Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

2023, 05, 11

BYOL (2020, Neural Information Processing System)

- Bootstrap Your Own Latent A New Approach to Self-Supervised Learning
 - 2020년 Neural Information Processing System에 게재되었으며, 3295회 인용됨
 - 대표적인 Non-contrastive learning 방법론으로 negative sample을 사용하지 않고 SOTA 달성

Bootstrap Your Own Latent A New Approach to Self-Supervised Learning

Jean-Bastien Grill*¹, Florian Strub*¹, Florent Altché*¹, Corentin Tallec*¹, Pierre H. Richemond*^{1,2} Elena Buchatskaya¹, Carl Doersch¹, Bernardo Avila Pires¹, Zhaohan Daniel Guo¹ Mohammad Gheshlaghi Azar¹, Bilal Piot¹, Koray Kavukcuoglu¹, Rémi Munos¹, Michal Valko¹

¹DeepMind ²Im_j

²Imperial College

[jbgrill,fstrub,altche,corentint,richemond]@google.com

❖ 기존 자기 지도학습 방법의 한계점

- Pretext task
 - ▶ 모델의 성능이 사전학습을 위해 사용되는 pretext task의 질에 따라 차이가 심하다는 한계가 존재
- Contrastive Learning: Pretext task의 한계를 개선한 방법
 - 1. 데이터 증강 기법에 따른 성능 편차가 심함
 - 2. 방대한 양의 배치 크기가 필요함 (많은 컴퓨팅 자원이 요구됨)
 - 3. Negative Pair 선정이 어려움 → Supervised Contrastive Learning (클래스 레이블을 활용해서 negative sample 내에 false negative를 positive sample로 변환

SimCLR

❖ 대조 학습의 한계점

- 1. 데이터 증강 기법에 따른 성능 편차가 심함 → augmented negative sample = positive sample
- 2. 방대한 양의 배치 크기가 필요함 (많은 컴퓨팅 자원이 요구됨) → because of negative sample
- 3. Negative Pair 선정이 어려움 → anchor에 augmentation을 취한 것은 positive, 다른 샘플은 negative → false negative

Quality Analytics

i:Anchor

❖ 대조 학습의 한계점

- 1. 데이터 증강 기법에 따른 성능 편차가 심함 → augmented negative sample = positive sample
- 2. 방대한 양의 배치 크기가 필요함 (많은 컴퓨팅 자원이 요구됨) → because of negative sample
- 3. Negative Pair 선정이 어려움 → anchor에 augmentation을 취한 것은 positive, 다른 샘플은 negative → false negative

Collapsed representation problem

• 동일한 네트워크를 사용하였을 때, 학습이 전혀 안되고 동일한 값을 출력하는 문제

Collapsed representation problem

- Contrastive Learning: negative sample을 사용해 해당 문제 해결
- Non-contrastive Learning: 두 개의 network를 사용하여 해당 문제 해결

Proposed Method

Overall Architecture

- 서로 다른 파라미터를 갖는 online network, target network 존재
 - ➤ Target network의 output은 online network의 output의 정답으로 활용
- Online network update: MSE loss를 구해 gradient update 진행
- Target network update: exponential moving average로 진행 $(\xi \leftarrow \tau \xi + (1-\tau)\xi)$

Total loss: $L_{\theta}^{BYOL} + \tilde{L}_{\theta}^{BYOL}$

Proposed Method

Overall Architecture

• Online network의 prediction과 target network의 projection에 L2 Regularization을 취한 뒤 $L_{ heta}^{BYOL}$ 계산

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}.$$

Total Loss는 online network, target network에서 사용된 augmentation 방법을 교환하여 얻은 loss와 기존 loss의 합을 사용

Total loss:
$$L_{\theta}^{BYOL} + \tilde{L}_{\theta}^{BYOL}$$

Experiment

Experiment 1

- ImageNet 데이터 셋을 활용해 classification을 했을 때 성능 (Encoder는 freeze하고 진행)
 - ✓ 표준 ResNet-50을 사용했을 때, 74.3% 달성 (top-1 accuracy)
 - ✓ 더 거대한 ResNet을 사용했을 때, 79.6% 달성 (top-1 accuracy)

Experiment

Experiment 2

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR[8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR[8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Method	AP_{50}	mIoU
Supervised-IN [9]	74.4	74.4
MoCo [9] SimCLR (repro)	$74.9 \\ 75.2$	$72.5 \\ 75.2$
BYOL (ours)	77.5	76.3

		Lower better			
Method	pct.<1.25	$pct.< 1.25^2$	$pct.< 1.25^3$	rms	rel
Supervised-IN [83]	81.1	95.3	98.8	0.573	0.127
SimCLR (repro) BYOL (ours)	83.3 84.6	96.5 96.7	99.1 99.1	0.557 0.541	0.134 0.129

⁽a) Transfer results in semantic segmentation and object detection.

⁽b) Transfer results on NYU v2 depth estimation.

Experiment

Experiment 3

- a. Batch size에 따른 contrastive learning과 non-contrastive learning 성능 비교 실험 결과
- b. Augmentation에 사용 유무에 따른 강건성 비교 실험 결과

(a) Impact of batch size

(b) Impact of progressively removing transformations

