

Exact Solutions > Ordinary Differential Equations > Higher-Order Linear Ordinary Differential Equations > Constant Coefficient Linear Differential Equation

15.
$$a_n y_x^{(n)} + a_{n-1} y_x^{(n-1)} + \cdots + a_1 y_x' + a_0 y = 0, \quad a_n \neq 0.$$

Constant coefficient linear homogeneous differential equation. The general solution of this equation is determined by the roots of the characteristic equation:

$$P(\lambda) = 0$$
, where $P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$.

The following cases are possible:

1°. All roots $\lambda_1, \lambda_2, \dots, \lambda_n$ of the characteristic equation are real and distinct. Then the general solution of the homogeneous linear differential equation (1) has the form:

$$y = C_1 \exp(\lambda_1 x) + C_2 \exp(\lambda_2 x) + \dots + C_n \exp(\lambda_n x).$$

 2° . There are m equal real roots $\lambda_1 = \lambda_2 = \cdots = \lambda_m$ $(m \le n)$, and the other roots are real and distinct. In this case, the general solution is given by:

$$y = \exp(\lambda_1 x)(C_1 + C_2 x + \dots + C_m x^{m-1}) + C_{m+1} \exp(\lambda_{m+1} x) + C_{m+2} \exp(\lambda_{m+2} x) + \dots + C_n \exp(\lambda_n x).$$

3°. There are m equal complex conjugate roots $\lambda = \alpha \pm i\beta$ ($2m \le n$), and the other roots are real and distinct. In this case, the general solution is:

$$y = \exp(\alpha x)\cos(\beta x)(A_1 + A_2 x + \dots + A_m x^{m-1})$$

$$+ \exp(\alpha x)\sin(\beta x)(B_1 + B_2 x + \dots + B_m x^{m-1})$$

$$+ C_{2m+1}\exp(\lambda_{2m+1} x) + C_{2m+2}\exp(\lambda_{2m+2} x) + \dots + C_n \exp(\lambda_n x),$$

where $A_1, \ldots, A_m, B_1, \ldots, B_m, C_{2m+1}, \ldots, C_n$ are arbitrary constants.

 4° . In the general case, where there are r different roots $\lambda_1, \lambda_2, \ldots, \lambda_r$ of multiplicities m_1, m_2, \ldots, m_r , respectively, the right-hand side of the characteristic equation can be represented as the product

$$P(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_r)^{m_r},$$

where $m_1 + m_2 + \cdots + m_r = n$. The general solution of the original equation is given by the formula:

$$y = \sum_{k=1}^{r} \exp(\lambda_k x) (C_{k,0} + C_{k,1} x + \dots + C_{k,m_k-1} x^{m_k-1}),$$

where $C_{k,l}$ are arbitrary constants.

If the characteristic equation has complex conjugate roots, then in the above solution, one should extract the real part on the basis of the relation $\exp(\alpha \pm i\beta) = e^{\alpha}(\cos \beta \pm i \sin \beta)$.

References

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations, 7th Edition, Wiley, New York, 2000.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Constant Coefficient Linear Differential Equation