NERF

Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall¹* Pratul P. Srinivasan¹* Matthew Tancik¹* Jonathan T. Barron² Ravi Ramamoorthi³ Ren Ng¹

¹UC Berkeley ²Google Research ³UC San Diego

9/24/2024 Charles Bricout, ETS

PLAN

- 1. Introduction
- 2. Modèle NeRF
 - a) Champs de Radiance
 - b) Encodage de position
 - c) Echantillonnage hiérarchique de volume
- 3. Les jeux de donnée
- 4. Résultats
- 5. Discussion
- 6. Conclusion

INTRODUCTION

- Problème de la synthèse de vue
 - Créer de nouvelles vues d'une scène 3D à partir de données existantes
- Nouvelle approche utilisant un perceptron multi couche (MLP)
- Obtiens un rendu photoréaliste de scène 3D

LE MODÈLE NERF: CHAMP DE RADIANCE

- Changement de paradigme : on apprend une scène.
- La scène est représentée par une fonction à 5 variables et 4 sorties

$$F_{\Theta}$$
: $(x, y, z, \theta, \phi) \rightarrow (r, g, b, \sigma)$

LE MODÈLE NERF: CHAMP DE RADIANCE

 F_{Θ} : $(x, y, z, \theta, \phi) \rightarrow (r, g, b, \sigma)$

• (x,y,z): la position que l'on veut observer

• (θ, ϕ) : l'angle depuis lequel on observe

• (r, g, b): la couleur prédite

• σ : la densité du volume (~Transparence)

LE MODÈLE NERF: CHAMP DE RADIANCE

LE MODÈLE: ENCODAGE DE POSITION

- Les MLP ont tendances à apprendre des fonctions de basses fréquences
- Les scènes présentent des variations très fréquentes de couleur et de géométrie
- Augmenter la dimensionalité des données avec une fonction bien choisie

LE MODÈLE: ENCODAGE DE POSITION

Augmenter la dimensionalité des données avec une fonction bien choisie

$$\gamma(p) = \left(\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)\right)$$

LE MODÈLE: ENCODAGE DE POSITION

• Augmenter la dimensionalité des données avec une fonction bien choisie

LE MODÈLE: ÉCHANTILLONNAGE HIÉRARCHIQUE

- Deux résolutions différentes
- Grossier : Echantillonne un ensemble de points N_C
- Précis : En utilisant l'échantillonnage grossier, on échantillonne intelligemment le volume sur N_F points

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

Rendus synthétiques d'objet

Image réelle de scène complexe

- Le DeepVoxels dataset
 - 512 × 512 pixels
 - Non Lambertians

Rendus synthétiques d'objet

- Le DeepVoxels dataset
- Le dataset non lambertien
 - 100 vues par scènes
 - 800 × 800 pixels

Image réelle de scène complexe

Rendus synthétiques d'objet

- Le DeepVoxels dataset
- Le dataset non lambertien

Image réelle de scène complexe

- 8 scènes
- Capturées avec un smartphone
- 20 à 62 images
- 1008 × 756 pixels

Rendus synthétiques d'objet

Fern

Image réelle de scène complexe

T-Rex

Orchid

MODÈLES DE COMPARAISON

- Neural Volumes (NV):
 - Réseau à convolution
 - Prédit une grille 3D de voxels
 - 1 modèle par scène
- Scene Representation Network (SRN):
 - Perceptron multi couche
 - Associe $(x, y, z) \rightarrow (RGB\alpha)$
 - 1 modèle par scène
- Local Light Field Fusion (LLFF) :
 - Réseau à convolution
 - Prédit directement une image RGBα
 - Scène = Entrée du modèle

MESURES DE CONTRÔLE

- Learned Perceptual Image Patch Similarity (LPIPS) : Mesure la similarité dans l'activation d'un reseau prédéfini pour deux images.
- Structural Similarity (SSIM) : Mesure une similarité de « structure »
- Peak Signal to Noise Ration (PSNR): Ratio entre un signal (l'image source) et un bruit (l'erreur de reconstruction)

	Diffuse Synthetic 360° [41]			Realistic Synthetic 360°			Real Forward-Facing [28]		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	$\mathrm{LPIPS}\!\!\downarrow$	PSNR↑	SSIM↑	$\mathrm{LPIPS}\!\!\downarrow$
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Orchid

Orchid

Ship

DISCUSSION

- Dépasse les modèles NV et SRN sur toutes les scènes
- Dépasse LLFF pour tout sauf une métrique
- Compromis temps vs stockage

Modèle	Temps	Stockage
NeRF	100k-300k itérations 1 à 2 jours	5 MB
LLFF	10 min	15 GB

• 5MB c'est moins de mémoire que les images d'entrée seule!

ÉTUDE D'ABLATION

	Input	#Im.	L	(N_c,N_f)	PSNR↑	$\text{SSIM} \!\!\uparrow$	$\mathrm{LPIPS}\!\!\downarrow$
1) No PE, VD, H	xyz	100	-	(256, -)	26.67	0.906	0.136
2) No Pos. Encoding	$xyz\theta\phi$	100	-	(64, 128)	28.77	0.924	0.108
3) No View Dependence	xyz	100	10	(64, 128)	27.66	0.925	0.117
4) No Hierarchical	$xyz\theta\phi$	100	10	(256, -)	30.06	0.938	0.109
5) Far Fewer Images	$xyz\theta\phi$	25	10	(64, 128)	27.78	0.925	0.107
6) Fewer Images	$xyz\theta\phi$	50	10	(64, 128)	29.79	0.940	0.096
7) Fewer Frequencies	$xyz\theta\phi$	100	5	(64, 128)	30.59	0.944	0.088
8) More Frequencies	$xyz\theta\phi$	100	15	(64, 128)	30.81	0.946	0.096
9) Complete Model	$xyz\theta\phi$	100	10	(64, 128)	31.01	0.947	0.081

Table 2: An ablation study of our model. Metrics are averaged over the 8 scenes from our realistic synthetic dataset. See Sec. 6.4 for detailed descriptions.

CONCLUSION

- Meilleurs résultats que l'état de l'art
- Il faut chercher des méthodes plus efficaces pour faire des rendus à partir des Champs de radiance neuronaux.
- Il y a un travail d'interprétabilité à mener pour pouvoir analyser les NeRFs
- Possibilité de stocker des scènes 3D plus efficacement

RÉFÉRENCES

- Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. arXiv. https://doi.org/10.48550/arXiv.2003.08934
- *Nerf : Neural radiance fields*. (s. d.-a). Consulté 9 novembre 2023, à l'adresse https://www.matthewtancik.com/nerf
- Nerf: Representing scenes as neural radiance fields for view synthesis(MI research paper explained). (s. d.-b). Consulté 9 novembre 2023, à l'adresse https://www.youtube.com/watch?v=CRIN-cYFxTk