

Unit - II 2.5 Super Mesh and Star – Delta Transformation

Dr.Santhosh.T.K.

https://spectrum.ieee.org/everything-you-need-to-know-about-5g

Syllabus

Toolchest

Division KVL, kcL

UNIT – II

14 Periods

DC Circuit Analysis: Voltage source and current sources, ideal and practical, Kirchhoff's laws and applications to network solutions using mesh analysis, - Simplifications of networks using series- parallel, Star/Delta transformation, DC circuits-Current-voltage relations of electric network by mathematical equations to analyse the network (Superposition theorem, Thevenin's theorem, Maximum Power Transfer theorem), Transient analysis of R-L, R-C and R-L-C Circuits.

AC Steady-state Analysis: AC waveform definitions - Form factor - Peak factor - study of R-L - R-C -RLC series circuit - R-L-C parallel circuit - phasor representation in polar and rectangular form - concept of impedance - admittance - active - reactive - apparent and complex power - power factor, Resonance in R-L-C circuits - 3 phase balanced AC Circuits

Current supplied by battery
$$B_1 = I_1 = 2.56 \text{ A}$$

Current supplied to battery $B_2 = I_1 - I_2 = 2.56 - 1.82 = 0.74 \text{ A}$

Current supplied by battery $B_3 = I_2 + I_3 = 1.82 + 3.13 = 4.95 \text{ A}$

Current supplied by battery $B_4 = I_2 = 1.82 \text{ A}$

Current supplied by battery $B_5 = I_3 = 3.13 \text{ A}$

$$\begin{bmatrix} 8 & -3 & 0 \\ -3 & 9 & -2 \\ 0 & -2 & 10 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \\ -35 \end{bmatrix}$$

Inspection method
$$V_{1} = +20 - 5 = 15V$$

$$V_{2} = +5 + 5 + 5 = 15V$$

$$V_{3} = -30 - 5 = -35V$$

Another Example

1. Identify Meshes

2. Assign Mesh Currents

Current Sources

 The current sources in this circuit will have whatever voltage is necessary to make the current correct

We can't use KVL around any mesh because we don't know the voltage

for the current sources

Current Sources

• The 4mA current source sets I_2 :

$$I_2 = -4 \text{ mA}$$

• The 2mA current source sets a *constraint* on I_1 and I_3 :

$$I_1 - I_3 = 2 \text{ mA}$$

We have two equations and three unknowns. Where is the third equation?

3. KVL Around the Supermesh

$$-12V + I_{3} 2k\Omega + (I_{3} - I_{2})1k\Omega + (I_{1} - I_{2})2k\Omega = 0$$

$$I_{3} 2k\Omega + (I_{3} - I_{2})1k\Omega + (I_{1} - I_{2})2k\Omega = 12V$$

$$I_{2} = - + \Lambda \qquad I$$

$$I_{1} - I_{3} = 2 \Lambda \qquad I$$

Matrix Notation

The three equations can be combined into a single matrix/vector equation

Solution

$$I_1 = 1.2 \text{ mA}$$

 $I_2 = -4 \text{ mA}$
 $I_3 = -0.8 \text{ mA}$

$$I_0 = I_1 - I_2 = 5.2 \text{ mA}$$

Mesh -> kVL ->

Current Sources

Source transformation

Supermet (

Reduction ->

Back to the Bridge

- Which resistors are in series?
- Which resistors are in parallel?

Delta (A) Connection

• Resistors R_1 , R_2 , and R_m (or R_3 , R_m , and R_x) are in a Delta (Δ), or pi (π) connection.

Wye (Y) Connection

• Resistors R_1 , R_m , and R_3 (or R_2 , R_m , and R_x) are in a wye (Y), or tee (T) connection.

Δ − Y Conversion

Δ – Y Conversion (continued)

The resistance between the terminal pairs must be the same for both

circuits

$\Delta - Y$ Conversion (continued)

After some algebraic manipulation

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{1}{3} \frac{S}{S}$$

$$R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}} = \frac{1}{3} \frac{S}{S}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}} = \frac{1}{3} \frac{S}{S}$$

$Y - \Delta$ Conversion

Y – Δ Conversion (continued)

 The resistance between the terminal pairs must be the same for both circuits

$Y - \Delta$ Conversion (continued)

After some algebraic manipulation

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}} = \frac{11}{1}$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}} = \frac{11}{2}$$

$$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}} = \frac{11}{3}$$

Summary

Toolchest — Division

Reduction, Star/delta

EVL, kel:

Meth (Supermest)