P452 - Assignment 3

Anantha Padmanabhan M Nair 2011019

Question-4

Students t-Test

The students t-Test has been done and the results has been tabulated in the table.

	Focal Length		
	Shipment A	Shipment B	
d)	4.65	4.75	
for the e test	4.84	4.79	
or th test	4.59	4.74	
foi	4.75	4.74	
	4.63	4.77	
Calculations f Significance	4.75	4.58	
ti	4.58	4.81	
la lif	4.82		
cu	4.86		
S. S.	4.6		
	4.77		
	4.65		
	4.8		
Mean	4.714615	4.740000	
St Dev	0.101293	0.075277	
Variance	0.010260	0.005667	
n	13.000000	7.000000	
t-Value	0.634858601		
t-test prob	0.569400		
F-Value	1.810633484		
Q-Value	0.480426		

From the table we can see that the obtained probability is 0.5694 and the t-value is 0.6348. And the degree of freedom is dof = 13 + 7 - 2 = 18.

Now if we consider the A = 0.05, from the t-table we can that the corresponding value of t from the table for the dof = 18 is 2.101. table used can be accessed by clicking here. Since the value of our t is much less than the t_{crit} in the t-table, we can say the Null hypothesis: There is significant difference between the 2 data sets is accepted. Which means that the 2 data are from the same population.

F-Test

From the table we can see that the F-Value of our data is 1.81 and the Q- Value at degree of freedoms 13-1 and 7-1, that is Q(1.81,12,6) is 2.9 obtained from the table from here. This value of Q is for $\alpha=0.1$. So, at this level, the rejection region is $[2.9,\infty]$. So, at 0.1 significance the Null hypothesis that the 2 variances are equal cannot be rejected, hence $\sigma_A=\sigma_B$, this can be said with 90% confidence.

Question-3

The Grades have been divided into equal bins of width 1 with grade C at the center. The calculations of the same are shown in the table below. From the table we can see that

x-point	Grades	Unbiased Distribution f(x)	Expected Frequency N*f(x)	Observed Frequency	
2	Α	0.0540	32.3946	77.0000	61.4190
1	В	0.2420	145.1824	150.0000	0.1599
0	С	0.3989	239.3654	210.0000	3.6025
1	D	0.2420	145.1824	125.0000	2.8056
2	E	0.0540	32.3946	38.0000	0.9699
chi Square					68.957017

The χ^2 value was obtained to be 68.95 for 4 degrees of freedom. So, from the χ^2 -table, the critical value of the χ^2 is 9.49 @ 5% Level of significance and 7.78 @ 10% Significance. So, the observed χ^2 is much greater than both of the critical value. So, we have enough evidence to reject the hypothesis and say that the results are biased.