Introdução à Análise de dados em FAE

(17/05/24)

EXERCÍCIOS - CINEMÁTICA RELATIVÍSTICA

Professores: Bruno Moreira, Sandro Fonseca, Maurício Thiel, Eliza Melo Name: Isis Prazeres Mota

EXERCICIO 3

Representação dos 4-momentos

Em unidades naturais (onde $c = \hbar = 1$), os 4-momentos para o fóton e para o elétron antes e depois da colisão são representados como:

- Antes da colisão:
 - Fóton: $P_{\gamma} = (\frac{h}{\lambda}, \frac{h}{\lambda}, 0, 0)$
 - Elétron: $P_m = (m, 0, 0, 0)$
- Após a colisão:
 - Fóton dispersado: $P'_{\gamma} = (\frac{h}{\lambda'}, \frac{h}{\lambda'} cos\theta, \frac{h}{\lambda'} sin\theta, 0)$
 - Elétron dispersado: P_m' (não especificado, mas calculável se necessário)

Conservação do 4-momento

A conservação do 4-momento afirma que:

$$P_{\gamma} + P_{m} = P_{\gamma}' + P_{m}'$$

Quadrando a equação de conservação do 4-momento

Quadrando ambos os lados da equação de conservação do 4-momento:

$$(P_{\gamma} + P_m - P_{\gamma}')^2 = P_m'^2$$

$$P_{\gamma}^2 + P_m^2 + P_{\gamma}'^2 + 2P_m(P_{\gamma} - P_{\gamma}') - 2P_{\gamma}P_{\gamma}') = P_m'^2$$

Como $P_{\gamma}^2=0$ e $P_{\gamma}^{'2}=0$ (pois o fóton é massless), e $P_m^2=m^2$ e $P_m^{'2}=m^2$, simplificamos para:

$$\begin{split} m^2 + 2m(\frac{h}{\lambda} - \frac{h}{\lambda'} - 2\frac{h^2}{\lambda\lambda'}(1 - \cos\theta) &= m^2 \\ 2m(\frac{h}{\lambda} - \frac{h}{\lambda'} - 2\frac{h^2}{\lambda\lambda'}(1 - \cos\theta) &= 0 \\ \lambda' &= \lambda + \frac{h}{mc}(1 - \cos\theta) \end{split}$$

Conclusão

Esta fórmula final para o efeito Compton em unidades naturais mostra a mudança no comprimento de onda λ' do fóton em função do ângulo de dispersão θ , e ela corresponde à fórmula derivada diretamente do princípio de conservação do 4-momento. Assim, mesmo com a representação detalhada, a formulação base em unidades naturais (com $c=\hbar=1$) acaba simplificando bastante a expressão, mantendo a essência física do fenômeno.

EXERCICIO 5

Considerando um processo onde duas partículas com quadrimomentos p_1 e p_2 colidem e produzem duas partículas com quadrimomentos p_3 e p_4 .

Definição das Variáveis

As variáveis de Mandelstam são definidas como:

- $s = (p_1 + p_2)^2$
- $t = (p_1 p_3)^2$
- $u = (p_1 p_4)^2$

Prova da Relação

Vamos expandir cada uma dessas definições:

1. Expansão de s:

$$s = (p_1 + p_2)^2 = (p_1^2 + 2p_1 \cdot p_2 + p_2^2)^2$$

Como $p_i^2 = m_i^2$ (em unidades onde c = 1), então:

$$s = m_1^2 + 2p_1 \cdot p_2 + m_2^2$$

2. Expansão de t:

$$t = (p_1 - p_3)^2 = p_1^2 - 2p_1 \cdot p_3 + p_3^2$$

$$t = m_1^2 - 2p_1 \cdot p_3 + m_3^2$$

3. Expansão de u:

$$u = (p_1 - p_4)^2 = p_1^2 - 2p_1 \cdot p_4 + p_4^2$$

$$u = m_1^2 - 2p_1 \cdot p_4 + m_4^2$$

Soma de s + t + u

Agora somamos todas as expressões acima:

$$s + t + u = (m_1^2 + 2p_1 \cdot p_2 + m_2^2) + (m_1^2 - 2p_1 \cdot p_3 + m_3^2) + (m_1^2 - 2p_1 \cdot p_4 + m_4^2)$$

Agrupando os termos:

$$s + t + u = 3m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4 + m_4^2$$

Usando Conservação do Momento

Pela conservação do momento, temos $p_1 + p_2 = p_3 + p_4$. Multiplicando ambos os lados por p_1 e usando a igualdade dos produtos escalares, chegamos a:

$$p_1 \cdot (p_1 + p_2) = p_1 \cdot (p_3 + p_4)$$

$$p_1 \cdot p_1 + p_1 \cdot p_2 = p_1 \cdot p_3 + p_1 \cdot p_4$$

$$2p_1 \cdot p_2 = 2p_1 \cdot p_3 + 2p_1 \cdot p_4$$

Quando inserido de volta na soma de s + t + u observa-se que os termos envolvendo os produtos escalares se cancelam:

$$s + t + u = 3m_1^2 + m_2^2 + m_3^2 + m_4^2$$

Devido à simetria do problema (todos os quadrimomentos devem ser tratados igualmente e conservação do momento se aplica a todas as partículas), temos:

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

Essa prova depende da simetria e da conservação do momento e energia, que é fundamental na física de partículas e garante a validade das relações de Mandelstam.

EXERCICIO 7

a): Calculando a energia no centro de massa

A energia no centro de massa \sqrt{s} em um colisor com partículas de energias E_e (elétrons) e E_p (prótons) é dada pela fórmula:

$$\sqrt{s} = \sqrt{4E_e E_p}$$

Substituindo os valores dados:

$$\sqrt{s} = \sqrt{4 \times 27.6 GeV \times 920 GeV} \sqrt{s} = \sqrt{101376 GeV}^2 \approx 318 GeV$$

O valor calculado de aproximadamente 318GeV está muito próximo dos 320 GeV mencionados na questão, justificando que a energia no centro de massa é cerca de 320 GeV.

No referencial do centro de massa (CM), a energia total do sistema é distribuída igualmente entre os dois feixes, logo cada feixe terá energia $\frac{\sqrt{s}}{2}$:

$$E_e^{CM} = E_p^{CM} = \frac{\sqrt{s}}{2} = \frac{320 GeV}{2} = 160 GeV$$

b): Energia do elétron no referencial de repouso do próton No referencial de repouso do próton, podemos usar a invariância da variável de Mandelstam s. O invariante s também pode ser expresso por:

$$s = (p_e + p_p)^2$$

No referencial de repouso do próton, $p_p = (m_p, 0)$ onde m_p é a massa de repouso do próton, aproximadamente 0.938 GeV.

Usando a invariância de s:

$$s = m_p^2 + 2E_e^{lab}m_p + (E_e^{lab})^2 - |\vec{p_e}|^2$$

Como E_e^{lab} muito maior que m_p e sabendo que $|\vec{p_e}|^2 \approx E_e^{lab}$ (para elétrons quase sem massa relativisticamente):

$$s \approx 2E_e^{lab}m_p$$

Resolvendo para

$$E_e^{lab} \approx \frac{s}{2m_p} = \frac{(320GeV)^2}{2 \times 0.938GeV} \approx 54659GeV$$

Portanto, a energia do elétron no referencial de repouso do próton seria aproximadamente 54000 GeV, confirmando o que é dado na questão.

EXERCICIO 13

Para resolver o problema do decaimento de um píon em repouso utilizando quadrivetores, precisamos aplicar a conservação do 4-momento. O decaimento pode ser descrito como:

$$\pi^+ \rightarrow \mu^+ + v_\mu$$

onde π^+ é o píon, μ^+ é o múon e v_{μ} é o neutrino muônico.

Configuração Inicial

Quando o píon está em repouso, seu quadrivetor momento p_{π} é simplesmente:

$$p_{\pi} = (m_{\pi}c, \overrightarrow{0})$$

Aqui, m_{π} é a massa do píon e c
 é a velocidade da luz. A componente espacial é zero porque o píon está em repo
uso.

Conservação do 4-Momento

A conservação do 4-momento requer que:

$$p_{\pi} = p_{\mu} + p_{v}$$

onde p_{μ} e p_{v} são os quadrivetores momento do múon e do neutrino, respectivamente.

Componentes dos Quadrivetores

Os quadrivetores momento para o múon e o neutrino podem ser expressos como:

$$p_{\mu} = (E_{\mu}/c, \overrightarrow{p_{\mu}})$$
$$p_{v} = (E_{v}/c, \overrightarrow{p_{v}})$$

Condições Específicas do Decaimento

Sabemos que a massa do neutrino é muito pequena e geralmente negligenciada, então assumimos $E_v \approx |\vec{p_v}|c$ e para o múon, $E_\mu = \sqrt{|\vec{p_\mu}|^2c^2 + m_\mu^2c^4}$

Conservação de Energia e Momento

A conservação da energia implica:

$$m_{\pi}c^2 = E_{\mu} + E_{\nu}$$

A conservação do momento implica:

$$\vec{0} = \vec{p_u} + \vec{p_v}$$

Logo, $\vec{p_{\mu}} = -\vec{p_{v}}$ e a magnitude dos momentos deve ser igual, $|\vec{p_{\mu}}| = |\vec{p_{v}}|$.

Relações e Resolução

Substituindo a energia do neutrino e rearranjando a equação da energia, temos:

$$m_{\pi}c^2 = \sqrt{|\vec{p_{\mu}}|^2c^2 + m_{\mu}^2c^4} + |\vec{p_{\mu}}|c^4$$

Podemos resolver essa equação para $|\vec{p_{\mu}}|$, que é a magnitude do momento do múon. Uma vez obtido $\vec{p_{\mu}}$, podemos encontrar a energia do múon, E_{μ} , e então calcular a velocidade v_{μ} usando:

$$v_{\mu} = \frac{|\vec{p_{\mu}}|c^2}{E_{\mu}}$$

Essa solução pode requerer o uso de métodos numéricos ou uma aproximação analítica, dependendo das massas específicas dadas para m_{π} e m_{μ} . Geralmente, a gente substitui as massas conhecidas dessas partículas e resolve para $|\vec{p_{\mu}}|$ numericamente ou fazemos uma expansão de série se m_{μ} fosse significativamente menor do que m_{π} .

EXERCICIO 14

Para determinar a energia de limiar da reação $p+p\to p+p+p+\overline{p}$, onde um próton de alta energia atinge um próton em repouso criando um par próton-antipróton, podemos utilizar a conservação do 4-momento e a relação para a energia mínima necessária.

Configuração Inicial No referencial do laboratório, um próton está em repouso e outro próton está se movendo com alta energia. Vamos denotar:

- $p_1 = (E_1/c, \overrightarrow{p_1})$ para o próton incidente
- $p_2 = (m_p c, \vec{0})$ para o próton em repouso (onde m_p é a massa de repouso do próton)

Condição de Limiar

Na energia de limiar, as partículas produzidas (dois prótons e um antipróton adicionais) estão todas em repouso no centro de massa do sistema. Isso significa que a energia cinética mínima é convertida apenas para a criação das partículas, sem energia cinética residual.

Energia Total e Momento

No centro de massa, a energia total E_{total} é a soma das energias dos prótons. No referencial do laboratório, isso é:

$$E_{total} = E_1 + m_p c^2$$

O 4-momento total inicial é:

$$P = p_1 + p_2 = (\frac{E_1}{c} + m_p c, \overrightarrow{p_1})$$

Estado Final

No estado final, queremos que as partículas estejam em repouso no centro de massa. Portanto, a energia total no centro de massa deve ser igual à massa total das partículas em repouso:

$$E_{cm} = 4m_p c^2$$

Relação entre E_{total} e E_{cm}

A energia no centro de massa E_{cm} pode ser relacionada ao 4-momento total pelo invariante de Minkowski:

$$E_{cm}^2 = P^2 c^2 = (\frac{E_1}{c} + m_p c)^2 - |\vec{p_1}|^2 c^2$$

Sabemos que a energia do próton incidente é $E_1 = \sqrt{|\vec{p_1}|^2 c^2 + m_p^2 c^4}$. Substituindo isso na equação anterior:

$$(\sqrt{|\vec{p_1}|^2 + m_p c^2})^2 - |\vec{p_1}|^2 c^2 = 16m_p^2 c^4$$

Solução para $|\overrightarrow{p_1}|$

Resolvendo para $|\vec{p_1}|$ usando a equação quadrática, chegamos à condição de limiar onde o próton incidente deve ter energia suficiente para que $E_{cm}=4m_pc^2$. Simplificando a equação acima e resolvendo para E_1 diretamente, temos:

$$E_1 = \sqrt{(4m_pc)^2 - (2m_pc)^2} = \sqrt{12m_p^2c^2} = 2m_pc\sqrt{3}$$

Aqui, $2m_p c\sqrt{3}$ é a energia cinética do próton incidente mais sua energia de repouso para atingir a condição de limiar. Assim:

$$E_{kinetica,1} = 2m_p c(\sqrt{3} - 1)$$

Este é o cálculo para a energia de limiar necessária para que a reação ocorra com as partículas no estado final estando em repouso no centro de massa.