归纳与递归

离散数学—归纳与递归

内容提要

- 归纳
 - 数学归纳法
 - 强数学归纳法
 - 运用良序公理来证明
- 递归
 - 递归定义
 - 结构归纳法
 - 递归算法

数学归纳法

- 证明目标
 - $\forall n P(n)$ //n的论域为正整数集合
- 证明框架
 - 基础步骤: *P*(1)为真
 - 归纳步骤:证明 $\forall k (P(k) \rightarrow P(k+1))$
 - //对任意正整数k, 给出 $P(k) \vdash P(k+1)$ 的论证步骤.
 - ...
 - 因此,对任意正整数n, P(n) 成立.// 即: $\forall n P(n)$

数学归纳法 (有效性)

- 良序公理
 - 正整数集合的非空子集都有一个最小元素
- 数学归纳法的有效性(归谬法)
 - 假设 $\forall n P(n)$ 不成立,则 $\exists n (\neg P(n))$ 成立.
 - \diamondsuit S={ $n \in \mathbb{Z}^+ \mid \neg P(n)$ }, S是非空子集.
 - 根据良序公理,S有最小元素,记为 $m, m \neq 1$
 - (m-1)∉S, 即P(m-1)成立.
 - 根据归纳步骤,P(m)成立,即 $m \notin S$,矛盾.
 - 因此, $\forall n P(n)$ 成立.

数学归纳法 (举例)

- H_k=1+1/2+...+1/k (k为正整数)
- 证明: H₂ⁿ ≥1+n/2 (n为正整数)
 - 基础步骤: P(1)为真, H₂=1+1/2
 - 归纳步骤:对任意正整数k, $P(k) \Rightarrow P(k+1)$. $H_2^{k+1} = H_2^k + 1/(2^k+1) + ... + 1/2^{k+1}$

$$\geq (1+k/2)+2^k(1/2^{k+1})=1+(1+k)/2$$

• 因此,对任意正整数n, P(n)成立.

数学归纳法 (举例)

- 猜测前n个奇数的求和公式,并证明之。
 - 1=1
 - 1+3=4
 - 1+3+5=9
 - 1+3+5+7=16
 - • •
 - 1+3+...+(2n-1)=n² (n为正整数)
 - 运用数学归纳法证明(练习)

数学归纳法证明时常见错误

- \mathbf{M}_1 : 任意n个人,他们一定全部在同一天出生.
- 错误证明:
 - O Basis: $\exists n = 1$ 时,只有一个人,命题显然成立;
 - I.H.: 假设任意k个人,他们全部在同一天出生,则:
 - I.S.: 当有k+1个人时(编号为1,2,…,k,k+1),根据归纳假设,第1人至第k人(共k个人)一定在同一天出生;第2至第k+1人(共k个人)也一定在同一天出生。因此,这k+1人全部在同一天出生。根据数学归纳法,命题成立. □
 - 回纳基础错误: P(1) → P(2)!

数学归纳法证明时常见错误

- 例2: 证明 $\sum_{i=1}^{n} 2i 1 = n^2$
- 错误证明:
 - Basis: $\exists n = 1$ 时, $\sum_{i=1}^{1} 2i 1 = 1^2$ 命题成立;
 - I.H.: 假设当n = k 时 $\sum_{i=1}^{k} 2i 1 = k^2$ 成立,则:
 - I.S.: 根据等差数列的求和公式, $\sum_{i=1}^{k+1} 2i 1 = 1 + 3 + 5 + \dots + 2(k+1) 1 = \frac{[1+2(k+1)-1](k+1)}{2} = (k+1)^2$ 。 根据数学归纳法,命题成立. □
 - 归纳过程错误: 未证明 $P(k) \rightarrow P(k+1)!$

强数学归纳法

- 证明目标
 - $\forall n P(n)$ //n的论域为正整数集合
- 证明框架
 - 基础步骤: P(1)为真
 - 归纳步骤:证明∀k(P(1)∧...∧P(k)→P(k+1))
 - //对任意正整数k, 给出 $P(1), ..., P(k) \vdash P(k+1)$ 的论证步骤.
 - ...
 - 因此,对任意正整数n, P(n)成立.//即: $\forall n P(n)$

强数学归纳法(一般形式)

- 设P(n)是与整数n有关的陈述, a和b是两个给定的整数,且 $a \le b$.
- 如果能够证明下列陈述
 - P(a), P(a+1), ..., P(b).
 - 对任意 $k \geq b, P(a) \wedge ... \wedge P(k) \rightarrow P(k+1)$
- 则下列陈述成立
 - 对任意 $n \ge a, P(n)$.

强数学归纳法 (有效性)

- {n∈Z | n ≥ a }是良序的
 - 良序集:该集合的非空子集都有一个最小元素
- 数学归纳法的有效性(归谬法)
 - 假设 $\forall n P(n)$ 不成立,则 $\exists n (\neg P(n))$ 成立.
 - \diamondsuit S={ $n \in \mathbb{Z} \mid (n \geq a) \land \neg P(n)$ },S是非空子集.
 - 根据良序公理,S有最小元素,记为m, m>a
 - $a, ..., (m-1) \notin S$, 即P(a), ..., P(m-1)成立.
 - 根据归纳步骤,P(m)成立,即 $m \notin S$,矛盾.
 - 因此, $\forall n P(n)$ 成立.

强数学归纳法(举例)

- 任意整数n(n ≥2)可分解为(若干个)素数的乘积
 - n = 2.
 - 考察 n+1.
- 用4分和5分就可以组成12分及以上的每种邮资.
 - P(12), P(13), P(14), P(15).
 - 对任意 $k \ge 15$, $P(12) \land ... \land P(k) \rightarrow P(k+1)$

(强) 数学归纳法 (举例)

- 对每个正整数n ≥ 4, n! > 2ⁿ
 - 基础步骤: P(4)为真, 24 > 16
 - 归纳步骤:对任意正整数k≥4, P(k)⇒P(k+1).
 (k+1)!=(k+1) k!>(k+1) 2^k>2^{k+1}
 - 因此,对任意正整数 $n \ge 4$, P(n) 成立.

运用良序公理来证明(举例)

- 设a是整数, d是正整数, 则存在唯一的整数q和r满足
 - $0 \le r < d$
 - a = dq + r
- 证明
 - \diamondsuit S={a-dq | 0≤a-dq , q \in \mathbb{Z} } , S非空.
 - 非负整数集合具有良序性
 - S有最小元,记为 $r_0 = a dq_0$.
 - 可证 $0 \le r_0 < d$
 - 唯一性证明, $0 \le r_1 r_0 = d (q_0 q_1) < d$, 因此, $q_1 = q_0$

运用良序公理来证明(举例)

在循环赛胜果图中,若存在长度为m(m≥3)的回路,则必定存在长度为3的回路。

备注: $a_i \rightarrow a_j$ 表示 a_i 赢了 a_j

证明

- 设<u>最短回路的长度</u>为k //良序公理的保证
- 假设 k>3
- $\bullet \quad a_1 \to a_2 \to a_3 \to \dots \to a_k \to a_1$

递归定义(N上的函数)

- 递归地定义自然数集合N上的函数。
 - 基础步骤: 指定这个函数在0处的值;
 - 递归步骤: 给出从较小处的值来求出当前的值之规则。
- 举例, 阶乘函数 F(n)=n! 的递归定义
 - F(0)=1
 - $F(n)=n \cdot F(n-1)$ for n>0

- Fibonacci 序列 {f_n} 定义如下
 - $f_0 = 0$,
 - $f_1 = 1$,
 - $f_n = f_{n-1} + f_{n-2}$, 对任意 $n \ge 2$.
- 其前几个数
 - 0, 1, 1, 2, 3, 5, 8, ...
- 证明: 对对任意 $n \ge 0$, $f_n = \frac{\alpha^n \beta^n}{\alpha \beta}$

$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}.$$

归纳证明: Fibonacci 序列

- 验证: 当n=0,1时, 陈述正确。
- 对于k+1, $f_{k+1} = f_k + f_{k-1}$ $= \frac{\alpha^k \beta^k}{\alpha \beta} + \frac{\alpha^{k-1} \beta^{k-1}}{\alpha \beta}$ $= \frac{\left(\alpha^k + \alpha^{k-1}\right) \left(\beta^k + \beta^{k-1}\right)}{\alpha \beta}$ $= \frac{\alpha^{k+1} \beta^{k+1}}{\alpha \beta}.$

注意:
$$\alpha^2 = \alpha + 1$$
,且 $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$ 对任意 $n \ge 1$.

递归定义(集合)

- 递归地定义集合。
 - 基础步骤: 指定一些初始元素;
 - 递归步骤:给出从集合中的元素来构造新元素之规则;
 - 排斥规则(只包含上述步骤生成的那些元素)默认成立
- 举例,正整数集合的子集S
 - *x*∈S
 - 若 $x \in S$ 且 $y \in S$,则 $x+y \in S$ 。

递归定义(举例)

- 字母表 Σ 上的字符串集合 Σ^* 。
 - 基础步骤: λ∈Σ* (λ表示空串);
 - 递归步骤: 若 $\omega \in \Sigma^*$ 且 $x \in \Sigma$,则 $\omega x \in \Sigma^*$ 。
- 字符串的长度(Σ^* 上的函数l)。
 - 基础步骤: *l*(λ)=0;
 - 递归步骤: $l(\omega x) = l(\omega) + 1$, 若 $\omega \in \Sigma^*$ 且 $x \in \Sigma$

递归定义(举例)

- Σ^* 上的字符串连接运算。(Concatenation)
 - 基础步骤: $\Xi \omega \in \Sigma^*$, 则 $\omega \cdot \lambda = \omega$;
 - 递归步骤: 若 $\omega_1 \in \Sigma^*$ 且 $\omega_2 \in \Sigma^*$ 以及 $x \in \Sigma$, 则 $\omega_1 \cdot (\omega_2 x) = (\omega_1 \cdot \omega_2) x$ 。

 $//\omega_1 \cdot \omega_2$ 通常也写成 $\omega_1 \omega_2$

递归定义(举例)

- 复合命题的合式公式。
 - 基础步骤: T, F, s都是合式公式, 其中s是命题变元;
 - 递归步骤:若E和F是合式公式,则(¬E)、(E∧F)、(E∨F)
 、(E→F)和(E↔F)都是合式公式。

结构归纳法

- 关于递归定义的集合的命题,进行结构归纳证明。
 - 基础步骤:证明对于初始元素来说,命题成立;
 - 递归步骤:针对生产新元素的规则,若相关元素满足命题 ,则新元素也满足命题
- 结构归纳法的有效性源于自然数上的数学归纳法
 - 第0步(基础步骤),...

结构归纳法(举例)

- l(xy) = l(x) + l(y), $x \in \Sigma^*$.
- 证明
 - 设P(y)表示:每当x属于 Σ^* ,就有l(xy) = l(x) + l(y)。
 - 基础步骤:每当x属于 Σ^* ,就有 $l(x\lambda) = l(x) + l(\lambda)$ 。
 - 递归步骤: 假设P(y)为真,a属于 Σ , 要证P(ya)为真。
 - 即:每当x属于 Σ^* ,就有l(xya) = l(x) + l(ya)
 - P(y)为真,l(xy) = l(x) + l(y)
 - l(xya) = l(xy) + 1 = l(x) + l(y) + 1 = l(x) + l(ya)

- N×N是良序的(字典序)
- 递归定义a_{m,n}
 - $a_{0,0} = 0$
 - $a_{m,n} = a_{m-1,n} + 1 \quad (n=0, m>0)$
 - $a_{m,n} = a_{m,n-1} + n \quad (n>0)$
- 归纳证明 $a_{m,n} = m + n(n+1)/2$

递归算法

• 举例: 欧几里德算法

```
function gcd(a, b) // a \ge b \ge 0, a > 0

if b = 0

return a

else

return gcd(b, a \mod b)
```

- 递归算法的正确性
- 递归算法的复杂性 (时间、空间)

递归与迭代

- n!
- fibonacci(n)

• 正确性如何保证?

作业

• 见课程QQ群

递归思维:例1

 汉诺塔问题: How many moves are need to move all the disks to the third peg by moving only one at a time and never placing a disk on top of a smaller one.


```
T(1) = 1

T(n) = 2T(n-1) + 1
```

```
void hanoi(int n,char one, two, three)

// 将n个盘从one座借助two座,移到three座

{
    void move(char x,char y);
    if(n==1) then move(one,three);
    else {
        hanoi(n-1,one,three,two);
        move(one,three);
        hanoi(n-1,two,one,three);
    }
}
```

汉诺塔问题的解

$$T(n) = 2T(n-1) + 1$$

$$2T(n-1) = 4T(n-2) + 2$$

$$4T(n-2) = 8T(n-3) + 4$$

$$2^{n-2}T(2) = 2^{n-1}T(1) + 2^{n-2}$$

$$T(n)=2^n-1$$

递归思维:例2

- Cutting the plane
 - How many sections can be generated at most by n straight lines with infinite length?

Solution of Cutting the Plane

$$L(n) = L(n-1)+n$$

$$= L(n-2)+(n-1)+n$$

$$= L(n-3)+(n-2)+(n-1)+n$$

$$=$$

$$= L(0)+1+2+....+(n-2)+(n-1)+n$$

$$L(n) = n(n+1)/2 + 1$$

递归思维:例3 Josephus Problem

- Live or die, it's a problem!
- Legend has it that Josephus wouldn't have lived to become famous without his mathematical talents. During the Jewish Roman war, he was among a band of 41 Jewish rebels trapped in a cave by the Romans. Preferring suicide to capture, the rebels decided to form a circle and, proceeding around it, to kill every third remaining person until no one was left. But Josephus, along with an unindicted co-conspirator vanted none of this suicide nonsense; so he quickly cal ated where he and his friend should stand in the viciou

We use a simpler version: "every second..."

Make a Try: for *n*=10

For 2*n* Persons (*n*=1,2,3,...

The solution is: newnumber (J(n))

And the newnumber(k) is 2k-1

And What about 2n+1 Persons (n=1,2,3,...)

The solution is: newnumber (J(n))

And for the time, the newnumber(k) is 2k+1

Solution in Recursive Equations

$$J(1) = 1;$$

$$J(2n) = 2J(n) - 1, for n \ge 1;$$

$$J(2n+1) = 2J(n) + 1, for n \ge 1.$$

Explicit Solution for small *n*'s

n	1	2 3	4 5 6 7	8 9 10 11 12 13 14 15	16
J(n)	1	1 3	1 3 5 7	1 3 5 7 9 11 13 15	1

Look carefully ...
and, find the pattern...
and, prove it!

Eureka!

If we write n in the form $n = 2^m + l$, (where 2^m is the largest power of 2 not exceeding n and where l is what's left),

the solution to our recurrence seems to be:

$$J(2^m + l) = 2l + 1$$
, for $m \ge 0$ and $0 \le l < 2^m$.

As an example: J(100) = J(64+36) = 36*2+1 = 73

Binary Representation

Suppose n's binary expansion is :

$$n = (b_m b_{m-1} \dots b_1 b_0)_2$$

• then:

```
\begin{split} n &= (1\,b_{m-1}\,b_{m-2}\dots b_1\,b_0)_2\,,\\ l &= (0\,b_{m-1}\,b_{m-2}\dots b_1\,b_0)_2\,,\\ 2l &= (b_{m-1}\,b_{m-2}\dots b_1\,b_0\,0)_2\,,\\ 2l+1 &= (b_{m-1}\,b_{m-2}\dots b_1\,b_0\,1)_2\,,\\ J(n) &= (b_{m-1}\,b_{m-2}\dots b_1\,b_0\,b_m)_2\,...\end{split}
```