

Ting-01(M)

Ting系列模块基于LoRa(SX1278)扩频芯片,Ting-01是单 SX1278模组,Ting-01M是SX1278+MCU,两款型号做到了 PIN-to-PIN兼容。使用Ting系列无线模组,可以让不带无线的 设备具备远程、低功耗的无线通信能力。

特性

- 超低功耗处理器: STM8L051 (1) - 通讯接口: SPI、UART (2)

- 接口电平: 3.3V TTL

- 频率范围: 410MHz-470MHz

中心频率: 433MHz最大功率: 19.26dBm ⁽³⁾灵敏度: -148dBm

- 参考传输距离10KM (4)

- 支持FSK、GFSK、LoRa、OOK等调制方式

- 小体积双列邮票孔贴片封装,带屏蔽罩

- 尺寸: 14mm x 17 mm x 2.5 mm - 生产工艺: 无铅, 防静电袋包装 - 工作温度范围: -40 ~ +85 摄氏度

- 工作湿度: 10% ~ 90%相对湿度, 无冷凝

- 储存温度: -40 ~ +125摄氏度

电源

- 供电电压: 2.8V - 3.6V (建议3.3V)

- 最大持续发射电流: 93mA - 持续接口模式电流: 14mA

- 睡眠电流典型值: 0.75mA (未优化)

适用场合

- 自动抄表

- 家庭和楼宇自动化

- 无线报警和安全系统

- 工业监控

- 远距离传感器通信

O1M额外特性

- 可独立控制的GPIO: 2 - 可读取模拟量ADC: 1

- 可设置PWM:1

- 通信UART: 115200, 8N1

- AT命令控制接口

01M内置工作模式

- 广播发射模式
- 单点对单点
- 单点对多点(可配置65535个地址,便于 组网)
- 其他模式待开发

备注

- 1: 仅仅Ting-01M具备特性

- 2: 仅Ting-01M提供UART接口

- 3: 升特官方提供参数为经过RF匹配后输出在18.5~19.5 之间, Ting-01实测为19.26dBm

- 4: 极佳条件下10KM

文档状态

- 初版, VO2

尺寸数据(单位:毫米)

对外引脚

	Ting-01		
1	GND ANT GND VCC TR TX RX SWIM CPURST PD0 PB0 PC4 GND	GND	26
2		DIO5	25
3		DIO4	24
4		DIO3	23
5		DIO2	22
6		DIO1	21
7		NRST	20
8		DIO0	19
9		MISO	18
10		MOSI	17
11		SCK	16
12		NSS	15
13		GND	14

引脚描述

引脚号	标识	功能
1	GND	电源地
2	ANT	RF输出、输入
3	GND	电源地
4	VCC	电源正极
5	TR	1278 收发切换(悬空)
6	TX	模块UART数据输出端
7	RX	模块UART数据输入端
8	SWIM	量产刷固件(悬空)
9	CPURST	MCU复位端(低有效)
10	PD0	GPIO D0
11	PB0	GPIO B0
12	PC4	GPIO C4
13	GND	电源地
14	GND	电源地
15	NSS	1278 SPI片选
16	SCK	1278 SPI时钟
17	MOSI	1278 SPI数据输入
18	MISO	1278 SPI数据输出
19	DIO0	1278 IO0
20	NRST	1278 复位控制(低有效)
21	DIO1	1278 IO1
22	DIO2	1278 IO2
23	DIO3	1278 IO3
24	DIO4	1278 IO4
25	DIO5	1278 IO5
26	GND	电路地

AT命令

命令	发送数据格式	回复数据格式	备注
测试命令	AT\r\n	OK\r\n	
复位命令	AT+RST\r\n	OK\r\n	
读取版本命令	AT+VER\r\n	V0.2\r\nOK\r\n	版本V0.2, x.x格式
进入空闲模式	AT+IDLE\r\n	OK\r\n	STM8工作,SX1278睡眠,模块默认上 电为此模式
进入睡眠模式	AT+SLEEP=1\r\n	OK\r\n	睡眠模式,STM8与SX1278都睡眠,只 允许PC4的下降沿唤醒
退出睡眠模式		WakeUp\r\n	PC4的下降沿唤醒睡眠中的MCU
进入接收模式	AT+RX\r\n	OK\r\n	进入接收模式,接收模式为异步接收,如果是单次接收,接收完成后自动恢复到空闲模式;如果是连续接收模式,那将一直处于接收状态。
接收数据(异步)		+LR,XXXX,XX, ASFASDFASFD	XXXX是源地址,十六进制,例如FFCA XX是两个字符,十六进制数据长度,范 围为(0x01~0xFB),例如5A,代表90 个字节 ASFASDFASFD是任意数据
单次接收模式下的 超时提醒(异步)		TimeOut\r\n	
查询RSSI值	AT+RSSI?\r\n	-XXX\r\nOK\r\n	十进制表示,例如-63dB返回 为: -063\r\nOK\r\n
设置模块自身地址	AT+ADDR=XXXX\r\n	OK\r\n	十六进制表示,范围是0000-FFFF, FFFF是特殊地址,如果一个模块设置自 身地址为FFFF,那么它可以监听到同频 率下所有通讯数据。
读取模块自身地址	AT+ADDR? \r\n	XXXX\r\nOK\r\n	十六进制表示,范围是0000-FFFF, 例如D5AA:表示地址值为0xD5AA
设置目标地址	AT+DEST=FF5A\r\n	OK\r\n	十六进制表示,范围是0000-FFFF, FFFF是特殊地址,如果一个模块设置目 标地址为FFFF,此时模块处于广播状态
读取目标地址	AT+DEST? \r\n	XXXX\r\nOK\r\n	十六进制表示,范围是0000-FFFF, 例如FFAA:表示地址值为0xFFAA

命令	发送数据格式	回复数据格式	备注
配置参数	AT+CFG=43300000 0,20,6,10,1,1,0,0,0,0 ,3000,8,4\r\n	OK\r\n	字段顺序依次为: 载波频率(433000000), 功率(20), 带宽 (6), 扩频因子(10), 纠错码(1), CRC校 验(1), 隐式报头(0), 单次接收(0), 调频 (0), 调频周期(0), 接收超时时间 (3000), 用户数据长度(8), 前导码长度 (4)。 详细介绍见《参数配置命令表》。
发送数据命令	AT+SEND=XX\r\n	> SENDING\r\n OK\r\n	参数: XX代表发送数据长度,范围为 1-250,比如要传输25字节数据,发送 AT+SEND=25\r\n,模块返回>,此时用户可以通过串口传输25个字节的任意数据。多于的数据将会被抛弃,模块接收完 25个字节后,会回复"SENDING\r\n",表示模块进入发送状态,此时,用户需等待模块回复"OK\r\n"表示此次数据发送完成。
GPIO设置命令	AT+PB0=1\r\n	OK\r\n	支持PB0,PD0,1代表设置为高电平,0 代表低电平
GPIO读取命令	AT+PB0?\r\n	1\r\nOK\r\n 0\r\nOK\r\n	支持PB0,PD0,1代表设置为高电平,0 代表低电平
PWM设置命令	AT+PWM1=X,YYYY Y,ZZZZZ\r\n	OK\r\n	PWM1在PB0输出,PWM2在PD0输出, X是从16MHz基频的预分频,范围1-8, YYYYY是周期,范围2-65535,ZZZZZ 是脉冲宽度,范围1-65535

参数配置命令表

配置参数命令字段	描述	范围	示例
载波频率	模块工作时的载波频率,十进 制,用9个字符表示	410MHz-470MHz	433000000
功率	发射功率,十进制,用2个字符表 示	5dBm-20dBm	20
调制带宽	发射占用信道的带宽,带宽越大 发送数据越快,但灵敏度也就越 低。配置命令中仅使用带宽的代 号,不用出现实际带宽数。	7.8K-500K,代号与带宽对应关系如下: 0: 7.8KHz 1: 10.4KHz 2: 15.6KHz 3: 20.8KHz 4: 31.2KHz 5: 41.6KHz 6: 62.5KHz 7: 125KHz 8: 250KHz 9: 500KHz	6

WIDORA			9 0 1 (141)/13/	
配置参数命令字段	描述	范围	示例	
扩频因子	扩频通讯的关键参数,扩频因子 越大发送数据越慢,但灵敏度也 就越高。配置命令中仅使用扩频 因子的代号,不用出现实际扩频 因子。	64-4096,代号与扩频因子的对应 关系如下: 6:64 7:128 8:256 9:512 10:1024 11:2048 12:4096		10
纠错码	扩频通讯的关键参数,配置命令中仅使用纠错码的代号,不用出现实际纠错码。	4/5-4/8,代号与纠错码对应关系如下: 1:4/5 2:4/6 3:4/7 4:4/8		1
CRC校验	用户数据CRC校验	0: 关闭 1: 开启		1
隐式报头		0: 显式 1: 隐式		0
单次接收	接收模式设置	0: 连续 1: 单次		0
跳频设置		0: 不支持 1: 支持		0
跳频周期	每次跳频间隔时间	保留		0
接收数据的超时时间	接收数据超时时间,在单次接收模式下,当超过此时间还没接收到数据软件,模块报超时错误,并自动进入SLEEP模式,十进制表示,单位为毫秒	1-65535	3	8000
用户数据长度	用户数据长度,十进制表示作用:应用在隐式报头模式下,指定模块发送和接收数据的长度(此长度=实际用户数据长度+4)。显示报头下无效。	5-255		8
前导码长度	前导码长度,十进制表示	4-65535		4

更新历史

20170624: 增加PWM配置命令