Classify the discontinuities of:

 $\lim_{x\to a} g(f(x)) \ = \ g\left(\lim_{x\to a} f(x)\right)$

IF (A) $\lim_{x\to a} f(x) = L$, and (B) $\lim_{t\to L} g(t) = M$ THEN (C) $\lim_{t\to L} g(f(x)) = M$

 $\lim_{x\to a} g(f(x)) = g\left(\lim_{x\to a} f(x)\right)$

HMT: We flow

ect a pair of functions f and g such that

 $\lim_{x\to 0} f(x) = 1$ $\lim_{x\to 0} g(t) = 2$

 $\lim_{x\to 0} g(f(x)) = 42$

gm= { 2, x = 1 } (1 m g(fm)) = 2 4 m fm= 1 fm g(fm) = 2 2, x = 1 42, x = 1

$\lim_{x \to a} f(g(x)) \neq f(\lim_{x \to a} g(x))$

 $\lim_{x\to a} f(g(x)) \neq f(\lim_{x\to a} g(x))$

the statement does become true if f is

ous examples, in general, it is not true tha

 $\lim_{x\to a} f(g(x)) \neq f(\lim_{x\to a} g(x))$ the statement does become true if f is

ontinuous. imits for composition uppose that f, g are functions with $\bullet \lim_{x \to a} g(x) = L$ and $\lim_{x \to L} f(x) = M$ \bullet f is continuous

·0	
20	
O .	
-fig	

From previous examples, in general, it is not true that

 $\lim_{x\to a} f(g(x)) \neq f(\lim_{x\to a} g(x))$

However, the statement does become true if f is continuous.

 $\lim_{x\to a} f(g(x)) = M.$

1. Write down the formal definition $\lim_{x\to a} f(g(x)) = M$.

- Write down the formal definition lim_{x→x} f(g(x)) = M.
 Write down what you know using different numbering eg. ε₁, ε₂, δ₁, δ₂

change of variables
Suppose that f, g are functions with
• $\lim_{x\to a} g(x) = L$ and $\lim_{x\to L} f(x) = M$

Change of variables Suppose that f, g are functions with \bullet $\mathsf{Im}_{n-2} f(x) = L$ and $\mathsf{Im}_{n-2} f(x) = M$ \bullet $\mathsf{Im}_{n-2} f(x) = L$ and $\mathsf{Im}_{n-2} f(x) \neq L$ near x = a i.e. we can find interval I around a $\mathsf{s.t.}\ g(x) \neq L$ for all $x \in L$. Then we can swap limit and function:

 $\lim_{x\to a} f(g(x)) = M.$

Use the change of variables theorem to compute the limit

 $\lim_{x\to 1} \frac{\sin(1-\cos(\frac{\pi x}{2}))}{1-\cos(\frac{\pi x}{2})}.$