Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R Modulo 8: Modelos multinivel

CEPAL - Unidad de Estadísticas Sociales

Lectura de la base

Análisis de encuestas de hogares con R

encuesta <- readRDS("../Data/encuesta.rds")</pre>

Creando theme_cepal

Análisis de encuestas de hogares con R

Seleccionando una muestra de seis estratos

Income	Expenditure	Stratum	Sex	Region	Zone
697.3	296.1	idStrt017	Male	Norte	Rural
697.3	296.1	idStrt017	Female	Norte	Rural
697.3	296.1	idStrt017	Male	Norte	Rural
697.3	296.1	idStrt017	Female	Norte	Rural
526.8	294.8	idStrt017	Male	Norte	Rural
526.8	294.8	idStrt017	Female	Norte	Rural
526.8	294.8	idStrt017	Female	Norte	Rural
526.8	294.8	idStrt017	Male	Norte	Rural
526.8	294.8	idStrt017	Male	Norte	Rural
526.8	294.8	idStrt017	Female	Norte	Rural

Análisis de encuestas de hogares con R

Modelo lineal sin considerar el efecto de los estratos.

Análisis de encuestas de hogares con R

Estimando un intercepto aleatorio

```
B1 <- coef(lm(Income ~ Expenditure, data = encuesta_p
(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
   summarise(B0 = coef(lm(Income ~ 1))[1]) %>%
   mutate(B1 = B1))
```

Stratum	B0	B1
idStrt002	496.9	1.637
idStrt010	584.7	1.637
idStrt015	660.6	1.637
idStrt017	408.3	1.637
idStrt022	517.9	1.637
idStrt028	492.1	1.637

Estimando una pendiente aleatoria para cada estrato

Estimando una pendiente aleatoria para cada estrato

BO <- coef(lm(Income ~ Expenditure)

Stratum	B1	B0
idStrt002	1.727	29.56
idStrt010	2.303	29.56
idStrt015	1.837	29.56
idStrt017	1.672	29.56
idStrt022	1.478	29.56
idStrt028	1.495	29.56

Análisis de encuestas de hogares con R

Creando el grafico con pendientes aleatorias

Análisis de encuestas de hogares con R

Creando un gráfico con intercepto y pendientes aleatorias.

Análisis de encuestas de hogares con R

Dos tipos de índices son relevantes en los análisis multinivel:

■ Los coeficientes de regresión, generalmente denominados como los parámetros fijos del modelo.

Cualquier análisis de regresión multinivel siempre debe comenzar con el cálculo de las estimaciones de varianza de Nivel 1 y Nivel 2 para la variable dependiente.

Análisis de encuestas de hogares con R

Dos tipos de índices son relevantes en los análisis multinivel:

- Los coeficientes de regresión, generalmente denominados como los parámetros fijos del modelo.
- Las estimaciones de la varianza, generalmente denominadas parámetros aleatorios del modelo.

Cualquier análisis de regresión multinivel siempre debe comenzar con el cálculo de las estimaciones de varianza de Nivel 1 y Nivel 2 para la variable dependiente.

Análisis de encuestas de hogares con R

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

■ La varianza dentro dentro del estrato

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R

■ El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

- La varianza dentro dentro del estrato
- la varianza entre los estratos.

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Análisis de encuestas de hogares con R Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

■ y_{ij} = Los ingresos de la persona i en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Análisis de encuestas de hogares con R Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Análisis de encuestas de hogares con R Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- y_{ij} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.
- lacksquare El residual de la persona i en el estrato j.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Análisis de encuestas de hogares con R Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- y_{ii} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.
- ϵ_{ij} El residual de la persona i en el estrato j.
- $= \gamma_{00} = El intercepto en general.$

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^{2}\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Análisis de encuestas de hogares con R Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- y_{ii} = Los ingresos de la persona i en el estrato j.
- β_{0j} = El intercepto en el estrato j.
- \bullet ϵ_{ij} El residual de la persona i en el estrato j.
- \bullet $\tau_{0i} =$ Efecto aleatorio para el intercepto.

donde, $au_{0j} \sim N\left(0, \sigma_{ au}^{2}\right)$ y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_\tau^2}{\sigma_\tau^2 + \sigma_\epsilon^2}$$

Modelos multinivel en muestras complejas.

Análisis de encuestas de hogares con R

> Aunque existe evidencia suficiente de que las ponderaciones de muestreo deben usarse en el modelado multinivel (MLM) para obtener estimaciones no sesgadas¹, y también sobre cómo deben usarse estas ponderaciones en los análisis de un solo nivel, hay poca discusión en la literatura sobre qué y cómo usar pesos de muestreo en MLM.

¹Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

Modelos multinivel en muestras complejas.

- Aunque existe evidencia suficiente de que las ponderaciones de muestreo deben usarse en el modelado multinivel (MLM) para obtener estimaciones no sesgadas¹, y también sobre cómo deben usarse estas ponderaciones en los análisis de un solo nivel, hay poca discusión en la literatura sobre qué y cómo usar pesos de muestreo en MLM.
- Actualmente, diferentes autores recomiendan cuatro enfoques diferentes sobre cómo usar los pesos de muestreo en modelos jerárquicos.

¹Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

Análisis de encuestas de hogares con R

■ Pfefermann et al. (1998) y Asparouhov (2006) aconsejan utilizar un enfoque de pseudomáxima verosimilitud para calcular estimaciones dentro y entre los diferentes niveles utilizando la técnica de maximización de mínimos cuadrados generalizados ponderados por probabilidad (PWGLS) para obtener estimaciones no sesgadas.²³

²Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.

³Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.

Análisis de encuestas de hogares con R

■ Rabe-Hesketh y Skrondal (2006) proporcionan técnicas de maximización de expectativas para maximizar la pseudoverosimilitud⁴

⁴Asparouhov, T., & Muthen, B. (2006, August). Multilevel modeling of complex survey data. In Proceedings of the joint statistical meeting in Seattle (pp. 2718-2726).

Estimación de pseudo máxima verosimilitud

Análisis de encuestas de hogares con R

La función de log-verosimilitud para la población esta dada por:

$$L_{U}(\theta) = \sum_{i \in U} \log [f(\mathbf{y}_{i}; \theta)]$$

El estimador de máxima verosimilitud esta dada por:

$$\frac{\partial L_{U}(\theta)}{\partial \theta} = 0$$

La dificultad que encontramos aquí, es transferir los pesos muéstrales a los niveles inferiores, por ejemplo UPMs -> Stratum.

Estimación de pseudo máxima verosimilitud

Análisis de encuestas de hogares con R

Pfeffermann et al. (1998) argumentaron que debido a la estructura de datos agrupados, ya no se asume que las observaciones sean independientes y que la probabilidad logarítmica se convierta en una suma entre los elementos de nivel uno y dos en lugar de una simple suma de las contribuciones de los elementos.

Modelo Nulo

Análisis de encuestas de hogares con R

asuma que la información dentro del estrato esta definida por el intercepto.

Ajuste de pesos (alternativa a los Modelo Qweighted)

Análisis de encuestas de hogares con R Estimado el modelo con Qweighted

fep	q_wei	fep2
150266	2602	260

Comparando los pesos.

```
ggplot(encuesta, aes(x = wk2, y = wk3)) +
  geom_point() + theme_bw() +
  labs(x = "q-weighted", y = "Alternativa")
```

Comparando los pesos.

Análisis de encuestas de hogares con R

La estimación del modelo se hace con la función lmer de la libreria *lmer*

Análisis de encuestas de hogares con R

Comparando los modelos obtenidos.

	Intercept Mod 1	Intercept Mod 2
idStrt001	630.7	630.1
idStrt002	505.4	506.2
idStrt003	481.3	484.7
idStrt004	959.6	954.5
idStrt005	514.6	515.9
idStrt006	433.8	438.2
idStrt007	467.5	470.5
idStrt008	371.6	376.4
idStrt009	207.6	218.1
idStrt010	591.6	592.1
idStrt011	588.8	588.3
idStrt012	352.0	361.2

```
mod_null
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Income ~ (1 | Stratum)
##
     Data: encuesta
## Weights: wk2
## REML criterion at convergence: 39356
## Random effects:
## Groups Name Std.Dev.
## Stratum (Intercept) 281
## Residual 408
## Number of obs: 2605, groups: Stratum, 119
## Fixed Effects:
## (Intercept)
##
          584
```

Análisis de encuestas de hogares con R

Correlación intraclases

#library(sistats)

```
sjstats::icc(mod_null)

## # Intraclass Correlation Coefficient
##

## Adjusted ICC: 0.322
## Unadjusted ICC: 0.322
```

Análisis de encuestas de hogares con R Predicción dentro de los estrato es constante.

	Pred	Income	Stratum
1	630.7	409.87	idStrt001
6	630.7	823.75	idStrt001
10	630.7	90.92	idStrt001
13	630.7	135.33	idStrt001
18	630.7	336.19	idStrt001
22	630.7	1539.75	idStrt001

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R

Si la predicción es correcta se espera estar sobre la linea de 45°


```
encuestas de hogares con R  \textit{Ingreso}_{ij} = \\ \mathsf{donde} \ \beta_{1j} \ \mathsf{esta} \ \mathsf{dado} \ \mathsf{como} \\ \beta_{1j} = \gamma_{10}
```

Análisis de

Consideremos el siguiente modelo

```
\beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
mod Int Aleatorio <- lmer(
  Income ~ Expenditure + (1 | Stratum),
  data = encuesta, weights = wk2)
sjstats::icc(mod_Int_Aleatorio)
## # Intraclass Correlation Coefficient
##
##
        Adjusted ICC: 0.196
##
     Unadjusted ICC: 0.102
```

 $Ingreso_{ii} = \beta_0 + \beta_{1i} Gasto_{ii} + \epsilon_{ii}$

Análisis de encuestas de hogares con R

Para cada estrato se tiene las siguientes estimaciones de eta_{1j}

coef(mod_Int_Aleatorio)\$Stratum %>% slice(1:8L)

	(Intercept)	Expenditure
idStrt001	248.257	1.202
idStrt002	152.988	1.202
idStrt003	139.765	1.202
idStrt004	292.650	1.202
idStrt005	-42.165	1.202
idStrt006	46.766	1.202
idStrt007	2.841	1.202
idStrt008	103.346	1.202

Análisis de encuestas de hogares con R

Organizando los coeficientes para el gráfico.

Predicción del modelo

	Pred	Income	Stratum
1	664.4	409.87	idStrt001
6	719.6	823.75	idStrt001
10	337.3	90.92	idStrt001
13	348.9	135.33	idStrt001
18	560.9	336.19	idStrt001
22	890.5	1539.75	idStrt001

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R

La predicción esta más cerca a la linea de 45 grados.


```
Análisis de
encuestas de
                                                      Ingreso_{ii} = \beta_{0i} + \beta_{1i} Gasto_{ii} + \epsilon_{ii}
hogares con R
                                                       \beta_{0i} = \gamma_{00} + \gamma_{01} Stratum_i + \tau_{0i}
                                                       \beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
```

```
mod Pen Aleatorio <- lmer(
  Income ~ Expenditure + (1 + Expenditure | Stratum),
```

data = encuesta, weights = wk2) sjstats::icc(mod_Pen_Aleatorio)

```
## # Intraclass Correlation Coefficient
##
```

Análisis de encuestas de hogares con R

coef(mod_Pen_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	-232.75	2.7843
idStrt002	30.20	1.6268
idStrt003	152.46	1.1621
idStrt004	229.66	1.3471
idStrt005	-96.03	1.2946
idStrt006	31.79	1.2003
idStrt007	38.05	1.0764
idStrt008	168.67	0.8971
idStrt009	32.73	0.7396
idStrt010	71.10	1.9112

```
Coef Estimado <- inner join(
  coef(mod Pen Aleatorio)$Stratum %>%
       add rownames(var = "Stratum"),
encuesta plot %>% select(Stratum) %>% distinct())
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom_abline(data = Coef_Estimado,
              mapping=aes(slope=Expenditure,
                          intercept=`(Intercept)`,
                          colour = Stratum))+
  theme cepal()
```


Predicción del modelo

	Pred	Income	Stratum
1	731.5694	409.87	idStrt001
6	859.3694	823.75	idStrt001
10	-26.5154	90.92	idStrt001
13	0.5481	135.33	idStrt001
18	491.6731	336.19	idStrt001
22	1255.2708	1539.75	idStrt001

Scaterplot de y vs \hat{y}

Análisis de encuestas de hogares con R

$$\textit{Ingreso}_{ij} = eta_{0j} + eta_{1j} \textit{Gasto}_{ij} + eta_{2j} \textit{Zona}_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \gamma_{02} \mu_j + \tau_{0j}$$

$$eta_{1j} = \gamma_{10} + \gamma_{11} \mathit{Stratum}_j + \gamma_{12} \mu_j + au_{1j}$$
 $eta_{2j} = \gamma_{20} + \gamma_{21} \mathit{Stratum}_j + \gamma_{12} \mu_j + au_{2j}$

donde μ_j es el gasto medio en el estrato j.

```
Análisis de
          media_estrato <- encuesta %>% group_by(Stratum) %>%
encuestas de
hogares con R
            summarise(mu = mean(Expenditure))
          encuesta <- inner_join(encuesta,</pre>
                                    media_estrato, by = "Stratum")
          mod Pen Aleatorio2 <- lmer(</pre>
            Income ~ 1 + Expenditure + Zone + mu +
               (1 + Expenditure + Zone + mu | Stratum ),
               data = encuesta, weights = wk2)
          sjstats::icc(mod Pen Aleatorio2)
          ## [1] NA
```

(tab pred <- data.frame(Pred = predict(mod_Pen_Aleato</pre>

Stratum = encuesta\$Stratum)) %>% distinct(

Income = encuesta\$Income,

Scaterplot de y vs \hat{y}


```
Análisis de
encuestas de
hogares con R
```

as.data.frame(model.matrix(mod_Pen_Aleatorio2)) %>%
 distinct()

Análisis de encuestas de hogares con R

Stratum

```
(Coef_Estimado <- inner_join(
  coef(mod_Pen_Aleatorio2)$Stratum %>%
    add_rownames(var = "Stratum"),
  encuesta_plot %>% select(Stratum, Zone) %>% distinc
))
```

Juliatani	(micrecpt)	Ехрепание	Zoncorban	iiiu	
idStrt002	51.05	1.592	28.98	-0.1221	Url
idStrt010	95.38	1.980	147.67	-0.6678	Url
idStrt015	36.61	1.749	-154.18	-0.0318	Ru
idStrt017	55.41	1.577	43.06	-0.1365	Ru
idStrt022	41.23	1.133	26.51	0.2705	Url
idStrt028	50.22	1.568	-81.52	0.0029	Url

(Intercent) Expenditure Zonellrhan

mu

Análisis de encuestas de hogares con R

```
(Coef_Estimado %<>% inner_join(
  media_estrato, by = "Stratum"))
```

Stratum	(Intercept)	Expenditure	${\sf ZoneUrban}$	mu.x	Zone	mu.y
idStrt002	51.05	1.592	28.98	-0.1221	Urban	286.2
idStrt010	95.38	1.980	147.67	-0.6678	Urban	255.8
idStrt015	36.61	1.749	-154.18	-0.0318	Rural	357.0
idStrt017	55.41	1.577	43.06	-0.1365	Rural	244.8
idStrt022	41.23	1.133	26.51	0.2705	Urban	524.0
idStrt028	50.22	1.568	-81.52	0.0029	Urban	337.1

El modelo para el estrato *idStrt001* viene dado por:

$$\hat{y}_{ij} = 154.4 + 1.7418$$
Expenditure $_{ij} + 77.353$ Zone $_{ij} + (-0.6954)$ μ_{j}

$$\hat{y}_{ij} = 154.4 + 1.7418$$
Expenditure $+77.353$ (0) $+(-0.6954)$ (255.2)
$$\hat{y}_{ij} = -23.07 + 1.7418$$
Expenditure

Stratum	Zone	В0	Expenditure
idStrt002	Urban	45.08	1.592
idStrt010	Urban	72.24	1.980
idStrt015	Rural	25.26	1.749
idStrt017	Rural	21.99	1.577
idStrt022	Urban	209.51	1.133
idStrt028	Urban	-30.34	1.568

```
Análisis de
          ggplot(data = encuesta_plot,
encuestas de
hogares con R
                  aes(y = Income, x = Expenditure,
                      colour = Stratum)) +
            geom_jitter() +
            theme(legend.position = "none",
                   plot.title = element_text(hjust = 0.5)) +
            facet_grid( ~ Zone) +
            geom abline(
              data = Coef Estimado,
              mapping = aes(
                 slope = Expenditure,
                 intercept = B0,
                 colour = Stratum
            theme_cepal()
```


Introducción a los modelos logístico multinivel.

Análisis de encuestas de hogares con R

Sea la variable $y_{ij}=1$ si el individuo i en el estrato j esta por enciam de la linea de pobreza y $y_{ij}=0$ en caso contrario, la variable y_{ij} se puede modelar mediante el modelo logístico:

$$Pr(y_{ij}) = Pr(y_{ij} = 1 \mid x_i : \beta) = \frac{1}{1 + \exp(-\beta_j \mathbf{x}_{ij})}$$

ó

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = \beta_j \mathbf{x}_{ij}$$

donde $\pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta)$.

```
Análisis de
encuestas de
hogares con R
```

```
encuesta_plot <- encuesta %>%
  dplyr::select(Stratum, Expenditure) %>% unique() %>%
  group_by(Stratum) %>%
  summarise(sd = sd(Expenditure)) %>%
  arrange(desc(sd)) %>% dplyr::select(-sd) %>%
  slice(1:20L) %>%
  inner join(encuesta) %>%
  dplyr::select(Poverty, Expenditure, Stratum,
         Sex, Region, Zone)
encuesta plot %>% slice(1:15L)
```

NotPoor

NotPoor

encuestas de	Poverty	Expenditure	Stratum	Sex	Region	Zone
hogares con R	NotPoor	3367.5	idStrt039	Male	Sur	Urban
	NotPoor	3367.5	idStrt039	Female	Sur	Urban
	NotPoor	3367.5	idStrt039	Male	Sur	Urban
	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Female	Sur	Urban
	NotPoor	312.1	idStrt039	Male	Sur	Urban
	NotPoor	226.5	idStrt039	Male	Sur	Urban
	NotPoor	226.5	idStrt039	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	616.3	idStrt047	Female	Sur	Urban
	NotPoor	1385.7	idStrt047	Male	Sur	Urban

idStrt047

idStrt047

1385.7

1385 7

Female

Female

Sur

Sur

Urban

Urhan

```
encuesta <- encuesta %>% mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0))
encuesta plot %<>% mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0))
ggplot(data = encuesta,
       aes(y = pobreza, x = Expenditure)) +
  geom_point() +
  geom_smooth(
    formula = y~x, method = "glm",
    se=FALSE,
    method.args = list(family=binomial(link = "logit"
  theme bw()
```


Análisis de

```
auxLogit <- function(x,b0,b1){</pre>
encuestas de
hogares con R
             1/(1+\exp(-(b0+b1*x)))
           }
           B0 = coef(glm(pobreza~1, data = encuesta_plot,
                family=binomial(link = "logit")))
```

<pre>(coef_Mod <- encuesta_plot %>% group_by(Stratum) %></pre>
<pre>summarise(B1 = coef(glm(pobreza ~ -1 + Expenditu</pre>
<pre>family=binomial(link = "logit")))) %</pre>
<pre>mutate(B0 = B0)) %>% slice(1:6L)</pre>

idStrt020 -0.0010

idStrt007

idStrt022

: -ICT -- TOO 4

<pre>(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%</pre>
<pre>summarise(B1 = coef(glm(pobreza ~ -1 + Expenditure</pre>
<pre>family=binomial(link = "logit")))) %>%</pre>
<pre>mutate(B0 = B0)) %>% slice(1:6L)</pre>
Stratum B1 B0

-0.0189

-0.0057

0.0000

-0.8782

-0.8782

-0.8782

0700

```
# Creando las variables respuesta
pred_logit <- coef_Mod %>%
  mutate(Expenditure = list(seq(0,2000, length =100))
    tidyr::unnest_legacy()
pred_logit %<>% mutate(Prob = auxLogit(Expenditure, B0
ggplot(data = pred_logit,
       aes(y = Prob, x = Expenditure, colour = Stratu
  geom line() +
   theme bw() +
  theme(legend.position = "none")
```


Ejemplos de modelo logit

Ejemplos de modelo logit

Análisis de encuestas de hogares con R

donde,
$$au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Análisis de encuestas de hogares con R

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$

 $\beta_{0i} = \gamma_{00} + \tau_{0i}$

- $\pi_{ij} = Pr(y_{ij} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.

donde,
$$au_{0j} \sim N\left(0, \sigma_{ au}^2\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Análisis de encuestas de hogares con R

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- $\pi_{ii} = Pr(y_{ii} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.
- lacksquare El residual de la persona i en el estrato j.

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Análisis de encuestas de hogares con R

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- $\pi_{ii} = Pr(y_{ii} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.
- ϵ_{ij} El residual de la persona i en el estrato j.
- $ightharpoonup \gamma_{00} = {\sf El}$ intercepto en general.

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Análisis de encuestas de hogares con R

$$logit(\pi_{ij}) = \beta_{0j} + \epsilon_{ij}$$
$$\beta_{0i} = \gamma_{00} + \tau_{0i}$$

- $\pi_{ii} = Pr(y_{ii} = 1 \mid x_i : \beta).$
- β_{0j} = El intercepto en el estrato j.
- ϵ_{ij} El residual de la persona i en el estrato j.
- \bullet $\gamma_{00} = \text{El intercepto en general.}$
- τ_{0j} = Efecto aleatorio para el intercepto.

donde,
$$\tau_{0j} \sim N\left(0, \sigma_{\tau}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

```
Análisis de
encuestas de
hogares con R
```

	(Intercept)
idStrt001	-0.8334
idStrt002	-0.0133
idStrt003	-2.6023
idStrt004	-2.7770
idStrt005	-1.0268
idStrt006	1.0100
idStrt007	-1.0134
idStrt008	0.2035
idStrt009	2.1966
idStrt010	-0.5948
idStrt011	-1.2986
idStrt012	0.2825

Fixed Effects:

```
Análisis de
         library(sjstats)
encuestas de
hogares con R
         mod_logist_null
         ## Generalized linear mixed model fit by maximum like
              Approximation) [glmerMod]
         ##
            Family: binomial (logit)
         ## Formula: pobreza ~ (1 | Stratum)
         ##
              Data: encuesta
         ## Weights: wk2
         ## AIC BIC logLik deviance df.resid
         ## 2966 2978 -1481 2962
                                                  2603
         ## Random effects:
            Groups Name Std.Dev.
         ##
         ## Stratum (Intercept) 1.29
```

Number of obs: 2605, groups: Stratum, 119

```
sjstats::icc(mod_logist_null)
## # Intraclass Correlation Coefficient
##
       Adjusted ICC: 0.334
##
     Unadjusted ICC: 0.334
##
(tab_pred <- data.frame(</pre>
 Pred = predict(mod_logist_null, type = "response"),
 pobreza = encuesta$pobreza,
 Stratum = encuesta$Stratum)) %>% distinct() %>%
  slice(1:6L) # Son las pendientes aleatorias
```

	Pred	pobreza	Stratum
1	0.3029	0	idStrt001
10	0.3029	1	idStrt001
28	0.4967	1	idStrt002
36	0.4967	0	idStrt002
61	0.0690	0	idStrt003

Estimación de la propoción para y y \hat{y}

```
weighted.mean(encuesta$pobreza, encuesta$wk2)
```

```
## [1] 0.3859
```

```
weighted.mean(tab_pred$Pred, encuesta$wk2)
```

```
## [1] 0.385
```

Unadjusted ICC: 0.187

##

```
Análisis de
encuestas de
                             logit(\pi_{ii}) = \beta_0 + \beta_{1i} Gasto_{ii} + \epsilon_{ii}
hogares con R
                              \beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
            mod_logit_Int_Aleatorio <- glmer(</pre>
               pobreza ~ Expenditure + (1 | Stratum),
               data = encuesta, family = binomial(link = "logit"),
               weights = wk2)
            sjstats::icc(mod_logit_Int_Aleatorio)
             ## # Intraclass Correlation Coefficient
            ##
            ##
                      Adjusted ICC: 0.315
```

Análisis de encuestas de hogares con R

coef(mod_logit_Int_Aleatorio)\$Stratum %>% slice(1:10L

	(Intercept)	Expenditure
idStrt001	0.9889	-0.0066
idStrt002	1.8837	-0.0066
idStrt003	-0.7463	-0.0066
idStrt004	-0.1484	-0.0066
idStrt005	1.7155	-0.0066
idStrt006	3.2456	-0.0066
idStrt007	0.5601	-0.0066
idStrt008	1.6848	-0.0066
idStrt009	3.9332	-0.0066
idStrt010	1.1207	-0.0066

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Int_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
  geom_line()+ theme_bw() +
 geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))
 theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

```
Análisis de
encuestas de
hogares con R
```

Pred	pobreza	Stratum	wk2
0.2149	. 0	idStrt001	0.7770
0.2149	0	idStrt001	0.7501
0.2149	0	idStrt001	0.7463
0.2149	0	idStrt001	0.7717
0.2149	0	idStrt001	0.7438
0.1682	0	idStrt001	0.7507

Estimación de la propoción para y y \hat{y}

Pred	pobreza
0.3855	0.3859

Intraclass Correlation Coefficient

Adjusted ICC: 0.886

```
Análisis de
encuestas de
hogares con R
```

##

```
logit(\pi_{ii}) = \beta_{0i} + \beta_{1i} Gasto_{ii} + \epsilon_{ii}
                      \beta_{0i} = \gamma_{00} + \gamma_{01} Stratum_i + \tau_{0i}
                      \beta_{1i} = \gamma_{10} + \gamma_{11} Stratum_i + \tau_{1i}
mod_logit_Pen_Aleatorio <- glmer(</pre>
  pobreza ~ Expenditure + (1 + Expenditure | Stratum),
  data = encuesta, weights = wk2,
  binomial(link = "logit"))
sjstats::icc(mod_logit_Pen_Aleatorio)
```

Análisis de encuestas de hogares con R

coef(mod_logit_Pen_Aleatorio)\$Stratum %>% slice(1:10L

	(Intercept)	Expenditure
idStrt001	5.244	-0.0271
idStrt002	11.059	-0.0394
idStrt003	-1.614	-0.0060
idStrt004	1.655	-0.0153
idStrt005	9.055	-0.0289
idStrt006	-1.354	0.0100
idStrt007	1.035	-0.0136
idStrt008	1.473	-0.0056
idStrt009	4.050	-0.0048
idStrt010	4.310	-0.0214

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest_legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Pen_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
  geom_line()+ theme_bw() +
 geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))
 theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

```
Análisis de
encuestas de
hogares con R
```

Pred	pobreza	Stratum	wk2
0.0154	0	idStrt001	0.7770
0.0154	0	idStrt001	0.7501
0.0154	0	idStrt001	0.7463
0.0154	0	idStrt001	0.7717
0.0154	0	idStrt001	0.7438
0.0045	0	idStrt001	0.7507

Estimación de la propoción para y y \hat{y}

Pred	pobreza
0.3845	0.3859

Análisis de encuestas de hogares con R

$$logit(\pi_{ij}) = \beta_{0j} + \beta_{1j} Gasto_{ij} + \beta_{2j} Zona_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \gamma_{02} \mu_j + \tau_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \gamma_{12} \mu_j + \tau_{1j}$$

$$\beta_{2j} = \gamma_{20} + \gamma_{21} Stratum_j + \gamma_{12} \mu_j + \tau_{2j}$$

donde μ_j es el gasto medio en el estrato j.

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.851
## Unadjusted ICC: 0.594
```

Gráfica del modelo obtenido

```
dat_pred <- encuesta %>% group_by(Stratum, Zone, mu) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest_legacy()
dat_pred$Proba = predict(mod_logit_Pen_Aleatorio2,
                       newdata = dat_pred , type = "response")
ggplot(data = dat pred,
      aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
   geom_line()+ theme_bw() +facet_grid(.~Zone)+
  geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))+
  theme(legend.position = "none",
       plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

Pred

```
Análisis de
encuestas de
hogares con R
```

0.0175	0	idStrt001	Rural	0.7770
0.0175	0	idStrt001	Rural	0.7501
0.0175	0	idStrt001	Rural	0.7463
0.0175	0	idStrt001	Rural	0.7717
0.0175	0	idStrt001	Rural	0.7438
0.0052	Λ	:dC+++001	Dural	0.7507

pobreza Stratum

wk2

7one

Estimación de la propoción para y y \hat{y}

Zone	Pred	pobreza
Rural	0.4309	0.4298
Urban	0.3385	0.3437

¡Gracias!

Análisis de encuestas de hogares con R

 $\textit{Email}: \ and res. gutier rez@cepal.org$