6858 Frame

Let's consider a $X \times Y$ rectangle with the middle $(X-2) \times (Y-2)$ rectangle cut out. We will call this figure a frame with size $X \times Y$. Picture 1 shows the frame 5×6 .

Picture 1. Frame 5 × 6

Picture 2. Frame 5 × 6, paved with tiles 3 × 1

Let's assume that we have unlimited number of tiles with size $A \times 1$. We consider the following problem: is it possible to completely pave a frame with size $X \times Y$ using these tiles (tiles can be rotated by 90 degrees). For example, frame 5×6 from Picture 1 can be paved completely with tiles of size 3×1 (one way to do so is shown in Picture 2), but can't be paved with tiles of size 4×1 .

Input

The input file contains several test cases, each of them as described below.

The first line contains 2 integers — X and Y ($3 \le X \le 10^6$, $3 \le Y \le 10^6$). The second line contains integer N — the number of tile types to be analyzed ($1 \le N \le 1000$). Each of following N lines contains one integer, not exceeding 10^6 . We designate with A_K the integer on the (k+2)-th line of the input file.

Output

For each test case, your goal is to print N lines, where the K-th line should contain the word 'YES', if it is possible to tile the frame with size $X \times Y$ with tiles $A_K \times 1$, and the word 'NO' otherwise.

Sample Input

5 6

2

4

Sample Output

YES

NO