

VE230 Homework 7

2021 Summer

P.8-22 A uniform sinusoidal plane wave in air with the following phasor expression for electric intensity

$$\mathbf{E}_{i}(x,z) = \mathbf{a}_{y} 10e^{-j(6x+8z)}$$
 (V/m)

is incident on a perfectly conducting plane at z = 0.

- a) Find the frequency and wavelength of the wave.
- b) Write the instantaneous expressions for $\mathbf{E}_i(x,z;t)$ and $\mathbf{H}_i(x,z;t)$, using a cosine reference.
- c) Determine the angle of incidence.
- d) Find $\mathbf{E}_r(x,z)$ and $\mathbf{H}_r(x,z)$ of the reflected wave.
- e) Find $\mathbf{E}_r(x,z)$ and $\mathbf{H}_r(x,z)$ of the total field.

P.8-29 Consider the situation of normal incidence at a lossless dielectric slab of thickness d in air as shown in Fig. 1 with

$$\epsilon_1 = \epsilon_3 = \epsilon_0$$
 and $\mu_1 = \mu_3 = \mu_0$.

Figure 1: Normal incidence at multiple dielectric interfaces

Problems:

- 1. Find $\mathbf{E}_{r0}, \mathbf{E}_2^+$ and \mathbf{E}_2^- , and \mathbf{E}_{r0} in terms of $\mathbf{E}_{i0}, d, \epsilon_2$, and μ_2 .
- 2. Will there be reflection at interface z=0 if $d=\lambda_2/4$? If $d=\lambda_2/2$? Explain.

P.8-33 A uniform plane wave with $\mathbf{E}_i(z) = \mathbf{a}_x E_{i0} e^{-j\beta_0 z}$ in air propagates normally through a thin copper sheet of thickness d, as shown in Fig. 2. Neglecting multiple reflections within the copper sheets, find:

Figure 2: Plane wave propagating through a thin copper sheet

- a) E_2^+, H_2^+
- b) E_2^-, H_2^-
- c) E_{30} , H_{30}
- d) $(\mathscr{P}_{av})_3/(\mathscr{P}_{av})_i$

Calculate $(\mathscr{P}_{av})_3/(\mathscr{P}_{av})_i$ for a thickness d that equals one skin depth at 10 (MHz). (Note that this pertains to the shielding effectiveness of the thin copper sheet.)

P.8-37 A uniform plane wave with perpendicular polarization presented by Eqs. (8-196) and (8-197) is incident on a plane interface at z=0, as shown in Fig. 3. Assuming $\epsilon_2 < \epsilon_1$ and $\theta_i > \theta_c$,

$$\mathbf{E}_{i}(x,z) = \mathbf{a}_{v} E_{i0} e^{-j\beta_{1}(x\sin\theta_{i} + z\cos\theta_{i})}$$
(8-196)

$$\mathbf{H}_{i}(x,z) = \frac{E_{i0}}{\eta_{1}} \left(-\mathbf{a}_{x} \cos \theta_{i} + \mathbf{a}_{z} \sin \theta_{i} \right) e^{-j\beta_{1}(x \sin \theta_{i} + z \cos \theta_{i})}. \tag{8-197}$$

Figure 3: Uniform plane wave incident obliquely on a plane dielectric boundary

- a) Obtain the phasor expressions for the transmitted field $(\mathbf{E}_t, \mathbf{H}_t)$
- b) Verify that the average power transmitted into medium 2 vanishes.

P.8-40 Glass isosceles triangular prisms shown in Fig. 4 are used in optical instruments. Assuming $\epsilon_r = 4$ for glass, calculate the percentage of the incident light power reflected back by the prism.

Figure 4: Light reflection by a right isosceles triangular prism

$\mathbf{P.8-45}$ By using the Snell's law of reflection

- a) Express Γ and τ in terms of $\epsilon_{r1}, \, \epsilon_{r2}$ and θ_i
- b) Plot Γ and τ versus θ_i for $\epsilon_{r1}/\epsilon_{r2}=2.25$ for both perpendicular and parallel polarizations.