High-level Programming Languages Apache Pig and Pig Latin

Pietro Michiardi

Eurecom

Apache Pig

Introduction

- Collection and analysis of enormous datasets is at the heart of innovation in many organizations
 - E.g.: web crawls, search logs, click streams
- Manual inspection before batch processing
 - Very often engineers look for exploitable trends in their data to drive the design of more sophisticated techniques
 - ► This is difficult to do in practice, given the sheer size of the datasets
- The MapReduce model has its own limitations
 - One input
 - Two-stage, two operators
 - Rigid data-flow

MapReduce limitations

- Very often tricky workarounds are required¹
 - ► This is very often exemplified by the difficulty in performing JOIN operations

- Custom code required even for basic operations
 - Projection and Filtering need to be "rewritten" for each job
- → Code is difficult to reuse and maintain
- → Semantics of the analysis task are obscured
- → Optimizations are difficult due to opacity of Map and Reduce

¹The term workaround should not only be intended as negative.

Use Cases

Rollup aggregates

- Compute aggregates against user activity logs, web crawls, etc.
 - Example: compute the frequency of search terms aggregated over days, weeks, month
 - Example: compute frequency of search terms aggregated over geographical location, based on IP addresses

Requirements

- Successive aggregations
- Joins followed by aggregations

Pig vs. OLAP systems

- Datasets are too big
- Data curation is too costly

Use Cases

Temporal Analysis

- Study how search query distributions change over time
 - Correlation of search queries from two distinct time periods (groups)
 - Custom processing of the queries in each correlation group
- Pig supports operators that minimize memory footprint
 - ▶ Instead, in a RDBMS such operations typically involve JOINS over very large datasets that do not fit in memory and thus become slow

Use Cases

Session Analysis

- Study sequences of page views and clicks
- Example of typical aggregates
 - Average length of user session
 - Number of links clicked by a user before leaving a website
 - Click pattern variations in time

Pig supports advanced data structures, and UDFs

Pig Latin

- Pig Latin, a high-level programming language initially developed at Yahoo!, now at HortonWorks
 - Combines the best of both declarative and imperative worlds
 - ★ High-level declarative querying in the spirit of SQL
 - ★ Low-level, procedural programming á la MapReduce

Pig Latin features

- Multi-valued, nested data structures instead of flat tables
- Powerful data transformations primitives, including joins

Pig Latin program

- Made up of a series of operations (or transformations)
- Each operation is applied to input data and produce output data
- → A Pig Latin program describes a data flow

Pig Latin premiere

• Assume we have the following table:

```
urls: (url, category, pagerank)
```

- Where:
 - url: is the url of a web page
 - category: corresponds to a pre-defined category for the web page
 - pagerank: is the numerical value of the pagerank associated to a web page
- → Find, for each sufficiently large category, the average page rank of high-pagerank urls in that category

SQL

```
SELECT category, AVG(pagerank) FROM urls WHERE pagerank > 0.2 GROUP BY category HAVING COUNT(*) > 10^6
```

Pig Latin

```
\label{eq:good_urls} \begin{array}{l} \mbox{good\_urls BY pagerank} > 0.2; \\ \mbox{groups} = \mbox{GROUP good\_urls BY category;} \\ \mbox{big\_groups} = \mbox{FILTER groups BY COUNT(good\_urls)} > 10^6; \\ \mbox{output} = \mbox{FOREACH big\_groups GENERATE} \\ \mbox{category, AVG(good\_urls.pagerank);} \end{array}
```

Pig Execution environment

• How do we go from Pig Latin to MapReduce?

- The Pig system is in charge of this
- Complex execution environment that interacts with Hadoop MapReduce
- → The programmer focuses on the data and analysis

Pig Compiler

- Pig Latin operators are translated into MapReduce code
- NOTE: in some cases, hand-written MapReduce code performs better

Pig Optimizer²

- Pig Latin data flows undergo an (automatic) optimization phase³
- ▶ These optimizations are borrowed from the RDBMS community

²Currently, rule-based optimization only.

³Optimizations can be selectively disabled.

Pig and Pig Latin

Pig is not a RDBMS!

This means it is not suitable for all data processing tasks

Designed for batch processing

- Of course, since it compiles to MapReduce
- Of course, since data is materialized as files on HDFS

NOT designed for random access

- Query selectivity does not match that of a RDBMS
- Full-scans oriented!

Comparison with RDBMS

- It may seem that Pig Latin is similar to SQL
 - We'll see several examples, operators, etc. that resemble SQL statements

- Data-flow vs. declarative programming language
 - Data-flow:
 - ★ Step-by-step set of operations
 - Each operation is a single transformation
 - Declarative:
 - Set of constraints
 - Applied together to an input to generate output
- → With Pig Latin it's like working at the query planner

Comparison with RDBMS

RDBMS store data in tables

- Schema are predefined and strict
- Tables are flat

Pig and Pig Latin work on more complex data structures

- Schema can be defined at run-time for readability
- Pigs eat anything!
- UDF and streaming together with nested data structures make Pig and Pig Latin more flexible

Dataflow Language

A Pig Latin program specifies a series of steps

- Each step is a single, high level data transformation
- Stylistically different from SQL

With reference to Example 1

 The programmer supply an order in which each operation will be done

Consider the following snippet

```
spam_urls = FILTER urls BY isSpam(url);
culprit_urls = FILTER spam_urls BY pagerank > 0.8;
```

Dataflow Language

- Data flow optimizations
 - Explicit sequences of operations can be overridden
 - Use of high-level, relational-algebra-style primitives (GROUP, FILTER,...) allows using traditional RDBMS optimization techniques
- → NOTE: it is necessary to check whether such optimizations are beneficial or not, by hand
 - Pig Latin allows Pig to perform optimizations that would otherwise by a tedious manual exercise if done at the MapReduce level

Quick Start and Interoperability

Data I/O is greatly simplified in Pig

- No need to curate, bulk import, parse, apply schema, create indexes that traditional RDBMS require
- Standard and ad-hoc "readers" and "writers" facilitate the task of ingesting and producing data in arbitrary formats

Pig can work with a wide range of other tools

• Why RDBMS have stringent requirements?

- To enable transactional consistency guarantees
- To enable efficient point lookup (using physical indexes)
- To enable data curation on behalf of the user
- To enable other users figuring out what the data is, by studying the schema

Quick Start and Interoperability

• Why is Pig so flexible?

- Supports read-only workloads
- Supports scan-only workloads (no lookups)
- → No need for transactions nor indexes

Why data curation is not required?

- Very often, Pig is used for ad-hoc data analysis
- Work on temporary datasets, then throw them out!
- → Curation is an overkill

Schemas are optional

- Can apply one on the fly, at runtime
- Can refer to fields using positional notation
- ▶ E.g.: good urls = FILTER urls BY \$2 > 0.2

Nested Data Model

Easier for "programmers" to think of nested data structures

- E.g.: capture information about positional occurrences of terms in a collection of documents
- Map<documnetId, Set<positions> >

Instead, RDBMS allows only fat tables

- Only atomic fields as columns
- Require normalization
- From the example above: need to create two tables
- ▶ term info: (termId, termString, ...)
- position_info: (termId, documentId, position)
- → Occurrence information obtained by joining on termId, and grouping on termId, documentId

Nested Data Model

Fully nested data model (see also later in the presentation)

- Allows complex, non-atomic data types
- ► E.g.: set, map, tuple

Advantages of a nested data model

- More natural than normalization
- Data is often already stored in a nested fashion on disk
 - ★ E.g.: a web crawler outputs for each crawled url, the set of outlinks
 - Separating this in normalized form imply use of joins, which is an overkill for web-scale data
- Nested data allows to have an algebraic language
 - * E.g.: each tuple output by GROUP has one non-atomic field, a nested set of tuples from the same group
- Nested data makes life easy when writing UDFs

User Defined Functions

Custom processing is often predominant

 E.g.: users may be interested in performing natural language stemming of a search term, or tagging urls as spam

All commands of Pig Latin can be customized

Grouping, filtering, joining, per-tuple processing

UDFs support the nested data model

Input and output can be non-atomic

Continues from Example 1

 Assume we want to find for each category, the top 10 urls according to pagerank

```
groups = GROUP urls BY category;
output = FOREACH groups GENERATE category,
top10(urls);
```

- top10() is a UDF that accepts a set of urls (for each group at a time)
- it outputs a set containing the top 10 urls by pagerank for that group
- final output contains non-atomic fields

User Defined Functions

- UDFs can be used in all Pig Latin constructs
- Instead, in SQL, there are restrictions
 - Only scalar functions can be used in SELECT clauses
 - Only set-valued functions can appear in the FROM clause
 - Aggregation functions can only be applied to GROUP BY or PARTITION BY
- UDFs can be written in Java, Python and Javascript
 - ▶ With streaming, we can use also C/C++, Python, ...

Handling parallel execution

- Pig and Pig Latin are geared towards parallel processing
 - ► Of course, the underlying execution engine is MapReduce
 - SPORK = Pig on Spark → the execution engine need not be MapReduce
- Pig Latin primitives are chosen such that they can be easily parallelized
 - Non-equi joins, correlated sub-queries,... are not directly supported
- Users may specify parallelization parameters at run time
 - Question: Can you specify the number of maps?
 - Question: Can you specify the number of reducers?

Pig Latin

Introduction

- Not a complete reference to the Pig Latin language: refer to [1]
 - Here we cover some interesting/useful aspects
- The focus here is on some language primitives
 - Optimizations are treated separately
 - How they can be implemented (in the underlying engine) is not covered

Examples are taken from [2, 3]

Data Model

Supports four types

- Atom: contains a simple atomic value as a string or a number, e.g.
- Tuple: sequence of fields, each can be of any data type, e.g., ('alice', 'lakers')
- ► Bag: collection of tuples with possible duplicates. Flexible schema, no need to have the same number and type of fields

```
{ ('alice', 'lakers')
('alice', ('iPod', 'apple')) }
```

The example shows that tuples can be nested

Data Model

Supports four types

- Map: collection of data items, where each item has an associated key for lookup. The schema, as with bags, is flexible.
 - ★ NOTE: keys are required to be data atoms, for efficient lookup.

$$\begin{bmatrix} \text{`fan of'} \rightarrow \left\{ \begin{array}{c} (\text{`lakers'}) \\ (\text{`iPod'}) \end{array} \right\} \\ (\text{`age'} \rightarrow 20) \end{bmatrix}$$

- ★ The key `fan of' is mapped to a bag containing two tuples
- ★ The key 'age' is mapped to an atom
- Maps are useful to model datasets in which schema may be dynamic (over time)

Structure

Pig Latin programs are a sequence of steps

- Can use an interactive shell (called grunt)
- Can feed them as a "script"

Comments

- ▶ In line: with double hyphens (- -)
- ▶ C-style for longer comments (/* ... */)

Reserved keywords

- List of keywords that can't be used as identifiers
- Same old story as for any language

- As a Pig Latin program is executed, each statement is parsed
 - ► The interpreter builds a logical plan for every relational operation
 - The logical plan of each statement is added to that of the program so far
 - ▶ Then the interpreter moves on to the next statement
- IMPORTANT: No data processing takes place during construction of logical plan → Lazy Evaluation
 - When the interpreter sees the first line of a program, it confirms that it is syntactically and semantically correct
 - Then it adds it to the logical plan
 - It does not even check the existence of files, for data load operations

- → It makes no sense to start any processing until the whole flow is defined
 - ► Indeed, there are several optimizations that could make a program more efficient (e.g., by avoiding to operate on some data that later on is going to be filtered)
 - The trigger for Pig to start execution are the DUMP and STORE statements
 - It is only at this point that the logical plan is compiled into a physical plan
 - How the physical plan is built
 - Pig prepares a series of MapReduce jobs
 - ★ In Local mode, these are run locally on the JVM
 - ★ In MapReduce mode, the jobs are sent to the Hadoop Cluster
 - ► IMPORTANT: The command EXPLAIN can be used to show the MapReduce plan

Multi-query execution

There is a difference between DUMP and STORE

 Apart from diagnosis, and interactive mode, in batch mode STORE allows for program/job optimizations

Main optimization objective: minimize I/O

Consider the following example:

```
A = LOAD 'input/pig/multiquery/A';
B = FILTER A BY $1 == 'banana';
C = FILTER A BY $1 != 'banana';
STORE B INTO 'output/b';
STORE C INTO 'output/c';
```

Multi-query execution

- In the example, relations B and C are both derived from A
 - Naively, this means that at the first STORE operator the input should be read
 - ▶ Then, at the second STORE operator, the input should be read again
- Pig will run this as a single MapReduce job
 - Relation A is going to be read only once
 - ▶ Then, each relation B and C will be written to the output

Expressions

- An expression is something that is evaluated to yield a value
 - Lookup on [3] for documentation

$t = \left(\text{`alice'}, \left\{ \begin{array}{c} (\text{`lakers'}, 1) \\ (\text{`iPod'}, 2) \end{array} \right\}, \left[\text{`age'} \rightarrow 20 \right] \right)$		
Let fields of tuple t be called f1, f2, f3		
Expression Type	Example	Value for t
Constant	'bob'	Independent of t
Field by position	\$0	'alice'
Field by name	f3	
Projection	f2.\$0	{ ('lakers')
Map Lookup	f3#'age'	20
Function Evaluation	SUM(f2.\$1)	1 + 2 = 3
Conditional	f3#'age'>18?	'adult'
Expression	'adult':'minor'	
Flattening	FLATTEN(f2)	'lakers', 1 'iPod', 2

Schemas

A relation in Pig may have an associated schema

- This is optional
- A schema gives the fields in the relations names and types
- Use the command DESCRIBE to reveal the schema in use for a relation

Schema declaration is flexible but reuse is awkward⁴

- A set of queries over the same input data will often have the same schema
- ► This is sometimes hard to maintain (unlike HIVE) as there is no external components to maintain this association

HINT:: You can write a UDF function to perform a personalized load operation which encapsulates the schema

⁴Current developments solve this problem: HCatalogs. We will not cover this in this course.

Validation and nulls

- Pig does not have the same power to enforce constraints on schema at load time as a RDBMS
 - If a value cannot be cast to a type declared in the schema, then it will be set to a null value
 - This also happens for corrupt files
- A useful technique to partition input data to discern good and bad records
 - Use the SPLIT operator SPLIT records INTO good_records IF temperature is not null, bad records IF temperature is NULL;

Other relevant information

Schema propagation and merging

- How schema are propagated to new relations?
- Advanced, but important topic

User-Defined Functions

Use [3] for an introduction to designing UDFs

Loading and storing data

- The first step in a Pig Latin program is to load data
 - Accounts for what input files are (e.g. csv files)
 - How the file contents are to be deserialized
 - An input file is assumed to contain a sequence of tuples
- Data loading is done with the LOAD command

```
queries = LOAD 'query_log.txt'
USING myLoad()
AS (userId, queryString, timestamp);
```

Loading and storing data

• The example above specifies the following:

- The input file is query_log.txt
- The input file should be converted into tuples using the custom myLoad deserializer
- The loaded tuples have three fields, specified by the schema

Optional parts

- USING clause is optional: if not specified, the input file is assumed to be plain text, tab-delimited
- As clause is optional: if not specified, must refer to fileds by position instead of by name

Loading and storing data

- Return value of the LOAD command
 - Handle to a bag
 - This can be used by subsequent commands
 - → bag handles are only logical
 - → no file is actually read!
- The command to write output to disk is STORE
 - It has similar semantics to the LOAD command

Per-tuple processing: Filtering data

- Once you have some data loaded into a relation, a possible next step is, e.g., to filter it
 - This is done, e.g., to remove unwanted data
 - ► HINT: By filtering early in the processing pipeline, you minimize the amount of data flowing trough the system
- A basic operation is to apply some processing over every tuple of a data set
 - ► This is achieved with the FOREACH command expanded_queries = FOREACH queries GENERATE userId, expandQuery(queryString);

Per-tuple processing: Filtering data

Comments on the example above:

- ► Each tuple of the bag queries should be processed independently
- The second field of the output is the result of a UDF

Semantics of the FOREACH command

- There can be no dependence between the processing of different input tuples
- → This allows for an efficient parallel implementation

Semantics of the GENERATE clause

- Followed by a list of expressions
- Also flattering is allowed
 - ★ This is done to eliminate nesting in data
 - Allows to make output data independent for further parallel processing
 - → Useful to store data on disk

Per-tuple processing: Discarding unwanted data

A common operation is to retain a portion of the input data

```
This is done with the FILTER command
real_queries = FILTER queries BY userId neq
'bot';
```

Filtering conditions involve a combination of expressions

- Comparison operators
- Logical connectors
- UDF

Per-tuple processing: Streaming data

- The STREAM operator allows transforming data in a relation using an external program or script
 - This is possible because Hadoop MapReduce supports "streaming"
 - Example:

```
C = STREAM A THROUGH 'cut -f 2';
which use the Unix cut command to extract the second filed of
each tuple in A
```

- The STREAM operator uses PigStorage to serialize and deserialize relations to and from stdin/stdout
 - Can also provide a custom serializer/deserializer
 - Works well with python

Getting related data together

- It is often necessary to group together tuples from one or more data sets
 - We will explore several nuances of "grouping"
- The first grouping operation we study is given by the COGROUP command

Example: Assume we have loaded two relations from a Search Engine log file

```
results: (queryString, url, position)
revenue: (queryString, adSlot, amount)
```

- results contains, for different query strings, the urls shown as search results, and the positions at which they where shown
- revenue contains, for different query strings, and different advertisement slots, the average amount of revenue

Getting related data together

 Suppose we want to group together all search results data and revenue data for the same query string

> grouped_data = COGROUP results BY queryString, revenue BY queryString;

The COGROUP command

- Output of a COGROUP contains one tuple for each group
 - ► First field (group) is the group identifier (the value of the gueryString)
 - Each of the next fields is a bag, one for each group being co-grouped

- Grouping can be performed according to UDFs
- Next: why COGROUP when you can use JOINS?

COGROUP VS JOIN

- JOIN VS. COGROUP
 - ► Their are equivalent: JOIN == COGROUP followed by a cross product of the tuples in the nested bags
- Example 3: Suppose we try to attribute search revenue to search-results urls → compute monetary worth of each url

```
grouped_data = COGROUP results BY queryString,
revenue BY queryString;
url_revenues = FOREACH grouped_data GENERATE
FLATTEN(distrubteRevenue(results, revenue));
```

▶ Where distrubteRevenue is a UDF that accepts search results and revenue information for each query string, and outputs a bag of urls and revenue attributed to them

COGROUP VS JOIN

More details on the UDF distribute Revenue

- Attributes revenue from the top slot entirely to the first search result
- The revenue from the side slot may be equally split among all results

Let's see how to do the same with a JOIN

- JOIN the tables results and revenues by queryString
- GROUP BY queryString
- Apply a custom aggregation function

What happens behind the scenes

- During the JOIN, the system computes the cross product of the search and revenue information
- Then the custom aggregation needs to undo this cross product, because the UDF specifically requires so

COGROUP in details

- The COGROUP statement conforms to an algebraic language
 - The operator carries out only the operation of grouping together tuples into nested bags
 - ► The user can the decide whether to apply a (custom) aggregation on those tuples or to cross-product them and obtain a JOIN
- It is thanks to the nested data model that COGROUP is an independent operation
 - Implementation details are tricky
 - Groups can be very large (and are redundant)

A special case of COGROUP: the GROUP operator

- Sometimes, we want to operate on a single dataset
 - ▶ This is when you use the GROUP operator

Let's continue from Example 3:

Assume we want to find the total revenue for each query string. This writes as:

```
grouped_revenue = GROUP revenue BY queryString;
query_revenue = FOREACH grouped_revenue GENERATE
queryString, SUM(revenue.amount) AS totalRevenue;
```

► Note that revenue.amount refers to a projection of the nested bag in the tuples of grouped revenue

JOIN in Pig Latin

- In many cases, the typical operation on two or more datasets amounts to an equi-join
 - IMPORTANT NOTE: large datasets that are suitable to be analyzed with Pig (and MapReduce) are generally **not normalized**
 - → JOINs are used more infrequently in Pig Latin than they are in SQL

The syntax of a JOIN

```
join result = JOIN results BY queryString,
revenue BY queryString;
```

► This is a classic inner join (actually an equi-join), where each match between the two relations corresponds to a row in the join result

JOIN in Pig Latin

- JOINs lend themselves to optimization opportunities
 - Active development of several join flavors is on-going
- Assume we join two datasets, one of which is considerably smaller than the other
 - For instance, suppose a dataset fits in memory
- Fragment replicate join
 - Syntax: append the clause USING "replicated" to a JOIN statement
 - Uses a distributed cache available in Hadoop
 - All mappers will have a copy of the small input
 - → This is a Map-side ioin

MapReduce in Pig Latin

It is trivial to express MapReduce programs in Pig Latin

- ▶ This is achieved using GROUP and FOREACH statements
- A map function operates on one input tuple at a time and outputs a bag of key-value pairs
- The reduce function operates on all values for a key at a time to produce the final result

Example

```
map_result = FOREACH input GENERATE
FLATTEN(map(*));
key_groups = GROUP map_results BY $0;
output = FOREACH key_groups GENERATE reduce(*);
```

where map() and reduce() are UDFs

Pig Execution Engine

 Pig Latin Programs are compiled into MapReduce jobs, and executed using Hadoop⁵

Overview

- How to build a logical plan for a Pig Latin program
- How to compile the logical plan into a physical plan of MapReduce jobs

Optimizations

⁵Other execution engines are allowed, but require a lot of implementation effort.

Building a Logical Plan

As clients issue Pig Latin commands (interactive or batch mode)

- The Pig interpreter parses the commands
- Then it verifies validity of input files and bags (variables)
 - ★ E.g.: if the command is c = COGROUP a BY ..., b BY ...; it verifies if a and b have already been defined

Pig builds a logical plan for every bag

When a new bag is defined by a command, the new logical plan is a combination of the plans for the input and that of the current command

Building a Logical Plan

No processing is carried out when constructing the logical plans

- Processing is triggered only by STORE or DUMP
- At that point, the logical plan is compiled to a physical plan

Lazy execution model

- Allows in-memory pipelining
- File reordering
- Various optimizations from the traditional RDBMS world

Pig is (potentially) platform independent

- Parsing and logical plan construction are platform oblivious
- Only the compiler is specific to Hadoop

Compilation of a logical plan into a physical plan is "simple"

- ► MapReduce primitives allow a parallel GROUP BY
 - ★ Map assigns keys for grouping
 - ★ Reduce process a group at a time (actually in parallel)

How the compiler works

- Converts each (CO) GROUP command in the logical plan into distinct MapReduce jobs
- ► Map function for (CO) GROUP command C initially assigns keys to tuples based on the BY clause(s) of C
- ▶ Reduce function is initially a no-op

MapReduce boundary is the COGROUP command

- ► The sequence of FILTER and FOREACH from the LOAD to the first COGROUP C₁ are pushed in the Map function
- ▶ The commands in later COGROUP commands C_i and C_{i+1} can be pushed into:
 - ★ the Reduce function of C_i
 - ★ the Map function of C_{i+1}

Pig optimization for the physical plan

- Among the two options outlined above, the first is preferred
- Indeed, grouping is often followed by aggregation
- → reduces the amount of data to be materialized between jobs

COGROUP command with more than one input dataset

- Map function appends an extra field to each tuple to identify the dataset
- Reduce function decodes this information and inserts tuple in the appropriate nested bags for each group

How parallelism is achieved

- For LOAD this is inherited by operating over HDFS
- ► For FILTER and FOREACH, this is automatic thanks to MapReduce framework
- ▶ For (CO) GROUP uses the SHUFFLE phase

A note on the ORDER command

- Translated in two MapReduce jobs
- First job: Samples the input to determine quantiles of the sort key
- Second job: Range partitions the input according to quantiles, followed by sorting in the reduce phase

Known overheads due to MapReduce inflexibility

- Data materialization between jobs
- Multiple inputs are not supported well

Summary

Single-program Optimizations

Logical optimizations: query plan

- Early projection
- Early filtering
- Operator rewrites

Physical optimization: execution plan

- Mapping of logical operations to MapReduce
- Splitting logical operations in multiple physical ones
- Join execution strategies

Efficiency measures

(CO) GROUP command places tuples of the same group in nested bags

- Bag materialization (I/O) can be avoided
- This is important also due to memory constraints
- Distributive or algebraic aggregation facilitate this task

What is an algebraic function?

- Function that can be structured as a tree of sub-functions
- ▶ Each leaf sub-function operates over a subset of the input data
- → If nodes in the tree achieve data reduction, then the system can reduce materialization
- ► Examples: COUNT, SUM, MIN, MAX, AVERAGE, ...

Efficiency measures

- Pig compiler uses the combiner function of Hadoop
 - ▶ A special API for algebraic UDF is available
- There are cases in which (CO) GROUP is inefficient
 - ► This happens with non-algebraic functions
 - Nested bags can be spilled to disk
 - Pig provides a disk-resident bag implementation
 - ★ Features external sort algorithms
 - Features duplicates elimination

References

References I

- [1] Pig wiki.
 http://wiki.apache.org/pig/.
- [2] C. Olston, B. Reed, U. Srivastava, R. Kumar, , and A. Tomkins. Pig latin: A not-so-foreign language for data processing. In *Proc. of ACM SIGMOD*, 2008.
- [3] Tom White.

 Hadoop, The Definitive Guide.
 O'Reilly, Yahoo, 2010.