

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Basado en el material original de Jordán Pascual Espada

v 1.3.1 Septiembre 2021

Introducción a Arduino

Componentes de un robot

Componentes de un robot

- Algunas de las partes básicas
 - Sensores
 - Perciben información
 - Actuadores
 - Emiten respuestas (Señal, movimiento motor) locomoción, manipulación
 - Controladores
 - Computación
 - Control de sensores y actuadores
 - Mecanismos y estructura
- Pueden tener «infinitas» partes
- Pueden tener otras partes
 - Armazones, armas, protecciones, etc.

Comportamientos

Comportamientos I

- Comportamiento básico de los Robots
 - Percepción
 - ¿Cómo percibe? **Sensores**
 - o Procesamiento de la lógica de negocio
 - o ¿Cómo planifica en que estado se encuentra y que va a realizar?
 - Secuencia fija, **algoritmos**, **inteligencia artificial**, aprendizaje, etc...
 - Acción
 - ¿Cómo actúa? Actuadores
- En la mayoría de casos estos comportamientos están relacionados
 - Desencadenadores

Comportamientos II

o Si no hay pared delante continúa por el camino

-> Procesamiento continuo ->

Percepción

Percepción

Acción 1

Comportamientos III

• Reparte cartas entre los jugadores

https://www.youtube.com/watch?v=3BGe4OZIAKQ#t=1m30s

Procesamiento ->

Acción 1

Acción 1

Acción 1

Comportamientos IV

- https://www.youtube.com/watch?v=sKPfwpGLXTg
- Percepción: ¿Qué puede percibir?
- o Lógica de negocio: ¿Cómo planifica la tarea a realizar?
- Acción: ¿Qué acciones puede realizar?

Comportamientos V

- o Percepción: ¿Qué puede percibir?
 - Detección de nieve (sensor de distancia, color y/o presión)
 - o Posición GPS, balizas, etc.
- Lógica: ¿Cómo planifica la tarea a realizar?

- Acción: ¿Qué acciones puede realizar?
 - Avanzar
 - Retroceder
 - Girar derecha / izquierda
 - o Dar media vuelta
 - Subir/Bajar la pala
 - **0** ...

Diseño y programación de robots

Diseño y programación de robot

- Existen muchas alternativas para construir y programar robots
 - Kits completos (computación, electrónica, mecanismos y estructuras)
 - Lego Mindstorms, Makeblock, Fischertechnik, Vex, Stem, ...
 - o Computación y control de componentes electrónicos
 - Arduino, Raspberry Pi, Intel Edison, Beagle Bone, Launchpad, Odroid-U3, ...
 - Mecanismos y estructuras
 - Comprar componentes estándar, diseñarlos y fabricarlos
 - o Metal, Poliácido Láctico (PLA), Acrilonitrilo Butadieno Estireno (ABS), etc.

https://commons.wikimedia.org/viki/File:Lego_Mindstorms_Nxt-FLL.ipg

https://commons.wikimedia.org/wiki/File:Arduino Uno 006.ipa

https://en.wikipedia.org/wiki/Intel_ Edison#/media/File:Intel-Edison2.png

Arduino

Arduino I

- https://www.arduino.cc/
- Plataforma de hardware libre
 - Diagramas y especificaciones abiertas al público
- o Apareció en el año 2005
- Desarrollada por Massimo Banzi, David Mellis, David Cuartielles, Tom Igoe y Gianluca Martino
- o Solo se fabricaba en Italia
- Placa con un microcontrolador programable
- o Ofrece un entorno de desarrollo
 - Simple
 - Mantenido y actualizado cada poco

https://commons.wikimedia.org/ wiki/File:Arduino_Uno_006.jpg

Arduino o Genuino

- Arduino LLC fue el original en 2005
- o Debido a **problemas con un socio** crearon Genuino en 2015
 - Montó una empresa (Smart Projects SRL) para fabricar placas Arduino y registró el nombre Arduino en Italia en secreto
 - o Gianluca Martino registro la marca Arduino SRL en más de 40 países
 - El nombre Genuino de Arduino LLC era en todo el mundo y Arduino solo en EEUU
- Arduino LLC se podía fabricar libremente por cualquier empresa
- Diferencias
 - Arduino UNO vs Genuino UNO: lugar donde se fabrica
 - Nuevas placas: el equipo de desarrollo de estas
- http://playground.blogautore.repubblica.it/2015/02/11/la-guerra-per-arduino-la-perla-hitech-italiana-nel-caos/
- El 28 de julio de 2017 se vuelven a juntar las dos empresas
 - https://blog.arduino.cc/2017/07/28/a-new-era-for-arduino-begins-today/
 - Tras varias compras, Arduino LLC consiguió fusionar todo

https://es.wikipedia.org/wiki/Universal Serial Bus#/media/Archivo:USB 2.0 and 3.0 connectors.svg

Arduino – Principales partes de la plaça

ATmega16U2

Se encarga del USB/Serial

- Familia lógica CMOS
 - Transistores MOSFET
- Arquitectura RISC
- Se puede actualizar/borrar/etc.
- Atmega328p
 - Principal
 - Se encarga del código/programa
 - Arquitectura RISC

Entradas y salidas digitales

USB tipo B Reset

LED on/off

Led Pin 13

Enchufe: 9-12V

https://commons.wikimedia.owiki/File:Arduino_Uno_006.jpg

Entradas analógicas

https://www.arduino.cc/en/pmwiki.php?n=Reference/Board

Programación

- Entornos de desarrollo
 - Oficiales (incluido el web): https://www.arduino.cc/en/main/software
 - o También en Microsoft Store
 - Terceros: MiniBloq, BitBloq (BQ), TinkerCAD, ...
 - Investigaciones: Midgar, Paraimpu, etc.
- Se comunica con el puerto serie USB
 - o Carga el programa en la placa, funciones de entrada/salida
- Lenguaje de programación (Arduino)
 - Basado en Wiring (Programado en C/C++)
 - Utiliza un set de funciones de C/C++
 - o Todas las funciones estándar de C y C++ deberían de funcionar
 - Estructuras de control, variables, tipos de datos, funciones, etc.
 - El código se compila utilizando un compilador de C/C++
 - https://arduino.github.io/arduino-cli/sketch-build-process/
 - Muchas bibliotecas para controlar componentes (de forma sencilla)
- o Comunicación de aplicaciones Arduino con otros lenguajes de programación utilizando el USB
 - Java, C#, Objetive-C, C++, Perl, Ruby, Python, etc.
 - https://playground.arduino.cc/Interfacing/Java/
 - o Más en las prácticas...

Componentes usables

- o Facilita el uso de componentes electrónicos
 - Sensores, motores, pantallas, resistencias, pulsadores, leds, etc.

- o El hardware provee entradas y salidas digitales, y entradas analógicas
 - Conectamos los componentes electrónicos
 - Programadas para enviar o recibir datos

Uso

- Se usa en proyectos multidisciplinares
 - Electrónica, informática, robótica, mecánica...
- o M∪y popular para la práctica y el aprendizaje
- Gran comunidad de usuarios
 - Desarrolladores
 - Material de consulta y aprendizaje
 - Eventos y cursos
 - Nuevos productos

Hardware

o Diferentes modelos de placas

- Dimensiones (no están a escala)
- o Potencia: procesador, velocidad CPU, memoria
- Número de entradas y salidas analógicas y digitales
- Voltajes admitidos: alimentación y salidas
- Otras características integradas
 - Ej.: Bluetooth, ethernet, botones, etc.

- https://www.arduino.cc/en/hardware
- https://docs.arduino.cc/retired/other/arduino-older-boards

https://commons.wikimedia.org/wiki/File:Arduino Uno 006.jpg

Componentes compatibles

- o Un gran número de componentes electrónicos compatibles
 - Entradas y salidas digitales y entradas analógicas
- o Placas de extensión/Escudos (Shields) Arduino y otros elementos propios
 - Permiten no «perden» pines, generalmente
 - https://store.arduino.cc/collections/shields

Relés

Carga Solar

Driver Motores

• Ethernet, GPS, Wireless, TFT táctil, etc.

Modelos que utilizaremos

• Además de muchos componentes electrónicos diferentes y alguna placa de extensión (Shield)

Arduino UNO

https://commons.wikimedia.org/wiki/File:Arduino_Uno_006.jpg

ZUM BT-328 - BQ

BreadBoard

¿Cómo conectar componentes electrónicos? I

- Crear un circuito (sin o con la ProtoBoard)
- ProtoBoard / BreadBoard / Placa de pruebas
 - Crear y modificar circuitos encajando componentes
 - o Basada en sistema de raíles internos
- Historia: https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

Ayuda a...

• Evitar los líos antiguos de cables...

https://commons.wikimedia.org/wiki/File:Computerplatine_Wirewrap_backplane_detail_Z80_Doppel-Europa-Format_1977.jpg

Ejemplo I

Conexión en la ProtoBoard

Circuito real equivalente

Ejemplo II

Conexión en la ProtoBoard

Circuito real equivalente

Un poco de electrónica

¿Cómo conectar componentes electrónicos? II

- Conectar directamente los componentes a Arduino
 - o Conexión a los pines del Arduino
 - Placas de sensores (Sensor Shield)
 - Solo sensor vs Sensor + resistencias
- Utilizando una BreadBoard

Creación de un circuito eléctrico I

- Pin 5 voltios al carril + de la ProtoBoard
 - Esta placa tiene salidas de **5V** y 3.3V
- Pin GND (Tierra o negativo) al carril de la ProtoBoard

- o Respetar siempre el criterio de cables: Rojo + y GND/Negativo -
 - Estándar
 - Evitar confundirnos (problema muy común)

Creación de un circuito eléctrico II

- o Conectar el componente electrónico al circuito
 - o Diodo LED
 - Cada componente tiene sus especificaciones
 - Conexión
 - Ánodo + largo, cátodo- corto
 - o Parte pequeña interna +, parte grande interna -
 - Voltaje (Voltios) o Intensidad (Amperios) requeridos
 - 10-20 mA (miliamperios)
 - Voltaje depende del color (1,7 a 4,6 v), y el tamaño
- Los componentes más complejos tienen otras especificaciones
 - Servomotor
 - Conexión
 - + -> Rojo, -> Negro, Pin Digital -> Blanco/Naranja
 - Voltaje (Voltios) o Intensidad (Amperios) requeridos:
 - 4,8V − 6V
 - o Torsión, velocidad, etc.

Problemas

Problema I

• ¿Conectar un led 10 - 20 mA a una alimentación de 5V?

• ¿Qué esta pasando?

Problema II

Ley de Ohm

$$V = I \times R$$
 $I = V / R$ $R = V / I$

- Voltaje: al conectar componentes al circuito -> el voltaje decae
 - *Casi todos los componentes (Un pulsador de clase no, un LED, etc.)
 - Esto hace que requiera una resistencia, para que haga impedancia
 - Un led (pequeño rojo) hace caer el voltaje 1,8V
 - o Los 5V del circuito pasan a: 5V − 1,8V = 3,2V
- Resistencia: este circuito apenas tiene resistencia (cables, LED)
 - Unos 2 Ω ohmios (Ω)
- o Intensidad: podemos calcular la intensidad (A), que le llega al LED
 - \circ V = I x R \rightarrow I = V / R
 - $I = 3.2V / 2\Omega = 1.6 A$ o lo que es lo mismo 1600 mA!!!
 - El LED requería entre 10-20 mA... ; le llega entre 80-160 veces más!

Problema III

- o ¿Cómo hacer que circule una intensidad de 10-20 mA?
 - 10 mA: brillo medio
 - 20 mA: brillo muy alto
 - Con menor voltaje o dificultando el paso de corriente (resistencia)
 - Queremos 15mA -> 0,015A ¿Qué resistencia hace falta?
 - \circ V = I x R \rightarrow V / I = R
 - o 5V 1.8V (LED Rojo) = 3.2V
 - \circ 3,2V / 0,015 A = 213,33 Ω
 - Arduino es 3,3V o 5V
 - \circ Con **213,33** Ω la intensidad de corriente seria aproximadamente 15mA
 - \circ No hay resistencias comerciales de 213,33 Ω
 - \circ Colocaríamos la más próxima que es de 220 Ω

Problema IV

- \circ ¡Solucionado con una resistencia de 220 Ω !
 - o Sin resistencia iluminaría, pero su vida útil sería muy corta

Problema V

- o ¿Por qué un LED de diferente color puede iluminar más o menos?
- ¿Estará estropeado?
- o Depende del color... y del tamaño
 - Calculadora: http://gzalo.com/resistencias-led/

Color	Caída de voltaje (Aproximada)	Resistencia (Ohmios) con 5v aprox. y 0,015A
Infrarrojo	1,4 V	270
Rojo (alto)	1,8 V a 2,2 V	220
Naranja	2,1 V a 2,2 V	200
Amarillo	2,1 V a 2,4 V	200
Verde	2 V a 3,5 V	150
Azul	3,5 V a 3,8 V	100
Violeta	3,6 V	100
Blanco	3,8 V	100

(Vcircuito - Vled) / A = R

Problema VI

• ¿Cómo miro la resistencia?

o Número de bandas: 4, 5 o 6

• <a href="https://www.digikey.es/es/resources/conversion-calculators/conversion-calculator-resistor-calcu

color-code-5-band

https://www.digikey.es/es/resources/conversion-calculators/conversion-calculator-resistor-color-code-5-band

1st: 2 (Rojo) 2nd: 2 (Rojo)

Multiplier: 10

Tolerance: +-5%

Total: 220 Ohmios

Tipos de circuito

Ejemplos

- 3 LEDs rojos
- Alimentación de 5 V
- ullet Resistencia de 220 Ω

Serie 5 15 20

Paralelo

Circuitos en serie

- o Las caídas de voltaje se suman (aprox. $1.8V \times 3 = 5.4 \text{ V}$)
 - Cada elemento tiene el suya propio
 - o Si un elemento es eliminado, el voltaje de otro se podría hasta doblar
 - Necesitan 5,4V para funcionar y se esta alimentando con 3,3V
 - o No funcionaría o funcionará mal, a medias, de vez en cuando, ...
 - Si hubiera más voltaje: se calentará más, se puede estropear, funcionar diferente (+ rápido), etc.
 - \circ V total = V1 + V2 + V3 + ...
- \circ La intensidad es la misma en todo el circuito (0,015 A = 15 mA)
 - I total = I1 = I2 = I3 = ...
- \circ Todas las resistencias se suman (220 Ω)
 - R total = R1 + R2 + R3 + ...
 - *Con esta Rt los LEDs apenas brillarían
 - Si una resistencia se estropea, todo deja de funcionar
- o Si un elemento deja de funcionar, los demás también
 - El elemento estropeado hace que se «corte» el circuito

Circuitos en paralelo

- o Cada rama es como si fuera un circuito en serie
- \circ Todas las ramas reciben el mismo voltaje (5 \vee)
 - o La caída es de 1,8V en cada rama
 - \circ V total = V1 = V2 = V3 = ...
- \circ Todos los caminos reciben la misma intensidad (0,015 A = 15 mA)
 - El flujo de corriente total (intensidad) aumenta 15mA x 3 = 45 mA = 0,045 A
 - \circ | total = |1 + |2 + |3 + ...
- \circ La resistencia depende de la rama donde esté (220 Ω)
 - o Afecta solo a los elementos de esa rama
 - Las resistencias de cada rama son independientes
 - o Si la resistencia está antes de las ramas, afecta a todas
 - R total del circuito = 1 / (1/R1 + 1/R2 + 1/R3 + ...) (Rt = 73,3 Ω)
- Si un elemento deja de funcionar, solo se estropea esa rama, el resto de ramas siguen funcionando

Programación en Arduino y pines

Programación en Arduino

- Programas
 - Funciones básicas

o Podemos: declarar #includes (importar librería), variables globales, otras funciones, etc.

Pines digitales I

- o Pines: 2 13
 - Los pines O (RX recepción) y 1 (TX transmisión) lo usa el chip ATMega
 - Se pueden reconfigurar
 - Se usan cuando se usa el puerto serie (USB)
 - \circ El 13 tiene una resistencia de 220 Ω incluida y un LED
 - Pueden ser entradas o salidas
 - Al ser digitales, solo tienen dos valores
 - o I máxima = 40 mA; I recomendada = 20 mA
 - 20 mA = salida de 5 voltios + resistencia > 200 Ω
 - I totalSalidasArduino = 300 mA; I totalPuerto = 150 mA
 - Suficiente para LEDs, servomotores pequeños, etc.
- Pines **PWM** ~ -> 3, 5, 6, 9, 10, 11
 - Estos pines permiten enviar señales analógicas, además de las digitales

Pines digitales II

- o Pines: 2 13
- Pines **PWM** ~ -> 3, 5, 6, 9, 10, 11
- Como salida
 - Permiten emitir voltaje 5V HIGH o 0V LOW
 - High si hay 3v o más en 5 V
 - o High si hay 2v o más en 3,3 V
 - Enviar señales a un sensor / actuador
 - Encender / apagar un componente, etc.
 - Objetos que tengan solo dos estados
- o Como entrada
 - Detectan voltaje en base a un umbral (aprox. 2.5 V)
 - Detectado < umbral retornan LOW
 - Detectado > umbral retornan HIGH
 - Nunca deberían recibir voltajes fuera de 0 V 5 V
 - Detectan si pasa corriente por un circuito
 - Recibir señales de un sensor, etc.

Ejemplo – Salida digital – encender/apagar LEDs

- Inicializar Pin como salida
 - pinMode(pin, OUTPUT)

```
int led1 = 2;
int led2 = 3;
int led3 = 4;

void setup() {
  pinMode(led1, OUTPUT);
  pinMode(led2, OUTPUT);
  pinMode(led3, OUTPUT);
}
```

- Escribir en la salida
 - digitalWrite(pin, HIGH / LOW)
 - HIGH: lo enciende
 - LOW: lo apaga


```
digitalWrite(led1, HIGH);
delay(500);
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
delay(500);
digitalWrite(led2, LOW);
digitalWrite(led3, HIGH);
delay(500);
digitalWrite(led3, LOW);
```

Ejemplo – Entrada digital – detectar circuito cerrado

- o Inicializar Pin como entrada
 - pinMode(pin, INPUT)

```
int boton = 4;

void setup() {
 pinMode(boton, INPUT);
}
```

- Leer entrada
 - digitalRead(pin) -> retorna HIGH o LOW

Pines analógicos

- Pines: **A0 A5**
- Trabajan solo como entradas (Arduino Uno)
 - Hay otros Arduino que sí tienen salidas analógicas: Zero, Due, ...
- Pueden tomar cualquier valor dentro de un intervalo
- o Son más escasas, lentas y caras que las digitales
- Ofrecen
 - Arduino Uno: 1024 valores diferentes (10 bits)
 - Transforma el valor analógico a un valor digital usando 10 bits (0 1023)
 - Precisión relativa del 0,1% a 5 V. Si fuera de 1V sería de de 0,5% (Depende del voltaje)
- Entrada
 - Detecta valores de tensión entre 0 V 5 V
 - Detecta cuanta corriente pasa por un circuito
- Usos
 - Leer datos de un potenciómetro, motor, fotoresistores, u otro elemento que pueda dar más de 2 estados
 - Entrada de un sensor de temperatura analógico, etc.
- Pines **A4 y A5** incluyen la biblioteca WIRE para interfaces TWI
 - o Son un tipo de comunicación y depende del dispositivo que se utilice
 - Ejemplo: I2C (bus de comunicación) de la LCD

Ejemplo – Entrada analógica – leer valor de un potenciómetro

- No requiere configuración
- Leer entrada
 - analogRead(pin) -> valor entre [0 1023]

```
int potencia = A0;

void loop() {
   int lectura = analogRead(potencia);
}
```


Pines digitales PWM (Pulse-With-Modulation)

- Pulse-with-modulation
 - o Modulación por ancho de pulso
 - o Simula una salida analógica
 - Modifica el ancho del pulso

- Pueden generar salidas analógicas desde pines digitales
 - o Pines: ~3, ~5, ~6, ~9, ~10, ~11
 - Modifica el periodo de la señal digital para «emulan» valores (0-255)
 - ~5, ~6: tienen una mayor frecuencia que el resto, 980Hz
 - Escribir salida (solo una a la vez)
 - 00 255
 - Arduino: https://www.arduino.cc/en/Tutorial/PWM

Ejemplo – Salida analógica – Regular el voltaje de un LED (regular

brillo)

Configurar Pin PWM como salida

pinMode(pin, OUTPUT)

```
int potencia = A0;
int led = 5;

void setup() {
   pinMode(led, OUTPUT);
}
```

- Leer analógico y escribir PWM
 - o analogWrite(pin, [0-255])
 - o Map: cambia el rango A, B a A,C

```
I (PVM-) is NO ON 1 10 15 20 25
```

IDE

IDE de desarrollo – Acciones básicas I

• Selección de modelo de placa

IDE de desarrollo – Acciones básicas II

- Selección del puerto de conexión (USB)
 - Serial.begin(9600): conexión con el puerto serie usando 9600 baudios (lo típico)
 - https://www.arduino.cc/en/Serial/Begin

A más baudios, mayor velocidad de escritura por segundo

IDE de desarrollo: acciones básicas

Validar código 🕟 Subir código a la placa

Abrir el monitor de serie (especie de consola E/S)

```
1-LedsParpadear Arduino 1.8.6
                                                                                       ×
Archivo Editar Programa Herramientas Ayuda
  1-LedsParpadear
// Pins
int led1 = 2:
int led2 = 3:
int led3 = 4:
void setup() {
  // Inicializamos los pins digitales como salida
  // Queremos que alimenten electricamente los leds
  pinMode(led1, OUTPUT);
  pinMode(led2, OUTPUT);
  pinMode (led3, OUTPUT);
// the loop function runs over and over again forever
void loop() {
```

Lenguaje de programación

- https://www.arduino.cc/reference/en/
- En general es muy sencillo

Digital I/O	Math	Random Numbers
digitalRead()	abs()	random()
digitalWrite()	constrain()	randomSeed()
pinMode()	map()	
	max()	Dita and Dutas
Analog I/O	min()	Bits and Bytes
Analog I/O	pow()	bit()
analogRead()	sq()	bitClear()
analogReference()	sqrt()	bitRead()
analogWrite()		bitSet()
		bitWrite()
Zero, Due & MKR Family	Trigonometry	highByte()
	cos()	lowByte()
analogReadResolution()	sin()	
analogWriteResolution()	tan()	

External Interrupts

attachInterrupt()

tan()

Emulación de Arduino

- Emulación: Tinkercad (Circuits)
 - https://www.tinkercad.com/

Referencias

- Arduino Home
 - https://www.arduino.cc
- Emulación y ejemplos
 - https://www.tinkercad.com/
- o Lenguaje de programación
 - https://www.arduino.cc/en/Reference/HomePage
- Ejemplos kit básicos
 - http://wiki.seeedstudio.com/Arduino/
- o Libro: Arduino Curso práctico de formación 2014
- Foro Arduino StackExchange
 - https://arduino.stackexchange.com/

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Basado en el material original de Jordán Pascual Espada

v 1.3.1 Septiembre 2021

Introducción a Arduino