Logistic Regression

October 30, 2021

1 Logistic Regression

1.1 Importing the libraries

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
[2]: from sklearn.model_selection import train_test_split
[3]: from sklearn.preprocessing import StandardScaler
[4]: from sklearn.linear_model import LogisticRegression
[5]: from sklearn.metrics import confusion_matrix,accuracy_score
     from sklearn.metrics import classification_report
    1.2 Importing the dataset
[6]: dataset = pd.read_csv("Social_Network_Ads.csv")
[7]: x = dataset.iloc[: , :-1].values
     y = dataset.iloc[: , -1].values
[8]: dataset.head()
[8]:
        Age
             EstimatedSalary
                              Purchased
     0
        19
                       19000
                                      0
     1
         35
                       20000
                                      0
     2
         26
                                      0
                       43000
     3
         27
                       57000
                                      0
         19
                       76000
                                      0
[9]: print(x)
    19000]
          19
     35
              20000]
     Г
          26 43000]
          27 57000]
```

- 19 76000]
- [27 58000]
- [27 84000]
- 32 150000]
- [25 33000]
- [35 65000]
- 26 [00008
- 52000] 26
- [20 86000]
- 18000]
- 32
- [18 82000]
- [00008 29
- [47 25000]
- 45 26000]
- 46 28000]
- 48 29000]
- [45 22000]
- [47 49000]
- 41000] 48
- [45 22000]
- 23000] 46
- [47 20000]
- [49 28000]
- [47 30000]
- 29 43000]
- [31 18000]
- 31 74000]
- 27 137000]
- 21
- 16000]
- [28 44000]
- 90000] 27
- 35 27000] [33 28000]
- [49000] 30
- 26 72000]
- 27 31000]
- [27 17000]
- [51000] 33
- 35 108000]
- [30 15000]
- [28 84000]
- 20000] 23
- 25 79000]
- 27 54000]
- [30 135000]
- 31 89000]
- 24 32000]
- [44000] 18

- 29 83000]
- [35 23000]
- [27 58000]
- 24 55000]
- [23 48000]
- 28 79000]
- 22 18000]
- [32 117000]
- [27 20000]
- 87000] 25
- [23 66000]
- 32 120000]
- [59 83000]
- 24 58000]
- 24 19000]
- [23 82000]
- 22 63000]
- 31 68000]
- [25 [00008
- 24 27000]
- 23000] 20
- [33 113000]
- 18000] 32 [34 112000]
- 18 52000]
- 22 27000]
- [28 87000]
- 26 17000]
- 30 [00008
- [39 42000]
- 49000] 20
- 35 [00088
- [62000] 30
- [31 118000]
- 24 55000]
- 28 85000]
- [26 81000]
- 50000] 35
- 22 81000]
- [30 116000]
- [26 15000]
- 28000] 29
- 29 83000]
- 35 44000]
- [35 25000]
- 28 123000]
- 35 73000]
- [37000] 28

- 27 [00088
- [28 59000]
- [32 86000]
- 33 149000]
- [19 21000]
- [21 72000]
- 26 35000]
- 89000] 27
- [26 86000]
- [00008 38
- 39 71000]
- 37 71000]
- [61000] 38
- 37 55000]
- 42 [00008
- [40 57000]
- 35 75000]
- 36 52000]
- 59000] 40
- [41 59000]
- 75000] 36
- [37 72000]
- [40 75000]
- [35 53000]
- 51000] 41
- [39 61000] [42 65000]
- 26 32000]
- 30 17000]
- [26 84000]
- 31 58000]
- 33 31000]
- [30 87000]
- [68000] 21
- 28 55000]
- 23 63000]
- [20 82000]
- [30 107000]
- 28 59000]
- [19 25000]
- [19 85000]
- 68000] 18
- 35 59000]
- [89000] 30
- [34 25000]
- 24 89000]
- 27 96000]
- [30000] 41

- 29 61000]
- [20 74000]
- [26 15000]
- 41 45000]
- [31 76000]
- 36 50000] 40 47000]
- [15000] 31
- [46 59000]
- 75000] 29
- [26 30000]
- 32 135000]
- [32 100000]
- 25 90000]
- 37 33000]
- 38000] 35
- 33 69000]
- [18 86000]
- [22 55000]
- 71000] 35
- 29 148000]
- [29 47000]
- [21 88000]
- [34 115000]
- 26 118000]
- 34 43000]
- [[34 72000]
- 23 28000]
- 35 47000] [25
- 22000]
- 23000] 24
- 31 34000] [16000] 26
- [71000] 31
- 32 117000]
- 33 43000]
- [33 60000]
- 66000] 31
- 20 82000]
- [33 41000]
- [35 72000]
- 32000] 28
- 24 84000]
- 26000] 19
- [29 43000]
- 70000] 19
- 89000] 28
- [43000] 34

- 30 79000]
- [20 36000]
- [26 [00008
- 35 22000]
- [35 39000]
- [49 74000]
- [39 134000]
- [41 71000]
- [58 101000]
- [47 47000]
- 55 130000]
- 52 114000]
- [40 142000]
- 46 22000]
- [48 96000]
- [52 150000]
- 59 42000]
- 35 58000]
- [43000] 47
- [60 108000]
- [65000] 49
- [40 78000]
- [46 96000] [59 143000]
- [41 80000]
- 35 91000]
- 37 144000]
- 60 102000]
- 35 60000]
- [53000] 37
- [36 126000]
- 56 133000]
- [40 72000]
- [[00008 42
- 35 147000]
- 42000] 39
- [40 107000]
- [49 86000]
- [38 112000]
- [46 79000]
- [40 57000]
- [00008 37
- 46 82000]
- 53 143000]
- [42 149000]
- [38 59000]
- 50 88000]
- [56 104000]

- 41 72000]
- [51 146000]
- [35 50000]
- 57 122000]
- [41 52000]
- [97000] 35
- 44 39000]
- [37 52000]
- [48 134000]
- [37 146000]
- 50 44000]
- [52 90000]
- [72000] 41
- 40 57000]
- [58 95000]
- [45 131000]
- 35 77000]
- 36 144000]
- [55 125000]
- [72000] 35
- [48 90000]
- [42 108000]
- [40 75000]
- [74000] 37
- [47 144000]
- [40 61000]
- [43 133000]
- [59 76000]
- 42000] 60
- [39 106000]
- [57 26000]
- 57 74000]
- [38 71000]
- [[00088 49
- 52 38000]
- [36000] 50
- [59 [00088
- [35 61000]
- [37 70000]
- [52 21000]
- [48 141000] 37 93000]
- 37 62000]
- [48 138000]
- [41 79000]
- [37 78000]
- 39 134000]
- [89000] 49

- 55 39000]
- [37 77000]
- [35 57000]
- 36 63000]
- [42 73000]
- [43 112000]
- 45 79000]
- [46 117000]
- [58 38000]
- 48 74000]
- [37 137000]
- 37 79000]
- [60000] 40
- 42 54000]
- 51 134000]
- [47 113000]
- 36 125000]
- 38 50000]
- [70000] 42
- 39 96000]
- 38 50000]
- [49 141000]
- [39 79000]
- [75000] 39
- 54 104000]
- [35 55000]
- [45 32000]
- 36 60000]
- 52 138000]
- [53 82000]
- 41 52000]
- 48 30000]
- [48 131000]
- [41 60000]
- 41 72000]
- 75000] 42
- [36 118000]
- [47 107000]
- 38 51000]
- 48 119000]
- [42 65000]
- 65000] 40
- 57 60000]
- 36 54000]
- [58 144000]
- 35 79000]
- 38
- 55000] [39 122000]

- 53 104000]
- [35 75000]
- [38 65000]
- 47 51000]
- [47 105000]
- [63000] 41
- 53 72000]
- [54 108000]
- [39 77000]
- [38 61000]
- [38 113000]
- 37 75000]
- [42 90000]
- 37 57000]
- [36 99000]
- [60 34000]
- 54 70000]
- 41 72000]
- [71000] 40
- 42 54000]
- 43 129000]
- [53 34000]
- [47 50000]
- [42 79000]
- [42 104000]
- 59 29000]
- [[58 47000]
- 46 [00088
- 38 71000]
- [54 26000]
- 60 46000]
- 60 83000] [39 73000]
- [59 130000]
- 37 [00008
- 32000] 46
- [46 74000]
- [53000] 42
- 41 87000]
- [58 23000]
- [42 64000]
- 48 33000]
- 44 139000]
- [57 33000]

28000]

49

- 56 60000]
- 49 39000] [39 71000]

```
Γ
     47
         340001
Γ
     48
         35000]
Γ
         33000]
     48
Γ
     47
         23000]
Γ
         450001
     45
Γ
     60
         42000]
39 59000]
Γ
     46 410007
51 23000]
Γ
         20000]
     50
Γ
     36 33000]
Γ
         36000]]
     49
```

[10]: print(y)

1.3 Splitting the dataset into the Training set and Test set

```
[11]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.

→25,random_state = 0)
```

1.4 Feature Scaling

```
[12]: sc = StandardScaler()
    x_train = sc.fit_transform(x_train)
    x_test = sc.transform(x_test)
```

1.5 Training the Logistic Regression model on the Training dataset

```
[13]: classifier = LogisticRegression(random_state = 0)
    classifier.fit(x_train,y_train)
```

[13]: LogisticRegression(random_state=0)

1.6 Predict New Result

```
[14]: print(classifier.predict(sc.transform([[30,87000]])))
[0]
```

1.7 Predict Test Result

```
[15]: y_predict = classifier.predict(x_test)
df=pd.DataFrame({'Actual':y_test, 'Predicted':y_predict})
pd.set_option('display.max_rows', df.shape[0]+1)
print(df)
```

	Actual	Predicted
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	1	1
8	0	0
9	0	1
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0
16	0	0
17	0	0
18	1	1
19	0	0
20	0	0
21	1	1
22	0	0
23	1	1
24	0	0
25	1	1
26	0	0
27	0	0
28	0	0
29	0	0
30	0	0
31	1	0
32	1	1
33	0	0
34	0	0

35	0	0
36	0	0
37	0	0
38	0	0
39	1	1
40	0	0
41	0	0
42	0	0
43	0	0
44	1	1
4 -		
45	0	0
46	0	0
47	1	1
	0	0
48		
49	1	1
50	1	1
51	0	0
52	0	0
53	0	0
54	1	1
	4	
55	1	0
56	0	0
57	0	0
58	1	0
59	0	0
60	0	0
61	1	1
62	0	0
63	1	0
64	0	0
01		
65	1	1
66	0	0
67	0	0
68	0	0
69	0	0
70	1	1
71	0	0
72	0	0
73	1	0
74	0	0
75	0	0
76	0	1
77	0	0
78	1	1
79	1	1
80	1	1
81	0	1
82	0	0

```
83
          0
                       0
84
          1
                       1
85
          1
                       1
86
          0
                       0
87
          1
                       1
88
          1
                       0
89
          0
                       0
90
          0
                       0
91
          1
                       1
92
                       0
          0
93
          0
                       0
94
          0
                       0
95
                       0
          1
                       0
96
          0
97
          1
                       0
98
          1
                       1
99
          1
                       1
```

1.8 Making The confusion Matrix and Evaluting model

```
[16]: cm = confusion_matrix(y_test, y_predict)
    print(cm)
    accuracy_score(y_test,y_predict)
```

[[65 3] [8 24]]

[16]: 0.89

```
[17]: report = classification_report(y_test, y_predict)
print(report)
```

	precision	recall	f1-score	support
0	0.89	0.96	0.92	68
1	0.89	0.75	0.81	32
				400
accuracy			0.89	100
macro avg	0.89	0.85	0.87	100
weighted avg	0.89	0.89	0.89	100

1.9 Visualising the Training set result

```
[18]: from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(x_train), y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, \underset]
\[ \to 0].max() + 10, step = 0.25),
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points. *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.

1.10 Visualising the Test result

```
[19]: from matplotlib.colors import ListedColormap
      X_set, y_set = sc.inverse_transform(x_test), y_test
      X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, __
       \rightarrow 0].max() + 10, step = 0.25),
                             np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:
       \rightarrow, 1].max() + 1000, step = 0.25))
      plt.contourf(X1, X2, classifier.predict(sc.transform(np.array([X1.ravel(), X2.
       →ravel()]).T)).reshape(X1.shape),
                    alpha = 0.75, cmap = ListedColormap(('red', 'green')))
      plt.xlim(X1.min(), X1.max())
      plt.ylim(X2.min(), X2.max())
      for i, j in enumerate(np.unique(y_set)):
          plt.scatter(X_{\text{set}}[y_{\text{set}} == j, 0], X_{\text{set}}[y_{\text{set}} == j, 1], c = 1
       →ListedColormap(('red', 'green'))(i), label = j)
      plt.title('Logistic Regression (Test set)')
      plt.xlabel('Age')
      plt.ylabel('Estimated Salary')
      plt.legend()
      plt.show()
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points. *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.

