Exercises 10.3

- 1-2 Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > 0and one with r < 0.
- **1.** (a) $(1, \pi/4)$
- (b) $(-2, 3\pi/2)$
- (c) $(3, -\pi/3)$

- **2.** (a) $(2, 5\pi/6)$
- (b) $(1, -2\pi/3)$
- (c) $(-1, 5\pi/4)$
- 3-4 Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.
 - **3.** (a) $(2, 3\pi/2)$
- (b) $(\sqrt{2}, \pi/4)$
- (c) $(-1, -\pi/6)$
- **4.** (a) $(4, 4\pi/3)$ (b) $(-2, 3\pi/4)$
- (c) $(-3, -\pi/3)$
- **5–6** The Cartesian coordinates of a point are given.
- (i) Find polar coordinates (r, θ) of the point, where r > 0and $0 \le \theta < 2\pi$.
- (ii) Find polar coordinates (r, θ) of the point, where r < 0and $0 \le \theta < 2\pi$.
- **5.** (a) (-4, 4)
- (b) $(3, 3\sqrt{3})$
- **6.** (a) $(\sqrt{3}, -1)$
- (b) (-6,0)
- **7–12** Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
- **7.** $1 < r \le 3$
- **8.** $r \ge 2$, $0 \le \theta \le \pi$
- **9.** $0 \le r \le 1$, $-\pi/2 \le \theta \le \pi/2$
- **10.** 3 < r < 5, $2\pi/3 \le \theta \le 4\pi/3$
- **11.** $2 \le r < 4$, $3\pi/4 \le \theta \le 7\pi/4$
- **12.** $r \ge 0$. $\pi \le \theta \le 5\pi/2$
- **13.** Find the distance between the points with polar coordinates $(4, 4\pi/3)$ and $(6, 5\pi/3)$.
- **14.** Find a formula for the distance between the points with polar coordinates (r_1, θ_1) and (r_2, θ_2) .
- 15-20 Identify the curve by finding a Cartesian equation for the curve.
- **15.** $r^2 = 5$
- **16.** $r = 4 \sec \theta$
- **17.** $r = 5 \cos \theta$
- **18.** $\theta = \pi/3$
- **19.** $r^2 \cos 2\theta = 1$
- **20.** $r^2 \sin 2\theta = 1$

- **21–26** Find a polar equation for the curve represented by the given Cartesian equation.
- **21.** $x^2 + y^2 = 7$
- **22.** x = -1
- **23.** $y = \sqrt{3}x$
- **24.** $y = -2x^2$
- **25.** $x^2 + y^2 = 4y$
- **26.** $x^2 y^2 = 4$
- 27–28 For each of the described curves, decide if the curve would be more easily given by a polar equation or a Cartesian equation. Then write an equation for the curve.
- **27.** (a) A line through the origin that makes an angle of $\pi/6$ with the positive x-axis
 - (b) A vertical line through the point (3, 3)
- **28.** (a) A circle with radius 5 and center (2, 3)
 - (b) A circle centered at the origin with radius 4
- **29–32** The figure shows a graph of r as a function of θ in Cartesian coordinates. Use it to sketch the corresponding polar curve.

33–50 Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.

33.
$$r = -2 \sin \theta$$

34.
$$r = 1 - \cos \theta$$

35.
$$r = 2(1 + \cos \theta)$$

36.
$$r = 1 + 2\cos\theta$$

37.
$$r = \theta, \ \theta \geqslant 0$$

38.
$$r = \theta^2, -2\pi \le \theta \le 2\pi$$

39.
$$r = 3 \cos 3\theta$$

40.
$$r = -\sin 5\theta$$

41.
$$r = 2 \cos 4\theta$$

42.
$$r = 2 \sin 6\theta$$

43.
$$r = 1 + 3\cos\theta$$

44.
$$r = 1 + 5 \sin \theta$$

45.
$$r^2 = 9 \sin 2\theta$$

46.
$$r^2 = \cos 4\theta$$

47.
$$r = 2 + \sin 3\theta$$

48.
$$r^2\theta = 1$$

49.
$$r = \sin(\theta/2)$$

50.
$$r = \cos(\theta/3)$$

- **51.** Show that the polar curve $r = 4 + 2 \sec \theta$ (called a **conchoid**) has the line x = 2 as a vertical asymptote by showing that $\lim_{r \to \pm \infty} x = 2$. Use this fact to help sketch the conchoid.
- **52.** Show that the curve $r = 2 \csc \theta$ (a conchoid) has the line y = -1 as a horizontal asymptote by showing that $\lim_{r \to \pm \infty} y = -1$. Use this fact to help sketch the conchoid.
- **53.** Show that the curve $r = \sin \theta \tan \theta$ (called a **cissoid of Diocles**) has the line x = 1 as a vertical asymptote. Show also that the curve lies entirely within the vertical strip $0 \le x < 1$. Use these facts to help sketch the cissoid.
- **54.** Sketch the curve $(x^2 + y^2)^3 = 4x^2y^2$.
- **55.** (a) In Example 10 the graphs suggest that the limaçon $r = 1 + c \sin \theta$ has an inner loop when |c| > 1. Prove that this is true, and find the values of θ that correspond to the inner loop.
 - (b) From Figure 18 it appears that the limaçon loses its dimple when $c=\frac{1}{2}.$ Prove this.
- **56.** Match the polar equations with the graphs labeled I–IX. Give reasons for your choices.

(a)
$$r = \cos 3\theta$$

(b)
$$r = \ln \theta$$
, $1 \le \theta \le 6\pi$

(c)
$$r = \cos(\theta/2)$$

(d)
$$r = \cos(\theta/3)$$

(e)
$$r = \sec(\theta/3)$$

(f)
$$r = \sec \theta$$

(g)
$$r = \theta^2$$
, $0 \le \theta \le 8\pi$

(h)
$$r = 2 + \cos 3\theta$$

(i)
$$r = 2 + \cos(3\theta/2)$$

- **57.** Show that the polar equation $r = a \sin \theta + b \cos \theta$, where $ab \neq 0$, represents a circle. Find its center and radius.
- **58.** Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angles.

59–64 Graph the polar curve. Choose a parameter interval that produces the entire curve.

59.
$$r = 1 + 2\sin(\theta/2)$$
 (nephroid of Freeth)

60.
$$r = \sqrt{1 - 0.8 \sin^2 \theta}$$
 (hippopede)

61.
$$r = e^{\sin \theta} - 2\cos(4\theta)$$
 (butterfly curve)

62.
$$r = |\tan \theta|^{|\cot \theta|}$$
 (valentine curve)

63.
$$r = 1 + \cos^{999}\theta$$
 (Pac-Man curve)

64.
$$r = 2 + \cos(9\theta/4)$$

- **65.** How are the graphs of $r = 1 + \sin(\theta \pi/6)$ and $r = 1 + \sin(\theta \pi/3)$ related to the graph of $r = 1 + \sin\theta$? In general, how is the graph of $r = f(\theta \alpha)$ related to the graph of $r = f(\theta)$?
- **66.** Use a graph to estimate the *y*-coordinate of the highest points on the curve $r = \sin 2\theta$. Then use calculus to find the exact value.