

MODELOS DE PREDICCIÓN DE FRAUDE CREDITICIO

JUAN CARLOS AGUILAR ALFARO

MANFRED D. PORRAS ROJAS

HOLMAR RIVERA

DOMINICK RODRÍGUEZ TREJOS

INTRODUCCIÓN

En la era digital, con la mayoría de las entidades financieras ofreciendo servicios digitales y un incremento en las transacciones en línea, el fraude crediticio ha encontrado nuevas vías para expandirse.

- Detección: habilidad de reconocer fraude
- Prevención: medidas o acciones que se pueden tomar para evitar el fraude.

¿QUE ES MACHINE LEARNING?

El objetivo principal del machine learning es entender cómo se estructuran los datos y asociarlos a modelos que puedan ser interpretados y utilizados por humanos. Esto implica crear algoritmos que puedan identificar patrones dentro de grandes conjuntos de datos, permitiendo así a las máquinas aprender y tomar decisiones basadas en la información obtenida.

TIPOS DE MACHINE LEARNING

Aprendizaje supervisado

Aprendizaje no supervisado

Aprendizaje de reforzamiento

PROCESO DE CREACION DE UN MODELO

PREPARACIÓN DE LOS DATOS

- Recolección, limpieza y preprocesamiento de datos
- Asegurar la calidad y confiabilidad de los datos

DESARROLLO DEL MODELO

- Selección de algoritmos de aprendizaje automático
- Proceso de entrenamiento

EVALUACIÓN DEL RENDIMIENTO

- Validación cruzada y pruebas en conjuntos de datos de validación
- Evaluación del rendimiento del modelo

PREPARACION DE LA DATA

MÉTODOS DE ENSAMBLAJE

Stacking

Funciona en dos capas: Modelos base Modelo meta

Voting

Funciona en dos formas: Hard Voting Soft Voting

RESULTADOS

HGBOOST

(O)

VOTING CLASSIFIER

STACKING CLASSIFIER

¿QUE ES LA VALIDACION CRUZADA ESTRATIFICADA?

Se divide el conjunto de datos en k folds

Mantiene la proporción de las clases

El modelo se entrena con k-1 pliegues y se valida en el pliegue restante

Se promedian los resultados

ROC AUC

Métrica para evaluar el redimiendo de un algoritmo de clasificación binario

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

$$TPR = \frac{TP}{TP + FN}$$

False Positive Rate (FPR) is defined as follows:

$$FPR = rac{FP}{FP + TN}$$

Modelo XGBoost:

- Conjunto de prueba: 0.999124
- Validación cruzada estratificada: 0.99739

Modelo VotingClassifier:

- Conjunto de prueba: 0.99867
- Validación cruzada estratificada: 0.99629

Modelo Stacking:

- Conjunto de prueba: 0.99
- Validación cruzada estratificada:

GRAFICOS DE RESULTADOS

1.0

0.8

0.2

0.0

02

VOTING-CLASSIFIER

STACKING

HGBOOST

- Fue el algoritmo con mejores resultados
- Algoritmo de boosting
- Rápido y eficiente

MEJORES PARAMETROS:

- TASA DE APRENDIZAJE: 0.1
- MAXIMA PROFUNDIDAD: 5
- NUMERO DE ARBOLES: 100
- MUESTRA: 100%

CONCLUSIONES

El modelo XGBoost mostro los mejores resultados

A pesar de implementar modelos de ensamblaje, estos no dieron el rendimiento esperado

La variable oldbalanceOrg es la que brinda mayor informacion. Seguida de Amount

Los tres modelos dieron resultados excelentes

RECOMENDACIONES

Manejar la información sensible y personal de manera cuidadosa

Optimizar los hiperparametros de todos los modelos

Tomar en cuenta la potencia de calculo

Se podrían considerar otros modelos para los ensamblajes

¿PREGUNTAS?

