## 0.0.1 電磁場のハミルトニアン

前節での議論により、系のハミルトニアンは.

$$\hat{H}_{\text{sys}} = \int d^3k \sum_{\sigma=1}^2 \frac{\hbar \omega_{\mathbf{k}}}{2} \left( \hat{a}_{\mathbf{k}\sigma}^{\dagger} \hat{a}_{\mathbf{k}\sigma} + \hat{a}_{\mathbf{k}\sigma} \hat{a}_{\mathbf{k}\sigma}^{\dagger} \right)$$
(0.0.1)

と書けるのであった. 以下では、簡単のために、1方向成分・シングルモードの波を考える.

$$\hat{H}_{\text{sys}} = \frac{\hbar\omega}{2} \left( \hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) \tag{0.0.2}$$

$$=\hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) \tag{0.0.3}$$

と書ける. 屈折率がnの物質中では $^{1}$ ,

$$\hat{H}_{n,\text{sys}} = \frac{\hbar\omega}{n} \left( \hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \tag{0.0.4}$$

と書ける.

### 0.0.2 ユニタリ行列の分解

ユニタリ行列は一般に,

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.5)

と分解できる. 具体的にUを計算すると、

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.6)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} \cos(\Theta/2) & e^{i\Psi/2} \sin(\Theta/2) \\ -e^{-i\Psi/2} \sin(\Theta/2) & e^{-i\Psi/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.8)

$$= e^{i\Lambda/2} \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.8)

であり、 $\alpha = \Psi + \Phi$ 、 $\beta = \Psi - \Phi$ とすると

$$U = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2} \cos(\Theta/2) & e^{i\beta/2} \sin(\Theta/2) \\ -e^{-i\beta/2} \sin(\Theta/2) & e^{-i\alpha/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.9)

$$= \begin{pmatrix} e^{i(\Lambda+\alpha)/2} \cos(\Theta/2) & e^{i(\Lambda+\beta)/2} \sin(\Theta/2) \\ -e^{i(\Lambda-\beta)/2} \sin(\Theta/2) & e^{i(\Lambda-\alpha)/2} \cos(\Theta/2) \end{pmatrix}$$
(0.0.10)

と書ける.

*Proof.* 任意  $2 \times 2$  の行列は, 実数  $r_{ij}$  と  $\theta_{ij}$  を用いて,

$$M = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.11)

と書けて,

$$M^{\dagger}M = \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix}$$
(0.0.12)

$$= \begin{pmatrix} r_{11}^2 + r_{21}^2 & r_{11}r_{12}e^{-i(\theta_{11} - \theta_{12})} + r_{21}r_{22}e^{-i(\theta_{21} - \theta_{22})} \\ r_{11}r_{12}e^{i(\theta_{11} - \theta_{12})} + r_{21}r_{22}e^{i(\theta_{21} - \theta_{22})} & r_{12}^2 + r_{22}^2 \end{pmatrix}$$

$$(0.0.13)$$

<sup>1</sup>謎である. 屈折率により波動は変化しないはずである.

$$MM^{\dagger} = \begin{pmatrix} r_{11}e^{i\theta_{11}} & r_{12}e^{i\theta_{12}} \\ r_{21}e^{i\theta_{21}} & r_{22}e^{i\theta_{22}} \end{pmatrix} \begin{pmatrix} r_{11}e^{-i\theta_{11}} & r_{21}e^{-i\theta_{21}} \\ r_{12}e^{-i\theta_{12}} & r_{22}e^{-i\theta_{22}} \end{pmatrix}$$

$$= \begin{pmatrix} r_{11}^{2} + r_{12}^{2} & r_{11}r_{21}e^{i(\theta_{11} - \theta_{21})} + r_{11}r_{22}e^{i(\theta_{12} - \theta_{22})} \\ r_{11}r_{21}e^{-i(\theta_{11} - \theta_{21})} + r_{12}r_{22}e^{-i(\theta_{12} - \theta_{22})} & r_{21}^{2} + r_{22}^{2} \end{pmatrix}$$

$$(0.0.14)$$

$$= \begin{pmatrix} r_{11}^2 + r_{12}^2 & r_{11}r_{21}e^{i(\theta_{11} - \theta_{21})} + r_{11}r_{22}e^{i(\theta_{12} - \theta_{22})} \\ r_{11}r_{21}e^{-i(\theta_{11} - \theta_{21})} + r_{12}r_{22}e^{-i(\theta_{12} - \theta_{22})} & r_{21}^2 + r_{22}^2 \end{pmatrix}$$
(0.0.15)

となる. M がユニタリ行列であることの必要十分条件は、

$$r_{11}^2 + r_{21}^2 = 1 (0.0.16)$$

$$r_{12}^2 + r_{22}^2 = 1 (0.0.17)$$

$$r_{11}^2 + r_{12}^2 = 1 (0.0.18)$$

$$r_{21}^2 + r_{22}^2 = 1 (0.0.19)$$

$$r_{11}r_{12}e^{i(\theta_{11}-\theta_{12})} + r_{21}r_{22}e^{i(\theta_{21}-\theta_{22})} = 0 (0.0.20)$$

$$r_{11}r_{21}e^{i(\theta_{11}-\theta_{21})} + r_{11}r_{22}e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.21)$$

である.  $M^{\dagger}M$  や  $MM^{\dagger}$  の非対角成分は複素共役になっていることに注意する. 式 (0.0.16) から式 (0.0.19) を満たす ような  $r_{ij}$  の組は,実数  $\Theta$  を用いて,

$$r_{11} = r_{22} = \cos(\Theta/2) \tag{0.0.22}$$

$$r_{12} = -r_{21} = \sin(\Theta/2) \tag{0.0.23}$$

なるものである. また, これらの  $r_{ij}$  の値を式 (0.0.20) と式 (0.0.21) に代入すると,

$$e^{i(\theta_{11}-\theta_{12})} - e^{i(\theta_{21}-\theta_{22})} = 0 (0.0.24)$$

$$-e^{i(\theta_{11}-\theta_{21})} + e^{i(\theta_{12}-\theta_{22})} = 0 (0.0.25)$$

が成立する.

$$\Phi = \theta_{11} - \theta_{12} = \theta_{21} - \theta_{22} \tag{0.0.26}$$

$$\Psi = \theta_{11} - \theta_{21} = \theta_{12} - \theta_{22} \tag{0.0.27}$$

(0.0.28)

とすると,

$$\theta_{11} = \frac{\Lambda + \Psi + \Phi}{2} \tag{0.0.29}$$

$$\theta_{12} = \frac{\Lambda + \Psi - \Phi}{2} \tag{0.0.30}$$

$$\theta_{21} = \frac{\Lambda - \stackrel{2}{\Psi} + \Phi}{2} \tag{0.0.31}$$

$$\theta_{22} = \frac{\Lambda - \Psi - \Phi}{2} \tag{0.0.32}$$

となり、式(0.0.8) を得る. つまり、任意のユニタリ行列は式(0.0.8) で書けることが示された.

実際に式 (0.0.8) がユニタリ行列であることを確かめる.

$$U^{\dagger}U = e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.33)$$

$$UU^{\dagger} = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.34)$$

$$UU^{\dagger} = e^{i\Lambda/2} \begin{pmatrix} e^{i\alpha/2}\cos(\Theta/2) & e^{i\beta/2}\sin(\Theta/2) \\ -e^{-i\beta/2}\sin(\Theta/2) & e^{-i\alpha/2}\cos(\Theta/2) \end{pmatrix} e^{-i\Lambda/2} \begin{pmatrix} e^{-i\alpha/2}\cos(\Theta/2) & -e^{i\beta/2}\sin(\Theta/2) \\ e^{-i\beta/2}\sin(\Theta/2) & e^{i\alpha/2}\cos(\Theta/2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (0.0.34)$$

となり、U はユニタリ行列であることが分かる.

## 0.0.3 ビームスプリッタ行列

2 入力 2 出力のビームスプリッタを考える.  $E_1$  と  $E_2$  の電場が入射して,  $E_1'$  と  $E_2'$  が出力されるとする. 古典的に考えると,

$$\begin{pmatrix} E_1' \\ E_2' \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \tag{0.0.35}$$

と書ける.このまま電場演算子を中心に議論を進めることはいささか冗長である.なぜならば, $\hat{a}_1$  と  $\hat{a}_1^\dagger$  は複素共役の関係にあるのだから,片方が定まれば自然ともう片方が定まるからだ.よって式 (0.0.35) を量子化して,消滅演算子  $\hat{a}_1$ , $\hat{a}_2$  を用いて表せば,

$$\begin{pmatrix} \hat{a}'_1 \\ \hat{a}'_2 \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$
(0.0.36)

と書ける. 2 つの消滅演算子の交換関係は、

$$\left[\hat{a}_i, \hat{a}_j^{\dagger}\right] = \delta_j^i \tag{0.0.37}$$

$$[\hat{a}_i, \hat{a}_j] = 0 \tag{0.0.38}$$

である. B はビームスプリッタ行列という. 光子数が保存することから,

$$\hat{a}_{1}^{\dagger}\hat{a}_{1} + \hat{a}_{2}^{\dagger}\hat{a}_{2} = \hat{a}_{1}^{\prime\dagger}\hat{a}_{1}^{\prime} + \hat{a}_{2}^{\prime\dagger}\hat{a}_{2}^{\prime} \tag{0.0.39}$$

$$= (B_{11}\hat{a}_1 + B_{12}\hat{a}_2)^{\dagger} (B_{11}\hat{a}_1 + B_{12}\hat{a}_2) + (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)^{\dagger} (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)$$

$$(0.0.40)$$

$$= \left(B_{11}^* \hat{a}_1^{\dagger} + B_{12}^* \hat{a}_2^{\dagger}\right) \left(B_{11} \hat{a}_1 + B_{12} \hat{a}_2\right) + \left(B_{21}^* \hat{a}_1^{\dagger} + B_{22}^* \hat{a}_2^{\dagger}\right) \left(B_{21} \hat{a}_1 + B_{22} \hat{a}_2\right) \tag{0.0.41}$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{12}^*B_{11} + B_{21}^*B_{21})\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.42)$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})^*\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.43)$$

となり,

$$\begin{cases} |B_{11}|^2 + |B_{21}|^2 = |B_{12}|^2 + |B_{22}|^2 = 1\\ B_{11}^* B_{12} + B_{21}^* B_{22} = 0 \end{cases}$$
 (0.0.44)

$$\Leftrightarrow B^{\dagger}B = \begin{pmatrix} B_{11}^* & B_{21}^* \\ B_{12}^* & B_{22}^* \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (0.0.45)

となればよい. つまり, ビームスプリッタ行列 B がユニタリ行列であれば良い. 0.0.2 での議論によりビームスプリッタ演算子は,

$$B = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.46)

と書ける. ところが,

$$\begin{pmatrix} e^{i\Psi/2} & 0\\ 0 & e^{-i\Psi/2} \end{pmatrix} \tag{0.0.47}$$

は2つの入力電場  $E_1$ ,  $E_2$  に位相差をかけること,

$$\begin{pmatrix} e^{i\Phi/2} & 0\\ 0 & e^{-i\Phi/2} \end{pmatrix} \tag{0.0.48}$$

は2つの出力電場  $E'_1$ ,  $E'_2$  に位相差をかけること,

$$e^{i\Lambda/2}$$
 (0.0.49)

は2つの出力電場場 $E'_1$ ,  $E'_2$  に共通するグローバル位相を書けることに対応するから、実験のセットアップとして、

$$\Lambda = \Psi = \Phi = 0 \tag{0.0.50}$$

とすることができる. また, 透過率Tと反射率Rを,

$$\sqrt{T} := \cos(\Theta/2) \tag{0.0.51}$$

$$\sqrt{R} := -\sin(\Theta/2) \tag{0.0.52}$$

と定義すれば、ビームスプリッタ行列 Bは、

$$B = \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix}$$
 (0.0.53)

$$= \begin{pmatrix} \sqrt{T} & -\sqrt{R} \\ \sqrt{R} & \sqrt{T} \end{pmatrix} \tag{0.0.54}$$

と書ける.

$$T + R = 1 (0.0.55)$$

が成立することに注意する.

# 0.0.4 Baker-Campbell-Hausdorff の公式

次小節以降で頻出する Baker-Campbell-Hausdorff の公式を示しておこう. Baker-Campbell-Hausdorff の公式は、

$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = B + \left[\hat{A}, \hat{B}\right] + \frac{1}{2!}\left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right] + \cdots$$
 (0.0.56)

なる式である.

Proof. 函数 f(t) を,

$$f(t) := e^{t\hat{A}} \hat{B} e^{-t\hat{A}} \tag{0.0.57}$$

と定義する. f(t) を t=0 の周りで展開することを考えると,

$$f(t) = f(0) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{t=0} t + \frac{1}{2!} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}\Big|_{t=0} t^2 + \dots$$
 (0.0.58)

と書ける. さて,

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \hat{A}e^{t\hat{A}}Be^{-t\hat{A}} - e^{t\hat{A}}\hat{B}Ae^{-t\hat{A}}$$

$$(0.0.59)$$

$$= e^{t\hat{A}}\hat{A}Be^{-t\hat{A}} - e^{t\hat{A}}\hat{B}Ae^{-t\hat{A}}$$
(0.0.60)

$$= e^{t\hat{A}} \left( \hat{A}\hat{B} - \hat{B}\hat{A} \right) e^{-t\hat{A}} \tag{0.0.61}$$

$$= e^{t\hat{A}} \left[ \hat{A}, \hat{B} \right] e^{-t\hat{A}} \tag{0.0.62}$$

である. よって,

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{t=0} = \left[\hat{A}, \hat{B}\right] \tag{0.0.63}$$

である. 2 階以上の微分では,式 (0.0.62) において, $\hat{B} \rightarrow \left[\hat{A},\hat{B}\right]$  とすればよい.よって,式 (0.0.58) に式 (0.0.62) を代入すると,

$$f(t) = B + \left[\hat{A}, \hat{B}\right]t + \frac{1}{2!}\left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right]t^2 + \cdots$$
 (0.0.64)

である. t=1とすれば,

$$e^{\hat{A}}\hat{B}e^{\hat{A}} = B + \left[\hat{A}, \hat{B}\right] + \frac{1}{2!}\left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right] + \cdots$$
 (0.0.65)

### ビームスプリッタハミルトニアン

ビームスプリッタ行列を再び考えよう. 今度は入力電場と出力電場の位相差が存在することにして、 $\Lambda=0$ のみ課し ておく. するとビームスプリッタ行列は,

$$B = \begin{pmatrix} e^{i(\Psi+\Phi)/2}\cos(\Theta/2) & e^{i(\Psi-\Phi)/2}\sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2}\sin(\Theta/2) & e^{-i(\Psi+\Phi)/2}\cos(\Theta/2) \end{pmatrix}$$
(0.0.66)

と書ける. ビームスプリッタ行列を用いて,

$$\begin{pmatrix} \hat{a}'_1 \\ \hat{a}'_2 \end{pmatrix} = \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) \hat{a}_1 + e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \hat{a}_2 \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) \hat{a}_1 + e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \hat{a}_2 \end{pmatrix}$$
(0.0.68)

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2}\cos(\Theta/2)\hat{a}_1 + e^{i(\Psi-\Phi)/2}\sin(\Theta/2)\hat{a}_2 \\ -e^{-i(\Psi-\Phi)/2}\sin(\Theta/2)\hat{a}_1 + e^{-i(\Psi+\Phi)/2}\cos(\Theta/2)\hat{a}_2 \end{pmatrix}$$
(0.0.68)

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_1 - e^{i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_2 \\ e^{-i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_1 + e^{-i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_2 \end{pmatrix}$$
(0.0.69)

と書ける. 出力それぞれでの光の強度は、 $\hat{a}_1$  と  $\hat{a}_2^\dagger$  や  $\hat{a}_1^\dagger$  と  $\hat{a}_2$  が交換することを思い出せば、

$$\hat{a}_{1}^{\prime\dagger}\hat{a}_{1}^{\prime} = \left(e^{i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{1} - e^{i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{2}\right)^{\dagger}\left(e^{i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{1} - e^{i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{2}\right)$$
(0.0.70)

$$= T\hat{a}_{1}^{\dagger}\hat{a}_{1} + R\hat{a}_{2}^{\dagger}\hat{a}_{2} - \sqrt{T}\sqrt{R}\left(e^{i\Phi}\hat{a}_{1}\hat{a}_{2}^{\dagger} + e^{-i\Phi}\hat{a}_{1}^{\dagger}\hat{a}_{2}\right)$$
(0.0.71)

$$\hat{a}_{2}^{\prime\dagger}\hat{a}_{2}^{\prime} = \left(e^{-i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{1} + e^{-i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{2}\right)^{\dagger}\left(e^{-i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{1} + e^{-i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{2}\right)$$
(0.0.72)

$$= R\hat{a}_{1}^{\dagger}\hat{a}_{1} + T\hat{a}_{2}^{\dagger}\hat{a}_{2} + \sqrt{T}\sqrt{R}\left(e^{i\Phi}\hat{a}_{1}\hat{a}_{2}^{\dagger} + e^{-i\Phi}\hat{a}_{1}^{\dagger}\hat{a}_{2}\right)$$
(0.0.73)

となる.式(0.0.71)と式(0.0.73)について、第1項と第2項はそれぞれモード1の入力光子数、モード2の入力光子 数に対応する.これらの重ね合わせに依って位相が変化して,そのパラメータはTである.相互作用を表す項は第3項であるから、ビームスプリッタによる相互作用ハミルトニアン $\hat{H}_{int}$ を、

$$\hat{H}_{\text{int}} := \frac{1}{2} \left( e^{i\Phi} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\Phi} \hat{a}_1^{\dagger} \hat{a}_2 \right) \tag{0.0.74}$$

と定義する.

また,以下の演算子を定義する.

$$\hat{L}_0 := \frac{1}{2} \left( \hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 \right) \tag{0.0.75}$$

$$\hat{L}_1 := \frac{1}{2} \left( \hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.76}$$

$$\hat{L}_2 \coloneqq \frac{1}{2i} \left( \hat{a}_1^{\dagger} \hat{a}_2 - \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.77}$$

$$\hat{L}_3 := \frac{1}{2} \left( \hat{a}_1^{\dagger} \hat{a}_1 - \hat{a}_2^{\dagger} \hat{a}_2 \right) \tag{0.0.78}$$

 $\hat{L}_2$  と  $\hat{H}_{\mathrm{int}}$  の関係を調べよう. 唐突だが,

$$e^{-i\Theta\hat{L}_2} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} e^{i\Theta\hat{L}_2} \tag{0.0.79}$$

考える.式 (0.0.79) の第 1 成分について,Baker-Campbell-Hausdorff の公式より,

$$e^{-i\Theta\hat{L}_{2}}\hat{a}_{1}e^{i\Theta\hat{L}_{2}} = \hat{a}_{1} + \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right] + \frac{1}{2!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right] + \frac{1}{3!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] + \frac{1}{4!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right]\right]\right] + \cdots (0.0.80)$$

$$= \hat{a}_{1} + (-i\Theta)\left[\hat{L}_{2}, \hat{a}_{1}\right] + \frac{(-i\Theta)^{2}}{2!}\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]$$

$$+\frac{(-i\Theta)^{3}}{3!}\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{1}\right]\right]\right]+\frac{(-i\Theta)^{4}}{4!}\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{1}\right]\right]\right]\right]+\cdots$$
(0.0.81)

となる.  $\hat{L}_2$  と  $\hat{a}_1$ ,  $\hat{L}_2$  と  $\hat{a}_2$  との交換関係についてそれぞれ,

$$\left[\hat{L}_{2}, \hat{a}_{1}\right] = \left[\frac{1}{2i} \left(\hat{a}_{1}^{\dagger} \hat{a}_{2} - \hat{a}_{1} \hat{a}_{2}^{\dagger}\right), \hat{a}_{1}\right] \tag{0.0.82}$$

$$= \frac{1}{2i} \left( \hat{a}_2 \left[ \hat{a}_1^{\dagger}, \hat{a}_1 \right] - \hat{a}_2^{\dagger} \left[ \hat{a}_1, \hat{a}_1 \right] \right) \tag{0.0.83}$$

$$= -\frac{1}{2i}\hat{a}_2 \tag{0.0.84}$$

$$\left[\hat{L}_{2}, \hat{a}_{2}\right] = \left[\frac{1}{2i} \left(\hat{a}_{1}^{\dagger} \hat{a}_{2} - \hat{a}_{1} \hat{a}_{2}^{\dagger}\right), \hat{a}_{2}\right] \tag{0.0.85}$$

$$= \frac{1}{2i} \left( \hat{a}_1^{\dagger} [\hat{a}_2, \hat{a}_2] - \hat{a}_1 [\hat{a}_2^{\dagger}, \hat{a}_2] \right) \tag{0.0.86}$$

$$=\frac{1}{2i}\hat{a}_1\tag{0.0.87}$$

となる. ただし、 $\hat{a}_1$  と  $\hat{a}_2$  が交換することを用いた. よって、

$$\left[\hat{L}_2, \hat{a}_1\right] = -\left(\frac{1}{2i}\right)^1 \hat{a}_2$$
 (0.0.88)

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right] = -\frac{1}{2i} \left[\hat{L}_{2}, \hat{a}_{2}\right] = -\left(\frac{1}{2i}\right)^{2} \hat{a}_{1} \tag{0.0.89}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] = -\left(\frac{1}{2i}\right)^{2} \left[\hat{L}_{2}, \hat{a}_{1}\right] = \left(\frac{1}{2i}\right)^{3} \hat{a}_{2} \tag{0.0.90}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right]\right] = \left(\frac{1}{2i}\right)^{3} \left[\hat{L}_{2}, \hat{a}_{2}\right] = \left(\frac{1}{2i}\right)^{4} \hat{a}_{1}$$

$$(0.0.91)$$

であるから式 (0.0.81) は,

$$\begin{split} e^{-i\Theta\hat{L}_{2}}\hat{a}_{1}e^{i\Theta\hat{L}_{2}} &= \hat{a}_{1} + (-i\Theta)\Big[\hat{L}_{2},\hat{a}_{1}\Big] + \frac{(-i\Theta)^{2}}{2!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{1}\Big]\Big] \\ &+ \frac{(-i\Theta)^{3}}{3!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{1}\Big]\Big]\Big] + \frac{(-i\Theta)^{4}}{4!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{1}\Big]\Big]\Big]\Big] + \cdots \\ &= \hat{a}_{1} + (-i\Theta)(-1)\Big(\frac{1}{2i}\Big)^{1}\hat{a}_{2} + \frac{(-i\Theta)^{2}}{2!}(-1)\Big(\frac{1}{2i}\Big)^{2}\hat{a}_{1} + \frac{(-i\Theta)^{3}}{3!}\Big(\frac{1}{2i}\Big)^{3}\hat{a}_{2} + \frac{(-i\Theta)^{4}}{4!}\Big(\frac{1}{2i}\Big)^{4}\hat{a}_{1} + \cdots \\ &\qquad (0.0.93) \end{split}$$

$$= \hat{a}_1 + \left(\frac{\Theta}{2}\right)^1 \hat{a}_2 - \frac{1}{2!} \left(\frac{\Theta}{2}\right)^2 \hat{a}_1 - \frac{1}{3!} \left(\frac{\Theta}{2}\right)^3 \hat{a}_2 + \frac{1}{4!} \left(\frac{\Theta}{2}\right)^4 \hat{a}_1 + \cdots$$
 (0.0.94)

$$= \left[1 - \frac{1}{2!} \left(\frac{\Theta}{2}\right)^2 + \frac{1}{4!} \left(\frac{\Theta}{2}\right)^4 - \cdots\right] \hat{a}_1 + \left[\left(\frac{\Theta}{2}\right)^1 - \frac{1}{3!} \left(\frac{\Theta}{2}\right)^3 + \cdots\right] \hat{a}_2 \tag{0.0.95}$$

$$= \cos(\Theta/2)\hat{a}_1 + \sin(\Theta/2)\hat{a}_2 \tag{0.0.96}$$

となる. 同様に,式(0.0.79)の第2成分について,

$$\left[\hat{L}_2, \hat{a}_2\right] = \left(\frac{1}{2i}\right)^1 \hat{a}_1$$
 (0.0.97)

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right] = \frac{1}{2i} \left[\hat{L}_{2}, \hat{a}_{1}\right] = -\left(\frac{1}{2i}\right)^{2} \hat{a}_{2} \tag{0.0.98}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right]\right] = -\left(\frac{1}{2i}\right)^{2} \left[\hat{L}_{2}, \hat{a}_{2}\right] = -\left(\frac{1}{2i}\right)^{3} \hat{a}_{1} \tag{0.0.99}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right]\right]\right] = -\left(\frac{1}{2i}\right)^{3} \left[\hat{L}_{2}, \hat{a}_{1}\right] = \left(\frac{1}{2i}\right)^{4} \hat{a}_{2} \tag{0.0.100}$$

なる関係を用いると,

$$e^{-i\Theta\hat{L}_{2}}\hat{a}_{2}e^{i\Theta\hat{L}_{2}} = \hat{a}_{2} + (-i\Theta)\left[\hat{L}_{2},\hat{a}_{2}\right] + \frac{\left(-i\Theta\right)^{2}}{2!}\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{2}\right]\right] + \frac{\left(-i\Theta\right)^{3}}{3!}\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{2}\right]\right] + \frac{\left(-i\Theta\right)^{4}}{4!}\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{2}\right]\right]\right]\right] + \cdots$$

$$= \hat{a}_{2} + (-i\Theta)\left(\frac{1}{2i}\right)^{1}\hat{a}_{1} + \frac{\left(-i\Theta\right)^{2}}{2!}(-1)\left(\frac{1}{2i}\right)^{2}\hat{a}_{2} + \frac{\left(-i\Theta\right)^{3}}{3!}(-1)\left(\frac{1}{2i}\right)^{3}\hat{a}_{1} + \frac{\left(-i\Theta\right)^{4}}{4!}\left(\frac{1}{2i}\right)^{4}\hat{a}_{2} + \cdots$$

$$(0.0.102)$$

$$= \hat{a}_2 - \left(\frac{\Theta}{2}\right)^1 \hat{a}_1 - \frac{1}{2!} \left(\frac{\Theta}{2}\right)^2 \hat{a}_2 + \frac{1}{3!} \left(\frac{\Theta}{2}\right)^3 \hat{a}_1 + \frac{1}{4!} \left(\frac{\Theta}{2}\right)^4 \hat{a}_2 + \cdots$$
 (0.0.103)

$$= -\left[\left(\frac{\Theta}{2}\right)^{1} - \frac{1}{3!}\left(\frac{\Theta}{2}\right)^{3} + \cdots\right]\hat{a}_{1} + \left[1 - \frac{1}{2!}\left(\frac{\Theta}{2}\right)^{2} + \frac{1}{4!}\left(\frac{\Theta}{2}\right)^{4} - \cdots\right]\hat{a}_{2}$$

$$(0.0.104)$$

$$= -\sin(\Theta/2)\hat{a}_1 + \cos(\Theta/2)\hat{a}_2 \tag{0.0.105}$$

である. よって、式 (0.0.79) は、

$$e^{-i\Theta\hat{L}_2} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} e^{i\Theta\hat{L}_2} = \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$
(0.0.106)

と書ける. 式 (0.0.108) の解釈を考えよう. 相互作用ハミルトニアン  $\hat{H}_{\mathrm{int}}$  の定義は,

$$\hat{H}_{\text{int}} := \frac{1}{2} \left( e^{i\Phi} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\Phi} \hat{a}_1^{\dagger} \hat{a}_2 \right) \tag{0.0.107}$$

であった.  $\Phi = \pi/2$  とすると,

$$\hat{H}_{\text{int}} = \frac{1}{2} \left( e^{i\pi/2} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\pi/2} \hat{a}_1^{\dagger} \hat{a}_2 \right)$$
 (0.0.108)

$$= \frac{1}{2} \left( i\hat{a}_1 \hat{a}_2^{\dagger} - i\hat{a}_1^{\dagger} \hat{a}_2 \right) \tag{0.0.109}$$

$$= \frac{1}{2i} \left( \hat{a}_1^{\dagger} - \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.110}$$

$$=\hat{L}_2 \tag{0.0.111}$$

と書ける. さらに、式 (0.0.108) において、 $\Theta = -t/\hbar$  とすれば、

$$\exp\left(-i\frac{\hat{H}_{\text{int}}}{\hbar}t\right)\begin{pmatrix}\hat{a}_1\\\hat{a}_2\end{pmatrix}\exp\left(i\frac{\hat{H}_{\text{int}}}{\hbar}t\right) = \begin{pmatrix}\cos(-t/2\hbar) & \sin(-t/2\hbar)\\-\sin(-t/2\hbar) & \cos(-t/2\hbar)\end{pmatrix}\begin{pmatrix}\hat{a}_1\\\hat{a}_2\end{pmatrix}$$
(0.0.112)

となる. 左辺は,

$$\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} \tag{0.0.113}$$

なる消滅演算子のペアを時間発展演算子で挟んでいる格好である.となれば,右辺は Heisenberg 描像で表した消滅演算子であろう<sup>2</sup>.

 $<sup>^2</sup>$ 右辺に出てくる行列はビームスプリッタ行列でないことに注意する。確かに 2 つの入力電場間の位相ずれや,2 つの出力電場間の位相ずれがないと仮定したとき,ビームスプリッタ演算子は式 (0.0.54) と書ける。しかし, $\Phi=\pi/2$  なる仮定のもと議論している。このような入力電場の位相ずれ  $\Phi$  に対して,出力電場の位相ずれ  $\Psi$  をうまく定めれば式 (0.0.54) の形を実現することができると思うかもしれないが,その試みははかなく終わる。そのような  $\Psi$  は, $\pi/2+\Psi=2n\pi$  かつ  $\pi/2-\Psi=2m\pi$ , $n,m\in\mathbb{Z}$  としなければいけないが,2 式を足して, $\pi=2(n+m)\pi$  となり,そのような n,m は存在しない。要するに,式 (0.0.108) の右辺の行列はビームスプリッタ行列ではないのだ。