# RETİNA KAN DAMARLARINI ÇIKARMAK İÇİN EŞİKLEME TEMELLİ MORFOLOJİK BİR YÖNTEM

# ÖZET

Morfolojik işlemlerin uygulandığı fundus görüntüsüne üç farklı eşikleme yöntemi uygulanmıştır. Eşikleme ve Bulanık Kümeleme Tabanlı Eşikleme yöntemleridir. Eşikleme sonucunda bölütlenmiş damar görüntüleri elde edilmiştir. Bu makalede amaç farklı eşikleme algoritmalarının aynı görüntüler üzerindeki performans karşılaştırmasını sağlamaktır.

Tabanlı Eşikleme için 0. Eşikleme için 0.950 ve Çoklu Eşikleme için 0.925 olarak hesaplanmıştır.

# GIRIŞ

# GİRİŞ

Diyabete bağlı retina bozuklukları kişilerde körlüğe sebep olan ve Diyabetik Retinopati (DR) olarak adlandırılan en önemli hastalıklardan biridir. Bu hastalığın erken teşhis edilmesi, kişilerde görme yetisinin kaybolmaması açısından önemlidir. Retina görüntülerinin tespit edilmesi için bilgisayar destekli sistemler geliştirilmiştir. Bu sistemler yenilikçi yöntemler kullanarak sürekli geliştirilmektedir.

Literatürde retina damar bölütleme işlemi işin geleneksel yöntemler ve son zamanlarda popüler hale gelen derin öğrenme yöntemleri önerilmiştir. Ancak geleneksel yöntemler olarak adlandırılan denetimli/denetimsiz öğrenme yöntemleri, morfolojik yöntemler, uyum süzgeci gibi yöntemler daha hızlı ve daha anlaşılabilir yöntemlerdir. Diego Marín vd. tarafından fundus görüntüsündeki her pikselden yedi boyutlu bir özellik vektörü çıkarılmıştır. Daha sonra gradyan büyüklüğü ve temel eğrilik kullanılarak özellik çıkarılmıştır. Bu iki özellik damar veya arka plan olarak sınıflandırılması için Bölge Büyütme yaklaşımında kullanılmıştır. Bölütleme aşamasında, bölütleme görüntüsünden çıkarılan özellik vektörü eğitim aşamasında elde edilen sınıflandırıcının girişi olarak kullanılmıştır. Eğitim aşaması için, eğitim görüntüsünün her pikselinden bir özellik vektörü çıkarılmıştır.

Bu makalede, retina damar ağ yapısını otomatik olarak bölütleyen morfolojik tabanlı bir yöntem önerilmiştir. Bu yöntem morfolojik işlemlere dayalı iki farklı yöntemden esinlenerek oluşturulmuştur. Daha sonra, gri ölçekli görüntünün tersi üzerinde üst-şapka, alt-şapka ve morfolojik açma yöntemi uygulanmıştır. Morfolojik üst ve alt şapka yöntemin kullanılması ile retina damalarının belirginleştirilmesi sağlanmıştır.

Belirginleştirilmiş retina görüntülerini bölütlemek için üç farklı eşikleme yöntemi kullanılmıştır. Kullanılan eşikleme yöntemleri Çoklu Eşikleme yöntemi, Maksimum Entropi Tabanlı Eşikleme yöntemi ve Bulanık Kümeleme Tabanlı Eşikleme yöntemidir.

# 2. MATERYAL VE METOT



Bu bölüm, önerilen yöntemin arkasındaki ilgili teorik materyal ve metotların kısa bir incelemesini içerir. İlgili her çalışma sonraki alt bölümlerde detaylandırılmıştır.

### 2.1 Morfolojik işlemler

Bu çalışmada, üst-şapka ve alt-şapka dönüşümleri kan damarlarına belirginlik kazandırmak için kullanılır. Alt-şapka dönüşümü, bir giriş görüntüsüne morfolojik bir kapama işlemi uygulandıktan sonra uygulama sonucunun orijinal giriş görüntüsünden çıkarılması işlemidir.

$$T_{hat}(g) = g - (g \circ SE)$$

$$B_{hat}(g) = (g \bullet SE) - g$$

# 2. MATERYAL VE METOT



Denklem (1) 'e göre, açma operatörü görüntünün arka planına etki ettiğinden, üst-şapka dönüşümünün görüntünün arka planını çıkarması beklenir. Bu dönüşüm, yüksek geçirgen bir filtre gibi davranır ve görüntünün maskeden daha küçük olan parlak alanlarını çıkarır. Denklem (2) 'ye göre, alt-şapka dönüşümü görüntünün arka planını etkiler ve görüntünün arka plandaki maskeden daha küçük olan bazı karanlık alanları üzerinde etkili olur. Parlak alanları (açma operatörünün sonuçları) görüntüye eklemek ve karanlık alanları (kapama operatörünün sonuçları) görüntüden çıkarmak mümkündür. Sonuç olarak, aydınlık ve karanlık alanlar arasındaki kontrastta bir iyileşme olacaktır.

## 2. MATERYAL VE METOT



### 2.2 Eşikleme yöntemleri

Görüntü eşikleme sadeliği ve sağlamlığı nedeni ile en sık kullanılan görüntü bölütleme yöntemlerinden biridir. Eşikleme işlemi, gri ölçekli bir görünün yoğunluk seviyesine göre sınıflara ayrıldığı bir işlemdir. Bu sınıflandırma işlemi için tanımlanmış kurallara uygun bir eşik değeri seçmek gerekir. Bu çalışmada kullanılan eşikleme yöntemleri şöyledir;

- 2.2.1 Çok seviyeli eşikleme
- 2.2.2 Maksimum entropi tabanlı eşikleme
- 2.2.3 Bulanık mantık tabanlı eşikleme

# 3. KULLANILAN YÖNTEM



Önerilen yöntemde, veri setinde bulunan fundus görüntülerine ait damarların bölütlenmesi sağlanmıştır. Öncelikle, veri setinde bulunan görüntüler RGB renk uzayından gri ölçekli görüntülere dönüştürülür. Gri ölçekli görüntülerin tersi üzerinde önerilen sistem uygulanır. Şekil 1'de veri setine ait bir görüntü ve bu görüntüye ait gri ölçekli görüntü ile gri ölçekli görüntünün tersi verilmiştir. Önerilen sistemin genel yapısı ise Şekil 2'de verildiği gibidir.



Şekil 1. Örnek veri seti görüntüsü, Sırasıyla, orijinal RGB görüntü, Gri-Ölçekli görüntü, Gri-Ölçekli görüntünün tersi



Şekil 2. Akış şeması



# 3. KULLANILAN YÖNTEM

### 3.1 Veri seti

Önerilen yöntem diğer yöntemlerle kıyaslanabilir olması açısından halka açık olarak sunulan DRIVE veri seti üzerinde test edilmiştir. DRIVE veri setindeki görüntüler 45° görüş alanında Canon 3CCD ile çekilmiştir. Görüntülerin her biri 565 × 584 piksel boyutunda 20 eğitim ve 20 test görüntüsünden oluşmaktadır. Veri setindeki damar pikselleri, deneyimli bir göz doktoru tarafından eğitilmiş üç gözlemci tarafından manuel olarak bölümlere ayrılmıştır. Test seti iki farklı gözlemci tarafından iki kez bölütlendirilmiş görüntülerden oluşur.

### 3.2 Morfolojik işlemler

Bu durumu ortadan kaldırmak için ilk önce morfolojik açma işlemi uygulanır. Morfolojik açma işlemi için yarıçapı 21 olan bir disk oluşturulur. Oluşturulan bu disk gri ölçekli görüntünün tersine uygulanarak morfolojik açma işlemi yapılmış olur.

# 3. KULLANILAN YÖNTEM









Şekil 3. Morfoljik işlemler. Sırası ile morfolojik açma, üst şapka ve alt şapka işlemleri

Bu yapısal elemanı 22.5°'lik açılarla döndermiş ve en büyük çapa sahip damarı çıkarmak için bir toplam üst şapka dönüşümü kullanmıştır. tarafından önerilen toplam üst şapka dönüşümünden esinlenerek her biri 21 piksel uzunluğunda bir çizgiyi temsil eden ve her 22.5° 'de döndürülen bir çizgi yapılandırma elemanı sadece üst şapkaya değil ayrıca alt şapka ve morfolojik açma işlemine uygulanmıştır. Denklem 'da toplam üst şapka işlemine dahil edilen toplam alt şapka ve toplam morfolojik açma işlemi matematiksel olarak ifade edilmiştir.



**Şekil 4.** Morfolojik işlem döngü sonucu. Sırasıyla morfolojik açma, üst-şapka ve alt-şapka sonuçları. (Bkz. Denklem (10))



Şekil 5. Önerilen yöntem sonucu. İlk görüntü Denklem (11) sonucu, İkinci görüntü ilk görüntünün tersi alınmış balidir.

# 4. BULGULAR VE TARTIŞMA

### 4.1 Bölütleme sonuçları

Üç farklı eşikleme algoritması iyileştirilmiş fundus görüntüleri üzerinde uygulanarak damar piksellerinin bölütlenmesi sağlanmıştır. İyileştirilmiş görüntüler eşikleme işlemine tabi tutulduktan sonra çıktı görüntüleri üzerinde performans iyileştirilmesi yapılmıştır. Şekil 6'da eşikleme algoritmalarının performans iyileştirme sonuçları görsel olarak sunulmuştur. Eşikleme yöntem sonuçları gösterilmiştir.



Şekil 6. Performans İyileştirme Sonuçları. Birinci satırlar eşikleme sonuçlarını, ikinci satırlar iyileştirme sonuçlarını göstermektedir. Orijinal görüntünün altındaki görüntüler 1.manuel bölütlenmiş gerçek zemin görüntüleridir.

Uygulanan yöntemin başarı ölçütünü hesaplamak için Doğruluk Oranı ölçüsü kullanılmıştır. Denklem (12)'de Doğruluk Oranı ölçütünün matematiksel ifadesi verilmiştir.

# 4. BULGULAR VE TARTIŞMA

Tablo 1. Eşikleme yöntemlerinin doğruluk oran sonuçları

| Görüntü<br>ismi | Bulanık Mantık<br>Tabanlı<br>Esikleme | Maksimum<br>Entropi Tabanlı<br>Eşikleme | Çoklu Eşikleme<br>Yöntemi |
|-----------------|---------------------------------------|-----------------------------------------|---------------------------|
| 01_test         | 0.9610                                | 0.95864                                 | 0.9550                    |
| 02_test         | 0.9511                                | 0.95653                                 | 0.9579                    |
| 03_test         | 0.9522                                | 0.93426                                 | 0.9301                    |
| 04_test         | 0.9491                                | 0.95705                                 | 0.9570                    |
| 05_test         | 0.9526                                | 0.94855                                 | 0.9450                    |
| 06_test         | 0.9485                                | 0.94221                                 | 0.9136                    |
| 07_test         | 0.9505                                | 0.94895                                 | 0.9444                    |
| 08_test         | 0.9510                                | 0.94043                                 | 0.9148                    |
| 09_test         | 0.9530                                | 0.94627                                 | 0.9345                    |
| 10_test         | 0.9586                                | 0.95376                                 | 0.9518                    |
| 11_test         | 0.9494                                | 0.94976                                 | 0.9479                    |
| 12_test         | 0.9550                                | 0.95244                                 | 0.9072                    |
| 13_test         | 0.9500                                | 0.94601                                 | 0.9460                    |
| 14_test         | 0.9617                                | 0.95821                                 | 0.9344                    |
| 15_test         | 0.9636                                | 0.96398                                 | 0.9493                    |
| 16_test         | 0.9562                                | 0.95520                                 | 0.9536                    |
| 17_test         | 0.9574                                | 0.95023                                 | 0.9290                    |
| 18_test         | 0.9569                                | 0.95723                                 | 0.9454                    |
| 19_test         | 0.9713                                | 0.96701                                 | 0.9561                    |
| 20_test         | 0.9582                                | 0.95505                                 | 0.9110                    |
| 21_training     | 0.9582                                | 0.95968                                 | 0.9630                    |
| 22_training     | 0.9533                                | 0.95464                                 | 0.9524                    |
| 23_training     | 0.9173                                | 0.95349                                 | 0.8338                    |
| 24_training     | 0.9382                                | 0.94285                                 | 0.9435                    |
| 25_training     | 0.9459                                | 0.92455                                 | 0.9161                    |
| 26_training     | 0.9545                                | 0.94524                                 | 0.8448                    |
| 27_training     | 0.9479                                | 0.95131                                 | 0.9504                    |
| 28_training     | 0.9493                                | 0.95311                                 | 0.9523                    |
| 29_training     | 0.9589                                | 0.95624                                 | 0.9478                    |
| 30_training     | 0.9447                                | 0.93437                                 | 0.5305                    |
| 31_training     | 0.9464                                | 0.94877                                 | 0.9505                    |
| 32_training     | 0.9609                                | 0.95895                                 | 0.9602                    |
| 33_training     | 0.9588                                | 0.95740                                 | 0.9563                    |
| 34_training     | 0.9213                                | 0.92242                                 | 0.8836                    |
| 35_training     | 0.9574                                | 0.95969                                 | 0.9567                    |
| 36_training     | 0.9400                                | 0.93858                                 | 0.9420                    |
| 37_training     | 0.9542                                | 0.95534                                 | 0.9527                    |
| 38_training     | 0.9524                                | 0.94959                                 | 0.9481                    |
| 39_training     | 0.9507                                | 0.94576                                 | 0.9114                    |

Tablo 2. Eşikleme yöntemlerinin değerleri

| Tablo 2. Eşikleme yöntemlerinin degerleri |                |                 |          |  |
|-------------------------------------------|----------------|-----------------|----------|--|
| Görüntü                                   | Bulanık Mantık | Maksimum        | Çoklu    |  |
| ismi                                      | Tabanlı        | Entropi Tabanlı | Eşikleme |  |
| 131111                                    | Eşikleme       | Eşikleme        | Yöntemi  |  |
| 01_test                                   | 78             | 84              | 81       |  |
| 02_test                                   | 96             | 81              | 96       |  |
| 03_test                                   | 61             | 90              | 64       |  |
| 04_test                                   | 103            | 74              | 102      |  |
| 05_test                                   | 66             | 80              | 72       |  |
| 06_test                                   | 60             | 84              | 64       |  |
| 07_test                                   | 78             | 84              | 84       |  |
| 08_test                                   | 56             | 83              | 64       |  |
| 09_test                                   | 60             | 85              | 65       |  |
| 10 test                                   | 69             | 85              | 75       |  |
| 11_test                                   | 101            | 79              | 101      |  |
| 12 test                                   | 61             | 86              | 67       |  |
| 13 test                                   | 76             | 85              | 80       |  |
| 14 test                                   | 69             | 87              | 73       |  |
| 15_test                                   | 81             | 86              | 87       |  |
| 16 test                                   | 83             | 84              | 87       |  |
| 17 test                                   | 65             | 87              | 68       |  |
| 18 test                                   | 74             | 84              | 79       |  |
| 19 test                                   | 71             | 83              | 75       |  |
| 20 test                                   | 57             | 88              | 62       |  |
| 21 training                               | 90             | 84              | 93       |  |
| 22 training                               | 86             | 80              | 88       |  |
| 23 training                               | 67             | 104             | 71       |  |
| 24 training                               | 92             | 82              | 93       |  |
| 25 training                               | 48             | 91              | 62       |  |
| 26 training                               | 52             | 88              | 59       |  |
| 27 training                               | 91             | 81              | 94       |  |
| 28 training                               | 94             | 81              | 95       |  |
| 29 training                               | 68             | 79              | 75       |  |
| 30_training                               | 39             | 98              | 44       |  |
| 31 training                               | 114            | 71              | 112      |  |
| 32_training                               | 75             | 80              | 80       |  |
| 33 training                               | 82             | 85              | 86       |  |
| 34 training                               | 85             | 86              | 88       |  |
| 35 training                               | 92             | 82              | 94       |  |
| 36 training                               | 84             | 86              | 87       |  |
| 37_training                               | 96             | 80              | 98       |  |
| 38 training                               | 74             | 83              | 79       |  |
| 39_training                               | 61             | 91              | 64       |  |
| 40 training                               | 63             | 79              | 67       |  |

Tablo 3. Diğer yöntemlerle performans karşılaştırması

| Literatürdeki Yöntemler               | Doğruluk Oranı |  |  |
|---------------------------------------|----------------|--|--|
| BenjunYin vd. [22]                    | 0.943          |  |  |
| B.Barkana vd. [23]                    | 0.950          |  |  |
| Peter Bankhead vd. [24]               | 0.937          |  |  |
| M.M. Fraza vd. [11]                   | 0.947          |  |  |
| J.Zhang vd. [17]                      | 0.943          |  |  |
| Önerilen Yöntem                       |                |  |  |
| Bulanık Mantık Tabanlı Doğruluk Oranı | 0.952          |  |  |
| Maksimum Entropi Tabanlı Doğruluk     | 0.950          |  |  |
| Oranı                                 |                |  |  |
| Eşikleme Tabanlı Doğruluk Oranı       | 0.925          |  |  |

# 5 SONUÇLAR



Bu makalede, paylaşıma açık olarak sunulan DRIVE veri seti üzerinde morfolojik işlemlere dayalı bir damar iyileştirme yöntemi kullanılmıştır. Eşikleme yöntemleri, doğası ne olursa olsun tüm veriler üzerinde kullanılabilir. Ancak, farklı eşikleme yöntemlerinin aynı iyileştirilmiş görüntü üzerinde farklı sonuçlar verdiği gözlemlenmiştir. İleriki çalışmalarımızda, bu makalede elde ettiğimiz eşikleme yöntemleri tecrübelerimizi kullanarak popüler algoritmalar ile görüntü eşikleme üzerinde çalışmayı hedeflemekteyiz.



# TEŞEKKÜRLER

TAHA KUBİLAY ÖZDOĞAN 02205076007