COSC 494/594 – Homework #1: Sequence Manipulation and Probabilistic Modeling

(Reformatted using ChatGPT and updated from 2023 instance)

Due Date: August 28, 2025

Reading:

- Chapter 1 (Introduction)
- Sections 3.1–3.4 and 3.6 (Sequence models and basic probability)

Let your instructor know if you use any third-party libraries or online tools beyond standard programming packages.

1. Academic Integrity Statement (2 points)

Review the Honor Code in the syllabus and the supplemental document. In your report.txt, explicitly state:

"I have read and agree to the terms of the COSC 494/594 Honor Code."

2. Retrieve a Genomic Sequence (1 point)

Download the full genome of bacteriophage lambda from NCBI (accession NC 001416.1).

• Save the file as lambda. fasta and include it in your submission.

3. Reverse Complement Generator (5 points)

Write a program (in any programming language) to compute the **reverse complement** of the sequence in lambda.fasta.

- The output should be saved as lambda.rev.fasta and should include the FASTA header: >reversed
- In report.txt, include instructions on how to run your program (e.g., command-line usage).
- Include your source code file(s) in the submission.

4. Nucleotide and Dinucleotide Frequencies (5 points)

Create a program to compute and report:

• The frequency of each nucleotide (A, C, G, T)

• The frequency of each dinucleotide (e.g., AA, AC, AG, ..., TT)

Output Requirements:

- Include a summary table in report.txt
- Save the source code and include brief instructions for use

5. Additional Sequences (1 point)

Download the following FASTA sequences from NCBI:

- Human mitochondrial genome $(NC_012920) \rightarrow Save as$ human mito.fasta
- Neanderthal HVR I region (AF254446) \rightarrow Save as neander_sample.fasta Include both files in your submission.

6. Sequence Probability Modeling (8 points)

Using the human mitochondrial genome (human mito.fasta):

- Train a multinomial model: Estimate individual nucleotide probabilities
- Train a third-order Markov model: Estimate conditional probabilities of each nucleotide given the previous three
- Compute the log-probability of the Neanderthal sequence under both models

Output Requirements:

- Show both computed log-probabilities in report.txt
- Discuss any surprising results or assumptions (e.g., unknown bases)
- Submit all source code and instructions for use

7. Markov-Based Random Sequence Generator (8 points)

Use the third-order Markov model trained in Task 6 to generate a synthetic DNA sequence of 20,000 bases.

- Save the output in FASTA format as markov simulated.fasta
- Include source code and run instructions in your submission
- In report.txt, include a short commentary on how realistic the sequence appears (e.g., dinucleotide frequencies)

HINT: Code from Task #4 can be reused to sanity-check this prior to submission.

✓ Submission Checklist:

Grading Rubric Summary:

Task	Description	Points
1	Honor code agreement	2
2	Download bacteriophage genome	1
3	Reverse complement code + output	5
4	Frequency analysis code + output	5
5	Download human/Neanderthal sequences	1
6	Probability model code + log-probability calculations	8
7	Markov model simulation + discussion	8
	Total	30