Linear models 3 Models behaving badly

Samuel Robinson, Ph.D.

October 23, 2020

Motivation

Are my model results reliable?

- Residual checks
- Transformations
- Collinearity
- How much stuff should I put into my model?

Assumptions of linear regression

There are 3 main assumptions to this model:

- The relationship between disp and mpg is linear
- 2 mpg (the data) is Normally distributed around mpg (the line)
- ${f 3}$ ${f \sigma}$ is the same everywhere

This is pretty easy to see if you only have 1 variable, but...

$$m\hat{p}g = b_0 + b_1 disp$$
 $mpg \sim Normal(m\hat{p}g, \sigma)$

What if I have many variables?

Difficult to see if the assumptions are met

Solution: residual checks

Some common ways of checking the assumptions: residual plots

```
mod1 <- lm(mpg-disp*factor(gear),data=mtcars) #Fits model
par(mfrow=c(1,2),mar=c(3,3,1,1)+1) #Splits plot into 2
plot(mod1, which=c(1,2)) #Ist and 2nd residual plots</pre>
```


- 1 Points in Plot 1 should show no pattern (shotgun blast)
- 2 Points in Plot 2 should be *roughly* on top of the 1:1 line

Problem 1: Non-linear relationship

y1 clearly follows a hump-shaped relationship, not a linear one

Solution: transform predictors

log and square-root transformations are common

 Warning: Polynomials can do weird things; consider whether this is biologically reasonable!

Problem 2a: Non-normal response

y2 is count data (integers ≥ 0). Very common in ecological data.

Solution: transform data to meet assumptions

$$lm(log(y2+1)~x,data=d1)$$

Square-root transformations are also common

Problem 2b: Non-normal response

y3 is binomial data (success/failure, 0 or 1). *Very* common in ecological data.

Solution: use a Generalized Linear Model (GLM)

• This is a topic for another lecture. Hold tight!

Problem: variables are on different scales

- lm(y4~x3,data=d1)
 - y4 is tiny, while x3 is huge
 - OK for now, but can cause problems when fitting complicated models (GLMs)

Solution: scale data/predictors before fitting


```
#Subtracts mean, divides by SD
d1$s.y4 <- scale(y4)
d1$s.x3 <- scale(x3)
lm(s.y4~s.x3,data=d1) #Refit</pre>
```


- Residuals are the same as before
- Coefficients are now related to scaled data and predictor

But wait... there's more (assumptions)!

One more assumption:

- 4 If you have 2+ predictors in your model, the predictors are not related to each other
- Say we have 2 predictors, x and x2:

$$lm(y0~x+x2,data=d1)$$

 Model fits, and residuals look OK, but there's trouble ahead!

Uh oh! Collinearity!

```
#Function to print correlation (r) value
corText <- function(x,y){
  text(0.5,0.5,round(cor(x,y),3))
}
#Pairplot of y0, x, and x2
pairs(d1[,c('y0','x','x2')],lower.panel=corText)</pre>
```


pairs() is useful for looking at relations among your data

- x and x2 mean basically the same thing!
- Also revealed using variance-inflation factors (VIFs):

```
library(car)
#VIF scores:
# 1 = no problem
# 1-5 = some problems
# 5+ = big problems!
vif(m2)
```

```
## x x2
## 11.31812 11.31812
```

Is collinearity really that bad?

#Incorrect model
m2 <- lm(y0~x+x2,data=d1)

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7851936	0.1943002	0.0001059
х	-0.1900346	0.0342596	0.0000002

	Estimate	Std. Error	Pr(> t)
(Intercept)	0.7860300	0.1955770	0.0001155
X	-0.1812556	0.1158464	0.1209288
×2	-0.0094931	0.1196074	0.9369028

- Increases SE of each term, so model may "miss" important terms
- Gets worse with increasing correlation, or if many terms are correlated!

How do we fix this? Depends on your goals:

- I care about predicting things
- Use dimensional reduction (e.g. PCA) and re-run model
- 2 I care about what's causing things
- Design experiment to separate cause and effect
- Think about what is causing what. Graphical models are helpful for this
 - Not all variables have to be included!

- Simple graphical model, where the effect of A on D is mediated by B.
- "Correct" 1m model of D:

$$lm(D \sim B + C)$$

A challenger approaches!

- Guess what... more bat data! This time there are 6 variables that were measured. We're interested in predicting bats (counts of bats per night).
- Formulate a causal model that seems reasonable
 - Draw it out on paper/in PowerPoint using flow diagrams
- Fit an 1m model of bats from your causal model, check the assumptions, and update as necessary

Here's the answer

This is the **true** process that generated the data. Model for bats should look like:

lm(log(bats+0.1)~poly(temp,2)+light+bugs,data=dat)