

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA CIÊNCIAS DA COMPUTAÇÃO

Gabriel Medeiros Lopes Carneiro

Problema de empacotamento de retângulos:

métodos de solução baseados em bottom-left

Florianópolis, SC 2023

Gabriel Medeiros Lopes Carneiro

Problema de empacotamento de retângulos

Trabalho de conclusão de curso submetido ao curso de Ciências da Computação da Universidade Federal de Santa Catarina para a obtenção do título de Bacharel em Ciências da Computação.

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística Ciências da Computação

Orientador: Prof. Dr. Pedro Belin Castellucci Coorientador: Prof. Dr. Rafael de Santiago

Agradecimentos

Resumo

Este trabalho estuda estratégias de otimização para o problema de empacotamento de itens retangulares, com o uso da técnica bottom-left. A escolha dessa técnica se deve a dificuldade de usar métodos exatos para resolução em tempo hábil. Algoritmos serão implementados e instâncias de teste serão escolhidas para fins comparativos com os resultados de outros autores.

Palavras-chave: problema de empacotamento, otimização, heurística, pesquisa operacional.

Abstract

This work studies optimization strategies for the packing problem of rectangular items, using the bottom-left technique. The choice of this technique is due to the difficulty of using exact methods for timely resolution. Algorithms will be implemented and test instances will be chosen for comparative purposes with the results of other authors.

Keywords: packing problem, optimization, heuristic, operational research.

Lista de ilustrações

Figura 1 – Representação para o problema de empacotamento 1D, 2D e 3D	Ĝ
Figura 2 — Exemplo de modelo contínuo e discreto	13
Figura 3 — Exemplos de peças regulares e irregulares	15
Figura 4 — Representação de alocação usando $\mathit{bottom-left}.$	18
Figura 5 – Itens 0 e 1 posicionados	19
Figura 6 – Itens 0, 1 e 2 posicionados, mas com sobreposição	20
Figura 7 — Itens 0, 1 e 2 posicionados, sem sobreposição	20
Figura 8 – Itens 0 e 1 posicionados, com domínio discreto	21
Figura 9 – Itens 0, 1 e 2 posicionados, com domínio discreto	21
Figura 10 — Regiões criadas traçando uma linha vertical	22
Figura 11 — Regiões criadas traçando uma linha horizontal	23
Figura 12 — Regiões criadas maximizando uma das regiões	23
Figura 13 – Regiões criadas possibilitando sobreposições	24
Figura 14 — Regiões criadas na ordenação crescente - estado inicial	27
Figura 15 — Regiões criadas na ordenação crescente - estado 1	27
Figura 16 — Regiões criadas na ordenação crescente - estado 2	28
Figura 17 – Regiões criadas na ordenação crescente - estado final	28

Lista de tabelas

l'abela 1 – Modos de criar regiões, seu tipo e sua relação com a Restrição 2	24
Гabela 2 — Configuração do computador de testes	26
Гabela 3 — Resultado da comparação entre Desc	26
Гabela 4 — Resultado da comparação entre critérios de ordenação	29
$\Gamma abela 5 - Resultado da comparação entre critérios de ordenação decrescente. $	29
Гabela 6 — Resultado da comparação entre criação de regiões	30
Гabela 7 — Resultado da comparação entre criação de regiões - ordenação decres-	
cente	30
Гabela 8 — Resultado da comparação entre tipos de regiões	30
Гabela 9 — Resultado da comparação entre todos os métodos de solução	32
Гabela 10 — Resultados para os conjuntos de instância	33
Гabela 11 – Resultados da instância BKW01	4(
Гabela 12 — Resultados da instância BKW02	41
Гabela 13 — Resultados da instância BKW03.	42
Гabela 14 — Resultados da instância BKW04	43
Гabela 15 — Resultados da instância BKW05	44
Гabela 16 – Resultados da instância BKW06	45
Гabela 17 — Resultados da instância BKW07	46
Гabela 18 — Resultados da instância BKW08	47
Гabela 19 — Resultados da instância BKW09.	48
Гabela 20 — Resultados da instância BKW10	49
Гabela 21 — Resultados da instância BKW11	50
Гabela 22 — Resultados da instância BKW12	51
Гabela 23 — Resultados da instância BKW13	52
Гabela 24 — Resultados da instância GCUT01	53
Tabela 25 – Resultados da instância GCUT02.	54
Tabela 26 – Resultados da instância GCUT03.	55
Гabela 27 — Resultados da instância GCUT04.	56
Гabela 28 — Resultados da instância GCUT05	57
Гabela 29 — Resultados da instância GCUT06	58
Tabela 30 – Resultados da instância GCUT07.	59
Tabela 31 – Resultados da instância GCUT08.	60
Tabela 32 – Resultados da instância GCUT09.	61
Tabela 33 – Resultados da instância GCUT10	62
Гabela 34 – Resultados da instância GCUT11	63
Tabela 35 – Resultados da instância GCUT12.	64

Tabela 36 – Resultados da instância GCUT13	65
Tabela 37 – Resultados da instância NGCUT01	66
Tabela 38 – Resultados da instância NGCUT02	67
Tabela 39 – Resultados da instância NGCUT03	68
Tabela 40 – Resultados da instância NGCUT04	69
Tabela 41 – Resultados da instância NGCUT05	70
Tabela 42 – Resultados da instância NGCUT06	71
Tabela 43 – Resultados da instância NGCUT07	72
Tabela 44 – Resultados da instância NGCUT08	73
Tabela 45 – Resultados da instância NGCUT09	74
Tabela 46 – Resultados da instância NGCUT10	75
Tabela 47 – Resultados da instância NGCUT11	76
Tabela 48 – Resultados da instância NGCUT12	77
Tabela 49 – Resultados da instância OF1	78
Tabela 50 – Resultados da instância OF2	79
Tabela 51 – Resultados da instância OKP1	80
Tabela 52 – Resultados da instância OKP2	31
Tabela 53 – Resultados da instância OKP3	32
Tabela 54 – Resultados da instância OKP4	83
Tabela 55 – Resultados da instância OKP5	84

Sumário

	INTRODUÇÃO	9
1	CONCEITOS BÁSICOS	11
1.1	Modelos de Otimização	11
1.2	Definições	12
1.3	Tipos de Modelo	12
1.3.1	Modelo Linear × Não-linear	12
1.3.2	Modelo Contínuo × Discreto	12
1.3.3	Modelo Determinístico × Estocástico	13
1.3.4	Tipos de Programação	13
1.4	Métodos Exatos × Heurísticos	13
2	PROBLEMA DE EMPACOTAMENTO	15
2.1	Definição	16
2.2	Classificação	16
2.3	Variantes	17
3	MÉTODOS DE SOLUÇÃO	18
3.1	Critérios de ordenação	19
3.2	Sobreposição e domínio contínuo	19
3.3	Criação de regiões	22
4	RESULTADOS	
4.1	Ordenação crescente × decrescente	
4.2	Comparativo entre critérios de ordenação	
4.3	Comparativo entre criação de regiões	
4.4	Comparativo entre combinações	
4.5	Complexidade	
4.6	Conjuntos de instâncias	33
	CONCLUSÃO	35
	TRABALHOS FUTUROS	36
	Referências	37
	APÊNDICE A – RESULTADOS DAS INSTÂNCIAS	40

Introdução

Este trabalho visa estudar o Problema de Empacotamento de peças retangulares em uma caixa também retangular no espaço de duas dimensões, sendo sua solução considerada NP-difícil (IORI; LIMA et al., 2022). Antes de abordar o problema (Capítulo 2) e buscar soluções alguns conceitos básicos são mostrados no Capítulo 1.

O Capítulo 1 foca em definições sobre otimização (seção 1.2) e em modelos de otimização (seção 1.1 e seção 1.3). No Capítulo 2 é dada a definição do problema (seção 2.1), para então mostrar algumas classificações (seção 2.2) e variantes (seção 2.3), por fim é explicada a heurística bottom-left (Capítulo 3), a qual será utilizada na resolução das instâncias de teste.

O problema tem várias aplicações nas indústrias de móveis, têxtil e metal-mecânica (QUEIROZ, 2022; CAVALI, 2004; BELLUZZO; MORABITO, 2005), além ser extremamente útil em carregamento de paletes e *containers* (MORABITO NETO; WIDMER, 1992). É possível dividir o problema de acordo com sua dimensão.

Problemas unidimensionais podem ser associados ao corte de barras ou canos, para atender uma demanda por peças de diferentes tamanhos. As indústrias de tecido ou couro usam o caso 2D para minimizar o desperdício ao se cortar suas peças. O caso 3D é facilmente associável ao carregamento de *containers*, onde objetos são geralmente caixas a serem alocadas em algum veículo. A Figura 1 mostra um exemplo para cada dimensão do problema.

Basicamente, pode-se aplicá-lo em qualquer área que precise de organização ou logística, bem como situações que envolvam o corte de algum material. Ao utilizar soluções para resolver problemas de empacotamento, é possível reduzir o desperdício de materiais e impacto ambiental, diminuir tempo de entregas e otimizar espaços de estoque.

Figura 1 – Representação para o problema de empacotamento 1D, 2D e 3D. Fonte: (CASTELLUCCI, 2019)

Introdução 10

Objetivos

O principal objetivo deste trabalho é estudar e compreender o problema de empacotamento bem como suas aplicações no mundo real. Outros objetivos mais específicos são: revisar a bibliografia, implementar heurísticas baseadas em *bottom-left*, definir instâncias de teste e analisar os dados obtidos e compará-los com os de outros autores.

1 Conceitos Básicos

Antes de estudar o problema, são necessários alguns conceitos básicos e definição formal de termos importantes para a área de Pesquisa Operacional e otimização. Pesquisa Operacional pode ser entendida como o estudo e a aplicação de métodos científicos para tomada de decisões em problemas complexos (ARENALES et al., 2007, p.IX). Ela permite modelar, analisar e solucionar tais problemas de modo, geralmente, satisfatório.

Neste capítulo será explicado sobre modelos de otimização (seção 1.1) e seus tipos (seção 1.3), além de algumas definições sobre otimização (seção 1.2), finalizando com a diferença entre métodos heurísticos e exatos (seção 1.4). O problema de empacotamento de retângulos (detalhado no Capítulo 2), alvo deste estudo, é determinístico e pode ser modelado utilizando programação linear inteira mista (WOLSEY, 2020). No trabalho, o problema será explorado do ponto de vista heurístico, com o método apresentado no Capítulo 3.

1.1 Modelos de Otimização

Modelos são aproximações da realidade, representam o problema de maneira simples e objetiva, usando restrições. Eles são o que baseiam a Pesquisa Operacional. De forma geral, um modelo de otimização quer minimizar ou maximizar uma função f(x) com x obedecendo algumas restrições. Pode-se então representar o modelo do seguinte modo:

$$\min/\max f(x), x \in \mathcal{X}.$$

Onde

- x: variável de decisão, $x = x_1, x_2, \ldots, x_n$.
- \bullet \mathcal{X} : conjunto factível ou domínio, possui todas as soluções possíveis para o problema.
- f(x): função objetivo, a qual determinará o critério de escolha da solução.

Usando o problema da mochila como exemplo, onde se busca maximizar o valor dos itens alocados sem que seus pesos ultrapassem a capacidade da mochila, um modelo possível é:

$$\max \sum_{i \in I} v_i x_i : \sum_{i \in I} w_i x_i \le C$$

Em que I é um conjunto de itens, v_i e w_i são, respectivamente o valor e o peso do item $i \in I$, C é a capacidade da mochila e x_i são variáveis binárias indicando se o item foi escolhido para mochila ou não.

1.2 Definições

A seguir serão dadas as definições de quatro expressões que aparecem com frequência no estudo de problemas de otimização.

Uma solução x' é **factível** somente se satisfaz todas as restrições dadas ao problema, ou seja, $x' \in \mathcal{X}$. Existem casos onde o problema não tem solução, possivelmente por muitas restrições terem sido aplicadas. Isso é chamado **problema infactível** e $\mathcal{X} = \emptyset$. Se para toda solução for possível encontrar outra melhor o problema é dito **ilimitado**.

Uma solução x' é **ótima** somente se for **factível** e possuir resultado melhor que as demais soluções, isto é, $f(x') \leq f(x), \forall x \in \mathcal{X}$ (caso seja um problema de maximização é necessário substituir " \leq " por " \geq "). Importante observar que existe somente solução ótima se o problema não for infactível nem ilimitado.

1.3 Tipos de Modelo

É importante saber diferenciar os modelos devido ao método de resolução que varia para cada um deles.

1.3.1 Modelo Linear × Não-linear

Modelos lineares possuem como função objetivo uma função linear e todas as restrições também são lineares. Exemplos:

- \bullet f(x) = ax + b.
- $f(x_1, x_2) = x_1 + x_2 5$.

Já os não-lineares não obedecem essa regra, podendo ter suas variáveis se multiplicando ou funções trigonométricas e logarítmicas. Exemplos:

- $f(x_1, x_2) = x_1^2 + x_2^2$.
- $f(x_1, x_2) = \tan(x_1 + x_2)$.

1.3.2 Modelo Contínuo × Discreto

Um modelo é contínuo quando sua região factível é contínua, ou seja, dado um ponto dessa região todos os seus vizinhos também serão uma solução. Modelos discretos não possuem seu domínio contínuo. A Figura 2 mostra um gráfico com exemplos de um modelo contínuo e outro discreto.

Figura 2 – Exemplo de modelo contínuo e discreto.

1.3.3 Modelo Determinístico × Estocástico

Em modelos determinísticos seus dados são conhecidos, enquanto os estocásticos possuem uma incerteza quanto aos dados.

1.3.4 Tipos de Programação

Com base nas categorias de modelo é possível também dividir métodos de programação (planejamento) para sua solução. HILLIER traz alguns exemplos algoritmos de para os tipos de programação.

- Linear: modelo linear contínuo determinístico. Algoritmos importantes para essa classe de problemas são: o algoritmo Simplex e algoritmos de pontos interiores.
- Inteira: modelo linear discreto determinístico. Aqui se destacam os algoritmos branch-and-bound e branch-and-cut.
- Estocástica: modelo linear contínuo estocástico. Alguns métodos para solução podem se basear em simulação dos eventos aleatórios envolvidos.
- Não-linear: modelo não-linear contínuo determinístico. Os algoritmos para solução de problemas não lineares podem ser baseados em gradiente, mas com frequência dependem bastante do problema a ser resolvido.

1.4 Métodos Exatos × Heurísticos

Métodos exatos sempre vão garantir a solução ótima para o problema, porém encontrar tal solução pode requerer grande tempo e/ou muitos recursos computacionais. Já heurísticas buscam por soluções factíveis e são geralmente usadas em problemas de grande porte.

Um dos métodos exatos mais conhecidos é o algoritmo branch-and-bound, ele realiza a enumeração implícita das soluções viáveis de um problema de programação linear inteira mista, mantendo valores para os limitantes inferior e superior de um problema de otimização. O algoritmo termina sua execução quando ambos os limitantes se igualam, garantindo a otimalidade da solução. Detalhes algoritmo branch-and-bound e outros problemas de programação inteira, como branch-and-cut e planos de corte podem ser vistos no trabalho de WOLSEY.

Como o problema de interesse é NP-difícil e o principal interesse é em instâncias de médio e grande porte, utilizar um método exato seria bastante desafiador e, provavelmente, não seria possível obter um resultado em tempo hábil devido aos recursos computacionais disponíveis. Portanto, métodos heurísticos serão usados, já que eles tendem a diminuir a demanda computacional, porém não garantem otimalidade da solução resultante.

Soluções heurísticas tipicamente alternam entre explorar o espaço de busca de forma mais ampla e se concentrar em uma vizinhança de uma solução viável já encontrada. Por isso, em geral, uma heurística garante apenas a otimalidade local da solução. Para escapar de ótimos locais e buscar atingir um resultado melhor, mecanismos de fuga são usados. Alguns exemplos desses mecanismos são o multi-start e o simulated annealing (FIRAT; ALPASLAN, 2020; RAKOTONIRAINY; VUUREN, 2020; HOPPER; TURTON, 2001).

Continuando o exemplo do problema da mochila (seção 1.1), uma heurística possível para ele é ordenar os itens de maneira decrescente de acordo com $\frac{v_i}{w_i}$ e colocá-los na mochila enquanto couber.

As heurísticas podem ser divididas entre heurísticas construtivas e heurísticas de melhoria. Heurísticas construtivas, como diz o nome, constroem uma solução para o problema, enquanto heurísticas de melhoria, partem de uma solução viável e realizam tentativas de melhorar tal solução (MICHALEWICZ; FOGEL, 2013). A heurística bottom-left (detalhada no Capítulo 3), a qual será usada para resolver o problema de empacotamento de retângulos (Capítulo 2), é uma heurística construtiva.

2 Problema de Empacotamento

Nas últimas três décadas, as publicações na área de corte e empacotamento tiveram um aumento considerável. Devido a isso, a categorização e organização desses problemas é cada vez mais importante. O trabalho de WÄSCHER et al. fornece a classificação de problemas de corte e empacotamento baseado na sua dimensão, tipos de itens, tipo de recipiente e função objetivo, fornecendo uma atualização da tipologia definida em (DYCKHOFF, 1990).

O problema de empacotamento, é um problema de otimização de difícil resolução. Seu objetivo é simples, colocar peças em um espaço N-dimensional, na Figura 1 é possível ver representações para os casos 1D, 2D e 3D. Tanto as peças quanto o espaço, podem ser de formato regular (convexo) ou não (côncavo). Pensando no caso 2D, triângulos, retângulos, círculos e outros polígonos convexos são considerados regulares, enquanto estrelas e outros polígonos côncavos são irregulares.

Existem diversas formas de identificar se um polígono é convexo ou não. A primeira delas é verificando se existe alguma diagonal que não pertença à região interna do polígono, caso exista, o polígono é côncavo, caso contrário, convexo. Também é possível identificar através dos ângulos internos, polígonos côncavos possuem pelo menos um ângulo interno com mais de 180 graus. Outra forma de definir se uma peça é regular ou não, é o número de parâmetros necessários para representá-la. Se for preciso três ou mais é irregular, caso contrário, regular (BARTMEYER et al., 2021). A Figura 3 mostra alguns exemplos de peças regulares (à direita) e seus contornos convexos (à esquerda).

Figura 3 – Exemplos de peças regulares e irregulares.

Fonte: (BARTMEYER et al., 2021)

O foco deste trabalho será em problemas de empacotamento 2D de peças e objetos retangulares ortogonais, sem qualquer variante (seção 2.3). Por mais simples que seja, é uma categoria muito importante do problema, visto que, no mundo real, a maioria do que temos interesse em resolver se encaixa nessas características. Inclusive, existem vários trabalhos como (WEI et al., 2011) e outros mais recentes (MARTIN et al., 2020; FIRAT; ALPASLAN, 2020; CHEN et al., 2019) com o mesmo propósito. Existem até mesmo

instâncias padronizadas para realizar comparativos entre algoritmos (IORI; LIMA et al., 2022), as instâncias usadas neste trabalho serão explicadas no Capítulo 4.

Tratar somente de objetos retangulares não é um grande limitador para resolver com outros tipos de itens, já que é possível usar os contornos convexos de um polígono côncavo para transformá-lo em um polígono convexo. Após isso, basta transformar o polígono regular em um retângulo. Assim é possível empacotar qualquer polígono usando o empacotamento de retângulos, ainda que haja uma área desperdiçada devido às transformações.

2.1 Definição

Com o escopo do estudo definido como problema de empacotamento de retângulos, é possível ver sua definição formal. De acordo com (IORI; LIMA et al., 2022), dado uma caixa retangular $\mathcal{B} = (W, H)$ de comprimento $W \in \mathbb{Z}_+$ e altura $H \in \mathbb{Z}_+$ e um conjunto \mathcal{I} de itens também retangulares, onde cada item $i \in \mathcal{I}$ com comprimento $w_i \in \mathbb{Z}_+, w_i \leq W$ e altura $h_i \in \mathbb{Z}_+, h_i \leq H$. Um empacotamento $\mathcal{I}' \subseteq \mathcal{I}$ em \mathcal{B} pode ser descrito como uma função $\mathcal{F} : \mathcal{I}' \to \mathbb{Z}_+^2$ que mapeie cada item $i \in \mathcal{I}'$ para um par de coordenadas $\mathcal{F}(i) = (x_i, y_i)$, de forma

$$x_i \in \{0, \dots, W - w_i\}, y_i \in \{0, \dots, H - h_i\} (i \in \mathcal{I}')$$
 (1)

$$[x_i, x_i + w_i) \cap [x_j, x_j + w_j) = \emptyset \text{ ou } [y_i, y_i + h_i) \cap [y_j, y_j + h_j) = \emptyset (i, j \in \mathcal{I}', i \neq j)$$
 (2)

Nessa forma de representação a caixa está posicionada no plano cartesiano, com seu canto inferior esquerdo na origem. Já as coordenadas $\mathcal{F}(i) = (x_i, y_i)$ representam a posição em que o canto inferior esquerdo da peça será alocado. A Restrição 1 garante que cada item deve estar inteiramente na caixa, enquanto a Restrição 2 impede sobreposição entre peças. Ambas restrições indicam uma orientação fixa, ou seja, peças não podem ser rotacionadas.

2.2 Classificação

Por existirem diferentes objetivos na solução de um problema de empacotamento foram criadas algumas classificações. Algumas delas (as principais) são mostradas em (IORI; DE LIMA et al., 2021), as quais serão exploradas em seguida, com alguns exemplos já vistos na Introdução.

O objetivo do **Empacotamento 2D em Faixa** é encontrar um empacotamento de altura mínima para um dado conjunto de itens em uma caixa com comprimento fixo. Muito aplicado na área têxtil para minimizar o comprimento de tecido cortado para fazer peças de roupas.

No Empacotamento 2D da Mochila deve-se encontrar $\mathcal{I}' \subseteq \mathcal{I}$ que maximize o valor de \mathcal{B} . Geralmente o valor é dado pela área de caixa ocupada pelos itens, dessa forma, outra interpretação do problema seria minimizar a área desperdiçada (vazia). Pode ser utilizado para maximizar o número de peças cortadas de um pedaço de couro, por exemplo.

Já o Empacotamento 2D em Caixas envolve encontrar uma solução que minimize o número de caixas necessárias para empacotar todos os itens. As caixas podem possuir diferentes tamanhos, mas a maioria dos problemas lida com as mesmas dimensões. Facilmente aplicável na área logística e de transporte, seja minimizando o número de paletes ou veículos de entrega.

Por fim, no **Empacotamento 2D Ortogonal** busca-se uma solução, caso exista, para empacotar **todos** os itens na caixa. Usado em situações onde se precisa alocar todos os itens dentro de um caminhão.

Todos os problemas descritos são NP-difícil, com exceção do Ortogonal, sendo NP-completo (IORI; LIMA et al., 2022).

2.3 Variantes

Variantes são pequenas alterações no escopo do problema, também podem ser vistas como restrições ou relaxamento. Existem quatro mais comuns (IORI; LIMA et al., 2022), as quais são descritas a seguir.

Corte guilhotinado consiste em cortar a caixa de forma paralela a um de seus lados recursivamente, é útil na resolução de problemas de corte (problemas de empacotamento podem ser reduzidos para essa categoria e vice-versa). Rotações ortogonais são um modo de relaxar o problema, permitindo rotações de 90 graus para os itens a serem alocados.

Restrições de carga e descarga implicam que algumas peças devem ser posicionadas em dada posição, usando como exemplo um caminhão de entregas, visa evitar situações onde um produto precisa ser descarregado para se ter acesso a um item mais ao fundo e então carregar novamente o primeiro item. Existem variantes aplicáveis somente a algumas categorias do problema, é o caso de caixas de tamanho variável que pode ser unida ao Empacotamento 2D em Caixas e define que caixas não têm de ter as mesmas dimensões.

3 Métodos de solução

Como descrito na seção 2.2, a maioria das classes do problema são NP-difíceis. Isso torna métodos de soluções exatos, os quais buscam pela solução ótima, extremamente custosos em tempo e recursos computacionais em instâncias de porte moderado, muitas vezes sendo inviáveis por falta de algum desses dois motivos. Consequentemente a literatura é dominada por abordagens que usam heurísticas e meta-heurísticas, sendo a bottom-left uma das principais estratégias de solução e será usada no estudo deste trabalho.

A bottom-left é uma heurística construtiva (seção 1.4) proposta por BAKER et al. em 1980. Embora tenha sido proposta a décadas, ela ainda é bastante usada na literatura atual, além de poder ser usada como componente de algoritmos mais sofisticados e para diferentes classes e variantes do problema. Ela foi utilizada nos trabalhos de HOPPER; TURTON na comparação de vários métodos de solução, WEI et al. trazendo uma revisão do método e seus derivados e, mais recentemente, CHEHRAZAD et al. através de uma adaptação para o empacotamento de itens irregulares de forma gulosa.

Sua premissa é simples, dado uma fila de itens como entrada, enquanto ela não estiver vazia, basta retirar o primeiro item dela e alocar no canto mais a baixo e à esquerda quanto for possível (BARTMEYER et al., 2021), sem sobreposições entre peças (seção 2.1). Caso não exista uma posição válida, a peça é desconsiderada e passa-se para próxima da fila. A Figura 4 mostra um exemplo de alocação para um dado conjunto de peças regulares.

Figura 4 – Representação de alocação usando bottom-left.

Fonte: (BARTMEYER et al., 2021)

Vale destacar que a própria ordem da fila pode gerar resultados diferentes, alterando a qualidade da solução. Um dos resultados esperados deste trabalho é identificar se há alguma forma de ordenação que se destaque na qualidade de solução, através da comparação

entre os diferentes modos. Para isso, serão usados conjuntos de instâncias frequentemente utilizados na literatura.

3.1 Critérios de ordenação

Para determinar o impacto da ordenação da fila, cinco critérios de ordenação foram escolhidos, sendo eles: área, perímetro, largura, altura e *id*. A ordenação por *id* considera a ordem em que os itens foram colocados na lista, ou seja, seria a forma padrão de resolver e ele será a base para definir se os demais critérios possuem algum benefício. Além disso, cada critério pode ser usado para ordenar a fila em ordem crescente ou decrescente, algo que também será analisado. Na literatura o mais comum é utilizar a ordenação decrescente pela área (CHEN et al., 2019).

3.2 Sobreposição e domínio contínuo

Por mais simples que a heurística bottom-left seja, ainda existem dois desafios, respeitar a Restrição 2 (sobreposição de peças) e o domínio contínuo de coordenadas ao tentar alocar um item. As Figuras 5 a 9 serão usadas para demonstrar os desafios citados.

Supondo uma instância com recipiente de altura e largura 5 e três itens retangulares a serem alocados, nesta ordem, com as seguintes dimensões: altura e largura 2, altura 4 e largura 2 e altura 1 e largura 3. A Figura 5 mostra o estado intermediário do algoritmo de solução, onde o item 0 foi alocado na coordenada (0, 0) e o item 1 foi alocado a sua direita na posição (2, 0) para respeitar a Restrição 1, porque não cabe logo acima na posição (0, 2).

Figura 5 – Itens 0 e 1 posicionados.

Como a próxima peça da fila tem largura 3 e altura 1, ao posicioná-la na posição (0, 2) percebe-se que a Restrição 1 é satisfeita, mas a Restrição 2 não (Figura 6).

Figura 6 – Itens 0, 1 e 2 posicionados, mas com sobreposição.

Nesse caso, com poucas peças alocadas e auxílio visual, é fácil identificar que a posição correta, seguindo a lógica bottom-left, seria a de coordenadas (0, 4) (Figura 7). Porém, encontrar tal posição pode ser extremamente complexo. Entre as coordenadas (0, 2) e (0, 4) o espaço é contínuo, existindo infinitas outras coordenadas entre elas, sendo impossível checar todas.

Figura 7 – Itens 0, 1 e 2 posicionados, sem sobreposição.

Como todas as instâncias usadas para testes tratam somente de peças e recipientes com valores inteiros, uma abordagem possível seria discretizar o domínio, conforme a Figura 8.

Figura 8 – Itens 0 e 1 posicionados, com domínio discreto.

Dessa forma somente coordenadas de valores inteiros precisariam ser verificadas, resolvendo parcialmente o problema com o domínio, já que ainda existiriam muitos pontos, principalmente em instâncias com recipientes grandes. Mas isso ainda não resolve a parte de sobreposição. Para cada ponto ainda é necessário verificar se existe sobreposição com cada uma das peças já alocadas, algo custoso.

Na Figura 9 é possível notar que três coordenadas precisaram ser checadas até encontrar uma que cumprisse as Restrições 1 e 2. Por se tratar de um estado inicial de uma instância pequena esse processo não é tão custoso, porém em instâncias maiores ou estados mais avançados isso se tornará cada vez mais custoso, visto que o domínio será maior e, principalmente, mais peças estarão alocadas para checar possíveis sobreposições.

Figura 9 – Itens 0, 1 e 2 posicionados, com domínio discreto.

Outro fator o qual deve ser observado é de que a discretização do domínio pode não funcionar bem em casos onde os valores trabalhados não sejam inteiros. Nesses casos a discretização poderia ocorrer com algum nível de precisão nas casas decimais, mas ainda assim as chances de desperdício de área são grandes. Ou seja, muitos problemas reais seriam complexos de serem resolvidos com a discretização.

3.3 Criação de regiões

Os dois problemas expostos na seção 3.2 podem ser resolvidos utilizando a estratégia de criação de regiões. Com essa técnica, a Restrição 2 é trivialmente satisfeita. Nela, ao posicionar uma peça, duas regiões são criadas e o item seguinte será somente posicionado se couber em uma das regiões disponíveis.

Supondo um recipiente com altura e largura 40 e um item 0 com altura 4 e largura 7. Quando o item for posicionado na coordenada (0, 0), duas regiões, R1 e R2, serão criadas (Figura 10). A região R1 começará na coordenada (0, 4) e a R2 na (7, 0).

Figura 10 – Regiões criadas traçando uma linha vertical.

Agora o domínio passa a ser somente o canto inferior esquerdo de cada uma das regiões e sobreposições deixam de ser possíveis. Além disso, a regra para definir se uma peça cabe em dada região é igual a Restrição 1, tornando o algoritmo de solução bem simples. A fim de identificar o impacto das regiões na solução do modelo, quatro formas de criação delas foram usadas.

A primeira delas é **traçando uma linha vertical** a partir do canto superior direito de cada peça alocada (Figura 10). Nela a região R1 terá altura 36 e largura 7, indo até à coordenada (7, 40). Enquanto a R2 possuirá altura 40 e largura 33, chegando até à coordenada (40, 40).

A segunda é semelhante à primeira, porém **traçando uma linha horizontal** (Figura 11). Nesse caso, R1 terá altura 36 e largura 40, indo até à coordenada (40, 40). Já R2 possuíra altura 4 e largura 33, chegando até à coordenada (40, 4).

Figura 11 – Regiões criadas traçando uma linha horizontal.

Na terceira, a linha traçada (vertical ou horizontal) depende da área das regiões criadas com cada linha. Nesse modo o objetivo é maximizar a área de uma das regiões geradas, ele **identifica qual linha irá gerar a região de maior área e a traça**. Por exemplo, a Figura 10 gerou uma região com 252 de área e outra com 1320, enquanto a Figura 11 obteve regiões com 1440 e 132, então, nesse caso, a linha traçada será a horizontal (Figura 12).

Figura 12 – Regiões criadas maximizando uma das regiões.

Maximizar uma região pode ser interessante, pois aumenta as chances do próximo item conseguir ser alocado, visto que uma das regiões será mais espaçosa. Em contrapartida, esse método também pode acabar gerando muitas regiões pequenas que não sejam utilizadas, diminuindo a qualidade da solução.

No quarto e último modo de criar regiões nenhuma linha é traçada, todas as regiões vão até o final do recipiente (Figura 13), criando **regiões sobrepostas**. R1 terá altura 40 e largura 36, enquanto R2 possuirá altura 40 e largura 33. Então, R1 e R2 terminarão na coordenada (40, 40). Nesse caso, sobreposições de peças podem ocorrer, então verificações são necessária para cumprir a Restrição 2. Ao fazer isso, é possível que mais peças sejam

alocadas, visto que todas as regiões possuem área máxima. Esse modo foi criado para identificar se é de fato melhor que os demais e qual seu custo.

Figura 13 – Regiões criadas possibilitando sobreposições.

Com os critérios para criação de regiões explicados, é possível diferenciá-los em dois tipos. O primeiro é dos que permitem sobreposição entre peças e, por isso, precisam de verificações para respeitar a Restrição 2 (regiões complexas), nesse tipo se encaixa somente o quarto modo. O segundo tipo contém os três primeiros critérios, onde somente a Restrição 1 precisa ser checada (regiões simples).

A Tabela 1 mostra, de forma resumida, os quatro modos de criar regiões, seu tipo (regiões simples ou complexas) e sua relação com a Restrição 2. A coluna "Divisão" indica o critério usado ao criar as regiões, enquanto a coluna "Restrição 2" mostra se a Restrição 2 é trivialmente satisfeita ou não.

Tabela 1 – Modos de criar regiões, seu tipo e sua relação com a Restrição 2.

Modo	Divisão	Restrição 2	Tipo
1	Vertical	Trivial	Simples
2	Horizontal	Trivial	Simples
3	Maior área	Trivial	Simples
4	Regiões sobrepostas	Não trivial	Complexas

4 Resultados

Para testar os métodos de solução criados foram usadas 45 instâncias de teste da literatura, separadas em cinco conjuntos de instância de características diferentes: BKW, GCUT, NGCUT, OF e OKP. Todas as elas foram obtidas através da biblioteca pública 2DPackLib ¹ (IORI; LIMA et al., 2022).

O foco do trabalho é no 2D-KP e com o critério de maximização sendo a área ocupada do espaço. Mas nem todos conjuntos foram feitos para ser resolvidos dessa forma, nesses casos foram feitas leves adaptações para usá-los. O motivo de usar instâncias feitas com outro objetivo é para não viciar o modelo em instâncias específicas.

As instâncias BKW foram propostas para 2D-SPP (BURKE et al., 2004), esse conjunto é interessante, pois existe uma solução ótima onde todos os itens podem ser alocados. CÔTÉ et al. apresentam alguns resultados para esse conjunto, já DELORME et al. trazem resultados usando rotações ortogonais.

Instâncias GCUT foram propostas para 2D-KP com corte guilhotinados (BEASLEY, 1985a). Esse conjunto já foi usado na literatura no 2D-SPP (CÔTÉ et al., 2014), 2D-SPP com corte guilhotinado (MRAD, 2015), 2D-SPP com rotações ortogonais (DELORME et al., 2017) e 2D-CSP com corte guilhotinado (CINTRA et al., 2008).

NGCUT é um conjunto proposto para 2D-KP (BEASLEY, 1985b). Ele possui resultados recentes para 2D-KP, 2D-SPP (CÔTÉ et al., 2014) e 2D-SSP com rotações ortogonais (DELORME et al., 2017).

As instâncias OF foram inicialmente elaboradas para 2D-KP com cortes guilhotinados (OLIVEIRA; FERREIRA, 1990) e foram resolvidas recentemente com o mesmo propósito (VELASCO; UCHOA, 2019; MARTIN et al., 2020).

Por fim, instâncias OKP foram criadas para 2D-KP (FEKETE; SCHEPERS, 1997) e já foram resolvidas para versões sem e com corte guilhotinado (FURINI et al., 2016).

Como são cinco critérios de ordenação (seção 3.1), com cada critério podendo ser crescente ou decrescente, quatro formas de criar regiões (seção 3.3) e 45 instâncias, temse o total de 1800 casos de teste. Além disso, para conseguir resultados mais fiéis, a média, mediana e desvio padrão foram calculados. Por isso, cada caso foi executado cinco vezes, totalizando 9000 execuções. Outros dados como a qualidade de solução (objetivo do trabalho), média de itens alocados e tempo, também foram computados. Todas as execuções foram feitas em um mesmo computador, com configurações conforme a Tabela 2.

Ao analisar a média, a mediana e o desvio padrão, observou-se que a média e mediana possuem valores quase idênticos, enquanto o desvio padrão é pequeno ao ponto de poder

Disponível em: https://site.unibo.it/operations-research/en/research/2dpacklib. Acessado em: 9 de junho de 2023.

Tabela 2 – Configuração do computador de testes.

CPU	AMD Ryzen TM 5 3600X
RAM	16 GiB
Python	3.11.0
SO	Linux Mint 21.1 Cinnamon
Kernel	5.15

ser ignorado, indicando que cinco execuções por caso de teste são suficientes. Portanto, a mediana e desvio padrão serão omitidos no restante do trabalho, podendo ser encontrados na versão completa dos dados gerados no Github ². No Apêndice A é possível ver uma versão resumida de todos os dados gerados (sem mediana e desvio padrão).

4.1 Ordenação crescente × decrescente

A primeira coisa a qual fica evidente com os resultados é a discrepância na qualidade de solução entre a ordenação crescente e a decrescente, algo já esperado. Na Tabela 3 é possível notar que ordenando de forma decrescente é possível ocupar cerca de 20% a mais do espaço (coluna "Qualidade %"), quando comparado a ordenação crescente.

Tabela 3 – Resultado da comparação entre Desc..

Desc.	Wons	Draws	Quality %	Items %	Time (s)
T	736	8	78.9136	46.3642	1.7798e+00
F	167	8	57.3060	47.6518	2.3715e+00

Fonte: autor

A coluna "Vitórias" indica quantas vezes tal método de solução obteve o melhor resultado em comparação com os demais métodos em outras linhas. Enquanto a coluna "Empates" mostra a quantidade de vezes que o método conseguiu a melhor qualidade, mas outros também conseguiram. Essas colunas foram feitas da seguinte forma: entre cada combinação de critério de ordenação, modo de criar regiões e instâncias, é feita a comparação se a qualidade de solução foi melhor para ordenação crescente ou decrescente. No caso de ambas conseguirem o melhor resultado, é acrescido 1 tanto na coluna "Vitórias", quanto na "Empates" de ambas. Por fim, a coluna "Tempo (s)" mostra o tempo médio de execução do método em segundos.

Com isso, fica claro que ordenar a fila de entrada da bottom-left de modo decrescente é vantajoso em termos de qualidade, quantidade e tempo de execução. Isso se deve a como as regiões são criadas, as Figuras 14 a 17 serão utilizadas para exemplificar, elas representam estados do modelo usando ordenação crescente pela altura e linhas horizontais para criação de regiões para a instância BKW01. A Figura 14 representa o estado inicial do algoritmo de solução, onde ainda não existem peças alocadas.

² Disponível em: https://github.com/G-Carneiro/packing-problem/. Acessado em: 9 de junho de 2023.

Figura 14 – Regiões criadas na ordenação crescente - estado inicial.

Ao posicionar uma peça, uma das regiões ficará com a mesma altura do item recémposicionado (Figura 15), como a ordenação é crescente a próxima peça terá no mínimo a mesma altura, mas o provável é que seja mais alta, impossibilitando seu posicionamento nessa região.

Figura 15 – Regiões criadas na ordenação crescente - estado 1.

O mesmo irá ocorrer para todos os itens seguintes (Figura 16), fazendo com que muitas regiões fiquem sem poder receber peças.

Figura 16 – Regiões criadas na ordenação crescente - estado 2.

A Figura 17 mostra o estado final do algoritmo de solução e grande parte do espaço ainda está livre. Na Tabela 11 do Apêndice A é possível ver que a qualidade de solução do modelo com essas combinações foi de 12.75%, enquanto ao utilizar ordenação decrescente foi possível encontrar uma solução de 100%. Algo semelhante ocorre com outros critérios de ordenação e criação de regiões.

Figura 17 – Regiões criadas na ordenação crescente - estado final.

4.2 Comparativo entre critérios de ordenação

Ao comparar os diferentes critérios de ordenação (Tabela 4), inicialmente algo parece errado, a ordenação por *id* (nenhuma ordenação) está com os melhores resultados qualitativos. Além disso, todos os critérios conseguiram praticamente a mesma qualidade média.

Como mencionado anteriormente (seção 4.1), ordenar a fila de forma crescente gera resultados ruins. Mas isso não ocorre quando o critério de ordenação é o *id*, porque nele tem-se peças sem seguirem alguma ordem. Com esse critério o impacto da escolha entre ordenação crescente ou decrescente é praticamente nulo. Por isso ele também se saí muito

Ordenação	Wons	Draws	Quality %	Items %	Time (s)
A	81	56	67.7915	46.2000	2.0726e+00

Tabela 4 – Resultado da comparação entre critérios de ordenação.

Ρ 93 52 68.9870 46.1442 2.0366e+00 73 65.9848 24 45.7611 1.8254e+00 W 94 32 69.1286 48.0083 2.3444e+00 48.9263 Ι 127 12 68.6572 2.0995e+00

Fonte: autor

melhor que os demais na ordenação crescente, sendo o vitorioso na esmagadora maioria. Já as qualidades próximas se justificam nos critérios diferentes do id pois a discrepância entre ordenação crescente e decrescente é muito grande, mas ao tirar média isso acaba não ficando evidente.

A Tabela 5 mostra o mesmo comparativo que a Tabela 4, porém agora somente considerando a ordenação decrescente, já que não existem motivos para usar a crescente. Representando os dados dessa forma fica fácil identificar que utilizar algum critério de ordenação para a fila de entrada é vantajoso, pois ao usar o id os resultados foram os piores. Além disso, percebe-se que as ordenações por área e perímetro obtiveram os melhores resultados, ainda que os demais também sejam competitivos.

Tabela 5 – Resultado da comparação entre critérios de ordenação decrescente.

Ordenação	Wons	Draws	Quality %	Items %	Time (s)
A	63	39	82.7353	44.0979	1.5874e+00
P	71	38	84.6986	44.8012	1.5769e+00
Н	40	16	77.4182	46.3004	1.5655e+00
W	66	24	81.1899	47.6751	2.0805e+00
I	16	5	68.5261	48.9461	2.0889e+00

Fonte: autor

A alta competitividade entre os critérios de ordenação é interessante, pois a maioria dos trabalhos na literatura, como o de CHEN et al., usam somente ordenação pela área, e isso pode ser um forte indicativo que os demais critérios devem ser mais explorados em certas circunstâncias. Ao considerar somente a ordenação decrescente deixa claro que a alta quantidade vitórias do critério id na Tabela 4 realmente se deve a ordenação crescente.

Comparativo entre criação de regiões 4.3

O comparativo entre métodos de criação de regiões gerou resultados interessantes, na Tabela 6 ocorre algo semelhante ao da Tabela 4. Regiões criadas de modo a ser necessário verificar sobreposições obtiveram excelentes resultados qualitativos (última linha), pois são pouco afetadas pela ordenação crescente (seção 4.1), assim como o critério de ordenação por id, já que as regiões sempre possuem área máxima (seção 3.3).

Tabela 6 – Resultado da comparação entre criação de regiões.

Região	Wons	Draws	Quality %	Items %	Time (s)
V	155	102	65.0025	45.6288	2.4311e-03
H	122	101	63.0163	44.1025	7.2323e-03
M	189	158	69.5409	48.7214	1.3313e-02
N	334	195	75.0333	49.6378	8.4208e+00

Fonte: autor

Ao considerar somente a ordenação decrescente (Tabela 5), a diferença em relação aos demais métodos de criação diminui, ainda que o último modo permaneça sendo o melhor qualitativa e quantitativamente. Os modos criados traçando uma linha vertical ou horizontal apresentaram qualidades semelhantes e os menores tempos de execução, mas o método o qual traça uma linha vertical obteve mais vitórias. Regiões criadas para maximizar uma das mesmas conseguiram o segundo melhor resultado qualitativo e quantitativo, ao custo de um pequeno acréscimo no tempo de execução em relação aos dois primeiros. O último modo de fato conseguiu os melhores resultados, porém a um custo altíssimo, levando cerca de 1000 vezes mais tempo que métodos mais rápidos.

Tabela 7 – Resultado da comparação entre criação de regiões - ordenação decrescente.

Região	Wons	Draws	Quality %	Items %	Time (s)
V	98	79	76.4030	45.0191	2.7157e-03
H	70	60	75.9970	45.5439	6.2101e-03
M	104	89	79.7175	47.6795	1.3743e-02
N	176	119	83.6420	47.2335	7.2176e+00

Fonte: autor

A Tabela 8 traz um comparativo entre os dois tipos de criação de regiões, os que é preciso checar sobreposição e os que não (seção 3.3). Na primeira linha da tabela a coluna "Qualidade %" representa a média do melhor resultado obtido em cada instância e a coluna "Tempo Total (s)" mostra a soma dos tempos que cada método de solução levou para cada instância. As duas colunas consideram somente métodos de solução que usam regiões onde não são necessárias verificações de sobreposição, ou seja, são considerados 30 modos de solução. A segunda linha considera somente método de solução o qual utiliza ordenação decrescente pela área e criação de regiões onde é necessário verificar sobreposições, esse método foi escolhido para o comparativo por apresentar os melhores resultados quantitativos e ser o segundo melhor qualitativamente (seção 4.4).

Tabela 8 – Resultado da comparação entre tipos de regiões.

Superposição	Qualidade %	Tempo Total (s)
Não	90.8278	1.6299e+01
Sim	87.2957	2.8313e+02

Fonte: autor

Com a Tabela 8 fica claro que, por mais que usar regiões onde é preciso checar sobreposições apresente o melhor resultado, é melhor executar todos demais métodos os quais não precisem e escolher somente o de melhor solução, pois assim é possível obter, na média, soluções de maior qualidade e ainda levando 10 vezes menos tempo.

4.4 Comparativo entre combinações

A Tabela 9 contém os resultados para cada um dos quarenta métodos de solução feitos. Com ela é possível identificar qual dos métodos apresenta melhores resultados qualitativos e quantitativos.

Dentre os métodos que usam regiões onde é preciso checar sobreposições, os mais interessantes são o de ordenação decrescente pela área (linha 30), pelo perímetro (linha 32) e pela largura (linha 36). Utilizando a área conseguiu-se o segundo melhor resultado quantitativo e também qualitativo. Com o perímetro foi possível atingir o terceiro maior número de vitórias e a melhor qualidade de solução. Por fim, a largura obteve o melhor resultado quantitativo e ficou em terceiro na qualidade de solução.

Nos métodos que usam regiões mais simples, os resultados foram bem variados nas combinações, dentre eles se destacam: regiões criadas usando linha vertical e ordenação pela largura (linha 6) e maximizar uma região e ordenar pela área (linha 20) ou pelo perímetro (linha 22). O método da linha 6 ficou em terceiro lugar no critério quantitativo (empate com a linha 32) e conseguiu a quinta posição na qualidade de solução. As linhas 20 e 22 tiveram a quarta maior quantidade de vitórias (empate também com a linha 2), já qualitativamente a linha 20 obteve a sexta melhor média nas soluções, enquanto a linha 22 conseguiu a quarta.

Ainda que os resultados dos métodos que usam regiões as quais calculam sobreposições sejam melhores, não compensa utilizá-los, como visto na seção 4.3.

4.5 Complexidade

As seções 4.3 e 4.4 deixaram claro que regiões onde a sobreposição pode ocorrer são mais custosas no tempo de execução. Isso acontece devido à complexidade do algoritmo de solução do modelo.

Em regiões simples, onde não podem acontecer sobreposições, é necessário verificar se o item a ser alocado cabe em uma região. No pior caso todas as peças só conseguiriam ser alocadas na última região checada. É possível descobrir o número máximo de regiões disponíveis no momento de alocação do item i da fila.

Para o primeiro item, existe somente uma região, o próprio espaço. Após alocar o primeiro item, tem-se duas regiões disponíveis para posicionar o segundo. Ao posicionar uma peça o número de regiões é acrescido em um. Com isso, é possível afirmar que para

Tabela 9 – Resultado da comparação entre todos os métodos de solução.

	Split	Order	Descending	Wons	Draws	Quality %	Items %	Time (s)
0	V	A	T	6	6	78.9961	43.2429	3.0834e-03
1	V	Α	F	0	0	50.9443	47.8026	2.4805e-03
2	V	P	T	7	6	82.6210	45.6727	2.3285e-03
3	V	P	F	0	0	51.2033	46.2057	2.1488e-03
4	V	H	T	4	4	70.7811	42.5165	2.5334e-03
5	V	H	F	0	0	55.2624	48.4624	2.0178e-03
6	V	W	T	9	8	84.5497	47.0580	2.4820e-03
7	V	W	F	0	0	47.9606	42.6878	1.6620e-03
8	V	I	T	1	1	65.0670	46.6058	3.1510e-03
9	V	I	F	1	1	62.6394	46.0333	2.4236e-03
10	H	Α	T	5	5	81.5022	43.6548	5.9963e-03
11	H	Α	F	1	1	44.9575	42.0545	8.8805e-03
12	H	P	T	4	3	82.6390	43.4046	4.7573e-03
13	H	P	F	0	0	45.0368	41.4449	8.5250e-03
14	H	H	T	4	4	79.2274	47.8350	6.1442e-03
15	H	H	F	2	2	43.4125	35.4793	7.7093e-03
16	H	W	T	4	4	74.9317	45.5948	7.6157e-03
17	H	W	F	0	0	51.7897	47.2147	1.0063e-02
18	H	I	T	1	1	61.6848	47.2300	6.5370e-03
19	H	I	F	2	2	64.9816	47.1122	6.0956e-03
20	M	Α	T	7	7	83.2483	45.6017	1.3233e-02
21	M	Α	F	2	2	53.1636	50.7883	1.7284e-02
22	M	P	T	7	6	85.8682	46.3078	1.2944e-02
23	M	P	F	1	1	53.7023	49.7762	1.7675e-02
24	M	H	T	4	4	78.5353	47.1767	1.3269e-02
25	M	H	F	2	2	54.8203	45.9835	1.0842e-02
26	M	W	T	5	5	79.4570	48.8029	1.4847e-02
27	M	W	F	0	0	62.4641	51.3552	4.0100e-03
28	M	I	T	2	2	71.4787	50.5082	1.4421e-02
29	M	I	F	2	2	72.6713	50.9134	1.4607e-02
30	N	Α	T	13	11	87.2957	43.8875	6.4349e+00
31	N	Α	F	0	0	62.5408	52.6598	1.0376e+01
32	N	P	T	9	6	87.7336	43.7974	6.3945e+00
33	N	P	F	0	0	63.3835	52.6368	1.0127e+01
34	N	H	T	6	5	81.2132	47.7048	6.3465e+00
35	N	H	F	2	2	64.9412	51.0923	8.4619e+00
36	N	W	T	16	10	85.9266	49.2806	8.4384e+00
37	N	W	F	0	0	66.2589	52.1936	1.0595e+01
38	N	I	T	5	3	76.0408	51.4971	8.4736e+00
_39	N	I	F	4	4	74.9990	51.6276	8.5603e+00

Fonte: autor

alocar o item i será preciso verificar no máximo i regiões. Somando o máximo de regiões para cada item chega-se no número máximo de regiões a serem verificadas no pior caso. Considerando n itens, tem-se a Equação 1.

$$\sum_{i=1}^{n} i \tag{1}$$

Como a soma de 1 até n pode ser reescrita utilizando a Equação 2 (MERCA, 2015), tem-se que o número máximo de regiões a serem verificadas para solucionar o modelo é $\frac{n^2+n}{n}$.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{2}$$

Para regiões complexas, além desse número de regiões, ainda é necessário verificar sobreposições. No pior caso, ao alocar o item i, para cada região será preciso verificar sobreposições com todos os itens i-1 (Equação 3).

$$\sum_{i=1}^{n} i(i-1) \tag{3}$$

Usando a Fórmula de Faulhaber (MERCA, 2015) é possível reescrever a soma dos quadrados dos n primeiros números inteiros como mostra a Equação 4.

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \tag{4}$$

Assim, ao reescrever a Equação 3 utilizando as Equações 2 e 4, tem-se que, no pior caso, será necessário verificar se existe sobreposição entre peças $\frac{n^3-n}{3}$ vezes. Para n=3152, seriam quase cinco milhões de regiões e mais 10 bilhões de sobreposições a serem checadas, explicando o tempo elevado ao executar um método de solução utilizando regiões complexas.

4.6 Conjuntos de instâncias

A Tabela 10 considera os melhores resultados para cada conjunto de instância. As colunas "Qualidade %" e "Itens %" representam, respectivamente, a média percentual da qualidade de solução e itens alocados no melhor resultado de cada instância, considerando apenas os métodos que utilizam regiões simples. Já a coluna "Tempo Total (s)" traz o tempo total, em segundos, de execução para todos os métodos em todas as instâncias do conjunto.

Tabela 10 – Resultados para os conjuntos de instância.

Conjunto	Qualidade %	Itens %	Tempo Total (s)
BKW	94.4783	85.7782	1.2688e+01
GCUT	84.6060	20.0994	2.0189e-01
NGCUT	88.2085	35.0307	8.1531e-01
OF	92.0714	34.0580	1.0821e-02
OKP	93.9360	22.8232	1.1026e-01

Fonte: autor

É possível notar que foi possível atingir ótimos resultados em um baixo período. No conjunto BKW, o qual é possível alocar todos os itens, levou mais tempo que os demais, pois possuí a maior quantidade de instâncias e algumas com várias peças. Os conjuntos OF e OKP possuem poucas instâncias e, por isso, tiveram pouco tempo de execução.

De forma geral, todos os conjuntos conseguiram uma excelente qualidade média, sendo o GCUT e NGCUT os únicos a ficarem abaixo de 90%.

Conclusão

Trabalhos futuros

Referências

ARENALES, Marcos et al. **Pesquisa Operacional**. [S.l.]: Elsevier, 2007.

BAKER, Brenda S; COFFMAN JR, E G; RIVEST, Ronald L. Orthogonal Packings in Two Dimensions. **SIAM Journal on Computing**, Society for Industrial e Applied Mathematics, v. 9, n. 4, p. 846, 1980.

BARTMEYER, Petra Maria et al. Aprendizado por reforço aplicado ao problema de empacotamento de peças irregulares em faixas. **Anais**, 2021. Disponível em: https://repositorio.usp.br/directbitstream/455094df-864a-4fad-8a97-c5f59fd3d6ca/3051981.pdf.

BEASLEY, J E. Algorithms for unconstrained two-dimensional guillotine cutting. **Journal of the Operational Research Society**, Taylor & Francis, v. 36, n. 4, p. 297–306, 1985.

_____. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure. Operations Research, v. 33, n. 1, 1985.

BELLUZZO, Luciano; MORABITO, Reinaldo. Otimização nos padrões de corte de chapas de fibra de madeira reconstituída: um estudo de caso. **Pesquisa Operacional**, SciELO Brasil, v. 25, p. 391–415, 2005. Disponível em:

<https://www.scielo.br/j/pope/a/tTXXckvGTHbDfZQkmzCqdkp>.

BURKE, E K; KENDALL, G; WHITWELL, G. A new placement heuristic for the orthogonal stock-cutting problem. **Operations Research**, INFORMS, v. 52, n. 4, p. 655–671, 2004.

CASTELLUCCI, Pedro Belin. Consolidation problems in freight transportation systems: mathematical models and algorithms. 2019. Tese (Doutorado) – Universidade de São Paulo. Disponível em: https://pdfs.semanticscholar.org/90e7/bd898951e1350c2694478b63fbcde508e189.pdf>.

CAVALI, Roberto. Problemas de corte e empacotamento na indústria de Móveis: um estudo de caso. Universidade Estadual Paulista (Unesp), 2004. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/94286/cavali_r_me_sjrp.pdf.

CHEHRAZAD, Sahar; ROOSE, Dirk; WAUTERS, Tony. A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation. **European Journal of Operational Research**, Elsevier, v. 300, n. 3, p. 809–826, 2022.

Referências 38

CHEN, Mao et al. An efficient deterministic heuristic algorithm for the rectangular packing problem. **Computers & Industrial Engineering**, Elsevier, v. 137, p. 106097, 2019.

CINTRA, G F et al. Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation q. European Journal of Operational Research, v. 191, p. 61–85, 2008.

CÔTÉ, Jean-François; DELL'AMICO, Mauro; IORI, Manuel. Combinatorial Benders' cuts for the strip packing problem. **Operations Research**, INFORMS, v. 62, n. 3, p. 643–661, 2014.

DELORME, Maxence; IORI, Manuel; MARTELLO, Silvano. Logic based Benders' decomposition for orthogonal stock cutting problems. **Computers & Operations Research**, Elsevier, v. 78, p. 290–298, 2017.

DYCKHOFF, Harald. A typology of cutting and packing problems. **European journal** of operational research, Elsevier, v. 44, n. 2, p. 145–159, 1990.

FEKETE, Sándor P; SCHEPERS, Jörg. A new exact algorithm for general orthogonal d-dimensional knapsack problems. In: SPRINGER. ALGORITHMS—ESA'97: 5th Annual European Symposium Graz, Austria, September 15–17, 1997 Proceedings 5. [S.l.: s.n.], 1997. P. 144–156.

FIRAT, Hüseyin; ALPASLAN, Nuh. An effective approach to the two-dimensional rectangular packing problem in the manufacturing industry. **Computers & Industrial Engineering**, Elsevier, v. 148, p. 106687, 2020.

FURINI, Fabio; MALAGUTI, Enrico; THOMOPULOS, Dimitri. Modeling two-dimensional guillotine cutting problems via integer programming. **INFORMS**Journal on Computing, INFORMS, v. 28, n. 4, p. 736–751, 2016.

HILLIER, Frederick S. Introduction to operations research, 1967.

HOPPER, E B C H; TURTON, Brian C H. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. **European Journal of Operational Research**, Elsevier, v. 128, n. 1, p. 34–57, 2001.

IORI, Manuel; DE LIMA, Vinícius L. et al. Exact solution techniques for two-dimensional cutting and packing. **European Journal of Operational Research**, v. 289, n. 2, p. 399–415, 2021. ISSN 0377-2217. DOI:

https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221720306111.

IORI, Manuel; LIMA, Vinícius Loti de et al. 2DPackLib: a two-dimensional cutting and packing library. **Optimization Letters**, Springer, v. 16, n. 2, p. 471–480, 2022.

Referências 39

MARTIN, Mateus et al. Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern. **International Transactions in Operational Research**, Wiley Online Library, v. 27, n. 2, p. 767–793, 2020.

MERCA, Mircea. An alternative to Faulhaber's formula. **The American** Mathematical Monthly, Taylor & Francis, v. 122, n. 6, p. 599–601, 2015.

MICHALEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. [S.l.]: Springer Science & Business Media, 2013.

MORABITO NETO, Reinaldo; WIDMER, Joao Alexandre. Abordagem em grafo-e-ou para o problema do empacotamento: aplicacao ao carregamento de paletes e conteineres. 1992. Tese (Doutorado). Disponível em: https://repositorio.usp.br/item/000734666.

MRAD, Mehdi. An arc flow-based optimization approach for the two-stage guillotine strip cutting problem. **Journal of the Operational Research Society**, Taylor & Francis, v. 66, n. 11, p. 1850–1859, 2015.

OLIVEIRA, Jose Fernando; FERREIRA, Jose Soeiro. An improved version of Wang's algorithm for two-dimensional cutting problems. **European Journal of Operational Research**, Elsevier, v. 44, n. 2, p. 256–266, 1990.

QUEIROZ, Layane Rodrigues de Souza. **Estudo de problemas de corte de itens irregulares com incertezas**. 2022. Tese (Doutorado) — Universidade de São Paulo. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10032022-110656/en.php.

RAKOTONIRAINY, Rosephine G; VUUREN, Jan H van. Improved metaheuristics for the two-dimensional strip packing problem. **Applied Soft Computing**, Elsevier, v. 92, p. 106268, 2020.

VELASCO, André Soares; UCHOA, Eduardo. Improved state space relaxation for constrained two-dimensional guillotine cutting problems. **European Journal of Operational Research**, Elsevier, v. 272, n. 1, p. 106–120, 2019.

WÄSCHER, Gerhard; HAUSSNER, Heike; SCHUMANN, Holger. An improved typology of cutting and packing problems. **European journal of operational research**, Elsevier, v. 183, n. 3, p. 1109–1130, 2007.

WEI, Lijun et al. A skyline heuristic for the 2D rectangular packing and strip packing problems. **European Journal of Operational Research**, Elsevier, v. 215, n. 2, p. 337–346, 2011.

WOLSEY, Laurence A. Integer programming. [S.l.]: John Wiley & Sons, 2020.

APÊNDICE A – Resultados das instâncias

Tabela 11 – Resultados da instância BKW01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW01	V	A	T	100	7.48158e-05	100
BKW01	V	A	F	60	8.36372 e-05	90
BKW01	V	P	${ m T}$	100	7.13348e-05	100
BKW01	V	P	F	60	8.48293 e-05	90
BKW01	V	H	${ m T}$	60	9.05037e-05	90
BKW01	V	H	F	24	8.14438e-05	80
BKW01	V	W	${ m T}$	100	6.16074 e-05	100
BKW01	V	W	F	60	8.61168e-05	90
BKW01	V	I	${ m T}$	60	0.000102329	90
BKW01	V	I	\mathbf{F}	60	0.000102139	90
BKW01	Η	A	T	100	6.52313 e-05	100
BKW01	Η	A	F	12.75	7.05242e-05	60
BKW01	Η	P	T	100	6.44207 e-05	100
BKW01	Η	P	F	12.75	7.04288e-05	60
BKW01	Η	Η	${ m T}$	100	6.99997e-05	100
BKW01	Η	Η	F	12.75	7.07626e-05	60
BKW01	Η	W	${ m T}$	88.75	7.04288e-05	80
BKW01	Η	W	F	24	8.95977e-05	80
BKW01	Η	I	${ m T}$	17.75	8.05855e-05	70
BKW01	Η	I	F	52.75	7.1764e-05	70
BKW01	M	A	${ m T}$	100	0.000155687	100
BKW01	M	A	F	60	0.000189352	90
BKW01	M	P	${ m T}$	100	0.000154638	100
BKW01	M	Р	F	60	0.00019536	90
BKW01	M	H	${ m T}$	98.75	0.000157166	90
BKW01	M	H	F	60	0.000189638	90
BKW01	M	W	${ m T}$	88.75	0.000140667	80
BKW01	M	W	F	60	0.000184679	90
BKW01	M	I	Τ	60	0.000184488	90
BKW01	M	I	F	52.75	0.000230074	70
BKW01	N	A	${ m T}$	100	0.00164299	100
BKW01	N	A	F	60	0.0016438	90
BKW01	N	P	${ m T}$	100	0.00162854	100
BKW01	N	P	F	60	0.0016748	90
BKW01	N	H	${ m T}$	60	0.00129995	90
BKW01	N	H	\mathbf{F}	60	0.00190244	90
BKW01	N	W	${ m T}$	100	0.0020637	100
BKW01	N	W	\mathbf{F}	60	0.00180497	90
BKW01	N	I	${ m T}$	60	0.00167823	90
BKW01	N	I	F	52.75	0.000847721	70

Tabela 12 – Resultados da instância BKW02.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW02	V	A	T	61	0.000150204	70
BKW02	V	A	F	29.1333	0.000172043	60
BKW02	V	Р	${ m T}$	63.4	0.000176191	75
BKW02	V	Р	\mathbf{F}	29.1333	0.000126314	60
BKW02	V	H	${ m T}$	57.2667	0.000154543	65
BKW02	V	H	F	34.2	0.00014596	65
BKW02	V	W	Τ	81.0667	0.000174713	90
BKW02	V	W	\mathbf{F}	26.7333	0.000114441	55
BKW02	V	I	${ m T}$	40.7333	0.000146866	65
BKW02	V	I	\mathbf{F}	57.4667	0.000182724	60
BKW02	Η	A	${ m T}$	82.6667	0.000167894	65
BKW02	Η	A	\mathbf{F}	40.1333	0.000172758	70
BKW02	Η	P	T	82.6667	0.000169897	65
BKW02	Η	P	\mathbf{F}	49.3333	0.000175238	75
BKW02	Η	H	T	82.5333	0.00019927	80
BKW02	Η	H	\mathbf{F}	47.4667	0.000169945	70
BKW02	Η	W	${ m T}$	73.4	0.000184059	85
BKW02	Η	W	\mathbf{F}	60.2	0.000254059	85
BKW02	Η	I	${ m T}$	50.4	0.000168943	75
BKW02	Η	I	\mathbf{F}	78.5333	0.000185442	80
BKW02	\mathbf{M}	A	T	71.9333	0.000417852	85
BKW02	\mathbf{M}	A	\mathbf{F}	43.8667	0.000322151	75
BKW02	\mathbf{M}	P	T	71.9333	0.00037384	85
BKW02	\mathbf{M}	P	\mathbf{F}	60.2	0.000353718	85
BKW02	\mathbf{M}	H	T	68.2	0.000350428	80
BKW02	\mathbf{M}	H	\mathbf{F}	49.3333	0.000337648	75
BKW02	\mathbf{M}	W	T	79.4667	0.000356483	90
BKW02	\mathbf{M}	W	\mathbf{F}	55.2667	0.000311279	75
BKW02	\mathbf{M}	I	T	54.1333	0.000328588	80
BKW02	\mathbf{M}	I	\mathbf{F}	76.8	0.000387478	85
BKW02	N	A	T	85.8667	0.00555429	70
BKW02	N	A	F	43.5333	0.0119086	75
BKW02	N	P	T	89.8667	0.00630503	80
BKW02	N	P	\mathbf{F}	49.9333	0.0107538	80
BKW02	N	H	T	82	0.00732751	85
BKW02	N	H	\mathbf{F}	59.1333	0.0150655	85
BKW02	N	W	T	96.5333	0.0157199	90
BKW02	N	W	F	65.5333	0.0182476	80
BKW02	N	I	${ m T}$	64.3333	0.0130246	85
BKW02	N	I	F	76.8	0.00792232	85

Tabela 13 – Resultados da instância BKW03.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW03	V	A	T	84.1333	0.00022397	76.6667
BKW03	V	A	F	52	0.00022337	80
BKW03	V	P	T	80.1333	0.000240008 0.000243568	73.3333
BKW03	v	P	F	52	0.000249300 0.000219727	80
BKW03	V	Н	$^{\mathrm{T}}$	75.4667	0.000213727	73.3333
BKW03	V	Н	F	55.3333	0.000252505 0.000254726	83.3333
BKW03	v	W	T	88.6	0.000231720 0.000239754	80
BKW03	v	W	F	52	0.000226974	80
BKW03	v	Ī	T	65.9333	0.000240564	83.3333
BKW03	V	Ī	F	66.4	0.000255013	83.3333
BKW03	H	A	$^{\mathrm{T}}$	88.8	0.000307989	76.6667
BKW03	Н	A	F	20.2	0.000233841	56.6667
BKW03	H	P	$\overline{\mathrm{T}}$	93	0.000295782	90
BKW03	H	P	F	20.2	0.00022769	56.6667
BKW03	Н	H	Т	83.0667	0.000340605	83.3333
BKW03	Н	H	F	20.2	0.00024662	56.6667
BKW03	Н	W	Т	58.1333	0.000286531	80
BKW03	Н	W	F	39.6667	0.000308084	76.6667
BKW03	Н	I	Τ	67.1333	0.000327921	86.6667
BKW03	Η	I	F	33.8667	0.000428295	66.6667
BKW03	\mathbf{M}	A	Τ	92.4	0.00055542	83.3333
BKW03	M	A	F	35.0667	0.000502348	73.3333
BKW03	M	P	${ m T}$	92.6667	0.000584841	93.3333
BKW03	M	P	F	38.1333	0.00048871	73.3333
BKW03	${\bf M}$	H	${ m T}$	90.4	0.000539398	83.3333
BKW03	${\bf M}$	H	\mathbf{F}	38.1333	0.000535774	73.3333
BKW03	${\bf M}$	W	T	78.3333	0.000645876	93.3333
BKW03	${\bf M}$	W	\mathbf{F}	55.3333	0.000518656	83.3333
BKW03	\mathbf{M}	I	T	72.8667	0.000607824	90
BKW03	\mathbf{M}	I	F	62.9333	0.00059104	90
BKW03	N	A	T	93.8	0.0295979	90
BKW03	N	A	F	58.3333	0.0512242	86.6667
BKW03	N	P	T	92.6667	0.030483	93.3333
BKW03	N	P	\mathbf{F}	55.7333	0.0457568	86.6667
BKW03	N	Η	T	89.7333	0.0259913	83.3333
BKW03	N	H	F	51.4667	0.0534011	80
BKW03	N	W	${ m T}$	93.8	0.0514221	86.6667
BKW03	N	W	F	71.6	0.0559319	93.3333
BKW03	N	I	${ m T}$	78.9333	0.0521503	93.3333
BKW03	N	I	F	80	0.0343661	93.3333

Tabela 14 – Resultados da instância BKW04.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW04	V	A	Т	91.0781	0.000413847	85
BKW04	V	A	F	46.2812	0.000360441	92.5
BKW04	V	P	T	93.4062	0.00041132	90
BKW04	V	P	\mathbf{F}	44.4688	0.000353956	90
BKW04	V	H	T	88.4375	0.000381422	80
BKW04	V	H	\mathbf{F}	48.2812	0.000416327	95
BKW04	V	W	T	94.5	0.000481224	87.5
BKW04	V	W	\mathbf{F}	42.2812	0.000336885	87.5
BKW04	V	I	T	46.2812	0.000394678	92.5
BKW04	V	I	\mathbf{F}	81.5938	0.000416422	85
BKW04	Η	A	T	87.3125	0.000555563	85
BKW04	Η	A	F	18.6875	0.000481176	70
BKW04	Η	P	${ m T}$	85.7812	0.000363636	77.5
BKW04	Η	P	F	17.5625	0.000398636	65
BKW04	Η	H	T	74.6094	0.000433826	90
BKW04	Η	H	F	17.5625	0.000416327	65
BKW04	Η	W	T	75.6406	0.00042057	85
BKW04	Η	W	F	18.6875	0.000400496	70
BKW04	Η	I	T	33.8594	0.000436449	85
BKW04	Η	I	F	62.7656	0.000449085	85
BKW04	${\bf M}$	A	T	86.5	0.000859547	90
BKW04	M	A	F	38.5938	0.00074091	90
BKW04	M	P	${ m T}$	88.125	0.000876093	92.5
BKW04	M	P	F	38.5938	0.00076685	90
BKW04	M	Η	${ m T}$	92.7969	0.000802946	90
BKW04	M	Η	F	49.3125	0.000779629	90
BKW04	M	W	${ m T}$	90.3125	0.000989199	95
BKW04	M	W	F	48.2812	0.000853062	95
BKW04	M	I	${ m T}$	61.6719	0.000852537	95
BKW04	M	I	F	85.5312	0.00112362	92.5
BKW04	N	A	${ m T}$	96.1875	0.0452466	82.5
BKW04	N	A	F	44.6719	0.114416	87.5
BKW04	N	P	${ m T}$	95.0625	0.0556697	75
BKW04	N	P	F	48.2812	0.13407	95
BKW04	N	Η	${ m T}$	94	0.0527213	92.5
BKW04	N	Η	F	58.1562	0.103932	95
BKW04	N	W	${ m T}$	93.875	0.118128	95
BKW04	N	W	F	63.7812	0.154315	97.5
BKW04	N	I	${ m T}$	48.2812	0.0522459	95
BKW04	N	I	F	88.7656	0.0849498	92.5

Tabela 15 – Resultados da instância BKW05.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW05	V	A	T	64.92	0.000527477	78
BKW05	V	A	F	22.27	0.000321411	58
BKW05	V	P	T	74.01	0.000813004 0.000802994	82
BKW05	V	P	F	22.27	0.000321579	58
BKW05	V	Н	$^{\mathrm{T}}$	55.1	0.000521979	64
BKW05	V	Н	F	30.83	0.000480604	68
BKW05	V	W	$^{\mathrm{T}}$	87.05	0.00040004 0.000541592	82
BKW05	V	W	F	22.27	0.000341332 0.000311232	58
BKW05	V	I	$^{\mathrm{T}}$	27.35	0.000311232	64
BKW05	V	I	F	43.14	0.000454119 0.000555038	72
BKW05	H	A	T	90.47	0.000393030	70
BKW05	Н	A	F	41.1	0.000131102 0.000545502	78
BKW05	Н	P	$^{\mathrm{T}}$	90.88	0.000556231	80
BKW05	Н	P	F	41.1	0.000635215	78
BKW05	Н	Н	$^{\mathrm{T}}$	77.42	0.000626516	84
BKW05	Н	H	F	25.08	0.000349712	46
BKW05	Н	W	$^{\mathrm{T}}$	83.96	0.000549936	78
BKW05	Н	W	F	42.81	0.000680637	80
BKW05	Н	I	$^{\mathrm{T}}$	55.29	0.00059762	74
BKW05	Н	Ī	F	77.5	0.000579786	86
BKW05	M	A	$^{\mathrm{T}}$	92.14	0.00120373	84
BKW05	M	A	F	50.92	0.00105114	86
BKW05	Μ	P	Т	93.2	0.00120549	90
BKW05	M	P	F	50.92	0.00105896	86
BKW05	M	H	Т	80.48	0.00121603	90
BKW05	M	H	F	44.77	0.0010118	74
BKW05	M	W	Т	89.7	0.00106049	84
BKW05	M	W	F	52.92	0.00132608	86
BKW05	M	Ι	Т	62.75	0.00107346	92
BKW05	M	Ι	F	88.04	0.00100088	92
BKW05	N	A	Τ	92.05	0.177481	76
BKW05	N	A	F	62.75	0.247756	92
BKW05	N	P	T	93.13	0.19128	72
BKW05	N	P	F	67.88	0.276854	94
BKW05	N	H	T	80.48	0.201295	90
BKW05	N	H	F	62.59	0.288999	92
BKW05	N	W	${ m T}$	93.56	0.193728	76
BKW05	N	W	F	59.57	0.282892	90
BKW05	N	I	${ m T}$	67.88	0.236274	94
BKW05	N	I	F	88.04	0.156715	92

Tabela 16 – Resultados da instância BKW06.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW06	V	A	T	70.02	0.000650406	80
BKW06	V	A	F	33.86	0.0004498	85
BKW06	V	P	${ m T}$	70.58	0.00070281	90
BKW06	V	P	F	33.86	0.000442982	85
BKW06	V	H	$^{\mathrm{T}}$	69.38	0.000612926	86.6667
BKW06	V	H	F	33.86	0.000483036	85
BKW06	V	W	$\overline{\mathrm{T}}$	86.9	0.00051322	56.6667
BKW06	V	W	$\overline{\mathrm{F}}$	32.42	0.000423574	83.3333
BKW06	V	I	Т	45.26	0.00053544	88.3333
BKW06	V	I	F	56.18	0.000540924	88.3333
BKW06	Н	A	Т	95.74	0.000592041	81.6667
BKW06	Η	A	F	13.24	0.000617027	61.6667
BKW06	Η	P	T	96.06	0.000646353	88.3333
BKW06	Н	P	F	13.24	0.000627041	61.6667
BKW06	Н	H	T	81.6	0.000984097	93.3333
BKW06	Η	H	F	22.88	0.000653267	65
BKW06	Η	W	${ m T}$	88.02	0.00074892	86.6667
BKW06	Η	W	F	22.46	0.000773478	76.6667
BKW06	Η	I	Τ	45.14	0.000752449	83.3333
BKW06	Η	I	\mathbf{F}	48.32	0.000733852	81.6667
BKW06	${\bf M}$	A	${ m T}$	95.92	0.0012887	85
BKW06	\mathbf{M}	A	F	35.78	0.00118899	86.6667
BKW06	\mathbf{M}	P	T	95.34	0.00121427	85
BKW06	\mathbf{M}	P	F	35.78	0.00126514	86.6667
BKW06	\mathbf{M}	H	T	72.5	0.0014461	91.6667
BKW06	${\bf M}$	Η	\mathbf{F}	28.52	0.00129929	80
BKW06	${\bf M}$	W	T	92.76	0.00141101	91.6667
BKW06	${\bf M}$	W	\mathbf{F}	42.5	0.00121622	88.3333
BKW06	${\bf M}$	I	T	77.4	0.00141392	95
BKW06	${\bf M}$	I	F	72.5	0.00142927	91.6667
BKW06	N	A	Τ	96.94	0.161368	78.3333
BKW06	N	A	F	56.9	0.386329	90
BKW06	N	P	Τ	97.38	0.181329	81.6667
BKW06	N	P	F	60	0.400375	91.6667
BKW06	N	H	${ m T}$	72.5	0.168962	91.6667
BKW06	N	H	F	57.88	0.367675	91.6667
BKW06	N	W	${ m T}$	98.14	0.360116	95
BKW06	N	W	F	42.5	0.410012	88.3333
BKW06	N	I	${ m T}$	63	0.294715	93.3333
BKW06	N	Ι	F	72.5	0.244765	91.6667

Tabela 17 – Resultados da instância BKW07.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW07	V	A	Т	78.8	0.000760746	84.2857
BKW07	V	A	F	41.5375	0.000629044	85.7143
BKW07	V	P	${ m T}$	75.775	0.000708008	84.2857
BKW07	V	Р	F	40.6375	0.000621176	84.2857
BKW07	V	H	${ m T}$	67.8	0.000747824	81.4286
BKW07	V	H	F	42.0875	0.000708628	87.1429
BKW07	V	W	${ m T}$	91.6625	0.000865507	95.7143
BKW07	V	W	F	38.725	0.000543356	80
BKW07	V	I	${ m T}$	66.6	0.000843382	88.5714
BKW07	V	I	F	46.725	0.000789738	84.2857
BKW07	Η	A	${ m T}$	74.0125	0.00088582	85.7143
BKW07	Η	A	F	8.725	0.000820494	62.8571
BKW07	Η	P	${ m T}$	83.775	0.000965977	88.5714
BKW07	Η	P	F	11.525	0.000853729	67.1429
BKW07	Η	Η	${ m T}$	86.1	0.000823164	95.7143
BKW07	Η	Η	F	6.75	0.00078702	58.5714
BKW07	Η	W	${ m T}$	46.675	0.000730562	78.5714
BKW07	Η	W	F	26.7375	0.000958061	80
BKW07	Η	I	${ m T}$	46.825	0.000719404	78.5714
BKW07	Η	I	F	59.8	0.00112739	87.1429
BKW07	\mathbf{M}	A	${ m T}$	82.725	0.00155454	90
BKW07	M	A	F	40.1375	0.00144701	88.5714
BKW07	M	P	${ m T}$	90.5875	0.00149145	91.4286
BKW07	\mathbf{M}	P	F	42.0875	0.00145383	90
BKW07	\mathbf{M}	H	${ m T}$	82.35	0.00155249	95.7143
BKW07	\mathbf{M}	H	F	38.9	0.00141234	81.4286
BKW07	\mathbf{M}	W	${ m T}$	49.075	0.00137482	82.8571
BKW07	\mathbf{M}	W	F	61.2125	0.00142508	94.2857
BKW07	\mathbf{M}	I	T	79.4375	0.00166879	94.2857
BKW07	\mathbf{M}	I	F	64.3375	0.00148234	91.4286
BKW07	N	A	T	90.2375	0.314977	95.7143
BKW07	N	A	F	50.2875	0.657058	92.8571
BKW07	N	P	T	91.5875	0.234417	92.8571
BKW07	N	Р	F	60.7125	0.639531	92.8571
BKW07	N	H	${ m T}$	82.35	0.256859	95.7143
BKW07	N	H	F	56.6875	0.54043	88.5714
BKW07	N	W	${ m T}$	94.5	0.19643	95.7143
BKW07	N	W	F	64.3	0.728899	94.2857
BKW07	N	I	${ m T}$	79.4375	0.337527	94.2857
BKW07	N	I	F	75.8125	0.334543	97.1429

Tabela 18 – Resultados da instância BKW08.

BKW08 V A T 81.7 0.000980997 82.5 BKW08 V A F 47.85 0.000714493 85 BKW08 V P T 86.9375 0.00102673 80 BKW08 V P F 58.3625 0.00083205 90 BKW08 V H T 70.2375 0.000971889 80 BKW08 V H F 57.675 0.000934029 92.5 BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.00142937 85 BKW08 V I F 70.1875 0.000142937 85 BKW08 H A F 16.3875 0.00113058 78.75 BKW08 H A F 16.3875 0.00124288 78.75 BKW08 H P F 16.3875 0.00142488 <th>Instance</th> <th>Split</th> <th>Order</th> <th>Descending</th> <th>Quality %</th> <th>Time (s)</th> <th>Items %</th>	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW08 V P T 86.9375 0.00102673 80 BKW08 V P F 58.3625 0.000853205 90 BKW08 V H T 70.2375 0.000934029 92.5 BKW08 V W T 92.7 0.000884581 86.25 BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.00142937 85 BKW08 V I T 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.0013058 78.75 BKW08 H A F 16.3875 0.00113058 78.75 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.00071249 51.25 BKW08 H H T 72.95 0.0014	BKW08	V	A	Τ	81.7	0.000980997	82.5
BKW08 V P F 58.3625 0.000853205 90 BKW08 V H T 70.2375 0.000971889 80 BKW08 V H F 57.675 0.000934029 92.5 BKW08 V W T 92.7 0.000884581 86.25 BKW08 V U T 51.1875 0.000711966 81.25 BKW08 V I F 51.1875 0.000142937 85 BKW08 H A T 72.1875 0.00142937 85 BKW08 H A T 72.1875 0.00142937 85 BKW08 H A F 16.3875 0.00012498 51.25 BKW08 H P F 16.3875 0.00124488 78.75 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.3875 0.00096430	BKW08	V	A	F	47.85	0.000714493	85
BKW08 V H T 70.2375 0.000971889 80 BKW08 V H F 57.675 0.000934029 92.5 BKW08 V W T 92.7 0.000884581 86.25 BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.00142937 85 BKW08 V I F 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.00113058 78.75 BKW08 H A F 16.3875 0.000113058 78.75 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0001124288 78.75 BKW08 H P F 16.3875 0.00124288 78.75 BKW08 H H T 83.3125 <t< td=""><td>BKW08</td><td>V</td><td>P</td><td>T</td><td>86.9375</td><td>0.00102673</td><td>80</td></t<>	BKW08	V	P	T	86.9375	0.00102673	80
BKW08 V H F 57.675 0.000934029 92.5 BKW08 V W T 92.7 0.000884581 86.25 BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.000142937 85 BKW08 H A T 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.00113058 78.75 BKW08 H A F 16.3875 0.00071249 51.25 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H P F 16.3875 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W F 24.7625 0.00094419 71.25 BKW08 H I F 36.7625 0.00	BKW08	V	P	F	58.3625	0.000853205	90
BKW08 V W T 92.7 0.000884581 86.25 BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.00142937 85 BKW08 V I F 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.00113058 87.75 BKW08 H A F 16.3875 0.0007124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W F 24.7625 0.000947121 68.75 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I F 36.7625	BKW08	V	H	T	70.2375	0.000971889	80
BKW08 V W F 51.1875 0.000711966 81.25 BKW08 V I T 54.4875 0.00142937 85 BKW08 V I F 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.000113058 78.75 BKW08 H A F 16.3875 0.000124288 51.25 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.000124489 90 BKW08 H H T 83.3125 0.00184498 90 BKW08 H W T 53.8875 0.000646305 35 BKW08 H W T 33.8875 0.00044533 71.25 BKW08 H I T 32.35 0.00118498 90 BKW08 H I F 36.7625 0.0009	BKW08	V	H	F	57.675	0.000934029	92.5
BKW08 V I T 54.4875 0.00142937 85 BKW08 V I F 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.00013058 78.75 BKW08 H A F 16.3875 0.00071249 51.25 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.00094711 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 M A T 93.7875 0.0002	BKW08	V	W	T	92.7	0.000884581	86.25
BKW08 V I F 70.1875 0.000896454 83.75 BKW08 H A T 72.1875 0.00113058 78.75 BKW08 H A F 16.3875 0.00071249 51.25 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.0009497121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A F 50.55 0.0015	BKW08	V	W	F	51.1875	0.000711966	81.25
BKW08 H A T 72.1875 0.00113058 78.75 BKW08 H A F 16.3875 0.00071249 51.25 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 <td>BKW08</td> <td>V</td> <td>I</td> <td>T</td> <td>54.4875</td> <td>0.00142937</td> <td>85</td>	BKW08	V	I	T	54.4875	0.00142937	85
BKW08 H A F 16.3875 0.00071249 51.25 BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864	BKW08	V	I	F	70.1875	0.000896454	83.75
BKW08 H P T 72.95 0.00124288 78.75 BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A F 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442	BKW08		A		72.1875	0.00113058	78.75
BKW08 H P F 16.3875 0.0007164 51.25 BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H F 39.875 0.00223371 81.25 BKW08 M H F 39.875 0.00203371	BKW08				16.3875	0.00071249	51.25
BKW08 H H T 83.3125 0.00184498 90 BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H F 39.875 0.00223371 81.25 BKW08 M H F 39.875 0.00203371	BKW08	Η			72.95	0.00124288	78.75
BKW08 H H F 10.95 0.000646305 35 BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H F 39.875 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W F 58.35 0.00169339	BKW08				16.3875	0.0007164	51.25
BKW08 H W T 53.8875 0.000849533 71.25 BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.0015964 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W F 58.35 0.00192633 91.25 BKW08 M I T 63.075 0.00182967	BKW08		H		83.3125	0.00184498	90
BKW08 H W F 24.7625 0.000967121 68.75 BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00159864 82.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M H F 39.875 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00182967					10.95	0.000646305	
BKW08 H I T 32.35 0.00111809 73.75 BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W F 58.35 0.00192633 91.25 BKW08 M I T 63.075 0.00182967 95 BKW08 M I F 82.7125 0.00182967	BKW08				53.8875	0.000849533	71.25
BKW08 H I F 36.7625 0.00094471 70 BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.002203371 81.25 BKW08 M H F 39.875 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A F 66.725 1.19571	BKW08	Η	W		24.7625	0.000967121	68.75
BKW08 M A T 93.7875 0.00208473 93.75 BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.002203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N P F 66.725 1.19571	BKW08				32.35	0.00111809	
BKW08 M A F 50.55 0.0015254 90 BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P F 66.725 1.1602 95	BKW08	Η	I		36.7625	0.00094471	70
BKW08 M P T 96.3 0.00159864 82.5 BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00192633 91.25 BKW08 M I T 63.075 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P F 66.725 1.1602 95 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BKW08 M P F 57.675 0.00178442 92.5 BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BKW08 M H T 91.7 0.0022449 88.75 BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 <						0.00159864	
BKW08 M H F 39.875 0.00203371 81.25 BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 </td <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td>				F			
BKW08 M W T 80.5 0.00192633 91.25 BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 <td>BKW08</td> <td>M</td> <td></td> <td></td> <td>91.7</td> <td>0.0022449</td> <td></td>	BKW08	M			91.7	0.0022449	
BKW08 M W F 58.35 0.00169339 92.5 BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 M I T 63.075 0.00176029 91.25 BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25				${ m T}$			
BKW08 M I F 82.7125 0.00182967 95 BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25	BKW08			_	58.35	0.00169339	
BKW08 N A T 94.2 0.542582 68.75 BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N A F 66.725 1.19571 95 BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N P T 95.5375 0.598825 77.5 BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N P F 66.725 1.1602 95 BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N H T 91.0375 0.723944 88.75 BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25	BKW08				95.5375	0.598825	77.5
BKW08 N H F 53 1.08041 85 BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N W T 94.175 0.67467 97.5 BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25						0.723944	88.75
BKW08 N W F 70.4375 1.31557 93.75 BKW08 N I T 82.45 0.911094 96.25							
BKW08 N I T 82.45 0.911094 96.25						0.67467	
					70.4375	1.31557	93.75
BKW08 N I F 86.95 0.616457 95				${ m T}$			
	BKW08	N	I	F	86.95	0.616457	95

Tabela 19 – Resultados da instância BKW09.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW09	V	A	T	70.5467	0.00093708	80
BKW09	V	A	F	35.68	0.000865507	85
BKW09	V	P	T	73.5867	0.00101247	80
BKW09	V	P	\mathbf{F}	35.68	0.00074091	85
BKW09	V	H	T	50.7067	0.000925303	82
BKW09	V	H	\mathbf{F}	34.3467	0.00079546	83
BKW09	V	W	T	90.04	0.00102248	85
BKW09	V	W	\mathbf{F}	31.8267	0.000660658	78
BKW09	V	I	T	42.76	0.00106444	88
BKW09	V	I	\mathbf{F}	35.3467	0.000932074	82
BKW09	Η	A	T	91.7867	0.0016902	95
BKW09	Η	A	F	22.12	0.0013567	72
BKW09	Η	P	${ m T}$	94.0933	0.00117106	65
BKW09	Η	P	F	24.6267	0.00140162	73
BKW09	Η	Η	${ m T}$	83.4533	0.00154905	94
BKW09	Η	H	F	14.6933	0.00117717	49
BKW09	Η	W	T	70.48	0.00152965	89
BKW09	Η	W	F	34.12	0.00151138	86
BKW09	Η	I	T	57.12	0.00170364	90
BKW09	Η	I	F	54.92	0.00148849	83
BKW09	${\bf M}$	A	${ m T}$	87.3467	0.00267596	95
BKW09	${\bf M}$	A	F	37.52	0.00217714	87
BKW09	${\bf M}$	P	${ m T}$	93.1067	0.00276437	98
BKW09	${\bf M}$	P	F	32.9867	0.00217786	85
BKW09	M	Η	${ m T}$	86.1733	0.00248289	94
BKW09	${\bf M}$	H	F	27.4533	0.00235658	77
BKW09	\mathbf{M}	W	${ m T}$	76.4533	0.00271249	92
BKW09	${\bf M}$	W	F	63.9867	0.00221543	94
BKW09	\mathbf{M}	I	Τ	63.9867	0.00265903	94
BKW09	\mathbf{M}	I	F	78.2	0.00262709	94
BKW09	N	A	${ m T}$	94.2933	1.19273	97
BKW09	N	A	F	62.5733	2.03207	96
BKW09	N	P	Τ	96.92	1.28711	79
BKW09	N	P	F	58.2533	1.9654	95
BKW09	N	H	${ m T}$	85.2133	1.33373	93
BKW09	N	H	F	54.28	2.03874	94
BKW09	N	W	${ m T}$	96.28	1.86233	98
BKW09	N	W	\mathbf{F}	68.4667	2.40126	96
BKW09	N	I	${ m T}$	72.5733	1.53907	97
BKW09	N	I	F	82	1.45392	96

Tabela 20 – Resultados da instância BKW10.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW10	V	A	Т	61.8381	0.00253057	88.5
BKW10	V	A	F	22.5714	0.00137687	84
BKW10	V	P	T	62.5714	0.00249224	90
BKW10	V	P	F	21.981	0.00142279	83
BKW10	V	Η	T	50.9905	0.00262079	85
BKW10	V	Η	F	24.3048	0.001685	86
BKW10	V	W	T	84.0667	0.00245037	93.5
BKW10	V	W	F	21.981	0.00125227	83
BKW10	V	I	T	37.2762	0.00203419	87.5
BKW10	V	I	F	41.6286	0.0016489	85.5
BKW10	Η	A	T	95.3714	0.00409236	99
BKW10	Η	A	F	16.3714	0.00431018	76
BKW10	Η	P	Τ	95.5048	0.00353732	95.5
BKW10	Η	P	F	16.3714	0.00429773	76
BKW10	Η	Η	T	77.0952	0.00342865	93.5
BKW10	Η	Η	F	9.88571	0.00308723	51.5
BKW10	Η	W	T	87.8571	0.0026926	95
BKW10	Η	W	F	28.981	0.00358438	89.5
BKW10	Η	I	T	40.4095	0.00300126	93.5
BKW10	Η	I	F	75.4952	0.0031981	95
BKW10	M	A	T	91.3429	0.00617456	97.5
BKW10	M	A	F	31.3143	0.00551944	94
BKW10	M	P	T	95.9429	0.00599403	99
BKW10	M	P	F	31.5619	0.00573902	94
BKW10	M	Η	Τ	72.2952	0.00631909	97.5
BKW10	M	H	F	30.581	0.00530767	90.5
BKW10	M	W	T	94.0381	0.00518079	98.5
BKW10	M	W	F	54.6	0.0045886	97
BKW10	M	Ι	T	58.6286	0.00486569	98.5
BKW10	M	Ι	F	83.0667	0.00608282	96
BKW10	N	A	T	96.1238	9.71423	98
BKW10	N	A	F	45.6381	17.8907	97.5
BKW10	N	P	Τ	97.5619	7.9507	69.5
BKW10	N	P	F	50.3619	18.6467	98
BKW10	N	Η	Τ	77.8952	9.24358	94.5
BKW10	N	Η	F	48.5905	12.5673	97.5
BKW10	N	W	${ m T}$	98.1143	12.3049	82.5
BKW10	N	W	F	55.8	21.3953	97.5
BKW10	N	I	${ m T}$	58.6286	13.9195	98.5
BKW10	N	Ι	F	76.2476	13.4088	98.5

Tabela 21 – Resultados da instância BKW11.

Instance Split Order Descending Quality % Time (s) Items % BKW11 V A T 65.7238 0.00390029 86.3333 BKW11 V A F 37.9238 0.00241423 85.6667 BKW11 V P T 73.9429 0.00388575 87 BKW11 V P F 37.9238 0.00260563 85.6667 BKW11 V H T 56.7238 0.0037015 86.6667 BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V A F 37.9238 0.00241423 85.6667 BKW11 V P T 73.9429 0.00388575 87 BKW11 V P F 37.9238 0.00260563 85.6667 BKW11 V H T 56.7238 0.0037015 86.6667 BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V P T 73.9429 0.00388575 87 BKW11 V P F 37.9238 0.00260563 85.6667 BKW11 V H T 56.7238 0.0037015 86.6667 BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V P F 37.9238 0.00260563 85.6667 BKW11 V H T 56.7238 0.0037015 86.6667 BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V H T 56.7238 0.0037015 86.6667 BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V H F 35.7524 0.00295582 86 BKW11 V W T 88.9714 0.00340586 64.6667
BKW11 V W T 88.9714 0.00340586 64.6667
DIVIDA II III D
BKW11 V W F 37.9238 0.00208626 85.6667
BKW11 V I T 46.3905 0.00294666 88.3333
BKW11 V I F 39.2 0.00318027 84.3333
BKW11 H A T 93.7905 0.00664406 85.6667
BKW11 H A F 21.781 0.00533447 68.3333
BKW11 H P T 94.8857 0.00480752 85.3333
BKW11 H P F 21.781 0.0055768 68.3333
BKW11 H H T 82.181 0.00638766 95
BKW11 H F 10.781 0.00445347 35.3333
BKW11 H W T 80.4286 0.00530772 84.3333
BKW11 H W F 27.2667 0.00685868 78.6667
BKW11 H I T 52.4571 0.00626779 89.3333
BKW11 H I F 54.4952 0.00598688 89
BKW11 M A T 96.7143 0.00937181 94.3333
BKW11 M A F 41.2667 0.00901389 90.3333
BKW11 M P T 97.7714 0.00880809 83.3333
BKW11 M P F 41.8286 0.00933299 90
BKW11 M H T 82.2571 0.0117291 95.3333
BKW11 M H F 27.8762 0.00975714 75.3333
BKW11 M W T 89.9905 0.00969214 95.3333
BKW11 M W F 61.1238 0.0065022 94.6667
BKW11 M I T 80.5143 0.0103827 97.6667
BKW11 M I F 80.2762 0.00908313 97.3333
BKW11 N A T 97.2095 47.6853 92
BKW11 N A F 69.4381 67.3668 97
BKW11 N P T 98.1524 47.2976 86.6667
BKW11 N P F 69.9905 65.9799 96.3333
BKW11 N H T 83.381 37.1351 96.3333
BKW11 N H F 58.0381 52.7709 93.3333
BKW11 N W T 98.0952 60.246 90
BKW11 N W F 72.7238 70.3336 96.3333
BKW11 N I T 78.7143 55.696 97.3333
BKW11 N I F 85.2095 41.4134 98

Tabela 22 – Resultados da instância BKW12.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW12	V	A	Т	80.6733	0.00854292	92
BKW12	V	A	F	51.1267	0.00457072	92.4
BKW12	V	P	T	81.0333	0.00881557	92.2
BKW12	V	P	F	56.2433	0.00451002	93.2
BKW12	V	Η	T	74.5833	0.00960941	90
BKW12	V	Η	F	50.2133	0.00568471	93
BKW12	V	W	T	87.8	0.00586576	62.6
BKW12	V	W	F	55.9967	0.00383987	91.4
BKW12	V	I	Τ	59.3267	0.00800271	91.6
BKW12	V	I	F	49.83	0.00669918	91.6
BKW12	Η	A	T	89.3767	0.0205091	89
BKW12	Η	A	F	8.55	0.00928559	36.6
BKW12	Η	P	Τ	91.2	0.0149393	78
BKW12	Η	Р	F	8.55	0.00937166	36.6
BKW12	Η	Η	${ m T}$	86.9067	0.0201834	92.4
BKW12	Η	Η	F	8.55	0.00937614	36.6
BKW12	Η	W	T	74.5833	0.0163762	92.6
BKW12	Η	W	F	26.6167	0.0142647	81.8
BKW12	Η	I	T	45.3133	0.0258911	89.8
BKW12	Η	I	F	34.7533	0.0157242	82.6
BKW12	${\bf M}$	A	T	95.11	0.0205799	78
BKW12	${ m M}$	A	F	28.7067	0.0293505	86
BKW12	\mathbf{M}	P	${ m T}$	94.7	0.0183156	68.4
BKW12	\mathbf{M}	P	F	28.21	0.0216132	85.4
BKW12	\mathbf{M}	Η	${ m T}$	88.0967	0.036373	97.2
BKW12	${\bf M}$	Η	F	24.49	0.0216557	78.8
BKW12	${\bf M}$	W	T	89.6933	0.0270993	99.2
BKW12	${\bf M}$	W	F	67.24	0.0124371	97.6
BKW12	${\bf M}$	I	T	84.9233	0.0285264	98.6
BKW12	${\rm M}$	I	F	75.5567	0.0288291	97.8
BKW12	N	A	Τ	95.91	223.229	76.6
BKW12	N	A	F	66.8933	366.344	97.8
BKW12	N	P	${ m T}$	95.84	223.486	74.4
BKW12	N	P	F	68.8833	356.08	98
BKW12	N	Η	${ m T}$	90.05	230.05	97
BKW12	N	H	F	65.8767	302.29	97.2
BKW12	N	W	${ m T}$	96.28	295.204	92.2
BKW12	N	W	F	73.9967	368.863	98
BKW12	N	I	T	88.5733	299.701	98.6
BKW12	N	I	F	78.0967	318.79	98.6

Tabela 23 – Resultados da instância BKW13.

	~ 1.			0 11 64		- C
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
BKW13	V	A	Τ	94.9339	0.116755	84.0102
BKW13	V	A	F	72.6849	0.0956778	96.4467
BKW13	V	P	${ m T}$	91.0596	0.0820553	74.2386
BKW13	V	Р	F	73.5465	0.0809931	96.1294
BKW13	V	H	T	86.7168	0.0906435	86.9607
BKW13	V	Η	F	78.2632	0.0731152	96.986
BKW13	V	W	T	97.9108	0.0926637	90.736
BKW13	V	W	F	73.9661	0.0609208	88.8325
BKW13	V	I	T	61.0007	0.120608	83.9467
BKW13	V	I	F	60.3755	0.0897346	82.2018
BKW13	H	A	T	51.3125	0.230229	57.868
BKW13	H	A	F	4.21354	0.372174	32.2335
BKW13	H	P	T	63.4264	0.183033	63.2614
BKW13	H	P	F	4.26562	0.355907	29.9492
BKW13	H	H	T	85.3234	0.236992	86.0406
BKW13	H	H	F	1.2526	0.322697	18.7817
BKW13	H	W	T	32.3698	0.310274	54.3147
BKW13	H	W	F	11.562	0.418725	55.7424
BKW13	H	I	T	38.9907	0.250041	77.1574
BKW13	H	I	F	38.8179	0.240461	76.7449
BKW13	M	A	${ m T}$	92.3503	0.54441	94.1307
BKW13	M	A	F	32.1917	0.717847	81.8528
BKW13	M	P	Τ	91.9723	0.534671	93.8135
BKW13	M	P	F	33.3984	0.743062	82.0431
BKW13	M	H	T	97.1108	0.526851	95.8122
BKW13	M	H	F	9.58626	0.435822	44.4162
BKW13	M	W	${ m T}$	55.9587	0.610397	85.0254
BKW13	M	W	F	82.3021	0.14048	95.3363
BKW13	M	I	${ m T}$	94.4312	0.589158	98.7627
BKW13	M	I	F	94.6325	0.596748	98.7944

Tabela 24 – Resultados da instância GCUT01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT01	V	A	T	77.3888	3.74317e-05	30
GCUT01	V	A	F	62.0688	4.87804 e-05	40
GCUT01	V	P	${ m T}$	67.3808	2.65121e-05	20
GCUT01	V	P	F	63.48	4.91142e-05	40
GCUT01	V	Η	${ m T}$	67.3808	2.68936e-05	20
GCUT01	V	Η	\mathbf{F}	46.784	3.56674 e-05	30
GCUT01	V	W	${ m T}$	77.3888	3.31879e-05	30
GCUT01	V	W	\mathbf{F}	43.4768	3.65734 e-05	30
GCUT01	V	I	${ m T}$	63.104	4.73022 e-05	40
GCUT01	V	I	\mathbf{F}	77.3888	3.35693 e - 05	30
GCUT01	Η	A	${ m T}$	67.7568	3.30925 e-05	20
GCUT01	Η	A	F	43.8528	3.87669 e-05	30
GCUT01	Η	P	${ m T}$	67.3808	2.70367e-05	20
GCUT01	Η	P	\mathbf{F}	43.8528	3.94344e-05	30
GCUT01	Η	Η	${ m T}$	67.3808	2.80857e-05	20
GCUT01	Η	Η	\mathbf{F}	31.1552	2.9707e-05	20
GCUT01	Η	W	${ m T}$	67.7568	2.57015 e-05	20
GCUT01	Η	W	F	43.8528	4.03404 e-05	30
GCUT01	Η	I	${ m T}$	47.4752	4.11987e-05	30
GCUT01	Η	I	F	67.7568	2.40803e-05	20
GCUT01	M	A	${ m T}$	77.3888	7.01427e-05	30
GCUT01	${\bf M}$	A	\mathbf{F}	62.0688	9.4986 e - 05	40
GCUT01	\mathbf{M}	P	${ m T}$	67.3808	5.00679e-05	20
GCUT01	\mathbf{M}	P	F	63.48	9.43661e-05	40
GCUT01	\mathbf{M}	H	${ m T}$	67.3808	5.17845e-05	20
GCUT01	M	H	F	46.784	7.03812e-05	30
GCUT01	M	W	${ m T}$	77.3888	6.78539 e-05	30
GCUT01	M	W	F	62.0688	9.52721 e-05	40
GCUT01	M	I	${ m T}$	63.104	9.47952 e-05	40
GCUT01	M	I	\mathbf{F}	77.3888	6.73294 e-05	30
GCUT01	N	A	${ m T}$	77.3888	0.00012126	30
GCUT01	N	A	F	62.0688	0.000469971	40
GCUT01	N	P	${ m T}$	67.3808	5.62191e-05	20
GCUT01	N	P	\mathbf{F}	63.48	0.000582457	40
GCUT01	N	H	${ m T}$	67.3808	5.49316e-05	20
GCUT01	N	H	F	49.7472	0.000371695	30
GCUT01	N	W	${ m T}$	77.3888	0.000118542	30
GCUT01	N	W	\mathbf{F}	62.0688	0.000229025	40
GCUT01	N	I	${ m T}$	63.104	0.000211	40
GCUT01	N	Ι	F	77.3888	0.000114298	30

Tabela 25 – Resultados da instância GCUT02.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT02	V	A	T	75.976	4.01974e-05	15
GCUT02	V	A	$\overline{\mathrm{F}}$	29.5232	4.23908e-05	15
GCUT02	V	Р	T	75.976	4.04358e-05	15
GCUT02	V	Р	F	50.1248	5.53131e-05	20
GCUT02	V	H	Τ	60.1696	3.2568e-05	10
GCUT02	V	H	F	46.0144	5.35965e-05	20
GCUT02	V	W	T	67.6032	4.35352e-05	15
GCUT02	V	W	F	39.1968	4.25816e-05	15
GCUT02	V	Ι	Τ	69.6704	5.12123e-05	20
GCUT02	V	Ι	F	56.8624	5.57899e-05	20
GCUT02	Н	A	T	65.656	3.29018e-05	10
GCUT02	Н	A	F	56.2416	7.13348e-05	25
GCUT02	Н	P	T	65.656	3.33309e-05	10
GCUT02	Н	P	F	63.64	7.45773e-05	25
GCUT02	Н	H	T	60.1696	3.35217e-05	10
GCUT02	Н	H	F	44.344	4.58717e-05	15
GCUT02	Н	W	T	68.1568	5.53131e-05	20
GCUT02	Н	W	F	56.2416	7.24792e-05	25
GCUT02	Н	I	T	76.7008	7.0715e-05	25
GCUT02	H	I	F	56.8624	5.76973e-05	20
GCUT02	M	A	T	77.6864	7.88212e-05	15
GCUT02	M	A	F	41.5536	0.000104761	20
GCUT02	M	P	${ m T}$	77.6864	7.55787e-05	15
GCUT02	M	P	F	41.5536	0.00010128	20
GCUT02	M	H	T	60.1696	5.75542e-05	10
GCUT02	M	H	F	54.664	0.000102949	20
GCUT02	M	W	T	68.1568	9.99451e-05	20
GCUT02	M	W	F	39.1968	7.82013e-05	15
GCUT02	M	I	T	69.984	0.000102472	20
GCUT02	M	I	F	73.8544	0.000122595	25
GCUT02	N	A	T	77.6864	0.000129843	15
GCUT02	N	A	F	56.2416	0.00127311	25
GCUT02	N	P	T	77.6864	0.000129747	15
GCUT02	N	P	F	76.2352	0.00133896	30
GCUT02	N	Η	T	72.2	0.000128031	15
GCUT02	N	H	F	54.664	0.000774622	20
GCUT02	N	W	T	68.1568	0.00035162	20
GCUT02	N	W	F	50.1248	0.000846434	20
GCUT02	N	I	${ m T}$	69.984	0.000656366	20
GCUT02	N	I	F	56.8624	0.000451708	20

Tabela 26 – Resultados da instância GCUT03.

	G 11.	0 1	- D	0 11 64	The state of the s	T. 04
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT03	V	A	T	87.4512	5.82218e-05	13.3333
GCUT03	V	A	F	54.9824	7.96318e-05	16.6667
GCUT03	V	P	T	86.0608	5.22614e-05	10
GCUT03	V	P	F	68.3104	9.47475e-05	20
GCUT03	V	H	${ m T}$	76.6	6.62327e-05	13.3333
GCUT03	V	Н	F	72.8752	7.84397e-05	16.6667
GCUT03	V	W	T	87.0368	6.12736 e- 05	13.3333
GCUT03	V	W	F	40.2928	5.04017e-05	10
GCUT03	V	I	T	68.736	7.90596e-05	16.6667
GCUT03	V	I	F	66.1776	6.35147e-05	13.3333
GCUT03	Η	A	T	87.016	5.87463e-05	13.3333
GCUT03	Η	A	F	61.6464	7.71046e-05	16.6667
GCUT03	Η	P	${ m T}$	93.5504	6.18935 e-05	13.3333
GCUT03	Η	P	F	61.6464	8.08716e-05	16.6667
GCUT03	\mathbf{H}	H	${ m T}$	68.152	5.58853e-05	10
GCUT03	\mathbf{H}	H	F	36.6032	5.77927e-05	10
GCUT03	Η	W	${ m T}$	75.7456	6.27518 e-05	13.3333
GCUT03	Η	W	F	49.6064	6.96659 e - 05	13.3333
GCUT03	Η	I	T	56.0832	6.74725 e-05	13.3333
GCUT03	Η	I	F	57.9184	8.64983 e-05	13.3333
GCUT03	M	A	T	87.3984	0.000107527	13.3333
GCUT03	M	A	F	41.5568	0.00011282	13.3333
GCUT03	M	P	T	93.5504	0.000107527	13.3333
GCUT03	M	P	F	41.5568	0.00011158	13.3333
GCUT03	M	H	T	76.6	0.000109911	13.3333
GCUT03	M	H	F	56.2256	0.000108862	13.3333
GCUT03	M	W	T	75.7456	0.000101042	13.3333
GCUT03	M	W	F	58.9504	0.000113916	13.3333
GCUT03	M	I	${ m T}$	56.0832	0.00011158	13.3333
GCUT03	M	I	F	66.1776	0.000105906	13.3333
GCUT03	N	A	T	87.3984	0.000427628	13.3333
GCUT03	N	A	F	67.7792	0.00358415	20
GCUT03	N	Р	T	86.0608	0.000366545	10
GCUT03	N	Р	F	68.104	0.00317931	20
GCUT03	N	H	Τ	76.6	0.000225973	13.3333
GCUT03	N	H	F	56.2256	0.00131464	13.3333
GCUT03	N	W	$\overline{\mathrm{T}}$	87.0368	0.000354624	13.3333
GCUT03	N	W	$\overline{\mathrm{F}}$	58.9504	0.0006392	13.3333
GCUT03	N	I	$^{\mathrm{T}}$	77.184	0.00103116	20
GCUT03	N	I	F	57.9184	0.00121841	13.3333

Tabela 27 – Resultados da instância GCUT04.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT04	V	A	Т	92.816	6.84738e-05	8
GCUT04	V	A	F	58.848	0.00010767	12
GCUT04	V	Р	Τ	92.816	7.41959e-05	8
GCUT04	V	Р	F	58.848	0.000107574	12
GCUT04	V	H	Τ	90.8624	7.66754e-05	10
GCUT04	V	H	F	61.568	0.000107479	12
GCUT04	V	W	Τ	86.7136	6.89507e-05	8
GCUT04	V	W	F	44.5504	6.60896e-05	8
GCUT04	V	I	T	72.9616	7.76768e-05	8
GCUT04	V	I	F	63.7264	8.564 e - 05	10
GCUT04	Н	A	T	83.6768	6.53744 e - 05	6
GCUT04	Η	A	F	71.9872	0.000146818	14
GCUT04	Н	P	T	83.6768	6.11782e-05	6
GCUT04	Η	P	F	54.7504	0.000130653	12
GCUT04	Η	H	${ m T}$	82.728	7.10487e-05	8
GCUT04	Η	H	F	34.8656	7.44343e-05	6
GCUT04	Η	W	T	96.1424	8.43525 e - 05	10
GCUT04	Η	W	F	64.032	0.000129986	12
GCUT04	Η	I	T	79.336	8.54015 e-05	8
GCUT04	Η	I	F	67.7552	8.90255 e-05	8
GCUT04	\mathbf{M}	A	T	94.3856	0.00011673	8
GCUT04	${\bf M}$	A	F	64.5616	0.000192499	14
GCUT04	${\bf M}$	P	T	94.3856	0.000116968	8
GCUT04	${\bf M}$	P	F	64.5616	0.000191879	14
GCUT04	${\bf M}$	Η	T	93.4368	0.000138712	10
GCUT04	${\bf M}$	Η	F	53.4192	0.000158453	10
GCUT04	M	W	T	96.1424	0.0001441	10
GCUT04	M	W	F	71.2128	0.000163174	12
GCUT04	M	I	T	72.9616	0.00012188	8
GCUT04	M	I	F	67.7552	0.000131512	8
GCUT04	N	A	T	94.3856	0.000424194	8
GCUT04	N	A	F	75.2704	0.0063355	16
GCUT04	N	P	T	94.3856	0.000369072	8
GCUT04	N	P	F	75.2704	0.00636544	16
GCUT04	N	Η	T	93.4368	0.000379848	10
GCUT04	N	Η	F	62.848	0.00367494	12
GCUT04	N	W	${ m T}$	96.1424	0.000389242	10
GCUT04	N	W	F	71.2128	0.00524592	12
GCUT04	N	I	${ m T}$	79.336	0.000852728	8
GCUT04	N	I	F	67.7552	0.000873375	8

Tabela 28 – Resultados da instância GCUT05.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT05	V	A	T	65.744	3.80516e-05	30
GCUT05	V	A	F	36.6852	3.66211e-05	30
GCUT05	V	P	T	65.744	3.65734e-05	30
GCUT05	V	P	F	36.6852	3.80039e-05	30
GCUT05	V	H	T	65.744	3.80039e-05	30
GCUT05	V	H	F	56.6948	4.72546e-05	40
GCUT05	V	W	T	63.9648	3.94821e-05	30
GCUT05	V	W	F	36.6852	3.93867e-05	30
GCUT05	V	I	T	46.244	3.88145 e - 05	30
GCUT05	V	I	F	52.5148	4.87328e-05	40
GCUT05	H	A	T	56.5568	2.79903e-05	20
GCUT05	Η	A	F	56.6948	5.04494e-05	40
GCUT05	Η	P	T	56.5568	2.72751e-05	20
GCUT05	Η	P	F	56.9356	4.96387e-05	40
GCUT05	H	H	T	56.5568	4.03404 e - 05	20
GCUT05	Η	H	F	57.0664	3.7241e-05	30
GCUT05	Η	W	T	63.9648	3.69072 e-05	30
GCUT05	H	W	F	52.9212	5.15938e-05	40
GCUT05	H	I	T	57.342	5.03063e-05	40
GCUT05	Η	I	F	52.5148	5.2166e-05	40
GCUT05	M	A	T	72.7928	7.59125 e-05	30
GCUT05	M	A	F	56.6948	9.5892 e-05	40
GCUT05	M	P	T	72.7928	7.1907e-05	30
GCUT05	M	P	F	52.9212	9.57966 e - 05	40
GCUT05	M	Η	T	72.7928	7.11441e-05	30
GCUT05	M	Η	F	66.2536	9.4986 e - 05	40
GCUT05	M	W	T	63.9648	7.1907e-05	30
GCUT05	M	W	F	52.9212	9.17435 e - 05	40
GCUT05	M	I	T	57.342	9.08375 e - 05	40
GCUT05	M	I	F	68.9148	0.000117874	50
GCUT05	N	A	T	72.7928	0.000122213	30
GCUT05	N	A	F	56.6948	0.000473309	40
GCUT05	N	P	T	72.7928	0.000122213	30
GCUT05	N	P	F	52.5148	0.000568724	40
GCUT05	N	Η	T	72.7928	0.000115204	30
GCUT05	N	Η	F	66.2536	0.000424099	40
GCUT05	N	W	${ m T}$	63.9648	0.000118256	30
GCUT05	N	W	F	52.9212	0.000395823	40
GCUT05	N	I	${ m T}$	73.3356	0.000308418	50
GCUT05	N	I	F	52.5148	0.000315094	40

Tabela 29 – Resultados da instância GCUT06.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT06	V	A	T	82.0112	5.12123e-05	20
GCUT06	V	A	F	57.9372	5.18322e-05	20
GCUT06	V	P	T	81.918	5.14507e-05	20
GCUT06	V	P	F	53.0764	5.37395e-05	20
GCUT06	V	H	T	59.9172	3.28064 e-05	10
GCUT06	V	H	F	55.6788	5.4884e-05	20
GCUT06	V	W	${ m T}$	67.9596	4.42028e-05	15
GCUT06	V	W	F	60.3732	4.90665e-05	20
GCUT06	V	I	T	64.4944	4.53949e-05	15
GCUT06	V	I	F	75.8792	5.37395e-05	20
GCUT06	Н	A	T	89.7596	5.49316e-05	20
GCUT06	Η	A	F	51.546	6.02722 e-05	20
GCUT06	Η	P	T	79.2576	4.55379 e-05	15
GCUT06	Η	P	F	51.546	5.97954 e-05	20
GCUT06	Η	H	T	59.9172	3.39031e-05	10
GCUT06	Η	H	F	54.9244	4.68254 e-05	15
GCUT06	Η	W	T	67.9596	4.42028e-05	15
GCUT06	Η	W	F	57.9372	6.26087 e-05	20
GCUT06	Η	I	T	58.5072	4.67777e-05	15
GCUT06	Η	I	F	81.918	5.80788e-05	20
GCUT06	\mathbf{M}	A	T	89.7596	0.000101089	20
GCUT06	\mathbf{M}	A	F	51.546	0.000102568	20
GCUT06	\mathbf{M}	P	T	89.2368	9.77993e-05	20
GCUT06	\mathbf{M}	P	F	74.426	0.00013299	25
GCUT06	${\bf M}$	Η	T	76.0284	7.71523e-05	15
GCUT06	${\bf M}$	Η	F	64.9036	0.000102472	20
GCUT06	${\bf M}$	W	T	67.9596	7.41959e-05	15
GCUT06	\mathbf{M}	W	F	60.3732	0.000105143	20
GCUT06	${\bf M}$	I	T	58.5072	7.92027e-05	15
GCUT06	${\bf M}$	I	F	81.918	0.000102425	20
GCUT06	N	A	T	89.7596	0.000299025	20
GCUT06	N	A	F	51.546	0.00131993	20
GCUT06	N	P	T	89.2368	0.000299215	20
GCUT06	N	P	F	51.546	0.00141735	20
GCUT06	N	Η	T	76.0284	0.000130367	15
GCUT06	N	H	F	64.9036	0.000666761	20
GCUT06	N	W	T	67.9596	0.000131512	15
GCUT06	N	W	F	60.3732	0.00092411	20
GCUT06	N	I	T	64.4944	0.000367785	15
GCUT06	N	I	F	81.918	0.000321198	20

Tabela 30 – Resultados da instância GCUT07.

	G 1:4	0.1	D 1:	0 1:4 07	m· ()	T1 07
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT07	V	A	T	72.406	4.51565e-05	10
GCUT07	V	A	F	63.742	6.9809e-05	16.6667
GCUT07	V	P	T	72.406	4.3869e-05	10
GCUT07	V	Р	F	63.742	7.12395e-05	16.6667
GCUT07	V	Н	T	72.406	4.53472e-05	10
GCUT07	V	Н	F	63.742	6.76155e-05	16.6667
GCUT07	V	W	T	72.406	4.42982e-05	10
GCUT07	V	W	F	53.3224	5.67913e-05	13.3333
GCUT07	V	I	T	53.3224	6.41346e-05	13.3333
GCUT07	V	I	F	67.194	5.92232e-05	13.3333
GCUT07	H	A	$_{-}^{\mathrm{T}}$	72.406	4.67777e-05	10
GCUT07	H	A	F	29.6964	6.2418e-05	10
GCUT07	H	P	${f T}$	72.406	4.77314e-05	10
GCUT07	Η	P	F	29.6964	5.9557e-05	10
GCUT07	Η	Н	T	72.406	4.63009e-05	10
GCUT07	Η	H	F	19.4796	4.52518e-05	6.66667
GCUT07	Η	W	${ m T}$	72.406	4.71115e-05	10
GCUT07	Η	W	F	29.6964	6.15597e-05	10
GCUT07	Η	I	${ m T}$	50.1948	7.20978e-05	13.3333
GCUT07	Η	I	F	68.8716	6.47545 e - 05	13.3333
GCUT07	M	A	${ m T}$	72.406	8.05378e-05	10
GCUT07	M	A	F	61.1696	0.000122929	16.6667
GCUT07	M	P	${ m T}$	72.406	8.43048e-05	10
GCUT07	M	P	F	61.1696	0.000125885	16.6667
GCUT07	M	Η	${ m T}$	72.406	8.26836 e-05	10
GCUT07	M	Η	F	48.4644	0.000106668	13.3333
GCUT07	M	W	T	72.406	8.03471e-05	10
GCUT07	M	W	F	53.3224	0.000103331	13.3333
GCUT07	M	I	T	65.2168	0.000132799	16.6667
GCUT07	M	I	F	76.0008	0.000106478	13.3333
GCUT07	N	A	T	72.406	0.000149965	10
GCUT07	N	A	\mathbf{F}	61.1696	0.00223007	16.6667
GCUT07	N	P	T	72.406	0.000150251	10
GCUT07	N	P	F	61.1696	0.00215402	16.6667
GCUT07	N	H	Τ	72.406	0.000167274	10
GCUT07	N	H	F	38.2476	0.00104232	10
GCUT07	N	W	${ m T}$	72.406	0.000146437	10
GCUT07	N	W	F	53.3224	0.00239635	13.3333
GCUT07	N	I	Τ	71.0972	0.000812292	16.6667
GCUT07	N	I	\mathbf{F}	76.0008	0.000391626	13.3333

Tabela 31 – Resultados da instância GCUT08.

GCUT08 V A T 79.6752 5.63145e-05 6 GCUT08 V A F 63.7732 0.000107336 12 GCUT08 V P T 79.6752 5.80311e-05 6 GCUT08 V P F 52.9528 9.30786e-05 10 GCUT08 V H T 79.6752 6.20842e-05 6 GCUT08 V H F 62.9792 0.000108194 12 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.000138092 12 GCUT08 H A F 61.8724 0.000138092<	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT08 V P T 79.6752 5.80311e-05 6 GCUT08 V P F 52.9528 9.30786e-05 10 GCUT08 V H T 79.6752 6.20842e-05 6 GCUT08 V H F 62.9792 0.000108194 12 GCUT08 V W T 81.3776 7.27654e-05 8 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H A F 61.8724 0.000138092 12 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 79.6752 9.20296e-05 6 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P F 48.0484 0.00017527 6 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P T 79.6752 9.10958e-05 6 GCUT08 M P T 84.0484 0.000147963 10 GCUT08 M F T 84.0484 0.000147963 10 GCUT08 M F T 84.0484 0.00017527 6 GCUT08 M F T 84.0484 0.00017527 6 GCUT08 M F T 84.0484 0.00017527 6 GCUT08 M F T 84.042 0.00013266 6 GCUT08 M F T 79.6752 9.13184e-05 6 GCUT08 M F T 84.042 0.000148766 10 GCUT08 M F T 79.6752 0.000107527 6 GCUT08 N F F 79.6752 0.000107527 6 GCUT08 N F F 61.8724 0.0039096 12 GCUT08 N F F 61.8724 0.0039096 12 GCUT08 N F F 72.9048 0.00430069 12 GCUT08 N F F 72.9048 0.00430069 12 GCUT08 N F F 72.9048 0.00430069 12	GCUT08	V	A	T	79.6752	5.63145e-05	6
GCUT08 V P F 52.9528 9.30786e-05 10 GCUT08 V H T 79.6752 6.20842e-05 6 GCUT08 V H F 62.9792 0.000108194 12 GCUT08 V W T 81.3776 7.27654e-05 8 GCUT08 V W T 81.3776 7.27654e-05 6 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P F 61.8724 0.00012908 12 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H F F 39.6812 7.40528e-05 6 GCUT08 H F F 66.0228 0.000132227 12 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W T 63.4032 5.84126e-05 8 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I T 79.6752 9.20296e-05 6 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A T 79.6752 9.16958e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.43184e-05 6 GCUT08 M P T 79.6752 9.43184e-05 6 GCUT08 M F T 79.6752 9.000107527 6 GCUT08 M F F 48.0484 0.000147963 10 GCUT08 M F F 79.6752 0.000107527 6 GCUT08 M F F 79.6752 0.000107527 6 GCUT08 M F F 79.6752 0.000148726 10 GCUT08 M F F 79.6752 0.000148726 10 GCUT08 M F F 79.6752 0.000149632 10 GCUT08 N F F 79.6752 0.000167513 6 GCUT08 N F F 79.6752 0.0000264549 8 GCUT08 N F F 79.6752 0.0000531626 10 GCUT08 N F F 79.6752 0.000531626 10 GCU	GCUT08	V	A	F	63.7732	0.000107336	12
GCUT08 V H T 79.6752 6.20842e-05 6 GCUT08 V H F 62.9792 0.000108194 12 GCUT08 V W T 81.3776 7.27654e-05 8 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P T 79.6752 9.10958e-05 6 GCUT08 M P T 79.6752 9.3184e-05 6 GCUT08 M P T 79.6752 9.3184e-05 6 GCUT08 M P T 79.6752 9.3184e-05 6 GCUT08 M F T 79.6752 9.33184e-05 6 GCUT08 M F F 48.0484 0.000147963 10 GCUT08 M F F 66.914 0.000127172 8 GCUT08 N F F 61.8724 0.000390996 12 GCUT08 N F F 79.6752 0.000170326 6 GCUT08 N F F 79.6752 0.000170326 6 GCUT08 N F F 79.6752 0.000170326 6 GCUT08 N F F 79.6752 0.000170326 8 GCUT08 N F F 79.6752 0.000170326 8 GCUT08 N F F 79.6752 0.000170326 8 GCUT08 N F F 79.6752 0.00022131 6 GCUT08 N F F 79.6752 0.00022131 6 GCUT08 N F F 72.9048 0.00430069 12	GCUT08	V	P	T	79.6752	5.80311e-05	6
GCUT08 V H F 62.9792 0.000108194 12 GCUT08 V W T 81.3776 7.27654e-05 8 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 6.44684e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 </td <td>GCUT08</td> <td>V</td> <td>P</td> <td>F</td> <td>52.9528</td> <td>9.30786 e - 05</td> <td>10</td>	GCUT08	V	P	F	52.9528	9.30786 e - 05	10
GCUT08 V W T 81.3776 7.27654e-05 8 GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W F 66.0228 0.00013227 12 GCUT08 H I T 72.6752 9.20296e-05 <td>GCUT08</td> <td>V</td> <td>H</td> <td>T</td> <td>79.6752</td> <td>6.20842 e-05</td> <td>6</td>	GCUT08	V	H	T	79.6752	6.20842 e-05	6
GCUT08 V W F 35.9152 6.1512e-05 6 GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 6.44684e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W F 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I F 66.914 9.01699e-05 <td>GCUT08</td> <td>V</td> <td>H</td> <td>F</td> <td>62.9792</td> <td>0.000108194</td> <td>12</td>	GCUT08	V	H	F	62.9792	0.000108194	12
GCUT08 V I T 72.664 7.7343e-05 8 GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.6752 9.20296e-05 8 GCUT08 M A T 79.6752 9.16958e-05 </td <td>GCUT08</td> <td>V</td> <td>W</td> <td>T</td> <td>81.3776</td> <td>7.27654e-05</td> <td>8</td>	GCUT08	V	W	T	81.3776	7.27654e-05	8
GCUT08 V I F 74.4596 9.20773e-05 10 GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 </td <td>GCUT08</td> <td>V</td> <td>W</td> <td>F</td> <td>35.9152</td> <td>6.1512 e-05</td> <td>6</td>	GCUT08	V	W	F	35.9152	6.1512 e-05	6
GCUT08 H A T 72.1296 6.44684e-05 4 GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.0001477963 </td <td>GCUT08</td> <td>V</td> <td>I</td> <td>T</td> <td>72.664</td> <td>7.7343e-05</td> <td>8</td>	GCUT08	V	I	T	72.664	7.7343e-05	8
GCUT08 H A F 61.8724 0.00012908 12 GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.0228 0.000132227 12 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 </td <td>GCUT08</td> <td>V</td> <td>I</td> <td>F</td> <td>74.4596</td> <td>9.20773e-05</td> <td>10</td>	GCUT08	V	I	F	74.4596	9.20773e-05	10
GCUT08 H P T 72.1296 4.93526e-05 4 GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 H I F 66.914 9.01699e-05 6 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 <td>GCUT08</td> <td>Η</td> <td>A</td> <td></td> <td>72.1296</td> <td>6.44684 e-05</td> <td>4</td>	GCUT08	Η	A		72.1296	6.44684 e-05	4
GCUT08 H P F 61.8724 0.000138092 12 GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05<	GCUT08	Η		F	61.8724	0.00012908	12
GCUT08 H H T 72.1296 6.45161e-05 4 GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H F 39.6812 0.000107527<	GCUT08	Η			72.1296	4.93526 e- 05	4
GCUT08 H H F 39.6812 7.40528e-05 6 GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W F 55.2024 0.000148726<	GCUT08				61.8724	0.000138092	12
GCUT08 H W T 63.4032 5.84126e-05 6 GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632<	GCUT08		Η		72.1296	6.45161 e-05	4
GCUT08 H W F 66.0228 0.000132227 12 GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000170326 </td <td></td> <td></td> <td></td> <td></td> <td>39.6812</td> <td>7.40528e-05</td> <td></td>					39.6812	7.40528e-05	
GCUT08 H I T 72.664 8.59261e-05 8 GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000147963 10 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 N A T 79.6752 0.000170326<	GCUT08				63.4032	5.84126 e-05	
GCUT08 H I F 66.914 9.01699e-05 8 GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 </td <td>GCUT08</td> <td>Η</td> <td>W</td> <td>F</td> <td>66.0228</td> <td>0.000132227</td> <td>12</td>	GCUT08	Η	W	F	66.0228	0.000132227	12
GCUT08 M A T 79.6752 9.20296e-05 6 GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.355555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P F 61.8724 0.0039096 </td <td>GCUT08</td> <td>Η</td> <td></td> <td>T</td> <td>72.664</td> <td>8.59261 e-05</td> <td>8</td>	GCUT08	Η		T	72.664	8.59261 e-05	8
GCUT08 M A F 48.0484 0.000157833 10 GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.355555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P F 61.8724 0.0039096 </td <td>GCUT08</td> <td>Η</td> <td>I</td> <td></td> <td></td> <td>9.01699e-05</td> <td>8</td>	GCUT08	Η	I			9.01699e-05	8
GCUT08 M P T 79.6752 9.16958e-05 6 GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P F 61.8724 0.0039096 12 GCUT08 N H T 79.6752 0.000202131 <td></td> <td></td> <td></td> <td></td> <td>79.6752</td> <td>9.20296 e - 05</td> <td>6</td>					79.6752	9.20296 e - 05	6
GCUT08 M P F 48.0484 0.000147963 10 GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P F 61.8724 0.0039096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H T 79.6752 0.000202131 <td>GCUT08</td> <td>${\rm M}$</td> <td></td> <td></td> <td>48.0484</td> <td></td> <td>10</td>	GCUT08	${\rm M}$			48.0484		10
GCUT08 M H T 79.6752 9.43184e-05 6 GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.0039096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964	GCUT08	${\rm M}$			79.6752	9.16958e-05	6
GCUT08 M H F 39.6812 0.000107527 6 GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390996 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 <td>GCUT08</td> <td>${\bf M}$</td> <td>P</td> <td>F</td> <td>48.0484</td> <td>0.000147963</td> <td>10</td>	GCUT08	${\bf M}$	P	F	48.0484	0.000147963	10
GCUT08 M W T 63.4032 9.35555e-05 6 GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069	GCUT08	${\bf M}$	Η	T	79.6752	9.43184 e-05	6
GCUT08 M W F 55.2024 0.000148726 10 GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626	GCUT08	${\bf M}$	Η		39.6812	0.000107527	6
GCUT08 M I T 84.072 0.000149632 10 GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08	${\bf M}$	W	T	63.4032	9.35555e-05	6
GCUT08 M I F 66.914 0.000127172 8 GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08	${\bf M}$	W	F	55.2024	0.000148726	10
GCUT08 N A T 79.6752 0.000170326 6 GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08	${\bf M}$			84.072	0.000149632	10
GCUT08 N A F 61.8724 0.00434747 12 GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08	${\bf M}$			66.914	0.000127172	8
GCUT08 N P T 79.6752 0.000167513 6 GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10			A		79.6752	0.000170326	
GCUT08 N P F 61.8724 0.00390096 12 GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08				61.8724	0.00434747	12
GCUT08 N H T 79.6752 0.000202131 6 GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08				79.6752	0.000167513	
GCUT08 N H F 47.5604 0.00232964 8 GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08	N	P	F	61.8724	0.00390096	12
GCUT08 N W T 81.3776 0.000264549 8 GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10					79.6752	0.000202131	
GCUT08 N W F 72.9048 0.00430069 12 GCUT08 N I T 84.072 0.000531626 10	GCUT08			F		0.00232964	
GCUT08 N I T 84.072 0.000531626 10	GCUT08	N	W		81.3776	0.000264549	8
					72.9048		
GCUT08 N I F 66.914 0.00116959 8					84.072	0.000531626	10
	GCUT08	N	I	F	66.914	0.00116959	8

Tabela 32 – Resultados da instância GCUT09.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT09	V	A	Τ	72.2042	3.62873e-05	30
GCUT09	V	A	F	54.3733	5.04017e-05	40
GCUT09	V	P	${ m T}$	72.2042	3.78132e-05	30
GCUT09	V	P	F	54.3733	4.9305e-05	40
GCUT09	V	Η	${ m T}$	60.5416	3.57628 e-05	30
GCUT09	V	Η	F	72.1475	6.29425 e-05	50
GCUT09	V	W	${ m T}$	80.6112	5.12123e-05	40
GCUT09	V	W	\mathbf{F}	47.476	3.72887e-05	30
GCUT09	V	I	${ m T}$	60.5416	3.70979e-05	30
GCUT09	V	I	\mathbf{F}	77.7122	5.64098e-05	40
GCUT09	Η	A	${ m T}$	77.7122	5.07832e-05	40
GCUT09	Η	A	F	24.9023	2.985e-05	20
GCUT09	Η	P	${ m T}$	77.7122	4.81606 e - 05	40
GCUT09	Η	P	\mathbf{F}	24.9023	2.90871e-05	20
GCUT09	Η	Η	${ m T}$	48.8453	2.94209 e - 05	20
GCUT09	Η	Η	\mathbf{F}	24.9023	2.85625 e-05	20
GCUT09	Η	W	${ m T}$	76.1225	4.94003e-05	40
GCUT09	Η	W	\mathbf{F}	38.1883	4.0102e-05	30
GCUT09	Η	I	${ m T}$	57.3318	3.97205 e-05	30
GCUT09	Η	I	\mathbf{F}	69.6847	5.00679 e-05	40
GCUT09	M	A	${ m T}$	82.2804	9.60827 e - 05	40
GCUT09	M	A	F	54.3733	9.61781e-05	40
GCUT09	M	P	${ m T}$	82.2804	9.67026 e - 05	40
GCUT09	M	P	\mathbf{F}	54.3733	9.82285 e-05	40
GCUT09	M	Η	${ m T}$	60.5416	7.32422e-05	30
GCUT09	M	Η	F	55.9625	0.00010066	40
GCUT09	M	W	${ m T}$	82.2004	0.000101757	40
GCUT09	M	W	F	63.661	9.71794e-05	40
GCUT09	M	I	${ m T}$	60.5416	7.46727e-05	30
GCUT09	M	I	\mathbf{F}	77.7122	9.57012 e-05	40
GCUT09	N	A	${ m T}$	72.2042	0.000286341	30
GCUT09	N	A	\mathbf{F}	54.3733	0.000551891	40
GCUT09	N	P	${ m T}$	72.2042	0.000276899	30
GCUT09	N	P	\mathbf{F}	54.3733	0.000532961	40
GCUT09	N	H	T	60.5416	0.000123549	30
GCUT09	N	H	\mathbf{F}	55.9625	0.000545073	40
GCUT09	N	\mathbf{W}	T	82.2004	0.000321007	40
GCUT09	N	\mathbf{W}	F	63.661	0.000440788	40
GCUT09	N	I	${ m T}$	60.5416	0.000116014	30
GCUT09	N	I	F	72.5837	0.000425291	40

Tabela 33 – Resultados da instância GCUT10.

The Carlot Carlot Day 12 Control Contr	~
Instance Split Order Descending Quality % Time (s) Items	
GCUT10 V A T 85.6445 4.10557e-05	15
GCUT10 V A F 63.9774 5.76496e-05	20
GCUT10 V P T 85.6445 4.33445e-05	15
GCUT10 V P F 63.9774 5.50747e-05	20
GCUT10 V H T 59.7263 3.19958e-05	10
GCUT10 V H F 65.2485 5.85556e-05	20
GCUT10 V W T 87.7079 4.40121e-05	15
GCUT10 V W F 38.7183 3.13759e-05	10
GCUT10 V I T 70.819 3.24726e-05	10
GCUT10 V I F 73.1757 5.36919e-05	20
GCUT10 H A T 85.6445 4.09603e-05	15
GCUT10 H A F 44.2233 4.63486e-05	15
GCUT10 H P T 85.6445 4.36783e-05	15
GCUT10 H P F 44.5464 4.96387e-05	15
GCUT10 H H T 59.7263 3.36647e-05	10
GCUT10 H H F 51.2196 4.42982e-05	15
GCUT10 H W T 68.4206 3.32832e-05	10
GCUT10 H W F 51.2763 4.84467e-05	15
GCUT10 H I T 70.819 3.39508e-05	10
GCUT10 H I F 66.4464 5.70774e-05	20
GCUT10 M A T 85.6445 7.77721e-05	15
GCUT10 M A F 44.2233 8.90732e-05	15
GCUT10 M P T 85.6445 7.658e-05	15
GCUT10 M P F 44.5464 7.89642e-05	15
GCUT10 M H T 59.7263 5.85079e-05	10
GCUT10 M H F 51.2196 7.84874e-05	15
GCUT10 M W T 68.4206 5.88417e-05	10
GCUT10 M W F 53.622 8.04424e-05	15
GCUT10 M I T 70.819 5.76496e-05	10
GCUT10 M I F 84.2369 0.00010438	20
GCUT10 N A T 85.6445 0.00013237	15
GCUT10 N A F 61.308 0.000872612	20
GCUT10 N P T 85.6445 0.000136995	15
GCUT10 N P F 84.6795 0.000695515	25
GCUT10 N H T 59.7263 6.40869e-05	10
GCUT10 N H F 51.2196 0.00052104	15
GCUT10 N W T 87.7079 0.000143719	15
GCUT10 N W F 53.622 0.000184202	15
GCUT10 N I T 70.819 6.34193e-05	10
GCUT10 N I F 73.1757 0.000456047	20

Tabela 34 – Resultados da instância GCUT11.

Instance Split Order Descending Quality % Time (s) Items % GCUT11 V A T 76.0952 5.36442e-05 10 GCUT11 V A F 51.201 0.000117588 16.6667 GCUT11 V P T 76.0952 4.8542e-05 10 GCUT11 V P F 51.201 7.86304e-05 16.6667 GCUT11 V H T 59.2969 3.98636e-05 6.66667
GCUT11 V A F 51.201 0.000117588 16.6667 GCUT11 V P T 76.0952 4.8542e-05 10 GCUT11 V P F 51.201 7.86304e-05 16.6667 GCUT11 V H T 59.2969 3.98636e-05 6.66667
GCUT11 V P T 76.0952 4.8542e-05 10 GCUT11 V P F 51.201 7.86304e-05 16.6667 GCUT11 V H T 59.2969 3.98636e-05 6.66667
GCUT11 V P F 51.201 7.86304e-05 16.6667 GCUT11 V H T 59.2969 3.98636e-05 6.66667
GCUT11 V H T 59.2969 3.98636e-05 6.66667
GCUT11 V H F 59.5818 7.9298e-05 16.6667
GCUT11 V W T 82.6283 5.25475e-05 10
GCUT11 V W F 38.3174 5.34534e-05 10
GCUT11 V I T 66.3607 7.46727e-05 16.6667
GCUT11 V I F 59.7295 5.24044e-05 10
GCUT11 H A T 66.0312 4.71592e-05 6.66667
GCUT11 H A F 66.5978 0.000100756 20
GCUT11 H P T 66.0312 4.43459e-05 6.66667
GCUT11 H P F 66.5978 0.00010047 20
GCUT11 H H T 59.2969 4.24862e-05 6.66667
GCUT11 H H F 46.0496 5.70297e-05 10
GCUT11 H W T 81.7617 6.07491e-05 13.3333
GCUT11 H W F 65.997 0.00010128 20
GCUT11 H I T 54.3848 5.64575e-05 10
GCUT11 H I F 62.8011 5.35011e-05 10
GCUT11 M A T 78.1734 8.74043e-05 10
GCUT11 M A F 51.201 0.000129747 16.6667
GCUT11 M P T 78.1734 8.40187e-05 10
GCUT11 M P F 51.201 0.000139189 16.6667
GCUT11 M H T 59.2969 6.39915e-05 6.66667
GCUT11 M H F 56.1136 0.000112915 13.3333
GCUT11 M W T 81.7617 0.000108767 13.3333
GCUT11 M W F 58.7358 0.000133801 16.6667
GCUT11 M I T 79.2448 0.000134325 16.6667
GCUT11 M I F 71.8717 0.000107908 13.3333
GCUT11 N A T 78.1734 0.0001513 10
GCUT11 N A F 65.997 0.0018229 20
GCUT11 N P T 78.1734 0.00014205 10
GCUT11 N P F 66.5978 0.00189857 20
GCUT11 N H T 59.2969 0.00010004 6.66667
GCUT11 N H F 68.2558 0.00161762 16.6667
GCUT11 N W T 82.6283 0.000265694 10
GCUT11 N W F 58.7358 0.00125918 16.6667
GCUT11 N I T 64.4488 0.000669289 13.3333
GCUT11 N I F 71.8717 0.000209665 13.3333

Tabela 35 – Resultados da instância GCUT12.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT12	V	A	Т	86.2188	5.84602e-05	6
GCUT12	V	A	F	75.9497	0.000109577	12
GCUT12	V	Р	Τ	86.2188	5.80311e-05	6
GCUT12	V	Р	F	77.3433	0.000107861	12
GCUT12	V	H	Τ	86.2188	5.87463e-05	6
GCUT12	V	H	F	62.7312	9.53674e-05	10
GCUT12	V	W	T	87.9958	6.59466e-05	6
GCUT12	V	W	F	42.5142	6.17981e-05	6
GCUT12	V	I	T	84.8231	9.54151e-05	10
GCUT12	V	I	F	69.2716	6.44207 e - 05	6
GCUT12	Н	A	T	86.2188	5.98431e-05	6
GCUT12	H	A	F	45.9083	9.41277e-05	8
GCUT12	H	P	${ m T}$	86.2188	6.03676 e - 05	6
GCUT12	Η	P	F	46.0824	9.90868e-05	8
GCUT12	Η	H	T	86.2188	6.10828 e-05	6
GCUT12	Η	H	F	46.6858	7.38144e-05	6
GCUT12	Η	W	T	80.0304	6.07014 e-05	6
GCUT12	Η	W	F	67.3601	0.00010519	10
GCUT12	Η	I	T	75.9252	8.74996e-05	8
GCUT12	Η	I	F	81.7816	9.00745 e - 05	8
GCUT12	M	A	T	86.2188	9.41753 e - 05	6
GCUT12	M	A	F	88.4597	0.000227261	14
GCUT12	M	P	T	86.2188	9.5892 e-05	6
GCUT12	\mathbf{M}	P	F	88.4597	0.000198746	14
GCUT12	M	Η	T	86.2188	9.44614 e - 05	6
GCUT12	M	Η	F	62.4328	0.000129747	8
GCUT12	M	W	T	80.0304	9.66072 e-05	6
GCUT12	M	W	F	56.874	0.000134134	8
GCUT12	M	I	T	75.9252	0.000136709	8
GCUT12	M	I	F	81.6102	0.000129271	8
GCUT12	N	A	T	86.2188	0.000171995	6
GCUT12	N	A	F	72.7781	0.00243087	12
GCUT12	N	P	T	86.2188	0.000167131	6
GCUT12	N	P	F	58.4183	0.00269961	10
GCUT12	N	Η	T	86.2188	0.000162601	6
GCUT12	N	Η	F	62.4328	0.00143991	8
GCUT12	N	W	${ m T}$	80.0304	0.000239086	6
GCUT12	N	W	F	70.6035	0.00101504	10
GCUT12	N	I	${ m T}$	75.9252	0.000395203	8
GCUT12	N	I	F	81.6102	0.000507116	8

Tabela 36 – Resultados da instância GCUT13.

	G 111	0.1	D 11	0 1:1 04	m; ()	T: 04
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
GCUT13	V	A	T	91.2187	0.000153828	34.375
GCUT13	V	A	F	22.6051	0.000190544	37.5
GCUT13	V	P	T	91.2187	0.000158548	34.375
GCUT13	V	P	F	34.3835	0.000219536	46.875
GCUT13	V	H	${ m T}$	91.4087	0.000181437	40.625
GCUT13	V	H	F	30.7244	0.000216961	43.75
GCUT13	V	W	T	81.8049	0.000237751	53.125
GCUT13	V	W	F	10.1909	0.000105858	21.875
GCUT13	V	I	T	81.9018	0.000184488	40.625
GCUT13	V	I	F	10.1909	0.00010376	21.875
GCUT13	Η	A	T	84.1311	0.000230312	46.875
GCUT13	Η	A	F	34	0.000250435	46.875
GCUT13	Η	P	${ m T}$	84.7578	0.000255823	50
GCUT13	Η	P	F	34.0502	0.000253391	46.875
GCUT13	Η	H	${ m T}$	83.4785	0.000253153	50
GCUT13	Η	H	F	16.3304	0.000169277	31.25
GCUT13	Η	W	T	47.0389	0.000270033	56.25
GCUT13	Η	W	F	37.3764	0.000271225	50
GCUT13	Η	I	T	47.0389	0.00026679	56.25
GCUT13	Η	I	F	37.3764	0.000272942	50
GCUT13	M	A	T	91.2187	0.000276184	34.375
GCUT13	M	A	F	40.5105	0.000465775	53.125
GCUT13	M	P	T	91.2187	0.00026989	34.375
GCUT13	M	P	F	40.5105	0.000464296	53.125
GCUT13	M	Η	T	91.4087	0.000315237	40.625
GCUT13	M	Η	F	32.934	0.000377607	43.75
GCUT13	M	W	T	73.4412	0.000514221	62.5
GCUT13	M	W	F	40.0229	0.000399065	46.875
GCUT13	M	I	T	75.5894	0.000491953	59.375
GCUT13	M	I	F	40.0229	0.000404119	46.875
GCUT13	N	A	T	91.2187	0.0125647	34.375
GCUT13	N	A	F	58.9385	0.05015	65.625
GCUT13	N	P	${ m T}$	91.2187	0.0125752	34.375
GCUT13	N	P	F	54.0947	0.0459689	62.5
GCUT13	N	H	T	91.2187	0.0126344	34.375
GCUT13	N	H	F	58.9385	0.0497567	65.625
GCUT13	N	W	T	72.3215	0.0262862	65.625
GCUT13	N	W	F	47.4392	0.0240194	46.875
GCUT13	N	I	$\overline{\mathrm{T}}$	77.8546	0.0251795	62.5
GCUT13	N	I	F	47.4392	0.0241768	46.875

Tabela 37 – Resultados da instância NGCUT01.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT01	V	A	Τ	78	5.21183e-05	40
NGCUT01	V	A	F	70	4.16279e-05	40
NGCUT01	V	P	T	62	3.19004e-05	30
NGCUT01	V	Р	F	60	3.32832e-05	30
NGCUT01	V	Η	T	78	4.97341e-05	40
NGCUT01	V	Η	F	70	4.3726e-05	40
NGCUT01	V	W	T	72	3.67165e-05	40
NGCUT01	V	W	F	78	4.673e-05	40
NGCUT01	V	I	${ m T}$	76	4.68731e-05	40
NGCUT01	V	I	F	78	4.81129e-05	40
NGCUT01	Η	A	${ m T}$	62	3.26157e-05	30
NGCUT01	Η	A	F	92	4.51088e-05	50
NGCUT01	Η	P	${ m T}$	62	2.93732e-05	30
NGCUT01	Η	Р	F	76	3.91483e-05	40
NGCUT01	Η	H	${ m T}$	78	4.1008e-05	40
NGCUT01	Η	H	F	92	4.32491e-05	50
NGCUT01	Η	W	${ m T}$	92	4.3726e-05	50
NGCUT01	Η	W	F	78	4.52042e-05	40
NGCUT01	Η	I	T	76	4.75407e-05	40
NGCUT01	Η	I	F	58	3.47614e-05	30
NGCUT01	M	A	T	78	9.84669 e - 05	40
NGCUT01	M	A	F	92	9.62257e-05	50
NGCUT01	M	P	${ m T}$	62	6.814e-05	30
NGCUT01	M	P	F	60	6.28948 e-05	30
NGCUT01	\mathbf{M}	Η	T	78	9.48429e-05	40
NGCUT01	M	Η	F	92	9.26971 e-05	50
NGCUT01	M	W	T	92	8.92162 e-05	50
NGCUT01	M	W	F	78	9.40323e-05	40
NGCUT01	M	I	T	76	9.84192e-05	40
NGCUT01	M	I	F	78	9.42707 e - 05	40
NGCUT01	N	A	T	62	0.000230789	30
NGCUT01	N	A	F	70	0.000353765	40
NGCUT01	N	Ρ	T	62	0.000114679	30
NGCUT01	N	Ρ	F	76	0.000197554	40
NGCUT01	N	H	T	78	0.000192642	40
NGCUT01	N	H	F	92	0.000408888	50
NGCUT01	N	W	${ m T}$	92	0.000286436	50
NGCUT01	N	\mathbf{W}	F	78	0.000196457	40
NGCUT01	N	I	${ m T}$	76	0.000201559	40
NGCUT01	N	I	F	58	0.000216818	30

Tabela 38 – Resultados da instância NGCUT02.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT02	V	A	Τ	97	6.49452 e-05	29.4118
NGCUT02	V	A	F	76	6.93798e-05	41.1765
NGCUT02	V	P	Τ	97	4.26769 e - 05	29.4118
NGCUT02	V	Р	F	76	7.16209e-05	41.1765
NGCUT02	V	Η	${ m T}$	78	4.81606e-05	29.4118
NGCUT02	V	H	F	56	6.38962 e-05	35.2941
NGCUT02	V	W	${ m T}$	97	4.52042e-05	29.4118
NGCUT02	V	W	F	78	4.64916e-05	29.4118
NGCUT02	V	I	${ m T}$	70	5.08785e-05	23.5294
NGCUT02	V	I	\mathbf{F}	64	5.16415 e-05	35.2941
NGCUT02	Η	A	T	91	5.71728e-05	29.4118
NGCUT02	Η	A	\mathbf{F}	52	7.76768e-05	35.2941
NGCUT02	Η	P	T	91	5.73158e-05	29.4118
NGCUT02	Η	P	F	52	7.76768e-05	35.2941
NGCUT02	Η	H	T	90	5.98431e-05	41.1765
NGCUT02	Η	H	\mathbf{F}	52	7.82967e-05	35.2941
NGCUT02	Η	W	T	91	8.06808e-05	29.4118
NGCUT02	Η	W	F	88	6.13213 e-05	41.1765
NGCUT02	Η	I	T	64	8.24928e-05	35.2941
NGCUT02	Η	I	F	82	8.45432 e-05	52.9412
NGCUT02	${\bf M}$	A	T	91	0.000106525	29.4118
NGCUT02	M	A	F	52	0.000138283	35.2941
NGCUT02	M	P	T	91	0.000110149	29.4118
NGCUT02	\mathbf{M}	P	F	52	0.000142813	35.2941
NGCUT02	${\bf M}$	Η	T	78	9.83715 e - 05	29.4118
NGCUT02	${\bf M}$	Η	F	52	0.000137663	35.2941
NGCUT02	\mathbf{M}	W	T	91	0.000102854	29.4118
NGCUT02	\mathbf{M}	W	F	78	0.000102091	29.4118
NGCUT02	\mathbf{M}	I	T	64	0.000137091	35.2941
NGCUT02	M	I	\mathbf{F}	82	0.000169992	52.9412
NGCUT02	N	A	T	97	0.000383615	29.4118
NGCUT02	N	A	F	76	0.00114837	41.1765
NGCUT02	N	P	T	97	0.000376749	29.4118
NGCUT02	N	Р	F	76	0.00107827	41.1765
NGCUT02	N	H	${ m T}$	90	0.000703573	41.1765
NGCUT02	N	H	F	86	0.00134726	47.0588
NGCUT02	N	W	${ m T}$	91	0.000589943	29.4118
NGCUT02	N	W	F	88	0.000553226	41.1765
NGCUT02	N	I	${ m T}$	88	0.00075531	41.1765
NGCUT02	N	I	F	82	0.000933886	52.9412

Tabela 39 – Resultados da instância NGCUT03.

	G 11:	0.1	D 11	0 11 64	The contract of the contract o	T. 04
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT03	V	A	T	90	5.84602e-05	28.5714
NGCUT03	V	A	F	66	8.54015e-05	38.0952
NGCUT03	V	P	Γ	84	5.04494e-05	23.8095
NGCUT03	V	P	F	57	7.47681e-05	33.3333
NGCUT03	V	Η	T	85	5.80311e-05	28.5714
NGCUT03	V	Η	F	66	8.50201 e-05	38.0952
NGCUT03	V	W	T	88	5.87463e-05	28.5714
NGCUT03	V	W	F	64	5.24044e-05	23.8095
NGCUT03	V	I	${ m T}$	93	7.20024e-05	38.0952
NGCUT03	V	I	F	70	7.57217e-05	38.0952
NGCUT03	Η	A	${ m T}$	81	5.05924 e-05	19.0476
NGCUT03	Η	A	F	72	9.57489e-05	42.8571
NGCUT03	Η	P	${ m T}$	90	6.59466e-05	33.3333
NGCUT03	Η	P	F	72	9.64165 e - 05	42.8571
NGCUT03	Η	Η	T	93	6.63757e-05	38.0952
NGCUT03	Η	Η	F	80	9.48906e-05	42.8571
NGCUT03	Η	W	T	90	6.85215 e-05	33.3333
NGCUT03	Η	W	F	78	8.61168e-05	38.0952
NGCUT03	Η	I	T	90	0.000159931	52.381
NGCUT03	Η	I	F	70	9.40323 e - 05	38.0952
NGCUT03	\mathbf{M}	A	T	80	9.90868e-05	23.8095
NGCUT03	\mathbf{M}	A	F	60	0.000185966	38.0952
NGCUT03	${\bf M}$	Ρ	T	90	0.000130463	33.3333
NGCUT03	\mathbf{M}	Ρ	F	72	0.000187302	42.8571
NGCUT03	\mathbf{M}	Η	T	85	0.000122499	28.5714
NGCUT03	${\bf M}$	H	F	80	0.000188351	42.8571
NGCUT03	\mathbf{M}	W	T	90	0.000130367	33.3333
NGCUT03	\mathbf{M}	W	F	78	0.000167227	38.0952
NGCUT03	M	I	T	90	0.00020771	52.381
NGCUT03	M	I	F	70	0.000174761	38.0952
NGCUT03	N	A	T	90	0.000606346	28.5714
NGCUT03	N	A	F	86	0.00535707	42.8571
NGCUT03	N	P	T	84	0.000549841	23.8095
NGCUT03	N	P	F	72	0.00190721	42.8571
NGCUT03	N	H	${ m T}$	93	0.000912476	38.0952
NGCUT03	N	Η	F	88	0.00291681	47.619
NGCUT03	N	W	${ m T}$	90	0.000712872	33.3333
NGCUT03	N	W	F	72	0.00305543	33.3333
NGCUT03	N	I	T	93	0.00315442	38.0952
NGCUT03	N	I	F	80	0.00251474	42.8571

Tabela 40 – Resultados da instância NGCUT04.

T.,	C 1:4	Order	D1:	Quality %	TP: (-)	T4 07
Instance	Split V	A	Descending T	• •	Time (s)	Items %
NGCUT04			I F	70	3.19004e-05	57.1429
NGCUT04	V	A		20	2.45571e-05	28.5714
NGCUT04	V	P	T	78	4.24862e-05	71.4286
NGCUT04	V	Р	F	30	2.25067e-05	28.5714
NGCUT04	V	Н	T	30	2.20776e-05	28.5714
NGCUT04	V	Н	F	20	2.56538e-05	28.5714
NGCUT04	V	W	${ m T}$	78	4.42982 e-05	71.4286
NGCUT04	V	W	F	30	2.31743e-05	28.5714
NGCUT04	V	Ι	${ m T}$	62	3.86238e-05	57.1429
NGCUT04	V	I	F	70	3.33786e-05	57.1429
NGCUT04	Η	A	${ m T}$	92	4.6587e-05	85.7143
NGCUT04	Η	A	F	52	4.64916e-05	57.1429
NGCUT04	Η	P	${ m T}$	78	4.56333e-05	71.4286
NGCUT04	Η	P	F	52	4.53472e-05	57.1429
NGCUT04	Η	Η	T	70	3.68118e-05	57.1429
NGCUT04	Η	Η	F	78	4.70638e-05	71.4286
NGCUT04	Η	W	T	78	4.73022e-05	71.4286
NGCUT04	Η	W	F	52	4.54426 e - 05	57.1429
NGCUT04	Η	I	${ m T}$	88	5.50747e-05	85.7143
NGCUT04	H	I	F	92	4.67777e-05	85.7143
NGCUT04	M	A	${ m T}$	92	0.00010519	85.7143
NGCUT04	M	A	F	52	8.85487e-05	57.1429
NGCUT04	M	P	${ m T}$	78	9.67979e-05	71.4286
NGCUT04	M	P	F	52	8.82149e-05	57.1429
NGCUT04	M	Н	${ m T}$	70	7.48634e-05	57.1429
NGCUT04	M	H	F	78	0.000101376	71.4286
NGCUT04	M	W	T	78	0.000138092	71.4286
NGCUT04	M	W	F	52	0.000110435	57.1429
NGCUT04	M	I	T	88	0.000107145	85.7143
NGCUT04	M	I	F	70	7.61986e-05	57.1429
NGCUT04	N	A	T	92	0.000423479	85.7143
NGCUT04	N	A	F	52	0.000194979	57.1429
NGCUT04	N	Р	T	78	0.000292778	71.4286
NGCUT04	N	P	$\overline{\mathrm{F}}$	52	0.000194883	57.1429
NGCUT04	N	H	$\overline{\mathrm{T}}$	70	0.000187826	57.1429
NGCUT04	N	Н	F	78	0.000293541	71.4286
NGCUT04	N	W	T	78	0.000294685	71.4286
NGCUT04	N	W	F	52	0.000198174	57.1429
NGCUT04	N	I	$^{\mathrm{T}}$	88	0.000136174	85.7143
NGCUT04	N	I	F	92	0.000424031 0.000409985	85.7143
11000104	T.A.	1	T,	92	0.000409900	00.1140

Tabela 41 – Resultados da instância NGCUT05.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT05	V	A	Т	92.6667	4.72546e-05	35.7143
NGCUT05	V	A	F	53.3333	4.89712e-05	35.7143
NGCUT05	V	P	T	92.6667	4.58241e-05	35.7143
NGCUT05	V	Р	F	31.3333	2.61784e-05	14.2857
NGCUT05	V	Η	${ m T}$	71.3333	4.1008e-05	28.5714
NGCUT05	V	H	F	75.3333	5.71728e-05	42.8571
NGCUT05	V	W	${ m T}$	92.6667	5.32627e-05	42.8571
NGCUT05	V	W	F	31.3333	2.35081e-05	14.2857
NGCUT05	V	I	Τ	75.3333	5.42641e-05	42.8571
NGCUT05	V	I	F	71.3333	4.673e-05	28.5714
NGCUT05	Η	A	T	79.3333	4.99725 e-05	28.5714
NGCUT05	Η	A	\mathbf{F}	70	7.41959e-05	42.8571
NGCUT05	Η	P	T	79.3333	4.80175 e-05	28.5714
NGCUT05	Η	P	F	60	6.47068e-05	35.7143
NGCUT05	Η	H	T	78.6667	5.14507e-05	35.7143
NGCUT05	Η	H	\mathbf{F}	70	7.41959e-05	42.8571
NGCUT05	Η	W	T	79.3333	6.11305 e-05	35.7143
NGCUT05	Η	W	F	78.6667	5.04494e-05	35.7143
NGCUT05	Η	I	T	83.3333	6.70433e-05	42.8571
NGCUT05	Η	I	F	65.3333	5.20229 e-05	28.5714
NGCUT05	M	A	T	79.3333	9.62257 e-05	28.5714
NGCUT05	M	A	F	70	0.000136614	42.8571
NGCUT05	M	P	T	79.3333	9.43661e-05	28.5714
NGCUT05	M	P	F	60	0.000119925	35.7143
NGCUT05	M	Η	T	71.3333	8.71181e-05	28.5714
NGCUT05	M	Η	F	70	0.000136471	42.8571
NGCUT05	M	W	T	79.3333	0.000109386	35.7143
NGCUT05	M	W	\mathbf{F}	78.6667	0.000105143	35.7143
NGCUT05	M	I	T	83.3333	0.000129557	42.8571
NGCUT05	M	I	F	58	7.30038e-05	21.4286
NGCUT05	N	A	T	92.6667	0.000309277	35.7143
NGCUT05	N	A	F	73.3333	0.000691748	42.8571
NGCUT05	N	P	T	92.6667	0.000312424	35.7143
NGCUT05	N	Р	F	60	0.000341892	35.7143
NGCUT05	N	H	${ m T}$	78.6667	0.00029521	35.7143
NGCUT05	N	H	\mathbf{F}	70	0.000586367	42.8571
NGCUT05	N	W	${ m T}$	92.6667	0.000437689	42.8571
NGCUT05	N	W	F	78.6667	0.000334167	35.7143
NGCUT05	N	I	${ m T}$	83.3333	0.000420189	42.8571
NGCUT05	N	I	F	65.3333	0.000287056	28.5714

Tabela 42 – Resultados da instância NGCUT06.

	~ 11			0 11 24		
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT06	V	A	T	80	7.06196e-05	40
NGCUT06	V	A	F	70.6667	8.53062e-05	46.6667
NGCUT06	V	P	T	90.6667	6.66618e-05	46.6667
NGCUT06	V	P	F	70.6667	8.77857e-05	46.6667
NGCUT06	V	H	T	68	8.3065e-05	40
NGCUT06	V	H	F	78.6667	7.37667e-05	46.6667
NGCUT06	V	W	${f T}$	76	7.69138e-05	46.6667
NGCUT06	V	W	F	70.6667	0.0001091	46.6667
NGCUT06	V	I	${ m T}$	72	6.88076e-05	40
NGCUT06	V	Ι	F	70.6667	7.66277e-05	46.6667
NGCUT06	H	A	${ m T}$	74.6667	6.70433e-05	40
NGCUT06	Η	A	F	62.6667	7.51495e-05	40
NGCUT06	H	P	T	64	7.09534e-05	33.3333
NGCUT06	Η	Р	F	69.3333	6.61373 e-05	40
NGCUT06	Η	H	${ m T}$	70.6667	8.06332 e-05	46.6667
NGCUT06	Η	H	F	57.3333	6.69956 e - 05	33.3333
NGCUT06	Η	W	${ m T}$	57.3333	7.30991e-05	33.3333
NGCUT06	Η	W	F	65.3333	6.5279 e-05	40
NGCUT06	Η	I	${ m T}$	72	7.1764e-05	40
NGCUT06	Η	I	\mathbf{F}	74.6667	7.48634e-05	40
NGCUT06	Μ	A	T	60	0.000117302	33.3333
NGCUT06	\mathbf{M}	A	F	70.6667	0.000165844	46.6667
NGCUT06	Μ	P	Τ	64	0.000118113	33.3333
NGCUT06	Μ	P	\mathbf{F}	70.6667	0.000168228	46.6667
NGCUT06	M	Η	T	70.6667	0.000170612	46.6667
NGCUT06	\mathbf{M}	Η	F	57.3333	0.000119257	33.3333
NGCUT06	${\bf M}$	W	T	57.3333	0.000121689	33.3333
NGCUT06	${\bf M}$	W	F	70.6667	0.00016284	46.6667
NGCUT06	\mathbf{M}	I	T	72	0.000126123	40
NGCUT06	${\bf M}$	I	F	80	0.00015645	46.6667
NGCUT06	N	A	T	85.3333	0.000766373	46.6667
NGCUT06	N	A	F	70.6667	0.00267515	46.6667
NGCUT06	N	P	T	77.3333	0.000723839	40
NGCUT06	N	P	F	88	0.00228376	53.3333
NGCUT06	N	H	T	70.6667	0.00153131	46.6667
NGCUT06	N	H	F	73.3333	0.00110459	46.6667
NGCUT06	N	W	T	70.6667	0.0013248	40
NGCUT06	N	W	F	84	0.00127835	53.3333
NGCUT06	N	I	${ m T}$	84	0.000895262	46.6667
NGCUT06	N	I	F	70.6667	0.00160666	46.6667

Tabela 43 – Resultados da instância NGCUT07.

NGCUT07 V A T 33.75 7.6437e-05 87.5 NGCUT07 V A F 20.25 5.63145e-05 75 NGCUT07 V P T 100 8.23021e-05 100 NGCUT07 V P F 20.25 5.79834e-05 75 NGCUT07 V H T 20.25 6.649452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.66618e-05 75 NGCUT07 V I F 20.25 8.7628e-05 75 NGCUT07 V I F 20.25 8.666618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.8187re-05 <th></th> <th>Split</th> <th>01</th> <th>Descending</th> <th>O1:4 07</th> <th>T: (-)</th> <th>T4 07</th>		Split	01	Descending	O1:4 07	T: (-)	T4 07
NGCUT07 V A F 20.25 5.63145e-05 75 NGCUT07 V P T 100 8.23021e-05 100 NGCUT07 V P F 20.25 5.7984e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V U T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 8.70228e-05 75 NGCUT07 H A T 100 7.48634e-05 75 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H A F 33.75 6.81877e-05 87.5 NGCUT07 H P F 33.75 6.8187re-05		-				\ /	
NGCUT07 V P T 100 8.23021e-05 100 NGCUT07 V P F 20.25 5.79834e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H A F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.5217e-05 100 NGCUT07 H H F 100 7.5221re-05							
NGCUT07 V P F 20.25 5.79834e-05 75 NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.666618e-05 75 NGCUT07 V I F 20.25 8.666618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.5721re-05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
NGCUT07 V H T 20.25 6.49452e-05 75 NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H F 100 7.57217e-05 100 NGCUT07 H H F 100 7.57217e-05 100 NGCUT07 H W T 100 7.53432e-05							
NGCUT07 V H F 20.25 6.66618e-05 75 NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H W T 100 7.83443e-05 100 NGCUT07 H W T 100 7.57721e-05			_				
NGCUT07 V W T 100 7.8249e-05 100 NGCUT07 V W F 8.25 5.27382e-05 62.5 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05							
NGCUT07 V W F 8.25 5.27382e-05 75 NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I F 100 7.61032e-05							
NGCUT07 V I T 20.25 8.70228e-05 75 NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.57217e-05 100 NGCUT07 H W T 100 7.57217e-05 100 NGCUT07 H W T 100 7.534343e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I F 100 7.61032e-05							
NGCUT07 V I F 20.25 6.66618e-05 75 NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.53443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 M A T 100 7.61032e-05							
NGCUT07 H A T 100 7.48634e-05 100 NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 7.61032e-05 100 NGCUT07 M A F 33.75 0.000136601							
NGCUT07 H A F 33.75 6.94752e-05 87.5 NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 7.61032e-05 100 NGCUT07 M A F 33.75 0.000176001 100 NGCUT07 M A F 33.75 0.000136805 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
NGCUT07 H P T 100 7.30038e-05 100 NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.61032e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M H T 33.75 0.00014863							
NGCUT07 H P F 33.75 6.81877e-05 87.5 NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00014863							
NGCUT07 H H T 100 7.57217e-05 100 NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.67032e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M H F 100 0.000165224							
NGCUT07 H H F 100 7.83443e-05 100 NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.67032e-05 100 NGCUT07 H I F 100 0.000176001 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M A F 33.75 0.000136805 87.5 NGCUT07 M P F 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W F 33.75 0.00015224 100 NGCUT07 M H F 33.75 0.000146224 <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td>			_	_			
NGCUT07 H W T 100 7.34329e-05 100 NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W F 33.75 0.00015924 100 NGCUT07 M I T 100 0.000172472							
NGCUT07 H W F 33.75 7.24316e-05 87.5 NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00014663 87.5 NGCUT07 M W T 100 0.000166416 100 NGCUT07 M W F 33.75 0.000172472 100 NGCUT07 M I T 100 0.000172472 <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.83443e-05</td> <td>100</td>						7.83443e-05	100
NGCUT07 H I T 100 7.77721e-05 100 NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000166224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 N A T 100 0.00074873				${ m T}$			
NGCUT07 H I F 100 7.61032e-05 100 NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873	NGCUT07	Η	W	_	33.75	7.24316e-05	87.5
NGCUT07 M A T 100 0.000176001 100 NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478	NGCUT07	Η			100	7.77721e-05	100
NGCUT07 M A F 33.75 0.000213671 87.5 NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.00016416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536	NGCUT07	Η	I	F	100	7.61032e-05	100
NGCUT07 M P T 100 0.000166702 100 NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.0005746536 100 NGCUT07 N P F 33.75 0.000566196 <td>NGCUT07</td> <td>\mathbf{M}</td> <td>A</td> <td>T</td> <td>100</td> <td>0.000176001</td> <td>100</td>	NGCUT07	\mathbf{M}	A	T	100	0.000176001	100
NGCUT07 M P F 33.75 0.000136805 87.5 NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000566196 </td <td>NGCUT07</td> <td>\mathbf{M}</td> <td>A</td> <td>F</td> <td>33.75</td> <td>0.000213671</td> <td>87.5</td>	NGCUT07	\mathbf{M}	A	F	33.75	0.000213671	87.5
NGCUT07 M H T 33.75 0.00014863 87.5 NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000746536 100 NGCUT07 N H T 100 0.000736761	NGCUT07	${\bf M}$			100	0.000166702	100
NGCUT07 M H F 100 0.000166416 100 NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H T 100 0.000749397 100	NGCUT07	\mathbf{M}	P	F	33.75	0.000136805	87.5
NGCUT07 M W T 100 0.000165224 100 NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	\mathbf{M}	H	T	33.75	0.00014863	87.5
NGCUT07 M W F 33.75 0.000151968 87.5 NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	\mathbf{M}	H	F	100	0.000166416	100
NGCUT07 M I T 100 0.000172472 100 NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	\mathbf{M}	W	T	100	0.000165224	100
NGCUT07 M I F 33.75 0.0001472 87.5 NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	W	\mathbf{F}	33.75	0.000151968	87.5
NGCUT07 N A T 100 0.00074873 100 NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	I	T	100	0.000172472	100
NGCUT07 N A F 33.75 0.00057478 87.5 NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	M	I	F	33.75	0.0001472	87.5
NGCUT07 N P T 100 0.000746536 100 NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	A	T	100	0.00074873	100
NGCUT07 N P F 33.75 0.000566196 87.5 NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	A	F	33.75	0.00057478	87.5
NGCUT07 N H T 100 0.000736761 100 NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	P	Τ	100	0.000746536	100
NGCUT07 N H F 100 0.000749397 100	NGCUT07	N	P	F	33.75	0.000566196	87.5
NGCUT07 N H F 100 0.000749397 100			H	${ m T}$			
	NGCUT07	N	H	F	100	0.000749397	100
NGCU107 N W T 100 0.000742579 100	NGCUT07	N	W	Τ	100	0.000742579	100
NGCUT07 N W F 33.75 0.000569916 87.5							
NGCUT07 N I T 100 0.000740957 100							
NGCUT07 N I F 100 0.00074439 100							

Tabela 44 – Resultados da instância NGCUT08.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT08	V	A	T	79.5	4.19617e-05	$\frac{10001870}{30.7692}$
NGCUT08	V	A	F	39.5	6.59466e-05	46.1538
NGCUT08	V	A P	$\stackrel{\mathbf{r}}{\mathrm{T}}$	85.25	5.57899e-05	46.1538
NGCUT08	V	P	F	33	4.70161e-05	30.7692
NGCUT08	V	Н	$\frac{\mathbf{r}}{\mathrm{T}}$	55	5.02586e-05	38.4615
NGCUT08	V	H	F	39.5	6.53744e-05	46.1538
NGCUT08	V	W	$\frac{\mathbf{r}}{\mathrm{T}}$	85.25	5.53131e-05	46.1538
NGCUT08	V	W	F	61	5.70774e-05	46.1538
NGCUT08	V	vv I	$\frac{\mathbf{r}}{\mathrm{T}}$	73	6.78539e-05	53.8462
NGCUT08	V	I	F	38.25		
NGCUT08		A	$\frac{\mathbf{r}}{\mathrm{T}}$	38.25 88.75	4.9448e-05 6.54697e-05	30.7692 46.1538
NGCUT08	H H	A A	F	88.75 62.75		40.1538 61.5385
	п Н	A P			8.84056e-05	
NGCUT08			$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	85.25	7.04288e-05	46.1538
NGCUT08	H H	Р	r T	62.75	8.62598e-05	61.5385
NGCUT08		Н	F	73	6.73294e-05	53.8462
NGCUT08	H	Н		58.25	7.1907e-05	46.1538
NGCUT08	H	W	Т	85.25	6.83308e-05	46.1538
NGCUT08	H	W	F	51.5	8.22544e-05	53.8462
NGCUT08	H	I	Т	69.5	7.4482e-05	46.1538
NGCUT08	Н	I	F	62.75	9.0456e-05	61.5385
NGCUT08	M	A	T	85.5	0.000113297	38.4615
NGCUT08	M	A	F	51.5	0.000157166	53.8462
NGCUT08	M	P	T	85.25	0.000132084	46.1538
NGCUT08	M	P	F	53.5	0.000156355	53.8462
NGCUT08	M	Η	${f T}$	73	0.000156927	53.8462
NGCUT08	M	Η	F	58.25	0.000135422	46.1538
NGCUT08	\mathbf{M}	W	T	85.25	0.000146723	46.1538
NGCUT08	\mathbf{M}	W	F	67.5	0.000177622	61.5385
NGCUT08	\mathbf{M}	Ι	T	69.5	0.000134754	46.1538
NGCUT08	M	I	F	64.75	0.000175095	61.5385
NGCUT08	N	A	${ m T}$	88.75	0.000445175	46.1538
NGCUT08	N	A	F	62.75	0.00132923	61.5385
NGCUT08	N	P	${ m T}$	85.25	0.000444031	46.1538
NGCUT08	N	P	F	64.75	0.00150189	61.5385
NGCUT08	N	Η	${ m T}$	73	0.000669289	53.8462
NGCUT08	N	Η	F	58.25	0.00193605	46.1538
NGCUT08	N	W	${ m T}$	85.25	0.000430965	46.1538
NGCUT08	N	W	F	67.5	0.00122709	61.5385
NGCUT08	N	I	T	69.5	0.000908756	46.1538
NGCUT08	N	I	F	64.75	0.00125551	61.5385

Tabela 45 – Resultados da instância NGCUT09.

	~ 11			0 11 04		- ~ ~
Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT09	V	A	T	55.5	7.19547e-05	33.3333
NGCUT09	V	A	F	56.25	0.000114584	50
NGCUT09	V	P	${ m T}$	84.25	7.55787e-05	44.4444
NGCUT09	V	Р	F	49.25	8.4734e-05	44.4444
NGCUT09	V	Η	T	55.5	7.84397e-05	33.3333
NGCUT09	V	Η	F	57	9.59873e-05	50
NGCUT09	V	\mathbf{W}	${ m T}$	83.75	8.3828e-05	50
NGCUT09	V	\mathbf{W}	F	46.75	7.07626e-05	33.3333
NGCUT09	V	I	${ m T}$	55.5	7.46727e-05	33.3333
NGCUT09	V	I	F	62.5	9.50813e-05	50
NGCUT09	Η	A	${ m T}$	76.75	7.77245e-05	38.8889
NGCUT09	Η	A	F	57	0.00011282	50
NGCUT09	Η	P	Τ	79	5.56946e-05	27.7778
NGCUT09	Η	P	F	57	0.000114059	50
NGCUT09	Η	Η	T	72	6.99043e-05	38.8889
NGCUT09	Η	Η	F	74	7.16686e-05	33.3333
NGCUT09	Η	W	T	78.5	6.40869 e-05	33.3333
NGCUT09	Η	W	F	55.5	0.000100613	44.4444
NGCUT09	Η	I	T	60.75	8.83102 e-05	38.8889
NGCUT09	Η	I	F	66.25	7.0858e-05	33.3333
NGCUT09	${\bf M}$	A	T	55.5	0.000146484	33.3333
NGCUT09	${ m M}$	A	F	72.75	0.000214577	55.5556
NGCUT09	${\bf M}$	P	T	84.25	0.000226307	44.4444
NGCUT09	${ m M}$	P	F	72.75	0.000216436	55.5556
NGCUT09	${\bf M}$	Η	T	55.5	0.000143385	33.3333
NGCUT09	${\bf M}$	Η	F	74	0.00013566	33.3333
NGCUT09	${\bf M}$	W	T	78.5	0.000160646	33.3333
NGCUT09	M	W	F	46.75	0.00013752	33.3333
NGCUT09	${\bf M}$	I	T	55.5	0.000139713	33.3333
NGCUT09	M	I	F	76.5	0.000207663	50
NGCUT09	N	A	T	76.75	0.00100493	38.8889
NGCUT09	N	A	F	72.75	0.00315299	55.5556
NGCUT09	N	P	T	84.25	0.000754452	44.4444
NGCUT09	N	P	F	72.75	0.0039856	55.5556
NGCUT09	N	H	${ m T}$	72	0.00123024	38.8889
NGCUT09	N	H	F	80.5	0.00324054	55.5556
NGCUT09	N	W	${ m T}$	83.75	0.000930691	50
NGCUT09	N	W	F	69.75	0.00388875	44.4444
NGCUT09	N	I	${ m T}$	76.75	0.00246787	38.8889
NGCUT09	N	I	F	71.5	0.00210328	50

Tabela 46 – Resultados da instância NGCUT10.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT10	V	A	T	91	7.08103e-05	46.1538
NGCUT10	V	A	F	29.4444	3.46184e-05	30.7692
NGCUT10	V	P	T	91	5.14507e-05	46.1538
NGCUT10	V	Р	F	29.4444	3.29971e-05	30.7692
NGCUT10	V	Н	${ m T}$	91	4.15325 e-05	46.1538
NGCUT10	V	H	F	39.4444	3.51906e-05	30.7692
NGCUT10	V	W	${ m T}$	74	4.17233e-05	38.4615
NGCUT10	V	W	F	29.4444	3.37601e-05	30.7692
NGCUT10	V	I	${ m T}$	90.1111	6.86646 e - 05	53.8462
NGCUT10	V	I	F	29.4444	3.39031e-05	30.7692
NGCUT10	Η	A	T	87.6667	5.0211e-05	30.7692
NGCUT10	Η	A	F	90.1111	6.19411e-05	53.8462
NGCUT10	Η	P	T	87.6667	5.04971e-05	30.7692
NGCUT10	Η	P	F	90.1111	6.34193e-05	53.8462
NGCUT10	Η	Η	T	91	4.03881e-05	46.1538
NGCUT10	Η	Η	F	79.8889	5.3978e-05	46.1538
NGCUT10	Η	W	T	74	4.67777e-05	38.4615
NGCUT10	Η	W	F	90.1111	6.5136 e - 05	53.8462
NGCUT10	Η	I	T	80.6667	6.39439 e-05	46.1538
NGCUT10	Η	I	F	83.4444	4.9305e-05	46.1538
NGCUT10	${\bf M}$	A	T	87.6667	9.34601 e-05	30.7692
NGCUT10	M	A	F	90.1111	0.000129843	53.8462
NGCUT10	M	P	T	87.6667	9.12189e-05	30.7692
NGCUT10	\mathbf{M}	P	F	90.1111	0.000138569	53.8462
NGCUT10	${\bf M}$	Η	T	91	9.6941e-05	46.1538
NGCUT10	${\bf M}$	Η	F	79.8889	0.000114059	46.1538
NGCUT10	${\bf M}$	W	T	74	9.68456 e - 05	38.4615
NGCUT10	\mathbf{M}	W	F	90.1111	0.000138569	53.8462
NGCUT10	M	I	T	80.6667	0.000123978	46.1538
NGCUT10	\mathbf{M}	I	F	83.4444	0.000103998	46.1538
NGCUT10	N	A	T	87.6667	0.000439978	30.7692
NGCUT10	N	A	F	90.1111	0.000567341	53.8462
NGCUT10	N	P	T	87.6667	0.000444937	30.7692
NGCUT10	N	P	F	90.1111	0.000564098	53.8462
NGCUT10	N	\mathbf{H}	${ m T}$	91	0.000398493	46.1538
NGCUT10	N	\mathbf{H}	F	79.8889	0.000414515	46.1538
NGCUT10	N	W	${ m T}$	74	0.000288916	38.4615
NGCUT10	N	W	F	90.1111	0.000548363	53.8462
NGCUT10	N	I	${ m T}$	80.6667	0.000660706	46.1538
NGCUT10	N	I	F	83.4444	0.000408363	46.1538

Tabela 47 – Resultados da instância NGCUT11.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT11	V	A	Т	75.4444	7.47681e-05	40
NGCUT11	V	A	F	45.8889	8.94547e-05	53.3333
NGCUT11	V	P	T	79.7778	8.6832 e-05	46.6667
NGCUT11	V	Р	F	46	7.17163e-05	40
NGCUT11	V	H	T	75.4444	7.72953e-05	40
NGCUT11	V	Η	F	45.8889	8.49724e-05	53.3333
NGCUT11	V	W	T	78.4444	7.03812e-05	53.3333
NGCUT11	V	W	F	31.8889	6.38962e-05	33.3333
NGCUT11	V	I	${ m T}$	50.5556	6.77109e-05	40
NGCUT11	V	Ι	F	78.5556	8.75473e-05	53.3333
NGCUT11	Η	A	T	69.1111	5.68867e-05	33.3333
NGCUT11	Η	A	F	44.6667	8.42571 e-05	46.6667
NGCUT11	Η	P	Τ	78.4444	9.00745e-05	53.3333
NGCUT11	Η	Р	F	44.6667	8.36372e-05	46.6667
NGCUT11	Η	Η	T	86.3333	7.10964e-05	46.6667
NGCUT11	Η	Η	F	60.7778	9.63688e-05	53.3333
NGCUT11	Η	W	${ m T}$	78.4444	8.88348e-05	53.3333
NGCUT11	Η	\mathbf{W}	F	67.6667	9.68456e-05	66.6667
NGCUT11	Η	I	${ m T}$	63.3333	9.59873e-05	53.3333
NGCUT11	Η	I	F	84.7778	8.26836e-05	60
NGCUT11	\mathbf{M}	A	${ m T}$	61.3333	0.000118303	33.3333
NGCUT11	\mathbf{M}	A	F	44.6667	0.000148392	46.6667
NGCUT11	\mathbf{M}	P	${ m T}$	64.4444	0.000116825	33.3333
NGCUT11	\mathbf{M}	P	F	44.6667	0.000165796	46.6667
NGCUT11	\mathbf{M}	H	${ m T}$	83.2222	0.000133038	40
NGCUT11	\mathbf{M}	Η	F	60.7778	0.000178909	53.3333
NGCUT11	M	W	${ m T}$	78.4444	0.000176525	53.3333
NGCUT11	M	W	F	67.6667	0.000212526	66.6667
NGCUT11	M	I	${ m T}$	58.6667	0.0001616	46.6667
NGCUT11	Μ	I	F	78.5556	0.000177002	53.3333
NGCUT11	N	A	${ m T}$	69.1111	0.000474453	33.3333
NGCUT11	N	A	F	63.3333	0.00140924	53.3333
NGCUT11	N	P	T	92.5556	0.00124326	60
NGCUT11	N	P	F	63.3333	0.00142422	53.3333
NGCUT11	N	H	${ m T}$	87.6667	0.00318589	46.6667
NGCUT11	N	H	F	60.7778	0.00260434	53.3333
NGCUT11	N	W	${ m T}$	78.4444	0.00165014	53.3333
NGCUT11	N	W	F	67.6667	0.00269532	66.6667
NGCUT11	N	I	T	63.3333	0.00161729	53.3333
NGCUT11	N	Ι	F	84.7778	0.0023355	60

Tabela 48 – Resultados da instância NGCUT12.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
NGCUT12	V	A	Т	74.8889	8.01086e-05	31.8182
NGCUT12	V	A	F	48.6667	0.000100374	40.9091
NGCUT12	V	P	Τ	95	9.67503 e-05	40.9091
NGCUT12	V	Р	F	52	8.28743e-05	31.8182
NGCUT12	V	Η	${ m T}$	84.3333	8.41141e-05	40.9091
NGCUT12	V	Η	F	48.6667	9.60827e-05	40.9091
NGCUT12	V	W	T	82.5556	9.75609e-05	45.4545
NGCUT12	V	W	F	65.6667	7.26223e-05	36.3636
NGCUT12	V	I	T	71.1111	9.0456e-05	36.3636
NGCUT12	V	I	F	97.2222	9.84669 e-05	40.9091
NGCUT12	Η	A	T	68.4444	8.7738e-05	36.3636
NGCUT12	Η	A	\mathbf{F}	53.3333	0.000135231	45.4545
NGCUT12	Η	P	T	97.6667	9.408e-05	45.4545
NGCUT12	Η	P	F	53.3333	0.000137234	45.4545
NGCUT12	Η	Η	T	84.3333	7.47204 e - 05	40.9091
NGCUT12	Η	Η	\mathbf{F}	53.3333	0.000135565	45.4545
NGCUT12	Η	W	T	54.4444	0.000120687	40.9091
NGCUT12	Η	W	F	83.4444	9.75132e-05	40.9091
NGCUT12	Η	I	T	65.7778	0.000121212	45.4545
NGCUT12	Η	I	F	53.3333	0.000130987	45.4545
NGCUT12	\mathbf{M}	A	T	57.7778	0.000163317	31.8182
NGCUT12	M	A	F	53.3333	0.000246143	45.4545
NGCUT12	M	P	T	95	0.000192642	40.9091
NGCUT12	\mathbf{M}	P	F	53.3333	0.000226068	45.4545
NGCUT12	M	Η	T	84.3333	0.000176334	40.9091
NGCUT12	\mathbf{M}	Η	F	53.3333	0.000241232	45.4545
NGCUT12	M	W	T	54.4444	0.000209951	40.9091
NGCUT12	M	W	F	83.4444	0.000195646	40.9091
NGCUT12	M	I	T	57.7778	0.00017643	31.8182
NGCUT12	M	I	F	53.3333	0.000235033	45.4545
NGCUT12	N	A	T	85.5556	0.000835943	36.3636
NGCUT12	N	A	F	53.3333	0.00555758	45.4545
NGCUT12	N	P	T	95	0.00142913	40.9091
NGCUT12	N	P	F	53.3333	0.00465908	45.4545
NGCUT12	N	H	T	84.3333	0.000932407	40.9091
NGCUT12	N	H	F	53.3333	0.008707	45.4545
NGCUT12	N	W	T	65.4444	0.00359254	45.4545
NGCUT12	N	W	F	65.6667	0.00548348	36.3636
NGCUT12	N	I	T	71.1111	0.00125933	36.3636
NGCUT12	N	I	F	53.3333	0.00314965	45.4545

Tabela 49 – Resultados da instância OF1.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OF1	V	A	T	71	8.69751e-05	26.087
OF1	V	A	F	56.6071	8.91685e-05	34.7826
OF1	V	P	$^{\mathrm{T}}$	84.8571	9.25064e-05	30.4348
OF1	V	P	F	56.6071	9.00745e-05	34.7826
OF1	V	H	$\overline{\mathrm{T}}$	95	0.000108004	34.7826
OF1	V	H	F	74.75	8.81195e-05	39.1304
OF1	V	W	${f T}$	75.5714	0.00010376	34.7826
OF1	V	W	F	85.8571	0.000110388	34.7826
OF1	V	I	Т	74.5714	0.000113153	39.1304
OF1	V	I	F	78.75	0.000104761	34.7826
OF1	Н	A	${ m T}$	80.8929	7.71046e-05	30.4348
OF1	Η	A	F	56.2143	9.57012e-05	30.4348
OF1	Η	P	${ m T}$	77.7857	6.67572 e-05	21.7391
OF1	Η	P	F	70.7143	0.000101662	34.7826
OF1	Η	H	${ m T}$	90.4286	8.51154e-05	34.7826
OF1	Η	H	F	58.1429	8.58784 e - 05	26.087
OF1	Η	W	Τ	60.25	8.81672 e-05	26.087
OF1	Η	W	F	85.8571	9.25541 e-05	34.7826
OF1	Η	I	${ m T}$	69.1071	9.54628 e-05	34.7826
OF1	Η	I	F	60.25	8.06332 e-05	26.087
OF1	\mathbf{M}	A	${ m T}$	75.7143	0.000147247	26.087
OF1	${\bf M}$	A	F	56.6071	0.000204086	34.7826
OF1	${\bf M}$	P	${ m T}$	83.1786	0.000163364	30.4348
OF1	${\bf M}$	P	F	56.6071	0.000185156	34.7826
OF1	${\bf M}$	Η	${ m T}$	95	0.000195026	34.7826
OF1	${\bf M}$	Η	F	64.4286	0.00017972	30.4348
OF1	${\bf M}$	W	${ m T}$	74.75	0.000170326	30.4348
OF1	${\bf M}$	W	F	85.8571	0.000205135	34.7826
OF1	${\bf M}$	I	${ m T}$	51.4286	0.000172853	30.4348
OF1	${\bf M}$	I	F	69.1786	0.000281477	34.7826
OF1	N	A	Τ	80.8929	0.00123076	30.4348
OF1	N	A	F	56.6071	0.00387659	34.7826
OF1	N	P	${ m T}$	84.8571	0.00121098	30.4348
OF1	N	P	F	56.6071	0.00546713	34.7826
OF1	N	H	Τ	95	0.00144744	34.7826
OF1	N	H	F	64.4286	0.00351505	30.4348
OF1	N	\mathbf{W}	${ m T}$	81.0357	0.00174747	34.7826
OF1	N	W	\mathbf{F}	89	0.00117393	39.1304
OF1	N	I	${ m T}$	74.5714	0.00252275	39.1304
OF1	N	I	F	78.75	0.00174804	34.7826

Tabela 50 – Resultados da instância OF2.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OF2	V	A	T	81.2857	6.49929e-05	25
OF2 OF2	V	A	F	62.8214	9.15051e-05	33.3333
OF2 OF2	V	P P	$^{\Gamma}$ $^{\Gamma}$	75.8214	7.31945e-05	25
OF2 OF2	V	P	F	76.0714	0.000100279	37.5
OF2 OF2	V	Н	T	63.3929	7.16209e-05	20.8333
OF2 OF2	V	H	F	78.5714	0.000110722	37.5
OF2	V	W	T	81.8214	7.79629e-05	$\frac{37.5}{25}$
OF2	V	W	F	54.75	8.39233e-05	$\frac{25}{25}$
OF2	V	I	T	84.0714	8.16345e-05	29.1667
OF2	V	I	F	82.4643	9.01699e-05	29.1667
OF2	v Н	A	$^{\Gamma}$ $^{\Gamma}$	89.1429	7.92027e-05	33.3333
OF2	H	A	F	50.2857	9.69887e-05	29.1667
OF2	Н	P	T	77.1071	9.06467e-05	29.1667
OF2	Н	P	F	50.2857	9.68933e-05	29.1667
OF2	Н	Н	T	81.3571	7.82013e-05	29.1667
OF2	Н	Н	F	35.4286	8.13961e-05	20.8333
OF2	Н	W	T	77.1071	9.35555e-05	29.1667
OF2	Н	W	F	79.6071	0.000101852	37.5
OF2	Н	I	$^{\mathrm{T}}$	58.2857	6.46114e-05	20.8333
OF2	Н	Ī	F	82.7143	8.18253e-05	29.1667
OF2	M	A	$^{\mathrm{T}}$	83.0714	0.000162077	29.1667
OF2	M	A	F	50.2857	0.000174618	29.1667
OF2	M	P	${f T}$	69.3214	0.000147104	25
OF2	M	P	$\bar{\mathrm{F}}$	50.2857	0.000174189	29.1667
OF2	M	H	Т	63.3929	0.000132465	20.8333
OF2	M	H	F	49.7143	0.000156784	25
OF2	M	W	T	77.1071	0.000174332	29.1667
OF2	\mathbf{M}	W	F	54.75	0.000154829	25
OF2	M	I	${ m T}$	71.1786	0.000151157	25
OF2	M	I	F	82.4643	0.000161219	29.1667
OF2	N	A	${ m T}$	81.2857	0.00149522	25
OF2	N	A	F	75.3571	0.00522213	37.5
OF2	N	P	${ m T}$	81.8214	0.00189652	25
OF2	N	P	F	63.1786	0.0049437	33.3333
OF2	N	H	Τ	73.9643	0.00198612	29.1667
OF2	N	\mathbf{H}	F	64.5714	0.00526438	33.3333
OF2	N	W	${ m T}$	77.1071	0.00296488	29.1667
OF2	N	W	F	71.3214	0.00245285	33.3333
OF2	N	I	${ m T}$	92.3571	0.00144391	33.3333
OF2	N	I	F	82.4643	0.00188279	29.1667

Tabela 51 – Resultados da instância OKP1.

OKP1 V A T 77.56 0.000144005 16 OKP1 V A F 65.74 0.000409698 48 OKP1 V P T 91.16 0.000158834 34 OKP1 V P F 59.86 0.0003964422 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000290903 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.00018913 28 OKP1 V I F 86.74 0.00048983 46 OKP1 H A T 93.1 0.000148983 46 OKP1 H A F 58.66 0.000148983 46 <tr< th=""><th>Instance</th><th>Split</th><th>Order</th><th>Descending</th><th>Quality %</th><th>Time (s)</th><th>Items %</th></tr<>	Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP1 V P T 91.16 0.000158834 34 OKP1 V P F 59.86 0.000396442 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 65.74 0.00048983 46 OKP1 H A T 93.1 0.00018933 46 OKP1 H A F 58.66 0.000250721 42 OKP1 H A F 58.66 0.00017336 26 OKP1 H P T 83.78 0.00017336 26	OKP1	V	A	Т	77.56	0.000144005	16
OKP1 V P F 59.86 0.000396442 46 OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H A F 58.66 0.000250721 42 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 <tr< td=""><td>OKP1</td><td>V</td><td>A</td><td>F</td><td>65.74</td><td>0.000409698</td><td>48</td></tr<>	OKP1	V	A	F	65.74	0.000409698	48
OKP1 V H T 79.7 0.000364923 38 OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000183913 28 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000133904 22 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.00021833 36 OKP1 H W F 61.06 0.000283718 48	OKP1	V	P	T	91.16	0.000158834	34
OKP1 V H F 91.38 0.000209093 42 OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000148983 46 OKP1 V I F 82.12 0.00048983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.00013336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H W T 83.78 0.000118637 26 OKP1 H W F 61.06 0.000283718 48	OKP1	V	P	F	59.86	0.000396442	46
OKP1 V W T 91.62 0.000151587 32 OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W F 61.06 0.000233718 48 OKP1 H U F 61.06 0.00017333 26 <t< td=""><td>OKP1</td><td>V</td><td>H</td><td>T</td><td>79.7</td><td>0.000364923</td><td>38</td></t<>	OKP1	V	H	T	79.7	0.000364923	38
OKP1 V W F 65.74 0.000423241 48 OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.00283718 48 OKP1 H I T 81.52 0.000117333 26 <t< td=""><td>OKP1</td><td>V</td><td>H</td><td>\mathbf{F}</td><td>91.38</td><td>0.000209093</td><td>42</td></t<>	OKP1	V	H	\mathbf{F}	91.38	0.000209093	42
OKP1 V I T 86.04 0.000181913 28 OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.000118256 26 OKP1 M A T 77.56 0.000231123 16 <t< td=""><td>OKP1</td><td>V</td><td>W</td><td>T</td><td>91.62</td><td>0.000151587</td><td>32</td></t<>	OKP1	V	W	T	91.62	0.000151587	32
OKP1 V I F 82.12 0.000408983 46 OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H W T 83.78 0.000118637 26 OKP1 H I T 81.52 0.000118637 26 OKP1 H I F 68.56 0.00017333 26 <tr< td=""><td>OKP1</td><td>V</td><td>W</td><td>F</td><td>65.74</td><td>0.000423241</td><td>48</td></tr<>	OKP1	V	W	F	65.74	0.000423241	48
OKP1 H A T 93.1 0.000139904 22 OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.78 0.000118637 26 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 <tr< td=""><td>OKP1</td><td>V</td><td>I</td><td>T</td><td>86.04</td><td>0.000181913</td><td>28</td></tr<>	OKP1	V	I	T	86.04	0.000181913	28
OKP1 H A F 58.66 0.000250721 42 OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.00017333 26 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.0002553916 28 <tr< td=""><td>OKP1</td><td>V</td><td>I</td><td>F</td><td>82.12</td><td>0.000408983</td><td>46</td></tr<>	OKP1	V	I	F	82.12	0.000408983	46
OKP1 H P T 83.78 0.000107336 26 OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.00023123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000255877 34	OKP1	Η	A	Τ	93.1	0.000139904	22
OKP1 H P F 57.92 0.000238132 38 OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H F 78.56 0.000295877 30	OKP1	Η	A	F	58.66	0.000250721	42
OKP1 H H T 83.7 0.000261593 46 OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30	OKP1	Η	Р	T	83.78	0.000107336	26
OKP1 H H F 69.32 0.000118637 26 OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W F 65.74 0.000680542 48	OKP1	Η	Р	F	57.92	0.000238132	38
OKP1 H W T 83.78 0.000118256 26 OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48	OKP1	Η	H	T	83.7	0.000261593	46
OKP1 H W F 61.06 0.000283718 48 OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.00075147 50 OKP1 M A F 67.06 0.00075147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000253916 28 OKP1 M H T 79.7 0.00055877 34 OKP1 M H F 79.7 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000251436 18	OKP1	Η	H	F	69.32	0.000118637	26
OKP1 H I T 81.52 0.00017333 26 OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.00055877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 N A T 97.22 0.00178461 18	OKP1	Η	W	T	83.78	0.000118256	26
OKP1 H I F 68.56 0.000196552 34 OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 N A T 97.22 0.00178461 18	OKP1	Η	W	F	61.06	0.000283718	48
OKP1 M A T 77.56 0.000231123 16 OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N P F 65.92 0.0223252 50	OKP1	Η	I	Τ	81.52	0.00017333	26
OKP1 M A F 67.06 0.000705147 50 OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34	OKP1	Η	I	F	68.56	0.000196552	34
OKP1 M P T 88.4 0.000253916 28 OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N H T 88.54 0.00844831 42	OKP1	M	A	Τ	77.56	0.000231123	16
OKP1 M P F 67.16 0.000505877 34 OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42	OKP1	${\bf M}$	A	F	67.06	0.000705147	50
OKP1 M H T 79.7 0.000563192 38 OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.62 0.00297956 32	OKP1	\mathbf{M}	P	T	88.4	0.000253916	28
OKP1 M H F 78.56 0.000295877 30 OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.62 0.00297956 32 OKP1 N W T 91.62 0.00228897 48	OKP1	${\bf M}$	Р	F	67.16	0.000505877	34
OKP1 M W T 88.4 0.000371981 28 OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48	OKP1	${\bf M}$	H	T	79.7	0.000563192	38
OKP1 M W F 65.74 0.000680542 48 OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	${\bf M}$	H	F	78.56	0.000295877	30
OKP1 M I T 77.52 0.000251436 18 OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	${\bf M}$	W	T	88.4	0.000371981	28
OKP1 M I F 62.66 0.000575829 40 OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	${\bf M}$	W	F	65.74	0.000680542	48
OKP1 N A T 97.22 0.00178461 18 OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	${\bf M}$	I	T	77.52	0.000251436	18
OKP1 N A F 67.06 0.021143 50 OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	M	I	F	62.66	0.000575829	40
OKP1 N P T 91.16 0.00405669 34 OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	A	T	97.22	0.00178461	18
OKP1 N P F 65.92 0.0223252 50 OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	A	\mathbf{F}	67.06	0.021143	50
OKP1 N H T 88.54 0.00844831 42 OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	Р	T	91.16	0.00405669	34
OKP1 N H F 91.38 0.00668344 42 OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	P	F	65.92	0.0223252	50
OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36	OKP1	N	H	Τ	88.54	0.00844831	42
OKP1 N W T 91.62 0.00297956 32 OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36			H	F			42
OKP1 N W F 65.74 0.0228897 48 OKP1 N I T 90.04 0.00944791 36			W	${ m T}$			32
OKP1 N I T 90.04 0.00944791 36		N	W	F			
				${ m T}$			
UKP1 IN 1 F 92.12 0.0185555 50	OKP1	N	I	F	92.12	0.0185555	50

Tabela 52 – Resultados da instância OKP2.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP2	V	A	Τ	84.62	0.000164795	20
OKP2	V	A	\mathbf{F}	57.02	0.000196171	40
OKP2	V	P	T	86.82	0.000120544	33.3333
OKP2	V	P	F	67.76	0.000207376	43.3333
OKP2	V	H	T	86.82	0.000135422	30
OKP2	V	H	F	77.02	0.000178432	40
OKP2	V	W	T	87.69	0.000121403	33.3333
OKP2	V	W	F	68.24	0.000195789	40
OKP2	V	I	T	83.61	0.000150585	33.3333
OKP2	V	I	F	70.42	0.000163507	36.6667
OKP2	Η	A	T	84.58	0.000107956	26.6667
OKP2	Η	A	F	51.7	0.000173235	33.3333
OKP2	Η	P	T	84.59	0.000100565	30
OKP2	Η	P	F	41.18	0.000108767	23.3333
OKP2	Η	Η	T	86.82	0.000138235	30
OKP2	Η	H	F	55.62	9.59396 e - 05	23.3333
OKP2	Η	W	T	84.95	0.000108004	30
OKP2	Η	W	F	51.7	0.000155258	33.3333
OKP2	Η	I	Τ	68.09	0.000129509	26.6667
OKP2	Η	I	\mathbf{F}	63.04	0.000105572	23.3333
OKP2	\mathbf{M}	A	Τ	83.61	0.000180912	23.3333
OKP2	\mathbf{M}	A	F	61.28	0.000326443	40
OKP2	\mathbf{M}	P	T	90.05	0.000192976	30
OKP2	\mathbf{M}	P	F	60.48	0.00026722	33.3333
OKP2	\mathbf{M}	H	T	86.82	0.000233316	30
OKP2	\mathbf{M}	H	\mathbf{F}	54.62	0.000211	26.6667
OKP2	\mathbf{M}	W	Τ	84.95	0.000200367	30
OKP2	\mathbf{M}	W	\mathbf{F}	68.24	0.000324345	40
OKP2	\mathbf{M}	I	Τ	83.61	0.000252247	33.3333
OKP2	\mathbf{M}	I	\mathbf{F}	74.71	0.00028038	36.6667
OKP2	N	A	T	84.62	0.00124054	20
OKP2	N	A	F	57.13	0.00413117	33.3333
OKP2	N	Р	Τ	90.05	0.00143237	30
OKP2	N	Р	\mathbf{F}	61.32	0.0054472	33.3333
OKP2	N	H	${ m T}$	94.8	0.00120964	33.3333
OKP2	N	H	F	66.18	0.00417547	30
OKP2	N	W	T	84.95	0.00169311	30
OKP2	N	W	F	69.89	0.00589476	46.6667
OKP2	N	I	${ m T}$	78.31	0.0028646	26.6667
OKP2	N	I	\mathbf{F}	78.94	0.00289049	43.3333

Tabela 53 – Resultados da instância OKP3.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP3	V	A	Τ	93.64	8.40187e-05	20
OKP3	V	A	\mathbf{F}	73.21	0.00018239	40
OKP3	V	P	T	92.62	0.000125074	26.6667
OKP3	V	P	F	59.01	0.00015645	33.3333
OKP3	V	Η	T	87.84	0.000144911	30
OKP3	V	Η	F	80.64	0.000160789	40
OKP3	V	W	T	78.78	0.000105	26.6667
OKP3	V	W	\mathbf{F}	58.59	0.000157166	33.3333
OKP3	V	I	T	87.04	0.000163174	36.6667
OKP3	V	I	\mathbf{F}	68.13	0.000125265	26.6667
OKP3	Η	A	T	87.71	0.000104046	23.3333
OKP3	Η	A	F	40.82	9.43184 e-05	23.3333
OKP3	Η	P	T	82.12	8.88824 e-05	20
OKP3	Η	P	F	40.32	0.000108242	23.3333
OKP3	Η	Η	T	89.4	0.000177002	33.3333
OKP3	Η	H	\mathbf{F}	40.82	9.30309 e-05	23.3333
OKP3	Η	W	T	84.12	9.06944 e-05	23.3333
OKP3	Η	W	\mathbf{F}	41.86	0.000135183	26.6667
OKP3	Η	I	T	55.74	0.000103426	20
OKP3	Η	I	\mathbf{F}	47	0.000111532	23.3333
OKP3	M	A	T	91.85	0.000166702	20
OKP3	M	A	F	49.96	0.00020771	26.6667
OKP3	M	P	T	92.62	0.000212288	26.6667
OKP3	M	P	\mathbf{F}	51.9	0.000187588	23.3333
OKP3	M	H	T	89.4	0.000273132	33.3333
OKP3	M	Η	F	56.46	0.000249624	30
OKP3	M	W	T	85.68	0.000181341	26.6667
OKP3	M	W	\mathbf{F}	70.75	0.000296021	36.6667
OKP3	M	I	T	68.48	0.00018425	23.3333
OKP3	M	I	\mathbf{F}	75.88	0.000209808	26.6667
OKP3	N	A	${ m T}$	93.64	0.00094986	20
OKP3	N	A	F	40.32	0.00439701	23.3333
OKP3	N	P	T	92.62	0.000914907	26.6667
OKP3	N	P	\mathbf{F}	51.9	0.00365572	23.3333
OKP3	N	H	${ m T}$	89.4	0.00152011	33.3333
OKP3	N	H	\mathbf{F}	71.51	0.00701923	30
OKP3	N	W	Τ	85.68	0.00186644	26.6667
OKP3	N	W	\mathbf{F}	73.97	0.00324073	40
OKP3	N	I	${ m T}$	87.04	0.00278034	36.6667
OKP3	N	I	F	67	0.00256896	30

Tabela 54 – Resultados da instância OKP4.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP4	V	A	Τ	93.89	0.000109434	13.1148
OKP4	V	A	\mathbf{F}	73.77	0.000409603	37.7049
OKP4	V	P	${ m T}$	90.99	0.00020833	19.6721
OKP4	V	P	F	71.06	0.000383568	34.4262
OKP4	V	H	T	94.72	0.000278854	24.5902
OKP4	V	H	\mathbf{F}	77.99	0.000213194	26.2295
OKP4	V	W	${ m T}$	86.95	0.000206375	27.8689
OKP4	V	W	\mathbf{F}	76.85	0.000437069	37.7049
OKP4	V	I	${ m T}$	91.86	0.000250769	22.9508
OKP4	V	I	\mathbf{F}	77.85	0.000292015	26.2295
OKP4	Η	A	T	66.14	9.94682e-05	9.83607
OKP4	Η	A	F	67.5	0.000247526	26.2295
OKP4	Η	P	T	89.54	0.000117683	13.1148
OKP4	Η	P	\mathbf{F}	69.52	0.000233459	24.5902
OKP4	Η	H	${ m T}$	93.46	0.000181484	19.6721
OKP4	Η	H	\mathbf{F}	68.35	0.0002285	22.9508
OKP4	Η	W	${ m T}$	82.15	0.000230789	24.5902
OKP4	Η	W	\mathbf{F}	49.89	0.000225115	26.2295
OKP4	Η	I	Τ	71.56	0.000186729	21.3115
OKP4	H	I	F	82.37	0.000161505	21.3115
OKP4	M	A	Τ	66.14	0.00015831	9.83607
OKP4	\mathbf{M}	A	\mathbf{F}	73.77	0.000670385	37.7049
OKP4	\mathbf{M}	P	T	90.99	0.000341845	19.6721
OKP4	\mathbf{M}	Р	\mathbf{F}	68.15	0.000517893	29.5082
OKP4	\mathbf{M}	H	${ m T}$	94.72	0.00044775	24.5902
OKP4	\mathbf{M}	H	\mathbf{F}	70.55	0.00036664	24.5902
OKP4	\mathbf{M}	W	${ m T}$	82.15	0.000354719	24.5902
OKP4	\mathbf{M}	W	\mathbf{F}	76.85	0.000737238	37.7049
OKP4	\mathbf{M}	I	${ m T}$	88.61	0.000365782	19.6721
OKP4	M	I	F	78.41	0.000320768	19.6721
OKP4	N	A	${ m T}$	93.89	0.00167918	13.1148
OKP4	N	A	\mathbf{F}	73.77	0.0260915	37.7049
OKP4	N	P	Τ	90.99	0.00208235	19.6721
OKP4	N	P	F	70.57	0.0238347	29.5082
OKP4	N	H	Τ	94.72	0.00276513	24.5902
OKP4	N	H	\mathbf{F}	82.15	0.0191098	24.5902
OKP4	N	W	${ m T}$	88.31	0.00450363	26.2295
OKP4	N	W	F	78.85	0.0120415	39.3443
OKP4	N	I	${ m T}$	91.86	0.00380301	22.9508
OKP4	N	I	F	77.85	0.00503736	26.2295

Tabela 55 – Resultados da instância OKP5.

Instance	Split	Order	Descending	Quality %	Time (s)	Items %
OKP5	V	A	T	84.86	0.000170279	10.3093
OKP5	V	A	F	58.74	0.000478125	22.6804
OKP5	V	P	T	96.27	0.000140762	12.3711
OKP5	V	P	F	64.23	0.000298357	18.5567
OKP5	V	H	$\overline{\mathrm{T}}$	92.46	0.000273609	12.3711
OKP5	V	H	$\overline{\mathrm{F}}$	83.79	0.000238085	19.5876
OKP5	V	W	Т	98.17	0.000152016	17.5258
OKP5	V	W	F	74.86	0.000524998	24.7423
OKP5	V	Ι	Т	82.92	0.000376892	19.5876
OKP5	V	I	F	76.46	0.000355959	18.5567
OKP5	Н	A	T	87.79	0.000333214	13.4021
OKP5	Η	A	F	62.2	0.000425053	21.6495
OKP5	Η	Р	Τ	96.27	0.000154543	12.3711
OKP5	Η	Р	F	75.96	0.000391293	21.6495
OKP5	Η	H	Τ	92.46	0.000174999	12.3711
OKP5	Η	H	F	58.19	0.000386477	15.4639
OKP5	Η	W	Τ	98.17	0.000229216	17.5258
OKP5	Η	W	F	70.21	0.00038805	22.6804
OKP5	Η	I	Τ	71.31	0.000295877	16.4948
OKP5	Η	I	F	80.3	0.00025239	17.5258
OKP5	${\bf M}$	A	T	86.82	0.000329733	11.3402
OKP5	M	A	F	58.74	0.000707722	22.6804
OKP5	M	P	Τ	96.27	0.000255251	12.3711
OKP5	${\bf M}$	P	F	69.06	0.000460052	17.5258
OKP5	${\bf M}$	H	T	92.46	0.000409222	12.3711
OKP5	${\bf M}$	H	F	79.11	0.000539827	18.5567
OKP5	${\bf M}$	W	T	98.17	0.000410271	17.5258
OKP5	${\bf M}$	W	F	74.86	0.0008008	24.7423
OKP5	${\bf M}$	I	T	77.06	0.00061326	20.6186
OKP5	${\bf M}$	I	F	66.86	0.000523663	16.4948
OKP5	N	A	T	84.86	0.00472121	10.3093
OKP5	N	A	F	83.74	0.101231	27.8351
OKP5	N	P	T	96.27	0.00186729	12.3711
OKP5	N	P	F	72.24	0.0847682	19.5876
OKP5	N	Η	T	92.46	0.00197048	12.3711
OKP5	N	H	F	74.15	0.0703918	17.5258
OKP5	N	W	${ m T}$	98.17	0.00453982	17.5258
OKP5	N	W	F	74.86	0.0895785	24.7423
OKP5	N	I	${ m T}$	82.92	0.0148974	19.5876
OKP5	N	I	F	89.9	0.0277001	19.5876