

Numerical Analysis MS-C1650 Tölle/Nyman

Exercises, Week 20, 2022

 $DATE^1$

On assignments: Submit homework to your assistant electronically via the course pages. MATLAB-assignments are submitted via Peergrade.

1 Inner Product and Quadrature

EXERCISE 1

(a) For $f, g \in C([0,1])$, show that

$$\langle f, g \rangle = \int_0^1 x^{-1/2} f(x) g(x) dx$$

is well defined.

- (b) Show that $\langle \cdot, \cdot \rangle$ defines an inner product on $C([0, 1], \mathbb{R})$.
- (c) Construct a corresponding second order orthonormal basis.
- (d) Find the two-point Gauss rule for this inner product.
- (e) For $f \in C^4([0,1],\mathbb{R})$, prove the error bound of the error $R(f) \leq c_2 M_4(f)$, where $M_4(f) = \max_{t \in [0,1]} |f^{(4)}(t)|$. Find an estimate for c_2 using MATLAB.

2 Monte Carlo

Consider for positive real numbers a, b, c the solid ellipsoid

(1)
$$K = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}.$$

EXERCISE 2

¹Published on 2022-05-12.

(a) Let I denote the interval [-1,1]. Show that K is contained in the hypercube

$$C = \{(au, bv, cw) \mid (u, v, w) \in C_B\}, \quad C_B = I^3 = I \times I \times I.$$

(b) Show that the volume of K is approximated by

$$\mathbf{vol}_K \approx 8abc \frac{N_B}{N},$$

where N_B is the number of points in \mathcal{C}_B sampled from the unit ball

$$B = \{(u, v, w) \in \mathbb{R}^3 \mid u^2 + v^2 + w^2 \le 1\}.$$

(c) Using the Monte Carlo method, write a MATLAB program that computes an approximation of the volume vol_K of the ellipsoid corresponding to $a=1,\,b=2,$ and c=3, and adds the computation of $\operatorname{vol}_K/8$.