

# CLASE 11 - Unidad 7

Grafos.

ESTRUCTURAS DE DATOS (271)
Clase N. 11 Unidad 7.

#### Clase 11: AGENDA



#### **AGENDA**

#### Temario:

- Grafos orientados y no orientados. Grafos pesados.
- Distintas representaciones: Listas de Adyacencia y Matriz de Adyacencia.
- Definiciones básicas y conceptos fundamentales. Grafos acíclicos. Grafos conexos y dígrafos fuertemente conexos.
- Ejemplos en Lenguajes Python
- Temas relacionados y links de interés
- Práctica
- Cierre de la clase



## **Grafos Definición:**

Grafo→ modelo para representar relaciones entre elementos de un conjunto.

**Grafo**: (V,E), V es un conjunto de vértices o nodos, con una relación entre ellos; E es un conjunto de pares (u,v),  $u,v \in V$ , llamados aristas o arcos.

**Grafo dirigido**: la relación sobre V no es simétrica. . Arista  $\equiv$  par ordenado (u,v).

*Grafo no dirigido*: la relación sobre V es simétrica.  $Arista \equiv par$  no ordenado  $\{u,v\}$ ,  $u,v \in V$  y  $u \neq v$ .



## Grafos orientados y no orientados.

#### Un grafo orientado(dirigido)

Es un grafo donde las aristas tienen una dirección



Un grafo no orientado( no dirigido)
es un grafo donde las aristas representan
relaciones simétricas





# **Ejemplos:**





*Grafo dirigido G(V,E)*.

$$V = \{C,D,E,F,H\}$$
  
 $E = \{(C,D),(D,F),(E,C),(E,H),(H,E)\}$ 

*Grafo no dirigido G(V,E).* 

$$V = \{C,D,E,F,H\}$$
  $V = \{2,3,5,7,9\}$   
 $E = \{(C,D),(D,F),(E,C),(E,H), E = \{\{2,3\},\{2,7\},\{2,9\},\{3,9\}, (H,E)\}$   $\{5,7\},\{5,9\}\}$ 



## **Grafos pesados:**

Los **grafos pesados**, son grafos donde las aristas tienen un peso o costo asociado. También se los conoce como ponderados o con costo.



Grafo dirigido cuyas aristas tiene peso positivo



## **Grafos representaciones:**

|   | Α | В | C | D | E  | F |
|---|---|---|---|---|----|---|
| Α | 0 | 7 | 5 | 5 | 0  | 0 |
| В | 0 | 0 | 0 | 4 | 11 | 0 |
| С | 0 | 0 | 0 | 0 | 18 | 9 |
| D | 0 | 0 | 2 | 0 | 0  | 0 |
| E | 0 | 0 | 0 | 0 | 0  | 6 |
| F | 0 | 0 | 0 | 1 | 0  | 0 |

matriz de adyacencias





## Matriz de adyacencias:

G = (V, E): matriz A de dimensión  $|V| \times |V|$ . Valor  $a_{ij}$  de la matriz:

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{cases}$$





|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 |

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 1 |



# Matriz de adyacencias:

Representación aplicada a Grafos pesados El peso de (i,j) se almacena en A (i, j)

$$O(|V|^2)$$

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases}$$
 en cualquier otro caso



|   | 1 | 2  | 3 | 4 | 5  | 6  |
|---|---|----|---|---|----|----|
| L | 0 | 10 | 0 | 8 | 0  | 0  |
| 2 | 0 | 0  | 0 | 0 | 7  | 0  |
| 3 | 0 | 0  | 0 | 0 | -1 | 15 |
|   | 0 | 12 | 0 | 0 | 0  | 0  |
| ; | 0 | 0  | 0 | 9 | 0  | 0  |
| 5 | 0 | 0  | 0 | 0 | 0  | 9  |



## Lista de adyacencias:

G = (V, E): vector de tamaño |V|.

Posición  $i \rightarrow puntero$  a una lista enlazada de elementos (lista de adyacencia).





# Lista de adyacencias:

Representación aplicada a Grafos pesados

El **peso de (u,v)** se almacena en el nodo de v de la lista de adyacencia de u.





# **Grafo no dirigido Conexo:**

Un grafo no dirigido es **conexo** si hay un camino entre cada par de vértices

Sea G un grafo no dirigido con n vértices y m arcos, entonces

Si G conexo: m≥n-1





## **Grafo dirigido Conexo:**

- ☐ Un grafo dirigido es **fuertemente conexo** si existe un camino desde cualquier vértice a cualquier otro vértice
- ☐ Si un grafo dirigido no es *fuertemente conexo*, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es **débilmente conexo**.



**Grafo Fuertemente Conexo** 



Grafo Débilmente Conexo



## Grado de un Grafo no dirigido:

## Grafo no dirigido:



$$Grado(a) = 3$$

$$Grado(b) = 3$$

$$Grado(c) = 2$$

$$Grado(d) = 4$$

$$Grado(e) = 4$$

El **grado** de un nodo: número de arcos que inciden en él.

Grado de un grafo: máximo grado de sus vértices.



# Grado de un Dígrafo:

## Grafo dirigido:



$$GradoE(a) = 2$$
  $GradoS(a) = 1$ 

$$GradoE(b) = 3$$
  $GradoS(b) = 0$ 

$$GradoE(c) = 0$$
  $GradoS(c) = 2$ 

$$GradoE(d) = 2$$
  $GradoS(d) = 2$ 

$$GradoE(e) = 1$$
  $GradoS(e) = 3$ 

Grado de un grafo: máximo grado de sus vértices.

existen el grado de salida (grado\_out) y el grado de entrada (grado\_in).

'el grado\_out es el número de arcos que parten de él y

el grado\_in es el número de arcos que inciden en él.

El grado del vértice será la suma de los grados de entrada y de salida.



## **Definiciones:**

Camino simple: camino en el que todos sus vértices, excepto, tal vez, el primero y el último, son distintos.

*Ciclo*: camino desde  $v_1, v_2, ..., v_k$  tal que  $v_1 = v_k$ 

**Bucle**: ciclo de longitud 1.

Grafo acíclico: grafo sin ciclos.



<2,5,4,2> es un ciclo de longitud 3



Ciclo de longitud 1



Grafo sin ciclos



# **Ejemplos:**

#### Grafo no dirigido



<a,b,e,d,c>: camino simple de longitud 4.

<a,c,d,a,b,e>: camino de longitud 5.

<a,e>: no es un camino.

<e,e>: camino, bucle y ciclo

#### Grafo dirigido



<a,b>: camino simple de longitud 1.

<e,d,a,b>: camino de longitud 3.

<a,c,d>: no es un camino.

<e,e>: camino, bucle y ciclo



# **Ejemplos:**



Indicar que propiedades cumple:

- Grafo Dirigido
- Grafo No Dirigido
- Grafo Fuertemente Conexo
- Grafo Débilmente Conexo
- Con ciclos
- Sin ciclos



# **Ejemplos:**



Indicar que propiedades cumple:

Grafo Dirigido

Correcto

Grafo No Dirigido

Incorrecto

Grafo Fuertemente Conexo

Incorrecto

Grafo Débilmente Conexo

Correcto

Con ciclos

Incorrecto

Sin ciclos

Correcto



# **Ejemplos:**

Completar teniendo en cuenta el orden de menor a mayor de los vértices:



G = (
$$\overline{V}$$
,  $\overline{E}$ ) donde  
V = {3, \_\_\_, \_\_\_, 6}  
E = {{3,5}, {3, \_\_\_}}, { \_\_\_,5}, {5, \_\_\_}}



## **Ejemplos:**

#### Completar:





$$V = \{3, [], [], 6\}$$

$$E = \{ \{ 3,5 \}, \{ 3, \} \}, \{ , \{ 5, \} \}$$



$$G = (V, E)$$
 donde

$$V = \{3, 4, 5, 6\}$$

$$E = \{ \{ 3,5 \}, \{ 3, \boxed{6} \}, \{ \boxed{4}, 5 \}, \{ 5, \boxed{6} \} \}$$



# **Ejemplos:**

Indique cuál de las siguientes notaciones es la que corresponde al siguiente grafo:



- G = (V, E) donde V = {2, 4, 7} y E = {(2, 4), (2, 7), (4, 7)}
- G = (V, E) donde V = {2, 4, 7} y E = {{2, 4}, {2, 7}, {4, 7}}
- $\bigcirc$  G = (V, E) donde V = {2, 4, 7} y E = {(2, 4),(2, 7), (4, 2), (4, 7), (7, 2), (7, 4)}

## Clase 11



onsultas

#### Clase 11



# Temas a desarrollar la próxima clase

- □ Algoritmos de recorrido DFS y BFS. Árbol generador DFS: en grafos dirigidos y no dirigidos. Determinación
- ☐ de componentes conexas y fuertemente conexas. Análisis del tiempo de ejecución de los algoritmos
- mencionados.