ggplot2 Exercises

Based on R Graphics Cookbook by Winston Chang

Colonel Smoothie

27.12.2013

Chapter 1

R Basics

There's not really much to add for this chapter. Move on to the next one.

Chapter 2

Quickly Exploring Data

1. Produce the following plot with the mtcars dataset. It's built into R so you do not need to load any packages:

plot(mtcars\$wt, mtcars\$mpg)

2. Produce the following plot with the mtcars dataset. It's built into R so you do not need to load any packages:

plot(mtcars\$mpg, mtcars\$wt)

3. Load the ggplot2 package and produce the following plot with the ${\tt mtcars}$ dataset:

```
library(ggplot2)
qplot(mtcars$wt, mtcars$mpg)
```


4. Load the ggplot2 package and produce the following plot with the ${\tt mtcars}$ dataset:

```
library(ggplot2)
qplot(wt, mpg, data = mtcars)
```



```
# Alternative Solution
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
```

5. Load the ggplot2 package and produce the following plot with the ${\tt mtcars}$ dataset:

```
library(ggplot2)
qplot(mtcars$mpg, mtcars$wt)
```


6. Produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages:

plot(pressure\$temperature, pressure\$pressure, type = "1")

7. Produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages:

```
plot(pressure$temperature, pressure$pressure, type = "1")
points(pressure$temperature, pressure$pressure)
```


8. Produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages. The height of the red line is one-half of the height of the black line at all points:

```
plot(pressure$temperature, pressure$pressure, type = "1")
points(pressure$temperature, pressure$pressure)

lines(pressure$temperature, pressure$pressure/2, col = "red")
points(pressure$temperature, pressure$pressure/2, col = "red")
```


9. Produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages. The height of the blue line is one-half of the height of the black line at all points:

```
plot(pressure$temperature, pressure$pressure, type = "1")
points(pressure$temperature, pressure$pressure)

lines(pressure$temperature, pressure$pressure/2, col = "blue")
points(pressure$temperature, pressure$pressure/2, col = "blue")
```


10. Load the ggplot2 package and produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages:

```
library(ggplot2)
qplot(pressure$temperature, pressure$pressure, geom = "line")
```


11. Load the ggplot2 package and produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages:

```
library(ggplot2)
qplot(temperature, pressure, data = pressure, geom = "line")
```



```
# Alternative Solution
library(ggplot2)
ggplot(pressure, aes(x = temperature, y = pressure)) + geom_line()
```

12. Load the ggplot2 package and produce the following plot with the pressure dataset. It's built into R so you do not need to load any packages:

```
library(ggplot2)
qplot(temperature, pressure, data = pressure, geom = c("line", "point"))
```



```
library(ggplot2)
ggplot(pressure, aes(x = temperature, y = pressure)) + geom_line() + geom_point()
```

13. Produce the following plot with the BOD dataset. It's built into R so you do not need to load any packages:

barplot(BOD\$demand, names.arg = BOD\$Time)

14. Load the MASS package and produce the following plot with the Animals dataset:

```
library(MASS)
barplot(Animals$brain, names.arg = row.names(Animals), las = 2)
```


15. Load the MASS package and produce the following plot with the $\tt Animals$ dataset:

```
library(MASS)
barplot(Animals$body, names.arg = row.names(Animals), las = 2)
```


16. Produce the following plot with the $\tt mtcars$ dataset. It's built into R so you do not need to load any packages:

barplot(table(mtcars\$cyl))

17. Load the MASS package and produce the following plot with the $\mathtt{Aids2}$ dataset:

```
library(MASS)
barplot(table(Aids2$state))
```


18. Load the MASS package and produce the following plot with the $\mathtt{Aids2}$ dataset:

```
library(MASS)
barplot(table(Aids2$T.categ))
```


19. Load the ggplot2 package and produce the following plot with the BOD dataset. It's built into R so you do not need to load any packages:

```
library(ggplot2)
qplot(BOD$Time, BOD$demand, geom = "bar", stat = "identity")
```


20. Load the ggplot2 package and produce the following plot with the BOD dataset. It's built into R so you do not need to load any packages:

```
library(ggplot2)
qplot(factor(BOD$Time), BOD$demand, geom = "bar", stat = "identity")
```

