Honors Calculus, Math 1451, Exam I. sample 2. Solution

- (1) Given a plane 2x+4y-2=5 and a line x=4+3t, y=3, z=-2tTo find the intersection point: if, given plane, we have $2(4+3t)+4\cdot3-(2t)=5 \Rightarrow 8t=-15 \Rightarrow t=\frac{15}{8}$ $\Rightarrow point (\frac{13}{8}, \frac{15}{4})$
- (2) Given: two yectors $\langle 1,-2,0\rangle$ and $\langle 1,0,3\rangle$, Then $\vec{\Pi} = \begin{vmatrix} \vec{t} & \vec{t} & \vec{k} \\ 1 & -2 & 0 \end{vmatrix} = -6\vec{t} \cdot -3\vec{j} + 2\vec{k} \text{ is a Vector orthogonal}$

to both of the given veitors and the unit vector of in

$$13 \frac{\vec{n}}{|\vec{n}|} = \frac{-6\vec{t} - 3\vec{j} + 2\vec{k}}{\sqrt{49}} = -\frac{6\vec{t} - 3\vec{j} + 2\vec{k}}{\sqrt{7}\vec{t} + 7\vec{k}}$$

(3) Given a surface $Z = f(x_i y) = e^x \cos(x + y)$ and a point $(0_i \frac{\pi}{3})$. To find the tangent plane of f at $(0_i \frac{\pi}{3})$, we have $Z = f(0_i \frac{\pi}{3}) = e^x \cos(\frac{\pi}{3}) = \frac{1}{2}$ and $f_x(x_i y) = e^x \cos(x + y) - e^x \sin(x + y)$ then the tangent plane is $f_y(x_i y) = -e^x \sin(x + y)$

$$Z - \frac{1}{2} = f_{X}(0\frac{\pi}{3}) (X - 0) + f_{Y}(0\frac{\pi}{3}) (y - \frac{\pi}{3})$$

$$\Rightarrow Z - \frac{1}{2} = (\frac{1}{2} - \frac{\pi}{3}) (X - 0) + (-\frac{\pi}{2}) (y - \frac{\pi}{3}).$$

and the linearization of f at (0, 7) is $f(x,y) \approx (\frac{1}{2} - \frac{13}{2})(x-0) - \frac{13}{2}(y-\frac{7}{3})$ $50 f(\frac{1}{10}) \approx (\frac{1-13}{3}) \frac{1}{10} - \frac{13}{3} (\frac{17}{2} - \frac{17}{3}) = \frac{1-13}{20} - \frac{13}{12} \frac{17}{12}$ (4) Given a parameter equation of line: X=1+22, y=2-2, z=t+1. To Find the distance from origin to a Material To Find the distance from origin to a find the distance from origin to b. the given like, we pick up a point on line: (1,2,1) and let $\vec{a} = (0,0,0) - (1,2,1) = (-1,-2,-1)$ and $\vec{b} = (2,-1,1)$ be the direction of the line. Then the distance $d = \frac{|axb|}{|b|} = \frac{|axb|}{|axb|} = \frac{|axb|}$ (5) Given equation $P(V,T) = R \frac{T}{V}$ To Find linearization of P at (5,400) and find P(5,05, 402), we have $(P_{V}(V,T) = R_{V}^{T})$ the estimation of $P_{V}(V,T) = R_{V}^{T}$ $P_{V}(V,T) = R_{V}^{T}$ $P_{V}(V,T) = R_{V}^{T}$ $=-R\frac{400}{25}(V-5)+\frac{R}{5}(T-400)+80R$ Then $P(5.05, 402) = -R \frac{400}{25} (0.05) + \frac{R}{5} (2) = -\frac{2}{5} R + 80R$

Thus P(5,05,402) -P (5,400) = - == P

Pic

(6) Given wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{1/2} \frac{\partial^2 u}{\partial t^2}$. To show u(x,t) = sin(kx)sin(wt) where $k = \frac{w}{11}$, we have 34 = [sin(kx)]·W· cos(wt). and = K cos(kx) sin(wt). $\frac{\partial q}{\partial x^2} = -k^2 \sin(kx) \sin(wt)$ and $\frac{\partial^2 q}{\partial x^2} = -\left[\sin(kx)\right] w^2 \sin(wt)$ $k = \frac{w}{u}$ Then $\frac{\partial^2 y}{\partial x^2} = -k^2 \sin(kx) \sin(wt) = \frac{1}{\nu^2} \frac{\partial^2 y}{\sin(kx)} \sin(wt) = \frac{1}{\nu^2} \frac{\partial^2 y}{\partial t^2}$ (7) Given Z=f(x,y) where x=rcoso, y=rsino, we have $\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos 0 + \frac{\partial f}{\partial y} - \sin 0$ and A A SIÃO $\frac{\partial z}{\partial r^2} = \frac{\partial}{\partial r} \left(\frac{\partial z}{\partial r} \right) = \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial x} \cos \phi + \frac{\partial f}{\partial y} \sin \phi \right)$ + dr of (sino)

To show
$$u(x,t) = \sin(kx)\sin(wt)$$
 where $k = \frac{w}{U}$, we have $\frac{\partial u}{\partial x} = k \cos(kx)\sin(wt)$ and $\frac{\partial u}{\partial x} = k \cos(kx)\sin(wt)$ and $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt)$ $\frac{\partial u}{\partial x^2} = -k^2\sin(kx)\sin(wt)$ $\frac{\partial u}{\partial x^2} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

Then $\frac{\partial u}{\partial x^2} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x^2} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial^2 u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(wt) = \frac{1}{U^2}\frac{\partial u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(kx)\sin(kx) = \frac{1}{U^2}\frac{\partial u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(kx)\sin(kx) = \frac{1}{U^2}\frac{\partial u}{\partial x^2}$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(kx)\sin(kx) = \frac{1}{U^2}\frac{\partial u}{\partial x}\sin(kx)$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(kx)\sin(kx)$.

If $\frac{\partial u}{\partial x} = -k^2\sin(kx)\sin(kx)\sin(kx)$

	E .		
	9		
		¥	