Resolución TP_03_Integración

14/08/23

Ejercicio 1

1) Si una instrucción de multiplicación tiene sus dos operandos en registros. Enunciar las etapas requeridas del ciclo de instrucción básico (visto en la teoría) para ejecutar esta instrucción.

1. Busqueda de la instrucción:

a. La UC le pide a la RAM que le envíe el dato ubicado en la dirección especificada en el registro denominado "contador de programa".

b. La RAM lee el dato y se lo entrega a la CPU. El dato corresponde a la próxima instrucción que la CPU tiene que ejecutar.

2. Decodificación:

la UC interpreta el contenido de la instrucción, determinando cuál es la operación (multiplicación) y los operandos.

3. Obtención de operandos:

si algún operando está en memoria RAM, la UC se lo pide a la RAM, y cuando el dato se recibe, se lo coloca en un registro.

En este caso los datos de los operandos ya se encuentran en registros.

4. Ejecución:

a. La UC le indica a la ALU cuál es la operación a ejecutar y qué registros contienen los operandos.

b. Se actualiza el "contador de programa" para que quede apuntando a la siguiente instrucción que se ejecutará.

<u>**Observación:**</u> Objetivamente para este ejercicio solo aplica el punto 4 ya que el resto de los pasos se encuentran resueltos.

Ejercicio 2

Analice y responda las siguientes preguntas. Si se tiene un sistema con 4 MiB de memoria RAM.

a) ¿Cuántos bytes de memoria tenemos?

b) ¿Cuántos bits son necesarios para direccionar esa cantidad de celdas de memoria?

(Reformulado) ¿Cúantos bits son necesarios para representar la última posición de esa memoria?

```
a)
4 MiB = 4x2<sup>20</sup> = 4 194 304 bytes
Tenemos 4 194 304 bytes de memoria
b)
4 194 304 bytes

2<sup>1</sup> = 2 bytes, 1 bit
2<sup>2</sup> = 4 bytes, 2 bits
2<sup>3</sup> = 8 bytes, 3 bits
2<sup>3</sup> = 4 194 304 bytes, ? bits

Para obtener un exponente:
log<sub>2</sub> 4 194 304 bytes = 22
```

2²² = 4 194 304 bytes, **22 bits**

Son necesarios 22 bits para direccionar esa cantidad de celdas de memoria

Ejercicio 3

El siguiente es un fragmento de un volcado de memoria, que comienza en la dirección 0x1010 y termina en la dirección 0x175A. Nota: 0x indica que es un número hexadecimal.

- a) ¿Cuántos bytes tiene este fragmento de memoria?
- b) ¿Cuál es la dirección de memoria del dato 0x24?
- c) ¿En qué rango de direcciones encontramos bytes con todos sus bits en 1?

a)

```
1010 = 0 \times 16^0 + 1 \times 16^1 + 0 \times 16^2 + 1 \times 16^3 = 0 + 16 + 0 + 4096 = 4112
```

A x
$$16^{0}$$
 + 5 x 16^{1} + 7 x 16^{2} + 1 x 16^{3} = 10 x 1 + 5 x 16 + 7 x 256 + 1 x 4096 = 10 + 80 + 1792 + 4096 = **5978**

$$175A - 1010 = 74A$$

A
$$\times 16^{0} + 4 \times 16^{1} + 7 \times 16^{2} =$$

10 $\times 1 + 4 \times 16 + 7 \times 256 =$
10 + 64 + 1792 = **1866 bytes**

Este fragmento de memoria tiene 1867 bytes.

b)

0x1013

la dirección de memoria del dato 0x24 es 0x1013

c)

<u> </u>																	
03	x40	0x23	0x33	0x24	0xA	0x3F	0x1	0x34	0xA	0x38	0x22	0xFF	0xFF	0xFF	0xFF	0xFF	0x31
					2		D		D								
10	010	1011	1012	1013	1014	1015	1016	1017	1018	1019	101	101B	101	101	101E	101F	1020
											A		C	D			

En el rango de direcciones que van desde 0x101B a 0x101F

Ejercicio 4

Dada una instrucción con la siguiente estructura: 4 bits para el código de operación, 6 bits para el operando 1 y 6 bits para el operando 2.

- a) ¿Cuántas operaciones diferentes podría tener el procesador?
- b) Si en un operando puede haber una dirección de memoria, ¿Cuál es el tamaño máximo que puede tener la memoria RAM?

```
a)
4 bits para el código de operación
1111 = 15 + 0000

2<sup>4</sup> = 16

El procesador podría tener 16 operaciones diferentes

b)
6 bits para el operando 1
111111 = 63 + 000000

2<sup>6</sup> = 64

La memoria RAM puede tener un tamaño máximo de 64 bytes
```

Ejercicio 5

Responda por verdadero o falso y justifique.

a) Un programa accede a datos (de un byte) ubicados en la memoria principal. Los datos están muy distantes entre sí. La memoria caché es útil para este caso.

Falso. La memoria caché es útil cuando hay una alta probabilidad de que los datos accedidos estén cerca en ubicación en comparación con los datos que ya están en la caché. Si los datos están muy distantes entre sí, la probabilidad de que se beneficien de la caché es menor, ya que la caché está diseñada para almacenar datos cercanos en dirección de memoria.

b) Tres accesos a datos de la caché L3 equivalen aproximadamente en tiempo a un único acceso a memoria RAM.

Verdadero. En la jerarquía de memoria por tiempos de acceso aproximado una memoria caché L3 tarda 20 ns y la memoria principal tarda 60 ns. Por lo tanto tres accesos a datos de la caché L3 se equiparan en tiempo a un único acceso a la memoria RAM.

c) Tres accesos a datos de la memoria RAM equivalen aproximadamente en tiempo a un único acceso a un dato que está en un disco de estado sólido.

```
Memoria Principal: 60 ns
Disco de estado sólido (SSD): 0.1 ms
1 segundo
1 \times 10^3 = 1000 milisegundos
1 \times 10^6 = 1000000 microsegundos
1 \times 10^9 = 1000000000 nanosegundos
0.1 \text{ ms} = 0.1 \times 10^6 = 100000 nanosegundos
```

 $60 \text{ ns } \times 3 = 180 \text{ nanosegundos}$

Falso. 3 accesos a datos de la memoria RAM equivalen a 180 nanosegundos (aprox) mientras que un único acceso a un dato en un disco de estado sólido equivale a 100000 nanosegundos.

Ejercicio 6

Utilizando el volcado de memoria que se encuentra en el ejercicio 3, deberá indicar la cantidad de fallos y aciertos en los accesos a memoria caché, considerando que el tamaño de la caché es de 1kB, el tamaño de la línea de caché es de 4 bytes. Los bloques de memoria comienzan en direcciones múltiplo de 4. Al inicio de cada inciso, la caché se encuentra vacía.

Tenga en cuenta las siguientes secuencias de direcciones o rafagas de accesos a memoria:

a) (0x1010; 0x1011; 0x1012; 0x1013; 0x1014; 0x1015; 0x1016) b) (0x1010; 0x1013; 0x1016; 0x1018; 0x101A; 0x1020; 0x1016) c) (0x1010; 0x1020; 0x1030; 0x1041; 0x1042; 0x1050; 0x1060)

¿Por qué motivo no será necesario efectuar reemplazos de líneas en caché?.

Memoria caché: $1 \text{ kB} = 1 \text{ x } 10^3 = 1000 \text{ bytes}$

Línea de caché: 4 bytes

4112	4113	4114	4115	4116	4117	4118	4119
1010	1011	1012	1013	1014	1015	1016	1017
0x40	0x23	0x33	0x24	0xA2	0x3F	0x1D	0x34
			1	1	1		1
4120	4121	4122	4123	4124	4125	4126	4127
1018	1019	101A	101B	101C	101D	101E	101F
0xAD	0x38	0x22	0xFF	0xFF	0xFF	0xFF	0xFF
4128	4129	4130	4131	4132	4133	4134	4135
1020	1021	1022	1023	1024	1025	1026	1027
0x31	0xE2	0x10	0x0E	0x23	0x33	0x43	0xA2
				_			
4136	4137	4138	4139	4140	4141	4142	4143
1028	1029	102A	102B	102C	102D	102E	102F
0x3F	0x1D	0x34	0x43	0xA2	0x3F	0x1D	0x34
					-		
4144	4145	4146	4147	5978			
1030	1031	1032	1033	0x175A			
0xAD	0x38	0x22	0xFA				

a) (0x1010; 0x1011; 0x1012; 0x1013; 0x1014; 0x1015; 0x1016)

0x1010: fallo de caché, busca en RAM

1010 1011 1012 1013

0x1011: acierto de caché 0x1012: acierto de caché 0x1013: acierto de caché

0x1014: fallo de caché, busca en RAM

1014 1015 1016 1017

0x1015: acierto de caché 0x1016: acierto de caché

b) (0x1010; 0x1013; 0x1016; 0x1018; 0x101A; 0x1020; 0x1016)

0x1010: fallo de caché, busca en RAM

1010 1011 1012 1013

0x1013: acierto de caché

0x1016: fallo de caché, busca en RAM

1014	1015	1016	1017				
0x1018: fallo de caché, busca en RAM							
1018	1019		101B				
0x101A: acierto de caché 0x1020: falo de caché, busca en RAM							
1010	1011		1012 1013				
0x1016: acierto	o de caché						
c) (0x1010 ; 0x1020 ; 0x1030 ; 0x1041 ; 0x1042 ; 0x1050 0x1010: fallo de caché, busca en RAM							
1010	1011	1012	1013				
0x1020: fallo d	0x1020: fallo de caché, busca en RAM						
1020	020 1021		1022 1023				
0x1030: fallo d	le caché, busca	en RAM					
1030 1031		1032	1033				
0x1041: fallo d	le caché, busca	en RAM					
1040	1041	1042	1043				
0x1042: acierto de caché 0x1050: fallo de caché, busca en RAM							
1050	1051	1052	1053				
0x1060: fallo de caché, busca en RAM							
1060	1061	1062	1063				

No será necesario efectuar reemplazos de líneas en caché porque el tamaño total de la caché es de 1kB (1000 bytes) y como en cada inciso la caché se encontraba vacía nunca llegamos a ocupar todo el espacio al traer bloques de caché desde la RAM.