

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima

Introdução à Redes Neurais Artificiais

Introdução à Redes Neurais Artificiais

Redes Neurais Artificiais são técnicas computacionais que apresentam um modelo matemático inspirado na estrutura neural de organismos inteligentes e que adquirem conhecimento através da experiência.

Contexto Histórico

Neurônio Biológico

- Compõe o cérebro para processar informações;
- Dentritos Recebem substâncias químicas que controlam o potencial elétrico na célula;
- Axônios Transmite o impulso elétrico de um neurônio para o outro;
- Sinapses Ponto de conexão entre um neurônio e outro. Regula a intensidade do impulso elétrico.

Neurônio Biológico

● Rede Neural Biológica

Neurônio Artificial - Perceptron

Desenvolvido inicialmente por McCulloch e Pitts em 1943;

Frank Rosenblatt criou Perceptron em 1658;

Base das redes neurais artificiais.

Neurônio Artificial - Perceptron

Neurônio Artificial x Neurônio Biológico

Neurônio Artificial - Perceptron

$$\sum_{i=1}^{n} x_i.w_i$$

$$x_1w_1 + x_2w_2 + x_3w_3 + ... + x_nw_n = x^T.w$$

$$y = f(x^T.w)$$
 ou $y = f(x.w^T)$

Neurônio Artificial - Perceptron

Entradas:

$$> x_1 = 2$$
,

$$> x_2 = 3$$

$$> x_3 = 2.5$$

■ Pesos:

$$>$$
 w₁ = 0.2

$$\sim$$
 w₂ = - 0.5

$$>$$
 w₃ = 0.3

●Função de Ativação

$$f(x) = \begin{cases} 0, x < 1 \\ 1, x \ge 1 \end{cases}$$

$$f(x_1w_1 + x_2w_2 + x_3w_3)$$

$$f(2*0.2+3*(-0.5)+2.5*0.3)$$

$$f(0.4 + (-1.5) + 2.8)$$

$$f(1,7) = 1$$

Rede Neural Artificial

- Para o perceptron responder corretamente, deve ter os pesos "ideais";
- Após a correção dos pesos, o neurônio emite resposta correta para qualquer nova entrada;
- Para obter esses pesos, no perceptron, utiliza-se um ajuste de peso, por meio da Regra Delta;

- Define-se aleatoriamente os pesos iniciais;
- Algoritmo baseado no erro

$$e = y - y_{pred}$$

- \succ Onde y_{pred} é a resposta emitida pelo perceptron.
- Atualização dos pesos

$$w_{i+1} = w_i + (t * x_i * e)$$

➤Onde t é a taxa de aprendizagem.

Algoritmo de Treinamento

- Enquanto não atingir condição de parada:
 - Para cada Amostra de Treinamento x:
 - Calcular a saída com os pesos atuais para x;
 - Calcular o erro;
 - Para cada peso do perceptron:
 - Atualiza usando a regra Delta

Dita o "quanto" a rede vai aprender em uma correção de peso;

Influencia no tempo de treinamento de uma rede neural;

Geralmente varia entre 0.1 e 1.0;

$$w_{i+1} = w_i + (t * x_i * e)$$
Taxa de Aprendizagem

■ Exemplo: Tabela Verdade OU

Р	Q	P ou Q
V	V	V
V	F	V
F	V	V
F	F	F

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

●Inicialização do Perceptron

Pesos Iniciais

$$w1 = 0$$

$$w^2 = 0$$

Função de Ativação

$$f(x) = \begin{cases} 0, x < 1 \\ 1, x \ge 1 \end{cases}$$

X1	X2	Υ	Y_pred	Erro
0	0	0	0	0 - 0 = 0
0	1	0	0	0 - 0 = 0
1	0	0	0	0 - 0 = 0
1	1	1	0	1-0=1

$$w_{i+1} = w_i + (t * x_i * e)$$

$$w_1 = 0 + (0.1 * 1 * 1) = 0.1$$

 $w_2 = 0 + (0.1 * 1 * 1) = 0.1$

Treinamento Perceptron

Treinar um perceptron significa ajustar os pesos para que este responda corretamente para todas as entradas;

Os pesos iniciais influenciam no tempo de treinamento;

Implementação

● Hora de Prática

➤ Implementação de um neurônio artificial em Python.

P	Q	P ou Q
V	V	V
V	F	V
F	V	V
F	F	F

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Rede Perceptron

●Pode conter mais de um neurônio;

Resolve apenas problemas lineares

- São essenciais para dar capacidade representativa às redes neurais artificiais;
- ●Introduz componente de não linearidade à rede;

Decide a ativação ou não de um neurônio.

● Considere a Equação:

$$y = f(x_1w_1 + x_2w_2 + x_3w_3)$$

■Removendo a função f:

$$y = x_1 w_1 + x_2 w_2 + x_3 w_3$$

■Resta apenas um modelo de regressão linear

♥Função Degrau

$$f(x) = \begin{cases} 1, x > 0 \\ 0, x < 0 \end{cases}$$

●Função Sigmoide

$$f(x) = \frac{1}{1 + e^{-x}}$$

● Função Tangente Hiperbólica

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

♥Função Relu

$$f(x) = \begin{cases} 0, x < 0 \\ x, x \ge 0 \end{cases}$$

● Função Softmax

$$f(x) = \frac{e^x}{\sum_{i}^{n} e^{x_i}}$$

Utilizada na camada de saída.

Bias

- ■Também chamada viés ou limiar;
- O Bias permite flexibilidade de ajuste da RNA;

Valor do bias varia entre -1 ou 1;

Possui um peso associado que também é ajustado no treinamento.

Bias

Bias

Rede Perceptron Multicamada

Arquitetura onde os neurônios são organizados em pelo menos uma camada de entrada, uma camada oculta e uma camada de saída;

Rede Perceptron Multicamada

- Arquitetura feedforwad;
- As limitações do perceptron deixam de existir;
- Aprendizado supervisionado e não supervisionado;
- Pode ser Rasa ou Profunda;

Treinamento de uma MLP

- Significa Ajuste dos pesos (parâmetros) da rede;
- Algoritmo Backpropagation;
- Alguns hiperparâmetros são determinados por tentativa e erro:
 - ➤ Configuração da Rede
 - ➤ Taxa de Aprendizado
 - **≻**Momentum
 - >Tamanho do Lote

Realiza o treinamento de uma Rede Neural Artificial;

O objetivo do backpropagation é otimizar os pesos para que a rede neural possa aprender a mapear corretamente as entradas para as saídas.

●"Retropropagação do Erro";

Corrige os erros da uma MLP por meio da descida do gradiente;

- Realizado em duas fases:
 - > Forwad Propagação
 - ➤ Backforwad Retropropagação

■ Fase Backward

● Fase Backward

$$w_7 = w_7 + \eta \varepsilon_4 \frac{\partial f}{\partial} a_1$$

$$w_9 = w_9 + \eta \varepsilon_4 \frac{\partial f}{\partial} a_2$$

$$w_{11} = w_{11} + \eta \varepsilon_4 \frac{\partial f}{\partial} a_3$$

$$\longrightarrow \mathbf{Y} \quad \varepsilon = y^{\mathbf{S}} - y$$

$$w_8 = w_8 + \eta \varepsilon_5 \frac{\partial f}{\partial} a_1$$

$$w_{10} = w_{10} + \eta \varepsilon_5 \frac{\partial f}{\partial} a_2$$

$$w_{12} = w_{12} + \eta \varepsilon_5 \frac{\partial f}{\partial} a_3$$

■ Fase Backward

$$\varepsilon_1 = \varepsilon_4.w_7 + \varepsilon_5.w_8$$

$$\varepsilon_2 = \varepsilon_4.w_9 + \varepsilon_5.w_{10}$$

$$\varepsilon_3 = \varepsilon_4.w_{11} + \varepsilon_5.w_{12}$$

$$w_1 = w_1 + \eta \varepsilon_1 \frac{\partial f}{\partial} x_1$$
$$w_2 = w_2 + \eta \varepsilon_2 \frac{\partial f}{\partial} x_1$$

$$w_3 = w_3 + \eta \varepsilon_3 \frac{\partial f}{\partial} x_1$$

$$w_4 = w_4 + \eta \varepsilon_1 \frac{\partial f}{\partial} x_2$$

 $\varepsilon = y^s - y$

$$w_5 = w_5 + \eta \varepsilon_2 \frac{\partial f}{\partial} x_2$$

$$w_6 = w_6 + \eta \varepsilon_3 \frac{\partial f}{\partial} x_2$$

- ●Por X épocas:
- Passo 1 − Inicialização dos Pesos e Hiperparâmetros;

- Passo 2 Fase Forward
 - ➤ Para cada entrada X, calcular a saída y;
 - Calcular o erro da saída da rede

- Passo 3 Fase backward
 - Efetuar os cálculos de atualização dos Pesos da rede da camada saída até chegar a camada de entrada.

As fases forward e backward são realizadas para todas as amostras de entrada do conjunto de treino;

- Condições de Parada:
 - > Erro aceitável;
 - ➤ Quantidade de épocas
- Época Quando processo de forward e backward realizado com todas as entradas é caracterizado uma época.

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima