# Regularized Optimization Algorithms for High Dimensional Missing Data Problems

Yanling Li
The Pennsylvania State University
Department of Human Development and Family Studies

December 5th, 2019

# EM algorithm in the high-dimensional setting

 $X^{obs}$ : observed data  $X^{mis}$ : missing data

 $\log f(X^{obs}, X^{mis}|\theta)$ : the log-likelihood of complete data

- Standard EM algorithm
  - E-step:  $Q(\theta|\theta^{(t)}) = E_{\theta^{(t)}} \{ \log f(X^{obs}, X^{mis}|\theta) | X^{obs}, \theta^{(t)} \}$
  - M-step:  $\theta^{(t+1)} = \operatorname{argmax} Q(\theta|\hat{\theta}^{(t)})$
- In the high-dimensional setting
  - $Q(\theta|\theta^{(t)})$  can be complicated or even intractable
  - the M-step may not be well-defined
    - E.g., the M-step involves inverting a matrix that is not full rank

## Regularized EM algorithm

Basic idea: regularizing the M-step in which the regularization parameter  $\lambda^{(t)}$  is updated at each iteration to match the target estimation error.

#### **Algorithm 1** Regularized EM Algorithm

Input: data, regularizer  $\mathcal{R}$ , starting values  $\theta^{(0)}$ , initial regularization parameter  $\lambda^{(0)}$ , estimated statistical error  $\Delta$ , contractive factor  $\kappa$ .

In each iteration,

- 1. E-step: compute  $Q(\theta|\theta^{(t)})$
- 2. Regularization parameter update:  $\lambda^{(t)} = \kappa \lambda^{(t-1)} + \Delta$
- 3. Regularized M-step:  $\theta^{(t+1)} = \operatorname{argmax}[Q(\theta|\theta^{(t)}) \lambda^{(t)}\mathcal{R}(\theta)]$

## Regularization parameter update

$$\lambda^{(t)} = \kappa \lambda^{(t-1)} + \Delta$$
$$\lambda^{(t)} = \kappa^t \lambda^{(0)} + \frac{1 - \kappa^t}{1 - \kappa} \Delta$$

 $\Delta = O(\sqrt{\log p/n})$  characterizes the final estimation error  $\|\theta^{(T)} - \theta^*\|_2$ .

 $\kappa \lambda^{(t-1)}$  characterizes the optimization error  $\|\theta^{(t)} - \theta^{(T)}\|_2$ .

In each iteration,  $\lambda^{(t)}$  is suggested to be proportional to the target estimation error  $\|\theta^{(t)} - \theta^*\|_2$ .



# Imputation-regularized optimization (IRO) algorithm

Basic idea: replacing the E-step with an imputation step when the E-step is intractable as well as regularizing the M-step.

#### Algorithm 2 IRO Algorithm

Input: data, regularizer  $\mathcal{R}$ , starting values  $\theta^{(0)}$ , regularization parameter  $\lambda$ .

In each iteration,

- 1. I-step: draw  $\tilde{X}^{mis}$  from  $h(x^{mis}|X^{obs},\theta^{(t)})$  so that the pseudocomplete data is  $\tilde{X}=(X^{obs},\tilde{X}^{mis})$ .
- 2. RO-step:  $\theta^{(t+1)} = \underset{\sim}{\operatorname{argmax}} [E_{\theta^{(t)}} \{ \log f(\tilde{X}|\theta) \} \lambda \mathcal{R}(\theta) ]$

#### Simulation

### Toy example: high-dimensional missing covariate regression

- Model:  $Y = X\beta^* + W$  where  $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ ,  $W \sim \mathcal{N}(0, \sigma^2)$ , and  $\beta^*$  is a sparse vector containing only 5 non-zero elements.
- Missing data generation

$$x_{ij} = \begin{cases} x_{ij}, & \text{with probability} 1 - \rho \\ missing, & \text{with probability} \rho \end{cases}$$

- Goal
  - Monitor the optimization error  $\|\beta^{(t)} \beta^{(T)}\|_2$  and the estimation error  $\|\beta^{(t)} \beta^*\|_2$
  - Compare the computational cost between the two algorithms

## Preliminary results

$$n = 100$$
,  $p = 200$ ,  $\rho = 0.3$ ,  $T = 30$ 



## Preliminary results



- Wall time
  - Regularized EM: 636.47 seconds
  - IRO: 7.00 seconds

### Discussion

- The regularized EM algorithm converges faster than IRO.
- For this toy example, the regularized EM algorithm has higher computational cost because it involves optimizing a complex surrogate function.
- If it is easy to implement parameter estimation when there are no missing data, then IRO is recommended; otherwise, the regularized EM algorithm is recommended given its higher convergence rate.

## More algorithms

- Monte Carlo EM (Wei & Tanner, 1990)
  - applied when the E-step is analytically intractable
- misgLasso (Stadler & Bühlmann, 2012)
  - specifically designed for Gaussian graphical models
- misPALasso (Städler et al., 2014)
  - specifically designed for multivariate Gaussian data
- matrix completion algorithm (Cai et al., 2010)
  - designed for large incomplete matrices