topologia lista 4

Karol Ochman

1 czerwca 2020

zadanie 9

(X, T) jest Hausdorffa, a A i B jest zwartymi podzbiorami. Weźmy $b \in B$. Dla każdego $a \in A$ z Hausdorffa możemy znaleźć rozłączne otoczenia U_a^b i B_a^b zawierające odpowiednio a i b. Rodzina takich otoczeń dla wszystkich $a \in A$ jest pokryciem A. Niech \mathcal{U}^b będzie skończonym podpokryciem A z tej rodziny, które istnieje ze zwartości A. Każdemu zbiorowi U_a^b z \mathcal{U}^b odpowiada jakiś B_a^b , rodzinę tych zbiorów nazwijmy \mathcal{B}^b . Każdy B_a jest rozłączny ze swoim U_a , czyli przekrój $\cap \mathcal{B}^b$ jest rozłączny z wszystkimi U_a na raz, z $\cup \mathcal{U}^b$, czyli jest rozłączny z A. Przekrój skończenie wielu zbiorów otwartych jest otwarty, więc $\cap \mathcal{B}^b$ jest rozłącznym z A otoczeniem b. Rodzina takich otoczeń dla każdego b jest pokryciem zbioru B. Ze zwartości wybierzmy z tej rodziny skończone pokrycie $\{\cap \mathcal{B}^b: b \in \{b_1, b_2, ..., b_n\}\}$. Suma zbiorów z tego pokrycia to otwarty zbiór W zawierający B. Zostaje znaleźć otoczenie zbioru A rozłączne z W. Zbiorom $\cap \mathcal{B}^b$ odpowiadają rozłączne z nimi zbiory $\cup \mathcal{U}^b$ - otwarte zbiory zawierające A (przypomnienie). Przekrój $V = \bigcap \cup \mathcal{U}^b$ zawiera A, jest rozłączny z W, bo jest rozłączny z każdym z zbiorów $\cap \mathcal{B}^b$ i jest otwarty bo jest przekrojem skończenie wielu zbiorów otwartych.