

Approaches for data limited stocks

I. González Herraiz, IEO, A Coruña

Approaches for data limited stocks

		Next step						
SCA Bell		FU 31: Check & interpretation of the results. FU 25?						
SCA Helen	Single model run	FU 31: Check & interpretation of the results. FU 25?						
	HR Sensitivity analysis	FLR object construction						
Farfish DLT		FU 31: Check & interpretation of the results. FU 25?						
LBI		FU 31: Check & interpretation of the results. FU 25?						
LB-SPR		FU 31: Check & interpretation of the results. FU 25?						
FU 25 Spatial analysis		Useful? How show the results? FU 31?						
Mean Length b.e. (z)		Not done, start from the beginning						
Other tools		Reference						
SPICTs								
Combined catch and CPUE-based method		ICES WKProxy 2015						
Catch based method (C	CMSY)	ICES WKProxy 2015						

•••

SCA (Separable Cohort Analysis, Bell & Dobby)

- introduction males and females information
- Nephrops specific
- only one length distribution (last one, 5y/3y average)
- several input data unknown (starting recruit numbersunits, etc)
- interpretation of the results

SCA (Separable Cohort Analysis, Bell)

pop.Male pop.Female S.25 S.50 fmult.Male fmult.Female Sel Ret F.Male F.Female ann.F.Male ann.F.Female FemaleMatu Male Maturit¹ Delta.T.Male Delta.T.Fema Fland.Male Fland.Female ann.Fland.Ma ann.Fland.Fe Z.Male Z.Female M.Male M.Female Time.Male Time.Female

N.CATCHhat. N.CATCHhat. N.LANDhat.N N.LANDhat.F N.DISChat.M N.DISChat.Fe ssq.land ssq.disc ssq LENGTH nat.Male nat.Female TV.selectivity N.LAND.Male N.LAND.Fem N.DISC.Male N.DISC.Fema WEIGHT.Male WEIGHT.Fem R.25 R.50 M.Male.t M.Female.t TV.Male TV.Female

SCA (Separable Cohort Analysis, Dobby)

1		Fmult	F(M)	F(F)	HR	SSB%(M)	SSB%(F)	SSB%(T)
:	-	: -	: -	: -	: -	: -	: -	:
F0.1(M)		0.26	0.02	0.03	6.09	44.53	52.91	48.31
F0.1(F)		1.59	0.14	0.16	14.82	16.59	26.81	21.20
F0.1(T)		0.27	0.02	0.03	6.24	43.64	52.17	47.49
Fmax(M)		0.69	0.06	0.07	10.58	25.50	36.36	30.40
Fmax(F)		1.99	0.17	0.20	15.98	15.04	24.80	19.44
Fmax(T)		0.89	0.08	0.09	11.86	22.14	33.04	27.06
F35%(M)		0.41	0.04	0.04	8.07	34.50	44.47	39.00
F35%(F)		0.77	0.07	0.08	11.13	23.98	34.88	28.90
F35%(T)	I	0.52	0.05	0.05	9.20	30.04	40.54	34.77

Table 2 Harvest rate ranges i.e at 95% YPR

-	lower	upper
-	:	:
-	5.44	18.13
-	7.60	18.13
-	5.61	18.13
-	7.96	18.13
-	7.36	18.13
-	8.07	17.80
-	6.83	18.13
-	8.07	17.91
	7.48	18.13

Comparison

		SCA Bell	SCA Dobby
F 0.1	С	0.0	4 0.27
	M	0.0	4 0.02
	F	0.0	4 0.16
F 35%	С	0.1	3 0.52
	M	0.0	4 0.04
	F	0.1	3 0.08
Fmax	С	0.1	4 0.89
	M	0.1	1 0.06
	F	0.2	2 0.2
HR 0.1	С	1	5 6.2
	M	1	4 6.1
	F	1	7 14.8
HR 35%	С	3	0 9.2
	M	1	2 8.1
	F	3	2 11.1
HR max	С	3	1 11.9
	M	2	6 10.6
	F	4	1 16

Farfish Data Limited Method

Interactive plataform of H2020 Farfish project (until 2021)

Objective: Provide an easy tool for outside Europe fisheries (Mauritania, Cabo Verde, Seychelles, Senegal, Brasil, etc). See information in sharepoint.

OK: - shiny https://ffdb.farfish.eu/shiny/dlmgui

- you can introduce all the time series of lengths distributions.

- Diagnostics

- Quick answer when ask

- TAC plot

NO OK: - NO DATA ESTIMATIONS? (F, HR, ETC)

- you can not introduce males and females lengths.

- beta version

- files upload problems

Farfish Data Limited Method

LBI (Length Based Indicators)

OK: - shiny https://scott.shinyapps.io/LBIndicator-shiny/

- you can introduce all the time series of lengths data

- WKProxy 2015

- "Utilities" the output includes an explanation of the results

obtained

NOT OK: - you can not introduce males and females

TECHNICAL DETAILS: - needs mean weight at length, maturity, VB.

- M/K optional

- needs a unimodal length distribution

- asumes constant recruitment

LBI (Length Based Indicators)

Indicator	Calculation	Reference point	Indicator ratio	Expected value	Property	
L _{max5%}	Mean length of largest 5%		L _{maxS%} / L _{inf}			
L _{95%}	95 th percentile	- L _{inf}	L _{95%} / L _{inf}	> 0.8	Conservation (large — individuals)	
P _{mega}	Proportion of individuals above Lopt + 10%	0.3-0.4	Pmega	> 0.3	— ilidividuaisj	
L _{25%}	25 th percentile of length distribution	L _{mat}	L _{25%} / L _{mat}	> 1		
Le	Length at first catch (length at 50% of mode)	L _{mat}	L _c /L _{mat}	>1	Conservation (immatures)	
Lmean	Mean length of individuals > L _c	$L_{opt} = \frac{3}{3 + M/k} \times L_{inf}$	L _{mean} /L _{opt}	≈ 1		
L _{maxy}	Length class with maximum biomass in catch	$L_{opt} = \frac{3}{3 + M/k} \times L_{inf}$	L _{maxy} / L _{opt}	≈1	Optimal yield	
mean	Mean length of individuals > L _c	$L_{F=M} = (0.75L_c+0.25L_{inf})$	L _{mean} / L _{F+M}	≥1	MSY	

		Conser	Optimizing Yield	MSY		
Year	L _c / L _{mat}	L _{25%} / L _{mat}	L _{max 5} / L _{inf}	P_{mega}	$L_{\rm mean}$ / $L_{\rm opt}$	L _{mean} / L _{F = M}
2015	1.58	1.70	0.82	0.15	0.97	1.02
2016	1.74	1.82	0.88	0.19	1.02	1.01
2017	1.54	1.62	0.73	0.05	0.89	0.96

LB-SPR (Length Based Spawning Potential Ratio)

OK: - shiny http://barefootecologist.com.au/lbspr

- you can introduce all the time series of lengths data

- see sharepoint Tutorial in english

NOT OK: - you can not introduce males and females

TECHNICAL DETAILS: - logistic selectivity

- needs maturity, VB.

- M/K

LB-SPR (Length Based Spawning Potential Ratio)

Years SPR	SL50	SL95	F/M	Note	MK	Linf	L50	L95	CVLinf	FecB	Mpow Smooth
1988 0.2 (0.2 - 0.2)	33.43 (33.41 - 33.45)	38.99 (38.96 - 39.02)	2.05 (2.04 - 2.06)		2	86	25	28	0.1	3	0 FALSE
1989 0.23 (0.23 - 0.23)	34.77 (34.76 - 34.78)	39.22 (39.2 - 39.24)	1.89 (1.88 - 1.9)		2	86	25	28	0.1	3	0 FALSE
1990 0.27 (0.26 - 0.27)	32.98 (32.96 - 33)	39.2 (39.17 - 39.23)	1.4 (1.4 - 1.4)		2	86	25	28	0.1	3	0 FALSE
1991 0.22 (0.22 - 0.22)	33.01 (32.99 - 33.03)	38.86 (38.83 - 38.89)	1.79 (1.78 - 1.8)		2	86	25	28	0.1	3	0 FALSE
1992 0.22 (0.21 - 0.22)	33.32 (33.3 - 33.34)	37.04 (37.01 - 37.07)	1.89 (1.88 - 1.9)		2	86	25	28	0.1	3	0 FALSE
1993 0.31 (0.31 - 0.31)	38.79 (38.76 - 38.82)	45.43 (45.39 - 45.47)	1.6 (1.59 - 1.61)		2	86	25	28	0.1	3	0 FALSE
1994 0.32 (0.32 - 0.32)	38.39 (38.37 - 38.41)	43.45 (43.41 - 43.49)	1.47 (1.46 - 1.48)		2	86	25	28	0.1	3	0 FALSE
1995 0.37 (0.37 - 0.38)	32.59 (32.58 - 32.6)	35.05 (35.02 - 35.08)	0.86 (0.86 - 0.86)		2	86	25	28	0.1	3	0 FALSE
1996 0.36 (0.36 - 0.36)	35.3 (35.28 - 35.32)	39.38 (39.35 - 39.41)	1.04 (1.03 - 1.05)		2	86	25	28	0.1	3	0 FALSE
1997 0.25 (0.25 - 0.25)	34.99 (34.97 - 35.01)	40.04 (40 - 40.08)	1.68 (1.67 - 1.69)		2	86	25	28	0.1	3	0 FALSE
1998 0.33 (0.33 - 0.34)	37.35 (37.32 - 37.38)	43.11 (43.06 - 43.16)	1.29 (1.28 - 1.3)		2	86	25	28	0.1	3	0 FALSE
1999 0.4 (0.39 - 0.4)	38.12 (38.08 - 38.16)	43.88 (43.8 - 43.96)	1.02 (1.01 - 1.03)		2	86	25	28	0.1	3	0 FALSE
2000 0.44 (0.43 - 0.44)	36.57 (36.53 - 36.61)	41.57 (41.5 - 41.64)	0.8 (0.79 - 0.81)		2	86	25	28	0.1	3	0 FALSE
2001 0.42 (0.41 - 0.42)	36.18 (36.13 - 36.23)	41.37 (41.28 - 41.46)	0.85 (0.84 - 0.86)		2	86	25	28	0.1	3	0 FALSE
2002 0.41 (0.4 - 0.41)	33.38 (33.33 - 33.43)	37.83 (37.74 - 37.92)	0.78 (0.77 - 0.79)		2	86	25	28	0.1	3	0 FALSE
2003 0.53 (0.52 - 0.53)	34.24 (34.17 - 34.31)	40.1 (39.97 - 40.23)	0.51 (0.5 - 0.52)		2	86	25	28	0.1	3	0 FALSE
2004 0.54 (0.54 - 0.55)	33.68 (33.64 - 33.72)	37.44 (37.35 - 37.53)	0.48 (0.47 - 0.49)		2	86	25	28	0.1	3	0 FALSE
2005 0.42 (0.41 - 0.42)	42.83 (42.77 - 42.89)	51.79 (51.7 - 51.88)	1.21 (1.2 - 1.22)		2	86	25	28	0.1	3	0 FALSE
2006 0.42 (0.42 - 0.42)	36.68 (36.64 - 36.72)	42.55 (42.47 - 42.63)	0.85 (0.84 - 0.86)		2	86	25	28	0.1	3	0 FALSE
2007 0.42 (0.42 - 0.42)	40.59 (40.52 - 40.66)	48.53 (48.41 - 48.65)	1.03 (1.02 - 1.04)		2	86	25	28	0.1	3	0 FALSE
2008 0.54 (0.54 - 0.55)	39.31 (39.25 - 39.37)	43.34 (43.23 - 43.45)	0.59 (0.58 - 0.6)		2	86	25	28	0.1	3	0 FALSE
2009 1 (1 - 1)	38.94 (38.79 - 39.09)	45.89 (45.59 - 46.19)	0 (0 - 0)		2	86	25	28	0.1	3	0 FALSE
2010 0.58 (0.57 - 0.59)	47.06 (46.87 - 47.25)	56.59 (56.28 - 56.9)	0.72 (0.69 - 0.75)		2	86	25	28	0.1	3	0 FALSE
2011 0.4 (0.39 - 0.4)	36.02 (35.93 - 36.11)	41.54 (41.38 - 41.7)	0.92 (0.9 - 0.94)		2	86	25	28	0.1	3	0 FALSE
2012 0.38 (0.37 - 0.38)	36.97 (36.91 - 37.03)	40.93 (40.83 - 41.03)	1.04 (1.02 - 1.06)		2	86	25	28	0.1	3	0 FALSE
2013 0.47 (0 - 0)	49.28 (0 - 0)	49.48 (0 - 0)	1.71 (0 - 0)	Model did not converge	2	86	25	28	0.1	3	0 FALSE
2014 0.55 (0.54 - 0.55)	42.98 (42.76 - 43.2)	51.29 (50.91 - 51.67)	0.68 (0.65 - 0.71)		2	86	25	28	0.1	3	0 FALSE
2015 0.42 (0.41 - 0.42)		48.29 (47.96 - 48.62)	1.09 (1.05 - 1.13)		2	86	25	28	0.1	3	0 FALSE
2016 0.48 (0.47 - 0.49)	44 (43.85 - 44.15)	50.22 (49.95 - 50.49)	0.98 (0.94 - 1.02)		2	86	25	28	0.1	3	0 FALSE
2017 0.27 (0.26 - 0.28)	40.29 (39.98 - 40.6)	47.41 (46.89 - 47.93)	2.33 (2.19 - 2.47)		2	86	25	28	0.1	3	0 FALSE

LB-SPR (Length Based Spawning Potential Ratio)

November 2019

SPICT (Surplus Production models In Continuous Time)

OK: - uses continuous time, not discret

- you can mix annual, quarter or seasonal data

TECHNICAL DETAILS: - Needs catch and an abundance index

- Guidelines September 2019.

All methods

https://github.com/ices-tools-dev/ICES MSY

http://ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2015/WKLI FEV/wklifeV 2015.pdf

DOUBTS:

- time series with catch restricted and not restricted by TAC
- annual lengths vs one month length (nephrosp sex ratio changes)