Precise Control of Organic LED Emission Through Optically-Resonant Microcavity Confinement

Benjamin Isenhart¹, Ekraj Dahal², Karen Cianciulli³, Matthew S. White¹²

 1 Department of Physics, The University of Vermont, Burlington VT 2 Materials Science Pgrogram, The University of Vermont, Burlington VT 3 Asheville School, Asheville NC

May 2, 2019

OLED Devices Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Device Fabrication
Angle-Resolved Electroluminescence Spectroscopy

Results

Single Cavity Devices Multi-cavity Devices

OLED Devices Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Device Fabrication
Angle-Resolved Electroluminescence Spectroscopy

Results

Single Cavity Devices
Multi-cavity Devices

OLED Devices

Waveguides

The Fabry-Pérot Etalon

$$T(\phi) = \frac{I_{trans}}{I_{inc}} = \frac{(1 - R_1)(1 - R_2)}{\left(1 - \sqrt{R_1 R_2}\right)^2 + 4\sqrt{R_1 R_2}\sin^2(\phi)}$$
$$T_{\phi=0} = \frac{(1 - R_1)(1 - R_2)}{\left(1 - \sqrt{R_1 R_2}\right)^2}$$

Microcavity-confined OLEDs

OLED Devices Waveguides and the Fabry-Pérot Etalor Microcavity-confined OLEDs

Experimental Methods

Device Fabrication
Angle-Resolved Electroluminescence Spectroscopy

Results

Single Cavity Devices Multi-cavity Devices

Device Fabrication

Angle-Resolved Electroluminescence Spectroscopy (ARES)

OLED Devices
Waveguides and the Fabry-Pérot Etalor
Microcavity-confined OLEDs

Experimental Methods

Device Fabrication
Angle-Resolved Electroluminescence Spectroscopy

Results

Single Cavity Devices Multi-cavity Devices

Single Cavity Devices

Test

Peak Emission Wavelength

$$\lambda_0 = \frac{2nd}{q}$$

 $n o ext{index of refraction} \ d o ext{cavity thickness} \ q o ext{resonant mode}$

Band Narrowing

$$Q = \frac{2nd}{\lambda_0} \left\{ \frac{1 - \sqrt{R_1 R_2}}{\pi (R_1 R_2)^{1/4}} \right\}$$

$$Q = q \left\{ \frac{1 - \sqrt{R_1 R_2}}{\pi (R_1 R_2)^{1/4}} \right\}$$

$$0 = q \left\{ \frac{1 - \sqrt{R_1 R_2}}{\pi (R_1 R_2)^{1/4}} \right\}$$

$$0 = \frac{80}{70} \frac{10}{100} \frac{150}{100} \frac{150}{200} \frac{100}{250} \frac{100}{300} \frac{1}{350} \frac{100}{100} \frac{1}{100} \frac{1}{1$$

Effect of Bottom Electrode Material

Aluminum bottom electrode

Silver bottom electrode

Multi-cavity Devices

Behavior at Large Angles

Number and Bandwidth of Resonant Modes

OLED Devices

Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Device Fabrication

Angle-Resolved Electroluminescence Spectroscopy

Results

Single Cavity Devices

Multi-cavity Devices

Conclusions and Future Work

References

Aknowledgements

Questions?