With all these solutions, I will Just show you the work I would use to get the solution.

I will let you use Maple to invert Matrices where appropriate. The point to providing these solutions is to show you an alternative way to do the problems than the book.

(o)
$$S = \{(1,1), (2,3)\}$$

Let $B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ then a) $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}_{S} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} S \circ \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}_{S} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

b) $\begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix} M_{S} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}$ so $\begin{bmatrix} 1 & 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{bmatrix}$

(oid
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = Ia$$
) $I[v]_{\varepsilon} = \begin{bmatrix} 3 \\ -\frac{5}{2} \end{bmatrix}$ so $\begin{bmatrix} v \\ \varepsilon \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{5}{2} \end{bmatrix}$
b) $I[v]_{\varepsilon} = \begin{bmatrix} \frac{9}{2} \\ \frac{5}{2} \end{bmatrix}$ so $\begin{bmatrix} v \\ \varepsilon \end{bmatrix} = \begin{bmatrix} \frac{9}{2} \\ \frac{5}{2} \end{bmatrix}$

613
$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 a) $BM_{5} = \begin{pmatrix} -3 & 1 \\ -3 & 1 \end{pmatrix}$ $\begin{bmatrix} V_{8} \\ -3 & 1 \end{pmatrix}$ $\begin{bmatrix} V_{8} \\ -3 & 1 \end{bmatrix}$ $\begin{bmatrix} V_{8} \\ -3 & 1 \end{bmatrix}$ $\begin{bmatrix} V_{8} \\ -3 & 1 \end{bmatrix}$

6.4 $S = \{t^3 - 3t^2 + 3t - 1, t^2 - 2t + 1, t - 1, t\}$ or $\{(1, -3, 3, -1), (0, 1, -2, 1), (0, 0, 1, -1), (0, 0, 0, 1)\}$ $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \end{bmatrix}$ b) $BM_3 = \begin{bmatrix} 3 \\ 4 \\ 2 \\ -5 \end{bmatrix}$ So $M_3 = B$

(6112)
$$E = \{(1,0),(0,0)\}$$
 $S = \{(1,3),(1,4)\}$
 $B = \{(1,0),(0,0)\}$ $C = \{(1,3),(1,4)\}$

$$S = \{(1,3), (1,4)\}$$

$$C = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$

Solve for [V]s =
$$C^{-1}B[V]$$

 $Q = C^{-1}B = C^{-1} = \begin{bmatrix} 4-1 \\ -31 \end{bmatrix}$

C)
$$[v_s] = \begin{bmatrix} 4-1 \\ -31 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 23 \\ -18 \end{bmatrix}$$

6:13
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $C = \begin{bmatrix} 1 & 1 & 6 \\ 2 & 3 & 1 \\ 0 & 2 & 3 \end{bmatrix}$ Remember

$$E = \{(1,0), (0,1)\}$$

$$S = \{(\frac{3}{2}, \frac{3}{2}), (-\frac{3}{2}, \frac{3}{2})\}$$

$$C = \{(\frac{3}{2}, \frac{3}{2}), (-\frac{3}{2}, \frac{3}{2})\}$$

(.115)
$$B[v_s] = V$$
 $[0] 2$
 $[0] 2$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 3$
 $[0] 4$
 $[0] 3$
 $[0] 4$
 $[0] 6$
 $[0] 6$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0] 7$
 $[0]$

6.14
$$B = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}$$
 $B(v)s = v$ $C = \begin{bmatrix} 1 & 3 \\ 3 & 8 \end{bmatrix}$ $C(v)s' = v$

a)
$$B[v]_s = \begin{bmatrix} 9 \\ b \end{bmatrix}$$
 so $\begin{bmatrix} \sqrt{3} = B^{-1} \begin{pmatrix} 9 \\ b \end{pmatrix} = \frac{1}{2} \begin{bmatrix} -4 - 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ b \end{pmatrix}$

c)
$$[v]_{s} = C^{-1} \begin{bmatrix} a \\ b \end{bmatrix} = -1 \begin{bmatrix} -3 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

9.16)
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 2 \end{bmatrix}$$
 $P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ $P \in P(M)_S = U$
 $B = P^{-1}AP!$ Why? $A = Au$

So $AP(W)_S = P(AW)_S$

Use maple to invert.

(or this one time too bod)

9.7) $L(1_10) = (2, 4)$ $A = \begin{bmatrix} 2 & 5 \\ 4 & 8 \end{bmatrix}$

a) $L(0_11) = (5_18)$

b) $L(1_10) = (0_11)$ $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

C) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
 $L(0_11) = (-1_10)$ $L(0_11) = (-1_10)$ $L(0_11) = (-1_10)$
 $L(0_11) = (-1_10)$ $L(0_12) = (-1_10)$ $L(0_12) = (-1_10)$ $L(0_12) = (-1_10)$ $L(0_13) = (-1_10)$

9.9) Start by deciding an a "standard" representation.

Let
$$(1,0,0) = e^{3t}$$
, $(0,1,0) = te^{3t}$, $(0,0,1) = t^2e^{3t}$.

Then $D(e^{3t}) = 3e^{3t} = 3(1,0,0) = (3,0,0)$

So $D(1,0,0) = (3,0,0)$

Also $D(te^{3t}) = t \cdot 3e^{3t} + 1 \cdot e^{3t} = (1,3,0)$

and $D(t^2e^{3t}) = t^3 \cdot 3e^{3t} + 2te^{3t} = (0,2,3)$

Hence $[D] = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

9,10
$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & 4 & 1 & 0 \\ 3 & 3 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 4 & 1 & 0 \\ 3 & 3 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 4 & 1 & 0 \\ 3 & 3 & 0 & 4 \end{bmatrix}$$

56 $\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 3 & 0 & 4 & 1 & 0 \\ 3 & 0 & 4$

9.11 Standard
$$A = \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix}$$
 E let $B = \begin{bmatrix} 10 \\ 01 \end{bmatrix}$ $S = \{(14), (2,7)\}$ $C = \begin{bmatrix} 14 \\ 7 \end{bmatrix}$ $C[u]_s = u$ a) from E to S . Solve $B[u]_e = C[u]_s$ for $C[u]_e = B^{-1}C[u]_e = C[u]_s$ $P = C = \begin{bmatrix} 12 \\ 47 \end{bmatrix}$

9,11 continued.

From Sto E requires we solve

$$B[\omega]_{\varepsilon} = C(\omega)_{s}$$
 for $[\omega]_{s} = C^{-1}B[\omega]_{\varepsilon}$

So $Q = C^{-1}B = C^{-1}=[-7, 2]=[-7, 2]$

Notice $(P)^{-1}=(B^{-1}C)^{-1}=C^{-1}B=Q$.

b)
$$A = \begin{bmatrix} 5 - 1 \\ 2 - 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}^{-1} \begin{bmatrix} 5 - 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 47 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ -2 & 1 \end{bmatrix}$

C) trace
$$A = 6 = traceBe$$

det $A = 5 + 2 = 7$ debiB = $5 + 2 = 7$

Trace and det are always the same for similar matrices.

9,12 The books solution is great.

9.16 The standard representation is
$$A = \begin{bmatrix} 3 & 2 & -4 \\ 1 & -5 & 3 \end{bmatrix}$$

a) Let
$$B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, $C^{-1} = \begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$
so $B[W]_s = u$ and $C[V]_{s'} = V$

We have Au = F(u) so $AB[u]_s = C[F(u)]_{s'}$ $\begin{bmatrix} -7 - 33 - 13 \\ 4 & 19 & 8 \end{bmatrix}$ or $C^{-1}AB = [F]_{s,s'} = \begin{bmatrix} -52 \\ 3-1 \end{bmatrix} \begin{bmatrix} 32-4 \\ 1-53 \end{bmatrix} \begin{bmatrix} 11 \\ 100 \end{bmatrix}$

9.16 b) let
$$V = (x_1y_1, z)$$

I need to compute

$$F_{5,5}'[V_0]_5 = \begin{bmatrix} -7 & -33 & -13 \\ 4 & 19 & 8 \end{bmatrix} \begin{bmatrix} 110 \\ 100 \end{bmatrix}^{-1} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -13x - 20y_1x_2 \\ 8x + 11y_1 - 15z \end{bmatrix}$$

o $[F(x)]_5' = C^{-1}F(x_1y_1) = \begin{bmatrix} -52 \\ 3 - 1 \end{bmatrix} \begin{bmatrix} 32 - 4 \\ 1 - 53 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

let $V = (x_1y_1, z)$

o $[F(x_1y_1)]_5' = C^{-1}F(x_1y_1) = \begin{bmatrix} -52 \\ 3 - 1 \end{bmatrix} \begin{bmatrix} 32 - 4 \\ 1 - 53 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
 $= \begin{bmatrix} -13x - 20y + 26z \\ 8x + 11y_1 - 15z \end{bmatrix}$

Notationally our Just have

$$F_{5,5}'[V]_5 = \begin{bmatrix} C^{-1}AB \\ B \end{bmatrix} \begin{bmatrix} V = C^{-1}AV \\ AV \end{bmatrix}$$

and
$$F_{5,5}'[V]_5' = C^{-1}(AV)$$

They are the same

9.17

(1) $F_{5,5}'[V]_5' = C^{-1}(AV)$
 $F_{5,5}'[V]_5' = C^{-1}(AV)$

b)
$$S = \{(1,1,1),(1,1,0),(1,0,0)\}$$
 $S' = \{(1,3),(2,5)\}$

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 3 & 2 \\ 3 & 5 \end{bmatrix}$$

$$[F]_{S,S'} = C^{-1}AB = \frac{1}{1}\begin{bmatrix} 5-2 \\ -3 \end{bmatrix}\begin{bmatrix} 25-3 \\ 1-47 \end{bmatrix}\begin{bmatrix} 111 \\ 100 \end{bmatrix}$$

$$= \begin{bmatrix} -12 & -41 & -8 \\ 8 & 24 & 5 \end{bmatrix}$$
Chech the multiplication

9.19
$$E = \mathcal{E}(0,0), (0,0)^3$$
 $B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $S = \mathcal{E}(1,3), (2,5)^3$
 $C = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$
 $A = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$

$$A = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

b)
$$[T]_{S,E} = B^{-1}AC = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$

= $\begin{bmatrix} -7 & -11 \\ 13 & 22 \end{bmatrix}$

9.20
$$\{sin\theta, cos\theta\}$$
 let $sin\theta = (1,0)$ $cos\theta = (0,1)$

$$D(sin\theta) = cos\theta = 56$$

$$D(1,0) = (0,1).$$

$$D(cos\theta) = -sin\theta$$

$$SO$$

$$D(0,1) = (-1,0)$$

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} D \end{bmatrix}_{s} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$D(cos\theta) = -sin\theta = 0$$

$$D^{2}+I)sin\theta = (sin\theta)^{n}+sin\theta = 0$$

$$D^{2}+I)cos\theta = (cos\theta)^{n}+cos\theta = 0.$$

11.9)
$$\begin{bmatrix} 3 - 4 \\ 2 - 6 \end{bmatrix}$$
 $\begin{bmatrix} 3 - 2 \\ 2 - 6 \end{bmatrix}$ = $\begin{bmatrix} (3-2)(-6-2) + 8 \\ = -18 + (2-3) + 2 + 8 \end{bmatrix}$ = $-18 + (2-3) + 2 + 8 \end{bmatrix}$ = $-18 + (2-3) + 2 + 8 \end{bmatrix}$ = $-18 + (2-3) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + 2 + 8 \end{bmatrix}$ = $-18 + (2-2) + (2$

11.10)
$$B = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 $\begin{bmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{bmatrix} = (1 - \lambda)(3 - \lambda) - 8$
 $= 3 - 3\lambda - \lambda + \lambda^2 - 8$
 $= \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1)$
 $\lambda = 5$
 $\begin{bmatrix} -4 & 4 & 0 \\ 2 & -2 & 0 \end{bmatrix}$ $\begin{bmatrix} -1 & 1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$ $\begin{bmatrix} x = y \\ y = y \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 23 \end{bmatrix}$

$$B = PDP^{-1}$$

$$B^{5} = PDP^{-1} PDP^{$$

11.11
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 $\begin{bmatrix} 2-\lambda & 2 \\ 1 & 3-\lambda \end{bmatrix} = \begin{bmatrix} 2-\lambda)(3-\lambda) - 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-\lambda + 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-\lambda + 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-\lambda + 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-\lambda + 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-\lambda + 2 \\ 2-\lambda + 2 \end{bmatrix}$

Distice the characteristic polyromial is

λ²+1

which has no real zvos, so no real

eigenvalves or eigen vectors

D = 4 is a double root. However

There is only I reigen væcter. Since there

were rot 2, this matrix is not diagonalizable

14) $\lambda^2+1=0=7$ $\lambda^2=-1$ $\lambda=\pm i$ there are 2 complex eigenvalves. C^2 15 the complex plane,

all others. Their works is fine. Just realize they compute the characteristic polynomial differently. Just do it the way we have all semester. If it is order 3 armore, use soft were to factor.