Homework Six

Mark Archual | MTH 515

Dr. Scott | Real Analysis

3/6/2019

Problem 2.7.1 (Part A only)

Original Solution

Let S_n be the partial sum of

$$S_n = \sum_{k=1}^n a_k$$

which is a monotonically decreasing sequence that converges to 0.

By the cauchy criterion for series, $\exists N \in \mathbb{N}$ s.t. $n>m\geq N$ implies $|S_n-S_m|<\epsilon$ for an arbitrary $\epsilon>0$.

Notice that

$$|S_n - S_m| = (a_1 - a_2 + a_3 \dots \pm a_n) + (-a_1 + a_2 - a_3 \dots \pm a_m)$$

Because the series is decreasing, we know that $S_m \geq S_n$ so

$$(a_m - a_{m+1} + \ldots \pm a_{n-1}) \ge (a_{m+1} - a_{m+2} \ldots \pm a_n)$$

So

$$2|S_n-S_m|=2*|(a_{m+1}-a_{m+2}\ldots\pm a_n)| \ \le (a_m-a_{m+1}+\ldots\pm a_{n-1})-(a_{m+1}-a_{m+2}\ldots\pm a_n)$$

$$=|a_m\pm a_n|$$

$$\leq |a_m + a_n| < 2 * \epsilon$$

 $\therefore S_n$ is cauchy.

Self-Evaluation

Problem 2.7.2

Original Solution

Part A

 $\sum_{n=1}^{\infty}\frac{1}{2^n+n}$ converges because the sequence $\left(\frac{1}{2^n+n}\right)$ converges to 0.

Part B

$$\sum_{n=1}^{\infty} rac{\sin n}{n^2}$$
 converges as

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$

and the sequence $\left(\frac{1}{n^2}\right)$ converges to 0 so $\sum_{n=1}^{\infty}\frac{1}{n^2}$ converges, and then by the comparison test $\sum_{n=1}^{\infty}\frac{\sin n}{n^2}$ converges.

Part C

The $\sum \frac{(-1)^{n+1}(n+1)}{2n}$ does not converge. We know that $\frac{(n+1)}{2n}$ converges to $\frac{1}{2}$, so by the alternating series test, the sum diverges.

Part D

Let $1+\frac12-\frac13+\frac14+\frac15-\frac16\ldots=a_k$. And let b_k be infinite the sum of the harmonic series.

Then $0 \leq a_k \leq b_k \forall k \in \mathbb{N}$

We know b_k diverges, so by the comparison test, a_k diverges as well.

Part E

Let $1-rac{1}{2^2}+rac{1}{3}-rac{1}{4^2}+rac{1}{5}-rac{1}{6^2}\ldots=a_k$ And let b_k be the infinite sum of the harmonic series.

Then $0 \leq a_k \leq b_k \forall k \in \mathbb{N}$

We know b_k diverges, so by the comparison test, a_k diverges as well.

Self-Evaluation

Problem 2.7.9

Original Solution

Part A

If r < r' < 1, then this implies that r' is an valid upper bound on the value of the ratio, and that it exists between r and 1 by the archimedean property.

Because the $\lim \left| \frac{a_{n+1}}{a_n} \right| = r$, then we know it never passes r and therefore never passes r'. Thus we can say, that for $n \geq N$, where N is the minimum value to approach the limit of the sum,

$$|a_{n+1}| \leq |a_n|r'$$

Part B

 $|a_N|\sum (r')^n$ converges because it is a geometric sequence with a ratio less than 1.

Part C

 $\sum a_n$ is a combination of two different series,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} |a_n|$$

The first summation is finite, so it is guaranteed to converge. The second summation we know to converges because $|a_{N+k}| < r^k |a_N| \forall k$ which allows us to utilize the comparison test, to show

$$\sum_{n=N+1}^{\infty}|a_n|=\sum_{k=1}^{\infty}|a_N+k|$$

.

 $\therefore \sum |a_n|$ converges and by the absolute convergence test, $\sum a_n$ converges.

Note: I did some additional reading on the Ratio test at the link provided in External References

Self-Evaluation

Problem 3.2.2 (Parts A, B and D Only)

Original Solution

Let
$$A=(-1)^n+\frac{2}{n}$$

Limit Points: -1, 1

The set is not open, because there is no viable epsilon neighborhood for 2, and not closed because it does not contain -1.

$$A \cup L = A \cup \{-1\} = \bar{A}$$

Let
$$B = x \in \mathbb{Q}, 0 < x < 1$$

The limit points are 0 and 1.

The set is open, as there is a valid epsilon neighborhood for all points in the set. The set is also not closed because it does not contain its limit points.

$$B \cup L = B \cup \{0,1\} = \bar{B}$$

Self-Evaluation

Problem 3.2.3

Original Solution

Part A

 $\mathbb Q$ is not closed because every $x\in\mathbb R$ is a limit point of $\mathbb Q$, so $\mathbb Q$ does not contain any of its limit points.

 $\mathbb Q$ is also not open because by the Archimedean property, each epsilon neighborhood inherently includes irrational numbers between the rationals, i.e. the density of $\mathbb Q$ in $\mathbb R$

Part B

 $\mathbb N$ is closed as it has no limit points, and thus, does not contain them. Similar to $\mathbb Q$, $\mathbb N$ is not open as the epsilon neighborhoods are essentially isolated to that point.

Part C

 $x \in \mathbb{R}, x \neq 0$ is open, and closed, for the same reason as \mathbb{R} . That is all epsilon neighborhoods are valid, and it does not have any limit points.

Part D

 $\sum \frac{1}{n^2}, n \in \mathbb{N}$ is not closed, as the limit, $\frac{\pi^2}{6} \notin \mathbb{N}$. It is also not open, as each term is a finite point, thus there is no valid epsilon neighborhood for each term.

Part E

 $\sum \frac{1}{n}$, $n \in \mathbb{N}$ is closed as it has no limit points, similar to \mathbb{N} itself. It is not open because each term is a finite point, and thus there is no valid epsilon neighborhood for each term.

Self-Evaluation

External References

Used on 2.7.9, parts B and C