OSCILLATIONS

DATE_____PAGE____

· Oscillatory motion > To and fro

Periodic motion > Motion is nepeated after a fixed period.

Simple Hoormonic motion (SHM):-

force (acceleration due to gravity) - Brings object from extreme to mean.

Displacement - Always opposite to acceleration

Inentic of motion - Brings object from mean to extreme

Oscillatory motion - uniform velocity SHM -> non-uniform velocity

θ	Sin 0	ا ده	tan 0	
0	0	1	.0	sin, cos, sec, cosec periodic
30	0.5	0.85		function hain kyanti unti
60	0.85	٥٠٥.	0.15,12	
90	1	0	∞	values ex fixed pouled ke
120 ,	0.85	-0.5	es th	boad replot he rahi hair
150	0.5	-0.85		tan periodic function national
180	0	-1	. 0	kyunki usme oo aata hai.
210	-0.5	0.85		
240	-0.85	-0.5		Asc. at was cross class.
270	-1	0	₽.	
300	-0.85	0.5		
330	-0.5	0.85		and a Carrier of a
360	٥	1	0	
	0 30 60 40 120 150 180 210 240 270 300 330	0 0 30 0.5 60 0.85 40 1 120, 0.85 150 0.5 180 0 210 -0.5 240 -0.85 270 -1 300 -0.85 330 -0.5	0 0 1 30 0.5 0.85 60 0.85 0.5 90 1 0 120 0.85 -0.5 150 0.5 -0.85 180 0 -1 210 -0.5 -0.85 240 -0.85 -0.5 270 -1 0 300 -0.85 0.5 330 -0.5 0.85	0 0 1 0 30 0.5 0.85 60 0.85 0.5 90 1 0 0 120, 0.85 -0.5 150 0.5 -0.85 180 0 -1 0 210 -0.5 -0.85 240 -0.85 -0.5 270 -1 0 0.5 300 -0.85 0.5 330 -0.5 0.85

Phasor Diagram

Extreme (for a)

After

Wine t

Meant (for a)

(3T)

when a is on y-axis

(Maximum displacement & condo > Amplitude (A)

Rehta hai

P → wiculatory motion

A → oscillatory (linear motion)

wt (Angular displacement) is called Phase.

T =
$$2\pi \sqrt{\frac{m_1}{K}}$$
 = $2\pi \sqrt{\frac{m_2}{K}}$ spring constant (because of nestring fore)

 $T = 2\pi \sqrt{\frac{m_1}{K}}$
 $\frac{Work k. Energy}{k}$
 $W = \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int ma. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy$
 $= \int f. dy = \int m. Dy. dy$
 $= \int f. dy = \int f. dy$
 $= \int f. dy = \int$

Graphical Representation Displacement - Time Grouph (y= Asin wt) (1) >t Velocity - Time Graph (1 = Aw wort) (ii) Acceleration - Time Graph Acceleration is maximum at a place دننن (a=-Aw sinwt) where the velocity is minimum and vice versa of Energy (JV) Energy E KE = 1 mw (A2-y1) RE (y = A sin wt) LPE = 1 mw (A - A sin wt) = 1 mw A2 (1 - sin wt) $kE = \frac{1}{2} m w^2 A^2 \cos^2 wt$ PE = Imn'y 2 PE = 1 mw A2 sin wt

Simple Pendulum Tension = mg cos & mg sin to is unbalanced force F f = mgsin 0 ma = mgsin 0 In simple pendulum $\alpha = g \sin \theta$ For small angle $\theta = \sin \theta = \tan \theta$ $a = q\theta \qquad a = qx$ Sint D= arc = 2 7 = 27 y(displ.) - only for simple Pendulum because o is mass independent Enequency = $\frac{1}{7}$ = $\frac{1}{2\pi}$ $\frac{8}{2}$ Time period of a simple pandulum - 2 sec Damped and Undamped Oscillation Damped Undamping damping = -bv y = A sin wt a = A cos wt and finertia = -kx Total force F = - bV + (-kx) $T = 2\pi \sqrt{m}$ T = m \sqrt{K} $2\pi \sqrt{K}$ Displacement $x(t) = Ae^{-bt/2m}$ $\frac{2\pi}{1} = \int_{M}^{K}$ and $\frac{2\pi}{7} = W$

Free and Forced Oscillation

(particle) forced Oscillation: - When object oscillates with its natural frequency forced Oscillation: - When object oscillation under and external force. Resonance: - When the natural frequency and applied frequency of a particle match, then resonance happens. (Resonance) Natural frequency = Applied frequency

1. 1. ...

$$A = F_0 = \{m^2 (w^2 - w_d^2) + w_d^2 b^2 \}^{1/2}$$

Jab Resonance haga to oxillation ka amplitude maximum hoga.