Math 63: Real Analysis

Winter 2024

PSET 2 — 01/17/2024

Prof. Erchenko Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

Let A be a finite set. Show that A cannot be an ordered field.

To show this, we will show that any ordered field must have infinitely many elements.

Let F be an ordered field, with 0 and 1 as the additive and multiplicative identities, and 0 < 1.

Recall the following properties of ordered fields:

- **1.** 0 < 1
- **2.** $0 < a < b \implies 0 < a^{-1} < b^{-1}$
- **3.** $0 < a < b \implies 0 < a + c < b + c$
- **4.** $0 < a < b \land 0 < c \implies 0 < ac < bc$

Since 0 < 1, adding 1 to both sides implies 1 < 1 + 1. Repeating this process infinitely many times, we get:

$$0 < 1$$
 $1 < 1 + 1$ (= 2)
 $1 + 1 < 1 + 1 + 1$ (= 3)
 $1 + 1 + 1 < 1 + 1 + 1 + 1$ (= 4)

For any element $a \in F$, the element a + 1 must be in F (since fields are closed under addition) and it must be greater than a. Similarly, no addition of two elements a, b, with 0 < a and 0 < b, can ever equal 0. This can only happen if F is infinite.

Problem 2.

Let $F = \{0, 1, 2\}$. Prove that there is exactly one way to define addition and multiplication so that F is a field if 0 is the additive identity and 1 is the multiplicative identity.

Multiplication

First, note that $0 \cdot a = a \cdot 0 = 0$ for all $a \in F$.

This is because multiplication distributes over addition, so $0 \cdot a = (1 + (-1)) \cdot a = a + (-a) = 0$.

Next, since 1 is the multiplicative identity, $1 \cdot a = a \cdot 1 = a$ for all $a \in F$.

There are three possible ways to define $2 \cdot 2$:

- **1.** If $2 \cdot 2 = 0$, then multiplying both sides by 2^{-1} implies that 2 = 0. This is a contradiction.
- **2.** If $2 \cdot 2 = 2$, then multiplying both sides by 2^{-1} implies that 2 = 1. This is a contradiction.
- **3.** Therefore, multiplication is only well-defined if $2 \cdot 2 = 1$.

Since 0 is the additive identity, 0 + a = a + 0 = a for all $a \in F$.

Similarly, $1 \cdot a = a \cdot 1 = a$ for all $a \in F$.

Addition

There are three potential ways to define addition:

1. If 1 + 1 = 0, this implies 1 = -1.

For addition to be well-defined, we must also have 2 + 2 = 0 since 2 must also have an additive inverse.

How do we define 1 + 2?

- (i) If 1 + 2 = 0, then 1 = -2, suggesting that 1 has two additive inverses since 1 + 1 = 1 + 2 = 0. But each element must have a unique inverse, so this is a contradiction.
- (ii) If 1 + 2 = 1, then adding -1 to both sides implies that 2 = 0, a contradiction.
- (iii) If 1 + 2 = 2, then adding -2 to both sides implies that 1 = 0, a contradiction.
- **2.** If 1 + 1 = 2. then 1 + 2 = 2 + 1 = 0 (since both 1 and 2 must have additive inverses).

This is not consistent with multiplication as defined in 3. above, since:

- (i) $2 \cdot (1+2) = 2 \cdot 0 = 0$.
- (ii) $2 \cdot (1+2) = 2 \cdot 1 + 2 \cdot 2 = 2 + 1 = 0$
- **3.** 1 + 1 = 1 implies that 1 = 0 (by adding -1 to both sides). This is a contradiction, since $1 \neq 0$.

Thus, there is only one way to define addition and multiplication such that F is a field:

$$0 + 0 = 0$$

$$0 + 1 = 1 + 0 = 1$$

$$0 + 2 = 2 + 0 = 2$$

$$1 + 1 = 2$$

$$1 + 2 = 2 + 1 = 0$$

$$2 + 2 = 1$$

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$0 \cdot 2 = 2 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

$$1 \cdot 2 = 2 \cdot 1 = 2$$

$$2 \cdot 2 = 1$$

Problem 3.

If S_1 and S_2 are nonempty subsets of $\mathbb R$ that are bounded above, prove that

$$\sup \{x + y \mid x \in S_1, y \in S_2\} = \sup S_1 + \sup S_2.$$

We shall prove this in two steps, first showing that $\sup \{x + y \mid x \in S_1, y \in S_2\} \le \sup S_1 + \sup S_2$, and then showing that $\sup \{x + y \mid x \in S_1, y \in S_2\} \ge \sup S_1 + \sup S_2$.

(i) Let $s_1 \in S_1$ and $s_2 \in S_2$ be arbitrary.

Since
$$s_1 + s_2 \in \{x + y \mid x \in S_1, y \in S_2\}, s_1 + s_2 \le \sup\{x + y \mid x \in S_1, y \in S_2\}.$$

This holds for any selection of $s_1 \in S_1$ and any selection of $s_2 \in S_2$,

so
$$\sup S_1 + \sup S_2 \le \sup \{x + y \mid x \in S_1, y \in S_2\}.$$

(ii) Let $s \in \{x + y \mid x \in S_1, y \in S_2\}$ be arbitrary.

Then, by definition, s = x + y for some $x \in S_1$ and $y \in S_2$.

Since $x \le \sup S_1$ and $y \le \sup S_2$; $s = x + y \le \sup S_1 + \sup S_2$.

This holds for all elements $s \in \{x + y \mid x \in S_1, y \in S_2\}$,

so $\sup \{x + y \mid x \in S_1, y \in S_2\} \le \sup S_1 + \sup S_2$.

Problem 4.

Let $S \coloneqq \{a_k \mid k \in \mathbb{N}\} \cup \{b_k \mid k \in \mathbb{N}\}$, ordered such that $a_k < b_j$ for all k and $j, a_k < a_m$ whenever k < m, and $b_k < b_m$ whenever k < m.

(a) Show that S is an ordered set.

S is an ordered set if there exists a relation < on S such that:

- **1.** For all $a, b \in S$, exactly one of a < b, a = b, or b < a holds.
- **2.** If a < b and b < c, then a < c.
- **3.** If a < b, then a + c < b + c.

Let < be as defined in the problem statement. We will show that < satisfies the above properties.

Let $x, y, z \in S$ be arbitrary.

- (i) If $x \neq y$, then:
 - **1.** If $x = a_k$ and $y = a_m$ with k < m then x < y. Otherwise, y < x.
 - **2.** If $x = a_k$ and $y = b_j$, then x < y.
 - **3.** If $x = b_k$ and $y = b_j$ with k < j, then x < y.
- (ii) If x < y and y < z, then:
 - **1.** If $x = a_k$ and $y = a_m$ with k < m, then either $z = a_n, n > m$ or $z = b_j$ for some j. Therefore, x < z.
 - **2.** If $x = a_k$ and $y = b_j$ for some j, then $z = b_n$ for some n > j. Therefore, x < z.
 - **3.** If $x = b_j$ and $y = b_k$ for some j, k, j < km then $z = b_n$ for some n > j. Therefore, x < z.
- (b) Show that every subset of *S* is bounded above and below.

From the definition of S, $a_k < b_j$ for all k and j. If S' is any subset of S, then S' is bounded above by the biggest $b_j \in S'$ and bounded below by the smallest $a_k \in S'$.

(c) Find a bounded subset of S that has no least upper bound.

The set

$$B = \{b_i \mid j \in \mathbb{N}\} \subset S$$

is bounded below (by any $a_k \in S$) and above (by the largest $b_j \in B$), but does not have a least upper bound.

As a proof by contradiction, supposing $\mathbf{l.u.b.}$ $B = \sigma$. First note that B contains elements of the form $b_j, j \in \mathbb{N}$. Therefore, σ must be some element b_x for some $x \in \mathbb{N}$, since the ordering rules defined that all a_k are ordered below any b_j . Now, the element b_{x+1} is also in B, and $b_x < b_{x+1}$ by the ordering rules, contradicting that we took b_x to be the least upper bound of B.

Problem 5.

Let $n \in \mathbb{N}$. Show that (\mathbb{R}^n, d_1) is a metric space where

$$d_1(p,q) \coloneqq \sum_{1}^{n} |p_i - q_i|$$

for all $p = (p_1, \dots, p_n)$ and $q = (q_1, \dots, q_n)$ in \mathbb{R}^n .

 (\mathbb{R}^n, d_1) is a metric space if d_1 satisfies the following properties:

- **1.** $d_1(p,q) \ge 0$ for all $p,q \in \mathbb{R}^n$. and $d_1(p,q) = 0$ if and only if p = q.
- **2.** $d_1(p,q) = d_1(q,p)$ for all $p, q \in \mathbb{R}^n$.
- **3.** $d_1(p,r) \le d_1(p,q) + d_1(q,r)$ for all $p, q, r \in \mathbb{R}^n$.

Claim 5.1. $d_1(p,q) \ge 0$ for all $p, q \in \mathbb{R}^n$.

Proof. Let $p, q \in \mathbb{R}^n$ be arbitrary. Then, since $|x + y| \ge 0$ for all $x, y \in \mathbb{R}$, $|p_i - q_i| \ge 0$ for all $i \in \{1, \dots, n\}$. Therefore,

$$d_1(p,q) = \sum_{1}^{n} |p_i - q_i| \ge 0.$$

Claim 5.2. $d_1(p,q) = 0$ *if and only if* p = q.

Proof. Let $p, q \in \mathbb{R}^n$ be arbitrary.

 (\Longrightarrow) : Suppose $d_1(p,q)=0$. Then, since $|p_i-q_i|\geq 0$ for all $i\in\{1,\ldots,n\}$,

$$d_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| = 0$$

implies that $|p_i - q_i| = 0$ for all $i \in \{1, \dots, n\}$. This implies that $p_i = q_i$ for all $i \in \{1, \dots, n\}$, and therefore p = q.

(\iff): Suppose p=q. This means that $p_i=q_i$ for all $i\in\{1,\ldots,n\}$, meaning $|p_i-q_i|=0$, so

$$\sum_{1}^{n} |p_i - q_i| = d_1(p, q) = 0.$$

Claim 5.3. $d_1(p,q) = d_1(q,p)$ for all $p, q \in \mathbb{R}^n$.

Proof. Let $p, q \in \mathbb{R}^n$ be arbitrary. Since |x+y| = |y+x| for all $x, y \in \mathbb{R}$, $|p_i - q_i| = |q_i - p_i|$ for all $i \in \{1, \dots, n\}$. Therefore,

$$d_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| = \sum_{i=1}^{n} |q_i - p_i| = d_1(q,p).$$

Claim 5.4. $d_1(p,r) \le d_1(p,q) + d_1(q,r)$ for all $p, q, r \in \mathbb{R}^n$.

Proof. Let $p, q, r \in \mathbb{R}^n$ be arbitrary, then:

$$d_1(p,r) = \sum_{i=1}^{n} |p_i - r_i|$$

$$= \sum_{i=1}^{n} |p_i - q_i| + |q_i - q_i| + |q_i - q_i| = \sum_{i=1}^{n} |p_i - q_i| + \sum_{i=1}^{n} |q_i - q_i|$$

$$= d_1(p,q) + d_1(q,r)$$

Since all the properties hold, (\mathbb{R}^n, d_1) is a metric space.

Problem 6.

Show that the subset of (\mathbb{R}^2, d_E) given by

$$S \coloneqq \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 > x_2 \right\}$$

is open.

Definition 6.1. A set is open if each point in the set has an open ball contained in the set.

Let $p = (p_1, p_2) \in S$ be arbitrary. We shall show that any such point has some open ball surrounding it that is contained in S.

By definition of S, $p_1 > p_2$. Pick

$$r = \frac{p_1 - p_2}{\sqrt{2}}$$

such that

$$p_1 - \frac{r}{\sqrt{2}} = p_2 + \frac{r}{\sqrt{2}}.$$

Let $\mathfrak{B} = \mathbf{B}_r(p) \subset S$.

Claim 6.2. B is open.

Proof. To show this, we show that $\mathfrak B$ does not contain its boundary.

Take the point $q = (q_1, q_2)$ with $q_1 = p_1 - \frac{r}{\sqrt{2}}$ and $q_2 = p_2 + \frac{r}{\sqrt{2}}$:

1. q is on the boundary of \mathfrak{B} . Or, more precisely, $d_E(p,q) = r$.

$$d_E(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

$$= \sqrt{\left(p_1 - \left(p_1 - \frac{r}{\sqrt{2}}\right)\right)^2 + \left(p_2 - \left(p_2 + \frac{r}{\sqrt{2}}\right)\right)^2}$$

$$= \sqrt{\frac{r^2}{2} + \frac{r^2}{2}}$$

$$= \sqrt{r^2}$$

2. q is not in \mathfrak{B} . We picked q such that $q_1 = p_1 - \frac{r}{\sqrt{2}} = p_2 + \frac{r}{\sqrt{2}} = q_2$. Since $q_1 = q_2$, q is not in A, and therefore not in \mathfrak{B} .

Therefore, B is open.

Claim 6.3. \mathfrak{B} is contained in S.

Proof. Above, we picked q such that $q_1 = p_1 - \frac{r}{\sqrt{2}}$ and $q_2 = p_2 + \frac{r}{\sqrt{2}}$ such that $q_1 = q_2$. This point q lies on the line x = y, and is the only such point on the circle of radius r, centered at p, that lies on the line x = y. If a point in $\mathfrak B$ lies outside S, it must be on or above the line x = y. But that is impossible, as that would imply that the line x = y intersects the circle more than once.

This proof sounds very sketchy. I could visualize it, but I wasn't sure how to articulate it better.

Problem 7.

Let (X, d) be a metric space. Let $A \subset X$. Show that A is open if and only if it is equal to the union of a collection of open balls.

Definition 7.1. A set $A \subset X$ is open if each point in A has an open ball contained in A .
Let A be an open set. Then, by definition, each point in A has some open ball contained in A . Let B be the union of all such open balls.
Claim 7.2. $A \subseteq B$.
<i>Proof.</i> Let $a \in A$ be arbitrary. Since A is an open set, a has some open ball $\mathbf{B}_{r}(a)$ contained in A . This ball must contain a itself, and since B is the union of all such open balls, B must also contain a . Therefore, $a \in B$.
Claim 7.3. $A \supseteq B$.
<i>Proof.</i> Let $b \in B$ be arbitrary. Since B is the union of a collection of open balls contained in A , the point b must be in
some open ball contained in A . Therefore, b itself must also be in A , so $b \in A$.
Since $A \subseteq B$ and $A \supseteq B$, $A = B$.