CONTROLE CONTINU 1

Durée : 1h. Tous documents, calculatrices (sauf type collège) et téléphones interdits. La note tiendra compte de la rédaction.

Exercice 1.

- 1) Donner un exemple de suite arithmétique (non constante), définie par récurrence.
- 2) Appeler (u_n) la suite que vous avez donnée en 1) :
- 2-1) La suite (u_n) est-elle monotone? Si oui, donner son sens de variation.
- 2-2) la suite (u_n) est-elle bornée? Justifier.

Exercice 2. Soit la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

- 1) Montrer par récurrence que $\forall n \in \mathbb{N}, u_n \geq 1$.
- 2) Exprimer explicitement le terme général de la suite (u_n) à l'aide de n. (On pourra retrouver la formule, ce qui sera valorisé hors barème, ou donner la formule sans justifier.)

Exercice 3. On considère la suite de terme général, pour $n \ge 1$:

$$u_n = \Pi_{k=1}^n \left(1 - \frac{1}{2 \cdot k^2} \right) = \left(1 - \frac{1}{2 \cdot 1^2} \right) \left(1 - \frac{1}{2 \cdot 2^2} \right) \dots \left(1 - \frac{1}{2 \cdot n^2} \right) .$$

- 1) Justifier que l'on peut considérer la suite des quotients successifs $\frac{u_{n+1}}{u_n}$.
- 2) Simplifier $\frac{u_{n+1}}{u_n}$ et déterminer, si possible, le sens de variation de (u_n) . Justifier.

Exercice 4. On considère la suite (v_n) vérifiant la relation de récurrence linéaire d'ordre 2 :

$$\forall n \geq 0, v_{n+2} = 2v_{n+1} + 3v_n$$
.

- 1) Déterminer les solutions de l'équation $x^2 2x 3 = 0$, que l'on notera dans la suite r, s avec $r \le s$.
- 2) Soit, pour $n \ge 0$, $s_n = v_{n+1} rv_n$. On sait que (s_n) est une suite géométrique de raison s. En déduire s_n à l'aide de v_0 , v_1 et n.
- 3) Soit, pour $n \ge 0$, $t_n = v_{n+1} sv_n$. On sait que (t_n) est une suite géométrique de raison r. En déduire t_n à l'aide de v_0 , v_1 et n.
- 4) Montrer (par la méthode de votre choix) que $\forall n \geq 0$

$$v_n = \left(\frac{v_1 + v_0}{4}\right) 3^n + \left(\frac{v_1 - 3v_0}{4}\right) (-1)^{n+1}.$$

5) Question hors barème

Soit une suite réelle (u_n) vérifiant la relation de récurrence $\forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} + 3u_n + 4(-1)^n$.

- 5-1) Montrer qu'il existe un réel α , que l'on déterminera, tel que la suite (w_n) définie pour $n \geq 0$ par $w_n = \alpha n(-1)^n$ vérifie la relation de récurrence précédente.
- 5-2) Montrer que la suite $(v_n)_{n\in\mathbb{N}}, v_n=u_n-w_n$, vérifie une relation linéaire de récurrence d'ordre 2.
- 5-3) A l'aide de la question 4), déterminer u_n à l'aide de v_0 , v_1 et n.