Zadanie: ZJA Zjazd obieżyświatów

XXVI OI, etap III, dzień pierwszy. Plik źródłowy zja.* Dostępna pamięć: 256 MB. 10.04.2019

Stowarzyszenie obieżyświatów chce zorganizować Wielki Zjazd Obieżyświatów. Niestety, większość obieżyświatów jest zajeta i spędza czas podróżujac, dlatego o organizację takiego wydarzenia będzie dość trudno. W stowarzyszeniu jest k obieżyświatów. Poruszają się oni po świecie, który możemy reprezentować jako n schronisk połączonych jednokierunkowymi ścieżkami. Oczywiście podróżnicy nie tracą czasu i każdego dnia zmieniają swoje położenie. Z każdego schroniska prowadzi pewna liczba ścieżek do innych schronisk, zatem obieżyświat nigdy nie utknie w miejscu. Może on wybrać dowolna z tych ścieżek.

Wiedząc, gdzie każdy z obieżyświatów znajdował się w dniu, w którym chcemy ogłosić zjazd, sprawdź, czy w ogóle mogą oni się spotkać w jakimś schronisku i jeżeli tak, to po ilu dniach mogą to zrobić najszybciej.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się trzy liczby całkowite n, m oraz $k (2 \le n \le 250,$ $n \le m \le n^2$, $2 \le k \le n$) pooddzielane pojedynczymi odstępami, określające kolejno liczbę schronisk, liczbę ścieżek oraz liczbę obieżyświatów. Schroniska numerujemy od 1 do n.

Następny wiersz zawiera ciąg k liczb całkowitych s_1, s_2, \ldots, s_k $(1 \le s_i \le n)$ pooddzielanych pojedynczymi odstępami; liczba s_i oznacza numer schroniska, w którym początkowo znajduje się i-ty obieżyświat.

Ostatnie m wierszy zawiera opis ścieżek. Każda ścieżka reprezentowana jest przez parę (niekoniecznie różnych) liczb całkowitych $a_j,\,b_j \ (1 \leq a_j,b_j \leq n)$ oddzielonych pojedynczym odstępem, oznaczających, że j-ta ścieżka prowadzi ze schroniska a_i do schroniska b_i . Ścieżki nie powtarzają się. Z każdego schroniska wychodzi co najmniej jedna ścieżka.

Wyjście

Jeżeli spotkanie obieżyświatów jest niemożliwe, na standardowe wyjście należy wypisać pojedynczy wiersz ze słowem NIE. W przeciwnym wypadku należy w pierwszym wierszu wypisać słowo TAK, a w drugim wierszu jedną liczbe całkowitą – minimalną liczbe dni, po których wszyscy członkowie stowarzyszenia obieżyświatów będą mogli się spotkać w jednym miejscu.

Przykłady

Dla danych weiściowych: poprawnym wynikiem jest:

י	ıa	danyen	wejselowyell.	Pop
5	7	3		TAK
1	2	3		3
1	2			
1	2			

4 1

Wyjaśnienie do przykładu: Rysunek powyżej przedstawia schroniska i ścieżki. Zaznaczone ciemniejszym kolorem są schroniska, w których znajdują się obieżyświaci. Trasy obieżyświatów mogą wyglądać następująco:

$$1 \rightarrow 3 \rightarrow 4 \rightarrow 1$$
, $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, $3 \rightarrow 4 \rightarrow 5 \rightarrow 1$.

Natomiast dla danych wejściowych: poprawnym wynikiem jest:

5 5 3 NIE

1 2 3

1 2 2 3 3 4 4 5 5 1

Testy "ocen":

locen: prosty test z n = 5;

20cen: n=250; dla każdego schroniska $1 \le i < n$ istnieje ścieżka $i \to (i+1)$; ponadto istnieją ścieżki $248 \to 250$ i $250 \to 249$;

3ocen: n=250; cykl $1 \to \ldots \to 250 \to 1$: z każdego schroniska można przejść do kolejnego schroniska na cyklu lub do tego samego schroniska (test spełnia założenia podzadania 2 – patrz niżej);

4ocen: n=250; cykl $1\to\ldots\to 250\to 1$: z każdego schroniska można przejść do kolejnego schroniska na cyklu lub do schroniska o dwa dalej.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Jeżeli Twój program wypisze poprawnie jedynie pierwszy wiersz, uzyska on 40% punktów za dany test. Pamiętaj jednak, że Twój program musi wciąż zakończyć się poprawnie w wyznaczonym limicie czasu i pamięci. Limity czasowe obowiązujące w poszczególnych podzadaniach są opublikowane w SIO.

Podzadanie	Warunki	Liczba punktów
1	$n \le 10$	20
2	można pozostać w każdym schronisku, $n>10$	30
3	pozostałe przypadki	50

Mówiąc formalnie, w drugim podzadaniu zakładamy, że z każdego schroniska istnieje ścieżka prowadząca z powrotem do tego samego schroniska.