431 Class 23

Thomas E. Love

2017-11-16

Today's Agenda

- Discussing Past Activities
 - Quiz 2
 - Assignment 5
 - "After Class 22" Google Form
- Changes in the Tidyverse
- Regression Modeling in the Tidyverse
 - The National Youth Fitness Survey

```
library(magrittr); library(broom); library(tidyverse)
-- Attaching packages ------
v ggplot2 2.2.1 v purrr 0.2.4
v tibble 1.3.4 v dplyr 0.7.4
v tidyr 0.7.2 v stringr 1.2.0
v readr 1.1.1 v forcats 0.2.0
-- Conflicts
x tidyr::extract() masks magrittr::extract()
x dplyr::filter() masks stats::filter()
             masks stats::lag()
x dplyr::lag()
x purrr::set_names() masks magrittr::set_names()
nyfs1 <- read.csv("data/nyfs1.csv") %>% tbl_df
```

Regression, or "You've Got To Draw The Line Somewhere"

The National Youth Fitness Survey, 2012

See $https://thomaselove.github.io/431 notes/NYFS-Study.html\ for\ details.$

```
summary(select(nyfs1, bmi, waist.circ, sex))
```

```
bmi waist.circ sex
Min. :11.9 Min. : 42.50 Female:707
1st Qu.:15.8 1st Qu.: 55.00 Male :709
Median :17.7 Median : 63.00
Mean :18.8 Mean : 65.29
3rd Qu.:20.9 3rd Qu.: 72.92
Max. :38.8 Max. :112.40
```

Thomas E. Love 431 Class 23 2017-11-16 5 / 58

Summarizing Associations Graphically (Code)

```
cor_lab <- nyfs1 %$%
  cor(waist.circ, bmi) %>%
  round(.,2)
ggplot(nyfs1, aes(x = waist.circ, y = bmi)) +
  geom point(pch = 1) +
  geom smooth(method = "lm", col = "red") +
  geom_smooth(method = "loess", col = "blue") +
  labs(x = "Waist Circumference (cm)",
       y = "Body Mass Index") +
  annotate("text", x = 110, y = 10, size = 5,
           label = paste("r =",
                         cor lab))
```

Plot on next slide...

Summarizing Associations Graphically

Summarizing Associations Numerically

```
nyfs1 %$% cor(waist.circ, bmi)
```

[1] 0.9100287

The Pearson Correlation, r

- Unitless (scale-free) measure of bivariate linear association
- r_{XY} = (slope of Y~X regression line) times SD_X / SD_Y
- $-1 \le r \le +1$
 - -1 indicates straight line relationship with negative slope
 - ullet +1 indicates straight line relationship with positive slope
 - 0 indicates no linear association
- ullet $r^2 = \text{key regression summary } \% \text{ of variation in } Y \text{ explained by } X$

Scatterplot Matrix for some NYFS1 variables (Code)

Note that I usually run this with message = FALSE in the chunk label. Otherwise, you get some irritating messages in your output.

Thomas E. Love 431 Class 23 2017-11-16 9 / 58

Scatterplot Matrix for some NYFS1 variables

Model 1: Predicting bmi using waist.circ alone

Thomas E. Love 431 Class 23 2017-11-16 11 / 58

Summarizing the bmi-waist.circ association

summary(m1) ## see next slide

```
m1 <- nyfs1 %$% lm(bmi ~ waist.circ)
m1
Call:
lm(formula = bmi ~ waist.circ)
Coefficients:
(Intercept) waist.circ
   -0.06646
                0.28893
```

Summary for Linear Model (rearranged, a bit)

```
Call: lm(formula = bmi ~ waist.circ)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.06646 0.23292 -0.285 0.775
waist.circ 0.28893 0.00350 82.548 <2e-16 ***
Sig. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multiple R-squared: 0.8282
F-statistic: 6814 on 1 and 1414 DF, p-value: < 2.2e-16
Residuals: Min 1Q Median 3Q
          -4.2343 -1.0941 -0.0744 0.9254 19.0664
Residual standard error: 1.692 on 1414 degrees of freedom
Adjusted R-squared: 0.828
```

2.5 % 97.5 %

(Intercept) -0.5233582 0.3904439 waist.circ 0.2820601 0.2957920

```
m1
```

```
Call:
lm(formula = bmi ~ waist.circ)

Coefficients:
(Intercept) waist.circ
   -0.06646    0.28893

confint(m1, level = 0.95)
```

Tidying the Coefficients (with broom::tidy)

Places the coefficient summary into a tibble.

```
tidy(m1) ## from broom package
```

```
term
                 estimate std.error statistic
  (Intercept) -0.06645719 0.232917523 -0.285325
  waist.circ 0.28892604 0.003500087 82.548253
  p.value
1 0.775437
2 0.000000
```

Thomas E. Love 431 Class 23 2017-11-16 16 / 58

Model Summaries, at a glance (with broom::glance)

Places detailed model summaries into a one-row tibble.

```
glance(m1) ## also from broom
```

```
r.squared adj.r.squared sigma statistic p.value

1 0.8281523    0.8280307 1.692336 6814.214    0

df logLik AIC BIC deviance df.residual

1 2 -2753.188 5512.376 5528.143 4049.7 1414
```

Thomas E. Love 431 Class 23 2017-11-16 17 / 58

What if we tried log(BMI)?

log(BMI) vs. BMI: The effect of the log


```
m1.log <- nyfs1 %$% lm(log(bmi) ~ waist.circ)
m1.log</pre>
```

```
Call:
lm(formula = log(bmi) ~ waist.circ)
Coefficients:
(Intercept) waist.circ
    1.98892    0.01415
```

m1.log vs. m1 (Coefficients)

tidy(m1)

```
term
                estimate std.error statistic
  (Intercept) -0.06645719 0.232917523 -0.285325
2 waist.circ 0.28892604 0.003500087 82.548253
  p.value
1 0.775437
2 0.000000
tidy(m1.log)
        term estimate std.error statistic
```

p.value

1 0

(Intercept) 1.98891965 0.0110708236 179.6542 waist.circ 0.01415173 0.0001663629 85.0654

m1.log vs. m1 (Summaries)

glance(m1)

glance(m1.log)

Thomas E. Love 431 Class 23 2017-11-16 22 / 58

Augmenting the Data with Model m1 Results (broom::augment) run with warning = FALSE

```
newdata <- augment(m1) ## yet again from broom
head(newdata,3)</pre>
```

```
bmi waist.circ .fitted .se.fit .resid
1 22.3 71.9 20.70732 0.05056896 1.592675
2 19.8 79.4 22.87427 0.06678505 -3.074270
3 15.2 46.8 13.45528 0.07882016 1.744719
.hat .sigma .cooksd .std.resid
1 0.0008928832 1.692404 0.0003961152 0.9415307
2 0.0015573458 1.690955 0.0025776230 -1.8179994
3 0.0021692083 1.692297 0.0011578035 1.0320726
```

Thomas E. Love 431 Class 23 2017-11-16 23 / 58

Assumption Checking: The Role of Residuals

- ("Linearity") The residuals from the linear model should show no particular curved relationship when plotted against the fitted values, or when plotted against individual predictors.
- ("Independence") Particularly if the data describe a series in time or space, we want to see no clear cycles in the residuals when plotted against time/space.
- ("Homoscedasticity" / "Constant Variance") The residuals from the linear model should display a similar amount of spread across levels of the fitted values. Sometimes we plot the square root of the residuals against the fitted values to assess this.
- ("Approximately Normal") The residuals from the linear model should follow an approximately Normal distribution. Often, we'll plot the residuals in a normal Q-Q plot to assess this. We'd like to avoid [a] fitting points poorly (exceptionally large positive or negative residuals), [b] points that show enormous influence over the model (removing them causes the coefficients to change substantially)

Plotting the Model Residuals (squeezed too much)

par(mfrow = c(1,1))

plot(m1, which = 1) Residuals vs Fitted Values

plot(m1, which = 3) Scale-Location Plot


```
nyfs1 %>% slice(c(583, 762, 1156)) %>%
select(subject.id, bmi, waist.circ)
```

What about our augmented data?

3 37.0

```
augment(m1) %>%
 slice(c(583, 762, 1156)) %>%
 select(bmi, waist.circ, .fitted, .resid,
        .std.resid, .cooksd) %>%
 round(., 2)
# A tibble: 3 \times 6
   bmi waist.circ .fitted .resid .std.resid .cooksd
 <dbl>
           <dbl> <dbl> <dbl> <
                                   <dbl>
                                          <dbl>
  38.8 93.1 26.83 11.97 7.09 0.10
2 27.9 63.3 18.22 9.68 5.72 0.01
```

62.3 17.93 19.07

11.27 0.05

Which point has the largest residual in the data?

Row 1156 (ID 73202) has the largest residual

Standardized Residuals just rescale Raw Residuals

Boxplot of m1 .resid

Boxplot of m1 .std.resid

.std.resid from Model m1 (Notes, Section 39.2)

Standardized Residuals from Model m1

Thomas E. Love 431 Class 23 2017-11-16 34 / 58

Outliers, Leverage, Influence

We will also examine the **leverage** of individual points (.hat in the augment output) where large values indicate unusual combinations of predictors, especially when we have more than one predictor.

plot(m1, which = 5) Residuals vs. Leverage Plot

Thomas E. Love 431 Class 23 2017-11-16 36 / 58

plot(m1, which = 4) Cook's Distance Plot

Why does 583 have the largest Cook's distance?

```
summary(select(nyfs1, waist.circ, bmi))
```

```
waist.circ
                   bmi
Min. : 42.50 Min. :11.9
1st Qu.: 55.00 1st Qu.:15.8
Median: 63.00 Median: 17.7
Mean : 65.29 Mean :18.8
3rd Qu.: 72.92 3rd Qu.:20.9
Max. :112.40
               Max. :38.8
```

431 Class 23 2017-11-16 38 / 58

```
nyfs1 %>% slice(583) %>%
select(subject.id, waist.circ, bmi)
```

Why does 583 have the largest Cook's distance?


```
m1.no583 <- lm(bmi ~ waist.circ, data = slice(nyfs1, -583))
m1.no583
Call:
lm(formula = bmi ~ waist.circ, data = slice(nyfs1, -583))
Coefficients:
(Intercept) waist.circ
    0.01837
                0.28750
```

m1 with and without 583, coefficients

```
tidy(m1)

term estimate std.error statistic

1 (Intercept) -0.06645719 0.232917523 -0.285325

2 waist.circ 0.28892604 0.003500087 82.548253
p.value

1 0.775437

2 0.000000
```

tidy(m1.no583)

```
term estimate std.error statistic
1 (Intercept) 0.01837068 0.229127911 0.08017652
2 waist.circ 0.28749691 0.003444305 83.47022689
p.value
1 0.9361082
```

glance(m1)

glance(m1.no583)

```
r.squared adj.r.squared sigma statistic p.value
1 0.8313899    0.8312705 1.662607 6967.279    0
df logLik AIC BIC deviance df.residual
1 2 -2726.165 5458.33 5474.094 3905.903 1413
```

Thomas E. Love 431 Class 23 2017-11-16 43 / 58

Model 2: Predicting bmi using waist.circ as well as age.exam and sex

Thomas E. Love 431 Class 23 2017-11-16 44 / 58

Scatterplot Matrix for some NYFS1 variables


```
m2 <- nyfs1 %$%
lm(bmi ~ waist.circ + age.exam + sex)
m2</pre>
```

```
.
```

Call:

```
lm(formula = bmi ~ waist.circ + age.exam + sex)
```

Coefficients:

```
(Intercept) waist.circ age.exam sexMale
-1.4452 0.3484 -0.2932 0.1881
```

Summary of Model m2 (rearranged a little)

```
Call: lm(formula = bmi ~ waist.circ + age.exam + sex)
Multiple R-squared: 0.8635, Adjusted R-squared: 0.8633
F-statistic: 2979 on 3 and 1412 DF, p-value: < 2.2e-16
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.445179 0.222018 -6.509 1.05e-10 ***
waist.circ 0.348370 0.004421 78.801 < 2e-16 ***
age.exam -0.293247 0.015440 -18.992 < 2e-16 ***
sexMale 0.188094 0.080208 2.345 0.0192 *
Sig. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residuals: Min 1Q Median 3Q Max
```

Residual standard error: 1.509 on 1412 degrees of freedom

-4.0232 -0.8879 -0.0802 0.7836 20.3659

```
Call: lm(formula = bmi ~ waist.circ)
Multiple R-squared: 0.8282, Adjusted R-squared: 0.828
F-statistic: 6814 on 1 and 1414 DF, p-value: < 2.2e-16
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.06646 0.23292 -0.285 0.775
waist.circ 0.28893 0.00350 82.548 <2e-16 ***
Sig. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residuals: Min 1Q Median 3Q Max
          -4.2343 -1.0941 -0.0744 0.9254 19.0664
Residual standard error: 1.692 on 1414 degrees of freedom
```

95% Confidence Intervals for m2 Coefficients

```
confint(m2, level = 0.95)
```

```
2.5 % 97.5 % (Intercept) -1.88069873 -1.0096587 waist.circ 0.33969754 0.3570418 age.exam -0.32353535 -0.2629586 sexMale 0.03075409 0.3454346
```

Tidying the Coefficients (with broom::tidy)

Places the coefficient summary into a tibble.

```
tidy(m2) ## from broom package
```

```
term estimate std.error statistic

1 (Intercept) -1.4451787 0.222017690 -6.509295

2 waist.circ 0.3483697 0.004420855 78.801422

3 age.exam -0.2932470 0.015440287 -18.992327

4 sexMale 0.1880943 0.080208291 2.345073
p.value

1 1.046338e-10

2 0.000000e+00

3 8.257321e-72

4 1.916119e-02
```

```
glance(m2) ## also from broom
```

```
r.squared adj.r.squared sigma statistic p.value
1 0.8635437     0.8632538 1.509103 2978.545     0
df logLik AIC BIC deviance df.residual
1 4 -2589.92 5189.84 5216.118 3215.678 1412
```

glance(m1) ## for comparison

```
r.squared adj.r.squared sigma statistic p.value

1 0.8281523    0.8280307 1.692336 6814.214    0

df logLik AIC BIC deviance df.residual

1 2 -2753.188 5512.376 5528.143 4049.7 1414
```

Thomas E. Love 431 Class 23 2017-11-16 51 / 58

Augmenting the Data with Model Results (broom::augment) run with warning = FALSE

```
newdat2 <- augment(m2) ## again from broom
head(newdat2,3)</pre>
```

```
bmi waist.circ age.exam sex .fitted .se.fit
1 22.3 71.9 8 Female 21.25663 0.06927752
2 19.8 79.4 14 Female 22.10992 0.08007933
3 15.2 46.8 3 Male 14.16688 0.08724867
    .resid
                .hat
                      .sigma .cooksd
1 1.043374 0.002107399 1.509382 0.0002529070
2 -2.309917 0.002815807 1.508381 0.0016586209
3 1.033124 0.003342564 1.509387 0.0003942708
 .std.resid
1 0.6921161
2 - 1.5328151
3 0.6857415
```

Thomas E. Love 431 Class 23 2017-11-16 52 / 58

Residuals vs. Fitted Values plot(m2, which = 1)

Scale-Location Plot plot(m2, which = 3)

Standardized Residuals plot(m2, which = 2)

Residuals, Leverage, Influence plot(m2, which = 5)

Cook's Distance Index Plot plot(m2, which = 4)

Coming Soon (and see Notes, Sections 37-end)

- What happens when a linear model doesn't fit so well?
 - Should we be modeling a transformed outcome?
 - Box-Cox approach to transformation decisions
- Incorporating multi-categorical predictors
- Model Validation: Making predictions in new data
 - Simplest Smart Approach: Split data into Training, Test samples
- Variable Selection: Stepwise and better approaches
- Standardizing Regression Coefficients
- Dealing with Missingness Sensibly