DBMS: Normalization

Relational Database Design

SWARUP KR GHOSH

11/11/202

Normalization

Normalization is a step-by-step process of replacing a given relation by a successive collection of relations in order to achieve simpler and better data representation.

Objective!!

 $\hfill \Box$ to eliminate different anomalies that may occur due to referential integrity constraint

☐ to identify a suitable set of relations in database design

Criteria for decomposition in normalization!!

Loseless decomposition – Ensures no loss of information

Dependency preserving – Ensures no loss of functional dependencies.

11/2020

***** Functional Dependencies

Let *R* be a relation schema

$$\alpha \subseteq R$$
 and $S \subseteq R$

☐ The functional dependency

$$\alpha \rightarrow 3$$

. $\alpha \rightarrow S$ holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes S. That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[S] = t_2[S]$$

Example: Consider $r(\alpha, S)$ with the following instance of r.

On this instance, $\alpha \to S$ does **NOT** hold, but $S \to \alpha$ does hold.

Functional Dependencies(Contd..)

K is a superkey for relation schema R if and only if $K \rightarrow R$

K is a candidate key for R if and only if

• $K \rightarrow R$, and

• for no $\alpha \subset K$, $\alpha \to R$

Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

bor loan = (customer id, loan number, customer name, amount).

We expect this functional dependency to hold:

 $loan_number \rightarrow amount$

but would not expect the following to hold:

 $amount \rightarrow customer_name$

Type Of Functional Dependencies

- □ Full functional dependency A functional dependency of the form X → Y is said to be full functional dependency, if any attribute is removed from X then dependency sustains no more.
- \square Partial functional dependency A functional dependency of the form $X \rightarrow Y$ is said to be partial functional dependency, if any attribute is removed from X then functional dependency persists.
- □Trivial functional dependency A functional dependency of the form $X \rightarrow Y$ is called trivial functional dependency, if $Y \subseteq X$.
- □ Transitive functional dependency In a relation R, assume $X \rightarrow Y$ and $Y \rightarrow Z$. In this case, the functional dependency $X \rightarrow Z$ is known as transitive functional dependency.
- ■Multi-valued dependency In a relation R, X, Y and Z are three different attributes (or set of attributes) such that $X \subset R$, $Y \subset R$ and $Z \subset R$. If for every value of X there exists a set of values for Y and Z, but the set of values for Y and Z are independent on each other, then Y and Z are multi-valued dependent on X.

11/2020

Example: Functional Dependencies

□ Functional Dependency!!

 \checkmark emp-id \rightarrow ename, designation.

□ Transitive Dependency!!

✓ course-name → duration

✓ duration → fees

 \checkmark ⇒ course-name \rightarrow fees

□Multi-valued Dependency!!

✓emp-id --> project-no

✓ emp-id → hobby

0

Anomalies due to Referential Integrity Constraints

Repetition Anomaly:

If a foreign key exists between two relations certain information may be repeated unnecessarily.

□Insertion Anomaly:

This anomaly may occur during the insertion of new records into the referencing relation.

□Update Anomaly:

This anomaly may occurs during update of $\,$ existing records in both referencing and referenced relations.

□ Delete Anomaly:

During deletion of existing records from referenced relation this anomaly may occur (shifting case).

/11/2020

Anomalies

 Update Anomaly: Employee 519 is shown as having different addresses on different records

Employees' Skills

Employee ID	Employee Address	Skill	
425	87 Sypamore Clove	Typing	
425	87 Sycamore Grove	Shorthand	
510	34 Chestruit Street	Public Sosaking	
519	95 Waitul Avenue	Carpentry	

Resolution: Decompose the Schema

- 1. Update: (ID, Address), (ID, Skill)
- 2. Insert: (ID, Name, Hire Date), (ID, Code)
- 3. Delete: (ID, Name, Hire Date), (ID, Code)

 Insertion Anomaly: Until the new faculty member, Dr. Newsome, is assigned to teach at least one course, his details cannot be recorded.

Faculty and Their Courses

Faculty ID	Faculty Name	Faculty Hire Date	Course Cod	
389	Dr. Giddens	10-Feb-1985	E NG-206	
407	Dr. Saperstein	19-Apr-1999	CMP-101	
407	Dr. Saperstein	19-Apr-1999	CMP-201	
124	Dr. Newsome	29-Mar-2007	91	

3. Deletion Anomaly: All information about Dr.
Giddens is lost if he temporarily ceases to be
assigned to any courses.

Faculty and Their Courses

Faculty ID	Faculty Name	Faculty Hire Date	Course Code
389	Dr. Giddens	10-Feb-1985	ENG-206
407	Dr. Saperstein	19-Apr-1999	CMP-101
407	Dr. Saperstein	19-Apr-1999	CMP-201

1

Utility of Normalization

- To avoid unnecessary redundancy.
- ❖To control those anomaly which occurs due to referential constraints.
- ❖To get better data representation.

11/11/2020

Decomposition

☐Partition on relation

Lossless Decomposition:

Ensure no loss of information.

❖ Dependency Preservation:

Ensure no loss of functional dependency.

11/11/2020

10

(555) 403-1659 Ext. 53 182-929-2929

192-122-1111

Customer ID First Name Surname Telephone Number1 Telephone Number2

555-861-2025

555-808-9633

123

456

789

123

456

789

Pooja

San

John

Doe

Second Normal Form (2 NF) A relation R is said to be in the second normal form (2NF) if and only if: 1. It is in 1 NF.

2. No partial dependency exists between non-key attributes and key attributes.

STUDENT-COURSE-RESULT TABLE								
Student_ID	Student Name	Date Of Birth	Course-ID	Course Name	Duration in Days	Date of Exam	Marks	Grade
101	Davis	11/4/96	M2	Math	7	11/6/16	82	Е
101	Davis	11/4/96	H4	History	4	22/6/16	79	A
102	Danny	6/11/97	M2	Math	7	11/6/16	62	В
102	Danny	6/11/97	P3	Phys	13	14/6/16	68	В
103	Susan	31/8/98	M1	MIS	10	20/6/16	85	Е
103	Susan	31/8/98	E1	ECO	14	18/6/16	72	A
104	Sandra	25/9/97	M1	MIS	10	20/6/16	59	C
104	Sandra	25/9/97	S1	Stat	12	16/6/16	49	D

Third Normal Form (3 NF)

A relation R is said to be in the third normal form (3NF) if and only if:

- 1. It is in 2 NF.
- 2. No transitive dependency exists between non-key attributes and key attributes.

MARKS TABLE									
Student_ID	Course-ID	Marks							
101	M2	82							
101	H4	79							
102	M2	62							
102	P3	68							
103	M1	85							
103	E1	72							
104	M1	59							
104	S1	49							

MARKS_GRADE TABLE							
Lower Bound	Grade						
90	О						
80	E						
70	A						
60	В						
50	C						
40	D						
	Bound 90 80 70 60 50						

1/2020

Multivalued Dependency

In a relation R(A, B, C), consider the following assumption:

- For each value of A there are number of values B.
- For each value of A there are number of values C.
- o B and C are independent to each other.
- o B and C are multivalued dependent to A

Definition: In a relation R, three different attributes A, B, C such that A, B and C are subset of R. If for every value of A there exists a set of values of B and C but B and C are independent to each other then B and C are multivalued dependent on A.

EX.

LIII.			
EMP_Id	Project_ld	Hobby	
01	01	Reading	
01	02	Swimming	
02	02	Swimming	
02	04	Singing	

Fourth Normal Form (4 NF)

A relation in **Fourth normal form (4NF)** contains no non-trivial multivalued dependency.

In order to achieve 4NF, all non-trivial multi-valued dependencies are to be converted in trivial multi-valued dependencies in the given relation.

Multivalued Dependencies (MVDs):

Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R.$ The multivalued dependency

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$

 $t_3[\beta] = t_1[\beta]$

/11/2020

Join Dependency

In a relation R (A, B, C), consider the following assumption:

 \circ B. C \rightarrow A

 \circ A, C \rightarrow B

 \circ A, B \rightarrow C

o Then join dependency (JD) exists

- Definition: A join dependency (JD), denoted by JD(R1,R2, ... Rn), specified on relation schema R, specifies a constraint on the states r of R.
- Natural join (R1(r),R2(r), ... Rn(r)) = r
- Join dependency, multiway decomposition, results the fifth normal form (5NF)

1/2020

Join Dependency & 5NF

- A MVD is a special case of a JD with n=2.
- JD(R1,R2) → MVD(R1 ∩ R2) ->> R1 R2
- MVD(R1 ∩ R2) ->> R2 R1
- A JD is trivial if any of Ri is R.
- The 5NF is also called project-join normal form (PJNF).

Definition: A relation schema is in 5NF or project-join normal form(PJNF) w.r.t a set of F of functional, multivalued and join dependencies if, for every join dependency JD(R1,R2, ..., Rn) in closure of F, every Ri is a super key of R.

11/11/2020

Fifth Normal Form (5 NF)

A Relation R is in 5NF iff every join dependency in R is implied by the candidate keys of R.

Company Table		R1		R2			R3			
Agent	Company	Product	Agent	Company		Company	Product		Agent	Product
A1	PQR	Nut	A1	PQR		PQR	Nut		A1	Nut
	-,					PQR	Bolt			
A1	PQR	Bolt	A1	XYZ		XYZ	Nut		A1	Bolt
A1	XYZ	Nut	A2	PQR		XYZ	Bolt		A2	Nut
A1	XYZ	Bolt								
A2	PQR	Nut	R1, R2 and R3 are in 5NF							

This is not in 5 NF

Go to: https://www.youtube.com/watch?v=mbj3HSK28Kk

Note: Join decomposition is a further generalization of Multivalued dependencies. If the join of R1 and R2 over C is equal to relation R, then we can say that a join dependency (JD) exists. Where R1 and R2 are the decompositions R1(A, B, C) and R2(C, D) of a given relations R (A, B, C, D).

11/11/2020 25

