

Experiment - 3

Student Name: Himanshu Gupta UID: 23BCS10889

Branch: BE-CSE Section/Group: KRG_2B

Semester: 5th **Date of Performance:** 18/8/25

Subject Name: ADBMS Subject Code: 23CSP-333

1. Aim:

Medium-Problem Title: Identification of Highest-Paid Employee(s) in Each

Department

Procedure (Step-by-Step):

1. Create DEPARTMENT and EMPLOYEES tables with primary and foreign keys.

- 2. Insert sample records into both tables.
- 3. Verify data using SELECT *.
- 4. Use INNER JOIN to link employees with their departments.
- 5. Apply correlated subquery with MAX(SALARY) to fetch top earners in each department.
- 6. Display department name, employee name, and salary.

Sample Output Description:

The output should display a list of: **Department Name, Employee Name , Salary.** The records must be grouped and ordered by department. Each department will show only those employee(s) whose salary equals the maximum salary of that department.

Hard-Problem Title: Identify Each Employee's Lowest Salary Across Two Legacy HR Systems

Procedure (Step-by-Step):

- 1. Create tables A and B with columns EMPID, ENAME, SALARY.
- 2. Insert sample employee records into both tables.
- 3. Verify data using SELECT *.
- 4. Merge tables with UNION ALL.
- 5. Use GROUP BY with MIN(SALARY) to find each employee's lowest salary.
- **6.** Display EMPID, ENAME, and lowest SALARY.

Sample Output Description:

The result shows each employee from both systems with their **lowest salary**.

Duplicate employees across tables are merged, and only the minimum salary is retained for each EMPID.

2. Objective: To design SQL queries that consolidate employee and departmental records from different scenarios—identifying the highest-paid employee(s) in each department (Medium Level) and retrieving each unique employee with their lowest salary across multiple HR systems (Hard Level)—thereby ensuring accurate and meaningful insights from relational databases.

3. Expected Results-

Medium Problem-

Input table: (Employee) -

ID	NAME	SALARY	DEPT_ID
1	JOE	70000	1
2	JIM	90000	1
3	HENRY	80000	2
4	SAM	60000	2
4	MAX	90000	1

Department table-

ID	DEPT_NAME	
1	IT	
2	SALES	

Output table -

DEPT_NAME	NAME	SALARY
IT	MAX	90000
п	MIL	90000
SALES	HENRY	80000

Hard Level Problem -

Table A -

EmpID	Ename	Salary
1	AA	1000
2	ВВ	300

Table B -

EmplD	Ename	Salary
2	ВВ	400
3	СС	100

Output table -

EmplD	Ename	Salary
1	AA	1000
2	BB	300
3	CC	100

4. SQL QUERY AND OUTPUTS -

Medium Problem -

```
-----EXPERIMENT-3 (MEDIUM JEVEJ)------
CREATE TABLE DEPARTMENT (
    id INT PRIMARY KEY,
    dept_name VARCHAR(50)
);
CREATE TABJE EMPJOYEES (
    id INT PRIMARY KEY,
    emp_name VARCHAR(50),
    salary INT,
    department_id INT,
    FOREIGN KEY (department_id) REFERENCES department(id)
INSERT INTO DEPARTMENT (id, dept_name) VAJUES
(1, 'IT'),
(2, 'SAĮES');
INSERT INTO EMPJOYEES (id, emp_name, salary, department_id) VAJUES
(1, "JOE", 70000, 1),
(2, "JIM", 90000, 1),
(3, 'HENRY', 80000, 2),
(4, "SAM", 60000, 2), (5, "MAX", 90000, 1);
select * from employee;
select * from department;
SE[ECT D.dept_name AS [DEPT_NAME], E.EMP_NAME, E.SA[ARY
FROM EMPJOYEES AS E
INNER JOIN
DEPARTMENT AS D
ON D.ID=E.department_id
WHERE E.SAJARY IN
SE[ECT MAX(SA[ARY) FROM EMP[OYEES AS E2 WHERE E2.department_id=E.department_id
);
```

OUTPUTS OBTAINED -

	id	emp_name	salary	department_id
1	1	JOE	70000	1
2	2	JIM	90000	1
3	3	HENRY	80000	2
4	4	SAM	60000	2
5	5	MAX	90000	1


```
SELECT D dept_name AS [DEPT_NAME] E EMP_NAME E SALARY
    31
     32
             FROM EMPLOYEES AS E
             INNER JOIN
     33
             DEPARTMENT AS D
     34
             ON D.ID=E.department_id
    35
             WHERE E. SALARY IN
     36
     37
             SELECT MAX(SALARY) FROM EMPLOYEES AS E2 WHERE E2.department_id=E.department_id
     38
     39
             );
     40
100 %
           3 4
                 A 0
                      ↑ ↓
Results Messages
     DEPT_NAME
                EMP_NAME
                          SALARY
     SALES
                HENRY
                           80000
2
                MAX
                           90000
     IT
3
                           90000
     IT
                JIM
```

Hard Problem -

```
-----EXPERIMENT-3(HARD [EVE]) ------
CREATE TABLE A (
EMPID INT, ENAME VARCHAR(50), SAJARY INT
);
CREATE TABJE B(
EMPID INT, ENAME VARCHAR(50), SAJARY INT
);
INSERT INTO A(EMPID, ENAME, SAJARY) VAJUES
(1, 'AA', 1000),
(2, 'BB', 300);
INSERT INTO B(EMPID, ENAME, SAJARY) VAJUES
(2, 'BB', 600),
(3, 'CC', 100);
SEJECT * FROM A;
SEIECT * FROM B;
SEJECT EMPID, ENAME AS ENAME, MIN(SAJARY) AS SAJARY
FROM
SEJECT *FROM A
UNION ALL
SEJECT *FROM B
AS INTERMEDIATE_RESUIT
GROUP BY EMPID, ENAME;
```


OUTPUTS OBTAINED-

