4-8 CALCULUTION OF CURL

Find curl v for v given with respect to right-handed Cartesian coordinates. Show the details of your work.

4.
$$\mathbf{v} = [2y^2, 5x, 0]$$

5.
$$\mathbf{v} = xyz[x, y, z]$$

6.
$$\mathbf{v} = (x^2 + y^2 + z^2)^{-3/2} [x, y, z]$$

7.
$$\mathbf{v} = [0, 0, e^{-x} \sin y]$$

8.
$$\mathbf{v} = [e^{-z^2}, e^{-x^2}, e^{-y^2}]$$

9–13 FLUID FLOW

Let v be the velocity vector of a steady fluid flow. Is the flow irrotational? Incompressible? Find the streamlines (the paths of the particles). *Hint*. See the answers to Probs. 9 and 11 for a determination of a path.

9.
$$\mathbf{v} = [0, 3z^2, 0]$$

10.
$$\mathbf{v} = [\sec x, \csc x, 0]$$

11.
$$\mathbf{v} = [y, -2x, 0]$$

12.
$$\mathbf{v} = [-y, x, \pi]$$

13.
$$\mathbf{v} = [x, y, -z]$$

14. PROJECT. Useful Formulas for the Curl. Assuming sufficient differentiability, show that

(a)
$$\operatorname{curl} (\mathbf{u} + \mathbf{v}) = \operatorname{curl} \mathbf{u} + \operatorname{curl} \mathbf{v}$$

(b)
$$\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0$$

(c)
$$\operatorname{curl}(f\mathbf{v}) = (\operatorname{grad} f) \times \mathbf{v} + f \operatorname{curl} \mathbf{v}$$

(d)
$$\operatorname{curl}(\operatorname{grad} f) = 0$$

(e)
$$\operatorname{div}(\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot \operatorname{curl} \mathbf{u} - \mathbf{u} \cdot \operatorname{curl} \mathbf{v}$$

15–20 DIV AND CURL

With respect to right-handed coordinates, let $\mathbf{u} = [y, z, x]$, $\mathbf{v} = [yz, zx, xy]$, f = xyz, and g = x + y + z. Find the given expressions. Check your result by a formula in Proj. 14 if applicable.

15.
$$\operatorname{curl}(\mathbf{u} + \mathbf{v}), \operatorname{curl} \mathbf{v}$$

16. curl (gv)

17. v • curl u, u • curl v, u • curl u

18. $\operatorname{div}(\mathbf{u} \times \mathbf{v})$

19. $\operatorname{curl}(g\mathbf{u} + \mathbf{v}), \operatorname{curl}(g\mathbf{u})$

20. div (grad (*fg*))