## FIRST LAW OF GEOGRAPHY

"Everything is related to everything else, but near things are more related than distant things."

-Waldo Tobler



### FIRST LAW OF GEOGRAPHY

## This might seem obvious:

- Students in the same class interact more.
- Orca pods in different areas develop different dialects.
- Hemlocks in BC are more related to each other than to hemlocks in NB.



### FIRST LAW OF GEOGRAPHY

Not a **grantee** of similarity.

- Vancouver's average snowfall is < 30 cm/yr
- Grouse Mountain frequently exceeds 9 m/yr.



# **SPATIAL HETEROGENEITY**



Uneven distribution across space.

#### BONINI'S PARADOX

As a model of a complex system becomes more complete, it becomes less understandable.

- It will eventually be just as difficult to understand as the real-world processes it represents.
  - **e.g.** a 1:1 scale map
- At a certain point, we have to ignore the heterogeneity.

### REVISITING MAP SCALE

**Map scale**: ratio of map units to real world units.

- <u>Small Scale</u>: Large area, more generalization, less detail.
- <u>Large Scale</u>: Small area, more detail, less generalization.



### TIME SCALE



Comparison of Different Time Scales

### ANALYSIS SCALE

Different phenomena operate on different temporal and spatial scales.

- No need to model tornadoes in a global climate model.
- Impractical to map turbulence globally.



### ANALYSIS SCALE

Different phenomena operate on different temporal and spatial scales.

• Identify the scale relevant to your analysis.



# **SPATIAL AUTOCORRELATION**



Measure of similarity across space.

### SPATIAL DATA MODELS



We can exploit spatial autocorrelation to simplify our representation of spatial data.

## MAPTHE FOREST NOTTHE TREES

We don't need the location of every tree to map a forest.

• Use average presence of trees over a larger area.



### SIMILARITY ACROSS SPACE

Natural systems usually exhibit degrees of spatial heterogeneity **and** autocorrelation.

• What is heterogeneous at one scale may be **homogeneous** at another.

# SPATIAL RESOLUTION

Relates to the level of spatial detail in a dataset.

What is the smallest feature that is included in a dataset?



## TEMPORAL RESOLUTION

Relates to the level of temporal detail in a dataset.

Over what time period is the data valid?

Are there multiple observations?



## RESOLUTION VS. SCALE

The scale of our analysis dictates our desired resolution.

Data resolution can limit the scale of our analysis.

## SCALE DEPENDENCE





### SCALE DEPENDENCE



Acknowledge the heterogeneity where appropriate.

- Large scale maps might need more attention to detail.
- Higher resolution data.

### SCALE DEPENDENCE

Count on spatial autocorrelation and call a unit homogeneous where appropriate.

- Smaller scale maps can be more generalized.
- Lower resolution data.

