# Mouses de Computadora: Tecnologías, Fabricantes y Evolución

Un recorrido por la historia, tecnologías y principales marcas de este periférico esencial







### Evolución Histórica de los Mouses

1963

### Primer Prototipo

Inventado por **Douglas Engelbart**, consistía en una caja de madera con dos ruedas metálicas

1968

### "Mother of All Demos"

Presentación pública del primer mouse funcional con una sola bola de metal

1981

#### ☐ Xerox Star 8010

Primera computadora comercial con mouse incluido, revolucionando las interfaces gráficas

1999

### Mouse Óptico

Agilent Technologies introduce el primer mouse **óptico sin bola**, eliminando la necesidad de limpieza

2004

#### Mouse Láser Inalámbrico

Logitech lanza el primer mouse láser inalámbrico con mayor precisión y libertad de movimiento

Actualidad

#### Mouses Gaming

Sensores de alta precisión, hasta 30,000 DPI, RGB y diseños ergonómicos especializados



Evolución interna de los componentes de los mouses a lo largo del tiempo



Comparativa entre tecnologías de sensores óptico y láser

### Conceptos Clave: Entendiendo la Tecnología de los Mouses











### Tipos de Mouses y sus Características



### Óptico

- ✓ LED para rastrear movimiento
- Ideal para superficies planas
- Buen rendimiento a bajo DPI
- 8 Limitado en superficies brillantes



### 🔆 Láser

- Diodo láser para mayor precisión
- Funciona en más superficies
- ✓ Mayor sensibilidad (DPI)
- Puede ser demasiado sensible



#### ? Inalámbrico

- Conexión Bluetooth o USB
- Mayor libertad de movimiento
- Batería recargable o pilas
- Puede tener latencia



### Gaming

- Alta precisión y DPI ajustable
- Tasa de muestreo elevada
- Diseño ergonómico y botones extra
- Precio más elevado

| Com | parativa | de  | Caracter | ísticas | <b>Técnicas</b>   |
|-----|----------|-----|----------|---------|-------------------|
|     | parativa | u c | Caracter | Julian  | 1 C C I I I C G S |

| Comparativa de Características Tecnicas |               |               |                |                   |  |
|-----------------------------------------|---------------|---------------|----------------|-------------------|--|
| Característica                          | Óptico        | Láser         | Inalámbrico    | Gaming            |  |
| Precisión                               | Media         | Alta          | Media-Alta     | Muy Alta          |  |
| DPI Máximo                              | 1,600-3,200   | 5,000-8,000   | 1,600-4,000    | 12,000-30,000     |  |
| Latencia                                | <b>⊘</b> Baja | <b>⊘</b> Baja | <b>⊗</b> Media | <b>⋘</b> Muy Baja |  |
| Versatilidad                            | Media         | Alta          | Muy Alta       | Baja              |  |

## Tecnologías de Sensores Comparativa

Los sensores son el componente clave que determina la **precisión** y **rendimiento** de un mouse. Existen principalmente tres tipos de tecnologías, cada una con características específicas de **DPI** (puntos por pulgada), **IPS** (pulgadas por segundo) y capacidades de seguimiento.



| <b>T</b> ecnología | Especificaciones                                                                                    | <b>I</b> Ventajas                                                                                                                       | <b>P</b> I Desventajas                                                                                                                      |
|--------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Óptico LED         | <ul><li>DPI:800-3,200</li><li>IPS: 30-50</li><li>Tasa de muestreo:<br/>1,000 Hz</li></ul>           | <ul> <li>Precio económico</li> <li>Buen rendimiento en superficies mates</li> <li>Menor consumo de energía</li> </ul>                   | <ul> <li>Problemas en superficies brillantes</li> <li>Menor precisión a alta velocidad</li> <li>No ideal para gaming profesional</li> </ul> |
| Láser              | <ul> <li>DPI:5,000-16,000</li> <li>IPS: 150-300</li> <li>Tasa de muestreo:<br/>1,000 Hz</li> </ul>  | <ul> <li>Funciona en más superficies</li> <li>Mayor sensibilidad y precisión</li> <li>Buena respuesta en movimientos rápidos</li> </ul> | <ul> <li>Precio más elevado</li> <li>Puede ser demasiado sensible</li> <li>Mayor consumo de energía</li> </ul>                              |
| Infrarrojo/Gaming  | <ul> <li>DPI:12,000-30,000</li> <li>IPS: 400-750</li> <li>Tasa de muestreo:<br/>8,000 Hz</li> </ul> | <ul> <li>Máxima precisión y velocidad</li> <li>Latencia casi nula</li> <li>Sin aceleración ni predicción</li> </ul>                     | <ul> <li>Precio premium</li> <li>Requiere superficies de calidad</li> <li>Excesivo para uso general</li> </ul>                              |

### Comparativa: Mouses Gaming vs Ofimática

### **A** Gaming



Alto Rendimiento

Sensores de alta precisión con DPI ajustable (12,000-30,000) y tasas de muestreo de hasta 8,000 Hz

Botones Programables

Múltiples botones extra configurables para macros y funciones específicas de juegos

Diseño Ergonómico

Forma adaptada para largas sesiones de juego, con materiales antideslizantes y peso personalizable

🖢 Iluminación RGB

Sistemas de iluminación personalizables con millones de colores y efectos sincronizados

### **固** Ofimática



Eficiencia Energética

Diseñados para larga duración de batería, con modos de suspensión y bajo consumo

Funcionalidad Práctica

Botones esenciales y rueda de desplazamiento optimizados para productividad

Conectividad Versátil

Opciones inalámbricas con Bluetooth o USB, y conexión multidispositivo

Portabilidad

Diseños compactos y ligeros, ideales para transportar y trabajar en diferentes espacios

### Comparativa de Características Técnicas

| Característica | Gaming                | Ofimática            | DPI             | 12,000-30,000        | 800-4,000      |
|----------------|-----------------------|----------------------|-----------------|----------------------|----------------|
| Precisión      | Alta (IPS 400-750)    | Media (IPS 30-150)   | Latencia        | <1 ms                | 4-8 ms         |
| Botones        | 6-12 programables     | 2-4 estándar         | Precio          | €40-€200+            | €10-€60        |
| Durabilidad    | 50-70 millones clicks | 5-15 millones clicks | Uso Recomendado | Juegos profesionales | Trabajo diario |

### Principales Fabricantes y sus Productos Estrella



### **Conclusiones y Tendencias Futuras**

### Tendencias Innovadoras



#### **Sensores Avanzados**

- Sensores ópticos de30,000+ DPI
- Tecnología de seguimiento por IA
- Sensores adaptativos a superficies
- ▶ Reducción de latencia a**0.25ms**



### Conectividad Mejorada

- Tecnologíatri-mode(2.4GHz/Bluetooth/USB-C)
- Conexión simultánea a múltiples dispositivos
- Protocolos inalámbricos de baja energía
- Carga rápida y baterías de larga duración



### Ergonomía Personalizada

- Diseños modulares y ajustables
- Materialestermoactivosque se adaptan a la mano
- Diseños asimétricos para diestros y zurdos
- Sensores biométricos integrados



#### Sostenibilidad

- Materiales reciclados y biodegradables
- Bateríasreemplazablesy recargables
- Diseños modulares para reparación
- Empaques minimalistas y ecológicos

#### **Conclusiones Clave**



La tecnología de sensores continúa evolucionando hacia mayor precisión y adaptabilidad



El mercado gaming impulsa innovaciones que luego se adoptan en productos generalistas



La conectividad universal y la sostenibilidad serán los próximos grandes desafíos