1 Syntax of obfuscation

Definition 1.1 (Obfuscator Syntax). An obfuscator for a class of circuits $C_{\lambda\lambda\in\mathbb{N}}$ is a randomized algorithm obf such that $\mathsf{obf}(C,1^{\lambda})$ returns a functionally equivalent circuit to C for all $C\in\mathcal{C}_{\lambda}$, formally, for all $C\in\mathcal{C}_{\lambda}$, we have

$$\mathrm{Pr}_{\tilde{C} \leftarrow \mathtt{sobf}(C, 1^{\lambda})} \big[\forall x \in \{0, 1\}^{\ell} : \, \tilde{C}(x) = C(x) \big],$$

where $\ell = \mathsf{input} - \mathsf{size}(C)$

2 Impossibility of Virtual Black-Box (VBB) Obfuscation

In 2001, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang (BGIRSY) showed that an obfuscator cannot provide security as good as having only black-box access to a circuit, known as virtual black-box obfuscation. Their main idea is to take a circuit describing a point function $f_{x,y}$ for x and y drawn uniformly from $\{0,1\}^{\lambda}$ and a circuit describing a point testing function $t_{x,y,s}$ where additionally s is drawn uniformly random from $\{0,1\}^{\lambda}$:

$$\begin{array}{ll} \frac{f_{x,y}(x')}{\text{if } x = x'} & \frac{t_{x,y,s}(f)}{\text{if } f(x) = y} \\ \text{return } y & \text{return } s \\ \\ \text{else return } 0^{|y|} & \text{else return } 0^{|s|} \end{array}$$

Now, given an obfuscation of $f_{x,y}$ and $t_{x,y,s}$, one can run $t_{x,y,s}$ on the obfuscation of $f_{x,y}$ and get s as a result. However, when only having black-box access to $f_{x,y}$ and $t_{x,y,s}$, this is not possible. Hence, an obfuscator must always leak more than black-box access. For a detailed discussion and the definition of virtual black-box obfuscation, see https://eccc.weizmann.ac.il//eccc-reports/2001/TR01-057/index.html.

3 Indistinguishability obfuscation

BGIRSY explored definitions of obfuscations which where not affected by their impossibility result. They found that *indistinguishability obfuscation* was not affected. 12 years later, Garg, Gentry, Halevi, Raykova, Sahai and Waters presented the first candidate indistinguishability obfuscation construction https://eprint.iacr.org/2013/451. Equally importantly, in the same month, Sahai and Waters presented their puncturable program technique which revealed the tremendous usefulness of indistinguishability obfuscation https://eprint.iacr.org/2013/454. Earlier this year, Jain, Lin and Sahai, in breakthrough result, based an indistinguishability obfuscator on widely believed assumptions, after 7 years of intense research in the field, see

https://www.ias.edu/video/indistinguishability-obfuscation-well-founded-assumptions

for a talk by Lin and https://eprint.iacr.org/2020/1003 for the paper. But which level of security does indistinguishability obfuscation actually provide? Indistinguishability obfuscation ensures that, given two circuits C_0 and C_1 with the same functionality, we cannot distinguish between obfuscations of C_0 and C_1 .

Definition 3.1 (Indistinguishability Obfuscation). Let p be a polynomial and obf be an obfuscator for $(\mathcal{C}_{\lambda})_{\lambda \in \mathbb{N}}$, where $(\mathcal{C}_{\lambda})_{\lambda \in \mathbb{N}}$ is such that for all $\lambda \in \mathbb{N}$, $|C| \leq p(\lambda)$. We consider a PPT algorithm \mathcal{S} an equivalent circuit sampler for $(\mathcal{C}_{\lambda})_{\lambda \in \mathbb{N}}$ if for all $\lambda \in \mathbb{N}$, it holds that

$$\Pr_{(C_0,C_1) \leftarrow \mathsf{s}\mathcal{S}(1^\lambda)} \Big[C_0, C_1 \in \mathcal{C}_\lambda \, \wedge \, \ell(C_0) = \ell(C_1) \, \wedge \, \forall x \in \{0,1\}^{\ell(C_0)} : C_0(x) = C_1(x) \Big],$$

where $\ell(C_0)$ denotes the input length of C_0 and $\ell(C_1)$ denotes the input length of C_1 . obf is indistinguishable under equivalent circuit sampling (IND-ECS) if for all equivalent circuit samplers \mathcal{S} for $(\mathcal{C}_{\lambda})_{\lambda \in \mathbb{N}}$, it holds that $\mathtt{Gind-ecs}^0_{\mathsf{obf},\mathcal{S}}$ and $\mathtt{Gind-ecs}^1_{\mathsf{obf},\mathcal{S}}$ are indistinguishable, i.e., for all PPT adversaries \mathcal{A} , we have that

$$\left|\Pr\big[1=\mathcal{A} \to \mathtt{Gind\text{-}ecs}^0_{\mathsf{obf},\mathcal{S}}\big] - \Pr\big[1=\mathcal{A} \to \mathtt{Gind\text{-}ecs}^1_{\mathsf{obf},\mathcal{S}}\big]\right|$$

is negligible.

${\tt Gind-ecs}^0_{{\sf obf},\mathcal{S}}$	$\texttt{Gind-ecs}^1_{obf,\mathcal{S}}$
Parameters	Parameters
λ : security parameter	λ : security parameter
obf: obfuscator	obf: obfuscator
\mathcal{S} : equiv. circ. sampler	\mathcal{S} : equiv. circ. sampler
$\frac{\text{Package State}}{\text{no state}}$	Package State no state
OBF()	OBF()
$\overline{(C_0,C_1)} \leftarrow S(1^{\lambda})$	$\overline{(C_0,C_1)} \leftarrow S(1^{\lambda})$
$C \leftarrow sobf(C_0, 1^{\lambda})$	$C \leftarrow \hspace{-0.1cm} \$ \operatorname{obf}(C_1,1^\lambda)$
return (C_0, C_1, C)	$\mathbf{return}\ (C_0,C_1,C)$

Remark. Note that the only difference between $Gind-ecs^0_{obf,S}$ and $Gind-ecs^1_{obf,S}$ is that one of the games obfuscates C_0 and the other obfuscates C_1 .