Notação Projeto e Análise de Algoritmos

Daniel Capanema

Pontifícia Universidade Católica de Minas Gerais

2022

Comportamento Assintótico de Funções

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
- A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno
- Logo, a análise de algoritmos é realizada para valores grandes de n
- Estuda-se o comportamento assintótico das funções de custo (comportamento de suas funções de custo para valores grandes de n)
- Para entradas grandes o bastante, as constantes multiplicativas e os termos de mais baixa ordem de um tempo de execução podem ser ignorados

Dominação Assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada
- **Definição:** Uma função f(n) **domina assintoticamente** outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos

$$|g(n)| \le c \times |f(n)|$$

Exemplo:

- Sejam $g(n) = (n+1)^2$ e $f(n) = n^2$
- As funções g(n) e f(n) dominam assintoticamente uma a outra, já que
- $|(n+1)^2| \le 4 |(n^2)|$ para $n \ge 1$ e
- $|(n^2)| \le |(n+1)^2|$ para $n \ge 0$

Como Medir o Custo de Execução de um Algoritmo?

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se T(n) é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de tempo de algoritmo
- Se T(n) é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de espaço de algoritmo

Observação: TEMPO NÃO É TEMPO!

É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

Custo Assintótico de Funções

- É interessante comparar algoritmos para valores grandes de n
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce
- Em geral, o custo aumenta com o tamanho n do problema

Observação:

Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado

Notação assintótica de funções

- Existem três notações principais na análise de assintótica de funções:
 - Notação O ("O" grande)
 - Notação Ω
 - Notação Θ

Notação O

• f(n) = O(g(n))

Notação O

- A notação O define um limite superior para a função, por um fator constante
- Escreve-se f(n) = O(g(n)), se existirem constantes positivas $c \in n_0$ tais que para $n \ge n_0$, o valor de f(n) é menor ou igual a cg(n).
 - O Pode-se dizer que g(n) é um limite assintótico superior (em inglês, asymptotically upper bound) para f(n)

$$f(n) = O(g(n)), \exists c > 0 \in n_0 \mid 0 \le f(n) \le cg(n), \forall n \ge n_0$$

- Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n). Lê-se f(n) é da ordem no máximo g(n).
- Observe que a notação O define um conjunto de funções:

$$O(g(n)) = \{ f : \aleph \to \Re^+ \mid \exists c > 0, n_0, 0 \le f(n) \le cg(n), \forall n \ge n_0 \}$$

Notação O: Exemplos

- Seja f(n) = (n + 1)2
 - o Logo f(n) é $O(n^2)$, quando no = 1 e c = 4, já que

$$(n+1)^2 \le 4n^2$$
 para $n \ge 1$

- Seja $f(n) = n e g(n) = n^2$. Mostre que g(n) não é O(n).
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$
 - Suponha que existam constantes c e no tais que para todo $n \ge n_0$, $n^2 \le cn$ •
 - Assim, $c \ge n$ para qualquer $n \ge n_0$.
 - No entanto, n\u00e3o existe uma constante c que possa ser maior ou igual a n
 para todo n.

Notação O: Exemplos

- Mostre que $g(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$
 - o Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$ para $n \ge 0$
 - A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca que dizer que g(n) é $O(n^3)$

- Mostre que $h(n) = \log_5 n$ é $O(\log n)$
 - \circ O $\log_b n$ difere do $\log_c n$ por uma constante que no caso é $\log_b c$
 - o Como $n=c^{\log_c n}$, tomando o logaritmo base b em ambos os lados da igualdade, temos que $\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c$

Notação O

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é O(n²) no pior caso
 - Este limite se aplica para <u>qualquer</u> entrada

Notação O

- Tecnicamente é um abuso dizer que o tempo de execução do algoritmo de ordenação por inserção é $O(n^2)$ (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio)
 - O tempo de execução desse algoritmo depende de como os dados de entrada estão arranjados.
 - O Se os dados de entrada já estiverem ordenados, este algoritmo tem um tempo de execução de O(n), ou seja, o tempo de execução do algoritmo de ordenação por inserção no melhor caso é O(n).
- O que se quer dizer quando se fala que "o tempo de execução é O(n²)"
 é que no pior caso o tempo de execução é O(n²)
 - ou seja, não importa como os dados de entrada estão arranjados, o tempo de execução em qualquer entrada é O(n²)

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \ c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações com a notação O: Exemplos

- Regra da soma O(f(n)) + O(g(n))
 - O Suponha três trechos cujos tempos de execução sejam $O(n), O(n^2)$ e $O(n \log n)$
 - \circ O tempo de execução dos dois primeiros trechos é $\mathrm{O}(\max(n,n^2))$, que é $\mathrm{O}(n^2)$
 - O tempo de execução de todos os três trechos é então

$$O(\max(n^2, \log n))$$

que é
$$O(n^2)$$

Notação Ω

• $f(n) = \Omega(g(n))$

Notação Ω

- A notação Ω define um limite inferior para a função, por um fator constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas c e no tais que para $n \ge n^\circ$, o valor de f(n) é maior ou igual a cg(n)
 - o Pode-se dizer que g(n) é um limite assintótico inferior (em inglês, asymptotically lower bound) para f(n)

$$f(n) = \Omega(g(n)), \exists c > 0 \text{ e } n_0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0$$

Observe que a notação Ω define um conjunto de funções:

$$\Omega(g(n)) = \{ f : \aleph \to \Re^+ \mid \exists c > 0, n_0, 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$$

Notação Ω

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é Ω(n) no melhor caso
 - \circ O tempo de execução do algoritmo de ordenação por inserção é $\Omega(n)$
- O que significa dizer que "o tempo de execução" (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio) é $\Omega(g(n))$?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes g(n) para valores suficientemente grandes de n

Notação Ω: Exemplos

• Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$

Notação Ω: Exemplos

- Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$
- Seja f(n) = n para n impar $(n \ge 1)$ e $f(n) = n^2/10$ para n par $(n \ge 0)$.
 - Neste caso f(n) é Ω (n^2) , bastando considerar c = 1/10 e n = 0,2,4,6,...

Notação Θ

• $f(n) = \Theta(g(n))$

Notação Θ

- A notação Θ limita a função por fatores constantes
- Escreve-se f(n) = Θ(g(n)), se existirem constantes positivas c1, c2 e no tais que para n ≥ no, o valor de f(n) está sempre entre c1g(n) e c2g(n) inclusive
- Neste caso, pode-se dizer que g(n) é um limite assintótico firme (em inglês, asymptotically tight bound) para f(n)

$$f(n) = \Theta(g(n)), \exists c_1 > 0, c_2 > 0 \text{ e } n_0 \mid 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

Observe que a notação Θ define um conjunto de funções:

$$\Theta(g(n)) = \{ f : \aleph \to \Re^+ \mid \exists c_1 > 0, c_2 > 0, \ n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0 \}$$

Notação Θ: Exemplo

- Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$
- Para provar esta afirmação, devemos achar constantes c₁ > 0, c₂ > 0, n₀
 > 0, tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

- para todo n ≥ n_o
- Se dividirmos a expressão acima por n² temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

Notação Θ: Exemplo

Notação Θ: Exemplo

- A inequação mais a direita será sempre válida para qualquer valor de $n \ge 1$ ao escolhermos $c_2 \ge 1/2$
- Da mesma forma, a inequação mais a esquerda será sempre válida para qualquer valor de $n \ge 7$ ao escolhermos $c_1 \le 1/14$
- Assim, ao escolhermos $c_1 = 1/14$ $c_2 = 1/2$ e $n_0 = 70$ odemos verificar que

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

- Note que existem outras escolhas para as constantes c₁ e c₂, mas o fato importante é que a escolha existe
- Note também que a escolha destas constantes depende da função $\frac{1}{2}n^2 3n$
- Uma função diferente pertencente a $\Theta(n^2)$ irá provavelmente requerer outras constantes

• Usando a definição formal de Θ , prove que $6n^3 \neq \Theta(n^2)$.

Notações: Propriedades

Reflexividade:

- o f(n) = O(f(n)).
- o $f(n) = \Omega(f(n))$.
- o $f(n) = \Theta(f(n))$.

Simetria:

- o $f(n) = \Theta(g(n))$ se, e somente se, $g(n) = \Theta(f(n))$.
- Simetria Transposta:
 - o f(n) = O(g(n)) se, e somente se, $g(n) = \Omega(f(n))$.
- Transitividade:
 - Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n)).
 - O Se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$, então $f(n) = \Omega(h(n))$.
 - \circ Se $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$, então $f(n) = \Theta(h(n))$.

Notações: Relações Úteis

Quais as notações mais indicadas para expressar a complexidade de casos específicos de um algoritmo, do algoritmo de modo geral e da classe de algoritmos para o problema?

Casos específicos:

- o ideal é a notação **O**, por ser um limite assintótico firme.
- o A notação O também é aceitável e bastante comum na literatura.
- \circ Embora possa teoricamente ser usada, a notação Ω é mais fraca neste caso e deve ser evitada para casos específicos.

Algoritmo de forma geral:

- Se o algoritmo comporta-se de forma idêntica para qualquer entrada, a notação Θ é a mais precisa (lembre-se que $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$).
- Se os casos melhor e pior são diferentes, a notação mais indicada é a O, já que estaremos interessados em um limite assintótico superior.
- O pior caso do algoritmo deve ser a base da análise.

Para uma classe de algoritmos:

 Neste caso estamos interessados no limite inferior para o problema e a notação deve ser a Ω.

Limites do Algoritmo de Ordenação por Inserção

- O tempo de execução do algoritmo de ordenação por inserção está entre $\Omega(n)$ e $O(n^2)$
- Estes limites são assintoticamente os mais firmes possíveis
 - O Por exemplo, o tempo de execução deste algoritmo não é $\Omega(n^2)$, pois o algoritmo executa em tempo $\Theta(n)$ quando a entrada já está ordenada

Funções de Custo (nº de comparações): Algoritmo de Ordenação por Inserção

Funções de Custo e Notações Assintóticas: Algoritmo de Ordenação por Inserção

Pior Caso:
$$c_{\mathsf{Pior Caso}}(n) = \frac{n^2}{2} + \frac{n}{2} - 1 \qquad = \qquad \frac{O}{\Theta} \ (\ n^2 \)$$

Caso Médio:

$$c_{ ext{Caso Mèdio}}(n) = rac{n^2}{4} + rac{3n}{4} - 1 = egin{array}{c} O \ \Omega \end{array} \left(egin{array}{c} n^2 \end{array}
ight)$$

Melhor caso:

$$c_{\mathsf{Melhor\ Caso}}(n) = n-1 \qquad \qquad = \stackrel{O}{igoplus} \left(\begin{array}{c} n \end{array} \right)$$

indica a notação normalmente usada para esse caso.

Teorema

• Para quaisquer funções f(n) e g(n),

$$f(n) = \Theta(g(n))$$

se e somente se,
$$f(n) = O(g(n))$$
, e

$$f(n) = \Omega(g(n))$$

Mais sobre notação assintótica de funções

- Existem duas outras notações na análise assintótica de funções:
 - Notação o ("O" pequeno)
 - Notação ω
- Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω , respectivamente

Notação o

- O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não
 - o Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite não é $2n = O(n^2)$
- A notação o é usada para definir um limite superior que não é assintoticamente firme
- Formalmente a notação o é definida como:

$$f(n) = o(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0$

• Exemplo, $2n = o(n^2)$ mas $2n^2 \neq o(n^2)$

Notação o

- As definições das notações O e o são similares
 - o A diferença principal é que em f(n) = o(g(n)), a expressão $0 \le f(n) < cg(n)$ é válida para todas constantes c > 0
- Intuitivamente, a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito.
 - Isto pode ser expresso da seguinte forma:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Alguns autores usam este limite como a definição de o

Notação ω

- Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação O
- Formalmente a notação ω é definida como:

$$f(n) = \omega(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0$

- Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$
- A relação $f(n) = \omega(g(n))$ implica em:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

se o limite existir!

1. Prove que $2^{n+1} = O(2^n)$.

1. Prove que $2^{n+1} = O(2^n)$.

$$2^{n+1} = O(2^n)$$
, mas $2^{2n} \neq O(2^n)$

Para mostrar que $2^{n+1} = O(2^n)$, precisamos achar constantes c, $n_o > 0$ tais que $0 <= 2^{n+1} <= c.2^n$ para todo $n >= n_o$

Já que $2^{n+1} = 2.2^n$ para todo n, podemos satisfazer a definição com c = 2 e n₀ = 1.

e para:
$$2^{2^n} = O(2^n)$$
.

Para mostrar que 2^{2n} != $O(2^n)$, assuma que exista constantes c, $n_o > 0$ tais que $0 <= 2^{2n} <= c.2^n$ para todo $n >= n_o$.

Considere que $2^{2n} = 2^n . 2^n <= c . 2^n \square 2^n <= c$.

Mas nenhuma constante é maior que 2^{n.}

Então essa consideração nos leva a uma contradição.