

NATURAL PRODUCTS

Why

We want to add repeatedly.

Defining Result

Proposition 1. For each natural number m, there exists a function p_m : $\omega \to \omega$ which satisfies

$$p_m(0) = 0$$
 and $p_m(n^+) = (p_m(n))^+ + m$

for every natural number n.

Proof. The proof uses the recursion theorem (see Recursion Theorem).

Let m and n be natural numbers. The value $p_m(n)$ is the *product* of m with n.

Notation

We denote the product $p_m(n)$ by $m \cdot n$. We often drop the \cdot and write $m \cdot n$ as mn.

Properties

The properties of products are direct applications of the principle of mathematical induction (see Natural Induction).²

Proposition 2 (Associativity). Let k, m, and n be natural numbers. Then

$$(k \cdot m) \cdot n = k \cdot (m \cdot n).$$

Proposition 3. Let m and n be natural numbers. Then

$$m \cdot n = n \cdot m$$
.

¹Future editions will give the entire account.

²Future editions will include the accounts.

