ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 7

Aufgabe 23. (5 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und 1 .

Sei $a^{ij} \in C^0(\Omega)$ gleichmäßig elliptisch mit $a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$ für alle $x \in \Omega$ und alle $\xi \in \mathbb{R}^n$.

Sei $u \in W^{2,p}_{loc}(\Omega) \cap L^p(\Omega)$ eine starke Lösung von

$$a^{ij}u_{ij} = f$$
 in Ω ,

d. h. die Gleichheit gilt für L^p -Funktionen. Zeige für $\Omega' \Subset \Omega$ die a priori Abschätzung

$$\|u\|_{W^{2,p}(\Omega')} \leq c\left(n,p,\lambda,\Omega',\Omega,a^{ij}\right) \cdot \left\{\|f\|_{L^p(\Omega)} + \|u\|_{L^p(\Omega)}\right\}\,,$$

falls solch eine Abschätzung im Spezialfall $a^{ij} \equiv \delta^{ij}$ gilt.

 $\it Hinweis:$ Modifiziere die Herleitung der Schauderabschätzungen aus den Potentialabschätzungen und benutze, dass a^{ij} lokal gleichmäßig stetig ist.

Aufgabe 24. (4 Punkte)

Seien $\Omega,\,L$ wie in Theorem 2.14 der Schaudertheorie. Definiere

$$C_0^{2,\alpha}(\overline{\Omega}):=C^{2,\alpha}(\overline{\Omega})\cap \left\{u\in C^0(\overline{\Omega}): u=0 \text{ auf } \partial\Omega\right\}\,.$$

Dann ist $L: C_0^{2,\alpha}(\overline{\Omega}) \to C^{0,\alpha}(\overline{\Omega})$ ein stetiger surjektiver linearer Operator mit stetiger Inversen:

$$||u||_{C^{2,\alpha}(\Omega)} \le c \cdot ||Lu||_{C^{0,\alpha}(\Omega)}.$$

Gib eine analoge funktionalanalytische Beschreibung für den Fall an, dass die Randwerte nicht notwendigerweise Null sind.

Aufgabe 25. (4 Punkte)

Führe die Details zu Bemerkung 2.16 aus.

Aufgabe 26. (3 Punkte)

Zeige für Theorem 3.8:

Aus der Variante für R=1 folgt durch Skalieren bereits der allgemeine Fall.

Abgabe: Bis Dienstag, 19.12.2017, 10:00 Uhr, in die Mappe vor Büro F 402.