Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université Paris Diderot L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2021-2022

algorithme = méthode systématique pour résoudre un problème

algorithme = méthode systématique pour résoudre un problème

nécessite une preuve de correction : pour chaque entrée, l'algorithme doit terminer en produisant la bonne sortie

algorithme = méthode systématique pour résoudre un problème

nécessite une preuve de correction : pour chaque entrée, l'algorithme doit terminer en produisant la bonne sortie

il peut exister plusieurs algorithmes pour le même problème

algorithme = méthode systématique pour résoudre un problème

nécessite une preuve de correction : pour chaque entrée, l'algorithme doit terminer en produisant la bonne sortie

il peut exister plusieurs algorithmes pour le même problème

pour les comparer, il faut étudier leur complexité, à la fois en temps et en espace

suite définie par : $F_0=0, \qquad F_1=1 \qquad \text{et} \qquad \forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

suite définie par : $F_0=0, \qquad F_1=1 \qquad \text{et} \qquad \forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

suite définie par : $F_0=0, \qquad F_1=1 \qquad \text{et} \qquad \forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

Préambule: à quel point est-ce gros? 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

• la suite (F_n) est positive, (preuve par récurrence)

suite définie par : $F_0=0, \qquad F_1=1 \qquad \text{et} \qquad \forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

- ullet la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n \ge 2, F_n = F_{n-1} + F_{n-2}$ et $F_{n-2} \ge 0$ donc $F_n \ge F_{n-1}$

suite définie par : $F_0=0, \qquad F_1=1 \qquad \text{et} \qquad \forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

- ullet la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n \geqslant 2, F_n = F_{n-1} + F_{n-2}$ et $F_{n-2} \geqslant 0$ donc $F_n \geqslant F_{n-1}$
- donc : $\forall n \geqslant 2$, $F_n = F_{n-1} + F_{n-2} \geqslant 2F_{n-2}$

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2$, $F_n=F_{n-1}+F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n \ge 2, F_n = F_{n-1} + F_{n-2}$ et $F_{n-2} \ge 0$ donc $F_n \ge F_{n-1}$
- donc : $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$

suite définie par : $F_0 = 0$, $F_1 = 1$ et $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$

suite définie par : $F_0 = 0$, $F_1 = 1$ et $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$

suite définie par : $F_0 = 0$, $F_1 = 1$ et $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n \geqslant 2, F_n = F_{n-1} + F_{n-2}$ et $F_{n-2} \geqslant 0$ donc $F_n \geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2$, $F_n=F_{n-1}+F_{n-2}$

- ullet la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n \geqslant 2, F_n = F_{n-1} + F_{n-2}$ et $F_{n-2} \geqslant 0$ donc $F_n \geqslant F_{n-1}$
- donc : $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$
- (or $F_6=8=2^{6/2}$ et $F_7=13\geqslant 2^{7/2}$) donc : $\forall n\geqslant 6,\ F_n\geqslant 2^{n/2}$

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$
- (or $F_6 = 8 = 2^{6/2}$ et $F_7 = 13 \ge 2^{7/2}$) donc : $\forall n \ge 6$, $F_n \ge 2^{n/2}$
- donc $\forall n \geq 6$, F_n a *au moins* $\frac{n}{2}$ *chiffres* (en binaire)

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$
- (or $F_6 = 8 = 2^{6/2}$ et $F_7 = 13 \ge 2^{7/2}$) donc : $\forall n \ge 6$, $F_n \ge 2^{n/2}$
- donc $\forall n \ge 6$, F_n a *au moins* $\frac{n}{2}$ *chiffres* (en binaire)
- similairement, $F_n \leq 2^n$, donc a *au plus* n *chiffres* (en binaire)

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

Préambule: à quel point est-ce gros? 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

- ullet la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$
- (or $F_6 = 8 = 2^{6/2}$ et $F_7 = 13 \ge 2^{7/2}$) donc : $\forall n \ge 6$, $F_n \ge 2^{n/2}$
- donc $\forall n \ge 6$, F_n a *au moins* $\frac{n}{2}$ *chiffres* (en binaire)
- similairement, $F_n \leq 2^n$, donc a *au plus* n *chiffres* (en binaire)

Donc $F_{1\,000\,000}$ a entre 500 000 et 1 000 000 chiffres en binaire, soit (environ) entre 150 000 et 300 000 chiffres en décimal

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

Préambule : à quel point est-ce gros ? 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

- la suite (F_n) est positive, (preuve par récurrence)
- donc croissante : $\forall n\geqslant 2, F_n=F_{n-1}+F_{n-2}$ et $F_{n-2}\geqslant 0$ donc $F_n\geqslant F_{n-1}$
- donc: $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2} \ge 2F_{n-2}$
- (or $F_6 = 8 = 2^{6/2}$ et $F_7 = 13 \ge 2^{7/2}$) donc : $\forall n \ge 6$, $F_n \ge 2^{n/2}$
- donc $\forall n \ge 6$, F_n a *au moins* $\frac{n}{2}$ *chiffres* (en binaire)
- similairement, $F_n \leq 2^n$, donc a *au plus* n *chiffres* (en binaire)

Donc $F_{1\,000\,000}$ a entre 500 000 et 1 000 000 chiffres en binaire, soit (environ) entre 150 000 et 300 000 chiffres en décimal

Plus précisément, on peut montrer (admis):

$$F_n \sim \varphi^n$$
, avec $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$ (« nombre d'or »)

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

1 utiliser directement la définition par récurrence

```
def fibo_1(n) :
   if n <= 0 : return 0
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

1 utiliser directement la définition par récurrence

```
def fibo_1(n) :
   if n <= 0 : return 0
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

Preuve de terminaison : par récurrence (forte)

- cas de base : si $n \leq 2$, fibo_1(n) termine
- hérédité: soit n ≥ 2 t.q. fibo_1(k) termine pour tout k < n
 alors fibo_1(n-1) et fibo_1(n-2) terminent, donc fibo_1(n)
 termine

donc fibo_1(n) termine pour tout n

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \ F_n=F_{n-1}+F_{n-2}$

1 utiliser directement la définition par récurrence

```
def fibo_1(n) :
   if n <= 0 : return 0
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

Preuve de correction : par récurrence (forte)

- cas de base : si $n \le 2$, fibo_1(n) retourne F_n
- hérédité : soit $n \ge 2$ t.q. fibo_1(k) retourne F_k pour tout k < n alors fibo_1(n) retourne fibo_1(n-1) + fibo_1(n-2) = $F_{n-1} + F_{n-2} = F_n$

donc fibo_1(n) retourne F_n pour tout n

suite définie par : $F_0=0, \quad F_1=1 \quad \text{et} \quad \forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

1 utiliser directement la définition par récurrence

```
def fibo_1(n) :
   if n <= 0 : return 0
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

(gros) inconvénient : recalcul permanent de valeurs déjà calculées

suite définie par : $F_0=0, \quad F_1=1 \quad \text{et} \quad \forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs

```
def fibo_2(n) :
   if n <= 0 : return 0
   liste = [0, 1] + [0] * (n-1)
   for i in range(2, n+1) :
      liste[i] = liste[i-1] + liste[i-2]
   return liste[n]</pre>
```

(on appelle cette technique « programmation dynamique »)

suite définie par : $F_0=0, \quad F_1=1 \quad \text{et} \quad \forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs

```
def fibo_3(n) :
   if n <= 0 : return 0
   previous, last = 0, 1
   for i in range(2, n+1) :
      previous, last = last, previous + last
   return last</pre>
```


suite définie par : $F_0=0, \quad F_1=1 \quad \text{et} \quad \forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs

```
def fibo_3(n) :
   if n <= 0 : return 0
   previous, last = 0, 1
   for i in range(2, n+1) :
      previous, last = last, previous + last
   return last</pre>
```

Preuve de terminaison : n-1 tours de boucle

suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs

```
def fibo_3(n) :
   if n <= 0 : return 0
   previous, last = 0, 1
   for i in range(2, n+1) :
      previous, last = last, previous + last
   return last</pre>
```

```
Preuve de correction : à l'aide de l'invariant :  \textit{« après le tour de boucle d'indice i, previous} = F_{i-1} \textit{ et last} = F_i \textit{»}
```


suite définie par : $F_0=0$, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs
- 4 utiliser:

$$\forall n \geqslant 1, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

```
def fibo_4(n) :
    M = puissance_matrice_2_2 ([ [1, 1], [1, 0] ], n-1)
    return M[0][0]
```


suite définie par :
$$F_0=0$$
, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs
- 4 utiliser:

$$\forall n \geqslant 1, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

suite définie par :
$$F_0=0$$
, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs
- 4 utiliser:

$$\forall n \geqslant 1, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

Lemme: les 4 algorithmes sont corrects

suite définie par :
$$F_0=0$$
, $F_1=1$ et $\forall n\geqslant 2, \; F_n=F_{n-1}+F_{n-2}$

- 1 utiliser directement la définition par récurrence
- 2 garder un tableau de toutes les premières valeurs
- 3 garder seulement les deux dernières valeurs
- 4 utiliser :

$$\forall n \geqslant 1, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

Lemme: les 4 algorithmes sont corrects

Quelle est la meilleure méthode?

Complexité en espace

= quantité de mémoire nécessaire pour effectuer le calcul

Complexité en espace

= quantité de mémoire nécessaire pour effectuer le calcul

mémoire *incompressible* : nécessaire pour stocker les données et le résultat

mémoire *auxiliaire* : pour les calculs intermédiaires

COMPLEXITÉ EN ESPACE

= quantité de mémoire nécessaire pour effectuer le calcul

mémoire *incompressible* : nécessaire pour stocker les données et le résultat

mémoire *auxiliaire* : pour les calculs intermédiaires

pour comparer entre eux des algorithmes résolvant le même problème, seule la mémoire *auxiliaire* est pertinente

```
def fibo_2(n) :
   if n <= 0 : return 0
   liste = [0, 1] + [0] * (n-1)
   for i in range(2, n+1) :
     liste[i] = liste[i-1] + liste[i-2]
   return liste[n]</pre>
```

utilise un *tableau de* n *(grands) entiers* pour en calculer un seul (plus un (petit ¹) entier comme indice de boucle)

^{1.} petit = valeur de l'ordre de n vs grand = de l'ordre de n chiffres

```
def fibo_2(n) :
   if n <= 0 : return 0
   liste = [0, 1] + [0] * (n-1)
   for i in range(2, n+1) :
     liste[i] = liste[i-1] + liste[i-2]
   return liste[n]</pre>
```

utilise un *tableau de* n *(grands) entiers* pour en calculer un seul (plus un (petit ¹) entier comme indice de boucle)

donc la place nécessaire est (à peu près) la somme des tailles des n valeurs calculées, donc (supérieure à) $\sum_{i=0}^n \frac{i}{2} = \frac{n(n+1)}{4}$ bits

(soit à peu près 250 000 000 000 bits pour $n = 1\,000\,000$, c'est-à-dire 30 Go)

^{1.} petit = valeur de l'ordre de n vs grand = de l'ordre de n chiffres

```
def fibo_3(n) :
   if n <= 0 : return 0
   previous, last = 0, 1
   for i in range(2, n+1) :
     previous, last = last, previous + last
   return last</pre>
```

utilise seulement une variable auxiliaire de type (grand) entier (plus un (petit) entier comme indice de boucle)

```
def fibo_3(n) :
   if n <= 0 : return 0
   previous, last = 0, 1
   for i in range(2, n+1) :
     previous, last = last, previous + last
   return last</pre>
```

utilise seulement une variable auxiliaire de type (grand) entier (plus un (petit) entier comme indice de boucle)

 \implies on peut envisager d'utiliser fibo_3 pour calculer F_{106} , contrairement à fibo_2

Complexité en temps

= temps nécessaire pour mener le calcul à son terme

Complexité en temps

= temps nécessaire pour mener le calcul à son terme

plus difficile à quantifier précisément, essentiellement car ce temps dépend de la machine utilisée

Complexité en temps

= temps nécessaire pour mener le calcul à son terme

plus difficile à quantifier précisément, essentiellement car ce temps dépend de la machine utilisée

convention : on estime ce temps par le *nombre d'opérations élémentaires effectuées* : sur une machine donnée, le temps d'exécution sera (à peu près) proportionnel à ce nombre

opération élémentaire = opération dont le temps d'exécution peut être considéré comme constant

exemple : affectation, comparaison, opération arithmétique (sur des nombres de taille bornée)...

Nombre de cycles effectués par un processeur monocœur à 1 GHz :

en 1 seconde	109
en 1 heure	$3 \cdot 10^{12}$
en 1 jour	9 · 10 ¹³
en 1 an	3 · 10 ¹⁶
en $13, 8 \cdot 10^9$ années	4 · 10 ²⁶

(pour un quadricœur à 2.5GHz, rajouter juste un zéro)

n	10	100	10 ³	10 ⁶	109	10 ¹²
log ₂ n	4	7	10	20	30	40
10n	100	10 ³	10 ⁴	10 ⁷	1010	10 ¹³
n log ₂ n	34	665	10 ⁴	2 · 10 ⁷	3 · 10 ¹⁰	$4 \cdot 10^{13}$
n ²	100	10 ⁴	10 ⁶	10 ¹²	10 ¹⁸	10 ²⁴
n^3	10 ³	10 ⁶	109	10 ¹⁸	10 ²⁷	10 ³⁶
2 ⁿ	10 ³	10 ³⁰	10 ³⁰¹	•••	•••	•••

(rappel : en 1 an, un processeur à 1 GHz effectue $3 \cdot 10^{16}$ cycles)

n	10	100	10 ³	10 ⁶	109	10 ¹²
log ₂ n	4	7	10	20	30	40
10n	100	10 ³	10 ⁴	10 ⁷	1010	10 ¹³
n log ₂ n	34	665	10 ⁴	2 · 10 ⁷	3 · 10 ¹⁰	$4 \cdot 10^{13}$
n ²	100	10 ⁴	10 ⁶	10 ¹²	10 ¹⁸	10 ²⁴
n ³	10 ³	10 ⁶	109	10 ¹⁸	10 ²⁷	10 ³⁶
2 ⁿ	10 ³	10 ³⁰	10 ³⁰¹	•••	•••	

(rappel: en 1 an, un processeur à 3.2 GHz effectue 10¹⁷ cycles)

n	10	100	10 ³	10 ⁶	109	10 ¹²
log ₂ n	4	7	10	20	30	40
10n	100	10 ³	10 ⁴	10 ⁷	1010	10 ¹³
n log ₂ n	34	665	10 ⁴	2 · 10 ⁷	3 · 10 ¹⁰	$4 \cdot 10^{13}$
n ²	100	10 ⁴	106	10 ¹²	10 ¹⁸	10 ²⁴
n ³	10 ³	10 ⁶	109	10 ¹⁸	10 ²⁷	10 ³⁶
2 ⁿ	10 ³	10 ³⁰	10 ³⁰¹	•••	•••	•••

(rappel: en 1 an, un processeur à 3.2 GHz effectue 10¹⁷ cycles)

NOTATIONS UTILISÉES

 $f \in O(g) \iff f$ « ne grandit $pas \ plus \ vite$ que » g (« $grand \ O$ »)

 $\mathsf{f} \in \Omega(\mathsf{g}) \iff \mathsf{f} \; \texttt{ (grandit } \; \textit{au moins aussi vite} \; \mathsf{que} \; \texttt{)} \; \mathsf{g} \; (\texttt{ ($\it Om\'ega$ $\it ")$})$

 $f \in \Theta(g) \iff f \ et \ g \ \text{\enskip} \ \text{ grandissent \ a la même vitesse} \ \text{\enskip} \ \text{\ens$

Notations utilisées

$$f \in O(g) \iff f \text{ "ne grandit } \textit{pas plus vite} \text{ que "g} \qquad (\text{"grand O"})$$

« (pour $m\leqslant n$ assez grands) si $g(n)\leqslant \alpha g(m)$, alors $f(n)\leqslant \alpha f(m)$ »

 $\mathsf{f} \in \Omega(\mathsf{g}) \iff \mathsf{f} \mathrel{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{g}}}}}}}} \mathsf{g} \mathsf{randit} \mathrel{ ext{ ext{ ext{au}}}} \mathsf{ ext{$moins aussi vite}}} \mathsf{que} \mathrel{ ext{ ext{ ext{ ext{$}}}}} \mathsf{g} \left(\mathrel{ ext{ ext{ ext{$}}}} \mathsf{ ext{ ext{$}}} \mathsf{om} \mathsf{e} \mathsf{g} \right)$

$$f \in \Theta(g) \iff \text{f et } g \text{ « grandissent à la même vitesse »} \qquad (\text{« } \mathit{Th\acute{e}ta} \text{»})$$

Notations utilisées

« (pour $m\leqslant n$ assez grands) si $g(n)\leqslant \alpha g(m)$, alors $f(n)\leqslant \alpha f(m)$ »

 $\mathsf{f} \in \Omega(\mathsf{g}) \iff \mathsf{f} \mathrel{ \lessdot } \mathsf{grandit} \mathrel{ \textit{au moins aussi vite} } \mathsf{que} \mathrel{ \backprime } \mathsf{g} \mathrel{ (\lessdot Om\'ega \> \backprime) } \bigr]$

« (pour $m\leqslant n$ assez grands) si $g(n)\geqslant \alpha g(m),$ alors $f(n)\geqslant \alpha f(m)$ »

 $\mathsf{f} \in \Theta(g) \iff \mathsf{f} \ \mathsf{et} \ g \ \texttt{ `grandissent `a` la même vitesse ``} \qquad (\texttt{ `` Th\'eta ``)}$

Notations utilisées

Définition (grand O, grand Oméga, grand Théta)

Soit f et g deux fonctions de $\mathbb N$ dans $\mathbb N$. On dit que :

•
$$f \in O(g)$$
 (ou $f(n) \in O(g(n))$, ou $f(n) = O(g(n))$) si:

$$\exists c>0, \ \exists n_0 \in \mathbb{N}, \quad \forall n\geqslant n_0, \quad f(n)\leqslant c\cdot g(n)$$

• $f \in \Omega(g)$ (ou $f(n) \in \Omega(g(n))$) si:

$$\exists c>0, \ \exists n_0 \in \mathbb{N}, \quad \forall n \geqslant n_0, \quad f(n) \geqslant c \cdot g(n)$$

• $f \in \Theta(g)$ (ou $f(n) \in \Theta(g(n))$) si:

$$f \in O(g)$$
 et $f \in \Omega(g)$

autrement dit:

$$\exists c_1, c_2 > 0, \ \exists n_0 \in \mathbb{N}, \quad \forall n \geqslant n_0, \quad c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$$

EXEMPLES

Fonctions appartenant à $\Theta(n)$

EXEMPLES

Fonctions appartenant à $\Theta(\mathfrak{n}^2)$

Complexité des calculs de F_n

utilisation naïve de la récurrence

```
\implies \Theta(\phi^n) additions
```

```
def fibo_1(n) :
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

Complexité des calculs de Fn

utilisation naïve de la récurrence

```
\implies \Theta(\varphi^n) additions
```

calcul itératif des n premières valeurs

```
\implies \Theta(n) additions
```

```
def fibo_3(n) :
  previous, last = 1, 1
  for i in range(2, n+1) :
    previous, last = last, previous + last
  return last
```

```
def puissance(a, n) : # version récursive
  if n == 0 : return 1  # une comparaison
  tmp = puissance(a, n//2)  # une division par 2, un appel récursif
  carre = tmp * tmp  # une multiplication
  if n%2 == 0 : return carre  # une comparaison modulo 2
  else : return a * carre  # une multiplication
```

```
def puissance(a, n) : # version récursive
  if n == 0 : return 1  # une comparaison
  tmp = puissance(a, n//2)  # une division par 2, un appel récursif
  carre = tmp * tmp  # une multiplication
  if n%2 == 0 : return carre  # une comparaison modulo 2
  else : return a * carre  # une multiplication
```

Preuve de correction : par récurrence (forte) sur n

- cas de base : si n = 0, puissance(a, n) retourne aⁿ = 1 pour tout a (convention usuelle pour 0°)
- hérédité : soit $n \ge 1$ t.q. puissance(a, k) retourne a^k pour tout k < n comme n//2 < n, puissance(a, n//2) retourne $a^{n//2}$, donc :
 - si n est pair : puissance(a,n) retourne $a^{n/2} \times a^{n/2} = a^n$
 - si n est impair : puissance(a, n) retourne $a^{(n-1)/2} \times a^{(n-1)/2} \times a = a^n$

donc puissance (a, n) retourne a^n pour tout n

Complexité de l'exponentiation binaire

```
def puissance(a, n) : # version récursive
  if n == 0 : return 1  # une comparaison
  tmp = puissance(a, n//2)  # une division par 2, un appel récursif
  carre = tmp * tmp  # une multiplication
  if n%2 == 0 : return carre  # une comparaison modulo 2
  else : return a * carre  # une multiplication
```

Calcul de complexité :

- chaque appel récursif effectue (au plus) 2 multiplications, une division par 2, une comparaison et une comparaison modulo 2
- à chaque appel récursif, le paramètre n est divisé par 2 (avec arrondi inférieur), avec n=0 comme cas terminal; donc le nombre total d'appels est h+2 si $n=2^h$, et plus généralement si $2^h \le n < 2^{h+1}$, c'est-à-dire si $h=\lfloor \log_2 n \rfloor$.
- $\implies \Theta(\log_2 n)$ multiplications de la forme $a^k \cdot a^{\ell}$, $k \in \{1, \ell\}$

```
def puissance(a, n) : # version itérative
  res = 1
  while n != 0 : # une comparaison
  if n%2 == 1 : # une comparaison modulo 2
    res *= a # une multiplication
  a *= a # une multiplication
  n //= 2 # une division par 2
  return res
```

Preuve de correction : en montrant « res * a**n est constant » Considérons un tour de boucle, et notons r_d , a_d , n_d les valeurs des variables au début du tour, et r_f , a_f , n_f leurs valeurs à la fin du tour.

- si n_d est pair, $r_f = r_d$, $\alpha_f = \alpha_d^2$ et $n_f = n_d/2$, donc $\alpha_f^{n_f} = \alpha_d^{2 \times n_d/2} = \alpha_d^{n_d}$, et $r_f \times \alpha_f^{n_f} = r \times \alpha_d^{n_d}$;
- si n_d est impair, $r_f = r_d \times a_d$, $a_f = a_d^2$ et $n_f = (n_d 1)/2$, donc $a_f^{n_f} = a_d^{n_d 1}$, et $r_f \times a_f^{n_f} = r \times a \times a_d^{n_d 1} = r \times a_d^{n_d}$;

Donc res * a**n est un invariant de la boucle. Notons a et n les valeurs initiales des paramètres. En début de boucle, res vaut 1, donc res * a**n vaut a^n . En fin de boucle, la variable n vaut 0, donc a**n vaut 1, et res contient donc a^n .

```
def puissance(a, n) : # version itérative
  res = 1
  while n != 0 : # une comparaison
  if n%2 == 1 : # une comparaison modulo 2
   res *= a # une multiplication
  a *= a # une multiplication
  n //= 2 # une division par 2
  return res
```

Calcul de complexité :

- chaque tour de boucle effectue (au plus) 2 multiplications, une division par 2, une comparaison et une comparaison modulo 2
- à chaque tour de boucle, le paramètre n est divisé par 2 (avec arrondi inférieur), avec n=1 comme dernier cas; donc le nombre total de tours est h+1 si $n=2^h$, et plus généralement si $2^h \leqslant n < 2^{h+1}$, c'est-à-dire si $h=\lceil \log_2 n \rceil$.
- $\implies \Theta(\log_2 n)$ multiplications de la forme $a^k \cdot a^\ell$, $k \in \{1, \ell\}$

Complexité

 $\Theta(\log_2 n)$ multiplications de la forme $\alpha^k \cdot \alpha^\ell$

Complexité

 $\Theta(\log_2 n)$ multiplications de la forme $\alpha^k \cdot \alpha^\ell$

si ces multiplications ont un coût constant, *i.e.* si les opérandes ont une taille constante, complexité en $\Theta(\log_2 n)$

c'est le cas avec l'arithmétique modulaire ou l'arithmétique flottante utilisées usuellement : tous les nombres sont codés sur exactement 32 (ou 64) bits, donc le coût d'une multiplication est constant

Complexité

 $\Theta(\log_2 n)$ multiplications de la forme $\alpha^k \cdot \alpha^\ell$

si ces multiplications ont un coût constant, *i.e.* si les opérandes ont une taille constante, complexité en $\Theta(\log_2 n)$

sinon il faut tenir compte du coût de ces multiplications; par exemple en arithmétique exacte sur des entiers :

valeur	taille (en bits)	coût du calcul naïf du carré
a	$\log_2 a$	$\Theta((\log_2 a)^2)$
a ^k	$k \cdot \log_2 a$	$\Theta(k^2 \cdot (\log_2 \mathfrak{a})^2)$

Complexité des calculs de Fn

utilisation naïve de la récurrence $\implies \Theta(\phi^n)$ additions calcul itératif des n premières valeurs $\implies \Theta(n)$ additions calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \implies \Theta(\log_2 n)$ multiplications... de matrices 2×2 (chacune impliquant 4 additions et 8 multiplications d'entiers)

Complexité des calculs de Fn

utilisation naïve de la récurrence

$$\implies \Theta(\varphi^n)$$
 additions

calcul itératif des n premières valeurs

$$\implies \Theta(n)$$
 additions

calcul de
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \implies \Theta(\log_2 n) \text{ multiplications...}$$

$$\frac{de \ matrices}{} 2 \times 2$$

(chacune impliquant 4 additions et 8 multiplications d'entiers)

MAIS... comme $F_n \in \Theta(\phi^n)$, les opérations arithmétiques se font sur des entiers de **taille** $\Theta(n)$ (c'est-à-dire de $\Theta(n)$ chiffres)

 \implies additions en $\Theta(n)$ opérations élémentaires, multiplications en $O(n^2)$ (coût de l'algo naïf)

