

I. Einleitung

I. Problemstellung

2. Recap

2. Methoden

3. Resultate

4. Diskussion

I. Einleitung

Problemstellung

- Clustering von Mathematischen Artikeln
- Distanzmaß ist eine Mischung aus zwei verschiedenen Maßen (Cosinus und Tanimoto)
- Clustering mit k-means dialekt: k-medoids
- Initialisierung von k-medoids mit einer neuen Methode (h-cores)

I. Einleitung

Recap

- Rogers-Tanimoto distance: Abstandsmaß basierend auf Zitationsgraph
- Cosine distance (VSM): r\u00e4umliches
 Abstandsma\u00db basierend auf abstracts
- Fisher's Inverse Chi-Square Methode: gewichtete Mischung zweier Distanzen. Parameter: lambda (Gewichtung)
- H-Cores: Methode um initiale
 Clusterzentren zu finden. Parameter: r (Schwellwert)

- I. Einleitung
- 2. Methoden
 - I. Preprocessing
 - 2. Clustering
 - 3. Tools
- 3. Resultate
- 4. Diskussion

2. Methoden

2. Methoden

Clustering

- Sampling Methoden:
 - random: I0k zufällige Dokumente
 - most refs: I0k am häufigsten referenzierten Dokumente
- Parameter
 - lambda: gibt die Mischung der Beiden Maße an
 - r: Schwellwert für die h-cores und damit indirekt das k für k-medoids

2. Methoden

Tools

- XML Parsing: xml.sax
- Stemming: stemming.porter2 stem
- Tokenizing: nltk.tokenize: wordpunct_tokenize
- Spracherkennung: guess-language
- Distanzen: scipy.spatial distances
- Clustering: C Clustering Library (Univ. Tokyo) mit Python Bindings
- Animationen: ProgressFish ><(((('>

- I. Einleitung
- 2. Methoden

3. Resultate

- I. random Sampling
- 2. most ref. Sampling
- 3. Clusterqualität
- 4. Diskussion

random references

Simon Schwarzmeier Siegfried Gessulat

random references

Simon Schwarzmeier Siegfried Gessulat

random references

Simon Schwarzmeier Siegfried Gessulat

most references

Simon Schwarzmeier Siegfried Gessulat

most references

Simon Schwarzmeier Siegfried Gessulat

15 / 20 **6 | 5 7** 397 paper 341 system 308 304 present 281 base algorithm 275 264 problem perform 261 255 model 240 result

444 paper 358 present 337 system 316 base 312 294 perform 291 result 273 algorithm 270 model 260 show

Λ	
4/02	
paper	338
system	295
present	274
1	247
base	220
algorithm	213
problem	209
perform	198
applic	194
data	192

\mathbf{F}	
3/U 4	
paper	236
system	193
present	193
l i	162
base	161
problem	155
model	154
algorithm	151
data	139
result	138

<u> </u>	
3474	
paper	258
system	220
present	195
Ì	170
base	168
result	156
problem	154
provid	153
algorithm	144
perform	144
	system present I base result problem provid algorithm

3473	
paper	252
system	208
base	176
1	174
present	169
algorithm	160
perform	156
result	155

141 141

problem

model

293
247
246
245
238
208
206
198
192
188

FOE	
JJJZ	
paper	231
present	196
system	191
ĺĺ	178
base	175
algorithm	162
applic	157
provid	145
result	144
model	141

5659	
paper	396
system	304
present	276
l i	275
base	274
data	258
perform	236
algorithm	236
model	233
result	230

4 330	
paper	228
present	161
system	158
base	148
1	140
perform	134
algorithm	132
data	132
result	127
problem	126

330
310
254
239
224
223
209
199
192
190

/ 175	
01/3	
paper	301
system	231
present	220
Ì	217
base	206
algorithm	205
model	188
result	186
problem	178
comput	166

1222	
0233	
paper	358
present	285
system	283
l í	262
result	248
base	244
algorithm	239
perform	233
data	218
comput	214
1 '	

Freie Universität

- I. Einleitung
- 2. Methoden
- 3. Resultate
- 4. Diskussion
 - I. Positive Aspekte
 - 2. Schwächen
 - 3. Interpretation
 - 4. Fragen

4. Diskussion

Positive Aspekte

- wir nehmen an: grau ist das Optimum.
- wir erreichen fast den gleichen Wert mit nur einem Durchlauf (deterministisch!)
- most refs Datensatz funktioniert besser.

4. Diskussion

Schwächen

- wir benutzen nur ~1% der Daten
- nur zwei sampling Methoden und nur jeweils ein sample set.
- VSM: wir benutzen kein TF.IDF
- Error nur innerhalb des Clusters, nicht in bezug zu anderen Clustern

4. Diskussion

Intepretation

- Güte der Cluster ist schwer beschreibbar, weil es eine Verteilung über alle Wörter ist
- Initialisieriung durch h-cores: Lohnt sich der Aufwand? Nein, clustern ist nicht bottle-kneck (bei uns)
- Wenn man h-cores nicht braucht, braucht man dann k-medoids? LDA?

4. Diskussion

Fragen!

WTF?!

Simon Schwarzmeier Siegfried Gessulat