

Rilevazione di anomalie di rete mediante analisi su serie temporali

Candidato:

Relatore:

Salvatore Costantino

Luca Deri

Introduzione

- Necessità di rilevare e mitigare le anomalie di rete
 - Aumento dei servizi offerti
 - Aumento delle problematiche legate alla sicurezza e alla gestione degli host connessi in rete
- Rilevazione di anomalie
 - Necessità di definire ciò che viene considerato normale
 - Registrazione di allarmi
- Mitigazione delle anomalie
 - Automatica
 - Manuale

Stato dell'Arte

- Signature-based IDS (Intrusion Detection System)
- Anomaly-based IDS
 - Statistical-based
 - Knowledge-based
 - Machine learning-based
- Rilevazione di anomalie su serie temporali
 - Analisi su un insieme di serie temporali
 - Analisi su singola serie temporale

Obiettivi

- Realizzazione di un sistema automatico di rilevazione di anomalie su serie temporali
- Implementazione tecnica di mitigazione
- Efficiente in spazio ed in tempo, in modo da poter analizzare gli host di un'intera sottorete
- Apprendimento del comportamento passato, per le metriche a lungo termine
- Confronto con un profilo comportamentale considerato normale, per le metriche a breve termine
- Buona performane in termini di precisione, specificità e sensibilità

Motivazione

• Attualmente alcune tecniche risultano troppo costose per analizzare un'intera sottorete (reti neurali), specialmente nel breve termine

 Effettuare ragionamenti preliminari sui dati da analizzare, fase trascurata da molti articoli individuati in letteratura

• Enfasi posta sull'analisi di serie temporali, in modo da studiare il comportamento temporale di una metrica di rete. Nella letteratura il fattore tempo viene spesso tralasciato.

Contributo originale

- Uso di algoritmi e metriche non attualmente presenti nello stato dell'arte relativo alla rilevazione di anomalie di rete:
 - Indicatore statistico finanziario, nel breve termine
 - Modello di predizione su serie temporale, nel medio-lungo termine
 - Utilizzo e correlazione di un ampio insieme di metriche, grazie al software di monitoraggio di rete ntop

Metriche

- Metriche a breve termine (analizzate dal sistema ogni 5 minuti), ovvero coppie di metriche il cui rapporto in situazioni normali si mantiene più o meno costante nel tempo e non supera alcuni valori soglia
- Metriche a medio-lungo termine (analizzate dal sistema ogni ora), ovvero singola metrica avente solitamente trend e stagionalità
- Le metriche considerate compaiono molto spesso nel traffico odierno e si è visto che esse sono spesso affette da anomalie

Metriche a Breve Termine

Data la coppia di contatori (x, y) relativi alle metriche $(M_{x_i} M_y)$ da analizzare, consideriamo

$$\frac{\Delta x}{\Delta y} = \frac{x_{t_f} - x_{t_i}}{y_{t_f} - y_{t_i}} = r_{t_i}, \quad \Delta r = r_{t_f} - r_{t_i}$$

- In totale sono state analizzate 14 metriche a breve termine tra cui:

 - $\succ \frac{bytes\ protocollo\ DNS\ ricevuti}{pacchetti\ DNS\ ricevuti}$
 - $\succ \frac{flussi\ sospetti\ come\ client}{flussi\ totali\ come\ client}$

Metriche a Medio-lungo Termine

- Singole metriche aventi trend e multi-stagionalità
- Bytes inviati, Bytes ricevuti, flussi come client, flussi come server
- Ulteriore controllo sulle seguenti categorie di protocolli/eventi:
 - Accesso Remoto
 - Protocolli Sconosciuti
 - Malware
 - Mining

Rilevazione delle Anomalie

- Rilevare un'anomalia significa individuare eventi o valori che per qualche loro caratteristica non possono essere considerati normali
- Criteri di normalità per le metriche a breve termine:
 - Non superamento dei valori soglia
 - Comportamento (valore delle metriche) più o meno costante nel tempo
- Criterio di normalità per le metriche a breve termine:
 - Comportamento futuro coerente con quello passato

Threshold

• Tecnica applicata a tutte le metriche a breve termine

- Soglia fissata a 576 (bytes) per le metriche relative alla dimensione media dei pacchetti DNS inviati e ricevuti
 - Data exfiltration/infiltration

- Soglia fissata a **0.50** per le altre metriche a breve termine
 - Valore rapporto anomalo

RSI

- Indicatore statistico utilizzato per effettuare analisi su mercati finanziari, in grado di rilevare la velocità del movimento dei prezzi
- Idea chiave: utilizziamolo per misurare la velocità con cui variano i valori legati alle metriche di rete
- Tecnica applicata a quasi tutte le metriche a breve termine
 - Dopo aver applicato la tecnica delle soglie fisse

Oscilla tra due valori: 0 e 100

Threshold & RSI

- Condizioni volumetriche minime di traffico
 - Valori minimi delle metriche, affinché i valori registrati risultino significativi
- Condizioni su traffico p2p
 - Non vengono effettuate analisi sui messaggi ICMP port unreachable e host unreachable, se è presente traffico p2p (in tal caso i valori risultano fisiologicamente alterati)

Prophet

- Modello di regressione che può assumere una delle seguenti forme:
 - $y(t) = g(t) + s(t) + h(t) + \varepsilon_t$ (additivo)
 - $y(t) = g(t) * s(t) + h(t) + \varepsilon_t$ (moltiplicativo)
- g lineare, $s(t) = \sum_{n=1}^{N} (a_n \cos(2\pi nt/P) + b_n \sin(2\pi nt/P))$
- Scelta iper-parametri
 - changepoint_prior_scale
 - seasonality_prior_scale
 - ordine serie di Fourier
- Usiamo il modello moltiplicativo
- Tempo per training e predizione: circa 9 secondi
- Intervalli di incertezza integrati, per la rilevazione di anomalie

Allarmi

TYPE	ANOMALY	HOST/MAC	IF	DATE	METHOD	VAL
START	ping_packets	.239@125	0	2019-06-27T20:15:00Z	TRESHOLD	1.0
START	ping_packets	.145@125	0	2019-06-27T10:35:00Z	TRESHOLD	0.5
END	ping_packets	.145@125	0	2019-06-27T17:00:00Z	TRESHOLD	
START	ping_packets	.180@125	0	2019-06-27T13:40:00Z	TRESHOLD	0.6
END	ping_packets	.180@125	0	2019-06-27T13:45:00Z	TRESHOLD	
START	ping_packets	.241@125	0	2019-06-27T09:15:00Z	TRESHOLD	0.5
END	ping_packets	.241@125	0	2019-06-27T10:00:00Z	TRESHOLD	
START	ping_packets	.241@125	0	2019-06-27T10:20:00Z	TRESHOLD	0.6
END	<pre>ping_packets</pre>	.241@125	0	2019-06-27T10:25:00Z	TRESHOLD	
START	ping_packets	.241@125	0	2019-06-27T12:35:00Z	TRESHOLD	0.5
END	ping_packets	.241@125	0	2019-06-27T12:55:00Z	TRESHOLD	
START	ping_packets	.78@125	0	2019-06-27T08:15:00Z	TRESHOLD	0.6
START	ping_packets	.234@125	0	2019-06-27T09:25:00Z	TRESHOLD	0.8
END	ping_packets	.234@125	0	2019-06-27T21:25:00Z	TRESHOLD	
START	ping_packets	.234@125	0	2019-06-27T21:40:00Z	TRESHOLD	0.5

Mitigazione tramite XDP

- Analisi dei pacchetti direttamente all'interno del Kernel Linux, grazie alla tecnologia eBPF (Extended Berkeley Packet Filter)
- Eseguito nella parte bassa dello stack protocollare
 - Velocità di filtraggio molto elevata
- Il codice XDP, prima di essere iniettato nel Kernel Linux, deve essere validato da un verificatore:
 - Non sono ammessi cicli
 - controllo esplicito dei limiti di memoria del pacchetto sotto analisi

Controllo limiti memoria

```
void* data_end = (void*)(long)ctx->data_end;/
void* data = (void*)(long)ctx->data;

struct ethhdr *eth = data; //struct header ethernet
uint64_t nh_off = sizeof(*eth);
if (data + nh_off > data_end) return XDP_DROP; //check bounds
uint64_t macIn = mac2u64(eth->h_source);
uint64_t macEg = mac2u64(eth->h_dest);
if(checkMac(&macIn) || checkMac(&macEg)) return XDP_DROP;
uint16_t h_proto = eth->h_proto;
```

Architettura software

Validazione dei modelli

- Valori Soglia
 - Scelto valore soglia a 576 per metriche relative alla dimensione media dei pacchetti DNS
 - Scelto valore soglia a 0.50 per le altre metriche
- Periodo e valore soglia RSI
 - Scelto periodo pari 50
 - Scelta soglia pari a 80
- Prophet
 - Model Selection per scelta iper-parametri
 - Scelta del modello moltiplicativo

Periodo RSI: 25 vs 50

- Più è corto il periodo, più l'RSI risulta sensibile con il rischio di generare falsi allarmi (falsi positivi)
- Falso positivo rilevato di tipo «dns_errors» (rapporto circa 0.03)

Soglia RSI: 80 vs 70

- 70 è la soglia superiore consigliata, ma essa genera vari falsi positivi
- Falso positivo rilevato di tipo «dns_errors» (rapporto circa 0.07)

Modello Prophet: Additivo

Modello Prophet: Moltiplicativo

Validazione Performance di Rilevazione

 Validazione effettuata sugli host di un ISP locale, contenente decine di migliaia di host

• Si sono considerati alcuni host campione, in base ai risultati del report di rilevazione di anomalie

Statistiche generali

TYPE	TOTAL_CHECK	ANOMALIES	METHOD
ping_packets	2602	1684	TRESHOLD
dns_packets	35406	33420	TRESHOLD
dns_errors	35299	4586	TRESHOLD
port_unreach_srv	4237	33	TRESHOLD
port_unreach_clt	9355	8	TRESHOLD
host_unreach_clt	9054	480	TRESHOLD
host_unreach_srv	1891	0	TRESHOLD
TCP_client_iss	1133	377	TRESHOLD
TCP_server_iss	1119	19	TRESHOLD
dns_size_srv	474	0	TRESHOLD
dns_size_clt	444	0	TRESHOLD
anmls_flows_srv	29644	949	TRESHOLD
anmls_flows_clt	33714	2040	TRESHOLD
dns_errors	14666	15	RSI
port_unreach_srv	2555	9	RSI
port_unreach_clt	5285	13	RSI
host_unreach_clt	4273	12	RSI
host_unreach_srv	1191	4	RSI
TCP_client_iss	186	0	RSI
TCP_server_iss	573	0	RSI
dns_size_srv	295	0	RSI
dns_size_clt	265	0	RSI
anmls_flows_srv	13461	0	RSI
anmls_flows_clt	14844	0	RSI
flows_as_client	28	2	PROPHET
flows_as_server	199	0	PROPHET
bytes_sent	28	0	PROPHET
bytes_rcvd	199	1	PROPHET

Statistiche per host

HOST	TYPE	TOTAL CHECK	ANOMALIES	METHOD
.130@125		_		
_	dns_errors	97	0	RSI
	anmls_flows_srv	59	0	RSI
	anmls_flows_clt	100	0	RSI
	dns_packets	148	59	TRESHOLD
	dns_errors	148	1	TRESHOLD
	port_unreach_clt	1	0	TRESHOLD
	TCP_client_iss	25	4	TRESHOLD
	TCP_server_iss	27	0	TRESHOLD
	anmls_flows_srv	109	0	TRESHOLD
	anmls flows clt	150	0	TRESHOLD

Validazione Tecnica Threshold

Controllati 25 host: 15 host risultati anomali e 10 host risultati non anomali

$$PRECISIONE = \frac{TP}{TP + FP} = \frac{13}{13 + 2} = 87\%$$

$$SPECIFICITA' = \frac{TN}{TN + FP} = \frac{10}{10 + 2} = 83\%$$

$$SENSIBILITA' = \frac{TP}{TP + FN} = \frac{13}{13 + 0} = 100\%$$

Vero Positivo Threshold

• «ping_packets»: presenti risposte (curva viola), senza richieste (curva blu)

Falso Positivo Threshold

«anomalous_flows_as_client»: flussi sospetti come client (curva blu)
 < 0.01 (flussi al secondo)

Validazione RSI

• Controllati 20 host: 10 host rilevati anomali, 10 host non rilevati anomali

	Host anomali	Host non anomali
Rilevati	7	3
Non rilevati	2	8

$$PRECISIONE = \frac{TP}{TP + FP} = \frac{7}{7 + 3} = 70\%$$

$$SPECIFICITA' = \frac{TN}{TN + FP} = \frac{8}{8 + 3} = 73\%$$

$$SENSIBILITA' = \frac{TP}{TP + FN} = \frac{7}{7 + 2} = 78\%$$

Vero Positivo RSI

• «dns_errors»: si passa da 0 a circa 0.50 (valore rapporto)

Falso Positivo RSI

«dns_errors»: rapporto non significativo (< 0.15)

Falso Negativo RSI

 «host_unreachable_as_client»: anomalia presente all'interno dei primi 51 valori, su cui calcolare l'RSI (il trend generale risulta costante)

Validazione Prophet

• 3 anomalie rilevate, su oltre 400 controlli

 Tutte e 3 sono falsi positivi, riconducibili ad un cambiamento di comportamento fisiologico degli host analizzati

• I 3 falsi positivo non vengono rilevati, se viene attivato il controllo delle categorie NDPI

Falso positivo Prophet

Risultati finali

		Host anomali	Host non anomali
	Rilevati	13	2
Threshold	Non rilevati	0	10
	Rilevati	7	3
RSI	Non rilevati	2	8
	Rilevati	0	0
Prophet + NDPI	Non rilevati	0	454
	Rilevati	20	5
Totale	Non rilevati	2	472

$$PRECISIONE = \frac{TP}{TP + FP} = \frac{20}{20 + 5} = 80\%$$

$$SPECIFICITA' = \frac{TN}{TN + FP} = \frac{472}{472 + 5} = 99\%$$

$$SENSIBILITA' = \frac{TP}{TP + FN} = \frac{20}{20 + 2} = 91\%$$

Lavori Futuri

• Correlazione tra serie temporali di host diversi

 Allarmi come input ad un livello di analisi superiore, per esempio un autoencoder

 Miglioramento tecnica di mitigazione, che appare troppo drastica e non in grado di proteggere un eventuale host sotto attacco

Conclusione

- Il problema della rilevazione di anomalie non ha, ad oggi, una soluzione semplice e universale, e ogni tecnica presenta i suoi punti di forza e debolezza
- Si è realizzato un sistema intelligente, capace di analizzare e mitigare alcune anomalie di rete presenti in un'intera rete, in modo efficiente e con buona precisione
- Si noti, che in questo lavoro di Tesi vengono analizzati host generici, e non è possibile effettuare alcuna assunzione sul tipo di traffico che essi possono generare (come può accadere in ambiente IoT (Internet of Things)); quindi il problema che si è trattato è risultato particolarmente difficile da affrontare