作业3-1 报告

作业内容:

- 1. 实现"感知机"算法
- 2. 实现"最近中心分类器"
- 3. "数据集不平衡"问题

程序说明:

总体流程

- 1. 读取"训练集"数据和"测试集"数据,以矩阵形式存储
- 2. 利用"训练集"数据分别训练出"感知机"算法模型和"最近中心分类器"模型
- 3. 利用训练出的模型对"测试集"数据进行验证,统计正确率
- 4. 采用"随机取样"的方法,重新取得"训练集"(使得新的训练集中正例样本数和负例样本数大致相同)
- 5. 对新的训练集采取同样的过程训练出新的模型
- 6. 分别绘制以上得到的模型的ROC曲线, 比较模型的性能

"感知机"算法

函数分析

初始化:

```
def __init__(self, eta = 0.1, iteration_num = 20):
    self.eta = eta
    self.iteration_num = iteration_num
```

定义本次训练的学习率和迭代次数。

计算预测值方法:

```
def net_in_method(self,xi):
    return np.dot(xi, self.wights[1:]) + 1 * self.wights[0]

def predict(self, xi):
    return np.where(self.net_in_method(xi) >= 0.0, 1, -1)
```

迭代过程:

```
def iteration(self, X, y):
    #wights[0]为bias, 随机权值从零开始
    self.wights = np.zeros(1 + X.shape[1])
    self.error_sample_num = []

for time in range(self.iteration_num):
    errors = 0
    #将x向量、预测值和对应的真实结果进行比较、运算
    for xi, true_y in zip(X, y):
        is_corrent = true_y - self.predict(xi)
        if is_corrent != 0.0:
            self.wights[1:] += self.eta * true_y * xi
            self.wights[0] += self.eta * true_y * 1
        errors += int(is_corrent != 0.0)
        self.error_sample_num.append(errors)
    return self
```

采用"随机剃度下降"的方法,初始权值及偏置设为0。采用"感知机学习算法",每次迭代中,依次通过每个样本对权值和偏置进行调整,一共迭代规定次数。统计迭代过程中错误预测数可以用来判断是否收敛。

对测试数据进行验证:

```
def verify(self,X,y):
    errors = 0
    for xi, true_y in zip(X,y):
        is_corrent = true_y - self.predict(xi)
        errors += int(is_corrent != 0.0)
    return errors
```

遍历一遍所有的测试数据,统计预测错误的样本数。

获得ROC曲线上的点集:

```
def roc(self,X,y):
   buf = array("d")
   pos true num = 0
   neg true num = 0
   for xi, true_y in zip(X,y):
        buf.append(true y)
        buf.append(self.net_in_method(xi))
        if true y > 0:
            pos_true_num += 1
        else:
            neg true num += 1
    rocs = np.frombuffer(buf, dtype=[('t',float),('y',float)])
    rocs = np.sort(rocs, order = 'y')
   roc_x = []
   roc_y = []
   roc_x.append(1)
   roc_y.append(1)
   index now = 0
   pos_true_num_now = 0
    for roc in rocs:
       index now += 1
        if roc['t'] > 0:
            pos_true_num_now += 1
        pos_predict_neg_true_num = neg_true_num - (index_now - pos_true_num_now)
        pos_predict pos_true_num = pos_true_num - pos_true_num_now
        roc_x.append(float(pos_predict_neg_true_num)/neg_true_num)
        roc_y.append(float(pos_predict_pos_true_num)/pos_true_num)
   roc_x.append(0)
   roc_y.append(0)
   return [roc_x,roc_y]
```

在"感知机"算法中,直接将"计算预测值的函数结果"(权值与各纬度特征值的加和值)作为绘制ROC曲线过程中变化的阈值,以此将"预测为正例"的概率映射到0-1之间。

"最近中心分类器"算法

函数分析

计算预测值的函数:

```
def net_in_method(self,xi):
    neg_class_distance = np.var(np.row_stack((self.neg_class_center,xi)))
    pos_class_distance = np.var(np.row_stack((self.pos_class_center,xi)))
    return (neg_class_distance - pos_class_distance)

def predict(self,xi):
    if self.net_in_method(xi) > 0:
        return 1
    else:
        return -1
```

通过计算测试点到每个类中心的距离,取最小距离的类为当前测试点的分类。

计算每个类别的中心:

```
def classify(self,X,y):
    neg_sample_buf = array('d')
    pos_sample_buf = array('d')
    for xi,true_y in zip(X,y):
        if true_y < 0:
            for fea in xi:
                 neg_sample_buf.append(fea)
        else:
            for fea in xi:
                 pos_sample_buf.append(fea)
        neg_sample_X = np.frombuffer(neg_sample_buf, dtype=np.float).reshape(-1, 22)
    pos_sample_X = np.frombuffer(pos_sample_buf, dtype=np.float).reshape(-1, 22)
    self.neg_class_center = np.mean(neg_sample_X, axis = 0)
    self.pos_class_center = np.mean(pos_sample_X, axis = 0)</pre>
```

通过计算"训练集"中每个类中所有样本各个维度特征的平均值最为该类的中心

对测试数据进行验证:

```
def verify(self,X,y):
    errors = 0
    for xi,true_y in zip(X,y):
        predict_y = self.predict(xi)
        errors += int(true_y != predict_y)
    return errors
```

遍历一遍所有的测试数据,统计预测错误的样本数。

获得ROC曲线上的点集:

```
def roc(self,X,y):
   buf = array("d")
   pos true num = 0
   neg true num = 0
   for xi, true_y in zip(X,y):
       buf.append(true y)
       #将(到负类中心的距离减去到正类中心的距离)作为阈值
       buf.append(self.net in method(xi))
       if true_y > 0:
           pos_true_num += 1
       else:
           neg_true_num += 1
   rocs = np.frombuffer(buf, dtype=[('t',float),('y',float)])
   rocs = np.sort(rocs, order = 'y')
   roc_x = []
   roc_y = []
   roc_x.append(1)
   roc_y.append(1)
   index_now = 0
   pos_true_num_now = 0
   for roc in rocs:
       index now += 1
       if roc['t'] > 0:
           pos_true_num_now += 1
       pos predict neg true num = neg true num - (index now - pos true num now)
       pos predict pos true num = pos true num - pos true num now
       roc_x.append(float(pos_predict_neg_true_num)/neg_true_num)
       roc y.append(float(pos predict pos true num)/pos true num)
   roc x.append(0)
   roc y.append(0)
   return [roc x,roc y]]
```

在"最近中心分类器"算法中,将"到负类中心距离减去到正类中心距离"作为绘制ROC曲线过程中变化的阈值, 即测试点离负类中心比到正类中心越远,越有可能是正类。以此将"预测为正例"的概率映射到0-1之间。

解决数据不平衡

随机取样

```
with open(training data file, 'rb') as fin:
    reader = csv.reader(fin, delimiter=',')
    buf = array("d")
    negs = 0;
    chosen = 0;
    for row in reader:
        if row[22] == '-1':
            negs += 1
            if random.randint(1,4) != 2:
                continue
            chosen += 1
        for e in row:
            buf.append(float(e))
    na = np.frombuffer(buf, dtype=np.float).reshape(-1, 23)
    new_X = na[:,0:22]
    new_y = na[:,22]
    new_y = new_y.astype(int)
```

因为"训练集"中负例样本数大致是正例样本数的4倍,因此重新取用于训练的"训练集"样本,随机只选取占总 负例样本数1/4的负例样本。

结果分析

Done

读取数据集、建立学习模型。

(遇到问题:在本次作业中,建立"感知机"模型时通过调整学习率对下降过程没有影响,权值只会随着学习率的变化而整体呈现相同倍数的变化。且在迭代2次后,已经出现震荡,如下图)

模型正确率:

Start verifying the models
the perceptron method correct rate is 0.972600
the centerClassification method correct rate is 0.796000
Done

在调整了训练模型用的"训练数据"后,新的模型正确率:

Start setting up model with banlance training data the neg sample num is 5981

the perceptron method correct rate is 0.973000 the centerClassification method correct rate is 0.796000

发现中心分类器基本没有变化,分析算法应该没错,难道是数据集中心特征很相似? "感知机"算法正确率变化也不大。

绘制出的ROC曲线:

可以明显看到"感知机"算法建立的模型比"中心分类器"的性能要强很多,但是在调整"训练集"数据后对性能基本没有影响,怀疑是"不平衡"处理的方法不好。