Addressing Overview

- There are four addressing methods:
 - Data link layer MAC (Media Access Control) address is 48 bits, written as six hex numbers separated by colons
 - It is also called a physical address
 - MAC addresses are embedded on every NIC in the world
 - Network layer IP (Internet Address) address can be used to find any computer in the world
 - IPv4 addresses have 32 bits and are written as four decimal numbers called octets
 - IPv6 addresses have 128 bits and are written as eight blocks of hexadecimal number
 - Transport layer port numbers are used to find applications
 - Application layer FQDNs, computer names, and host names
 - Fully qualified domain name (FQDN) a unique character-based name

MAC Addresses (1 of 2)

- Traditional MAC addresses contain two parts
 - The first 24 bits are known as the OUI (Organizationally Unique Identifier) or manufacturer-ID
 - This part is assigned by the IEEE
 - The last 24 bits make up the extension identifier or device ID
 - Manufacturer's assign each NIC a unique device ID
- Switches use MAC addresses to identify devices on the local area network

MAC Addresses (2 of 2)

Figure 3-3 The switch learns the sending device's MAC address

Figure 3-3 The switch learns the sending device's MAC address

IP Addresses

- Static IP addresses are assigned manually by the network administrator
- Dynamic IP addresses are automatically assigned by a DHCP server
 - You'll learn more about DHCP later in the chapter
- There are two types of IP addresses:
 - IPv4 is a 32-bit address
 - IPv6 is a 128-bit address.

IPv4 Addresses (1 of 4)

- A 32-bit IPv4 address is organized into four groups of 8 bits each (known as octets)
 - Each of the four octets can be any number from 0 to 255
 - Some IP addresses are reserved
- Example of an IPv4 address: 72.56.105.12
- Classful addressing
 - The dividing line between the network and host portions is determined by the numerical range the IP address falls in
- Classful IPv4 addresses are divided into five classes:
 - Class A, Class B, Class C, Class D, and Class E

IPv4 Addresses (2 of 4)

- Class A, B, and C licensed IP addresses are available for use on the Internet
 - These are called public IP addresses
- A company can use private IP addresses on its private networks
- The IANA recommends the following IP addresses be used for private networks:
 - 10.0.0.0 through 10.255.255.255
 - 172.16.0.0 through 172.31.255.255
 - 192.168.0.0 through 192.168.255.255
- Classless addressing allows the dividing line between network and host portions to fall anywhere along the string of binary bits in an IP address
- CIDR (Classless Interdomain Routing) notation takes the network ID or a host's IP
 address and follows it with a forward slash (/) followed by the number of bits that are used
 for the network ID

IPv4 Addresses (3 of 4)

- Network Address Translation (NAT) is a technique designed to conserve public IP addresses needed by a network
- Address translation is a process where a gateway device substitutes the private IP addresses with its own public address
 - When these computers need access to other networks or Internet
- Port Address Translation (PAT) is the process of assigning a TCP port number to each ongoing session between a local host and Internet host
- Two variations of NAT to be aware of:
 - SNAT (Source Network Address Translation) the gateway assigns the same public IP address to a host each time it makes a request to access the Internet
 - DNAT (Dynamic Network Address Translation) the gateway has a pool of public address that it is free to assign to a local host when it makes a request to access the Internet

IPv4 Addresses (4 of 4)

Figure 3-12 PAT (Port Address Translation)

Figure 3-12 PAT (Port Address Translation)

Jill West, CompTIA Network+ Guide to Networks, 9th Edition. © 2022 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

IPv6 Addresses (1 of 2)

- An IPv6 address has 128 bits written as eight blocks of hexadecimal numbers separated by colons
 - Ex: 2001:0000:0B80:0000:0000:00D3:9C5A:00CC
 - Each block is 16 bits
 - Leading zeros in a four-character hex block can be eliminated
 - If blocks contain all zeroes, they can be written as double colons (::), only one set of double colons is used in an IP address
 - Therefore, above example can be written two ways:
 - 2001::B80:0000:0000:D3:9C5A:CC
 - 2001:0000:B80::D3:9C5A:CC (this is the preferred method because it contains the fewest zeroes)

IPv6 Addresses (2 of 2)

- IPv6 terminology:
 - A link (sometimes called local link) is any LAN bounded by routers
 - Neighbors are two or more nodes on the same link
 - Dual stacked is when a network is configured to use both IPv4 and IPv6
 - Tunneling is a method used by IPv6 to transport IPv6 packets through or over an IPv4 network
 - Interface ID is the last 64 bits or four blocks of an IPv6 address that identify the interface

Types of IPv6 Addresses (1 of 4)

- Unicast address specifies a single node on a network
 - Global address can be routed on the Internet
 - Link local address can be used for communicating with nodes in the same link
 - Loopback address can be used to test that an interface and supporting protocol stack are functioning properly
- Multicast address delivers packets to all nodes on a network
- Anycast address can identify multiple destinations, with packets delivered to the closest destination

Types of IPv6 Addresses (2 of 4)

Global address

3 bits	45 bits	16 bits →	◆ 64 bits →
001	Global routing prefix	Subnet ID	Interface ID

Link local address

Loopback address

Figure 3-16 Three types of IPv6 addresses

Figure 3-16 Three types of IPv6 addresses

Jill West, CompTIA Network+ Guide to Networks, 9th Edition. © 2022 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Types of IPv6 Addresses (3 of 4)

Figure 3-18 The ipconfig command shows IPv4 and IPv6 addresses assigned to this computer

Figure 3-18 The ipconfig command shows IPv4 and IPv6 addresses assigned to this computer

Jill West, CompTIA Network+ Guide to Networks, 9th Edition. © 2022 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Types of IPv6 Addresses (4 of 4)

- IPv6 autoconfiguration
 - IPv6 addressing is designed so that a computer can autoconfigure its own link local IP address
 - This process is called SLAAC (stateless address autoconfiguration)
- Step 1 The computer creates its IPv6 address
 - It uses FE80::/64 as the first 64 bits (called prefix)
 - The last 64 bits are generated from the network adapter's MAC address
- Step 2 The computer checks to make sure its IP address is unique on the network
- Step 3 The computer asks if a router on the network can provide configuration information
 - This message is called an RS (router solicitation) message

Knowledge Check Activity 3-1

Which of the following IPv4 addresses is a public IP address?

- a. 10.0.2.14
- b. 172.16.156.254
- c. 192.168.72.73
- d. 64.233.177.189

Knowledge Check Activity 3-1: Answer

Which of the following IPv4 addresses is a public IP address?

Answer: d. 64.233.177.189

IP addresses within the ranges of 10.0.0.0 through 10.255.255.255, 172.16.0.0 through 172.31.255.255, and 192.168.0.0 through 192.168.255.255 are RFC1918, or private, IP addresses. The address 64.233.177.189 is a public IP address.

Ports and Sockets (1 of 2)

- A port is a number assigned to a process that can receive data
 - Port numbers ensure data is transmitted to the correct process among multiple processes running on a single device
- A socket consists of host's IP address and the port number of an application running on the host
 - A colon separates the two values
 - Example 10.43.3.87:23
- Port numbers are divided into three types:
 - Well-known ports 0 to 1023
 - Registered ports 1024 to 49151
 - Dynamic and private ports 49152 to 65535

Ports and Sockets (2 of 2)

Figure 3-19 A virtual connection for the Telnet service

Figure 3-19 A virtual connection for the Telnet service

