G RESPOSTAS DOS EXERCÍCIOS

CAPITULO 2

2.4.1)

a)

NÚMERO DE VITÓRIAS DE ALGUNS PILOTOS DE FÓR-MULA 1 - 2005

WIOLA 1 - 2003		
PILOTO	NÚMERO DE VITÓRIAS	
Michael Schumacher	83	
David Couthard	13	
Jacques Villeneuve	11	
Rubens Barrichello	9	
Kimi Raikkonen	9	

FONTE: Site oficial da Fórmula 1

b)

DESEMPENHO DA POUPANÇA NOS ÚLTIOS DEZ ANOS

ANO	RENTABILIDADE		
ANU	Anual Nominal	Anaul	
1999	12,75	3,50	
2000	8,32	2,21	
2001	8,63	0,89	
2002	9,27	-2,90	
2003	11,21	1,75	
2004	8,10	0,46	
2005	9,21	3,33	
2006	8,40	5,10	
2007	7,77	3,17	
2008	7,90	1,89	

FONTE: Consultoria Economática

Os valores estão emporcentagem. No valor da Renta bilidade Anual Nominal não está descontada ainflação, no valor da Rentabilidade Anual está descontada a in - flação (IPCA)

c)

TESTE DE DETERIORIZAÇÃO DE LEGUMES, EMBALADOS À VÁCUO, MANTIDOS A UMA TEMPERATURA DE 10 GRAUS CELSIOS NA EMBALAGEM ESPECIAIS LTDA – JANEIRO DE 2002

	NEIR	KO DE 2003	
	DIAS		LEGUMES DETE- RIORADOS
4	─	13	27
13	<u> </u>	22	21
22	-	31	19
31	<u> </u>	40	16
40	· 	49	25
49	<u> </u>	58	42
58	·	67	53
67	⊢—	76	38
76		85	9
			250

FONTE: Laboratórios de teste da empresa

d)

POPULAÇÃO RESIDENTE, RURAL E URBANA, NA RE-GIÃO SUDESTE DO BRASIL - 1991

ESTADOS	HABITANTES	
ESTADOS	Rural	Urbana
Minas Gerais	5 906	16 406
Rio de Janeiro	656	16 406
São Paulo	3 281	40 031
Espírito Santo	1 313	2 625

FONTE: Não informada

e)

COMPONENTES DANIFICADOS POR PERÍODO DE DIAS – 2000 A 2001

		1000 A 2001	
	DIAS		COMPONENTES
307	—	354	9
354	⊢	401	25
401	⊢	448	23
448	—	495	9
495	—	542	15
542	⊢	589	8
589	⊢	636	31
636	—	683	36
683	—	730	20
			176

FONTE: Departamento de Controle de Qualidade da empresa

f)

DISTRIBUIÇÃO ACUMULADA EM SALÁRIOS MÍNIMOS DA FMPRESA – 2001

EIVIPRESA – 2001			
	DIAS		COMPONENTES
0	<u> </u>	6	304
6	<u> </u>	12	502
12	<u> </u>	18	669
18	_	24	761
24	<u> </u>	30	821
30	<u> </u>	36	852
36	<u> </u>	42	867

FONTE: Departamento de Recursos Humanos da empresa

g)

TEMPERATURA MÉDIA EM GRAUS CELSOS NA REGIÃO METROPOLITANA DE BELO HORIZONTE - 2000

IVIL TROPOLITAINA DE BELO HORIZOINTE - 2000		
MÊS	TEMPERATURA	
Janeiro	37,50	
Fevereiro	35,00	
Março	32,50	
Abriu	26,25	
Maio	17,50	
Junho	15,00	
Julho	12,50	
Agosto	18,75	
Setembro	21,25	
Outubro	27,50	
Novembro	30,00	
Dezembro	32,50	

FONTE: Instituto de Meteorologia de Minas Gerais

2.4.2)

a)

b)

c)

CAPITULO 3

3.4.1)

CLASSES		fi
<u> </u>	26	5
—	37	10
<u> </u>	48	9
—	59	9
	70	6
<u> </u>	81	8
	92	3
		50
	CLASSES	26 37 48 59 70 81

b)

	CLASSES		fi
39,4		47,5	2
47,5	—	55,6	10
55,6	—	63,7	10
63,7	<u> </u>	71,8	10
71,8	—	79,9	8
79,9	<u> </u>	88,0	14
88,0	_	96,1	9
			63

C)

۷,			
	CLASSES		fi
4	—	6	6
6	—	8	13
8	—	10	27
10	—	12	18
12	—	14	7
14	—	16	1
16	—	18	1
			73

d)

	CLASSES		fi
0,6796	—	9,7826	2
9,7826	—	18,8856	10
18,8856	<u> </u>	27,9886	20
27,9886	_	37,0916	38
37,0916		46,1946	37
46,1946		55,2976	17
55,2976	· —	64,4006	8
64,4006	•	73,5036	1
			133

e)

	Classes		fi
27		33	26
33	<u> </u>	39	25
39		45	17
45		51	19
51		57	27
57		63	16
63		69	15
69		75	8
			153

f)

	CLASSES		fi
18		21	27
21		24	19
24		27	22
27		30	18
30		33	16
33	——	36	4
36		39	1
			107

g)

	CLASSES		fi
1,65		4,65	8
4,65	⊢—	7,65	13
7,65		10,65	19
10,65		13,65	15
13,65		16,65	4
16,65		19,65	1
19,65		22,65	2
			62

h)

	CLASSES		fi
0,16	—	3,16	22
3,16		6,16	24
6,16		9,16	8
9,16		12,16	6
12,16		15,16	1
15,16	——	18,16	1
			62

3.4.2)

Distribuição A:

	Classes		f_i	fr_i	F_i	Fr_i	F_i	Fr_i
4		13	9	0,127	9	0,127	71	1,000
13	I	22	5	0,07	14	0,197	62	0,873
22	I	31	7	0,098	21	0,295	57	0,803
31	I	40	4	0,056	25	0,351	50	0,705
40	I	49	19	0,268	44	0,619	46	0,649
49	1	58	11	0,155	55	0,774	27	0,381
58	1	67	8	0,113	63	0,887	16	0,226
67	I	76	2	0,028	65	0,915	8	0,113
76	I	85	6	0,085	71	1,000	6	0,085
			71	1,000				

Distribuição B:

	•						
Cl	asses	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
2	13	6	0,069	6	0,069	87	1,000
13	24	5	0,058	11	0,127	81	0,931
24	35	12	0,138	23	0,265	76	0,873
35	46	19	0,218	42	0,483	64	0,735
46	57	11	0,126	53	0,609	45	0,517
57	68	17	0,195	70	0,804	34	0,391
68	79	3	0,035	73	0,839	17	0,196
79	90	6	0,069	79	0,908	14	0,161
90	101	8	0,092	87	1,000	8	0,092
		87	1.000				

Distribuição C:

-							
Classe	25	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
6	19	2	0,042	2	0,042	48	1,000
19	32	7	0,146	9	0,188	46	0,958
32	45	4	0,083	13	0,271	39	0,812
45	58	9	0,187	22	0,458	35	0,729
58	71	3	0,063	25	0,521	26	0,542
71	84	9	0,187	34	0,708	23	0,479
84	97	5	0,104	39	0,812	14	0,292
97	110	1	0,021	40	0,833	9	0,188
110	123	8	0,167	48	1,000	8	0,167
		48	1,000				

Distribuição D:

	Classes		f_i	fr_i	F_i	Fr_i	F_i	Fr_i
2		10	27	0,2389	27	0,2389	113	1,0000
10	I	18	8	0,0708	35	0,3097	86	0,7611
18	1	26	4	0,0354	39	0,3451	78	0,6903
26	1	34	5	0,0443	44	0,3894	74	0,6549
34	1	42	19	0,1681	63	0,5575	69	0,6106
42	1	50	13	0,1150	76	0,6725	50	0,4425
50	1	58	28	0,2478	104	0,9203	37	0,3275
58	1	66	3	0,0266	107	0,9469	9	0,0797
66	1	74	6	0,0531	113	1,0000	6	0,0531
			113	1,0000				

Distribuição E:

Classes	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
2,0 3,3	7	0,036	7	0,036	193	1,000
3,3 4,6	11	0,057	18	0,093	186	0,964
4,6 5,9	21	0,109	39	0,202	175	0,907
5,9 7,2	29	0,150	68	0,352	154	0,798
7,2 8,5	44	0,228	112	0,580	125	0,648
8,5 9,8	33	0,171	145	0,751	81	0,420
9,8 11,1	26	0,135	171	0,886	48	0,249
11,1 12,4	18	0,093	189	0,979	22	0,114
12,4 13,7	4	0,021	193	1,000	4	0,021
	193	1,000				

Distribuição F:

Classes	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
1,00 3,05	26	0,10	26	0,10	251	1,00
3,05 5,10	35	0,14	61	0,24	225	0,90
5,10 7,15	39	0,15	100	0,39	190	0,76
7,15 9,20	21	0,08	121	0,47	151	0,61
9,20 11,25	27	0,11	148	0,58	130	0,53
11,25 13,30	14	0,06	162	0,64	103	0,42
13,30 15,35	29	0,12	191	0,76	89	0,36
15,35 17,40	33	0,13	224	0,89	60	0,24
17,40 19,45	27	0,11	251	1,00	27	0,11
	251	1,00				

Distribuição G:

Classes	fi	fr_i	F_i	Fr_i	F_i	Fr_i
0,20 0,2	7 5	0,023	5	0,023	219	1,000
0,27 0,3	4 19	0,087	24	0,11	214	0,977
0,34 0,4	1 38	0,173	62	0,283	195	0,89
0,41 0,4	8 61	0,278	123	0,561	157	0,717
0,48 0,5	5 44	0,201	167	0,762	96	0,439
0,55 0,6	2 49	0,224	216	0,986	52	0,238
0,62 0,6	9 3	0,014	219	1,000	3	0,014
	219	1,000				

Distribuição H:

Classes		f_i	fr_i	F_i	Fr_i	F_i	Fr_i
2,8	8,1	1	0,007	1	0,007	137	1,000
8,1	13,4	11	0,080	12	0,087	136	0,993
13,4	18,7	21	0,153	33	0,240	125	0,913
18,7	24,0	31	0,226	64	0,466	104	0,760
24,0	29,3	28	0,204	92	0,670	73	0,534
29,3	34,6	18	0,132	110	0,802	45	0,330
34,6	39,9	13	0,095	123	0,897	27	0,198
39,9	45,2	6	0,044	129	0,941	14	0,103
45,2	50,5	8	0,059	137	1,000	8	0,059
		137	1,000		,		

Distribuição I:

	Classes		f_i	fr_i	F_i	Fr_i	F_i	Fr_i
6		14	2	0,017	2	0,017	119	1,000
14	I	22	29	0,244	31	0,261	117	0,983
22	I	30	13	0,109	44	0,370	88	0,739
30		38	21	0,176	65	0,546	75	0,630
38	I	46	26	0,219	91	0,765	54	0,454
46	I	54	18	0,151	109	0,916	28	0,235
54	I	62	9	0,076	118	0,992	10	0,084
62	I	70	1	0,008	119	1	1	0,008
			119	1,000				

Distribuição J:

Classe	25	fi	fr_i	F_i	Fr_i	F_i	Fr_i
3	22	3	0,027	3	0,027	113	1,000
22	41	15	0,133	18	0,160	110	0,973
41	60	23	0,203	41	0,363	95	0,840
60	79	24	0,212	65	0,575	72	0,637
79	98	19	0,168	84	0,743	48	0,425
98	117	13	0,115	97	0,858	29	0,257
117	136	8	0,071	105	0,929	16	0,142
136	155	2	0,018	107	0,947	8	0,071
155	174	6	0,053	113	1,000	6	0,053
		113	1,000				

Distribuição K:

-							
Classes	;	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
0,3	5,0	16	0,119	16	0,119	134	1,000
5,0	9,7	5	0,037	21	0,156	118	0,881
9,7	14,4	18	0,134	39	0,290	113	0,844
14,4	19,1	19	0,142	58	0,432	95	0,710
19,1	23,8	34	0,254	92	0,686	76	0,568
23,8	28,5	27	0,202	119	0,888	42	0,314
28,5	33,2	4	0,030	123	0,918	15	0,112
33,2	37,9	8	0,060	131	0,978	11	0,082
37,9	42,6	3	0,022	134	1,000	3	0,022
		134	1,000				

Distribuição L:

-							
Classes		fi	fr_i	F_i	Fr_i	F_i	Fr_i
13,3	20,2	6	0,0561	6	0,0561	107	1,0000
20,2	27,1	15	0,1402	21	0,1963	101	0,9439
27,1	34,0	13	0,1215	34	0,3178	86	0,8037
34,0	40,9	21	0,1962	55	0,5140	73	0,6822
40,9	47,8	17	0,1589	72	0,6729	52	0,4860
47,8	54,7	14	0,1308	86	0,8037	35	0,3271
54,7	61,6	9	0,0841	95	0,8878	21	0,1963
61,6	68,5	4	0,0374	99	0,9252	12	0,1122
68,5	75,4	8	0,0748	107	1,0000	8	0,0748
		107	1,0000				

Distribuição M:

	Classes		fi	fr_l	F_i	Fr_i	F_i	Fr_i
4		11	2	0,009	2	0,009	215	1,000
11	I	18	12	0,056	14	0,065	213	0,991
18	I	25	22	0,102	36	0,167	201	0,935
25	I	32	62	0,288	98	0,455	179	0,833
32	I	39	39	0,182	137	0,637	117	0,545
39	I	46	43	0,200	180	0,837	78	0,363
46	I	53	18	0,084	198	0,921	35	0,163
53	I	60	11	0,051	209	0,972	17	0,079
60	I	67	6	0,028	215	1,000	6	0,028
			215	1,000				

Distribuição N:

Classes	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
1,73 3,78	1	0,007	1	0,007	133	1,000
3,78 5,83	7	0,053	8	0,060	132	0,993
5,83 7,88	9	0,068	17	0,128	125	0,940
7,88 9,93	23	0,173	40	0,301	116	0,872
9,93 11,98	26	0,195	66	0,496	93	0,699
11,98 14,03	35	0,263	101	0,759	67	0,504
14,03 16,08	13	0,098	114	0,857	32	0,241
16,08 18,13	4	0,03	118	0,887	19	0,143
18,13 20,18	15	0,113	133	1,000	15	0,113
	133	1,000				

Distribuição O:

Classes	f_i	fr_i	F_i	Fr_i	F_i	Fr_i
11,8 39,5	12	0,1062	12	0,1062	113	1,0000
39,5 67,2	15	0,1327	27	0,2389	101	0,8938
67,2 94,9	23	0,2035	50	0,4424	86	0,7611
94,9 122,6	21	0,1858	71	0,6282	63	0,5576
122,6 150,3	7	0,0620	78	0,6902	42	0,3718
150,3 178,0	4	0,0354	82	0,7256	35	0,3098
178,0 205,7	8	0,0708	90	0,7964	31	0,2744
205,7 233,4	14	0,1239	104	0,9203	23	0,2036
233,4 261,1	9	0,0797	113	1,0000	9	0,0797
	113	1,0000				

CAPITULO 5

5.12.1)

a)
$$\overline{x} = 68,335$$

 $\overline{x}_q = 68,40001$
 $\overline{x}_h = 68,20459$
 $\overline{x}_g = 68,26987$
 $Mo = 68,3$
 $Md = 68,3$
 $Q_1 = 66,3$
 $Q_3 = 70,075$

b)
$$\overline{x} = 63,195$$

 $\overline{x}_q = 63,25294$
 $\overline{x}_h = 63,07813$
 $\overline{x}_g = 63,13672$
 $Mo = 63,4$
 $Md = 63,35$
 $Q_l = 61,375$
 $Q_s = 64,85$

c)
$$\overline{x} = 79,2$$
 $\overline{x}_q = 79,69542$
 $\overline{x}_h = 78,34215$
 $\overline{x}_g = 78,75227$
 $Mo = 75$
 $Md = 77,5$
 $Q_1 = 74$
 $Q_3 = 82,75$

d)
$$\overline{x} = 2687,533$$

 $\overline{x}_q = 2785,897$
 $\overline{x}_h = 2202,963$
 $\overline{x}_g = 2517,924$
 $Mo =$
 $Md = 2749$
 $Q_t = 2364,5$
 $Q_s = 3207$
e) $\overline{x} = 0,856037$

e)
$$\overline{x} = 0.856037$$

 $\overline{x}_q = 0.857028$
 $\overline{x}_h = 0.85408$
 $\overline{x}_g = 0.855054$
 $Mo = 0.881$
 $Md = 0.855$
 $Q_1 = 0.825$
 $Q_3 = 0.881$

5.12.2)

Distribuição A

a)	$\overline{x} =$	42,97887324
b)	$\overline{x}_q =$	47,70858576
c)	$\overline{x}_h =$	27,47205154

d)
$$\overline{x}_g = 36,10204078$$

e)
$$Mo_{Bruta} =$$
 44,5 $Mo_{King} =$ 46,6

$$Mo_{Czuber} = 45,86956522$$

f)
$$Md = 44,97368421$$

g)
$$Q_1 =$$
 26,82142857 $Q_3 =$ 56,56818182

h)
$$D_2 =$$
 22,25714286

$$D_6 = 48,33684211$$

$$D_8 = 60,025$$

i)
$$C_5 = 7,55$$

 $C_{10} = 11,1$

$$C_{90} = 71,05$$

 $C_{95} = 79,675$

k)
$$s^2 =$$
 435,0531187

I)
$$e_1 = -0.13858961$$

$$\begin{array}{ccc} e_2 = & & -\text{0,286914079} \\ \text{m)} & k = & & \text{0,248096357} \end{array}$$

n)
$$CV_x = 0,485306511$$

Distribuição B

a) $\overline{x} =$

b)	$\overline{x}_q =$	55,83717606
c)	$\overline{x}_h =$	33,11296284
d)	$\overline{x}_g =$	43,01576419
e)	$Mo_{Bruta} =$	40,5
	$Mo_{King} =$	40,26086957
	$Mo_{Czuber} =$	40,13333333
f)	Md =	47,5
g)	$Q_1 =$	33,85416667
	$Q_3 =$	64,92647059
h)	$D_2 =$	29,86666667
	$D_6 =$	56.2

50,36206897

$$D_6 = 56,2$$
 $D_8 = 67,74117647$ i) $C_5 = 9,975$

$$C_{10} =$$
 18,94

$$C_{68} = 60,98588235$$

 $C_{90} = 88,71666667$

$$C_{95} = 95,01875$$

k)
$$s^2 = 588,2133119$$

l) $e_1 = 0,421749455$

	$e_2 =$	0,354024995
m)	k =	0,222655405
n)	$CV_{x} =$	0,48157492

Dis	tribuição C	
a)	$\overline{x} =$	66,6666667
b)	$\overline{x}_q =$	73,80181795
c)	$\overline{x}_h =$	47,55376347
d)	$\overline{x}_g =$	57,73448546
e)	$Mo_{Bruta} =$	51,5
	$Mo_{King} =$	50,57142857
	$Mo_{Czuber} =$	50,90909091
	$Mo_{Bruta} =$	77,5
	$Mo_{King} =$	79,125
	$Mo_{Czuber} =$	78,8
f)	Md =	66,6666667
g)	$Q_1 =$	41,75
	$Q_3 =$	89,2
h)	$D_2 =$	33,95
	$D_6 =$	76,48888889
	$D_8 =$	95,44
i)	$C_5 =$	19,74285714
	$C_{10} =$	24,2
	$C_{68} =$	82,03555556
	$C_{90} =$	115,2
	$C_{95} =$	119,1
j)	s =	31,99357205
k)	$s^2 =$	1023,588652
I)	$e_1 =$	-1,970471573
	$e_2 =$	0

5.12.3)

m) k =

n) $CV_{r} =$

- a) $\bar{x} = 36,42857143$ (meses)
- b) Md = 39,40828402 (meses)
- c) $Mo_{Czuber} = 41,06796117$ (meses)

0,260714286

0,479903581

- d) $C_{63} = 41,42751479$ (meses)
- e) $C_6 = 15,65217391$ (meses)
- f) P = 8,4%

5.12.4)

- a) $\bar{x} = 441,6568628$ (dias)
- b) $Mo_{Czuber} = 531,547619$ (dias)
- c) $C_{30} = 320,625$ (dias)
- d) ($C_{38,4313725} = 480,27777777$ dias)
- e) P = 32,19814241% (dias)

5.12.5)

a) Os resultados dependem a precisão da régua utilizada.

	Classes		fi
4		13	27
13		22	20
22		31	19
31		40	15
40		49	24
49		58	42
58		67	54
67		76	38
76		85	9
			248

b) $\bar{x} = 47,36693548$ (dias)

c) Mo = 61,85714286 (dias)

d) $\bar{x}_a = 52,0386023$ (dias)

e) s = 21,59327839 (dias)

f) P = 38,03763441%

g) Md = 53,07142857 (dias)

5.12.6)

a) $\bar{x} = 9,67015209$

b) Md = 8,404276986

c) $Mo_{King} = 6,58$

 $Mo_{Czuber} = 6,376221498$

d) s = 6,26994922

e) P = 64,27530283% (meses)

f) P = 85,98507252%

g) P = 96,78214336%

h) Folha = 16.675,345 s.m.

i) *Folha* = 16.466,864 *s.m.*

j) $\Delta = 9,27844949\%$

k) $\Delta = 7,912212065\%$

5.12.7)

a) Os valores dependem da precisão da régua utilizada

	Classes		fi
7		20	3
20		33	9
33		46	34
46		59	22
59		72	12
72		85	5
85		98	8
98		111	2
			95

b) $\bar{x} = 51,54210526$ (dias)

c) $Mo_{Cruber} = 41,78278278$ (dias)

d) P = 15,78947368% (dias)

e) P = 48,42105263% (dias)

5.12.8)

a)

NÚMERO DIÁRIO DE CLIENTES NÃO ATENDIDOS NA LOJA XYK – AGOSTO DE 2006

	CLIENTES		$DIAS\left(f_{i}\right)$
8	<u> </u>	10	2
10	<u> </u>	12	3
12		14	8
14	⊢—	16	11
16	<u> </u>	18	3
18	⊢—	20	1
20	⊢—	22	2
			30

NÚMERO DIÁRIO DE CLIENTES NÃO ATENDIDOS NA LOJA XYK – AGOSTO DE 2006

FONTE: Pesquisa realizada na própria loja

b)

VENDAS NÃO EFETUADAS NA LOJA XYK – AGOSTO DE 2006

2000				
	REAIS (R\$)		$CLIENTES\left(f_{i}\right)$	
25,0	<u> </u>	25,6	198	
25,6	⊢—	26,2	95	
26,2		26,8	44	
26,8		27,4	32	
27,4		28,0	17	
28,0		28,6	7	
28,6		29,2	10	
29,2	——	29,8	5	
29,8		30,4	3	
30,4		31,0	1	
			412	

FONTE: Pesquisa realizada na própria loja

c) O número médio de clientes não atendidos $\left(\overline{x}=14,4\right)$ sugere que devam ser contratados 5 vendedores, o valor médio de vendas não efetuadas diariamente $\left(R\$375,02\right)$ sugere que sejam contratados 5 vendedores. Assim, satisfazendo às duas variáveis, o gerente deve contratar 5 vendedores.

d)

Número Diário de Clientes Não Atendidos

 $Mo_{Bruta} = 15$

 $Mo_{King} = 14,54545455$

 $Mo_{Czuber} = 14,54545455$

 $Q_1 = 12,625$

 $Q_3 = 15,72727273$

 $C_{10} = 10,66666667$

$$C_{90} = 18$$

Vendas Não Efetuadas

$$Mo_{Bruta} = 25,3$$

$$Mo_{King} = 25,6$$

 $Mo_{Czuber} = 25,39468439$

 $Q_1 = 25,31212121$

 $Q_3 = 26,41818182$

 $C_{10} = 25,12484848$

 $C_{90} = 27,46352941$

5.12.9)

TESTE DE APARELHOS DA EMPRESA EM DIVERSAS TEMPAREATURAS - JANEIRO 2010

TEIVIPAREATORAS — JAINEIRO 2010				
	Classes		f _i	
7		20	10	
20	I	33	6	
33		46	28	
46	I	59	42	
59		72	36	
72		85	8	
85	I	98	15	
98	I	111	21	
			166	

- b) $\overline{x} = 61,19277108$
- c) Mo = 55.1
- d) p = 21,68674699%
- e) p = 46,98795181%
- f) p = 79,7034291%
- g) s = 24,92963811

5.12.10)

TESTE DE RUPTURA EM CINTOS DE SEGURANÇA

NA FIAT - DEZEMBRO DE 2002				
	Classes		f _i	
4		13	10	
13		22	5	
22		31	8	
31		40	3	
40		49	19	
49		58	13	
58		67	8	
67		76	2	
76		85	6	
			74	

FONTE: Laboratório de testes da FIAT

- b) $\bar{x} = 42,67567568$
- c) Mo = 46,54545455
- d) $C_{30} = 30,1$
- e) s = 20,96073178
- f) P = 0.36293722%
- g) P = 62,76276276%

5.12.11)

QUANTIDADE DE LÂMPADAS DA MARCA HFA ELE-TRIC QUEIMADAS APÓS HORAS DE FUNCIONA-

	MENTO CONTINUO - 2006				
<u> </u>		Classes		fi	
	50		120	3	
	120		190	10	
	190		260	34	
	260		330	24	
	330		400	11	
	400		470	7	
	470		540	8	
	540		610	3	
				100	

- b) $\bar{x} = 239,4117647$
- c) $C_{15} = 194,1176471$
- d) $\bar{x} = 293, 6$
- e) s = 113,4315083
- f) Deve ser escolhida a nova marca, pois apresenta maior média e a chance de que as lâmpadas durem até $\overline{x} + s \cong 293, 6 + 113, 4 \cong 407$ horas é maior em relação à marca antiga

CAPÍTULO 6

6.11.1)

- a) $\frac{1}{2}$
- b) $\frac{3}{4}$ c) $\frac{3}{4}$ d) 0

6.11.2)

- a) $\frac{7}{12}$

- b) $\frac{5}{12}$ c) $\frac{3}{4}$ d) $\frac{11}{12}$

6.11.3)

- a) 0,65 b) 0,60 c) 0,68
- d) 0,32

6.11.4)

- $\frac{7}{28}$
- e) $\frac{1}{4}$

- h) $\frac{78}{1326}$

6.11.5)

- b) $\frac{5}{50}$ c) $\frac{16}{50}$ d) $\frac{12}{50}$

- a) $\frac{3}{36}$ b) $\frac{4}{36}$ c) $\frac{6}{36}$ d) $\frac{3}{36}$ e) $\frac{5}{36}$

6.11.7) $\frac{8}{90}$

6.11.8) $\frac{20}{36}$

6.11.9)

- a) $\frac{56}{150}$ b) $\frac{25}{150}$ c) $\frac{3}{150}$

6.11.10)

- b) $\frac{6}{20}$ c) $\frac{18}{20}$ d) $\frac{9}{20}$

6.11.11) 0,76

6.11.12) 6 tiros

6.11.13) 0,58

6.11.14) 0,147

6.11.15)

a) $\frac{14}{16}$ b) $\frac{10}{16}$ c) $\frac{12}{16}$

6.11.16)

a) 45/120 b) 105/120 c) 91/120 d) 15/120

6.11.17

a) $\frac{28}{105}$ b) $\frac{56}{105}$

7.11.18)

a) $\frac{20}{165}$ b) $\frac{75}{165}$ c) $\frac{155}{165}$

6.11.19) 180/792

6.11.20) $\frac{C_{N_{v}\times}^{n_{v}}C_{N_{a}\times}^{n_{a}}C_{N_{p}}^{n_{p}}}{C_{N_{a}\times}^{n_{v}}C_{N_{p}}^{n_{p}}}$

6.11.21) $\frac{70}{216}$

6.11.22) $\frac{x}{x+y} \times \frac{z+1}{z+v+1} + \frac{y}{x+y} \times \frac{z}{z+v+1}$

6.11.23)

a) $\frac{1}{30}$ b) $\frac{1}{30}$ c) $\frac{15}{20}$

6.11.24)

a) $\frac{41}{72}$ b) $\frac{26}{72}$

6.11.25) $\frac{x!y!}{(x+y)!}$

6.11.26)

a) $\frac{75}{540}$ b) $\frac{465}{540}$ c) $\frac{225}{540}$

6.11.27) $\frac{1176}{3003}$

6.11.28)

a) $\frac{5426}{6348}$ b) $\frac{1584}{6348}$ c) $\frac{891}{2002}$

6.11.29) $\frac{225}{1000}$

6.11.30) $\frac{5}{12}$

6.11.31)

a) $\frac{1}{2} \times \frac{x}{x+y} + \frac{1}{2} \times \frac{z}{z+y}$

b) $\frac{x}{x+y} \times \frac{z+1}{z+v+1} + \frac{y}{x+y} \times \frac{z}{z+v+1}$

b) $\frac{1}{15}$ c) 1 d) 0

e) $\frac{1}{15}$ f) 0 g) $\frac{2}{15}$ h) $\frac{1}{3}$ i) 0 k) 0 l) 0

6.11.33

a) $\frac{7}{12}$ b) $\frac{3}{4}$ c) $\frac{2}{4}$ d) 1 e) $\frac{5}{8}$ f) $\frac{5}{6}$

6.11.34)

a) $\frac{6}{40}$ b) $\frac{19}{40}$ c) $\frac{9}{19}$

6.11.35) $\frac{8}{14}$

6.11.36)

a) $\frac{42}{92}$ b) $\frac{50}{92}$

6.11.37) 10/19

6.11.38) 25/39

6.11.39) 8/35

6.11.40)

a) $\frac{42}{147}$ b) $\frac{1}{5}$

6.11.41) 95/545

6.11.42) 20/62

6.11.43) $\frac{8}{38}$

CAPÍTULO 7

7.9.1)

a)	
W	P(w)
-5	1/ /36
-4	$\frac{2}{36}$
-3	$\frac{3}{36}$
-2	4/ ₃₆
-1	5/ ₃₆
0	6/ /36
1	5/ ₃₆
2	4/ /36
3	3/ /36
4	$\frac{2}{36}$
5	1/ /36

b)	
Α	P(a)
2	$\frac{1}{6}$
4	$\frac{1}{6}$
6	$\frac{1}{6}$
8	$\frac{1}{6}$
10	$\frac{1}{6}$
12	1/6

c)	
Z	P(z)
1	$\frac{1}{36}$
2	$\frac{2}{36}$
3	$\frac{2}{36}$
4	$\frac{3}{36}$
5	$\frac{2}{36}$
6	$\frac{4}{36}$
8	$\frac{2}{36}$
9	$\frac{1}{36}$
10	$\frac{2}{36}$
12	4/ /36
15	$\frac{2}{36}$
16	$\frac{1}{36}$
18	$\frac{2}{36}$
20	$\frac{2}{36}$
24	$\frac{2}{36}$
25	$\frac{1}{36}$
30	$\frac{2}{36}$
36	$\frac{1}{36}$

7.9.2)
a)
$$\frac{105}{176}$$
 b) $\frac{21}{176}$

7.9.3)

a)		b)
Z	P(z)	F(z)
0	1/28	1/28
1	$\frac{1}{28}$	$\frac{2}{28}$
2	$\frac{2}{28}$	$\frac{4}{28}$
3	$\frac{2}{28}$	$\frac{6}{28}$
4	$\frac{3}{28}$	$\frac{9}{28}$
5	$\frac{3}{28}$	$\frac{12}{28}$
6	$\frac{4}{28}$	$\frac{16}{28}$
7	$\frac{3}{28}$	19/28
8	$\frac{3}{28}$	$\frac{22}{28}$
9	$\frac{2}{28}$	$\frac{24}{28}$
10	$\frac{2}{28}$	$\frac{26}{28}$
11	$\frac{1}{28}$	$\frac{27}{28}$
12	1/28	$\frac{28}{28}$

- 10/28
- d) $\frac{22}{28}$

7.9.4)

.7.4)		
a)		b) $\frac{4}{30}$
Х	P(x)	c) $\frac{17}{30}$
17	4/ ₃₀	(7) /30
18	$\frac{5}{30}$	
19	4/ ₃₀	
20	4/ ₃₀	
21	$\frac{3}{30}$	
22	4/30	
25	$\frac{6}{30}$	

7.9.5)

- a) $\mu_x = 1.8$ $\mu_y = 8.9$
- $\sigma_x = 0.9797958971$ b)
- $\sigma_{y} = 9,28977933$

7.9.6)

- a) Sim, pois o maior prêmio tem a maior probabilidade
- $\mu = 350$
- b) σ = 212,1320344

Apêndice G

7.9.7)

 $\mu = 2$

 $\sigma = 0,7071067812$

Mo = 2

7.9.8)

a) 16

b) 16

c) 22

d) 8

7.9.9)

 $\mu_L = 700g$

 $\sigma_L = 22,36067977$

7.9.10)

 $\mu_T = 340g$

 $\sigma_T = 7,158910532$

7.9.11)

 $\mu_L = $28,50$

 $\sigma_{I} = \$6,209669879$

7.9.12)

 $\mu_{v} = 3,2$

 $\sigma_{v} = 2,0880613$

7.9.13)

 $\mu_{v} = 1,26666667$

 $\sigma_{v} = 3,66606056$

7.9.14)

 $\mu_L = $15,2$

 $\sigma_L = $22,91200559$

7.9.15)

- a) 2199,84 b) 777897,4464
- c) 881,9849468

7.9.16) 9,34375

7.9.17) 0,048

7.9.18)

a)	
Χ	P(x)
0	0,857375
1	0,135375
2	0,007125
3	0,000125

b) 0,00725

7.9.19)

 $\mu = 1,625$

 $\sigma^2 = 0,734375$

7.9.20)

- a) 1,4
- b) 0,8

8.7.21) 8333,33

7.9.22)

- a) 2,13
- $\sigma^2 = 1,8131$ $\sigma = 1,346514018$
- c) 0,95
- d) 0,027

7.9.23) 1248

7.9.24) (*R*\$88,06; *R*\$97,19)

7.9.25) $\mu_V = R$1808,4$ $\sigma_V = 44,24$

7.9.26)

a)

Χ	P(X)	Υ	P(Y)
3	0,38	-3	0,40
5	0,27	-1	0,26
6	0,35	1	0,19
		2	0,15

- b) $\mu_x = 4,59$
- c) $\mu_{v} = -0.97$
- d) $E[X^2] = 22,77$
- e) $E[Y^2] = 4,65$
- f) E[XY] = -4,57
- g) $\sigma_x^2 = 1,7019$
- h) $\sigma_{v}^{2} = 3,7091$
- i) $\sigma_x = 1,30456889$
- j) $\sigma_{v} = 1,92590239$
- k) $COV_{xy} = -0.1177$
- I) $\rho_{xy} = -0.04684629$

7.9.27)

- a) $\rho_{xy} = 0.01347982$ b) $\rho_{xy} = 0.03988818$

- c) $\rho_{xy} = -0.05755924$ d) $\rho_{xy} = 0.16455009$
- e) $\rho_{xy} = -0.82941969$ f) $\rho_{xy} = -0.6414607$

7.9.28)

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x(3-x^2)}{2} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

7.9.29)

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^4}{4} & 0 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

7.9.30)

a)
$$\frac{1}{12}$$

b)

7.9.31)

a)
$$\frac{1}{6}$$
 b)

$$\begin{cases} 0 & x < 0 \\ \frac{x}{} & 0 \le x \end{cases}$$

$$F(x) = \begin{cases} \frac{x}{6} & 0 \le x < 2\\ \frac{1}{3} + \frac{x^2 - x}{6} & 2 \le x < 4 \end{cases}$$

7.9.32)

- a) $\frac{1}{6}$ C) $\frac{1}{2}$

7.9.33)

- a) $A = \frac{1}{500^2}$

7.9.34)

- a) $\frac{1}{2}$ b) 0 c) 0

7.9.35)

- - $g(x) = \frac{3}{2}x^2 + x$ $h(y) = \frac{3}{2}y^2 + y$
- b) 24
- c) 139 2880
- 139 2880
- d) 39 128
- e) $\rho = -0.036$

7.9.36)

- $g(x) = x + \frac{1}{2}$ $h(y) = y + \frac{1}{2}$

- b) 12
- 7 c) 12
- d)

7.9.37)

- a) 1 $\overline{\ln 2}$
- b) 1 $\frac{1}{\ln 2}$
- $\sqrt{2}$ c)
- d)
- 3 e) $\frac{1}{2 \ln 2} - \frac{1}{\ln^2 2}$

7.9.38)

- a) k = 12
- c) $4md^3 - 3md^4 = 0.5$
- d) 25

7.9.39)

- 3 c)

7.9.40)

- a)
- b) 1 $\overline{4}$
- c) 29 64
- d) 5
- Não e)
- __1 f) 64
- g) -0,21

7.9.41)

$$\frac{7}{8}$$

7.9.42)

- a) a = 0.35 b = 0.85
- b) 0,40625
- 7.9.43) $\rho = 0.21719877$

CAPÍTULO 8

8.3.1)

- a) 0,205078 b) 0,989257
- c) 0,000977 d) 0,999024
- e) 0,753906
- 8.3.2) 0,234375

8.3.3)

- a) 20 b) 80
- c) 20

8.3.4)

- a) 0,329218 b) 0,995885
- c) 0,790123

8.3.5)

- a) 0,329218 b) 0,087791
- 8.3.6) 0,000023

8.3.7)

- a) 0,005921 b) 0,139576 c) 1
- 8.3.8)
- a) 0,008100 b) 0,411600 c) 0,240100
- a) 0,052300 b) 0,048600

8.3.10)

a) 0,608253 b) 0,988747

8.3.11)

a) 0,918540 b) 0,32805

8.3.12) 0,906146

8.3.13) 0,252676

8.3.14)

a) 0,630186 b) 0,802889

c) 0,225199 d) $\mu = 60$ $\sigma^2 = 15$

8.3.15) 0,969674. Que as populações sejam independentes.

8.3.16)

Lucro	P(x)
R\$ 0,00	0,01
R\$ 1,80	0,01
R\$ 2.30	0.98

a) R\$ 2,27 b) R\$ 22.720,00

c) 0,999989

8.3.17) 0,098415

8.3.18)

a) 0,042181 b) 0,00475

c) 0,523591

8.3.19)

a) ,146974 b) 0,129337

c) 0,411527

8.3.20)

a) 0,121577 b) 0,285180

c) 0,000001 d) 0,867047

8.3.21)

a) 0,028248 b) 0,382782

c) 0,010592

8.3.22

a) 0,677800 b) 0,201327

8.3.23)

a) 0,044895 b) 0,016810

c) 1,000000

8.5.1)

a) 0,87810 b) 0,20190

8.5.2)

a) 0,22404 b) 0,57681

8.5.3)

a) 0,22404 b) 0,65771

8.5.4) 0,19537

8.5.5)

a) 0,01832 b) 0,07326

c) 0,14653 d) 0,90843

8.5.6)

a) 0,44933 b) 0,14379

8.5.7)

a) 0,27067 b) 0,18045

8.5.8)

a) 0,22404 b) 0,14936

c) 0,57681

8.5.9)

a) 0,00279 b) 0

8.5.10) 0,10569

8.5.11)

a) 0,11278 b) 0,22248

c) 0,10823

8.5.12)

a) 0,10326 b) 0,00065

8.5.13)

a) 0,36788 b) 0,06131

c) 0,56653

8.5.14) 0,19115

8.5.15)

a) 0,08208 b) 0,76190

8.5.16)

a) 0,97878 b) 0,00248

8.5.17)

a) 0,19915 b) 0,22313

8.5.18)

a) 0,26503 b) 0,11260

8.5.19)

a) 0,32929 b) 0,12190

8.5.20)

a) 0,08422 b) 0,25829

c) 0,93292 d) 0,018

8.5.21)

a) 0,08924 b) 0,1512

c) $\mu = 6$ $\sigma = 2,44948974$

8.5.22)

a) 0,02925 b) 0,12964

c) 0,00277

8.7.1) 0,084954

8.7.2) 0,002501

8.7.3) 0,169869

8.9.1) 0,583752

8.9.2) 0,487432

8.9.3)

- a) 0,964382
- b) 0,542941

8.9.4)

- a) 0,011854
- b) 0,407406
- C) 0,804454

8.9.5)

- a) $2,7 \times 10^{-7}$
- b) $5,31 \times 10^{-5}$
- c) 2.19×10^{-3}
- d) $1-2.7\times10^{-7}$

CAPÍTULO 9

9.2.1

- a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) 0
- d) 2,5 e) $\frac{3}{4}$

9.2.2)

- a) $\alpha=3$ b) $\not\equiv \alpha$
- c) $\alpha = 1,25$ d) $\not\exists \alpha > 0$
- 9.4.1) 0,105927
- 9.4.2) 0,395640
- 9.4.3) 0,451188

9.4.4)

- a) 0,1353353
- b) 0,367879
- c) 0,606531

9.7.1)

- a) 0,066807b) 0,226627
- c) 0,532807 d) 9,35 min

9.7.2)

 $15\% \Rightarrow$ menos de 4,0685kg

15% a 65% \Rightarrow 4,0685kg a 5,3465kg

65% a 85% \Rightarrow 5,3465kg a 5,9315kg

 $85\% \text{ a } 100\% \implies \text{mais de } 5,9315kg$

9.7.3)

- a) 0,433193 b) 0,532807

- c) 0,022750 d) 0,066807

9.7.4)

- a) 0,841345
- b) 0,009772

9.7.5)

- a) 0,532807
- b) 0,202888
- c) 0,226627
- d) 0,158655

9.7. 6)

- a) 0,006210
- b) 0,788700

9.7.7)

- b) 0,875375
- c) 0,084566

9.7.8)

a) 0,091848

a) 0,040059

b) 66,807 empregados

9.7.9)

- a) 0,158655
- b) 0,002020
- c) 0,455383
- d) 0,841345

9.7.10)

- a) 3,9630%
- b) 10,6566%
- c) US\$ 32634

9.7.11)

- a) 0,006947 b) 0,061780
- c) 810,5

9.7.12)

- a) 0,722329 b) 19,32875
- c) 0,013209

9.7.13)

- a) 0,022750 b) 0,285788
- c) 9,5193 estudantes

9.7.14)

- a) 19,0787% b) 17,3994% c) 62,9377% d) 37,0623%
- e) $Q_1 = 366$ $Q_3 = 474$

9.7.15)

- 9.7.15; a) 0,409062
- b) 0,067717 d) 750,185
- c) 24,9815% e) 60,08 milhas

9.7.16)

- a) 5,85106383
- b) 24,6672%

9.7.17).

- a) 146,917226
- b) 21,02908277
- c) 0,557644

9.7.18)

- a)2397,252747
- b) 1895,604396

c)0,215714

- 9.7. 19)
- a) 0,3921%
- b) Sim

9.7.20)

- a) 0,999146
- b) 0,866500
- c) 0,013209
- d) 0
- e) 775,975

9.7.21)

- a) 381,8712 estudantes b) 388,8162 estudantes
- 9.7.22) 55,375 e 88,525

9.7.23)

- a) 0,841345
- b) 0,774538

9.7. 24)

- a) 0,001350
- b) 0,721086

9.7.25)

a) 0,353049 b) 51,375

9.7.26) 0,370700

9.7.27)

a) 0,063630 b) 0,648027

9.7.28) 0,395505

9.7.29)

a) 279,9579 b) 47,5965 c) 114,8772 d) 28,5788%

e) 187,8 f) 168,25

9.7.30)

a) 90,4088 b) 45,2044%

c) 97,295 d) 92,705 a 109,805

9.7.31)

 Conceito
 Nota

 A+
 $X \ge 92.8$

 A
 $85,25 \le X < 92.8$

 B+
 $74,75 \le X < 85,25$

 B
 $69,65 \le X < 85,25$

 C
 X < 69,65

9.7.32)

a) 68,269% b) 95,45% c) 99,73% d)

C) 99,7370

a) 372,05 b) 0,055356

9.7.34)

9.7.33)

a) 2,41% b) 0,27455 a 0,32545

9.7.35)

a) 0,994942 b) 0,700208

c) 0,032884 d) 648,56

9.7.36)

a) 0,477250 b) 0,337776

c) 0,184423

9.7.37) 0,137857

9.7.38) 0,221954

9.7.39)

a) 0,003849 b) 8,0757%

9.7.40) 0,217695

9.7.41)

a) 0,017864 b) 1250,48

9.7.42) 0,255817

9.7.43) 96,2217%

CAPÍTULO 10

10.5.1)

a) 0,001641 b) 0,975002

c) 0,811459

10.5.2)

a) 0,966156

b) 0,927165

10.5.3)

a) 0,097660 b) 0,548635

c) 0,984614

10.5.4)

a) 0,458138

b) 1

b) 0,7

10.5.5) 11,7023% das amostras

10.5.6) $IC(\mu; 90\%) = (110; 114)$

10.5.7) $IC(\mu; 94\%) = (1459; 1725)$

10.5.8) $IC(\mu; 99\%) = (1,55;1,79)$

10.5.9)

a) 0,35714286

c) $IC(\mu;95\%) = (21,90;23,30)$

10.5.10)

a) $IC(\mu; 90\%) = (3,42;4,20)$

b) Menor

10.5.11) $IC(\mu; 99\%) = (58, 86; 61, 96)$

10.5.12) 95,915%

10.5.13) 93,496%

10.5.14)

a) 1,4

b) $IC(\mu;95\%) = (US\$ 23,40;US\$ 26,20)$

10.5.15) $IC(\mu;95\%) = (8,1;8,9)$

10.5.16)

a) $IC(\mu;90\%) = (18,4;20,6)$

b) $IC(\mu;95\%) = (18,2;20,8)$

10.5.17) $IC(\mu;97\%) = (4,3,5,3)$. Sim. Em 97% das amostras os estudantes concluem seu curso com no mínimo 4,3 amos.

10.5.18) $IC(\mu;99\%) = (34,6;39,6)$. Sim

10.5.19) $IC(\mu; 98\%) = (55, 4; 61, 2)$. Sim

10.5.20) $IC(\mu;96\%) = (133,7;211,3)$. É muito improvável se conhecer o desvio padrão populacional uma vez que não se conhece a média populacional.

10.5.21) $IC(\mu;99\%) = (5,61161;5,66699)$. O processo produz moedas dentro das especificações.

10.5.22) $IC(\mu;95\%) = (-0,2;1,4)$. A previsão é boa, pois apresenta uma variação pequena, além do intervalo conter o valor 0 (zero).

10.5.23)
$$IC(\mu;95\%) = (3003;3203)$$

10.5.24) $IC(\mu;99\%) = (98,05;98,35)$. Não. A amostra sugere que o valor de 98,6°F é maior do que o normal.

10.5.25)

- a) $IC(\mu; 99\%) = (-3,3;0,7)$
- Sim. Sim, pois maior parte do intervalo é negativo confirmando que a temperatura real é menor do que a prevista.

10.5.26)

- a) $IC(\mu;95\%) = (65,9;72,9)$
- b) $IC(\mu;95\%) = (72,4;80,2)$

10.5.27)

- a) $IC(\mu;95\%) = (0.82224;0.82596)$
- b) $IC(\mu;95\%) = (0,78248;0,78532)$

10.5.28)

- a) $IC(\mu;95\%) = (5,2;5,8)$
- b) 99,99%

10.5.29)
$$IC(\mu; 87\%) = (7,0;13,0)$$

10.5.30)
$$IC(\mu; 99\%) = (-2, 03; 2, 43)$$

10.5.31)
$$IC(\mu; 95\%) = (135; 145)$$

10.5.32)

- a) $IC(\mu;95\%) = (2,7;3,1)$
- b) 68,269%

10.5.33)

- a) $IC(\mu; 80\%) = (174,1; 201,7)$
- b) 95,915%

10.5.34)
$$IC(\mu; 90\%) = (\$41167; \$44313)$$

10.5.35)
$$IC(\mu;95\%) = (1,83;2,97)$$

10.5.36)
$$IC(\mu;98\%) = (62,52;65,18)$$

10.5.37)
$$IC(\mu; 93\%) = (129,1;138,8) mmHg$$

10.5.38)
$$IC(\mu;99\%) = (1,56;1,87)g$$

10.5.39)
$$IC(\mu; 95\%) = (10, 2; 13, 8)$$

10.5.40)
$$IC(\mu;95\%) = (7;33)$$

10.5.41)
$$IC(\mu; 90\%) = (14,7;16,5)$$

10.5.42)
$$IC(\mu;95\%) = (R\$ 4204,66;R\$ 5195,34)$$

10.5.43)
$$IC(\mu;93\%) = (6,29;6,76)$$

10.5.44)
$$IC(\mu;95\%) = (3,27;4,57)$$

10.5.45)

b)
$$IC(\mu;97\%) = (2,86;4,74)$$

10.5.46)

- a) $IC(\mu;95\%) = (164;186)$ b) $IC(\mu;95\%) = (111;137)$
- c) O limite superior do Intervalo de Confiança (186 batimentos por minuto)

10.5.47) $IC(\mu;95\%) = \left(-0,471;3,547\right)$. O valor negativo, pois não existe peso negativo. Todavia deve-se considerar que as medidas foram obtidas após um evento catastrófico atípico.

10.5.48)
$$IC(\mu; 95\%) = (42, 6; 46, 4)$$

10.5.49)
$$IC(\mu;99\%) = (589,7;731,0)$$
. Sim.

10.5.50)
$$IC(\mu;98\%) = (0,075;0,168)$$

10.5.51)

a)
$$IC(\mu;97\%) = (125,3;132,0)$$
 b) $IC(\mu;97\%) = (129,7;136,9)$

A evolução humana demonstrou que com o passar do tempo o crânio humano cresceu em função do desenvolvimento do cérebro.

10.5.52)

a)
$$IC(p;96\%) = (0,718;0,882)$$
 b) 0,0882

10.5.53)
$$IC(p;90\%) = (0,008;0,072)$$

10.5.54)
$$IC(p;95\%) = (36,080\%;43,920\%)$$

10.5.55)
$$IC(p;99\%) = (0,486;0,614)$$

10.5.56)

b)
$$IC(p;90\%) = (0,664;0,717)$$

10.5.57)
$$IC(p;95\%) = (0,529;0,694)$$

10.5.58) 54,975%

10.5.59)

a)
$$IC(p;99\%) = (0,184;0,427)$$
 b

b) Menor

10.5.60)
$$IC(p;80\%) = (0,272;0,395)$$

10.5.61) 83,998%

10.5.62)

a)
$$IC(p;99\%) = (0,441;0,517)$$
 b) 84,728%

10.5.63)
$$IC(p;95\%) = (0,412;0,597)$$

10.5.64)

a) IC(p;95%) = (0,658;0,782)

b) IC(p;95%) = (0,218;0,342)

10.5.65) IC(p;99%) = (0,866;0,949). Sim, pois todos os valores do IC são bem superiores a 50%.

10.5.66) IC(p;99%) = (0,612;0,918). Sim, pois todos os valores do IC são superiores a 50%.

10.5.67) IC(p;95%) = (0,496;0,514). Não, pois o IC inclui o 50% mostrando que as probabilidades de uma pessoa morrer antes ou depois são praticamente as mesmas.

10.5.68) IC(p;99%) = (0,663;0,731)

10.5.69) IC(p;95%) = (0,226;0,298) . Não, pois o IC inclui o valor de 25%.

10.5.70) IC(p;99%) = (0,662;0,737). Não, pois o intervalo na inclui o valor de 61%, o que sugere que alguns dos pesquisados não foram verdadeiros em suas respostas.

10.5.71) IC(p;95%) = (0,027%;0,038%) . Não, pois o valor de 0,034% pertence ao IC.

10.5.72) IC(p;99%) = (0,865;0,916). Sim.

10.5.73) IC(p;99%) = (0,347;0,433) . Sim, O IC deveria conter a proporção de 79%

10.5.74) IC(p;90%) = (0,581;0,639). Sugere que existem fraudes.

10.5.75) IC(p;99%) = (0.931;0.949). Sim, desde que a pesquisa tenha seguido as técnicas de amostragem.

10.5.76)

a) 29% b) IC(p;99%) = (25,350%;32,650%)

c) 32,650%

10.5.77) IC(p;95%) = (18,298%;35,702%). Sim, a porcentagem de 24% pertence ao IC.

10.5.78)

a) IC(p;95%) = (42,241%;69,759%)

b) IC(p;95%) = (36,141%;63,859%)

- c) Não. Imagens de fumo e álcool aparecem em proporções praticamente iguais.
- d) Qual personagem (mocinho ou vilão) fazia uso de álcool e fumo nos filmes.

10.5.79)

a) IC(p;95%) = (0,182;0,433)

b) IC(p;95%) = (0,165;0,412)

c) Não.

10.5.80)

a) IC(p;95%) = (0,112;0,402)

b) IC(p;95%) = (0,500;0,814)

10.5.81)

a) $IC(\mu;95\%) = (10,8395;13,2819)$

b) $IC(\sigma;95\%) = (2,4311;4,2306)$

10.5.82) $IC(\sigma^2; 90\%) = (12,04; 32,35)$

10.5.83) $IC(\sigma^2; 98\%) = (1396; 5527)$

10.5.84) $IC(\sigma^2;95\%) = (7,3;51,4)$

10.5.85) $IC(\sigma^2; 90\%) = (7660; 38976)$

10.5.86) $IC(\sigma^2; 90\%) = (1,4;4,0)$

10.5.87) $IC(\sigma^2; 90\%) = (6,5;19,4)$

10.5.88)

a) $IC(\sigma^2;95\%) = (3,2;12,0)$

b) $IC(\sigma^2; 95\%) = (0,11;0,51)$

c) $IC(\sigma^2;95\%) = (2,03;11,68)$

d) $IC(\sigma^2;95\%) = (12,6;34,0)$

 $IC(\sigma^2;95\%) = (340,6;809,4)$

10.5.89) $IC(\sigma;95\%) = \left(585;715\right)$. Não. O desvio padrão de 696 pertence ao IC.

10.5.90) $IC(\sigma;95\%)=(0,038;0,069)$. Não, pois o IC ainda contém o valor de 0,062. O novo equipamento produz moedas com menor variação, mas não o suficiente para se afirmar que ele seja eficaz.

10.5.91) $IC(\sigma;95\%) = (0,54;0,71)$. Sim.

10.5.92)

a) $IC(\sigma;95\%) = (10;27)$

b) $IC(\sigma;95\%) = (12;33)$

c) Não

10.5.93) $IC(\sigma;99\%) = (64,8;173,2)$

10.5.94) $IC(\sigma;95\%) = (0,19;0,41)$

10.5.95) $IC(\sigma;95\%) = (1,195;4,695)$. O desvio padrão está muito elevado. Todavia deve-se considerar que as medidas foram obtidas após um evento catastrófico atípico.

10.5.96)

a) $IC(\sigma;95\%) = (0,33;0,87)$

b) $IC(\sigma;95\%) = (1,25;3,33)$

10.5.97)

a) $IC(\sigma;99\%) = (2,65;4,79)$

b) $IC(\sigma;99\%) = (4,76;8,61)$

10.5.98)

a) $IC(\sigma;99\%) = (0,04780;0,08650)$

b) $IC(\sigma;99\%) = (0,06714;0,12149)$

10.5.99) 237

10.5.100) 217

10.5.101) 50

10.5.102) 6907

10.5.103) 80770. Não. Deve-se fazer um estudo piloto para se ter uma melhor estimativa do desvio padrão e também aumentarmos a margem de erro a fim de diminuir o tamanho da amostra.

10.5.104) 97. Sim. O com o desvio padrão estimado o tamanho da amostra será de 123.

10.5.105)

a) IC(p;95%) = (0,280;0,387) b) 2135

10.5.106) 32

10.5.107) 4145

10.5.108) 9604

10.5.109) 1502

10.5.110) 601

10.5.111) 385

10.5.112) Letra (c) está correta

10.5.113)

a) $IC(\mu; 99\%) = (75; 81)$ b) 75,191%

c) 62

10.5.114)

a) 3933 b) IC(p;95%) = (0,534;0,566)

10.5.115)

a) 683 b) 0,035061546

10.5.116)

a) 174 a 271 b) IC(p;95%) = (0,352;0,448)

10.5.117)

a) $IC(\mu;99\%) = (788;812)$ b) 16,243%

c) 556

10.5.118)

a) IC(p;98%) = (0,633;0,905) b) 76,986%

c) 756

10.5.119)

a) 0,54200542 b) 0,05083641

c) IC(p;99%) = (0,475;0,609) d) 6,678763%

10.5.120)

a) IC(p;90%) = (0,030;0,170)

b) Sim, o lucro médio irá variar de \$7.280,00 a \$9.520,00

10.5.121)

a) $IC(\mu;90\%) = (48;52)$

b) 326

c) 82,137%

10.5.122)

a) $IC(\mu;95\%) = (72;78)$

b) 73

CAPÍTULO 11

11.6.1) Letra c é a correta

11.6.2)

Afirm: $\mu = 60$ $H_0: \mu = 60$ $H_A: \mu \neq 60$

 $Z_c = \pm 1.96$ $Z_{teste} = -1,131763$

P = 0,258476 $IC(\mu;95\%) = (55,4;61,2)$

Não Rejeitar \boldsymbol{H}_0 Não rejeitar a afirmação

11.6.3)

Afirm: $\mu = 4.5$ $H_0: \mu = 4.5$ $H_A: \mu \neq 4.5$

 $Z_c = \pm 1,96$ $Z_{teste} = -8,177832$

P = 0 $IC(\mu;95\%) = (1,095;2,411)$

Rejeitar H_0 Rejeitar a afirmação

11.6.4)

Afirm: $\mu < 0$ $H_0: \mu \ge 0$ $H_A: \mu < 0$

 $Z_c = -1,645$ $Z_{teste} = -2,766993$

P = 0.002846 $IC(\mu; 90\%) = (-3.3; -0.9)$

Rejeitar H_0 Não rejeitar a afirmação

11.6.5)

Afirm: μ < 281,81 H_0 : $\mu \ge$ 281,81 H_A : μ < 281,81

 $Z_c = -2,325$ $Z_{teste} = -7,002619$

P = 0 $IC(\mu; 98\%) = (262, 23; 271, 99)$

Rejeitar H_0 Não rejeitar a afirmação

Sim, pois todos os valores do IC são maiores do que a carga máxima que as latas devem suportar.

11.6.6)

Afirm: $\mu = 140$ $H_0: \mu = 140$ $H_A: \mu \neq 140$

 $Z_c = \pm 1,96$ $Z_{teste} = -2,271721$

P = 0.023208 $IC(\mu; 95\%) = (128, 7; 139, 2)$

Rejeitar H_0 Rejeitar a afirmação

11.6.7)

Afirm: $\mu = 1,8$ $H_0: \mu = 1,8$ $Z_c = \pm 1,96$ $Z_{teste} = -1,118$ $P = 0,263199$ $IC(\mu;95\%) =$	862	Afirm: $\mu > 63,6$ $t_c = 2,8965$ P < 0,0005	$H_0: \mu \le 63,6$ $H_A: \mu > 63,6$ $t_{teste} = 13,2$ $IC(\mu;98\%) = (68,8;71,6)$
Não Rejeitar H_0 Não rejeitar a	afirmação	Rejeitar H_0	Não rejeitar a afirmação
11.6.8)	10 H (5 (70	11.6.17)	H
Afirm: $\mu = 5,670$ $H_0: \mu = 5,677$ $Z_c = \pm 2,575$ $Z_{teste} = -2,85$	**	$A_{jirm}: \mu > 69, 3$ $Z_{c} = 1,645$	$H_0: \mu \le 69,5$ $H_A: \mu > 69,5$ $Z_{teste} = 2,652036$
	= (5,61161;5,66699)	P = 0.004025	$IC(\mu;90\%) = (71,0;75,8)$
Rejeitar H_0 Rejeitar a afi		Rejeitar H_0	Não rejeitar a afirmação
	imagao	rtejenta 11 ₀	ruo rejenar a ammação
11.6.9)		11.6.18)	
Afirm: $\mu = 0$ $H_0: \mu = 0$ H	**	<i>Afirm</i> : $\mu > 1,5$	* **
$Z_c = \pm 1,96$ $Z_{teste} = 1,4198$		$t_c = 2,0150$	$t_{teste} = 0,049053$
$P = 0.155608$ $IC(\mu; 95\%) =$		P > 0.300	$IC(\mu; 90\%) = (-0,036; 3,113)$
Não Rejeitar H_0 Rejeitar a afir	mação	Não Rejeitar H_0	Rejeitar a afirmação
11.6.10)	H	11.6.19)	H > 0.2 H 40.2
Afirm: $\mu < 98,6$ $H_0: \mu \ge 98,6$	**		
$Z_c = -1,645$ $Z_{teste} = -6,056$ $P = 0$ $IC(\mu;90\%) =$		$t_c = -1,7531$ P > 0,300	$t_{teste} = -0.119239$ $IC(\mu; 90\%) = (0.221/0.369)$
·			
Rejeitar H_0 Não rejeitar a	ammaçao	Nao Rejeitai H ₀	Rejeitar a afirmação
11.6.11)		11.6.20)	
Afirm: $\mu \neq 92,84$ $H_0: \mu = 92,8$		<i>Afirm</i> : μ < 10,5	$H_0: \mu \ge 10.5$ $H_A: \mu < 10.5$
$Z_c = \pm 1,96$ $Z_{teste} = -0,60$	00656	$t_c = -1,7171$	
•	= (92,12;93,22)	P > 0,300	$IC(\mu; 90\%) = (10, 31; 10, 67)$
Não Rejeitar H_0 Rejeitar a afi	rmação	Não Rejeitar H_0	Rejeitar a afirmação
11.6.12)		11.6.21)	
<i>Afirm</i> : μ < 3103 H_0 : $\mu \ge 3103$		<i>Afirm</i> : $\mu = 5,67$	$H_0: \mu = 5,670$ $H_A: \mu \neq 5,670$
$Z_c = -2,325$ $Z_{teste} = -8,612$	2359	$Z_c = \pm 2,575$	$Z_{teste} = -3,134872$
$P = 0 IC(\mu; 98\%) =$	(2591;2809)	P = 0,001719	$IC(\mu; 99\%) = (5,61408; 5,66452)$
Rejeitar H_0 Não rejeitar a	afirmação	Rejeitar H_0	Rejeitar a afirmação
11.6.13)		11.6.22)	
Afirm: $\mu = 700$ $H_0: \mu = 700$	$H_A: \mu \neq 700$	Afirm: $\mu = 0$	$H_0: \mu = 0$ $H_A: \mu \neq 0$
$t_c = \pm 2,1098$ $t_{teste} = -1,7563$	338	$Z_c = \pm 1,960$	$Z_{teste} = 1,394180$
$P \cong 0.10$ $IC(\mu; 95\%) =$	(612,6;708,0)	P = 0.163263	$IC(\mu; 99\%) = (-0, 2; 1, 4)$
Não Rejeitar H_0 Não rejeitar a	afirmação	Não Rejeitar H_0	Não rejeitar a afirmação
11.6.14)		11.6.23)	
Afirm: $\mu > 0$ $H_0: \mu \leq 0$ $H_A:$	$\mu > 0$	Afimr: $\mu \neq 60$	$H_0: \mu = 60 H_A: \mu \neq 60$
$t_c = 2,5280$ $t_{teste} = 8,4471441$	38	$Z_c = \pm 1,96$	$Z_{teste} = 5,262355$
$P = 0$ $IC(\mu; 98\%) = (2,$	80;5,20)	P = 0	$IC(\mu;90\%) = (65,9;72,9)$
Rejeitar H_0 Não rejeitar a afi	rmação	Rejeitar H_0	Não rejeitar a afirmação
11.6.15)		11.6.24)	
Afirm: $\mu = 0$ $H_0: \mu = 0$ H_A	$: \mu \neq 0$	<i>Afirm</i> : $\mu = 120$	$H_0: \mu = 120$ $H_A: \mu \neq 120$
$Z_c = \pm 2,575$ $Z_{teste} = -3,86500$	06029	$t_c = \pm 2,0518$	$t_{teste} = -0,757377$
$P = 0.000112$ $IC(\mu; 99\%) = (-$	11,0;-2,2)	P = 0,450	$IC(\mu;95\%) = (55,4;149,8)$
Rejeitar H_0 Rejeitar a afirma	ação	Nao Rejeitar H_0	Não rejeitar a afirmação
11.6.16)		11.6.25)	

```
11.6.34)
Afirm: \mu = 28000 H_0: \mu = 28000 H_A: \mu \neq 28000
                                                                                   IC(\mu;90\%) = (48;52)
Z_c = \pm 2,575
                      Z_{teste} = -2,0503195
                                                                             a)
P = 0.04036443
                      IC(\mu;99\%) = (27014;28112)
                                                                             b)
N\tilde{a}o Rejeitar H_0
                      Não rejeitar a afirmação
                                                                             c)
11.6.26)
Afirm: \mu = 8.8 H_0: \mu = 8.8 H_A: \mu \neq 8.8
                                                                              Z_{a} = \pm 1,960
Z_c = \pm 1,960
                  Z_{teste} = -2,2818
                                                                              P = 0.058092
P = 0,022608
                  IC(\mu; 95\%) = (7,7;8,7)
                                                                              Rejeitar H_0
                  Rejeitar a afirmação
Rejeitar H_0
                                                                            11.6.35)
11.6.27)
Afirm: \mu = 3.5 H_0: \mu = 3.5 H_A: \mu \neq 3.5
                                                                              t_c = \pm 1,7109
t_{a} = \pm 2,0639
                  t_{teste} = -3
P = 0.005
                  IC(\mu;95\%) = (2,5;3,3)
                                                                              P = 0.05
Rejeitar H_0
                  Rejeitar a afirmação
                                                                              Rejeitar H_0
11.6.28)
Afirm: \mu > 4 H_0: \mu \le 4 H_A: \mu > 4
                                                                            11.6.36)
Z_c = 2,325
                Z_{teste} = 4,166667
                                                                             a)
P = 0
                IC(\mu;98\%) = (4,4;5,6)
Rejeitar H_0
                Não rejeitar a afirmação
11.6.29)
                                                                             c)
Afirm: \mu = 3 H_0: \mu = 3 H_A: \mu \neq 3
                 Z_{\textit{teste}} = -3,33333
                                                                              Z_{c} = \pm 2,575
Z_c = \pm 1,960
                                                                              P = 0.005190
P = 0,000853 IC(\mu;95\%) = (2,0;2,8)
                                                                              Rejeitar H_0
Rejeitar H_0
                 Rejeitar a afirmação
11.6.30)
                                                                            11.6.37)
Afirm: \mu = 4 H_0: \mu = 4 H_A: \mu \neq 4
Z_c = \pm 2,575 Z_{teste} = 8,084075255
                                                                             b)
                IC(\mu;99\%) = (4,18;4,36)
P = 0
Rejeitar H_0
                Rejeitar a afirmação
                                                                              Z_c = \pm 1,960
11.6.31)
Afirm: \mu = 125,32 H_0: \mu = 125,32 H_A: \mu \neq 125,32
                                                                              Rejeitar H_0
t_c = \pm 2,2485
                      t_{teste} = 1,016922471
                                                                            11.6.38)
P = 0.30
                      IC(\mu;95\%) = (117,50;146,06)
Não Rejeitar H_0
                      Não rejeitar a afirmação
                                                                              t_c = -1,3195
11.6.32)
                                                                              P = 0,2250
Afirm: \mu < 50 H_0: \mu \ge 50 H_A: \mu < 50
Z_c = -1,645
                 Z_{teste} = -3,189146
P = 0.000711 IC(\mu; 95\%) = (35.8; 45.8)
Rejeitar H_0
                 Não rejeitar a afirmação
                                                                            11.6.39)
11.6.33)
a)
                                                                             Z_c = \pm 2,575
 Afirm := 650 H_0: \mu = 650 H_A: \mu \neq 650
                                                                             P = 0,330390
 Z_c = \pm 1,960 Z_{teste} = -5
 P = 0
                 IC(\mu;95\%) = (580;620)
 Rejeitar H_0
                 Rejeitar a afirmação
b) IC(\mu;99\%) = (574;626)
     (1-\alpha)\% = 92,814\%
```

d) 271

```
(1-\alpha)\% = 51,919\%
Afirm: \mu = 53 H_0: \mu = 53 H_A: \mu \neq 53
                  Z_{teste} = -1,897367
                  IC(\mu; 95\%) = (47; 53)
                  Rejeitar a afirmação
Afirm: \mu = 1000 H_0: \mu = 1000 H_A: \mu \neq 1000
                    t_{teste} = 2
                    IC(\mu; 90\%) = (1017; 1223)
                    Rejeitar a afirmação
b) IC(\mu;95\%) = (996;1294)
      IC(\mu; 90\%) = (1944; 2056)
     A diminuição do erro para 15 horas implicaria em au-
     mentar o tamanho da amostra para 3372 peças o que
     poderia inviabilizar o estudo
Afirm: \mu \neq 1900 H_0: \mu = 1900 H_A: \mu \neq 1900
                    Z_{teste} = 2,795085
                    IC(\mu;99\%) = (1912;2088)
                    Não rejeitar a afirmação
     IC(\mu; 99\%) = (41; 43)
Afirm: \mu = 40 H_0: \mu = 40 H_A: \mu \neq 40
                  Z_{teste} = 3,856946
 P = 0.000115 IC(\mu; 95\%) = (41; 43)
                  Rejeitar a afirmação
Afirm: \mu < 2,37 H_0: \mu \ge 2,37 H_A: \mu < 2,37
                    t_{teste} = -0,773523
                    IC(\mu; 80\%) = (2, 21; 2, 41)
Não Rejeitar H_0 Rejeitar a afirmação
b) IC(\mu; 80\%) = (2, 21; 2, 41)
Afirm: p = 0.95 H_0: p = 0.95 H_A: p \neq 0.95
                   Z_{teste} = -0.973329
                   IC(p;99\%) = (0,821;1,019)
N\tilde{a}o Rejeitar H_0 Não rejeitar a afirmação
```

11.6.40) $Afirm: p = 0.5 \qquad H_0: p = 0.5 \qquad H_A: p \neq 0.5$ $Z_c = \pm 1,645 \qquad Z_{teste} = 1,113553$ $P = 0,265471 \qquad IC(p;90\%) = (0,455;0,745)$ $N\tilde{a}o \text{ Rejeitar } H_0 \qquad \text{N}\tilde{a}\text{ o rejeitar a a firmação}$	11.6.48) $Afirm: p > 0,5 H_0: p \le 0,5 H_A: p > 0,5$ $Z_c = 2,325 Z_{teste} = 14,699555$ $P = 0 IC(p;98\%) = (0,870;0,945)$ Rejeitar H_0 Não rejeitar a afirmação
11.6.41) $Afirm: p > 0,2 H_0: p \le 0,20 H_A: p > 0,20$ $Z_c = 0,840 \qquad Z_{teste} = 1,581139$ $P = 0,056923 IC(p;60\%) = (0,239;0,361)$ Rejeitar H_0 Não rejeitar a afirmação	11.6.49) $Afirm: p > 0.5 H_0: p \le 0.5 H_A: p > 0.5$ $Z_c = 2.325 \qquad Z_{teste} = 3.780756$ $P = 0.000078 \qquad IC(p;98\%) = (0.627;0.903)$ Rejeitar H_0 Não rejeitar a afirmação
11.6.42) $Afirm: p = 0,25 H_0: p = 0,25 H_A: p \neq 0,25$ $Z_c = \pm 1,645 \qquad Z_{teste} = 1,79282452$ $P = 0,072654 \qquad IC(p;90\%) = (0,252;0,330)$ Rejeitar H_0 Rejeitar a afirmação	$\begin{array}{ll} \textbf{11.6.50)} \\ Afirm: \ p > 0,5 & H_0: \ p \leq 0,5 & H_A: \ p > 0,5 \\ Z_c = 2,325 & Z_{teste} = 4,195235 \\ P = 0,000014 & IC(p;980\%) = (0,509;0,531) \\ \text{Rejeitar } H_0 & \text{Não rejeitar a afirmação} \end{array}$
11.6.43) $Afirm: p = 0,25 H_0: p = 0,25 H_A: p \neq 0,25$ $Z = \pm 1,645 \qquad Z_{teste} = -5,623285$ $P = 0 \qquad IC(p;90\%) = (0,153;0,193)$ Rejeitar H_0 Rejeitar a afirmação	11.6.51) $Afirm: p < 0.5 \qquad H_0: p \ge 0.5 \qquad H_A: p < 0.5$ $Z_c = -2.325 \qquad Z_{teste} = -0.516749429$ $P = 0.303277 \qquad IC(p;98\%) = (0.448;0.533)$ Não Rejeitar H_0 Rejeitar a afirmação
11.6.44) $Afirm: p = 0.5 \qquad H_0: p = 0.5 \qquad H_A: p \neq 0.5$ $Z_c = \pm 2.575 \qquad Z_{teste} = -1.2649111$ $P = 0.205871 \qquad IC(p;99\%) = (0.349;0.551)$ Não Rejeitar H_0 Não rejeitar a afirmação	11.6.52) $Afirm: p > 0,15 \qquad H_0: p \le 0,15 \qquad H_A: p > 0,15$ $Z_c = 1,645 \qquad Z_{teste} = 1,604917$ $P = 0,054247 \qquad IC(p;90\%) = (0,149;0,190)$ Não Rejeitar H_0 Rejeitar a afirmação
11.6.45) $Afirm: p = 0.5 \qquad H_0: p = 0.5 \qquad H_A: p \neq 0.5$ $Z_c = \pm 1,645 \qquad Z_{teste} = 0,707107$ $P = 0,480810 \qquad IC(p;90\%) = (0,467;0,583)$ Não Rejeitar H_0 Não rejeitar a afirmação	$\begin{array}{ll} \textbf{11.6.53)} \\ Afirm: \ p < 0.058 & \ H_0: \ p \geq 0.058 & \ H_A: \ p < 0.058 \\ Z_c = -2.325 & \ Z_{teste} = -3.309559 \\ P = 0.000466 & \ IC(\ p;98\%) = (0.027;0.050) \\ \text{Rejeitar } H_0 & \ \text{Não rejeitar a afirmação} \end{array}$
11.6.46) a) $IC(\mu;90\%) = (0,513;0,587)$ b) $(1-\alpha)\% = 83,698\%$ c) $Afirm: p = 0,61$ $H_0: p = 0,61$ $H_A: p \neq 0,61$	$\begin{array}{ll} \textbf{11.6.54)} \\ A \textit{firm}: p \neq 0,00034 & H_0: p = 0,00034 & H_A: p \neq 0,00034 \\ Z_c = \pm 2,805 & Z_{\textit{teste}} = -0,655466 \\ P = 0,512468 & IC(p;99,5\%) = (0,000244;0,000399) \\ \text{N\~{a}o Rejeitar H_0} & \text{Rejeitar a afirmaç\~{a}o} \end{array}$
$Z_c = \pm 1,645$ $Z_{teste} = -4,261325$ $P = 0$ $IC(\mu;95\%) = (0,526;0,574)$ Rejeitar H_0 Rejeitar a afirmação	11.6.55) $Afirm: p > 0.50$ $H_0: p \le 0.5$ $H_A: p > 0.5$ $Z_c = 1,280$ $Z_{teste} = 0.830747$ P = 0.203269 $IC(p;80%) = (0.474;0.625)$
11.6.47) a) $IC(p;99\%) = (0,576;0,624)$ b) $E = 0,024224546$	Não Rejeitar H_0 Rejeitar a afirmação
c) $(1-\alpha)\% = 96,641\%$ d) 4102 e)	11.6.56) $Afirm: p = 0.01$ $H_0: p = 0.01$ $H_A: p \neq 0.01$ $Z_c = \pm 1.960$ $Z_{teste} = 2.191561$ P = 0.028524 $IC(p;95%) = (0.009;0.023)$
$\begin{array}{ll} \textit{Afirm}: p = 0{,}35 & H_0: p = 0{,}35 & H_A: p \neq 0{,}35 \\ Z_c = \pm 1{,}645 & Z_{teste} = 5{,}241424184 \\ P = 0 & \textit{IC}(p{,}90\%) = (0{,}385{,}0{,}415) \\ \text{Rejeitar } H_0 & \text{Rejeitar a afirmação} \end{array}$	Não Rejeitar H_0 Não rejeitar a afirmação

11.6.57)	AG.,
Afirm: $p < 0.5$ $H_0: p \ge 0.5$ $H_A: p < 0.5$	Afirm: $p < 0.5$ $H_0: p \ge 0.5$ $H_A: p < 0.5$
$Z_c = -1,645$ $Z_{teste} = 1,131960$	$Z_c = -1,645$ $Z_{teste} = -2,873524$
P = 0.129238 $IC(p;90%) = (0.498;0.513)$	P = 0.002020 $IC(p;90%) = (0.136;0,379)$
Não Rejeitar H_0 Rejeitar a afirmação	Rejeitar H_0 Não rejeitar a afirmação
Nao Rejettai II. a inimação	11.6.67)
11.6.58)	Afirm: $p > 0.5$ $H_0: p \le 0.5$ $H_A: p > 0.5$
Afirm: $p < 0.333$ $H_0: p \ge 0.333$ $H_A: p < 0.333$	$Z_c = 1,645$ $Z_{tostp} = 2,545584$
$Z_c = \pm 1,960 \qquad Z_{teste} = 0$	P = 0.005464 $IC(p;90%) = (0.571;0.789)$
P = 0.50 $IC(p;90%) = (0.308;0.359)$	Rejeitar H_0 Não rejeitar a afirmação
Não Rejeitar H_0 Rejeitar a afirmação	
	11.6.68)
11.6.59)	Afirm: $\sigma \neq 696$ $H_0: \sigma = 696$ $H_A: \sigma \neq 696$
Afirm: $p < 0.25$ $H_0: p \ge 0.25$ $H_A: p < 0.25$	$\chi^2_{Inf} = 153,7213$ $\chi^2_{Sup} = 230,0644$
$Z_c = -1,645$ $Z_{teste} = -2,210520$	$\chi^2_{teste} = 162,3165317$
P = 0.013553 $IC(p;90%) = (0.199;0.241)$	$P = 0.15$ $IC(\sigma; 95\%) = (585; 715)$
Rejeitar H_0 Não rejeitar a afirmação	Não Rejeitar H_0 Rejeitar a afirmação
11.6.60)	11.6.69)
Afirm: $p = 0.5$ $H_0: p = 0.5$ $H_A: p \neq 0.5$	Afirm: $\sigma < 0.062$ $H_0: \sigma \ge 0.062$ $H_A: \sigma < 0.062$
$Z_c = \pm 1,960$ $Z_{testp} = -2,012461$	$\chi^2_{lnf} = 13,0905$ $\chi^2_{leste} = 14,36602497$
P = 0.044432 $IC(p;95%) = (0.441;0.499)$	$P \cong 0.075$ $IC(\sigma; 90\%) = (0.040; 0.065)$
Rejeitar H_0 Rejeitar a afirmação	Não Rejeitar H_0 Rejeitar a afirmação
11.6.61)	11.6.70)
Afirm: $p < 0.791$ $H_0: p \ge 0.791$ $H_A: p < 0.791$	Afirm: $\sigma > 0.056$ $H_0: \sigma \le 0.056$ $H_A: \sigma > 0.056$
$Z_c = -2,325$ $Z_{teste} = -8,251483$	$\chi^2_{Sup} = 63,6907$ $\chi^2_{teste} = 1225,765306$
P = 0 $IC(p;98%) = (0,254;0,526)$	$P = 0$ $IC(\sigma; 98\%) = (0, 25; 0, 42)$
Rejeitar H_0 Não rejeitar a afirmação	Rejeitar H_0 Não rejeitar a afirmação
11.6.62)	11.6.71)
Afirm: $p > 0.012$ $H_0: p \le 0.012$ $H_A: p > 0.012$	Afirm: $\sigma \neq 43,7$ $H_0: \sigma = 43,7$ $H_A: \sigma \neq 43,7$
$Z_c = 2,325$ $Z_{teste} = 3,372722$	$\chi^2_{lnf} = 57,9984$ $\chi^2_{sup} = 107,7834$
P = 0,000369 $IC(p;98%) = (0,013;0,029)$	$\chi^2_{teste} = 114,5857181$
Rejeitar H_0 Não Rejeitar a afirmação	$P \cong 0.01$ $IC(\sigma;95\%) = (45,1;61,4)$
	Rejeitar H_0 Não rejeitar a afirmação
11.6.63)	
Afirm: $p < 0.27$ $H_0: p \ge 0.27$ $H_A: p < 0.27$	11.6.72)
$Z_c = -2{,}325$ $Z_{teste} = -5{,}490486$	Afirm: $\sigma \neq 83$ $H_0: \sigma = 83$ $H_A: \sigma \neq 83$
P = 0 $IC(p;98%) = (0,151;0,215)$	$\chi^2_{lnf} = 6,2621$ $\chi^2_{Sup} = 27,4884$
Rejeitar H_0 Não rejeitar a afirmação	$\chi^2_{teste} = 20,02401473$
11.6.64)	$P \cong 0.30$ $IC(\sigma;95\%) = (70.8;148,4)$
11.6.64) Afirm: $p = 0.24$ $H_0: p = 0.24$ $H_A: p \neq 0.24$	Não Rejeitar H_0 Rejeitar a afirmação
$Z_c = \pm 1,960$ $Z_{teste} = 0,702439$	11.6.73)
$E_c = 1,700$ $E_{teste} = 0,702437$ P = 0,483928 $IC(p;95%) = (0,183;0,357)$	Afirm: $\sigma = 0.3$ $H_0: \sigma = 0.30$ $H_A: \sigma \neq 0.30$
Não Rejeitar H_0 Não rejeitar a afirmação	$\chi^2_{lnf} = 5,6287$ $\chi^2_{Sup} = 26,1189$
rao rejetai 11 ₀ - rao rejetai a ammação	$\chi^{2}_{leste} = 10,41481481$
11.6.65)	$P \cong 0,50$ $IC(\sigma;95\%) = (0,19;0,41)$
Afirm: $p > 0.25$ $H_0: p \le 0.25$ $H_A: p > 0.25$	Não Rejeitar H_0 Não Rejeitar a Afirmação
$Z_c = 1,645$ $Z_{teste} = 0,640513$	
P = 0.261086 $IC(p;90%) = (0,185;0,392)$	11.6.74)
Não Rejeitar H_0 Rejeitar a afirmação	Afirm: $\sigma < 29$ $H_0: \sigma \ge 29$ $H_A: \sigma < 29$
	$\chi^2_{lnf} = 1,6465 \chi^2_{teste} = 0,539833532$
11.6.66)	$P < 0.005$ $IC(\sigma;98\%) = (4.8;16.6)$
	Rejeitar H_0 Não rejeitar a afirmação
	•

11.6.75)

Afirm: $\sigma < 2.5$ $H_0: \sigma \ge 2.5$ $H_A: \sigma < 2.5$

 $\chi^2_{Inf} = 8,6718$ $\chi^2_{teste} = 3,8311111112$

P < 0.005 $IC(\sigma; 90\%) = (0.9; 1.7)$

Rejeitar H_0 Não rejeitar a afirmação

11.6.76)

Afirm: $\sigma > 0,4$ $H_0: \sigma \le 0,4$ $H_A: \sigma > 0,4$

 $\chi^2_{Sup} = 11,0705$ $\chi^2_{teste} = 114,5055208$

P = 0 $IC(\sigma; 90\%) = (1,286; 3,999)$

Rejeitar H_0 Não rejeitar a afirmação

11.6.77)

Afirm: $\sigma < 1.9$ $H_0: \sigma \ge 1.9$ $H_A: \sigma < 1.9$

 $\chi^2_{lnf} = 3,3251$ $\chi^2_{teste} = 0,566481996$

P < 0.005 $IC(\sigma; 90\%) = (0.35; 0.78)$

Rejeitar H_0 Não rejeitar a afirmação

11.6.78)

Afirm: $\sigma = 0.068$ H_0 : $\sigma = 0.068$ H_A : $\sigma \neq 0.068$

 $\chi^2_{Inf} = 23,6543$ $\chi^2_{Sup} = 58,1201$

 $\chi^2_{teste} = 32,355184$

P = 0.50 $IC(\sigma; 95\%) = (0.05074; 0.07953)$

Não Rejeitar H_0 Não rejeitar a afirmação

11.6.79)

 $Afirm: \sigma < 1 \qquad H_0: \sigma \ge 1 \quad H_A: \sigma < 1$

 $\chi^2_{Inf} = 21,6643 \quad \chi^2_{teste} = 13,48969714$

P < 0.005 $IC(\sigma; 90\%) = (0.527; 0.789)$

Rejeitar H_0 Não rejeitar a afirmação

11.6.80)

Afirm: $\sigma < 0.75$ $H_0: \sigma \ge 0.75$ $H_A: \sigma < 0.75$

 $\chi^2_{lnf} = 44,0379 \qquad \chi^2_{teste} = 24,5760$

P < 0.005 $IC(\sigma; 90\%) = (0.42; 0.56)$

Rejeitar H_0 Não rejeitar a afirmação

CAPÍTULO 12

12.8.1)

a) r = -0.625

12.8.2) r = 0.553

12,8,3)

a) 0,213672

b) 0,5

c) 0,6

12.8.4) r = 0.864

12.8.5)

Afirm: $\rho \neq 0$

 $H_0: \rho = 0$ $H_A = \rho \neq 0$

 $t_c = \pm 2,6503$ $r_c = \pm 0,592$

 $t_{teste} = -3,6040$ $r_{teste} = -0,707$

P = 0,003204

Rejeitar H_0

a) r = 0.214

b) r = 0.5

c) r = 0.6

12.8.6)

a) r = 0.312

b) r = 0.458

c) r = 0.654

12.8.7)

b)
$$r = -0.625$$

c) $H_0: \rho = 0$ $H_A: \rho \neq 0$

 $r_c = 0,602$ $r_{Teste} = 0,744$

 $t_c = 2,2622$ $t_{Teste} = 3,3400$

P = 0.008654 Rejeitar H_0

12.8.8)

 $H_0: \rho = 0$ $H_A: \rho \neq 0$

 $r_c = 2,1604$ $r_{Teste} = 0,514$

 $t_c = -9,7570$ $t_{Teste} = -0,938$

P = 0 Rejeitar H_0

12.8.9)

 $H_0: \rho = 0$ $H_A: \rho \neq 0$

 $r_c = 0.729$ $r_{Teste} = 0.985$

 $t_c = 2,1318$ $t_{Teste} = 11,4170$

P = 0.000336 Rejeitar H_0

12.8.10)

 $H_0: \rho = 0$ $H_A: \rho \neq 0$

 $r_c = 0.634$ $r_{Teste} = 0.867$

 $t_c = 4,5407$ $t_{Teste} = 3,0140$

P = 0.057049 Não Rejeitar H_0

12.8.11)

 $H_0: \rho = 0$ $H_A: \rho \neq 0$

 $r_c = 0.707$ $r_{Teste} = 0.543$

 $t_c = 2,4469$ $t_{Teste} = 1,5840$

P = 0.164301 Não Rejeitar H_0

12.8.12)

$$H_0: \rho = 0$$
 $H_A: \rho \neq 0$

$$r_c = 0.765$$
 $r_{Teste} = 0.179$

$$t_c = 3,3554$$
 $t_{Teste} = 0,5150$ $P = 0,620744$ Não Rejeitar H_0

12.8.13)

Afirm:
$$\rho \neq 0$$

$$H_0: \rho = 0$$
 $H_A = \rho \neq 0$

$$t_c = \pm 2,3060$$
 $r_c = \pm 0,632$

$$t_{teste} = 0.8350$$
 $r_{teste} = 0.283$

P = 0,428181

Não Rejeitar H_0

CAPÍTULO 13

13.9.1)
$$y = 6,395$$

13.9.2)
$$y = 63,906$$

13.9.3)
$$y = 1,6739$$

13.9.4)

b)
$$\hat{y} = 0.1843x - 10.1641$$

c)
$$\sum (y - \overline{y})^2 = 240$$

 $\sum (\hat{y} - \overline{y})^2 = 205,2590092$
 $\sum (y - \hat{y})^2 = 34,74098578$

d)
$$r^2 = 0.85524587$$

- e) $S_e = 2,083896164$
- f) IC(y;95%) = (12,410;25,538)

13.9.5)

b)
$$\hat{y} = 1,0641x - 5,0868$$

c)
$$\sum (y - \overline{y})^2 = 3573,714286$$
$$\sum (\hat{y} - \overline{y})^2 = 2457,285382$$
$$\sum (y - \hat{y})^2 = 1116,428908$$

- d) $r^2 = 0.68759984$
- e) $S_e = 14,94275013$
- f) IC(y;95%) = (5,201;87,372)

13.9.6)

b) $\hat{y} = 0.4427x + 63.8757$

c)
$$\sum (y - \overline{y})^2 = 5629,428571$$
$$\sum (\hat{y} - \overline{y})^2 = 1112,60907$$
$$\sum (y - \hat{y})^2 = 4516,819516$$

- d) $r^2 = 0.19764156$
- e) $S_e = 30,05601276$
- f) IC(y;95%) = (-9,081;213,869)

13.9.7)

- b) $\hat{y} = 0.071x + 223.5466$
- c) $\sum (y \overline{y})^2 = 3269,714286$ $\sum (\hat{y} \overline{y})^2 = 1642,495771$ $\sum (y \hat{y})^2 = 1627,218539$
- d) $r^2 = 0.50233618$
- e) $S_e = 18,04005842$
- f) IC(y;90%) = (198,720;290,986)

13.9.8)

- b) $\hat{y} = -0.1312x + 2179.8303$
- c) $\sum (y \overline{y})^2 = 8.388.128,0$ $\sum (\hat{y} \overline{y})^2 = 294.034,8684$ $\sum (y \hat{y})^2 = 8.094.093,15$
- d) $r^2 = 0.03505369$
- e) $S_e = 1075,313453$
- f) IC(y;95%) = (-1352,943;4507,270)

13.9.9)

a)

b)
$$\hat{y} = 0.8758x + 0.4699$$

c)
$$\sum (y - \overline{y})^2 = 422,55$$
$$\sum (\hat{y} - \overline{y})^2 = 420,4597002$$
$$\sum (y - \hat{y})^2 = 2,090295513$$

d)
$$r^2 = 0.99505313$$

e)
$$S_e = 0.340774894$$

f)
$$IC(y;98\%) = (16,208;18,011)$$

13.9.10)

a)

b)
$$\hat{y} = 278,481x - 1487,3307$$

c)
$$\hat{y} = 2411,4038$$

d)
$$r^2 = 0.07991$$

e)
$$IC(y;95\%) = (-11402,885;16225,693)$$

13.9.11)

a)

b)
$$\hat{y} = 581,081x + 1790,5405$$

c)
$$r^2 = 0.74587$$

d)
$$\hat{y} = 3591,8919$$

e)
$$IC(y;98\%) = (2998,050;4185,734)$$

3.9.12)

b)
$$\hat{y} = -1301,1971x + 40639,35$$

c)
$$r^2 = 0.499144$$

d)
$$\hat{y} = 36562, 2667$$

e)
$$IC(y;99\%) = (30639,441;42485,092)$$