4.4 若干典型的组合逻辑电路

- 4.4.1 编码器
- 4.4.2 译码器/数据分配器
- 4.4.3 数据选择器
- 4.4.4 数值比较器
- 4.4.5 算术运算电路

4.4 若干典型的组合逻辑集成电路

4.4.1 编码器

1、编码器 (Encoder)的定义与分类

编码: 赋予二进制代码特定含义的过程称为编码。

如: 8421BCD码中,用1000表示数字8

如: ASCII码中,用1000001表示字母A等

编码器:具有编码功能的逻辑电路。

1、编码器 (Encoder)的定义与分类

编码器的逻辑功能:

能将每一个编码输入信号变换为不同的二进制的代码输出。

如BCD编码器:将10个编码输入信号分别编成10个4位码输出。

如8线-3线编码器:将8个输入的信号分别编成8个3位二进制数码输出。

1、编码器 (Encoder)的定义与分类

编码器的分类:普通编码器和优先编码器。

普通编码器:任何时候只允许输入一个有效编码信号,否则输出就会发生混乱。

优先编码器:允许同时输入两个以上的有效编码信号。当同时输入几个有效编码信号时,优先编码器能按预先设定的优先级别,只对其中优先权最高的一个进行编码。

2、编码器的工作原理

普通二进制编码器

二进制编码器的结构框图

2、编码器的工作原理

(1) 4线-2线普通二进制编码器(设计)

(a) 逻辑框图

$$Y_{1} = \bar{I}_{0}\bar{I}_{1}I_{2}\bar{I}_{3} + \bar{I}_{0}\bar{I}_{1}\bar{I}_{2}I_{3}$$

$$\bar{z} = \bar{z} = \bar{z} = \bar{z}$$

$$Y_0 = \bar{I}_0 I_1 \bar{I}_2 \bar{I}_3 + \bar{I}_0 \bar{I}_1 \bar{I}_2 I_3$$

(2) 逻辑功能表

I_0	I_1	I_2	I_3	Y_1	Y_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

编码器的输入为高电平有效。

该表达式是否可以再简化?

上述是将输入的其它12种组合对应的输出看做0。如果看做无关项,则表达式为

$$Y_1 = I_2 + I_3$$

 $Y_0 = I_1 + I_3$

若有2个以上的输入为有效信号?

当只有 I_3 为1时,

$$Y_1Y_0 = ? Y_1Y_0 = 11$$

$$I_1 = I_2 = 1$$
 , $I_0 = I_3 = 0$ by ,

 $Y_1Y_0 = ? Y_1Y_0 = 11$

无法输出有效编码。

结论: 普通编码器不能同时输入两个以上的有效编码信号

3. 优先编码器

优先编码器的提出:

实际应用中, 经常有两个或更多输入编码信号 同时有效。

必须根据轻重缓急,规定好这些外设允许操作的先后次 序,即优先级别。

识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。

(2)优先编码器线(4-2线优先编码器)(设计)

输入编码信号高电平有效,输出为二进制代码输入编码信号优先级从高到低为 $I_3 \sim I_0$ 输入为编码信号 $I_3 \sim I_0$ 输出为 $Y_1 Y_0$

(1) 列出功能表

	输	输	出		
I_0	I_1	I_2	I_3	Y_1	Y_0
1	0	0	0	0	0
X	1	0	0	0	1
×	×	1	0	1	0
×	×	×	1	1	1

(2) 写出逻辑表达式

$$Y_1 = I_2I_3 + I_3$$

$$Y_0 = I_1 I_2 I_3 + I_3$$

(3) 画出逻辑电路(略)

低

启

2 典型编码器电路

优先编码器CD4532的示意框图

优先编码器CD4532功能表

			箱)入						į	输 占	Н	
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	<i>Y</i> ₁	Y_0	GS	EO
0	×	×	×	×	×	×	×	×	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	×	×	×	×	×	×	×	1	1	1	1	0
1	0	1	×	×	×	×	×	×	1	1	0	1	0
1	0	0	1	×	×	×	×	×	1	0	1	1	0
1	0	0	0	1	×	×	×	×	1	0	0	1	0
1	0	0	0	0	1	×	×	×	0	1	1	1	0
1	0	0	0	0	0	1	×	×	0	1	0	1	0
1	0	0	0	0	0	0	1	×	0	0	1	1	0
1	0	0	0	0	0	0	0	1	0	0	0	1	0

为什么要设计GS、EO输出信号?

用二片CD4532构成16线-4线优先编码器, 其逻辑图如下图所示, 试分析其工作原理。

当使能端EI=0时,无编码输出。 $A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0$ $A_{15}A_{14}A_{13}A_{12}A_{14}A_{10}A_{9}A_{8}$ $I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0$ $I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0$ EO_1 EO_2 EI_1 EI_2 CD4532(I) 0 GS $Y_2 Y_1 Y_0$ GS $Y_2 Y_1 Y_0$ GS GS_2 G_3 G_1 G_0 G_2

若有效电平输入

实例: 74HC148

$$Y_{2}' = (I_{7} + I_{6} + I_{5} + I_{4})'$$

选
信

$$Y_2' = [(I_7 + I_6 + I_5 + I_4)S]'$$

$$Y_{2}' = [(I_{7} + I_{6} + I_{5} + I_{4})S]'$$

$$Y_{1}' = [(I_{7} + I_{6} + I_{5}I_{4}'I_{3}' + I_{2}I_{4}'I_{5}')S]'$$

$$Y_{0}' = [(I_{7} + I_{6}'I_{5} + I_{3}I_{4}'I_{6}' + I_{1}I_{2}I_{4}'I_{6}')S]'$$

选通信号

附加输出信号

$$Y_{S}' = (I_{7}'I_{6}'I_{5}'I_{4}'I_{3}'I_{2}'I_{1}'I_{0}'S)'$$

$$Y_{EX}' = [(I_{7}'I_{6}'I_{5}'I_{4}'I_{3}'I_{2}'I_{1}'I_{0}'S)'S]'$$

$$= [(I_{7} + I_{6} + I_{5} + I_{4} + I_{3} + I_{2} + I_{1} + I_{0})S]'$$

Y's	y 'ex	状态
1	1	不工作 (5'=1)
0	1	工作,但无输入
1	0	工作,且有输入
0	0	不可能出现

解决了当输出全为零时,是否有编码输入的问题。

			输		λ						输出	1	
$S^{'}$	$I_{0}^{'}$	$I_{1}^{'}$	$I_{2}^{'}$	$I_3^{'}$	$I_4^{'}$	$I_5^{'}$	$I_6^{'}$	$I_7^{'}$	Y_2	$oldsymbol{Y}_1$	$Y_{ m o}$	$oldsymbol{Y_S}$	Y_{EX}
1	X	X	X	X	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	X	X	X	X	X	X	X	0	0	0	0	1	0
0	X	X	X	X	X	X	0	1	0	0	1	1	0
0	X	X	X	X	X	0	1	1	0	1	0	1	0
0	X	X	X	×	0	1	1	1	0	1	1	1	0
0	X	X	X	0	1	1	1	1	1	0	0	1	0
0	X	X	0	1	1	1	1	1	1	0	1	1	0
0	X	0	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	0

译码器/数据分配器

1 译码器的定义与分类

译码: 译码是编码的逆过程,它能将二进制码翻译成代表某 一特定含义的信号.(即电路的某种状态)

译码器: 具有译码功能的逻辑电路称为译码器。

译码器的分类:

唯一地址译码器

将一系列代码转换成与之一一对应的有效 信号。

常见的唯一地址译码器: {二进制译码器 二一十进制译码器 显示译码器

代码变换器

将一种代码转换成另一种代码。

2. 典型译码器电路及应用

(1) 二进制译码器

设输入端的个数为n,输出端的个数为M则有 $M=2^n$

2线 - 4线译码器的逻辑电路(分析)

		功	能表	Ž		
新		λ		输	H	
E	\mathbf{A}_1	$\mathbf{A_0}$	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

$$\overline{Y}_{0} = \overline{\overline{E}} \overline{A}_{1} \overline{A}_{0}$$

$$\overline{Y}_{2} = \overline{\overline{E}} \overline{A}_{1} \overline{A}_{0}$$

$$\overline{Y}_{1} = \overline{E}\overline{A}_{1}A_{0}$$

$$\overline{Y}_{3} = \overline{E}A_{1}A_{0}$$

(a) 2线-4线译码器(74HC139) ----逻辑符号说明

逻辑符号框外部的符号,表示外部输入或输出信号名称,字母上面的"—"号说明该输入或输出是低电平有效。符号框内部的输入、输出变量表示其内部的逻辑关系。在推导表达式的过程中,如果低有效的输入或输出变量(如)上面的"—"号参与运算(如*E*变为*E*),则在画逻辑图或验证真值表时,注意将其还原为

低有效符号。

2线-4线泽码器扩展应用

A2	A1	A0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

2线-4线译码器扩展构成3线-8线译码器

CT54/74138

(b) 3线-8线译码器(74HC138)

 $\frac{A_0 \sim A_2}{Y_0 \sim Y_7}$ — 地址输入端 E_3

一选通输入端

$\begin{cases} E_3 = 1 \\ \overline{E_1} + \overline{E_2} = 0 \end{cases}$

3线-8线译码器(74HC138)功能表

	输入							输			出		
E_3	\overline{E}_{2}	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7
X	1	X	×	×	X	1	1	1	1	1	1	1	1
X	X	1	×	×	×	1	1	1	1	1	1	1	1
0	×	×	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

$$\overline{Y}_0 = \overline{\cdot \overline{A}_2 \cdot \overline{A}_1 \cdot \overline{A}_0} \quad \overline{Y}_1 = \overline{\cdot \overline{A}_2 \cdot \overline{A}_1 \cdot A_0} \quad \overline{Y}_2 = \overline{\cdot \overline{A}_2 \cdot A_1 \cdot \overline{A}_0} \quad \overline{Y}_3 = \overline{\cdot \overline{A}_2 \cdot A_1 \cdot A_0}$$

 $\overline{Y}_4 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_5 = \overline{A_2 \cdot \overline{A_1} \cdot A_0} \quad \overline{Y}_6 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}} \quad \overline{Y}_7 = \overline{A_2 \cdot \overline{A_1} \cdot \overline{A_0}}$

	输							输出出						
E_3	\overline{E}_{2}	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7	
X	1	X	X	X	X	1	1	1	1	1	1	1	1	
X	X	1	X	X	X	1	1	1	1	1	1	1	1	
0	×	X	X	×	×	1	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	1	1	1	1	1	1	1	
1	0	0	0	0	1	1 (0	1	1	1	1	1	1	
1	0	0	0	1	0	1	1		1	1	1	1	1	
1	0	0	0	1	1	1	1	1		1	1	1	1	
1	0	0	1	0	0	1	1	1	1 (0	1	1	1	
1	0	0	1	0	1	1	1	1	1	1		1	1	
1	0	0	1	1	0	1	1	1	1	1	1	0	1	
1	0	0	1	1	1	1	1	1	1	1	1	1		

□ 利用附加控制端进行扩展

例: 用74HC138(3线-8线译码器)扩展4线-16线译码器

$$\begin{cases} E_3 = 1 \\ \overline{E_1} + \overline{E_2} = 0 \end{cases}$$

$$Z_i' = m_i'$$

1、译码器的扩展

用74X139和74X138构成5线-32线译码器

2、用译码器实现逻辑函数。当 $E_3=1$, $E_2=E_1=0$ 时

3线-8线译码器的 $Y_0 \sim Y_7$ 含三变量函数的全部最小项。

基于这一点用该器件能够方便地实现三变量逻辑函数。

用一片74HC138实现函数 $L = \overline{AC} + AB$

首先将函数式变换为最小项之和的形式

在译码器的输出端加一个与非门,即可实现给定的组合逻辑函数.

用74HC138组成数据分配器

数据分配器示意图

数据分配器:相当于多输出的单刀多掷开关,是将公共数据线上的数据按需要送到不同的通道上去的逻辑电路。

用译码器实现数据分配器

$$\overline{Y_2} = \overline{E_3}\overline{E_2}D\overline{ABC}$$
 $\stackrel{\text{deg}}{=} ABC = 010 \text{ pt}, \overline{Y_2} = D$

74HC138译码器作为数据分配器时的功能表

	输			λ				输			出		
$\mathbf{E_3}$	$\overline{E_2}$	E ₁	$\mathbf{A_2}$	$\mathbf{A_1}$	$\mathbf{A_0}$	$\overline{\mathbf{Y}}_{0}$	$\overline{\mathbf{Y}}_1$	$\overline{\mathbf{Y}}_{2}$	$\overline{\mathbf{Y}}_{3}$	$oldsymbol{ar{Y}}_4$	$\overline{\overline{\mathbf{Y}}}_{5}$	$oldsymbol{\overline{Y}}_6$	$oldsymbol{\overline{Y}_7}$
L	X	L	X	X	X	H	H	H	H	H	H	H	Н
Н	D	L	L	L	L	D	H	H	H	H	H	H	Н
Н	D	L	L	L	H	H	D	H	H	H	H	H	Н
Н	D	L	L	H	L	H	H	D	H	H	H	H	Н
Н	D	L	L	H	H	H	H	H	D	H	H	H	Н
Н	D	L	H	L	L	H	H	H	H	D	H	H	Н
Н	D	L	H	L	H	H	H	H	H	H	D	H	Н
Н	D	L	H	H	L	H	H	H	H	H	H	D	Н
Н	D	L	H	H	H	H	H	H	H	H	H	H	D