# SpaceTx cell type calling – combined "consensus" mapping

September 11, 2020 Renee Zhang

#### Intro

- Intuition: some of the computational methods may map "better" for some cell types, and some methods may map "better" for some other cell types
- Here, "better" means cleaner mapping in the spatial plot for those cell types with known layering knowledge, e.g. L2/3, etc.
- By combining all methods, can we arrive at a mapping that are overall "better"/cleaner in all cell types, by borrowing the strength of each individual method? → "Consensus" mapping
- Challenge: the quantitative ("probabilistic") cell type calling methods have different distributional property, i.e. some skewed to 1, some skewed to 0, etc.









## A "qualitative" consensus by assigning negative weight

















#### Arithmetic mean

#### Endo 20000 15000 10000 5000 -L5 NP 20000 15000 10000 5000 Macrophage Meis2 rmax 0.1 • 0.2 > 10000 • 0.3 • 0.4 5000 • 0.5 20000 15000 10000 5000 10000 15000 5000 10000 15000 5000 10000 15000 5000 10000 15000 (Eesh)

#### Negative weighting





## Number of cells mapped to each subclass

| subclass   | n ar mean r | n_neg_weight | n_geom_mean | n is div |
|------------|-------------|--------------|-------------|----------|
| CR         | 0           | 0            | 0           | 0        |
| SMC        | 0           | 0            | 3           | 0        |
| Astro      | 0           | 2            | 7           | 9        |
| VLMC       | 3           | 1            | 4           | 5        |
| Meis2      | 3           | 3            | 1           | 1        |
| Peri       | 4           | 1            | 0           | 0        |
| Endo       | 6           | 8            | 19          | 5        |
| Macrophage | 7           | 3            | 3           | 6        |
| Sncg       | 13          | 13           | 21          | 15       |
| Lamp5      | 18          | 32           | 61          | 61       |
| Oligo      | 91          | 78           | 101         | 53       |
| Vip        | 98          | 99           | 112         | 122      |
| L5 NP      | 98          | 117          | 79          | 76       |
| L6b        | 106         | 97           | 121         | 98       |
| L5 IT      | 194         | 220          | 277         | 176      |
| Sst        | 212         | 196          | 216         | 233      |
| Pvalb      | 224         | 224          | 245         | 237      |
| L4         | 283         | 478          | 484         | 503      |
| L6 IT      | 428         | 409          | 373         | 328      |
| L6 PT      | 529         | 584          | 517         | 531      |
| L5 PT      | 646         | 290          | 335         | 408      |
| L2/3 IT    | 773         | 882          | 758         | 870      |

## Nearly no agreement on rare cell type callings



## More agreement on abundant cell types



### Qualitative agreement measure

- Cohen's/Fleiss's Kappa: inter-rater reliability measure for categorical data between two/multiple raters
- For subclass types, Fleiss's Kappa = 0.6686645

• For broad class types, Fleiss's Kappa = 0.7405832