AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A surface-substrate <u>having a surface</u> for adherence of cells thereto comprising:

at least one micronail structure protruding from the surface, <u>said micronail structure</u> comprising a base rod-like portion and a head cap-like portion of a larger surface, <u>wherein</u> at least a region of said micronail <u>structure</u> within the head cap-like portion has cellular internalization—

promoting moieties so that at least the head cap-like portion of the micronail structure has <u>having</u> cellular-internalization promoting properties.

2. (Cancelled)

- 3. (Currently Amended) A <u>The surface</u>-substrate according to Claim 1, wherein the micronail has a base portion and a head portion, and wherein the head <u>cap-like</u> portion has the cellular internalization promoting properties.
- **4.** (Currently Amended) A <u>The surface</u>-substrate according to Claim 3, wherein the head <u>cap-like</u> portion is coated with <u>the</u> cellular internalization-promoting moieties.

5. (Cancelled)

6. (Currently Amended) The surface-substrate of Claim 3, wherein the head cap-like portion is composed of or coated with a metal containing material.

7. (Currently Amended) The surface-substrate of Claim 6, wherein the metal is selected from: gold, copper, aluminum, platinum, silver, or alloys of such metals or combinations of such metals.

8. (Currently Amended) The surface-substrate of Claim 51, wherein the cellular internalization-promoting moieties are hydrolytic enzymes that facilitate degradation of extracellular matrix, wherein the hydrolytic enzyme isenzymes are selected from polysaccharide-degrading enzymes, proteinases and lipid-degrading-enzymes.

9. (Currently Amended) The surface-substrate of Claim 8, wherein said hydrolytic enzyme is connected to the micronail through a biodegradable spacer molecule.

10. (Currently Amended) The surface-substrate of Claim 51, wherein the cellular internalization-promoting moieties are molecules that recognize plasma membrane components, wherein said molecules are selected from: ligands of plasma membrane receptors or receptor binding-parts of said ligands; receptors that recognize plasma membrane components; lectins that bind to plasma-membrane glycoproteins; antibodies that recognize plasma-membrane components or binding fragments thereof; integrins that recognize short linear amino acid sequences in ECM proteins; or and a combination of two or more of the above.

11. (Currently Amended) The surface-substrate of Claim 51, wherein the cellular internalization-promoting moieties are molecules that recognize plasma components are molecules which and bind to polysaccharides that are part of proteoglycans in the ECM plasma membrane.

- 12. (Currently Amended) The surface-substrate of Claim 1, further comprising molecules that promote adhesion of cells.
- 13. (Currently Amended) The surface-substrate of Claim 12, wherein the molecules that promote adhesion of cells are present on at least one of the following: the base rod-like portion of the micronail, and the region surrounding the base rod-like portion.
- **14.** (Currently Amended) The surface-substrate of Claim 12, wherein said adhesion molecules are in the form of a charged monolayer.
- **15.** (Currently Amended) The surface substrate of Claim 14, wherein said charged monolayer is a positively charged monolayer of polylysine, or polyaniline and a like.
- 16. (Currently Amended). The surface-substrate of Claim 15, wherein said positively charged monolayer of polylysine, or polyaniline is assembled on a polystyrenesulfonate layer, said polystyrenesulfonate layer comprising anion units connected through a linker to the micronail.
- 17. (Currently Amended) A The surface-substrate according to Claim 1, adapted to form a cell-communicating part of an electrode.
- 18. (Currently Amended) A <u>The surface</u>-substrate according to Claim 17, wherein the electrode is a gate electrode.
- 19. (Currently Amended) A <u>The surface</u>-substrate according to Claim 17, wherein a-the base rod-like portion of the micronail is electrically isolated from its surrounding.

- **20.** (Currently Amended) A <u>The surface</u>-substrate according to Claim 17, wherein the micronail is electrically isolated from its surrounding.
- **21.** (Currently Amended) A <u>The surface</u> substrate according to Claim 18, wherein the micronail is a conductive rod-such as poly silicon rod, which is an integral part of the polysilicon gate electrode, and is insulated from the surrounding by a thin insulating layer.
- **22.** (Currently Amended) A The surface-substrate according to Claim 18, in the form of an integrated structure manufactured by lithography and etching techniques.
- **23.** (Currently Amended) A <u>The surface</u>-substrate according to Claim 19, wherein the base <u>rod-like</u> portion of the micronail is made of tungsten, and is isolated from the surrounding by a layer of silicon nitrade.
- 24. (Currently Amended) An electrode, comprising the surface-substrate of Claim 17.
- **25.** (Currently Amended) An The electrode according to Claim 24 being a gate electrode.
- **26.** (Currently Amended) An-The electrode according to Claim 25 having a single micronail.
- **27.** (Currently Amended) An-The electrode according to Claim 25 having a cluster of micronails.
- **28.** (Currently Amended) An The electrode according to Claim 27, wherein the size of the cluster is smaller than the size of the cell to be in communication with the electrode.

- **29.** (Currently Amended) An-The electrode according to Claim 24, wherein at least a region of said electrode is coated with a layer of immobilized recognition molecules that, in the presence of cell-secreted components, catalyze a reaction that causes release of ions in a media surrounding said recognition molecule.
- **30.** (Currently Amended) An-The electrode according to Claim 29, being a gate electrode.
- 31. (Currently Amended) A-The electrode according to Claim 2930, wherein the distance between the <u>immobilized</u> recognition molecules and the surface of the coated gate is smaller than 15Å.
- **32.** (Currently Amended) An-The electrode according to Claim 29, wherein the receptor immobilized recognition molecules are enzymes or peptides.
- 33. (Currently Amended) An-The electrode according to Claim 32, wherein the immobilized recognition molecules catalyze said reaction in the presence of a cell-secreted component selected from acetylcholine, glutamate, GABA, serotonin, neurotransmitters and/or neuroendocrines, growth factors, or cytokines.
- **34. (Currently Amended)** An The electrode according to Claim 33, wherein said immobilized recognition molecule is acetylcholine esterase.
- **35.** (Currently Amended) An The electrode according to Claim 30, wherein said gate-electrode is an ion sensitive gate.

- **36.** (Currently Amended) An-The electrode according to Claim 35, wherein the ion-sensitive material is Aluminum Oxide (A1₂O₃), Silicon Nitride (Si₃N₄), Indium Tin Oxide (In₃O₃Sn₂O₃), Silicon Oxide (SiO₂) or Tantalum Oxide (Ta₂O₅).
- 37. (Currently Amended) An The electrode according to Claim 29, wherein the immobilized recognition molecules are immobilized via linker molecules that are covalently bound to at least one of the surface-substrate surface of the substrate and the recognition molecules.
- 38. (Currently Amended) An-The electrode according to Claim 37, wherein said linker molecules are selected from conjugated or unconjugated aliphatic, aromatic or heteroaromatic molecules, having at least one functional group capable of covalently binding to said surface and at least one functional group capable of covalently binding to said recognition molecules.
- **39.** (Currently Amended) A device for the detection of cell secreting components comprising an electrode arrangement having at least one <u>said</u> electrode of Claim 29.
- **40.** (Currently Amended) A device for the detection of cell secreting components comprising at least one pair of source-drain electrodes and at least one <u>said</u> gate-electrode of Claim 31 forming together at least one Field Effect Transistor (FET).
- 41. (Currently Amended) A device for electric communication with a cell comprising an electrode arrangement having at least one <u>said</u> electrode of Claim 24.

42. (Currently Amended) A device for electrical communication with a cell comprising at least a pair of source-drain electrodes and at least one <u>said</u> gate electrode as defined in Claim 25, thereby defining together at least one Field Effect Transistor (FET).

43. (Currently Amended) A-The device according to Claim 41, wherein the electrical communication with the cell is achieved by a property selected from:

- (a) detecting the presence of currents, or current changes in cells;
- (b) detecting field potential or field potential change in cells;
- (c) providing a current to cells;
- (d) providing field potential to cells; or
- (e) a combination of two or more of (a) to (d).

44. (New) The substrate according to claim 1, wherein at least a region of the micronail is decorated with a material adapted to penetrate into a cytoplasm, so that the micronail is capable of being used as a micro-syringe delivering material either to the plasma membrane or intracellularly.

45. (New) The substrate according to claim 21, wherein the conductive rod is a poly-silicon rod.