Department of Computer Science and Engineering, SVNIT, Surat.

Automata and Formal Languages

Tutorial 3

Topic: Context Free Grammar

Q.1 Identify the language generated by the following grammar, where S denotes start variable:

$$S \rightarrow XY$$

$$X \rightarrow aX|a$$

$$Y \rightarrow aYb|\epsilon$$

Q.2 Below is the grammar for $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \rightarrow abc \mid aSAc$$

$$cA \rightarrow Ac$$

$$bA \rightarrow bb$$

Try deriving string w = aaabbbccc

Q.3 Give context-free grammars that generate the following languages.

- (a) $w \in \{0, 1\} * | w = wR \text{ and } |w| \text{ is even } \}$
 - (b) $w \in \{0, 1\} * | \text{ the length of } w \text{ is odd and the middle symbol is } 0 \}$
- (c) Design a CFG G with set of terminals $T = \{0, 1, (,), \cup, *, \varnothing, e\}$ that generates exactly the regular expressions with alphabet $\{0, 1\}$.

Q.4 Using your CFG G, give a derivation and the corresponding parse tree for the string $(0 \cup (10)*1)*$.

Q.5 The language of non null string of a's can be defined by context free grammar for as follows: $S \to aS|Sa|a$

How many trees can be a³? Justify your answer with respective trees.

Q.6 Check whether the following languages are context free or not, justify your answer.

1. L1 =
$$\{0^i \ 1^j \mid i!=j\}$$

2.
$$L2 = \{0^i \ 1^j \mid i = j\}$$

3. L3 =
$$\{0^i1^j \mid i=2j+1\}$$

4.
$$L4 = \{0^i \ 1^i \mid i! = 2i\}$$

Q.7 Given the language $L = \{ab, aa, baa\}$, find out whether following strings are in L^* or not? Provide proper explanation for the same.

- a) abaabaaabaa
- b) baaaaabaaaab
- c) baaaaabaa
- d) aaaabaaaa
- e) baaabaaaaa