组号: 03

上海大学计算机工程与科学学院

实验报告

(数据结构1)

学	期:	2022-2023年1季

组 长: 刘彦辰

学 号: 21121319

指导教师: 朱能军

成绩评定: _____(教师填写)

二〇二二年 12 月 13 日

小组信息						
姓名	学号	贡献 比	签名			
刘彦辰	21121319	40%				
李睿凤	21121906	30%				
车心宇	21121928	30%				

实验概述						
实验零	(熟悉上机环境、进度安排、评分制度;确定小组成员)					
实验	约瑟夫问题变种					
实验 二	?					
实验 三	?					
实验 四	?					

I 任务分配

姓名	职责
刘彦	项目总体架构与测试;类 arrayList 设计与测试;界面设计;两个问题的数组实现及算法分析与证明;程序性能分析与测试;部分报告撰写
李睿	类 dChain_circle 设计与测试; 类 timeCounter 设计与测试; 部分报告撰写
车心 宇	两个问题的链表解决实现;类 dChain_circle 测试; 部分报告撰写

II 项目目录结构以及类图

由于时间原因这部分省略。

项目已开源到 https://github.com/jamesnulliu/SHU_DS_znj_Project01 ,感兴趣的话大家可以自己去看一看。

III 数据结构

1. 双向链表实现循环链表

双向链表描述的线性表中,构成链表的每个节点中存储一个线性表元素,且存在两个指针域:一个指向其前驱的指针域prev,一个指向其后继的指针域next,形成双向链表。

头节点的前驱指针指向尾结点,尾结点的后继指针指向头节点,实现链表的循环。元素之间逻辑上的相邻关系在物理位置上并不一定相邻,而是通过指针联系在一起形成了一条链式结构。

假设有一线性表, n 个元素存储在 n 个节点中, 每个节点通过指针链接。

元素结点

Debug 时出现提示内容为:

Class template has already been defined.

的错误,即产生了定义不一致问题(而不是重定义问题)。

广泛地说,重定义的发生,在于所有参与编译的源文件中出现对某个对象的多次定义;编译时编译器无法明确该对象究竟使用何种定义。

当将一些内容写入头文件,我们要注意可能有多个源文件将 include 该头文件;因此绝大部分情况下如果不将对象的声明和定义分文件写(即声明写在头文件,定义写在源文件),将出现重定义问题。

两种特殊情况声明和定义不可以分文件写:

- 1. 内联函数 (inline function)

 内联函数的函数体并非真正的函数定义,编译器运行到调用部分时会展开内联函数(直接将函数体替代至调用位置)。
- 2. 模板 (template) 模板类的定义也并非真正的定义,编译器在运行时才会实例化。

由于以上两种情况**没有真正定义**,就算被 include 进多个头文件,也不会出现重定义问题。

然而,当不同头文件的定义出现分歧(定义内容不一致),就会导致导致编译器无法确定究竟哪个定义是正确的,进而抛出诸如"Class template has already been defined." 的错误提示。

删除

本次项目为满足需求,我们对 erase 函数进行重载,分别根据下标和指针删除线性表元素。

待删除元素的地址是随机的,无法通过寻址公式来定位。若传入下标小于等于链表节点的一半,从头节点开始向后遍历链表寻找指定节点,反之,从尾结点向前遍历查找;该删除节点的前驱节点的next指针指向将要删除的结点的后继结点,后继结点的 prev 指针指向将删除节点的前驱节点。若删除节点为头节点,将该链表的 firstNode 后移,若为尾结点则将 TastNode 前移,删除指定的节点,TistSize 减一。

输出

我们定义了 public 函数 output 用来输出;因此 operator<< 只需调用 output 即可,没必要声明成友元函数。

然而,如果想要声明友元,我们需要注意 operator<< 不是类 dChain_circle 的成员函数 (实际上,operator<< 可以算作类 std::ostream 的成员函数) ,因此 operator<< 不和类 dChain_circle 共享模板; 其在 dChain_circle 内声明友元时需额外声明它的模板函数。

std::cout 是一个在 std 命名空间里定义的对象(也可以说是一个全局变量),在 namespace std 外部使用时需要指出 cout 所属的命名空间,所以需要用 scope operator :: 指明其所属空间。

而在我们的项目中,out 是在函数内定义的一个 std::ostream 类对象,因此使用时不需要额外添加命名空间。

const 成员函数

get_firstNode 和 get_lastNode 等函数需要额外提供 const 版本。

在 C++ 中, 我们应该只升高而非降低安全级别, 参考以下例子:

在类设计中,有以下规定: non-const 和 const 对象都可以调用 const 函数,而 const 对象不能调用 non-const 函数。

因此我们考考虑哪些函数应该设计两个版本,哪些函数只应该设计一个版本。

注意:在 const 成员函数中,this 指向对象为 const 对象,所以在该函数内调用的其他 类内成员函数必须拥有 const 版本。

2. 数组实现的线性表

在数组描述的线性表中,数组的每一个位置都可以用来储存线性表的一个元素。第i个元素与其下标(index)的映射关系可以用以下公式表示:

$$location(i) = i - 1$$

假设有一数组 arr[0:n-1] 中共有 n 个元素:

插入

将元素 e 插入至位置 i ,我们需要将 arr[i:n-1] 中的元素依次复制到 arr[i+1:n] ,再将元素 arr[i] 修改为 e 。

此时数组中共有n+1个元素。

插入的时间复杂度为O(n)。

删除

删除arr[i], 我们需要将arr[i+1,n-1]中的元素依次复制到arr[i:n-2]。

此时数组中共有 n-1 个元素

删除的时间复杂度为O(n)。

动态扩容

在用指针申请内存时,由于C++的静态性,只能申请固定长度的连续内存。

若内存已满而想增加元素,则需要对数组进行扩容。

扩容的本质是申请一串更大的内存(习惯上,新内存大小应

为原内存的2倍), 再将原内存内的数据迁移过去。

申请内存和其他操作的时间复杂度为 O(1),而数据迁移的时间复杂度为 O(n);因此总时间复杂度为 O(n)。

以下为对一维数组 arr[0:n-1] 扩容的伪代码:

Pesudocode for changeLength1D -----

```
1 let arr2 be new array[0:newLength-1]
2 k = min(newLength, oldLength)
3 for j from 0 to k-1
4    arr2[j] = arr[j];
5 substitute arr for arr2
```

迭代器

为用户自定义容器类设计符合STL规范的迭代器 (iterator) 是有意义的行为。当迭代器 成功实现,就可以方便地使用STL提供的各种算法。具体实现过程可以参考我们提供的 源码附件,这里不多做展开。

IV 算法分析

1. 使用链表

在双链表下,我们可以更直观的完成项目目标。

问题分析

• 问题—

我们可以将每一轮的操作分为两步。(以X为例, px 为X的位置)

- 1. 向后数 K 份简历,拿走它。 px 往后移 K-1 位,删除该节点。
- 2. 走向下一份简历。 px 往后移动一位。

问题二

移动操作与问题一相同但是多出一步添加操作。(以X为例,px为X的位置,Y的操作不变)

- 1. 向后数 K 份简历,并且移动到该位置。 px 往后移 K-1 位。
- 2. 在X后放一份简历,并拿走X面前这份简历。 在 px 后插入一个节点,其序号为max+1,删除 px 指向的节点。
- 3. 走向下一份简历。 px 往后移动一位。

为了减少 px 移动的次数,我们引入等效步长 Step ,优化遍历方法,将移动次数限制在 $\frac{Length}{2}$ 内。

数学公式

下面用推导中用p表示所在位置,Move 表示输入的步长,Step 表示等价移动步长(正负表示方向),Length表示目前剩余简历数目。

 $Step = Move \ mod \ Length - 1$

$$Step = egin{cases} Step & Step \leq rac{Length}{2} \ Step - Length & Step > rac{Length}{2} \end{cases}$$

伪代码

已知所有简历数据都存储在双向循环链表 chain 中,初始共有 N(Length) 份简历,X 每次逆时针数 K 份,Y 每次顺时针数 M份。我们将上一节中的所有公式泛化地用 f 表示,则可将两个问题的程序用伪代码表示出来。

问题 1 的伪代码时间复杂度为 $O(n^2)$

Pesudocode for circle_test1 -----

```
stepX = f(Lenth,K)
4
                               // 0(1)
 5
       stepY = f(Lenth, M)
                               // 0(1)
       px move stepX
                              // O(n)
 6
7
                              // O(n)
       py move -stepY
8
       t1=px
                              // 0(1)
                               // 0(1)
9
       t2=py
10
       if t1==t2
                             // 0(1)
11
           erase t1;
12
       else
           erase t2 and t1; // O(1)
13
14
       if lenth==0
15
           break loop
16
       px move 1
                               // 0(1)
17
       py move -1
                               // 0(1)
```

问题 2 的伪代码时间复杂度为 $O(n^2)$ 。

Pesudocode for circle_test2 -----

```
px = firstNood
                               // 0(1)
 2 py = lastNood
                               // 0(1)
 3 loop
                              // O(n)
 4
       stepX = f(Lenth, K)
                             // 0(1)
 5
       stepY = f(Lenth, M)
                             // 0(1)
       px move stepX
                              // O(n)
 6
 7
                             // O(n)
       py move -stepY
       t1=px;
                             // 0(1)
8
9
       t2=py;
                             // 0(1)
       if t1 == t2
10
11
          erase t1
                              // 0(1)
12
       else
13
          erase t1 and t2 // O(1)
       if lenth == 0
14
15
           break loop
       Add Node After px // O(1)
16
                              // 0(1)
17
       px move 1
18
       py move -1
                              // 0(1)
19
       if lenth==0
20
           break loop
```

2. 使用数组

与链表相比,看似本次项目的两题使用 ArrayList 实现是一个欠佳的选择。

ArrayList 的 get 操作比 Chain 快(ArrayList 的 get 时间复杂度为 O(1),而 Chain 的时间复杂度为 O(n));

ArrayList 的 erase 操作效率比 Chain 低(ArrayList 的时间复杂度 O(n),Chain 的时间复杂度为 O(1))。

本次两题中 Chain 能直接用 node pointer 进行迭代,因此不存在调用 get 操作的情况;但两题都存在使用 erase 删除元素的情况。

然而,当数据增多,步长增大,我们可以发现 ArrayList 在某些情况下的效率远胜于 Chain。具体的测试数据和分析将留在 **V 性能分析** 一节详细解释。

数学公式

使用 Array List 实现本次的题目需要先对部分数学公式进行推导。

问题1和2的移动方式是相同的;也就是说,假设已知某一轮(**定义每轮的第一步是** X **与 Y 开始数简历,最后一步是X 与 Y 取走简历,下同**) X 面前的简历下标为 xStart,Y 面前的简历下标为 yStart,且当前轮共有 N 份简历,X 每次逆时针数 K 份,Y 每次顺时针数 M 份;

则 X 和 Y 最终将要取走的目标简历的下标 xTake 和 yTake 符合以下公式:

$$xTake = (N + xStart + K \bmod N - 1) \bmod N \tag{4.1}$$

$$yTake = (N + yStart - M \bmod N + 1) \bmod N \tag{4.2}$$

得到 xTake 和 yTake 之后,

对于问题1,下一轮的 N' 以及 xStart' 和 yStart' 符合以下公式:

$$N' = \begin{cases} N-1 & xTake = yTake \\ N-2 & xTake \neq yTake \end{cases}$$
 (4.3)

$$xStart' = \begin{cases} (N' + xTake - 1) \bmod N' & \text{if } yTake < xTake \\ xTake & \text{if } yTake \geqslant xTake \end{cases}$$
(4.4)

$$yStart' = \begin{cases} (N' + yTake - 1) \mod N' & \text{if } yTake \leqslant xTake \\ (N' + yTake - 2) \mod N' & \text{if } yTake > xTake \end{cases}$$
(4.5)

对于问题2,下一轮的 N' 以及 xStart' 和 yStart' 符合以下公式:

$$N' = \begin{cases} 0 & \text{if } N = 1 \text{ and } xTake = yTake \\ N & \text{if } N > 1 \text{ and } xTake = yTake \\ N - 1 & \text{if } N > 1 \text{ and } xTake \neq yTake \end{cases}$$
(4.6)

$$xStart' = \begin{cases} (N' + xTake - 1) \bmod N' & \text{if } yTake < xTake \\ xTake & \text{if } yTake \geqslant xTake \end{cases}$$
(4.7)

$$yStart' = (N' + yTake - 1) \bmod N'$$
(4.8)

注:对于两个问题,N'总是由N以常数之差衰减得到。

伪代码

已知所有简历数据都存放在数组 arr 中,初始共有 N 份简历, X 每次逆时针数 K 份, Y 每次顺时针数 M 份。

我们将上一节中的所有公式泛化地用 f 表示,则可将两个问题的程序用伪代码表示出来。

问题1的伪代码,总时间复杂度为 $O(n^2)$:

Pesudocode for array_test1 -----

```
1 \mid xStart = 0
 2 \mid yStart = N-1
 3 loop
                                               // O(n)
 4
        xTake = f(xTake, N, K, M)
                                               // 0(1)
 5
       yTake = f(yTake, N, K, M)
                                               // 0(1)
        N = f(N, xTake, yTake)
                                               // 0(1)
 6
 7
       if N == 0
            break loop
 8
       xStart = f(N, xTake, yTake)
 9
                                              // 0(1)
       yStart = f(N, xTake, yTake)
                                              // 0(1)
10
11
        if xTake == yTake
            erase arr[xTake]
                                               // O(n)
12
13
        else
14
            erase arr[max(xTake, yTake)] // O(n)
15
            erase arr[min(xTake, yTake)]
                                            // O(n)
```

问题2的伪代码,总时间复杂度为 $O(n^2)$:

Pesudocode for array_test2 -----

```
1 \times \text{start} = 0
 2 \mid yStart = N-1
 3 \mid 1 \text{oopCount} = 0
   loop
 4
                                                     // O(n)
 5
        xTake = f(xTake, N, K, M)
                                                     // 0(1)
                                                     // 0(1)
        yTake = f(yTake, N, K, M)
 6
 7
        N = f(N, xTake, yTake)
                                                     // 0(1)
        if N == 0
 8
 9
             break loop
        xStart = f(N, xTake, yTake)
                                                     // 0(1)
10
        yStart = f(N, xTake, yTake)
                                                     // 0(1)
11
12
        if xTake == yTake
             if (K + M) \mod N == 1
13
                                                     // constraint
                 break loop due to endless loop
14
```

值得注意的是,在问题2中,增加了当 $xTake=yTake \ {\rm and} \ (K+M) \ {\rm mod} \ N=1$ 时结束循环的约束条件 (constraint) 。我们将在下一节详细分析该条件。

对问题2无限循环的约束证明

如上节所述, 当某轮的各参数满足

$$xTake = yTake$$
 and $(K + M) \mod N = 1$

接下类会出现无限循环(不相信的话读者可以自己手动算一算,若初始时 $N_0=5$,K=3,M=2,当 N 衰减为 2 时会陷入无限循环;更多的例子可以参考**附件** endless_loop.xlsx 中的 Sheet3)。

上述约束条件最早由第7组的**邵宇宸**同学提出,其给出的解释利用了几何上的旋转对称性。我在下文将基于该条件出进一步的说明。

A. 代数证明

根据**公式 4.6**,任意处于无限循环中的状态 S_i 必须满足:

$$N > 1 \text{ and } xTake = yTake \Leftrightarrow N_{next} = N$$
 (4.9)

注: N>1 and xTake=yTake 是 N'=N 的充要条件; 即,只要状态 S_i 处于无限循环中,必然同时满足 $N_i>1$ and $xTake_i=yTake_i$ 和 $N_{i+1}=N_i$ 。

假设第 k,k+1,k+2 个状态都处于无限循环中,令他们为状态 S,S',S'';则根据公式 4.9 的充要条件,状态 S,S',S'' 都满足 N>1 and xTake=yTake 。

而我们的目的,是在已知 N>1 and xTake=yTake 的条件下,通过 S,S',S'' 找出一个包含 K,M,N 的约束等式 $E_{constraint}(K,M,N)$; 当且仅当 $E_{constraint}(K,M,N)$ 成立,程序进入无限循环的过程。

将公式 4.9 带入公式 4.7 和公式 4.8, 计算得到状态 S' 的 xStart' 和 yStart':

$$xStart' = xTake (4.10)$$

$$yStart' = \begin{cases} yTake - 1 & \text{if } yTake \neq 0 \\ N - 1 & \text{if } yTake = 0 \end{cases}$$

$$(4.11)$$

将**公式 4.10** 和**公式 4.11** 回代入**公式 4.1** 和**公式 4.2** ,计算得到状态 S' 的 xTake' 和 yTake' :

$$xTake' = (N + xTake + K \bmod N - 1) \bmod N \tag{4.12}$$

$$yTake' = \begin{cases} (N + yTake - M \mod N) \mod N & \text{if } yTake \neq 0 \\ (2N - M \mod N) \mod N & \text{if } yTake = 0 \end{cases}$$
(4.13)

由于 S' 是无限循环中的状态, 欲有 N'' = N', 则必有:

$$xTake' = yTake' (4.14)$$

合并**公式 4.12, 公式 4.13, 公式 4.14**, 得到:

$$K \mod N + M \mod N = cN + 1, c \in \text{Integer}$$

 $\Rightarrow (K + M) \mod N = 1$

$$(4.15)$$

综上, 公式 4.15 指明了我们要求的 $E_{constraint}(K, M, N)$, 即:

$$(K+M) \mod N = 1 \text{ when } N > 1 \text{ and } xTake_{before} = yTake_{before}$$
 (4.16)

B. 几何证明

假设有第 k, k+1, k+2 轮,分别以 S, S', S'' 表示。

由**图 4-1** 可以看到,不管状态 S 中 xStart 和 yStart 的位置(这步与代数证明不相同),只要 xTake=yTake,根据题意必有 N'=N。

同理,欲使状态 S'' 中的 N'' 与状态 S' 中的 N' 相同,必要条件为 xTake'=yTake'。

若 xTake'=yTake' ,由于圆的对称性,在取完简历后状态 S'' 将与状态 S' 等价(可以参考状态 S 取简历的情况)。

我们能够很容易地观察出,只要 $(K+M) \bmod N' = 1$,从状态 S' 开始,对之后的任意状态 S^* ,有

$$N^* = N'$$

此时状态 S' 是第一个属于无限循环的状态 (并没有对状态 S 进行明确判断)。

因此得到 $E_{constraint}(K, M, N)$ 为:

 $(K+M) \mod N = 1 \text{ when } N > 1 \text{ and } xTake_{before} = yTake_{before}$

泛化分析

将**等式 4.16** 作为约束条件有一个致命的缺陷,就是对无限循环过程的判断必须在运行中而非运行前: 我们不得不在直到 N 衰减为 0 前,持续运行程序,并检查每个状态下约束条件是否成立。

举个简单的例子,当 N=100, K=100, M=99 时,我们目前的程序必须一直运行到 $N_{endless}=2$ 时才检测出符合**等式 4.16**的无限循环情况。

那么可否推出一个更加泛化的公式,在程序运行的开始就判断出是否会出现无限循环呢?

首先列出**表4-1**,其中第一行表示初始 N_0 的取值,第一列表示 $(K+M) \mod N_0$ 的取值;不同行列的交点中的数值表示循环结果,0 为取尽,非 0 代表进入无尽循环时 $N_{endless}$ 的值。(更多无尽循环情况的数据可以在**附件 endless_loop.xlsx** 中的 Sheet1, Sheet2 和 Sheet3)中找到。

k+m\n	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	2	0	0	2	0	0	2	0	0
4	0	3	0	3	3	0	3	0	0
5		2	4	2	2	2	2	2	2
6		0	0	5	0	0	0	0	0
7			2	2	6	2	2	6	3
8			0	0	0	7	0	0	0
9				0	2	2	8	2	2
10				3	3	0	0	9	0
11					0	0	5	5	10
12					0	0	0	0	0
13						3	6	2	0
14						0	0	0	0
15							0	0	0
16							0	0	0
17								4	2
18								0	0
19									2
20	/			/	/				0

表 4-1

注意表中底色为红色的焦点,其条件似乎与我们先前的约束条件(**等式 4.16**)极其相似: $N_0=N_{endless}$ 而 (K+M) mod $N_0=1$ when $N_0>1$; 然而这里缺少一个很关键的 $xTake_{before}=yTake_{before}$ 条件。

解释这个问题非常简单:如**图 4-2** 尽管初始时不存在上一状态中的 $xTake_{before}$ 和 $yTake_{before}$,我们可以假设存在一个 BEFORE 状态。这样就与约束条件匹配了。

由于数据分布得过于分散,以我们小组目前的能力确实没有找到足够归纳成数学方程的规律。

作为补偿,在源码 source/testFunc/testArrayList.cpp 中我们提供了函数 outputResultofTest2 用来输出(结果保存至 .txt 文件)一定范围的 N 内所有可能的 K+M 取值,使得最终结果进入无尽循环(无尽循环时的 $N_{endless}$ 也会一并输出);另外,该函数还利用了STL提供的 hash map 来验证无尽循环的发生与 K,M 的单独取值无关,只与 K+M 有关。

V 性能分析

1. 理论分析

在 IV.2 中我们提到,对于本次项目的两题,使用 ArrayList 和 Chain 在性能上会有所差异。

ArrayList 的 get 操作比 Chain 快(ArrayList 的 get 时间复杂度为 O(1),而 Chain 的时间复杂度为 O(n));

ArrayList 的 erase 操作效率比 Chain 低(ArrayList 的时间复杂度 O(n),Chain 的时间复杂度为 O(1))。

本次两题中 Chain 能直接用 node pointer 进行迭代,因此不存在调用 get 操作的情况;但两题都存在使用 erase 删除元素的情况。

尽管 ArrayList 的 erase 操作相比 Chain 效率更低,但是当移动步数足够长(例如 $K \mod N = 5000$ 且 N = 10000),Chain 中用于迭代的指针将不得不花费大量的效率在移动上——而这种效率的损失是无法进行优化的。

此时尽管 ArrayList 在 erase 操作中花费的更多的时间,但是结果上可能相比 Chain 效率快上很多。

当然,若移动步数很短而数据量很大(例如 $K \bmod N = 1$ 且 N = 10000),此时 使用 Chain 一定是更优的选择。

2. 设计类 timeCounter

设计类 timeCounter 目的为计算某段程序的平均运行时间。

调用成员函数 startCounting 开始计时;调用 endCounting 结束计时,并将运行时间存储在类内成员 resultList 中。

如果在调用 startCounting 前就调用 endCounting, 将抛出异常提示未开始计时。

成员函数 calaverage 利用类 arrayList 中设计的迭代器和STL算法计算其内部已有时间数据的平均值。

timeCounter 类的析构函数无需手动释放 arrayList 对象 resultList 中申请的空间, 因为 arrayList 的析构函数会在 timeCounter 类对象被析构时被自动调用。

3. 运行时间测量

由于问题 2 涉及到无限循环条件的判断, 我们只测量问题 1 两种方式的运行时间差异

IDE: Visual Studio 2022 Community

Platform Toolset: Visual Studio 2022 (v143)

C++ Language Standard: ISO C++20 Standard (/std:c++20)

Optimization: /O2 /Oi /Os

Basic Runtime Checks: Default

Configuration: Release

Platform: x64

Each case would be tested for 10 times and calculate average time use.

	Result						
N	M+K	time(ms)	method				
	3	297	chain				
	5	374	array				
	10	321	chain				
100000	10	343	array				
	20	325	chain				
		332	array				
	40	343	chain				
	40	329	array				
	250	691	chain				
	250	331	array				
	25000	33205	chain				
	25000	331	array				

图 5-1

图 5-1 展示了部分时间测量结果(更多结果可以在**附件 endless_loop.xlsx** 中的 Sheet4 找到)。不难发现,当 M+K 相对 N 较小,循环链表的运行效率更高;反之,数组运行效率更高。另外,可以发现数组的运行效率相对稳定,而链表的效率随 M+K 的增大下降速度较快。

因此我们的结论是,当 $\frac{(M+K) \bmod N}{N}$ 较大,应选择 ArrayList 解决本次项目的两个问题