

RACE # 1 SOT **MATHEMATICS**

[SINGLE ANSWER CORRECT TYPE]

1.	If the sides a,b,c are the roots of the equation $x^3 - 18x^2 + 104x - 192 = 0$, then the value of	$\cos A$	$\cos B$	$\cos C$
		\overline{a}	b	c
	is equal to -			

(A)
$$\frac{3}{64}$$

(B)
$$\frac{29}{48}$$

(C)
$$\frac{29}{96}$$

(D)
$$\frac{3}{128}$$

2. In a
$$\triangle ABC$$
, if $tanA + 3 tanC = 0$, then angle B lies in -

(A)
$$\left(0, \frac{\pi}{6}\right)$$

(B)
$$\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$$

(A)
$$\left(0, \frac{\pi}{6}\right]$$
 (B) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ (C) $\left(\frac{\pi}{2}, \frac{5\pi}{6}\right)$ (D) $\left[\frac{5\pi}{6}, \pi\right)$

(D)
$$\left[\frac{5\pi}{6}, \pi\right]$$

3. In
$$\triangle ABC$$
, if $a^2\cos 2A = 2b^2 + 2c^2 - a^2$, then A belongs to

(A)
$$\left(0, \frac{\pi}{6}\right)$$

(A)
$$\left(0, \frac{\pi}{6}\right)$$
 (B) $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ (C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (D) $\left(\frac{\pi}{2}, \pi\right)$

(C)
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

(D)
$$\left(\frac{\pi}{2}, \pi\right)$$

4. In
$$\triangle ABC$$
, if $\cos A + \sin A - \frac{2}{\cos B + \sin B} = 0$, then $\frac{a+b}{c}$ is equal to

(A)
$$\sqrt{2}$$

(C)
$$\frac{1}{\sqrt{2}}$$

(D)
$$2\sqrt{2}$$

5. If sides of
$$\triangle ABC$$
 are connected with relation $4a^2 + 9b^2 + 16c^2 = 6ab + 12bc + 8ac$, then $\cos A$ is equal to

(B)
$$-\frac{1}{2}$$

(C)
$$\frac{6}{7}$$

(D)
$$-\frac{11}{24}$$

6. Two sides of a triangle are given by the roots of the equation
$$x^2 - 2\sqrt{3}x + 2 = 0$$
 and the angle between the sides

is $\frac{\pi}{3}$. Then perimeter of the triangle is

(A)
$$6 + \sqrt{3}$$

(B)
$$2\sqrt{3} + \sqrt{6}$$

(B)
$$2\sqrt{3} + \sqrt{6}$$
 (C) $2\sqrt{3} + \sqrt{10}$

(D) none of these

7. If in
$$\triangle ABC$$
, $\frac{\sin A}{3} = \frac{\sin B}{3} = \frac{\sin C}{2}$, then the value of $\cos A + \cos B + \cos C$ is equal to

(A)
$$\frac{13}{9}$$

(B)
$$\frac{12}{13}$$
 (C) $\frac{14}{9}$

(C)
$$\frac{14}{9}$$

(D)
$$\frac{9}{13}$$

8. In any triangle ABC,
$$\frac{a^2 \sin(B-C)}{\sin B + \sin C} + \frac{b^2 \sin(C-A)}{\sin C + \sin A} + \frac{c^2 \sin(A-B)}{\sin A + \sin B} =$$

(A)
$$a + b + c$$

(B)
$$a + b - c$$

(C)
$$a - b + c$$

(D) 0

[MULTIPLE ANSWER CORRECT TYPE]

9. In
$$\triangle ABC$$
, which of the following is/are possible (where notations have usual meaning)

(A)
$$\sin A : \sin B : \sin C = 1 : 2 : 3$$

(B)
$$\Delta = \frac{bc}{4}$$

(C)
$$(a + b + c)(a + b - c) = 3ab$$

(D)
$$b^2 - c^2 = aR$$

$$(A)$$
 3

ADI/45 MATHEMATICS

[SUBJECTIVE TYPE]

- 11. Given a = 13, b = 14, and c = 15, then find the sines of the angles.
- 12. Prove that: $a \cos \frac{B-C}{2} = (b+c)\sin \frac{A}{2}$
- 13. Prove that: $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$
- **14**. Prove that: a (b cos C c cos B) = $b^2 c^2$
- 15. Prove that: $\frac{\sin(B-C)}{\sin(B+C)} = \frac{b^2 c^2}{a^2}$
- 16. Prove that: $\frac{a+b}{a-b} = \tan \frac{A+B}{2} \cot \frac{A-B}{2}$
- 17. Prove that: $a^2 + b^2 + c^2 = 2$ (bc cos A + ca cos B + ab cos C)
- 18. If in any triangle the angles be to one another as 1:2:3 prove that the corresponding sides are as $1:\sqrt{3}:2$
- 19. In any triangle ABC, prove that : $\frac{1 + \cos(A B)\cos C}{1 + \cos(A C)\cos B} = \frac{a^2 + b^2}{a^2 + c^2}$
- **20.** In any triangle ABC, prove that: $a \sin(B C) + b \sin(C A) + c \sin(A B) = 0$
- 21. In any triangle ABC, prove that : $\frac{\cos 2A}{a^2} \frac{\cos 2B}{b^2} = \frac{1}{a^2} \frac{1}{b^2}$.
- 22. In any triangle ABC, prove that: $a(\sin B \sin C) + b(\sin C \sin A) + c(\sin A \sin B) = 0$
- 23. If in a $\triangle ABC$, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, prove that a^2 , b^2 , c^2 are in A.P.
- 24. In any triangle ABC, prove that : $\frac{\sqrt{\sin A} \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b 2\sqrt{ab}}{a b}.$
- 25. In any triangle ABC, prove that : $b \cos B + c \cos C = a \cos (B C)$

IIT-JEE

SOT **MATHEMATICS** RACE # 2

- In $\triangle ABC$, if $\frac{(a+b)\cos C + (a+c)\cos B + (b+c)\cos A}{\sin A + \sin B + \sin C} = 100$, then area of circumcircle of $\triangle ABC$ is 1.
 - (A) 2500π
- (B) 25000π
- (C) 1000π
- (D) 10000π
- In $\triangle ABC$, if $\sin^2 A + \sin^2 B = \sin^2 C$, then the triangle is -2.
 - (A) equilateral
- (B) isosceles
- (C) right angled
- (D) None of these
- In $\triangle ABC$, b = 4, c = 3 & $\tan\left(\frac{B-C}{2}\right) = \frac{\sqrt{3}}{7}$, then area of $\triangle ABC$ is **3.**
 - (A) $\sqrt{3}$
- (B) $2\sqrt{3}$
- (C) $3\sqrt{3}$
- (D) $4\sqrt{3}$
- In \triangle ABC with usual notations the value of $\sum (a-b)\cot\frac{C}{2}$ is 4.
 - (A) 0
- (B) $\sum \tan \frac{A}{2}$ (C) $(a^2 + b^2 + c^2)$
- (D) 1

- In any triangle ABC, $\frac{\tan \frac{A}{2} \tan \frac{B}{2}}{\tan \frac{A}{2} + \tan \frac{B}{2}} =$ **5.**
 - (A) $\frac{a-b}{a+b}$
- (B) $\frac{a-b}{c}$
- (C) $\frac{a-b}{a+b+c}$ (D) $\frac{c}{a+b}$
- If the area of a triangle ABC is given by $\Delta = a^2 (b c)^2$, then $\tan\left(\frac{A}{2}\right)$ is equal to 6.
 - (A) -1
- (B) 0
- (C) $\frac{1}{4}$
- (D) $\frac{1}{2}$
- If $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ and the side a = 2, then area of triangle is
 - (A) 1

- (B) 2
- (C) $\frac{\sqrt{3}}{2}$
- (D) $\sqrt{3}$
- The expression $\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$ is equal to 8.
 - (A) $\cos^2 A$
- (B) $\sin^2 A$
- (C) cosA cosB cosC
- (D) None of these
- If b + c = 3a, then the value of $\cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right)$ is equal to 9.
 - (A) 1
- (B) 2
- (C) $\sqrt{3}$
- (D) $\sqrt{2}$

IIT-JEE

10.	If in a triangle ABC.	cos A cos B +	sin A sin B sin (C = 1, then the side an	e proportional to
10.	ii iii a diangio ribo,	COS II COS D		\sim $-$ 1, then the stac at	c proportional to

- (A) $1:1:\sqrt{2}$
- (B) $1:\sqrt{2}:1$
- (C) $\sqrt{2}:1:1$
- (D) None of these

11. Let A, B, C are three angles such that
$$\cos A + \cos B + \cos C = 0$$
 and if $\cos A \cdot \cos B \cdot \cos C = \lambda (\cos 3A + \cos 3B + \cos 3C)$, then λ is equal to

- (A) 1/3
- (B) 1/6
- (C) 1/9
- (D)1/12

12. In any
$$\triangle ABC$$
, if $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in A.P. then a, b, c are in

- (A) A.P.
- (B) G.P.
- (C) H.P.
- (D) none of these

13. In
$$\triangle ABC$$
, a cos $(B-C)$ + b cos $(C-A)$ + c cos $(A-B)$ (where a, b, c are sides of \triangle) equals

- (A) $\frac{abc}{R^2}$
- (B) $\frac{abc}{4R^2}$
- (C) $\frac{4abc}{R^2}$
- (D) None

14. In a
$$\triangle ABC$$
 if $\angle A = 60^{\circ}$, $\frac{b}{c} = \frac{\sqrt{3} + 1}{2}$ then $\angle B - \angle C$ has value equal to

- (A) 15°
- (B) 30°
- (C) 22.5°
- (D) 45°

15. In a triangle ABC, bc
$$\cos^2 \frac{A}{2}$$
 + ca $\cos^2 \frac{B}{2}$ + ab $\cos^2 \frac{C}{2}$ =

- $(A) (s a)^2$
- (B) $(s b)^2$
- (C) $(s c)^2$
- (D) s^2

[SUBJECTIVE TYPE]

16. In
$$\triangle ABC$$
 if $\frac{s-a}{2} = \frac{s-b}{3} = \frac{s-c}{4}$, then the value of $(140)s\left(\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}\right)$ is

(where s is semi perimeter of $\triangle ABC$)

17. Let three sides of a triangle are three consecutive integers and largest angle is double of smallest angle, then length of largest side is equal to

18. With usual notations, if in a $\triangle ABC$ we have $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, then prove that $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.

19. In any
$$\triangle ABC$$
, prove that: $2\left(a\sin^2\frac{C}{2} + c\sin^2\frac{A}{2}\right) = a + c - b$

20. In any
$$\triangle ABC$$
, prove that: $4\left(bc\cos^2\frac{A}{2} + ca\cos^2\frac{B}{2} + ab\cos^2\frac{C}{2}\right) = (a + b + c)^2$

RACE # 3 SOT MATHEMATICS

[STRAIGHT OBJECTIVE TYPE]

1. In an equilateral triangle, $R: r: r_2$ is equal to							
	(A) 1:1:1	(B) 1:2:3	(C) $2:1:3$	(D) 3:2:4			
2. If in a $\triangle ABC$, $a^2 + b^2 + c^2 = 8R^2$, where $R =$ circumradius, then the triangle is							
	(A) equilateral	(B) isosceles	(C) right angled	(D) none of these			
3.	If in equilateral triangle, in-radius is a rational number, then which of the following is not true ?						
(A) circum radius is always rational			(B) area is always irrational				
	(C) ex-radii are always rational		(D) perimeter is alv	ways rational			
4. In a triangle ABC, $a:b:c=4:5:6$. The ratio of the radius of the circumcircle to that of the inci							
	(A) 15/4	(B) 11/5	(C) 16/7	(D) 16/3			
5.	If the lengths of the sides of a triangle are 3, 4 and 5 units then R the circum radius is -						
	(A) 2.0	(B) 2.5	(C) 3.0	(D) 3.5			
6. If the sides of a triangle are $3:7:8$ then $R:r=$							
	(A) 2:7	(B) 7:2	(C) 3:7	(D) 7:3			
7.	In a triangle ABC, $\frac{a\cos A + b\cos B + c\cos C}{a + b + c}$ is equal to -						
	(A) $\frac{r}{R}$	(B) $\frac{R}{r}$	(C) $\frac{2r}{R}$	(D) $\frac{R}{2r}$			
8.	If r_1 , r_2 , r_3 in a triangle be in H.P. then the sides are in -						
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None of these			
9.	$\left(\frac{1}{r_1} + \frac{1}{r_2}\right) \left(\frac{1}{r_2} + \frac{1}{r_3}\right) \left(\frac{1}{r_3}\right)$	$\left(\frac{1}{r_1} + \frac{1}{r_2}\right) \left(\frac{1}{r_2} + \frac{1}{r_3}\right) \left(\frac{1}{r_3} + \frac{1}{r_1}\right) =$					
	(A) $\frac{64R^3}{abc}$	(B) $\frac{R^3}{4abc}$	(C) $\frac{64R^3}{a^2b^2c^2}$	(D) $\frac{R^3}{abc}$			

(A) 5

(B) 4

(C) 0

(D) 1

11.
$$r_2 r_3 + r_3 r_1 + r_1 r_2 =$$

 $(A) s^2$

(B) Δ^2

(C) Δ/r^3

(D) R^2

[LINKED COMPREHENSION TYPE]

Paragraph for Question 12 to 14

Three sides a,b,c of $\triangle ABC$ are in increasing A.P. and are the roots of the equation $x^3 - 12x^2 + px + q = 0$ where p,q, $\in R$ and a & c are prime numbers.

On the basis of above information, answer the following questions:

- 12. The value of tanA + sin2B + cos 3C is -
 - (A) $\frac{172}{75}$
- (B) $\frac{171}{100}$
- (C) $\frac{161}{100}$
- (D) $\frac{171}{75}$
- 13. The ratio of the radius of circumcircle and radius of incircle of $\triangle ABC$ is -
 - (A) $\frac{5}{2}$

(B) 2

(C) $\frac{3}{2}$

- (D) Data insufficient
- 14. The number of solutions of the equation a $\sin x + b \cos x = c$ in $[-2\pi,\pi]$ are -
 - (A) 0

(B) 1

(C) 2

(D) 3

Paragraph for question nos. 15 to 17

In \triangle ABC as shown, $XX_1 = d_1$; $XX_2 = d_2$; $XX_3 = d_3$ and X is the centre of the circumscribed circle around the \triangle ABC. a, b and c as usual are the sides BC, CA and AB respectively.

- 15. If $\lambda \left(\frac{a}{d_1} + \frac{b}{d_2} + \frac{c}{d_3} \right) = \frac{abc}{d_1 d_2 d_3}$, then the value of '\lambda' is equal to
 - (A) 1

(B) 2

(C) 4

- (D) 8
- 16. If R is the radius of the circumcircle of the $\triangle ABC$ and $a(d_2 + d_3) + b(d_3 + d_1) + c(d_1 + d_2) = kR(a + b + c)$ then the value of 'k' is
 - (A) 1

- (B) 1/2
- (C) 1/3
- (D) 2
- 17. Let h_a , h_b and h_c are the altitudes of the $\triangle ABC$ from the angular points A, B and C respectively. If $(a^2 + b^2 + c^2) = t (h_a d_1 + h_b d_2 + h_c d_3)$ then 't' equals
 - (A) 1

(B) 2

(C) 3

(D) 4

[SUBJECTIVE TYPE]

- 18. In an equilateral $\triangle ABC$ with each side of $\sqrt{3}$, with usual conventions, the value of (r_1-r) (r_2-r) is equal to
- 19. In an acute angled $\triangle ABC$, with usual conventions, the arithmetic mean of $\frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3}$ is k, then minimum value

of
$$\sqrt{\frac{6abc \, k}{\Delta}}$$
 is

20. If r_1, r_2, r_3 are roots of $x^3 - 6x^2 + 11x - 6 = 0$ then the area of the triangle is $\frac{p}{\sqrt{q}}$, where p & q are coprimes then (q - p) is equal to

50/ADI

MATHEMATICS SOT RACE # 4

		1	1	1 .
1.	If P_1 , P_2 & P_3 are altitudes of $\triangle ABC$ from its vertices A, B, C, then value of	$\overline{P_1}$	$\overline{P_2}$	$\overline{P_3}$, is -

- $(A) \frac{1}{r}$
- (B) $\frac{1}{r_1}$ (C) $\frac{1}{r_2}$
- (D) $-\frac{1}{r_{-}}$

2. If the area of right triangle ABC is 120 and the perimeter is 60 and BC is hypotenuse. If length of altitude corresponding to side BC can be expressed as $\frac{p}{}$ where p & q are coprime, then (p + q) is equal to

- (A) 123
- (B) 133
- (C) 143
- (D) 153

For an equilateral triangle ABC, if α is the distance of orthocentre from any side of the triangle and β is the 3. distance of incentre from any vertex of the triangle, then $\frac{p}{q}$ is equal to -

- (A) $\frac{2}{\sqrt{3}}$
- (B) $\frac{1}{2}$
- (D) $\frac{\sqrt{3}}{2}$

Let ABC be a triangle such that $\angle A = 45^{\circ}$, $\angle B = 75^{\circ}$ then a + $c\sqrt{2}$ is equal to -4.

(A) 0

In a $\triangle ABC$, $A = \frac{2\pi}{3}$, $b - c = 3\sqrt{3}$ cm and $ar(\triangle ABC) = \frac{9\sqrt{3}}{2}$ cm². Then a is – 5.

- (A) $6\sqrt{3}$ cm
- (B) 9 cm
- (C) 18 cm
- (D) None of these

In a triangle ABC, 2ac $\sin \frac{1}{2} (A - B + C) =$ 6.

- (A) $a^2 + b^2 c^2$ (B) $c^2 + a^2 b^2$ (C) $b^2 c^2 a^2$ (D) $c^2 a^2 b^2$

[MULTIPLE CORRECT TYPE] In a triangle ABC, a = 7, b = 8, c = 9, BD is the median and BE is the altitude, then - $\overline{7}$.

- (A) BE = $3\sqrt{5}$
- (B) ED = 2
- $(C) \cos A = 2/3$
- (D) $\Lambda = 8\sqrt{5}$

If sides a, b and c of different lengths of triangle ABC satisfy $\frac{a^3 + b^3 + c^3}{a + b + c} = c^2$, then which of the following is/ 8.

are always correct?

- (A) The angles of triangle are in A.P.
- (B) The sides of triangle are in A.P.

(C)
$$\tan \frac{C}{4} = \frac{1}{2 + \sqrt{3}}$$

(D) If $\angle A = 45^{\circ}$ then cotangent of one of the angle between median through vertex C and side AB is $\frac{\sqrt{3}-1}{2}$

If the sides of a triangle are in A.P. with common difference 1 and whose circumradius is $\frac{8}{\sqrt{15}}$, then which of 9. the following can be side(s) of a triangle

- (A) 2
- (B) 3
- (C) 4

(D) 5

ADI/51 MATHEMATICS

- If in $\triangle ABC$, (with usual notations) sides are rational & $2\log 3 = \log((a+b+c)) + \log\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$, then which **10.** of the following is/are irrational?
 - (A) area of triangle

(B) inradius of triangle

(C) circum radius of triangle

(D) distance between circumcentre & centroid

[LINKED COMPREHENSION TYPE]

Paragraph for Question 11 to 13

In a $\triangle ABC$ with $B = \frac{\pi}{3}$, sides a & c (c > a) are roots of the equation $\frac{2}{\sqrt{3}-1}x^2 - (3+\sqrt{3})x + 2 = 0$ and altitude AD

 $\frac{\text{area of } \Delta ABD}{\text{area of } \Delta ADC} = \frac{2}{3}$ divides side BC in such a way that

On the basis of above information, answer the following questions:

- 11. tan ∠DAC is equal to -
 - (A) $\frac{\sqrt{3}}{2}$
- (B) $\frac{2}{\sqrt{3}}$
- (C) $\frac{2}{3}$
- (D) $\frac{3}{2}$

- Area of triangle ABC is equal to -**12.**
 - (A) $\frac{\sqrt{3}(\sqrt{3}+1)}{4}$ (B) $\frac{\sqrt{3}}{2(\sqrt{3}-1)}$ (C) $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$

- (D) $\frac{\sqrt{3}(\sqrt{3}-1)}{2}$
- If $\sum_{A \in \mathcal{A}} 2bc \cos A = p + q\sqrt{3}$, p, q \in I, then (p + q) is equal to -

- (C) 16
- (D) 17

[MATRIX MATCH TYPE]

Let P be an interior point of acute angled $\triangle ABC$. Match the correct entries for the ratio of circumradii of 14. circumcircles of the triangles, ΔPBC , ΔPCA , ΔPAB depending on the position of the point P with respect to $\triangle ABC$. (Notations used have standard meaning)

Column-I

Column-II

- If P divides the $\triangle ABC$ into (A)
 - 3 triangles of equal areas
- If P is equidistant from all the sides of $\triangle ABC$
- If P is equidistant from all the (C) vertices of $\triangle ABC$
- If P divides externally the line
 - joining centroid and circumcentre

- (P) $a \sec \frac{A}{2}$: $b \sec \frac{B}{2}$: $c \sec \frac{C}{2}$
- (Q) a cosec2A : b cosec2B : c cosec2C
- (R) a cosecA: b cosecB: c cosecC
- (S) 1:1:1
- (T) $\frac{a}{\sqrt{2b^2 + 2c^2 a^2}}$: $\frac{b}{\sqrt{2a^2 + 2c^2 b^2}}$: $\frac{c}{\sqrt{2a^2 + 2b^2 c^2}}$
- of $\triangle ABC$ in the ratio 2 : 3
- 15 In $\triangle ABC$, with usual conventions a = 13, b = 14, c = 15 and m,n are coprime numbers.

Column-I

Column-II

- If $\sin A + \sin B + \sin C = \frac{m}{n}$, then
- If $\frac{r_1}{r_2} = \frac{m}{n}$, then (B)
- If $\frac{5\Delta}{abc} = \frac{m}{n}$, then
- (D) If $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{m}{n}$, then

- |m 2n| = 9(P)
- (\mathbf{Q}) |m - 2n| = 38
- |m 2n| = 13(R)
- m + n = 15**(S)**
- (T)m + n = 25

ANSWER KEY

RACE-1

1. (C) 2. (A) 3. (D) 4. (A) 5. (D) 6. (B) 7. (A) 8. (D) 9. (BCD)

10. (AC) **11.** $\frac{4}{5}$, $\frac{56}{65}$ and $\frac{12}{13}$

RACE-2

1. (A) 2. (C) 3. (C) 4. (A) 5. (B) 6. (C) 7. (D) 8. (B) 9. (B)

10. (A) 11. (D) 12. (A) 13. (A) 14. (B) 15. (D) 16. 330 17. 6

RACE-3

1. (C) 2. (C) 3. (D) 4. (C) 5. (B) 6. (B) 7. (A) 8. (A) 9. (C)

10. (C) 11. (A) 12. (B) 13. (A) 14. (C) 15. (C) 16. (A) 17. (D) 18. 1

19. 4 **20.** 5

RACE-4

1. (A) 2. (B) 3. (C) 4. (C) 5. (B) 6. (B) 7. (ABC) 8. (ACD) 9. (ABC)

10. (ABC) 11. (A) 12. (C) 13. (B) 14. A-T, B-P, C - Q, D - R 15. A-Q, B-PS, C-S, D - QT

MATHEMATICS ADI/53