

Grid

Əhməd mümkün gədər varlı olmağa çalışır. O böyük pul gazana bilmək üçün belə bir oyun təklif edir.

 ∂ hməd başlanğıc olaraq matriksin (0,0) xanasında yerləşir. A müsbət ədədlərdən ibarət $N \times M$ ölçülü matriksdir. O (N-1, M-1) xanasına getməlidir. Bunu edərkən, hər dəfə (x,y) xanasından (x+d,y) və ya (x,y+d) xanasına gedə bilər, hansıki d>0. Hər addımdan sonra, Əhməd $|A_{x,y}-A_{x',y'}|-C$ qədər qızıl qazanacaq, hansı ki, x',y' Əhmədin gedəcəyi kordinatdir, C isə başlanğıcda verilmiş sabit qiymətdir. Əgər ifadə $|A_{x,y}-A_{x',y'}|-C$ mənfidirsə, Əhməd həmin qiymət qədər qızıl itirəcək.

Qeyd: Mənfi sayda qızıl ilə oyunu bitirmək mümkündür.

Əhmədə maksimum sayda qızıl ilə oyunu bitirməkdə kömək edin.

Qeyd: $\partial g \ni r \ a \geq 0 \ |a| = a \ \exists ks \ halda \ is \ni |a| = -a$

1 Implementation details

Siz max profit funksiyasını yazmalısınız:

long long max profit(int N, int M, int C, std::vector<std::vector<int>> A)

- *N*, *M*: Matriksin ölçüləri;
- *C*: test üçün verilmiş sabit dəyişən;
- $A: N \times M$ ölçülü vektorlar vektoru, iki ölçülü matriksi göstərir (sətir və sütuna görə indekslənir).

Bu funksiya hər bir test üçün bir dəfə çağırılır və Əhmədin oyunu bitirə biləcəyi maksimum qızıl sayını qaytarmalıdır.

犯 Məhdudiyyətlər

- $1 \le N, M$
- $N \cdot M < 5 \times 10^5$
- $1 \leq A_{i,j} \leq 10^6$ (Bütün i və jlər üçün)
- $0 \le C \le 10^6$

Alt-tapşırıq	Qiymətləndirmə	Tələb olunan alt-tapşırıqlar	Əlavə Məhdudiyyətlər
0	0	_	Nümunə.
1	9	_	$N = 1, M \le 200$
2	5	_	$N=1, A_{i,j} \leq A_{i,j+1}$
3	8	_	N=1, C=0
4	10	1	$N = 1, M \le 5 \times 10^4$
5	7	1 - 4	N = 1
6	15	1	$N, M \le 200$
7	9	2	$A_{i,j} \le A_{i+1,j}, A_{i,j+1}$
8	12	3	C = 0
9	12	0-1,4,6	$N \cdot M \le 5 \times 10^4$
10	13	0 - 9	_

Nümunə

Aşağıdakı testə baxaq:

```
max_profit(5, 6, 4, {{20, 24, 31, 33, 36, 40},

{25, 23, 25, 31, 32, 39},

{31, 26, 21, 24, 31, 35},

{32, 28, 25, 21, 26, 28},

{36, 35, 28, 24, 21, 27}})
```

Verilmiş nümunədə ən optimal yol budur, $(0,0) \stackrel{7}{\rightarrow} (0,2) \stackrel{2}{\rightarrow} (1,2) \stackrel{10}{\rightarrow} (1,5) \stackrel{8}{\rightarrow} (4,5)$ və qazanc belədir 7+2+10+8=27. Funksiyanız 27 qaytarmalıdır.

```
max_profit(2, 2, 100, {{1, 2}, {3, 4}})
```

Burada funksiyanızın qaytarmalı olduğu dəyər: -197.

Qeyd: cavab mənfi ola bilər.

3 Sample grader

İnput aşağıdakı kimidir:

- Sətir 1: Üç tam ədəd -N, M və C nin qiymətlər
- Sətir 2 (N+1): M Tam Ədədlər ${\cal A}_{i,j}$ lərin qiymətləri.

Output aşağıdakı kimidir:

• Sətir 1: Bir tam ədəd - funksiyanın qaytardığı dəyər.