Extra Credit

March 29, 2022

Chapter 3

Def 3.1.1

Let f be a fn. w/doman $D \subseteq \mathbb{R}$. Then f has a limit as x approaches infinity iff $\exists L \in \mathbb{R}$ s.t. for every $\mathcal{E} > 0$, $\exists M \in \mathbb{R}^+$ s.t. $|f(x) - L| < \mathcal{E}$, if $x \geq M$ and $x \in D$. If such an L exists, then L is called the limit of the fn f as x tends to infinity and we write $\lim_{x\to\infty} f(x) = L$

Def 3.1.2

If $\lim_{x\to\infty} f(x) = L$, then the line y = L is called a horizontal asymptote for the function f.

Thm 3.1.6

Suppose that $D \subseteq \mathbb{R}$ is an unbounded above domain of the function f; that is, D contains arbitrarily large values. Then, $\lim_{x\to\infty} f(x) = L$ iff for every sequence $\{x_n\}$ in D that diverges to plus infinity, that is, $\lim_{n\to\infty} x_n = \infty$, the sequence $\{f(x_n)\}$ converges to L.

Thm 3.1.7

Suppose that the functions f, g, and h are defined on $D \subseteq \mathbb{R}$, which is unbounded above, with $\lim_{x\to\infty} f(x) = A$, $\lim_{x\to\infty} g(x) = B$, and $\lim_{x\to\infty} h(x) = C$. Then

- (a) $\lim_{x\to\infty} f(x)$ is unique
- (b) f must be eventually bounded above and below
- (c) $\lim_{x\to\infty} [f(x) A] = 0$
- (d) $\lim_{x\to\infty} |f(x)| = |\lim_{x\to\infty} f(x)| = |A|$
- (e) $\lim_{x\to\infty} (f\pm g)(x) = \lim_{x\to\infty} f(x) \pm \lim_{x\to\infty} g(x) = A \pm B$
- (f) $\lim_{x\to\infty} (fg)(x) = [\lim_{x\to\infty} f(x)][\lim_{x\to\infty} g(x)] = AB$
- (g) $\lim_{x\to\infty} [f(x)]^n = [\lim_{x\to\infty} f(x)]^n = A^n, \forall n \in \mathbb{N}$

(h)
$$\lim_{x\to\infty} (f/g)(x) = \frac{A}{B} ifB \neq 0$$

(i)
$$\lim_{x\to\infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to\infty} f(x)} = \sqrt[n]{A}$$
 if $A \ge 0$ & $f(x) \ge 0 \ \forall x \in D$, with $n \in \mathbb{N}$

- (j) $A \leq B \ if \ f(x) \leq g(x)$ eventually for $x \in D$
- (k) $A \leq B \leq C$ if $f(x) \leq g(x) \leq h(x)$ eventually for $x \in D$. This property is called the sandwich (or squeeze) theorem

Thm 3.1.8

If the function f is defined on an unbounded above domain $D \subseteq \mathbb{R}$ and is eventually monotone and eventually bounded, then $\lim_{x\to\infty} f(x)$ is finite.

Def 3.1.9

Let f be a function with domain $D \subseteq \mathbb{R}$, which contains arbitrarily large values. We say that f tends to plus infinity as x tends to $+\infty$ iff for any real K > 0, there exists a real number M > 0 such that f(x) > K provided that $x \ge M$ and $x \in D$. Whenever this is the case, we write $\lim_{x\to\infty} f(x) = +\infty$

Def 3.1.10

Let f be a function with domain $D \subseteq \mathbb{R}$, which contains arbitrarily large negative values. Then $\lim_{x\to-\infty} f(x) = L$ iff for every $\epsilon > 0$ there exists a real number M > 0 such that $|f(x) - L| < \epsilon$ if $x \leq M$ and $x \in D$

Def 3.2.1

Suppose that a function $f: D \to \mathbb{R}$, and suppose that a is an accumulation point of D. The function f has a limit as x approaches (or as x tends to) a iff there exists a real number L such that for every $\epsilon > 0$ there exists a real number $\delta > 0$ such that

$$|f(x)-L|<\epsilon$$
 provided that $0<|x-a|<\delta$ and $x\in D$

write $\lim_{x\to a} f(x) = L$

Thm 3.2.5

Suppose that functions $f, g, h : D \to \mathbb{R}$, with $D \subseteq \mathbb{R}$, a is an accumulation point of $D, \lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B$, and $\lim_{x \to a} h(x) = C$. Then all of the conclusions for Theorem 3.1.7 are true with ∞ replaced by a and with "eventually" replaced by "near x = a."

Thm 3.2.6

Let the function f be defined on some deleted neighborhood D of the real number a. The following two statements are equivalent.

- (a) $\lim_{x\to a} f(x) = L$
- (b) For every sequence $\{x_n\}$ converging to x = a, with $x_n \in D$ and $x_n \neq a$ eventually, the sequence $\{f(x_n)\}$ converges to L

Def 3.2.12

Suppose that the function $f:D\to\mathbb{R}$ with D a subset of \mathbb{R} and a an accumulation point of D. Then the function f tends to plus infinity as x approaches, tends to, a iff for any given real number K>0, there exists $\delta>0$ such that f(x)>K, provided that $0<|x-a|<\delta$ and $x\in D$. Write $\lim_{x\to a}f(x)=+\infty$

Thm 3.2.14

Let the functions f and g be defined on some deleted neighborhood of x = a. If $\lim_{x\to a} f(x) = L > 0$ and $\lim_{x\to a} g(x) = +\infty$, then $\lim_{x\to a} (fg)(x) = +\infty$.

Def 3.3.1

Suppose that the function $f: D \to \mathbb{R}$, with D a subset of \mathbb{R} and a an accumulation point of the set $D \cap (a, \infty) = \{x \in D | x > a\}$ Then the function f has a right-hand limit (limit

from the right) as x approaches, tends to, a iff there exists a real number L such that for every $\epsilon > 0$ there exists a positive real number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 provided that $0 < x - a < \delta$ and $x \in D$

we write $\lim_{x\to a^+} f(x) = L$

Def 3.3.2

Suppose that the function $f: D \to \mathbb{R}$, with D a subset of and a an accumulation point of $D \cap (a, \infty)$. Then the function f tends to infinity as x approaches, tends to, a from the right iff for any given real number K > 0, there exists a positive $\delta > 0$ such that f(x) > K, provided that $0 < x - a < \delta$ and $x \in D$. We write $\lim_{x \to a^+} f(x) = +\infty$

Def 3.3.4

If the limit from the right or from the left at x = a of a function f is infinite, meaning $+\infty$ or $-\infty$, then the line x = a is called a vertical asymptote.

Thm 3.3.7

Let a function f be defined for $x \in (0, a)$, with a > 0 a real number. If

$$\lim_{x \to 0^+} f(x)$$
 or $\lim_{t \to \infty} f\left(\frac{1}{t}\right)$

Chapter 4

Def 4.1.1

(Local) Suppose that a function $f: D \to \mathbb{R}$, with D a subset of \mathbb{R} . Then f is continuous at $a \in D$ iff for any given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$, provided that $|x - a| < \delta$ and $x \in D$.

Def 4.1.2

(Global) A function $f: D \to \mathbb{R}$ is continuous on a set $E \subseteq D$ iff f is continuous at each point (value of x) in E. If f is continuous at every point in its domain, D, we simply say that f is continuous.

Sequential Criterion for Continuity Thm

Let $f: D \to \mathbb{R}$. f is continuous at A in domain D iff for every seq $\{a_n\} \subseteq D$, $\lim_{n \to \infty} a_n = A$, then seq $\lim_{n \to \infty} f(A_n) = f(A)$

Def 4.1.6

Suppose a function $f: D \to \mathbb{R}$ with $D \subseteq \mathbb{R}$. Then f is right continuous at a, meaning that f is continuous from the right at a iff for any given $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$, provided that $0 < x - a < \delta$ and $x \in D$.

Thm 4.1.7

Suppose that D is the domain of f

- (a) If f is continuous at a, then there exists $\delta > 0$ such that f is bounded on the set $(a \delta, a + \delta) \cap D$.
- (b) If f is right continuous at a, then there exists $\delta > 0$ such that f is bounded on the set $[a, a + \delta) \cap D$.
- (c) If f is left continuous at a, then there exists $\delta > 0$ such that f is bounded on the set $(a \delta, a] \cap D$.
- (d) If f is continuous at a, and f(a) > 0, then there exists $\delta > 0$ such that $f(x) > \frac{1}{2}f(a) \forall x \in (a \delta, a + \delta) \cap D$, or $f(a) < 0 f(x) < \frac{1}{2}f(a)$.
- (e) Suppose that D=(a,b), f is continuous at $c \in D$, and f(c) > 0. Then there exists a neighborhood N_{ϵ} of c such that $f(x) > 0 \ \forall x \in N_{\epsilon} \cap (a,b)$.

Thm 4.1.8

Suppose that functions $f, g: D \to \mathbb{R}$ with $D \subset \mathbb{R}$ are continuous at a. Then,

- (a) $f \pm g$ are continuous at a
- (b) fg is continuous at a
- (c) $\frac{f}{g}$ is continuous at a, provided that $g(a) \neq 0$

Thm 4.1.9

Consider functions $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ with $A, B \subseteq \mathbb{R}$ such that $f(A) \subseteq B$. If f is continuous at some $x = a \in A$ and g is continuous at $b = f(a) \in B$, then the function $g \circ f$ is continuous at x = a

Def 4.2.1

A function $g: E \to \mathbb{R}$ with $E \subseteq R$ is an extension of the function $f: D \to \mathbb{R}$ provided that $D \subset E$ and $f(x) = g(x) \ \forall x \in D$. If g is continuous, then g is called a continuous extension of f.

Def 4.2.3

A function $f: D \to \mathbb{R}$ with $D \subseteq \mathbb{R}$ and a an accumulation point of D has a removable discontinuity at x = a if either

- (a) $a \notin D$ and $\lim_{x\to a} f(x)$ is finite, or
- (b) $a \notin D$ and $\lim_{x\to a} f(x) = L \neq f(a)$

Def 4.2.5

Suppose that fo ra function $f:D\to\mathbb{R}$, one of the following three conditions is satisfied

(a)
$$\lim_{x\to a^+} f(x) = L$$
 and $\lim_{x\to a^-} f(x) = M$

- (b) a is not an accumulation point of $D \cap (a, \infty)$, $a \in D$ and $\lim_{x\to a^-} f(x) = M$. In this case, L will denote the value of f(a)
- (c) a is not an accumulation point of $D \cap (-\infty, a), a \in D$ and $\lim_{x \to a^+} f(x) = L$. In this case, M will denote the value of f(a)

Def 4.2.7

The function f is piecewise continuous on $D \subseteq \mathbb{R}$ iff there exists finitely many points x_1, x_2, \ldots, x_n , such that

- (a) f is continuous on D except at x_1, x_2, \ldots, x_n , and
- (b) f has simple discontinuities at x_1, x_2, \ldots, x_n

Def 4.3.1

A set $E \subseteq \mathbb{R}$ is said to be closed iff every accumulation point of E is in E.

Def 4.3.2

A set $E \subseteq \mathbb{R}$ is said to be open iff for each $x \in E$ there exists a neighborhood I of x such that I is entirely contained in E.

Thm 4.3.3

A set $E \subseteq \mathbb{R}$ is closed iff $\mathbb{R} \setminus E$ is open.

Thm 4.3.4

If a function f is continuous on a closed and bounded interval [a, b], then f is bounded on [a, b].

Thm 4.3.5

(Extreme Value Theorem) If f is a continuous function on an interval [a, b], then f attains its maximum and minimum values on [a, b].

Thm 4.3.6

(Bolzano's Intermediate Value Theorem) If a function f is continuous on [a, b] and if k is a real number between f(a) and f(b), then there exists a real number $c \in (a, b)$ such that f(c) = k.

Def 4.3.7

A function $f: D \to \mathbb{R}$ with $D \subseteq \mathbb{R}$ satisfies the intermediate value property on D iff for every $x_1, x_2 \in D$ with $x_1 < x_2$ and any real constant k between $f(x_1)$ and $f(x_2)$ there exists at least one constant $c \in (x_1, x_2)$ such that f(c) = k.

Cor 4.3.8

Any polynomial of odd degree has at least one real root.

Cor 4.3.9

If a function $f:[a,b]\to\mathbb{R}$ is nonconstant and continuous, then the range of f is an interval [c,d] with $c,d\in\mathbb{R}$.

Thm 4.3.10

(Brouwer's Fixed-Point Theorem) If a function $f:[a,b]\to [a,b]$, is continuous, then f has at least one fixed point; that is, there exists at least one real number $p\in [a,b]$ such that f(p)=p.

Thm 4.3.11

If a function $f: D \to \mathbb{R}$ is a continuous injection and D = [a, b], then $f^{-1}: R_f \to D$ is continuous.

Def 4.4.2

A fn $f: D \to \mathbb{R}$ is continuous on a set $E \subseteq D$ iff f is continuous @ each pt. in E

Def 4.4.1

f is continuous @ $a \in D$, iff given $\epsilon > 0, \exists \delta > 0$ s.t. $|f(x) - f(a)| < \epsilon$ provided that $|x - a| < \delta \& x \in D$

Def 4.4.3

A fin $f: D \to \mathbb{R}$ is uniformly continuous on a set $E \subseteq D$ iff given $\epsilon > 0, \exists \delta > 0$ s.t. on $|f(x) - f(t)| < \epsilon \ \forall x, t \in E$ satisfying $|x - t| < \delta$

Thm 4.4.6

If $D \subseteq \mathbb{R}$ is a closed & a bounded set, & a fin $f: D \to \mathbb{R}$ is continuous, then f is uniformly continuous.

Def 4.4.6

A fn $f:D\to\mathbb{R}$ w $F\subseteq\mathbb{R}$ is a Lipschitz fn iff $\exists L>0$ s.t.

$$|f(x) - f(t)| \le L|x - t| \ \forall x, t \in D$$

Thm 4.4.11

If a fn is a Lipschitz fn, then it is uniformly continuous

Thm: Uniform Continuous to Cauchy

If $f: D \to \mathbb{R}$ is uniformly continuous & if $\{x_n\}$ is a cauchy sequence in D, then $\{f(x_n)\}$ is a cauchy sequence in \mathbb{R}