Astronomical Image Processing

Samuel Farrens CEA

Before We Start

Tutorial materials and link to online Binder interface available at:

https://github.com/sfarrens/euroscipy

If you plan to run the tutorial via Binder now would be a good time to launch it!

Otherwise, if you are running the tutorial locally, make sure you:

- create the conda environment
- then activate the environment

conda env create -f environment.yml conda activate euroscipy-astro

Outline

- Inverse Problems
 - Linear Regression
 - Ill-posed Problems
- Regularisation
 - Sparsity
- Jupyter Notebooks

Inverse Problems

With an inverse problem one attempts to obtain information about a physical system from observed measurements.

Inverse Problems

Linear Inverse Problem

Linear Regression

Astronomical Image Processing - S.Farrens

Linear Regression

Linear Regression

Polynomial Line: Inverse Problem

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

Astronomical Image Processing - S.Farrens

Ill-Posed Problem

Well-Posed Problem

- 1. A solution exists
- 2. The solution is unique
- 3. The solution's behaviour changes continuously with the initial conditions

III-Posed Problem

- 1. No solution exists
- 2. The solution is not unique
- 3. The problem is ill-conditioned

Ill-Posed Problem

Well-Conditioned Problem

$$\mathbf{y} \qquad \mathbf{A} \qquad \mathbf{x}$$

$$\begin{bmatrix} 4\\7 \end{bmatrix} = \begin{bmatrix} 1 & 2\\2 & 3 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \qquad \qquad \qquad \begin{bmatrix} x_1\\x_2 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$\begin{bmatrix} 4\\7 \end{bmatrix} = \begin{bmatrix} 1 & 2\\2.01 & 3 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \qquad \qquad \qquad \begin{bmatrix} x_1\\x_2 \end{bmatrix} = \begin{bmatrix} 1.96\\1.02 \end{bmatrix}$$

III-Conditioned Problem

$$\begin{bmatrix} 3 \\ 1.47 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0.48 & 0.99 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 \\ 1.47 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0.49 & 0.99 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Outline

- Inverse Problems
 - Linear Regression
 - Ill-posed Problems
- Regularisation
 - Sparsity
- Jupyter Notebooks

Regularisation

$$\underset{\mathbf{x}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda R(\mathbf{x})$$

- 1. Find **x** such that **y-Ax** is small
- 2. We have some prior knowledge about the properties of **x** given by R(**x**)

Regularisation

$$F(\mathbf{x}) = \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2$$
$$\nabla F(\mathbf{x}) = \mathbf{A}^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Convexity

In general we want to preserve convexity

A sparse signal is one that is comprised mostly of zeros when expressed in the appropriate basis.

Direct Space

-0.5 -1.0 -0.0 0.2 0.4 0.6 0.8 1.0

Sparse Space

$$\mathbf{x} = \phi \alpha = \sum_{i=1}^{n} \phi_i \alpha_i$$

 ϕ is the dictionary that converts the signal to a sparse representation. (e.g. Fourier transform, wavelet transform, etc.)

Measuring Sparsity

$$\|\alpha\|_0 \longrightarrow \|\alpha\|_1 = \sum_{i=1}^n |\alpha_i|$$

Not convex

Compressive Sensing Theorem

This theorem demonstrates that, under certain conditions regarding the signal and the operation matrix, a perfect reconstruction can be achieved through l_1 minimisation.

No such theorem exists for any other regularisation technique.

Sparse Minimisation

$$\underset{\alpha}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - A\phi\alpha\|_{2}^{2} + \lambda \|\alpha\|_{1}$$

Applications

- Denoising
- Deconvolution
- Component Separation
- Inpainting

- Blind Source Separation
- Minimisation algorithms
- Compressed Sensing

Outline

Inverse Problems

- Linear Regression
- Ill-posed Problems

- Regularisation
 - Sparsity
- Jupyter Notebooks

Jupyter Notebooks

Let's Get Started!

Reminder, tutorial materials available at:

https://github.com/sfarrens/euroscipy

If you have not already done so, please:

- ▶ activate the conda environment
- ▶ run jupyter notebook

conda activate euroscipy-astro jupyter notebook

Please open the file sparsity.ipynb