Manopt.jl

Optimization on Riemannian Manifolds

Ronny Bergmann

@ronnybergmann_

Norwegian University of Science and Technology, Trondheim, Norway.

Extended Lightning Talk
JuliaCon 2022, online and everywhere

July, 2022

Optimization

(Constrained) Optimization aims to find for a function $f: \mathbb{R}^m \to \mathbb{R}$ a point

$$\underset{x \in \mathbb{R}^m}{\text{arg min }} f(x)$$

Challenges:

- ightharpoonup constrained to some $\mathcal{C} \subset \mathbb{R}^m$, e.g. unit vectors
- symmetries / invariances

Geometric Optimization aims to find

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} F(p)$$

where F is defined on a Riemannian manifold \mathcal{M} , e.g. the sphere $\mathbb{S}^d \subset \mathbb{R}^{d+1}$. \Rightarrow the problem is unconstrained (again).

A Riemannian manifold $\mathcal M$

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spacessil, Mahony, and Sepulchre 2008]

A d-dimensional Riemannian manifold \mathcal{M}

Notation.

- Geodesic $\gamma(\cdot; p, q)$
- ightharpoonup Tangent space $\mathcal{T}_p\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$
- ▶ Logarithmic map $\log_p q = \dot{\gamma}(0; p, q)$
- Exponential map $\exp_p X = \gamma_{p,X}(1)$ where $\gamma_{p,X}(0) = p$ and $\dot{\gamma}_{p,X}(0) = X$
- Parallel transport $P_{q \leftarrow p} Y$ "move" tangent vectors from $\mathcal{T}_p \mathcal{M}$ to $\mathcal{T}_q \mathcal{M}$

Example I: The Sphere $\mathbb{S}^d \subset \mathbb{R}^{d+1}$

The set of unit vectors or the Sphere

$$\mathbb{S}^d \coloneqq \left\{ p \in \mathbb{R}^{d+1} \middle| \lVert p
Vert_2 = 1 \right\}$$

is a Riemannian manifold. A tangent space if of the form

$$\mathcal{T}_{oldsymbol{
ho}}\mathbb{S}^d\coloneqq\left\{X\in\mathbb{R}^{d+1}ig|\langle X,oldsymbol{
ho}
angle=0
ight\}$$

The exponential map is given by "following great arcs" from p in direction X we get

$$\exp_p X = \cos(\|X\|_p)p + \sin(\|X\|_p)\frac{X}{\|X\|_p},$$

But the inverse $\log_p q$ is only locally defined, for example if p = -q are opposite points, there are infinitely many tangent vectors such that $\exp_p X = q$.

Example II: Stiefel & Grassmann

The Stiefel manifold consists of all orthonormal bases (ONB) for k-dimensional subspaces of \mathbb{R}^n

$$\mathsf{St}(n,k) := \{ p \in \mathbb{R}^{n \times k} \mid p^{\mathsf{T}} p = I_k \},$$

For one *k*-dimensional subspace, there are several ONBs.

Construction: Rotate one ONB such that no vector leaves the subspace If we are only interested in the subspace, we obtain the Grassmann manifold

$$Gr(n, k) := \{ span(p) \mid p \in \mathbb{R}^{n \times k}, p^{\mathsf{T}}p = I_k \},$$

 \Rightarrow All ONBs $p \in St(n, k)$ of one subspace are the same point $q \in Gr(n, k)$. Formally we obtain sets of equivalence classes or a quotient structure

$$Gr(n, k) = St(n, k) / O(k),$$

Implementing a Riemannian manifold

ManifoldsBase.jl introduces a manifold type with its field $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ as parameter to provide an interface for implementing functions like

- ▶ inner(M, p, X, Y) for the Riemannian metric $(X, Y)_p$
- \triangleright exp(M, p, X) and log(M, p, q),
- ▶ more general: retract(M, p, X, m), where m is a retraction method
- ▶ similarly: parallel_transport(M, p, X, q) and vector_transport_to(M, p, X, q, m)

for your manifold, which is a subtype of Manifold(F).

- (M) mutating version exp! (M, q, p, X) works in place in q
- → basis for generic algorithms working on any Manifold and generic functions like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

 ${\cal S}$ juliamanifolds.github.io/ManifoldsBase.jl/

Manifolds.jl: A Library of manifolds in Julia

Manifolds.jl is based on the ManifoldsBase.jl interface.

Features.

- different metrics
- ► Lie groups
- Build manifolds using
 - ▶ Product manifold $\mathcal{M}_1 \times \mathcal{M}_2$
 - Power manifold $\mathcal{M}^{n \times m}$
 - Tangent bundle
- Embedded manifolds
- perform statistics
- well-documented, including formulae and references
- ▶ well-tested, >98 % code cov.

Manifolds. For example

- ▶ (unit) Sphere
- ► Circle & Torus
- Fixed Rank Matrices
- ► (Generalized) Stiefel & Grassmann
- Hyperbolic space
- ightharpoonup Rotations & SO(n)
- Symmetric positive definite matrices
- Symplectic & Symplectic Stiefel
- ...
 - ${\cal S}$ juliamanifolds.github.io/Manifolds.jl/
 - JuliaCon 2020 youtu.be/md-FnDGCh9M

[Axen, Baran, RB, and Rzecki 2021]

Manopt.jl - Internal Structure

Manopt.jl is implemented depending only on ManifoldsBase.jl.

A solver for an optimization problem consists of three ingredients

- ► a Problem P that specifies static properties
 - ightharpoonup the manifold \mathcal{M}
 - ightharpoonup a cost function $F \colon \mathcal{M} \to \mathbb{R}$
 - ▶ (maybe) a gradient grad $F: \mathcal{M} \to T\mathcal{M}$
 - ► (maybe) a Hessian Hess F
 - **.**..
- some Options O containing dynamic data
 - ightharpoonup the current iterate p_i
 - ▶ a StoppingCriterion
 - any parameter required during an iteration
- implementation of
 - 1. initialize solver! (P, 0) to initialise a solver run
 - 2. step_solver!(P, 0, i) to perform the *i*th step

Running a solver & high level Interfaces

Running a solver consists of

- 1. generating a Problem P
- 2. generating some Options O
- calling solve(P,0)

These steps are usually provided by a high level interface like **Example.** For a gradient descent algorithm on a Riemannian manifold one can use

```
gradient_descent(M, F, gradF, p0)
```

which performs

- 1. create
 - ▶ PG = GradientProblem(M, F, gradF)
 - ▶ OG = GradientOptions(p0, gradF(M, po))
- 2. runs the algorithm by calling solve(PG,OG)
- 3. returns the resulting last iterate (calling get_solver_result(OG))

Stopping Criteria

The Options usually include a StoppingCriterion sc. This is accessed via stop_solver!(P,O,i) at every iteration i

A StoppingCriterion sc should

- ▶ be a functor sc(P,0,i) returning true/false
- ▶ implement get_reason(sc) returning a string with the reason when true was returned
- © Combine stopping criteria using sc1 | sc2 or sc1 & sc2

Examples.

- StopAfterIteration(N) stop after N iterations.
- StopAfterIteration(N) | StopWhenGradientLess(1e-8)

... or when the gradient is small

Within a step: Stepsize & Linesearch

In many algorithms, after determining a direction "to walk into", e.g.

$$X = -\operatorname{grad} F(p)$$

there is a Stepsize s left to determine, which is modelled (again) as a functor sk = s(p,o,i). It can be e.g.

- ► a ConstantStepsize(c)
- ► an ArmijoLinesearch(M)
- ► a NonmonotoneLinesearch(M)

usually the Options O then also have a AbstractRetractionMethod for example as O.retraction_method to perform the actual (gradient) step as

and the curve t -> retract(P.M, o.x, t*X) is also used for line search methods.

Printing debug output

Approach. D = DebugOptions(O,dA) where dA is a DebugAction.

- \Rightarrow These options "act like" the original Options O But
 - ▶ in the beginning (overwriting initialize_step!(P, D))
 - ► after each step (overwriting solver_step!(P, D))
 - ▶ in the end (when the StoppingCriterion returns true)

High level interface. Every solver has a debug= keyword using DebugActions, Strings and Symbols, e.g.

- ightharpoonup the iteration number and the cost $F(p_k)$ (in default format, also :Cost),
- ▶ the change $d_{\mathcal{M}}(p_{k-1}, p_k)$ in a specific format
- ▶ a line break (after each iteration)
- ▶ the reason the algorithm stopped at the end

Recording values

Approach. Analogously R = RecordOptions(O, rA) where rA is a RecordAction.

- ⇒ These options (also) "act like" the original Options O but records
 - ▶ in the beginning (overwriting initialize_step!(P, R))
 - ▶ after each step (overwriting solver_step!(P, R))
 - ▶ in the end (when the StoppingCriterion returns true)

High level interface. use the keyword record= for example

```
record=[:Iteration, :Cost, :Iterate]
```

and set $return_options=true \Rightarrow$ final state (options fin0) are returned.

- ▶ get_record(fin0) yields a vector of (i, cost, point) tuples
- ▶ long form: get_record(fin0, :Iteration, [:Iteration, :Cost, :Iterate])
- ▶ get_record(fin0, :Iteration, :Cost) yields the vector of recorded :Costs

Manopt.jl - Available Solvers

Currently the following solvers are available

- Gradient Descent
 CG, Stochastic, Momentum, Alternating,
 Average, Nesterov, ...
- Quasi-Newton (L-)BFGS, DFP, Broyden, SR1, ...
- Nelder-Mead, Particle Swarm
- Subgradient Method
- Trust Regions
- Chambolle-Pock (PDHG)
- Douglas-Rachford
- Cyclic Proximal Point

The Manopt Family.

[RB 2022]

manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org

[Townsend, Koep, and Weichwald 2016]

Example Problem: The Riemannian center of mass

The mean of N data points $x_1, \ldots, x_N \in \mathbb{R}^n$ is

$$x^* = \frac{1}{N} \sum_{i=1}^{N} x_i \iff x^* = \operatorname*{arg\,min}_{x \in \mathbb{R}^m} \frac{1}{2N} \sum_{i=1}^{N} \|x - x_i\|_2^2$$

⇒ the minimizer of sum of squared distances

For $p_1, \ldots, p_N \in \mathcal{M}$: Riemannian center(s) of mass are

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \frac{1}{2N} \sum_{i=1}^{N} d_{\mathcal{M}}^{2}(p, p_{i}),$$

- ▶ (in general) neither closed form nor unique
- ▶ For $F(p) = \frac{1}{2}d_{\mathcal{M}}^2(p, p_i)$ the gradient is given by grad $F(p) = -\log_p p_i$
- ⇒ use gradient descent

[Karcher 1977]

Example Codes: The Riemannian center of mass

```
using Manopt, Manifolds, LinearAlgebra
M = Sphere(2)
N = 100
# generate N unit vectors
pts = [normalize(randn(3)) for in 1:N]
# define cost and gradient
F(M, p) = sum(pi \rightarrow distance(M, pi, p)^2 / 2N, pts)
grad F(M, p) = sum(pi -> grad distance(M, pi, p)/N, pts)
# compute a center of mass in place of m
m = copv(M, pts[1])
gradient descent!(M, F, grad F, m)
# Alternatively: Use a set of proximal maps and cyclic proximal point
proxes = Function[(M,\lambda,q) -> prox_distance(M,\lambda/N,p,q,1) for p in pts]
cyclic proximal point (M, F, proxes, pts[1])
```

Summary

Manopt.jl is a Julia package that provides

- a framework for optimization algorithms on manifolds
- ▶ a library of optimization algorithms within this framework and includes generic step size / line search functions, debug & record.

Also included. cost functions, gradients, differentials and proximal maps.

...as well as several tutorials at manoptil.org

Soon. Constrained optimisation algorithms on manifolds,

- Augmented Lagrangian Method
- Exact Penalty Method
- ► Frank-Wolfe

References

Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.

RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.

Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre (2014). "Manopt, a Matlab toolbox for optimization on manifolds". In: The Journal of Machine Learning Research 15, pp. 1455–1459. URL: https://www.jmlr.org/papers/v15/boumal14a.html.

Karcher, H. (1977). "Riemannian center of mass and mollifier smoothing". In: Communications on Pure and Applied Mathematics 30.5, pp. 509–541. DOI: 10.1002/cpa.3160300502.

Townsend, J., N. Koep, and S. Weichwald (2016). "Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation". In: *Journal of Machine Learning Research* 17.137, pp. 1–5. URL: http://jmlr.org/papers/v17/16-177.html.

 $\verb| \underline{ P}| ronny bergmann.net/talks/2022-Julia Con-Manoptjl-extended.pdf|$

