引脚功能

引脚名称 序号 I/O 说明

Avcc 64 模拟供电电源正端.只为ADC和DAC的模拟部分供电

Avss 62 模拟供电电源负端.只为ADC和DAC的模拟部分供电

DVcc 1 数字供电电源正端.为所有数字部分供电

DVss 63 数字供电电源负端.为所有数字部分供电

P1.0/TACLK 12 I/O 通用数字I/O引脚/定时器A时钟信号TACLK输入

P1.1/TA0 13 I/O 通用数字I/O引脚/定时器A捕捉: CCIOA输入,比较: OUTO输出

P1.2/TA1 14 I/O 通用数字I/O引脚/定时器A捕捉: CCI1A输入,比较: OUT1输出

P1.3/TA2 15 I/O 通用数字I/O引脚/定时器A捕捉: CCI2A输入, 比较: OUT2输出

P1.4/SMCLK 16 I/O 通用数字I/O引脚/SMCLK信号输出

P1.5/TA0 17 I/O 通用数字I/O引脚/定时器A, 比较: OUTO输出

P1.6/TA1 18 I/O 通用数字I/O引脚/定时器A, 比较: OUT1输出

P1.7/TA2 19 I/O 通用数字I/O引脚/定时器A, 比较: OUT2输出

P2.0/ACLK 20 I/O 通用数字I/O引脚/ACLK输出

P2.1/TAINCLK 21 I/O 通用数字I/O引脚/定时器A,INCLK上的时钟信号

P2.2/CAOUT/TAO 22 I/O 通用数字I/O引脚/定时器A捕获: CCIOB输入/比较器输出

P2.3/CA0/TA1 23 I/O 通用数字I/O引脚/定时器A, 比较: OUT1输出/比较器A输入

P2.4/CA1/TA2 24 I/O 通用数字I/O引脚/定时器A,比较: OUT2输出/比较器A输入

P2.5/Rosc 25 I/O 通用数字I/O引脚,定义DCO标称频率的外部电阻输入

P2.6/ADC12CLK/ 26 I/O 通用数字I/O引脚,转换时钟-12位ADC,DMA通道0外部触发器

P2.7/TA0 27 I/O 通用数字I/O引脚/定时器A比较: OUTO输出

P3.0/STE0 28 I/O 通用数字I/O引脚, USARTO/SPI模式从设备传输使能端

P3.1/SIMO0/SDA 29 I/O 通用数字I/O引脚, USART0/SPI模式的从入/主出, I2C数据

P3.2/SOMIO 30 I/O 通用数字I/O引脚, USARTO/SPI模式的从出/主入

P3.3/UCLK0/SCL 31 I/O 通用数字I/O引脚, USART0/SPI模式的外部时钟输入, USART0

P3.4/UTXD0 32 I/O 通用数字I/O引脚, USART0/UART模式的传输数据输出

P3.5/URXD0 33 I/O 通用数字I/O引脚, USART0/UART模式的接收数据输入

P3.6/UTXD1 34 I/O 通用数字I/O引脚, USI1/UART模式的发送数据输出

P3.7/URXD1 35 I/O 通用数字I/O引脚, USI1/UART模式的接收数据输入

P4.0/TB0 36 I/O 通用数字I/O引脚, 捕获I/P或者PWM输出端口一定时器B7 CCR0

P4.1/TB1 37 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口一定时器B7 CCR1

P4.2/TB2 38 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口一定时器B7 CCR2

P4.3/TB3 39 I/O 通用数字I/O引脚, 捕获I/P或者PWM输出端口一定时器B7 CCR3

P4.4/TB4 40 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口一定时器B7 CCR4

P4.5/TB5 41 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口一定时器B7 CCR5

P4.6/TB6 42 I/O 通用数字I/O引脚, 捕获I/P或者PWM输出端口一定时器B7 CCR6

P4.7/TBCLK 43 I/O 通用数字I/O引脚,输入时钟TBCLK-定时器B7

P5.0/STE1 44 I/O 通用数字I/O引脚, USART1/SPI模式从设备传输使能端

P5.1/SIMO1 45 I/O 通用数字I/O引脚, USART1/SPI模式的从入/主出

P5.2/SOMI1 46 I/O 通用数字I/O引脚, USART1/SPI模式的从出/主入

P5.3/UCLK1 47 I/O 通用数字I/O引脚,USART1/SPI模式的外部时钟输入,USART0/SPI模式的时钟输出

-8-

P5.4/MCLK 48 I/O 通用数字I/O引脚,主系统时钟MCLK输出

P5.5/SMCLK 49 I/O 通用数字I/O引脚,子系统时钟SMCLK输出

P5.6/ACLK 50 I/O 通用数字I/O引脚,辅助时钟ACLK输出

P5.7/TboutH/51 I/O 通用数字I/O引脚,将所有PWM数字输出端口为高阻态一定时器B7

P6.0/A0 59 I/O 通用数字I/O引脚,模拟量输入A0-12位ADC

P6.1/A1 60 I/O 通用数字I/O引脚,模拟量输入A1-12位ADC

P6.2/A2 61 I/O 通用数字I/O引脚,模拟量输入A2-12位ADC

P6.3/A3 2 I/O 通用数字I/O引脚,模拟量输入A3-12位ADC

P6.4/A4 3 I/O 通用数字I/O引脚,模拟量输入A4-12位ADC

P6.5/A5 4 I/O 通用数字I/O引脚,模拟量输入A5-12位ADC

P6.6/A6/DAC0 5 I/O 通用数字I/O引脚,模拟量输入A6-12位ADC,DAC.0输出 P6.7/A7/DAC1/ 6 I/O 通用数字I/O引脚,模拟量输入A7-12位ADC,DAC.1输出,SVS输入

RST/NMI 58 I 复位输入,不可屏蔽中断输入端口或者Bootstrap Lload启动(FLASH

TCK 57 I 测试时钟,TCK是芯片编程测试和bootstrap loader启动的时钟输入端口

TDI 55 I 测试数据输入, TDI用作数据输入端口, 芯片保护熔丝连接到TDI

TDO/TDI 54 I/O 测试数据输出端口,TDO/TDI数据输出或者编程数据输出引脚 TMS 56 I 测试模式选择,TMS用作芯片编程和测试的输入端口 VeREF+ 10 I/P 外部参考电压的输入 VREF+ 7 O 参考电压的正输出引脚 VREF-/VeREF- 11 O 内部参考电压或者外加参考电压的引脚 XIN 8 I 晶体振荡器XT1的输入端口,可连接标准晶振或者钟表晶振 XOUT/TCLK 9 I/O 晶体振荡器XT1的输出引脚或测试时钟输入 XT2IN 53 I 晶体振荡器XT2的输入端口,只能连接标准晶振

时钟模块

DCOCTL DCO 控制寄存器

		4 14 1					
7	6	5	4	3	2	1	0
DCO.2	DCO.1	DCO.0	MOD.4	MOD.3	MOD.2	MOD.1	MOD.0

DCO.0-DCO.4 定义 8 种频率之一,可以分段调节 DCOCLK 频率,相邻两种频率相差10%。而频率由注入直流发生器的电流定义。

MOD.0-MOD.4 定义在 32 个 DCO 周期中插入的 Fdco+1 周期个数,而在下的 DCO 周期 中为 Fdco 周期, 控制改换 DCO 和 DCO+1 选择的两种频率。如果 DCO 常数为7,表示 已经选择最高频率,此时不能利用 MOD.0-MOD.4 进行频率调整。

BCSCTL1 基本时钟系统控制寄存器

1

7	6	5	4	3	2	1	0
XT2OFF	TXS	DIVA.1	DIVA.0	XT5V	Rsel.2	Resl.1	Resl.0

XT2OFF 控制 XT2 振荡器的开启与关闭。

TX2OFF=0, XT2 振荡器开启。

TX2OFF=1, TX2 振荡器关闭(默认为 TX2 关闭)

控制 LFXT1 工作模式,选择需结合实际晶体振荡器连接情况。 XTS

> X X

DIVA.0 DIVA.1 控制 ACLK 分频。

不分频 (默认)

2 分频

4 分频

8 分频

XT5V 此位设置为 0。

Resl1.0,Resl1.1,Resl1.2 三位控制某个内部电阻以决定标称频率。

Řesl=0,选择最低的标称频率。

版率。.. Resl=7,选择最高的标称

BCSCTL2 基本时钟系统控制寄存器 2

7 存 6	5	4	3	2	1	0
SELM.维 SELM	.0 DIVM.1	DIVM.0	SELS	DIVS.1	DIVS.0	DCOR

SELM.1 频SELM.O 选择 MCLK 时钟源

使时钟源为 DCOCLK (默认)

式时钟源为 DCOCLK

🙎 时钟源为 LFXT1CLK (对于 MSP430F11/12X),时钟源为 XT2CLK (对 于 MSP430F13/14/15/16X) ;

3年时钟源为 LFTXTICLK。

DIVM.1 KIVM.O 选择 MCLK 分频

Qa1 分频 (默认)

562 分频

2相 分频

3空8 分频

的

SELS 选择 SMCLK 时钟源

鄭时钟源为 DCOCLK (默认)

时时钟源为 LFXT1CLK (对于 MSP430F11/12X), 时钟源为 XT2CLK (对 于 MSP430F13/14/15/16X)。

DIVS.1 DIVS.0 选择 SMCLK 分频。

- 0 1 分频
- 12分频
- 2 4 分频
- 48分频

DCOR 选择 DCO 电阻

- 0 内部电阻
- 1 外部电阻

PUC 信号之后, DCOCLK 被自动选择 MCLK 时钟信号, 根据需要, MCLK 的时钟源可以另外设置为 LFXT1 或者 XT2。设置顺序如下:

[1] 复位

OscOff

[2] 清除

OFIFG

- [3] 延时等待至少 50us
- [4] 再次检查 OFIFG, 如果仍然置位,则重复[3]、[4]步骤, 直到 OFIFG=0 为止。

IO 端口

MSP430 的端口

器件	P1	P2	P3	P4	P5	P6	S	COM
MSP430F11X	√	√						
MSP430F12X	√	√	√					
MSP430F13/14/15/16	√	√	√	√	√	√		
MSP430F4XX	√	√	√	√	√	√	√	√
MSP430F20X	√	√						
MSP430F21X	√	√						
MSP430F22X	√	√	√	√				

MSP430 端口功能

端口	功能
P1、P2	I/O、中断功能、其他片内外设功能
P3、P4、P5、P6	I/O、其他片内外设功能
S、 COM	I/O、驱动液晶

PxDIR 方向寄存器

_								
	7	6	5	4	3	2	1	0
	P7DIR	P6DIR	P5DIR	P4DIR	P3DIR	P2DIR	P1DIR	P0DIR

- 0 为输入模式
- 1 为输出模式

在 PUC 后全都为复位,作为输入时,只能读;作为输出时,可读可定。

PxIN 输入寄存器

7	6	5	4	3	2	1	0
PxIN							

输入寄存器是只读的,用户不能对它写入,只能读取其 **IO** 内容。此时引脚方向必须为输入。

PxOUT 输出寄存器

7	6	5	4	3	2	1	0
P7OUT	P6OUT	P5OUT	P4OUT	P3OUT	P2OUT	P1OUT	P10UT

这是 IO 端口的输出缓冲器,在读取时输出缓存的内容与脚引方向定义无关。 改变方向寄存器的内容,输出缓存的内容不受影响。

Px IFG 中断标专寄存器

7	6	5	4	3	2	1	0
P7IFG	P6IFG	P5IFG	P4IFG	P3IFG	P2IFG	P1IFG	P0IFG

标志相应引脚是否有待处理中断信息。

- 0 没有中断请求
- 1 有中断请求

Px IES 中断触发沿选择寄存器

-								
	7	6	5	4	3	2	1	0
	P7IES	P6IES	P5IES	P4IES	P3IES	P2IES	P1IES	P0IES

- 0 上升沿使相应标志置位
- 1 下降沿使相应标志置位

PxIE 中断使能寄存器

7	6	5	4	3	2	1	0
P7IE	P6IE	P5IE	P4IE	P3IE	P2IE	P1IE	POIE

- 0 禁止中断
- 1 允许中断

PxSEL 功能选择寄存器

7	6	5	4	3	2	1	0
P7SEL	P6SEL	P5SEL	P4SEL	P3SEL	P2SEL	P1SEL	P0SEL

- 0 选择引脚为 I/O 功能。
- 1 选择引脚为外围模块功能

关于端口 P3、P4、P5、P6

端口 P3、P4、P5、P6 是没有中断功能的, 其它功能与 P1、P2 相同。所以 在此不再作详尽说明。

关于端口 COM、S

这些端口实现与 LCD 片的驱动接口COM 端是 LCD 片的公共端S 端为 LCD 片的段码端。LCD 片输出端也可以用软件配置为数字输出端口,详情使用请查看其手册。

WDT 看门狗

WDTCNT 计数单元

这是 16 位增计数器,由 MSP430 所选定的时钟电路产生的固定周期时钟信号对 计数器进行加法计数。如果计数器事先被预置的初始状态不同,那么从开始 计数到计数溢出为止所用的时间就不同。WDTCNT 不能直接通过软件存取,必 须通过看门狗定时器的控制寄存器 WDTCTL 来控制。

WDTCTL 控制寄存器

158	7	6	5	4	3	2	1	0
口令	HOLD	NMIES	NMI	TMSEL	CNTCL	SSEL	IS1	IS0

WDTCTL 由高 8 位口令和低 8 位控制命令组成。要写入操作 WDT 的控制命令,出于安全原因必须先正确写入高字节看门狗口令。口令为 5AH,如果口令写错将导致系统复位。读 WDTCTL 时不需要口令。这个控制寄存器还可以用于设置 NMI 引脚功能。

■SO, ■S1 选择看门狗定时器的定时输出其中 T 是 WDTCNT 的输入时钟源周期。

- 0 T x 2(15)
- 1 T x 2(13)
- 2 T x 2(9)
- 3 T x 2(6)

SSEL 选择 WDTCNT 的时钟源

- O SMCLK
- 1 ACLK

由 ISO, IS1, SSEL3 可确定 WDT 定时时间。WDT 最多只能定时 8 种和时钟源相关的时间。下表列出了 WDT 可选的定时时间(晶体为 32768HZ, SMCLK=1MHZ)。

WDT 的定时时间表

SSEL	IS1	IS0		定时时间/ms
0	1	1	0.056	Tsmclk x 2(6)
0	1	0	0.5	Tsmclk x 2(9)
1	1	1	1.9	Taclk x 2(6)
0	0	1	8	Tsmclk x 2(13)
1	1	0	16	Taclk x 2(9)
0	0	0	32	Tsmclk x 2(15) (PUC 复位后的值)
1	0	1	250	Taclk x 2(13)
1	0	0	1000	Taclk x 2(15)

CNTCL 当该位为 1 时,清除 WDTCNT。

TMSEL 工作模式选择

- 0 看门狗模式
- 1 定时器模式

NMI 选择 RST/NMI 引脚功能, 在 PUC 后被复位。

- 0 RST/NMI 引脚为复位端
- 1 RST/NMI 引脚为边沿触发的非屏蔽中断输入。

NMIES 选择中断的边

沿触发方式

- 0 上升沿触发 NMI 中断
- 1 下降沿触发 NMI 中断

HOLD 停止看门狗定时器工作,降低功耗。

- 0 WDT 功能激活
- 1 时钟禁止输入, 计数停止

定时器

各种定时器功能

定时器	功能
看门狗定时器	基本定时,当程序发生错误时执行一个受控的系统重启动。

基本定时器	基本定时,支持软件和各种外围模块工作在低频率、低功耗条件下。
定时器 A	基本定时,支持同时进行的多种时序控制、多个捕获、比较功能和多种输出
定时器 B	基本定时,功能基本同定时器 A,但比较定时器 A 灵活,功能更强大。

TACTL 控制寄存器

15	10	9	8	7	6	5	4	3	2	1	0
未月	FI.	SSEL1	SSEL0	ID1	ID0	MC1	MC0	未用	CLR	TAIE	TAIFG

SSEL1、SSEL0 选择定时器输入分频器的时钟源

Timer A 时钟源

SSEL1	SSEL0	输入时钟源	说明
0	0	TACLK	用特定的外部引脚信号
0	1	ACLK	辅助时钟
1	0	SMCLK	子系统时钟
1	1	INCLK	见器件说明

ID1, **ID0** 输入分频选择

00 不分频

012分频

10 4 分频

118分频

MC1, MC0 计数模式控制位

00 停止模式

01 增计数模式

10 连续计数模式

11 增/减计数模式

CLR 定时器清除位

POR 或 CLR 置位时定时器和输入分频器复位。CLR 由硬件自动复位,其读出始终为 0。定时器在下一个有效输入沿开始工作。如果不是被清除模式控制暂停,则定时器以增计数模式开始工作。

TAIE 定时器中断允许位

0 禁止定时器溢出中断

1 允许定时器溢出中断

TAIFG 定时器溢出标志位

增计数模式: 当定时器由 CCRO 计数到到 0 时,TAIFG 置位。连续计数模式:当定时器由 0FFFH 计数到 0 时,TAIFG 置位。增/减计数模式:当定时器由 CCRO 减计数到 0 时,TAIFG 置位。

TAR 16 位计数器

这是计数器的主体,内部可读写。

[1]修改 TIMWER_A 当计数时钟不是 MCLK 时,写入应该在计数器停止计数时写,因为它与 CPU 时钟不同步,可能引起时间竞争。

[2]TIMER_A 控制位的改变:如果用 TACLK 控制寄存器中的控制位来改变定时器工作,修改时定器应停止,特别是修改输入选择位、输入分频器和定时器清除位时。输入时钟和软件所用的系统时钟异步可能引起时间竞争,使定时器响应出错。

CCTLx 捕获/比较控制寄存器

15 14	13 12	11	10	9	8	765	4	3	2	1	0
CAPTMOD1-0	CCIS1-0	SCS	SCCIx		CAP	OUTMODx	CCIEx	CCIx	OUT	COV	CCIFx

TIMER_A 有多个捕获比较模块,每个模块都有自己的控制寄存器 CCTLx

CAPTMOD1-O 选择捕获模式

- 00 禁止捕获模式
- 01 上升沿捕获
- 10 下降沿捕获
- 11 上升沿与下降沿都捕获

CCISI1-0 在捕获模式中用来定提供捕获事件的输入端

- 00 选择 CCIxA
- 01 选择 CCIxB
- 10 选择 GND
- 11 选择 VCC

SCS 选择捕获信号与定时器时钟同步、异步关系

- 0 异步捕获
- 1 同步捕获

异步捕获模式允许在请求时立即将 CCIFG 置位和捕获定时器值,适用于捕获信号的周期远大于定时器时钟周期的情况。但是,如果定时器时钟和捕获信号发生时间竞争,则捕获寄存器的值可能出错。

在实际中经常使用同步捕获模式,而且捕获总是有效的。

SSCIx 比较相等信号 EQUx 将选择中的捕获、比较输入信号 CCIx(CCIxA,CCIxB,Vcc 和 GND)进行锁存, 然后可由 SCCIx 读出。

- CAP 选择捕获模式还是比较模式。
 - 0 比较模式
 - 1 捕获模式

注意:同时捕获和捕获模式选择

如果通过捕获比较寄存器 CCTLx 中的 CAP 使工作模式从比较模式变为捕获模式,

那么不应同时进行捕获;否则,在捕获比较寄存器中的值是不可预料的,推荐的指令顺序为:[1]修改控制寄存器,由比较模式换到捕获模式。

[2]捕获

OUTMODx 选择输出模式

000 输出

001 置位

010 PWM 翻转/复位

011 PWM 置位/复位

100 翻转/置位

101 复位

110 PWM 翻转/置位

111 PWM 复位/置位

定时器时钟上升沿时 OUTx 在各模式下的状态

输出模式	EQU0	EQUx	OUTx 状态(或触发器输入端 D)
0	Χ	Χ	X(OUTx 位)
1	Χ	0	OUTx(不变)
1	Χ	1	1(置位)
	0	0	OUTx(不变)
2	0	1	/OUTx(与以前相反)
2	1	0	0
	1	1	1(置位)
	0	0	OUTx(不变)
3	0	1	1(置位)
3	1	0	0
	1	1	1(置位)
4	Χ	0	OUTx(不变)
4	Χ	1	/OUTx(与以前相反)
5	Χ	0	OUTx(不变)
3	Χ	1	0
6	0	0	OUTx(不变)

0	0		/OUTx(与以前相反)			
	1	0	1			
	1	1	0			

CCIx 捕获比较模的输入信号

捕获模式:由 CCISO 和 CCIS1 选择的输入信号通过该位读出。比较模式:CCIx 复位。

OUT 输出信号

0 输出低电平

1 输出高电平

如果 OUTMODx 选择输出模式 O(输出),则该位对应于输入状态。

COV 捕获溢出标志

0 输出低电平

1 输出高电平

[1]当 CAP=0 时,选择比较模式。捕获信号发生复位,没有使 COV 置位的捕获事件。

[2]当 CAP=1 时,选择捕获模式,如果捕获寄存器的值被读出再次发生捕获事件,则 COV 置位。程序可检测 COV 来断定原值读出前是否又发生捕获事件。读捕获寄存器时不会使溢出标志复位,须用软件复位。

CCIFGx 捕获比较中断标志

捕获模式:寄存器 CCRx 捕获了定时器 TAR 值时置位。 比较模式:定时器 TAR 值等于寄存器 CCRx 值时置位。

CCRx 捕获/比较寄存器

50			

在捕获比较模块中,可读可写。其中 CCRO 经常用作周期寄存器,其他 CCRx 相同。

TAIV 定器器 A 中断向量寄存器

155	41	0
00	中断向量	0

Timer_A 有两个中断向量,一个单独分配给捕获比较寄存器 CCR0,另一个作为 共用的中断向量用于定时器和其他的捕获比较寄存器。

CCR0 中断向量具有最高的优先级因为 CCR0 能用于定义是增计数和增减计数模式的周期。因此,他需要最快速度的服务。CCIFG0 在被中断服务时能自动复位。

CCR1-CCRx 和定时器共用另一个中断向量,属于多源中断,对应的中断标志 CCIFG1-CCIFGx 和 TAIFG1 在读中断向量字 TAIV 后,自动复位。如果不访问 TAIV 寄存器,则不能自动复位,须用软件清除;如果相应的中断允许位复位(不允许中断), 则将不会产生中断请求,但中断标志仍存在,这时须用软件清除。

关于中断挂起和返回不包括处理约需要 11~16 个时钟周期。

TIMER A 中断优先级

中断优先级	中断源	缩写	TAIV 的内容
	捕获/比较器 1	CCIFG1	2
日子	捕获/比较器 1	CCIFG1	4
最高			
	捕获/比较器 x	CCIFGx	
最低	定时器溢出	TAIFG1	10
·	没有中断将挂起		0

比较器 A

CACTL1 比较器 A 控制寄存器 1

7	6	5	4	3	2	1	0
CAEX	CARESL	CAREF1	CAREF0	CAON	CAIES	CAIE	CAIFG

CAEX 比较器的输入端,控制比较器 A 的输入信号和输出方向。

CARSEL 选择内部参考源加到比较器 A 的正端或负端。

CAEX 和 CARSEL 的含义

CARSE	CAEX	含义				
0	0	内部参考源加到比较器的正端				
0	1	内部参考源加到比较器的负端				
4	0	内部参考源加到比较器的负端				
1	1	内部参考源加到比较器的正端				

CAREF1、CAREFO 选择参考源

- 0 使用外部参考源;
- 1 选择 0.25Vcc 为参考电压
- 2 选择 0.5Vcc 为参考电压
- 3 选择二极客电压为参考电压,必须见具体的芯片资料。

CAON 控制比较器 A 的打开和关闭

- 0 关闭比较器
- 1 打开比较顺

CATES 中断触发沿选

择

- 0 上升沿使中断标志 CAIFG 置位
- 1 下降沿使中断标志 CAIFG 置位

CAIE 中断允许

- 0 禁止中断
- 1 允许中断

CAIFG 比较器中断标

志

- 0 没有中断请求
- 1 有中断请求

CACTL2 比较器 A 控制寄存器 2

7	6	5	4	3	2	1	0
CACTL2.7	CACTL2.6	CACTL2.5	CACTL2.4	P2CA1	P2CA0	CAF	CAOUT

CACTL2.7—2.4 含义请参见具体的芯片资料,例如,在 MSP430X1XX 系列中,这位可以被执行,但不控制任何硬件,可被用作标志位。

P2CA1 控制输入端 CA1

- 0 外部引脚信号不连接比较器 A
- 1 外部引脚信号连接比较器 A

P2CAO 控制输入端 CAO

- 0 外部引脚信号不连接比较器 A
- 1 外部引脚信号连接比较器 A

CAF 选择比较器输出端是否经过 RC 低通滤波器

- 0 不经过
- 1 经过

CAOUT 比较器 A 的输

出

O CAO 小于 CA1

1 CAO 大于 CA1

CAPD 端口禁止寄存器

比较器 A 模块的输入输出与 IO 口共用引脚, CAPD 可以控制 IO 端口输入缓冲器 的通断开关。当输入电压不接近 Vss 或 Vcc 时, CMOS 型的输入缓冲器可以起到分流 作用。这样可以减少了由不是 Vss 或 Vcc 的输入电压所引起的流入输入缓冲器的电 流。控制位 CAPD0—CAPD7 初始化为 0,则端口输入缓冲器有效。当相应控制位置 1 时,端口输入缓冲器无效。

ADC12 模数转换模块

ADC12 模块的所有寄存器

寄存器	寄存器缩写	寄存器含义
转换控制寄存器	ADC12CTL0	转换控制寄存器 0
	ADC12CTL1	转换控制寄存器 1
ᆂᇄᄼᆄᆉᄔᆡᆉᆉᆛᄆᄆ	ADC12IFG	中断标志寄存器
中断控制寄存器	ADC12IE	中断使能寄存器
	ADC12IV	中断向量寄存器

存储及其控制寄存器	ADC12MCTL0-ADC12MCTL15	存储控制寄存器 0-15
	ADC12MEM0-ADC12MCTL15	存储寄存器 0-15

ADC12CTL0 转换控制寄存器 0

1512	118	7	6	5	4	3	2	1	0
SHT1	SHT0	MSC	2.5V	REFON	ADC12ON	ADC12TOVIE	ADC12TVIE	ENC	ADC12SC

ADC12SC 采集/转换控制位

在不同条件 ADC12SC 的含义。

ENC=1	SHP=1	ADC12SC 由 0 变为 1 启动 AD 转
ENC=1	SHF=1	AD 转换完成后 ADC12SC 自动复位
ISSH=0	SHP=0	ADC12SC 保持高电平时采集
13311=0	SHF=0	ADC12SC 复位时启动一次转换

ENC=1 表示转换允许(必须使用); ISSH=0 表示采要输入信号为同相输入(推荐使用); SHP=1 表示采样信号 SAMPCON 来源于采样定时器; SHP=0 表示采样直接由 ADC12SC 控制。使用 ADC12SC 时,需注意以上表格信号的匹配。用软件

启动一次 AD 转换,需要使用一条指令来完成 ADC12SC 与 ENC 的设置。

ENC 转换允许位

- 0 ADC12 为初始状态,不能启动 AD 转换
- 1 首次转换由 SAMPCON 上升沿启动

只有在该位为高电平时,才能用软件或外部信号启动转换。在不同转换模式, ENC 由高电平变为低电平的影响不同:

□ 当 CONSEQ=0 (单通道单次转换模式)且 ADC12BUSY=1(ADC12 处于采样或者转

换)时,中途撤走 ENC 信号(高电平变为低电平),则当前操作结束,并可能得到错误结果。所以在单通道单次转换模式整个过程中,都必须保证 ENC 信号有效。

□ 当 CONSEQ=0(非单通道单次转换)时,ENC 由高电平变为低电平,则当前转换正常结束,且转换结果有效,在当前转换结束时停止操作。

ADC12TVIE 转换时间溢出中断允许位

- 0 没发生转换时间溢出
- 1 发生转换时间溢出

当前转换还没有完成时,又发生一次采样请求,则会发生转换时间溢出。如果允许中断,则会发生中断请求。

ADC120VIE 溢出中断允许位

- 0 没有发生溢出
- 1 发生溢出

当 ADC12MEMx 中原有的数据还没有被读出,而现在又有新的转换结果数据要写入时,则会发生溢出。如果相应的中断允许,则会发生中断请求。

ADC120N ADC12 内核控制位

- 0 关闭 ADC12 内核
- 1 打开 ADC12 内核

REFON 参考电压控制位

- 0 内部参考电压发生器关闭
- 1 内部参考电压发生器打开

2.5V 内部参考电压的电压值选择位

- 0 选择 1.5V 内部参考电压
- 1 选择 2.5V 内部参考电压

MSC 多次采样/转换位

有效条件	MSC 值	含义
SHP=1	0	每次转换需要 SHI 信号的上升沿触发采集定时器
CONSE !=O	1	仅首次转换同 SHI 信号的上升沿触发采样定时器,而后采样 转换将在前一次转换完成立即进行

其中 CONESQ≠0 表示当前转换模式不是单通道单次转换。

SHT1, SHT0 采集保持定时器 1, 采样保持定时器 0

这是定义了每通道转换结果中的转换时序与采样时钟 ADC12CLK 的关系。采样周期是 ADC12CLK 周期的整 4 倍,则:

Tsample = $4 \times T_{adc12clk} \times N$

SHT1,SHT0 采样保持定时器 1,采样保持定时器 0 的分频因子

SHITX	0	1	2	3	4	5	6	7	8	9	10	11	1215
N	1	2	4	8	16	24	32	48	64	96	128	192	256

ADC12CTL2 转换控制寄存器 2

15-12	11-10	9	8	7-5	4,3	2,1	0
CSSTARTADD	SHS	SHP	ISSH	ADC12DIV	ADC12SSEL	CONSEQ	ADC12BUSY

大多数位只有在 ENC=0 时才可被修改,如 3-15 位。

CSSTARTADD 转换存储器地址位,这 4 位表示二进制数 0-15 分别对应 ADC12MEM0-15。可以定义单次转换地址或序列转换的首地址。

SHS 采样触发输入源选择位

- O ADC12SC
- 1 Timer A.OUT1
- 2 Timer_B.OUT0
- 3 Timer B.OUT1

SHP 采样信号(SAMPCON)选择控制位

- O SAMPCON 源自采样触发输入信号
- 1 SAMPCON 源自采样定时器。由采样输入信号的上升沿触发采样定时器

■SSH 采样输入信号方向控制位

- 0 采样输入信号为同向输入
- 1 采样输入信号为反向输入

ADC12DIV ADC12 时钟源分频因子选择位,分频因子为 3 位二进制数加 1

ADC12SEL ADC12 内核时钟源选择

0 ADC12 内部时钟源:ADC12OSC

1 ACLK

2 MCLK

3 SMCLK

CONSEQ 转换模式选择位

- 0 单通道单次转换模式
- 1 序列涌道单次转换模式
- 2 单通道多次转换模式
- 3 序列通道多次转换模式

ADC12BUSY ADC12 忙标志位

- 0 表示没有活动的操作
- 1 表示 ADC12 正处于采样期间、转换期间或序列转换期间。

ADC12BUSY 只用于单通道单次转换模式,如果 ENC 复位,则转换立即停止,转换结果不可靠,需要在使 ENC=0 之前,测试 ADC12BUSY 位以确定是否为 0。在其它转换模式下此位是无效的。

ADC12MEMO-ADC12MEM15 转换存储器

15	14	13	12			
0	0	0	0	MSB		LSB

这 16 位寄存器是用来存储 AD 转换结果,只用其中低 12 位,高 4 位在读出时为0。

ADC12MCTLx 转换存储器控制寄存器

7	6,5,4	3,2,1,0
EOS	SREF	INCH

EOS 序列结束控制位

- 0 序列没有结束
- 1 此序列中最后一次转换

SREF 参考电压源选择位

 $O V_{R+} = A_{VCC}$, $V_{R-}=A_{VSS}$

 $1 \quad V_{\text{\tiny R+}} \quad = A_{\text{\tiny REF+}} \quad \text{,} \quad V_{\text{\tiny R-}}\!\!=\!\!A_{\text{\tiny VSS}}$

2,3 $V_{\text{R+}}$ = $A_{\text{eREF+}}$, $V_{\text{R-}}\!=\!A_{\text{VSS}}$

4 V_{R+} = A_{VCC} , $V_{R-}=V_{REF-}/V_{eREF-}$;

 $V_{R+} = V_{REF+}$, $V_{R}-=V_{REF}$, V_{eREF-} ,

6,7 $V_{\text{R+}} = A_{\text{eREF+}}$, $V_{\text{R}}\text{-=}V_{\text{REF}}$ $V_{\text{eREF-}}$;

■NCH 选择模拟输入通道。用 4 位二进制码表示输入通道

0-7 A0-A7

- $8 V_{eRFF+}$
- 9 V_{eREF} - V_{eREF} -
- 10 片内温度传感器的输出

11-15 (A_{VCC}-A_{VSS}) /2

中断控制寄存器:ADC12IFG、ADC12IE、ADC12IV

ADC12 IFG 中断标志寄存器

15	14	••••	1	0
ADC12IFG.15	ADC12IFG.14	••••	ADC12IFG.1	ADC12IFG.0

ADC12IFG.x = 1 转换结束,并且转换结果已经装入转换存储器

ADC12IFG.x = 0 ADC12MEMx 被访问

ADC12IE 中断使能寄存器

15	14	••••	1	0
----	----	------	---	---

ADC12IE.15	ADC12IE.14	ADC12IE.1	ADC12IE.0
------------	------------	-----------	-----------

ADC12IE.x=1 允许相应的中断标志位 ADC12IFG.x 在置位时发生的中断请求服务 ADC12IE.x=0 禁止相应的中断标志位 ADC12IFG.x 在置位时发生的中断请求服务

ADC12IV 中断向量寄存器

ADC12 是一个多源中断:有 18 个中断标志(ADC12IFG.0—ADC12IFG.15、ADC12TOV、ADC12OV)但只有一个中断向量。

	ADC12 各中断标志对应的 ADC12IV 值										ADC12	ADC12	ADC1					
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							TOV	OV	2IV								
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

USART 串行异步模式

MSP430F14 USART0 异步方式中断控制位

特殊功能寄存器	接收中断控制位	发送中断控制位
IFG1	接收中断标志 URXIFG0	接收中断标志 UTXIFG0
IE1	接收中断使能 URXIE0	接收中断使能 UTXIE0
ME1	接收允许 URXE0	接收允许 UTXE0

MSP430F14 USART1 异步方式中断控制位

特殊功能寄存器	接收中断控制位	发送中断控制位
IFG2	接收中断标志 URXIFG1	接收中断标志 UTXIFG1

IE2	接收中断使能 URXIE1	接收中断使能 UTXIE1
ME2	接收允许 URXE1	接收允许 UTXE1

在 MSP430 器件中有的型号有两个通信硬件模块 USART0 和 USART1,因此他们有两套寄存器.请看下表:

USARTO 的寄存器

寄存器	缩写	读写类型	地址	初始状态
控制寄存器	U0CTL	读/写	070H	PUC 后 001H
发送控制寄存器	U0TCTL	读/写	71H	PUC 后 001H
接收控制寄存器	U0RCTL	读/写	72H	PUC 后 000H
波特率调整控制寄存器	U0MCTL	读/写	73H	不变
波特率控制寄存器 0	U0BR0	读/写	74H	不变
波特率控制寄存器 1	U0BR1	读/写	75H	不变
接收缓冲器	U0RXBUF	读	76H	不变
发送缓冲器	U0TXBUF	读/写	77H	不变
SFR 模块使能寄存器 1	ME1	读/写	004H	PUC 后 000H
FR 模块使能寄存器 1	IE1	读/写	000H	PUC 后 000H
FR 模块使能寄存器 1	IFG1	读/写	002H	PUC 后 082H

USART1 的寄存器

寄存器	缩写	读写类型	地址	初始状态
控制寄存器	U1CTL	读/写	078H	PUC 后 001H
发送控制寄存器	U1TCTL	读/写	79H	PUC 后 001H
接收控制寄存器	U1RCTL	读/写	7AH	PUC 后 000H
波特率调整控制寄存器	U1MCTL	读/写	7BH	不变
波特率控制寄存器 0	U1BR0	读/写	7CH	不变
波特率控制寄存器 1	U1BR1	读/写	7DH	不变
接收缓冲器	U1RXBUF	读	7EH	不变
发送缓冲器	U1TXBUF	读/写	7FH	不变
SFR 模块使能寄存器 1	ME2	读/写	005H	PUC 后 000H
FR 模块使能寄存器 1	IE2	读/写	001H	PUC 后 000H
FR 模块使能寄存器 1	IFG2	读/写	003H	PUC 后 020H

UxCTL 控制寄存器

7	6	5	4	3	2	1	0
PENA	PEV	SPB	CHAR	LISTEN	SYNC	MM	SWRST

PENA 校验允许位

0 校验禁止

1 校验允许

校验允许时,发送端发送校验,接收端接收该校验,地址位多机模式中,地址位包含校验操作.

PEV 奇偶校验位,该位在校验允许时有效

- 0 奇校验
- 1 偶校验

SPB 停止位选择.决定发送的停止位数,但接收时接收器只检测 1 位停止位.

- 0 1 位停止位
- 12 位停止位

CHAR 字符长度

- 07位.
- 18位

LISTEN 反馈选择.选择是否发送数据由内部反馈给接收器

- 0 无反馈
- 1 有反馈,发送信号由内部反馈给接收器

SYNC USART 模块的模式选择

- O UART 模式[异步]
- 1 SPI 模式[同步]

MM 多机模式选择位

- 0 线路空闲多机协议
- 1 地址位多机协议

SWRST 控制位

上电时该位置位,此时 USART 状态机和运行标志初始化成复状态

(URXIFG=0,URXIE=0,UTXIE=0,UTXIFG=1)。所有受影响的逻辑保持在复位状态,直至 SWRST 复位。也就是说一次系统复位后,只有对 SWRST 复位,USART 才能重新被允许。 而接收和发送允许标志 URXE 和 UTXE 不会因 SWRST 而更改。

SWRST 位会使 URXIE、UTXIE、URXIFG、RXWAKE、TXWAKE、RXERR、BRK、PE、OE 及 FE 等复位。

在串行口使用设置时,这一位起重要的作用。一次正确的 USART 模块初始化应该是这样设置过程的:先在 SWRST=1 时设置,设置完串口后再设置 SWRST=0;最后如需要中断,则设置相应的中断使能。

UxTCTL 发送控制寄存器

7	6	5	4	3	2	1	0

未用 | CKPL | SSEL1 | SSEL0 | URXSE | TXWAKE | 未用 | TXEPT

CKPL 时钟极性控制位

0 UCLKI 信号与 UCLK 信号极性相同

1 UCLKI 信号与 UCLK 信号极性相反

SSEL1、SSEL0 时钟源选择,此两位确定波特率发生器的时钟源

- 0 外部时钟 UCLKI;
- 1 辅助时钟 ACLK
- 2 子系统时钟 SMCLK
- 3 子系统时钟 SMCLK

URXSE 接收触发沿控制位

- 0 没有接收触发沿检测
- 1 有接收触发沿检测

TXWAKE 传输唤醒控制

- 0 下一个要传输的字符为数据
- 1 下一个要传输的字符是地址

TXEPT 发送器空标志,在异步模式与同步模式时是不一样的。

- 0 正在传输数据或者发送缓冲器(UTXBUF)有数据
- 1 表示发送移位寄存器和 UTXBUF 空或者 SWRST=1

URCTL 接收控制寄存器

7	6	5	4	3	2	1	0
FE	PE	OE	BRK	URXEIE	URXWIE	RXWAKE	RXERR

FE 帧错误标志

位

- 0 没有帧错误
- 1 帧错误

PE 校验错误标志位

- 0 校验正确
- 1 校验错误

OE 溢出标志位

- 0 无溢出
- 1 有溢出

BRK 打断检测位

- 0 没有被打断
- 1 被打断

URXEIE 接收出错中断允许位

- 0 不允许中断,不接收出错字符并且不改变 URXIFG 标志
- 1 允许中断,出错字符接收并且能够置位 URXIFG

URXWIE 接收唤醒中断允许位,当接收到地址字符时,该位能够置位 URXIFG,当 URXEIE=0,如果接收内容有错误,该位不能置位 URXIFG。

- 0 所有接收的字符都能够置位 URXIFG
- 1 只能接收到地址字符才能置位 URXIFG

在各种条件下 URXEIE 和 URXWIE 对 URXIFG 的影响

URXEIE	URXWIE	字符出错	地址字符	接收字符后的标志位 URXIFG
0	Χ	1	Х	不变
0	0	0	Х	置位
0	1	0	0	不变
0	1	0	1	置位
1	0	Х	Х	置位(接收所有字符)
1	1	Х	0	不变
1	1	X	1	置位

RXWAKE 接收唤醒检测位。在地址位多机模式,接收字符地址位置位时,该机被唤醒,在线路空闲多机模式,在接收到字符前检测到 URXD 线路空闲时,该机被唤起,RXWAKE 置位。

- 0 没有被唤醒,接收到的字符是数据
- 1 唤醒,接收的字符是地址

RXERR 接收错误标志

位

- 0 没有接收错误
- 1 有接收到错误

UxBR0、UxBR1 波特率选择寄存器 这两 个寄存器是

用于存放波特率分频因子的整数部分。 UxBRO 波特率

选择寄存器 0

7	6	5	4	3	2	1	0
27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 °

UxBR1 波特率选择寄存器 1

7	6	5	4	3	2	1	0

	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
--	-----------------	-----------------	-----------------	------------------------	-----------------	-----------------	-----------------------	----------------

UxMCTL 波特率调整控制寄存器

7	6	5	4	3	2	1	0
M7	M6	M5	M4	М3	M2	M1	M0

若波特率发生器的输入频率 BRCLK 不是所需波特率的整数倍,带有一小数,则整数部分写 UBR 寄存器,小数部分由调整寄存器 UxMCTL 的内容反映。波特率由以下公式计算:

波特率=BRCLK/(UBR+(M7+M6+...M0)/8)

URXBUF 接收数据缓存

7	6	5	4	3	2	1	0

接收缓存存放移位寄存器最后接收的字符,可由用户访问。读接收缓存可以复位接收时产生的各种错误标志、RXWAKE 位和 URXIFGx 位。如果传输 7 位数据,接收

缓存内容右对齐,最高位为 0。

当收接和控制条件为真时,接收缓存装入当前接收到的字符。

当接收和控制条件为真时接收数据缓存结果

条	件	结	果		
URXEIE	URXWIE	装入 URXBUF	PE	FE	BRK
0	1	无差错地址字符	0	0	0
1	1	所有地址字符	Χ	Χ	Χ
0	0	无差错字符	0	0	0
1	0	所有字符	Χ	X	X

UTXBUF 发送数据缓存

7	6	5	4	3	2	1	0

发送缓存内容可以传至发送移位寄存器,然后由 UTXDx 传输。对发送缓存进行写操作可以复位 UTXIFGx。如果传输出 7 位数据,发送缓存内容最高为 0。

常用波特率及其对应设置参数与对应误差表

	Divid	e by	ACLK[32			768HZ 低频振荡器]			MCLK[1048576HZ			高频振荡器]	
baud rate	ACLK	MCLK	Ux BR 1	UxB R0	UxM CTL	Max.TX Error/%	Max.R X Error /%	Sync hr TX Erro	UxBR1	Ux BR 0	UxM CTL	Max. TX Error /%	Max. RX Erro r/%
75	436. 91	1398 1	1	B4	FF	-0.3/0.3	-0.3/ 0.3	±2	36	9D	FF	0/0.1	±2

CPU 的状态寄存器 SR

	15-9	8	7	6	5	4	3	2	1	0
ſ	保留	V	SCG1	SCG0	OscOff	CPUoff	GIE	N	Z	С

V 溢出标志

SCG1 SCG0 时钟控制位

SCG1 置位关闭 SMCLK

SCG0 置位关闭 DCO 发生器

OscOff 晶体振荡控制位

置位 OscOff 使晶体振荡器处于停止状态,置位 OscOff 同时 CPUoff 位也 置

位。可用 NMI 或外部中断(系统当前中断允许)将 CPU 唤醒。

CPUoff CPU 控制位

置位 CPUoff 可使 CPU 进入关闭模式,可以用所中断允许将 CPU 唤醒。

GIE 全局中断标志位

控制可屏蔽中断

GIE 置位 CPU 可响应可屏蔽中断

GIE 置位 CPU 不响应可屏蔽中断

- N 负标志
- Z 零标志
- C 进位标志

特殊功能寄存器

系统中断处理

当各模块发生中断请求时并且相应的中断允许和通用中断允许位(GIE)置位时,中断服务程序按以下顺序动作:

[1] CPU 处于活动状态:完成当前所执行的指令_

[2]CPU 处于停止状态:低功耗模式终止.

[3]指向下一条指令的 PC 值压入堆栈。

[4]SR 压入堆栈

- [5]如果在执行上条指令时已发生多个中断请求等待服务,则选择最高优先级者。
- [6]单中断源标志的中断请求位自动复位,多中断源标志仍保持置位等待软件服务。

[7]通用中断允许位 GIE 复位;CPUoff 位、OSCOff 位和 SCG1 位置位; 状态位 V、N、Z 和 C复

位;SCG0 位保持不变。

[8]相应的中断向量值装入 PC, 程序从此地址继续执行中断处理.

ME1 模块允许寄存器 1

7	6	5	4	3	2	1	0
UTXE0	URXE0/ USPIE						

初始状态:PUC 后为 000H

UTXEO USARTO 发送允许位

0 不允许

1 可允许

URXEO USARTO 接收允许位

0 不允许

1 可允许

USPIEO USARTO 发送与接收允许位(在 SPI 模式)

■FG1 中断标志寄存器 1

	// · · · · · · · · · · · · · · · · · ·	****					
7	6	5	4	3	2	1	0
UTXIFG0	URXIFG0		NMIIFG			OFIFG	WDTIFG

初始状态:PUC 后为 082H

UTXIFG0 USART0 发送中断标志位(F14、15、16、44)

此位上电为 UTXIFG0=1,表示可以向发送缓冲器写操作对发送缓存进行写操作时可以复位 UTXIFG0。

URXIFGO USARTO 接收中断标志位(F14、15、16、44)

- 0 无接收到有效字符
- 1 接收到有效字符,读接收缓存可以复位接收时产生的各种错误标志、RXWAKE 位和 URXIFGx 位。

NMIIFG NMI/RST 引脚信号位

OFIFG 振荡器失效时置位

- 0 无振荡器失效
- 1 振荡器失效,当 XT 扫荡器丢失大约 100 个振荡周期时设置 TX 振荡器失效标志 OSCFault 标志设置振荡器失效中断标志 OFIFG, 如果这时振荡器失效中断允许(OFIE)置位,则将产生非屏蔽中断请求。OFIFG 标志必须由用户软件来清除。

WDTIFG 看门狗中断标志

看门狗模式时溢出或密钥不符时产生置位

■F1 中断使能寄存器 1

14100071111										
7	6	5	4	3	2	1	0			

UTXIEO URXIEO ACCVIE	NMIIE	OFIE WDTIE
----------------------	-------	------------

初始状态:PUC 后为 000H

UTXIEO USART 发送中断允许位

0 不允许

1 允许

URXIEO USARTO 接收中断使能位允许

0 不允许

1 允许

ACCVIE FLASH 存贮器非法访问中断允许

NMIIE NMI 看门狗中断允许

OF ■ 振荡器失效中断允许

0 不允许

1 允许

WDTIE 看门狗允许,选看门狗模式无效//

0 不允许

1 允许

ME2 中断使能寄存器 2

7	6	5	4	3	2	1	0
		UTIE1	URXE1/				
			USPIE				

初始状态:PUC 后为 000H

UTXE1 USART1 发送允许位

0 不允许

1 可允许

URXE1 USART1 接收允许位

0 不允许

1 可允许

USPIE1 USARTO 发送与接收允许位(在 SPI 模式)

IFG2 中断标志寄存器 2

	7777 - 7						
7	6	5	4	3	2	1	0
		UTXIFG1	URXIFG1				

初始状态:PUC 后为 020H

UTXIFG1 USART1 发送中断标志位(F14、15、16、44)

此位上电为 UTXIFG0=1,表示可以向发送缓冲器写字符。对发送缓存进行写操作时可以复位 UTXIFG0。

URXIFG1 USART1 接收中断标志位(F14、15、16、44)

0 无接收到有效字符

1 接收到有效字符,读接收缓存可以复位接收时产生的各种错误标志、RXWAKE 位和 URXIFGx 位。

■E2 中断使能寄存器 2

7	6	5	4	3	2	1	0
		UTXIE1	URXIE1				

初始状态:PUC 后为 000H

UTXIE1 USART1 发送中断允许位(F14、15、16、44)

URXIE1 USART1 接收中断允许位(F14、15、16、44)