ASSOCIATIONS

1) Variables. For the association analysis (or market basket analysis), you need to have two kinds of variables: Target and ID. When creating a data source, set the role of the ITEM (the categories of goods people buy at the bakery) to TARGET and the role of the TRANSACTION to ID. We don't need the date and time, so just reject the variables.

2) Create a new diagram. Drag and drop the data source and run the StatsExplore to understand your data better.

As you can see, the target variable – ITEM has 95 levels. Also, the ID variable has 9531 unique values out of 21,293 total observations.

3) Set the dataset role to TRANSACTION.

4) Run the association analysis:

EXPLORE → ASSOCIATION (attach to the dataset) -> RUN

NOTE: In an ideal situation, you are looking for cases with high CONFIDENCE and high SUPPORT, which doesn't occur very often.

When run with the support level set to 5%, we don't get as many rules as we could have. As we can see, we only have a little bit more than 10 rules. Sorting them by confidence, we may see that those who bought Medialuna also bought coffee.

This table was generated by another node available in the EXPLORE tab: Market Basket, which gives you a primitive analysis of the associations. However, below, it will be used to explain how SAS calculates various values. Keep in mind the total number of unique customers in the dataset is **9531.**

Item Name	Transaction Count	Support(%)	
Bread		3097	32.4940
Scandinavian		275	2.885
Hot chocolate		552	5.791
Cookies		515	5.403
Muffin		364	3.819
Coffee		4528	47.508
Pastry		815	8.551
Medialuna		585	6.137
Tea		1350	14.164
NONE		753	7.900
Farm House		371	3.892
Juice		365	3.829
Soup		326	3.420
Cake		983	10.313
Sandwich		680	7.134
Alfajores		344	3.609
Brownie		379	3.976
Truffles		192	2.014
Toast		318	3.336
Scone		327	3.430

For the association analysis **in SAS**, you need to know about the following:

Expected Confidence: corresponds to the **right-hand side** of the rule; the proportion of the customers who used the service from the whole dataset (measured in %). The proportion of customers who bought A out of all customers. For example, **COFFEE was bought 4528 times** out of 9531 unique customers. Thus, the expected confidence = **47.51%**.

Support: measures the proportion of a service or a combination of services on the left hand side of the rule (the proportion of the antedencent, measured in %). The number of customers who bought both A and B out of the whole number of customers. The total count of those who bought Medialuna and Coffee together accounted for 333 customers out of 9531 (333/9531 = 3.49%).

Confidence: measures the probability that a certain service is used given that another service or a combination of services is used (measured in %). The confidence percentage for A => B is the percentage of all customers who purchased both A and B, divided by the number of customers who purchased A.¹ The higher the confidence, the higher the association between the services. The rule Medialuna ===> Coffee should be read as "What is a probability of a customer buying a coffee given Medialuna?". The number of customers who bought Medialuna & Coffee = 333 (from the association analysis node) and the number of customers who bough only Medialuna = 585 (from the Market Basket node).

P(Coffee | Medialuna) = P(Coffee&Medialuna)/P(Medialuna) = 333/585 = 0.5692, which will equal the CONFIDENCE of 56.92%.

Lift: used to rank the rules. It is calculated as the Confidence over the Expected Confidence. Expected confidence = **47.51%** and Confidence = **56.92%**, then the lift will be (56.92%)/ (47.51%)=1.2.

¹

 $[\]frac{\text{http://support.sas.com/documentation/cdl/en/emcs/66392/HTML/default/viewer.htm\#n0omtukdp38gw4n14kudfgql5zao.htm}{}$

In general, we would be interested in finding rules that would have a high support and confidence levels as well as a high lift (higher than 1).

Note: If you have too few rules generated, you can also change the support or confidence level or the complexity of the rules as indicated below.

CLUSTERING/ SEGMENTING

You need an ID variable whose role should be set to ID and its level should be set to nominal. The other variables should be interval (they shouldn't be skewed).

CREATE A DIAGRAM \rightarrow CREATE A DATA SOURCE \rightarrow SET THE CUSTOMER_ID TO ID \rightarrow ALL OTHER VARIABLES HAVE TO BE INTERVAL \rightarrow DRAG AND DROP THE DATASET \rightarrow EXPLORE \rightarrow CLUSTER \rightarrow SET THE NUMBER OF CLUSTERS TO 5 \rightarrow ASSESS \rightarrow SEGMENT PROFILE \rightarrow RUN \rightarrow ANALYZE THE RESULTS FOR BOTH NODES (CLUSTER AND SEGMENT PROFILE)

In the variable Worth plot you can study the importance of each variable in each segment (in the case below, you can see the variable worth for the second segment):

You can also study the distribution of variables in each segment by studying the plots. The red lines show the population distribution.

In the output you can estimate the size of the segment (proportion) and the importance of each variable in a specific segment.

25							
26	Frequencies:	_SEGMENT_					
27							
28				Percent of			
29	Segment	Segment	Frequency	Total			
30	Variable	Value	Count	Frequency			
31							
32	_SEGMENT_	2	54	27.0			
33	_SEGMENT_	4	54	27.0			
34	_SEGMENT_	1	39	19.5			
35	_SEGMENT_	5	32	16.0			
36	_SEGMENT_	3	21	10.5			
37							
38							
39							
40	Variable: _SE	: 54					
41	Decision Tree Importance Profiles						
42							
43	Variable		Worth	Rank			
44							
45	Age		0.11796	1			
46	Gender		0.11456	2			
47	Spending_Scor	e1_100_	0.09073	3			
48	Annual_Income	k	0.03157	4			
49							
50							

You can estimate the cluster plots, cluster sizes, and also you can have a look at the table with values given for each cluster (Results \rightarrow View \rightarrow Summary statistics \rightarrow Profile Variables). You can study the Interval variables included into your profiles in by studying the interval variables: Results \rightarrow View \rightarrow Summary statistics \rightarrow Interval Variables.

BSTA 678: SAS EM - TUTORIAL WEEK 7

Dziuba Dariia, Winter 2020

Profile	Variables												
Туре	Segment Variable	Segment Value	Variable	Rank	Worth	Label	Missing	Minimum	Maximum	Mean	Standard Deviation	Skewness	Kurtosis
	OVERA	EMWS6	Age			.Age		0 18	70	38.85	13.96901	0.485569	-0.67157
	OVERA	EMWS6	Annual I			.Annual In		0 15	137	60.56	26.26472	0.321843	-0.09849
	OVERA	EMWS6	Gender			.Gender		0 0	1	0.44	0.497633	0.243578	-1.96038
l	OVERA	EMWS6	Spending			.Spending		0 1	99	50.2	25.82352	-0.04722	-0.82663
l	SEGME	. 2	Age		0.1179	64Age		0 23	68	47.62963	10.53708	-0.06151	-0.08462
l	SEGME	. 2	Gender		2 0.1145	7Gender		0 0	0	0	0		
l	SEGME	. 2	Spending	:	3 0.0907	32Spending		0 5		36.87037	15.88526	-0.51806	-0.80697
l	SEGME	. 2	Annual I		4 0.0315	75 Annual In		0 18		57.27778	19.91152	0.128441	-0.37303
l	SEGME		Age		0.2268			0 18		24.90741	5.349197	0.497235	-1.00422
l	SEGME	. 4	Annual I		2 0.1283	38Annual In		0 15		39.66667	17.03825	0.06388	-1.40188
l	SEGME		Spending		3 0.06732	21 Spending		0 6		61.2037	18.42003	0.003878	
l	SEGME		Spending		0.1959	24Spending		0 63		82.12821		-0.11264	
l	SEGME		Age		2 0.1227			0 27		32.69231		0.42529	
l	SEGME	. 1	Annual I	:	3 0.118	95Annual In		0 69		86.53846	16.31248	1.423666	1.736849
l	SEGME		Age		0.1136	39Age		0 35	70	55.34375	10.52067	-0.26897	-1.02994
l	SEGME	. 5	Gender		2 0.06510	64Gender		0 1	1	1	0		
l	SEGME		Spending			7Spending		0 3		39.3125		-1.06943	
	SEGME		Annual I		4 0.044	18Annual In		0 19		48.9375		-0.49388	-0.59299
	SEGME		Spending			95Spending		0 1	28	13.47619		0.127829	-0.31405
	SEGME	. 3	Annual I		0.0488	23Annual In		0 71	137	92.19048	18.56777	1.077539	0.352882
	SEGME	. 3	Age		0.01992	26Age		0 19	59	38.42857	11.45239	-0.14986	-0.38121
	SEGME	. 3	Gender		4 0.0122	19Gender		0 0	1	0.809524	0.402374	-1.70043	0.975232