

Engenharia de Telecomunicações e Informática Sistemas de Comunicação Ótica

Projeto de um anel com gestão de dispersão e encaminhamento de comprimentos de onda

João Rabuge | 98509 Marisa Martins Sequeira | 99215

Grupo 9

Docentes:

Prof. Adolfo da Visitação Tregeira Cartaxo

Prof. João Lopes Rebola

Ano curricular: 3° ano

Semestre: 2°

2022/23

A	Acrónimos e Siglas utilizados	3
V	Variáveis e Constantes utilizadas	3
1	1 Introdução	4
2	2 Análise do Anel	6
	2.1 Seleção das ligações óticas no anel A9	6
	2.2 Análise da necessidade de usar compensação de dispersão	6
	2.2.1 Análise da figura de mérito associada à largura de banda do s	inal modulado6
	2.2.2 Análise da dispersão para a frequência ótica do canal (\mathbf{D}_{λ}) e d residual (D_{res})	-
	2.2.3 Decisão da necessidade de compensação de dispersão	7
	2.3 Escolha dos DCM's	8
3	3 Conclusão	11
4	4 Apêndice	12
	4.1 Fórmulas utilizadas	12

iscte

Acrónimos e Siglas utilizados

- **DCM** Dispersion Compensation Module
- **SSMF** Standard Single-Mode Fiber
- **UPSR** Unidirectional Path Switched Ring

Variáveis e Constantes utilizadas

- X Capacidade por canal ótico
- Y Capacidade total
- λ Comprimento de onda do canal
- **D**sec Dispersão da fibra em cada secção
- D_λ Dispersão para a frequência ótica do canal
- **D**res Dispersão residual
- **D**res,máx Dispersão residual máxima
- $\Delta \nu_M$ Largura de banda associada à modulação
- Δv_L Largura de linha a meia potência
- $\Delta Pi^-(D\lambda L)|_{dB,m\acute{a}x}$ Penalidade máxima aceitável devida à dispersão
- Rb.ch Ritmo binário do canal

1 Introdução

Neste projeto de um anel com gestão de dispersão e encaminhamento de comprimentos de onda, o objetivo é verificar a necessidade de compensar a dispersão, quando o anel está a ser operado num **único canal** e a utilizar a **fibra ótica Corning SMF-28e+**. Se for necessária essa compensação, serão especificados quais os dispositivos de compensação de dispersão (**DCM's**) escolhidos em cada secção do anel. É de notar que este anel é unidirecional e que há características específicas a cada grupo (**Grupo 9**), descritas na *Tabela 1*. Também, estão a ser considerados apenas o emissor A e o recetor A, cujas características se podem observar na *Tabela 2*.

Dados	Valor
Comprimento de onda do canal (λ)	1554.13 nm
Anel do Grupo	A9
Capacidade por Canal ótico (X)	10 Gbit/s
Capacidade Total (Y)	60 Gbit/s
Fase Não Linear Aceitável	$\pi/2$
Pior caso de probabilidade de erro de bit requerida	10E-13
Margem de Sobrecarga Requerida	2 dB
Margem de Sistema Requerida	2.5 dB
Penalidade Máxima Aceitável devido a efeitos Não	
Lineares da Fibra	1 dB
Penalidade Máxima Aceitável devido à Dispersão	1 dB
Segmento de Fibra de Transmissão	2 Km

Tabela 1 – Características e valores do projeto, para o grupo 3.

ID do Emissor	Tipo de Modulação	Fonte ótica	Potência à saída do emissor no nível lógico "0"	Razão de extinção	Largura de banda a -3 dB	Largura de linha a meia potência	Deriva máxima de frequência
A	Externa	DFB	2 dBm	8.5 dB	13 GHz	10 MHz	± 4.5 GHz
ID do Recetor	Tipo de foto-detetor	Eficiência quântica	NEP	Tipo de filtro do recetor	Parâmetro de sobrecarga	Largura de banda a -3 dB	
A	PIN	75%	5 pW/Hz ^{1/2}	Butterworth 4° ordem	-4 dBm	10 GHz	

Tabela 2 – Características do emissor A e recetor A.

O anel atribuído ao nosso grupo foi o **A9**, cujas ligações e respetivas características estão enunciadas na *Tabela 3*. De modo a sabermos o número de segmentos de fibra ótica para cada ligação, fizemos a divisão do comprimento dessa ligação pelo comprimento de cada segmento de fibra ótica (2 km).

Ligação	Nós de entrada e saída	Comprimento da ligação	Número segmentos
A	Coimbra - Seia	91 Km	45.5 ≈ 46
B Seia - Guarda		65 Km	32.5 ≈ 33
C	Guarda - Viseu	75 Km	37.5 ≈ 38
D	Viseu - Aveiro	90 Km	45
E	Aveiro - Figueira da Foz	63 Km	31.5 ≈ 32
F	Figueira da Foz - Coimbra	52 Km	26

Tabela 3 – Ligações e respetivas características do anel A9.

Para fazer o estudo deste anel de forma correta, estipulámos serem necessárias 3 fases de análise distintas:

- identificar as conexões mais longas no anel A9,
- avaliar se é necessário haver uma compensação de dispersão no anel,
- avaliar se preciso, a escolha dos respetivos DCM's.

2 Análise do Anel

2.1 Seleção das ligações óticas no anel A9

As ligações óticas no anel A9 que se pretendem estudar são as mais longas, asseguradas por este, de forma a evitar que haja falhas e discrepâncias. Sabendo que o anel em estudo é composto por seis secções, induz-se que as ligações mais longas atravessam cinco secções. Como forma de apoio à análise destas ligações, realizámos a *Tabela 4* onde é possível observar que a ligação mais longa é a ligação A1 (Coimbra – Figueira da Foz), com um comprimento de ligação equivalente a 384 Km.

Ligação (mais longa) Nós de entrada e saída		Secções atravessadas	Comprimento da ligação
A1	Coimbra - Figueira da Foz	A + B + C + D + E	384 Km
B2	Seia - Coimbra	B+C+D+E+F	345 Km
C3	Guarda - Seia	C + D + E + F + A	371 Km
D4	Viseu - Guarda	D + E + F + A + B	361 Km
E5	Aveiro - Viseu	E + F + A + B + C	346 Km
F 6	Figueira da Foz - Aveiro	F + A + B + C + D	373 Km

Tabela 4 - Ligações mais longas do anel A9 e respetivos comprimentos.

2.2 Análise da necessidade de usar compensação de dispersão

Com vista a verificar se é necessário compensar a dispersão no anel **UPSR** em estudo, tivemos de recorrer a vários cálculos e fórmulas auxiliares.

2.2.1 Análise da figura de mérito associada à largura de banda do sinal modulado

Primeiramente, sabemos, através da <u>Fórmula 1</u>, que para ser necessário compensação de dispersão, a penalidade de **dispersão da frequência ótica do canal** tem de ser **maior** que a **máxima aceitável devido à dispersão**. Sabemos também que, para que não haja necessidade de compensação de dispersão, a figura de mérito associada à largura de banda do sinal modulado tem de cumprir os requisitos da <u>Fórmula 2</u>.

Tendo em conta que o $R_{b.ch}=10~\mathrm{GHz}$ e que a largura de banda da modulação é maior ou igual ao ritmo binário do canal, conclui-se que $\Delta\nu_{\mathrm{M}} \geq 10~\mathrm{GHz}$. Uma vez que a largura de linha a meia potência do emissor é $\Delta\nu_{\mathrm{L}}=10~\mathrm{MHz}$, conclui-se que $\Delta\nu_{\mathrm{M}}>>\Delta\nu_{\mathrm{L}}$, o que implica que $\Delta\mathrm{Pi}(\mathrm{D}\lambda\mathrm{L})|_{dB}\approx\Delta\mathrm{Pi}(\mathrm{D}\lambda\mathrm{L})|_{dB}^{M}$.

Posto isto, para que não haja obrigatoriedade de compensar a dispersão, recorre-se à $\underline{F\acute{o}rmula}$ 3, o que permite concluir que $|F_m^M| \leq 0.09559$.

2.2.2 Análise da dispersão para a frequência ótica do canal (\mathbf{D}_{λ}) e da dispersão residual (D_{res})

Prosseguimos com a análise da dispersão para a frequência ótica do canal (\mathbf{D}_{λ}) e da dispersão residual (D_{res}).

Para a dispersão na frequência ótica do canal, tendo em conta os valores disponibilizados no PDF da fibra ótica Corning SMF-28e⁺, sabemos que a frequência ótica com dispersão zero (λ_0) é **1310 nm** e que o declive com dispersão zero (S_0), é **0.092 ps/(nm² * km**). No nosso caso, o comprimento de onda do canal é λ = **1554.13 nm**.

Deste modo, recorremos então à <u>Fórmula 4</u> para descobrir a dispersão para a frequência ótica do canal e concluímos que $D_{\lambda} = 17.7 \text{ ps/(nm * km)}$.

Calculámos também a dispersão residual, através da <u>Fórmula 5</u>, e observámos que para não ser imperativo compensação, será necessário $|D_{res}| \le 745.539$ ps/nm. Intuitivamente, tomámos este valor como o maior que a dispersão residual pode atingir.

2.2.3 Decisão da necessidade de compensação de dispersão

Para conseguirmos averiguar a necessidade de compensação de dispersão, apenas nos falta calcular se a **dispersão residual do nosso anel** é **superior** ao valor máximo calculado para a **dispersão residual**, no passo anterior.

Aplicando a <u>Fórmula 6</u>, obtivemos **D**_{res,anel} = **7717.303 ps/nm**, concluindo assim que sendo **D**_{res,anel} > **745.539 ps/nm**, **é preciso compensação de dispersão**.

2.3 Escolha dos DCM's

Como foi possível observar anteriormente, é necessário realizar-se compensação de dispersão. A mesma é realizada através de uns dispositivos denominados DCM's aos quais compete garantir que $|\mathbf{D}_{res}| \leq 745.539 \text{ ps/nm}$, nas ligações mais longas.

Após a observação dos dados tabelados dos DCM's, verificou-se que o comprimento de onda do canal com valor $\lambda = 1554.13$ nm não está na tabela. Assim, para se descobrir quais os valores específicos para este comprimento de onda, teve de se fazer uma interpolação dos 3 valores tabelados (utilizámos a função FORECAST.LINEAR no Excel- utilizada para prever valores futuros com base em valores históricos, calculando o valor de y usando a equação de reta y = a + bx) com os valores da *Tabela 4*, para um comprimento máximo de 100 Km. Neste caso, a função foi aplicada para prever o valor do comprimento de onda 1554.13 nm ,com base nos valores dos comprimentos de onda conhecidos de 1530 nm, 1550 nm e 1569 nm.

Comprimento (km)	λ (nm)							
	1530	1550	1569	1554,13				
3 (DCM-3)	-46 ps/nm	-49 ps/nm	-52 ps/nm	-49,6195 ps/nm				
10 (DCM-10)	-152 ps/nm	-163 ps/nm	-174 ps/nm	-165,272 ps/nm				
20 (DCM-20)	-304 ps/nm	-327 ps/nm	-348 ps/nm	-331,75 ps/nm				
30 (DCM-30)	-455 ps/nm	-490 ps/nm	-523 ps/nm	-497,228 ps/nm				
40 (DCM-40)	-607 ps/nm	-653 ps/nm	-697 ps/nm	-662,499 ps/nm				
60 (DCM-60)	-911 ps/nm	-980 ps/nm	-1045 ps/nm	-994,249 ps/nm				
80 (DCM-80)	-1214 ps/nm	-1307 ps/nm	-1394 ps/nm	-1326,2 ps/nm				
100 (DCM-100)	-1518 ps/nm	-1633 ps/nm	-1742 ps/nm	-1656,75 ps/nm				

Tabela 4 - Valores DCM para $\lambda = 1554.13$ nm.

Com os dados relativos ao comprimento de onda do projeto (**1554.13 nm**), consegue-se realizar a análise da dispersão residual ao longo das ligações mais longas. Para isto, foi necessário recorrer a alguns dados, tais como o comprimento das secções, a dispersão SSMF, a dispersão de compensação de fibra e a máxima residual, enunciados na *Tabela 5*.

cas	Secção	A	В	C	D	E	F
ıcterísti	Comprimento (km)	91	65	75	90	63	52
ter	Dispersão SSMF (ps/nm)	1610,721	1150,515	1327,518	1593,021	1115,115	920,4122
Ç.0	Dacc DCM ideal (ps/nm)	-1461,61	-1001,41	-1178,41	-1443,91	-966,007	-771,304
Car	Dispersão Residual Máxima (ps/nm)	745,539433					

Tabela 5 - Dados necessários à escolha dos DCM.

Com base nos dados apresentados, consegue-se realizar o dimensionamento dos DCM's a usar em cada ligação seguindo o **método presente nos slides**. Assim, será feita uma análise de forma a deduzir quais devem ser utilizados no nosso anel. O objetivo é que o valor de todas as dispersões totais seja menor ou igual à dispersão residual máxima ($\mathbf{D}_{res,total} \leq \mathbf{D}_{res,max}$).

O 1º Passo é escolher qual o DCM mais adequado, tendo em conta que a sua Dispersão levará ao valor mais próximo da Dispersão Residual por secção. Será de notar que a condição (Dispersão Residual Total ≥ Dispersão Residual Máxima) nunca é cumprida, necessitando assim de se realizar o 2º Passo. Como é demonstrado na *Tabela 6*.

		DCM-80	DCM-60	DCM-80	DCM-80	DCM-60	DCM-40
	Dispersão DCM						
		-1326.2	-994.249	-1326.2	-1326.2	-994.249	-662.499
os	D _{res,secção} (ps/nm)	284.5169	156.2668	1.313134	266.8167	120.8663	257.9132
Passo						.2 -994.249 167 120.8663 088 -28.2416	
10	Subestimação	135,409	7.158896	-147.795	117.7088	20 2416	108.8053
	dispersão (ps/nm)	133.409	7.138890	-147.793	117.7000	-28.2410	108.8033
	D _{res,Total} (ps/nm)	828.7798	803.1761	931.4262	1086.38	820.8764	966.8267

Tabela 6 – 1º Passo de escolha de DCM's.

No **2º Passo**, será necessário utilizar o **DCM-100** na **secção A**, visto que no passo anterior foi de **80** e esta secção ter o maior valor de subestimação da dispersão. É de notar que após esta modificação, a condição passou a ser cumprida em quase todas as secções, com exceção das **secções B** e **D**, exigindo assim a realização do 3º Passo, como é demonstrado na *Tabela 7*.

	Dispersão DCM	DCM-100	DCM-60	DCM-80	DCM-80	DCM-60	DCM-40
		-1656.75	-994.249	-1326.2	-1326.2	-994.249	-662.499
OSS	D _{res,secção} (ps/nm)	-46.0261	156.2668	1.313134	266.8167	120.8663	257.9132
2° Passo	Subestimação dispersão (ps/nm)	-195.134	7.158896	-147.795	117.7088	-28.2416	108.8053
	D _{res,Total} (ps/nm)	499.2368	803.1761	600.8832	755.8369	490.3334	636.2837

Tabela 7 – 2º Passo de escolha de DCM's.

No **3º Passo**, seguiu-se a mesma lógica do segundo. Sendo assim, o DCM modificado foi o da **secção D**, onde se utilizou agora o **DCM-100**. Após esta alteração, a condição passou a ser cumprida em todas as secções, garantindo assim a **compensação de dispersão**, como é demonstrado na *Tabela 8*.

	Dispersão DCM	DCM-100	DCM-60	DCM-80	DCM-100	DCM-60	DCM-40
		-1656.75	-994.249	-1326.2	-1656.75	-994.249	-662.499
ossı	D _{res,secção} (ps/nm)	-46.0261	156.2668	1.313134	-63.7263	120.8663	257.9132
2° Passo	Subestimação dispersão (ps/nm)	-195.134	7.158896	-147.795	-212.834	-28.2416	108.8053
	D _{res,Total} (ps/nm)	168.6938	472.6331	270.3402	425.2939	490.3334	305.7407

Tabela 8 − 3º Passo de escolha de DCM's.

3 Conclusão

Neste projeto de um anel com gestão de dispersão e encaminhamento de comprimentos de onda, verificámos que para o nosso anel específico (A9), nas suas ligações mais longas é necessária compensação de dispersão.

Inicialmente, realizámos uma avaliação dos **caminhos mais longos do anel A9**, chegando à conclusão que a ligação mais longa era a **A1** (**Coimbra – Figueira da Foz**) **de 384 Km**.

Após a descoberta dos caminhos mais longos, verificámos que é necessário existir **compensação de dispersão**, devido ao facto de **D**_{res,anel}> |**D**_{res}|.

A compensação de dispersão no anel A9 é realizada através de **DCM's**. Nesta última fase descobrimos quais destes deveriam ser utilizados para garantir a compensação de dispersão. Para isso acontecer será necessário a utilização de fibras SMF do tipo G.652:

- 2 fibras de 100 km (DCM-100)
- 1 fibra de 80 km (DCM-80)
- 2 fibras de 60 km (DCM-60)
- 1 fibra de 40 km (DCM-40)

Deste modo, conseguiu-se fazer uma projeção de um anel UPSR com a devida gestão de dispersão e encaminhamentos de onda.

4 Apêndice

Para avaliar a necessidade de compensação de dispersão recorremos a determinadas fórmulas.

4.1 Fórmulas utilizadas

$$\Delta \overline{P_{\iota}}(D_{\lambda}L)|_{dB} > \Delta \overline{P_{\iota}}(D_{\lambda}L)|_{dB,m\acute{a}x}$$

Fórmula 1 – Condição para que seja necessária compensação de dispersão.

Fórmula 2 -Figura de mérito associada à largura de banda do sinal modulado, sem necessidade de compensação de dispersão.

 $a_c = 0$, pois trata - se de um emissor externamente modulado

$$f_m^M = = \frac{R_b^2 \cdot D_{\lambda}L \cdot \lambda^2}{2\pi c} \qquad \Delta \overline{P_i}(D_{\lambda}L)|_{dB}^M = 5 \log_{10} \left[1 + \left(8 f_m^M \right)^2 \right]$$

Fórmula 3 – Penalidade da dispersão cromática associada à modulação.

Fórmula 4 - Dispersão para a frequência ótica do canal, com a fibra ótica Corning SMF-28e+.

iscte

Sistemas de Comunicação Ótica

$$\begin{split} D_{res} &= D_{\lambda}L \\ |f_m^M| &= \left|\frac{R_b^2 \cdot D_{res} \cdot \lambda^2}{2\pi c}\right| \Longrightarrow \left|\frac{R_b^2 \cdot D_{res} \cdot \lambda^2}{2\pi c}\right| \le \frac{\sqrt{10^{\frac{\Delta \overline{P_l}(D_{\lambda}L)|_{dB,m\acute{a}x}}{5}} - 1}}{8} \Longleftrightarrow \\ &\iff |D_{res}| \le \frac{\sqrt{10^{\frac{\Delta \overline{P_l}(D_{\lambda}L)|_{dB,m\acute{a}x}}{5}} - 1}}{R_b^2 \cdot \lambda^2} \times 2\pi c \end{split}$$

Fórmula 5 – Dispersão residual máxima para que não seja necessária compensação.

 $m{D}_{res} = m{D}_{\pmb{\lambda}} \cdot (m{L}_1 + m{L}_2 + \dots + m{L}_k)$ K diz respeito à última secção do anel

Fórmula 6 – Dispersão residual sem compensação.