

CSC 220: Computer Organization

Unit 2 Digital Circuit Design

Prepared by:

Md Saiful Islam, PhD

Department of Computer Science

College of Computer and Information Sciences

Overview

- Digital Circuit Design
 - Logic Gates
 - Logic Functions
 - Standard Forms (SOP/POS)
- Universal Gates (NAND/NOR)
- XOR and XNOR Gates
- Logical Equivalence
- Logic Chips

Chapter-2

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Digital Circuit

- Digital Circuit (hardware) manipulate binary information
 - Input-output: one or more binary values

 Inputs Digital
 Circuit
 - Hardware consists of a few simple building blocks called logic gates
 - Logic gate: a electronic device the operates on one or more input signals and produce an output.
 - Basic Logic gates: AND, OR, NOT, ...
 - Additional gates: NAND, NOR, XOR, XNOR...
- Logic gates are built using transistors
 - NOT gate can be implemented by a single transistor
 - AND-OR gate requires 3 transistors
- Transistors are the fundamental devices
 - Pentium consists of 3 million transistors
 - Compaq Alpha consists of 9 million transistors
 - Now we can build chips with more than 100 million transistors

Logic Gates

- Basic gates
 - **AND**
 - **▶** OR
 - **▶ NOT**
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination
- Precedence
 - ▶ NOT > AND > OR
 - F = $\overline{A} B + \overline{A} B$ = $(A (\overline{B})) + (\overline{A}) B)$

AND gate

A	В	Г
0	0	0
0	1	0
1	0	0
1	1	1

A	
В	

OR gate

A -		F
-----	-------------	---

NOT gate

Logic symbol

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

A	F
0	1
1	0

Truth table

Logic Gates ...

- Additional useful gates
 - NAND
 - NOR
 - XOR
 - XNOR
- NAND = AND + NOT
- NOR = OR + NOT
- NAND and NOR gates require only 2 transistors
 - AND and OR need 3 transistors!
- XOR implements exclusive-OR function
- XNOR is complement of XOR

NAND gate

A	Ъ	Г
0	0	1
0	1	1
1	0	1
1	1	0
·		

A	T
В	→ F

NOR gate

Α	В	F
0	0	1
0	1	0
1	0	0
_1	1	0

A —\\	
$\mathbf{B} \longrightarrow \mathcal{L}$	F

XOR gate

Logic symbol

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Logic Functions

- ▶ A logic circuit implements a Boolean function.
- A Boolean function consists of
 - Binary variables
 - Constants 0, 1

- Logic operators: AND (.), OR (+), NOT(-), ...
- A function with N input variables
 - With N logical variables, we can define
 2^N combination of inputs
 - A single-output function relates the output (0/1) to inputs
 - Multiple-output Boolean function
 - More than one outputs
 - ▶ Each output (0/1) is related to same inputs

Logic Functions ...

Designing a Logic Circuit (4 steps)

- Step 1: Represent a logic function using a truth table
- Step 2: Obtain a logical expression from truth table
- Step 3: Simplify the function
- Step 4: Transfer the function to logic diagram of the circuit

Example:

- Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Logic Functions ...

Truth Table:

3-input majority function

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logical expression form

$$F = A'BC + AB'C + ABC' + ABC$$

Simplification

$$F = AB + BC + AC$$

Logic Diagram

Standard Forms

Standard Forms Boolean Expressions

- Sum-of-Products (SOP)
 - Derived from the Truth table for a function by considering those rows for which F = I.
 - The logical sum (OR) of product (AND) terms.
 - Realized using an AND-OR circuit.
- Product-of-Sums (POS)
 - Derived from the Truth table for a function by considering those rows for which F = 0.
 - The logical product (AND) of sum (OR) terms.
 - Realized using an OR-AND circuit.

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A sum of products or SOP expression consists of:
 - One or more terms summed (OR'ed) together.
 - Each of those terms is a product of literals.

$$f(x, y, z) = y' + x'yz' + xz$$

Sum of products expressions can be implemented with two-level circuits.

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2ⁿ possible minterms.
- For instance, a three-variable function f(x,y,z) has 8 possible minterms:

Each minterm is true for exactly one combination of inputs.

Row number	x_1	x_2	x_3	Minterm	${ m Maxterm}$
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	$egin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 &= \overline{x}_1 \overline{x}_2 x_3 \ m_2 &= \overline{x}_1 x_2 \overline{x}_3 \ m_3 &= \overline{x}_1 x_2 x_3 \ m_4 &= x_1 \overline{x}_2 \overline{x}_3 \ m_5 &= x_1 \overline{x}_2 x_3 \ m_6 &= x_1 x_2 \overline{x}_3 \ m_7 &= x_1 x_2 x_3 \ \end{array}$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Sum of minterms expressions

- A sum of minterms is a special kind of sum of products.
- Every function can be written as a unique sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

Х	У	Z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = x'yz + xy'z + xyz' + xyz$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3,5,6,7)$$

$$C' = x'y'z' + x'y'z + x'yz' + xy'z'$$

$$= m_0 + m_1 + m_2 + m_4$$

$$= \sum m(0,1,2,4)$$

C' contains all the minterms not in C, and vice versa.

Sum-of-Products

 Any function F can be represented by a sum of minterms, where each minterm is ANDed with the corresponding value of the output for F.

$$- F = \sum_{i} (m_i \cdot f_i)$$

Denotes the logical • where m_i is a minterm sum operation

- and f_i is the corresponding functional output
- Only the minterms for which $f_i = I$ appear in the expression for function F.
- $F = \Sigma (m_i) = \Sigma m(i)$ shorthand notation
- Sum of minterms are a.k.a. Canonical Sum-of-Products
- Synthesis process
 - Determine the Canonical Sum-of-Products
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Product of sums expressions

- As you might expect, we can work with the duals of these ideas too.
- A product of sums or POS consists of:
 - One or more terms multiplied (AND'ed) together.
 - Each of those terms is a sum of literals.

$$g(x, y, z) = y'(x' + y + z')(x + z)$$

Products of sums can also be implemented with two-level circuits.

Maxterms

- A maxterm is a sum of literals where each input variable appears once.
- A function with n input variables has 2ⁿ possible maxterms.
- For instance, a function with three variables x, y and z has 8 possible maxterms:

$$x + y + z$$
 $x + y + z'$ $x + y' + z$ $x + y' + z'$
 $x' + y + z$ $x' + y + z'$ $x' + y' + z$ $x' + y' + z'$

Each maxterm is false for exactly one combination of inputs.

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	$egin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ \end{bmatrix}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Product of maxterms expressions

- Every function can also be written as a unique product of maxterms.
- A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is 0.

Х	У	Z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

C =
$$(x + y + z)(x + y + z')$$

 $(x + y' + z)(x' + y + z)$
= $M_0 M_1 M_2 M_4$
= $\Pi M(0.1.2.4)$ When the o/p is Zero
= $\Sigma m(3,5,6,7)$ When the o/p is 1
C' = $(x + y' + z')(x' + y + z')$
 $(x' + y' + z)(x' + y' + z')$
= $M_3 M_5 M_6 M_7$
= $\Pi M(3,5,6,7)$

C' contains all the maxterms not in C, and vice versa.

Product-of-Sums

Any function F can be represented by a product of Maxterms, where each
Maxterm is ANDed with the complement of the corresponding value of
the output for F.

$$F = \prod_{i} (M_{i} \cdot f'_{i})$$
where M_{i} is a Maxterm

- Denotes the logical and f ' is the complement of the corresponding product operation functional output
 - Only the Maxterms for which $f_i = 0$ appear in the expression for function F.
 - F = Π (M_i) = Π M(i) ← shorthand notation
 - The <u>Canonical Product-of-Sums</u> for function F is the Product-of-Sums expression in which each sum term is a Maxterm.
 - Synthesis process
 - Determine the Canonical Product-of-Sums
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Universal Gates

▶ NAND and NOR gates are called universal gets

Proving NAND gate is universal

Universal Gates...

Proving NOR gate is universal

NOT gate

AND gate

XOR and XNOR Gates

The **XOR gate** produces a HIGH output only when the inputs are at opposite logic levels. The truth table is

Inp	uts	Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1_	1	0

The **XOR** operation is written as X = AB + AB. Alternatively, it can be written with a circled plus sign between the variables as $X = A \oplus B$.

XOR and XNOR Gates ...

Example waveforms:

Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

XOR and XNOR Gates ...

The **XNOR gate** produces a HIGH output only when the inputs are at the same logic level. The truth table is

Inp	outs	Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1_	1	1

The **XNOR** operation can be shown as $X = AB + \overline{AB}$.

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

Logical Equivalence

When two circuits implement same logic function

Example: All three circuits implement F = A B function

Logical Equivalence ...

- Proving logical equivalence:
 - Derivation of logical expression from a circuit
 - Trace from the input to output
 - Write down intermediate logical expressions along the path
 - Build the truth table relating inputs to the output for each circuit

Logical Equivalence ...

- Build the truth table for each circuit
- If each function give the same output, they are logically equivalent

A	В	FI = A B	$F3 = (A + B) (\overline{A} + B) (A + \overline{B})$
0	0	0	0
0	- 1	0	0
1	0	0	0
1	- 1	1	1

- Exercise:
 - Show that X⊕Y is logically equivalent to X'Y+XY'

Logic Chips

Logic Chips ...

Integration levels

- SSI (small scale integration)
 - Introduced in late 1960s
 - ▶ 1-10 gates (previous examples)
- MSI (medium scale integration)
 - Introduced in late 1960s
 - ▶ 10-100 gates
- LSI (large scale integration)
 - Introduced in early 1970s
 - ▶ 100-10,000 gates
- VLSI (very large scale integration)
 - Introduced in late 1970s
 - More than 10,000 gates