Basic Electrical Engineering Tutorial sheet 3 (Transients)

<u>O1</u>: Find the energy (E_1 and E_2) stored in the 2 capacitors (2 and $4\mu F$) at steady state.

[
$$E_1 = 12.96\mu J \text{ and } E_2 = 72\mu J$$
]

Q2 A 50 μ F capacitor and a 20000 Ω resistor are connected in series across a battery of 100 V at instant t = 0. At instant 1 = 0.5 sec, the voltage is suddenly increased to 150 V. Find the charge on the capacitor at t = 0.75 sec. [3.19 × 10⁻³ C]

O3 Find the value of $i_L(t)$ and $v_L(t)$ at t = 0.2ms.

$$[i_L(0.2 \times 10^{-3}) = 11.73 \text{ A and } v_L(0.2 \times 10^{-3}) = 0.27 \text{ V.}]$$

Q4. Find the expression of current i(t) for t > 0s if the switch is closed at t = 0s. $[i(t) = 3 - e^{-\frac{9}{4}t} A]$

O5 Find the value of voltage (v) across 10Ω resistor at t = 5ms if the switch is open at t = 0s.

$$[v(5 \times 10^{-3}s) = -54.29 \text{ V.}]$$

Q6 In the circuit, switch 1 is closed at t = 0s, and switch 2 is closed at 5s later. Find the value of inductor current i(t) at t = 10s. [i(10) = 4.09 A]

<u>O7</u> Find the expression of voltage across capacitor ($v_C(t)$) and current (i(t)) through $2k\Omega$ resistor for t > 0s if the switch is closed at t = 0s. [$v_C(t) = 15 - 15e^{-4t}$ *V* and $i(t) = 7.5 - 7.5e^{-4t}$ mA.]

Q8 The switch in the circuit has been in position a for a long time. At t = 0s, it moves to position b. Find the expression of i(t) for t > 0s. $[i(t) = -6e^{-0.25t}A]$

Q9 Find the expression of voltage v(t) for t > 0s if the switch is open at t = 0s. $[v(t) = -4e^{-20t} \text{ V}]$

Q10. Find the values of (a) $i_L(0^+)$, $V_C(0^+)$, $V_R(0^+)$, $V_L(0^+)$

(b) $i_L(\infty)$, $V_C(\infty)$, and $V_R(\infty)$ for the circuit shown.

$$[V_R(0^+) = 4V, \ V_C(0^+) = -20V, \ i_L(0^+) = 0A, \ V_L(0^+) = 0 \text{ V}$$

 $V_R(\infty) = 4V, \ V_C(\infty) = -20V \ and \ i_L(\infty) = 1A]$

Find i(t) and v(t) in the circuit.

Where v_{s1} =6cos15t and v_{s2} =12cos15t,

Ans: $i(t)=0.4\cos(15t-30^{\circ})-0.173e^{-26t}$ A, $v(t)=6\cos(15t+60^{\circ})+4.5e^{-26t}$ V