Analysis übergreifende Themen

David Jäggli

11. Januar 2023

Inhaltsverzeichnis

1	Zusammenfassende Tabelle							
	Trigonometrie 2.1 Tangens							
	Funktionen							
	3.1	nein						
		3.1.1	Schnittpunkte	5				
		3.1.2	Symmetrien	5				
			Abschnittsweise definierte Funktionen					

1 Zusammenfassende Tabelle

Funktion	Beschreibung in Prosa	Beschreibung in math. Form	Einheit	
Erlösfunktion E(x) (Umsatzfunktion)	Erlös = Menge mal Stückpreis Falls p konstant, also p(x) = p, dann sind wir in der vollkom- men Konkurrenz (*). Ansonsten im Monopol (*).	$E(x) = x \cdot p(x)$ Falls der Preis p konstant ist, dann gilt: $p(x) = p$. Also: $E(x) = x \cdot p$	GE	
Gewinnfunktion G(x)	Gewinn = Erlös - Kosten	G(x) = E(x) - K(x)	GE	
Gewinn pro Menge		$g(x) = \frac{G(x)}{x} = \frac{E(x) - K(x)}{x}$	GE/ME	
Kostenfunktion K(x)	Kosten = variable Kosten + fixe Kosten	$K(x) = K_{\nu}(x) + K_{f}$	GE	
Bei quadratischer Kost	enfunktion	$K_v(x) = ax^2 + bx$		
$K(x) = ax^2 + bx + c$ gilt:		K _f = c		
Variable Stückkosten k _v (x)	Variable Kosten pro Mengen- einheit	$k_v(x) = \frac{K_v(x)}{x}$	GE/ME	
Bei quadratischer Kost	enfunktion K(x) gilt:	$k_{v}(x) = \frac{K_{v}(x)}{x} = \frac{ax^{2} + bx}{x} = ax + b$ $D(x) = E(x) - K_{v}(x)$ GE		
Deckungsbeitrag D	Deckung = Erlös – variable Kos- ten	$D(x) = E(x) - K_v(x)$	GE	
Durchschnittlicher Deckungsbeitrag d	Deckungsbeitrag pro Mengen- einheit	$d(x) = \frac{D(x)}{x} = \frac{E(x) - K_v(x)}{x}$	GE/ME	
Nutzenschwelle, Ge- winnschwelle (Break- even-Point)	Ab dieser Menge wird ein Ge- winn erwirtschaftet	G(x) = 0 oder E(x) = K(x) Erste Nullstelle der Gewinnfunkti- on.	ME	
Nutzengrenze (Gewinnschwelle.)	Ab dieser Menge wird kein Gewinn mehr erwirtschaftet.	G(x) = 0 oder E(x) = K(x) Zweite Nullstelle der Gewinnfunktion.	ME	
Gewinnzone	Das Mengenintervall, in dem G(x) > 0 ist.]Nutzengrenze ; Nutzenschwelle[ME	
Gewinnmaximale Menge	Menge bei der der Gewinn ma- ximal wird.	XGopt	ME	
Gewinnoptimale Meng funktion (**):	e bei quadratischer Gewinn-	x-Koordinate des Scheitelpunktes	ME	
Maximaler Gewinn	Der höchstmögliche Gewinn.	$G_{\text{max}} = G(x_{\text{Gopt}})$	GE	
Maximaler Gewinn bei (**):	quadratischer Gewinnfunktion	y-Koordinate des Scheitelpunktes	GE	
Erlösmaximal Menge	Menge bei der der Erlös maxi- mal wird.	XEopt	ME	
Erlösoptimale Menge b (*):	ei quadratischer Erlösfunktion	x-Koordinate des Scheitelpunktes	ME	
Maximaler Erlös	Der höchstmögliche Erlös.	$E_{max} = E(x_{Eopt})$	GE	
Maximaler Erlös bei qu	adratischer Erlösfunktion (*):	y-Koordinate des Scheitelpunktes	GE	

2 Trigonometrie

 $\begin{array}{l} {\rm AK} = {\rm Ankathete} \ ({\rm hier} \ {\rm von} \ \alpha) \\ {\rm GK} = {\rm Gegenkathete} \ ({\rm hier} \ {\rm von} \ \alpha) \end{array}$

2.1 Tangens

Der Tangens ist eine ungerade Funktion $\rightarrow tan(-\alpha) = -tan(\alpha)$

$$tan(\alpha) = \frac{\mathrm{GK}}{\mathrm{AK}} = \frac{sin(\alpha)}{cos(\alpha)}$$

$$\alpha = tan^{-1} \left(\frac{GK}{AK} \right)$$

Wichtige Tangenswerte:

Winkel	0°	30°	45°	60°	90°
Tangenswert	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined

3 Funktionen

3.1 Allgemein

3.1.1 Schnittpunkte

- $\bullet\,$ Die Nullstellen einer Funktion sind die Werte x_i , für welche $f(x_i)=0$ gilt.
- Der Schnittpunkt mit der y-Achse ist der Punkt S(0; f(0)).

3.1.2 Symmetrien

- \bullet Eine Funktion heisst gerade, wenn f(x)=f(-x) gilt. (Bsp. $f(x)=x^2)$
- Eine Funktion heisst ungerade, wenn f(x) = -f(-x) gilt. (Bsp. $f(x) = x^3$)

3.1.3 Abschnittsweise definierte Funktionen

$$y = g(x) = \begin{cases} \frac{1}{2}x & x \in]-\infty; -2\\ -2x+3 & x \in]-2; 3\\ 5 & x \in]3; \infty[\end{cases}$$

