Logic Gates

Md. Rokanujjaman Professor Dept. of CSE, RU

Introduction

- Digital systems are concerned with digital signals
- Digital signals can take many forms
- Here we will concentrate on binary signals since these are the most common form of digital signals
 - can be used individually
 - perhaps to represent a single binary quantity or the state of a single switch
 - can be used in combination
 - to represent more complex quantities

Boolean Constants and Variables

 Boolean 0 and 1 do not represent actual numbers but instead represent the <u>state</u>, or <u>logic level</u>.

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

Truth Tables

A truth table is a means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs.

Inputs		Output
А	В	X
0	0	1
0	1	0
1	0	1
1	1	0

Binary Quantities and Variables

A binary quantity is one that can take only 2 states

S	L
OPEN	OFF
CLOSED	ON
S	L
0	0
1	1
	I

A truth table

A binary arrangement with two switches in series

A binary arrangement with two switches in parallel

S1	S2	L
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

L = S1 OR S2

Three switches in series

S1	S2	S3	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Three switches in parallel

S1	S2	S3	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

L = S1 OR S2 OR S3

A series/parallel arrangement

S1	S2	S3	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

L = S1 AND (S2 OR S3)

Representing an unknown network

Logic Gates

- The building blocks used to create digital circuits are logic gates
- There are three elementary logic gates and a range of other simple gates
- Each gate has its own logic symbol which allows complex functions to be represented by a logic diagram
- The function of each gate can be represented by a truth table or using Boolean notation

The AND gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = A \cdot B$$

The OR gate

(a) Circuit symbol

A	В	С
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

$$C = A + B$$

The NOT gate (or inverter)

(a) Circuit symbol

(b) Truth table

$$B = \overline{A}$$

A logic buffer gate

$$B = A$$

- (b) Truth table
- (c) Boolean expression

The NAND gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = \overline{A \cdot B}$$

The NOR gate

(a) Circuit symbol

(b) Truth table

$$C = \overline{A + B}$$

The Exclusive OR gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = A \oplus B$$

The Exclusive NOR gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = \overline{A \oplus B}$$

Boolean Algebra

- Boolean Constants
 - these are '0' (false) and '1' (true)
- Boolean Variables
 - variables that can only take the vales '0' or '1'
- Boolean Functions
 - each of the logic functions (such as AND, OR and NOT) are represented by symbols as described above
- Boolean Theorems
 - a set of identities and laws see text for details

Boolean identities

AND Function	OR Function	NOT function
0•0=0	0+0=0	$\overline{0}$ =1
0•1=0	0+1=1	<u>1</u> =0
1•0=0	1+0=1	$\overline{\overline{A}} = A$
1•1=1	1+1=1	
A•0=0	A+0=A	
0•A=0	0+A=A	
A•1=A	A+1=1	
1•A=A	1+A=1	
<i>A</i> • <i>A</i> = <i>A</i>	A+A=A	
$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	

Boolean laws

Commutative law	Absorption law
AB = BA	A+AB=A
A+B=B+A	A(A+B)=A
Distributive law	De Morgan's law
A(B+C)=AB+BC	$\overline{A+B} = \overline{A} \cdot \overline{B}$
A+BC=(A+B)(A+C)	$A \cdot B = A + B$
Associative law	Note also
A(BC)=(AB)C	$A + \overline{A}B = A + B$
A+(B+C)=(A+B)+C	$A(\overline{A} + B) = AB$

Combinational Logic

- Digital systems may be divided into two broad categories:
 - combinational logic
 - where the outputs are determined solely by the current states of the inputs
 - sequential logic
 - where the outputs are determined not only by the current inputs but also by the sequence of inputs that led to the current state
- In this lecture we will look at combination logic

Examples 1,2

Examples 3

Example 4

Implementing a function from a Boolean expressionExample –

$$X = A + B\overline{C}$$

Implementing a function from a Boolean expressionExample –

Generating a Boolean expression from a logic diagram

Example –

Example (continued)

 work progressively from the inputs to the output adding logic expressions to the output of each gate in turn

Implementing a logic function from a descriptionExample –

The operation of the Exclusive OR gate can be stated as:

"The output should be true if either of its inputs are true, but not if both inputs are true."

This can be rephrased as:

"The output is true if A OR B is true, AND if A AND B are NOT true."

We can write this in Boolean notation as

$$X = (A + B) \cdot \overline{(AB)}$$

Example (continued)

The logic function

$$X = (A + B) \cdot \overline{(AB)}$$

can then be implemented as before

Implementing a logic function from a truth tableExample –

Implement the function of the following truth table

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- first write down a Boolean expression for the output
- then implement as before
- in this case

$$X = \overline{A} \overline{B} C + A \overline{B} C + A B \overline{C}$$

Example (continued)

The logic function $X = \overline{A} \ \overline{B} \ C + A \ \overline{B} \ C + A \ B \ \overline{C}$ can then be implemented as before

In some cases it is possible to simplify logic expressions using the rules of Boolean algebra

Example –

 $X = ABC + \overline{A} BC + AC + A \overline{C}$ can be simplified to X = BC + A hence the following circuits are equivalent

