

Compiler and Architecture Design Group Institute for Computing Systems Architecture University of Edinburgh, United Kingdom

Measuring QoE of Interactive Workloads and Characterising Frequency Governors on Mobile Devices

IISWC 2014

Volker Seeker

Pavlos Petoumenos, Hugh Leather, Björn Franke

Problem Statement

Workload Scenario

Frequency Governor

0.3 GHz

I.2 GHz

2.2 **GHz**

Workload Scenario

Frequency Governor

How do we find the sweet spot?

Consider the User's Perspective !

Questionaires are cost intensive

0.3 **GHz**

1.2 GHz

2.2 GHz

What we need!

Interactive Mobile Workload

Distance to sweet spot

What Does The User Care About?

Research Goals

Interactive Mobile Workload

Distance to sweet spot

Methodology must ...

- ... deal with **interactive** workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

Not possible with current mobile benchmarks!

Executing Mobile Workloads

Automatic Workload Execution

Research Goals

Interactive Mobile Workload

Distance to sweet spot

Methodology must ...

- ... deal with **interactive** workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

Considering the User's Perspective Concept

Interaction Lag Markup

Markup Costs

Markup lags in each video manually

Markup Time: 360 hours or 9 working weeks

Workload

10 Minutes Length17 System Configurations5 Iterations

→ 85 Videos

Markup Costs

Markup lags in each video manually

Markup Time:
1800 hours
or I working year

5 Workloads

10 Minutes each17 System Configurations5 Iterations

→ 425 Videos

Reusing a Video Markup

Images of Lag Endings

Use an image of the lag ending to find it again in a different video

Dealing with Non-Determinism

Mask out non deterministic areas to compare images.

Markup Costs

Find Lag Endings in a single video of the recorded workload.

Still requires 5 hours of manual work

Speedup of 85x

Workload

10 Minute Workload17 System Configurations5 Iterations

→ 85 Videos

Finding Potential Lag Endings

Previous Input

Current Input

Next Input

Pick a lag ending from a selection of potential ending frames rather than looking at every single one.

Looking at 8 rather than 191

Suggesting Potential Lag Endings

Markup Costs

Pick lag endings from suggested selection.

16:02 Minutes
Manual Markup
Work

Speedup of 1347x

Workload

10 Minute Workload17 System Configurations5 Iterations

→ 85 Videos

Research Goals

Interactive Mobile Workload

Distance to sweet spot

Methodology must ...

- ... deal with **interactive** workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

User Irritation Metric

Lag ending of system configuration x

Calculate User Irritation

- Set a user irritation threshold for each lag
- If the length of a lag stays below the threshold, it counts as not irritating
- If the length of a lag exceeds the threshold, a penalty is applied

Compare different system configurations in terms of user irritation

Irritation Thresholds

Threshold Policy

Irritation Thresholds

Threshold Policy

Research Goals

Interactive Mobile Workload

Distance to sweet spot

Methodology must ...

- ... deal with **interactive** workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

Final Methodology

Run once Execute
prerecorded
mobile workload
and capture a
video

Pick lag endings from suggested selection

Ending Images

Run arbitrary number of times Execute
prerecorded
mobile workload
and capture a
video

Detect lag endings using annotations

Compare lag lengths to different system configurations

Frequency Governor Case Study

How close are Linux governors to the sweet spot?

Qualcomm Dragonboard 8074

- Snapdragon 800 Processor
- 4.3" qHD 540x960 LCD
- Android 4.3 Jelly Bean

Linux Governors

- Conservative
- Interactive
- Ondemand

Workload Input Classification

5 Workloads recorded from 5 Users

Each Workload:

- 10 Minutes
- 14 Fixed Frequencies
- 3 Standard Governors
- 5 Iterations
- → 85 Runs

Lag Length of each Lag for Ondemand

Lag Length of each Lag for all Frequency Configurations and Governors

User Irritation

Irritation Threshold

110% of the lag length of the fastest frequency

→ Everything below this threshold does not count as irritating

Oracle Governor

Assume for each lag the lowest frequency that is still below the irritation threshold

Assume the least energy consuming frequency for all other periods.

Energy Consumption

Power Model

Run a CPU intensive artificial micro benchmark with each available frequency fixed.

Calculate average power for each frequency and subtract idle state power.

Energy and User Irritation

Energy and User Irritation

Summary and Future Work

- Automation of proposed method to a high degree (1347x speedup)
- Demonstration of method feasibility for standard frequency governors compared to an oracle (up to 22% less energy)

Future Work

- Apply methodology to big.LITTLE type heterogeneous processors
- Integrate methodology into OS to make live decisions

