

Digital Electronics

Course Title: Digital Electronics

Course No.: EEE2407

Boolean Expressions

- Boolean expressions is an expression written using logic circuit.
 - Boolean expressions are composed of
 - Literals variables and their complements
 - Logical operations
 - Examples

$$F = A.B'.C + A'.B.C' + A.B.C + A'.B'.C'$$

- F = (A+B+C').(A'+B'+C).(A+B+C)
- * F=A.B'.C' +A.(B.C' + B'.C)

Boolean Expressions....

- Boolean expressions are realized using a network (or combination) of logic gates.
 - Each logic gate implements one of the logic operations in the Boolean expression
 - Each input to a logic gate represents one of the literals in the Boolean expression

Boolean Expressions...

- Boolean expressions are evaluated by
 - Substituting a 0 or 1 for each literal.
 - Calculating the logical value of the expression.
- A <u>Truth Table</u> specifies the value of the Boolean expression for every combination of the variables in the Boolean expression.
- For an n-variable Boolean expression, the truth table has 2ⁿ rows (one for each combination).

Boolean Algebra

Basic Laws and Theorems

Commutative Law	A+B=B+A	A.B=B.A
Associative Law	A + (B + C) = (A + B) + C	A. (B. C)=(A. B). C
Distributive Law	A.(B+C)=AB+AC	A+(B. C)=(A+B). (A+C).
Nul Elements	A + 1 = 1	0=0
Identity	A + 0 = A	A. 1 = A
Idempotence	A+A=A	A.A=A
Complement	A + A' = 1	A.A'=0
Involution	A''=A	
Absorption (Covering)	A+AB=A	A. (A+B)=A
Simplification	A+A'B=A+B	A. (A'+B)=A. B
DeMorgan's Rule	(A+B)'=A'.B'	(A. B)'=A'+B'
LogicAdjacency(Combining)	AB+AB'=A	$(A+B) \cdot (A+B') = A$

 $(A+B) \cdot (B+C) \cdot (A'+C) = (A+B) \cdot (A'+C)$

AB+BC+A'C=AB+A'C

Consensus

DeMorgan's Laws

- Can be stated as follows:
 - The complement of the product (AND) is the sum (OR) of the complements.

$$(X.Y)' = X' + Y'$$

The complement of the sum (OR) is the product (AND) of the complements.

$$// (X + Y)' = X' . Y'$$

- Easily generalized to n variables.
- Can be proven using a Truth table.

Proving DeMorgan's Law

$$(X \cdot Y)' = X' + Y'$$

x	y	$x \cdot y$	$\overline{x \cdot y}$	\overline{x}	\overline{y}	$\overline{x} + \overline{y}$
0 0	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1 1	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 1
1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$		$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

LHS

RHS

Self: $(X + Y)' = X' \cdot Y'$

Importance of Boolean Algebra

- Boolean Algebra is used to simplify Boolean expressions.
 - Through application of the Laws and Theorems discussed
- Simpler expressions lead to simpler circuit realization, which, generally, reduces cost, area requirements, and power consumption.
- The objective of the digital circuit designer is to design and realize optimal digital circuits.

Examples

- Consider the function *F*=xy'+x'z. Form the truth table and draw the circuit diagram.
- For the circuit shown below write Boolean expression and truth table.

Canonical Forms for Boolean Expressions

Boolean functions are expressed as a Sum-of-Minterms or Product-of-Maxterms are said to be in *Canonical form*.

<u>Algebraic Simplification</u>

- Justification for simplifying Boolean expressions:
 - Reduces the cost associated with realizing the expression using logic gates.
 - Reduces the area (i.e. silicon) required to fabricate the switching function.
 - Reduces the power consumption of the circuit.
- In general, there is no easy way to determine when a Boolean expression has been simplified to a minimum number of terms or minimum number of literals.
 - No unique solution

<u>Minterms</u>

- A minterm, for a function of n variables, is a product term in which each of the n variables appears once.
- Each variable in the minterm may appear in its complemented or uncomplemented form.
- For a given row in the Truth table, the corresponding minterm is formed by
 - Including variable x_i , if $x_i = 1$

For all n variables in the function F

- Including the complement of x_i , if $x_i = 0$

Minterms...

Row number	x_1	x_2	x_3	$\mathbf{Minterm}$	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + \overline{x_3}$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

<u>Maxterms</u>

- A <u>Maxterm</u>, for a function of n variables, is a <u>sum</u> term in which each of the n variables appears once.
- Each variable in the Maxterm may appear in its complemented or uncomplemented form.
- For a given row in the Truth table, the corresponding Maxterm is formed by
 - Including the variable x_i , if $x_i = 0$
 - Including the complement of x_i , if $x_i = 1$

Maxterms...

Row number	x_1	x_2	x_3	$\operatorname{Minterm}$	Maxterm
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{bmatrix} 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \end{array}$	0 0 1 1 0 0 1 1	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$

Examples

Example 2-4

Express the Boolean function F = A + B'C in a sum of minterms. The function has three variables, A, B, and C. The first term A is missing two variables; therefore:

$$A = A(B + B') = AB + AB'$$

This is still missing one variable:

$$A = AB(C + C') + AB'(C + C')$$
$$= ABC + ABC' + AB'C + AB'C'$$

The second term B'C is missing one variable:

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Combining all terms, we have

$$F = A + B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

But AB'C appears twice, and according to theorem 1(x + x = x), it is possible to remove one of them. Rearranging the minterms in ascending order, we finally obtain

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC$$

= $m_1 + m_4 + m_5 + m_6 + m_7$

It is sometimes convenient to express the Boolean function, when in its sum of minterms, in the following short notation:

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Examples...

Example 2-5 Express the Boolean function F = xy + x'z in a product of maxterm form. First, convert the function into OR terms using the distributive law:

$$F = xy + x'z = (xy + x')(xy + z)$$

= $(x + x')(y + x')(x + z)(y + z)$
= $(x' + y)(x + z)(y + z)$

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:

$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z)(x + y' + z)$
 $y + z = y + z + xx' = (x + y + z)(x' + y + z)$

Combining all the terms and removing those that appear more than once, we finally obtain:

$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$

= $M_0 M_2 M_4 M_5$

A convenient way to express this function is as follows:

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

The product symbol, Π , denotes the ANDing of maxterms; the numbers are the maxterms of the function.

Standard form for Boolean Expression

Sum of product

Product of sum

The sum of products is a Boolean expression containing AND terms, called product terms, of one or more literals each. The sum denotes the ORing of these terms. An example of a function expressed in sum of products is

$$F_1 = y' + xy + x'yz'$$

The expression has three product terms of one, two, and three literals each, respectively. Their sum is in effect an OR operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any number of literals. The product denotes the ANDing of these terms. An example of a function expressed in product of sums is

$$F_2 = x(y' + z)(x' + y + z' + w)$$

Sum-of-Products

 Any function F can be represented by a sum of minterms, where each minterm is ANDed with the corresponding value of the output for F.

$$- F = \sum (m_i . f_i)$$

• where m_i is a minterm

- Denotes the logical \bullet and f_i is the corresponding functional output
 - Only the minterms for which $f_i = 1$ appear in the expression for function F.

-
$$F = \sum (m_i) = \sum m(i)$$
 shorthand notation

Sum-of-Products...

Product Term = Logical ANDing of literals Sum = Logical ORing of product terms

Product-of-Sums

 Any function F can be represented by a product of Maxterms, where each Maxterm is ANDed with the complement of the corresponding value of the output for F.

$$- F = \Pi (M_i.f_i')$$

- where M_i is a Maxterm
- Denotes the logical product operation $\begin{array}{c} \text{and } f_{i\text{"}} \text{ is the complement of the} \\ \text{corresponding functional output} \\ \end{array}$
 - Only the Maxterms for which $f_i = 0$ appear in the expression for function F.

-
$$\mathbf{F} = \Pi (\mathbf{M}_i) = \mathbf{\Pi} \mathbf{M}(i)$$
 ← shorthand notation

Product-of-Sums...

Thank you

