Package 'DEBtoolAnimal'

June 1, 2016

Type Package

Title DEB functions for an animal

Version 0.1

Date 2015-09-30

Author Goncalo M. Marques <goncalo.marques@tecnico.ulisboa.pt>

 $\textbf{Maintainer} \ \ \textbf{Goncalo} \ \ \textbf{M. Marques} < \textbf{goncalo}. \textbf{marques} \\ @tecnico.ulisboa.pt >$

Description

DEB based functions for the std (standard) and abj (with acceleration) models for animals.

License GPL
LazyData TRUE
NeedsCompilation no

R topics documented:

addchem Sets chemical parameters and text for units and labels

Description

Sets chemical parameters and text for units and labels

Usage

addchem(par, units, label, free, phylum, class)

Arguments

par data frame with parameter values units data frame with parameter units label data frame with parameter labels

free data frame with information on which parameter to free or fix

phylum string with species phylum class string with species class

2 addpseudodata

Details

Calls get_d_V to set specific density of structure. For a specific density of wet mass of 1 g/cm 3 , a specific density of d_E = d_V = 0.1 g/cm 3 means a dry-over-wet weight ratio of 0.1

Value

list with updated par, units, label and free

See Also

```
Other add-my-pet auxiliary functions: addpseudodata; fieldnm_wtxt; fieldnmnst; get_d_V; parscomp; predict_pseudodata; print_filterflag; rmpseudodata; setweights
```

Examples

```
pars\_init\_my\_pet(metaData)
```

addpseudodata

Adds pseudodata information into inputed data structures

Description

Adds the pseudodata information and weights for purposes of the regression

Usage

```
addpseudodata(data = list(), units = list(), label = list(), weights = list())
```

Arguments

data structure with data units structure with data units label structure with data labels weights structure with weights

Value

structures with data, units, label and weights

See Also

```
Other add-my-pet auxiliary functions: addchem; fieldnm_wtxt; fieldnmnst; get_d_V; parscomp; predict_pseudodata; print_filterflag; rmpseudodata; setweights
```

```
list[data, units, label, weight] <- addpseudodata();</pre>
```

beta0 3

beta0

Particular incomplete beta function

Description

particular incomplete beta function:

Usage

beta0(x0, x1)

Arguments

x0 scalar with lower boundary for integration

x1 scalar with upper boundary for integration

Details

Computes

$$B_{x_1}\left(\frac{4}{3},0\right) - B_{x_0}\left(\frac{4}{3},0\right) = \int_{x_0}^{x_1} t^{4/3-1} (1-t)^{-1} dt$$

To be used in the computation of the age at birth (or related quantities) for an egg.

Value

scalar with particular incomplete beta function

See Also

Other miscellaneous functions: C2K; K2C

Examples

beta0(0.1, 0.2)

C2K

Conversion of Celsius to Kelvin

Description

Converts temperature in degrees Celsius to Kelvin

Usage

C2K(C)

Arguments

С

numeric temperature in degrees Celsius

dget_lbarb2

Value

temperature in Kelvin

See Also

Other miscellaneous functions: K2C; beta0

Examples

C2K(20)

 $dget_lbarb2$

Computes derivative d delta/dx

Description

Obtains the derivative d delta/dx from lbarb, xb and k.

Usage

```
dget_lbarb2(x, delta, pars)
```

Arguments

```
x scalar x = g/(g + e)
```

delta scalar delta = $x e_H/(1 - kap)g$

pars data.frame with lbarb, xb, xb3 (xb $^1/3$), k

Value

scalar with derivative value d delta/ dx

See Also

```
Other scaled get functions: fnget_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

```
dget\_lbarb2(10\,\hat{}\,(-6),\,0,\,c(lbarb=0.003,\,xb=10/11,\,xb3=(10/11)\,\hat{}\,(1/3),\,k=1))
```

dget_1_ISO 5

dget 1 ISO

Computes derivative d l/d vH

Description

Obtains the derivative d l/d vH from g, k, lT, f, sM.

Usage

```
dget_l_SO(vH, l, pars)
```

Arguments

vH scaled maturity volume

l scaled length

pars data.frame with g, k, lT, f, sM

Value

scalar with derivative value d l/ d vH

estim options

Sets options for estim_pars

Description

Sets options for estimation one by one

Usage

```
estim options(key = "inexistent", val = "")
```

Arguments

key string with option to set val value of the option

Details

no input: print values to screen

one input:

- * "default": sets options at default values * any other key (see below): print value to screen two inputs:
- * "filter": 1 use filter (default); 0 do not; * "pars_init_method": 0 get initial estimates from automatized computation (default) 1 read initial estimates from .mat file (for continuation) 2 read initial estimates from pars_init file * "pseudodata_pets": 0 put pseudodata together with data (default) 1 put it apart (only for multispecies estimation) * "results_output": 0 prints results to screen (default) 1 prints results to screen, saves to .mat file 2 saves data to .mat file and graphs to

6 fieldnmst

```
.png files (prints results to screen using a customized results file when it exists) * "method": "nm" - use Nelder-Mead method; "no" - do not estimate;
```

for other options see corresponding options file of the method (e.g. nmregr_options)

See Also

Other regression functions: nmregr_options

Examples

```
estim\_options("default")
```

estim pars

Estimates parameters

Description

Runs the entire estimation procedures: gets the parameters, gets the data, initiates the estimation procedure and sends the results for handling

Usage

```
estim pars()
```

See Also

Other add-my-pet functions: mydata_pets; petregr_f; predict_pets; printpar; printprd; results_pets

Examples

```
estim\_pars()
```

 ${\it fieldnmnst}$

Creates a list of field names of a structure

Description

Creates a list of field names of a structure

Usage

```
fieldnmnst(st)
```

Arguments

 st

data frame with fields

Value

list of list of strings with fields including the field name in str

fieldnm_wtxt 7

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; get_d_V; parscomp; predict pseudodata; print filterflag; rmpseudodata; setweights

Examples

```
nst <- fieldnmnst(st)
```

fieldnm wtxt

Searches for fields with a given name in a multilevel structure

Description

Creates a list of field names of a data frame with str

Usage

```
fieldnm\_wtxt(data = list(),\,str = "")
```

Arguments

 $egin{array}{lll} {
m data} & {
m data} & {
m frame} & {
m with} & {
m fields} \\ {
m str} & {
m string} & {
m with} & {
m field} & {
m name} \\ \end{array}$

Value

list of strings with fields including the field name in str

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnmnst; get $_d_V$; parscomp; predict $_$ pseudodata; print $_$ filterflag; rmpseudodata; setweights

```
nmpsd <- fieldnm wtxt(data, "psd")
```

8 fnget_lbarb2

$filter_std$	Filters for allowed parameters of standard DEB model without acceleration
_	eration

Description

Checks if parameter values are in the allowable part of the parameter space of standard DEB model without acceleration. Meant to be run in the estimation procedure

Usage

```
filter std(par)
```

Arguments

par

data frame with parameter values

Details

The flag is an indicator of reason for not passing the filter and it means 0: parameters pass the filter 1: some parameter is negative 2: some kappa is larger than 1 3: growth efficiency is larger than 1 4: maturity levels do not increase during life cycle 5: puberty cannot be reached

Value

list with filter and flag

See Also

```
Other filter functions: reach_birth; warning_std
```

Examples

```
filter std(par)
```

 $fnget_lbarb2$

Computes f using the ode solver for delta(x), for finding lbarb

Description

Computes f using the ode solver for delta(x), for finding lbarb.

Usage

```
fnget lbarb2(lbarb, pars)
```

Arguments

lbarb scalar with scaled length at birth (lbarb = lb/g) pars data.frame with lbarb, xb, xb3 (xb^1/3), k

get_d_V

Value

scalar with function f which when zero indicates lbarb

See Also

```
Other scaled get functions: dget_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

Examples

```
fnget lbarb2(0.03, c(xb = 10/11, xb3 = (10/11)^(1/3), vbarHb = 0.001, k = 1)
```

 $\operatorname{get} _d _V$

Sets chemical parameters and text for units and labels

Description

Sets chemical parameters and text for units and labels

Usage

```
get d V(phylum, class)
```

Arguments

phylum string with species phylum class string with species class

Details

Calls get_d_V to set specific density of structure. For a specific density of wet mass of 1 g/cm³, a specific density of d_E = $d_V = 0.1$ g/cm³ means a dry-over-wet weight ratio of 0.1

Value

list with d_V and info

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; parscomp; predict_pseudodata; print_filterflag; rmpseudodata; setweights

```
get_d_V("Chordata", "Mammalia")
```

10 get_lb

get_lb

Computes scaled length at birth

Description

Obtains scaled length at birth, given the scaled reserve density at birth.

Usage

$$get_lb(pars,\,eb=1,\,lb0=as.numeric(pars[3]\,\hat{\ }(1/3)))$$

Arguments

pars 3-vector with parameters: g, k, v_H^b eb optional scalar with scaled reserve density at birth (default eb = 1) lb0 optional scalar with initial estimate for scaled length at birth (default lb0: lb for k = 1)

Details

The theory behind get_lb, get_tb and get_ue0 is discussed in http://www.bio.vu.nl/thb/research/bib/Kooy2009b.html. Solves $y(x_b) = y_b$ for l_b with explicit solution for y(x)

$$y(x) = \frac{xe_H}{1 - kap} = xg\frac{u_H}{l^3}$$

and $y_b = x_b g u_H^b / ((1 - kap)l_b^3)$

$$\frac{d}{dx}y = r(x) - ys(x)$$

with solution $y(x) = v(x) \int_0^x r(x')/v(x')dx'$ and $v(x) = exp(-\int_0^x s(x')dx')$. A Newton Raphson scheme is used with Euler integration, starting from an optional initial value. Shooting method: get_lb2. In case of no convergence, get_lb2 is run automatically as backup. Consider the application of get_lb_foetus for an alternative initial value.

Value

scalar with scaled length at birth (lb) and indicator equals 1 if successful convergence, 0 otherwise (info)

See Also

Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate

get
$$lb(c(g = 10, k = 1, vHb = 0.5), 1)$$

get_lbarb 11

get lbarb

Computes scaled length at birth lbarb

Description

Obtains scaled length at birth, given the scaled reserve density at birth.

Usage

```
get lbarb(pars, eb = 1, lbarb0 = NA)
```

Arguments

pars 3-vector with parameters: g, k, vbar_H^b

eb optional scalar with scaled reserve density at birth (default eb = 1)

lbarb0 optional scalar with initial estimate for scaled length at birth (default lbarb0:

lbarb for k = 1)

Value

scalar with scaled length at birth (lbarb) and indicator equals 1 if successful, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lb; get_lp; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

Examples

```
get lbarb(c(g = 10, k = 1, vbarHb = 0.0005), 1)
```

get_lbarb2

Computes initial scaled reserve

Description

Obtains scaled length at birth, given the scaled reserve density at birth. Like get_lbarb, but uses a shooting method in 1 variable.

Usage

```
get lbarb2(pars, eb = NA)
```

Arguments

pars 3-vector with parameters: g, k, vbar_H^b

eb optional scalar with scaled reserve density at birth (default eb = 1)

12 get_lp

Value

scalar with scaled length at birth (lbarb) and indicator equals 1 if successful, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

Examples

```
get_barb2(c(g = 10, k = 1, vbarHb = 0.01), 1)
```

 get_lp

Computes scaled length at puberty

Description

Obtains scaled length at pubertyat constant food density.

Usage

```
get_lp(pars, f = 1, lb0 = NA)
```

Arguments

pars	5-vector with parameters: g, k, l_T, v_H^b, v_H^p
lb0	optional scalar with initial estimate for scaled length at birth (default lb0: lb for $k=1)$
eb	optional scalar with scaled reserve density at birth (default $eb = 1$)

Details

If scaled length at birth (second input) is not specified, it is computed (using automatic initial estimate). If it is specified, however, is it just copied to the (second) output. Food density is assumed to be constant.

Value

scaled length at puberty (lp), scaler length at birth (lb) and indicator equals 1 if successful convergence, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_tb; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

```
get\_lp(c(g=10,\,k=1,\,lT=0,\,vHb=0.5,\,vHp=10),\,1)
```

 get_tb 13

cot	+ 1	
ger.	1.1	
500	0 0	

Gets scaled age at birth

Description

Obtains scaled age at birth, given the scaled reserve density at birth.

Usage

```
get_tb(pars, eb = 1, lb = NA)
```

Arguments

pars	3-vector with parameters: g, k, v_H^b
eb	optional scalar with scaled reserve density at birth (default eb = 1)
lb0	optional scalar with initial estimate for scaled length at birth (default lb0: lb for $k = 1$)

Details

Multiply the result with the somatic maintenance rate coefficient to arrive at age at puberty.

Value

list with scaled age at birth tau_b = $a_b k_M (tb)$, scaled length at birth (lb) and indicator equals 1 if successful convergence, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tm_s; get_tp; initial_scaled_reserve; reprod_rate
```

Examples

```
get_tb(c(g = 10, k = 1, vHb = 0.5), 1)
```

 get_tm_s

Obtains scaled mean age at death for short growth periods

Description

Obtains scaled mean age at death assuming a short growth period relative to the life span

Usage

get tm
$$s(pars, f = 1, lb = NA, lp = NA)$$

 $get_{-}tp$

Arguments

pars	4 or 7-vector with parameters: [g lT ha sG] or [g k lT vHb vHp ha SG]
f	optional scalar with scaled reserve density at birth (default $f = 1$)
lb	optional scalar with scaled length at birth (default: lb is obtained from get_lb)
lp	optional scalar with scaled length at puberty

Details

Divide the result by the somatic maintenance rate coefficient to arrive at the mean age at death. The variant get_tm_foetus does the same in case of foetal development. If the input parameter vector has only 4 elements (for [g, IT, ha/ kM2, sG]), it skips the calulation of the survival probability at birth and puberty.

Value

list with scalar with scaled mean life span (tm), scalar with survival probability at birth (if length p = 7) (Sb), scalar with survival prabability at puberty (if length p = 7) (Sp) and indicator equals 1 if successful convergence, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tp; initial_scaled_reserve; reprod_rate
```

```
get_tp
```

Gets scaled age at puberty

Description

Obtains scaled age at puberty.

Usage

```
get tp(pars, f = 1, lb0 = as.numeric(pars[4]^(1/3)))
```

Arguments

```
pars 5-vector with parameters: g, k, l_T, v_H^b, v_H^p f optional scalar with functional response (default f = 1) lb0 optional scalar with scaled length at birth (default lb0: lb for k = 1)
```

Details

Food density is assumed to be constant. Multiply the result with the somatic maintenance rate coefficient to arrive at age at puberty.

Value

list with scaled age at puberty tau_p = $a_p k_M (tp)$, scaled age at birth tau_b = $a_b k_M (tb)$, scaled length at puberty (lp), scaled length at birth (lb) and indicator equals 1 if successful convergence, 0 otherwise (info)

get_ubarE0 15

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; initial_scaled_reserve; reprod_rate
```

Examples

```
get\_tp(c(g = 10, k = 1, IT = 0, vHb = 0.5, vHp = 10), 1)
```

get ubarE0

Computes initial scaled reserve density at birth

Description

Obtains the initial scaled reserve given the scaled reserve density at birth. Function get_ue0 does so for eggs, get_ue0_foetus for foetuses. Specification of length at birth as third input by-passes its computation, so if you want to specify an initial value for this quantity, you should use get_lb directly.

Usage

```
\operatorname{get\_ubarE0}(\operatorname{g}=\operatorname{NA},\,\operatorname{k}=\operatorname{NA},\,\operatorname{vbarHb}=\operatorname{NA},\,\operatorname{eb}=1,\,\operatorname{lbarb}=\operatorname{NA})
```

Arguments

g energy investment ratio k maintenance ratio

vbarHb rescaled maturity volume at birth

eb optional scalar with scaled reserbe density at birth

lbarb optional scalar with scaled length at birth

Value

scalar with particular incomple beta function

See Also

Other get functions: get ue0

```
\begin{array}{l} get\_ubarE0(g=10,\,lbarb=0.01)\\ get\_ubarE0(g=10,\,k=0.7,\,vbarHb=5e\text{-}4) \end{array}
```

16 initial_scaled_reserve

get ue0

Computes initial scaled reserve

Description

Obtains the initial scaled reserve given the scaled reserve density at birth. Function get_ue0 does so for eggs, get_ue0_foetus for foetuses. Specification of length at birth as third input by-passes its computation, so if you want to specify an initial value for this quantity, you should use get_lb directly.

Usage

```
get ue0(pars, eb = 1, lb0 = NA)
```

Arguments

pars 1 or 3 -vector with parameters g, k_J/ k_M, v_H^b, see get_lb eb optional scalar with scaled reserbe density at birth (default: eb = 1)

lb0 optional scalar with scaled length at birth (default: lb is optained from get_lb)

Value

uE0 scalar with scaled reserve at t=0: $U_E^0 g^2 k_M^3 v^2$ with $U_E^0 = M_E^0 {J_EAm}$, lb scalar with scaled length at birth and info indicator equals 1 if successful, 0 otherwise

See Also

Other get functions: get ubarE0

Examples

```
get ue0(pars = c(0.42, 1, 0.066), eb = 1, lb0 = 0.4042)
```

 $initial_scaled_reserve$

Gets initial scaled reserve

Description

Gets initial scaled reserve.

Usage

```
initial_scaled_reserve(f, pars, Lb0 = NA)
```

Arguments

f n-vector with scaled functional responses
pars 5-vector with parameters: VHb, g, kJ, kM, v
Lb0 optional n-vector with lengths at birth

K2C 17

Value

n-vector with initial scaled reserve: M_E^0/ J_EAm (U0), n-vector with length at birth (Lb) and n-vector with 1's if successful, 0's otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; get_tp; reprod_rate
```

Examples

```
initial scaled reserve(f = c(1, 0.9), pars = c(VHb = .8, g = .42, kJ = 1.7, kM = 1.7, v = 3.24))
```

K2C

Conversion of Kelvin to Celsius

Description

Converts temperature in Kelvin to degrees Celsius

Usage

K2C(K)

Arguments

 \mathbf{K}

numeric temperature in degrees Kelvin

Value

temperature in Kelvin

See Also

Other miscellaneous functions: C2K; beta0

Examples

K2C(293.15)

18 mydata_my_pet

mre	st

Computes mean relative error

Description

Computes relative errors and mean relative error for using data and predictions

Usage

```
mre st(func, par, data, auxData, weights)
```

Arguments

func string with predict file name
par data frame with parameter values
data data frame with data values

auxData data frame with auxiliary data values weights data frame with values of weights

Examples

```
results pets(par, metaPar, txtPar, data, auxData, metaData, txtData, weights)
```

mydata my pet

Sets referenced data

Description

Sets data, pseudodata, metadata, auxdata, explanatory text, weights coefficients. Meant to be a template in add-my-pet

Usage

```
mydata_my_pet()
```

Value

list with data, auxData, metaData, txtData and weights

See Also

Other add-my-pet template functions: pars init my pet; predict my pet

```
mydata\_my\_pet()
```

mydata_pets 19

mydata pets

Concatenates mydata files for several species

Description

Concatenates mydata files for several species

Usage

```
mydata_pets()
```

Value

structure with data, auxData, metaData, txtData and weights for several pets

See Also

Other add-my-pet functions: estim pars; petregr f; predict pets; printpar; printprd; results pets

Examples

```
mydata pets()
```

 $nmregr_options$

Sets options for function nmregr

Description

Sets options for estimation one by one

Usage

```
nmregr options(key = "inexistent", val = "")
```

Arguments

key string with option to set val value of the option

Details

no input: print values to screen

one input:

- * "default": sets options at default values * any other key (see below): print value to screen two inputs:
- * "report": 1 to report steps to screen; 0 not to; * "max_step_number": maximum number of steps * "max_fun_evals": maximum number of function evaluations * "tol_simplex": tolerance for how close the simplex points must be together to call them the same * "tol_tun": tolerance for how close the loss-function values must be together to call them the same * "simplex_size": fraction added (subtracted if negative) to the free parameters when building the simplex

20 parscomp

Value

1 if input is valid key, 0 if input is unknown key

See Also

Other regression functions: estim options

Examples

```
nmregr options("default")
```

parscomp

Computes compound parameters from primary parameters

Description

Computes compound parameters from primary parameters that are frequently used

Usage

```
parscomp(par)
```

Arguments

par

data frame with parameter values

Value

list with compound parameters

See Also

```
Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; get_d_V; predict_pseudodata; print_filterflag; rmpseudodata; setweights
```

```
parscomp(par)
```

pars_init_my_pet 21

oet.

Sets (initial values for) parameters

Description

Sets (initial values for) parameters\$ Meant to be a template in add-my-pet

Usage

```
pars_init_my_pet(metaData)
```

Arguments

metaData

data frame with info about this entry (needed for names of phylum and class to

get d_V)

Value

list with par (with values of parameters), metaPar (with information on metaparameters) and txtPar (with information on parameters)

See Also

```
Other add-my-pet template functions: mydata my pet; predict my pet
```

Examples

```
pars_init_my_pet(metaData)
```

petregr f

Calculates least squares estimates using Nelder Mead's simplex method using a filter

Description

Calculates least squares estimates using Nelder Mead's simplex method using a filter

Usage

```
petregr f(func, par, data, auxData, weights, filternm)
```

Arguments

func character string with name of user-defined function

par list with parameters

data list with data

auxData list with auxiliary data weights list with weights

filternm character string with name of user-defined filter function

22 predict_my_pet

Value

list with list with parameters resulting from estimation procedure (par) and indicator 1 if convergence has been successful or 0 otherwise (info)

See Also

```
Other add-my-pet functions: estim\_pars; mydata\_pets; predict\_pets; printpar; pri
```

predict_my_pet

Obtains predictions, using parameters and data

Description

Obtains predictions, using parameters and data

Usage

```
predict_my_pet(par, data, auxData = list())
```

Arguments

par data frame with parameter values

data data frame with data values

auxData data frame with auxiliary data values

Value

list with prdData (data frame with values of predictions) and info (indicator for customized filters)

See Also

```
Other add-my-pet template functions: mydata my pet; pars init my pet
```

```
predict_my_pet(par, data, auxData)
```

predict_pets 23

predict_pets

Concatenates predict files for several species

Description

Concatenates predict files for several species

Usage

```
predict_pets(parGrp, data, auxData)
```

Arguments

parGrp data frame with parameter values of the group

data data frame with data values

auxData data frame with auxiliary data values

Value

structure with prdData and prdInfo for several pets

See Also

Other add-my-pet functions: estim _pars; mydata _pets; petregr _f; printpar; printprd; results _pets

predict pseudodata

Predicts pseudodata values

Description

Adds pseudodata predictions into predictions structure

Usage

```
predict_pseudodata(par, data, prdData)
```

Arguments

 $\begin{array}{ll} par & data \; frame \; with \; parameter \; values \\ data & data \; frame \; with \; data \; values \\ prdData & data \; frame \; with \; prediction \; values \end{array}$

Value

structure with pseudodata predictions

See Also

```
Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; get d V; parscomp; print filterflag; rmpseudodata; setweights
```

24 printprd

r	a_1	n	$_{ m nt}$	1	r	n
	$a_{\mathbf{l}}$	ν	110	1	1	ν

Prints parameters of a species to screen

Description

Prints parameters of a species to screen

Usage

```
printpar(par, txtPar)
```

Arguments

 $\begin{array}{ll} par & \quad \text{list with parameter values} \\ txtPar & \quad \text{list with text info on parameters} \end{array}$

See Also

Other add-my-pet functions: estim_pars; mydata_pets; petregr_f; predict_pets; printprd; results_pets

printprd

Prints data of a species to screen

Description

Prints data of a species to screen

Usage

```
printprd(data, txtData, prdData, RE)
```

Arguments

data list with data values

txtData list with text info on data

prdData list with prediction values

RE list with relative errors

See Also

```
Other add-my-pet functions: estim_pars; mydata_pets; petregr_f; predict_pets; printpar; results_pets
```

print_filterflag 25

print	filterflag
DITIL	micinag

Prints an explanation of the filter flag onto the screen

Description

Prints an explanation to the screen according to the flag produced by a filter. Meant to be run in the estimation procedure for the seed parameter set

Usage

```
print_filterflag(flag)
```

Arguments

flag

integer with code from filter

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; get d V; parscomp; predict pseudodata; rmpseudodata; setweights

Examples

```
print_filterflag(3)
```

 $reach_birth$

Checks if parameters allow for reaching birth in the standard DEB model

Description

Checks if parameters allow for reaching birth in the standard DEB model

Usage

```
reach\_birth(g, k, vHb, f = 1)
```

Arguments

g energy investment ratio

k ratio of maturity and somatic maintenance rate coeff

vHb scaled maturity volume at birth f functional response (default 1)

Value

info, indicator equals 1 if reaches birth, 0 otherwise

26 reprod_rate

See Also

Other filter functions: filter std; warning std

Examples

```
reach\_birth(g=10,\,k=1,\,vHb=0.5)
```

reprod rate

Gets reproduction rate

Description

Calculates the reproduction rate in number of eggs per time for an individual of length L and scaled reserve density f.

Usage

```
reprod rate(L, f = 1, pars, Lf = NA)
```

Arguments

L n-vector with length

f scalar with functional response

pars 9-vector with parameters: kap, kapR, g, kJ, kM, LT, v, UHb, UHp

Lf optional scalar with length at birth (initial value only) or optional 2-vector with

length, L, and scaled functional response f0 for a juvenile that is now exposed

to f, but previously at another f

Value

list with n-vector with reproduction rates (R), scalar with scaled initial reserve (UE0), scalar with (volumetric) length at birth (Lb), scalar with (volumetric) length at puberty (Lp) and indicator with 1 for success, 0 otherwise (info)

See Also

```
Other scaled get functions: dget_lbarb2; fnget_lbarb2; get_lbarb2; get_lbarb2; get_lbarb; get_lb; get_lp; get_tb; get_tm_s; get_tp; initial_scaled_reserve
```

results_pets 27

${\rm results_pets}$	Prints results of estimation	

Description

Prints the results of the esimation procedure in the screen, .mat file and makes figures of graphs

Usage

```
results pets(par, metaPar, txtPar, data, auxData, metaData, txtData, weights)
```

Arguments

par	data frame with parameter values
metaPar	data frame with metainformation on models
txtPar	data frame with information on parameters
data	data frame with data values
$\operatorname{auxData}$	data frame with auxiliary data values
metaData	data frame with metainformation on the entry

txtData data frame with infromation on data weights data frame with values of weights

See Also

```
Other add-my-pet functions: estim_pars; mydata_pets; petregr_f; predict_pets; printpar; printprd
```

Examples

```
results\_pets(par,\ metaPar,\ txtPar,\ data,\ auxData,\ metaData,\ txtData,\ weights)
```

rmpseudodata Removes pseudodata information from inputed data structures

Description

Removes pseudodata information from inputed data structures

Usage

```
rmpseudodata(data = list())
```

Arguments

data structure with "psd" field to be removed

Value

structure with "psd" field removed

28 setweights

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; get_d_V; parscomp; predict_pseudodata; print_filterflag; setweights

Examples

```
data <- rmpseudodata(data)
```

setweights

Sets automatically the weights for the data (to be used in a regression)

Description

computes weights for given data and adds it to the weight structure

Usage

```
setweights(data, weights = list())
```

Arguments

data structure with data
weights structure with weights

Details

computes weights for given data and adds it to the weight structure for the zero-variate data y, the weight will be

$$min(100, 1/max(10^{-}6, y)^{2})$$

for the uni-variate data y, the weight will be

$$1/N\bar{y}^2$$

Value

structure with weights

See Also

Other add-my-pet auxiliary functions: addchem; addpseudodata; fieldnm_wtxt; fieldnmnst; get d V; parscomp; predict pseudodata; print filterflag; rmpseudodata

```
setweights(data)
```

tempcorr 29

tempcorr

Temperature correction

Description

Calculates the factor with which physiological rates should be multiplied to go from a reference temperature to a given temperature

Usage

$$tempcorr(Temp, T 1, T A, T L = NA, T AL = NA, T H = NA, T AH = NA)$$

Arguments

Temp	vector with temperatures (in Kelvin)
T_1	scalar with reference temperature (in Kelvin)
T_A	scalar with Arrhenius temperature (in Kelvin)
T_L	optional scalar with lower boundary of temperature range (in Kelvin)
T_AL	optional scalar with Arrhenius temperature for lower boundary of temperature range (in Kelvin)
T_H	optional scalar with upper boundary of temperature range (in Kelvin)
T_AH	optional scalar with Arrhenius temperature for upper boundary of temperature range (in Kelvin)

Details

Temperature impacts metabolic rates. This impact, in its most simplest way (1 parameter), is modeled by multiplying all the time-dependent parameters by a correction factor:

$$\exp\left(\frac{T_A}{T_1} - \frac{T_A}{T}\right)$$

For a more detailed modeling one can multiply with an extra fraction $s(T_1)/s(T)$ with (3 parameters):

$$s(T) = 1 + \exp\left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_L}\right)$$

or (5 parameters)

$$s(T) = 1 + \exp\left(\frac{T_{AL}}{T} - \frac{T_{AL}}{T_L}\right) + \exp\left(\frac{T_{AH}}{T_H} - \frac{T_{AH}}{T}\right)$$

Value

vector with temperature correction factors that affect all rates

Examples

 $tempcorr(c(330,\,331,\,332),\,320,\,T_A=12000,\,T_L=277,\,T_H=331,\,T_AL=20000,\,T_AH=190000)$

30 warning_std

 $warning_std$

Warns of unreasonable parameters for the standard DEB model without acceleration

Description

Checks if parameter values are in the reasonable part of the parameter space of standard DEB model without acceleration, produces warnings. Meant to be run after the estimation procedure

Usage

```
warning\_\operatorname{std}(\operatorname{par})
```

Arguments

par

data frame with parameter values

See Also

```
Other filter functions: filter_std; reach_birth
```

```
warning\_std(par)
```