Assignment - 1

NLP CS60075 21CS10082 Yasaswani Rongali

Enhancing Sentiment Analysis Using POS Tagging

REPORT

1) POS Tagger:

The algorithm identifies tags from the **universal tagset** (consists of 12 tags). For each word it computes max probability among the 12 possible probabilities and then the corresponding tag is assigned as the best tag for the word.

The set of tags

```
tagged_words = [tup for sent in corpus for tup in sent]
T = set([pair[1] for pair in tagged_words])
T

{'.',
   'ADJ',
   'ADP',
   'ADV',
   'CONJ',
   'DET',
   'NOUN',
   'NUM',
   'PRON',
   'PRT',
   'VERB',
   'X'}
```

```
exiconstaa", "gave", "a", "very", "nice", "presentation", "on", "apples","mine","her","they"]
le_sentence)
'), ('gave', 'VERB'), ('a', 'DET'), ('very', 'ADV'), ('nice', 'ADJ'), ('presentation', 'NOUN'), ('on', 'ADP'), ('apples', 'NOUN'), ('mine', 'NOUN'), ('her', 'PRO
```

Tags for a sample sentence

2) Vanilla Sentiment Analyzer:

This is done by first creating word embeddings(converting words to vectors) using **Word2Vec** vectorizer. And then the **SVM Classifier** is trained on the training set(movie review corpus).

Actual output vs expected output for 1st 10 reviews of test data

Tokens of a review

Embedding of the above review

Classification report for validation set

Validation A	ccuracy: 0.68 precision	recall	f1-score	support
neg pos	0.71 0.64	0.66 0.69	0.68 0.67	85 75
accuracy macro avg weighted avg	0.68 0.68	0.68 0.68	0.68 0.67 0.68	160 160 160

Classification report for test set

Test Accuracy	: 0.66 precision	recall	f1-score	support
neg pos	0.63 0.70	0.72 0.61	0.67 0.65	192 208
accuracy macro avg weighted avg	0.66 0.67	0.66 0.66	0.66 0.66 0.66	400 400 400

3) Enhanced sentiment analysis:

Using POS tagger gives us an extra edge, because **adjectives** and **adverbs** are the words that actually contribute to the sentiment of a review or a paragraph of text. So, instead of creating word embeddings of all words, if we created embeddings of just adverbs and adjectives and trained a classifier on this dataset, we would get better results of sentiment analysis.

So first, the viterbi algorithm is applied on the document whose embeddings are to be generated. We only retain the words which have "ADV"(Adverb) and "ADJ"(Adjectives) as their tags. Now this filtered document is used for training the SVM Classifier.

Tokens of test_set[0][0]

```
test_set[0][0

'llum'
'production'
'.'
'secondly'
'.'
'the'
'film'
'is'
'the'
'of'
'yuen'
'biao'
'the'
'ofens'
'around'
'the'
'end'
'of'
'the'
'many'
'when'
'many'
'many'
'where'
'making'
'their'
'way'
'to'
'shanghai'
'crime'
'groverty'
'and'
'crime'
'crime'
'crule'
'most'
'chine'
```

Filtered tokens of test_set[0][0] containing only **adverbs** and **adjectives**

```
filter(test_set[0][0]
['latest',
'notable'
 'first',
'back',
 'when'
 'young'
 'fabled'
'most',
 most',
'powerful'
  powerful',
wealthy',
 'down',
 'not',
'first',
   up',
just'
 'outside',
 'up'
 'top'
 'previously',
'marvelously'
 'still'
 'almost'
'only',
 'never'
'wbo
 'when',
'never'
 'better',
'late',
 'beautiful',
 'not',
'most'
 'aggressive',
   first'
```

Embeddings of the above words

Expected output vs actual output for the first 10 reviews of test set

```
test_predictions[:10]
array(['pos', 'pos', 'pos', 'pos', 'pos', 'pos', 'pos', 'pos', 'pos', 'pos'], dtype='<U3')

y_test[:10]
['pos', 'neg', 'pos', 'neg', 'pos', 'pos', 'pos', 'pos', 'pos']</pre>
```

Classification reports for validation and test set

Validatio	on Accurac prec	y: 0.72 ision	recall	f1-score	support			
	neg pos	0.79 0.67	0.68 0.78	0.73 0.72	88 72			
accu macro weighted	avg	0.73 0.73	0.73 0.72	0.73 0.72 0.73	160 160 160			
Test Accuracy: 0.69 precision recall f1-score support								
	neg pos	0.71 0.67	0.66 0.72	0.68 0.70	202 198			
accu macro weighted	avg	0.69 0.69	0.69 0.69	0.69 0.69 0.69	400 400 400			

It can be seen from the accuracy scores of test datasets in both the methods, that the enhanced sentiment analyzer gives better results than the baseline method.

