FNCE611 Problem Set 3

Jessica Blum, Jordan Farrer, Marc Lanthemann 2017-02-24

Contents

1	Diversification	1
2	Efficient Portfolios, Capital Market Line	5
3	CAPM, Security Market Line (1)	6
4	CAPM, Security Market Line (2)	7

1 Diversification

```
wfm_tsla <- gs_title("FNCE611") %>% gs_read(ws = "3.1")
```

1.1 a

```
e_wfm <- mean(wfm_tsla$wfm) * 12
e_tsla <- mean(wfm_tsla$tsla) * 12

sd_wfm <- sd(wfm_tsla$wfm) * sqrt(12)
sd_tsla <- sd(wfm_tsla$tsla) * sqrt(12)

cc <- cor(wfm_tsla$wfm, wfm_tsla$tsla)</pre>
```

Estimate (annualized)	Value
Expected Return (Whole Foods)	0.128
Expected Return (Tesla)	0.514
Standard Deviation (Whole Foods)	0.2712
Standard Deviation (Tesla)	0.5875
Correlation Coefficient	0.3

1.2 b

```
w_wfm = 0.2
e_p <- w_wfm*e_wfm + (1-w_wfm)*e_tsla</pre>
```

If $w_{wfm} = 0.2$, then the expected return for the portfolio is

$$E[r_p] = \omega_w E[r_w] + (1 - \omega_w) E[r_t] \tag{1}$$

$$= 0.2(0.128) + (1 - 0.2)(0.514) \tag{2}$$

$$=0.4368$$
 (3)

1.3 c

$$Var[r_p] = \omega_w^2 \sigma_w^2 + \omega_t^2 \sigma_t^2 + 2\omega_w \omega_t \rho_{w,t} \sigma_w \sigma_t$$

$$= 0.2^2 \cdot 0.2712^2 + (1 - 0.2)^2 \cdot 0.5875^2 + 2 \cdot 0.2 \cdot (1 - 0.2) \cdot 0.3 \cdot 0.2712 \cdot 0.5875$$
(5)

$$=0.2392$$
 (6)

So the standard deviation of the portfolio is $\sqrt{Var[r_p]} = 0.4891$.

1.4 d

```
w_wfm_opt <- uniroot(function(w) w*e_wfm + (1-w)*e_tsla -.2, interval=c(0,1), tol=0.0001)$root</pre>
```

The weights of a portfolio showing an expected return of 20% would be $\omega_w = 0.8136$ and $\omega_t = 0.1864$.

1.5 e

```
fn_mvp <- function(par) {
  w <- par[1]
  w^2 * sd_wfm^2 + (1-w)^2 * sd_tsla^2 + 2*w*(1 - w)*cc*sd_wfm*sd_tsla
}

w_wfm_mvp <- nlminb(.5, fn_mvp, lower = 0, upper = 1)$par[1]</pre>
```

The minimum variance portfolio (MVP) would have weights $\omega_w = 0.9203$ and $\omega_t = 0.0797$.

1.6 f

A portfolio with the highest Sharpe ratio would have weights $\omega_w = 0.3051$ and $\omega_t = 0.6949$.

1.7 g

$$E[r_p] = \omega_{riskless \ asset} E[r_{riskless \ asset}] + (1 - \omega_{riskless \ asset}) E[r_{mix}]$$
 (7)

$$0.25 = \omega_{riskless\ asset} 0.02 + (1 - \omega_{riskless\ asset}) 0.3962 \tag{8}$$

For a portfolio with an expected return of 25%, $\omega_{riskless\;asset}=0.3887$ and $\omega_{mix}=0.6113$. Thus, $\omega_{w}=0.1865$ and $\omega_{t}=0.4248$.

2 Efficient Portfolios, Capital Market Line

2.1 a

2.2 b

Portfolios A and D are inefficient. A is inefficient because for less risk you can get more return with portfolio B. D is inefficient because for the same risk you can get a greater return with E.

2.3 c

We see from the table below, that if you can borrow and lend at an interest rate of 12%, **portfolio F** has the highest Sharpe Ratio.

```
question2 %>%
mutate(
    sharpe_ratio = (e_r - 0.12) / sd_r
) %>%
arrange(desc(sharpe_ratio)) %>%
pander()
```

label	e_r	sd_r	sharpe_ratio
F	0.18	0.32	0.1875
$_{ m H}$	0.2	0.45	0.1778
\mathbf{E}	0.17	0.29	0.1724
G	0.18	0.35	0.1714
D	0.16	0.29	0.1379
$^{\mathrm{C}}$	0.15	0.25	0.12
В	0.125	0.21	0.02381
A	0.1	0.23	-0.08696

2.4 d

```
q4 <-
  question2 %>%
  mutate(
    w = .25 / sd_r
    , r_p = w*e_r +(1-e_r)*0.12
    ) %>%
  arrange(desc(r_p))

q4 %>% pander()
```

label	e_r	sd_r	W	r_p
В	0.125	0.21	1.19	0.2538
$^{\mathrm{C}}$	0.15	0.25	1	0.252
\mathbf{E}	0.17	0.29	0.8621	0.2462
F	0.18	0.32	0.7812	0.239
D	0.16	0.29	0.8621	0.2387
G	0.18	0.35	0.7143	0.227
A	0.1	0.23	1.087	0.2167
Η	0.2	0.45	0.5556	0.2071

If you are willing to tolerate a standard deviation of 25% you would borrow -19.0476% of your investment at the 12% interest rate and invest 119.0476% of your investment in portfolio B.

3 CAPM, Security Market Line (1)

- By definition we know that the Beta of the market portfolio M must be 1.
- We find the $sd(X) = \sqrt{\frac{\rho}{\beta}} = \sqrt{\frac{.4}{1.2}}$

• We use the fact that $r-r_f=\beta(r_m-r_f)$ to find $r_x=9$ and $r_Q=13$

```
data_frame(
    `Title` = c("Stock X", "Efficient Portfolio Q","Market Portfolio M","Riskless Asset")
, `Expected Return` = c("9%", "13%", "8%", "3%")
, Beta = c(1.2, 2.0, 1, 0.0)
, `Standard Deviation` = c("57.74%", NA, "20%", "0%")
) %>%
    pander(missing = "")
```

Title	Expected Return	Beta	Standard Deviation
Stock X	9%	1.2	57.74%
Efficient Portfolio Q	13%	2	
Market Portfolio M	8%	1	20%
Riskless Asset	3%	0	0%

4 CAPM, Security Market Line (2)