Correction du DST nº 3

Exercice 1 : puissances de matrices et chaîne de Markov

On considère les matrices
$$N = \begin{pmatrix} 7 & 2 & 1 \\ 3 & 6 & 1 \\ 9 & 6 & 7 \end{pmatrix}, \ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \text{et } M = \frac{1}{20}N.$$

On pose : A = N - 4I et B = N - 12I.

 $\textbf{1.} \ \ (\textit{V\'erifier que } AB = BA = 0. \ \textit{En d\'eduire que } : NA = 12A \ \textit{et que } NB = 4B.)$

On trouve
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 9 & 6 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} -5 & 2 & 1 \\ 3 & -6 & 1 \\ 9 & 6 & -5 \end{pmatrix}$, et on vérifie que $AB = BA = 0$.

On a donc $NA = (B + 12I) \cdot A = \underbrace{BA}_{=0} + 12A = 12A$.

De même $NB = (B + 4I) \cdot B = \underbrace{AB}_{=0} + 4B = 12B$.

- **2.** a) (Vérifier qu'on a $I = \frac{1}{8}A \frac{1}{8}B$.) On a bien A - B = (N - 4I) - (N - 12I) = 8I, soit $I = \frac{1}{8}A - \frac{1}{8}B$.
 - **b)** (Montrer par récurrence que $\forall n \in \mathbb{N}$, on $a: N^n = a_n A + b_n B$, $avec \begin{cases} a_{n+1} = 12a_n \\ b_{n+1} = 4b_n \end{cases}$
 - ▶ Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $\exists a_n, b_n \in \mathbb{R}$, tels que : $N^n = a_n A + b_n B$ (H_n)

- Initialisation On a bien : $I = N^0 = \underbrace{\frac{1}{8}}_{=a_0} A \underbrace{-\frac{1}{8}}_{=b_0} B.$ (H₀)
- ▶ **Hérédité** Soit $n \ge 1$ un entier. On suppose (H_n) soit : $\exists a_n, b_n \in \mathbb{R}$, tels que : $N^n = a_n A + b_n B$ soit (H_{n+1}) .
- Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée n=0 et 1

• héréditaire pour $n \ge 1$.

Ainsi pour tout $n \in \mathbb{N}$, il existe bien $a_n, b_n \in \mathbb{R}$ tels que $N^n = a_n A + b_n B(H_n)$ avec de plus $\begin{cases} a_{n+1} = 12a_n \\ b_{n+1} = 4b_n. \end{cases}$

c) (Déterminer, pour $n \in \mathbb{N}$, les expressions de a_n et de b_n en fonction de n.) Les deux suites (a_n) et (b_n) sont géométriques de raisons respectives 12 et 4, et de premier termes respectifs $\frac{1}{8}$ et $-\frac{1}{8}$.

Ainsi, $\forall n \in \mathbb{N} : \begin{cases} a_n = \frac{12^n}{8} \\ b_n = -\frac{4^n}{8} \end{cases}$

d) (Montrer que $\forall n \in \mathbb{N}$, on $a: M^n = \frac{1}{8} \left(\frac{3}{5}\right)^n A - \frac{1}{8} \left(\frac{1}{5}\right)^n B$.) On a $M = \frac{1}{20}N$, donc $\forall n \in \mathbb{N}$, on obtient $M^n = \frac{1}{20^n} \left(\frac{12^n}{8}A - \frac{4^n}{8}B\right) = \frac{1}{8} \left[\left(\frac{12}{20}\right)^n A - \left(\frac{4}{20}\right)^n B\right]$, soit en effet : $M^n = \frac{1}{8} \left(\frac{3}{5}\right)^n A - \frac{1}{8} \left(\frac{1}{5}\right)^n B$. 3. Un particulier a acheté une poule. Chaque semaine, la poule pond entre 0 et 3 œufs. Si une semaine donnée, la poule ne pond pas d'œuf, son propriétaire décide de la manger à la fin de la semaine (elle ne pondra donc plus d'œufs les semaines suivantes).

On note pour tout entier n non nul, les événements suivants :

- $ightharpoonup U_n$: « la poule est vivante lors de la n-ème semaine et pond un œuf »,
- D_n : « la poule est vivante lors de la n-ème semaine et pond deux œufs »,
- $rac{1}{2}$ T_n: « la poule est vivante lors de la *n*-ème semaine et pond trois œufs ». On note u_n , d_n et t_n leurs probabilités respectives.
 - a) (Que représente le nombre $1 (u_n + d_n + t_n)$?) Les événements U_n , D_n , T_n sont incompatibles, donc $u_n + d_n + t_n = \mathbb{P}(U_n) + \mathbb{P}(D_n) + \mathbb{P}(T_n) = \mathbb{P}(U_n \cup D_n \cup T_n)$.

Ainsi $1 - (u_n + d_n + t_n)$ est la probabilité du complémentaire $\overline{U_n \cup D_n \cup T_n}$. C'est donc la probabilité que la poule ne ponde aucun œuf à la semaine n.

Pour $n \in \mathbb{N}$, on note X_n le vecteur-colonne $\begin{pmatrix} u_n \\ d_n \\ t_n \end{pmatrix}$.

On suppose que la première semaine la poule pond un œuf.

b) (Expliciter le vecteur X_1 .)

On a $X_1 = \begin{pmatrix} u_1 \\ d_1 \\ t_1 \end{pmatrix}$. D'après l'énoncé, la première semaine, la poule pond un œuf, donc

l'événement U_1 est certain. Par conséquent $u_1 = 1$ et $X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

On suppose que pour tout entier n non nul, on a :

$$\begin{cases} u_{n+1} = \frac{7}{20}u_n + \frac{1}{10}d_n + \frac{1}{20}t_n \\ d_{n+1} = \frac{3}{20}u_n + \frac{3}{10}d_n + \frac{1}{20}t_n \\ t_{n+1} = \frac{9}{20}u_n + \frac{3}{10}d_n + \frac{7}{20}t_n \end{cases}$$

c) (Justifier que : $X_{n+1} = MX_n$, pour tout entier $n \ge 1$.) Le système ci-dessus s'écrit aussi sous forme matricielle :

$$\begin{pmatrix} u_{n+1} \\ d_{n+1} \\ t_{n+1} \end{pmatrix} = \begin{bmatrix} \frac{7}{20} & \frac{1}{10} & \frac{1}{20} \\ \frac{3}{20} & \frac{3}{10} & \frac{1}{20} \\ \frac{9}{20} & \frac{3}{10} & \frac{7}{20} \end{bmatrix} \cdot \begin{pmatrix} u_n \\ d_n \\ t_n \end{pmatrix}$$

c'est-à-dire $X_{n+1} = M \cdot X_n$.

d) (Montrer que : $X_n = M^{n-1}X_1$, pour tout entier $n \ge 1$.)

On démontre par une récurrence immédiate cette formule.

On peut aussi invoquer le caractère « géométrique de raison M » de la suite (X_n) , et la formule associée pour le terme général : $\forall n \in \mathbb{N}, \quad X_n = M^{n-1}X_1$,

e) (En déduire que pour tout $n \ge 1$ (... formules)) On a trouvé ci-dessus

$$M^{n-1} = \frac{1}{8} \left(\frac{3}{5}\right)^{n-1} A - \frac{1}{8} \left(\frac{1}{5}\right)^{n-1} B = \frac{1}{8} \left[\left(\frac{3}{5}\right)^{n-1} \begin{pmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \\ 9 & 6 & 3 \end{pmatrix} - \left(\frac{1}{5}\right)^{n-1} \begin{pmatrix} -5 & 2 & 1 \\ 3 & -6 & 1 \\ 9 & 6 & -5 \end{pmatrix} \right].$$

On applique à
$$X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 avec $A \cdot X_1 = \begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix}$ et $B \cdot X_1 = \begin{pmatrix} -5 \\ 3 \\ 9 \end{pmatrix}$.

 $(comme \ X_1 = \vec{e}_1, \ premier \ vecteur \ colonne \ de \ chaque \ matrice)$

Il vient alors bien, sur chaque composante de X_n : $\begin{cases} u_n = \frac{3}{8} \left(\frac{3}{5}\right)^{n-1} + \frac{5}{8} \left(\frac{1}{5}\right)^{n-1} \\ d_n = \frac{3}{8} \left(\frac{3}{5}\right)^{n-1} - \frac{3}{8} \left(\frac{1}{5}\right)^{n-1} \\ t_n = \frac{9}{8} \left(\frac{3}{5}\right)^{n-1} - \frac{9}{8} \left(\frac{1}{5}\right)^{n-1} \end{cases}$

f) (Vérifier que pour tout entier $n \ge 1$ on $a: u_n + 2d_n + 3t_n = \frac{9}{2} \left(\frac{3}{5}\right)^{n-1} - \frac{7}{2} \left(\frac{1}{5}\right)^{n-1}$. Que représente ce nombre?)

On a en effet:

$$u_n + 2d_n + 3t_n = \frac{3}{8} \left(\frac{3}{5}\right)^{n-1} + \frac{5}{8} \left(\frac{1}{5}\right)^{n-1} + 2\left[\frac{3}{8} \left(\frac{3}{5}\right)^{n-1} + \frac{3}{8} \left(\frac{1}{5}\right)^{n-1}\right] + 3\left[\frac{9}{8} \left(\frac{3}{5}\right)^{n-1} + \frac{9}{8} \left(\frac{1}{5}\right)^{n-1}\right]$$

$$= \frac{3 + 2 \times 3 + 3 \times 9}{8} \cdot \left(\frac{3}{5}\right)^{n-1} + \frac{5 - 2 \times 3 - 3 \times 9}{8} \cdot \left(\frac{1}{5}\right)^{n-1}.$$

$$= \frac{9}{2} \cdot \left(\frac{3}{5}\right)^{n-1} - \frac{7}{2} \cdot \left(\frac{1}{5}\right)^{n-1}.$$

Ce nombre est la somme des nombres d'œufs possibles (1, 2, 3), pondérée par les probabilités.

C'est donc l'espérance du nombre d'œufs pondus par la poule au cours de la $n^{\text{\`e}me}$ semaine

g) (Montrer que la série $\sum_{n=1}^{+\infty} (u_n + 2d_n + 3t_n)$ converge et calculer sa valeur. Que représente ce nombre?)

Les séries géométriques $\sum_{n\geqslant 1} \frac{9}{2} \cdot \left(\frac{3}{5}\right)^{n-1}$ et $\sum_{n\geqslant 1} \frac{7}{2} \cdot \left(\frac{1}{5}\right)^{n-1}$. sont convergentes car leurs raisons sont $\in]-1;1[$.

On trouve
$$\sum_{n=1}^{+\infty} \frac{9}{2} \cdot \left(\frac{3}{5}\right)^{n-1} = \frac{9}{2} \frac{1}{1 - \frac{3}{5}} = \frac{9}{2} \cdot \frac{5}{2} = \frac{45}{4} \text{ et } \sum_{n=1}^{+\infty} \frac{7}{2} \cdot \left(\frac{1}{5}\right)^{n-1} = \frac{7}{2} \cdot \frac{1}{1 - \frac{1}{5}} = \frac{7}{2} \cdot \frac{5}{4} = \frac{35}{8}.$$

Ainsi
$$\sum_{n=1}^{+\infty} (u_n + 2d_n + 3t_n)$$
 converge et vaut $\frac{45}{4} - \frac{35}{8} = \frac{90 - 35}{8} = \frac{55}{8} = 7 - \frac{1}{8} = 6,875$

C'est l'espérance du nombre d'œufs que pondra la poule avant de passer à la casserole.

Exercice 2 : une suite d'intégrales

Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\frac{1}{2}} \frac{x^n}{1-x^2} dx$, et donc en particulier, on a $u_0 = \int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx$.

- 1. Calcul de u_0 .
 - a) (Trouver les deux réels $a,b \in \mathbb{R}$ tels que $\forall x \neq \pm 1$, on ait : $\frac{1}{1-x^2} = \frac{a}{1-x} + \frac{b}{1+x}.$)
 Pour $x \neq \pm 1$, on réduit au même dénominateur : $\frac{a}{1-x} + \frac{b}{1+x} = \frac{a(1+x)+b(1-x)}{(1-x)(1+x)} = \frac{a+b+(a-b)x}{1-x^2},$ et on identifie les coefficients du numérateur avec ceux de $\frac{1}{1-x^2}.$ Il vient : $\begin{cases} a+b=1 \iff a=b=\frac{1}{2}, \text{ soit : } \frac{1}{1-x^2} = \frac{1}{2} \left[\frac{1}{1-x} + \frac{1}{1+x} \right] \text{ (décomposition en él}^{ts} \\ a-b=0 \end{cases}$ simples) .
 - **b)** (Montrer que : $\int_0^{\frac{1}{2}} \frac{dx}{1+x} = \ln\left(\frac{3}{2}\right)$ et $\int_0^{\frac{1}{2}} \frac{dx}{1-x} = \ln(2)$.)

 On calcule ces intégrales en primitivant : $\int_0^{\frac{1}{2}} \frac{dx}{1+x} = \left[\ln(1+x)\right]_0^{\frac{1}{2}} = \ln\left(\frac{3}{2}\right)$ et $\int_0^{\frac{1}{2}} \frac{dx}{1-x} = \left[-\ln(1-x)\right]_0^{\frac{1}{2}} = -\ln\left(\frac{1}{2}\right) = \ln(2)$.
 - c) (En déduire $u_0 = \frac{\ln(3)}{2}$.) Par la décomposition trouvée pour $\frac{1}{1-x^2}$, et linéarité, il vient :

$$u_0 = \frac{1}{2} \left[\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{1-x} + \int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{1+x} \right] = \frac{1}{2} \left[\ln\left(\frac{3}{2}\right) + \ln(2) \right] = \frac{\ln(3)}{2}.$$

On considère les trois fonctions f,g et h définies sur $\left[0\,;\frac{1}{2}\right]$ par $f(x)=\ln(1-x),$ $g(x)=\ln(1+x),$ $h(x)=\ln(1-x^2).$

2. a) (Montrer que les fonctions f, g, h sont de classe C^1 sur $[0; \frac{1}{2}]$.)

Les fonctions suivantes sont polynomiales sur $[0; \frac{1}{2}]$, donc de classe $C^{\infty} : *x \mapsto (1-x)$, $*x \mapsto (1-x^2)$

De plus, elles y sont > 0. Par composition avec la fonction ln qui est \mathcal{C}^{∞} , les fonction f, g, h sont de classe \mathcal{C}^{∞} , donc \mathcal{C}^1 sur $[0; \frac{1}{2}]$.

b) (Pour tout x de $[0; \frac{1}{2}]$, calculer les dérivées f'(x), g'(x) et h'(x).) Pour $x \in [0; \frac{1}{2}]$, on a

$$f(x) = \ln(1-x),$$
 $g(x) = \ln(1+x),$ $h(x) = \ln(1-x^2),$ d'où $f'(x) = -\frac{1}{1-x},$ $g'(x) = \frac{1}{1+x},$ $h'(x) = -\frac{2x}{1-x^2}.$

c) (Pour tout x de $[0; \frac{1}{2}]$, exprimer h(x) en fonction de f(x) et g(x).) Pour $x \in [0; \frac{1}{2}]$, on $a : h(x) = \ln(1 - x^2) = \ln\left[(1 - x)(1 + x)\right] = \ln(1 - x) + \ln(1 + x)$. Ainsi la relation cherchée est : h(x) = f(x) + g(x). **d)** (En déduire : $u_1 = \frac{1}{2} \ln \left(\frac{4}{3} \right)$.) On reconnaît :

$$u_1 = \int_0^{\frac{1}{2}} \underbrace{\frac{x}{1-x^2}}_{=-\frac{1}{2}h'(x)} dx = -\frac{1}{2} \left[h(x) \right]_0^{\frac{1}{2}} = -\frac{1}{2} \left[\ln \left(1 - \frac{1}{2} \right) + \ln \left(1 + \frac{1}{2} \right) \right] = -\frac{1}{2} \ln \left(\frac{1}{2} \times \frac{3}{2} \right).$$

Ainsi, on a bien : $u_1 = \frac{1}{2} \ln \left(\frac{4}{3} \right)$.

3. a) (Montrer, pour tout entier naturel n, l'égalité suivante : $u_n - u_{n+2} = \frac{1}{(n+1)2^{n+1}}$.)

Pour $n \in \mathbb{N}$, par linéarité, on a

$$u_n - u_{n+2} = \int_0^{\frac{1}{2}} \left(\frac{x^n}{1 - x^2} - \frac{x^{n+2}}{1 - x^2} \right) dx = \int_0^{\frac{1}{2}} \frac{x^n (1 - x^2)}{1 - x^2} dx = \int_0^{\frac{1}{2}} x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^{\frac{1}{2}}$$

d'où $u_n - u_{n+2} = \frac{1}{(n+1)2^{n+1}}$.

b) (En déduire les valeurs de u_2 et de u_3 .)
On a donc : $u_2 = u_0 + (u_2 - u_0) = \frac{\ln(3)}{2} + \frac{1}{2}$.

De même : $u_3 = u_1 + (u_3 - u_1) = \frac{1}{2} \ln\left(\frac{4}{3}\right) + \frac{1}{2 \times 2^2} = \frac{1}{2} \ln\left(\frac{4}{3}\right) + \frac{1}{8}$.

4. a) (Étudier le signe de u_n pour $n \in \mathbb{N}$.)

Pour $n \in \mathbb{N}$, on $a : u_n = \int_0^{\frac{1}{2}} \underbrace{\frac{x^n}{1-x^2}}_{\geq 0} dx$, donc $u_n \geqslant 0$.

b) (Montrer que $\forall n \in \mathbb{N}$, $u_n - u_{n+1} = \int_0^{\frac{1}{2}} \frac{x^n}{1+x} \, dx$.)

Pour $n \in \mathbb{N}$, par linéarité, on a : $u_n - u_{n+1} = \int_0^{\frac{1}{2}} \frac{x^n(1-x)}{1-x^2} \, dx$.

On simplifie $\frac{1-x}{1-x^2} = \frac{1-x}{(1-x)(1+x)} = \frac{1}{1+x}$, et il vient bien : $u_n - u_{n+1} = \int_0^{\frac{1}{2}} \frac{x^n}{1+x} \, dx$.

c) (En déduire le sens de variations de (u_n) .)

Pour $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = -\int_0^{\frac{1}{2}} \underbrace{\frac{x^n}{1+x}} \, \mathrm{d}x \leqslant 0$.

Ainsi la suite (u_n) est décroissante.

d) (En déduire que la suite (u_n) est convergente.)

La suite (u_n) est \rightarrow minorée par 0 \rightarrow décroissante.

Par le théorème de la limite monotone, la suite (u_n) converge vers un réel $\ell \geqslant 0$.

5. a) (Montrer que pour tout x de $[0; \frac{1}{2}]$, on $a: \frac{1}{1-x^2} \leqslant \frac{4}{3}$.) Pour $x \in [0; \frac{1}{2}]$, on a $0 \leqslant x^2 \leqslant \frac{1}{4}$, donc $0 < \frac{3}{4} \leqslant 1 - x^2 \leqslant 1$, donc $0 < \frac{1}{1-x^2} \leqslant \frac{4}{3}$. **b)** (En déduire, pour tout $n \in \mathbb{N}$, l'encadrement suivant : $0 \le u_n \le \frac{4}{3(n+1)2^{n+1}}$.)
On a donc, pour $n \in \mathbb{N}$:

$$u_n = \int_0^{\frac{1}{2}} \underbrace{\frac{x^n}{1 - x^2}}_{\leqslant \frac{4}{3} \cdot x^n} dx \leqslant \frac{4}{3} = \frac{4}{3} \int_0^{\frac{1}{2}} x^n dx = \frac{4}{3(n+1)2^{n+1}} = \frac{1}{3(n+1)2^{n-1}}.$$

c) (Quelle est la limite de la suite (u_n) ?) On a obtenu pour $n \in \mathbb{N}$, l'encadrement

$$0 \leqslant u_n \leqslant \frac{1}{3(n+1)2^{n-1}}.$$

Or $\lim_{n\to+\infty}\frac{1}{3(n+1)2^{n-1}}=0$, donc d'après le théorème de convergence par encadrement (des gendarmes), il vient : (u_n) converge (mais on le savait déjà!), et $\lim(u_n)=0$.

- **6.** On pose, pour tout entier naturel $n: S_n = \sum_{k=0}^n u_k$, c'est-à-dire, $S_n = u_0 + u_1 + \cdots + u_n$.
 - a) (Déduire de la question 5.b) que la série de terme général $S_n = \sum_{k \geqslant 0} u_k$ converge.)

 On a : $\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant \frac{1}{3(n+1)2^{n-1}} = o\left(\frac{1}{2^n}\right)$. Or le membre de droite $\frac{1}{2^n}$ est le terme général d'une série convergente, donc par comparaison, la série $\sum_{n\geqslant 0} u_n$ est convergente.
 - **b)** (Rappeler, pour $x \neq 1$, l'expression sous forme de fraction, de la somme : $1 + x + \dots + x^n$.) Pour $x \neq 1$, et $n \in \mathbb{N}$, la somme géométrique $1 + x + \dots + x^n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}$.
 - c) (Établir l'égalité : $S_n = \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} dx \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)(1-x)} dx.$ Par linéarité de l'intégrale, il vient :

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n \left(\int_0^{\frac{1}{2}} \frac{x^k}{1-x^2} \, \mathrm{d}x \right) = \int_0^{\frac{1}{2}} \left(\sum_{k=0}^n \frac{x^k}{1-x^2} \right) \, \mathrm{d}x = \int_0^{\frac{1}{2}} \frac{1-x^{n+1}}{(1-x)(1-x^2)} \, \mathrm{d}x.$$

On trouve donc bien : $S_n = \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} dx - \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)(1-x)} dx$.

d) (Établir, pour $n \in \mathbb{N}$, l'encadrement : $0 \leqslant \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)(1-x)} \, \mathrm{d}x \leqslant 2u_{n+1}$.)

La positivité est claire par positivité de l'intégrande.

On minore le dénominateur pour majorer le quotient :

$$\int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1-x^2)\underbrace{(1-x)}_{\geqslant \frac{1}{2}}} \, \mathrm{d}x \leqslant \int_0^{\frac{1}{2}} \frac{x^{n+1}}{\frac{1}{2}(1-x^2)} \, \mathrm{d}x = 2u_{n+1}$$

e) (En déduire la somme de la série $\sum_{k=0}^{+\infty} u_k$ comme une intégrale.)

On a obtenu l'encadrement $\forall n \in \mathbb{N}$:

$$0 \leqslant S_n - \int_0^{\frac{1}{2}} \frac{1}{(1 - x^2)(1 - x)} \, \mathrm{d}x = \int_0^{\frac{1}{2}} \frac{x^{n+1}}{(1 - x^2)(1 - x)} \, \mathrm{d}x \leqslant 2u_{n+1}$$

Or $\lim_{n\to+\infty} 2u_{n+1}$, donc par le théorème de convergence par encadrement (des gendarmes),

on trouve
$$\lim \left(S_n - \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} \, \mathrm{d}x \right) = 0.$$

En d'autres termes : $\sum_{k=0}^{+\infty} u_k = \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} dx$.

f) (Pour $x \in [0; \frac{1}{2}]$, réduire au même dénominateur l'expression : $\frac{1}{1-x} + \frac{2}{(1-x)^2} + \frac{1}{1+x}$.) On trouve pour $x \in [0; \frac{1}{2}]$:

$$\frac{1}{1-x} + \frac{2}{(1-x)^2} + \frac{1}{1+x} = \frac{(1-x)(1+x) + 2(1+x) + (1-x)^2}{(1-x)^2(1+x)}$$
$$= \frac{4}{(1-x^2)(1-x)}.$$

- **g)** (Montrer que $\int_0^{\frac{1}{2}} \frac{\mathrm{d}x}{(1-x)^2} = 1$. En déduire la valeur explicite de $\sum_{k=0}^{+\infty} u_k$.)
 - ▶ Calcul de l'intégrale

On primitive, et on trouve bien : $\int_0^{\frac{1}{2}} \frac{dx}{(1-x)^2} = \left[\frac{1}{1-x}\right]_0^{\frac{1}{2}} = \frac{1}{\frac{1}{2}} - 1 = 1.$

▶ Conclusion sur la série On trouve donc :

$$\sum_{k=0}^{+\infty} u_k = \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)(1-x)} dx$$

$$= \frac{1}{4} \left[\int_0^{\frac{1}{2}} \frac{1}{(1-x)} dx + 2 \int_0^{\frac{1}{2}} \frac{1}{(1-x^2)} dx + \int_0^{\frac{1}{2}} \frac{1}{(1+x)} dx \right]$$

$$= \frac{1}{4} \left[\ln(2) + 2 + \ln\left(\frac{3}{2}\right) \right] = \frac{\ln(3)}{4} + \frac{1}{2}$$

Exercice 3: commutant d'une matrice

Dans ce problème, $\mathcal{M}_3(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées de format 3×3 .

On considère les matrices suivantes :
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1. a) (Trouver une base et la dimension des sous-espaces vectoriels Ker(A) et Im(A).)

Soit
$$\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
. On a alors $A\vec{X} = \begin{pmatrix} y \\ z \\ 0 \end{pmatrix}$.

ightharpoonup Calcul du noyau Ker(A) On résout :

$$\vec{X} \in \operatorname{Ker}(A) \iff A\vec{X} = \vec{0} \iff \begin{pmatrix} y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} y = 0 \\ z = 0 \end{cases} \iff \vec{X} = x\vec{e_1}.$$

Ainsi Ker $A = \text{Vect}(\vec{e}_1)$, et \vec{e}_1 est une base de Ker(A).

- ► Calcul de l'image L'image $\operatorname{Im}(A)$ est engendrée par les vecteurs-colonnes de A. Ainsi $\operatorname{Im}(A) = \operatorname{Vect}(\vec{0}, \vec{e_1}, \vec{e_2}) = \operatorname{Vect}(\vec{e_1}, \vec{e_2})$, et $(\vec{e_1}, \vec{e_2})$ est une base de $\operatorname{Im}(A)$. On remarque que l'on a bien la formule du rang : $\operatorname{\underline{dim}}(\operatorname{Im}(A)) = 3 \operatorname{\underline{dim}}(\operatorname{Ker}(A))$.
- b) (Calculer A^2 et A^3 .)

 On trouve $A^2 = A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $A^3 = A^2 \cdot A = 0$.
- c) (En déduire A^n pour tout entier n supérieur ou égal à 3.) Pour $n \ge 3$, on peut écrire $A^n = \underbrace{A^3}_{=0} \cdot A^{n-3} = 0$.
- **2.** On considère le **commutant** A, noté $\mathcal{C} = \{M \in \mathcal{M}_3(\mathbb{R}) \text{ telles que} : AM = MA\}.$
 - a) (Soient $M_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $M_2 = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$. A-t-on $M_1 \in \mathcal{C}$? A-t-on $M_2 \in \mathcal{C}$?)

 On a $AM_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \neq M_1A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, mais $AM_2 = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = M_2A$.

Ainsi $M_1 \not\in \mathcal{C}$, mais $M_2 \not\in \mathcal{C}$.

- **b)** (Montrer que C est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. En déduire que $\dim(C) \leqslant 9$.)
 - ▶ Vérifions $C \neq \emptyset$: On a bien $0 \in C$, car $A \cdot 0 = 0 \cdot A = 0$.
 - Stabilité par combinaison linéaire Soient $M, N \in \mathcal{C}$, et $\lambda, \mu \in \mathbb{R}$. On a AM = MA et AN = NA.

Montrons que $P \stackrel{\text{(def)}}{=} \lambda M + \mu N \in \mathcal{C}$.

On a $AP = A \cdot (\lambda M + \mu N) = \lambda AM + \mu AN = \lambda MA + \mu NA = (\lambda M + \mu N) \cdot A = PA$. Ainsi on a bien : $P \in \mathcal{C}$.

- ▶ Conclusion Ainsi \mathcal{C} est bien un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Or $\mathcal{M}_3(\mathbb{R})$ est un espace vectoriel de dimension $3 \times 3 = 9$. Donc \mathcal{C} est de dimension finie et dim $(\mathcal{C}) \leq \dim (\mathcal{M}_3(\mathbb{R})) = 9$.
- c) (Soit $M = \begin{pmatrix} a & b & c \\ u & v & w \\ x & y & z \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Montrer que $AM MA = \begin{pmatrix} u & v a & w b \\ x & y u & z v \\ 0 & -x & -y \end{pmatrix}$.)

 On trouve $AM = \begin{pmatrix} u & v & w \\ x & y & z \\ 0 & 0 & 0 \end{pmatrix}$, et $MA = \begin{pmatrix} 0 & a & b \\ 0 & u & v \\ 0 & x & y \end{pmatrix}$, d'où le résultat demandé.
- d) (Montrer que les matrices appartenant à \mathcal{C} sont celles de la forme : $M = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.)

 Avec la matrice M ci-dessus, on a $M \in \mathcal{C} \iff AM = MA \iff AM MA = 0 \iff \begin{cases} u = 0, \ v a = 0, \ w b = 0 \\ x = 0, \ y u = 0, \ z v = 0 \\ 0 = 0, \quad -x = 0, \quad -y = 0 \end{cases}$ $\iff \begin{cases} u = 0, \ v = a, \ w = b \\ x = 0, \ y = 0, \ z = a \end{cases}$

Ainsi la matrice M appartient à C ssi elle est de la forme ci-dessus.

e) (En déduire que la famille (I,A,A^2) forme une base de \mathcal{C} . En déduire $\dim(\mathcal{C})$.)

Pour
$$M = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$$
 comme ci-dessus, on peut écrire $M = aI + bA + cA^2$.

Ainsi la famille (I, A, A^2) est génératrice dans C.

Cette famille est aussi libre. C'est donc bien une base de \mathcal{C} . En particulier dim $(\mathcal{C}) = 3$.

- 3. On se propose de montrer qu'il n'existe aucune matrice N, carrée d'ordre 3, telle que $N^2=A$.
- **4.** Cette question montre qu'il n'existe pas de matrice $N \in \mathcal{M}_3(\mathbb{R})$ vérifiant : $N^2 = A$.
 - a) (Montrer que si une telle matrice N existait, alors elle vérifierait : AN = NA.) Si $N^2 = A$, alors $AN = (N^2) \cdot N = N^3$ et de même $NA = N \cdot (N^2) = N^3$. On a donc bien AN = NA...
 - b) (Justifier qu'on peut écrire $N = aI + bA + cA^2$ avec $a, b, c \in \mathbb{R}$.) ... On a donc alors $N \in \mathcal{C} = \text{Vect}(I, A, A^2)$. La matrice N est donc combinaison linéaire de I, A, A^2 , et on peut écrire $N = aI + bA + cA^2$ pour certains $a, b, c \in \mathbb{R}$.
 - c) (Montrer alors que $N^2 = a^2I + 2abA + (b^2 + 2ac)A^2$.) On trouve bien $N^2 = (aI + bA + cA^2)^2 = a^2I + 2abA + (2ac + b^2)A^2 + 2bcA^3 + c^2A^4$.
 - d) (En déduire qu'une matrice N vérifiant $N^2 = A$ n'existe pas.)

 Cherchons a, b, c pour avoir : $\begin{pmatrix} a \cdot I + b \cdot A + c \cdot A^2 \end{pmatrix}^2 = A$ soit : $a^2 \cdot I + 2ab \cdot A + (2ac + b^2) \cdot A^2 = 0 \cdot I + 1 \cdot A + 0 \cdot A^2$.

Comme la famille (I, A, A^2) est libre, on peut identifier les coefficients :

$$\begin{cases} a^2 = 0 \\ 2ab = 1 \\ 2ac + b^2 = 0 \end{cases} \implies \begin{cases} a = 0 \\ ab = \frac{1}{2} \neq 0 \end{cases}$$

Ces deux équations sont contradictoires, et il n'y a donc pas de solution N à l'équation $N^2=A$.

5. Exemples de calculs d'inverses

a) (Justifier que la matrice I - A est inversible.)

On a
$$I - A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Il s'agit d'une matrice triangulaire dont les coefficients diagonaux sont non-nuls. Elle est donc bien inversible.

b) (Développer le produit (I-A) $(I+A+A^2)$. Déduire l'inverse $(I-A)^{-1}$ en fonction de A et de A^2 .) On a : (I-A) $(I+A+A^2) = I + \underbrace{(1-1)}_{=0} A + \underbrace{(1-1)}_{=0} A^2 - \underbrace{A^3}_{=0} = I$.

Ainsi la matrice I - A est inverse et son inverse est $(I - A)^{-1} = (I + A + A^2)$.

c) (Résoudre de même l'équation $(I+A)(aI+bA+cA^2)=I$, d'inconnues $a,b,c\in\mathbb{R}$.) On développe : $(I+A)(aI+bA+cA^2)=aI+(a+b)\cdot A+(b+c)\cdot A^2$.

Par identification des coefficients, on a donc :
$$\begin{cases} a = 1 \\ (I+A)(aI+bA+cA^2) = I \end{cases} \iff \begin{cases} a = 1 \\ a+b=0 \\ b+c=0 \end{cases} \iff \begin{cases} a = 1 \\ b = -1 \\ c = 1 \end{cases}$$

- d) (En déduire l'inverse de la matrice (I + A).) Ainsi la matrice I + A est inversible, d'inverse $(I + A)^{-1} = I - A + A^2$.
- **6.** Cette question étudie les matrices $P \in \mathcal{M}_3(\mathbb{R})$ vérifiant : PA = P A.
 - a) (Soit P une matrice vérifiant : PA = P A. Calculer P(I A).) On a : $P \cdot (I - A) = P - PA = A$.
 - b) (En déduire l'expression de P en fonction de A et A^2 .) La matrice I-A est inversible. Il vient donc $P=\left[P\cdot (I-A)\right]\cdot (I-A)^{-1}=A\cdot (I-A)^{-1}$. On a trouvé : $(I-A)^{-1}=I-A+A^2$. Ainsi $P=A\cdot (I-A+A^2)=A-A^2$.