4=3×1+1

#II
$$n=p\cdot q$$
 $2881=43\times 69$ | let $p=43_1\cdot q=69$ | $\phi(n)=cp+1)(q-1)=42\cdot 66=2792$
 $2192=42\times 65+42$ | $\gamma=65=42\times 1+23$ | $\gamma=65=42\times 1+23$ | $\gamma=65=42\times 1+23$ | $\gamma=65=42\times 1+23$ | $\gamma=65=19\times 19$ | γ

= 114×65-17×277

Hence, plaintext $p = Z \cdot 2^{-1} \mod n$,

We attack the encryption method with a chosen ciphertext attack

(Not secure) #

#3. 6 mod 3415use square and multiply C=0, f=1for i=k to 0do $c \leftarrow 2c$

$$f \in f^2 \mod n$$

If $bi = 1$

	11	10	9	8	7	6	5	4	3	2	J	0
bì	0	0	0	l	(1	0	1	1	0	0	0
C	0	0	0	1	3	7	14	29	59	118.	236	412
f		1	<u> </u> ×	, 6	216	332	1006	166	1416	451	1916	3346

$$Z=r^e \mod n$$

 $X=ZC \mod n$
 $t=r^{-1} \mod n$

Decrypt
$$X : Y = X \mod n = Z \mod n = r e^{d} p \operatorname{ed} n = r \cdot p \operatorname{mod} n$$

eliminate $r : r^{-1}Y = r^{-1}r \cdot p \mod n = t \cdot Y = p \mod n = p$

$$0 \le p \le n-1$$