Série 1

Exercice 1:

Dans un repère R fixe, muni d'une base orthonormée directe $(\vec{\imath}, \vec{\jmath}, \vec{k})$, On considère les deux vecteurs suivants :

$$\vec{v} = 2 t \vec{i} + t \vec{j} + \vec{k}$$
 et $\vec{w} = 4 t \vec{i} - t \vec{j} - \vec{k}$ où t est le temps.

1°) En utilisant les propriétés de dérivée vectorielle, calculer $\frac{d(\vec{v} \cdot \vec{w})}{dt}$ et $\left(\frac{d(\vec{v} \wedge \vec{w})}{dt}\right)_{p}$

Exercice 2:

Dans un repère orthonormé direct $\Re(O, \vec{i}, \vec{j}, \vec{k})$, on considère les vecteurs :

$$\vec{v}_1=3\vec{i}+3\vec{j}$$
, $\vec{v}_2=\vec{i}+3\vec{j}+\vec{k}$, $\vec{v}_3=\vec{i}-\vec{j}+2\vec{k}$ et $\vec{v}_4=2\vec{i}-\vec{k}$

- 1. Représenter les vecteurs \vec{v}_1 et \vec{v}_2 .
- **2.** Calculer $|\vec{v}_1|$, $|\vec{v}_2|$ et les produits $\vec{v}_1 \cdot \vec{v}_2$ et $\vec{v}_1 \wedge \vec{v}_2$.
- 3. Calculer l'angle formé par les vecteurs \vec{v}_1 et \vec{v}_2 .
- **4.** Montrer que le vecteur \vec{v}_3 est perpendiculaire au plan (P) formé par les vecteurs \vec{v}_1 et \vec{v}_2 .
- 5. Montrer que le vecteur \vec{v}_4 appartient au plan (P)
- **6.** Déterminer le vecteur unitaire \vec{u} porté par le vecteur $(\vec{v}_1 + \vec{v}_2)$
- **7.** Calculer le produit mixte $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ et montrer qu'il est invariant par permutation circulaire.

Exercice 3:

On considère dans le plan xOy deux vecteurs unitaires perpendiculaires \vec{u} et \vec{v} , tournant autour de l'axe (Oz). Soit R(O,x,y,z) un repère muni de la base O.N.D $(\vec{i},\vec{j},\vec{k})$. En posant $(\vec{Ox},\vec{u}) = \theta$ ($\theta = \omega t$, ω est une constante). Soit $\vec{r} = \cos bt \ \vec{i} + \sin bt \ \vec{j} + t^2 \vec{k}$ une fonction vectorielle et $\lambda(t) = e^{-at}$ une fonction scalaire (a et b sont des constantes)

- **1.** Exprimer les vecteurs \vec{u} et \vec{v} dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- **2.** Déterminer le vecteur \vec{w} , tel que le système $(\vec{u}, \vec{v}, \vec{w})$ constitue une base O.N.D
- **3.** Calculer $\frac{d\vec{u}}{d\theta}\Big|_{R}$ et $\frac{d\vec{v}}{d\theta}\Big|_{R}$ dans la base $(\vec{i}, \vec{j}, \vec{k})$ puis dans la base $(\vec{u}, \vec{v}, \vec{w})$.
- **4.** Calculer $\frac{d\vec{u}}{dt}\Big|_{R}$ et $\frac{d\vec{v}}{dt}\Big|_{R}$ dans la base $(\vec{l}, \vec{j}, \vec{k})$ puis dans la base $(\vec{u}, \vec{v}, \vec{w})$.
- **5.** Calculer $\frac{d(\lambda \vec{r})}{dt}\Big|_{R}$ et $\frac{d(\vec{u} \wedge \vec{r})}{dt}\Big|_{R}$ dans les bases $(\vec{l}, \vec{j}, \vec{k})$ et $(\vec{u}, \vec{v}, \vec{w})$.

Exercice 4:

Soit un vecteur \vec{v} (t) de module V et un référentiel R.

- 1°) Peut-on dire que le module de la dérivée de \vec{v} (t) est égale à la dérivée du module de \vec{v} (t) ?
- 2°) Montrer que si \vec{v} (t) a un module constant, le vecteur dérivé $\left(\frac{d\vec{v}(t)}{dt}\right)_{\!\!R}$ lui est orthogonal.
- 3°) Montrer que, d'une manière générale : $\vec{v}(t)$. $\left(\frac{d\vec{v}(t)}{dt}\right)_{R}$ = V $\frac{dV}{dt}$