

Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]

Web as a Directed Graph

Broad Question

- ▶ How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But</u>: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
- (I) Web contains many sources of information Who to "trust"?
 - Trick:Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

PageRank: Flow Formulation

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - <u>www.purdue.edu</u> has 1,910 in-links
 - www.fake-school-name.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$\circ r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large websize graphs
- We need a new formulation!

Flow equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - \circ Let page i has d_i out-links
 - \circ If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - \circ r_i is the importance score of page i
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form
- Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue *l*
 - Largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$

▶ We can now efficiently solve for r via Power iteration

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

 $Ax = \lambda x$

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{array}{c|ccccc} & y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \quad \text{or} \quad r = Mr$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Iteration 0, 1, 2, ...

Does it converge to what we want?

Iteration 0, 1, 2, ...

PageRank: Problems

2 problems:

- (I) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
- (2) Spider traps:(all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - And eventually spider traps absorb all importance

Problem: Spider Traps

▶ Power Iteration:

- Set $r_i = 1$
- $\circ r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
/	1/2	1/2	0
a	1/2	0	0
ı	0	1/2	1

m is a spider trap

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_v/2$

Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. $\boldsymbol{\beta}$, follow a link at random
 - With prob. **I - β**, jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1$
- $\circ r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
у	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

 $r_{\rm m} = r_{\rm a}/2$

$$r_{y} = r_{y}/2 + r_{a}/2$$

$$r_{a} = r_{y}/2$$

Example:

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{N}$$
of node i

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

▶ The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

 $[1/N]_{N\times N}...N$ by N matrix where all entries are 1/N

- We have a recursive problem: $r = A \cdot r$
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

1/3

m

0.46

0.52

21/33

0.56