General Solution to a Linear System Eigenvalues and Eigenvectors

If $\mathbf{b} \in \mathcal{C}(\mathbf{A})$: $\mathbf{x}_{g} = \mathbf{x}_{p} + \mathbf{x}_{ng}$ where $\mathbf{x}_{p} = \mathbf{A}\mathbf{v} = \lambda\mathbf{v} \iff (\lambda\mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0} : \mathbf{v} \neq \mathbf{0}$ $\mathbf{x}_{r} + \mathbf{x}_{n} \in \mathbb{R}^{n}$ and $\mathbf{x}_{ng} = \operatorname{span}(\mathcal{N}(\mathbf{A}))$.

Characteristic Polynomial

Minimum Norm Solution

$$\mathbf{x}_r \in \mathcal{C}\left(\mathbf{A}^{\top}\right) \text{ where } \mathbf{x}_r = \operatorname{proj}_{\mathcal{C}(\mathbf{A}^{\top})}\left(\mathbf{x}_g\right).$$

Least Squares (LS)

If $\mathbf{b} \notin C(\mathbf{A})$: $\mathbf{x} = \arg\min \|\mathbf{b} - \mathbf{A}\mathbf{x}^*\|$. $\mathbf{b} - \mathbf{A}\mathbf{x} \in \mathcal{N}(\mathbf{A}) \implies \mathbf{A}^{\top}(\mathbf{b} - \mathbf{A}\mathbf{x}) = \mathbf{0}.$ Orthogonal Projection

$$\mathbf{P} = \mathbf{A} \left(\mathbf{A}^{\top} \mathbf{A} \right)^{-1} \mathbf{A}^{\top}$$
$$\mathbf{Pb} = \operatorname{proj}_{\mathcal{C}(\mathbf{A})} \left(\mathbf{b} \right) = \mathbf{A} \mathbf{x}$$

P is idempotent $(\mathbf{P}^2 = \mathbf{P})$ and $\mathbf{P}^{\top} = \mathbf{P}$. Algebraic Multiplicity $\mu(\lambda_i)$ Dependent Columns

If $\operatorname{nullity}(\mathbf{A}) > 0$, NE yields infinitely distinct eigenvalues, many solutions as $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\top}\mathbf{A})$.

Orthogonal Complement Projections

$$\begin{aligned} & \text{Given } \mathbf{P} = \text{proj}_V \colon \, \mathbf{Q} = \text{proj}_{V^{\perp}} = \mathbf{I} - \mathbf{P} \\ & \mathbf{b} = \text{proj}_V(\mathbf{b}) + \text{proj}_{V^{\perp}}(\mathbf{b}) = \mathbf{P}\mathbf{b} + \mathbf{Q}\mathbf{b} \end{aligned}$$

$$(\mathbf{Pb})^{\top} \mathbf{Qb} = 0$$

$$\mathbf{PQ} = \mathbf{0} \qquad (\text{zero matrix})$$

Change of Basis

Given the basis
$$W = \{\mathbf{w}_1, \, \dots, \, \mathbf{w}_n\}$$

$$\begin{aligned} \mathbf{b} &= c_1 \mathbf{w}_1 + \dots + c_n \mathbf{w}_n \\ \mathbf{b} &= \mathbf{W} \mathbf{c} \iff (\mathbf{b})_W = \mathbf{c}. \end{aligned}$$

Orthonormal Basis

Normalised and orthogonal basis vectors. For $Q = \{\mathbf{q}_1, \dots, \mathbf{q}_n\}, \mathbf{q}_i^{\mathsf{T}} \mathbf{q}_i = \delta_{ij}$, where

$$\begin{split} \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \\ \mathbf{Q}\mathbf{c} = \mathbf{b} \iff \mathbf{Q}^{\top}\mathbf{b} = \mathbf{c} = (\mathbf{b})_{Q} \end{split}$$

Orthogonal Matrices

$$\mathbf{Q}^{\top} = \mathbf{Q}^{-1} \iff \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\top} = \mathbf{I}.$$

Projection onto a Vector

$$\begin{aligned} \operatorname{proj}_{\mathbf{a}}\left(\mathbf{b}\right) &= \mathbf{a} \left(\mathbf{a}^{\top} \mathbf{a}\right)^{-1} \mathbf{a}^{\top} \mathbf{b} \\ &= \frac{\mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \cdot \mathbf{b} \end{aligned}$$

 $\operatorname{proj}_{\mathbf{q}}(\mathbf{b}) = \mathbf{q}(\mathbf{q} \cdot \mathbf{b})$ (unit vector)

Gram-Schmidt Process

Converts the basis W that spans $C(\mathbf{A})$ to an orthonormal basis Q.

$$\mathbf{v}_i = \mathbf{w}_i - \sum_{i=1}^{i-1} \mathbf{q}_j \big\langle \mathbf{q}_j, \; \mathbf{w}_i \big\rangle \quad \mathbf{q}_i = \mathbf{v}_i / \lVert \mathbf{v}_i \rVert$$

V and Q span W, and V is orthogonal. **QR** Decomposition

$$A = QR$$

$$\mathbf{R} = \begin{bmatrix} \|\mathbf{v}_1\| & \langle \mathbf{q}_1, \, \mathbf{w}_2 \rangle & \cdots & \langle \mathbf{q}_1, \, \mathbf{w}_n \rangle \\ 0 & \|\mathbf{v}_2\| & \ddots & \vdots \\ \vdots & \ddots & \ddots & \langle \mathbf{q}_{n-1}, \, \mathbf{w}_n \rangle \\ 0 & \cdots & 0 & \|\mathbf{v}_n\| \end{bmatrix}$$

where \mathbf{Q} is found by applying the Gram-Schmidt process and \mathbf{R} is upper triangular. $\mathbf{R}\mathbf{x} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}$ solves LS.

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \iff (\lambda\mathbf{I} - \mathbf{A})\,\mathbf{v} = \mathbf{0} : \mathbf{v} \neq \mathbf{0}$$

Characteristic Polynomial

$$P(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0.$$

Eigen Decomposition

$$\begin{aligned} \mathbf{A}\mathbf{V} &= \mathbf{V}\mathbf{D} \iff \mathbf{A} &= \mathbf{V}\mathbf{D}\mathbf{V}^{-1} \\ \mathbf{V} &= \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \\ \mathbf{D} &= \mathrm{diag}\left(\lambda_1, \, \dots, \, \lambda_n\right). \end{aligned}$$

Eigenspace

The eigenspace associated with λ_i is the span of eigenvectors: $\mathcal{N}(\lambda_i \mathbf{I} - \mathbf{A})$.

Multiplicity of λ_i in $P(\lambda)$, for $d \leq n \Sigma^{\top} \hat{\Sigma} = \Sigma \Sigma^{\top} = \hat{\Sigma}^2$. To find σ_i compute:

$$P\left(\lambda\right) = \left(\lambda - \lambda_1\right)^{\mu(\lambda_1)} \cdots \left(\lambda - \lambda_d\right)^{\mu(\lambda_d)}.$$
 In general

$$1 \leq \mu\left(\lambda_{i}\right) \leq n$$

$$\sum_{i=1}^{d} \mu\left(\lambda_{i}\right) = n$$

If nullity (\mathbf{A})

$$\exists k: \lambda_k = 0: \mu\left(\lambda_k\right) = \text{nullity}\left(\mathbf{A}\right)$$

Geometric Multiplicity $\gamma(\lambda_i)$

The dimension of each eigenspace λ_i $\gamma(\lambda_i) = \text{nullity}(\lambda_i \mathbf{I} - \mathbf{A}).$

Given $d \leq n$ distinct eigenvalues, $1 \leq \gamma(\lambda_i) \leq \mu(\lambda_i) \leq n$

$$d \le \sum_{i=1}^{d} \gamma\left(\lambda_{i}\right) \le n.$$

Eigenvectors corresponding to distinct Express $\bf A$ as the sum of rank-1 matrices: eigenvalues are linearly dependent.

Defective Matrix

A lacks a complete eigenbasis:

$$\exists k : \gamma(\lambda_k) < \mu(\lambda_k)$$

Matrix Similarity

A and B are similar if $B = P^{-1}AP$. They share $P(\lambda)$, ranks, determinants, $\mathbf{U} \in \mathbb{R}^{m \times \nu}$, $\mathbf{\Sigma} \in \mathbb{R}^{\nu \times \nu}$, and $\mathbf{V} \in \mathbb{R}^{n \times \nu}$. traces, and eigenvalues (also μ and γ).

Symmetric Matrices $\mathbf{S}^{\top} = \mathbf{S}$

 ${f S}$ is always diagonalisable and has V is a vector space with vectors ${f v} \in V$ found through QR: V = QR.

Skew-Symmetric Matrices $\mathbf{K}^{\top} = -\mathbf{K}$

Eigenvalues are always purely imaginary.

Positive-Definite Matrices

S is (symmetric) positive definite (SPD) if all its eigenvalues are positive, likewise

$$\mathbf{x}^{\top}\mathbf{S}\mathbf{x} > 0 : \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}\$$

Matrix Functions

Given a nondefective matrix:

$$\begin{split} f\left(\mathbf{A}\right) &= \mathbf{V} f\left(\mathbf{D}\right) \mathbf{V}^{-1} \\ &= \mathbf{V} \operatorname{diag}\left(f\left(\lambda_{1}\right), \, \ldots, \, f\left(\lambda_{n}\right)\right) \mathbf{V}^{-1} \end{split}$$

for an analytic function f. Cayley-Hamilton Theorem

$$\forall \mathbf{A} : P(\mathbf{A}) = \mathbf{0}$$
 (zero matrix)

Singular Value Decomposition

$$\mathbf{A}\mathbf{V} = \mathbf{U}\mathbf{\Sigma} \iff \mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$$

 $\mathbf{V}^{\top} = \mathbf{V}^{-1}. \quad \mathbf{U}^{\top} = \mathbf{U}^{-1}$

 $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0).$ Left singular vectors \mathbf{u} : $\mathbf{U} \in \mathbb{R}^{m \times m}$

$$\mathcal{C}\left(\mathbf{A}\right)=\operatorname{span}\left(\left\{\mathbf{u}_{i\leq r}\right\}\right)$$

$$\begin{split} \mathcal{N}\left(\mathbf{A}^{\top}\right) &= \operatorname{span}\left(\left\{\mathbf{u}_{r < i \leq m}\right\}\right) \\ \text{Right singular vectors } \mathbf{v} \colon \mathbf{V} \in \mathbb{R}^{n \times n} \end{split}$$

$$\mathcal{C}\left(\mathbf{A}^{\top}\right) = \operatorname{span}\left(\left\{\mathbf{v}_{i \leq r}\right\}\right)$$

$$\mathcal{N}\left(\mathbf{A}\right) = \operatorname{span}\left(\left\{\mathbf{v}_{r < i \leq n}\right\}\right)$$
 Singular values $\sigma_i \colon \mathbf{\Sigma} \in \mathbb{R}^{m \times n}$

The eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are equal, $\mathbf{\Sigma}^{\top}\mathbf{\Sigma}$ and $\mathbf{\Sigma}\mathbf{\Sigma}^{\top}$ have the same diagonal entries, and when m = n,

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^{\top}\mathbf{\Sigma}\mathbf{V}^{\top}$$

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{\top}\mathbf{U}^{\top}$$

so that $\sigma_i = \sqrt{\lambda_i}$ where $\sigma_1 \ge \cdots \ge \sigma_r > 0$.

Reduced SVD

Ignores m-n "0" rows in Σ so that $\overset{\circ}{\mathbf{U}} \in \mathbb{R}^{m \times n}, \ \mathbf{\Sigma} \in \mathbb{R}^{n \times n}, \ \mathrm{and} \ \mathbf{V} \in \mathbb{R}^{n \times n}.$

Pseudoinverse

Consider the inverse mapping $\mathbf{u}_i \mapsto \frac{1}{\sigma_i} \mathbf{v}_i$

$$\mathbf{A}^{\dagger}\mathbf{u}_{i} = \frac{1}{\sigma_{i}}\mathbf{v}_{i} \iff \mathbf{A}^{\dagger}\mathbf{u}_{i} = \frac{1}{\sigma_{i}}\mathbf{v}_{i}\mathbf{u}_{i}^{\top}\mathbf{u}_{i}$$

$$\mathbf{A}^\dagger = \sum_{i=1}^r \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^\top \iff \mathbf{A}^\dagger = \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^\top$$

where $\Sigma^{\dagger} = \operatorname{diag}\left(\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_n}, 0, \ldots, 0\right)$.

$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b}$ also solves LS.

Truncated SVD

$$\mathbf{A} = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^{ op} pprox \tilde{\mathbf{A}} = \sum_{i=1}^{
u} \sigma_i \mathbf{u}_i \mathbf{v}_i^{ op}$$

for the rank- ν approximation of **A**. Using the SVD:

$$ilde{\mathbf{A}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$

When $\nu \geq r$, $\tilde{\mathbf{A}} = \mathbf{A}$ as $\sigma_{i>r} = 0$.

General Vector Spaces

real eigenvalues with real orthogonal if the following 10 axioms are satisfied eigenspaces: $\mathbf{S} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\top}$, where \mathbf{Q} is for $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall k, m \in \mathbb{F}$, given an addition and scalar multiplication operation.

For the addition operation:

- Closure: $\mathbf{u} + \mathbf{v} \in V$
- Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \in V$
- Associativity:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- Identity: $\exists \mathbf{0} \in V : \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- Inverse: $\exists (-\mathbf{u}) \in V : \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

For the scalar multiplication operation:

- Closure: $k\mathbf{u} \in V$
- Distributivity: $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- Distributivity: $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- Associativity: $k(m\mathbf{u}) = (km)\mathbf{u}$
- Identity: $\exists 1 \in \mathbb{F} : 1\mathbf{u} = \mathbf{u}$

Examples of Vector Spaces

multiplication.

The set of all functions $\mathcal{F}(\Omega): \Omega \to \mathbb{R}$ with addition and scalar multiplication defined pointwise.

Subspaces

The subset $W \subset V$ is itself a vector space if it is closed under addition and scalar Isomorphism (\cong) multiplication.

Examples of Subspaces

Subspaces of \mathbb{R}^n :

• Lines, planes and higher-dimensional analogues in \mathbb{R}^n passing through the origin.

Subspaces of \mathcal{M}_{nn} :

- The set of all symmetric $n \times n$. matrices, denoted $\mathcal{S}_n \subset \mathcal{M}_{nn}$.
- The set of all skew symmetric $n \times n$ matrices, denoted $\mathcal{K}_n \subset \mathcal{M}_{nn}$.

Subspaces of \mathcal{F} :

- The set of all *polynomials* of degree nor less, denoted $\mathscr{P}_{n}(\Omega) \subset \mathscr{F}(\Omega)$.
- The set of all continuous functions, denoted $C(\Omega) \subset \mathcal{F}(\Omega)$.
- The set of all continuous functions derivatives, with continuous nth denoted $C^{n}(\Omega) \subset C(\Omega)$.
- The set of all functions f defined on [0,1] satisfying f(0) = f(1).

General Vector Space Terminology

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and $c_1, \dots, c_k \in \mathbb{F}$: • Linearity: $\langle k\mathbf{u}, \mathbf{v} \rangle = k\langle \mathbf{u}, \mathbf{v} \rangle$

- The linear combination of S is a vector of the form $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$.
- S is linearly independent iff $c_1\mathbf{v}_1+\cdots+$ For $\mathbf{u},\,\mathbf{v}\in\mathbb{R}^n$: $c_k \mathbf{v}_k = \mathbf{0}$ has the trivial solution.
- $\operatorname{span}(S)$ is the set of all linear combinations of S.

S is a basis for a vector space V if

- S is linearly independent.
- $\operatorname{span}(S) = V$.

The number of basis vectors denotes the dimension of V. C is infinite dimensional.

Examples of Standard Bases

$$\begin{array}{l} \bullet \quad \mathcal{M}_{22} \colon \\ \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{S}_{22} \colon \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{H}_{22} \colon \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\} \\ \bullet \quad \mathcal{H}_{3} \colon \left\{ 1, \, x, \, x^{2}, \, x^{3} \right\}$$

Linear Transformations

$$T: V \to W$$
 satisfying
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

Constructing $\mathbf{A} = (T)_{B' \cup B}$:

Consider the map of
$$(\mathbf{v})_B = \mathbf{x}$$
 of $\mathbf{v} \in V$ to $(\mathbf{w})_{B'} = \mathbf{b}$ of $\mathbf{w} \in W$, where $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$.

$$T(\mathbf{v}) = \mathbf{w}$$

$$[T(\mathbf{v}_1) \cdots T(\mathbf{v}_n)] \mathbf{x} = \mathbf{W}\mathbf{b}$$

$$[(T(\mathbf{v}_1))_{B'} \cdots (T(\mathbf{v}_n))_{B'}] \mathbf{x} = \mathbf{b}$$

 $T:V\to W$ is an isomorphism between V and W if there exists a bijection between the two vector spaces. $\forall V : \dim(V) =$ $n:V\cong\mathbb{R}^n,\,\mathcal{M}_{mn}\cong\mathbb{R}^{mn}$ and $\mathscr{P}_n\cong$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Fundamental Subspaces of T

- The set of all vectors in V that map to W is the **image** of T, denoted im (T). •
- The set of all vectors in V that T maps to $\mathbf{0}_W$ is the **kernel** of T, denoted $\ker(T)$.

If finite, $\dim (\operatorname{im} (T)) = \operatorname{rank} (T)$ and $\dim (\ker (T)) = \text{nullity} (T).$

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V).$

Inner Product Spaces

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}.$$

For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $k \in \mathbb{R}$:

- Symmetry: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- Linearity:

$$\langle \mathbf{u} + \mathbf{v}, \ \mathbf{w} \rangle = \langle \mathbf{u}, \ \mathbf{w} \rangle + \langle \mathbf{v}, \ \mathbf{w} \rangle$$

- Positive semi-definitiveness:

$$\langle \mathbf{u}, \, \mathbf{u} \rangle \ge 0, \, \langle \mathbf{u}, \, \mathbf{u} \rangle = 0 \iff \mathbf{u} = \mathbf{0}$$

- $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\top} \mathbf{v}$. $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{A} \mathbf{v}$ where \mathbf{A} is SPD.

For $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{mn}$:

• $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{Tr}(\mathbf{A}^{\top}\mathbf{B}).$

For $f, g \in C([a,b])$:

- $\langle f, g \rangle = \int_a^b f(x) g(x) dx$
- $\langle f, g \rangle = \int_a^b f(x) g(x) w(x) dx$

where $w(x) > 0 : \forall x \in [a, b]$.

Norms

- $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- $\|\mathbf{v}\| \ge 0$, and $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$.
- $||k\mathbf{v}|| = |k|||\mathbf{v}|| : \forall k \in \mathbb{R}.$
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Examples:

- $\forall \mathbf{A} \in \mathcal{M}_{mn} : \|\mathbf{A}\| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$
- $\forall f \in C([a,b]) : ||f|| = \sqrt{\int_a^b f(x)^2 dx}.$

Orthogonality

$\langle \mathbf{v}, \mathbf{v} \rangle = 0.$

Orthogonal Complements of \mathcal{M}_n

The set of all
$$m \times n$$
 matrices \mathcal{M}_{mn} Consider the map of $(\mathbf{v})_B = \mathbf{x}$ of $\mathbf{v} \in V$ Given $\mathbf{P}_{\mathcal{S}_n} = \operatorname{proj}_{\mathcal{S}_n}$ and $\mathbf{P}_{\mathcal{K}_n} = \operatorname{proj}_{\mathcal{K}_n}$ with matrix addition and scalar matrix to $(\mathbf{w})_{B'} = \mathbf{b}$ of $\mathbf{w} \in W$, where $B = \mathbf{P}_{\mathcal{S}_n} = \mathbf{I} - \mathbf{P}_{\mathcal{K}_n}$

$$\mathbf{S} = \mathbf{P}_{\mathcal{S}_n} \mathbf{M} = \mathrm{proj}_{\mathbf{P}_{\mathcal{S}_n}} \left(\mathbf{M} \right) = \frac{\mathbf{M} + \mathbf{M}^\top}{2}$$

$$\begin{split} \mathbf{K} &= \mathbf{P}_{\mathcal{K}_n} \mathbf{M} = \mathrm{proj}_{\mathbf{P}_{\mathcal{K}_n}} (\mathbf{M}) = \frac{\mathbf{M} - \mathbf{M}^\top}{2} \\ \mathbf{S} &\in \mathcal{S}_n, \, \mathbf{K} \in \mathcal{K}_n, \, \mathrm{and} \, \mathbf{S} + \mathbf{K} = \mathbf{M} \in \mathcal{M}_n. \end{split}$$

Theorems

- A^TA is always positive semi-definite, and $\mathcal{N}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{N}(\mathbf{A})$ so that $\operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{rank}(\mathbf{A}).$ $\mathbf{A}^{\top}\mathbf{A}$ is positive definite and $\mathbf{A}^{\top}\mathbf{A}$ is invertible when nullity $(\mathbf{A}) = 0$.
- When **A** is square and invertible, $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1} = \mathbf{A}^{-1}\mathbf{A}^{-\mathsf{T}} \text{ and } \mathbf{P} = \mathbf{I}$ otherwise $\mathbf{P} = \mathbf{Q}\mathbf{Q}^{\top}$ using QR.
- $\mathbf{P}^2 = \mathbf{P} \wedge \mathbf{P}^{\top} = \mathbf{P} \iff \mathbf{P} = \operatorname{proj}_{\mathcal{C}(\mathbf{P})}.$ $\mathbf{P}\mathbf{v} = \mathbf{P}^2\mathbf{v} \iff \lambda\mathbf{v} = \lambda^2\mathbf{v} \text{ implies}$ $\lambda = 0, 1.$
- $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ share eigenvalues,

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

$$(\mathbf{A}\mathbf{A}^{\top})(\mathbf{A}\mathbf{v}) = \lambda(\mathbf{A}\mathbf{v}).$$

 $\mathbf{A}\mathbf{v} = \mathbf{0} \implies \lambda = 0$, else $\mathbf{w} = \mathbf{A}\mathbf{v}$ is an eigenvector of $\mathbf{A}\mathbf{A}^{\top}$.

• For symmetric $\mathbf{S} \in \mathbb{R}^{n \times n}$:

$$\begin{split} \mathbf{S} &= \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=1}^n \lambda_i \operatorname{proj}_{\mathbf{q}_i} \\ \bullet \ \, \text{For} \,\, \mathbf{W} &= \mathbf{w} \in \mathbb{R}^{n \times 1} \end{split} :$$

$$\mathbf{W} = \left[\hat{\mathbf{w}}\right] \left[\|\mathbf{w}\| \right] \left[1 \right]$$
$$\mathbf{W}^{\dagger} = \hat{\mathbf{w}}^{\top} / \|\mathbf{w}\|$$

Identities

- $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$.
- $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ if \mathbf{A} , \mathbf{B} invertible.
- $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$ if **A** invertible:

$$\mathbf{A}^{ op} (\mathbf{A}^{-1})^{ op} = (\mathbf{A}^{-1}\mathbf{A})^{ op} = \mathbf{I}$$

$$(\mathbf{A}^{-1})^{\top} \mathbf{A}^{\top} = (\mathbf{A}\mathbf{A}^{-1})^{\top} = \mathbf{I}$$

• $\langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^{\top}\mathbf{y} \rangle$:

$$\left(\mathbf{A}\mathbf{x}\right)^{\top}\mathbf{y} = \mathbf{x}^{\top}\left(\mathbf{A}^{\top}\mathbf{y}\right)$$

- $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$.
- If **A** is triangular, $\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}$.
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

$$\det\left(\mathbf{A}\right) = \prod_{i=1}^{n} \lambda_{i}$$

$$\det \left(\mathbf{A}^{\top} \mathbf{A} \right) = \det \left(\mathbf{A} \right)^2 = \prod_{i=1}^n \sigma_i^2$$

• For $\mathbf{A} \in \mathbb{R}^{m \times n}$:

$$\operatorname{Tr}(\mathbf{A}^{\top}\mathbf{A}) = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}^{2}$$
$$= \sum_{i=1}^{n} \sigma_{i}^{2}$$

$$\det\left(\mathbf{A}^{\top}\mathbf{A}\right) = \prod_{i=1}^{n} \sigma_{i}^{2}$$