Solutions to

Introduction to the Theory of Distirbutions

Yunwei Ren

Contents

1 Test Functions and Distributions

1

1 Test Functions and Distributions

1.2

Proof. It suffices to show that $f \equiv 0$ on an open set O iff the restriction of the distribution $\langle f, \cdot \rangle$ onto O is the zero distribution. Suppose that $\langle f, \cdot \rangle|_O \equiv 0$ since the other direction is obvious. Assume, to obtain a contradiction, that f(x) > 0 for some $x \in O$. Since f is continuous, there is an open neighborhood $U \subset O$ s.t. $f > \varepsilon$ on U for some $\varepsilon > 0$. Choose a small closed ball $B \subset U$ centered at x and let ψ be the cutoff function with supp $\psi \subset U$, $0 \le \psi \le 1$ and $\psi \equiv 1$ on B. Then

$$0 = \langle f, \psi \rangle = \int_{U} f \psi > \varepsilon \mu(B) > 0,$$

where $\mu(B)$ is the measure of B. Contradiction. Thus, $f \leq 0$. Similarly, we can show $f \geq 0$. Therefore, $f \equiv 0$ on O.

The result is not true for $f \in L_1^{loc}(\mathbb{R}^n)$ in general since add a function which is zero a.e. to f does not change the distribution but will change the support of f.

1.5

Proof. For every compact $K \subset (0, \infty)$, there is an integer N s.t. $1/k \notin K$ for all k > N. Hence, for every $\phi \in C_c^{\infty}(0, \infty)$ with supp $\phi \subset K$,

$$|\langle u, \phi \rangle| = \left| \sum_{k=0}^{N} \partial^{k} \phi(1/k) \right| \le \sum_{k=0}^{N} \sup |\partial^{k} \phi|.$$

Thus, u is a distribution on $(0, \infty)$.

Assume, to obtain a contradiction, that $u = v|_{(0,\infty)}$ for some $v \in \mathscr{D}'(\mathbb{R})$. Let $f \in C_c^{\infty}(\mathbb{R})$ be a cutoff function with $f \equiv 1$ on [-1,1]. Then, the distribution fu (cf. Sec. 2.5) is of infinite order since its restriction to 1/m is $\delta^{(m)}$ for every positive integer m. However, since fu is compactly supported, it must have a finite order (cf. Sec. 3.1). Contradiction.

1.6

Proof. It follows immediately from the Riesz-Markov theorem.

1.7 I am not sure whether the second part can be proved since if we put $f_{\varepsilon} \equiv 0$ for some $\varepsilon \in (0,1)$, the asymptotic behavior will not change.

Proof. It suffices to show $\int f_{\varepsilon}\phi \to \phi(0)$ as $\varepsilon \to 0$. Let $B_{\varepsilon} = \{|x| \le \varepsilon\}$. We have

$$\left| \int f_{\varepsilon} \phi - \phi(0) \right| = \left| \int_{B_{\varepsilon}} f_{\varepsilon} (\phi - \phi(0)) \right|$$

$$\leq \sup_{x \in B_{\varepsilon}} |\phi(x) - \phi(0)| \int |f_{\varepsilon}|$$

$$\leq \mu \sup_{x \in B_{\varepsilon}} |\phi(x) - \phi(0)|.$$

Since $\phi \in C^{\infty}(\mathbb{R}^n)$, $\sup_{x \in B_{\varepsilon}} |\phi(x) - \phi(0)| \to 0$ as $\varepsilon \to 0$. Thus, $f_{\varepsilon} \to \delta$ in $\mathscr{D}'(\mathbb{R}^n)$.

1.9

Proof. Let $u_n(x) := \sum_{k=-n}^n c_k e^{ikx}$. For every $\phi \in C_c^{\infty}(\mathbb{R})$, by repeatedly using integration by parts, we have

$$\langle u_n, \phi \rangle = \int \sum_{k=-n}^n c_k e^{ikx} \phi(x) \, dx$$
$$= \sum_{k=-n}^n c_k \int e^{ikx} \phi(x) \, dx$$
$$= \sum_{k=-n}^n c_k \left(\frac{-1}{ik} \right)^{m+2} \int e^{ikx} \partial^{m+2} \phi(x) \, dx.$$

Note that $c_k \left(\frac{-1}{ik}\right)^{m+2} \leq O(1/k^2)$ and the $\int e^{ikx} \partial^{m+2} \phi(x) dx$ is bounded. Thus, $\lim \langle u_n, \phi \rangle$ converges for every ϕ , whence u converges in $\mathscr{D}'(\mathbb{R})$.