10 класс

Задание 1. Разминка.

Задача 1.1 «Дутые аттракционы»

1.1.1 «Время накачки» За одно качание насос захватывает из атмосферы массу m_1 воздуха, попавшую в его открытую засасывающую камеру объёмом V_2 при атмосферном давлении p_0 . Из уравнения состояния идеального газа Клапейрона—Менделеева получим

$$p_0 V_2 = \frac{m_1}{M_B} RT \implies m_1 = \frac{p_0 V_2 M_B}{RT}.$$
 (1)

Для нормальной работы аттракциона необходима масса воздуха m_{R}

$$p_1 V_1 = \frac{m_B}{M_R} RT \quad \Rightarrow \quad m_B = \frac{p_1 V_1 M_B}{RT} = 291 \text{ kg} \quad . \tag{2}$$

Как видим из (2), масса воздуха в аттракционе представляет собой достаточно значительную величину, для закачки которой скорее всего потребуется значительное время.

Поскольку насос равномерно (по массе) закачивает воздух, то механику Феде потребуется время для полной накачки

$$m_2 = m_1 Nt \implies t = \frac{m_2}{Nm_1} = \frac{p_1 V_1}{Np_0 V_2} = 2,5 \cdot 10^4 \text{ c} = 417 \text{мин} = 6,9 \text{ ч}.$$
 (3)

Как следует из (3) механик Федя никак не успеет к открытию аттракциона — нужно всё делать загодя (или поменять насос!). Действительно, таким насосом необходимо накачивать практически целый рабочий день, поскольку он рассчитан на обслуживание небольшого объема камеры автомобиля ($V_3 \approx 60\,\mathrm{Jm}$). Справедливости ради заметим, что все надувные аттракционы непрерывно подкачиваются в течение рабочего дня для компенсации утечки воздуха.

1.1.2 «Скорость накачки» Будем считать, что в процессе накачки поршень поднимается равномерно (т.е. находится в состоянии равновесия). Тогда давление под ним остаётся постоянным и равным

$$p(h) = p_0 + \frac{Mg}{S} = const , \qquad (4)$$

что соответствует изобарному процессу.

Согласно уравнению Клапейрона - Менделеева можем записать

$$pV = (p_0 + \frac{Mg}{S})Sh = \frac{m}{M_R}RT.$$
 (5)

Для высоты h поршня от массы закачанного газа m получаем выражение

$$h = \frac{m}{M_B} \frac{RT}{p_0 S + Mg} \implies h \sim m . \tag{6}$$

Согласно (6) высота поднятия поршня прямо пропорциональна массе закачанного в цилиндр газа. Согласно (3) через насос за время t пройдёт масса воздуха

$$m(t) = m_1 N t = \frac{p_0 V_2 M_B}{RT} N \cdot t \implies m \sim t$$
. (7)

Следовательно, зависимость высоты h поднятия поршня от времени t при накачке имеет вид

$$h(t) = \frac{1}{M_B} \frac{RT}{p_0 S + Mg} \frac{p_0 V_2 M_B}{RT} N \cdot t = \frac{p_0 V_2 N}{p_0 S + Mg} \cdot t . \tag{8}$$

График полученной зависимости – прямая пропорциональность, поскольку

$$h(t) \sim t \quad . \tag{9}$$

Из выражения (8) следует, что скорость движения поршня вверх равна коэффициенту пропорциональности в данной формуле

$$\upsilon = \frac{p_0 V_2 N}{p_0 S + Mg} = 2.0 \frac{\text{cM}}{\text{c}} . \tag{10}$$

Задача 1.2 «Газировка»

Количество газа, растворенного в воде, находится по формуле

$$v_0 = gV_L P_0, \tag{1}$$

где обозначено g - растворимость углекислого газа в воде при данной температуре.

Если бы весь этот углекислый газ находился в газообразном состоянии, то он бы занимал объем, равный

$$P_0 V_0 = v_0 RT = g V_L P_0 RT \quad \Rightarrow \quad V_0 = v_0 RT = g V_L RT \tag{2}$$

Пусть объем газа под поршнем стал равным V, а его давление - P. При этом давлении количество растворенного газа равно

$$v_1 = gV_L P. (3)$$

Следовательно, в газообразном состоянии находится

$$v = v_0 - v_1 = gV_L(P_0 - P) \tag{4}$$

молей углекислого газа. Для определения давления этого газа следует решить уравнение Менделеева-Клапейрона

$$PV = \nu RT = gV_L(P_0 - P)RT. (5)$$

Из которого следует

$$P = \frac{gV_LRT}{V + gV_LRT}P_0. (6)$$

Учитывая формулу (2), это выражение можно представить в виде

$$P = \frac{P_0}{\frac{V}{V_0} + 1} \ . \tag{7}$$

Точный график можно построить в

координатах $\left(\frac{P}{P_0}, \frac{V}{V_0}\right)$ см. рисунок.

Задача 1.3 «Водяной куб»

Поэтому на графике построим прямую, описываемую функцией $\beta=90^{\circ}-\alpha$. Также построим прямую, описываемую выражением $\beta=\alpha$.

1.3.1

Последовательность графического решения задачи следующая:

- от точки A ($\alpha=80^\circ$) проводим вертикальную прямую до пересечения с графиком функции $\beta=f(\alpha)$ (точка B), ее ордината равна углу β (по графику находим $\beta\approx48^\circ$);
- от точки B проводим горизонтальную прямую до пресечения с прямой

- от точки B проводим горизонтальную прямую до пресечения с прямой $\beta = 90^{\circ} - \alpha$, (точка C), ее абсцисса равна углу γ (по графику находим $\gamma \approx 42^{\circ}$); - от точки C проводим вертикальную прямую до пересечения с прямой $\beta = \alpha$ (точка D), ее ордината также равна γ ; - наконец, от точки D проводим

- наконец, от точки D проводим горизонтальную прямую до пересечения с заданной функцией $\beta = f(\alpha)$ (точка E), ее абсцисса и есть искомый угол $\delta = f^{-1}(\gamma)$; здесь f^{-1} - обозначена обратная функция.

По графику находим $\delta \approx 65^{\circ}$.

1.3.2 Аналогичная процедура для начального значения $\alpha = 62^\circ$ приводит к значению $\delta \approx 80^\circ$.

1.3.3 Из графика зависимости $\beta = f(\alpha)$ видно, что максимальное значение угла преломления равно $\beta_{\max} = 49^\circ$. Для нахождения соответствующего значения угла падения α необходимо от «конечной точки E (координатами $(90^\circ, 49^\circ)$) проделать обратный путь EDCBA, который приводит к значению

 $\alpha_{\rm min} \approx 60^{\circ}$. При меньших углах падения решения задачи не существует, это означает, что на второй грани луч полностью отразится. Таким образом, диапазон углов, при которых луч выйдет через вторую грань $60^{\circ} < \alpha < 90^{\circ}$.

Задание 2. Средние скорости.

2.1.1. Модуль средней скорости: $\langle v \rangle = \frac{\Delta r}{t}$. Когда точка проходит через первоначальное положение, $\Delta r = 0 \implies \langle v \rangle = 0$. Период вращения — это промежуток времени между двумя последовательными обращениями в ноль средней скорости. На рисунке это $T = 0.5\,\mathrm{c}$.