Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты Ткачук С. А. и Чуб Д. О.	Работа выполнена
Преподаватель <u>Громова Н. Р.</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.00

Изучение электрических сигналов с помощью лабораторного осциллографа

1. Цель работы

Ознакомление с устройством осциллографа, изучение с его помощью процессов в электрических цепях.

2. Задачи, решаемые при выполнении работы

- 1. Исследование сигналов различной формы
- 2. Исследование предельных характеристик прибора
- 3. Изучение сложения взаимно перпендикулярных колебаний кратных частот
- 4. Изучение сложения однонаправленных колебаний мало отличающихся по частоте (биения)
- 5. Изучение сложения однонаправленных колебаний одинаковой частоты

3. Объект исследования

Электрические сигналы различной формы

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы

Амплитуда сложения однонаправленных колебаний, одинаковых по амплитуде U_0 и слабо отличающихся по частоте (ω и $\omega + \Delta \omega$):

$$A = \left| 2U_0 \cos \left[\frac{\Delta \omega}{2} t \right] \right| \quad (4)$$

Период сложения однонаправленных колебаний близкой частоты, где v' - частота биений, v_1 , v_2 - частоты складываемых колебаний:

$$T' = \frac{1}{v'} = \frac{1}{v_1 - v_2}$$
 (5)

Сдвиг фаз между двумя сигналами, где U_{Y_1} - амплитуда колебаний 1-го сигнала по оси $Y,\ U_2$ - амплитуда 2-го колебания:

$$\alpha = arcsin\left(\frac{U_{Y_1}}{U_2}\right)$$
 (25)

Амплитуда сложения колебаний близких частот по оси X и Y, где U_1 , U_2 - амплитуды складываемых колебаний, ω - частота 1-го колебания, $\omega + \Delta \omega$ - частота 2-го колебания, $\Delta \omega t + \alpha$ - разность фаз

$$U_X = U_1 \cos(\omega t) \quad (26)$$

$$U_Y = U_2 \cos[\omega t + (\Delta \omega t + \alpha)]$$
 (27)

Амплитуда результирующих колебаний, где U_1 , U_2 - амплитуды складываемых колебаний, α_1 , α_2 - начальные фазы складываемых колебаний:

$$U = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\alpha_2 - \alpha_1)}$$
 (33)

6. Приборы

	Наименование	Тип прибора	Используемый диапазон
1	Осциллограф цифровой запоминающий GDS- 71102B	Электронный	0 - 100 МГц
2	Генератор сигналов произвольной формы АКИП-3409	Электронный	1 Гц - 10 МГц

7. Схема установки

Рис. 1: Схема рабочей панели осциллографа ОЦ3 GDS-71102B

1 - дисплей, 2 - кнопка сохранения, 3 - боковые кнопки меню, 4 - меню выкл., 5 - опции, 6 - нижние кнопки меню, 7 - регулирования и подтверждение заданных параметров, 8 - органы управления дополнительными возможностями, 9 - настройка отображения сигнала, 10 - горизонтальные регуляторы, 11 - система запуска, 12 - вертикальные регуляторы, 13 - входное гнездо источника внешней синхронизации, 14 - функциональные кнопки, 15 - входные разъемы, 16 - разъем USB HOST, 17 - вкл./выкл. электропитания

8. Результаты измерений и их обработки

Задание 1

Таблица 1: Сигнал синусоидальной формы

Канал 1 Автоматические измерения		Измерения с помощью курсора	ГС АКИП-3409	
Частота сигнала, кГц	стота сигнала, кГц 8,006		8	
Амплитуда сигнала, В	0,98	1,01	1	
Период, мс 124,9		126	125	

По данным **Таблицы 1** рассчитаем относительное отклонение между показаниями генератора и автоматическими измерениями осциллографа, а также между автоматическими и ручными измерениями:

Канал 1	ГС АКИП-3409	Автоматические измерения	Относительное отклонение	
Частота сигнала, кГц	8	8,006	0,075%	
Амплитуда сигнала, В	1	0,98	2%	
Период, мс	125	124,9	0,08%	

Канал 1 Автоматические измерения		Измерения с помощью курсора	Относительное отклонение
Частота сигнала, кГц 8,006		7,937	0,86%
Амплитуда сигнала, В	0,98	1,01	3,06%
Период, мс 124,9		126	0,88%

Таблица 2: Сигнал формы меандр

Канал 1	Автоматические измерения	Измерения с помощью курсора	ГС АКИП-3409
Частота сигнала, кГц 7,992		7,937	8
Амплитуда сигнала, В	1,02	1,02	1
Период, мс 125,1		126	125

По данным **Таблицы 2** рассчитаем относительное отклонение между показаниями генератора и автоматическими измерениями осциллографа, а также между автоматическими и ручными измерениями:

Канал 1	ГС АКИП-3409	Автоматические измерения	Относительное отклонение
Частота сигнала, кГц 8		7,992	0,1%
Амплитуда сигнала, В	1	1,02	2%
Период, мс	125	125,1	0,08%

Канал 1	Автоматические измерения	Измерения с помощью курсора	Относительное отклонение
Частота сигнала, кГц	Частота сигнала, кГц 7,992		0,69%
Амплитуда сигнала, В	1,02	1,02	0%
Период, мс	125,1	126	0,72%

Задание 2

Для изучения предельных характеристик генератора и осциллографа установили максимально возможную частоту сигнала (10 МГц). Сигнал на экране отличался от теоретического. Понижали частоту до соответствия сигнала теоретическому до 1 кГц.

Установили минимальную частоту сигнала в 1 Гц, повышали до 45 Гц, пока сигнал не стал совпадать с теоретическим.

Задание 3

Заданные на двух каналах параметры сигналов:

Частота - 10 кГц; Амплитуда - 3 В; Смещение - 0 мс

Рассмотрим изображения результирующего сигнала для разных сдвигов фаз:

Рис. 2: Изображение на экране осциллографа для сдвига фаз $\frac{\pi}{4}$

Вычислим сдвиг фаз между сигналами по формуле (25) для данного рисунка:

$$\alpha = arcsin\left(\frac{1,05}{1.45}\right) = 46,40^{\circ}$$

Результат близок к разности фаз, установленной на генераторе.

Рис. 3: Изображение на экране осциллографа для сдвига фаз $\frac{\pi}{2}$

Рис. 4: Изображение на экране осциллографа для сдвига фаз $\frac{3\pi}{4}$

Изображения совпадают с фигурами Лиссажу:

Рис. 5: Фигуры Лиссажу для отношения частот 1:1

Рис. 6: Изображение на экране осциллографа для отношения частот 1:3 и сдвига фаз $\frac{3\pi}{4}$

При очень слабом изменении частоты фигура начинает все время меняться, и эллипс непрерывно деформируется. Характер изменения фигуры соотвествует теории, так как в уравнении (27) $\Delta \omega t + \alpha$ можно рассматривать как разность фаз, которая меняется со временем, в следствие чего фигура в каждый момент времени принимает положение одной из фигур в определенной фазе.

Задание 4

На каналы осциллографа поданы сигналы одинаковой амплитуды и фазы, отличающиеся по частоте на 7 процентов: 1,00 кГц и 1,07 кГц

Измерили амплитуду сигнала в максимуме и период биений: 5,8 В; 14,62 мс

Сравним максимальную амплитуду и период вычисленные теоретически с экспериментальными данными. По формулам (4) и (5) получим значения:

$$A = \left| 2U_0 \cos \left[\frac{\Delta \omega}{2} t \right] \right| = \left| 2 \cdot 3 \cdot \cos 0^{\circ} \right| = 6 \text{ B}$$

$$T' = \frac{1}{1,07-1,00} = \frac{1}{0,07} = 14,29 \text{ MC}$$

Теоретические значения близки к экспериментальным. Отклонения от теоретических значений происходят из-за погрешности прибора.

Задание 5

На каналы осциллографа поданы сигналы одинаковой частоты с известными (на 20-30 процентов отличающимися амплитудами) и известными фазами (разность фаз 30-45 градусов). Осциллограф переведен в режим сложения сигналов. Измерим амплитуду полученного сигнала:

Амплитуда 1, В	Амплитуда 2, В	Фаза 1, °	Фаза 2, °	Амплитуда полученного сигнала, В	Теоретическое значение, В
1,2	1	40	0	2	2,07
1,3	1	35	0	2,2	2,19
1,3	1	30	0	2,2	2,22

Вычислим теоретические значения по формуле (33):

1.
$$\sqrt{1,2^2 + 1^2 + 2 \cdot 1,2 \cdot 1 \cdot \cos(40^\circ - 0^\circ)} = 2,07 \text{ B}$$

2.
$$\sqrt{1.3^2 + 1^2 + 2 \cdot 1.3 \cdot 1 \cdot \cos(35^\circ - 0^\circ)} = 2.19 \text{ B}$$

3.
$$\sqrt{1,3^2 + 1^2 + 2 \cdot 1,3 \cdot 1 \cdot \cos(30^\circ - 0^\circ)} = 2,22 \text{ B}$$

Результаты измерений близки к теоретическим.

9. Вывод и анализ результатов работы

В ходе выполнения работы мы разобрались в устройстве и изучили осциллограф. С помощью него мы смогли исследовать сигналы различной формы, определить предельные значения осциллографа, при которых сигнал близок к теоретическому, получить фигуры Лиссажу, а также изучить сложение колебаний. Результаты близки к теоретическим, но незначительно отличаются из-за инструментальной погрешности.