MCS 260: Homework 2

cs,homework,logic

Author: Rafeh Qazi

Modified: September 2016

1) For the following Python expression, write down the corresponding truth table and a logic gate diagram.

>>> (A and B) or (A and not B)

Truth Table

Α	В	A and B	A and not B	(A and B) or (A and not B)
1	0	0	1	1
0	1	0	0	0
0	0	0	0	0

2.

Rule: Given four boolean inputs A, B, C, and D, the output is 1 if an even number of inputs is 1, and the output is 0 otherwise.

Truth Table

Α	В	С	D	Е
1	1	1	0	0
1	1	0	1	0

1	0	1	1	0
0	1	1	1	0
1	1	0	0	1
1	0	0	1	1
0	0	1	1	1
0	1	1	0	1
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0
0	0	0	0	1
0	1	0	1	1
1	0	1	0	1

Python Equivalent

```
1 def XOR(a, b):
2    if a != b:
3        return True
4    else:
5        return False
6
7 def XNOR(a, b):
```

```
8    return not XOR(a, b)
9
10 def parity_bit(a, b, c, d):
11    """Homework answer to problem 2. """
12
13    return XNOR(XOR(a, b), XOR(c, d))
```

3. Logic Gate

Truth Table

Α	В	С	D	E	F
1	0	0	1	0	0
1	1	1	0	0	1
0	0	0	0	0	0
0	1	0	0	0	1

4) Consider the following Python code:

Fill out the following state table (on your own piece of paper), where step 0 is before the while loop has started, step 1 is after one loop, etc. ONLY use integers and fractions to fill out the table.

step	i	L[-i]	value	
0				100.00 Mari
1				$final_value = ?$
:				

In addition, if L were ANY list of four numbers, what equation does final_value represent as a function of the list elements L[0], L[1], L[2], and L[3]? Write down a single expression of the form

final_value = (big equation with
$$L[0], L[1], L[2], L[3]$$
)

```
\frac{3*(L[1]+L[3])}{(10*L[0]+L[2])} = \frac{15}{11}
1 >>> final\_value = (3*(L[1] + L[3]))/(10*L[0] + L[2])
2 >>> final\_value
3 1.3636363636363635
1.363636363636363635 \sim \frac{15}{11}
```