

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 1

Тема: <u>Приближенный аналитический метод Пикара в сравнении с</u> численным методом Эйлера решения задачи Коши.

Студент <u>Лучина Е.Д</u>

Группа ИУ7-61Б

Преподаватель Градов В.М.

Москва. 2020 г. Дифференциальное уравнение — уравнение, в которое входят производные функции, и может входить сама функция, независимая переменная и параметры.

$$u^{(n)} = f(x, u, u', u'', u''', \dots, u^{(n-1)})$$

Решить дифференциальное уравнение — это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид y = f(x, C) (C — произвольная постоянная), который называется общим решением дифференциального уравнения.

Начальные условия — дополнение к основному дифференциальному уравнению, задающее его поведение в начальный момент времени.

Задача Коши состоит в нахождении решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

В данной лабораторной работе рассмотрим следующую задачу Коши:

Имеем обыкновенное дифференциальное уравнение (диф. ур-ние для функции от одной переменной) первого порядка - u'(x) = f(x, u(x)), где $f(x, u(x)) = x^2 + (u(x))^2$ удовлетворяет всем условиям теоремы Коши о существовании и единственности решения диф. ур-ния.

И следующие начальные условия: $u(x_0) = u_0$; $x_0 = 0$; $u_0 = 0$.

Представим задачу в виде эквивалентного интегрального уравнения

1) проинтегрируем обе части по x от x_0 до t.

$$\int_{x_0}^{\xi} u'(x)dx = \int_{x_0}^{\xi} f(x, u(x))dx$$

2) по формуле Ньютона -Лейбница получим

$$u(t) - u(x_0) = \int_{x_0}^{t} f(x, u(x)) dx$$

3) Перенесем $u(x_0)$ в правую часть уравнения

$$u(t) = u(x_0) + \int_{x_0}^{t} f(x, u(x)) dx = u_0 + \int_{x_0}^{t} f(x, u(x)) dx$$

4) Подставим начальные условия

$$u(t) = 0 + \int_0^t f(x, u(x)) dx$$

Применим к получившемуся интегральному уравнению метод последовательных приближений, он же метод Пикара.

Пусть t мало отличается от x_0 , тогда изменение функции невелико, им можно пренебречь. Получаем нулевое приближение.

$$u_{(0)}(t) = u_0 = 0$$

Но зачастую это очень грубое приближение и все-таки необходимо учесть вклад интеграла. Для этого подставим вместо функции найденное приближение, получим первое приближение:

$$u_{(1)}(t) = 0 + \int_{0}^{t} f(x, u_{(0)}(x)) dx = 0 + \int_{0}^{t} (x^{2} + u_{0}^{2}) dx = 0 + \int_{0}^{t} x^{2} dx = \frac{t^{3}}{3}$$

Аналогичным образом получим второе, третье и четвертые приближения.

$$u_{(2)}(t) = \frac{t^3}{3} + \frac{t^7}{63}$$

$$u_{(3)}(t) = \frac{t^3}{3} + \frac{t^7}{63} + \frac{2 \times t^{11}}{63 \times 11 \times 3} + \frac{t^{15}}{63 \times 15 \times 21 \times 3}$$

$$u_{(4)}(t) = \frac{t^3}{3} + \frac{t^7}{63} + \frac{2 \times t^{11}}{63 \times 11 \times 3} + \frac{t^{15}}{63 \times 15 \times 21 \times 3} + \frac{4 \times t^{15}}{15 \times 9 \times 63 \times 11} + \frac{4 \times t^{19}}{19 \times 11 \times 63^2 \times 3} + \frac{2 \times t^{19}}{19 \times 3 \times 15 \times 63^2} + \frac{2 \times t^{23}}{23 \times 15 \times 63 \times 63} + \frac{4 \times t^{23}}{23 \times 11 \times 11 \times 63 \times 63 \times 9} + \frac{4 \times t^{27}}{27 \times 11 \times 63 \times 63 \times 3 \times 15} + \frac{t^{31}}{31 \times 15 \times 15 \times 63 \times 63}$$

n-ое приближение можно найти по следующей рекуррентной формуле

$$u_{(n)}(t) = 0 + \int_{0}^{t} f(x, u_{(n-1)}(x)) dx$$

В случае сходимости итерационного процесса, каждое следующее приближение считается все более точным и при стремлении n к бесконечности полученное значение совпадёт с истинным.

Этот метод имеет два существенных недостатка:

- 1) Необходимо установить сходимость и оценить скорость сходимости
- 2) Необходимо вычисление интеграла

Х	1-е приближение Пикара	2-е приближение Пикара	3-е приближение Пикара	4-е приближение Пикара	5-е приближение Пикара	6-е приближение Пикара
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.2	0.0026667	0.0026669	0.0026669	0.0026669	0.0026669	0.0026669
0.4	0.0213333	0.0213593	0.0213594	0.0213594	0.0213594	0.0213594
0.6	0.072	0.0724443	0.0724478	0.0724479	0.0724479	0.0724479
0.8	0.1706667	0.1739955	0.1740787	0.1740802	0.1740803	0.1740803
1.0	0.3333333	0.3492063	0.3501851	0.3502302	0.3502318	0.3502318
1.2	0.576	0.6328759	0.6402824	0.6410157	0.6410729	0.6410765
1.4	0.9146667	1.0819897	1.1235596	1.1316803	1.1329351	1.1330939
1.6	1.3653333	1.7914214	1.9800238	2.0494638	2.0701285	2.0751718
1.8	1.944	2.9157778	3.6473628	4.148638	4.4446972	4.5928137
2.0	2.6666667	4.6984127	7.2189896	10.4839233	14.7411734	20.2713864
2.2	3.5493333	7.5086316	15.4289322	35.5701433	106.060219	520.2994283
2.4	4.608	11.8881134	35.0067087	156.2672746	1625.4484531	90611.1048712
2.6	5.8586667	18.6075717	82.0889815	802.456392	38955.1322225	46374896.3232608
2.8	7.3173333	28.7346802	194.1428336	4400.9140769	1134707.6648049	37815498535.07932
3.0	9.0	43.7142857	455.1461967	24341.2619112	34705618.7334024	35238243908976.47
3.2	10.9226667	65.4619339	1046.6260646	131408.1335778	1028755526.5565687	3.1426932492097856e+16
3.4	13.1013333	96.4717304	2347.1636519	680271.1166343	28311003320.77843	2.440984632708632e+19
3.6	15.552	139.9395621	5119.4853619	3346798.0870306	707526280606.4255	1.5727954914333455e+22
3.8	18.2906667	199.9027025	10850.6441183	15587835.1045558	15895342565553.744	8.216592800143843e+24
4.0	21.3333333	281.3968254	22351.7932828	68668324.8881272	319974895799136.6	3.452292112207535e+27

Для малых значений х достаточно точное значение можно получить на начальных приближениях Пикара. Для значений больше 1 следует рассмотреть восьмое, девятое и т.д. Приближения. Но здесь мы наблюдаем переполнение типа данных.

Х	7-е приближение Пикара	8-е приближение Пикара	9-е приближение Пикара	10-е приближение Пикара	11-е приближение Пикара
1.0	0.3502318	0.3502318	0.3502318	0.3502318	0.3502318
1.2	0.6410767	0.6410767	0.6410767	0.6410767	nan
1.4	1.133111	1.1331125	1.1331127	1.1331127	nan
1.6	2.0762072	2.0763904	2.0764189	nan	nan
1.8	4.6555705	4.6783248	4.6854953	nan	nan
2.0	27.39756	36.4825491	47.9137013	nan	nan
2.2	6705.8328035	580608.9480482	nan	nan	nan
2.4	143236179.3459323	180622904386065.03	nan	nan	nan
2.6	33048383757612.098	8.416778308363175e+24	nan	nan	nan
2.8	2.1031267537356014e+19	3.255188945732805e+36	nan	nan	nan
3.0	1.815611752346632e+25	2.4094983076003612e+48	nan	nan	nan

Численный метод ломаных Эйлера для решения Коши для ОДУ первого порядка.

Рассмотрим описанное выше интегральное уравнение. Если функция f близка к константе или шаг $(t-x_0)$ достаточный маленький и значение функции меняется незначительно, найти значение функции в точке t можно следующим образом:

$$u(t) = u_0 + f(x_0, u(x_0)) \times h$$
,
Где $h = (t - x_0)$, $f(x, u(x)) = x^2 + (u(x))^2$

Имея начальное значение и правило перехода в следующий узел, можем найти значение функции $u_{n+1} = u(x_{n+1})$ для любого аргумента x_{n+1} по следующей итерационной схеме:

1) явной

$$u_{n+1} = u_n + h \times f(x_n, u_n)$$

 $f(x_n, u_n) = x_n^2 + u_n^2$

2) неявной

$$u_{n+1} = u_n + h \times f(x_{n+1}, u_{n+1})$$

 $f(x, u) = x^2 + u^2$

Является квадратным уравнением относительно u_{n+1} .

$$h \times u_{n+1}^2 - u_{n+1} + (h \times x_{n+1}^2 + u_n) = 0$$

до 0.2 с шагом 0.01 Введите через пробел интересующие приближения метода Пикара: 3 4					
Х	 3-е приближение Пикара	4-е приближение Пикара	нения на	н Неявная схема	
0.1	0.0003333	0.0003333	0.0	0.0	
0.11	0.0004437	0.0004437	0.0	1e-06	
0.12	0.000576	0.000576	1e-06	5e-06	
0.13	0.0007323	0.0007323	5e-06	1.4e-05	
0.14	0.0009147	0.0009147	1.4e-05	3e-05	
0.15	0.001125	0.001125	3e-05	5.5e-05	
0.16	0.0013654	0.0013654	5.5e-05	9.1e-05	
0.17	0.0016377	0.0016377	9.1e-05	0.00014	
0.18	0.0019441	0.0019441	0.00014	0.000204	
0.19	0.0022865	0.0022865	0.000204	0.000285	
0.2	0.0026669	0.0026669	0.000285	0.000385	
0.21	0.0030873	0.0030873	0.000385	0.000506	

Уменьшая шаг, наблюдаем повышение точности. Особенно в месте резкого возрастания функции.

0.125	0.000651	0.000651	0.0006503	0.0006518
0.1251	0.0006526	0.0006526	0.0006518	0.0006534
0.1252	0.0006542	0.0006542	0.0006534	0.000655
0.1253	0.0006557	0.0006557	0.000655	0.0006565
0.1254	0.0006573	0.0006573	0.0006565	0.0006581
0.1255	0.0006589	0.0006589	0.0006581	0.0006597
0.1256	0.0006605	0.0006605	0.0006597	0.0006613
0.1257	0.000662	0.000662	0.0006613	0.0006628
0.1258	0.0006636	0.0006636	0.0006628	0.0006644
0.1259	0.0006652	0.0006652	0.0006644	0.000666
0.126	0.0006668	0.0006668	0.000666	0.0006676
0.1261	0.0006684	0.0006684	0.0006676	0.0006692
0.1262	0.00067	0.00067	0.0006692	0.0006708
0.1263	0.0006716	0.0006716	0.0006708	0.0006724
0.1264	0.0006732	0.0006732	0.0006724	0.000674
0.1265	0.0006748	0.0006748	0.000674	0.0006756
0.1266	0.0006764	0.0006764	0.0006756	0.0006772
0.1267	0.000678	0.000678	0.0006772	0.0006788
0.1268	0.0006796	0.0006796	0.0006788	0.0006804
0.1269	0.0006812	0.0006812	0.0006804	0.000682
0.127	0.0006828	0.0006828	0.000682	0.0006836
0.1271	0.0006844	0.0006844	0.0006836	0.0006852
0.1272	0.000686	0.000686	0.0006852	0.0006868
0.1273	0.0006877	0.0006877	0.0006868	0.0006885
0.1274	0.0006893	0.0006893	0.0006885	0.0006901
0.1275	0.0006909	0.0006909	0.0006901	0.0006917
0.1276	0.0006925	0.0006925	0.0006917	0.0006933
0.1277	0.0006942	0.0006942	0.0006933	0.000695
0.1278	0.0006958	0.0006958	0.000695	0.0006966
0.1279	0.0006974	0.0006974	0.0006966	0.0006982
0.128	0.0006991	0.0006991	0.0006982	0.0006999

Неявный метод точнее явного, но ошибка вычислений возникает при меньших значениях x, за счет решения квадратного уравнения.