RNA-seq解析パイプライン: de novo

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

de novo RNA-seq

- I. Build reference
- 2. Characterize reference

RNA-seq analysis pipeline (de novo strategy)

de novo assemblers of RNA-seq

De novo assemblers use reads to assemble transcripts directly, which does not depend on a reference gnome.

- ► <u>Trinity</u>
- Oases
- TransAbyss
- ...

Home

https://github.com/trinityrnaseq/trinityrnaseq/wiki

Brian Haas edited this page on Nov 1, 2017 · 35 revisions

RNA-Seq De novo Assembly Using Trinity

Quick Guide for the Impatient

Trinity assembles transcript sequences from Illumina RNA-Seq data.

Download Trinity here.

- Trinity Wiki Home
- Installing Trinity
 - Trinity Computing Requirements
 - Accessing Trinity on Publicly Available Compute Resources
 - Run Trinity using Docker
- Running Trinity
 - Genome Guided Trinity
 Transcriptome Assembly
 - Gene Structure
 Annotation of Genomes
- Trinity process and resource monitoring
 - Monitoring Progress
 During a Trinity Run
 - Examining Resource
 Usage at the End of a
 Trinity Run

Trinity example

- ▶ Input: Illumina short reads in FASTQ | FASTA format
- Output: assembled contigs in FASTA format

(Trinity is supported on only Linux)

Let's try Trinity assembly

ex701: de novo RNA-seq assembly using Trinity

Evaluate assembly

Assembly stats

- Number of contigs
- Total length
- mean, median, N50

Coverage

- **BUSCO**
- Map back input reads
- Map other RNAseq reads / known transcripts

Contamination

BLAST (diamond) nr

https://busco.ezlab.org/

BUSCO

from QC to gene prediction and phylogenomics

BUSCO v5.0.0 is the current stable version!

Gitlab ☑, a Conda package ☑ and Docker container ☑ are also available.

Based on evolutionarily-informed expectations of gene content of near-universal single-copy orthologs, BUSCO metric is complementary to technical metrics like N50.

Availability

- Git source code
- Docker container
- Conda package

New in v4

- Bacteria & archaea revised
- Auto-lineage selection
- Automated download of datasets

vs CheckM

- Scores eukaryotes and prokaryotes
- Can run on a laptop
- Better resolution, less overestimates

BUSCO

BUSCO provides a quantitative assessment of the completeness in terms of expected gene content of a genome assembly or transcriptome by using universally conserved one-copy gene set. The results are simplified into categories of Complete and single-copy, Complete and duplicated, Fragmented, or Missing.

```
# Run BUSCO
$ BUSCO —m transcriptome contigs.fa —o OUTPUT —l lineage
```

```
# example of output
   (Insecta)
   C:94.5%[S:88.5%,D:6.0%],F:1.1%,M:4.4%,n:978

925 Complete BUSCOS (C)
   866 Complete and single-copy BUSCOS (S)
   59 Complete and duplicated BUSCOS (D)
   11 Fragmented BUSCOS (F)
   42 Missing BUSCOS (M)
   978 Total BUSCO groups searched
```

Clean up reference sequences

- An issue: Inflation of the number of Trinity contigs is often observed.
 - Trinity outputs splicing variants separately
 - Contaminations
 - Artifacts (bad contigs)
 - Incomplete contigs with very low expression.

Solution

- Filter out unwanted contigs.
- Filter out very lowly expressed transcripts.
- Cluster similar sequences.

Remove redundancy in reference sequences

Strategy and Tools

- Choose one representative transcript from each cluster based on Trinity component information. (longest or highest expression)
- Clustering
 - CDHIT-EST (http://weizhongli-lab.org/cd-hit/)
 - ▶ Corset (Davidson et al., 2014).
 - RapClust (https://github.com/COMBINE-lab/RapClust)
 - EvidentialGene (http://arthropods.eugenes.org/EvidentialGene/trassembly.html)
- Advantage of redundancy reduction
 - Gene-oriented analysis => easier interpretation
 - Better control of multiple comparison.

RNA-seq analysis pipeline (de novo strategy)

DEG analysis

▶ Follow transcript-based RNA-seq pipeline