

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ОДНОСЕДЕЛЬНЫЕ СРЕДНИХ РАСХОДОВ ГСП

ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

ГОСТ 14238-69

Издание официальное

КОМИТЕТ СТАНДАРТОВ, МЕР И ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ ПРИ СОВЕТЕ МИНИСТРОВ СССР

РАЗРАБОТАН Специальным конструкторским бюро по автоматике в нефтепереработке и нефтехимии

Начальник СКБ АНН Белозерский С. С. Руководитель темы Ушанов А. А. Исполнители Романов В. В. и Маслова Л. М.

ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности

Зам, министра Соболев В. М.

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Отделом приборостроения Комитета стандартов, мер и измерительных приборов при Совете Министров СССР

Начальник отдела **Ивлев А. И.** Ст. инженер **Терехова А. Г.**

Отделом приборов, средств автоматизации и вычислительной техники Всесоюзного научно-исследовательского института по нормализации в машиностроении [ВНИИНМАШ]

Начальник отдела **Кальянская И. А.** Начальник сектора **Шарфман М. И.** Ст. инженер **Соколова Г. М.**

УТВЕРЖДЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 3 октября 1968 г. [Протокол № 132]

Председатель отраслевой научно-технической комиссии (член Комитета) Ивлев А. И.

Зам. председателя Фурсов Н. Д.

Члены комиссии — Руднев А. П., Москвичев А. М.

ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 17/1 1969 года № 213

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ОДНОСЕДЕЛЬНЫЕ СРЕДНИХ РАСХОДОВ ГСП

ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

ГОСТ 14238-69

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УСТРОЙСТВА ИСПОЛНИТЕЛЬНЫЕ ОДНОСЕДЕЛЬНЫЕ СРЕДНИХ РАСХОДОВ ГСП

ΓΟ**СТ** 14238—69

Типы и основные параметры

Middle flow single port actuating device SSI.

Types and basic parameters

Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 17/II 1969 г. № 213 срок введения установлен с 1/I 1970 г.

Несоблюдение стандарта преспедуется по закону

- 1. Настоящий стандарт распространяется на односедельные исполнительные устройства Государственной системы промышленных приборов и средств автоматизации (ГСП) с условной пропускной способностью (K_{vy}) от 3,2 до 500 $M^3/4$ с фланцевым присоединением к трубопроводу, предназначенные для воздействия на технологические процессы путем изменения расхода проходящих через них сред с температурой от 200 до 450°С.
- 2. В зависимости от вида используемой энергии односедельные исполнительные устройства должны изготовляться следующих типов:

пневматические;

гидравлические;

электрические.

- 3. Односедельные исполнительные устройства подразделяются на:
- а) регулирующие на условное давление (P_y) 16; 40 и 64 $\kappa cc/cm^2$ и запорно-регулирующие на условное давление (P_y) 16 и 40 $\kappa cc/cm^2$ в зависимости от назначения;

б) сальниковые и сильфонные в зависимости от вида уплотне-

ния штока регулирующего органа;

в) исполнительные устройства с линейной и равнопроцентной пропускной характеристикой в зависимости от вида характеристики;

г) проходные и угловые в зависимости от вида корпуса;

д) нормально открытые (НО) и нормально закрытые (НЗ) в зависимости от вида действия.

4. По устойчивости к воздействию температуры и влажности окружающего воздуха при эксплуатации односедельные исполнительные устройства делят на группы, указанные в табл. 1.

Таблица 1

Группы исполнительных устройств	Температура окружающего воздуха в °С	Относительная влажность окружающего воздуха на всем диапазоне температур в %
I	От —50 до +50	
II	От —30 до +50	30—80
III	От —15 до +50	

Примечание. Исполнительные устройства I и II групп должны быть устойчивы также к воздействию окружающего воздуха с относительной влажностью 95% при температуре 35°C.

5. Односедельные исполнительные устройства должны изготовляться следующих классов точности: 2,5; 4 и 6.

Класс точности исполнительных устройств с позиционером должен быть не ниже 2.5.

6. Основная допустимая погрешность, порог чувствительности и вариация хода штока односедельных исполнительных устройств без позиционера в зависимости от класса точности должны соответствовать указанным в табл. 2.

Таблица 2

Класс точности исполнительного устройства	Основная допустимая погрешность в % от величины условного хода	Порог чувствитель- ности в % от диапа- зона командного сигнала	Вариация хода штока в % от вели- чины условного хода
2,5	±2,5	0,6	2,5
4,0	±4,0	1,0	4,0
6,0	±6,0	1,5	6,0

Основная допустимая погрешность, порог чувствительности и вариация хода штока должны определяться в условиях по ГОСТ 12997—67 при незаполненном регулирующем органе и сальнике, затянутом усилием, обеспечивающим герметичность штока в рабочих условиях.

- 7. Допустимая негерметичность для регулирующих исполнительных устройств не должна превышать 0.005% от условной пропускной способности (K_{vy}), для запорно-регулирующих исполнительных устройств негерметичность не допускается.
- 8. Параметры регулирующих органов исполнительных устройств и их обозначения должны соответствовать указанным в табл. 3.
- 9. Максимальные перепады давления односедельных исполнительных устройств должны устанавливаться в технической документации, утвержденной в установленном порядке.

	×			уемой	p	атер ующ ышкі	ero	opra	на yca)	- X					1	Трох	оды
	Виды исполнительных устройств		мения	Температуры регулируемой среды в °С			Стал	ī —	По согласованию с за- водом-изготовителем	Вид пропускной харак- геристики		25			(32)		
	исполні йств		Условные давления Ру в кас/см ²	ратуры в °С	Чугун серый	Углеродистая	Хромо-никеле- вая	Хромо—никеле- молибденовая	По согласованию водом-изготовите	ропускы			_		2	слог	зная
-	Виды		Услов Рув	Темпе	Чугун	Углер	Хромо вая	Хромо Молиб	По сог водом	Вид пропу теристики	3,2	5	8	5	8	12	8
				От —15						Лин е йн а я	01	02	0 3	01	05	06	07
			10	до +22		_	-	-	_	Равнопро- центная	51	52	53	54	5 5	56	57
			16							Линейная	_	_	_	_	_	_	=
		Сальниковые			-	302	3 0 3	304	30 5	Равнопро- центная	_	_	_	_	_		
		льни		<u> </u>		ļ —				Линейная	01	0 2	0 3	04	05	06	07
		Ca	40	От —40 до +22	-	3 0 6	3 0 7	308	3 0 3	Равнопро- центная	51	52	53	54	55	56	57
	ره									Линейная	01	02	0 3	04	0 5	0 6	07
Проходные	эующи		64		_	310	311	31 2	313	Равнопро- центная	51	52	53	 54	55	56	57
Tpox	улиј			0- 15						Линейная	01	0 2	03	04	0 5	06	07
	Регулирующие		16	От —15 до +22	314	-		-	_	Равнопро- центная	51	52	53	54	55	56	57
			10							Линейная	_	_	_	_		_	
		Сильфонные			-	315	316	317	318	Равнопро- центная	_	_	_	_	_	_	_
		ильф		От —40				<u> </u>		Линейная	01	02	0 3	04	0 5	06	07
		S	40	до +2 2	-	319	320	3 2 1	32 2	Равнопро- центная	51	5 2	53	54	55	56	57
										Линейная	01	02	03	04	0 5	0 6	07
			64		-	323	324	3 25	326	Равнопро- центная	51	5 2	53	54	5 5	56	57

Таблица 3

усл	овн	ые <i>I</i>	у в	ĸĸ																			
(40)			50			(6	65)		8	60			100		(125)		:	150			200	
про	пу	кна	я сп	o c o(э но с	сть	K_{vy}	ВА	t ³ /4	•			•										
12	20	12	20	32	20	р	32	50	32	50	80	50	80	125	80	125	200	125	20 0	320	200	320	500
08	0 9	10	11	12	1	3	14	15	16	17	18	19	20	21	22	2 3	24	2 5	26	27	2 8	2 9	30
5 8	 59	60	61	62	6	3	64	6 5	66	67	68	69	70	71	72	7 3	74	75	76	77	78	79	80
-	 -		_	_	-	-	_	_				19	20	21	2 2	23	24	2 5	26	27	28	29	30
-	_	_	_	_	-	-	-	-	-	-	-	6 9	70	71	72	73	74	75	76	77	78	79	80
08	_ 09	10	11	1:	2 1	- 3	14	15	16	17	18	19	20	21	22	 2 3	24			 27	28	29	30
58	5 9	60	61	6	2 6	- 63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
08	09	10	11	1	2	13	14	1 5	16	17	18	 19	20	21	22	23	24	 25		27	28	29	30
58	559	60	6	6	2	63	64	65	66	67	6 8	6 9	70	71	72	73	74	7 5	76	77	78	79	8
08	3 09	10		- 1 1	2	13	14	— 15	16	17	18	19	20	21	22	23	24	 25	26	27	_	-	-
5	- - 3 59	60	6	1 e	- -	63	64	 65	6 6	67	68	6 9	70	7	72	73	74	75	76	77	, _	_	-
-	- - - -	-		- - - -	- -	_	_	_	 -	- -	_	19	20	2	1 25	23	24	25	26	27	, -	-	- -
-	- -	-		- - - .	_ -	_	_	_	_	-	_	69	70	7	1 75	73	74	75	76	5 77	7 -		- - -
0	80	9 1	0 1	- 1	12	13	<u> </u>	15	16	17	18	3 19	20	2	1 2	2 23	24	25	20	5 2	7 -	- - -	- - -
-	- 85	- -	- - 0 6	- - il (- 62	 63	64	65	66	67	68	69	70	7	7	2 73	3 74	75	5 70	7	7 -	- -	- -
-	8 0	- -	- -	-	12	13	14		.	17	18	8 1	9 20	0 2	- 2	2 2	3 2	1 2	5 2	6 2	7 -	_ -	- -
-	8 5	- -	- -	- -	- -			65	i 60	6 6	- 7 6	8 6	9 7	- 0 7	7	2 7	3 7	- 4 7	5 7	6 7	- - 7 -	_ -	- - - -

		,			уемой	M (Kp	атер уюц ышк	иал ј цего и и	pery. opra kopn	ли- на уса)	ن						Проз	коды
	Виды исполнительных устройств		ления		1 смпературы регулируемон срелы в °С			Стал	-5	То согласованию с за- водом-изготовителем	Вид пропускной харак- теристики		2 5			(32)		
	исполни	912	Условные давления $P_{\bf y}$ в $\kappa z c/c M^2$		ратуры в °С	Чугун серый	Углеродистая	Хромо—никеле- вая	Хромо-никелемолибаеновая	По согласованию водом-изготовите	ики					3	√сло:	вная
	Виды 1	india.	Услов Руви	E	темпе среды	Чугун	Углер	Хромо вая	Хромо модибл	По сог. водом-	Вид пр терист	3,2	5	8	5	8	12	8
											Линейная	01	02	03	04	05	06	07
		2	10	ДО	-15 + 120	327	-	_	_	_	Равнопро- центная	51	52	53	54	55	56	57
		OBB	16								Линейцая	_	_	_	_	_	_	
	лощие Сальниковые		От	— 40	_	328	329	3.30	331	Равнопро- центная			_	_	_	_	_	
	ощи	рующи		до	+120				_		Ли нейна я	01	02	0 3	04	05	06	07
Проходные	егулируюш		40			_	332	333	334	335	Равнопро- центная	51	52	53	54	55	56	57
poxc	-per	Запорно-регулирующие ie				_			_		Линейная	01	02	03	04	05	0 6	07
11	апорнс		10		-15 +120	336	_	_		-	Равнопро- центная	51	52	53	54	 55	56	57
	נט	111111	16								Линейная	_		_	_	=	_	
		Сильфонные		От	-40		337	338	339	340	Равнопро- центная	_	_			_	_	-
					+120						Линейная	01	02	03	04	05	0 6	07
	Регулирующие		40				341	342	343	344	Равнопро- центная	51	52	53	54	55	56	57
											Линейная	01	02	03	04	05	06	07
o Latubbac		Сальниковые	40		—4 0	-	34 5	346	347	348	Равнопро- цен т ная	51	52	53	54	55	56	57
1.1		ЛЬН		до	+225						Линейная	01	02	03	04	05	06	07
	Pel	Ca	64			-	349	350	351	352	Равнопро- центная	51	52	53	54	55	56	57

Продолжение

						_													l poc	ОЛЭ	сени	e
ус	лов	ные	D _y 1	 .													_					
(40)		50			(65)			80			100			(125)	-		150			200	
пр	опу	скна	я сп	особ	ност	ь К	у В	м ³ /ч						! <u></u>					!			
12	20	12	20	32	20	32	50	32	50	80	50	80	125.	80	125	200	125	200	320	200	320	500
08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	2 6	27	28	29	30
58	- 59	60	61	62	6 3	64	65	66	67	68	 69	70	71	72	73	74	75	76	77.	 78	 79	80
_			_	-		_	_	_	_	 -	 19	20	21	22	23	 24	 25	 26	27		29	 3 0
_			_		_	_			— —		6 9	70	71		— 73	 74	 75	 76	— 77	 78	 79	80
08	_ 0 9	10	11	<u> </u>	 13	<u> </u>	15	16		— 18	 19	20	21			24	2 5	 26	27			30
58	_ 59	— 60	<u></u>	— 62	— 63	64	 65	66	 67	 68	6 9	70	71	 72	 7 3	 74	 75	 76	— 77	 78		
_	09	10	<u> </u>	 12	 13	 14		16	 17	18	19	20	21		 23		25		27		_	_
	_ 59	 60	_	- 62	 63	-		- 66														
-	-		_	_		_						20		22		24		26	27			
-		_	—		—		_	_	_		 69	! '		72		74	75		77		_	_
	- 00					_				18			<u> </u>						_			_
-	0 9	10	11	12 —	13			16			19	_		2 2	-	24	25 —	26 	27	_	_	_
_	59 —	60 —		62	63	64	65	6 6		68	69	70 —	'	72 —		74 —	75 —	76 	77 —		_	_
-	0 9	10	11 —	12 —	13	14		16			19	20	21 —	2 2		24	25 —	26 —	27 —	_	_	_
<u> </u> _	5 9 —	60 —		62 —	63 	64		-66 			69			72		74	75 —		77	_	_	_
08	09 —	10	11 —	12 —	13 —	14	15 —	16 	17 —	18 —	19 —	20 —	21	2 2	23 —	24	2 5	26 —	27 —	<u>-</u>	_	_
58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	7 6	7 7	-	-	-

				уемой	i p	уюш	иал ј его и и и	opra	на	÷.					r	Трох	оды	
	гельных		тения	регулир		_	Стал	іь]	но с за- телем	ій харан		25			(32)			
	Виды исполнительных устройетв		Условные давления Ру в кесісма	Темиературы регулируемой среды в °С	серый	Углеродистая	Хромо никеле- вая	Хромо	По согласованию с за- водом-изготовителем	Вид пропускной харак- теристики					3	слов	ная	
	Виды устрой		Условн Рувк	Темпер	Чугун серый	Углеро	Хромо- вая	Хромо молибд	По согл водом-	Вил пр терист	3,2	5	8	5	8	12	8	
										Линейная	01	0 2	03	01	05	0 6	07	
			40	От 225	-	353	35 4	-	355	Равнопро- центная	51	52	53	54	5 5	56	57	
				до 450		_				Линейная	01	02	0 3	04	0 5	06	07	
		Сальниковые	64		_	356	357	-	358	Равнопро- центная	51	52	5 3	54	55	56	57	
	Cantun	ЛЬНИ					_	_		Линейн а я	01	0 2	0 3	04	 05	0 6	07	
		Ca	40	От —40 до +225	_	359	360	361	3 6 2	Равнопро- центная	51	52	5 3	54	55	56	57	
	Регулирующие			с обо- гревом						Лине й н а я	01	02	03	04	0 5	06	07	í
Угловые			64			363	364	36 5	366	Равнопро- центная	51	5 2	53	54	55	56	57	i
Угле	гулн									Лине йна я	01	02	03	04	0 5	06	07	
	Pe		40	От —40		367	3 6 8	369	370	Равиопро- центная	51	 52	53	<u></u>	5 5	56	57	
		i		до +22 5	1					Линейн а я	01	02	0 3	04	05	06	07	
		Сильфонные	64		-	371	372	373	374	Равнопро- центная	51	52	53	54	5 5	5 6	5 7	
		ильф								Линейная	01	02	03	04	0 5	0 6	07	
		C	40	От —40 до +2 25	_	375	376	377	37 8	Равнопро- центная	51	52	53	54	5 5	56	57	
				с обо- гревом						Линейная	01	02	03	04	0 5	0 6	0 7	
			64		-	379	380	3 81	382	Равнопро- центная	51	52	5 3	54	55	 56	57	

Продолжение

_																			1.	I poč	оля	сени	<u> </u>
_	yc.	лов	ные	<i>D</i> y ¹	3 MM	: 									i			1					
	(40)		5 0			(65)			80			100		•	(125)			150			20 0	
	пр	ony	скна	я сп	особ	ност	ъ К	ув	м ³ /ч														
	12	20	12	20	32	20	32	5 0	32	50	80	50	80	125	80	125	200	125	200	320	20 0	320	500
_	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	_		
	58	59	60	61	62	6 3	64	65	66	67	68	69	70	71	72	73	74	75	76	77	_	_	_
	08	0 9	10	11	12	13	14	15	16	17	18	19	20	21		2 3	 24	 25	 26	27	_	_	
	58	 59	60	61	62	63	64	65	66	67	68	6 9	70	71	72	7 3	74	7 5	76	77	_	_	_
	08	09 —	10	11	12	13	14	 15	<u>1</u> 6	17	18	19	20	21	22	 23	24	25	26	27	_		-
	58	59	60	61	62	6 3	64	65	66	67	68	69	70	71	72	73	74	75	76	77	-		_
	_ 0 8	0 9	10	11	12		14	 15	16	17	18	19	20	21	22	2 3		 25	26		_	<u> </u>	_
	5 8	5 9	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	 75	7 6	77	_		
	- 08	 09	10	<u> </u>	12	13	14	— 15	— 16	 17	<u> </u>	— 19	20	<u></u> 21	2 2	2 3	24			 27		_	_
	58	59	60	61	62	63	64	65	6 6	67	68	69	70	71	72	73	74	75	76	 7 7	_	_	
_	08	09	10	11	12	13	14	 15	16	17	18	19	 20	21	22	2 3	24		2 6			_	_
	58	59	60	61	62	63	64	65	6 6	67	68	69	70	71	72	73	74	75	76	77	_	_	
	08	09	10	11	12	13	14	15	 16	17	18	19			 22	2 3	24	 25		27	_		
	58	59	60	61	6 2	63	64	65	66	67	68	6 9	70	71	72	73	74	75	76	77	_	_	_
	08	0 9	10	11	12	13	14	15	16	17	18	19	20	21	22	 23	24		26	27		-	_
	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	_	_	_

				уемой	F	уюц	иал tero и и	орга	на	٠						Прох	коды	
	исполнительных йств		давления К ²	Темисратуры регулируемой среды в °С		_	Стал	1.	По согласованию с за- водом-изготовителем	Вид пропускной харак- геристики		25			(32)			
	исполи ств	}	вные да кгс/сж ²	ратуры в °С	серый	дистая	-нике,	-никел еновая	тасован 13готог	опускн					y	oro,	вная	
	Виды испо		Условные Ру в кгс/сл	Темисра среды в	Чугун	Углеродистая	Хромо-никеле- вая	Хромо—никеле молибаеновая	По согласованию водом-изготовите	Вид пропу теристики	3,2	5	8	5	8	12	8	
	e									Линейная	01	02	03	04	0 5	0 6	07	<u> </u>
	Регулирующие	ониые	40	От —200	_		383	_	384	Равнопро- центная	51	5 2	53	54	55	56	57	
	ули	егулирующи Сильфонн ы е		до —40						Линейная	01	02	0 3	04	0 5	06	07	
вые	Рег	О	64		_	_	385		386	Равнопро- центная	51	52	53	54	5 5	56	57	
Угловые	цие	ковые		От —40						Линейная	01	02	03	04	05	06	07	
	улируюш	Запорно-регулирующие ильфонные Сальниковые	40	до +120	_	387	388	389	390	Равнопро- центная	51	52	53	54	55	56	57	
	1 1		40	От —40		001	0.00		-	Липейная	01	02	03	04	05	06	07	
	Запорн	Сильфонные	40	до +120		391	392	393	394	Равнопро- центная	51	52	5 3	54	55	56	57	

Примечание. Условные проходы, указанные в скобках, применять в

Продолж	ение
---------	------

(40)		5	0		(65)		8	0		10	10		(12	25)		15	0		20	00
п	роп	ускі	ная	спос	бно	сть /	√ _{vy}	в м³	 u		<u> </u>						_'					
1	2 20	12	20	32	20	32	50	32	50	80	50	80	12	25 80) 15	25 20	00 12	5 20	0 32	20 20	10 32	0 5
08	8 09	10	1	1 12	2 13	3 14	15	5 10	5 1	7 18	3 19	9 2	0 2	1 2	2 2	3 2	4 2	5 20	6 2	<u> </u> 7 _	<u> </u> -	<u> </u>
58	59	60	61	62	63	64	65	66	67	68	69	70	7	1 7:	2 7	3 7	1 7	76	- 5 7:	- 7 _	-	-
08	09	10	11	12	13	14	15	16	17	18	19	20	2	22	2 23	3 24	25	26	27	,	-	-
58	59	60	61	62	6 3	64	65	66	67	68	69	70	71	72	73							-
08	09	10	11	12	13	14	 15	16	17	18	19	 20	21	22	.					_		
5 8	59	60	61	62	6 3	64	65	66	67	 68	69		71	- 72					77		_	
08	0 9	10	11	12	13	14	15	16	17	18	19		21	22			25	26	27	_		
58	5 9	60	61	62	63	64	65	66	67	68	69	70	 71	72	 73		7 5	76	77		-	_

технически обоснованных случаях.

10. Варианты комплектования односедельных исполнительных устройств исполнительными механизмами, дополнительными блоками и их условные обозначения должны соответствовать указанным в табл. 4.

Таблица 4

		Типы	исполнител	ьных механ	измов
Типы исполнитель- ных устройств	Комплектование исполнительных механизмов дополнительяыми блоками	Пружинный мембранный	Беспружинный мембранный	Поршневой	Прямоходный
Пневматические или гидравлические	Без дополнительных блоков Боковой ручной дублер Верхний ручной дублер Позиционер Позиционер и боковой ручной дублер Позиционер и боковой ручной дублер Позиционер и верхний ручной дублер Позиционный датчик положений и боковой ручной дублер Позиционный датчик положений и верхний ручной дублер Позиционный датчик положений и верхний ручной дублер	10 01 01B 02 03 05 05B 06	40 41 41B 42 43 45 45B 46 46B	60 61 61B 62 63 65 65B 66	— — — — —
Пневмати	чик положений Позиционер, позиционный дат- чик положений и боковой ручной дублер	08	48 52	68 72	_
	Без дополнительных блоков	_		_	80
	Непрерывный дистанционный датчик положений Позиционный дистанционный	_		-	81
еские	датчик положений Датчик обратной связи Непрерывный дистанционный	_ _	_ 		82 83
Электрические	датчик положений и позиционный дистанционный датчик положений Непрерывный дистанционный датчик положений и датчик об-	-	_	_	84
.e	ратной связи Непрерывный дистанционный датчик положений, позиционный дистанционный датчик положений		_		86
	и датчик обратной связи	_	l —	l —	87

Примечания:

1. Поставка всех видов электрических исполнительных механизмов, в томчисле и без дополнительных блоков, предусматривает комплектование их местным указателем положения, ручным дублером, ограничителем хода (механическим и электрическим), ограничителем усилия.

2. Тип и количество датчиков обратной связи указываются в заказе.

11. Условное обозначение односедельного исполнительного регулирующего обозначения устройства состоит из (табл. 3), обозначения исполнительного механизма, укомплектованного дополнительными блоками (табл. 4), обозначения группы исполнительного устройства (табл. 1) и номера настоящего стандарта.

Для исполнительных устройств, укомплектованных тельными механизмами обратного действия (исполнительное устройство работает по типу «нормально закрыт»), добавляется

инлекс «НЗ».

Для гидравлических исполнительных устройств к обозначению исполнительного механизма добавляется индекс «Г».

Примеры условных обозначений:

пневматического односедельного исполнительного устройства проходного, регулирующего, сальникового на $P_{y}=40~\kappa cc/cm^{2}$, для регулируемой среды с температурой 125°C, из стали 25Л—П, с линейной пропускной характеристикой, $D_{y}=80$ мм, $K_{vy}=50$ м $^{3}/_{4}$, с пружинным мембранным исполнительным механизмом без дополнительных блоков, для работы при температуре окружающего воздуха от -50 до +50°C:

3061710 I ΓΟCT 14238—69

гидравлического односедельного исполнительного ройства проходного, запорно-регулирующего, сильфонного на $P_y=40~\kappa cc/cm^2$, для регулируемой среды с температурой 100°C, из стали Х17Н13М3ТЛ с линейной пропускной характеристикой, $D_{\rm v} = 150$ мм, $K_{v{\rm v}} = 200$ м³/ч, с поршневым исполнительным механизмом, укомплектованным позиционером, для работы при температуре окружающего воздуха от —30 до +50°C:

343 266 2 F II FOCT 14238-69