ЗАДАНИЕ ПО ИНФОРМАТИКЕ ВАРИАНТ 37101 для 10 класса

<u>Для заданий 1-5 требуется разработать алгоритмы на языке блок-схем, псевдокоде или естественном языке.</u>

- 1. В теории чисел натуральное число называют В-гладким, если все его простые делители не превосходят В. Разработайте алгоритм проверки чисел в диапазоне от Р до О на В-гладкость.
- 2. Марина и Светлана разговаривают по телефону и хотят выбрать секретное число так, чтобы оно осталось неизвестным постороннему, возможно подслушивающему их разговор. Для этого Марина подбирает натуральное число $a \le 256$ такое, что числа $R_{257}(a^i)$ различны при всех $1 \le i \le 256$ и $R_{257}(a^{256}) = 1$, где $R_{257}(t)$ остаток от деления числа t на 257. Затем Марина загадывает натуральное число $x \le 256$, а Светлана натуральное число $y \le 256$. После этого Марина сообщает числа a и $R_{257}(a^x)$ Светлане, а Светлана ей число $R_{257}(a^y)$. Теперь они обе вычисляют их секретное число $R_{257}(a^{xy})$. Составьте алгоритм для нахождения этого секретного числа, если известно, что $R_{257}(a^x) = 9$, $R_{257}(a^y) = 256$.
- 3. По квадратной матрице А размера n построить матрицу В того же размера, где b_{ij} определяется следующим образом. Через a_{ij} проведём в А линии, по строке i и столбцу j до пересечения с главной диагональю (главная диагональ квадратной матрицы диагональ, которая проходит через верхний левый и нижний правый углы); b_{ij} определяется как минимум среди элементов А, которые расположены в треугольнике, ограниченном главной диагональю матрицы и построенными линиями. На рис. 1 треугольник, заштрихованный косыми линиями, соответствует случаю, когда a_{ij} находится выше главной диагонали, а треугольник, заштрихованный вертикальными линиями, соответствует случаю, когда a_{ij} находится ниже главной диагонали.

Рис. 1

Рис. 2

- 4. На листе бумаги нарисована квадратная таблица размера 2n. В клетках написаны различные целые числа. Необходимо получить новую таблицу, переставляя блоки размера $n \times n$ в соответствии с рис. 2.
- 5. В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. То есть, если дано число k, какие существуют множества целых чисел $\{n_1, ..., n_k\}$ таких, что для любого i число n_i делит, но не равно $\left(\prod_{j\neq i}^k n_j + 1\right)$. Разработайте алгоритм нахождения числа решений задачи Знама для k в диапазоне **от** Р д**о** Q. Принять верхнюю границу $n_i = 10^{11}$.