Our First (Second) Data Structure

The story so far

- We understand the notion of an abstract data type.
- Saw some fundamental operations as well as advanced operations on arrays.

This week we will

- use the array ADT but in a slightly different manner(s).
- and advanced applications of the data structure.

Motivation

- Think of developing a modern editor.
 - supports undo/redo among other things.
 - Suppose that currently words w1, w2, w3 are inserted in that order.
 - When we undo, which word has to be undone.
 - w3
 - Next undo should remove w2.
 - So, the order of undo's should be the reverse order of insertion.

Another Example

- Imagine books piled on top of each other.
- To access a book in the pile, one may need to remove all the books on top of the book we need.

- Similarly, in some cafeterias, plates are piled.
 - The plate we take is the one that is placed the last on the pile.
 - see our dining hall plates.

Motivation

- All these examples suggest that there is a particular order in accessing data items.
 - Last In First Out (LIFO)
- Turns out that this order has several other applications too.
- This week, we will formalize this order and study its important applications.

The Stack ADT

- We can say that the above examples are connected by:
 - a stack of words to be deleted/inserted
 - a stack of books to be removed/repiled
 - a stack of plates
- The common theme is the stack
- This stack can be formalized as an ADT.

The Stack ADT

- We have the following common(fundamental) operations.
- create() -- creates an empty stack
- push(item) push an item onto the stack.
- pop() -- remove one item from the stack, from the top
- size() -- return the size of the stack.

The Stack ADT

- One can implement a stack in several ways.
- We will start with using an array.
 - Only limitation is that we need to specify the maximum size to which the stack can grow.
 - Let us assume for now that this is not a problem.
 - the parameter n refers to the maximum size of the stack.

Stack Implementation

```
function create(S)

//depends on the
language..

//so left unspecified for
now
end-function.
```

```
function push(item)
begin

S[top] = item;
top = top + 1;
end
```

Stack Implementation

```
function pop()

begin

return S[top--];

end

function size()

begin

return top;

end
```

One Small Problem

- Suppose you create a stack of 10 elements.
- The stack already has 10 elements
- You issue another push() operation.
- What should happen?
 - Need some error-handling.
 - Modified code looks as follows.

Push, Pop with Error Handling

```
function push(item)
                               function pop()
begin
                               begin
                                  if (top == 0) then
   if top == n then
      return "ERROR: STACK
                                      return "ERROR: STACK
        FULL"
                                       EMPTY"
   else
                                  else
      S[top++] = item
                                      return S[top--]
end.
                               end
```


- Consider an empty stack created.
- Consider the following sequence of operations
 - Push(4), Push(19), pop(), push(12), push(17), pop(), pop().
- The resulting stack is shown in the figure.

Typical Conventions

- When drawing stacks, a few standard conventions are as follows:
 - A stack is drawn as a box with one side open.
 - The stack is filled bottom up.
 - So, top of the stack is towards the North.

Applications of Stacks

- We will consider one applications of our new data structure to
 - Expression Evaluation

Expression Evaluation

- Imagine pocket calculators or the Google calculator.
- One can type in an arithmetic expression and get the results.
 - Example: 4+2 = 6.
 - Another example: 6+3*2 = 12. And not 18. Why?
- For simplicity, let us consider only binary operators.

Expression Evaluation

- How do we evaluate expressions?
- There is a priority among operators.
 - Multiplication has higher priority than addition.
- When we automate expression evaluation, need to consider priority.
- To disambiguate, one also uses parantheses.
 - The previous example written as 6 + (3*2).

How to evaluate an expression?

- We evaluate expressions from left to right.
- All the while worrying about operator precedence.
- What is the difficulty?
- Consider a long expression.

$$-2+3*8*2*2+1$$

- When we look at the first 2, we can hopefully remember that 2 is one of the operands.
- The next thing we see is the operator +. But what is the second operand for this operator.

How to Evaluate an Expression

- This second operand may not be seen till the very end.
- Would it be helpful if we could associate the operands easily.
- But the way we write the expression, this is not easy.

How to Evaluate an Expression

- There are other ways of writing expressions.
- The way we write expression is called the infix style.
 - The operator is placed between the operands.
- There is (at least one) another way to write expressions called the postfix style.
- In a postfix expression, operators are written after the operand.
 - The operands immediately precede the operator.

Postfix Expression

- Turns out if we maintain the previous condition, then there is no ambiguity in evaluating expressions.
- This is also called as Reverse Polish Notation.
- For instance, the expression 3+2 is written as 3 2 +
- How about the expression 2 + 3 * 6?
 - Notice that the operands for * are 3 and 6.
 - The operands for + are 2 and the result of the expression 3 * 6.
- So how to write the postfix equivalent for 2 + 3 * 6

Postfix Expression

- Given the above observations, we can write it as
 236*+.
- Another example: 3 + 4 + 2 * 6. The postfix is
 3 4 2 6 * + +.
- But can we write postfix expressions? We are used to writing infix expressions.
- Our next steps are as follows
 - Given an infix expression, convert it into a postfix expressions.
 - Evaluate a postfix expression.

Our Next Steps

- We have two problems. Of these let us consider the second problem first.
- The problem is to evaluate a given postfix expression.

- Some observation(s)
 - The operands immediately precede the operator.
 - Let us still evaluate from left to right.
- This helps us in devising an algorithm.
- Imagine that the postfix expression is stored in an array.
 - one operator/operand at an index.

- Let us look at the first operator, starting from the left.
- Suppose that the operator appears at index k.
- Where are the operands for this operator?
 - At indices k-1 and k-2.
- So, it is easy to evaluate this operator.
- But where should we store the result?

- Storing it anywhere can be a problem.
- We may violate the property that the operands immediately precede the operator.
- So what should we do?

- Can we use a stack?
- How can it be used?
- What should we store in the stack?

- We have to keep track of operands so that when we see an operator, we should be able to apply the operator immediately.
- Suppose we maintain that the operands are on the top (and next to top) of the stack.
- Once we evaluate an operator, where should we now store the result?
 - The result could be the operand of a future operator.
 - So, pile it on the stack.

- The above suggests the following approach.
- For every operand, push it onto the stack.
- For every operator, evaluate the operator by taking the top two elements of the stack.
 - place the result on top of the stack.
- The pseudo-code is given next.

Algorithm to Evaluate a Postfix Expression

```
Algorithm EvaluatePostfix(E)
begin
   Stack S;
   for i = 1 to n do
   begin
   if E[i] is an operator, say o then
        operand1 = S.pop();
        operand2 = S.pop();
        value = operand1 o operand2;
        S.push(value);
   else
        S.push(E[i]);
   end-for
end-algorithm
```

Algorithm to Evaluate a Postfix Expression

- In the above, n refers to the number of operators + the number of operands.
- The time taken for the above algorithm is linear in n.
 - There is only one for loop which looks at each element,
 either operand or operator, once.
- We will see an example next.

Example to Evaluate a Postfix Expression

- Consider the expression a b + c d * e f + + +.
- Show the contents of the stack and the output at every step.

• a b + c d * e f + + +

• a b + c d * e f + + +

• a b + c d * e f + + +

• ab+cd*ef+++

c a+b

• ab+cd*ef+++

d c a+b

• ab+cd*ef+++

c*d a+b

• ab+cd*ef+++

e c*d a+b

• ab+cd*ef+++

f e c*d

• ab+cd*ef+++

e+f

c*d

a+b

• ab+cd*ef+++

$$T1 = (c*d) + (e+f)$$

T1

a+b

• ab+cd*ef+++

$$T1 = (c*d) + (e+f)$$

$$T2 = (a+b) + (T1)$$

Practice Problems

- Evaluate the following postfix expressions. Use a stack and show all your work.
 - 532*32*-14+++
 - 32*24*52+++

Back to The First Question

- Let us now consider how to convert a given infix expression to its postfix equivalent.
- The issues
 - Operands not easily known
 - There may be parentheses also in the expression.
 - Operators have precedence.

- Consider the example a + b * c + d.
 - The correct evaluation is given by a + (b*c) + d.
- We should still process from left to right.
- We encounter operands and operators.
 - How should each be handled?
- Intuition: Operators have to wait for their operand.

- Let us consider storing operators in the stack.
- They have to wait for their operands to be available.
- How about parentheses?
 - The closed parentheses indicates that some subexpression is complete.

- Let us consider our example a + b * c + d again.
- When we see the first operand "a" we do not know the other operand or the operator.
- But can still write "a" to the output.
- When we see the "+", cannot write it to the output yet.
 - The other operand must also be written before the operator is written.

- Have to remember this + somewhere.
 - How long?
- Is "b" the other operand for +?
- Not so, b*c + d is the operand.
- So have to wait on + for a while.
- When we read "b", we can output it.
- Next we see the "*" operator. Even for this, only one operand ("b") is known.
- So have to remember this *.

- Continuing further, we can write the operand "c" the output.
- Seeing "+", we have to realize that
 - * has higher precedence than +,
 - The operands for * are complete.
- So can print the operator * right away.
- What about the other + that we postponed earlier?

- Depends on the precedence of +.
- For operators of equal precedence, have to look at associativity of the operator.
- Where do we store the operators?
 - Since we are getting to print in the reverse order from what we see,
 - can use a stack to store these.

Let us consider an expression of the form a + b + c
* d + e * f.

$$a + b + c * d + e * f$$

$$a + b + c * d + e * f$$

$$a + b + c * d + e * f$$

$$a + b + c * d + e * f$$

$$a + b + c * d + e * f$$

a b c

$$a + b + c * d + e * f$$

a b c

$$a + b + c * d + e * f$$

a b c c

$$a + b + c * d + e * f$$

a b c d ^{*}

$$a + b + c * d + e * f$$

a b c d * e

$$a + b + c * d + e * f$$

a b c d * e

$$a + b + c * d + e * f$$

a b c d * e f

$$a + b + c * d + e * f$$

Practice Problems

- Convert the following infix expressions to their equivalent postfix.
 - (a+b)*c+d*e+f
 - a+b*c*(d+e*f)*g

Further Applications of the Stack

- Stack used to support recursive programs.
 - Need to store the local variables of every recursive call.
 - Recursive calls end in the reverse order in which they are issued.
 - So, can use a stack to store the details.
- How to verify if a given string of) and (are well-matched?
 - Well matched means that for every (there is a), and
 - A) does not come before a corresponding (.
 - How can we use a stack to solve this problem?

Yet Another Data Structure

- Consider a different setting.
- Think of booking a ticket at a train reservation office.
 - When do you get your chance?
- Think of a traffic junction.
 - On a green light, which vehicle(s) go(es) first.?
- Think of airplanes waiting to take off.
 - Which one takes off first?

Yet Another Data Structure

- All the above scenarios suggest a order of processing data.
 - The order is First-In-First-Out (FIFO)
- We propose a data structure for handling these situations.
 - The name of the data structure is the Queue.

The Queue

- The fundamental operations for such a data structure are:
 - Create: create an empty queue
 - Insert : Insert an item into the queue
 - Delete: Delete an item from the queue.
 - size: return the number of elements in the queue.

The Queue

- Can use an array also to implement a queue.
- We will show how to implement the operations.
 - We will skip create() and size().
- We will store two counters: front and rear
- Insertions happen at the rear
- Deletions happen from the front.

The Queue Routines

```
Algorithm Insert(x)
                              Algorithm Delete()
begin
                              begin
if rear == MAXSIZE then
                              if size == 0 then return
                                ERROR;
 return ERROR;
                              size = size - 1;
Queue[rear] = x;
                              return Queue[front++];
size = size + 1;
                              end
rear = rear + 1;
end
```

Queue Example

- Starting from an empty queue, consider the following operations.
 - Insert(5), Insert(4), Insert(3), Delete(), Delete()
- The result is shown in the figure above.

Some Conventions

- Normally, a queue is drawn horizontally
- The front is towards the left, and the rear is towards the right.
- Notice that after a delete, that index is left empty.
- The queue is declared full when rear reaches a value of n.

Other Variations to the Queue

- To save space, a circular queue is also proposed.
- Operations that update front and rear have to be based on modulo arithmetic.
- The circular queue is declared full only when all indices are occupied.

A Sample Application with Stack and Queue

- A palindrome is a string that reads the same forwards and backwards, ignoring non-alphabetic characters.
- Examples:
 - Malayalam
 - Wonton? not now
 - Madam, i'm Adam
- Problem: Given a string, determine if it is a palindrome.
 - May not know the length of the string apriori.

Sample Application

- Need to compare the first character with the last character.
- So, store the characters in a stack and a queue also.
- Once notified of the end of the string, compare the top of the stack with the front of the queue.
 - Continue until both the stack and the queue are empty.

Other Applications of Queue

- A packet queue.
- Several graph algorithms
 - These are advanced applications. We'll study graphs later.