Rappel de cours

Definition 1. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **simplement** vers f sur I si pour tout $x \in I$, la suite $(U_n(x))$ converge vers f(x).

Definition 2. Soit I un intervalle de \mathbb{R} , (U_n) une suite de fonctions définies sur I et f une fonction définie sur I. On dit que (u_n) converge **uniformément** vers f sur I si

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in I, \forall n > n_0, |(U_n(x)) - f(x)| < \epsilon$$

Definition 3. On dit que la série de fonctions $\sum_{n\geq 0} U_n(x)$ converge **normalement** sur I si la série $\sum_{n\geq 0} ||U_n(x)||_{\infty}$ est convergente.

Definition 4. On dit que la série de fonctions $\sum_{n\geq 0} U_n(x)$ converge **normalement** sur I si la série $\sum_{n\geq 0} ||U_n(x)||_{\infty}$ est convergente.

Exercice 1

Montrons que la fonction $f_n(x) = \frac{ne^{-x} + x^2}{n+x}$ converge simplement pour $x \in [0,1]$.

$$\lim_{n \to \infty} \frac{ne^{-x} + x^2}{n + x} = \lim_{n \to \infty} \frac{ne^{-x} + 1}{n + 1} = \lim_{n \to \infty} \frac{ne^{-x}}{n} = e^{-x}$$

La fonction $f_n(x)$ converge simplement vers $f(x) = e^{-x}$. Montrons maintenant que $f_n(x)$ converge uniformément. Il faut que $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq n_{\epsilon} \Longrightarrow \sup_{x \in [0,1]} |f_n(x) - f(x)| < \epsilon$). Calculons

$$|f_n(x) - f(x)| = \left| \frac{ne^{-x} + x^2}{n+x} - e^{-x} \right| = \left| \frac{ne^{-x} + x^2 - (n+x)e^{-x}}{n+x} \right| = \left| \frac{x^2 - xe^{-x}}{n+x} \right| < \frac{2}{n}$$

car $n+x \ge n$ et $|x^2-xe^{-x}| < 2$ comme $x^2 \in [0,1]$ et $xe^{-x} \in [0,\frac{1}{e}]$. Prenons $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \frac{2}{n}$, donc n_{ϵ} existe et doit être supérieur à $\frac{2}{\epsilon}$.

Exercice 2

Exercice 2.1

Montrons que la fonction $f_n(x) = \ln\left(x + \frac{1}{n}\right)$ converge simplement pour $x \in]0, +\infty]$.

$$\lim_{n \to \infty} \ln\left(x + \frac{1}{n}\right) = \ln\left(x + 0\right) = \ln(x)$$

La fonction $f_n(x)$ converge simplement vers $f(x) = \ln(x)$. Montrons maintenant que $f_n(x)$ converge uniformément sur $[a, +\infty]$. Il faut que $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geq n_{\epsilon} \implies \sup_{x \in [a, +\infty]} |f_n(x) - f(x)| < \epsilon$. Calculons

$$|f_n(x) - f(x)| = \left| \ln\left(x + \frac{1}{n}\right) - \ln(x) \right| = \left| \ln\left(\frac{x + \frac{1}{n}}{x}\right) \right| = \left| \ln\left(1 + \frac{1}{nx}\right) \right| \le \ln\left(1 + \frac{1}{na}\right)$$

 $\operatorname{car} \frac{1}{na} \ge \frac{1}{nx} \text{ pour } x \in [a, +\infty].$

Prenons $\sup_{x\in[a,+\infty]} |f_n(x)-f(x)| = \ln\left(1+\frac{1}{na}\right)$, donc n_{ϵ} existe et doit être tel que $\ln\left(1+\frac{1}{n_{\epsilon}a}\right) < \epsilon$.

Exercice 2.2

Non, car pour x proche de 0, il n'existe pas de borne supérieure pour $|f_n(x) - f(x)| = \left|\ln\left(1 + \frac{1}{nx}\right)\right|$.

Exercice 3

Exercice 3.1

Quand x = 0, on a $f_n(x) = 0$ pour tout $n \ge 1$. Pour x > 0, on a

$$\lim_{n \to \infty} x e^{-nx} = \lim_{n \to \infty} \frac{x}{e^{nx}} = 0$$

On en déduit que la fonction $f_n(x)$ converge simplement vers la fonction

$$f(x) = \begin{cases} 0 & x = 0 \\ 0 & x \in]0, +\infty] = 0$$

Exercice 3.2

Pour que la fonction $f_n(x)$ converge uniformément sur $[0, +\infty]$. Il faut que $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge n_{\epsilon} \implies \sup_{x \in [0, +\infty]} |f_n(x) - 0| < \epsilon)$.

Cela revient à trouver si la fonction $f_n(x)$ a un maximum pour $x \in [0, +\infty]$. La fonction est continue et positive sur $[0, \infty]$, cherchons si il existe un maximum.

Calculons $f'_n(x) = e^{-x}(1 - nx)$. on a $f'_n(x)$ qui s'annule lorsque $x = \frac{1}{n}$.

La fonction $f_n(x)$ croit entre $[0, \frac{1}{n}[$ jusqu'à la valeur $f_n(\frac{1}{n}) = \frac{1}{ne}$ et décroit ensuite pour $x \in]\frac{1}{n}, \infty]$. Donc il existe une valeur supérieure $\frac{1}{ne}$.

On a $\sup_{x \in [0,+\infty]} |f_n(x)| = \frac{1}{ne}$, donc il n_{ϵ} existe et doit être supérieure à $\frac{1}{e.\epsilon}$. Par conséquent, la fonction $f_n(x)$ converge uniformément vers la fonction 0.

Exercice 4

Pour $x \in [-r, r]$ avec r > 0 on a $0 \le f_n(x) \le \ln\left(1 + \frac{r^2}{n^2}\right)$. On va montrer que

$$\ln\left(1 + \frac{r^2}{n^2}\right) \le \frac{r^2}{n^2}$$

$$1 + \frac{r^2}{n^2} \le e^{\frac{r^2}{n^2}} = 1 + \frac{r^2}{n^2} + \frac{r^4}{2n^4} + O(\frac{r^2}{n^2})$$

$$0 \le \frac{r^4}{2n^4} + O(\frac{r^2}{n^2})$$

Donc, pour $x \in [-r, r]$ avec r > 0 on a $0 \le f_n(x) \le \ln\left(1 + \frac{r^2}{n^2}\right) \le \frac{r^2}{n^2}$. Comme la série de fonctions $\frac{r^2}{n^2}$ converge normalement, on en déduit par le critère d'équivalence que la série de fonctions $f_n(x) = \ln(1 + \frac{x^2}{n^2})$ converge normalement pour tout $x \in [-r, r]$.

Les fonctions f_n sont continues sur $x \in [-r, r]$ (assemblage de fonctions continues) et la série de fonctions $S = \sum_{n \geq 1} f_n(x)$ converge normalement pour $x \in [-r, r]$. On en déduit que S est continue pour $x \in [-r, r]$.

Exercice 5

Exercice 5.1

On va montrer que

$$\frac{x}{n(n+x)} < \frac{x}{n^2}$$

$$0 < \frac{x}{n^2} - \frac{x}{n(n+x)}$$

$$0 < \frac{x^2}{n^2(n+x)}$$

Qui est vrai, donc $f_n(x) < \frac{x}{n^2}$. On sait que la série de fonctions $\frac{x}{n^2}$ converge, donc par le critère d'équivalence on a la série de fonctions $f_n(x)$ qui converge.

Exercice 5.2

- (H1) fonction $f_n(x)$ dérivable. Oui. $f'_n(x) = \frac{1}{(n+x)^2}$.
- (H2) la série de fonctions $\sum f_n$ converge simplement sur une fonction S sur $[0, +\infty]$. Oui voir 5.1
- (H3) la série de fonctions $\sum f'_n$ converge uniformément sur une fonction g sur $[0, +\infty]$.

Montrons (H3). on a $f'_n(x) = \frac{1}{(n+x)^2} < \frac{1}{n^2}$ et la série de fonctions $\frac{1}{n^2}$ converge uniformément sur \mathbb{R}^+ . Donc (H3) est vérifiée.

Donc la série de fonctions f_n est de classe C^1 .

Exercice 6

Exercice 6.1

On si la $(fn)n_{\in\mathbb{N}}$ une suite de fonctions continues sur l'intervalle [a,b] et que la série f_n converge uniformément sur [a,b] vers sa somme S qui est continue, alors

$$\int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t)dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t)dt$$

Montrons que la série de fonctions $f_n(t) = \frac{t^{n-1}}{n}$ est continue pour $t \in]0, \frac{1}{2}[$.

- les fonction f_n sont continu sur $]0, \frac{1}{2}[$
- on a $\frac{t^{n-1}}{n} < t^{n-1}$ et $\sum_{n\geq 1} t^{n-1} = \frac{1}{1-x}$ lorsque $x\in [0,1[$, donc la série de fonction f_n converge uniformément sur $]0,\frac{1}{2}[$

Donc la série de fonction f_n est continue.

Comme la la série de fonction est continue,

$$\int_{x}^{1-x} \frac{\ln(1-t)}{t} dt = \int_{x}^{1-x} \frac{-\sum_{n=1}^{+\infty} \frac{t^{n}}{n}}{t} dt = \int_{x}^{1-x} -\sum_{n=1}^{+\infty} \frac{t^{n-1}}{n} dt = -\sum_{n=1}^{+\infty} \int_{x}^{1-x} \frac{t^{n-1}}{n} dt$$

$$= -\sum_{n=1}^{+\infty} \left[\frac{t^{n}}{n^{2}} \right]_{x}^{1-x} = -\sum_{n=1}^{+\infty} \frac{x^{n}}{n^{2}} - \frac{(1-x)^{n}}{n^{2}} = -\sum_{n=1}^{+\infty} \frac{1}{n^{2}} (x^{n} - (1-x)^{n}) = \sum_{n=1}^{+\infty} \frac{1}{n^{2}} ((1-x)^{n} - x^{n}) = \sum_{n=1}^{+\infty} g_{n}(x)$$

Exercice 6.2

$$\int_0^1 \frac{\ln(1-t)}{t} dt = \lim_{x \to 0} \int_x^{1-x} \frac{\ln(1-t)}{t} dt = \lim_{x \to 0} \sum_{n=1}^{+\infty} g_n(x) = \lim_{x \to 0} \sum_{n=1}^{+\infty} \frac{1}{n^2} ((1-x)^n - x^n) = \sum_{n=1}^{+\infty} \frac{1}{n^2} (1-x)^n - x^n = \sum_{n=1}^{+\infty} \frac{1}{n^2} (1-x$$

Exercice 7

On a $\lim_{n\to+\infty} f_n(x) = \lim_{n\to+\infty} \ln(1+\frac{x}{n(1+x)}) = 0$. Grâce aux critère des séries alternées, on voit que, pour tout $x\in\mathbb{R}^+$, la séries de fonctions $\sum_{n\geq 1} (-1)^n f_n(x)$ converge simplement. En appliquant le critère de Cauchy uniforme, la série $\sum_{n\geq 1} f_n(x)$ converge uniformément sur \mathbb{R}^+ ssi:

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}, (m > n \ge n_{\epsilon} \implies \forall x \in \mathbb{R}^+, |\sum_{k=n+1}^{m} f_k(x)| \le \epsilon)$$

On a

$$\left| \sum_{k=n+1}^{m} f_k(x) \right| < \ln \left(1 + \frac{x}{n(1+x)} \right) < \ln \left(1 + \frac{1}{n} \frac{x}{1+x} \right) < \ln \left(1 + \frac{1}{n} \right)$$

Donc en prenant n_{ϵ} , tel que $\ln\left(1+\frac{1}{n_{\epsilon}}\right)<\epsilon$, le critère de Cauchy est vérifié et la série de fonctions

Exercice 3 - autre

Q3.1

$$\lim_{n\to +\infty} \sqrt{x^2+\frac{1}{n}} = \sqrt{x^2} = |x|$$

La fonction $f_n(x)$ converge simplement vers la fonction f(x) = |x|.

Q3.2

Il faut vérifier que

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in \mathbb{R}, \forall n > n_0, \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right| < \epsilon$$

Il faut trouver un majorant a $|\sqrt{x^2 + \frac{1}{n}} - |x||$. On voit que $x^2 + \frac{1}{n} > x^2$ car $n \ge 1$. donc $x^2 + \frac{1}{n} - x^2 > 0$ et $|\sqrt{x^2 + \frac{1}{n}} - |x|| = \sqrt{x^2 + \frac{1}{n}} - |x|$. Ensuite, le "truc".

$$\left(\sqrt{x^2 + \frac{1}{n}}\right)^2 - (|x|)^2 = x^2 + \frac{1}{n} - x^2 = \frac{1}{n}$$

donc

$$\left(\sqrt{x^2 + \frac{1}{n}} - |x|\right) \left(\sqrt{x^2 + \frac{1}{n}} + |x|\right) = \frac{1}{n}$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| = \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + |x|}$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| < \frac{1}{n}$$

Donc il suffit de prendre $n_e p silon$ tel que $\frac{1}{n_e} < \epsilon$.

Q3.3

$$f_n'(x) = \frac{x}{\sqrt{x + \frac{1}{n}}}$$

donc

$$\lim_{n \to +\infty} \frac{x}{\sqrt{x^2 + \frac{1}{n}}} = \frac{x}{|x|}$$

Donc $f'_n(x)$ converge simplement vers la fonction

$$g(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ \text{non défini} & x = 0 \end{cases}$$

Q3.4

Il faut vérifier que

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall x \in \mathbb{R}, \forall n > n_0, \left| \frac{x}{\sqrt{x + \frac{1}{n}}} - g(x) \right| < \epsilon$$

Il n'existe pas de ϵ car $\frac{x}{\sqrt{x+\frac{1}{n}}}$ n'est pas bornée par 1.

Exercice 3 - Partiel 2020

Q3.1

Pour x = 1 et x = 0, $f_n(x) = 0$. Pour $x \in]0,1[$ et $n \ge 3$, on a $f_n(x) > 0$ car $x^n > 0$, (1-x) > 0 et $\ln(n)^{\alpha} > 0$. Pour $x \in]0,1[$,

$$\frac{f_{n+1}(x)}{f_n(x)} = \frac{\frac{x^{n+1}(1-x)}{(\ln(n+1))^{\alpha}}}{\frac{x^n(1-x)}{(\ln(n))^{\alpha}}} = \frac{(\ln(n))^{\alpha}(x^{n+1}(1-x))}{(\ln(n+1))^{\alpha}(x^n(1-x))} = \left(\frac{\ln(n)}{\ln(n+1)}\right)^{\alpha} x \in]0,1[$$

Donc par le critère d'Alembert, la série de fonctions $f_n(x)$ converge simplement.

Q3.2

Calcul de

$$f'_n(x) = -\frac{x^{n-1}((n+1)x - n)}{(\ln(n+1))^{\alpha}}$$

 $f_n'(x)=0$ pour x=0 et $x=\frac{n}{n+1}$. Les 2 points sont dans [0,1]. On a $f_n(0)=0$ et $f_n(1)=0$ et $f_n(x)$ est positive, donc $f_n(x)$ croit entre $[0,\frac{n}{n+1}[$ et décroit entre $]\frac{n}{n+1},1]$

Calcul du maximum

$$f_n\left(\frac{n}{n+1}\right) = \frac{\left(\frac{n}{n+1}\right)^n \left(1 - \left(\frac{n}{n+1}\right)\right)}{(\ln(n))^{\alpha}} = \left(\frac{n}{n+1}\right)^n \frac{1}{(n+1)} \frac{1}{(\ln(n))^{\alpha}}$$

Soit $c = \left(\frac{n}{n+1}\right)^n \frac{1}{(n+1)}$, on a 0 < c < 1. donc $f_n\left(\frac{n}{n+1}\right) = \frac{c}{(\ln(n))^{\alpha}}$ cela converge ssi $\alpha > 1$ (sinon $\frac{c}{(\ln(n))^{\alpha}}$ croit lorsque n croit).

Q3.3

Je ne sais pas faire.

QED