1.	The number of local maxima of $P_{108}(x)$ in $(-\infty, \infty)$ is
	(A) 53 (B) 54 (C) 55 (D) 107
	SOLUTION. $P_{108}(x)$ has 108 zeroes and between two consecutive zeroes, there is either a local minima or a local maxima. This is because $P'_{108}(x)$ has 107 zeroes and they alternate with the zeroes of $P_{108}(x)$. One can see that there are 54 local minimas and 53 local maximas.
2.	Let $u=(1,2)$ and $v=(2,1)$ be two vectors in \mathbb{R}^2 . Let \langle , \rangle be an inner product on \mathbb{R}^2 satisfying $\langle u,u\rangle=\langle v,v\rangle=1$ and $\langle u,v\rangle=0$. A vector orthogonal to $(1,0)$ with respect to this inner product is
	(A) $(0,1)$ (B) $(-2,3)$ (C) $(3,-4)$ (D) $(4,5)$
	SOLUTION. $2v - u = (3,0)$. A vector orthogonal to this is $v + 2u = (4,5)$. It will also be orthogonal to $(1,0)$.
3.	Let α_n denote the <i>n</i> -th positive zero of $J_{2016}(x)$. Then $\int_1^{\alpha_{2016}} \left(x^{-2016}J_{2017}(x) + x^{2016}J_{2015}(x)\right) dx$ equals
	(A) $_{0}$ (B) $2J_{2016}(1)$ (C) $J_{2017}(1) - J_{2015}(1)$ (D) 1
	SOLUTION. We know $\frac{d}{dx}(x^pJ_p(x)) = x^pJ_{p-1}(x)$ and $\frac{d}{dx}(x^{-p}J_p(x)) = -x^{-p}J_{p+1}(x)$. Hence, the given expression evaluates to $[-x^{-2016}J_{2016}(x) + x^{2016}J_{2016}(x)] _1^{\alpha_{2016}}$ which gives 0.
4.	For the equation $x(x-1)(x+1)^2y'' + y' + (x+1)^2y = 0$, let m be the number of regular singular points and n be the number of irregular singular points. Then $m-n$ equals (A) -3 (B) -1 (C) 1 (D) 3
	Solution. $x = 0$ and $x = 1$ are regular singular points and $x = -1$ is an irregular singular point.
5.	A function which does not solve the equation $(1-x^2)y'' - 2xy' + 2y = 0$ around $x = 0$ is
	(A) $5x$ (B) $\sum_{n=0}^{\infty} \frac{x^{2n}}{1-2n}$ (C) $2x \log(\frac{1-x}{1+x}) + 4$ (D) $4 + 8x(1 - \log(\frac{1+x}{1-x}))$
	SOLUTION. The given equation is the Legendre equation with $p=1$. All options, except option D, are linear combinations of $P_1(x)$ and $1-\frac{1}{2}x\log(\frac{1+x}{1-x})$. The latter is the Legendre function of the second kind for $p=1$. Option B is its power series.
6.	The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{6n+2}}{\left(1+\frac{1}{n}\right)^{n^2}}$ is
	(A) e (B) $e^{\frac{1}{2}}$ (C) $e^{\frac{1}{3}}$ (D) $e^{\frac{1}{6}}$
	SOLUTION. The series $\sum_{n=1}^{\infty} \frac{x^{6n+2}}{\left(1+\frac{1}{n}\right)^{n^2}}$ is convergent iff $\sum_{n=1}^{\infty} \frac{x^{6n}}{\left(1+\frac{1}{n}\right)^{n^2}}$ is convergent. Let b_n
	denote the <i>n</i> -th term of the latter. Then $\lim_{n\to\infty} b_n ^{1/n} = x ^6/e$. This is less than 1 iff $ x < e^{\frac{1}{6}}$. This is a nice example where the ratio test does not do much good.

7. The expression $(J_0(x) - J_2(x))(J_1(x) - J_3(x))(J_2(x) - J_4(x))$ for x > 0 equals (A) $8\left(J_{0}(x) - \frac{J_{1}(x)}{x}\right)\left(J_{1}(x) - \frac{J_{2}(x)}{x}\right)\left(J_{2}(x) - \frac{J_{3}(x)}{x}\right)$ (B) $8\left(J_{0}(x) - \frac{J_{1}(x)}{x}\right)\left(J_{1}(x) - \frac{2J_{2}(x)}{x}\right)\left(J_{2}(x) - \frac{3J_{3}(x)}{x}\right)$ (C) $16\left(J_{0}(x) - \frac{J_{1}(x)}{x}\right)\left(J_{1}(x) - \frac{J_{2}(x)}{x}\right)\left(J_{2}(x) - \frac{J_{3}(x)}{x}\right)$ (D) $16\left(J_{0}(x) - \frac{J_{1}(x)}{x}\right)\left(J_{1}(x) - \frac{2J_{2}(x)}{x}\right)\left(J_{2}(x) - \frac{3J_{3}(x)}{x}\right)$

(C)
$$16\left(J_0(x) - \frac{J_1(x)}{\frac{x}{x}}\right)\left(J_1(x) - \frac{J_2(x)}{\frac{x}{x}}\right)\left(J_2(x) - \frac{J_3(x)}{\frac{x}{x}}\right)$$

SOLUTION. Using the Bessel identity $J_{n+1}(x) = -J_{n-1}(x) + \frac{2n}{x}J_n(x)$, we get $J_{n-1}(x) - J_{n+1}(x) = 2J_{n-1}(x) - \frac{2n}{x}J_n(x)$. Now substitute different values of n to get the answer.

- 8. For any positive integer k, define $Q_k(h) = \sum_{i=1}^{\infty} \frac{(h-1)^i}{i!} \left(\left(\frac{d}{dx} \right)^i P_k(x) \right)|_{x=1}$. The value of $\int_{-1}^1 Q_3(x) Q_7(x) dx$ equals
 - (A) 0 (B) 1 (C) $\frac{2}{}$ (D) 3

SOLUTION. Observe that $Q_k(h)$ except for a constant is just $P_k(h)$ expanded as a Taylor series around h = 1. In fact, $Q_k(h) = P_k(h) - P_k(1) = P_k(h) - 1$. Use this along with orthogonality of P_k to get $\int_{-1}^{1} 1 \, dx = 2$.

- 9. Let $S = \{0, 1, 2, ...\}$ denote the set of nonnegative integers. The number of ordered pairs (n, x) which solve the equation $P_n(J_n(x)) = 1$ for $n \in S$ and $x \in [0, 1]$ is
 - (A) 0 (B) 1 (C) 2 (D) ∞

SOLUTION. For $n \neq 0$, $P_n(y) = 1$ possibly only for y = 1 and y = -1 but $J_n(x)$ is never 1. For n = 0, $P_0(y)$ is always 1, so any x works.

- 10. Let $a = \int_0^{\frac{\pi}{4}} \frac{J_{1/2}(x)}{J_{-1/2}(x)} dx$ and $b = \int_0^{\frac{\pi}{4}} x J_{1/2}(x) J_{-1/2}(x) dx$. Then ab equals
 - (A) $\frac{\log 2}{\pi}$ (B) $\frac{\log 2}{2\pi}$ (C) $\frac{\log 2}{4\pi}$ (D) $\frac{\log 2}{8\pi}$

SOLUTION. Use $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ and $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$. So $a = \int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \log 2$ and $b = \int_0^{\frac{\pi}{4}} \frac{1}{\pi} \sin 2x \, dx = \frac{1}{2\pi}$.

- 11. Consider the equation $x^2y'' x^2y' + (x-6)y = 0$ for x > 0 with initial conditions y(1) = 49 and y'(1) = -65. The solution is of the form (where $c_1, c_2 \neq 0$)
 - (A) $c_1 x^3 \log(x) (1 + \sum_{k=1}^{\infty} a_k x^k) + c_2 x^{-2} (1 + \sum_{k=1}^{\infty} b_k x^k)$ (B) $\frac{c_2 x^{-2} (1 + \sum_{k=1}^{\infty} a_k x^k)}{(D) c_1 (1 + \sum_{k=1}^{\infty} a_k x^k)}$

Solution. The indicial equation is $r^2-r-6=0$ which gives $r_1=3, r_2=-2$. The general recursion is $(n+r+2)(n+r-3)a_n=(n+r-2)a_{n-1}$. Notice that $a_5(r_2)=\frac{(r_2+3)...(r_2-1)}{((r_2+7)...(r_2+3))((r_2+2)...(r_2-2))}a_0$ has no singularity since r_2+2 cancels, so the log term is absent and the general solution is $y_2(x)=c_1x^{-2}(1+\frac{3}{4}x+\frac{1}{4}x^2+\frac{1}{24}x^3)+c_2y_1(x)$. Putting x=1, we notice that the polynomial term evaluates to $\frac{49}{24}$. Inspired by this, we try the solution, $y(x)=24x^{-2}(1+\frac{3}{4}x+\frac{1}{4}x^2+\frac{1}{24}x^3)$ and find that this indeed satisfies the initial conditions, and hence is the unique solution.

- 12. Consider $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^{1/3}$. Let $g(x) = \sum_{n=0}^{\infty} a_n (x 3/2)^n$, where $a_n = \frac{f^{(n)}(3/2)}{n!}$ for $n \ge 0$. The largest open set contained in $\{x \mid f(x) = g(x)\}$ is
 - (A) (1/2, 5/2) (B) (1, 2) (C) (0, 3) (D) (0, 0)

SOLUTION. Write $x^{1/3} = (3/2)^{1/3} (1 + \frac{(x-3/2)}{3/2})^{1/3}$ and expand in a binomial series. This series converges iff $|\frac{x-3/2}{3/2}| < 1$ iff $x \in (0,3)$.

- 13. Let r_1 and r_2 (with $r_2 \leq r_1$) be the roots of the indicial equation obtained while solving $15x^2y'' + xy' + 3y = 0$ by the Frobenius method. The number of roots of $P_3(x)$ in the interval $[r_2, r_1]$ is
 - (A) 0 (B) 1 (C) 2 (D) 3

SOLUTION. The indicial equation obtained is 15r(r-1) + r + 3 = 0. Its solutions are $r_2 = \frac{1}{3}$ and $r_1 = \frac{3}{5}$. $P_3(x) = \frac{1}{2}(5x^3 - 3x)$ which has roots at $0, \pm \sqrt{\frac{3}{5}}$. Hence, none of the roots of $P_3(x)$ lie in $[r_2, r_1]$.

- 14. Let α be the smallest positive root of the equation $J_3(x) = J_5(x)$. Then
 - (A) $J_4(x)$ has a local maximum at α
- (B) $J_4(x)$ has a local minimum at α
- (C) $J_4'(x)$ has a local maximum at α
- (D) $J_4'(x)$ has a local minimum at α

SOLUTION. $J_3(x) - J_5(x) = 2J_4'(x)$ implies $J_4'(\alpha) = 0$. So $J_4(x)$ has either a local minimum or a local maximum at α . Since α is the smallest extremum of $J_4(x)$, it is a local maximum. (This is true of all Bessel functions $J_n(x)$ for $n \ge 1$.)

- 15. Let $f(x) = \int_0^x P_{37}(y) dy$ for $x \in [-1, 1]$. The coefficient of $P_{38}(x)$ in the Fourier-Legendre series of f(x) equals

- (A) $\frac{76}{37}$ (B) $\frac{1}{75}$ (C) $\frac{111}{4}$ (D) $\frac{1}{57}$

SOLUTION. From Rodrigues formula, the coefficient of x^n in $P_n(x)$ is $\frac{1}{2^n}\binom{2n}{n}$. The coefficient of x^{37} in $P_{37}(x)$ is $\frac{74!}{2^{37}(37!)^2}$ and so the coefficient of x^{38} in f(x) is $\frac{74!}{2^{37}(37!)^238}$. Since f is a polynomial of degree 38, it will only have the first 38 Legendre polynomials in its series. Matching coefficients of x^{38} in $f(x) = \sum_{r=0}^{38} c_r P_r$ we have $\frac{76!}{2^{38}(38!)^2} c_{38} = \frac{74!}{2^{37}(37!)^238}$ and so $c_{38} = \frac{1}{75}$.

- 16. Let S be the set of values of p such that the derivative f'(x) is unbounded near 0 for any solution f(x) of $x^2y'' + x^3y' - (p^2 - \frac{1}{4})y = 0$ for x > 0. Then S contains
- (B) $\{0.25, 0.5\}$ (C) $\{0, \sqrt{2}\}$ (D) $\{0.25, 0.75\}$

SOLUTION. This is regular singular about x=0, so we substitute $x^r \sum_{n=0}^{\infty} a_n x^n$ and get $r(r-1)-(p^2-\frac{1}{4})=0$. Hence $r=\frac{1}{2}\pm p$. The derivative will be unbounded near 0 iff the larger r is strictly less than 1 and smaller r is nonzero. This is the same as $\frac{1}{2} + |p| < 1$ or |p| < 0.5. This is also true for p = 0 since the roots are repeated, and the second solution has a log term. Hence the required set of values of p is (-1/2, 1/2). The only set among the options contained in this set is $\{0, 0.25\}$.