MATH-241	Calculus	Ι
Homework	12	

Created by Rukiyah Walker Spring 2023

QUESTION 1

Suppose you want to estimate the area under the graph of f(x) = 1/x from x = 1 to x = 2using 4 rectangles. What is the base value (Δx) for each rectangle?

A.
$$\Delta x = 1/2$$

C.
$$\Delta x = 4$$

B.
$$\Delta x = 1/4$$

D.
$$\Delta x = 2$$

QUESTION 2

 $_{----}$ (1 pts)

What are the right endpoints for the rectangles in Question 1?

A.
$$x_1 = 0, x_2 = 1/4, x_3 = 1/2$$
, and $x_4 = 3/4$.

A.
$$x_1 = 0, x_2 = 1/4, x_3 = 1/2$$
, and C. $x_1 = 5/4, x_2 = 3/2, x_3 = 7/4$, and $x_4 = 3/4$

B.
$$x_1 = 1, x_2 = 5/4, x_3 = 3/2$$
, and $x_4 = 7/4$.

B.
$$x_1 = 1, x_2 = 5/4, x_3 = 3/2$$
, and $x_4 = 7/4$. D. $x_1 = 1/4, x_2 = 1/2, x_3 = 3/4$, and $x_4 = 1$.

QUESTION 3 _______ (1 pts)

What is the estimated area under the graph f(x) = 1/x, given the information in Question 1 and Question 2?

A.
$$\approx 0.6345$$

C. ≈ 1.83

B.
$$\approx 2.083$$

D. ≈ 0.7595

Find the value of $\sum_{i=1}^{5} 2(2i+1)$.

_____ (1 pts)

(1 pts)

C. 70

D. 35

Write $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36}$ in Sigma notation.

A.
$$\sum_{i=0}^{6} \frac{1}{i^2}$$
.

C. $\sum_{i=1}^{6} \frac{1}{2i}$.

B.
$$\sum_{i=1}^{6} i^2$$
.

D. $\sum_{i=1}^{6} \frac{1}{i^2}$.

(1 pts)	QUESTION 6	
(I P**)	What does $\int_a^b f(x) dx$ mean in words?	
C. The limit of $f(x)$ as x approaches $b-a$.	A. The area of $f(x)$ from a to b .	
D. The limit of $f(x)$ as a and b approaches infinity.	B. The definite integral of f from a to b .	
$\frac{1}{dx = \lim_{n \to \infty} S_n, \text{ where } S_n \text{ are the Riemann of } (1 \text{ pts})}$	We know that for a continuous function f , $\int_a^b f(x) dx$ Sums. What does $\int_a^b f(x) dx$ represent, if $f(x) \ge 0$?	
D. The area of the region bounded by	A. $\lim_{n\to\infty} (S_b - S_a)$.	
the graph of $f(x)$ and the x-axis, from $x = a$ to $x = b$.	B. The integral of S_n .	
	C. The area of $f(x)$ from a to b .	
(1 pts)	QUESTION 8 Evaluate $\int_1^2 x^2 dx$.	
C. $\frac{7}{3}$	A. 3	
D. 2	B. $\frac{8}{3}$	
$\frac{1}{\int_{0}^{b} (f(x) + g(x)) dx^{2}}$ (1 pts)	Guppose $\int_a^b f(x) dx = 6$ and $\int_a^b g(x) dx = 8$. What is	
C. 48		
D2	A. 14 B. 2	
at is $\int_0^8 f(x) dx$? (1 pts)	Suppose $\int_0^2 f(x) dx = 9$ and $\int_2^8 f(x) dx = 22$. What is $\int_0^8 f(x) dx$?	
C. 5	A5	
D. 31	B. 204	