به نام خدا

برنامهنویسی چندهستهای

پاسخ سوالات دستور کار آزمایشگاه ۴

امیرمحمد پیرحسینلو ۹۵۳۱۰۱۴

مهدی صفری

هدف از این آزمایش، انجام عملیات Prefix sum بر روی یک آرایه است.

عملیات Prefix sum بهصورت زیر تعریف می شود:

 $y[i] = \sum_{j=0}^{i} x[j]$

به عبارت دیگر، هر درایه در آرایه خروجی، جمع همه درایه های قبل از خود در آرایه ورودی است.

این الگوریتم معمولاً به دو شیوه inclusive و exclusive پیاده می شود که تفاوت این دو را در ادامه می توانید ببینید:

Inclusive:

>	(١	٢	٣	۴	۵	۶	٧	٨	٩	١.
Y	/	١	٣	۶	١.	۱۵	۲۱	۲۸	38	۴۵	۵۵

Exclusive:

Х	١	٢	٣	۴	۵	۶	٧	٨	٩	١.
У	٠	١	٣	۶	١.	۱۵	۲۱	۲۸	3	۴۵

این عملیات کاربرد فراوانی در حوزههای مختلف دارد. به عنوان مثال:

اگر آرایه X همه تراکنشهای مالی یک حساب (میزان کاهش یا افزایش حساب) است، آرایه Y مقدار موجودی حساب تا پایان هر تراکنش خواهد بود.

و یا اگر آرایه x مقادیر تابع احتمالی PDF باشد، آرایه y مقادیر تابع احتمالی تجمعی CDF خواهد شد.

كد سريال اين الگوريتم با نام lab_4_serial.c در اختيار شما قرار دارد.

نحوه انجام این عملیات به صورت شماتیک در شکل زیر مشخص است:

در این آزمایش، سه روش موازیسازی الگوریتم Prefix sum معرفی میشود.

توجه کنید در الگوریتم بالا n-1 عمل جمع و نیز n-1 گام برای محاسبه خروجی لازم است.

۱ – روش اول:

ابتدا آرایه x را بین نخها بهصورت static تقسیم کنید (هر نخ 1/n آرایه را پردازش می کند). هر نخ عملیات x ابتدا آرایه x را بیصورت مستقل بر روی زیرآرایه خود انجام می دهد. به عنوان مثال با دو نخ داریم:

x:	١	۲	٣	۴	۵	۶	٧	٨	٩	١.
y:	١	٣	۶	١٠	۱۵	۶	۱۳	71	٣٠	۴٠
			نخ اول					نخ دوم		

- پس از انجام کار هر نخ باید مقدار خانه آخر هر زیر آرایه را با تمامی خانههای زیرآرایههای بعد از آن جمع کنیم. مثلاً مقدار خانه آخر زیرآرایه اول (۱۵) باید با همه خانههای زیرآرایه دوم جمع شود. چرا؟ زیرا در غیر این صورت اثر خانه های ابتدایی در خانه های انتهایی دیده نمی شود.
- اگر در مثال بالا تعداد نخها چهار شود برای به دست آوردن مقدار نهایی یکراه حل این است که هر نخ مقدار آخرین خانه محاسبه شده توسط خود را با تمام خانههای پسازآن جمع کند. این روش علاوه بر داشتن race بیش ازاندازه مورد نیاز عملهای جمع انجام می دهد. در این روش به ازای هر خانه از خروجی باید به تعداد بخشهای قبل از آن روی خانه موردنظر عمل جمع صورت بگیرد. چگونه می توان به ازای هر خانه خروجی فقط با انجام یک عمل جمع این به روزرسانی را انجام داد و از روی آرایه بالا جواب نهایی را به دست آورد؟ برای مثال آرایه به ۴ بخش تقسیم شده و prefix sum در هر بخش محاسبه شده است. عنصر انتهای بخش اول را باید به عناصر بخش دوم اضافه کنیم. این کار را توسط ۴ نخ انجام می دهیم(به صورت استاتیک). حال باید عنصر آخر بخش دوم را به عناصر بخش سوم اضافه کنیم. این کار را هم توسط ۴ نخ انجام می دهیم. به همین منوال که جلو برویم به ازای هر خانه خروجی فقط با انجام یک عمل جمع این به روزرسانی را انجام داده ایم.
 - برای این الگوریتم تعداد جمعها و نیز تعداد گامها را به دست آورید

sum:
$$n - t + (t-1) * (n/t)$$

steps:
$$\left(\frac{n}{t}\right) - 1 + (t-1)\left(\frac{n}{t^2}\right)$$

• کد موازی این الگوریتم را بنویسید و زمان اجرای آن را به ازای ۱ گیگ اندازه حافظه با حالت سریال مقایسه کنید.

		لا این بود که زیاد ب	1,1894	
			•	

۲- روش دوم:

یک الگوریتم برای محاسبه prefix scan الگوریتمی است به نام Hillis and Steele که در سال ۱۹۸۶ معرفی شده است. شکل زیر الگوی محاسبات آن را نشان میدهد:

در این شکل، آرایه ورودی دارای ۸ المان است و آرایه خروجی در پایین محاسبه شده است. هر مربع task یک جمع است.

این الگوریتم time-optimal است؛ به این معنا که تعداد گامها را کمینه کرده است بنابراین اگر به اندازه داده ورودی مسئله نخ داشته باشیم (تا تمام گامها در یک واحد زمانی انجام شوند) آنگاه زمان اجرای برنامه در حالت موازی کمینه (log n) خواهد شد؛ اما میدانیم در cpu این تعداد نخ موجود نیست و بنابراین کارهای مربوط به هر گام باید بین نخها تقسیم شده و بنابراین بیشتر از یک واحد زمانی طول خواهد کشید.

• با توجه به توضیحات بالا می توانید محاسبه کنید به ازای یک گیگ ورودی چه تعداد نخ لازم داریم تا روی کاغذ بتوان تسریع گرفت؟

معادله زیر را حل کنیم تا مقدار n بر حسب t به دست آید:

$$nlog(n) - n + 1 \le n - t + n - \frac{n}{t}$$

• براى اين الگوريتم تعداد جمعها و نيز تعداد گامها را به دست آوريد.

sum:
$$(n-2^0)+(n-2^1)+(n-2^2)+\cdots+\left(n-2^{\log(n)-1}\right)=nlog(n)-n+1$$
 steps = $ceil(\log(n))$

• کد موازی این الگوریتم را بنویسید و زمان اجرای آن را به ازای ۱ گیگ اندازه حافظه با حالت سریال مقایسه کنید. در این حالت ۱۲٫۸۵۱۰ ثانیه طول کشید کارایی خیلی پایین آمد زیرا تعداد نخ ها کم بود و عملیات کپی کردن بین آرایه های a و b زمان زیادی می برد.

۳- روش سوم:

این الگوریتم توسط guy blelloch بر اساس balanced-tree در سال ۱۹۹۳ ارائه شد.

توجه کنید که این الگوریتم برخلاف دو روش قبل ماهیت exclusive دارد.

نحوه پیادهسازی این الگوریتم را در قطعه کد زیر میبینید:

```
 \begin{array}{l} \mbox{void work\_efficient\_parallel\_prefix\_sum(int *a, int n) \{ \\ \mbox{for (int } i = 1; i < n; i <<= 1) \\ \mbox{for (int } j = 0; j < n; j += 2 * i) \\ \mbox{a[} 2 * i + j - 1] = a[2 * i + j - 1] + a[i + j - 1]; \\ \mbox{a[} n - 1] = 0; \\ \mbox{for (int } i = n / 2; i > 0; i >>= 1) \{ \\ \mbox{for (int } j = 0; j < n; j += 2 * i) \{ \\ \mbox{int temp} = a[i + j - 1]; \\ \mbox{a[} i + j - 1] = a[2 * i + j - 1]; \\ \mbox{a[} 2 * i + j - 1] = temp + a[2 * i + j - 1]; \\ \mbox{a[} 2 * i + j - 1] = temp + a[2 * i + j - 1]; \\ \mbox{A}  \} \\ \mbox{} \end{array}
```

این الگوریتم work-optimal است؛ به این معنا که به دلیل محدودیت ما در داشتن هر تعداد نخ، تعداد عملهای جمع برای اجرای این الگوریتم به صورت موازی کمینه شده است و برای رسیدن به این هدف تعداد گامها دو برابر شده است.

- قطعه كد بالا را موازى كرده و زمان اجراى اين الگوريتم را با روشهاى قبل مقايسه كنيد.
- توضيح دهيد اين الگوريتم كه درواقع بهينهشده الگوريتم روش دوم است در چه حالتى مىتواند نسبت به الگوريتم اول مزيت داشته باشد (راهنمايى: اين الگوريتم در GPU بسيار پركاربرد است).

در صورتی که بتوان برای هر تسک در هر سطح یک نخ اختصاص داد تا همه کار های هر سطح موازی اجرا شوند.

 این الگوریتم تنها برای توانهای دو عملکرد صحیحی دارد. چگونه میتوان برای هر عددی از این الگوریتم استفاده نمود؟

می توان برای نزدیک ترین عدد توان ۲ محاسبه کرد. یک بار هم مقدار باقی مانده را با روش های ۱ یا ۲ (ذکر شده در بالا) محاسبه کرد. جواب این قسمت را هم با قسمت بزرگتر(توان ۲) جمع می کنیم.

• چگونه می توان این الگوریتم را به صورت inclusive نیز پیادهسازی کرد؟ (نیازی به پیادهسازی نیست)

a[i] کافی است به هر عضو a هنگام عملیات به چشم a[i] نگاه کنیم. به عبارتی هر جا که میخوایم مقدار a[i] مورد پردازش قرار دهیم، a[i] را پردازش کنیم.