

Unsupervised learning

Beschrijven van en zoeken naar structuur in niet-gelabelde data

Clustering

Outlier/Anomaly Detection

Dimensionality Reduction

Blind Signal separation

Clustering

Clustering

Groeperen van datapunten zodat een punt sterker lijkt op een punt binnen dezelfde groep dan op punten buiten de groep.

Gezichtsherkenning

Gezichtsherkenning Gelijkaardige artikels of films

Gezichtsherkenning Gelijkaardige artikels of films Customer clustering voor marketing

Gezichtsherkenning
Gelijkaardige artikels of films
Customer clustering voor marketing
Image Segmentation

Undeclared pools in France uncovered by AI technology

3 days ago

<

https://www.bbc.com/news/world-europe-62717599

Eenvoudige maar populaire techniek voor clustering Sterk gerelateerd aan K-Nearest Neighbours

Hoeveel en welke clusters zie je hier?

1. Kies K willekeurige punten (K is het aantal clusters dat je zoekt)

- 1. Kies K willekeurige punten/centroids (K is het aantal clusters dat je zoekt)
- 2. Ken elk punt toe aan het dichtste centroid

- 1. Kies K willekeurige punten/centroids (K is het aantal clusters dat je zoekt)
- 2. Ken elk punt toe aan het dichtste centroid
- 3. Verplaats elke centroid naar het gemiddelde van de punten toegekend aan het punt

- 1. Kies K willekeurige punten/centroids (K is het aantal clusters dat je zoekt)
- 2. Ken elk punt toe aan het dichtste centroid
- 3. Verplaats elke centroid naar het gemiddelde van de punten toegekend aan het punt
- 4. Herhaal stap 2 en 3 tot er convergentie is

Kenmerken

Eenvoudig algoritme en resultaten gemakkelijk te interpreteren Resultaat hangt af van origineel gekozen punten

- Probeer verschillende initialisatie
- Gebruik datapunten als centroids
- Verspreid de centroids bij initialisatie

Globaal optimum niet altijd gevonden

Kenmerken

Gevoelig aan outliers

Probleem bij niet sferische clusters -> Gebruik een kernel zoals bij SVM

Hyperparameter K

Hoe aantal clusters bepalen?

Elbow method:

 Probeer verschillende waarden en kies de K waar de score niet sterk veranderd

Hierarchical clustering

Hierarchical clustering - dendogram

Hierarchical clustering

Voordelen:

- Geen zelf-gekozen aantal clusters nodig
- Clusterstructuur kan handig zijn

Nadelen:

- Snel zeer rekenintensief door afstand tussen clusters te bepalen

Hierarchical clustering

Afstand tussen clusters -> steeds elk punt van een cluster vergelijken met elk punt uit de andere cluster

$$L(r,s) = \min(D(x_{ri}, x_{sj}))$$

$$L(r,s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} D(x_{ri}, x_{sj})$$

$$L(r,s) = \max(D(x_{ri},x_{sj}))$$

Mean-Shift Clustering

Sliding window techniek dat de punten met de hoogste densiteit probeert te zoeken.

Aantal clusters wordt zelf gezocht

Grootte van de sliding window kan een grote impact hebben op het resultaat

Animatie: https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68