WE CLAIM:

1. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ alkynyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkynyl), $O(C_{1-4}$

5

10

15

 $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $NH(C_{1-4} \text{ alkenyl})$, $NH(C_{1-4} \text{ alkenyl})$, $NH(C_{1-4} \text{ alkenyl})$, $NH(C_{1-4} \text{ acyl})$, $N(C_{1-4} \text{ alkyl})$, $N(C_{1-4} \text{ alkyl})$, $N(C_{1-18} \text{ acyl})_2$, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N_3 , CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4} \text{ alkyl})$, $C(O)O(C_{1-4} \text{ alkyl})$, $C(O)O(C_{1-4} \text{ alkynyl})$, $C(O)O(C_{1-4} \text{ alkynyl})$, $C(O)O(C_{1-4} \text{ alkenyl})$, $C(O)O(C_{1-4$

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof.

2. The (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of claim 1 or its pharmaceutically acceptable salt or prodrug thereof, wherein Base is selected from the group consisting of:

wherein

5

10

15

Y is N or CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

3. The (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) of claim 1 or its pharmaceutically acceptable salt or prodrug thereof,

wherein Base is selected from the group consisting of (a) or (b):

and wherein R¹ is H, R² is OH, R² is H, R³ is H, and R⁴ is NH₂ or OH, and R⁵ is NH₂.

5

10

15

4. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is selected from the group consisting of

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

10

15

 R^2 and $R^{2'}$ are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkenyl})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)2, N(C₁₋₁₈ acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4} \text{ alkyl}), NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)2, OR7; R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

20

5

10

15

Br, I) lower alkyl of C_1 - C_6 such as CF_3 and CH_2CH_2F , lower alkenyl of C_2 - C_6 such as $CH=CH_2$, halogenated (F, Cl, Br, I) lower alkenyl of C_2 - C_6 such as C=CH-Chel, CH=CHBr and CH=CHI, lower alkynyl of C_2 - C_6 such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C_2 - C_6 , lower alkoxy of C_1 - C_6 such as CH_2OH and CH_2CH_2OH , halogenated (F, Cl, Br, I) lower alkoxy of C_1 - C_6 , CO_2H , CO_2R ', $CONH_2$, CONHR',

CONR'2, CH=CHCO2H, CH=CHCO2R';

25

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR',

SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl,

 C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof.

5. The (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) of claim 4 or its pharmaceutically acceptable salt or prodrug thereof, wherein

Base is

5

15

and R¹ is H, R² is OH, R² is H, R³ is H, R⁴ is NH₂ or OH, and R⁶ is H.

6. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group.

7. The (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of claim 6 or its pharmaceutically acceptable salt or prodrug thereof,

wherein Base is selected from the group consisting of:

Y is N or CH;

5

10

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl,

Br, I) lower alkyl of C_1 - C_6 such as CF_3 and CH_2CH_2F , lower alkenyl of C_2 - C_6 such as $CH=CH_2$, halogenated (F, Cl, Br, I) lower alkenyl of C_2 - C_6 such as C=CH-ChCl, CH=CHBr and CH=CHI, lower alkynyl of C_2 - C_6 such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C_2 - C_6 , lower alkoxy of C_1 - C_6 such as CH_2OH and CH_2CH_2OH , halogenated (F, Cl, Br, I) lower alkoxy of C_1 - C_6 , CO_2H , CO_2R ', $CONH_2$, CONHR', CONR'₂, $CH=CHCO_2H$, $CH=CHCO_2R$ '; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

8. The (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) of claim 6 or its pharmaceutically acceptable salt or prodrug thereof,

wherein Base is selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

5

10

9. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

$$R^{1}O$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}

wherein Base is

5

X is O, S, CH_2 , Se, NH, N-alkyl, CHW (R, S, or racemic), $C(W)_2$, wherein W is F, Cl, Br, or I;

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), O(C_{1-4} alkyl)

alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ acyl}),$ $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

5

10

15

20

25

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.

- R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;
- or its pharmaceutically acceptable salt or prodrug thereof.
 - 10. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) of the formula

wherein Base is

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in*

vivo is capable of providing a compound wherein R^1 is H or phosphate; R^2 is H or phosphate; R^1 and R^2 or R^7 can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

or its pharmaceutically acceptable salt or prodrug thereof.

5

10

15

11. A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) or its
 20 pharmaceutically acceptable salt or prodrug thereof of the formula:

12. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 $R^{7}O$
 R

wherein

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro.

13. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

14. A (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 X
 CH_{3}
 CH_{3}

wherein

5

10

15

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other

pharmaceutically acceptable leaving group which when administered *in* vivo is capable of providing a compound wherein R¹ is H or phosphate.

15. A (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$HO \longrightarrow CH_3$$

16. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

10

wherein

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

15

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives,

sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

5

10

15

20

25

R² and R² are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃, CN, Cl, Br, F, I, NO₂ C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)2, OR7; R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F),

azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, a pharmaceutically acceptable carrier.

17. The composition of claim 16, wherein Base is selected from the group consisting of:

wherein

5

10

15

20

Y is N or CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.

18. The composition of claim 16, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 is H, R^2 is OH, R^2 ' is H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

19. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is selected from the group consisting of

15

5

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

15

5

10

20

25

30

R² and R² are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃, CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁. 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$

alkenyl), NH(C_{1-4} alkynyl), NH(C_{1-4} acyl), N(C_{1-4} alkyl)₂, N(C_{1-4} acyl)₂, OR⁷; R² and R², can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof in a pharmaceutically acceptable carrier.

20. The composition of claim 19, wherein

Base is

5

10

15

20

and R^1 is H, R^2 is OH, R^2 is H, R^3 is H, R^4 is NH $_2$ or OH, and R^6 is H.

5

21. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier, of the structure:

10

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

. -

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically

acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R^1 or R^7 is independently H or phosphate; R^1 and R^7 can also be linked with cyclic phosphate group.

22. The composition of claim 21, wherein

Base is selected from the group consisting of:

Y is N or CH;

5

10

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

23. The composition of claim 21, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

24. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

10 wherein

5

15

Base is

X is O, S, CH_2 , Se, NH, N-alkyl, CHW (R, S, or racemic), $C(W)_2$, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-

phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

15

5

10

20

25

30

 R^2 and R^2 are independently H, $C_{1\text{--}4}$ alkyl, $C_{1\text{--}4}$ alkenyl, $C_{1\text{--}4}$ alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)2, N(C₁₋₁₈ acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4} \text{ alkyl}), NH(C_{1-4}$ alkenyl), NH(C_{1-4} alkynyl), NH(C_{1-4} acyl), N(C_{1-4} alkyl)₂, N(C_{1-4} acyl)2, OR7; R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

5

10

. 15

20

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl; and

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.

25. A pharmaceutical composition comprising a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

25

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 ,

optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier.

5

26. A pharmaceutical composition comprising a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier of the formula:

10

27. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L), or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier, of the formula:

$$R^{1}O$$
 R^{6}
 $R^{7}O$
 E
 CH_{3}

15

wherein

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-

phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro.

28. A pharmaceutical composition comprising a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier, of the formula:

29. A pharmaceutical composition comprising a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) or its pharmaceutically acceptable salt or prodrug thereof in a pharmaceutically acceptable carrier of the formula:

$$R^{1}O$$
 X
 CH_{3}
 CH_{3}

wherein

5

10

15

20

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

30. A pharmaceutical composition comprising a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β-D) or its pharmaceutically acceptable salt or prodrug thereof, in a pharmaceutically acceptable carrier, of the structure:

5

31. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

10

wherein

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

15

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives,

sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

5

10

15

20

25

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1} . 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH₂, NH(C₁₋₄$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), $NO_{2.}$ $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F),

azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

5

32. The method of claim 31,

wherein Base is selected from the group consisting of:

10

Y is N or CH.

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-

 C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

33. The method of claim 31, wherein

5

10

15

Base is selected from the group consisting of (a) or (b):

and wherein R^1 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH₂ or OH, and R^5 is NH₂.

34. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is selected from the group consisting of

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4$

 NO_{2} , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

10

5

15

20

25

- R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C2-C6 such as CH=CH2, halogenated (F, Cl, Br, I) lower alkenyl of C2-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'2, CH=CHCO2H, CH=CHCO2R';
- R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂- C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;
- R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

35. The method of claim 34, wherein

Base is

and R^1 is H, R^2 is OH, R^2 is H, R^3 is H, R^4 is NH $\!_2$ or OH, and R^6 is H.

36. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives,

15

5

sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

optionally, in a pharmaceutically acceptable carrier.

5

10

15

20

37. The method of claim 36, wherein

Base is selected from the group consisting of:

Y is N or CH;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

5

38. The method of claim 36, wherein

Base is selected from the group consisting of (a) or (b):

10

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

15

39. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkenyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $C(C_{1-4}$ alkenyl), $C(C_{1-4}$ alkenyl), $C(C_{1-4}$ alkynyl), $C(C_{1-4}$ a

 NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

10

5

15

20

25

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C2-C6 such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'2, CH=CHCO2H, CH=CHCO2R';

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier

40. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta-D \text{ or } \beta-L)$ of the formula:

5

wherein

Base is

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I)

lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier

41. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

5

10

15

42. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 R^{6}
 $R^{7}O$
 E
 CH_{3}

wherein

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

optionally in a pharmaceutically acceptable carrier.

43. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

5

10

15

44. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-

phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

optionally in a pharmaceutically acceptable carrier.

10

5

45. A method for the treatment or prophylaxis of hepatitis C infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

15

optionally in a pharmaceutically acceptable carrier.

20

46. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

5

10

15

20

25

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 $R^2 \text{ and } R^{2'} \text{ are independently H, } C_{1-4} \text{ alkyl, } C_{1-4} \text{ alkenyl, } C_{1-4} \text{ alkynyl, vinyl, } N_3, \\ CN, Cl, Br, F, I, NO_2, C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } O(C_{1-4} \text{ alkynyl}), S(C_{1-4} \text{ alkenyl), } SO(C_{1-4} \text{ alkynyl}), SO(C_{1-4} \text{ alkynyl}), SO(C_{1-4} \text{ alkenyl}), SO(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkynyl}), O_3S(C_{1-4} \text{ alkenyl}), NH(C_{1-4} \text{ alkynyl}), NH(C_{1-4} \text{ alkenyl}), NH(C_{1-4} \text{ alkenyl}), NH(C_{1-4} \text{ alkynyl}), NH(C_{1-4} \text{ acyl}), N(C_{1-4} \text{ acyl}), N(C_{1-4} \text{ alkynyl}), NH(C_{1-4} \text{ acyl}), N(C_{1-4} \text{$

alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkenyl), O(C₁₋₄ acyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkenyl), S(C₁₋₄ acyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkynyl), S(C₁₋₄ alkenyl), SO(C₁₋₄ acyl), SO(C₁₋₄ alkyl), SO(C₁₋₄ alkynyl), SO(C₁₋₄ alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₃S(C₁₋₄ acyl), O₃S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkenyl), NH₂, NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

47. The method of claim 46,

5

10

15

20

wherein Base is selected from the group consisting of:

Y is N or CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.

48. The method of claim 46, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH₂ or OH, and R^5 is NH₂.

15

5

10

49. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

5

10

15

20

Base is selected from the group consisting of

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), NH(C_{1-4} alkenyl), NH(C_{1-4} alkynyl), NH(C_{1-4} acyl), N(C_{1-4} alkyl)2, N(C₁₋₁₈ acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ acyl}),$ $O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4} \text{ alkyl}), NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

25

5

10

15

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

5

 R^6 is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH_3 , OCH_3 , OCH_2CH_3 , hydroxy methyl (CH_2OH), fluoromethyl (CH_2F), azido (N_3), CHCN, CH_2N_3 , CH_2NH_2 , CH_2NHCH_3 , $CH_2N(CH_3)_2$, alkyne (optionally substituted), or fluoro;

10

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

50. The method of claim 49, wherein

Base is

15

and R^1 is $H,\,R^2$ is OH, $R^{2^{\ast}}$ is $H,\,R^3$ is $H,\,R^4$ is NH_2 or OH, and R^6 is H.

20

51. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base;

5

10

15

20

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group and optionally a pharmaceutically acceptable carrier.

52. The method of claim 51, wherein

Base is selected from the group consisting of:

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5

Y is N or CH;

5

10

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.

53. The method of claim 51, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

54. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

5

10

15

20

Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

R² and R² are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃, CN, Cl, Br, F, I, NO₂, C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)2, N(C₁₋₁₈ acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ acyl}),$ $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R^{2'} can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 -

5

10

15

20

 C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

55. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

15 wherein

Base is

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including

5

optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

10

5

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

15

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

20

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

25

56. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

57. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

5

10

15

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of

providing a compound wherein R^1 or R^7 is independently H or phosphate; R^1 and R^7 can also be linked with cyclic phosphate group; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro; and

optionally in a pharmaceutically acceptable carrier.

10

5

58. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

15

optionally in a pharmaceutically acceptable carrier.

20

59. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

5

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

10

vivo is capable of providing a compound

optionally in a pharmaceutically acceptable carrier.

15

60. A method for the treatment or prophylaxis of a rhinovirus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$HO \longrightarrow CH_3$$

optionally in a pharmaceutically acceptable carrier.

61. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other

20

15

5

pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R^1 is H or phosphate; R^2 is H or phosphate; R^1 and R^2 or R^7 can also be linked with cyclic phosphate group;

5

10

15

20

25

 R^2 and $R^{2'}$ are independently H, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkenyl, $C_{1\text{-}4}$ alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂ C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4} \text{ alkenyl})$ alkyl), NH(C_{1-4} alkenyl), NH(C_{1-4} alkynyl), NH(C_{1-4} acyl), N(C_{1-4} alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ acyl}),$ $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

62. The method of claim 61,

wherein Base is selected from the group consisting of:

Y is N or CH.

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

20

5

10

63. The method of claim 61, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH $_2$ or OH, and R^5 is NH $_2$.

64. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is selected from the group consisting of

15

5

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

15

5

10

20

25

30

R² and R² are independently H, C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, vinyl, N₃, CN, Cl, Br, F, I, NO_{2} , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkenyl})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_{1-4} \text{ alkenyl})$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), NH(C_{1-4} alkynyl), NH(C_{1-4} acyl), N(C_{1-4} alkyl)₂, N(C_{1-4} acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof. optionally in a pharmaceutically acceptable carrier.

65. The method of claim 64, wherein

Base is

5

10

15

20

and R^1 is H, R^2 is OH, R^2 is H, R^3 is H, R^4 is NH $_2$ or OH, and R^6 is H.

5

66. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

10

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

15

diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally

substituted, a lipid, including a phospholipid, an L or D-amino acid, a

R¹ and R⁷ are independently H, phosphate, including monophosphate,

carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R^1 or R^7 is independently H or phosphate; R^1 and R^7 can also be linked with cyclic phosphate group and

optionally in a pharmaceutically acceptable carrier.

5

10

15

20

67. The method of claim 66, wherein

Base is selected from the group consisting of:

Y is N or CH;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-

 C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

68. The method of claim 66, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

69. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is

5

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 $R^2 \text{ and } R^2 \text{ are independently H, } C_{1-4} \text{ alkyl, } C_{1-4} \text{ alkenyl, } C_{1-4} \text{ alkynyl, vinyl, } N_3, \\ CN, Cl, Br, F, I, NO_2, C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkyl), } C(O)O(C_{1-4} \text{ alkynyl), } C(O)O(C_{1-4} \text{ alkenyl), } O(C_{1-4} \text{ alkynyl), } O(C_{1-4} \text{ alkynyl), } O(C_{1-4} \text{ alkenyl), } O(C_{1-4} \text{ alkenyl), } O(C_{1-4} \text{ alkynyl), } O(C_{1-4} \text{ alkenyl), } O(C_{1-4} \text{ alkenyl}), \\ O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), \\ O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), \\ O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ alkenyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), \\ O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ al$

 $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkynyl})$, $NH(C_{1-4} \text{ alkynyl})$, $NH(C_{1-4} \text{ acyl})$, $N(C_{1-4} \text{ alkyl})_2$, $N(C_{1-4} \text{ acyl})_2$, OR^7 ; R^2 and R^2 can be linked together to form a vinyl optionally substituted by one or two of N_3 , CN, Cl, Br, F, I, NO_2 ;

5

10

15

20

25

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

70. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆

such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C_2 - C_6 , lower alkoxy of C_1 - C_6 such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C_1 - C_6 , CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

5

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl;

10

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

15

71. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

20

72. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 R^{6}
 $R^{7}O$
 E
 CH_{3}
 CH_{3}

wherein

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group; and,

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro, and

optionally in a pharmaceutically acceptable carrier.

73. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-

fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

5

74. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 X
 CH_{3}
 CH_{3}

10

wherein

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

15

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl

sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

optionally in a pharmaceutically acceptable carrier

5

10

15

75. A method for the treatment or prophylaxis of a yellow fever virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$HO \longrightarrow CH_3$$

optionally in a pharmaceutically acceptable carrier.

76. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 $R^2 \text{ and } R^2 \text{ are independently H, } C_{1-4} \text{ alkyl, } C_{1-4} \text{ alkenyl, } C_{1-4} \text{ alkynyl, vinyl, } N_3, \\ CN, Cl, Br, F, I, NO_2, C(O)O(C_{1-4} \text{ alkyl)}, C(O)O(C_{1-4} \text{ alkyl}), C(O)O(C_{1-4} \text{ alkyl}), C(O)O(C_{1-4} \text{ alkyl}), C(O)O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkynyl}), S(C_{1-4} \text{ alkenyl}), SO(C_{1-4} \text{ alkyl}), SO(C_{1-4} \text{ alkynyl}), SO(C_{1-4} \text{ alkenyl}), SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkynyl}), O_3S(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ alkynyl}), O_3S(C_{1-4} \text{ alkynyl})$

 $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkynyl})$, $NH(C_{1-4} \text{ acyl})$, $N(C_{1-4} \text{ alkyl})_2$, $N(C_{1-4} \text{ acyl})_2$, OR^7 ; R^2 and R^2 can be linked together to form a vinyl optionally substituted by one or two of N_3 , CN, Cl, Br, F, I, NO_2 ;

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

77. The method of claim 76,

wherein Base is selected from the group consisting of:

Y is N or CH.

 R^3 , R^4 and R^5 are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆,

15

5

lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

78. The method of claim 76, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R¹ is H, R² is OH, R² is H, R³ is H, and R⁴ is NH₂ or OH, and R⁵ is NH₂.

79. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) of the formula:

20

15

5

wherein

Base is selected from the group consisting of

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 $R^2 \text{ and } R^{2'} \text{ are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3, $CN, $Cl, $Br, $F, $I, NO_2, $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkynyl), $S(C_{1-4}$ alkenyl), $S(C_{1-4}$ alkyl), $SO(C_{1-4}$ alkyl), $SO(C_{1-4}$ alkyl), $SO(C_{1-4}$ alkyl), $SO(C_{1-4}$ alkyl), $SO_2(C_{1-4}$ alkyl), $SO_2(C_{1-4}$ alkyl), $O_3S(C_{1-4}$ alkyl), $O_3S(C_{1-4}$ alkyl), $O_3S(C_{1-4}$ alkyl), $O_4S(C_{1-4}$

5

10

15

20

alkyl), NH(C₁₋₄ alkenyl), NH(C₁₋₄ alkynyl), NH(C₁₋₄ acyl), N(C₁₋₄ alkyl)₂, N(C₁₋₁₈ acyl)₂, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkenyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkenyl), S(C₁₋₄ acyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkyl), SO(C₁₋₄ alkyl), SO(C₁₋₄ alkynyl), SO(C₁₋₄ alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₃S(C₁₋₄ acyl), O₃S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkenyl), NH₂, NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl)₂, N(C₁₋₄ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

5

10

15

20

25

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

- R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;
- R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

80. The method of claim 79, wherein

Base is

and R^1 is H, R^2 is OH, $R^{2^{\prime}}$ is H, R^3 is H, R^4 is NH2 or OH, and R^6 is H.

10

5

81. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

15

wherein Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-

phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group, and optionally a pharmaceutically acceptable carrier.

82. The method of claim 81, wherein

5

10

15

20

Base is selected from the group consisting of:

Y is N or CH;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated

(F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

83. The method of claim 81, wherein

Base is selected from the group consisting of (a) or (b):

$$\begin{array}{c} R^4 \\ N \\ N \\ N \end{array}$$

$$\begin{array}{c} R^3 \\ N \\ N \end{array}$$

$$\begin{array}{c} R^4 \\ N \\ N \end{array}$$

$$\begin{array}{c} R^4 \\ N \\ N \end{array}$$

$$\begin{array}{c} R^4 \\ N \\ N \end{array}$$

$$\begin{array}{c} R^5 \\ N \\ N \end{array}$$

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

84. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

$$R^{1}O$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}

wherein

Base is

15

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic

 R^2 and $R^{2'}$ are independently H, $C_{1\cdot4}$ alkyl, $C_{1\cdot4}$ alkenyl, $C_{1\cdot4}$ alkynyl, vinyl, N_3 , $CN,\,Cl,\,Br,\,F,\,I,\,NO_2,\,C(O)O(C_{1\cdot4}$ alkyl), $C(O)O(C_{1\cdot4}$ alkyl), $C(O)O(C_{1\cdot4}$ alkyl), $C(O)O(C_{1\cdot4}$ alkyl), $O(C_{1\cdot4}$ alkynyl), $O(C_{1\cdot4}$ alkenyl), $O(C_{1\cdot4}$ alkyl), $O(C_{1\cdot4}$ alkyl), $O(C_{1\cdot4}$ alkynyl), $O(C_{1\cdot4}$ al

5

10

15

20

phosphate group;

NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkynyl), C(O)O(C₁₋₄ alkenyl), O(C₁₋₄ acyl), O(C₁₋₄ alkyl), O(C₁₋₄ alkenyl), S(C₁₋₄ acyl), S(C₁₋₄ alkyl), S(C₁₋₄ alkynyl), S(C₁₋₄ alkenyl), SO(C₁₋₄ acyl), SO(C₁₋₄ alkyl), SO(C₁₋₄ alkynyl), SO(C₁₋₄ alkenyl), SO₂(C₁₋₄ acyl), SO₂(C₁₋₄ alkyl), SO₂(C₁₋₄ alkynyl), SO₂(C₁₋₄ alkenyl), O₃S(C₁₋₄ acyl), O₃S(C₁₋₄ alkyl), O₃S(C₁₋₄ alkenyl), NH₂, NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl), NH(C₁₋₄ acyl), N(C₁₋₄ acyl)₂, OR⁷; R² and R² can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

10

5

15

20

25

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl.

 R^6 is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

85. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

5

wherein

Base is

10

15

20

diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

R¹ and R⁷ are independently H, phosphate, including monophosphate,

 R^3 and R^4 are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I)

lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

86. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

5

10

15

87. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

5

10

15

20

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group; and.

 R^6 is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro and,

optionally in a pharmaceutically acceptable carrier.

88. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

and optionally a pharmaceutically acceptable carrier.

5

10

15

89. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

X is O, S, CH_2 , Se, NH, N-alkyl, CHW (R, S, or racemic), $C(W)_2$, wherein W is F, Cl, Br, or I; and

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-

phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

optionally in a pharmaceutically acceptable carrier.

10

5

90. A method for the treatment or prophylaxis of a West Nile virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$HO \longrightarrow CH_3$$

15

optionally in a pharmaceutically acceptable carrier.

91. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

5

10

15

20

25

Base is a purine or pyrimidine base;

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and $R^{2'}$ are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkynyl), $O(C_{1-4}$

 $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, $NH(C_{1-4} \text{ acyl})$, $N(C_{1-4} \text{ alkyl})_2$, $N(C_{1-18} \text{ acyl})_2$, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N_3 , CN, one to three halogen (Cl, Cl, Cl) Cl, Cl

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

92. The method of claim 91,

5

10

15

20

wherein Base is selected from the group consisting of:

Y is N or CH.

5

10

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

93. The method of claim 91, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 is H, R^2 is OH, R^2 is H, R^3 is H, and R^4 is NH₂ or OH, and R^5 is NH₂.

94. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) of the formula:

wherein

Base is selected from the group consisting of

Y is N or CH;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

15

10

R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and $R^{2'}$ are independently H, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkenyl, $C_{1\text{-}4}$ alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C₁₋₄ alkyl), C(O)O(C₁₋₄ alkyl), C(O)O(C₁-4 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl}), O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4})$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)2, N(C₁₋₁₈ acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optimally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_1$ 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} \text{ acyl})$, $O_3S(C_{1-4} \text{ alkyl})$, $O_3S(C_{1-4} \text{ alkenyl})$, NH_2 , $NH(C_{1-4} \text{ alkyl})$, $NH(C_{1-4} \text{ alkyl})$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)2, OR7; R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

25

5

10

15

R' is an optionally substituted alkyl of C₁-C₁₂ (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C₂-C₆, optionally substituted lower alkenyl of C₂-C₆, or optionally substituted acyl;

5

 R^6 is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH_3 , OCH_3 , OCH_2CH_3 , hydroxy methyl (CH_2OH), fluoromethyl (CH_2F), azido (N_3), CHCN, CH_2N_3 , CH_2NH_2 , CH_2NHCH_3 , $CH_2N(CH_3)_2$, alkyne (optionally substituted), or fluoro;

10

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

95. The method of claim 94, wherein

Base is

15

and R^1 is H, R^2 is OH, $R^{2^{\prime}}$ is H, R^3 is H, R^4 is NH $_2$ or OH, and R^6 is H.

20

96. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) or its pharmaceutically acceptable salt or prodrug thereof of the structure:

wherein Base is a purine or pyrimidine base;

5

10

15

20

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and,

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group, and optionally a pharmaceutically acceptable carrier.

97. The method of claim 96, wherein

Base is selected from the group consisting of:

$$\mathbb{R}^{3}$$
 \mathbb{R}^{4}
 \mathbb{R}^{5}

Y is N or CH;

5

10

15

20

R³, R⁴ and R⁵ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

98. The method of claim 96, wherein

Base is selected from the group consisting of (a) or (b):

and wherein R^1 and R^7 are H, R^3 is H, and R^4 is NH_2 or OH, and R^5 is NH_2 .

99. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

wherein

5

10

15

20

Base is

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I;

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid (or racemic mixture), a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; R² is H or phosphate; R¹ and R² or R⁷ can also be linked with cyclic phosphate group;

 R^2 and R^2 are independently H, C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, vinyl, N_3 , CN, Cl, Br, F, I, NO₂, C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} alkyl), C(O)O(C_{1-4} 4 alkynyl), $C(O)O(C_{1-4}$ alkenyl), $O(C_{1-4}$ acyl), $O(C_{1-4}$ alkyl), $O(C_{1-4}$ alkenyl), $S(C_{1-4} \text{ acyl})$, $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl})$, $SO_2(C_{1-4} \text{ alkynyl})$, $SO_2(C_{1-4} \text{ alkenyl})$, $O_3S(C_{1-4} - acyl)$, $O_3S(C_{1-4} - alkyl)$, $O_3S(C_{1-4} - alkenyl)$, NH_2 , $NH(C_{1-4} - alkyl)$ alkyl), $NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)2, N(C1-18 acyl)2, wherein alkyl, alkynyl, alkenyl and vinyl are optinally substituted by N₃, CN, one to three halogen (Cl, Br, F, I), NO_2 , $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkyl), $C(O)O(C_{1-4}$ alkynyl), $C(O)O(C_{1-4} \text{ alkenyl}), O(C_{1-4} \text{ acyl}), O(C_{1-4} \text{ alkyl}), O(C_{1-4} \text{ alkenyl}), S(C_1$. 4 acyl), $S(C_{1-4} \text{ alkyl})$, $S(C_{1-4} \text{ alkynyl})$, $S(C_{1-4} \text{ alkenyl})$, $SO(C_{1-4} \text{ acyl})$, $SO(C_{1-4} \text{ alkyl})$, $SO(C_{1-4} \text{ alkynyl})$, $SO(C_{1-4} \text{ alkenyl})$, $SO_2(C_{1-4} \text{ acyl})$, $SO_2(C_{1-4} \text{ alkyl}), SO_2(C_{1-4} \text{ alkynyl}), SO_2(C_{1-4} \text{ alkenyl}), O_3S(C_{1-4} \text{ acyl}),$ $O_3S(C_{1-4} \text{ alkyl}), O_3S(C_{1-4} \text{ alkenyl}), NH_2, NH(C_{1-4} \text{ alkyl}), NH(C_{1-4}$ alkenyl), $NH(C_{1-4}$ alkynyl), $NH(C_{1-4}$ acyl), $N(C_{1-4}$ alkyl)₂, $N(C_{1-4}$ acyl)2, OR7; R2 and R2 can be linked together to form a vinyl optionally substituted by one or two of N₃, CN, Cl, Br, F, I, NO₂;

R³ and R⁴ are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C≡CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R'; and,

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 -

5

10

15

20

 C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted acyl.

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro;

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

100. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L) of the formula:

15 wherein

Base is

R¹ and R⁷ are independently H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including

5

optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ or R⁷ is independently H or phosphate; R¹ and R⁷ can also be linked with cyclic phosphate group;

10

5

 R^3 and R^4 are independently H, halogen including F, Cl, Br, I, OH, OR', SH, SR', NH₂, NHR', NR'₂, lower alkyl of C₁-C₆, halogenated (F, Cl, Br, I) lower alkyl of C₁-C₆ such as CF₃ and CH₂CH₂F, lower alkenyl of C₂-C₆ such as CH=CH₂, halogenated (F, Cl, Br, I) lower alkenyl of C₂-C₆ such as CH=CHCl, CH=CHBr and CH=CHI, lower alkynyl of C₂-C₆ such as C=CH, halogenated (F, Cl, Br, I) lower alkynyl of C₂-C₆, lower alkoxy of C₁-C₆ such as CH₂OH and CH₂CH₂OH, halogenated (F, Cl, Br, I) lower alkoxy of C₁-C₆, CO₂H, CO₂R', CONH₂, CONHR', CONR'₂, CH=CHCO₂H, CH=CHCO₂R';

15

20

R' is an optionally substituted alkyl of C_1 - C_{12} (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C_2 - C_6 , optionally substituted lower alkenyl of C_2 - C_6 , or optionally substituted

acyl.

or its pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.

25

101. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

102. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

$$R^{1}O$$
 R^{6}
 $R^{7}O$
 E
 CH_{3}

wherein

10

5

15

diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized H-phosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically

R¹ and R⁷ are independently H, phosphate, including monophosphate,

acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R^1 or R^7 is independently H or phosphate; R^1 and R^7 can also be linked with cyclic phosphate group; and,

5

R⁶ is an optionally substituted alkyl (including lower alkyl), cyano (CN), CH₃, OCH₃, OCH₂CH₃, hydroxy methyl (CH₂OH), fluoromethyl (CH₂F), azido (N₃), CHCN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, alkyne (optionally substituted), or fluoro and,

optionally in a pharmaceutically acceptable carrier.

10

103. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

15

and optionally a pharmaceutically acceptable carrier.

20

104. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

wherein

X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and

5

R¹ is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug, H-phosphonate, including stabilized Hphosphonates, acyl, including optionally substituted phenyl and lower acyl, alkyl, including lower alkyl, O-substituted carboxyalkylamino or its peptide derivatives, sulfonate ester, including alkyl or arylalkyl sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted, a lipid, including a phospholipid, an L or D-amino acid, a carbohydrate, a peptide, a cholesterol, or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R¹ is H or phosphate;

10

optionally in a pharmaceutically acceptable carrier.

15

105. A method for the treatment or prophylaxis of a Dengue virus infection comprising administering to a host an antivirally effective amount of a (2'R)-2'-deoxy-2'fluoro-2'-C-methyl nucleoside (β-D) or its pharmaceutically acceptable salt or prodrug thereof of the formula:

optionally in a pharmaceutically acceptable carrier.

106. The method of 31, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

20

5

10

15

107. The method of 41, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin;

interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

- The method of 43, wherein the antivirally effective amount of (2'R)-2'-deoxy-108. 2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.
- 109. The method of 45, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a,

interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

110. The method of 46, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

The method of 56, wherein the antivirally effective amount of (2'R)-2'-deoxy-111. 2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic

vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

113. The method of 60, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

20

25

30

5

10

15

2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene;

amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

The method of 71, wherein the antivirally effective amount of (2'R)-2'-deoxy-115. 2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

20

25

30

116. The method of 73, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine

derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

30

- 117. The method of 75, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.
- 118. The method of 76, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase

inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

10

15

20

5

The method of 86, wherein the antivirally effective amount of (2'R)-2'-deoxy-119. 2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

25

30

120. The method of 88, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin;

interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

30

- The method of 90, wherein the antivirally effective amount of (2'R)-2'-deoxy-121. 2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.
- 122. The method of 91, wherein the antivirally effective amount of (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a,

interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine; a bile acid; N-(phosphonoacetyl)-L-aspartic acid; a benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

123. The method of 101, wherein the antivirally effective amount of (2'R)-2'deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; bile amantadine; acid; N-(phosphonoacetyl)-L-aspartic acid: benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybinphosphatidylcholine phytosome; and mycophenolate.

124. The method of 103, wherein the antivirally effective amount of (2'R)-2'deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; amantadine; bile acid; N-(phosphonoacetyl)-L-aspartic acid: squalene; benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybinphosphatidylcholine phytosome; and mycophenolate.

5

10

15

20

25

125. The method of 105, wherein the antivirally effective amount of (2'R)-2'deoxy-2'-fluoro-2'-C-methyl nucleoside is administered in combination or alternation with at least one treatment selected from the group consisting of: interferon, including interferon alpha 2a, interferon alpha 2b, a pegylated interferon, interferon beta, interferon gamma, interferon tau and interferon omega; an interleukin, including interleukin 10 and interleukin 12; ribavirin; interferon alpha or pegylated interferon alpha in combination with ribavirin or levovirin; levovirin; a protease inhibitor including an NS3 inhibitor, a NS3-4A inhibitor; a helicase inhibitor; a polymerase inhibitor including HCV RNA polymerase and NS5B polymerase inhibitor; gliotoxin; an IRES inhibitor; and antisense oligonucleotide; a thiazolidine derivative; a benzanilide, a ribozyme; another nucleoside, nucleoside prodrug or nucleoside derivative; a 1-amino-alkylcyclohexane; an antioxidant including vitamin E; squalene; amantadine: bile acid: N-(phosphonoacetyl)-L-aspartic benzenedicarboxamide; polyadenylic acid; a benzimidazoles; thymosin; a beta tubulin inhibitor; a prophylactic vaccine; an immune modulator, an IMPDH inhibitor; silybin-phosphatidylcholine phytosome; and mycophenolate.

126. A method of synthesizing a (2R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside $(\beta$ -D or β -L) comprising glycosylation of a nucleobase with an intermediate structure:

5

10

wherein R is lower alkyl, acyl, benzoyl, or mesyl; and Pg is any acceptable protecting group consisting of but not limited to C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, *tert*-butyldimethylsilyl, *tert*-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).

127. A method of synthesizing a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside
(β-D or β-L) comprising selective deprotection of either Pg in an intermediate of the structure:

wherein, X is O, S, CH₂, Se, NH, N-alkyl, CHW (R, S, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and Pg is independently any pharmaceutically acceptable protecting group

selected from the group consisting of C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkyl, CH₂-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, *tert*-butyldimethylsilyl, *tert*-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).

5

128. An intermediate in the synthesis of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L), wherein the intermediate is of the structure:

10

wherein R is lower alkyl, acyl, benzoyl, or mesyl; and Pg is any acceptable protecting group consisting of but not limited to C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, *tert*-butyldimethylsilyl, *tert*-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).

15

129. An intermediate in the synthesis of a (2'R)-2'-deoxy-2'-fluoro-2'-C-methyl nucleoside (β -D or β -L), wherein the intermediate is of the structure:

2-5

wherein, X is O, S, CH₂, Se, NH, N-alkyl, CHW (*R*, *S*, or racemic), C(W)₂, wherein W is F, Cl, Br, or I; and Pg is independently any pharmaceutically acceptable protecting group selected from the group consisting of C(O)-alkyl, C(O)Ph, C(O)aryl, CH₃, CH₂-alkyl, CH₂-alkenyl, CH₂Ph, CH₂-aryl, CH₂O-alkyl, CH₂O-aryl, SO₂-alkyl, SO₂-aryl, *tert*-butyldimethylsilyl, *tert*-butyldiphenylsilyl, or both Pg's may come together to for a 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene).