Practice Problems: Implicit and Singular Solutions

Lesson 13 Exercises

August 23, 2025

Part A: Implicit Solutions - Recognition and Verification (6 problems)

- 1. Verify that $x^2 xy + y^2 = C$ is an implicit solution of some ODE. Find the ODE.
- 2. Show that $e^y + e^{-x} = C$ solves $\frac{dy}{dx} = e^{y-x}$
- 3. For the circles $x^2 + y^2 = r^2$, find the differential equation they satisfy.
- 4. Verify that sin(x + y) = x defines an implicit solution. Find the corresponding ODE.
- 5. Can $xy + \ln(xy) = C$ be solved explicitly for y? Find the ODE it satisfies.
- 6. Show that the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (with a/b = k constant) satisfies a certain ODE.

Part B: Finding Singular Solutions - Basic (6 problems)

- 7. Find all solutions of $(y')^2 = 4y$, including any singular solutions.
- 8. For the general solution $y = Cx + C^2$, find the singular solution using the C-discriminant.
- 9. Show that y = 0 is a singular solution of $y' = 2\sqrt{|y|}$
- 10. Find the singular solution of $(y')^2 xy' + y = 0$ (Clairaut type).
- 11. Given general solution $(y Cx)^2 = 1 + C^2$, find the envelope.
- 12. Determine if $y(y')^2 2xy' + 4x = 0$ has singular solutions.

Part C: Clairaut's Equation and Variants (6 problems)

- 13. Solve completely: $y = xy' + \sqrt{1 + (y')^2}$
- 14. Find general and singular solutions: $y = xy' \frac{1}{y'}$
- 15. Solve: $y = xy' + a(y')^2$ where a is a constant.
- 16. Transform and solve: $2y = xy' + \ln(y')$
- 17. Find all solutions: $y xy' = e^{y'}$
- 18. Solve the generalized Clairaut: y = xf(y') + g(y')

Part D: p-Discriminant Method (5 problems)

- 19. Use p-discriminant to find singular solutions of: $y = x(y')^2 (y')^3$
- 20. Apply p-discriminant to: $(y')^3 xy' + y = 0$
- 21. Find singular solutions: $x(y')^2 2yy' + 4x = 0$
- 22. Determine all solutions of: $8(y')^3 = 27y^2$ using p-discriminant.
- 23. Show the p-discriminant process for: $y^2(1+(y')^2)=1$

Part E: Parametric Solutions (5 problems)

- 24. Express solutions parametrically: $(y')^2 + 2y' = x$
- 25. Find parametric solution: $x = (y')^3 + y'$
- 26. Solve using parameter p = y': $y = 2xy' + (y')^3$
- 27. Convert to parametric form: $(1 + (y')^2)^3 = (y')^2$
- 28. Find parametric solution: $x^2 + (y')^2 = 1$

Part F: Advanced and Mixed Problems (6 problems)

- 29. Show that the family $y^2 = 2Cx + C^2$ has envelope $y^2 + 2x = 0$. Verify both satisfy the same ODE.
- 30. For $(y')^2(1-x^2) = (1-y^2)$:
 - (a) Find implicit general solution
 - (b) Identify any singular solutions

- (c) Sketch solution curves
- 31. The brachistochrone problem gives $(1+(y')^2)=\frac{C}{y}$. Find parametric solution using θ where $y'=\cot(\theta/2)$.
- 32. Consider $y^2 = (x + c)^3$:
 - (a) Find the differential equation
 - (b) Show y = 0 is singular
 - (c) Find the C-discriminant
- 33. For the Lagrange equation y = xf(y') + g(y') where $f(p) \neq p$:
 - (a) Derive the general solution method
 - (b) Apply to $y = 2xy' + (y')^2$
- 34. Prove that if F(x, y, C) = 0 is the general solution and its envelope exists, the envelope satisfies the same ODE.

Part G: Exam-Style Problems (7 problems)

- 35. [**Prof. Ditkowski Special**] Consider $(y')^2 = (1 y^2)$
 - (a) Solve by separation of variables
 - (b) Find all singular solutions
 - (c) Show that $|y| \leq 1$ for all solutions
 - (d) Sketch the complete solution family
 - (e) Identify the envelope
- 36. [Clairaut Comprehensive] For $y = xy' \frac{(y')^3}{3}$:
 - (a) Find the general solution
 - (b) Derive the singular solution
 - (c) Show the singular solution is an envelope
 - (d) Find points where general and singular solutions meet
 - (e) Sketch several solution curves
- 37. [Implicit Challenge] The equation $x^3 + y^3 = 3axy$ (folium of Descartes):
 - (a) Find the ODE it satisfies
 - (b) Show solution exists implicitly near any non-singular point
 - (c) Find where vertical tangents occur
 - (d) Determine singular points

- 38. [C-Discriminant Application] Given $(y cx)^2 = c^3$:
 - (a) Apply C-discriminant method
 - (b) Verify the discriminant satisfies the ODE
 - (c) Interpret geometrically
 - (d) Find where uniqueness fails
- 39. [Verification Focus] A student claims $y^2 = x$ is a singular solution of $2(y')^3 =$ 3y'x - 3y:
 - (a) Verify it satisfies the ODE
 - (b) Find the general solution
 - (c) Prove it's singular
 - (d) Find the relationship between solutions
- 40. [Parametric Excellence] For $(y')^2 + (y')^3 = x$:
 - (a) Find parametric solution with p = y'
 - (b) Determine where solution has vertical tangent
 - (c) Find range of x values
 - (d) Express arc length parametrically
- 41. [Prof. Ditkowski Comprehensive] Consider Riccati-type: $y' = y^2 x^2$
 - (a) Show no elementary explicit solution exists
 - (b) Find solution satisfying y(0) = 0 as power series (first 4 terms)
 - (c) Determine if singular solutions exist
 - (d) Find curves where y' = 0
 - (e) Analyze behavior as $|x| \to \infty$

Answer Key with Essential Hints

- **1.** ODE: $\frac{dy}{dx} = \frac{2x y}{x 2y}$
 - 7. General: $y = (x + C)^2$; Singular: y = 0
 - 8. Singular solution: $y = -x^2/4$ (parabola)
 - **10.** Singular: $x^2 + 4y = 0$ (use p = x/2)
 - **13.** General: $y = Cx + \sqrt{1 + C^2}$; Singular: $x^2 + y^2 = 1$
 - **16.** $y xy' = e^{y'}$ not exactly Clairaut; use substitution
 - **19.** Set y' = p: $y = xp^2 p^3$; eliminate using $\partial/\partial p = 0$

 - **24.** Parametric: $x = p^2 + 2p$, $y = \frac{2p^3}{3} + p^2 + C$ **31.** C-discriminant gives x = -C/2, substitute back
 - **37.** General: $y = \sin(x + C)$ or $y = -\sin(x + C)$; Singular: $y = \pm 1$

- **38.** General: $y = Cx C^3/3$; Singular: $y = \frac{2x^{3/2}}{3\sqrt{3}}$ for $x \ge 0$ **41.** Apply C-discriminant: $27y^2 = 4x^3$ (semicubical parabola) **43.** Power series: $y = -\frac{x^3}{3} + \frac{2x^7}{63} + \dots$