

Time-series Transformer using Linear Attention for Representation Learning and Health Forecasting COMP565 Machine Learning in Genomics and Healthcare

Ziyang Song ziyang.song@mail.mcgill.ca

School of Computer Science McGill University, Canada

November 19th, 2024

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

Continuous and Irregular-sampled Time Series

Continuous time series

- ▶ Data is collected at equal intervals, such as biosignals (e.g., heart rate).
- ► Classic time-series models, like RNNs and Transformers, apply to this category.

Continuous and Irregular-sampled Time Series

Continuous time series

- ▶ Data is collected at equal intervals, such as biosignals (e.g., heart rate).
- ► Classic time-series models, like RNNs and Transformers, apply to this category.

Irregularly-sampled time series

- Observations are collected at uneven intervals, as seen in patient medical records.
- Specialized models are needed to effectively handle this category of data.

Time Series Representation Learning

▶ Pre-trained models (PTMs) learn generalizable temporal patterns.

Time Series Representation Learning

- ▶ Pre-trained models (PTMs) learn generalizable temporal patterns.
- ▶ PTMs could provide strong zero(few)-shot learning for various tasks.

Time Series Representation Learning

- ▶ Pre-trained models (PTMs) learn generalizable temporal patterns.
- ▶ PTMs could provide strong zero(few)-shot learning for various tasks.
- ▶ How to handle both continuous and irregularly-sampled time series?

Forecasting and Trajectory Analysis

▶ PTMs take output sequence representation to forecast a target sequence with a specific inference method.

Forecasting and Trajectory Analysis

- ▶ PTMs take output sequence representation to forecast a target sequence with a specific inference method.
- ► Compute probabilities for a specific token over time to generate a disease risk trajectory, aiding in interpretable analysis.

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

Absolute Position Embedding (PE) for Transformer

▶ Self-attention is position-invariant: Softmax(QK^{\top})V

Absolute Position Embedding (PE) for Transformer

- ▶ Self-attention is position-invariant: Softmax(QK^{\top})V
- For each token n, the input embedding consists of token embedding X_n and position embedding P_n :

$$Q_n = (X_n + P_n)W_Q, \quad K_n = (X_n + P_n)W_K, \quad V_n = (X_n + P_n)W_V$$

PE for Irregularly-sample Time Series

Absolute PE only assigns discriminable embedding for the token positions.

PE for Irregularly-sample Time Series

- ▶ Absolute PE only assigns discriminable embedding for the token positions.
- ► Absolute PE fails to capture varying **time interval**.

PE for Irregularly-sample Time Series

- Absolute PE only assigns discriminable embedding for the token positions.
- ▶ Absolute PE fails to capture varying **time interval**.
- ► Time intervals reflect underlying health dynamics; it has a high sampling rate during a poor health state.

Relative PE Handles Irregularity

► Relative PE (e.g., RoPE, xPos) encodes positional information based on relative distance between two tokens (e.g., age).

Relative PE Handles Irregularity

- ► Relative PE (e.g., RoPE, xPos) encodes positional information based on relative distance between two tokens (e.g., age).
- ► RoPE defines the following positional encoding:

$$Q_n = X_n W_Q e^{i\theta t_n}, \quad K_m = X_m W_K e^{-i\theta t_m}, \quad Q_n^\top K_m = W_Q^\top X_n^\top e^{i\theta (t_n - t_m)} X_m W_K$$

where $t_n - t_m$ represents the difference in age between two tokens.

Extrapolatable Position (xPos) Embedding

► Transformers face challenges of length extrapolation, leading to performance decline if inference length exceeds training length.

Extrapolatable Position (xPos) Embedding

- ► Transformers face challenges of length extrapolation, leading to performance decline if inference length exceeds training length.
- \triangleright xPos incorporates both decay γ^n and rotation $e^{i\theta n}$ for extrapolation:

$$Q_n^\top K_m = W_Q^\top X_n^\top (\gamma e^{i\theta})^{n-m} X_m W_K$$

xPos Makes Extrapolation using Trend Patterns

> xPos mirrors the seasonal-trend decomposition in time series.

xPos Makes Extrapolation using Trend Patterns

- ▶ xPos mirrors the seasonal-trend decomposition in time series.
- The exponential decay γ^n and rotation matrix $e^{i\theta n}$ in the xPos embedding correspond to trend and periodic patterns, respectively.

xPos Makes Extrapolation using Trend Patterns

- xPos mirrors the seasonal-trend decomposition in time series.
- The exponential decay γ^n and rotation matrix $e^{i\theta n}$ in the xPos embedding correspond to trend and periodic patterns, respectively.
- ► Transformer with xPos embedding can make extrapolation by extending trend patterns over longer sequences.

Trend and Periodic Signal in Healthcare Time Series

Continuous time series (e.g., biosignals)

- ► Trend patterns: body temperature reflect human indicators.
- ▶ Periodic patterns: ECGs reflect physiological rhythms of the human body.

Trend and Periodic Signal in Healthcare Time Series

Continuous time series (e.g., biosignals)

- ► Trend patterns: body temperature reflect human indicators.
- ▶ Periodic patterns: ECGs reflect physiological rhythms of the human body.

Irregularly-sampled time series (e.g., Longitudinal EHR)

- ► Trend patterns: the age-related susceptibility to illnesses.
- Periodic patterns: the alternating exacerbation and recovery cycles

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

► Transformer with xPos can be rewritten as a recurrent attention (Retention), with both parallel and recurrent forms.

- ► Transformer with xPos can be rewritten as a recurrent attention (Retention), with both parallel and recurrent forms.
- ► The parallel form:

$$Q_n = X_n W_Q e^{i\theta n}, \quad K_m = X_m W_K e^{-i\theta m}, \quad V = X W_V,$$
 $O = (QK^\top \odot D)V, \quad D_{nm} = \begin{cases} \gamma^{n-m}, & n \geq m \\ 0, & n < m \end{cases}$

- ► Transformer with xPos can be rewritten as a recurrent attention (Retention), with both parallel and recurrent forms.
- ► The parallel form:

$$Q_n = X_n W_Q e^{i\theta n}, \quad K_m = X_m W_K e^{-i\theta m}, \quad V = X W_V,$$
 $O = (QK^\top \odot D)V, \quad D_{nm} = \begin{cases} \gamma^{n-m}, & n \geq m \\ 0, & n < m \end{cases}$

▶ The recurrent form involves a state variable S_n :

$$O_n = Q_n S_n, \quad S_n = \gamma S_{n-1} + K_n^\top V_n$$

- ► Transformer with xPos can be rewritten as a recurrent attention (Retention), with both parallel and recurrent forms.
- ► The parallel form:

$$Q_n = X_n W_Q e^{i\theta n}, \quad K_m = X_m W_K e^{-i\theta m}, \quad V = X W_V,$$
 $O = (QK^\top \odot D)V, \quad D_{nm} = \begin{cases} \gamma^{n-m}, & n \geq m \\ 0, & n < m \end{cases}$

▶ The recurrent form involves a state variable S_n :

$$O_n = Q_n S_n, \quad S_n = \gamma S_{n-1} + K_n^\top V_n$$

ightharpoonup Retention handles irregularity by adapting n-m to the time interval.

- TimelyGPT processes continuous biosignal data using a convolution subsampling module.
- For irregularly-sampled time series, TimelyGPT simply uses a learnable embedding layer to project a discrete token to an embedding.

- xPos encoding trend and seasonal patterns with respect to distances into the token embedding.
- xPos can handle both continuous and irregular time series.

- Chunk-wise Retention processes long sequences with linear complexity.
- TimelyGPT with xPos falls short in modeling nuanced local patterns.

- A temporal convolution module in each layer captures local patterns.
- ► It models multi-scale features by stacking multiple layers.

Forecasting Biosignals with a Case Study

► Pre-train on 4000 timesteps and infer on 8000 timesteps (with a 2000-step look-up window and a 6000-step forecasting window).

Forecasting Biosignals with a Case Study

- ► Pre-train on 4000 timesteps and infer on 8000 timesteps (with a 2000-step look-up window and a 6000-step forecasting window).
- ► Forecast beyond 2000 timesteps is considered as extrapolation.

Forecasting Biosignals with a Case Study

All pre-trained models can forecast the temperature drop by identifying the bump at 1000 timesteps, a typical indicator for temperature drop.

Forecasting Biosignals with a Case Study

- ► All pre-trained models can forecast the temperature drop by identifying the bump at 1000 timesteps, a typical indicator for temperature drop.
- ► TimelyGPT can make inference beyond the training length (4,000), indicating strong extrapolation capabilities.

Forecasting Irregular Diagnoses on Varied Windows

► Given a 50-step look-up window, we evaluate top-5 recall distributions over three forecasting windows.

Forecasting Irregular Diagnoses on Varied Windows

- ► Given a 50-step look-up window, we evaluate top-5 recall distributions over three forecasting windows.
- ► TimelyGPT with a time-specific inference can avoid error accumulation, achieving better and stable prediction.

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

Ordinary Differential Equations (ODEs)

▶ ODE is a differential equation with only one independent variable time *t*:

$$\frac{dz(t)}{dt}=f_{\theta}(z(t))$$

where it models a continuous dynamics.

Ordinary Differential Equations (ODEs)

▶ ODE is a differential equation with only one independent variable time t:

$$\frac{dz(t)}{dt} = f_{\theta}(z(t))$$

where it models a continuous dynamics.

▶ Given t_0 , an ODE can predict t_1 by integrating over its interval:

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f_{\theta}(z(t))$$

Our recurrent attention module can be viewed as a discretized ODE.

- Our recurrent attention module can be viewed as a discretized ODE.
- ► It learns the continuous dynamics and handles irregular data through discretization with varying step sizes.

- Our recurrent attention module can be viewed as a discretized ODE.
- ► It learns the continuous dynamics and handles irregular data through discretization with varying step sizes.
- ▶ Interpolation evolves the dynamics within the observed timeframe using a unit discretization step size.

- Our recurrent attention module can be viewed as a discretized ODE.
- ► It learns the continuous dynamics and handles irregular data through discretization with varying step sizes.
- ▶ Interpolation evolves the dynamics within the observed timeframe using a unit discretization step size.
- Extrapolation evolves the dynamics forward or backward in time beyond the observed timeframe.

Time-specific Inference

Leverage extrapolation technique, it forecasts observations at arbitrary timesteps.

Time-specific Inference

- Leverage extrapolation technique, it forecasts observations at arbitrary timesteps.
- ▶ To forecast a target point at t_{N+2} , it uses both the target timestep t_{N+2} and the last hidden states h_N to estimate the corresponding observation h_{N+2} .

Time-specific Inference

- Leverage extrapolation technique, it forecasts observations at arbitrary timesteps.
- ▶ To forecast a target point at t_{N+2} , it uses both the target timestep t_{N+2} and the last hidden states h_N to estimate the corresponding observation h_{N+2} .
- ► Time-specific inference reduces computational steps and error accumulation, leading to better forecasting performance.

Risk Trajectory Analysis for a Diabetic Patient

► We compute the probabilities of the diabetes token over time as a risk trajectory, highlighting the crucial points with significant risk growth.

Risk Trajectory Analysis for a Diabetic Patient

- ► We compute the probabilities of the diabetes token over time as a risk trajectory, highlighting the crucial points with significant risk growth.
- ▶ Our model effectively captures clear trends of increasing risks with age, reflecting age-related vulnerability to chronic diseases.

Disease Trajectory Analysis for a Diabetic Patient

▶ We generate a disease trajectory over irregular timestamps, where a prediction is considered correct if the top-10 predictions match the ground truth.

Disease Trajectory Analysis for a Diabetic Patient

- ► We generate a disease trajectory over irregular timestamps, where a prediction is considered correct if the top-10 predictions match the ground truth.
- ▶ Our model can predict diabetes even if it is not observed in the look-up window.

Disease Trajectory Analysis for a Diabetic Patient

- ► We generate a disease trajectory over irregular timestamps, where a prediction is considered correct if the top-10 predictions match the ground truth.
- ▶ Our model can predict diabetes even if it is not observed in the look-up window.
- Correlated phenotypes within the look-up window contribute to the increased risk of diabetes.

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

BiTimelyGPT for Discriminative Tasks

▶ In time-series data, only short segments (a shapelet) are crucial for prediction.

BiTimelyGPT for Discriminative Tasks

- ► In time-series data, only short segments (a shapelet) are crucial for prediction.
- ► Masking-based or dropping-based pre-training will disrupt the informative shapelet, hindering its prediction performance.

BiTimelyGPT for Discriminative Tasks

- ▶ In time-series data, only short segments (a shapelet) are crucial for prediction.
- ► Masking-based or dropping-based pre-training will disrupt the informative shapelet, hindering its prediction performance.
- ► Generative pre-training preserves the time-series shapelet, while only learn unidirectional contexts.

BiTimelyGPT with Bidirectional Generative Pre-training

▶ BiTimelyGPT alternates forward and backward attention mechanisms across layers, learning bidirectional contexts for discriminative prediction.

BiTimelyGPT with Bidirectional Generative Pre-training

- ▶ BiTimelyGPT alternates forward and backward attention mechanisms across layers, learning bidirectional contexts for discriminative prediction.
- ► The last two layers perform next-token prediction and previous-token prediction. This generative pre-training task preserves time-series shapelet.

Outline

Background of Healthcare Time Series and Transformer

Relative Position Embedding for Continuous and Irregular Time Series

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

TimelyGPT with Time Specific Inference in an Ordinary Different Equation Framework

Other and Future Works

Reference

Reference

- ➤ Song et al. (2024). TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare. ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB).
- Song et al. (2024). TrajGPT: Healthcare Time-Series Representation Learning for Trajectory Prediction. NeurIPS 2024 Workshop Time Series in the Age of Large Models (TSALM). Submitted to ICLR 2025, under review.
- ▶ Song et al. (2024). Bidirectional generative pre-training for improving healthcare time-series representation learning. Machine Learning for Healthcare (MLHC) and Proceeding of Machine Learning Research (PMLR).