

Rispondere alle domande a risposta multipla annerendo la casella corrispondente alla risposta corretta. Ogni domanda ha una ed una sola risposta corretta.

Cognome e N	Nome: Nome1 Cognome1
Numero di M	fatricola: 0
Domanda 1 add x6, x5 ld x7, 0(x	
mv x6,	, x7
Nessuna	delle altre risposte
add x6	6, x7, x5
Tutte le	risposte si equivalgono
ld x6,	, x7 (x5)
Domanda 2	Indicare l'esatto corrispondente in binario di 728_{10}
0000011	101110_2
0010110	011000_2
Nessuna	delle altre risposte
0001110	011000_2
0000011	101101_2
Domanda 3	Svolgere in complemento a 2 su 8 bit l'operazione $1101_{10}-125_{10}$
0111111	11_2
Nessuna	delle altre risposte
1111111	11_2
1011111	11_2
1000 000	00_2
	Le seguenti affermazioni descrivono alcuni dei pregi introdotti dalla pipeline nei micropro dua quale di queste NON è corretta. ure pipelined
magg senza pi	giore il numero di stadi, potenzialmente maggiori le prestazioni in confronto ad un'architettur peline
la fre	quenza di clock è determinata dall'istruzione più lenta
l'ordi	ine con cui sono scritte le istruzioni potrebbe influire sul tempo di esecuzione
non s	i verificano mai eventi di hazard
Nessuna	delle altre risposte
Domanda 5	Usando la rappresentazione binaria, svolgere la somma $8494+7726$
8494 ₁₀ -	$+7726_{10} = 1100001111110101_2$
8494 ₁₀ -	$+7726_{10} = 1111010111000011_2$
8494 ₁₀ -	$+7726_{10} = 0011111101011100_2$
8494 ₁₀ -	$+7726_{10} = 0101110000111111_2$
Nessuna	delle altre risposte

Figure 1: Schema di datapath

Nel blocco numero 0.

Si dica a quale delle seguenti alternative corrisponde la seguente istruzione in assembly

ARM: add r0, r1, r1, lsl #1
Nessuna delle altre risposte $ \Box r0 = r0 + (2 * r1); $ $ \Box r1 = r0 + (2 * r1); $
r0 = 3 * r1;
Domanda 7 Si consideri lo schema in Figure 1. Si indichi quale delle seguenti alternative spiega meglio le modalità di esecuzione di un'istruzione di tipo R.
Dopo la fase di prelievo, RegDst viene selezionato a 0, ALUSrc viene selezionato a 0, RegWrite viene posto a 1, MemToReg viene posto a 0, AluOP viene posto a 01
Dopo la fase di prelievo, RegDst viene selezionato a 1, ALUSrc viene selezionato a 0, RegWrite viene posto a 1, MemToReg viene posto a 0, AluOP viene posto a 10
Nessuna delle scelte proposte.
Dopo la fase di prelievo, RegDst viene selezionato a 1, ALUSrc viene selezionato a 1, RegWrite viene posto a 1, MemToReg viene posto a 0, AluOP viene posto a 11
Domanda 8 Si consideri una cache direct mapped grande $16KB$, con blocchi di 64 byte per blocco. In che blocco di cache è mappata la parola che sta in memoria all'indirizzo $0x100400$?
Nel primo blocco libero.
Nel blocco numero 32 o nel blocco numero 33.
Nessuna delle altre risposte.
Nel blocco numero 16.


```
int mathforfun(int i, int j,
                  int q, int s) {
 for(i=0;i<q; i++)
    q=q+s;
    q=q-j;
 return q;
 mathforfun:
                          %rbp
                 pushq
                 movq
                          %rsp, %rbp
                          %edi, -4(%rbp)
                 movl
                          %esi, -8(%rbp)
                 movl
                 movl
                          %edx, -12(%rbp)
                 movl
                          %ecx, -16(%rbp)
                          $0, -4(%rbp)
                 movl
 .L3:
                          -4(%rbp), %eax
                 movl
                 X1
                          .L2
                 jge
                 movl
                          -16(%rbp), %eax
                          %eax, -12(%rbp)
                 addl
                          -8(%rbp), %eax
                 movl
                          %eax, -12(%rbp)
                 subl
                 X2
                          .L3
                 jmp
  .L2:
                          -12(%rbp), %eax
                 movl
                 popq
                 ret
```

La funzione mathforfun prende in ingresso quattro argomenti e al suo interno svolge con questi delle operazioni matematiche ritornando un intero. Data la traduzione parziale in assembly intel qui sotto come completereste le righe X1 e X2 mancanti? scegliere una delle opzioni

Nessuna delle altre risposte

X1: cmpl -12(%rbp), %eax X2: addl \$1, -4(%rbp)

X1: addl \$1, -8(%rbp)

X2: cmpl -12(%rbp), %eax

X1: addl \$1, -4(%rbp) X2: cmpl -12(%rcx), %eax

X1: movl \$1, -8(%rbp) X2: cmpl -10(%rbp), %eax

Domanda 10 Quale delle seguenti affermazioni è FALSA?

Il linguaggio Assembly è strettamente legato alla CPU su cui il programma dovrà eseguire.
Una caratteristica dei programma scritti in linguaggio Assembly è la sua portabilità.
Per essere eseguito, un programma Assembly deve essere tradotto in linguaggio macchina da un compilatore.
Al livelo più basso, la CPU può capire solo programmi scritti in linguaggio macchina.
Il linguaggio Assembly codifica le istruzioni macchina tramite codici mnemonici.

Si consideri la seguente funzione nel linguaggio C chiamata "sort" il cui scopo e' quello di ordinare un array in ingresso. Tale funzione prende in ingresso un array v[] (espresso naturalmente come puntatore a long long int) e la lunghezza n del vettore.

Al suo interno la funzione esegue una chiamata ad un'altra funzione denominata "swap" che scambia il valore dell'elemento del vettore in ingresso in posizione k con l'elemento successivo k+1. Quale delle implementazioni in assembly RISC-V della funzione swap e' corretta tra quelle proposte?

```
void sort (long long int v[], long long int n){
  long long int i, j;
                                                                     ...
  for (i=0; i< n; i+=1) {
  for (j=i-1; j>=0 \&\& v[j] > v[j+1]; j-=1) {
                                                                     •••
    swap (v,j);
                                                                     jal
                                                                           swap
   }
                                                                     •••
                                                                     •••
}
                                                                     ...
void swap (long long int v[], long long int k){
                                                             swap:
  long long int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
                                                                     ...
                slli
                       x7, x11, 4
        swap:
                add
                       x7, x10, x7
                       x7, 8(x7)
                ld
                sd
                       x5, 0(x7)
                jalr
                       x0, 0(x1)
        swap:
                slli
                       x7, x11, 3
                ld
                       x5, 0(x10)
                ld
                       x6, 8(x10)
                sd
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                add
                       x7, x10, x7
        swap:
                srli
                       x7, x11, 3
                       x7, x10, x7
                add
                ld
                       x5, 0(x7)
                       x6, 8(x7)
                ld
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                sd
                jalr
                       x0, 0(x1)
                slli
                       x7, x11, 3
        swap:
                       x7, x10, x7
                add
                       x5, 0(x7)
                ld
                       x6, 8(x7)
                ld
                sd
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                jalr x0, 0(x1)
   Nessuna delle altre risposte
```


Figure 1: Schema di porzione del datapath.

Rispondere alle domande a risposta multipla annerendo la casella corrispondente alla risposta corretta. Ogni domanda ha una ed una sola risposta corretta.

Cognome e Nome: Nome2 Cognome2

Numero di Matricola: 1

srli x6, x5, 4
slli x5, x5, 10
and x5, x5, x6

Domanda 2 Con riferimento alla Figura 1, si dica a cosa serve il blocco estensione segno.

L'estensione è usata solo nell'eventualità di salti condizionati per individuare correttamente il registro da sommare al PC.

Nessuna delle altre risposte

Gli operandi immediati sono codificati su 16 bit. Mentre i registri sono a 32, quindi occorre estendere l'operando per effettuare operazioni con il registro preservandone il segno.

L'estensione occorre per individuare correttamente il registro destinatario.

Il MIPS consente di utilizzare anche porzioni di registri a 16 bit e in questo caso bisogna estendere l'operando.

Domanda 3 Si dica a quale delle seguenti alternative corrisponde la seguente istruzione in assembly ARM:

add r0, r1, r1, lsl #1

Nessuna delle altre risposte

r0 = 3 * r1;

Domanda 4 Riportare in binario il risultato della differenza 11000.1011 – 111.111101
11000.1011 - 111.111101 = 10000.101111
Nessuna delle altre risposte
Domanda 5 Si consideri una cache direct mapped grande $64KB$, con blocchi di 64 byte per blocco. I che blocco di cache è mappata la parola che sta in memoria all'indirizzo $0x1F040$?
Nessuna delle altre risposte.
Non si può dire senza conoscere la dimensione della memoria principale.
Nel blocco numero 961.
Nel blocco numero 40.
Nel primo blocco libero.
Domanda 6 Usando la rappresentazione binaria, svolgere la sottrazione $10110011101100011001 - 0x4AA95$
Nessuna delle altre risposte
01101001000010000100_2
Domanda 7 Svolgere in complemento a 2 su 4 bit l'operazione $0011_2 + 6_{10}$
Nessuna delle altre risposte
$\bigsqcup_{} 1001_{2}$
Il risultato non è rappresentabile su 4 bit in CA2 (causa overflow)
0111 ₂
Domanda 8 Si consideri una CPU che impiega $600ps$ per la fase di fetch, $600ps$ per la fase di decodifica $500ps$ per eseguire operazioni con la ALU, $400ps$ per la fase di accesso alla memoria e $700ps$ per la fase di scrittura nel register file. Il massimo incremento di prestazioni che ci si può attendere usando una pipelin è:
di 3 volte
di 4 volte
Nessuna delle altre risposte
di 2 volte

di 2.5 volte

Domanda 9 Considerare l'operazione di somma tra interi in assembly RISC-V. Essa puó essere richiesta:

Domanda / Considerate i C	sperazione di	SOIIIII	a tra interi in assembly Kise-v. Essa può essere fiemesta.
			un operando destinazione di tipo registro, oppure con un nediato come sorgenti e un operando registro destinazione
Con due operandi sorger	nti registri e ı	un oper	rando destinazione in memoria
Con due operandi sorger	nti registri e u	una des	stinazione anche esso registro
Nessuna delle altre rispo	oste		
Con due operandi sorge	nti immediati	i e un o	perando destinazione registro
Domanda 10		ı	
<pre>int fattoriale(int n) { if(n<=0) return 1; return n*fattoriale(n-1); }</pre>			La funzione ricorsiva fattoriale prende in ingresso un intero e ne restituisce il fattoriale. Data la traduzione parziale in assembly intel qui sotto come completereste le righe X1 e X2 mancanti? scegliere una delle opzioni proposte
<pre>fattoriale(int):</pre>		ļ	
,	pushq	%rbp	
	movq	_	%rbp
	subq	\$16, 9	•
	movl cmpl		-4(%rbp) -(%rbp)
	jg	.L2	(/s-sp)
	movl	\$1, %	eax
- 0	X1		
.L2:	movl	1(0/or	rbp), %eax
	X2	-4(/01	op), //cax
	movl	%eax	, %edi
	call		iale(int)
T 2	imull	-4(%r	bp), %eax
.L3:	leave		
	ret		
X1: jmp .L3 X2: subl \$1, %eax			
X1: addl \$1, -4(%rbp)			
X2: cmp1 -12(%rex), %			
X1: addl \$1, -8(%rbp) X2: jmp .L2			
Nessuna delle altre rispo	oste		
X1: subl \$1, %eax X2: cmpl -10(%rbp), %	6eax		
_		ermazio	oni è FALSA, quando si parla dell'ISA (Instruction Set
Definisce le diverse mod	dalità di acce	sso alla	n memoria (indirizzamento).
			CPU riconosce e sa eseguire.
Definisce il numero e tip			
_	_		
			outine (i.e., come e dove passare i parametri).
Definisce la sintassi e la	semantica de	che isti	uzione macciina.

Si consideri la seguente funzione nel linguaggio C chiamata "sort" il cui scopo e' quello di ordinare un array in ingresso. Tale funzione prende in ingresso un array v[] (espresso naturalmente come puntatore a long long int) e la lunghezza n del vettore.

Al suo interno la funzione esegue una chiamata ad un'altra funzione denominata "swap" che scambia il valore dell'elemento del vettore in ingresso in posizione k con l'elemento successivo k+1. Quale delle implementazioni in assembly RISC-V della funzione swap e' corretta tra quelle proposte?

```
void sort (long long int v[], long long int n){
  long long int i, j;
                                                                     ...
  for (i=0; i< n; i+=1) {
  for (j=i-1; j>=0 \&\& v[j] > v[j+1]; j-=1) {
                                                                     •••
    swap (v,j);
                                                                     jal
                                                                           swap
   }
                                                                     •••
                                                                     •••
}
                                                                     ...
void swap (long long int v[], long long int k){
                                                             swap:
  long long int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
                                                                     ...
                                                                     ...
  Nessuna delle altre risposte
        swap:
                slli
                       x7, x11, 4
                add
                       x7, x10, x7
                ld
                       x7, 8(x7)
                       x5, 0(x7)
                sd
                jalr
                       x0, 0(x1)
                srli
                       x7, x11, 3
        swap:
                       x7, x10, x7
                add
                       x5, 0(x7)
                ld
                ld
                       x6, 8(x7)
                sd
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                       x0, 0(x1)
                jalr
                slli
                       x7, x11, 3
        swap:
                add
                       x7, x10, x7
                ld
                       x5, 0(x7)
                ld
                       x6, 8(x7)
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                sd
                       x0, 0(x1)
                jalr
                slli
                       x7, x11, 3
        swap:
                ld
                       x5, 0(x10)
                ld
                       x6, 8(x10)
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                sd
```

add

x7, x10, x7

Rispondere alle domande a risposta multipla annerendo la casella corrispondente alla risposta corretta. Ogni domanda ha una ed una sola risposta corretta.

Cognome e Nome: Nome3 Cognome3
Numero di Matricola: 2
Domanda 1 Le librerie statiche:
 Possono essere utilizzate da programmi C, ma non da programmi scritti in Assembly. Sono effettivamente collegate al programma solo quando esso viene caricato (in caso di linking no lazy) o eseguito (in caso di lazy linking).
Nessuna delle altre risposte.
Sono utilizzate in fase di linking, ma non servono per il caricamento o l'esecuzione dell'eseguibili finale.
Vengono utilizzate dall'Assembler per implementare le macro/pseudo-istruzioni.
Domanda 2 A quale numero decimale corrisponde la cifra esadecimale $0xE7E80000$ codificata secondo lo standard IEEE754?
Corrisponde al decimale -1.5625000×2^{16}
Corrisponde al decimale -1.5546875×2^{18}
Corrisponde al decimale -1.8046875×2^{82}
Corrisponde al decimale -1.8125000×2^{80}
Nessuna delle altre risposte
Domanda 3 Si consideri una cache direct mapped grande $4KB$, con blocchi di 16 byte per blocco. I che blocco di cache è mappata la parola che sta in memoria all'indirizzo $0x1F164$?
Nel primo blocco libero.
Nel blocco numero 64.
Nessuna delle altre risposte.
Nel blocco numero 6.
Nel blocco numero 22.
Domanda 4 Inizialmente il contenuto di x5 = 0x00000000000000000 Quale valore conterrá x5 dopaver eseguito le seguenti istruzioni Assembly RISC-V? addi x6, x0, 0x000F slli x6, x6, 28 or x5, x5, x6
$x5 = 0000\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 1111\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$
$x_5 = 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1111_2$
$x_5 = 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1111\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000$
Nessuna delle altre risposte
x5 = 0000 0000 0000 0000 0000 0000 0000

X1: cmpl -12(%rbp), %eax X2: addl \$1, -4(%rbp)X1: addl \$1, -4(%rbp)X2: cmpl -12(%rcx), %eax X1: addl \$1, -8(%rbp) X2: cmpl -12(%rbp), %eax La funzione mathforfun prende in ingresso quattro argomenti e al suo interno svolge con questi delle operazioni matematiche ritornando un intero. Data la traduzione parziale in assembly intel qui sotto come completereste le righe X1 e X2 mancanti? scegliere una delle opzioni

Si consideri la seguente funzione nel linguaggio C chiamata "sort" il cui scopo e' quello di ordinare un array in ingresso. Tale funzione prende in ingresso un array v[] (espresso naturalmente come puntatore a long long int) e la lunghezza n del vettore.

Al suo interno la funzione esegue una chiamata ad un'altra funzione denominata "swap" che scambia il valore dell'elemento del vettore in ingresso in posizione k con l'elemento successivo k+1. Quale delle implementazioni in assembly RISC-V della funzione swap e' corretta tra quelle proposte?

```
void sort (long long int v[], long long int n){
  long long int i, j;
                                                                     ...
  for (i=0; i< n; i+=1) {
   for (j=i-1; j>=0 \&\& v[j] > v[j+1]; j-=1) {
                                                                     •••
    swap (v,j);
                                                                     jal
                                                                           swap
   }
                                                                     •••
                                                                     •••
}
                                                                     ...
void swap (long long int v[], long long int k){
                                                             swap:
  long long int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
                slli
                       x7, x11, 4
        swap:
                add
                       x7, x10, x7
                       x7, 8(x7)
                ld
                sd
                       x5, 0(x7)
                jalr
                       x0, 0(x1)
        swap:
                slli
                       x7, x11, 3
                add
                       x7, x10, x7
                ld
                       x5, 0(x7)
                ld
                       x6, 8(x7)
                sd
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                jalr
                       x0, 0(x1)
                slli
                       x7, x11, 3
        swap:
                ld
                       x5, 0(x10)
                ld
                       x6, 8(x10)
                       x6, 0(x7)
                sd
                sd
                       x5, 8(x7)
                add
                       x7, x10, x7
                       x7, x11, 3
        swap:
                srli
                       x7, x10, x7
                add
                       x5, 0(x7)
                ld
                       x6, 8(x7)
                ld
                       x6, 0(x7)
                sd
                       x5, 8(x7)
                sd
                jalr
                       x0, 0(x1)
   Nessuna delle altre risposte
```