Ministerul Educației Naționale și Cercetării Științifice

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 martie 2016 CLASA a 9-a

Problema 1. Fie ABCD un pătrat și E un punct situat pe diagonala BD, diferit de mijlocul acesteia. Se notează cu H și K ortocentrele triunghiurilor ABE, respectiv ADE. Arătați că $\overline{BH} + \overline{DK} = 0$.

Problema 2. Fie a și n două numere naturale nenule, astfel încât

$$\left\{\sqrt{n+\sqrt{n}}\right\} = \left\{\sqrt{a}\right\}$$

Arătați că 4a + 1 este pătrat perfect.

Problema 3. Fie numerele reale pozitive a, b, c, astfel încât

$$\frac{a}{b+c+1} + \frac{b}{a+c+1} + \frac{c}{a+b+1} \le 1.$$

Demonstrați că:

$$\frac{1}{b+c+1} + \frac{1}{a+c+1} + \frac{1}{a+b+1} \ge 1.$$

Gazeta Matematică

Problema 4. Fie $a \geq 2$ un număr natural. Arătați că afirmațiile următoare sunt echivalente:

- a) Există numerele naturale nenule b, c, astfel încât $a^2 = b^2 + c^2$;
- b) Există un număr natural nenul d, astfel încât ecuațiile $x^2 ax + d = 0$ și $x^2 ax d = 0$ au rădăcinile întregi.