

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low R_{DS(ON)}

Product Summary

BVDSS	RDSON	ID
-100V	22 mΩ	-80 A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO220AB Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	-100	V	
V _G s	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	-80	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	-41	Α	
I _{DM}	Pulsed Drain Current ²	-260	Α	
EAS	Single Pulse Avalanche Energy ³		mJ	
I _{AS}	Avalanche Current		Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	250	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	ů	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
ReJA	Thermal Resistance Junction-Ambient ¹		62	°C/W
Reuc	Thermal Resistance Junction-Case ¹		0.5	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V., I _D =-250uA	-100			V
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA				V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-15A		22	25	mΩ
R _{DS(ON)}		V _{GS} =-4.5V , I _D =-3A				
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	-2	-3	-4	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -250uA				mV/°C
l	I _{DSS} Drain-Source Leakage Current	V _{DS} =-100V , V _{GS} =0V , T _J =25°C			1	uA
IDSS		V _{DS} =-100V, V _{GS} =0V , T _J =100°C				uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
Qg	Total Gate Charge			76		
Q _{gs}	Gate-Source Charge	V _{DS} =-30V , V _{GS} =-10V , I _D =-3A		13		nC
Q_{gd}	Gate-Drain Charge			12.4		
T _{d(on)}	Turn-On Delay Time			13		
Tr	Rise Time	V_{GS} =-10V, V_{DD} =-50V, R_{L} =0.75 Ω , R_{GEN} =3 Ω I_{D} =-15A		51		
T _{d(off)}	Turn-Off Delay Time			177		ns
T _f	Fall Time			82		
C _{iss}	Input Capacitance	V _{DS} =-50V , V _{GS} =0V , f=1MHz		4200		
C _{oss}	Output Capacitance			536		pF
C _{rss}	Reverse Transfer Capacitance			52		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			-80	A
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-15A , T _J =250			-1.2	V
t _{rr}	Reverse Recovery Time	IF=-15A , di/dt=100A/μs ,		110		nS
Q _{rr}	Reverse Recovery Charge	T _J = 2 5 C		590		nC

^{a1}: Repetitive rating; pulse width limited by maximum junction temperature

Typ. output characteristics $I_{\mathrm{D}}{=}f(V_{\mathrm{DS}})$

P-Ch 100V Fast Switching MOSFETs

Typ. drain-source on resistance $R_{DS(on)} = f(I_D)$

Typ. transfer characteristics $I_D = f(V_{\rm GS})$

Drain-source on-state resistance

$\begin{array}{c} \textbf{Drain-source breakdown voltage} \\ V_{BR(DSS)} = f(T_i); \ I_D = -250 uA \end{array}$

Typ. capacitances

Power Dissipation

Maximum Drain Current

Safe operating area ${}_{\text{-}I_D} = f({}_{\text{-}}V_{DS})$

Body Diode Forward Voltage Variation

Max. transient thermal impedance

Test Circuit

P-Ch 100V Fast Switching MOSFETs

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Mechanical Dimensions for TO-220

OMMON DIMENSIONS

	MM			
SYMBOL	MIN	MAX		
Α	9.70	10.30		
В	3.40	3.80		
С	8.80	9.40		
D	1.17	1.47		
E	2.60	3.50		
F	15.10	16.70		
G	19.55MAX			
Н	2.54REF			
I	0.70	0.95		
J	9.35	11.00		
K	4.30	4.77		
L	1.20	1.45		
М	0.40	0.65		
N	2.20	2.60		