Teorema de Tales.

Simbología:

AB || CD AB es paralela a CD [ABC] Área del triángulo ABC

Teorema:

- 1) (Teorema de Tales 1) Sea ABC un triángulo, sea D un punto en AB, y E un punto en AC. Si $DE \parallel BC$ entonces $\frac{AD}{DR} = \frac{AE}{EC}$.
 - a) La demostración se hará como problema.

Problema (Demostración guiada):

- 1) Demuestra que si 2 triángulos tienen la misma altura, entonces la razón entre sus áreas es la razón entre sus bases
- 2) En la figura del Teorema de Tales 1. Demuestra que $\frac{[ADE]}{[RDE]} = \frac{AD}{DR}$
- 3) Demuestra que $\frac{[AED]}{[CED]} = \frac{AE}{EC}$
- 4) Demuestra que [BDE] = [CDE]
- 5) Demuestra el teorema de Tales 1.

Ejercicios:

- 1) Sea ABC un triángulo, sea D un punto en AB, y E un punto en AC. Demuestra que si $DE \parallel BC$ entonces $\frac{AB}{AD} = \frac{AC}{AE}$.
- 2) (Teorema de Tales 2) Sean O,P,Q tres puntos en una recta, sean M,N,T tres puntos en otra recta. De forma que OM || PN || QT. Demuestra que $\frac{OP}{PO} = \frac{MN}{NT}$.

Teorema:

- 1) (Recíproco del Teorema de Tales 1) Sea ABC un triángulo, sea D un punto en AB, y E un punto en AC. Si $\frac{AD}{DB} = \frac{AE}{EC}$ entonces DE || BC.
- 2) (Recíproco del Teorema de Tales 2) Sean O,P,Q tres puntos en una recta, sean M,N,T tres puntos en otra recta. De forma que OM || QT. Si $\frac{OP}{PQ} = \frac{MN}{NT}$ entonces OM || PN || QT. (Cuidado: En este teorema <u>debes tener 2 paralelas</u> para obtener que la tercera es también paralela)

Semejanza

Definición: Que 2 triángulos sean semejantes significa que sus ángulos correspondientes son iguales.

Teoremas:

- 1) Los lados correspondientes de dos triángulos semejantes son proporcionales
- 2) (Criterios de Semejanza) Podemos saber que 2 triángulos son semejantes cuando
 - 2 ángulos correspondientes sean iguales (AA)
 - Tienen un ángulo correspondiente igual y los lados que forman ese ángulo son proporcionales (LAL) (Cuidado: El ángulo debe estar entre las rectas, no LLA)
 - Los 3 lados correspondientes son proporcionales. (LLL)

Problema 1.16 En la siguiente figura los segmentos a, b, c y d son paralelos y dividen al lado BC en 4 segmentos iguales. Si a=10, encuentra la suma a+b+c+d.

- Demuestre que el segmento entre los puntos medios de dos lados de un triángulo mide la mitad de la longitud del tercer lado y es paralelo a ese lado.
- Sean *a* y *b* dos medianas de un triángulo que se intersectan en un punto *p*. Pruebe que *p* divide a *a* en dos segmentos que miden un tercio y dos tercios de lo que mide *a* respectivamente.
- (Teorema de Varignon) (El favorito de Tzoali xD) Demuestra que los puntos medios de los lados de un cuadrilátero forman un paralelogramo.
 - Demuestra que el perímetro del paralelogramo es igual a la suma de las diagonales
 - Demuestra que el área del paralelogramos es la mitad del área del cuadrilátero

Problema 1.25 En un triángulo $\triangle ABC$, sobre el lado BC se toma un punto D de tal manera que $\angle BAD = \angle ACB$. Demuestra que $(AB)^2 = BD \cdot BC$.

- Sea ABC un triángulo rectángulo con \angle A = 90°, sea H la altura desde A hasta BC, demuestra que: $BH \cdot HC = AH^2$ y $BH \cdot BC = AC^2$
- Sea ABC un triángulo acutángulo, con alturas AA_1 y BB_1 demuestra que $CB_1 \cdot CA = CA_1 \cdot CB$

Ejemplo 1.4.3 Sea Z un punto sobre el lado AB de un triángulo $\triangle ABC$. Una línea a través de A paralela a CZ intersecta a BC en X. Una línea a través de B paralela a CZ intersecta a AC en Y. Demuestra que

$$\frac{1}{CZ} = \frac{1}{AX} + \frac{1}{BY}.$$

Ejercicio 1.10.11 En el triángulo ABC sabemos que el ángulo CBA es el doble del ángulo BCA, el lado CA es 2 unidades mayor que el lado AB y BC mide 5. ¿Cuánto miden AB y CA?

Problema 1.24 Demuestra que la recta que une los puntos medios de los lados paralelos de un trapecio pasa por el punto de intersección de las diagonales.

Problema 1.28 En un trapecio ABCD (AB paralelo a DC) sea AB=a y DC=b. Sean M, N, P y Q los puntos medios de AD, BD, AC y BC, respectivamente. Demuestra que

(a)
$$MQ = \frac{a+b}{2}$$

(b)
$$NP = \frac{|a-b|}{2}$$

Problema 1.29 En un trapecio ABCD (AB paralelo a DC) sea AB = a y DC = b. Supongamos que $\angle ADC + \angle BCD = 90^{\circ}$. Sean M y N los puntos medios de AB y DC, respectivamente. Demuestra que

$$MN = \frac{b-a}{2}.$$

Problema 1.17 Sea ABCD un paralelogramo en el que L y M son puntos medios de AB y CD, respectivamente. Demuestra que los segmentos LC y AM dividen la diagonal BD en tres segmentos iguales.