

GBI Tutorium Nr. 2⁵

Tutorium 10

Dominik Muth - dominik.muth@student.kit.edu | 9. Januar 2013

Outline/Gliederung

- Wiederholung
- 2 Master Theorem
- Mealy-Automaten
- Moore-Automaten
- Endliche Akzeptoren
- 6 Fragen

Moore-Automaten

Überblick

- Wiederholung
- 2 Master Theorem
- 3 Mealy-Automaten
- 4 Moore-Automaten
- 5 Endliche Akzeptoren
- 6 Frager

9. Januar 2013

- lacksquare Aus $f\in\Omega(g)\wedge f\in\Theta(g)\Rightarrow f\in\mathcal{O}(g)$
- $n^5 \in \mathcal{O}(2^n)$
- $\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$
- Alle Algorithmen liegen in $\Omega(1)$

- Aus $f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{}$
- $n^5 \in \mathcal{O}(2^n)$
- $\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$
- Alle Algorithmen liegen in $\Omega(1)$

- Aus $f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{}$
- $n^5 \in \mathcal{O}(2^n) \sqrt{ }$
- $\frac{n^3+2n}{2n+1}\in\mathcal{O}(n)$
- Alle Algorithmen liegen in $\Omega(1)$

- Aus $f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{}$
- $n^5 \in \mathcal{O}(2^n) \sqrt{ }$
- Alle Algorithmen liegen in $\Omega(1)$

- Aus $f \in \Omega(g) \land f \in \Theta(g) \Rightarrow f \in \mathcal{O}(g) \ \sqrt{}$
- $n^5 \in \mathcal{O}(2^n) \sqrt{n^5}$
- Alle Algorithmen liegen in $\Omega(1)$ $\sqrt{}$

Überblick

- Wiederholung
- Master Theorem
- Mealy-Automaten
- Moore-Automaten
- Endliche Akzeptoren

Wiederholung

Endliche Akzeptoren

Fragen

Mealy-Automaten

Moore-Automaten

Wozu?

Laufzeitabschätzung von rekursiv definierten Funktionen

Grundaufbau

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Erläuterung

- a =Anzahl der Unterprobleme in der Rekursion
- $\frac{1}{b}$ = Teil des Originalproblems, welches wiederum durch alle Unterprobleme repräsentiert wird
- f(n) = Aufwand, welcher durch die Rekursion der Teilprobleme und Kombination der Teillösungen auftritt.

Wozu?

Laufzeitabschätzung von rekursiv definierten Funktionen

Grundaufbau

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Erläuterung

- a =Anzahl der Unterprobleme in der Rekursion
- $\frac{1}{b}$ = Teil des Originalproblems, welches wiederum durch alle Unterprobleme repräsentiert wird
- f(n) = Aufwand, welcher durch die Rekursion der Teilprobleme und Kombination der Teillösungen auftritt.

9. Januar 2013

Wozu?

Laufzeitabschätzung von rekursiv definierten Funktionen

Grundaufbau

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Erläuterung

- *a* = Anzahl der Unterprobleme in der Rekursion
- $\frac{1}{b}$ = Teil des Originalproblems, welches wiederum durch alle Unterprobleme repräsentiert wird
- f(n) = Aufwand, welcher durch die Rekursion der Teilprobleme und Kombination der Teillösungen auftritt.

Wozu?

Laufzeitabschätzung von rekursiv definierten Funktionen

Grundaufbau

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Erläuterung

- *a* = Anzahl der Unterprobleme in der Rekursion
- $\frac{1}{b}$ = Teil des Originalproblems, welches wiederum durch alle Unterprobleme repräsentiert wird
- f(n) = Aufwand, welcher durch die Rekursion der Teilprobleme und Kombination der Teillösungen auftritt.

9. Januar 2013

Wozu?

Laufzeitabschätzung von rekursiv definierten Funktionen

Grundaufbau

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Erläuterung

- *a* = Anzahl der Unterprobleme in der Rekursion
- $\frac{1}{b}$ = Teil des Originalproblems, welches wiederum durch alle Unterprobleme repräsentiert wird
- f(n) = Aufwand, welcher durch die Rekursion der Teilprobleme und Kombination der Teillösungen auftritt.

Wie funktionierts?

Man unterscheidet zwischen 3 Fällen:

- **1** Wenn f(n) ∈ $\mathcal{O}(n^{log_b a \epsilon})$ mit $\epsilon > 0$, $\Rightarrow T(n) \in \Theta(n^{log_b a})$
- ② Wenn $f(n) \in \Theta(n^{log_ba}, \Rightarrow T(n) \in \Theta(n^{log_ba}logn)$
- ③ Wenn $f(n) \in \Omega(n^{\log_b a + \epsilon} \text{ mit } \epsilon > 0$, und wenn es ein c gibt, mit 0 < c < 1, sodass für alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, $\Rightarrow T(n) \in \Theta(f(n))$

Wie funktionierts?

Man unterscheidet zwischen 3 Fällen:

- **1** Wenn $f(n) \in \mathcal{O}(n^{log_b a \epsilon})$ mit $\epsilon > 0$, $\Rightarrow T(n) \in \Theta(n^{log_b a})$
- ② Wenn $f(n) \in \Theta(n^{log_ba}, \Rightarrow T(n) \in \Theta(n^{log_ba}logn)$
- ③ Wenn $f(n) \in \Omega(n^{log_b a + \epsilon} \text{ mit } \epsilon > 0$, und wenn es ein c gibt, mit 0 < c < 1, sodass für alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \leq c \cdot f(n)$, $\Rightarrow T(n) \in \Theta(f(n))$

Wie funktionierts?

Man unterscheidet zwischen 3 Fällen:

- **1** Wenn $f(n) \in \mathcal{O}(n^{log_b a \epsilon})$ mit $\epsilon > 0$, $\Rightarrow T(n) \in \Theta(n^{log_b a})$
- **2** Wenn $f(n) \in \Theta(n^{log_b a}, \Rightarrow T(n) \in \Theta(n^{log_b a} log n)$
- ③ Wenn $f(n) \in \Omega(n^{\log_b a + \epsilon} \text{ mit } \epsilon > 0$, und wenn es ein c gibt, mit 0 < c < 1, sodass für alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, $\Rightarrow T(n) \in \Theta(f(n))$

Januar 2013

Wie funktionierts?

Man unterscheidet zwischen 3 Fällen:

- **1** Wenn $f(n) \in \mathcal{O}(n^{\log_b a \epsilon})$ mit $\epsilon > 0$, $\Rightarrow T(n) \in \Theta(n^{\log_b a})$
- **2** Wenn $f(n) \in \Theta(n^{log_b a}, \Rightarrow T(n) \in \Theta(n^{log_b a} log n)$
- ③ Wenn $f(n) \in \Omega(n^{\log_b a + \epsilon} \text{ mit } \epsilon > 0$, und wenn es ein c gibt, mit 0 < c < 1, sodass für alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, $\Rightarrow T(n) \in \Theta(f(n))$

Januar 2013

Beispiele

$$49 \cdot T(\frac{n}{7}) + 3n + 5$$

$$49 \cdot T(\frac{n}{7}) + 3n^3 + 5$$

Überblick

- 1 Wiederholung
- 2 Master Theorem
- 3 Mealy-Automaten
- 4 Moore-Automaten
- 5 Endliche Akzeptoren
- 6 Frager

Definition: Mealy-Automat

Der Mealy-Automat $A = (Z, z_0, X, f, Y, g)$ besteht aus

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀
- dem Eingabealphabet X,
- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Z}$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

9. Januar 2013

Definition: Mealy-Automat

Der Mealy-Automat $A = (Z, z_0, X, f, Y, g)$ besteht aus

- der endlichen Zustandsmenge Z,
- dem Startzustand **z**₀,
- dem Eingabealphabet X,
- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Z}$,
- der Ausgabefunktion $\mathbf{q}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

Januar 2013

Definition: Mealy-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion lacktriangle : lacktriangle lacktriangl
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

Definition: Mealy-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion $f f: Z \times X \to Z$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

Definition: Mealy-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion $f f: Z \times X \to Z$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

Definition: Mealy-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion $f f: Z \times X \to Z$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Y}^*$.

Interaktive Aufgabe

Einen Getränkeautomaten modellieren:

saurer Sprudel = rein (Eingabe/Ausgabe: R)

süßer Sprudel = zitro (Eingabe/Ausgabe: Z)

Abbrechen = C (Eingabe: C)

Bestätigen = *OK* (Eingabe: O)

Ein Getränk kostet 1 Euro (Eingabe: 1)

f^* und f^{**}

 \mathbf{f}^* : $f^*(z,w)$ kann im Gegensatz zu f ein ganzes Wort w, als zweites Funktionsargument nehmen, und gibt somit an, in welchem Zustand sich man sich befindet, nachdem man das Wort w abgearbeitet hat.

 \mathbf{f}^{**} : $f^{**}(z, w)$ gibt die Durchlaufenen Zustände bei der Eingabe w an.

g^* und g^{**}

Simultan zu f^* und f^{**} geben die Funktionen $g^*(z, w)$ und $g^{**}(z, w)$ die Ausgabe nach dem eingegebenen Wort w an.

f^* und f^{**}

 \mathbf{f}^* : $f^*(z,w)$ kann im Gegensatz zu f ein ganzes Wort w, als zweites Funktionsargument nehmen, und gibt somit an, in welchem Zustand sich man sich befindet, nachdem man das Wort w abgearbeitet hat.

 \mathbf{f}^{**} : $f^{**}(z, w)$ gibt die Durchlaufenen Zustände bei der Eingabe w an.

g^* und g^{**}

Simultan zu f^* und f^{**} geben die Funktionen $g^*(z, w)$ und $g^{**}(z, w)$ die Ausgabe nach dem eingegebenen Wort w an.

Mealy-Automaten - Aufgaben

- Berechnen Sie $f^{**}((0, -), RZR11C)$ für den an der Tafel stehenden Automaten
- Berechnen Sie $g^{**}((0, -), RZR110)$ für den an der Tafel stehenden Automaten

Überblick

- Wiederholung
- 2 Master Theorem
- Mealy-Automaten
- Moore-Automaten
- 5 Endliche Akzeptoren
- 6 Frager

Moore-Automaten

9. Januar 2013

Definition: Moore-Automat

- der endlichen Zustandsmenge **Z**,

- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Z}$,
- lacktriangle der Ausgabefunktion lacktriangle : lacktriangle lacktriangle lacktriangle lacktriangle lacktriangle lacktriangle lacktriangle lacktriangle lacktriangle

Definition: Moore-Automat

Der Moore-Automat $A = (Z, z_0, X, f, Y, h)$ besteht aus

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- $\quad \text{ der Zustandsübergangsfunktion } \textbf{f}: \textbf{Z} \times \textbf{X} \rightarrow \textbf{Z},$
- einem Ausgabealphabet Y und
- der Ausgabefunktion $h : Z \rightarrow Y^*$.

9. Januar 2013

Definition: Moore-Automat

- der endlichen Zustandsmenge **Z**,
- dem Startzustand **z**₀.
- dem Eingabealphabet X,
- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Z}$,
- \blacksquare der Ausgabefunktion **h** : **Z** \rightarrow **Y***.

Definition: Moore-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion $f f: Z \times X
 ightarrow Z$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{h}: \mathbf{Z} \to \mathbf{Y}^*$.

Definition: Moore-Automat

- der endlichen Zustandsmenge Z,
- dem Startzustand z₀,
- dem Eingabealphabet X,
- lacktriangle der Zustandsübergangsfunktion $f f: Z \times X \to Z$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{h}: \mathbf{Z} \to \mathbf{Y}^*$.

Moore-Automaten

Definition: Moore-Automat

Der Moore-Automat $A = (Z, z_0, X, f, Y, h)$ besteht aus

- der endlichen Zustandsmenge **Z**,
- dem Startzustand **z**₀.
- dem Eingabealphabet X,
- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Z}$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{h}: \mathbf{Z} \to \mathbf{Y}^*$.

Moore-Automaten

Beispiel

Wiederholung

Master Theorem

Mealy-Automaten

Moore-Automaten

Endliche Akzeptoren

Fragen

Moore-Automaten - Aufgaben

- Wandeln Sie den Automaten von Eben in einen Mealy-Automaten um
- Modellieren Sie einen Automaten, welcher bei Wörter mit gerader Länge, welche mindestens einmal aa und einmal bb enthalten eine 1 ausgibt, sonst 0.

Überblick

- Wiederholung
- Mealy-Automaten
- Moore-Automaten
- Endliche Akzeptoren

Wiederholung

Mealy-Automaten

Moore-Automaten

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge **Z**,
- lacktriangle einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacktriangle eine Zustandsübergangsfunktion lacktriangle : lacktriangle X o lacktriangle und
- eine Menge F ⊆ Z akzeptierender Zustände.

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge Z,
- einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacktriangle eine Zustandsübergangsfunktion lacktriangle : lacktriangle X o lacktriangle und
- eine Menge F ⊆ Z akzeptierender Zustände

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge **Z**,
- einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacktriangle eine Zustandsübergangsfunktion f f: Z imes X
 ightarrow Z und
- eine Menge F ⊆ Z akzeptierender Zustände

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge Z,
- einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacksquare eine Zustandsübergangsfunktion f f: Z imes X
 ightarrow Z und
- eine Menge F ⊆ Z akzeptierender Zustände.

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge Z,
- einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacksquare eine Zustandsübergangsfunktion f f: Z imes X
 ightarrow Z und
- eine Menge F ⊆ Z akzeptierender Zustände.

Definition

Ein endlicher Akzeptor $A = (Z, z_0, X, f, F)$ ist festgelegt durch:

- eine endliche Zustandsmenge Z,
- einen Anfangszustand $\mathbf{z_0} \in \mathbf{Z}$,
- ein Eingabealphabet X,
- lacksquare eine Zustandsübergangsfunktion f f: Z imes X
 ightarrow Z und
- lacktriangle eine Menge lacktriangle lacktriangle akzeptierender Zustände.

Beispiel

Ein endlicher Akzeptor, welcher alle Wörter aus $\{a,b\}^*$ akzeptiert, welche mit a anfangen und aufhören oder mit b anfangen und aufhören.

Endliche Akzeptoren - Aufgaben

- Entwerfen Sie einen endlichen Akzeptor, mit $X = \{a, b\}$, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist.
- Entwerfen Sie einen endlichen Akzeptor, mit $X = \{a, b\}$, der alleWörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen.

Überblick

- Wiederholung
- Mealy-Automaten
- Moore-Automaten
- Endliche Akzeptoren
- Fragen

Wiederholung

Endliche Akzeptoren

9. Januar 2013

Fragen

- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?
- Feedback?

Frohe Weihnachten

I DON'T UNDERSTAND WHY ANYTHING HAPPENS AND I'M CONFUSED AND SCARED AND TRYING REALLY HARD ALL THE TIME.

source : http : //imgs.xkcd.com/comics/honest.png

