Límites y continuidad

Límites elementales

Ejercicio 1. Calcular los siguientes límites

- a) $\lim_{x\to\infty} \frac{x}{7x+4}$ b) $\lim_{x\to\infty} \frac{5x+3}{2x^2+1}$ c) $\lim_{x\to2} \frac{x^2-4}{x-2}$
- d) $\lim_{x\to 2^+} \frac{x^2+4}{x-2}$

Ejercicio 2. Calcular los siguientes límites.

- a) $\lim_{x\to 4} \left(\frac{1}{x} \frac{1}{4}\right) \left(\frac{1}{x-4}\right)$, b) $\lim_{x\to 0} \frac{x^4}{3x^3 + 2x^2 + x}$, c) $\lim_{x\to 1} \frac{\sqrt{x-1}}{|x-1|}$, d) $\lim_{x\to 1} \frac{\sqrt{x-1}}{|x-1|}$,

Ejercicio 3. Calcular los siguientes límites

- a) $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ b) $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1-x}-1}$ c) $\lim_{x\to 0} \frac{2x+3}{\sqrt[3]{26+x}-3}$

d) $\lim_{x\to +\infty} \sqrt{x+\sqrt{x}} - \sqrt{x}$

Ejercicio 4. Calcular los siguientes límites a) $\lim_{x\to 0} \frac{|x|}{x^2+x}$ b) $\lim_{x\to 1} \frac{x^2-1}{|x-1|}$ c) $\lim_{x\to 2} \frac{x^2+x+6}{x^2-4}$

d) $\lim_{x\to 0} \frac{1}{2-2^{1/x}}$ e) $\lim_{x\to 0} \frac{1}{e^{1/x}+1}$

Límites y continuidad

Ejercicio 5. Sean $f, g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por a)

$$f(x) = \begin{cases} \frac{1}{1+e^{1/x}}, & \text{si } x \neq 0\\ 0, & \text{si } x = 0 \end{cases}$$

b)

$$g(x) = \begin{cases} \frac{e^x}{x}, & \text{si } x < 0\\ x, & \text{si } 0 \le x < 1\\ \sqrt[4]{x}, & \text{si } x \ge 1 \end{cases}$$

Estudiar la continuidad de f y g y la existencia de límites de f y g en $+\infty$ y $-\infty$.

Ejercicio 6. Sea $f: \mathbb{R}^+ \to \mathbb{R}$ la función definida por $f(x) = x^{\frac{1}{\log(x)-1}}$, para todo $x \in \mathbb{R}^+ \setminus \{e\}$. Estudiar el comportamiento de f en $0, e, +\infty$.

Ejercicio 7. Sea $f: \left]0, \frac{\pi}{2}\right[\to \mathbb{R}$ la función definida por $f(x) = \left(\frac{1}{\tan(x)}\right)^{\operatorname{sen}(x)}$. Probar que f tiene límite en los puntos 0 y $\frac{\pi}{2}$ y calcular dichos límites.

Ejercicio 8. Sea $f: \left]0, \frac{\pi}{2}\right[\to \mathbb{R}$ la función definida por $f(x) = (1 + \sin(x))^{\cot(x)}$. Estudiar la continuidad de f y su comportamiento en 0 y $\pi/2$.

Ejercicio 9. Estudiar el comportamiento en cero de las funciones $f, g : \mathbb{R}^* \to \mathbb{R}$ definidas por

$$f(x) = \arctan\left(\frac{7}{x}\right) - \arctan\left(\frac{-5}{x}\right), \ \ g(x) = xf(x).$$

Ejercicio 10. Probar que existe un número real positivo x tal que $\log(x) + \sqrt{x} = 0$.

Ejercicio 11. Probar que la ecuación $x + e^x + \arctan(x) = 0$ tiene una sola raíz real. Da un intervalo de longitud uno en el que se encuentre dicha raíz.

Ejercicio 12. Determinar la imagen de la función $f: \mathbb{R}^* \to \mathbb{R}$ definida por $f(x) = \arctan(\log |x|)$.

Ejercicio 13. Sea $f:[0,1] \to [0,1]$ una función continua en [0,1]. Pruébese que f tiene un punto fijo: $\exists x \in [0,1]: f(x) = x$.

Ejercicio 14. Un escalador comienza, desde su campamento base, a subir a una montaña el sábado a las 7 horas, alcanzando la cima a las 8 de la tarde. A las 7 horas del domingo inicia el descenso hacia el campamento base tardando el mismo tiempo que le costó la subida. Demostrar que existe una determinada hora, a lo largo del domingo, en la que el escalador se encuentra exactamente a la misma altura que a esa misma hora del sábado.