Análisis de malware, cracking de software...

Carlos Ledesma Peña Fernando Díaz Urbano

Grupo de Desarrollo de Google, Málaga



### Introducción

¿ Qué es la ingenieria inversa?

### Antecedentes





**Izquierda**: Máquina Enigma versión militar alemana

Arriba: Misil K-13 soviético

aire-aire

# Mantenimiento de programas sin código fuente

- Interacción de componentes, creación de documentación...
- Análisis de malware
   Conocer objetivos y procedimientos de un malware
- Búsqueda de vulnerabilidades
   En programas de código cerrado
- Cracking de programas
   Remover protecciones anticopia

... Entre otras.

- Conocer la API de Windows(Si el reversing se hace en Windows)
- Debuggers
- Conocimientos en Assembly
- ¡Un cerebro!

- El entorno
  - Sistema operativo, proceso, ejecutable, librería...
- Los lenguajes
   Ensamblador (x86), bytecode (CIL), scripting (Perl)...
- Los patrones típicos
   Reconocer un bucle while, una inyección en un proceso...
- Las herramientas
   Desensamblador, depurador, monitor de recursos...



### Introducción

### Conceptos básicos

### Análisis estático VS Dinámico

### Estatico:

- Permite examinar todos los valores de variables y caminos
- Encontrar errores que no se manifestarán hasta pasado mucho tiempo

### Dinámico

- Permite revelar defectos o vulnerabilidades difíciles de encontrar estáticamete
- Observar el comportamiento deun ejecutable encriptado

Necesitamos de ambos, para poder llevar a cabo un análisis completo.



# Opcodes



# Bytecode



## WinDBG

Esta herramienta desarrollada por Microsoft, nos permite:

- Debuggear a nivel de Kernel(Ring 0)
- Debuggear el propio Sistema Operativa
- No tiene GUI, funciona a traves de una consola
- Es complicado para principiantes, tedioso





- Posee GUI
- User-level debugging(Ring 3)
- Más sencillo para principiantes





### Evolución en el tiempo de la tecnología SDR

#### Comienzos

# Anillos de protección



### **HyperVisor**

- AMD-V: Pacifica
- Intel VT-x: Vanderpool



#### Introducción

¿Qué es la ingenieria inversa

Conceptos básicos

### Evolución en el tiempo de la tecnología SDR

Comienzos

#### Seguridad

Estado actua

#### Caso práctico

GNII Radio

Pager POCSAG

#### Para termina

Conclusiones

Htilidades

# Seguridad

- 2005: Versión mejorada de BlueSniper.
- 2007: Ataque sobre teclados inalámbricos.
- Ataque sobre el pasaporte europeo.
- 2008: Michael Ossmann repasa en Black Hat sobre el estado de la seguridad de las radiocomunicaciones, y advierte que SDR accesible es peligroso.
- Ataque sobre el sistema de tarjetas del metro de Boston y de pago remoto en peajes.
- 2009: Ataque práctico sobre GSM.
- 2010: Lectura de RFID a larga distancia.
- **2011:** Ataque sobre *GRPS/EDGE* y *UMTS/HSPA*.

Caso práctico 000 0000 Para termina

•0

# Índice

#### Introducción

¿Qué es la ingenieria inversa

Conceptos básicos

### Evolución en el tiempo de la tecnología SDR

Comienzos

Seguridad

#### Estado actual

Caso práctic

GNII Radio

Pager POCSAG

Para terminal

Conclusiones

Htilidades

- En 2010, Eric Fry se da cuenta de algo extraño al realizar ingeniería inversa a un *driver* de un dispositivo *USB* para recepción *FM* y *DAB+*. Lo que viaja del dispositivo al PC no es audio, sino muestras de la señal en una etapa intermedia entre la señal de radiofrecuencia y el audio.
- En 2012 nace el proyecto rtl-sdr, que proporciona una interfaz para usar estos dispositivos como SDR's (sólo recepción, pero muy asequibles).
- Interés en integrar SDR en la comunidad de pentesting, con nuevas herramientas que permiten inyectar paquetes de diversos protocolos al vuelo.

#### Introducción

¿Qué es la ingenieria inversa

Conceptos básicos

#### Evolución en el tiempo de la tecnología SDF

Comionzo

Seguridad

Estado actua

#### Caso práctico

#### GNU Radio

Pager POCSA(

#### Para termina

Conclusiones

Utilidades

# ¿Qué es GNU Radio?

GNU Radio es un entorno de desarrollo open source multiplataforma de procesamiento de señales en general, si bien está especializado en SDR, pero no limitado a ello.

- Ofrece una interfaz gráfica, GRC, además de las interfaces para Python y C++. La de Python es una envoltura de la de C++, y la gráfica una envoltura de la de Python.
- La interfaz gráfica sirve para crear diagramas de flujo, con conexiones entre bloques que representan funciones de procesamiento de señales.
- Los bloques pueden ser de entrada o salida, para interactuar con el exterior (parte hardware de SDR, tarjeta de audio, disco duro...), o de entrada y salida, implementando funciones en sí.

## GRC



#### Introducción

¿ Qué es la ingenieria inversa

Conceptos básicos

Evolución en el tiempo de la tecnología SDF

Comienzos

Seguridad

Estado actua

#### Caso práctico

GNU Radio

#### Pager POCSAG

Para terminal

Conclusiones

Htilidades

# ¿Qué es un pager POCSAG?



## Al ataque

- Tras escanear en el rango de frecuencias que menciona el pager en su parte de atrás, y los avisos que alcanzo a capturar se emiten en la misma frecuencia.
- Construyo el diagrama de flujo (no sin mucho esfuerzo) para decodificar con arreglo al estándar POCSAG y efectivamente, se ajusta al estándar. Cada disposivo tiene un ID, y suena cuando se emite el suyo.
- Modifico el diagrama de flujo y creo un bloque personalizado para GRC para imprimir en consola los ID's según se capturan los avisos.

### Dificultades encontradas

- Dominio completamente nuevo para mí, y falta de base sólida a la hora de resolver los problemas (días de diagnóstico por problema).
- GRC no está hecho para aprender a base de prueba y error desde el principio, no es fácil saber qué está fallando ni por qué (curva de aprendizaje elevada).
- Limitaciones del hardware, mi portátil usa USB 2.0, lo que limita el ancho de banda capturable de una vez, además de no tener potencia de procesamiento suficiente y descartar muestras si se usaban varias operaciones simultáneamente.

#### Introducción

¿Qué es la ingenieria inversa

Conceptos básicos

Evolución en el tiempo de la tecnología SDI

Comienzos

Seguridad

Estado actua

Caso práctic

GNU Radio

Pager POCSA(

Para terminar

Conclusiones

Htilidades

### Conclusiones

- Desde el punto de vista económico y humano, es necesario invertir en la seguridad de los sistemas informáticos. No sólo se protege de las malas intenciones, sino de las buenas intenciones equivocadas.
- La "seguridad" por oscuridad no es seguridad, si un sistema necesita que su forma de funcionar no sea pública para ser seguro, no es seguro igualmente. Sólo la clave debe ser desconocida para el resto.
- No se le ha prestado suficiente atención a la seguridad de las radiocomunicaciones en el pasado, y ahora se dispone de herramientas basadas en SDR que facilitan aprovecharse de sistemas vulnerables. Hay que prestarle atención desde ya.

#### Introducción

¿Qué es la ingenieria inversa

Conceptos básico

Evolución en el tiempo de la tecnología SDF

Comienzos

Seguridad

Estado actua

Caso práctic

GNU Radio

Pager POCSA(

Para terminar

Conclusiones

Utilidades

## **Utilidades**

- Aprender conocimientos básicos de radio (inquietud personal).
- Incorporar una nueva herramienta de trabajo (es posible que se incorpore en labores de pentesting).
- Servir de guía de inicio rápido a SDR a los investigadores del departamento.
- Obtener el título de Graduado en Ingeniería Informática.

¡Gracias por vuestra atención!