Scrivere in forma mateatica il seguente grafo (ed i vincoli) Affinchè remo arrivi in stazione

$$\min(5 * he + 6 * hf + \cdots)$$

$$0 \le he \le 1$$

$$ef + af + hf \le 1$$

Definiamo:

$$\min\left(\sum_{i=0}^{x} x_i * y_i\right)$$

$$0 \le x_i \le 1$$

$$\forall z \in Z \ \forall x \in X \ \sum_{i=0}^{x} x_i \ t. c. x_i \ entrante \ in \ z \le 1$$

$$\forall z \in Z \ \forall x \in X \ \sum_{i=0}^{\infty} x_i \ t.c. x_i \ uscenti \ in \ z \le 1$$

$$\forall z \in Z \ \forall x \in X \ \sum_{i=0}^{x} x_i \ t.c.x_i \ entrante \ in \ z \le 1$$

$$\forall z \in Z \ \forall x \in X \ \sum_{i=0}^{x} x_i \ t.c.x_i \ uscenti \ in \ z \le 1$$

$$\forall z \in Z \ \forall x \in X \ \sum_{i=0}^{x} x_i \ t.c.x_i \ uscenti \ in \ z = \sum_{i=0}^{x} x_i \ t.c.x_i \ uscente \ in \ z$$

Spiegazione matrice TUM (Che, per ora è inutile credo)

 x_{HC} x_{EF} x_{DA} x_{CE} x_{FA} x_{AF} x_{FD} x_{HA} x_{HF} x_{HE} x_{FE} x_{AB} x_{DB} x_{EB} x_{EC} x_{FC} x_{CD} x_{BS} x_{DS} x_{FS} x_{CS} H-1-1-1-1-1C-1-1-1D-1 \boldsymbol{E} -1-1

Allora, le colonne in alto sono i nostri cammini Mentre le righe a sinistra sono i nostri nodi. Noi mettiamo 1 se il cammino è uscente Mettiamo -1 se il cammino è entrante 0 se non c'è nessuna correlazione.

Hotel Hamiltion è il nodo H Xha è il cammino che porta da H a A Quindi, detto questo Xha è un cammino uscente da H quindi 1 Mentre Xha è un cammino entrante da A quindi -1

$$x_{HA}$$
 H 1
 S 0
 A -1

Una matrice si dice TUM se in ogni colonna abbiamo al più 1 1 ed 1 -1

Questo ci dice che un cammino può avere solo 1 direzione, quindi solamente 1 noc partenza ed 1 di fine

E questo ci dice che sicuramente la soluzione ottimale sarà sicuramente intera sicu Ne siamo sicuri.