Note: 18.5/20 (score total: 16

IPS - S7P - Jean-Matthieu Bourgeot

QCM1

IPS		
Quizz	$d\mathbf{u}$	11/10/2017

Nom et prénom :

Durée : 10 minutes.

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.

***** Questions de base en électronique *****

Question 1 •

Quelle est la relation qui lie la tension U et le courant I dans une inductance L.

1/1

1/1

2/2

 $I = L \frac{dU}{dt}$ $U = L \frac{dI}{dt}$

Question 2 •

***** QUESTIONS DE COURS *****

Question 3 •

Quelle(s) est (sont) l (les) inconvénient(s) du stabilisateur à diode Zener par rapport au régulateur série à AOP

rendement mauvais à pleine charge 2/2 mauvais coefficient de stabilisation aval

coût élevé

rendement mauvais à faible charge

mauvais coefficient de stabilisation amont

Question 4 •

Soit U_1 et U_2 les tensions au primaire et au secondaire d'un transformateur idéal. Soit n_1 et n_2 le nombre de spires des enroulements au primaire et au secondaire. Soit i_1 et i_2 les courants au primaire et au secondaire. Quelles équations caractérisent le transformateur idéal :

 $\Box \frac{U_2}{U_1} = \frac{N_2}{N_1} \; ; \; \frac{i_2}{i_1} = \frac{N_2}{N_1} \qquad \qquad \Box \frac{U_2}{U_1} = \frac{N_1}{N_2} \; ; \; \frac{i_2}{i_1} = \frac{N_1}{N_2} \\ \Box \frac{U_2}{I_1} = \frac{N_1}{N_2} \; ; \; \frac{i_2}{i_2} = \frac{N_2}{N_1}$

Question 5 •

Soit la chaine de mesure suivante :

Appareil de mesure Capteur Conditionneur Affichage

Soit R_S l'impédance de sortie du conditionneur, et R_E l'impédance d'entrée de l'appareil de mesure. Pour perdre le moins d'information au moment de la mesure, il faut que ?

0/1

 R_S et R_E soient grande. R_E soit faible et R_S soit grande.

 R_S et R_E soient petite. R_E soit grande et R_S soit faible.

