

অধ্যায়ভিত্তিক গুরুত্বপূর্ণ সূত্র ও তথ্যাবলি

দক্ষতা স্তরভিত্তিক মৌলিক ধারণা অর্জনে সহায়ক তথ্যাবলি

সূত্রাবলি, গ্রিক বর্ণমালা, দশের সূচক, আঃ রোধ, গলনাঙ্ক ও স্ফুটনাঙ্ক

পদার্থবিজ্ঞান প্রথম পত্রে এইচএসসি পরীক্ষায় সৃজনশীল প্রশ্নে ৭০—৮০% গাণিতিক সমস্যানির্ভর প্রয়োগ ও উচ্চতর দক্ষতা স্তরের প্রশ্ন থাকতে পারে। এক্ষেত্রে সূত্রাবলি, ভৌত রাশিসমূহের একক, মাত্রা, রূপান্তর, বিভিন্ন ধ্বক রাশির মান জানা থাকলে যেকোনো পরিবর্তিত সৃজনশীল প্রশ্নের উত্তর করা সহজ হয়। শিক্ষার্থীদের অনুশীলনকে গতিশীল করতে এ বিষয়ের অধ্যায়ভিত্তিক গুরুত্বপূর্ণ সূত্র ও তথ্যাবলি এ অংশে অধ্যায়ের ধারাবাহিকতায় উপস্থাপন করা হলো।

অধ্যায়ভিত্তিক প্রয়োজনীয় সূত্রাবলি, প্রতীক ও একক পরিচিতি

অধ্যায় 🕽 🕨 ভৌত জগৎ ও পরিমাপ

সূত্রাবলি	প্রতীক পরিচিতি	একক
শক্তি, E = mc ²	m = বস্তুর ভর	কিলোগ্রাম (kg)
	c = শূন্য মাধ্যমে আলোর বেগ	মিটার/সেকেন্ড (m s ⁻¹)
ফোটনের শক্তি, E = nh/	n = ফোটন সংখ্যা	
	h = প্ল্যাঙ্কের ধ্রুবক	জুল-সেকেন্ড (Js)
	f= ফোটনের কম্পাঙ্ক	হার্জ (Hz)
ডিগ্রি সেলসিয়াস ও ডিগ্রি ফারেনহাইট এবং	C = সেন্টিগ্ৰেড ক্ষেলে পাঠ	ডিগ্রি সেলসিয়াস (°C)
কেলভিন এর মধ্যে সম্পর্ক $\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5}$	F = ফারেনহাইট স্কেলে পাঠ	ডিগ্রি ফারেনহাইট (°F)
$\frac{1}{5} = \frac{1}{9} = \frac{1}{5}$	K = কেলভিন ক্ষেলের পাঠ	কেল্ডিন (K)
ভার্নিয়ার ধ্রুবক, V.C. = S	S = মূল ক্ষেলের ক্ষুদ্রতম এক ঘরের মান (পীচ)	মিলিমিটার (mm)
olinala dan, v.c N	N = ভার্নিরার স্কেলের দাগ সংখ্যা	
$W - W_1$	W = বস্তুর বাতাসে ওজন	নিউটন (N)
বস্থুর আয়তন, $V = \frac{W - W_1}{\rho_{\theta}}$	W ₁ = পানিতে সম্পূর্ণ নিমজ্জিত অবস্থায় বস্তুর ওজন	
	ρ _θ = θ°C তাপমাত্রায় পানির ঘনত্ব	কিলোগ্রাম/মিটার° (kg m ⁻³)
লঘিষ্ঠ গণন, $L.C = \frac{p}{p}$	p = যন্ত্রের পীচ	মিলিমিটার (mm)
THE THE LECT	n = বৃত্তাকার ঘর সংখ্যা	
গাণিতিক গড়, $\frac{1}{r} = \frac{r_1 + r_2 + r_3 + \dots + r_n}{n}$	r ₁ , r ₂ , r ₃ , r _n = n পূৰ্ণসংখ্যক তথ্য	
গড় বিচ্যুতি, $\overline{\delta} = \frac{\delta_1 + \delta_2 + \delta_3 + \dots + \delta_n}{n}$	$\delta_1,\delta_2,\delta_3,\delta_n$ = গড় মান হতে বিভিন্ন মানের বিচ্যুতি	
x~v $\Lambda \overline{a}$	x = প্রকৃত মান, y = পরিমাপ্য মান,	
শতকরা ত্রুটি = $\frac{x \sim y}{x} \times 100\% = \frac{\Delta \overline{a}}{\overline{a}} \times 100\%$	$\overline{a}=$ প্রকৃত মান, $\Delta \overline{a}=$ পরম তুটি	
গোলীয় তলের বক্রতার ব্যাসার্ধ, $R = \frac{d^2}{6h} + \frac{h}{2}$	d = স্ফেরোমিটারের যেকোনো দুই পায়ের মধ্যবর্তী দূরত্ব	মিটার (m)
6h 2	h = স্ফেরোমিটারের পা তিনটির সমতল হতে বক্রতলের উচ্চতা	মিটার (m)
ন্লাইড ক্যালিপার্সের সাহায্যে দৈর্ঘ্য নির্ণয়ের সূত্র : L = M + VC × V – (± e)	$L = $ প্রকৃত দৈর্ঘ্য, $M = $ প্রধান স্কেল পাঠ, $VC = $ ভার্নিয়ার ধ্রবক, $V = $ ভার্নিয়ার সমপাতন, $\pm e = $ যান্ত্রিক ত্রুটি	মিটার (m)
 ক্-পজের সাহায্যে তারের বেধ নির্পয়ের সূত্র : D = L + L.C + V - (± e) 	D = তারের ব্যাস, L = প্রধান স্কেল পাঠ L.C = লঘিষ্ঠ গুণন	মিটার (m)

অধ্যায় ২ > ভেক্টর

সূত্রাব লি	প্রতীক পরিচিতি	একক
একক ভেক্টর, $\hat{\mathbf{a}} = \frac{\overrightarrow{\mathbf{A}}}{ \mathbf{A} }$	â = একক ভেক্টর, A = ভেক্টর A = A এর মান	•
(i) অনুভূমিক উপাংশ, $\overrightarrow{R}_x = R \cos \theta$ (ii) উল্লম্ব উপাংশ, $\overrightarrow{R}_y = R \sin \theta$	$R =$ লব্ধির মান, $R_x =$ অনুভূমিক উপাংশ $R_y =$ উল্লম্ব উপাংশ $\theta =$ মধ্যবৰ্তী কোণ	ডিগ্রি (°)
$\left \overrightarrow{A} \right = \sqrt{A_x^2 + A_y^2 + A_z^2}$	A_x , A_y , A_z যথাক্রমে X , Y , Z অক্ষ বরাবর \overrightarrow{A} এর উপাংশ	
অবস্থান ভেক্টর, $\overrightarrow{r}=\hat{i}x+\hat{j}y+\hat{k}z$ অবস্থান ভেক্টরের মান, $r=\sqrt{x^2+y^2+z^2}$	r = অবস্থান ভেক্টরের মান x, y, z = r এর স্থানাঙ্ক	

সুজনশীল পদার্থবিজ্ঞান প্রথম পত্র 🌱 একাদশু-ছাদশ

সূত্রাবলি	প্রতীক পরিচিতি	একক
লব্বির মান, $R = \sqrt{P^2 + Q^2 + 2PQ \cos \alpha}$	P ও Q দৃটি ভেক্টর	ডিগ্রি (°)
The strike of th	$\alpha = \overrightarrow{P}$ ও \overrightarrow{Q} এর মধ্যবর্তী কোণ	
লব্ধির দিক, $\tan \theta = \frac{Q \sin \alpha}{P + Q \cos \alpha}$	$\alpha = \overrightarrow{P}$ ও \overrightarrow{Q} এর মধ্যবর্তী কোণ	ডিগ্রি (°)
$P + Q \cos \alpha$	θ = P ও R এর মধ্যবর্তী কোণ	
$\overrightarrow{A} = \hat{i} \ A_1 + \hat{j} \ A_2 + \hat{k} \ A_3 \ \text{এবং } \overrightarrow{B} = \hat{i} \ B_1 + \hat{j} \ B_2 + \hat{k} \ B_3 \ \text{হলে,}$ $\overrightarrow{A} \cdot \overrightarrow{B} = A_1 B_1 + A_2 B_2 + A_3 B_3 \ \text{এবং } \overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$	 Î = X অক্ষ বরাবর একক ভেক্টর Ĵ = Y অক্ষ বরাবর একক ভেক্টর k = Z অক্ষ বরাবর একক ভেক্টর 	,
দুটি ভেক্টরের ডট গুণন, A. B = AB cos θ	রও B দুটি ভেক্টর	
Z TELOSO	θ = এদের মধ্যবর্তী কোণ	ডিগ্রি (°)
\overrightarrow{P} -এর উপর \overrightarrow{Q} -এর লম্ব অভিক্ষেপ $= \dfrac{\overrightarrow{P}.\overrightarrow{Q}}{\left \overrightarrow{Q}\right }$	P ও Q দুটি ভেক্টর	
লম্ব একক ভেক্টর, $\hat{\eta}=\pmrac{\overrightarrow{A} imes\overrightarrow{B}}{ \overrightarrow{A} imes B }$	A ও B দুটি ভেক্টর	
	$\hat{\eta} = \overrightarrow{A} \ \ \overrightarrow{9} \ \overrightarrow{B}$ এর লম্ব অভিমুখে একক ভেক্টর	
\overrightarrow{A} এবং \overrightarrow{B} পরস্পর সমান্তরাল হবে, যদি $\overrightarrow{A} imes \overrightarrow{B} = 0$ হয়	র ও B দুটি ভেক্টর	To
$\overrightarrow{\mathbf{A}}$ এবং $\overrightarrow{\mathbf{B}}$ পরস্পর লম্ব হবে, যদি $\overrightarrow{\mathbf{A}}$. $\overrightarrow{\mathbf{B}} = 0$ হয়	A ও B দুটি ভেক্টর	
সামান্তরিক ক্ষেত্রের ক্ষেত্রফল = $\left \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \right $	A ও B সামান্তরিকের সন্নিহিত বাহু	
রম্বসের ক্ষেত্রফল $=\frac{1}{2} \overrightarrow{A} \times \overrightarrow{B} $	যেকোনো রম্বসের কর্ণদ্বয় \overrightarrow{A} ও \overrightarrow{B}	
	r = অবস্থান ভেক্টর	মিটার (m)
$\overrightarrow{v} = \frac{\overrightarrow{dr}}{\overrightarrow{dt}}, \overrightarrow{a} = \frac{\overrightarrow{dv}}{\overrightarrow{dt}}$	v = বেগ	মিটার/সেকেন্ড (m s ⁻¹)
,	$\stackrel{ ightarrow}{ m a}=$ ত্রণ	মিটার/সেকেন্ড ² (m s ⁻²)
grad $\varphi = \overrightarrow{\nabla} \varphi$, div $\overrightarrow{A} = \overrightarrow{\nabla} \cdot \overrightarrow{A}$, Curl $\overrightarrow{A'} = \overrightarrow{\nabla} \times \overrightarrow{A}$	φ স্কেলার ক্ষেত্র, ঐ ভেক্টর রাশি	
	⊽ ভেক্টর অপারেটর	

অধ্যায় ৩ 🕨 গতিবিদ্যা

সূত্ৰাবলি	প্রতীক পরিচিতি	একক
	v = শেষ বেগ, u = আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
শেষ বেগ, v = u + at	a = ত্বুরণ	মিটার/সেকেন্ড ^২ (m s ⁻²)
	t = সময়	সেকেন্ড (s)
শেষ বেগ 2 , $\mathbf{v}^2 = \mathbf{u}^2 + 2\mathbf{a}\mathbf{s}$	v = শেষ বেগ, u = আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
	s = দূরত্ব	মিটার (m)
শেষ বেগ, $v_x = v_{x_0} + a_x t$	$\mathbf{v_x} =$ শেষ বেগ, $\mathbf{v_{x_0}} =$ আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
সরণ, $\mathbf{x} = \mathbf{x}_0 + \frac{1}{2}(\mathbf{v}_{\mathbf{x}0} + \mathbf{v}_{\mathbf{x}})\mathbf{t}$	t = সময়	সেকেন্ড (s)
$\frac{1}{2}(\sqrt{x_0} + \sqrt{x_0})$	$\mathbf{v_x} = $ শেষ বেগ, $\mathbf{v_{x_0}} = $ আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
সরণ, $x = x_0 + v_{x_0}t + \frac{1}{2}a_xt^2$	$\mathbf{a_x} = \mathbf{\overline{\phi}}$ রণ	মিটার/সেকেন্ড ^২ (m s ⁻²)
শেষ বেগ ² , $v_x^2 = v_{x_0}^2 + 2a_x (x - x_0)$	v_{x_0} = আদিবেগ, v_x = শেষ বেগ	মিটার/সেকেন্ড (m s ⁻¹)
$\mathbf{v}_{\mathbf{x}_0} = \mathbf{v}_{\mathbf{x}_0} + 2\mathbf{a}_{\mathbf{x}} (\mathbf{x} - \mathbf{x}_0)$	$x - x_0 = $ দূরত্ব	মিটার (m)
সূরত, $s = \overrightarrow{v} \times t = ut + \frac{1}{2}at^2$	s = দূরত্ব	মিটার (m)
$\sqrt{2} \sqrt{8} = \sqrt{8} \times 1 = ut + \frac{1}{2} at$	a = তুরণ	মিটার/সেকেড ^২ (m s ⁻²)
t তম সেকেন্ডে অতিক্রান্ত দূরত্ব, $S_{th} = u + \frac{1}{2} a (2t - 1)$	s _{th} = t তম সেকেন্ডে অতিক্রান্ত দূরত্ব	মিটার (m)
t = 0.4 (2t - 1)	u = আদিবেগ	মিটার/সেকেড (m s ⁻¹)

সূত্রাবলি	প্রতীক পরিচিত্তি	একক
খাড়াভাবে নিক্ষিপ্ত বস্কুর গতির সমীকরণ :	v = শেষবেগ, u = আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
(i) $v = u \pm gt$ (ii) $v^2 = u^2 \pm 2gh$ (iii) $h = ut \pm \frac{1}{2}gt^2$ (iv) $h_{th} = u \pm \frac{1}{2}g(2t - 1)$	g = অতিকর্যজ তুরণ	মিটার/সেকেন্ড ² (m s ⁻²)
(iii) $h = ut \pm \frac{1}{2}gt^2$ (iv) $h_{th} = u \pm \frac{1}{2}g(2t - 1)$	h _{th} = t তম সেকেন্ডে অতিকান্ত উচ্চতা	মিটার (m)
2	R = অনুভূমিক পাল্লা	মিটার (m)
অনুভূমিক পালা, R = $\frac{{\bf v_0}^2 \sin 2\theta_0}{\sigma}$	v ₀ = নিক্ষেপণ বেগ	মিটার/সেকেন্ড (m s 1)
g	$oldsymbol{ heta}_0=$ নিক্ষেপণ কোণ	ডিগ্রি (°)
সর্বাধিক উচ্চতা, $H = \frac{{v_0}^2 \sin^2 \theta_0}{2g}$	H = সর্বোচ্চ উচ্চতা	মিটার (m)
বিচরণ কাল, $T = \frac{2v_0 \sin \theta_0}{g}$	T = বিচরণ কাল	সেকেন্ড (s)
প্রাসের সর্বাধিক পাল্লা, $R_{max} = \frac{{V_0}^2}{g}$	R _{max} = প্রামের সর্বাধিক পাল্লা	মিটার (m)
অনুভূমিক বেগের অংশক, $v\cos\theta=v_0\cos\theta_0$	$\mathbf{v} =$ রৈখিক বেগ, $\mathbf{v}_0 =$ আদিবেগ	মিটার/সেকেন্ড (m s ⁻¹)
কৈছিক কে	v = রৈখিক বে গ	মিটার/সেকেন্ড (m s ⁻¹)
রৈখিক বেগ, v = ω r	r = বৃত্তের ব্যাসার্ধ	মিটার (m)
কৌণিক তুরণ, $a = \frac{v^2}{r}$	a = ত্বুণ	মিটার/সেকেন্ড ^২ (m s ⁻²)
•	r = সরণ	মিটার (m)
শেষ বেগ, $v = \sqrt{v_x^2 + v_y^2}$	v = শেষ বেগ	মিটার/সেকেন্ড (m s ⁻¹)
কেন্দ্রমুখী ত্রণ, $a = \frac{v^2}{r}$	a = ত্বুল	মিটার/সেকেন্ড ^২ (m s ⁻²)
কেন্দ্রশ্ব পূর্ণ, a = T	r = সর্গ	মিটার (m)
2πτ	v = রৈখিক বে গ	মিটার/সেকেন্ড (m s ⁻¹)
রৈখিক বেগ, $v = \frac{2\pi t}{T}$	r = বৃত্তের ব্যাসার্ধ	মিটার (m)

অধ্যায় ৪ 🕨 নিউটনিয়ান বলবিদ্যা

সূত্রাবলি	প্রতীক পরিচিতি	একক
_ → →	F = বল	নিউটন (N)
বল, $F = ma$ অথবা, $\overrightarrow{F} = m\overrightarrow{a}$	m = বস্তুর ভর	কিলোগ্রাম (kg)
ব্যবহাত I – Et – B – mu – m(t)	P = ভরবেগ	কিলোগ্রাম মিটার/সেকেন্ড (kg ms ⁻¹)
বলের ঘাত, $J = Ft = P = mv = m(v - u)$	v = শেষ বেগ, u = আদিবেগ	মিটার/সেকেন্ড (ms ⁻¹)
v. (dea)	m = রকেটের ভর	কিলোগ্রাম (kg)
রকেটের ত্বরণ, $a = \frac{v_r}{m} \left(\frac{dm}{dt} \right) - g$	v_r = গ্যাসের বেগ	মিটার/সেকেন্ড (ms ⁻¹)
রকেটের ধারু।, $F = v_r \frac{dm}{dt}$	dm/dt = জ্বালানি খরচের হার	কিলোগ্রাম/সেকেন্ড (kgs ⁻¹)
di	F = ধাৰু	নিউটন (N)
E 27 21 61 2 10 2 11 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	m ₁ = ১ম বস্তুর ভর, m ₂ = ২য় বস্তুর ভর	কিলোগ্রাম (kg)
ভরবেগের সংরক্ষণ সূত্র্	$\mathbf{u}_1 = \mathbf{y}$ ম বস্তুর আদিবেগ, $\mathbf{u}_2 = \mathbf{y}$ য় বস্তুর আদিবেগ	মিটার/সেকেন্ড (ms ⁻¹)
$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	$\mathbf{v}_1 = \mathbf{y}$ ম বস্তুর শেষ বেগ, $\mathbf{v}_2 = \mathbf{y}$ য় বস্তুর শেষ বেগ	মিটার/সেকেন্ড (ms ⁻¹)
ঘূৰ্ণন গতিশক্তি, $E = \frac{1}{2} I \omega^2$	I = জড়তার ভ্রামক	কিলোগ্রাম মিটার ^২ (kgm²)
2 14 110 116, E = 2 1 W	ω = কৌণিক বেগ	রেডিয়ান/সেকেন্ড (rads ⁻¹)
জড়তার ভ্রামক, $I = mr^2 = MK^2$	r = বস্তুর ব্যাসার্ধ	মিটার (m)
কৌণিক ভরবেগ, $L = I\omega = m\omega^2 r^2$	L = কৌণিক ভরবেগ	কিলোগ্রাম মিটার ^২ /সেকেন্ড (kgm²s ⁻¹)
can it out it, E - Im - Imm i	r = বৃত্তপথের ব্যাসার্ধ	মিটার (m)
শেষ কৌণিক বেগ, $\omega_f^2 = \omega_0^2 + 2 \alpha \theta$	α = কৌণিক তুরণ	রেডিয়ান/সেকেন্ড ^২ (rad s ⁻²)
6 14 6411 14 64 1, wi - wo + 2 a b	θ = প্রতি ঘূর্ণন সংখ্যা	
টर्ক, τ = Ια	$\tau = \overline{b} \Phi$	নিউটন মিটার (N m)
	I = জড়তার ভ্রামক	কিলোগ্রাম মিটার ^২ (kg m²)
্কেন্দ্ৰমুখী বল, $F = m \frac{v^2}{r} = mr\omega^2$	F = টান বা বল	নিউটন (N)
	r = देमर्घा	মিটার (m)
	v = রৈখিক বেগ	মিটার/সেকেন্ড (m s ⁻¹)
v^2	θ = আনত কোণ	ডিগ্রী (°)
আনতি, $\tan \theta = \frac{v^2}{rg}$	r = ব্যাসার্ধ	মিটার (m)
	v = রৈখিক বে গ	মিটার/সেকেন্ড (m s ⁻¹)

অধ্যায় ৫ > কাজ, শক্তি ও ক্ষমতা

সূত্ৰাবলি	প্রতীক পরিচিত্তি	একক
	W = কাজের পরিমাণ বা কৃতকাজ	<u>ख</u> ेब (1)
কাজের পরিমাণ, $W = Fs \cos \theta$	F = প্রযুক্ত বল	নিউটন (N)
and the second s	s = স্ রণ	মিটার (m)
	$oldsymbol{ heta}=$ বল ও সরণের মধ্যবর্তী কোণ	ডিগ্রি (°)
NEIGHT (N.C.) (1 1)	G = মহাক্ষীয় ধ্বক	নিউটন মিটার ³ /কেজি ³ (Nm ² kg ⁻²)
মহাকধীয় ক্ষেত্রে কৃতকাজ, $W = GMm\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$	M = সূর্যের ভর, m = পৃথিবীর ভর	किर्द्धायाम् (kg)
	r = দূরত্ব	মিটার (m)
বল ছারা কৃতকাজ, $W = \frac{1}{2} mv^2 - \frac{1}{2} mu^2$	W = কৃত কাজ	জুল (J)
	v = বেগ	মিটার/সেকেন্ড (ms ⁻¹)
গতিশক্তি, $E_k = \frac{1}{2} \text{ mv}^2$	$\mathbf{E_k} = $ গতিশক্তি	জুন্স (J)
6 (6 6	U বা $\mathbf{E_p}=$ অভিকর্ষজ বিভব শব্তি	जून (J)
অভিকর্মজ বিভব শক্তি, U বা $\mathbf{E}_{p} = mgh$	g = অভিকর্ষজ ত্বরণ	মিটার/সেকেন্ড ² (ms ⁻²)
	h = উচ্চতা	মিটার (m)
ম্প্রিং এর বিভব শক্তি, $U = \frac{1}{2} Kx^2$	x = সরণ	মিটার (m)
ক্ষমতা, $P = \frac{W}{t} = \frac{\overrightarrow{F} \cdot \overrightarrow{s}}{t} = \overrightarrow{F} \cdot \overrightarrow{v}$	P = ক্ষমতা	ওয়াট (W)
ক্ষমতা, $P = \frac{1}{t} = \frac{1}{t} = F \cdot v$	t = সময়	সেকেন্ড (s)
ক্ষমতা, P = F _V	F = বল	নিউটন (N)
## WOOD	v = বেগ	মিটার/সেকেন্ড (ms ⁻¹)
কৰ্মদক্ষতা, $\eta = \frac{(\rho')}{(\rho)}$	ρ' = কার্যকর ক্ষমতা	জুল (J)
(ρ)	ρ = মোট প্রদত্ত ক্ষমতা	জুল (J)

অধ্যায় ৬ 🕨 মহাকর্ষ ও অভিকর্ষ

সূত্রাবলি	প্রতীক পরিচিত্তি	একক
a m.m.	F = মহাক্ষীয় বল	নিউটন (N)
মহাকর্ষীয় বল, $F = G \frac{m_1 m_2}{d^2}$	m ₁ ও m ₂ = প্রথম ও দ্বিতীয় বস্তুর ভর	কিলোগ্রাম (kg)
	G = মহাক্ষীয় ধ্রুবক	নিউটন মিটার কৈ. গ্রা. (Nm² kg-²)
4-243	M = সূর্যের ভর	কিলোগ্রাম (kg)
দূর্যের ভর, M = $\frac{4\pi^2 d^3}{GT^2}$	d = পৃথিবী থেকে সূর্যের দূরত্ব	মিটার (m)
	T = পৃথিবীর আবর্তন কাল	সেকেন্ড (s)
অভিকর্ষজ ত্বরণ, $g = \frac{GM}{R^2}$	M = পৃথিবীর ভর	কিলোগ্রাম (kg)
R ²	R = পৃথিবীর ব্যাসার্ধ	মিটার (m)
h উচ্চতায় অভিকর্ষজ ত্বরণ, $g'=rac{GM}{(R+h)^2}$	G = মহাকর্ষীয় ধ্রুবক	নিউটন মিটার ^২ /কি. গ্রা. ^২ (Nm² kg ⁻²)
h উচ্চতায় অভিকর্ষজ ত্বরণ, $g'=rac{4}{3}\pi \ G(R-h) \ ho$	g' = h উচ্চতায় অভিকর্ষজ ত্বরণ	মিটার/সেকেন্ড ^২ (m s ⁻²)
গভীরতা, $h = \frac{GM}{(R+h)^2} = g\left(1 - \frac{2h}{R}\right)$	h = গভীরতা	কিলোমিটার (km)
অভিকর্মজ ত্রণ, $g(-h) = g\left(1 - \frac{h}{R}\right)$	g = অভিকর্ষজ তুরণ	মিটার/সেকেন্ড ^২ (m s ⁻²)
ওজন, W = mg	W = ওজন	নিউটন (N)
ঘনত, $\rho = \frac{3g}{4\pi GR}$	ρ = ঘনত্ব	কিলোগ্রাম/মিটার ^৩ ·(kgm ⁻³)
T_1^2 T_2^2	T ₁ ও T ₂ = ১ম ও ২য় গ্রহের আবর্তনকাল	দিন (day)
কেপলারের আবর্তনকালের সূত্র : $\frac{{T_1}^2}{{R_1}^3} = \frac{{T_2}^2}{{R_2}^3}$	R ₁ ও R ₂ = ১ম ও ২য় গ্রহের ব্যাসার্ধ	মিটার (m)
মহাকর্ষীয় বিভব, $V = \sqrt{\frac{GM}{R+h}} = \sqrt{\frac{gR^2}{R+h}}$	V = মহাকর্ষীয় বিভব	জুল/কিলোগ্রাম (Jkg ⁻¹)
শেষবেগ, $v = \frac{2\pi}{T}(R + h)$	R = পৃথিবীর ব্যাসার্ধ	মিটার (m)
উচ্চতা, $h = \left(\frac{GMT^2}{4\pi^2}\right)^{\frac{1}{3}} - R$	T = আবর্তনকাল	সেকেন্ড (s)

সূত্রাবলি	প্রতীক পরিচিতি	একক
প্রাবল্য, $E = \frac{GM}{r^2}$	E = প্রাবন্ধ্য	নিউটন/কিলোগ্রাম (Nkg ⁻¹)
	G = মহাকর্য ধ্রবক	নিউটন মিটার ³ /কেজি ³ (Nm ² kg ⁻²)
মুক্তিবেগ, $v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$	$V_c = মুক্তিবেগ$	কিলোমিটার/সেকেন্ড (kms ⁻¹)
Tour it. A K	R = পৃথিবীর ব্যাসার্থ	কিলোমিটার (km)

অধ্যায় ৭ > পদার্থের গাঠনিক ধর্ম

সূত্রাবলি	প্রতীক পরিচিতি	একক -
দৈৰ্ঘ্য বিকৃতি = <u>l</u>	L = আদি দৈর্ঘ্য l = দৈর্ঘ্যের পরিবর্তন	মিটার (m)
আয়তন বিকৃতি = $\frac{\mathbf{v}}{\mathbf{V}}$	V = আদি আয়তন v = আয়তনের পরিবর্তন	মিটার [°] (m³)
পীড়ন = $\frac{F}{A} = \frac{F}{\pi r^2}$	F = প্রযুক্ত বল	নিউটন (N)
71 94 $^{-}$ $^{-}$ $^{-}$ $^{\pi}$ 2	A = ক্ষেত্ৰফল	মিটার ^২ (m ²)
ইয়ং এর পুণাজ্জ, $Y = \frac{F/A}{l/L} = \frac{FL}{Al}$	A = ক্ষেত্ৰফল	মিটার ^২ (m²)
रहर खंद गुनाब्यः, भ = _{l/L} - Al	Y = ইয়ং এর গুণাঙক	নিউটন/মিটার ² (Nm ⁻²)
আয়তন গুণাঙক, $K = \frac{F/A}{v/V} = \frac{FV}{Av} = \frac{P}{v/V}$	V = আদি আয়তন	মিটার ^ত (m³)
$\frac{1}{\sqrt{V}} = \frac{1}{\sqrt{V}} = 1$	v ও P = পরিবর্তিত আয়তন ও চাপ	নিউটন/মিটার (Nm ⁻²)
E/A E	η = দৃঢ়তা গুণা জ্ক	নিউটন/মিটার ^২ (Nm ⁻²)
দৃঢ়তা গুণাজ্ঞ্ক, $\eta = \frac{F/A}{\theta} = \frac{F}{A\theta}$	A = পৃঠের ক্ষেত্রফল	মিটার ² (m ²)
0 A0	F = বল	নিউটন (N)
পয়সনের অনুপাত, $\sigma = \frac{Ld}{ID}$	D = ব্যাস, L = আদি দৈর্ঘ্য I = পরিবর্তিত দৈর্ঘ্য	মিটার (m)
ম্থিতিম্থাপক ম্থিতিশক্তি বা কৃতকাজ, $W = \frac{1}{2} \times \frac{YAl^2}{L}$	Y = ইয়ংয়ের গুণাঙ্ক	নিউটন/মিটার ^২ (Nm ⁻²)
একক আয়তনে স্থিতিস্থাপক বিভব শক্তি, $\mathbf{U} = \frac{1}{2} \times \hat{\mathbf{M}}$ জন \times বিকৃতি	A = ক্ষেত্ৰফল	মিটার ² (m ²)
	W = কৃতকাজ, E = পৃষ্ঠশক্তি	জুল (J)
কৃতকাজ, $W = E = \Delta A \times T = 4\pi (r^2 - R^2) \times T$	r = পানির বিন্দুর ব্যাসার্ধ	মিটার (m)
i. W	W = কৃতকাজ	জু ল (J)
পৃষ্ঠশক্তি, $E = \frac{W}{\Delta A}$	ΔA = ক্ষেত্রফলের পরিবর্তন	মিটার ^২ (m²)
hrog	h = তরলের আরোহণ	মিটার (m)
পৃষ্ঠটান, $T = \frac{hr\rho g}{2}$	ρ = ঘনত্ব	কেজি/মিটার [®] (kg m ⁻³)
	F = সান্দ্ৰতা বল	নিউটন (N)
সান্দ্রতা বল, $F = 6\pi\eta rv$	v = প্রান্তিক বেগ	মিটার/সেকেন্ড (m/s)
$r^2(\rho-\sigma)g$	η = সান্দ্ৰতাঙ্ক	কি.গ্ৰা./মি./সে. (kgm ⁻¹ s ⁻¹)
অন্ত্যবেগ, $v = \frac{2}{9} \times \frac{r^2(\rho - \sigma)g}{\eta}$	ρ = খনত্ব	কিলোগ্রাম/মিটার [®] (kgm ⁻³)

অধ্যায় ৮ 🕨 পর্যাবৃত্ত গতি

সূত্রাবলি	প্রতীক পরিচিতি	একক
সরল ছন্দিত গতির সমীকরণ : $\frac{d^2x}{dt^2} + \omega^2x = 0$	x = সরণ, A = বিস্তার	মিটার (m)
	t = সময়	সেকেন্ড (s)
সরল ছন্দিত সরণের সমীকরণ : $\mathbf{x} = \mathbf{A} \sin{(\omega \mathbf{t} + \delta)}$	δ = আদি দশা	রেডিয়ান (rad)
TK	ω = কৌণিক কম্পাঙ্ক	রেডিয়ান/সেকেন্ড (rad s ⁻¹)
কৌণিক বেগ বা কম্পাঙ্ক, $\omega = \sqrt{rac{K}{m}}$	m = ভর	কিলোগ্রাম (kg)
দোলনকাল, $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{K}}$	T = দোলনকাল	সেকেন্ড (s)
$(49), v = \omega \sqrt{A^2 - x^2}$	v = বেগ	মিটার/সেকেন্ড (ms ⁻¹)
ত্বণ, $\mathbf{a} = -\mathbf{\omega}^2 \mathbf{x}$	a = তুরণ	মিটার/সেকেন্ড ^২ (ms ⁻²)
গতিশক্তি, E = $\frac{1}{2}$ k (A ² – x ²)	E = যান্ত্ৰিক শক্তি বা গতিশক্তি	জুল (J)
$E = \frac{1}{2} k (A^2 - x^2)$	k = বল ধ্বক	নিউটন/ মিটার (Nm ⁻¹)
ম্পিতিশক্তি, $U = \frac{1}{2}kx^2$	U = বিভব শক্তি	জুল (J)
$1 = \frac{1}{2} KX$	A = বিস্তার, x = প্রসারণ	মিটার (m)

সূত্রাবলি	প্রতীক পরিচিতি	একক
প্রত্যয়নী বল, F = - kx	F = প্রত্যয়নী বঙ্গ	নিউটন (N)
49)441 441, F KX	k = স্প্রিং এর ধ্রুবক	নিউটন/মিটার (Nm ⁻¹)
কম্পাঙ্ক, $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	$f = \overline{\Phi}^{post} \overline{\Phi} \Phi$	হার্জ (Hz)
ম্প্রিংয়ের দোলনকাল, $T=2\pi \sqrt{\frac{m}{k}}$	T = পর্যায়কাল	সেকেন্ড (s)
$\frac{1}{k}$	m = ভর	কেজি (kg)
স্প্রিংয়ের বল ধ্রুবক, $\mathbf{k} = \frac{\mathbf{mg}}{I}$	g = অভিকর্ষীয় ত্বরণ	মিটার/সেকেন্ড ² (ms ⁻²)
- Con 11 d 11, r - 1	<i>1</i> = দৈর্ঘ্য	মিটার (m)
দোলনকাল, $T=rac{2\pi}{\omega}=2\pi\sqrt{rac{m}{k}}$	T = দোলনকাল	সেকেন্ড (s)
সরল দোলকের দোলনকাল, $T=2\pi \sqrt{\frac{L}{g}}$	L = দোলকের দৈর্ঘ্য	মিটার (m)
পাহাড়ের উচ্চতা, $h = R\left(\sqrt{\frac{g}{g_1}} - 1\right)$	h = পাহাড়ের উচ্চতা	
$4 \xi (\xi g) \in \mathcal{S}(h) = R\left(\sqrt{\frac{g_1}{g_1}} - 1\right)$	R = পৃথিবীর ব্যাসার্ধ	— মিটার (m)

অধ্যায় ৯ > তর্জা

সূত্রাবলি	প্রতীক পরিচিতি	একক	
তরজা দৈর্ঘ্য, λ = vT	λ = তর্ঞা দৈর্ঘ্য	মিটার (m)	
কৌণিক কম্পাঙ্ক, $\omega = \frac{2\pi}{T} = 2\pi n$	ω = কৌণিক কম্পাঙ্ক	রেডিয়ান/সেকেন্ড (rad s ⁻¹)	
মগ্রগামী তরজ্গের সমীকরণ : $y=a \sin 2\pi \left(rac{t}{T} - rac{n}{\lambda} ight)$	y, x = সরণ, a = বিস্তার	মিটার (m)	
\ - 19	v = তরজ্ঞা বেগ	মিটার/সেকেন্ড (ms ⁻¹)	
$y = a \sin \frac{2\pi}{\lambda} (vt - x), y = a \sin \left(\omega t - \frac{2\pi}{\lambda} x\right)$	t = সময়	সেকেন্ড (s)	
	ω = সমকৌণিক বেগ	মিটার/সেকেন্ড (ms ⁻¹)	
পর তরজোর সমীকরণ :	v = বেগ	মিটার/সেকেন্ড (m/s)	
$y = 2a \cos \frac{2\pi x}{\lambda} \sin \frac{2\pi vt}{\lambda} = A \sin \frac{2\pi vt}{\lambda}$	λ = তরঞা দৈর্ঘ্য	মিটার (m)	
্টি মাধ্যমে, $\frac{{ m v_A}}{{ m v_B}} = \frac{{ m \lambda_A}}{{ m \lambda_B}}$	$\mathbf{v}_{\mathbf{A}}$ ও $\mathbf{v}_{\mathbf{B}} = \mathbf{A}$ ও \mathbf{B} মাধ্যমে তরজা বেগ	মিটার/সেকেন্ড (ms ⁻¹)	
একই মাধ্যমে, $\frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\lambda_1}{\lambda_2} = \frac{\mathbf{n}_2}{\mathbf{n}_1}$	λ_A ও $\lambda_B = A$ ও B মাধ্যমে তরজা দৈর্ঘ্য	মিটার (m)	
	n ₁ ও n ₂ = A ও B মাধ্যমে কম্পাঙ্ক	হার্জ (Hz)	
দশা পার্থক্য, $\delta = \frac{2\pi}{\lambda} \times$ পথ পার্থক্য	λ = তরজা দৈর্ঘ্য	মিটার (m)	
চীব্ৰতা লেভেল, $eta=10lograc{ ext{I}}{ ext{I}_0}$	I = তীব্ৰতা	ওয়াট∕মিটার ^২ (Wm ⁻²)	
$\mathbf{pressure}, \ \mathbf{n}_2 = \mathbf{n}_1 \pm \mathbf{N}$	\mathbf{n}_1 ও $\mathbf{n}_2 = \mathbf{\overline{\Phi}}$ ম্পাঙ্ক	হাৰ্জ (Hz)	
কম্পাঙ্ক, $n = \frac{1}{2!} \sqrt{\frac{T}{m}}$	n = কম্পাঙ্ক	হার্জ (Hz)	
	T = তারের টান	নিউটন (N)	
	v = শক্তের বেগ	মিটার/সেকেন্ড (ms ⁻¹)	
শব্দের বেগ, $_{ m V}=\sqrt{rac{T}{m}}$	T = তারের টান	নিউটন (N)	

অধ্যায় ১০ 🕨 আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব

সূত্রাবলি	প্রতীক পরিচিতি	একক
	P = গ্যাসের চাপ	নিউটন/মিটার ² (Nm ⁻²)
বয়েলের সূত্র, $P_1V_1 = P_2V_2$	V = গ্যাসের আয়তন	ঘনমিটার (m³)
চার্লমের সূত্র, $\frac{V_1}{T_1} = \frac{V_2}{T_2}$	T ₁ ও T ₂ = তাপমাত্রা	কেলভিন (K)
$T_1 - T_2$	\mathbf{V}_1 ও \mathbf{V}_2 = আয়তন	ঘনমিটার (m³)
আদর্শ গ্যাসের সূত্র, PV = n RT	V = আয়তন	মিটার [°] (m³)
	n = একক আয়তনে অণুর সংখ্যা	
P_1V_1 P_2V_2	T ₁ ও T ₂ = তাপমাত্রা	কেলভিন (K)
বয়েল ও চার্লসের সমন্বয় সূত্র, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	P_1 ও P_2 = গ্যাসের চাপ	নিউটন/মিটার ^২ (Nm ⁻²)
আদর্শ গ্যাসের সূত্র, $PV = \frac{m}{M}RT$	m = গ্যাসের ভর, M = আণবিক ভর	কিলোগ্রাম (kg)
1 -,	n = মোল সংখ্যা	
একক আয়তনে গ্যাসের চাপ, $P = \frac{1}{3} \text{ mnc}^2$	m = প্রতি অণুর ভর	কিলোগ্রাম (kg)

সূত্রাবলি	প্রতীক পরিচিতি	একক
গ্যাসের গতিতত্ত্ব অনুযায়ী চাপ, $P = \frac{1}{3} \rho c^2$	ρ = গ্যাসের ঘনত্ব	কিলোগ্রাম/ঘনমিটার (kg m ⁻³)
	c = গড় বর্গবেগের বর্গমূল	মিটার/সেকেন্ড (ms ⁻¹)
গড় বৰ্গ বেগের বৰ্গমূল, $c=\sqrt{rac{3P}{\rho}}$	P = গ্যাসের চাপ	নিউটন∕মিটার [°] (Nm ⁻²)
গ্যাসের অণুর মূল গড় বর্গবেগ, $c = \sqrt{\frac{3RT}{M}}$	T = তাপমাত্রা	কেশভিন (K)
প্রতি মোল গ্যাসের গতিশক্তি, $E = \frac{3}{2} RT$	R = মোলার গ্যাস ধ্রবক	জুল/কেলভিন/মোল (JK ⁻¹ mol ⁻¹)
গ্যাসের চাপ, $P = \frac{1}{3} \frac{Mc^2}{V}$ ও $P = \frac{1}{3} \frac{mnc^2}{V}$	M = গ্রাম আণবিক ভর ও V = গ্যাসের আয়তন	কিলোগ্রাম (kg), ঘনমিটার (m³)
একক আয়তনে গ্যাসের চাপ, $P = \frac{2}{3}E$	E = গ্যাসের গতিশক্তি	जून (J)
$c_1^2 + c_2^2 + \dots c_n^2$	n = অণুর সংখ্যা	
মূল গড় বৰ্গবেগ, $c = \sqrt{\frac{c_1^2 + c_2^2 + \dots c_n^2}{n}}$	c = গড় বর্গবেগের বর্গমূল	মিটার/সেকেন্ড (ms ⁻¹)
গড় মুক্তপথ, $\lambda = \frac{1}{n\pi\sigma^2} = \frac{1}{\sqrt{2}\pi\sigma^2 n}$	λ = গড় মুক্তপথ বা গড় নির্বাধ দূরত্ব	N
$n\pi\sigma^2 = \sqrt{2}\pi\sigma^2 n$	σ = অণুর ব্যাস	মিটার (m)
আপেক্ষিক আর্দ্রতা, $\mathrm{R}=rac{f}{\mathrm{F}} imes 100\%$	R = আপেক্ষিক আর্দ্রতা	
	f = শিশিরাজ্ঞে সম্পৃক্ত জলীয় বাষ্পচাপ F = বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ	মিটার পারদ (mHg)

পদার্থবিজ্ঞানে সংকেত হিসেবে ব্যবহৃত গ্রিক বর্ণমালা

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উচ্চারণ
Α	α	আলফা (alpha)
В	β	বেটা (beta)
Γ	γ	গামা (gamma)
Δ	δ	ডেলটা (delta)
E	3	ইপসাইলন (epsilon)
Z	5	জীটা (zeta)
Н	η	ইটা (eta)
Θ	θ	থিটা (theta)
I	ι	আয়োটা (iota)
K	κ	কাপ্পা (kappa)
Λ	λ	ল্যাম্বভা (lambda)
M	μ	মিউ (mu)

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উচ্চারণ
· N	v	নিউ (nu)
Ξ	ξ	জাই (xi)
O	o o	ওমিক্রন (omicron)
П	π	পাই (pi)
P	ρ	রো (rho)
Σ	σ	সিগমা (sigma)
T	τ	টাও (tau)
Y	υ	উপসিলন (upsilon)
Φ	ø, Ø	ফাই (phi)
X	χ	কাই (chi)
Ψ	Ψ	সাই/পসাই (psi)
Ω	ω	ওমেগা (omega)

• নিম্নঘাত (ক্ষুদ্রাংশ)

দশের সূচকসমূহের নাম, সংকেত ও উদাহরণ

উপসর্গ	উৎপাদক	সংকেত	উদাহরণ
ডেসি (deci)	10-1	d	া ডেসি ওহম = 1 dΩ = 10^{-1} Ω
সেন্টি (centi)	10-2	c	1 সেন্টিমিটার = 1 cm = 10 ⁻² m
মিলি (milli)	10^{-3}	m	1 মিলি অ্যাম্পিয়ার = 1 mA = 10 ⁻³ A
মাইকো (micro)	10⁻6	ц	1 মাইকো ভোল্ট = 1 μV = 10 ⁻⁶ V
ন্যানো (nano)	10-9	n	1 ন্যানো সেকেন্ড = 1 ns = 10 ⁻⁹ s
পিকো (pico)	10 ⁻¹²	p	। পিকো ফ্যারাড = 1 pF = 10 ⁻¹² F
ফেমটো (femto)	10 ⁻¹⁵	f	1 ফেমটো মিটার = 1 fm = 10 ⁻¹⁵ m
অটো (atto)	10-18	a	1 অটো কুলম্ব = 1 aC = 10 ⁻¹⁸ °C

উচ্চঘাত (বৃহদাংশ)

উপদৰ্গ	উৎপাদক	সংকেত	উদাহরণ
ডেকা (deca)	101	da	1 ডেকা নিউটন = 1 daN = 10 N
হেন্তো (hecto)	10 ²	h	1 হেক্টো প্যাসকেল = 1 hPa = 10 ² Pa
কিলো (kilo)	10 ³	k	1 কিলোভোল্ট = 1 kV = 10 ³ V
মেগা (mega)	106	M	1 মেগা ওয়াট = 1 MW = 10 ⁶ W

উপসর্গ	উৎপাদক	সংকেত	উদাহরণ
গিগা (giga)	109	G	1 গিগা বাইট = 1 Gbite = 10 ⁹ bite
টেরা (tera)	1012	Т	া টেরাগ্রাম = 1 Tg = 10 ¹² g
পেটা (peta)	1015	P	া পেটামিটার = 1 Pm = 10 ¹⁵ m
এক্সা (exa)	1018	Е	1 এক্সা মিটার = 1 Em = 10 ¹⁸ m

বস্থুর আপেক্ষিক রোধ

এক নজরে বিভিন্ন বস্তুর আপেক্ষিক রোধ, ঘনত্ব/আপেক্ষিক গুরুত্ব

বস্থ	আপেকিক রোধ, Ω-m (SI একক)	
তামা	1.7×10^{-8}	
অ্যালুমিনিয়াম	2.94×10^{-8}	
পিতল	4.1×10^{-8}	
রুপা	1.6×10^{-8}	
টিন	$(3.5-11.3) \times 10^{-8}$	
সীসা	20·8 × 10 ⁻⁸	
ইস্পাত	$(19.9-25.6) \times 10^{-8}$	
টাংস্টেন	5.5×10^{-8}	
মাইকা	9.0×10^{-8}	

বস্তু	আপেক্ষিক রোধ, Ω-m (SI একক)	
দস্তা	6.10×10^{-8}	
ইউরেকা বা কনস্ট্যান্ট্যান	49×10^{-8}	
ম্যাঙ্গানিজ	44×10^{-8}	
জার্মান রুপা	27×10^{-8}	
সোনা	2.42×10^{-8}	
পারদ	95 × 10 ⁻⁸	
প্লাটিনাম	11×10^{-8}	
নাইক্রোম	100×10^{-8}	
ফসফর ব্রোঞ্জ	$(5-10) \times 10^{-8}$	

বস্তুর ঘনত্ব/আপেক্ষিক গুরুত্ব

বন্ধুর নাম	ঘনত্/আপেক্ষিক গুরুত্ব (g/cm³)	
সোনা (Au)	19.3	
রুপা (Ag)	10.5	
সীসা (Pb)	11.37	
তামা (Cu)	8.9-9.3	
পিতল (Brass)	8.6	
লোহা (বিশুন্ধ) (Fe)	7.2	
সাধারণ লোহা (Fe)	7.8	
দস্তা (Zn)	7.1	
টিন (Sn)	7.29	
প্লাটিনাম (Pt)	21.6	
হীরা (Diamond)	3.52	
মাটি (Soil)	1.44-1.76	
বরফ (Ice)	0.92	
চিনি (Sugar)	1.59	
ভূতে (CuSO ₄ crystal)	2.1	

বস্তুর নাম	ঘনত্ব/আপেক্ষিক গুরুত্ব (g/cm³)
তুঁতে দ্ৰবণ (CuSO ₄ solution)	1.1
মোম (Paraffin Wax)	0.88
সাধারণ লবণ (Salt)	2.17
কাচ (ফ্লিন্ট) (glass)	2.9-4.5
কাচ (ক্রাউন)	2.4-2.6
পানি (H ₂ O)	1.00
কেরোসিন (Kerosene)	0.8
তার্পিন তেল	0.87
পারদ (Hg)	13.6
<u></u>	1.03
অ্যালকোহল (Alcohol)	0.81
পেট্রোল (Petrol)	0.70
হাইড্রোজেন (H)	0.00009
বায়ু (Air)	0.00129
कर्क (Cork)	0.25

কয়েকটি পদার্থের গলনাধ্ক ও স্কুটনাধ্ক

🎍 পদার্থবিজ্ঞানে গলনাঙ্ক সম্পর্কিত বিভিন্ন গাণিতিক প্রশ্ন থাকে। কয়েকটি গুরুত্বপূর্ণ পদার্থের গলনাঙ্ক হলো—

পদার্থ	গলনাজ্ক (°C)
পারদ	-38
বরফ	0
মোম (সাদা)	52-56
হাইড্রোজেন	-259

পদার্থ	গলনাঙ্ক (°C)
সোনা	1063
তামা	1083
লোহা (ইম্পাত)	1300 -1400
অ্যালুমিনিয়াম	660

পদার্থ	গলনাক্ক (°C)
দস্তা	418
পিতল	800-1000
রুপা	960
গল্ধক	115

-	পদাৰ্থ	গ্ৰনাজ্ক (°C)
	কাচ	1000-1400
	চিনি	160
	সীসা	327
	ব্রোমিন	-7

গলনাঙ্কের পাশাপাশি স্ফুটনাঙ্ক সম্পর্কিত গাণিতিক প্রশ্নও পদার্থবিজ্ঞানে হয়ে থাকে। কয়েকটি পদার্থের স্ফুটনাঙ্ক হলো—

পদাৰ্থ	স্কুটনাঙ্ক (°C)
পারদ	357
তার্পিন	158
বেনজিন	80.2
গন্ধক	44.4

পদাৰ্থ	স্কৃটনাঙ্ক (°C)
অ্যালকোহল	78.3
সীসা	1740
দস্তা	907
নিকেল	2730

পদার্থ	স্কৃটনাঙ্ক (°C)
রুপা	2210
অ্যালুমিনিয়াম	2060
সোনা	2970
ইথানল	78

পদার্থ	স্কুটনাজ্ক (°C)
তামা	2300
লোহা	2740
পানি	100
ব্রোমিন	60