Universidade de São Paulo Instituto de Matemática e Estatística

Centro de Estatística Aplicada

Relatório de Análise Estatística

RELATÓRIO DE ANÁLISE ESTATÍSTICA SOBRE O PROJETO:

"Influência da farmacogenômica na resposta de imunossupressores em receptores de transplante de fígado."

Thales Dalessandro Meneguin Pereira
Nicholas Wagner Eugenio
Victor Fossaluza

CENTRO DE ESTATÍSTICA APLICADA - CEA – USP

TÍTULO: Relatório de Análise Estatística sobre o Projeto: "Influência da farmacogenômica na resposta de imunossupressores em receptores de transplante de fígado.".

PESQUISADORA: Gaziella D'Agostino R Naldi

ORIENTADORA: Suzane Kioko Ono

INSTITUIÇÃO: Hospital das Clínicas da Faculdade de Medicina da Universidade

de São Paulo

FINALIDADE DO PROJETO: Publicação

RESPONSÁVEIS PELA ANÁLISE: Nicholas Wagner Eugenio

Thales Dalessandro Meneguin Pereira

Victor Fossaluza

REFERÊNCIA DESTE TRABALHO: PEREIRA, T.D.M, EUGENIO, N.W., FOSSALUZA, V. Relatório de Análise Estatística sobre o Projeto: "Influência da farmacogenômica na resposta de imunossupressores em receptores de transplante de fígado." São Paulo, IME-USP, 2022. (RAE-CEA-22P13)

FIICHA TÉCNICA

REFERÊNCIAS BIBLIOGRÁFICAS:

FRIEDMAN, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. **J Am Stat Assoc.**, **32(200)**: 675-701. doi:10.1080/01621459.1937.10503522

OLKIN, I. (1985). Estimating a Cholesky decomposition. **Linear Algebra Its Appl., 67**: 201-205. doi:10.1016/0024-3795(85)90196-X

Multivariate Priors for Hierarchical Models. Stan user's guide. Disponível emhttps://mc-stan.org/docs/2_18/stan-users-guide/multivariate-hierarchical-priors-section.html. Acesso em: 15 de jul. de 2022.

JING, JAKE. Multivariate Normal distribution and Cholesky decomposition in Stan. Disponível em < https://yingqijing.medium.com/multivariate-normal-distribution-and-cholesky-decomposition-in-stan-d9244b9aa623>. Acesso em: 15 de jul. de 2022.

Logistic and probit regression. Stan user's guide. Disponível em<https://mc-stan.org/docs/2_18/stan-users-guide/multivariate-hierarchical-priors-section.html>. Acesso em: 15 de jul. de 2022.

PROGRAMAS COMPUTACIONAIS UTILIZADOS:

Microsoft Word for Windows (versão 2022)

Microsoft Excel for Windows (versão 2022)

Software R (versão 2022)

TÉCNICAS ESTATÍSTICAS UTILIZADAS

Teste de Mann-Whitney (05:070)

Teste qui-quadrado de Pearson (05:010)

Teste exato de Fisher (05:010)

Teste de Friedman (05:070)

Regressão Logística Bayesiana (05:060)

ÁREA DE APLICAÇÃO

Medicina- Bioestatística (14:030)

Resumo

Esse estudo propõe avaliar a associação entre polimorfismos genéticos de doadores e receptores envolvidos no processo de transplante hepático e alguns de seus possíveis desfechos: infecção, insuficiência renal (IRA) e rejeição aguda. Para tanto, foi feita a análise de 10 polimorfismos de 4 genes (CYP3A5, CYP3A4, POR e ABCB1), sabidamente relacionados com metabolização e excreção de imunossupressores, bem como de dados laboratoriais observados nos receptores no dia do transplante e após 7, 14, 30 e 90 dias de sua realização. Ainda, foram registradas incidências de infecções, insuficiência renal e rejeição aguda. Os níveis séricos de tacrolimus e as doses administradas foram obtidas de prontuários médicos. O objetivo do estudo é individualizar a terapia imunossupressora para cada paciente, de modo que se reduzam as rejeições, infecções e insuficiências renais, de acordo com o perfil de polimorfismos de doadores e receptores.

A principal causa de óbito da coorte foi infecção. As frequências dos genótipos entre doadores e receptores não apresentou diferença significativa e há evidências de associação, a 5% de significância, dos polimorfismos dos genes ABCB1 e POR. Na análise inferencial bayesiana, estimamos modelos de regressão logística para cada desfecho e consideramos uma possível correlação entre eles. Observamos que a idade de doadores está relacionada com a redução da chance de infecção e a de receptores com a redução da chance de rejeição. Houve predominância de polimorfismos dos receptores no aumento das chances dos desfechos de infecção e IRA, principalmente os relacionados ao gene CYP3A5. O efeito dos polimorfismos do gene ABCB1 (3 polimorfismos) não foi significativo, quando analisado na presença dos outros genes, para os três desfechos. A correlação entre os desfechos não foi estatisticamente significativa.

Sumário

1. Introdução	7
2. Objetivos	8
3. Descrição do estudo	8
4. Descrição das variáveis	8
5. Análise descritiva	10
6. Análise inferencial	15
7. Considerações finais	21
Apêndice A	23
Apêndice B	35

1. Introdução

Desde o nascimento, o sistema imunológico desenvolve uma estratégia de reconhecimento de proteínas próprias, com o intuito de diferenciar o que é constitucional de cada indivíduo e o que não é. Dessa forma, mantendo a vigilância imunológica, consegue um efetivo controle de infecções. Por diversas razões, pacientes podem ter a função hepática comprometida, necessitando de transplante de fígado. Para que ele seja possível, é necessária a administração de drogas imunossupressoras com o intuito de evitar a rejeição do órgão, aumentando a tolerância do sistema imunológico a elementos reconhecidos como não próprios. No entanto, sabe-se que os pacientes metabolizam esses imunossupressores de maneira individual, podendo implicar na rejeição do órgão e em toxicidades decorrentes do seu uso, a saber: insuficiência renal e infecções. Polimorfismos genéticos são alterações de bases do DNA (ácido desoxirribonucleico) e ocorrem em mais de 1% da população. Em genes associados à metabolização de medicamentos, os polimorfismos podem estar modo indivíduo relacionados com 0 como cada metaboliza os imunossupressores.

O DNA é composto por quatro tipos de moléculas, as bases nitrogenadas adenina (A), guanina (G), timina (T) e citosina (C). Suas combinações determinam os diferentes genes, responsáveis pela expressão das mais diversas proteínas. Por genótipo, entendemos ser a constituição genética do indivíduo, a estrutura de cada gene. Cada polimorfismo, que constitui uma troca de base nitrogenada em um ponto específico da cadeia do gene, pode apresentar mais de um genótipo, a depender da troca que ocorreu e da nova base que foi codificada naquele ponto específico do gene.

Os indivíduos possuem um par de genes para cada proteína produzida. Cada elemento desse par é herdado um do pai e outro da mãe e os polimorfismos podem ocorrer em qualquer um deles.

2. Objetivos

Avaliar a relação entre polimorfismos nos genes CYP3A5, CYP3A4, POR e ABC1B, sabidamente relacionados à metabolização de drogas, em doadores e receptores de transplante hepático, com três possíveis desfechos: rejeição aguda, insuficiência renal e infecções.

3. Descrição do estudo

Uma coorte de 97 pacientes (aqui chamados de receptores) e doadores, atendidos no Hospital das Clínicas da Faculdade de Medicina da USP, no período de 21/09/2019 a 02/05/2021 (total de 19 meses) foi avaliada retrospectivamente. Por meio de revisão de prontuários, foram coletados dados referentes aos doadores e aos receptores, na ocasião do transplante, e exames laboratoriais, do momento do transplante até 90 dias após, nos dias 0, 7, 14, 30 e 90. Foram ainda analisados polimorfismos dos genes CYP3A5, CYP3A4, POR e ABC1B, nos pares de doadores e receptores, genes esses envolvidos com a excreção e metabolização de medicações.

4. Descrição das variáveis

Abaixo, a descrição das variáveis obtidas no estudo:

Doadores

- Idade do doador (em anos)
- Gênero do doador (masculino, M ou feminino, F)

Receptores

- Idade do receptor (em anos)
- Gênero do receptor (masculino, M ou feminino, F)
- Raça (parda, negra, branca, amarela)

- Peso do receptor (em Kg)
- Doença de base que levou o receptor a necessitar de transplante: hepatite B e C, carcinoma hepatocelular, NASH (non alcoholic steatohepatitis), cirrose alcoólica, esquistossomose, doença de Caroli, cirrose criptogênica, hepatite autoimune, colangite esclerosante primária, colangite biliar secundária, hepatite fulminante, colangite biliar primaria, hepatite medicamentosa e outras.
- Uso de drogas indutoras/inibidoras de metabolismo: fluconazol, fenitoína, amiodarona, diltiazem, abacavir/lamivudina/dolutegravir, cetoconazol pomada
- Imunossupressores: tacrolimus, hidrocortisona, prednisona, micofenolato sódico e mofetil, everolimus.
 - Uso de drogas como terapia indutora: (basiliximab e corticóide)
 - Tempo de seguimento: 19 meses
- Causa do óbito: choque séptico, refratário, tromboembolismo, síndrome respiratória.
 - Presença ou não de infecção e agente causador
 - Desfechos: insuficiência renal, infecção e rejeição aguda
- Exames laboratoriais: enzimas hepáticas (AST, ALT, FA, GGT,
 BTF), função renal (U e Cr), leucócitos, neutrófilos, eosinófilos, PCR
 - Dose e nível sérico tacrolimus (mg/dl) no D0, D7, D14, D30, D90
- Polimorfismos dos genes CYP3A5 (rs776746, rs10264272),
 CYP3A4 (rs2740574, rs2740574, rs2242480, rs35599367), POR(rs1057868), e
 ABCB1(rs1128503, rs9282564, rs2229109)
- Genótipo referente aos polimorfismos: CC, CT, TT, GG, CG, GA,
 AG, AA.
- Fenótipo associado aos polimorfismos: segundo a literatura, o padrão de metabolização pode ser classificado como metabolizador fraco,

intermediário e extenso, para os genes POR; CYP3A5 e CYP3A4. Para o gene ABCB1, a descrição do fenótipo na literatura é como associado ao aumento ou diminuição do tacrolimus.

As duas últimas variáveis mencionadas foram adicionadas à planilha de dados, embora não tenham sido efetivamente obtidas dos receptores. Dados sobre os genótipos referentes aos polimorfismos e os respectivos fenótipos foram extraídos da literatura médica, pelos pesquisadores.

5. Análise descritiva

Para entendermos o comportamento das variáveis do estudo, obtivemos suas medidas descritivas através de análises exploratórias, com o intuito de avaliarmos suas distribuições e relações, visando as futuras análise inferenciais.

De acordo com a Tabela A.1 e Figura B.1, a idade dos doadores variou amplamente, com doadores de 6 a 76 anos; metade deles apresentavam idade menor do que 50 anos. Sobre os receptores, também há uma grande variabilidade da idade, sendo que metade apresenta idade maior do que 60 anos. Os histogramas mostram a distribuição e a assimetria das idades dos doadores e receptores (Figuras B.2 e B.3); portanto, optamos por usar a mediana como medida de comparação entre os dois grupos e utilizamos o teste de Mann-Whitney para verificarmos se há diferença entre as medianas de idade entre doadores e receptores. A idade mediana dos receptores é maior do que a dos doadores, sendo essa diferença significativa ao nível de 5% (valor-p < 0,001).

Com relação ao sexo dos doadores, a proporção de homens e mulheres foi a mesma entre os receptores e doadores: 60% de homens e 40%, mulheres (Figura B.4 e Tabela A.2). Para os dados dos receptores, notamos na Figura B.5 que quase cerca de 80% dos receptores são de raça branca, seguido de pardos, negros, amarelos e não responderam.

Passemos agora à distribuição das causas que levaram ao transplante - doenças de base dos receptores (quatro pacientes não possuíam causa declarada). De acordo com a Tabela A.3, a causa mais frequente de transplante

consiste em o receptor ser portador do vírus da hepatite C (N= 39, 40% dos casos). Metade deles apresentava, além do vírus, outros diagnósticos associados à causa do transplante; desses, carcinoma hepatocelular consiste na causa mais frequente (38%), seguida de etilismo (5.13%) e cirrose biliar primária (2.56%).

Vírus da hepatite B consiste na segunda causa mais frequente de transplante no estudo (N=18,18%) segundo a Tabela A.4: como o vírus C, sozinho, o vírus da hepatite B (VHB) é responsável por 55% das causas de transplante, dentre os receptores portadores do VHB. Novamente, o carcinoma hepatocelular é a causa mais comum (33%), quando analisamos a associação do vírus B a outras condições, como etilismo (5.56%) e colangite esclerosante primária (5.56%).

Dentre outras causas, NASH (Non Alcoholic SteatoHepatitis) corresponde a 11% dos casos (Tabela A.5) e etilismo responde a 4% das causas (Tabela A.6).

Vinte e um receptores (21%) apresentaram causas que levaram a transplante hepático menos comuns e frequentes (Tabela A.7), dentre elas cirrose criptogênica, colangite esclerosante primária e hepatite autoimune.

Algumas medicações podem influenciar o padrão de metabolização dos imunossupressores. Quanto ao uso de indutores e inibidores dos polimorfismos CYP3A4 ou 3A5, apenas 14 (14,43%) receptores fizeram uso dessas medicações. Pela Tabela A.8 nota-se que a associação de fluconazol e amiodarona foi a mais usada (42% dos casos). O uso de outras drogas indutoras/inibidoras em monoterapia, ou mesmo, algumas associações entre elas foram igualmente prevalentes (um caso cada), tais como: fluconazol, amiodarona, fluconazol e amiodarona, amiodarona e cetoconazol tópico, fluconazol e diltiazen, fluconazol e fenitoína, diltiazen e amiodarona, abacavir/lamivudina/dolutegravir e cetoconazol tópico. Para os demais polimorfismos, não foi feita referência do uso de drogas que pudessem influenciar o padrão de metabolização dos imunossupressores

Na Figura B.6, temos a representação do uso das associações de imunossupressores utilizados. Todos os receptores fizeram uso deles e a

maioria dos esquemas contém tacrolimus e prednisona (com ou sem uma terceira droga): a associação de tacrolimus, prednisona e micofenolato sódico corresponde à mais frequente (cerca de 48%), seguida de tacrolimus e prednisona (31%) e de tacrolimus, prednisona e MMF (13%). Não houve casos de monoterapia.

Na Tabela A.9, vemos que, dentre as drogas indutoras usadas para o transplante, Basiliximabe foi usada em pouco mais da metade dos casos (56.7%) e corticóides em 43.3% dos casos (não especificado qual corticóide).

Pela Tabela A.10, notamos que, ao término do período de seguimento, a grande maioria dos receptores estavam vivos, sendo 9.27% a taxa de óbitos. Dentre as causas de óbitos, quase metade esteve relacionada a choque séptico, seguida de choque refratário (não especificada causa de choque), tromboembolismo e síndrome respiratória aguda.

Pela Tabela A.11, observamos que, dentre os 84 receptores que apresentaram algum desfecho, infecção associada a insuficiência renal aguda (IRA) foi mais frequente (34,52%), seguida de infecção isolada (23,81%). Insuficiência renal isolada aparece em terceiro lugar, com 21,43%. Rejeição aguda isolada aparece em 1,19% dos casos, somente (um paciente).

Para estudarmos a evolução de algumas variáveis laboratoriais ao longo do tempo, analisamos suas médias e desvios padrões no dia do transplante e após 7, 14, 30 e 90 dias. A região sombreada corresponde à faixa de normalidade de cada variável; o ponto é a média da variável para cada dia e as barras estão com um desvio padrão de distância da média, para analisarmos a dispersão dos dados.

Nas Figuras B.7a e B.7b, relacionadas às enzimas canaliculares, notamos um aumento dessas enzimas até o 7º dia após o transplante, com subsequente redução dos seus valores nos dias subsequentes. Nas Figuras B.8a e B.8b relacionadas às enzimas hepáticas, após o transplante, há um discreto aumento inicial da média dessas enzimas até o 7º dia pós o transplante, com subsequente normalização dos seus valores nos dias subsequentes. O desvio padrão dessas

enzimas reduz consideravelmente a partir do 7º dia. Já com as bilirrubinas (indireta e direta, Figuras B.9a e B.9b, respectivamente), notamos não somente uma redução na média como uma redução na variabilidade, principalmente até 14º dia após o transplante. Posteriormente, há discreto aumento da dispersão dos valores, porém, menor do que o encontrado no dia do transplante.

Com relação aos marcadores de função renal (uréia e creatinina, Figuras B.10a e B.10b) notamos um aumento dessas enzimas até o 7º dia após o transplante, com subsequente redução dos seus valores nos dias subsequentes.

Com relação aos leucócitos (Figura B.11a), de modo geral, ocorre um aumento da média e da dispersão até o 7º dia, com redução de ambos nos dias subsequentes. Com o PCR, notamos aumento da média até o 14º dia, que tende a se reduzir após esse dia (Figura B11.b). A dispersão no dia do transplante é maior do que nos demais dias.

Quanto aos imunossupressores (tacrolimus – Figura B.12a), nota-se um aumento da média da dose de tacrolimus até o dia 14, com posterior queda. Com relação ao nível sérico (Figura B.12b), há uma elevação até o dia 14, com tendência a estabilização da dose média nos dias subsequentes. Conforme descrito anteriormente, everolimus não foi muito usado e, quando o foi, foi empregado no dia 14, com subsequente aumento de dose e nível sérico no dia 30. Não há registro de uso antes ou depois dessas datas.

Sobre os polimorfismos, na Tabela A.12, encontramos uma descrição dos quatro genes estudados, de seus respectivos polimorfismos, os genótipos subsequentes e os respectivos perfis de metabolização a eles associados. Os genótipos mais frequentes se encontram em negrito e o genótipo GC do polimorfismo rs12721627 tem perfil metabólico incerto (representado por "??"). Por exemplo, para o gene CYP3A4, temos quatro polimorfismos associados a ele; um deles, o rs35599367 tem 2 genótipos a ele associados: GG, mais comum (associado à metabolização intermediária), e GA (fraco metabolizador)

Faremos agora, para cada gene e polimorfismo, a comparação das frequências dos genótipos entre doadores e receptores, utilizando o teste de

homogeneidade qui-quadrado ou exato de Fisher (Tabela A.13). Para os cinco genes estudados e respectivos polimorfismos, não podemos concluir, a 5% de significância, que haja diferença nas proporções dos genótipos estudados, entre doadores e receptores

Em seguida, vamos avaliar se, para cada gene e polimorfismo, dentre os receptores, há alguma associação entre os genótipos e os desfechos estudados. Os valores-p dos testes de homogeneidade se encontram na Tabela A.14. Somente para o gene POR e gene ABCB1 com polimorfismo rs1128503 há evidências da associação, a 5% de significância, dos genótipos desses genes com infecções no pós transplante hepático. Vemos que pacientes com o genótipo AG e GG no polimorfismo rs1128503 do gene ABCB1 apresentaram mais infecções do que os pacientes com genótipos TT. Para o gene POR, o genótipo CT estaria mais associado à infecção, enquanto o genótipo CC à menor frequência de infecções.

Para IRA, (Tabela A.15), não há evidências da associação, a 5% de significância, entre os genótipos e IRA, no pós transplante hepático, dentre os receptores. Significa dizer que nenhum genótipo dos genes estudados está associado com maior incidência de IRA. O mesmo comentário vale para a associação entre os polimorfismos estudados, com relação ao desfecho rejeição, em receptores (Tabela A.16), ou seja, não há evidências da associação, a 5% de significância, entre rejeição e os polimorfismos estudados

Sabemos que não somente os genes do receptor estão envolvidos na metabolização de fármacos. Dessa forma, repetimos os testes de homogeneidade expostos acima, agora usando os doadores, para avaliar alguma possível associação entre os genótipos dos doadores e os diferentes desfechos. De acordo com as Tabelas A.17 a A.19, não encontramos evidências da associação, a 5% de significância, entre os genótipos dos doadores e os desfechos estudados no pós transplante hepático.

Com o intuito de comparar os níveis séricos de tacrolimus com a presença ou não dos desfechos, avaliamos a evolução da média do seu nível sérico, ao longo do tempo (em cada um dos dias do pós transplante), Figuras B.13a, B.13b e B.13c. No pós-transplante imediato, não há desfecho ainda, embora os pacientes já tenham iniciado o tacrolimus. Os receptores que apresentaram rejeição e IRA têm, em média, maiores níveis séricos de tacrolimus. O inverso ocorreu com infecção: os pacientes que não apresentaram infecção apresentaram níveis séricos iguais ou maiores dos que apresentados pelos receptores que apresentaram infecção. No entanto, o teste de Friedman (Friedman, 1937) para comparação das médias do nível sérico de tacrolimus nos dias 7,14,30 e 90 não mostrou significância estatística entre as diferenças das médias dos grupos que apresentaram ou não os desfechos infecção (valor-p = 0,494), IRA (valor-p = 0,241) e rejeição (valor-p = 0,145).

6. Análise inferencial

Para cada desfecho, a associação deles com os polimorfismos em estudo foi estabelecida através de um modelo de regressão logística bayesiano. Assim, as variáveis dependentes dos modelos de regressão são os desfechos de interesse, representados por $Y_{i,j}$, sendo: $i=1, 2, \cdots, 97$, referentes aos receptores e $j=\{1, 2, 3\}$, aos desfechos/modelos.

Sendo as variáveis dependentes dicotômicas (infecção, insuficiência renal e IRA), podem ser representadas, cada uma, por uma distribuição de Bernoulli, com $\theta_{i,j}$ representando a probabilidade da ocorrência do desfecho em questão:

$$Y_{i,j}|\theta_{i,j} \sim Ber(\theta_{i,j}), \ 0 \le \theta_{i,j} \le 1$$
; $i = 1, 2, \dots, 97, j = \{1, 2, 3\}$

cuja função de distribuição de probabilidade pode ser escrita como:

$$f(y_{i,j}, \theta_{i,j}) = \theta_{i,j}^{y_{i,j}} (1 - \theta_{i,j})^{1 - y_{i,j}}, j = \{1, 2, 3\} e i = 1, 2, \dots, 97$$

Dessa forma, para cada modelo, referente a cada desfecho j, $j = \{1, 2, 3\}$ temos:

1. Vetor de variáveis resposta:

$$Y_j = [Y_{1,j}, Y_{2,j}, \dots, Y_{97,j}]^{\mathrm{T}}$$

2. Matriz de planejamento do modelo: Para obter a matriz de planejamento de cada modelo, inicialmente, todos os genótipos dos polimorfismos dos doadores e pacientes foram incluídos em cada um dos três modelos. Dessa forma, foram incluídas 34 covariáveis em cada modelo, sendo duas covariáveis referentes às idades de doadores e receptores e as 32 demais, referentes aos polimorfismos de doadores e receptores; foram selecionadas para o modelo final as covariáveis que apresentaram nível de credibilidade de 95%. Assim, a matriz final obtida pode ser representada como sendo:

$$\boldsymbol{X_i} = [\mathbf{1}, \mathbf{X_1}, \mathbf{X_2}, \dots, \mathbf{X_p}]^\mathsf{T}$$

Na matriz $\pmb{X_j}$, 1 representa o vetor 97 x 1 de números 1 e $\pmb{X_k} = \left[X_{1,k}, X_{2,k}, \ldots, X_{97,k}\right]^T$, o vetor das observações da k-ésima covariável, sendo $j = \{1, 2, 3\}$ referente ao modelo e $k = 1, 2, \cdots, p_j$, sendo p_j o total de covariáveis significativas em cada modelo: para infecção, a matriz X apresentou 5 covariáveis significativas ($p_1 = 5$), para IRA, $p_2 = 5$ e para rejeição, $p_3 = 4$.

3. Vetor de coeficientes do modelo, representados por

$$\boldsymbol{\beta_j} = \left[\beta_{0,j}, \beta_{1,j}, \dots, \beta_{p,j}\right]^{\mathrm{T}}$$

Novamente aqui, p representando o total de covariáveis para cada modelo (p_1 =5 para infecção, p_2 = 5 para IRA e p_3 =4 para rejeição).

Dessa forma, podemos escrever os modelos acima citados como:

a. Para Infecção:

$$\log\left(\frac{\theta_{i,1}}{1 - \theta_{i,1}}\right) = \beta_{0,1} + \sum_{k=1}^{p} \beta_{k,1} X_{i,k}$$

b. Para Insuficiência renal aguda:

$$\log\left(\frac{\theta_{i,2}}{1 - \theta_{i,2}}\right) = \beta_{0,2} + \sum_{k=1}^{p} \beta_{k,2} X_{i,k}$$

c. Para Rejeição aguda:

$$\log\left(\frac{\theta_{i,3}}{1 - \theta_{i,3}}\right) = \beta_{0,3} + \sum_{k=1}^{p} \beta_{k,3} X_{i,k}$$

Para os coeficientes dos modelos de regressão acima, atribuímos como prioris, distribuições normais, independentes entre si, com média zero e variância constante.

$$\beta_{k,i} \sim N(0,100), j = \{1, 2, 3\} e k = 0, 1, ..., p_i$$

Com o intuito de captar uma possível correlação entre os 3 desfechos, criou-se um vetor composto pelos $\beta_{0,j}$ e a eles, foi atribuída uma priori diferente das dos demais parâmetros da regressão. Atribuímos aos coeficientes β_0 , referentes a cada modelo, distribuição normal multivariada, com vetor de médias μ e matriz de Variância-Covariância (Σ), sendo:

$$\mu = [0 \ 0 \ 0]^T$$

$$\Sigma = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{1,2} & \sigma^{2}_{2} & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^{2}_{3} \end{pmatrix},$$

$$\beta_{0,j} \sim N_3(\mu, \Sigma)$$
, $com j = \{1, 2, 3\}$, σ_j^2 : constante e $\sigma_{i,k} \sim \text{Cauchy}(0, 5)$

Com o intuito de estimar a matriz Σ acima, utilizamos uma abordagem que considera a decomposição de Cholesky (Olkin, 1985), consistindo da decomposição de uma matriz positiva-definida no produto de uma matriz triangular inferior e sua transposta. Considere a matriz de correlação R abaixo:

$$R = \begin{pmatrix} 1 & \rho_{1,2} & \rho_{1,3} \\ \rho_{1,2} & 1 & \rho_{2,3} \\ \rho_{3,1} & \rho_{3,2} & 1 \end{pmatrix}$$

No nosso caso, decompomos a matriz de correlação R no produto de duas matrizes triangulares, que chamamos de Lu e Lu' (transposta de L). Embora possamos realizar diretamente a decomposição de Cholesky na matriz Variância-Covariância Σ , isso não é recomendado, pois deixaríamos de estimar os desvios padrões (σ) de cada variável. Na Figura B.14, temos um esquema do modo como essa decomposição é feita (Jing, Jake, multivariate normal distribution and cholesky decomposition in Stan).

Estabelecidas as prioris acima, obtivemos estimativas dos parâmetros dos modelos com o programa Stan da programoteca do software R, que utiliza amostragem pelo método Monte Carlo via cadeias de Markov (MCMC). (Multivariate Priors for Hierarchical Models, Stan user's guide e Logistic and probit regression, Stan user's guide)

As estimativas dos coeficientes β , para a interpretação do modelo encontram-se na Tabela A.20, juntos dos respectivos intervalos HPD, com 95% de credibilidade. Foram considerados significantes os coeficientes que não apresentaram o zero no seu intervalo. O polimorfismo rs12721627 apresentava 96 genótipos do tipo GG e não foi incluído na análise. A matriz de correlação apresentou todas as estimativas de ρ próximas de zero, sem significância estatística.

Interpretação dos coeficientes para Infecção:

 A chance de desenvolvimento de infecções nos receptores de transplante de fígado diminui em média exp (-0,06) = 0,94 com o aumento de um ano na idade do doador (ou seja, apresenta uma redução de 6% na chance de infecção, a cada acréscimo de um ano na idade do doador)

Para os polimorfismos que apresentaram significância estatística, a razão de chances de desenvolvimento de infecções nos receptores de transplante de fígado pode ser interpretada como:

- A chance de um receptor com genótipo CT no polimorfismo rs1057868 apresentar infecção pós transplante hepático é exp (1,34) = 3,8 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo GG (mais comum) no polimorfismo rs35599367 apresentar infecção pós transplante hepático é exp (8,26) = 3866,1 vezes a chance de um receptor com o genótipo de referência GA, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo TT no polimorfismo rs776746 apresentar infecção pós transplante hepático é exp (3,35) = 28,5 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo TT (mais comum) no polimorfismo rs2740574 apresentar infecção pós transplante hepático é exp (1,67) = 5,31 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.

Interpretação dos coeficientes para IRA:

- A chance de um receptor com genótipo GG no polimorfismo rs35599367 apresentar IRA pós transplante hepático é exp (6,08) = 437,03 vezes a chance de um receptor com o genótipo de referência GA, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo CT no polimorfismo rs776746 apresentar IRA pós transplante hepático é exp (2,5) = 12,18 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo TT no polimorfismo rs776746 apresentar IRA pós transplante hepático é exp (3,73) = 41,68 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.
- A chance de um receptor com genótipo TT no polimorfismo rs2740574 apresentar IRA pós transplante hepático é exp (2,22) = 9,21 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.

Interpretação dos coeficientes para Rejeição:

- A chance de rejeição de transplante de fígado diminui em média exp (-0,06) = 0,94 com o acréscimo de um ano na idade do receptor (ou seja, apresenta uma redução de 6% a cada acréscimo de um ano na idade do receptor)
- A chance de um receptor com genótipo CT no polimorfismo rs1057868 apresentar rejeição pós transplante hepático é exp (-1,77) = 0,17 vezes a

chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.

- A chance de um receptor com genótipo TT no polimorfismo rs1057868 apresentar rejeição pós transplante hepático é exp (-9,04) = 0.0001 vezes a chance de um receptor com o genótipo de referência CC, mantidos iguais os demais polimorfismos.
- A chance de um receptor cujo doador é portador do genótipo TT (mais comum) no polimorfismo rs2740574 apresentar rejeição é exp (-1,24) = 0.29 vezes a chance de um receptor que recebeu o órgão de um doador com o genótipo de referência CC, nesse polimorfismo, mantidos iguais os demais polimorfismos.

7. Considerações finais

Podemos concluir descritivamente que a idade mediana dos receptores é maior do que a dos doadores e que não há diferença de gênero entre doadores e receptores, com predominância de homens, nos dois grupos. A raça branca é predominante (80%) nos receptores. Hepatites B e C são as causas mais predominantes de transplante hepático isoladas; fluconazol e amiodarona foi a associação mais comumente encontrada entre os indutores e inibidores. A principal causa de óbito foi infecção. Os exames séricos laboratoriais apresentam, em geral, valores aumentados até 30 dias, com subsequente redução.

A frequência dos genótipos não apresenta diferença entre doadores e receptores, para cada gene analisado. Há evidências de associação, a 5% de significância, dos polimorfismos dos genes ABCB1, rs1128503 e POR e rs1057868 com infecções no pós transplante hepático. Não há associação entre as frequências de IRA e rejeição com os polimorfismos dos receptores. Quanto aos polimorfismos dos doadores, não encontramos associação com os desfechos estudados no pós transplante hepático. Comparando as médias dos níveis séricos de tacrolimus nos grupos que tiveram ou não os desfechos do

estudo, as diferenças entre as médias não possuem significância estatística a 5%.

No modelo inferencial, a idade de doadores e receptores apresentou impacto na redução da chance dos desfechos (idade do doador relacionado a redução de chance de infecção e idade do receptor, com redução de chance de rejeição). Os três desfechos não apresentaram correlações significativas. Houve predominância de polimorfismos dos receptores no aumento das chances dos desfechos de infecção e IRA. O efeito dos polimorfismos do gene ABCB1 (3 polimorfismos) não foi significativo, quando analisado na presença dos outros genes, para os três desfechos e o gene CYP3A5 foi significante em todos os modelos aumentando a chance de Infecção/IRA e diminuindo a chance de rejeição.

APÊNDICE A

Tabelas

Tabela A.1 Medidas descritivas da Idade (em anos) de doadores e receptores

	Doador	Receptor
Mínimo	6,3	18,6
Mediana	49,4	59,8
Interquartil	22,7	12,4
Máximo	76,3	71,8
N	97	97

Tabela A.2 Distribuição de frequências de Gênero para doadores e receptores.

Gênero	Doador	Receptor
Feminino	38 (39,2%)	40 (41,2%)
Masculino	59 (60,8%)	57 (58,8%)
Total	97 (100,0%)	97 (100,0%)

Tabela A.3 Causas de transplante associadas ao vírus da hepatite C (N=39, 40,20%).

Causa	Frequência absoluta	%
Vírus hepatite C somente	21	53,8
Associado a Carcinoma	15	38,5
Associado a etilismo	2	5,1
Associado a cirrose biliar primária	1	2,6

Tabela A.4 Causas de transplante associadas ao vírus da hepatite B (N=18, 18.55%).

10,00 /0).	
Frequência	%
absoluta	
10	55,6
6	33,3
1	5,6
1	5,6
	Frequência absoluta 10

Tabela A.5 Causas de transplante associadas à cirrose por NASH (N=11, 11,34%).

Causa	Frequência	%
	absoluta	
NASH somente	9	81,8
Associado a Carcinoma	1	9,1
Associado a etilismo	1	9,1

Tabela A.6 Causas de transplante associadas a etilismo (N=4, 4,12%)

Causa	Frequência	%
Gadoa	absoluta	70
Associado a Carcinoma	3	75
Associado à esquistossomos	e 1	25

Tabela A.7 Outras causas de cirrose (N=21, 21,65%)

Causa	Frequência	%
	absoluta	
Criptogênica	9	42,9
Hepatite autoimune	3	14,3
Colangite esclerosante primária	4	19,0
Colangite biliar secundária	1	4,8
Hepatite fulminante	1	4,8
Esquistossomose	2	9,5
Doença Caroli	1	4,8

Tabela A.8 Uso de drogas indutoras/inibidoras do metabolismo (N=14, 14,43%)

Medicações	Frequência	%
	absoluta	
Fluconazol e amiodarona	6	42,9
Outros	8	57,1

Tabela A.9 Uso de drogas indutoras

	•	
Droga	Frequência	%
	absoluta	
Basiliximabe	55	56,7
Corticóide	42	43,3

Tabela A.10 Causas de óbito (N=9, 9,27%)

Frequência absoluta	%		
4	44,4		
3	33,3		
1	11,1		
1	11,1		
	4		

Tabela A.11 Incidência dos desfechos (N=84, 86,6%)

Causa	Frequência	%
	absoluta	
Infecção	20	23,81
Infecção e IRA	29	34,52
Infecção e rejeição aguda	3	3,57
IRA	18	21,43
IRA e rejeição aguda	7	8,33
Rejeição aguda	1	1,19
Infecção, IRA e rejeição	6	7,14

Tabela A.12 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR, seus genótipos e fenótipos

	61	Ort, seus gen	oupos e lenoupos
Gene	Polimorfismo	Genótipo	Fenótipo metabolizador
CYP3A5	rs776746	CC/CT/TT	Fraco/Intermediário/Extenso
	rs10264272	CC/CT	Extenso/Intermediário
CYP3A4	rs2740574	TT/CT/CC	Intermediário/Extenso/Extenso
	rs12721627	GG /CG	Intermediário/??
	rs2242480	CC/CT/TT	Intermediário/Extenso/Extenso
	rs35599367	GG /GA	Intermediário/Fraco
ABCB1	rs1128503	AG/ AA /GG	Diminui/aumenta/diminui
			concentração tacrolimus
	rs9282564	TT/CC/TC	Aumento/aumento/diminuição
			concentração tacrolimus
	rs2229109	CC/CT	Menor/maior risco de rejeição de
			órgão
POR	rs1057868	CC/CT/TT	Intermediário/Extenso/Extenso

Tabela A.13 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR, seus genótipos em doadores e receptores (valores-p referentes ao teste de homogeneidade).

Gene e polimorfismo	Genótipo	D	oador	Re	eceptor		
-	•	Freq. abs	(%)	Freq. abs	(%)	Total	Valor-p
CYP3A5	CC	87	(89,7%)	93	(95,9 %)	180	0,164
rs10264272	CT	10	(10,3%)	4	(4,1%)	14	
CYP3A5	CC	57	(58,8%)	65	(67,0%)	122	0,489
rs776746	CT	32	(33,0%)	26	(26,8%)	58	
	TT	8	(8,2%)	6	(6,2%)	14	
CYP3A4	CC	6	(6,2%)	3	(3,1%)	9	0,343
rs2740574	CT	28	(28,9%)	22	(22,7%)	50	
	TT	63	(64,9%)	72	(74,2%)	135	
CYP3A4	GC	0	(0,0%)	1	(1,0%)	1	>0,999
rs12721627	GG	97	(100,0%)	96	(99,0%)	193	
CYP3A4	CC	56	(57,7%)	55	(56,7%)	111	0,185
rs2242480	CT	27	(27,8%)	35	(36,1%)	62	
	TT	14	(14,4%)	7	(7,2%)	21	
YP3A4	GA	3	(3,1%)	2	(2,1%)	5	>0,999
rs35599367	GG	94	(96,9%)	95	(97,9%)	189	
ABCB1	AA	12	(12,4%)	10	(10,4%)	22	0,104
rs1128503	AG	54	(55,7%)	41	(42,7%)	95	
	GG	31	(32,0%)	45	(46,9%)	76	
ABCB1	CC	1	(1,0%)	0	(0,0%)	1	>0,999
rs9282564	TC	9	(9,3%)	9	(9,3%)	18	
	TT	87	(89,7%)	88	(90,7%)	175	
ABCB1	CC	93	(95,9%)	87	(89,7%)	180	0,164
rs2229109	CT	4	(4,1%)	10	(10,3%)	14	
POR	CC	6	(6,2%)	3	(3,1%)	9	0,343
rs1057868	CT	28	(28,9%)	22	(22,7%)	50	
	TT	63	(64,9%)	72	(74,2%)	135	

Tabela A.14 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR de receptores que apresentaram infecção ou não (p-valores referentes ao teste homogeneidade).

Gene e polimorfismo	Genótipo Infecção		Sem Infecção				
		freq	(%)	freq	(%)	Total	Valor-p
CYP3A5	CC	56	(96,6%)	37	(94,9%)	93	>0,999
rs10264272	CT	2	(3,4%)	2	(5,1%)	4	
CYP3A5	CC	39	(67,2%)	26	(66,7%)	65	0,450
rs776746	CT	14	(24,1%)	12	(30,8%)	26	
	TT	5	(8,6%)	1	(2,6%)	6	
	CC	2	(3,4%)	1	(2,6%)	3	0,595
CYP3A4 rs2740574	CT	11	(19,0%)	11	(28,2%)	22	
152740574	TT	45	(77,6%)	27	(69,2%)	72	
CYP3A4	GC	1	(1,7%)	0	(0,0%)	1	>0,999
rs12721627	GG	57	(98,3%)	39	(100,0%)	96	
CYP3A4	CC	34	(58,6%)	21	(53,8%)	55	0,687
rs2242480	СТ	19	(32,8%)	16	(41,0%)	35	
	TT	5	(8,6%)	2	(51,0%)	7	
CYP3A4	GA	0	(0,0%)	2	(5,1%)	2	0.,591
rs35599367	GG	58	(100%)	37	(94,9%)	95	
ABCB1	AA	6	(10,5%)	4	(10,3%)	10	0,0394
rs1128503	AG	30	(52,6%)	11	(28,2%)	41	
	GG	21	(36,8%)	24	(61,5%)	45	
ABCB1	CC	-	-	-	-		0,080
rs9282564	TC	8	(13,8%)	1	(2,6%)	9	
	TT	50	(86,2%)	38	(97,4%)	88	
	CC	50	(86,2%)	37	(94,9%)	87	0,307
ABCB1 rs2229109	СТ	8	(13,8%)	2	(5,1%)	10	
POR	CC	25	(43,1%)	29	(74,4%)	54	0,006
rs1057868	CT	30	(51,7%)	9	(23,1%)	39	
	TT	3	(5,2%)	1	(2,6%)	4	

Tabela A.15 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR de receptores que apresentaram IRA ou não (p-valores referentes ao teste homogeneidade).

Gene e polimorfismo	Genótipo		IRA		Sem IRA		
		freq	(%)	freq	(%)	Total	Valor-p
CYP3A5	CC	57	(95,0%)	3	(5,0%)	93	>0,999
rs10264272	CT	36	(97,3%)	1	(2,7%)	4	
CYP3A5	CC	37	(61,7%)	28	(75,5%)	65	0,318
rs776746	CT	18	(30,0%)	8	(21,6%)	26	
	TT	5	(8,3%)	1	(2,7%)	6	
CYP3A4	CC	2	(3,3%)	1	(2,7%)	3	0,913
rs2740574	CT	13	(21,7%)	9	(24,3%)	22	
	TT	45	(75,0%)	27	(73,0%)	72	
CYP3A4	GC	1	(1,7%)	0	(0,0%)	1	>0,999
rs12721627	GG	59	(98,3%)	37	(100,0%)	96	
CYP3A4	CC	31	(51,7%)	24	(64,9%)	55	0,491
rs2242480	CT	24	(40,0%)	11	(29,7%)	35	
	TT	5	(8,3%)	2	(5,4%)	7	
CYP3A4	GA	0	(0,0%)	2	(5,4%)	2	0,143
rs35599367	GG	60	(100%)	35	(94,6%)	95	
ABCB1	AA	5	(8,5%)	5	(13,5%)	10	0,449
rs1128503	AG	28	(47,5%)	13	(35,1%)	41	
	GG	26	(44,1%)	19	(51,4%)	45	
ABCB1	CC	-	-	-	-	-	0,728
rs9282564	TC	5	(8,3%)	4	(10,8%)	9	
	TT	55	(91,7%)	33	(89,2%)	88	
ABCB1	CC	54	(90,0%)	33	(89,2%)	87	>0,999
rs2229109	CT	6	(10,0%)	4	(10,8%)	10	
POR	CC	32	(53,3%)	22	(59,5%)	54	0,822
rs1057868	CT	25	(41,7%)	14	(37,8%)	39	
	TT	3	(5,0%)	1	(2,7%)	4	

Tabela A.16 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR, de receptores que apresentaram rejeição ou não (p-valores referentes ao teste homogeneidade)

Gene e polimorfismo	Genótipo	tipo Rejeição		Sem Rejeição			
		Freq. abs	(%)	Freq. abs	(%)	Total	Valor-p
CYP3A5	CC	17	(100,0%)	76	(95,0%)	93	>0,999
rs10264272	CT	0	(0,0%)	4	(5,0%)	4	
CYP3A5	CC	13	(76,5%)	52	(65,0%)	65	0,608
rs776746	CT	4	(23,5%)	22	(27,5%)	26	
	TT	0	(0,0%)	6	(7,5%)	6	
CYP3A4	CC	0	(0,0%)	3	(3,7%)	3	>0,999
rs2740574	CT	4	(23,5%)	18	(22,5%)	22	
	TT	13	(76,5%)	59	(73,8%)	72	
CYP3A4	GC	0	(0,0%)	1	(1,3%)	1	>0,999
rs12721627	GG	17	(100%)	79	(98,8%)	96	
CYP3A4	CC	12	(70,6%)	43	(53,7%)	55	0,449
rs2242480	CT	4	(23,5%)	31	(38,8%)	35	
	TT	1	(5,9%)	6	(7,5%)	7	
CYP3A4	GA	0	(0,0%)	2	(2,5%)	2	>0,999
rs35599367	GG	17	(100%)	78	(97,5%)	95	
ABCB1	AA	1	(5,9%)	9	(11,4%)	10	0,629
rs1128503	AG	6	(35,3%)	35	(44,3%)	41	
	GG	10	(58,8%)	35	(44,3%)	45	
ABCB1	CC	-	-	-	-		>0,999
rs9282564	TC	1	(5,9%)	8	(10,0%)	9	
	TT	16	(94,1%)	72	(90,0%)	88	
ABCB1	CC	15	(88,2%)	72	(90,0%)	87	>0,999
rs2229109	СТ	2	(11,8%)	8	(10,0%)	10	
POR	CC	13	(76,5%)	41	(51,2%)	54	0,175
rs1057868	СТ	4	(23,5%)	35	(43,8%)	39	
	TT	0	(0,0%)	4	(5,0%)	4	

Tabela A.17 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR de doadores, cujos receptores apresentaram infecção ou não (p-valores referentes ao teste homogeneidade).

Gene e polimorfismo	Genótipo	o Infecção		Sem Infecção			
		Freq. abs	(%)	Freq. abs	(%)	Total	Valor-p
CYP3A5	CC	52	(89,7%)	35	(89,7%)	87	>0,999
rs10264272	CT	6	(10,3%)	4	(10,3%)	101	
CYP3A5	CC	32	(55,2%)	25	(64,1%)	57	0,561
rs776746	CT	20	(34,5%)	12	(30,8%)	32	
	TT	6	(10,3%)	2	(5,1%)	8	
CYP3A4	CC	5	(8,6%)	1	(2,6%)	6	0,515
rs2740574	CT	17	(29,3%)	11	(28,2%)	28	
	TT	36	(62,1%)	27	(69,2%)	63	
CYP3A4	GC	-	-	-	-		-
rs12721627	GG	58	(50,0%)	39	(40,2%)	97	
CYP3A4	CC	31	(53,4%)	25	(64,1%)	56	0,594
rs2242480	CT	18	(31,0%)	9	(23,1%)	27	
	TT	9	(15,5%)	5	(12,8%)	14	
CYP3A4	GA	3	(5,2%)	0	(0,0%)	3	0,270
rs35599367	GG	55	(94,8%)	39	(100,0%)	94	
ABCB1	AA	7	(12,1%)	5	(12,8%)	12	0,548
rs1128503	AG	30	(51,7%)	24	(61,5%)	54	
	GG	21	(36,2%)	10	(25,6%)	31	
ABCB1	CC	1	(1,7%)	0	(0,0%)	1	>0,999
rs9282564	TC	5	(8,6%)	4	(10,3%)	9	
	TT	52	(89,7%)	35	(89,7%)	87	
ABCB1	CC	56	(96,6%)	37	(94,9%)	93	>0,999
rs2229109	CT	2	(3,4%)	2	(5,1%)	4	
POR	CC	32	(55,2%)	26	(66,7%)	58	0,409
rs1057868	СТ	22	(37,9%)	12	(30,8%)	34	
	TT	4	(6,9%)	1	(2,6%)	5	

Tabela A.18 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR de doadores, cujos receptores apresentaram IRA ou não (p-valores referentes ao teste homogeneidade).

CYP3A5 CC 54 (90,0%) Freq. abs (%) Total Valor-p abs CYP3A5 CC 54 (90,0%) 33 (89,2%) 87 >0,999 rs10264272 CT 6 (10,0%) 4 (10,8%) 10 CYP3A5 CC 35 (58,3%) 22 (59,5%) 57 >0,999 rs776746 CT 20 (33,3%) 12 (32,4%) 32 TT 5 (8,3%) 1 (2,7%) 6 0,612 rs2740574 CT 17 (28,3%) 11 (29,7%) 28 CYP3A4 CC 5 (8,3%) 25 (67,6%) 63 CYP3A4 GC - <td< th=""><th>Gene e polimorfismo</th><th>Genótipo</th><th></th><th>IRA</th><th>,</th><th>Sem IRA</th><th></th><th></th></td<>	Gene e polimorfismo	Genótipo		IRA	,	Sem IRA		
rs10264272 CT 6 (10,0%) 4 (10,8%) 10 CYP3A5 rs776746 CC 35 (58,3%) 22 (59,5%) 57 >0,999 rs776746 CT 20 (33,3%) 12 (32,4%) 32 CYP3A4 rs2740574 CC 5 (8,3%) 1 (2,7%) 6 0,612 CYP3A4 rs12721627 CT 17 (28,3%) 11 (29,7%) 28 CYP3A4 rs12721627 GG 58 (59,8%) 39 (40,2%) 97 CYP3A4 rs2242480 CC 36 (60,0%) 20 (54,1%) 56 0,874 CYP3A4 rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs2242480 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs35599367 GG 58 (96,7%) 36 (97,3%) 94				(%)			Total	Valor-p
CYP3A5 CC 35 (58,3%) 22 (59,5%) 57 >0,999 rs776746 CT 20 (33,3%) 12 (32,4%) 32 CYP3A4 CC 5 (8,3%) 3 (8,1%) 8 CYP3A4 rs2740574 CT 17 (28,3%) 11 (29,7%) 28 TT 38 (63,3%) 25 (67,6%) 63 63 CYP3A4 rs12721627 GG 58 (59,8%) 39 (40,2%) 97 CYP3A4 rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs2242480 GA 2 (3,3%) 1 (2,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs2242480 GA 2 (3,3%) 1 (2,7%) 3 >0,999 rs35599367 GG 58 (96,7%)		CC	54	(90,0%)	33	(89,2%)	87	>0,999
rs776746 CT 20 (33,3%) 12 (32,4%) 32 CYP3A4 rs2740574 CC 5 (8,3%) 1 (2,7%) 6 0,612 rs2740574 CT 17 (28,3%) 11 (2,7%) 28 0,612 CYP3A4 rs2240574 GC -	rs10264272	CT	6	(10,0%)	4	(10,8%)	10	
CYP3A4 rs224480 CC 5 (8,3%) 3 (8,1%) 8 CYP3A4 rs2242480 CC 5 (8,3%) 1 (2,7%) 6 (0,612) CYP3A4 rs2242480 GC		CC	35	(58,3%)	22	(59,5%)	57	>0,999
CYP3A4 rs2740574 CC 5 (8,3%) 1 (2,7%) 6 0,612 CYP3A4 rs12721627 GC -	rs776746	CT	20	(33,3%)	12	(32,4%)	32	
rs2740574 CT 17 (28,3%) 11 (29,7%) 28 CYP3A4 rs12721627 GC - - - - - - CYP3A4 rs12721627 GG 58 (59,8%) 39 (40,2%) 97 CYP3A4 rs2242480 CC 36 (60,0%) 20 (54,1%) 56 0,874 CYP3A4 rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs35599367 GA 2 (3,3%) 1 (2,7%) 3 >0,999 rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs9128503 AA 5 (8,3%) 7 (18,9%) 12 0,347 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9		TT	5	(8,3%)	3	(8,1%)	8	
TT 38 (63,3%) 25 (67,6%) 63 CYP3A4 GC		CC	5	(8,3%)	1	(2,7%)	6	0,612
CYP3A4 rs12721627 GG 58 (59,8%) 39 (40,2%) 97 CYP3A4 rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs1128503 AG 35 (58,3%) 19 (51,4%) 54 GG 20 (33,3%) 11 (29,7%) 31 CCC 1 (1,7%) 0 (0,0%) 1 0,462 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CT 18 (30,0%) 16 (43,2%) 34	rs2740574	CT	17	(28,3%)	11	(29,7%)	28	
rs12721627 GG 58 (59,8%) 39 (40,2%) 97 CYP3A4 rs2242480 CC 36 (60,0%) 20 (54,1%) 56 0,874 TT 16 (26,7%) 11 (29,7%) 27 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs1128503 AA 5 (8,3%) 7 (18,9%) 12 0,347 ABCB1 rs1128503 AG 35 (58,3%) 19 (51,4%) 54 GG 20 (33,3%) 11 (29,7%) 31 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 ABCB1 rs9282564 TC 57 (95,0%) 36 (97,3%) 93 >0,999 ABCB1 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs2229109 CT		TT	38	(63,3%)	25	(67,6%)	63	
CYP3A4 rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 GG GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs1128503 AG GG 20 (33,3%) 11 (29,7%) 31 CCC 11 (1,7%) 0 (0,0%) 12 (3,347) 13 (29,7%) 3 (30,347) 14 CYP3A4 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs1128503 AG GG 20 (33,3%) 11 (29,7%) 31 CCC 11 (1,7%) 0 (0,0%) 1 0,462 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 rs9282564 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CT 18 (30,0%) 16 (43,2%) 34		GC	-	-	-	-		-
rs2242480 CT 16 (26,7%) 11 (29,7%) 27 TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 GA 2 (3,3%) 1 (2,7%) 3 >0,999 rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 AA 5 (8,3%) 7 (18,9%) 12 0,347 rs1128503 AG 35 (58,3%) 19 (51,4%) 54 54 66 66 20 (33,3%) 11 (29,7%) 31 0,462 34 <	rs12721627	GG	58	(59,8%)	39	(40,2%)	97	
TT 8 (13,3%) 6 (16,2%) 14 CYP3A4 GA 2 (3,3%) 1 (2,7%) 3 >0,999 rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 AA 5 (8,3%) 7 (18,9%) 12 0,347 rs1128503 AG 35 (58,3%) 19 (51,4%) 54 GG 20 (33,3%) 11 (29,7%) 31 CCC 1 (1,7%) 0 (0,0%) 1 0,462 ABCB1 TC 4 (6,7%) 5 (13,5%) 9 TS9282564 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34	CYP3A4	CC	36	(60,0%)	20	(54,1%)	56	0,874
CYP3A4 rs35599367 GA 2 (3,3%) 1 (2,7%) 3 >0,999 ABCB1 rs1128503 AA 5 (8,3%) 7 (18,9%) 12 0,347 ABCB1 rs9282564 AA 5 (58,3%) 19 (51,4%) 54 (51,4%)	rs2242480	СТ	16	(26,7%)	11	(29,7%)	27	
rs35599367 GG 58 (96,7%) 36 (97,3%) 94 ABCB1 rs1128503 AA 5 (8,3%) 7 (18,9%) 12 0,347 AG 35 (58,3%) 19 (51,4%) 54 54 AG 20 (33,3%) 11 (29,7%) 31 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 ABCB1 rs9282564 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 rs2229109 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CT 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34		TT	8	(13,3%)	6	(16,2%)	14	
ABCB1 rs1128503 AA 5 (8,3%) 7 (18,9%) 12 0,347 rs1128503 AG 35 (58,3%) 19 (51,4%) 54 GG 20 (33,3%) 11 (29,7%) 31 CC 1 (1,7%) 0 (0,0%) 1 0,462 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CT 18 (30,0%) 16 (43,2%) 34	CYP3A4	GA	2	(3,3%)	1	(2,7%)	3	>0,999
rs1128503 AG 35 (58,3%) 19 (51,4%) 54 GG 20 (33,3%) 11 (29,7%) 31 ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 ABCB1 rs2229109 CC 57 (95,0%) 36 (97,3%) 93 >0,999 POR rs1057868 CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34	rs35599367	GG	58	(96,7%)	36	(97,3%)	94	
GG 20 (33,3%) 11 (29,7%) 31 CC 1 (1,7%) 0 (0,0%) 1 0,462 ABCB1 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34		AA	5	(8,3%)	7	(18,9%)	12	0,347
ABCB1 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34	rs1128503	AG	35	(58,3%)	19	(51,4%)	54	
ABCB1 rs9282564 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 rs2229109 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34		GG	20	(33,3%)	11	(29,7%)	31	
rs9282564 TC 4 (6,7%) 5 (13,5%) 9 TT 55 (91,7%) 32 (86,5%) 87 ABCB1 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CC 40 (66,7%) 18 (48,6%) 58 0,187 TS (30,0%) 16 (43,2%) 34		CC	1	(1,7%)	0	(0,0%)	1	0,462
TT 55 (91,7%) 32 (86,5%) 87 ABCB1 CC 57 (95,0%) 36 (97,3%) 93 >0,999 rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34		TC	4	(6,7%)	5	(13,5%)	9	
rs2229109 CT 3 (5,0%) 1 (2,7%) 4 POR rs1057868 CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34	159202304	TT	55	(91,7%)	32	(86,5%)	87	
POR CC 40 (66,7%) 18 (48,6%) 58 0,187 rs1057868 CT 18 (30,0%) 16 (43,2%) 34		CC	57	(95,0%)	36	(97,3%)	93	>0,999
rs1057868 CT 18 (30,0%) 16 (43,2%) 34	rs2229109	CT	3	(5,0%)	1	(2,7%)	4	
01 10 (30,0%) 10 (43,2%) 34	-	CC	40	(66,7%)	18	(48,6%)	58	0,187
TT 2 (3,3%) 3 (8,1%) 5	rs1057868	СТ	18	(30,0%)	16	(43,2%)	34	
		TT	2	(3,3%)	3	(8,1%)	5	

Tabela A.19 Polimorfismos associados aos genes CYP3A5, CYP3A4, ABCB1 e POR de doadores, cujos receptores apresentaram rejeição ou não (p-valores referentes ao teste homogeneidade).

Gene e	0 (1)		D.4				
polimorfismo	Genótipo	'	RA		Sem IRA		
		Freq. abs	(%)	Freq. abs	(%)	Total	Valor-p
CYP3A5	CC	15	(88,2%)	72	(90,0%)	87	>0,999
rs10264272	CT	2	(11,8%)	8	(10,0%)	10	
CYP3A5	CC	6	(35,3%)	51	(63,7%)	57	0,073
rs776746	CT	9	(52,9%)	23	(28,7%)	32	
	TT	2	(11,8%)	6	(7,5%)	8	
CYP3A4	CC	2	(11,8%)	4	(5,0%)	6	0,151
rs2740574	CT	7	(41,2%)	21	(26,3%)	28	
	TT	8	(47,1%)	55	(68,8%)	63	
CYP3A4	GC	-	-	-	-		-
rs12721627	GG	80	(82,5%)	17	(17,5%)	97	
CYP3A4	CC	7	(41,2%)	49	(61,3%)	56	0,245
rs2242480	CT	6	(35,3%)	21	(26,3%)	27	
	TT	4	(23,5%)	10	(12,5%)	14	
CYP3A4	GA	0	(0,0%)	3	(3,7%)	3	>0,999
rs35599367	GG	17	(100,0%)	77	(96,3%)	94	
ABCB1 rs1128503	AA	1	(5,9%)	11	(13,8%)	12	0,861
	AG	10	(58,8%)	44	(55,0%)	54	
	GG	6	(35,3%)	25	(31,2%)	31	
ABCB1	CC	0	(0,0%)	1	(1,3%)	1	>0,999
rs9282564	TC	1	(5,9%)	8	(10,0%)	9	
	TT	16	(94,1%)	71	(88,7%)	87	
ABCB1	CC	16	(94,1%)	77	(96,3%)	93	0,544
rs2229109	CT	1	(5,9%)	3	(3,7%)	4	
POR	CC	9	(52,9%)	49	(61,3%)	58	0,472
rs1057868	CT	8	(47,1%)	26	(32,5%)	34	
	TT	0	(0,0%)	5	(6,2%)	5	

Tabela A.20 Estimativa dos coeficientes beta, em cada um dos modelos estudados, com seus respectivos intervalos HPD (95%), associados aos polimorfismos de doadores/receptores e seus genótipos, com os quais estão relacionados

						stimativa o netros do	
		Doador/ Receptor	Genótipo	Referência	Beta	HPD	
infecção	Intercepto	•			1,25	-2,78	13,46
	Idade	Doador			-0,06	-0,1	-0,02
	rs1057868	Receptor	CT	CC	1,34	0,32	2,4
	rs35599367	Receptor	GG	GA	8,26	0,28	20,3
	rs776746	Receptor	TT	CC	3,35	0,84	6,25
	rs2740574	Receptor	TT	CC	1,67	0,35	3,11
	Intercepto				-7,65	-16,72	-1,72
IRA	rs35599367	Receptor	GG	GA	6,08	0,63	15,12
	rs776746	Receptor	CT	CC	2,5	0,53	5,19
	rs776746	Receptor	TT	CC	3,73	0,72	7,54
	rs2740574	Receptor	TT	CC	2,22	0,18	4,93
	Intercepto				3,12	0,28	6,25
	idade	Receptor			-0,06	-0,12	-0,02
Rejeição	rs1057868	Receptor	CT	CC	-1,77	-3,44	-0,38
	rs1057868	Receptor	TT	CC	-9,04	-23,07	-0,71
	rs2740574	Doador	TT	CC	-1,24	-2,47	-0,03

APÊNDICE B

Figuras

Figura B.1 Box plot da Idade para doadores e receptores

Figura B.2 Histograma da Idade dos doadores

Figura B.3 Histograma da distribuição das idades de receptores

Figura B.4 Gráfico de barras de Gênero para doadores e receptores

Figura B.5 Gráfico de barras de Raça para os receptores

Figura B.6 Gráfico de setores para Imunossupressores

Figura B.7a Evolução gama GT

Figura B.7b Evolução fosfatase alcalina

Figura B.8a Evolução AST

Figura B.8b Evolução ALT

Figura B.9a Evolução Bilirrubina indireta

Figura B.9b Evolução Bilirrubina direta

Figura B.10a Evolução Ureia

Figura B.10b Evolução Creatinina

Figura B.11a Evolução Leucócitos

Figura B.11b Evolução PCR

Figura B.12a Evolução Dose tacrolimus

Figura B.12b Evolução Nível sérico tacrolimus

Figura B.13a Evolução do Nível sérico de tacrolimus para os receptores com e sem infecção

Figura B.13b Evolução do Nível sérico de tacrolimus para os receptores com e sem IRA

Figura B.13c Evolução do Nível sérico de tacrolimus para os receptores com e sem rejeição

$$\begin{split} \Sigma &= \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \rho_{13}\sigma_1\sigma_3 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \rho_{23}\sigma_2\sigma_3 \\ \rho_{13}\sigma_1\sigma_3 & \rho_{23}\sigma_2\sigma_3 & \sigma_3^2 \end{pmatrix} \\ &= \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{pmatrix}}_{R} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \\ &= \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \underbrace{L_u L_u^T}_{R} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \end{split}$$

Figura B.14 Decomposição de Cholesky da matriz de correlação