а

I numeri a,b,c appartengono ad F. Calcoliamo fl(fl(a+c)+b) e fl(fl(a+b)+c)

Il numero a appartiene al sottointervallo dell'asse reale $[2^{50}, 2^{51}]$. In questo sottointervallo lo spacing è dato da $s=2^{50+1-53}=2^{-2}=0.25$

fl(a+c)=a perché c=0.06 è minore dello spacing

 $c = 0.6 \cdot 10^{-1} = 0.6 \cdot 10^{-1} \cdot (10^{-16}) \cdot 10^{16} = 0.0000000000000000000 \cdot 10^{16}$

a

С

fl(a+c)=a

а

+	0.	1	2	3	4	5	6	7	8	9	0	1	2	3	4	0	0	1 0 ¹⁶
b																		
_	0.	1	2	3	4	5	6	7	8	9	0	1	2	3	4	0	1	10 ¹⁶

$$fl(fl(a+c)+b) = -0.00000000000000001 \cdot 10^{16} = -0.1 \cdot 10^{-15} \cdot 10^{16} = -0.1 \cdot 10^{1} = -1$$

a 10^{16} b 10¹⁶ $fl(a+b) = -0.000000000000000001 \cdot 10^{16} = -0.1 \cdot 10^{-15} \cdot 10^{16} = -0.1 \cdot 10^{1} = -1$ 10¹ C 10^{-1}

Riscrivo c, modificando opportunamente la mantissa, (che diventa non normalizzata) in maniera tale da avere parte esponente 101

$$c = 0.600000000000000 \cdot 10^{-1} \cdot (10^{-1}) \cdot 10^{1}$$

 10^1

$$fl(a+b)$$

 $\boldsymbol{\mathcal{C}}$

(fl(a+b)+c)

 $- \quad | 0. \quad | 9 \quad | 4 \quad | 0 \quad | 10^0$

Valutare $y_1(x) = \sqrt{x^2 + 1} - x \text{ per } x = 7777$

 $x = 0.7777 \ 10^4 \quad x^2 = 0.60481729 \ 10^8$ $fl(x^2) =$

1 in notazione scientifica normalizzata su un calcolatore a 64 bit si esprime come

Ne modifico la mantissa in maniera tale che la parte esponente sia 10^8

$$1 = 1 * 10^{0} = (0.100..00 \cdot 10^{1}) 10^{-8} \cdot 10^{8} = 0.1 \cdot 10^{-7} \cdot 10^{8}$$

 $0.6048173 \cdot 10^8 \in [2^{25}, 2^{26}]$ Lo spacing in $[2^{25}, 2^{26}]$ è s= 7.450580596923828e-09

 $fl(x^2)$

$$t = fl(x^2 + 1) = 0.60481730 \ 10^8$$

$$fl(\sqrt{t}) = 0.7777000064292143 \cdot 10^4$$

$$x = 0.77770000000000000 \cdot 10^4$$

$$\sqrt{t} - x = 0.64292143 \ 10^{-8} \cdot 10^{4} = 0.64292143 \ 10^{-4}$$

 10^{16} 9

1 in notazione scientifica normalizzata su un calcolatore a 64 bit si esprime come

 10^{1}

Se lo voglio esprimere il numero in maniera tale che la parte esponente sia 10^{16}

$$1 = 1 * 10^{0} = (0.100..00 \cdot 10^{1}) 10^{-16} \cdot 10^{16} = 0.1 \cdot 10^{-15} \cdot 10^{16}$$

10¹⁶

 $0.6049382595061729 \cdot 10^{16} \in [2^{52}, 2^{53}]$

Lo spacing in $[2^{52}, 2^{53}]$ è s= 1

 $fl(x^2)$

1

$$t = fl(x^2 + 1) = 0.6049382595061730 \cdot 10^{16}$$

$$\sqrt{t} = 0.7777777700000000 \cdot 10^{16}$$
$$x = 0.7777777700000000 \cdot 10^{16}$$

math.sqrt di Python implementa un algoritmo iterativo per calcolare la radice quadrata di un numero : fenomeno di cancellazione di cifre significative

$$\sqrt{t} - x = 0$$

$$y_2(x) = \frac{1}{\sqrt{x^2 + 1} + x}$$

Formula equivalente algebricamente alla precedente, ma non presenta fenomeni cancellazione di cifre significative, quando viene valutata in x=777777.