I. Matematické základy informatiky

Update: 8. května 2018

1 Konečné automaty, regulární výrazy, uzávěrové vlastnosti třídy regulárních jazyků.

1.1 Konečné automaty (KA)

Konečný automat (KA) tvoří množina stavů, vstupní abceda, přechodová funkce, počáteční a koncové stavy. Můžeme jej znázornit jako tabulku, graf či strom.

Konečné automaty se dělí na **determistické** a **nedetermistické**. Deterministický konečný automat má pouze jeden počáteční stav a přechodová funkce vrací jeden stav. Zatímco nedeterministický KA může mít více počátečních stavů a přechodová funkce vrací množinu stavů.

- Slovo přijaté automatem je taková sekvence symbolů (ze vstupní abecedy), pro kterou automat skončí v koncovém stavu.
- Regulární jazyk je takový jazyk (množina slov) který lze popsat konečným automatem.

1.1.1 Deterministický konečný automat (DKA)

Skládá se ze **stavů** a **přechodů**. Jeden ze stavů je označen jako **počáteční stav** a některé jsou označeny jako **přijímací**. **Je definován jako uspořádaná pětice** $(Q, \Sigma, \delta, q_0, F)$, kde:

- \bullet Q je konečná neprázdná množina stavů.
- Σ (sigma) je konečná neprázdná množina vstupních symbolů, tzv. **vstupní abeceda**.
- δ (delta) je **přechodová funkce**, $\delta: Q \times \Sigma \to Q$.
- q_0 je počáteční stav, $q_0 \in Q$.
- F je neprázdná množina koncových neboli přijímajících stavů, $F \subseteq Q$.

Příklad

- $Q = \{1, 2, 3, 4, 5\}, \Sigma = \{a, b\}, F = \{1, 4, 5\}$
- $\delta(1,a) = 2$; $\delta(1,b) = 1$; $\delta(3,a) = 1$; $\delta(3,b) = 4$; $\delta(2,a) = 4$; $\delta(2,b) = 5$; $\delta(4,a) = 1$; $\delta(4,b) = 3$; $\delta(5,a) = 4$; $\delta(5,b) = 5$

1.1.2 (Zobecněný) Nedeterministický konečný automat ((Z)NKA)

Formálně je NKA definován jako pětice $A = (Q, \Sigma, \delta, I, F)$, s tím rozdílem, že oproti deterministickému KA má **více počátečních stavů** a **přechodová funkce vrací množinu** stavů. V případě ZNKA zde existují navíc **nulové epsilon** (ϵ) přechody:

- δ je přechodová funkce, vrací množinu stavů, $\delta: Q \times \Sigma \to P(Q)$, v případě **ZNKA** $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to P(Q)$.
- I je konečná množina počátečních stavů, $I \in Q$.

Na rozdíl od deterministického automatu:

- Může z jednoho stavu vést **libovolný počet přechodů** označených stejným symbolem (i **nulové** ϵ v případě ZNKA).
- Není zde nutné, aby z každého stavu vystupovaly všechny symboly, které do něj vstoupily

 nemusí ošetřovat všechny varianty, pouze odhadne, kterou cestou půjde.
- Nedeterministický automat přijímá dané slovo, jestliže existuje alespoň jeden jeho výpočet, který vede k přijetí tohoto slova.
- V automatu může být víc než jeden počáteční stav.
- Lze ho převést na deterministický (formou tabulky). Při převodu automatu, který má n stavů může mít výsledný nedeterministický až 2ⁿ stavů.

1.1.3 Normovaný tvar

Začnu v počátečním stavu a procházím navštívené stavy a vytvářím tabulku. Každý KA má **právě 1** normovaný tvar. Také lze tímto způsobem zjistit, zda jsou automaty **ekvivalentní**.

1.2 Regulární výrazy

Regulární výraz je **řetězec popisující celou množinu řetězců**, konkrétně **regulární jazyk**. Regulární výrazy také můžeme chápat jako jednoduchý způsob, jak **popsat konečný automat** umožňující generovat všechna možná slova patřící do daného jazyka.

V regulárních výrazech využíváme znaky **abecedy** a symboly pro **sjednocení**, **zřetězení** a **iterace** regulárních výrazů. Za regulární výraz se považuje i samotný znak abecedy (např. a) stejně jako **prázdné slovo** ϵ a **prázdný jazyk** \emptyset .

1.2.1 Definice regulárních výrazů

Regulární výrazy popisují jazyky nad abecedou $A=\Sigma:\emptyset,\epsilon,a$ (kde $a\in\Sigma$) jsou regulární výrazy:

- Ø označuje **prázdný jazyk**,
- ϵ označuje jazyk $\{\epsilon\}$,
- a označuje jazyk $\{a\}$.

Dále, jestliže α , β jsou regulární výrazy, pak i $(\alpha + \beta)$, $(\alpha \cdot \beta)$, $(\alpha *)$ jsou regulární výrazy, kde:

- $(\alpha + \beta)$ označuje **sjednocení** jazyků označených α a β ,
- $(\alpha \cdot \beta)$ označuje **zřetězení** jazyků označených α a β ,
- $(\alpha*)$ označuje **iteraci** jazyka označeného α .

Neexistují žádné další regulární výrazy než ty definované podle předchozích dvou bodů.

Příklady

Ve všech případech je $\Sigma = \{0, 1\}$:

- 01 (0 a 1) ... jazyk tvořený jedním slovem 01,
- 0+1 (0 nebo 1) ... jazyk tvořený dvěma slovy 0 a 1,
- $(01)^*$... jazyk tvořený slovy ϵ , 01, 0101, 010101, ...,
- $(0+1)^*$... jazyk tvořený všemi slovy nad abecedou $\{0,1\}$,
- (01)*111(01)* ...jazyk tvořený všemi slovy obsahující podslovo 111, předcházení i následované libovolným počtem slov 01,
- (0+1)*00+(01)*111(01)* ... jazyk tvořený všemi slovy, která buď končí 00 nebo obsahují podslovo 111 předcházené i následované libovolným počtem slov 01,
- (0+1)*1(0+1)* ... jazyk tvořený všemi slovy obsahujícími alespoň jeden symbol 1,
- 0*(10*10*)* ... jazyk tvořený všemi slovy obsahujícími sudý počet symbolů 1.

1.3 Uzávěrové vlastnosti třídy regulárních jazyků

Uzavřenost množiny nad operací znamená, že výsledek operace s libovolnými prvky z množiny bude opět spadat do dané množiny. Třídu regulárních jazyků značíme **REG**. Regulární výrazy (tedy i KA) jsou uzavřené vůči operacím:

- Sjednocení, průnik, doplněk je-li $L_1, L_2 \in REG$, pak také $L_1 \cup L_2, L_1 \cap L_2, L'_1$ jsou v REG.
- Zřetězení, iterace je-li $L_1, L_2 \in \text{REG}$, pak také $L_1 \cdot L_2, L_1^*$ jsou v REG.
- **Zrcadlový obraz** je-li $L \in REG$, pak také L^R jsou v REG.

1.3.1 Operace sjednocení, zřetězení, iterace a zrcadlový obraz u KA

- Iterace spojíme koncové stavy jednoho KA s počátečními druhého KA ϵ přechodem. Na obrázku generuje automat A^* jazyk $L(A^*) = L(A)^*$, který je iterací jazyku generovaného modrého automatu A.
- Zřetězení spojíme koncové stavy jednoho s počátečními stavy druhého. Na obrázku generuje konečný automat AB jazyk $L(AB) = L(A) \cdot L(B)$.

- Sjednocení L(A+B) = L(A) + L(B) získáme tak, že vytvoříme nový počáteční stav, ze kterého vedeme ϵ přechody do počátečních stavů obou automatů. Poté obdobě z koncových stavů obou automatů vedeme ϵ přechody do nového koncového.
- Zrcadlový obraz pustíme automat pozpátku, celý jej převrátíme. Přehodíme orientaci všech přechodů, z počátečních stavů uděláme koncové a naopak.

 Doplněk – u DKA provedeme prohození označení příjmajících a ostatních stavů, u NKA je nejprve nutné provézt převod na DKA.

2 Bezkontextové gramatiky a jazyky. Zásobníkové automaty, jejich vztah k bezkontextovým gramatikám.

2.1 Bezkontextové gramatiky (BG)

Bezkontextová gramatika definuje **bezkontextový jazyk**. Je tvořena **neterminály** (proměnné), **terminály** (konstanty) a **pravidly**, které každému neterminálu definují přepisovací pravidla. Jeden neterminál označíme jako **startovní**, kde začínáme a podle pravidel je dál přepisujeme na výrazy složené z terminálu a neterminálu. Jakmile už není co přepisovat, výraz obsahuje už jen neterminály, získali jsme **slovo**.

- Je uzavřená vůči operacím sjednocení, zřetězení, iteraci a zrcadlový obraz.
- Ke každé bezkontextové gramatice existuje ekvivalentní zásobníkový automat.

2.1.1 Formální definice BG

Bezkontextová gramatika je definována jako uspořádaná čtveřice $G = (\Pi, \Sigma, S, P)$, kde:

- Π (velké pí) je konečná množina **neterminálních** symbolů (neterminálů).
- Σ je konečná množina **terminálních** symbolů (terminálů), $\Pi \cap \Sigma = \emptyset$.
- S je počáteční neterminál, $S \in \Sigma$.
- P je konečná množina **přepisovacích pravidel**, $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$.

2.1.2 Základní pojmy

- Bezkontextový jazyk formální jazyk, který je akceptovaný nějakým zásobníkovým automatem.
- Derivace slova jedno konkrétní odvození slova pomocí gramatiky, tedy záznam postupných přepisů od startovního neterminálu po konečné slovo. Derivace se podle postupu při přepisování dělí na:
 - levou přepisujeme nejprve levé neterminály,
 - pravou přepisujeme nejprve pravé neterminály.
- Derivačni strom grafické znázornění derivace slova stromem. Pro všechny možné derivace (levou, pravou, moji) by měl derivační strom být stejný. Není-li tomu tak jedná se o nejednoznačnou gramatiku, což je nežádoucí jev.
 - Špatně = A \rightarrow A | ϵ (lze generovat až N způsoby), Správně = A $\rightarrow \epsilon$
- Chomského normální forma gramatika může obsahovat pouze pravidla typu: $\mathbf{A} \to \mathbf{BC}$ nebo $\mathbf{A} \to \mathbf{a}$ nebo $\mathbf{S} \to \epsilon$ (pokud gramatika generuje pouze prázdný řetězec).
- Nevypouštějící gramatika neobsahuje ϵ (epsilon) přechody.

 $A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbBb\Rightarrow abbaBbb\Rightarrow abbabb$

2.2 Zásobníkové automaty (ZA)

Slouží k **rozpoznání bezkontextových jazyků**. S využitím zásobníků si může pamatovat kolik a jaké znaky přečetl, což je potřeba právě k rozpoznání bezkontextového jazyka. Zásobníkový automat je v podstatě konečný automat rozšířený o zásobník.

- ZA na základě aktuálního znaku na pásce, prvního znaku v zásobníku a aktuálního stavu změní svůj stav a přepíše znak v zásobníku podle daných pravidel.
- ZA **přijímá** dané slovo, jestliže skončí v konfiguraci (q, ϵ, ϵ) , tedy když se přečte celé vstupní slovo a zásobník je **prázdný**.
- Konfigurace je dána: aktuálním stavem, obsahem pásky a obsahem zásobníku.
- Deterministický nesmí se objevit stejná konfigurace vícekrát.

2.2.1 Formální definice zásobníkového automatu

Zásobníkový automat M je definován jako šestice $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, kde:

- ullet Q je konečná neprázdná množina **stavů**.
- Σ je konečná neprázdná množina vstupních symbolů (vstupní abeceda).
- Γ (velká gamma) je konečná neprázdná množina **zásobníkových symbolů**.
- δ je **přechodová funkce** (konečná množina instrukcí), $\delta: Q \times (\Sigma \cup \epsilon) \times \Gamma \beta P_{\text{fin}}(Q \times \Gamma^*)$.
- q_0 je počáteční stav, $q_0 \in Q$.
- Z_0 je počáteční zásobníkový symbol, $Z_0 \in \Gamma$.

2.2.2 Definice instrukcí (pravidel) v ZA

Instrukce (sady instrukcí reprezentují přechodovou funkci δ) definují **chování automatu**:

$$(q, a, X) \to (q', \alpha), \text{ kde } a \in \Sigma.$$
 (1)

Tato instrukce je aplikovatelná jen v situaci (neboli konfiguraci), kdy **řídicí jednotka** je ve stavu q, **čtecí hlava** na vstupní pásce čte symbol a a na vrcholu zásobníku je symbol X. Pokud je **instrukce aplikována**, vykoná se následující:

- 1. řídicí jednotka **přejde do stavu** q,
- 2. čtecí hlava na vstupní pásce se posune o jedno políčko doprava,
- 3. vrchní symbol v zásobníku se **odebere** (vymaže),
- 4. na vrchol zásobníku se přidá řetězec α tak, že jeho nejlevější symbol je aktuálním vrcholem zásobníku.

Pravidlo	$oxed{Akce} (\mathbf{Z} = \mathbf{z}\mathbf{\acute{a}sobn\acute{k}})$	Význam
$\delta(q_1, a, X) \to (q_1, YX)$	přidání prvku do Z	na začátek zásobníku se vloží Y
$\delta(q_1, a, X) \to (q_1, Y)$	přepsání prvku v Z	první prvek zásobníku se přepíše na Y
$\delta(q_1, a, X) \to (q_1, \epsilon)$	smazání prvku ze Z	první prvek zásobníku se smaže neboli
		nahradí prázdným slovem ϵ
$\delta(q_1, a, X) \to (q_2, X)$	změna stavu	stav q_1 se změní na stav q_2
$\delta(q_1, a, X) \to \emptyset$	pád automatu	ukončení výpočtu, slovo nebylo přijato

2.3 Převod BG na zásobníkový automat

Využívá se tzv. metody shora-dolů, která obsahuje pouze 1 stav:

- 1. pro všechny **neterminály** vypíšu pravidla typu: $(q, \epsilon, A) \to \{(q, B), (q, C)\},$
- 2. všechny **terminály** přepíšu na pravidla typu: $(q, a, a) \rightarrow (q, \epsilon)$.

Příklad

 $\begin{array}{lll} \textbf{Vstupn\'i gramatika:} & \textbf{Instrukce, p\'ieveden\'e dle v\'y\'se uveden\'ych pravidel:} \\ S \rightarrow A \mid B & (Q, \epsilon, S) \rightarrow \{(q, A), (q, B)\} \\ A \rightarrow a & (Q, \epsilon, A) \rightarrow (q, a) \\ B \rightarrow (c) & (Q, \epsilon, B) \rightarrow (q, (c)) \\ \\ \Sigma = \{A, B, S\} & (Q, a, a) \rightarrow (q, \epsilon) \\ \Gamma = \{a, c, (,)\} & (Q, (, () \rightarrow (q, \epsilon) \\ (Q, c, c) \rightarrow (q, \epsilon) \\ (Q,),)) \rightarrow (q, \epsilon) \\ \end{array}$

3 Matematické modely algoritmů - Turingovy stroje a stroje RAM. Složitost algoritmu, asymptotické odhady. Algoritmicky nerozhodnutelné problémy.

Ve snaze **popsat jakýkoliv algoritmus** si vymysleli matematici Turingovy a RAM stroje. Jde o dva různé přístupy (modely) univerzálních počítačů/programovacích jazyků. Jinými slovy těmito stroji lze **definovat** a **provést libovolný algoritmus**.

Historicky prvním "univerzálním programovacím jazykem" byl Turingův stroj. Byl popsán dříve, ještě před rozmachem počítačů, proto se od reálného počítače (programování) podstatně liší, na rozdíl od RAM stroje. Turingův stroj například pracuje s **celou abecedou** zatímco RAM (podobně jako počítač) s **čísly**.

3.1 Turingův stroj (TS)

Turingův stroj je podobný konečnému automatu, ale má **oboustranně nekonečnou pásku** (je na ni zapsáno vstupní slovo), místo symbolu ϵ pro prázdné znaky se používá \square , **hlava** je **čtecí** i **zapisovací** a pohybuje se po pásce v **obou směrech**.

3.1.1 Formální definice TS

Turingův stroj, je definován jako šestice $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, kde:

- \bullet Q je konečná neprázdná množina stavů.
- Σ je konečná neprázdná množina **vstupních symbolů** (vstupní abeceda).
- Γ je konečná neprázdná množina **páskových symbolů**, kde $\Sigma \subseteq \Gamma$ a $\Gamma \Sigma$ je (přinejmenším) speciální znak \square (prázdný znak [Blank]).
- δ je přechodová funkce, $\delta:(Q-F)\times\Gamma\to Q\times\Gamma\times\{-1,0,+1\}.$
- q_0 je počáteční stav, $q_0 \in Q$.
- F je množina koncových stavů, $F \subseteq Q$.

3.1.2 Definice instrukcí (pravidel) v TS

Podobně jako ZA lze konkrétní Turingův stroj zadat seznamem instrukcí. Tyto instrukce jsou opět dány přechodovou funkcí, význam instrukce: $(q, a) \rightarrow (q', a', m)$ je tento:

(akt. stav [q], znak na pásce [a]) \rightarrow (nový stav [q'], nový znak [a'], posun $[\{-1;0;+1\}]$)

3.1.3 Příklad

Tento příklad invertuje slovo, které je uvedené na úvodním obrázku u TS:

$$Q = \{q_1, q_2\} \qquad (q_1, a) \to (q_1, b, +)$$

$$\Sigma = \{a, b, c, \Box\} \qquad (q_1, b) \to (q_1, a, +)$$

$$q_0 = q_1 \qquad (q_1, \Box) \to (q_2, \Box, 0)$$

$$F = \{q_2\}$$

3.1.4 Modifikace TS

- N-páskový TS čte a zapisuje do více pásek najednou, jediná změna je v přechodové funkci: $\delta: Q \times \Gamma^n \to Q \times (\Gamma \times \{L, R, N\})^n$.
- N-hlavový TS má více čtecích hlav než klasický TS, každá hlava zapisuje/čte a pohybuje se nezávisle na ostatních.
- Nedeterministický TS umožňuje výběr z více možností, pro jednu konfiguraci můžeme definovat více pravidel.

3.1.5 Základní pojmy

- Turingovsky úplný stroj (počítač, programovací jazyk, úloha, ...), která má stejnou výpočetní sílu jako TS. Lze v něm odsimulovat libovolný jiný TS zadaný na vstupu.
- Church-Turingova teze říká, že jakýkoliv výpočet lze úspěšně uskutečnit algoritmem běžícím na počítači, tedy "ke každému algoritmu existuje ekvivalentní TS".

3.2 Model RAM (Random Access Machine)

RAM stroje již vycházejí ze skutečných počítačů, dá se tedy říct, že se jedná o jednoduchou abstrakci reálného procesoru s jeho strojovým kódem pracujícím s lineárně uspořádanou pamětí. Tento model slouží zejména k analýzy algoritmů z hlediska (**paměťové**, **časové**) složitosti. Skládá se z těchto částí:

- 1. **Programová jednotka** uchovává program, tvořený konečnou posloupností instrukcí.
- 2. Neomezená pracovní paměť neomezená lineárně uspořádaná paměť, tvořená buňkami, do který lze zapisovat/číst celá čísla (\mathbb{Z}), adresovaná přirozenými čísly (\mathbb{N}) (0 = **pracovní** registr, 1 = **indexový** registr).

- 3. Vstupní a výstupní páska lze na ně sekvenčně zapisovat/číst celá čísla (\mathbb{Z}) .
- 4. **Centrální jednotka** obsahuje programový register ukazující, která instrukce má být provedena. Ta se provede a programý registr se příslužně změní (zvýší o 1, o více v případě skoku).

Výše uvedený program vypočítá **aritmetický průměr**, který následně uloží do buňky paměti pod indexem č. **2**. Výsledek po dělení je roven 4,666 a po zaokrouhlení 5.

3.2.1 Instrukce a typy operandů RAM

\mathbf{Typ}	Hodnota operandu
=i	přímo číslo udané zápisem i
i	číslo obsažené v buňce s adresou i
*i	číslo v buňce s adresou $i+j,$ kde j je aktuální obsah indexového registru

Zápis	Význam
READ	do pracovního registru (PR) se načte vstup a hlava se posune doprava
WRITE	na výstup se zapíše hodnota PR
${\tt LOAD}\ op$	do PR se načte hodnota dána operátorem <i>op</i>
STORE op	hodnota PR se uloží na do registru daného operátorem <i>op</i>
ADD op	k hodnotě PR se přičte hodnota daná operátorem <i>op</i>
${\tt SUB}\ op$	od hodnoty v PR se odečte hodnota daná operátorem op
$\mathtt{MUL}\ op$	PR se vynásobí hodnotou danou operátorem <i>op</i>
$\mathtt{DIV}\ op$	PR se \mathbf{vyd} ělí hodnotou danou operátorem op
${\tt JUMP}\ n\'{a}v\check{e}\check{s}t\acute{\imath}$	provede se skok na instrukci danou $n\acute{a}v\check{e}\check{s}t\acute{t}m$
JZERO $n\acute{a}v\check{e}\check{s}t\acute{\imath}$	pokud je hodnota v PR rovna 0 , provede se skok na <i>návěští</i>
$\operatorname{JGTZ}\ ncute{a}v\check{e}\check{s}ti$	pokud je hodnota v PR větší než 0 , provede se skok na <i>návěští</i>
HALT	korektní ukončení programu

3.3 Složitost algoritmů

Abychom mohli **porovnávat** různé algoritmy řešící stejný problém, zavádí se pojem složitost algoritmu. Složitost je jinak řečeno **náročnost algoritmu** – čím menší složitost tím je algoritmus lepší. Přičemž nás může zajímat složitost z pohledu **času**, či **paměti**:

- Časová složitost sleduje jak závisí doba výpočtu alg. na množství vstupních dat.
- Prostorová složitost sleduje jak závisí množství použité paměti výpočtu alg. na množství vstupních dat.

Jelikož konkrétní čísla (čas, bity) se liší v závislosti vstupních datech, množství zpracovávaných dat a použitém programovacím jazyku, neudává se složitost čísly, nýbrž funkcí závislou na velikosti vstupních dat. Tato funkce se získá počítáním proběhlých instrukcí algoritmu sestaveném v univerzálním RAM stroji. A počítá se s nejhorším možným případem vstupu. To je důležité například u třídících algoritmů, kde hraje velkou roli to, jak moc už je vstupní pole setříděné (vstupuje-li do algoritmu už setříděná posloupnost čísel, algoritmus skončí okamžitě, zatímco s opačně seřazenými čísly se bude trápit dlouho.

3.4 Asymptotická notace

Je **způsob klasifikace počítačových algoritmů**. Ve většině případů nemusíme znát přesný počet provedených instrukcí a spokojíme se pouze s odhadem toho, jak rychle tento počet narůstá se zvyšujícím se vstupem. Asymptotická notace nám umožní **zanedbat méně důležité detaily** a **odhadnout** přibližně, **jak rychle daná funkce roste**. V souvislosti s asymptotickými odhady složitosti se používjí tyto zapisy:

- $f \in O(f) f$ roste **nejvýše tak rychle** jako g(f) je ohraničena g **shora**) $[\leq]$.
- $f \in o(g) f$ roste (striktně) pomaleji než g (f je ohraničena g shora ostře) [<].
- $f \in \Theta(g) f$ roste **stejně rychle** jako g =].
- $f \in \omega(g) f$ roste (striktně) rychleji než g (f je ohraničena g zdola ostře) [>].
- $f \in \Omega(g) f$ roste rychleji než g (f je ohraničena g zdola) $[\geq]$.

Seřazeno podle složitosti:

- $f(n) \in \Omega(logn)$ logaritmická funkce (složitost),
- $f(n) \in \Omega(n)$ lineární funkce (složitost),
- $f(n) \in \Omega(n^2)$ kvadratická funkce (složitost),
- $f(n) \in O(n^c)$ pro nějaké c > 0 polynomiální,
- $f(n) \in \Omega(c^n)$ pro nějaké c > 1 exponenciální.

3.4.1 Úskalí asymptotické notace

Při používání asymptotických odhadů časové složitosti je třeba si uvědomit některá úskalí:

- Asymptotické odhady se týkají pouze toho, jak roste čas s rostoucí velikostí vstupu

 neříkají nic o konkrétní době výpočtu. V asymptotické notaci mohou být skryty velké konstanty.
- Algoritmus, který má lepší asymptotickou časovou složitost než nějaký jiný algoritmus,
 může být ve skutečnosti rychlejší až pro nějaké hodně velké vstupy.
- Většinou analyzujeme složitost v **nejhorším případě**. Pro některé algoritmy může být doba výpočtu v nejhorším případě mnohem větší než doba výpočtu na "typických" instancích (typicky Quicksort \rightarrow nejhorší: $O(n^2)$, průměrná: $O(n \log n)$).

3.5 Algoritmicky nerozhodnutelné problémy

Rozhodovací problém je rozhodnutelný (řešitelný) pokud pro libovolný vstup z množiny vstupů, skončí algoritmus svůj výpočet a vydá správný výstup (tedy jestliže **existuje turingův stroj, který jej řeší**).

Pokud nalezneme takový vstup, pro který všechny dosavadní algoritmy nejsou schopny nalézt výstup, můžeme tento problém označit za **nerozhodnutelný**. Speciální případ jsou **doplňkové problémy**, které vracejí přesně opačné výsledky než původní problém.

3.5.1 Definice problému

Problém je určen **trojicí** (IN, OUT, p), kde:

- IN je množina (přípustných) vstupů,
- OUT je množina výstupů,
- $p:IN \to OUT$ je **funkce** přiřazující každému vstupu odpovídající výstup.

3.5.2 Ano/Ne problémy

Jsou to problémy, jejichž **výstupní množina obsahuje dva prvky** $OUT = \{\text{ano, ne}\}$. Na ano/ne problémy se dají převést ostatní problémy nepotřebujeme-li znát přesný výsledek:

- Nepotřebují najít v poli nejmenší číslo, stačí mi vědět zda pole obsahuje číslo menší než nula.
- Nepotřebují znát nejkratší cestu grafem, stačí mi najít cestu, která je kratší než 8.

3.5.3 Riceova věta

Tato věta ukazuje nerozhodnutelnost celé třídy problémů, její znění je následující " $Každ\acute{a}$ netriviální vstupně/výstupní (I/O) vlastnost programů je nerozhodnutelná".

- Vlastnost X je vstupně/výstupní právě tehdy, když každé dva programy se stejnou
 I/O tabulkou buď oba vlastnost X mají nebo ji oba nemají.
- Připomeňme tedy ještě, že vlastnost V je triviální, když ji mají buď všechny programy nebo ji nemá žádný program; taková vlastnost je podle definice také vstupně/výstupní.

Problém		2	3
Je triviální?	A	N	N
Je I/O?	A	A	N
Je nerozhodnutelný	N	Α	N

3.5.4 Částečná rozhodnutelnost

Částečně rozhodnutelný problém, je takový problém, pro který jsme v případě vstupů, u nichž očekáváme odpověď ANO, **schopni vrátit odpověď ANO**, a v případě NE vrátit buď NE nebo \perp (program se nezastaví a nejsme schopni zjistit, zda by odpověď byla opravdu NE).

3.5.5 Převeditelnost mezi nerozhodnutelnými problémy

Důkaz neřešitelnosti lze provést skrze jiné, **už dokázané**, problémy. Řekneme, že problém P_1 je převeditelný na problém P_2 (značíme $P_1 \leadsto P_2$), jestliže alg., který k instanci I_1 problému P_1 sestrojí instanci I_2 problému P_2 tak, **že odpověď** P_1, I_1 **je stejná jako** P_2, I_2 . Např.: DHP je převeditelný na HP. Z toho vyplývá, že pokud P_1 je nerozhodnutelný tak i P_2 je **nerozhodnutelný**.

3.5.6 Optimalizační problémy

Optimalizační problémy **hledají nejlepší řešení** v množině různých řešení. Příkladem je například: hledání nejkratší cesty, nejmenší kostry, apod.

3.5.7 Příklady nerozhodnutelných problémů

Název: Hledání nejkratší cesty v grafu.

VSTUP: Orientovaný graf G = (V, E) a dvojice vrcholů $u, v \in V$.

 $\mathbf{V\acute{y}stup}$: Nejkratší cesta z u do v.

Název: Hledání minimální kostry v grafu.

VSTUP: Neorientovaný souvislý graf $G = (V_G, E_G)$ s ohodnocenými hranami.

VÝSTUP: Souvislý graf $H = (V_H, E_H)$, kde $V_H = V_G$ a $E_H \subseteq E_G$, který má součet hodnot

všech hran minimální.

Název: Eq-CFG (Ekvivalence bezkontextových gramatik).

VSTUP: Dvě bezkontextové gramatiky G1, G2.

Οτάzκ**A**: Platí L(G1) = L(G2)? Generují obě gramatiky stejný jazyk?

NÁZEV: HP (Problém zastavení [Halting Problem]).

VSTUP: Turingův stroj M a jeho vstup w.

 $\mathbf{OTÁZKA}$: Zastaví se M na w (tzn. je výpočet stroje \mathbf{M} pro vstupní slovo w konečný)?

4 Třídy složitosti problémů. Třída PTIME a NPTIME, NPúplné problémy.

5 Jazyk predikátové logiky prvního řádu. Práce s kvantifikátory a ekvivalentní transformace formulí.

6 Pojem relace, operace s relacemi, vlastnosti relací. Typy binárních relací. Relace ekvivalence a relace uspořádání.

7 Pojem operace a obecný pojem algebra. Algebry s jednou a dvěma binárními operacemi.

8 FCA – formální kontext, formální koncept, konceptuální svazy. Asociační pravidla, hledání často se opakujících množin položek.

Metrické a topologické prostory – metriky a podobnosti.

10 Shlukování.

11	Náhodná veličina. Základní typy náhodných veličin. Funkce určující rozdělení náhodných veličin.

12 Vybraná rozdělení diskrétní a spojité náhodné veličiny - binomické, hypergeometrické, negativně binomické, Poissonovo, exponenciální, Weibullovo, normální rozdělení.

13 Popisná statistika. Číselné charakteristiky a vizualizace kategoriálních a kvantitativních proměnných.

14 Metody statistické indukce. Intervalové odhady. Princip testování hypotéz. Okruhy pokývají předměty Teoretická informatika, Pravděpodobnost a statistika, Matematika pro zpracování znalostí