Test report No. : 10636726H-K-R3

Page : 338 of 434 FCC ID : UCE314062A Issued date : February 20, 2015

Revised date : March 19, 2015

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.6 jΩ
Return Loss	- 31.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 5.8 jΩ
Return Loss	- 22.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 01, 2002

Certificate No: D900V2-155_Dec13

Page 4 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 339 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

DASY5 Validation Report for Head TSL

Date: 06.12.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 155

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.95, 5.95, 5.95); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.701 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 2.62 W/kg; SAR(10 g) = 1.68 W/kgMaximum value of SAR (measured) = 3.07 W/kg

0 dB = 3.07 W/kg = 4.87 dBW/kg

Certificate No: D900V2-155_Dec13 Page 5 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 340 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Head TSL

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 341 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

DASY5 Validation Report for Body TSL

Date: 06.12.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 155

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.04$ S/m; $\varepsilon_r = 56.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.95, 5.95, 5.95); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.525 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.93 W/kg

SAR(1 g) = 2.65 W/kg; SAR(10 g) = 1.71 W/kg

Maximum value of SAR (measured) = 3.08 W/kg

0 dB = 3.08 W/kg = 4.89 dBW/kg

Test report No. : 10636726H-K-R3
Page : 342 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Body TSL

Test report No. : 10636726H-K-R3
Page : 343 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

D900V2 Calibration for Impedance and Return-loss

1. Test environment

Date	December 25, 2014		
Ambient Temperature	24.0 deg.C	Relative humidity	50%RH

2. Equipment used

2. Equipmen	t useu					
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MNA-01	Network Analyzer	Agilent/HP	E8358A	US41080381	SAR	2014/08/21 * 12
EST-46	3.5mm ECONOMY CALIBRATION KIT	Agilent	85052D	MY43252869	SAR	2014/08/15 * 12
MVNA-01	Vector Network Analyzer	Schmid&Partner Engineering AG	PLANAR R140	0030913		2014/01/09 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5 Probe	0008		2014/03/04 * 12
MPSAM-02	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CB	1333	SAR	2014/05/30 * 12
MPF-02	2mmOval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1045	SAR	2014/05/30 * 12
MOS-26	Thermo-Hygrometer	Custom	CTH-201	A08Q29	SAR	2014/05/20 * 12
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2014/07/06 * 12
HSL900						Daily check
MSL900						Daily check
SAR room3						Daily check

3. Test Result

Impeadance, Transformed to feed point	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/6	51.2 Ω-2.6jΩ	-	-	-
Calibration(ULJ)2014/12/25	48.0Ω - $2.8j\Omega$	$-3.2\Omega+0.2j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/6	-31.0dB	-	-	-
Calibration(ULJ)2014/12/25	-29.1dB	+1.9dB	-31.0 *+/-20%	Complied

Impeadance, Transformed to feed point	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/06	45.8Ω - 5.8 j Ω	-	-	-
Calibration(ULJ)2014/12/25	47.1Ω - 5.8jΩ	$+1.3\Omega + /-0j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/06	-22.5dB	-	-	-
Calibration(ULJ)2014/12/25	-23.5dB	+1.0dB	-22.5 *+/-20%	Complied

^{*}Tolerance : According to the KDB450824D02

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 344 of 434 : UCE314062A FCC ID **Issued date** : February 20, 2015 : March 19, 2015 Revised date

Measurement Plots

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 345 of 434 Page FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

13. System Check Dipole (D1800V2,S/N:2d040)

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2000V2-1029_Jun12

Accreditation No.: SCS 108

UL Japan (PTT) Client **CALIBRATION CERTIFICATE** Object D2000V2 - SN: 1029 QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 15, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Certificate No.) Primary Standards GB37480704 Oct-12 Power meter EPM-442A 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 27-Mar-12 (No. 217-01530) Apr-13 Reference 20 dB Attenuator SN: 5058 (20k) Apr-13 Type-N mismatch combination SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 Reference Probe ES3DV3 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 DAE4 SN: 601 Scheduled Check ID# Check Date (in house) Secondary Standards In house check: Oct-13 Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Network Analyzer HP 8753E Function Laboratory Technician Calibrated by: Claudio Leubler Technical Manager Katja Pokovic Approved by: Issued: June 18, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2000V2-1029_Jun12

Page 1 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 346 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d040_Dec13 Page 2 of 8

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3

Page : 347 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5 V52.8.7	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d040_Dec13

Page 3 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3

Page : 348 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 1.8 jΩ	
Return Loss	- 34.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 0.4 jΩ		
Return Loss	- 28.6 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.189 ns
-nnnnnnnnnnnnn-	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 23, 2006

Certificate No: D2000V2-1029_Jun12

Page 4 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 349 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

DASY5 Validation Report for Head TSL

Date: 09.12.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d040

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.41 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.04, 5.04, 5.04); Calibrated: 28.12.2012;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.981 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.05 W/kg

SAR(10 g) = 9.08 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Test report No. : 10636726H-K-R3
Page : 350 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Head TSL

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 351 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

DASY5 Validation Report for Body TSL

Date: 14.06.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2000 MHz; Type: D2000V2; Serial: D2000V2 - SN: 1029

Communication System: CW; Frequency: 2000 MHz

Medium parameters used: f = 2000 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.826 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.461 mW/g SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 12.6 mW/g

0 dB = 12.6 mW/g = 22.01 dB mW/g

Certificate No: D2000V2-1029_Jun12

Page 7 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 352 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Body TSL

Certificate No: D1800V2-2d040_Dec13

Page 8 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 353 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

D1800V2 Calibration for Impedance and Return-loss

1. Test environment

Date	December 25, 2014		
Ambient Temperature	24.0 deg.C	Relative humidity	50%RH

2. Equipment used

2. Equipment used						
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MNA-01	Network Analyzer	Agilent/HP	E8358A	US41080381	SAR	2014/08/21 * 12
EST-46	3.5mm ECONOMY CALIBRATION KIT	Agilent	85052D	MY43252869	SAR	2014/08/15 * 12
MVNA-01	Vector Network Analyzer	Schmid&Partner Engineering AG	PLANAR R140	0030913		2014/01/09 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5 Probe	0008		2014/03/04 * 12
MPSAM-02	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CB	1333	SAR	2014/05/30 * 12
MPF-02	2mmOval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1045	SAR	2014/05/30 * 12
MOS-26	Thermo-Hygrometer	Custom	CTH-201	A08Q29	SAR	2014/05/20 * 12
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2014/07/06 * 12
HSL1800						Daily check
MSL1800						Daily check
SAR room3						Daily check

3. Test Result

Impeadance, Transformed to feed point	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/9	48.5Ω - $2.4j\Omega$	-	-	-
Calibration(ULJ)2014/12/25	47.9Ω-1.8jΩ	$-0.6\Omega+0.6j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/9	-31.0dB	-	-	-
Calibration(ULJ)2014/12/25	-31.0dB	+/-0dB	-31.0 *+/-20%	Complied

Impeadance, Transformed to feed point	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/09	44.8Ω-2.9jΩ	-	-	-
Calibration(ULJ)2014/12/25	43.0Ω-3.0jΩ	-1.8Ω+0.1jΩ	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2013/12/09	-24.1dB	-	-	-
Calibration(ULJ)2014/12/25	-21.7dB	+2.4dB	-24.1 *+/-20%	Complied

^{*}Tolerance : According to the KDB450824D02

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 354 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 : March 19, 2015 Revised date

Measurement Plots

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 355 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 : March 19, 2015 Revised date

14. System Check Dipole (D2000V2,S/N: 1029)

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	D2000V2 - SN: 10	029	
Calibration procedure(s)	QA CAL-05.v8 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	June 15, 2012		
		obability are given on the following pages and y facility: environment temperature (22 \pm 3)°C	
Calibration Equipment used (M&T	E critical for calibration)		
	,	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	E critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12
Primary Standards Power meter EPM-442A	ID#		The state of the s
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Oct-12 Oct-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5058 (20k)	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530)	Oct-12 Oct-12 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Oct-12 Oct-12 Apr-13 Apr-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13

Certificate No: D2000V2-1029_Jun12 Page 1 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 356 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: D2000V2-1029_Jun12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 357 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as not	given on page 1.	4 Can 1 19 Ca
DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2000 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.91 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.6 mW / g \pm 16.5 % (k=2)

Certificate No: D2000V2-1029_Jun12

Page 3 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3

: 358 of 434 Page FCC ID Issued date

: UCE314062A : February 20, 2015

Revised date : March 19, 2015

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 1.8 jΩ	
Return Loss	- 34.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 0.4 jΩ	
Return Loss	- 28.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.189 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 23, 2006

Certificate No: D2000V2-1029_Jun12

Page 4 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 359 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015

Issued date : February 20, 20 Revised date : March 19, 2015

DASY5 Validation Report for Head TSL

Date: 15.06.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2000 MHz; Type: D2000V2; Serial: D2000V2 - SN: 1029

Communication System: CW; Frequency: 2000 MHz

Medium parameters used: f = 2000 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.93, 4.93, 4.93); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.883 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.775 mW/g SAR(1 g) = 10 mW/g; SAR(10 g) = 5.28 mW/g Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g = 21.94 dB mW/g

Certificate No: D2000V2-1029_Jun12

Page 5 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 360 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Head TSL

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 361 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

DASY5 Validation Report for Body TSL

Date: 14.06.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2000 MHz; Type: D2000V2; Serial: D2000V2 - SN: 1029

Communication System: CW; Frequency: 2000 MHz

Medium parameters used: f = 2000 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.826 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.461 mW/g SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 12.6 mW/g

0 dB = 12.6 mW/g = 22.01 dB mW/g

Certificate No: D2000V2-1029_Jun12

Page 7 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 362 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Impedance Measurement Plot for Body TSL

Certificate No: D2000V2-1029_Jun12

Page 8 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 363 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

D2000V2 Calibration for Impedance and Return-loss

1. Test environment

Date	June 2, 2014		
Ambient Temperature	24.0 deg.C	Relative humidity	50%RH

2. Equipment used

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MNA-01	Network Analyzer	Agilent/HP	E8358A	US41080381	SAR	2013/09/09 * 12
MNCK-01	Type N Calibration Kit	Agilent	85032F	MY41495257	SAR	2013/09/07 * 12
EST-46	3.5mm ECONOMY CALIBRATION KIT	Agilent	85052D	MY43252869	SAR	2013/08/13 * 12
MDA-10	Dipole Antenna	Schmid&Partner Engineering AG	D2000V2	1029	SAR	2012/06/15 * 12
MPSAM-03	SAM Phantom	Schmid&Partner Engineering AG	SAM Twin Phantom V4.0 and V5.0	1764	SAR	2013/06/11 * 12
MPF-03	2mmOval Flat Phantom ERI 5.0	Schmid&Partner Engineering AG	QDOVA001BB (ERI5.0)	1203	SAR	2013/06/11 * 12
MOS-30	Thermo-Hygrometer	Custom	CTH-201	3001	SAR	2013/07/29 * 12
HSL1950						Daily check
MSL1950						Daily check
SAR room1						Daily check

3. Test Result

Impeadance, Transformed to feed point	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2012/06/15	50.8 Ω-1.8jΩ	-	-	-
Calibration(ULJ)2014/6/2	50.71Ω-1.892jΩ	-0.09Ω $-0.092j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Head	Deviation	Tolerance	Result
Calibration (SPEAG) 2012/06/15	-34.1dB	-	-	-
Calibration(ULJ)2014/6/2	-33.96dB	0.14dB	-34.1 *+/-20%	Complied

Impeadance, Transformed to feed point	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2012/06/15	$46.5 \Omega - 0.4 j\Omega$	-	-	-
Calibration(ULJ)2014/6/2	46.08Ω+1.145jΩ	$-0.42\Omega + 1.545j\Omega$	$+/-5\Omega+/-5j\Omega$	Complied

Return loss	Body	Deviation	Tolerance	Result
Calibration (SPEAG) 2012/06/15	-28.6dB	-	-	-
Calibration(ULJ)2014/6/2	-27.43dB	+1.17dB	-28.6 *+/-20%	Complied

^{*}Tolerance: According to the KDB450824D02

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 364 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 : March 19, 2015 Revised date

Measurement Plots

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 365 of 434
FCC ID : UCE314062A

Issued date : February 20, 2015 Revised date : March 19, 2015

15. System Check Dipole (D2450V2,S/N:713)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan (PTT)

Certificate No: D2450V2-713_Sep13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 713

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 10, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature

Calibrated by: Israe El-Naouq Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: September 10, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-713_Sep13

Page 1 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 366 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep13 Page 2 of 8

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 367 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015

Revised date : February 20, 20.

Revised date : March 19, 2015

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-713_Sep13 Page 3 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 368 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 0.7 jΩ
Return Loss	- 34.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 2.8 jΩ
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

Certificate No: D2450V2-713_Sep13 Page 4 of 8

Test report No. : 10636726H-K-R3
Page : 369 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

DASY5 Validation Report for Head TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kgMaximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Certificate No: D2450V2-713_Sep13 Page 5 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN