TNF

TUMOR NECROSIS FACTOR

Afonso Santos | Carolina Jesus | Rafael Santos | Labs-bioinf | 2024/25

OBJETIVOS

- Caracterizar, na generalidade, o gene e a proteína associada, através da exploração de diferentes bases de dados e publicações cientificas teóricas;
- Estudar diversos aspetos inerentes ao gene, nomeadamente, a sequências de proteínas homólogas, alinhamento de sequencias múltiplas, árvores filogenéticas e motifs, bem como, dominar as plataformas bioinformáticas e a sua utilização;
- Inferir acerca dos dados recolhidos com vista a complementar a informação recolhida a partir das bases de dados e a entender melhor as implicações do gene TNF na saúde humana.

IMPORTÂNCIA DA BIOINFORMÁTICA

A bioinformática envolve o desenvolvimento e aplicação de algoritmos e ferramentas computacionais para organizar, analisar e extrair informações relevantes de grandes conjuntos de dados biológicos, sendo crucial no estudo de genomas e sequenciamento de DNA

TNF

O gene do fator de necrose tumoral (TNF), localizado no cromossoma 6:

- codifica uma multifuncional citocina próinflamatória, TNF-α;
- desempenha um papel crucial na regulação de processos biológicos (incluindo proliferação, diferenciação, apoptose, metabolismo de lípidos e coagulação).
- está associado a diversas doenças, como doenças autoimunes, resistência à insulina, psoríase, artrite reumatoide, espondilite anquilosante, tuberculose, doença renal autosómica dominante policística e cancro.

Abordagens Bioinformáticas

Plataforma de consulta de sequências genómicas e proteicas e visualização de genes em formato 3D.

Plataforma que gera os motifs associados às sequencias homólogas.

Plataforma de consulta de publicações académicas de carácter teórico acerca de genes específicos.

Itol (Iteractive Tree Of Life)

Plataforma que gera diferentes árvores filogenéticas e permite a edição das mesmas

Clustal Omega

Plataforma que permite gerar sequencias múltiplas de alinhamentos com base em conjuntos de sequências homologas.

Plataforma que fornece os elementos regulatórios da proteína em estudo .

METODOLOGIA

Sequências proteicas homólogas

Alinhamento Múltiplo de Sequências

Árvores filogenéticas

Com a plataforma Itol, foram geradas diversas árvores filogenéticas. Elementos regulatórios

Na plataforma Gene Browser, obtiveram-se os elementos regulatórios do gene TNF. **Motifs**

Tendo em conta as sequências homólogas em estudo, foram obtidos os motifs.

A partir do ficheiro (FASTA) com as sequências da proteína e dos seus 10 homólogos escolhidos gerou- se o AMS, através da plataforma Clustal Omega.

Alinhomentos Múltiplos de Sequêncios

Macaca mulatta
Mus musculus
Oryctolagus cuniculus
Ovis aries
Bubalus bubalis
Camelus bactrianus
Sus scrofa
Equus caballus
Homo sapiens
Canis lupus familiaris
Felis catus

**RDVELAEEALPQKMGGFQNSRRCLCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-SPNNLHLVNPVAQMV------TLTNHQVEEQLEW
-RDVELAEEALPQKMGGFQNSRRCLCLSLFSFLLVAGATTLFCLLHFRVIGPQEEE-SPNNLHLVNPVAQMV------TLTNHQVEEQLEW
-RDVELAEEVLSNKAGGPQGSRSCWCLSLFSFLLVAGATTLFCLLHFGVIGPQREEQSPAGPSFNRPLVQTLRSSSQASNNKPVAHVVANISAPGQLRW
-RDVELAEEVLSEKAGGPQGSRSCWCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-SPGGPSINSPLVQTLRSSSQASSNKPVAHVVADINSPGQLRW
-RDVELAEEALPKKAGGPQGSRRCLCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-LLTGLQLWNPLAGTLRSSSQASSNKPVAHVVADPAAGGQLQW
-RDVELAEEALAKKAGGPQGSRRCLCLSLFSFLLVAGATTLFCLLHFEVIGPQKEE-FPAGPLSINPLAGGLRSSSQ-TSDKPVAHVVANVKAEGQLQW
-RDVELAEEELAKKAGGPQGSRRCLCLSLFSFLLVAGATTLFCLLHFEVIGPQREE-FPAGPLSINPLAGTLRSSSRTPSDKPVAHVVANPQAEGQLQW
-RDVELAEEELAKKAGGPQGSRRCLCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-FPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQW
-RDVELAEEALPKKTGGPQGSRRCLFLSLFSFLLVAGATTLFCLLHFGVIGPQREE-FPRDLSLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQW
-RDVELAEEALPKKAGGPPGSRRCFCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-LPNGLQLISPLAQAVRSSSRTPSDKPVAHVVANPQAEGQLQW
-RDVELAEEALPKKAGGPPGSRRCFCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-LPNGLQLISPLAQTVKSSSRTPSDKPVAHVVANPEAEGQLQW
-RDVELAEEALPKKAGGPQGSGRCLCLSLFSFLLVAGATTLFCLLHFGVIGPQREE-LPNGLQLINPLPQTLRSSSRTPSDKPVAHVVANPEAEGQLQW

Regiões conservadas:

Por exemplo, "CLCLSLFSFLLVAGATTLFCLLHFGV"

Regiões não conservadas:

Por exemplo, 1. "LPQKMGGFONSRR" vs

2. "-LLTGLQLMN" vs "-FPAGPLSIN"

ÁRVORE FILOGENÉTICA

Homo sapiens e Macaca mulatta estão estritamente relacionados.

Canis lupus familiaris e Felis catus estão proximamente relacionados como membros da ordem Carnivora, mas pertencem a famílias diferentes.

Sus scrofa, Bubalus bubalis e Ovis aries agrupam-se como artiodátilos, enquanto Equus caballus diverge ligeiramente como perissodáctilo.

Camelus bactrianus embora seja um artiodátilo, ramifica-se mais cedo, indicando distância dentro deste ramo.

Oryctolagus cuniculus e
Mus musculus apresentam uma
divergência notável apesar de ambos
serem pequenos mamíferos.

- RDVELAEE: uma região conservada dominada por ácido glutâmico (E) e arginina (R), provavelmente crítica para a ligação ou sinalização do recetor devido à sua polaridade.
- PQGSRR: uma região conservada com prolina (P) e serina (S), permitindo potencialmente flexibilidade conformacional ou regulação dependente da fosforilação.
- LCLSLF: apresentam conservação hidrofóbica (leucina, fenilalanina), sugerindo estabilização estrutural ou interação com a membrana.

- FSFLLVAGATTLF: região hidrofóbica com resíduos não polares (leucina, fenilalanina, valina) indica um potencial domínio transmembranar ou região estrutural central essencial para a estabilidade da proteína.
- GPQREE: resíduos polares como a glutamina (Q) e o ácido glutâmico (E) sugerem papéis nas interações proteína-proteína ou na transdução de sinal.
- RSSS: implica locais de fosforilação (serina, treonina) para funções regulatórias.

ELEMENTOS REGULATÓRIOS

E2454811/enhD (distal enhancer-like elements)

contribuem para interações cromatídicas de longo alcance que modulam a expressão do TNF de forma específica consoante o tipo celular e o estímulo recebido.

E2454815/enhP (proximal enhancer-like elements)

reforçam a transcrição ao facilitar o recrutamento de maquinaria transcricional adicional e ao estabilizar a interação entre potenciadores e o promotor central.

E2454816/prom (promoter region)

papel na iniciação da transcrição, contendo múltiplos locais de ligação para fatores de transcrição cruciais como o NF-κB, AP-1 e CREB, ativados rapidamente perante estímulos inflamatórios

Conclusão

Este trabalho foi fundamental para evidenciar a importância das ferramentas bioinformáticas no estudo da complexidade genética e das relações evolutivas do gene TNF porque sem elas, seria inviável analisar um volume tão vasto e complexo de dados.

Assim sendo, isto permite o avanço do conhecimento em genética e em áreas como a imunologia e a medicina, permitindo uma melhor compreensão dos mecanismos moleculares associados a doenças inflamatórias e autoimunes.

Além disso, o estudo reforça o potencial de abordagens computacionais no desenvolvimento de terapias dirigidas, como os inibidores de TNF usados no tratamento de patologias como a artrite reumatoide e a doença de Crohn.

Portanto, a análise detalhada do gene TNF através de métodos bioinformáticos não só esclareceu aspetos fundamentais da sua evolução e regulação, como também destacou o valor destas ferramentas na investigação biomédica.

Este trabalho ilustra como a combinação de dados genómicos, alinhamentos de sequências e reconstruções filogenéticas pode desvendar as complexas interações que governam a função e a expressão genética ao longo da evolução, abrindo caminho para novas descobertas e aplicações clínicas.