A Deep Dive into Bitcoin Mining Pools

An Empirical Analysis of Mining Shares

```
Matteo Romiti <sup>1</sup> Aljosha Judmayer <sup>2</sup>
Alexei Zamyatin <sup>2, 3</sup> Bernhard Haslhofer <sup>1</sup>
May 29, 2019
```

¹Austrian Institute of Technology

²SBA Research

³Imperial College London

Motivations

- 1. Lack of research in:
 - mining pools' relationships
 - pool members' behaviors
 - hash laundering [2]
 - block reward distribution
- 2. The current mining power distribution is subject to malicious attacks (e.g., selfish [1] and stubborn [3] mining)
- 3. Few entities control the mining industry and represent a centralization of power

Contributions

- Block attribution: improve current methods and publish code [4]
- Mining centralization: analyze the mining power distribution and centralization indices
- Payout patterns: how mining pools collect and share block rewards
- Cross-pool and (un)known miners: investigate pools members' behaviors and relationships.

Background

Background — Coinbase Flow

Figure 1: Example of a coinbase flow. In gray: reward addresses, in red: addresses performing payout transactions, in blue: pool members. Rounded squares are coinbases of blocks mined by the pool.

Background — Multiple-Input Clustering Heuristic

Figure 2: Multiple-input clustering heuristic. In Transactions with multiple inputs, the input addresses can be linked to one entity, represented by a cluster, owning their private keys. When an address, A3 in this case, is reused in another multiple-input transaction, we can group these two sets of addresses into one single cluster.

Block Attribution

Block Attribution — Data Sources

- Blocktrail API (till block 514239, March 2018)
- Blockchain.info Github repository
- BTC.com Github repository
- Walletexplorer.com's tags with multiple-input clustering heuristic (Graphsense)
- Coinbase markers manually retrieved

Block Attribution — Methodology

Figure 3: High level flow chart representing our attribution scheme.

Block Attribution — Results

Table 1: 684 attribution conflicts out of 556400 blocks (0.0012%). From 500,000 to 556,400, we attributed 96.5% of the blocks (blockchain.info 92%, \sim 32,100 BTC difference)

Miner 1	Miner 2	Number of conflicts Example blocks						
BTC.TOP	CANOE	338	516210, 516275,					
Bixin	TangPool	142	339210, 339284,					
BTC.com	Waterhole	113	478230, 478328,					
BTC.TOP	WAYI.CN	81	509073, 509100,					
ViaBTC	Okminer	5	510279, 523217,					
Yourbtc	OzCoin	3	159846, 159929, 159964					
BitcoinRussia	Bitcoin-Ukraine	1	524045					
F2Pool	BTCC Pool	1	482886					

Block Attribution — Results

Figure 4: Evolution of mining pools market shares (2013-12-21 to 2018-12-19).

Payout Patters

Payout Patters — Data Sources

- Output of the block attribution procedure to select BTC.com, AntPool and ViaBTC blocks
- Blockchain.info API to retrieve coinbase flows
- Graphsense to detect exchanges

Payout Patters — Methodology

Algorithm 1 Looking for payout patterns in BTC.com, AntPool and ViaBTC.

- 1: for each pool do
- 2: **for** each mined block **do**
- 3: get coinbase flow of block
- 4: compute number of addresses at each step of the coinbase flow
- 5: save results
- 6: plot data and look for common patterns among flows

Payout Patters — Methodology: BTC.com

Figure 5: BTC.com payout pattern observed between block 510,000 and 514,032. In gray: reward addresses, in red: addresses performing payout transactions, in blue: pool members, in green: change addresses. Rounded squares are coinbases of blocks mined by the pool.

Payout Patters — Methodology: AntPool

Figure 6: AntPool payout pattern observed between block 510,000 and 514,032. In gray: reward addresses, in red: addresses performing payout transactions, in blue: pool members, in green: change addresses. Rounded squares are coinbases of blocks mined by the pool.

Payout Patters — Methodology: ViaBTC

Figure 7: ViaBTC payout pattern observed between block 510,000 and 514,032. In gray: reward addresses, in red: addresses performing payout transactions, in blue: pool members, in green: change addresses. Rounded squares are coinbases of blocks mined by the pool.

Payout Patters — Results

Table 2: Statistics of retrieved data between block 510,000 and 514,032 (\sim 4 weeks). N_B : number of blocks mined by the pool, N_{TX} : number of identified payout transactions, N_A : number of identified members' addresses, N_C : number of identified clusters, BTC_M : BTC mined by the pool, BTC_P : BTC paid to pool members (addresses), μ : median value of address reuse.

Pool Name	N_B	N _{TX}	N_A	N _C	BTC_M	BTC_{P}	$\frac{BTC_P}{BTC_M}$	μ	$\frac{\mu}{N_A}$
BTC.com	1,020	225	20,444	8,900	13,059	12,057	92%	20 9.8	3 ×10 ⁻⁴
AntPool	617	408	14,166	5,082	7,887	2,333	30%	2 1.4	4×10^{-4}
ViaBTC	457	104	7,171	3,121	5,841	4,284	75%	5 7.0	0×10^{-4}

Pools Members

Pools Members — Data Sources

- Output of the block attribution procedure
- Output of the payout patterns
- Walletexplorer.com + multiple-input clustering heuristic (Graphsense)

Pools Members — Results : Cross-Pool Mining

Table 3: Cross-pool mining between block 510,000 and 514,032 (\sim 4 weeks), including how much BTC from each pool has been received by those common addresses.

Pool 1	Pool 2	Addresses in common	Clusters in common		BTC from Pool 2
BTC.com	AntPool	537 (1.58%)	434 (3.2%)	664.3 (5.5%)	176.8 (7.6%)
AntPool	ViaBTC	115 (0.54%)	196 (2.4%)	11.1 (0.47%)	102.6 (2.4%)
ViaBTC	BTC.com	250 (0.91%)	267 (2.3%)	175.4 (4.1%)	174.1 (1.4%)

Pools Members — Results: Pool Centralization

Figure 8: Cumulative sum of mining shares over clusters for each pool (log-scale). Black-dotted lines highlight the number of clusters controlling 50% of each pool.

Pools Members — Results: Cross-Pool Mining

Figure 9: Flow of mining rewards from mining pools to their members. In black: wallet services and exchanges, in gray: unknown entities. This plot covers the top 400 clusters from each mining pool sorted by received BTC. *Unknown* entities (1118) were combined into one node.

Pools Members — Results: Cross-Pool Unknown Mining

Table 4: Cross-pool mining of the ten largest unknown mining clusters sorted by total amount of BTC received by the three pools in the time period between block 510,000 and 514,032 (\sim 4 weeks).

	BTC.com		AntPool		Vial	ЗТС		
Cluster ID	ВТС	%BTC	ВТС	%BTC	ВТС	%BTC	Mined BTC	Total BTC Received
327539880	409.34	3.40	122.10	5.23	258.55	6.04	789.99	521,939
324067473	295.02	2.45	90.44	3.88	189.15	4.42	574.61	3,756,583
350822682	244.77	2.03	9.29	0.40	182.92	4.27	436.98	110,566
350824718	244.67	2.03	65.65	2.81	46.20	1.08	356.52	112,680
333653856	153.02	1.27	54.02	2.31	83.60	1.95	290.63	130,680
372448840	181.10	1.50	33.64	1.44	55.73	1.30	270.48	882,713
234254928	93.31	0.77	27.18	1.16	58.68	1.37	179.17	905,101
249123673	15.63	0.13	0.40	0.02	107.23	2.50	123.26	6,812,938
349962609	8.67	0.07	39.01	1.67	19.74	0.46	67.41	1,173,892
311503667	38.94	0.32	7.47	0.32	7.77	0.18	54.18	486,338

Pools Members — Results: Main Entities

Table 5: Cross-pool mining at a cluster level in the time period between block 510,000 and 514,032 (\sim 4 weeks). W: wallet provider, E: exchange service, P: known mining pool, M: unknown mining entity.

		BTC.com		AntPool			ViaBTC				
Entity/Actor	Service	ВТС	%ВТС	#Addr.	ВТС	%ВТС	#Addr.	ВТС	%ВТС	#Addr.	Total BTC
Unknown	?	8930.39	74.07	13286	1682.25	72.09	8888	2877.02	67.17	4845	13489.67
Bixin	W+E+P	1663.75	13.80	1061	241.28	10.34	546	795.36	18.57	476	2700.39
Huobi.com	E	808.64	6.71	964	142.04	6.09	759	225.50	5.27	322	1176.19
Bittrex.com	E	83.71	0.69	348	29.56	1.27	251	43.36	1.01	177	156.63
Xapo.com	W	26.96	0.22	94	70.75	3.03	64	5.79	0.14	33	103.50
Poloniex.com	E	42.65	0.35	381	11.52	0.49	268	19.97	0.47	139	74.15
Luno.com	W+E	36.59	0.30	258	4.06	0.17	104	4.39	0.10	60	45.04
Bitstamp.net	E	8.94	0.07	57	3.55	0.15	38	3.91	0.09	22	16.39
Cryptonator.com	W+E	5.75	0.05	80	0.70	0.03	41	2.70	0.06	33	9.15
BitoEX.com	W	5.09	0.04	23	1.12	0.05	35	2.19	0.05	4	8.39
CoinHako.com	W+E	3.59	0.03	4	0.29	0.01	3	0.24	0.01	2	4.12
Bitcoin.de	E	1.86	0.02	26	0.76	0.03	13	0.58	0.01	7	3.19

Future work

Future work

- Further research about unknown entities (entity classification)
- Improve heuristics to get more payout patterns
- Extend analysis to other pools
- IP-network traffic measurement

Conclusion

Conclusion

- 3 pools can easily reach 50 of the hash rate
- It is possible to find pool members because pools follow payout patterns
- High hash-rate concentration within major pools
- Cross-pool mining occurs
- Unknown mining prevails

References

- [1] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. *CoRR*, abs/1311.0243, 2013.
- [2] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, Princeton, NJ, USA, 2016.
- [3] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. 00:305–320, March 2016.
- [4] M. Romiti, Aljosha, and Zamyatin. A deep dive into bitcoin mining pools (github repo). https: //github.com/MatteoRomiti/Deep_Dive_BTC_Mining_Pools.

Appendix

Appendix |

Figure 10: Concentration indeces and mining shares.

Appendix

 $\textbf{Figure 11:} \ \, \mathsf{Payout trend for BTC.com}$