Include units in your answers where appropriate.

1. Circle T (true) or F (false) for each of these Boolean equations.

(a). T F A m

A mesh is a loop with other loops inside it.

(b). (T) F

A voltage source with series R transforms to a current source with R in parallel.

(c). TF

The Thévenin equivalent voltage $V_{\rm TH}$ is the open-circuit voltage.

(d). (T)

Superposition sums the individual responses due to each independent source.

(e). T(F) Ideal op amps operate in saturation.

2. Source Transformations:

Using source transformation, find the current i_1 flowing through the 10 k Ω resistor in the circuit given below. Draw a small sketch of each transformation you make.

3. Thévenin's Equivalent Circuit with Independent Sources:

Given the resistive circuit below:

Find the open-circuit voltage V_{TH} across terminals a and b of the Thévenin

· Ohm's Law: VTH = SOO's or is=

· KVL: -5 V + 500 · (s + VTH = 0 is=(5-VTH)/500

· KCL at node a: -is+6mA+12=0

Plug in values for (s+12: -(5-VTH)/500+6mA+VTH/500=0

VTH (\$00 + \$00) = \$00 - 6 mA = (10-6) mA = 4 mA

VTH = 4mA (500 D) = 1000 mV = 1 V

 $V_{\mathrm{TH}} = \bigvee$

3

3(b). Find the short-circuit current i_{sc} between terminals a and b of the circuit.

in = 4 mA

3(c). Find the Thévenin resistance R_{TH} of the Thévenin equivalent circuit, using your results for parts 3(a) and 3(b) above.

RTH = 250 12

Find the Thévenin resistance R_{TH} of the Thévenin equivalent circuit by finding the equivalent resistance $R_{\rm eq}$ with respect to terminals a and b when all independent sources are removed (deactivated).

To deactivate voltage source current source -> open circuit

Q b

RTH = 250 Q

3(e). Are your results for R_{TH} in parts 3(c) and 3(d) the same?

(circle one):

No

Should they be the same?

(circle one):

No

3(f). Draw your Thévenin equivalent circuit below.

5. Norton's Equivalent Circuit:

5(a). Find the Norton equivalent circuit for the circuit given in problem 4. What is the Norton current source, I_N ?

IN = 4 MA

5(b). Draw your Norton equivalent circuit below.

6. Maximum Power Transfer:

6(a). Using the circuit in problem 4, what value of load resistance R_L will provide the maximum power transferred to the load R_L ? You don't have to prove what value will provide maximum power, just use the appropriate value of R_L that does provide maximum power.

5

RL = 250-2

6(b). Using the value of R_L obtained above, find the power P_L transferred to (or absorbed by) the load R_L . $P_L = \frac{1}{2} V_L^2 / R_L = \frac{1}{2} V_L^2 / R_{TH}$ by $V_L = \frac{1}{2} V_L + \frac{1}$

 $P_L = 1 \text{ mW}$

7. Superposition:

Use superposition on the circuit below to find the voltage V_1 .

· Deactivate current source: becomes open circuit; no current flows through 1002 R so can ignore it

1000 HUROUGH 1002 P 2002 12 + V' 1 300 & V'

· Current i flows from + to terminal of 12 V source

· Vi = voltage across 12 v source - 300-i = voltage across 400 + 200 52

400 V'

· Use voltage divider.

Vs=12V

V/= Vs (400+200)

6

 $V_i' = 8V$

$$= \frac{V_S(600)}{900} = \frac{12(2)}{3} = 8V$$

or use KVL

D