WO 2004/058161 PCT/US2003/040545

44

SEQUENCE LISTING

<110>	FMC Corporation Wu, Shilan Allenza, Paul Halling, Blaik												
<120>	Aphis gossypii Polo-like Kinases												
<130>	60294												
<160>	9												
<170>	PatentIn version 3.1												
<210>	1												
<211>													
<212>													
<213>	Aphis gosspii												
<400>	1												
aaagct	cete tgaacgtege aacggetaaa tegtattaeg tttaegttet gegttttaaa	60											
attcct	ttgt taacgtatac tttttgccga tcaacacggt agttactagt cagtgtacaa	L2(
ttgtta	aattg teggeggtga tegttgagte egtggttgee aettgteeta taaateetaa	18											
gttcta	accgt caacagccaa catgtcgtct agaccaaaag aagaagaagt ccgaatcccg	24											
gacgt	gattt tegacaacaa gaccaacaag aagtatcaaa aaggcagttt teteggaaag	30											
ggagg	ttttg caaaatgtta tgaaattgtt gatttgaaaa ctaaagaaat ctttgctgga	36											
aaaat	tgttt ccaaaaaata tctattgaaa cacaaccaaa aagataaaat gacacaagaa	42											
ataca	tattc acaagatgtt gaaacataca aacattgtta cttttcatag tttctttgag	48											
gataa	tgact ttgtttatat tgttttggaa ctttgccgga aaagatcaat gatggagctg	54											
cataa	gagaa gaaaaactct tactgaaccc gaaacacgtt actacgtatt tcaaattctt	60											

gaagggacat tatatttaca taatcagggt attattcatc gtgatctgaa attaggaaat 660

ctatttttaa atgatgaaat ggaagtgaag ataggagatt tgggtttggc tgctagaatt 720 gaatatgatg gacaacgtaa aaaaacatta tgtggcactc caaattatat tgctccagag 780 attettagea agactggtea cagttttgaa gttgatgttt ggteeattgg ttgtataatg 840 tacacactat tagttggcaa accaccattt gagacaaact ctctgaaaga aacatatgct 900 aggattgcac gatgtgatta tagcttacca cctcatttaa ataagaatgc tagttcatta 960 attaataaaa tgcttcaata tgatcctaaa aaacgtcctt gtgtatctga tataatgaaa 1020 gctgatttct ttactactgg ttatatgcct aaaaaattac ctccatcatg tcttacaatg 1080 gctcctcgtt ttgattctat caattacaga gaatcaattt ctaatcgcag accactcaat 1140 gaactcaata gccccaaagc tgccatcatt aaagttgctt ctaaacctca agatccggtt 1200 aataaattgc caatgtttaa tattccaaat aaaccaacta ctggaaatgg tgtttcatcc 1260 aatgactgta aagaatacat gatgtccctt gaaagagaat tgggaaattt attgaaatgt 1320 aaaccaacca tgaaaggaat gaaaaacatg gaggaaaaca ctgacccagc tgctcaacct 1380 ctcatttggg ttagtaaatg ggtggactat tccgataaat atggatttgg atatgaatta 1440 tetgatgatt gtgttggtgt tatgtteaat gattttacea gaatagtaet tttageeaat 1500 ctaaaagatg tccattacat agaaagaaat ggttcagaac aataccatac aactgaacat 1560 actccaccgt cgttagagaa aaaaatgaag ttattgatgt acttcagacg ttacatgaat 1620 gatcatctta ttaaagctgg tgctgatata ttagctaaag atgcagacca attgagtcgt 1680 acaccataca tgtaccaatg gtataggtct acttcatcag ttattatgca acttactaac 1740 ggcactttac aaatcaactt cacagatcat acaaaagtaa tattgtgtcc attaatgaat 1800 gctgtcacct ttattgaaaa taatgttttc cgtacatacc gttttaatac aattgctgaa 1860 catggctgta gccctgaatt aggaaaatgc ttggaatatg ctcacaagaa aattggatct 1920 atattaaaag atagcccagt ttaatttact tgaaaattga cgagtatatt tagtttatag 1980 WO 2004/058161 PCT/US2003/040545

46

ttatgataat	taatgaaaaa	ccagtactta	tgttaaaaga	gctatattta	agattgtaaa	2040
taattactat	tattttttt	attttacaat	attaatatta	aaccttaaaa	ttaaatagtt	2100
tcatttatta	ttatttttat	tatttctatt	ttgtgatttt	tgttatttag	aaaactátta	2160
tttcatcaaa	ataaagtgac	ttaagtacat	ttagttacat	attaaaaaat	ctaatatgtt	2220
tttccatggt	tgcattaaaa					2240

<210> 2

<211> 580

<212> PRT

<213> Aphis gossypii

<400> 2

Met Ser Ser Arg Pro Lys Glu Glu Glu Val Arg Ile Pro Asp Val Ile 1 5 10 15

Phe Asp Asn Lys Thr Asn Lys Lys Tyr Gln Lys Gly Ser Phe Leu Gly
20 25 30

Lys Gly Gly Phe Ala Lys Cys Tyr Glu Ile Val Asp Leu Lys Thr Lys 35 40 45

Glu Ile Phe Ala Gly Lys Ile Val Ser Lys Lys Tyr Leu Leu Lys His
50 55 60

Asn Gln Lys Asp Lys Met Thr Gln Glu Ile His Ile His Lys Met Leu 65 70 75 80

Lys His Thr Asn Ile Val Thr Phe His Ser Phe Phe Glu Asp Asn Asp 85 90 95

Phe	Val	Tyr	Ile 100	Val	Leu	Glu	Leu	Cys 105	Arg	Lys	Arg	Ser	Met 110	Met	Glu
Leu	His	Lys 115	Arg	Arg	Lys	Thr	Leu 120	Thr	Glu	Pro	Glu	Thr 125	Arg	Tyr	Туг
Val	Phe 130	Gln	Ile	Leu	Glu	Gly 135	Thr	Leu	Tyr	Leu	His 140	Asn	Gln	Gly	Ile
Ile 145	His	Arg	Asp	Leu	Lys 150	Leu	Gly	Asn	Leu	Phe 155	Leu	Asn	Asp	Glu	Met
Glu	Val	Lys	Ile	Gly 165	Asp	Leu	Gly	Leu	Ala 170	Ala	Arg	Ile	Glu	Туг 175	Asp
Gly	Gln	Arg	Lys 180	Lys	Thr	Leu	Cys	Gly 185	Thr	Pro	Asn	Tyr	Ile 190	Ala	Pro
Glu	Ile	Leu 195	Ser	Lys	Thr	Gly	His 200		Phe	Glu	Val	Asp 205	Val	Trp	Sei
Ile	Gly 210	Суз	Ile	Met	Tyr	Thr 215	Leu	Leu	Val	Gly	Lys 220	Pro	Pro	Phe	Gli
Thr 225	Asn	Ser	Leu	Lys	Glu 230	Thr	Tyr	Ala	Arg	Ile 235	Ala	Arg	Cys	Asp	Ту: 240
Ser	Leu	Pro	Pro	His 245	Leu	Asn	Lys	Asn	Ala 250	Ser	Ser	Leu	Ile	Asn 255	Ьy

Met Leu Gln Tyr Asp Pro Lys Lys Arg Pro Cys Val Ser Asp Ile Met

265

270

260

Lys Ala Asp Phe Phe Thr Thr Gly Tyr Met Pro Lys Lys Leu Pro Pro

Ser Cys Leu Thr Met Ala Pro Arg Phe Asp Ser Ile Asn Tyr Arg Glu

Ser Ile Ser Asn Arg Arg Pro Leu Asn Glu Leu Asn Ser Pro Lys Ala

Ala Ile Ile Lys Val Ala Ser Lys Pro Gln Asp Pro Val Asn Lys Leu

Pro Met Phe Asn Ile Pro Asn Lys Pro Thr Thr Gly Asn Gly Val Ser

Ser Asn Asp Cys Lys Glu Tyr Met Met Ser Leu Glu Arg Glu Leu Gly

Asn Leu Leu Lys Cys Lys Pro Thr Met Lys Gly Met Lys Asn Met Glu

Glu Asn Thr Asp Pro Ala Ala Gln Pro Leu Ile Trp Val Ser Lys Trp

Val Asp Tyr Ser Asp Lys Tyr Gly Phe Gly Tyr Glu Leu Ser Asp Asp

Cys Val Gly Val Met Phe Asn Asp Phe Thr Arg Ile Val Leu Leu Ala

Asn Leu Lys Asp Val His Tyr Ile Glu Arg Asn Gly Ser Glu Gln Tyr

His Thr Thr Glu His Thr Pro Pro Ser Leu Glu Lys Lys Met Lys Leu , 450 455 460

Leu Met Tyr Phe Arg Arg Tyr Met Asn Asp His Leu Ile Lys Ala Gly 465 470 475 480

Ala Asp Ile Leu Ala Lys Asp Ala Asp Gln Leu Ser Arg Thr Pro Tyr
485 490 495

Met Tyr Gln Trp Tyr Arg Ser Thr Ser Ser Val Ile Met Gln Leu Thr 500 505 510

Asn Gly Thr Leu Gln Ile Asn Phe Thr Asp His Thr Lys Val Ile Leu 515 520 525

Cys Pro Leu Met Asn Ala Val Thr Phe Ile Glu Asn Asn Val Phe Arg 530 535 540

Thr Tyr Arg Phe Asn Thr Ile Ala Glu His Gly Cys Ser Pro Glu Leu 545 550 555 555

Gly Lys Cys Leu Glu Tyr Ala His Lys Lys Ile Gly Ser Ile Leu Lys 565 570 575

Asp Ser Pro Val 580

<210> 3

<211> 1217

<212> DNA

<213> Aphis gossypii

	<400>	3						
•	gatttct	tta	ctactggtta	tatgcctaaa	aaattacctc	catcatgtct	tacaatggct	60
	cctcgtt	ttg	attctatcaa	ttacagagaa	tcaatttcta	atcgcagacc	actcaatgaa	120
	ctcaata	gcc	ccaaagctgc	catcattaaa	gttgcttcta	aacctcaaga	tccggttaat	180
	aaattgc	caa	tgtttaatat	tccaaataaa	ccaactactg	gaaatggtgt	ttcatccaat	240
	gactgta	aag	aatacatgat	gtcccttgaa	agagaattgg	gaaatttatt	gaaatgtaaa	300
	ccaacca	atga	aaggaatgaa	aaacatggag	gaaaacactg	acccagctgc	tcaacctctc	360
	atttggg	gtta	gtaaatgggt	ggactattcc	gataaatatg	gatttggata	tgaattatct	420
	gatgati	tgtg	ttggtgttat	gttcaatgat	tttaccagaa	tagtactttt	agccaatcta	480
	aaagat	gtcc	attacataga	aagaaatggt	tcagaacaat	accatacaac	tgaacatact	540
	ccaccg	tegt	tagagaaaaa	aatgaagtta	ttgatgtact	tcagacgtta	catgaatgat	600
	catctt	atta	aagctggtgc	tgatatatta	gctaaagatg	cagaccaatt	gagtcgtaca	660
	ccatac	atgt	accaatggta	taggtctact	tcatcagtta	ttatgcaact	tactaacggc	720
	acttta	caaa	tcaacttcac	: agatcataca	aaagtaatat	tgtgtccatt	aatgaatgct	780
	gtcacc	ttta	ttgaaaataa	tgttttccgt	acataccgtt	ttaatacaat	tgctgaacat	840
	ggctgt	agco	ctgaattagg	g aaaatgcttg	gäatatgctc	acaagaaaat	: tggatctata	900
	ttaaaa	ıgata	gcccagttta	a atttacttga	a aaattgacga	gtatatttag	g tttatagtta	960
	tgataa	ttaa	ı tgaaaaacca	a gtacttatgt	taaaagagct	: atatttaaga	a ttgtaaataa	1020
	ttacta	attat	: tttttttat	t ttacaatat!	t aatattaaac	cttaaaatta	a aatagtttca	1080
	tttatt	tatta	a tttttatta	t ttctatttt	g tgatttttg!	: tatttagaa	a actattattt	1140
	catcaa	aaata	a aagtgactt	a agtacattt	a gttacatati	t aaaaaatct	a atatgtttt	1200
	ccato	atta	c attaaaa					1217

51

<210> 4

<211> 306

<212> PRT

<213> Aphis gossypii

<400> 4

Asp Phe Phe Thr Thr Gly Tyr Met Pro Lys Lys Leu Pro Pro Ser Cys 5 10

Leu Thr Met Ala Pro Arg Phe Asp Ser Ile Asn Tyr Arg Glu Ser Ile 20 . 25 30

Ser Asn Arg Arg Pro Leu Asn Glu Leu Asn Ser Pro Lys Ala Ala Ile 35 40 45

Ile Lys Val Ala Ser Lys Pro Gln Asp Pro Val Asn Lys Leu Pro Met 50 55 60

Phe Asn Ile Pro Asn Lys Pro Thr Thr Gly Asn Gly Val Ser Ser Asn 75 70

Asp Cys Lys Glu Tyr Met Met Ser Leu Glu Arg Glu Leu Gly Asn Leu 85

Leu Lys Cys Lys Pro Thr Met Lys Gly Met Lys Asn Met Glu Glu Asn 100 105

Thr Asp Pro Ala Ala Gln Pro Leu Ile Trp Val Ser Lys Trp Val Asp 115 120 125

Tyr Ser Asp Lys Tyr Gly Phe Gly Tyr Glu Leu Ser Asp Asp Cys Val 130 135 140

Gly	Val	Met	Phe	Asn	Asp	Phe	Thr	Arg	Ile	Val	Leu	Leu	Ala	Asn	Leu
145					150					155					160

Lys Asp Val His Tyr Ile Glu Arg Asn Gly Ser Glu Gln Tyr His Thr 165 170 · 175

Thr Glu His Thr Pro Pro Ser Leu Glu Lys Lys Met Lys Leu Leu Met 180 185 190

Tyr Phe Arg Arg Tyr Met Asn Asp His Leu Ile Lys Ala Gly Ala Asp 195 200 205

Ile Leu Ala Lys Asp Ala Asp Gln Leu Ser Arg Thr Pro Tyr Met Tyr 210 215 220

Gln Trp Tyr Arg Ser Thr Ser Ser Val Ile Met Gln Leu Thr Asn Gly
225 230 235 240

Thr Leu Gln Ile Asn Phe Thr Asp His Thr Lys Val Ile Leu Cys Pro 245 250 255

Leu Met Asn Ala Val Thr Phe Ile Glu Asn Asn Val Phe Arg Thr Tyr
260 265 270

Arg Phe Asn Thr Ile Ala Glu His Gly Cys Ser Pro Glu Leu Gly Lys
275 280 285

Cys Leu Glu Tyr Ala His Lys Lys Ile Gly Ser Ile Leu Lys Asp Ser 290 295 300

Pro Val

305

23

21

```
<210> 5
 <211> 23
 <212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 5
 cgactggagc acgaggacac tga
 <210> 6
 <211> 21
<212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 6
 aatgagaggt tgagcagctg g
  <210> 7
  <211> 7
  <212> PRT
  <213> artificial sequence
  <220>
  <223> peptide
  <400> 7
  Pro Ala Ala Gln Pro Leu Ile
                5
  <210> 8
  <211> 23
```

<212> DNA

WO 2004/058161 PCT/US2003/040545

. 54

<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 8
aaagctcctc tgaacgtcgc aac 23

<210> 9
<211> 44
<212> RNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 9

cgacuggagc acgaggacac ugacauggac ugaaggagua gaaa

44