STAT 3008: Applied Regression Analysis 2019/20 Term 2 Mid-Term Examination Quick Answers

Summary Statistics on mid-term scores: Q1= 70, Q2=84, Q3=87.25, Q4=98

- Most students lost at least 4 points from Prob 4(b)(c), and at least 7 points from Prob 5(a)
- In case of grading issues, please feel free to email Dr. Philip Lee at pklee@sta.cuhk.edu.hk

Problem 1:

(a) Let $g(\beta_1, \beta_2) = \sum_{i=1}^n (y_i - \beta_1 x_1 - \beta_2 x_2)^2$. Differentiate g wrt β_1 and β_2 ,

$$\frac{\partial g}{\partial \beta_1} = -2\sum_{i=1}^n x_{i1}(y_i - \beta_1 x_{i1}) \quad \text{and} \quad \frac{\partial g}{\partial \beta_2} = -2\sum_{i=1}^n x_{i2}(y_i - \beta_1 x_{i2}).$$

$$\text{Put} \ \left. \frac{\partial g}{\partial \beta_1} \right|_{\hat{\beta}_1 = \hat{\beta}_2 = 0} = \frac{\partial g}{\partial \beta_2} \right|_{\hat{\beta}_1 = \hat{\beta}_2 = 0} = 0 \\ \Rightarrow \hat{\beta}_1 = \frac{\sum_{i=1}^n x_{i1} y_i}{\sum_{i=1}^n x_{i1}^2} \ \text{and} \ \hat{\beta}_2 = \frac{\sum_{i=1}^n x_{i2} y_i}{\sum_{i=1}^n x_{i2}^2} \ .$$

Since $g(\beta)$ is a convex function in β_1 and β_2 , the above is an absolute minimum point.

(b)
$$l(\beta_1, \beta_2, \sigma^2) = -\frac{n}{2} \sum_{i=1}^n \ln(2\pi\sigma^2) - \sum_{i=1}^n \frac{1}{2\sigma^2} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2})^2$$

(c) Yes, because $l(\beta_1, \beta_2, \sigma^2) = -\frac{n}{2} \sum_{i=1}^n \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} g(\beta_1, \beta_2)$ => Maximize $l(\beta_1, \beta_2, \sigma^2)$ based on β_1 and β_2 is equivalent to minimize $g(\beta_1, \beta_2)$.

(d) Yes,
$$E[\hat{\beta}_1] = \frac{1}{\sum_{i=1}^n x_{i1}^2} \sum_{i=1}^n x_{i1} E[y_i] = \frac{1}{\sum_{i=1}^n x_{i1}^2} \sum_{i=1}^n x_{i1} (\beta_1 x_{i1} + \beta_2 x_{i2}) = \beta_1$$

(e) Yes, because
$$\hat{\beta}_1 \overline{x_1^2} + \hat{\beta}_2 \overline{x_2^2} = \frac{1}{n} \sum_{i=1}^n x_{i1} y_i + \frac{1}{n} \sum_{i=1}^n x_{i2} y_i$$

Problem 2:(a) ABA \neq A Since AB = $0_{n\times n}$

(b) Since
$$\mathbf{B}^2 = \mathbf{I}_n - 2\mathbf{X}(\mathbf{X}' \mathbf{X})^{-1}\mathbf{X}' + \mathbf{X}(\mathbf{X}' \mathbf{X})^{-1}\mathbf{X}' \mathbf{X}(\mathbf{X}' \mathbf{X})^{-1}\mathbf{X}' = \mathbf{I}_n - \mathbf{X}(\mathbf{X}' \mathbf{X})^{-1}\mathbf{X}' = \mathbf{B}$$
 and $\mathbf{A}^2 = \mathbf{A}$, $\Rightarrow \mathbf{A}^5 = \mathbf{A} = \mathbf{I}_n - \mathbf{B} = \mathbf{I}_n - \mathbf{B}^7$

(c)
$$E[\mathbf{e}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e}] = tr(E[\mathbf{e}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e}]) = E(tr(\mathbf{e}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e})) = E(tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e}'))$$

$$= tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{e}\mathbf{e}')) = tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}_{n})) = \sigma^{2}tr((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}) = \sigma^{2}tr(\mathbf{I}_{\mathbf{p}+1}) = (p+1)\sigma^{2}$$

Problem 3:

	Coefficient Table					ANOVA Table					
	Variable	Coefficient	Std. Error	t-statistic	p-value	Source	df	SS	MS	F	p-value
	Constant	-9.9081	5.3871	-1.8392	0.07234	Regression	1	150.00	150.000	8.118	0.006535
	X	0.6579	0.2309	2.849	0.006535	Residuals	46	850.00	18.478		
(a)					_	Total	47	1000.00			

(b) (Step 1) H_o : β_o = -2.0 vs H_i : β_o > -2.0

(Step 2)
$$t_0 = (-9.9081 - (-2))/5.3871 = -1.468$$

(Step 3) Since *p*-value = $Pr(t_{46} > t_o) = 0.9255 > 0.05$, we do not reject H_o at $\alpha = 0.05$.

(Step 4) We do not have sufficient evidence that β_0 is greater than -2.0.

Problem 4:

(a)

	•		
Model	EV	df	RSS
1	Null	53	1,145.7
2	1	52	194.5
3	2	52	921.3
4	3	52	10.15
5	12	51	13.10
6	13	51	5.186
7	23	51	7.314
8	123	50	3.812

- (b) Yes, because $R^2(Model 5) = 99.11\% \approx 1$ based on x_1 and x_2 , and $R^2(Model 4) = 98.86\% \approx 1$ based on x_3 . [or simply based of the fact that $\hat{\rho}(y, x_1) = 91.118\%$ and $\hat{\rho}(y, x_3) = 99.556\% => x_1$ and x_3 has to be highly correlated with each other]
- (c) Yes. Because if x_1 and x_2 are orthogonal (i.e. 0 correlation), they should be orthogonal to the error variable e in Model 5: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$ => SS_{total} = SS_{reg} + RSS, where SS_{reg} = SS_{reg(x1)} + SS_{reg(x2)}. Now SS_{reg} = 1145.7-13.10 = 1132.6, SS_{reg(x1)} = 1145.7 194.5 = 951.2 and SS_{reg(x2)} = 1145.7 921.3 = 224.4 from Model 2. Since SS_{reg(x1)} + SS_{reg(x2)} = 951.2 + 224.4 = 1175.6 ≈ 1132.6 = SS_{reg}, correlation between x_1 and x_2 should be close to 0.

Problem 5:

(a) If we express Total = FirstFloor+SecondFloor+Basement, we have

$$\begin{split} \hat{y} &= \hat{\gamma}_0 + \hat{\gamma}_{Year} Year + \hat{\gamma}_{FirstFloo} FirstFloor + \hat{\gamma}_{SecondFloo} SecondFloor + \hat{\gamma}_{Basemen} Basement \\ &= 0.8947 + 0.0035231 \times Year + (0.00003378 + 0.0003954) \times FirstFloor \\ &+ 0.0003954 \times SecondFloor + (-0.0002274 + 0.0003954) \times Basement \end{split} - Equation (1)$$

(I) Note that $\hat{\beta}_{Basement}$ = -0.0002274 is the difference between $\hat{\gamma}_{Basement}$ and $\hat{\gamma}_{SecondFloo}$ from Equation (1),

 $\hat{\beta}_{Basement}$ < 0 $\iff \hat{\gamma}_{Basement}$ < $\hat{\gamma}_{SecondFloo}$, which is intuitive because basement is typically used for storage and garage, which should be cheaper than 2/F (which is mainly utilized as bedrooms).

[Alternatively, you can view $\hat{\beta}_{Basement}$ in the original model as the change in log-price for 1 sq.ft increase in the Basement, while keeping (1) Total = FirstFloor+SecondFloor+Basement and (2) FirstFloor unchanged. (1) and (2) implies that 2/F has to be decreased by 1 sq. ft, and you are going to come up with the same conclusion.]

(II) $\hat{\beta}_{\text{FirstFloor}} = 0.00003378$ is the difference between $\hat{\gamma}_{\text{FirstFloor}}$ and $\hat{\gamma}_{\text{SecondFloo}}$ from Equation (1),

 $\hat{\beta}_{\text{FirstFlooi}} > 0 \iff \hat{\gamma}_{\text{FirstFlooi}} > \hat{\gamma}_{\text{SecondFloo}}$ is intuitive because 1/F is the place family stays most (e.g. living room, dining room, kitchen, ...etc), which should be more expensive than the 2/F (mainly as bedrooms).

(II) $\hat{\beta}_{Total} = 0.0003954 > \hat{\beta}_{FirstFloor} = 0.00003378 \Leftrightarrow 2\,\hat{\gamma}_{SecondFloor} > \hat{\gamma}_{FirstFloor}$ from Equation (1), which should be intuitive since the 1 sq. ft of 1/F should not more expensive than 2 sq. ft of the 2/F.

(b) n = 1169 + 5 = 1174.