Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 4.7.2

Эффект Поккельса.

Автор:

Филиппенко Павел Б01-001

Долгопрудный, 2022

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластина, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осцилограф, линейка.

Теория

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Рис. 1: Схема для наблюдения интерфереционной картины

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right), \tag{3}$$

Рис. 2: Схема установки.

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ – полуволновое напряжение, d – поперечный размер кристалла. При напряжении $U = E_{\text{эл}} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На рис 2 представлена схема всей установки (оптическая часть изорбажена на рис 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

Ход работы

Запишем параметры установки

$$\lambda=0.63$$
 мкм $n_0=2.29$ $arphi=88^o$ – угол поворота анализатора $L=73$ см размеры кристалла: $3\times3\times26$ мм $(l=26$ мм)

Получив на экране интерференционную картину, измерим радиусы колец.

r, cm	2.25	3.3	4	4.7	5.25	6	6.4	7	7.4
m	1	2	3	4	5	6	7	8	9

Таблица 1: Зависимость r(m)

По полученным данным построим график зависимости $r^2(m)$: Воспользовавшись формулой

$$r_m = \frac{\lambda (n_0 L)^2}{l(n_0 - n_e)} m$$

по наклону прямой определим величину

$$(n_0 - n_e)$$

таким образом получаем, что наклон прямой

$$\alpha = \frac{\lambda (n_0 L)^2}{l(n_0 - n_e)} = 6.28 \pm 0.13$$

Рис. 3: График зависимости $r^2(m)$

$$(n_0 - n_e) = \frac{\lambda (n_0 L)^2}{l\alpha} = 0.1078$$

Поместим кристалл в постоянное электрическое поле и определим величины $U_{\lambda/2}$ и $U_{\lambda}=2U_{\lambda/2}.$

$$U_{\lambda/2}=0.33~\mathrm{kB}$$
 $U_{\lambda}=0.69~\mathrm{kB}$

Поместим кристалл в переменное электрическое поле, выходной пучок лазера направим на фотодиод и получим на осцилографе фигуры Лиссажу.

Рис. 4: Фигура Лиссажу для параллельной поляризации при амплитуде переменного напряжения $U_{\lambda/2}$

Рис. 5: Фигура Лиссажу для параллельной поляризации при амплитуде переменного напряжения U_{λ}

Рис. 6: Фигура Лиссажу для параллельной поляризации при амплитуде переменного напряжения $U_{3\lambda/2}$