1 Randomized Data Structures

1.1 Skip Lists

Idee - skip Lists

- Einfügen von "Express-Liste" mit einigen Elementen
- Beginne mit Suche in der Express-Liste mit weniger Elementen
- ullet Falls das suchende Element kleiner als nächstes Element in Express-Liste \Rightarrow weiter nach rechts
- \bullet Falls nicht \Rightarrow Eine Stufe nach unten wandern und dort weiter suchen

Mögliche Verbesserung

• Zusätzliche Stufen an Express-Listen

Anwendung

- Gut für parallele Verarbeitung z.B. Multicore-Systeme (Einfügen und Löschen)
- Dafür logarithmische Laufzeit nur im Durchschnitt

Auswahl von Elementen

- \bullet Abhängig von einer gewählten Wahrscheinlichkeit p
- ullet Element kommt mit Wahrscheinlichkeit p in übergeordnete Liste
- Höhe: $h = O(\log_{\frac{1}{n}}n)$
- Anzahl Elemente: $n \Rightarrow pn \Rightarrow p^2n \Rightarrow \dots$ (unten nach oben)

Implementierung

Abbildung 1: Beispiel Skip List

- L.head erstes/oberstes Element der Liste
- L.height Höhe der Skiplist
- x.key Wert
- x.next Nachfolger
- x.prev Vorgänger
- x.down Nachfolger Liste unten
- x.up Nachfolger Liste oben
- nil kein Nachfolger / leeres Element

1

Suche

Laufzeit ist von Expresslisten abhängig

Abbildung 2: Beispiel Suche in einer Skip List

Einfügen

- Füge auf unterster Ebene ein
- \bullet Evtl. auf höheren Ebenen mit zufälliger Wahl mithilfe von p auf jeder Ebene
- falls ein Element nicht auf die nächst höhere Ebene gelangt, gelangt es auch nicht auf andere höhere Ebenen (Abbruch des Auswahlprozesses)

Löschen

• Entferne Vorkommen des Elements aus allen Ebenen

Laufzeiten

```
Einfügen \Theta(\log_{\frac{1}{p}}n)
Löschen \Theta(\log_{\frac{1}{p}}n)
Suchen \Theta(\log_{\frac{1}{2}}n)
```

- O-Notation versteckt konstanten Faktor $\frac{1}{p}$
- Speicherbedarf im Durchschnitt: $\frac{n}{1-p}$

1.2 Hashtables

Idee - Hashtable

- Hashfunktion sollte gut verteilen
- h(x) sollte uniform sein
- Unabhängig im Intervall [0, T.length 1] verteilt
- Einfügen mit konstant vielen Array-Operationen
- Kollisionsauflösung z.B. mithilfe von LinkedLists
- Neue Elemente werden vorne angefügt
- Konstante Anzahl an Array-Operationen
- Soviele Schritte wie die Liste lang ist
- Uniforme Hashfunktion
 - $\Rightarrow \frac{n}{T.length}$ Einträge pro Liste

Abbildung 3: Beispiel Hashfunktion

Hash-Funktionen

Universelle Hash-Funktion

- Wähle zufällige $a,b \in [0,p-1], \; p \; prim, \; a \neq 0$
- $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod T.length$

Krypthographische Hash-Funktionen

- MD5, SHA-1, SHA-2, SHA-3
- $h(x) = MD5(x) \mod T.length$

Hashtables vs. Bäume

Hashtables

- nur Suche nach bestimmten Wert möglich
- meist größer als zu erwartende Anzahl Einträge

Bäume

- schnelles Traversieren zu Nachbarn möglich
- Bereichssuche möglich

Laufzeiten

Einfügen $\Theta(1)$

Löschen $\Theta(1)$

Suchen $\Theta(1)$

- Für T.length = n ergibt sich konstante Laufzeit
- (Im Durchschnitt, beim Einfügen sogar im Worst-Case)
- \bullet Speicherbedarf i.d.R. höher als n
, meist ca. $1,33\cdot n$

Hashtabelle/ Array T[]

Abbildung 4: Beispiel Hashtabelle

1.3 Bloom-Filter

Idee - Bloom-Filter

Speicherschonende Wörterbucher mit kleinem Fehlerpotenzial z.B. Vermeidung von schlechten Passwörtern

- 1. Abspeichern aller schlechten Passwörter in kompakter Form
- 2. Prüfe, ob eingegebenes Passwort im Bloom-Filter
- z.B. Erkennen von schädlichen Websites (Chrome früher)

Erstellen

- n Elemente $x_0, ..., x_{n-1}$
- \bullet m Bits-Speicher z.B. als Bit-Array
- k gute Hash-Funktionen $H_0, ..., H_{k-1}$ mit Bildbereich 0, 1, ..., m-1
- Empfohlene Wahl: $k = \frac{m}{n} \cdot ln2$ (Fehlerrate von ca. 2^{-k})

Code:

initBloom(X, BF, H) // H Array of hash functions

```
1 FOR i = 0 TO BF.length - 1 DO
2    BF[i] = 0;
3 FOR i = 0 TO X.length - 1 DO
4    FOR j = 0 TO H.length - 1 DO
5    BF[H[j](X[i])] = 1;
```

- 1. Initialisiere Array mit "0er-Einträgen
- 2. Schreibe für jedes Element in jede Bit-Position $H_0(x_i), ..., H_{k-1}(x_i)$ eine 1

Abbildung 5: Beispiel Bloom Filter

Suche

```
searchBloom(BF, H, y)

1  result = 1;
2  FOR j = 0 TO H.length - 1 DO
3  result = result AND BF[H[j](y)];
4  return result;
```

 $\bullet\,$ Gibt an, dass yim Wörterbuch, falls alle k Einträge für y in BF=1 sind

y y

0

0

0

nicht in Wörterbuch:

0 0

Abbildung 6: Beispiel Suche im Bloom Filter

 \bullet Eventuell "false positives" (1, obwohl y nicht im Wörterbuch)

in Wörterbuch:

BF[]=

– Passiert, falls die Einträge vorher von anderen Werten getroffen wurden

0

– Daher gute Hashfunktionen und Filtergröße nicht zu klein

0