Expressive Completeness and Disjunctive Normal Form

Expressive Completeness Theorem: Every truth-function can be expressed by a sentence of SL that contains no sentential connectives other than {~, V, •}.

In other words, any possible truth table for any possible connective has an equivalent truth table where the only connectives are $\{\sim, \lor, \cdot\}$. As an example of this theorem, take our connective ' \supset '. In order to show that $\{\sim, \lor, \cdot\}$ can be used, in conjunction with our sentence letters (P, Q, R, etc.), to eliminate \supset we need to prove that there is an argument with exactly the same truth table as \supset . In other words, we need a truth table having only P and Q as sentences letters and the connectives $\{\sim, \lor, \cdot\}$ where the second line is F, and the first, third, and fourth lines are T. Thankfully, the argument is quite simple:

$$P \supset Q \nmid f \sim P \vee Q$$

Hence, we can do all of our logic without the horseshoe. The important thing isn't, though, that we can eliminate connectives, but that with our sentence letters and $\{\sim, \lor, \cdot\}$ we can create any truth table. 2 rows, 4 rows, 8 rows, or trillion row tables can all be created with those 3 connectives. Pretty cool, huh?

Let's create a truth table for a connective that we haven't defined yet.¹

p	q	p⊕q
T	T	F
T	F	T
\boldsymbol{F}	T	T
F	F	F

For this two-place connective, symbolized by the \oplus , when both inputs are T or F, the output is F, and T when exactly one input is F and the other T (the opposite of the triple bar). According to our theorem, we *must* be able to construct a truth table using just $\{\sim, \lor, \bullet\}$ to replace \oplus . What does such an argument look like?

¹ Remember: all connectives are defined in terms of their truth tables. Just because a connective doesn't match an English word or phrase doesn't mean it doesn't exist. Every possible truth table has an associated connective - even if we don't care about this in terms of English conversation. Since there are an infinite number of truth tables, there must also be an infinite number of connectives.

 $^{^2}$ Please note that the $^{\land}$ symbol (the caret) here is just another way some logic textbooks symbolize conjunction. The $^{\land}$ is the same as our $^{\bullet}$.

 $\begin{array}{c}
(p \land \neg q) \lor (\neg p \land q) \\
F \\
T \\
T \\
F
\end{array}$

Unlike \supset , creating an equivalent argument required that we create two arguments and connect them via the \lor . So, we have created a *disjunction* of *conjunctions*. This is an example of *disjunctive normal form*.

Disjunctive Normal Form (DNF) Theorem: every compound / complex proposition which assigns T , Φ , can be put in disjunctive normal form.^{3,4}

Hence, since the Expressive Adequacy Theorem is true of our logic, we *must* be able to produce (almost, footnote 4) any connective's truth table in DNF. Creating the disjunctive normal form of an argument is quite simple.

- 1. Construct the truth table for Φ (above, we were using $P \oplus Q$).
- 2. Isolate each row where Φ receives a T (for \oplus , it was the second and third lines)
- 3. For each row which receives a T, create one argument using ONLY the sentences of that row, and {~, •} which also outputs T for that row *alone*. (if you are creative enough to come up with one argument that outputs T for only the lines in the original argument which get a T, then that is fine it's just rare!)
- 4. Take each individual argument that you have constructed, and join them via {V}.

Step 3 is usually the most difficult. Again, look at the $P \oplus Q$ table. We can create an argument using $\{\sim, \cdot\}$ to make line 2 true. It is simply $(P \cdot \sim Q)$ because when P is true and Q is false the argument comes out as true. Then, looking at row 3, we can make an equivalent argument for that by constructing the argument $(\sim P \cdot Q)$ because when P is false and Q is true, the conjunction will come out true. Then, since those are the only two rows where the output is T, we connect the two arguments with a V. That is how to create the DNF equivalent of (almost) any connective.

-

³ Since we have been using capital English letters to represent sentences I didn't want to use P or Q as the variable to represent any argument involving a connective. Hence, I am using the Greek letter Φ (pronounced: fī).

⁴It is worth noting that we are glossing over whether or not a sentence letter can appear more than once within any given disjunct. Depending on how you view this requirement actually determines whether *every* truth function can be symbolized - but we won't be looking at this issue in our discussion.