

Winning Space Race with Data Science

Muhammad Mubashir Mirza April 17, 2023.

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - The data is collected by scraping the SpaceX wiki page.
- Perform data wrangling
 - The data is processed by removing unnecessary details, normalization and standardization.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Classification models are build using Logistic regression, KNN and SVM and Decision Trees. Their best parameters are calculated by Grid Search. Their results are evaluated by F1 Score and Confusion Matrix.

Data Collection

- Describe how data sets were collected.
- You need to present your data collection process use key phrases and flowcharts

```
https://api.spacexdata.com/v4/
                                                                    api.spacexdata.com/v4/launc
api.spacexdata.com/v4/ca
                                 api.spacexdata.com/v4/
                                                                   hes/past
psules
                                 cores
"[{"reuse_count":0, "water_landings
":1, "land_landings":0, "last_update
                                    '[{"block":null, "reuse_count":0, "rt
": "Hanging in atrium at SpaceX HQ
                                    ls_attempts":0,"rtls_landings":0,"a
in Mawthorne
                                    sds_attempts":0, "asds_landings":0,"
","launches":["Seb87cdeffd86e00060
                                    last_update":"Engine failure at
4b330"], "serial": "C101", "status": "
                                    T+33 seconds resulted in loss of
retired", "type": "Dragon
                                    vehicle", "launches": ["5eb87cd9ffd86
1.0","id":"5e9e2c5bf35918ed873b266
                                    e000604b3Za"], "serial": "MerlinlA", "
4"}, {"reuse_count":0, "water_landin
                                    status":"lost", "id":"...
gs":1, "land
```

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/Data%20Collection.ipynb

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/WebScraping.ipynb

Data Wrangling

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/Data%20Wrangling.ipynb

EDA with Data Visualization

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/Data%20Visualization.ipy nb

EDA with SQL

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/SQL%20EDA.ipynb

Build an Interactive Map with Folium

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/2.%20Folium%20Maps.ip ynb

Build a Dashboard with Plotly Dash

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/3.%20Interactive%20Das hboard.ipynb

Predictive Analysis (Classification)

https://github.com/Mirza-Algo/DataScienceProjects/blob/main/SpaceX_Machine_Learning_Prediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• Scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

• Bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

• Scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

• Scatter point of payload vs. orbit type

Launch Success Yearly Trend

• Line chart of yearly average success rate

All Launch Site Names

• Names of the unique launch sites.

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`.

CCAFS LC-40 CCAFS LC-40 CCAFS LC-40 CCAFS LC-40 CCAFS LC-40

Total Payload Mass

• Total payload carried by boosters from NASA.

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1.

First Successful Ground Landing Date

• Date of the first successful landing outcome on ground pad.

Successful Drone Ship Landing with Payload between 4000 and 6000

 List of the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

• Calculate the total number of successful and failure mission outcome.

Mission_Outcome	FREQUENCY
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

• List of the names of the booster which have carried the maximum payload mass.

2015 Launch Records

• List of the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015.

MONTHS	LandingOutcome	Booster_Version	Launch_Site		
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40		
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40		

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	LandingOutcome
18-04- 2014	19:25:00	F9 v1.1	CCAFS LC-40	SpaceX CRS-3	2296	LEO (ISS)	NASA (CRS)	Success	Controlled (ocean)
05-12- 2018	18:16:00	F9 B5B1050	CCAFS SLC- 40	SpaceX CRS-16	2500	LEO (ISS)	NASA (CRS)	Success	Failure
10-01- 2015	09:47:00	F9 v1.1 B1012	CCAFS LC-40	SpaceX CRS-5	2395	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
06-08- 2019	23:23:00	F9 B5 B1047.3	CCAFS SLC- 40	AMOS-17, Starlink 1 v1.0	6500	GTO	Spacecom	Success	No attempt
07-08- 2018	05:18:00	F9 B5 B1046.2	CCAFS SLC- 40	Merah Putih	5800	GTO	Telkom Indonesia	Success	Success
08-04- 2016	20:43:00	F9 FT B1021.1	CCAFS LC-40	SpaceX CRS-8	3136	LEO (ISS)	NASA (CRS)	Success	Success (drone ship)
18-07- 2016	04:45:00	F9 FT B1025.1	CCAFS LC-40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)

Launch Sites on the Map

Color Labeled Launch Outcomes

Launch Sites Proximities

Total Success Launch by All Sites

Launch Site with the highest rate

Payload vs Launch Outcome Scatter Plot

Classification Accuracy

Confusion Matrix

Conclusions

- Point 1
- Point 2
- Point 3
- Point 4

• ...

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

