Doğal Dil İşlemeye Giriş

Minimum Edit Distance

How similar are two strings?

Spell correction

- The user typed "graffe"Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

The minimum edit distance between two strings Is the minimum number of editing operations

- Insertion
- Deletion
- Substitution

Needed to transform one into the other

Minimum Edit Distance

Two strings and their alignment:

Minimum Edit Distance

If each operation has cost of 1

Distance between these is 5

If substitutions cost 2 (Levenshtein)

Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was appointed

H Spokesman said the senior adviser was appointed

S T D
```

Named Entity Extraction and Entity Coreference

- IBM Inc. announced today
- IBM profits
- Stanford President John Hennessy announced yesterday
- for Stanford University President John Hennessy ...

How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start string to the final string:

- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- Goal state: the word we're trying to get to
- Path cost: what we want to minimize: the number of

Minimum Edit as Search

But the space of all edit sequences is huge!

- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

For two strings

- X of length n
- Y of length m

We define D(i,j)

- the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
- The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance

Computing Minimum Edit Distance

Dynamic Programming for Minimum Edit Distance

Dynamic programming: A tabular computation of D(n,m)

Solving problems by combining solutions to subproblems.

Bottom-up

- We compute D(i,j) for small i,j
- And compute larger D(i,j) based on previously computed smaller values
- i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Defining Minimum Edit Distance

The value of D(i, j) is computed by taking the minimum of the three possible paths through the matrix which arrive there:

$$D[i, j] = \min \begin{cases} D[i-1, j] + \text{del-cost}(source[i]) \\ D[i, j-1] + \text{ins-cost}(target[j]) \\ D[i-1, j-1] + \text{sub-cost}(source[i], target[j]) \end{cases}$$

If we assume the version of **Levenshtein distance** in which the insertions and deletions each have a cost of 1, and substitutions have a cost of 2 (except substitution of identical letters have zero cost), the computation for D(i,j) becomes:

$$D[i,j] = \min \begin{cases} D[i-1,j]+1 \\ D[i,j-1]+1 \\ D[i-1,j-1]+ \begin{cases} 2; & \text{if } source[i] \neq target[j] \\ 0; & \text{if } source[i] = target[j] \end{cases} \end{cases}$$

Minimum Edit Distance Algorithm

function MIN-EDIT-DISTANCE(source, target) returns min-distance

```
n \leftarrow \text{LENGTH}(source)
m \leftarrow \text{LENGTH}(target)
Create a distance matrix distance [n+1,m+1]
# Initialization: the zeroth row and column is the distance from the empty string
     D[0,0] = 0
     for each row i from 1 to n do
        D[i,0] \leftarrow D[i-1,0] + del\text{-}cost(source[i])
     for each column j from 1 to m do
         D[0,j] \leftarrow D[0,j-1] + ins-cost(target[j])
# Recurrence relation:
for each row i from 1 to n do
     for each column j from 1 to m do
        D[i, j] \leftarrow MIN(D[i-1, j] + del-cost(source[i]),
                         D[i-1,j-1] + sub-cost(source[i],target[j]),
                         D[i, j-1] + ins-cost(target[j])
# Termination
return D[n,m]
```

The Edit Distance Table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	Ι	0	N

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

Edit distance isn't sufficient

 We often need to align each character of the two strings to each other

We do this by keeping a "backtrace"

Every time we enter a cell, remember where we came from

When we reach the end,

 Trace back the path from the upper right corner to read off the alignment

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	<u>/</u> ←↓9	<u>√</u> ←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠8	
0	8	↓ 7	∠ ←↓8	<u>√</u>	<u> </u>	<u> </u>	↓ 10	↓9	∠ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠<→ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	√ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓8	∠ 7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓ 3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠←↓ 8	∠ 7	
i	1	∠ ←↓ 2	∠ ←↓ 3	∠ ←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

```
For each i = 1...M
          For each j = 1...N
          D(i,j) = \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \text{ substitution} \\ 0; & \text{if } X(i) = Y(j) \end{cases}
```

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their alignment:

Performance

Time:

O(nm)

Space:

O(nm)

Backtrace

O(n+m)

Minimum Edit Distance

Weighted Minimum Edit Distance

Weighted Edit Distance

Why would we add weights to the computation?

- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

	sub[X, Y] = Substitution of X (incorrect) for Y (correct)																									
X					3	แบโร	л, і] =	Suo	SHU	uo			rrect		ct) i	OL	1 (6	COLL	ect)						
	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	р	q	r	s	t	u	v	w	х	у	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
е	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
	^	Λ	^	~*	^	Ω	Δ.	^	Λ		^	~		Λ	^	Λ	^	~	2.1	- 2	^	^	^	^	2	^

Weighted Min Edit Distance

Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];   1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];   1 < j \le M
```

Recurrence Relation:

```
D(i-1,j) + del[x(i)]
D(i,j) = min D(i,j-1) + ins[y(j)]
D(i-1,j-1) + sub[x(i),y(j)]
```

Termination:

D(N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.