Mathematics Class Slides Bronx Early College Academy

Chris Huson

28 April 2020

BECA / Huson & Kaplan / Unit 11: Algebra competencies
11.2 Literals, operations on radicals Tuesday 28 April

GQ: How do we apply algebra to equations with literals?

HSA.CED.A.4 Rearrange formulas to highlight a quantity of interest 11.2 Tuesday 28 April

Do Now: Deltamath (remember to submit "Present")

► Convert standard linear equations to *y*-intercept form

Lesson: Operations on radicals (square roots)
Collecting like terms

Pear Deck practice problems

Exit note: stay after if you need help

Take notes: Properties of square roots

Definition:
$$(\sqrt{a})^2 = a$$
 note: $(-\sqrt{a})^2 = a$

$$x^2 = 25$$
$$x = \sqrt{25} = 5$$

check:
$$5^2 = 25$$

but also
$$(-5)^2 = 25$$

so, if
$$x^2 = 25$$
 then $x = \pm 5$

Addition of square roots: collect like terms

Addition
$$\sqrt{b} + \sqrt{b} = 2\sqrt{b}$$
, but $\sqrt{a} + \sqrt{b} = \sqrt{a} + \sqrt{b}$

examples
$$2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$$

$$5\sqrt{7} + 2\sqrt{11} + 3\sqrt{7} = 8\sqrt{7} + 2\sqrt{11}$$

Multiplying and factoring square roots

Multiplication
$$\sqrt{c} \times \sqrt{d} = \sqrt{cd}$$

$$\sqrt{3} \times \sqrt{12} = \sqrt{3 \times 12} = \sqrt{36}$$

$$\sqrt{20} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$$

Dividing square roots

Division, the multiplicative inverse (reciprocal)

$$\sqrt{\frac{j}{k}} = \frac{\sqrt{j}}{\sqrt{k}}$$

example

$$\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$$

Practice with radicals and literals

Simplify the expression by "collecting like terms" $\,$

$$\sqrt{5} - x + 6\sqrt{5} + 2x$$

Practice with radicals and literals

Solve for x. Start by "collecting like terms"

$$4x + 6\sqrt{3} - 2x - 2\sqrt{3} = 10\sqrt{3}$$

Practice with radicals and literals

Simplify the expression by "collecting like terms"

$$5 + 2\sqrt{13} - 3 + 3\sqrt{13}$$

Practice with radicals and literals

Simplify each expression by factoring and then simplifying a perfect square

```
\sqrt{18}
```

Practice with radicals and literals

Simplify each expression by factoring and then simplifying a perfect square

```
\sqrt{50}
```

Practice with radicals and literals

Simplify each expression by factoring and then simplifying a perfect square

1. 3x + 2x \Box 5 + x $\Box (x + x + x) + (x + x) \qquad \Box (5 - 2 + 4)\pi$ \Box 5x

 \Box (3 + 2)x

- 2. $5\pi 2\pi + 4\pi$ \square $3\pi + 4$
 - - \Box 7 + π
 - \square 7 × π

Practice with radicals and literals

Simplify each expression by "collecting like terms"

1.
$$3x - 2x + 7y$$
 3. $-k + 7\sqrt{2} + 2k + 3\sqrt{2}$

2.
$$5z + 5\pi - 2\pi + z$$
 4. $5\pi x - 2\pi x + 9y$

GQ: How do we apply algebra to equations with literals?

HSA.CED.A.4 Rearrange formulas to highlight a quantity of interest 11.1 Wed. 22 April

Solve each equation for the unknown

1.
$$\frac{k}{\sqrt{3}} = 11$$
 2. $5z - 2\pi = 4\pi + z$

GQ: How do we apply algebra to equations with literals?

HSA.CED.A.4 Rearrange formulas to highlight a quantity of interest 11.1 Wed. 22 April Solve each equation for the unknown

1. $4x - x\sqrt{3} = 11$ 2. $5\pi x - 2\pi x = \pi x + 14$