

# 000 «ЗВ Сервис»

РФ, 127051, Москва, ул. Трубная 25 стр 1 офис 6 Тел./ф (495) 221-22-53 www.3v-services.com

Утверждаю

генеральный директор ООО «ЗВ Сервис»

Петухов В.Н.



# Среда динамического моделирования технических систем SimInTech™

# План обеспечения качества программного обеспечения

Модуль генерации кода для систем реального времени

ШИФР ГК16ОК



# Аннотация

В данном программном документе приведено описание мероприятий по обеспечению качества разработки программного обеспечения.

Указаны основные этапы разработки и верификации ПО.



# СОДЕРАЖНИЕ

| Α  | ннота            | ция                                                | 2  |
|----|------------------|----------------------------------------------------|----|
| В  | едени            | e                                                  | 4  |
| 1. | . Осн            | ование для разработки                              | 5  |
| 2  |                  | мины и определения                                 |    |
| 3. |                  | цие принципы обеспечения качества ООО «3BC»        |    |
| 4  | . Heo            | бходимые ресурсы                                   | 9  |
|    | 4.1 <sup>L</sup> | łеловеческие ресурсы                               | 9  |
|    | 4.2 E            | Вычислительная техника                             | 10 |
|    | 4.3              | Специальное программное обеспечение                | 11 |
|    | 4.4 V            | Инфраструктура                                     | 11 |
| 5  |                  | еджмент разработки ПО                              |    |
|    |                  | Кизненный цикл разработки ПО                       |    |
|    | 5.2              | Формирование и управление требованиям к ПО         | 13 |
|    | 5.2.1            | Принципы управления требованиями к ПО              | 13 |
|    | 5.2.2            | Process Process                                    |    |
|    | 5.2.3            | Этапы формирования и управления требованиям        |    |
|    | 5.2.4            | Процесс управления требованиями                    |    |
|    | 5.3 N            | Модель управления жизненным циклом разработки ПОПО |    |
|    | 5.3.1            | Процесс управления проектами                       |    |
|    | 5.3.2            | Система управления разработкой                     |    |
|    | 5.3.3            | Система контроля версий                            |    |
|    | 5.3.4            |                                                    |    |
|    |                  | Гестирование ПС                                    |    |
|    | 5.4.1            | Модульное тестирование                             |    |
|    | 5.4.2            | Интеграционное тестирование                        |    |
|    | 5.4.3            | ·                                                  |    |
|    | 5.4.4            | Приемочные испытания                               |    |
|    |                  | 1 Альфа тестирование                               |    |
|    |                  | 2 Бетта тестирование                               |    |
|    | 5.5 (            | Система взаимодействия с заказчиком                | 22 |



## Ведение

Программа для ЭВМ "Среда динамического моделирования SimInTech", (сокращенное название «SimInTech»), свидетельство о регистрации №2010617758 - современная среда интеллектуальной системы автоматизированного проектирования (САПР), предназначенная исследования И анализа нестационарных детального процессов автоматического управления, в следящих приводах и роботах, в любых технических системах, быть описание динамики которых может реализовано методами структурного моделирования.

SimInTech обеспечивает создание алгоритмов управления в виде функционально-блочных диаграмм. ПО содержит в себе математическое ядро для проведения динамического расчета созданного алгоритма управления путем задания входных воздействий и анализа изменений внутренних параметров и выходных значений во время моделирования.

SimInTech является базовым программным обеспечением для разрабатываемого модуля. Комплексная система моделирования систем управления и программирования приборов включает в себя:

- модуль генерации кода для автоматической генерации исходных кодов и исполняемых модулей;
- среду разработки для проектирования алгоритмов управления в виде наглядной функционально-блочной диаграммы;
- систему исполнения программ для приборов, для выполнения сгенерированных при помощи генератора кода исполняемых модулей на приборах.

Под прибором следует понимать программируемые логические контроллеры (ПЛК) в составе промышленных компьютеров, работающие под управление POSIX-совместимых операционных систем реального времени.

Предметом данного плана качества является разработка модуля для SimInTech, обеспечивающего автоматическое создание программ на языке Си для исполнения в системах управления реального времени.



# 1. Основание для разработки

Основанием для разработки является:

Договор N 437 - 01 от 26.07.2013 по теме: «Разработка программного обеспечения верхнего уровня программно-технического комплекта средств автоматического управления».

Заказчик ООО «Московский завод «ФИЗПРИБОР».

План особо важных работ по доработке программного обеспечения на 2015 год. Утвержден 15.02.2013. ООО «ЗВ Сервис».



## 2. Термины и определения

- **2.1 Платформа** Среда динамического моделирования технических систем SimInTech<sup>TM</sup> среда разработки программного обеспечения на предметно-ориентированном языке программирования.
- **2.2 ПО** разрабатываемое программное обеспечение «Модуль генерации кода для систем реального времени»
- **2.3 Заказчик** Общество с ограниченной ответственностью «Московский завод «Физприбор»
  - **2.4 Компания** Общество с ограниченной ответственностью «ЗВ Сервис», ООО «ЗВС»
  - 2.5 Руководитель (Компании) Генеральный директор Компании согласно Уставу
- **2.6 Администрация (Компании)** Генеральный директор и лица, относящиеся к Администрации в соответствии со штатным расписанием
  - **2.7 Проект** проект разработки и создания ПО

Участники проекта – специалисты Компании и Заказчика, вовлеченные в Проект Руководство по качеству – Руководство по качеству Компании РК СМК 01-2016



## 3. Общие принципы обеспечения качества ООО «3ВС»

ООО «ЗВС» создано в соответствии с Гражданским кодексом Российской Федерации, Федеральным законом «Об открытых акционерных обществах» и иными законодательными и нормативными правовыми актами Российской Федерации.

Средством достижения высокого уровня осуществляемой ООО «ЗВС» деятельности» является разработанная, документально оформленная, внедренная и поддерживаемая в рабочем состоянии система менеджмента качества (СМК), соответствующая требованиям международных стандартов ISO серии 9000. Системы качества являются эффективным инструментом для достижения главной цели любой организации — удовлетворения требований потребителя.

Непрерывный процесс обеспечения качества создается посредством разработки и выполнения проектных перспективных, текущих и оперативных планов по качеству, в которых предусматривается совершенствование имеющихся технологических процессов и методик выполнения работ, корректировка действующих и разработка новых нормативных документов СМК при выполнении работ и оказании услуг на новых объектах.

Документирование и анализ несоответствий, материальное и моральное стимулирование за обеспечение и повышение качества позволяет повысить ответственность и заинтересованность руководителей, специалистов и исполнителей в высоком качестве выполняемых работ.

Гарантия качества продуктов.

Непрерывный контроль качества реализуется с помощью тестирования. Данный процесс предполагает создание тестов для каждого ключевого сценария, реализуемого в системе. Качество системы проявляется, прежде всего, в количестве успешных и неуспешных сценариев, что как раз и выявляется в процессе тестирования. Тестирование и разработка новых тестовых сценариев проводятся на каждой итерации проекта. Наборы сценариев и программных скриптов дорабатываются итеративно вместе с создаваемым продуктом.

Непрерывный контроль качества приводит к следующим позитивным результатам:



- оценка состояния проекта приобретает большую объективность, т. к. оценивается реальное функционирование системы, а не качество проектной документации;
- оценка проекта позволяет раскрыть несоответствия в требованиях, моделях и реализации;
- тестирование акцентирует внимание на тех сторонах работы системы, которые имеют наибольшую важность и повышенный риск;
- дефекты выявляются на ранних стадиях, что снижает затраты на их устранение;
- автоматизированное тестирование обеспечивает высокий уровень функциональности системы, надежности и производительности.



# 4. Необходимые ресурсы

Администрация Компании постоянно решает вопросы, связанные с обеспечением ресурсами всех видов деятельности, включая разработку ПО.

К указанным ресурсам относятся:

- человеческие ресурсы;
- вычислительная техника;
- специальное программное обеспечение;
- инфраструктура.

Ресурсная база подвергается постоянной оценке на достаточность и адекватность стратегическим целям и может быть изменена и улучшена под конкретные проекты. Все Компании обеспечены квалифицированным орг.-штатные единицы персоналом, соответствующим оборудованием, обеспечением И необходимыми программным условиями. Планы ресурсообеспечению производственными ПО разрабатываются Руководителем Компании на год в соответствие с потребностями подразделений и перспективным планом развития.

#### 4.1 Человеческие ресурсы

Для разработки ПС были задействованы специалисты, сотрудники Компании, с опытом работы в сфере разработки программного обеспечения не менее 5 лет.

Указанные специалисты участвовали в предыдущих проектах Компании по разработке основных архитектурных блоков и модулей Платформы. Таким образом, при разработке ПО обеспечена преемственность опыта работы, что исключило, так называемые ошибки «малого возраста» и позволило в полной мере использовать наработанный положительный опыт эксплуатации Платформы.

Все штатные сотрудники Компании — специалисты с высшим техническим образованием, имеющие большой опыт работы в соответствующих профессиональных областях. Задействованный в процессе создания ПС персонал не реже 1 раза в год проходит программы и курсы повышения квалификации или специальные курсы, позволяющие поддерживать уровень профессиональных знаний на соответствующем передовым знаниям и практикам уровне. В том числе, Администрация Компании выделяет ресурсы на проведение

| Изм. 15.06.2016 | План обеспечения качества ПО | 9 |
|-----------------|------------------------------|---|



внутренних циклов повышения квалификации, которые проводятся на базе Компании приглашенными специалистами и внешние циклы повышения квалификации, которые проводятся на базе ведущих образовательных учреждений повышения квалификации.

Планирование повышения квалификации программистов осуществляет Руководитель Компании ежегодно.

По итогам сбора и анализа требований Заказчика по содержанию и срокам, предъявляемым к проекту разработки ПС, а также анализа государственной нормативной документации в сфере регулирования соответствующей деятельности, была проведена оценка потребности в человеческих ресурсах проекта разработки ПС. По результатам оценки, с целью реализации проекта в установленные сроки, была сформирована проектная команда из состава сотрудников Компании, которая состоит из:

| Специализация              | Количество человек |
|----------------------------|--------------------|
| Руководитель проекта       | 1                  |
| Аналитик                   | 1                  |
| Ведущий разработчик        | 2                  |
| Разработчик                | 2                  |
| Специалист по тестированию | 2                  |
| Технический писатель       | 1                  |

#### 4.2 Вычислительная техника

Для разработки ПО Использовались персональные компьютеры с следующей конфигурацией:

- Процессор Intel с частотой не менее 1500 МГц
- Оперативная память не менее 4 Гб
- Жесткий диск не менее 500 Гб

В для групповой работы используется 3 сервера распложённых в дата центре и содержащий набор необходимых виртуальных машин. Конфигурация серверов:

- Процессор 4-ядерный Intel Xeon E5-2623V4
- Оперативная память 32 Гб DDR-4
- Массив жестких дисков 32 Тб

| Изм. 15.06.2016 | План обеспечения качества ПО | 10 |
|-----------------|------------------------------|----|
|-----------------|------------------------------|----|



В для групповой работы используется ц сервера распложённых в офисе дата центре и содержащий набор необходимых виртуальных машин. Конфигурация серверов в офиссе:

- Процессор 4-ядерный Intel Xeon E5-2623V4
- Оперативная память 32 Гб DDR-4
- Массив жестких дисков 8 Тб

#### 4.3 Специальное программное обеспечение

Для разработки ПО используется набор специальных программного обеспечения - инструментальных средств для разработки. Средства разработки включает себя:

Delphi XE7 – среда разработки программного обеспечения.

Redmine – система управления проетами.

GIT – среда для хранения и управления версиями.

OTRS – среда работы с пользователями ПО.

#### 4.4 Инфраструктура

Офис организации расположен по адресу Трубная 25 к5 офис 6

Офис оборудован рабочими местами, оборудованными с учетом требований безопасности и охраны труда с доступом в интернет, и необходимым офисным оборудованием. В общее оборудование входит:

- 1) Принтеры, сканер;
- 2) Локальное серверное хранилище;

Для организации работы используется местная локальная сеть в офисе ООО «ЗВ Сервис» и сеть интернет для организации связи с удаленными рабочими местами.

Управление деятельностью:

Руководство ООО «ЗВС» определяет потребности в соответствующей инфраструктуре (здания, производственные помещения, вспомогательное оборудование, транспорт, связь, энергоресурсы), а также поддерживает её рабочем состоянии.



# 5. Менеджмент разработки ПО

#### 5.1 Жизненный цикл разработки ПО

При разработки любого программного обеспечения в ООО «ЗВ Сервис» используется стандартизированный жизненный цикл, каждый этап которого, документируется и отслеживается.

Жизненный цикл разработки программного обеспечения состоит из следующих этапов:

- Формирование и управление требованиями к ПО
- Разработка
- Тестирование
- Приемочные испытания у заказчика
- Техническая поддержка эксплуатация

На рисунке 1 изображены этапы разработки ПО.



Рисунок 1. Этапы разработки ПО и используемые ресурсы



#### 5.2 Формирование и управление требованиям к ПО

#### 5.2.1 Принципы управления требованиями к ПО

С целью обеспечения качества в проекте разработки ПС реализованы следующие принципы управления требованиями:

**Иерархичность требований.** Требования формируют древовидную структуру, от верхнеуровневых (общих) требований к никзоуровневым (детальным). Требования структурированы по типу.

**Ясность** (недвусмысленность, определенность, однозначность спецификаций). Требование обладает свойством ясности, если оно сходным образом воспринимается всеми участниками проекта.

**Корректность и согласованность (непротиворечивость).** Требования не должны противоречить требованиям своего уровня иерархии и требованиям «родительского» уровня. Так требования пользователей не должны противоречить бизнес-требованиям, а функциональные требования – требованиям пользователя.

**Необходимость и полезность при эксплуатации.** Необходимыми следует считать свойства, без выполнения которых невозможно, либо затруднено выполнение автоматизированных бизнес-функций пользователей; полезными при эксплуатации следует считать любые свойства, повышающие эргономические качества продукта.

**Осуществимость (выполнимость).** Выполнимость требования определяется разумным балансом между ценностью (степенью необходимости и полезности) и потребными ресурсами.

**Модифицируемость.** Обеспечение возможности переработки требований и поддержание истории изменений для каждого положения. Все положения уникально помечены и обозначены. Каждое требование единожды записывается в спецификацию требований. Организовано сохранение спецификации в базе данных инструмента управления требованиями, что делает их пригодными для повторного использования.

**Трассируемость.** Трассируемость требования определяется возможностью отследить связь между ним и другими артефактами информационной системы (документами, моделями, текстами программ и пр.).



Упорядоченность по важности и стабильности. Приоритет требования представляет собой количественную оценку степени значимости (важности) требования. Стабильность требования характеризует прогнозную оценку неизменности требований во времени.

#### 5.2.2 Требования проекта

В рамках разработки ПО разрабатываются следующие требования:

| Наименование требования                          | Описание                                                                                                                                                                        |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | Данный тип требований включает<br>необходимый набор функциональности,                                                                                                           |
| Функциональные требования                        | который должен быть реализован программным обеспечением                                                                                                                         |
| Требования платформы                             | Требования к ПО, которые диктуются архитектурной Платформой на базе которой создается ПО. В данном случае это «Среда динамического моделирования технических систем «SimInTech» |
| Требования к интерфейсу                          | Требования к интерфейсу ПО                                                                                                                                                      |
| Соответствие законодательным нормам и стандартам | Возможные требования законодательства, под которые попадает разрабатываемое ПО                                                                                                  |

#### 5.2.3 Этапы формирования и управления требованиям

В рамках проекта рассматриваются следующие этапы управления требованиями:

1 этап анализа на стороне Заказчика, в рамках которого происходит взаимодействие представителей Заказчика и Компании, и происходит фиксация первичных требований;

2 этап анализа на стороне Компании, в рамках происходит уточнение требований к разрабатываемому ПС, исходя из предполагаемой архитектуры ПО и требованиями к «Средой динамического моделирования технических систем «SimInTech»;

| Изм. 15.06.2016 | План обеспечения качества ПО | 14 |
|-----------------|------------------------------|----|



3 этап анализа по итогам приемочных испытаний ПО в результате которых Заказчик может внести дополнительные требования к ПО или изменить сформулированные ранее требования.

## 5.2.4 Процесс управления требованиями

В рамках каждого этапа управления требованиями реализовывается следующий процесс управлениями требования:

- Сбор требований;
- Разработка документов;
- Создание тестовых сценариев;
- Проектирование системы.



#### 5.3 Модель управления жизненным циклом разработки ПО

С целью обеспечения принципа менеджмента качества «Процессный подход» руководства по качеству Компании были принят к реализации «Итерационный подход» к разработке программного обеспечения. Качество разработки также обеспечивается Системой управления разработкой и Системой управления версиями.

#### 5.3.1 Процесс управления проектами

Подход предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает «мини-проект», включая все процессы разработки в применении к созданию меньших фрагментов функциональности, по сравнению с проектом в целом. Цель каждой итерации — получение работающей версии программной системы, включающей функциональность, определённую интегрированным содержанием всех предыдущих и текущей итерации. Результат финальной итерации содержит всю требуемую функциональность продукта. Таким образом, с завершением каждой итерации продукт получает приращение — инкремент — к его возможностям, которые, следовательно, развиваются эволюционно.

Данный подход позволяет контролировать каждый прирост функционала

#### 5.3.2 Система управления разработкой

В роли Системы управления разработкой выступает Redmine — открытое серверное веб-приложение для управления проектами и задачами, которое предоставляет следующие функциональные возможности:

- ведение нескольких проектов;
- гибкая система доступа, основанная на ролях;
- система отслеживания ошибок;
- диаграммы Ганта и календарь;
- ведение новостей проекта, документов и управление файлами;
- оповещение об изменениях с помощью RSS-потоков и электронной почты;
- вехи для каждого проекта;
- форумы для каждого проекта;
- учёт временных затрат;

| Изм. 15.06.2016 | План обеспечения качества ПО | 16 |
|-----------------|------------------------------|----|



- настраиваемые произвольные поля для инцидентов, временных затрат, проектов и пользователей;
- лёгкая интеграция с системами управления версиями (SVN, CVS, Git, Mercurial, Bazaar и Darcs);
- создание записей об ошибках на основе полученных писем;
- поддержка множественной аутентификации LDAP;
- возможность самостоятельной регистрации новых пользователей;
- многоязычный интерфейс (в том числе русский);
- поддержка СУБД MySQL, Microsoft SQL Server, PostgreSQL, SQLite, Oracle.

#### 5.3.3 Система контроля версий

В роли Системы контроля версий выступает GIT – распределённая система управления версиями. Git поддерживает быстрое разделение и слияние версий, включает инструменты для визуализации и навигации по нелинейной истории разработки. Git предоставляет каждому разработчику локальную копию всей истории разработки, изменения копируются из одного репозитория в другой.

Git относится к классу распределенных систем управления версиями. Основные преимущества распределённых систем — их гибкость и значительно большая (по сравнению с централизованными системами) автономия отдельного рабочего места. Каждый компьютер разработчика является, фактически, самостоятельным и полнофункциональным сервером, из таких компьютеров можно построить произвольную по структуре и уровню сложности систему, задав (как техническими, так и административными мерами) желаемый порядок синхронизации. При этом каждый разработчик может вести работу независимо, так, как ему удобно, изменяя и сохраняя промежуточные версии документов, пользуясь всеми возможностями системы (в том числе доступом к истории изменений) даже в отсутствие сетевого соединения с сервером. Связь с сервером или другими разработчиками требуется исключительно для проведения синхронизации, при этом обмен наборами изменений может осуществляться по различным схемам.

#### 5.3.4 Описание процесса разработки ПС

ООО «ЗВ Сервис»

Для разработки программного обеспечения, используются итерационный подход, заключающийся в повторении заранее определенных и документированных последовательностей итераций.

- Формирование списка (бэклога) задач первой итерации на основе спецификации требований. Данный список задач вносится в Систему управления разработкой без назначения на конкретных исполнителей.
- Распределение задач между исполнителями (разработчиками).
- Разработка, фиксация результатов разработки в Системе контроля версий.
- Передача откомпилированных результатов разработки на тестирование, возврат задач в разработку, в случае обнаружения ошибок по итогам тестирования (см. п 5.4.1).
- Передача протестированных результатов первой итерации разработки на приемочное тестирование Заказчику (см. п. 5.4.3).
- Формирование списка (бэклога) задач следующей итерации на основе спецификации требований и результатов приемочного тестирования, которая наращивает функционал разрабатываемого ПС.

При этом жизненный цикл задач в Системе управления разработкой выглядит следующим образом: новая задача — назначение ответственного — разработка ПС, выгрузка результатов в Git — тестирование — сборка — передача результатов Заказчику.

При таком подходе существует возможность отслеживания и обеспечения качества на каждом этапе создания ПС.

При итерационном подходе, ошибки разработки не накапливаются, а выявляются путем тестирования как внутренними силами так и силами Заказчика в рамках пилотного тестирования им результатов работ.



#### 5.4 Тестирование ПС

С целью обеспечения качества результатов разработки применяются следующие виды тестирования.

- Модульное тестирование
- Интеграционное тестирование
- Системное тестирование

#### 5.4.1 Модульное тестирование

Модульное тестирование проводится, для каждой функций ПО созданной в рамках итерационного этапа. Для каждого этапа создается тестовые задачи, которые обеспечивают проверку выполнения созданного функционала ПО. Выполняется анализ работы созданной функции на предмет ее соответствия спецификации требованиям помещенным в систему Redmine, в качестве задачи. В случае если анализ подтверждает соответствие спецификации требований происходит закрытие задачи в Redmain.

В случае если тестирование и (или) анализ показывают несоответствии спецификации требование задача возвращается разработчику с замечаниями и описанием выявленных отклонений от спецификации требований.

#### 5.4.2 Интеграционное тестирование

Интеграционное тестирование в качестве входных данных использует модули, над которыми было проведено модульное тестирование, группирует их в более крупные множества, выполняет тесты, определённые в плане тестирования для этих множеств, и представляет их в качестве выходных данных и входных для последующего системного тестирования.

Целью интеграционного тестирования является проверка соответствия проектируемых единиц функциональным, приёмным и требованиям надежности. Тестирование этих проектируемых единиц — объединения, множества или группы модулей — выполняется через их интерфейс, с использованием тестирования «чёрного ящика».

На этом этапе разрабатываемые модули тестируются в составе среды на базе которой происходит разработка ПО.

| Изм. 15.06.2016 | План обеспечения качества ПО | 19 |
|-----------------|------------------------------|----|



#### 5.4.3 Системное тестирование

Системное тестирование — это тестирование ПО, выполняемое на полностью интегрированном ПО, с целью проверки соответствия ПО исходным требованиям.

Также при системном тестировании важно установить, адекватно ли работает ПО при заведомо неправильных действиях пользователя. Для этого применяются методы позитивного и негативного тестирования. Для реализации позитивного тестирования создаются сценарии, эмитирующие заведомо правильные действия пользователя, и изучается реакция системы. В случае негативного тестирования создаются сценарии, эмитирующие заведомо неверные действия пользователя и так же изучается реакция системы. различных функций системы.

#### 5.4.4 Приемочные испытания

Приемочные испытания проводятся с целью получения обратной связи от Заказчика о готовности ПО к промышленной эксплуатации. Для обеспечения обратной связи по итогам приемочного тестирования используется Система взаимодействия с заказчиком.

Приемочные испытания проводятся в две стадии:

- альфа-тестирование тестирование внутри ООО «ЗВ Сервис» разработчиками ПО и специалистами не включёнными в разработку ПО
- бэта-тестирование тестирование выполняемые тестировщиками и представителями заказчика.

## 5.4.4.1 Альфа тестирование

Альфа тестирование проводиться разработчиками ПО.

Первый этап альфа-тестирования выполняется разработчиком ПО, с помощью подготовленных сценариев или с помощью среды для быстрого выявления ошибок. В случае выявления ошибок возможен как возврат в доработку, так передача ошибки специалистам по тестированию для дополнительного исследования в среде.

Втрой этап альфа тестирования осуществляется членами команды ООО «ЗВС», не задействованными в разработке. При этом пользовали могут использовать альфа версию разрабатываемого ПО как для проверки разрабатываемого функционала так и для решения собственных задач, возможно напрямую не связанных с разрабатываемым функционалом.

|                 | <br> |                      |           |    |
|-----------------|------|----------------------|-----------|----|
| Изм. 15.06.2016 |      | План обеспечения кач | чества ПО | 20 |



На данном этапе проверяется как непосредственно разрабатываемый функционал так и пользовательский интерфейс.

На третьем этапе производиться ad-hoc testing — вид тестирования, который выполняется без подготовки к тестам, без определения ожидаемых результатов, проектирования тестовых сценариев.

#### 5.4.4.2 Бетта тестирование

Отличительной особенностью является то что для него привлекаются добровольные пользователи (потенциальные пользователи) которые проводят испытания в интересах заказчика.

Цель бэтта-тестирования потребителем это - обеспечение необходимого обратной связи, которая дает конечным пользователям даёт перспективу решения возникающих вопросов разработчиками ПО. Пользователям передается версия ПО для опытной эксплуатации.

Пользователи всегда имеют

Для организации конструктивной обратной связи, а также в рамках выполнения требований системы менеджмента качества, по автоматизации деятельности ООО «ЗВС» была введена система обработки заявок OTRS.



#### 5.5 Система взаимодействия с заказчиком

В роли системы взаимодействия с заказчиком выступает OTRS – открытая система обработки заявок. Система предоставляет следующий функционал:

- Персональный доступ специалистов заказчика к службе поддержки.
- Формирование заявок на поддержку.
- Взаимодействие с заказчиком через веб-приложение;
- Фиксация заявок на поддержку

OTRS - Open source Ticket Request System, является web приложением по учету (приему и обработке) заявок между руководством компании и потребителями. Система OTRS Создает свой электронный почтовый ящик в котором фиксирует запросы и далее сохраняет их в своей базе данных. создает автоответ для каждого нового запроса и отправляет его заказчику. Для каждого запроса OTRS создает прямую ссылку - номер заявки.

Также, следует отметить тот факт, что ни одно сообщение клиента не будет отредактировано дважды, поскольку система автоматически блокирует заявку, для которой создается ответ.

OTRS успешно решает следующие задачи:

Регистрацию обращений. Сотрудникам необходимо знать, что обращение было; пользователям необходимо понимать, что обращение дошло по адресу и не потеряно. Кроме того, для пользователя удобно, чтобы любые обращения можно было оформить одним и тем же унифицированным способом.

Учет и обработку обращений. Сотрудники должны знать, какие обращения имеются в каждый момент и предпринимать действия для их выполнения; пользователи должны понимать, что происходит с их обращением.

Автоматизацию выполнения заявок. Существует тезис о том, что любая проблема может быть решена компетентным специалистом в течение 1 часа. Нужно только, чтобы проблема сразу попала в руки такого специалиста. Поэтому если автоматизировать обработку поступающих обращений, можно резко сократить путь обращения к соответствующему специалисту.

Человеческий фактор, в меньшей степени оказывает влияние на выполнение заявок потому, что о ней банально знают другие сотрудники, а не только исполнитель. Заказчику



нужно только установить у себя систему OTRS, авторизироваться и направлять замечания и пожелания исполнителю.