

Maik Thanh Nguyen

TITLE
CONFERENCE, DATE

Content

- Modal logic and semantics
 - Kripke frames
 - Topological space
 - Neighbourhood frames
- Multimodal logic and product of frames/spaces and logics
 - Notation, Fusion of logics
 - Horizontal and Vertical topology/functions and semantics
 - Product of logics
- · Main result and ideas

Modal logic and Kripke frames and models

Modal logic extends classical propositional logic. Formally:

$$\phi ::= \mathbf{p} \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \Box \phi$$

where \square is a modal operator and Prop is a set of variable with $p \in \text{Prop}$.

Modal logic and Kripke frames and models

Modal logic extends classical propositional logic. Formally:

$$\phi ::= p \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \Box \phi$$

where \square is a modal operator and Prop is a set of variable with $p \in \text{Prop}$.

- A frame F = (W, R) is a pair where
 - W is a non-empty set of worlds
 - R ⊆ W × W is a binary relation
- A model is a pair M = (F, R) (M is based on F) where
 - F is a frame
 - V is a valuation and is of the form V: Prop → 2^{W}

Kripke semantics

• Let M = (F, V) be a model and $w \in W$ a state in M. A formula being true at w is inductively defined as:

$$M, w \Vdash p$$
 iff $w \in V(p)$
 $M, w \Vdash \bot$ never
 $M, w \Vdash \neg \phi$ iff not $M, w \Vdash \phi$
 $M, w \Vdash \phi \lor \psi$ iff $M, w \Vdash \phi \lor M, w \Vdash \psi$
 $M, w \Vdash \Box \phi$ iff $\forall v \in W : wRv \to M, v \Vdash \phi$
 $M, w \Vdash \Diamond \phi$ iff $\exists v \in W : wRv \land M, v \Vdash \phi$

Example

Let $\phi = \Box p$ and M = (W, R, V) with $W = \{w_1, w_2, w_3, w_4, w_5\}$, $V(p) = \{w_3, w_4, w_5\}$ and R =

Example

• Let $\phi = \Box p$ and M = (W, R, V) with $W = \{w_1, w_2, w_3, w_4, w_5\}$, $V(p) = \{w_3, w_4, w_5\}$ and R =

 Kripke semantics has many applications for example epistemic logic, temporal logic,...

CONFERENCE, DATE