Hints and Answers of Tutorial Sheet-4, MATHEMATICS-II Spring 2017

- 1. Use the definition of Hermitian matrix, $A = \bar{A}^T$. x = 3, y = 0, z = 3.
- 2. (a) Use the definition of an orthogonal matrix and then use inverse and transpose properties.
 - (b) Use the definition of an unitary matrix and then use inverse and transpose properties.
- 3. (a) First use the transpose property $(AB)^T = B^T A^T$. Then replace I by AA^T and A^TA accordingly.
 - (b) First use the transpose property $(AB)^T = B^T A^T$. Then replace I by AA^T and A^TA accordingly.
- 4. (a) Take the conjugate to $Ax = \lambda x$. use the symmetric property. Pre-Multiply $Ax = \lambda x$ with \bar{x}^T .
 - (b), (c), (d) can be done similar to (a).
- 5. (i) $\lambda = -2: [-1,\ 0,\ 1]^T;\ \lambda = 3: [1,-1,1]^T;\ \lambda = 6: [1,2,1]^T.$ (ii) $\lambda = -2,-2: [1,\ 1,\ 0]^T, [-1,0,1]^T;\ \lambda = 4: c[1,1,2]^T, c\in \mathbb{R}.$
 - $(\text{iii}) \ \lambda = 1 : c[1, \ 1, \ 1]^T; \ \lambda = \tfrac{-1}{2} + \tfrac{\sqrt{3}}{2}i : \quad c[1, \ \tfrac{-1}{2} + \tfrac{\sqrt{3}}{2}i, \ \tfrac{-1}{2} \tfrac{\sqrt{3}}{2}i]^T; \ \lambda = \tfrac{-1}{2} \tfrac{\sqrt{3}}{2}i : \quad c[1, \ \tfrac{-1}{2} \tfrac{\sqrt{3}}{2}i] : \quad c[1, \ \tfrac{-1}{2} \tfrac{\sqrt{3}}$ $\begin{array}{l} \frac{\sqrt{3}}{2}i, \ \frac{-1}{2} + \frac{\sqrt{3}}{2}i]^T, c \in \mathbb{R}. \\ (\mathrm{iv})\lambda = 1: [1,\ 0,\ i]^T; \ \lambda = 2: [0,1,0]^T; \ \lambda = -3: [i,0,1]^T. \\ (\mathrm{v})\ \lambda = -i, -i: [1,0,-1]^T, [1,-1,0]^T; \ \lambda = 2i: [1,1,1]^T. \end{array}$
- 6. Let λ be the eigen value so $Av = \lambda v$. Take conjugate transpose on both sides, we get $v^*A^* = v^*\lambda^*$. Multiply above two equations and use $AA^* = I$.
- 7. If λ is an eigenvalue then $\lambda = ia$ where a is real number. Then use the fact |z| = |x + iy| = $\sqrt{x^2+y^2}$.
- 8. $A^{-1} = \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 2 & -1 \end{bmatrix}, \alpha = 1, \beta = 5.$
- 9. $A^{-1} = \begin{bmatrix} 3 & 1 & \frac{3}{2} \\ \frac{-5}{4} & \frac{-1}{4} & \frac{-3}{4} \\ \frac{-1}{1} & \frac{-1}{1} & \frac{-1}{1} \end{bmatrix}$
- 10. (a) Similar; (b) Not similar.
- 11. (a) Use simailarity definition and hence get an invertible matrix P such that $A = PBP^{-1}$. Find the determinant $|A - \lambda I|$. Then use $A = PBP^{-1}$.
 - (b) NO. construct an example.

12. (i) Diagonalizable;
$$P = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 and $P^{-1}AP = D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(ii) Not diagonalizable. (iii) Not diagonalizable.

(iv) Diagonalizable;
$$P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $P^{-1}AP = D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

13. The obtained recurrence relation using Cayley-Hamilton theorem is $A^{2i} = iA^2 - (i-1)I$ for $i = 1, 2, \dots$ Then by putting i = 50 we get : $A^{100} = \begin{bmatrix} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{bmatrix}$.

14. (a) Let
$$P = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 4 & 9 \end{pmatrix}$$
 and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Then $A = PDP^{-1} = \frac{1}{12} \begin{pmatrix} 30 & -12 & 6 \\ 2 & 4 & 14 \\ -34 & 4 & 38 \end{pmatrix}$.

As $A = PDP^{-1}$, so $A^n = PD^nP^{-1}$. Therefore $D^{500} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{500} & 0 \\ 0 & 0 & 3^{500} \end{bmatrix}$

(b) Similar to 14(a).