Welcome to the Course on "Numerical Methods in Physics and Mathematics"

Why we need to learn this subject?

It's the basis for solving ordinary differential equations describing the motion of harmonic oscillators to doing black hole simulations.

```
In [10]:
      import matplotlib.pyplot as plt
      def f(t,x,v):
          return -w0**2*x - g*v
      g = 0.4 # light Damping
      w0 = 2
      x0 = 1.0
      v0 = 0.0
      ti = 0.0
      tf = 30
      n = 1000
      h = (tf-ti)/n
      t = ti
      x = x0
      v = v0
      xd_list = [x0]
      vd_list = [v0]
      td_list = [t]
      for i in range(0,n+1):
          #print(t,x,v)
          x = x + h*v
          v = v + h^* f(t, x, v)
          t = t+h
          xd_list.append(x)
          vd_list.append(v)
          td_list.append(t)
      plt.plot(td_list, xd_list, color='r')
      plt.xlabel("Time")
      plt.ylabel("Position")
      plt.rcParams["figure.figsize"] = (20, 10)
      plt.title("Solution of LHO")
```

Text(0.5, 1.0, 'Solution of LHO')


```
In [1]:
from IPython.display import Video
Video("simulation.mp4")
```


Syllabus

week 1: Python basics, classes, and objects.

week 2: Introduction to NumPy and SciPy.

week 3: Roots of algebraic equations: Bisection method, Secant method, Regula-falsi method, Newton-Raphson method.

week 4: Interpolation and numerical differentiations: Lagrange's interpolation, Newton's interpolation, Interpolation with SciPy, Differentiation through interpolation.

week 5: Numerical integrations: Rectangle rule, Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule.

week 6: Curve fitting: Least square method, NumPy polyfit module.

week 7: System of linear equations: Gauss elimination method, Gauss-Jordon method.

week 8: Ordinary Differential Equations: Euler's method, Runge-Kutta methods, Applications.