CSCB63 – Design and Analysis of Data Structures

Akshay Arun Bapat¹

¹based on notes by Anya Tafliovich, Anna Bretscher and Albert Lai

Finding the shortest paths

- Given an (edge-)weighted graph and two vertices in it,
- Find the cheapest (minimum possible weight) path between them, or
- Report that one does not exist.

Finding the shortest paths

Even better:

- Given an (edge-)weighted graph and a vertex s in it,
- Find the cheapest (minimum possible weight) paths from s to all other vertices.

Dijkstra's algorithm: idea

Dijkstra's algorithm finds shortest paths by a BFS with a twist

- the queue is replaced with a minimum priority queue
- with an additional operation decrease-priority(vertex, new-priority)

Keep unvisited vertices in the priority queue:

```
priority(v) = distance(start, v) via finished vertices only priority(v) = \infty if no such path
```

The algorithm grows paths by one edge at a time.

Correctness idea: every time we extract-min, we get the next vertex closest to start.

Priority queue contains vertices not in tree:

vertex							g		i
priority	0	∞							
pred									

Distance tree:

{ }

Priority queue contains vertices not in tree:

vertex		h	С	d	е	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	а	а						

Distance tree:

{ }

Priority queue contains vertices not in tree:

vertex	h	С	d	е	f	g	i
priority	8	12	∞	∞	∞	∞	∞
pred	а	b					

Distance tree:

Priority queue contains vertices not in tree:

vertex	g	С	i	d	е	f
priority	9	12	15	∞	∞	∞
pred	h	b	h			

Distance tree:

Priority queue contains vertices not in tree:

vertex	f	С	i	d	е
priority	11	12	15	∞	∞
pred	g	b	h		

Distance tree:

Priority queue contains vertices not in tree:

vertex	С	i	е	d
priority	12	15	21	25
pred	b	h	f	f

Distance tree:

Priority queue contains vertices not in tree:

vertex	i	d	е
priority	14	19	21
pred	С	С	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12), \qquad \}$$

Priority queue contains vertices not in tree:

vertex	d	е
priority	19	21
pred	С	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12),\ (c,i,14),\quad \}$$

Priority queue contains vertices not in tree:

vertex	е
priority	21
pred	f

Distance tree:

$$\{\ (a,b,4),\ (a,h,8),\ (h,g,9),\ (g,f,11),\ (b,c,12),\ (c,i,14),\ (c,d,19),\ \ \}$$

Priority queue contains vertices not in tree:

Distance tree:

$$\{ (a,b,4), (a,h,8), (h,g,9), (g,f,11), (b,c,12), (c,i,14), (c,d,19), (f,e,21) \}$$

Dijkstra's algorithm

```
0. PQ := new min-heap()
1. PQ.insert(0, start)
2. \text{ start.d} := 0
3. for each vertex v != start:
4. PQ.insert(inf, v)
5. v.d := inf
6. while not PQ.is-empty():
7. u := PQ.extract-min()
8. for each v in u's adjacency list, v in PQ:
9.
      d' := u.d + weight(u, v)
10. if d' < v.d:
11.
        PQ.decrease-priority(v, d')
12.
        v.d := d'
13.
        v.pred := u
```

.

Dijkstra's algorithm: time

Let n = |V| and m = |E|. Then:

- every vertex enters and leaves min-heap once
 - enters in the beginning only; continue until heap is empty
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(n \log n)$
- with every edge may call decrease-priority
 - $\mathcal{O}(\log n)$ each, for a total of $\mathcal{O}(m \log n)$
- the rest can be done in $\Theta(1)$ per vertex or per edge

Total time worst case: $O((n+m)\log n)$

Let

- $\delta(v)$ be the weight of the shortest path from start vertex s to v,
- $\delta_{fin}(v)$ be the weight of the shortest path from start vertex s to v among paths via finished vertices only (not in PQ), and
- p(v) be priority of v.

Dijkstra's algorithm maintains the loop invariants:

- 1. for each v in PQ, $p(v) = v.d = \delta_{fin}(v)$, i.e. considering only paths via finished vertices (only paths via vertices not in PQ),
- 2. for each v not in PQ, $v.d = \delta(v)$ over all paths, and v.pred is the vertex before v on the shortest path.

Initially (after lines 0-5):

- PQ contains all of V,
- s.d = p(s) = 0, and
- $v.d = p(v) = \infty$, for all $v \neq s$

so (1) and (2) are true.

Suppose (1) and (2) are true on line 6.

- Line 7 adds a new finished vertex u (moves from u ∈ PQ to u ∉ PQ).
- Before line 7 we had $p(u) = u.d = \delta_{fin}(u)$.
- Take artibtrary vertex $v \in PQ$. Before line 7 we had $p(v) = v.d = \delta_{fin}(v)$.
- If v adjacent to u:
 - look at the path $p_v = p_u + (u, v)$ where p_u is shortest via finished vertices to u
 - have $w(p_v)=w(p_u)+w(u,v)=\delta_{\mathit{fin}}(u)+w(u,v)=u.d+w(u,v)$
 - if $w(p_v) < v.d$ then it is the shortest via finished vertices to v
 - then condition on line 10 is true and we set $p(v) = v.d = w(p_v) = \delta_{fin}(v)$
 - otherwise, no change
 - so (1) is still true after line 13

(cont.)

- If v not adjacent to u:
 - Can we have a shorter path to v via finished vertices that looks like:

$$s \rightarrow ... \rightarrow x \rightarrow u \rightarrow y \rightarrow ... \rightarrow v$$
?

- No, because y is finished, so path from s to y must have been shortest.
- So no change means (1) still true after line (13)

Now to show $u.d = \delta(u)$.

- consider the time just before u is dequeued on line 7
- there is some (overall) shortest path p_u from s to u
- at some point p_u crosses from V PQ (finished vertices) to PQ (not finished vertices) for the first time via some edge (x, y) with $x \notin PQ$ and $y \in PQ$

$$p_{u} = \underbrace{s \to \dots \to x \to y}_{p_{v}} \to \dots \to u$$

- have $w(p_y) = \delta(y) = \delta_{fin}(y) = y.d = p(y)$ from (1)
- have both $u, y \in PQ$ and u dequeued first, so $p(u) \leq p(y)$
- then $u.d \le y.d = \delta(y) \le \delta(u)$ (p_u has added edges)
- :. $u.d = \delta(u)$