

Northern Illinois University

Hash Tables & Hashing

Dr. Maoyuan Sun - smaoyuan@niu.edu

Hash Table

- The ideal hash table data structure is an array of some fixed size containing items
- A key is used for the lookup
- The size of the hash table is known as the tablesize and common convention has the table run from 0 to (tablesize 1)
- Each key is mapped into some number in the range 0 to (tablesize 1) which corresponds to a cell in the array
- The mapping is called a hash function and has the properties:
 - it is easy to compute
 - ensures that any two keys result in a different cell location

Hash Table Example

- John hashes to 3
- Phil hashes to 4
- Dave hashes to 6
- Mary hashes to 7
- Don't worry about hash function here, just understand that the value of name is converted to array index
- What is the size of this hash table? 10

Key	Data
0	
1	
2	
3	John
4	Phil
5	
6	Dave
7	Mary
8	
9	

- If our data is as simple as integers, then simply returning key mod table size is a reasonable strategy
- Why would we use the size of the hash table in mod?

Provides us with an easy method for generating index between **0** and **tablesize** – **1**.

- If our data is as simple as integers, then simply returning key mod table size is a reasonable strategy
- Why would we use the size of the hash table in mod?

Provides us with an easy method for generating index between **0** and **tablesize** – **1** but this simplistic approach can cause problems:

key 100	tablesize 10	location 0
key 20	tablesize 10	location 0
key 40	tablesize 10	location 0

Collision at location 0 and considered bad!!

- One solution is to make the hash table size a prime number
- If the input keys are random integers, the function is easy to compute and distributes the keys evenly
- We don't always have integers; strings are often used as keys
- What could be a function that would take a string as input and return us an index into the hash table? A simple strategy is to add up the ASCII values of the characters in the string

ASCII values to index:

```
int
hash(const string &key, int tablesize)
{
    int hashvalue = 0;
    for(char ch : key)
        hashvalue += ch;
    return hashvalue%tablesize;
}
```

- Simple to implement, easy to compute
- Does it give us a nice distribution of index values?

ASCII values to index:

```
int
hash2(const string &key, int tablesize)
{
    return (key[0]+27*key[1]+729*key[2])%tablesize;
}
```

- Assume key has at least 3 characters, we use the fact that 26 characters in English alphabet plus a blank (27) and that 27² is 729
- With a table size of 10007, we could expect a better distribution
- Problem still?

ASCII values to index:

```
int
hash3(const string &key, int tablesize)
{
   int hashvalue = 0;
   for(char ch : key)
      hashvalue = 37 * hashvalue + ch;
   return hashvalue%tablesize;
}
```

 Back to using all characters, simple to implement, easy to compute

 You can also do clever things; say your string is street address, what could you do?

9700 S. Cass Avenue, Argonne IL 60439

- Key could be complete address, with the hash function using a couple characters from street address, couple characters from city name and maybe the zipcode
- Other approaches use only the odd characters

Take away – a good hash function is important!!

Collisions

 If/when an element is inserted and it hashes to an index that is already in use, it is known as a collision.

Collisions (Separate Chaining)

Keeps a list of all the elements that hash to the same value

Example:

- Let's assume the keys are the first 10 perfect squares
- Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
- Hashing Function: hash(x) = x%10, where 10 is tablesize [yes its not prime]
- Then index looks like 0, 1, 4, 9, 6, 5, 6, 9, 4, 1

Collisions (Separate Chaining)

- Keeps a list of all the elements that hash to the same value
- Example:
 - Let's assume the keys are the first 10 perfect squares
 - Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
 - Hashing Function: hash(x) = x%10, where 10 is tablesize
 - Then index looks like 0, 1, 4, 9, 6, 5, 6, 9,
 4, 1

Collisions (Separate Chaining)

Insertion

- If value at key (index) is NULL we create linked list and add element
- If value at key (index) is !NULL we insert element into linked list

Find

Traverse list till you find value or hit NULL

Delete

Same as delete/remove from linked list

Collisions (Probing)

- In probing, you look for alternative cells until an empty cell is found
- Given cells:

 $h_0(x)$, $h_1(x)$, $h_2(x)$, ... are tried in succession where:

 $h_i(x) = (hash(x) + f(i))\%tablesize with f(0) = 0$

The function f is the *collision resolution strategy*

- When using probing all elements go into the table so the table is generally larger
- Types of probing
 - Linear
 - Quadratic
 - Double hashing

• In linear probing, f is a linear function of i

$$f(i) = i$$

- Cells are tried sequentially (with wrap around) in search of empty cell
- Example:
 - Keys: 89, 18, 49, 58, 69
 - Hashing Function: hash(x) = x%10, where 10 is tablesize

0			
1			
2			
3			
4			
5			
6			
7			
8			
9	89		

0				
1				
2				
3				
4				
5				
6				
7				
8		18		
9	89	89		

0			49	
1				
2				
3				
4				
5				
6				
7				
8		18	18	
9	89	89	89	

0			49	49	
1				58	
2					
3					
4					
5					
6					
7					
8		18	18	18	
9	89	89	89	89	

0			49	49	49
1				58	58
2					69
3					
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

- Works as long as the table is large for a free cell to always be found
- What would be an issue?

- Works if the table is large for a free cell to always be found
- What would be an issue? Could take a lot of time!
- Even for a relatively empty table, continuous blocks of occupied cells begin to form – this effect is known as clustering
- If a key hashes into a cluster, it will often require several attempts to resolve the collision

• In quadratic probing, f is a quadratic function of i

$$f(i) = i^2$$

- Cells are tried sequentially (with wrap around) in search of empty cell
- Example:
 - Keys: 89, 18, 49, 58, 69
 - Hashing Function: hash(x) = x%10, where 10 is tablesize

0			
1			
2			
3			
4			
5			
6			
7			
8			
9	89		

0				
1				
2				
3				
4				
5				
6				
7				
8		18		
9	89	89		

0			49	
1				
2				
3				
4				
5				
6				
7				
8		18	18	
9	89	89	89	

0			49	49	
1					
2				58	
3					
4					
5					
6					
7					
8		18	18	18	
9	89	89	89	89	

$$f(1) = 1$$
$$f(2) = 4$$

0			49	49	49
1					
2				58	58
3					69
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

$$f(1) = f(2) = f(3)$$

Double hashing uses a second hash function when a collision occurs.

$$f(i) = i * hash2(x)$$

which mean, we apply a second hash function to x probe at a distance hash₂(x), then 2*hash₂(x), then 3*hash₂(x), ...

- NOTE: Poor choice of hash₂ can be disastrous!
- Example:

$$hash_2(x) = x\%9$$

$$f(i) = i * hash2(x)$$

if building on our last example we inserted 99, it would conflict with 89 which when executed the second has would be i * 0 for all i's.

Take Away: hash₂ can **NEVER** return 0!!!!!

- Important that all cells can be probed (not possible in example because the table is not prime)
- This can be achieved by designing a hash₂ that looks like this: $hash_2(x) = R - (x\%R)$

where R is a prime number smaller than the size of the hash table.

• Example:

Keys: 89, 18, 49, 58, 69, 60 hash₁(x) = x%10 hash₂(x) = 7 – (x%7), where 10 is tablesize

0				
1				
2				
3				
4				
5				
6				
7				
8				
9	89			

Keys: 89, 18, 49, 58, 69, 60 $hash_1(x) = x\%10 hash_2(x) = 7 - (x\%7)$, where 10 is tablesize

0				
1				
2				
3				
4				
5				
6				
7				
8		18		
9	89	89		

Keys: 89, 18, 49, 58, 69, 60 $hash_1(x) = x\%10 hash_2(x) = 7 - (x\%7)$, where 10 is tablesize

0			1			
1			2			
2			3			
3			4			
4			5			
5			6			
6			7	49		
7						
8		18		18		
9	89	89	•	89		

 $hash_2 = 7 - (49\%7)$ $hash_2 = 7 - 0$ $hash_2 = 7$

Keys: 89, 18, 49, 58, 69, 60 hash₁(x) = x%10 hash₂(x) = 7 - (x%7), where 10 is tablesize

0				2		
1				3		
2				4		
3				5	58	
4						
5						
6			49		49	
7						
8		18	18	•	18	
9	89	89	89	1	89	

 $hash_2 = 7 - (58\%7)$ $hash_2 = 7 - 2$ $hash_2 = 5$

Keys: 89, 18, 49, 58, 69, 60 hash₁(x) = x%10 hash₂(x) = 7 – (x%7), where 10 is tablesize

0					1 69	
1						
2						
3				58	58	
4						
5						
6			49	49	49	
7						
8		18	18	18	18	
9	89	89	89	89	89	

 $hash_2 = 7 - (69\%7)$ $hash_2 = 7 - 6$ $hash_2 = 1$

Keys: 89, 18, 49, 58, 69, 60 hash₁(x) = x%10 hash₂(x) = 7 – (x%7), where 10 is tablesize

0					69	6 9
1						1
2						2 60
3				58	58	58
4						
5						
6			49	49	49	49
7						
8		18	18	18	18	18
9	89	89	89	89	89	89

 $hash_2 = 7 - (60\%7)$ $hash_2 = 7 - 4$ $hash_2 = 3$ COLLISION! $hash_2 = 2 * 3$ $hash_2 = 6$ COLLISION! $hash_2 = 3 * 3$ $hash_2 = 9$ COLLISION! $hash_2 = 4 * 3$ $hash_2 = 12$

12%10 = 2

- What do you do if the table gets full?
- Build a new table that is twice as big (with a new hash function).
 - Scan the original table computing new key
 - Place element at new location based on key

0	6	6
1	15	15
2		23
3	24	24
4		
5		
6	13	13

$$h(x) = x\%7$$

insert 23, now the table is 70% full, time to create new table twice as big

Create a table that is twice as big!

- Create a table that is twice as big!
- Is 17 twice as big as 6?

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

- Create a table that is twice as big!
- Is 17 twice as big as 6? No, it's the first prime after 12.
- New hash function:

$$h(x) = x \% 17$$

0	
1	
2 3	
3	
4	
5	
6	6
7	23
8	24
9	
10	
11	
12	
13	13
14	
15	15
16	

Load Factor

- Load factor is the ratio of the number of elements in the hash table to the table size
- Ideal case is if load factor is less than 1
- As load factor approaches or is greater than 1 you might want to rehash

Load Factor

0	6	6
1	15	15
2		23
3	24	24
4		
5		
6	13	13

load factor = 5/7 = .71

Load Factor

0	6	6
1	15	15
2		23
3	24	24
4		
5		
6	13	13

Hash Table in STL

 STL provides a hash table implementation of sets and maps, they are unordered_set and unordered_map

Acknowledgement

These slides have been adapted and borrowed from books on the right as well as the CS340 notes of NIU CS department (Professors: Alhoori, Hou, Lehuta, and Winans) and many google searches.

