Assignment Project Exam Help

https://powcoder.com

Forecasting MeChat powcoder

Agenda

Start	End	Item				
		What is Forecasting?				
		Naïve Forecasting Methods				
		Time Series Decomposition				
	Assignments Projectn Exam Help					
		Appendix https://powcoder.com				
		mtps.//poweoder.com				
		Add WeChat powcoder				

Appendix I – Regression Forecasting

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Regression Based Forecasting

Ridership Y is a function of time (t) and noise (error = e)

 $Y_i = B_0 + B_1^* t + e$

• Level (*B*₀)

• Trend* (B_1)

• Noise (*e*)

Add WeChat powcoder

Time Series Linear Trend

Linear Trend Predictions

train.lm.pred <- forecast(train.lm, h = nValid, level = 0)

Open 5_Ch17.R

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Exponential Trend – like amazon's revenue

Appropriate model when increase/decrease in series over time is multiplicative

Replace Y with log(Y) then fit linear regression
Assignment Project Exam Help

$$log(Y_i) = B_0 + B_1 t + e$$

Add WeChat powcoder

Natural Logs - not to hard

"e" raised what power equals the time series value

• Where "e" = ~2.718

```
Assignment Project Exam Help

log (2)

[1] 0.693147 https://powcoder.com

2.719(0.6931472)

[1] 0.693147 https://powcoder.com

1.99
```

Add WeChat powcoder

```
e^2.56949
2.719(2.56949)
13.05568
```

Don't worry, R handles with the log() function.

HARVARD UNIVERSITY

Exponential trend - forecast errors

Note that performance measures in standard linear regression software are not in original units

Model forecasts will be in the form log(Y) Exam Help

https://powcoder.com

Return to original units by taking exponent of model forecasts using the function exp()

Add WeChat powcoder

Calculate standard deviation of these forecast errors to get RMSE

Open 5_Ch17.R (AGAIN)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Other Trends Polynomial Trend

Add additional predictors as appropriate

Assignment Project Exam Help. For example, for quadratic relationship add a t² predictor

https://powcoder.com
Fit linear regression using both t and t²
Add WeChat powcoder

Quadratic Trend

```
fit quadratic trend using function I(), which treats an
  object "as is".
train.lm.poly.trend <- tslm(train.ts ~ trend + I(trend^2))</pre>
summary(train.lm.poly.trend)
train.lm.poly.Arend.prednt-Pforecase (train-Helppoly.trend,
     h = nValid, level
      2600
                    https://ipowcoder.com/alidation
  Ridership
                     Add WeChat powco
      2000
          1991
                1993
                      1995
                             1997
                                   1999
                                         2001
                                               2003
                                                      2005
```

Due to time constraints, please review pg 408.

Handling Seasonality in Regression

Just make dummy variables for seasons...but beware of multi-collinearity!

Month	Ridership	Season	
Jan 1991	1709	Jan _	
Feb 1991	1621	Assign	nment Project Exam Help
Mar 1991	1973	Mar _	tno. 1/novyvo don obno

https[†]//powcoder.com

Month	Ridership	Season	Jan	Feb	Mar		Nov
Jan 1991	1709	Jan Ado	d¹WeC	hat pov	wcoder		0
Feb 1991	1621	Feb	0	1	0		0
Mar 1991	1973	Mar	0	0	1		0
							1
Nov 1991	1675	Nov	0	0	0		1
Dec 1991	1813	Dec	0	0	0	0	0

To avoid multi-collinearity, there is no Dec.

HARVARD UNIVERSITY

14

Final model, Amtrak data

Incorporates trend and seasonality

13 predictor Ssignment Project Exam Help

- 11 monthly dummies
- t = trends https://powcoder.com
- t² = quadratic trend (to get the positive and negative trend slopes)

Add WeChat powcoder

Regression Based Forecasting is great for events

Month	Ridership	Season	Jan	Feb	Mar		Nov	Summer Promo	Holiday Promo
Jan 1991	1709	Jan	1	0	0		0	0	0
Feb 1991	1621 Assis	gnment	Proi	ect	Êxa	ım]	Heli	0	0
Mar 1991	19/3	Mar	Ü	Ü	1		0	0	0
	1	nttps://p	O	eode	er.co	m	0	0	.0
Nov 1991	1675	Nov	0	0	0		1	0	1
Dec 1991	1813	Add Wo	et na	16 pc	OWC	Q ae	1 6	0	1

HARVARD UNIVERSITY

Summary - Regression Based Forecasting

- Can use linear regression for exponential models (use logs) and polynomials (exponentiation)
- For seasonality, jusquategorical yarialtex (make quipmies)
- For Events, use more dummy variables

https://powcoder.com

Add WeChat powcoder

Open 6_TK_RegressionModel.R

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Appendix II - ARIMA

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

ARIMA - Stationary

Fitting an ARIMA model requires the series to be **stationary**. A series is said to be stationary when its mean, variance, and autocovariance are time invariant.

More simply non-stationary means the average values change through time. levels change, etc.

HARVARD UNIVERSITY

Auto Regressive Integrated Moving Averages ARIMA Analogy

Arima forecasts using a combination of p, d, q inputs

- •p is the number of autoregressive terms,
- ***d** is the number of nonseasonal differences, and

PDQ

•q is the number of lagged forecast errors in the prediction equation Forecasts from ARIMA(0,1,0)(0,1,1)[4]

As a tire rolls across a buntaps://powcoder.com road, one can adjust the tread, air pressure, and diameter to eWeChat powcoder the smoothest ride. ARIMA adjust these inputs to get a close fit to the bumpy road. Think of these inputs as similar to the

Auto.arima() will adjust lags and p/d/q to extract more of the auto correlation (information shared between rows)

Let's Practice

7_autoArima_AMZN.R

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Before you Embark on Forecasting - Random walks

Before forecasting, consider "is the time series predictable or is it a random walk?

When we do any forecasting first try to Example do an AR(1) model powcoder.com

• Test that slope = 1 in an AR(4) more (in an AR(4)) the forecast for a period is the most recently-observed value)

 If the beta coefficient has a small p-value then the values are predictable and you should do a forecast (not a random walk)

