- 1. Let $I < k[x_1, \ldots, x_n]$ be a nonzero ideal (k is algebraically closed field) with the reduced Gröbner basis G with respect to the lexicographic ordering $x_1 > x_2 > \cdots > x_n$. Show that the following statements are equivalent:
 - (a) The quotient $k[x_1, \ldots, x_n]/I$ is a finite dimensional vector space.
 - (b) $I \cap k[x_i] \neq 0$ for any $i = 1, \ldots, n$.
 - (c) For each i = 1, ..., n, there is a $g_i \in G$ with leading term $LT(g_i) = x_i^{n_i}$ for some $n_i \geq 1$.
 - (d) V(I) is a finite set of points.

(Hint: For $a \Rightarrow b$ use the inclusion $k[x_i]/(I \cap k[x_i]) \hookrightarrow k[x_1, \dots, x_n]/I$. For $b \Rightarrow c$ argue that some $LT(g_i)$ divides the leading term of a generator of $I \cap k[x_i]$. Show $c \Rightarrow a$ and $b \Rightarrow d$. For $d \Rightarrow b$ if $V(I) = \{p_1, \dots, p_m\}$ and a_k is the *i*-th coordinate of p_k then show that $\prod_{k=1}^m (x_i - a_k) \in I(V(I)) = \sqrt{I}$.)

- 2. Let S be the rational normal cone in \mathbb{C}^3 parameterized by $\Phi \colon \mathbb{C}^2 \to \mathbb{C}^3$ $\Phi(s,t) = (s^2,t^2,st)$.
 - a) Show that S is an algebraic set by proving S = V(I) where I is the ideal $(z^2 xy) < \mathbb{C}[x, y, z]$.
 - b) Show that S is irreducible.
 - c) Show that $I(S) = (z^2 xy)$.
 - d) Is $\Phi \colon \mathbb{C}^2 \to S$ a regular map? Is it an isomorphism?
 - e) Consider the morphism $\Psi \colon \mathbb{C}^2 \to S$ determined by the \mathbb{C} -algebra homomorphism

$$\frac{\mathbb{C}[x,y,z]}{(z^2-xy)} \to \mathbb{C}[u,v]$$

that maps $x \mapsto u$, $z \mapsto uv$ and $y \mapsto uv^2$. Describe $\Psi^{-1}(p)$ for any point $p \in S$.