

Indefinite Integrals Ex 19.8 Q16

Let
$$I = \int \frac{1}{x (3 + \log x)} dx - - - - (i)$$

Let
$$3 + \log x = t$$
 then,
 $d(3 + \log x) = dt$

$$\Rightarrow \frac{1}{x}dx = dt$$

$$\Rightarrow dx = x dt$$

$$\Rightarrow$$
 $dx = x dt$

Putting $3 + \log x = t$ and dx = x dt in equation (i), we get,

$$I = \int \frac{1}{x \times t} \times xdt$$
$$= \int \frac{dt}{t}$$
$$= \log |t| + c$$

$$I = \log |(3 + \log x)| + c$$

Indefinite Integrals Ex 19.8 Q17

Let
$$I = \int \frac{e^x + 1}{e^x + x} dx - \cdots - (i)$$

Let
$$e^x + x = t$$
 then,

$$d\left(e^{x}+x\right)=dt$$

$$\Rightarrow \left(e^{x} + x\right)dx = dt$$

$$\Rightarrow \qquad \left(e^{x} + x\right)dx = dt$$

$$\Rightarrow \qquad dx = \frac{dt}{e^{x} + 1}$$

Putting $e^x + x = t$ and $dx = \frac{dt}{e^x + 1}$ in equation (i), we get,

$$I = \int \frac{e^x + 1}{t} \times \frac{dt}{e^x + 1}$$

$$=\int \frac{dt}{t}$$

$$= \log |t| + c$$

$$= \log \left| e^x + x \right| + c$$

$$I = \log \left| e^x + x \right| + c$$

Indefinite Integrals Ex 19.8 Q18

Let
$$I = \int \frac{1}{x \log x} dx - \cdots - (i)$$

Let $\log x = t$ then,
 $d(\log x) = dt$

$$\Rightarrow \frac{1}{x} dx = dt$$

$$\Rightarrow dx = x dt$$

Putting $\log x = t$ and dx = x dt in equation (i), we get,

$$I = \int \frac{1}{x \times t} \times x \, dt$$

$$= \int \frac{dt}{t}$$

$$= \log |t| + c$$

$$= \log |(\log x)| + c$$

$$\therefore I = \log |(\log x)| + c$$

Indefinite Integrals Ex 19.8 Q19

Let
$$I = \int \frac{\sin 2x}{a \cos^2 x + b \sin^2 x} dx - - - - - (i)$$

Let $a \cos^2 x + b \sin^2 x = t$ then,
$$d \left(a \cos^2 x + b \sin^2 x \right) = dt$$

$$\left[a \left(2 \cos x \left(- \sin x \right) \right) + b \left(2 \sin x \cos x \right) \right] dx = dt$$

$$\Rightarrow \left[-a \left(2 \sin x \cos x \right) + b \left(2 \sin x \cos x \right) \right] dx = dt$$

$$\Rightarrow \left[-a \sin 2x + b \sin 2x \right] dx = dt$$

$$\Rightarrow \sin 2x \left(b - a \right) dx = dt$$

$$\Rightarrow dx = \frac{dt}{(b - a) \sin 2x}$$
Putting $a \cos^2 x + b \sin^2 x = t$ and $dx = \frac{dt}{dt}$ in equation (i) $dt = t$

Putting $a\cos^2 x + b\sin^2 x = t$ and $dx = \frac{dt}{(b-a)\sin 2x}$ in equation (i), we get,

$$I = \int \frac{\sin 2x}{t} \times \frac{dt}{(b-a)\sin 2x}$$

$$= \frac{1}{b-a} \int \frac{dt}{t}$$

$$= \frac{1}{b-a} \log |t| + c$$

$$= \frac{1}{b-a} \log |a\cos^2 x + b\sin^2 x| + c$$

Indefinite Integrals Ex 19.8 Q20

Let
$$I = \int \frac{\cos x}{2 + 3\sin x} dx - - - - (i)$$

Let $2 + 3\sin x = t$ then,
 $d(2 + 3\sin x) = dt$
 $d(2 + 3\sin x) = dt$
 $d(2 + 3\sin x) = dt$
 $d(2 + 3\sin x) = dt$

$$I = \int \frac{\cos x}{t} \times \frac{dt}{3\cos x}$$
$$= \frac{1}{3} \int \frac{dt}{t}$$
$$= \frac{1}{3} |\log t| + c$$

 $=\frac{1}{3}\log|2+3\sin x|+c$

********** END ********

Putting $2 + 3\sin x = t$ and $dx = \frac{dt}{3\cos x}$ in equation (i), we get,