Macroscopic Electrodynamics

Mike Reppert

September 4, 2019

Public Service Announcement!

Tuesday, Sept 10, BRWN 4102: Thesis Interviews

Shalini T Low-Nam

Email: slownam@purdue.edu Phone: 43878 Office: 3131C BRWN

Mike Reppert

Email: reppertm@purdue.edu Phone: 42064 Office: 4171D BRWN

6 pm: Biophysical Chemistry in Tumor Immunology - Molecular Assembly, Space, and Time ← Fluorescence imaging!

7 pm: Rewiring Biological Photosynthesis – Theory

Meets Experiment \leftarrow Me

There will be food!

Previously on CHM676...

The Inhomogeneous Wave Equation (IEW – derived from Maxwell's equations) can be used to calculate the EM field *given* particle trajectories.

But in general, the particle trajectories are impossibly hard to calculate!

Today: How to simplify the equations by *coarse-graining*.

Outline for Today:

Ensemble Averages and Statistical Mechanics

2 Coarse-grained Densities

3 Molecular Spectroscopy and Material Polarization

Ensemble Averages and Statistical Mechanics

Statistical Mechanics: Average Physics

Ensemble Averages

Formally, we define the ensemble average

$$\langle f \rangle_M = \sum_{\mu \in M} p_{\mu}^{(M)} f(\mu)$$

as the average value over all microstates consistent with a specific macrostate (temperature, volume, charge, etc.).

In spectroscopy, we work almost exclusively with the macroscopic fields

$$m{E}(m{x},t) \equiv \langle m{e}(m{x},t)
angle_M \ m{B}(m{x},t) \equiv \langle m{b}(m{x},t)
angle_M \, .$$

Macroscopic Fields

What equations determine E and B?

Since Maxwell's equations are linear in b and e:

$$\begin{aligned} \nabla \cdot \boldsymbol{E} &= 4\pi \left\langle \varrho(\boldsymbol{x},t) \right\rangle_{M} \\ \nabla \cdot \boldsymbol{B} &= 0 \\ \nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\ \nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} &= \frac{4\pi}{c} \left\langle \boldsymbol{j}(\boldsymbol{x},t) \right\rangle_{M} \end{aligned}$$

But how do we get rid of the explicit ensemble average?

Wait for it...

Take-Home Points

In statistical mechanics, an *ensemble-averaged* quantity is the average value over all *microstates* consistent with a given *macrostate*.

In spectroscopy, we primarily deal with the *macroscopic* fields E and B – the ensemble averages of the *microscopic* fields e and b.

Since Maxwell's equations are linear, their form is unchanged by ensemble-averaging. The key question is how to handle $\langle \varrho \rangle$ and $\langle j \rangle$.

Coarse-grained Densities

Coarse-graining the Densities

A two-step process:

(1) Distinguish between *free* and *bound* charges:

"bound" \approx "stuck to a nucleus"

- (2) Multipole expansion in molecular size
 - Monopole: Total charge
 - ② Dipole: Polarization

https://en.wikipedia.org/wiki/File: Ball_and_stick_model_of_a_water_molecule.png

Macroscopic Densities

The result (after great suffering) is:

$$\begin{split} \langle \varrho(\boldsymbol{x},t) \rangle_{M} &\approx \rho(\boldsymbol{x},t) - \nabla \cdot \boldsymbol{P}(\boldsymbol{x},t) + \dots \\ \langle \boldsymbol{j}(\boldsymbol{x},t) \rangle_{M} &\approx \boldsymbol{J}(\boldsymbol{x},t) + \frac{\partial \boldsymbol{P}(\boldsymbol{x},t)}{\partial t} + \dots \end{split}$$

where

- \bullet ρ is the *free charge* density
- ullet P is the *polarization* density
- J is the free current density

Microscopic Charge Density: ϱ

How much total charge?

Free Charge Density: ρ

How much mobile charge?

Free Current Density: J

How much mobile charge movement?

Polarization Density: P

How much polarization?

 $m{P}(m{x},t)$ is the average molecular dipole at $m{x}$: $m{P}(m{x},t) \equiv \left\langle \mu^{\mathrm{mol}} \delta(m{x} - m{r}^{\mathrm{mol}}) \right\rangle_M$

$$oldsymbol{P}(oldsymbol{x},t) \equiv ig\langle \mu^{\mathsf{mol}} \delta(oldsymbol{x} - oldsymbol{r}^{\mathsf{mol}}) ig
angle_M$$

Read the Signs

	Microscopic	Macroscopic
Electric Field	e	$oldsymbol{E}$
Magnetic Field	b	B
Charge Density	Q	ρ
Current Density	j	J

But watch out!

$$egin{aligned} m{E} &= \langle m{e}
angle \ m{B} &= \langle m{b}
angle \end{aligned} \qquad egin{aligned} m{
ho}
eq \langle m{arrho}
angle \ m{J}
eq \langle m{j}
angle \end{aligned}$$

$$\begin{split} \langle \varrho(\boldsymbol{x},t) \rangle_{M} &\approx \rho(\boldsymbol{x},t) - \nabla \cdot \boldsymbol{P}(\boldsymbol{x},t) + \dots \\ \langle \boldsymbol{j}(\boldsymbol{x},t) \rangle_{M} &\approx \boldsymbol{J}(\boldsymbol{x},t) + \frac{\partial \boldsymbol{P}(\boldsymbol{x},t)}{\partial t} + \dots \end{split}$$

Take-Home Points

Free charges can move over large distances

Bound charges are mostly stuck in place

The multipole expansion allows us to write $\langle \varrho \rangle_M$ and $\langle \boldsymbol{j} \rangle_M$ in terms of macroscopic quantities:

- ullet The free charge density ho
- ullet The polarization density $oldsymbol{P}$
- ullet The free current density $oldsymbol{J}$

Molecular Spectroscopy and Material Polarization

September 4, 2019

Going Forward: Dielectric Materials

In this course we'll work with dielectrics: materials without free charges. Whole molecules don't move very fast!

In dielectrics, both ρ and \boldsymbol{J} vanish:

$$\nabla \cdot \mathbf{E} = -4\pi \nabla \cdot \mathbf{P}(\mathbf{x}, t)$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \mathbf{P}(\mathbf{x}, t)}{\partial t}$$

For molecular spectroscopy, the polarization density is key.

Think about it!

Q: How does polarization contribute to $\langle \varrho \rangle_M$?

A: It doesn't! It's $\nabla \cdot P$!

Next up: Response Theory

Take-Home Points

 ${m P}$ doesn't contribute directly to $\langle \varrho \rangle_M$ or $\langle {m j} \rangle_M$: It's $\nabla \cdot {m P}$ and $\frac{\partial {m P}}{\partial t}$ that contribute.

In macroscopic electrodynamics, *response the-ory* replaces the Lorentz force law in describing how materials respond to the EM field.