Bases de psychologie cognitive

Guillaume Besacier

Psychologie cognitive

- Psychologie cognitive : modèle pour
 - Prédire
 - Expliquer le comportement humain

Modèle du processeur humain

- Card, Moran, Newell, « The Psychology of HCI », 1983
- Sujet humain : un système de traitement de l'information
- 3 sous-systèmes interdépendants
 - Système sensoriel
 - Système moteur
 - Système cognitif
- Chaque sous-système comprend
 - un processeur (cycle de base ~100 ms)
 - une mémoire (capacité, persistance)

Système sensoriel

- Ensemble des sous-systèmes spécialisés chacun dans le traitement d'une classe de stimuli (phénomène physique détectable)
- Représentation non interprétée des entrées
 - Persistance des informations : entre 200 ms (mémoire visuelle) et 1500 ms (mémoire auditive)
 - Type d'information (physique, ...)
- Temps de cycle 100 ms (dépend de l'intensité des stimuli)

Système moteur

- Responsable des mouvements
- Un mouvement n'est pas continu mais une suite de micro-mouvements discrets
 - Temps d'un micromouvement : 70 ms (cycle de base du processeur du système moteur)
- Loi de Fitts
 - Prédis le temps de sélection d'un élément graphique
 - T = a + b log(D / L)
 (D : distance à la cible, L : taille de la cible, a et b, caractéristiques du dispositif)

X 1

2 Cible

Système cognitif

- Mémoire à court terme
 - Les informations sensorielles sont représentées sous forme symbolique
 - Les informations en provenance de la mémoire à long terme sont appelées « chunks » ou mnèmes (granularité d'un mnème)
 - mnème : unité cognitive symbolique
 - 7 ± 2 mnèmes (au-delà, dégradation)
- Mémoire à long terme
- Processeur cognitif

Système cognitif

- La mémoire à court terme
- La mémoire à long terme
 - Structurée
 - Organisée sous la forme de réseaux sémantiques
- Le processeur cognitif
 - Cycle de base : 70 ms
 - Cycle reconnaissance-action

Modèle du processeur humain

- Cadre fédérateur pour les différentes connaissances en psychologie
- Utilise la terminologie de l'informaticien
- Orienté psychologie expérimentale (et applicable)

Modèle du processeur humain

- Trop bas niveau dans le cas général (ne fournit pas les informations intéressantes pour la conception d'interfaces hommemachine)
- Ne traite pas les problèmes de l'erreur ni du parallélisme
- Ne présente pas de méthode de conception (ne dit pas comment intégrer ces contraintes dans une application)

Exemples d'applications

- Temps de réaffichage
 - Effet d'animation si réaffichage < 1/10 sec
- Suivi de la souris
 - Vitesse maximale de la main : 1 à 1,5 m/sec
- Le chiffre magique 7 ± 2
 - Nombre de commandes dans un menu pour qu'elles soient mémorisables
 - Dans une longue liste, on ne retient que le début et la fin

Exemples d'applications : Périphériques d'entrée

- Claviers, boîtes à boutons
- Potentiomètres (rotatifs, linéaires)
- Souris, tablettes, joystick, trackball
- Écrans tactiles, crayons optiques
- Capteurs de position et de direction
- Dispositifs simulés

Périphériques d'entrée

- Absolu / relatif
- Direct / indirect
- Courbe de réponse (Control-Display Gain)

Loi de Fitts

$$t = a + b \log(D / W + 1)$$

t : temps de pointage

a, b : caractéristiques du périphérique

D : distance à la cible

Loi de Fitts

 Augmenter la taille des cibles dans l'espace visuel

Loi de Fitts

- Raccourcir les distances
- Jouer sur l'espace moteur

Paste

Copy Paste

Exemples d'applications

 Le Canon Cat (Jeff Raskin, 1987)

- S
- Exploitation of the single locus of attention
 - Lorsqu'on l'éteignait, le Cat sauvegardait une image bitmap de l'écran au début du disque
 - Lorsqu'on le rallumait, le Cat chargeait l'image et l'affichait avant de charger le reste des données
 - Il faut 10 secondes à l'utilisateur pour changer de contexte et se préparer à la nouvelle tâche
 - Il en fallait 7 au Cat pour lire le reste du disque

- Interacting Cognitive
 Subsystems
- Modélise le système cognitif par 9 soussystèmes indépendants et communicants
- Des règles précisent les communications possibles entre les sous-systèmes

Sous-système d'ICS

- Canaux d'entrée et de sortie
- Capacité de traitement de l'information
- Mémoire locale
- N'accepte que les informations exprimées dans son code propre
- Recopie localement toute information se présentant

à l'entrée

- Moteur central de la cognition
 - Manipule des propositions (logique du premier ordre)
 - Fonctionne de façon analogue à un système expert
 - Le lieu de la compréhension
- Sous-système propositionnel (PROP)
 - Reçoit des propositions des sous-systèmes interprétatifs MPL et OBJ
 - Échange des propositions avec IMPLIC

- Sous-système implicationnel (IMPLIC)
 - N'a des échanges qu'avec le sous-système PROP
 - Infère de nouvelles propositions à partir des propositions reçues
- Sous-systèmes acoustique (AC) et visuel (VIS)
 - Perception de l'information sonore ou visuelle (niveau signal)
 - Abstraction vers les soussystèmes morphono-lexical et objet

- Sous-systèmes morphonolexical (MPL) et objet (OBJ)
 - Interprétation des informations perçues (lexique et syntaxe pour le langage, relations spatiales pour les scènes visuelles)
 - Abstraction sous forme de propositions vers le sous-système propositionnel
 - Génération du langage et des mouvements à partir de propositions
- Sous-systèmes articulatoire (ART) et mouvement (LIMB)
 - Génération de sons et parole à partir de MPL
 - Ggénération de mouvements à partir de OBJ

- Cadre de réflexion plus complet que le processeur humain
- Prend en compte les interfaces modernes utilisant plusieurs médias ou modalités
- Difficile à appliquer (beaucoup de règles)
- Nécessite des connaissances en psychologie

Le modèle de Rasmussen

 Modèle simplifié des trois niveaux de contrôle des comportements humains

Le modèle de Rasmussen

 Cadre pour la modélisation simplifiée des compétences de l'utilisateur cible

Tâches dans les domaines **Domaine** informatique **Domaine** d'application familier débutant expert

Niveaux de compétence

Le modèle de Rasmussen

- Fournit un cadre simple pour la modélisation de l'utilisateur
- Complète la théorie de l'action de Norman

La théorie de l'action de Norman

Réalisation d'une tâche :

- 1. Établissement du but
- 2. Formation d'une intention
- 3. Spécification d'une suite d'actions
- 4. Exécution des actions
- 5. Perception de l'état du système
- 6. Interprétation de l'état du système
- 7. Évaluation de l'état par rapport au but fixé

Théorie de l'action : distances

La théorie de l'action de Norman

- L'objectif du concepteur et du réalisateur : réduire les distances mentales par le biais de l'image du système
 - Distance d'exécution : effort cognitif de l'utilisateur pour la mise en correspondance entre la représentation mentale de sa tâche et la représentation physique de l'image du système
 - Distance d'évaluation : effort cognitif inverse
 - Notion d'affordance perçue

Modèles perceptuel et conceptuel

- Modèle perceptuel : modèle mental construit par l'utilisateur
- Modèle conceptuel : description et fonctionnement du système

utilisateur 4

 La distance entre les deux modèles détermine la performance (l'utilisabilité) du système

feedback

commandes

opérations -

Modèle conceptuel : le bain

- Remplir une baignoire avec deux robinets eau chaude/froide
- Variables psychologiques
 - d = débit de l'eau
 - t = température du bain
- Variables physiques
 - dc, tc = débit et température de l'eau chaude
 - df, tf = débit et température de l'eau froide
- Relations entre les variables :
 - d = df + dc
 - t = (dc*tc + df*tf) / (df+dc)

Modèle conceptuel : le bain

- Problèmes typiques rencontrés par l'utilisateur :
 - Quel robinet est celui d'eau froide ?
 - Comment faire varier le débit ?
 - Comment refroidir en conservant le débit ?
 - Comment manipuler les deux robinets en sens inverse ?
 - Comment diminuer le débit en gardant la température constante ?
 - Comment évaluer le débit ?
 - Comment évaluer la température ?

Modèle conceptuel : autre exemple

- De quoi est fait ce dessin ?
- Comment est fait ce dessin ?

• C'est un ensemble de points que l'on peut effacer!

• C'est un rectangle et un cercle que l'on peut déplacer!

Modèles perceptuel

- L'utilisateur construit un modèle mental du système en se basant entre autres sur :
 - Les affordances (relations naturelles) du système qu'il perçoit
 - Les liens de causalité qu'il perçoit
 - Les contraintes imposées par le système (ex : physiques)
 - Des correspondances perçues (ex : contraintes/objets)
 - Des stéréotypes culturels
 - L'expérience de systèmes similaires (transfer effect)
 - Des instructions reçues
- Ce modèle n'est pas nécessairement juste...

Affordances

- Une affordance est « a property of the world that affords action to appropriately equipped individuals »
- Relation tri-partite: l'environnement, l'individu et ses actions
- Importance du couplage perception/action

• Exemples :

- Une chaise permet de s'asseoir
- Un thermostat peut être tourné
- Un bouton peut être pressé
- Une porte peut être poussée ou tirée...

Affordances et perception

Information perçue

Pas d'information perçue

fausse affordance

affordance perçue

rejet correct affordance cachée

Pas d'affordance

affordance

Connaître ses utilisateurs

- Vous n'êtes pas l'utilisateur moyen du système que vous développez
- N'attendez pas des autres qu'ils pensent ou se comportent comme vous le faites, ou comme vous aimeriez qu'ils le fassent
- Les pensées et le comportement des individus varient autant que leurs caractéristiques physiques
- Allez à la rencontre de vos utilisateurs!

Différences entre individus

- Il est rarement possible de concevoir un système qui convienne à tout le monde
- Exemples : longueur des lits, hauteur des portes, espace entre les sièges de train ou d'avion
- Il faut le plus souvent trouver un compromis...
- Erreur classique : concevoir le système pour la moyenne (on risque d'exclure la moitié de la population)
- Objectif à viser : 80% de la population