Математический анализ — 1.

Юрий Сергеевич Белов

Литература:

- В. А. Зорич "Математический анализ"
- О. Л. Виноградов "Математический анализ"
- (подходит попозже) Г. М. Фихтенгельц "Курс дифференциального и интегрального исчисления"
- У. Рудин "Основы анализа"
- М. Спивак "Математический анализ на многообразиях"

Мы начинаем с теории множеств.

Определение 1.

- Множества и элемменты понятно.
- $a \in B$ понятно.
- $A \cup B := \{x \mid x \in A \lor x \in B\}$ объединение.
- $A \cap B := \{x \mid x \in A \land x \in B\}$ пересечение.
- $A \setminus B := \{x \mid x \in A \lor x \notin B\}$ разность.
- $A \triangle B := A \setminus B \cup B \setminus A$ симметрическая разница.
- $A^C:=X\backslash A-\mathit{dononhehue}$, где X- некоторое фиксированное рассматриваемое множество.
- $A \subset B$ "A подмножество B", т.е. $\forall x (X \in A \Rightarrow x \in B)$.

Следствие.

• (первое правило Моргана) $(A \cup B)^C = A^C \cap B^C$.

$$x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases} \Leftrightarrow \begin{cases} x \in A^c \\ x \in B^C \end{cases} \Leftrightarrow x \in A^C \cap B^C$$

• (второе правило Моргана) $(A \cap B)^C = A^C \cup B^C$. Аналогично.

Определение 2. (Аксиома индукции.) Пусть есть функция $A : \mathbb{N} \to true; false,$ что:

- 1. A(1) = true;
- 2. $\forall n(A(n) \to A(n+1)).$

Тогда $\forall n A(n)$.

Определение натуральных чисел сложно, рассматривать его не будем. Важно также иметь в виду натуральные числа с операциями сложения и умножения.

Определение 3. Пусть есть кольцо без делителей нуля R. Рассмотрим отношение эквивалентности \sim на $R \times (R \setminus \{0\})$, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Тогда $\mathrm{Quot}(R)$ — фактор-множество по \sim и поле.

Определение 4. Рациональные числа — $\mathbb{Q} := \operatorname{Quot}(\mathbb{Z})$.

Теорема 1. $\nexists x \in \mathbb{Q}, x^2 = 2.$

Теперь мы хотим понять, что есть вещественные числа. Тут есть несколько подходов.

Определение 5 (аксиоматический подход). Вещественные числа — это полное упорядоченное поле \mathbb{R} , состоящее не из одного элемента.

Здесь "поле" значит, что на множестве (вместе с его операциями и выделенными элементами) верны акиомы A_1 , A_2 , A_3 , A_4 , M_1 , M_2 , M_3 , M_4 и D.

Упорядоченность значит, что есть рефлексивное транзитивное антисимметричное отношение ≼, что все элементы сравнимы, согласованное с операциями, т.е.:

$$A) \ a \leq b \Leftarrow a + x \leq b + x.$$

$$M) \ 0 \le a \land 0 \le b \Rightarrow 0 \le ab$$

Полнота поля значит любое из следующих утверждений (они равносильны):

- любое ограниченное сверху (снизу) подмножество поля имеет точную верхнюю (нижнюю) грань:
- (аксиома Кантора-Дедекинда) для любых двух множеств A и B, что $A \preccurlyeq B$, есть разделяющий их элемент.

Итого мы имеем 9 аксиом поля, 2 аксиомы упорядоченности и 1 акиома полноты упорядоченности.

Утверждение. $Had \mathbb{Q}$ нет элемента разделяющего $A := \{a > 0 \mid a^2 < 2\}$ $u B := \{b > 0 \mid b^2 > 2\}.$

Доказательство. Предположим противное, т.е. есть c > 0, что A < c < B.

Если $c^2 < 2$, то найдём ε , что $\varepsilon \in (0;1)$ и $(c+\varepsilon)^2 < 2$. Заметим, что $(c+\varepsilon)^2 = c^2 + 2c\varepsilon + \varepsilon^2 < c^2 + (2c+1)\varepsilon$. Пусть $\varepsilon < \frac{2-c^2}{2c+1}$, тогда такое ε точно подойдёт, ну а посокольку $\frac{2-c^2}{2c+1} > 0$, то такое ε есть. Значит $c^2 \geqslant 2$.

Аналогично имеем, что $\varepsilon \leqslant 2$. А значит $c^2=2$, что не бывает над $\mathbb Q$.

Следствие. \mathbb{Q} не полно.

Определение 6.

- Закрытый интервал или отрезок $[a;b] := \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}.$
- Открытый интервал или просто интервал $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}.$
- Полуоткрытый интервал или полуинтервал $(a;b] := \{x \in \mathbb{R} \mid a < x \leqslant b\}, [a;b) := \{x \in \mathbb{R} \mid a \leqslant x < b\}.$

Теорема 2 (Лемма о вложенных отрезках). Пусть имеется $\{I_i\}_{i=1}^{\infty}$ — множество вложенных (непустых) отрезков, т.е. $\forall n > 1I_{n+1} \subset I_n$. Тогда $\bigcap_{i=1}^{\infty} I_i \neq \varnothing$.

Доказательство. Заметим, что для любых натуральных n < m верно, что $a_n \leqslant a_m \leqslant b_m \leqslant b_n$, где $I_n = [a_n; b_n]$. Тогда для $A := \{a_i\}_{i=1}^{\infty}$ и $B := \{b_i\}_{i=1}^{\infty}$ верно, что $A \leqslant B$. Значит есть разделяющий их элемент t, значит $A \leqslant t \leqslant B$, значит $t \in I_i$ для всех i, значит $t \in \bigcap_{i=1}^{\infty} I_i$. \square

Замечание 1. Теорема 2 не верна для не отрезков.

Замечание 2. Если в теореме 2 $b_i - a_i$ "сходится к 0", т.е. $\forall \varepsilon > 0 \, \exists n \in \mathbb{N} : \forall i > n \, b_i - a_i < \varepsilon$, то пересечение всех отрезков состоит из ровно одного элемента.