

Evolutionary Co-Mention Network Analysis via Social Media Mining

IDETC/CIE 2023 - 115114

Phillip A. O. Gavino¹, Yinshuang Xiao¹, Yaxin Cui², Wei Chen², Zhenghui Sha¹

¹Walker Department of Mechanical Engineering, University of Texas at Austin ²Department of Mechanical Engineering, Northwestern University

Overview

Motivation &
Background

Framework

Case Study

Discussion & Future Work

Background

Understanding competitive relationships of market systems is essential for product design

Quantitatively presenting competitive relationship

Most significant challenge is lack of data

Motivating Question

How can we **quantitatively** represent/model/predict competitive relationships between brands/companies with more **accessible** datasets?

Main Idea

Social Media Data Sources

Co-mention Relationships

Network Representation

Honda Civic ↔ Toyota Camry

Two entities existing in the form of text

- Analyze relationships with metric results
- Interpret findings to the broader complex system

Framework for Content-Based Data Mining

Step 1: Social Media Data Collection Text cleaning Web Scraping / Platform APIs Text datasets

Step 2: Text Data Preprocessing

Step 3: Named Entity Recognition (NER)

Step 4: Network Modeling

Step 5: Network Analysis

"My friend David[person] bought a Toyota Carnry[car model] from a dealer in Houston^[place]

- Existing trained models (e.g., spacy, NLTK)
- · Customized deep learning model

- : Entity -: Co-mention
- Node: unique entities of the same type identified by NER model
- · Link: two entities are co-mentioned by at least one text data sample

- Node degree distribution
- · Average node degree
- Average clustering coefficient

Network evolution analysis

Case Study: Data Preparation

Data Scraping

- 949 Unique Car Models from Cars.com
- Tweets from 2016 2019
- Possible Maximum Number of Tweets Collected Per Year:
 - 240 Tweets for each car model

Case Study: Data Preprocessing

Remove Duplicates

(Sequence Matching 60% threshold)

Raw

Processed

03 Audi A6 the (BEST OFFER) (San Diego) \$1500 ift.tt/2FH6Yoo https://t.co/AQ9cgwfoHR

	03	audi	a6
•	best	offer	san
	diego	1500	

Named Entity Recognition (NER) Process

Training Data

- Tweet 1: "lexus lc 500^[CAR] save get porsche 911 gts^[CAR]"
- Tweet 2: "say goodbye my old toyota rav4^[CAR] thinking buy new ford f150^[CAR] chevy silverado 1500^[CAR]"
- Tweet 3: "my friends have toyota rav4^[CAR] lexus Ic 500 ^[CAR] want subaru wrx^[CAR] bad raelene first need learn drive"

~2000 marked tweets

Case Study: Prediction Metrics

Accurate

my friend agreed toyota camry better acura ilx honda accord

toyota	acura ilx	honda		
camry	acuia iix	accord		

Inaccurate

my friend agreed toyota camry better acura ilx honda accord

Year	F1-Score	Precision	Recall
2016	73.25%	80.42%	67.26%
2017	71.50%	77.67%	66.23%
2018	74.83%	74.03%	75.67%
2019	69.96%	74.37%	66.04%

Case Study: Network Definition

Case Study: Competition Analysis

Top five car models with the largest unweighted degree.

2016		2017		2018		2019	
Model	UWD	Model	UWD	Model	UWD	Model	UWD
Honda Civic	19	Nissan Leaf	19	Ford Focus	50	Jeep Grand Cherokee	55
Mini Cooper	18	Jeep Wrangler	16	Toyota RAV4	37	Tesla Model 3	55
Audi R8	18	Honda Civic	15	Porsche 911	33	Honda Civic	51
Porsche 911	16	BMW X1	15	Honda Civic	32	Ford Explorer	47
Nissan Leaf	14	Mini Cooper	14	Nissan Leaf	31	Porsche 911	42

The most frequently co-mentioned car pairs by year.

Year	Linked Car Models	# of Co-mentions
2016	BMW X5 vs. Volvo XC90	6
2017	Tesla Model 3 vs. Chevrolet Bolt EV	8
2018	Buick Envision vs. Cadillac CT6	13
2019	Jeep Wrangler vs. Jeep Wrangler Unlimited	11

2019 Twitter Automobile Co-mention Network (# of Nodes: 640, # of Edges: 2289)

13

Case Study: Network Analysis

Twitter co-mention network metrics by year.

Year	2016	2017	2018	2019
Density	0.007	0.006	0.011	0.012
Unweighted Avg. Deg.	2.913	3.037	6.079	7.466
Weighted Avg. Deg.	3.523	3.793	8.047	9.934
Avg. Local Cluster Coeff.	0.125	0.128	0.229	0.249

Twitter co-mention network degree distributions.

Contribution & Limitations

Contributions

- Track changes in customer preferences
- Provide insights into customer perceptions and potential market competition structures

Limitations

- Inability to standardize vehicle model names
 - Reduces the number of possible co-mentions
- Limited spam detection

Summary & Future Work

Future Work

- Sentiment analysis
- Predictive network model (e.g., ERGM, GNN)
- Design optimization/feature engineering

Thank You!

Acknowledgements

National Science Foundation (CMI #2005661 and #2203080)

Email: phillip.gavino@utexas.edu

