

Report No.: EED32H00200505 Page 1 of 46

TEST REPORT

: Smart Security Light **Product** Trade mark : MAXIMUS, KUNA

Model/Type reference : SPL06-07A1N4-BKT, SPL06-07A1N4-ORB,

> SPL08-07A1N4-BKT, SPL08-07A1N4-ORB, SPL09-05A1N4-BKT, SPL09-05A1N4-ORB, SPL11-07A1N4-BKT, SPL11-07A1N4-ORB

Serial Number : N/A

Report Number : EED32H00200505 FCC ID : 2AD7D-KNP02

Date of Issue : Nov. 25, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. No.1, 2, 3, 4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

zman-Li

Nov. 25, 2015

Sheek Luo Lab supervisor

Check No.: 2295532334

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 2 of 46

2 Version

Version No.	Date	Description	6	5)
00	Nov. 25, 2015	Original		
		420	(3)	C0
			(62)	(0,)

Page 3 of 46

3 **Test Summary**

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Model No.: SPL06-07A1N4-BKT, SPL06-07A1N4-ORB, SPL08-07A1N4-BKT, SPL08-07A1N4-ORB, SPL09-05A1N4-BKT, SPL09-05A1N4-ORB, SPL11-07A1N4-BKT, SPL11-07A1N4-ORB

Only the Model SPL06-07A1N4-BKT was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on color, size and package.

Remark: Test according to ANSI C63.4-2014

Page 4 of 46

4 Content

1 COVER PA	AGE	•••••	1
2 VERSION.			2
3 TEST SUN	//MARY		3
4 CONTENT	-		4
5 TEST REC	QUIREMENT		5
5.1 Test s	SETUP		5
	or Conducted test setup		
	or Radiated Emissions test setup		
	or Conducted Emissions test setup		
	ENVIRONMENT		
5.3 TEST (CONDITION		6
6 GENERAL	INFORMATION		7
	T INFORMATION		
	RAL DESCRIPTION OF EUT		
	JCT SPECIFICATION SUBJECTIVE TO THIS		
	RIPTION OF SUPPORT UNITS		
	FACILITY		
	TION FROM STANDARDS		
	RMALITIES FROM STANDARD CONDITIONS.		
	R INFORMATION REQUESTED BY THE CUS		
6.10 MEAS	SUREMENT UNCERTAINTY (95% CONFIDEN	ICE LEVELS, K=2)	10
7 EQUIPME	NT LIST		11
	CHNICAL REQUIREMENTS SPECIFI		
Append	dix A) 6dB Occupied Bandwidth		15
Append	dix B) Conducted Peak Output Power.		17
	dix C) Band-edge for RF Conducted Er		
	dix D) RF Conducted Spurious Emissio		
	dix E) Power Spectral Density		
	dix F) Antenna Requirementdix G) AC Power Line Conducted Emis		
Append	dix H) Restricted bands around fundam	nental frequency (Radiated)	20
	dix I) Radiated Spurious Emissions		
APPENDIX '	1 PHOTOGRAPHS OF TEST SETUP		36
APPENDIX 2	2 PHOTOGRAPHS OF EUT		38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 6 of 46

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	25 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1010mbar	(6.)	

5.3 Test Condition

Test channel:

Toot Made	Tv.	RF Channel			
Test Mode	Тх	Low(L)	Middle(M)	High(H)	
GFSK	0.400.411 0.400.4111	Channel 1	Channel 20	Channel40	
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmit data rate.	ting mode with all	kind of modulation a	and all kind of	

Report No.: EED32H00200505 Page 7 of 46

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd.
Address of Applicant:	No.1, 2, 3, 4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China
Manufacturer:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. Gaoqiao Subsidiary
Address of Manufacturer:	A, B, C, D Plants, No.4, Fugao East Road, Gaoqiao Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China
Factory:	Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. Gaoqiao Subsidiary
Address of Factory:	A, B, C, D Plants, No.4, Fugao East Road, Gaoqiao Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R. China

6.2 General Description of EUT

Product Name:	Smart Security Light	
Mode No.(EUT):	SPL06-07A1N4-BKT, SPL06-07A1N4-ORB, SPL08-07A1N4-BKT, SPL08-07A1N4-ORB, SPL09-05A1N4-BKT, SPL09-05A1N4-ORB, SPL11-07A1N4-BKT, SPL11-07A1N4-ORB	61
Test Mode No.:	SPL06-07A1N4-BKT	
Trade Mark:	MAXIMUS, KUNA	
EUT Supports Radios application:	Bluetooth V4.0 BLE	
Power Supply:	AC 120V/60Hz	
Sample Received Date:	Oct. 16, 2015	
Sample tested Date:	Oct. 16, 2015 to Nov. 09, 2015	7.5

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.0	01.07	
Modulation Technique:	DSSS		30
Modulation Type:	GFSK		87
Number of Channel:	40		
Sample Type:	Fixed production		
Antenna Type and Gain::	Type: Integral Gain:3dBi	(41)	(6)
Test Voltage:	AC 120V/60Hz		

Report No.: EED32H00200505 Page 8 of 46

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H00200505 Page 9 of 46

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer

None.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32H00200505 Page 10 of 46

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	2° DE	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
0	Dadieted Courieus amissies test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
1	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32H00200505 Page 11 of 46

7 Equipment List

Equipmen	it List	DE 44		1.4	5/1
	ı	RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	75	01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(6)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

Page 12 of 46

13			/'3		2	
3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016	
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2018	
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2018	
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016	
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016	
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016	
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016	
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016	
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016	
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016	
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(2)	01-13-2015	01-12-2016	
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(A)	01-13-2015	01-12-2016	

Page 13 of 46

	Coi	nducted distu	rbance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
LISN	ETS-LINDGREN	3850/2	00051952	11-14-2014	11-13-2015
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

Report No. : EED32H00200505 Page 14 of 46

8 Radio Technical Requirements Specification

Reference documents for testing:

		9
No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32H00200505 Page 15 of 46

Appendix A) 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6841	1.0447	PASS
BLE	MCH	0.6730	1.0399	PASS
BLE	НСН	0.6867	1.0369	PASS

Test Graphs

Page 16 of 46

Report No. : EED32H00200505 Page 17 of 46

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.771	PASS
BLE	MCH	-0.472	PASS
BLE	HCH	0.124	PASS

Test Graphs

Page 18 of 46

Report No. : EED32H00200505 Page 19 of 46

Appendix C) Band-edge for RF Conducted Emissions

Result Table

5	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	BLE	LCH	-2.317	-56.214	-22.32	PASS
	BLE	HCH	-0.471	-49.370	-20.47	PASS

Test Graphs

Appendix D) RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-2.408	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.071	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-0.584	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 21 of 46

Page 22 of 46

Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-18.093	PASS
BLE	MCH	-15.052	PASS
BLE	HCH	-15.943	PASS

Test Graphs

Page 24 of 46

Report No.: EED32H00200505 Page 25 of 46

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No.: EED32H00200505 Page 26 of 46

	1) The		z-30MHz		
		mains terminal disturb	ance voltage test was	conducted in a shie	lded room.
	,		to AC power source thr		
			ich provides a 50Ω/50μ		
			units of the EUT were		
	for mul	the unit being measur	ground reference plane ed. A multiple socket of single LISN provided t	outlet strip was use	d to connec
	refe		aced upon a non-metal loor-standing arrangem se plane.		
		-	vith a vertical ground re	eference plane. The	e rear of the
			he vertical ground refer		
			led to the horizontal gro		
			the boundary of the u		
			for LISNs mounted o between the closest po		
			and associated equipm		
		N 2.			
			um emission, the relat		
		of the interface cable aducted measurement.	es must be changed	according to ANS	I C63.10 or
Limit:	F		Limit (c	IBμV)	
	Fred	quency range (MHz)	Quasi-peak	Average	
	(28)	0.15-0.5	66 to 56*	56 to 46*	(20)
	(0)	0.5-5	56	46	(0,)
		5-30	60	50	
			00		
	* The I				 e range 0.1
		limit decreases linearly	with the logarithm of		e range 0.1
	МН	imit decreases linearly z to 0.50 MHz.		the frequency in the	e range 0.15

Page 27 of 46

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	ent	Lim (dB)		Mai (c	rgin dB)		
1		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1500	52.42	44.03	16.51	9.80	62.22	53.83	26.31	65.99	55.99	-12.16	-29.68	Р	
	2	0.1860	49.43	41.11	15.81	9.80	59.23	50.91	25.61	64.21	54.21	-13.30	-28.60	Р	
	3	0.2701	52.42	35.09	14.78	9.80	62.22	44.89	24.58	61.11	51.11	-16.22	-26.53	Р	
	4	0.5140	43.32	35.05	25.62	9.90	53.22	44.95	35.52	56.00	46.00	-11.05	-10.48	Р	
Γ	5	1.0500	41.24	31.92	18.82	10.00	51.24	41.92	28.82	56.00	46.00	-14.08	-17.18	Р	
	6	1.4380	37.96	31.40	19.70	10.00	47.96	41.40	29.70	56.00	46.00	-14.60	-16.30	Р	

Page 28 of 46

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	leasurem (dBuV)	ent	Lin (dB)		Mai (c	rgin IB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1500	52.55	44.16	16.78	9.80	62.35	53.96	26.58	65.99	55.99	-12.03	-29.41	Ρ	
	2	0.2060	48.25	39.74	15.89	9.80	58.05	49.54	25.69	63.36	53.36	-13.82	-27.67	Ρ	
ð	3	0.5260	44.95	35.76	26.81	9.90	54.85	45.66	36.71	56.00	46.00	-10.34	-9.29	Р	
	4	1.0700	39.83	30.77	19.23	10.00	49.83	40.77	29.23	56.00	46.00	-15.23	-16.77	Р	
	5	2.0380	36.60	24.55	11.10	10.00	46.60	34.55	21.10	56.00	46.00	-21.45	-24.90	Р	
	6	2.5579	36.34	24.78	13.65	10.00	46.34	34.78	23.65	56.00	46.00	-21.22	-22.35	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32H00200505 Page 29 of 46

Appendix H) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	-05
			Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	16
	Test Procedure:	a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is a determine the maximum polarizations of the antenna height.	n the top of a ro hoic camber. T of the highest ra ters away from p of a variable-l varied from one n value of the fi	he table wa adiation. the interfer height anter meter to fo ield strength	s rotated 3 ence-recei nna tower. ur meters n. Both hor	360 degrees to the degrees to the degree of	, whice
		 d. For each suspected en the antenna was tuned table was turned from 0 	to heights from	1 meter to	4 meters	and the rotata	able
		e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	m was set to Pe um Hold Mode. end of the restric pliance. Also m um analyzer plo	eak Detect l cted band c neasure any	Function a losest to the emissions	nd Specified ne transmit s in the restric	cted
		e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	m was set to Perum Hold Mode. end of the restrict in its pliance. Also mum analyzer plachannel	eak Detect l cted band c neasure any	Function a losest to the emissions	nd Specified ne transmit s in the restric	cted
)		e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr	m was set to Perum Hold Mode. In the restrict of the restrict	eak Detect locted band coneasure any ot. Repeat for table 0.8 le is 1.5 mene Highest of	Function a losest to the compact of	nd Specified ne transmit s in the restric ower and mod Anechoic Ch .5 metre(Abo	cted dulation
)	Limit:	e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low	m was set to Perum Hold Mode. In the restrict of the restrict	eak Detect leads band coneasure any ot. Repeat for table 0.8 le is 1.5 menuencies me	losest to the emissions or each posterior of the emissions or each posterior of the emissions of the emissio	nd Specified ne transmit s in the restric ower and mod Anechoic Ch .5 metre(Abo	cted dulation
)	Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system of the sy	m was set to Perum Hold Mode. In the restrict pliance. Also mum analyzer place thannel we is the test site ber change for 1 meter and table west channel, the res until all frequents.	eak Detect locted band coneasure any ot. Repeat form table 0.8 le is 1.5 members to uencies members to uenci	losest to the emissions or each posterior semi-metre to 1 tre).	nd Specified ne transmit s in the restrict ower and mode Anechoic Ch .5 metre(About	cted dulation
)	Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system of the sy	m was set to Perum Hold Mode. and of the restrict pliance. Also must analyzer place thannel are as below: are is the test site ber change form 1 meter and tab west channel, the test until all frequential Limit (dBuV).	eak Detect locted band coneasure anyot. Repeat for table 0.8 le is 1.5 meine Highest (uencies meine des meines mei	losest to the emissions or each portion of the emissions or each portion of the emissions o	nd Specified ne transmit s in the restrict ower and mod Anechoic Ch .5 metre(Abo as complete.	cted dulatio
)	Limit:	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedum g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. Repeat above procedum Frequency 30MHz-88MHz	m was set to Perum Hold Mode. In the restrict of the rest site of the rest change form of the rest channel, the rest until all frequency to the rest of the restrict of the re	eak Detect locted band coneasure anyot. Repeat for table 0.8 le is 1.5 meine Highest (uencies meine) (/m @3m)	Function a losest to the committee to 1 tre). channel. easured was Rei Quasi-pe	nd Specified ne transmit s in the restrict ower and mode Anechoic Ch .5 metre(About as complete. mark eak Value eak Value	cted dulatio
)	Limit:	e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low i. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	m was set to Perum Hold Mode. and of the restricted pliance. Also mum analyzer place channel are as below: re is the test site ber change form and tab west channel, the test until all frequency. Limit (dBuV 40.43.43.44)	eak Detect of the cted band of the cted	Function a losest to the commissions of each positions of each position of each positions of each posi	nd Specified ne transmit s in the restrict ower and mode Anechoic Ch .5 metre(About as complete. mark eak Value eak Value eak Value	cted dulation
)	Limit	e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system of the sy	m was set to Perum Hold Mode. and of the restrict pliance. Also mum analyzer place channel are as below: the is the test site ber change form 1 meter and table and the rest until all frequency. Limit (dBuV 40.43.46.46.4)	eak Detect of the cted band coneasure any ot. Repeat for table 0.8 le is 1.5 menter he Highest of the cuencies menter (m @3m) 0 5 0 0 0	Function a losest to the commissions or each positions or each pos	nd Specified ne transmit s in the restrict ower and mode Anechoic Ch .5 metre(About as complete. mark eak Value eak Value	cted dulation

Report No. : EED32H00200505 Page 30 of 46

Test plot as follows:

Worse case	e mode:	GFSK	(6)		(0)	7		(0)		
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	44.39	43.99	32.53	4.28	37.21	74	-30.01	Н	PK	Lowest
2390.00	44.34	43.94	32.53	4.28	37.21	74	-30.06	V	PK	Lowest
2483.50	64.73	64.76	32.71	4.51	37.19	74	-9.24	Н	PK	Highest
2483.50	67.78	67.81	32.71	4.51	37.19	74	-6.19	V	PK	Highest
2483.50	33.83	33.86	32.71	4.51	37.19	54	-20.14	H	AV	Highest
2483.50	36.75	36.78	32.71	4.51	37.19	54	-17.22	V	AV	Highest

Note:

- 1) Through Pre-scantransmitter mode with all kind of data type, Only worse case is reported.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32H00200505 Page 31 of 46

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

п	m	11	۰

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-05	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(25)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 32 of 46

Report No.: EED32H00200505

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	_		Cable				0ver	D 3 (D)	
	Freq	Factor	Loss	Level	revel	Line	Limit	Pol/Phase	Kemark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	119.86	11.64	1.57	21.14	34.35	43.50	-9.15	Horizontal	
2	191.75	11.32	2.12	23.64	37.08	43.50	-6.42	Horizontal	
3	239.99	12.25	2.32	23.67	38.24	46.00	-7.76	Horizontal	
4	287.99	13.25	2.37	24.68	40.30	46.00	-5.70	Horizontal	
5 pp	300.37	13.51	2.38	25.07	40.96	46.00	-5.04	Horizontal	
6	360.45	15.13	2.73	22.91	40.77	46.00	-5.23	Horizontal	

Page 33 of 46

		Ant	cabie	read		Limit	over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	47.99	14.93	1.24	17.20	33.37	40.00	-6.63	Vertical	
2	72.08	10.00	1.48	19.84	31.32	40.00	-8.68	Vertical	
3	143.83	10.06	1.58	19.63	31.27	43.50	-12.23	Vertical	
4 pp	191.75	11.32	2.12	24.88	38.32	43.50	-5.18	Vertical	
5	239.99	12.25	2.32	18.44	33.01	46.00	-12.99	Vertical	
6	300.37	13.51	2.38	19.63	35.52	46.00	-10.48	Vertical	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test chan	nel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1329.894	30.52	38.24	2.66	47.63	42.57	74	-31.43	Pass	Н
1638.585	31.12	37.76	2.95	46.51	42.82	74	-31.18	Pass	₩.
2995.538	33.59	37.10	5.61	50.56	52.66	74	-21.34	Pass	Н
4804.000	34.69	36.82	5.11	45.83	48.81	74	-25.19	Pass	Н
7206.000	36.42	37.46	6.66	43.19	48.81	74	-25.19	Pass	Н
9608.000	37.88	37.82	7.73	43.98	51.77	74	-22.23	Pass	Н
1364.182	30.60	38.18	2.69	46.25	41.36	74	-32.64	Pass	V
1851.542	31.48	37.48	3.12	45.36	42.48	74	-31.52	Pass	V
3003.173	33.60	37.10	5.62	48.12	50.24	74	-23.76	Pass	V
4804.000	34.69	36.82	5.11	43.12	46.10	74	-27.90	Pass	V
7206.000	36.42	37.46	6.66	42.19	47.81	74	-26.19	Pass	V
9608.000	37.88	37.82	7.73	43.94	51.73	74	-22.27	Pass	V

Worse case	mode:	GFSK		Test chan	nel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1329.894	30.52	38.24	2.66	48.74	43.68	74	-30.32	Pass	Н
1846.834	31.47	37.48	3.12	45.38	42.49	74	-31.51	Pass	Н
2995.538	33.59	37.10	5.61	50.2	52.30	74	-21.70	Pass	Н
4880.000	34.85	36.81	5.08	44.36	47.48	74	-26.52	Pass	Н
7320.000	36.43	37.43	6.77	44.56	50.33	74	-23.67	Pass	Н
9760.000	38.05	37.85	7.60	43.80	51.60	74	-22.40	Pass	Н
1663.803	31.17	37.72	2.97	46.04	42.46	74	-31.54	Pass	V
2995.538	33.59	37.10	5.61	46.96	49.06	74	-24.94	Pass	V
3249.760	33.38	37.04	5.57	46.21	48.12	74	-25.88	Pass	V
4880.000	34.85	36.81	5.08	42.49	45.61	74	-28.39	Pass	V
7320.000	36.43	37.43	6.77	42.92	48.69	74	-25.31	Pass	V
9760.000	38.05	37.85	7.60	43.68	51.48	74	-22.52	Pass	V

Page 35 of 46

Worse case	mode:	GFSK		Test chani	nel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1659.574	31.16	37.73	2.97	55.10	51.50	74	-22.50	Pass	Н
2995.538	33.59	37.10	5.61	50.61	52.71	74	-21.29	Pass	Н
4256.330	33.44	36.87	5.33	44.11	46.01	74	-27.99	Pass	Н
4960.000	35.02	36.80	5.05	42.62	45.89	74	-28.11	Pass	Н
7440.000	36.45	37.41	6.88	43.24	49.16	74	-24.84	Pass	Н
9935.053	38.23	37.89	7.46	44.24	52.04	74	-21.96	Pass	Н
1293.173	30.44	38.31	2.62	46.55	41.30	74	-32.70	Pass	V
1659.574	31.16	37.73	2.97	48.71	45.11	74	-28.89	Pass	V
2995.538	33.59	37.10	5.61	46.99	49.09	74	-24.91	Pass	V
4960.000	35.02	36.80	5.05	41.60	44.87	74	-29.13	Pass	V
7440.000	36.45	37.41	6.88	42.29	48.21	74	-25.79	Pass	V
9920.000	38.22	37.88	7.47	44.35	52.16	74	-21.84	Pass	V

Note:

- 1) Through Pre-scantransmitter mode with all kind of data type, Only worse case is reported.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 36 of 46

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: SPL06-07A1N4-BKT

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 37 of 46

Page 38 of 46

Report No.: EED32H00200505

APPENDIX 2 PHOTOGRAPHS OF EUT

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-10

View of Product-11

View of Product-12

View of Product-13

View of Product-14

View of Product-15

Page 46 of 46

Report No. : EED32H00200505

View of Product-17

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

