Precision Time Protocol

O que é

- O PTP é um protocolo utilizado para sincronizar clocks em uma rede.
 - Ele é capaz de alcançar precisão de picosegundos, às vezes até nanosegundos.
- O PTP foi definido inicialmente no IEEE1588-2002, e em 2008 foi definido o chamado PTP versão 2 no IEEE1588-2008
- Ele foi desenvolvido para preencher o vazio que os dois protocolos dominantes até então não preenchiam (NTP e GPS). Para sistemas que necessitam de precisão maior que o NTP apresenta, e para sistemas que não podem se dar ao luxo de ter um receptor GPS em cada nodo da rede.

Protocolo

- Hierarquia mestre-escravo;
- Quatro tipos de relógio: grandmaster, ordinary, v2(transparent), boundary;
 - Grandmaster é o clock "raíz", ele que vai transmitir informações de sincronização para os clocks no seu segmento de rede.
 - Ordinary clocks são clocks que ou são escravos ou são mestres em um segmento de rede, estes têm apenas uma porta conexão.
 - Boundary clocks são clocks que tem várias conexões e estes podem sincronizar outros segmentos de rede.
 - Transparent clock é um dispositivo que mede o tempo que uma mensagem PTP levou para transitar e disponibiliza essa informação para clocks recebendo a mensagem.

Protocolo

Tipos de mensagens:

- Mensagens de evento (*Timestamped*)
 - SYNC
 - DELAY REQ
 - PDELAY_REQ (V2)
 - o PDELAY RES (V2)
- Mensagens gerais (Not timestamped)
 - FOLLOW UP
 - DELAY_RESP
 - PDELAY_RESP_FOLLOW_UP (V2)
 - ANNOUNCE (V2)
 - SIGNALING(V2)
 - MANAGEMENT

Protocolo

Tipos de mensagens:

- SYNC, FOLLOW_UP, DELAY_REQ e DELAY_RESP são utilizadas pelos boundary e ordinary clocks para comunicar informações relacionadas ao tempo e sincronizar os clocks da rede.
 - One step clock: O timestamp do mestre vai na mensagem de SYN
 - Two step clock: O timestamp do mestre é enviado na mensage FOLLOW_UP
- PDELAY_REQ, PDELAY_RES e PDELAY_RES_FOLLOW_UP s\u00e3o usados por transparent clocks (N\u00e3o existem na vers\u00e3o 1)
- SIGNALING e ANNOUNCE estão presentes também na versão 2 do PTP.
 - SIGNALING para comunicações na rede que não são dependentes da precisão do tempo.
 - ANNOUNCE serve auxiliar na construção da hierarquia e seleção do Grandmaster clock
- MANAGEMENT é utilizada para monitorar e configurar um sistema PTP.

Hierarquia mestre-escravo

- Relógios podem ter portas nos estados mestre, escravo e passivo;
- O relógio grandmaster possui portas no estado mestre;
- Seus vizinhos terão as portas conectadas a ele no estado escravo, as suas outras portas estarão no estado mestre;
- Os vizinhos dos vizinhos terão as portas conectadas a ele no estado escravo, as suas outras portas estarão no estado mestre, e assim por diante;
- Algumas portas não são usadas para evitar ciclos na rede e estarão no estado passivo;

Hierarquia mestre-escravo

Diferenças em relação ao NTP

- O principal na hora de se comparar é a precisão. O NTP é preciso a casa do milisegundo, já o PTP consegue atingir precisão na casa dos nanosegundos.
- O motivo disso é que o NTP depende primariamente de algoritmos em software para processar o tempo. Já o PTP apesar de ainda necessitar de algoritmos em software, ele utiliza de hardware para realizar o timestamping.
- Outro ponto de diferença, é que o NTP pode ser implementado na rede Ethernet padrão, já o PTP necessita de uma infraestrutura que siga o padrão IEEE 1588

- Para sincronizar o escravo o mestre manda uma mensagem de sync, e ao enviar essa mensagem, ele guarda localmente o timestamp no qual a mensagem foi enviada.
- Ao receber a mensagem de sincronização, o slave então guarda localmente o seu próprio timestamp.

- O master então prossegue enviando ao slave uma mensagem FOLLOW_UP contendo o timestamp t1.
- Ao receber a mensagem de FOLLOW_UP o slave agora conhece o t1 e o t2 (que é o seu próprio timestamp).

- Agora o escravo manda ao mestre uma mensagem DELAY_REQ, e ao enviar, ele guarda seu timestamp t3.
- O mestre ao receber guarda em si o seu próprio timestamp t4.
- Depois mestre envia ao escravo uma mensagem de DELAY_RES com o t4.

Calculando o atraso (considerando que o atraso entre o mestre e o escravo é o mesmo do escravo para o mestre):

$$PD = \frac{(T2-T1)+(T4-T3)}{2}$$

OFFSET (DIFERENÇA DO ESCRAVO PRO MESTRE)=(T2-T1)-PD

Problemas do Mundo Real

- Variação no atraso de rede.
 - A variação da rede (transmissão mestre-escravo escravo-mestre) pode causar problemas na precisão do PTP
- Influência da arquitetura sob a qual o PTP está rodando.
 - Algo que é ignorado mas pode ser impactante no PTP é as operações da arquitetura na qual o PTP roda.
 - Ex: Não encontramos PTP em SOs comuns pois, além de outras coisas, a precisão que seria obtida seria algo próximo ao NTP, devido ao não determinismo de operações do SO.
- Variação dos clocks
 - Outro problema também é os clocks terem frequências diferentes.