

Instructor: Dr. Priyanka D Pantula

problems

Assistant Professor, Indian Institute of Technology (ISM) Dhanbad

(Email: pantula@iitism.ac.in)

Approach in Supervised & Unsupervised Machine Learning

Supervised Learning

Supervised Learning

Decision Trees

What is a decision tree?

Predictive model in the tree form that maps items to its target value, starting from the root to leaf (conclusion) There are two types,

- Classification tree: When the final target value belongs to finite set (leaves are labels)
- Regression tree:
 When the final target
 value belongs to
 continuous set (different
 values based on
 features)

There are many algorithms like ID3, CART, CHAID etc.

Metrics for the above mentioned algorithms can be

- Gini Impurity (IG)
- Information entropy (IE)
- Variance reduction

What is a decision tree?

Decision Tree is a tree shaped diagram used to determine a course of action. Each branch of the tree represents a possible decision, occurrence or reaction

What is a decision tree?

Decision Tree is a tree shaped diagram used to determine a course of action. Each branch of the tree represents a possible decision, occurrence or reaction

Data Science

PROBLEM STATEMENT

TO CLASSIFY THE DIFFERENT TYPES OF ANIMALS BASED ON THEIR FEATURES USING DECISION TREE

THE DATASET IS LOOKING QUITE MESSY AND THE ENTROPY IS HIGH IN THIS CASE

TRAINING DATASET

COLOR	HEIGHT	LABEL
GREY	10	ELEPHANT
YELLOW	10	GIRAFFE
BROWN	3	MONKEY
GREY	10	ELEPHANT
YELLOW	4	TIGER

HOW TO SPLIT THE DATA

WE HAVE TO FRAME THE CONDITIONS THAT SPLIT THE DATA IN SUCH A WAY THAT THE INFORMATION GAIN IS THE HIGHEST

NOTE

GAIN IS THE MEASURE OF DECREASE IN ENTROPY AFTER SPLITTING

FORMULA FOR ENTROPY

$$\sum_{i=1}^{k} P(valuei). log_2(P(value_i))$$

THE ENTROPY FOR THE CURRENT DATASET

LET'S USE THE FORMULA

 $-\sum_{i=1}^{k} P(valuei). log_2(P(value_i))$

ENTROPY = $(\frac{3}{8}) \log_2(\frac{3}{8}) + (\frac{2}{8}) \log_2(\frac{2}{8}) + (\frac{1}{8}) \log_2(\frac{1}{8}) + (\frac{2}{8}) \log_2(\frac{2}{8})$

Entropy = 1.904

WE WILL CALCULATE THE ENTROPY OF THE DATASET SIMILARLY AFTER EVERY SPLIT TO CALCULATE THE GAIN GAIN CAN BE
CALCULATED BY
FINDING THE
DIFFERENCE OF THE
SUBSEQUENT ENTROPY
VALUES AFTER SPLIT

NOW WE WILL TRY TO CHOOSE A CONDITION THAT GIVES US THE HIGHEST GAIN

WE WILL DO THAT BY SPLITTING THE DATA USING EACH CONDITION AND CHECKING THE GAIN THAT WE GET OUT THEM.

THE CONDITION THAT GIVES US THE HIGHEST GAIN WILL BE USED TO MAKE THE FIRST SPLIT

CONDITIONS

COLOR== YELLOW?

HEIGHT>=10

COLOR== BROWN?

COLOR==GREY

DIAMETER<10

TRAINING DATASET

HEIGHT	LABEL
10	ELEPHANT
10	GIRAFFE
3	MONKEY
10	ELEPHANT
4	TIGER
	10 10 3 10

WE SPLIT THE DATA

COLOR == YELLOW?

TRUE

FALSE

THE ENTROPY AFTER SPLITTING HAS DECREASED CONSIDERABLY

26

HOWEVER WE STILL
NEED SOME
SPLITTING AT BOTH
THE BRANCHES TO
ATTAIN AN ENTROPY
VALUE EQUAL TO
ZERO

SINCE EVERY BRANCH NOW CONTAINS SINGLE LABEL TYPE, WE CAN SAY THAT THE ENTROPY IN THIS CASE HAS REACHED THE LEAST VALUE

THIS TREE CAN NOW
PREDICT ALL THE
CLASSES OF ANIMALS
PRESENT IN THE DATASET
WITH 100% ACCURACY

Metric for the decision tree

Let us consider Gini impurity as the metric,

Gini Impurity (GI) =
$$1 - \sum_{i=1}^{m} f_i^2$$

Gini split index = $GI(s) - p_1 * GI(s_1) - p2* GI(s_2)$

Information entropy (IE) = $-\sum_{i=1}^{m} f_i * \log(f_i)$

where f_i = fraction of class label i, s - parent node, s_1 and s_2 are child nodes $p_1 \& p_2$ are split fractions

Important rules for constructing trees

- Every parent node of higher Gini impurity / information entropy is split based on features in order to lower its Gini impurity (or information entropy or variance reduction in the case of regression trees).
- Gini impurity of pure sets = 0
- The split which corresponds to higher Gini split index is always preferred.
- Example: If split index 1 = 0.5 and split index 2 = 0.25, then split corresponding to split index 1 will be chosen.

Data Science

Describing the metric through an example

- Consider the following classification problem
- Discriminate between three different species of Iris flower
- The training data contains 49-setosa, 50versicolor and 50- virginica species
- The features that are available are sepal length, sepal width, petal length and petal width
- The ranges for these feature values (in cm) are

	setosa	versicolor	virginica
S.L	[4.3,5.8]	[4.9,7]	[4.9,7.9]
S.W	[2.3,4.4]	[2,3.4]	[2.2,3.8]
P.L	[1,1.9]	[3,5.1]	[4.5,6.9]
P.W	[0.1,0.6]	[1,1.8]	[1.4,2.5]

Construction of nodes (level I)

The training data contains 49-setosa, 50-versicolor and 50- virginica species, the root node could start with versicolor

Possibility I

	setosa	versicolor	virginica
S.L	[4.3,5.8]	[4.9,7]	[4.9,7.9]
S.W	[2.3,4.4]	[2,3.4]	[2.2,3.8]
P.L	[1,1.9]	[3,5.1]	[4.5,6.9]
P.W	[0.1,0.6]	[1,1.8]	[1.4,2.5]

By choosing petal length as splitting feature,

2.4 is considered as the mid point and the splitting criteria.

In doing so we can split setosa into a completely pure data set.

$$GI(s) = 1 - (49/149)^2 - (50/149)^2 - (50/149)^2 = 0.66$$

$$GI(sI) = 1 - (49/49)^2 = 0$$

$$GI(s2) = 1 - (50/100)^2 - (50/100)^2 = 0.5$$

Gini split index =
$$0.66 - (49/149)(0) - (100/149)(0.5) = 0.324$$

where f_i = fraction of class label i, s – parent node, s_1 and s_2 are child nodes, p_1 & p_2 are split fractions

Construction of node (level I) contd.

Possibility 2: What happens if we split based on sepal length,

Possibility 2

	setosa	versicolor	virginica
S.L	[4.3,5.8]	[4.9,7]	[4.9,7.9]
S.W	[2.3,4.4]	[2,3.4]	[2.2,3.8]
P.L	[1,1.9]	[3,5.1]	[4.5,6.9]
P.W	[0.1,0.6]	[1,1.8]	[1.4,2.5]

By choosing sepal length as splitting feature,

It is observed that range values overlap, so in this case consider the edge value that corresponds to high split index. Therefore split value can be 5.8 or 4.9

$$GI(s) = I - (49/149)^{2} - (50/149)^{2} - (50/149)^{2} = 0.66$$

$$GI(sI) = I - (49/73)^{2} - (21/73)^{2} - (3/73)^{2} = 0.4650$$

$$GI(s2) = I - (29/76)^{2} - (47/76)^{2} = 0.4720$$

Gini split index = 0.66 - (73/149)(0.465) - (76/149)(0.472) = 0.1915

If split value is S.L = 4.9, the split index = 0.0746

Construction of nodes (level 2)

Considering all such possible splitting, for level I, we identify that splitting according to P.L is the best

Level 2

By choosing petal width as splitting feature,

It is observed that range values overlap, so in this case consider the edge value that corresponds to high split index. Therefore split value can be 1.8 or 1.4

$$GI(s) = I - (50/100)^2 - (50/100)^2 = 0.5$$

$$GI(s1) = 1 - (49/54)^2 - (5/54)^2 = 0.168$$

$$GI(s2) = I - (I/46)^2 - (45/46)^2 = 0.0425$$

Gini split index =
$$0.5 - (54/100)(0.168) - (46/100)(0.0425) = 0.3897$$

More deeper tree

Random Forests

What is a random forest?

- One of the ensemble techniques that bags decision trees from multiple subsets of given data.
- It is used for regression / classification problems.
- It aims to reduce overfitting to the training data set.
- The algorithm consists of 2 parts:
 - Split the data set into many subsets based on its features and then build a decision tree classifier
 - Bag all the classifiers obtained from every subset and classify the test data
 - Based on voting or average method classify the data

Data Science

Real Life Analogy

- A student named X wants to choose a course after his 10+2, and he is confused about the choice of course based on his skill set.
- So he decides to consult various people like his cousins, teachers, parents, degree students, and working people.
- He asks them varied questions like why he should choose, job opportunities with that course, course fee, etc. Finally, after consulting various people about the course he decides to take the course suggested by most of the people.

Example continued (subset 1)

Considering only a subset of given training data,

Sepal.Length	Sepal.Width	Petal.Length	Species
5.1	3.5	1.4	setosa
4.9	3	1.4	setosa
4.7	3.2	1.3	setosa
4.6	3.1	1.5	setosa
6.8	3.2	5.9	v irginic a
6.7	3.3	5.7	v irginic a
6.7	3	5.2	v irginic a
6.3	2.5	5	v irginic a
6.5	3	5.2	v irginic a
6.2	3.4	5.4	v irginic a
5.9	3	5.1	v irginic a

Test data = [S.L = 4.9, S.W = 3, P.L = 1.4] Prediction of given test data is "Setosa"

Example continued (subset 2)

Considering only a subset of given training data,

Sepal.Length	Petal.Length	Species
5.1	1.4	setosa
4.9	1.4	setosa
4.7	1.3	setosa
4.6	1.5	setosa
	•	•
	•	•
6.8	5.9	virginica
6.7	5.7	virginica
6.7	5.2	virginica
6.3	5	virginica
6.5	5.2	virginica
6.2	5.4	virginica
5.9	5.1	virginica

Test data = [S.L = 4.9, P.L = 1.4] Prediction of given test data is "Setosa"

Example continued (subset 3)

Considering only a subset of given training data,

Petal.Length	Petal.Width	Species
1.4	0.2	setosa
1.4	0.2	setosa
1.3	0.2	setosa
1.5	0.2	setosa
	•	•
	•	•
5.9	2.3	virginica
5.7	2.5	virginica
5.2	2.3	virginica
5	1.9	virginica
5.2	2	virginica
5.4	2.3	virginica
5.1	1.8	virginica

Test data = [P.L = 1.4, P.W = 0.2]

Prediction of given test data is "Setosa"

Final Thoughts

Random forest = function(given data, subset1,..,subset 3)

- The final decision observed from 3 different subsets using gini impurity split methods are {"setosa", "setosa", "setosa"}
- Therefore according to voting method, random forest function classifies the test data as "Setosa"

Data Science

Example

'n' number of samples are taken from the fruit basket and an individual decision tree is constructed for each sample.

The majority decision tree gives output as an apple. So, the final output is taken as an apple.

47

Performance measures

Measures of accuracy

Terminology

- \circ $TP \rightarrow$ true positives, $TN \rightarrow$ true negatives,
- \circ $FP \rightarrow$ false positives, $FN \rightarrow$ false negatives
- $\circ N = TP + TN + FP + FN$
- TP Correct identification of positive labels
- TN Correct identification of negative labels
- FP Incorrect identification of positive labels
- FN Incorrect identification of negative labels

Confusion matrix

		True condition	
	Total population	Condition positive	Condition negative
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error
	Predicted condition negative	False negative, Type II error	True negative

Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Actual Values

True negative

A picture of a pizza, correctly labeled as not-hotdog.

False negative

A picture of a hotdog, incorrectly labeled as not hotdog.

False positive

A picture of a dog, incorrectly labeled as hotdog.

True positive

A picture of a hotdog, correctly labeled hotdog.

51

Example

Measures of accuracy

Accuracy: Overall effectiveness of a classifier

$$\circ A = \frac{TP + TN}{N}$$

- Maximum value that accuracy can take is 1
- This happens when the classifier exactly classifies two groups (i.e., FP = 0 and FN = 0)
- Remember
 - \circ Total number of true positive labels = TP+FN
- Similarly
 - \circ Total number of true negative labels = TN+FP

Some Issues

- Accuracy is a good measure when the classes in the data are nearly balanced.
 - Example: All the classes of flowers in iris have same number of data points.
- Accuracy is useful when the target class is **well balanced** but is not a good choice for the unbalanced classes.
 - Imagine the scenario where we had 99 images of the dog and only I image of a cat present in our training data. Then our model would always predict the dog, and therefore we got 99% accuracy.
 - In reality, Data is always imbalanced for example Spam email, credit card fraud, and medical diagnosis.
 - Hence, if we want to do a better model evaluation and have a full picture of the model evaluation, other metrics such as recall and precision should also be considered.

Data Science

Example

- Now, let's consider 50,000 passengers travel per day on an average. Out of which, 10 are actually COVID positive.
- One of the easy ways to increase accuracy is to classify every passenger as COVID negative. So our confusion matrix looks like:

Accuracy for this case will be:

Accuracy = 49,990/50,000 = 0.9998 or 99.98%.

Impressive!!! Right?

Well, does that really solve our purpose of classifying COVID positive passengers correctly?

Not labeling 10 of actually positive is a lot more expensive.

Accuracy in this context is a terrible measure.

Recall (Sensitivity or True Positive rate)

Wait, Wait!! Before considering recall as a good measure for evaluation. Just think: Is recall alone good enough to evaluate the performance of a classification model?

 Out of all positive passengers what fraction we identified correctly. Going back to our previous strategy of labeling every passenger as negative → will give recall of Zero.

Recall =
$$0/10 = 0$$

• So, in this context, Recall is a good measure. It says that the terrible strategy of identifying every passenger as COVID negative leads to zero recall. And we want to maximize the recall.

Some Issues

- Consider another scenario of labeling every passenger as COVID positive.
- Everybody walks into the airport and the model just labels them as positive.
- Labeling every passenger as positive is bad in terms of the amount of cost that needs to be spent in actually
 investigating each one before they board the flight.

Positive Negative TP FP 50,000 - 10 = 49,990 FN = 0 TN = 0

- Recall = 10/(10+0) = 1
- That's a huge problem. So concluding, it turns out that accuracy was a bad idea because labeling everyone as negative can increase the accuracy but hoping Recall will be a good measure in this context but then realized that labeling everyone as positive will increase recall as well.
- So recall independently is not a good measure.

Precision

Considering our second bad strategy of labeling every passenger as positive, the precision would be :

Precision =
$$10/(10 + 49990) = 0.0002$$

- While this bad strategy has a good recall value of 1 but it has a terrible precision value of 0.0002 (we want maximum precision).
- This clarifies that recall alone is not a good measure, we need to consider precision value (also vice-versa).

Data Science

Prediction Measures

- Sensitivity (Recall): Effectiveness of a classifier to identify positive labels
 - $S_e = \frac{TP}{TP + FN}$ (true positive rate)
- Specificity: Effectiveness of a classifier to identify negative labels

$$\circ S_p = \frac{TN}{FP + TN}$$

- Both S_e and S_p lie between 0 and 1, 1 is an ideal value for each of them
- Precision
 - Fraction of the true positives in the predicted positives
 - Precision = $\frac{TP}{TP + FP}$
 - Ratio of number of true positives to the number of predicted positives

F₁ score

• The balance between the precision and sensitivity/recall.

• F_1 score = 2 * Precision * Recall / (Precision + Recall)

• The range for F₁ score is [0,1].

• The higher the **F**₁ **score** the better, with 0 being the worst possible and 1 being the best.

Data Science

Other Measures of accuracy

Observed accuracy

$$\circ OA = \frac{a+d}{N}$$

Expected accuracy

$$\circ EA = \frac{(a+c)(a+b)+(b+d)(c+d)}{N}$$

• Kappa =
$$\frac{\frac{(a+d)}{N} - \left(\frac{(a+c)(a+b) + (b+d)(c+d)}{N}\right)}{\left(1 - \left(\frac{(a+c)(a+b) + (b+d)(c+d)}{N}\right)\right)}$$

• where a, b, c and d are TP, FP, FN and TN respectively

ROC

- ROC –An acronym for Receiver Operating Characteristics
- Originally developed and used in signal detection theory
- ROC graph:
 - Sensitivity as a function of specificity
 - sensitivity (Y-axis) and 1 —specificity (X-axis)

63

ROC

- ROC can be used to
 - See the classifier performance at different threshold levels (from 0 to 1)
 - AUC- Area under the ROC
 - An area of 1 represents a perfect test; an area of 0.5 represents a worthless model.
 - .90 1 = excellent
 - .80 .90 = good
 - .70 .80 = fair
 - .60 .70 = poor
 - AUC < 0.5, check whether your labels are marked in opposite

1 –specificity

ROC

- ROC can be used to
 - Compare different classifiers at one threshold or overall threshold levels
 - Performance
 - Model 3 > Model 2 > Model 1

1 –specificity

```
peration == "MIRROR_X":
             ...object
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"|
irror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod_use y = False
  Irror mod.use z = True
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.actim
  "Selected" + str(modifier
   ata.objects[one.name].sel
  Int("please select exaction
```

THANK YOU