■ PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

If z = f(x, y), then one can inquire how the value of z changes if y is held fixed and x is allowed to vary, or if x is held fixed and y is allowed to vary. For example, the ideal gas law in physics states that under appropriate conditions the pressure exerted by a gas is a function of the volume of the gas and its temperature. Thus, a physicist studying gases might be interested in the rate of change of the pressure if the volume is held fixed and the temperature is allowed to vary, or if the temperature is held fixed and the volume is allowed to vary. We now define a derivative that describes such rates of change.

13.3.1 DEFINITION If z = f(x, y) and (x_0, y_0) is a point in the domain of f, then the *partial derivative of f with respect to x* at (x_0, y_0) [also called the *partial derivative of f with respect to f at f and f at f at f and f are allowed to vary. This partial derivative is denoted by f and f are given by*

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
(1)

Similarly, the *partial derivative of f with respect to y* at (x_0, y_0) [also called the *partial derivative of z with respect to y* at (x_0, y_0)] is the derivative at y_0 of the function that results when $x = x_0$ is held fixed and y is allowed to vary. This partial derivative is denoted by $f_v(x_0, y_0)$ and is given by

$$f_{y}(x_{0}, y_{0}) = \frac{d}{dy} [f(x_{0}, y)] \bigg|_{y=y_{0}} = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$
(2)

Example 1 Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.

Solution. Since

$$f_x(x,3) = \frac{d}{dx}[f(x,3)] = \frac{d}{dx}[18x^3 + 4x + 6] = 54x^2 + 4$$

we have $f_x(1,3) = 54 + 4 = 58$. Also, since

$$f_y(1, y) = \frac{d}{dy}[f(1, y)] = \frac{d}{dy}[2y^2 + 2y + 4] = 4y + 2$$

we have $f_v(1,3) = 4(3) + 2 = 14$.

THE PARTIAL DERIVATIVE FUNCTIONS

Formulas (1) and (2) define the partial derivatives of a function at a specific point (x_0, y_0) . However, often it will be desirable to omit the subscripts and think of the partial derivatives as functions of the variables x and y. These functions are

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \qquad f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Example 2 Find $f_x(x, y)$ and $f_y(x, y)$ for $f(x, y) = 2x^3y^2 + 2y + 4x$, and use those partial derivatives to compute $f_x(1, 3)$ and $f_y(1, 3)$.

Solution. Keeping y fixed and differentiating with respect to x yields

$$f_x(x, y) = \frac{d}{dx} [2x^3y^2 + 2y + 4x] = 6x^2y^2 + 4$$

and keeping x fixed and differentiating with respect to y yields

$$f_y(x, y) = \frac{d}{dy} [2x^3y^2 + 2y + 4x] = 4x^3y + 2$$

Thus,

$$f_x(1,3) = 6(1^2)(3^2) + 4 = 58$$
 and $f_y(1,3) = 4(1^3)3 + 2 = 14$

which agree with the results in Example 1. ◀

PARTIAL DERIVATIVE NOTATION

If z = f(x, y), then the partial derivatives f_x and f_y are also denoted by the symbols

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial z}{\partial x}$ and $\frac{\partial f}{\partial y}$, $\frac{\partial z}{\partial y}$

Some typical notations for the partial derivatives of z = f(x, y) at a point (x_0, y_0) are

$$\frac{\partial f}{\partial x}\Big|_{x=x_0,y=y_0}$$
, $\frac{\partial z}{\partial x}\Big|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}(x_0,y_0)$, $\frac{\partial z}{\partial x}(x_0,y_0)$

The symbol ∂ is called a partial derivative sign. It is derived from the Cyrillic alphabet.

Example 3 Find $\partial z/\partial x$ and $\partial z/\partial y$ if $z = x^4 \sin(xy^3)$.

Solution.

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} [x^4 \sin(xy^3)] = x^4 \frac{\partial}{\partial x} [\sin(xy^3)] + \sin(xy^3) \cdot \frac{\partial}{\partial x} (x^4)$$

$$= x^4 \cos(xy^3) \cdot y^3 + \sin(xy^3) \cdot 4x^3 = x^4 y^3 \cos(xy^3) + 4x^3 \sin(xy^3)$$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} [x^4 \sin(xy^3)] = x^4 \frac{\partial}{\partial y} [\sin(xy^3)] + \sin(xy^3) \cdot \frac{\partial}{\partial y} (x^4)$$

$$= x^4 \cos(xy^3) \cdot 3xy^2 + \sin(xy^3) \cdot 0 = 3x^5 y^2 \cos(xy^3) \blacktriangleleft$$

■ PARTIAL DERIVATIVES VIEWED AS RATES OF CHANGE AND SLOPES

Recall that if y = f(x), then the value of $f'(x_0)$ can be interpreted either as the rate of change of y with respect to x at x_0 or as the slope of the tangent line to the graph of f at x_0 . Partial derivatives have analogous interpretations. To see that this is so, suppose that C_1 is the intersection of the surface z = f(x, y) with the plane $y = y_0$ and that C_2 is its intersection with the plane $x = x_0$ (Figure 13.3.1). Thus, $f_x(x, y_0)$ can be interpreted as the rate of change of z with respect to x along the curve C_1 , and $f_y(x_0, y)$ can be interpreted as the rate of change of z with respect to y along the curve C_2 . In particular, $f_x(x_0, y_0)$ is the rate of change of z with respect to y along the curve C_1 at the point (x_0, y_0) , and $f_y(x_0, y_0)$ is the rate of change of z with respect to y along the curve C_2 at the point (x_0, y_0) .

Example 4 Recall that the wind chill temperature index is given by the formula

$$W = 35.74 + 0.6215T + (0.4275T - 35.75)v^{0.16}$$

Compute the partial derivative of W with respect to v at the point (T, v) = (25, 10) and interpret this partial derivative as a rate of change.

Solution. Holding T fixed and differentiating with respect to v yields

$$\frac{\partial W}{\partial v}(T, v) = 0 + 0 + (0.4275T - 35.75)(0.16)v^{0.16-1} = (0.4275T - 35.75)(0.16)v^{-0.84}$$

Since W is in degrees Fahrenheit and v is in miles per hour, a rate of change of W with respect to v will have units ${}^{\circ}F/(\text{mi/h})$ (which may also be written as ${}^{\circ}F\cdot\text{h/mi}$). Substituting

T = 25 and v = 10 gives

$$\frac{\partial W}{\partial v}(25, 10) = (-4.01)10^{-0.84} \approx -0.58 \frac{{}^{\circ}F}{\text{mi/h}}$$

as the instantaneous rate of change of W with respect to v at (T, v) = (25, 10). We conclude that if the air temperature is a constant $25^{\circ}F$ and the wind speed changes by a small amount from an initial speed of 10 mi/h, then the ratio of the change in the wind chill index to the change in wind speed should be about $-0.58^{\circ}F/(\text{mi/h})$.

Geometrically, $f_x(x_0, y_0)$ can be viewed as the slope of the tangent line to the curve C_1 at the point (x_0, y_0) , and $f_y(x_0, y_0)$ can be viewed as the slope of the tangent line to the curve C_2 at the point (x_0, y_0) (Figure 13.3.1). We will call $f_x(x_0, y_0)$ the *slope of the surface* in the x-direction at (x_0, y_0) and $f_y(x_0, y_0)$ the slope of the surface in the y-direction at (x_0, y_0) .

Example 5 Let $f(x, y) = x^2y + 5y^3$.

- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, -2).
- (b) Find the slope of the surface z = f(x, y) in the y-direction at the point (1, -2).

Solution (a). Differentiating f with respect to x with y held fixed yields

$$f_x(x, y) = 2xy$$

Thus, the slope in the x-direction is $f_x(1, -2) = -4$; that is, z is decreasing at the rate of 4 units per unit increase in x.

Solution (b). Differentiating f with respect to y with x held fixed yields

$$f_{\rm v}(x,y) = x^2 + 15y^2$$

Thus, the slope in the y-direction is $f_y(1, -2) = 61$; that is, z is increasing at the rate of 61 units per unit increase in y.

Example 6 Use the values of the wind chill index function W(T, v) displayed in Table 13.3.1 to estimate the partial derivative of W with respect to v at (T, v) = (25, 10). Compare this estimate with the value of the partial derivative obtained in Example 4.

Table 13.3.1

TEMPERATURE $T(^{\circ}F)$

/h)		20	25	30	35
wind speed v (mi/h)	5	13	19	25	31
	10	9	15	21	27
	15	6	13	19	25
	20	4	11	17	24

Solution. Since

$$\frac{\partial W}{\partial v}(25, 10) = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - W(25, 10)}{\Delta v} = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$$

we can approximate the partial derivative by

$$\frac{\partial W}{\partial v}$$
(25, 10) $\approx \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$

With $\Delta v = 5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 + 5) - 15}{5} = \frac{W(25, 15) - 15}{5} = \frac{13 - 15}{5} = -\frac{2}{5} \frac{^{\circ}F}{\text{mi/h}}$$

and with $\Delta v = -5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 - 5) - 15}{-5} = \frac{W(25, 5) - 15}{-5} = \frac{19 - 15}{-5} = -\frac{4}{5} \frac{^{\circ}F}{\text{mi/h}}$$

We will take the average, $-\frac{3}{5} = -0.6^{\circ} F/(mi/h)$, of these two approximations as our estimate of $(\partial W/\partial v)(25, 10)$. This is close to the value

$$\frac{\partial W}{\partial v}$$
(25, 10) = (-4.01)10^{-0.84} \approx -0.58 $\frac{^{\circ}F}{\text{mi/h}}$

found in Example 4.

IMPLICIT PARTIAL DIFFERENTIATION

Example 7 Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y-direction at the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ (Figure 13.3.2).

▲ Figure 13.3.2

Solution. The point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ lies on the upper hemisphere $z = \sqrt{1 - x^2 - y^2}$, and the point $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ lies on the lower hemisphere $z = -\sqrt{1 - x^2 - y^2}$. We could find the slopes by differentiating each expression for z separately with respect to y and then evaluating the derivatives at $x = \frac{2}{3}$ and $y = \frac{1}{3}$. However, it is more efficient to differentiate the given equation $x^2 + y^2 + z^2 = 1$

implicitly with respect to y, since this will give us both slopes with one differentiation. To perform the implicit differentiation, we view z as a function of x and y and differentiate both sides with respect to y, taking x to be fixed. The computations are as follows:

$$\frac{\partial}{\partial y}[x^2 + y^2 + z^2] = \frac{\partial}{\partial y}[1]$$
$$0 + 2y + 2z\frac{\partial z}{\partial y} = 0$$
$$\frac{\partial z}{\partial y} = -\frac{y}{z}$$

Substituting the y- and z-coordinates of the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ in this expression, we find that the slope at the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ is $-\frac{1}{2}$ and the slope at $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ is $\frac{1}{2}$.

Example 8 Suppose that $D = \sqrt{x^2 + y^2}$ is the length of the diagonal of a rectangle whose sides have lengths x and y that are allowed to vary. Find a formula for the rate of change of D with respect to x if x varies with y held constant, and use this formula to find the rate of change of D with respect to x at the point where x = 3 and y = 4.

Solution. Differentiating both sides of the equation $D^2 = x^2 + y^2$ with respect to x yields

$$2D\frac{\partial D}{\partial x} = 2x$$
 and thus $D\frac{\partial D}{\partial x} = x$

Since D = 5 when x = 3 and y = 4, it follows that

$$5 \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = 3 \text{ or } \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = \frac{3}{5}$$

Thus, D is increasing at a rate of $\frac{3}{5}$ unit per unit increase in x at the point (3, 4).

PARTIAL DERIVATIVES AND CONTINUITY

► Example 9 Let

$$f(x,y) = \begin{cases} -\frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
(3)

- (a) Show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y).
- (b) Explain why f is not continuous at (0, 0).

▲ Figure 13.3.3

Solution (a). Figure 13.3.3 shows the graph of f. Note that f is similar to the function considered in Example 1 of Section 13.2, except that here we have assigned f a value of 0 at (0,0). Except at this point, the partial derivatives of f are

$$f_x(x,y) = -\frac{(x^2 + y^2)y - xy(2x)}{(x^2 + y^2)^2} = \frac{x^2y - y^3}{(x^2 + y^2)^2}$$
(4)

$$f_y(x,y) = -\frac{(x^2 + y^2)x - xy(2y)}{(x^2 + y^2)^2} = \frac{xy^2 - x^3}{(x^2 + y^2)^2}$$
 (5)

It is not evident from Formula (3) whether f has partial derivatives at (0, 0), and if so, what the values of those derivatives are. To answer that question we will have to use the definitions of the partial derivatives (Definition 13.3.1). Applying Formulas (1) and (2) to (3) we obtain

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$
$$f_y(0,0) = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0$$

This shows that f has partial derivatives at (0, 0) and the values of both partial derivatives are 0 at that point.

Solution (b). We saw in Example 3 of Section 13.2 that

$$\lim_{(x,y)\to(0,0)} -\frac{xy}{x^2+y^2}$$

does not exist. Thus, f is not continuous at (0,0).

■ PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN TWO VARIABLES

- ► Example 10 If $f(x, y, z) = x^3y^2z^4 + 2xy + z$, then $f_x(x, y, z) = 3x^2y^2z^4 + 2y$ $f_y(x, y, z) = 2x^3yz^4 + 2x$ $f_z(x, y, z) = 4x^3y^2z^3 + 1$ $f_z(-1, 1, 2) = 4(-1)^3(1)^2(2)^3 + 1 = -31$
- **Example 11** If $f(\rho, \theta, \phi) = \rho^2 \cos \phi \sin \theta$, then $f_{\rho}(\rho, \theta, \phi) = 2\rho \cos \phi \sin \theta$ $f_{\theta}(\rho, \theta, \phi) = \rho^2 \cos \phi \cos \theta$ $f_{\phi}(\rho, \theta, \phi) = -\rho^2 \sin \phi \sin \theta \blacktriangleleft$

HIGHER-ORDER PARTIAL DERIVATIVES

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx} \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

Differentiate twice with respect to x.

Differentiate twice with respect to y.

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy} \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$$

Differentiate first with respect to x and then with respect to y.

Differentiate first with respect to v and then with respect to x.

The last two cases are called the *mixed second-order partial derivatives* or the *mixed second* partials. Also, the derivatives $\partial f/\partial x$ and $\partial f/\partial y$ are often called the *first-order partial* derivatives when it is necessary to distinguish them from higher-order partial derivatives. Similar conventions apply to the second-order partial derivatives of a function of three variables.

Example 12 Find the second-order partial derivatives of $f(x, y) = x^2y^3 + x^4y$.

Solution. We have

$$\frac{\partial f}{\partial x} = 2xy^3 + 4x^3y$$
 and $\frac{\partial f}{\partial y} = 3x^2y^2 + x^4$

so that

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2xy^3 + 4x^3y) = 2y^3 + 12x^2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (3x^2y^2 + x^4) = 6x^2y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (3x^2y^2 + x^4) = 6xy^2 + 4x^3$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (2xy^3 + 4x^3y) = 6xy^2 + 4x^3$$

Example 13 Let $f(x, y) = y^2 e^x + y$. Find f_{xyy} .

Solution.

$$f_{xyy} = \frac{\partial^3 f}{\partial y^2 \partial x} = \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y^2} (y^2 e^x) = \frac{\partial}{\partial y} (2y e^x) = 2e^x \blacktriangleleft$$

Practice Problem:

Chapter-13.3:

Problems: 3, 5, 7, 11, 13, 27, 29, 30, 32, 33, 34,35, 36, 43, 44,45, 46, 48,49, 55.

Thank you for your attention!