PARISHRAM 2026 MATHS

DPP: 5

MATRICES

Q1 1. If
$$A=\begin{bmatrix}1&2\\2&3\end{bmatrix}$$
 , then matrix A is:

- (A) Skew-Symmetric
- (B) Symmetric
- (C) Identity Matrix
- (D) Diagonal Matrix
- **Q2** Which of the following is always true for any square matrix A?
 - (A) $A + A^{T}$ is symmetric
 - (B) A A^T is symmetric
 - (C) $A + A^{T}$ is skew-symmetric
 - (D) $A = A^T$
- **Q3** A skew-symmetric matrix has all diagonal elements equal to:
 - (A)1
 - (B) 0
 - (C) Any real number
 - (D) Equal to each other
- **Q4** Let A be a square matrix. Then $A A^T$ is always:
 - (A) Symmetric
- (B) Skew-Symmetric
- (C) Diagonal
- (D) Scalar

- (A) Skew-symmetric
- (B) Symmetric
- (C) Identity
- (D) None

Q6 Let
$$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 . Find symmetric matrix S such that $S=\frac{1}{2}\left(A+A^T\right)$

$$\begin{array}{c} \text{(A)} \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix} & \text{(B)} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ \text{(C)} \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} & \text{(D)} \begin{bmatrix} 2 & 2.5 \\ 2.5 & 2 \end{bmatrix} \\ \end{array}$$

- **Q7** If A is symmetric and B is skew-symmetric of same order, then A + B is:
 - (A) Symmetric
 - (B) Skew-symmetric
 - (C) Not symmetric nor skew-symmetric
 - (D) Diagonal

Q8 If
$$A=\begin{bmatrix} -1 & 7 \\ 2 & 3 \end{bmatrix}$$
 , then skew-symmetric part of A is -

$$\begin{array}{cccc} \text{(A)} \begin{bmatrix} -1 & 9/2 \\ -9/2 & 3 \\ \end{bmatrix} & \text{(B)} \begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \\ \end{bmatrix} \\ \text{(C)} \begin{bmatrix} -1 & -9/2 \\ 9/2 & 3 \\ \end{bmatrix} & \text{(D)} \begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \\ \end{bmatrix}$$

- **Q9** Let A be a symmetric matrix. Then which of the following is always true?
 - (A) A² is skew-symmetric
 - (B) A² is symmetric
 - (C) A^2 is diagonal
 - (D) $A^2 = 0$

$$S=rac{1}{2}\left(A+A^{T}
ight), \ \ K=rac{1}{2}\left(A-A^{T}
ight).$$

Then:

- (A) $A = S \times K$
- (B) A = S K
- (C) A = S + K
- (D) A = SK

Answer Key

Q1	(B)	Q6	(A)
Q2	(A)	Q6 Q7 Q8	(C)
Q3	(B)	Q8	(D)
Q4	(B)	Q9	
Q5	(A)	Q10	(C)

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Text Solution:

A matrix is symmetric if $A^T=A$.

Here,

$$A^T = \left[egin{array}{cc} 1 & 2 \ 2 & 3 \end{array}
ight] = A$$

Hence, A is symmetric.

Video Solution:

Q2 Text Solution:

A + A^T is symmetric

Solution:

Let $B = A + A^{T}$. Then

$$B^T = \left(A + A^T
ight)^T = A^T + \left(A^T
ight)^T = A^T$$

+A=B

So, B is symmetric.

Video Solution:

Q3 Text Solution:

In skew-symmetric matrix, $A^T=-A$

So
$$a_{ii}=-a_{ii}\Rightarrow 2a_{ii}=0\Rightarrow a_{ii}=0$$

Video Solution:

Q4 Text Solution:

$$\left(A-A^T
ight)^T=A^T-A=-\left(A-A^T
ight)$$

So it is skew-symmetric.

Video Solution:

Q5 Text Solution:

 $A^{T} = -A$, and diagonals are 0.

Video Solution:

Q6 Text Solution:

$$A^T = egin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$$

Add:
$$A+A^T=\begin{bmatrix}2&5\\5&8\end{bmatrix}$$
 Divide by 2: $\begin{bmatrix}1&2.5\\2.5&4\end{bmatrix}$

Video Solution:

Q7 Text Solution:

In general,

$$(A+B)^T=A^T+B^T=A-B
eq A+B$$

Video Solution:

Q8 Text Solution:

Let
$$A=B+C, where \ B$$
 are $=rac{1}{2}\left(A+A^{ op}
ight)$ and $C=rac{1}{2}\left(A-A^{ op}
ight)$ respectively symmetric and skewsymmetric parts of A.

Now
$$C = \frac{1}{2} \left\{ \begin{bmatrix} -1 & 7 \\ 2 & 3 \end{bmatrix} - \begin{bmatrix} -1 & 2 \\ 7 & 3 \end{bmatrix} \right\}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 5/2 \\ -5/2 & 0 \end{bmatrix}$$

Video Solution:

Q9 Text Solution:

If
$$A = A^T$$
, then

$$\left(A^2
ight)^T = \left(A\cdot A
ight)^T = A^T\cdot A^T = A\cdot A$$

 $=A^2$

So A^2 is also symmetric.

Video Solution:

Q10 Text Solution:

This is the standard decomposition: Any square matrix = symmetric part + skewsymmetric part.

Video Solution:

