Prof. Dr. Marcus Zibrowius Jan Hennig

Homologische Algebra Blatt 7

1 | Stehgreiffragen: Limes und Kolimes

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wie sehen die Indexkategorien für Produkte und Kopordukte aus?
- (b) Was ist der Limes des Diagramms $* \to S^1 \leftarrow \mathbb{R}$, wobei $\mathbb{R} \to S^1$ die universelle Überlagerung ist?
- (c) Was ist der Kolimes des Diagramms $\mathbb{Z} \stackrel{\cdot m}{\longleftarrow} \mathbb{Z} \stackrel{\cdot n}{\longrightarrow} \mathbb{Z}$ in **Grp**?
- (d) Wie kann der Kern einer Abbildung in \mathbf{Mod}_R als Limes aufgefasst werden?
- (e) Was ist der Limes in **Set** eines \mathbb{N} indiziereten Diagramms, wobei alle $X_i \leftarrow X_{i+1}$ injektiv sind?
- (f) Was ist der Kolimes in **Set** eines \mathbb{N} indiziereten Diagramms, wobei alle $X_i \to X_{i+1}$ injektiv sind?
- (g) Gegeben sein $f_{i,j} \colon A_i \to B_j$ für $(i,j) \in I \times J$. Welches von beiden ist die kanonische Abbildung, $\prod_{i \in I} A_i \to \coprod_{j \in J} B_j$ oder $\coprod_{i \in I} A_i \to \prod_{j \in J} B_j$, und wie ist sie definiert?

2 | Faserprodukte entlang Monos (und Epis)

Sei das folgende Diagramm ein Faserproduktdiagramm

$$P \xrightarrow{f'} C$$

$$g' \downarrow \qquad \qquad \downarrow g$$

$$B \xrightarrow{f} A.$$

- (a) Zeigen Sie: $f: B \to A$ ist ein Monomorphismus $\Rightarrow f': P \to C$ ein Monomorphismus ist.
- (b) Finden Sie ein Gegenbeispiel für: $f: B \to A$ Epimorphismus $\Rightarrow f': P \to C$ Epimorphismus. (Hinweis: Probieren Sie eine Kategorie in der sich Epimorphismen anders als in **Set** verhalten)
- (c) Zeigen Sie: $f: B \to A$ Isomorphismus $\Rightarrow f': P \to C$ Isomorphismus.

3 | Faserprodukte komponieren

Gegeben sei das folgende kommutative Diagramm

$$C' \xrightarrow{g'} B' \xrightarrow{f'} A'$$

$$\uparrow \downarrow \qquad \qquad \downarrow \alpha$$

$$C \xrightarrow{g} B \xrightarrow{f} A$$

und sei B' das Faserprodukt von $f: B \to A$ und $\alpha: A' \to A$.

(a) Zeigen Sie, dass C' genau dann das Faserprodukt von $g \colon C \to B$ und $\beta \colon B' \to B$ ist, wenn es das Faserprodukt von $f \circ g \colon C \to A$ und $\alpha \colon A' \to A$ ist.

$4 \mid \mathbf{Mod}_R$ ist (ko)vollständig

Eine Kategorie \mathcal{C} heißt (ko)vollständig, wenn alle kleinen Diagramme einen (Ko)Limes in \mathcal{C} haben, d.h. für jede kleine Indexkategorie \mathcal{I} , besitzt jeder Funktor $F: \mathcal{I} \to \mathcal{C}$ einen (Ko)Limes.

- (a) Zeigen Sie, dass \mathbf{Mod}_R kovollständig ist.
- (b) Zeigen oder widerlegen Sie: \mathbf{Mod}_R is vollständig.