Wireless Systems Security

EE/NiS/TM-584-A/WS

Bruce McNair bmcnair@stevens.edu

Week 5: Still More Security Topics

Some Important Topics in Information System Security

- Minimum privilege/minimum functionality
- Compartmentalization/Containment
 - Separation of Responsibility
 - Dual Controls
- Security Perimeters
- Trustworthiness/Design Correctness
- Single-points-of-failure/Choke-points
- Covert Channels
- Inference
- Implicit vs. Apparent Security

Minimum privilege/Minimum functionality

Network Management System

- Applications running on NMS have ultimate control over operation of data network
 - 1. What capabilities do users really need to have to perform their job?

Do users need to be able to monitor traffic on the network? Including (potentially) sensitive user traffic?

Minimum privilege/Minimum functionality

Network Management System

- Applications running on NMS have ultimate control over operation of data network
 - What capabilities do users really need to have to perform their job?
 Do users need to be able to monitor traffic on the network?
 Including (potentially) sensitive user traffic?
 - 2. What features does system really need to enable it to operate?
 Does NMS application code get compiled on NMS or is it downloaded?

Compartmentalization/Containment

Firewall

- Potential compromise of Network 2 should not be allowed to compromise Network 1
- Partitioning of traffic, namespace, services
- Entities on Network 1 may not even be visible to users on Network 2

Compartmentalization/Containment

Virtual Private Network

Separation of Responsibility

Security Perimeters

High security area

low security area

- Cost of protection scales with size of secure area
- Defining a small security perimeter containing critical assets allows focus on security priorities

Security Perimeters

- Migrating unnecessary functions out of secure perimeter reduces need for inspection/assurance
- Reduces risk of compromise

Trustworthiness/Design Correctness

855 × 77.1 = 65536 216

Node 3 is a single-point-of-failure (or attack) and a choke-point

Survivable Signalling Network (SS7)

Consider a DB with record locking:

TS: Open1, Open2

C: Open1(blocked), Open2(blocked),

Open3(succeed)

Until(Open1) {}

Close3, Close1

TS: While(!Open3){}

Close1, Close2, Close3

// TS just sent a "0"

TS: Open2, Open3

C: Open1(succeed)

Until(Open2){}

Close1, Close2

TS: While(!Open1){}

Close1, Close2, Close3

//TS just sent a "1"

This is an obvious covert channel, with wide bandwidth (on the order of the open/close speed of a data record)

Arbitrary covert channels can be exploited with P(detection) related to utilized bandwidth.

Covert Channels - Timing Channel

Synchronized access to lower level data is used by TS user to convey TS data to lower level user

Note: "TS user" might be Trojan Horse operating on behalf of TS user

Example 1:

- Stevens has used Social Security Numbers as Student IDs for many years. Grades were posted by SSN. Name/SSN are never displayed together publicly
- AT&T Bell Labs (That name carbon-dates the age of the issue) switched from Payroll Account Numbers (PANs) to SSNs as employee identifiers
- The POST employee directory was searchable by PAN or SSN, but did not display them
- Individual privacy can be compromised by SSN fairly easily
 - How can two relatively secure systems be played against each other?

• Example 1:

- Stevens has used Social Security Numbers as Student IDs for many years. Grades were posted by SSN. Name/SSN are never displayed together publicly
- AT&T Bell Labs (That name carbon-dates the age of the issue) switched from Payroll Account Numbers (PANs) to SSNs as employee identifiers
- The POST employee directory was searchable by PAN or SSN, but did not display them
- Individual privacy can be compromised by SSN fairly easily
 - How can two relatively secure systems be played against each other?
 - A large percentage of part-time Stevens EE/CpE & CS graduate students have historically come from AT&T/Bell Labs
 - Obtain the SSNs of Stevens EE/CpE/CS graduate students from posted grades
 - Search the POST data base by SSN to identify individuals.
 - » Individual privacy is compromised by the joint weakness of two systems that are relatively secure separately

- Example 2
 - ref: Dorothy Denning, "The tracker inference issues in database security"
 - Database contains User names, department, ages, salary, etc.
 - Individual records are protected against search by low level users: only trusted users may read separate records
 - Aggregate database statistics may be viewed by lower level users, e.g.,
 - "Show average salary of male employees"
 - "Show number of users earning more than \$100k"

 Database security system prevents lower level user from retrieving data sets or statistics based on small number of records

- Example 2
 - ref: Dorothy Denning, "The tracker inference issues in database security"
 - Database contains User names, department, ages, salary, etc.
 - Individual records are protected against search by low level users: only trusted users may read separate records
 - Aggregate database statistics may be viewed by lower level users, e.g.,
 - "Show average salary of male employees"
 - "Show number of users earning more than \$100k"
 - Database security system prevents lower level user from retrieving data sets or statistics based on small number of records
 - The DB Inference problem:
 - Attacker creates a series of queries that have a small sample size in their intersection
 - Unless DB security system can assess sample sizes for all possible combinations of queries user has ever made, it is subject to an inference attack.
 - Even if it does this, innocent queries can be denied because they MIGHT create inference vulnerability

Implicit vs. Apparent Security

- User chosen passwords are notoriously insecure, often subject to dictionary attacks. Machine generated passwords are suggested as an alternative. Which is more secure?
 - Password scheme1:

```
character(k) = \{a-z, 0-9, !@\#\$\%^*()\} (46 symbols)
PW = kkkkkk
sample passwords: a5&98!, tfhe5&, 3thp1,
```

Password scheme2

```
vowel(v) = {aeiou}
consonant(c) = {bcdfghjklmnpqrstvwxz}
PW = cvcvcvcvcv
sample passwords: ponihavoka, risehipeta, tojifatese
```

Implicit vs. Apparent Security

- User chosen passwords are notoriously insecure, often subject to dictionary attacks. Machine generated passwords are suggested as an alternative. Which is more secure?
 - Password scheme1:

```
character(k) = \{a-z, 0-9, !@#$\%^*()\} (46 symbols)
```

PW = kkkkk

sample passwords: a5&98!, tfhe5&, 3thp1,

Total password space: 9,474,296,896

Password scheme2

 $vowel(v) = \{aeiou\}$

consonant(c) = {bcdfghjklmnpqrstvwxz}

PW = cvcvcvcvcv

sample passwords: ponihavoka, risehipeta, tojifatese

Total password space: 10,000,000,000

 Apparent complexity of first scheme suggests higher security, but ease of memorization of second makes passwords more secure

Combining Concepts

Security Assessment

The structure:

- The process:
 - Structured brainstorming

STOP HERE

READ THE NOTES BEFORE PROCEEDING

- True brainstorming occurs in two phases:
 - Free flowing idea generation without any analysis
 - THEN, analysis to weed out the useful ideas

- True brainstorming occurs in two phases:
 - Free flowing idea generation without any analysis
 - THEN, analysis to weed out the useful ideas

 Ice build up on high tension wires in cold climates needs to be removed to avoid damage due to excess weight/wind load on the wires. How to remove ice?

- True brainstorming occurs in two phases:
 - Free flowing idea generation without any analysis
 - THEN, analysis to weed out the useful ideas

- Ice build up on high tension wires in cold climates needs to be removed to avoid damage due to excess weight/wind load on the wires. How to remove ice?
- Brainstorming led to a suggestion to train polar bears to climb the towers to shake the wires, breaking the ice

- True brainstorming occurs in two phases:
 - Free flowing idea generation without any analysis

- Ice build up on high tension wires in cold climates needs to be removed to avoid damage due to excess weight/wind load on the wires. How to remove ice?
- Brainstorming led to a suggestion to train polar bears to climb the towers to shake the wires, breaking the ice
- While that idea is not a sensible suggestion, it led to the idea of having helicopters fly over the wires to vibrate them, breaking the ice free.

- You are inside of a room 10'x10'x10'
- The walls, floor and ceiling of the room are solid concrete
- Embedded in the center of the floor is a steel pipe that projects 1 foot from the floor
- There is a ping-pong ball at the bottom of the pipe
- The pipe diameter is about 1/16th inch larger than the ping-pong ball.

- You are inside of a room 10'x10'x10'
- The walls, floor and ceiling of the room are solid concrete
- Embedded in the center of the floor is a steel pipe that projects 1 foot from the floor
- There is a ping-pong ball at the bottom of the pipe
- The pipe diameter is about 1/16th inch larger than the ping-pong ball.
- In 60 seconds, think of as many ways as you can of removing the ball from the pipe without damaging it or the pipe; you should at least consider using objects you are likely to able to find in this classroom, but do not restrict yourself to those objects

- You are inside of a room 10'x10'x10'
- The walls, floor and ceiling of the room are solid concrete
- Embedded in the center of the floor is a steel pipe that projects 1 foot from the floor
- There is a ping-pong ball at the bottom of the pipe
- The pipe diameter is about 1/16th inch larger than the ping-pong ball.
- In 60 seconds, think of as many ways as you can of removing the ball from the pipe without damaging it or the pipe; you should at least consider using objects you are likely to able to find in this classroom, but do not restrict yourself to those objects
- Repeat this exercise using group brainstorming start with the suggestions from the previous step

- You are inside of a room 10'x10'x10'
- The walls, floor and ceiling of the room are solid concrete
- Embedded in the center of the floor is a steel pipe that projects 1 foot from the floor
- There is a ping-pong ball at the bottom of the pipe
- The pipe diameter is about 1/16th inch larger than the ping-pong ball.
- In 60 seconds, think of as many ways as you can of removing the ball from the pipe without damaging it or the pipe; you should at least consider using objects you are likely to able to find in this classroom, but do not restrict yourself to those objects
- Repeat this exercise using group brainstorming start with the suggestions from the previous step
- Compare the effectiveness of the two techniques (individual vs. group brainstorming) for developing ideas

Case 1 Terrestrial Microwave RF Telephone Relay System

4 GHz
Analog SSB FDMA
Multichannel Voice traffic
CCS signaling
Washington, DC area

Network Architecture

- Assets
- Perpetrators
- Threats
- Existing Safeguards
- Potential Vulnerabilities
- Additional Security Controls

ASSETS

- Bandwidth
- Connectivity info
- Capacity info
- Calling card data
- Called number info
- Signaling integrity
- Service provider reputation for privacy; integrity; reliability

PERPETRATORS

- Disgruntled employee
- Foreign govt.
- Terrorist
- Teenage hacker
- Organized crime

THREATS

- Jam link
- Copy calling card #
- Monitor called #
- Record conversations

EXIST. SAFEGUARDS

- Unpublished signaling protocol
- SHF operation
- Narrow beamwidth
- Frequency of operation not widely known

VULNERABILITIES

- Attacker learns protocol
- Attacker learns/finds frequency
- Signaling sent in clear
- Signaling sent on common channel
- Content in clear

ADD'L CONTROLS

- Encrypt content
- Encrypt signaling
- Transmit signaling on separate channel
- Change operating frequency regularly

Case 1 Terrestrial Microwave RF Telephone Relay System

4 GHz
Analog SSB FDMA
Multichannel Voice traffic
CCS signaling
Washington, DC area

Case 2 – Public Safety Wireless Networks

