Amazon Product Reviews: Predicting Rating Scores with Binary and Multiclass Classifiers and Clustering Categories with Reviews

Wenxin Zhao (Rose) Dartmouth College 14 North Main Street Hanover, New Hampshire, USA

wenxin.zhao.gr@dartmouth.edu

Abstract

A popular application in computational linguistics research is sentiment analysis of product reviews. In this paper, we apply machine learning models to explore if the Amazon product reviews can indicate the rating of the products given by the customers, and suggest the product categories. We apply Logistic Regression, Support Vector Machines, Random Forest models as both binary and multiclass classifiers, and K-Means, DBSCAN, and Hierarchical Clustering for clustering. We acquired the highest Macro F1 score with Linear Regression, of 0.74, 0.98, 0.83, 0.77, respectively for binary classification of each rating cutoff, and 0.53 for a multiclass classification. DBSCAN yielded the highest Silhouette score of 0.99.

1. Introduction

Nowadays, online shopping has become inseparable in our daily lives. Product reviews provide valuable feedback for both consumers and sellers. However, the volume of product reviews on major e-commerce platforms like Amazon has exploded. Therefore, businesses need effective automated methods for the analysis of text data. In this paper, we explore the use of machine learning algorithms to classify Amazon product review ratings and clustering review types. Our goal is to develop models that can accurately predict the rating given by a user and product category based on their review.

To accomplish this, we use a dataset of Amazon product reviews, and train several machine learning models, including logistic regression, support vector machines, and random forest. We then evaluate the performance of these models using various metrics including Macro F1, accuracy, confusion matrix, ROC and AUC. Our results demonstrate the effectiveness of machine learning in classifying product review ratings and provide insights into the most effective approaches for this task.

2. Related Work

There are many previous work done on this topic. Gope in the paper [1] used a dataset of 34,000 Amazon reviews, explored both classical ML algorithms and deep learning frameworks, and concluded that Random Forest classifier was the best performing one among classical algorithms. In another similar attempt, Haque in the paper [2] concluded that SVM performed the best. Both papers used TfIdf Vectorizer on review text data and applied various feature-extraction techniques such as removing stop words, cleaning text, stemming and so on. However, both paper approached the classification as binary, positive for rating 1 and 2, negative for rating 4 and 5, and discard the neutral rating of 3.

In this paper, we provide more holistic classifications that include all four kinds of rating cutoff as well as predicting multiclass scores without binary cutoff. We also explore clustering, aiming to give insight to product category. Also, different from approaches from previous works, we make the best use of the review summary text, a concise version of the review text, and applied count vectorizer to explore its effectiveness and maximize machine learning performance from it.

3. The Amazon Product Review Dataset

The training dataset contains 29189 entries of product reviews from Amazon. Information includes the following: Overall: product rating on a scale of [1-5]; verified: a boolean denoting if the review has been verified by Amazon; reviewTime: time of review; reviewerID: The unique ID of the Amazon reviewer (some have left multiple reviews); asin: Product ID (One product will have many different reviews); reviewerName: Encoding of the Amazon reviewer's username; reviewText: The Amazon review; summary: a concise summary of the reviewText; unixReviewTime: unix time of review; vote: How many people voted this review as being helpful; image: If there is an image, link to the image; style: a dictionary of style informa-

overall	1
verified	TRUE
reviewTime	04 7, 2015
reviewerID	868FE8626DAEF71BAD1E6A92F6
	D930CB
asin	DCBCF41F4BA5D96EEDEE747EC
	340A56B
reviewerName	80206880F42975D409B5A5EEDA1
	D6B1F
reviewText	absolute garbage. measured at 16
	feet while not being under tension.
	i needed 19 feet, so i stretched it.
	ripped in a bunch of places within
	3 days. if it is being sold as a 20
	foot hose, it needs to go to 20. buy
	the rhinoflex. it goes to 20 and stays
	there.
summary	Don't waiste your money, buy
	Rhino-Flex
unixReviewTime	1428364800
vote	36
image	['https://images-na.ssl-images-
	amazon.com/images/I/71081-
	RGFrLSY88.jpg']
style	{'Package Type:': 'Standard Pack-
	aging', 'Style:': " 20' Sewer Hose
	Kit"}
category	automotive

Table 1. Example Entry.

tion (e.g. size of shirt, color of phone) (Only available for some samples); Category: The Amazon product category of the product. Table 1 shows an example entry. The data is uniformly representing all 5 overall ratings as well as all 6 categories as shown in Table 3.

The test dataset contains 4500 new entries with the same fields as the training dataset, but without the overall score.

4. Methods

All models are implemented in Sciki-Learn (version 1.2.1), and hyperparameters are in default unless specified. To reduce the time for hyperparameter tuning, 10% of the training dataset was used with grid search cross-validation to find the best hyperparameters for both the vectorizers (to transform text data) and the classifiers. The final model is trained on the entire training dataset with 5-Fold Cross-validation. The Macro F1 score from the prediction of the test dataset was calculated.

Model	Logistic Regression	Macro
		F1 Score
TfidfVectorizer:	$max_iter = 500,$	0.81823
max_df=0.75,	C=10,	
min_df=3,	penalty='12'	
ngram_range=(1, 2),		
norm='12',		
sublinear_tf=True		
CountVectorizer:	$max_iter = 500,$	0.83217
$max_df=0.5$,	C=1,	
min_df=1,	penalty='12'	
ngram_range=(1, 2)		
Sentiment Analysis	$max_iter = 500,$	0.73758
	C=0.1,	
	penalty='12'	

Table 2. Evaluation of Text Vectorization Methods with a Rating Cutoff=3.

4.1. Feature Engineering

4.1.1 Overall Rating

For binary classification, the rating is converted to "good" and "bad" based on the cutoffs 1,2,3, and 4. For example, when cutoff=3, all samples with a rating \leq 3 will have label 0, and all samples with a rating \geq 3 have label 1. The rating is unchanged for multiclass classification.

4.2. Choice of Vectorizer

In order for machine learning models to train the text data, the reviewText and summary were transformed into numbers, by using vectorizers. Exploring the data we can find the summary, a lot of times, either contains strong sentiment adjectives like "bad/terrible/great" or directly indicates the rating such as "one/five stars". Therefore, it is likely summary contains more keywords indicating the sentiment and fewer data on the product specification than reviewText.

In light of this observation, three methods were explored for classifications: 1) reviewText with Tfidf Vectorizer; 2) summary with Count Vectorizer; 3) sentiment analysis of summary.

For each vectorizer, a grid search with cross-validation was used to find their best hyperparameters. For sentiment analysis, a pre-trained sentiment analysis model from Transformers (version 4.26.1) from the Hugging Face was used to convert the summary to either "positive" or "negative". Specifically, a pipeline of "sentiment-analysis" with the model "distilbert-base-uncased-finetuned-sst-2-english" was used. For each method, a cutoff of 3 and logistic regression were used to train the model. Table 2 shows that the Macro F1 score using summary with Count Vectorizer performs the best. Therefore, it is chosen as the main feature

Rating	automotive	CDs	grocery	cell phones	sports	toys	Total
1	994	996	996	984	996	991	5997
2	993	996	995	989	993	993	5959
3	970	984	977	971	977	983	5862
4	945	979	964	950	965	966	5769
5	926	957	954	905	949	951	5642

Table 3. Uniform Representation of Data Across Ratings and Categories.

processing method for classifiers.

For clustering, since the aim is to cluster by product categories, the model would need more information on product descriptions. Therefore, a count vectorizer was used to transform the reviewText. The specific hyperparameters are as follows: max_features=1, max_df=0.5, min_df=1, ngram_range=(1, 2).

4.3. Choice of Models

For both binary and multiclass classifications, Logistic Regression, SVM, and Random Forest were used. For classification, KMeans, DBSCAN, and Hierarchical Clustering were used.

5. Results and Analysis

Table 6, 7, 8, and 9 shows the best hyperparameters of the three models and the performace scores after running 5-fold cross-validation using the training dataset. Table 4 shows the clustering result.

From the binary classification results, we can see that, in terms of Macro F1 scores, logistic regression performs best for all cutoffs except for cutoff=1 being slightly lower than random forest. However, logistic regression takes considerably less time to train, making it the best candidate to scale when the dataset gets large. Across all models, cutoff=3 has the highest macro F1 score, cutoff=2 and 4 have similar scores, while, cutoff=1 has the lowest. Cutoff=3 is a common cutoff for ositive and negative sentiments. It suggests that the models can distinguish the overall sentiment direction better than the extent/intensity of them.

For multiclass classification, all three models perform almost equally with SVM being the slight highest. It is interesting to note from the confusion matrix that all three models consistently predicts a false rating of 1 when the true rating is 2. It may suggest that customers may act harsher on ratings than their actual elaborations.

6. Conclusions

Table 5 shows the best scores using the test dataset when submitted to the Kaggle Competition, using the models and hyperparameters from the result section. Overall, it

Model	Hyperparameters	Silhouette score
K Means	n_clusters=6,	0.8425511223533916
	random_state=42,	
	n_init=10	
DBSCAN	eps=0.5,	0.998750656474856
	min_samples=5	
Agglomerative	n_clusters=6	0.7862139817673409
Clustering		

Table 4. Clustering with Different Algorithms.

Task	Metric	Score	Model
Binary Classifica-	Macro	0.74062	Logistic
tion Cutoff 1	F1		Regression
Binary Classifica-	Macro	0.78174	Logistic
tion Cutoff 2	F1		Regression
Binary Classifica-	Macro	0.83217	Logistic
tion Cutoff 3	F1		Regression
Binary Classifica-	Macro	0.76781	Logistic
tion Cutoff 4	F1		Regression
Multiclass	Macro	0.53207	Logistic
Classification	F1		Regression
Clustering	Silhouette	0.99875	DBSCAN

Table 5. Final Test Result (from Kaggle Competition).

is demonstrated that these machine learning models can be utilized to predict amazon product ratings based on reviews.

References

- [1] Gope, Joy Chandra, et al. "Sentiment Analysis of Amazon Product Reviews Using Machine Learning and Deep Learning Models." 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 2022, https://doi.org/10.1109/icaeee54957.2022.9836420.
- [2] T. U. Haque, N. N. Saber, and F. M. Shah, "Sentiment analysis on large scale amazon product reviews," in 2018 IEEE international conference on innovative research and development (ICIRD). IEEE, 2018, pp. 1–6.

Table 6. Binary Classifier 1: Logistic Regression for Different Cutoffs.

	cutoff=1	cutoff=2	cutoff=3	cutoff=4
Vectorizer	'max_df': 0.5, 'min_df': 1, 'ngram_range': (1, 2)	max_df': 0.5, 'min_df': 1, 'ngram_range': (1, 1)	max_df': 0.5, 'min_df': 1, 'ngram_range': (1, 1)	max_df': 0.5, 'min_df': 1, 'ngram_range': (1, 1)
Logistic Regression	'C': 5, 'gamma': 'scale', 'kernel': 'rbf'	'C': 5, 'gamma': 'scale', 'kernel': 'rbf'	'C': 10, 'gamma': 'scale', 'kernel': 'rbf'	'C': 5, 'gamma': 'scale', 'kernel': 'rbf'
Accuracy Macro F1	0.881103306493062 0.75205863025987	0.773895169578623 0.772016165984406	0.844467283316204 0.819158234395642	0.901849948612539 0.793047308038163
Confusion	9 1 - 169 4677 0 1 Predicted label	2 0 - 1994 1003 - 2000 2 1 - 317 2524 - 1000 0 1 Predicted label	9 1 - 498 1373 0 1 Predicted label	- 4000 - 4749 163 - 2000 - 2000 - 2000 - Predicted label
Matrix AUC Score	0.717678982905581	0.776875784619537	0.81523975793347	0.762025691039179
	100 de Bositive 20.75 de Bosit	1.00 Page 8 90.75 Page 9 90.75 Page 8 90.75 Page 8 90.75 Page 8 90.75 Page 8 90.75 Page 9 90.75 Page 8 90.75 Page 9 90.75	100 de sitis de 20,75 de 20,000 de 20,500 de 2	1.00 e spirite 8 0.75 e o o o o o o o o o o o o o o o o o o
ROC Curve	False Positive Rate	False Positive Rate	False Positive Rate	False Positive Rate

Table 7. Binary Classifier 2: SVM for Different Cutoffs.

	cutoff=1	cutoff=2	cutoff=3	cutoff=4
Vectorizer	max_df': 1.0, 'min_df': 3, 'ngram_range': (1, 1)	max_df': 0.75, 'min_df': 2, 'ngram_range': (1, 1)	'max_df': 0.75, 'min_df': 3, 'ngram_range': (1, 1)	'max_df': 0.5, 'min_df': 2, 'ngram_range': (1, 2)
Logistic Regression	'max_depth': 2000, min_samples_split: 7, 'n_estimators': 75	'max_depth': 3000, 'min_samples_split': 7, 'n_estimators': 100	'max_depth': 3000, 'min_samples_split': 7, 'n_estimators': 50	'max_depth': 1000, 'min_samples_split': 7, 'n_estimators': 50
Accuracy Macro F1	0.882302552681172 0.760094772286447	0.775265501884207 0.773644750927709	0.845323741007194 0.820712410948632	0.897910243233984 0.788383629387814
Confusion	9 1 - 492 499 - 4000 - 2000 - 2000 Predicted label	च 0 - 2007 990 - 2000 2 1 - 341 2500 - 1000 0 1 Predicted label	9 1 - 485 1386 - 1000 - 1000 - 1000 - 1000	$\frac{1}{9}$ 0 - $\frac{4721}{9}$ 1 - $\frac{191}{405}$ - 2000 - 2000 Predicted label
Matrix AUC Score	0.728836665774055	0.778082200468684	0.81770551733792	0.761875312190009
	1.00 9.00 9.00 0.00	1.00 age of the positive of th	1.00 97 0.75 0.00 0.	100 97 0.75 0.00 0.0
ROC Curve	False Positive Rate	False Positive Rate	False Positive Rate	False Positive Rate

Table 8. Binary Classifier 3: Random Forest for Different Cutoffs.

	Logistic Regression	SVM	Random Forest
Model	$max_iter = 1000,$	decision_function _shape='ovr',	Default parameters
	C=5,	C=1,	
	penalty='12',	kernel='linear',	
	multi_class='ovr',	probability=True)	
	solver='liblinear'		
Vectorizer	CountVectorizer	CountVectorizer	CountVectorizer
	$max_df=0.5,$	$max_df=0.5,$	$max_df=0.5,$
	min_df=1,	min_df=1,	min_df=1,
	ngram_range=(1, 2)	ngram_range=(1, 2)	ngram_range=(1, 2)
Macro F1	0.47132387431083300	0.472290240419424	0.46644456950292
Accuracy	0.472166337025096	0.473639274047856	0.471515546563214
Auc	0.787829346719452	0.779471159686766	0.797974784488607
ROC Curve	10 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	10 0 8 8 9 9 0 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0
	450	- 450	
	1 -2.5e+02 3e+02 2e+02 2.1e+02 2.1e+02 -400	1 -2 5e+02 <mark>3.2e+02</mark> 1.9e+02 2.1e+02 2e+02 - 400	1 -2.3e+02 2.7e+022.1e+021.9e+02 2.6e+02
	2 -4.6e+02 1.6e+02 2.2e+02 1.4e+02 1.9e+02 - 350	2 -4.7e+02 1.5e+02 2.2e+02 1.4e+02 1.9e+02 - 350	2 - <mark>4.4e+02</mark> 1.3e+02 2.2e+02 1.1e+02 2.6e+02
	3 - 2.7e+02 2.9e+02 2e+02 2.1e+02 2e+02 - 300	3 -2.9e+02.2.9e+02.2.1e+02.2e+02.1.8e+02 -300	3 -2.4e+02 2.7e+02 2.2e+02 19e+02 2.6e+02
	4 -2.2e+02 2.4e+02 2.6e+02 1.9e+02 2.6e+02 -250	4 -2.4e+02 2.4e+02 2.5e+02	4 -24e+02 2e+02 2.7e+02 1.8e+02 2.8e+02 - 200
	5 -2.3e+02 2.2e+02 1.9e+02 2.8e+02 2.6e+02 -200	5 -2.5e+02 2.3e+02 1.8e+02 2.7e+02 2.5e+02 - 200	5 -2.2e+02 2e+02 2.2e+02 2.7e+02 2.6e+02 -150
Confusion	1 2 3 4 5 -150 Predicted label	1 2 3 4 5 Predicted label	1 2 3 4 5 Predicted label
Matrix			

Table 9. Multiclass Classifications.