CS1231S Discrete Structures

Tutorial 1

Theodore Leebrant

Tutorial Group 3A

Tutorial Questions (and Photo

Taking)

a)
$$(\forall d, n \in \mathbb{Z} \ d \mid a) \leftrightarrow (\exists k \in \mathbb{Z} \ n = kd)$$

(For all integers d and n; d divides n) iff (there exists an integer k; where n=kd)

b) Answer: we don't know. We are concerned about d and n being integers - $2\sqrt(2)$ is not an integer.

1

Let B be the set of boys, G be the set of girls, and Loves(x, y) be x loves y It can be interpreted in two ways (or more):

- 1. All boys love one particular girl $(\exists g \in G, \forall b \in B, Loves(b, g))$
- 2. Each boy loves one girl $(\forall b \in B, \exists ginG, Loves(b, g))$

Statement	True when	False when
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

Complete the table below for mixed quantifiers.

Statement	True when	False when
$\forall x \forall y P(x,y)$	P(x, y) is true for every pair x, y .	There is at least one pair x, y for
		which $P(x,y)$ is false.
$\forall x \exists y \ P(x,y)$	For every x , there is a y for which	There is an x for which $P(x,y)$ is
	P(x,y) is true.	false for every y.
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is	For every x , there is a y for which
	true for every y .	P(x,y) is false.
$\exists x \exists y P(x,y)$	There is at least one pair x, y for	P(x,y) is false for every pair x,y .
	which $P(x, y)$ is true.	

(to be discussed if there is time)

Statement:
$$\forall r \in \mathbb{R}(r > 3 \rightarrow r^2 > 9)$$
. (True)

Converse:
$$\forall r \in \mathbb{R} (r^2 > 9 \rightarrow r > 3)$$
. (False)

Inverse:
$$\forall r \in \mathbb{R} (r \le 3 \to r^2 \le 9)$$
. (False)

Contrapositive :
$$\forall r \in \mathbb{R}(r^2 \le 9 \to r \le 3)$$
. (True)

Counterexample for converse and inverse statements: Let r = -5

```
Statement: \forall p,q that are statements, ((p \rightarrow q) \rightarrow \sim p). (False)

Converse: \forall p,q that are statements, (\sim p \rightarrow (p \rightarrow q)). (True)

Inverse: \forall p,q that are statements, (\sim (p \rightarrow q) \rightarrow p). (True)

Contrapositive: \forall p,q that are statements, (p \rightarrow \sim (p \rightarrow q)). (False)
```

Counterexample for original statement and contrapositive: Let both p and q be true.

a)
$$\forall p \exists q \Big((p \neq q) \land Loves(p, q) \Big)$$

b) $Loves(John, Mary) \land \forall x \Big((x \neq John) \rightarrow \sim Loves(x, Mary) \Big)$

Proof

- 1. Take any integers a, b, c.
- 2. Suppose a b is even and a c is even.
 - 2.1 There is an integer s s.t. a b = 2s (defin of even numbers).
 - 2.2 Similarly, there is an integer t s.t. a c = 2t
 - 2.3 Then b-c=(a-c)-(a-b)=2t-2s=2(t-s)
- 3. Therefore, b-c is even (by definition of even numbers).

g

- a) Invalid, inverse error
- b) Valid, universal modus ponens
- c) Invalid, converse error

b.
$$\forall v \in V (G(v) \to T(v))$$

c.
$$\exists v \in V (T(v) \land G(v))$$

d.
$$\forall v \in V (E(v) \rightarrow \sim W(v))$$

Alternatively: $\forall v \in V (\sim E(v) \lor \sim W(v))$

e.
$$(\exists v \in V (T(v) \land E(v))) \land (\exists u \in V (T(u) \land \sim E(u)))$$

Note that the above is a conjunction (AND) of two existential clauses. Each existential variable v or u has a scope only within its own clause. Therefore, there is no ambiguity to use the same variable in both clauses, as shown below:

$$\left(\exists v \in V\left(T(v) \land E(v)\right)\right) \land \left(\exists v \in V\left(T(v) \land \sim E(v)\right)\right)$$

Nevertheless, you may use different variable names to avoid confusion.

Also, note that it is incorrect to write

$$\exists v \in V \left(\left(T(v) \land E(v) \right) \land \left(T(v) \land \sim E(v) \right) \right)$$

because the scope of v here covers both $(T(v) \land E(v))$ as well as $(T(v) \land \sim E(v))$. This means that if there exists a visitor who took the Transformers Ride and visited Ancient Egypt, the <u>same visitor</u> took the Transformers Ride but did not visit Ancient Egypt! The statement becomes false (by applying commutativity and associativity of conjunction).

- a) False, none of the titles is read by all three female readers
- b) False, Mr. Dueet doesn't read any Fantasy title
- c) True, Mr. Dueet reads all the Mystery titles
- d) True, none of the Fantasy titles is read by Dueet (and Fandi)

a.

- 3. If an object is black, then it is a square.
- 2. (Contrapositive form) If an object is a square, then it is above all the gray objects.
- 4. If an object is above all the gray objects, then it is above all the triangles.
- 1. If an object is above all the triangles, then it is above all the blue objects.
- ... If an object is black, then it is above all the blue objects.

b.

Let 0, the domain, be the set of objects.

- 3. $\forall x \in O, \{Black(x) \rightarrow Square(x)\}.$
- 2. (Contrapositive form) $\forall x \in O, \{Square(x) \rightarrow \{\forall y \in O[Gray(y) \rightarrow Above(x, y)]\}\}.$
- 4. $\forall x \in O, \{\{\forall y \in O, [Gray(y) \rightarrow Above(x, y)]\} \rightarrow \{\forall z \in O, [Triangle(z) \rightarrow Above(x, z)]\}\}.$
- 1. $\forall x \in O, \{ \{ \forall z \in O, [Triangle(z) \rightarrow Above(x, z)] \} \rightarrow \{ \forall w \in O, [Blue(w) \rightarrow Above(x, w)] \} \}.$
- $\therefore \forall x \in O, \{Black(x) \to \{\forall w \in O, [Blue(w) \to Above(x, w)]\}\}.$

- a. To prove an "if and only if" statement, you need to prove both directions.
 - (⇒) 1. Suppose $(\forall x \in D P(x)) \land (\forall x \in D Q(x))$ is true.
 - 2. Consider any $a \in D$.
 - 2.1 Since $\forall x \in D \ P(x)$ is true, we have P(a) is true. (universal instantiation)
 - 2.2 Similarly, Q(a) is true.
 - 2.3 Therefore, $P(a) \land Q(a)$ is true for any $a \in D$.
 - 3. Therefore, $\forall x \in D(P(x) \land Q(x))$ is true.
 - (\Leftarrow) 1. Suppose $\forall x \in D(P(x) \land Q(x))$ is true.
 - 2. Consider any $a \in D$.
 - 2.1 Then $P(a) \wedge Q(a)$ is true.
 - 2.2 So, P(a) is true and Q(a) is true.
 - 2.3 Since P(a) is true for any $a \in D$, we have $\forall x \in D \ P(x)$ is true.
 - 2.4 Similarly, since Q(a) is true for any $a \in D$, we have $\forall x \in D$ Q(x) is true.
 - 3. Therefore, $(\forall x \in D \ P(x)) \land (\forall x \in D \ Q(x))$ is true.

b. To claim that $(\exists x \in D \ P(x)) \land (\exists x \in D \ Q(x))$ and $\exists x \in D \ (P(x) \land Q(x))$ are equivalent is to claim that they have the same truth values for any, D, P and Q, i.e. there is an implicit universal quantification over D, P and Q. To prove inequivalence, it therefore suffices to give a counterexample. There are many possible counterexamples. Here's one:

Let
$$D = \mathbb{N}$$
, $P(x)$ be " $x^2 = 0$ " and $Q(x)$ be " $x^2 = 1$ ".

Then $(\exists x \in \mathbb{N} \ x^2 = 0) \land (\exists x \in \mathbb{N} \ x^2 = 1)$ is true, but $\exists x \in \mathbb{N} \ (x^2 = 0 \land x^2 = 1)$ is false.

- a) $\sim \left(\forall x, y, \in \mathbb{R}(x > y \to x^2 > y^2) \right) \equiv \exists x, y \in \mathbb{R}(x > y \land x^2 \leq y^2)$ which is true: one example is (x = 1, y = -2), so the original statement is false
- b) Irrelevant counterexample; it does not satisfy the hypothesis (x > y)