

物质的量浓度

日期: 姓名: Date:_____ Time:_____ Name:____

初露锋芒

学习目标

&

重难点

4	带捏枷手的具次再的点以	江
11.4		ニコロー見ごろきている

2、掌握物质的量浓度与其他公式之间的转化。

3、掌握溶液中离子浓度的计算。

4、掌握气体溶于水的计算。

2、掌握气体溶于水的计算;

5、掌握物质的量浓度与物质的质量分数之间的转换。

6、掌握一定物质的量浓度溶液的配置方法

1、掌握物质的量浓度与其他公式之间的转化;

1、事涯初灰的里林及一条他五八之间的农民

3、掌握物质的量浓度与物质的质量分数之间的转换;

4、掌握一定物质的量浓度溶液的配置方法及误差分析。

第 1 页 共 17 页

MANUFACTURE CONTRACTOR
物质的量浓度的概念
1. 定义
以 1L 溶液里所含溶质的物质的量来表示的溶液组成的物理量。
2. 表示方法
物质的量浓度用表示,单位是。
3. 计算公式
物质的量浓度(mol/L)=。
注意:
(1)体积是的体积,单位是;溶质的量是物质的量的量而不是质量。
(2) 溶质可以是化合物,也可以是离子或其他特定组合。
判断溶质时应具体情况具体分析:
如: CuSO ₄ ·5H ₂ O→、SO ₃ →等。
如: NH ₃ 、Cl ₂ 等物质溶于水后成分复杂,但计算浓度时,仍以溶解前的 NH ₃ 、Cl ₂ 为溶质。
(3) 带有结晶水的物质作为溶质时,其"物质的量"的计算或"质量"的计算要多加注意,
如: $n(CuSO_4 \cdot 5H_2O) = n(CuSO_4)$ 。
(4) 同一溶液无论取出多少体积, 其各种浓度(物质的量浓度、溶质的质量分数、离子浓度)均不变
【答案】C mol/L 或 $mol \cdot L^{-1}$ $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
溶液 L CuSO ₄ H ₂ SO ₄
【练一练】下列各溶液中,溶质的物质的量浓度为 1mol/L 的是 ()
A. 将 25g 胆矾溶于 100mL 水所得到的溶液

- B. 将 80gSO₃ 溶于水配成 1L 的溶液
- C. 将 0.5mol/L 的 NaNO₃ 溶液 100mL 加热蒸发掉 50g 水的溶液
- D. 从 100mL0.5mol/L 稀硫酸中取出 50mL 溶液

【答案】B

二、物质的量浓度的计算

1. 物质的量与其他公式之间的转换

【思考】物质的量与质量、微粒个数、标况下的气体体积之间的关系?

【答案】n=m/M=V/V_m=N/N_A

【练一练】将 8gNaOH 溶于水配成 250mL 溶液,此溶液中 NaOH 的物质的量浓度是多少? 取出 10mL 此溶液,其中含 NaOH 多少克?

【答案】0.8mol/L; 0.32g

2. 溶液中离子浓度的计算

思考: 如果已知某化合物的浓度,如何求出该化合物中某一离子的浓度呢? 反之,已知某离子的浓度,怎样求化合物的浓度呢?

【练一练】

(1) 0.3mol/L 的 Al₂(SO₄)₃溶液中,铝离子、硫酸根的物质的量浓度分别是多少?

答案: 0.6mol/L 0.9mol/L

(2) Al^{3+} 物质的量浓度是 0.8mol/L 的 $Al_2(SO_4)_3$ 的物质的量浓度为多少?

答案: 0.4mol/L

(3) 0.5L1mol/L 的 FeCl₃与 0.2L1mol/L 的 CaCl₂溶液中, Cl⁻物质的量浓度之比为。

答案: 3:2【与体积无关】

结论: 化合物中某离子的浓度=

【答案】该化合物的浓度×某离子的下标。

3. 溶液的稀释计算	
(1)稀释浓溶液时,溶液的质量或体积要发生变化,但	均不变。
设稀释前溶液中溶质的物质的量浓度为 c_1 ,溶液体积为 V_1 ,	稀释后,溶液中溶质的物质的量浓度变
为 c ₂ ,溶液体积变为 V ₂ ,则有:。	
(2) 溶液质量守恒: m(稀)=+。	
(3) 注意水的密度是 1g/cm³, 求加入水的体积可以转化为质量器	来计算。
【答案】溶质的量(质量或物质的量) $\mathbf{c}_1 \cdot \mathbf{V}_1 = \mathbf{c}_2 \cdot \mathbf{V}_2$	m(浓) m (水)
【练一练】某温度下 22%NaNO ₃ 溶液 150mL,加水 100g 稀释后	后,质量分数变成14%,求原溶液的物质
的量浓度。	
【答案】3mol/L	
4. 溶液混合后浓度的计算	
(1) 同浓度溶液的混合,浓度。	
(2) 不同浓度溶液混合,浓度改变。	
计算步骤:	
① 若题目没有给出混合液密度,则表示可忽略溶液混合时 [。]	休和的亦化 "心思一
此时 $V_{(ii)}$ =。最后依 $c_{(ii)}$ =,求出混合 i	· /
②若题目中给了混合溶液的密度,则有 V_{ii} =	
(即混合液的总质量除混合液的密度,再把单位转化为升)	_ °
故 $\mathbf{c}_{(a)}$ =	
答案: m _(总) /ρ n _(混) /V _(混)	
【思考】两个溶液混合后,体积会发生改变,为什么不能直接将	两种溶液相加求出混合溶液的总体积呢?
答案: 因为分子之间有间隙, 体积不能直接相加减。	
【练一练】	
(1)将 50mL 0.1mol/L NaCl 和 50mL 0.5 mol/L CaCl2 混合后,非	其溶液的体积变为二者的体积之和,则混
合液中 Cl ⁻ 的物质的量浓度为()	
A. 0.1mol/L B. 0.5mol/L C. 0.55mol/L	D. 0.75mol/L
【答案】C	
(2) 在 100mL 36.5%的浓盐酸 (密度为 1.18g/cm³) 中加入多少 r	mL 2mol/L 的稀盐酸 (密度为 1.08g/cm³),
才能配成 6mol/L 的盐酸(密度为 1.10g/cm³)()	

【答案】A

A. 137.9ml B. 137ml C. 237ml D. 200ml

5. 物质的量浓度与质量分数之间的转换计算

【思考】已知密度和质量分数,怎么求物质的量浓度?

答案:
$$c = \frac{n_B}{V_{ii}} = \frac{\frac{m_B}{M_B}}{\frac{m_B + m_{ii}}{1000\rho_{ii}}} = \frac{m_B}{m_B + m_{ii}} \times \frac{1000\rho_{ii}}{M_B} = \frac{1000\rho_{ii}w\%}{M_B}$$

$$c = \frac{1000mL \times \rho_{ii}g / mL \times w\%}{1L \times M_Bg / mol}$$

【练一练】50mLH₂SO₄的质量分数为35%、密度为1.24g/cm³的硫酸中,H₂SO₄的物质的量浓度为

- A. 0.044mol/L B. 0.44mol/L C. 4.4mol/L D. 44mol/L

【答案】C

6. 易溶性气体溶于水所得溶液中溶质的物质的量浓度的计算

如 NH₃、Cl₂等物质溶于水后成分复杂,但计算浓度时,仍以溶解前的 NH₃、Cl₂为溶质。

$$c = n_{(A)} / V_{(液)}$$

其中 $V_{\imath k} = \underline{\hspace{1cm}}$ 。
答案: $m_{\imath k} / \rho = (m_{(\lnot)} + m_{(\imath k)}) / \rho$

【练一练】用 1 体积水吸收 560 体积(S.T.P) 氨气, 所得氨水密度为 0.89g/mL, 求氨水物质的 量浓度 和溶质的质量分数。

【答案】15.6mol/L 29.8%

【解析】依物质的量浓度和溶质的质量分数的概念进行计算,设体积单位为L。

$$c(NH_3) = \frac{n(NH_3)}{V} = \frac{\frac{560L}{22.4L / mol}}{\frac{1000g + (\frac{560}{22.4} \times 17)g}{0.89g / mL}} = \frac{25mol}{1.6L} = 15.6mol / L$$

$$\omega(\mathrm{NH_3}) = \frac{m(\mathrm{NH_3})}{m(\mbox{\em in})} \times 100\% = \frac{\frac{560 L}{22.4 L \ / \ mol} \times 17g \ / \ mol}{1000g + \frac{560 L}{22.4 L \ / \ mol}} \times 17g \ / \ mol} \times 100\% = \frac{425g}{1425g} \times 100\% = 29.8\%$$

三、一定物质的量浓度溶液的配制

. 容量瓶的结构和使用方法	
(1) 容量瓶的构造和标注	
容量瓶是细颈、梨形、平底的玻璃瓶,配有磨口玻璃塞。	
①颈部标有; ②瓶体标有。	
(2) 规格(容量)常用的有、、、、、、等几种。	
(3) 容量瓶的使用方法和注意事项:	
①使用前要先检查容量瓶。	
方法: 往容量瓶中加入一定量的水,塞好瓶塞。用食指摁住瓶塞,另一只手托住瓶底,把容量瓶倒	立
过来,观察瓶塞周围是否漏水。如果不漏水,把容量瓶正立并将瓶塞旋转 180°后塞紧,再把容量瓶倒	立
过来,再检查容量瓶是否漏水。	
②加溶液至距离刻度线时改用滴加,滴加到刻度线时,观察液面要平视刻度线,	使
凹液面的最低点与刻度线相切。	
③容量瓶不能用于配制任意体积的一定物质的量浓度的溶液,只能用于配制的一定物质的	量
农度的溶液。选择容量瓶时一定要注明其规格(如 100mL 容量瓶),容量瓶的规格选择要所	配
容液的体积,如要配制 480mL 的溶液时,要选择 500mL 的容量瓶。	
④容量瓶不能用试剂润洗、不能加热、不能溶解、不能作反应容器、不能用于储存溶液。	
【答案】刻度线 温度和容积 100 mL、250 mL、500 mL、1000 mL 是否漏水	
2~3 cm 胶头滴管 一定体积 等于或大于	
2. 一定物质的量浓度溶液的配制	
(1) 主要仪器:。	
(2) 方法步骤	
以配制 500mL0.100mol/L 的碳酸钠溶液。	
①计算:	
② 称量: 在天平上称取 5.3g 碳酸钠固体。(注意天平的防腐)	
③溶解:将碳酸钠放入烧杯中,加入适量的蒸馏水,搅拌,使固体溶解并。	
④转移:将溶液沿着小心地注入 500 mL 的容量瓶中。	
⑤洗涤:用蒸馏水洗涤烧杯内壁,并将每次洗涤后的溶液都注入容量瓶,振荡容量瓶,	使
容液均匀混合。	
⑥定容:缓缓地把蒸馏水注入容量瓶,直到液面接近刻度处,改用加水到刻度经	ξ,
吏溶液的凹面底部正好跟刻度线相切。	
⑦ 摇匀 :塞好瓶塞,反复摇匀。	
②装拖贴祭。	

【答案】容量瓶、天平、量筒、烧杯、玻璃棒、胶头滴管、

 $n=c\cdot V=0.100 \text{ mol/L}\times 500 \text{ mL}\times 1 \text{ L/1 }000 \text{ mL}=0.05 \text{ mol}$

 $m = n \cdot M = 0.05 \text{mol} \times 106 \text{ g/mol} = 5.3 \text{ g}$

冷却至室温 玻璃棒 两三次 2~3 cm 胶头滴管

【思考1】为什么不能将溶液直接倒入容量瓶中?

答案: 容量瓶瓶颈较细, 为避免液体洒在外面, 应用玻璃棒引流。

【思考2】若定容时不小心液面超过了刻度线,能用胶头滴管把多余的液体取出吗?

答案: 不能, 浓度偏小。

【思考3】摇匀后发现液面低于刻线,能否补充水?

答案:不能。液面低于刻线是因为还有水挂壁,当静置后就会恢复原状。

(3) 用固体配制一定物质的量浓度溶液的过程(如下图)

3. 一定物质的量浓度溶液的配制的误差分析 根据 $c = \frac{n}{V} = \frac{m}{VM}$. 试总结怎样判断 c 的误差

	能引起误差的一些错误操作	因变量		c _B (mol/L)
		nB(或 mB)	V	
74 E	①称量易潮解的物质(如 NaOH)时间过长	偏小	无	偏小
	②用滤纸称量易潮解的物质(如 NaOH)	偏小	无	偏小
	③用量筒量取液态溶质时俯视读数	偏小	无	偏小
量取	④量取液态溶质时量筒内有水	偏小	无	偏小
	⑤转移时有溶液溅出	偏小	无	偏小
溶解	⑥未洗涤烧杯和玻璃棒	偏小	无	偏小
转移 洗涤	⑦洗涤量取浓溶液的量筒并将洗涤液转移到容量瓶	偏大	无	偏大
<i>扒</i> 店东	⑧溶液未冷却至室温就转移到容量瓶	无	偏小	偏大
	⑨定容时,水加多了,用滴管吸出	偏小	无	偏小
定容	⑩定容后,经振荡、摇匀、静置,液面下降再加水	无	偏大	偏小
	定容时,俯视刻度线	无	偏小	偏大

州的总1: 物质的重称及的定	X
【例1】1mol/L 硫酸的含义是	()

A. 1L 水中含有 1molH₂SO₄

知识占1、物质的量浓度的完义

- B. 1L 溶液中含有 1molH+
- C. 将 98 g H₂SO₄溶于 1L 水所配成的溶液
- D. 指 1L 硫酸溶液中含有 98gH₂SO₄

【难度】★

【答案】D

变式1: 下列判断正确的是 ()

- A. $1LH_2SO_4$ 溶液中含有 $98gH_2SO_4$,则该溶液的物质的量的浓度为 98g/L
- B. 1L 水中溶解了 0.1 mol NaCl,则该溶液的物质的量的浓度为 0.1 mol
- C. 1000 mLNaOH 溶液里含 40g NaOH,则溶液的物质的量的浓度为 0.001mol/L
- D. 10mL1mol/L 的 H₂SO₄溶液与 1000mL1mol/LH₂SO₄溶液的物质的量浓度相同

【难度】★

【答案】D

【方法提炼】

物质的量为溶质的物质的量, 体积为溶液的总体积。

如: 硫酸铜晶体溶于水时溶质的物质的量等于硫酸铜晶体的物质的量,

 $PP n(CuSO_4 \cdot 5H_2O) = n(CuSO_4)$.

溶液的体积注意要算上晶体中水的体积。

知识点 2:溶液中离子浓度的计算

题型 1: 单一溶液中离子浓度的计算

【**例 2**】5mLFe₂(SO₄)₃溶液中含 Fe³⁺56mg,则此溶液中 SO₄²⁻的浓度是 ()

- A. 3mol/L
- B. 1.5mol/L
- C. 0.3mol/L
- D. 2mol/L

【难度】★★

【答案】C

题型 2: 混合溶液中离子浓度的计算

【**例 2**】100mL0.3mol/LNa₂SO₄溶液和 50mL0.2mol/L Al₂₍SO₄₎₃溶液混合后,溶液中 SO₄²⁻的物质的量浓度

为 ()

- A. 0.20mol/L
- B. 0.25mol/L
- C. 0.40mol/L D. 0.50mol/L

【难度】★

【答案】C

KEYTELL EDUCATION	成长为梦想由的白己
变式1: 由 NaCl、MgCl ₂ 和 MgSO ₄ 三种盐配成的混合溶液中,若 Na ⁺ 的	的浓度为0.1mol/L,Mg ²⁺ 的浓度为0.25mol/L,
而 Cl ⁻ 为 0.2mol/L,则 SO ₄ ²⁻ 的浓度是 ()	
A. 0.2mol/L B. 0.4mol/L C. 0.3mol/L	D. 0.1mol/L
【难度】★★	
【答案】A	
【方法提炼】	
(1) 若已知物质的浓度,求其中某个离子的浓度,则不需要用到	溶液的体积,直接利用公式:
化合物中某离子的浓度=该化合物的浓度	×某离子的下标;
(2) 若已知物质的浓度,求其中某个离子的物质的量,则利用物	质的量浓度最基础的公式:
化合物中某离子的物质的量=该化合物的浓度×溶	字液的体积×某离子的下标
知识点 3: 溶液稀释前后物质的量浓度的计算	
【例 3】将 12mol/L 的盐酸(ρ=1.19g/cm³)50mL 稀释成 6mol/L 的盐	酸(ρ=1.10g/cm³),需加水的体积为 (
A. 50 mL B. 50.5 mL C. 55 mL	D. 59.5 mL
【难度】★★	
【答案】B	
【解析】稀释后溶液的体积= 12mol/L×0.05L /6 mol/L=0.1I	
水的质量=1.10 g/mL×100 mL-1.19 g/mL×50 mL=50.5g,水的密	医度是 1g/mL,所以水的体 积为
50.5 mL	
变式 1: 300mL 某浓度的 NaOH 溶液中含有 60g 溶质,现欲配制 1	lmol/LNaOH 溶液,应取原溶液与蒸馏水的
体积比约为 () D 15	D. 22
A. 1:4 B. 1:5 C. 2:1	D. 2:3
【难度】★	
【答案】A 变式 2: 在 50gHCl 的质量分数为 30%的盐酸中加入 250g 水后, ?	得到的發扑酸巾滚质的质景
稀释后盐酸的密度为 1.02g/cm³,则稀释后溶液中 HCl 的物质的量流	
【难度】★★	(K),Z0
【答案】5% 1.40mol/L	
1. Tomore	
【方法提炼】	
掌握好稀释前后溶质的质量和溶质的物质的量保持不变。	
公式: m(稀)=m(浓)+m(水)	

c(稀)×V(稀)=c(浓)×V(浓)

知识点 4: 物质的量浓度与溶质质量分数之间的转换

【例 4】分子量为 M 的某物质在室温下的溶解度为 Sg/100g 水,此时测得饱和溶液的密度为 d g/cm^3 ,则该饱和溶液的物质的量浓度是 ()

A.
$$\frac{M}{10 \cdot s \cdot d} \mod / L$$

B.
$$\frac{1000 \cdot s \cdot d}{M \cdot (100 + s)} \mod / L$$

$$C. \ \frac{10 \cdot s \cdot d}{M} mol / L$$

D.
$$\frac{M(100+s)}{1000 \cdot s \cdot d} \mod / L$$

【难度】★★

【答案】B

变式 1: $50 \text{mLH}_2 \text{SO}_4$ 的质量分数为 35%、密度为 1.24g/cm^3 的硫酸中, $\text{H}_2 \text{SO}_4$ 的物质的量浓度为

()

A. 0.044mol/L

B. 0.44mol/L

C. 4.4mol/L

D. 44mol/L

【难度】★★

【答案】C

【方法提炼】掌握公式 c=1000pW/M,即掌握质质量分数与浓度之间的转换公式有助于提高做题效率。

知识点 5:气体或一些特殊物质的物质的量浓度的计算

【例 5】将标准状况下的 aL 氯化氢气体溶于 1000g 水中,得到的盐酸的密度为 bg/mL,则该盐酸的物质的量浓度是 ()

A.
$$\frac{a}{22.4} \mod / L$$

B.
$$\frac{ab}{22400} \operatorname{mol} / L$$

C.
$$\frac{ab}{22400 + 36.5a} \text{ mol / L}$$

D.
$$\frac{1000ab}{22400 + 36.5a}$$
 mol / L

【难度】★★

【答案】D

变式 1: 用 VL 水配制浓度为 amol/L 的氨水 (密度为 pg/cm^3),需用氨气的体积是 (标准状况下) 。

【难度】★★★

【答案】
$$\frac{22400 \text{aV}}{1000 \rho - 17 \text{a}} \text{L}$$

变式 2: 将 Wg 胆矾(CuSO₄·5H₂O)溶解在 VL 水中,测得溶液的密度为 ρ g/cm³,则溶液的物质的量浓度是多少mol/L? 质量分数是多少?

【难度】★★★

【答案】
$$c = \frac{W \cdot \rho}{0.25W + 250V}$$
; $\omega\% = \frac{16W}{25W + 25000V} \times 100\%$

【方法提炼】这类问题首先要判断溶质的成分, 以及溶质的物质的量,

其次是计算 m(液)=m(溶于水的物质)+m(水)。

知识点 6: 一定物质的量浓度溶液的配制

【例 6】	一次配制	500ml É	的 0.2mol/L	的碳酸钠溶液同答下列问题	

- ①通过计算,应用托盘天平称取 g碳酸钠;
- ②称取固体碳酸钠;
- ③若砝码和药品的位置放反了(假使称量时未使用烧杯),天平平衡时称量碳酸钠的质量是
- ④下列操作使所配溶液浓度偏高的是
- I. 若称取 28.6gNa₂CO₃·10H₂O 进行配制
- II. 称量时选用了生锈的砝码
- Ⅲ. 往容量瓶转移溶液时有少量的液体溅出
- IV. 碳酸钠中有不溶性杂质

V. 未洗涤溶解碳酸钠的烧杯

- VI. 定容时仰视刻度线
- Ⅶ. 小烧杯洗净未干燥即用来称量
- Ⅷ. 容量瓶未干燥即用来配制溶液

【难度】★★

【答案】10.6 9.4 II

- 变式 1: 精确配制一定物质的量浓度的 NaOH 溶液,下面实验操作中正确的是()
 - A. 称量时,将 NaOH 固体直接放在天平托盘上面的纸上
 - B. 将称好的 NaOH 固体放入容量瓶中,加入少量水溶液
 - C. 在烧杯中溶解 NaOH 固体后,立即将溶液注入容量瓶中
 - D. 将烧杯中已冷却的 NaOH 溶液注入未经干燥的容量瓶中

【难度】★★

【答案】D

- **变式 2:** 使用胆矾配制 1L0.1mol/L 的 CuSO₄ 溶液, 正确的操作是 ()
 - A. 将胆矾加热除去结晶水后, 称取 16g 溶解在 1L 水中
 - B. 称取胆矾 25g 溶于 1L 水中
 - C. 将 25g 胆矾溶于少量水, 然后将溶液稀释到 1L
 - D. 将 16g 胆矾溶于水, 然后将溶液稀释至 1L

【难度】★★

【答案】C

【方法提炼】

配制步骤: 计算→称量→溶解→转移→洗涤→定容→摇匀→装瓶

误差分析: 注重操作影响的是公式中哪个因素的变化。

注意:一定物质的量浓度的配制只能配制容量瓶规格的体积。

例:配制 900mL 1mol/L 的硫酸铜溶液, 需称量硫酸铜 160g 或者胆矾 250g。

瓜熟蒂落

-			
1.	下列溶液中,跟 100mL 0.5mol/L NaCl 溶液所	含的 Cl ⁻ 物质的量相同的是 ()	
	A. 100mL 0.5mol/L MgCl ₂ 溶液	B. 50mL 1mol/L NaCl 溶液	
	C. 50mL 0.25mol/L CaCl ₂ 溶液	D. 50mL 0.5mol/L AlCl ₃ 溶液	
	【难度】★		
	【答案】B		
2.	下列溶液中,与 100 mL 0.5mol/L NaCl 溶液原	f含的 Cl ⁻ 的物质的量浓度相同的是 ()
	A. 100mL 0.5mol/L MgCl ₂ 溶液	B. 50mL 1mol/L NaCl 溶液	
	C. 50mL 0.25mol/L CaCl ₂ 溶液	D. 50mL 0.5mol/L AlCl ₃ 溶液	
	【难度】★		
	【答案】C		
3.	0.12mol/L 的 NaCl、MgCl ₂ 、AlCl ₃ 三种溶液各	- 500mL 中 Cl ⁻ 的物质的量浓度 ()	
	A. 相同		
	B. 无法比较		
	C. 依次为 0.12mol/L、0.24mol/L、0.36mol/	L	
	D. 依次为 0.06mol/L、0.12mol/L、0.18mol/	L	
	【难度】★		
	【答案】C		
4.	0.5L1mol/LFeCl3溶液与 0.2L1mol/LKCl 溶液 F	中的 Cl·的数目之比为 ()	
	A. 1: 3 B. 3: 1	C. 5: 2 D. 15: 2	
	【难度】★		
	【答案】D		
5.	(双选)下列溶液中的 NO3 离子浓度与 500m	L1mol/LNaNO3中的 NO3·浓度相等的是()
	A. 100mL2mol/LNH ₄ NO ₃ 溶液		
	B. 20mL1mol/LKNO ₃ 溶液和 40mL 0.5mol/L	. Ca(NO ₃) ₂ 溶液混合	
	C. 50mL1.5mol/LAl(NO ₃) ₃ 溶液		
	D. 150mL0.5mol/LMg(NO ₃) ₂ 溶液		
	【难度】★ 【答案】BD		

【难度】★ 【答案】A

6.	N_A 为阿伏加德罗常数,	下列关于 0.2mol/LK ₂	SO ₄ 溶液的正确说法是	()
	A. 500mL 溶液中所含	含 K+、SO ₄ 2 ⁻ 总数为 0.3	N_A	
	B. 500mL 溶液中含有	頁 0.1N _A 个 K⁺离子		
	C. 1L 溶液中 K+离子	浓度是 0.2mol/L		
	D. 2L 溶液中 SO ₄ ²⁻ 离	哥子浓度是 0.4mol/L		
	【难度】★			
	【答案】A			
7.	将 5mol/L 盐酸 10mL 和	稀释到 200mL,再取出	5mL,这5mL溶液的浓	攻度为 (
	A. 0.05mol/L	B. 0.25mol/L	C. 0.1mol/L	D. 0.5mol/L
	【难度】★			
	【答案】B			
8.	由 Na ₂ SO ₄ 和 NaNO ₃ 组	成的混合物 88g 溶于水	、配制成 1L 溶液,此溶	液中 Na ⁺ 的浓度为 1.2mol/L,则原混合
物口	P NaNO3的质量为 ()		
	A. 17g	B. 34g	C. 25.5g	D. 51g
	【难度】★			
	【答案】A			
9.	用 36.5%的浓 HCl(d=1.	.2 g·cm ⁻³)配 1 mol·L ⁻¹ 自	内稀 HCl 100 mL,配制)	过程需用到哪些仪器,且先后顺序正确
的是	是 ()			
	①100mL 量筒	②10mL 量筒	③50mL 烧杯	④托盘天平
	⑤100mL 容量瓶	⑥胶头滴管	⑦玻璃棒	
	A. 13567	B. 23756	C. 35761	D. 43756
	【难度】★			
	【答案】B			
	【解析】经计算需浓〕	HCl8.3mL,故需用 10i	mL 量筒,其他可推出。	
10.	与 500mL0.5mol/LNa ₂	SO4溶液所含 Na+的物	质的量浓度相同的溶液。	是 ()
	A. 100mL1mol/LNaN	[O ₃ 溶液	B. 50mL0.5mol/LNa	CI溶液
	C. 1000mL0.5mol/LN	IaCl 溶液	D. 250mL2mol/LNaN	NO₃溶液
	【难度】★			
	【答案】A			
11.	下列叙述正确的是()		
	A. 48gO ₃ 气体含有 6.	.02×10 ²³ 个 O ₃ 分子		
	B. 常温常压下, 4.6g	NO2气体含有 1.81×10	²³ 个 NO ₂ 分子	
	C. 0.5 mol·L ⁻¹ CuCl ₂ 消	容液中含有 3.01×10 ²³ 个	· Cu ²⁺	
	D. 标准状况下, 33.6	5LH ₂ O 含有 9.03×10 ²³ 个	~H ₂ O分子	

-	A. 2 L 溶液中有阴	、阳离子总数为 0.8NA			
-	B. 500mL 溶液中 1	NO3 ⁻ 浓度为 0.2mol·L ⁻¹			
	C. 500mL 溶液中 l	Ba ²⁺ 浓度为 0.2mol·L ⁻¹			
-	D. 500mL 溶液中]	NO3 ⁻ 个数为 0.2NA			
	【难度】★★				
	【答案】AB				
13.	AL 硫酸铝溶液中,	含有 Bmol 铝离子,则	此溶液的物质的量浓度是	是 ()	
	A. $\frac{B}{A}$ mol / L	B. $\frac{2A}{B}$ mol / L	C. $\frac{B}{2A}$ mo	是 () $1/L \qquad \qquad D. \frac{A}{2B} \text{mol}/I$	٠
	【难度】★★				
	【答案】C				
14.	在 20g 密度为 d g/c	m³的 Ca(NO3)2 溶液里含	含有 2gCa ²⁺ ,则 NO ₃ -离子	产的物质的量浓度是	
	()				
	A. $\frac{d}{400}$ mol / L	B. $\frac{20}{d}$ mol/L	C. 5dmol/l	L D. 2.5dmol/L	
	【难度】★★				
	【答案】C				
15.	在状况下,1体积力	水溶解 700 体积氨气,所	所得溶液密度为 0.9g/cm³	。此溶液的质量分数为	
	(),物质	的量浓度为()		
	A. 32.1%	B. 14.8mol/L	C. 34.7%	D. 18.4mol/L	
	【难度】★★				
	【答案】CD				
16.	在无土栽培中,配制	訓 1L 内含 0.50molNH4C	Cl、0.16molKCl、0.24mo	lK ₂ SO ₄ 的某营养液。若用	KCl、NH4Cl
(NH ₄	ı) ₂ SO ₄ 三种固体配制],则需此三种固体的物	J质的量(mol)分别为()	
	A. 0.40, 0.50, 0.1	12	B. 0.66, 0.50,	0.24	
	C. 0.64、0.50、0.2	24	D. 0.64, 0.02,	0.24	
	【难度】★★				
	【答案】D				
17. ī	在 KCl、MgCl ₂ 、Mg	(NO ₃) ₂ 形成的混合溶液	+, c (K ⁺) =0.1mol/L, c	$(Mg^{2+}) = 0.25 \text{mol/L}, c (Cl^{-1})$	=0.2 mol/L,
则 c	(NO ₃ -) 为 ()			
	A. 0.15 mol/L	B. 0.20 mol/L	C. 0.25 mol/L	D. 0.40 mol/L	
	【难度】★★				
	【答案】D				
则 c	(NO ₃ ⁻)为 (A. 0.15 mol/L 【难度】★★)) =0.

12. (双选)设 N_A 为阿伏加德罗常数,下列关于 $0.2 \text{mol} \cdot L^{-1}$ 的 $Ba(NO_3)_2$ 溶液不正确的说法是

溶液中镁离子的浓度为	()		
A. 0.15 mol/L	B. 0.3 mol/L	C. 0.45 mol/L	D. 0.2 mol/L
【难度】★★			
【答案】A			
19. 密度为 dg·cm ⁻³ 的溶液	液 V 毫升,含有式量为	为 M 的溶质 mg, 其物质	质的量浓度为 cmol/L,质量分数为ω%,
下列表示式不正确的是			
$A. c = \frac{1000 \cdot m}{M \cdot V}$	B. $m = \frac{d \cdot V \cdot \omega}{100}$	C. $d = \frac{c \cdot M}{10 \cdot \omega}$	$D. \omega\% = (\frac{\mathbf{c} \cdot \mathbf{M}}{1000 \cdot \mathbf{d}})\%$
【难度】★★★			
【答案】D			
20. 已知 25%的氨水的密	语度为 0.91 g·cm ⁻³ ,5%	氨水的密度为 0.98 g·cm	13, 若将上述两溶液等体积混合, 所得氨
水的溶液的质量分数为	()		
A. 等于15%	B. 大于 15%	C. 小于 15%	D. 无法确定
【难度】★★			
【答案】C			
21. 将 6.5 克锌放入足量	的稀硫酸里充分反应,	得到 100 克密度为 1.2	5g/mL 溶液。计算:
(1) 生成标准状况	下的 H ₂ 多少升?		
(2) 所得溶液中溶	质硫酸锌的物质的量浓	汉度 ?	
【难度】★★			
【答案】2.24L	1.25mol/L		
22. 37%的盐酸,密度为	1.19g/cm³, 求其物质	的量浓度为	°
浓度为6mol/L,密度	E为1.2g/mL 的硝酸溶液	返质量分数为	°
【难度】★★			
【答案】12.06mol/L	31.5%		
23. 100mL 1 mol·L ⁻¹ Al ₂ (SO ₄) ₃ 溶液中,含 Al ³⁺ i	离子mol, _	个,含 SO ₄ ²⁻ 离子
mol,	个。		
【难度】★			
【答案】0.2 0.	$2N_A$ 0.3 0.3N _A	A	
24. 配制 500mL0.1mol/L	. 硫酸铜溶液,需用胆	矾。	
【难度】★★			
【答案】12.5g			

18. 硫酸镁和硫酸铝溶液等体积混合后,铝离子的浓度为0.1 mol/L,硫酸根离子的浓度为0.3 mol/L,则混合

25.	配制 500mL1mol·L-¹NaCl 溶液时:
	下列哪些操作会使实验结果偏高;
	下列哪些操作会使实验结果偏低;
	下列哪些操作会使实验结果无影响。
	A. 振荡、摇匀溶液后,发现液面低于刻度线,再补加水
	B. 称量时,固体放在右盘,砝码放在左盘(未用游码)
	C. 原容量瓶洗涤后未干燥
	D. 移液时,未洗涤烧杯和玻璃棒
	E. 定容时,俯视刻度线
	【难度】★★
	【答案】E AD BC
26.	用 AgNO ₃ 溶液和 NaCl、MgCl ₂ 、AlCl ₃ 三种溶液分别反应时,若把同体积、同物质的量浓度的
	中溶液中的 Cl-全部沉淀下来,所需 AgNO₃溶液的体积比是; 若把同体积的三种溶液中的
	。生成沉淀的质量比为
	【答案】1:2:3 6:3:2 1:1:1
27.	实验室用 98%的浓 H ₂ SO ₄ (d=18.4g·cm ⁻³)配制 1.5mol/L 稀 H ₂ SO ₄ 溶液 200mL。
	(1) 计算所需浓 H ₂ SO ₄ 体积为 ;
	(2)稀释浓 H ₂ SO ₄ 的方法(简要操作): ;
	(3) 容量瓶使用前,检验其是否漏水的方法是:;
	(5) 向容量瓶中继续加水至刻度 1 cm~2 cm 处,改用胶头滴管逐滴加水,使溶液的凹面与刻度线恰好相
切。	在这一步操作前尚缺少的一步操作是,如果缺少这一步操作,将导致结果
	【答案】(1) 16.3 mL (2) 向盛有 100 mL 水的烧杯中慢慢滴加 H ₂ SO ₄ ,并不断搅拌,冷却
	(3) 向容量瓶中加入少量的水倒置、观察是否漏液,然后旋转 180°, 重复检验
	(4) 沿玻璃棒 (5) 未洗涤烧杯及玻璃棒 2~3 次,洗涤液未转移至容量瓶中偏低
	CO THURSDAY TO SEE THE THE TANK THE TAN
28.	用 12 mol•L- ¹ 的浓盐酸配制 0.10mol•L- ¹ 的稀盐酸 500mL,需要量取浓盐酸的体积为多少?
	【难度】★
	【答案】4.17 mL

29. 标准状况下 350 体积的氨气溶解在 1 体积的水中,求这种氨水的物质的量浓度和溶质的质量分数。(氨水密度为 $0.924 \mathrm{g/cm^3}$)

【难度】★★

【答案】11.4mol/L 21%

30. 把 100mL98%的浓 $H_2SO_4(\rho=1.84g/cm^3)$ 与 400mL 的水混合成密度为 1.225g / cm³ 的稀 H_2SO_4 ,求稀 H_2SO_4 的溶质质量分数和物质的量浓度。

【难度】★★

【答案】30.88% 3.86 mol/L

31. 本题式量用以下数据: AgCl—143.5 BaSO₄—233 BaCO₃—197 Na₂CO₃—106

将 1.95g 硫酸钠和碳酸钠的混合物溶于水得溶液 A,在 A 中加入足量的未知浓度的氯化钡溶液 10.0mL,然后过滤得沉淀 B 和滤液 C;在 C 中加入足量的硝酸银溶液,又生成 5.74g 沉淀;向 B 中加入足量稀硫酸,沉淀不消失,反而增加 0.18g。计算:

- (1) 氯化钡的物质的量浓度;
- (2) 原混合物中硫酸钠的质量分数。

【难度】★★★

【答案】2mol/L 72.8%

- 32. 将 8.8gFeS 固体置于 200mL2.0mol/L 的盐酸中,以制备 H_2S 气体(FeS+2HCl→FeCl₂+ H_2S)。 反应完全后,若溶液中 H_2S 的浓度为 0.10mol/L,假定溶液体积不变,试计算:
 - (1) 收集到的 H_2S 气体的体积 (标准状况);
 - (2) 溶液中 Fe²⁺的物质量浓度。

【难度】★★★

【答案】(1) 1.792L (2) 0.5 mol/L