高度センサー信号処理のための Analog-VLSI Open-IP(15)

池田 博一* 宇宙航空研究開発機構 宇宙科学研究本部

初版: 平成17年12月28日

概要

本文書は、沖電気工業株式会社の提供する $0.15~\mu m$ FD SOI CMOS プロセス用に調整された IP を提供するものです。本稿では、電源導入パッド、及び入出力パッドの回路構成を取り上げます。

目 次

1	ディ	ジタル入出力パッド	280
2	アナ	ログ入出力パッド	285
	_		
表	目	次	
	1	ディジタル電源の種別	280
	2	ディジタル電源の種別	286
巡	目	次	
	1	ディジタル入出力パッドのシンボル一覧	280
	2	CORNER_CELL 回路	281
	3	ADD_VSS_CORE 回路	281
	4	ADD_VDD_CORE 回路	281
	5	ADD_VSS_OUT 回路	
	6	OBUF 回路	282
	7	IBUF 回路	283
	8	PAD_IBUF_DIGITAL 回路	283
	9	アナログ入出力パッドのシンボル一覧	286
	10	PAD_IOVDDA 回路	286
	11	PAD_IOGNDA 回路	286
	12	PAD_COREVDDA 回路	287
	13	PAD_COREGNDA 回路	287

^{*}ikeda.hirokazu@jaxa.jp

14	ADD_COREVDDA 回路	287
15	PAD_COREGNDA 回路	288
16	PAD_IBUF_ANALOG 回路	288
17	PAD IRUF WORES 同路	288

1 ディジタル入出力パッド

図1には、ディジタル電源及びディジタル入出力用のパッド回路の一覧を示しました。

図 1: ディジタル入出力パッドのシンボル一覧

表 1 には、ディジタル電源の種別を示した。これらの電源は、 $CORNER_CELL(図 2)$ を経由して集積回路に供給するようになっている。

表 1: ディジタル電源の種別

電源名称	具体的適用
VSS_OUT	ディジタル低電位側、パッド用電源
VDD_OUT	ディジタル高電位側、パッド用電源
VDD_OUT2	ディジタル高電位側、パッド用電源
VDD_PRE	ディジタル高電位側、パッド用電源
VSS_CORE	ディジタル低電位側、コア用電源
VDD_CORE	ディジタル高電位側、コア用電源

電源容量が不足する場合には、ADD_VSS_CORE 回路 (図??)、ADD_VDD_CORE 回路 (図 4)、ADD_VSS_OUT(図 5) 回路を適宜追加する。

図 2: CORNER_CELL 回路

図 3: ADD_VSS_CORE 回路

図 4: ADD_VDD_CORE 回路

図 5: ADD_VSS_OUT 回路

図 6: OBUF 回路

図 7: IBUF 回路

図 8: PAD_IBUF_DIGITAL 回路

以下に各回路のネットリストを掲げる。

.ENDS

.ENDS

- .SUBCKT PAD_IBUF_DIGITAL A VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT Y M1 A VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=23.22u M=2
 M2 A VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=48.28u M=13
 M3 Y VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=20u M=1
 M4 A VDD_OUT VDD_OUT VDD_OUT pchv L=0.44u W=49.98u M=28
 R5 A Y 690 TC=0.0, 0.0
- .SUBCKT ADD_VDD_CORE VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT .ENDS
- .SUBCKT ADD_VSS_OUT VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT .ENDS
- .SUBCKT ADD_VSS_CORE VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT .ENDS
- .SUBCKT CORNER_CELL VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT
 M1 VSS_CORE VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=482.8u M=1
 M2 VSS_CORE VSS_CORE VSS_OUT VSS_CORE nchv L=0.44u W=482.8u M=1
 M3 VDD_PRE VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=482.8u M=1
 M4 VDD_CORE VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=482.8u M=1
 M5 VDD_OUT VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=482.8u M=1
 M6 VDD_OUT2 VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=482.8u M=1
- .SUBCKT OBUF A EB VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT Y M1 N1 EB VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=1 M2 N4 A VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=1 M3 N2 EB N4 VSS_OUT nchv L=0.44u W=3.56u M=1 M4 N17 A VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=1 M5 N2 EB N17 VSS_OUT nchv L=0.44u W=3.56u M=1 M6 N8 N2 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M7 N12 N2 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M8 N19 N8 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M9 Y N3 VSS_OUT VSS_OUT nchv L=0.44u W=48.28u M=2 M10 Y N3 VSS_OUT VSS_OUT nchv L=0.44u W=23.22u M=2 M11 N3 N3 VSS_OUT VSS_OUT nchv L=0.44u W=48.28u M=1 M12 Y VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=48.28u M=11 M13 N9 N1 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=1 M14 N9 A VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M15 N11 N9 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2

M16 N14 N9 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M17 N3 N11 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M18 N1 EB VDD_VORE VDD_VORE pchv L=0.44u W=3.56u M=1 M19 N2 EB VDD_CORE VDD_CORE pchv L=0.44u W=3.56u M=1 M20 N2 A VDD_CORE VDD_CORE pchv L=0.44u W=3.56u M=2 M21 N8 N2 VDD_CORE VDD_CORE pchv L=0.44u W=3.56u M=2 M22 N12 N2 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=2 M23 N19 N12 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=2 M24 N19 VDD_OUT VDD_OUT VDD_OUT pchv L=0.44u W=3.56u M=1 M25 Y N19 VDD_OUT VDD_OUT pchv L=0.44u W=49.98u M=6 M26 Y VDD_OUT VDD_OUT VDD_OUT pchv L=0.44u W=49.98u M=22 M27 N13 A VDD_VORE VDD_VORE pchv L=0.44u W=3.56u M=1 M28 N7 A VDD_VORE VDD_VORE pchv L=0.44u W=3.56u M=1 M29 N9 N1 N13 VDD_VORE pchv L=0.44u W=3.56u M=1 M30 N9 N1 N7 VDD_VORE pchv L=0.44u W=3.56u M=1 M31 N11 N9 VDD_VORE VDD_VORE pchv L=0.44u W=3.56u M=2 M32 N14 N9 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=2 M33 N3 N14 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=2 .ENDS

.SUBCKT IBUF A VDD_CORE VDD_OUT VDD_OUT2 VDD_PRE VSS_CORE VSS_OUT Y M1 A VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=23.22u M=2 M2 A VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=48.28u M=13 M3 N4 VDD_PRE N5 VSS_OUT nchv L=0.44u W=3.56u M=1 M4 N5 N3 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M5 N6 N4 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=1 M6 N7 N6 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M7 Y N7 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M8 N2 N7 VSS_OUT VSS_OUT nchv L=0.44u W=3.56u M=2 M9 N3 VSS_OUT VSS_OUT VSS_OUT nchv L=0.44u W=20u M=1 M10 A VDD_OUT VDD_OUT VDD_OUT pchv L=0.44u W=49.98u M=28 M11 N4 N3 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=4 M12 N6 N4 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=2 M13 N7 N6 VDD_PRE VDD_PRE pchv L=0.44u W=3.56u M=4 M14 Y N7 VDD_CORE VDD_CORE pchv L=0.44u W=3.56u M=4 M15 N2 N7 VDD_CORE VDD_CORE pchv L=0.44u W=3.56u M=4 R16 A N3 690 TC=0.0, 0.0 . ENDS

2 アナログ入出力パッド

図 9 には、アナログ電源及びアナログ入出力用のパッド回路の一覧を示しました。 表??には、アナログ電源の種別を掲げた。電源容量が不足する場合には、ADD_COREVDDA 回路

図 9: アナログ入出力パッドのシンボル一覧

(図??)、ADD_COREGNDA 回路 (図??) を適宜追加する。

表 2: ディジタル電源の種別

電源名称	具体的適用
IOGNDA	アナログ低電位側、パッド用電源
IOVDDA	アナログ高電位側、パッド用電源
COREGNDA	アナログ低電位側、コア用電源
COREVDDA	アナログ高電位側、コア用電源

図 10: PAD_IOVDDA 回路

図 11: PAD_IOGNDA 回路

図 12: PAD_COREVDDA 回路

図 13: PAD_COREGNDA 回路

図 14: ADD_COREVDDA 回路

図 15: PAD_COREGNDA 回路

図 16: PAD_IBUF_ANALOG 回路

図 17: PAD_IBUF_WORES 回路

以下に各回路のネットリストを掲げる。

- .SUBCKT ADD_COREGNDA COREGNDA COREVDDA IOGNDA IOVDDA .ENDS
- .SUBCKT PAD_IOVDDA COREGNDA COREVDDA IOGNDA IOVDDA
 M1 IOVDDA IOGNDA IOGNDA IOGNDA nchv L=0.44u W=300u M=1
 M2 IOVDDA COREGNDA COREGNDA COREGNDA nchv L=0.44u W=300u M=1
 .ENDS
- .SUBCKT PAD_COREVDDA COREGNDA COREVDDA IOGNDA IOVDDA
 M1 COREVDDA IOGNDA IOGNDA IOGNDA nchv L=0.44u W=300u M=1
 M2 COREVDDA COREGNDA COREGNDA COREGNDA nchv L=0.44u W=300u M=1
 .ENDS
- .SUBCKT PAD_IBUF_WORES A COREGNDA COREVDDA IOGNDA IOVDDA M1 A IOGNDA IOGNDA IOGNDA nchv L=0.44u W=300u M=1 M2 A IOVDDA IOVDDA IOVDDA pchv L=0.44u W=350u M=1 .ENDS
- .SUBCKT PAD_IBUF_ANALOG A COREGNDA COREVDDA IOGNDA IOVDDA Y M1 A IOGNDA IOGNDA IOGNDA nchv L=0.44u W=300u M=1 M2 A IOVDDA IOVDDA IOVDDA pchv L=0.44u W=350u M=1 R3 A Y 50 TC=0.0, 0.0 .ENDS
- .SUBCKT PAD_IOGNDA COREGNDA COREVDDA IOGNDA IOVDDA
 M1 IOGNDA IOGNDA IOVDDA IOGNDA nchv L=0.44u W=300u M=1
 M2 COREVDDA COREGNDA COREGNDA COREGNDA nchv L=0.44u W=300u M=1
 .ENDS
- .SUBCKT PAD_COREGNDA COREGNDA COREVDDA IOGNDA IOVDDA
 M1 COREGNDA COREGNDA COREVDDA COREGNDA nchv L=0.44u W=300u M=1
 M2 COREGNDA IOGNDA IOGNDA IOGNDA nchv L=0.44u W=300u M=1
 .ENDS
- .SUBCKT ADD_COREVDDA COREGNDA COREVDDA IOGNDA IOVDDA .ENDS

以上