How to Turn your Knowledge Graph Embeddings into Generative Models via Probabilistic Circuits

Lorenzo Loconte
University of Edinburgh, UK

Nicola Di MauroUniversity of Bari, Italy

Robert Peharz TU Graz, Austria **Antonio Vergari**University of Edinburgh, UK

TL;DR: "We cast KGE models into generative models supporting exact and efficient marginalisation, sampling and the integration of propositional constraints with guarantees."

From Knowledge Graph Embeddings ...

A Knowledge Graph Embeddings (KGE) model can be interpreted as an *energy-based model* defining an unnormalized distribution over triples $(S,R,{\cal O})$

$$p(S = s, R = r, O = o) = \frac{1}{Z} \exp \phi(s, r, o)$$

where $\phi: \mathcal{E} \times \mathcal{R} \times \mathcal{E} \to \mathbb{R}$ is a triple score function.

KGE models have several **shortcomings**:

1 Computing triple probabilities is impractical

Z requires 10^{11} evaluations of ϕ on FB15K-237 [5] thus comparing triple scores is not easy

2 Learning by maximum-likelihood is infeasible

requires contrastive objectives or

expensive cross-entropies, e.g., $\log p(o \mid s, r)$ [4]

3 Logical constraints are violated at test time [3]

e.g., Q: (loxoprofen, interacts, ?)

A: phosphoric-acid (not a protein!)

4 No efficient way of sampling new triples

useful for data augmentation or negative sampling

Interpreting the score functions of KGE models as constrained computational graph: circuits.

... to Probabilistic Circuits

We cast score functions to probabilistic circuits (PCs) [1] $\phi_{\rm pc}$ without additional memory requirements

$$p(s, r, o) = \frac{1}{Z}\phi_{pc}(s, r, o)$$
 s.t. $\phi_{pc}(s, r, o) \ge 0$

- Non-negative restriction: make the embeddings and unit activations non-negative [2]
- > Squaring the score function: square the circuit, without restricting the parameters domain [6], e.g.,

$$\phi_{\mathsf{CP}^2}(s,r,o) = \langle \mathbf{e}_s, \mathbf{w}_r, \mathbf{e}_o \rangle^2 = \sum_{i=1}^d \sum_{j=1}^d e_{si} e_{sj} w_{ri} w_{rj} e_{oi} e_{oj}$$

Scaling training on KGs with millions of entities.

Integration of domain constraints with guarantees.

The perks

Computing Z and any marginal/conditional probability can be done in time $\mathcal{O}((|\mathcal{E}|+|\mathcal{R}|)\cdot \mathrm{cost}(\phi_{\mathrm{pc}}))$, whilst being more memory efficient at exploiting GPUs

e.g.,
$$Z=\sum_{(s,r,o)}\phi_{\mathrm{CP}}(s,r,o)=\langle\sum_s\mathbf{e}_s,\sum_r\mathbf{w}_r,\sum_o\mathbf{e}_o\rangle$$

1 Efficient computation of triple probabilities

comparable scores across different models and queries

- 2 More efficient learning by maximum-likelihood and by using classification objectives
- 3 Propositional logical constraints satisfied by design

e.g.,
$$K := S \in \mathsf{Drugs} \land R = \mathsf{interacts} \land O \in \mathsf{Proteins}$$
 $p_K(\mathsf{loxoprofen}, \mathsf{interacts}, \mathsf{phosphoric-acid}) = 0$

4 Efficient sampling of *high quality* new triples

via ancestral or inverse transform sampling

Our *Generative KGE Circuits* (GeKCs) are competitive with traditional KGE models, while coming with the above perks!

Model	FB15k-237				WN18RR				ogbl-biokg			
	PLL		MLE		PLL		MLE		PLL		MLE	
СР	0.310	(8)	_		0.105	(11)	_	-	0.831	(136)	_	-
$CP^{\scriptscriptstyle +}$	0.237	(1)	0.230	(1)	0.027	(1)	0.026	(1)	0.496	(172)	0.501	(142)
CP^2	0.315	(8)	0.282	(7)	0.104	(23)	0.091	(23)	0.848	(66)	0.829	(61)
ComplEx	0.342	(36)	_	•	0.471	(16)	_	-	0.829	(180)	_	_
ComplEx ⁺	0.214	(10)	0.205	(5)	0.030	(6)	0.029	(3)	0.503	(245)	0.516	(212)
ComplEx ²	0.334	(10)	0.300	(16)	0.420	(37)	0.391	(19)	0.858	(71)	0.840	(59)

References

- [1] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. *Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling*. Tech. rep. University of California, Los Angeles (UCLA), 2020.
- [2] Alexis de Colnet and Stefan Mengel. "A Compilation of Succinctness Results for Arithmetic Circuits". In: AAA/ (2021).
- [3] Nicolas Hubert et al. "New Strategies for Learning Knowledge Graph Embeddings: The Recommendation Case". In: *EKAW*. Vol. 13514. Lecture Notes in Computer Science. Springer, 2022, pp. 66–80.
- Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. "You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings". In: *ICLR*. OpenReview.net, 2020.
- [5] Kristina Toutanova and Danqi Chen. "Observed Versus Latent Features for Knowledge Base and Text Inference".

 In: 3rd Workshop on Continuous Vector Space Models and Their Compositionality. ACL, 2015.
- [6] Antonio Vergari et al. "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference". In: *Advances in Neural Information Processing Systems*. Vol. 34. 2021, pp. 13189–13201.