UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Trabalho 1 - Sistemas Digitais Matheus Claudino Bica Cartão 164383

Caixa 1 - Operador AND de 8 bits de entrada, sendo saída "1111"&resultado_and Caixa 2 - Multiplicador sem sinal usando operador *

Sumário

Frequência Máxima: 189.451MHz

main Project Status (09/13/2018 - 20:05:58)											
Project File:	trabalho 1_Bica_2018_2.xise	Parser Errors:	No Errors								
Module Name:	main	Implementation State:	Placed and Routed								
Target Device:	xc3s50-5pq208	• Errors:	No Errors								
Product Version:	ISE 14.7	Warnings:	No Warnings								
Design Goal:	Balanced	Routing Results:	All Signals Completely Routed								
Design Strategy:	Xilinx Default (unlocked)	Timing Constraints:	All Constraints Met								
Environment:	System Settings	Final Timing Score:	0 (Timing Report)								

Device Utilization Summary											
Logic Utilization	Used	Available	Utilization	Note(s)							
Number of Slice Flip Flops	16	1,536	1%								
Number of 4 input LUTs	30	1,536	1%								
Number of occupied Slices	18	768	2%								
Number of Slices containing only related logic	18	18	100%								
Number of Slices containing unrelated logic	0	18	0%								
Total Number of 4 input LUTs	30	1,536	1%								
Number of bonded <u>IOBs</u>	19	124	15%								
Number of MULT 18X 18s	1	4	25%								
Number of BUFGMUXs	1	8	12%								
Average Fanout of Non-Clock Nets	3.32										

Parte do código do TestBench relevante para análise:

```
-- Stimulus process stim_proc: process
begin
     wait for 100 ns;
     wait for clk_period*10;
      -- insert stimulus here
     reset <= '0';
     updown1 <= '0';
     updown2 <= '0';
     selectionOption <= '0';</pre>
   wait for clk_period*16;
     updown1 <= '0';
updown2 <= '0';
     selectionOption <= '1';</pre>
   wait for clk_period*16;
     updown1 <= '1';
     updown2 <= '0';
      selectionOption <= '0';
   wait for clk_period*16;
     updown1 <= '1';
updown2 <= '0';
     selectionOption <= '1';</pre>
   wait for clk_period*16;
   wait;
end process;
```

TestBench com atraso(Saída em Hexa) → AND:

Zoom(Saída em Hexa) \rightarrow AND:

TestBench com atraso(Saída em Hexa) → Mult:

Zoom(Saída em Hexa) → Mult:

Tabela para comparação de saída do nibble7seg (em hexa):

Número de Saída → Representação em Hexa

				$4 \rightarrow 4C$			
8→ 0	9→ 4	A→ 8	B→ 60	C→ 31	D→ 42	E→ 30	F→ 38

TestBench sem atraso(Saída em Hexa) → Mult:

TestBench sem atraso(Saída em Hexa) → And:

)					,		318.620 ns								
. [Name	Value	ا	305 ns	310 ns	315 ns		320 ns	325 ns	330 ns	335 ns	340 ns	345 ns	350 ns	355 ns
	ା clk	1													
-	le reset	0													
	updown1	0													
	updown2	0													
	🖟 selectionop	o noi													
٠.	▶ ■ output1[6:0]	38								38					
-	output2[6:0]	08	00	04	\longrightarrow XX		08	X	60	XXX	31	X	42	X	30
	lack_period	10000 ps								10000 ps					
1															

RTL Schematic:

Utilizei somente um **nibble7seg** que recebe os 8bits e divide em cada saída um 7 segmentos com os 4bits mais significativos e outra com os 4 bits menos significativos.

Technology Schematic:

