunde arcului $v_i v_i$ al lui G, atunci e se numește arc invers.

Definiție. Fie R=(G,s,t,c) și x flux în R. Se numește **C-drum** (în R relativ la fluxul x) un drum D în \overline{G} cu proprietatea că $\forall ij \in E(D)$:

 $x_{ij} < c_{ij}$ dacă ij este arc direct,

 $x_{ji} > 0$ dacă ij este arc invers.

Dacă D este un C-drum și $ij \in E(D)$, **capacitatea reziduală** a lui ij (relativ la C-drumul D) este $r(ij) = \begin{cases} c_{ij} - x_{ij} & \text{dacă } ij \text{ arc direct } \hat{\mathbf{n}} \ D \\ x_{ji} & \text{dacă } ij \text{ arc invers } \hat{\mathbf{n}} \ D \end{cases}$. Capacitatea reziduală a drumului D este $r(D) = \min_{e \in E(D)} r(e)$.

Definiție. Se numește **drum de creștere** a fluxului x, în rețeaua R = (G, s, t, c), un C-drum de la s la t.

Problema fluxului maxim

Lema 1. Dacă D este un drum de creștere a fluxului x în rețeaua R = (G, s, t, c), atunci $x^1 = x \otimes r(D)$ definit prin

$$x_{ij}^1 = \begin{cases} x_{ij} & \text{dacă } \overline{ij} \notin E(D) \\ x_{ij} + r(D) & \text{dacă } ij \in E(D), ij \text{ arc direct în } D \\ x_{ij} - r(D) & \text{dacă } ji \in E(D), ji \text{ arc invers în } D \end{cases}$$

este flux în R și $v(x^1) = v(x) + r(D)$.

Observăm că dacă x admite un drum de creștere atunci x nu este flux de valoare maximă.

Definiție. Se numește **secțiune** în rețeaua R = (G, s, t, c), o partiție (S, T) a lui V cu $s \in S$ și $t \in T$. **Capacitatea secțiunii** (S, T) este

$$c(S,T) = \sum_{i \in S} \sum_{j \in T} c_{ij}$$

(suma capacităților arcelor de la S la T).

Problema fluxului maxim

Lema 2. Daca x este un flux în R = (G, s, t, c) și (S, T) este o secțiune a rețelei, atunci

$$v(x) = \sum_{i \in S} \sum_{j \in T} (x_{ij} - x_{ji}).$$

(valoarea fluxului este egală cu fluxul net ce trece prin orice secțiune.)

Teorema 1. (Teorema drumului de creștere)

Un flux x este de valoare maximă într-o rețea R, dacă și numai dacă, nu există drumuri de creștere a fluxului x în rețeaua R.

Teorema 2. (Teorema fluxului intreg)

Dacă toate capacitățile sînt întregi, atunci există un flux de valoare maximă cu toate componentele întregi (flux întreg de valoare maximă).

Teorema 3. (Ford-Fulkerson, 1956)

Valoarea maximă a unui flux în rețeaua R = (G, s, t, c) este egală cu capacitatea minimă a unei secțiuni a rețelei.

Problema fluxului maxim

Algoritmul lui Ford și Fulkerson pentru aflarea unui flux de valoare maximă

Se va folosi un procedeu de etichetare a vîrfurilor rețelei, în vederea depistării drumurilor de creștere a fluxului curent x. Dacă nu există drumuri de creștere, fluxul va fi de valoare maximă.

```
Eticheta atribuită unui vîrf j \in V are trei componente (e_1, e_2, e_3) unde e_1 \in V \cup \{0\}; e_2 \in \{direct, invers\}; e_3 \in R_+ și au urmatoarea semnificație:
- dacă e_2 = direct și e_1 = i atunci \exists un C-drum P de la s la j cu ultimul arc ij, arc direct și r(P) = e_3;
- dacă e_2 = invers și e_1 = i atunci \exists un C-drum P de la s la j cu ultimul arc ij, arc invers și r(P) = e_3.

Inițial, se etichetează sursa s cu eticheta (0, ., \infty). Celelalte vîrfuri primesc etichetă prin "cercetarea" vîrfurilor deja etichetate:

Dacă i este un vîrf etichetat, atunci \forall j \in V
Dacă j neetichetat, ij \in E și x_{ij} < c_{ij} atunci
j se etichetează e = (i, direct, min(e_3[i], c_{ij} - x_{ij}));
Dacă j neetichetat, ji \in E și x_{ji} > 0 atunci
j se etichetează e = (i, invers, min(e_3[i], x_{ji})).
```

Algoritmul lui Ford și Fulkerson

```
1: Se alege x = (x_{ii}) flux inițial (de ex. fluxul nul);
    Se etichetează s cu (0, ..., \infty)
2: while (∃ vîrfuri etichetate necercetate) do
      "alege" un vîrf etichetat și necercetat i;
        etichetare(i);
        if (t a primit etichetă) then
           modifică fluxul pe drumul dat de etichete;
           sterge toate etichetele;
            etichetează s cu (0,.,\infty)
3: S \leftarrow \{i | i \in V, i \text{ are etichetă}\}
    T \leftarrow V - S
x este flux de valoare maximă
(S,T) este secțiune de capacitate minimă.
```

Algoritmul are complexitatea O(mv), unde v este valoarea fluxului maxim iar m = |E|.

Modificarea lui Edmonds & Karp a alg. lui Ford & Fulkerson

Numim **drum minim de creștere a fluxului** x în rețeaua R, un drum de creștere de **lungime minimă** printre toate drumurile de creștere.

Fie x un flux oarecare în rețeaua R. Definim șirul de fluxuri x^k în R astfel:

$$x^0 \leftarrow x$$
; $x^k \leftarrow x^{k-1} \bigotimes r(P_{k-1})$, P_k este drum minim de creștere relativ la x^{k-1} ; $k = 1, 2, ...$

Teorema 4. (Edmonds, Karp) Dacă $x=x^0$ este un flux oarecare în rețeaua R, atunci șirul de fluxuri x^1, x^2, \ldots obținut din x^0 prin creșteri succesive pe drumuri minime de creștere, are cel mult $\frac{mn}{2}$ elemente (în cel mult $\frac{mn}{2}$ creșteri succesive, se obține un flux care nu admite drumuri de creștere).

Teorema 5. (Edmonds- Karp 1972)Dacă se modifică algoritmul lui Ford și Fulkerson cu precizarea alegerii bfs a vîrfurilor etichetate în vederea cercetării, atunci, fluxul maxim se obține în timpul $O(m^2n)$.

Problemele pentru seminarul 9

Se vor discuta (cel puțin) patru probleme dintre următoarele:

- Problema 1, Setul 11
- Problemele 1,3,4 Setul 10
- Problema 1, Setul 11'
- Problema 4 Setul 7
- Problema 1, Setul 7"
- Problemele 1,3 Setul 21