1. Data Cleaning

Loading the Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Load datasets
churn_data = pd.read_csv('customer_churn_data.csv')
demographic data = pd.read csv('demographic data.csv')
subscription data = pd.read csv('subscription payment history.csv')
Handling Missing Values
# Check for missing values
print("Missing values in churn_data:\n", churn_data.isnull().sum())
print("\nMissing values in demographic data:\n", demographic data.isnull().sum())
print("\nMissing values in subscription_data:\n", subscription_data.isnull().sum())
# Fill missing values (if any)
churn_data['ChurnDate'] = churn_data['ChurnDate'].fillna('Not Churned')
demographic_data['HouseholdSize'] = demographic_data['HouseholdSize'].fillna(
    demographic data['HouseholdSize'].median()
subscription_data['IsAutoRenew'] = subscription_data['IsAutoRenew'].fillna(False)
→ Missing values in churn data:
     CustomerID
                               0
     Date
                              0
     SubscriptionPlan
                              0
     AgeGroup
     Login
                              0
     WatchTimeMinutes
     ContentPreference
     Churned
                          20922
     ChurnDate
     dtype: int64
     Missing values in demographic_data:
     CustomerID
                       0
     Location
                      0
     HouseholdSize
                      0
     PrimaryDevice
                      0
     dtype: int64
```

```
CustomerID
     SubscriptionPlan
                         0
     BillingCycle
                         0
     IsAutoRenew
                         0
     dtype: int64
Data Type Conversion
# Convert dates with explicit format
try:
    churn data['Date'] = pd.to datetime(churn data['Date'], format='%d-%m-%Y')
except ValueError:
    # Try alternative format if the first one fails
    churn data['Date'] = pd.to datetime(churn data['Date'], format='%m/%d/%Y')
# Handle ChurnDate (which may have mixed formats or missing values)
churn data['ChurnDate'] = pd.to datetime(
    churn_data['ChurnDate'],
    errors='coerce', # Convert invalid dates to NaT
    format='mixed'  # New in pandas 2.0+ to handle multiple formats
)
# Verify the conversion
print("Date column sample:", churn data['Date'].head())
print("ChurnDate column sample:", churn_data['ChurnDate'].head())
→ Date column sample: 0 2025-04-01
     1 2025-04-02
     2
         2025-04-03
     3 2025-04-04
         2025-04-05
     Name: Date, dtype: datetime64[ns]
     ChurnDate column sample: 0
         NaT
     1
     2
         NaT
     3
         NaT
     4
         NaT
     Name: ChurnDate, dtype: datetime64[ns]
churn_data.to_csv('cleaned_churn_data.csv', index=False)
demographic_data.to_csv('cleaned_demographic_data.csv', index=False)
subscription_data.to_csv('cleaned_subscription_data.csv', index=False)
category_cols = {
    'demographic_data': ['Location', 'PrimaryDevice'],
    'subscription_data': ['SubscriptionPlan', 'BillingCycle']
}
```

Missing values in subscription_data:

```
demographic_data[category_cols['demographic_data']] = demographic_data[category_cols['demogr
subscription_data[category_cols['subscription_data']] = subscription_data[category_cols['subscription_data']]
```

Merging Datasets

```
# Merging data
subscription_data = subscription_data.rename(columns={'SubscriptionPlan': 'PaymentSubscripti

df = pd.merge(
    pd.merge(churn_data, demographic_data, on='CustomerID'),
    subscription_data,
    on='CustomerID'
)
```

Exploratory Data Analysis (EDA)

df

-		_
_	_	_
_	7	-
-	_	_

	CustomerID	Date	SubscriptionPlan	AgeGroup	Login	WatchTimeMinutes	ContentPr
0	CUST001	2025 - 04-01	Basic	36-50	0	0	
1	CUST001	2025- 04-02	Basic	36-50	1	25	
2	CUST001	2025 - 04-03	Basic	36-50	0	0	
3	CUST001	2025- 04-04	Basic	36-50	1	51	
4	CUST001	2025- 04-05	Basic	36-50	0	0	
•••		•••			•••		
20962	CUST250	2025- 06-26	Standard	18-25	0	0	Docu
20963	CUST250	2025- 06-27	Standard	18-25	1	32	Docu
20964	CUST250	2025- 06-28	Standard	18-25	1	82	Docu
20965	CUST250	2025 - 06-29	Standard	18-25	1	53	Docu
20966	CUST250	2025 - 06-30	Standard	18-25	1	67	Docu

20967 rows × 15 columns

print("\nBasic Statistics:")
print(df.describe(include='all'))

Basic St	atistics:			
C	CustomerID	Date	SubscriptionPlan	AgeGroup \
count	20967	20967	20967	20967
unique	250	NaN	3	4
top	CUST002	NaN	Basic	26 - 35
freq	91	NaN	8631	6884
mean	NaN	2025-05-14 08:51:01.725568768	NaN	NaN
min	NaN	2025-04-01 00:00:00	NaN	NaN
25%	NaN	2025-04-22 00:00:00	NaN	NaN
50%	NaN	2025-05-14 00:00:00	NaN	NaN
75%	NaN	2025-06-06 00:00:00	NaN	NaN
max	NaN	2025-06-30 00:00:00	NaN	NaN
std	NaN	NaN	NaN	NaN

count	20967.0000	209	967.000000	2	0967	20967	
unique	Nal	V	NaN		4	2	
top	Nai	V	NaN	Documenta	ries	False	
freq	Nat	V	NaN		6622	20922	
mean	0.6165	4	44.152144		NaN	NaN	
min	0.0000	9	0.000000		NaN	NaN	
25%	0.0000	9	0.000000		NaN	NaN	
50%	1.0000	Э	35.000000		NaN	NaN	
75%	1.0000	9	76.000000		NaN	NaN	
max	1.00000	ð 1	180.000000		NaN	NaN	
std	0.4862	4	47.215028		NaN	NaN	
	(ChurnDate	Location	HouseholdSize	Prim	naryDevice	,
count		45	20967	20967.000000		20967	
unique		NaN	5	NaN		4	
top		NaN	East	NaN		Smart TV	
freq		NaN	6385	NaN		7975	
mean	2025-05-31		NaN	3.166023		NaN	
min	2025-01-05		NaN	1.000000		NaN	
25%	2025-04-25		NaN	2.000000		NaN	
50%	2025-05-25		NaN	3.000000		NaN	
75%	2025-06-22		NaN	4.000000		NaN	
max	2025-11-06		NaN	5.000000		NaN	
std		NaN	NaN	1.268704		NaN	
	PaymentSubs	•		gCycle IsAutoR			
count		209	967		0967		
unique			3	3	2		
top		Bas		•	True		
freq			531		8333		
mean			NaN	NaN	NaN		
min			NaN	NaN	NaN		
25%			NaN	NaN	NaN		
50%			NaN	NaN	NaN		
75%			NaN	NaN	NaN		
max		-	NaN	NaN	NaN		
std		ľ	NaN	NaN	NaN		

- The merged DataFrame df has 20967 rows.
- ChurnDate has only 45 non-null values, which corresponds to the 45 churned customers (since 20922 were missing and then converted to NaT).

Churn Distribution

```
plt.figure(figsize=(8, 5))
sns.countplot(x='Churned', data=df)
plt.title("Churn Distribution")
plt.xlabel("Churned (0 = No, 1 = Yes)")
plt.ylabel("Count")
plt.show()
```

Churn Distribution

• A count plot of the Churned column shows that most customers (20922) have not churned, and 45 have churned. This indicates a highly imbalanced dataset (only 0.21% churn rate). This is a very low churn rate.

Churn by Subscription Plan

```
plt.figure(figsize=(10, 6))
sns.barplot(x='SubscriptionPlan', y='Churned', data=df, estimator=lambda x: sum(x)/len(x)*10
plt.title("Churn Rate by Subscription Plan")
plt.ylabel("Churn Rate (%)")
plt.show()
```


The highest churn rate is among Premium users.

Churn by Location

```
plt.figure(figsize=(12, 6))
sns.barplot(x='Location', y='Churned', data=df, estimator=lambda x: sum(x)/len(x)*100)
plt.title("Churn Rate by Location")
plt.ylabel("Churn Rate (%)")
plt.xticks(rotation=45)
plt.show()
```


• The churn rates are: East (around 3.5%), Midwest (around 1.5%), North (around 2.5%), South (around 2.5%), and West (around 1.5%).

Churn by Auto-Renewal Status

```
plt.figure(figsize=(8, 5))
sns.barplot(x='IsAutoRenew', y='Churned', data=df, estimator=lambda x: sum(x)/len(x)*100)
plt.title("Churn Rate by Auto-Renewal Status")
plt.ylabel("Churn Rate (%)")
plt.show()
```


The churn rate among people that don't auto renew is higher.

Watch Time vs. Churn

```
plt.figure(figsize=(10, 6))
sns.boxplot(x='Churned', y='WatchTimeMinutes', data=df)
plt.title("Watch Time vs. Churn Status")
plt.xlabel("Churned (0 = No, 1 = Yes)")
plt.ylabel("Watch Time (Minutes)")
plt.show()
```


The watch time of people that leave the platform is higher than those who stay.

EDA Analysis

Correlation Matrix

```
# Select numeric columns
numeric_df = df.select_dtypes(include=np.number)

# Compute correlation matrix
corr_matrix = numeric_df.corr()

# Plot heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
plt.title("Correlation Matrix")
plt.show()
```


Churn by Age Group

```
plt.figure(figsize=(10, 6))
sns.barplot(x='AgeGroup', y='Churned', data=df, estimator=lambda x: sum(x)/len(x)*100)
plt.title("Churn Rate by Age Group")
plt.ylabel("Churn Rate (%)")
plt.show()
```


Maximum Churn rate among people older than 51 years old.

Churn by Household Size

```
plt.figure(figsize=(10, 6))
sns.barplot(x='HouseholdSize', y='Churned', data=df, estimator=lambda x: sum(x)/]
plt.title("Churn Rate by Household Size")
plt.ylabel("Churn Rate (%)")
plt.show()
```


Single person household most likely to leave the platform

Churn by Primary Device

```
plt.figure(figsize=(10, 6))
sns.barplot(x='PrimaryDevice', y='Churned', data=df, estimator=lambda x: sum(x)/len(x)*100)
plt.title("Churn Rate by Primary Device")
plt.ylabel("Churn Rate (%)")
plt.xticks(rotation=45)
plt.show()
```


Churn rate among tablet users is the highest

Churn Trends Over Time

```
# Extract month from date
df['Month'] = df['Date'].dt.month

# Plot churn trend
monthly_churn = df.groupby('Month')['Churned'].mean() * 100
plt.figure(figsize=(10, 6))
monthly_churn.plot(kind='line', marker='o')
plt.title("Monthly Churn Rate Trend")
plt.xlabel("Month")
plt.ylabel("Churn Rate (%)")
plt.grid(True)
plt.show()
```


Churn rate has significantly increased over the month and reached it's peak in June

Feature engineering

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, roc_auc_score, classification_report, confusion_
import xgboost as xgb
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import make_pipeline as make_imb_pipeline
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
np.random.seed(42)
current_date = datetime.now()
df['TenureDays'] = (current_date - df['Date']).dt.days
```

df['DaysSinceLastActivity'] = (current_date - df.groupby('CustomerID')['Date'].transform('ma

```
df['TotalLogins'] = df.groupby('CustomerID')['Login'].transform('sum')
df['TotalWatchTime'] = df.groupby('CustomerID')['WatchTimeMinutes'].transform('sum')
df['AvgWatchTime'] = df.groupby('CustomerID')['WatchTimeMinutes'].transform('mean')
df['LoginFrequency'] = df['TotalLogins'] / df['TenureDays'].replace(0, 1)
df['ActivityRatio'] = df['TotalLogins'] / (df['DaysSinceLastActivity'] + 1)

# Convert target to integer
df['Churned'] = df['Churned'].astype(int)

# Drop unnecessary columns
df = df.drop(['CustomerID', 'Date', 'ChurnDate'], axis=1)
```

df

→		SubscriptionPlan	AgeGroup	Login	WatchTimeMinutes	ContentPreference	Churned
	0	Basic	36-50	0	0	Sports	0
	1	Basic	36-50	1	25	Sports	0
	2	Basic	36-50	0	0	Sports	0
	3	Basic	36-50	1	51	Sports	0
	4	Basic	36-50	0	0	Sports	0
	•••						
	20962	Standard	18-25	0	0	Documentaries	0
	20963	Standard	18-25	1	32	Documentaries	0
	20964	Standard	18-25	1	82	Documentaries	0
	20965	Standard	18-25	1	53	Documentaries	0
	20966	Standard	18-25	1	67	Documentaries	0

20967 rows × 19 columns

```
# Split data
X = df.drop('Churned', axis=1)
y = df['Churned']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_
# Identify feature types
numeric_features = X.select_dtypes(include=['int64', 'float64']).columns
categorical_features = X.select_dtypes(include=['object', 'category']).columns
# Preprocessing pipeline
preprocessor = ColumnTransformer(
    transformers=[
```

```
('num', StandardScaler(), numeric_features),
        ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features)
    ])
# MODEL 1: Logistic Regression
lr_pipeline = make_imb_pipeline(
    preprocessor,
    SMOTE(random_state=42),
    LogisticRegression(
        class_weight='balanced', # Add this
        C=0.01,
        penalty='12',
        solver='liblinear',
        max iter=1000,
        random_state=42
    )
)
lr_pipeline.fit(X_train, y_train)
→
                               Pipeline
                columntransformer: ColumnTransformer
                                                         (?)
                     num
                                               cat
              StandardScaler
                                        OneHotEncoder
                                 SMOTE
                        LogisticRegression
# MODEL 2: XGBoost
scale_pos_weight = len(y_train[y_train==0]) / len(y_train[y_train==1])
xgb_pipeline = make_imb_pipeline(
    preprocessor,
    SMOTE(random_state=42),
    xgb.XGBClassifier(
        scale_pos_weight=scale_pos_weight, # Add this
        learning_rate=0.1,
        max_depth=5,
        min_child_weight=1,
        gamma=0.1,
```


MODEL EVALUATION

```
def evaluate_model(model, X_test, y_test, model_name, threshold=0.5):
    y_probs = model.predict_proba(X_test)[:, 1]
    y_pred = (y_probs > threshold).astype(int)

accuracy = accuracy_score(y_test, y_pred)
    auc = roc_auc_score(y_test, y_probs)

print(f"\n{model_name} Performance:")
    print("=" * 50)
    print(f"Accuracy: {accuracy:.4f}")
    print(f"AUC: {auc:.4f}")
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))

# Confusion matrix
    cm = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(8, 6))
```

Logistic Regression Performance:

Accuracy: 0.9735 AUC: 0.9841

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.97	0.99	4185
1	0.05	0.67	0.10	9
accuracy			0.97	4194
macro avg	0.53	0.82	0.54	4194
weighted avg	1.00	0.97	0.98	4194

Logistic Regression Confusion Matrix

XGBoost Performance:

Accuracy: 0.9959 AUC: 0.9842

Classification Report:

precision recall f1-score support

0 1	1.00 0.17	1.00 0.22	1.00 0.19	4185 9
accuracy			1.00	4194
macro avg	0.58	0.61	0.59	4194
weighted avg	1.00	1.00	1.00	4194

XGBoost Confusion Matrix


```
# FEATURE IMPORTANCE (For XGBoost)
try:
    # Get feature names
    preprocessor.fit(X_train)
    num_features = numeric_features.tolist()
    cat_features = preprocessor.named_transformers_['cat'].get_feature_names_out(categorical
    feature_names = num_features + cat_features
    # Get XGBoost feature importances
    xgb model = xgb pipeline.named steps['xgbclassifier']
    importances = xgb model.feature importances
    # Sort features
    indices = np.argsort(importances)[::-1]
    # Plot top 15 features
    plt.figure(figsize=(12, 8))
    plt.title("Top 15 Feature Importance (XGBoost)")
    plt.barh(range(15), importances[indices][:15][::-1], align="center")
    plt.yticks(range(15), [feature_names[i] for i in indices[::-1]])
    plt.xlabel("Relative Importance")
    plt.show()
    # Create feature importance dataframe
    feature importance df = pd.DataFrame({
        'Feature': [feature_names[i] for i in indices],
        'Importance': importances[indices]
    }).head(15)
    print("\nTop Predictive Features:")
    print(feature_importance_df)
except Exception as e:
    print(f"Could not plot feature importance: {e}")
```



```
# MODEL COMPARISON
print("\n" + "=" * 50)
print("Model Comparison")
print("=" * 50)
print(f"{'Model':<25} {'Accuracy':<10} {'AUC':<10}")</pre>
print(f"{'Logistic Regression':<25} {lr_accuracy:.4f}</pre>
                                                     {lr_auc:.4f}")
print(f"{'XGBoost':<25} {xgb_accuracy:.4f}</pre>
                                          {xgb_auc:.4f}")
    8
                HouseholdSize
                               0.017174
                AgeGroup_51+
                               0.014434
    10-----AVBWatchTime---0.013129-----
    Model Comparisonion_North
                               0.012240
    AgeGroup_18-25 Accuration
    Logistic Regression
                             0.9735
                                      0.9841
    XGBoost
                             0.9959
                                      0.9842
# PREDICTION OUTPUT
test df = X test.copy()
test_df['Actual_Churned'] = y_test
```