Федеральное го

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	И	Информационные и управляющие системы				
	шифр	Наименование				
Кафедра	И9	Систем управления и компьютерных технологий				
	шифр	наименование				
Дисциплина	Модели	ирование систем				

Лабораторная работа №1

на тему «Программная реализация имитационной модели нелинейной динамической системы» Вариант №3

Выполнил студент группи	ы И967
Васильен	<u></u>
Фамилия	И.О.
ПРЕПОДАВАТЕЛЬ	
Захаров А.Ю.	
Фамилия И.О.	Подпись
« »	2019 г.

Основные сведения из теории

Модель нелинейной динамической системы рассматривается в форме системы нелинейных нестационарных уравнений первого порядка:

$$\frac{dx_i(t)}{dt} = f_i(X(t), t), i = 1, 2, ..., n,$$
(1)

где $X(t) = (x_1(t), x_2(t), ..., x_n(t))$ – вектор переменных состояния, аргумент t – время.

При заданных начальных значениях переменных состояния $x_i^{(0)} = x_i(0)$, i=1, 2, ..., n, путем интегрирования системы (1) могут быть определены законы их изменения во времени на любом требуемом интервале [0; T].

Системы нелинейных нестационарных уравнений, как правило, не поддаются аналитическому решению. Для их решения применяются приближенные (численные) методы. Спектр таких методов и реализующих их программных средств достаточно широк, но для изучения принципов и особенностей их применения в рамках данной лабораторной работы достаточно ограничиться методом Рунге–Кутта 1-го порядка (также именуемого методом Эйлера или методом прямоугольников). При этом программная реализация метода должна быть выполнена самостоятельно.

Метод предусматривает решение уравнений в дискретном времени на основе преобразования модели (1) в рекуррентные соотношения:

$$x_{i}^{(j+1)} = x_{i}^{(j)} + f_{i}^{(j)} \left(x_{1}^{(j)}, x_{2}^{(j)}, \dots, x_{n}^{(j)}, t_{j} \right) h, i = 1, 2, \dots, n;$$

$$t_{j+1} = t_{j} + h, j = 0, 1, \dots, J,$$
(2)

где $x_i^{(j)}$ — значение i-й переменной состояния на j-м шаге решения (для $t=t_j$); $f_i^{(j)} \left(x_1^{(j)}, x_2^{(j)}, ..., x_n^{(j)}, t_j \right)$ — значение правой части i-го уравнения системы (1) на j-м шаге решения; h — шаг интегрирования; J — число шагов интегрирования, требуемое для достижения правой границы рассматриваемого интервала времени t=T. В зависимости от используемого способа обеспечения точности решения шаг интегрирования h может быть постоянным или переменным.

Для оценки погрешности вычисления y с некоторым шагом h интегрирование повторяется с шагом h/2. Полученное с уменьшенным шагом значение y^* принимается за эталонное. Тогда абсолютная погрешность вычисления y определяется как $\varepsilon = \left| y^* - y \right|$, относительная погрешность

$$\delta = \frac{y^* - y}{y^*} \cdot 100\%. \tag{4}$$

Для автоматизации выбора шага интегрирования в рамках данной лабораторной работы предусматривается использование следующего алгоритма:

- 1. Задается исходное значение шага интегрирования h.
- 2. Проводится решение системы дифференциальных уравнений на интервале [0; T] с шагом h.
- 3. Решение повторяется с шагом h/2.
- 4. Проводится оценка погрешности по соотношению (4).
- 5. Если погрешность δ не превышает допустимого значения, шаг h, считается достаточным для обеспечения требуемой точности.

В противном случае в качестве нового проверяемого значения шага h принимается h/2 и производится переход к п. 3.

Таким образом обеспечивается последовательное уменьшение шага интегрирования в 2^m (m=1, 2,...) раз до достижения требуемой точности решения.

Содержание задания

В соответствии с индивидуальным вариантом задания (табл. 1–5) разработать и отладить программное приложение, обеспечивающее:

- 1. Решение системы дифференциальных уравнений на интервале [0; T] для T = 10 с с любым шагом, задаваемым пользователем в пределах (0; T). Для демонстрации результатов обеспечить вывод графиков $x_i(t)$, i=1, 2,..., n; значения указанной в задании переменной состояния в конце интервала интегрирования $x_k(T)$ и значения относительной погрешности его определения δ .
- 2. Анализ зависимости точности и трудоемкости решения задачи от шага интегрирования. Вывод графиков зависимостей относительной погрешности δ и оценки трудоемкости от величины шага h.
- 3. Автоматический выбор величины шага интегрирования для достижения относительной погрешности не более 1% с выводом итоговых результатов, перечисленных в п. 1, для найденного шага.

Вариант задания:

Модель 1 – система уравнений 5-го порядка

$$\begin{split} \dot{x}_1 &= -g \sin x_2 + \frac{p - a c_x x_1^2}{m - u t} \; ; \\ \dot{x}_2 &= \frac{-g + \frac{p \cdot \sin(x_5 - x_2) + a c_y x_1^2}{m - u t}}{x_1} \; ; \\ \dot{x}_3 &= \frac{m_1 a (x_2 - x_5) x_1^2 - m_2 a x_1^2 x_3}{m - u t} \; ; \\ \dot{x}_4 &= x_1 \sin x_2 \; ; \\ \dot{x}_5 &= x_3 \; . \end{split}$$

Варианты исходных данных для модели 1

№	Значения постоянных параметров модели										ьные зн нных со	ачения стояния		
	p	а	m	u	c _x	c_y	m_1	m_2	T	$x_1(0)$	$x_2(0)$	$x_3(0)$	$x_4(0)$	$x_5(0)$
		•	•		•						•	•	•	
3	105	0,5	2000	20	0,03	0,002	0,05	0,01	12	1800	0,8	0	0	0,8

Результат работы программы

Значения коэффициентов Начальные значения

p	100000
a	0.5
m	2000
u	20
cx	0.03
cy	0.002
m1	0.05
m2	0.01
Т	12
g	9.81

x_{x1}	1800
x _{x2}	0.8
x _{x3}	0
x _{x4}	0
x _{x5}	0.8

