

Reinforcement Learning for Optimal Sepsis Treatment

Youngsuk Lee

Wonjin Woo

Seokhyeon Lee

CREDITS

Nikil Dutt University of California, Irvine

Amir M. Rahmani University of California, Irvine

Rui Cao University of California, Irvine

Yong Huang University of California, Irvine

Youngsuk Lee Hanyang Univ.

Wonjin Woo Hanyang Univ.

Seokhyeon Lee Dankook Univ.

CONTENTS

01 Sepsis Treatment

02 About Our Project

03 Achievements

04 Future Work & Expectation

- What is the problem?

Sepsis

- How to treat?

Reinforcement Learning

- DQN algorithm in Reinforcement Learning

Reinforcement Learning

- DQN algorithm in Reinforcement Learning

Q-learning

- Model-free & off-policy

- Q-value:
$$Q_{\pi} = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \cdots + | S_t = s, A_t = a]$$

- DQN algorithm in Reinforcement Learning

Q-learning

- Model-free & off-policy
- Q-value: $Q_{\pi} = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \cdots + | S_t = s, A_t = a]$

Instability & divergence problem

- DQN algorithm in Reinforcement Learning

Q-learning

- Model-free & off-policy
- Q-value:

$$Q_{\pi} = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \dots + | S_t = s, A_t = a]$$

Instability & divergence problem

DQN

- Experience replay buffer
- Periodically updated Q-value

- DQN algorithm in Reinforcement Learning

DQN

- Our Approach

66

AI clinician: Reinforcement Learning for Optimal Sepsis Treatment

- Our Approach

Model

Reward

Goal

DQN

SOFA Score

Find the best Dosage Policies

- Preprocessing

Data Preprocessing

	l Owner	_			Size
mimic	+ postgres zerostone	UTF8	l C	-++ C	 49 GB 7997 kB

Medical Information Mart for Intensive Care

- Preprocessing

Data Preprocessing

sepsis_final_data_RAW_withTimes.csv
sepsis_final_data_withTimes.csv

2 MDP

Will be used as Train / Valid Set in DQN

- Actions

- Auto-Encoding

- Model Construction


```
def train(self, replay_buffer):
        # Sample replay buffer
        state, action, next_state, reward, done, obs_state, next_obs_state = replay_buffer.sample()
        # Compute the target Q value
        with torch.no_grad():
               q_curr = self.Q(next_state)
                # Use large negative number to mask actions from argmax
                next_action = q_curr.argmax(1, keepdim=True)
                q_target = self.Q_target(next_state)
                target_Q = 10*reward + done * self.discount * q_target_gather(1, next_action).reshape(-1, 1)
        # Get current Q estimate
        current_Q = self.Q(state)
        current_Q = current_Q.gather(1, action)
        # Compute Q loss
        Q_loss = F.smooth_l1_loss(current_Q, target_Q)
        # Optimize the Q
        self.Q_optimizer.zero_grad()
        Q loss.backward()
        self.Q optimizer.step()
        # Update target network by polyak or full copy every X iterations.
        self.iterations += 1
        self.maybe_update_target()
        return reward, Q loss.item()
```

04 Future Work & Expectation

- Moduling Evaluation Function

importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

04 Future Work & Expectation

- A lot of Cycles

Continuing Experiment &&

Hyper Parameter Tuning

- Create Models Using other algorithms

Policy Gradient Algorithm

$$abla_{ heta}J(heta) =
abla_{ heta} \sum_{s \in S} d^\pi(s) \sum_{a \in A} Q^\pi(s,a) \pi_{ heta}(a|s)$$

Policy-Based Algorithms: Reinforcement ···

Value-Based Algorithms: DQN ···

Policy-Based + Value-Based Algorithm: Actor Critic ···

04 Future Work & Expectation

Sepsis is diagnosed in at least 1.7 million adults annually in the United States, according to the Centers for Disease Control and Prevention. About 270,000 Americans die from sepsis every year, and 1 in 3 patients who die in hospitals are diagnosed with sepsis, the CDC says.

Reducing small rates of mortality
can save a lot of people
who suffer from sepsis
(About 8,200 Americans per 1 percent)

Q&A

Paper Resources

Deep Reinforcement Learning for Sepsis Treatment (2017), Aniruddh Raghu

Reinforcement Learning for Sepsis Treatment: Baselines and Analysis (2019), Aniruddh Raghu

Improving Sepsis Treatment Strategies by Combining Deep and Kernel-Based Reinforcement Learning (2019), Xuefeng Peng

Image Resources

Stanford University

Health Headers

Molmed

EXPRESS

EMS1

A (Long) Peek into Reinforcement Learning

Sung Kim Youtube channel

Other resources

A (Long) Peek into Reinforcement Learning

CDC

Stanford University

Health Headers

Molmed

Image Resources Link

https://www.express.co.uk/life-style/health/1369021/sepsis-symptoms-what-causes-sepsis-how-to-prevent-sepsis-evg

https://www.ems1.com/ems-products/medical-monitoring/articles/what-ems-needs-to-know-about-new-pediatric-sepsis-guidelines-u0gCT72EzloEI8Zd/

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html

http://hunkim.github.io/ml/

https://web.stanford.edu/class/cs234

https://www.healthleadersmedia.com/clinical-care/new-data-sepsis-prevalence-and-costs-astonished-dhhs-researchers

https://molmed.biomedcentral.com/articles/10.1186/s10020-019-0132-z

https://deepinsight.tistory.com/126