Lecture 16 – Equivalence of Pushdown Automata and Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2024 Spring

A context-free grammar is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

A pushdown automaton (PDA) is a finite automaton with a stack.

- Acceptance by final states
- Acceptance by empty stacks

Contents

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

 PDA_{FS} \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Contents

 Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{FS} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_F(P) = L_E(P')$.

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_F(P) = L_E(P')$.

Define a PDA

$$P' = (Q \cup \{q'_0, q'_1\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q'_0, Z', \varnothing)$$

where

$$\begin{array}{lll} \delta'(q'_0,\epsilon,Z') & = & \{(q_0,ZZ')\} \\ \delta'(q\in Q,a\in \Sigma,X\in \Gamma) & = & \delta(q,a,X) \\ \\ \delta'(q\in Q,\epsilon,X\in \Gamma\cup \{Z'\}) & = & \left\{ \begin{array}{ll} \delta(q,\epsilon,X)\cup \{(q'_1,\epsilon)\} & \text{if } q\in F \\ \delta(q,\epsilon,X) & \text{otherwise} \end{array} \right. \\ \delta'(q'_1,\epsilon,X\in \Gamma\cup \{Z'\}) & = & \{(q'_1,\epsilon)\} \end{array}$$

PDA_{FS} to PDA_{ES} – Example

$$L_{F}(P) = L_{E}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$= \underbrace{\begin{cases} z \to XZ \\ a [X \to XX] \end{cases}}_{\text{start } [Z] \xrightarrow{q_{0}}} \underbrace{\begin{cases} z \to Z \\ \epsilon [X \to X] \end{cases}}_{\epsilon} \underbrace{\begin{cases} q_{1} \\ q_{2} \end{cases}}_{\epsilon} \underbrace{\begin{cases} z \to Z \\ q_{1} \end{cases}}_{\epsilon} \underbrace{\begin{cases} z \to Z \\ q_{2} \end{cases}}_{\epsilon}$$

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, $\exists PDA P'$. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{ES}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_E(P) = L_F(P')$.

Define a PDA

$$P' = (Q \cup \{q_0', q_1'\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q_0', Z', \{q_1'\})$$

where

$$\delta'(q'_0, \epsilon, Z') = \{(q_0, ZZ')\}$$

$$\delta'(q \in Q, a \in \Sigma, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, X \in \Gamma) = \delta(q, \epsilon, X)$$

$$\delta'(q \in Q, \epsilon, Z') = \{(q'_1, Z')\}$$

PDA_{ES} to PDA_{FS} – Example

$$L_{E}(P) = L_{F}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$P = \begin{cases} a \mid Z \to XZ \mid & b \mid X \to \epsilon \mid \\ & a \mid [X \to XX] \quad b \mid [X \to \epsilon] \end{cases}$$

$$\text{start } [Z] \xrightarrow{q_{0}} \begin{cases} e \mid [Z \to Z] \quad & \epsilon \mid [Z \to \epsilon] \end{cases}$$

$$a \mid [Z \to XZ] \quad & b \mid [X \to \epsilon] \end{cases}$$

Contents

1. Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

CFGs to PDA_{ES}

Theorem (CFGs to PDA_{ES})

For a given CFG
$$G = (V, \Sigma, S, R)$$
, $\exists PDA P. L(G) = L_E(P)$.

Define a PDA

$$P = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S, \varnothing)$$

where

$$\delta(q, \epsilon, A \in V) = \{(q, \alpha) \mid A \to \alpha \in R\}$$

$$\delta(q, a \in \Sigma, a \in \Sigma) = \{(q, \epsilon)\}$$

CFGs to PDA_{FS} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S}$$
b $\mid b \mathcal{S}$ a $\mid \mathcal{S}\mathcal{S}$

Then, the equivalent PDA (by empty stacks) is:

PDA_{FS} to CFGs

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

The key idea is defining a variable $A_{i,j}^X$ for each $0 \le i,j < n$ and $X \in \Gamma$ that generates all words causing the PDA to move from q_i to q_j by popping X:

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

With this idea, we can define a CFG that generates all words accepted by the PDA P with empty stacks as follows:

$$S \to A_{0,0}^Z \mid A_{0,1}^Z \mid \cdots \mid A_{0,n-1}^Z$$

Then, how to define production rules for $A_{i,j}^X$?

PDA_{FS} to CFGs

We can define production rules for $A_{i,j}^X$ as follows.

Consider a transition $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ for all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $X \in \Gamma$.

It makes PDA move from q_i to q_j by replacing X with $X_1 \cdots X_m$.

Then, we need to pop X_1, \dots, X_m from the stack to make the stack empty.

Let k_1, \dots, k_m be the states that the PDA moves to after popping X_1, \dots, X_m , respectively.

To cover all possible combinations of k_1, \dots, k_m , we need to define a production rule for A_{i,k_m}^X as follows:

$$A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m} \ ext{for all} \ 0 \leq k_1, \cdots, k_m < n$$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Then, the equivalent CFG is:

Summary

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

$$PDA_{FS}$$
 \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Next Lecture

• Deterministic Pushdown Automata (DPDA)

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr