Homework 3 - Integer Programming

Adv. Analytics and Metaheuristics

Daniel Carpenter and Iker Zarandona

March 2022

Contents

1	- Pr	- Problem 1		
	1.1	Mathematical Formulation	2	
	1.2	Code and Output	4	
2 - Problem 2		roblem 2	6	
	2.1	Mathematical Formulation	6	
	2.2	Code and Output	8	

1 - Problem 1

1.1 Mathematical Formulation

1.1.1 Sets

Set Name	Description
GENERATORS PERIODS	Set of generators i that can be used (A,B,C) 2 possible periods p (1, 2) in the production day

1.1.2 Parameters

Parameter Name	Description
$\overline{S_i}$	Fixed cost to start a generator
	$(i \in GENERATORS)$ in the entire day
F_i	Fixed cost to operate a generator
	$(i \in GENERATORS)$ in any period
C_i	Variable cost per megawatt to operator a
	generator $(i \in GENERATORS)$ in any
	period
U_i	Max. megawatts generated for generator
	$(i \in GENERATORS)$ in any period
$demand_p$	Total demanded megawatts for period
r	$(p \in PERIODS)$
M_i	Value to map watts used by each
	generator $(i \in GENERATORS)$

1.1.3 Decision Variables

Variable Name	Description
$\overline{watts_{i,p}}$	Integer variable: Number of watts to produce per generator $(i \in GENERATORS)$ per period
$x_{i,p}$	$(p \in PERIODS)$ Binary variable: 1 if a generator $(i \in GENERATORS)$ is in period p
y_i	$(p \in PERIODS)$, 0 if not turned on at all Binary variable: 1 if a generator $(i \in GENERATORS)$ is used, 0 if not turned on at all

1.1.4 Objective Function

$$minimize\ cost: \sum_{i \in GENERATORS} \left(\left(\sum_{p \in PERIODS} (watts_{i,p}) \times C_i \right) + \left(F_i \times \sum_{p \in PERIODS} x_{i,p} \right) + \left(S_i \times y_i \right) \right)$$

1.1.5 Constraints

C1: For each period, meet the demanded megawatts

$$requiredWatts: \sum_{i \in GENERATORS} (watts_{i,p}) = demand_p, \forall \ p \in PERIODS$$

C2: For each generator, don't surpass the allowable megawatts

$$upperBound: \sum_{p \in PERIODS} (watts_{i,p}) \leq U_i, \forall i \in GENERATORS$$

C3: For each generator, map decision variables together to account for the fixed costs in a given day S_i

$$mapVars: \sum_{p \in PERIODS} (watts_{i,p}) \leq M_i \times y_i, \forall i \in GENERATORS$$

C4: For each generator and period, map decision variables y and watts together to account for the fixed costs in a per period p

$$mapVars2: watts_{i,p} \leq M_i \times x_{i,p}, \forall i \in GENERATORS, p \in PERIODS$$

C5 Non-negativity or Binary restraints of decision variables

$$watts_{i,p} \geq 0$$

$$x_{i,p}, y_i \in (0,1)$$

1.2 Code and Output

1.2.1 Code

```
Franching (John N. Colors from School and School (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1
```

1.2.2 Output

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chickasaw
CPLEX 20.1.0.0: optimal integer solution; objective 46100
7 MIP simplex iterations
0 branch-and-bound nodes

Which generators are used?
y [*] :=
A 1
B 1
C 1;

Which periods were the generators used?
x :=
A 1 0
A 2 1
B 1 0
B 2 1
C 1 1
C 2 0;

Optimal Amount of Megawatts for each generator and period:
watts :=
A 1 0
A 2 2100
B 1 0
B 2 1800
C 1 2900
C 2 0;
```

1.2.2.1 Analysis of the Output

- The minimized cost is \$46, 100
- Generator A, B, and C run
- Generator C runs in period 1. Generator A and B run in period 2
- Generator A produces 2, 100 megawatts in total
- Generator B produces 1,800 megawatts in total
- Generator C produces 2,900 megawatts in total

2 - Problem 2

2.1 Mathematical Formulation

2.1.1 Sets

Set Name	Description
PRODUCTS	5 types of landscaping and construction products (e.g., cement, sand, etc.) labeled product (p)
SILOS	A, B, C, D, and $E8 different silos s that each product must be stored in (1, 2,, 8)$

2.1.2 Parameters

Parameter Name	Description
$cost_{s,p}$	Cost of storing one ton of product $p \in PRODUCTS$ in silo $s \in SILOS$
$supply_p$	Total supply in tons available of product $p \in PRODUCTS$
$capacity_s$	Total capacity in tons of silo $s \in SILOS$. Can store products.
$M_{p,s}$	Variable to map decision variable $tonsOfProduct_{p,s}$ to $isStored_{p,s}$. Uses big M method.

2.1.3 Decision Variables

Variable Name	Description
$tonsOfProduct_{p,s}$ $isStored_{p,s}$	Tons of product $p \in PRODUCTS$ to store in silo $s \in SILOS$. Non-negative. Binary variable indicating if product $p \in PRODUCTS$ is stored in silo $s \in SILOS$.

2.1.4 Objective Function

$$minimize\ costOfStorage: \sum_{p \in PRODUCTS} \sum_{s \in SILOS} tonsOfProduct_{p,s} \times cost_{p,s}$$

2.1.5 Constraints

C1: For each silo s, the tons of the supplied product p must be less than or equal to the capacity limit of silo s

$$meetCapacity: \sum_{p \in PRODUCTS} tonsOfProduct_{p,s} \leq capacity_s, \ \forall \ s \in SILOS$$

C2: For each product p, must use all of the total product that is available

$$useAllProduct: \sum_{s \in SILOS} tonsOfProduct_{p,s} = supply_p, \ \forall \ p \in PRODUCTS$$

C3: For each silo s and product p,

$$oneProductInSilo: \sum_{pinPRODUCTS} isStored_{p,s} = 1, \ \forall \ s \in SILOS$$

C4: Map the decision variables together using the Big M method

$$mapVars: tonsOfProduct_{p,s} \leq M_{p,s} \times isStored_{p,s}, \ \forall \ p \in PRODUCTS, \ \forall \ s \in SILOS$$

C5 Non-negativity or Binary restraints of decision variables

$$tonsOfProduct_{p,s} \ge 0$$

$$isStored_{p,s} \in (0,1)$$

2.2 Code and Output

2.2.1 Code

```
# FreeCommon No. | Process | Process
```

2.2.2 Output

2.2.2.1 Analysis of the Output

- Minimized loading cost for 250 tons of 5 products over the 8 silos is 320 (problem does not state cost units).
- Product A stores 25 tons in silo 1 and 50 tons in silo 4
- Product B stores 50 tons in silo 5
- Product C stores 25 tons in silo 3
- Product D stores 25 tons in silo 2, 5tons in silo 7, and and 50 tons in silo 8
- Product E stores 20 tons in silo 6