Autoformer and Autoregressive Denoising Diffusion Models for Time Series Forecasting

Гущин Никита

ШАД

МГУ им. М.В. Ломоносова

Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Мотивация:

- Увеличение горизонта предсказания временного ряда важная задача для реальных применений.
- Помочь в «распутывании» длинных временные закономерностей может помочь использования разложения ряда на тренд и сезонную компоненту.
- Трансформеры хорошо себя показали на последовательностях и в частности временных, рядах, но они плохо масштабируются по длине в обычном случае и теряют в качестве если использовать sparse attention.

Time series decomposition

- Разложение исходного временного ряда на тренд, сезонность и остаток
- После разложения можно отдельно предсказывать тренд и сезонность с остатком, как более простые временные ряды

Архитектура авторов — модифицированный трансформер

Series decomposition

$$\mathcal{X}_{t} = AvgPool(Padding(\mathcal{X}))$$

 $\mathcal{X}_{s} = \mathcal{X} - \mathcal{X}_{t},$

Autocorrelation layer

1. Коэффициент автокорреляции для периода т

$$\mathcal{R}_{\mathcal{X}\mathcal{X}}(\tau) = \lim_{L \to \infty} \frac{1}{L} \sum_{t=1}^{L} \mathcal{X}_t \mathcal{X}_{t-\tau}.$$

2. Вычисление для всех периодов через преобразование Фурье

$$S_{\mathcal{X}\mathcal{X}}(f) = \mathcal{F}(\mathcal{X}_t) \,\mathcal{F}^* \left(\mathcal{X}_t\right) = \int_{-\infty}^{\infty} \mathcal{X}_t e^{-i2\pi t f} dt \, \overline{\int_{-\infty}^{\infty} \mathcal{X}_t e^{-i2\pi t f} dt}$$
$$\mathcal{R}_{\mathcal{X}\mathcal{X}}(\tau) = \mathcal{F}^{-1} \left(S_{\mathcal{X}\mathcal{X}}(f)\right) = \int_{-\infty}^{\infty} S_{\mathcal{X}\mathcal{X}}(f) e^{i2\pi f \tau} df,$$

3. Time delay aggregation

$$\tau_{1}, \cdots, \tau_{k} = \underset{\tau \in \{1, \cdots, L\}}{\operatorname{arg} \operatorname{Topk}} \left(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau) \right)$$

$$\widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{1}), \cdots, \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{k}) = \operatorname{SoftMax} \left(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau_{1}), \cdots, \mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau_{k}) \right)$$

$$\operatorname{Auto-Correlation}(\mathcal{Q}, \mathcal{K}, \mathcal{V}) = \sum_{i=1}^{k} \operatorname{Roll}(\mathcal{V}, \tau_{i}) \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{i}),$$

Autocorrelation layer

Time delay aggregation

3. Time delay aggregation

$$au_1, \cdots, au_k = rg \operatorname{Topk}_{ au, \mathcal{K}}(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(au))$$
 $\widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(au_1), \cdots, \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(au_k) = \operatorname{SoftMax}(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(au_1), \cdots, \mathcal{R}_{\mathcal{Q}, \mathcal{K}}(au_k))$
Auto-Correlation $(\mathcal{Q}, \mathcal{K}, \mathcal{V}) = \sum_{i=1}^k \operatorname{Roll}(\mathcal{V}, au_i) \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(au_i),$

Cxema time delay aggregation

Архитектура авторов — модифицированный трансформер

Series decomposition

$$\mathcal{X}_{t} = AvgPool(Padding(\mathcal{X}))$$

 $\mathcal{X}_{s} = \mathcal{X} - \mathcal{X}_{t},$

Point-wise vs series-wise

Результаты

- 1. EET: почасовое потребление электроэнергии с 2012 по 2014 год 321 потребителям
- 2. Electricity: температурные данные с трансформаторов каждые 15 минут
- 3. Exchange: обменные курсы восьми разных стран в период с 1990 по 2016 год.
- 4. Traffic: уровень загруженности различных автомобильных полос на автострадах в районе залива Сан-Франциско.
- 5. Weather: метеорологические данные за 2020 год (с разрешением в 10 минут) о температуре, влажности, etc
- 6. ILI: число заболевший простудными заболеваниями с 2002 по 2021 в одном из мед центров США (разрешение 1 неделя)

Models		Autoformer		Informer[41]		LogTrans[20]		Reformer[17]		LSTNet[19]		LSTM[13]		TCN[3]	
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETT^*	96	0.255	0.339	0.365	0.453	0.768	0.642	0.658	0.619	3.142	1.365	2.041	1.073	3.041	1.330
	192		0.340		0.563	0.989	0.757	1.078	0.827		1.369	2.249	1.112		1.339
Ξ	336	0.339		1.363	0.887	1.334	0.872	1.549	0.972		1.369	2.568	1.238		1.348
	720	0.422	0.419	3.379	1.388	3.048	1.328	2.631	1.242	3.171	1.368	2.720	1.287	3.135	1.354
ity	96			0.274			0.357	0.312	0.402				0.437		
tric	192		0.334		0.386		0.368	0.348	0.433		0.676			0.996	
Electricity	336			0.300	0.394		0.380	0.350	0.433		0.727	0.439			0.824
Ξ	720	0.254	0.361	0.373	0.439	0.283	0.376	0.340	0.420	0.957	0.811	0.980	0.814	1.438	0.784
ge	96	0.197	0.323	0.847	0.752	0.968	0.812	1.065	0.829	1.551	1.058	1.453	1.049	3.004	1.432
Exchange	192	0.300		1.204	0.895		0.851	1.188	0.906	1.477	1.028	1.846			1.444
xcl	336		0.524				1.081	1.357	0.976		1.031		1.231	3.113	1.459
田	720	1.447	0.941	2.478	1.310	1.941	1.127	1.510	1.016	2.285	1.243	2.984	1.427	3.150	1.458
ပ	96	0.613	0.388	0.719			0.384		0.423	1.107	0.685	0.843	0.453	1.438	0.784
Traffic	192						0.390	0.733	0.420	1.157		0.847		1.463	
Tra	336				0.420	0.733	0.408	0.742	0.420				0.455		0.799
	720	0.660	0.408	0.864	0.472	0.717	0.396	0.755	0.423	1.481	0.805	1.500	0.805	1.499	0.804
er	96			0.300	0.384		0.490	0.689	0.596	0.594	0.587	0.369	0.406	0.615	0.589
Weather	192	0.307			0.544		0.589	0.752	0.638					0.629	
Ne	336	0.359		0.578	0.523	0.797	0.652	0.639	0.596		0.587		0.454		0.608
	720	0.419	0.428	1.059	0.741	0.869	0.675	1.130	0.792	0.618	0.599	0.535	0.520	0.639	0.610
	24		1.287		1.677	4.480	1.444	4.400	1.382			5.914	1.734		1.830
ILI	36		1.148	4.755	1.467	4.799	1.467	4.783	1.448		1.668	6.631	1.845	6.858	1.879
	48	2.669		4.763	1.469	4.800	1.468	4.832	1.465	6.080		6.736	1.857	6.968	1.892
	60	2.770	1.125	5.264	1.564	5.278	1.560	4.882	1.483	5.548	1.720	6.870	1.879	7.127	1.918

Ablation studies. Сравнение с attention

Input Leng		96			192			336		
Prediction Lea	336	720	1440	336□	720	1440	336	720	1440	
Auto- Correlation	MSE MAE	0.339 0.372	0.422 0.419	0.555 0.496	0.355 0.392	0.429 0.430	0.503 0.484	0.361 0.406	0.425 0.440	0.574 0.534
Full Attention[35]	MSE MAE	0.375 0.425	0.537 0.502	0.667 0.589	0.450 0.470	0.554 0.533	-	0.501 0.485	0.647 0.491	-
LogSparse Attention[20]	MSE MAE	0.362 0.413	0.539 0.522	0.582 0.529	0.420 0.450	0.552 0.513	0.958 0.736	0.474 0.474	0.601 0.524	-
LSH Attention[17]	MSE MAE	0.366 0.404	0.502 0.475	0.663 0.567	0.407 0.421	0.636 0.571	1.069 0.756	0.442 0.476	0.615 0.532	-
ProbSparse Attention[41]	MSE MAE	0.481 0.472	0.822 0.559	0.715 0.586	0.404 0.425	1.148 0.654	0.732 0.602	0.417 0.434	0.631 0.528	1.133 0.691

Model analysis

Распределение лагов auto-correlation на тесте

Результаты в зависимости от числа блоков с series decomposition в декодере

Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting (ICML 2021)

Мотивация:

- Для учёта неопределённости предсказания хорошо бы уметь делать вероятностные прогнозы временных.
- Отдельные временные ряды могут быть взаимосвязаны и поэтому имеет смысл строить модели, которые принимают на вход много рядов и сразу делают предсказания для всех из них.

Теория диффузионных моделей кратко

Рассматриваемая графическая модель

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

$$q(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \coloneqq \prod_{t=1}^{T} q(\mathbf{x}_{t}|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_{t}; \sqrt{1-\beta_{t}}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I})$$

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_{0})\right] \leq \mathbb{E}_{q}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] = \mathbb{E}_{q}\left[-\log p(\mathbf{x}_{T}) - \sum_{t\geq 1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}\right]$$

$$\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}\right]$$

Теория диффузионных моделей кратко

$$\mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}} \right]$$
ELBO

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$

$$\mathbb{E}_{\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t(\mathbf{x}_0,\boldsymbol{\epsilon}) - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon} \right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t(\mathbf{x}_0,\boldsymbol{\epsilon}),t) \right\|^2 \right]$$

$$\mathbb{E}_{\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$abla_{ heta} \left\| oldsymbol{\epsilon} - oldsymbol{\epsilon}_{ heta} (\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} oldsymbol{\epsilon}, t)
ight\|^2$$

6: **until** converged

Итоговый алгоритм обучения

Модель авторов = RNN + диффузионная модель

$$q_{\mathcal{X}}(\mathbf{x}_{t_0:T}^0|\mathbf{x}_{1:t_0-1}^0,\mathbf{c}_{1:T}) = \Pi_{t=t_0}^T q_{\mathcal{X}}(\mathbf{x}_t^0|\mathbf{x}_{1:t-1}^0,\mathbf{c}_{1:T})$$

Algorithm 1 Training for each time series step $t \in [t_0, T]$

Input: data $\mathbf{x}_t^0 \sim q_{\mathcal{X}}(\mathbf{x}_t^0)$ and state \mathbf{h}_{t-1} repeat

Initialize $n \sim \text{Uniform}(1, ..., N)$ and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ Take gradient step on

$$\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_n} \mathbf{x}_t^0 + \sqrt{1 - \bar{\alpha}_n} \epsilon, \mathbf{h}_{t-1}, n) \|^2$$

until converged

Алгоритм обучения

Схема модели

Архитектура диффузионной части

- Состоит из 8 redisual блоков
- Номеру шага n в диффузионной модели сопоставляется эмбеддинг как в трансформере
- На входе х_t рассматривается как одномерная последовательность, в которой каждый элемент это элемент временного ряда в момент t.
- Dilated Conv1d в каждом блоке имеет поочерёдно dilation 1 и 2
- Gated act. unit произведение сигмоиды от первой половины каналов на тангенс от второй половины каналов.

Cxeмa residual блока

Датасеты и способ оценивания

Данные:

- Exchange обменные курсы восьми разных стран в период с 1990 по 2016 год.
- Solar выработка электрической энергии на солнечных панелях.
- Elec почасовое потребление электроэнергии с 2012 по 2014 год 321 потребителям.
- Traffic уровень загруженности различных автомобильных полос на автострадах в районе залива Сан-Франциско.

DATA SET	Diм. D	D ом.	FREQ.	TIME STEPS	PRED. STEPS
EXCHANGE SOLAR ELEC. TRAFFIC TAXI WIKI.	8 137 370 963 1,214 2,000	\mathbb{R}^+ \mathbb{R}^+ \mathbb{R}^+ $(0,1)$ \mathbb{N}	DAY HOUR HOUR HOUR 30-MIN DAY	6,071 7,009 5,833 4,001 1,488 792	30 24 24 24 24 24 30

$$\operatorname{CRPS}(F, x) = \int_{\mathbb{R}} (F(z) - \mathbb{I}\{x \leq z\})^2 dz$$

Результаты

Method	Exchange	Solar	Electricity	Traffic	Taxi	Wikipedia	
VES	0.005 ± 0.000	0.9 ± 0.003	$0.88{\scriptstyle\pm0.0035}$	$0.35{\scriptstyle\pm0.0023}$	-	-	
VAR	0.005 ± 0.000	0.83 ± 0.006	0.039 ± 0.0005	0.29 ± 0.005	-	-	
VAR-Lasso	0.012 ± 0.0002	0.51 ± 0.006	0.025 ± 0.0002	0.15 ± 0.002	-	3.1 ± 0.004	
GARCH	0.023 ± 0.000	0.88 ± 0.002	0.19 ± 0.001	0.37 ± 0.0016	-	-	
KVAE	0.014 ± 0.002	$0.34{\pm}0.025$	0.051 ± 0.019	0.1 ± 0.005	-	0.095 ± 0.012	
Vec-LSTM	0.008 ± 0.001	0.391 ± 0.017	0.025 ± 0.001	0.087 ± 0.041	0.506 ± 0.005	$0.133{\scriptstyle\pm0.002}$	
ind-scaling	0.008±0.001	0.391±0.017	0.029 ± 0.001	0.067 ± 0.041	0.000±0.005		
Vec-LSTM	0.007 ± 0.000	0.319 ± 0.011	0.064 ± 0.008	0.103 ± 0.006	0.326 ± 0.007	0.241 ± 0.033	
lowrank-Copula	0.007 ± 0.000	0.319 ± 0.011	0.004±0.008	0.103±0.006	0.320±0.007	0.241 ± 0.033	
GP	0.009 ± 0.000	0.368 ± 0.012	0.022 ± 0.000	0.079 ± 0.000	0.183 ± 0.395	1.483 ± 1.034	
scaling	0.009±0.000	0.300±0.012	0.022±0.000	0.079 ± 0.000	0.103 ±0.395		
GP	0.007 ± 0.000	0.337 ± 0.024	0.0245 ± 0.002	0.078 ± 0.002	0.208 ± 0.183	0.086 ± 0.004	
Copula	0.007±0.000	0.337±0.024	0.0240 ± 0.002	0.076±0.002	0.200±0.183		
Transformer	0.005 ±0.003	0.301 ± 0.014	0.0207 ± 0.000	0.056 ± 0.001	0.179 ± 0.002	0.063 ± 0.003	
MAF	0.003 ±0.003	0.301±0.014	0.0207±0.000	0.000±0.001	U.179±0.002	0.003±0.003	
TimeGrad	0.006 ± 0.001	0.287 ± 0.02	0.0206 ±0.001	0.044 ± 0.006	0.114 ± 0.02	0.0485 ± 0.002	

Влияние числа шагов диффузионной модели и пример предсказания

Влияние числа шагов в диффузионной модели

Предсказания для пары временных рядов из датасета Traffic

Спасибо за внимание