最适合LLM推理的NVIDIA GPU全面指南

机器AI学习 数据AI挖掘 2024年10月16日 13:25 江苏

介绍

大型语言模型 (LLM) 如GPT-4、BERT以及其他基于Transformer的模型已经革新人工智能领域。这些模型在训练和推理过程中需要大量的计算资源。选择合适的GPU进行LLM推理可以显著影响性能、成本效益和可扩展性。 ()

へ 本指南将帮助你选择最适合你需求的GPU,不论是为个人项目、研究环境还是大规模生产部署。 **⑥**

理解关键GPU规格

在深入了解推荐列表之前,让我们简要概述一些关键规格,这些规格决定了GPU是否适合LLM推理:

- CUDA核心: 这是GPU的主要处理单元。更高的CUDA核心数通常意味着更好的并行处理性能。
- ◎ 张量核心: 专门设计用于深度学习任务,例如矩阵乘法,这对神经网络操作至关重要。
- VRAM (视频RAM): 这是GPU可用的内存,用于存储数据和模型。更多的VRAM可以更高效地处理大型模型和数据集。
- ⑦ 时钟频率:表示GPU的操作速度,以MHz为单位。更高的频率通常意味着更好的性能。
- → 功耗: 以瓦特 (W) 为单位,表示GPU在运行时消耗的电量。更高的功耗可能导致冷却和能源成本增加。
- 6 价格: GPU的成本是一个重要因素,特别是在预算有限的企业或研究实验室中。在性能需求和成本效益之间找到平衡非常重要。

适用于LLM推理的NVIDIA GPU选择

以下表格根据性能和价格对NVIDIA GPU进行了排名,以评估它们在LLM推理方面的适用性:

消费级和专业级GPU

				-22-		-		
GPU Model	Architecture	CUDA Cores	Tensor Cores	VRAM	Clock Frequency (Base/Boost)	Memory Bandwidth	Power Consumption	Approximate Price (USD)
NVIDIA RTX 4090	Ada Lovelace	16,384	512	24 GB GDDR6X	2,235 MHz / 2,520 MHz	1,008 GB/s	450 W	\$1,600 - \$2,500
NVIDIA RTX 6000 Ada Gen	Ada Lovelace	18,176	568	48 GB GDDR6	1,860 MHz / 2,500 MHz	1,152 GB/s	300 W	\$4,000 - \$5,500
NVIDIA RTX A6000 (Turing)	Turing	10,752	336	48 GB GDDR6	1,410 MHz / 1,800 MHz	768 GB/s	300 W	\$4,500 - \$5,500
NVIDIA Titan RTX	Turing	4,608	576	24 GB GDDR6	1,350 MHz / 1,770 MHz	672 GB/s	280 W	\$2,500 - \$3,500
NVIDIA RTX 3080	Ampere	8,704	272	10 GB / 12 GB GDDR6X	1,440 MHz / 1,710 MHz	760 GB/s	320 W	\$800 - \$1,200
NVIDIA RTX 3090	Ampere	10,496	328	24 GB GDDR6X	1,395 MHz / 1,695 MHz	936 GB/s	350 W	\$1,500 - \$2,500
NVIDIA RTX 2080 Ti	Turing	4,352	544	11 GB GDDR6	1,350 MHz / 1,545 MHz	616 GB/s	250 W	\$800 - \$1,500
NVIDIA RTX 2080 Super	Turing	3,072	384	8 GB GDDR6	1,650 MHz / 1,815 MHz	448 GB/s	250 W	\$600 - \$800
NVIDIA RTX 2070 Super	Turing	2,560	256	8 GB GDDR6	1,605 MHz / 1,770 MHz	448 GB/s	215 W	\$400 - \$600
NVIDIA RTX 2060 Super	Turing	2,176	192	8 GB GDDR6	1,470 MHz / 1,650 MHz	448 GB/s	175 W	\$300 - \$400
NVIDIA RTX 3060	Ampere	3,584	112	12 GB GDDR6	1,320 MHz / 1,777 MHz	360 GB/s	170 W	\$300 - \$500
NVIDIA T4	Turing	2,560	320	16 GB	585 MHz / 1,590 MHz /	320 GB/机器	70W KAI学习数	\$1,000- 据 \$ 1,000-掘
				- 170				

高端企业图形处理器

GPU Model	Architecture	CUDA Cores	Tensor Cores	VRAM	Clock Frequency (Base/Boost)	Memory Bandwidth	Power Consumption	Approximate Price (USD)
NVIDIA H200	Hopper	18,432	13,500	96 GB HBM3	1,500 MHz / 2,000 MHz	4,000 GB/s	800 W	\$30,000 - \$35,000
NVIDIA H100	Hopper	16,896	12,288	80 GB HBM3	1,400 MHz / 1,800 MHz	3,200 GB/s	700 W	\$25,000 - \$30,000
NVIDIA A100	Ampere	6,912	432	40 GB / 80 GB HBM2e	1,095 MHz / 1,410 MHz	1,555 GB/s	400 W	\$12,000 - \$15,000
NVIDIA RTX 6000 Ada Gen	Ada Lovelace	18,176	568	48 GB GDDR6	1,860 MHz / 2,500 MHz	1,152 GB/s	300 W	\$4,000 - \$5,500
NVIDIA L40	Ada Lovelace	14,848	9,728	48 GB GDDR6	1,335 MHz / 2,040 MHz	1,152 GB/s	350 W	\$7,000 - \$10,000
NVIDIA A40	Ampere	7,552	4,608	48 GB GDDR6	1,410 MHz / 1,740 MHz	696 GB/s	300 W	\$4,000 - \$6,000
NVIDIA V100	Volta	5,120	640	16 GB / 32 GB HBM2	1,155 MHz / 1,380 MHz	900 GB/s	300 W	\$8,000 - \$12,000
NVIDIA A30	Ampere	4,608	3,584	24 GB GDDR6	1,500 MHz / 1,740 MHz	933 GB/s	165 W	\$3,000 - \$4,500
NVIDIA T4	Turing	2,560	320	16 GB GDDR6	585 MHz / 1,590 MHz	320 GB/s	70 W	\$1,000 - \$1,500
NVIDIA P100	Pascal	3,584	0	12 GB / 16 GB HBM2	1,189 MHz / 1,328 MHz	732 GB/s 5号·机器	250 W 器AI学习 数	\$2,500 - \$3,000 据AI挖掘

适合LLM推理的顶级选择

NVIDIA H200:

最佳应用:需要最大性能和内存带宽以处理大规模LLM推理任务的企业级AI部署。

性能:拥有18,432个CUDA核心、96GB HBM3内存和惊人的4,000GB/s带宽的无与伦比的GPU性能。

NVIDIA H100:

最佳应用:专注于大规模LLM推理的企业和研究实验室。

性能:拥有16,896个CUDA核心和80GB HBM3内存,H100在极致性能和功耗之间取得了平衡,非常适合AI驱动的工作负载。

NVIDIA A100:

最佳应用:相比于H100,需要高性能AI推理和训练,但价格更低的组织。

性能:提供大量的内存带宽 (1,555GB/s) 和40GB或80GB HBM2e内存选项,使其成为苛刻AI模型的理想选择。

NVIDIA RTX 6000 Ada Gen:

最佳应用:无需HBM3,专注于性能的专业LLM推理任务。

性能:提供48GB的GDDR6内存, 18,176个CUDA核心,以及针对小型企业和研究设置的性能与价格平衡。

NVIDIA L40:

最佳应用:中型企业的高性能AI推理。

性能: L40通过提供9,728个Tensor核心和48GB GDDR6内存实现了卓越的性能,同时保持比H100更低的功耗。

预算友好型LLM推理选项

NVIDIA RTX 4090:

最佳应用:高端消费级AI推理设置。

性能:配备24GB的GDDR6X内存,内存带宽为1,008GB/s。作为一款消费级GPU,它提供了卓越的性能,尽管其450W的功耗相当显著。这使其非常适合以竞争性价格执行高性能任务。

NVIDIA RTX 6000 Ada Generation:

最佳应用:需要大量内存容量和高吞吐量的专业AI工作负载。

性能:提供48GB的GDDR6内存,大量CUDA和Tensor核心,以及1,152GB/s的内存带宽,确保大规模数据传输和LLM推理任务的高效执行。

NVIDIA Titan RTX:

最佳应用: AI开发者需要强劲Tensor核心性能的专业级AI开发和推理。

性能: Titan RTX提供24GB的GDDR6内存和672GB/s的内存带宽,为LLM推理和深度学习任务提供可靠的性能,尽管它缺乏最新的架构改进。

◆ NVIDIA RTX 3080 & RTX 3090:

最佳应用:高性能游戏和AI开发,尤其是对于需要在更可访问的价格点上获得强大性能的开发者。

性能:这两款GPU提供了强劲的性能与价格比,RTX 3090拥有24GB的GDDR6X内存,使其特别适合内存密集型AI任务。这些型号在从事AI和游戏开发的开发人员中非常受欢迎。

NVIDIA T4:

最佳应用:需要更低功耗的基于云的推理工作负载或边缘计算。

性能: T4在提供足够的性能以处理基于云或边缘AI推理工作负载的同时, 优化了更低的功耗(16GB的GDDR6内存), 使其非常适合注重能耗的AI应用。

◎ 结论

选择适合LLM推理的正确GPU很大程度上取决于您的项目规模、模型复杂性以及预算限制。

对于企业级部署,NVIDIA H200和H100等GPU提供了无与伦比的性能,具有大量的CUDA和Tensor核心、高VRAM和惊人的内存带宽,非常适合最大的模型和最密集的AI工作负载。这些GPU价格较高,但为前沿AI应用和大规模LLM推理提供了必要的计算能力。

对于寻求在较低价格下获得高性能的组织,NVIDIA A100和RTX 6000 Ada Generation在功率和成本之间找到了平衡,提供了大量VRAM和强大的Tensor核心性

能,非常适合中型企业和研究实验室的需求。

如果成本和能源效率是主要考虑因素,NVIDIA L40和A40等GPU提供了强大的Tensor核心数量、高VRAM容量以及高效的功耗。这些都是中型组织执行高效AI任务的优秀选择。

对于小型团队或个人开发者,如NVIDIA RTX 4090或RTX 3090等消费级GPU是优秀的选择,它们以专业级GPU的一小部分成本提供了强大的性能。这些GPU拥有大量的CUDA和Tensor核心以及充足的VRAM,非常适合本地AI开发环境或小规模的LLM推理任务。价格在\$1,500至\$2,500之间,它们为希望在没有企业级预算的情况下获得强大硬件的AI从业人员提供了极高的价值。

对于基于云的推理或边缘计算,NVIDIA T4和P100提供了成本低廉的专业级LLM推理入门点,具有较低的功耗,非常适合轻量级推理工作负载和小型AI应用。

最终,GPU的选择应与您的AI工作负载的具体需求相匹配,平衡性能、可扩展性和成本,以确保您能够高效地处理从小型模型到最苛刻的大语言模型的LLM推理任务。