Improving Network Availability with

Protective ReRoute

202035303 고현철

What is our goal?

MTBF is the Mean Time Between Failures
MTTR is the Mean Time to Repair

FlowLabel #1
FlowLabel #2
FlowLabel #3
FlowLabel #4

Types of Recovery

Repathing Example

Outage fraction by fault type

Promotes recovery over time

RTO effect

• the repair of a 50% outage

The lower the RTO, the more repathing can be performed per unit time.

Random Repathing

• PRR repaths as a local action by using the FlowLabel

Random Repathing Cascade

PRR shifts traffic more gradually and smoothly

How do gradually?

spreads reaction times out at RTO timescales

How do smoothly?

• 50% outage

2X the origin overhead

random repathing using routing weights

PRODUCTION RESULTS

• Case Study 1: Complex B4 Outage

X L3 : Network Layer, L7 : Application Layer, L7/PRR : Enable PRR

PRODUCTION RESULTS

• Case Study 2: Optical failure

(a) Inter-continental probe loss

(b) Intra-continental probe loss

Aggregate Improvements

• Outage minute

Conculsion

Use IPv6 FlowLabel for ECMP

• Use routing to maintain diverse paths

• Use host repathing for repair, not FRR

Thank You