Kairi Kozuma 1

Kairi Kozuma GTID: 903050898 ECE 3056 03/01/2016

Assignment 3 Design and Verification Report

Design: Modifications to Datapath

Figure 1. Multicycle datapath with modifications annotated in red to implement the jal instruction.

Changes made to datapath:

- RegDst control signal increased to two bits to accommodate 31 as a destination register for the jal instruction
 - o 00 for Rt
 - o 01 for Rd
 - o 10 for \$31 (Return address register)
- Register \$31 added as third input to RegDst multiplexor
- MemtoReg control signal increased to two bits to allow PC + 4 to be written to \$31
 - o 00 for ALUOut
 - o 01 for MemoryData
 - \circ 10 for PC + 4
- PC + 4 signal routed as third input to MemtoReg multiplexor
- Dispatch table 1 expanded by two to include the jump and jal instructions

Kairi Kozuma 2

Verification: Jump and Link Instruction Test Results

```
X"00222020",
                -- add $4, $1, $2
X"0c000003",
                -- jal 0x0000000C [label1]
X"00832820",
                -- add $5, $4, $3
X"00a43020",
                -- add $6, $5, $4
                                                 ;[label1]
X"0c000006",
                -- jal 0x00000018 [label2]
X"00c33820",
                -- add $7, $6, $3
-- add $8, $6, $3
X"00c34020",
                                                 ;[label2]
X"0c000009",
                -- jal 0x00000024 [endlabel]
X"01034820",
                -- add $9, $8, $3
X"01035020",
                                                 ;[endlabel]
                -- add $10, $8, $3
```

Figure 2. Translated MIPS instructions to verify jal instruction.

In Figure 2, the hexadecimal binary encoded versions are shown with the original MIPS instructions in same-line comments. The target label for the hexadecimal address is noted in brackets. If an instruction has an associated label, it is noted in brackets after the semicolon.

Figure 3. Simulation trace of the test program. The cursor is located at the start of the jal stage of the first jal instruction, indicated by micropc = 10. The PC + 4 ALU result is written back to register \$31, and the target address for the first jal (0x0000000C) is written to the PC. The jump is implemented correctly, evidenced by unchanged values in registers \$5, \$7, \$9.