Observability of Exoplanets with varying composition using Space Telescopes

Fahim Rajit Hossain

Supervisor(s): Niloofar Khorshid, Prof Jonathan Tan

CASSUM Symposium 25 July 2024

Exoplanet Formation and Classification in JWST Era!

Inside-Out Planet Formation (IOPF) Chatterjee & Tan (2014)

- Seeks to explain STIPs found by Kepler
- - Pebbles drift toward star via gas drag
 - Pebble ring forms close to star at local pressure maximum
 - Core is formed, begins to accrete material
 - Shallow gap is opened, pressure maximum retreats
 - Repeat

Chatterjee & Tan (2014) Fig. 1

7 IOPF Papers discuss implications of model

Cevallos Soto et al. (2022), IOPF 7 - chemodynamical modeling

 Key prediction: Inner disk (< 5 AU) should have very low C/O abundance (~0.1)

Super-Solar Oxygen Abundance

- Prediction: Planets in these systems may exhibit super-solar (higher than solar) abundances of oxygen.
- **Reasoning**: Despite the high C/O ratio, if there is significant accretion of oxygen-rich materials, these planets can end up with higher oxygen abundances compared to solar values.
- Goal of this work: Test this prediction of IOPF by modeling the atmosphere of a close-in rocky planet and compare the result to JWST data

Recreation of Cevallos Soto (2022) Fig. 8(f)

Exoplanetary Atmosphere Detection

Our Target Toy Planet: GJ 486b

1. Planet Parameters:

 $\bullet \; \mathsf{Mass:} \, 3 \, M_{\oplus}$

ullet Radius: $1.3\,\mathrm{R}_{\oplus}$

Period: 1.47 days

2. Host:

- ullet M-dwarf star ($T_{
 m eff}=3291$ K)
- \bullet Mass: $0.32\,\mathrm{M}_\odot$
- 3. Model Planetary Atmposphere Contains: H, C, O

https://viewspace.org/interactives/unveiling_invisible_universe/exoplanet_diversity/atmospheres

Method: Transmission Spectra Modelling

ARtful modelling Code for exoplanet Science (ARCiS)

- Developed by Ormel & Min (2019)
- Uses planet, star parameters

 + chemical abundances to
 produce atmospheric spectra
 for planets
- For this work we seek to produce transmission spectra

Our Forward Models

Metallicity [Z] vs C/O

Method: Synthetic Observations

PandExo

- Open source Noise simulator for JWST
- It can create instrument simulations of JWST's NIRSpec, NIRCam, NIRISS and NIRCam
- We produced synthetic Observations using Model Spectra.

Model 100x

Analysis

Model	H ₂ O: Ox <i>H</i> ₁	$_{\mathrm{H_2O:~C/x}}$ $_{\mathrm{H_2}}$	$\frac{H_1}{H_2}$	CO_2 : Ox h_1	CO_2 : C/x h_2
10x	0.0025 ± 0.000006	0.0024 ± 0.000006	1.0305 ± 0.0036	0.0025 ± 0.000011	0.0022 ± 0.000011
40x	0.0022 ± 0.000006	0.0024 ± 0.000006	0.8935 ± 0.0033	0.0021 ± 0.000011	0.0022 ± 0.000011
60x	0.0020 ± 0.000006	0.0024 ± 0.000006	0.8201 ± 0.0032	0.0020 ± 0.000011	0.0022 ± 0.000011
80x	0.0018 ± 0.000006	0.0024 ± 0.000006	0.7649 ± 0.0031	0.0018 ± 0.000011	0.0021 ± 0.000011
100x	0.0017 ± 0.000006	0.0024 ± 0.000006	0.7230 ± 0.0031	0.0018 ± 0.000011	0.0021 ± 0.000011

Model	$\frac{h_1}{h_2}$	$\frac{H_1}{h_1}$	$\frac{H_2}{h_2}$
10x	1.1072 ± 0.0072	0.9982 ± 0.0050	1.0724 ± 0.0058
40x	0.9794 ± 0.0070	1.0094 ± 0.0059	1.1065 ± 0.0062
60x	0.9139 ± 0.0068	1.0026 ± 0.0063	1.1172 ± 0.0063
80x	0.8637 ± 0.0067	0.9990 ± 0.0067	1.1281 ± 0.0064
100x	0.8263 ± 0.0066	0.9951 ± 0.0070	1.1372 ± 0.0064

$$rac{H_1}{h_1} = 0.9951 \pm 0.0070 > H_1 = 0.0017 \pm 0.000006 \ rac{H_1}{h_1} = 0.9951 \pm 0.0070 > h_1 = 0.0018 \pm 0.000011$$

For R=100 we have $\Delta y_{
m obs}=0.025188$

Discussion

- So far all model spectra is distinguishable (OOM 2) with the current noise we modeled
- If distinguishable with certainty we can detect planets from IOPF style formation to Non-IOPF formation even though they might have same (low) C/O,
- Currently we maintained a defined Temperature-pressure profile but with observation/Retrieval we might consider having it undefined.

Future Work

- Work with ARIEL simulations,
- Run retrievals for the Models created,
- Consider different target planet to better test IOPF C/O prediction
- Compare with actual observation [if available]

Thank you! Questions?

Special Thanks to: Niloofar Khorshed, Giuseppe Morello, & Jonathan Tan

References

- 1. Cevallos Soto A. et al., 2022, MNRAS, 517, 2 https://doi.org/10.1093/mnras/stac2650
- Chatterjee, S. & Tan, J.C., 2014, ApJ, 780, 53 https://doi.org/ 10.1088/0004-637X/780/1/53
- 3. Dong S., Zhu Z., 2013, ApJ, 778, 53 10.1088/0004-637X/778/1/53
- 4. Gaillard, F. et al., 2021, Space Science Reviews, 217 https://doi.org/10.1007/s11214-021-00802-1
- 5. Beleznay, Maya CASSUM 2023
- 6. Min, M. et al., 2019, A&A, 642 A28 https://doi.org/10.1051/0004-6361/201937377
- 7. Moran, S.E. et al., 2023, ApJL, 948, 1 https://doi.org/10.3847/2041-8213/accb9c
- 8. Rogers, J.G. & Owen, J.E., 2021, MNRAS, 503, 1 https://doi.org/10.1093/mnras/stab529
- 9. Luis Tabera, 2020 http://uu.diva-portal.org/smash/get/diva2:1538617/FULLTEXT01.pdf
- 10. Batalha. Et al., <u>10.1088/1538-3873/aa65b0</u>
- 11. Zink J.K. et al., 2019, MNRAS, 483, 4 https://doi.org/10.1093/mnras/sty3463