Analysis of different algorithms for Maze solving

This document captures an analysis of different aspects of using different algorithms to solve the "maze problem" defined as, "Given a maze in the format of an image, find the shortest path from the source to the destination and highlight it."

Algorithms tested

- Breadth-first search (BFS)
- A-star with Manhattan distance heuristic

Maze image information

• Image format : BMP (.bmp)

• Bytes per pixel: 3

Image	Resolution (width*height)	Clear pixel count	% of clear pixels
1	10*10	43	43.00
2	15*15	100	44.44
3	41*41	801	47.65
4	201*201	20692	51.22
5	401*401	82724	51.45
6	1940*2001	2006882	51.70
7	2001*2001	2000001	49.95
8	4001*4001	8000001	49.98

Running time

- Unit: second(s)
- Typical environment:
 - OS: Ubuntu 16.04
 - Processor: Intel i5 (7th gen) @ 3GHz
 - Physical RAM: 4GiB- Swap space: 8GB

Image	Breadth-first search (BFS)	A-star (Manhattan distance)	$\begin{array}{c} \mathrm{BFS} \ \mathrm{is} \\ \mathrm{faster} \ \mathrm{by} \\ \mathrm{X\%} \end{array}$	A-star (Euclidean distance)	$\begin{array}{c} {\rm BFS\ is}\\ {\rm faster\ by}\\ {\rm X\%} \end{array}$
1	0.003	0.003	0.00	0.001	-200.00

Image	Breadth-first search (BFS)	A-star (Manhattan distance)	BFS is faster by X%	A-star (Euclidean distance)	BFS is faster by X%
2 3 4	0.005 0.002 0.010	0.002 0.003 0.014	-150.00 33.00 28.50	0.001 0.002 0.012	-400.00 0.00 16.67
5 6 7 8	0.031 0.625 0.537 2.376	0.035 0.746 0.649 2.976	11.42 16.22 17.25 20.16	0.033 0.822 0.667 3.103	6.06 23.97 19.49 23.43

Node expansion

Note: Values in parantheses represent the % of nodes expanded

	Breadth-	A-star	X% fewer	A-star	X% fewer
Image	first	(Manhattan	nodes than	(Euclidean	nodes than
	search	distance)	BFS	distance)	BFS
1	36 (83.72)	27 (62.79)	25.00	28 (65.12)	22.22
2	88 (88.00)	72 (72.00)	18.18	74 (74.00)	15.91
3	780	770 (96.13)	1.28	771 (96.25)	1.15
4	(97.38)	10104 (40 02)	07.12	10550 (51.02)	99.05
4	13866 (67.01)	10104 (48.83)	27.13	10559 (51.03)	23.85
5	70167	39943 (48.28)	43.07	47091 (56.93)	32.89
	(84.82)	,		(/	
6	1949485	1248266	35.97	1568188	19.56
	(97.14)	(62.20)		(78.14)	
7	918257	837378	8.80	857383	6.63
	(45.19)	(41.86)		(42.87)	
8	$\hat{6}2017\hat{5}5$	6023496	2.87	$\hat{6}0797\hat{6}9$	1.97
	(77.52)	(75.29)		(76.00)	