Atom
durchmesser: $10^{-10} {\rm m}$ Kerndurchmesser: $10^{-14} {\rm m}$ Durchmesser Nukleon: $10^{-15} {\rm m}$

Gesamtenergie: $E = \sqrt{m_0^2 c^4 + p^2 c^2}$, LHC: $14 \times 10^{12} \text{ eV}$

Elektrondrift: 1 ms $\,\sim\,5\,\mathrm{cm},$ Flugstrecke relativistisches

relative Stärke Kräfte: Schwerkraft 10⁻⁴¹, schwache WW (Quarks, Leptonen; wirkt auf Flavor): 10⁻⁴, EM WW: 1, starke WW (Quarks, Gluonen, wirkt auf Far-

Reichweite virtuelles Teilchen: Unschärfe: $\Delta E \Delta t > \frac{\hbar}{2} \Rightarrow \Delta E \Delta t \approx mc^2 \Delta t > \frac{\hbar}{2} \Rightarrow \text{Reichweite} \approx c \Delta t > \frac{\hbar}{2mc}$ EM WW (Photon): $m=0 \Rightarrow \text{Reichweite} = \infty$ $80 \, \mathrm{GeV}/{c_0}^2, m_{Z_0}$ schwache WW: $m_W =$ $91\,\mathrm{GeV}/{c_0}^2 \Rightarrow \mathrm{Reichweite} = 0.001\,\mathrm{fm}$ starke WW: Gluonen mit Selbst-WW, Reichweite $\sim 0.5 \, \mathrm{fm}$ Starke Kraft: $m_{Pion} = 140 \, \mathrm{MeV/}{c_0}^2 \Rightarrow \mathrm{Reichweite} \sim$

Auflösung Objekt mit Radius R mit Impuls p: Unschärfe: $p\cdot R>\frac{\hbar}{2},\;\Delta p_{max}=2p\Rightarrow \Delta p_{max}\cdot R>\hbar$

$$\begin{split} E &= \sqrt{m_0^2 c^4 + p^2 c^2}, \; P = \left(\begin{array}{c} E/c \\ \vec{p} \end{array} \right), \; E = E_0 + E_{kin}, \\ E_0 &= m_0 c^2, \; E = \gamma m_0 c^2, \; \vec{p} = \gamma m_0 \vec{v}, \; \gamma = \frac{1}{\sqrt{1 - \beta^2}}, \; \beta = \frac{v}{c} \end{split}$$

Invariante Masse: $P^2 = \frac{E^2}{c^2} - \vec{p}^2 = m_0^2 c^2$ Schwerpunktsenergie \sqrt{S} : nutzbare Energie in der Reaktion; invariant unter Lorenzt-Trafo; $S = (P_1 + P_2 +$

Stoßprozess: Summe der Viererimpuls bleibt erhalten

Richtung
$$P' = \begin{pmatrix} E'/c \\ \overline{p'} \end{pmatrix}, P = \begin{pmatrix} E/c \\ \overline{p'} \end{pmatrix}$$
$$p'_x = p_x, p'_y = p_y, p'_z = \gamma p_z - \beta \gamma \frac{E}{c}, \frac{E'}{c} = -\beta \gamma p_z + \gamma \frac{E}{c}$$

Strahlfluss: $J=n_a\cdot v_a=rac{\dot{N_a}}{F}$ mit n_a Teilchendichte, N_a Teilchen im Strahl, F Querschnittsfläche Strahl Reaktionsrate: $L=J\cdot N_b$ mit N_b Teilchen im Target Reaktionsrate: $R=L\cdot \sigma_r$, mit σ_r Reaktionsquerschnitt:

Reaktionsrate: $R=L\cdot\sigma_r$, mit σ_r reaktionsquares $\sigma_r=\int \frac{d\sigma}{d\Omega}\,d\Omega$ WK Wechselwirkung Strahlteilchen + Target: $P=\frac{\sigma_{\rm tot}N_b}{F}$, $\frac{N_b}{F}=n_bd$ mit Dicke d des Targets und N_b der Anzahl der Teilchen im Target mit Fläche F Fermis goldene Regel: $\sigma_{i\to f}=\frac{R}{L}=\frac{2\pi}{hv_a}\left|\mathcal{M}_{fi}\right|^2$.

$$\begin{array}{l} \rho\left(E_f\right)\cdot V \text{ mit } V = \frac{N_a}{n_a}, \ \rho\left(E_f\right) = \frac{dn\left(E_f\right)}{dE_f} = \frac{V\cdot 4\pi p'^2}{v'\cdot (2\pi\hbar)^3} \\ \text{Dichte der Endzustände, } \mathcal{M}_{fi} = \langle \psi_f|\mathcal{H}_{WW}|\psi_i\rangle \end{array}$$

Kosmische Strahlung: Energien bis zu $10^{21} \mathrm{eV}$ Primärstrahlung: 85% Protonen, 14% $\alpha\text{-Teilchen},$ 1% schwere Kerne; Supernovae, Sonnenwind Sekundärstrahlung: Erzeugung von Myonen (> 95%), Protonen, Pionen (Promille-Bereich) ⇒ Entdeckung Pion

Elektrostatische Beschleuniger: $E_{kin} = qU$

Tandem van der Graaff: 1-fach negativ geladenes Ion beschleunigen \Rightarrow n+1 e^- strippen \Rightarrow n-fach positives Ion beschleunigen \Rightarrow Gesamtenergie: $E_{kin} = (n+1) \cdot eU$ Beschleunigungsspannung MLL: $\approx 14\,\mathrm{MV}$

Fokussierung: gekreuzte Quadrupolmagnete, da ein Magnet nur in eine Richtung fokussiert, aber in die andere

Betatron: Nur für e^- . Teilchen werden durch Magnetfeld auf Bahn gehalten. Beschleunigung erfolgt durch zweites zeitlich veränderliches Magnetfeld (Induktion)

$$\begin{array}{l} F_L = qvB_H, \ v = \omega r, \ F_z = \frac{mv^2}{r} \\ \text{Im GG: } F_L = F_z \Rightarrow p = mv = \gamma m_0 v = qB_H v \\ \text{Umlaufdauer: } T = \frac{2\pi r}{r} = \frac{2\pi \gamma m_0}{r} \end{array}$$

 $\begin{array}{l} F_L = qvB_H, \ v = \omega r, \ F_z = \frac{r}{r} \\ \text{Im GG: } F_L = F_z \Rightarrow p = mv = \gamma m_0 v = qB_H r \\ \text{Umlaufdauer: } T = \frac{2\pi r}{v} = \frac{2\pi \gamma m_0}{qB_H} \\ \text{Frequenz: } \omega = \frac{2\pi}{T} = \frac{qB}{\gamma m_0}, \ \text{Zyklotronfrequenz: } \omega = \frac{eB}{m} \\ \text{Beschleunigung: } E_B \ \text{das vom zeitl. veränderl. Magnet-} \end{array}$

Between English EB day volume zero, vertainer in Angles field B erzeugte elektr. Feld
$$U_{ind} = \int E_B \, ds = E_{B,\phi} \cdot 2\pi R_0 = -\frac{d}{dt} \int B \, dA = -\dot{\Phi}$$

$$\frac{d}{dt} p = F = e E_{B,\phi} = \frac{e\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{\dot{\Phi}}{2\pi R_0} = \frac{d}{dt} e B_H r = e \dot{B}_H r + \frac{\dot{\Phi}}{2\pi R_0} = \frac{\dot{\Phi}}{2\pi R_$$

 \Rightarrow Haltefeld B_H steigt proportional zum Elektronenim-

$$R_0^2 \dot{B}_H(R_0) = E_{B,\phi} \cdot R_0 = \frac{d}{dt} \int_0^{R_0} R \cdot B(R) \, dR = \frac{d}{dt} \, \bar{B} \cdot \frac{R_0^2}{2}$$

Rückstellkraft erzeugt Betatron-Schwingung: $\omega_r =$ $\begin{array}{l} \sqrt{1-n}\;\omega_0,\;\omega_z=\sqrt{n}\;\omega_0,\;\omega_r\neq\omega_z\neq\omega_0\\ E_{max}\approx20-300\mathrm{MeV} \end{array}$

Zyklotron: nicht für e^- . Maximale Energie $E_{max}=\frac{p_{max}^2}{2m_0}=\frac{q^2r_{max}^2B^2}{2m_0}$ Für relat. Teilchen Frequenz abh. von Geschw.: $\omega=\frac{q^2}{2m_0}$

Phasenstabilität: optimaler Punkt vor Maximum des E- Felds \Rightarrow zu späte Teilchen sehen größeres Feld, werden schneller; zu langsame Teilchen sehen kleineres Feld, werden weniger beschleunigt $E_{max} \approx 1 - 100 \text{MeV}/u$

Synchrotron: Beschleunigung durch E-Feld, Halten auf Kreisbahn durch B-Feld

 $B(t)=rac{p(t)}{ar},\;\omega_{Umlauf}=rac{2\pi}{T}=rac{2\pi v}{S}=rac{2\pi pc^2}{E_qS},\;\mathrm{mit}\;S$ Länge der Sollbahn, E_q Energie der Teilchen

Synchrotronstrahlung: Verluste durch Strahlung: $\Delta E_{sync} \sim \frac{E_q^4}{m^4 R} \Rightarrow \text{für } e^- \text{ bei gl. Energie um } 10^{13}$ größer als bei Protonen

Fokussierung durch gekreuzte Quadrupolmagnete Phasenstabilität führt zu Synchrotronfrequenz

 $\omega_{Betatron} >> \omega_{Umlauf} >> \omega_{Synchrotron}$, Resonanz bei $\omega_{Betatron} = n \omega_{Umlauf}$ verhindern $E_{max} \approx 100 \, \text{MeV} - 3.5 \, \text{TeV}$

Linearbeschleuniger: Röhren mit Wechselspannung, feldfrei innerhalb der Röhren

Länge
$$n$$
-te Röhre: $l_n = v \frac{T_{HF}}{2} = \frac{\pi v}{\omega_{HF}} =$

 $\begin{array}{l} \sqrt{n\frac{2e}{m}U_0}\frac{\pi}{\omega_{HF}} \\ \text{relativistischer Grenzfall: Länge konstant} \\ \text{Elektronen Linac: Wanderwelle in Hohlleiter mit} \\ \cdot = v_{Elektron} \Rightarrow \text{Runzelr\"{o}hre} \end{array}$

Collider, Fixed-Target: Maximale Schwerpunktsenergie bei Kollision im Gegensatz zu fixed Target, $\sqrt{S}=E_1+E_2$; LHC: pp-Colider: 7 TeV + 7 TeV Bei Fixed-Target müssen erzeugte Teilchen noch durch Targetmaterial propagieren ⇒ evtl. Streuung, Absorp-

Fixed-Target haben höhere Luminositäten da Targetdichte größer

Einfacherer mechanischer Aufbau bei Fixed-Target ⇒ günstiger

$$\begin{array}{l} \textbf{Bethe-Bloch-Formel:} \\ -\frac{dE}{dx} = 4\pi N_0 \frac{Z}{A} \frac{z^2 e^4}{m_e v^2} \left| \ln \left(\frac{2m_e v^2}{I} \right) - \ln \left(1 - \beta^2 \right) - \beta^2 - \frac{c_K}{Z} \right| \\ \text{mit z Ladung einfallendes Teilchen, Z Ladung des Kerns,} \\ \frac{N_0}{A} \text{ Zahl der Kerne/Einheitsvolumen, I effekt. Ionisationspotential, c_K Korrekturfaktor für Bindung in K-Schale} \end{array}$$

Unabh. von Masse Teilchen, bei $\beta \gamma$ klein $\sim \frac{1}{\beta}$, bei großen

Energien $\sim \ln \beta^2 \gamma^2$, Minimum bei $\beta \gamma \approx 3$ Abschirmungseffekte bei großer Energie: Polarisierung der Atome entlang des Wegs des Teilchens, wichtiger bei

dichten Materialien $\Rightarrow \delta$ Annahme, dass e^- in Ruhe in Bezug auf einfallendes Teilchen ist gilt bei kleiner Energie nicht mehr $\Rightarrow c_K$ Teilchen dereren mittlerer Energieverlust beim Minimum liegt heißen "Minimum Ionizing Particles" (MIP)

Schwankung Energieverlust: Gauß-verteilt

$$P(\Delta E) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\lambda + e^{-\lambda}\right)}, \ \lambda = \frac{\Delta E - \Delta E_{mp}}{\xi}, \ \xi \text{ ist materialabh. Konstante, } \Delta E_{mp} \text{ der wahrscheinlichste Wert für } \Delta E$$

Energieverlust e⁻ + e⁺: Bethe-Bloch-Korrektur um Rückstoß und Spinabh.; zusätzlich: Bremsstrahlung $\left(-\frac{dE}{dx}\right)_{tot} = \left(-\frac{dE}{dx}\right)_{coll} + \left(-\frac{dE}{dx}\right)_{rad}, \left(-\frac{dE}{dx}\right)_{rad} \sim$

$$A_{m}^{2} = 0$$

Kritische Energie: $\left(-\frac{dE}{dx}\right)_{coll} = \left(-\frac{dE}{dx}\right)_{rad}$

Vielfachstreuung: $P(\vartheta)d\vartheta = \frac{1}{\sqrt{2\pi}\vartheta}e^{-\frac{\vartheta^2}{2\vartheta_0^2}}d\vartheta$ mit ϑ_0 Breite der Gaußverteilung

Ionisationsnachweis: Geiger-Müller-Zählrohr

E-Feld des Drahts:
$$E(r) = \frac{E_0}{r \ln \left(\frac{r_2}{r_1}\right)}$$
 mit r_2 Radius

Zählrohr, r_1 Radius Draht Es werden nicht die e^- gemessen, die auf den Draht kommen, sondern die langsame Induktion durch die Ionen, die sich der Röhre bewegen

Cherenkov-Strahlung: Tritt auf wenn Teilchen in Materie schneller sind als Lichtgeschwindigkeit in Medium Licht wird unter Winkel $\vartheta = \arccos \frac{1}{n\beta}$ abgestrahlt \Rightarrow Winkel messen $\Rightarrow \beta$, p messen $\Rightarrow m$ ist bestimmt

Szintillator: Ionisierendes Teilchen regt Material an \Rightarrow Abregung durch Emission ⇒ Photomultiplier anorganisch: Abklingzeit \sim ms, organisch: Abklingzeit \sim

Wichtige Eigenschaften: hohe Umwandlungseffizienz der Energie in Licht, Emission in richtiger Wellenlänge, hohe

Zählraten. Bsp.: NaI, BGO, Plastik

WW von Photonen mit Materie: kleine Energien $E_{\gamma} \geq E_{Bindung} \Rightarrow$ Photoeffekt, $\sigma_{ph} \sim$

mittlere Energien $E_{Bindung} \ll E_{\gamma} \leq 2m_e c^2 \Rightarrow \text{Comp}$ tonsteuung, $\sigma_C \sim Z(1-\varepsilon)$ für $\varepsilon \ll 1, \, \sigma_C \sim Z \frac{1+2\ln(2\varepsilon)}{\varepsilon}$ für $\varepsilon\gg 1$ mit $\varepsilon=\frac{E_{\gamma}}{m_e\,c^2}$

$$\Delta \lambda = \lambda_C (1 - \cos \varphi), E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \varphi)}$$

Scharfe Kante bei maximaler Energie $E'_{\gamma} = E_{\gamma}$ hohe Energien $E_{\gamma} > 2m_e c^2 \Rightarrow \text{Paarbildung}, \ \sigma_P \sim Z^2$

Pixeldetektoren

Geschwindkeitsmessung: Flugzeitdetektor, Cherenkovde-

Energiemessung: Kalorimeter, Halbleiterdetektor (z.B.

Elastische Streuung: Bornsche Näherung: einfallendes und ausfallendes Teilchen sind ebene Wellen $\Psi_i = \frac{1}{\sqrt{V}} e^{i\mathbf{p}\cdot\mathbf{x}/\hbar}, \ \Psi_f = \frac{1}{\sqrt{V}} e^{i\mathbf{p}\cdot\mathbf{x}/\hbar}$

$$\frac{d\sigma}{d\Omega} = \frac{p'^2 V^2}{v_a v' 4\pi^2 \hbar^4} \left| \mathcal{M}_{fi} \right|^2$$

Yukawa-Potential: $U(r) = \frac{g_0}{r}e^{-r/R}$, mit $R = \frac{\hbar c}{mc^2}$ für

Austauschteilchen der Masse
$$m$$
 $\Rightarrow \frac{d\sigma}{d\Omega} = \frac{4p'^2}{v_av'} \left(\frac{g_0g}{q^2+m^2c^2}\right)^2$ mit $\vec{q} = \vec{p} - \vec{p'}$ und Faktor g für jeden Vertex (bei Coulomb: $g = \sqrt{\alpha} \sqrt{\alpha}$)

$$\mathcal{M}_{fi} = -rac{e\hbar^2}{V|ec{d}|^2}\int
ho\left(ec{x}
ight)e^{i\mathbf{q}\mathbf{x}/\hbar}\,d^3x$$

$$\mathcal{M}_{fi} = -\frac{e\hbar^2}{V|\vec{q}|^2} \int \rho(\vec{x}) e^{i\mathbf{q}x/\hbar} d^3x$$

$$\mathcal{M}_{fi} = -\frac{Ze^2\hbar^2}{V|\vec{q}|^2} \int f(\vec{x}) e^{i\mathbf{q}x/\hbar} d^3x \operatorname{mit} \rho(\vec{x}) = Z \cdot e \cdot f(\vec{x})$$

Formfaktor: $F(|\vec{q}|) = \int f(\vec{x}) e^{i\mathbf{q}\mathbf{x}/\hbar} d^3x$

Rutherford-Streuung: Streuung an punktförmigem Atomkern $\Rightarrow \mathcal{M}_{fi} = -\frac{Z\alpha}{V|\vec{q}|^2}$ Kernrückstoß vernachlässigt \Rightarrow kein Energieübertrag E=E'; kein Spin; p'=p, v'=v

$$|\vec{q}| = 2|\vec{p}|\sin\frac{\vartheta}{2} \Rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\rm Ruth} = \frac{Z^2\alpha^2}{4v^2|\vec{p}|^2\sin^4\frac{\vartheta}{2}}$$

Mott-Steuung: Betrachtung des Spins gehorcht Helizitätserhaltung bei $\beta \to 1$ (unterdrückt Helizitätserhaltung bei β Rückwärtstreuung)

 $\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\rm Mott}^* = \begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\rm Ruth} \left(1 - \beta^2 \sin^2 \frac{\vartheta}{2} \right)$ * bedeutet Rückstoß des Kerns vernachlässigbar

Streuung an Ladungsverteilung:

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm Ladungs verteilung} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Ruth} \left|F\left(|\vec{q}|^2\right)\right|^2 \\ {\rm Betrags qudrat} \ {\rm des} \ {\rm Formfaktors} \ {\rm gibt} \ {\rm Abweichung} \ {\rm des} \\ {\rm Wirkung squers chnitts} \ {\rm von} \ {\rm dem} \ {\rm einer} \ {\rm punkt f\"{o}rmigen}$ Ladungsverteilung an

Kernradius: keine exakte Größe: abh. von Wechselwirkung, abh. von Experiment

Formfaktor vom Kern: Formfaktor als Fouriertrans-

Formactor vom Kern: Formactor als Fouriertransformierte nur näherungsweise korrekt, da Rückstoß vernachlässigt wurde. Eigentlich gilt $E' \neq E$. Je ausgedehnter Ladungsverteilung, desto stärker fällt $F(q^2)$ mit q^2 ab. Je kleiner Objekt, desto langsamer fällt $F(q^2)$ mit q^2 ab (Punktladung: $F(q^2) = 1$). Betracktung Korn als Kugel: Betrachtung Kern als Kugel:

$$F(|\vec{q}|) = \frac{3}{\alpha^3} (\sin \alpha - \alpha \cos \alpha) \text{ mit } \alpha = \frac{q \cdot R}{\hbar}$$

Erstes Minimum bei $\frac{q \cdot R}{\hbar} \approx 4.5 \Rightarrow R = \frac{4.5 \hbar}{q_{1.Min}}$

Elektronenstreuung: Streuung an Teilchen ohne Spin \Rightarrow Mott-Wirkungsquerschnitt da e^- punktförmig mit Spin für $q \to 0$ (wegen der räumlichen Ausdehnung des

Annahme Teilchen in Ruhe, $P'^2 = P^2$ und $p'^2 = p^2 \Rightarrow$ $p \cdot P = p' \cdot P' = p' \cdot (p + P - p')$ m_e vernachlässigbar, $E \approx |\vec{p}| c$

 $\Rightarrow E' = \frac{E}{1 + E/Mc^2 \cdot (1 - \cos \vartheta)}$, mit E' Energie gestr. e^- ,

M Masse Teilchen, E Energie e^- vor Streuung $\frac{E}{M c^2}$, desto mehr Rückstoß wird auf Target übertragen

Kernradius/Formfaktor: Entwickle $F(q^2)$ für $\frac{qR}{\hbar} \ll 1$ $F(q^2) = \iint r^2 f(r) \left(1 - \frac{1}{2} \left(\frac{qr}{\hbar} \right)^2 \cos^2 \vartheta + \dots \right) dr d\Omega$ Mittlerer quadratischer Radius: $\langle r^2 \rangle = 4\pi \int_0^{\infty} r^4 f(r) dr$

 $\langle r^2 \rangle = -6\hbar^2 \frac{dF(q^2)}{dq^2} \bigg|_{\mathcal{A}}$

Massenspektrometer: Kombination von E- und B-Feld $\vec{F}_B = ze\vec{v} \times \vec{B}, \ \vec{F}_E = ze\vec{E}$

Für zylindrisches E-Feld: $E = \frac{Mv^2}{r_E} \Rightarrow \frac{M}{ze} = \frac{B^2 r_B^2}{E r_E}$

Kern Daten: Bindungsenergie/Nukleon ≈ 8 MeV Radius: R = 1.21 fm · $A^{1/3}$ Bindungsenergie: $B = c^2 \left(Z(m_p + m_e) + n \cdot m_n - M(A, Z) \right)$

Massenformel: $M(A, Z) = Z(m_p + m_e) + (A - Z)m_n$

 $\begin{bmatrix} a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(Z-A/2)^2}{A} + \frac{\delta}{A^{1/2}} \end{bmatrix}$ Volumenterm: $\sim V \sim R^3 \sim A$, kurzreichweitige Kernkraft, WW in etwa nur mit nächstem Nachbarn Oberflächenterm: $\sim R^2 \sim A^{2/3}$, Nukleonen an Oberfläche behop veniger Nachbarn

Oberfläche haben weniger Nachbarn Coulomb-Term: $E_{Coul} \sim \frac{Z^2}{R} \sim \frac{Z^2}{A^{1/3}}$ Asymmetrieterm: Bei kleinen Massenzahlen sind Kerne mit gleicher Neutronen- und Protonenzahl bevorzugt. Bei schweren Kernen mehr Neutronen wegen Coulomb Paarungsterm: Gerade Anzahl von Protonen und/oder Neutronen erhöht Stabilität des Kerns

 $M_n - a_V + a_S A^{-1/3} + a_a/n$

 $a_a + (M_n - M_p + m_e)$

 $a_a/A + a_C/A^{1/3}$

 $\int \pm 11.2 MeV/c^2$ (+Z und N gerade, δ -Z und N ungerade 0A ungerade

Volume nanteil

Coulomb - Abstossung a_C

Oberfl.anteil a_S

Symmetrie anteil

Paarungsanteil (Kerne mit geraden p und δ n-Zahlen sind stabiler als ungerade Anteile

 a_C

 $\bf Nuklide:$ Isobare: gleiche Massenzahl A, Isotope: gleiches Element, gleiches Z, Isotone: gleiche Neutronenzahl N, Isomere: metastabile Zustände (Anregungen) mit gleichem Z und N

Elastische Streuung Nukleon: $Q^2 = -q^2$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm Punkt, \; Spin} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left[1 + 2\tau \tan^2 \frac{\vartheta}{2}\right]$$

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_M \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2)\tan^2\frac{\vartheta}{2}\right]$$

Elektrischer Formfaktor: $G_E=F_1^2-\frac{\kappa^2Q^2}{4M^2}F_2^2$ Magnetischer Formfaktor: $G_M=F_1+\kappa F_2$ $\tau = \frac{Q^2}{4M^2c^2},\, F_{1,2}$ Dirac-Formfaktoren, $\kappa = \frac{g-2}{2}$ $Q \to 0$: Proton: $G_E=1,~G_M=2.79$: Neutron: $G_M=-1.91,~G_E(Q^2)=0$ $G_E^p(Q^2) \approx G^{Dipol}(Q^2) = \left(1 + \frac{Q^2}{0.71(GeV/c)^2}\right)^{-2}$

Nukleonradius:
$$\langle r^2 \rangle = -6\hbar^2 \frac{dG^{Dip}}{dQ^2} \Big|_{Q=0} \approx 0.66 fm^2$$

Quasielastische Streuung: Bei Streuung an Nukleonen $(\vec{P},\,\vec{P'},\,M)$ muss die Bindungsenergie des Nukleons auch betrachtet werden

betrachtet werden
$$\nu = E - E' = E'_N - E_N = (Mc^2 + \frac{\vec{p'}^2}{2M}) - (Mc^2 + \frac{\vec{p}^2}{2M} - S) = \frac{(\vec{P} + \vec{q})^2}{2M} - \frac{\vec{p}^2}{2M} + S = \frac{\vec{q}^2}{2M} + S + \frac{2|\vec{q}||\vec{P}|\cos\alpha}{2M}$$

$$\Rightarrow \nu \text{ verteilt sich um Mittelwert } \nu_0 = \frac{\vec{q}^2}{2M} + S$$
 Breite der Verteilung:
$$\sigma_\nu = \frac{|\vec{q}|}{M} \sqrt{\frac{1}{3}} \langle \vec{p}_{Fermi}^2 \rangle$$

Inelastische Streuung: Anregung des Targets Resonanzen: Lebensdauer $\Delta t = \frac{\hbar}{\Delta E} \sim 10^{-24} s$ Zerfall $\Delta^+ \to p + \pi^0$ / $\Delta^+ \to n + \pi^+$

Invariante Masse der Resonanz W: $W^2c^2=P'^2=(P+q)^2=M^2c^2+2Pq+q^2=M^2c^2+2M\nu-Q^2$ mit $\nu=\frac{Pq}{M}$ (lorentz-invariant)

Bjorken Variable: $x=\frac{Q^2}{2Pq}=\frac{Q^2}{2M\nu};$ x=1: elastische Streuung; 0< x<1: inelastische Streu-

ung Wirkungsquerschnitt:

wirkingsquerschift:
$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}}^* \left[W_2(Q^2,\nu) + 2W_1(Q^2,\nu) \tan^2\frac{\vartheta}{2}\right]$$
$$F_1(x,Q^2) = Mc^2W_1(Q^2,\nu), F_2(x,Q^2) = \nu W_2(Q^2,\nu)$$
Callan-Gross Beziehung:
$$y = \frac{Pq}{Pp} = 1 - \frac{E'}{E}$$

Callan-Gross Beziehung:
$$y = \frac{1}{P_P} = 1 - \frac{\Sigma}{E}$$

$$\frac{d^2\sigma}{dQ^2dx} = \frac{4\pi\alpha^2\hbar^2}{Q^4} \left[\left(\frac{1-y}{x} - \frac{My}{2E} \right) F_2(x,Q^2) + y^2 F_1(x,Q^2) \right]$$

Messung ergibt $F_2(x,Q^2)$ unabh. von $Q\Rightarrow$ punktförmige Substruktur der Nukleonen Es gilt $2xF_1(x)=F_2(x)\Rightarrow$ punktförmige Konstituenten

haben Spin 1/2

nachlässigbar, keine WW zwischen Partonen

Hackingsignar, Reine W. Zwischen Fattonell Elastische Streuung an einzelnem Parton mit Anteil ξ des Protonimpulses: $p = \xi \cdot P$ Nach Streuung: p' = p + q $\Rightarrow p'^2 = (p+q)^2 = p^2 + 2pq + q^2 = p^2 + 2\xi Pq - Q^2$ \Rightarrow bei elast. Streuung $p' = p \Rightarrow \xi = x$

Photon überträgt keine Energie $(q = (0, \vec{q})) \Rightarrow x = \frac{|\vec{p}|}{|\vec{p}|}$

 $\begin{array}{l} \frac{d^2\sigma}{dQ^2d\nu} = \left(\frac{d\sigma}{dQ^2}\right)_{\rm Mott}^* \frac{F_2(x)}{\nu} \left[1 + 2\tau\tan^2\frac{\vartheta}{2}\right] \\ {\rm Valenzquarks: \ \ bestimmen \ \ Quantenzahlen; \ \ See-Quarks:} \end{array}$

virtuelle $q\bar{q}$ -Paare von Gluonen erzeugt

Strukturfunktion Partonen:

 $\begin{array}{l} \textbf{Strukturfunktion Partonen:} \\ F_2(x) = x \cdot \sum_{i=u,d,s} z_i^2 (q_i(x) + \bar{q_i}(x)); \ z_i \ \text{Quarkladung} \\ q(x) = q_v(x) + q_s(x) \ \text{für} \ \text{u}, \ d; \ q(x) = q_s(x) \ \text{für} \ \text{s} \\ \text{Aus Symmetrie folgt:} \ S(x) = s_s(x) = \bar{s_s}(x) \approx u_s(x) = \bar{u_s}(x) = d_s(x) = \bar{u_s}(x) = d_s(x) = d_s(x) \\ u(x) = u_v(x) + u_s(x), \ d(x) = d_v(x) + d_s(x) \\ \Rightarrow \frac{1}{x} F_2^p = \frac{1}{9} (4u_v + d_v) + \frac{4}{3} S \\ \Rightarrow \frac{1}{x} F_2^n = \frac{1}{9} (u_v + 4d_v) + \frac{4}{3} S \\ F_1^n \end{array}$ Da $\frac{F_2^{\,n}}{F_2^{\,p}} \to 1$ für $x \to 0$ dominiert S(x) für $x \to 0$

Da
$$\frac{F_2^{\,n}}{F_2^{\,p}} \to \frac{1}{4}$$
 für $x \to 1 \Rightarrow$ Valenzquarks dominieren

Alle Quarks zusammen tragen nur 54% des Gesamtimpulses, den Rest machen die Gluonen aus

 $\bf Quarkmasse:~u:~4\,MeV,~d:~8\,MeV,~s:~150\,MeV,~c:~1.1\,GeV,~b:~4.2\,GeV,~t:~175\,GeV$

Starke WW: Gesamtflavor ist Erhaltungsgröße $V(r)=-\frac{4}{3}\frac{\alpha_s}{r^p}+kr$ mit $\alpha_s\to 0$ für $r\to 0$ Potential groß bei großen Abständen \Rightarrow Confinement

Farbladung: Vergleich der Erzeugung von $q\bar{q}$ mit Bhabha-Streuung von $e^+ + e^-$

$$R = \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu\mu^*)} = \sum_{1}^{N} \frac{\sum_{flavor} z_q^2 \sigma^{\mu^+} + \mu^-}{\sigma^{\mu^+} + \mu^-} =$$

 $\sum_{fl}\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right)=\sum_{fl}\frac{2}{3}$ für die Quarks u, d, s. Man stellt stufenförmige Funktion fest. Bei gewisser Energie können weitere Quarks erzeugt werden \Rightarrow weitere Terme in Summe über flavors. Durch Vgl mit Messung ergibt sich, dass es N=3 Farben gibt.

 ${f Hadronisierung}\colon {
m Zwei} {
m Quarks} {
m mit} {
m Relativimpuls} {
m } p>$ $2m_qc$ können unter Abgabe von Energie Quarkpaare $q\bar{q}$ aus dem Vakuum erzeugen. Wird nur ein Teil der Energie vernwedet ⇒ Jet-Produktion

Symmetrie: Noether-Theorem: Aus einer Invarianz der Bewegungsgleichung folgt Erhaltungsgröße Translations invarianz \Rightarrow Impulserhaltung Zeitliche Translations invarianz \Rightarrow Energieerhaltung Rotation im Raum \Rightarrow Drehimpulserhaltung Spiegelung: $\vec{x} \rightarrow -\vec{x} \Rightarrow$ Paritätserhaltung Parität in Kugelkoordinaten: $\vartheta \to \pi - \vartheta$, $\varphi \to \pi + \varphi$ $\Rightarrow P_{Bahn} = (-1)^l$, mit l Drehimpulsquantenzahl Parität: $\vec{r} \to -\vec{r} \Rightarrow \vec{p} \to -\vec{p}$, $\vec{E} \to -\vec{E}$, $\vec{A} \to -\vec{A}$ $\vec{L}, \vec{\sigma}, \vec{B}$ invariant

Ladungskonjugation: $c \mid q \rangle = \mid \overline{q} \rangle$, $c \mid \overline{q} \rangle = \mid q \rangle$ Nur Teilchen mit Ladung q = 0 können Eigenzustände

 $c |\gamma\rangle = - |\gamma\rangle$ da $c\vec{E} = -\vec{E}$ und $c\vec{B} = -\vec{B}$ G-Parität: Ladungskonjugation + Rotation im Isospin-Raum

Raum $G = (-1)^{L+S+I}$ CPT-Theorem: Physik ist invariant unter Anwendung von CPT (Austausch Teilchen \rightarrow Antiteilchen \Rightarrow Inversion des Orts \Rightarrow Inversion der Zeit)

Eigenschaften Hadronen: Nach außen farbneutral

(R+B+G = Weiß) Wellenfunktion: $\Psi = \varphi_{color} \Psi_{flav} \phi_{Spin} \Psi_{Ort}$ gehorcht Bose Symm. für Mesonen $(q\bar{q})$ und Fermi Symm. für Barvonen (qqq)

Baryonen: Gesamtwellenfkt antisymm. unter Vertauschung 2 Teilchen

Farbwellenfunktion ist antisymmetrisch,

Ort+Spin+Flavour symmetrisch z.B.: $S = \frac{2}{3} \Rightarrow |\uparrow\uparrow\uparrow\rangle$ und $L = 0 \Rightarrow$ Spin und Ort unter Vertausch symmetrisch \Rightarrow Flavour symmetrisch; Existenz von $|\Delta^{++}\rangle = |uuu\rangle$ ist Hinweis auf Farbladung wegen

Strangeness: s-Quark hat Quantenzahl S = -1 Y = B + S = Baryonenzahl + Strangeness

Quarks: Übersicht

	Baryoner B	izahl B, S J	ipin J, Isc I	ispin I, Stra I_3	ngenes S	S S Q/e
u d s	+1/3 +1/3 +1/3	1/2 1/2 1/2	1/2 1/2 0	$^{+1/2}_{-1/2}_{0}$	0 0 -1	$^{+2/3}_{-1/3}$ $^{-1/3}$
$\frac{\overline{u}}{\overline{d}}$	-1/3 $-1/3$ $-1/3$	1/2 1/2 1/2	1/2 1/2 0	$-1/2 + 1/2 \\ 0$	0 0 +1	-2/3 + 1/3 + 1/3

• K•0 •<u></u>k° +1 I₃ +1 I3

Baryonen, Nukleonen

$\mathbf{J}^{\mathbf{P}} = \mathbf{\tilde{2}}^{+}$	$J^{P} = \frac{1}{2}^{+}$			
Δ- Δ0 Δ+ Δ++	s 0 • •			
Σ*- Σ*0 Σ*+	-1 Σ ⁻ Σ ⁰ Σ ⁺			
= *- = *0	-2 • =- • =0			
ο -	-3			
-1 0 +1	-1 0 +1			
I ₃	l ₃			

Abb. 15.4. Zustände des Baryonendekupletts mit $J^P=3/2^+$ (links) und des Baryonenoktetts mit $J^P=1/2^+$ (rechts) im I_3 –S–Schema.

 $\frac{1}{\sqrt{18}}\left(2\left(\frac{1}{2}\right)\right)\right)}{\frac{1}{1}}\right)\right)}\right)\right)}\right)}\right)}\right)}\right)}\right)}\right)}$