1 Rappel de théorie des groupes et de leurs actions

Un groupe est une paire (G,*), ou G est un ensemble et * est une opération $(*: G \times G \to G)$

3 axiomes:

- 1. $a * (b * c) = (a * b) * c \quad \forall a, b, c \in G$
- 2. $\exists e \in G | e * a = a * e = a \forall a \in G$
- 3. $\forall a \in G, \exists b \in G | a * b = e$

$$\text{Ex}: (\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{R}, +), \cdots$$

Les groupes matriciels sont très importants

Tout les groupes mentionné jusqu'à maintenant sont infini, un exemple de groupe fini est $(\mathbb{Z}_n,+)$

$$S_E = \{f : E \to E | f \text{ est inversible } \}$$

avec l'opération de composition o

On l'appel le groupe symétrique de E

$$S_n = S_{\{1,2,\cdots,n\}}$$

Est le groupe des permuations de n éléments

Notation pour désigner les éléments $\sigma \in S_n$:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \cdots & \cdots & \sigma(n) \end{pmatrix}$$

<u>Définition</u>: Un <u>morphisme/homomorphisme</u> de groupes (G, H) est une fonction $f: G \to H$ t.q. $f(a *_G b) = f(a) *_H f(b)$. Si f est inversible alors f^{-1} est aussi un morphisme et on dit alors que f est un isomorphisme

Exemples:

- det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$
- $-- \ |\cdot|: \mathbb{C} \to \mathbb{R}^*$
- $-\mathbb{Z} \to \mathbb{Z}_n$

Définition : Une action d'une groupe G sur un ensemble X est une application

$$\bullet:G\times\to X$$

satisfaisant

$$e \bullet x = x \quad \forall x \in X$$

et

$$a \bullet (b \bullet x) = (a * b) \bullet x$$

Exemple:

$$G = GL_n(\mathbb{R}) \quad X = \mathbb{R}^n$$

<u>Définition</u>: Une <u>action</u> de G sur x est un homomorphisme $f: G \to S_x$

Les deux définition sont équivalentes

On définit $f(g) = (x \mapsto g \bullet x)$

$$f(g_1 * g_{2)(x)} = (g_1 * g_2) \bullet x$$

$$= g_1 \bullet (g_2 \bullet x)$$

$$= g_1 \bullet f(g_2)(x)$$

$$= f(g_1)(f(g_{2)(x))}$$

$$= [f(g_1) \circ f(g_2)](x) \quad \forall x \in X$$

$$\implies f(g_1 * g_2) = f(g_1) \circ f(g_2)$$

Si X a plus de structure et qu'on a une action de de G sur X qui preserve la structure lors on dit que G agit par (homéomorphise, isométrie, application linéaire, ... (linéairement)) sur X

exemple : $G = S_3$ agit par isométrie sur un triangle équilatéral (voir 1)

ATTENTION: S_4 n'agit pas (fidelement, injectivement) sur le carré par isométrie (certaines permuations brisent le triangle) S. Par contre S_4 agit par isométries sur le cube!

 $A_n \subset S_n$ et est groupe des permuations paire

 A_5 agit par isométrie sur le dodécaèdre

<u>Théorème</u>: [Cayley] Tout groupe est isomorphe à un sous-groupe d'un groupe de permutation S_E

<u>Démonstration</u>: On considère l'action de G sur lui-même (x = G)

$$g_1 \bullet g_2 = g_1 * g_2$$

on obtiens $f: G \to S_G$: homomorphisme injectif car si $f(g_1) = f(g_1)$ alors $f(g_1)(e) = f(g_2)(e)$, $g_1 \bullet e = g_2 \bullet e$, $g_1 = g_2$

$$\implies f(G) \subset S_G$$
 est isomorphe a G

<u>Définition</u>: Une représentation d'un groupe G est une actions linéaire de G sur un espace vectoriel V. Autremenet dit, un homomorphisme $\rho: G \to \operatorname{GL}(V)$. Le rang d<une représentation est dimV

exemples:

$$\rho \mathbb{C}^* \to \mathrm{GL}(2,\mathbb{R})$$

FIGURE 1 – Triangles équilatérals

$$a+ib \to \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Si G est un groupe fini, il admet la représentation régulière :

$$G = \{g_1, g_2, \cdots, g_n\}$$

$$V = \langle e_{g_1}, \cdots \rangle$$

retour sur le dernier cours

 (G, \bullet) c'est un groupe

 $S_E = \{\sigma: E \to E | \sigma \text{ inversible }\} \quad \text{ est une groupe pour la composition }$

Un cycle est un élément de S_n de la forme

$$\sigma(a_1) = a_{i \neq 1}, \ \sigma(a_k) = a_1, \ i = 1, \dots, k$$

On le note $(a_1 a_2 a_3 \cdots a_k)$

Fait important

Toute permutation se décompose de manière unique en cycles disjoint Exemple :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} = (12) \circ (35) = (35) \circ (12)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix} = (1\,7\,5\,6\,2\,3\,4)$$

Le signe (ou la signature) d'un cycle de longeur ℓ est

 $(-1)^{\ell-1}$ $\begin{cases} +1 : \text{la permutation est paire} \\ -1 : \text{la permutation est imparire} \end{cases}$

On a la relation $\operatorname{sgn}(\sigma_1 \circ \sigma_2) = \operatorname{sgn}(\sigma_1)\operatorname{sgn}(\sigma_2)$

On peut utiliser une manière graphique pour calculer la signature d'une permutation (graph : compter le nombre d'intersections)

Action de G sur X: deux définitions

- 1. \bullet : $G \times X \to X$
- 2. homomorphisme $f: G \to S_x$

Représentation de G : action linéaire de G sur un espace vectoriel V

Exemple : La Représentation vectoriel sur V

$$g \circ \mathbf{v} = \mathbf{v} \quad \forall g \in G, v \in V$$

 $\rho: G \to GL(V)$

$$g\mapsto \mathbb{1}$$

Pour G fixé, on a la représentation régulière (R) (pour chaque élément du groupe on a un vecteur)

$$\langle e_{g_1}, \cdots, e_{g_n} \rangle$$
 où $G = \{g_1, \cdots, g_n\}$

On définit $g \bullet e_g = e_{g \bullet g}$

Exemple:

$$\mathbb{Z}_{3} = \{0, 1, 2\}$$

$$V = \langle e_{0} e_{1} e_{2} \rangle$$

$$R(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$R(2) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Les éléments du groupe \mathbb{Z}_3 sont ici representé par les matrices 3x et l'addition (modulaire) est remplacé par la multiplication matriciel des éléments de la représentation.

Autre exemple:

$$S_3 = \{e, (12), (13), (23), (123), (132)\}\$$

Plus généralement , si G agit sur E (ensemble fixé), on définit une représentation de permutation sur $\langle e_1, e_2, \cdots, e_n \rangle$ $E = \{e_1, \cdots, e_n\}$ par $\rho(g)(e_i) = g \bullet e_1$ (action de G sur E)

exemple : $V=\mathbb{C}$ Ou on prend \mathbb{C} comme un espace vectoriel

$$G=\mathbb{Z}_3$$

$$\rho:\mathbb{Z}_3\to\mathbb{C}^*=\mathrm{GL}(1,\mathbb{C})$$

$$n\mapsto\omega^n\quad\text{où}\quad\omega=e^{2\pi i/3}$$

<u>Définition</u>: Un sous-représentaation de

$$\rho: G \to \mathrm{GL}(\mathrm{V})$$

est la restriction de ρ à un sous-espace $U \subset V$ invariant par ρ . c-à-d, si $u \in U$, alors $\rho(g)u \in U \forall g \in G$

Exemple: Pour $R: S_3 \to \mathrm{GL}(6,\mathbb{C})$ Le sous-espace $\left\{ \begin{pmatrix} z \\ z \\ z \\ z \\ z \end{pmatrix} \in \mathbb{C}^6 | z \in \mathbb{C} \right\}$ est une sous représentation <u>triviale</u>

Le sous-espace $U_0 = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_6 \end{pmatrix} \in \mathbb{C}^6 | z_1 + z_2 + \dots + z_6 = 0 \right\}$ est aussi une sous-représentation de R de dimension 5

<u>Définition</u>: Une représentation est <u>irréductible</u> si elle n'admet aucune sous représentation propre $(\neq 0, \neq V)$

Exemple: S_3 :

 $\rho: S_3 \to \operatorname{GL}(3, \to \mathbb{C})$ la représentation de permutation induite par l'action $\underline{???}$ de S_3 sur $\{1, 2, 3\}$ $\rho(12) = \cdots 3x3$, $\rho(123) = \cdots 3x3$

 ρ est elle irréductible? non,

$$\left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle = \{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} \in \mathbb{C}^3 | z \in \mathbb{C} \}$$

est invariant est irréductible

Également,
$$U_0 = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} | z_1 + z_2 + z_3 = 0 \right\}$$
 est invariant

Es-ce que U_0 est irréducibleÉ

Cherchons un sous-espace invariant de dim 1

$$\rho(12) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} z_2 \\ z_1 \\ z_1 - z_2 \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \\ -z_1 - z_2 \end{pmatrix}$$

. . .

Conculsion : U_0 est une représentation irréductible. On l'appelle représentation standard de S_3

 $\underline{\operatorname{Ex}}:S_3$

$$\operatorname{sgn}: S_3 \to \mathbb{C}^* = \operatorname{GL}(1, \mathbb{C})$$

$$\sigma \mapsto \operatorname{sgn}(\sigma)$$

Si $\rho_1:G \to GL(u)$, $\rho_2:G \to GL(v)$ sont 2 représentation de G, leurs somme directe est la représentation $\rho_1 \oplus \rho_2:GGL(u \oplus v)$

$$(\rho_1 \oplus \rho_2)(g)(u \oplus v) = \rho_1(g)u \oplus \rho_2(g)v$$

Exemple : si $U = \mathbb{R}^n \ V = \mathbb{R}^m$

$$U \oplus V = \mathbb{R}^{n+m}$$

 $U \oplus v$ contient $u \oplus 0$ et $0 \oplus v$ comme sous représentation

Proposition : Soit $U \subset V$ une sous-repr/sentation de $\rho : G \to \mathrm{Gl}(V)$. Alors, il existe une sous-représentation $W \subset V$ telle que $\overline{V = U \oplus W}$

Attention!

Faux en général pour les groupes infinis

Exemple : $\rho : \mathbb{Z} \to \mathrm{GL}(2,\mathbb{C})$

$$n \mapsto \begin{pmatrix} 1 & n \\ 0 & 2 \end{pmatrix}$$

est une représentation de \mathbb{Z} , $\langle e_1 \rangle$ est une sous-représentation triviale, mais il n'en existe par d'autre

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}$$

<u>Démonstration</u>:

Soit $V_0\subset V$ n'importe quel complément de U $(V=U\oplus W_0)$

Ce n'est pas un sous-espace en général

$$\rho(g)w \notin W_o$$
 pour $w \in W_0$

Soit $\pi: V \to U$ la projection complémentaire à W_0

Définissons $\pi' = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1})$ si $u \in U$

$$\pi'(u) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g) \pi \left[\rho(g') u \right]$$

$$\frac{1}{|G|} \sum_{g \in G} \underline{\rho(g)} \rho(g^{-1}) u$$

$$\frac{1}{|G|}|G|u=u$$

 $\implies \pi': V \to U \quad \text{est surjectif et indentit\'e sur}$

 $W=Ker(\pi')$ est notre candidat de sous-représentation

Vérifions que W est $\rho(G)$ invariant

$$h \in G \quad V \in \mathrm{Ker}\pi'$$

$$\pi'(\rho(h)V) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g)\pi\rho(g')\rho(h)v = \dots = 0$$

comme $\pi'/i=\mathbb{1}_u$

$$U \cup, , , , , ,$$

Rappels

- représentation de $G \rho \to GL(V)$
- somme direct $\rho_1: G \to \operatorname{GL}(V), \, \rho_2: G \to \operatorname{GL}(U), \, \rho_1 \oplus \rho_2: G \to (V \otimes U)$
- Sous-représentation $U \subset V$ G invarient $\forall g \in G, \, \rho(g)u \in U$
- ρ est irréductible si les seul sous-représentation sont $\{0\}$ et V
- Théorème : Si $U \subset V$ est une sous représentation de $\rho: G \to \operatorname{GL}(V)$ alors $\exists W \subset V$ sous-espace t.q. $V = U \oplus W$

Exemple:

 $\rho: S_3 \to \mathrm{GL}(\mathbb{C}^3)$: représentation de permutation

$$U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \subset \mathbb{C}^3$$

est une sous-représentation

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3 | x + y + z = 0 \right\}$$

$$\mathbb{C}^3 = U \oplus W$$

Corrolaire: Toute représentation s'écrit comme une somme directe de représentation irréductible

 $\underline{\text{D\'efinition}:} \text{ Un } \underline{\text{morphisme de repr\'esentation}} \text{ entre } \rho_1: GGL(U), \ \rho_2: \rho_2: GL(U) \text{ est une application lin\'eaire } \varphi V \to U$ telle que $\forall g \in G$

$$\varphi \circ \rho_{1(g)} = \rho_{2(g)} \circ \varphi$$

Si φ est inversible, c'est un isomorphisme de représentation

Proposition:

- 1. $Ker(\varphi) \subset V$
- 2. $\operatorname{Im}(\varphi) \subset U$ sont des sous représentation

$\underline{\text{D\'emonstration}}$:

1. Si
$$v < in \text{Kerr}(\varphi) \implies \varphi(v) = 0$$

$$\varphi(\rho_1(g)v) = \rho_2(g)(\varphi(v)) = 0$$

$$\implies \rho_1(g)v \in \ker(\varphi)$$

2. $\rho_2(g)(\varphi(v)) = \varphi(\rho_1(g)V) \in \operatorname{Im}(\varphi)$

Lemme de Shur

1. $\varphi:V\to U$ est un morphisme entre représentation irréductible alors $\varphi=0$ ou φ est un iso

2. $\varphi:V\to V$ Morphisme de V représentation irréductible alors $\varphi=\lambda\mathbb{1}$

 $\underline{\text{D\'emonstration}}:\varphi:V\to U$

1.

. . .

2. $\varphi V \to V \varphi$ admet une valeur propre λ

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) \neq 0$$

$$\implies \operatorname{Kerr}(\varphi - \lambda \mathbb{1}) = V$$

$$\implies \varphi - \lambda \mathbb{1} = 0$$

$$\implies \varphi = \lambda I$$

La décomposition en irréductible

$$V = V_1^{m_1} \oplus \cdots V_k^{m_k}$$

est unique à isomorphisme près

Exemple : Soit G une goupe fini abélien

$$G = \mathbb{Z}_{m_1}^{n_1} \oplus \cdots$$

et supposons $\rho: G \to \mathrm{GL}(V)$ irréductible. Fixons $g \in G$

 $\rho(g): V \to V$ alors $\rho(g)$ est une morphisme de représentation car $\rho(h)(\rho(h)v) = \rho(gh)b = \rho(hg)v = \rho(h)(\rho(g)v)$

Par le Lemme de Shor $\rho(g) = \lambda_g \mathbb{1} \implies \text{tout les } \rho(g) \operatorname{sont} \lambda_g \mathbb{I}$

 \implies tout sous-espace de V est stable par $\rho(g) \forall g \in G$

donc dim V = 1

Conclusion : tout représentaiton irréductible d'un groupe abélien est de dim 1

Exemple: $G = \mathbb{Z}_4$

. . .

Exemple: $G = S_3 = \{e, (12), (12), (123), (132)\}$

$$H = \{e, (123), (132)\}$$

est le plus grand sous-groupe de G que est abélien

Remarque: G est engendré par (123) et (12)

On leur donne des petit non spéciaux en cette honneur $\tau = (123), \sigma = (12)$

$$\sigma \tau \sigma = (12)(123)(12) = (132) = \tau^2$$

Soit $\rho: S_3 \to \operatorname{GL}(V)$ une représentation irréductible

on a $\rho(\tau)^3 = 1 \operatorname{car} \tau^3 = e$

 $\implies \rho(\tau)$ est diagonalisable est ses valeurs propres sont des racines cubiques de 1. Soit $v \in V$ vecteurs propres de $\rho(\tau)$ $\implies \rho(\tau)v = \omega^k v$ pour $\omega = e^{2\pi i/3}, i \in \{0,1,2\}$

on a

$$\begin{split} \rho(\tau) \left(\rho(\sigma) v \right) = & \rho(\tau \sigma) v \\ &= \rho(\sigma \tau^{2)} v \\ &= & \rho(\sigma) \rho(\tau)^{2} v \\ &= & \rho(\sigma) \omega^{2k} v \\ &= & \omega^{2k}(\rho(\sigma) v) \end{split}$$

conclusion si v est une vecteur propre de $\rho(\tau)$ de valeur propre ω^k alors $\rho(\tau)v$ est vecteur propre de $\rho(\tau)$ de valeur propre $\omega^2 k$

Il y a deux cas selon la valeur propre

1. k = 1 ou $2 \implies \omega^2 \neq \omega^{2k}$

$$\implies v \text{ et } \rho(\sigma)v$$

sont linéairement indépendants $U = \langle v_1 \rho(\sigma) v \rangle$, U est stable par G: V et $\rho(\sigma)V$ sont vecteur propres de $\rho(\tau)$ et $\rho(\sigma)(v) = \rho(\sigma)v$, $\rho(\sigma)(\rho(\sigma)(v)) = v$

$$\implies U = V$$

et dans la base $v, \rho(\sigma)v$ on alors

$$\rho(\tau) = \begin{pmatrix} \omega^k & 0 \\ 0 & \omega^{2k} \end{pmatrix}$$

$$\rho(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

2. k = 0

$$\rho(\tau)v = v$$
$$\rho(\tau)(\rho(\sigma)v) = \rho(\sigma)v$$

(a)
$$\rho(\sigma)v = \lambda v$$
 et $\lambda \in \{1, -1\}$ $(\sigma^2 = 1)$ si $\lambda = 1$ $\langle v \rangle = V$ et $\rho = \rho_{\text{trivial}}$ si $\lambda = -1$, $\langle v \rangle = V$ et $\rho - \rho_{\text{sign}}$

(b) v et $\rho(\sigma)v$ sont linéairement indépendants

Considérons
$$V + \rho(\sigma)v$$
, $V - \rho(\sigma)v$

$$\rho(\tau)(v+\rho(\sigma)v)=v+\rho(\sigma)v \text{ et } \rho(\sigma)(v+\rho(\sigma)v)=\rho(\sigma)v+v$$

$$\implies v + \rho(\sigma)v$$
 est stable par G .

idem pour -. C'est donc une contradiction au fait que ${\cal V}$ soit irréductible.

Théorie des caractères

 soit

$$\rho: G \to \mathrm{GL}(\mathbf{v})$$

une représentation

Alors sont <u>caractère</u> est la fonction

$$\chi_{\rho}:G\to\mathbb{C}$$

$$g \mapsto \operatorname{tr}(\rho(\mathbf{g}))$$

Rappel

Un morphisme de représentation est une application linéaire $\varphi: V \to U$ (qui est compatible avec les deux représentation) t.q.

$$\rho_2(g) \circ \varphi = \varphi \circ \rho_2(g)$$

 φ est appelée une application équivariante

Lemme de Shur

- 1. Si ρ_1 , ρ_2 sont irréductible φ morphisme $\implies \varphi = 0$ ou isomorphe
- 2. Si V=U alors $\varphi=\lambda \mathbb{1}$

Prop: Tout représentation irréductible d'un groupe abélien est de dimension (rang) 1.

Les repr??? de S_3 (à iso près) sont $\rho_?, \rho_?$ et $\rho_?$

Caractère d'une représentation :

$$\chi_{\rho}:G\to\mathbb{C}$$

$$g \mapsto \operatorname{tr}(\rho(g))$$

 χ_{ρ} est un exemple de fonction <u>centrale</u> (class function) c-à-d $\forall h \in Ga, \chi_{\rho}(hgh^{-1}) = \chi_{\rho}(g)$

Dans S_n permutation de n éléments la conjugacion correspond à un "changement d'étiquette"

La <u>tables des caractères</u> d'un groupe fini G est un tableau où les <u>lignes</u> sont les représentations irréductibles et les <u>colonnes</u> sont les calsses de conjugaison dans G. Les entrées sont $\chi_{\rho}(g)$

Exemple: S_3

Tables 1 – tables des caractères de S_3

Remarques

- Dans la première colonne on lit les dimensions des représentation irréductible
- les colonnes sont orthogonales par le produit scalaire standard
- Autant de lignes que de colonnes
- chaque lignes est un vecteur de norme |G|

Exemple : \mathbb{Z}_4

	1	1	1	1
	0	1	2	3
$\chi_{?}$	1	1	1	1
$\chi_{?}$	1	i	-1	-i
$\chi_{?}$	1	-1	i	-1
$\chi_{?}$	1	-i	-1	i

Table 2 – Table des caractères de \mathbb{Z}_4

Rappels et suppléments d'algèbre linéaire

V un (k)espace vectoriel est un groupe abélien muni d'une multiplication par un scalaire

$$k \times V < toV$$

$$(\lambda, \mathbf{v}) \mapsto \lambda \cdot \mathbf{v}$$

satisfaisant

1.
$$(\lambda \mathbf{u}) \cdot \mathbf{v} = \lambda \cdot (u \cdot \mathbf{v})$$

$$2. \ 1 \cdot \mathbf{v} = \mathbf{v}$$

3.
$$\lambda(u+v) = \lambda u + \lambda v$$

4.
$$(\lambda + \mu) = \lambda v + \mu v$$

Soit U, V deux k-espaces vectoriels

$$Hom(U, V) := \{L : U \rightarrow V | Lapplication linéaire \}$$

est un k-espace vectoriel lorsque muni des opérations

$$(L_1 + L_2)(u) = L_1(u) + L_2(u)$$
$$(\lambda \cdot L)(u) = \lambda \cdot (L(u))$$
$$\dim(\text{Hom}(u, v)) = \dim(u)\dim(v)$$

Le produit Tensoriel de U et V est un k-espace vectoriel $U\otimes V$ muni d'une application bilinéaire

$$U \times V \to U \otimes V$$

$$(u,v)\mapsto u\otimes v$$

et satisfaisant la propriété universelle : Pour tout application bilinéaire $b:U\times V\to W$

Je vois pas ...

 $\underline{\text{En pratique}}: \text{Si } e_1, \cdots, e_n \text{ est une base de } U, \, f_1, \cdots, f_m \text{ est une base de } V \text{ alors } \{e_i \otimes f_g\} \text{ est une base de } U \times V$

Exemple:

J'ai pas envie de l'écrire

$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ c \end{pmatrix} = \cdots ace_1 \otimes f_1 + \cdots$$

 $\underline{\text{Exemple}:} \text{ produit scalaire standard dans } \mathbb{C}^2 \text{ est bilin\'eaire } ((\binom{a}{b}, \, \binom{c}{d}) \to ac + bc)$

Quelle est $\bar{b}\mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}$

$$(\binom{a}{b}\otimes \binom{c}{d})\to ac+bc$$

Attention

Il est des éléments de $\mathbb{C}^2 \otimes \mathbb{C}^2$ qui n'écrivent pas comme des états factorisables

2024-01-25

Exercices

- 1. Calculer la représentation irréductible de $\mathbb{Z}_2\times\mathbb{Z}_2$
- 2. Q_8 : Groupe des quaternions (8 éléments)

$$\{1, -1, i, j, k - i, -j, -k\}$$

avec

$$ii = jj = kk = -1$$
 $-ji = ij = -k$

- (a) Calculer les classes de conjugasion dans Q_8
- (b) Déterminer les représentations irréductible (il y en a 5, dimension 1 et 2)
- (c) Dresser la tables des caractère de Q_8
- 3. Décomposer $R:S_3\to \mathrm{GL}(6,\mathbb{C})$ en irréductibles
- 4. Calculer $\rho_{\mathrm{std}} \otimes \rho_{\mathrm{std}} : S_3 \to \mathrm{GL}(\mathbb{C}^2 \otimes \mathbb{C}^2)$

Solutions:

1.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

abélien \implies toute représentation irréductible est de dim 1 On a (0,1) + (0,1) = (0,0)

$$\rho(0,1)\rho(0,1) = 1 = \rho(0,1)^2 \implies \rho(0,1) \in \{1,-1\}$$

$$\rho_2(nm) = (-1)^n$$
 $\rho_{3(n,m)} = (-1^m)$ $\rho_4 = (-1)^n (-1)^m$ $\rho_1 = \text{repr. triv} = 1$

2. (a)

$$\{1\},\{-1\},\{i,-i\},\{j,-j\},\{k,-k\}$$

<u>Démarche</u>:

$$jij^{-1} = ji(-j) = -k(-j) = kj = -i$$

. . .

Pareil pour tout les éléments

(b) Si $\rho:Q_8\to\mathbb{C}^*$ est de rang 1. Comme $i^4=1,\,\rho(i)\in\{1,i,-1,-i\}$ (de même pour j et k)

$$(-1)^2 = 1 \implies \rho(-1) \in \{-1, 1\}$$

On a

$$\rho_{\text{triv}}(g) = 1$$

Supposons $\rho(i)=i \implies \rho(-1)=-1$ Je vois pas très bien le reste de la démarche mais on arrive à une contradiction en prennant $\rho(i)=i$ ou $\rho(i)=-1$ (même chose pour j et k évidemment) On doit donc prendre $\rho(i)\in\{1,-1\},\ \rho(j)\in\{1,-1\},\ \rho(k)\in\{1,-1\}$

On fait le c) tout de suite pour s'aider (voir 2b)

	e	i	$\mid j \mid$	$\mid k \mid$	-1
$\rho_{ m triv}$	1	1	1	1	1
$\overline{\rho_1}$	1	-1	1	-1	1
$\overline{\rho_2}$	1	-1	-1	1	1
ρ_3	1	1	-1	-1	1
ρ_4	2	0	0	0	-2

Table 1 – Tableau de char de C_8

Fin de la periode d'Exercices

Rappel d'algèbre linéaire sur les projections

V espace vectoriel

 $P:V\to V$ L application linéaire t.q. $P^2=P$ est appelé une projection (sur le sous-espace Im(P))

 $\underline{\operatorname{Ex}}:P:\mathbb{C}^2\to\mathbb{C}^2$ est une projection

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad P^2 = P$$

Proposition : Si P est une projection, tr(P) = dim(ImP)

Démonstration On a $V = \text{KerP} \oplus \text{ImP}$

1. $\operatorname{car} \operatorname{dim}(V) = \operatorname{dim}(\operatorname{KerP}) + \operatorname{dim}(\operatorname{Im}(P))$

2. et si $v \in (\text{KerP}) \cap (\text{ImP})$ P(v) = 0 mais aussi $v = P(u) \implies 0 = P(v) = P(P(u)) = P(u) = v$ $\implies v = 0$

Si $v \in \operatorname{Im}(P) \ P(V) = V$

$$\implies P|_{\mathrm{Im}(P)} = \mathbb{1}_{\mathrm{Im}(P)}$$

$$\mathrm{et} \quad P|_{\mathrm{KerP}} = 0_{\mathrm{KerP}}$$

$$\implies P = \begin{pmatrix} \mathbb{1}_{\mathrm{ImP}} & 0 \\ 0 & 0_{\mathrm{ImP}} \end{pmatrix} \quad \text{dans certaines bases}$$

$$\implies \mathrm{tr}(P) = \mathrm{tr}(\mathbb{1}_{\mathrm{ImP}}) = \mathrm{dimImP}$$

??? d'irréducitbilité est relations d'orthogonalité

Soit $\rho: G \to GL(V)$

définissons $V^G = \{v \in V | \rho(g)v = v \forall g \in G\}$ le sous-espace des invariants

Exercice

Montrer que ${\cal V}^G$ est un sous-espace vectoriel de ${\cal V}$

et $P: V \to V$

$$P(V) = \frac{1}{|G|} \sum_{g \in G?} \rho(g)v$$

Prop : P est une projection sur V^G

Démonstration : ON veut montrer

1.
$$ImP = V^G$$
 et

2.
$$P^2 = P$$

1. Supposons $v \in \text{ImP}$

$$\implies v = P(u) = \frac{1}{|G|} \sum_{g \in G} \rho(g) u$$

alors

$$\rho(h)v = \rho(h)\cdots$$

Il a effacé avant que j'ai eu le temps de noter : (

$$= \frac{1}{|G|} \sum_{g \in G} \rho(g) h = P(u) = v$$

$$\Longrightarrow \operatorname{Im} P \subset V^G$$

Inversement, si $v \in V^G$

alors
$$P(v) = \frac{1}{|G|} \sum_{g \in G} \rho(g) v$$

$$= \frac{1}{|G|} \sum_{g \in G} v = \frac{|G|}{|G|} v = v$$

$$\implies P^2 = P(P(v)) = P(v)$$

$$\dim(V^{G)} = tr(P) = tr\left(\frac{1}{|G|} \sum_{g \in G} \rho(g)\right) = \frac{1}{|G|} \sum_{g \in G} tr(\rho(G)) = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)$$

En particulier, si ρ est irréductible est non-trivial alors

$$\sum_{g \in G} \chi_{\rho}(g) = 0$$

 $\underline{\operatorname{Ex}}:S_3$

. . .

2024-01-29

Rappels

P projection, apli linéaire $P:V\to V$ t.q. $P^2=P$

$$tr(P) = dim(ImP)$$

$$\rho: G \to \mathrm{GL}(\mathrm{V})$$

$$P = \frac{1}{|G|} \sum_{g \in G} \rho(g)$$

est une projection avec $ImP = V^G = ?$

$$\dim V^{G} = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(?)$$

Nombre de représentation triviales dans les décomposition de ρ En particulier si ρ est irréductible et non-trivial

$$\sum_{g \in G} \chi_{\rho}(g) = 0$$

 ρ_1, ρ_2 deux représentations et on s'intéresse à la représentation

$$\operatorname{Hom}(\rho_1, \, \rho_2) : G \to \operatorname{GL}(\operatorname{Hom}(U, V))$$

Rappel

Si
$$U = \mathbb{C}^n$$
, $V = \mathbb{C}^m$

$$\begin{split} \rho_{1(g)} \in GL_n(\mathbb{C}) & \quad \rho_{2(g)} \in GL_m(\mathbb{C}) \\ & \quad Hom(U,V) = Mat_{n \times m}(\mathbb{C}) \\ & \quad Hom(\rho_1,\rho_2)(g)(M) = \rho_2(g) \cdot M \cdot \rho_1(g)^{-1} \end{split}$$

Proposition:

$$\text{Hom}(U, V)^G = \{ \varphi : u \to v | \varphi \text{ est une morphisme de représentation} \}$$

<u>Démonstration</u>:

 $M \in \mathrm{Hom}(\mathrm{U},\mathrm{V})^{\mathrm{G}} \iff \rho_2 \mathrm{M} \rho_1(\mathrm{g}) \in \mathrm{v} = \mathrm{M} \forall \mathrm{g} \in \mathrm{G} \iff \rho_2(\mathrm{g}) \mathrm{M} = \mathrm{M} \rho_1(\mathrm{g}) \iff \mathrm{M} \text{ est une morphisme de représentations}$

Si $\rho_1,\,\rho_2$ sont irréductibles, le lemme de Shor dit

$$\dim(\operatorname{Hom}(U,V)^G) = \begin{cases} 0 & \operatorname{si}\rho_1 \ncong \rho_2 \\ 1 & \operatorname{si}\rho_1 \cong \rho_2 \end{cases} = \operatorname{tr} P = \operatorname{tr} \left(\frac{1}{|G|} \sum_{g \in G} \operatorname{Hom}(\rho_1, \, \rho_2)(g) \right) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \operatorname{Hom}(\rho_1, \, \rho_2)(g) (\grave{a} \text{ démontrer})$$

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)$$

$$\therefore \frac{1}{|G|} \sum_{g \in G} \bar{\chi_{\rho}(g)} \chi_{\rho}(g) = \left\{ \cdots \right\}$$

Les caractères de représentations irréductibles sont orthonormés par le produit scalaire

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} \bar{f}_1(g) f_2(g)$$

sur l'espace $f:G\to\mathbb{C}$

Exemple: S_3

$$\rho_{\text{triv}} = \frac{1}{6} \left(1^2 + 3 \cdot 1^2 + 2 \cdot 1^3 \right) = 1 \qquad \cdots$$

$$\mathbb{C}_C(G) = \{ f : G \to \mathbb{C} | f(hgh^{-1}) = f(g) \forall g \in G \}$$

 $\dim(\mathbb{C}_{\mathcal{C}}(\mathcal{G})) = \#$ de classes de conj

Corrollaire

de repr irr homo-isomorphe de $G \leq \#$ de classe de conj

(même = mais ça reste à démontrer!)

<u>Démonstration</u>: (je vois pas lol)

Corrollaire 2 : Toute représentation est derterminé (à iso près) par son caractère χ_ρ

 $\underline{\text{D\'emonstration}}: \text{On sait que } \rho = \rho_1^{m_1} \oplus \cdots \oplus \rho_k^{m_k}$

De plus $\chi_{\rho} = m_1 \chi_{\rho_1} + m_2 \chi_{\rho_2} + \dots + m_k \chi_{\rho_k}$

On peut retrouver m_i avec le produit scalaire

$$\langle \chi_{\rho}, \chi_{\rho_i} \rangle = m_i$$

Exemple

Décomposons $R:S_3\to \mathrm{GL}(\mathbb{C}^6)$ (la repr régulière) en irréductible

— $\chi_R(e) = 6$, $\chi_R(12) = 0$, $\chi_R(123) = 0$ (les générateurs n'ont pas de points fixes)

$$- \langle \chi_R, \chi_{\text{triv}} \rangle = \frac{1}{6} (6 + 0 + 0)$$

$$\langle \rangle = \frac{1}{6}(6+0+0)$$

$$\langle\rangle = \frac{1}{6}(6*2+0+0)$$

$$\implies \chi_R = \chi_{\text{triv}} + \chi_? + 2\chi_?$$

Exemple

Décomposons $\rho:S_3\to \mathrm{GL}(\mathbb{C}^3)$ la représentation de permutation canonique

$$\chi_{\rho}(e) = 3 \quad \chi_{\rho}(12) = 1 \quad \chi_{\rho}(123) = 0$$

$$\chi_{\rho} = \chi_{\rm triv} + \chi_{\rm std}$$

$$\rho = \rho_{std} \oplus \rho_{triv}$$

Calculons $\rho_{\mathrm{std}} \otimes \rho_{\mathrm{std}}$

(J'ai pas envie d'écrire des matrices à la main)

Corollaire 3 : ρ est irréductible ssi $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$

Démonstration :

$$\langle \chi_{\rho}, \chi_{\rho} \rangle = m_1^2 + \dots + m_k^2 = 1$$

puisque $m_i \in \mathbb{N}$, un des $m_i = 1$, tout les autres =0

$$\iff \chi_{\rho} = \chi_{\rho,i} : \text{irréductible}$$

Corollaire 4:

Tout représentation irréductible apparait dans les décompostion de R avec multiplicité $\dim \rho_i$ et $|G| (= \dim(R)) = \sum_{\rho_i \text{irre}} \dim(\rho_i)^2$

2024-02-01

typo devoir 1

2.1

$$\Lambda^n = \{ \alpha \in V^{\otimes n} | \sigma \bullet \alpha = ?(\sigma)\alpha \}$$

Exemples:

$$\mathbb{R}^2 = \langle e_1 e_2 \rangle$$

$$\operatorname{Sym}(\mathbb{R}^2) \ni e_i \otimes e_2 + e_2 \otimes e_1$$

$$\sigma(e_1 \otimes e_2 + e_2 \otimes e_1) = \sigma(e_1 \otimes e_2 + \sigma(e_2 \otimes e_1)) = e_1 \otimes e_2 - e_2 \otimes e_1$$

$$\Lambda^2(\mathbb{R}^2) \ni e_1 \otimes e_2 - e_2 \otimes e_1$$

Rappels

 ρ_1,ρ_2 reps indestructibles de Galors

 $\langle \chi_{\rho} \rangle$

. . .

 $\underline{\text{Corollaire 5}}: \text{si } g \neq e$

$$\sum_{\rho_i \mathrm{irred}} \dim(\rho_i) \chi_{\rho_i}(g) = 0$$

 $\underline{\text{D\'emonstration}}$:

$$0 = \chi_R(g) = \sum_{\rho_i \text{irred}} \dim(\rho_i) \chi_{\rho_i}(g) \quad (g \neq e)$$

Permet de trouver une caractère manquant dnas le table si on connaît tout les autres

Plus d'algèbre linéaire

 $e_1,\, \cdots e_n$ base de V $f_1,\, \cdots f_m$ base de W $e_i\otimes f_j$ base de $V\otimes W$

$$M \in GL(V)$$
 $N \in GL(W)$
 $M \otimes N \in GL(V \otimes W)$

Proposition:

$$\operatorname{tr}(M \otimes N) = (\operatorname{tr} M)(\operatorname{tr} N)$$
$$\chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}$$

<u>Démonstration</u>

$$\operatorname{tr}(M\otimes N) = \sum_{ij} \left[(M\otimes N)(e_i\otimes f_j) \right]_{i,j} = \sum_{i,j} M_{i,i} M_{j,j} = \left(\sum_i M_{ii} \right) \sum_j (M_{jj}) = \operatorname{tr} M \operatorname{tr} N$$

Définition

L'espace dual de V est $\operatorname{Hom}(\mathbf{V},\mathbb{C})$ noté V^*

Si $M \in GL(V)$

 $M^* \in \operatorname{GL}(V^*)$

 $M^* \cdot \alpha = \alpha \circ M^{-1}$

De même, si $\rho_i G \to \operatorname{GL}(\mathbf{V})$ est une repr. La repr
 <u>dual</u> est $\rho^*: G \to \operatorname{GL}(\mathbf{V}^*)$

$$g \mapsto \rho(g)^*$$

Proposition:

$$\chi \rho^* = \bar{\chi}_{\rho}$$

<u>Démonstration</u>: $g \in G$, $\rho(g) \in GL(V)$ est une matrice d'ordre <u>finie</u>

$$(\exists n | \rho(g)^n = I)$$

 $\implies \rho(g)$ est diagonalisable est ses valeurs propres sont des racines de 1

$$\chi_{\rho}(g) = \operatorname{tr}(\rho(g)) = \lambda_1 + \cdots + \lambda_d$$

$$\rho^*(g) = (\rho(g)^{-1})^t$$

$$\operatorname{tr}(\rho^*(g)) = \lambda_1^{-1} + \dots + \lambda_d^{-1} = \bar{\lambda}_1 + \dots + \bar{\lambda}_d = \bar{\chi}_{\rho}(g)$$

Corrolaire ρ est irréductible $\iff \rho^*$ est irréductible

$$1 = \langle \chi_{\rho}, \chi_{\rho} \rangle = \frac{1}{|G|} \sum_{g \in G} \bar{\chi}_{\rho}(g) \chi_{\rho}(g)$$

$$\iff \langle \bar{\chi}_{\rho}, \bar{\chi}_{\rho} \rangle = \sum_{g \in G} \chi_{\rho}(g) \bar{\chi}_{\rho}(g) = 1$$

$$tr(A \otimes B) = tr(A) + tr(B)$$

 ${\bf Proposition}:$

$$\chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}$$

 ${\bf Proposition}:$

$$\operatorname{Hom}(V, W) \cong V^*W$$

<u>Démonstration</u>:

$$f: V^* \otimes W \to \operatorname{Hom}(V, W)$$

 $\alpha \otimes w \mapsto (v \mapsto \alpha(v)w)$

est linéaire

$$e_1^*, \cdots, e_n^*$$
 base de V
$$w_1, \cdots, w_m$$
 base de W

$$f(e_i^* \otimes w_i) = (v \mapsto e_i^*(v)w_i) = (v)$$

confus

Exemples : S_4 et A_4

Les classes de conjugaisons dans \mathcal{S}_4 sont

(Toutes les traspotitions sont coujugés)

	1	6	8	6	3
	e	(12)	(123)	(1234)	(12)(34)
χ_0	1	1	1	1	1
$\chi_{\rm sym}$	1	-1	1	-1	1
$\chi_{\rm std}$	3	1	0	-1	-1
$\chi_{\text{sym}\otimes\text{std}}$	3	-1	0	1	-1
χ4	2	0	-1	0	2

Table 1 – char de S_4

Regardons la representation $\rho_?$ de dim 4

$$\rho_?: S_4 \to \mathrm{GL}(\mathbb{C}^4)$$

on sait que $\rho_?$ se décompose en $\rho_{\rm triv} \oplus \rho_{\rm std}$

$$\chi_{\rho?} = \chi_{\rho?} - \chi_0$$

$$= (42100) - (1111111)$$
$$= (310 - 1 - 1)$$

$$\langle \chi_{\rm std} \chi_{\rm std} \rangle = \frac{1}{24} \left(3^2 + 6^2 + \cdots \right) = 1$$

Pour trouver $di(\rho_4)$

on utilise $|G| = \sum_{\rho \text{irred}} \dim(\rho_i)^2$

$$23 = 1^2 + 1^2 + 3^2 + 3^2 + d^2$$

d = 2

On trouve les autres coeffs avec

$$0 = \sum_{g \text{irred}} \dim(\rho_i) \chi_{\rho_i}(g)$$

Calculons ρ_4

On a $\rho((12)(34)) = I$

$$tr(\rho((12)(34))) = 2$$

Mest conjugé à

$$\begin{pmatrix} x & 0 \\ 0 & 2-x \end{pmatrix}$$

mais

$$\begin{pmatrix} x^2 & 0\\ 0 & (2-x)^2 \end{pmatrix} = \mathbb{1}$$

$$\implies M = 1$$

Quand une representation

a une noyau $\operatorname{Ker} \rho \subset G$

elle se factorise

 ρ_4 ne se factorise pas

2024-02-08

Groupe de Lie (matriciel)

 $G \subset \mathrm{GL}(\mathbf{n}, \mathbb{C})$ un sous-groupe fermé

(La topologie sur $GL(n, \mathbb{C}) \subseteq M_n\mathbb{C}$

SI $M_n \in G$ et $M_n \to M \in GL(n, \mathbb{C})$ alors $M \in G$

En fait, tout sous-groupe fermé de $GL(n, \mathbb{C})$ est une <u>sous-variété lisse</u> (G a un espace tangent à chaque point, on peut décrire les fonctions définies sur G)

(contre)Exemple:

 $\mathbb{Q}^*\subseteq\mathbb{C}$ n'est pas fermé.

Exemples

$$GL(n, \mathbb{C}), GL(n, \mathbb{R}), SL(n, \mathbb{C})$$

. . .

 $\underline{\text{D\'efinition}} \text{ On dit qu'un groupe de Lie matriciel est connexe s'il existe un chemin } \gamma:[0:1] \to G \text{ avec } \gamma(0) = A \ \gamma(1) = B \\ \forall A,B \in G$

(il suffit de considérer A = I)

Exemple : O(n) n'est pas connexe

$$A = I \in O(n)B = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ddots & 1 \end{pmatrix} \in O(n)$$

S'il existait un chemin $\gamma:[0,1]\to O(n)$ t.q. $\gamma(0)=I$ et $\gamma(1)=B$

alors $\det \circ \gamma: [0,1] \to \{-1,1\} \subseteq \mathbb{R}$ t.q. $\det \circ \gamma(0) = 1$, $\det \circ \gamma(1) = -1$

G Groupe de Lie matriciel

 G^0 Compostantes connexe de l'identité

Proposition:

$$G^0 \subseteq G$$

est un sous groupe normal

<u>Démonstration</u>

$$A, B \in G \implies \exists A(t), B(t) \text{ des chemins }, A(0) = B(0) = I, A(1) = A, B(1) = B$$

On définit $\gamma(t) = A(t) \cdot B(t)$

$$\implies A \cdot B \in G^0$$

Pour l'inverse, on définit, $\gamma(t) = A(t)^{-1}$

On a
$$\gamma(0) = A(0)^{-1} = I^{-1} = I$$

$$\gamma(1) = A(1)^{-1} = A^{-1}$$

$$\implies A^{-1} \in G^0$$

$$G : G^0 \subset G$$

est un sous groupe

Pour vérifier que G^0 est <u>normal</u>, il faut montrer que $\forall C \in G, A \in G^0$

$$CAC^{-1} \in G^0$$

On définit $\gamma(t) = CA(t)C^{-1}$

$$\gamma(0) = CA(0)C^{-1} = CIC^{-1} = I$$

 $\gamma(1) = CAC^{-1}$

<u>Définition</u> Une homomorphisme de groupe de Lie est $f:G\to H$ qui est un homomorphisme de groupe continue. (automatiquement lisse)

Exemple : det : $GL(n, \mathbb{C}) \to \mathbb{C}^*$ est une homomorphisme de groupe de Lie car

- 1. det(AB) = det A det B
- 2. continu car polynôme

Rappel

Pour $S \subset \mathbb{R}^n ou\mathbb{C}^n$ une sous-variété. l'espace tangent en $p \in S$ est

$$T_p S = \{ \gamma'(0) | \begin{array}{c} \gamma : [-1, 1] \to S \\ \gamma(0) = p \end{array} \}$$

Si $f: S_1 \to S_2$ est une application lisse, la dérivé de f en p est une application linéaire

$$\mathrm{d}f_p:T_pS_1\to T_{f(p)}S_2$$

définie par :

$$\mathrm{d}f|_p(\mathbf{v}) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}$$

pour γ chemin dans S_1 avec $\gamma(0) = p, \gamma'(0) = \mathbf{v}$

Calculons pour det : $\mathrm{GL}(2\mathbb{C}) \to \mathbb{C}^*$ La dérivé au point $p = I \in \mathrm{GL}(2,\mathbb{C})$

$$d(\det)|_I: T_I GL(2, \mathbb{C}) \to T_1 \mathbb{C}^*$$

$$\gamma(t) = I + tX$$
 pour $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$\gamma'(0) = \begin{pmatrix} 1 + ta & tb \\ tc & 1 + td \end{pmatrix} (0) = X$$

$$T_I GL(2, \mathbb{C}) = M_2(\mathbb{C})$$

$$(\det \circ \gamma)(t) = (1 + ta)(1 + td) - t^2bc$$

$$\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\left((\det\circ\gamma)(t)\right)=a+d=\mathrm{tr}(X)\in T_1(\mathbb{C}^*)$$

Conclusion

$$d(\det) \bigg|_{I} (X) = tr(X)$$

 $\quad \ \ \, \textbf{Exemple}:$

$$U(1) = \{ z \in \mathbb{C}^* | z\bar{z} = 1 \}$$

On veut déterminer $T_1(u_1)$

$$\gamma(t) = e^{itx}$$
 $\gamma'(t) = ixe^{itx}$ $\gamma'(0) = ix$

$$T_{1(S')} = T_1(U_1) = i\mathbb{R}$$

2024-02-12

Rappels

- Groupe de Lie matriciel $G\ni I\to \mathrm{sous}$ -groupe fermé de $\mathrm{GL}(\mathrm{n}\mathbb{C})$
- G est une sous-variété
- $\begin{array}{lll} & \underline{-} & \underline{Exemples} & GL(n,\mathbb{R}) & Sl(n,\mathbb{R}), SL(n,\mathbb{C}) & O(n), O(n,\mathbb{C}) & SO(n), SO(n,\mathbb{C}) & U(n), SU(j) & Sp(2n,\mathbb{R}) & Sp(2n,\mathbb{C}) & Groupe \\ \hline des & matrice & triangulaire & superieur & (S)O(p,q) & = & \{M \in GL(p+q,\mathbb{R})|M^tI_{pq}M^t & = I_{pq}\} & (S)U(p,q) & = & \{M \in GL(p+q,\mathbb{C})|M^*I_{pq}M & = I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p,q) & = & \{M \in GL(p+q,\mathbb{R})|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p,q) & = & \{M \in GL(p+q,\mathbb{R})|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q,\mathbb{C})|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q,\mathbb{C})|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q,\mathbb{C})|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q)|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q)|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q)|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q)|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M & = & I_{pq}\} & (S)U(p+q)|M^*I_{pq}M^t & = & I_{pq}\} \\ \hline & GL(p+q,\mathbb{C})|M^*I_{pq}M^t & = & I_{pq}\} \\$
- G Connexe si $\exists \gamma : [0,1] \to G$ avec $\gamma(0) = I$, $\gamma(1) = A \quad \forall A \in G$
- $G^0 \subseteq G$ (composantes connexe de I) est un sous-groupe normal exemple :

$$O(1,1) = \{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} | M^{t} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \}$$

On résous le système d'équations :

$$M = \begin{pmatrix} a & \pm c \\ c & \pm a \end{pmatrix}$$
 avec $a^2 - c^2 = 1$

 $\underline{\text{Exercice}}$:

O(2)

Étant donné $f: G \to H$ un morphisme de groupe de Lie. On lui associe une application linéaire

$$\mathrm{d}figg|_I:T_IG o T_IH$$

. En fait cette application détermine uniquement f.

Un voisinage arbitrairement petit autour de I engendre G

Attention

Pas tout les applications linéaires $L:T_IG\to T_IH$ sont la dérivé d'un morphisme

On cherche une condition pour que

$$L = df \Big|_{I}$$

Étant donnée $g \in G$, on définit la multiplication à gauche $L_g : \to G$ c'est une application lisse mais

$$\operatorname{d} L_g \bigg|_I : T_I G \to T_g G$$

On va plutôt regarder la conjugaison par $g \in G$

$$Ad(g): G \to G$$

$$h \to ghg^{-1}$$

$$\operatorname{d} \operatorname{Ad}(g)\Big|_{I}: T_{I}G \to T_{I}G$$

$$X \to gXg^{-1}$$

$$\gamma(t) \in G|\gamma(0) = I \quad \gamma'(0) = X$$

 $Ad(g)(\gamma(t)) = g\gamma(t)g^{-1}$

$$\operatorname{d} \operatorname{Ad}(G)\Big|_{t=0} = \frac{\operatorname{d}}{\operatorname{d}t}\Big|_{t=0} g\gamma(t)g^{-1} = gXg^{-1}$$

Pour obenir une condition sur T_IG uniquement, on dérive Ad(f) par rapport à g en fixant X

$$G \to T_I G$$

 $g \mapsto g X g^{-1}$

pour dériver cette appilcation on prend

$$\gamma(-\epsilon,\epsilon) \to G$$

$$\gamma(0) = I$$
$$\gamma'(0) = U \in T_I G$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma(t)X\gamma(t)^{-1} = \left[\gamma'(t)X\gamma(t)^{-1} + \gamma(t)X(\gamma(t)^{-1})'\right]_{t=0}$$
$$= YXI^{-1} + -IXI^{-1}YI^{-1}$$
$$= YX - XY \in T_IG$$

L'opération sur T_{Ig}

$$[X,Y] = XY - YX$$

s'appelle le crochet

Comme le crocher est définit en termes de la multiplication dans G et ses dérivées, pour tout morphisme de groupe de Lie $f:G\to H$ la dérivé d $f\mid_I:T_IG\to T_IH$ satisfaisant d $f\mid_I[X,Y]=[\mathrm{d} f\mid_IX,\mathrm{d} f\mid_IY]$

En fait $L: T_IG \to T_IH$ est la dérivé d'un morphisme de groupe de Lie $\iff L([X,Y]) = [L(X),L(Y)] \forall X,Y \in T_IG$

Le crochet a toutes les propriétés suivantes

- 1. Bilinéaire
- 2. antisymétrique
- 3. Identité de Jacobi

 $\underline{\text{D\'efinition}}$: Une algèbre de Lie complexe est un espace vectoriel $\mathfrak g$ complexe muni d'une application sur $\mathbb C$

$$[,]:\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}$$

 $\underline{\text{Exemple}}: \text{Si } G \text{ est une groupe de lie matriciel}, \ g = T_I G \text{ muni de } [X,Y] = XY - YX \text{ est une algèbre de lie}$ Si $f:G \to H$ est un morphisme d'algèbre de Lie (linéaire et $\mathrm{d} f \bigm|_I [X,Y] = [\mathrm{d} f \bigm|_I X, \mathrm{d} f \bigm|_I Y])$ Exemple :

$$G = \operatorname{GL}(\mathbf{n}, \mathbb{C}) \qquad \mathfrak{g} = \operatorname{M_n}(\mathbb{C})$$

$$\gamma(t) \in \operatorname{SL}(\mathbf{n}, \mathbb{C})$$

$$\gamma(0) = 1$$

$$\det(\gamma(t)) = 1$$

$$\left. \frac{\operatorname{d}}{\operatorname{d}t} \right|_{t=0} \det(\gamma(t)) = 0 = \left. \operatorname{d}\det(0) \right|_{\gamma(0)} = \operatorname{tr} \circ \gamma'(0) = \operatorname{tr} (\gamma'(0))$$

$$\operatorname{tr} (\gamma'(0)) = 0 \quad \forall \gamma'(0) \in T_I \operatorname{SL}(\mathbf{n}, \mathbb{C})$$

$$T_I \operatorname{SL}(\mathbf{n}\mathbb{C}) \subseteq \{ \mathbf{X} \in \operatorname{M_n}(\mathbb{C}) | \operatorname{tr} \mathbf{X} = 0 \}$$

En fait on a l'égalité

2024-02-15

Rappels

G groupe de liea

 $\mathfrak{g} = T_I G$ algèbre de Lie pour [X, Y] = XY - YX

En général, une algèbre de LIe est un espace vectoriel muni d'un crochet $[.,.]: V \times V \to V$ satisfaisant

- 1. bilinéaire
- 2. antisymétrique
- 3. Jacobi

Exercice

- 1. Montrer que \mathbb{R}^3 muni du produit vectoriel \times est une algèbre de lie
- 2. Construire un isomorphisme entre (\mathbb{R}^3, x) et $(\square(3), [., .])$

tentative

- 1. On doit montrer que \times respecte les trois conditions
 - (a) $\mathbf{x}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^3$

$$\mathbf{x} \times \lambda \left(\mathbf{a} + \mathbf{b} \right) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \lambda \left(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \right) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} \lambda a_1 + \lambda b_1 \\ \lambda a_2 + \lambda b_2 \\ \lambda a_3 + \lambda b_3 \end{pmatrix} = \begin{pmatrix} \cdots \\ \cdots \end{pmatrix} = \lambda (\mathbf{x} \times \mathbf{a} + \mathbf{x} \times \mathbf{b})$$

L'application exponentielle

G groupe de Lie, $\mathfrak{g} = T_I G$ sont algèbre de Lie

Définition :

$$\exp:\mathfrak{G}\to G$$

est l'unique application lisse satisfaisant

- 1. $\exp(0) = I$
- 2. d exp $|_{\mathfrak{g}}: \mathfrak{g} \to \mathfrak{g}$ est l'application identité
- 3. $\forall X \in g$ l'application $t \to \exp(tx)$ est un homomorphisme de groupes

$$\exp(t+s)X = \exp tX + \exp sX$$

(l'existence et l'unicité sont à démontrer)

Proposition:

Pour
$$G = GL(n, \mathbb{C}, \exp(X)) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k = e^X$$

Rappels sur l'exponentiation de matrices

1.

Proposition:

$$f:G\to H$$

est un morphisme de groupe de Lie alors

$$\begin{pmatrix} \mathfrak{g} & \to \mathrm{d} f \big|_I \to & \mathfrak{h} \\ \downarrow \exp_g & & \downarrow \exp_H \\ G & \to f \to & H \end{pmatrix}$$

commute, c-à-d, $f \circ \exp_G = \exp_H \circ df |_I$

Conséquence :

Si $G \subseteq GL(n, \mathbb{C})$

 $\implies i \circ \cdots$

tout à été effacé dasfefefwefeffsfefrgqp

 $\underline{\text{D\'emonstration}}$:

. . .

Représentation de groupe/algèbre de Lie

Définition

Une représentation de G est un morphisme $G \to \mathrm{GL}(n, \mathbb{C}$

Une représentation de $\mathfrak g$ est une morphisme d'algèbre de Lie $\mathfrak g \to \mathfrak g l(n,\mathbb C)$

Exemple: Représentation adjointe

$$Ad: G \to GL(\mathfrak{g}$$

$$g \mapsto Ad(g)$$

où
$$Ad(g)(X) = gX^{-1}g$$

on peut vérifier la linéairité et Ad = (Adg) (Adh)

2024-02-22

Rappels

. . .

Proposition : Soit $0 \neq V \in V_{\beta}$, alors $\{V, \rho(\gamma)v, \rho(y)^2v, \cdots\}$ engendre V

<u>Démonstration</u>: On montre que $U = \langle v, \rho(y)v, \rho(y)^2v, \cdots \rangle$ est stable pour $\rho(x), \rho(y), \rho(H)$

- 1. $\rho(H)(\rho(y)^m v) = (\beta 2m) \rho(Y)^m c \in U$
- 2. $\rho(y)\rho(y)^m v = \rho(y)^{m+1}v \in U$
- 3. $\rho(x)\rho(y)^m v = ?$

On va montrer par récurrence que $\rho(x)\rho(y)^mv=m(\beta-m+1)\rho(y)^{m-1}$

pour m=0 $\rho(x)v=0$ pour m=1 $\rho(x)\rho(y)=(\rho(H)+\rho(Y)\rho(x))\,v$

$$\rho(x)\rho(y)^{m+1}v = (\rho(H) + \rho(y)\rho(x))\rho^m)$$

. .

$$[(m+1)(\beta-m)\rho(y)^mV]$$

 $\implies U \subseteq \text{est stable pour } \rho \text{ comme } \rho \text{ est irréductible, } U = V$

Conséquences

- $-V_{\alpha}=1$
- ρ est uniquement déterminé par $\beta = \max up(\rho(H))$

De plus, comme V est de dimension finie, il existe m t.q. $\rho(y)^m v = 0$ et $\rho(y)^{m-1} v = 0$

$$0 = m(\beta - m + 1)\rho(y)^{m+1}v$$

$$\implies m(\beta - m + 1) = 0$$

$$\implies \beta = m - 1 \qquad \beta \in \mathbb{N}$$

Il y a au plus une représentation irréductible de dimenention n et les espaces propres de $\rho(H)$ sont

$$V_{1-n}, V_{2-n}, \cdots V_{n-2}, V_{n-1}$$

On va montrer qu'ils existent

Figure 1 – ladder

Produit tensoriels de représentation d'algèbre de Lie

Rappel

$$\rho_i: G \to \mathrm{GL}(V_i) i \in \{1, 2\}$$

$$\rho_1 \otimes \rho_2 : G \to \mathrm{GL}(V_1 \otimes V_2)$$

est définie par $\rho_1\otimes\rho_2(g)\,(V_1\otimes V_2)=\rho_1(g)v\otimes\rho_2(g)v_2$

Si G est un groupe de Lie $\mathfrak g$ son algèbre de Lie

Calculons $d(\rho_1 \otimes \rho_2) \mid_I \mathfrak{g} \to glV_1 \otimes V_2$

Soit $\gamma(t) \in G$, $\gamma(0) = I$, $\gamma'(0) = X \in G$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\rho_1 \otimes \rho_2 \right) \gamma(t) (V_1 \otimes V_2) = \dots = \left(\mathrm{d} \left. \rho_1 \right|_I (x) V_1 \right) \otimes V_2 + V_1 \otimes (\dots)$$

<u>Définition</u>:

Si $\rho_i:\mathfrak{g}\to\operatorname{gl}(V_i)$ sont 2 représentation d'algèbre de Lie, alors $\rho_1\otimes\rho_2$ est définie par $(\rho_1\otimes\rho_2)\,X\,(V_1\otimes V_2)$

On a également $sym^n(\rho)\subseteq \rho^{\otimes n}$, $\Lambda^n(\rho)\subseteq \rho^{\otimes n}$ sous-représentation comme pour G un groupe On introduite la notation

$$v_1 \cdot v_2 \cdot \dots \cdot v_n := Sym^n(v_1 \otimes v_2 \cdot \dots \cdot v_n) \in Sym^n(V)$$

et

$$v_1 \wedge v_1 \cdots = Alt(v_1 \cdots)$$

Revenons à $sl(2, \mathbb{C})$

la représentation ????? est $i:\cdots$

$$i(H) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

a les valeurs propres 1, -1

$$\mathbb{C}^2 = V_1 \oplus v_2$$

est la représentation irréductive de dimension 2

$$sym(\mathbb{C}^2) = \langle e_1 \cdot e_1, e_1 \cdot e_2, e_2 \cdot e_2 \rangle$$

$$(Sym(i)(H))(e_1^2) = H^{\otimes 2}(e_1 \otimes e_1) = 2e_1^2$$

sur $e_1 \otimes e_2$ c'est 0 sur $e_2 \otimes e_2$ c'est $-2e_2^2$

$$\implies sym(\mathbb{C}^2) = \left\langle e_1^{n-i}, e_2^i \right\rangle$$

Chacun est une vecteur propre de $\operatorname{sym}(H)$ et

$$sym(H)(e_1^{n-1} \cdot e_2^i) = \left(H\underbrace{e_1e_1e_2e_2^i}_{n_1}\right) + \left(e_1He_1 \cdot \cdot \cdot e_2^i\right) + \cdots$$

$$= \dots = (n-2i)e_1^{n-i}e_2^i$$

Je vois pas

 $\underline{\text{Exemple}}: \text{Quelle est la d/composition de } sym^2(\mathbb{C}^2) \otimes sym^2(\mathbb{C}^2) \text{ en irréductibles ?}$

On calcule les valeurs propres de $\rho(H)$

pour
$$sym^2(\mathbb{C}^2:-2,02$$
 pour $sum^2(\mathbb{C}^2):-3,-1,1$

Si
$$\rho_1(H)v = \lambda_1 v, \rho_2(H)u = \lambda_2 u$$

$$(\rho_1 \otimes \rho_2) H (v \otimes u) = \rho_1(H) v \otimes u + v \otimes \rho_2(H) u = \lambda_1 v \otimes u + v \otimes \lambda_2 u = (\lambda_1 + \lambda_2) (v \otimes u)$$

Figure 2 – valeurs propres

2024-02-26

Rappels

Représentation irréductibles de $sl(2\mathbb{C}) = \langle H, X, Y \rangle$

$$V^{(n)} = \bigoplus_{\alpha} V_{\alpha}$$

Notation

Une Représentation est doit

$$\rho: g \to gl(V)$$

ou bien une action

$$g \times V \to V$$

$$\forall Z \in g \quad v \mapsto Xv \quad \text{est linéaire}$$

 \exists une unique représentation de dim n. On peut la construire comme $\mathrm{Sym}^{n-1}(\mathbb{C})$

Produit tensoriel de représentation d'algèbre de Lie,

V,W deux repr de $g,V\otimes W$ est une représentation avec $X(v\otimes w=Xv\otimes w+v\otimes Xw)$

${\bf Exemple:}$

$$\Lambda^2(\operatorname{Sym}^3(\mathbb{C}^2))$$

$$\mathbb{C}^2 = \langle e_1 m e_2 \rangle$$

$$\operatorname{Sym}^{3}(\mathbb{C}^{2}) = \langle e_{1}^{3}, e_{1}^{2}, e_{2}, e_{1}, e_{2}^{2}, e_{2}^{3} \rangle$$

$$\Lambda^2(\operatorname{Sym}^3(\mathbb{C}^2)) = \langle e_1^3 \wedge e_1^2 e_2, e_1^3 \wedge \cdots \rangle$$

Calculons les valeurs propres de H pour cette représentation

. . .

Représentation de $SL(2\mathbb{C})$ irréductibles

<u>Fait</u>: Si G est connexe $\rho: G \to \operatorname{GL}(V)$ une représentation est uniquement déterminée par ka représentation

$$d \rho \bigg|_{I} : g \to \mathrm{gl}(V)$$

 $\mathrm{SL}(2,\mathbb{C})$ est connexe. On connait <u>toutes</u> les représentation irréductibles de $\mathrm{sl}(2\mathbb{C})$. On peut les construire avec $\mathrm{Sym}^n(\mathbb{C}^2)$

Conséquences : Les représentations $\operatorname{Sym}^n(\mathbb{C}^2)$ de $\operatorname{SL}(2,\mathbb{C}$ sont toutes les représentation irréductibles de $\operatorname{SL}(2,\mathbb{C})$

 ${\bf Exemple}:$

Calculons $\operatorname{Sym}^2(\mathbb{C}^2 \text{ pour } \operatorname{SL}(2,\mathbb{C})$

$$\operatorname{Sym}^{2}(\mathbb{C}^{2}) = \langle e_{1}^{2}, e_{1}e_{2}, e_{2}^{2} \rangle$$

. . .

Représentation de $sl(3, \mathbb{C})$

 $\underline{\text{Fait}}: \mathrm{sl}(n,\mathbb{C})$ est une algèbre simple.

On veut imiter la stratégie utilisé pour $sl(2\mathbb{C})$

Le sous-espace $h = \{ \begin{pmatrix} a_10 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix} \}$ joue le role de la matrice H

remarquons que les matrices de h commutent entre elles et sont diagonalisables

Si $\rho : \mathrm{sl}(3,\mathbb{C}) \to \mathrm{gl}(V)$

Par préservation de la forme de Jordan $\forall H \in h, \rho(H)$ est diagonalisable

Rappel

Une famille de matrices diagonalisables qui commutent est $\underline{\underline{\text{simultan\'ement diagonalisable}}}$ c-à-d il existe une base dans laquelle elles sont toutes diagonales

$$\implies V = \bigoplus_{\alpha} V_{\alpha}$$

décomposition en sous-espaces propres simultanés de h

On interprète α comme des fonctions $\alpha:h\to\mathbb{C}$ $\alpha(H)$ est la valeur propre de $H\in h$ sur le sous-espace V_{α}

$$\rho(H)v = \alpha(H)v \quad \forall H \in H \quad \forall v \in V_{\alpha}$$

 α est linéaire

$$\alpha(aH_1 + bH_2)v = \rho(aH_1 + bH_2)v = a\rho(H_1)v + b\rho(H_2)v = a\alpha(H_1) + b\alpha(H_2)$$

Autrement dit, $\alpha \in h^*$

On doit comprendre [,] sur $sl(3,\mathbb{C})$

De manière équivalente, on doit comprendre

$$ad: g \to gl(g)$$

 $ad(x)y = [X, Y]$

Par la construction précédente, on peut découper g en sous-espaces propres de ad(h)

$$\operatorname{ad} \begin{pmatrix} a_1 & & \\ & a_2 & \\ & & a_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \cdots \begin{pmatrix} 0 & a_1 - a_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{(a_1 - a_2)}_{\alpha(H)} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On viens de trouver un des 8 sous-espace propres, (trouvons les autres?)

Notons E_{ij} matrice avec un 1 en i, j est 0 ailleurs

$$ad(H)E_{1,2} = \alpha(H)E_{1,2}$$

on définit
$$L_i \begin{pmatrix} a_1 & & \\ & 1_2 & \\ & & a_3 \end{pmatrix} = a_i$$

$$ad(H)E_{1,2} = (L_1 - L_2)(H)E_{1,2}$$

$$ad(H)E_{1,3} = (L_1 - L_3)(H)E_{1,3}$$

 $ad(H)E_{2,1} = (L_2 - L_1)(H)E_{2,3}$

2, 1

3, 1

3, 2

de plus $ad(H_1)H_2 = 0$ est de dimension 2

$$g = h???$$

2024-02-29

$$sl(3,\mathbb{C}) = h \oplus_{\alpha} \mathfrak{g}_{\alpha}$$

$$h = \left\{ \begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix} | a+b+c = 0 \right\}$$

où $\forall X \in \mathfrak{g}_{\alpha}, \forall H \in h$

$$ad(H)X = [H, X] = \alpha(H)X$$

exemple:

$$X = E_{1,2}$$

$$\begin{bmatrix} \begin{pmatrix} a & & \\ & b & \\ & & v \end{pmatrix}, E_{1,2} \end{bmatrix} (a-b)E_{1,2}$$

$$X \in g_{\alpha}$$
 où $\alpha \begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix} = a - b$

On définit $L_i \begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix} = i$

$$L_1, L_2, L_3 \in h^*$$

$$\alpha = L_1 - L_2$$

les α dans la décomposition (*) s'apellent des <u>racines</u> de

 $sl(3\mathbb{C})$

La liste des racines et

$$L_1-L_2,L_1-L_3,\cdots$$

dans $sl(2,\mathbb{C})$, une racine est un nombre complex car dim(h) = 1. Les racines de

 $sl(2, \mathbb{C})$

sont -2 et 2

Les vecteur propres associé à une racine s'apellent des vecteurs de racine

$$E_{i,j}, i \neq j$$

est un vecteur de racine pour $L_i - L_j$

Supposons que $X \in g_{\alpha}$ et $Y \in g_{\beta}$ et $H \in h$

$$[H, [X, Y]] = [X, [H, Y]] + [Y, [X, H]] = [X, \beta(H)Y] - [Y, \alpha(H)X] = \beta(H)[X, Y] - \alpha(H)[Y, X] = (\alpha + \beta)(H)[X, Y]$$

Si X vecteur de racine α , Y vecteur de racine β alors [X,Y] vecteur de racine $\alpha + \beta$ ad(X) agit par translation de la racine de Y

$$[,]:g_{\alpha}\times g_{\beta}\to g_{\alpha+\beta}$$

Revenons 'a une représentation irréductible V de $sl(3\mathbb{C})$

$$\rho: \mathrm{sl}(3,\mathbb{C}) \to \mathrm{gl}(V)$$

On décompose $V = \bigoplus_{\alpha} V_{\alpha}$ où $\alpha \in h^*$ et $v \in V_{\alpha}, H \in h$

$$\implies H_v = \alpha(H)v$$

Les valeurs propres α s'apellent les racines de la représentation. Les vecteur prorpres sont des vecteur de poids Une racine est donc un poids pour la représentation ad

soit $X \in g_{\alpha}$ et $v \in V_{\beta}$

$$H \cdot (Xv) = [H, X] \cdot v + X \cdot (H \cdot v) = \alpha(H)Xv + C(\beta(H)v) = (\alpha + \beta)(H)(Xv)$$

 $X \in g_\alpha$ agit par translation de α sur le poids β de V

Conséquence : Pour V irréductible, tout les poids diffèrent d'une combination entière de racine de $L_i - L_j$ Le réseau Λ_R engendré par les racines est appelé réseaux des racines.

Exemple : $V \in \mathbb{C}^3$ et $\rho : \text{sl}(3,\mathbb{C}) \to \text{gl}(\mathbb{C}^3)$ l'inclusion e_1, e_2, e_3 does des vecteurs propres de poids pour les poids l_1, L_2, L_3

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = L_1(\begin{pmatrix} a & b \\ b & c \end{pmatrix}) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

En effet, L_2 , = $L = 1 + (L_2 - L_1)$

$$L_3 = L_1 + (L_3 - L_1)$$

Exemple 2:

$$\Lambda^2(\mathbb{C}^3) = \langle e_1 \wedge e_2, e_1, \wedge e_2, e_2 \wedge e_3 \rangle$$

$$\begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix} (e_1 \wedge e_2) = ae_1 \wedge e_2 + be_1 \wedge e_2 = \dots = -L_3 \begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix}$$

. . .

Pour imiter ce qu'on a fait dans $sl(2,\mathbb{C})$ on cherche un poids maximal. On définit la maximalité. On fixe

$$H_0 \begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix} \in h$$

et on considère l'ordre partiel sur h^*

$$\alpha < \beta \iff \operatorname{Re}(\beta(H_0) - \alpha(H_0)) > 0$$

En choisissant a > b > c, les racines $L_1 - L_2, L_1 - L_3, L_2 - L_3$ sont positives alors que les trois autres sont négatives

<u>Lemme</u>: Pour V une représentation irréductible de sl(3C), il existe un vecteur de poids $v \in V_{\alpha}$, $v \neq 0$ t.q. $E_{1,2}(v) = 0$, $E_{1,3}(v) = 0$, $E_{2,3}(v) = 0$

<u>Démonstration</u>: Soit α maximal parmis les poids t.q. $V_{\alpha} \neq \{0\}$ par l'ordre $< \alpha$ existe car V est de dimension finie. Soit $v \in V_{\alpha}$. Alors, $E_{1,2} \cdot V \in V_{\alpha+L_1-L_2}$

Si $E_{1,2}v \neq 0$ alors $\alpha + L_1 + L_2 > \alpha$ et $v_{\alpha} \neq 0$ contredit la maximalité

De même $E_{1,3}v = 0$, $E_{2,3}v = 0$

ON appelle v un vecteur de plus haut poids ou vecteur maximal

Proposition: V est engendré par v et toutes les images de v par toutes les combination possibles de $E_{2,1}$, $E_{3,2}$, $E_{3,2}$, $E_{3,1}$

 $\underline{\text{D\'emonstration}}$: Soit W le sous-espace engendré par V et toutes ses images par des combinaisons de $E_{21}, E_{3,2}, E_{3,1}$

Il suffit de montrer que W est stable par $sl(3\mathbb{C})$

- 1. W est stable par h (W est engendré par des espaces de poids)
- 2. W est stable par $E_{2,1}$, $E_{3,2}$, $E_{3,1}$ par définition
- 3. Il reste à montrer que W est stable par $E_{1,2}$, $E_{2,3}$, $E_{3,2}$. Il suffit de le montrer pour $E_{1,2}$ et $E_{2,3}$ car $E_{1,3}=[E_{1,2},E_{2,3}]$

À suivre...

2024-03-11

Rappels

 $\mathfrak{sl}(3\mathbb{C}) = h \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ osti, je suis deja done

On a montré que les poids diffèrent par une combinaison de racines :

Si $v \in V_{\alpha}, C \in g_{\beta}$ β -racine, α -poids

alors $X \cdot v \in V_{\alpha+\beta}$

Le poids le plus haut est une poids maximal pour l'ordre induit l'évaluation sur $\begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} \in h$ t.q. $a_0 > b_0 > C_0$

Il existe un vecteur de plus haut poids v qui satisfait

- $v \in V_{\alpha}$ pour $\alpha \in h^*$
- $-E_{23}v = E_{13}v = E_{?}v = 0$

Proposition:

V est engendré par v (vecteurs de plus haut poids) et toutes ses images par tout les mots possible en $E_{2,1}, E_{3,2}, E_{3,1}$

Démonstration

W le sous-espace engendré par v et tout les motes possibles en $E_{2,1}, E_{32}, E_{31}$ appliqué à V

$$W = \langle v, E_{21}v, e_{32}v, E_{31}v, E_{21}E_{32}v, \cdots \rangle$$

On veur montrer que W est $\mathfrak{sl}(3,\mathbb{C})$ -invarient

Partie facile, W est invariant par h et par E_{21}, E_{31}, E_{32}

Reste à montrer que W est invarient par $E_{1,2}, E_{2,3}$

 $E_{1,3}=[E_{1,2},E_{2,3}]$, il suffit donc de vérifier $E_{1,2}W\subseteq W$ et $E_{23}W\subseteq W$

Posons W_n le sous-espace engendré par va et tout les mots en E_{21}, E_{32} de la longeure $\leq n$ appliqué à v

Par récurence, on montre $E_{12} \cdot W_n \subseteq W_{n-1}, E_{2,3} \cdot W_n \subset W_{n-1}$

Soit $w \in W_n$

$$\implies w = E_{21} \cdot w' \quad \text{pour} \quad w' \in W_n - 1$$

ou

$$w = E_{32} \cdot w'$$

1.

$$E_{1,2} \cdot w = E_{1,2} \cdot E_{2,1} \cdot w' = ([E_{12}, E_{21}] + E_{21} \cdot E_{12}) w'$$

$$E_{1,2} \in g_{L_1 - L_2}$$

$$E_{21} \in G_{L_2 - L_1}$$

$$\implies [E_{1,2}, E_{21}] \in h = g_e$$

$$= \in W_{n-1} + \in W_{n-1}$$

$$E_{2,3} \cdot w = E_{2,3} \cdot E_{1,2} \cdot w'$$

$$= \left(\underbrace{[E_{23}, E_{21}]}_{0} + E_{2,1} + E_{23}\right) \cdot w'$$

$$= E_{21} \cdot \underbrace{(E_{21} \cdot w')}_{W_{n-2}}$$

$$\underbrace{W_{n-2}}_{W_{n-1}}$$

2. même chose

Puisque $W = \bigcup_n W_n$, W est stable par $\mathfrak{sl}(3\mathbb{C}) \implies W = V \blacksquare$

De la preuve, on déduit :

Pour V une représentation (pas nécéssairement irréductible), si v est un vecteur de plus haut poidsm alors le sous espace engendré par v est ses images par E_{21} et $E_{3,2}$ est une sous représentation irréductible

Il existe un n pour lequel $\left(E_{2,1}\right)^n\cdot v=0$ mais $\left(E_{2,1}\right)^{n-1}\cdot v\neq 0$

Observation : $V_{\alpha+m(L_2-L_1)}$ est de dim 1 ou 0 (car il existe un seul *chemin* entre α et $\alpha+m(L_2-L_1)$

$$\begin{pmatrix} E_{21} & E_{12} & E_{11} - E_{22} \\ \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ Y & X & H$$

engendrent une sous-algèbre de Lie de $\mathfrak{sl}(3\mathbb{C})$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

En restreignant à cette sous-algèbre, on obtient une représentation de $\mathfrak{sl}(2,\mathbb{C})$ sur V (par nécéssairement irréductible)

Rappel Les valeurs propres pour H dans un représentation de $\mathfrak{sl}(2\mathbb{C})$ sont entière et symétriques par rapport à 0

Les valeurs propres de "H" = $E_{11} - E_{22}$ sont $\alpha(H), (\alpha + L_2 - L_1)(H), \dots, (\alpha + n(L_2 - L_1))(H)$

on réécrit $\alpha(H), \alpha(H) - 2, \alpha(H) - 4, \cdots, \alpha(H) - 2n$

$$\implies \alpha(H) - 2n = -\alpha(H)$$

$$\implies n = \alpha(H)$$

L'arrête entre α et $\alpha + n(L_2 - L_1)$ est symétrique par rapport à la droite $\beta(H_{12}) = 0$

Posons
$$\alpha + \alpha \left(J_{1,2}\right)\left(L_2 - L_1\right) = \alpha_2$$
 et $v_2 = E_{2,1}^{???} \cdot v \in V_{\alpha_2}$

On a
$$E_{21} \cdot v_2 = 0, \, E_{2,3} \cdot v_2 = 0 \, , \, E_{1,2} \cdot v_2 = 0$$

 v_2 est une vecteur de plus haut poids pour l'ordre définis par $\begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix}, \, b>a>c$

Les espaces de poids sont contenus dans l'hexagone des sommets α et ses réflexions dans les 3 droites Les espace de poids sur les arêtes sont de dimension 1

On déduit que $\alpha(H)_{i,j} \in \mathbb{Z} \forall H \in h$

$$\implies \alpha = aL_1 + bL_2 + cL_3 \quad a, b, c \in \mathbb{Z}$$

2eme heure

$$sym^{n}(\mathbb{C}^{3} = \left\langle e_{1}^{i}e_{2}^{j}e_{3}^{k}|i+j+k=n\right\rangle$$

les poids sonts $H\cdot \left(e_1^ie_2^je_3^k\right)=(iL_1+jL_2+kL_3)(H)e_1^ie_2^je_3^k$

Chaque espace de poids est de dimension 1. Les plus haut est nL

$$L_1 + L_2 + L_3 = 0$$

FIGURE 1 – triangle

 $\operatorname{Sym}^{\operatorname{n}}(\mathbb{C}^{3})$ par le même argument a pour plus haut poids nL_{3} est est irréductible

$$\operatorname{Sym}^n(\mathbb{C}^3) \otimes \mathbb{C}^{3*}$$

a un poids de $2L_1-L_3$

 $V=e_1^2\otimes e_3^*$ est un vecteur de plus haut poids.

Elle n'est pas irréductible car on peut définir un morphisme

$$\varphi: \mathrm{Sym}^2 \mathbb{C}^3 \otimes \mathbb{C}^3 \to \mathbb{C}^3$$
$$(uv) \otimes \alpha \mapsto \alpha(u)v + \alpha(v)u$$

$$\varphi(X \cdot ((uv) \otimes \alpha)) = \varphi(X \cdot (uv) \otimes \alpha + uv \otimes \varphi(X \cdot \alpha))$$

$$= \varphi((Xu + Xv) \otimes \alpha - (uv) \otimes \alpha(x))$$

$$\alpha(xu)v + \alpha(v)Xu + \alpha(u)Xv + \alpha(xv)u - \alpha(xu)v - \alpha(xv)u = X(\alpha(v)u + \alpha(u)v + X \cdot \varphi(uv \otimes \alpha)$$

 $\operatorname{Her}(\varphi)\subseteq\operatorname{Sym}^2(\mathbb{C}^3)\otimes\mathbb{C}^{3*}$ est une sous-représentation de dimension 15. Montrons qu'elle est irréductible

$$e_1^2 \otimes e_3^* \in \text{Ker}\varphi(\varphi(e_2 \otimes e_3^*) = e_3^*(e)1 + e_3^*(e_1)e_1$$

$$2L_1 - L_3$$
 + $(L_2 - L_1)$ = $L_1 + L_2 - L_3$ = $-2L_3$

$$(2L_1 - L_3) + (L_3 - L_2) = 2L_1 - L_{-2} = 3L_1 + L_3$$

$$(2L_1 - L_3) + L_3 - L_1 = L_1$$

Dans $\operatorname{Sym}^2(\mathbb{C}^3) \otimes (\mathbb{C}^3)^*$

$$\dim(V_{L_1}=3)$$

engendré par $e_1^2 \otimes e_1^*, e_1 e_2 \otimes e_2^*, e_1 e_3 \otimes e_3^*$

Dans $\operatorname{Ker}(\varphi), \dim(V_{L_1}) = 2$

engendré par $e_1^2 \otimes e_1^* - 2e_1e_2 \otimes e_2^*$

$$e_1^2 \otimes e_1^* - 2e_1e_3 \otimes e_3^*$$

Montrons que V_{L_1} est engendré par $E_{3,2}E_{2,1}(e_1^2\otimes e_3^*)$ et $E_{2,1}E_{3,2}(e_1^2\otimes e_3^*)$

$$E_{32}E_{21}\left(e_1^2 \otimes e_3^*\right) = E_{32}\left((2e_1e_3) \otimes e_3^* + e_1^2 \otimes (-0)\right)$$
$$= E_{32}\left(2e_1e_2 \otimes e_3^*\right)$$

$$= 2(e_1e_3 \otimes e_3^* + e_1e_2 \otimes e_2^*)$$

$$E_{21}E_{32} (e_1^2 \otimes e_3^*)$$

$$= E_{21}le_0 - e_1^2 \otimes e_2^*$$

$$= -e_{21} (e_1^2 \otimes e_2^*)$$

$$= -2e_1e_2 \otimes e_2^* - e - 1^2 - e_1^2 \otimes e_1^*$$

Plus généralement

$$\operatorname{Sym}^a(\mathbb{C}^3) \otimes \operatorname{Sym}^b \mathbb{C}^{3*}$$

a une sous-représentation irréductible de plus haut poids $aL_1 - bL_3$ On peut décrire la décrire comme le noyaux du morphimse

$$\varphi: \operatorname{Sym}^a \mathbb{C}^3 \otimes \operatorname{Sym}^b \to \operatorname{Sym}^{a-1} \mathbb{C}^3 \otimes \operatorname{Sym}^{b-1}$$

2024-03-18

Rappels

Les représentation irréductibles de $\mathfrak{sl}(3\mathbb{C})$ sont en bijection avec $\{(a,b)>a,b\leq 0 \text{ entiers}\}$

$$\rightarrow \Gamma_{a}$$

dont le plus haut poids et $aL_1 - bL_3$

$$\Gamma_{a,b} \subseteq \operatorname{Sym}^a(\mathbb{C}^3) \otimes \operatorname{Sym}^b(\mathbb{C}^3)$$

$$\Gamma_{a,b} = \operatorname{Ker}(\varphi)$$

$$\varphi: \operatorname{Sym}^{a}(\mathbb{C}^{3}) \otimes \operatorname{Sym}\mathbb{C}^{3*} \to \operatorname{Sym}^{a-1} \otimes \operatorname{Sym}^{b-1}$$

Recette pour analyser les représentation d'une algèbre de Lie semi-simple

Rappel

Simple : ad_X est irréductible \iff pas d'idéal non-trivial

Semi-simple : Somme direct d'algèbre simple

Étape 1 : Identifier une sous algèbre $h \subseteq g$ abélienne diagonalisable maximale. On appelle h une sous-algèbre de Cartan

On a vu que si un algèbre est diagonalisable dans une représentation, elle l'est dans toutes les représentations. Une algèbre diagonalisable est une algèbre qu'on peut montrer diagonalisable dans au moins une représentation.

Attention

Ex :

$$\square(3,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

h n'est pas nécessairement diagonale

truc : choisir une base jacobienne Dans une base t.q. la forme bilinéaire est donnée par la matrice J

$$\begin{pmatrix} & 1 \\ 1 & \\ 1 & \end{pmatrix}$$
, $\square(3\mathbb{C})$ est donné par $X^tJ+JX=0$

. . .

$$\Box(3,\mathbb{C}) = \left\{ \begin{pmatrix} a & b & 0 \\ c & 0 & -b \\ 0 & -c & -a \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

ici, on peut prendre $h \in \left\{ \begin{pmatrix} a & & \\ & & \\ & & -a \end{pmatrix} \right\}$

Étape 2 : Décomposer g selon les poids (racines) de sa représentation adjointe

$$g = h \oplus \left(\bigoplus_{\alpha \in R} g_{\alpha}\right)$$

où $R \subseteq h^*$ est t.q. $g_{\alpha} \neq \{0\}$

$$g_{\alpha} = \{X \in g | \operatorname{ad}(H)X = \alpha(H)X \forall H \in h\} = \{X \in g | [H, X] = \alpha(H)X \forall H \in h\}$$

Faits:

- i) $\dim(g_{\alpha}) = 1 \forall \alpha \in R$
- ii) R engendre un réseau $\Lambda_R \subseteq h^*$ de rand égal à $\dim(h^*)$
- iii) $R = -R(\text{Si } \alpha \text{ est une racine } -\alpha \text{ l'est aussi})$ Une représentation V va se décompose en $V = \oplus V_{\alpha}, \alpha \in h^*$ Les vecteurs de racines, $X \in g_x$ agissent par translation sur les V_{β}

$$X: V_{\beta} \to V_{\alpha+\beta}$$

Si V est irréductible, tout les poids sont congrus modulo Λ_R

Étape 3: Pour chaque raine, on va identifier une sous-algèbre $\mathfrak{s}_{\alpha} \subseteq \mathfrak{g}$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

on sait que $[g_{\alpha}, g_{-\alpha}] \subseteq h$

en fait $\mathfrak{s}_{\alpha} = g_{\alpha} \oplus g_{-\alpha} \oplus [g_{\alpha}, g_{-\alpha}]$ est aussi un sous-algèbre de g isomorphe à sl $(2\mathbb{C})$

On trouve $X_{\alpha} \in g_{\alpha}$, $Y_{\alpha} \in g_{-\alpha}$ t.q. $H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$

on a
$$[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}$$
 on a $[H_{\alpha}, Y_{\alpha}] = 2Y_{\alpha}$

Toujours possible car

- i) $[g_{\alpha}, g_{-\alpha}] \neq 0$
- ii) $[[g_{\alpha}, g_{-\alpha}], g_{\alpha} \neq 0$

Étape 4 : Utiliser l'intégralité des valeurs propres de H_{α}

Pour tout poids β d'une représentation de g

$$\beta(H_{\alpha}) \in \mathbb{Z}$$

On définit une autre réseau, (le réseau des poids) $\Lambda_W = \{\beta \in h^* | \beta(H_\alpha) \in \mathbb{Z}, \forall \alpha \in R\}$

Si
$$\beta_1, \beta_2 \in \Lambda_W$$
 dans $(\beta_1 + \beta_2)(H_\alpha) = \beta(H_\alpha) + \beta_2(H_\alpha) \in \mathbb{Z} \implies \beta_1 + \beta_2 \in \Lambda_W$

et
$$-\beta_1(H_\alpha) \in \mathbb{Z} \to -? \in \Lambda_W$$

En fait, $\Lambda_R \subseteq \Lambda_W$

Étape 5 : Usilser la symétrie par rapport à 0 des v.p. de H_{α}

On introduit une <u>réflexion</u> pour chaque $\alpha \in R$, noté $W_{\alpha}, W_{\alpha}: h^* \to h^*$

$$W_{\alpha}(\beta) = \beta - \beta (H_{\alpha})_{\alpha}$$

$$\mathscr{W} = \langle W_{\alpha} \rangle$$

groupe engendré par les W_α qui s'appelle Groupe de Weyl

Pour une representation $V=\oplus V_{\beta}$ on peut regrouper les V_{β} en classes modulo α

$$V = \oplus V_{[\beta]}$$

où
$$V_{[\beta]} = \bigoplus_{n \in \mathbb{Z}} V_{\alpha + n\beta}$$

les poids dans $V_{[\beta]}$ sont $\beta, \beta + \alpha, \beta + 2\alpha, \dots, \beta + n\alpha$ où $n = -\beta(H_{\alpha})$

Conclusion

l'ensemble des poids V est \mathcal{W} -invarient

Étape 6 : Faire un dessin

Il existe un produit bilinéaire sur \mathfrak{g} appelé <u>forme de Killing</u> qui est définit positif sur le sous-espace réel engendré par les H_{α}

donne un produit scalaire sur le sous-espace réel engendré par R dans h^* . Pour ce produit , W_{α} est une <u>réflexion euclidienne</u>

Étape 7 : Choisir une direction dans h^* . C'est-à-dire une forme linéaire l sur h^*

$$l: h^* \to \mathbb{R}t.q.L(\alpha) \neq 0si\alpha \in R$$

On décompose $R = R^+ \cup R^-$ en racine positives et négatives

On dit que $v \in V$ est un vecteur de plus haut poids pour g si $Xv = 0 \forall X \in g_{\alpha}, \alpha \in R^+$

Proposition:

- (i) Toute représentation de g possède un vecteur de plus haut poids
- (ii) V et toutes ses images obtenus en itérants des applications de X_{α} , $\alpha \in \mathbb{R}^-$ engendre une sous-représentation $W \subseteq V$ irréductible
- (iii) Tout représentation irréductible admet un unique vecteur de plus haut poids (à scalaire près)

Manque de Batterie!

2024-03-21

Rappels

 $h \subseteq g$: sous algèbre de Cartan

$$g = h \bigoplus_{\alpha \in R} g_{\alpha} \quad R \subseteq h^*$$

$$\mathfrak{s}_{\alpha} = \left\langle \underbrace{X_{\alpha}}_{\in q_{\alpha}}, \underbrace{Y_{\alpha}}_{\in q_{-\alpha}}, \underbrace{H_{\alpha}}_{\in h} \right\rangle \cong \mathfrak{sl}(3, \mathbb{C})$$

V-représentation de $\mathfrak g$

$$V = \bigoplus V_{\alpha}$$

$$\Lambda_W = \{ \beta \in h^* | \beta(H_\alpha) \in \mathbb{Z} \forall \alpha \in R \}$$

$$\Lambda_R = \mathbb{Z}R \subseteq \Lambda_W$$

Réflexion dans une racine α

$$W_{\alpha}(\beta) = \beta - \beta(H_{\alpha})\alpha$$

$$\mathcal{W} = \langle W_{\alpha} \rangle_{\alpha \in R}$$
 groupe de Weyl

les poids de V sont stalbes par \mathscr{W}

On fixe $\ell: h^* \to \mathbb{R}$

. . .

Proposition:

- (i) Toute représentation a un vecteur de plus haut poids
- (ii) Les sous-espace $W\subseteq V$ engendré par V et applications successive de $\{X_\alpha\}_{\alpha\in R^-}$ et une sous représentation irréductible
- (iii) Toute représentation irréductible admet une unique vecteur de plus haut poids

Démonstration:

(i) Soit α maximal parmis les $V_{\alpha} \neq \{0\}$ pour l'ordre partiel

$$\alpha > \beta$$

ssi $\ell(\alpha) > \ell(\alpha)$ et soit $v \in V_{\alpha}$

S'il existe $X \in \mathfrak{g}_{\beta}$ avec $\beta \in R^+$ et $X \cdot v \neq 0$ alors $X \cdot \in V_{\alpha+\beta}$ et $\ell(\alpha+\beta) = \ell(\alpha) + \ell(\beta) > \ell(\alpha)$ considérant la maximalité

Parmis les racines de R^+ on dit que $\alpha \in R^+$ est une racine simple s'il n'existe pas de $\beta_1, \beta_2 \in R^+$ t.q. $\alpha = \beta_1 + \beta_2$

<u>Lemme</u>: Si α, β sont simples alors $\alpha - \beta$ et $\beta - \alpha$ ne sont pas des racines

Figure 1 – Resaux

<u>Dém :</u>

(ii) W est aussi engendré par V et ses images successives par $\{X_{-\alpha}\}_{\alpha \in S}, S \subseteq R^+$: racins simples - W est stable par $\{X_{\alpha}\}_{\alpha \in R^-}$ - W est stable par $H \in \mathcal{H}$

Reste à montrer que W est stable par $\{X_{\alpha}\}_{{\alpha}\in S}$

 $W_n \subseteq W$ sous-espace où on applique des monts de longeure $\leq n$

Par récurence on montre que $X_{\alpha}W_{n}\subseteq W_{n}$ $\alpha\in S$

Soit $u \in W_n$ un générateur

$$\implies u = X_{\beta}u' \quad \text{où} \quad u' \in W_{n-1}$$
$$-\beta \in S$$

Soit

$$X_{\alpha}$$
 pour $\alpha \in S$

Alors
$$X_{\alpha}u = X_{\alpha}X_{\beta}u' = (X_{\beta}X_{\alpha} + [X_{\alpha}, X_{\beta}])u'$$

$$= X_{\beta}X_{\alpha}u' + [X_{\alpha}, X_{\beta}]u'$$

Étape 8:

Classifier les représentations irréductibles

Dans le sous-espace réal de h^* engendré par R, on note $\mathcal{C} = \{\beta | \beta(H_{\alpha}) \geq 0 \forall \alpha \in R\}$

On appelle cela une chambre de Weyl

$\underline{\text{Th\'eor\`eme}}$:

Pour tout poids $\alpha in \mathcal{C} \cap \Lambda_W$ il existe une unique représentation irréductible de \mathfrak{g} ayant α comme plus haut poids.

On obtiens une bijections entre les représentations irréductible de \mathfrak{g} et $\mathcal{C} \cap \Lambda_W$

<u>Démonstration</u>: ON démontre l'unicité seulement

Soient U, V deux représentation irréductible ayant α comme plus haut poids. Soient $u \in U_{\alpha}$, $v \in V_{\alpha}$ comme plus haut poids. Alors $(u, v) \in U \oplus V$ est une vecteur de plus haut poids α dans $U \oplus V$

 $\implies (u, v)$ engendre une sous-espace

$$W \subseteq U \otimes W$$

irréductible

$$\pi_u:W\to u$$

$$\pi_v:W\to v$$

sont des isomorphismes de représentation (par le lemme de Shur)

$$\implies U \cong V$$

La forme de Killing

On définit $B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$

Par la formule $B(x,y) = \operatorname{tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$

Observation:

$$X \in \mathfrak{g}_{\alpha}, Y \in g_{\beta}$$

avec
$$\beta \neq \pm \alpha$$

Alors, pour tout $Z \in g_{\gamma}$

on a $(adX \circ adY)(Z)$

$$= [X, [Y, Z] \in g_{\gamma + \alpha + \beta} \neq g_{\gamma}]$$

En particuleier [X,[Y,Z]]n'as pas de composante en Z

$$\implies B(X,Y) = 0$$

Autrement dit $g_{\alpha} \perp g_{\beta}$ si $\beta \neq -\alpha$

La décomposition $g = h \oplus \left(\bigoplus_{\alpha \in R^+} (g_\alpha \oplus g_{-\alpha})\right)$

est orthogonale pour B

Si $X, Y \in h$ alors $Z \in \mathfrak{g}_{\alpha}$

$$(\operatorname{ad} X \circ \operatorname{ad} Y)(Z) = [X, [Y, Z]] = \alpha(Y)[X, Z] = \alpha(X)\alpha(Y)Z$$

$$\implies \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y) = \sum_{\alpha \in R} \alpha(X)\alpha(Y)$$

sur le sous-esapce réel engendré par les H_α

B est définie positive

$$B(H_{\alpha}, H_{\beta}) = \underbrace{\sum_{\gamma \in R} \gamma(H_{\alpha}) \gamma(H_{\beta})}_{\in \mathbb{Z}}$$

si
$$H \in \mathbb{R} \langle H_{\alpha} \rangle_{\alpha \in R}$$

alors
$$B(H,H) = \sum_{\alpha \in R} \alpha(H)^2 \ge 0$$

$$\operatorname{si} B(H,H) = 0$$

$$\alpha(H) = 0 \forall \alpha \in R$$

$$H = 0$$

car R engendre h^*

Porp : B([X, Y], Z) = B(X, [Y, Z])

 $\underline{\text{D\'emonstration}}$:

. .

Proposition : si g est simple alors B est non dégénéré

(rappel : B est dégénérée si $Ker(B) \neq \{0\}$ $\operatorname{Ker}(B) = \{X \in g | B(x,y) = 0 \forall y \in g\}$

<u>Démonstration</u> : Supposons qu'il existe $X \in \mathcal{B}, X \neq 0$

Alorsm pour tout Y et tout $Z \in g$

$$B([X,Y],Z) = B(X,[Y,Z]) = 0$$

$$\implies [X,Y] \in \ker B$$

$$\implies B \subseteq g$$

est un ideal

2024-03-25

Rappel

Forme de Killing

$$B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$$

$$(X,Y) \mapsto \operatorname{tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y))$$

Porpriétés : α, β avec $\beta \neq \alpha$ alors si $X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{\beta}, B(X,Y) = 0$ (autrment dit, si $\beta \neq \alpha$ $\mathfrak{g}_{\alpha} \perp g_{-\alpha}$ cas spéciaux

- 1. si $\alpha = 0$, $\beta \neq 0$ $\mathfrak{g}_0 \perp \mathfrak{g}_\beta$
- 2. si $\alpha = \beta \neq 0$, \mathfrak{g}_{α} est isotrope $(\mathfrak{g}_{\alpha} \perp \mathfrak{g}_{\alpha})$

Si on restreint à \mathfrak{h} $(X, Y \in \mathfrak{h})$

 $B(X,Y) = \sum_{\alpha \in R} \alpha(X) \alpha(Y)$ \Longrightarrow sur $\mathbbm{R} \left< H_{\alpha} \right>, \ B$ est défini positive (non-dégénéré)

Rappel d'algèbre linéaire

V espace vectoriel, b forme bilinéaire symétrique

$$\varphi_b:V\to V^*$$

$$v \mapsto b(v, -)$$

best non dégénéré $\iff \varphi_b$ est un isomorphisme

On définit la forme bilinéaire duale de b, b^* donné parameters

$$b^*(\alpha, \beta) = b(\varphi_h^{-1}(\alpha), \varphi_h^{-1}(\beta))$$

Autrement dit, si $\alpha = \beta(u, -), \beta = b(v, -)$ alors $b^*(\alpha, \beta) = b(u, v) = \alpha(v) = \beta(u)$

Proposition : Si $\alpha(H) = 0 \ (\alpha \in R)$ alors $B(H, H_{\alpha}) = 0$

Autrement dit $H_{\alpha}^{\perp} = \operatorname{Ker}(\alpha)$

Démonstration :

$$H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$$

Supposons $\alpha(H) = 0$

$$B(H, H_{\alpha}) = B(H, [X_{\alpha}, Y_{\alpha}] = B([H, X_{\alpha}], Y_{\alpha}) = \alpha(H)B(X_{\alpha}, Y_{\alpha}) = 0$$

Corollaire:

Une racine $\alpha \in R$ est orhtogonale à l'hyperplan

$$\Omega_{\alpha} = \{ \beta \in h^* | \beta(H_{\alpha}) = 0 \}$$

Démonstration. Soit $\beta \in \Omega_{\alpha}$

$$\implies \beta(H_{\alpha}) = 0$$

$$\exists X, Y \in \mathfrak{h} \text{ t.q. } \alpha = B(X, -), \ \beta = B(Y, -)$$

 $0 = \beta(H_{\alpha}) = B(Y, H_{\alpha})$

$$Y \in H_{\alpha}^{\perp}$$

$$\alpha(Y) = 0 = B(X, Y) = B(\alpha, \beta)$$

Proposition:

$$\varphi_B^{-1}(\alpha) = \frac{2}{B(H_\alpha, H_\alpha)} H_\alpha$$

$$\varphi_B(H_\alpha) = \frac{2}{B(\alpha, \alpha)} \alpha$$

où $\varphi_{\beta}(H) = B(H, -)$

 $\underline{\text{D\'emonstration}}: \text{Par d\'efinition, si } \varphi_B^{-1}(\alpha) = T_\alpha$

$$B(T_{\alpha}, -) = \alpha(-)$$

n a $\forall H \in h$,

$$B(H_{\alpha},H) = B([X_{\alpha},Y_{\alpha}],H) = B(X_{\alpha},[Y_{\alpha},H] = B(X_{\alpha},-[H,Y_{\alpha}] = B(X_{\alpha},-(-\alpha(H))Y_{\alpha}) = \alpha(H)B(X_{\alpha},Y_{\alpha}) = \alpha(H)B(X_{\alpha},$$

De plus, $B(H_{\alpha}, H_{\alpha}) = \alpha(H_{\alpha})B(X_{\alpha}, Y_{\alpha}) = 2B(X_{\alpha}, Y_{\alpha})$

$$\implies B(H_\alpha,H) = \alpha(H) \frac{B(H_\alpha,H_\alpha)}{2}$$

$$\implies B\left(\frac{2}{B(H,H_{\alpha})}H_{\alpha},H\right)=\alpha(H)$$

$$\implies T_{\alpha} = \frac{2}{B(H_{\alpha}, H_{\alpha})}$$

2) exercice!

ON peut donc réécrire les générateurs du groupe de Weyl

$$W_{\alpha}(\beta) = \beta(H_{\alpha})\alpha = \beta - \beta(H_{\alpha})\alpha = \beta - 2\frac{B(\beta, \alpha)}{B(\alpha, \alpha)}\alpha$$

Réflexion dans l'hyperplan α^{\perp}

Exemple:

Calculons B sur $\mathfrak{sl}(2\mathbb{C})$

ad:
$$\mathfrak{sl}(2\mathbb{C}) \to \mathfrak{gl}(\mathbb{C}^3)$$

$$H \mapsto \begin{pmatrix} 0 & & \\ & 2 & \\ & & -2 \end{pmatrix}$$

$$X \mapsto \begin{pmatrix} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$Y \mapsto \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$

(dans la base H, X, Y)

$$B(H,H) = \operatorname{tr}\left(\begin{pmatrix} 0 & 2 & 2 \\ & 2 & -2 \end{pmatrix}^{2}\right) = 8$$

$$B(H,X) = \operatorname{tr}\left(\begin{pmatrix} 0 & 2 & 0 & 0 & 1 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\right) = \operatorname{tr}\left(\begin{pmatrix} 0 & 0 & 1 \\ -4 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\right) = 0$$

$$B(X,X) = B(Y,Y) = 0$$

$$B(X,Y) = \operatorname{tr}\left(\begin{pmatrix} 2 & \cdots & \cdots \\ \cdots & 2 & \cdots \\ \cdots & 2 & \cdots \\ \cdots & \cdots & 0 \end{pmatrix}\right) = 4$$

$$B = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

 $B \operatorname{sur} \mathfrak{h} \subseteq \mathfrak{sl}(3,\mathbb{C})$

$$H_1 = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

$$B(H_1, H_1) = \sum_{\alpha \in R} \alpha(H_1)^2 = 2^2 + 1^2 + (-1)^2 = 12$$

$$B(H_1, H_2) = \sum_{\alpha \in R} \alpha(H_1)\alpha(H_2) = 2\left[2 \cdot -1 + 1 \cdot 1 + -1 \cdot 2\right] = 2 \cdot -3 = -6$$

$$B(H_2, H_2) = 12$$

$$B = \begin{pmatrix} 12 & -6 \\ -6 & 12 \end{pmatrix}$$

C'est une matrice définit positive

On peut alors vérifier que les racine sont orthogonale à leur plans de réflexion, $L_1 - L_2$ est la racine qui pointe vers le haut (comme on le dessine habituellement). En se fiant au dessin habituelle, cette racine devrait être orthogonale à L_1 .

Rappel d'algèbre linéaire

si b est donné par une matrice, $b(u, v) = u^t b v$

$$\varphi_b = V \mapsto V^*$$

$$V \mapsto kk$$

$$b(u, v) = u^t b v = b^*(\alpha^t b, v^t b) = u^t b(b^*) b^t v \implies b^t = (b^t)^{-1}$$

$$B^{-1} = \frac{1}{108} \begin{pmatrix} 12 & 6 \\ 6 & 12 \end{pmatrix}$$

La base duale de H_1, H_2 est $L_1, -L_3$ la matrice dans cette base est $\frac{1}{108}\begin{pmatrix} 12 & 6 \\ 6 & 12 \end{pmatrix}$

On calcule
$$B(L_1, L_2 - L_3) = B(L_1, -L_1 + 2(-L_3)) = \begin{pmatrix} 1 & 0 \end{pmatrix} \frac{1}{108} \begin{pmatrix} 12 & 6 \\ 6 & 12 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 0$$

jazz hands

On a également

$$B(L_2 - L_3, L_2 - L_3) = \frac{1}{108} \begin{pmatrix} -1 & 2 \end{pmatrix} \begin{pmatrix} 12 & 6 \\ 6 & 12 \end{pmatrix} = \frac{1}{108} \begin{pmatrix} 0 & 18 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{36}{108} = \frac{1}{3}$$

$$\implies ||L_2 - L_3|| = \frac{1}{\sqrt{3}}$$

Corollaire de

$$\beta(H_{\alpha}) = \frac{2B(\beta, \alpha)}{B(\alpha, \alpha)}$$

Si α, β deux racines alors

$$\frac{2B(\beta,\alpha)}{B(\alpha,\alpha)} \in Z$$

Classification des algèbres de Lie simples complexes

soit ${\mathfrak g}$ une algèbre de Lie semi-simple, ${\mathfrak h}\in{\mathfrak g}$ sous algèbre de Cartan.

Notons $\mathbb E$ le sous-espace euclidien de h^* engendré par R munie de B^* qui (dual de Killing) qu' on va noter $(\ ,\)$

$$B(\alpha, \beta) = (\alpha, \beta)$$

On

— R est finie et engendre $\mathbb E$

- ..

2024-03-28

Rappels

$$B(X,Y) = \operatorname{tr}(\operatorname{ad} X \cdot \operatorname{ad} Y)$$

- B est définit positive sur $\mathbb{R} \langle H_{\alpha} \rangle_{\alpha \in R} \subseteq h$
- B^* est définit positif sur $\mathbb{R} \langle \alpha \rangle_{\alpha \in R} \subseteq h^*$
- Pour toute paires de racines $\alpha, \beta \in \mathbb{R}$

$$\beta(H_{\alpha}) = \frac{2B(\alpha, \beta)}{\beta(\alpha, \alpha)}$$

Un système de racine abstrait est $R \subseteq \mathbb{E}$ satisfaisant :

 \mathbb{E} est l'espace vectoriel sur \mathbb{R} avec (,) comme produit scalaire

- 1. R est fini est engendre $\mathbb E$
- 2. $\alpha \in R \implies -\alpha \in R$ et aucun autre $n\alpha$ pour $n \neq \pm 1$ n'est dans R
- 3. $\forall \alpha \in R, W_{\alpha}(R) = R \text{ (si } \alpha, \beta \in R, W_{\alpha}(\beta) = \beta \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha \in R)$
- 4. $\forall \alpha, \beta \in R \ \frac{2(\alpha, \beta)}{(\alpha, \alpha)} n_{\beta\alpha} \in \mathbb{Z}$

La propriété 4 implique que

$$\mathbb{Z} \ni n_{\beta\alpha}n_{\beta\alpha} = \frac{4(\alpha,\beta)^2}{(\alpha,\alpha)(\beta,\beta)} = 4 \frac{\cos^2 \theta}{\cos^2 \theta}$$

$$\implies n_{\alpha,\beta}n_{\beta\alpha} \in \{0,1,2,3,4\}$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=4$$

$$\cos^2 \theta = 1 \implies \alpha = \pm \beta$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=3$$

$$n_{\alpha\beta} = 3$$
 $n_{\beta\alpha} = \pm 1$ $\theta \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$

si
$$n_{\alpha\beta}n_{\beta\alpha}=2$$

$$\cos^2 \theta = \frac{1}{2} \implies \theta \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\} \quad \|\alpha\| = \sqrt{2} \|\beta\|$$

si
$$n_{\alpha\beta}m_{\beta\alpha}=1$$

$$\cos^2 \theta = \frac{1}{4} \implies \theta \in \left\{ \frac{\pi}{3}, \frac{2\pi}{3} \mid \alpha \mid = |\beta| \right\}$$

si
$$n_{\alpha\beta}n_{\beta\alpha}=0$$

 $\cos \theta = 0$ $\alpha \perp \beta$ pas de condition sur la longueur

<u>Corollaire</u>: Si l'angle entre α et β est aigu, alors $\alpha - \beta$ et $\beta - \alpha$ sont des racines

Démonstration :

 $W_{\beta}(\alpha) = \alpha - n_{\alpha\beta}\beta$, si $\angle \alpha, \beta$ est aigu alors $n_{\beta\alpha} = 1$

Sans perte de généralité, $W_{\beta}(\alpha) = \alpha - \beta \in R \implies \beta - \alpha \in R$

Fixons $h \in \mathbb{E}|(h,\alpha) \neq 0 \forall \alpha \in R$ et définissons $R^+ = \{\alpha \in R | (h,\alpha) > 0\}$ $R^- = \{\alpha \in R | (h,\alpha) < 0\} = -R^+$

<u>Définissons</u>: Une racine positive $\alpha \in \mathbb{R}^+$ est simples si elle ne s'écrit pas comme une somme de racines positives.

Figure 1 – Racines simples

Par le corollaire, l'angle entre 3 racines simples est obtus. Di α, β simples et $\alpha - \beta, \beta - \alpha \in R \implies \alpha = (\alpha - \beta) + \beta, \beta = \beta - \alpha + \alpha \not$

 $\underline{\text{D\'efinition}}$: Une configuration admissible est une ensemble de vecteur unitaires dans $\mathbb E$ tels que

- 1. tous les vecteurs sont dans un demi-espace ouvert $\{v > (v, h) > 0\}$
- 2. L'angle entre 2 vecteurs est une de $\frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6}$

Une configuration admissible est réductible si elle s'écrit comme une somme orthogonale de configurations admissibles.

Par ce qui précède, si R est un système de racines,

$$\{\frac{\alpha}{\|\alpha\|}|\alpha \text{ racine simple}\}$$

est une configuration admissible.

Proposition: Une configuration admissible est linéairement independente.

Démonstration:

Supposons que $\sum a_i v_i = 0$, a_i non tout nuls

$$\implies \sum_{i \in I} a_i v_i = \sum_{j \in J} a_j v_j \quad a_i, a_j > 0$$

mais $\left\|\sum a_i v_i\right\|^2 = \left(\sum a_i v_i, \sum a_j v_j\right) = \sum \sum a_i a_j (v_i, v_j) \le 0$

$$\implies \sum a_i v_i = 0 = \sum a_i v_i$$

mais $a_i > 0$ et v_i sont das un demi-espace 4

Conséquence :

Comme R engendre $\mathbb E$ pour un système de racine (par axiome) et toute paire s'écrit comme une combinaison linéaire de racines simples, les racines simples engendre $\mathbb E$

- \implies Les racines simples forment une base
- $\implies \#$ de racines = $\dim(h)$ pour $\mathfrak{h} \subseteq \mathfrak{g}$ sous algèbre de Cartan.

<u>Démonstration</u>: (du fait que toute racine s'écrit comme une combinaison linéaire de racine simples)

si α n'est pas simple, $\implies = \beta + \gamma$ avec $\beta, \gamma \in R^+ \implies (\alpha, h) = (\beta, h) + (\gamma, h)$

$$\implies (\beta, h) < (\alpha, h) \quad (\gamma, h) < (\alpha, h)$$

si β, γ sont simples, fini.

si β n'est pas simple $\beta = \beta_2 + \beta_3, \, \beta_2, \beta_3 \in \mathbb{R}^+$

Comme $\#R^+ < \infty$ cet algorithme se termine et donne $\alpha = \sum n_i \alpha_i$, α_i simples

<u>Définition</u>: Le <u>diagramme</u> de <u>Coxeter</u> d'une configuration admissible $\{V_i\}$ est le graph dont les sommets sont V_i et on a $4\cos^2(\angle(v_i,v_j))$ arêtes entre v_i,v_j .

$$v_i - v_j$$
 si $\angle v_i v_j = \frac{2\pi}{3}$
 $v_i = v_j$ si $\angle v_i v_j = \frac{3\pi}{4}$
 $v_i \equiv v_j$ si $\angle v_i v_j = \frac{5\pi}{6}$
 v_i v_j si $\angle v_i v_j = \frac{\pi}{2}$

Lemme : Le diagramme de Coxeter d<une configuration admissible est acyclique (sans compter la multiplicité des arrêtes)

Figure 2 – exemples de iagrammes de Coxeters

$\underline{\text{D\'{e}monstration}}:$

On prend le graph cyclique : $v_k - v_1 - v_2 - \cdots -$

$$\implies (v_i, v_{i+1}) \le \frac{-1}{2} \quad \text{pour} \quad i = 1, \dots k - 1$$

$$(v_i, v_k) \le \frac{-1}{2}$$

et
$$(v_i, v_j) \le 0 \forall i \ne j$$

$$\implies (\sum_{i=1}^{k} v_i, \sum_{i=1}^{k} v_i)$$

$$= \sum_{i=1}^{k-1} (v_i, v_i) + \sum_{i < j} 2(v_i, v_j)$$

$$= k + \sum_{i=1}^{k-1} 2(v_i, v_{i+1}) + 2(v_k, v_1) + \sum_{j \neq i+1} 2(v_i v_j)$$

$$\leq k + (-k) + 0$$

$$\implies \sum_{i=1}^{k} v_i = 0$$

C'est une 4a l'independence linéaire

Lemme : Le degré d'une sommet est au plus 3 (avec multiplicité)

 $\underline{\text{D\'emonstration}}: \text{On consid\`ere le graph \'etoile avec}\ v_0$ au centre et k branches

Du lemme precedent, $v_i \perp v_j \forall 1 \leq j \neq j \leq k$

 $\implies v_1, \cdots, v_k$ sont orhonormés

$$\sum_{i=1}^{k} (v_0, v_i)^2 < |v_0|^2 = 1$$

(Inégalité de Bessel)

$$(v_0, v_i)^2 = \frac{m_i}{4}$$

où m_i est le nombre de d'arrêtes entre v_0 et v_i

$$\implies \sum_{i=1}^{k} m_i < 4 = \text{ degr\'e de } v_0$$