ENGG1003 - Thursday Week 10

Assignment 2: Image processing

Steve Weller

University of Newcastle

13 May 2021

Last compiled: May 11, 2021 6:31pm +10:00

Lecture overview

- ullet key dates, worth 15%, lab question sheet in BB > Assessment
- images as 3D arrays
- digital image formats
- data types
- structure of assignment
- strategies for the assignment

1) images as 3D arrays

- raster images
 - gif, jpeg, png
 - contrast with vector images: svg
- review of Sarah's material from Thursday week 7

2) digital image formats

- colourspaces
 - ▶ RGB
 - ► HSL
- RGB and HSL are two different ways of representing the same colour
 - key theme of assignment: RGB <--> HSL
- [0,1] and [0,255]
- use colour images and links to colour picker

3) data types

- uint8
- uint16
- float32
- float64

type conversions

4) structure of assignment

first 5 functions

- loadImage
 - read image file into 3D numpy array
- saveImage
 - save 3D numpy array as image file
- rgb2hs1
 - convert image in RGB format to HSL format
- rgb2hs1
 - convert image in HSL format to RGB format
- showImage
 - display image in window

5) how to go about the assignment

eight (8) functions to be graded in assignment

- brightness
 - adjust image brightness
- contrast
 - adjust image contrast
- saturation
 - adjust image saturation
- toneMap
 - adjust image by setting H and S channels of each pixel

eight (8) functions to be graded in assignment (ctd.)

- o crops
 - crop image
- histogram
 - plot histogram of image
- saturated
 - compute percentage of pixels which have at least one RGB channel value which has undergone clipping saturation
- unsharpMask
 - sharpen image

strategies

- start small
- Lab sheet week 10 first
- test RGB/HSL conversion against colour picker
- remember first 5 functions: infinite help from discord, demonstrators, fellow students
 - no marks for these questions; required for later q's

strategies

- submission to BB will be a single file imageProcessing.py with definitions and code for up to eight (8) functions
 - ▶ you may implement < 8 functions, for < 15 marks
- strongly encouraged to develop and test as follows:
 - each function's beheviour in its own script (test it)
 - 2 define code into function in same file (test it)
 - copy/paste working function into imageProcessing.py
 - we'll be making test code available to students
 - you can check in advance if your code works correctly!

strategies

Step 1: in square.py

```
1 # square
2
3 x = 3
4 print('{} squared = {:.4f}'.format(x,x**2))
```

Step 2: in square_fn.py

```
# square_fn
def f(x):
    return x**2

x = 3
print('{} squared = {:.4f}'.format(x,f(x)))
```

Step 3: in imageProcessing.py

```
def f(x):
    return x**2
```

Lecture summary

