Supplementary for Multioutput Surrogate Assisted Evolutionary Algorithm for Expensive Multi-Modal Optimization Problems

1st Renzhi Chen Defense Innovation Institute Beijing, China chenrenzhi1989@gmail.com 2nd Ke Li

Department of Computer Science

University of Exeter

Exeter, EX4 4QF, UK

k.li@exeter.ac.uk

I. PROPOSED ALGORITHM

A. Population Partitioning based on GMM Clustering

The pseudo-code for fitting the GMM is provided in Algorithm 1.

Algorithm 1: GMM fitting

Input: The dataset X, Number of clusters C, threshold ϵ , parameters for previous fited GMM $\hat{\Theta}$

Output: Posterior Density Matrix \mathcal{D}

Initialization: If $\hat{\Theta}$ is empty then generate Θ randomly, else $\Theta \leftarrow \hat{\Theta}$;

repeat

Expectation step: Calculate the posterior density Matrix \mathcal{D} according to:

$$d_{rc} \leftarrow \frac{\omega_c \mathcal{N}(\mathbf{x}^r | \mu_c, \Sigma_c)}{\sum_{i=1}^{C} \omega_j \mathcal{N}(\mathbf{x}^r | \mu_j, \Sigma_j)}$$

for $r \in \{1, \dots, N\}, c \in \{1, \dots, C\};$

Maximization step: Update Θ :

$$N_c \leftarrow \sum_{i=1}^{N} d_{ic}$$

$$\mu_c \leftarrow \frac{1}{N_c} \sum_{i=1}^{N} d_{ic} \mathbf{x}^i$$

$$\sum_c \leftarrow \frac{1}{N_c} \sum_{i=1}^{N} d_{ic} (\mathbf{x}^i - \mu_c) (\mathbf{x}^i - \mu_c)^T$$

$$\omega_c \leftarrow N_c/N$$

for $c \in \{1, \cdots, C\}$;

Check for convergence:

$$L_{old} \leftarrow L$$
$$L \leftarrow \log p(X|\Theta)$$

until $|L - L_{old}| < \epsilon$;

B. Infill Criterion

The Hypervolume (HV) is defined as follows:

$$HV(\boldsymbol{\alpha}_{LCB}(\mathbf{x})) = \prod_{c=1}^{C} \left(\alpha_i(\mathbf{x}) - \alpha_i^*\right), \tag{1}$$

where $\bar{\alpha} = (\bar{\alpha}_1, \dots, \bar{\alpha}_C)^{\top}$ is a reference point, typically the nadir point for the non-dominated solution.

II. EXPERIMENTAL SETUP

A. Synthetic Benchmark Problem

We choose three classic multimodal optimization problems as the synthetic benchmark problem in our experiments.

 Rastrigin Function has several local minima. It is highly multimodal, but locations of the minima are regularly distributed. It is defined as:

$$f(\mathbf{x}) = an + \sum_{i=1}^{n} [x_i^2 - a\cos(cx_i)]$$
 (2)

where $a=10, c=2\pi$ and the bounds is set $\mathbf{x} \in [-5.12, 5.12]^n$.

Ackley Function [1] is widely used for testing optimization algorithms which is characterized by a nearly flat outer region, and a large hole at the centre. The function poses a risk for optimization algorithms to be trapped in one of its many local minima. It is defined as:

$$f(\mathbf{x}) = -a \exp\left(-b\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right)$$
$$-\exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(cx_i)\right) + a + e$$
 (3)

where $a=20, b=0.2, c=2\pi$, and the bounds is set $\mathbf{x} \in [-5, 5]^n$.

 Griewank Function has many widespread local minima, which are regularly distributed. It is defined as:

$$f(\mathbf{x}) = \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1 \qquad (4)$$

where the bounds is set $\mathbf{x} \in [-10, 10]^n$.

B. Statistical Tests

To have a statistical interpretation of the significance of comparison results, we use the following three statistical measures in our empirical study.

- Wilcoxon signed-rank test [2]: This is a non-parametric statistical test that makes little assumption about the underlying distribution of the data and has been recommended in many empirical studies in the EA community [3]. In particular, the significance level is set to p=0.05 in our experiments.
- Scott-Knott test [4]: We apply the Scott-Knott test to rank the performance of different peer techniques over 21 runs on each test problem. In a nutshell, the Scott-Knott test uses a statistical test and effect size to divide the performance of peer algorithms into several clusters according to their metric values. After that, each cluster can be assigned a rank according to the mean metric values achieved by the peer algorithms within the cluster. In particular, the smaller the rank is, the better performance of the algorithm achieves.
- A_{12} effect size [5]: To ensure the resulted differences are not generated from a trivial effect, we apply A_{12} as the effect size measure to evaluate the probability that one algorithm is better than another. Specifically, given a pair of peer algorithms, $A_{12} < 0.56$ means they are equivalent. $0.56 \le A_{12} < 0.64$ indicates a small effect size while $0.64 \le A_{12} < 0.71$ and $A_{12} \ge 0.71$ mean a medium and a large effect size, respectively.

III. RESULTS AND ANALYSIS

A. Comparison with the Peer Algorithms for Different Dimensions

the trajectories of $\mathcal{L}(\mathbf{x})$ shown in Figs. 1.

B. Comparison with the Peer Algorithms for Different Number of Optimal

The statistical comparison results on $\bar{\epsilon}_f$ and $\bar{\epsilon}_t$ are given in Tables II and the trajectories of $\mathcal{L}(\mathbf{x})$ shown in Figs. 2.

REFERENCES

- T. Bäck, Evolutionary algorithms in theory and practice evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, 1996.
- [2] F. Wilcoxon, "Individual comparisons by ranking methods," 1945.
- [3] J. Derrac, S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," *Swarm Evol. Comput.*, vol. 1, no. 1, pp. 3–18, 2011.
- [4] N. Mittas and L. Angelis, "Ranking and clustering software cost estimation models through a multiple comparisons algorithm," *IEEE Trans. Software Eng.*, vol. 39, no. 4, pp. 537–551, 2013.
- [5] A. Vargha and H. D. Delaney, "A critique and improvement of the CL common language effect size statistics of McGraw and Wong," *J. Educ. Behav. Stat.*, vol. 25, no. 2, pp. 101–132, 2000.

Fig. 1. Trajectories of $\mathcal{L}(\mathbf{x})$ with confidence bounds achieved by six algorithms on Ackley and Rastrigin functions.

TABLE I Performance comparison results of $\overline{\epsilon}_f$ and $\overline{\epsilon}_t$ between MSAEA and the other 5 peer algorithms

		1403.53			14 1maa	D /DEM	DD 11000
$\overline{\epsilon}_t$	n	MSAEA	BO	св0	MaMPS0	D/REM	DR-NESO
Ackley	3	3.670E-2(7.69E-2)	1.249E+0(8.95E-1) [†]	2.589E+0(8.37E-1) [†]	4.617E+0(8.49E-1)†	4.120E+0(6.61E-1) [†]	3.741E+0(1.12E+0) [†]
	5	1.419E-1(2.38E-1)	1.806E+0(6.57E-1) [†]	2.359E+0(9.40E-1) [†]	5.562E+0(8.07E-1) [†]	$5.389E+0(1.06E+0)^{\dagger}$	5.268E+0(1.20E+0) [†]
	8	8.114E-2(8.96E-2)	1.408E+0(4.02E-1)†	2.472E+0(3.73E-1)†	6.880E+0(4.52E-1)†	7.035E+0(5.75E-1) [†]	6.456E+0(1.12E+0)†
	10	9.649E-2(8.75E-2)	1.287E+0(4.18E-1) [†]	2.717E+0(4.08E-1) [†]	7.206E+0(6.57E-1) [†]	7.487E+0(5.38E-1) [†]	7.427E+0(6.34E-1) [†]
Rastrigin	3	7.781E+0(5.99E+0)	1.017E+1(4.53E+0)	7.455E+0(4.03E+0)	1.735E+1(5.31E+0)†	1.558E+1(5.96E+0)†	1.374E+1(6.68E+0) [†]
	5	2.047E+1(1.24E+1)	3.180E+1(7.13E+0)†	3.066E+1(6.89E+0)†	3.685E+1(8.00E+0)†	3.641E+1(8.35E+0)†	3.320E+1(8.75E+0) [†]
	8	3.058E+1(1.57E+1)	5.809E+1(1.24E+1)†	6.409E+1(6.20E+0)†	7.698E+1(5.94E+0)†	8.085E+1(7.87E+0)†	7.250E+1(1.32E+1)†
	10	3.800E+1(1.59E+1)	8.136E+1(1.42E+1) [†]	9.052E+1(1.05E+1) [†]	1.003E+2(1.24E+1)†	1.031E+2(1.12E+1)†	9.456E+1(1.68E+1) [†]
Griewank	3	3.282E-2(1.50E-2)	5.907E-2(3.47E-2)†	3.062E-2(2.53E-2)	1.615E-1(1.24E-1)†	1.324E-1(6.73E-2)†	1.258E-1(1.22E-1)†
	5	7.886E-2(3.01E-2)	1.918E-1(1.25E-1) [†]	1.308E-1(1.25E-1)	3.915E-1(1.10E-1)†	3.846E-1(1.29E-1)†	3.519E-1(1.29E-1)†
	8	4.537E-1(1.87E-1)	6.095E-1(1.47E-1)	5.643E-1(1.70E-1)	6.935E-1(8.91E-2) [†]	6.760E-1(1.22E-1) [†]	6.756E-1(5.37E-2) [†]
	10	6.997E-1(2.57E-1)	7.903E-1(9.96E-2)	8.759E-1(7.32E-2)†	8.947E-1(5.25E-2)†	8.948E-1(5.99E-2)†	8.829E-1(9.82E-2)†
$\overline{\epsilon}_f$	n	MSAEA	BO	cB0	MaMPSO	D/REM	DR-NESO
Ackley	3	3.369E+0(4.53E-1)	4.167E+0(5.11E-1) [†]	4.665E+0(5.01E-1) [†]	5.304E+0(6.44E-1) [†]	5.127E+0(5.34E-1) [†]	5.015E+0(7.63E-1) [†]
	5	4.113E+0(3.74E-1)	4.580E+0(4.55E-1)†	5.217E+0(3.74E-1)†	6.408E+0(7.03E-1)†	6.351E+0(7.33E-1)†	6.339E+0(7.12E-1)†
			1.00001.0(1.0001.1)	0.21/21/0(51/12/1)	0. 1 00L10(7.03L-1)	0.551ET0(7.55E-1)	0.339E+0(7.12E-1)
l	8	4.346E+0(3.29E-1)	4.837E+0(3.28E-1) [†]	5.744E+0(3.68E-1) [†]	7.339E+0(4.61E-1) [†]	7.392E+0(5.24E-1) [†]	7.298E+0(5.56E-1) [†]
	8 10		` /	` /	` /	, ,	` /
		4.346E+0(3.29E-1)	4.837E+0(3.28E-1) [†]	5.744E+0(3.68E-1) [†]	7.339E+0(4.61E-1) [†]	7.392E+0(5.24E-1) [†]	7.298E+0(5.56E-1) [†]
Rastrigin	10	4.346E+0(3.29E-1) 4.614E+0(2.88E-1)	4.837E+0(3.28E-1) [†] 5.040E+0(2.33E-1) [†]	5.744E+0(3.68E-1) [†] 6.108E+0(2.87E-1) [†]	7.339E+0(4.61E-1) [†] 7.733E+0(4.66E-1) [†]	7.392E+0(5.24E-1) [†] 7.812E+0(4.35E-1) [†]	7.298E+0(5.56E-1) [†] 7.805E+0(4.48E-1) [†]
Rastrigin	10	4.346E+0(3.29E-1) 4.614E+0(2.88E-1) 1.924E+1(4.32E+0)	4.837E+0(3.28E-1) [†] 5.040E+0(2.33E-1) [†] 2.025E+1(4.43E+0) [†]	5.744E+0(3.68E-1) [†] 6.108E+0(2.87E-1) [†] 1.974E+1(3.98E+0)	7.339E+0(4.61E-1) [†] 7.733E+0(4.66E-1) [†] 2.183E+1(4.82E+0) [†]	7.392E+0(5.24E-1) [†] 7.812E+0(4.35E-1) [†] 2.158E+1(4.66E+0) [†]	7.298E+0(5.56E-1) [†] 7.805E+0(4.48E-1) [†] 2.071E+1(5.28E+0) [†]
Rastrigin	10 3 5	4.346E+0(3.29E-1) 4.614E+0(2.88E-1) 1.924E+1(4.32E+0) 4.094E+1(6.02E+0)	4.837E+0(3.28E-1) [†] 5.040E+0(2.33E-1) [†] 2.025E+1(4.43E+0) [†] 4.362E+1(4.77E+0) [†]	5.744E+0(3.68E-1) [†] 6.108E+0(2.87E-1) [†] 1.974E+1(3.98E+0) 4.363E+1(5.22E+0) [†]	7.339E+0(4.61E-1) [†] 7.733E+0(4.66E-1) [†] 2.183E+1(4.82E+0) [†] 4.471E+1(6.01E+0) [†]	7.392E+0(5.24E-1) [†] 7.812E+0(4.35E-1) [†] 2.158E+1(4.66E+0) [†] 4.508E+1(6.09E+0) [†]	7.298E+0(5.56E-1) [†] 7.805E+0(4.48E-1) [†] 2.071E+1(5.28E+0) [†] 4.431E+1(6.03E+0) [†]
Rastrigin	10 3 5 8	4.346E+0(3.29E-1) 4.614E+0(2.88E-1) 1.924E+1(4.32E+0) 4.094E+1(6.02E+0) 7.633E+1(7.10E+0)	4.837E+0(3.28E-1) [†] 5.040E+0(2.33E-1) [†] 2.025E+1(4.43E+0) [†] 4.362E+1(4.77E+0) [†] 8.024E+1(7.20E+0) [†]	5.744E+0(3.68E-1) [†] 6.108E+0(2.87E-1) [†] 1.974E+1(3.98E+0) 4.363E+1(5.22E+0) [†] 8.248E+1(4.99E+0) [†]	7.339E+0(4.61E-1) [†] 7.733E+0(4.66E-1) [†] 2.183E+1(4.82E+0) [†] 4.471E+1(6.01E+0) [†] 8.778E+1(6.11E+0) [†]	7.392E+0(5.24E-1) [†] 7.812E+0(4.35E-1) [†] 2.158E+1(4.66E+0) [†] 4.508E+1(6.09E+0) [†] 8.910E+1(6.80E+0) [†]	$7.298E+0(5.56E-1)^{\dagger}$ $7.805E+0(4.48E-1)^{\dagger}$ $2.071E+1(5.28E+0)^{\dagger}$ $4.431E+1(6.03E+0)^{\dagger}$ $8.696E+1(8.01E+0)^{\dagger}$
	10 3 5 8 10	4.346E+0(3.29E-1) 4.614E+0(2.88E-1) 1.924E+1(4.32E+0) 4.094E+1(6.02E+0) 7.633E+1(7.10E+0) 9.376E+1(8.30E+0)	4.837E+0(3.28E-1)† 5.040E+0(2.33E-1)† 2.025E+1(4.43E+0)† 4.362E+1(4.77E+0)† 8.024E+1(7.20E+0)† 1.053E+2(8.65E+0)†	5.744E+0(3.68E-1) [†] 6.108E+0(2.87E-1) [†] 1.974E+1(3.98E+0) 4.363E+1(5.22E+0) [†] 8.248E+1(4.99E+0) [†] 1.072E+2(8.78E+0) [†]	$7.339E+0(4.61E-1)^{\dagger}$ $7.733E+0(4.66E-1)^{\dagger}$ $2.183E+1(4.82E+0)^{\dagger}$ $4.471E+1(6.01E+0)^{\dagger}$ $8.778E+1(6.11E+0)^{\dagger}$ $1.107E+2(1.10E+1)^{\dagger}$	$7.392E+0(5.24E-1)^{\dagger}$ $7.812E+0(4.35E-1)^{\dagger}$ $2.158E+1(4.66E+0)^{\dagger}$ $4.508E+1(6.09E+0)^{\dagger}$ $8.910E+1(6.80E+0)^{\dagger}$ $1.119E+2(1.08E+1)^{\dagger}$	7.298E+0(5.56E-1) † 7.805E+0(4.48E-1) † 2.071E+1(5.28E+0) † 4.431E+1(6.03E+0) † 8.696E+1(8.01E+0) † 1.107E+2(1.14E+1) †
Rastrigin GriewankS	10 3 5 8 10 3	4.346E+0(3.29E-1) 4.614E+0(2.88E-1) 1.924E+1(4.32E+0) 4.094E+1(6.02E+0) 7.633E+1(7.10E+0) 9.376E+1(8.30E+0) 2.385E-1(9.57E-2)	4.837E+0(3.28E-1)† 5.040E+0(2.33E-1)† 2.025E+1(4.43E+0)† 4.362E+1(4.77E+0)† 8.024E+1(7.20E+0)† 1.053E+2(8.65E+0)† 2.422E-1(1.02E-1)	5.744E+0(3.68E-1)† 6.108E+0(2.87E-1)† 1.974E+1(3.98E+0) 4.363E+1(5.22E+0)† 8.248E+1(4.99E+0)† 1.072E+2(8.78E+0)† 2.455E-1(1.05E-1)	$7.339E+0(4.61E-1)^{\dagger}$ $7.733E+0(4.66E-1)^{\dagger}$ $2.183E+1(4.82E+0)^{\dagger}$ $4.471E+1(6.01E+0)^{\dagger}$ $8.778E+1(6.11E+0)^{\dagger}$ $1.107E+2(1.10E+1)^{\dagger}$ $2.851E-1(1.47E-1)^{\dagger}$	7.392E+0(5.24E-1) [†] 7.812E+0(4.35E-1) [†] 2.158E+1(4.66E+0) [†] 4.508E+1(6.09E+0) [†] 8.910E+1(6.80E+0) [†] 1.119E+2(1.08E+1) [†] 2.816E-1(1.30E-1) [†]	7.298E+0(5.56E-1) [†] 7.805E+0(4.48E-1) [†] 2.071E+1(5.28E+0) [†] 4.431E+1(6.03E+0) [†] 4.696E+1(8.01E+0) [†] 1.107E+2(1.14E+1) [†] 2.863E-1(1.52E-1) [†]

 $^{^{\}dagger}$ indicates that MSAEA is significantly better than the corresponding peer algorithm according to the Wilcoxon signed-rank test at the 5% significance level.

TABLE II Performance comparison results of $\overline{\epsilon}_f$ and $\overline{\epsilon}_t$ between MSAEA and the other 5 peer algorithms over Ackley $(c=\pi,2\pi,4\pi)$

$\overline{\epsilon}_t$	n	MSAEA	BO	cB0	MaMPSO	D/REM	DR-NESO
	3	2.336E-2(1.46E-2)	2.818E-1(1.32E-1) [†]	1.697E+0(1.22E+0) [†]	$4.464E+0(9.10E-1)^{\dagger}$	4.189E+0(8.30E-1) [†]	$3.032E+0(1.45E+0)^{\dagger}$
Ackley $(c = \pi)$	5	4.995E-2(2.80E-2)	1.074E+0(6.76E-1) [†]	1.593E+0(8.59E-1) [†]	5.675E+0(8.03E-1) [†]	5.444E+0(6.48E-1) [†]	4.953E+0(1.64E+0) [†]
	8	6.883E-2(3.09E-2)	5.565E-1(1.64E-1) [†]	1.551E+0(5.59E-1) [†]	6.690E+0(3.65E-1) [†]	7.028E+0(6.16E-1) [†]	7.039E+0(6.01E-1) [†]
	10	6.408E-2(3.07E-2)	4.562E-1(1.12E-1) [†]	2.308E+0(4.96E-1) [†]	7.440E+0(4.40E-1) [†]	7.681E+0(5.33E-1) [†]	7.373E+0(8.42E-1) [†]
	3	1.761E-2(9.66E-3)	1.620E+0(9.19E-1)†	2.856E+0(9.57E-1) [†]	4.475E+0(8.97E-1) [†]	4.007E+0(7.89E-1)†	3.691E+0(1.41E+0) [†]
Ackley	5	9.075E-2(5.53E-2)	1.685E+0(7.70E-1) [†]	2.064E+0(8.23E-1) [†]	5.501E+0(1.02E+0) [†]	5.220E+0(1.34E+0) [†]	5.480E+0(1.17E+0) [†]
$(c=2\pi)$	8	8.403E-2(7.63E-2)	1.451E+0(4.85E-1)†	2.426E+0(4.20E-1) [†]	6.726E+0(3.84E-1) [†]	6.837E+0(5.85E-1)†	6.033E+0(1.34E+0)†
	10	9.096E-2(6.49E-2)	1.385E+0(5.19E-1) [†]	2.664E+0(4.36E-1) [†]	7.387E+0(5.05E-1) [†]	7.653E+0(4.76E-1) [†]	7.597E+0(5.53E-1) [†]
	3	2.949E-1(4.07E-1)	2.131E+0(6.41E-1) [†]	2.620E+0(5.87E-1)†	4.425E+0(1.03E+0)†	4.105E+0(9.96E-1)†	2.957E+0(7.18E-1)†
Ackley	5	6.206E-1(4.74E-1)	2.510E+0(3.99E-1) [†]	2.678E+0(4.54E-1) [†]	5.530E+0(7.58E-1) [†]	5.689E+0(7.35E-1) [†]	5.263E+0(1.13E+0) [†]
$(c = 4\pi)$	8	9.770E-1(7.23E-1)	2.125E+0(4.05E-1)†	2.876E+0(5.95E-1) [†]	6.769E+0(3.48E-1) [†]	7.014E+0(3.98E-1) [†]	6.681E+0(4.69E-1)†
i i	10	1.054E+0(5.62E-1)	2.224E - 0/2.02E 1\T	2.070E . 0/2.12E 1\T	# 205E - 0/4 (1E 1)Î	7.725E+0(4.26E-1) [†]	7.014E . 0/7 (OE 1)
	10	1.054E+0(5.02E-1)	2.324E+0(2.92E-1) [†]	2.879E+0(3.12E-1) [†]	7.385E+0(4.61E-1) [†]	7.725E+0(4.26E-1)	7.214E+0(7.68E-1) [†]
$\overline{\epsilon}_f$	n	MSAEA	BO BO	cB0	7.385E+0(4.61E-1) MaMPSO	7.725E+0(4.26E-1)	7.214E+0(7.68E-1)
$\overline{\epsilon}_f$, ,	` ′	` '	` '	,	, , ,
Ackley	n	MSAEA	во	сво	MaMPSO	D/REM	DR-NESO
Ť	n 3	MSAEA 3.151E+0(5.18E-1)	BO 3.636E+0(4.76E-1) [†]	сво 4.504E+0(5.77E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†]	D/REM 5.080E+0(7.00E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†]
Ackley	n 3 5	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†]
Ackley	n 3 5 8	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†] 7.382E+0(5.37E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†]
Ackley $(c = \pi)$ Ackley	n 3 5 8 10	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†] 4.642E+0(1.63E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†]	MaMP SO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†] 7.885E+0(2.96E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†] 7.382E+0(5.37E-1) [†] 7.951E+0(4.23E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†] 7.954E+0(3.59E-1) [†]
Ackley $(c = \pi)$	n 3 5 8 10 3	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1) 3.294E+0(3.44E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†] 4.642E+0(1.63E-1) [†] 4.220E+0(5.54E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†] 4.661E+0(4.87E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†] 7.885E+0(2.96E-1) [†] 5.199E+0(5.73E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†] 7.382E+0(5.37E-1) [†] 7.951E+0(4.23E-1) [†] 5.035E+0(5.21E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†] 7.954E+0(3.59E-1) [†] 4.878E+0(8.44E-1) [†]
Ackley $(c = \pi)$ Ackley	n 3 5 8 10 3 5	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1) 3.294E+0(3.44E-1) 4.079E+0(2.56E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†] 4.642E+0(1.63E-1) [†] 4.220E+0(5.54E-1) [†] 4.500E+0(4.52E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†] 4.661E+0(4.87E-1) [†] 5.158E+0(2.48E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†] 7.885E+0(2.96E-1) [†] 5.199E+0(5.73E-1) [†] 6.401E+0(7.71E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†] 7.382E+0(5.37E-1) [†] 7.951E+0(4.23E-1) [†] 5.035E+0(5.21E-1) [†] 6.302E+0(8.17E-1) [†]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†] 7.954E+0(3.59E-1) [†] 4.878E+0(8.44E-1) [†] 6.365E+0(7.13E-1) [†]
Ackley $(c = \pi)$ Ackley	n 3 5 8 10 3 5	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1) 3.294E+0(3.44E-1) 4.079E+0(2.56E-1) 4.344E+0(1.96E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [‡] 4.642E+0(1.63E-1) [‡] 4.220E+0(5.54E-1) [‡] 4.500E+0(4.52E-1) [‡] 4.865E+0(3.44E-1) [‡]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†] 4.661E+0(4.87E-1) [†] 5.158E+0(2.48E-1) [†] 5.687E+0(3.03E-1) [†]	MaMP SO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†] 7.885E+0(2.96E-1) [†] 5.199E+0(7.73E-1) [†] 6.401E+0(7.71E-1) [†] 7.267E+0(3.98E-1) [†]	D/REM 5.080E+0(7.00E-1) [†] 6.525E+0(5.42E-1) [†] 7.382E+0(5.37E-1) [‡] 7.951E+0(4.23E-1) [†] 6.302E+0(5.17E-1) [†] 6.302E+0(4.98E-1) [‡] 7.306E+0(4.98E-1) [‡]	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†] 7.954E+0(3.59E-1) [†] 4.878E+0(8.44E-1) [†] 6.365E+0(7.13E-1) [†] 7.168E+0(5.32E-1) [†]
Ackley $(c=\pi)$ Ackley $(c=2\pi)$ Ackley	n 3 5 8 10 3 5 8	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1) 3.294E+0(3.44E-1) 4.079E+0(2.56E-1) 4.344E+0(1.96E-1) 4.641E+0(1.66E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†] 4.642E+0(1.63E-1) [‡] 4.500E+0(4.52E-1) [‡] 4.500E+0(4.52E-1) [‡] 4.865E+0(3.44E-1) [‡] 5.089E+0(2.20E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†] 4.661E+0(4.87E-1) [†] 5.158E+0(2.48E-1) [†] 5.687E+0(3.03E-1) [†] 6.050E+0(2.22E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [‡] 7.885E+0(2.96E-1) [‡] 5.199E+0(5.73E-1) [‡] 6.401E+0(7.71E-1) [‡] 7.267E+0(3.98E-1) [‡] 7.864E+0(3.41E-1) [‡]	D/REM 5.080E+0(7.00E-1)† 6.525E+0(5.42E-1)† 7.382E+0(5.37E-1)† 7.951E+0(4.23E-1)† 5.035E+0(5.21E-1)† 6.302E+0(8.17E-1)† 7.306E+0(4.98E-1)† 7.936E+0(3.78E-1)†	DR-NESO 4.769E+0(8.08E-1) [†] 6.433E+0(7.49E-1) [†] 7.384E+0(5.33E-1) [†] 7.954E+0(3.59E-1) [‡] 4.878E+0(8.44E-1) [†] 6.365E+0(7.13E-1) [‡] 7.168E+0(5.32E-1) [‡] 7.920E+0(3.91E-1) [‡]
Ackley $(c=\pi)$ Ackley $(c=2\pi)$	n 3 5 8 10 3 5 8 10 3	MSAEA 3.151E+0(5.18E-1) 3.881E+0(2.71E-1) 4.203E+0(2.83E-1) 4.476E+0(2.47E-1) 3.294E+0(3.44E-1) 4.079E+0(2.56E-1) 4.344E+0(1.66E-1) 4.641E+0(1.66E-1) 3.451E+0(4.98E-1)	BO 3.636E+0(4.76E-1) [†] 4.496E+0(4.85E-1) [†] 4.431E+0(2.46E-1) [†] 4.642E+0(1.63E-1) [†] 4.220E+0(5.54E-1) [†] 4.500E+0(4.52E-1) [†] 4.865E+0(3.44E-1) [†] 5.089E+0(2.20E-1) [†] 4.238E+0(6.59E-1) [†]	CBO 4.504E+0(5.77E-1) [†] 5.048E+0(4.62E-1) [†] 5.460E+0(3.67E-1) [†] 6.139E+0(2.94E-1) [†] 4.661E+0(4.87E-1) [†] 5.158E+0(2.48E-1) [†] 5.158E+0(2.48E-1) [†] 6.050E+0(4.22E-1) [†] 4.471E+0(6.61E-1) [†]	MaMPSO 5.184E+0(7.27E-1) [†] 6.589E+0(6.42E-1) [†] 7.258E+0(3.84E-1) [†] 7.885E+0(2.96E-1) [†] 5.199E+0(5.73E-1) [†] 6.401E+0(7.71E-1) [†] 7.267E+0(3.98E-1) [†] 7.864E+0(3.41E-1) [†] 5.080E+0(9.25E-1) [†]	D/REM 5.080E+0(7.00E-1)† 6.525E+0(5.42E-1)† 7.382E+0(5.37E-1)† 7.951E+0(4.23E-1)† 5.035E+0(5.21E-1)† 6.302E+0(8.17E-1)† 7.306E+0(4.98E-1)† 7.306E+0(4.98E-1)† 5.031E+0(9.31E-1)†	DR-NESO 4.769E+0(8.08E-1)† 6.433E+0(7.49E-1)† 7.384E+0(5.33E-1)† 7.954E+0(3.59E-1)† 4.878E+0(8.44E-1)† 6.365E+0(7.13E-1)† 7.168E+0(5.32E-1)† 7.920E+0(3.91E-1)† 4.601E+0(7.34E-1)†

[†] indicates that MSAEA is significantly better than the corresponding peer algorithm according to the Wilcoxon signed-rank test at the 5% significance level.

Fig. 2. Trajectories of $\mathcal{L}(\mathbf{x})$ with confidence bounds achieved by six algorithms on Ackley, Rastrigin and Griewank functions.

TABLE III Performance comparison results of $\overline{\epsilon}_f$ and $\overline{\epsilon}_t$ between MSAEA and the other three variants on Ackley, Rastrigin and Griewank functions

$\overline{\epsilon}_t$	n	MSAEA	MSAEA-v1	MSAEA-v2	MSAEA-v3
Ackley	3	3.670E-2(7.69E-2)	2.818E+0(1.08E+0) [†]	1.920E+0(9.02E-1)†	4.089E+0(7.89E-1) [†]
	5	1.419E-1(2.38E-1)	1.990E+0(8.33E-1) [†]	1.815E+0(6.30E-1)†	5.257E+0(1.51E+0) [†]
	8	8.114E-2(8.96E-2)	2.419E+0(4.47E-1)†	1.327E+0(4.91E-1)†	6.686E+0(6.09E-1)†
	10	9.649E-2(8.75E-2)	2.746E+0(4.44E-1)†	1.296E+0(4.19E-1)†	7.680E+0(5.06E-1)†
Rastrigin	3	7.781E+0(5.99E+0)	7.244E+0(3.39E+0)	9.047E+0(1.66E+0)†	1.515E+1(5.37E+0)†
	5	2.047E+1(1.24E+1)	3.212E+1(7.88E+0)	3.212E+1(9.02E+0)†	3.737E+1(1.02E+1)†
	8	3.058E+1(1.57E+1)	6.545E+1(5.74E+0)†	5.880E+1(9.92E+0)†	8.013E+1(8.53E+0) [†]
	10	3.800E+1(1.59E+1)	9.072E+1(8.45E+0)†	8.721E+1(1.33E+1)†	1.060E+2(8.37E+0)†
Griewank	3	3.282E-2(1.50E-2)	3.431E-2(2.84E-2)	5.972E-2(3.72E-2)†	1.539E-1(6.32E-2)†
	5	7.886E-2(3.01E-2)	1.419E-1(1.42E-1)†	1.860E-1(1.19E-1)†	3.835E-1(1.47E-1)†
Griewank	8	4.537E-1(1.87E-1)	5.674E-1(1.63E-1)†	6.044E-1(1.54E-1)†	6.431E-1(1.20E-1)†
	10	6.997E-1(2.57E-1)	8.758E-1(8.33E-2)†	8.071E-1(1.04E-1)†	9.210E-1(4.84E-2)†
$\overline{\epsilon}_f$	n	MSAEA	MSAEA-v1	MSAEA-v2	MSAEA-v3
	3	3.369E+0(4.53E-1)	4.522E+0(4.96E-1)†	4.145E+0(6.09E-1)†	4.986E+0(5.90E-1)†
Ackley	5	4.113E+0(3.74E-1)	5.221E+0(2.42E-1)†	4.580E+0(3.33E-1)†	6.469E+0(8.40E-1)†
rickicy	8	4.346E+0(3.29E-1)	5.592E+0(2.51E-1)†	4.741E+0(3.24E-1)†	7.162E+0(4.83E-1)†
	10	4.614E+0(2.88E-1)	6.107E+0(2.29E-1)†	5.070E+0(2.27E-1)†	7.974E+0(3.81E-1)†
Rastrigin	3	1.924E+1(4.32E+0)	1.755E+1(4.26E+0)	1.751E+1(3.61E+0)	1.950E+1(5.13E+0)†
	5	4.094E+1(6.02E+0)	4.396E+1(7.24E+0)†	4.329E+1(6.23E+0)†	4.506E+1(7.80E+0)†
	8	7.633E+1(7.10E+0)	8.279E+1(4.84E+0)†	8.015E+1(7.22E+0)†	8.829E+1(6.00E+0)†
	10	9.376E+1(8.30E+0)	1.085E+2(6.97E+0)†	1.088E+2(6.94E+0)†	1.137E+2(7.75E+0) [†]
Caiorroade	3	2.385E-1(9.57E-2)	2.812E-1(1.00E-1)†	2.758E-1(9.72E-2)†	3.272E-1(1.22E-1)†
	5	4.475E-1(1.16E-1)	4.477E-1(1.14E-1)†	4.603E-1(1.37E-1)†	5.159E-1(1.36E-1)†
Griewank					
Griewank	8	7.597E-1(5.64E-2)	7.977E-1(6.26E-2) [†]	7.717E-1(8.39E-2) [†]	7.868E-1(7.53E-2) [†]

 $^{^{\}dagger}$ indicates that MSAEA is significantly better than the corresponding peer algorithm according to the Wilcoxon signed-rank test at the 5% significance level.