

Silicon N-Channel MOSFET

Features

- 18A,500V,R_{DS(on)}(Max0.27Ω)@V_{GS}=10V
- Ultra-low Gate charge(Typical 42nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150 °C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, VDMOS technology.this latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially wellsuited for AC-DC switching power supplies, DC-DC power Converters high voltage H-bridge motor drive PWM

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain Source Voltage	500	V
ID	Continuous Drain Current(@Tc=25℃)	18	Α
	Continuous Drain Current(@Tc=100℃)	12.7	Α
I _{DM}	Drain Current Pulsed (Note1)	80	Α
V _{GS}	Gate to Source Voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy (Note2)	330	mJ
E _{AR}	Repetitive Avalanche Energy (Note1)	27.7	mJ
dv/dt	Peak Diode Recovery dv /dt (Note3)	4.5	V/ ns
P _D	Total Power Dissipation(@Tc=25°C)	208	W
T_J, T_{stg}	Junction and Storage Temperature	-55~150	°C
TL	Channel Temperature	300	°C

Thermal Characteristics

Symbol	Darameter		Linita		
	Parameter	Min	Тур	Max	Units
R _{QJC}	Thermal Resistance , Junction -to -Case	-	-	0.60	°C/W
R _{QJA}	Thermal Resistance , Junction-to -Ambient	-	1	40	°C/W

Electrical Characteristics(Tc=25°C)

Chara	cteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage cu	rrent	I _{GSS}	V _{GS} =±25V,V _{DS} =0V	-	-	±10	nA
Gate-source bre	akdown voltage	V _{(BR)GSS}	I _G =±10 μA,V _{DS} =0V	±30	-	-	V
Drain cut -off cu	rrent	I _{DSS}	V _{DS} =500V,V _{GS} =0V	-	-	100	μA
Drain -source br	eakdown voltage	V _{(BR)DSS}	I _D =10 mA,V _{GS} =0V	500	-	-	V
Breakdown volta	age Temperature	△BV _{DSS} /	I _D =250µA,Referenced to 25 ℃	-	0.5	-	V/°C
Gate threshold v	oltage	V _{GS(th)}	V _{DS} =10V,I _D =1mA	3	-	5	V
Drain -source Ol	N resistance	R _{DS(ON)}	V _{GS} =10V,I _D =9A	-	0.23	0.27	Ω
Forward Transco	onductance	gfs	V _{DS} =40V,I _D =9A	-	16	-	S
Input capacitance		C _{iss}	V _{DS} =25V,	-	2530	3290	
Reverse transfer capacitance		C _{rss}	V _{GS} =0V,	-	11	14.3	pF
Output capacitance		Coss	f=1MHz	-	300	390	
	Rise time	tr	V _{DD} =250V,	-	40	90	ns
0 11 11	Turn-on time	ton	I _D =18A	-	150	310	
Switching time	Fall time	tf	R _G =25Ω	-	95	200	
	Turn-off time	toff	(Note4,5)	-	110	230	
Total gate charge(gate-source plus gate-drain)		Qg	V _{DD} =400V, V _{GS} =10V,	-	42	55	_
Gate-source charge		Qgs	I _D =18A	-	12	-	nC
Gate-drain("miller") Charge		Qgd	(Note4,5)	-	14	-	

Source-Drain Ratings and Characteristics(Ta=25°C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	I _{DR}	-	-	-	18	Α
Pulse drain reverse current	I _{DRP}	-	-	-	72	Α
Forward voltage(diode)	V _{DSF}	I _{DR} =18A,V _{GS} =0V	-	-	1.4	V
Reverse recovery time	trr	I _{DR} =18A,V _{GS} =0V,	-	500	-	ns
Reverse recovery charge	Qrr	dl _{DR} / dt =100 A / μs	-	5.4	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

- 2.L=5.2mH I_{AS}=18A,V_DD=50V,R_G=25\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$
- 4.Pulse Test:Pulse Width≤300us,Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

Fig.1 On State Characteristics

Fig.2 Transfer Current Characteristics

Fig.3 On-Resistance Variation vs Drain Current

Fig.4 Body Diode Forward Voltage Variation with Source Current and Temperature

Fig.5 Capacitance Characteristics

Fig.6 Gate Charge Characteristics

Fig.7 Breakdown Voltage Variation

Fig.8 On-Resistance Variation vs.Temperature

Fig.9 Maximum Safe Operation Area

Fig.10 Maximum Drain Current vs Case Temperature

Fig.11 Transient Thermal Response Curve

Fig.12 Gate Test Circuit & Waveform

Fig.13 Resistive Switching Test Circuit & Waveform

Fig.14 Unclamped Inductive Switching Test Circuit & Waveform

Ш

Fig.15 Peak Diode Recovery dv/dt Test Circuit & Waveform

Шĺ

TO-247 Package Dimension

