Assignment 1 Writeup

December 29, 2024

1 Program 1

The speedup for 2-8 threads for each view is below.

The dip at three threads is likely due to the uneven work distribution – the "middle" thread has more than 50% of the work to do. Contrast with View 2, which has a much more even distribution when decomposed spatially and hence

does not show this patter. In general, we don't get 1:1 speedups as threads increase due to uneven work distribution.

The timings, shown below, bear this out.

Threads	t0	t1	t2
2	213.021	213.300	
3	86.072	$257\ 164$	86 621

To solve this problem, we can interleave the rows across threads such that thread_i processes all rows where rownum % i == 0. This should produce a much more even work distribution. Figure 2 shows speedups with this policy.

Increasing to 16 threads does not have a useful effect as after 8 threads, all cores are fully utilized, so any additional threads will have to wait. There is also a context switching overhead.