General Topology

Tyler Chang March 19, 2018

Basic Definitions

A topology is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a set of subsets of X such that \mathcal{T} satisfies three properties:

- $X \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$.
- \mathcal{T} is closed under arbitrary unions. I.e., if some (possibly uncountable) family of sets $\{U_{\alpha}\}\in\mathcal{T}$, then $\cup U_{\alpha}\in\mathcal{T}$.
- \mathcal{T} is closed under finite intersections. I.e., if $U, V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$.

The elements of \mathcal{T} are called *open sets* under the topology (X, \mathcal{T}) , and the complements of open sets are called *closed sets* under (X, \mathcal{T}) . A set is *clopen* if it is both open and closed (note, \emptyset and X are always clopen by definition).

An open set containing some $x \in X$ is called an open neighborhood of x. The largest open set contained in a set E is called the *interior* of E and is denoted E° . The smallest closed set containing E is called the *closure* of E and is denoted \bar{E} . The *boundary* of a set E, denoted ∂E , is the set difference between the closure of E and the interior of E. A point is on the boundary of E if and only if every open neighborhood of E contains points both in E and in E^c . A set E is dense in E0, and nowhere dense if E1.

A sequence of points $\{x_n\}$ in X is said to *converge* to a point $x \in X$ if for every open neighborhood U of x, there exists some value N such that $x_n \in U$ for all n > N. Then x is said to be a *limit point* of $\{x_n\}$. In general, the limit point of a sequence need not be unique. However, in a Hausdorff space (described later) every limit is unique. Using this terminology, the following are equivalent definitions of closedness:

- A set C is closed (by definition) if it is the complement of an open set.
- A set C is closed if and only if every convergent sequence of points in C converges to a point in C (i.e., C contains all its limit points).
- A set C is closed if and only if it contains all its boundary points.

A topology \mathcal{T} is said to be generated by a basis \mathcal{B} if all the elements of \mathcal{T} can be written as unions of elements in \mathcal{B} . The standard topology on \mathbb{R}^d is the topology generated by open balls B(x,r) where $B(x,r) = \{y : d(y,x) < r\}$ where $d(x,y) = \|x-y\|_2$. In general, any topology generated by open balls with respect to some metric d is called a metric space. A metric

space X is said to be *complete* if every Cauchy sequence: $(\{x_n\}$ such that $d(x_n, x_m) \to 0$ as $n, m \to \infty$) converges to a point in X.

A set K is compact if every open cover of K (i.e., set of open sets whose union contains K) has a finite subcover. The *Heine-Borel Theorem* states that in a finite-dimensional metric space, this is equivalent to stating that K is closed and bounded. In an infinite-dimensional metric space, we need the further condition that K is closed and bounded, and K lies within some the ε -neighborhood of some finite-dimensional metric space where $\varepsilon > 0$. An entire space K is compact if as a set, K is compact under its own topology.

Continuity and Homeomorphisms

A function $f: X \to Y$ is said to be *continuous* with respect to (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) if $f^{-1}(U) \in \mathcal{T}_X$ for all in $U \in \mathcal{T}_Y$.

Note, that if we were to rename the elements of X while maintaining the same topology on the renamed set, then the change would be superficial and, from a topological perspective, we wouldn't be able to distinguish between the spaces. For example,

$$X = \{a, b, c\},$$
 $\mathcal{T}_X = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$

is indistiguishable from

$$Y = \{1, 2, 3\}, \qquad \mathcal{T}_Y = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}\}.$$

We capture this notion of sameness by saying X and Y are homeomorphic. If a continuous bijective function h exists between X and Y, then clearly they are homeomorphic, and we call h a homeomorphism between X and Y. Properties of a topology that are preserved under homeomorphisms are called topological invariants. For example, the existance of clopen sets other than X and \emptyset is a topological invariant.

One important topological invariant is the *Hausdorff* property, which states that for every pair of points $x_1, x_2 \in X$, there exists a neighborhood U_1 of x_1 and U_2 of x_2 such that $U_1 \cap U_2 = \emptyset$. Another important topological invariant is *separability*, defined as the existence of a countable dense subset of X. For example, \mathbb{R} is separable under the standard topology since the rationals are countable and desne in \mathbb{R} .

Manifolds

A *n*-dimensional manifold is a topological space that "looks like" *n*-dimensional Euclidean space when we zoom in close enough. To put this formally, every point x in a manifold has an open neighborhood U_x that is homeomorphic to \mathbb{E}^n (that is, if we restrict the topology on X to its intersection with U_x). For example, the surface of the Earth is a 2-dimensional manifold because to a person standing on its surface, it looks like a flat plane.