Ondia

Introduction to IP Routing

Table of Contents

d

- Routing Basics
- ► IP Routing Process
- Static and Dynamic Routing

- O
- IP routing is the process of sending packets from a host on one network to another host on a different remote network
- This process is usually done by routers
- Routers use routing tables
- Routers don't really care about hosts—they care only about networks and the best path to each network

To be capable of routing packets, a router must know at least the following information:

- Destination network address
- Neighbor routers from which it can learn about remote networks
- Possible routes to all remote networks
- The best route to each remote network
- How to maintain and verify routing information

d

Each router maintains a routing table

Routing Tables: Public

- Routing table is used to determine the path to the destination network
- Each routing table consists of:
 - Network destination and subnet mask
 - Remote router IP address of the router

[Comware] display ip routing-table

Outgoing interface

```
Destinations: 7 Routes: 7
Destination/Mask
                                      NextHop
                                                   Interface
                   Proto
                          Pre
                               Cost
                                       10.1.1.5
10.2.0.0/18
                   OSPF
                          10
                               110
                                                   Vlan3
10.2.64.0/18
                                      10.1.1.13
                                                  Vlan5
                   OSPF
                          10
                               130
10.2.128.0/17
                   OSPF
                               30
                                       10.1.1.5
                                                  Vlan3
                          10
10.2.192.0/17
                                       10.1.1.13
                                                  Vlan5
                   OSPF
                          10
                               40
<-output omitted->
```


<u>H1</u>

IP Packet

Source: 192.168.1.1

e: Destination: 192.168.2.2

Data

Is the destination local or remote?

Looks own IP Address and Subnet Mask

Network ID is 192.168.1 Destination is remote

192.168.1.1 fa 16.3e.87.9c.2a

192.168.1.254

fa.16.3e.3f.fd.3c

192.168.12.1

fa.16.3e.02.83.a1

Subnet Mask

C:\Users\Hl>ipconfig

Default Gateway

ondi

10

192.168.2.2

fa.16.3e.4a.f5.98

192.168.2.254

fa.16.3e.3c.7d.a4

192.168.12.2

fa.16.3e.01.0c.98

Ethernet Frame

<u>H1</u>

The destination host is on another network, so I have to build an ethernet frame but do I know the destination MAC address of the default gateway?

FA16.3E87.9C2A

Checks ARP Table

192.168.1.1

Data

192.168.2.2

FA16.3E3F.FD3

192.168.2.2

fa.16.3e.4a.f5.98

192.168.2.254

IP Option

R₁

address

Version	Header Length	Type of Service	Total Length		
Identification			IP Flags	Fragment Offset	
Time to Live 255		Protocol	Header Checksum		
Source: 192.168.1.1					
Destination: 192.168.2.2					

R1

C

Check routing table if destination address matches any

RI#show ip route

GigalvitEthernet0/1

Gateway of last resort is not set

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.1.254/32 is directly connected,

192.168.1.0/24 is directly connected, GigabitEthernet0/1

Check ARP table if destination address (192.168.12.2) matches any

```
R1#show ip arp
                                       Hardware Addr
Protocol
          Address
                           Age
                                (min)
                                                        Type
                                                               Interface
          192.168.1.1
                                                               GigabitEthernet0/1
Internet
                                  58
                                       fa16.3e87.9c2a
                                                        ARPA
          192.168.1.254
                                                               GigabitEthernet0/1
Internet
                                       fa16.3e3f.fd3c
                                                        ARPA
Internet 192.168.12.1
                                                               GigabitEthernet0/2
                                       fa16.3e02.83a1 ARPA
          192.168.12.2
                                  95
                                       fa16.3e01.0c98
                                                        ARPA
                                                               GigabitEthernet0/2
Internet
```


<u>R1</u>

Build a new frame and send to R2

Source: Destination: Source: Destination: 192.168.1.1 Data

<u>R2</u>

- Check the FCS of the Ethernet frame
- De-encapsulate the IP packet, discard the frame
- Check the IP header checksum
- Check the destination IP address

R2 Check its routing table for destination IP address

```
Source:
                                             Destination:
    Source:
                  Destination:
                                                            Data
FA16.3E87.9C2A
               FA16.3E01.0C98
                                192.168.1.1
                                              192.168.2.2
R2#show ip route
      192.168.1.0/24 [1/0] via 192.168.12.1
      192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.2.0/24 s directly connected, GigabitEthernet0/1
         192.108.2.254/32 is directly connected, GigabitEthernet0/1
      192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.12.0/24 is directly connected, GigabitEthernet0/2
         192.168.12.2/32 is directly connected, GigabitEthernet0/2
```


Decrease TTL to 253 and check the ARP table if destination address (192.168.2.2) matches any

```
R2#show ip arp
Protocol Address
                                      Hardware Addr
                                                              Interface
                           Age (min)
                                                       Type
         192.168.2.2
                                                              GigabitEthernet0/1
Internet
                                121
                                      fa16.3e4a.f598
                                                       ARPA
                                                              GigabitEthernet0/1
                                      fa16.3e3c.7da4
                                                       ARPA
Internet 192.168.2.254
         192.168.12.1
                                111
                                      fa16.3e02.83a1
                                                              GigabitEthernet0/2
Internet
                                                       ARPA
Internet
         192.168.12.2
                                      fa16.3e01.0c98
                                                       ARPA
                                                              GigabitEthernet0/2
```

<u>R2</u>

Build a new frame and send to H2

Source: Destination: Source: Destination: 192.168.1.1 Destination: Data

<u>H2</u>

- Checks the FCS
- Finds its own MAC address as the destination MAC address
- De-encapsulates the IP packet from the frame
- Finds its own IP address as the destination in the IP packet

The host has a simple decision to make:

- Is the destination on the local network?
 - Check ARP table for **destination** IP address, if empty, send an ARP request.
- Is the destination on a remote network?
 - Check ARP table for **default gateway** IP address, if empty, send an ARP request.

The router has to perform a number of tasks:

- When it receives an Ethernet frame, checks if the FCS is correct. If not, drops the frame
- Checks if the destination address of the frame is:
 - destined to router's MAC address
 - destined to a broadcast address of the network router's interface is in
 - destined to a multicast address that the router listens to
- De-encapsulates the IP packet from the frame, discard the Ethernet frame
- Looks for a match in the routing table for the destination IP address, figures
 out what the outgoing interface and optionally, the next hop IP address is
- Decreases the TTL field in the IP header, recalculates the header checksum
- Encapsulates the IP packet in a new Ethernet frame
- Checks the ARP table for the destination IP address or next hop IP address
- Transmits the frame

►IP Routing Flow Chart - Remote Network

d

- How routers know the IP destinations?
- In static routing (or non-adaptive) routing, tables created and updated manually

- In dynamic routing (or adaptive) routing, tables created and updated automatically using routing protocols
- Dynamic routing is used in larger networks
- Finds the optimal route (fastest path)
- Reacts to topology changes and failures, recalculates optimal path 1.

Static	Dynamic	
Routes are user defined	Routes are updated according to the topology	
Does not use complex routing algorithms	Uses complex routing algorithms	
Provides high or more security	Provides less security	
Manual	Automated	
Implemented in small networks	Implemented in large networks	
Additional resources are not required	Additional resources are required	

