## An Introduction to the Simple Biostatistics Program (SBP)

Stanley B. Pounds

7/11/2022

### What is SBP

- SBP is the Simple Biostatistics Program.
- SBP was develped by Dr. Stanley B. Pounds, a faculty member of the Department of Biostatistics and the Graduate School of Biomedical Sciences at St. Jude Children's Research Hospital.
- SBP is an extension of the R statistical computing software that simplifies introductory biostatistics for students.
- SBP defines a few simple functions that perform all the computational tasks for an introductory biostatistics course.
- SBP minimizes the technicalities of computational tasks so students can focus on concepts and interpretation.

## **Setting Up SBP**

# source the SBP.setup.file
SBP.setup.file="https://raw.githubusercontent.com/stan-pounds/Simple-Biostats-Program/main/setup-SBP.R"
source(SBP.setup.file)

- The above commands will need to be performed during each R session.
- You will not be able to use the SBP functions until after the above commands are executed in R.

## **Reading Data with SBP**

#### data.set=read.data()

- The above command will open a window for the user to interactively navigate through folders to the data file.
- It can read data in the csv, tab-delimited txt, xlsx, and Rdata formats.
- For xlsx files, it will also prompt the user to choose the sheet to be read.
- It will then read the data and open a viewer to see it.
- The data from the file will be stored under the name data.set in R.

# **Example**

■ Demonstrate in R studio

## **Get an R Package**

get.package("penalized")

- R packages are R add-ons that define useful functions to perform specific tasks.
- Some R packages include example data sets.
- The above code downloads the penalized R package and makes it available for use in the R session.

# Get an R Package data set

get.package("penalized") # make the penalized package available for use
data("nki70") # make the nki70 data set available for use
help("nki70") # open a help page about the nki70 data set
View(nki70) # open the nki70 data set in a data viewer

# **Data Analysis Functions**

| Function                           | Actions                                                                                          |
|------------------------------------|--------------------------------------------------------------------------------------------------|
| <pre>describe("x",data.set)</pre>  | Compute descriptive stats & graphs for the data.set column named $\boldsymbol{x}$ using data.set |
| <pre>estimate("x",data.set)</pre>  | Estimate the population value for the x column variable using data.set                           |
| <pre>compare(y~grp,data.set)</pre> | Compare the variable y across the grp groups using data.set                                      |
| <pre>correlate(y~x,data.set)</pre> | Correlate the numeric variables y and x using data.set                                           |
| <pre>model(y~x+grp,data.set)</pre> | Model y as a function of x and grp using data.set                                                |

## Example with nki70 data

```
get.package("penalized")
data("nki70")
head(nki70[,1:10])
```

```
time event Diam
                                   ER
                                             Grade Age
                                                            TSPYL5
125 7.748118
                 0 <=2cm 1-3 Positive Intermediate 50 -0.18752814</pre>
127 4.662560
                1 <=2cm 1-3 Positive
                                         Well diff 42 0.15099047
128 8.739220
                 0 >2cm 1-3 Positive
                                         Well diff 50 0.11695046
                 0 <=2cm 1-3 Positive Intermediate 43 0.10493318</pre>
129 7.567420
130 7.296372
                 0 <=2cm 1-3 Negative Poorly diff 47 0.30821656</pre>
                 0 <=2cm 1-3 Positive Intermediate 47 -0.09643536
132 6.718686
    Contig63649_RC
                        DIAPH3
       -0.15304662 -0.29514052
127
      -0.21005843 0.03355057
128
       -0.25813878 0.07791767
129
      -0.13687348 -0.01984126
130
       0.03544526 0.15589646
      -0.03772432 -0.05882551
132
```

### Column Names of a data set

colnames(nki70)

```
[1] "time"
                       "event"
                                         "Diam"
                                                           "N"
 [5] "ER"
                       "Grade"
                                         "Age"
                                                           "TSPYL5"
 [9] "Contig63649_RC" "DIAPH3"
                                         "NUSAP1"
                                                           "AA555029 RC"
[13] "ALDH4A1"
                                                           "DIAPH3.1"
                       "QSCN6L1"
                                         "FGF18"
[17] "Contig32125_RC"
                       "BBC3"
                                         "DIAPH3.2"
                                                           "RP5.860F19.3"
[21] "C16orf61"
                                         "EXT1"
                                                           "FLT1"
                       "SCUBE2"
     "GNAZ"
                                         "MMP9"
[25]
                       "OXCT1"
                                                           "RUNDC1"
[29] "Contig35251_RC" "ECT2"
                                         "GMPS"
                                                           "KNTC2"
     "WISP1"
                                         "SERF1A"
                                                           "AYTL2"
[33]
                       "CDC42BPA"
[37] "GSTM3"
                                         "RAB6B"
                       "GPR180"
                                                           "ZNF533"
[41] "RTN4RL1"
                       "UCHL5"
                                         "PECI"
                                                           "MTDH"
                       "TGFB3"
                                                           "COL4A2"
[45] "Contig40831_RC"
                                         "MELK"
[49] "DTL"
                       "STK32B"
                                         "DCK"
                                                           "FBX031"
[53] "GPR126"
                                         "PECI.1"
                                                           "ORC6L"
                       "SLC2A3"
[57] "RFC4"
                       "CDCA7"
                                         "L0C643008"
                                                           "MS4A7"
[61]
     "MCM6"
                       "AP2B1"
                                         "C9orf30"
                                                           "IGFBP5"
[65] "HRASLS"
                       "PITRM1"
                                         "IGFBP5.1"
                                                           "NMU"
[69] "PALM2.AKAP2"
                                         "PRC1"
                                                           "Contig20217_RC"
                       "LGP2"
[73] "CENPA"
                       "EGLN1"
                                         "NM_004702"
                                                           "ESM1"
[77] "C20orf46"
```

age.result=describe("Age",nki70)



age.result

```
**TABLES**
                         Age
n.total
                  144.000000
n.missing
                    0.000000
n.available
                  144.000000
lmean
                   44.305556
stdev
                    5.339230
median
                   45.000000
|lower.quartile
                   41.000000
|upper.quartile
                   49.000000
minimum
                   26.000000
|maximum
                   53.000000
|shapiro.pvalue |
                    0.000182
 **RESULTS**
The variable Age has 144 observations (144 available; 0 missing) with mean 44.3, standard deviation 5.3, median 45, lower quartile 41, upper
quartile 49, minimum 26, and maximum 53.
```

```
**METHODS**

The Shapiro-Wilk (1965) test was used to evaluate the normality of the distribution of Age.

**REFERENCES**

Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)". Biometrika. 52 (3-4): 591-611. doi:10.1093/biomet/52.3-4.591. JSTOR 2333709. MR 0205384.
```

#### **TABLES**

|                | Age        |
|----------------|------------|
| n.total        | 144.000000 |
| n.missing      | 0.000000   |
| n.available    | 144.000000 |
| mean           | 44.305556  |
| stdev          | 5.339230   |
| median         | 45.000000  |
| lower.quartile | 41.000000  |
| upper.quartile | 49.000000  |
| minimum        | 26.000000  |
| maximum        | 53.000000  |
| shapiro.pvalue | 0.000182   |

#### **RESULTS**

The variable Age has 144 observations (144 available; 0 missing) with mean 44.3, standard deviation 5.3, median 45, lower quartile 41, upper quartile 49, minimum 26, and maximum 53.

#### **METHODS**

The Shapiro-Wilk (1965) test was used to evaluate the normality of the distribution of Age.

### **REFERENCES**

Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)". Biometrika. 52 (3-4): 591-611. doi:10.1093/biomet/52.3-4.591. JSTOR 2333709. MR 0205384.

# **Common Options for Data Analysis Functions**

| Option                            | Purpose                                                                                          |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
| txt=number                        | produce no narrative ( $txt=0$ ), basic narrative ( $txt=1$ ), or detailed narrative ( $txt=2$ ) |
| fig=number                        | produce no figures (fig=0), basic figures (fig=1), or more tables (fig=2,fig=3,etc)              |
| tbl=number                        | produce no tables (tbl=0), basic tables (tbl=1), or more tables (tbl=2,tbl=3,etc)                |
| clr="color.name"                  | use the color color.name in the figures                                                          |
| <pre>clr=c("name1","name2")</pre> | Use the color(s) name1 and name2 in the figures                                                  |
| clr="palette.name"                | use the palette name to define colors for the figures                                            |

## **Set fig=0 to Suppress Figures**

describe("Age",nki70,fig=0)

```
**TABLES**
                         Age
n.total
                  144.000000
n.missing
                    0.000000
ln.available
                  144.000000
lmean
                   44.305556
stdev
                    5.339230
median
                   45.000000
|lower.quartile |
                   41.000000
upper.quartile
                   49.000000
minimum
                   26.000000
Imaximum
                   53.000000
|shapiro.pvalue |
                    0.000182
 **RESULTS**
The variable Age has 144 observations (144 available; 0 missing) with mean 44.3, standard deviation 5.3, median 45, lower quartile 41, upper
quartile 49, minimum 26, and maximum 53.
 **METHODS**
The Shapiro-Wilk (1965) test was used to evaluate the normality of the distribution of Age.
 **REFERENCES**
Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)". Biometrika. 52 (3-4): 591-611.
doi:10.1093/biomet/52.3-4.591. JSTOR 2333709. MR 0205384.
```

## **Set tbl=0 to Suppress Tables**

describe("Age",nki70,tbl=0,fig=0)

\*\*RESULTS\*\*

The variable Age has 144 observations (144 available; 0 missing) with mean 44.3, standard deviation 5.3, median 45, lower quartile 41, upper quartile 49, minimum 26, and maximum 53.

\*\*METHODS\*\*

The Shapiro-Wilk (1965) test was used to evaluate the normality of the distribution of Age.

\*\*REFERENCES\*\*

Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)". Biometrika. 52 (3-4): 591-611. doi:10.1093/biomet/52.3-4.591. JSTOR 2333709. MR 0205384.

## **Set** txt=0 to **Suppress Text**

describe("Age",nki70,txt=0,fig=0)

```
**TABLES**
                         Age
n.total
                  144.000000
n.missing
                    0.000000
n.available
                  144.000000
lmean
                   44.305556
stdev
                    5.339230
median
                   45.000000
|lower.quartile |
                   41.000000
|upper.quartile |
                   49.000000
minimum
                   26.000000
|maximum
                   53.000000
|shapiro.pvalue |
                    0.000182
 **METHODS**
The Shapiro-Wilk (1965) test was used to evaluate the normality of the distribution of Age.
 **REFERENCES**
Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for normality (complete samples)". Biometrika. 52 (3-4): 591-611.
doi:10.1093/biomet/52.3-4.591. JSTOR 2333709. MR 0205384.
```

# **Set fig=2 to Get More Figures**

describe("Age",nki70,fig=2)



# **Set fig=3 to Get Even More Figures**

describe("Age",nki70,fig=3)



## Set clr="skyblue" to Get Sky Blue Figures

describe("Age",nki70,fig=3,clr="skyblue")



### **Colors in SBP**

- Use the clr option to specify colors for figures.
- One may specify the name of one color, names of multiple colors, or the name of a color palette.
- Use the function show.colors() to see the colors and their names.
- Use show.palettes(n) to see palettes of n colors.

## **Colors in SBP**

show.colors()

#### Named Colors in R

| _ |                | _              |                      | _                 |               | _           |
|---|----------------|----------------|----------------------|-------------------|---------------|-------------|
|   | white          | darkgreen      | ghostwhite           | lightpink         | mistyrose     | saddlebrown |
|   | aliceblue      | darkgrey       | gold                 | lightsalmon       | moccasin      | salmon      |
|   | antiquewhite   | darkkhaki      | goldenrod            | lightseagreen     | navajowhite   | sandybrown  |
|   | aquamarine     | darkmagenta    | gray                 | lightskyblue      | navy          | seagreen    |
|   | azure          | darkolivegreen | green                | lightslateblue    | navyblue      | seashell    |
|   | beige          | darkorange     | greenyellow          | lightslategray    | oldlace       | sienna      |
|   | bisque         | darkorchid     | grey                 | lightslategrey    | olivedrab     | skyblue     |
|   | black          | darkred        | honeydew             | lightsteelblue    | orange        | slateblue   |
|   | blanchedalmond | darksalmon     | hotpink              | lightyellow       | orangered     | slategray   |
|   | blue           | darkseagreen   | indianred            | limegreen         | orchid        | slategrey   |
|   | blueviolet     | darkslateblue  | ivory                | linen             | palegoldenrod | snow        |
|   | brown          | darkslategray  | khaki                | magenta           | palegreen     | springgreen |
|   | burlywood      | darkslategrey  | lavender             | maroon            | paleturquoise | steelblue   |
|   | cadetblue      | darkturquoise  | lavenderblush        | mediumaquamarine  | palevioletred | tan         |
|   | chartreuse     | darkviolet     | lawngreen            | mediumblue        | papayawhip    | thistle     |
|   | chocolate      | deeppink       | lemonchiffon         | mediumorchid      | peachpuff     | tomato      |
|   | coral          | deepskyblue    | lightblue            | mediumpurple      | peru          | turquoise   |
|   | cornflowerblue | dimgray        | lightcoral           | mediumseagreen    | pink          | violet      |
|   | cornsilk       | dimgrey        | lightcyan            | mediumslateblue   | plum          | violetred   |
|   | cyan           | dodgerblue     | lightgoldenrod       | mediumspringgreen | powderblue    | wheat       |
|   | darkblue       | firebrick      | lightgoldenrodyellow | mediumturquoise   | purple        | whitesmoke  |
|   | darkcyan       | floralwhite    | lightgray            | mediumvioletred   | red           | yellow      |
|   | darkgoldenrod  | forestgreen    | lightgreen           | midnightblue      | rosybrown     | yellowgreen |
|   | darkgray       | gainsboro      | lightgrey            | mintcream         | royalblue     |             |
|   |                |                |                      |                   |               |             |

### **One-Color Palettes in SBP**

show.palettes(1)



### **Two-Color Palettes in SBP**

show.palettes(2)



### **Three-Color Palettes in SBP**

show.palettes(3)



### Four-Color Palettes in SBP

show.palettes(4)



# **Produce Sky Blue Figures**

describe("Age",nki70,clr="skyblue")



## **Specify Multiple Color Names**

describe("Grade",nki70,clr=c("red","gold","blue"))



## **Specify Multiple Color Names**

describe("Grade",nki70,clr=c("blue","red","gold"))



## **Specify the Rainbow Color Palette**

describe("Grade",nki70,clr="rainbow")



## **Specify the Terrain Color Palette**

describe("Grade",nki70,clr="terrain.colors")



## **Specific Options for Data Analysis Functions**

# **Graphics Functions**

| Function                                 | Purpose                                                                         |
|------------------------------------------|---------------------------------------------------------------------------------|
| <pre>pie.plot("y",data.set)</pre>        | Produce a pie chart of the categorical data column y of data.set                |
| <pre>bar.plot("y",data.set)</pre>        | Produce a bar plot or histogram of the y column of data.set                     |
| <pre>box.plot("y",data.set)</pre>        | Produce a box plot of the numeric data column y of data.set                     |
| <pre>box.plot(y~grp,data.set)</pre>      | Produce side-by-side boxplots of the numeric $y$ by the group $grp$ of data.set |
| <pre>nqq.plot("y",data.set)</pre>        | Produce a normal quantile-quantile plot of the numeric y column of data.set     |
| <pre>mosaic.plot(y~x,data.set)</pre>     | Produce a mosaic plot for the categorical data columns $y$ and $x$ of data.set  |
| <pre>scatter.plot(y~x,data.set)</pre>    | Produce a scatter plot of y versus x for data.set                               |
| <pre>event.plot("evnt",data.set)</pre>   | Plot the survival or cumulative incidence of the evnt column of data.set        |
| <pre>event.plot(evnt~grp,data.set)</pre> | Plot the survival or cumulative incidence of the evnt by grp groups             |

## **Pie Plot Examples**

pie.plot("ER",nki70) # pie chart for ER status
pie.plot("Grade",nki70) # pie chart of Tumor Grade

ER Grade





no missing observations no missing observations

# **Bar Plot Examples**

bar.plot("Age",nki70) # histogram for a numeric variable
bar.plot("ER",nki70) # bar plot for a categorical variable





## **Box Plot Examples**

box.plot("Age",nki70) # box plot of Age for all data
box.plot(Age~ER,nki70) # side-by-side boxplots of Age by ER status





#### **Common Options for Graphics Functions**

#### **Option** Action

clr=color.name Specify colors or palette for figure

y.name="name" Use "name" to label the y variable in the figure

## **Example**

bar.plot("ER",nki70)
bar.plot("ER",nki70,y.name="Estrogen Receptor",clr=c("gold","blue"))



# **Specific Options for Graphics Functions**

| Function(s)            | Option                     | Action                                                                                    |
|------------------------|----------------------------|-------------------------------------------------------------------------------------------|
| <pre>mosiac.plot</pre> | <pre>grp.name="name"</pre> | Use "name" to label the group variable in the figure                                      |
| scatter.plot           | x.name="name"              | Use "name" to label the x-axis in the figure                                              |
| bar.plot,pie.plot      | all=FALSE or<br>all=TRUE   | Indicates whether to use <b>all</b> data by including missing data as a distinct category |
| scatter.plot           | line=0,1,,orNA             | Add a flat line (line=0), a fitted line (line=1) or no line (line=NA)                     |

## **Example**

```
mosaic.plot(ER~Grade,nki70)
mosaic.plot(ER~Grade,nki70,y.name="Estrogen Receptor",grp.name="Tumor Grade")
```



### **Including Tables in Word**

```
age.result=describe("Age",nki70,fig=0)
word.table(age.result)
```

```
Age
n.total,144
n.missing,0
n.available,144
mean,44.305555555556
stdev,5.3392304227652
median,45
lower.quartile,41
upper.quartile,49
minimum, 26
maximum,53
shapiro.pvalue,0.000181978293787236
**INSTRUCTIONS**
1. Copy the output into Word.
2. Highlight the output in Word.
3. Go to Insert>Table>Convert Text to Table.
```

### **Including Figures in Word**

- In R Studio, click on the *Plots* panel.
- Use the left and right arrows to navigate to the figure of interest.
- Click the *Export* button.
- Choose Copy to Clipboard.
- Click "Copy Plot"
- Paste the plot into Word.

#### Summary

- The Simple Biostatistics Program (SBP) provides a simple R interface to produce tables, figures, and narratives for the statistical procedures covered in an introductory biostatistics class.
- Use the function `read.data to read data into R.
- Use the function get.package to make an R package available for use in an R session.
- Data Analysis Functions: describe, estimate, compare, correlate, model.
- Graphics Functions: bar.plot, pie.plot, box.plot, nqq.plot, mosaic.plot, scatter.plot, event.plot
- Use word.table to generate tabular output to copy and paste into Word. Then, use *Insert>Table>Convert Text to Table* to represent the output as a table in Word.
- Use the Export button in R studio to copy a figure to the clipboard. Then paste the figure into Word.

#### **Practice Exercise (Not Homework)**

- Describe the Diam, FGF18, GSTM3 columns of the nki70 data. Tinker with the txt, fig, tbl, and clr options.
- Use the graphics functions to create the figures without generating the narrative and tabular output.
- Copy your narrative, tabular, and graphical results into Word.