Συναρτήσεις Θεώρημα Bolzano

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Φτιάξτε άξονες

Συναρτήσεις 2/17

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική

Συναρτήσεις 2/17

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- \bullet Σχηματίστε συνάρτηση στο $[\alpha,\beta]$ χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνάρτηση στο $[\alpha, \beta]$ χωρίς να περάσετε από τον άξονα x'xΣυμπέρασμα...

Λόλας (10^o ΓΕΛ) Συναρτήσεις 2/17

• Φτιάξτε άξονες

- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο (α,β) χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο (α,β) χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- ullet Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο (α, β) χωρίς να περάσετε από τον άξονα x'x

Συναρτήσεις 3/17

- Φτιάξτε άξονες
- \bullet Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο (α,β) χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

• Φτιάξτε άξονες

- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο $[\alpha,\beta]$ χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο [lpha,eta] χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο $[\alpha,\beta]$ χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνεχή συνάρτηση στο $[\alpha,\beta]$ χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

Χωρίς πολλά πολλά...

Θεώρημα Bolzano

Έστω μια συνάρτηση f ορισμένη σε κλειστό διάστημα $[\alpha, \beta]$. Αν:

- ullet η f είναι συνεχής στο [lpha,eta] και
- $f(\alpha) \cdot f(\beta) < 0$,

τότε υπάρχει $x_0 \in (\alpha,\beta)$ τέτοιο ώστε $f(x_0)=0$

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Το μόνο που κάνει είναι να σε πληροφορεί ότι ΣΙΓΟΥΡΑ έχει ρίζα μια συνάστηση. ΜΟΝΟ

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Το μόνο που κάνει είναι να σε πληροφορεί ότι ΣΙΓΟΥΡΑ έχει ρίζα μια συνάρτηση. ΜΟΝΟ

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Το μόνο που κάνει είναι να σε πληροφορεί ότι ΣΙΓΟΥΡΑ έχει ρίζα μια συνάρτηση. ΜΟΝΟ

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Το μόνο που κάνει είναι να σε πληροφορεί ότι ΣΙΓΟΥΡΑ έχει ρίζα μια συνάρτηση. ΜΟΝΟ

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Το μόνο που κάνει είναι να σε πληροφορεί ότι ΣΙΓΟΥΡΑ έχει ρίζα μια συνάρτηση. MONO

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 0 1-1

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Να αποδείξετε ότι:

- $m{4}$ Η συνάρτηση $f(x)=x^3+x-1$ ικανοποιεί τις υποθέσεις του θεωρήματος Bolzano στο διάστημα [0,1].
- ② Η εξίσωση $x^3 + x 1 = 0$ έχει μία τουλάχιστον ρίζα στο διάστημα (0,1).

Να αποδείξετε ότι:

- f 4 Η συνάρτηση $f(x)=x^3+x-1$ ικανοποιεί τις υποθέσεις του θεωρήματος Bolzano στο διάστημα [0,1].
- ② Η εξίσωση $x^3+x-1=0$ έχει μία τουλάχιστον ρίζα στο διάστημα (0,1).

Να αποδείξετε ότι υπάρχει ένα τουλάχιστον $x_0 \in (0,1)$ τέτοιο ώστε $x_0^2 + 3x_0 = e^{x_0} + 1.$

Συναρτήσεις 9/17

Έστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής με $f(\mathbb{R})=(0,1)$. Να αποδείξετε ότι η εξίσωση f(x)=x-1 έχει μία τουλάχιστον ρίζα στο διάστημα (1,2).

Λόλας (10^o ΓΕΛ) Συναρτήσεις 10/17

Να αποδείξετε ότι η εξίσωση $\frac{e^x}{x-2}+\frac{x^2+1}{x-1}=0$ έχει μία τουλάχιστον ρίζα στο διάστημα (1,2).

Να αποδείξετε ότι υπάρχει μοναδικό $x_0 \in (0,1)$ τέτοιο ώστε $e^{x_0} + x_0 = 2$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 12/17

Δίνονται οι συναρτήσεις $f(x)=\ln x$ και $g(x)=\frac{1}{x}$. Να αποδείξετε ότι οι C_f και C_g στο διάστημα (1,e) έχουν ένα ακριβώς κοινό σημείο.

Συναρτήσεις 13 / 17

Να αποδείξετε ότι η εξίσωση $x^3-4x^2+2=0$ έχει δύο τουλάχιστον ρίζες στο διάστημα (-1,1).

Δίνεται το ορθογώνιο ${\rm OAB}\Gamma$ του σχήματος και μία συνεχής συνάρτηση f στο [0,2] της οποίας η γραφική παράσταση βρίσκεται στο χωρίο που ορίζει το ορθογώνιο. Να αποδείξετε ότι η C_f τέμνει τη διαγώνιο ${\rm A}\Gamma$.

Να δείξετε ότι η εξίσωση $\ln x = \frac{1}{x-1}$ έχει μία τουλάχιστον ρίζα στο διάστημα (0,1).

Έστω η συνεχής συνάρτηση $f:[0,1]\to\mathbb{R}$ με -1< f(x)<0, για κάθε $x\in[0,1]$. Να δείξετε ότι υπάρχει ένα τουλάχιστον $x_0\in(0,1)$ τέτοιο ώστε $f^2(x_0)=2f(x_0)+3x_0$