علیرضا صحراگرد بیرامی ۹۸۳۱۰۳۸

تمرین عملی سری سوم سیستمهای چندرسانهای

بخش اول: مقایسه فرمتهای مختلف ذخیرهسازی تصاویر

فرمت JPEG

فایلهای jpeg از دنبالهای از بخشها تشکیل شدهاند که ابتدای هر بخش با نشانگر ' 0xFF مشخص می گردد. بعد از این نشانگر یک بایت برای تعیین نوع نشانگر می آید. برخی نشانگرها دو بایتی هستند ولی برخی دیگر بعد از آن دو بایت (بزرگ به کوچک) برای مشخص کردن اندازه payload پشت سر آنها می آید. انواع نشانگرها برای تصاویر jpeg به شرح زیر می باشد.

bytes	payload	Name	Example
0xFF 0xD8	None	Start of image	FF D8
0xFF 0xC0	Variable	Start of frame (baseline DCT)	FF CO 00 11 08 00 C8 00 80 03 01 22 00 02 11 01 03 11 01
0xFF 0xC2	Variable	Start of frame (progressive DCT)	-
0xFF 0xC4	Variable	Define Huffman Tables	FF C4 00 1F 00 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B

-

¹ marker

0xFF 0xDB	Variable	Define Quantization Tables	FF DB 00 43 00 02 01 01 02 01 01 02 02 02 02 02 02 02 02 02 02 03 05 03 03 03 03 03 05 07 06 07 07 06 07 07 08 09 0B 09 08 08 0A 08 07 07 0A 0D 0A 0A 0B 0C
0xFF 0xDD	4 bytes	Define Restart interval	-
0xFF 0xDA	Variable	Start of Scan	-
0xFF 0xDn (n=07)	None	Restart	-
0xFF 0xEn	Variable	Application-specific	FF E0 00 10 4A 46 49 46 00 01 01 01 00 C0 00 C0 00 00
			همانطور که مشخص شده مقدار payload
			برابر ۱۶ میباشد، که بعد
			از ۱۶ EO بایت آمده
			است.
0xFF 0xFE	Variable	Comment	-
0xFF 0xD9	none	End of image	FF D9

فرمت تصوير tiff

هر فایل با فرمت tiff ابتدا با یک نشانگر دو بایتی شروع می شود که "II" برای (little-endian(intel byte ordering) و "MM" برای (itiff است که برای تمامی نسخههای big-endian(Motorola byte ordering) هست. دو بایت بعدی مشخص کننده نسخه مربوط به فرمت tiff است که برای تمامی نسخههای tiff برابر ۴۲ است. با توجه به ابتدای فایل مورد نظر، برای مثال ما فایل tiff در حالت little-endian می باشد.

	00	01	02	03
0x00000000	49	49	2A	00

یکی از قسمتهای اساسی در فرمت Image File Directory ،tif میباشد.در (Image File Header مربوط به آن مشخص می از قسمتهای اساسی در فرمت Image File Directory ،tif می از مقدار نسخه فایل می آید و بایت پنجم تا هشتم فایل مشخص کننده آن میباشد. در مثال ما این مقدار برابر ۹۷۸ میباشد.

```
00 01 02 03 04 05 06 07
0x00000000 49 49 2A 00 D2 03 00 00
```

هر IFD از سه بخش اساسی تشکیل شده است. بخش اول تعداد تگهای موجود در در آن IFD را مشخص می کند که اندازه آن دو بایت می باشد. بخش دوم تگهای مربوط به Offset می باشد که پشت سر هم آمده و اندازه هر تگ ۱۲ بایت است. در نهایت Offset مربوط به IFD مربوط به IFD بعدی است که به اندازه ۴ بایت فضا می گیرد. در مثال ما IFD اول از بایت ۱۹۷۸م شروع می شود. و مقدار آن برابر ۲۱ می باشد یعنی دارای ۲۱ تگ می باشد در نهایت مقدار Offset آن نیز برابر ۰ می باشد.

```
      00
      01
      02
      03

      0x000003D0
      10
      10
      15
      00

      00
      01
      02
      03

      0x0000004D0
      00
      00
      00
      00
      00
```

هر تگ اطلاعاتی را مربوط به تصویر ذخیره می کند. یکی از نکات ضعف تگها این است که هر تگ باید ۱۲ بایت باشد و در این حالت یک تگ ۱ بایتی نیز باید ۱۲ بایت فضا را اشکال کند. ساختار هر تگ به صورت زیر میباشد.

هر word ۲ بایت و هر Dword ۴ بایت فضا می گیرد.

در شکلهای زیر نمونهی یک تگ را که مقدار عرض تصویر را مشخص می کند مشاهده می کنید.

فرمت تصوير PNG

هر فایل png از یک امضاء و یک سری چانکها تشکیل شده است که بعد از امضاء شروع شده و پشت سر هم می آیند.

بنابراین، هشت بایت اول هر فایل png به صورت زیر خواهد بود:

137 80 78 71 13 10 26 10

برای مثال ما نیز این ترتیب برقرار میباشد:

	00	01	02	03	04	05	06	07
0x00000000	89	50	4E	47	ØD	ØA	1 A	ØA

بعد از امضای مربوط به فایل chunk ،pngهای مربوط به فایل شروع میشوند. ساختار هر چانک به صورت زیر میباشد.

Length	
Chunk Type	
Chunk Data	
CRC Code	•

Length: یک عدد صحیح چهار بایتی بدون علامت میباشد که مقدار بایتهای دادههای مربوط به چانک را مشخص میکند.

Chunk Type: یک کد چهار بایتی میباشد که نوع چانک را مشخص میکند.

Chunk Data: دادههای هر چانک در صورت وجود در این بخش قرار دارند.

CRC: یک کد ۳۲ CRC بیتی که تنها از روی دادههای مربوط به Chunk Type و Chunk Data حساب شده است در این بخش قرار می گیرد.

هر فایل png باید چهار چانک مربوط به PLTE،IEND، IHDR و IDAT را داشته باشد. برای مثال در شکلهای زیر نمونه چانکهای مربوط به عکس با فرمت PNG آورده شده است.

امضاء شروع فايل png

	00	01	02	03	04	05	06	07	08	09	0A	0B	9C	0D	0E	0F	0 123456789ABCDEF
0x00000000	89	50	4E	47	ØD	ØA	1 A	0A	00	00	00	0D	49	48	44	52	.PNGIHDR
							pn	g Լվ	توای ف	ء مح	شمه	دسته.					
							ρ	کیں 6	موری د	ے شاح	. سرو	,,,					
	00	01	02	03	04	05	06	07	98	09	0A	0B	0C	0D	0E	0F	01234567 8 9ABCDEF
0x00000000	89	50	4E	47	0D	0A	1A	0A	00	00	00	0 D	49	48	44	52	.PNGIHDR
0x00000010			00				00				00					7E	È⁻W~
0x00000020	9D	00	00	00	01	73	52	47	42	00	AE	CE	1C	E9	00	00	sRGB.®Î.é
						RG	دار B	, استان	گھای	ِف رن	عتعري	شروع	دستور				
	00	01	02	03	04	05	06	07	08	09	0Д	ОВ	9C	ØD.	ØE	0F	0 1 23456789ABCDEF
0x00000020	9D	00	00	00	01	72	52	47	42	00	ΛE	CE	10	EQ	00	00	sRGB.®Î.é.
000000020	90	90	90	90	ΘŢ	/3	52	4/	42	90	AE	CE	10	E 9	90	00	skdb.°1.e.
						ر	تصوي	وط به	ی مربو	ادەھا	روع د	تور ش	دسـ				
	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	012 3 456789ABCDEF
0x00000050	E 5	E1	65	00	99	Q1	CF	49	44	11	5/1	72	56	ED	DC	21	åñeÎIDATx^íÜ!
د CRC میآید.	یک ک	ن نیز	امه آر	، در اد	شد که	مىبا	بایت	487	کد برابر	این آ	ط به	مربو	، دیتای	اندازه	است	خص	همانطور که در تصویر بالا مش
0x00000220	01	52	FB	FA	02	AD	96	4E	C 5	74	E3	82	4D	00	00	00	.RûúNÅ <mark>tã.M</mark>
								nng	ٰ فایل	.1,1,	. • "						
								אייא	, قايل	پیں	سىور						_
0x00000220	01	52	FB	FA	02	AD	96	4E	C5	74	E3	82	4D	00	00	00	.RûúNÅtã.M
0x00000230	00	49	45	4E	44	AE	42	60	82								.IEND®B`.
0x00000240																	

بخش دوم

مقایسه خروجیهای مربوط به استفاده از الگوریتم متعادل سازی هیستوگرام

همانطور که در تصاویر بالا مشاهده می کنید، با اجرای الگوریتم متعادل سازی هیستوگرام توزیع رنگهای نسبت به تصویر اولیه توزیع یکنواخت تری پیدا می کند، در نتیجه با انجام این کار از گستره بیشتری از رنگها استفاده می کنیم که باعث می شود کنتراست تصویر نسبت به حالت اولیه

افزایش پیدا کند. برای مثال در تصویر اولیه شدت رنگ ابرها نزدیک به شدت مربوط به سایر اجزاء هست ولی با اجرای متعادل سازی هیستوگرام مقدار شدت رنگ آنها افزایش پیدا می کند در نتیجه سفیدتر میشوند و مقدار کنتراست آنها با سایر اجزا افزایش پیدا می کند.