Sensor Logger Apps

ONE-TAP DEVICE SENSOR LOGGER IN YOUR POCKET

WITH WATCH & HEART RATE LOGGING

Sensor Logger is an easy-to-use, beautifully designed data logger that logs readings from common sensors on your IPhone and Apple Watch — including accelerometer, gyroscope, GPS,

Screenshots Phone Apple Watch

e allows you to select your desired sensors. A simple tap of a button initiates the recording function, wh recordings within the app via interactive plots. The export functionality conveniently outputs your record vanced use cases, you may also stream data via HTTP during a recording session.

Sensor Logger

Choose sensors

• accelerometer, gyroscope, magnetometer

Sampling frequency setting

← Settings

Sampling Frequencies is recommended that you examine the output to determine the actual sampling frequency. For Accelerometer, Gravity, Gyroscope, Orientation & Magnetometer Sample Up to 100 Hz

Sample op to 100 Hz	
For Barometer	
Sample as Frequently as Possible	*
For Location	
Sample Once Every 10 Minutes	~
For Camera	
Once Every 10 Seconds	~
^ May cause performance issues on slower devices. Setting the image qu	ality

■ Export, Share & Restore

to 'Lowest' may help.

Date recording start and end

Logg	јег	Toggle All			
INERT	IAL SENSORS				
A	Accelerometer Linear Acceleration	• •			
Ö	Gravity Gravity Vector	•			
♦	Gyroscope Rotation Rate	• •			
4	Orientation Device Orientation	• •			
NON-I	NERTIAL SENSORS				
C	Magnetometer Magnetic Heading	• •			
0	Location				
Start Recording					

Data export

Export Recording

생성된 csv 파일

- **CSV**(comma-separated values) file
- unit: acceleration (m/s^2), gyroscoe(rad/s), magnetic(mT)
- iphone might be different

Magnetometer.csv

Metadata.csv

TotalAcceleration.csv

순서조심: z, y, x 순

	4	Α	В	С	D	E	F	G
1		time	seconds_e	Z	у	х		
2	2	1.68E+18	0.201633	9.783953	-0.05294	0.077169		
3	3	1.68E+18	0.21163	9.87488	-0.05533	0.079561		
4	ı	1.68E+18	0.221627	9.85813	-0.03619	0.077169		
5	5	1.68E+18	0.231624	9.843773	-0.04576	0.081954		
6	5	1.68E+18	0.241621	9.850952	-0.03619	0.079561		
7	,	1.68E+18	0.251705	9.85813	-0.05055	0.074776		
8	3	1.68E+18	0.261702	9.853345	-0.03619	0.060419		
9)	1.68E+18	0.271699	9.84138	-0.03858	0.062812		
1	0	1.68E+18	0.281741	9.836595	-0.04098	0.08674		
1	1	1.68E+18	0.291737	9.850952	-0.03858	0.084347		

Csv 파일 reading

a (가속도계 데이터)

0.2016	0.2116	0.2216	0.2316	0.2416	time
9.7840	9.8749	9.8581	9.8438	9.8510	Z
-0.0529	-0.0553	-0.0362	-0.0458	-0.0362	У
0.0772	0.0796	0.0772	0.0820	0.0796	Χ

ya(accelerometer), yg(gyroscope),ym(magnetic)

Interpolation for magnetic sensor

```
start_index = min(find(a(1,:) > c(1,1)));
end index = max(find(a(1,:) < c(1,end)));
tt = a(1,start_index:end_index);
ya = a(4:-1:2, start_index:end_index);
yg = b(4:-1:2,start_index:end_index);
N = end_index - start_index + 1;
ym = zeros(3,N);
for i = 1:N
 j = max(find(c(1,:) < tt(i)));
 t1 = tt(i) - c(1,j);
 t2 = c(1,j+1) - tt(i);
 ym(:,i) = (t2 / (t1+t2)) * c(4:-1:2,j) + (t1 / (t1+t2)) * c(4:-1:2,j+1);
end
```