EMBEDDED VISION DESIGN 3

REGRESSION

Prediction from estimating relationships between variables and outcomes

JEROEN VEEN

CONTENTS

- Linear regression
- Polynomial regression
- Regularized linear models
- Logistic regression
- Classification and regression

LINEAR REGRESSION

- Easy to interpret
- Fast to fit
- Benchmark

Equation 4-1. Linear Regression model prediction

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Source: Mathworks, Applying Supervised Learning

In this equation:

- \hat{y} is the predicted value.
- *n* is the number of features.
- x_i is the i^{th} feature value.
- θ_j is the j^{th} model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

Cricket chips vs temperature

y is the temperature in Celsius—the value we're trying to predict. m is the slope of the line. x is the number of chirps per minute—the value of our input feature. y is the y-intercept.

LINEAR REGRESSION MODEL FITTING

Performance measure

Equation 4-3. MSE cost function for a Linear Regression model

$$MSE(\mathbf{X}, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

Aka cost function (J)

Note the vectorized form

- θ is the model's parameter vector, containing the bias term θ₀ a weights θ₁ to θ_n.
- x is the instance's *feature vector*, containing x_0 to x_n , with x_0 always equal to 1.
- $\theta \cdot \mathbf{x}$ is the dot product of the vectors θ and \mathbf{x} , which is of course equal to $\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$.
- h_{θ} is the hypothesis function, using the model parameters θ .

GRADIENT DESCENT

• Tweak parameters iteratively in order to minimize a cost function

GRADIENT DESCENT

Equation 4-5. Partial derivatives of the cost function

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\boldsymbol{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Equation 4-7. Gradient Descent step
$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} \text{MSE}(\theta)$$

$$\nabla_{\theta} \text{MSE}(\theta) = \begin{cases} \frac{\partial}{\partial \theta_0} \text{MSE}(\theta) \\ \frac{\partial}{\partial \theta_1} \text{MSE}(\theta) \end{cases}$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_n} \text{MSE}(\theta)$$

LEARNING RATE

- Stepsize
- Convergence
- Stopping criterion

PITFALLS

Unbalanced features

Source: Géron, ISBN: 9781492032632

Local minima

HAN_UNIVERSITY
OF APPLIED SCIENCES

STOCHASTIC GRADIENT DESCENT

- Pick a random sample and compute gradient
- Start with flexible learning rate, and reducing it as the number of examples grows
 - -> learning schedule

MINI-BATCH SGD

Dealing with large datasets

POLYNOMIAL REGRESSION

Add powers of each feature as new features

Still a linear function of the fitting parameters

PERIL OF OVERFITTING

- An overfit model has more parameters than can be justified by the data.
- Gets a low loss during training but does a poor job predicting new data.
- Results in poor generalization

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk – John von Neumann

Source: https://en.wikipedia.org/wiki/Overfitting

• Sick (blue) and healthy (orange) trees

in a forest.

• Sick (blue) and healthy (orange) trees

in a forest.

• Low loss, excellent model?

Sick (blue) and healthy (orange) trees

in a forest.

Low loss, excellent model?

- Poor generalization!
- Model is more complex than necessary

OCKHAM'S RAZOR

 William of Ockham, a 14th century friar and philosopher, loved simplicity. He believed that scientists should prefer simpler formulas or theories over more complex ones.

REGULARIZED LINEAR MODELS

- Reduce overfitting by constraining a model
- E.g. limiting the number of polynomial degrees
- Or adding a penalty to the cost function

Source: https://en.wikipedia.org/wiki/Regularization_(mathematics)

RIDGE REGRESSION

L2 regularization

Equation 4-8. Ridge Regression cost function

$$J(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

- Fit the data but also keep the model weights as small as possible
- Keep all features in the model, and balances the contribution

LASSO REGRESSION

L1 regularization

Equation 4-10. Lasso Regression cost function

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \sum_{i=1}^{n} |\theta_i|$$

Penalize sum of absolute values

Removes highly correlated features by nulling their coefficient

Source: Géron, ISBN: 9781492032632

Solution instability, impose learning schedule

ELASTIC NETS

Middle ground between Ridge Regression and Lasso Regression

Equation 4-12. Elastic Net cost function

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + r\alpha \sum_{i=1}^{n} |\theta_i| + \frac{1-r}{2} \alpha \sum_{i=1}^{n} \theta_i^2$$

 Ridge is a good default, but if you suspect that only a few features are useful Elastic Net is preferred

EARLY STOPPING

Interpretation of learning curves

LOGISTIC REGRESSION

- Estimate the probability that an instance belongs to a particular class
- Binary classifier

 Baseline for evaluating more complex classification methods

Source: Mathworks, Applying Supervised Learning

ESTIMATING PROBABILITY

- Logistic functions maps prediction result to probability
- Sigmoid function

DECISION BOUNDARY

- Aka classification threshold
- Both probabilities are equal to 50%?

LINEAR DECISION BOUNDARY

Logistic Regression models can be regularized

SOFTMAX REGRESSION

- Multinomial Logistic Regression
- Estimate probability of each class

Equation 4-20. Softmax function

 $\hat{p}_k = \sigma(\mathbf{s}(\mathbf{x}))_k = \frac{\exp\left(s_k(\mathbf{x})\right)}{\sum_{j=1}^K \exp\left(s_j(\mathbf{x})\right)}$

CLASSIFICATION AND REGRESSION

SVM
 Reverse the training objective

Regression trees:
 Approximate value
 instead of predict a class

