

DAOS beyond Persistent Memory 4th Workshop on Heterogeneous Memory Systems (HMEM)

Full ISC23 IXPUG Workshop Paper: https://doi.org/10.1007/978-3-031-40843-4 26

Michael Hennecke – Intel Corporation

17-Nov-2023

DAOS beyond Persistent Memory

Compute Nodes

DAOS Backend using Persistent Memory

DAOS Backend using Volatile Memory

New DAOS Backend Stack Layering

VOS = Versioning Object Store

VEA = Versioned Extent Allocation

BIO = Blob I/O

DTX = DAOS Transaction

UMEM = Unified Memory

PMDK = Persistent Memory Dev Kit

SPDK = Storage Performance Dev Kit

WAL = Write Ahead Log

bmem = Blob Memory allocator

Changes isolated to a few layers

DAOS Servers on 2nd and 3rd Gen Intel Xeon SP

DAOS Server Design Options for 4th Gen Xeon SP

Performance Expectations for Optane 200 PMem

1x PMem device bandwidth:

- Read: 7.45 GB/s = 6.93 GiB/s (256B xfers)
- Write: 2.25 GB/s = 2.06 GiB/s (256B xfers)
- Read: 1.86 GB/s = 1.73 GiB/s (64B xfers)
- Write: 0.56 GB/s = 0.52 GiB/s (64B xfers)

With 8x PMem per CPU/DAOS engine:

- Read: 8x 6.93 GiB/s = 55.4 GiB/s (256B xfers)
- Write: 8x 2.06 GiB/s = 16.5 GiB/s (256B xfers)
- Read: 8x 1.73 GiB/s = 13.8 GiB/s (64B xfers)
- Write: 8x 0.52 GiB/s = 4.2 GiB/s (64B xfers)

https://www.intel.com/content/www/us/en/products/docs/memorystorage/optane-persistent-memory/optane-persistent-memory-200-seriesbrief.html

Product Family	Intel® Optane™ Persistent Memory 200 Series			
Compatible Processor	3rd Gen Intel® Xeon® Scalable processors on 2-socket and 4-socket platforms			
Form Factor		Persistent Memory Module		
SKU*	128 GB	256 GB	512 GB	
User Capacity*	126.7 GB	253.7 GB	507.7 GB	
Platform Capacities	4S systems: 3 TB PMem + 1.5 TB DRAM per socket (4.5 TB total) per socket 2S systems: 4TB PMem + 2 TB DRAM per socket (6 TB total) per socket			
Bandwidth 100% Read 15W 256B	7.45 GB/s	8.10 GB/s	7.45 GB/s	
Bandwidth 67% Read; 33% Write 15W 256B	4.25 GB/s	5.65 GB/s	4.60 GB/s	
Bandwidth 100% Write 15W 256B	2.25 GB/s	3.15 GB/s	2.60 GB/s	
Bandwidth 100% Read 15W 64B	1.86 GB/s	2.03 GB/s	1.86 GB/s	
Bandwidth 67% Read; 33% Write 15W 64B	1.06 GB/s	1.41 GB/s	1.15 GB/s	
Bandwidth 100% Write 15W 64B	0.56 GB/s	0.79 GB/s	0.65 GB/s	
DDR Frequency	Up to 2666 MT/s (4-socket systems); Up to 3,200 MT/s (2-socket systems)			

Performance Expectations for a gen4 NVMe Disk

- 1x NVMe disk 4kiB random IOPS:
 - Read: 780000/s * 4kiB = 2.98 GiB/s
 - Write: 118000/s * 4kiB = 0.45 GiB/s
- 4x NVMe disks 4kiB random IOPS:
 - Read: 4x 2.98 GiB/s = 11.9 GiB/s
 - Write: $4 \times 0.45 \text{ GiB/s} = 1.8 \text{ GiB/s}$
- Latency of a single I/O operation has an impact on required queue depth to achieve good bandwidth
 - Optane SSDs perform better than NAND for low qdepth = low level of parallelism...

https://ark.intel.com/content/www/us/en/ark/products/202705/intel-ssd-d7p5500-series-3-84tb-2-5in-pcie-4-0-x4-3d3-tlc.html

"Traditional" Configuration Options in daos_server.yml

```
storage:
  class: dcpm
  scm_mount: /mnt/pmem1
  scm_list:
  - /dev/pmem1
  class: nvme
  bdev list:
  - "0000:e3:00.0"
  - "0000:e4:00.0"
  - "0000:e5:00.0"
  - "0000:e6:00.0"
```

PMem-based DAOS

```
storage:
  class: ram
 scm_mount: /mnt/dram1
  scm_size: 156
  class: nvme
  bdev list:
  - "0000:e3:00.0"
  - "0000:e4:00.0"
  - "0000:e5:00.0"
  - "0000:e6:00.0"
```

"Ephemeral" DAOS

"MD-on-SSD" Configuration Options in daos_server.yml

```
storage:
 class: ram
 scm_mount: /mnt/dram1
 scm_size: 156
 class: nvme
  bdev_roles:
  - wal
 meta
 - data
  bdev list:
  - "0000:e3:00.0"
 - "0000:e4:00.0"
 - "0000:e5:00.0"
 - "0000:e6:00.0"
```

```
storage:
  class: ram
  scm_mount: /mnt/dram1
  scm_size: 156
  class: nvme
  bdev roles:
  - wal
  bdev list:
  - "0000:e3:00.0"
  class: nvme
  bdev_roles:
  - meta
  - data
  bdev list:
  - "0000:e4:00.0"
  - "0000:e5:00.0"
  - "0000:e6:00.0"
```

```
storage:
  class: ram
  scm_mount: /mnt/dram1
  scm_size: 156
  class: nvme
  bdev_roles:
  - wal
  - meta
  bdev list:
  - "0000:e3:00.0"
  class: nvme
  bdev_roles:

    data

  bdev list:
  - "0000:e4:00.0"
  - "0000:e5:00.0"
  - "0000:e6:00.0"
```

Metadata Performance

```
(1 engine @ 24 targets; HDR IB; 8TB pool; 30sec stonewall)
```

```
mdtest-easy (0-Byte files; dir-per-process)
mdtest-hard (3901-Byte files; shared-dir)
mdtest-hard2 (7802-Byte files; shared-dir)
```


mdtest-easy (O-Byte files): (A) write (B) stat

mdtest-easy (0-Byte files):

(D) delete

mdtest-hard (3901-Byte files): (A) write (B) stat

mdtest-hard (3901-Byte files): (C) read (D) delete

mdtest-hard2 (7802-Byte files): (A) write (B) stat

mdtest-hard2 (7802-Byte files): (C) read (D) delete

Summary and DAOS Resources

- DAOS Metadata-on-SSD (Phase 1) is implemented (DAOS 2.4 tech preview)
 - Comparable performance to DAOS on Optane PMem for mdtest-stat, mdtest-read.
 - Some (up to 20%) degradation for mdtest-write, mdtest-delete (synchronous WAL)
 - Full ISC23 workshop paper: https://doi.org/10.1007/978-3-031-40843-4_26
- Future Phase 2 of MD-on-SSD: Enable migration of "cold" metadata to data blobs
 - Will reduce DRAM capacity requirements (as a percentage of NVMe capacity)
- DAOS Community Resources:
 - Github: https://github.com/daos-stack/daos
 - Online doc: https://docs.daos.io/
 - Mailing list & slack: https://daos.groups.io/
 - Recordings from 7th DAOS User Group at SC23: https://dug.daos.io/
 - Intel landing page for DAOS: https://www.intel.com/content/www/us/en/high-performance-computing/daos.html

Thank you for attending – Questions?

