半导体物理B

Semiconductor Physics B

程骏骥

电子科技大学

试画出掺杂为 N_A 的p型半导体处于强电离区的电荷分布图,并求出其载流子浓度和费米能级。

答:

$$E_c$$

$$E_A$$
 p_A
 E_v p_0

由电中性方程得: $p_0 = N_A$

再由质量作用定律得:

$$n_0 = n_i^2 / N_A$$

代入平衡载流子浓度方程 $p_0 = N_v \cdot e^{-\frac{E_F - E_v}{k_0 T}}$

得:
$$E_F = E_v - k_0 T \ln(N_A/N_v)$$

(1) 某Si中,每百万个Si原子掺有一个p型杂质原子,计算室温下材料中少数载流子的浓度。(已知Si晶体的原子密度为 4.96×10^{22} cm⁻³, n_i = 1.5×10^{10} cm⁻³)

解: (1)
$$N_A$$
 = (4.96×10²²) × 10⁻⁶
= 4.96×10¹⁶ (cm⁻³) >> 10 n_i

所以
$$p_0 \approx N_A = 4.96 \times 10^{16}$$
 (cm⁻³)

故少数载流子的浓度

$$n_0 = \frac{n_i^2}{p_0} = \frac{(1.5 \times 10^{10})^2}{4.96 \times 10^{16}} \cong 4.5 \times 10^3 (\text{cm}^{-3})$$

- (1) 某Si中,每百万个Si原子掺有一个p型杂质原子,计算室温下材料中少数载流子的浓度。(已知Si晶体的原子密度为 4.96×10^{22} cm⁻³, n_i = 1.5×10^{10} cm⁻³)
- (2) 温度升到573K时, $n_i \approx 3 \times 10^{15}$ cm⁻³,设掺入的杂质浓度不变,问此时半导体呈现什么导电性? 电子与空穴的浓度大致等于多少?

(2) 573K时,

由电中性条件:
$$n_0 + N_A = p_0$$

及质量作用定律: $n_0 p_0 = n_i^2$

得到
$$p_0 \approx ??? \times 10^{16} \,\mathrm{cm}^{-3}$$

所以
$$n_0 = ??? \times 10^{14} \,\mathrm{cm}^{-3}$$

可见,
$$p_0 > n_0$$

因此, 半导体仍呈现为p型导电性.

- (1) 某Si中,每百万个Si原子掺有一个p型杂质原子,计算室温下材料中少数载流子的浓度。(已知Si晶体的原子密度为 4.96×10^{22} cm⁻³, n_i = 1.5×10^{10} cm⁻³)
- (2) 温度升到573K时, $n_i \approx 3 \times 10^{15} \, \mathrm{cm}^{-3}$,设 掺入的杂质浓度不变,问此时半导体呈现什么 导电性? 电子与空穴的浓度大致等于多少?
- (3) 画出室温下该p型Si的能带图, 当杂质原子浓度增加时, 费米能级将如何变化?

(3) 当杂质原子浓度增加时

杂质原子浓度增加

To calculate the thermal-equilibrium electron and hole concentration in a germanium sample with a given doping concentration.

Consider a germanium sample at T = 300 K in which $N_{\rm D} = 5 \times 10^{13}$ cm⁻³ and $N_{\rm A} = 0$.

Assume that now $n_i = 2.4 \times 10^{13}$ cm⁻³.

Solution:

From
$$\begin{cases} n_0 = N_D + p_0 \\ n_0 p_0 = n_i^2 \end{cases}$$

Then
$$n_0 = \frac{N_D}{2} + \frac{\sqrt{N_D^2 + 4n_i^2}}{2}$$

$$= \frac{5 \times 10^{13}}{2} + \frac{\sqrt{(5 \times 10^{13})^2 + 4(2.4 \times 10^{13})^2}}{2}$$

\$\approx 5.97 \times 10^{13} (cm^{-3})\$

$$p_0 = \frac{n_i^2}{n_0} = \frac{(2.4 \times 10^{13})^2}{5.97 \times 10^{13}} = 9.65 \times 10^{12} (\text{cm}^{-3})$$

To determine the required donor impurity concentration to obtain a specified E_F .

Silicon at T=300 K contains an acceptor impurity concentration of $N_A=10^{16}$ cm⁻³. Determine the concentration of donor impurity that must be added so that the silicon in n type and the Fermi energy is 0.20 eV below the conduction band edge. $N_c=2.8\times10^{19}\,\mathrm{cm}^{-3}$.

Solution:

From

$$n_{0} = N_{c} \cdot e^{\frac{E_{c} - E_{F}}{k_{0}T}}$$

$$= 2.8 \times 10^{19} \cdot \exp\left(-\frac{0.20}{0.0259}\right)$$

$$= 1.24 \times 10^{16} \left(cm^{-3}\right)$$

$$\gg n_{i}$$

We have $N_D - N_A = n_0$

Then

$$N_D = 1.24 \times 10^{16} + N_A = 2.24 \times 10^{16} (cm^{-3})$$

To determine the Fermi-level position and the maximum doping concentration at which the Boltzmann approximation is still valid.

Consider p-type silicon, at T=300K, doped with boron. We may assume that $E_A - E_V = 0.045$ eV and the limit of the Boltzmann approximation occurs when $E_F - E_A = 3k_0T$.

 $n_i = 1.5E10 \text{ cm}^{-3}$.

•Solution: If we assume that $E_{Fi} \approx E_{i}$,

from
$$N_{A} \approx P_{0} = n_{i} \cdot e^{-\frac{E_{F} - E_{i}}{k_{o}T}}$$
Then
$$N_{A} = n_{i} \cdot e^{-\frac{E_{F} - E_{i}}{k_{o}T}}$$

$$= n_{i} \cdot e^{\frac{\frac{E_{g}}{2} - (E_{A} - E_{v}) - (E_{F} - E_{A})}{k_{o}T}} = \cdots = 3 \times 10^{17} \ (cm^{-3})$$

例: 判断并予以修正、给出正确问题和答案:

- *为什么禁带宽度越宽,掺杂浓度越高,相应器件的极限工作温度就越高?
- *提示:如果掺杂使得半导体成为简并半 导体,则掺杂浓度越高将导致禁带越窄.
- *一定温度的非简并半导体,禁带宽度越宽, n_i 越小,掺杂浓度越高, n_D^+ 或 n_A^- 越大,升高温度方可使 n_i 超过 n_D^+ 或 n_A^-

设两块n型硅的施主浓度分别为 1.5×10^{14} cm⁻³及 10^{12} cm⁻³,试分别计算它们500 K时的 n_0 与 p_0 。

已知500 K时Si的
$$n_i = 3.5 \times 10^{14}$$
 cm⁻³

解:

500 K时硅中施主已全部电离,故:

$$\begin{cases} n_0 = N_D + p_0 \\ n_0 p_0 = n_i^2 \end{cases}$$

例题

求解上述方程组, 得:

$$\begin{cases} n_0 = \frac{N_D}{2} \left(1 + \sqrt{1 + \frac{4n_i^2}{N_D^2}} \right) \\ p_0 = \frac{n_i^2}{n_0} \end{cases}$$

代入: $N_D = 1.5 \times 10^{14} \text{ cm}^{-3}$ 和 $n_i = 3.5 \times 10^{14} \text{ cm}^{-3}$

得: $n_0 \approx 4.3 \times 10^{14} \text{ cm}^{-3}$, $p_0 \approx 2.8 \times 10^{14} \text{ cm}^{-3}$ 差别已不明显

代入: $N_D = 10^{12} \text{ cm}^{-3}$ 和 $n_i = 3.5 \times 10^{14} \text{ cm}^{-3}$

得: $n_0 = p_0 \approx 3.5 \times 10^{14} \text{ cm}^{-3}$ 已到本征温区