

SEQUENCE LISTING

<110> Hovanessian, Ara
Callebaut, Christian
Krust, Bernard
Jacotot, Etienne
Muller, Sylviane
Briand, Jean-Paul
Guichard, Giles

<120> A NOVEL CELL SURFACE RECEPTOR FOR HIV RETROVIRUSES,
THERAPEUTIC AND DIAGNOSTIC USES.

<130> 03495.0166-01000

<140> 09/393,302
<141> 1999-09-10

<150> PCT/EP98/01409
<151> 1998-03-12

<150> 60/040,969
<151> 1997-03-12

<160> 32

<170> PatentIn Ver. 2.1

<210> 1
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: cDNA

<400> 1
cgccgcccac atggtaaagg tcgcgaagg

30

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: cDNA

<400> 2
gagagcgcga gagatggaga tgggcagacg

30

<210> 3
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: cDNA

<400> 3
gcagcaccat gtcggcgccg gcggccaaag 30

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 4
cttcgggtgt acgtgctccg gg 22

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 5
cctgagtgac tttgttaagg ag 22

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
primer

<400> 6
ccggccggcgcc ggcagcctct g 21

<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 7
gtcatcatct tctccctcat c 21

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 8
cgaccgcgga gcagcaccat g 21

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 9
ggaagggttgg aatccatcag 20

<210> 10
<211> 40
<212> PRT
<213> Human immunodeficiency virus

<400> 10
Asn Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Arg Ile Gln
1 5 10 15

Arg Gly Pro Gly Arg Ala Phe Val Thr Ile Gly Lys Ile Gly Asn Met
20 25 30

Arg Gln Ala His Cys Asn Ile Ser
35 40

<210> 11
<211> 39
<212> PRT
<213> Human immunodeficiency virus

<400> 11
Asn Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile His Ile Gly
1 5 10 15

Pro Gly Arg Ala Phe Tyr Thr Gly Glu Ile Ile Gly Asp Ile Arg
20 25 30

Gln Ala His Cys Asn Leu Ser
35

<210> 12
<211> 14
<212> PRT
<213> Homo sapiens

<400> 12
Lys Lys Leu Glu Leu Ser Glu Asn Arg Ile Phe Gly Gly Leu
1 5 10

<210> 13
<211> 14
<212> PRT
<213> Homo sapiens

<400> 13
Lys Lys Leu Glu Leu Ser Asp Asn Arg Val Ser Gly Gly Leu
1 5 10

<210> 14
<211> 16
<212> PRT
<213> Homo sapiens

<400> 14
Lys Gln Gly Thr Glu Ile Asp Gly Arg Ser Ile Ser Leu Tyr Tyr Thr
1 5 10 15

<210> 15
<211> 15
<212> PRT
<213> Homo sapiens

<400> 15
Lys Gly Tyr Ala Phe Ile Glu Phe Ala Ser Phe Glu Asp Ala Lys
1 5 10 15

<210> 16
<211> 15
<212> PRT
<213> Homo sapiens

<400> 16
Lys Gly Tyr Ala Phe Ile Glu Phe Ala Ser Phe Glu Asp Ala Lys
1 5 10 15

<210> 17
<211> 7
<212> PRT
<213> Homo sapiens

<400> 17
Lys Ala Leu Glu Leu Thr Gly
1 5

<210> 18
<211> 7
<212> PRT
<213> Homo sapiens

<400> 18
Lys Gln Gly Thr Glu Ile Asp
1 5

<210> 19
<211> 10
<212> PRT

<213> Homo sapiens

<400> 19
Lys Val Thr Leu Asp Trp Ala Lys Pro Lys
1 5 10

<210> 20

<211> 7

<212> PRT

<213> Homo sapiens

<400> 20

Lys Lys Leu Glu Leu Ser Glu
1 5

<210> 21

<211> 16

<212> PRT

<213> Homo sapiens

<220>

<223> Xaa at position 8 is unknown

<400> 21

Lys Ser Leu Asp Leu Phe Asn Xaa Glu Val Thr Asn Leu Asn Asp Tyr
1 5 10 15

<210> 22

<211> 707

<212> PRT

<213> Homo sapiens

<400> 22

Met Val Lys Leu Ala Lys Ala Gly Lys Asn Gln Gly Asp Pro Lys Lys
1 5 10 15

Met Ala Pro Pro Pro Lys Glu Val Glu Glu Asp Ser Glu Asp Glu Glu
20 25 30

Met Ser Glu Asp Glu Glu Asp Asp Ser Ser Gly Glu Glu Val Val Ile
35 40 45

Pro Gln Lys Lys Gly Lys Lys Ala Ala Ala Thr Ser Ala Lys Lys Val
50 55 60

Val Val Ser Pro Thr Lys Lys Val Ala Val Ala Thr Pro Ala Lys Lys
65 70 75 80

Ala Ala Val Thr Pro Gly Lys Lys Ala Ala Ala Thr Pro Ala Lys Lys
85 90 95

Thr Val Thr Pro Ala Lys Ala Val Thr Thr Pro Gly Lys Lys Gly Ala
100 105 110

Thr Pro Gly Lys Ala Leu Val Ala Thr Pro Gly Lys Lys Gly Ala Ala
 115 120 125

Ile Pro Ala Lys Gly Ala Lys Asn Gly Lys Asn Ala Lys Lys Glu Asp
 130 135 140

Ser Asp Glu Glu Glu Asp Asp Asp Ser Glu Glu Asp Glu Glu Asp Asp
 145 150 155 160

Glu Asp Glu Asp Glu Asp Glu Ile Glu Pro Ala Ala Met Lys
 165 170 175

Ala Ala Ala Ala Ala Pro Ala Ser Glu Asp Glu Asp Asp Glu Asp Asp
 180 185 190

Glu Asp Asp Glu Asp Asp Asp Asp Glu Glu Asp Asp Ser Glu Glu
 195 200 205

Glu Ala Met Glu Thr Thr Pro Ala Lys Gly Lys Lys Ala Ala Lys Val
 210 215 220

Val Pro Val Lys Ala Lys Asn Val Ala Glu Asp Glu Asp Glu Glu Glu
 225 230 235 240

Asp Asp Glu Asp Glu Asp Asp Asp Asp Glu Asp Asp Glu Asp Asp
 245 250 255

Asp Asp Glu Asp Asp Glu Glu Glu Glu Glu Glu Glu Glu Pro
 260 265 270

Val Lys Glu Ala Pro Gly Lys Arg Lys Lys Glu Met Ala Lys Gln Lys
 275 280 285

Ala Ala Pro Glu Ala Lys Lys Gln Lys Val Glu Gly Thr Glu Pro Thr
 290 295 300

Thr Ala Phe Asn Leu Phe Val Gly Asn Leu Asn Phe Asn Lys Ser Ala
 305 310 315 320

Pro Glu Leu Lys Thr Gly Ile Ser Asp Val Phe Ala Lys Asn Asp Leu
 325 330 335

Ala Val Val Asp Val Arg Ile Gly Met Thr Arg Lys Phe Gly Tyr Val
 340 345 350

Asp Phe Glu Ser Ala Glu Asp Leu Glu Lys Ala Leu Glu Leu Thr Gly
 355 360 365

Leu Lys Val Phe Gly Asn Glu Ile Lys Leu Glu Lys Pro Lys Gly Lys
 370 375 380

Asp Ser Lys Lys Glu Arg Asp Ala Arg Thr Leu Leu Ala Lys Asn Leu
 385 390 395 400

Pro Tyr Lys Val Thr Gln Asp Glu Leu Lys Glu Val Phe Glu Asp Ala
 405 410 415

Ala Glu Ile Arg Leu Val Ser Lys Asp Gly Lys Ser Lys Gly Ile Ala
 420 425 430

Tyr Ile Glu Phe Lys Thr Glu Ala Asp Ala Glu Lys Thr Phe Glu Glu
 435 440 445

Lys Gln Gly Thr Glu Ile Asp Gly Arg Ser Ile Ser Leu Tyr Tyr Thr
 450 455 460

Gly Glu Lys Gly Gln Asn Gln Asp Tyr Arg Gly Gly Lys Asn Ser Thr
 465 470 475 480

Trp Ser Gly Glu Ser Lys Thr Leu Val Leu Ser Asn Leu Ser Tyr Ser
 485 490 495

Ala Thr Glu Glu Thr Leu Gln Glu Val Phe Glu Lys Ala Thr Phe Ile
 500 505 510

Lys Val Pro Gln Asn Gln Asn Gly Lys Ser Lys Gly Tyr Ala Phe Ile
 515 520 525

Glu Phe Ala Ser Phe Glu Asp Ala Lys Glu Ala Leu Asn Ser Cys Asn
 530 535 540

Lys Arg Glu Ile Glu Gly Arg Ala Ile Arg Leu Glu Leu Gln Gly Pro
 545 550 555 560

Arg Gly Ser Pro Asn Ala Arg Ser Gln Pro Ser Lys Thr Leu Phe Val
 565 570 575

Lys Gly Leu Ser Glu Asp Thr Thr Glu Glu Thr Leu Lys Glu Ser Phe
 580 585 590

Asp Gly Ser Val Arg Ala Arg Ile Val Thr Asp Arg Glu Thr Gly Ser
 595 600 605

Ser Lys Gly Phe Gly Phe Val Asp Phe Asn Ser Glu Glu Asp Ala Lys
 610 615 620

Glu Ala Met Glu Asp Gly Glu Ile Asp Gly Asn Lys Val Thr Leu Asp
 625 630 635 640

Trp Ala Lys Pro Lys Gly Glu Gly Phe Gly Gly Arg Gly Gly Gly
 645 650 655

Arg Gly Gly Phe Gly Gly Arg Gly Gly Arg Gly Gly Arg Gly Gly
 660 665 670

Phe Gly Gly Arg Gly Arg Gly Gly Phe Gly Gly Arg Gly Gly Phe Arg
 675 680 685

Gly Gly Arg Gly Gly Gly Asp His Lys Pro Gln Gly Lys Lys Thr
 690 695 700

Lys Phe Glu
 705

<210> 23
<211> 10942
<212> DNA
<213> Homo sapiens

<400> 23
attctgctgt agacatagag atgatgatca tagctgacta tcatgtatgtat ccccccgcgag 60
cctgaaagag gaaatgctct ggtttgcataa gcccgcgaat cgagttagac ccacccacaaa 120
actaaaccgt ggaagtcaact ggcggccctcc ttgcgcctgc cagccgggaa acccatccgg 180
tggtctcgta cctgctcccg ggccatctgg tgacactgac ttgcgcagcca ccacctaataat 240
tggtcgatcc gacccaaata ataacctggg aacctgtggg cggtctaagg cccggctctg 300
cggtcgccct cccaggcccc tctccctggc cctgtgaggc cagaaagtta cttctccgag 360
gcaggttccc catgtctgag aaatatctcc caacttgagg ttctgtgggg taggggaggg 420
ttcgtgactt tctcacagaa aacctcgatc agaccccgcc actgcctta ttaacagctc 480
tcaggagact gcctgcagga ggggggtcgc tccggcccca tgctcgccgg caagcaggga 540
taagctgtgc ctccaaaagg gccaacggga actccgcggt ccctgaactt ccgggtctgg 600
agacttcctc gtcacaggc caccaggagc cgccggctgta gtgcgtccgg gaaccgaggg 660
cggtgtctct gaggaactcc aaggctgccc aaggctacgg acccagccac attggcgaac 720
cgagagaccgc cggattccac caccccccgcg ctccctcac agccggccgc aaaaacgcaca 780
gtccccacgac gcaggccggg acccgcgcgc ccacggccca atcagcgcga cttgcacaaa 840
agcgagccccc gccccacgg cgccgttgc agccctctcc cttccctgc cgccctcgccc 900
cgcttactcc cggccccgcg ccgttacagg ttagaggctc gcgattggct catgggacg 960
gccgcgagct ttgggtggc ggccggaggt cacgaggcgc cgctgtcgcc tttccacagg 1020
cgttacttggg caggctcagt ctgcctc agtctcgagc ttcgtctggc ttgggtgt 1080
cggtgtccgg gatcttcagc acccgccggc gccatgcgcg tgcgttggct tttctggac 1140
tcatctgcgc cacttgtccg ctgcacactc cgccgcacatc atggtaagc tcgcgaagg 1200
aaacggccctt gagcgcgcacg cagacgtgt agcgttgcgatc cgaggggcga ggcggccgc 1260
gccccggagga gggctgcgc gcaatccgg ggcgttcta gggcgcctatg ctgcgggaag 1320
tctcgccgca tttagtgggg ggtctcgcc ttcgttgcgatc ttgggtggcga ggtgaagagc 1380
ttctgcaggt gctgggggag gggcgctgg gcctcggtt ggagagatga gaccaaactt 1440
ttgcgcacgcg tacgagctgg gactgactt gacgcacgtg cccggagcg tgcctgcccac 1500
gtggggccggc gtaggtctgg aatctccaga gggaccgggt gccttggcc gggaaatggc 1560
gttatcgccg ctagtccggag tcccgctgc gtcggatgt ctccgcggc gcctggcaag 1620
ccgatacgtg gtggggcccg gaagggtggct ctgcgcgcg cttttgcgc tgggtttcgg 1680
gcaagaggtg gtcctgcccag gtaccccccac gtggccgcac cgcctcttt aaggggcggg 1740
gttagtctgg ggaaaggcat aagcttcatg agaaaataag gtatatttt taagtcctt 1800
aatgatcttc accgttaatt tgattcaat aagggtggta gataaaatgac cgggattttgt 1860
agtataaaaaa cacggttgtg cttactaag gtaacgggag gagaatcat ttccctcagg 1920
tgactttta ctttagggca ggtttctgt tggtaaagcc tgggaggaaa aatgtggcgc 1980
gttggagaagt agtcctctt gcatgtccat caggatgtt ttctatgtta gttgtgggt 2040
ttggcactat gagaaatgtat ctgagacgga gatgtggcg tatgaacact aatggcaaaa 2100
tatgaatggc ctgaaatgtc gaggtggagg tgtaatgtatc tatttgcgc catttttaggc 2160
aggtaaaaat caagggtgacc ccaagaaaaat ggctctctt ccaaaggagg tagaagaaga 2220
tagtgaagat gagaaatgtt cagaagatga agaagatgtat agcagtggag aagaggtat 2280
tttatccaac ttaatgcaga attatgtta aactacaaaa tggagatgtta agacatgaaa 2340
ttggatatct gtggcaaaaaa taagatttt tcaggatgtt cttattgttag tgggtggatg 2400
tttcacaagc ttttcatgtc catgtcaaga tgtcatttgg ctgtatattt aatgtggatg 2460
ctaagacgag actggaaat tttttacat gttctctgc agggcttgg gttgtattt 2520
ttgtgttaaa tcattacatt tttccagttt caacatgtta gtcaccccc acatgttagag 2580
ctgggcattt gattcagacg tgagaataac cttaccagat tcctttctta tcctccgaat 2640
taaaatttaat tggctccat tccatataat tataactgtat tcactactgg ttaagtactc 2700
gggtgttagac tgagggtctgc cacctcttt tggtaccat gaccctttt agccacctcc 2760
tggccttttta tttgcctcca ctataaagac agctgagcac tgaattgtgc tcagggtttc 2820
gttggagaacc tgaatgaaag ttttacttc cacacattgc cttgataaaa ctacgggatt 2880
ttaatgttagc taaatgtatca cttttatcaa actaccatgc acactcttg atgtgtgata 2940
gtttgttaag gaatatttat atttagccta ttcatttttt gtctcaggc ctaagaattt 3000
agcttcactg ggcttgggtgg accgcaacca cgaggcccc aatgatattaa taagttatg 3060
cttggagccct cctatgtgtatc acgttctgaa taatttacac atagcaattc atgacctaa 3120

acatgttaagg atgatactat taccattttc agatgagaaaa gttggggcctt gggaaagtat 3180
gaggtgttaag aattcagagg gtctggttca gaggtatTTT cagtgttcaa aagagttcct 3240
tatgtctggg tattcacctt attatagggg ctctgactta agacaacata acagaagcct 3300
ggagtttaa catgtcatat gtgtcatgcg tatgtctga accagaggca ttgccagagt 3360
ctaacaactc attgggacca tggttatctt tttgggttg gggctggact tactggttg 3420
gtttcattt atctcaaggc cgtcataccct cagaagaaag gcaagaaggc tgctgcaacc 3480
tcagcaaaga agtgtggcg tttcccaaca aaaaaggTTT cagtgccac accagccaag 3540
aaagcagctg tcactccagg caaaaaggca gcagcaacac ctgccaagaa gacagttaca 3600
ccagccaaag cagttaccac acctggcaag ccagccaagg gggcaaaagaa tggcaagaat 3660
gcaactcctg gtaagaaggg tgctgcccatt gatgtgaca gtgaggagga tgaggaggat 3720
gccaagaagg aagacagtga tgaagaggag attgaaccag cagcgatgaa agcagcagct 3780
gacgaggacg aggatgagga tgaagatgaa gctgccccctg cctcagagga tgaggacgat 3840
gacgatgagg aagatggtaa ggagttgtct tggtagttac tgggcttctg attacaagg 3900
atcttgagat tctggatca catattcctt catcgtaaaa cctggagatg agattagaat 3960
cttggggaa ttctttggg ttgttgggt gtgttagact taattacca tgaatgattt 4020
tgcctcttgg agaaaatttc aatagcacat ctattagtg ttttataat gtaggatttt 4080
cgtttctaag tgatTTTTT tttttttaa attttttgaa gatggactt tcctggggtc 4140
ccaggccgggaa gtgcaatggc gcgcstatctc gggattacag gtgcccacca ccacacccta 4200
aagcaggTTT gcctcagcccccgcgactc tctcccaag tgctaggatt acaggtgaga 4260
ctaattttgt attttagtag agacgacatt tcaccatgtt ggcaggctg gctctgaact 4320
ttgacccatcg gtgatccacc caccttaggc tctcccaag tgctaggattt acaggtgaga 4380
tatgtctgcg cccggcccca gtgatctatt cttgccatga ctgttaacta aacatgggt 4440
caggatcga ttttcttac attagattt aaaaaccgtatggggatggggatggggatgggg 4500
caatttttag gtgacttctc tttcagactc tgaagaagaa gctatggaga ctacaccagc 4560
caaaggaaag aaagctgcaa aagttgttcc tgacgacgac gacgaagatg atgaagatga 4620
agatgaagaa gaggatgatg aggacgagga agaggaggag gaaggtaactt aaatttagatt 4680
tgatgtgaa gatgtatggg aggaggaaga aggcacttaa gtgtttgtgg ctactgtatgt 4740
ctgacatacg acatgagtt tttttaagg gtgatacattt gtagactgag tttagctttt 4800
gtgatacattt gttgacatc ttgtccagag aaggaaatgg cccaaacagaa agcagctctt 4860
aaggaaatggg cccaaacagaa acatggatgtt gttggaaac cttaaacttta acaaatctgc 4920
ttgcagaattt agggatattt ggggagataa taatactgaa accagatgtt acattgtatgt 4980
tttggaaactt aactttttac cacactacaa gaagccaaga aacagaaagt ggaaggtaac 5040
cacagaaccg actacggctt tcaatctctt ttttgcataa aatgatctt ctgttggaa 5100
tcctgaatta aaaactggta tcagcgatgt tcaactgcacg ttacataccg tgggtctgtt 5160
tgtcagaattt ggtatgacta ggtatgttgc tttagccctgc cactgttaaa catgaatact 5220
aattttcttcc tccccctgtta gcacagtac taagttagaa ttAAactgtt gatcccctaa 5280
gtaaacactt caaggttagc attagtgaac ttttgcataa aatgatctt ctgttggaa 5340
gttgcaattt ccataatcg tcgttaacttgc tcaactgcacg ttacataccg tgggtctgtt 5400
tttggttttt ttgttatgtt ttgagacggc ttttagccctgc cactgttaaa catgaatact 5460
ggcgcaatct tggctactg caacctctgc cttttgcataa aatgatctt ctgttggaa 5520
cctcccaagt gactggata cgggtgccac ttttagtacg atttcaccat gttggccggc 5580
acccaccccg gcctctcgaa gtgctggatc ttttagccctgc cactgttaaa catgaatact 5640
aatttgggtt taggtgggag aatgttgc ttttagccctgc cactgttaaa catgaatact 5700
ttcgcggccac tttactccat cctggcaac ttttagtacg atttcaccat gttggccggc 5760
tggttatTTT ctggaaactt ctttgcataa aatgatctt ctgttggaa 5820
cttttatcca gacaggattt tcctgttattt aacccaccccg gcctctcgaa gtgctggatc 5880
actgtgaattt ctatataagca atttagctcc ttttagccctgc cactgttaaa catgaatact 5940
gtcatactt catgtcgagc cgtttctgtt ttttagtacg atttcaccat gttggccggc 6000
ttgctatactt aggggtgctt ttAAAATGT gatgttgcataa aatgatctt ctgttggaa 6060
gatacagattt gtgatTTTGA tttgttggggatc ttttagccctgc cactgttaaa catgaatact 6120
ctgaaggaaa ttgggttattt tggatTTTGA actcactgggttgcataa aatgatctt ctgttggaa 6180
actcactgggttgcataa aatgatctt ctgttggaa 6240
ttgctatactt aggggtgctt ttAAAATGT gatgttgcataa aatgatctt ctgttggaa 6300
gatacagattt gtgatTTTGA tttgttggggatc ttttagccctgc cactgttaaa catgaatact 6360
ctgaaggaaa ttgggttattt tggatTTTGA actcactgggttgcataa aatgatctt ctgttggaa 6420
cagtaagaaa ggtatgttaag gttttatgag ttatgcataa aatgatctt ctgttggaa 6480
agggaaaatgg cttgttaacc cattttccctt ttttagccctgc cactgttaaa catgaatact 6540
ttttcccttgcataa aatgatctt ctgttggaa 6600

tggcactgct tgtcaagtta taggtaaatt cctgagtttag gcaaggcaaga gcactcttat 6660
 acagaacaag aaccattaca tgccaccaa ttaagctaag gatcttctt cactgaaact 6720
 agtttaggtcc ctaattactc cctatataca gtgtaatgtt ttgaatttgtt acattcactt 6780
 tttttgttat gcgcgtctac tcttaggttg actccagtgt acctaacaga gagtttgaca 6840
 tcaaggctgt gacaacatgg agggaccact tgggtgttg cactgctata tcctccatatt 6900
 tagcaccgag ccttgacat ataggatctc aaattatttg ttgatagagc tatgtgttgt 6960
 tttccccctct tttgttggtt gccccccacc ttgggtttt caggccacag agtcatttt 7020
 ttttttttta atctagagcg agatgcgaga acacttttg ctaaaaatct cccttacaaa 7080
 gtcactcagg atgaattgaa agaagtgtt gaagatgctg cgagatcag attagtcagc 7140
 aaggatggga aaagtaaagg gtatgttctt ctattgaaat gtaagggtt tattaacatt 7200
 aatgcacttc ctgcttata aaagaaatat tggtttgatt tccttaggctg tggtaacttgg 7260
 acagtttaac ctgtaagttt gtgcctcagt aaccatctg taccatgggg ataatgtact 7320
 catagggtga tttaaaaga caaagctaat acttacaaag aagcaagttt aatgcctatc 7380
 ttacataaat actttgtaa tagtagcagt tcttcagtg aggtgagggtt acatgaaaaaa 7440
 attccaagta tttgtaaaac tagtgggaag taagagggaa gctcgagtt tgattgaaaaa 7500
 gtggactaaa caagggcatt ttatgtactc agatctgaag caagttctgt gttgctgagg 7560
 taaaagcatt tgggttaata tgggtttaaa aaccatgagt ttttctccctt coattgcagg 7620
 attgcttata ttgaatttaa gacagaagct gatgcagaga aaaccttga agaaaagcag 7680
 ggaacagaga tcgatggcg atctatttcc ctgtactata ctggagagaa aggtcaaaat 7740
 caagactata gaggtggaaa gaatagcact tggagtggta agaaatttagg ctgttccaa 7800
 gttttcaga attgggttag ggaactctt tagtctttgtt atttcataag ttataaata 7860
 cttttaatc aaagttactc aaatgttagt gaagatcaag gacatgatac cccaaagtcat 7920
 actcttattt ggaatagtaa ttccaatct tgaatgaga gctctaaatc attttgcatt 7980
 ggaatacagt aggcaaatca agcttcctt gtaggcattt tttatactt aaatgactt 8040
 accatgtgog ttttgaactc agatgattt agggaaaacag accagtcatc agcctatgt 8100
 agaacaacca gcaggacatt gcaacacgta ctaggtactt aatatgttga gtaacagaaaa 8160
 tggatttagc ttacgtcatg agtatttgta tataactcaa gcaactgaaat tcttagggaa 8220
 tagatattac tgggtgtgacc gaagctggta cactgtttca gagtcttagg aatgtggctc 8280
 ttatattcga ggtgaatcaa aaactctgtt tttaaagcaac ctctccatca gtgcaacaga 8340
 agaaaactctt caggaagtat ttgagaaagc aacttttac aaagtacccc agaaccaaaa 8400
 tggcaaatct aaagggttaag ataacatct tggatcatca gttataggcc tatatatgtc 8460
 ttagaggtct aaggacgtaa ggtcatgtt cctgttagaaa aaagctaaat aattttagcc 8520
 tagtaaatga gtgtaaaata agtatattt ggtccaaacct tgagagaagg gcttggcca 8580
 gatcatgtga ccagtggtat agagagcatg tgcctggtaa attactctaa gcattaaactg 8640
 ttcatctca ggtatgcatt tatagagttt gcttcattcg aagacgctaa agaagctt 8700
 aattctctga ataaaaggga aattgagggc agagcaatca ggctggagtt gcaaggacc 8760
 aggggatcac ctaatgccag aagccgtaaat ttcacctggc tagggatgtc tggttgggg 8820
 tagcactctc ggtgtttgtt ttatTTTGC acaaattctg tgtttctgt tgcgtactga 8880
 gtgaacaata actggatatc gatgactgat tacctgagaa ataattgtatc aatctcaag 8940
 aaaattccctc tagatagtca agttctgtatc cagctgttgtt caactcagag tagcaagttt 9000
 gcccattgtt ccctgccccca tccactggc cccacctgtc tgggttgctt tcccaactt 9060
 catagaagac tggggcagga tatcaactat gcaatggcaa taaaaaatg taaacccaga 9120
 atagcctta cttaattaa ggacttagttt gcttagttgc tttaactgc tttttacta 9180
 taacaagtat ctggcttagt agtcataacta ggcattgtgc aaattcagt tacgaactgt 9240
 gaattcacat aaatcgaaa ttttttttcc tttttccagag ccatccaaaa ctctgtttgt 9300
 caaaggcctg tctgaggata ccactgaaga gacattaaag gagtcatgg acggctccgt 9360
 tcgggcaagg atagttactg accgggaaac tgggtctcc aaagggttaag ggaaggaagc 9420
 gtgagtgctg ctccacttg aaggggtttt tgggtctgtc agaccttgatc tctaattgtgt 9480
 ctctcatttgc agtccttgc ttatTTTACCTG ggcaggatgtt ggattcgcac gagaagaaga 9540
 gagaattcac agaactagca ttatTTTACCTG ttctgtctt acagaggtat attagctgt 9600
 attgtgagac attctgggtt tcaagctgtc acaccagttt gttttccata gagagctact 9660
 ctgctgcact ggtatctttt tcccaaataa acaaggctac ttctgtggta tggctccca 9720
 gcatgtacag ttaacttggg acatgtgttag taggtgtttt ttataatggg caatttcatt 9780
 tgggtttctt ggtttgggtt tggtagactt aacagtggagg aggtgccaag ggaggccatg 9840
 gaagacgggtt aaattgtatgg aaataaagtt accttggact gggccaaacc taagggtgaa 9900
 ggtggcttcg ggggtcggtt tggaggcaga ggcggctttg gaggacgagg tgggtggtaga 9960
 ggaggccgag gaggatttg tggcagaggc cggggaggct ttggaggtaa ggcacgcaga 10020
 gataatgaca ccacatagca ttttttttttttttttcc agaccctgtt ccctgtcactc gttcctaattc 10080

actggggagg aggagcttg tacccattct tttaacagtgc tcttcgccttc ctccgttagg 10140
 gcgaggaggc ttccgaggag gcagaggagg aggaggtgac cacaagccac aaggaaagaa 10200
 gacgaagttt gaatacgcttc tgtccctctg ctttcccttt tccatttgaa agaaaaggact 10260
 ctggggtttt tactgttacc tgatcaatga cagagccttc tgaggacatt ccaagacagt 10320
 atacagtcct gtggtctcct tggaaatccg tctagttAAC atttcaaggg caataccgtg 10380
 ttggtttga ctggatattc atataaactt tttaaagagt tgagtatag agctaaccct 10440
 tatctgttaag ttttgaattt atattgttcc atcccatgta caaaaccatt ttttctaca 10500
 aatagttgg gttttgtgt tgttacttt tttttgttt ttgtttttt ttttttgcg 10560
 ttcgtgggg tggaaaagaa aagaaagcag aatgttttat catggttttt gcttcaccgc 10620
 tttaggacaa attaaaagtc aactctggtg ccagacgtgt tacttcctaa agagtgttc 10680
 ccctggaaatc tcactggaga gcatggcaaa gccagctctg ccacttgctt caccatccc 10740
 aatggaaatg gcttagtgcg tgttccagt atcccagccc taactaactt ggttgaatg 10800
 ctggtgaggg gacctgctcc tgccagccctg gtgctgactt gaaggctgct gcagcttctc 10860
 ctacttttag caggtctcga ggattatgtc tgaagaccac tctggaaaga ggtcgaggaa 10920
 cagattagtc aggttccta gg 10942

<210> 24

<211> 249

<212> PRT

<213> Homo sapiens

<400> 24

Met	Glu	Met	Gly	Arg	Arg	Ile	His	Leu	Glu	Leu	Arg	Asn	Arg	Thr	Pro
1		5						10					15		

Ser	Asp	Val	Lys	Glu	Leu	Val	Leu	Asp	Asn	Ser	Arg	Ser	Asn	Glu	Gly
			20				25					30			

Lys	Leu	Glu	Gly	Leu	Thr	Asp	Glu	Phe	Glu	Leu	Glu	Phe	Leu	Ser
			35			40				45				

Thr	Ile	Asn	Val	Gly	Leu	Thr	Ser	Ile	Ala	Asn	Leu	Pro	Lys	Leu	Asn
			50			55				60					

Lys	Leu	Lys	Lys	Leu	Glu	Leu	Ser	Asp	Asn	Arg	Val	Ser	Gly	Gly	Leu
			65			70				75			80		

Glu	Val	Leu	Ala	Glu	Lys	Cys	Pro	Asn	Leu	Thr	His	Leu	Asn	Leu	Ser
							85			90			95		

Gly	Asn	Lys	Ile	Lys	Asp	Leu	Ser	Thr	Ile	Glu	Pro	Leu	Lys	Lys	Leu
							100			105			110		

Glu	Asn	Leu	Lys	Ser	Leu	Asp	Leu	Phe	Asn	Cys	Glu	Val	Thr	Asn	Leu
							115			120			125		

Asn	Asp	Tyr	Arg	Glu	Asn	Val	Phe	Lys	Leu	Leu	Pro	Gln	Leu	Thr	Tyr
							130			135			140		

Leu	Asp	Gly	Tyr	Asp	Arg	Asp	Asp	Lys	Glu	Ala	Pro	Asp	Ser	Asp	Ala
							145			150			155		160

Glu	Gly	Tyr	Val	Glu	Gly	Leu	Asp	Asp	Glu	Glu	Glu	Asp	Glu	Asp	Glu
							165			170			175		

Glu	Glu	Tyr	Asp	Glu	Asp	Ala	Gln	Val	Val	Glu	Asp	Glu	Glu	Asp	Glu
							180			185			190		

Asp Glu Glu Glu Glu Gly Glu Glu Asp Val Ser Gly Glu Glu Glu
 195 200 205

Glu Asp Glu Glu Gly Tyr Asn Asp Gly Glu Val Asp Asp Glu Glu Asp
 210 215 220

Glu Glu Glu Leu Gly Glu Glu Arg Gly Gln Lys Arg Lys Arg Glu
 225 230 235 240

Pro Glu Asp Glu Gly Glu Asp Asp Asp
 245

<210> 25

<211> 916

<212> DNA

<213> Homo sapiens

<400> 25

gctgggtttag ctttcaaagt cctaaaacgc gcggccgtgg gttcggggtt tattgattga 60
 atccggccgg cgccggagcc tctgcagaga gagagcgcga gagatggaga tgggcagacg 120
 gattcattta gagctgcgga acaggacgcc ctctgatgtg aaagaacttg tcctggacaa 180
 cagtcggctcg aatgaaggca aactcgaagg ctcacagat gaatttgaag aacttggaaatt 240
 cttaaatgtaca atcaaacgtac gcctcaccc aatcgcaaaac ttaccaaagt taaacaaact 300
 taagaagctt gaactaagcg ataacagagt ctcaagggggc ctggaaatgtat tggcagaaaa 360
 gtgtccgaac ctcacgcata taaatttaag tggcaacaaa attaaagacc tcagcacaat 420
 agagccactg aaaaagtttag aaaacctcaa gagcttagac cttttcaatt gcgaggtaac 480
 caaacctgaac gactaccgag aaaatgtgtt caagctccctc ccgcaactca catatctcga 540
 cggttatgac cgggacgaca aggaggcccc tgactcgat gctgagggtt acgtggagg 600
 cctggatgat gaggaggagg atgaggatga ggaggagttt gatgaagatg ctcaggtatg 660
 ggaagacgag gaggacgagg atgaggagga ggaaggtgaa gaggaggacg tgagtggaga 720
 ggaggaggag gatgaagaag gttataacga tggagaggtt gatgacgagg aagatgaaga 780
 agagcttgggtt gaagaagaaaa ggggtcagaa gcgaaaaacga gAACCTGAAG atgagggaga 840
 agatgtatgac taagtggaaat aaccttatttt gaaaaattcc tatttgtgatt tgactgtttt 900
 tacccatatac ccctct 916

<210> 26

<211> 277

<212> PRT

<213> Homo sapiens

<400> 26

Met Ser Ala Pro Ala Ala Lys Val Ser Lys Lys Glu Leu Asn Ser Asn
 1 5 10 15

His Asp Gly Ala Asp Glu Thr Ser Glu Lys Glu Gln Gln Glu Ala Ile
 20 25 30

Glu His Ile Asp Glu Val Gln Asn Glu Ile Asp Arg Leu Asn Glu Gln
 35 40 45

Ala Ser Glu Glu Ile Leu Lys Val Glu Gln Lys Tyr Asn Lys Leu Arg
 50 55 60

Gln Pro Phe Phe Gln Lys Arg Ser Glu Leu Ile Ala Lys Ile Pro Asn
 65 70 75 80

Phe Trp Val Thr Thr Phe Val Asn His Pro Gln Val Ser Ala Leu Leu
 85 90 95

Gly Glu Glu Asp Glu Glu Ala Leu His Tyr Leu Thr Arg Val Glu Val
 100 105 110

Thr Glu Phe Glu Asp Ile Lys Ser Gly Tyr Arg Ile Asp Phe Tyr Phe
 115 120 125

Asp Glu Asn Pro Tyr Phe Glu Asn Lys Val Leu Ser Lys Glu Phe His
 130 135 140

Leu Asn Glu Ser Gly Asp Pro Ser Ser Lys Ser Thr Glu Ile Lys Trp
 145 150 155 160

Lys Ser Gly Lys Asp Leu Thr Lys Arg Ser Ser Gln Thr Gln Asn Lys
 165 170 175

Ala Ser Arg Lys Arg Gln His Glu Glu Pro Glu Ser Phe Phe Thr Trp
 180 185 190

Phe Thr Asp His Ser Asp Ala Gly Ala Asp Glu Leu Gly Glu Val Ile
 195 200 205

Lys Asp Asp Ile Trp Pro Asn Pro Leu Gln Tyr Tyr Leu Val Pro Asp
 210 215 220

Met Asp Asp Glu Glu Gly Glu Glu Asp Asp Asp Asp Asp Glu
 225 230 235 240

Glu Glu Glu Gly Leu Glu Asp Ile Asp Glu Glu Gly Asp Glu Asp Glu
 245 250 255

Gly Glu Glu Asp Glu Asp Asp Glu Gly Glu Glu Gly Glu Asp
 260 265 270

Glu Gly Glu Asp Asp
 275

<210> 27

<211> 924

<212> DNA

<213> Homo sapiens

<400> 27

cgaccgcgga gcagcaccat gtcggcgccg gcggccaaag tcagtaaaaa ggagctcaac 60
 tccaaccacg acggggccga cgagaccta gaaaaagaac agcaagaagc gattgaacac 120
 attgatgaag tacaaaatga aatagacaga cttaatgaac aagccagtga ggagatttg 180
 aaagttagaac agaaatataa caaactccgc caaccattt ttccagaagag gtcagaattt 240
 atcgccaaaa tccccaaattt ttgggttaaca acatttgtca accatccaca agtgtctgca 300
 ctgcttgggg aggaagatga agaggcactg cattatttga ccagagttga agtgacagaa 360
 ttgttaagata tttaaatcagg ttacagaata gattttatt ttgtatgaaaa tccttactt 420
 gaaaaataaaag ttctctccaa agaatttcat ctgaatgaga gtggtgatcc atcttcgaag 480
 tccaccgaaa tcaaatggaa atctggaaag gatttgacga aacgttcgag tcaaacgcag 540
 aataaaagcca gcaggaagag gcagcatgag gaaccagaga gtttcttac ctggtttact 600
 gaccattctg atgcaggtgc tgatgagtttta ggagaggtca tcaaagatga tatttggcca 660
 aaccattac agtactactt gttcccgat atggatgtat aagaaggaga aggagaaaa 720

gatgatgatg	atgatgaaga	ggaggaagga	ttagaaagata	ttgacgaaga	aggggatgag	780
gatgaaggtg	aagaagatga	agatgatgat	gaaggggagg	aaggagagga	ggatgaagga	840
gaagatgact	aatagaaca	ctgatggatt	ccaaccttcc	ttttttaaa	ttttctccag	900
tccctqqqag	caaqttqcag	tctt				924

<210> 28

<211> 2518

<212> DNA

<213> Homo sapiens

<400> 28

cttcgggtgt acgtgctccg ggatcttcag caccgcggc cgccatcgcc gtcgcttggc 60
ttcttcgtga ctcatctcgcc caacttgtcc gcttcacact cccgcgcct catggtaag 120
ctcgcaagg caggtaaaaa tcaaggtgac cccaagaaaa tggctcctcc tccaaaggag 180
gtagaagaag atagtgaaga tgaggaaatg tcagaagatg aagaagatga tagcagtgga 240
gaagaggtcg tcatacctca gaagaaaaggc aagaaggctg ctgcaacctc agcaaagaag 300
gtggtcgttt ccccaacaaa aaagggtgca gttgccacac cagccaagaa agcagctgtc 360
actccaggca aaaaggcagc agcaacacct gccaagaaga cagttacacc agccaaagca 420
gttaccacac ctggcaagaa gggagccaca ccaggcaaaag catggtagc aactcctggt 480
aagaagggtg ctgcccattccc agccaagggg gcaaagaatg gcaagaatgc caagaaggaa 540
gacagtgtg aagaggagga tgatgacagt gaggaggatg aggaggatga cgaggacgag 600
gatgaggatg aagatgaaaat tgaaccagca gcatgaaag cagcagctgc tgcccctgccc 660
tcagaggatg aggacgatga gnatgacgaa gatgatgagg atgacgatga cgatgaggaa 720
gatgactctg aagaagaagc tatggagact acaccagcca aaggaaagaa agctgaaaaa 780
gttggccctg tgaagaccaa gaacgtggct gaggatgaag atgaagaaga gnatgatgag 840
gacgaggatg acgacgacga cgaagatgat gaagatgatg atgatgaaa tgatgaggaa 900
gaggaagaag aggaggagga agagcctgtc aaagaagcac ctggaaaacg aaagaaggaa 960
atggccaaac agaaagcagc tcctgaagcc aagaaacaga aagtggagg cacagaaccg 1020
actacgctt tcaatctctt ttttgaaaac ctaaaacttta acaaatactc tcctgaatta 1080
aaaactggta tcagcgatgt ttttctaaa aatgatcttgc ttgtgtggta tgcagaattt 1140
ggtatgacta gggaaatttgg ttatgtggat tttgaatctg ctgaagaccc ggagaaagcg 1200
ttggaaactca ctggtttggaa agtctttggc aatgaaatttta aactagagaa accaaaaaggaa 1260
aaagacagta agaaagagcg agatgcgaga acacttttgg ctaaaaatct cccttacaaa 1320
gtcactcagg atgaatttggaa agaagtgttt gaagatgctg cggagatcag attagtcagc 1380
aaggatggga aaagtaaagg gattgtttat attgaatttta agacagaagc tgatgcagag 1440
aaaacctttg aagaaaaagca gggAACAGAG atcgatgggc gatctatttc cctgtactat 1500
actggagaga aaggtaaaaa tcaagactat agaggtggaa agaatagcac ttggagtgg 1560
gaatcaaaaa ctctggttt aagcaacctc tcctacagtg caacagaaga aactcttcag 1620
gaagtatttg agaaagcaac ttttatcaaa gtaccccaga accaaaatgg caaatctaaa 1680
gggtatgcat ttatagagtt tgcttcattc gaagacgcta aagaagctt aaattcctgt 1740
aataaaaggg aaatttgggg cagagcaatc aggctggagt tgcaggacc cagggatca 1800
cctaattgcca gaagccagcc atccaaaact ctgtttgtca aaggcctgtc tgaggatacc 1860
actgaagaga cattaaaggg gtcatttgac ggctccgtt cggcaaggat agttactgac 1920
cgggaaactg ggtcctccaa agggtttggg tttgttagact tcaacagtga ggaggatgcc 1980
aaggagggca tggaaagacgg tgaaaatttggat gggaaataaaag ttaccttggta ctggggccaaa 2040
cctaagggtg aagggtggctt cgggggtcggt ggtggaggca gaggcggctt tggaggacgca 2100
ggtgggtggta gaggaggccg aggaggattt ggtggcagag gcccggggagg ctgggggggg 2160
cgaggaggct tccgaggagg cagaggagga ggaggtgacc acaagccaca agaaagaag 2220
acgaagtttgc aatagcttgc tttccctttt ccatttggaa gaaaggactc 2280
tggggttttt actgttaccc gatcaatgac agagccttct gaggacattc caagacagta 2340
tacagtccctg tggctcctt gggaaatccgt ctgttaaca ttcaaggcc aataccgtgt 2400
tggttttgac tgatattca tataaacttt taaaagagtt gaggataga gctaaccctt 2460
atctgttaaqt ttqaaatttta tattqttca tcccatqtac aaaaccattt tttccctac 2518

<210> 29

<211> 7

<212> PRT

<213> Human immunodeficiency virus

<400> 29
Ile Asn Cys Thr Arg Pro Asn
1 5

<210> 30
<211> 9
<212> PRT
<213> Human immunodeficiency virus

<400> 30
Gly Pro Gly Arg Ala Phe Val Thr Ile
1 5

<210> 31
<211> 16
<212> PRT
<213> Homo sapiens

<400> 31
Lys Glu Gln Gln Glu Ala Ile Glu His Ile Asp Glu Val Gln Asn Glu
1 5 10 15

b/t
EMT
<210> 32
<211> 15
<212> PRT
<213> Homo sapiens

<400> 32
Val Lys Leu Ala Lys Ala Gly Lys Asn Gln Gly Asp Pro Lys Lys
1 5 10 15