Session 11: Optimality conditions

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Critical points (Unconstrained optimization)
- 2. Constrained optimization and Lagrange multipliers
- 3. Convex constrained optimization

1. Critical points (Unconstrained optimization)

Definitions

Definition

Let $f:\mathbb{R}^n o \mathbb{R}$ be a differentiable function. We say that $x \in \mathbb{R}^n$ is

- a critical point of f if $\nabla f(x) = 0$,
- a global minimizer of f if for all $x' \in \mathbb{R}^n$, $f(x) \leq f(x')$,
- a local minimizer of f if there exists $\delta > 0$ such that we have $f(x) \le f(x')$ for all x' verifying $||x x'|| \le \delta$.

1.1 Local extrema

Proposition

x is a local minimizer of $f \implies \nabla f(x) = 0$.

Proposition

Assume that f is convex. Then

$$\nabla f(x) = 0 \iff x \text{ is a global minimizer of } f.$$

Looking at the Hessian

Proposition

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a twice differentiable function. Let $x\in\mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x)=0$.

Then, if $H_f(x)$ is positive definite (that is, if all the eigenvalues of $H_f(x)$ are strictly positive), then x is a local minimizer of f.

Looking at the Hessian

Proposition

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a twice differentiable function. Let $x\in\mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x)=0$.

Then, if $H_f(x)$ is negative definite (that is, if all the eigenvalues of $H_f(x)$ are strictly negative), then x is a local maximizer of f.

1.2 Saddle points

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Let $x \in \mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x) = 0$.

Then, if $H_f(x)$ admits strictly positive eigenvalues and strictly negative eigenvalues, then x is neither a local maximum nor a local minimum. We call x a saddle point.

1.2 Saddle points

1.3 Examples

Study the critical points of $f(x,y)=x^2+xy^2-x+1$.

Critical points (Unconstrained optimization) 1.3 Examples

1.3 Examples

Study the critical points of $f(x,y)=x^2+xy^2-x+1$.

Critical points (Unconstrained optimization) 1.3 Examples

Critical points' critical points

lacktriangledown Global minimizer \Longrightarrow critical point.

Critical point + positive definite Hessian ⇒ local minimizer.

Example: Hessian at critical point

The eigenvalues of the Hessian at \boldsymbol{x} are

- 1. $\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -1 \end{cases}$
- 2. $\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 1 \end{cases}$
- 3. $\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 1 \end{cases}$
- 4. $\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$

Example: Hessian at critical point

The eigenvalues of the Hessian at \boldsymbol{x} are

1.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -3 \end{cases}$$

2.
$$\begin{cases} \lambda_1 = 2 \\ \lambda_2 = 2 \end{cases}$$

3.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 3 \end{cases}$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

Example: Hessian at critical point

The eigenvalues of the Hessian at \boldsymbol{x} are

1.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = -3 \end{cases}$$

$$\begin{array}{l}
\lambda_1 = 2 \\
\lambda_2 = 2
\end{array}$$

3.
$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = 3 \end{cases}$$

4.
$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \end{cases}$$

2. Constrained optimization

General formulation

Constrained optimization problems take the form:

minimize
$$f(x)$$
 with variable $x \in \mathbb{R}^n$. subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p,$

Example:

2.1 Feasible points

Definition

A point $x \in \mathbb{R}^n$ is *feasible* if it satisfies all the constraints: $g_1(x) \leq 0, \ldots, g_m(x) \leq 0$ and $h_1(x) = 0, \ldots, h_p(x) = 0$.

Example:

Question

If x is a solution to

do we have
$$abla f(x) = 0$$
 ?

, ,

minimize f(x)

subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

 $h_i(x) = 0, \quad i = 1, \dots, p,$

2.2 First order optimality condition

Consider the following problem:

$$\mbox{minimize} \quad f(x) \quad \mbox{subject to} \quad g_(x) \leq 0 \qquad (\star)$$

Case 1: "x inside"

Case 2: "x on boundary"

The constraint is active at x: g(x) = 0.

2. Constrained optimization 2.2 First order optimality condition

Cases summary

Case 1: "
$$x$$
 inside" $\Rightarrow \nabla f(x) = 0$.

Case 2: active constraint, $g(x) = 0 \Rightarrow \nabla f(x) = -\lambda \nabla g(x)$ for $\lambda \geq 0$

First order optimality condition

Theorem

If x is a solution and if $\nabla h_1(x),\ldots,\nabla h_p(x),\{\nabla g_i(x)\,|\,g_i(x)=0\}$ are linearly independent, then there exists $\lambda_1,\ldots,\lambda_m\geq 0$ and $\nu_1,\ldots,\nu_p\in\mathbb{R}$ such that:

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0.$$

Moreover, for all $i \in \{1, ..., m\}$, if $g_i(x) < 0$ then $\lambda_i = 0$.

Evample

Let $u \in \mathbb{R}^n$ be a non-zero vector.	Minimize $\langle x,u \rangle$ subject to $\ x\ ^2=1.$	

Evample

Let $u \in \mathbb{R}^n$ be a non-zero vector.	Minimize $\langle x,u \rangle$ subject to $\ x\ ^2=1.$	

3. Convex constrained optimization

General formulation

We say that the constrained optimization problem

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p, \end{array}$$

is convex when f, g_1, \ldots, g_m are convex and h_1, \ldots, h_p are affine.

Karush-Kuhn-Tucker Theorem

Theorem (KKT)

Assume that the problem is convex and that there exists a feasible point x_0 such that $g_i(x_0) < 0$ for all i.

Then x is a solution if and only if x is feasible and there exists $\lambda_1, \ldots, \lambda_m \geq 0, \nu_1, \ldots, \nu_p \in \mathbb{R}$ such that:

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0. \\ \lambda_i g_i(x) = 0, \text{ for all } i \in \{1, \dots, p\}. \end{cases}$$

Example: Ridge regression

				r	nin sub	imi iect	ze t to		$Ax \\ x \parallel^2$	- : 2 <	$y\ ^2$	}					
					0.10	,		"	~								

3. Convex constrained optimization

Example: Ridge regression

				r	nin sub	imi iect	ze t to		$Ax \\ x \parallel^2$	- : 2 <	$y\ ^2$	}					
					0.10	,		"	~								

3. Convex constrained optimization

Example

3. Convex constrained optimization

Let $u, v \in \mathbb{R}^n$ such that ||v|| = 1. Solve:

minimize $||x - u||^2$

subject to $x \perp v$.

Example

3. Convex constrained optimization

Questions?

Questions?

