

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Institut für Informatik, Arbeitsgruppe Theorie der Parallelität Prof. Dr. K. Jansen, K.-M. Klein

26. November 2013

Übungen zur Vorlesung »Theoretische Grundlagen der Informatik«

Übungsblatt 5

Präsenzaufgabe 5.1 (Vereinfachte CNF)

Zeigen Sie: zu jeder kontextfreien Sprache gibt es eine Grammatik, die nur Regeln der Form $A \to a$ und $A \to BC$ mit $B \ne C$ hat (sowie evtl. die Regel $S \to \varepsilon$).

Hausaufgabe 5.2 (3 Punkte)

Sei $\Sigma = \{a, b, c, d\}$. Geben Sie eine kontextfreie Grammatik G für die Sprache $L = \{w \mid w^{\top} = w\}$ an, wobei w^{T} das Wort w rückwärts gelesen ist. Zeigen Sie L = L(G).

Hausaufgabe 5.3 (3 Punkte)

Zeigen Sie, dass die Sprache

$$L = \{a^m b^n c^p d^q \mid m, n, p, q \in \mathbb{N} \text{ und } m + n = p + q\}$$

kontextfrei ist.

Hausaufgabe 5.4 (4 Punkte)

Für gegebene verallgemeinerte sequentielle Maschine \mathscr{A} , definieren wir die Funktion $f_{\mathscr{A}}: \Sigma^* \to \Gamma^*$. Für Wort $w \in \Sigma^*$ sei $f_{\mathscr{A}}(w)$ die Ausgabe der Maschine bei Eingabe w. Eine Funktion f ist eine verallgemeinerte sequentielle Funktion, falls eine verallgemeinerte sequentielle Maschine \mathscr{A} existiert mit $f = f_{\mathscr{A}}$. Sei f eine verallgemeinerte sequentielle Funktion, zeigen Sie:

- f ist präfixtreu, d.h. f(uv) hat f(u) als Präfix
- es existiert ein k > 0 so dass |f(w)| < k|w| für alle $w \in \Sigma^*$
- Sprache *L* ist regulär $\Rightarrow f(L)$ ist regulär