Boundedness and Stability

第二次 SDEM 5.3

杨徵羽

2022年11月24日

markovianSwitching.m

```
function [rGrid] = markovianSwitching(Gamma, T, stepSize)
    N = length(Gamma); % the quantity of states
    iJump = 1: tJump(1) = 0: rJump(1) = randi(N): % initial value setting
    while tJump(iJump) < T</pre>
 5
         tJump(iJump+1) = tJump(iJump) + exprnd(-1/Gamma(rJump(iJump),rJump(iJump))
6
         distribution = Gamma(rJump(iJump),:);
7
         distribution(rJump(iJump)) = 0;
8
9
         distribution = distribution/sum(distribution);
         rJump(iJump+1) = discretize(rand, cumsum([0 distribution]));
10
         iJump = iJump + 1:
11
    end
12
    %% convert to time grid in order to be compatible with numerical solutions
13
    nJump = length(tJump):
14
    tGrid = 0:stepSize:T; nGrid = length(tGrid); rGrid = zeros(1, nGrid);
15
    tJumpGrid = ceil(tJump/stepSize);
16
    for iJump = 1:nJump-1
17
        for iGrid = tJumpGrid(iJump)+1:tJumpGrid(iJump+1)
18
           rGrid(iGrid) = rJump(iJump):
19
        end
20
    end
21
    rGrid = rGrid(1:nGrid): % delete calculation beyond T
```

SDEMexample5_4.m

```
clear;clc;close all;
    nSample = 25: T = 20: stepSize = 0.01:
    alpha = \Omega(r)(1*(r==1)+(-1/2)*(r==2)); % a simple way of representing piecewise
          function
    sigma = 5; gamma = 1.5; Gamma = [[-4 4]; [gamma -gamma]];
    r = markovianSwitching(Gamma, T, stepSize); % one r(t) for all sample paths
    tGrid = 0:stepSize:T;
    nGrid = length(tGrid);
    f = Q(x,t,r) alpha(r) * x;
9
    g = @(x,t,r) sigma;
10
    x = zeros(nSample, nGrid); % not `zeros(nGrid)`!!!
11
    for iSample = 1:nSample
12
        x(1) = 1:
13
        for iGrid = 1:nGrid - 1
14
           x(iSample, iGrid + 1) = x(iSample, iGrid) + f(x(iSample, iGrid), iGrid, r
                 (iGrid)) * stepSize + g(x(iSample, iGrid), iGrid, r(iGrid)) *
                normrnd(0, stepSize);
15
        end
16
    end
17
    for iSample = 1:nSample
18
        plot(tGrid,x(iSample, :)); hold on
19
    end
20
    p = 2; pthmoment = mean(x.^p, 1);
21
    plot(tGrid.pthmoment)
```

全章结构

稳定性种类	节	定义	V 函数判别法	系数判别法	例子
 p 阶矩渐近有界	5.2	1	2	3	4,5
p 阶矩指数稳定	5.3	7	8	10,12,16	25,26,27
p 阶矩渐近稳定	5.4	28	29,30,31		32,33
a.s. 指数稳定	5.3	7	9	10,12,14,16	
a.s. 渐近稳定	5.4	28	29		
依概率稳定	5.5	34	35		
依概率渐近稳定	5.5	34	36		38
依概率渐近大范围稳定	5.5	34	37		
依分布渐近稳定	5.6	40	43	44	45,46

5.3 Exponential Stability

- Definition 5.7 p 阶矩/a.s. 指数稳定性定义
- Lemma 5.1: 初值不为 0 \leftrightarrow 解不为 0(反证法,LV 计算,辅助函数 $e^{\lambda t}V$,含停时截断的 Itô 公式)
- Theorem 5.8: p 阶矩指数稳定性 V 函数判别法 (辅助函数 e^{λt}V, 含停时截断的 Itô 公式)
- Theorem 5.9: p 阶矩指数稳定 → a.s. 指数稳定(均值不等式, Hölder 不等式, BDG 不等式, Chebyshev-Borel-Cantelli 三板斧)
- Corollary 5.10: 系数判别法(LV 计算,最大特征值)

上次的 LV 计算 (SDEM p.159)

By (5.7) and (5.9) we compute the operator LV from $\mathbb{R}^n \times \mathbb{R}_+ \times \mathbb{S}$ to \mathbb{R} as follows:

$$LV(x,t,i) = pq_{i}|x|^{p-2}x^{T}f(x,t,i) + \frac{1}{2}pq_{i}|x|^{p-2}|g(x,t,i)|^{2}$$

$$+ \frac{1}{2}p(p-2)q_{i}|x|^{p-4}|x^{T}g(x,t,i)|^{2} + \sum_{j=1}^{N}\gamma_{ij}q_{j}|x|^{p}$$

$$\leq pq_{i}|x|^{p-2}\left[x^{T}f(x,t,i) + \frac{p-1}{2}|g(x,t,i)|^{2}\right] + \sum_{j=1}^{N}\gamma_{ij}q_{j}|x|^{p}$$

$$\leq pq_{i}|x|^{p-2}(\beta_{i}|x|^{2} + \alpha) + \sum_{j=1}^{N}\gamma_{ij}q_{j}|x|^{p}$$

$$\leq \left(p\beta_{i}q_{i} + \sum_{i=1}^{N}\gamma_{ij}q_{j}\right)|x|^{p} + \alpha pq_{i}|x|^{p-2}$$

$$= -\lambda_{i}|x|^{p} + \alpha pq_{i}|x|^{p-2}. \tag{5.10}$$

BDG 不等式 (SDE p.127)

Theorem 7.3 Let $g \in \mathcal{L}^2(R_+; R^{d \times m})$. Define, for $t \ge 0$,

$$x(t) = \int_0^t g(s)dB(s)$$
 and $A(t) = \int_0^t |g(s)|^2 ds$.

Then for every p > 0, there exist universal positive constants c_p, C_p (depending only on p), such that

$$c_p E|A(t)|^{\frac{p}{2}} \le E\left(\sup_{0 \le s \le t} |x(s)|^p\right) \le C_p E|A(t)|^{\frac{p}{2}}$$
 (7.5)

for all $t \geq 0$. In particular, one may take

$$\begin{array}{lll} c_p = (p/2)^p, & C_p = (32/p)^{p/2} & \text{ if } 0 2. \end{array}$$

Chebyshev 不等式 (SDEM p.7)

(iii) Chebyshev's inequality

$$P\{\omega : |X(\omega)| \ge c\} \le c^{-p} E|X|^p$$

if
$$c > 0, p > 0, X \in L^p$$
.

A simple application of Hölder's inequality implies

$$(E|X|^r)^{1/r} \le (E|X|^p)^{1/p}$$

if
$$0 < r < p < \infty$$
, $X \in L^p$.

Borel-Cantelli 引理 (SDEM p.10)

Lemma 1.2 (Borel-Cantelli's lemma)

(1) If $\{A_k\} \subset \mathcal{F}$ and $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty$, then

$$\mathbb{P}\Big(\limsup_{k\to\infty}A_k\Big)=0.$$

That is, there exists a set $\Omega_1 \in \mathcal{F}$ with $\mathbb{P}(\Omega_1) = 1$ and an integer-valued random variable k_1 such that for every $\omega \in \Omega_1$ we have $\omega \notin A_k$ whenever $k \geq k_1(\omega)$.

(2) If the sequence $\{A_k\} \subset \mathcal{F}$ is independent and $\sum_{k=1}^{\infty} \mathbb{P}(A_k) = \infty$, then

$$\mathbb{P}\Big(\limsup_{k\to\infty}A_k\Big)=1.$$

That is, there exists a set $\Omega_2 \in \mathcal{F}$ with $\mathbb{P}(\Omega_2) = 1$ such that for every $\omega \in \Omega_2$, there exists a sub-sequence $\{A_{k_i}\}$ such that the ω belongs to every A_{k_i} .

最大/小特征值 (SDEM p.59)

A square matrix A is said to be symmetric if $A = A^T$. For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, its eigenvalues are all real numbers, namely $\lambda(A) \subset \mathbb{R}$. Denoted its largest and smallest eigenvalue by $\lambda_{\max}(A)$ and $\lambda_{\min}(A)$, respectively. In this symmetric case, the spectral radius of A becomes $\rho(A) = |\lambda_{\max}(A)| \vee |\lambda_{\min}(A)|$. Moreover,

$$\lambda_{\max}(A) = \sup_{x \in \mathbb{R}^n, |x|=1} x^T A x \quad \text{and} \quad \lambda_{\min}(A) = \inf_{x \in \mathbb{R}^n, |x|=1} x^T A x. \quad (2.29)$$

The following inequality is also useful

$$\lambda_{\min}(A)|x|^2 \le x^T A x \le \lambda_{\max}(A)|x|^2, \quad \forall x \in \mathbb{R}^n.$$
 (2.30)