Санкт-Петербургский государственный университет Прикладная математика и информатика

Отчет по научно-исследовательской работе

Замена непрерывных распределений на дискретные для применения на практике

(семестр 8)

Выполнила: Нагуманова Карина Ильнуровна, группа 19.Б04-мм

Научный руководитель: к.ф.-м.н., доцент Голяндина Нина Эдуардовна. Кафедра статистического моделирования

Содержание

1	Вве	едение	3
2	Обі	ций подход к трехточечной аппроксимации	4
3	Апі	гроксимация нормального распределения	5
4	Апі	проксимация логнормального распределения	6
	4.1	Связь логнормального распределения с нормальным	6
	4.2	Способ нахождения вероятностей через математическое ожидание и дисперсию нормального распределения	7
	4.3	Непосредственная аппроксимация логнормального распределения	8
	4.4	Условие на параметр σ для существования трехточечной аппроксимации логнормального распределения	11
	4.5	Варианты постановки задачи	13
	4.6	Точность аппроксимации	14
5	Про	оизведение двух логнормальных распределений	17
	5.1	Квантили вида π , 0.5, $1-\pi$ произведения логнормальных случайных величин	19
6	Сум	има двух логнормальных распределений	22
	6.1	Точность аппроксимации	23
7	Зак	лючение	26
8	Прі	иложение	27

1 Введение

В практических задачах не редко требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для аппроксимации нормального распределения является метод Свонсона. Однако в ряде областей, например, в нефтяной промышленности распределением, описывающим запасы нефти, общепринятым является логнормальное распределение. Соответственно, реальной задачей является аппроксимация логнормального распределения.

С аппроксимируемыми случайными величинами производят сложение и умножение. Например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти. Или зная запасы нефти в разных скважинах, нужно оценить суммарные запасы. Соответственно, возникает задача находить аппроксимацию суммы и произведения по аппроксимациям исходных случайных величин.

Часто бывает на практике, что вместо настоящего распределения известны три его квантили, стандартно это 10-, 50- и 90-процентили. Задачей является нахождение по ним математического ожидания и дисперсии. Обычно задача решается построением весов для квантилей так, чтобы у полученного дискретного распределения были такие же математическое ожидание и дисперсия, как у исходного. Вообще говоря, иногда нужно, чтобы и более старшие моменты также аппроксимировались моментами построенного дискретного распределения с целью, чтобы для функций от распределений равенство математических ожиданий и дисперсий оставалось хотя бы приближенными.

План работы:

Рассмотреть общий подход к трехточечной аппроксимации.

Рассмотреть трехточечную аппроксимацию нормального распределения, в целом метод Свонсона и вывод правила 30-40-30.

Рассмотреть трехточечную аппроксимацию логнормального распределения и её свойства.

Построить алгоритм аппроксимации произведения двух логнормальных распределений. Построить алгоритм аппроксимации суммы двух логнормальных распределений.

Pабота этого семестра заключена в разделе 6. В моей работе использовались статьи «Swanson's Swansong» [1] и «Uncertainties impacting reserves, revenue, and costs» [2].

Кроме этого были прочитаны следующие статьи:

«Discretization, Simulation, and Swanson's (Inaccurate) Mean» [3]. В ней одна из частей исследования — сравнение различных методов дискретизации непрерывных распределений, например таких, как Extended Person-Tukey (EPT), McNamee-Celona Shortcut (MCS), Extended Swanson-Megill (ESM).

Статья «Discretization, Simulation, and the Value of Information» [4]. Из нее понятно, что данный метод дискретизации значительно недооценивает среднее значение, дисперсию и асимметрию большинства распределений, особенно логнормального, где он широко используется. И что наилучшая дискретизация зависит от контекста решения,

который мы не знаем заранее.

А в статье «Performance Evaluation of Swanson's Rule for the Case of Log-Normal Populations» [5] проводится исследование оценки эффективности метода Свонсона и сравнение с использованием равных весов. Рассмотрены различные преимущества двух методов.

2 Общий подход к трехточечной аппроксимации

Пусть дана непрерывная случайная величина ξ с функцией распределения $\mathsf{F}(x)$.

$$m = \mathbf{E}(\xi), \qquad s^2 = \mathbf{D}(\xi).$$

Для неё заданы квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$. Также есть случайная дискретная величина $\tilde{\xi}$.

$$\tilde{\xi}: \begin{pmatrix} x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ p_1 & p_2 & p_3 \end{pmatrix}$$

$$\tilde{m} = \mathbf{E}(\tilde{\xi}), \qquad \tilde{s^2} = \mathbf{D}(\tilde{\xi}).$$

Мы хотим аппроксимировать распределение случайной величины ξ дискретным распределением $\tilde{\xi}$.

Нужно найти p_1, p_2, p_3 так, чтобы следующие равенства были верными.

$$p_1 + p_2 + p_3 = 1, (1)$$

$$\tilde{m} = p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} = m, \tag{2}$$

$$\tilde{s}^2 = p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 = s^2.$$
(3)

Запишем уравнения (1)—(3) в матричной форме следующим образом

$$\begin{pmatrix} 1 & 1 & 1 \\ x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ x_{\pi_1}^2 & x_{\pi_2}^2 & x_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m^2 + s^2 \end{pmatrix}.$$

Теперь введём более изящную форму, которая подчёркивает связь вероятностей с формой распределения путём нормализации математического ожидания и дисперсии.

Предложение 1 (Swanson, 2000 год). Пусть верно

$$\begin{pmatrix} 1 & 1 & 1 \\ \hat{x}_{\pi_1} & \hat{x}_{\pi_2} & \hat{x}_{\pi_3} \\ \hat{x}_{\pi_1}^2 & \hat{x}_{\pi_2}^2 & \hat{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \tag{4}$$

где $\hat{x}_{\pi_i} = \hat{\mathsf{F}}^{-1}(\pi_i), \; \hat{\mathsf{F}}(y) - \phi$ ункция распределения $\hat{\xi} = \frac{\xi - m}{s}$. Тогда $m = \tilde{m} \; u \; s^2 = \tilde{s^2}$.

Доказательство.

$$P(\xi \le x_{\pi_i}) = \pi_i,$$

$$P\left(\frac{\xi - m}{s} \le \frac{x_{\pi_i} - m}{s}\right) = \hat{F}\left(\frac{x_{\pi_i} - m}{s}\right) = \pi_i,$$

 ξ нормализуется так, чтобы иметь нулевое математическое ожидание и единичную дисперсию. Имеем $x_{\pi_i} = m + s \hat{\mathsf{F}}^{-1}(\pi_i)$, обозначим

$$\hat{x}_{\pi_i} = \frac{x_{\pi_i} - m}{s} = \hat{\mathsf{F}}^{-1}(\pi_i). \tag{5}$$

Предположим, что $m=\tilde{m}$ и $s^2=\tilde{s^2}$, и получим систему (4). Для этого подставим (5) в уравнение (2), получаем

$$m(p_1 + p_2 + p_3) + s(p_1\hat{x}_{\pi_1} + p_2\hat{x}_{\pi_2} + p_3\hat{x}_{\pi_3}) = m.$$

Используя уравнение (1), получаем

$$s(p_1\hat{x}_{\pi_1} + p_2\hat{x}_{\pi_2} + p_3\hat{x}_{\pi_3}) = 0.$$

Так как $s \neq 0$, то можно разделить на s, тогда получаем

$$p_1\hat{x}_{\pi_1} + p_2\hat{x}_{\pi_2} + p_3\hat{x}_{\pi_3} = 0.$$

Теперь подставим (5) в уравнение (3), получаем

$$p_1(m+s\hat{x}_{\pi_1})^2 + p_2(m+s\hat{x}_{\pi_2})^2 + p_3(m+s\hat{x}_{\pi_3})^2 - m^2 = s^2,$$

$$p_1\hat{x}_{\pi_1}^2 + p_2\hat{x}_{\pi_2}^2 + p_3\hat{x}_{\pi_3}^2 = 1.$$

Получившиеся уравнения в матричной форме

$$\begin{pmatrix} 1 & 1 & 1 \\ \hat{x}_{\pi_1} & \hat{x}_{\pi_2} & \hat{x}_{\pi_3} \\ \hat{x}_{\pi_1}^2 & \hat{x}_{\pi_2}^2 & \hat{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$
 (6)

3 Аппроксимация нормального распределения

Если $\xi \sim N(\mu, \sigma)$ имеет нормальное распределение, то $\hat{\xi}$ имеет нормальное стандартное распределение, поэтому можно написать систему, которая не зависит ни от μ , ни от σ .

Предложение 2 (Swanson, 2000 год). $\xi \sim N(\mu, \sigma)$, пусть верно

$$\begin{cases}
 p_{\pi} = \frac{\delta}{2}, \\
 p_{0.5} = 1 - \delta, \\
 p_{1-\pi} = \frac{\delta}{2}.
\end{cases}$$
(7)

где $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$. Тогда $m = \tilde{m} \ u \ s^2 = \tilde{s^2}$.

Доказательство. Предположим, что $m = \tilde{m}$ и $s^2 = \tilde{s^2}$, и получим систему (7).

 $\Phi(y) = \mathsf{P}\left(\eta = \frac{\xi - m}{s} \le y\right) - функция распределения стандартного нормального распределения, тогда система (6) записывается как$

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi_1) & \Phi^{-1}(\pi_2) & \Phi^{-1}(\pi_3) \\ \Phi^{-1}(\pi_1)^2 & \Phi^{-1}(\pi_2)^2 & \Phi^{-1}(\pi_3)^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$
 (8)

В частном случае симметричных квантилей вида π , 0.5, $1-\pi$ получаем $\Phi^{-1}(\pi)=-\Phi^{-1}(1-\pi), \Phi^{-1}(0.5)=0$, тогда система (8) упрощается до

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi) & 0 & -\Phi^{-1}(\pi) \\ \Phi^{-1}(\pi)^2 & 0 & \Phi^{-1}(\pi)^2 \end{pmatrix} \begin{pmatrix} p_{\pi} \\ p_{0.5} \\ p_{1-\pi} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\begin{cases}
p_{\pi} + p_{0.5} + p_{1-\pi} = 1, \\
(p_{\pi} - p_{1-\pi})\Phi^{-1}(\pi) = 0, \\
(p_{\pi} + p_{1-\pi})\Phi^{-1}(\pi)^{2} = 1.
\end{cases}$$
(9)

Обозначим $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$, тогда из системы (9) получим систему (7).

Рассмотрим случай $\pi=0.1$, имеем $\Phi^{-1}(0.1)=-\Phi^{-1}(0.9)\approx-1.28$, $\Phi^{-1}(0.5)=0$, из уравнений системы (9) находим значения $p_1,\ p_2,\ p_3.$

$$\begin{cases} p_1 \approx 0.305, \\ p_2 \approx 0.390, \\ p_3 \approx 0.305. \end{cases}$$

Эти вероятности примерно равны 0.3, 0.4, 0.3, поэтому это правило называют правилом 30-40-30 или правилом Свонсона.

4 Аппроксимация логнормального распределения

4.1 Связь логнормального распределения с нормальным

Пусть случайная величина η имеет логнормальное распределение, тогда случайная величина $\xi = \ln(\eta)$ имеет нормальное распределение, $\xi \sim N(\mu, \sigma)$. И поэтому для нее можно использовать формулы, полученные в предыдущих разделах.

Параметры $m,\ s^2$ логнормального распределения можно найти через параметры μ и σ^2 соответствующего нормального распределения по следующим формулам

$$m = \exp\left(\mu + \frac{\sigma^2}{2}\right),\tag{10}$$

$$s^2 = m^2(\exp(\sigma^2) - 1). \tag{11}$$

Параметр σ логнормального распределения выражается через квантили как

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Параметр μ можно находить из уравнений вида

$$\log(x_{\pi_i}) = \mu + \sigma \Phi^{-1}(\pi_i).$$

4.2 Способ нахождения вероятностей через математическое ожидание и дисперсию нормального распределения

Заметим, что если $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ — квантили логнормального распределения, то $\ln(x_{\pi_1})$, $\ln(x_{\pi_2})$, $\ln(x_{\pi_3})$ — квантили нормального распределения. Можно взять эти квантили и использовать в способе нахождения вероятностей для нормального распределения.

Имеем следующий алгоритм.

Алгоритм 1. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

- 1. Вычисляем значения мат. ожидания т и дисперсии s^2 случайной величины η , используя известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$.
- 2. Выражаем параметры μ и σ мат. ожидание и дисперсию соответствующего нормального распределения через параметры т и s^2 логнормального распределения.

Заметим, что математическое ожидание логнормально распределенной случайной величины всегда положительное.

3. С помощью системы (7) находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности $p_1,\ p_2,\ p_3$ для $x_{\pi_1},x_{\pi_2},x_{\pi_3}$ случайной величины $\tilde{\xi}.$

Пример. Пусть у нас есть логнормальная случайная величина с $m=2,\,s^2=0.78125.$ Значения квантилей $x_{10}=1,\,x_{50}=2,\,x_{90}=3.$

По данным формулам можно найти параметры соответствующего нормального распределения.

$$\mu = 0.69314,$$

$$\sigma = 0.42863$$
.

Теперь можно найти значения p_1, p_2, p_3 .

$$p_{10} = 0.371243,$$

 $p_{50} = 0.282992,$
 $p_{90} = 0.345764.$

4.3 Непосредственная аппроксимация логнормального распределения

Есть другой способ нахождения результата, полученного в разделе 4.2. Можно не переходить к нормальному распределению, а сразу вычислять вероятности для квантилей логнормального распределения.

Сначала найдём $\hat{\mathsf{F}}(y)$ в терминах параметров распределения, затем найдём $\hat{\mathsf{F}}^{-1}(p)$, чтобы использовать формулу (4).

Предложение 3. В терминах Предложения 1 функция $\hat{\mathsf{F}}^{-1}(\pi)$ выражается через σ как

$$\hat{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp\left(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}\right) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$
 (12)

Доказательство.

$$\begin{split} \hat{\mathsf{F}}(y) &= \mathsf{P}\left(\eta \leq y\right) = \mathsf{P}\left(\frac{\xi - m}{s} \leq y\right) = \\ &= \mathsf{P}(\log(\xi) \leq \log(m + sy)) = \\ &= \mathsf{P}\left(\frac{\log(\xi) - \mu}{\sigma} \leq \frac{\log(m + sy) - \mu}{\sigma}\right) = \\ &= \Phi\left(\frac{\log(m + sy) - \mu}{\sigma}\right). \end{split}$$

Найдём $\log(m+sy)$, используя $m=e^{\mu+\frac{\sigma^2}{2}}$ и $s=m\sqrt{e^{\sigma^2}-1}.$

$$m + sy = e^{\mu + \frac{\sigma^2}{2}} + ye^{\mu + \frac{\sigma^2}{2}}\sqrt{e^{\sigma^2} - 1} = e^{\mu + \frac{\sigma^2}{2}}(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

возьмем натуральный логарифм от обеих частей, получаем

$$\log(m + sy) = \log(e^{\mu + \frac{\sigma^2}{2}} (1 + y\sqrt{\exp(\sigma^2) - 1})) =$$
$$= \mu + \frac{\sigma^2}{2} + \log(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

тогда

$$\frac{\log(m+sy)-\mu}{\sigma} = \frac{\sigma}{2} + \frac{\log(1+y\sqrt{\exp(\sigma^2)-1})}{\sigma}.$$

То есть можно выразить

$$\hat{\mathsf{F}}(y) = \Phi\left(\frac{\log(m+sy) - \mu}{\sigma}\right) = \Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right).$$

Далее можно найти $\Phi^{-1}(\pi)$.

$$\Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right) = \pi,$$

$$\Phi^{-1}(\pi) = \frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}.$$

Теперь можно найти $\log(1+y\sqrt{\exp(\sigma^2)-1})$.

$$\log(1 + y\sqrt{\exp(\sigma^2) - 1}) = \sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2},$$

$$1 + y\sqrt{\exp(\sigma^2) - 1} = \exp\left(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}\right).$$

В итоге получаем

$$\hat{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$

Предложение 4. Параметр σ для логнормального распределения выражается через значения квантилей, как

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$
 (13)

Доказательство. Покажем, что дисперсию логнормального распределения можно вычислить из отношения двух квантилей.

$$P(\xi \le x_{\pi}) = \pi,$$

$$P\left(\frac{\log(\xi) - \mu}{\sigma} \le \frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi.$$

Следовательно,

$$\Phi\left(\frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi,$$

и тогда

$$\log(x_{\pi}) = \mu + \sigma \Phi^{-1}(\pi). \tag{14}$$

С помощью двух квантилей мы можем исключить μ из соответствующих уравнений. Пусть есть π_1 -ый и π_3 -ый квантили со значениями x_{π_1} и x_{π_3} .

$$\log(x_{\pi_1}) = \mu + \sigma \Phi^{-1}(\pi_1),$$

$$\log(x_{\pi_3}) = \mu + \sigma \Phi^{-1}(\pi_3).$$

Вычтем из второго уравнения первое, получаем

$$\log\left(\frac{x_{\pi_3}}{x_{\pi_1}}\right) = \sigma(\Phi^{-1}(\pi_3) - \Phi^{-1}(\pi_1)).$$

И в итоге получаем

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Алгоритм 2. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

1. Выражаем параметр σ из отношения x_{π_3} к x_{π_1} , используя формулу (13).

2. Вычисляем значения $\hat{\textbf{F}}^{-1}(\pi)$ для случайной величины η по формуле (12).

3. C помощью системы (4) находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности $p_1,\ p_2,\ p_3$ для $x_{\pi_1},x_{\pi_2},x_{\pi_3}$ случайной величины $\tilde{\xi}.$

Замечание 1. Результаты Алгоритмов 1 и 2 совпадают.

Пример.

Посчитаем пример для $\frac{x_{90}}{x_{10}}=3.$ По формулам из этого раздела получаем

$$\sigma = \frac{\log\left(\frac{x_{90}}{x_{10}}\right)}{\phi^{-1}(0,9) - \phi^{-1}(0,1)} \approx 0.428626,$$

$$\hat{\mathsf{F}}^{-1}(p) = \frac{\exp\left(\sigma\phi^{-1}(p) - \frac{\sigma^2}{2}\right) - 1}{\sqrt{\exp(\sigma^2) - 1}}$$

$$\hat{\mathsf{F}}^{-1}(0.9) \approx 1.2915826424,$$

.

$$\hat{\mathsf{F}}^{-1}(0.1) \approx -1.0539640761,$$

 $\hat{\mathsf{F}}^{-1}(0.5) \approx -0.1954343914.$

Из системы (4) находим вероятности p_{10} , p_{50} , p_{90} .

$$p_{10} = 0.371243,$$

 $p_{50} = 0.282992,$
 $p_{90} = 0.345764.$

4.4 Условие на параметр σ для существования трехточечной аппроксимации логнормального распределения

Мы рассмотрели способы вычисления вероятностей для квантилей при аппроксимации логнормального распределения. Но эти вероятности находятся не при любом σ . Выясним, какое должно быть ограничение на этот параметр. Докажем следующее предложение.

Предложение 5. Положительные вероятности p_1, p_2, p_3 для аппроксимации логнормальной случайной величины η с квантилями вида $x_{\pi}, x_{0.5}, x_{1-\pi}$ существуют только при условии

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}\right) - \exp\left(\Phi^{-1}(1-\pi)\sigma - \frac{\sigma^2}{2}\right) \le 0,$$
$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(-\frac{\sigma^2}{2}\right) \left(\exp(c\sigma) + \exp(-c\sigma)\right) \le 0,$$

где $c = \Phi^{-1}(\pi)$.

Доказательство.

$$\ln(\eta) \sim N(\mu, \sigma^2), \qquad \tilde{\mathsf{F}}(y) = \mathsf{P}\left(\eta \leq y\right).$$

С помощью формулы (12) найдем $\tilde{\mathsf{F}}^{-1}(\pi_i)$ и сделаем следующие обозначения

$$\tilde{\mathsf{F}}^{-1}(\pi) = t_1, \qquad \tilde{\mathsf{F}}^{-1}(0.5) = t_2, \qquad \tilde{\mathsf{F}}^{-1}(1 - \pi) = t_3.$$

Теперь рассмотрим систему (6), запишем ее через t_1 , t_2 , t_3 и выразим вероятности p_1 , p_2 , p_3 .

$$p_2(t_2 - t_3) = p_1(t_3 - t_1) - t_3,$$

$$p_1(t_1^2 - t_3^2) + p_2(t_2^2 - t_3^2) = 1 - t_3^2.$$

Тогда получаем

$$p_1(t_1^2 - t_3^2) + (t_2 + t_3)(p_1(t_3 - t_1) - t_3) = 1 - t_3^2,$$

$$p_1(t_1 - t_3)(t_1 - t_2) = 1 + t_2t_3.$$

$$p_1 = \frac{1 + t_2 t_3}{(t_1 - t_3)(t_1 - t_2)},\tag{15}$$

$$p_2 = \frac{p_1(t_3 - t_1) - t_3}{t_2 - t_3} = \frac{1 + t_1 t_3}{(t_2 - t_1)(t_2 - t_3)},\tag{16}$$

$$p_3 = 1 - p_1 - p_2. (17)$$

Все вероятности должны быть положительными, подставим в формулы для вероятностей значения переменных t_1 , t_2 , t_3 , которые ищутся по формуле (11).

$$p_1 = \frac{1 + \frac{\left(\exp\left(-\frac{\sigma^2}{2}\right) - 1\right)\left(\exp(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}) - 1\right)}{\exp\left(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}\right) - \exp\left(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}\right)}}{\frac{\exp\left(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}\right) - \exp\left(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}\right)}{\sqrt{\exp(\sigma^2) - 1}}} = \frac{1 + \frac{\left(\exp\left(-\frac{\sigma^2}{2}\right) - 1\right)\left(\exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}) - 1\right)}{\exp\left(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}\right) - \exp\left(-\frac{\sigma^2}{2}\right)}}{\sqrt{\exp(\sigma^2) - 1}} = \frac{1 + \frac{\left(\exp\left(-\frac{\sigma^2}{2}\right) - 1\right)\left(\exp(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}) - 1\right)}{\exp\left(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}\right) - \exp\left(-\frac{\sigma^2}{2}\right)}}$$

$$=\frac{\exp(\sigma^2)+\exp(\Phi^{-1}(1-\pi)\sigma-\sigma^2)-\exp(-\frac{\sigma^2}{2})-\exp(\Phi^{-1}(1-\pi)\sigma-\frac{\sigma^2}{2})}{\exp(\Phi^{-1}(0.1)*2\sigma-\sigma^2)-\exp(\Phi^{-1}(\pi)\sigma-\sigma^2)-\exp(-\sigma^2)+\exp(\Phi^{-1}(1-\pi)\sigma-\sigma^2)}.$$

$$p_2 = \frac{1 + \frac{(\exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}) - 1)(\exp(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}) - 1)}{\exp(\sigma^2) - 1}}{\frac{\exp(-\frac{\sigma^2}{2}) - \exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}}} \exp(-\frac{\sigma^2}{2}) - \exp(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}} = \frac{1 + \frac{(\exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}) - 1)(\exp(\Phi^{-1}(1 - \pi)\sigma - \frac{\sigma^2}{2}) - 1)}{\exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2})}}{\sqrt{\exp(\sigma^2) - 1}}$$

$$= \frac{\exp(\sigma^2) + \exp(-\sigma^2) - \exp(\Phi^{-1}(\pi)\sigma - \frac{\sigma^2}{2}) - \exp(\Phi^{-1}(1-\pi)\sigma - \frac{\sigma^2}{2})}{\exp(-\sigma^2) - \exp(\Phi^{-1}(1-\pi)\sigma - \sigma^2) - \exp(\Phi^{-1}(\pi)\sigma - \sigma^2) + \exp(-\sigma^2)} =$$

$$=\frac{\exp(\sigma^2)+\exp(-\sigma^2)-\exp\left(\frac{\sigma^2}{2}\right)\left(\exp(\Phi^{-1}(\pi)\sigma)+\exp(-\Phi^{-1}(\pi)\sigma)\right)}{2\exp(-\sigma^2)-\exp(-\sigma^2)\left(\exp(-\Phi^{-1}(\pi)\sigma)+\exp(\Phi^{-1}(\pi)\sigma)\right)}.$$

Вероятности p_1 и p_3 положительные при любом параметре σ . Рассмотрим знаменатель p_2 .

$$2\exp(-\sigma^{2}) - \exp(-\sigma^{2})\left(\exp(-\Phi^{-1}(\pi)\sigma) + \exp(\Phi^{-1}(\pi)\sigma)\right) =$$

$$= \exp(-\sigma^{2})(2 - \exp(-\Phi^{-1}(\pi)\sigma) - \exp(\Phi^{-1}(\pi)\sigma)) =$$

$$= -\frac{\exp(-\sigma^{2})(\exp(\Phi^{-1}(\pi)\sigma) - 1)^{2}}{\exp(\Phi^{-1}(\pi)\sigma)}.$$

Числитель и знаменатель дроби положительные при любом значении параметра σ . Значит, весь знаменатель p_2 отрицательный. Из условия отрицательности числителя получаем следующее ограничение на σ .

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp\left(\frac{\sigma^2}{2}\right) \left(\exp(\Phi^{-1}(\pi)\sigma) + \exp(-\Phi^{-1}(\pi)\sigma)\right) \le 0.$$

Например, для $\pi=0.1$ получаем ограничение $\sigma\leq0.6913$. Посмотрим, какому коэффициенту асимметрии соответствует это значение σ .

$$\gamma_3 = \sqrt{\exp(\sigma^2) - 1}(\exp(\sigma^2) + 2),$$

 $\gamma_3 = 2.82778.$

Ограничение на σ становится слабее при уменьшении значения π .

Рассмотрим $\pi = 0.05$, получаем ограничение $\sigma \le 1.04585$.

$$\gamma_3 = 7.02529.$$

При уменьшении π и фиксированной сигме то, что вычитается, растет и в какой-то момент становится больше уменьшаемого.

4.5 Варианты постановки задачи

Задача: имеются квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ логнормальной случайной величины η . Нужно уметь считать её математическое ожидание и дисперсию.

Варианты решения задачи:

- 1. Не переходить к аппроксимации дискретной случайной величиной, а сразу же из двух уравнений вида (14), записанных для двух квантилей, найти значения параметров μ и σ нормальной случайной величины $\ln(\eta) \sim N(\mu, \sigma)$. Далее по формулам (10) и (11) вычислить значения мат. ожидания m и дисперсии s^2 случайной величины η .
- 2. Перейти к трехточечной аппроксимации дискретной случайной величиной $\tilde{\xi}$, у которой $\tilde{m}=m$ и $\tilde{s^2}=s^2$. И считать значения m и s через квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ и вероятности p_1, p_2, p_3 . Если условие для положительных вероятностей не выполняется, можно воспринимать задачу не как поиск вероятностей для $\tilde{\xi}$, а как поиск коэффициентов для x_{π} , $x_{0.5}$, $x_{1-\pi}$ таких, чтобы параметры, полученные по формулам (2) и (3), были равны мат. ожиданию и дисперсии η .

4.6 Точность аппроксимации

Предлагаемые методы аппроксимации логнормального распределения не работают при $\sigma \leq 0.6913$. На практике часто используют правило 30-40-30 для аппроксимации логнормального распределения, поэтому посмотрим на точность 30-40-30. Особенно это важно при $\sigma \ge 0.6913$.

Предложение 6. Ошибка аппроксимации мат. ожидания логнормального распределения при использовании метода Свонсона, примененного к нормальному распределению.

$$\frac{\mid m-\widetilde{m}\mid}{m} = \frac{\left|\exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2(\Phi^{-1}(\pi))^2}\left(\exp(\sigma\Phi^{-1}(\pi)) - 1 + \exp(-\sigma\Phi^{-1}(\pi))\right) + 1\right|}{\exp\left(\frac{\sigma^2}{2}\right)}$$

u не зависит от параметра μ .

Доказательство. Выразим ошибку аппроксимации мат. ожидания логнормального распределения через параметры μ и σ .

$$m = \exp\left(\mu + \frac{\sigma^2}{2}\right).$$

Имеем следующие квантили

$$x_{\pi} = \exp(\mu + \sigma \Phi^{-1}(\pi)),$$

Точные значения вероятностей

$$p_1 = p_3 = \frac{1}{2(\Phi^{-1}(\pi))^2},$$

 $p_2 = 1 - \frac{1}{(\Phi^{-1}(\pi))^2}.$

Тогда мат. ожидание аппроксимации равно

$$\begin{split} \tilde{m} &= \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(\mu + \sigma \Phi^{-1}(\pi)) + \\ &+ \left(1 - \frac{1}{(\Phi^{-1}(\pi))^2}\right) \exp(\mu + \sigma \Phi^{-1}(0.5)) + \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(\mu - \sigma \Phi^{-1}(\pi)) = \\ &= \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(\mu) (\exp(\sigma \Phi^{-1}(\pi)) - 1 - \exp(\sigma \Phi^{-1}(\pi))) + \exp(\mu). \end{split}$$

Получили ошибку

Получили оппиоку
$$\frac{\left| \, m - \widetilde{m} \, \right|}{m} = \\ = \frac{\left| \exp\left(\mu + \frac{\sigma^2}{2}\right) - \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(\mu)(\exp(\sigma\Phi^{-1}(\pi)) - 1 - \exp(\sigma\Phi^{-1}(\pi))) + \exp(\mu) \right|}{\exp\left(\mu + \frac{\sigma^2}{2}\right)} =$$

$$=\frac{\left|\exp\left(\frac{\sigma^2}{2}\right)-\frac{1}{2(\Phi^{-1}(\pi))^2}(\exp(\sigma\Phi^{-1}(\pi))-1-\exp(\sigma\Phi^{-1}(\pi)))+1\right|}{\exp\left(\frac{\sigma^2}{2}\right)}=$$

Построим график зависимости от σ .

Рис. 1: Ошибка аппроксимации мат. ожидания

Видим, что при $\sigma \leq 1.5$ ошибка аппроксимации мат.
ожидания меньше 12%.

Предложение 7. Ошибка аппроксимации дисперсии логнормального распределения при использовании метода Свонсона, примененного к нормальному распределению.

$$\frac{\left|s^2 - \widetilde{s^2}\right|}{s^2} = \left|\exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2c^2}\exp(-2c\sigma) - \left(1 - \frac{1}{c^2}\right)\exp(2c\sigma) + \left(\frac{1}{2c^2}(\exp(c\sigma) - 1 + \exp(-c\sigma)) + 1\right)^2\right| / \exp(\sigma^2)(\exp(\sigma^2 - 1))$$

и не зависит от параметра μ , где $c = \Phi^{-1}(\pi)$.

Доказательство. Выразим аппроксимации дисперсии через параметры распределения.

$$s^{2} = \exp(2\mu + \sigma^{2})(\exp(\sigma^{2} - 1)).$$
$$\tilde{s^{2}} = \frac{1}{2(\Phi^{-1}(\pi))^{2}}\exp(2\mu + 2\sigma\Phi^{-1}(\pi)) +$$

$$+\left(1-\frac{1}{(\Phi^{-1}(\pi))^2}\right)\exp(2\mu+2\sigma\Phi^{-1}(0.5))+\frac{1}{2(\Phi^{-1}(\pi))^2}\exp(2\mu-2\sigma\Phi^{-1}(\pi))-\tilde{m^2}.$$

Получили ошибку

$$\begin{split} \frac{\mid s^2 - \tilde{s^2} \mid}{s^2} &= \left| \exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(2\mu + 2\sigma\Phi^{-1}(\pi)) - \right. \\ &- \left. \left(1 - \frac{1}{(\Phi^{-1}(\pi))^2} \right) \exp(2\mu + 2\sigma\Phi^{-1}(0.5)) - \right. \\ &- \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(2\mu - 2\sigma\Phi^{-1}(\pi)) + \tilde{m^2} \middle| / \exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)) = \\ &= \left| \exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(2\sigma\Phi^{-1}(\pi)) - \right. \\ &- \left. \left(1 - \frac{1}{(\Phi^{-1}(\pi))^2} \right) \exp(2\sigma\Phi^{-1}(0.5)) - \right. \\ &+ \frac{1}{2(\Phi^{-1}(\pi))^2} \exp(2\sigma\Phi^{-1}(\pi)) + \tilde{m^2}/2\mu \middle| / \exp(\sigma^2)(\exp(\sigma^2 - 1)). \end{split}$$

Построим график зависимости от σ .

Рис. 2: Ошибка аппроксимации дисперсии

Видим, что при $\sigma \le 1.5$ ошибка аппроксимации дисперсии может достигать 80%.

5 Произведение двух логнормальных распределений

Нам доступен метод объединения любых логнормально распределенных случайных величин. Эта процедура применяется в нефтяной промышленности, она выполняется быстро и может быть выполнена вручную. Например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти.

Рассмотрим произведение любых двух логнормально распределенных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

 $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2).$

Введем следующие обозначения:

 $x_{\pi}, x_{0.5}, x_{1-\pi}$ — квантили случайной величины $\xi_1, y_{\pi}, y_{0.5}, y_{1-\pi}$ — квантили случайной величины $\xi_2.$

Предложение 8. При перемножении квантилей x_{π} и y_{π} двух логнормальных случайных величин ξ_1 и ξ_2 получается квантиль случайной величины $\xi_1\xi_2$ вида z_q , где

$$q = \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right). \tag{18}$$

Доказательство. Выразим параметры распределений $\mu_1, \ \mu_2, \ \sigma_1, \ \sigma_2$ через квантили. По определению квантиля $\mathsf{P}(\xi_1 < x_\pi) = \pi.$

Преобразуем эту вероятность так, чтобы ее можно было записать через функцию распределения стандартного нормального распределения, следующим образом:

$$P(\xi_1 < x_\pi) = P(\ln(\xi_1) < \ln(x_\pi)) = P\left(\frac{\ln(\xi_1) - \mu_1}{\sigma_1} < \frac{\ln(x_\pi) - \mu_1}{\sigma_1}\right).$$

Так как ξ_1 распределена логнормально с параметрами μ_1 и σ_1^2 , то

$$\frac{\ln(\xi_1) - \mu_1}{\sigma_1} \sim N(0, 1).$$

Следовательно, можно записать логарифм квантиля, как:

$$\ln(x_{\pi}) = \sigma_1 \Phi^{-1}(\pi) + \mu_1. \tag{19}$$

Аналогично для x_{50} , получаем, что

$$\mu_1 = \ln(x_{0.5}). \tag{20}$$

Используя формулы (19) и (20) можно выразить значение σ_1 .

$$\sigma_1 = \frac{\ln(x_\pi) - \ln(x_{0.5})}{\Phi^{-1}(\pi)}.$$
(21)

Аналогичные действия проводим для ξ_2 и тогда получаем

$$\frac{\ln(y_{\pi}) - \mu_2}{\sigma_2} = \Phi^{-1}(\pi), \tag{22}$$

$$\mu_2 = \ln(y_{0.5}). \tag{23}$$

Используя формулы (22) и (23) можно выразить значение σ_2 ,

$$\sigma_2 = \frac{\ln(y_\pi) - \ln(y_{0.5})}{\Phi^{-1}(\pi)}.$$
 (24)

Теперь рассмотрим случайную величину $\eta=\xi_1\xi_2$. Мы хотим вычислить, каким квантилем для η является произведение квантилей x_π и y_π .

Для этого надо найти, чему равна вероятность $\mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi)$.

$$P(\xi_1 \xi_2 < x_\pi y_\pi) = P(\ln(\xi_1) + \ln(\xi_2) < \ln(x_\pi) + \ln(y_\pi)) =$$

$$= P\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\ln(x_\pi) + \ln(y_\pi) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Так как ξ_1 распределена логнормально с параметрами μ_1 и σ_1^2 , а ξ_2 распределена логнормально с параметрами μ_2 и σ_2^2 , то

$$\ln(\xi_1) + \ln(\xi_2) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2),$$

$$\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sim N(0, 1).$$

Используя формулы (19) и (21), выразим $\ln(x_{\pi})$ и $\ln(y_{\pi})$.

$$\ln(x_{\pi}) = \mu_1 + \Phi^{-1}(\pi)\sigma_1,$$
$$\ln(y_{\pi}) = \mu_2 + \Phi^{-1}(\pi)\sigma_2.$$

Тогда можно записать

$$\begin{split} \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{(\mu_1 + \Phi^{-1}(\pi)\sigma_1) + (\mu_2 + \Phi^{-1}(\pi)\sigma_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \Phi\left(\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right). \end{split}$$

Используя формулы (21) и (24), перепишем эту дробь через значения кванилей.

$$\frac{\Phi^{-1}(\pi)(\sigma_{1} + \sigma_{2})}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} = \frac{\Phi^{-1}(\pi)\left(\frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{-\Phi^{-1}(\pi)}\right)}{\sqrt{\frac{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}{(\Phi^{-1}(\pi))^{2}}}} = \frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}}}{\frac{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}}{\Phi^{-1}(\pi)}}.$$

Тогда получаем следующую формулу

$$\mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right).$$

Таким образом, с помощью формулы (18) можно посчитать, какой квантиль получается при перемножении π -ых квантилей.

Следствие 1. При перемножение квантилей $x_{0.5}$ и $y_{0.5}$ получается снова 0.5-ый квантиль.

Доказательство. Из раздела 4.2 знаем, что $\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5})$ можно написать следующим образом:

$$\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi\left(\frac{\ln(x_{0.5}) + \ln(y_{0.5}) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Но по формуле (14) в числителе получается 0. Значит,

$$P(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi(0) = 0.5.$$

5.1 Квантили вида π , 0.5, $1-\pi$ произведения логнормальных случайных величин

Как по каким-то произвольным получившимся квантилям, полученным при перемножении данных квантилей для двух логнормальных случайных величин, найти нужные нам, такие же, как исходные π , 0.5, $1-\pi$ квантили произведения этих двух случайных величин? Сначала нужно понять на какой прямой лежат точки вида $(x_{\pi}; \Phi^{-1}(\pi))$.

Для этого рассмотрим следующий QQ-плот:

$$\left\{x_i, \mathsf{F}_{\eta}^{-1}(\mathsf{F}_{\xi}(x_i))\right\}_{i=1}^n$$
.

Как связаны параметры нормального распределения, квантили которого откладываются по оси X, и параметры прямой, на которой лежат точки этого QQ плота?

Ось
$$X: \xi \sim N(a, b^2)$$
.
Ось $Y: \eta \sim N(0, 1)$.

Возьмем две точки и построим по ним уравнение прямой.

$$\begin{split} &(\mathsf{F}_{\xi}^{-1}(0.1),\mathsf{F}_{\eta}^{-1}(0.1)),\\ &(\mathsf{F}_{\xi}^{-1}(0.5),\mathsf{F}_{\eta}^{-1}(0.5)). \end{split}$$

$$\Phi\left(\frac{x_p-a}{b}\right)=p$$
 \Rightarrow $\frac{x_p-a}{b}=\Phi^{-1}(p).$

Получаем, что

$$x_p = a + b\Phi^{-1}(p).$$

Для первой точки возьмем p = 0.1.

$$(a + b\Phi^{-1}(0.1); \Phi^{-1}(0.1)).$$

Для второй точки возьмем p = 0.5.

$$(a + b\Phi^{-1}(0.5); \Phi^{-1}(0.5)) \Rightarrow (a; 0).$$

Составим уравнение прямой:

$$\frac{x-a}{(a+\Phi^{-1}(0.1)b)-a} = \frac{y}{\Phi^{-1}(0.1)}, \qquad \qquad \frac{x-a}{\Phi^{-1}(0.1)b} = \frac{y}{\Phi^{-1}(0.1)}.$$

Следовательно,

$$by = x - a$$
,

Получили уравнение прямой на которой лежат точки данного QQ-плота:

$$y = \frac{x - a}{b}. (25)$$

Предложение 9 (Swanson, 2000 год). Зная квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_{π} , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 можно найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины $\xi_1\xi_2$, как

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

$$z_{0.5} = x_{0.5} y_{0.5},$$

$$z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a),$$

где a u b makue, что $npямая <math>y=\frac{x-a}{b}$ npoxoдum через moчки $(\ln(x_\pi y_\pi),t)$ u $(\ln(x_{0.5}y_{0.5}),0)$, rde

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Доказательство. С помощью формулы (18) можно посчитать, какой получается квантиль для случайной величины $\xi_1\xi_2$, если перемножить квантили x_π и y_π исходных случайных величин.

Обозначим $z_{\pi}, z_{0.5}, z_{1-\pi}$ — квантили случайной величины η . Тогда по Следствию 1 имеем $x_{0.5}y_{0.5}=z_{0.5}$.

Нужно вычислить значения z_{π} и $z_{1-\pi}$. Введем обозначение:

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Тогда с помощью точек $(\ln(x_{\pi}y_{\pi}),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$ можно найти параметры a и b прямой, на которой они лежат, по формуле (25).

$$\frac{\ln(x_{0.5}y_{0.5}) - a}{b} = 0 \qquad \Rightarrow \qquad a = \ln(x_{0.5}y_{0.5}),$$

$$\frac{\ln(x_{\pi}y_{\pi}) - a}{b} = t,$$

$$b = \frac{\ln(x_{\pi}y_{\pi}) - a}{t} = \frac{\ln(x_{\pi}y_{\pi}) - \ln(x_{0.5}y_{0.5})}{t}.$$

Так как точки $(\ln(z_{\pi}), \Phi^{-1}(\pi))$ и $(\ln(z_{1-\pi}), \Phi^{-1}(1-\pi))$ тоже лежат на этой прямой, то мы можем вычислить значения $\ln(z_{\pi})$ и $\ln(z_{0.5})$, зная уравнение прямой, следующим

образом:

$$\frac{\ln(z_{\pi}) - a}{b} = \Phi^{-1}(\pi),$$
$$\ln(z_{\pi}) = b\Phi^{-1}(\pi) + a,$$

$$\frac{\ln(z_{1-\pi}) - a}{b} = \Phi^{-1}(1 - \pi),$$

$$\ln(z_{1-\pi}) = b\Phi^{-1}(1 - \pi) + a.$$

 Π , наконец, находим z_{π} и $z_{1-\pi}$.

$$z_{\pi} = \exp(b\Phi^{-1}(\pi) + a),$$

 $z_{1-\pi} = \exp(b\Phi^{-1}(1-\pi) + a).$

Как теперь найти математическое ожидание $\eta=\xi_1\xi_2$? Случайные величины ξ_1 и ξ_2 распределены логнормально. Их произведение—случайная величина η тоже имеет логнормальное распределение, поэтому

$$\ln(\eta) = \ln(\xi_1 \xi_2) = \ln(\xi_1) + \ln(\xi_2) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

В разделе 3 было описано, как искать математическое ожидание и дисперсию. Можно использовать метод Свонсона аппроксимации нормального распределения для $\ln(\eta)$. Для этого надо взять не сами квантили z_{π} , $z_{0.5}$ и $z_{1-\pi}$, а их логарифмы. Соответствующие вероятности p_1 , p_2 , p_3 можно найти с помощью системы (7), так как данные квантили симметричны.

6 Сумма двух логнормальных распределений

Рассмотрим сумму двух логнормальных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

 $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2),$
 $\eta = \xi_1 + \xi_2.$

Дано: квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_{π} , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 .

Нужно найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины η , а также вычислить вероятности p_1 , p_2 , p_3 такие, что $m=\tilde{m}$ и $s^2=\tilde{s^2}$.

Берем симметричные квантили, а именно $\pi=0.1$. Не умеем находить точное решение, поэтому чтобы найти z_{10}, z_{50}, z_{90} будем использовать аппроксимацию суммы логнормальных распределений логнормальным распределением. $\ln(\eta) \sim N(\mu, \sigma)$.

У нас есть следующие ограничения на параметры: $\mu_1, \mu_2 < 12, \sigma_1, \sigma_2 < 1.5$. Пусть мы нашли аппроксимацию суммы двух логнормальных величин, тогда с учетом этих ограничений её значения μ и σ тоже будут иметь свои ограничения. При этом, чтобы найти значения вероятностей p_1, p_2, p_3 нужно, чтобы выполнялось то же условие, что в разделе 4.3. А именно, $\sigma < 0.6913$.

Имеем следующий алгоритм для решения задачи.

Алгоритм 3. Дано: Квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ — квантили ξ_1 , y_{π} , $y_{0.5}$, $y_{1-\pi}$ — квантили ξ_2 .

1.
$$x_{\pi}, x_{0.5}, x_{1-\pi} \rightarrow \mu_1, \sigma_1$$

2.
$$y_{\pi}, y_{0.5}, y_{1-\pi} \to \mu_2, \sigma_2$$

3.
$$\mu_i, \, \sigma_i \to m_i, \, s_i^2$$

4.
$$m = m_1 + m_2$$

5.
$$s^2 = s_1^2 + s_2^2$$

6.
$$m, s^2 \rightarrow \mu, \sigma$$

7.
$$\mu$$
, $\sigma \to z_{\pi}$, $z_{0.5}$, $z_{1-\pi}$

8.
$$z_{\pi}, z_{0.5}, z_{1-\pi} \rightarrow p_1, p_2, p_3$$

Результат: вероятности p_1 , p_2 , p_3 для квантилей $z_{\pi_1}, z_{\pi_2}, z_{\pi_3}$ случайной величины $\xi_1 + \xi_2$.

6.1 Точность аппроксимации

Выразим ошибки аппроксимации квантилей $q_{10},\,q_{50},\,q_{90}$ случайной величины ξ через параметры $\mu_1,\,\mu_2,\,\sigma_1^2,\,\sigma_2^2.$

$$rac{|q_{10}-z_{10}|}{q_{10}}, \quad rac{|q_{50}-z_{50}|}{q_{50}}, \quad rac{|q_{90}-z_{90}|}{q_{90}}.$$
 $z_{10}=F_\eta^{-1}(0.1), \qquad z_{50}=\exp(\mu), \qquad z_{90}=F_\eta^{-1}(0.9), \quad \text{где}$ $F_\eta^{-1}(p)=\exp(\mu+\sigma\sqrt{2} ext{erf}^{-1}(2p-1)).$

Параметры μ , σ можно найти через параметры случайных величин $\xi_1,\,\xi_2.$

Квантили η выражаются как

$$q_{10} = F_{\xi}^{-1}(0.1), \qquad q_{50} = F_{\xi}^{-1}(0.5), \qquad q_{90} = F_{\xi}^{-1}(0.9), \quad \text{где}$$

$$F_{\xi}(x) = \int_{0}^{x} \left(\frac{1}{2} + \frac{1}{2}\mathrm{erf}\left(\frac{\ln(x-y) - \mu_{1}}{\sigma_{1}\sqrt{2}}\right)\right) \left(\frac{1}{\sqrt{2\pi}y\sigma_{2}}\exp\left(-\left(\frac{\ln(y) - \mu_{2}}{\sqrt{2}\sigma_{2}}\right)^{2}\right)\right) dy$$

В таблицах 1, 2 и 3 представлены ошибки для $\ln(\xi_1) \sim N(4, \sigma_1^2)$, $\ln(\xi_2) \sim N(6, \sigma_1^2)$, полученные с помощью моделирования, объемы выборок равны 10^6 .

Таблица 1: Ошибка аппроксимации медианы (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.05	0.25	0.45	0.65	0.85	1.05	1.25	1.45	1.65	1.85	2.05	2.25
0.05	0.06	0.95	1.22	0.32	0.04	0.20	0.56	2.74	3.21	2.71	3.47	4.68
0.25	0.03	0.18	0.58	0.8	0.85	0.92	0.71	1.86	2.74	4.65	3.29	4.85
0.45	0.02	0.63	0.47	0.74	0.66	1.27	2.17	2.56	3.31	4.29	5.72	5.16
0.65	0.36	0.16	0.01	0.12	0.10	1.36	2.19	4.00	4.23	6.65	7.41	7.49
0.85	0.70	0.01	0.16	0.69	0.63	1.50	1.48	3.46	5.32	5.95	6.40	7.41
1.05	0.55	0.62	0.09	0.24	0.79	2.81	3.62	4.48	5.89	6.15	6.77	9.56
1.25	0.77	0.06	0.21	0.50	1.58	2.47	3.16	4.37	5.85	7.26	8.63	11.14
1.45	0.34	0.56	0.08	0.15	0.80	1.66	2.71	4.51	5.71	7.43	9.92	10.75
1.65	0.87	0.86	1.00	0.18	1.07	2.56	2.27	3.70	6.61	7.30	8.84	9.58
1.85	2.58	3.09	3.14	1.17	1.51	1.51	2.30	3.33	6.02	8.01	8.38	10.46
2.05	6.11	5.33	3.50	2.42	1.89	1.64	1.74	3.86	5.80	6.96	9.54	10.32
2.25	10.30	8.88	6.63	3.95	2.76	2.32	2.65	4.43	4.72	7.12	9.41	9.79

Таблица 2: Ошибка аппроксимации q_{10} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

%	0.05	0.25	0.45	0.65	0.85	1.05	1.25	1.45	1.65	1.85	2.05	2.25
0.05	0.29	3.21	6.64	11.28	15.38	19.50	25.37	27.79	31.84	35.50	39.09	43.19
0.25	0.07	2.17	6.77	11.41	15.20	19.33	23.98	28.43	33.34	36.47	39.64	43.31
0.45	0.28	1.62	5.61	9.05	14.57	20.02	24.05	28.87	30.94	37.01	40.78	43.25
0.65	1.44	1.06	4.32	7.67	13.61	17.95	23.09	27.89	31.71	35.92	39.40	44.31
0.85	3.66	1.01	3.65	7.28	12.09	15.96	21.70	26.81	30.61	34.64	38.94	41.14
1.05	7.42	1.16	2.85	5.64	9.79	15.37	20.81	24.61	29.50	33.56	36.72	41.47
1.25	12.47	3.36	2.79	4.52	9.10	15.08	17.86	22.97	28.23	33.01	35.56	40.66
1.45	18.58	6.54	2.92	4.72	7.22	13.10	17.09	21.39	26.54	31.45	36.12	39.89
1.65	26.09	11.20	4.86	5.04	7.16	10.48	14.75	20.15	25.34	30.42	34.27	38.21
1.85	34.03	17.14	9.86	5.71	6.87	10.39	12.88	18.25	22.77	28.30	32.65	36.24
2.05	42.73	25.26	15.55	10.11	7.60	10.02	11.56	16.74	21.26	26.40	30.68	33.90
2.25	51.35	34.75	22.83	16.23	11.85	10.83	11.84	16.45	20.34	24.44	27.66	33.35

Таблица 3: Ошибка аппроксимации q_{90} (%) в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

%	0.05	0.25	0.45	0.65	0.85	1.05	1.25	1.45	1.65	1.85	2.05	2.25
0.05	0.25	0.59	1.83	2.66	2.14	4.40	2.93	2.84	3.33	3.95	2.25	2.43
0.25	0.14	1.24	0.64	1.12	3.49	4.09	2.95	4.19	4.22	3.59	3.83	1.13
0.45	0.01	0.31	1.44	3.29	2.49	2.82	3.29	3.76	4.44	5.32	3.63	3.03
0.65	0.74	0.70	0.76	2.00	2.09	4.08	4.16	4.08	3.60	4.91	3.71	4.66
0.85	2.81	0.12	1.58	1.87	2.91	3.69	5.60	1.86	3.90	4.10	3.07	5.48
1.05	5.31	0.45	0.33	1.79	3.10	3.99	4.83	4.46	3.24	4.95	3.51	4.93
1.25	9.32	1.32	0.83	2.63	2.18	3.19	3.26	4.12	4.91	4.30	4.85	3.18
1.45	13.38	3.43	1.42	1.22	1.17	3.15	4.02	2.75	3.99	3.88	6.42	4.46
1.65	20.50	5.13	2.79	1.00	2.17	2.78	2.77	4.27	7.01	3.80	5.30	5.16
1.85	25.68	9.55	4.75	1.31	1.80	1.79	2.55	3.24	5.15	4.30	5.37	7.36
2.05	32.89	14.44	6.58	3.86	1.57	2.80	3.51	2.94	3.97	4.51	3.76	3.23
2.25	40.04	18.64	9.22	4.64	0.85	2.30	3.72	1.54	4.11	5.22	4.12	4.57

Таким образом, при аппроксимации суммы двух логнормальных распределений логнормальным распределением ошибки мат. ожидания и дисперсии равны 0, то есть $m=\tilde{m}$ и $s^2=\tilde{s^2}$. Но если для каких-либо расчетов понадобятся квантили η , то ошибка медианы может достигать 11%, ошибка квантиля q_{10} достигает 51%, ошибка квантиля q_{90} достигает 40%.

Построим графики 7, 4 и 5 зависимости ошибки аппроксимации квантилей от σ_2^2 при фиксированной $\sigma_1^2=0.45$. При моделировании объемы выборок равны 10^6 .

Таблица 4: $F_{\eta}(z_{50})$ в зависимости от σ_{1}^{2} (строка) и σ_{2}^{2} (столбец)

	0.15	0.85	1.55	2.25
0.15	0.51	0.50	0.49	0.48
0.85	0.50	0.50	0.48	0.47
1.55	0.49	0.50	0.48	0.46
2.25	0.40	0.49	0.48	0.46

Теперь посчитаем значения функции $F_{\xi}(x)$ от квантилей z_{10}, z_{50}, z_{90} случайной ве-

Рис. 3: Ошибка аппроксимации медианы при $\sigma_1^2 = 0.45$.

Таблица 5: $F_{\eta}(z_{10})$ в зависимости от σ_{1}^{2} (строка) и σ_{2}^{2} (столбец)

	0.15	0.85	1.55	2.25
0.15	0.09	0.06	0.04	0.02
0.85	0.10	0.07	0.05	0.03
1.55	0.05	0.08	0.06	0.04
2.25	0.00	0.08	0.07	0.05

Таблица 6: $F_{\eta}(z_{90})$ в зависимости от σ_1^2 (строка) и σ_2^2 (столбец)

	0.15	0.85	1.55	2.25
0.15	0.90	0.90	0.90	0.90
0.85	0.90	0.91	0.91	0.90
1.55	0.93	0.90	0.91	0.91
2.25	0.95	0.91	0.90	0.91

личины η . Они показывают, каким квантилем для ξ являются квантили z_i . Результаты приведены в таблицах 4, 5 и 6.

Рис. 4: Ошибка аппроксимации q_{10} при $\sigma_1^2 = 0.45$.

Построим оценки плотности для ξ и η , когда ошибки имеют очень маленькие значения и когда достаточно большие. Они представлены на рисунках 6 и 7.

7 Заключение

Таким образом, были получены следующие результаты: условие на σ для существования трехточечной аппроксимации логнормального распределения, точность аппроксимации мат. ожидания и дисперсии логнормального распределения с помощью метода Свонсона, метод трехточечной аппроксимации суммы логнормальных распределений, точность трехточечной аппроксимации суммы логнормальных распределений.

Список литературы

[1] Keith G. Swanson's Swansong.—Текст: электронный // stochastic: [сайт].—URL: https://www.stochastic.dk/post/swanson-s-swansong (дата обращения: 23.12.2021).

Рис. 5: Ошибка аппроксимации q_{90} при $\sigma_1^2 = 0.45$.

- [2] Uncertainties impacting reserves, revenue, and costs—Текст: электронный // AAPG Wiki: [сайт].—URL: https://wiki.aapg.org/Uncertainties impacting reserves, revenue, and costs (дата обращения: 27.05.2022).
- [3] Bickel, J. Eric, Lake, Larry W., and John Lehman. "Discretization, Simulation, and Swanson's (Inaccurate) Mean."SPE Econ Mgmt 3 (2011): 128–140. doi: https://doi.org/10.2118/148542-PA.
- [4] Bickel, J. Eric. "Discretization, Simulation, and the Value of Information." Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011. doi: https://doi.org/10.2118/145690-MS.
- [5] Moghadasi, Maryam and Jerry L. Jensen. "Performance Evaluation of Swanson's Rule for the Case of Log-Normal Populations." (2014). DOI:10.1007/978-3-642-32408.

8 Приложение

На С++ были реализованы следующие полезные на практике функции.

Рис. 6: $\sigma_1^2=1.05,\,\sigma_2^2=0.45,\,err_{med}=0.09\%,\,err_{q_{10}}=2.4\%,\,err_{q_{90}}=1.1\%.$

Дано: значения квантилей x_{π_i} , математическое ожидание m, дисперсия s^2 непрерывной случайной величины.

Задача: найти вероятности p_i такие, что непрерывное распределение можно заменить дискретным с данными квантилями и полученными весами с сохранением математического ожидания и дисперсии.

Решение описано в разделе 2.

Система:

Рис. 7: $\sigma_1^2=2.25,\,\sigma_2^2=0.05,\,err_{med}=9.92\%,\,err_{q_{10}}=51.34\%,\,err_{q_{90}}=39.88\%.$

$$\begin{pmatrix} 1 & 1 & 1 \\ x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ x_{\pi_1}^2 & x_{\pi_2}^2 & x_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m^2 + s^2 \end{pmatrix}.$$

Функция:

vector<double> P (double m, double s, double x_{π_1} , double x_{π_2} , double x_{π_3}).

•

Дано: вероятности π_i .

Задача: найти вероятности p_i для дискретного распределения, заменяющего исходное нормальное распределение, с любыми тремя квантилями x_{π_1}, x_{π_2} и x_{π_3} .

Решение описано в разделе 3.

Система:

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi_1) & \Phi^{-1}(\pi_2) & \Phi^{-1}(\pi_3) \\ \Phi^{-1}(\pi_1)^2 & \Phi^{-1}(\pi_2)^2 & \Phi^{-1}(\pi_3)^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Функция:

vector<double> PNormal (double π_1 , double π_2 , double π_3).

•

Дано: вероятность π .

Задача: найти вероятности p_i для дискретного распределения, заменяющего исходное нормальное распределение, в случае симметричных квантилей вида π , 0.5 и $1-\pi$.

Решение описано в разделе 3 с помощью системы (4.1).

Формулы:

$$\begin{cases}
p_{\pi} = \frac{1}{2\Phi^{-1}(\pi)^{2}}, \\
p_{0.5} = 1 - \frac{1}{\Phi^{-1}(\pi)^{2}}, \\
p_{1-\pi} = \frac{1}{2\Phi^{-1}(\pi)^{2}}.
\end{cases}$$

Функция:

vector<double> PNormalSim (double π).

•

Дано: параметры нормального распределения μ и σ , соответствующего логнормальному распределению.

Задача: найти параметры этого логнормального распределения m и s.

Решение получено из определений логнормального распределения и соответствующего ему нормального распределения.

Формулы:

$$m = \exp(\mu + \frac{\sigma^2}{2}),$$

$$s^2 = m^2(\exp(\sigma^2) - 1).$$

Функции:

double M (double μ , double σ), double S (double μ , double σ).

•

Дано: вероятности π_1 , π_2 , значения квантилей x_{π_1} , x_{π_2} .

Задача: найти дисперсию логарифмически нормального распределения через квантили дискретного распределения, которое его заменяет.

Решение описано в разделе 4.2, получена формула (??).

Формула:

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Функция:

double Sig (double π_1 , double π_2 , double x_{π_1} , double x_{π_2}).

•

Дано: вероятность π , значения квантилей x_{π} , $x_{0.5}$.

Задача: найти дисперсию логарифмически нормального распределения через квантили дискретного распределения, которое его заменяет в случае симметричных кванилей.

Решение получено как частый случай формулы (??).

Формула:

$$\sigma = \frac{\ln(x_{\pi}) - \ln(x_{0.5})}{\Phi^{-1}(\pi)}.$$

Функция:

double SigSim (double π , double x_{π} , double $x_{0.5}$).

•

Дано: вероятность π , параметры нормального распределения μ , σ .

Задача: найти квантили логнормальной случайной величины, зная параметры соответствующего нормального распределения в случае симметричных квантилей.

Решение описано в разделе 5.

Формулы:

$$\ln(x_{\pi}) = \mu + \Phi^{-1}(\pi)\sigma,$$
$$\ln(x_{0.5}) = \mu,$$

$$\ln(x_{1-\pi}) = \mu + \Phi^{-1}(1-\pi)\sigma.$$

Функция:

double $\ln X$ (double π , double μ , double σ).

•

Дано: вероятность π , дисперсии σ_1 и σ_2 нормальных случайных величин.

Задача: понять, какой квантиль получается при перемножении квантилей логнормальных случайных величин, через дисперсии соответствующих нормальных случайных величин в случае симметричных квантилей.

Решение описано в разделе 5.

Формулы:

$$P(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right),$$
$$q = \frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}.$$

Функция:

double ProbPr (double π , double σ_1 , double σ_2).

•

Дано: вероятность π , квантили x_{π} , $x_{0.5}$ и y_{π} , $y_{0.5}$.

Задача: понять, какой квантиль получается при перемножении π -ых квантилей логнормальных случайных величин, через логарифмы π -го и 0.5-го квантилей.

Решение описано в разделе 5, получена формула (??).

Формулы:

$$P(\xi_1 \xi_2 < x_{\pi} y_{\pi}) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_{\pi}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}\right),$$

$$q = \frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_{\pi}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Функция:

double ProbPrX (double π , double x_{π} , double $x_{0.5}$, double y_{π} , double $y_{0.5}$).

Дано: вероятность π , квантили $x_{\pi}, x_{0.5}$ и $y_{\pi}, y_{0.5}$.

Задача: найти значения π -го квантиля для произведения двух логнормально распределенных случайных величин через их квантили.

Решение описано в разделе 7.

Формулы:

$$z_{\pi} = \exp\left(\frac{\ln(x_{\pi}y_{\pi}) - \ln(x_{0.5}y_{0.5})}{q}\Phi^{-1}(\pi) + \ln(x_{0.5}y_{0.5})\right),$$
$$q = \Phi^{-1}(\mathsf{P}(\xi_{1}\xi_{2} < x_{\pi}y_{\pi})).$$

Функция:

double Q (double π , double x_{π} , double $x_{0.5}$, double y_{π} , double $y_{0.5}$).