

Goodness of Fit Tests

SYS-611: Simulation and Modeling

Paul T. Grogan, Ph.D.
Assistant Professor
School of Systems and Enterprises

Agenda

- 1. Review of Process Generators
- 2. Goodness of Fit Tests for Discrete Data
- 3. Goodness of Fit Tests for Continuous Data
- 4. Engineering Model Validation

Readings: J.V. Farr, "Review of Probability and Statistics," Ch. 3 in *Simulation of Complex Systems and Enterprises,* Stevens Institute of Technology, 2007, pp. 39-47.

Optional: S.M. Ross, "Statistical Validation Techniques," Ch. 9 in *Simulation*, McGraw-Hill, 2006, pp. 219-229.

G. Hazelrigg, "Thoughts on Model Validation for Engineering Design," *Proceedings of the DETC'03*, Chicago, IL, 2003.

Review of Process Generators

Process Generator

- Method to generate simulated random variables
- Requires a known probability distribution (PMF/PDF)
- Two classes of methods:
 - Inverse Transform
 - Accept-Reject

Inverse Transform Method

- Requires a known cumulative distribution function (CDF)
 - Must be able to describe the "inverse"
 - Visualized by tracing random y-axis to CDF

$$r = F(x) \Rightarrow x = F^{-1}(r)$$

Poisson Generator

λ : mean event rate

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

$$F(x) = \sum_{i=0}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$$

$$\Rightarrow x = \begin{cases} 0 & F(x) \le e^{-\lambda} \\ 1 & e^{-\lambda} < F(x) \le \sum_{i=0}^{1} \frac{\lambda^{i}}{i!} e^{-\lambda} \\ 2 & \sum_{i=0}^{1} \frac{\lambda^{i}}{i!} e^{-\lambda} < F(x) \le \sum_{i=0}^{2} \frac{\lambda^{i}}{i!} e^{-\lambda} \\ \vdots \end{cases}$$

Exponential Generator

 $\frac{1}{\lambda}$: mean inter-event time

 λ : mean event rate

$$f(x) = \lambda e^{-\lambda x}$$

$$F(x) = \int_{i=0}^{x} \lambda e^{-\lambda i} di$$

$$= 1 - e^{-\lambda x}$$

$$\Rightarrow x = \frac{-\ln(1 - F(x))}{\lambda}$$

Goodness of Fit Tests for Discrete Data

Discrete Goodness of Fit Tests

A Goodness of Fit test checks if samples observed of a random variable come from a particular distribution

- Validate process generators with commonly-used distributions (e.g. Poisson, Binomial)
- Pearson's Chi-squared (χ^2) Test: requires large (>5) samples observed from most values
- Fisher's Exact Test (among others): handles small sample sizes but more complex

Pearson's Chi-squared (χ^2) Test

 Pearson's chi-squared test evaluates whether a set of samples follow a hypothesized distribution

 H_0 : the data are consistent with a specified distribution

 H_a : the data are not consistent with a specified distribution

- Should have 5+ observations for at least 80% of values
- Compares the following:
 - Expected or theoretical frequencies of categories
 - Observed or actual frequencies of categories

Dice Roller Data Set

- X: number of {3, 4, 5, 6} rolled in 10 dice
- Observed data (123 samples):

x_i	0	1	2	3	4	5	6	7	8	9	10
o_i	0	0	3	1	6	25	26	25	23	11	3

• Expected if $X \sim \text{binomial}(n = 10, p = 2/3)$:

$$E_i = N \cdot p(x_i), \qquad p(x) = {10 \choose x} \left(1 - \frac{2}{3}\right)^{10-x} \left(\frac{2}{3}\right)^x$$

x_i	0	1	2	3	4	5	6	7	8	9	10
E_i	0.0	0.0	0.4	2.0	7.0	16.8	28.0	32.0	24.0	10.7	2.1

Combine for 5+ expected observations

Dice Roller Data Set

- X: number of {3, 4, 5, 6} rolled in 10 dice
- Observed data (123 samples):

x_i	0-4	5	6	7	8	9	10
o_i	10	25	26	25	23	11	3

• Expected if $X \sim \text{binomial}(n = 10, p = 2/3)$:

$$E_i = N \cdot p(x_i), \qquad p(x) = {10 \choose x} \left(1 - \frac{2}{3}\right)^{10 - x} \left(\frac{2}{3}\right)^x$$

x_i	0-4	5	6	7	8	9	10
E_i	9.4	16.8	28.0	32.0	24.0	10.7	2.1

Chi-squared (χ^2) Test Statistic

$$T = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

- N samples of n discrete values
- O_i observed samples for each value i
- E_i expected samples for each value i, $E_i = N * p(x_i)$
- p-value = $1 F_{\chi_k^2}(T)$
 - $F_{\chi_k^2}$: chi-squared CDF with k=n-1-c degrees of freedom
 - c: number of distribution parameters estimated from samples
- Reject null hypothesis if p-value $< \alpha$ (bad distribution!)

Dice Roller Statistic

x_i	O_i	E_i	$(O_i - E_i)^2$		
			$\overline{E_i}$		
0-4	10	9.4	0.036		
5	25	16.8	4.005		
6	26	28.0	0.142		
7	25	32.0	1.529		
8	23	24.0	0.041		
9	11	10.7	0.011		
10	3	2.1	0.352		
		T =	6.117		
		k =	7-1=6		

Dice Roller Test

$$p$$
-value=1 - $F_{\chi_6^2}$ (6.117)=0.41

- \rightarrow Cannot Reject H_0 : data similar to binomial distribution
 - \rightarrow 41% chance of a more extreme statistic under H_0

Goodness of Fit Tests for Continuous Data

Continuous Goodness of Fit Tests

A Goodness of Fit test checks if samples observed of a random variable come from a particular distribution

- Validate process generators with commonly-used distributions (e.g. Normal, Exponential)
- Chi-squared (χ^2) Test: group continuous variables in bins (same as discrete case)
- Kolmogorov-Smirnov Test: compare observed CDF (discrete) with expected CDF (continuous)
- Anderson-Darling Test: variation of K-S test

Kolmogorov-Smirnov (K-S) Test

 Kolmogorov-Smirnov (K-S) test evaluates whether a set of samples follow a hypothesized continuous distribution

 H_0 : the data are consistent with a specified distribution

 H_a : the data are not consistent with a specified distribution

- Compares the following:
 - Expected or theoretical CDF
 - Observed or actual CDF

K-S Test Statistic

- Test statistic D_n considers:
 - Largest vertical distance between observed and expected CDF

•
$$F_n(x) = \frac{\text{\# samples } \le x}{\text{\# samples}}$$

•
$$D_n = \max_{1 \le i \le N} (F(x_i) - F_n(x_{i-1}), F_n(x_i) - F(x_i))$$

• Reject null hypothesis at significance level α if:

$$P\{D_n \ge d_n\} = p$$
-value $< \alpha$ (use statistical software)

Human RNG Data

- Two U(0,1) sources with 148 samples:
 - Human samples
 - Numpy random.rand()
- Compare both with expected uniform (0,1) distribution
 - Examples use
 scipy.stats.kstest

Human RNG Statistic/Test

- Human samples
 - $D_{148} = 0.051$
 - p-value = 0.84
- Numpy samples:
 - $D_{148} = 0.067$
 - p-value = 0.52
- Both human and Numpy samples are similar to uniform (0,1) distributions!

Engineering Model Validation

Scientific vs. Engineering

Based on Hazelrigg (2003)

- Science uses models to express causality
 - Laws of nature are "good" models that appear to be invariant and fixed over time and space
 - For example: F = ma
- Engineering uses models to represent physical artifacts and their behaviors
 - Necessary simplifications of reality, never perfect
 - Errors are dependent on the context

Example: Falling Object

Based on Hazelrigg (2003)

Natural Law

$$y = y_0 + \iint_{t_0}^t \frac{\sum F}{m} dt$$

Engineering Model

$$F_D=0$$

$$F_D = \frac{1}{2}\rho v^2 C_D A$$

$$F_W = mg$$

$$F_W = G \frac{m_1 m_2}{r^2}$$

- No drag
- Earth surface
- Form drag
 - Two-body gravity

Validity of engineering model is completely dependent on the application context

Use of Engineering Models

Based on Hazelrigg (2003)

- Not all engineering models must give absolute measures to be useful
- Models to inform decisions only need to discriminate between alternatives
 - Which is the better design to reduce drag?

Rational decisions select the best alternative

Design Decisions

Based on Hazelrigg (2003)

- Must consider three things for design decisions:
 - Alternatives: various courses of action available
 - Perceptions: expectations of alternatives
 - Preferences: desirability of outcomes
- Only individuals make decisions
 - Act on behalf of own perceptions and preferences
 - Commit resources in the present
 - Seek preferred outcomes in the future

Models as Information Sources

Based on Hazelrigg (2003)

 Model information quality describes the probability a preferred choice leads to the most desirable outcome

- A model with perfect information guarantees the preferred choice has the best outcome
- Valid models produce high-quality information that leads to preferred choices/outcomes

Guessing Game

Based on Hazelrigg (2003)

- How many M&Ms are in the jar?
- One guess per person, closest without going over wins the jar
- How can models provide information for this decision?
 - What are the alternatives?
 - What are your perceptions?
 - What are your preferences?

M&M Model

Based on Hazelrigg (2003)

$$N = \frac{V}{V_c}\mu = \frac{V}{\frac{\pi}{6}d^2t}\mu$$

Volume of container:

V∼triangular(1852, 1890, 1930)

Diameter/thickness of M&M:

 $d \sim \text{triangular}(1.26, 1.4, 1.54)$

 $t \sim \text{triangular}(0.54, 0.6, 0.66)$

Packing factor:

 μ ~triangular(0.44, 0.55, 0.66)

Triangular Process Generators

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & c < x \le b \end{cases}$$

$$F(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)} & a \le x \le c\\ 1 - \frac{(b-x)^2}{(b-a)(b-c)} & c < x \le b \end{cases}$$

$$x = F^{-1}(r) = \begin{cases} \sqrt{r(b-a)(c-a)} + a & r \le \frac{c-a}{b-a} \\ b - \sqrt{(1-r)(b-a)(b-c)} & r > \frac{c-a}{b-a} \end{cases}$$

(even easier in Python... np.random.triangular(a,c,b))

Derived Distribution of *N*

10000 samples

Mean: 1697

Std. dev: 210.8

• Std. error: 2.1

Modeling Preference

- Derived state variable w shows whether a choice x wins the jar of M&Ms
 - Determined based on true number N*
 - Compare versus all others' choices y

$$w(x, \mathbf{y}) = \begin{cases} 1 & if \ x \le N^* \ and \ x \ge j \ \forall \ j \in \mathbf{y}: \ j \le N^* \\ 0 & \text{otherwise} \end{cases}$$

- Model should estimate p(w(x)) from many trials
 - Find x to maximize probability of winning!
 - Try for 50 opponents...

Monte Carlo Simulation

 Simple expectation of others' choices:

 $y \sim \text{triangular}(500,1600,2500)$

 More advanced expectation of others' choices:

 $y \sim N$

Committing Resources

- For question 7.1 on this week's assignment, take some time to do your own analysis...
 - "Le Parfait Super Terrines"
 500ml jar, overfilled above max
 - Standard milk chocolate M&Ms
- Optional: submit your one final choice here:

goo.gl/ueFSFF

