

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 8

- 1 Let X be a Banach space and T a compact operator on X. Show that if (x_n) is a sequence in X such that (x_n) converges weakly to 0, then $\lim_{n\to\infty} ||Tx_n|| = 0$.
- 2 Let X be a Banach space and $T: X \to X$ an invertible, bounded, linear operator. Show that λ is in the spectrum of T if and only if $1/\lambda$ is in the spectrum of T^{-1} .
- 3 Let $\ell^1(\mathbb{Z})$ be the space of absolutely convergent series $(x_n)_{n\in\mathbb{Z}}$. Define the convolution $x*y=((x*y)_n)$ between $x=(x_n)_{n\in\mathbb{Z}}$ and $y=(y_n)_{n\in\mathbb{Z}}$ by

$$(x*y)_n = \sum_{k \in \mathbb{Z}} x_k y_{n-k}.$$

- a) Show that convolution is commutative and associative.
- **b)** Show that $(\ell^1(\mathbb{Z}), *)$ is a Banach algebra, i.e.

$$||x * y||_1 \le ||x||_1 ||y||_1$$
, $textforall \ x, y \in \ell^1(\mathbb{Z})$.