12 Math Cheat Sheet

Shreyas Minocha

Licensed under CC BY-SA 3.0.

Contents

Ι	$R\epsilon$	elations and Functions	8
1	Rel	ations	8
	1.1	Reflexive	8
	1.2	Symmetric	8
	1.3	Transitive	8
	1.4	Equivalence	8
2	Fun	ctions	9
	2.1	One-one (injection)	9
	2.2	Onto (surjection)	9
	2.3	Bijection	9
	2.4	Composition	9
	2.5	Inverse	9
3	Bin	ary Operations	10
	3.1	Properties	10
		3.1.1 Commutative	10
		3.1.2 Associative	10
		3.1.3 Distributive Law	10
	3.2	Identity Element	10
4	Inve	erse Trigonometric Functions	11
II	\mathbf{A}	lgebra	14

5	Det	erminants	14
6	Mat	trices	16
	6.1	Adjoint	16
	6.2	Inverse	16
	6.3	Inverse by elementary operations	16
	6.4	Properties	16
	6.5	Area of a triangle	17
	6.6	Symmetric and skew-symmetric matrices	17
	6.7	Solving equations	17
		6.7.1 Conditions	17
		6.7.2 2 variables, 2 equations	17
		6.7.3 3 variables, 3 equations	18
II	Ι (Calculus	19
7	Con	ntinuity and Differentiability of Functions	19
	7.1	Conditions For Continuity	19
	7.2	Conditions For Differentiability	19
_	Dia		2.0
8	Diff	Gerentiation	20
9	Ind	eterminate Forms of Limits	23
10	Mea	an Value Theorems	24
	10.1	Rolle's Theorem	24
	10.2	Langrange's Mean Value Theorem	24

]	11 Applications of Derivatives	25
	11.1 Tangents and Normals	25
	11.2 Approximations	25
	11.3 Rate Measuring	25
	11.4 Monotonocity	25
]	12 Maxima and Minima	26
]	13 Indefinite Integrals — Standard Forms	27
Ī	14 Indefinite Integrals — Methods of Integration	28
1	15 Indefinite Integrals — Special Integrals	29
	15.1 $\int \sqrt{ax^2 + bx + c} dx$, $\int (px + q)\sqrt{ax^2 + bx + c} dx$	29
	$15.2 \int \frac{a \sin x + b \cos x}{c \sin x + d \cos x} dx \qquad \dots$	29
	15.3 $\int \frac{x^2 \pm 1}{x^4 + kx^2 + 1} dx$ (k may be 0)	29
	$15.4 \int \frac{\mathrm{d}x}{a+b\cos x}, \int \frac{\mathrm{d}x}{a+b\sin x}, \int \frac{\mathrm{d}x}{a\cos x+b\sin x}, \int \frac{\mathrm{d}x}{a\cos x+b\sin x+c} \dots \dots$	30
	$15.5 \int \frac{\mathrm{d}x}{a\cos^2 x + b\sin^2 x + c} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	30
	$15.6 \int \frac{\mathrm{d}x}{1+x^4} \dots \dots$	30
	$15.7 \int \sqrt{\tan x} dx, \int \sqrt{\cot x} dx \dots $	30
]	16 Definite Integrals	31
I	17 Definite Integral as a limit of a sum	31
1	18 Differential Equations	33
	18.1 Variable Separable	33
	18.1.1 $\frac{dy}{dx} = f(x)$	33
	18.1.2 $\frac{dy}{dx} = f(y)$	33
	5	

18.1.3 $\frac{dy}{dx} = f(x) \cdot \phi(y)$	33
$18.1.4 \frac{dy}{dx} = f(ax + by + c) \dots \dots \dots \dots \dots \dots$	33
18.2 Reducible to Variable Separable	33
18.3 Homogeneous equations of first order	33
18.3.1 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f(x,y)}{g(x,y)} = m\left(\frac{y}{x}\right) \dots \dots \dots \dots \dots \dots$	33
18.4 Linear equations	33
$18.4.1 \frac{\mathrm{d}y}{\mathrm{d}x} + Py = Q \dots \dots \dots \dots \dots$	33
IV Probability	34
19 Probability	34
19.1 A and B are mutually exclusive	34
19.2 A and B are independent events	34
19.3 Geometric Progression	35
20 Bayes' Theorem	36
21 Theoretical Probability Distribution	37
21.1 Binomial Distribution	37
V Vectors	38
22 Vectors	38
23 Vectors (Continued)	38
VI Three-Dimensional Geometry	38
24 Three-Dimensional Geometry	38

25 The Plane	38
VII Application of Integrals	38
26 Areas of a Curve	38
VIII Application of Calculus	39
27 Application of Calculus in Commerce and Economics	39
IX Linear Regression	41
28 Linear Regression	41
X Linear Programming	42
29 Linear Programming	42
XI Appendices	43
A Useful Trigonometric Formulae	43
B Other Useful Formulae	43

Part I

Relations and Functions

- 1 Relations
- 1.1 Reflexive

aRa

1.2 Symmetric

$$aRb \implies bRa$$

1.3 Transitive

$$aRb \wedge bRc \implies aRc$$

1.4 Equivalence

If a relation is reflexive, symmetric and transitive, it is an equivalence relation.

2 Functions

2.1 One-one (injection)

If $f(a) = f(b) \implies a = b$, f(x) is a one-one function.

2.2 Onto (surjection)

A function $f:A\to B$ is onto if every element of B has a pre-image in A.

2.3 Bijection

A function f(x) is a bijection if it is both one-one and onto.

2.4 Composition

$$(f \circ g)(x) = f(g(x))$$

$$(g \circ f)(x) = g(f(x))$$

2.5 Inverse

- Function must be one-one.
- Horizontal line test.
- Reflection in y = x.
- $\bullet \ \ \text{If} \ f:A\to B, \, f^{-1}:B\to A.$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

3 Binary Operations

Number of binary operations = n^{n^2}

3.1 Properties

3.1.1 Commutative

$$a * b = b * a$$

3.1.2 Associative

$$a * (b * c) = (a * b) * c$$

3.1.3 Distributive Law

$$a*(b\odot c)=(a*b)\odot(a*c)$$

3.2 Identity Element

 $e \in S$ is the identity element wrt * on S if the following holds for every $x \in S$.

$$e * x = x * e = x$$

4 Inverse Trigonometric Functions

$$\csc^{-1} x = \sin^{-1} \frac{1}{x}$$

$$\sec^{-1} x = \cos^{-1} \frac{1}{x}$$

$$\cot^{-1} x = \begin{cases} \tan^{-1} \frac{1}{x} & x > 0\\ \pi + \tan^{-1} \frac{1}{x} & x < 0 \end{cases}$$

$$\sin^{-1}(-x) = -\sin^{-1}x$$

$$\csc^{-1}(-x) = -\csc^{-1}x$$

$$\tan^{-1}(-x) = -\tan^{-1}x$$

$$\cos^{-1}(-x) = \pi - \cos x$$

$$\sec^{-1}(-x) = \pi - \sec x$$

$$\cot^{-1}(-x) = \pi - \cot x$$

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2}$$

If xy < 1,

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$

If xy > -1,

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$

If $x^2 < 1$,

$$2\tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} = \sin^{-1} \frac{2x}{1 + x^2} = \cos^{-1} \frac{1 - x^2}{1 + x^2}$$

$$2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1 - x^2} \right)$$

$$2\cos^{-1}x = \cos^{-1}(2x^2 - 1)$$

$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$$

$$3\cos^{-1}x = \cos^{-1}(4x^3 - 3x)$$

$$3\tan^{-1}x = \tan^{-1}\frac{3x - x^3}{1 - 3x^2}$$

If <conditions>,

$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right)$$

If <conditions>,

$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right)$$

$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left(xy - \sqrt{1 - x^2} \cdot \sqrt{1 - y^2} \right)$$

Part II

Algebra

5 Determinants

$$\begin{vmatrix} \cdot & \cdot & \cdot \\ 0 & 0 & 0 \\ \cdot & \cdot & \cdot \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - + & - + & - + \\ - + & - + & - + \end{vmatrix} = \begin{vmatrix} - + & + + \\ - + & + + \\ - + & - + \end{vmatrix}$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - + & - + \\ - & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} = 0$$

$$\begin{vmatrix} - + & - & - + \\ - & - & - + \end{vmatrix} =$$

$$\begin{vmatrix} a+ld+mg & d & g \\ b+le+mh & e & h \\ c+lf+mi & f & i \end{vmatrix} = \begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

6 Matrices

6.1 Adjoint

$$\operatorname{adj} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\operatorname{adj}\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & - \begin{vmatrix} d & f \\ g & i \end{vmatrix} & + \begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & - \begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ + \begin{vmatrix} b & c \\ e & f \end{vmatrix} & - \begin{vmatrix} a & c \\ d & f \end{vmatrix} & + \begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix}$$

6.2 Inverse

A has an inverse only if A is non-singular $(|A| \neq 0)$.

$$A^{-1} = \frac{\text{adj}A}{|A|}$$

6.3 Inverse by elementary operations

$$A = IA$$

	Row-wise	Column-wise
1	$R_i \longleftrightarrow R_j$	$C_i \longleftrightarrow C_j$
2	$R_i \longrightarrow kR_i$	$C_i \longrightarrow kC_i$
3	$R_i \longrightarrow R_i + kR_j$	$C_i \longrightarrow C_i + kC_j$

6.4 Properties

$$|\mathrm{adj}A| = |A|^2$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A')^{-1} = (A^{-1})'$$

6.5 Area of a triangle

Vertices: $(x_1, y_1), (x_2, y_2), (x_3, y_3).$

$$\Delta = \begin{vmatrix} \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

6.6 Symmetric and skew-symmetric matrices

$$A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$$

 $\frac{1}{2}(A+A')$ is symmetric and $\frac{1}{2}(A-A')$ is skew-symmetric.

6.7 Solving equations

6.7.1 Conditions

A	(adjA)B	Singularity	Number of solutions	Consistency
$ A \neq 0$	N.A.	Non-singular	Unique solution	Consistent
	$(adjA)B \neq 0$	Singular	No solution	Inconsistent
A = 0	$(\mathrm{adj}A)B = 0$		Infinitely many solutions	Consistent

6.7.2 2 variables, 2 equations

$$a_1x + b_1y = p$$
$$a_2x + b_2y = q$$

$$\begin{bmatrix} a_1 & b_! \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$$

aka AX=B

$$X = A^{-1} \times B$$

6.7.3 3 variables, 3 equations

$$a_1x + b_1y + c_1z = p$$

$$a_2x + b_2y + c_2z = q$$

$$a_3x + b_3y + c_3z = r$$

$$\begin{bmatrix} a_1 & b_! & c_! \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

aka AX=B

$$X = A^{-1} \times B$$

Part III

Calculus

7 Continuity and Differentiability of Functions

7.1 Conditions For Continuity

- f(a) is defined
- $\lim_{x\to a} f(x)$ exists
- $\lim_{x\to a} f(x) = f(a)$

7.2 Conditions For Differentiability

$$Rf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$Lf'(a) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

f(x) is differentiable at x = a if Rf'(a) = Lf'(a)

8 Differentiation

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{constant}) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\log_a x) = \frac{1}{x \ln a}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u'v + uv'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}|x| = \frac{x}{|x|}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\csc^2 x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) = \sec x \tan x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\csc x) = \csc x \cot x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cot^{-1}x) = \frac{-1}{1+x^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$$

If $y = [f(x)]^{g(x)}$, take the logarithm of both sides and then differentiate.

Table 1: Differentiation by substitution

Expression	Substitution to perform
$a^2 - x^2$	Put $x = a \sin t$ or $x = a \cos t$
$a^2 + x^2$	Put $x = a \tan t$ or $x = a \cot t$
$x^2 - a^2$	Put $x = a \sec t$ or $x = a \csc t$
$\sqrt{\frac{a-x}{a+X}}$ or $\sqrt{\frac{a+x}{a-x}}$	Put $x = a \cos t$
$a\cos x \pm b\sin x$	Put $a = r \cos \alpha$, $b = r \sin \alpha$

9 Indeterminate Forms of Limits

10 Mean Value Theorems

10.1 Rolle's Theorem

If f(x) satisfies the following conditions:

- f(x) is continuous in the *closed* interval [a, b]
- f(x) is derivable in the *open* interval (a, b)
- $\bullet \ f(a) = f(b)$

... then there exists at least one real number x = c in the *open* interval (a, b) such that f'(c) = 0.

10.2 Langrange's Mean Value Theorem

If a function f(x) defined in the closed interval [a,b] satisfies the following conditions:

- f(x) is continuous in the *closed* interval [a, b]
- f(x) is derivable in the *open* interval (a, b)

... there exists at least one value of x, c, in the open interval (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

11 Applications of Derivatives

11.1 Tangents and Normals

$$m = \frac{\mathrm{d}y}{\mathrm{d}x}(x')$$

$$y - y' = m(x - x')$$

$$y - y' = -\frac{1}{m}(x - x')$$

11.2 Approximations

$$\delta y = \frac{\mathrm{d}y}{\mathrm{d}x}(x') \times \delta x$$

11.3 Rate Measuring

Rate of change of $y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \text{Rate of change of } x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x}$$

11.4 Monotonocity

$$\frac{\mathrm{d}y}{\mathrm{d}x} \begin{cases} > 0 & \tan \psi \text{ is acute} \\ < 0 & \tan \psi \text{ is obtuse} \\ = 0 & \tan \psi = \psi = 0 \\ \text{is undefined} & \psi = 90^{\circ} \end{cases}$$

$$f(x) \begin{cases} \text{increasing} & f'(x) > 0 \\ \text{decreasing} & f'(x) < 0 \\ \text{constant} & f'(x) = 0 \end{cases}$$

12 Maxima and Minima

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

Minima	Maxima	
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2} > 0$	$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2} < 0$	
$\frac{\mathrm{d}y}{\mathrm{d}x}$ goes from $-$ to $+$	$\frac{\mathrm{d}y}{\mathrm{d}x}$ goes from + to -	

13 Indefinite Integrals — Standard Forms

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a} + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc x \cot x dx = -\csc x + C$$

$$\int \tan x dx = \sin |\sec x| + C$$

$$\int \cot x dx = \ln |\sec x| + C$$

$$\int \cot x dx = \ln |\sec x| + C$$

$$\int \cot x dx = \ln |\sin x| + C$$

$$\int \sec x dx = \ln |\csc x - \cot x| + C = \ln |\tan \frac{x}{2}| + C$$

$$\int \sec x dx = \ln |\sec x + \tan x| + C = \ln |\tan \left(\frac{\pi}{4} + \frac{x}{2}\right)| + C$$

$14 \quad Indefinite\ Integrals -- \ Methods\ of\ Integration$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

$$\int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1} x + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

$$\int \frac{-1}{1+x^2} dx = \cot^{-1} x + C$$

$$\int \frac{1}{|x|\sqrt{x^2-1}} dx = \sec^{-1} x + C$$

$$\int \frac{-1}{|x|\sqrt{x^2-1}} dx = \csc^{-1} x + C$$

$$\int e^x [f(x) + f'(x)] dx = e^x \cdot f(x) + C$$

$$\int (f \cdot g) dx = f \int g dx - \int \left[f' \int g dx \right] dx$$

15 Indefinite Integrals — Special Integrals

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

15.1
$$\int \sqrt{ax^2 + bx + c} dx, \int (px + q)\sqrt{ax^2 + bx + c} dx$$

15.2 $\int \frac{a \sin x + b \cos x}{c \sin x + d \cos x} dx$

Let A and B be constants. If N is the numerator and D is the denominator, set:

$$N = A(D) + B\frac{\mathrm{d}}{\mathrm{d}x}(D)$$

15.3
$$\int \frac{x^2 \pm 1}{x^4 + kx^2 + 1} dx$$
 (k may be 0)

Divide numerator and denominator by x^2 . Let $t = x + \frac{1}{x}$ or $t = x - \frac{1}{x}$ depending on which t gives the numerator of the resulting integrand on differentiation.

15.4
$$\int \frac{\mathrm{d}x}{a+b\cos x}$$
, $\int \frac{\mathrm{d}x}{a+b\sin x}$, $\int \frac{\mathrm{d}x}{a\cos x+b\sin x}$, $\int \frac{\mathrm{d}x}{a\cos x+b\sin x+c}$

- Substitute $\sin x = \frac{2 \tan \frac{x}{2}}{a + \tan^2 \frac{x}{2}}, \cos x = \frac{1 \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}.$
- Replace $1 + \tan^2 \frac{x}{2}$ in the numerator with $\sec^2 \frac{x}{2}$.
- Substitute $t = \tan \frac{x}{2}$, $dt = \frac{1}{2} \sec^2 \frac{x}{2}$

$$15.5 \quad \int \frac{\mathrm{d}x}{a\cos^2 x + b\sin^2 x + c}$$

15.6
$$\int \frac{\mathrm{d}x}{1+x^4}$$

15.7
$$\int \sqrt{\tan x} dx$$
, $\int \sqrt{\cot x} dx$

16 Definite Integrals

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$

$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a-x) dx$$

$$\int_{0}^{2a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx & f(2a-x) = f(x) \\ 0 & f(2a-x) = -f(x) \end{cases}$$

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx & f(-x) = f(x) \\ 0 & f(-x) = -f(x) \end{cases}$$

17 Definite Integral as a limit of a sum

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} h \left[f(a) + f(a+h) + f(a+2h) + \dots + f(a+(n-1)h) \right]$$

$$nh = b - a$$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sin a + \sin(a+h) + \sin(a+2h) + \dots + \sin(a+(n-1)h) = \frac{\sin\{a + \frac{n-1}{2}h\}\sin\frac{nh}{2}}{\sin\frac{h}{2}}$$

$$\cos a + \cos(a+h) + \cos(a+2h) + \dots + \cos(a+(n-1)h) = \frac{\cos\{a + \frac{n-1}{2}h\}\cos\frac{nh}{2}}{\cos\frac{h}{2}}$$

18 Differential Equations

18.1 Variable Separable

18.1.1
$$\frac{dy}{dx} = f(x)$$

18.1.2
$$\frac{dy}{dx} = f(y)$$

18.1.3
$$\frac{dy}{dx} = f(x) \cdot \phi(y)$$

18.1.4
$$\frac{dy}{dx} = f(ax + by + c)$$

18.2 Reducible to Variable Separable

18.3 Homogeneous equations of first order

18.3.1
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f(x,y)}{g(x,y)} = m\left(\frac{y}{x}\right)$$

$$y = vx$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$$

18.4 Linear equations

$$18.4.1 \quad \frac{\mathrm{d}y}{\mathrm{d}x} + Py = Q$$

$$IF = e^{\int P dx}$$

$$y \cdot IF = \int (Q \cdot IF) dx + C$$

Part IV

Probability

19 Probability

$$P(\overline{A}) = 1 - P(A)$$

$$P(A/B) = \frac{n(A \cap B)}{n(B)}$$

$$P(A \cap B) = P(B) \times P(A/B) = P(A) \times P(B/A)$$

19.1 A and B are mutually exclusive

$$P(A \cap B) = 0$$

19.2 A and B are independent events

$$P(A/B) = P(A)$$

$$P(B/A) = P(B)$$

$$P(A \cap B) = P(A) \times P(B)$$

19.3 Geometric Progression

$$a + ar + ar^2 + \dots = \frac{a}{1 - r}$$

20 Bayes' Theorem

$$P(E_1/A) = \frac{P(E_1) \cdot P(A/E_1)}{P(E_1) \cdot P(A/E_1) + P(E_2) \cdot P(A/E_2)}$$

$$P(E_1/A) = \frac{P(E_1) \cdot P(A/E_1)}{P(E_1) \cdot P(A/E_1) + P(E_2) \cdot P(A/E_2) + P(E_3) \cdot P(A/E_3)}$$

21 Theoretical Probability Distribution

$$\int_{-\infty}^{\infty} f(x) \cdot \mathrm{d}x = 1$$

$$\overline{x} = \sum_{i=1}^{n} p_i x_i = \sum_{i=1}^{n} x_i f(x)$$

$$\sigma^2 = \sum_{i=1}^n p_i \cdot x_i^2 - \overline{x}^2 = \sum_{i=1}^n p_i (x_i - \overline{x})^2$$

$$\sigma = +\sqrt{\sigma^2}$$

21.1 Binomial Distribution

$$P(r) = \binom{n}{r} q^{n-r} p^r$$

$$\mu = np$$

$$\sigma^2 = npq$$

Part V

Vectors

- 22 Vectors
- 23 Vectors (Continued)

Part VI

Three-Dimensional Geometry

- 24 Three-Dimensional Geometry
- 25 The Plane

Part VII

Application of Integrals

26 Areas of a Curve

Part VIII

Application of Calculus

27 Application of Calculus in Commerce and Economics

$$C(x) = F + V(X)$$

$$AC = \frac{C(x)}{x} = AFC + AVC$$

$$R = px$$

$$P(x) = R(x) - C(x)$$

At the break-even point (say x_b),

$$R(x_b) = C(x_b)$$

$$MC = \frac{\mathrm{d}}{\mathrm{d}x} [C(x)] = \frac{\mathrm{d}C}{\mathrm{d}x}$$

$$AFC = \frac{TFC}{Q}$$

$$AVC = \frac{TVC}{Q}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{AC}) = \frac{1}{x}(\mathrm{MC} - \mathrm{AC})$$

$$C = \int MC \cdot dx$$

$$C_d = \int_0^d MC \cdot dx$$

$$R = \int MR \cdot dx$$

$$R_d = \int_0^d MR \cdot dx$$

Part IX

Linear Regression

28 Linear Regression

dependent on independent

$$d_x = x_i - \overline{x}$$

$$d_y = y_i - \overline{y}$$

	y on x	$x ext{ on } y$
Regression line	$y - \overline{y} = b_{yx}(x - \overline{x})$	$x - \overline{x} = b_{xy}(y - \overline{y})$
Normal Equations	$\sum y = nc + m \sum x$	$\sum x = nc + m \sum y$
Normal Equations	$\sum xy = c\sum x + m\sum x^2$	$\sum xy = c\sum y + m\sum y^2$
Regression Coefficient	$b_{yx} = r \frac{\sigma_y}{\sigma_x}$	$b_{xy} = r \frac{\sigma_x}{\sigma_y}$
When deviations are taken from the mean	$b_{yx} = \frac{\sum d_x d_y}{\sum d_x^2}$	$b_{xy} = rac{\Sigma d_x d_y}{\Sigma d_y^2}$
When deviations are taken from the assumed mean	$b_{yx} = \frac{\sum d_x d_y - \frac{\sum d_x \sum d_y}{n}}{\sum d_x^2 - \frac{\left(\sum d_x\right)^2}{n}}$	$b_{xy} = \frac{\sum d_x d_y - \frac{\sum d_x \sum d_y}{n}}{\sum d_y^2 - \frac{\left(\sum d_y\right)^2}{n}}$
When original values are used	$b_{yx} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$	$b_{xy} = \frac{\sum_{xy} - \frac{\sum_{x} \sum_{y}}{n}}{\sum_{y}^{2} - \frac{(\sum_{y})^{2}}{n}}$

$$r = \pm \sqrt{b_{yx} \cdot b_{xy}}$$

$$r^2 \leq 1$$

$$r = \frac{\sum (d_x d_y)}{\sqrt{\sum d_x^2 \times \sum d_x^2}}$$

Point of intersection of the two regression lines is $(\overline{x}, \overline{y})$.

Part X

Linear Programming

29 Linear Programming

Part XI

Appendices

- A Useful Trigonometric Formulae
- B Other Useful Formulae

$$a^3 \pm b^3 = (a \pm b)(a^2 + ab + b^2)$$