高级计量经济学

理论经济学博士课程 2023-2024

Lecture 8: Large Sample Tests, CI, HCCME

Davidson, R. & MacKinnon, J. (2009). Econometrics Theory and Methods. Oxford University Press.

黄嘉平

工学博士 经济学博士 深圳大学中国经济特区研究中心 讲师

办公室 粤海校区汇文楼1510

E-mail huangjp@szu.edu.cn

Website https://huangjp.com

大样本检验

精确检验的条件

我们把精确检验(t 检验和 F 检验)所需的条件总结如下:

- *X* 与 *u* 独立
- $\boldsymbol{u} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$

如果以上条件不能被满足,就无法获得 t 统计量或 F 统计量的精确分布。

在大样本 $(n \to \infty)$ 下, 我们可以获得检验统计量的渐进分布。

中心极限定理

Central Limit Theorem (CLT)

Lindeberg-Lévy 中心极限定理: 如果 X_i 为 i.i.d. 且 $E[X_i^2] < \infty$,则当 $n \to \infty$ 时

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} Z \sim N(0, \sigma^2)$$

此处 $\mu = E[X_i]$, $\sigma^2 = E[(X_i - \mu)^2]$, $N(a, b^2)$ 为均值为 a 方差为 b^2 的正态分布

• 在有限样本下, $Z_n = \sqrt{n}(\bar{X}_n - \mu)$ 的均值为 0,方差为 σ^2 。LLN 告诉我们 Z_n 的渐进分布是正态分布

•
$$\sqrt{n}(\bar{X}_n-\mu)=\frac{1}{\sqrt{n}}\sum_{i=1}^n (X_i-\mu)$$
 CLT 和 LLN 的最大区别在于,LLN 中的 乘数是 $1/n$,而 CLT 中的乘数是 $1/\sqrt{n}$ 。

• 当 x_t 是随机向量时,CLT 可以写成

$$\operatorname{plim}_{n\to\infty} \frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_t = x_0 \sim N(\mu, \lim_{n\to\infty} \frac{1}{n} \sum_{t=1}^{n} \operatorname{Var}[x_t])$$

大样本下的单一约束检验

我们假设回归模型满足 $y=X\beta+u$, $u\sim \mathrm{IID}(\mathbf{0},\sigma_0^2I)$,其中误差项满足 $E[u_t\mid X_t]=0$, $E[u_t^2\mid X_t]=\sigma_0^2$ 。同时假设 $\lim_{n\to\infty}\frac{1}{n}X^\top X=S_{X^\top X}$, $S_{X^\top X}$ 是有限非随机正定矩阵。在这个假设下,OLS 估计量 $\hat{\boldsymbol{\beta}}$ 满足一致性。

针对 $H_0: \beta_2 = 0$,已知 t 统计量可以写成

$$t_{\beta_2} = \sqrt{\frac{n-k}{\mathbf{y}^{\mathsf{T}} \mathbf{M}_X \mathbf{y}}} \cdot \frac{\mathbf{x}_2^{\mathsf{T}} \mathbf{M}_1 \mathbf{y} / \sqrt{n}}{\sqrt{\mathbf{x}_2^{\mathsf{T}} \mathbf{M}_1 \mathbf{x}_2 / n}}$$

根据 LLN,第一项依概率收敛于 $\frac{1}{\sigma_0}$,同时在 H_0 成立时 $M_1 y = M_1 u$,因此

$$t_{\beta_2} \xrightarrow{p} \frac{\mathbf{x}_2^{\mathsf{T}} \mathbf{M}_1 \mathbf{u} / \sqrt{n}}{\sigma_0 \sqrt{\mathbf{x}_2^{\mathsf{T}} \mathbf{M}_1 \mathbf{x}_2 / n}}$$

右侧概率极限的分子符合 CLT 的形式,且其期望值为零,方差等于分母,因此可得 $t_{\beta_2} \stackrel{u}{\sim} N(0,1)$ (渐进分布是标准正态分布)。

\sqrt{n} 一致性

Root-n consistency

如果定义 $\mathbf{v} = \frac{1}{\sqrt{n}} \mathbf{X}^{\mathsf{T}} \mathbf{u} = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} u_t \mathbf{X}_t^{\mathsf{T}}$,则根据CLT可得

$$\mathbf{v} \stackrel{a}{\sim} N\left(\mathbf{0}, \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \operatorname{Var}[u_{t} \mathbf{X}_{t}^{\top}]\right) = N\left(\mathbf{0}, \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} E[u_{t}^{2} \mathbf{X}_{t}^{\top} \mathbf{X}_{t}]\right)$$
$$= N\left(\mathbf{0}, \sigma_{0}^{2} \mathbf{S}_{\mathbf{X}^{\top} \mathbf{X}}\right)$$

因 $\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{u}$,根据 LLN 可知其概率极限为 $\boldsymbol{0}$,因此其协方差矩阵的概率极限是零矩阵。但是

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = (\frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \frac{1}{\sqrt{n}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{u}$$

当 $n \to \infty$ 时,右侧第一项依概率收敛于 $S_{X^\top X}^{-1}$,而第二项正是上面定义的 v,因此,

$$\operatorname{Var}\left[\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)\right] = \boldsymbol{S}_{\boldsymbol{X}^{\top}\boldsymbol{X}}^{-1}(\sigma_0^2 \boldsymbol{S}_{\boldsymbol{X}^{\top}\boldsymbol{X}}) \boldsymbol{S}_{\boldsymbol{X}^{\top}\boldsymbol{X}}^{-1} = \sigma_0^2 \boldsymbol{S}_{\boldsymbol{X}^{\top}\boldsymbol{X}}^{-1} \qquad (注意 \boldsymbol{S}_{\boldsymbol{X}^{\top}\boldsymbol{X}}^{-1} \neq \lambda)$$

因此,

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \stackrel{a}{\sim} N(\boldsymbol{0}, \sigma_0^2 \boldsymbol{S}_{\boldsymbol{X}^{\top} \boldsymbol{X}}^{-1})$$

这意味着 $\hat{\pmb{\beta}}$ 收敛至概率极限 $\pmb{\beta}_0$ 的速度是 $1/\sqrt{n}$,因此称为 \sqrt{n} 一致(root-n consistent)。

大样本下的多重约束检验

已知多重约束检验的 F 统计量是

$$F_{\beta_2} = \frac{\boldsymbol{\varepsilon}^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2 (\boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{\varepsilon} / r}{\boldsymbol{\varepsilon}^{\top} \boldsymbol{M}_X \boldsymbol{\varepsilon} / (n - k)}, \qquad \boldsymbol{\varepsilon} = \boldsymbol{u} / \sigma_0$$

可以将其改写成

$$F_{\beta_2} = \frac{n^{-1/2} \boldsymbol{\varepsilon}^{\mathsf{T}} \boldsymbol{M}_1 \boldsymbol{X}_2 (n^{-1} \boldsymbol{X}_2^{\mathsf{T}} \boldsymbol{M}_1 \boldsymbol{X}_2)^{-1} n^{-1/2} \boldsymbol{X}_2^{\mathsf{T}} \boldsymbol{M}_1 \boldsymbol{\varepsilon} / r}{\boldsymbol{\varepsilon}^{\mathsf{T}} \boldsymbol{M}_X \boldsymbol{\varepsilon} / (n - k)}$$

当 $n \to \infty$ 时,可得 $rF_{\beta_2} \sim \chi^2(r)$,或 $F_{\beta_2} \sim F(r, \infty)$ 。

(尝试推导此结论)

置信区间

区间估计

Interval Estimation

真实参数值 θ 和估计量 $\hat{\theta}$ 之间的关系是

$$\theta = \hat{\theta} + \text{抽样误差}$$

 $\hat{\theta}$ 是 θ 的点估计(point estimation),而 $\hat{\theta}$ 加上抽样分布可以给出区间估计(interval estimation)。

Figure 8.5 A sample of one hundred observed 95% confidence intervals based on samples of size 26 from the normal distribution with mean $\mu = 5.1$ and standard deviation $\sigma = 1.6$. In this figure, 94% of the intervals contain the value of μ .

DeGroot & Schervish (2012), Probability and Statistics, 4th Edition, Pearson. (p.478)

根据正态分布 $N(\mu = 5.1, \sigma^2 = 1.6^2)$ 随机生成 n = 26 的样本,然后生成置信区间。 图中包含了100个这样的置信区间,其中94个包含真实的分布均值 $\mu = 5.1$ 。

线性回归系数的置信域

Confidence Region of Linear Regression Coefficients

多变量估计量的置信域通常可以 写成

变量的二次函数 $\leq C$

的形式,其图形含义为椭圆或椭 圆体。

注意图中置信域和一维置信区间的区别!

Figure 5.3 Confidence ellipses and confidence intervals

异方差稳健统计量

异方差性及其影响

Heteroskedasticity and its Consequences

异方差性: $Var[u \mid X] = \Omega$, Ω 的非对角要素为零,对角要素 ω_t^2 不相同。

在外生性成立时, $\hat{oldsymbol{eta}}$ 的协方差矩阵可以写成

$$Var[\hat{\boldsymbol{\beta}}] = E[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^{\top}]$$
$$= (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\Omega}\,\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$$

最后一行的表达式被称为 sandwich covariance matrix。 详见 Lecture 6

异方差性的影响:

- OLS 估计量 $\hat{m{eta}}$ 不再是最有效的,但还是一致的。
- $s^2(X^TX)^{-1}$ 不再是协方差矩阵的非偏估计量,因此影响假设检验的准确性。

异方差时的一致估计

Consistent Estimation under Heteroskedasticity

当 ω_t^2 未知时,我们通常需要对其进行估计。但是我们只有 n 个观测值,却需要估计 n 个 ω_t^2 ,因此无法直接得到 Ω 的一致估计量。

但是我们可以估计 OLS 估计量的协方差矩阵。这里我们用 $\sqrt{n}(\hat{\pmb{\beta}}-\pmb{\beta}_0)$ 替代 $\hat{\pmb{\beta}}$,则有

$$\begin{aligned} \operatorname{Var} \left[\sqrt{n} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \right] &= E \left[n (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^{\top} \right] \\ &= (\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{\Omega} \, \boldsymbol{X}) (\frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \end{aligned}$$

已知 $\lim_{n\to\infty} \frac{1}{n} (X^\top X)^{-1} = (S_{X^\top X})^{-1}$,我们可以用 $\frac{1}{n} (X^\top X)^{-1}$ 作为该极限的一致估计量。

中间项的极限 $\lim_{n\to\infty}\frac{1}{n}X^{\mathsf{T}}\mathbf{\Omega}X$ 是 $k\times k$ 的对称矩阵,因此只有 $\frac{1}{2}k(k+1)$ 个参数需要估计。在一定条件下,我们可以通过 $\mathbf{\Omega}$ 的某些非一致估计量 $\hat{\mathbf{\Omega}}$ 对该项进行一致估计,即 $\frac{1}{n}X^{\mathsf{T}}\hat{\mathbf{\Omega}}X$ 。(White, 1980)

在实际应用中,我们可以忽略 1/n 而直接估计 $\hat{oldsymbol{eta}}$ 的协方差矩阵:

$$\widehat{\operatorname{Var}}_{\mathbf{h}}[\hat{\boldsymbol{\beta}}] = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\hat{\boldsymbol{\Omega}}\,\boldsymbol{X}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}$$

这种估计量被称为 heteroskedasticity-consistent covariance matrix estimator (HCCME), 或 heteroskedasticity-robust estimator。

HCCMEs

HCCME 的关键是如何找到合适的估计量 $\hat{\Omega}$ 。因为 Ω 是对角矩阵, $\hat{\Omega}$ 也是对角矩阵。下面通过定义 $\hat{\Omega}$ 的第 t 对角要素介绍几种常用的 HCCME。

- $HC_0: \hat{u}_t^2$
- $HC_1: \frac{n}{n-k}\hat{u}_t^2$
- $HC_2: \hat{u}_t^2/(1-h_t)$, $h_t \in P_X$ 的第 t 对角要素
- $HC_3: \hat{u}_t^2/(1-h_t)^2$

这四个 HCCME 都满足一致性,但在有限样本下表现都不够好。四个当中 HC_0 表现最差, HC_2 或 HC_3 表现最好。

需要注意的是,有些软件里的默认设定是使用 HC_0 ,在实践操作中需要人为指定。

课外阅读

 White, H. (1980).
 A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity.
 Econometrica, 48:4, 817-838.

http://www.jstor.org/stable/1912934

- MacKinnon, J. G. and White, H. (1985).
 Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties.
 Journal of Econometrics, 29:3, 305-325.
 https://doi.org/10.1016/0304-4076(85)90158-7
- MacKinnon, J. G. (2005).
 Thirty Years of Heteroskedasticity-Robust Inference.
 In: Chen, X. and Swanson, N. R. (eds.), Recent Advances and Future Directions 437 in Causality, Prediction, and Specification Analysis, 437-461, Springer.
 https://doi.org/10.1007/978-1-4614-1653-1 17