Reinforcement Learning 1

MDPs, policies, values, TD learning, and Q-learning

Andrew Lampinen
Psych 209, Winter 2018

Introduction

• What do the following have in common?

• What do the following have in common?

• ... potentially many features in common:

• What do the following have in common?

- ... potentially many features in common:
 - Similar structure: states, actions, occasional rewards. We'll
 discuss a unified formal framework for many tasks like this
 (MDPs).

What do the following have in common?

- ... potentially many features in common:
 - Similar structure: states, actions, occasional rewards. We'll
 discuss a unified formal framework for many tasks like this
 (MDPs).
 - They're not directly supervised nobody tells you exactly the right answer. We'll discuss how to learn tasks like this (Reinforcement Learning).

2/18

Formalizing tasks: MDPs

Agent

Environment

Agent
$$(t = 0)$$

Environment (t = 0)

Agents & actions

Agent:

 At each time step t, perceives the state, s_t decides on an action, a_t from the set of actions available in that state, A(s_t).

Agents & actions

Agent:

- At each time step t, perceives the state, s_t decides on an action, a_t from the set of actions available in that state, A(s_t).
- E.g. press gas, brake, turn wheel left 0.57 radians, press gas + turn right 2.2 radians, shift to 4th gear, ...

Environment:

• Includes other cars (and also parts of self).

Environment:

- Includes other cars (and also parts of self).
- Is in a state s_t .

Environment:

- Includes other cars (and also parts of self).
- Is in a state s_t .
- After the agent takes a_t , evolves to state $s_{t+1} \in S$ according to the **transition probabilities**: $p(s_{t+1}|s_t, a_t)$.

Environment:

- Includes other cars (and also parts of self).
- Is in a state s_t .
- After the agent takes a_t , evolves to state $s_{t+1} \in S$ according to the **transition probabilities**: $p(s_{t+1}|s_t, a_t)$.
- Markov: transition probabilities depend *only* on s_t, a_t, not history.

Rewards:

• Agent receives a **reward** $r_{t+1} \in R$ according to **reward probabilities**: $p(r_{t+1}|s_t, a_t, s_{t+1})$.

Rewards:

- Agent receives a **reward** $r_{t+1} \in R$ according to **reward probabilities**: $p(r_{t+1}|s_t, a_t, s_{t+1})$.
- E.g. fare for reaching a destination, penalty for hitting a pedestrian, ...

Rewards:

- Agent receives a **reward** $r_{t+1} \in R$ according to **reward probabilities**: $p(r_{t+1}|s_t, a_t, s_{t+1})$.
- E.g. fare for reaching a destination, penalty for hitting a pedestrian, ...
- Return is the sum of the discounted rewards over time: $\sum_{t=1}^{\infty} \gamma^t r_t$ for some $\gamma \in (0,1]$.

Rewards:

- Agent receives a reward r_{t+1} ∈ R
 according to reward probabilities:
 p(r_{t+1}|s_t, a_t, s_{t+1}).
- E.g. fare for reaching a destination, penalty for hitting a pedestrian, ...
- Return is the sum of the discounted rewards over time: $\sum_{t=1}^{\infty} \gamma^t r_t$ for some $\gamma \in (0,1]$.
- Discount factor γ tells how much we prioritize the present over the future.

Learning in MDPs

• How does the agent decide what to do?

- How does the agent decide what to do?
- \bullet By using a **policy** π which maps states to actions.

- How does the agent decide what to do?
- By using a **policy** π which maps states to actions.
- This policy could take many forms: picking randomly, a set of rules, a table, a neural network, or some combination thereof.

- How does the agent decide what to do?
- ullet By using a **policy** π which maps states to actions.
- This policy could take many forms: picking randomly, a set of rules, a table, a neural network, or some combination thereof.
- Ideally, you would want your policy to pick the best action in every state, but what does "best" mean?

Value functions

• A natural way to define "best" states is based on expected return (which we call **value**).

$$V^{\pi}(s) = \mathbb{E}\left[\mathsf{Return} \, \middle| \, s, \pi
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s, \pi
ight]$$

Value functions

• A natural way to define "best" states is based on expected return (which we call **value**).

$$V^{\pi}(s) = \mathbb{E}\left[\mathsf{Return} \, \middle| \, s, \pi
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s, \pi
ight]$$

 Expectation because this depends on the environment's transistions and rewards, which may be random.

Value functions

• A natural way to define "best" states is based on expected return (which we call **value**).

$$V^{\pi}(s) = \mathbb{E}\left[\mathsf{Return} \, | \, s, \pi
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s, \pi
ight]$$

- Expectation because this depends on the environment's transistions and rewards, which may be random.
- But this also depends on the policy! (That's why it's V^{π} .)

 Now we can define the **best** policy as the one that gets the best expected return from every state.

- Now we can define the **best** policy as the one that gets the best expected return from every state.
- We'll denote it by π^* and the associated value function by V^* or V^{π^*} .

- Now we can define the **best** policy as the one that gets the best expected return from every state.
- We'll denote it by π^* and the associated value function by V^* or V^{π^*} .
- Any problem that can be specified as a finite MDP has at least one optimal policy.

- Now we can define the **best** policy as the one that gets the best expected return from every state.
- We'll denote it by π^* and the associated value function by V^* or V^{π^*} .
- Any problem that can be specified as a finite MDP has at least one optimal policy.
- But how can we try to find π^* or V^* ?

TD Learning and iteration

Chess

• You're playing chess against Magnus Carlsen. Let's say you estimate that you're doing pretty well, that is $V^{\pi}(s_t)$ is reasonably high.

Chess

- You're playing chess against Magnus Carlsen. Let's say you estimate that you're doing pretty well, that is V^{\pi}(s_t) is reasonably high.
- ... but then he makes a move you don't expect, and you realize you're doing worse than you thought, so $V^{\pi}(s_{t+1})$ is smaller.

Chess

- You're playing chess against Magnus Carlsen. Let's say you estimate that you're doing pretty well, that is V^π(s_t) is reasonably high.
- ... but then he makes a move you don't expect, and you realize you're doing worse than you thought, so V^{\pi}(s_{t+1}) is smaller.
- Can we learn from this difference?

• Temporal Difference (TD) learning is a formal framework for learning from surprises.

- Temporal Difference (TD) learning is a formal framework for learning from surprises.
- For any value function, we should have that

$$V^{\pi}(s_t) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$$

(This is often called the **Bellman Equation**.)

- Temporal Difference (TD) learning is a formal framework for learning from surprises.
- For any value function, we should have that

$$V^{\pi}(s_t) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$$

(This is often called the **Bellman Equation**.)

So let's try to make this more true,

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha \underbrace{(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V(s_t))}_{ ext{prediction error!}}, \quad lpha \in [0, 1]$$

- Temporal Difference (TD) learning is a formal framework for learning from surprises.
- For any value function, we should have that

$$V^{\pi}(s_t) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$$

(This is often called the **Bellman Equation**.)

So let's try to make this more true,

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha \underbrace{(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V(s_t))}_{ ext{prediction error!}}, \quad lpha \in [0, 1]$$

 Iterating this is guaranteed to converge to the true value function for a policy (assuming MDP is finite).

- Temporal Difference (TD) learning is a formal framework for learning from surprises.
- For any value function, we should have that

$$V^{\pi}(s_t) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$$

(This is often called the **Bellman Equation**.)

So let's try to make this more true,

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha \underbrace{(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V(s_t))}_{ ext{prediction error!}}, \quad lpha \in [0, 1]$$

- Iterating this is guaranteed to converge to the true value function for a policy (assuming MDP is finite).
- Example: grid world.

TD Learning (applied to chess)

TD Learning (applied to chess)

TD Learning (applied to chess)

TD Learning (in the brain)

Actions

 But even if we have the optimal value function, how do we choose actions?

Actions

- But even if we have the optimal value function, how do we choose actions?
- In chess, it's easy just look at the next position after you move, and figure out which one has the max value.

Actions

- But even if we have the optimal value function, how do we choose actions?
- In chess, it's easy just look at the next position after you move, and figure out which one has the max value.
- But what about in more complicated situations, where we don't know how the environment will change after our actions?

Q-learning

Q-values

 The solution we'll explore incorporates the action into our values by estimating the value of an action in a state, which we'll denote by Q(s, a):

$$Q^{\pi}(s,a) = \mathbb{E}\left[\mathsf{Return} \, | \, s,\pi,a
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s,\pi,a
ight]$$

Q-values

 The solution we'll explore incorporates the action into our values by estimating the value of an action in a state, which we'll denote by Q(s, a):

$$Q^{\pi}(s, a) = \mathbb{E}\left[\mathsf{Return} \, | \, s, \pi, a
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s, \pi, a
ight]$$

Notice that this contains the value function from before:

$$V^{\pi}(s) = \sum_{a \in A(s)} p(a|s,\pi)Q^{\pi}(s,a)$$

Q-values

• The solution we'll explore incorporates the action into our values by estimating the value of an action in a state, which we'll denote by Q(s, a):

$$Q^{\pi}(s, a) = \mathbb{E}\left[\mathsf{Return} \, | \, s, \pi, a
ight] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \, \middle| \, s, \pi, a
ight]$$

Notice that this contains the value function from before:

$$V^{\pi}(s) = \sum_{a \in A(s)} p(a|s,\pi)Q^{\pi}(s,a)$$

 But it also gives us ways of picking policies, e.g. pick the action with the highest Q.

• Using TD learning, we have another Bellman equation:

$$Q^{\pi}\left(s_{t}, a_{t}\right) = r_{t+1} + \gamma \max_{a'} Q^{\pi}\left(s_{t+1}, a'\right)$$

Using TD learning, we have another Bellman equation:

$$Q^{\pi}\left(s_{t}, a_{t}\right) = r_{t+1} + \gamma \max_{a'} Q^{\pi}\left(s_{t+1}, a'\right)$$

So let's try to make this more true,

$$Q^{\pi}(s_t, a_t) = Q^{\pi}(s_t.a_t) + \alpha \underbrace{\left(\left[r_{t+1} + \max_{a'} \gamma Q^{\pi}(s_{t+1}, a')\right] - Q(s_t, a_t)\right)}_{\text{prediction error!}}$$

• Using TD learning, we have another Bellman equation:

$$Q^{\pi}\left(s_{t}, a_{t}\right) = r_{t+1} + \gamma \max_{a'} Q^{\pi}\left(s_{t+1}, a'\right)$$

So let's try to make this more true,

$$Q^{\pi}(s_t, a_t) = Q^{\pi}(s_t.a_t) + \alpha \underbrace{\left(\left[r_{t+1} + \max_{a'} \gamma Q^{\pi}(s_{t+1}, a')\right] - Q(s_t, a_t)\right)}_{\text{prediction error!}}$$

• Almost surely converges to Q^* (and by extension π^*), as long as MDP is finite and each state, action pair is visited "enough."

• Using TD learning, we have another Bellman equation:

$$Q^{\pi}\left(s_{t}, a_{t}\right) = r_{t+1} + \gamma \max_{a'} Q^{\pi}\left(s_{t+1}, a'\right)$$

So let's try to make this more true,

$$Q^{\pi}(s_t, a_t) = Q^{\pi}(s_t.a_t) + \alpha \underbrace{\left(\left[r_{t+1} + \max_{a'} \gamma Q^{\pi}(s_{t+1}, a')\right] - Q(s_t, a_t)\right)}_{\text{prediction error!}}$$

- Almost surely converges to Q^* (and by extension π^*), as long as MDP is finite and each state, action pair is visited "enough."
- Example: grid world.

Wrapping up

• Audience participation!

Wrapping up

• Audience participation!

• Are there potential problems with what we've learned so far?