Chapter - 6 12th March 2024

M Noongal Theory: ->

In this chapter, we look at Normal standom Variables under Different Conditions. We want to estimate foorameters, boild models, and foerform hypothesis tests on u and 82 in these differing conditions.

Section 6.1: Basic Assumptions.

1) Let, X1, X2,, Xn be independent sundom Variables with $X_i \sim \mathcal{N}(\mathcal{M}_i, 8_i^2)$ and, let a_1, a_2, \dots, a_n be

 $\sum_{i=1}^{n} a_i x_i \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i u_i, \sum_{i=1}^{n} a_i^2 S_i^2\right)$

 $\sqrt{\alpha r(A+B)} = \sqrt{\alpha r(A)} + \sqrt{\alpha r(B)} + \sqrt{\alpha r(B)} + \sqrt{\alpha r(A)} + \sqrt{\alpha r(B)} = 0, \text{ when } A \perp B$

2) Let, Z, Z2, ..., Zn iid N(0,1). Then

 $\sum_{i=1}^{1} Z_i^2 \sim \chi^2_{(1)}$, because $Z_i^2 \sim \chi^2_{(1)}$, $\forall i$

Let's assume we have "n" independent observations y, y2, ", yn. Each of these is a realitation of a R.V Y, Yz, ... , Yn, where coe assume $Y_i \sim \mathcal{N}(\mu_i, 8^2)$

Constant across the Yearune gents. Constant, but each R. S has its own mean.

Osing (1), we completed the forward of surfaces
$$Y_i = \mathcal{U}_i + \mathcal{E}_i + \mathcal{$$

Assumpt:
$$M_{11} = M_{12} = \dots = M_{1} = M_{1}$$
 $M_{21} = M_{22} = \dots = M_{2} = M_{2}$

So, $Q = Q$ inknown parameters, assuming S_{1}^{2} and S_{2}^{2} are known.

 S_{2}^{2} are known.

 S_{3}^{2} are known.

 S_{4}^{2} in Some Contexts; it gakes gave some to say, $M_{1} = X$ where, A_{1}^{2} ununown.

Straight wine Model: - "1" measurements across varying Conditions.

Assume: $M_{1} = A + B \times i$, where X_{1}^{2} is known.

 S_{2}^{2} is known.

 S_{3}^{2} is known.

 S_{4}^{2} is known.

 S_{2}^{2} is known.