Skriftlig eksamen på Økonomistudiet Vinteren 2016 - 2017

DYNAMISKE MODELLER

Mandag den 16. januar 2017

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

$2.~{ m lpha}$ rsprøve $2017~{ m V-2DM}$ ex

Skriftlig eksamen i Dynamiske Modeller

Mandag den 16. januar 2017

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert talpar $(a, b) \in \mathbb{R}^2$ betragter vi tredjegradspolynomiet $P_{(a,b)} : \mathbb{C} \to \mathbb{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P_{(a,b)}(z) = z^3 + (a+b+1)z^2 + (a+ab+b)z + ab.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + (a+b+1)\frac{d^2x}{dt^2} + (a+ab+b)\frac{dx}{dt} + abx = 0,$$

og

$$\frac{d^3x}{dt^3} + 5\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 4x = 36e^t.$$

- (1) Vis, at tallet z = -a er rod i polynomiet $P_{(a,b)}$. Bestem dernæst samtlige rødder i polynomiet $P_{(a,b)}$, og angiv deres multipliciteter.
- (2) Bestem den fuldstændige løsning til differentialligningen (*).
- (3) For hvilke talpar $(a, b) \in \mathbf{R}^2$ er differentialligningen (*) globalt asymptotisk stabil?
- (4) Bestem den fuldstændige løsning til differentialligningen (**).

For ethvert $c \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^3x}{dt^3} + c\frac{d^2x}{dt^2} + c\frac{dx}{dt} + 2cx = 0.$$

(5) Opstil Routh-Hurwitz matricen $A_3(c)$ for differentialligningen (***), og bestem de $c \in \mathbf{R}$ for hvilke differentialligningen (***) er globalt asymptotisk stabil.

Opgave 2. Vi betragter mængden

$$A = \{ z \in \mathbf{C} \mid |z| \le 1 \},$$

og for ethvert $n \in \mathbf{N}$ betragter vi tillige afbildningen $f_n : A \to A$, som er defineret ved forskriften

$$\forall z \in A : f_n(z) = z^n.$$

- (1) Vis, at for ethvert $n \in \mathbb{N}$ har afbildningen f_n mindst et fixpunkt $z^* \in A$. Dvs., at $f(z^*) = z^*$.
- (2) For ethvert $n \in \mathbb{N}$ skal man bestemme alle fixpunkterne for funktionen f_n .

Vi betragter herefter følgen (z_n) (af punkter fra mængden A), som er defineret ved forskriften

$$\forall n \in \mathbf{N} : f_n(z) = f_n\left(\frac{i}{2}\right).$$

- (3) Vis, at følgen (z_n) er konvergent, og bestem grænsepunktet.
- (4) Lad

$$\zeta_0 \in A^O = \{ z \in \mathbf{C} \mid |z| < 1 \}$$

være vilkårligt valgt. Vis, at følgen (ζ_n) , hvor betingelsen

$$\forall \in \mathbf{N} : \zeta_n = f_n(\zeta_0)$$

er opfyldt, er konvergent, og bestem grænsepunktet for denne følge.

Opgave 3. Vi betragter den vektorfunktion $f: \mathbb{R}^2 \to \mathbb{R}^2$, som er givet ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 + x_1 x_2 + x_2^2, 3x_1 - 5x_2^2).$$

- (1) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}^2$.
- (2) Godtgør, at Jacobimatricen Df(1,1) er regulær, og påvis, at der findes en åben omegn V af (1,1) og en åben omegn W af f(1,1), så restriktionen $f|_V$ af f til V er en bijektiv afbildning af V på W.
- (3) Løs ligningen

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - f(1,1) = Df(1,1) \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix}$$

med hensyn til vektoren $x = (x_1, x_2)$.

Lad (x_k) være en vilkårlig følge af punkter fra \mathbb{R}^2 , og lad der være givet et tal r > 0, så betingelsen

$$\forall k \in \mathbf{N} : x_k \in B(0,r)$$

er opfyldt.

(4) Vis, at følgen (x_k) har en konvergent delfølge (x_{k_p}) med grænsepunkt x_0 . Hvad kan man sige om $||x_0||$?

Vi betragter herefter følgen (ξ_k) , som er givet ved forskriften

$$\forall k \in \mathbf{N} : \xi_k = f(x_k).$$

(5) Godtgør, at delfølgen $(\xi_{k_p}) = (f(x_{k_p}))$ er konvergent med grænsepunktet $\xi_0 = f(x_0)$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^{\sqrt{2}} \left(u^2 + x + u + x^2 \right) dt.$$

Vi skal løse det optimale kontrolproblem at minimere integralet I(x), idet $\dot{x} = u - x$, $x(0) = -\frac{1}{2}$ og $x(\sqrt{2}) = \frac{3}{2}$.

- (1) Opskriv Hamilton funktionen H=H(t,x,u,p) for dette optimale kontrol problem.
- (2) Vis, at dette optimale kontrolproblem er et minimumsproblem.
- (3) Bestem det optimale par (x^*, u^*) , som løser problemet.