Vektor Satuan

adalah suatu vektor yang panjangnya satu

Vektor satuan searah sumbu X, sumbu Y, dan sumbu Z berturut-turut adalah vektor \underline{i} , \underline{j} \underline{dan} \underline{k}

$$\underline{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \underline{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ dan } \underline{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Aljabar Vektor

- Kesamaan vektor
- Penjumlahan vektor
- Pengurangan vektor
- Perkalian vektor dengan bilangan real

Kesamaan Vektor

```
Misalkan:
 \underline{a} = a1i + a2j + a3k dan
 \underline{\mathbf{b}} = \mathbf{b} \mathbf{1} i + \mathbf{b} \mathbf{2} j + \mathbf{b} \mathbf{3} k
Jika: \underline{a} = \underline{b}, maka a1 = b1
                                         a2 = b2
                                         dan
                                         a3 = b3
```

Kesamaan Vektor

Dua buah vektor dikatakan sama besar bila besar dan arahnya sama.

```
Misalkan u = (a,b) dan v = (c,d)

Jika u = v, maka

|u| = |v|

arah u = arah v

a=c dan b=d
```


Dua vektor sama, a = b

Dua vektor arah sama, besaran beda

Dua Vektor mempunyai besar sama, arah berbeda

Dua Vektor besar dan arah berbeda

Diketahui:

$$\underline{\mathbf{a}} = i + \mathbf{x}j - 3k \quad \text{dan}$$

$$\underline{\mathbf{b}} = (\mathbf{x} - \mathbf{y})i - 2j - 3k$$

$$\mathbf{Jika} \mathbf{a} = \mathbf{b}, \, \text{maka} \, \mathbf{x} + \mathbf{y} = \dots$$

Jawab:

$$\underline{\mathbf{a}} = i + \mathbf{x}j - 3k \quad \text{dan}$$

$$\underline{\mathbf{b}} = (\mathbf{x} - \mathbf{y})i - 2j - 3k$$

$$\underline{\mathbf{a}} = \underline{\mathbf{b}}$$

1 = x - y

$$x = -2$$
; disubstitusikan

$$1 = -2 - y; \Rightarrow y = -3$$

Jadi
$$x + y = -2 + (-3) = -5$$

Penjumlahan Vektor

Misalkan:
$$\underline{\mathbf{a}} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \mathbf{dan} \quad \underline{\mathbf{b}} = \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$$

Jika: $\underline{a} + \underline{b} = \underline{c}$, maka vektor

$$\underline{\mathbf{c}} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

Diketahui:

$$\underline{\mathbf{a}} = \begin{pmatrix} 3 \\ -2\mathbf{p} \\ -1 \end{pmatrix} \qquad \underline{\mathbf{b}} = \begin{pmatrix} \mathbf{p} \\ 6 \\ 3 \end{pmatrix} \qquad \mathbf{dan} \quad \underline{\mathbf{c}} = \begin{pmatrix} -5 \\ 4\mathbf{q} \\ 2 \end{pmatrix}$$

Jika $\underline{a} + \underline{b} = \underline{c}$, maka $p - q = \dots$

jawab:

$$\underline{a} + \underline{b} = \underline{c}$$

$$\begin{pmatrix} 3 \\ -2p \\ -1 \end{pmatrix} + \begin{pmatrix} p \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} -5 \\ 4q \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3+p \\ -2p+6 \\ (-1)+3 \end{pmatrix} = \begin{pmatrix} -5 \\ 4q \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3+p \\ -2p+6 \\ (-1)+3 \end{pmatrix} = \begin{pmatrix} -5 \\ 4q \\ 2 \end{pmatrix}$$

$$3+p=-5 \implies p=-8$$

$$-2p + 6 = 4q$$

 $16 + 6 = 4q$
 $22 = 4q \Rightarrow q = 5\frac{1}{2};$

Jadi p – q =
$$-8 - 5\frac{1}{2}$$

= $-13\frac{1}{2}$

Resultan Vektor dan Metode Mencari Resultan

Hasil Penjumlahan dari vektor-vekrot disebut resultan.

Ada beberapa metode yang dapat digunakan mencari resultan antara lain :

- 1. Metode Jajaran Genjang
- 2. Metode Poligon
- 3. Metode Analitik

Metode Jajaran Genjang

Besar (panjang) R dapat dirumuskan sebagai berikut,

$$R = \sqrt{A^2 + B^2 + 2AB\cos\alpha}$$

Catatan:

- ightharpoonup Jika vektor A dan B searah, maka $\alpha = 0^{\circ} R = \sqrt{A^2 + B^2 + 2AB^2}$
- ightharpoonup Jika vektor A dan B berlawanan arah, maka $\alpha = 180^{\circ}$ $R = \sqrt{A^2 + B^2 + 2AB}$
- ightharpoonup Jika vektor A dan B saling tegak lurus, maka $\alpha = 90^{\circ}$ $R = \sqrt{A^2 + B^2}$

Dua vektor masing-masing dengan gaya F1 dan F2 sebesar 5 N dan 8 N, dua vektor tersebut membentuk sudut 60°, tentukan besar resultan kedua vektor tersebut!

Metode Segi Banyak (Poligon)

Cara meresultankan vektor dengan cara menggambar untuk menghitung nilai resultan. Resultan dapat dibentuk dengan menggambar anak panah dari pangkal awal hingga ujung akhir

$$R = A + B + C$$

Metode Segi Banyak (Poligon)

Dalam metode Poligon terkadang vektor yang dijumlahkan banyak, maka resultan bisa terdapat lebih dari satu.

Metode Analitik

Vektor akan diproyeksikan kedalam komponen-komponennya dalam suatu koordinat tertentu. Jika pada satu titik bekerja lebih dari 1 vektor maka untuk mencari resultan dapat digunakan metode analitik.

Vektor Komponen pada sumbu X

$$\begin{aligned} \mathbf{F_{1X}} &= \mathbf{F_1} \cos \alpha_1 \\ \mathbf{F_{2X}} &= \mathbf{F_2} \cos \alpha_2 \\ \mathbf{F_{3X}} &= \mathbf{F_3} \cos \alpha_3 \\ \Sigma \mathbf{F_X} &= \mathbf{F_1} \cos \alpha_1 + \mathbf{F_2} \cos \alpha_2 + \mathbf{F_3} \cos \alpha_3 \end{aligned}$$

Vektor Komponen pada sumbu Y

$$\begin{aligned} \mathbf{F_{1Y}} &= \mathbf{F_1} \sin \alpha_1 \\ \mathbf{F_{2Y}} &= \mathbf{F_2} \sin \alpha_2 \\ \mathbf{F_{3Y}} &= \mathbf{F_3} \sin \alpha_3 \\ \Sigma \mathbf{F_Y} &= \mathbf{F_1} \sin \alpha_1 + \mathbf{F_2} \sin \alpha_2 + \mathbf{F_3} \sin \alpha_3 \end{aligned}$$

Secara umum, Jika bekerja n buah vektor yang bekerja pada bidang datar membentuk sudut n buah α dengan sumbu X, maka rumus resultan vektor pada sumbu X dan Y adalah :

$$\Sigma F_{X} = F_{1} \cos \alpha_{1} + F_{2} \cos \alpha_{2} + F_{3} \cos \alpha_{3} + \dots + F_{n} \cos \alpha_{n}$$

$$\Sigma F_{Y} = F_{1} \sin \alpha_{1} + F_{2} \sin \alpha_{2} + F_{3} \sin \alpha_{3} + \dots + F_{n} \sin \alpha_{n}$$

Jika nilai komponen vektor pada sumbu X dan Y telah dikatahui maka nilai vektor resultan dihitung dengan persamaan:

$$F_R = \sqrt{\left(\sum F_X\right)^2 + \left(\sum F_Y\right)^2}$$

Arah resultan terhadap X positif (β) dapat dicari dengan persamaan :

$$\tan \beta = \frac{\sum F_Y}{\sum F_X}$$

$$\beta = \arctan\left(\frac{\sum F_Y}{\sum F_X}\right)$$

Arctan(x) adalah inverse dari
$$tan(x)$$
.
$$arctan(x) = tan^{-1}(x)$$
 Sebagai contoh, jika tan dari 45° adalah 1
$$tan \ 45° = 1$$
 Maka, arctan dari 1 adalah 45°
$$arctan \ (1) = tan^{-1}(1) = 45°$$

Tugas Individu ke 2:

Diberikan 3 buah vektor $F_1 = 10 \text{ N}$, $F_2 = 25 \text{ N}$ dan $F_3 = 15 \text{ N}$ seperti gambar, tentukanlah Resultan ketiga vektor tersebut

Pengurangan Vektor

```
Misalkan:
\underline{\mathbf{a}} = \mathbf{a}\mathbf{1}\underline{i} + \mathbf{a}\mathbf{2}\underline{i} + \mathbf{a}\mathbf{3}\underline{k}
dan
\underline{b} = b1\underline{i} + b2\underline{i} + b3\underline{k}
Jika: \underline{a} - \underline{b} = \underline{c}, maka
c = (a1 - b1)i + (a2 - b2)j + (a3 - b2)i
b3) k
```

Perhatikan gambar:

titik B(2,4) adalah:
$$\underline{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \underline{\mathbf{b}} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$\vec{b} - \vec{a} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \vec{AB}$$

$$vektor \underline{AB} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

Jadi secara umum: $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

Diketahui titik-titik A(3,5,2) dan B(1,2,4). Tentukan komponen-komponen vektor AB

Jawab:
$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

Diketahui titik-titik P(1,2,-2) dan Q(-1,3,0).
Tentukan panjang vektor PQ (atau jarak P ke Q)

Jawab: P(1,2,-2)
$$\rightarrow p = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

$$\mathbf{Q(-1,3,0)} \rightarrow \underline{q} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$$

$$\overrightarrow{PQ} = \underline{q} - \underline{p} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$$

$$\overrightarrow{PQ} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$$

$$|\overrightarrow{PQ}| = \sqrt{2^2 + (-1)^2 + (-2)^2}$$

Jadi
$$|\overrightarrow{PQ}| = \sqrt{9} = 3$$

Perkalian Vektor dengan Bilangan Real

Misalkan:
$$\underline{\mathbf{a}} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix}$$
 dan $m = \text{bilangan real}$

Jika: $\underline{\mathbf{c}} = m.\underline{\mathbf{a}}$, maka

$$\underline{\mathbf{c}} = m \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} m.a_1 \\ m.a_2 \\ m.a_3 \end{pmatrix}$$

Diketahui:
$$\underline{a} = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$$
 dan $\underline{b} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$

Vektor \underline{x} yang memenuhi $\underline{a} - 2\underline{x} = 3\underline{b}$ adalah...

Jawab:
$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix} - 2 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix} - 2 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix} - \begin{pmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 12 \end{pmatrix}$$

$$2-2x1 = 6 \Rightarrow -2x1 = 4 \Rightarrow x1 = -2$$

 $-1-2x2 = -3 \Rightarrow -2x2 = -2 \Rightarrow x2 = 1$
 $6-2x3 = 12 \Rightarrow -2x3 = 6 \Rightarrow x3 = -3$
Jadi (-2)

$$2x3 = 12 \Rightarrow -2x3 = 0$$

$$\text{vektor } \underline{x} = \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix}$$