Scars of the Transverse Field Ising Model on Discrete Geometries (Polyhedra)

September 18, 2025

Introduction

We are studying scars of the simple Ising model on discrete geometries (polyhedra). Here, scars are identified as special, sparser eigenstates of the Hamiltonian which are simultaneously eigenstates of the Ising term and of the transverse-field (TF) term separately; in addition, each such state is annihilated by exactly one of the two terms. In all of the following examples, the Hamiltonian is

$$H = H_{\text{Ising}} + H_{\text{TF}}, \quad H_{\text{Ising}} = J \sum_{\langle i,j \rangle} \sigma_i^x \sigma_j^x, \quad H_{\text{TF}} = -h \sum_i \sigma_i^z$$
 (1)

where J = 1, h = 3 (antiferromagnetic, non critical).

Platonic Solids

Tetrahedron

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V = 4, F = 3 (equilateral triangles), E = 6
- Solid point group: T_d Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: $\dim \mathcal{H} = 2^4 = 16$ (spin- $\frac{1}{2}$ on each vertex)
- **Eigenvalue range:** [-12.37, 12.71]

• Number of scar sets: 1

For each scar set S_k :

Multiplet label	Energy E	Degeneracy	Annihilated by	Non-zero components (vs. $2^4 = 16$)
S_1	-2	2	H_{TF}	4,6

Local properties (RDMs)

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=1 sites, with n < V/2, (V=4)
- Compactness criterion: NA, the single point 0 was chosen
- Diagnostics: 1-site RDMs for both scars are full rank (system size V=4 is too small)

Octahedron

Overview and data

• Duality / paired solid: cube

• Vertices (V), Faces (F), Edges (E): V = 6, F = 8 (equilateral triangles), E = 12

• Solid point group: O_h Vertex stabilizer subgroup: C_4 for rotations only, C_{4v} for full symmetry group

• Hilbert space: $\dim \mathcal{H} = 2^6 = 64$ (spin- $\frac{1}{2}$ on each vertex)

• Eigenvalue range: [-18.80, 19.67]

Scar structure: sets and multiplets

• Number of scar sets: 3

Multiplet label	Energy E	Degeneracy	Annihilated by	Non-zero components (vs. $2^6 = 64$)
S_1	-6	3	$H_{ m Ising}$	12
S_2	-4	1	H_{TF}	12
S_3	6	3	$H_{ m Ising}$	12

- Local RDM definition: $\rho_A={\rm Tr}_{\bar A}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2 sites, with n< V/2, (V=6)
- Compactness criterion: nearest-neighbor, for example [0, 1]
- Diagnostics: 2-sites RDMs for all 7 scars are full rank (system size V=6 is too small)

Cube

Overview and data

- Duality / paired solid: octahedron
- Vertices (V), Faces (F), Edges (E): V = 8, F = 6 (squares), E = 12
- Solid point group: O_h Vertex stabilizer subgroup: C_3 for rotations only, C_{3v} for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^8=256$ (spin- $\frac{1}{2}$ on each vertex)
- **Eigenvalue range:** [-25.11, 25.11]

Scar structure: sets and multiplets

• Number of scar sets: 2

Multiplet label	Energy E	Degeneracy	Annihilated by	Non-zero components (vs. $2^8 = 256$)
S_1	-2	3	H_{TF}	48
S_2	2	3	H_{TF}	48

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3 sites, with n < V/2, (V=8)
- Compactness criterion: nearest-neighbor + most compact, for example [0,1],[0,1,2]
- Diagnostics: 2-sites RDMs for all 6 scars are full rank (system size V=8 is too small)

Icosahedron

- Duality / paired solid: dodecahedron
- Vertices (V), Faces (F), Edges (E): V = 12, F = 20 (equilateral triangles), E = 30
- Solid point group: I_h Vertex stabilizer subgroup: C_5 for rotations only, D_5 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^{12}=4096$ (spin- $\frac{1}{2}$ on each vertex)
- Eigenvalue range: [-37.95, 41.29]

• Number of scar sets: 1

For each scar set S_k :

Multiplet label	Energy E	Degeneracy	Annihilated by	Non-zero components (vs. $2^{12} = 4096$)
S_1	-6	5	H_{TF}	280

Local properties (RDMs)

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5 sites, with n < V/2, (V=12).
- Compactness criterion: <how subsets chosen>.
- Diagnostics:
 - 2/3-sites RDMs for all 5 scars are full rank
 - 4-sites RDMs for all 5 scars have reduced rank of 11 = 16 5
 - 5-sites RDMs for all 5 scars have reduced rank of 18=32 14

Dodecahedron

- Duality / paired solid: icosahedron
- Vertices (V), Faces (F), Edges (E): V = 20, F = 12 (equilateral triangles), E = 30

- Solid point group: I_h Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^{20}=1,048,576$ (spin- $\frac{1}{2}$ on each vertex)
- **Eigenvalue range:** [-12.37, 12.71]

• Number of scar sets: 1

For each scar set S_k :

Multiplet label	Energy E	Degeneracy	Annihilated by	Non-zero components (vs. $2^{20} = 1,048,576$)
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> /</pre>

Local properties (RDMs).

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6,7,8,9 sites, with n < V/2, (V=20).
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Catalan Solids

Triakis Tetrahedron

Overview and data

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V=4, F=3 (equilateral triangles), E=6
- Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: $\dim \mathcal{H} = 2^4 = 16$ (spin- $\frac{1}{2}$ on each vertex)
- Eigenvalue range: [-12.37, 12.71]

Scar structure: sets and multiplets

• Number of scar sets: 2

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{array}{c} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{array}$
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> /</pre>
S_2	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Rhombic Dodecahedron

Overview and data

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V = 4, F = 3 (equilateral triangles), E = 6
- Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^4=16$ (spin- $\frac{1}{2}$ on each vertex)
- Eigenvalue range: [-12.37, 12.71]

Scar structure: sets and multiplets

• Number of scar sets: 2

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{array}{c} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{array}$
S_1	± <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>
S_2	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Triakis Octahedron

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V = 4, F = 3 (equilateral triangles), E = 6
- Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^4=16$ (spin- $\frac{1}{2}$ on each vertex)
- **Eigenvalue range:** [-12.37, 12.71]

• Number of scar sets: 2

For each scar set S_k :

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{array}{c} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{array}$
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>
S_2	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

Local properties (RDMs).

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Tetrakis Hexahedron

Overview and data.

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V=4, F=3 (equilateral triangles), E=6

• Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group

• Hilbert space: $\dim \mathcal{H} = 2^4 = 16$ (spin- $\frac{1}{2}$ on each vertex)

• Eigenvalue range: [-12.37, 12.71]

Scar structure: sets and multiplets

• Number of scar sets: 2

For each scar set S_k :

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{array}{c} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{array}$
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>
S_2	± <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

Local properties (RDMs).

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Archimedean Solids

Truncated Tetrahedron

Overview and data

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V=4, F=3 (equilateral triangles), E=6
- Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^4=16$ (spin- $\frac{1}{2}$ on each vertex)
- Eigenvalue range: [-12.37, 12.71]

Scar structure: sets and multiplets

• Number of scar sets: 2

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{aligned} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{aligned}$
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>
S_2	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Cuboctahedron

Overview and data

- Duality / paired solid: self-dual, tetrahedron
- Vertices (V), Faces (F), Edges (E): V=4, F=3 (equilateral triangles), E=6
- Solid point group: $T_d \cong S_4$ Vertex stabilizer subgroup: C_3 for rotations only, D_3 for full symmetry group
- Hilbert space: dim $\mathcal{H}=2^4=16$ (spin- $\frac{1}{2}$ on each vertex)
- **Eigenvalue range:** [-12.37, 12.71]

Scar structure: sets and multiplets

• Number of scar sets: 2

Multiplet label	Energy E	Degeneracy	Annihilated by	$egin{array}{c} ext{Non-zero} \ ext{components} \ ext{(vs. } 2^V) \end{array}$
S_1	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>
S_2	\pm <int></int>	<deg></deg>	$H_{ m Ising}$ / $H_{ m TF}$ / both	<pre><# non-zero> / 2<v></v></pre>

- Local RDM definition: $\rho_A = \text{Tr}_{\bar{A}}(|\psi\rangle\langle\psi|)$ on compact subsets of n=2,3,4,5,6 sites, with n < V/2.
- Compactness criterion: <now subsets chosen>.
- Diagnostics: <observables, entropies, purity, etc.>.

Conclusions The eigenstates corresponding to eigenvalue 0, which are annihilated by both H_{Ising} and H_{TF} , are probably not proper scars, since they are not really sparse.