A Book of Abstract Algebra (2nd Edition)

Chapter 30, Problem 4EF

Bookmark

Show all steps: ON

Problem

By de Moivre's theorem,

$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

is a complex seventh root of unity. Since

$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

 ω is a root of $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.

Conclude from part 3 that $\cos (2\pi/7)$ is not a constructible number.

Step-by-step solution

Step 1 of 4

Here, objective is to prove that $\cos \frac{2\pi}{7}$ is not a constructible number.

Comment

De Moivre's theorem:

$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$
 is a complex seventh root of unity.

Since
$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

$$\omega$$
 is a root of $P(x) = (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$

Then,

$$\left(\omega + \frac{1}{\omega}\right) = \cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7} + \cos\frac{2\pi}{7} - i\sin\frac{2\pi}{7}$$
$$\left(\omega + \frac{1}{\omega}\right) = 2\cos\frac{2\pi}{7}$$

Comment

Step 3 of 4

Consider ω is a root of $P(x) = (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$

Then.

$$(\omega^{4} + \omega^{3} + \omega^{2} + \omega + 1) = 0$$

$$\omega^{3} + \omega^{2} + \omega + 1 + \omega^{-1} + \omega^{-2} + \omega^{-3} = 0$$

$$(\omega + \frac{1}{\omega})^{3} + (\omega + \frac{1}{\omega})^{2} - 2(\omega + \frac{1}{\omega}) - 1 = 0$$

$$(2\cos\frac{2\pi}{7})^{3} + (2\cos\frac{2\pi}{7})^{2} - 2(2\cos\frac{2\pi}{7}) - 1 = 0$$

$$8\cos^{3}\frac{2\pi}{7} + 4\cos^{2}\frac{2\pi}{7} - 4\cos\frac{2\pi}{7} - 1 = 0$$

Comment

Step 4 of 4

For
$$x = 2\cos\frac{2\pi}{7}$$

The equation is $8x^3 + 4x^2 - 4x - 1 = 0$

The above polynomial is irreducible. Since this is a cubic equation.

The roots cannot be constructed. $\cos \frac{2\pi}{7}$ is not constructible.

Hence, $\cos \frac{2\pi}{7}$ is not a constructible number.

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Sell Textbooks Chegg Coupon Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards **Digital Access Codes** Chegg Money Learn Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription Return Your Books Textbook Return Policy