

≡ Menu

Gradient Descent in Practice II - Learning Rate

Note: [5:20 - the x -axis label in the right graph should be θ rather than No. of iterations]

Debugging gradient descent. Make a plot with *number of iterations* on the x-axis. Now plot the cost function, $J(\theta)$ over the number of iterations of gradient descent. If $J(\theta)$ ever increases, then you probably need to decrease α .

Automatic convergence test. Declare convergence if $J(\theta)$ decreases by less than E in one iteration, where E is some small value such as 10^{-3} . However in practice it's difficult to choose this threshold value.

Making sure gradient descent is working correctly.

It has been proven that if learning rate α is sufficiently small, then $J(\theta)$ will decrease on every iteration.

Making sure gradient descent is working correctly.

- For sufficiently small $\, lpha, \, \underline{J(\theta)} \, ext{should decrease on every iteration.} \, ullet$
- But if lpha is too small, gradient descent can be slow to converge.

To summarize:

If lpha is too small: slow convergence.

If α is too large: $\overline{\omega}$ may not decrease on every iteration and thus may not converge.

Report an issue