

Decision Trees, Random Forests and Extra Trees

Agenda

Discussion Flow

- Basic Structure of a Decision Tree
- Building a classification/Regression Tree
- Interpretation in absence of parameters/coefficients
- Implementation in Python
- Overfitting issue with Decision Tree
- Random Forests
- Extra Trees
- Implementation in Python

Decision Trees

What does it look like?

Questions?!!

- How do we take decisions? (Classification/ Regression)
- Where do these rules come from ?
- How do we pick rules for splitting at each node?
- When do we stop splitting nodes?

How do we take decisions? (Classification)

How do we take decisions? (Regression)

- Much simpler than classification
- Simple Average of target at the terminal node becomes your predicted value for that terminal node

Where do these rules come from? (Numeric Vars)

Where do these rules come from? (Categorical vars)

How to Select Rules for split? (Classification)

 Among all the rules available, the one which results in a split with most homogeneous system is selected

$$gini\ index = 1 - \sum_{i=1}^{\kappa} p_i^2$$

$$entropy = -\sum_{i=1}^{k} p_i * log(p_i)$$

$$deviance = -\sum_{i=1}^{k} n_i * log(p_i)$$

Note : There is no theoretical favourite among them , its more of matter of convenience in implementation $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{$

Example: Using entropy for rule selection

$$gini_parent = 1 - ((\frac{8}{15})^2 + (\frac{7}{15})^2) = .498$$

 $gini_new = (\frac{10}{15}) * 0.50 + (\frac{5}{15}) * 0.48 = .493$

Rule 2 gets selected for higher decrease in gini

How to Select Rules for split and Make Prediction? (Regression)

- Average of the node is the prediction for the node
- Among all the rules available, the one which results in a split with least Sum of Square of Errors is selected

Example: Using SSE for rule selection

Response
5
6
12
11
4
8
13
5
6
7

Error
-2.7
-1.7
4.3
3.3
-3.7
0.3
5.3
-2.7
-1.7
-0.7

Prediction
7.7

SSE Parent 92.1

Example Contd Rule 1

Response	Error
5	-2.6
6	-1.6
12	4.4
11	3.4
4	-3.6

Prediction	
7.6	
SSE 1	

53.2

SSE new 92

Response	Error
8	0.2
13	5.2
5	-2.8
6	-1.8
7	-0.8

Predic	tion 7.8
	SE 2

Example Contd Rule 2

Response	Error
5	-0.2
6	0.8
4	-1.2
5	-0.2
6	0.8

Prediction 5.2

SSE 1 2.8

SSE new 29.6

Response	Error
12	1.8
11	0.8
8	-2.2
13	2.8
7	-3.2

Prediction 10.2

SSE 2 26.8 Rule 2 gets selected because of higher decrease in SSE

When do we stop splitting Nodes?

- When does a node become a terminal node?
- When node is completely homogeneous
- When number of observation in the nodes are lower than the specified limit for split
- When all the rules result in a split such that one (or both) child node will have less observation than specified limit for child node
- When number of specified terminal node is reached

Lets see it in action in Python

Issues with a single decision tree

- Susceptible to noisy observations
- Susceptible to noisy variables
- In general overfits the training data

Random Forests

Introduction of random ness in the process

Sample 1=
random smaller
sample of observations
and N variables

Independent Decision Tree: T1

Data =
Large number of
observations and N
variables

. .

Independent Decision Tree : T.

Sample K=
random smaller
sample of observations
and N variables

Independent Decision Tree : Tk

Contd...: for each tree

Extra Trees

Extra Trees

- Short for extremely randomised trees
- Extension of random forest
- In addition to what we do in random forest, extra trees randomly subset rules as well at each node before selecting the best rule for split
- Work well when there are less noisy features but with noisy ranges/categories

Lets see it in action in Python

