BIGTREETECH

Pi2 用户手册

修订历史

版本	日期	修改说明
v1.00	2023/11/16	初稿

目录

修订	「历史	2
– ,	产品简介	5
	1.1 产品特点	5
	1.2 产品参数	5
	1.3 尺寸图	6
二、	外设接口	7
	2.1 接线图	7
三、	接口介绍	8
	3.1 供电方式	8
	3.2 40 pin GPIO	8
	3.3 UPS POWER	9
	3.4 SPI FLASH	9
	3.5 SPDIF OUT	10
	3. 6 EMMC-EN	10
	3. 7 OTG	11
	3.8 MIC IN	11
	3.9 DSI	12
	3. 10 CSI	13
四、	烧录系统	14
	4.1 下载系统镜像	14
	4.2 下载并安装烧录软件	14
	4.3 烧录系统	14
	4.3.1 使用 Raspberry Pi Imager	14
	4.3.2 使用 balenaEtcher	16
	4.3.3 使用 RKDevTool 下载镜像到 EMMC 中	18
	4.3.4 镜像从 sd 卡烧录到 Emmc 2	20
五、	配置网络2	21
	5.1 使用网线 2	21

BIGTREETECH Pi2 用户手册

	5.2 设置 WIFI
	5.3 配置显示屏
	5.3.1 配置 HDMI 屏22
	5.3.2 配置 DSI 屏 23
	5.3.3 配置 SPI 屏 24
	5. 4 蓝牙的使用
六、	配置主板 2
	6.1 ssh 软件连接设备2
	6.2 编译 MCU 固件 28

一、产品简介

BIGTREETECH Pi2 采用性能更优的四核 A55-RK3566 芯片,接口功能丰富多彩,内置 EMMC5. 1,板载支持 2. 46/56 双模,WIFI 传输速度高达 **433.3Mbps**,还支持蓝牙 BT5. 2 版本,与树莓派相同的安装孔位置,安装使用起来方便快捷。

1.1 产品特点

- · CPU: 瑞芯微 RK3566, 四核 Cortex-A55 @1.8GHz
- · GPU: Mali-G52 EE
- · NPU: 0.8 TOPS NPU
- · RAM: 2GB LPDDR4 (其它可以定制 1GB/2GB/4GB/8GB)
- · 板载 EMMC 32G (其它可以定制 8GB/32GB/64GB/128GB···)
- · MIPI DSI 显示支持(320P-1080P 60HZ)
- · SPI FLASH 256M (其它可以定制 W25Q256JWEIQ)
- · 摄像头 2- Lane MIPI CSI2 (320P-1080P 60HZ)
- · 3路 USB2.0端口 1路 USB3.0(USB2.0 60Mb/s USB3.0 600Mb/s)
- · PCIe PCIe 2.1 1x1 Lane (支持型号: M.2 2242 4PIN+5PIN)
- · 支持 TF 卡 (SDI02.0)
- · 千兆以太网/百兆 WIFI (433.3Mbps)/BT5.2
- · Audio接口, 3.5mm 兼容MIC输入
- · 电容麦输入接口
- 40Pin GPIO
- · HDMI2.0 OUT (480P-4k 60hz)
- · 板载红外接收头(38khz)
- · 与树莓派相同的安装孔位置
- · 24VDC 输入接口

1.2 产品参数

- 1. 板子外观尺寸: 93.8mm*56mm
- 2. 板子安装尺寸: 64mm*49.4mm

BIGTREETECH Pi2 用户手册

- 3. Type-C 输入电压: DC 5V±5%/2A
- 4. 板子输出电压: 3.3V±2%/100mA
- 5. 板子 WIFI: 2.4G/5G/802.11 b/g/n 无线标准
- 6. 板子BT:5.2

1.3 尺寸图

二、外设接口

2.1 接线图

三、接口介绍

3.1 供电方式

输入:

· USB-C: USB 5V/2A

· 接线端子: DC 12-24V

3.2 40 pin GPIO

				40P	in	-(GPI0				
BTT Pi	CB1−e II C	CB1	P12/CB2	CM4			CM4	P12/CB2	CB1	CB1−e II C	BTT Pi
3. 3 V	3. 3 v	3. 3 v	3. 3 V	3. 3 v	3	4	5 v	5 v	5 v	5 V	5 v
РС3	NC	NC	GPI04_B2	GPIO 2 (I2C1 SDA)	•	•	5 v	5 V	5 v	5 v	5 V
PCO	NC	NC	GP104_B3	GPIO 3 (I2C1 SCL)	•	•	GND	GND	GND	GND	GND
PC7	PI14	PC7	GP103_A1	GPIO 4 (GPCLKO)	•	3	GPIO 14 (UART TX)	GIPIOO_D1	TX	TX	TX
GND	GND	GND	GND	GND	•	•	GPIO 15 (UART RX)	GIPIOO_DO	RX	RX	RX
PC14	PI15	PC14	GP100_C7	GPIO 17	•	-	GPIO 18 (PCM CLK)	GIPIOO_BO	PC13	P17	PC13
PC12	P16	PC12	GP101_A0	GPIO 27	•	•	GND	GND	GND	GND	GND
PC10	PI4	PC10	GP101_A1	GPIO 22	•	-	GPIO 23	GPIO4_C6	PC11	P15	PC11
3. 3V	3. 3V	3. 3V	3. 3V	3. 3V	-	•]	GPIO 24	GPIO4_A3	PC9	PI3	PC9
РН7	PH7	PH7	GP103_C1	GPIO 10 (SPIO MOSI)	•	•	GND	GND	GND	GND	GND
РН8	РН8	РН8	GP103_C2	GPIO 9 (SPIO MISO)	•	•	GPIO 25	GP100_C4	NC	NC	PG13
РН6	РН6	РН6	GP103_C3	GPIO 11 (SPIO SCLK)	•	•]	GPIO 8 (SPIO CEO)	GP104_A2	NC	NC	PG12
GND	GND	GND	GND	GND	•	•	GPIO 7 (SPIO CE1)	GP100_A6	PG8	PI11	P19
PC2	NC	NC	GP100_B4	GPIO O (EEPROM SDA)	•	-	GPIO 1 (EEPROM SCL)	G1P100_B3	PG7	PI10	PI10
PC4	NC	NC	GP103_D6	GPIO 5	•	•	GND	GND	GND	GND	GND
P15	P19	PG6	GP103_D7	GPIO 6	•	•	GPIO 12 (PWMO)	GP100_C1	PG9	PI12	PI6
PI14	NC	NC	GP100_C0	GPIO 13 (PVM1)	•		GND	GND	GND	GND	GND
PC6	PI1	PC6	GP104_C5	GPIO 19 (PCM FS)	•	-	GPIO 16	GP100_A0	NC	NC	PG11
PC15	PI13	PC15	GPIOO_C3	GPIO 26	•	-	GPIO 20 (PCM DIN)	GP104_C3	PH10	PH10	PH4
GND	GND	GND	GND	GND	•	•	GPIO 21 (PCM DOUT)	GP104_C2	PC8	PI2	PC8

3.3 UPS POWER

规格为 HX5P-2.54MM 卧式,需要配我司的应急电源板使用

3.4 SPI FLASH

规格型号: W25Q256JWEIQ

3.5 SPDIF OUT

3.6 EMMC-EN

默认可以正常使用 EMMC 功能,如不使用 EMMC 启动,把 EMMC-EN 档位拨到 NO 档,强制 EMMC 不启动

3.7 OTG

OTG 模式,请把 OTG KEY 拨到 NO 档,(注意: EMMC-EN 不能拨到 NO 档,黑色 USB2. 0 将不能正常工作)

- 1. 使用 Type-c 进入 maskrom 模式
- 2. 使用 RECOVERY 模式,长按 RECOVERY KEY 按键,再插入 Type-C 线,进入 Loader 模式

3.8 MIC IN

3.9 DSI

3.10 CSI

四、烧录系统

4.1 下载系统镜像

只能下载安装我们提供的系统镜像:

https://github.com/bigtreetech/CB2/releases

4.2 下载并安装烧录软件

下载并安装烧录软件

树莓派官方的 Raspberry Pi Imager: https://www.raspberrypi.com/software/

balenaEtcher: https://www.balena.io/etcher/

以上两种软件都可以使用,任选一种下载安装即可。

4.3 烧录系统

4.3.1 使用 Raspberry Pi Imager

- 1. 将 Micro SD 卡通过读卡器插入到电脑。
- 2. 选择系统

3. 选择"用户自定义",然后选择下载到电脑中的镜像

4. 选择待烧录的 Micro SD 卡 (烧录镜像会将 Micro SD 卡格式化,千万注意不要选错盘符,否则会将其他存储上的数据格式化),点击"烧录"

5. 等待烧录完成

4.3.2 使用 balenaEtcher

- 1. 将 Micro SD 卡通过读卡器插入到电脑。
- 2. 选择下载到电脑中的镜像

3. 选择待烧录的 Micro SD卡(烧录镜像会将 Micro SD卡格式化,千万注意不要选错盘符,否则会将其他存储上的数据格式化),点击"烧录"

4. 等待烧录完成

4.3.3 使用 RKDevTool 下载镜像到 EMMC 中

1. 安装驱动,如下图

称	修改日期	类型	大小
ADBDriver	2020/11/10 14:13	文件夹	
bin	2020/11/10 14:14	文件夹	/
Driver	2022/2/28 14:14	文件夹	
Log	2023/7/28 11:23	文件夹	
config.ini	2014/6/3 15:38	配置设置	1 KB
DriverInstall.exe	2022/2/28 14:11	应用程序	491 KB
Readme.txt	2018/1/31 17:44	文本文档	1 KB
revison.log	2022/2/28 14:14	文本文档	1 KB

2. 将拨码开关拨到 ON 的位置,如下图

3. 用 Type-C 线连接主板和电脑如下图:

4. 打开 RKDevTool

5. 设置 RKDevTool 如下图步骤设置

6. 烧写如下图所示

4.3.4 镜像从 sd 卡烧录到 Emmc

1. 输入如下命令: nand-sata-install 得如下图界面,选择 2。

2. 选择 2 后,回车出现如下界面,选择 yes

3. 回车出现如下界面,选择1,如下图

- 4. 选择 ok 回车开始从 sd 卡中烧录到 emmc 中
- 5. 上电时进入 kernel 状态后蓝灯常亮和绿灯心跳灯式亮
- 6. 修改 root 密码, 在终端输入命令, 如下图

passwd root

然后输入****(*指的是要设置的密码,位数不限)

五、配置网络

5.1 使用网线

网线即插即用,不需要额外的设置

5.2 设置 WIFI

系统镜像烧录完成后,Micro SD 卡会有一个被电脑识别的 FAT32 分区,此分区下有个名为"system.cfg" 的配置文件

用记事本打开,将 WIFI-SSID 替换为实际的 WIFI 名称,PASSWORD 替换为实际的 密码

5.3 配置显示屏

打开 overlay 文件,如下图文件

5.3.1 配置 HDMI 屏

修改如下图

接线如下如图

5.3.2 配置 DSI 屏

修改如下图

接线如下图

5.3.3 配置 SPI 屏

如下图

接线如下图

DSI 和 HDMI 同显,只能显示预设的主屏的分辨率,在设备树中设置。

5.4 蓝牙的使用

1. 扫描蓝牙设备,输入如下命令,出现如下列表的蓝牙设备,如下图 bluetoothctl --timeout 15 scan on

```
TX errors 0 dropped 0 overruns 0 carrier 0 collisi

root@Hurakan:~# bluetoothctl --timeout 15 scan on
Discovery started

[CHG] Controller 50:41:1C:F1:1B:DD Discovering: yes
[NEW] Device 61:81:3F:1B:B0:79 61-81-3F-1B-B0-79
[NEW] Device 67:96:15:E1:7A:62 67-06-15-E1-7A-62
[NEW] Device 78:77:40:B5:D8:02 78-77-40-B5-D8-02
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 6F:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 6F:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 51:22:49:FC:CF:C1 51-22-49-FC-CF-C1
[NEW] Device 73:B9:DB:2D:F1:08 73-B9-DB-2D-F1-08
```

2. 找到自己的蓝牙设备,比如我的蓝牙设备名字是 HONOR xSport PRO,在设备列表中找到对应的蓝牙 MAC ID 如下图

```
[CHG] Device 42:70:F4:03:91:BA ManufacturerData Value:
10 07 7a 1f 3b 4d ef 5c 68

[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -75
[CHG] Device 45:69:88:00:E0:7B RSSI: -92
[CHG] Device 45:69:88:00:E0:7B RSSI: -92
[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -88

[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -88

[CHG] Device 04:7A:0B:19:E7:AF ManufacturerData Key: 0x038f
[CHG] Device 04:7A:0B:19:E7:AF ManufacturerData Value:
0a 10 ff ff ff 64 93 15 36 c3 5c de 20 11 08 08 ...d..6.\...
10 17 25 34

[NEW] Device [E0:9D:FA:50:CD:4F] HONOR xSport PRO
[CHG] Device 04:7A:0B:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:0B:19:E7:AF Icon: computer
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001100-0000-1000-8000-00805f9b34fb
```

3. 连接蓝牙设备,输入如下命令,连接成功如下图(连接出问题查询3.1 和3.2)

bluetoothctl connect E0:9D:FA:50:CD:4F

```
[CH6] Device 90:0F:0C:2F:50:C2 UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CH6] Device E0:9D:FA:50:CD:4F Connected: yes
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F ServicesResolved: yes
[CH6] Device E0:9D:FA:50:CD:4F Paired: yes
Connection successful
root@bigtreetech-cb2:~#

□ bigtreetech-cb2 □ 2%
□ 0.36 GB/1.94 GB
□ 0.01 Mb/s □ 0.01 Mb/s
```

3.1 连接蓝牙设备时,出现如下输出请重新打开蓝牙设备,然后重新按1和2的步骤连接蓝牙设备

```
[CHG] Device 04:7A:0B:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:0B:19:E7:AF ICOn: computer
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 000011xf-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001xf-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:
```

3.2 连接蓝牙设备时,出现如下输出请输入如下命令,然后重新进行 1 和 2 步骤 bluetoothctl remove <u>E0:9D:FA:50:CD:4F</u> (您的蓝牙设备对应的 MAC ID) rfkill block bluetooth

```
sleep 3s
rfkill unblock bluetooth
pulseaudio -k
pulseaudio --start
```

```
[DEL] Device 40:60:97:F3:85:D6 40-60-97-F3-85-D6

root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F

Attempting to connect to E0:9D:FA:50:CD:4F

[CHG] Device E0:9D:FA:50:CD:4F Connected: yes

[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000-1000-8000-00805f9b34fb

[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb

[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb

[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb

[CHG] Device E0:9D:FA:50:CD:4F ServicesResolved: yes

Failed to connect: org.bluez.Error.Failed

root@bigtreetech-cb2:~# bluetoothctl remove E0:9D:FA:50:CD:4F

[DEL] Device E0:9D:FA:50:CD:4F HONOR xSport PRO

Device has been removed

root@bigtreetech-cb2:~# rfkill block bluetooth
```

六、配置主板

6.1 ssh 软件连接设备

- 1. 安装 ssh 软件 Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. 将 MicroSD 卡插到主板上,通电后等待系统启动,大概 1~2 分钟
- 3. 设备连上 WIFI 或者插上网线后,会被自动分配一个 IP
- 4. 进入路由器管理界面找到设备的 IP (这里应为 BTT-CB2)

5. 打开已经安装的 Mobaxterm 软件,点击 "Session",在弹出的窗口中点击 "SSH",在 Remote host 一栏中输入设备的 IP 地址,点击 "OK" (注意:电脑和设备必须要在同一个局域网下)

6. 输入登录名和登录密码进入 SSH 终端界面

登录名 login as: biqu

密码: biqu

6.2 编译 MCU 固件

1. ssh 连接到设备后,在命令行输入:

cd ~/klipper/

make menuconfig

- 2. 使用对应的主板配置编译固件,此处以 Manta M4P 为例
 - * [*] Enable extra low-level configuration options
 - * Micro-controller Architecture (STMicroelectronics STM32) --->
 - * Processor model (STM32G0B1) --->
 - * Bootloader offset (8KiB bootloader) --->
 - * Clock Reference (8 MHz crystal) --->
 - * Communication interface (USB (on PA11/PA12)) --->

- 3. 配置选择完成后,输入 `q` 退出配置界面,当询问是否保存配置是选择 "Yes"
- 4. 输入 make 编译固件,当 make 执行完成后会在设备的 home/pi/klipper/out 文件夹中生成我们所需要的`klipper.bin`固件,在 ssh 软件左侧可以直接下载到电脑中

如果您还需要此产品的其他资源,可以到 https://github.com/bigtreetech/ 上自行查找,如果无法找到您所需的资源,可以联系我们的售后支持(service005@biqu3d.com)。

若您使用中还遇到别的问题,欢迎您联系我们,我们定会细心为您解答;若您对我们的产品有什么好的意见或建议,也欢迎您回馈给我们,我们也会仔细斟酌您的意见或建议,感谢您选择 BIGTREETECH 制品,谢谢!