O O CLIL (I 1M	E
Lecture 8-2 SEIF SLAM	1.1/
- Sparafication in the information Mtx is remains direct links to	
landmans that next active but have become Passive	
- Sparsification happens on every Herathan	-
4) Elfect: - robot's pose is only linked to active landmarks	
- lardmans have lines to only nearby landmarks	
Corrected Mean Computing	
meun needed in motion mosel, measurement Model, Starstrication Step	
Larged how Mit, med corrected My from the	
	1//1
- This is lostly: M= 12' &	* 1/10 1
+ thus, SEIF SLAM alproximates the corrected mean	
L) Confute a few directions of the neur M an affroximated way	É (
Ly treat as an offinization problem to find;	, •
in = argmax p(M) Londrark Poses	
= argmax exp (=2MT_QM + ETM)	-
argment ext (1-21 -12m + 5)	
1/20 - 1 roll 1 M. A was part H. Cool of Why. I alles C.	
Greeks to find value that naximizes the probability density func.	
Ame de la Maria	
Aproximation Mean	. (
- Can be done in many ways - Con be effectent given only a few dims are needed (robot & landmark Po	(4)
+ Con be arrivery given only a few dims are necoes (1000+ & lumoriary 1)	188/
to man and the land to the comment	
Grow on this later in the Course	
	-
	(
	1

[P(a1c)P(c) = P(d,6)|so, P(a,b,c) = P(a1b,c)P(b,c) = P(a1b,c)P(b1c)P(c)

```
Sporsification
     removing direct connections between cobot's pose & non-active landmarks (off-diag.)
    Gassuning conditional indefendance between them
    Spaisification Generally;
         - replace the distribution -> P(a,b,C)
         by on alliox. P so that
                                       Plalb,c) = Plalc)
         a b b are indefendent
      approximation by assuming Conditional Interentance:
         P(a,b,c) = P(a|b,c) P(b|C) P(c)
                                                 A a = Pobot Pose
                  ~ P(alc)P(blc)P(c)
                                                 > b= m, C=M2 → (or encothics else)
                   = P(a | C) P(C) P(b | C) P(C)
                                                this is what we will do in the
                  = f(a,c) f(b,c)
                                                Contex of the information natrix
    quick notation: M:
                                                   PStill acqually there
    (Parsificution:
     - P(xt, m | z1:t, u1:t) = P(xt, mt, mo, m | z1:t, u1:t) -> ignore 2 & u for withy sake
                                             -> ignoring non-active lundmarks (=0)
    > P(xe, m) = P(xe, mt, me, m)
              = P(x+ | m+m,m-) P(m+m,m-)
                                               Sparsification; assume Conditional
              = P(x= |mt, no, m=0) P(mt, min)
                                              Indefendance of the robot's Page
m' disaleurs) ~ P(x. Int, m=0) P(mt, m, m) from landmarks that become fassive
    P(x+,m) = P(x+,m+ | m=0) P(m+,m,m-)
                                                       So.
```

A Q. My 13 \(\xi = \Dt /t \)

Slaver than \(\xi = \xi + (\Dt - \Ot) / t \). Information Mex Update Sparsifying direct links between 1000 1000 & m' results in; P(Xt, m | Ziit, Ulit) = (P(Xt, m) m=0, Ziit Ulit) P(m, m, m | Ziit, Ulit) P/M+/n=0, Z1:t, U1:t) ceach of twee correctores to one) now reflace _2, & by approximately values \rightarrow express $\widetilde{\Omega}$ as a sum of 3 matrices : $\widetilde{\Omega} = \Omega_i - \Omega_i^2 + \Omega_i$ - Conditioning It on M=0 Yields It: P(X6, M, M° | N=0) -norginalizing m° from De yields Dt: JP(Xt, mtm° | m=0) dm° -marginalizing x, m° from D't Vields D't: - Marginalizing & from 12t Yields 12% - generate Sparsifies information mtx; $\widetilde{\Omega}_t = \Omega_t^2 - \Omega_t^2 + \Omega_t^3$ now Compute info. vector directly; $\xi = \tilde{\Lambda}_t \mu_t$ This is very efficient cuz the = $(\Omega_t - \Omega_t + \Omega_t)M_t$ difference here is a very small = $\Omega_t M_t + (\Omega_b - \Omega_t)M_t$ # of non-Zero elements, just settins = $\xi_t + (\Omega_b - \Omega_t)M_t$ Tid of 1 or 2 active landrams to be Passive SEIF_sparsification (Et, Dt, Mt): define Fro, Fx, mo, Fx as Aroseerlan matrices to mo, {x, m, 3, x restrutively Ω = Fx,m+m·Fx,m+m·Ωt Fx,m+m·Fx,m+m· Ωt = Ωt - Ωt Fmo (Fm. Ωt Fm.) - Fm Ωt + 12 Fx, mo (Fx, mo De Fxno) Fxno De return Et. It

SFIF SLAM Summory

1 oughly constant time (vs. quadratic for EKF)

Linear memory (vs. quadrat. for EKF)

Less accurate than EKF (starsification, mean recovery extimation) Worth it in Practice? 4 7-10 acrise fundmans seems to be a Good Compromise