

DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL'INFORMAZIONE

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

PROTOTIPAZIONE VIRTUALE

MANIPOLATORE PER IL MONTAGGIO DEL VETRO PARABREZZA DI UNA McLAREN MP4-12C

Michele Marolla

M58/251

Obiettivi

 Progettazione concettuale di un manipolatore con funzione di annullatore di gravità, per il montaggio del vetro parabrezza di una McLaren MP4-12C.

Analisi strutturale del manipolatore progettato

• Studio dell'area di assemblaggio, con focus sull'ingombro del manipolatore e sull'interazione con l'operatore umano.

Requisiti di progetto

- Numero di g.d.l. che garantisca il corretto posizionamento del vetro parabrezza sul telaio dell'automobile
- Il manipolatore non deve arrecare danno al vetro parabrezza
- Robustezza tale da poter trasportare il vetro di massa stimata 70 kg
- Azionamento mediante pulsantiera e manubrio di movimentazione

Robot cartesiano o braccio?

Cartesiano:

- ✓ Preciso per la rigidità dei giunti
- ✓ Attuatori semplici e leggeri
- Ingombrante
- Impossibilità di raggiungere zone al di sotto di un oggetto

Braccio:

- ✓ Massima flessibilità di impiego
- ✓ Grande volume di lavoro
- ✓ Possibilità di raggiungere zone al di sopra e al di sotto di un oggetto
- Difficoltà nel controllare un movimento rettilineo del polso
- Complessità cinematica

Progetto del manipolatore

- Si sceglie un robot a braccio (massima flessibilità), con colonna fissata al pavimento (costo ridotto)
- Al polso è collegato un organo di presa a ventose
- Riferimenti:
 - Gingo della Famatec, in particolare per l'organo terminale
 - Partner Equo della Dalmec
 - ATISMIRUS della ATIS
 - Liftronic Air della Indiva

Partner Equo della Dalmec

Caratteristiche del progetto

• Colonna fissata al pavimento (costo ridotto); si può facilmente fissare su un basamento autostabile o resa scorrevole su vie di corsa.

• Struttura a parallelogramma, per aumentare la rigidità del robot

 Controllo mediante manubrio di posizionamento e pulsantiera per il comando pneumatico ad aria compressa

Risultato

• Il manipolatore progettato si compone di 9 componenti opportunamente assemblati

• Il progetto è stato realizzato secondo un approccio *bottom-up*

Risultato

• Il manipolatore progettato si compone di *9* componenti opportunamente assemblati

• Il progetto è stato realizzato secondo un approccio *bottom-up*

Dati di ingombro

End effector

 L'end effector è costituito da un sistema di presa a ventose

 Un manubrio ne permette la movimentazione, ed una pulsantiera il controllo del sistema pneumatico

• E' previso un meccanismo dadocontrodado per prevenire lo svitamento spontaneo delle ventose

Simulazione cinematica

• Il manipolatore è dotato di 5 gradi di libertà

• E' stato possibile simulare il meccanismo solo parzialmente, a causa della difficoltà di gestire il quadrilatero articolato in ambiente *Kinematics*.

Analisi strutturale

• L'analisi strutturale è stata condotta a partire dalle specifiche sul vetro

• A causa dei limiti imposti dalla licenza di CATIA utilizzata, si è simulato l'intero robot come un'unica parte di un unico materiale

 In particolare, si è studiato il comportamento dell'acciaio e dell'alluminio

Analisi strutturale

- Preprocessing
 - Definizione della mesh
 - Scelta del materiale (acciaio o alluminio)
 - Impostazione dei vincoli (base fissata)
 - Applicazione dei carichi (peso del carico)
 - In particolare, è stato applicato un carico di 700N (circa 70 kg) sulle superfici di contatto tra il manipolatore ed il vetro
- Compilazione dell'analisi e calcolo dei risultati
- Postprocessing
 - Visualizzazione dei risultati (sforzi e deformazioni)
 - Confronto con valori assimibili

Analisi strutturale: acciaio

 La tensione massima accettabile per l'acciaio è:

$$\sigma_a = \frac{\sigma_y}{1.5} \approx 1.3 \cdot 10^{11} \ N/m^2$$

DIE UNIVERSITA DEGLISTUDI DI NAPOLI FEDERICO II

Analisi strutturale: acciaio

Sia gli sforzi alla Von Mises sia le deformazioni (nell'ordine del millimetro) sono risultati ampiamente accettabili.

Analisi strutturale: alluminio

 La tensione massima accettabile per l'alluminio è:

$$\sigma_a = \frac{\sigma_y}{1.5} \approx 4.6 \cdot 10^{10} \ N/m^2$$

DIE UNIVERSITA DEGLISTUDI DI NAPOLI FEDERICO II

Analisi strutturale: alluminio

Gli sforzi alla Von Mises sono ampiamente accettabili; la massima deformazione è di circa 3mm, più ampia del caso precedente, e va quindi valutata più nel dettaglio.

Possibili miglioramenti del prototipo

 In entrambi i casi, sul giunto rotazionale del polso è applicato un grosso sforzo

 Una simulazione più accurata può essere realizzata con una licenza più ampia, che permetta di impostare materiali diversi per i singoli componenti

Analisi ergonomica

 L'analisi della postura dell'operatore e dei carichi gravanti sulla sua colonna vertebrale è stata realizzata tramite il software Jack della Siemens.

- Sono state considerate tre posture, assunte in particolare:
 - durante la movimentazione
 - durante la raccolta del vetro
 - durante il montaggio del vetro

• Questa è chiaramente la posizione più comoda per l'operatore

computation: Oms graphics: 5ms ui/other: 13485ms 13490ms, 0.1f/se

- Sono state effettuate le analisi:
 - Lower Back Analysis, che studia i carichi agenti sulla colonna vertebrale
 - Ovako, che attribuisce un punteggio alla postura in ordine crescente di pericolo
- La postura n°1 soddisfa ampiamente i vincoli imposti dalle normative in entrambe le analisi

• Questa è la postura più gravosa per l'operatore

 Alle analisi precedenti si è aggiunta la Rapid Upper Limb Assessment, che verifica i carichi sulle articolazioni

• La postura n°2 è più gravosa della precedente, ma ancora accettabile

• Rispetto al progetto iniziale, è stato reso più alto il manubrio dell'end effector per diminuire il carico sulla colonna vertebrale dell'operatore

- La Ovako fornisce risultati migliori del caso precedente
- I risultati della *RULA* sono accettabili, ma migliorabili

Lower Back Analysis					×	
Human male_v70_clothed					©	
Analysis Reports Graphs Watchdogs						
_						
Human Attributes						
Gender: male Height (cm): 175.49 Weight (kg): 77.690						
low back spinal forces (L4/L5)						
L4/L5 Forces (N)						
Compression –						
Lateral shear						
0	-	2000	4000	6000	7	
The low back compression force of 749 is below the NIOSH Back Compression Action Limit of 3400 N, representing a nominal risk of low back injury for most healthy workers.						
	Usage	Watchdog Only	Loads & Weights	ACTIVE	Dismiss	

踆 Rapid Upper Limb Assessment (RULA)						
Iask Entry Reports Analysis Summary						
Job Title: Location: Comments: Body Group A Posture Rating	Job Number: Analyst: Date:					
Upper arm: 3 Lower arm: 3 Wrist: 3 Wrist Twist: 2 Total: 5	Body Group B Posture Rating Neck: 1 Trunk: 1 Total: 1 Muscle Use: Normal, no extreme use					
Muscle Use: Normal, no extreme use Force/Load: < 2 kg intermittent load Arms: Not supported	Force/Load: < 2 kg intermittent load					
Legs and Feet Rating Standing, weight even. Room for weight changes. Grand Score: 4						
Action: Further investigation needed. Changes may be required. Update Analysis						
	Usage Dismiss					

Conclusioni

• Il progetto risultante soddisfa tutte le specifiche assegnate

- Criticità e possibili miglioramenti
 - Analisi strutturale più precisa, considerando diversi materiali
 - Progetto del polso tale da distribuire meglio i carichi
 - Miglioramento dell'ergonomia