

概述

TM1650是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力强。 主要适用于机顶盒、家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、电子称、智能电 表等数码管,可适用于24小时长期连续工作的应用场合。

特性说明

- 两种显示模式(8段×4 位 和 7 段×4 位)
- 支持单个按键7x4bit(28个按键)和组合按键(4个)
- 8级亮度可调
- 段驱动电流大于25mA, 位驱动电流大于150mA
- 高速2线串行接口(CLK, DAT)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 支持3-5.5V电源电压
- 抗干扰能力强
- 封装形式: SOP16、DIP16

=管脚定义:

四、管脚功能定义:

符号	管脚名称	管脚号	说明
CLK	时钟输入	2	2线串行接口的数据时钟输入,内置上 拉电阻
DAT	数据输入/输出	3	2线串行接口的数据输入输出,内置 上拉开漏模式
A/KI1-G/KI7	段输出/键扫输入	8-15	LED段驱动输出,高电平有效;键盘扫描输入,高电平有效,内置下拉。
DIG1-DIG4	位/键扫输出	1、5 6、7	LED位驱动输出,低电平有效;键盘扫描输出,高电平有效
DP/KP	段输出/键扫标志 输出	16	LED段驱动输出,高电平有效;键盘扫描标志输出:7段开屏时,如果检测到有效按键就输出标志的低电平
VCC	逻辑电源	10	接电源正(3-5.5V)
GND	逻辑地	4	接系统地

五、通讯时序格式:

TM1650采用图1中2线串行传输协议通讯:

1、开始信号(START)/结束信号(STOP)

开始信号:保持CLK为"1"电平,DAT从"1"跳"0",认为是开始信号,如(图 1)A段; 结束信号:保持CLK为"1"电平,DAT从"0"跳"1",认为是结束信号,如(图 1)E段;

2、ACK 信号

如果本次通讯正常,芯片在串行通讯的第8个时钟下降沿后,TM1650 主动把 DAT 拉低。直到检测到 CLK 来 了上升沿, DAT 释放为输入状态(对芯片而言),如(图 1)D 段。

3、写"1"和写"0"

写"1": 保持 DAT 为"1"电平, CLK 从"0"跳到"1", 再从"1"跳到"0", 则认为是写入"1" 如(图

写 "0": 保持 DAT 为 "0" 电平, CLK 从 "0" 跳到 "1", 再从 "1" 跳到 "0", 则认为是写入 "0" 如(图 ©Titan Micro Electronics www.titanmec.com

1) C段。

4、 一个字节(8位)数据传输格式

一个字节数据的传输格式如图 2,数据发送时 MSB 在前,LSB 在后,即高位先进。微处理器的数据通过 2 线串行接口和 TM1650 通信,当 CLK 是高电平时,DAT 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时,DAT 上的信号才能改变。数据输入的开始条件是 CLK 为高电平时,DAT 由高变低;结束条件是 CLK 为高时,DAT 由低电平变为高电平。

5、 写显示操作

图 3 写显示时序

ADDRESS: 显示地址(68H、6AH、6CH、6EH);

DATA: 显示数据。 **6、 完整操作时序**

command1: 系统命令 48H; command2: 系统参数设置;

ADDRESS: 显示地址 (68H、6AH、6CH、6EH);

DATA:显示数据。

备注: 1、设置系统参数和写入显存数据是两个独立的过程,它们之间的顺序不影响实际应用;

2、每次输入系统命令(48H)和系统参数设置命令都会改变系统参数,请特别注意待机指令操作。

7、 读按键时序

图 5 读按键时序

command: 读按键命令 4FH;

key data: 读按键数据(一个字节)。

备注:读按键时数据从 TM1650 输出到 MCU,此时与 TM1650 的 DAT 相连的 IO 口必须设置为输入模式且释 ®Titan Micro Electronics www.titanmec.com

TM1650

放总线;按键代码从高位先出 P7P6P5P4_P3P2P1P0(下划线便于分辨二进制 B 和 16 进制 H),初始态为 0010_1110B (2E)。TM1650 支持单个和组合按键。

按键驱动电路: DIG 和 KI 脚之间要串联 2K Ω 电阻,读按键之前必须保证 TM1650 处于扫描状态即此时芯片处于开显示状态。

图 6 按键驱动电路

按键按下时输出值: (按键按下时 P6=1)

\$1,000; 1 1111 — EE	(510051)			
KI	DIG4	DIG3	DIG2	DIG1
A/KI1	47H	46H	45H	44H
B/KI2	4FH	4EH	4DH	4CH
C/KI3	57H	56H	55H	54H
D/KI4	5FH	5EH	5DH	5CH
E/KI5	67H	66H	65H	64H
F/KI6	6FH	6EH	6DH	6CH
G/KI7	77H	76H	75H	74H
KI1+KI2	7FH	7EH	7DH	7CH

在相同的 DIG 中,KI1+KI2 组合是最优先的;除此之外,如果同时按下多个按键,以按键代码最小的优先。如果不是同时按下时,会以最先按下的按键为准。

键盘扫描:

- 1 最多支持 4*7 矩阵的 28 个按键的键盘扫描。在键盘扫描期间, DIG 用于列扫描输出, KI 用于行扫描输入。
- 2 定期在显示驱动扫描过程插入键盘扫描。在键盘扫描期间,DIG1^DIG4 将依次输出高电平,其余引脚输出低电平。此时,KI1^{KI7} 输出被禁止,当没有按键按下时,都被下拉为低电平;当有按键按下,例如连接 DIG2 和 KI2 的键被按下时,则当 DIG2 输出高电平时 KI2 输入高电平。为了避免按键抖动和外界干扰产生误码,芯片内部实行 2 次键盘扫描,只有当 2 次扫描结果相同时,按键才会被确认有效。所以按下按键时间大于 2 个键扫周期。
- 3 按键代码为 8 位,位 7 (P7)始终为 0,位 2 (P2)始终为 1,位 1 和位 0 是列扫描码,位 5[~]位 3 (P5P4P3) 是行扫描码,位 6 (P6) 是状态码(键按下为 1,键释放为 0)。

例如,连接 DIG2 与 KI5 的键被按下,则按键代码是 65H 或者 01101001B; 键被释放后,即位 6(P6)为 0,按键代码通常是 25H 或者 00101001B (也有可能是其它值,但是肯定小于 40H) 如下表,其中,对应 DIG1 的列扫描码为 01B,对应 KI5 行扫描码为 100B。单片机可以在任何时候读取按键代码,如果需要了解按键何时释放可以通过查询方式定期读取按键代码,直到按键代码位 6 (P6)为 0。

TM1650

按键松开时输出值: (按键释放 P6=0)

KI	DIG4	DIG3	DIG2	DIG1
A/KI1	07H	06H	05H	04H
B/KI2	0FH	0EH	0DH	0CH
C/KI3	17H	16H	15H	14H
D/KI4	1FH	1EH	1DH	1CH
E/KI5	27H	26H	25H	24H
F/KI6	2FH	2EH	2DH	2CH
G/KI7	37H	36H	35H	34H
KI1+KI2	3FH	3EH	3DH	3CH

- 备注: 1 按键释放读取到的按键代码和有按键按下对比本质区别是位 6(P6) 是否为 1。
 - 2 按键释放后通常为上述表格,不排除其它情况出现,但是肯定小于 40H。

五、指令集说明

1、数据命令设置

	指令										
名称	MS	В					L	SB	解释	指令值	
	B7	B6	B5	B4	В3	B2	B1	B0			
系统命令	0	1	0	0	1	0	0	0	设置系统参数命令	48H	
读按键命令	0	1	0	0	1	1	1	1	读取按键数据命令	4FH	

备注: 该规格书使用的指令是 16 进制 H,输入数据和读取数据都是从高位开始。

2、系统参数设置

`	水儿学戏以且				` \							
	b 1b	3.50	指					_	a n	\$±1.4\$€	** ^ +	
	名称	MS	В						SB	解释	指令值	
		B 7	B6	B5	B4	B3	B2	B1	B0			
		0	0	0	0			0		8 级亮度(默认)	00H	
		0	0	0	1			0		1 级亮度	10H	
		0	0	1	0			0		2 级亮度	20H	
	亮度设置	0	0	1	1			0		3 级亮度	30H	
	冗及以且	0	1	0	0			0		4 级亮度	40H	
		0	1	0	1			0		5 级亮度	50H	
		0	1	1	0			0		6 级亮度	60H	
		0	1	1	1			0		7 级亮度	70H	
	段模式	0				0		0		8段输出(默认)	00H	
	权铁八	0				1		0		7段输出	08H	
	工作模式	0					0	0		正常工作模式	00H	
	工厂保八	0					1	0		待机工作模式	04H	
	开关模式	0						0	0	关屏显示	00H	
1	万大铁八	0						0	1	开屏显示	01H	

备注: 在发送上述系统参数设置命令前需要先输入系统命令48H, 如48H+11H=1级亮度开屏显示

TM1650

3、显存地址

ET Th	MSB			指·	令 LSB				
名称	B7	В6						显示地址值	
	DP/KP	G/KI7	F/KI6	E/KI5	D/KI4	C/KI3	B/KI2	A/KI1	
DIG1	0	1	1	0	1	0	0	0	68H
DIG2	0	1	1	0	1	0	1	0	6AH
DIG3	0	1	1	0	1	1	0	0	6СН
DIG4	0	1	1	0	1	1	1	0	6ЕН

备注:按照图7共阴驱动电路驱动4位数码管,DIG1-DIG4分别显示1234,MCU所需要发送的数据为 (68+06)+(6A+5B)+(6C+4F)+(6E+66): 如果要显示 1.2.3.4. 则先需要将段模式设置为 8 段输出, MCU所需要发送 的数据为(68+86)+(6A+DB)+(6C+CF)+(6E+E6)。显示小数的时必须为8段模式下。

	a								显示	数据							
f	g b	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
li		3FH	06H	5BH	4FH	66H	6DH	7DH	07H	7FH	6FH	77H	7CH	39H 🔻	5EH	79H	71H
е	dp	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	A.	В.	C.	D.	E.	F.
	d	BFH	86H	DBH	CFH	Е6Н	EDH	FDH	87H	FFH	DFH	F7H	FCH	В9Н	DEH	F9H	F1H

4、段模式与按键指示

8 段模式: DP/KP和KI1-KI7 功能一样,均作为段输出,可以驱动LED或者数码管;

7 段模式: KI1-KI7 作为段输出,可以驱动LED或者数码管, DP/KP脚作为按键扫描标志输出; 7 段模式 且开屏时(48H+09H),在没有按键按下时DP/KP脚输出高电平,在有按键按下时,DP/KP脚会输出低电平, 当发送读按键命令 4FH (或关屏) DP/KP脚输出高电平

5、待机与唤醒

传机:只要系统参数设置命令中位 2 (B2) 的值为 1, 芯片会进入待机模式, 待机模式下芯片停止工作, 但芯片内部的显示数据不会改变;

唤醒: 芯片进入待机模式后, 可以通过以下方式唤醒:

- 发送一个非待机模式系统参数设置指令,如 48H+01H(8 级亮度+正常模式+8 段模式+开显示),其 本质为让系统参数设置指令位 2(B2)不为 0;
- 可以通过KI1-KI4与DIG1-DIG4组成的按键唤醒芯片,按下按键的时间必须大于2个按键扫描周期 (80ms)。注意: 关屏时无法观察到按键是否能唤醒,所以使用按键唤醒时,请使用待机指令如 48H+45H(4级亮度+待机模式+开显示)。

6、开屏与关屏

开屏: 当发送开屏命令且为正常工作模式时, DIG1-DIG4 开始进行扫描;

关屏: 当发送关屏命令时芯片停止工作, 开屏后需要重新对芯片进行初始化操作;

六、完整操作流程图:

备注:设置系统参数客户可根据实际需求进行相应的设置。

©Titan Micro Electronics

- 7 -

www.titanmec.com

七、应用电路:

TM1650驱动共阴数码屏硬件电路图6:

图7 共阴驱动电路

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1650芯片放置,加强滤波效果;尽量减小电源与 地网络环路面积,为电源及地网络提供不小于0.5mm的走线。

- 2、DAT、CLK口必须接下拉电容,建议100pF;必须接上拉电阻,建议为 $10K\Omega$ 。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1650供电应选用5V。
- 4、芯片工作在如电磁炉等较强干扰环境下时,建议适当降低TM1650与MCU通信频率,可在通信口上串 100Ω 电阻。

- 9 -

八、 电气参数:

极限参数 (Ta = 25℃)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+6.5	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED 段驱动输出电流	I01	$0 \sim 30$	mA
LED 位驱动输出电流	102	$0 \sim 150$	mA
工作温度	Topt	−40 ~ +85	$^{\circ}$ C
储存温度	Tstg	−65 ~+125	$^{\circ}$ C

电气特性 (测试条件: Ta=25℃, VCC=5V)

参数	符号	最小	典型	最大	単位
电源电压	VCC	3	5	5. 5	V
电源电流	Ic	0.2	80	150	mA
静态电流(CLK, DAT, KP 为高电平)	$\mathrm{Ic}_{\scriptscriptstyle \mathrm{S}}$	-	0.3	0.6	mA
待机电流(CLK, DAT, KP 为高电平)	Ist	~	0.05	0.1	mA
CLK 和 DAT 引脚低电平输入电压	VIL	-0.5	-	0.8	V
CLK 和 DAT 引脚高电平输入电压	VIH	2. 2	-	VCC+0.5	V
KI 引脚低电平输入电压	VIL(KI)	-0.5	-	0. 5	V
KI 引脚高电平输入电压	VIH(KI)	1.8	7-	VCC+0. 5	V
DIG 引脚低电平输出电压 (-200mA)	VOL (DIG)	-	_	1.2	V
DIG 引脚低电平输出电压 (-100mA)	VOL (DIG)		_	0.8	V
DIG 引脚高电平输出电压 (5mA)	VOH(DIG)	4. 5	_	_	V
KI 引脚低电平输出电压(-20mA)	VOL(KI)	_	_	0. 5	V
KI 引脚高电平输出电压(20mA)	VOH(KI)	4. 5	_	_	V
其余引脚低电平输出电压(-4mA)	VOL	_	_	0. 5	V
其余引脚高电平输出电压(4mA)	VOH	4. 5	_	_	
KI 引脚输入下拉电流	IDN1	-30	-50	-90	uA
CLK 引脚输入上拉电流	IUP1	10	200	300	uA
DAT 引脚输入上拉电流	IUP2	150	300	400	uA
KP 引脚输出上拉电流	IUP3	500	2000	5000	uA
上电复位的默认电压门限	VR	2.3	2.6	2.9	V

内部时序参数(测试条件: Ta=25℃, VCC=5V)

参数	符号	最小	典型	最大	单位
电源上电检测产生的复位时间	TPR	10	25	60	ms
显示扫描周期	TP	4	8	20	ms
键盘扫描间隔,按键响应时间	TKS	20	40	80	ms

注: 本表时序参数是内置时钟周期的倍数,内置时钟频率随电源电压的降低而降低。

时序特性 (Ta = 25℃, VCC = 5V)

参数	符号	最小	典型	最大	单位
DAT 下降沿启动信号的建立时间	TSSTA	100	-		ns
DAT 下降沿启动信号的保持时间	THSTA	100	-)	ns
DAT 上升沿停止信号的建立时间	TSST0	100	-	-	ns
DAT 上升沿停止信号的保持时间	THST0	100			ns
CLK 时钟信号的低电平宽度	TCLOW	100	-),	ns
CLK 时钟信号的高电平宽度	TCHIG	100		-	ns
DAT 输入数据对 CLK 上升沿的建立时间	TSDA	30		_	ns
DAT 输入数据对 CLK 上升沿的保持时间	THDA	10	-	_	ns
DAT 输出数据有效对 CLK 下降沿的延时	TAA	2	-	30	ns
DAT 输出数据无效对 CLK 下降沿的延时	TDH	2	<u> </u>	40	ns
平均数据传输速率	Rate	0	_	4M	bps

注: 1 本表计量单位以纳秒即 10⁻⁹, ,未注明最大值则理论值可以无穷大。

2 针对不同上位机平台和硬件接口配置,平均数据传输速率会出现较大的差异,建议值为 100KHz 以下。

时序波形图:

- 11 -

九、IC 封装示意图: SOP16 封装尺寸

Cl	Dimensions Ir	n Millimeters	Dimensions	s In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0. 007	0. 010
D	9. 800	10. 200	0. 386	0. 402
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	1. 270 (BSC)		O (BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

DIP16 封装尺寸

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0. 170
A1	0. 510		0. 020	
A2	3. 200	3. 600	0. 126	0. 142
В	0. 380	0. 570	0. 015	0. 022
B1	1. 524 (BSC)		0. 060 (BSC)	
С	0. 204	0. 360	0. 008	0. 014
D	18. 800	19. 200	0. 740	0. 756
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
e	2. 540 (BSC)		0. 100 (BSC)	
L	3. 000	3. 600	0. 118	0. 142
E2	8. 400	9. 000	0. 331	0. 354

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)