

Numerical optimization for robot design and control – Day 02 Robot design

Akhil Sathuluri

Prof. Dr. Markus Zimmermann

Garching, 05th of September 2022

Day-2: Robot design: Overview

Part-1: Robot design: Theory and introduction

- Introduction and background
- 2. Basic mathematics
- 3. Robot design

Part-2: Robot design as an optimization problem

- 1. Problem formulation
- 2. Problem solving methods
- 3. Discussion

Part-1: Robot design: Theory and introduction

What is a robot?

"A robot is an autonomous machine capable of sensing its environment, carrying out computations to make decisions, and performing actions in the real world." [1]

- Body To effect the real world
- Sensors To perceive the envoirnment
- Brain

 To take decisions

These elements are tightly coupled and are interdependent on each other

A repository of robots: https://robots.ieee.org/robots/

[1] https://robots.ieee.org/learn/what-is-a-robot/#:~:text=A%20robot%20is%20an%20autonomous,actions%20in%20the%20real%20world.

robots

Introduction and background

Kinds of robots?

(A very loose classification)

Serial robots **Parallel** robots

Mobile robots

And many many more..

> Can you name any more?

Scope of the lecture

- Serial/parallel/mobile robots
- Fully actuated
 We can control all the degrees of freedom of the
 system
- Fully observable
 We can recover information regarding all the relevant states of the system

- We want to design a robot? But what does it mean?
 - What does a robot design consist of?
 - What kind of variables are required to describe the robot design?
 - What is a robot supposed to do?
 - How do we mathematically describe what its supposed to do?
 - What information is coupled with robot design here?

- Lets consider a concrete example of a humanoid robot arm design
 - What does a robot design consist of?
 - What kind of variables are required to describe the robot design?
 - What is a robot supposed to do?
 - How do we mathematically describe what its supposed to do?
 - What information is coupled with robot design here?

Source: Yang, K.; Yang, G.; Zhang, C.; Chen, C.; Zheng, T.; Cui, Y.; Chen, T. Cable Tension Analysis Oriented the Enhanced Stiffness of a 3-DOF Joint Module of a Modular Cable-Driven Human-Like Robotic Arm. Appl. Sci. 2020, 10, 8871. https://doi.org/10.3390/app10248871

Design of robotic systems has primarily been a sequential process

- Some aspects of interest for robot design:
 - Output properties
 - Speed
 - Manipulability
 - Dexterity
 - Workspace (Reachable, dexterous, wrench-closure, wrench-feasible...)
 - Behavior
 - Aggressive
 - Jerk free
 - Funny?

- Some aspects of interest for robot design:
 - Structural
 - Strong
 - Lightweight
 - Flexible ...
 - Packaging
 - Compact
 - Microscopic
 - Smaller base ...
 - Human-friendly
 - Friendly
 - Emotion reciprocation ...

Basic mathematics

- Say, we want to build a simple two link planar robot (planar 2R-robot)
- Workspace of this robot is the set of all the points in space the end-effector can reach. Now, what would that look like.
- We want the robot to have as large workspace as possible
- What would the ADG look like?
- Formulate the optimization problem?

$$\max_{x,y} W(x,y)$$

What would be the trivial and only solution to this problem?

Basic mathematics

- How do we set-up bottom-up mappings between workspace of the robot?
- The workspace definition,

$$W(x, y) = \pi(x + y)^2 - \pi(x - y)^2$$

- The optimization problem is still trivial
- How do we add constraints to this problem,

$$h(x,y) \coloneqq x + y = L$$

 $g(x,y) \coloneqq x \ge y$

· Putting it all together,

$$\min_{x,y} -W(x,y)$$

$$x + y - L = 0$$

$$y - x \le 0$$

Basic mathematics

- How do we solve this problem?
 - Reduce the number of variables by substituting the equality constraint (can be done because the problem is simple!)
 - Formulate a penalty function accommodating the equality and the inequality constraint
- Solve the problem!
- What are the optimal link lengths for this problem?
- How do we interpret the results?

$$\min_{x,y} -[\pi(x+y)^2 - \pi(x-y)^2] x + y - L = 0 y - x \le 0$$

Workspaces of industrial robots

Some examples from industrial robots

How do we solve such problems for more complex robots?

- Consider a slightly complex scenario where we would like to optimise the link lengths of a design shown in the right
- Problem definition:

"Design the tool holder in such a way that the person using it can move it, as much and as freely as possible."

- Formulate the above statement as an optimisation problem
 - Model the simplified system to identify design variables
 - Identify the quantities of interest
 - Draw the ADG
 - Mathematically model the bottom-up mapping from the design variables to the quantities of interest
 - Setup objective function and constraints

- Consider a slightly complex scenario where we would like to optimise the link lengths of a design shown in the right
- Problem definition:

"Design the tool holder in such a way that the person using it can move it, as much and as freely as possible."

- Formulate the above statement as an optimisation problem
 - Model the simplified system
 - Identify design variables
 - Identify the quantities of interest
 - Draw the ADG
 - Mathematically model the bottom-up mapping from the design variables to the quantities of interest
 - Setup objective function and constraints

- Formulate the above statement as an optimisation problem
 - Model the simplified system
 - Identify design variables
 - Identify the quantities of interest
 - Draw the ADG
 - Mathematically model the bottom-up mapping from the design variables to the quantities of interest
 - Setup objective function and constraints

Fixed links: l_1 , l_2 Distal links: l_3 , l_4

Distance between bases: d

- Formulate the above statement as an optimisation problem
 - · Model the simplified system
 - · Identify design variables
 - Identify the quantities of interest
 - Draw the ADG
 - Mathematically model the bottom-up mapping from the design variables to the quantities of interest
 - Use the same idea from one serial arm and model the workspace of the parallel robot
 - How do we model the collision space between the robot and the human?
 - Bonus: Setup collision constraints between the links and the human (ellipse)

$$\min_{x,y} -[\pi(x+y)^2 - \pi(x-y)^2] x + y - L = 0 y - x \le 0$$

Part-2: Robot design as an optimization problem

- Workspace of the CDPR: (there are several definitions)
 - Wrench-closure-workspace (WCW): A set of all configurations where the cable-driven-parallel-robot (CDPR) can admits positive tensions. If these tensions can be achieved via chosen actuators, then the workspace can also be called wrench-feasible-workspace
- What we deal with is called a multilink cable-driven-robot (MCDR)

- Why do we want to build such a robot?
- How do we describe the robots pose?
- What are the variables that are available for us to modify the robots pose?
- What are the design variables whose values we would like to find?
- What is our objective in this robot design problem?
- Is the model complete or are we missing anything?
- ADG for the current problem?

- How do we formulate the workspace of the robot in this case?
- Are there any constraints in this problem?
- How do we model the constraints?
- How do we bound the design variables?

Use a bi-level optimization scheme to maximize the workspace

Problem solving strategy and MATLAB implementation

(2) Sample a derign (20)

(2) Check all pts on

(3) I find cable forces for each pose

(4) Court ferrible poses - N

- Design parameter list:
 - Link length = 350
 - Ball radius = 20
 - Arm radius = 10
 - Ball center = [0,0,0]
 - Number of cables = 4
 - Domain radius of the cables = 60
 - Home position = [0,0]
 - Loads
 - 20Nm about Z-axis
 - -20Nm about Z-axis
 - 20Nm about Y-axis
 - -20Nm about Y-axis

Questions?

End of Day-2

Thank you!

