

## Université Internationale de Casablanca

Exercice 1. Calculer le déterminant de la matrice suivante :

$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ -1 & 4 & -7 & 2 \\ 0 & 3 & 5 & 0 \\ -2 & 1 & 0 & 6 \end{pmatrix}$$

CPI2: ALGÈBRE 3

det(A) = 235

Exercice 2. Montrer (par récurrence) que P(x) = det(A - xI) est un polynôme de degré n.

**Exercice 3.** Calculer les valeurs propres de la matrice  $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ 

Exercice 4. Déterminer le polynôme caractéristique des matrices suivantes :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Exercice 5. Calculer les valeurs et vecteurs propres des matrices suivantes

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 4 \\ 0 & 7 & -2 \\ 4 & -2 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & -1 \\ -1 & a^2 & 0 \\ -1 & 0 & a^2 \end{pmatrix} \quad (a \neq 0)$$

**Exercice 6.** Soit  $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$  telle que

$$f(x,y) = (5x - 3y, 6x - 4y).$$

- 1. Déterminer la matrice A de f dans la base canonique  $(e_1, e_2)$
- 2. Déterminer les valeurs propres  $\lambda_1$  et  $\lambda_2$  de la matrice A
- 3. Déterminer les vecteurs propres  $u_1$  et  $u_2$  associés à  $\lambda_1$  et  $\lambda_2$  (respectivement).
- 4. Montrer que  $(u_1, u_2)$  est une base de  $\mathbb{R}^2$
- 5. Donner la matrice D de f dans la base  $(u_1, u_2)$ .
- 6. Donner la matrice de passage de la base  $(e_1, e_2)$  à la base  $(u_1, u_2)$ .
- 7. Calculer  $A^k$ ,  $k \in \mathbb{R}$ .
- 8. Soit le système différentiel suivant :

$$\begin{cases} x'(t) = 5x(t) - 3y(t) \\ y'(t) = 6x(t) - 4y(t) \\ x(0) = x_0 \\ y(0) = y_0 \end{cases}$$
 (1)

On pose 
$$\begin{pmatrix} X(t) \\ Y(t) \end{pmatrix} = P \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

(a) Montrer que

$$\begin{cases}
X'(t) = \lambda_1 X(t) \\
Y'(t) = \lambda_2 Y(t) \\
X(0) = X_0 \\
Y(0) = Y_0
\end{cases}$$
(2)

- (b) Résoudre le problème (2)
- (c) En déduite la solution du problème (1).

Exercice 7. Le but de l'exercice est de calculer  $M^k$  pour la matrice M définie par :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M.
- 2. Déterminer les vecteurs propres de M associés aux valeurs propres.
- 3. Déterminer une base de vecteurs propres et P la matrice de passage.
- 4. On pose  $D = P^{-1}MP$ , pour  $k \in \mathbb{N}$  exprimer  $M^k$  en fonction de  $D^k$ , puis calculer  $M^k$ .

Exercice 8. Soit

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

- 1. Calculer les valeurs propres de A
- 2. Calculer les vecteurs propres associés
- 3. Montrer que les vecteurs propres constituent une base de  $\mathbb{R}^3$
- 4. Donner la matrice P de passage de la base canonique à la base des vecteurs propres
- 5. Calculer  $P^{-1}AP$ .

Exercice 9. Soit

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

1. Calculer A<sup>2</sup> et vérifier que

$$A^2 = A + 2I$$

2. En déduire que A est inversible et donner son inverse.

**Exercice 10.** Soit A une matrice carrée d'ordre n. On suppose que A est inversible et que  $\lambda \in \mathbb{R}$  est une valeur propre de A.

- 1. Démontrer que  $\lambda \neq 0$
- 2. Démontrer que six est un vecteur propre de A associée à la valeur propre  $\lambda$  alors il est vecteur propre de  $A^{-1}$  associée à la valeur propre  $\lambda^{-1} = \frac{1}{\lambda}$ .

**Exercice 11.** On considère la suite  $(u_n)_{n>0}$  définie par

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ u_{n+1} = \frac{1}{2} (u_n + u_{n-1}) \end{cases}$$
 (3)

1. Déterminer matrice A telle que

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$

- 2. Calculer les valeurs propres de A
- 3. Calculer les vecteurs propres associées
- 4. Montrer que ces deux vecteurs propres constituent une base de  $\mathbb{R}^2$
- 5. Donner la matrice P de passage de la base canonique à la base des vecteurs propres.
- 6. Expliciter les suites  $(V_n)_{n\geq 0}$  et  $(W_n)_{n\geq 0}$  données par

$$\begin{pmatrix} V_n \\ W_n \end{pmatrix} = P \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$$

7. Montrer que

$$\begin{pmatrix} V_n \\ W_n \end{pmatrix} = D^n \begin{pmatrix} V_0 \\ W_0 \end{pmatrix}$$

où D est la matrice diagonale des valeurs propres de A.

- 8. Étudier les suites numériques  $(V_n)_{n\geq 0}$  et  $(W_n)_{n\geq 0}$  (Exprimer les en fonction de n, convergence limites)
- 9. En déduite  $\lim_{n \mapsto +\infty} (u_n)$