תרגיל בית רטוב מספר 1

<u>מגישים:</u>

322654617	ינון להב
327812483	נועם בן שמעון

13/07/2024

<u>תאריך:</u>

322654617	ינון להב
327812483	נועם בן שמעון

$\underline{:MUX4 o 1}$ ו- $\underline{MUX2 o 1}$ מימוש רכיבי

<u>:3.1</u>

שער	$t_{PDLH}\left[ps ight]$	$t_{PDHL}\left[ps ight]$
NAND2	2	1
OR2	7	2
XNOR2	8	4

$\underline{2} \rightarrow 1$ בורר של בורח נוסחה

$$\begin{aligned} \text{MUX}_{2 \rightarrow 1}(d_0, d_1, sel) &= \overline{\overline{\overline{s} \cdot d_0} \cdot \overline{s \cdot d_1}} = \overline{s} \cdot d_0 + s \cdot d_1 \\ &= \text{NAND}(\text{NAND}(\text{NAND}(sel, sel), d_0), \text{NAND}(sel, d1)) \end{aligned}$$

:2 o 1 טבלת אמת בורר

sel	d_0	d_1	Z
0	0	0	0
0	0	1	0
0	1	1	1
0	1	0	1
1	1	0	0
1	1	1	1
1	0	1	1
1	0	0	0

Path	d_0	d_1	sel	t_{pd}
$d_0 g_1 g_4 z$	0 à 1	1	0	3
$d_0 g_1 g_4 z$	1 à 0	1	0	3
$d_1 g_3 g_4 z$	0	0 à 1	1	3
$d_1 g_3 g_4 z$	0	1 à 0	1	3
$sel g_3g_4z$	0	1	0 à 1	3
$sel g_3g_4z$	0	1	1à0	3
$sel g_2g_1g_4z$	1	0	0 à 1	4
$sel g_2g_1g_4z$	1	0	1à0	5
$d_1 g_3 g_4 z$	1	0 à 1	1	3
$d_1 g_3 g_4 z$	1	1 à 0	1	3

: 2
ightarrow 1 של בורר ניל של $t_{pdhl}(d_0$, d_1 , sel) זמני

$$\begin{aligned} &: d_0 \rightarrow z, sel \rightarrow z & \Leftrightarrow \\ t_{pdhl}(MUX_{2\rightarrow 1})_{sel\rightarrow z} &= t_{pdhl}(MUX_{2\rightarrow 1})_{d_0\rightarrow z} &= 3 \cdot t_{pdhl}(NAND) \\ &= 6 \ [ps] & : d_1 \rightarrow z & \Leftrightarrow \\ t_{pdhl}(MUX_{2\rightarrow 1})_{d_1\rightarrow z} &= 2 \cdot t_{pdhl}(NAND) &= 4 \ [ps] & \\ & t_{pdhl}(MUX_{2\rightarrow 1}) &= 6 \ [ps] & \end{aligned}$$

: 2
ightarrow 1 בורר בורר $t_{pdlh}(D_0$, D_1 , S) זמני

 $m{.t_{pdlh}}(m{MUX_{2 o 1}}) = m{6} \; [m{ps}]$ לכן: לכן לכל השערים מתקיים מתקיים לכל לכן: לכן לכל השערים מתקיים לכל השערים לכל לכן:

מעתה נשתמש בטבלה המופשטת, כמו בהנחיות:

שער	t _{PDLH} [ns]	$t_{PDHL}\left[ps ight]$
NAND2	2	2
OR2	7	7
XNOR2	8	8

<u>:3.2</u> טבלת אמת עבור היציאה שתיבחר:

S[1]	S[0]	Z
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$\pm 4 \rightarrow 1$ שרטוט בורר

:4
ightarrow 1 מקסימליים של בורר נורר $t_{pdhl}(d_0$, d_1 , d_2 , d_3 , sel_0 , $sel_1)$ זמני (1

$$(\texttt{מסלולים זהים}) : d_0 \rightarrow z, d_1 \rightarrow z, d_2 \rightarrow z, d_3 \rightarrow z \quad \bigstar \\ t_{pdhl} (\texttt{MUX}_{4 \rightarrow 1})_{d \rightarrow z} = 2 * t_{pdhl} (\texttt{MUX}_{2 \rightarrow 1})_{d \rightarrow z} = 8 \ [ps] \\ : \texttt{sel}_0 \rightarrow z \quad \bigstar \\ t_{pdhl} (\texttt{MUX}_{4 \rightarrow 1})_{sel_0 \rightarrow z} = t_{pdhl} (\texttt{MUX}_{2 \rightarrow 1})_{t \rightarrow z} + t_{pdhl} (\texttt{MUX}_{2 \rightarrow 1})_{d_0 \rightarrow z} = 10 \ [ps] \\ : \texttt{sel}_1 \rightarrow z \quad \bigstar \\ t_{pdhl} (\texttt{MUX}_{4 \rightarrow 1})_{sel_1 \rightarrow z} = t_{pdhl} (\texttt{MUX}_{2 \rightarrow 1})_{sel \rightarrow z} = 6 \ [ps]$$

$$t_{pdhl}(\text{MUX}_{4\rightarrow 1}) = 10 [ps]$$

$$:$$
4 o בורר של בורר $t_{pdlh}(d_0$, d_1 , d_2 , d_3 , $sel[1:0]) אוני (2 $t_{pdlh}(MUX_{4 o 1})=10$ [ps] לכן: $t_{pdlh}=t_{pdhl}$ מקסים מתקיים מתקיים לכל השערים מתקיים לכל השערים מתקיים אונים.$

:3.3

ניתן לראות כי ציר הזמן הוא כך עבור ערכי הרכיב:

:t=0 *

.sel=10 הקלטים נכנסו למערכת,

:t = 10 [ps] *

sel[0]: 0 o 1 בעת: כעת: התקבל והתייצב. כער של z=1 של והערך ועובדו נכנסו ועובדו

:t = 20 [ps] *

.sel[0]: 1 ightarrow 0 בעת: התקבל התייצב. כעת: z=0 של של החדש נכנס והערך החדש

:t = 30 [ps] *

. התקבל החדש בכנס החדש של בz=1של החדש נכנס והערך החדש הקלט

לסיכום, אנו מקבלים כי אכן עם שינוי הקלט sel[0], אז לאחר כמות זמן ששווה לזמני ההשהיה שחישבנו, הפלט מתייצב.

322654617	ינון להב
327812483	נועם בן שמעון

:Full Adder/Subtractor מימוש רכיב

:3.4

נוסחה של הרכיב Full Adder/Subtractor:

Full Adder Subtractor
$$(A, B, C_{in}, A_{ns})$$
:
$$S = XNOR(XNOR(A, B), C_{in}) = XOR(XOR(A, B), C_{in}) = (A \oplus B) \oplus C_{in} =$$

$$C_{out} = OR \begin{pmatrix} NAND(NAND(XNOR(NAND(XNOR(A, B), 1), A_{ns}), C_{in}), 1) \\ NAND(NAND(b, XNOR(A, A_{ns})), 1) \end{pmatrix} =$$

$$= OR \begin{pmatrix} AND(XNOR(XOR(A, B), A_{ns}), C_{in}), \\ AND(b, XNOR(A, A_{ns})) \end{pmatrix} =$$

$$= OR \begin{pmatrix} \overline{(A \oplus B) \oplus A_{ns}} \cdot C_{in}, \\ B \cdot \overline{A \oplus A_{ns}} \end{pmatrix} = \overline{(A \oplus B) \oplus A_{ns}} \cdot C_{in} + B \cdot \overline{A \oplus A_{ns}}$$

<u>: Full Adder/Subtractor טבלת אמת בורר</u>

A_{ns}	A	В	C_{in}	S	C_{out}
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	1	1

:Full Adder/Subtractor שרטוט

נשים לב כי כיוון שזמני ההשהיה במעבר מנמוך-לגבוה במתח, שווים לאלו מגבוה-לנמוך, אין צורך להתייחס לשני המקרים בזמני השהיה.

על מנת לקבל את המסלול הארוך ביותר, נקבע תחילה את הכניסות להיות:

$$\begin{cases} A = 1 \\ B = 0 \\ C_{in} = 1 \end{cases} \rightarrow \begin{cases} S = 0 \\ C_{out} = 1 \end{cases}$$

, $t_{pdlh}(XOR)$ של יחידות שתי שתי משתנה משתנה היציאה ביניסה א כך ער כך ער היציאה באופן משתנה משתנה כך אוף ארוף הארוף בהמשך, וזהו המסלול הארוף כך ער בהמשך, וזהו המסלול הארוף ביותר המהווה C_{out} . ביותר שקיים, המהווה ביותר שתים, המהווה ביותר שתיים, ביותר ש

$$t_{pd}(F_{A/S})_{A\rightarrow S}=2\cdot t_{pd}(XOR)=16[ps]$$

$$t_{pd}(F_{A/S})_{A \to C_{out}} = t_{pdlh}(XNOR) + t_{pdhl}(NAND) + t_{pdlh}(XNOR) +$$

$$t_{pdhl}(NAND) + t_{pdlh}(NAND) + t_{pdlh}(OR) = 29 [ps]$$

$$t_{pd}^{Full\ Adder/substractor} = 29 [ps]$$

:3.5

ניתן לראות כי ציר הזמן הוא כך עבור ערכי הרכיב:

t=0 הקלטים נכנסו למערכת.

. הקלטים תקינים. אך לא עובדו ולכן אין פלטים הקלטים : $0 < t < 16 \ [ps]$

הערך של s התקבל, כצפוי. t=16 [ps]

. לא, כצפוי. הפלט התקבל, הפלט התקבל, הפלטים הקלטים הקלטים הקלטים : $16 < t < 29 \ [ps]$

 $A{:}~0
ightarrow 1$, מכן, לאחר מכן, העקבל, כצפוי. לאחר מכן, בי הערך של יואר t=29~[ps]

. הקלטים החדשים ולכן אין אך א נכנסו, אך החדשים הקלטים הקלטים :29 < $t < 45 \, [ps]$

הערך החדש של s התקבל, כצפוי. t=45 [ps]

. לא, כצפוי. הקלטים החדשים c_{out} , הקלטים החדשים s התקבל, ובפלטים החדשים t < t < 58 א, כצפוי. •

 $A{:}1 o 0$, הערך החדש של c_{out} הערך החדש של $t = 58 \ [ps]$

הקלטים החדשים נכנסו, אך לא עובדו ולכן אין פלטים הקלטים הקלטים החדשים :58 $< t < 74 \ [ps]$

t = 74 [ps] הערך החדש של s התקבל, כצפוי. t = 74 [ps]

. לא, כצפוי. הקלטים החדשים א התקבל, הקלטים החדשים הקלטים הקלטים הקלטים הקלטים (כצפוי. רא, כצפוי: 74 א א כצפוי: '74 א א הקלטים הקלטים

. הערך החדש של התקבל, כצפוי. $\underline{t=87~[ps]}$

. הפלט יציב: אקלטים א הקלטים הפלט יציב: אפלט יציב: אקלטים א הקלטים אז באר יציב: אקלטים יציב: איב

לסיכום, אנו מקבלים כי אכן עם שינוי הקלטים, אז לאחר כמות זמן ששווה לזמני ההשהיה שחישבנו, הפלט מתייצב.

322654617	ינון להב
327812483	נועם בן שמעון

מימוש הרכיבים

:ALU(64 bit)-ו Arithmatic Logic Unit (1 bit)

:3.6 $Arithmatic\ Logic\ Unit=ALU$ טבלת אמת עבור קביעת פעולת

Operation	פעולת ALU
00	NOR
01	XOR
10	Adder
11	Subtractor

$:ALU(1 \ bit)$ שרטוט

מכל FULL ADDER/SUBTRACTOR מלליים של הרכיב t_{pdh} ו- t_{pdlh} וביג טבלה עם חישובי מני :כניסה לכל יציאה

Input	Output	$t_{pdlh}\left[ps\right]$	t _{pdhl} [ps]
A	S	16	16
В	S	16	16
C_{in}	S	8	8
A	C_{out}	29	29
В	C_{out}	29	29
C_{in}	C_{out}	11	11
A_{ns}	C_{out}	19	19

$$t_{pdlh}\big(F_{A/S}\big)_{A\to S} = t_{pdhl}\big(F_{A/S}\big)_{A\to S} = t_{pdlh}\big(F_{A/S}\big)_{B\to S} = t_{pdhl}\big(F_{A/S}\big)_{B\to S} = 16 \ [ps] \quad \diamondsuit$$

$$t_{pdhl}\big(F_{A/S}\big)_{C_{in}\to S} = t_{pdlh}\big(F_{A/S}\big)_{C_{in}\to S} = t_{pdlh}(XOR)_{A\to S} = 8 \ [ps] \quad \diamondsuit$$

$$t_{pdhl}\big(F_{A/S}\big)_{C_{in}\to S}=t_{pdlh}\big(F_{A/S}\big)_{C_{in}\to S}=t_{pdlh}(XOR)_{A\to S}=8\,[ps]\quad \diamondsuit$$

$$t_{pdlh}(F_{A/S})_{A \to C_{out}} = t_{pdhl}(F_{A/S})_{A \to C_{out}} = t_{pdhl}(F_{A/S})_{B \to C_{out}} = t_{pdhl}(F_{A/S})_{B \to C_{out}} = 29[ps] \quad \diamondsuit$$

$$t_{pdlh}(F_{A/S})_{A \to C_{out}} = t_{pdhl}(F_{A/S})_{A \to C_{out}} = t_{pdlh}(F_{A/S})_{B \to C_{out}} = t_{pdhl}(F_{A/S})_{B \to C_{out}} = 29[ps] \quad \diamondsuit$$

$$t_{pdhl}(F_{A/S})_{C_{in} \to C_{out}} = t_{pdlh}(F_{A/S})_{C_{in} \to C_{out}} = t_{pdhl}(NAND)_{A \to S} + t_{pdhl}(NAND)_{A \to S} + t_{pdhl}(OR)_{A \to S} = \qquad \diamondsuit$$

$$11 [ps]$$

$$t_{pdlh}(F_{A/S})_{A_{ns} \rightarrow C_{out}} = t_{pdhl}(F_{A/S})_{A_{ns} \rightarrow C_{out}} = t_{pdlh}(XNOR)_{A \rightarrow S} + t_{pdlh}(NAND)_{A \rightarrow S} + t_{pdlh}(NAND)_{A \rightarrow S} + t_{pdlh}(OR)_{A \rightarrow S} = 19 \ [ps]$$

כעת נשתמש בטבלה כדי למצוא את הזמנים ב t_{pdhl} ו- ו t_{pdlh} ו- והזמנים לכל כניסה עבור כל כניסה בטבלה כעת בטבלה : $ALU(1\ bit)$

Input	Output	Calculation	$t_{pd}\left[ps\right]$
A	S	$t_{pd}(F_{A/S})_{A\to S} + t_{pd}(MUX_{4\to 1})$	26
В	S	$t_{pd}(F_{A/S})_{A\to S} + t_{pd}(MUX_{4\to 1})$	26
C_{in}	S	$t_{pd}(F_{A/S})_{C_{in}\to S} + t_{pd}(MUX_{4\to 1})$	18
		$t_{pd}(NAND) + t_{pd}(F_{A/S})_{A_{nS} \to S}$	12
Op[0]	S	$+ t_{pd}(MUX_{4\to 1})$ $= t_{pd}(NAND)$	
		$+t_{pd}(MUX_{4\rightarrow1})$	10
<i>Op</i> [1]	S	$t_{pd}(F_{A/S})_{A_{ns}\to S} + t_{pd}(MUX_{4\to 1})$	10
_		$=t_{pd}(MUX_{4\to 1})$	
A	C_{out}	$t_{pd}(F_{A/S})_{A \to C_{out}}$	29
В	C_{out}	$t_{pd}(F_{A/S})_{B \to C_{out}}$	29
C_{in}	C_{out}	$t_{pd}(F_{A/S})_{C_{in} \to C_{out}}$	11
Op[0]	C_{out}	$t_{pd}(NAND) + t_{pd}(F_{A/S})_{A_{ns} \to C_{out}}$	21

לכן:

$$t_{pd}(ALU\ 1\ bit)_{\rightarrow S} = 26\ [ps]$$

 $t_{pd}(ALU\ 1\ bit)_{\rightarrow C_{out}} = 29\ [ps]$

ולסיכום:

$$t_{pd}(ALU\ 1\ bit)=29\ [ps]$$

<u>:4.2</u>

: ALU(64 bit) שרטוט

- ין, $b=\underbrace{0\dots0}_{64\ times}$, $a=\underbrace{1\dots1}_{64\ times}$, $op[0]:0\leftrightarrow 1$ שינוי של עקב שינוי מתקבל עקב מינוי $op[0]:0\leftrightarrow 1$ הרשהיה אינה: op[1]=1 . op[1]=1

$$\begin{split} t_{pd}(ALU_{64\,Bit}) &= t_{pd}(NAND) + t_{pd}(ALU_{1\,Bit})_{op[0] \to c_{out}} + 62 \\ &\quad \cdot \left(t_{pd}(ALU_{1\,Bit})_{c_{in} \to c_{out}} - t_{pd}(NAND) \right) + t_{pd}(ALU_{1\,Bit})_{c_{in} \to s} = 719 \ [ps] \end{split}$$

:4.5

ניתן לראות כי ציר הזמן הוא כך עבור ערכי הרכיב:

:t=0 *

.op=10 ,הקלטים נכנסו למערכת,

:t = 21 *

. מקבל ערך מקבל מקבל c_{out}

:t = 37

. מקבל ערך s מקבל ערך

:t = 719 [ps] *

.op[0]: 0 ightarrow ברכיב. כעת: התקבל הערך של ברכיב, הערך של ברכיב. התקבלו התקבלו הערך ברכיב.

:t = 1438 [ps] *

.sel[0]:1
ightarrow 0 בדיוק מתקבל. כעת: s של החדש נכנס, והערך החדש של

:t = 30 [ps] *

לסיכום, אנו מקבלים כי אכן עם שינוי הקלט sel[0], אז לאחר כמות זמן ששווה לזמני ההשהיה שחישבנו, הפלט מתייצב ובדיוק באותו הזמן שנשנה.