(1) Prove that if a and b are rational numbers $b \neq 0$, and r is an irrational number, then a + br is irrational.

Let $a, b \in \mathbb{Q}$ and $r \in \mathbb{I}$. There are integers m, n where $n \neq 0$, $a = \frac{m}{n}$. Then $b = \frac{s}{t}$, $t \neq 0$, for some integers s and t. We know that a + br is rational, where $a + br = \frac{p}{q}$, for some integers p and q, $q \neq 0$.

We can consider

$$a + br = \frac{p}{q}$$

$$\frac{m}{n} + \left(\frac{s}{t}\right) \cdot r = \frac{p}{q}$$

$$r = \left(\frac{p}{q} - \frac{m}{n}\right) \cdot \frac{t}{s}$$

$$= \frac{\left(t(np - mq)\right)}{qns}.$$

Where $n \neq 0$, $q \neq 0$, $b \neq 0$ therefore, $qns \neq 0$ using the zero product property. The integer r is over a non integer, proving that r is a rational number, contradicting the fact that r is irrational and also proving a + br is irrational.

(2) Prove that for every integer a, if a^3 is even then a is even.

Let a be an odd integer. Then a = 2k + 1 for some $k \in \mathbb{Z}$.

$$a^{3} = (2k+1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1.$$

Since $k \in \mathbb{Z}$, $4k^3 + 6k^2 + 3k \in \mathbb{Z}$. Thus a^3 is odd.

(3) Prove that $\sqrt[3]{2}$ is irrational.

We can do a proof by contradiction. To start, we can assume $\sqrt[3]{2}$ is rational. Let $\sqrt[3]{2} = p/q$ where p and q are integers with no common divisors

$$2 = (p/q)^3$$
$$p^3 = 2q^3$$

Here, p^3 is even by problem 2. Let p=2k for some integer k. Then,we substitute p=2k in $(p/q)^3=2$.

$$(p/q)^3 = 2$$
$$p^3 = 2q^3$$
$$(2k)^3 = 2q^3$$
$$4k^3 = q^3$$

Hence, q^3 is even, therefore q is even by number 2. Then p and q are divisible by 2 and hence, p and q have the common factor of 2. This is a contradiction. Therefore, $a = \sqrt[3]{2}$ is an irrational number.

(4) Consider the following statement:

 $(\forall m, n \in \mathbb{Z})$ if 2m + n is odd then m and n are both odd.

(a) 2m + n is odd implies that an even number multiplied by 2m then added to 1 equals an odd number. If we assume n is an odd number, 2m + n will still result to be an odd number. For example, we can use 4 as m and 3 as n.

$$2m + n = 8 + 3$$
$$= 11,$$

which is odd.

(b)

The negation of the statement is:

 \exists integers m and n, 2m + n is odd and both m and n are not odd

(5) Determine, with proof, whether this statement is true or false: The product of any two irrational numbers is irrational.

We can have $9 + 2\sqrt{3}$ be an irrational number and $9 - 2\sqrt{3}$ be another irrational number. If we were to multiply $9 + 2\sqrt{3}$ and $9 - 2\sqrt{3}$ we then get our answer:

$$(9+2\sqrt{3})(9-2\sqrt{3}) = 81-4(3)$$

$$= 81-12$$

$$= 69,$$

Which is rational. This is a contradiction to the statement 'The product of any two irrational numbers is irrational.' Therefore the statement is false.