

Td théorème de gauss

Exercice1:

Une sphère de centre O et de rayon R contient une charge uniformément répartie avec une densité volumique p.

- 1- Trouver l'expression du champ électrique E(r) en appliquant le théorème de GAUSS.
- 2- Déduire le potentiel électrique V (r).
- 3- tracer en fonction de r l'allure de E(r) et V(r)

Exercice2:

On considère une sphère de rayon R possédant une charge Q uniformément répartie sur sa surface avec une densité σ .

- 1- En appliquant le théorème de GAUSS calculer le champ électrique en tout point de l'espace.
- 2- 2- En déduire le potentiel électrique en tout point de l'espace.
- 3- 3- Tracer en fonction de r l'allure des graphes E(r) et V(r).

Exercice 3:

Soient deux sphères concentriques de centre O de rayons R_1 et R_2 respectifs tel que $R_1 \langle R_2 \rangle$. La sphère de rayon R_1 est chargée en volume. La seconde de rayon R_2 est chargée en surface.

- 1- En utilisant le théorème de GAUSS trouver l'expression du champ électrostatique E(r) en tout point de l'espace.
- 2- En déduire l'expression du potentiel électrique V(r) en tout point de l'espace.
- 3- Tracer l'allure de E(r) et V(r).

Exercice 4:

On considère deux cylindres coaxiaux infiniment longs, de rayon R_1 , R_2 respectifs tel que R_1 (R_2); portant des charges respectives + λ et- λ par unité de longueur.

Trouver l'expression du champ électrique en tout point de l'espace

