

Nom du projet :	Plateforme Geo-Aware Food Sourcing	
Préparé par :	HEDI DHIB	
N° de version :	1.0	
Date de version :	20/08/2025	
Titre:	Spécification des Conditions Requises pour l'Architecture	
Revu par :	Vincent	
Date de révision :	21/08/2025	
Liste de distribution :	Architect, Dev team, CPO, CIO, CEO	
De:	HEDI DHIB	
Date :	20/08/2025	
Email :	Hedi.dhib@gmail.com	
Pour Action :	Révision	
Date de rendu :	21/8/2025	
Types d'action :	Approbation, Révision, Information, Classement, Action requise, Participation à une réunion, Autre (à spécifier)	
Historique de versions :	Voir Github	

١.	Objectii du document	3
2.	Contexte général	3
3.	Sources des exigences	4
4.	Typologie des exigences	5
5.	Catalogue des exigences	6
6.	Priorisation	8
7.	Traçabilité et conformité	10
8.	Risques et hypothèses associés aux exigences	11
Con	clusion :	13
Tabl	e de signatures :	14

Foosus

Spécification des Conditions Requises pour l'Architecture

1. Objectif du document

Ce document constitue la **Spécification des Conditions Requises pour l'Architecture** du projet Foosus. Il a pour objectif de **formaliser l'ensemble des exigences** — métier, techniques, fonctionnelles, non-fonctionnelles, de sécurité, réglementaires ou liées à la transition — auxquelles l'architecture du système doit répondre.

Il sert de **référentiel partagé** entre les équipes produit, techniques et décisionnelles pour garantir que :

- l'architecture cible est alignée sur les besoins métiers et utilisateurs,
- les choix technologiques et structurants sont justifiables et mesurables,
- la transformation du SI respecte un cadre de qualité, de conformité et d'évolutivité maîtrisé.

Ce document permet de :

- Supprimer toute ambiguïté sur ce que l'architecture doit permettre ou garantir ;
- Documenter formellement les exigences liées à la refonte de l'architecture Foosus ;
- Constituer une base de validation des livrables techniques et fonctionnels ;
- Assurer la traçabilité des décisions prises en lien avec les besoins exprimés ;
- **Définir les critères de succès** en amont pour éviter les écarts d'interprétation lors du delivery.

2. Contexte général

Foosus est une start-up engagée dans le domaine de l'alimentation durable, dont l'objectif est de rapprocher les consommateurs des **producteurs et artisans locaux** via une application mobile. Forte de trois années d'existence, l'entreprise entre dans une phase critique de **scalabilité**, de **structuration et d'industrialisation** de sa plateforme.

Cependant, les **choix historiques d'architecture**, orientés vers un développement rapide, ont généré une **dette technique importante**, un **monolithe difficile à faire évoluer** et une **manque de modularité** qui freinent aujourd'hui :

- l'expérimentation rapide de nouvelles fonctionnalités ;
- l'intégration de services tiers ;
- la robustesse face aux pics de charge induits par la croissance.

Dans ce contexte, l'entreprise a décidé d'engager un **chantier de refonte de son architecture** basé sur les principes suivants :

• Modularité : découpage en domaines métier, adoption de microservices.

- Scalabilité et performance : architecture cloud-native, tolérante aux pics.
- Interopérabilité: APIs standardisées, communication entre modules via événements.
- Gouvernance : traçabilité des décisions, documentation continue, standards
 clairs
- **Conformité** : alignement avec le RGPD, l'OWASP, et les bonnes pratiques de sécurité.

Cette Spécification des Conditions Requises pour l'Architecture s'inscrit donc dans le cadre du cycle ADM TOGAF, en réponse à la phase B (Architecture Business) et comme point d'entrée structurant des phases C et D (Architecture des Systèmes d'Information et Architecture Technologique).

Elle a vocation à **servir de fondation** pour tous les livrables architecturaux, ainsi qu'à assurer la **cohérence entre les exigences exprimées et les solutions mises en œuvre**.

3. Sources des exigences

Les exigences définies dans ce document proviennent de **plusieurs sources hétérogènes**, qui reflètent les attentes, contraintes et ambitions des différents acteurs impliqués dans la transformation de la plateforme Foosus.

Elles ont été recueillies via des **entretiens**, **ateliers d'architecture**, **analyses techniques**, ainsi que l'étude des **objectifs métier** et des **contraintes réglementaires**.

Typologie des sources:

Source	Origine	Description
Exigences métier	CPO, PO, Product Designers	Attentes fonctionnelles exprimées par les équipes produit pour répondre aux besoins des utilisateurs finaux (parcours utilisateur, géolocalisation, tunnel de commande, etc.)
Exigences techniques	Architecte, Lead Dev, DevOps	Nécessités liées à la modernisation du SI, à la résilience, à la scalabilité, au découplage technique, à l'intégration de composants réutilisables

Source	Origine	Description	
Exigences de sécurité		Conformité RGPD, gestion des droits, chiffrement, auditabilité, principe de moindre privilège	
Contraintes réglementaires	Juridique / DPO	Obligations légales (protection des données personnelles, consentement utilisateur, traçabilité)	
Exigences d'exploitation	Équipe Ops / Support	Observabilité, logs, alerting, facilité de déploiement et de rollback, SLOs	
Exigences de Direction, CTO, transformation Architecte		Nécessité de migrer hors du legacy, assurer la cohabitation temporaire, cadrer la dette technique, fournir une architecture évolutive	
Retour utilisateurs / terrain	111111111111111111111111111111111111111		
Best practices OpenAPI, DDD, 12- sectorielles		Intégration des standards de qualité, d'interopérabilité, de sécurité, de résilience et de documentation moderne	

Les exigences issues de ces sources sont **consolidées, normalisées et classifiées** dans les sections suivantes, afin de garantir leur traçabilité tout au long du cycle de vie du projet d'architecture.

4. Typologie des exigences

Les exigences recueillies dans le cadre du projet Foosus sont **classifiées selon leur nature et leur rôle dans l'architecture cible**. Cette typologie facilite leur compréhension, leur priorisation, leur affectation aux livrables, ainsi que leur traçabilité dans les phases de conception, de mise en œuvre et de validation.

Catégories d'exigences :

Туре	Description	Exemples pour Foosus
Fonctionnelles	attendues de la plateforme. Elles spécifient "ce que le système doit	- Permettre aux utilisateurs de trouver des producteurs dans un rayon donné - Créer une commande multi-producteurs - Suivre les livraisons en temps réel

Туре	Description	Exemples pour Foosus
Non-fonctionnelles	Définissent les qualités attendues du système, indépendamment des fonctions spécifiques.	- Temps de réponse < 1,5 sec - Disponibilité 99.9 % - Tolerance aux pannes - Intégration CI/CD automatisée
Techniques	Imposent des contraintes de design ou d'implémentation propres à l'environnement technique.	- Utilisation d'une architecture microservices - Format standard des APIs (OpenAPI 3.x) - Logging centralisé
De sécurité et conformité	Spécifient les règles de confidentialité, d'intégrité, de traçabilité, ou de conformité réglementaire.	- RGPD : droit à l'oubli, gestion du consentement - SSO obligatoire pour l'admin - Chiffrement des données sensibles
D'exploitabilité	Exigences liées à la maintenance, l'observabilité, la supervision et l'automatisation.	- Alertes en cas de latence > 2s - Possibilité de rollback automatisé - Logs consultables en temps réel
De transition	Exigences liées à la cohabitation temporaire avec le legacy, à la migration, ou aux MVPs intermédiaires.	- Maintien du système existant pendant 6 mois - Interfaces de synchronisation temporaires - Priorisation de certains domaines métier
De gouvernance	Exigences sur la traçabilité des décisions, la documentation, la gestion des standards et de la qualité.	- Chaque composant structurant doit être associé à un ADR validé - Documentation minimale obligatoire avant mise en production

Cette typologie servira de base de classement pour le catalogue des exigences à venir (section 5), ainsi que pour leur traçabilité vers les artefacts d'architecture.

5. Catalogue des exigences

Le tableau ci-dessous recense les exigences **prioritaires**, **critiques ou structurantes** identifiées pour la conception, la mise en œuvre et la validation de l'architecture cible. Chaque exigence est **classée**, **priorisée et liée à sa source et à un livrable vérifiable**.

ID	Туре	Exigence	Priorité (MoSCoW)	Source	Livrable de vérification
REQ-01	Fonctionnelle	Permettre à un utilisateur de localiser des producteurs dans un rayon de 10km	MUST	Product Owner / UX	Modèle de processus + maquette fonctionnelle
REQ-02	Non-fonctionnelle	Le temps de réponse sur mobile ne doit pas dépasser 1,5 seconde sous charge nominale	MUST	Dev Team / Performance	Tests de charge + métriques de performance
REQ-03	Sécurité / Conformité	Le système doit respecter le RGPD (droit à l'oubli, consentement explicite, accès aux données)	MUST	DPO / Juridique	Modèle de gouvernance des données + test de conformité
REQ-04	Technique	L'architecture applicative doit être basée sur des microservices découplés par domaine métier	MUST	Architecte / CTO	Diagrammes C4 + découpage DDD
REQ-05	Transition	Le legacy doit coexister avec la nouvelle architecture pendant 6 mois minimum	SHOULD	СТО	Plan de migration + interfaces d'interopérabilité
REQ-06	Exploitabilité	Les logs doivent être centralisés, accessibles en temps réel et liés aux IDs utilisateur	MUST	Support / Ops	Stack ELK / Grafana + dashboard live

ID	Туре	Exigence	Priorité (MoSCoW)	Source	Livrable de vérification
REQ-07	Gouvernance	Chaque décision structurante doit faire l'objet d'un ADR approuvé et historisé	MUST	Architecte	Registre ADR dans GitHub (docs/adr)
REQ-08	Fonctionnelle	Le système doit gérer des commandes multi- producteurs et un panier partagé	MUST	Métier / UX	Modèle fonctionnel + cas d'usage + test de recette
REQ-09	Non-fonctionnelle	Le système doit garantir une disponibilité de 99,9 % (hors maintenance planifiée)	SHOULD	SLA produit	Architecture redondante + monitoring uptime
REQ-10	API / Interopérabilité	Toutes les APIs doivent être documentées en OpenAPI 3.x et versionnées	MUST	Tech Lead	Documentation auto via Swagger + CI build check

Remarques:

- Le **niveau de priorité** suit le modèle **MoSCoW** (*Must/Should/Could/Won't*).
- Chaque exigence est liée à un artefact vérifiable, ce qui permet de contrôler la couverture réelle des exigences.
- Ce tableau pourra être enrichi dans une feuille de calcul ou outil de gestion des exigences (Notion, Excel, GitHub Projects).

6. Priorisation

La priorisation des exigences repose sur une méthode structurée permettant de :

- Aligner les efforts d'architecture avec la valeur métier,
- Garantir la faisabilité technique dans un contexte contraint (temps, ressources, dette legacy),
- Assurer l'acceptabilité des livrables par les parties prenantes.

Méthodologie de priorisation utilisée : MoSCoW

Code	Signification	Règle d'application
MUST	Indispensable pour la viabilité du système	Exigence critique — toute livraison sans cette exigence serait considérée comme incomplète ou invalide
SHOULD	Importante, mais contournable temporairement	Peut être livrée dans une itération suivante si justifiée (retard, dépendance, budget)
COULD	Facultative / opportunité	Apporte une valeur ajoutée mais non critique — à considérer si les ressources le permettent
WON'T (this time)	Explicitement exclue	Décision validée de ne pas inclure dans ce cycle — à reconsidérer dans le futur

Critères de priorisation appliqués à Foosus

Critère	Question posée	Impact sur la priorité	
Impact métier	Est-ce essentiel à l'utilisateur final ou à la promesse produit ?	Influence fort le MUST	
Risque technique	Le non-traitement bloque-t-il l'évolution ou crée-t-il de la dette ?	Peut faire basculer en MUST ou SHOULD	
Effort estimé	Peut-on le livrer dans un MVP réaliste ?	Oriente vers SHOULD ou COULD	
Valeur produit	Est-ce différenciant ou secondaire ?	Oriente entre SHOULD et COULD	
Contraintes légales ou de sécurité	Imposée par la loi ou des standards ?	Est forcément un MUST	

Suivi et évolution :

- Le niveau de priorité est versionné dans le catalogue des exigences.
- Tout changement de priorité (ex : SHOULD → MUST) doit être :
 - o documenté dans l'ADR ou le backlog,

Foosus

Spécification des Conditions Requises pour l'Architecture

- o justifié par une évolution métier, légale ou technique,
- o validé en comité d'architecture.

7. Tracabilité et conformité

La traçabilité des exigences est un pilier de la gouvernance architecturale. Elle permet de **relier chaque exigence à un artefact, une décision, un composant ou un test**, assurant ainsi une couverture complète et vérifiable de ce qui a été défini dans cette spécification.

Objectifs de la traçabilité :

- S'assurer qu'aucune exigence critique ne soit oubliée lors de la conception ou du développement.
- **Permettre un audit clair** de la conformité des livrables (architecture, code, déploiement).
- Faciliter la validation et les tests fonctionnels et techniques.
- Justifier les choix réalisés (ex. : pourquoi un découpage en microservices, pourquoi tel outil ou tel protocole).
- Adapter rapidement l'architecture en cas de changement d'exigence ou de contexte.

Traçabilité descendante (exigence → livrable) :

Chaque exigence du catalogue (section 5) est associée à au moins un des éléments suivants :

- Un artefact architectural (diagramme C4, schéma DDD, modélisation de processus, etc.)
- Un ADR (Architecture Decision Record) justifiant un choix technique
- Un livrable technique (documentation OpenAPI, script CI/CD, log d'audit...)
- Un test d'acceptation ou un critère de validation fonctionnelle
- → Ces liens sont **versionnés dans Git** et/ou référencés dans **Notion ou Confluence** via des IDs croisés (ex : REQ-04 ↔ ADR-03).

Traçabilité ascendante (livrable → exigences) :

Chaque composant ou décision peut être relié à une ou plusieurs exigences initiales, ce qui permet :

- De justifier l'existence d'un composant ou d'un standard,
- De vérifier sa cohérence avec les objectifs métier ou réglementaires,
- D'éviter l'introduction de solutions non justifiées ou non prioritaires.

Outils utilisés pour la traçabilité

Outil	Usage
GitHub / GitLab	Stockage des ADRs, des livrables versionnés, tagging des issues / commits
Notion / Confluence	Référentiel centralisé des exigences et des liens vers les artefacts
CI/CD (GitHub Actions, GitLab CI)	Vérification automatique de la couverture documentaire (lint OpenAPI, présence README/ADR)
Trello / Jira / Backlog agile	Suivi des tickets liés aux exigences et mise en production

Conformité:

- Les **audits de conformité** sont menés par le Comité d'Architecture à chaque jalon (fin de vague ou MVP).
- Les exigences légales et de sécurité (RGPD, logs, access control...) sont **revues** par le DPO ou l'équipe sécurité.
- Tout écart identifié (non-conformité, exigence non couverte) fait l'objet d'un ticket correctif ou d'une demande de modification du périmètre.

"Chaque exigence priorisée dans ce document fait l'objet d'un ticket ou d'un epic dans le backlog agile du projet (Jira/Trello). Les tickets sont étiquetés par leur ID (ex. : REQ-01) afin d'assurer une traçabilité entre les spécifications d'architecture et les user stories de mise en œuvre."

"Ce lien permet un pilotage conjoint architecture / produit, aligné sur les itérations de delivery."

8. Risques et hypothèses associés aux exigences

Certaines exigences peuvent comporter des **zones d'incertitude**, soit en raison de dépendances externes, soit en lien avec des choix techniques non encore validés. Il est donc essentiel de :

• formuler explicitement les hypothèses de travail liées à ces exigences,

- **identifier les risques** associés à leur mauvaise interprétation, non-couverture ou retard de mise en œuvre,
- prévoir des actions de réduction ou de mitigation.

Hypothèses critiques :

ID	Hypothèse	Impact si fausse	Action recommandée / Validation
HYP-01	Les utilisateurs finaux accepteront de partager leur géolocalisation	Risque de perte de fonctionnalité clé (REQ-01)	Tester via un A/B test, inclure des options de désactivation
HYP-02	Les équipes DevOps sont disponibles pour mettre en place la stack CI/CD attendue	Délai de mise en œuvre des exigences REQ-06 et REQ- 09	Réserver des ressources dès le sprint 0
HYP-03	Le legacy est maintenable pendant toute la phase de transition (6 mois)	Risque si obsolescence technique non anticipée (REQ-05)	Audit technique du legacy et plan de sauvegarde
HYP-04	Le format OpenAPI est accepté et maîtrisé par toutes les équipes	Risque de retard ou de mauvaise documentation (REQ-10)	Organiser un tech talk de montée en compétence

Risques associés aux exigences

ID	Risque	Exigences concernées	Gravité / Probabilité	Plan d'action
RISK-01	RGPD mal implémenté (consentement, suppression, anonymisation)	REQ-03	Haute / Moyenne	Intégrer le DPO dans la validation des modèles de données
RISK-02	Logs mal centralisés ou insuffisamment détaillés	REQ-06	Moyenne / Élevée	Vérifier les logs sur 2 sprints consécutifs avec l'équipe support

ID	Risque	Exigences concernées	Gravité / Probabilité	Plan d'action
RISK-03	Écart entre architecture documentée et implémentée	REQ-04, REQ-07	Haute / Moyenne	Contrôle qualité via revue d'ADR + relecture des schémas à chaque sprint
RISK-04	Multiplication des microservices non justifiée	REQ-04	Moyenne / Moyenne	Créer un ADR pour chaque composant structurant, validé en ARB

Suivi et gestion :

- Ces risques et hypothèses sont **revus à chaque révision du catalogue des exigences**.
- Ils sont suivis dans le registre des risques du projet.
- Toute hypothèse invalidée doit donner lieu à une mise à jour du périmètre, des priorités ou des tests de validation.

Conclusion:

Ce document correspond aux livrables attendus dans les phases TOGAF suivantes :

- Phase B (Architecture Métier): formalisation des besoins fonctionnels et réglementaires;
- Phase C (Architecture des SI) : exigences techniques, de découplage, interopérabilité;
- Phase D (Architecture Technologique): exigences de performance, observabilité,
 CI/CD;
- Phase E (Opportunités et Solutions): cadrage de la migration, MVPs, cohabitation legacy.

Table de signatures :

Nom	Fonction	Organisation	Signature	Date
Hedi Dhib	Architecte Logiciel	Foosus		19/08/2025
Ash Callum	Chief Executive Officer (CEO)	Foosus		
Natasha Jarson	Chief Information Officer (CIO)	Foosus		
Daniel Anthony	Chief Product Officer (CPO)	Foosus		
Christina Orgega	Chief Marketing Officer (CMO)	Foosus		
Jo Kumar	Chief Financial Officer (CFO)	Foosus		
Pete Parker	Engineering Owner	Foosus		
Jack Harkner	Operations Lead	Foosus		

Annexe A – Couverture des exigences par artefacts :

ID Exigence	Туре	Artefact associé	Emplacement / Lien (exemple)
REQ-01	Fonctionnelle	Maquette UX + diagramme de processus	/docs/UX/prod-localisation.png
REQ-02	Non-fonctionnelle	Rapport JMeter + KPI de charge	/tests/perf/loadtest-report-Q2.md
REQ-03	Sécurité / conformité	Politique RGPD + logs anonymisés	/compliance/RGPD-foosus-v1.pdf
REQ-04	Technique	Diagramme C4 + ADR-04 (architecture microservices)	/archi/C4-foosus.png, /docs/adr/adr- 004.md
REQ-05	Transition	Roadmap de migration + plan de coexistence	/docs/legacy-plan.md

ID Exigence	Туре	Artefact associé	Emplacement / Lien (exemple)
REQ-06	Exploitabilité	Stack ELK déployée + dashboard live	/infra/observability/kibana.json
REQ-07	Gouvernance	Registre des décisions (ADRs GitHub)	/docs/adr/index.md

Glossaire des acronymes utilisés :

Acronyme	Définition	
REQ	Requirement (Exigence)	
ADR	Architecture Decision Record	
CI/CD	Continuous Integration / Continuous Delivery	
RGPD	Règlement Général sur la Protection des Données	
C4	Modèle de modélisation logicielle en 4 niveaux	
DDD	Domain-Driven Design	
SLA	Service Level Agreement	
SLO	Service Level Objective	