范畴论简介

范畴简介

Definition 1.1.1. 范畴 $\mathcal C$ 包含三要素

- \mathcal{C} 中对象所成的类, 记作 $\mathsf{Obj}(\mathcal{C})$.
- $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, $\exists \operatorname{Hom}_{\mathcal{C}}(A, B) \ni A \cong B$ 的态射.
- 对任意 $A,B,C\in\mathsf{Obj}(\mathcal{C})$, 总存在态射的复合

$$\operatorname{Hom}_{\mathcal{C}}(A,B) imes \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{C}}(A,C) \ (f,g)\mapsto gf.$$

Definition 1.1.2. 以上定义出的范畴 $\mathcal C$ 满足如下公理

- A1. 在有意义时总有复合 (fg)h = f(gh).
- A2. 对任意 $A \in \mathsf{Obj}(\mathcal{C})$, 存在 $1_A \in \mathsf{Hom}_{\mathcal{C}}(A,A)$ 使得

$$egin{aligned} orall f \in \operatorname{Hom}_{\mathcal{C}}(\cdot,A), & 1_A f = f. \ orall g \in \operatorname{Hom}_{\mathcal{C}}(A,\cdot), & g1_A = g. \end{aligned}$$

• A3. $\operatorname{Hom}_{\mathcal{C}}(A,B)\cap\operatorname{Hom}_{\mathcal{C}}(C,D)
eq\emptyset$ 若且仅若 $(A=C)\wedge(B=D)$.

Definition 1.1.3. 取 $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, 称

- f 为单的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(C,A), fg = fh \Leftrightarrow g = h.$
- f 为满的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(A,C), gf = hf \Leftrightarrow g = h.$

Notation 1.1.4. 记 $f:A\rightarrowtail B$ 为单的 f. 记 $f:A\twoheadrightarrow B$ 为满的 f.

Def. 取 $f\in \operatorname{Hom}_{\mathcal{C}}(A,B)$, 称 f 为同构 (可逆) 若且仅若存在 $g\in \operatorname{Hom}_{\mathcal{C}}(B,A)$ 使得

$$gf = 1_A, \quad fg = 1_B.$$

此时称 A 与 B 为同构的.

Examples. 常见范畴如下

Ex1. $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 为单且满的 $\longleftarrow f$ 为同构, 反之未必

▼ Proof of the theorem

一方面, f 为同构时一定存在 f' 使得 $ff' = 1_B$, 从而

$$gf = hf \Leftrightarrow gff' = hff' \Leftrightarrow g = h.$$

得 f 为满的. 同理 f 为单的.

另一方面,考虑 Hausdorff 空间与连续映射所成的范畴,则嵌入 $\mathbb{Q} \to \mathbb{R}$ 为单且满的 (满足左右消去律,但并非同构).

Ex2. 对 $\mathcal{C} = \mathbb{S}ets$, 证明单态射即单射.

▼ Proof.

 $\forall f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$, f为单的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(C,A)$ 总有

$$g = h \Leftrightarrow fg = fh$$
.

f 为单时, 下证明 f 为单设. 若存在不同的 $x_1,x_2\in A$ 使得 $f(x_1)=f(x_2)$, 考虑 g 与 h 分别为将一切 C 中元素映至 x_1 与 x_2 的态射即得 f 非单, 矛盾.

f 为单射时, 下证明 f 为单的, 只需证 $fg=fh \implies g=h$. 若存在 $x_0 \in C$ 使得 $fg(x_0)=fh(x_0)$ 而 $g(x_0) \neq f(x_0)$,则 $g(x_0)$ 与 $h(x_0)$ 在 f 下的像相同, 矛盾!

Example. 称 (X, \leq) 为半序集若且仅若 X 满足自反性 $(x \leq x)$ 与传递性 $((x \leq y) \land (y \leq z) \implies x \leq z)$. 例如整数集关于整除偏序形成半序集, 至少 $-1 \leq 1$ 且 $1 \leq -1$

记范畴 \mathcal{C} 为半序集 X 与偏序关系 \leq 所成的范畴. 取

• $\mathsf{Obj}(\mathcal{C}) = X$.

$$ext{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise.} \end{cases}$$

• 态射满足复合关系 $i_z^y i_y^x = i_z^x$.

Example. 称 \mathcal{C} 为小范畴若且仅若 $\mathsf{Obj}(\mathcal{C})$ 为集合 (并非真类).

Def. 称 \mathcal{C}^{op} 为 \mathcal{C} 的反变范畴, 若且仅若

• $\mathsf{Obj}(\mathcal{C}^{op}) = \mathsf{Obj}(\mathcal{C})$.

• $\operatorname{Hom}_{\mathcal{C}^{op}}(A,B) = \operatorname{Hom}_{\mathcal{C}}(B,A)$. 特别地,

$$f\in \operatorname{Hom}
olimits_{\mathcal{C}}(B,A) \Leftrightarrow f^{op}\in \operatorname{Hom}
olimits_{\mathcal{C}^{op}}(A,B).$$

• $g^{op}f^{op} = (fg)^{op}$.

Proposition. $(\mathcal{C}^{op})^{op}=\mathcal{C}$.

▼ Proof of the proposition

显然 \mathsf{Obj}(\mathcal C)=\mathsf {Obj}((C^{op})^{op}). 注意到 f 与 (f^{op})^{op} 间存在自然对应, 故 (\mathcal C^{op})^{op}=\mathcal C.

Prop. $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ 为单 (满), 若且仅若 f^{op} 为满 (单).

▼ Proof of the proposition

注意到

$$(f^{op}g^{op}=f^{op}h^{op})\Leftrightarrow (gf)^{op}=(hf)^{op}\Leftrightarrow gf=hf.$$

反之亦然即可.

Example. 记 \mathbb{G} 为群范畴, 即 $\mathsf{Obj}(\mathbb{G})$ 为一切群, 态射为群同态. 则**满(单)态射等价于满(单)同态**.

▼ Proof of the theorem

单(满)同态视作集合运算时为单射与满射, 自然满足右(左)消去律, 从而时单(满)态射. 兹有断言: 群单态射为单同态. 反之, 若 $f\in \mathrm{Hom}_{\mathbb{G}}(G,H)$ 非单同态, 取

$$egin{aligned} g_1: &\ker(f)
ightarrow \ker(f), & x \mapsto x, \ g_2: &\ker(f)
ightarrow \{e\}, & x \mapsto e. \end{aligned}$$

易知 $f \circ g_1 = f \circ g_2 : \ker(f) \rightarrow \{e\}$, 但 $g_1 \neq g_2$.

兹有断言: 群满态射为满同态. 取 $f\in \mathrm{Hom}_\mathbb{G}(G,H)$ 为满态射, R:=H/f(G) 为右陪集分解, 记 S 为 $R\dot{\cup}\{\emptyset\}$ 的置换群. 显然 H 在 S 上的右作用给出浸入

$$g_1: H\hookrightarrow S, h\mapsto egin{pmatrix} f(G)h'\mapsto f(G)h'h,\ \{\infty\}\mapsto \{\infty\}. \end{pmatrix}$$

取对换 $\sigma \in S$, 其中 $f(G) \leftrightarrow \{\infty\}$. 定义 $g_2(x) := \sigma \circ g_1(x) \circ \sigma$. 显然 $g_1 \neq g_2$. 根据满态射定义, $g_1 \circ f = g_2 \circ f$.

注意到 $g_1\circ f(x)$ 与 $g_2\circ f(x)$ 为相同的置换若且仅若 $g_1\circ f(x)$ 与 σ 可交换, 若且 仅若 f(x) 固定 f(G). 从而 S 只能为交换群, 即 f(G)=H.

Example. 记 $_R\mathcal{M}$ 为左 R-模范畴, 即 $\mathsf{Obj}(_R\mathcal{M})$ 为一切左 R-模, 态射为左 R-模同态. 则 满(单)态射等价于满(单)同态.

▼ Proof of the theorem

同上,单(满)同态视作集合运算时为单射与满射,自然满足右(左)消去律,从而时单(满)态射.

反之, 若 $f \in \operatorname{Hom}_R(M,N)$ 非左 R-模的单同态, 取

$$g_1: \ker(f) o \ker(f), \quad x \mapsto x, \ g_2: \ker(f) o \{e\}, \qquad x \mapsto e.$$

则 $f\circ g_1=f\circ g_2: \ker(f)\mapsto \{e\}$,而 $g_1\neq g_2$. 反之,若 $f\in \operatorname{Hom}_R(M,N)$ 非左 R-模的满同态,取

$$egin{aligned} g_1: & N o N, & x \mapsto x, \ g_2: & N o N/\mathrm{im}(f), & x \mapsto x + \mathrm{im}(f). \end{aligned}$$

从而 $g_1 \circ f = g_2 \circ f : M \mapsto \{e\}$, 而 $g_1 \neq g_2$.

Example. 记 $\mathbb{R}ing$ 为环范畴, 即 $\mathsf{Obj}(\mathbb{R}ing)$ 为一切环, 态射为环同态. 则**单态射等价于单同态**; 但是, 满同态推出满态射, 而反之未然.

▼ Proof of the theorem

下仅例证对环范畴而言,满态射一般不蕴含满同态.

环 R 到分式域的嵌入为满态射. 例如 $f:R \to \operatorname{frac}(R), x \mapsto x$ 为满态射, $g_1,g_2:$ $\operatorname{frac}(R) \to S$ 满足 $g_1 \circ f = g_2 \circ f$. 显然 $g_i \circ f$ 对应唯一的 g_i (这也是分式域的泛性质), 从而 $g_1 = g_2$.

Def. 称 $I \in \mathsf{Obj}(\mathcal{C})$ 为起始元, 若 $\mathsf{Hom}_{\mathcal{C}}(I,X)$ 有且仅有一个元素, $\forall X \in \mathsf{Obj}(\mathcal{C})$.

Def. 称 $T \in \mathsf{Obj}(\mathcal{C})$ 为终末元, 若 $\mathsf{Hom}_{\mathcal{C}}(X,T)$ 有且仅有一个元素, $\forall X \in \mathsf{Obj}(\mathcal{C})$.

Def. 称 $Z \in \mathsf{Obj}(\mathcal{C})$ 为零元当且仅当其同为初始元与终末元.

Example. 单元集合为 $\mathbb{S}tes$ 中的终末元. $\mathbb{S}ets$ 中无初始元.

Example. 0 为 $\mathbb{A}G$ 中的零元; (\mathbb{R} , <) 中不含初始元与终末元.

Thm. \mathcal{C} 为含 0 元的范畴. 则

- 1. 对任意给定的零元 $x, y \in x$ 同构当且仅当 y 为零元.
- 2. 取 Z 为零元, 记 $\{0_{AZ}\}=\operatorname{Hom}_{\mathcal{C}}(A,Z),\{0_{ZB}\}=\operatorname{Hom}_{\mathcal{C}}(Z,B)$, 复合态射

$$A \stackrel{0_{AZ}}{\longrightarrow} Z \stackrel{0_{ZB}}{\longrightarrow} B.$$

与零元之选取无关.

▼ Proof of the theorem

对 **1.**, 取任意零元 Z 与 Z', (唯一地) 取 $f:Z\to Z'$, $g:Z'\to Z$. 由于 $fg=1_Z$, $gf=1_{Z'}$, 从而 $Z\cong Z'$. 相反地, 若 A 与零元 Z 同构, 则存在唯一的 $f:A\to Z$, $g:Z\to A$. 因此

$$\operatorname{Hom}_{\mathcal{C}}(C,A)=:\{gh\mid h:C o Z\}.$$

为一元集, 即 A 为终末元. 同理, A 为起始元.

对 **2.**, 任取 Z 与 Z', 构造如下交换图. 易见

$$0_{Z'B}0_{AZ'}=(0_{ZB}g)(f0_{AZ})=0_{ZB}(gf)0_{AZ}=0_{ZB}0_{AZ}.$$

Def. 对含有零元 Z 的范畴 \mathcal{C} , 记 $0_{AB}=0_{ZB}0_{AZ}$ 为 $\mathrm{Hom}_{\mathcal{C}}(A,B)$ 中的零态射.

Proposition. ${\cal C}$ 为有零元的范畴, 取 f:A o B, g:B o C. 若 f=0 或 g=0, 则 gf=0.

▼ Proof of the proposition

不妨设 Z 为零元, 则 f=0 时

$$gf = g0_{AB} = (g0_{ZB})0_{AZ} = 0_{ZC}0_{AZ} = 0_{AC}.$$

q=0 时

$$gf = 0_{BC}f = 0_{ZC}(0_{BZ}f) = 0_{ZC}0_{AZ} = 0_{AC}.$$

Definition. 记 $\{X_i\}_{i\in I}$ 为一族 \mathcal{C} 中以 I 为指标的对象, 称 X 为 $\{X_i\}_{i\in I}$ 的直积若且仅若存在一族投影态射 $p_i:X\to X_i$ 使得满足泛性质:

对任意 $Y\in \mathsf{Obj}(\mathcal{C})$,与态射 $f_i:Y\to X_i$,存在唯一的 $f:Y\to X$ 使得 $p_if=f_i$. 常记作 $(X,p_i)=:\prod_{i\in I}X_i$.

Prop. (X,p_i) 与 (X',p_i') 均为 $\{X_i\}_{i\in I}$ 之直积, 则 $X\cong X'$.

▼ Proof of the proposition

考虑态射 $f:X\to X'$, $g:X'\to X$. 根据直积性质得交换图.

态射 p_i 与 p_i' 满足 $p_i=p_i(gf)$, $p_i'=p_i'(fg)$. 由 唯一性知 $gf=1_X$, $fg=1_{X'}$. 从而 X 与 X' 之间存在同构.

Def. 记 $\{X_i\}_{i\in I}$ 为一族 $\mathcal C$ 中以 I 为指标的对象,称 X 为 $\{X_i\}_{i\in I}$ 的余直积若且仅若存在一族嵌入态射 $q_i:X_i\to X$ 使得满足泛性质:

对任意 $Y\in \mathsf{Obj}(\mathcal{C})$, 与态射 $g_i:X_i\to Y$, 存在唯一的 $g:X\to Y$ 使得 $gq_i=g_i$. 常记作 $(X,q_i)=:\prod_{i\in I}X_i$.

Prop. (X,q_i) 与 (X',q_i') 均为 $\{X_i\}_{i\in I}$ 之余直积, 则 $X\cong X'$.

▼ Proof of the proposition

同"直积在同构意义下唯一"之证明过程.

Prop. \mathcal{C} 中直积 (X,p_i) 等同于 \mathcal{C}^{op} 中余直积 (X,q_i) .

Thm. 记 \mathcal{C} 为含零元的范畴, 则

• 取 $\prod_{i \in I} X_i$,则对任意 $j \in I$,存在唯一的 $f_j: X_j o X$ 使得

$$p_if_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

此时 p_i 为满的.

• 取 $\coprod_{i\in I} X_i$,则对任意 $j\in I$,存在唯一的 $g_j:X o X_j$ 使得

$$g_jq_i=egin{cases} 1_{X_i}, & j=i,\ 0, & j
eq i. \end{cases}$$

此时 p_i 为单的.

▼ Proof of the theorem

定义

$$f^i_j: X_i
ightarrow X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

端详下交换图, 不难看出唯一的 f_i 与 g_i 即为所得.

❷链接

Example. 记半序关系所称的范畴 $\mathcal{C}=(\mathbb{R},\leq)$, 其中

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise.} \end{cases}$$

则
$$\prod_{i\in I} r_i = \inf\{r_i\}_{i\in I}$$
, $\coprod_{i\in I} r_i = \sup\{r_i\}_{i\in I}$.

▼ Proof

首先应保证 $\prod_{i \in I} r_i$ 与一切 r_i 可建立态射, 从而 $\prod_{i \in I} r_i \leq \inf\{r_i\}_{i \in I}$. 若 $\prod_{i\in I}r_i<\inf\{r_i\}_{i\in I}$,则任取 $r_-\in(\prod_{i\in I}r_i,\inf\{r_i\}_{i\in I})$,总有

 $\operatorname{Hom}_{\mathcal{C}}(r_-,\prod_{i\in I}r_i)$ 为空. 因此 r_- 到任意 r_i 的态射为空, 矛盾. 余直积同理.

Example. 正整数整除关系所称的范畴 $\mathcal{C}=(\mathbb{Z}_{\geq 1},|)$ 中, 直积为数组的最大公因数, 余直积为数组的最小公倍数.

加性范畴

Def. 称 \mathcal{C} 为预加性范畴若且仅若其包含以下性质:

- 1. 包含零元.
- 2. 一切 $\operatorname{Hom}_{\mathcal{C}}(A,B)$ 均为加法 Abel 群.
- 3. 在定义完备时, 分配律成立.

Def. 称预加性范畴为加性范畴若且仅若其余直积均有限.

Example. $\mathbb{S}ets$ 不是加性范畴. $\mathbb{A}G$ 为加性范畴.

Thm. 记 $\{X_i\}_{i=0}^n\subset \mathsf{Obj}(\mathcal{C}), q_i\in \mathrm{Hom}_{\mathcal{C}}(X_i,X_0)$. 则

1. $(X,q_i)=\coprod_{i=1}^n X_i$ 当且仅当对任意 $j\in\{1,2,\ldots,n\}$ 总有唯一的 $p_j:X\to X_i$ 使得

$$p_jq_j=egin{cases} 1_{X_i}, & j=i,\ 0, & j
eq i. \end{cases}$$

- 2. 上述 p_i 使得 $(X, p_i) = \prod_{i=1}^n X_i$.
- **▼** Proof of the theorem

定义

$$f^i_j: X_i
ightarrow X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

 \Rightarrow :根据余直和之定义,存在唯一的 $p_j:X o X_j$ 使得 $p_jq_i=f_j^i$. 注意到

$$\left(\sum_{j=1}^n q_j p_j
ight)q_i = \sum_{j=1}^n (q_j)(p_j q_i) = q_i, \quad orall i \in I.$$

 \Leftarrow : $\forall Y \in \mathsf{Obj}(\mathcal{C})$, 取态射 $f_i: X_i \to Y$, 定义 $f: X \to Y$ 为 $f:=\sum_{j=1}^n f_j p_j$. 注意到

$$fq_i = \sum_{j=1}^n f_j(p_jq_i) = f_i, \quad orall i = 1, 2, \cdots, n.$$

兹有断言: 存在唯一的 f:X o Y 使得 $fq_i=f_i$. 今取 g:X o Y 使得 $gq_i=f_i$,则

$$g=1_X=g\sum_{j=1}^n q_j p_j=\sum_{j=1}^n (gq_j)p_j=\sum_{j=1}^n f_j p_j=f.$$

继而证明上述 p_i 使得 $(X,p_i)=\prod_{i=1}^n X_i$. 对任意态射 $h_i:Y o X_i$, 记 $h=\sum_{j=1}^n q_j h_j$, 则

$$p_i h = \sum_{j=1}^n (p_i q_j) h_j = h_i.$$

从而存在 h 使得 $p_i h = h_i$. 今证明 h_i 之唯一性, 若 $h': Y \to X$ 同样满足 $p_i h' = h_i$, 则

$$h' = 1_X \, h' = \left(\sum_{j=1}^n q_j \, p_j
ight) h' = \sum_{j=1}^n q_j \, (p_j \, h') = \sum_{j=1}^n q_j \, h'_j = h.$$

是以上述 p_i 使得 $(X, p_i) = \prod_{i=1}^n X_i$.

Prop. 若 \mathcal{C} 为加性范畴, 则 \mathcal{C}^{op} 亦然.

▼ Proof

取 $\{X_i\}_{i=1}^n\subset \mathsf{Obj}(\mathcal{C})$,考虑 $(X,p_i^{op})=\coprod_{i=1}^n X_i$ 即可.

Abel 范畴

Def. 称 $f:A \to B$ 为加性范畴 $\mathcal A$ 中的态射, 定义

• $\ker(f)$ 为态射 $i:K\to A$, 满足 fi=0. 同时对于 $\forall g:X\to A$ 使得 fg=0, 存在唯一的 $\theta:X\to K$ 使得 $g=i\theta$.

• $\operatorname{coker}(f)$ 为态射 $\pi:B\to C$ 使得 $\pi f=0$. 同时对于 $\forall g:B\to X$ 使得 gf=0, 存在唯一的 $\theta:C\to X$ 使得 $g=\theta\pi$.

换言之, 使得如下图交换

❷链接

Prop. $i^{op} = \operatorname{coker}(f^{op})$, $\pi^{op} = \ker(f^{op})$.

Prop. ker(f) 与 coker(f) 唯一.

▼ Proof

记 $i:K \to A$ 与 $i':K' \to A$ 均为 $\ker(f)$,则有交换图

从而 $\theta\theta'=1_K$, $\theta'\theta=1_{K'}$, 故 $K\cong K'$.

Prop. ker(0) 与 coker(0) 为同构映射.

▼ Proof

注意到如下交换图

其中存在单态射 A o K 与 K o A且其复合为 1_A , 故

- $i:A\to K$,
- $\pi: B \to C$.

均为同构.

Thm. $f:A\to B$ 为加性范畴 $\mathcal A$ 中的态射.

- 1. 若 $\ker(f)$ 存在,则 f 为单的若且仅若 $\ker(f) = 0$.
- 2. 若 $\operatorname{coker}(f)$ 存在, 则 f 为满的若且仅若 $\operatorname{coker}(f) = 0$.

▼ Proof of the theorem

若 $\ker(f)=0$,取 $g,h:X\to A$ 使得 fg=fh,则 f(g-h)=0. 从而存在唯一的 $\theta:X\to K$ 使得 g-h=0, $\theta=0$. 因此 g=h,从而 f 为单的.

反之, f 为单的, 则 fi=0 表明 f=0.

Def. 任取 $B\in \mathsf{Obj}(\mathcal{A})$,考虑态射 $\{(A,f)\mid f:A\to B\}$. 称 (A,f) 与 (A',f') 等价,若且仅若存在同构 $\theta:A\to A'$ 使得 $f'\theta=f$.

Def. 等价类 [(A, f)] 为 B 的子对象.

Example. B 的子对象可能仅有 $[(B,1_B)]$.

Def. 任取 $B \in \mathsf{Obj}(\mathcal{A})$,考虑态射 $\{(f,C) \mid f:B \to C\}$. 称 (f,C) 与 (f',c') 等价,若且仅若存在同构 $\theta:C \to C'$ 使得 $\theta f = f'$.

Def. 等价类 [(f,C)] 为 B 的商对象.

Def. 称加性范畴为 Abel 范畴, 若且仅若

- 1. 一切态射存在 ker 与 coker.
- 2. 一切单态射为其 coker 的 ker, 一切满态射为其 ker 之 coker.
- 3. 任意态射 α 可被分解为 $\lambda \sigma$, 其中 σ 为满的且 λ 为单的.

Example. $\mathbb{A}G$ 为 Abel 范畴.

Def. 称 $\mathbb{F}AG$ 为自由 Abel 群范畴,当且仅当其态射为群同态,对象为自由 Abel 群 (即有基底,亦即对 $g \neq e$ 总有 $o(g) = \infty$).

Example. $\mathbb{F}AG$ 并非 Abel 范畴, 至少商群并非都是自由 Abel 群.

▼ Proof of the theorem

记 $A=\langle a\rangle$, $B=\langle b\rangle$ 为自由 Abel 群, 定义 $f:A\to B$, f(na)=2nb, $\forall n\in\mathbb{Z}$. 显然 f 为单态射但非同构. 若 $\mathbb{F}AG$ 为 Abel 范畴, 今取 $\pi:B\to C$ 为 f 之 coker, 其中 C 为自由 Abel 群, 则 $0=\pi f(a)=\pi(2b)=2\pi(b)\in C$. 由于 C 自由, 从而 $\pi(b)=0$. 是故 $\pi\equiv 0$, f 为同构, 导出矛盾.

Thm. 若 Abel 范畴中态射同为单与满的. 则为同构.

▼ Proof of the theorem

取 $\alpha \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 单且满, 今证明 α 为同构. 注意到

显然 $i = \ker(\alpha)$ 等价于 $i = \ker(\sigma)$, 即对任意 $g: X \to A$ 使得 $\alpha g = 0$, 存在唯一的 $\theta: X \to K$ 使得 $i\theta = g$; 而 $\lambda \sigma g = 0 = \lambda 0$, 根据单态射性质知 $\sigma g = 0$, 进而 $\ker(\alpha)$ 与 $\ker(\sigma)$ 等价.

同理, 由 $h\lambda\sigma = 0\sigma \Leftrightarrow h\lambda = 0$ 可知 $\operatorname{coker}(\alpha)$ 与 $\operatorname{coker}(\lambda)$ 等价. 由于 $\lambda = \ker(0)$, $\sigma = \operatorname{coker}(0)$ 均为同构, 则 $\alpha = \lambda\sigma$ 为同构.

Def. 记 $\alpha:A\to B$ 为 Abel 范畴中的态射, 记像 $\operatorname{im}(\alpha):=\ker(\operatorname{coker}(\alpha))$.

Prop. lpha 的像无非分解 $lpha=\lambda\sigma$ 中的 \lambda.

▼ Proof

注意到

$$\ker(\operatorname{coker}(\alpha)) = \ker(\operatorname{coker}(\lambda))$$
 $= \ker(\pi)$
 $= \lambda.$

Def. 称 $A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$ 为 Abel 范畴中在 B 处正合的列, 若且仅若 $\operatorname{im}(\alpha) = \ker(\beta)$.

Def. 左正合列具有形式 $0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$.

Def. 右正合列具有形式 $A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C \to 0$.

Def. 正合列为左正合且右正合的列.

函子

Def. 称 $F: \mathcal{C} \to \mathcal{D}$ 为范畴间的共变函子. 若且仅若满足

F1. $\forall C \in \mathsf{Obj}(\mathcal{C}), FC \in \mathsf{Obj}(\mathcal{D}).$

F2. $\forall C \in \mathsf{Obj}(\mathcal{C}), F(1_{\mathcal{C}}) = 1_{FC}.$

F3. 若 $f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, 则 $Ff \in \operatorname{Hom}_{\mathcal{D}}(FC_1, FC_2)$.

F4. $\forall f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, $\forall g \in \operatorname{Hom}_{\mathcal{C}}(C_2, C_3)$, F(gf) = FgFf.

Def. 称 $F:\mathcal{C}\to\mathcal{D}$ 为范畴间的共变函子, 若且仅若满足 F1-2. 与

F3'. 若 $f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, 则 $Ff \in \operatorname{Hom}_{\mathcal{D}}(FC_2, FC_1)$.

F4'. $\forall f \in \operatorname{Hom}_{\mathcal{C}}(C_1,C_2), \forall g \in \operatorname{Hom}_{\mathcal{C}}(C_2,C_3), F(gf) = FfFg.$

Remark. 通常定义函子为共变或反变的.

Example. $orall A \in \mathsf{Obj}(\mathcal{C})$, 定义 $F: \mathcal{C} o \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Obj}(\mathcal{C}), FB = \mathrm{Hom}_{\mathcal{C}}(A, B).$
- $\forall \tau: B \to B'$, $F\tau: FB \to FB'$ 满足 $(F\tau)f = \tau f$ 对任意 $f \in FB$ 成立.

此处 F 为共变函子.

同理, $\forall A \in \mathsf{Obj}(\mathcal{C})$, 定义 $G: \mathcal{C} \to \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Obj}(\mathcal{C}), GB = \mathsf{Hom}_{\mathcal{C}}(B, A).$
- $\forall \tau: B \to B', G\tau: GB' \to GB$ 满足 $(G\tau)f = f\tau$ 对任意 $f \in GB'$ 成立.

此处 F 为反变函子.

Example. 置 $\mathcal{C}=\mathbb{G}$, $\mathcal{D}=\mathbb{A}G$. 对任意群 G, 定义 $F:\mathcal{C}\to\mathcal{D}$ 满足 FG=G/G', 其中 G' 为换位子群. 则同态 $f:G\to H$ 诱导

此处 F 为共变函子.

Example. 忘却函子 $F:\mathbb{R}ing \to \mathbb{A}b$ 满足 $F(R,+,\cdot) \to (R,+), F\varphi = \varphi$. Def. 称范畴 \mathcal{C} 与 \mathcal{D} 间的共变函子 $F:\mathcal{C} \to \mathcal{D}$

• 为满的, 若且仅若 $\forall A, B \in \mathsf{Obi}(\mathcal{C})$, 总有满射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实的, 若且仅若 $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, 总有单射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实浸入, 若且仅若 F 为满的, 忠实的, 且作用在对象上为一一的.

Def. 称加性范畴 \mathcal{C} 与 \mathcal{D} 间的函子 $F:\mathcal{C}\to\mathcal{D}$ 为加性函子, 若且仅若

$$F(f+g)=Ff+Fg, \quad orall f,g\in \operatorname{Hom}_{\mathcal{C}}(A,B).$$

Def. 称 Abel 范畴 \mathcal{C} 与 \mathcal{D} 间的加性共变函子 $F:\mathcal{C}\to\mathcal{D}$ 为

- 半正合的,若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C(\to 0)$ 推出正合列 $FA\to FB\to FC$.
- 左正合的,若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C(\to 0)$ 推出正合列 $0 \to FA \to FB \to FC$.
- 右正合的, 若且仅若 $\mathcal C$ 中正合列 $(0 \to)A \to B \to C \to 0$ 推出正合列 $FA \to FB \to FC \to 0$.
- 正合的, 若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C \to 0$ 推出正合列 $0 \to FA \to FB \to FC \to 0$.

此处考虑或忽视括号中内容均可, 同为正合性之等价定义.

关于 Abel 范畴上加性反变函子的正合性之序数同理, 此处从略.

自然变换

Def. 取 $E,F:\mathcal{A}\to\mathcal{B}$ 间的共变函子, 自然变换 $\tau:E\to F$ 为一族映射满足 $\tau_A:EA\to FA, \forall A\in \mathsf{Obj}(\mathcal{A})$, 使得对任意 $f:A\to A'$ 总有交换图

Def. 若自然变换 τ_A 对 $\forall A \in \mathsf{Obj}(A)$ 均为同构, 则称 τ 为自然同构, 记作 $E \cong F$.

Example. 记 \mathcal{V} 为域 k 上线性空间所成之范畴, $\forall V \in \mathsf{Obj}(\mathcal{V})$, 记 $V^* := \mathrm{Hom}_k(A,k)$ 为对偶, 同理有 V^{**} . 定义共变函子 $F: \mathcal{V} \to \mathcal{V}$ 满足

- $FV = V^{**}$, $\forall V \in \mathsf{Obj}(\mathcal{V})$.
- $Ff=f^{**}:=(f^*)^*$, $orall f\in \operatorname{Hom}_k(V_1,V_2)$.

定义自然变换 $au_V:V o V^{**}$ 为

$$au_V(x)(heta)=: heta(x), \quad orall x\in V, heta\in V^*.$$

❷链接

容易验证右侧交换图. 从而 au 为 $1_{\mathcal{V}}$ 到 F 的自然变换.

▼ Proof of the theorem

实际上, 对任意 $x\in V_1$, $\theta\in V_2^*$, 总有 $au_{V_2}(1_{\mathcal{V}}f)(x)(\theta)=\theta f(x)$. 注意到 f^* 诱导映射

$$f^*: V_2^* o V_1^*, (\theta: V_2 o k) \mapsto \theta f.$$

从而 $(f^*)^* au_{V_1}(x)(heta) = au_{V_1}(x) f^* heta = (f^* heta) x = heta f(x)$.

$\mathbb{S}ets$	set	map
-----------------	-----	-----

从而根据余直积之定义, 存在唯一的 $h_i:X\to X$ 使得 $hq_i=q_i$, 从而 $h_i=1_X=\sum_{i=1}^n q_i p_i$.