

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO **FACULTAD DE QUÍMICA SEMESTRE 2024-2**

EVALUACIÓN DE LA DISPERSIÓN DE EMISIONES DE LA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO VALLE HERMOSO PARA EL 2022.

ENTREGABLE II. PROGRAMAS AUXILIARES PARA EL CÁLCULO DE TRAYECTORIAS (SCRIPT)

ESTANCIA ACADÉMICA (0216) A MAYO DE 2024

TUTOR

Dr. José Agustín García Reynoso Instituto de Ciencias de la Atmósfera y Cambio Climático

agustin@atmosfera.unam.mx

(+52) 55 56 22 43 96

ALUMNO

Adriana Cruz Rosales

(+52) 999 272 41 08

Facultad de Química No. de cuenta: 419014526 adrianarosales@comunidad.unam.mx

ÍNDICE DE CONTENIDO

ÍNDICE DE CONTENIDO	2
CONTENIDO: SCRIPTS DE LOS NOTEBOOK EJECUTADOS EN PYTHON	3
02_Trayectories_Months_Hysplit_ValleHermoso.ipynb	3
03_Frecuency_Hysplit_ValleHermoso.ipynb	9
❖ 03 Cluster Hysplit ValleHermoso.ipynb	11

CONTENIDO: SCRIPTS DE LOS NOTEBOOK EJECUTADOS EN PYTHON

02_Trayectories_Months_Hysplit_ValleHermoso.ipynb

1 Corriendo Varias Trayectorias HYSPLIT en ARGOS para diferentes tiempos

Se presentan los pasos para ejecutar HYSPLIT empleando la interfase de Jupyter para trayectorias.

- Crear y ubicarse en el directorio de trabajo
- Crear el archivo ASCDATA.CFG
- 3. Configurar los parametros de la ejecución de trayectoria
- 4. Crear el archivo CONTROL
- 5. Ejecutar el programa de trayectorias
- 6. Crear el despliegue

```
[12]: #Crea liga del directorio de trabajo
cd $HOME/data/VALLEHERMOSO
#ln -sf /NFS/STORAGE_FQA/FQA/VALLEHERMOSO wrf-out
pwd
ls -l -a wrf-out
```

```
[13]: # variables de ambiente
     export LD_LIBRARY_PATH=/lib:/opt/apps/netcdf-c/gcc/12/4.8.1/lib:/usr/local/
      -netcdf/gcc/lib:/home/agustin/local/lib
     export MDL=/opt/apps/hysplit/5.3.0
     # Limpia el directrio
      rm ARLDATA.CFG ASCDATA.CFG WRFDATA.CFG
     # Crea archvio AWRFDATA.CFG
     {
          echo "&SETUP"
          echo " num3dv = 7,"
          echo " arw3dv = 'P','T','U','V','W','X','QVAPOR',"
          echo " cnv3dv = 0.01, 1.0, 1.0, 1.0, 1.0, 1.0, "
          echo " arl3dv = 'PRES', 'TEMP', 'UWND', 'VWND', 'WWND', 'DIFW', 'SPHU', "
          echo " num2dv = 9,"
          echo " arw2dv = 'HGT', 'PSFC', 'RAIN', 'X', 'PBLH', 'UST', 'T2', 'U10', 'V10', "
```

```
echo "arl2dv = 'SHGT','PRSS','TPP1','DIFR','PBLH','USTR_G
','T02M','U10M','V10M',"
echo "/"
}>WRFDATA.CFG

#Para cada archivo
for archivo in $(ls wrf-out/wrfout_d01_2022-08*)
do
echo ${archivo}
#Ejecuta el convertidor
echo ${archivo:19:13}
/opt/apps/hysplit/5.3.0/exec/arw2arl -i${archivo} -oarldata/AR_${archivo:19:13}.

wbin -c2
done
```

```
[14]: cd $HOME/data/VALLEHERMOSO
      ls arldata
      cd arldata
      rm ARL_2022-08.bin
     cat AR_2022-08*.bin >> ARL_2022-08.bin
[12]: cat AR_2022-06*.bin >> ARL_2022-05.bin
[15]: # %%bash -l
      #: Tilte
                 : hace_hysplit_anual.sh
      #: Date
                  : 2022-02-02
      #: Author
                  : "Jose Agustin Garcia Reynoso <agustin@atmosfera.unam.mx>"
      #: Version : 1.0
      #: Description: Calcula las trayectorias para un sitio varios tiempos
      #: Options
                 : None
      # Se define el arreglo para cada mes
      declare -a cmes=( ene feb mar abr may jun jul ago sep oct nov dic)
      for i in 07 #${!cmes[@]} #Aquí se actualiza el mes
      # en la variable DIR definir el nombre del directorio ${cmes[$i]}
      DIR=${cmes[$i]}
      ims=$(($i+1))
      if [ ${ims} -lt 10 ]; then ims=0${ims};fi
      # se revisa si existe en el directorio $HOME si no se crea
      if [ ! -d ${HOME}/data/VALLEHERMOSO/$DIR ]; then mkdir $HOME/data/VALLEHERMOSO/
       4$DIR ;fi
      # se ubica en el directorio
      cd ${HOME}/data/VALLEHERMOSO/${DIR}
      # set default directory structure if not passed through
      MDL="/opt/apps/hysplit/5.3.0"
      OUT="${HOME}/data/VALLEHERMOSO/${DIR}"
      MET="${HOME}/data/VALLEHERMOSO/arldata"
      cd $OUT
      if [ ! -f ASCDATA.CFG ]; then
          echo "1800 3600" >>ASCDATA.CFG
           echo "-90.0 -180.0" >ASCDATA.CFG
                                  >>ASCDATA.CFG
          echo "0.2"
                                  >>ASCDATA.CFG
           echo "'$MDL/bdyfiles/bdyfiles0p1/'" >>ASCDATA.CFG
      echo "### para $DIR ###"
```

```
# Configura archivo de control para simulaciones de
# dispersion/concentracion
iyr=22 # Anio solo los dos ultimos dígitos
#ims=01 # Mes dos digitos
idy=01 # Dia de inicio de modelacion
ihr=00 # Hora de inicio de modelacion
# Ubicación de la fuente a modelar y altura
lat=25.79781
lon=-97.78435
lv1=100.0
          # Opcion de movimiento vertical
vop=0
            # Numero de horas a modelar
run=12
ztop=10000.0 # Altura del tope de modelacion
           # Numero de archivos meteorologicos
#MET="${HOME}/data/hysplit_data" # Directorio donde estan los datau
⊶meteorologicos
# para cada día
for idy in {01..31}
data="ARL_20${iyr}-${ims}.bin" #nombre del archivo meteorologico
# Indica cada cuantas horas va a correr
stph=01
# Indica el numero de dias a correr
idia=01
# Indica el numero de horas despues de iniciar.
hfin=00
# calcula las horas totales
if [ $idia -lt 1 ] ; then
 ht=$(($hfin+10#${ihr}))
   ht=$((10#${ihr}+${idia}*24+10#${hfin}))
fi
# dias en el mes
# D E F M A M J J A S O N D
mes=(31 31 28 31 30 31 30 31 31 30 31 30 31)
```

```
# Datos de tiempo en loop
for ih in $( seq $ihr $stph $ht )
if [ $ih -gt 23 ] ; then
  lh=$(($ih -24*$(($ih/24))))
  ld=$((10#${idy}+ $ih/24 ))
  if [ $ld -lt 10 ]; then ld=0$ld ;fi
else
  lh=$ih
  ld=$idy
  lm=$ims
fi
if [ $ld -gt ${mes[10#$ims]} ]; then
     echo "cambio de mes"
  lm=$((10#${ims} + 1))
  ld=$((10#${idy}+ 10#$ih/24 - 10#${mes[10#$ims]}))
  if [ $lm -lt 10 ]; then lm=0$lm ;fi
  if [ $ld -lt 10 ]; then ld=0$ld ;fi
fi
if [ $lh -lt 10 ]; then lh=0$lh ;fi
# Creacion del archivo CONTROL
#----
echo "$iyr $lm $ld $lh " >CONTROL
echo "1
                           ">>CONTROL
echo "$lat $lon $lvl
                           ">>CONTROL
echo "$run
                            ">>CONTROL
echo "$vop
                           ">>CONTROL
                           ">>CONTROL
echo "$ztop
                           ">>CONTROL
echo "$nmf
echo "$MET/
                           ">>CONTROL
echo "$data
                          ">>CONTROL
                           ">>CONTROL
echo "$OUT/
echo "tdump$iyr$lm$ld$lh ">>CONTROL
# corre la simulacion
if [ -f SETUP.CFG ]; then rm -f SETUP.CFG ;fi
${MDL}/exec/hyts_std >sal
done # para cada hora
printf "\t %s" $1d
```

```
done # para cada día
printf "\t dia\n"
echo "Terminado 20$iyr $lm ${DIR} "$(date +%c)
echo "-----"
done #para cada mes
unset cmes
```

```
[22]: echo comprobando archivos
pwd
ls $HOME/data/VALLEHERMOSO/ago/tdump* |wc -1
tail -1 $HOME/data/VALLEHERMOSO/ago/tdump22082512
#cat ../ene/tdump19012512
echo $MDL
```

1.1 Visualización de las trayectorias

```
### Definiciones de ruta de ejecutable

MDL="/opt/apps/hysplit/5.3.0/"

# para cada mes

# en la variable DIR definir el nombre del directorio

DIR=ago
echo $DIR

# se revisa si existe en el directorio $HOME si no se crea
if [ ! -d ${HOME}/data/VALLEHERMOSO/$DIR ];then mkdir $HOME/data/VALLEHERMOSO/

□$DIR ;fi
```

2 Identificación de archivos con trayectorias cerca de la CDMX

3 Trayectorias que llegan a CDMX

```
[25]: %%bash -1
      # Definiciones de ruta de ejecutable
      MDL="${HOME}/data/VALLEHERMOSO/hysplit.v5.2.0_CentOS7.9.2009"
      # para cada mes
      # en la variable DIR definir el nombre del directorio
      DIR=ago
      echo $DIR
      # se revisa si existe en el directorio $HOME si no se crea
      if [ ! -d ${HOME}/data/VALLEHERMOSO/$DIR ]; then mkdir $HOME/data/VALLEHERMOSO/

⇒$DIR ;fi

      # se ubica en el directorio
      cd ${HOME}/data/VALLEHERMOSO/${DIR}
      # Genera el archivo de todas las trayectorias
      ls tdump19101516 > INFILE
      WEB=""
        if [ -f /bin/convert ]; then WEB="/bin/convert"; fi
      echo "'$MDL/graphics/mexico.shp' 0 0.01 0.4 0.6 0.8" >shapefiles_mex.txt
      # set default directory structure if not passed through
```

```
echo "'TITLE&','Trayectorias de Nucleoelectrica &'" >LABELS.CFG
${MDL}/exec/trajplot +g0 -i+INFILE -jshapefiles_mex.txt -13 -v4 -otray.ps -z0_
--h19.7:-96.4
${WEB} tray.ps ../${DIR}_tray2.jpg
```

03_Frecuency_Hysplit_ValleHermoso.ipynb

1 Análisis de Frecuencias de trayectorias.

- Creación del archivo con las trayectorias a identificar frecuencias INFILE
- Ejecucion programa de creacion de frecuencias (trajfreq) para la creación del archivo con las frecuencias (tfreq.bin)
 - Creacion archivo de etiquetas (LABELS.CFG)
 - Creacion archivo de Notas (MAPTEXT.CFG)
 - Visualización de las frecuencias

```
[7]: %%bash -1
    #: Tilte
                 : crea_frec.sh
    #: Date
                 : 2022-02-10
                  : "Jose Agustin Garcia Reynoso <agustin@atmosfera.unam.mx>"
    #: Author
    #: Version
                  : 1.0
    #: Description: Realiza la secuencia de pasos para calcular la frecuencia
              de las trayectorias calculadas durante el periodo de 12 meses
    # para cada mes
    #: Options
                  : None
    declare -a cmes=(ene feb mar abr may jun jul ago sep 'oct' nov dic)
    for i in 01 04 07 10 # ${!cmes[@]}
    do
         # Se define en la variable DIR el nombre del directorio
        DIR=${cmes[$i]}
     # se revisa si existe en el directorio $HOME si no se crea
    if [ ! -d $HOME/data/VALLEHERMOSO/$DIR/frecuencias ]; then
        mkdir $HOME/data/VALLEHERMOSO/$DIR/frecuencias ;fi
     # se ubica en el directorio DIR
     cd $HOME/data/VALLEHERMOSO/$DIR/frecuencias
     #se crea el archivo INFILE seleccionando las trayectorias
        ls $HOME/data/VALLEHERMOSO/$DIR/tdump22* > INFILE
     # Directorio del hysplit
```

```
MDL="/opt/apps/hysplit/5.3.0"
${MDL}/exec/trajfreq -ftfreq.bin -g0.05 -iINFILE -r1 -s0:5000
   -f[frequency file name (tfreq.bin)]
   -g[grid size in degrees (1.0)]
   -i[input file of file names (INFILE)]
#
   -h[number of hours to include in analysis (9999)]
#
   -r[residence time (0),1,2,3]:
#
        (0) = no
         1 = yes; divide endpoint counts by number of trajectories
#
#
         2 = yes; divide endpoint counts by number of endpoints
#
         3 = yes; divide endpoint counts by max count number for any grid cell
#
   -c[include only endpoint files with same length as first endpoint file read]
#
         (0) = no
#
         1 = yes
#
   -s[select bottom:top (0:99999) m AGL]
if [ -f LABELS.CFG.CFG ]; then rm LABELS.CFG ;fi
echo "'TITLE&', 'Frecuencia de trayectorias&'" >LABELS.CFG
echo "'MAPID&',' Valores &'"
                                    >>LABELS.CFG
echo "'UNITS&',' % &'"
                                    >>LABELS.CFG
echo "'VOLUM&',' &'"
                                   >>LABELS.CFG
cat > MAPTEXT.CFG <<EOF
Instituto de Ciencias de la Atmosfera y Cambio Climatico
-----
Hysplit Dispersion Calculation
______
Source Location: Valle Hermoso
Start Day: 01 ${DIR}
Start Time(UTC): 12
Meteorology Data Source: ARW
Trajectory Computation Heights: agl
Pollutant Emission Rate:
Initial Pollutant Distribution:
Deposition Options Enabled: No
Notes:
Issued: $(date +%c)
EOF
echo "'$MDL/graphics/mexico.shp' 0 0.01 0.4 0.6 0.8" >shapefiles_mex.txt
${MDL}/exec/concplot +g0 -m0 -k1 -z80 -jshapefiles_mex.txt -itfreq.bin
convert concplot.ps ${DIR}_frec2018.jpg
```

```
mv ${DIR}_frec.jpg ../../
   -a[Arcview GIS: 0-none 1-log10 2-value 3-KML 4-partial KML]
  +a[KML altitude mode: (0)-clampedToGround, 1-relativeToGround]
   -A[KML options: 0-none 1-KML with no extra overlays]
   -b[Bottom display level: (0) m]
   -c[Contours: (0)-dyn/exp 1-fix/exp 2-dyn/lin 3-fix/lin 4-set 50-0,interval
 410 51-1, interval 10]
   +c[Write contour values to text output file CONTUR: (0)-no 1-yes]
   -d[Display: (1)-by level, 2-levels averaged]
   -e[Exposure units flag: (0)-concentrations, 1-exposure, 2-chemical_
 uthreshold,
                                  3-hypothetical volcanic ash, 4-mass loading]
#
   -f[Frames: (0)-all frames one file, 1-one frame per file]
   -g[Circle overlay: ( )-auto, #circ(4), #circ:dist_km]
   +g[Graphics type: (0)-Postscript, 1-SVG]
   -h[Hold map at center lat-lon: (source point), lat:lon]
   -i[Input file name: (cdump)]
   -j[Graphics map background file name: (arlmap) or shapefiles.<(txt)|process_u
 usuffix>]]
   -k[Kolor: 0-B&W, (1)-Color, 2-No Lines Color, 3-No Lines B&W]
   -1[Label options: ascii code, (73)-open star]
   +1[Use THIS IS A TEST label: (0)-no, 1-yes]
   -L[LatLonLabels: none=0 auto=(1) set=2:value(tenths)]
   -m[Map projection: (0)-Auto 1-Polar 2-Lamb 3-Merc 4-CylEqu]
   +m[Maximum square value: O=none, (1)=both, 2=value, 3=square]
   -n[Number of time periods: (0)-all, numb, min:max, -incr]
   -o[Output file name: (concplot.ps)]
   -p[Process file name suffix: (ps) or process ID]
   -x[Concentration multiplier: (1.0)]
   -y[Deposition multiplier:
                                (1.0)]
   -z[Zoom factor: 0-least zoom, (50), 100-most zoom]
echo "### Se termió de hacer el mes de $DIR ###"
echo --
done
unset cmes
```

• 03_Cluster_Hysplit_ValleHermoso.ipynb

1 Análisis de Conjuntos de trayectorias (Cluster)

- 1. Creación del archivo con las trayectorias a identificar conjuntos
- Creación del archivo de control de cluster CCONTROL
- 3. Generación de conjuntos ejecutando cluster
- 4. Visualizacón de la Variancia Espacial Total (TSV)
- 5. Determinación del número de conjuntos

Creación de CCONTROL y Ejecución del código para generación de cluster

```
if [ ! -d $HOME/data/VALLEHERMOSO/$DIR/conjuntos ]; then
   mkdir $HOME/data/VALLEHERMOSO/$DIR/conjuntos ;fi
# se ubica en el directorio DIR
cd $HOME/data/VALLEHERMOSO/$DIR
# Directorio del hysplit
PGM="/opt/apps/hysplit/5.3.0"
#################
# cluster1.scr
##################
 dur=8 # hours par realización clustering
 int=1
                # Endpoint interval to use (hours)
 skip=1
                # Skip trajectory interval
 ODIR="$HOME/data/VALLEHERMOSO/$DIR/conjuntos/" # Directorio de saldia de_
→Conjutos (con trailing /)
 cd $ODIR
 iproj=0
 echo $dur
 echo $int
 echo $skip
echo $ODIR
 echo $iproj
} > CCONTROL
# Realizando la conjunción
 rm -f TCLUS TNOCLUS CLUSTER DELPCT CLUSTERno CMESSAGE
 $PGM/exec/cluster
 if [ ! -f CLUSTER -o ! -f DELPCT ]; then
    echo "ERROR - cluster failed"
    exit
 fi
 rm TNOCLUS # not used
 rm TCLUS # not used
```

1.1 Identificación del numero de conjuntos

```
[76]: #%%bash -l
      # se define directorio de trabajo
      DIR=(ago)
      # se define directorio del hysplit
      PGM="/opt/apps/hysplit/5.3.0"
      cd $HOME/data/VALLEHERMOSO/$DIR/conjuntos/
      # Titulo del grafico
        ilab1=VALLEHERMOSO
      # TSV grafico de la Variancia Espacial Total (TSV)
        $PGM/exec/clusplot +g0 -iDELPCT -oclusplot.ps -l${ilab1}
      #
        +g[Graphics type: (0)-Postscript, 1-SVG]
      #
         -i[Input file name: (cdump)]
        -l[Label options: ascii code, (73)-open star]
      #
      #
        -o[Output file name: (concplot.ps)]
      # Creacion de figura para visualizar
        if [ ! -s clusplot.ps ]; then
          echo "ERROR - clusplot fallo"
       fi
      convert clusplot.ps clusplot.jpg
```

De la figura se selecciona el número donde se da el quiebre de la pendiente mas pronunciada a la de menor

Determinación del número final de conjuntos

```
[78]: #%bash -l

# Se define directorio de trabajo
```

```
# determine final number of clusters
 rm -f CLUSEND
 if $PGM/exec/clusend -iDELPCT -n${minc} -a${maxc} -t${mint} -p${pct}_
 --oCLUSEND; then
    echo $PGM/exec/clusend OK 1st try
    # relax criteria to help get # clusters
    pct='expr $pct - 10'
    $PGM/exec/clusend -iDELPCT -n${minc} -a${maxc} -t${mint} -p${pct} -oCLUSEND
 if [ ! -s CLUSEND ]; then
    echo "ERROR - clusend failed"
    exit
 fi
# generate list of trajs in each cluster
 rm -f CLUSLIST_${nc}
 $PGM/exec/cluslist -iCLUSTER -n${nc} -oCLUSLIST_${nc}
# -i[input file (CLUSTER)]
# -n[number of clusters: #, (-9-missing)]
# -o[output file (CLUSLIST)]
 if [ ! -s CLUSLIST_${nc} ]; then
    echo "ERROR - cluslist failed"
    exit
 fi
# add trajs not clustered (cluster #0) to CLUSLIST
 if [ -s CLUSTERno ]; then
    cat CLUSLIST_${nc} >> CLUSTERno
    mv CLUSTERno CLUSLIST_${nc}
 fi
```

```
# create TRAJ. INP. Cxx file for each cluster (list of trajs)
 rm -f TRAJ. INP*
 if $PGM/exec/clusmem -iCLUSLIST_${nc}; then
   # for each cluster
   run=-1
                    # for cluster #0
   while [ $run -lt $nc ]; do
     run='expr $run + 1'
     if [ -f TRAJ.INP.C${run}_${nc} ]; then
                                      # cluster #0 may not exist
        # create tdump file of all trajs
       $PGM/exec/merglist -i+TRAJ.INP.C${run}_${nc} -omdump -ptdump
       if [ -s mdump.tdump ]; then
          mv mdump.tdump C$run.tdump
          echo "ERROR - merglist TRAJ.INP.C${run}_${nc}"
          exit
       fi
       $PGM/exec/trajmean -i+TRAJ.INP.C${run}_${nc}
       if [ -s tmean ]; then
         mv tmean C${run}mean.tdump
         echo "ERROR - trajmean TRAJ.INP.C${run}_${nc}"
          exit
       fi
     fi
   done
   # make one tdump for all means
   # for each cluster (not zero)
   run=0
   rm -f MEAN.LIST
   while [ $run -lt $nc ]: do
     run='expr $run + 1'
     echo "C${run}mean.tdump" >> MEAN.LIST
   done
   $PGM/exec/merglist -i+MEAN.LIST -omdump -ptdump
   if [ -s mdump.tdump ]; then
     mv mdump.tdump Cmean.tdump
```

```
else
echo "ERROR - merglist MEAN.LIST"
exit
fi
rm -f MEAN.LIST

else
echo "ERROR - clusmem"
exit
fi
```

1.2 Visualización de las trayectorias

```
[79]: #%%bash -l

# Se define directorio de trabajo

DIR=(ago)

# se define directorio del hysplit

PGM="/opt/apps/hysplit/5.3.0"

nc=2
```

```
cd $HOME/data/VALLEHERMOSO/$DIR/conjuntos
echo "'$PGM/graphics/mexico.shp' 0 0.01 0.8 0.7 0.5" >shapefiles_mex.txt
#echo "'$PGM/graphics/hidro4mgw.shp' 0 0.005 0.4 0.6 0.8 " >>shapefiles_mex.txt
# plot trajectories for each cluster
 run=-1
                        # for cluster #0
  while [ $run -lt $nc ]; do
    run='expr $run + 1'
    if [ -s C$run.tdump ]; then
        rm -f LABELS.CFG
        echo "'TITLE&', 'TRAJECTORIES IN CLUSTER ${run} of ${nc}&'" >LABELS.CFG
        $PGM/exec/trajplot +g0 -iC$run.tdump -jshapefiles_mex.txt -e$dur -z80_
 4-k0 -10 -v4
        if [ -s trajplot.ps ]; then
           convert trajplot.ps trajplot_C$run.jpg
           echo "Enter to continue ..."; # read x
           echo "Error in trajplot +g0 -iC$run.tdump"
           exit
        fi
     fi
 done
 rm -f LABELS.CFG
 # compute/plot mean traj for each cluster
tdump=Cmean.tdump
echo ${tdump} tedump
if [ -s ${tdump} ]; then
    rm -f LABELS.CFG
     echo "'TITLE&', 'CLUSTER MEAN TRAJECTORIES&'" >LABELS.CFG
     $PGM/exec/trajplot +g0 -jshapefiles_mex.txt -iCmean.tdump -e$dur -z80□
 --k${nc}:12 -1-12 -v4
        convert trajplot.ps trajmean.jpg
else
        echo "ERROR - trajplot +g0 -iCmean.tdump"
        exit
fi
    rm -f LABELS.CFG
# cleanup
# rm -f CCONTROL
# rm -f CLUSTER CLUSTERno CMESSAGE DELPCT
# rm -f CLUSLIST_* CLUSEND
# rm -f TRAJ. INP. C?_?
```