The Roots of a Generalized Quaternion

SEE PROFILE

CITATION READS

1 author:

Marco Abrate Politecnico di Torino
20 PUBLICATIONS 63 CITATIONS

READS

204

THE ROOTS OF A GENERALIZED QUATERNION

ABRATE MARCO

ABSTRACT. Let $\left(\frac{u,v}{\mathbb{F}}\right)$ be a generalized quaternion algebra over an arbitrary field \mathbb{F} , that is a four dimensional vector space over \mathbb{F} with the four basis elements $1, i_1, i_2, i_3$ satisfying the following multiplication laws:

$$i_1^2 = u$$
, $i_2^2 = v$, $i_3 = i_1 i_2 = -i_2 i_1$,

and 1 acting as the unit element.

We first show the existence of a recurring relation on the powers of elements in $\left(\frac{u,v}{\mathbb{F}}\right)$, and then we show how Dickson polynomials of both first and second kind can be used to derive explicit formulas for computing the zeros of the polynomials of the form $P(x) = x^n - q$, where q lies in a generalized quaternion algebra over an arbitrary field \mathbb{F} of characteristic not 2.

1. Introduction

The algebras of generalized quaternions over fields with characteristic not 2 are very important non-commutative algebras. Examples of quaternion algebras are the skew field of Hamilton's quaternions \mathbb{H} or the square 2×2 matrices algebras $M_2(\mathbb{F})$ (cf. [1]).

It is well known that $\left(\frac{u,v}{\mathbb{F}}\right)$ is a four-dimensional associative algebra with central field \mathbb{F} .

Consider on $\left(\frac{u,v}{\mathbb{F}}\right)$ the anti-involution which sends a quaternion $x=(x_0,x_1,x_2,x_3)$ to its conjugate $\overline{x}=(x_0,-x_1,-x_2,-x_3)$; we define as usual *trace* and *norm* of a quaternion by

$$Tr(x) = x + \overline{x}$$
 and $N(x) = x\overline{x}$.

The latter functions lead to a linear recurring relation between powers of generalized quaternions, as shown in the next Theorem:

Theorem 1.1. Let be $q \in \left(\frac{u,v}{\mathbb{F}}\right)$. If $U_n = U_n(Tr(q), N(q))$ is the n-th term of the Fibonacci sequence with parameters Tr(q) and N(q) then the n-th power of $q \in \left(\frac{u,v}{\mathbb{F}}\right)$ is given by:

$$q^{n} = qU_{n} - N(q)U_{n-1}. (1.1)$$

Proof. The powers of a quaternion $q = (a_1, b_1, c_1, d_1)$ are recurring with characteristic polynomial:

$$p(x) = x^2 - Tr(q)x + N(q).$$

Let $q^n = (a_n, b_n, c_n, d_n)$: if $W_n(s, t, h, k)$ is the *n*-th term of the linear recurring sequence with initial values s and t and characteristic polynomial $x^2 - hx + k$, we

set $U_n = W_n(0, 1, h, k)$ and $T_n = W_n(1, 0, h, k) = -kU_{n-1}$. Then for all n > 1: $a_n = W_n(1, a_1, Tr(q), N(q)) = T_n + a_1U_n = -N(q)U_{n-1} + a_1U_n;$ $b_n = W_n(0, b_1, Tr(q), N(q)) = b_1U_n;$ $c_n = W_n(0, c_1, Tr(q), N(q)) = c_1U_n;$ $d_n = W_n(0, d_1, Tr(q), N(q)) = d_1U_n.$

Thus we have $q^n = U_n q - N(q) U_{n-1}$.

Thanks to Theorem 1.1 we are now able to write a polynomial $P(x) \in \left(\frac{u,v}{\mathbb{F}}\right)[x]$ of the form $P(x) = x^n - q$ in a different way which is easier to study, that is

$$P(x) = x^{n} - q = U_{n}x - N(x)U_{n-1} - q.$$

We are concerned with polynomials of the form $P(x) = x^n - q$, where $q \in \left(\frac{u,v}{\mathbb{F}}\right)$ and $n \geq 2$. Our goal is to find the zeros of such polynomials in the algebra $\left(\frac{u,v}{\mathbb{K}}\right) \cong \mathbb{K} \otimes \left(\frac{u,v}{\mathbb{F}}\right)$ obtained by $\left(\frac{u,v}{\mathbb{F}}\right)$ extending components to \mathbb{K} , the algebraic closure of \mathbb{F} .

There is a Fundamental theorem of algebra for \mathbb{H} (see [2] and [3]) which says that if the polynomial has only one term of highest degree then there exists a root in \mathbb{H} . The proof is topological, so it can't be extended to quaternion algebra over finite fields. Furthermore, a closed formula for the roots is unknown for general polynomials.

Gordon and Motzkin [6] considered the problem of constructing polynomials having specified numbers of roots, and proved the existence of a polynomial of degree n with exactly h roots, where $0 \le h \le n^4$ for quaternion algebra which are division rings.

Niven [4] and Brand [5] gave closed formulas for the roots of polynomials we are interested in, and more recently De Leo, Ducati and Leonardi [7] presented a matrix approach to find the solutions of more general unilateral polynomials, but all this results are in the special case of real quaternions \mathbb{H} .

Before we face the problem of finding roots of P(x) we introduce some polynomials, closely related to Dickson polynomials, that will be helpful for the main results.

Definition 1.2. Let $P(x) = x^n - q$ be a polynomial in $\left(\frac{u, v}{\mathbb{F}}\right)[x]$ of degree $n \in \mathbb{N}$. Let be

$$D_k(y,\rho) = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} \frac{k}{k-i} {k-i \choose i} (-\rho)^i y^{k-2i}$$

the Dickson polynomial of the first kind of degree k, and let

$$E_k(y,\rho) = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} {k-i \choose i} (-\rho)^i y^{k-2i}$$

be the Dickson polynomials of second kind of degree k. We define polynomials

$$d_{n,q}(y,\rho) = D_n(y,\rho) - Tr(q), \quad c_{n,q}(y) = y^n - N(q).$$

Theorem 1.3. Let be $\mathbb{F}' \supseteq \mathbb{F}$ a field, and let $x \in \mathbb{F}' \otimes \left(\frac{u,v}{\mathbb{F}}\right)$ such that P(x) = 0. Then

$$c_{n,q}(N(x)) = 0$$

and

$$d_{n,q}(Tr(x), N(x)) = 0.$$

Proof. The assumption P(x) = 0 implies $x^n = q$; hence

$$N(x)^n = N(x^n) = N(q),$$

that is N(x) is a root of $c_{n,q}(y)$. Moreover, the Lagrange identity applied to $x^k + \overline{x}^k$ yields, for every k, to

$$Tr\left(x^{k}\right) = x^{k} + \overline{x}^{k} = \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} (-1)^{i} \frac{k}{i} \binom{k-i-1}{i-1} x^{i} \overline{x}^{i} (x+\overline{x})^{k-2i} =$$

$$= \sum_{i=0}^{\left\lfloor \frac{k}{2} \right\rfloor} \frac{k}{k-i} \binom{k-i}{i} (-N(x))^{i} (Tr(x))^{k-2i} =$$

$$= D_{k} (Tr(x), N(x)).$$

In particular, if k = n it follows that $Tr(x^n) = Tr(q)$ and

$$D_n \left(Tr(x), N(x) \right) - Tr(q) = 0;$$

thus Tr(x) is a root of $d_{n,q}(y, N(x))$.

Theorem 1.4. Let be ν and τ roots of $c_{n,q}(y)$ and $d_{n,q}(y,\nu)$ respectively. If $V_k = V_k(\tau,\nu)$ is the Lucas sequence with parameters τ and ν then for all $n \geq 1$

$$Tr(q) = V_n.$$

Proof. Let be $r, s \in \mathbb{K}$. We know by [8] that Dickson polynomials of first kind have the property

$$D_k(r,s) = V_k(r,s), \quad \forall k \in \mathbb{N}.$$

If τ is a root of $d_{n,q}(y,\nu)$ then

$$0 = d_{n,q}(\tau, \nu) = D_n(\tau, \nu) - Tr(q) = V_n(\tau, \nu) - Tr(q).$$

2. The Roots of a Generalized Quaternion

In this section we see how the roots of polynomials $c_{n,q}(y)$ and $d_{n,q}(y,\rho)$ of Definition 1.2 can be used to derive explicit formulas for direct computation of all the zeros of P(x).

Theorem 2.1. Let be ν and τ roots of polynomials $c_{n,q}(y)$ and $d_{n,q}(y,\nu)$ respectively. If the n-th term of the Fibonacci sequence with parameters τ and ν is in \mathbb{K}^* then

$$x = (q + \nu U_{n-1}(\tau, \nu)) U_n(\tau, \nu)^{-1}$$
(2.1)

is a zero for P(x).

Proof. Let be $x = (q + \nu U_{n-1}(\tau, \nu)) U_n(\tau, \nu)^{-1}$. Using the properties of Fibonacci and Lucas sequences $U_n = U_n(\tau, \nu)$ and $V_n = V_n(\tau, \nu)$, the trace of x is

$$Tr(x) = U_n^{-1} (Tr(q) + 2\nu U_{n-1}) = U_n^{-1} (V_n + 2\nu U_{n-1}) =$$

$$= U_n^{-1} (V_n + U_n V_1 - U_1 V_n) = U_n^{-1} (V_n + U_n \tau - V_n) = \tau,$$

and the norm of x is

$$\begin{split} N(x) &= U_n^{-2} \left(N(q) + \nu U_{n-1} Tr(q) + \nu^2 U_{n-1}^2 \right) = \\ &= U_n^{-2} \left(\nu^n + \nu U_{n-1} V_n + \nu^2 U_{n-2} U_n + \nu^n \right) = \\ &= U_n^{-2} \left(2 \nu^n + \nu U_{n-1} U_{n+1} - \nu \tau U_n U_{n-1} + \nu^2 U_{n-2} U_n \right) = \\ &= U_n^{-2} \left(2 \nu^n + 2 \nu U_{n-1} U_{n+1} - \nu U_n (\tau U_{n-1} - \nu U_{n-2}) \right) = \\ &= U_n^{-2} \nu \left(2 (\nu^{n-1} + U_{n-1} U_{n+1}) - U_n^2 \right) = U_n^{-2} \nu (2 U_n^2 - U_n^2) = \nu. \end{split}$$

Hence for all $k \in \mathbb{N}$ $U_k\left(Tr(x), N(x)\right) = U_k\left(\tau, \nu\right) = U_k$ and

$$x^{n} = U_{n}x - \nu U_{n-1} = q + \nu U_{n-1} - \nu U_{n-1} = q.$$

Theorem 2.2. Let be ν a root of $c_{n,q}(y)$ and τ a root of $d_{n,q}(y,\nu)$. If $E_{n-1}(\tau,\nu) \neq 0$ then

$$x = (q + \nu U_{n-1}(\tau, \nu)) U_n(\tau, \nu)^{-1}$$

is a zero of P(x).

Proof. This corollary follows immediately from Theorem 2.1, using the fact that for all $k \in \mathbb{N}$ one has $E_{k-1}(\tau, \nu) = U_k(\tau, \nu)$ (cf. [8] for example).

Theorem 2.3. Let be $q \in \left(\frac{u, v}{\mathbb{F}}\right)$. If $q \notin \mathbb{F}$ then for all x such that $x^n = q$ $U_n = U_n(Tr(x), N(x)) \neq 0.$

Proof. Suppose that exists x such that $x^n = q$ and $U_n^{(x)} = 0$. Then

$$q = x^n = U_n x - N(x)U_{n-1} = U_{n+1} \in \mathbb{K}.$$

Being $q \in \left(\frac{u, v}{\mathbb{F}}\right)$

$$q \in \mathbb{K} \cap \left(\frac{u, v}{\mathbb{F}}\right) = \mathbb{F},$$

a contradiction.

Theorem 2.3 says that if $q \notin \mathbb{F}$ then P(x) has at most n^2 distinct roots in $\left(\frac{u,v}{\mathbb{K}}\right)$ given by Equation (2.1).

We now investigate what happens when $q \in \mathbb{F}$. Let $q \in \left(\frac{u,v}{\mathbb{F}}\right)$ be a quaternion, and $d_{n,q}(y,\rho)$ and $E_{n-1}(y,\rho)$ polynomials as in Definition 1.2. Let us introduce the polynomial

$$m(y,\rho) = GCD(d_{n,q}(y,\rho), E_{n-1}(y,\rho)).$$

We have the following Theorem:

Theorem 2.4. Let be ν a root of $c_{n,q}(y)$. If τ is a zero of $m(y,\nu)$ then every element of the set

$$\mathbb{S}_{\tau,\nu} = \left\{ x \in \left(\frac{u,v}{\mathbb{K}} \right) | Tr(x) = \tau, N(x) = \nu \right\}$$
 (2.2)

is a zero of $x^n - q$.

Proof. Since τ is a root of $E_{n-1}(y,\nu)$ then $U_n(\tau,\nu)=0$. Thus, if $x\in \mathbb{S}_{\tau,\nu}$ and τ is a zero of $d_{n,q}(y,\nu)$ one has

$$x^n = U_n x - \nu U_{n-1} = U_{n+1} = 2^{-1} V_n = q.$$

Example 2.5. Let $\mathbb{F} = \mathbb{F}_{31}$ be the finite field with 31 elements and let $\left(\frac{-1,-1}{\mathbb{F}_{31}}\right)$ be the quaternion algebra over \mathbb{F}_{31} . Let us consider the quaternion q=(23,17,27,24) and the equation $x^3=(23,17,27,24)$. The polynomial $c_{3,(23,17,27,24)}(y)$ has three distinct roots in \mathbb{F}_{31} : $\nu_1=17, \nu_2=22, \nu_3=23$. Thus we have three polynomials

$$d_{3,(23,17,27,24)}(y,17) = (17+y)(18+y)(27+y),$$

$$d_{3,(23,17,27,24)}(y,22) = (11+y)(23+y)(28+y),$$

$$d_{3,(23,17,27,24)}(y,23) = (16+y)(22+y)(24+y).$$

We can now apply Equation (2.1) to nine couples of parameters: (14,17), (13,17), (4,17), (20,22), (8,22), (3,22), (15,23), (9,23), (7,23) getting the solutions of the equation $x^3 = (23,17,27,24)$:

$$\begin{array}{ll} x_{(14,17)} = (7,2,5,1), & x_{(13,17)} = (22,15,22,23), \\ x_{(4,17)} = (2,14,4,7), & x_{(20,22)} = (10,8,20,4), \\ x_{(8,22)} = (4,10,25,5), & x_{(3,22)} = (17,13,17,22), \\ x_{(15,23)} = (23,3,23,17), & x_{(9,23)} = (20,19,1,25), \\ x_{(7,23)} = (19,9,7,20). \end{array}$$

Example 2.6. Let us consider the algebra of Hamilton's quaternion \mathbb{H} and the equation $x^4 = -4$. The polynomial $c_{4,-4}(y)$ has four distinct roots: -2, 2, -2i, 2i. Then we have the four polynomials

$$d_{4,-4}(y,-2) = y^4 + 8y^2 + 16,$$

$$d_{4,-4}(y,2) = y^4 - 8y^2 + 16,$$

$$d_{4,-4}(y,-2i) = y^4 + 8iy^2,$$

$$d_{4,-4}(y,2i) = y^4 - 8iy^2.$$

Since $E_3(y,-2)=y^3+4y$ and $E_3(y,2)=y^3-4y$, we have $m(y,-2)=y^2+4$ and $m(y,2)=y^2-4$. Thus by Theorem 2.4 we know that the roots of $x^4+4=0$ having norm -2 are all in the sets $\mathbb{S}_{-2i,-2}$ and $\mathbb{S}_{2i,-2}$, and those having norm 2 are all in the sets $\mathbb{S}_{-2,2}$ and $\mathbb{S}_{2,2}$.

For $\nu = -2i$ we have m(y, -2i) = y. Then the root $\tau_1 = 0$ of $d_{4,-4}(y, -2i)$ give the set $\mathbb{S}_{0,-2i}$, while the other two roots namely $\tau_2 = -2 + 2i$ and $\tau_3 = 2 - 2i$ allow to write two distinct roots of $x^4 = -4$ using Equation (2.1):

$$x_{(\tau_1,-2i)} = (-1+i,0,0,0), \quad x_{(\tau_2,-2i)} = (1-i,0,0,0).$$

Similarly, for $\nu = 2i$ we have m(y,2i) = y. Then we have $\tau_4 = 0$ and we find the set of solutions $\mathbb{S}_{0,2i}$, and the two roots $\tau_5 = -2 - 2i$ and $\tau_6 = 2 + 2i$ allow to write the roots:

$$x_{(\tau_5,2i)} = (-1-i,0,0,0), \quad x_{(\tau_6,2i)} = (1+i,0,0,0).$$

References

- [1] A. J. Hahn, Quadratic algebras, Clifford algebras, and arithmetic Witt groups, Springer New York, 2002.
- [2] S. Eilenberg and I. Niven, *The Fundamental Theorem of Algebra for Quaternions*, Bull AMS, **50** (1944), 246–248.
- [3] I. Niven, Equations in Quaternions, American Math. Monthly, 48 No. 10 (1941), 654-661.
- [4] I. Niven, The Roots of a Quaternion, American Math. Monthly 49 No. 6 (1942), 386-388.
- [5] L. Brand, The Roots of a Quaternion, American Math. Monthly 49 No. 8 (1942), 519–520.
- [6] B. Gordon and T. S. Motzkin, On the Zeros of Polynomials over Division Rings, Transactions of the American Mathematical Society, Vol. 116. (Apr. 1965), 218–226.
- [7] S. De Leo, G. Ducati and V. Leonardi, Zeros of Unilateral Quaternionic Polynomials, Electronic Journal of Linear Algebra, 15 (2006), 297–313.
- [8] R. Lidl, G. L. Mullen and G. Turnwald, *Dickson polynomials*, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 65, Longman Scientific and Technical, 1993.

AMS Classification Numbers: 11B39, 11E88

Dipartimento di Matematica, Università di Torino, Via C. Alberto 10, 10123 Torino, Italy

E-mail address: marco.abrate@unito.it