Strategy Machines and their Complexity

Marcus Gelderie

Lehrstuhl für Informatik 7 RWTH Aachen University

GAMES September 12, 2012

Winning Condition: Visit 1 and 2 infinitely often

play $\pi = 0101$

$$\mathsf{play}\ \pi = \mathsf{0101020}\cdots$$

Motivation

Mealy Machine

- Global view on a machine
- Information about all computations at once
- Common complexity measure: number of states

Motivation

Mealy Machine

- Global view on a machine
- Information about all computations at once
- Common complexity measure: number of states

Turing Machine

- Local view on a machine
- Information only about the current point in the computation
- Common complexity measures:
 - runtime
 - space consumption
 - size of machine

Related Work

"How much memory is needed to win infinite games"

Dziembowski, Jurdziński, Walukiewicz

Polynomial sized *p*-automata

"Synthesizing Reactive Programs"

Madhusudan

Synthesis of while-programs over Boolean variables from ω -regular specifications

Definition (*k*-Tape Strategy Machine)

(k+2)-tape Turing machine with designated input and output states q_I and q_O

Definition (k-Tape Strategy Machine)

(k+2)-tape Turing machine with designated input and output states q_I and q_O

designated IO-tape

Definition (k-Tape Strategy Machine)

(k+2)-tape Turing machine with designated input and output states q_I and q_O

- designated IO-tape
- designated memory tape

Definition (k-Tape Strategy Machine)

(k+2)-tape Turing machine with designated input and output states q_I and q_O

- designated IO-tape
- designated memory tape
- k computation tapes

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

First Iteration

• input 1111

Memory Tape

Comp. Tape

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

|--|

Memory Tape

_						
	1	1	1	1		

Comp. Tape

First Iteration

- input 1111
- copy input on memory tape & output 1111

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

_						
	1	0	1	0		

Memory Tape

_						
	1	1	1	1		

Comp. Tape

First Iteration

- input 1111
- copy input on memory tape & output 1111

Second Iteration

• input 1010

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

Memory Tape

_					 	
	1	1	1	1		

Comp. Tape

First Iteration

- input 1111
- copy input on memory tape & output 1111

Second Iteration

- input 1010
- XOR input with memory tape content

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

_						
	1	0	1	0		

Memory Tape

1	0	1	0		

Comp. Tape

First Iteration

- input 1111
- copy input on memory tape & output 1111

Second Iteration

- input 1010
- XOR input with memory tape content
- copy input onto memory tape

Example: Current input $x_1 \cdots x_k \in \mathbb{B}^k$, previous input $p_1 \cdots p_k \in \mathbb{B}^k$, output $(p_1 \oplus x_1) \cdots (p_k \oplus x_k)$

Memory Tape

Comp. Tape

First Iteration

- input 1111
- copy input on memory tape & output 1111

Second Iteration

- input 1010
- XOR input with memory tape content
- copy input onto memory tape
- write output back on tape

- (1) receive input onto IO-tape (overwriting previous content)
 - ▶ state is q₁
 - computation tape is empty
 - memory tape unchanged

- (1) receive input onto IO-tape (overwriting previous content)
 - ▶ state is q₁
 - computation tape is empty
 - memory tape unchanged
- (2) compute an output
 - using the computation tape
 - using the memory tape

- (1) receive input onto IO-tape (overwriting previous content)
 - ▶ state is q₁
 - computation tape is empty
 - memory tape unchanged
- (2) compute an output
 - using the computation tape
 - using the memory tape
- (3) write output onto IO-tape and move to state q_O

- (1) receive input onto IO-tape (overwriting previous content)
 - ▶ state is q₁
 - computation tape is empty
 - memory tape unchanged
- (2) compute an output
 - using the computation tape
 - using the memory tape
- (3) write output onto IO-tape and move to state q_O

This sequence of steps above is an iteration

- (1) receive input onto IO-tape (overwriting previous content)
 - ▶ state is q₁
 - computation tape is empty
 - memory tape unchanged
- (2) compute an output
 - using the computation tape
 - using the memory tape
- (3) write output onto IO-tape and move to state q_O

This sequence of steps above is an iteration

Definition (Complexity Parameters)

- Latency: Time between leaving q_I and entering q_O
- Space requirement: #memory-tape-cells visited during any previous iteration
- Size: Number of control states

Relation with Mealy Machines

Proposition

Given Mealy machine $\mathfrak M$ with m states and alphabet V. One can construct an equivalent strategy machine $\mathcal M_{\mathfrak M}$

- of size $m \cdot |V|$
- with latency $\log_2(m) + \log_2(|V|)$
- and space requirement $log_2(m)$.

Lower Bounds

Let $\mathcal C$ be a class of games.

Definition (Hardness of a Class of Games)

Let $f: \mathbb{N} \to \mathbb{N}$. \mathcal{C} is f-hard if there exists a family $(\mathbf{G}_n)_{n \geq 0}$ of games $\mathbf{G}_n = ((V_n, E_n), \varphi_n)$ in \mathcal{C} such that

- $|V_n| \in \mathcal{O}(n)$
- φ_n is given in some fixed formalism, such that $\|\varphi_n\| \in \mathcal{O}(n)$
- no Mealy machine with < f(n) states implements a winning strategy for player 0 in \mathbf{G}_n .

Lower Bounds

Let $\mathcal C$ be a class of games.

Let $\mathcal S$ be a mapping assigning a strategy machine $\mathcal S(\mathbf G)$ to every game $\mathbf G \in \mathcal C$.

 ${\mathcal S}$ is a solution scheme for ${\mathcal C}$ if ${\mathcal S}({\mathbf G})$ implements a winning strategy for player 0 in ${\mathbf G}$ for every game ${\mathbf G}$.

Lower Bounds

Let $\mathcal C$ be a class of games.

Let $\mathcal S$ be a mapping assigning a strategy machine $\mathcal S(\mathbf G)$ to every game $\mathbf G \in \mathcal C.$

 ${\cal S}$ is a solution scheme for ${\cal C}$ if ${\cal S}({\bf G})$ implements a winning strategy for player 0 in ${\bf G}$ for every game ${\bf G}$.

Theorem

Let $q \in (0,1)$. Let $\mathcal C$ be a $\Omega(2^n)$ -hard class of games. Then there exists no solution scheme which assigns a strategy machine with space requirement in $\mathcal O(n^q)$ to every game $\mathbf G$ on n vertices.

Lower Bounds

Let C be a class of games.

Let $\mathcal S$ be a mapping assigning a strategy machine $\mathcal S(\mathbf G)$ to every game $\mathbf G \in \mathcal C$.

 ${\mathcal S}$ is a solution scheme for ${\mathcal C}$ if ${\mathcal S}({\mathbf G})$ implements a winning strategy for player 0 in ${\mathbf G}$ for every game ${\mathbf G}$.

Theorem

Let $q \in (0,1)$. Let $\mathcal C$ be a $\Omega(2^n)$ -hard class of games. Then there exists no solution scheme which assigns a strategy machine with space requirement in $\mathcal O(n^q)$ to every game $\mathbf G$ on n vertices.

Corollary

Let $q \in (0,1)$. Let \mathcal{C} be a $\Omega(2^n)$ -hard class of games. Then there exists no solution scheme which assigns a strategy machine with latency in $\mathcal{O}(n^q)$ to every game \mathbf{G} on n vertices.

Memory-Adaptive Algorithms

- Strategy machines distinguish between static memory (control states) and dynamic memory (tape content)
- This allows tradeoff between storing information and recomputing it

Memory-Adaptive Algorithms

- Strategy machines distinguish between static memory (control states) and dynamic memory (tape content)
- This allows tradeoff between storing information and recomputing it

Recomputing information allows for new optimization methods:

- Compute necessary information as the play proceeds
- The machine adapts to the play and converges towards a winning strategy

Memory-Adaptive Algorithms

- Strategy machines distinguish between static memory (control states) and dynamic memory (tape content)
- This allows tradeoff between storing information and recomputing it

Recomputing information allows for new optimization methods:

- Compute necessary information as the play proceeds
- The machine adapts to the play and converges towards a winning strategy

Remark

This observation can be used to obtain a small strategy machine for Muller and Streett games.

Moreover, for Streett games, this strategy machine is also fast.

Zielonka's algorithm distinguishes two basic cases:

(A) The root of the current subtree is labeled with a player 0 set

(B) The root of the current subtree is labeled with a player 1 set

Zielonka's algorithm distinguishes two basic cases:

- (A) The root of the current subtree is labeled with a player 0 set
 - then play attractor strategies
 - ightharpoonup cheap to compute \implies do not memorize
- (B) The root of the current subtree is labeled with a player 1 set

Zielonka's algorithm distinguishes two basic cases:

- (A) The root of the current subtree is labeled with a player 0 set
 - then play attractor strategies
 - ightharpoonup cheap to compute \implies do not memorize
- (B) The root of the current subtree is labeled with a player 1 set
 - iteratively solve subgames

Zielonka's algorithm distinguishes two basic cases:

- (A) The root of the current subtree is labeled with a player 0 set
 - then play attractor strategies
 - ightharpoonup cheap to compute \implies do not memorize
- (B) The root of the current subtree is labeled with a player 1 set
 - iteratively solve subgames
 - expensive to compute \iff "spread out" computation across multiple iterations

Difficulties:

- What to store and what to recompute
- Ensure that, ultimately, the strategy is a winning strategy

For any Muller game $\mathbf{G}=(\mathcal{A},\mathfrak{F})$, where $\mathcal{A}=(V,E)$ and \mathfrak{F} is given by a propositional formula ϕ : There exists a strategy machine \mathcal{M} of

- size $\|\mathcal{M}\| \in \mathsf{poly}(|V|, \|\phi\|)$
- space consumption $S(\mathcal{M}) \in \mathsf{poly}(|V|, \|\phi\|)$
- ullet latency $T(\mathcal{M})$ polynomial in |V|+|E| and linear in $\max\{|\mathfrak{F}|,|\mathfrak{F}^{\mathscr{C}}|\}$

For any Muller game $\mathbf{G} = (\mathcal{A}, \mathfrak{F})$, where $\mathcal{A} = (V, E)$ and \mathfrak{F} is given by a propositional formula ϕ : There exists a strategy machine \mathcal{M} of

- size $\|\mathcal{M}\| \in \mathsf{poly}(|V|, \|\phi\|)$
- space consumption $S(\mathcal{M}) \in \mathsf{poly}(|V|, \|\phi\|)$
- ullet latency $T(\mathcal{M})$ polynomial in |V|+|E| and linear in $\max\{|\mathfrak{F}|,|\mathfrak{F}^{\mathscr{C}}|\}$

Remark

- Muller games are solved via latest appearance records
- This yields Mealy machine of size $|V|! \cdot |V|$
- Simulation by strategy machine needs size $|V|! \cdot |V|^2$
- This means: exponentially smaller size at the price of exponentially longer latency

Let $\mathbf{G}=(\mathcal{A},\Omega)$ be a Streett game. Then there exists a strategy machine \mathcal{M} of

- size $\|\mathcal{M}\| \in \mathsf{poly}(|V|, |\Omega|)$
- space consumption $S(\mathcal{M}) \in \text{poly}(|V|, |\Omega|)$
- latency $T(\mathcal{M}) \in \mathsf{poly}(|V|, |\Omega|)$

Let $\mathbf{G}=(\mathcal{A},\Omega)$ be a Streett game. Then there exists a strategy machine \mathcal{M} of

- size $\|\mathcal{M}\| \in \mathsf{poly}(|V|, |\Omega|)$
- space consumption $S(\mathcal{M}) \in \mathsf{poly}(|V|, |\Omega|)$
- latency $T(\mathcal{M}) \in \mathsf{poly}(|V|, |\Omega|)$

Remark

- Streett games are solved via index appearance records
- This yields Mealy machine of size $|\Omega|! \cdot |\Omega|^2$
- Simulation by strategy machine needs size $|\Omega|! \cdot |\Omega|^3$
- This means: exponentially smaller size while maintaining polynomial latency

Conclusion

- Mealy machines are global representations of strategies
- Strategy machines are local representations of strategies
- Local representations offer a broader range of criteria to measure the quality of a strategy
 - Latency
 - Space requirement (dynamic memory)
 - Size (static memory)
- The latency and space requirement can be bounded from below for several classes of games
- For ω -regular winning conditions, based on the winning condition, small and fast controllers can be obtained.