Hashing

Absolutely! Here's a detailed explanation of all hashing concepts from your Unit-02.pptx, structured clearly for understanding and revision:

HASHING — Introduction

Hashing is a technique used to map large data sets to a smaller table of fixed size using a mathematical formula called a hash function.

It is commonly used for:

- · Fast data retrieval
- Storing key-value pairs (like in dictionaries)
- · Implementing sets, hash tables, and symbol tables

Key Components of Hashing

Component	Description
Key	The input data to be stored or searched (e.g., roll number, name).
Hash Function	A function that maps the key to an index in the hash table.
Hash Table	An array-like structure that stores values based on the index returned by the hash function.

HASH FUNCTION

A **Hash Function** takes a key and returns a hash index (a number representing the position in the hash table).

Goals of a good hash function:

- Uniform distribution of values
- Fast computation
- Minimize collisions (same index for multiple keys)

TYPES OF HASH FUNCTIONS

1. !! Division Method

- Formula: h(k) = k mod m
- k = key, m = size of hash table (preferably prime)

Example:

$$[k = 23], [m = 10] \rightarrow [h(23) = 23 \% 10 = 3]$$

Pros: Simple and fast

Cons: Poor distribution if m is not prime

2. X Multiplication Method

- Formula: $h(k) = [m \times (k \times A \mod 1)]$
- A = constant between 0 and 1, mod 1 means the fractional part

Example:

$$k = 1234$$
, $A = 0.618$, $m = 1000$

Multiply
$$\rightarrow$$
 1234 × 0.618 = 762.612

Take fraction
$$\rightarrow$$
 0.612 × 1000 = 612

Final hash = 612

Pros: Better distribution than division

Cons: Slightly more complex to compute

3. Mid-Square Method

· Square the key, extract middle digits

Steps:

- 1. Square the key
- 2. Take middle digits as the hash index

Example:

$$\text{Key = 123} \rightarrow \text{[123^2 = 15129]} \rightarrow \text{middle digits = [512]} \rightarrow \text{hash = 512}$$

Pros: Good distribution

Cons: Costly (multiplication and digit extraction)

4. Folding Method

• Break key into equal parts, sum the parts, take mod

Steps:

- 1. Split key (e.g., 123456 into 123 and 456)
- 2. Add: 123 + 456 = 579

3. Hash = 579 mod m

Pros: Easy to implement

Cons: Depends on partitioning scheme

***** COLLISIONS

A **collision** happens when two different keys hash to the same index.

COLLISION HANDLING TECHNIQUES

A. Open Hashing (Separate Chaining / Closed Addressing)

- Use linked lists at each index of the hash table
- All keys that hash to the same index are stored in the list

Example:

$$h(k) = k \mod 5$$
, keys = 12, 22, 15, 25

All give remainder 2, stored at index 2 using a linked list

Pros:

- Simple to implement
- Unlimited number of keys per index

Cons:

- Extra space for lists
- Slower lookup in long chains

B. Closed Hashing (Open Addressing)

No extra structures — all elements are stored directly in the array. If a slot is occupied, the algorithm probes for another empty one.

1. 🔁 Linear Probing

• Check next slot: (hash + i) % table_size

Example:

Hash table size = 5, key = $50 \rightarrow 50 \mod 5 = 0$ If slot 0 is full, check 1, 2, 3, ...

Pros: Simple

Cons: Clustering — multiple items form a block

2. **Quadratic Probing**

• Checks farther slots with increasing gaps:

Example:

Insert 22, 30, 50 in table size 7 with $f(i) = i^2$

- 22 % 7 = 1 → slot 1
- [30 % 7 = 2] → slot 2
- $50 \% 7 = 1 \rightarrow \text{slot 1 occupied} \rightarrow \text{try } (1 + 1^2 = 2), \text{ then } (1 + 2^2 = 5)$

Pros: Less clustering than linear **Cons**: Can skip over available slots

3. Double Hashing

Uses **two hash functions** to calculate probe sequence:

Example:

Table size = 7, keys = 27, 43, 692, 72

$$h1(k) = k \% 7, h2(k) = 1 + (k \% 5)$$

•
$$27 \rightarrow h1 = 6$$
, $h2 = 3 \rightarrow index = (6 + i \times 3) \% 7$

Pros: Best distributionCons: Complex logic

Summary

Concept	Description	
Hashing	Fast data lookup using keys and hash functions	
Hash Function	Converts key to index	
Division Method	key % tableSize, simple	
Multiplication	[m(kA mod 1)], better distribution	
Mid-Square	Use middle digits of squared key	
Folding	Add parts of key	
Collision	Two keys map to same index	
Separate Chaining	Linked lists for each slot	
Linear Probing	Next slot → index+1	

Concept	Description
Quadratic Probing	index+i ²
Double Hashing	Uses second hash function to compute jump

Great! You've corrected the input. Let's **recalculate** the **Linear Probing insertion** and then find the **average number of successful and unsuccessful probes**, step-by-step.

Given:

- **Table Size**: 11 slots → [T[1] to T[11]]
- Records and their hash addresses (H(k)):

Record	A	В	С	D	Е	X	Υ	Z
H(k)	4	8	2	11	4	11	5	1

Step 1: Insert Using Linear Probing

Start inserting based on H(k). If the target index is full, move to the next index (+1), wrapping around circularly until an empty slot is found.

Insert Order	Record	H(k)	Final Position	Probes
1	Α	4	4	1
2	В	8	8	1
3	С	2	2	1
4	D	11	11	1
5	E	4	5 (4 \rightarrow occupied)	2
6	X	11	1 (11 \rightarrow occupied, 1 free)	2
7	Y	5	6 (5 occupied, 6 free)	2
8	Z	1	3 (1,2,3rd slot free after 1)	3

Hash Table after Insertion

Index	Record
1	X
2	С

Index	Record
3	Z
4	А
5	E
6	Υ
7	-
8	В
9	-
10	-
11	D

Step 2: Count Probes

✓ Successful Probes

Use the same number of probes taken while inserting each record.

Record	Probes
А	1
В	1
С	1
D	1
Е	2
X	2
Υ	2
Z	3

Total Successful Probes = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 3 = 13

Average Successful Probes = 13 / 8 = **1.625**

X Unsuccessful Probes (Linear Probing Formula)

For unsuccessful search, average number of probes ≈

$$\frac{1+\frac{1}{1-lpha}}{2}$$

Where:

•
$$\alpha = \frac{n}{m} = \frac{8}{11} \approx 0.727$$

$$\Rightarrow \text{Average Unsuccessful Probes} \approx \frac{1+\frac{1}{1-0.727}}{2} = \frac{1+3.66}{2} = \frac{4.66}{2} \approx \boxed{2.33}$$

Final Answer:

- Average Successful Probes = 1.625
- Average Unsuccessful Probes = 2.33

Let's now apply chaining (separate chaining / closed addressing) using the same table setup.

→ Problem Setup (Revisited)

- **Table Size**: 11 → **T[1]** to **T[11]**
- Records and their hash addresses:

Record	Α	В	С	D	Е	X	Υ	Z
H(k)	4	8	2	11	4	11	5	1

🔁 Step 1: Insert Using Chaining

In separate chaining:

- Each index of the hash table points to a linked list
- Multiple records that hash to the same index are stored in the list

Let's insert the records into chains at their hash index.

Table After Chaining Insertion:

Index	Chain (Linked List)
1	Z
2	С
3	_
4	$A \to E$
5	Υ
6	_
7	_
8	В
9	_
10	_
11	$D\toX$

ii Step 2: Count Probes

✓ Successful Search Probes (on average)

We compute probes per element:

- In each chain, record position in the list = probe count
- Assume the element is found during sequential search

Probe Count for Each Record:

Index	Chain	Records with Probes
1	Z	Z(1)
2	С	C(1)
4	$A \rightarrow E$	A(1), E(2)
5	Υ	Y(1)
8	В	B(1)
11	$D\toX$	D(1), X(2)

$$\rightarrow$$
 Total Probes = 1 (Z) + 1 (C) + 1 (A) + 2 (E) + 1 (Y) + 1 (B) + 1 (D) + 2 (X) = 10

$$\rightarrow$$
 Average = 10 / 8 = **1.25**

To search unsuccessfully at index [i], you must traverse the entire chain at that index.

So, we sum lengths of chains at all indices, divide by total number of slots (11):

Index	Chain Length
1	1
2	1
3	0
4	2
5	1
6	0
7	0
8	1
9	0
10	0
11	2

- \rightarrow Total comparisons = 1 + 1 + 0 + 2 + 1 + 0 + 0 + 1 + 0 + 0 + 2 = 8
- \rightarrow Average = 8 / 11 = **0.727**

Final Result (Separate Chaining)

- Average Successful Probes = 1.25
- Average Unsuccessful Probes = 0.727

Observation:

Chaining gives better average-case performance (especially for unsuccessful searches) when the load factor is moderate.

Let me know if you'd like to **visualize this as a diagram** or compare with **quadratic probing** or **double hashing** next!