Curso de Graduação em Engenharia Mecânica Cinemática dos Mecanismos

Aula 3 Tipos de Mecanismos: Simples e Complexos

Quantos GDLs possui o conjunto mão, ante-braço e braço?

X Junta Universal

Junta Rotacional

No Total:

22 DOFs da mão3 DOFs do braço2 DOFs do ante-braço

27 DOFs

Sumário da Aula

- Classificação de Mecanismos
- Lei de Grashof
- Lei de Reuleaux
- Mecanismos Simples
 - 4 Barras
 - Biela Manivela
- Mecanismos Complexos

L. E. Torfason

- Feita pelo tipo de transformação de movimento (262 Classes)
- 12 Classes Principais:
 - Atuadores Lineares
 - Ajuste Fino
 - Hesitação, Pausa e Parada
 - Posicionamento
 - Catraca
 - Contadores

- Osciladores
- Retorno Rápido
- Reversíveis
- Acoplamento
- Geradores de Curvas
- Geradores de Retas

L. E. Torfason – Atuadores Lineares

- Parafuso Fixo, Porca Fixa
- Cilindro Pneumático ou Hidráulico
- Pinhão Cremalheira

L. E. Torfason – Ajuste Fino

- Parafuso e Porca
- Engrenagens

L. E. Torfason – Hesitação, Pausa e Parada

Came-Seguidor

L. E. Torfason - Catraca

Ratchet

L. E. Torfason - Contadores

- Roda de Genebra
- Ratchet

L. E. Torfason – Osciladores

Biela-Manivela

L. E. Torfason – Retorno Rápido

- Mecanismo de Retorno Rápido
 - Caracterizam-se por possuírem 2 fases de movimento para uma dada velocidade angular constante
 - Relação de tempo "ida-retorno"
 - Podem ser constituídos apenas por uma biela manivela ou por mecanismos mais complexos.

L. E. Torfason – Reversíveis

- Permitem que a direção de rotação possa ser alterada
 - Engrenagens
 - 4 Barras
 - Etc.

L. E. Torfason – Acoplamento

- Junta Universal
- Correia
- Corrente

Ring and Trunnion

L. E. Torfason – Acoplamento

Bendix-Zeiss

Rzeppa

L. E. Torfason – Geradores de Curvas

L. E. Torfason – Geradores de Curvas

4 Barras

L. E. Torfason – Geradores de Curvas

4 Barras

L. E. Torfason – Geradores de Curvas

Biela-Manivela

L. E. Torfason – Geradores de Curvas

Biela-Manivela

L. E. Torfason – Geradores de Curvas

- 6 Barras
- 8 Barras

L. E. Torfason – Geradores de Curvas

6 Barras

L. E. Torfason – Geradores de Retas

Chebyshev

L. E. Torfason – Geradores de Retas

Hoeckens

L. E. Torfason – Geradores de Retas

Roberts

L. E. Torfason – Geradores de Retas

Watt

Sumário da Aula

- Classificação de Mecanismos
- Lei de Grashof
- Lei de Reuleaux
- Mecanismos Simples
 - 4 Barras
 - Biela Manivela
- Mecanismos Complexos

Franz Grashof

Condição para rotação completa da barra motriz de mecanismo 4-barras

"A soma da menor e da maior barra de um mecanismo 4-barras <u>não</u> pode ser maior que a soma das 2 outras barras"

$$Me = L_2$$
 $Ma = L_1$

$$b_1 = L_3$$
 $b_2 = L_4$

Equação

$$Me + Ma \leq b_1 + b_2$$

$$Me = L_2$$
 $Ma = L_1$

$$b_1 = L_3$$
 $b_2 = L_4$

Inversões do Mecanismo 4-Barras

Inversões do Mecanismo 4-Barras

Sumário da Aula

- Classificação de Mecanismos
- Lei de Grashof
- Lei de Reuleaux
- Mecanismos Simples
 - 4 Barras
 - Biela Manivela
- Mecanismos Complexos

Lei de Reuleaux Montagem do Mecanismo 4-Barras

Franz Reuleaux

Condição para a montagem de mecanismos 4-barras

 L_2 : link motor

L₁: solo

L₃: link acoplador

L₄: link seguidor

Lei de Reuleaux

Montagem do Mecanismo 4-Barras

$$L_2 + L_3 + L_4 \geqslant L_1$$

 $L_2 + L_3 - L_4 \leqslant L_1$
 $L_2 + L_1 + L_4 \geqslant L_3$
 $L_2 + L_1 - L_4 \leqslant L_3$

Sumário da Aula

- Classificação de Mecanismos
- Lei de Grashof
- Lei de Reuleaux
- Mecanismos Simples
 - 4 Barras
 - Biela Manivela
- Mecanismos Complexos

4 Barras

- Mecanismo Simples
- Movimento Oscilatório do link seguidor

- 4 Barras Plano
- 4 Barras Espacial

4 Barras – Exemplo de Aplicação

Porta malas de veículos de passeio

4 Barras - Equacionamento

L₂: link motor

L₁: solo

L₃: link acoplador

L₄: link seguidor

 θ_2 : âng. da barra motriz

 θ_4 : âng. da barra seguidora

 θ_3 : âng. da barra acopladora

 γ : âng. de transmissão

4 Barras - Equacionamento

Adotando a mesma nomenclatura do Mabie

r₂: link motor

r₁: solo

r₃: link acoplador

r₄: link seguidor

 θ_2 : âng. da barra motriz

 θ_4 : âng. da barra seguidora

 θ_3 : âng. da barra acopladora

 γ : âng. de transmissão

4 Barras - Equacionamento

Aplicando-se a Lei dos cossenos nos triângulos

$$\triangle$$
 AO₂O₄ e \triangle ABO₄

$$z^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2)$$

$$z^2 = r_3^2 + r_4^2 - 2r_3r_4\cos(\gamma)$$

Igualando z², temos:

$$r_2$$
 θ_2
 r_1
 θ_2
 θ_3
 θ_4
 θ_4
 θ_4

$$\cos(\gamma) = \frac{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2) - r_3^2 - r_4^2}{-2r_3r_4}$$

$$\gamma = \cos^{-1} \left(\frac{z^2 - r_3^2 - r_4^2}{-2r_3r_4} \right)$$

Ou seja, conhecendo-se os valores dos links $(r_i$'s), o ângulo de transmissão será função apenas do ângulo de entrada θ_2 .

4 Barras - Equacionamento

 A solução para γ pode apresentar dois valores, cujo significado físico é mostrado abaixo:

4 Barras - Equacionamento

• E os ângulos α , β e θ_4 serão:

$$\alpha = \cos^{-1} \left(\frac{z^2 + r_4^2 - r_3^2}{2zr_4} \right)$$

$$\beta = \cos^{-1}\left(\frac{z^2 + r_1^2 - r_2^2}{2zr_1}\right)$$

$$\theta_4 = 180^{\circ} - (\alpha + \beta)$$

Se o ângulo de transmissão, γ , for menor que 40°, a tendência é, no mecanismo real, de travamento por atrito.

O intervalo entre a máxima e mínima força ocorrem para γ entre 40° e 140°

Mecanismos Simples Biela-Manivela

 Exemplos de Aplicação: Motores de Combustão Interna, Máquinas Ferramenta, Compressores, etc.

Deslocamento do Pistão

Velocidades

Aceleração

Mecanismos Simples Biela-Manivela

Diagrama de Corpo Livre e Equacionamento

<u>Dedução - link</u>

Mecanismos Simples Biela-Manivela

Outras Configurações para o Biela-Manivela

Sumário da Aula

- Classificação de Mecanismos
- Lei de Grashof
- Lei de Reuleaux
- Mecanismos Simples
 - 4 Barras
 - Biela Manivela
- Mecanismos Complexos

Mecanismos Complexos

União de 2 ou mais mecanismos simples
 4 Barras + Biela-Manivela

Mecanismos Complexos

- União de 2 ou mais mecanismos simples
 - 4 Barras + Biela-Manivela

Mecanismos Complexos Mecanismo Toggle

- Sobrepujar grandes resistências com a aplicação de pequenas forças
- Aplicações:
 - Prensas
 - Travas de Portas
 - Etc.
- Barras CB e BO₄ com
 Mesmo comprimento

Mecanismos Complexos Mecanismo Toggle

Equacionamento

$$\frac{F}{P} = 2 \tan \alpha$$

$$\alpha \to 0 \quad P \to \infty$$

$$\vec{F} \quad B \quad O_2$$

$$\vec{F} \quad \vec{Q} \quad \vec{Q}$$

Mecanismos Complexos Mecanismo Toggle

Exemplos de Aplicação

