Q - Process.

Pef: We say a matrix & is a &-matrix

if $0 \le 2ij \le \infty$. $i \ne j$. $\sum_{i \ne j} 2ji \le -2jj =: 2j$ Mirrover. if $\sum_{i \in E} 2ji = 0$. Then we say &

is conservative.

Rmk: If generator of cTmc is a &-matrix.

and state span of cTmc is finite.

then a is conserrative:

 $\frac{Pf:}{t \to 0} \quad \lim_{t \to 0} \frac{1 - \sum_{j \in E} P_{ij}(t)}{t} = \sum_{j \in E} 2ij = 0.$

Phik: Note that generator of every CTMCs
is Consciontive. (By Mc7)

airon a a-motrix. A come has a as a process.

PMK: It's well-def:

Lemma, $\lim_{t \to 0^+} \frac{1 - Pii(t)}{t} = \sup_{t \to 0^+} \frac{1 - Pii(t)}{t} = :$ {i... $\lim_{t \to 0^+} \frac{Pij(t)}{t} = 2ij \quad exists. \quad \text{and}$ $\sum_{j \neq i} 2ij = 2: \quad \text{for trans. form. Clij(ti)}.$

Pf: It follows from Frokete Lemma.

Note that Pij(tth) ? Pij(tt) Piloh)

3 o generator matrix of CTMC exists.

With Faton's Lemma, It's Q-matrix.

Recall Refinition of transition functions:

i) $P_{ij}(t) \ge 0$. ii) $\sum_{j \in E} P_{ij}(t) = 1$. iii) $\lim_{t \ge 1} P_{ii}(t) = 1$.

1hm, I | Pij(++h) - Pij(+) | = 2 | 1 - Pii(h) |.

 $Pf: Pij(t+h) - Pij(t) = \sum_{k\neq i} Pik(h) Pkj(t) - Pij(t) (1-Pii(h))$ $\begin{cases} C Pij(t+h) - Pij(t) \end{cases}^{\dagger} \leq \sum_{k\neq i} Pik(h) Pkj(t) \end{cases}$ $C Pij(t+h) - Pij(t) \end{cases}^{\dagger} \leq Pij(t) (1-Pil(h))$

RMk: $(Pij(t))_j$ is "Uniformly" uniform conti.

The Pij(t) >0. $\forall t>0$. If $\exists t_0. 5t. Pij(t_0)>0. i \neq j$.

Then $Pij(t_0)>0. \forall t>t_0$.

Pf: $Pij(t_0)>0. \forall t>t_0$.

By Lef iii).

7hm. lim Pijots = Zij Exists.

Pf: Consider (Yn) = (Xinh))ngo. fix hoo.

which has stat. Dist. Zih). 4h, o.

Then by uniform anti. of (Pijit).

Chark it satisfies Caushy seq. (too).

1 Im. For (X+)+2n is conservative right-anti Q
process. St. $0 \le 2i < \infty$. $T_n = \inf \{ t \ge T_{nn} \mid X+ \ne X_{T_{nn}} \}$ $T_0 = 0$. $Z_n = T_n - T_{nn} \perp L_{T_{nn}} < \infty \}$. $Y_n = X_{T_n} \perp L_{T_{nn}} < \infty \}$ $X_{T_{nn}} \perp T_n = \infty \}$. If $P(\lim_{n \to \infty} T_n = \infty) = 1$. $T_n = 0$. $T_n = 0$. $T_n = 0$.

ii) γ_n is embedded DTMC. with trans. prib. $rij = \begin{cases} \delta ij & 2i=0. \\ \epsilon i-\delta ij & 2i\neq 0. \end{cases}$

iii) $p(z_1, t_1, ..., z_n = t_n | Y_1 = i_n, ..., Y_n = i_n)$ = $\frac{n}{1!} e^{-2ij_n t_j}$.

Pf: ii) By Strong Markov prop. of CTMC. $\Rightarrow (Y_r) \text{ is DTMC.}$ Set $Z_n = \frac{\sum_{i=1}^{n} Z_i J_{i+1}}{Z_n} \quad \forall Z_i$ $p_i \in X_{2i} = j \quad j = \lim_{n \to \infty} p_i \in X_{2n} = j \quad j$ $= \lim_{n \to \infty} \sum_{k=1}^{n} P_i (X_{k} X_{k-1} = j)$

7hm, (Converse)

(Yn) is DIME with prob. trans. L= crij). (Zn) sy of r.v.: 1. St. p(Z, >t, -. Zn>tn | Yo=in. --- Ym = im) = 7 ℓ - 2ijitj . 9 € →1R'. sut To=0. Tn = Tn+ Zn. Xt = I Yn I = Tn Et < Tn+13. If Pclim Tn = 10) = 1. Then (Xt)ting is n a- process. Snoisfies Kolomogorov. Bank/ Forward Ugnation: $\begin{cases} p_{ij}(t) = \sum_{k \in E} 2ik P_{kj}(t), & p'(t) = \& P(t), \\ p'_{ij}(t) = \sum_{k \in E} P_{ik}(t) 2kj, & p'(t) = P(t) \&. \end{cases}$

1.2. $\begin{cases} P_{ij}(t) = \delta_{ij} e^{-2it} + \sum_{k \neq i} \int_{0}^{t} \Gamma_{ik} P_{kj}(t-v) 2ie^{-2it} \\ P_{ij}(t) = \delta_{ij} e^{-2it} + \sum_{k \neq i} \int_{0}^{t} P_{ik}(v) \Gamma_{kj} 2ke^{-2ijt-v} \\ P_{ij}(t) = \delta_{ij} e^{-2it} + \sum_{k \neq i} \int_{0}^{t} P_{ik}(v) \Gamma_{kj} 2ke^{-2ijt-v} \\ \end{pmatrix}$

Fmk: 2ij = - 8ij 2i + (1- 8ij) 2: rij.

(1) Regular Q- process:

Def: A conservative &-process (Xt) is regular if $\sum_{n=1}^{\infty} 2^{-1}y_n = \infty$. As its embed DTMC.

RMK: i) $2 = \sup_{E} 2i < \infty \Rightarrow (Xt)$ is required:

ii) (Y_n) is recurrent \Rightarrow (Xt) is regular.

Then, (Xt) is right-conti. Conservation &-process $2i \in [0,\infty)$. Then (Xt) is regular (Xt) (Xt) is regular (Xt) (Xt) is (Xt) is regular (Xt)

7hm. Core-tr-ore Correspondence)

Q is regular Q-matrix. (Mi) = is list.

Then. I unique Q-process. (right-contis)

St. Initial list is (MI) = has Q as

its generator. Satisfies kolomogress. Back/

Firmed equation. (Wirit: Pijeti).

Pf: Construct (Yn). DTMC and (Zn).

indept. each other. Xt = IYn II...s:

Zn = Vnn / 2 yn.

Uniqueness is from Kolmigorov equation.

(2) Recurrence:

prop. $j \iff j \iff j$

 $\frac{Pf_{i}}{f_{i}} (\Rightarrow) \exists t > 0. P_{ij}(t) > 1 \Rightarrow \exists n \in \mathbb{Z}^{+}. Ct.$ $P_{i} (Y_{n} = j, T_{n} \leq t < T_{n+1}) > 0$

Jo: rij >0.

(=)] i= kn, k, -. kn=j. Ykakan 70

Jo: 2 to kar >0 => Ptoken(+)>0.3+>0

Ref: Zxii) = inf [t > Til Xt = i)

Zyci) = inf sn > 0 1 Y= = i }

PMK: Zxci) = \(\sum_{kil} \) Zk . So:

Zxci) < = (=) Zyci) < a. A.S.

Jo: i is recurrent in (Xt) (=)

So i koes in (Yn)

7hm. oj =: Inf [+ >0 | X+ - j). If yj. P: (oj < 20) =1. Then. [7:) = $(E_i(\sigma_j))_E$ satisfies equation: $Z_j = 0$. $Z_i = \frac{1}{2i} + \sum_{k \neq j} r_{ik} Z_k$. $i \neq j$. Besiles, it's the min ponnegative solution of: $Z_i \ge \frac{1}{2i} + \sum_{k \neq j} Y_{ik} Z_k$, $i \neq j$. Pf: By inductively iteration: $\overline{E}_{i}(C_{j}) = \overline{E}_{i}(Z_{j}(x)) = \overline{E}_{i}(T_{i}) + \overline{\Sigma}_{k(i,j)} P_{i}(X_{T_{i}} = k)$ · Fk (0;) = /2; + I tkij) 2; Ek (0;)/2; > 1/1: 1- X X X X X X Lanna Vije E. Jo Pij (+) /t = Sij/2i + 1/2j Irij Pf: LMS = I; c /o I (X+=j3 k+) = It; (I Jan I x x Ton = j3 lt) Eic I zn IIXTon = j3) = I I (Zn | Xn = j) P (X Tn-1 = j) RMK: It's Conti version of I Pij = Iti (Nj) Thm. i) i is recurrent in (Xt). ii) J. Pij(t) Kt = 00 iii) i is reconsrent in cyn). All the equi.

7hm. If (x_i) is irred. $\exists j \in E$. $V: E \to \mathcal{A}^t$. 5t. $(x_i) = \sum 2ij V(j) \leq 0$. $\forall i \neq j$. nhe $||V(i)| < ||Y|| \leq E$ is finite. $\forall I < \infty$. 7hm: (X_t) is reconstant.

Thm. (Foster- Inaponent Criteria)

(Xt) is irred. recurrent. Then it's positive recurrent \iff \exists $(\eta:)_E \subset \mathcal{R}_{20}$.

And $j \in E$. St. $\sum_{k \neq j} Z_{jk} \eta_{k} < \infty$. $\forall i \neq j$ $\sum_{k \in E} Z_{ik} \eta_{k} \leqslant -1$.

Pt: It's imputional as PTMC case.

is) Stationary Dist.

7hm. For (Xt). regular Q- process.

- i) (Zi) E is Stat. Rist. () IZE [ki = 0
- ii) (Zi) E is reversible () Zigki = Zigik.
- Pf: i) Balance Equation. As PTMC. Case.
 - ii) (=) Set $\widetilde{P}_{ij}(t) = Z_i P_{ji}(t)/Z_i$.

 Check it's Satisfies Kolmogorov equation

 By uniqueness \Rightarrow $\widetilde{P}_{ij}(t) = P_{ij}(t)$.