SUPPORTING INFORMATION

Evaluation of a V₈C₇ Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior

Kenta Kawashima,¹ Chi L. Cao,² Hao Li,^{1,3} Raúl A. Márquez-Montes,¹ Bryan R. Wygant,¹ Yoon Jun Son,² Joseph V. Guerrera,¹ Graeme Henkelman,^{1,3} C. Buddie Mullins^{1,2,4,*}

¹Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

²John J. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States

³Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States

⁴Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States

Number of pages: 15

Number of figures: 14

Number of tables: 0

*Corresponding author.

E-mail address: mullins@che.utexas.edu

V₈C₇-CB Thin-Film Preparation for Pre- and Post-OER Analyses.

For pre- and post-OER analyses, V_8C_7 and CB were loaded by drop casting on a Ti foil (see Figure S9a). Specifically, 78.24 μ L (4.89 μ L × 16) of the as-prepared ink (see main text for preparation details) was cast on the Ti substrate (0.64 cm²) and dried under an ambient environment. The resultant catalyst (V_8C_7) loading was approximately 0.49 mg·cm⁻². The electrochemical tests of the as-prepared V_8C_7 -CB/Ti electrode were conducted in 220 mL of 1 M KOH aqueous solution (pH ~ 14) using a CHI660D electrochemical workstation (CH Instrument, USA) with a standard three-electrode system [working electrode: V_8C_7 -CB/Ti electrode; counter electrode: platinum coil; reference electrode: Ag/AgCl (saturated KCl)] at room temperature. All the tests were carried out without electrode rotation and compensated by 80% iR-drop.

Vanadium-Dissolution Ability of Experimental Environments.

For V₈C₇-CB/Ti and V₈C₇-CB/GC, 150 and 220 mL of 1 M KOH aqueous solutions were used for the continuous CV tests that needed at least ~ 18.3 h. According to the report,¹ the solubility of vanadium pentoxide (V₂O₅) in strongly basic conditions (pH = 9.0 and 10.0) is higher than that in neutral and acidic conditions. Specifically, even in the initial one hour of the solubility test, about 2.5 and 3.7 mg of V₂O₅ can be dissolved in 150 and 220 mL of basic solution (pH = 10.0), respectively.¹ In our experiments, the total V₈C₇-loading amounts are ~ 0.096 and 0.31 mg for the GC substrate and Ti foil, respectively. Assuming that the loaded V₈C₇ is fully oxidized into V₂O₅, the resultant V₂O₅ amounts are ~ 0.18 and 0.58 mg for the GC substrate and Ti foil, respectively. Accordingly, the experimental environments for the continuous CV tests probably have high enough ability to dissolve oxidized V₈C₇ species (e.g., VO₄³⁻) in the electrolytes.²

Figure S1. Schematic illustration of cubic V₈C₇ (space group: $P4_332$; parameters: a = b = c = 8.33488 Å, $\alpha = \beta = \gamma = 90.0000^{\circ}$) crystal structure, which is used for computational simulation. This crystal structure was drawn with the *VESTA 3* program.³

Figure S2. SEM-EDX point analysis (composition) of V₈C₇ powder sample at a 30 kV acceleration voltage.

Figure S3. SEM images of V₈C₇ powder sample. The images were taken from two different spots.

Figure S4. N₂-sorption isotherm of V₈C₇ powder sample.

Figure S5. Cyclic voltammetry curves of (a) V₈C₇-CB/GC and (b) CB/GC electrodes in the non-faradaic region (-0.05 to 0.05 V_{Ag/AgCl}) at various applied scan rates. Corresponding plots of half the differences between the anodic and cathodic current densities [$\Delta j/2 = (j_a - j_c)/2$] at 0.00 V_{Ag/AgCl} vs. scan rate of (c) V₈C₇-CB/GC and (d) CB/GC electrodes.

Figure S6. Linear sweep voltammograms of (a) V₈C₇-CB/GC and (b) CB/GC electrodes at different sweep number (first to fourth).

Figure S7. Linear sweep voltammograms (a) V_8C_7 -CB/GC and (b) CB/GC electrodes before and after various cycle numbers of the OER CV (1.10 to 1.65 V_{RHE}). These data correspond to Figure 2.

Figure S8. (a–j) Cyclic voltammetry curves of V₈C₇-CB/GC electrode in the non-faradaic region (–0.05 to 0.05 V_{Ag/AgCl}) at various applied scan rates. (k) Corresponding plots of half the differences between the anodic and cathodic current densities $[\Delta j/2 = (j_a - j_c)/2]$ at 0.00 V_{Ag/AgCl} vs. scan rate of V₈C₇-CB/GC electrode.

Figure S9. (a–h) Cyclic voltammetry curves of CB/GC electrode in the non-faradaic region (-0.05 to $0.05 \text{ V}_{\text{Ag/AgCl}}$) at various applied scan rates. (k) Corresponding plots of half the differences between the anodic and cathodic current densities $[\Delta j/2 = (j_a - j_c)/2]$ at $0.00 \text{ V}_{\text{Ag/AgCl}} vs$. scan rate of CB/GC electrode.

Figure S10. Digital photographs of (a) as-prepared V_8C_7 -CB/Ti electrode with holder and (b) electrochemical test cell. Figure S9b shows oxygen bubbles coming out of V_8C_7 -CB/Ti electrode during the multi-cyclic voltammetric OER test.

Figure S11. EDX spectra and SEM images (corresponding to Figure 3) of V_8C_7 particle (in V_8C_7 -CB/Ti electrode) before and after 3000 cycles of the OER CV (1.10 to 1.65 V_{RHE}). Used acceleration voltage is 20 kV.

Figure S12. SEM-EDX area analysis (corresponding to Figure 5b) of V_8C_7 particle (in V_8C_7 -CB/Ti electrode) before and after 3000 cycles of the OER CV (1.10 to 1.65 V_{RHE}). Used acceleration voltage is 20 kV.

Figure S13. SEM-EDX point analysis (composition) of V_8C_7 particle (in V_8C_7 -CB/Ti electrode) before and after 3000 cycles of the OER CV (1.10 to 1.65 V_{RHE}). These data correspond to Figure 5b. Used acceleration voltage is 20 kV.

Figure S14. Schematic illustrations of various crystal facets of cubic V_8C_7 .

References

- (1) Hu, X.; Yue, Y.; Peng, X. Release Kinetics of Vanadium from Vanadium (III, IV and V) Oxides: Effect of PH, Temperature and Oxide Dose. *J. Environ. Sci.* **2018**, *67*, 96–103. https://doi.org/10.1016/j.jes.2017.08.006
- (2) Gilligan, R.; Nikoloski, A. N. The Extraction of Vanadium from Titanomagnetites and Other Sources. *Miner. Eng.* **2020**, *146*, 106106. https://doi.org/10.1016/j.mineng.2019.106106
- (3) Momma, K.; Izumi, F. *VESTA 3* for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Crystallogr.* **2011**, *44* (6), 1272–1276. https://doi.org/10.1107/S0021889811038970