Moteur à courant continu

1. Stator: fixe

2. Rotor: mobile

3. Collecteur : élément d'usure

Production de couple :

- spire parcourue par un courant $i_a(t)$
- Champ d'induction B

Par Laplace:

$$\vec{F} = (\vec{i_a}(t) \wedge \vec{B}) \cdot l$$

cette force produit un couple faisant tourner le moteur :

$$T_{em}(t) = k_T \cdot i_a(z)$$

cela induit une tension:

$$u_i(t) = \frac{d\Phi(t)}{dt} = k_u \cdot \omega(t)$$

Équations du moteur Dc et de la charge

Équation de tension :

$$u_a(t) = R_a \cdot i_a + L_a \frac{di_a(t)}{dt} + u_{im}(t)$$
$$I_a(s) = [U_a(s).U_{im}(s)] \cdot \frac{\frac{1}{R_a}}{1 + s\frac{L_a}{R}}$$

Équation de mouvement :

$$Jt \frac{d\Omega(t)}{dt} = T_{em}(t) - C_v \Omega(t) - Tres(t)$$
$$\Omega(s) = [T_{em}(s).T_{res}(s)] \cdot \frac{\frac{1}{C_v}}{1 + s\frac{J_t}{C}}$$

Équation de couplage :

$$k_T = \frac{T_{em}(t)}{i_a(t)} = \frac{u_{im}(t)}{\Omega(t)} = k_u$$

Hypothèses:

- 1. Linéarité : pas de saturation du fer, résistance Cst
- 2. Frottements négligeables, généralement < 5% du couple nominal
- 3. arbre rigide en torsion : ce n'est pas toujours le cas

Calcul des fonctions de transfert

on introduit:

$$- \tau_e = \frac{L_a}{R_a}$$

$$- \tau_m = \frac{J_t \cdot R_a}{k_T \cdot k_E}$$

Les fonctions de transfert du moteur DC et de la charge, sans frottements visqueux, deviennent :

$$G_{u\omega} = \frac{\Omega(s)}{U_a(s)} = \frac{1}{k_E} \cdot \frac{1}{1 + s \cdot \tau_m + s^2 \cdot \tau_m \cdot \tau_e}$$

$$G_{ui} = \frac{I_a(s)}{U_a(s)} = \frac{J_t}{k_E \cdot k_T} \cdot \frac{1}{1 + s \cdot \tau_m + s^2 \cdot \tau_m \cdot \tau_e}$$

Cas particulier : $\tau_m \leqslant 4 \cdot \tau_e$

Dénominateur défini par 2 pôles réels :

$$s_{1,2} = \frac{-\tau_m \pm \sqrt{\tau_m^2 - 4 \cdot \tau_m \cdot \tau_e}}{2 \cdot \tau_m \cdot \tau_e}$$

ce qui décompose le système tel que :

$$\frac{1}{(1+s\cdot\tau_{max})(1+s\cdot\tau_{min})} \text{ avec}: \ \tau_{max,min} = -\frac{1}{s_{1,2}}$$

Cas particulier: $\tau_m \gg \tau_e \frac{1}{(1+s\cdot\tau_m)(1+s\cdot\tau_e)}$

Fonction page 1.22:

Alimentations des moteurs DC

Méthodes:

2

3

- 1. Analogique : Grande perte à basse vitesse.
- 2. Alimentation à découpage : pertes variateur constant

Pont en « H »:

Gestion par pulse width modulation

1. Par régime stationnaire :

$$ar{U_M} = U_A * \left(2 \cdot rac{t_e}{T_P} - 1
ight)$$

- 2. Par «sous-oscillation»:
- 3. Par fonction de transfert :

$$K_{cm} = \frac{U_A}{\hat{u_{cm}}}$$

7

$$e^{-s \cdot T_{cm}} \cong \frac{1}{1 + s \cdot T_{cm}}$$

$$e^{-s \cdot T_{cm}} \cong \frac{1}{1 + s \cdot T_{cm}} \quad e^{-s \cdot T_{cm}} \cong \frac{1 - s \cdot \frac{T_{cm}}{2}}{1 + s \cdot \frac{T_{cm}}{2}}$$

Approximation du retard pur :

— Si analogique

— u_h triangulaire : $T_{cm} = \frac{T_p}{3}$

— u_h dent de scie : $T_{cm} = \frac{T_p}{2}$

— Si Numérique : $T_{cm} = T_p$

Rappel sur le moment d'inertie

Moment d'inertie d'un corps solide J [kg·m²]

$$J = \sum_{i} m_{i} \cdot r_{i}^{2}$$

$$T = J \cdot \frac{d\Omega}{dt}$$

$$E_{cin} = \frac{1}{2} \cdot J \cdot \Omega^{2}$$

Cylindre homogène:

Outil sur un plateau homogène :

$$J \cong \frac{1}{2} \cdot m \cdot r^2 + m_1 \cdot r_1^2$$

Courroie ou crémaillère : $J_{eq} = m \cdot r^2$

Vis-à-billes : $J_{eq} = m \cdot \left(\frac{p}{2\pi}\right)^2$

 $\mbox{R\'educteurs}: J_{eq} = J_{ch} \cdot \frac{1}{i^2} \quad \mbox{avec} \ i = \frac{\Omega_m}{\Omega_e}$

Réglage du courant / couple

$$\begin{split} G_{ai}(s) &= K_{ai} \cdot \frac{s}{1 + s \cdot \tau_m + s^2 \cdot \tau_e \cdot \tau_m} \cdot \frac{1}{1 + s \cdot \tau_{cm}} \cdot \frac{1}{1 + s \cdot \tau_{mi}} \\ K_{ai} &= \frac{K_{cm} \cdot K_{mi} \cdot J_t}{k_t \cdot k_E} \end{split}$$

Régulateur PI

5

- composante I
 - pour compenser le comportement dérivateur à basses fréquences
 - pour compenser les couples perturbateur à moyennes fréquences
- composante P
 - pour annuler la composante I en hautes fréquences donc, pour ne pas trop dégrader la bande passante

fonction de transfert en boucle ouverte :

$$G_{reg,PI}(s) = K_{PI} \cdot \frac{1 + s \cdot \tau_{ii}}{s \cdot \tau_{ii}} \cdot G_{ai}(s)$$

Ajustage traditionnel (compensation du pôle dominant)

 $\tau_{ii} = \tau_{dominant}$

Problème:

— erreur statique importante (27%)

Ajustage sur les petites constantes de temps

$$au_{ii} = N \cdot \sum au_{pct} = N \cdot (au_{cm} + au_{mi})$$
 ,avec N \leq 10 [5...30] Avantages :

- Système en boucle fermée avec $K_{pi} = +13dB$
- Erreur statique quasi nulle
- Bande passante quasi inchangée

Capteur de position Fonction de transfert (approx.) :

$$G_{m\theta}(s) = \frac{K_{m\theta}}{1 + s \cdot \tau_{m\theta}}$$

$$X_{commande} \cdot N_1 = X_{mesure} \cdot N_2$$

$$K_{m\theta} = N_2/N_1$$

Unité de la consigne de courant

Consigne exprimée en :

— Courant : $U_{ci} = I_c \cdot K'_{mi}$ avec $K'_{mi} \cong K_{mi}$

— Couple : $U_{ci} = T_c \cdot K'_{mi}/k'_T$ avec $k'_T \approx k_T$

Boucle fermée de courant

on peut utiliser la fonction de transfert en boucle fermée obtenue précédemment (calcul « exact »), ou on peut en faire une approximation du 1er ordre, dont la fonction de transfert es:

$$G_{iBF}(s) = \frac{1}{1 + s \cdot \tau_{iBF}}$$

 $G_{iBF}(0) \approx 1$
 $\tau_{iBF} = 1/\omega_{m\varphi 45^{\circ}}$

Système à régler

$$\frac{G_{a\theta}(s) = \frac{\mathcal{S}}{I_{ac}(s)}}{I_{ac}(s)} = \underbrace{\frac{1}{1 + s \cdot \tau_{iBF}} \cdot k_T \cdot \underbrace{\frac{1}{J_t} \frac{1}{s^2}}_{Charge} \cdot \underbrace{\frac{K_{m\theta}}{1 + s \cdot \tau_{m\theta}}}_{Capt-pos}}_{Capt-pos}$$

$$G_{a\theta}(s) = \underbrace{\frac{K_{m\theta} \cdot k_T}{J_t}}_{K_{a\theta}} \cdot \frac{1}{1 + s \cdot \tau_{iBF}} \cdot \frac{1}{1 + s \cdot \tau_{m\theta}}$$

Régulateur

$$\overline{PD = G_{r\theta}} = K_{p\theta} \cdot (1 + s \cdot \tau_{d\theta})$$

Ajustage

$$\dfrac{\overline{\tau_{ref}} = \sum \tau_i \text{ ou } 1/\omega_{ref} \text{ à -225}^{\circ}}{ au_{d\theta} = N \cdot au_{ref}}$$

Puis ajuster $\mathring{K}_{p\theta}$ 0 dB pour ω correspondant à la marge de phase souhaitée.

limiteur de courant

Il nécéssaire d'ajouter un limiteur de courant sur la consigne ce qui rend le système non-linéaire.

Réaction aux couples perturbateurs

$$G_{v\theta}(s) = \frac{\frac{1}{Jt \cdot s^2}}{1 + \frac{1}{Jt \cdot s^2} \cdot \frac{K_{m\theta}}{1 + s \cdot \tau_{m\theta}} \cdot K_{p\theta} \cdot (1 + s \cdot \tau_{d\theta}) \cdot G_{iBF \cdot k_T}}$$

$$\begin{split} K &= \lim_{t \to \infty} \left[\frac{|T_{res}(t)|}{|e_{\theta}(t)|} \right] = \lim_{s \to 0} \left[\frac{1}{|G_{\theta}(s)|} \right] \\ \text{en Statique } T_{em} &= T_{res} \end{split}$$

$$K = \lim_{s \to 0} [G_{r\theta(s)} \cdot G_{iBF} \cdot k_T]$$

si regulateur PD:

$$K = \lim_{s \to 0} \left[K_{p\theta} \cdot (1 + s \cdot \tau_{d\theta}) \cdot \frac{1}{1 + s \cdot \tau_{iBF}} \cdot k_T \right] = K_{p\theta \cdot k_T}$$

Dilemme du choix du coefficient N Bonne marge de phase: N grand

peu d'erreur statique : N petit

solution : ajouter un filtre de consigne.

$$G_f \theta = \frac{1}{1 + s \cdot \tau_{fc\theta}}$$

 $G_f\theta = \frac{1}{1+s\cdot \tau_{fc\theta}}$ ne détériore pas la réaction aux couples perturbateurs Evite d'exciter les hautes fréquences par la consigne mais limite la rapidité de réaction aux sauts de consignes Effet d'une composante I

- annulerait l'erreur statique
- convient avec rigidité statique d'asservissement $K = \infty$
- provoque un bref écart de position lorsque le couple perturbateur disparait (overshoots)
- à éviter lorsqu'il s'agit de garantir un suivi de consigne à forte dynamique

Commande a priori

10

Connaisance parfaite de la réaction du système

Régulateur ajustés séparement :

- → régulateur de courant, en fonction du moteur
- → régulateur de vitesse, en fonction de la charge méca-
- → régulateur de position, pour assurer la rigidité parfois exploitant un autre capteur (en aval du réducteur)

Arbre élastique

12

[Nm]

[rad]

[Nm/rad]

[Nm/(rad/s)]

[kgm²] [Nm/(rad/s)]

 T_{em} , T_{res} : Couple électromagnétique / résistant J_m , J_{ch} : Moment d'inertie côté moteur / charge R_{fm} , R_{fch} : Coef. de frot. visqueux côté moteur / charge : Moment d'inertie côté moteur / charge : Coef. de frot. visqueux côté moteur / charge θ_{m} , θ_{ch}

Position angulaire du moteur / de la charge : Rigidité de la transmission

: Coef. de frot. visqueux de la transmission

avec:

$$a_{4} = J_{m} \cdot J_{ch}$$

$$a_{3} = J_{m} \cdot (R_{ft} + R_{fch}) + J_{ch} \cdot (R_{ft} + R_{fm})$$

$$a_{2} = (J_{m} + J_{ch}) \cdot k_{t} + (R_{fch} + R_{fm}) \cdot R_{ft} + R_{fch} \cdot R_{fm}$$

$$a_{1} = J_{m} \cdot j_{ch}$$

$$a_4 = J_m \cdot J_{ch}$$

avec simplification : $a_3 = (J_m + J_{ch}) \cdot R_{fe}$ $a_2 = (J_m + J_{ch}) \cdot k_t$

$$R_{fe} = \frac{J_m \, R_{fch} + J_{ch} \, R_{fm}}{J_m + J_{ch}} + R_{ft}$$

$$\begin{split} \frac{\theta_m(s)}{T_{em}(s)} &= \frac{s^2 \, J_{ch} + s \, R_{fe} + k_t}{J_m J_{ch} \, s^4 + R_{fe} (J_m + J_{ch}) \, s^3 + k_t (J_m + J_{ch}) \, s^2} \\ \frac{\theta_{ch}(s)}{T_{em}(s)} &= \frac{s \, R_{fe} + k_t}{J_m J_{ch} \, s^4 + R_{fe} (J_m + J_{ch}) \, s^3 + k_t (J_m + J_{ch}) \, s^2} \\ \frac{\theta_{ch}(s)}{\theta_m(s)} &= \frac{s \, R_{fe} + k_t}{s^2 \, J_{ch} + s \, R_{fe} + k_t} \end{split}$$

Réponse harmonique

Effet de l'arbre élastique en régulation de courant

- En pratique, on peut négliger l'oscillation de la tension induite lié à l'élasticité de l'arbre
- On conserve ainsi la fonction de transfert du moteur Gui(s)

Effet de l'arbre élastique en régulation de vitesse

Rappel:

Équation de tension :

$$u_a(t) = R_a \cdot i_a + L_a \frac{di_a(t)}{dt} + u_{im}(t)$$
$$I_a(s) = [U_a(s).U_{im}(s)] \cdot \frac{\frac{1}{R_a}}{1 + s\frac{L_a}{R_a}}$$

Équation de mouvement :

$$Jt \frac{d\Omega(t)}{dt} = T_{em}(t) - C_v \Omega(t) - T_{res}(t)$$
$$\Omega(s) = [T_{em}(s).T_{res}(s)] \cdot \frac{\frac{1}{C_v}}{1 + s\frac{J_t}{C}}$$

Équation de couplage :

$$k_T = \frac{T_{em}(t)}{i_a(t)} = \frac{u_{im}(t)}{\Omega(t)} = k_u$$

Équation utile :

$$u_a(t) = U_{in} + R_a \cdot i_a = k_e \Omega + R_a \frac{T_{res}}{k_t}$$

avec

 $T_{res} = F_{frot} \cdot V$ par moteur

Constante de temps:

$$\tau_e = \frac{L_a}{R_a}$$

$$\tau_m = \frac{J_t \cdot R_a}{k_T \cdot k_E}$$

Fonctions de transfert :

$$G_{u\omega} = \frac{\Omega(s)}{U_a(s)} = \frac{1}{k_E} \cdot \frac{1}{1 + s \cdot \tau_m + s^2 \cdot \tau_m \cdot \tau_e}$$

$$G_{ui} = \frac{I_a(s)}{U_a(s)} = \frac{J_t}{k_E \cdot k_T} \cdot \frac{1}{1 + s \cdot \tau_m + s^2 \cdot \tau_m \cdot \tau_e}$$

$$\underbrace{\frac{P\^{o}les:}{2 \cdot \tau_m \cdot \tau_e}}_{S_{1,2}} = \frac{-\tau_m \pm \sqrt{\tau_m^2 - 4 \cdot \tau_m \cdot \tau_e}}{2 \cdot \tau_m \cdot \tau_e}$$

 $\mathbf{si}: \tau_m \leqslant 4 \cdot \tau_e$

avec :
$$\frac{1}{(1+s\cdot\tau_{max})(1+s\cdot\tau_{min})}$$

$$\tau_{max,min} = -\frac{1}{s_{1,2}}$$

 $si: \tau_m \ggg \tau_e$

$$\frac{1}{(1+s\cdot\tau_m)(1+s\cdot\tau_e)}$$

Rappel sur le moment d'inertie

Courroie ou crémaillère : $J_{eq} = m \cdot r^2$

Vis-à-billes :
$$J_{eq} = m \cdot \left(\frac{p}{2\pi}\right)^2$$

$$\mbox{R\'educteurs}: J_{eq} = J_{ch} \cdot \frac{1}{i^2} \quad \mbox{avec} \ i = \frac{\Omega_m}{\Omega_e}$$

Réglage du courant / couple

$$G_{ai}(s) = K_{ai} \cdot \frac{s}{1 + s \cdot \tau_m + s^2 \cdot \tau_e \cdot \tau_m} \cdot \frac{1}{1 + s \cdot \tau_{cm}} \cdot \frac{1}{1 + s \cdot \tau_{mi}}$$

$$K_{ai} = \frac{K_{cm} \cdot K_{mi} \cdot J_t}{k_t \cdot k_E} = \frac{\tau_m \cdot K_{cm}}{R_a}$$