Subject	COURSE OUTCOME	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	To estimate the stress and strain on mechanical												
	components due to fluctuating loads, and understand, identify and quantify the fatigue failure modes for	Н	Н	Н	M	L	M	L	M	M	M	М	Н
	mechanical parts using the Soderberg and Goodman	11	11	111	101	-	1V1	L	101	IVI	1V1	M M L L M H M L H M L	11
	techniques.												
	To select the material and configuration including design												
6ME1A: Design of Machine	of various automobile parts under diffrent service	Н	Н	Н	M	L	M	M	L	Н	L	M	M
Elements - II	conditions.												
	To understand knowledge of basics analytical design					.							
	and uncertainties inherent in material properties of machine elements.	Н	M	M	H	L	M	Н	L	Н	M	L	M
	To estimate the transverse and torsional												
	deflections/stress of machine elements with analytic	Н	Н	Н	Н	M	L	L	M	L	M	T.	Н
	methods.	11	''	''	''	''1			''1		171		''
	Students will be able to identify the best machining												
	process for machining of particular material among the	Н				M	Н			Н			Н
	conventional and unconventional machining process.												
	Students will be able to understand the principle,	**	3.4		,,					**		3.4	**
6ME2A: Newer Machining	mechanism of metal removal of various unconventional machining processes.	Н	M	M	H			M		Н		M	Н
Methods	Students will be able to evaluate the effect of												
Methods	unconventional machining condition on MRR and	Н	Н	Н	Н	Н	Н						Н
	surface roughness.												
	Students will be able to categorise nano and												
	micromachining processes and their industrial	Н				Н		Н	Н	M		Н	Н
	applications.												
	To explain the basics of Mechatronics and to relate	M	L	L	L	L	Н	Н	Н	M	M	M	Н
	Mechanical Engineering with Electronics Engineering. To analyze and design fabrication and designing of												
	MEMS.	L	L	Н	L	L	M	M	L	M	M	L	M
6ME3A: Mechatronics	To analyze and design real time systems and their												
	representations in Z transforms. To learn Data	M	L	M	M	M	M	Н	L	Н	M	Н	L
	Acquisition and their related system.												
	To design mechatronics system for day to day life and for	Н	Н	Н	Н	M	M	L	M	L	Н	M	Н
	industrial purpose.												

Subject	COURSE OUTCOME	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	Understand the propagation of sound, noise sources and												
	need of vibration analysis in mechanical design of	Н	M	M	M	Н	Н	Н		Н		Н	Н
	machine parts.												
6ME4A: Vibration Engineering	Ability to formulate mathematical models of problems in	Н	Н	M	Н	L	M	L		M		Ţ	Н
ONLAA. VIbration Engineering	vibrations	11	11	101	11	נו	101	L		171		L	111
	Ability to determine vibratory responses of single and	Н	Н	Н	Н	M	M	M		M		Ţ	Н
	multi degree of freedom system		11	11	11	101	101	101		171		L	11
	Estimate the parameters of vibration isolation system	Н	Н	Н	Н	Н	Н	Н		Н		M	Н
	To identify elements and functions of boiler and analyze	Н	Н	Н	Н	Н	Н	Н		Н	Н	М	Н
	its design and maintenance.	11	11	11	11	11	11	11		11	11	1V1	11
	To determine performance of steam nozzles and steam												
	turbine based on load variations and analyze the factors	Н	M	M	M	Н	M	L		L	L	L	M
	affecting its performance.												
6ME5A: Steam Engineering	Explain the blade shapes and calculate the performance												
	of steam turbines with the help of performance	Н	M	M	M	Н	M	M		M	M	H L L M M	M
	parameters.												
	Able to calculate the thermal efficiency of rankine cycle												
	and methods to improve the efficiency of a steam power	Н	M	M	M	M	M	L		L	L	L	L
	plant.											H L L M M H H L L L L L L L L L L L L L	
	To relate role of maintenance in environment	н	Н	Н	M	M	M	M	L	M	Н	l _M	M
	conservation challenges/issues.	11	11	11	101	101	101	101	L	171	11	101	1V1
	To develop and implement effective maintenance						M				М	Н	
	strategy considering different factors including	Н	Н	Н	Н	M		M		M			Н
6ME6.3A: Maintenance	tribological aspect.												
Management	To discriminate and apply different condition monitoring	Н	M	Н	M	M	L	L		M	L	и	M
Wanagement	techniques and related Instruments.	11	171	11	171	171	L	L		171	L	11	171
	To develop the relationship of key concepts in reliability,												
	availability and maintainability, and application to	Н	Н	Н	Н	M	M	L		Н	M	н	Н
	deciding suitable maintenance strategies in a	11	11	11	11	141	171			11	171	11	11
	manufacturing environment.												
	To demonstrate understanding by either analyzing an												
	existing problem or by modifying design to certain given	Н	Н	Н	Н	L	M	M	M	Н	M	L	Н
6ME7A: Machine Design Sessional -II	specifications for mechanical elements.												
	To categorize the separate and distinct phases that define												
	the decision-making process as applied to machine	Н	Н	Н	Н	L	L	M	M	Н	M	M	Н
	design.												

Subject	COURSE OUTCOME	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	To implement various concepts involved in statistical	Н	Н	Н	Н	Н	M	Н		M	M	Н	Н
6ME8A: Industrial Engineering	process controlas an Industrial Engineer in industry.	11	11	11	11	11	171	11		171	141	H H H M	11
Lab-I	To understand and verify probability distributions and												
Lau-i	solve the problems using statistical process control	Н	Н	Н	Н	Н	Н	Н		Н	M	Н	Н
	software in lab.												
	To use devices like analog and digital multi-meter, signal	Н	Н	Н	M	M	Н	M					M
	generator, regulated power supply etc.	11	11	11	IVI	1V1	11	1V1				Н	1V1
6ME9A: Mechatronics Lab	To measure different mechanical variables like –												
	displacement, temperature, torque, strain, position,	Н	Н	Н	Н	Н	Н	Н			M		M
	velocity using electronic sensors.											Н	
	Ability to determination of natural frequency of vibration												
6ME10A: Vibration Engineering	problems that contain single and multi-degree of freedom	Н	Н	M	M		Н	M				Н	Н
6ME9A: Mechatronics Lab 6ME10A: Vibration Engineering Lab	systems.												
Lau	Ability to investigate the whirling problem of a rotating	Н	TT	М	М	TT	11	т				М	11
	shaft	п	Н	M	M	Н	Н	L				1V1	Н