Lugar Geométrico com Números Complexos

Leon Luca de Araujo Calheira - Olympic Birds 16 de Julho de 2024

1 Introdução

Hoje aprenderemos como aplicar números complexos na geometria analítica, proporcionando uma perspectiva que pode reduzir cálculos e tempo de prova.

O truque está em tratar um número complexo z, definido como um ponto no plano de Argand-Gauss, também como um vetor que liga esse ponto à origem, com seu módulo equivalente ao valor absoluto desse vetor.

2 Definições

2.1 Circunferência

$$|z - z_1| = k$$

Interpretação: A distância entre um ponto variável z e um ponto fixo z_1 é igual a um valor constante k.

Como o valor de $|z-z_1|$ é constante, o tamanho do vetor não se altera, mudando apenas a direção, o que caracteriza uma circunferência. Assim:

Lugar Geométrico de z: Circunferência de raio igual a k centrada em z_1 .

2.2 Mediatriz

$$|z - z_1| = |z - z_2|$$

Interpretação: A distância entre um ponto variável z e um ponto fixo z_1 é igual à distância entre esse mesmo ponto z e outro ponto fixo z_2 .

Como o ponto médio de $\overline{z_1z_2}$ satisfaz a equação, deve-se traçar uma reta que passe por esse ponto médio e que seja perpendicular ao segmento $\overline{z_1z_2}$, assim mantendo a igualdade das distâncias por semelhança. Dessa forma:

Lugar Geométrico de z: Mediatriz entre os pontos z_1 e z_2 .

2.3 Elipse

$$|z - z_1| + |z - z_2| = k$$

Interpretação: A distância entre um ponto variável z e um ponto fixo z_1 , somada com a distância entre esse ponto z e outro ponto fixo z_2 , é igual a um valor constante k.

Neste caso, apesar de tanto as direções quanto os valores dos vetores mudarem, é fácil perceber que o lugar geométrico formado será uma elipse, tendo z_1 e z_2 como focos. Nesse sentido, $c=\frac{|z_1-z_2|}{2},~a=\frac{k}{2}$ e $b=\sqrt{a^2-c^2}=\frac{\sqrt{k^2-|z_1-z_2|^2}}{2}$.

Lugar Geométrico de z: Elipse com focos z_1 e z_2 , semi-eixo maior igual a $\frac{k}{2}$, semi-eixo menor igual a $\frac{\sqrt{k^2-|z_1-z_2|^2}}{2}$ e excentricidade igual a $\frac{|z_1-z_2|}{k}$.

2.4 Hi<mark>pé</mark>rbole

$$||z - z_1| - |z - z_2|| = k$$

Interpretação: A diferença da distância entre um ponto variável z e um ponto fixo z_1 e da distância entre esse ponto z e outro ponto fixo z_2 é igual, em módulo, a um valor constante k.

Aqui, o raciocínio é semelhante à elipse, com a diferença de que é a subtração das distâncias, e não a soma. Deve-se levar em conta que o segundo módulo é posto para incluir os dois "lados" da hipérbole: se o valor fosse +k, só consideraria um deles, enquanto se fosse -k, consideraria o outro.

Lugar Geométrico de z: Hipérbole com focos z_1 e z_2 , semi-eixo maior igual a $\frac{k}{2}$, semi-eixo menor igual a $\frac{\sqrt{|z_1-z_2|^2-k^2}}{2}$ e excentricidade igual a $\frac{|z_1-z_2|}{k}$.

2.5 Cí<mark>rcu</mark>lo de Apolônio

$$|z - z_1| = k|z - z_2|$$

Interpretação: A distância entre um ponto variável z e um ponto fixo z_1 é igual ao produto entre um valor constante k e a distância entre esse ponto z e outro ponto fixo z_2 .

Aqui o lugar geométrico não é tão explícito como nos outros casos, então precisaremos desenvolver o desenho. Primeiramente, montaremos o triângulo zz_1z_2 e definiremos $|z-z_2|$ como L.

Agora, traçaremos as bissetrizes internas e externas relativas ao vértice z e, no caso da externa, ao vértice z_2 .

Pela propriedade das bissetrizes, $\angle PzQ=90^\circ$, o que define o lugar geométrico como uma circunferência. Definindo $\overline{Pz_2}=x$ e $\overline{Qz_2}=y$:

$$\overline{Pz_2} + \overline{Pz_1} = x + kx = |z_1 - z_2| \Rightarrow x = \frac{|z_1 - z_2|}{k+1}$$

$$\frac{\overline{zz_2}}{\overline{Qz_2}} = \frac{\overline{zz_1}}{\overline{Qz_1}} \Rightarrow \frac{L}{y} = \frac{kL}{y+x(k+1)}$$

$$y(k-1) = x(k+1) \Rightarrow y = \frac{|z_1 - z_2|}{k-1}$$

Assim, sabendo que \overline{QP} é o diâmetro da circunferência:

$$R = \frac{\overline{PQ}}{2} \Rightarrow R = |z_1 - z_2| \frac{k}{k^2 - 1}$$

Lugar Geométrico de z: Circunferência de raio R igual a $|z_1 - z_2| \frac{k}{k^2 - 1}$ centrada no ponto C (exterior à $\overline{z_1 z_2}$).

3 Problemas

- 1. Considere o conjunto dos complexos z tais que: |z-2+3i|=1. Determine o valor do módulo do complexo z pertencente a esse conjunto que possua:
 - a) Argumento mínimo
 - b) Módulo máximo
- 2. (ITA) Seja Z_k um número Complexo, solução da equação: $(z+1)^5+z^5=0$, K=0,1,2,3,4. Podemos afirmar que:
 - a) Todos os Z_k , k=0,1,...,4 estão sobre uma circunferencia
 - b) Todos os Z_k , k=0,1,...,4 estão sobre uma reta paralela ao eixo real
 - c) Todos os Z_k , k=0,1,...,4 estão sobre uma reta paralela ao eixo imaginário
 - d) A equação não admite solução
- 3. Determine os possíveis lugares geométricos das imagens das raízes da equação em z: $u(z-a)^4+v(z-b)^4=0$
- 4. (ITA) Determine o conjunto dos números complexos z para os quais o número $w=\frac{z+\overline{z}+2}{\sqrt{|z-1|+|z+1|-3}}$ pertence ao conjunto dos números reais. Interprete (ou identifique) este conjunto geometricamente e faça um esboço do mesmo.

- 5. (IME) Considere os triângulos ABC em que $\overline{BC}=32$ e $\frac{\overline{AB}}{\overline{AC}}=3$. O maior valor possível para a altura relativa ao lado \overline{BC} é?
- 6. Demonstre, usando um argumento geométrico, a relação: $1-cis\theta=-2isin(\frac{\theta}{2})cis(\frac{\theta}{2})$

4 Referências

• GUIMARÃES, Caio. Matemática Em Nível IME/ITA Volume 1: Números Complexos e Polinômios. Vestseller, 2008.

