HeavyWater Machine Learning Problem

Solution by Mark Wilber

• 62 K documents, 14 categories

- 62 K documents, 14 categories
- unbalanced classes, spanning nearly 2 orders of magnitude

• document lengths spanning 0–9076 tokens (mode: 100, median: 252, mean: 334.1)

• document lengths vary widely by category, but few are shorter than 10 tokens

• 1,037,933 *unique* tokens!

- 1,037,933 *unique* tokens!
- contrasts with: entire English language

Problem vocabulary exceeds that of OED:

Oxford Dictionary has 273,000 headwords; 171,476 of them being in current use, 47,156 being obsolete words and around 9,500 derivative words included as subentries. The dictionary contains 157,000 combinations and derivatives in bold type, and 169,000 phrases and combinations in bold italic type, making a total of over 600,000 word-forms. There is one count that puts the English vocabulary at about 1 million words — but that count presumably includes words such as Latin species names, prefixed and suffixed words, scientific terminology, jargon, foreign words of extremely limited English use and technical acronyms.

- 1,037,933 *unique* tokens!
- contrasts with: entire English language

Problem vocabulary exceeds that of OED:

Oxford Dictionary has 273,000 headwords; 171,476 of them being in current use, 47,156 being obsolete words and around 9,500 derivative words included as subentries. The dictionary contains 157,000 combinations and derivatives in bold type, and 169,000 phrases and combinations in bold italic type, making a total of over 600,000 word-forms. There is one count that puts the English vocabulary at about 1 million words — but that count presumably includes words such as Latin species names, prefixed and suffixed words, scientific terminology, jargon, foreign words of extremely limited English use and technical acronyms.

 \Rightarrow *very* unlikely \exists so much variation in the lexicon of mortgages and loans!

• consider terms occurring with lowest frequencies

• <u>explanation</u>: most of the tokens are "uninformative" (garbage)

• Consider terms occurring with lowest frequencies

tf \$	rank \$	#≥ rank ♦	frac ≥ rank
6	77189	960745	0.925632
. 5	88316	949618	0.914912
4	103088	934846	0.900680
3	128487	909447	0.876209
. 2	172658	865276	0.833652
1	300995	736939	0.710006

- <u>explanation</u>: most of the tokens are "uninformative" (garbage)
 - 71% of tokens only appear once,

• Consider terms occurring with lowest frequencies

tf \$	rank 🛊	#≥ rank ♦	frac ≥ rank
6	77189	960745	0.925632
. 5	88316	949618	0.914912
4	103088	934846	0.900680
3	128487	909447	0.876209
. 2	172658	865276	0.833652
1	300995	736939	0.710006

- <u>explanation</u>: most of the tokens are "uninformative" (garbage)
 - 71% of tokens only appear once, <u>92.6% occur 6 × or fewer</u>

Consider terms occurring with lowest frequencies

tf ¢	rank 🛊	#≥ rank ♦	frac ≥ rank
6	77189	960745	0.925632
. 5	88316	949618	0.914912
4	103088	934846	0.900680
3	128487	909447	0.876209
2	172658	865276	0.833652
1	300995	736939	0.710006

- <u>explanation</u>: most of the tokens are "uninformative" (garbage)
 - 71% of tokens only appear once, <u>92.6% occur 6 × or fewer</u>
 - A small fraction are names (of humans, businesses), special codes

Consider terms occurring with lowest frequencies

tf \$	rank \$	#≥ rank ♦	frac ≥ rank ¢
6	77189	960745	0.925632
. 5	88316	949618	0.914912
4	103088	934846	0.900680
3	128487	909447	0.876209
2	172658	865276	0.833652
1	300995	736939	0.710006

- <u>explanation</u>: most of the tokens are "uninformative" (garbage)
 - 71% of tokens only appear once, 92.6% occur 6 × or fewer
 - A small fraction are names (of humans, businesses), special codes
- ⇒ <u>speculation</u>: rarely occurring terms are bogus, due to scan / OCR noise
 - ⇒ smudges create nonsense terms

Most frequent terms don't follow Zipf's relation

first ~25 tokens frequency declines weakly vs Zipf

Most frequent terms don't follow Zipf's relation

- first ~25 tokens frequency declines weakly vs Zipf
- after 750th ranked token, looks OK

Most frequent terms don't follow Zipf's relation

- first ~25 tokens frequency declines weakly vs Zipf
- after 750th ranked token, looks OK

 \Rightarrow this corpus seems to be unusual ...

Problem with stop words

• can't use curated lists for stop words, as we only have word hashes

Problem with stop words

- can't use curated lists for stop words, as we only have word hashes
- test with sklearn.feature_extraction.text.TfidfVectorizer shows: max_df=0.80 eliminates 9 tokens, but I can't guess what they are. *Probably* stop words ...

Problem with stop words

- can't use curated lists for stop words, as we only have word hashes
- test with sklearn.feature_extraction.text.TfidfVectorizer shows: max_df=0.80 eliminates 9 tokens, but I can't guess what they are. *Probably* stop words ...
- given time and justification, could use statistical techniques, e.g.:

Gerlach, M., Shi, H. & Amaral, L.A.N. A universal information theoretic approach to the identification of stopwords. Nat Mach Intell 1, 606–612 (2019). https://doi.org/10.1038/s42256-019-0112-6

Trouble with small classes:

• with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
- ⇒ can't be sure cross-validation picks best model

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Many documents seem too short

what financial information can be conveyed in 10 terms?

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Many documents seem too short

what financial information can be conveyed in 10 terms?

Test-train split

• 1st removed documents of length < 10 (still retaining very short examples)

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Many documents seem too short

what financial information can be conveyed in 10 terms?

Test-train split

- 1st removed documents of length < 10 (still retaining very short examples)
- 50-50 test-train split to retain plausible stats on results, at some cost to performance ...

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Many documents seem too short

what financial information can be conveyed in 10 terms?

Test-train split

- 1st removed documents of length < 10 (still retaining very short examples)
- 50-50 test-train split to retain plausible stats on results, at some cost to performance ...
- stratified sampling

Trouble with small classes:

- with smallest class sizes 0(200), even train-test split yields ~10% uncertainty in test stats
 ⇒ can't be sure cross-validation picks best model
- ⇒ can't trust relative scores between techniques

Many documents seem too short

what financial information can be conveyed in 10 terms?

Test-train split

- 1st removed documents of length < 10 (still retaining very short examples)
- 50-50 test-train split to retain plausible stats on results, at some cost to performance ...
- stratified sampling
- after model selection, could train on full data set (but wouldn't know how much better the results)

tf-idf features

min_df=5: ⇒ Eliminates most vocabulary

tf-idf features

- min_df=5:

 ⇒ Eliminates most vocabulary
- ngram_range=(1, 2): ⇒ 283 k vocabulary

tf-idf features

- min_df=5:

 ⇒ Eliminates most vocabulary
- ngram_range=(1, 2): ⇒ 283 k vocabulary
- sublinear_tf=True

tf-idf features

•

- min_df=5:

 ⇒ Eliminates most vocabulary
- ngram_range=(1, 2): ⇒ 283 k vocabulary
- sublinear_tf=True
- max_df=0.8: ⇒ option (not taken) for 'stop word' removal

tf-idf features

- min_df=5: ⇒ Eliminates most vocabulary
- ngram_range=(1, 2): ⇒ 283 k vocabulary
- sublinear_tf=True
- max_df=0.8: ⇒ option (not taken) for 'stop word' removal

See notebook/DocumentClassificationTest.ipynb in my repo for details

See notebook/DocumentClassificationTest.ipynb in my repo for details

 $f1_scorer: \Rightarrow optimize for f_1 during grid search$

See notebook/DocumentClassificationTest.ipynb in my repo for details

 $f1_scorer: \Rightarrow optimize for f_1 during grid search$

• used average="weighted", but average="macro" would yield better results on small classes

See notebook/DocumentClassificationTest.ipynb in my repo for details

 $f1_scorer: \Rightarrow optimize for f_1 during grid search$

• used average="weighted", but average="macro" would yield better results on small classes

Complement Naive Bayes

default settings for baseline

See notebook/DocumentClassificationTest.ipynb in my repo for details

 $f1_scorer: \Rightarrow optimize for f_1 during grid search$

• used average="weighted", but average="macro" would yield better results on small classes

Complement Naive Bayes

- default settings for baseline
- followed by grid search

See notebook/DocumentClassificationTest.ipynb in my repo for details

 $f1_scorer: \Rightarrow optimize for f_1 during grid search$

• used average="weighted", but average="macro" would yield better results on small classes

Complement Naive Bayes

- default settings for baseline
- followed by grid search
- best with alpha=0.0139 and norm=False yielded substantial improvements
 - ⇒ model 3 × larger

Random Forest

• grid search: two models with identical f_1 scores

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

Random Forest

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

GradientBoostingClassifier

• scikit-learn's own algo slowest to train

Random Forest

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

GradientBoostingClassifier

scikit-learn's own algo slowest to train ⇒ opted out of grid search

Random Forest

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

GradientBoostingClassifier

scikit-learn's own algo slowest to train ⇒ opted out of grid search

XGBoost

• much faster training than for the GradientBoostingClassifier (explained later)

Random Forest

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

GradientBoostingClassifier

scikit-learn's own algo slowest to train ⇒ opted out of grid search

XGBoost

- much faster training than for the GradientBoostingClassifier (explained later)
- equally excellent results

Random Forest

- grid search: two models with identical f_1 scores
 - first had maximum depth of 350, second 250.
 - The smaller "best" model sizes much smaller at 273 M
- grid search for RF slow
- this 2nd version is deployed on AWS, accessible from my UI

GradientBoostingClassifier

scikit-learn's own algo slowest to train ⇒ opted out of grid search

XGBoost

- much faster training than for the GradientBoostingClassifier (explained later)
- equally excellent results
- optimized model ⇒ best overall

Model	Macro Averaged			Weighted Average			Model size
	precision	recall	f ₁	precision	recall	f ₁	(MB)
Naive Bayes default (baseline)	0.75	0.50	0.53	0.79	0.78	0.76	63
Naive Bayes best	0.80	0.58	0.62	0.81	0.81	0.80	272
Random Forest default	0.80	0.65	0.70	0.84	0.85	0.84	451
Random Forest best	0.80	0.75	0.77	0.87	0.87	0.87	273
Gradient Boosting default	0.81	0.64	0.69	0.81	0.81	0.80	1.2
XGBoost default	0.79	0.65	0.70	0.82	0.82	0.82	5.4
XGBoost best	0.82	0.73	0.76	0.87	0.87	0.87	21
CNN			?			?	?
Bidirectional LSTM			?			?	?

reminder: macro averaged ⇒ straight average of scores for each class
 weighted average ⇒ average of all class scores weighted by support

	Macro Averaged			Weighted Average			Model size
Model	precision	recall	f ₁	precision	recall	f ₁	(MB)
Naive Bayes default (baseline)	0.75	0.50	0.53	0.79	0.78	0.76	63
Naive Bayes best	0.80	0.58	0.62	0.81	0.81	0.80	272
Random Forest default	0.80	0.65	0.70	0.84	0.85	0.84	451
Random Forest best	0.80	0.75	0.77	0.87	0.87	0.87	273
Gradient Boosting default	0.81	0.64	0.69	0.81	0.81	0.80	1.2
XGBoost default	0.79	0.65	0.70	0.82	0.82	0.82	5.4
XGBoost best	0.82	0.73	0.76	0.87	0.87	0.87	21
CNN			?			?	?
Bidirectional LSTM			?			?	?

- reminder: macro averaged ⇒ straight average of scores for each class
 weighted average ⇒ average of all class scores weighted by support
- if need good scores for smaller classes, focus on macro averages

	Macro Averaged			Weighted Average			Model size
Model	precision	recall	f ₁	precision	recall	f ₁	(MB)
Naive Bayes default (baseline)	0.75	0.50	0.53	0.79	0.78	0.76	63
Naive Bayes best	0.80	0.58	0.62	0.81	0.81	0.80	272
Random Forest default	0.80	0.65	0.70	0.84	0.85	0.84	451
Random Forest best	0.80	0.75	0.77	0.87	0.87	0.87	273
Gradient Boosting default	0.81	0.64	0.69	0.81	0.81	0.80	1.2
XGBoost default	0.79	0.65	0.70	0.82	0.82	0.82	5.4
XGBoost best	0.82	0.73	0.76	0.87	0.87	0.87	21
CNN			?			?	?
Bidirectional LSTM			?			?	?

- reminder: macro averaged ⇒ straight average of scores for each class
 weighted average ⇒ average of all class scores weighted by support
- if need good scores for smaller classes, focus on macro averages
- if overall results most important, focus on weighted averages

	Macro Averaged			Weighted Average			Model size
Model	precision	recall	f ₁	precision	recall	f ₁	(MB)
Naive Bayes default (baseline)	0.75	0.50	0.53	0.79	0.78	0.76	63
Naive Bayes best	0.80	0.58	0.62	0.81	0.81	0.80	272
Random Forest default	0.80	0.65	0.70	0.84	0.85	0.84	451
Random Forest best	0.80	0.75	0.77	0.87	0.87	0.87	273
Gradient Boosting default	0.81	0.64	0.69	0.81	0.81	0.80	1.2
XGBoost default	0.79	0.65	0.70	0.82	0.82	0.82	5.4
XGBoost best	0.82	0.73	0.76	0.87	0.87	0.87	21
CNN			?			?	?
Bidirectional LSTM			?			?	?

- reminder: macro averaged ⇒ straight average of scores for each class
 weighted average ⇒ average of all class scores weighted by support
- if need good scores for smaller classes, focus on macro averages
- if overall results most important, focus on weighted averages

Random Forest and XGBoost "identical" good results (may indicate limits of info in feature set)

	Macro Averaged			Weighted Average			Model size
Model	precision	recall	f ₁	precision	recall	f ₁	(MB)
Naive Bayes default (baseline)	0.75	0.50	0.53	0.79	0.78	0.76	63
Naive Bayes best	0.80	0.58	0.62	0.81	0.81	0.80	272
Random Forest default	0.80	0.65	0.70	0.84	0.85	0.84	451
Random Forest best	0.80	0.75	0.77	0.87	0.87	0.87	273
Gradient Boosting default	0.81	0.64	0.69	0.81	0.81	0.80	1.2
XGBoost default	0.79	0.65	0.70	0.82	0.82	0.82	5.4
XGBoost best	0.82	0.73	0.76	0.87	0.87	0.87	21
CNN			?			?	?
Bidirectional LSTM			?			?	?

- reminder: macro averaged ⇒ straight average of scores for each class
 weighted average ⇒ average of all class scores weighted by support
- if need good scores for smaller classes, focus on macro averages
- if overall results most important, focus on weighted averages

Caution: errors in small classes **0** (10%) ⇒ impact macro averages most

General notes

• Find code in github repo

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference
 - → redeployed with Naive Bayes and Random Forest

General notes

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference
 - → redeployed with Naive Bayes and Random Forest

Docker container

buildDockerImage.sh for local testing

General notes

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference
 - → redeployed with Naive Bayes and Random Forest

Docker container

- buildDockerImage.sh for local testing
- build_and_deploy.sh for also deploying to AWS

General notes

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference
 - → redeployed with Naive Bayes and Random Forest

Docker container

- buildDockerImage.sh for local testing
- build_and_deploy.sh for also deploying to AWS
- Ubuntu: latest with minimal set of versioned python packages

General notes

- Find code in github repo
- Significant learning curve, both for Docker and deployment of end points
- Learned the hard way why XGBoost training was much faster than GradientBoostingClassifer
 - XGBoost discovered GPUs on local machine when training
 - → trained model insisted on GPUS for inference
 - → redeployed with Naive Bayes and Random Forest

Docker container

- buildDockerImage.sh for local testing
- build_and_deploy.sh for also deploying to AWS
- Ubuntu: latest with minimal set of versioned python packages
- image size 912 MB

• (default) ml.m4.xlarge EC2 instance

- (default) ml.m4.xlarge EC2 instance
- endpoint success required extra permissions

*7*5

Latencies

• from isolated calls to either Naive Bayes we can see latencies of about 15 ms, while for Random Forest the latencies are about 215 ms

Latencies

- from isolated calls to either Naive Bayes we can see latencies of about 15 ms, while for Random Forest the latencies are about 215 ms
- the Random Forest model has 250 estimators, with maximum depths of 250 it's a little beast

Latencies

- from isolated calls to either Naive Bayes we can see latencies of about 15 ms, while for Random Forest the latencies are about 215 ms
- the Random Forest model has 250 estimators, with maximum depths of 250 it's a little beast
- (the respective model sizes are 63 M and 273 M, and the TF-IDF vectorizer is 159 M)

- Built using <u>streamlit</u>, which is the way to go for speedy development
 - o user dumps new line-separated, hashed documents into text box

- Built using <u>streamlit</u>, which is the way to go for speedy development
 - user dumps new line-separated, hashed documents into text box
 - JSONified payload is sent to endpoint, which responds with JSONified results

- Built using streamlit, which is the way to go for speedy development
 - user dumps new line-separated, hashed documents into text box
 - JSONified payload is sent to endpoint, which responds with JSONified results
 - If Random Forest radio button is selected, results also include confidence values

- Built using <u>streamlit</u>, which is the way to go for speedy development
 - user dumps new line-separated, hashed documents into text box
 - JSONified payload is sent to endpoint, which responds with JSONified results
 - If Random Forest radio button is selected, results also include confidence values

A 15-second demo

- LSTM
 - I've done this with a different text classification problem (notebook)

- LSTM
 - I've done this with a different text classification problem (notebook)
- 1-D convolutional neural network

- LSTM
 - I've done this with a different text classification problem (notebook)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - o documents sentenced-tokenized

- LSTM
 - I've done this with a different text classification problem (notebook)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - documents sentenced-tokenized
 - encode sentences with one of
 - Universal Sentence Encoder

- LSTM
 - I've done this with a different text classification problem (notebook)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - documents sentenced-tokenized
 - encode sentences with one of
 - Universal Sentence Encoder
 - BERT

•

- LSTM
 - I've done this with a different text classification problem (notebook)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - o documents sentenced-tokenized
 - encode sentences with one of
 - Universal Sentence Encoder
 - BERT
 - doc2vec

- LSTM
 - <u>I've done this</u> with a different text classification problem (<u>notebook</u>)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - documents sentenced-tokenized
 - o encode sentences with one of
 - Universal Sentence Encoder
 - BERT
 - doc2vec
 - only doc2vec can be trained from scratch on a modest corpus

- LSTM
 - <u>I've done this</u> with a different text classification problem (<u>notebook</u>)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - documents sentenced-tokenized
 - encode sentences with one of
 - Universal Sentence Encoder
 - BERT
 - doc2vec
 - only doc2vec can be trained from scratch on a modest corpus
 - Sentence embeddings would then be inputs to classifier
 - averaged

•

- LSTM
 - <u>I've done this</u> with a different text classification problem (<u>notebook</u>)
- 1-D convolutional neural network
- My preferred solution (in theory!):
 - documents sentenced-tokenized
 - encode sentences with one of
 - Universal Sentence Encoder
 - BERT
 - doc2vec
 - only doc2vec can be trained from scratch on a modest corpus
 - Sentence embeddings would then be inputs to classifier
 - averaged
 - sequence-based model (LSTM using sentence embeddings)

That's all!