DS 598 Introduction to RL

Xuezhou Zhang

Reminder

• Sign up for your team by Jan 27th [link].

Presentation Date	Team Name	Team Members				
03/19	Team Zero	Mao Mao	Haotian Shangguan			
03/21	Team RL	Seunghwan Hyun	Zoey Yang			
03/26	Team Alpha	Ayush Sharma Gauravdeep Singh Bindr				
03/28						
04/02	Team S	Sahana Kowshik				
04/04	Team Reward	Xinyu Zhang	Lilin Jin	Yan Si		
04/09		Xavier Thomas	Shiva Charan			
04/11						
04/16						
04/18						
04/23						
04/25						

Reminder

• Sign up for your team by Jan 27th [link].

	Team 1		Team Members		Team 2	Team Members	
03/19	Team Zero	Mao Mao	Haotian Shangguan				
03/21	Team RL	Seunghwan Hyun	Zoey Yang				
03/26	Team Alpha	Ayush Sharma	Gauravdeep Singh Bindra				
03/28	Team WYA	Wylliam	Yichen	Andy Yang			
04/02	Team S	Sahana Kowshik					
04/04	Team Reward	Xinyu Zhang	Lilin Jin	Yan Si			
04/09	Team Q	Xavier Thomas	Shiva Charan				
04/11	Team Gamma						
04/16							
04/18							
04/23							
04/25							

Reminder

- Course Announcements on the Blackboard site.
- Piazza created for any discussions.

Recap: MDP

Perform action: $a_h \sim \pi(\cdot | s_h)$

Receive Reward: $r_h \sim r(s_h, a_h)$

RL Agent

Observe Next state: $s_{h+1} \sim P(\cdot | s_h, a_h)$

Recap: Infinite Horizon MDP

- MDP $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - *S* is the state space.
 - A is the action space.
 - $P: S \times A \to \Delta(S)$ is the transition probability function.
 - $r: S \times A \rightarrow [0,1]$ is the reward function.
 - $\gamma \in [0,1)$ is the discounting factor.
- A Markovian policy is defined as $\pi: S \to \Delta(A)$.

Recall from last time

Value function

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) | s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)\right]$$

Q function

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) | (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h)\right]$$

Bellman Equation: $V^{\pi}(s) = \mathbb{E}[r(s, \pi(s))] + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$

- $V^*(s) = \max_{\pi} V^{\pi}(s)$ $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$
- So far, we know that there exists an optimal π_s^* per state s.
- $\ensuremath{\ensuremath{\wp}}$ Is there a single policy that achieves V^* and Q^* for all s?

Turns out the answer is Yes.

• [Claim] There exist a stationary and deterministic policy π , s.t.

$$\forall (s, a) \in S \times A, V^{\pi}(s) = V^*(s) \text{ and } Q^{\pi}(s, a) = Q^*(s, a)$$

Proof by Construction:

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^*(s') \right]$$

- Proof by Construction: $\pi^*(s) = \underset{a \in A}{\operatorname{arg max}} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\star}(s') \right]$
- Let's prove $V^{\pi^*}(s) = V^*(s)$ for all $s \in S$.
- We already know, by the definition of V^* , that $V^{\pi^*}(s) \leq V^*(s)$
- It remains to be shown that $V^{\pi^*}(s) \geq V^*(s)$

$$V^{*}(s_{0}) = \max_{\pi} \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot|s_{0}, a_{0})} [V^{\pi}(s_{1})] | \pi \right]$$
 (Bellman Equation)

$$\leq \max_{\pi} \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot|s_{0}, a_{0})} [\max_{\pi} V^{\pi}(s_{1})] | \pi \right]$$
 (Jensen)

$$= \max_{\pi} \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot|s_{0}, a_{0})} [V^{*}(s_{1})] | \pi \right]$$
 (Definition of V^{*})

$$= \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(\cdot|s_{0}, a_{0})} [V^{*}(s_{1})] | \pi^{*} \right]$$

$$\leq \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma r(s_{1}, a_{1}) + \gamma^{2} \mathbb{E}_{s_{2} \sim P(\cdot|s_{1}, a_{1})} [V^{*}(s_{2})] | \pi^{*} \right]$$
 (recursion)

$$\leq \mathbb{E} \left[r(s_{0}, a_{0}) + \gamma r(s_{1}, a_{1}) + \gamma^{2} r(s_{2}, a_{2}) + \dots | \pi^{*} \right]$$

$$= V^{\pi^{*}}(s_{0})$$

Bellman Optimality Equation

• We have shown that $V^* = V^{\pi^*}$ and thus

$$V^{*}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{*}(s')] \right]$$

Bellman Optimality Equation

$$\mathbf{f}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} [\mathbf{f}(s')] \right]$$

Summary

$oldsymbol{V}^*$			
Bellman Optimality Equation: = $\max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot s, a)} [V^*(s')] \right]$			

- f satisfies Bellman Equation iff $f = V^{\pi}$ for some π .
- f satisfies Bellman Optimality Equation iff $f = V^*$.

Chapter 2: Planning

What is planning?

• "Given" an MDP, find an optimal policy.

• It's a pure "computational" problem.

There is no "learning" involved.

• Still highly non-trivial!! e.g. AlphaGo.

Approach 1: Solving the Bellman Optimality Equation

• It's easy! Simply solve the BOE:

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [\max_{a' \in A} Q^*(s', a')]$$

How do we solve BOE?

- Fixed-point iteration (FPI) method:
- To solve equation x = f(x)
- 1. Initialize $x^{(0)}$ arbitrarily.
- 2. For t = 1, ... T, • Compute $x^{(t)}(s, a) = f(x^{(t-1)})$
- 3. Return $x^{(T)}$

When does FPI work?

• FPI doesn't necessarily converge.

 A sufficient condition for FPI to work is called the contraction property.

• Contraction: $\exists \gamma \in [0,1)$, s.t. $\forall x, x', ||f(x) - f(x')|| \leq \gamma \cdot ||x - x'||$

• Since $x^* = f(x^*)$, we have $||f(x^{(t)}) - f(x^*)|| \le \gamma \cdot ||x^{(t-1)} - x^*||$.

How do we solve BOE?

HW: Prove that BOE satisfies contraction.

- In RL, FPI is called Value Iteration
- 1. Initialize $Q^{(0)}$ arbitrarily.
- 2. For t = 1, ... T

•
$$Q^{(i)}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q^{(i-1)}(s',a') \right]$$

- The implicit assumptions
 - Finite S and A

Approach 1b: Policy Iteration

- Instead of updating the Q function, policy iteration updates the policy.
- 1. Initialize $\pi^{(0)}$ arbitrarily.
- 2. For t = 1, ... T
 - Policy Evaluation: $Q^{\pi^{(t-1)}}$
 - Policy Improvement: $\pi^{(t)}(s, a) = \operatorname{argmax}_a Q^{\pi^{(t-1)}}(s, a)$.
- One can show that $\left|\left|Q^{\pi^{(t)}}-Q^*\right|\right|_{\infty} \leq \gamma \cdot \left|\left|Q^{\pi^{(t-1)}}-Q^*\right|\right|_{\infty}$.

Approach 2: Linear Programming

Occupancy Measure:

$$d^{\pi}_{\mu}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \Pr^{\pi}(s_{t} = s, a_{t} = a | s_{0} \sim \mu)$$

- Starting from $s_0 \sim \mu$, follow π ,
- at every step, stop with prob. (1γ)
- if stop, sample (s, a) at that step.

Approach 2: Linear Programming

Connection to the Value Function:

$$V^{\pi}(\bar{s}) = r(s, a)^{\top} d_{\bar{s}}^{\pi}(s, a)$$

Bellman-like Recursion:

$$\sum_{a} d^{\pi}_{\mu}(s, a) = (1 - \gamma)\mu(s) + \gamma \sum_{s', a'} P(s|s', a') d^{\pi}_{\mu}(s', a') \tag{1}$$

• d satisfies (1) iff $d=d^\pi_\mu$ for some π , in particular $\pi_d(a|s)=\frac{d(s,a)}{\sum_a d(s,a)}$.

Approach 2: Linear Programming

$$\max_{d \in \Delta(S \times A)} \sum_{s,a} r(s,a) d(s,a)$$

s.t.
$$\sum_{a} d^{\pi}_{\mu}(s,a) = (1-\gamma)\mu(s) + \gamma \sum_{s',a'} P(s|s',a') d^{\pi}_{\mu}(s',a')$$

- It's a linear program!
- Many efficient algorithms exist.

"Given" an MDP, find an optimal policy.

- What does "given" mean?
- [Stronger] "Given" means you can sample any state, query any action, and observe the outcome.

• [Weaker] "Given" means you can play out a policy and observe the trajectory with no real-world cost.

