Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

Examen Mărire

2 Iunie 2018

Timp de lucru 2h30. Toate documentele, computerele personale, telefoanele mobile și/sau calculatoarele electronice de mână sunt autorizate. Orice modalitate de comunicare între voi este **strict** interzisă. Mult succes!

Exercițiul 1

10p

Fie X_1, X_2, \dots, X_n un eșantion de talie n dintr-o populație cu densitatea $f_{\theta}(x) = e^{-(x-\theta)}, x \ge \theta$.

- a) Determinați estimatorul $\tilde{\theta}$ obținut prin metoda momentelor și estimatorul $\hat{\theta}$ obținut prin metoda verosimilității maxime.
- b) Determinați legea variabilei $n(\hat{\theta} \theta)$ și verificați dacă estimatorul $\hat{\theta}$ este nedeplasat.
- c) Calculați eroarea medie pătratică a lui $\hat{\theta}$.
- d) În cazul în care $\theta = 3$ dorim să generăm 4 valori aleatoare din repartiția lui $X \sim f_{\theta}(x)$. Pentru aceasta dispunem de patru valori rezultate din repartiția uniformă pe [0, 1]: $u_1 = 0.647$, $u_2 = 0.637$ și $u_3 = 0.159$. Descrieți procedura.

Exercițiul 2

10p

Numărul de clienți care intră în magazinul Unirea zilnic poate fi modelat cu ajutorul unei variabile aleatoare repartizate Poisson de parametru λ , cunoscut. Odată intrat, un client cumpără produse în valoare de cel puțin 250 RON cu probabilitatea p. Pentru a estima p avem la dispoziție un eșantion Y_1, Y_2, \ldots, Y_{20} pentru 20 zile, reprezentând numărul de clienți, zilnic, care au efectuat cumpărături de cel puțin 250 RON:

4 4 1 4 0 3 4 1 6 7 7 5 3 5 4 6 2 2 5 6

Propuneți un estimator pentru p, studiați proprietățile acestuia și dați o estimare plecând de la eșantionul dat (știind că $\lambda = 18$).

Exercițiul 3

10p

Considerăm densitatea f_{θ} în raport cu măsura Lebesgue pe \mathbb{R} definită prin

$$f_{\theta}(x) = \frac{1}{2\theta} \left(\mathbf{1}_{[0,\theta]}(x) + \mathbf{1}_{[2\theta,3\theta]}(x) \right)$$

cu $\theta > 0$ un parametru necunoscut și fie X_1, \ldots, X_n un eșantion de talie n din populația f_{θ} .

- a) Determinați estimatorul $\hat{\theta}_n^M$ a lui θ obținut prin metoda momentelor și precizați care este repartiția limită a acestuia
- b) Calculați cuartila de ordin 1, $Q_1 = x_{\frac{1}{4}}$ și plecând de la aceasta găsiți un estimator $\hat{\theta}_n^{Q_1}$ consistent pentru θ . Specificați repartiția limită a acestuia.
- c) Aceeași întrebare pentru cuartila de ordin 3 (notați estimatorul cu $\hat{\theta}_n^{Q_3}$).
- d) Pe care dintre cei trei estimatori $\hat{\theta}_n^M,\,\hat{\theta}_n^{Q_1}$ și $\hat{\theta}_n^{Q_3}$ îl preferați ?

Grupele: 301, 311, 321 Pagina 1

Curs: Statistică (2017 - 2018) Instructori: A. Amărioarei, S. Cojocea

- e). Pentru $0 < x < \theta$ calculați $\mathbb{P}(X_{(n)} \leq 3\theta x)$, unde $X_{(n)}$ este statistica de ordine de rang n. Găsiți un estimator $\hat{\theta}_n^S$ consistent pentru θ .
 - f) Determinați repartiția limită a lui $n(\theta \hat{\theta}_n^S)$.
 - g) Pe care dintre cei patru estimatori îi preferați?
 - h) Propuneți o metodă de determinare a unui interval de încredere ne asimptotic de nivel de încredere $1-\alpha$ pentru θ .

Grupele: 301, 311, 321 Pagina 2