

Gazing at Rewards: Eye Movements as a Lens into Human and AI Decision-Making in Hybrid Visual Foraging

Bo Wang^{1,2,3}, Dingwei Tan^{1,2,4}, Yen-Ling Kuo⁵, Zhaowei Sun³, Jeremy M. Wolfe^{6,7}, Tat-Jen Cham¹, Mengmi Zhang^{1,2,*}

¹ College of Computing and Data Science, NTU, Singapore ²Deep NeuroCognition Lab, I2R and CFAR, Agency for Science, Technology and Research, Singapore

³Harbin Institute of Technology, Harbin, China ⁴Beijing Institute of Technology, Beijing, China ⁵University of Virginia, USA ⁶Brigham and Women's Hospital, USA ⁷Harvard Medical School, USA

Introduction

Hybrid visual foraging:

Search for multiple instances of various target types stored in memory, where target values and prevalence can vary, and the exact number of target instances is often unknown.

Our observation: Humans can proficiently seek rewards when doing hybrid visual foraging with *zero* training, while current AI models struggle to generalize to unseen combinations of values and prevalence.

Visual Forager (VF)

Task

Train (VF only):

- Uneven value, random prevalence

In domain (InD):

- 1. Uneven value, equal prevalence (UnValEqPre)
- 2. Uneven value, unequal prevalence (UnValUnPre)

Out of domain (OOD):

- 1. Even value, unequal prevalence (EqValUnPre)
- 2. Unseen target objects (UTargets)
- 3. Unseen value combinations (UValues)
- 4. Unseen total item numbers (UItemNum)
- 5. Unseen target set size (USetSize)

Results

- > Humans and VF are proficient foragers.
- > VF outperform all the baseline models

Results

- Poth humans and VF show a tendency to prioritize high-valued targets initially, while selecting low-valued targets later and less frequently.
- ➤ VF approximates the saccade size distributions of humans, without training on human eye-tracking data.

- > VF generalizes to OOD conditions
- ➤ Ablations reveal critical component designs

Ablations	UnVal	UnVal	EqVal
	EqPre	UnPre	UnPre
Behavior Clone	61.7	48.5	60.1
VF (2D-CNN)	75.3	63.7	70.0
Explicit Val. Emb.	69.2	56.7	61.8
W/o Augmentation	51.3	52.0	52.2
Full VF (ours)	72.6	67.1	81.6

Conclusion & Discussion

- Humans tend to over-exploit the most prevalent or high-valued target types encountering imbalance in target prevalence or values.
- ☐ Visual Forager with better generalization capability in hybrid visual foraging tasks.
- ☐ Visual Forager vs. Human Behavior.
- ☐ Cumulative rewards, foraging biases, & eye movements.

We support Open Science! Scan QR code for Papers, code, data

NATIONAL
RESEARCH
FOUNDATION

