MATH 137 Fall 2020: Practice Assignment 1

Q01. Solve the following equations/inequalities:

- 1. $|x-2| = 5 \iff x-2 = \pm 5 \iff x = 2 \pm 5 \iff x = -3,7$
- 2. |x-4| = |3x+2|: Take cases: $x-4 = 3x+2 \iff x = -1$ and $x-4 = -3x-2 \iff x = \frac{1}{2}$. Check: $|-1-4| \neq |-3+2|$ but $|\frac{1}{2}-4| = \frac{7}{2} = |\frac{3}{2}+2|$, so $x = \frac{1}{2}$.
- 3. |x+1|>1= "distance between x and -1 greater than 1" = $x\in\mathbb{R}\setminus[-2,0]=(-\infty,-2)\cup(0,\infty)$
- 4. $|x+3|+|1-2x| \le 5$. Take cases $x \in (-\infty, -3], [-3, \frac{1}{2}], [\frac{1}{2}, \infty)$:
 - 1. $-(x+3) + (1-2x) \le 5 \iff x \ge -\frac{3}{7}$ but $x \in (-\infty, -3]$ so no solution
 - 2. $(x+3)+(1-2x) \le 5 \iff x \ge -1 \text{ but } x \in [-3,\frac{1}{2}] \text{ so } x \in [-1,\frac{1}{2}]$
 - 3. $(x+3) (1-2x) \le 5 \iff x \le 1 \text{ but } x \in [\frac{1}{2}, \infty) \text{ so } x \in [\frac{1}{2}, 1]$

Therefore $x \in [-1, \frac{1}{2}] \cup [\frac{1}{2}, 1] = [-1, 1]$.

- 5. $|x-4||x+2| = |(x-4)(x+2)| = |x^2-2x-8| > 7$. Take cases:
 - 1. $x^2 2x 8 > 7 \iff x^2 2x 15 > 0 \iff (x 5)(x + 3) > 0 \iff x \in (-\infty, -3) \cup (5, \infty)$
 - 2. $x^2 2x 8 < -7 \iff x^2 2x 1 < 0 \iff (x 1)^2 < 0$ which is false for all real x.

Therefore, $x \in (-\infty, -3) \cup (5-, \infty)$.

Q02. Prove that, for any real numbers a and b:

1. |a| - |b| < |a + b|

Proof. Moving the |b| term to the other side, $|a| \le |a+b| + |b|$. Let b' = -b, so $|a| \le |a+(-b')| + |-b'|$. Add some zeroes, $|a-0| \le |a-b'| + |b'-0|$, which holds by the triangle inequality.

2. $|a| + |b| \le |a + b|$

Proof. Again move the |b| term to the other side, $|a| \le |a-b| + |b|$, and add some zeroes, $|a-0| \le |a-b| + |b-0|$, which holds by the triangle inequality.

3. $|a-b| \le |a+b|$ or $|a+b| \le |a-b|$

Proof. Consider for $a = b \neq 0$: the first is true as $0 \leq 2a$ and the second is false as $2a \nleq 0$. Since the second is false for some case, it is false generally.

For $a = -b \neq 0$: the first is now false as $2a \not\leq 0$.

Therefore, both statements are false for some $x \in \mathbb{R}$, so they are not true.

Q03. Write the expression

$$\frac{1}{2}(a+b+|a-b|)$$

as a piecewise function. You should consider 2 cases. What is this expression calculating for any two real numbers a and b? What about the expression

$$\frac{1}{2}(a+b-|a-b|)?$$

Solution. Consider the cases:

$$\frac{1}{2}(a+b+|a-b|) = \begin{cases} \frac{1}{2}(a+b+a-b) & a \ge b\\ \frac{1}{2}(a+b-a+b) & a < b \end{cases}$$
$$= \begin{cases} a & a \ge b\\ b & a < b \end{cases}$$

Which is just $\max\{a, b\}$.

Again, consider the cases:

$$\frac{1}{2}(a+b-|a-b|) = \begin{cases} \frac{1}{2}(a+b-a+b) & a \ge b \\ \frac{1}{2}(a+b+a-b) & a < b \end{cases}$$
$$= \begin{cases} b & a \ge b \\ a & a < b \end{cases}$$

Which is just $\min\{a, b\}$.