Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Коды

Пусть \mathbb{A}_q — некоторый алфавит из q символов. q-ичный код — это произвольное множество $\mathcal{C} \subseteq \mathbb{A}_q^n$

n — длина кода (длина кодовых слов)

|C| — мощность кода (число кодовых слов)

Чаще всего рассматривают двоичные коды, т.е. когда q=2 и $\mathbb{A}_q=\{0,1\}.$

Для произвольного двоичного слова $m{a}$ будем через $\|m{a}\|$ обозначать $m{eec}$ слова, т.е. величину

$$\#\{i \mid a_i \neq 0\}$$

Границы Хемминга и Синглтона

Теорема. (Граница Хемминга, граница сферической упаковки)

Для любого $(n, M, d)_q$ -кода имеем $M \le q^n / \left| S_{\lfloor (d-1)/2 \rfloor}(\mathbf{0}) \right|$

Теорема. (В некотором смысле, обратная границе Хемминга)

Пусть числа $q,n,M,d\in\mathbb{N}$ таковы, что $M\leq q^n/|S_d(\mathbf{0})|$. Тогда существует $(n,M,d)_a$ -код.

Teopeма. (R.C. Singleton)

Для любого $(n, M, d)_q$ -кода имеем $M \le q^{n-d+1}$.

Теорема. (M. Plotkin)

Пусть
$$nr < d$$
, где $r\coloneqq 1-\frac{1}{q}$. Тогда для любого $(n,M,d)_q$ -кода $M \le \left|\frac{d}{d-nr}\right|$

Доказательство:

Рассмотрим матрицу, в которой по строкам выписаны все кодовые слова:

$$egin{pmatrix} m{a}_1 \ dots \ m{a}_M \end{pmatrix}$$

Элементы этой матрицы будем обозначать a_{ij} . Оценим снизу и сверху следующую сумму:

$$T \coloneqq \sum_{\substack{1 \le k \le n \\ 1 \le i < j \le M}} \mathbb{1}_{a_{ik} \ne a_{jk}}$$

Имеем

$$T = \sum_{1 \le i < j \le M} \sum_{1 \le k \le n} \mathbb{1}_{a_{ik} \ne a_{jk}} = \sum_{1 \le i < j \le M} d(a_i, a_j)$$

Отсюда

$$T \ge \frac{M \cdot (M-1)}{2} \cdot d$$

С другой стороны

$$T = \sum_{1 \le k \le n} \sum_{1 \le i < j \le M} \mathbb{1}_{a_{ik} \ne a_{jk}}$$

Зафиксируем произвольное k.

Пусть среди кодовых слов ровно x_s слов имеют k-ю координату, равную s. Тогда

$$\sum_{1 \le i < j \le M} \mathbb{1}_{a_{ik} \ne a_{jk}} = \sum_{s' \ne s''} x_{s'} \cdot x_{s''}$$

Имеем

$$\sum_{S' \neq S''} x_{S'} \cdot x_{S''} = \frac{1}{2} \cdot \left(\left(\sum_{S} x_{S} \right)^{2} - \sum_{S} x_{S}^{2} \right) = \frac{1}{2} \cdot \left(M^{2} - \sum_{S} x_{S}^{2} \right)$$

Минимум выражения $\sum_S x_S^2$ достигается, когда все x_S равны M/q (неравенство Коши—Буняковского).

Отсюда

$$\frac{1}{2} \cdot \left(M^2 - \sum_{s} x_s^2 \right) \le \frac{1}{2} \cdot \left(M^2 - q \cdot \frac{M^2}{q^2} \right) = \frac{M^2}{2} \left(1 - \frac{1}{q} \right)$$

При любом k мы получаем

$$\sum_{S' \neq S''} x_{S'} \cdot x_{S''} \le \frac{M^2}{2} \left(1 - \frac{1}{q} \right)$$

Значит

$$T = \sum_{1 \le k \le n} \sum_{1 \le i < j \le M} \mathbb{1}_{a_{ik} \ne a_{jk}} \le \frac{nM^2}{2} \left(1 - \frac{1}{q} \right)$$

Сопоставим верхнюю и нижнюю оценки для T:

$$\frac{M\cdot (M-1)}{2}\cdot d \le T \le \frac{nM^2}{2}\left(1-\frac{1}{q}\right)$$

Отсюда

$$(M-1) \cdot d \le nrM \iff M(d-nr) \le d$$

Так как d-nr>0 по условию, и $M\in\mathbb{Z}$, то

$$M \le \left\lfloor \frac{d}{d - rn} \right\rfloor$$

Вложение метрических пространств

Метрическое пространство — это множество с заданной на нём метрикой.

Примеры:

- $(\{0,1\}^n, d(a,b))$ метрическое пространство Хемминга (здесь d метрика Хемминга).
- $\left(\mathbb{R}^n, \tilde{d}(\pmb{a}, \pmb{b})\right)$ евклидово метрическое пространство (здесь $\tilde{d}(\pmb{a}, \pmb{b}) \coloneqq \sqrt{\sum_i (a_i b_i)^2}$ обычная евклидова метрика).

Вложение метрических пространств

Вложение метрического пространства U в метрическое пространство V — это отображение $\phi\colon U\to V$, сохраняющее метрику:

$$\operatorname{dist}_{U}(x, y) = \operatorname{dist}_{V}(\phi(x), \phi(y))$$

Вложение n-мерного хеммингова пространства в евклидово n-мерное пространство при n>1 сделать не получится, но можно выполнить отображение, сохраняющее определённую информацию о метрике...

Вложение метрических пространств

Сопоставим каждому вектору $a \in \{0,1\}^n$ вектор $x^a \in \mathbb{R}^n$ по правилу:

$$x_i^a = \begin{cases} 1, & \text{если } a_i = 1 \\ -1, & \text{если } a_i = 0 \end{cases}$$

При этом:

- $\tilde{d}(x^a, x^b) = 2 \cdot \sqrt{d(a, b)}$
- $\langle x^a, x^b \rangle = n 2 \cdot d(a, b)$
- $\|x^a\| = \sqrt{n}$ (здесь $\|\cdot\|$ евклидова норма)

Лемма о векторах в \mathbb{R}^n

Лемма (о тупоугольной системе векторов).

Пусть $y, x_1, ..., x_m \in \mathbb{R}^n$ таковы, что выполнено

- $\langle \boldsymbol{x}_i, \boldsymbol{y} \rangle > 0$ для i = 1, ..., m
- $\langle x_i, x_i \rangle \le 0$ при $i \ne j$

Тогда x_1, \dots, x_m линейно независимы и, в частности, $m \leq n$.

Доказательство леммы о векторах

Рассмотрим произвольную нулевую линейную комбинацию:

$$c_1 \mathbf{x}_1 + \dots + c_m \mathbf{x}_m = \mathbf{0}$$

Положим

Pos
$$\coloneqq$$
 { $i \mid c_i > 0$ }, Neg \coloneqq { $i \mid c_i < 0$ }

Нам нужно доказать, что $Pos = Neg = \emptyset$.

Допустим, что это не так, и придём к противоречию.

Пусть, например, $Pos \neq \emptyset$ (быть может, при этом $Neg = \emptyset$).

Доказательство леммы о векторах

$$c_1 \mathbf{x}_1 + \dots + c_m \mathbf{x}_m = \mathbf{0}$$

Положим

$$\mathbf{z} \coloneqq \sum_{i \in \text{Pos}} c_i \mathbf{x}_i = \sum_{j \in \text{Neg}} (-c_j) \mathbf{x}_j$$

Имеем

$$\langle \mathbf{z}, \mathbf{y} \rangle = \sum_{i \in \text{Pos}} c_i \langle \mathbf{x}_i, \mathbf{y} \rangle > 0$$

Отсюда следует, что $z \neq 0$.

Доказательство леммы о векторах

$$c_1 \mathbf{x}_1 + \dots + c_m \mathbf{x}_m = \mathbf{0}$$

Имеем

$$\mathbf{z} \coloneqq \sum_{i \in \text{Pos}} c_i \mathbf{x}_i = \sum_{j \in \text{Neg}} (-c_j) \mathbf{x}_j \neq \mathbf{0}$$

Рассмотрим теперь соотношен<u>ия</u>

$$0 < \langle \mathbf{z}, \mathbf{z} \rangle = \left(\sum_{i \in \text{Pos}} c_i \mathbf{x}_i, \sum_{j \in \text{Neg}} (-c_j) \mathbf{x}_j \right) =$$

$$= \sum_{\substack{i \in \text{Pos} \\ j \in \text{Neg}}} c_i (-c_j) \cdot \langle \mathbf{x}_i, \mathbf{x}_j \rangle \leq 0 \quad \text{—противоречие!}$$

Граница Элайеса — Бассалыго

Теорема. (Р. Elias, Л.А. Бассалыго)

Для любого (n, M, d)-кода, где $d \le n/2$, выполнено неравенство

$$M \le \frac{n2^n}{\left|S_{\lfloor \tau n - 1\rfloor}\right|}$$

где
$$au = \frac{1-\sqrt{1-2\delta}}{2}$$
, $\delta = \frac{d}{n}$.

 $(S_{|\tau n-1|} - \text{сокращённое обозначение для шара } S_{|\tau n-1|}(\mathbf{0}))$

Пусть C-(n,M,d)-код, и пусть $t\in\mathbb{N}$.

Положим $\deg_t C \coloneqq \max_{\boldsymbol{b} \in \{0,1\}^n} |C \cap S_t(\boldsymbol{b})|.$

Имеем

$$|C| \cdot |S_t| = \sum_{a \in C} \sum_{b \in \{0,1\}^n} \mathbb{1}_{d(a,b) \le t} = \sum_{b \in \{0,1\}^n} \sum_{a \in C} \mathbb{1}_{d(a,b) \le t} \le 2^n \cdot \deg_t C$$

Отсюда $M \leq \frac{2^{n} \cdot \deg_{t} C}{|S_{t}|}$ для любого $t \in \mathbb{N}$.

Пусть C - (n, M, d)-код.

Положим
$$\delta\coloneqq \frac{d}{n}$$
, $\tau\coloneqq \frac{1-\sqrt{1-2\delta}}{2}$ и $t\coloneqq \lfloor \tau n-1 \rfloor$.

Мы обосновали, что

$$M \le \frac{2^n \cdot \deg_t C}{|S_t|}$$

Осталось доказать, что при выбранном t выполнено неравенство $\deg_t C \leq n$.

$$\delta\coloneqq \frac{d}{n},\ \tau\coloneqq \frac{1-\sqrt{1-2\delta}}{2}$$
 и $t\coloneqq \lfloor \tau n-1 \rfloor.$

Пусть $\boldsymbol{b} \in \{0,1\}^n$, и $\boldsymbol{a}_1, \dots, \boldsymbol{a}_m \in \mathcal{C} \cap \mathcal{S}_t(\boldsymbol{b})$ ($\boldsymbol{a}_i \neq \boldsymbol{a}_j$ при $i \neq j$).

Нам нужно доказать, что $m \leq n$.

Сопоставим словам $\pmb{b}, \pmb{a}_1, ..., \pmb{a}_m$ вектора $\pmb{y}, \pmb{x}_1, ..., \pmb{x}_m \in \mathbb{R}^n$ так (на примере \pmb{b}):

$$y_i = egin{cases} 1/\sqrt{n}\,, & ext{если } b_i = 1 \ -1/\sqrt{n}\,, & ext{если } b_i = 0 \end{cases}$$

$$\delta\coloneqq \frac{d}{n},\ \tau\coloneqq \frac{1-\sqrt{1-2\delta}}{2}$$
 и $t\coloneqq \lfloor \tau n-1 \rfloor.$

Сопоставим словам ${\pmb b}, {\pmb a}_1, \dots, {\pmb a}_m$ вектора ${\pmb y}, {\pmb x}_1, \dots, {\pmb x}_m \in \mathbb{R}^n$ так (на примере ${\pmb b}$):

$$y_i = egin{cases} 1/\sqrt{n}\,, & ext{если } b_i = 1 \ -1/\sqrt{n}\,, & ext{если } b_i = 0 \end{cases}$$

При этом

$$\langle \boldsymbol{x}_i, \boldsymbol{y} \rangle = \frac{1}{n} (n - 2d(\boldsymbol{a}_i, \boldsymbol{b})) \ge \frac{1}{n} (n - 2t) > 1 - 2\tau$$

И

$$\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle = \frac{1}{n} \left(n - 2d(\boldsymbol{a}_i, \boldsymbol{a}_j) \right) \leq \frac{1}{n} (n - 2d) = 1 - 2\delta$$

$$\delta\coloneqq \frac{d}{n},\ \tau\coloneqq \frac{1-\sqrt{1-2\delta}}{2}$$
 и $t\coloneqq \lfloor \tau n-1 \rfloor.$

Имеем

- $\langle x_i, y \rangle > 1 2\tau$ при всех i
- $\langle x_i, x_j \rangle \le 1 2\delta$ при $i \ne j$

Похоже, можно применить *лемму о векторах в* \mathbb{R}^n , но для этого придётся «подправить» вектора \boldsymbol{y} и $\boldsymbol{x}_1,...\boldsymbol{x}_m$.

Для этого перейдём к векторам

$$2\tau y$$
, $(x_1 - (1-2\tau)y)$, ..., $(x_m - (1-2\tau)y)$

$$\delta \coloneqq \frac{d}{n}, \ \tau \coloneqq \frac{1-\sqrt{1-2\delta}}{2}$$

- $\langle x_i, y \rangle > 1 2\tau$ при всех i
- $\langle x_i, x_j \rangle \le 1 2\delta$ при $i \ne j$

Для векторов

$$2\tau y$$
, $(x_1 - (1-2\tau)y)$, ..., $(x_m - (1-2\tau)y)$

получаем

$$\langle (\boldsymbol{x}_i - (1 - 2\tau)\boldsymbol{y}), 2\tau\boldsymbol{y} \rangle = 2\tau\langle \boldsymbol{x}_i, \boldsymbol{y} \rangle - 2\tau(1 - 2\tau)\langle \boldsymbol{y}, \boldsymbol{y} \rangle = 2\tau\langle \boldsymbol{x}_i, \boldsymbol{y} \rangle - 2\tau(1 - 2\tau) > 0$$

$$\delta \coloneqq \frac{d}{n}, \ \tau \coloneqq \frac{1-\sqrt{1-2\delta}}{2}$$

- $\langle x_i, y \rangle > 1 2\tau$ при всех i
- $\langle x_i, x_j \rangle \le 1 2\delta$ при $i \ne j$

Имеем

$$\langle (\boldsymbol{x}_i - (1 - 2\tau)\boldsymbol{y}), (\boldsymbol{x}_j - (1 - 2\tau)\boldsymbol{y}) \rangle =$$

$$= \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + (1 - 2\tau)^2 \langle \boldsymbol{y}, \boldsymbol{y} \rangle - (1 - 2\tau) (\langle \boldsymbol{x}_i, \boldsymbol{y} \rangle + \langle \boldsymbol{x}_j, \boldsymbol{y} \rangle) \leq$$

$$\leq 1 - 2\delta + (1 - 2\tau)^2 - 2(1 - 2\tau)^2 = -2(2\tau^2 - 2\tau + \delta) = 0$$

Для векторов

$$2\tau y, (x_1 - (1-2\tau)y), ..., (x_m - (1-2\tau)y)$$

мы доказали соотношения

$$\langle (\boldsymbol{x}_i - (1 - 2\tau)\boldsymbol{y}), 2\tau\boldsymbol{y} \rangle > 0$$

 $\langle (\boldsymbol{x}_i - (1 - 2\tau)\boldsymbol{y}), (\boldsymbol{x}_j - (1 - 2\tau)\boldsymbol{y}) \rangle \leq 0$

и отсюда, по лемме о тупоугольной системе векторов, следует, что $m \leq n$.

Мы доказали, что $\deg_t C \leq n$, и тем самым доказали теорему.

Сравнение границ для (n, M, d)-кодов

Что было и что будет

На лекции мы рассмотрели:

- Граница Плоткина
- Вложение метрических пространств
- Граница Элайеса Бассалыго

В следующий раз:

• Линейные коды