

Roll No:

Subject Code: KCE501

Printed Page: 1 of 2

B.TECH (SEM V) THEORY EXAMINATION 2021-22 GEOTECHNICAL ENGINEERING

Total Marks: 100 Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- Explain the flow curve. a.
- Differentiate cohesive and cohesionless soil. b.
- Write flow equation for anisotropic soil. c.
- d. Write assumptions for Laplace equation.
- Define over-consolidation ratio. e.
- f. Discuss the secondary consolidation.
- Write the assumptions of Westargaard theory g.
- Write the limitations of Triaxial Test. h.
- Discuss the rotational failure of slope. i.
- Write the assumptions of Rakine's Earth Pressure theory. į.

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

- Illustrate the various structures of Soil. a.
- Demonstrate the constant head permeability test. b.
- Explain the Terzaghi's Theory of Consolidation. c.
- d. Illustrate Culmann's construction for active pressure.
- Discuss the Taylor's Stability Number. e.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Derive the relation:

$$\rho_d = \frac{(1-n_a)G\rho_w}{1+wG}$$

There are two borrow areas A and B which have soils with void ratios of 0.80 and (b) 0.70, respectively. The in-place water content is 20%, and 15%, respectively. The fill at the end of construction will have a total volume of 10,000 m³, bulk density of 2 Mg/m³ and a placement water content of 22%. Determine the volume of the soil required to be excavated from both areas. G = 2.65.

If the cost of excavation of soil and transportation is Rs. 200/- per 100 m³ for area A and Rs. 220/• per 100 m³ for area B, which of the borrow area is more economical?

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

In a constant head permeameter test, the following observations were taken. Distance (a) between piezometer tappings =100 mm Difference of water levels in piezometers = 60 mm

PAPER ID-410242

_	Subject Code: KCE50												250
Roll No:													

Diameter of the test sample = 100 mm Quantity of water collected = 350 ml Duration of the test = 270 seconds

Determine the coefficient of permeability of the soil.

(b) Explain the process for construction of flow net for determination of discharge through a dam. Discuss the applications of flow net briefly.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

Printed Page: 2 of 2

- (a) A clay layer whose total settlement under a given loading is expected to be 12 cm settles 3cm at end of 1 month after application of load increment. How many months will be required to reach settle of 6cm. Assume layer to have double drainage.
- (b) Explain the process involved in determination of compaction in light and heavy compaction test.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) A given saturated clay is known to have effective strength parameters of c' = 10 kpa and $\varphi' = 28^{\circ}$. A sample of this clay was brought to failure quickly so that no dissipation of the pore water could occur at failure it was known that $\overline{\sigma'}_1 = 60$ kPa, $\overline{\sigma'}_3 = 10$ kPa and $u_f = 20$ kPa.
 - (i) Estimate the values of σ_1 And σ_3 At failure.
 - (ii) What was the effective normal stress on the failure plane?
- (b) A long strip footing of width 2m carries a load of 400 kn/m. Calculate the maximum stress at a depth of 5 m below the centre line of the footing. Compare the results with 2:1 distribution method.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) A smooth vertical wall 5 m high retains a soil with c = 2.5 N/cm2, $\varphi = 30^{\circ}$, and $\gamma = 18$ kN/m3. Show the Rankine passive pressure distribution and determine the magnitude and point of application of the passive resistance.
- (b) Discuss the stability of slope. Explain various types of slope failure with neat sketches.