IOWA STATE UNIVERSITY

College of Engineering

Hybrid Energy Systems: An Integrated Energy System Scheme

Sustainability:

- Economic
- **Environmental**
- Social

Infrastructure integrity

- Reliability
- **Flexibility**
- Resilience
- Adaptable

Interdependent Infrastructures

Template for a Hybrid Energy System

Geographically correct Midwest HES

Results

- Case 1: High gas prices (6.2%/yr) with an imposed carbon tax
- Case 2: Low gas prices (3%/yr) with an imposed carbon tax
- Case 3: High gas prices (6.2%/yr) without an imposed carbon tax

Technology	Energy Produced (MWh)		
	Case 1	Case 2	Case 3
CHP	794,375	1,645,477	1,613,157
Solar	524,857	455,703	482,766
Wind	2,664,404	2,016,707	2,470,422
LTG	133,082	117,868	123,584
CST	720,526	520,584	638,577
NGB	33,716	114,622	85,736

Integrated modeling of power & water systems

MIN **NET PRESENT VALUE**

- **G&T&W** Investment Costs + Fixed O&M Costs
- + Var O&M Costs
- + Fuel Costs
- + Reserve Costs + Environmental Costs

SUBJECT TO:

Electric & Water Infrastructure Investment constraints Electric & Water Operational, planning, environmental constraints

WT & WWT working level limits, Stream Flow Balance, ASR Charge/Discharge, VPH storage & release constraints **Decision Variables:**

Investment variables for Electric & Water infrastructure Operational levels for Electric & Water infrastructure

