BOSTON 집값 예측

집값에 영향을 주는 요인 분석

INDEX

- 과제 정의
 - 가설 설정
- 2 데이터 처리
- 3 탐색적 분석

- 4 모델링
- 5 분석 결과
- 6 소감

분석 배경

미국 인구 조사국에서 수집한 보스턴 시의 주택 가격에 대한 데이터를 통해, 주택의 가격에 영향을 미치는 인자를 분석하고자 한다.

다양한 예측모델을 이용하여 집값에 영향을 주는 영향인자를 객관적으로 도출하고, 선정한 영향인자를 활용하여 예측한다.

1 가설 설정

- 1 범죄율(CRIM)이 높을수록 주택가격은 낮아질 것이다. (-)
- 2 주거당 평균 객실 수가 클수록 주택가격은 올라갈 것이다. (+)
- 3 중심지(노동센터) 접근 거리가 작을수록 주택가격은 상승할 것이다. (-)
- 4 학생당 교사 비율이 높을수록 주택 가격은 올라갈 것이다. (+)
- 5 저소득층 비율이 높을수록 주택 가격은 내려갈 것이다. (-)

데이터 처리 – 결측치, 데이터 타입 확인

	MEDV	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	24.000000	0.00632	18.0	2.31	0	0.538	6.575	65.199997	4.0900	1	296	15.300000	396.899994	4.98
1	21.600000	0.02731	0.0	7.07	0	0.469	6.421	78.900002	4.9671	2	242	17.799999	396.899994	9.14
2	34.700001	0.02729	0.0	7.07	0	0.469	7.185	61.099998	4.9671	2	242	17.799999	392.829987	4.03
3	33.400002	0.03237	0.0	2.18	0	0.458	6.998	45.799999	6.0622	3	222	18.700001	394.630005	2.94
4	36.200001	0.06905	0.0	2.18	0	0.458	7.147	54.200001	6.0622	3	222	18.700001	396.899994	5.33

1 df_raw.isnull().sum(axis=0)

0 MEDV CRIM 0 zn0 INDUS CHAS NOX RMAGE DIS RAD TAX PTRATIO LSTAT dtype: int64 1 df_raw.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	MEDV	506 non-null	float64
1	CRIM	506 non-null	float64
2	ZN	506 non-null	float64
3	INDUS	506 non-null	float64
4	CHAS	506 non-null	int64
5	NOX	506 non-null	float64
6	RM	506 non-null	float64
7	AGE	506 non-null	float64
8	DIS	506 non-null	float64
9	RAD	506 non-null	int64
10	TAX	506 non-null	int64
11	PTRATIO	506 non-null	float64
12	В	506 non-null	float64
13	LSTAT	506 non-null	float64
-14	- 1+	C4/11\ ==+C4/2\	

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

데이터 확인: df.head()

결측치 확인

데이터 타입 확인

2 데이터 처리 – 이상치 확인

Boxplot 을 활용하여 데이터의 이상치를 확인한 결과, 특별한 이상치를 확인할 수 없었다.

이상치 확인

2 데이터 처리

MEDV	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	ı	B LSTAT					
o 24.000000	0.00632	18.0	2.31	0	0.538	6.575	65.199997	4.0900	1	296	15.300000	396.89999	4 4.98					
1 21.600000	0.02731	0.0	7.07	0	0.469	6.421	78.900002	4.9671	2	242	17.799999	396.89999	4 9.14					
2 34.700001	0.02729	0.0	7.07	0	0.469	7.185	61.099998	4.9671	2	242	17.799999	392.82998	7 4.03				م ما گاه م	-1()
3 33.400002	0.03237	0.0	2.18	0	0.458	6.998	45.799999	6.0622	3	222	18.700001	394.63000	5 2.94		ı,	데이터 확인 :	ar.nea	a()
4 36.200001	0.06905	0.0	2.18	0	0.458	7.147	54.200001		3		18.700001							
									데	Ole	터 확인	미결교	1					
1 df_	raw.is	null	().su	m(ax	is=0))	1 df	_raw.i	info(-1 - 1		-1 /					
MEDV	0				1	73	1 21481	'pano	ag.q	ore	frame.	etaFre	:e ¦-]]]_	⊱I ┯	·1 c) FOFEI		
CRIM	0					2							╌╱║╰	가스	ıl i	쏧겠니.		
ZN	0						Data c		, , ,		14 colu	,				カ大士	さいし	
INDUS	0						# C	olumn	No	on–Nı	ull Coun	t Dtyp	e			결측치	확인	
CHAS	0		~				. п. II (6)	7 N - 1	51	ıl (A	9 11		+611	-		74 0 1	1	
NOX	0		2. '		HA	15	드 터 (t)					obje	ect	도	무네	경해야한대	- †.	
RM	0						2 Z				on-null	floa			_		•	
AGE	0						3 I	NDUS			on-null	floa						
DIS	0						4 C	HAS	50)6 no	on-null	int6	4					
RAD	0						5 N	OX	50)6 no	on-null	floa	t64					
TAX	0						6 R	M			on-null	floa						
PTRATIO	0							GE			on-null	floa				데이터타	입 확인	
В	0							IS			on-null	floa						
LSTAT	0							AD AX			on-null	int6						
dtype:	int64							AA TRATI(on-null	floa						
							12 B	1101111			on-null	floa						
								STAT			on-null	floa						
							dtypes	: floa			, int64(
							memory	usage	e: 55	5.5 I	KB							

3 탐색적 분석

히트맵을 통해 전체적인 상관관계 분석

주거당 평균 객실 수와 주택가격

가설1: 범죄율이 올라갈수록 주택가격이 내려가는 경향을 확인할 수 있다.

가설2: 평균 객실 수가 커지면, 주택가격이 올라가는 경향을 확인할 수 있다.

가설4 학생당 교사 비율과 주택가격

가설3 : 중심지 접근 거리와 주택가격 사이의 확실한 상관관계를 파악하기 어려웠다.

가설4: 학생당 교사 비율과 주택가격 사이의 확실한 상관관계를 파악하기 어려웠다.

가설5 : 저소득층 비율이 커질수록 주택가격이 내려가는 경향성을 확인할 수 있었다.

4 모델링

4

모델링 - 01. 다중 회귀분석

OLS Regression Results

Dep. Variable:		MEDV	R-squar	ed:		0.741				
Model:		OLS	Adj. R-	squared:		0.734				
Method:	I	east Squares	F-stati	stic:		108.1				
Date:	Wed,	25 Nov 2020	Prob (F	-statistic):		6.72e-135				
Time:		02:38:47	Log-Lik	elihood:		-1498.8				
No. Observation	ns:	506	AIC:			3026.				
Df Residuals:		492	BIC:			3085.				
Df Model:		13								
Covariance Typ	e:	nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
Intercept	36.4595	5.103	7.144	0.000	26.432	46.487				
C(CHAS)[T.1]	2.6867	0.862	3.118	0.002	0.994	4.380				
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043				
ZN	0.0464	0.014	3.382	0.001	0.019	0.073				
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141				
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.262				
RM	3.8099	0.418	9.116	0.000	2.989	4.631				
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027				
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084				
RAD	0.3060	0.066	4.613	0.000	0.176	0.436				
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005				
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.696				
В	0.0093	0.003	3.467	0.001	0.004	0.015				
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425				
Omnibus:			======= -Durbin		=======	1.078				
Prob(Omnibus): 0.00			Jarque-Bera (JB):			783.126				
Skew:	1.521	Prob(JB	, ,	8.84e-171						
Kurtosis:		8.281	Cond. N	,	1.51e+04					

다중 회귀분석 결과,

- 1 모델의 설명력은 <mark>0.741(74.1%)</mark>이다.
- 2 F-검정 결과, P-value는 0.05보다 매우 작으므로 통계값은 유효하다.
- 3 INDUS, AGE 값은 P-value가 0.05보다 매우 크므로 의미가 없는 값이다.

4

모델링 - 01. 다중 회귀분석: 가설 검증

OLS Regression Results

Dep. Variable:		MEDV	R-square	0.741		
Model:		OLS	Adj. R-	squared:		0.734
Method:	I	Least Squares	F-stati:	stic:		108.1
Date:	Wed,	25 Nov 2020	Prob (F	-statistic):		6.72e-135
Time:		02:38:47	Log-Like	elihood:		-1498.8
No. Observatio	ns:	506	AIC:			3026.
Df Residuals:		492	BIC:			3085.
Df Model:		13				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	36.4595	5.103	7.144	0.000	26.432	46.487
C(CHAS)[T.1]	2.6867	0.862	3.118	0.002	0.994	4.380
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043
ZN	0.0464	0.014	3.382	0.001	0.019	0.073
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.262
RM	3.8099	0.418	9.116	0.000	2.989	4.631
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084
RAD	0.3060	0.066	4.613	0.000	0.176	0.436
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.696
В	0.0093	0.003	3.467	0.001	0.004	0.015
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425
Omnibus:		178.041	Durbin-	Watson:		1.078
<pre>Prob(Omnibus):</pre>	Jarque-1	Bera (JB):		783.126		
Skew:		1.521	Prob(JB):		8.84e-171
Kurtosis:		8.281	Cond. No	o .		1.51e+04

범죄율(CRIM)이 높을수록 주택가격은 낮아질 것이다. (-)

→ CRIM의 coef는 음수로 **음의 상관관계**를 보인다. (가설 0)

주거당 평균 객실 수가 클수록 주택가격은 올라갈 것이다. (+)

→ RM의 coef는 큰 양수로 **양의 상관관계**를 보인다. (가설 0)

중심지(노동센터) 접근 거리가 작을수록 주택가격은 상승할 것이다. (-)

→ DIS의 coef는 큰 음수로 음의 상관관계를 보이는 듯 하나, P-value**가 0.05보다** 크므로 <mark>성립하지 않는다. (X)</mark>

학생당 교사 비율이 높을수록 주택 가격은 올라갈 것이다. (+)

→ PTRATIO의 coef는 음수로 <u>음의 상관관계</u>를 보인다. (가설X)

저소득층 비율이 높을수록 주택 가격은 내려갈 것이다. (-)

→ LSTAT의 coef는 음수로 <u>음의 상관관계</u>를 보인다. (가설0)

4 모델링 - 01. 다중 회귀분석 : VIF

	variable	VIF
11	В	1.345
10	PTRATIO	1.783
1	CRIM	1.788
5	RM	1.932
2	ZN	2.298
12	LSTAT	2.931
6	AGE	3.093
3	INDUS	3.949
7	DIS	3.955
4	NOX	4.389
8	RAD	7.398
9	TAX	8.876
0	const	584.833

→ 다중공선성도 확인한 결과, 모든 설명변수들의 VIF 값이 10 이하로, 다중공선성을 보이는 설명변수는 없는 것으로 판단할 수 있다.

VIF 결과

4 모델링 - 01. 다중 회귀분석 : 후진제거법

후진제거법 적용 후 선택된 변수들 : 'NOX', 'RM', 'DIS', 'PTRATIO', 'LSTAT' (5개)

후진제거법 적용 후 제거된 변수들 : 'CRIM', 'ZN', 'INDUS', 'AGE', 'RAD', 'TAX', 'B' (7개)

후진제거법을 적용해 선택된 5개의 변수 NOX(산화질소 농도), RM(주거당 평균 객실 수), DIS(중심지 접근거리), PTRATIO(학생당 교사 비율), LSTAT(저소득층 비율)이 다중 회귀분석에서 주요 변수들이다.

4 모델링 – 01. 다중 회귀분석

OLS Regression Results

========										
Dep. Variab	le:		MEDV	R-squ	ared:		0.708			
Model:			OLS	Adj.	R-squared:		0.705			
Method:		Least Squ	ares	F-sta	atistic:		242.6			
Date:		Wed, 25 Nov	2020	Prob	(F-statistic)	:	3.67e-131			
Time:		02:4	1:20	Log-I	Likelihood:		-1528.7			
No. Observat	tions:		506	AIC:			3069.			
Df Residuals	s:		500	BIC:			3095.			
Df Model:			5							
Covariance 5	Type:	nonro	bust							
========	coef	std err		t	P> t	[0.025	0.975]			
Intercept	37.4992	4.613	8	.129	0.000	28.436	46.562			
NOX	-17.9966	3.261	-5	.519	0.000	-24.403	-11.590			
RM	4.1633	0.412	10	.104	0.000	3.354	4.973			
DIS	-1.1847	0.168	-7	.034	0.000	-1.516	-0.854			
PTRATIO	-1.0458	0.114	-9	.212	0.000	-1.269	-0.823			
LSTAT	-0.5811	0.048	-12	.122	0.000	-0.675	-0.487			
Omnibus:		187	.456	Durbi	n-Watson:		0.971			
Prob(Omnibus	s):	0	.000	Jarqu	ne-Bera (JB):		885.498			
Skew:	•	1	.584	Prob	` '		5.21e-193			
Kurtosis:		8	.654	Cond	No.		545.			
========			=====	=====			========			

다중 회귀분석 결과,

- 1 모델의 설명력은 0.708(70.8%)이다.
- 2 F-검정 결과, P-value는 0.05보다 매우 작으므로 통계값은 유효하다.
- 3 모든 설명변수들의 P-value가 0.05보다 작으므로 의미가 있다.
- 4 식으로 표현하자면 다음과 같다.

 $\frac{\text{MEDV}}{\text{MEDV}} = 37.4992 + (-17.9966)*\text{NOX} + (4.1633)*\text{RM} + (-1.1847)*\text{DIS} + (-1.0458)*\text{PTRATIO} + (-0.5811)*\text{LSTAT}$

분석결과 – 다양한 모델 테스트 결과 비교

에러값들을 모델별로 산출해보았다. MSE, RMSE, MAE, MAPE를 계산했으며, 그 결과, 에러는 그래디언트 부스팅 < 랜덤 포레스트 < 의사결정나무 < 회귀분석 순으로 산출되었다.

데이터 분석을 하며,

집값 분석이라는, 와 닿는 주제를 활용하여 공부해서, 더 흥미를 가지고 분석 실습에 임할 수 있었습니다.

통계에 대한 기본을 더 확실히 하고, 이를 전공 영역에 접목시킬 수 있는 역량을 가진다면, 정말 큰 도움이 될 것이라 생각했습니다.