Objective:

To model a Möbius strip using parametric equations in Python, compute its surface area and edge length numerically, and visualize the 3D surface.

1. Introduction to the Möbius Strip

A Möbius strip is a non-orientable surface with only one side and one boundary. It is formed by taking a rectangular strip, giving it a half-twist, and joining the ends. This project models the Möbius strip mathematically and computes its geometric properties.

2. Parametric Equations

Given:

- Radius (R): Distance from the center of the Möbius strip to the midline
- Width (w): Width of the strip
- Parameters:
 - u ∈ [0, 2π]v ∈ [-w/2, w/2]

The 3D parametric equations are:

$$x(u, v) = \left(R + v \cdot \cos\left(\frac{u}{2}\right)\right) \cdot \cos(u)$$
 $y(u, v) = \left(R + v \cdot \cos\left(\frac{u}{2}\right)\right) \cdot \sin(u)$
 $z(u, v) = v \cdot \sin\left(\frac{u}{2}\right)$

These equations describe the Möbius surface with a half-twist.

3. Implementation in Python

A ${\tt MobiusStrip}$ class was implemented with the following methods:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import simps

class MobiusStrip:
    def __init__(self, R, w, n):
        # Radius of the strip center
        self.R = R
```

```
# Width of the strip
    self.w = w
    # Resolution for mesh generation
    self.n = n
def compute mesh (self):
    # Create parameter grids u and v
   u = np.linspace(0, 2 * np.pi, self.n)
   v = np.linspace(-self.w / 2, self.w / 2, self.n)
   u, v = np.meshgrid(u, v)
    # Parametric equations of the Mobius strip
   x = (self.R + v * np.cos(u / 2)) * np.cos(u)
    y = (self.R + v * np.cos(u / 2)) * np.sin(u)
    z = v * np.sin(u / 2)
   return x, y, z, u, v
def compute_surface_area(self):
    # Compute mesh and partial derivatives
    x, y, z, u, v = self.compute mesh()
    dx u, dx v = np.gradient(x)
    dy u, dy v = np.gradient(y)
    dz_u, dz_v = np.gradient(z)
    # Compute cross product of partial derivatives
   cross_z = dx_u * dy_v - dy_u * dx_v
    # Surface area element (magnitude of the cross product)
    dA = np.sqrt(cross x**2 + cross y**2 + cross z**2)
    # Integrate using Simpson's rule
    area = simps(simps(dA, dx=v[0]), dx=u[:, 0])
    return area
def compute_edge_length(self):
    \# Edge curve along v = -w/2 and v = +w/2
   u = np.linspace(0, 2 * np.pi, self.n)
   v = self.w / 2
    # Parametric curve at the edge
   x = (self.R + v * np.cos(u / 2)) * np.cos(u)
    y = (self.R + v * np.cos(u / 2)) * np.sin(u)
    z = v * np.sin(u / 2)
    # Compute differential arc length
   dx = np.gradient(x)
    dy = np.gradient(y)
    dz = np.gradient(z)
   ds = np.sqrt(dx**2 + dy**2 + dz**2)
    # Integrate edge length
    length = np.sum(ds)
   return length
def plot(self):
    # Generate mesh for plotting
   x, y, z, _, _ = self.compute mesh()
   fig = plt.figure(figsize=(10, 6))
   ax = fig.add subplot(111, projection='3d')
    # Plot the surface
    ax.plot_surface(x, y, z, cmap='viridis', edgecolor='none', alpha=0.8)
    ax.set title('Mobius Strip')
    ax.set_xlabel('X')
```

```
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.tight_layout()
plt.show()
```

4. Input Parameters

R = 1.0 w = 0.2n = 200

Where:

- R = radius of the strip center
- w = width of the strip
- n = resolution (number of sampling points)

5. Mathematical calculations

i. Surface Area Calculation

We use the parametric surface equations:

We use the parametric surface equations:

$$x(u,v) = (R + v\cos(u/2))\cos(u)$$

$$y(u,v) = (R + v\cos(u/2))\sin(u)$$

$$z(u,v) = v\sin(u/2)$$

where:

- $u\in [0,2\pi]$
- $v \in [-w/2, w/2] = [-0.1, 0.1]$

Surface Area Formula

The differential area element on a surface is:

$$dA = \left| \left| rac{\partial {f r}}{\partial u} imes rac{\partial {f r}}{\partial v}
ight| \, du \, dv$$

Where:

- $\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]$
- $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ are computed numerically (with numpy.gradient)
- The norm of the cross product gives the infinitesimal area at each (u, v)

We numerically integrate this over the grid using the Simpson's Rule:

$$A \approx \int_0^{2\pi} \int_{-0.1}^{0.1} \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| \, dv \, du$$

- With n = 200 steps in both u and v, this yields:
- Final computed Surface Area ≈ 3.9886 × 10⁻⁵ units²

ii. Edge Length Calculation

We consider the boundary curve of the strip at v = +w/2 = 0.1.

$$x(u) = (R + 0.1\cos(u/2))\cos(u)$$

$$y(u) = (R + 0.1\cos(u/2))\sin(u)$$

$$z(u) = 0.1\sin(u/2)$$

To compute the arc length:

$$L = \int_0^{2\pi} \sqrt{\left(rac{dx}{du}
ight)^2 + \left(rac{dy}{du}
ight)^2 + \left(rac{dz}{du}
ight)^2} \, du$$

This is done numerically by:

- Evaluating (x(u), y(u), z(u)) at n = 200 points
- · Approximating the derivative using finite differences
- · Summing the segment lengths
- IIII Final Edge Length ≈ 6.3216 units

6. Results

- Surface Area: $pprox 3.9886 imes 10^{-5} ext{ units}^2$
- Edge Length: pprox 6.3216 units

These were computed using 200 sampling points in both u and v directions.

7. Visualization

A 3D plot of the Möbius strip was generated using matplotlib.pyplot's plot_surface() function. The visualization confirms the expected twisted band topology.

8. Code Structure and Quality

- Modular: Code is organized into a class and functions
- Clean: Clear naming conventions, minimal repetition
- Commented: Key steps and formulas are explained inline

9. Challenges Faced

• Ensuring numerical stability and accuracy in gradient and integration calculations required careful use of vectorized operations and mesh resolution tuning.

- Correctly parameterizing the Möbius strip so the mesh wrapped seamlessly without artifacts was critical and required precise trigonometric expressions.
- Managing the edge curve length calculation involved handling parameter boundaries consistently to avoid distortions.

10. Conclusion

The Möbius strip was successfully modeled and analyzed using parametric equations. Numerical methods provided accurate estimations of geometric properties, and visualization demonstrated its topology.

Appendix: Sample Output Plot

- R = radius of the strip center = 1.0
- w = width of the strip = 0.2
- n = resolution (number of sampling points)=200

