Two component Dark Matter

with neutrino masses

Diego Restrepo

Sep 6, 2019 - Darkwin - Natal [PDF: http://bit.ly/darkwin]

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:1811.11927 [PRD] In collaboration with

N. Bernal (UAN), C. Yaguna (UPTC), Ó. Zapata, (UdeA)

Preliminars

※ Computer tools in particle physics

Information

This is the website for the course 'Computer tools in particle physics' by Avelino Vicente

- CINVESTAV, México City (México) 2015
- IFIC, Valencia (Spain) 2016
- Universidad de Antioquia, Medellín (Colombia) 2016
- IFIC, Valencia (Spain) 2017

References

The course focuses on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349 [PDF]

For two-loops RGEs see also:

"Exploring new models in all detail with SARAH", Florian Staub, arXiv:1503.04200 [PDF]

SARAH:

"SARAH 4: A tool for (not only SUSY) model builders", Florian Staub, arXiv:1309.7223 [PDF]

About

This is the website for the course 'Computer tools in particle physics'.

Links V1.0 August 2009: Susy Only V4.0 September 2019: non-Susy SARAH V4.14.2 (Transfered to W.Porod)

- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Copyright 2006 Truly Simple. Design by Igor Penjivrag Template downloaded from free website templates

※ Computer tools in particle physics

Information

This is the website for the course 'Computer tools in particle physics' by Avelino Vicente

- CINVESTAV, México City (México) 2015
- IFIC, Valencia (Spain) 2016
- Universidad de Antioquia, Medellín (Colombia) 2016
- IFIC, Valencia (Spain) 2017

References

The course focuses on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349 [PDF]

For two-loops RGEs see also:

"Exploring new models in all detail with SARAH", Florian Staub, arXiv:1503.04200 [PDF]

SARAH:

"SARAH 4: A tool for (not only SUSY) model builders", Florian Staub, arXiv:1309.7223 [PDF]

About

This is the website for the course 'Computer tools in particle physics'.

Links

- SARAH
- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Computer tools in particle physics

Information

This is the website for the course <u>Computer tools in particle physics</u> by Avelino Vicente, to take place at <u>Instituto de Física Corpuscular</u> (CSIC/Universidad de Valencia).

Dates: Monday 22/05/2017 - Friday 26/05/2017

Place: IFIC - Sala de Audiovisuales (Nave experimental)

Time: 15:00

Duration: 1.5 h for the first session and 1 h for the rest

Material and required programs

This will be a hands-on course, where all participants are encouraged to run all codes in their own laptops. The only required programas are <u>Mathematica</u>, a <u>LaTeX compiler</u> and <u>Fortran 90 and C++ compilers</u>. If you wish to fully participate please download the following files:

- For lecture 1: run_sarah_Scotogenic.nb and Scotogenic.tar.gz
- For lecture 2: micromegas 4.2.5.tgz
- For lecture 4: run_sarah_DarkBS.nb, DarkBS.tar.gz and plotDarkBS.txt

You should also download the latest versions of the codes we are going to use (exception: for lecture 2 we will use an old version of MicrOMEGAs, see above). You can find them in their official websites (links on_your right). Fipalty the slides of the course are available here: introduction, lecture 1, lecture 2, lecture 3, lecture 4 and lecture 5)

References

The course will mainly focus on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349

About

This is the website for the course Computer tools in particle physics. IFIC (CSIC/U. Valencia), May 22nd - 26th, 2017.

Input/Output

Code

SARAH SPheno MicrOMEGAS

► MadGraph

- MadAnalysis
- FlavorKit -

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Observables already in FlavorKit

Lepton flavor	Quark flavor
$\ell_{lpha} ightarrow \ell_{eta} \gamma$	$B^0_{s,d} \to \ell^+\ell^-$
$\ell_lpha o 3\ell_eta$	$ar{B} o X_s \gamma$
$\mu-e$ conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
$ au o P \ell$	$ar{B} o X_{d,s} u ar{ u}$
$h o \ell_lpha\ell_eta$	$B \to K \ell^+ \ell^-$
$Z o \ell_lpha \ell_eta$	$K o \pi u ar{ u}$
	$\Delta M_{B_{s,d}}$
	ΔM_K and ε_K
	$P o \ell \nu$

Ready to be computed in your favourite model!

Observables already in FlavorKit

	Lepton flavor	Quark flavor
	$\ell_{\alpha} \to \ell_{\beta} \gamma$	$B^0_{\underline{s},d} \to \ell^+\ell^-$
	$\ell_{lpha} ightarrow 3 \ell_{eta}$	$ar{B} o X_s \gamma$
$\mu - \epsilon$	conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
	$ au o P \ell$	$ar{B} o X_{d,s} u ar{ u}$
	$h o \ell_{\alpha}\ell_{\beta}$	$B \to K \ell^+ \ell^-$
	$Z o \ell_{lpha}\ell_{eta}$	$K o \pi u ar{ u}$
Also in SARAH	Lough	$\Delta M_{B_{s,d}}$
S,T,U One-loop corrections to All masses $\Delta M_K ext{ and } arepsilon_K$		
Two-loop corrections to Higgs mass $P o \ell u$		
Gluon fusion production of scalars with proper output for MadGraph		
Ready to be computed in your favourite model!		

Computer tools in particle physics

Information

This is the website for the course <u>Computer tools in particle physics</u> by Avelino Vicente, to take place at <u>Instituto de Física Corpuscular</u> (CSIC/Universidad de Valencia).

Dates: Monday 22/05/2017 - Friday 26/05/2017

Place: IFIC - Sala de Audiovisuales (Nave experimental)

Time: 15:00

Duration: 1.5 h for the first session and 1 h for the rest

Material and required programs

This will be a hands-on course, where all participants are encouraged to run all codes in their own laptops. The only required programas are <u>Mathematica</u>, a <u>LaTeX compiler</u> and <u>Fortran 90 and C++ compilers</u>. If you wish to fully participate blease download the following files:

- For lecture 1: run_sarah_Scotogenic.nb and Scotogenic.tar.gz
- For lecture 2: micromegas 4.2.5.tgz
- For lecture 4: run_sarah_DarkBS.nb, DarkBS.tar.gz and plotDarkBS.txt

You should also download the latest versions of the codes we are going to use (exception: for lecture 2 we will use an old version of MicrOMEGAs, see above). You can find them in their official websites (links on your right). Finally, the slides of the course are available here: (introduction) lecture 1. lecture 2. lecture 3. lecture 4 and lecture 5.

References

The course will mainly focus on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349

About

This is the website for the course Computer tools in particle physics. IFIC (CSIC/U. Valencia), May 22nd - 26th, 2017.

Links

- SARAH
- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Models already in SARAH

Supersymmetric Models

- MSSM [in several versions]
- NMSSM [in several versions]
- Near-to-minimal SSM (near-MSSM)
- General singlet extended SSM (SMSSM)
- DiracNMSSM
- Triplet extended MSSM/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

Models already in SARAH

- Always check any version of SARAH and SPheno with this one!
- Nakah and Spheno with this one:
- General singlet extende SSM (SMSSM)
- DiracNN SSM
- Triplet eleended MS M/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- · SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

Models already in SARAH

Supersymmetric Models

- MSSM [in several versions]
- NMSSM [in several versions]
- Near-to-minimal SSM (near-MSSM)
- General singlet extended SSM (SMSSM)
- DiracNMSSM
- Triplet extended MSSM/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

BSM-Submodules

git clone
git clone

Parameter space

$$S = \frac{1}{\sqrt{2}} \left(v_1 + h_1 \right) + \frac{i}{\sqrt{2}} A$$

$$S = \frac{1}{\sqrt{2}} (v_1 + h_1) + \frac{i}{\sqrt{2}} A_1$$
$$S' = \frac{1}{\sqrt{2}} (v_2 + h_2) + \frac{i}{\sqrt{2}} A_2$$

Parameter space
$$S=rac{1}{\sqrt{2}}inom{v_1}{h_1}+rac{i}{\sqrt{2}}A_1$$

Parameter space
$$S=rac{1}{\sqrt{2}}\left(v_1+h_1\right)+rac{i}{\sqrt{2}}A_1$$

 $\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$

 $M_{Z'}^2 = g_{RL}^2 v_2^2 \left(4 + \tan^2 \beta\right)$

 $\tan \beta = \frac{v_2}{v_1}$

Parameter space

$$S = \frac{1}{\sqrt{2}} (v_1) + (h_1) + \frac{i}{\sqrt{2}} A_1$$

$$S' = \frac{1}{\sqrt{2}} (v_2) + (h_2) + \frac{i}{\sqrt{2}} A_2$$

$$G', A$$

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1}$$

$$M_{Z'}^2 = g_{BI}^2 v_2^2 (4 + \tan^2 \beta)$$

$$\mathcal{L} = M_1 \overline{\chi_1} \chi_1 + M_2 \overline{\chi_2} \chi_2 + M_{N1} \overline{N_{R1}^c} N_{R1} + M_{N2} \overline{N_{R2}^c} N_{R2}$$

Parameter space

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 + h_1 \end{pmatrix} + \frac{i}{\sqrt{2}} A_1$$

$$S' = \frac{1}{\sqrt{2}} \begin{pmatrix} v_2 + h_2 \end{pmatrix} + \frac{i}{\sqrt{2}} A_2$$

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1}$$
11 parameters
$$M_{Z'}^2 = g_{BL}^2 v_2^2 \left(4 + \tan^2 \beta \right)$$

$$m_{\gamma} = M_1 \text{ or } M_2$$

$$\mathcal{L} = M_1 \overline{\chi_1} \chi_1 + M_2 \overline{\chi_2} \chi_2 + M_{N1} \overline{N_{R1}^c} N_{R1} + M_{N2} \overline{N_{R2}^c} N_{R2}$$