R Workshop 2

I. Workshop 1 Review

- A. options (max print = 200)
- B. assignments: L-
- C. Vectors withmeter (homogeneous)
- 1. constant: c(un)
 - 2. recyclong: multiples

3 Scan

- 4 1-based Endoring
- D. Lists (heterogeneous) [] [[]] \$

m1 L lost (a = 1:3, b = 'daniel', c=pi)

- E. Data Sets (explore with data(1)
 - 1. USArrests (?USArrests)
 - 2. ChickWeight

F. data frame

- 1. dum 3. length 5. head 2. names 4. str 6. tail
- G. Random Variables
 - 1. outcomes X assigns outcomes to numbers
 - 2. cdf cumulative distribution

Fx(x) = P[X <x]

- 3. pdf probability density function $f_X(\dot{x}) = P[X = x]$ discrete
- 4. binomial fx(i3n,p) = (1)p(1-p)-i

5. discrete uniform

- · De = {1, -, n}
- e Fx(i) = Lil * Sample ()

II Random Variables

- For directe RV with pdf fx(c)
 - a Expectation: $E[X] = \sum_{i=\infty}^{\infty} i f_X(i)$ / μ_X (mean)
 - b. Variance: Var[x] = \(\tilde{\infty}\) (i-E[x]) fx(i) \(\tau_x^2\)
 - c. ith Mowent Min = \sum i = \sum in f_x(i) std der

 = E[xn]
- 2. Examples
 - a. Uniform (discrete)

$$E[x] = \sum_{i=1}^{n} i \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

$$Var[x] = \sum_{i=1}^{n} (i - \frac{n+1}{n})^{2} \frac{1}{n} = \frac{n^{2}-1}{2}$$

 $Var[x] = \sum_{i} (i - \frac{n+i}{2}) \frac{1}{n} = \frac{n^2-1}{12}$

Verify next time

b. Binomial Distribution

Var[x] = \(\frac{1}{2} - \text{(i-np}^2 (\frac{n}{2}) \text{pi(1-p)}^{n-2} = \text{npq}

where q = 1-p

3. Tricks

a. Var[x] = E[x2] - E[x]

Check: Varte] = [(i-µ)fx(i)

= [(i-aintuz) fx(2)

= E i fili) - 2/2 Eifer) + E file)

= E[x] - 2 mm + m2.1 Verity

b. Moment Generating Function time $m_{\chi}(t) = E[e^{it}] = \sum_{i=1}^{\infty} e^{it} f_{\chi}(i)$

Use analytic function theory to show:

E[x] = m (o) \(1 \text{ derivative at \$t = 0.}

E[x2] = m"(0) \(\sum_{2}^{nd}\) derivative at t=0.

Verify for Bonomial RV.

R	Workshop 2 Using manual data entry, random number
IV	File I/O generators, and prepachaged data sets is fine for a while, but eventually you need to read data from a file or a database.
	1. getwd() - prints the current working directory 2. setwd ('m') - sets the current dir 3. list. files('.')
	B. CSV Files - input read.csv usually want FALSE 1. file name 4. string As Factors = True
Γ	2. header=TRUE 5. col. names = c(m) 3. sep= 4, 4 C. Common Conversions
peol	df\$ = as. factor (df\$ = 1) df\$ ts = strptime (df\$ts, formato '764-70m-70d4 90H:90M:90S') D. CSV Files - output write.csv
SKip	2- file 1 70 200 100 010 010 010 000 000
V	RStudio Graphing Data with R Skipped
	A. Three Plotting Chapter 3+4 D. Plot options - there are marry plotting options
	1. Base We will work with base available. We'll survivalure a handful introduce a handful with lack workshop.
	B. Two classes of plots 1. exploratory plots for your own insights 1. pch = 19 [point] 1. pch = 19 [character]
	2. polished plots for presentation 2. xlab = " " [Labels] C. Two basic typer of single variable plots 3 xlab = " " [Axis]
	1. stripchart } 3. xlim=c(,,) [Axis] 2. dotchart } 4lim=c(,,) [Limits]