Planche 1.

Question de cours. Montrer qu'une fonction continue sur un compact est uniformément continue.

Exercice. Sit $E = \mathbb{R}[X]$. On note $||P|| = \sup_{[0,1]} |P(x)|$ pour $P \in E$. Soit $a \in \mathbb{R}$. Étudier la continuité de l'application

$$f: E \longrightarrow \mathbb{R}$$

$$P \longmapsto P(a)$$

Planche 2.

Question de cours. Théorème de Bolzano-Weierstrass dans \mathbb{R}^n .

Exercice. Soit K un compact d'un evn et soit (F_n) une suite décroissante de fermés non vides tels que $F_n \subset K$ pour tout n. Montrer que

$$\bigcap_{\mathbb{N}} F_n \neq \emptyset$$

Planche 3.

Question de cours. Si F est un sous-espace vectoriel, on n'a pas toujours $E = F \bigoplus^{\perp} F^{\perp}$. Si F est de dimension finie, en revanche, c'est le cas.

Exercice. Soit K un compact d'un evn et f une fonction de K dans K telle que pour tout $x \neq y$ dans K on a

$$||f(x) - f(y)|| < ||x - y||$$

Montrer que f admet un unique point fixe l. Montrer que toute suite définie (u_n) définie par $u_0 \in K$ et $u_{n+1} = f(u_n)$ converge vers l.

Solutions - Planche 1.

Exercice. L'application f est clairement linéaire. Soit $P \in \mathbb{R}[X]$. Essayons de majorer |P(a)| en fonction de |P|. On voudrait quelque chose du genre

$$|P(a)| \le \sup_{[0,1]} |P(x)|$$

En tout cas c'est vrai si $a \in [0, 1]$. Il va du coup falloir distinguer les cas.

Si $a \in [0, 1]$, alors $|f(P)| \le ||P||$. Donc f est continue et $|||f||| \le 1$. Est-ce que 1 est la meilleure constante possible? Si on prend le polynôme constant à 1, alors |f(1)| = 1 et ||1|| = 1. Donc oui |||f||| = 1.

Si maintenant a > 1. Alors il ne devrait y avoir aucun lien entre |P(a)| et ||P||. L'un peut être grand et l'autre petit en même temps. On va donc montrer que f n'est pas continue. Pour ce faire on cherche un polynôme P tel que |P(a)| est grand mais ||P|| est petit. On peut par exemple considérer $P(X) = X^n$. On a alors $P(a) = a^n$ qui diverge. Tandis que $||P|| = \sup_{[0,1]} |x^n| = 1$. Si f était continue il existerait donc une constante C tel que $a^n \leq C$ pour tout n. C'est exclu car a^n diverge. Donc f n'est pas continue dans ce cas.

Si a < 0. Montrons de même que f n'est pas continue. Cette fois ci on considère le polynôme $P(X) = (1 - X)^n$. Alors $P(a) = (1 - a)^n$ diverge tandis que la norme de P vaut 1. Donc f n'est pas continue.

Solutions - Planche 2.

Exercice. Comme F_n est non vide pour tout n, il existe $u_n \in F_n$ pour tout n. Or $F_n \subset K$ pour tout n. Donc (u_n) est une suite de K. Or K est compact. Donc il existe une extraction φ telle que $u_{\varphi(n)}$ converge vers une limite l. On sent que l va être dans l'intersection. Montrons le. Soit p un entier, montrons que $l \in F_p$. Or $u_{\varphi(n)} \in F_p$ pour tout $n \geq p$, car $\varphi(n) \geq n \geq p$ et $F_n \subset F_p$ (par décroissance). Or F_p est fermé. Donc l comme limite d'une suite de F_p est dans F_p . On en déduit que

$$l \in \bigcap_{p \in \mathbb{N}} F_p$$

Et donc que l'intersection est non vide.

Solutions - Planche 3.

Exercice.

a) Commençons par l'unicité (c'est souvent plus simple). Supposons qu'il existe l et l' dans K deux points fixes différents. Alors par l'inégalité vérifiée par f on a

$$||f(l) - f(l')|| < ||l - l'||$$

Or f(l) = l et f(l') = l' donc ||l - l'|| < ||l - l'||. C'est impossible. Donc f admet au plus un point fixe.

Soit $x \in K$. L'élement x est un point fixe si et seulement si ||f(x) - x|| = 0. On cherche donc à montrer que la fonction g(x) = ||f(x) - x|| sur K admet 0 comme minimum. Or g est continue car la norme est continue et f est continue. Comme K est compact, alors g admet un minimum g sur g mais ce n'est pas forcément 0. Ce minimum est atteint en un g est continue.

$$||f(f(l)) - f(l)|| < ||f(l) - l||$$

Donc g(f(l)) < g(l) ce qui contredit la minimalité de l à moins que f(l) = l et on a donc un point fixe.

b) Soit $u_0 \in K$ et (u_n) une suite définie par $u_{n+1} = f(u_n)$. Montrons que u_n converge l. Pour ce faire montrons que $||u_n - l||$ tend vers 0. On va étudier cette quantité. On la note $d_n = ||u_n - l||$. Par l'inégalité on a

$$d_{n+1} = ||u_{n+1} - l|| = ||f(u_n) - f(l)|| < ||u_n - l|| = d_n$$

Donc la suite positive (d_n) est décroissante et minorée. Elle converge donc. Si elle convergeait vers 0 on aurait gagné. Sinon on note d>0 sa limite. Or (u_n) est une suite de K compact donc admet une valeur d'adhérence $l' \in K$. Il existe une extractrice φ telle que $u_{\varphi(n)} \to l'$. Or $d_{\varphi(n)} = ||u_{\varphi(n)} - l|| \to ||l' - l|| = d > 0$. De plus $d_{\varphi(n)+1}$ tend vers la même limite d en $+\infty$. Or

$$d_{\varphi(n)+1} = ||u_{\varphi(n)+1} - l|| \to ||f(l') - l||$$

Donc ||l'-l|| = ||f(l')-f(l)||. Mais c'est exclu par l'inégalité stricte vérifiée par f. Donc la suite d_n converge vers 0 et u_n converge vers l.