

More model fitting

Mark Blyth

Presentation points

- Models for wind tunnel data
- A BARS redesign
- ₭ BARS potential pitfalls

An exciting aside

My BARS implementation works!

- Allows arbitrary interpolation
- Slower than the C implementation

BARS - wind tunnel

2500 datapoints, 41s run-time

BARS - wind tunnel

2500 datapoints, 40s run-time

Matern32 (GPR) - wind tunnel

2500 datapoints, 119s run-time

Matern32 (GPR) - wind tunnel

2500 datapoints, 119s run-time

Timings

- Unoptimized C code is still faster than optimized python / matlab
 - BARS is using optimized C implementation, GPRs is using my unoptimized python implementation
 - GPFlow, GPyTorch would be much faster for GPR
 - Probabilistic programming might speed up BARS
- **W** Both methods are $\mathcal{O}(n^3)$; require inverting $n \times n$ matrix
 - Both perform poorly on lots of datapoints!

BARS

10,000 datapoints [crashes with full dataset], 142s run-time

BARS

10,000 datapoints [crashes with full dataset], max. number of knots [80], more

burn-in; 590s (9 mins 50s) run-time

bristol.ac.uk

BARS issues

- C implementation doesn't allow validation
 - Can't interpolate at arbitrary points
 - Python implementation does! But it's slower
- C implementation caps the max. number of knots
 - Python implementation doesn't! But it's slower
 - Doesn't work for long time series
- $\operatorname{\mathscr{U}}(n^3)$ means data need downsampling to be used
 - Took about 10 minutes to fit a model to 10% of the data

Experimental data

- If experiments use small numbers of periods (1, 2, 3), current methods work
 - ► Similar to how I tested models on small numbers of neuron spikes
 - Few periods = less data = fewer knots needed, and quicker fit obtained
- More datapoints mean we need to get creative...
 - Sparse variational BARS
 - Periodic BARS
 - Semiperiodic methods

Or... speed up BARS by not using BARS

IDEA: Bayesian adaptive evolutionary splines; genetic algorithm

Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution
- Instead of estimating posterior distribution, why not find posterior mode?

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution
- Instead of estimating posterior distribution, why not find posterior mode?
 - Use the knot-shuffling steps to evolve an optimal knot-set

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution
- Instead of estimating posterior distribution, why not find posterior mode?
 - Use the knot-shuffling steps to evolve an optimal knot-set
 - Find $\operatorname{argmax}_{k,\xi} p(y|k,\xi)$ [MLE] or $\operatorname{argmax}_{k,\xi} p(k,\xi|y)$ [MAP]

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution
- Instead of estimating posterior distribution, why not find posterior mode?
 - Use the knot-shuffling steps to evolve an optimal knot-set
 - Find $\operatorname{argmax}_{k,\xi} p(y|k,\xi)$ [MLE] or $\operatorname{argmax}_{k,\xi} p(k,\xi|y)$ [MAP]
 - Each MCMC knot-shuffle becomes a mutation step

- Ideal result: find the MAP knot-config [best given data] in fewer steps than MCMC takes to estimate posterior distribution
 - lacktriangle BARS uses MCMC to find a posterior knot distribution $p(k,\xi|y)$
 - MCMC uses 10,000+ knot-shuffling steps to estimate this posterior distribution
- Instead of estimating posterior distribution, why not find posterior mode?
 - Use the knot-shuffling steps to evolve an optimal knot-set
 - Find $\operatorname{argmax}_{k,\xi} p(y|k,\xi)$ [MLE] or $\operatorname{argmax}_{k,\xi} p(k,\xi|y)$ [MAP]
 - ► Each MCMC knot-shuffle becomes a mutation step
 - Each MCMC acceptance/rejection becomes an evolutionary scoring step

1. Start with a set of initial (randomly drawn) pool of knot configurations

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...
 - 3.1 Take i perturbation steps on each model in the pool

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...
 - 3.1 Take i perturbation steps on each model in the pool
 - 3.2 Store a pool of the j best models

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...
 - 3.1 Take i perturbation steps on each model in the pool
 - 3.2 Store a pool of the j best models
 - 3.3 Create a new pool by randomly recombining existing pool

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...
 - 3.1 Take i perturbation steps on each model in the pool
 - 3.2 Store a pool of the j best models
 - 3.3 Create a new pool by randomly recombining existing pool
- 4. Pool will [hopefully] converge to MLE

- 1. Start with a set of initial (randomly drawn) pool of knot configurations
- 2. For each perturbation step...
 - 2.1 Randomly move, add, or delete a knot from each set
 - 2.2 If the perturbed knot has a better likelihood $p(y|k,\xi)$ than the original, replace the original with it
- 3. For each epoch...
 - 3.1 Take i perturbation steps on each model in the pool
 - 3.2 Store a pool of the j best models
 - 3.3 Create a new pool by randomly recombining existing pool
- 4. Pool will [hopefully] converge to MLE
- 5. Can maximise posterior, instead of likelihood, by including a prior term

BARS vs evolution

- Would be interesting to compare this to the MCMC method
 - ► MCMC sets up a Markov chain whose stationary distribution is the posterior
 - ► This aims to find a Markov chain whose stationary distribution is the argmax
 - Grounds for a rigorous justification / proof of convergence
- Evolution will likely be faster
 - Could leverage existing genetic optimization packages
 - Easily parallelised for more speed-up
 - No RJ-MCMC makes it easier target for probabilistic programming

SV-BARS

Another idea: remodel BARS to work similarly to sparse GPR

- - **Each MCMC** step requires inverting an $n \times n$ matrix SLOW
- $m{k}$ Choose a [small] set of maximally informative surrogate datapoints (x_i^*, y_i^*)
- Run MCMC step on surrogate datapoints
 - Much faster to invert the smaller matrix
- Well-chosen surrogate points means we get the same result as running on real data
- Fewer datapoints means it runs a lot faster

SV-BARS implementation

- - Find inducing points by minimising $D_{\mathrm{KL}}\left[p_{y}\|p_{y^{*}}\right]$
 - ► Use variational Bayes to approximate this
- \checkmark Find posterior knots $p(k, \xi|y^*)$ [instead of $p(k, \xi|y)$]
 - $ightharpoonup \mathcal{O}(m^3), m \ll n$
 - ▶ Sparse GPR is $\mathcal{O}(nm^3)$, so if my complexity is correct, we get a bigger speed-up / outperform SVGPR!

Would require learning RJ-MCMC, variational Bayes, sparse GPR in-depth

Periodic BARS

An approach for if we need to model more than a few spikes:

- **K** Assume data are given by $y_i = f(x_i) + \varepsilon$
 - f(t) = f(t+T)
- Find either
 - ► T-periodic knot-set
 - ▶ T-periodic basis splines
 - Nicer approach
- ...in such a way that we...
 - k minimise fitting time
 - k balance fit against number of knots

Semiperiodic methods

Experimental data aren't perfectly periodic

Semiperiodic methods

Experimental data aren't perfectly periodic [could Ca²⁺, or experiment setup!]

K Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\ensuremath{\mathbf{k}}$ Fit a model to f(t)

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - ightharpoonup f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\norm{\ensuremath{\not{k}}}$ Fit a model to f(t)
 - Only requires one period's worth of data

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - ightharpoonup f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\norm{\ensuremath{\not{k}}}$ Fit a model to f(t)
 - Only requires one period's worth of data
- $\ensuremath{\,\cancel{\,\ell}}$ Fit a model to A(t)

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\norm{\ensuremath{\not{k}}}$ Fit a model to f(t)
 - Only requires one period's worth of data
- $\norm{\norm{\norm{\mbox{\it K}}}{\it Eit}}$ Fit a model to A(t)
 - Requries a few datapoints across all periods

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\norm{\ensuremath{\not{k}}}$ Fit a model to f(t)
 - Only requires one period's worth of data
- $\norm{\norm{\norm{\mbox{\it K}}}{\it Eit}}$ Fit a model to A(t)
 - Requries a few datapoints across all periods

- **K** Assume data are given by $y_i = A(x_i)f(x_i) + \varepsilon$
 - f(t) = f(t+T) is the periodic behaviour
 - ightharpoonup A(t) is the drifting amplitude
 - Might require transforming the data, to a zero-DC offset
- $\norm{\ensuremath{\not{k}}}$ Fit a model to f(t)
 - Only requires one period's worth of data
- $\norm{\norm{\norm{\mbox{\it K}}}{\it Eit}}$ Fit a model to A(t)
 - ► Requries a few datapoints across all periods
- ▶ BARS, GPR, NARMAX all interesting model options
- Would likely give similar results to sparse BARS

For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC

- For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC
- ₭ For bigger data, we need something more creative

- For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC
- For bigger data, we need something more creative
- Sparse variational BARS would be valuable within machine learning community

- For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC
- For bigger data, we need something more creative
- Sparse variational BARS would be valuable within machine learning community
 - Would very likely give state-of-the-art results!

- For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC
- For bigger data, we need something more creative
- Sparse variational BARS would be valuable within machine learning community
 - ► Would very likely give state-of-the-art results!
 - Could be combined with the evolutionary approach for more speedup

- For small numbers of cycles (1, 2, 3), current BARS works well enough for CBC
- For bigger data, we need something more creative
- Sparse variational BARS would be valuable within machine learning community
 - ► Would very likely give state-of-the-art results!
 - Could be combined with the evolutionary approach for more speedup
- (Semi)periodic BARS would be less generally applicable, but potentially faster when applicable

1. Use current BARS setup for a CBC experiment

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community
- Demonstrate splines [and GPR?] on other problems (NDC, comp-synth-bio, ML)

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community
- Demonstrate splines [and GPR?] on other problems (NDC, comp-synth-bio, ML)
 - Extra paper, builds well on the surrogate-modelling knowledge I'm developing

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community
- Demonstrate splines [and GPR?] on other problems (NDC, comp-synth-bio, ML)
 - Extra paper, builds well on the surrogate-modelling knowledge I'm developing
 - I wouldn't know which problems to apply them to

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community
- Demonstrate splines [and GPR?] on other problems (NDC, comp-synth-bio, ML)
 - Extra paper, builds well on the surrogate-modelling knowledge I'm developing
 - I wouldn't know which problems to apply them to
- 4. Make a periodic BARS setup, then use that in CBC

- 1. Use current BARS setup for a CBC experiment
 - Gets CBC results fast
- 2. Adapt current BARS setup for sparsity / evolution, then use in CBC
 - New splines method would be valuable in ML community
- Demonstrate splines [and GPR?] on other problems (NDC, comp-synth-bio, ML)
 - Extra paper, builds well on the surrogate-modelling knowledge I'm developing
 - I wouldn't know which problems to apply them to
- 4. Make a periodic BARS setup, then use that in CBC
 - Periodic BARS is a less general method

My proposal

- Validate models
 - ► Also try simple data transformations for GPR
- Write up notes on everything so far

Then...

- 1. Adapt BARS for sparsity, evolution
 - Fast, SOTA, scalable
 - Needs variational Bayes learned
- 2. Demonstrate sparse BARS on other problems (NDC, comp-synth-bio, ML)
 - Not sure which problems would benefit from splines?
- 3. Apply the shiny new splines method to CBC