Chapitre 4 : Martingales à temps discret

Un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$ et une filtration $(\mathcal{F}_n)_{n\geq 0}$ sont donnés.

4.1 Définitions et premières propriétés

Définition (4.1.1)

Un processus $X=(X_n)_{n\geq 0}$ défini sur $(\Omega,\mathcal{F},\mathbb{P})$ est une (\mathcal{F}_n) -martingale (ou une martingale par rapport à la filtration (\mathcal{F}_n) , on dit simplement une martingale s'il n'y a pas d'ambiguïté quant à la filtration) si

- i) Pour tout $n \ge 0$ on a $\mathbb{E}|X_n| < +\infty$ (on dit que X est intégrable).
- ii) Le processus X est (\mathcal{F}_n) -adapté.
- iii) Pour tout $n \geq 0$ on a $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ (propriété de martingale).

Si la condition iii) est remplacée par $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \leq X_n$ on dit que X est une sur-martingale.

Si la condition iii) est remplacée par $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \geq X_n$ on dit que X est une sous-martingale.

Propriété (4.1.1)

On a les propriétés immédiates suivantes.

- 1) Pour tout $m \ge n \ge 0$, on a $\mathbb{E}(X_m | \mathcal{F}_n) = X_n$.
- 2) Pour tout $n \ge 0$ on a $\mathbb{E}(X_n) = \mathbb{E}(X_0)$ (une martingale est constante en espérance).

Preuve : [au tableau]

Exemple 4.1.1: On considère le processus $S = (S_n)_{n>0}$ défini par

$$S_0 = x$$
 et $S_n = x + \sum_{i=1}^n X_i$, $\forall n \ge 1$,

avec (X_i) suite i.i.d. vérifiant $\mathbb{E}|X_1|<\infty$ et $\mathbb{E}(X_1)=0$. Un tel processus est appelé marche aléatoire symétrique, issue de x (déjà vue dans l'exemple 3.2.1 : la marche aléatoire sur \mathbb{Z} issue de zéro ; elle n'était pas forcément symétrique).

On définit la filtration (\mathcal{G}_n) par $\mathcal{G}_0 = \{\emptyset, \Omega\}$ puis $\mathcal{G}_n = \sigma(X_k, 1 \leq k \leq n), n \geq 1$.

On peut alors voir que S est une (G_n) -martingale [au tableau].

Théorème (4.1.1)

- 1) Soit $(X_n)_{n\geq 0}$ une martingale et soit $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction convexe telle que $\mathbb{E}|\varphi(X_n)| < +\infty$ pour tout $n\geq 0$. Alors $(\varphi(X_n))_{n\geq 0}$ est une sous-martingale.
- 2) Soit (X_n) une sous-martingale et $\varphi: \mathbb{R} \to \mathbb{R}$ une fonction convexe croissante avec $\mathbb{E}|\varphi(X_n)| < +\infty$ pour tout $n \geq 0$. Alors $(\varphi(X_n))_{n \geq 0}$ est une sous-martingale.

Preuve: [au tableau]

4.2 Intégrale stochastique discrète

Définition (4.2.1)

Un processus $(H_n)_{n\geq 0}$ est dit prévisible si H_n est \mathcal{F}_{n-1} mesurable pour tout $n\geq 1$ (et si H_0 est \mathcal{F}_0 -mesurable).

Remarque 4.2.1 : Un processus prévisible est adapté. La réciproque n'est pas vraie en général.

Théorème (4.2.1)

Soit $(X_n)_{n\geq 0}$ une sur-martingale et soit $(H_n)_{n\geq 0}$ un processus prévisible, à valeurs positives et bornées.

Alors le processus $H \cdot X = ((H \cdot X)_n)_{n \geq 0}$ défini par $(H \cdot X)_0 = 0$ et

$$(H\cdot X)_n=\sum_{m=1}^n H_m(X_m-X_{m-1}),\quad \forall n\geq 1$$

est à son tour une sur-martingale.

Preuve: [au tableau]

Remarque 4.2.2 : On a des versions sous-martingale et martingale :

- 1) Si X est une sous-martingale et avec les mêmes hypothèses sur H on a que $H \cdot X$ est à son tour une sous-martingale.
- 2) Si X est une martingale et H est un processus prévisible à valeurs bornées (mais de signe quelconque) alors $H \cdot X$ est une martingale.

4.3 Théorèmes d'arrêt

Définition (4.3.1)

Un temps d'arrêt (t.a.) pour la filtration (\mathcal{F}_n) (on parle aussi de (\mathcal{F}_n) -t.a.) est une v.a. T à valeurs dans $\mathbb{N} \cup \{+\infty\}$ telle que

$$\forall n \in \mathbb{N}, \quad \{T \leq n\} \in \mathcal{F}_n.$$

Remarque 4.3.1 : Comme on est en temps discret on peut remplacer de façon équivalente $\{T \leq n\}$ par $\{T = n\}$ dans la définition (ATTENTION : dans les modèles à temps continu ce n'est pas le cas). [explication au tableau]

Exemple 4.3.1: Soit (X_n) un processus à valeurs dans \mathbb{R} et (\mathcal{G}_n) sa filtration naturelle (on suppose en outre que (\mathcal{G}_n) est strictement croissante).

Soit $a \in \mathbb{R}$, on considère le temps aléatoire $T_a = \inf\{n \ge 0 : X_n = a\}$. (NB : on pose la convention $\inf \emptyset = +\infty$, si bien que l'évènement $\{T = \infty\}$ correspond à "le processus X ne touche jamais le point a").

On a que T_a est un (G_n) -t.a. [explication au tableau]

On va maintenant énoncer quelques "théorèmes d'arrêt".

Théorème (4.3.1)

Soit $X = (X_n)_{n \geq 0}$ une (\mathcal{F}_n) -sur-martingale et T un (\mathcal{F}_n) -t.a. Alors le processus $X^T = (X_{n \wedge T})_{n \geq 0}$ est encore une sur-martingale (on parle de martingale arrêtée en T).

Le résultat reste vrai en remplaçant partout "sur-martingale" par "sous-martingale" ou "martingale".

Preuve : [au tableau]

Définition (4.3.2, Tribu des évènements antérieurs à un temps d'arrêt)

Soit T un (\mathcal{F}_n) -t.a. On note

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le n \} \in \mathcal{F}_n, \, \forall n \ge 0 \}$$

la "tribu des évènements antérieurs au t.a. T ".

Remarque 4.3.2: C'est un exercice de montrer que $\mathcal{F}_{\mathcal{T}} \subset \mathcal{F}$ est effectivement une tribu (cf Exercice 1 de la Feuille de TD 7).

Théorème (4.3.2)

Soit $X = (X_n)_{n \geq 0}$ une (\mathcal{F}_n) -martingale. Soient S et T deux (\mathcal{F}_n) -t.a. bornés vérifiant $S \leq T \leq k$ p.s. (pour $k < \infty$).

Alors on a

$$\mathbb{E}(X_T|\mathcal{F}_S) = X_S$$
 p.s.

(noter que par exemple $X_T(\omega) = X_{T(\omega)}(\omega)$ pour tout $\omega \in \Omega$). En particulier on a $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

Preuve: [au tableau]

4.4 Résultats de convergence

On a par exemple:

Théorème (4.4.1)

Soit (X_n) une sous-martingale telle que $\sup_n \mathbb{E}[(X_n)_+] < +\infty$. Alors il existe $X \in L^1$ telle que

$$X_n \xrightarrow[n \to \infty]{} X$$
 p.s.

Preuve : [cf poly]

Théorème (4.4.3)

Soit (X_n) une martingale. Il y a équivalence entre :

- i) Elle est U.I. (i.e. $\sup_n \mathbb{E}[|X_n|\mathbf{1}_{|X_n|>a}] \xrightarrow[a\uparrow\infty]{} 0$).
- ii) Elle converge p.s. et dans L^1 vers $X \in L^1$.
- iii) II existe $X \in L^1$ t.q. $X_n = \mathbb{E}(X|\mathcal{F}_n)$.

Dans les points ii) et iii) c'est la même variable aléatoire X qui est en jeu.

Preuve: [cf Feuille de TD 7, Exercice 4]

Remarque 4.4.1: Si $|X_n| \le Y \in L^1$ pour tout n alors (X_n) est U.I.

4.5 Décomposition de Doob

Théorème (4.5.1)

Toute sous-martingale $(X_n)_{n\geq 0}$ admet la décomposition

$$X_n = M_n + A_n, \quad \forall n \geq 0,$$

où $(M_n)_{n\geq 0}$ est une martingale et $(A_n)_{n\geq 0}$ un processus prévisible croissant, avec $A_0=0$. Cette décomposition est unique.

De plus on a les expressions explicites :

$$M_0=X_0$$
 et $M_n=X_n-\sum_{k=1}^n\mathbb{E}(X_k-X_{k-1}|\mathcal{F}_{k-1}),\ \forall n\geq 1$

et

Grenoble INP
$$A_0=0$$
 et $A_n=\sum_{k=1}^n\mathbb{E}(X_k-X_{k-1}|\mathcal{F}_{k-1}),\ \forall n\geq 1.$