VWS4LS: 15.10.2024 – Öffentliche Ergebnistagung

1	10:00	Einlass	Alle	
2	10:30	Begrüßung aller Teilnehmer und Vorstellung der Agenda	Christian Kosel (ARENA2036), Georg Schnauffer (ARENA2036)	
3	10:40	Einführung in die ARENA2036 und Projektfamilie Leitungssatz	Georg Schnauffer (ARENA2036)	
4	11:00	VWS4LS und der Projektergebnisse der vergangenen 3 Jahre	Christian Kosel (ARENA2036)	
5	11:30	Ergebnis 1 – Funktionale Vorstellung des Gesamt-Demonstrators	Christian Kosel (ARENA2036)	
6	12:00	Mittagspause	Alle	
7	13:00	Ergebnis 2 – Pilotanbindung der Verwaltungsschale und Catena-X	Mario Angos (Coroplast), Lena Beil (Dräxlmaier)	
8	13:20	Ergebnis 3 – Beschreibung von Capabilities für Produkt, Prozess und Ressourcen	Matthias Freund (Festo)	
9	13:40	Ergebnis 4 – Entwicklung und Anwendung der OPC-UA Companion Specification for Wiring Harness	Pascal Neuperger (Komax)	
10	14:00	Ergebnis 5 – Automatisierten Verhandlungsverfahren in der Produktion	Gerd Neudecker (Kromberg und Schubert), Melanie Stolze (Ifak Magdeburg)	
11	14:20	Ergebnis 6 – Integration der Domänen-Standards "KBL" und "VEC" und Verwaltungsschale	Matthias Freund (Festo)	
12	14:40	Pause	Alle	
13	14:50	Ergebnis 7 – Architekturergebnisse rund um die Verwaltungsschale (je 7 Minuten)	Pascal Neuperger (Komax), Melanie Stolze (Ifak Magdeburg), Rene Fischer (Fraunhofer IESE), Jannis Jung (Fraunhofer IESE) und Gerd Neudecker (Kromberg und Schubert)	
14	15:40	Ergebnis 8 – Referenzarchitektur für die Virtuelle Inbetriebnahme von Verbundkomponenten auf Grundlage der VWS	Pascal Neuperger (Komax), Toni Kristicevic (Festo)	
15	16:00	Ergebnis 9 – Entwicklung von IDTA – Submodellen (Data-Retention-Policies und Bill-Of-Process)	Alexander Salinas (Dräxlmaier), Pascal Neuperger (Komax)	
16	16:30	Zusammenfassung und Ausblick	Christian Kosel (ARENA2036)	
17	16:45	Q+A	Alle	
18	17:00	Abschluss der Veranstaltung + Abendveranstaltung	Alle	

Entwicklung und Anwendung der OPC UA for Wire Harness Manufacturing

Pascal Neuperger, Komax

ARENA2036

Der 150%-Leitungssatz entsteht im Entwicklungsprozess.

Der (150%)-Leitungssatz wird in kleinere, produzierbare Einheiten (Halbfabrikate) zerlegt.

Rezept	Schneiden • Geschw. [m/s]	Crimp • Höhe [mm] • Breite [mm]	Prozess n
Job Definition	Job 1 • Maschine 1 • Lotsize: 100	Job 2 Maschine 2 Lotsize: 200	Job n
Produktion	Maschine 1 OPC-UA	Maschine 2 OPC-UA	
Produktionsdaten	Job 1 Maschine 1 Act. Lot Size 98 Ece Time: 5 Min	Job 2 Maschine 2 Act. Lot Size 198 Ece Time: 7 Min	
Montage I	Leitun	gssa Leitungssa Leitungss	satz n
Test !		OK/NOK	

Für alle Halbfabrikate werden Produktionsmaschinen, -Parameter und Programme (Rezepte) festgelegt. Im Produktionsfall werden Aufträge erzeugt und in kleineren Losgrößen an Maschinen verteilt.

Anforderungen

- Auffinden und Identifizieren
- Überwachen
 - Maschinenstatus
 - Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
 - Aufträge / Jobs
- Erfassen
 - Messwerte
 - Ergebnisse

- Auffinden und Identifizieren
- Überwachen
 - Maschinenstatus
 - Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
 - Aufträge / Jobs
- Erfassen
 - Messwerte
 - Ergebnisse

- Auffinden und Identifizieren
- Überwachen
- Maschinenstatus
- Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
 - Aufträge / Jobs
- Erfassen
 - Messwerte
 - Ergebnisse

OPC UA for Machinery Part 1: Basic Building Blocks

- Auffinden und Identifizieren
- Überwachen
 - Maschinenstatus
- Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
- Aufträge / Jobs
- Erfassen
 - Messwerte
 - Ergebnisse

OPC UA for Machinery
Part 3: Machinery Job Mgmt

OPC UA for Machinery
Part 1: Basic Building Blocks

ISA-95 Job Control

- Auffinden und Identifizieren
- Überwachen
 - Maschinenstatus
 - Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
 - Aufträge / Jobs
- Erfassen
 - Messwerte
- **Ergebnisse**

OPC UA for Machinery
Part 101: Result Transfer

OPC UA for Machinery
Part 3: Machinery Job Mgmt

OPC UA for Machinery
Part 1: Basic Building Blocks

OPC UA for Machinery
Part 3: Machinery Job Mgmt

ISA-95
Job Control

- Auffinden und Identifizieren
- Überwachen
 - Maschinenstatus
 - Laufende Aufträge / Jobs
- Parametrieren
 - Produktparameter
 - Produktionsparameter
 - Aufträge / Jobs
- Erfassen
 - Messwerte
 - Ergebnisse

OPC 40570, OPC UA for Wire Harness Manufacturing

ARENA2036

Status: Im Review (VDMA Mitglieder)

- Veröffentlichung des DRAFT bei der DIN => Oktober, 2024
- Veröffentlichung Version 1.0
 => 10. Dezember, 2024 (unter Vorbehalt)
- Version 1.0 umfasst Prozesse im Schneidraum
 - Cut, Crimp, Seal und Strip

OPC UA Client (MES)

OPC UA Server (Maschine)

