Московский физико-технический институт (госудраственный университет)

Лабораторная работа по аналоговой электронике

Усилитель на биполярых транзисторах [28]

Талашкевич Даниил Александрович Группа Б01-008

Содержание

1	Основные формулы	1
2	Нестабилизированный усилитель	1
	2.1	1
	2.2	1
3	Стабилизированный усилитель	2
	3.1	2
	3.2	2
4	Обработка резульатов измерений	3

1 Основные формулы

$$K_{\mathrm{u}} = rac{U_{\mathrm{\scriptscriptstyle BbIX}}}{U_{\mathrm{\scriptscriptstyle BX}}} \quad K_{\mathrm{e}} = rac{U_{\mathrm{\scriptscriptstyle BbIX}}}{arepsilon_{\mathrm{\scriptscriptstyle \GammaeH}}}$$

$$R_{\scriptscriptstyle \rm BX} = \frac{U_{\scriptscriptstyle \rm BX}}{I_{\scriptscriptstyle \rm BX}} = \frac{U_{\scriptscriptstyle \rm BX}R_{\rm II}}{\varepsilon_{\scriptscriptstyle \rm PBH}-U_{\scriptscriptstyle \rm BX}}$$

Для нижней граничной частоты в случае нестабилизированного усилителя:

$$\omega_{\scriptscriptstyle \mathrm{H}} = \frac{1}{C_{\scriptscriptstyle \mathrm{B}}(R_{\scriptscriptstyle \mathrm{H}} + R_{\scriptscriptstyle \mathrm{Bx}})}$$

В случае стабилизированного усилителя:

$$\omega_{\scriptscriptstyle H} \approx \frac{1}{\left(\frac{R_{\scriptscriptstyle H}^* + h_{11}}{h_{21} + 1} \| R_{\scriptscriptstyle \Theta}\right) \cdot C_{\scriptscriptstyle \Theta}}$$

Для верхней граничной частоты в случае нестабилизированного усилителя:

$$\omega_{\scriptscriptstyle B} = \frac{1}{((C_{619} + C) \cdot (R_{\scriptscriptstyle M}^* + r_{616}) \| r_{619})}$$

2 Нестабилизированный усилитель

2.1

Берём радиотехнические элементы:

$$R_k=2,4$$
 кОм; $R_b=540$ кОм; $R_{\mbox{\tiny BX}}=R_k$.

Измеряем, получаем:

$$U_{\kappa_9} \approx 5 \text{ B}, U_{69} \approx 0,64 \text{ B} \Rightarrow$$

$$I_{\rm k}=rac{U_{
m k9}}{R_{
m k}}pprox 2$$
 мА, $I_6=rac{U_{
m bx}-U_{
m 69}}{R_{
m b}}pprox$ 17,3 мкА \Rightarrow

$$h_{21e} \approx 115$$

2.2

Добавлем к уже имеющимся элементам:

$$C = 0.47 \text{ mk}\Phi; R_{\mu} = R_{k}$$

Для определения $f_{_{\rm H}}$ фиксируем уменьшение $U_{_{\rm BMX}}$ в $\sqrt{2}$ раз при переходе из области средних частот (≈ 1 кГЦ) в область низких частот. По аналогии измеряем $f_{_{\rm B}}$ при переходе из средних в высокие.

Результаты всех расчетов и измерений вносим в таблицу 1.

3 Стабилизированный усилитель

3.1

В данном пункте считаем $h_{219} \approx 100$. Верём радиотехнические элементы:

$$R_k = 2,4$$
 кОм; $R_1 = 39$ кОм; $R_2 = 8,2$ кОм; $R_{\text{ii}} = R_k$; $R_{\ni} = 540$ Ом.

Измеряем относительно земли напряжения, получаем:

$$U_{\rm B} \approx 0,6~{\rm B}~U_{\rm B} \approx 1,15~{\rm B}~U_{\rm K} \approx 5,4~{\rm B}.$$

Измеряем оставшиеся величины, заносим в таблицу.

3.2

$$r_{\mbox{\tiny 9}} = rac{U_{\mbox{\scriptsize T}}}{I_{\mbox{\scriptsize 9}}} pprox$$
 12 Ом.

В случае $C_{\Im}=0$ выполняются соотношения:

$$K_{\rm u} \approx \frac{R_{\rm k}}{R_{\rm B} + r_{\rm s}}$$

$$h_{11\mathfrak{d}}\approx (h_{21\mathfrak{d}}+1)r_{\mathfrak{d}}\approx 1200$$

$$R_{\rm B} = R_1 \| R_2 \approx 6,7 \; {
m kOm}$$

$$R_{\text{bx}} = R_{\text{B}} \| (h_{119} + R_{\text{B}}(h_{219} + 1)) \Rightarrow$$

$$R_{\text{bx}} = \frac{R_{\text{B}} \cdot (h_{11\text{-}} + R_{\text{-}}(h_{21\text{-}} + 1)}{R_{\text{B}} + (h_{11\text{-}} + R_{\text{-}}(h_{21\text{-}} + 1)} \approx 6,8 \text{ кОм}$$

Результаты всех расчетов и измерений вносим в таблицу 1.

4 Обработка резульатов измерений

Nº	U _{вых макс} , В	Ke	Κ _u	$R_{\rm BX}$, к ${ m O}{ m M}$	$f_{\scriptscriptstyle \mathrm{H}}, \Gamma$ ц	$f_{\scriptscriptstyle \mathrm{B}}, \mathrm{M}\Gamma$ ц
1.2	7,5	71,43	150	2,4	95	0,98
2.1	5,75	4,42	3,23	6,5	38	1,1
2.2	0,04	4,59	4,75	6,8	107	0,12

Таблица 1 финальные результаты пары $\{U_{\mathtt{вых\ макc}}, \mathsf{K}_e, \mathsf{K}_{\mathtt{u}}, \mathsf{R}_{\mathtt{bx}}, \mathsf{f}_{\mathtt{h}}, \mathsf{f}_{\mathtt{b}}\}$