Sequence alignment

杨建益

Email: yangjy@nankai.edu.cn

Webpage: http://yanglab.nankai.edu.cn/

Course: http://yanglab.nankai.edu.cn/teaching/bioinformatics/

Office: 数学科学学院, 419室

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
- 4. How to derive a mutation matrix-BLOSUM
- 5. Gap penalty
- 6. Dynamic programming

- a. Global alignment: Needleman-Wunsch
- b. Local alignment: Smith-Waterman
- 7. Heuristic algorithms

Needleman-Wunsch's dynamic programming (DP) idea

- Given an n-character sequence x, and an m-character sequence y
- Construct an (n+1)x(m+1) matrix F(o...n, o...m)
- F(i,j)=score of the best alignment between $\times [1...i]$ and y[1...j]

Iteration formula

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) + g \\ F(i,j-1) + g \end{cases}$$

Two steps in Needleman-Wunsch algorithm

Step 1: Fill in the matrix F iteratively

Two steps in Needleman-Wunsch algorithm

Step 2: Traceback to find the optimal alignment

x: AAAC

y: AG-C

Two steps in Needleman-Wunsch algorithm

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

Step 1: Fill in the matrix F iteratively

Draw an $(n+1)\times(m+1)$ matrix F(o...n, o...m) first

!11)	11131	Α	G	С
Α				
Α				
Α				
C				

Initialize the 1st column and 1st row

Gap penalty: g=-2

extension = opening

Begin filling in column-wise or row-wise order

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: w(k) = -2k

filling...

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

finally

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Step 2: Traceback to find the optimal alignment

Starting from F(n,m) to F(0,0)

x: C

y: C

Step 2: Traceback to find the optimal alignment

x: AC

y: -C

Step 2: Traceback to find the optimal alignment

x: AAC

y: G-C

Step 2: Traceback to find the optimal alignment

one optimal alignment

x: AAAC

y: AG-C

Step 2: Traceback to find the optimal alignment

another optimal alignment

A G C

x: AAAC

y: -AGC

Equally optimal alignments

can use preference ordering over paths when doing traceback

$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -3, & \text{otherwise} \end{cases}$$

	Α	С	Т	G	Α	Т	Τ	С	Α
A									
C									
G									
C									
Α									
T									
C									
A									_

$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -3, & \text{otherwise} \end{cases}$$

		Α	С	Т	G	Α	Т	Τ	С	Α
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
Α	-2	2								
C	-4	0								
G	-6	-2								
C	-8	-4								
A	-10	-6								
T	-12	-8								
C	-14	-10								
A	-16	-12								

$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -3, & \text{otherwise} \end{cases}$$

		Α	C	Τ	G	Α	Τ	Т	С	Α
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
A	-2	2, <	-0							
C	-4	0	4							
G	6	-2	2							
C	-8	-4	0							
A	-10	-6	-2							
T	-12	-8	-4							
C	-14	-10	-6							
A	-16	-12	-8							

$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -3, & \text{otherwise} \end{cases}$$

		Α	С	Τ	G	Α	Т	Т	С	Α
	0	-2	-4	-6	-8	-10	-12	-14	-16	-18
A	-2	2, <	0 🗲	-2 ሩ	4					
C	-4	0	4 <	-2 🗲	0					
G	-6	-2	2	1	4					
C	-8	-4	0	-1	2					
A	-10	-6	-2	-3	0					
Т	-12	-8	-4	0	-2					
C	-14	-10	-6	-2	-3					
A	-16	-12	-8	-4	-5					

$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -3, & \text{otherwise} \end{cases}$$

		Α	С	Т	G	Α	Т	Τ	С	Α
	0	-2	-4	-6	-8	-10	-12	-14	-16 _K	-18
Α	-2	2, ←	0 🗲	2	-4 🗲	6	8 🕶	10	-12	-14
C	-4	0	4 <	-2	0	-2	-4	- 6	-8	- -10
G	-6	-2	2	1	4	2 ←	0 ←	-2	-4 <	-6
C	-8	-4	0	1	2	\ 	- 1	3	0	-2
A	-10	-6	-2	-3	0	4	2	0	2	2
Т	-12	-8	-4	0	-2	2	6	4	2 🗲	0
C	-14	-10	-6	-2	-3,	0	4	3	6	4
A	-16	-12	-8	-4	-5	-2	2	1	4	8

one optimal alignment

x: AC-GCA-TCA

y: ACTG-ATTCA

another optimal alignment

x: AC-GCAT-CA

y: ACTG-ATTCA

Exercise

sequence x: GAATTCAGTTA

sequence y: GGATCGA

Score matrix:
$$s(x_i, y_j) = \begin{cases} 2, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

Questions to think about

- How about local alignment?
- What happens if gap opening penalty and gap extension penalties are not equal?

Paper to read for the next class:

- TF Smith & M S Waterman, Identification of common molecular subsequences. J Mol Biol (1981) 147, 195-197.
- O. Gotoh. An improved algorithm for matching biological sequences. Journal
 of Molecular Biology 162 705-708 1982.

Content

- 1. Why to make sequence alignment?
- 2. What is a sequence alignment?
- 3. How to derive a mutation matrix-PAM
- 4. How to derive a mutation matrix-BLOSUM
- 5. Gap penalty
- 6. Dynamic programming
 - a. Global alignment: Needleman-Wunsch

- b. Local alignment: Smith-Waterman
- 7. Heuristic algorithms

Smith-Waterman algorithm

For generating optimal local alignment?

TF Smith & M S Waterman, Identification of common molecular subsequences. J Mol Biol (1981) 147, 195-197.

Temple F. Smith (1939-) Boston University

Michael S. Waterman (1942-) University of Southern California (USC)

Michael S. Waterman (1942-)

Two differences between SW and NW

• 1. Non-negative scores

Two differences between SW and NW

 2. Traceback starts at the highest scoring matrix cell and proceeds until a cell with score zero is encountered.

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0				
Т	0				
Α	0				
A	0				
G	0				

Initialization

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0			
Т	0	0			
Α	0	1			
	0	1			
A G	0	0			

Filling...

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0		
Т	0	0	0		
Α	0	1	1		
A	0	1	2		
G	0	0	0		

Filling....

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0	0	
Т	0	0	0	0	
Α	0	1	_	0	
Α	0	1	2	0	
G	0	0	0	3	

Filling....

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0	0	0
Т	0	0	0	0	0
Α	0	1	_	0	1
Α	0	1	2	0	1
G	0	0	0	3 ←	-1

Filling done

x:G

y:G

Traceback...

x:AG

y:AG

Traceback...

x:AAG

y:AAG

X

Traceback done

Affine Gap penalty

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHLKTEAEMKASEDLK SLEWMVNWAMVNWAAVY————DDFYQELFKAHPEYQNKFGFFKAHPEYQNKFGFKGVALG

Gap opening Gap extension

- Gap penalty: $w(k) = a + b \times (k-1)$ $(k \ge 1; a,b < 0)$
 - k: length of continous gaps
 - a: gap opening penalty
 - b: gap entension penalty
- Linear gap penalty if a=b
- Affine gap penalty if a!=b

DP for affine gap penalty case

O. Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology 162 705-708 1982.

Time complexity O(mn)

Need 3 matrices instead of 1

M(i,j) best score given that x[i] is aligned to y[j]

 $I_x(i,j)$ best score given that x[i] is aligned to a gap

 $I_y(i,j)$ best score given that y[j] is aligned to a gap

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

P29

Initialization

$$\begin{cases}
M(0,0) = 0; \\
M(i,0) = -\infty, M(0,j) = -\infty & (i,j \neq 0)
\end{cases}$$

$$\begin{cases} I_{x}(0,0) = 0 \\ I_{x}(i,0) = a + b \times (i-1), & (0 < i \le m) \\ I_{x}(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,0) = 0 \\ I_{y}(0,j) = a + b \times (j-1), & (0 < j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

- > Start at the largest of M(m,n), $I_x(m,n)$, $I_y(m,n)$
- > Stop at any of M(0,0), $I_x(0,0)$, $I_y(0,0)$

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \quad C \quad A$$

A

A

	<i>A</i>	C	A	C	1
١					
١					
_					
				-	

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \qquad C \qquad A$$

Filling...

A

A

	<i>-</i>	C	A	C	1
M:0	-∞	-∞	-∞	-∞	-∞
l _x :-3	-∞	-∞	-∞	-∞	-∞
I _y :-3 ←	4 ←	5 ←	6 ←	7 ←	8
-∞					
-4					
-∞					
-5					
-∞					
-∞					
-6					
-∞					

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \quad C \quad A$$

Filling...

$$a=-3,b=-1$$

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \quad C \quad A$$

Filling...

$$a=-3,b=-1$$

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \quad C \quad A$$

Filling... A M:0 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -5 -6 -8 -5 -00 A -00 -00 -00 -3 -00 **-**00 -3 0 -00 -5 -2 -8 A -6 -3 **-**∞ -00 -3 -6 -00 -3 -3 -4 T -6 **`-6** -9 -00 **-**00

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1Filling... A M:0 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -5 -6 -8 -5 **-7** -00 A -00 -00 -00 -00 -3 **-**-4 -00 **-**00 -3 **-4 ∧** 0 -00 -5 -2 -8 -10 A -6 -4 **-**∞ -00 -3 -6 -2 -00 -3 -3 T -6 -4 **`-6** -9 **\-4**

-00

-00

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

$$A \qquad C \qquad A$$

$$M:0 \qquad -\infty \qquad -\infty \qquad -\infty$$

$$1_x: -3 \qquad -\infty \qquad -\infty$$

$$1_y: -3 \qquad -4 \qquad -5 \qquad -6 \qquad -7$$

$$-\infty \qquad 1 \qquad 1 \qquad 1 \qquad -5 \qquad -4 \qquad -7$$

Filling done

x:A--AT

y:ACACT

Another alignment

Example

x:AA--T

y:ACACT

Another alignment

Example

x:A-A-T

y:ACACT

Another alignment

Example

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

x:A--AT

y:ACACT

x:AA--T

y:ACACT

x:A-A-T

y:ACACT

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \\ 0 \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

Initialization

$$M(i,0) = M(0,j) = 0$$

$$I_{x}(i,0) = I_{x}(0,j) = -\infty$$

$$I_{y}(i,0) = I_{y}(0,j) = -\infty$$

- Traceback
 - > Start at the largest of M(i,j)
 - > Stop at M(i,j)=0

- 1. Please find the best global alignment of following two sequences
 - > AGTTGC
 - > CAGA

Score matrix

	А	Т	G	С
А	2	1	-1	-1
Т	1	2	-1	-1
G	-1	-1	2	1
С	-1	-1	1	2

Gap penalty: open=extension=-2

- 2. Please find the best global alignment of following two sequences
 - > AGTTGC
 - > CAGA

Score matrix

	Α	Т	G	С
А	2	1	-1	-1
Т	1	2	-1	-1
G	-1	-1	2	1
С	-1	-1	1	2

Gap penalty: open=-2, extension=-1

Your answers to 1,2 should include the following

- 1. Alignment matrix
- 2. Trace back path
- 3. Alignment result

in a similar format as the examples given in the class.

3. Write a program to align any two protein sequences with BLOSUM62 matrix, available at:

http://yanglab.nankai.edu.cn/teaching/bioinformatics/BLOSUM62.txt

Gap opening=-11
Gap extension=-1

To examine whether your program is correct, you can compare your result with the program at

http://zhanglab.ccmb.med.umich.edu/NW-align/

Please submit your reports to:

Ms Yajun Dai, 2120180074@mail.nankai.edu.cn

Deadline: 24:00, 04/25/2021