Corrigé du devoir maison 9.

- 1°) exp est de classe C^{∞} sur \mathbb{R} , et pour tout $n \in \mathbb{N}$, $\exp^{(n)} = \exp \geq 0$ sur \mathbb{R} . Donc $\exp \in \mathcal{A}(\mathbb{R}, \mathbb{R})$.
- **2°)** $f: x \mapsto \frac{1}{1-x}$ est bien de classe C^{∞} sur $]-\infty, 1[$.

Posons, pour tout $n \in \mathbb{N}$, $H_n : \forall x \in]-\infty, 1[$, $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$.

- C'est vrai pour n = 0 car $\forall x \in]-\infty, 1[, \frac{0!}{(1-x)^{0+1}} = \frac{1}{1-x} = f(x).$
- Si c'est vrai au rang $n \in \mathbb{N}$, alors pour tout $x \in]-\infty, 1[, f^{(n)}(x) = n!(1-x)^{-n-1} \text{ donc}$ $f^{(n+1)}(x) = -n!(-n-1)(1-x)^{-n-2} = \frac{n!(n+1)}{(1-x)^{n+2}} = \frac{(n+1)!}{(1-x)^{(n+1)+1}}, \text{ donc } H_{n+1} \text{ est vraie.}$
- Ainsi : $\forall n \in \mathbb{N}, \forall x \in]-\infty, 1[, f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}} \ge 0 \text{ puisque } 1-x > 0.$

Donc $f \in \mathcal{A}(]-\infty,1[,\mathbb{R}).$

3°) Les fonctions f+g et fg sont de classe \mathcal{C}^{∞} sur I par somme et produit. Soit $n \in \mathbb{N}$. $(f+g)^{(n)} = f^{(n)} + g^{(n)}$ et $f^{(n)} \geq 0$, $g^{(n)} \geq 0$, donc $(f+g)^{(n)} \geq 0$. Ainsi, $f+g \in \mathcal{A}(I,\mathbb{R})$.

Soit $n \in \mathbb{N}$. Par la formule de Leibniz, $(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$, et tous les termes de cette somme sont positifs par hypothèse; donc $(fg)^{(n)} \geq 0$.

Donc $fg \in \mathcal{A}(I, \mathbb{R})$.

 $\mathbf{4}^{\circ}$) Soit $p \in \mathbb{N}$.

f est de classe \mathcal{C}^{∞} sur I, c'est-à-dire qu'elle est indéfiniment dérivable, donc $f^{(p)}$ aussi. Pour tout $n \in \mathbb{N}$, $(f^{(p)})^{(n)} = f^{(p+n)}$, et cette fonction est positive sur I puisque $f \in \mathcal{A}(I, \mathbb{R})$. Donc $f^{(p)} \in \mathcal{A}(I, \mathbb{R})$.

- **5°) a)** Par composition, exp étant de classe C^{∞} sur \mathbb{R} et f sur I, φ est de classe C^{∞} sur I.

 On a $\varphi' = f' \times (\exp \circ f)$ donc $\varphi' = f' \times \varphi$.
 - b) Soit $n \in \mathbb{N}$. Appliquons la formule de Leibniz en voyant φ' comme le produit $f'\varphi$ (les fonctions f' et φ sont bien n fois dérivables):

$$(\varphi')^{(n)} = (f'\varphi)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} (f')^{(n-k)} \varphi^{(k)}$$
 i.e. $\varphi^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)} \varphi^{(k)}$

- c) (Récurrence forte!) On pose pour tout $n \in \mathbb{N}$, $\mathcal{P}_n : "\varphi^{(n)} \geq 0$ sur I.".
 - \mathcal{P}_0 est vraie car $\varphi^{(0)} = \varphi = \exp \circ f \ge 0$ puisque exp est positive.
 - Supposons que \mathcal{P}_k soit vraie pour tout k entre 0 et n. Soit $x \in I$. D'après la question précédente, $\varphi^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)}(x) \varphi^{(k)}(x)$.

On sait que $f \in \mathcal{A}(I,\mathbb{R})$ donc pour tout $k \in \{0,\ldots,n\}$, $f^{(n+1-k)}(x) \geq 0$. Par ailleurs, par hypothèses de récurrence, pour tout k entre 0 et n, $\varphi^{(k)}(x) \geq 0$. Ainsi, $\varphi^{(n+1)}(x)$ est positif comme somme et produit de termes positifs, et ceci pour tout $x \in I : \mathcal{P}_{n+1}$ est vraie.

• Conclusion : pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.

On en déduit que $\varphi \in \mathcal{A}(I,\mathbb{R})$.

6°) Comme $f \in \mathcal{A}(I, \mathbb{R})$, on a $f^{(0)} = f \geq 0$ sur I : f est positive sur I.

On sait aussi que f est dérivable et que $f' = f^{(1)} \ge 0$ sur l'intervalle I, donc f est croissante sur I. Ainsi, f est croissante et minorée sur a, b; d'après un théorème du cours sur les fonctions monotones, f admet une limite finie ℓ_0 en a.

Pour tout $x \in]a, b[, f(x) \ge 0, \text{ donc } l_0 \ge 0]$ par passage à la limite.

- **7°)** Soit $f:[a,b] \to \mathbb{R}$ continue, telle que $f \in \mathcal{A}(]a,b[,\mathbb{R})$.
 - f est continue sur [a, b] par hypothèse.
 - f est dérivable sur]a, b[puisqu'elle est de classe \mathcal{C}^{∞} sur]a, b[.
 - Comme $f \in \mathcal{A}(]a, b[, \mathbb{R})$, on sait par la question 4 que $f' = f^{(1)}$ est également dans $\mathcal{A}(]a, b[, \mathbb{R})$. On peut donc appliquer à f' le résultat de la question précédente : $f'(x) \xrightarrow[x \to a]{} \ell_1$ avec ℓ_1 réel positif.

Par le théorème de la limite de la dérivée, $\frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} \ell_1$.

Comme $\ell_1 \in \mathbb{R}$, cela signifie que f est dérivable en a et que $f'(a) = \ell_1$. On a bien $f'(a) \geq 0$. L'information $f'(x) \underset{x \to a}{\longrightarrow} \ell_1$ se réécrit $f'(x) \underset{x \to a}{\longrightarrow} f'(a)$, donc f' est continue en a.

De plus, f est de classe C^1 sur]a,b[(puisqu'elle est de classe C^{∞} sur]a,b[).

On en déduit que f est de classe C^1 sur [a, b[

8°) Soit $f \in \mathcal{A}(]a, b[, \mathbb{R})$.

D'après la question 6, f a une limite finie positive ℓ_0 en a, donc f est prolongeable par continuité en a en posant $f(a) = \ell_0$.

On pose, pour tout $n \in \mathbb{N} : H_n : f$ est de classe \mathcal{C}^n sur [a, b[et $f^{(n)}(a) \geq 0$.

• f est continue sur]a, b[car elle est de classe \mathcal{C}^{∞} sur]a, b[, et on l'a prolongé par continuité en a, donc f est continue i.e. de classe \mathcal{C}^{0} sur [a, b[.

De plus, $f^{(0)}(a) = f(a) = \ell_0 \ge 0$.

Donc H_0 est vraie.

• Supposons H_n vraie pour un rang n fixé dans \mathbb{N} .

Par hypothèse de récurrence, on sait que $f^{(n)}$ existe et est continue sur [a,b[.

Par ailleurs, puisque $f \in \mathcal{A}(]a, b[, \mathbb{R})$, $f^{(n)}$ est aussi dans $\mathcal{A}(]a, b[, \mathbb{R})$ d'après la question 4. On peut donc appliquer à la fonction $f^{(n)}$ le résultat de la question 7 : la fonction $f^{(n)}$ est de classe \mathcal{C}^1 sur [a, b[et $(f^{(n)})'(a) \geq 0$.

Autrement dit f est de classe C^{n+1} sur [a, b[et $f^{(n+1)}(a) \ge 0.$

Ainsi, H_{n+1} est vraie.

• Conclusion: pour tout $n \in \mathbb{N}$, f est de classe C^n sur [a, b] et $f^{(n)}(a) \geq 0$.

Ainsi f est de classe C^{∞} sur [a, b[; et comme on sait déjà que pour tout $n \in \mathbb{N}$, $f^{(n)} \geq 0$ sur [a, b[, on a maintenant, pour tout $n \in \mathbb{N}$, $f^{(n)} \geq 0$ sur [a, b[.

Autrement dit, $f \in \mathcal{A}([a, b[, \mathbb{R})])$

sera pas possible pour la borne de droite.

9°) Avec $\left[f: x \mapsto \frac{1}{1-x}\right]$, on a vu que $f \in \mathcal{A}(]a, b[, \mathbb{R})$ avec $a = -\infty$ et b = 1. Mais elle n'est même pas prolongeable par continuité en 1 puisque $f(x) \xrightarrow[x \to 1^{-}]{} +\infty$. Donc le même raisonnement ne