Modellierung mit FEM Kapitel 3: Grundlagen der Elastizitätstheorie

Prof. Dr.-Ing. Thomas Grätsch Department Maschinenbau und Produktion Fakultät Technik und Informatik Hochschule für Angewandte Wissenschaften Hamburg

thomas.graetsch@haw-hamburg.de

Literatur zu diesem Kapitel

Elastizitätstheorie:

- Gross, Hauger, Wriggers, Technische Mechanik 4, Springer, 2012 Festigkeitslehre, Vergleichsspannungshypothesen:
- Läpple, Einführung in die Festigkeitslehre, Vieweg/Teubner, 2011
- Issler, Ruoß, Häfele, Festigkeitslehre Grundlagen, Springer, 2013

Strukturberechnung mit der FEM

Das Ausgangsproblem:

Es soll eine Spannungsberechnung einer 2D-Struktur vorgenommen werden

Frage: Welche Spannungen werden vom FE-Programm eigentlich berechnet und welche sind relevant für die Bemessung? Welche weitere Größen werden berechnet?

Strukturberechnung mit der FEM

Kapitel 3: Grundlagen der Elastizitätstheorie

Strukturberechnung mit der FEM

- ⇒ Ein FE-Programm bietet in der Regel sehr viele verschiedene Spannungskomponenten zur Auswahl
- ⇒ Auch für die Verschiebungen und Verzerrungen werden mehrere Ausgabegrößen angeboten

Lineare Elastizitätstheorie

Voraussetzungen der linearen Elastizitätstheorie:

- linear-elastisches Materialverhalten
- (infinitesimal) kleine Verformungen und Verzerrungen

Als Abgrenzung hierzu z.B.

- Nichtlineare Elastizitätstheorie
- Plastizitätstheorie (versch. Theorien)

Vereinbarung zur Notation:

- erster Index gibt Schnittfläche an
- zweiter Index gibt Richtung an

⇒ Positive Spannungen zeigen am positiven Schnittufer in die positive

7

Koordinatenrichtung

Spannungstensor:

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} \\ \tau_{yx} & \sigma_{yy} \end{bmatrix}$$

Momentengleichgewicht um den Mittelpunkt des infinitesimalen

Elements liefert: $\tau_{xy} = \tau_{yx}$

⇒ In der 2D-Elastizitätstheorie gibt es somit 3 unabhängige Spannungen Alternative Schreibweise (Indexnotation):

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \qquad \text{mit } \sigma_{12} = \sigma_{21}$$

3D-Elastizitätstheorie:

Spannungstensor:

$$oldsymbol{\sigma} = egin{bmatrix} \sigma_{xx} & au_{xy} & au_{xz} \ au_{yx} & \sigma_{yy} & au_{yz} \ au_{zx} & au_{zy} & \sigma_{zz} \end{bmatrix}$$

Momentengleichgewicht um den Mittelpunkt des infinitesimalen

Elements liefert:
$$\tau_{xy} = \tau_{yx}$$
, $\tau_{xz} = \tau_{zx}$, $\tau_{yz} = \tau_{zy}$

⇒ In der 3D-Elastizitätstheorie gibt es somit 6 unabhängige Spannungen

Hauptspannungen:

Durch Koordinatentransformation können die Spannungen im x,y-KS in ein $\xi\eta$ -KS überführt werden. Bei einem bestimmten Drehwinkel nehmen $\sigma_{\xi\xi}$ und $\sigma_{\eta\eta}$ Extremalwerte an und $\tau_{\xi\eta}$ =0.

$$\sigma_{1,2} = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2} \qquad \text{mit } \sigma_1 > \sigma_2$$

$$\varphi = \frac{1}{2} \arctan \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}}$$

Winkel der Hauptrichtung

Die Hauptspannungen und -richtungen werden von einem FE-Programm in jedem Punkt ausgerechnet und

- geben ein Bild vom Tragverhalten der Struktur
- sind wichtig für Bemessung (später)

Vergleichsspannungen

Ziel: Bildung einer einzigen Vergleichsgröße aus den vorhandenen drei Spannungskomponenten (bzw. sechs bei 3D) zur Bemessung eines Bauteils In der Strukturmechanik gibt es drei Vergleichsspannungshypothesen:

Normalspannungshypothese (NH)

$$\sigma_v = \sigma_1$$

Die NH gilt in der Regel für spröde Werkstoffe (z.B. Gusseisen oder keramisches WS), Annahme eines spröden Trennbruchs, sobald die größte Normalspannung die Trennfestigkeit überschreitet

Vergleichsspannungen

Schubspannungshypothese (SH)

$$\sigma_{v} = \sqrt{\left(\sigma_{xx} - \sigma_{yy}\right)^{2} + 4\tau_{xy}^{2}}$$

Die SH gilt für duktile Werkstoffe, Annahme von Fließversagen bei max. Schubspannung

Gestaltänderungsenergiehypothese nach v. Mises (GEH)

$$\sigma_{v} = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} - \sigma_{xx}\sigma_{yy} + 3\tau_{xy}^{2}}$$

Die GEH gilt ebenfalls für duktile WS und ist die Standardhypothese bei vielen Metallen, liefert ähnliche Ergebnisse wie die SH mit leicht wirtschaftlicherer Auslegung, gute Übereinstimmung mit Versuch

Gleichgewicht im Innern

Im Innern der Scheibe gelten folgende Gleichgewichtsbedingungen:

p_x und p_y sind Flächenlasten im Innern, z.B. aus Eigengewicht oder Trägheit

Gleichgewicht auf dem Rand

Nach der Cauchy-Formel gilt:

$$\sigma \cdot \mathbf{n} = \mathbf{t}$$

15

$$\mathbf{n} = \begin{bmatrix} n_x \\ n_y \end{bmatrix}$$
 Normalenvektor auf dem Rand

$$\mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
 Spannungsvektor auf dem Rand

Der Normalenvektor ist auf die Länge 1 normiert, d.h. $\|\mathbf{n}\| = 1$ bzw. $\sqrt{n_x^2 + n_y^2} = 1$

⇒ Analoge Beziehungen gelten auch in 3D

Beispiel für Normalenvektor:

$$\mathbf{n} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Gleichgewicht auf dem Rand

Für einen beliebigen Punkt auf dem oberen Rand gilt nach der Cauchy-Formel:

$$\sigma_{xx} \cdot 0 + \tau_{xy} \cdot 1 = 0 \implies \tau_{xy} = 0$$

$$\tau_{xy} \cdot 0 + \sigma_{yy} \cdot 1 = -10 \implies \sigma_{yy} = -10$$

Spannungen τ_{xv} :

Spannungen σ_{vv} :

⇒ Weitere Beispiele an der Tafel

Verzerrungszustand

Ebener Verzerrungszustand:

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}$$
 Verschiebungsvektor

Dehnungen in Längs- und Querrichtung

Winkeländerung (Gleitung, Scherung)

Verzerrungstensor:

$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} \\ \gamma_{yx} & \varepsilon_{yy} \end{bmatrix}$$

$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} \\ \gamma_{yx} & \varepsilon_{yy} \end{bmatrix} \qquad \text{mit} \qquad \begin{aligned} \varepsilon_{xx} &= \frac{\partial u}{\partial x}, \varepsilon_{yy} = \frac{\partial v}{\partial y} \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{aligned} \qquad \text{"Verzerrungs-Verschiebungs} \\ \mathbf{\varphi}_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{aligned} \qquad \text{Gleichungen"}$$

Verschiebungs-

Hauptdehnungen ε_1 , ε_2 und 3D-Verzerrungstensor analog zu Spannungszustand

Materialgesetz

Verknüpfung der Spannungen mit den Verzerrungen:

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \frac{E}{(1-v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$

$$E \quad \text{Elastizitätsmodul}$$

$$v \quad \text{Querdehnzahl (0 ... 0,499)}$$

- Einsetzen der drei Grundgleichungen "Gleichgewicht im Innern", "Verzerrungs-Verschiebungs-Gleichungen" und "Materialgesetz" liefert die Verschiebungsdifferentialgleichung der linearen Elastizitätstheorie (partielle DGL 2. Ordnung)
- Lösung nur für einfache Sonderfälle möglich, siehe Literatur

Fazit: Welche Größen gibt ein FE-Programm aus?

Ausgabegrößen einer linear-elastischen 2D FEM-Berechnung:

Verformungen: u, v

Spannungen: σ_{xx} , σ_{yy} , τ_{xy} , σ_{1} , σ_{2} , σ_{v}

Verzerrungen: ε_{xx} , ε_{yy} , γ_{xy} , ε_1 , ε_2

Oftmals werden noch weitere Größen ausgegeben:

 u_{max} Quadratwurzel der Verschiebungskomponenten u und v $\sigma_{\xi\eta},\, \tau_{\xi\eta},\, \epsilon_{\xi\eta},\, \gamma_{\xi\eta}$ Spannungen und Verzerrung bez. eines $\xi\eta$ -Koordinatensystems

t_x, t_v Randspannungsvektor

⇒ Analoge Ausgabegrößen gelten für eine 3D FEM-Berechnung

