Solubilité

Agrégation 2020

Coquillage

Coraux

Squelette en aragonite des coraux

Exemple d'équilibre de dissolution

NaCl (s) = Na⁺ (aq) + Cl⁻ (aq)
$$K_s = 32,98 \text{ à } 298 \text{ K}$$

$$PhCOOH$$
 (s) = $PhCOOH$ (aq) $K_s = 10^{-1.6} \text{ à } 298 \text{ K}$

Détermination du produit de solubilité de l'acide benzoïque

Résultats de la simulation

Détermination du produit de solubilité de NaCl_(s)

NaCl _(s)	=	Na ⁺ _(aq)	+	Cl ⁻ (aq)
Excès		0		0
Excès		S		S

Ks=s²

Loi de Kohlrausch :

$$\sigma$$
= λ °(Na⁺)[Na⁺] + λ °(Cl^{-*})[Cl⁻]
= s*[λ °(Na⁺)+ λ °(Cl⁻)]

D'où

A l'équilibre

$$S = \frac{\sigma}{[\lambda^{\circ}(Cl^{-}) + \lambda^{\circ}(Na^{+})]}$$

Solubilité de CaCO₃ en fonction du pH

$$CaCO_3(s) = Ca^{2+}(aq) + CO_3^{2-}(aq)$$

$$pKs = 8,3 à 298 K$$

Couple HCO₃-/CO₃²-:

$$HCO_3^-(aq) + H2O(I) = CO_3^{2-}(aq) + H_3O^+(aq)$$

 $pKA_1 = 10,3 \text{ à } 298 \text{ K}$

Couple H₂CO₃-/HCO₃-:

$$H_2CO_3^2$$
 (aq) + $H_2O(I)$ = HCO_3^- (aq) + H_3O^+ (aq) **pKA₂ =6,4 à 298 K**

Solubilité de CaCO₃ en fonction du pH

pH de l'eau de mer

Diagramme prédominance

Traitement des eaux usées

Espèces à retirer

- Métaux dissous issus des usines d'hydrométallurgie, de la combustion des déchets
- Sulfates issus d'engrais
- •lons Ca²⁺ et Mg²⁺

Traitement

• Précipitation des métaux sous forme d'hydroxyde :

$$Pb^{2+}(aq) + 2HO^{-}(aq) = Pb(OH)_{2}(s)$$

• Précipitation d'anions indésirables :

$$SO_4^{2-}(aq) + Ca^{2+}(aq) = CaSO_4(s)$$