Project - Data Mining

Problem 1: Clustering

1.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

```
In [7]:

df_1.head()

Out[7]:
```

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_sir
0	19.94	16.92	0.8752	6.675	3.763	3.252	
1	15.99	14.89	0.9064	5.363	3.582	3.336	
2	18.95	16.42	0.8829	6.248	3.755	3.368	
3	10.83	12.96	0.8099	5.278	2.641	5.182	
4	17.99	15.86	0.8992	5.890	3.694	2.068	
4							Þ

In [8]:

Out[10]:

```
df 1.shape
Out[8]:
(210, 7)
In [9]:
df 1.isnull().sum()
Out[9]:
spending
                                     0
                                     0
advance_payments
probability of full payment
                                     0
current balance
                                     0
\operatorname{credit} \overline{\lim}
                                     0
min payment amt
                                     0
max_spent_in_single_shopping
dtype: int64
In [10]:
df_1.describe()
```

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent
count	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	
mean	14.847524	14.559286	0.870999	5.628533	3.258605	3.700201	
std	2.909699	1.305959	0.023629	0.443063	0.377714	1.503557	
min	10.590000	12.410000	0.808100	4.899000	2.630000	0.765100	
25%	12.270000	13.450000	0.856900	5.262250	2.944000	2.561500	

	50%	1 4p255000 9	advance_jb4y32200119	probability_of_full_βaλλιλέπθ	current _553/3/500	cr êdî B TINA R	min_payn 1e 59 <u>9</u> 000t	max_spent
	75%	17.305000	15.715000	0.887775	5.979750	3.561750	4.768750	
	max	21.180000	17.250000	0.918300	6.675000	4.033000	8.456000	
4	1						1)

In [25]:

plt.subplots(figsize= (15,8))
sns.heatmap(df_1.corr())

Out[25]:

<AxesSubplot:>

In [26]:

sns.pairplot(data = df_1)
plt.show()

In [20]:

```
df_1.boxplot(figsize= (15,8))
```

Out[20]:

<AxesSubplot:>

1.2 Do you think scaling is necessary for clustering in this case? Justify

1.2 Inference: Yes I beleive that clustering is required in this case for the following reasons:

- Scaling is necessary in this case as the values vary a lot by scale in different columns. Certain values are in decimals, whereas certain values are in double digits.
- . Normalizing the data leads to better clustering.

1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

In [29]:

```
scaled_df_1 = pd.DataFrame(X.fit_transform(df_1), columns=df_1.columns)
```

In [30]:

```
scaled_df_1.head()
```

Out[30]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_sir
0	1.754355	1.811968	0.178230	2.367533	1.338579	-0.298806	
1	0.393582	0.253840	1.501773	-0.600744	0.858236	-0.242805	
2	1.413300	1.428192	0.504874	1.401485	1.317348	-0.221471	
3	1.384034	-1.227533	-2.591878	-0.793049	-1.639017	0.987884	
4	1.082581	0.998364	1.196340	0.591544	1.155464	-1.088154	
4							<u> </u>

In [32]:

```
wardlink = linkage(scaled_df_1, method = 'ward')
```

In [33]:

```
dend = dendrogram(wardlink)
```


In [34]:

- ----

```
In [37]:
clusters = fcluster(wardlink, 2, criterion='maxclust')
clusters
Out[37]:
2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1,
      1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1,
      1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1,
      2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,
      2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
      2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
      2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,
      1, 2, 2, 1, 2, 2, 1, 2, 1, 2], dtype=int32)
1.3 Inference: The optimal number of clusters is 2
1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette
score. Explain the results properly. Interpret and write inferences on the finalized clusters.
In [42]:
k means = KMeans(n clusters = 2, random state=1)
In [44]:
k means.fit(scaled df 1)
Out[44]:
KMeans(n clusters=2, random state=1)
In [45]:
k means.labels
Out[45]:
array([1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
      1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1,
      0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
      1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1,
      1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,
      1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
      0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
      0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
      1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])
In [46]:
wss = []
In [48]:
for i in range (1,11):
   KM = KMeans(n clusters=i)
```

KM.fit(scaled_df_1)
wss.append(KM.inertia)

In [49]:

Out[49]:

[1469.999999999998, 659.171754487041, 430.6589731513006,

WSS

```
371.29354819439664,
327.55521940626613,
289.42530694598116,
262.25851135061475,
240.01730394201434,
223.6400463892972,
206.22762187342786]
```

In [50]:

```
plt.plot(range(1,11), wss)
```

Out[50]:

[<matplotlib.lines.Line2D at 0x204f9b9da60>]

In [53]:

```
silhouette_score(scaled_df_1,labels,random_state=1)
```

Out[53]:

0.4007270552751299

- 1.4 Inference: The optimal number of clusters is 3.
- 1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

1.5 Inference:

Cluster Profile 0: Has medium spending, hence campaigns should be made in a way accounting for the same. Cluster Profile 1: Has low spending, hence campaigns should be made in a way accounting for the same. Lower end products can be targeted for Cluster 1. Cluster Profile 2: Has high spending, high probability of full payment hence campaigns should be made in a way accounting for the same. Higher end products can be targeted for Cluster 2.

Problem 2: CART-RF-ANN

2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

```
In [6]:
df.head()
```

Out[6]:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	ASIA

1	A ge	Agency_Code	Travel Ag ∉gp ≱	ClaimMd	Commisión	Charinel	Durati 6 4	20109	CuBtoduct (Name	DestinationA
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	Americas
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	ASIA
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	ASIA

In [7]:

df.shape

Out[7]:

(3000, 10)

In [8]:

df.isnull().sum()

Out[8]:

0 Age Agency_Code 0 0 Type Claimed 0 Commission 0 Channel 0 Duration 0 Sales 0 Product Name 0 0 Destination dtype: int64

In [9]:

df.describe()

Out[9]:

		Age	Commision	Duration	Sales
Ī	count	3000.000000	3000.000000	3000.000000	3000.000000
	mean	38.091000	14.529203	70.001333	60.249913
	std	10.463518	25.481455	134.053313	70.733954
	min	8.000000	0.000000	-1.000000	0.000000
	25%	32.000000	0.000000	11.000000	20.000000
	50%	36.000000	4.630000	26.500000	33.000000
	75%	42.000000	17.235000	63.000000	69.000000
	max	84.000000	210.210000	4580.000000	539.000000

In [10]:

```
df.Type.value_counts(normalize=True).plot.pie()
plt.show()
```


In [11]:

```
df.Claimed.value_counts(normalize=True).plot.pie()
plt.show()
```


In [12]:

```
df['Product Name'].value_counts(normalize=True).plot.pie()
plt.show()
```

C:\Users\Yash Joshi\anaconda3\lib\site-packages\pandas\plotting_matplotlib\core.py:1547: MatplotlibDeprecationWarning: normalize=None does not normalize if the sum is less than 1 but this behavior is deprecated since 3.3 until two minor releases later. After the depre cation period the default value will be normalize=True. To prevent normalization pass nor malize=False

results = ax.pie(y, labels=blabels, **kwds)

In [13]:

```
df.Destination.value_counts(normalize=True).plot.pie()
plt.show()
```


In [14]:

```
plt.subplots(figsize= (15,8))
sns.heatmap(df.corr())
```

Out[14]:

<AxesSubplot:>

In [15]:

In [16]:

```
df.boxplot(figsize= (15,8))
```

Out[16]:

<AxesSubplot:>

- 2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network
- 2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model.

Building a Decision Tree Classifier

In [119]:

```
print(pd.DataFrame(dt_model.feature_importances_, columns=["Imp"], index=X_train.columns
).sort_values('Imp',ascending=False))
```

	Imp
Duration	0.255256
Sales	0.224921
Age	0.199497
Agency_Code	0.166962
Commision	0.087446
Product Name	0.033870
Destination	0.028140
Channel	0.003908
Туре	0.000000

In [134]:

```
cart metrics=classification report(train labels, ytrain predict,output dict=True)
```

```
df=pd.DataFrame(cart_metrics).transpose()
cart_train_f1=round(df.loc["1"][2],2)
cart train recall=round(df.loc["1"][1],2)
cart_train_precision=round(df.loc["1"][0],2)
print ('cart train precision ', cart train precision)
print ('cart train recall ', cart train recall)
print ('cart train f1 ', cart_train_f1)
cart_train_precision 0.69
cart train recall 0.58
cart train f1 0.63
In [131]:
cart metrics=classification report(test labels, ytest predict,output dict=True)
df=pd.DataFrame(cart metrics).transpose()
cart_test_precision=round(df.loc["1"][0],2)
cart_test_recall=round(df.loc["1"][1],2)
cart_test_f1=round(df.loc["1"][2],2)
print ('cart_test_precision', cart_test_precision)
print ('cart_test_recall ',cart_test_recall)
print ('cart_test_f1 ',cart_test_f1)
cart_test_precision 0.68
cart_test_recall 0.57
cart_test_f1 0.62
Building a Random Forest Classifier
In [157]:
best_grid = RandomForestClassifier(max_depth=10, max_features=6, min_samples_leaf=5,
min_samples_split=50, n_estimators=300, random_state=1)
best grid.fit(X train, train labels)
Out[157]:
RandomForestClassifier(max depth=10, max features=6, min samples leaf=5,
                       min samples split=50, n estimators=300, random state=1)
In [161]:
rf metrics=classification report(train labels, ytrain predict,output dict=True)
df=pd.DataFrame(rf metrics).transpose()
rf train f1=round(df.loc["1"][2],2)
rf train recall=round(df.loc["1"][1],2)
rf train precision=round(df.loc["1"][0],2)
print ('rf train precision ', rf train precision)
print ('rf train recall ', rf train recall)
print ('rf train f1 ',rf_train_f1)
rf_train_precision 0.75
rf train recall 0.61
rf train f1 0.67
In [163]:
rf=classification report(test labels, ytest predict,output dict=True)
df=pd.DataFrame(rf).transpose()
rf test precision=round(df.loc["1"][0],2)
rf_test_recall=round(df.loc["1"][1],2)
rf test f1=round(df.loc["1"][2],2)
print ('rf_test_precision', rf_test_precision)
print ('rf_test_recall ',rf_test_recall)
print ('rf test f1 ',rf test f1)
rf_test_precision 0.69
rf_test_recall
               0.57
rf_test_f1 0.62
```

Building a Neural Network Classifier

```
In [31]:
```

nn test fl 0.59

```
nn metrics=classification report(train labels, ytrain predict,output dict=True)
df=pd.DataFrame(nn metrics).transpose()
nn train precision=round(df.loc["1"][0],2)
nn train recall=round(df.loc["1"][1],2)
nn train f1=round(df.loc["1"][2],2)
print ('nn train precision ', nn train precision)
print ('nn train recall ', nn train recall)
print ('nn train f1 ', nn train f1)
nn train precision 0.66
nn train recall 0.55
nn train f1 0.6
In [32]:
nn_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(nn metrics).transpose()
nn test precision=round(df.loc["1"][0],2)
nn_test_recall=round(df.loc["1"][1],2)
nn test f1=round(df.loc["1"][2],2)
print ('nn test precision ', nn test precision)
print ('nn test recall ', nn test recall)
print ('nn test f1 ', nn test f1)
nn test precision 0.67
nn test recall 0.52
```

2.4 Final Model: Compare all the models and write an inference which model is best/optimized.

Comparing the precision, recall and F1 scores: Out of all of the model Random Forest Classifier is the best suited for this dataset.

2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations

The company should implement Random Forest Classifier method.