Задача 11-3

Крылья для тяжёлых металлов

В старину для освещения городов использовались газовые фонари. По трубам под повышенным давлением подавался «светильный газ», состоящий в основном из водорода и метана. В состав светильного газа также входил газ \mathbf{X} , который реагировал с нагретым металлом \mathbf{Y} , образующим основу сплава, из которого были изготовлены трубы для подачи газа, с образованием летучего вещества \mathbf{A} (*p-ция 1*). Попадание паров \mathbf{A} в зону горения приводило к его сгоранию с образованием красноватого налёта (*p-ция 2*), который с течением времени портил работоспособность фонаря. Сам газ \mathbf{X} сгорает с образованием только газообразных продуктов.

Вещество **A** при комнатной температуре и давлении 1 атм. представляет собой оранжевую жидкость. Установлено, что, облучая раствор **A** в пиридине ультрафиолетовым светом, можно получить соединение **B**¹ такого же качественного состава, что и **A**. При этом из 1.00 г **A** выделяется 57.2 мл газа **X** (при н. у.), который не имеет цвета и запаха. Полное термическое разложение **A** в атмосфере аргона приводит к потере 71.5% исходной массы – единственным твёрдым продуктом разложения является серый порошок металла **Y**.

Довольно быстро новый класс соединений нашёл своё применение. В 1890 году было предложено использовать летучую жидкость \mathbf{C} для выделения чистого металла \mathbf{Z} , который находит широкое применение в промышленности и химической практике; в частности, его используют для изготовления сосудов для работы с газообразным фтором. Выделение металла из \mathbf{C} происходит при нагревании до $180\,^{\circ}\mathrm{C}$, при этом из $5.00\,^{\circ}\mathrm{M}$ л жидкости ($\rho = 1.32\,^{\circ}\mathrm{r/cm^3}$) удаётся выделить $2.27\,^{\circ}\mathrm{r}$ металла. При этом также выделяется газ \mathbf{X} объёмом $3.46\,^{\circ}\mathrm{n}$. Этот газ поглощается аммиачным раствором оксида серебра с образованием чёрного осадка (p-quя q).

Само по себе вещество \mathbf{C} разлагается при действии концентрированной азотной кислоты с образованием раствора зелёного цвета (*p-ция 4*).

1. Рассчитайте молярную массу газа **X** и изобразите его структурную формулу.

2. Изобразите структурные формулы веществ A - C. Свои ответы подтвердите расчётами. В комплексных соединениях A - C центральные атомы удовлетворяют правилу 18 электронов. Напишите уравнения реакций I - A.

Обработка вещества А гидроксидом бария приводит к выпадению белого

 1 Молекулы **В** переходят сами в себя при действии тех же операций, что и молекулы этана в заслонённой конформации (содержат ось симметрии третьего порядка, т.е. переходят сами в себя при повороте на $360^{\circ}/3 = 120^{\circ}$ вокруг данной оси, содержат те же самые плоскости симметрии):

осадка (*р-ция* 5), разлагающегося под действием кислоты с выделением газа (*р-ция* 6). Над осадком образуется раствор светочувствительной слабой двухосновной кислоты \mathbf{D} (разлагается при $-20\,^{\circ}\mathrm{C}$). Из-за необходимости проводить синтез в отсутствие света и на сильном холоде, впервые синтез \mathbf{D} проводили в 1932 году долгими зимними ночами в Мюнхене, из -за чего синтез был назван «синтезом полярной ночи».

Действуя на водный раствор $393 \,\mathrm{mr}$ **D** измельчённым диоксидом марганца, можно получить $388 \,\mathrm{mr}$ соединения **E** (*p-ция* 7). Известно, что средний межатомный угол **Y**–**Y**–**Y** в структуре **E** составляет 60° .

3. Изобразите структурные формулы **D** и **E**. Напишите уравнения реакций 5-7.

Решение задачи 11-3 (автор: Трофимов И.А.)

 Исходя из данных о разложении вещества С можно установить плотность газа X при н. у.:

$$\rho(\mathbf{X}) = \frac{m(\mathbf{X})}{V(\mathbf{X})} = \frac{\rho_{\mathbf{C}}V(\mathbf{C}) - m(\mathbf{Z})}{V(\mathbf{X})} = \frac{5.00 \text{ cm}^3 \cdot 1.32 \text{ г/cm}^3 - 2.27 \text{ r}}{3.46 \text{ л}} = 1.25 \text{ г/л}.$$

Тогда молярная масса газа составляет:

$$M_r(\mathbf{X}) = \rho(\mathbf{X}) \cdot V_M = 1.25 \, \Gamma/\pi \cdot 22.4 \, \pi/\text{моль} = 28 \, \Gamma/\text{моль}.$$

Такой молярной массе примерно соответствуют этилен C_2H_4 , азот N_2 , угарный газ CO и диборан B_2H_6 . Этилен и азот не вступают в реакцию с аммиачным раствором гидроксида серебра: в отличие от ацетилена ($pK_a \approx 26$), этилен практически не проявляет кислотные свойства ($pK_a \approx 44$). Диборан же сгорает с образованием оксида бора(III), который является твёрдым — т.е., он также не подходит под условия задачи. Значит, \mathbf{X} — угарный газ \mathbf{CO} ; с аммиачным раствором гидроксида серебра он реагирует не как кислота с основанием, а как восстановитель с окислителем.

При изображении структурной формулы CO важно отразить, что кратность связи равна 3, т.к. одна из ковалентных связей C–O образована по донорно-акцепторному механизму.

Х

2. Данные о разложении **A** (потеря массы при разложении) и **C** (остаточная масса **Z**, образуемого при разложении **C**) позволяют перебором числа карбонильных лигандов вычислить их молярные массы. Для расчёта представим **A** и **C** в виде $\mathbf{Y}(CO)_n$ и $\mathbf{Z}(CO)_n$ соответственно, для этих соединений n может быть разным:

$$\begin{split} M_r(\mathbf{Y}) &= \frac{M_r(CO) \cdot n(1 - \Delta m_\%)}{\Delta m_\%} = \frac{28.01 n \; \Gamma/\text{моль} \cdot 0.285}{0.715} = 11.16 n \; \Gamma/\text{моль}, \\ M_r(\mathbf{Z}) &= \frac{M_r(CO) \cdot n(1 - \omega_{CO})}{\omega_{CO}} = \frac{M_r(CO) \cdot n \cdot m(\mathbf{Z})}{m(CO)} = \frac{M_r(CO) \cdot n \cdot m(\mathbf{Z})}{\rho_C V(\mathbf{C}) - m(\mathbf{Z})} = \\ &= \frac{28.01 n \; \Gamma/\text{моль} \cdot 2.27 \; \Gamma}{5.00 \; \text{cm}^3 \cdot 1.32 \; \Gamma/\text{cm}^3 - 2.27 \; \Gamma} = 14.68 n \; \Gamma/\text{моль}. \end{split}$$

n	1	2	3	4	5	6
$M_r(Y)$,	11.16	22.32	33.48	44.64.(Sa)	55.80	67.96
г/моль	(B)	(-)	(-)	44.64 (Sc)	(Fe)	(-)
$M_r(\mathbf{Z}),$	14.68	29.36	44.05	58.74 (Co,	73.40	88.08
г/моль	(-)	(-)	(-)	Ni)	(Ge)	(-)

Из металлов **Y** лучше всего подходит железо, отсюда **A** – **пентакарбонилжелезо Fe(CO)**₅. При его фоторазложении теряется 57.2 мл CO, что соответствует потере 7.15 % массы, что соответствует 14.01 г/моль – половине молярной массы CO, что даёт формулу **B** «Fe(CO)_{4.5}». Это наводит на мысль о потребности удвоить индексы — значит, образуется биядерный комплекс **B** – **нонакарбонилдижелезо Fe₂(CO)**₉. По правилу 18 электронов можно установить, что **B** является кластером, т.е. содержит связь Fe–Fe.

Однозначно определить металл **Z** позволяют точность расчёта (полученное значение ближе к молярной массе никеля), цвет раствора его нитрата (см. р-цию 4), а также его область применения – для изготовления сосудов для работы с фтором используют никель. Отсюда **C** – **тетракарбонилникель** Ni(CO)4.

Структурные формулы (A — тригональная бипирамида, B — две треугольные антипризмы с общей гранью, C — тетраэдр; в вершинах полиэдров находятся лиганды CO, а в центре — атомы металлов Y и Z):

Нагретый угарный газ, поступающий из трубы под давлением, реагирует с железом в составе сплавов, выделяя его из них в виде летучего пентакарбонилжелеза:

1) Fe + 5CO
$$\rightarrow$$
 Fe(CO)₅ \uparrow .

Образование оксидов железа является необходимым условием для рассмотрения реакции 4, как верной. Так как точно не говорится об избытке или недостатке кислорода в зоне разложения Fe(CO)₅, то допускается указывать на образование любого оксида железа красного цвета:

2) 4Fe(CO)₅ + 13O₂ → 2Fe₂O₃↓ + 20CO₂↑ или 6Fe(CO)₅ + 19O₂ → 2Fe₃O₄↓ + 30CO₂↑.

В реакции *3* угарный газ восстанавливает серебро из степени окисления +1 до металлического состояния, что отражается в образовании чёрного осадка (именно такого цвета мелкодисперсное серебро):

3)
$$2[Ag(NH_3)_2]OH + CO + H_2O \rightarrow 2Ag\downarrow + (NH_4)_2CO_3 + 2NH_3\cdot H_2O$$
.

Растворение тетракарбонилникеля в концентрированной азотной кислоте происходит с образованием его нитрата, а угарный газ, в свою очередь, окисляется до углекислого:

4) Ni(CO)₄ + 12HNO_{3(KOHII)}
$$\rightarrow$$
 Ni(NO₃)₂ + 4CO₂↑ + 10NO₂↑ + 6H₂O.

3. Выпадение осадка, выделяющего газ под действием кислоты намекает на образование карбоната. Это может быть карбонат бария или железа(II), однако так как далее в соединении \mathbf{E} содержатся атомы железа, видимо, \mathbf{D} – это железосодержащий продукт реакции, а белый осадок – карбонат бария. В таком случае \mathbf{D} – $[\mathbf{Fe}(\mathbf{CO})_4\mathbf{H}_2]$.

Диоксид марганца, по-видимому, выступает окислителем в процессе получения **E**. Скорее всего, оно проходит по связям Fe–H, в результате чего образуются частицы :[Fe(CO)₄]. Подобно карбеновым радикалам :CH₂, они

могут быть собраны в n-угольные циклы или полимеры. В случае полимеров углы Fe—Fe—Fe составят 180° (mpanc-изомер) или 90° (quc-изомер). Среди циклов угол в 60° допустим только в треугольнике, откуда формула E – [Fe₃(CO)₁₂].

Структурные формулы **D** и **E** изображаются исходя из правила 18-и электронов:

Уравнения реакций $5 - 7^1$:

- 5) $Fe(CO)_5 + Ba(OH)_2 \rightarrow [Fe(CO)_4H_2] + BaCO_3\downarrow;$
- 6) BaCO₃ + 2HCl \rightarrow BaCl₂ + H₂O + CO₂ \uparrow ;
- 7) $3[Fe(CO)_4H_2] + 3MnO_2 \rightarrow [Fe_3(CO)_{12}] + 3Mn(OH)_2$.

Система оценивания:

1.	Расчёт молярной массы Х	0.5 балла
	Структурная формула Х	1 балл
2.	Структурные формулы $A - C - по 1 баллу$	3 балла
	Подтверждение состава А – С расчётом – по 0.5 балла	1.5 балла
	Уравнения реакций $I - 4$ — по 1 баллу	4 балла
3.	Структурные формулы D и E $-$ по 1 баллу	2 балла
	Уравнения реакций $5 - 7 - \text{по 1 баллу}$	3 балла
	Брутто-формулы без указания структурных оцениваются	
	половиной балла	
	итого:	15 баллов