

دانشگاه آزاد اسلامی واحد علوم و تحقیقات (تهران) دانشکده مکانیک ؛ برق و کامپیورتر ؛ گروه مکانیک

پایان نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی مکانیک (M.Sc.) گرایش: تبدیل انرژی

عنوان: طراحی عددی حرارتی و بهینه سازی مبدل حرارتی صفحه ای پره دار در جریان های چند جزیی

> استاد راهنما : دکتر محمد حسن نوبختی

> > استاد مشاور: دکتر مسعود زارع

نگارش: امیر عباس افراسیابی

زمستان ۱۴۰۳

چکیده:

در این پژوهش، روندی برای بهینهسازی مبدلهای حرارتی صفحهای پرهدار از جنبههایی مانند راندمان، کارایی، هزینه ساخت، افت فشار داخلی و خارجی، با جریانهای چندفازی و چندجزئی و با استفاده از الگوریتم ژنتیک و شبیهسازی عددی ارائه شده است.هدف اصلی، کاهش تولید آنتروپی و افت فشار همراه با حفظ یا بهبود راندمان حرارتی است . ابتدا مبدل حرارتی با توجه به الزامات طراحی حرارتی مدلسازی و طراحی گردید و سپس با استفاده از نرمافزار انسیس فلوئنت ، تحلیلهای جریان و انتقال حرارت انجام گرفت. در این تحلیلها مشخص شد که افزایش ارتفاع و عرض پرهها تأثیر مثبت بر نرخ انتقال حرارت دارد و منجر به کاهش افت فشار می شود.

نتایج بهینهسازی نشان داد که تنظیمات بهینه زوایای پرهها و فاصله بین آنها میتواند به بهبود قابلتوجه کارایی مبدل کمک کند. همچنین، طراحی بهینه در محدوده اعداد رینولدز ۵۰۰۰ تا ۲۰۰۰۰ عملکرد حرارتی را به میزان ۱۵ درصد بهبود بخشید و افت فشار را تا ۱۲ درصد کاهش داده است .آنالیز حساسیت بر متغیرهای طراحی نشان داد که افزایش تراکم سطح پرهها و کاهش فاصله بین کانالها تأثیر بسزایی در افزایش راندمان حرارتی دارد.

علاوه بر این، تولید آنتروپی به عنوان شاخصی برای ارزیابی اتلاف انرژی بررسی شد و مشخص گردید که ترکیب بهینه ابعاد پرهها و هندسه کانالها، علاوه بر کاهش تولید آنتروپی تا ۱۸ درصد، موجب کاهش افت فشار در بخش سرد و گرم مبدل به میزان ۱۵ درصد شده است. تحلیلهای عددی اثبات کردند که ترکیب بهینه ساختار مبدل حرارتی می تواند هزینه عملیاتی و انرژی را کاهش داده و در صنایع با تقاضای بالای انتقال حرارت کاربردی باشد.

یکی از نتایج برجسته پژوهش، تأثیر طراحی فشرده تر مبدل بر کاهش مصرف انرژی و هزینههای عملیاتی بوده است. این مبدل در مقایسه با طراحیهای سنتی، قابلیت افزایش نرخ انتقال حرارت در شرایط جریانهای چندفازی را فراهم کرد. علاوه بر این، یافتهها نشان داد که کاهش تولید آنتروپی، بهینه ترین حالت را از نظر کاهش اتلاف انرژی و افزایش کارایی مبدل ایجاد می کند.

کلیدواژهها :مبدلهای حرارتی صفحهای پرهدار، جریانهای چندفازی و چندجزئی، الگوریتم ژنتیک، بهینهسازی چندمنظوره، تولید آنتروپی، افت فشار، شبیهسازی عددی.

فهرست مطالب

نكيده
بكيده
هرست اسکال ها
هرست علايمعلايم
صل اول
١-١- مقدمه
٢-١- مبدل حرارتی صفحه ای پره دار
٢-٢-١ ساختار مبدل حرارتي صفحه اي پره دار
٢-٢-١ اهميت و ضرورت بهينه سازى مبدل حرارتي صفحه اى پره دار
۳-۱- مروری بر معادلات میانگین ناویر استوکس رینولدز
۱-۳-۱ اهمیت معادلات میانگین ناویر استوکس رینولدز در بهینه سازی مبدل حرارتی صفحه ای پره دار
۱-۴- نقس دینامیک سیالات محاسباتی در دمینه سازی میدا. حیل تی
۱۰-۵-۱ روشهای تقویت انتقال حرارت
١-۵-١ سطوح زبر و فين دار
١-۵-٦ افزودنى به سيالات
۱-۶- مزایا و دلایل انتخاب مبدل حرارتی صفحه ای پره دار
۱–۷– مروری در فصول بایان نامه

14	فصل دوم
۱۵	فصل دوم
18	٢-٢- طراحي مبدل حرارتي
١٧	۲-۳- بهینه سازی ساختار مبدل حرارتی صفحه ای پره دار
19	۲-۴- استخراج روابط تجربی برای مدل سازی ریاضی رفتار سیالات در مبدل حرارتی
۲۱	۲-۵- بهینه سازی ساختار عملی مبدل حرارتی صفحه ای پره دار
	٢-۶- جمع اورى و نواورى پژوهش
٣٣	نصل سوم
٣۴	٣-١- مقدمه
٣۴	۳-۲- تحلیل رفتار هیدرودینامیکی جریان چندفازی در مبدل حرارتی صفحه ای پره دار
۳۵	٣-٣- معرفي اجمالي مساله مورد بررسي
	٣-۴-فرضيه ها
٣٩	٣-۵- مدلسازى ترموديناميكى مبدل حرارتى صفحه اى پره دار
۴۲	۳–۵–۱ مبدل حرارتی صفحه ای پره دار با دو جریان تک فاز
۵٠	۳–۵–۲-مبدل حرارتی صفحه ای پره دار با جریان دوفاز
۵۴	۳-۶- بهينه سازى بر اساس الگوريتم ژنتيک
۵۴	۳-۷- چالش بهینه سازی مبدل حرارتی چندفاز با چند هندسه پره متفاوت
۵۵	٣-٨- روش حل عددى
۵۶	٣-٩- شرايط مرزى حاكم

۵۸	فصل چهارم
۵۹	فصل چهارم
۵٩	۲-۴ ارزیابی دقیق مدل عددی
۶۰	1-۲-۴ صحت سنجى مدل
97	۴-۲-۲- اعتبار سنجي مدل
۶۳	۴-۳- انتخاب دامنه همگرایی
99	۴-۴-استقلال از شبکه
۶۹	۴–۵– نتایج حاصل از شبیه سازی عددی
	۶-۴ عدد ناسلت متوسط
٧٣	۴-۷- بررسی اثرعدد رینولدز در افزایش انتقال حرارت و افت فشار
٧۴	۴-۸- قدرت پمپاژ در مبدلهای حرارتی صفحهای پرهدار
٧۶	۹-۴ ضريب اصطكاك
γ٩	۹-۴ ضریب اصطکاک ۱۰-۴ ضریب کالبرن
٨١	فصل پنجم
۸۲	فصل پنجم ۵-۲- مقدمه
	۵-۲- ل: باب دقیق مدل عددی

فهرست جدولها

۱۸	جدول ۲-۲ <i>خصوصیات فیزیکی مایع و جامد</i>
٣.	جدول ۲-۲ خلاصه فعالیتها و پژوهشهای صورت گرفته برای بهینهسازی مبدلهای حرارتی صفحهای پرهدار
٣٧	جدول ۳-۱ ابعاد خاص فین ها و قطر هیدرولیک در هر مورد
۶١	جدول ۱-۴ جدول پیشنهادی برای صحت سنجی مبدل حرارتی
٧.	جدول ۴-۲ مشخصات ترمودینامیکی اب و اکسید المینیوم

فهرست اشكال

	شکل ۱-۱ ساختار کلی مبدل حرارتی صفحه ای پره دار
	شکل ۱-۲ اجزای اصلی یک مبدل حرارتی صفجه ای پره دار
٧	شکل ۱-۳ نمایش شماتیک از سلسله مراتب مدل سازی اشفتگی
۱٩.	شکل ۲-۲ پارامتر های مشخص شده پره ها در پژوهش مانگلیگ و برگلز
	شکل ۲-۲ تغییرات هزیته سالانه عملیاتی مبدل در مقابل بازده انتقال حرارت دو مدل مورد بررسی
۲۳.	شکل ۲-۳ تغییرات a) سطح انتقال حرارت مورد نیاز مبدل و b) افت فشار در مبدلها در مقابل بازده انتقال حرارت .
۲۴.	شکل ۲-۴ حساسیت توابع هدف بررسی شده در پژوهش یانگ و همکاران نسبت به متغیر های بهینه سازی
٣۶.	شکل ۳-۱ شماتیک مبدل حرارتی فین دار نامنظم و ساختار دقیق
٣٩.	شکل ۳–۲ (a) نوع Z ؛ (c) نوع Z ؛ (c) نمای مقابل شکل نوع Z نمای مقابل شکل نوع Z
۴۲.	شکل ۳-۳ نمودار تغییرات دمای سیالهای سرد وگرم در یک مبدل برای جریانهای a) مخالف جهت b) همجهت
44.	شکل ۳-۴ المان مورد نظر برای بررسی انتقال حرارت در مبدل حرارتی صفجه ای پره دار
۴۵.	شكل ٣–۵ سطوح انتقال حرارت اوليه و ثانويه
۴٧.	شکل ۳-۶ هندسه و مشخصات انواع پرههای به کار رفته در مبدلهای حرارتی صفحهای پرهدار
	شکل ۵-۳ a یک گرمکن صفحهای معمولی، b , c یک گرمکن صفحهای دو جریانه
۵١.	شکل ۳–۸ نمودار دما در یک گرمکن مبادل حرارت در مراحل مایع، دوفازه و گازی در منطقه فوق بحرانی
۵۲.	شکل ۳-۹ منحنی ترکیب برای یک مبدل ۵ جریانه
۵٣.	شکل ۳-۱۰ حالات مختلف تغییر ضریب انتقال حرارت کلی در طول مبدل
۶٣.	شکل ۴-۱ تأثیر متغیرهای طراحی بر عملکرد انتقال حرارت
۶۵.	شکل ۴-۲ دامنه همگرایی مدل مورد بررسی برای زاویه ۶۰ درجه
۶۵	شکل ۴-۳ دامنه همگرایی مدل مورد بررسی برای زاویه ۹۰ درجه
۶۷.	شكل ۴-۴ نمودار افت فشار بر حسب تعداد المان ها
۶۷.	شكل ۴-۵ نمودار ميانگين دما بر حسب تعداد المان ها
٧٢.	شکل ۴-۶ نمودار عدد ناسلت برای زاویه ۶۰ درجه و درصد حجمی ۶
	شکل ۴-۷ نمودار عدد ناسلت برای زاویه ۹۰ درجه و درصد حجمی ۶
	شکل ۴–۸ مقادیر ضریب انتقال حرارت کل در مقادیر مختلف عدد رینولدز
۷۵.	شکل ۴–۹ نمودار قدرت پمپاژ برای زاویه ۶۰ درجه
	شکل ۴–۱۰ نمودار قدرت پمپاژ برای زاویه ۹۰ درجه
	شکل ۴-۱۱ مقدار ضریب اصطحکاک برای زاویه ۶۰ درجه و درصد حجمی ۶
	شکل ۴-۱۲ مقدار ضریب اصطحکاک برای زاویه ۹۰ درجه و درصد حجمی ۶
	ـــــــــــــــــــــــــــــــــــــ
	شکا ۴-۴ مقدا، ضدی کالب درای نامیه ۹۰ در چه و درصد حجم

فهرست علايم

$\frac{Kg}{m^3}$	(ρ)	چگالی
mm	(L)	طول هر شاخه
mm	(t)	ضخامت هر شاخه
mm	(h)	ارتفاع هر شاخه
mm	(S)	فاصله عرضي
K	(T)	دما
Pa	(P)	فشار
Kg	(m)	جرم
	(Nu)	عدد ناسلت
	(Pr)	عدد پرانتل
m^2	(A)	سطح كل انتقال حرارت
	(R)	عددرينولدز
	(j)	ضريب كالبرن
$\frac{Kg.m}{s^2}$	(f)	ضريب اصطحكاك
$\frac{m^3}{s}$	(\dot{V})	دبی حجمی
m	(D_h)	قطر هيدروليكى
$\frac{m}{s}$	(U)	سرعت لحظه ای
$\frac{m^2}{s^2}$	(K)	انرژی جنبشی اشفتگی
$\frac{J}{Kg}$	(<i>h</i>)	انتالپی سیال
$\frac{J}{Kg}$	(C_p)	گرمای خاص در فشار ثابت

$$rac{K^2.W}{m}$$
 (U) خریب انتقال حرارت کلی $rac{S^2.Kg}{m}$ (G_m) دبی جرمی سیال

فهرست علايم يوناني

$$\frac{m^2}{s}$$
 (μ) ویسکوزیته (δ_{ij}) (δ_{ij}) (δ_{ij}) (δ_{ij}) (δ_{ij}) (τ'_{ij}) (τ'_{ij}) (τ'_{ij}) (ϵ) (ϵ)

فصل اول

مقدمه

١-١- مقدمه:

در سالیان اخیر توجه به مسئله بهبود انتقال حرارت در علوم مهندسی و صنعت ؛ با سرعت افزاینده ای در حال رشد است . به طوری که هم اکنون به بخش بسیار مهمی از تحقیقات تجربی و نظری تبدیل شده است . بهبود انتقال حرارت با استفاده از روش های مرسوم ؛ باعث صرفه جویی قابل توجهی در هزینه ها و منابع انرژی و حفظ محیط زیست شده است . بر هم زدن زیر لایه ارام در لایه مرزی جریان مخشوش؛ ایجاد جریان ثانویه ؛ اتصال دوباره سیال جدا شده به سطح ؛ ایجاد تأخیر در توسعه لایه مرزی؛ تقویت ضریب هدایت حرارتی مؤثر سیال؛ افزایش اختلاف دما بین سطح و سیال از جمله مهمترین مکانیزم هایی هستند که منجر به افزایش انتقال حرارت از طریق جریان سیال می شوند.

در این فصل، به معرفی کلی موضوع پایان نامه و اهمیت آن در انتقال حرارت پرداخته شده است. در ابتدا نگاهی به مبدلهای حرارتی صفحهای پره دار از دیدگاه نقش و اهمیت آنها در انتقال حرارت صورت می گیرد و پس از آن بهینه سازی این مبدلها با استفاده از مدل ریاضی ناویر استوکس با میانگین رینولدز $^{\prime}$ به عنوان یک ابزار قدر تمند و مدل سازی با استفاده از محاسبات دینامیک سیالاتی $^{\prime}$ محاسباتی اشاره شده است . سپس، اهداف اصلی تحقیق در این پایان نامه مشخص و مطرح می شوند. در این فصل نیز روش تحقیق در این تحقیق مورد بررسی قرار گرفته شده است تا اطلاعات بیشتری از نحوه اجرای تحقیقات و جمع آوری داده ها در این پایان نامه به دست آید. در پایان به معرفی اجمالی مسئله مورد بررسی تحقیق پرداخته شده است. این تداوم منطقی از فصل $^{\prime}$ به سایر فصول پایان نامه، خواننده را با مسیر و هدف اصلی تحقیق آشنا می سازد و اهمیت مطالب ارائه شده را برای خواننده مشخص می کند

۲-۱- مبدل های حرارتی صفحه ای پره دار۳

مبدلهای حرارتی صفحه دار پره دار به عنوان نوعی از مبدلهای حرارتی شناخته می شوند که در صنایع مختلف مانند نفت و گاز، هوافضا، خودروسازی و تولید برق به منظور انتقال حرارت کارآمد

¹ Reynolds-averaged Navier-Stokes

² Computational Fluid Dynamics

³ Plate Fin Heat Exchanger

بین دو سیال مورد استفاده قرار می گیرند. این نوع مبدلها که از جنس آلومینیوم ساخته شدهاند ؛ در مقایسه با سایر انواع مبدلها، فضای کمتری را اشغال می کنند. طراحی این مبدلهای حرارتی با هدف انتقال حرارت بین دو مایع یا گاز با سرعت بالا و بهینهسازی مصرف انرژی انجام شده است. [1]

یکی از ویژگیهای منحصر به فرد مبدلهای صفحهای پره دار، ساختار لایهای آن ها است. لایههای مختلف با اندازهها و اشکال متفاوت، به دلیل اختلاف دما و خواص فیزیکی متنوع سیالات در این لایهها، موجب بهبود عملکرد کلی مبدل میشوند . هر لایه شامل پرههایی است که سطح تماس سیال با سطح جامد را افزایش میدهند . این افزایش سطح انتقال حرارت در مبدلهای صفحهای پره دار، بازدهی و کارایی آنها را به طور قابل توجهی افزایش داده است. این مبدلها در حجم ثابت، نسبت سطح انتقال حرارت به حجم را به طور قابل توجهی افزایش میدهند (بیش از $\frac{m^2}{m^3}$ تا $\frac{m^2}{m^3}$ و در نتیجه در دسته مبدلهای حرارتی فشرده قرار می گیرند. این ویژگی، انتقال حرارت در اختلاف دماهای پایین (تا دو درجه) را ممکن ساخته و موجب بهبود چشمگیر در کارایی و بازدهی این مبدلها شده است. پرهها با افزایش تراکم سطح انتقال حرارت، به تبادل بهتر حرارت کمک کرده و بهرهوری مبدل را ارتقا دادهاند. این ویژگی امکان انتقال حرارت در اختلاف دماهای پایین تر را فراهم کرده است که در نتیجه باعث افزایش کارایی و بازدهی مبدلهای صفحهای پره دار شده است . شماتیک کلی مبدل های حرارتی در شکل 1-1 ورده شده است. [7]

شکل ۱-۱ ساختار کلی مبدل حرارتی صفحهای پرهدار .[۳]

به طور کلی، مبدل های حرارتی بر اساس نوع مکانیزم انتقال حرارت می توان به انواع تماس مستقیم و تماس غیر مستقیم تقسیم بندی می شوند . در مبدل های تماس مستقیم، سیالات مستقیم با یکدیگر تبادل حرارت می کنند و این فرآیند با انتقال جرم همراه است. اما در مبدل های تماس غیرمستقیم، یک دیوار جدا کننده، سیالات گرم و سرد را از یکدیگر جدا کرده و تبادل حرارت از طریق این دیواره انجام می شود.

۱-۱-۲ ساختار مبدل حرارتی صفحه ای پره دار:

درشکل زیر ؛ اجزای اصلی یک مبدل حرارتی صفجه ای پره دار نشان داده شده است . اجزای اصلی این مبدل حرارتی شامل صفحات انتقال دهنده حرارت و جداکننده جریان ها ؛ واشرها و قاب های انتهایی هستند که نازل ورود و خروج جریان در انها قرار دارد.

شکل ۱-۲ اجزای اصلی یک مبدل حرارتی صفجه ای پره دار[٤]

در قسمت میانی این مبدل حرارتی صفحات ناز ک مستطیل شکل قرار داده شده است که واشر ها کاملا اطراف آنها را احاطه کرده اند . استفاده از واشرها باعث آب بندی این صفحات شده است . صفحات پشت سر هم قرار داده شده است به صورت یک مجموعه واحد باعث جلوگیری از اختلاط سیالات با هم شده است و مانع از نشت سیالات میگردد . صفحات جداکننده 7 بر روی یک میله حمال فوقانی قرار میگیرند . درغالب موارد هم این میله های حمل کننده صفحات در سر دیگر قاب با کمک یک ستون پایه نگه داشته می شوند. مجموعه صفحاتی که در داخل مبدل حرارتی صفحه ای قرار داده می شوند به وسیله چندین

¹ Direct contact

² Indirect contact

³ Separator Plate

پیچ به هم بسته شده است در جای خود ثابت می گردد ؛ که درنهایت این شیوه سر هم بندی صفحات امکان باز و بسته کردن راحت و تمیز کاری این مبدل ها را به خوبی فراهم می نماید .

در این مبدلها که اغلب، جریانها در خلاف جهت همدیگر قرار دارند، جریانها از نازلهای ورودی وارد هدرها شده و سپس از طریق توزیع کنندهها وارد هسته اصلی میشوند . بیشترین انتقال حرارت در مبدل های حرارتی داخل هسته رخ می دهد. در این مبدلها، در داخل هسته اصلی و توزیع کنندهها پرههایی تعبیه شده است که سطح انتقال حرارت را افزایش می دهند. در نهایت، جریانها در انتهای دیگر مبدل، از طریق توزیع کنندههای انتهای مبدل وارد هدرهای انتهای مبدل می شوند و از مبدل خارج می گردند. ساختار مبدل پلیت فین، بخصوص، ساختار فینها، تأثیر بسیار زیادی بر عملکرد مبدل حرارتی دارند. در نتیجه بهینه سازی آنها می تواند عملکرد مبدل را بهبود بخشیده و صرفه جویی هایی در هزینه های دارند. در نتیجه بهینه سازی آنها می تواند عملکرد فرآیندها و رسیدن به دماهای پایین تر صورت گیرد.

-7-7-1 اهمیت و ضرورت بهینه سازی مبدل های حرارتی صفحه ای پره دار:

در دهههای اخیر، افزایش سرسام آور مصرف انرژی در دنیا، کمبود منابع سوخت فسیلی، کمبود منابع آب آشامیدنی، بحران انرژی، و نیز لزوم رعایت مسائل زیست محیطی از قبیل جلوگیری از افزایش دمای زمین، آلودگی محیط زیست، در کنار لزوم کاهش هزینهها و قیمت تمام شده محصولات و صرفه اقتصادی بیشتر، باعث مورد توجه قرار گرفتن صرفهجویی در مصرف انرژی شدهاست. یکی از راهکارهای اساسی برای افزایش بهرهوری انرژی، بهینهسازی مبدلهای حرارتی است. مبدلهای حرارتی صفجه ای پره دار به دلیل ساختار لایهای و پرهدار خود، امکان افزایش سطح انتقال حرارت را بهبود می بخشند و در نتیجه، عملکرد و بازدهی فرآیندهای حرارتی را به طرز قابل ملاحظهای ارتقاء می دهند. این امکانات از اهمیت ویژهای در کاهش هزینههای جاری و سرمایه گذاریهای اولیه مرتبط با سیستمهای حرارتی بهرهبرداری می کنند. بهینهسازی مبدل حرارتی صفحهای پره دار باعث صرفهجویی در انرژی و بهبود کارایی سیستمهای صنعتی می شود

در جریانهای چند جزئی، مبدلهای حرارتی صفحهای پرهدار به دلیل خصوصیات خاص خود از اهمیت ویژه ای برخوردار است . زیرا این مبدلها از اهمیت ویژه ای برخوردار است . زیرا این مبدلها می توانند نقش مؤثری در بهبود عملکرد سیستمهای حرارتی بازی کنند. با بهره گیری از پرههای

¹ nozzles

² Optimization

فلزی و صفحات فلزی در ساختار، این مبدلها امکان افزایش نرخ انتقال حرارت را فراهم میسازند که این امر موجب بهبود کارایی سیستم و کاهش مصرف انرژی میشود

تحقیقات در زمینه طراحی حرارتی و بهینهسازی مبدلهای حرارتی صفحه پرهدار در جریانهای چند جزئی، نقش مهمی در پیش برد درک ما از فرآیندهای انتقال حرارت و بهبود کارایی کاربردهای مهندسی مختلف ایفا می کند. این بحث اهمیت و ضرورت انجام چنین تحقیقاتی را با استخراج بینش از ادبیات مرتبط برجسته خواهد کرد.یکی از دلایل مهم برای انجام تحقیقات در این زمینه، افزایش عملکرد مبدل های حرارتی است.

یکی از دلایل اصلی انجام تحقیقات در این حوزه، تقاضای روزافزون برای سیستمهای تبادل حرارت کارآمد در بخشهای مختلف از جمله هوافضا، خودروسازی و فرآیندهای صنعتی است. مبدل های حرارتی نقش مهمی در افزایش بهره وری انرژی و کاهش هزینه های عملیاتی دارند. بنابراین، بهبود طراحی و عملکرد آنها برای دستیابی به پایداری و رقابت بسیار مهم است . علاوه بر این، جریانهای چند جزئی، برهمکنشهای ترمودینامیکی پیچیدهای را معرفی می کنند که نیاز به بررسی کامل و مدلسازی عددی دارند. رفتار سیالات مختلف و مخلوط آنها در مبدل های حرارتی می تواند به طور قابل توجهی بر نرخ انتقال حرارت و راندمان کلی سیستم تأثیر گذاری داشته باشد. در نتیجه، محققان در این زمینه مسئولیت توسعه ابزارها و روشهای محاسباتی پیشرفته را برای رسیدگی موثر به این چالشها را بر عهده دارند. علاوه بر این، تحقیقات در طراحی و بهینه سازی حرارتی با انگیزه جهانی به سمت پایداری و کاهش اثرات زیست محیطی همسو می شود. مبدل های حرارتی کارآمدتر منجر به صرفه جویی در انرژی، کاهش انتشار زیست محیطی همسو می شود. مبدل های حرارتی کارآمدتر منجر به صرفه جویی در انرژی، کاهش انتشار راهحلهایی برای مقابله با تغییرات آب و هوایی هستند و تحقیقات در این زمینه را نه تنها مفید، بلکه برای آیندهای پایدار ضروری می سازند [۵]

۱-۳- مروری بر معادلات میانگین ناویر استوکس رینولدز:

معادلات میانگین ناویر استوکس رینولدز مجموعه ای از معادلات ساده شده است که از معادلات ناویراستوکس به دست آمده و برای توصیف رفتار متوسط جریان سیال استفاده می شود. این یک توصیف
ریاضی از رفتار سیالات در حالت پایدار، متلاطم، تراکم پذیر یا غیر قابل تراکم را ارائه می دهد. معادلات
فوق الذکر بر اساس اصول بقای جرم، تکانه و انرژی استواراست. آنها به عنوان یک سیستم معادلات
دیفرانسیل جزئی غیر خطی بیان می شوند، که در آن متغیرهای مجهول، متغیرهای وابسته ای هستند

که به حالت و خواص سیال بستگی دارند. معادلات میانگین ناویر استوکس رینولدز جریان های آشفته ارا در دینامیک سیالات محاسباتی مدل می کند. این معادلات می توانند ویژگی های جریان مانند افت فشار، کشش و انتقال حرارت را در یک سیستم سیال پیش بینی کنند.

از چند دهه گذشته، معادلات میانگین ناویر استوکس رینولدز ؛ به طور گسترده در بخشهای هوافضا، خودروسازی ، دریایی و انرژی و غیره مورد استفاده قرار گرفته شده است . آنها اغلب برای شبیهسازی رفتار جریانهایی که در آیرودینامیک، احتراق و پدیدههای چند فازی با آن مواجه هستند ، استفاده می شد.

جریان های آشفته به وسیله یک دامنه گسترده از مقیاسهای زمانی مشخص میشوند. بنابراین، انجام شبیه سازیهای عددی مستقیم با حل معادلات ناویر استوکس و رفع تمامی مقیاسهای آشفتگی، به ویژه برای جریانهای با عدد رینولدز بالا، به طور چشمگیری گران وبا هزینه های بالائی مواجه است. این سلسله مدل در شکل ۱-۳ نشان داده شده است، به گونهای که در بالا توسط روشهای شبیه سازی عددی مستقیم نشان داده می شود و در پایین توسط روشی با رویکرد تجربی و محاسباتی قابل تحمل تر نشان داده شده است.

شبیه سازی گردابی بزرگ^۲؛ یک توافق بین شبیه سازی مستقیم عددی و شبیه سازی رینولدز میانگین شده ناویر استوکس است که به دو انتهای طیف ، مقیاسهای پراکندگی را نشان میدهند . در شبیه سازی گردابی بزرگ تنها مقیاسهای بزرگتر و پرانرژی توضیح داده می شود، در حالی که مقیاسهای کوچک تر زیر یک آستانه ، فیلتر می شوند.

شکل ۱-۳- نمایش شمانیک از سلسله مدل سازی اشفتگی [۶]

¹ Turbulent flows

² Large Eddy Simulation

۱-۳-۱ اهمیت معادلات میانگین ناویر استوکس رینولدز در بهینهسازی مبدلهای حرارتی صفحهای پرهدار:

بهبود کارایی و بهینهسازی مبدلهای حرارتی صفحهای پرهدار از اهمیت بسیاری برخوردار است، زیرا این مبدلها در بسیاری از صنایع به کار میروند و نقش اساسی در انتقال حرارت دارند. استفاده از معادلات میانگین ناویر استوکس رینولدز در بهینهسازی مبدلهای حرارتی صفحهای پرهدار، مانند یک راهبرد استراتژیک عمل میکند .این معادلات، با ارائه یک توصیف متوسط از جریان سیال، به ما امکان میدهد تا به طور دقیق تری اثرات آشفتگی و نوسانات زمانی را در محیطهای پیچیده ی حرارتی مدلسازی کنیم. این ابزار محاسباتی قادر است تا ویژگیهای جریان مانند افت فشار، انتقال حرارت و کشش را به شکل دقیق تری پیشبینی کند.

این معادلات نقش اساسی در توسعه و بهبود عملکرد مبدلهای حرارتی دارند و باعث افزایش کارایی و کاربردی شدن آنها میشوند .با توجه به پیچیدگیهای موجود در مبدلهای حرارتی صفحهای پرهدار و اثرات ناشی از جریانهای آشفته، استفاده از معادلات میانگین ناویر استوکس رینولدز امری ضروری و بسیارقابل توجه است. این معادلات میتوانند ما را در بهینهسازی طراحی و راه اندازی مبدلها یاری نمایند.

از طریق کاهش هزینهها و زمانهای مورد نیاز برای آزمایشات تجربی و تحلیلهای سنگین عددی ، مدلسازی و بهینهسازی مبدلهای حرارتی صفحهای پرهدار بدون در نظر گرفتن اثرات آشفتگی و نوسانات زمانی، به چالشهایی برخورد خواهد کرد که با استفاده از معادلات میانگین ناویر استوکس رینولدز می توان به بهترین شکل ممکن راه حلهایی برای آنها پیشنهاد داد.

1-4 نقش دینامیک سیالات محاسباتی در بهینه سازی مبدل حرارتی!

استفاده از دینامیک سیالات محاسباتی در بهینهسازی مبدلهای حرارتی یکی از روشهای نوین و موثر برای بهبود عملکرد این تجهیزات پیچیده است. دینامیک سیالات محاسباتی بهطور گستردهای برای شبیهسازی جریان سیالات و انتقال حرارت در مبدلهای حرارتی به کار گرفته شده است. این تکنیک با استفاده از مدلهای عددی پیشرفتهای مانند روش حجم محدود 7 و المان محدود 7 امکان مدلسازی دقیق جریانهای پیچیده و چندجزئی را فراهم میسازد.

¹ Computational fluid dynamics

² Finite Volume Method

³ Finite Element Method

استفاده از روش المان محدود به همراه الگوریتمهای عددی پیشرفته، امکان مدلسازی دقیق ترین جریان سیالات را ارائه میدهد. این روشها به بهبود دقت و صحت نتایج در بهینهسازی مبدل حرارتی کمک میکنند. با استفاده از این ابزار، میتوان به درک بهتری از رفتار دینامیکی سیالات در مبدلهای حرارتی دست یافت و پارامترهای کلیدی مانند افت فشار و ضریب انتقال حرارت را بهینه کرد.

در مدلسازیهای دینامیک سیالات محاسباتی امکان بررسی تأثیر تغییرات در طراحی، مانند افزایش ارتفاع پرهها و افزایش عرض مبدل و فاصله بین پرهها عملکرد مبدل حرارتی را بهبود میبخشد، دینامیک سیالات محاسباتی بر مبنای استفاده از معادلات ناویر -استوکس تأکید دارد و توانایی آن در شبیهسازی دقیق جریان سیالات در اطراف سازههای حرارتی را به تصویر می کشد. اهمیت استفاده از این مدل در بهبود دقت و صحت نتایج بهینهسازی مبدل حرارتی مورد بررسی قرار خواهد گرفت الگوریتمهای بهینهسازی، بهویژه الگوریتم ژنتیک ۱، به عنوان ابزارهای موثر در بهبود کارایی مبدل حرارتی از طریق تغييرات ژنتيک متغيرها مطرح ميشوند . ديناميک سيالات محاسباتي با الگوريتمهاي بهينهسازي مانند الگوریتم ژنتیک منجر به دستیابی به راهحلهای بهینه برای طراحی مبدلهای حرارتی شده است. این روشها به کاهش هزینهها و افزایش کارایی سیستمهای حرارتی کمک میکنند. علاوه بر این، استفاده از تکنیکهای محاسباتی پیشرفته مانند شبکههای عصبی مصنوعی 7 ، سرعت و دقت شبیهسازیهای . دینامیک سیالات محاسباتی را بهبود بخشیده و امکان انجام محاسبات پیچیده در زمان کوتاهتر را فراهم كرده است .تركيب ديناميك سيالات محاسباتي با الگوريتمهاي بهينهسازي امكان بهبود پارامترها و بهینهسازی ساختار مبدل حرارتی را فراهم میسازد . استفاده از راهکارهای پیشرفته محاسباتی نظیر تکنیکهای شبکه عصبی به منظور بهبود دقت و سرعت در مدلسازی دینامیک سیالاتی، موضوعی است که میتواند به تحقیقات ارتقاء دهنده در زمینه بهینهسازی مبدل حرارتی منجر شود . تحلیل دقیق جریان سیالات به کمک دینامیک سیالات محاسباتی، امکان بهبود دقت در تخمین پارامترها و تغییرات مبدل حرارتی را فراهم میآورد. نتایج به دست آمده از این تحلیلها، به عنوان ورودیهای مهم برای الگوریتمهای بهینهسازی مورد استفاده قرار می گیرند . در نهایت، این ترکیب از دینامیک سیالات محاسباتی و الگوریتمهای بهینهسازی در طراحی عددی حرارتی و بهینهسازی مبدل حرارتی صفحهای پرهدار، موجب رسیدن به ساختارهای بهینه و افزایش کارایی سیستم حرارتی شده است . دینامیک سیالات محاسباتی با ارائه مدلهای دقیق و شبیهسازیهای پیشرفته، نقش بسیار موثری در بهینهسازی مبدل حرارتی صفحهای پرهدار در جریانهای چندجزئی ایفا میکند. با ترکیب این روش با تکنیکهای بهینهسازی، می توان مبدل حرارتی را بطور بهینه و کارآمد، با کاهش هزینهها و افزایش کارایی تولید انرژی طراحی کرد . [۷]

¹ Genetic Algorithm

² Artificial Neural Networks

-0-1 روشهای تقویت انتقال حرارت:

بر اساس یک طبقه بندی مرسوم ؛ مبدل های حرارتی به دو دسته فعال و غیر فعال تقسیم می شوند . روش های فعال به روش هایی گفته میشود که در آن بقای مکانیزم تقویت انتقال حرارت وابسته به وجود یک نیروی خارجی است. در حالی که در روش های غیر فعال نیاز به وجود چنین نیرویی ندارند . در سال های اخیر، استفاده از تکنیکهای مدرن مانند مواد نوین با هدایت حرارتی بالا و ساختارهای میکرو و نانو در تقویت انتقال حرارت توجه بیشتری را به خود جلب کرده است. این تکنیکها با کاهش مقاومتهای حرارتی و بهبود همرفت طبیعی، به افزایش کارایی و بهینهسازی مبدل های حرارتی کمک کرده است. همچنین، پیشرفتهایی در مدل سازی جریانهای آشفته و چندفازی بهویژه در حوزه دینامیک سیالات محاسباتی، امکان بهینه سازی بیشتر و پیش بینی دقیق تر عملکرد مبدل های حرارتی را فراهم ساخته است . برخی از مهمترین روش های غیر فعال مرتبط با تحقیق حاضر که امروز دامنه کاربرد وسیعی را به خود اختصاص داده اند ؛ در زیر به صورت مختصر شرح داده می شود. [۸]

1-0-1 سطوح زبر و فین دار:

سطوح زبر و فین دار در انواع مختلفی تولید می شوند . کاربرد عمده سطوح زبر و فین دار عموما در جریان های تک فاز † است . در جریان مخشوش یک ناحیه با سرعت کم در مجاورت دیواره ها تشکیل می گردد که به عنوان زیر لایه لزج شناخته می شود . ضخامت این زیرلایه برای شرایط جریان مخشوش توسعه یافته حدود $^{\circ}$ تا $^{\circ}$ درصد شعاع لوله است . این ناحیه دارای بیشترین مقاومت حرارتی است . بنابراین هر روشی که زیر لایه لزج $^{\circ}$ را حذف کند سبب تقویت انتقال حرارت خواهد شد.

برای کنترل ساختار این زیر لایه دو روش مختلف مورد بررسی قرار گرفته شده است. یکی دیگر از راه ها ؛ توسعه مناطق جدایش جریان نزدیک دیوار است که می توان آن را با استفاده از یک چیدمان متفاوت از مولد های گردابه بر سر راه جریان تحقق بخشید.

روش دیگر ؛ تغییر شکل دادن سطح انتقال حرارت به صورت تو رفتگی های سه بعدی (سوراخ و حفره) است . البته وجود برخی زبری ها نظیر فین تا حد کمی باعث افزایش سطح انتقال حرارت نیز می شود که معمولا تاثیر آن در مقابله با اغتشاش ناشی از جریان موجود در فین ها بسیار ناچیز است .

¹ active

² passive

³ multiphase flows

⁴ single-phase flow

⁵ viscous layer

$-\Delta - 1$ افزودنی به سیالات:

افزودنیهای سیالات یکی از روشهای مؤثر برای تقویت انتقال حرارت در مبدلهای حرارتی به شمار می روند. این افزودنیها بهویژه در سیالاتی با ضریب هدایت حرارتی پایین، مانند آب و روغن موتور، استفاده میشوند. در دهههای اخیر، استفاده از نانوذرات در سیالات به عنوان یک راهحل نوآورانه برای بهبود ضریب هدایت حرارتی مورد توجه قرار گرفته شده است. این نانوذرات به دلیل اندازه کوچک نسبت به سطح ، توانایی افزایش هدایت حرارتی سیالات را دارند و از این طریق، انتقال حرارت را بهبود می بخشند.

پژوهشها نشان دادهاند که نانوذرات سیلیکون کاربید و اکسید آلومینیوم می توانند به طور مؤثری ضریب هدایت حرارتی سیالات را افزایش دهند و علاوه بر آن مشکلاتی نظیر تهنشینی و فرسایش مجاری را کاهش دهند . یکی از مزایای مهم نانوذرات این است که آنها امکان معلق شدن آنها در سیالات بدون نیاز به تجهیزات پیچیده وجود دارد و این امر به بهبود خواص انتقال حرارت کمک می کند.

از دیگر مزایای استفاده از نانوذرات می توان به کاهش هزینه های عملیاتی و بهبود عملکرد سیستمهای حرارتی، حرارتی اشاره کرد. این نانوذرات به ویژه در کاربردهایی مانند سیستمهای خنک کننده و مبدلهای حرارتی، به دلیل کارایی بالای خود و قابلیت پراکندگی در مایعات، بسیار مفید هستند. علاوه بر این ، استفاده از نانوذرات به عنوان افزودنی های سیالات، می تواند نیاز به نیروی خارجی برای تقویت انتقال حرارت را کاهش دهد و در نتیجه، به عنوان یک روش غیرفعال در نظر گرفته می شود [۹]

۱-۶- مزایا و دلایل انتخاب مبدلهای حرارتی صفحهای پرهدار:

مبدل های حرارتی صفحه ای پره دار به عنوان تجهیزاتی کار امد در انتقال حرارت ؛ از مزایای متعددی نسبت به سایر انواع مبدل های حرارتی برخوردار هستند که برخی از این موارد عبارت اند از:

۱- به دلیل استفاده از ضرایب انتقال حرارت مناسب ؛ با کمک این مبدل ها میتوان به بازده حرارتی بالا در کاربرد های مربوط به بازیابی حرارت های اتلافی دست یافت .

۲- به دلیل طراحی ویژه صفحات و واشربندی دقیق، هر سیال در کانالهای جداگانه جریان دارد و امکان نشت یا اختلاط سیالات کاملاً از بین میرود. این ویژگی در صنایعی که حساسیت بالایی به آلودگی یا اختلاط دارند، نظیر صنایع غذایی و دارویی، بسیار حائز اهمیت است.

¹ nanoparticles

۳- مبدل های حرارتی صفحه ای پره دار برای سیالات دارای لزجت بالا بسیار مناسب است . لزجت زیاد باعث می شود که سیالات لزج در انواع دیگر مبدل های حرارتی با رژیم جریان آرام جریان یابند که این امر باعث کاهش انتقال حرارت و افزایش رسوب گرفتگی خواهد شد .

۴- امکان سرمایش و گرمایش دو یا چند سیال به صورت هم زمان در یک مبدل حرارتی صفحه ای پره دار وجود دارد. در حقیقت، این مبدل حرارتی در حالت چندجریانی نیز مورد استفاده قرار می گیرد که این امر استفاده از آن را در واحدهای جداسازی یا واحدهای تولید آمونیاک محبوب ساخته است.

0 طراحی فشرده این مبدلها باعث کاهش حجم، وزن و هزینههای مربوط به حملونقل و نصب می شود. همچنین، نیاز به فضای کمتری برای نصب دارند که در کاربردهای صنعتی با محدودیت فضا یک مزیت بزرگ محسوب می شود.

9- ارتعاش و سر و صدای جریان در این مبدلها به حداقل رسیده است که این ویژگی بهویژه در محیطهای حساس به صدا، نظیر تأسیسات آزمایشگاهی یا مراکز شهری، اهمیت دارد.

۷- مبدلهای حرارتی صفحهای پرهدار در صنایعی نظیر نفت و گاز، پتروشیمی، تبرید، تولید گازهای صنعتی و حتی در سیستمهای تهویه مطبوع کاربرد دارند. با توجه به گستردگی این صنایع در ایران، بهبود طراحی و عملکرد این مبدلها می تواند تأثیر قابل توجهی بر افزایش بازده و کاهش هزینهها در این صنایع داشته باشد.

۸- با وجود مزایای متعدد، طراحی و بهینهسازی مبدلهای حرارتی صفحهای پرهدار به دلیل پیچیدگی جریانهای چندجزئی، نیازمند رویکردهای عددی و مدلسازیهای دقیق است. این چالشها انگیزه اصلی این تحقیق برای ارائه راهحلهای علمی و عملی در بهبود عملکرد این مبدلها است.

۹- این نوع مبدلها به دلیل ساختار فشرده و انعطافپذیری در طراحی، ظرفیت بالایی برای تحقیقات نوین در حوزههای مختلف نظیر استفاده از مواد جدید، طراحی هندسی پیشرفته، و شبیهسازی جریانهای چندفازی دارند.

۱۰ – با توجه به ساختار فشرده ؛ راندمان بالا و توانایی جابجایی و انتقال حرارت بین چند جریان به طور هم زمان ؛ مبدل های حرارتی صفحه ای پره داربه طور گسترده ای در فرایند های تبریدی^{۲۱} مورد استفاده قرار میگیرند که این فرایند ها در صنایع پتروشیمی ؛ تولید گاز صنعتی؛ و کاربرد دارد . [۱۰]

² Refrigeration processes

۱-۷- مروری بر فصول پایان نامه:

در فصل یک پایان نامه ؛ مدل ریاضی واهمیت طراحی عددی و بهینهسازی مبدلهای حرارتی صفحهای پرهدار در جریانهای چندجزئی شرح داده شده است . در این فصل، تحقیقاتی که در راستای بهینهسازی مبدلهای حرارتی صورت گرفته باشند، مورد مطالعه و بررسی قرار گرفتهاند. در نهایت، چالشهای موجود برای تحلیل مبدل مورد نظر بیان شده و نوآوریها و اهداف پژوهش حاضر تشریح شده است.

در فصل دوم، پژوهشهایی که در حوزه بهینهسازی مبدلهای صفحهای پرهدار انجام شدهاند، مرور شده است. در این فصل تحقیقاتی مورد مطالعه و مورد بررسی قرار گرفته می شوند که در راستای بهینهسازی مبدل های حرارتی انجام شده باشند گرفتهاست. در نهایت، با بیان چالشهای موجود برای تحلیل مبدل مورد نظر، نوآوری و اهداف پژوهش حاضر بیان گردیده می شود.

در فصل سوم، ساختار فین مورد مطالعه را بررسی و تجزیه و تحلیل شده و سپس ؛ مروری بر مدلسازی و اساس روشهای تحلیل مبدلهای حرارتی، با تمرکز بر مبدلهای حرارتی صفحهای پرهدار، صورت گرفته شده است . معادلات حاکم بر فرآیند انتقال حرارت در مبدلهای حرارتی و روشهای مدل سازی مبدلهای حرارتی صفحهای پرهدار، شرح داده شده است. در ادامه، روابط حاکم بر محیط چندفازی و روابط تعادل فاز ؛ در کنار روابط حاکم بر تحلیل جریانهای چند جزئی شرح داده شده است. چالشهای تحلیل مبدلهای حرارتی چندفازی و چندجزئی وعدم توانایی روابط یک بعدی در تحلیل آنها مورد بررسی قرار گرفته شده است .

فصل چهارم این پژوهش به شرح فرآیند برقراری ارتباط بین نرمافزارهای مورد استفاده برای بهینهسازی مبدلهای چندفازی اختصاص یافته است. روش بهینهسازی و آنالیز حساسیت مورد استفاده توضیح داده شده است. در ادامه، مبدل مورد بررسی و بهینهسازی در این پژوهش، به همراه کاربرد آن و هندسه طراحی شده فعلی معرفی شده است. توابع هدف تکمنظوره و چندمنظوره برای بهینهسازی عملکرد مبدل تعریف شدهاند و نتایج حاصل از بهینهسازی مبدل ارائه شده است

در فصل پنجم، به جمعبندی پژوهش انجام شده پرداخته شده و پیشنهادهایی به منظور ادامه پژوهش ارائه گردیده است.

فصل دوم

مروری بر کار های گذشتگان و پیشینه تحقیق

۱-۲- مقدمه:

امروزه بهینه سازی مبدل های حرارتی صفحه پره دار بیش از هر زمان دیگری اهمیت پیدا کرده است. در این فصل، تحقیقات و کارهای گذشته در زمینه بهینهسازی مبدلهای حرارتی صفحه پرهدار بهصورت جامع بررسی میشود. هدف از این بررسی ؛ ایجاد یک پایه محکم برای مطالعه ای است که بر طراحی حرارتی و بهینه سازی مبدل های حرارتی صفحه پره دار در جریان های چند جزئی متمرکز است. تحقیقات در حوزه بهینهسازی ساختار مبدلهای حرارتی صفحه پرهدار، به عنوان یکی از زمینههای حیاتی در مهندسی حرارتی ؛ از اهمیت ویژهای برخوردار است. این فصل، به بررسی گسترده پیشینه تحقیقات در زمینه طراحی عددی حرارتی و بهینهسازی مبدل حرارتی صفحهای پرهدار در جریانهای چندجزئی اختصاص دارد.

ابتدا مبانی و اصول طراحی مبدلهای حرارتی صفحه پرهدار مورد بررسی قرار گرفته می شود . مفاهیم اساسی از جمله جریان حرارت، انتقال حرارت تراکمی، و مفاهیم اصلی در طراحی هندسی این مبدلها مورد بحث قرار میگیرد . سپس، به بررسی روشهاواستراتژیهای بهینهسازی ساختار مبدلهای حرارتی صفحه ای پرهدار پرداخته می شود. در پایان، پیشینه تحقیقات در زمینه طراحی عددی حرارتی و بهینهسازی مبدلهای حرارتی صفحه پرهدار در جریانهای چندجزئی بهطور گسترده مرور میشود. این روابط بهعنوان ابزارهای اساسی در فرآیند بهینهسازی ساختار مبدلها ارائه میشود.

این فصل به بررسی چالشها و فرصتهای بهینهسازی ساختار مبدل حرارتی در محیطهای پیچیده چندفازی پرداخته و انگیزه پژوهش حاضر در این حوزه را مورد بررسی قرار میدهد. در نهایت، این مقدمه نقطه آغازی فعّال برای مطالعات بعدی در این حوزه فراهم می کند و ارتباط مستقیم با هدف کلی بهبود عملکرد مبدلهای حرارتی صفحه پرهدار در جریانهای چندجزئی را برقرار میسازد

هدف این فصل ارائه در کی جامع از عوامل و چالشهای کلیدی در بهینهسازی مبدلهای حرارتی صفحه پرهدار است و بینشهای ارزشمندی درباره جریان چند جزئی تبادل حرارت فراهم می نماید. دانش بهدستآمده در این فصل بهعنوان پایهای برای بحثها و یافتههای تحقیقاتی بخشهای بعدی مورد استفاده قرار گرفته و در جهت دستیابی به هدف کلی افزایش عملکرد و پایداری سیستمهای مبدل حرارتی نقشآفرینی مینماید.

.

¹ multi-phase flows

۲-۲- طراحی مبدل حرارتی:

فرایند طراحی مبدل حرارتی به عنوان یک چالش پیچیده در صنعت مطرح می شود که این چالش به دلیل متغیرهای زیاد و ارتباطات پیچیدهای که در طراحی وجود دارد، افزایش می یابد . زیرا این فرآیند نیازمند در نظر گرفتن بسیاری از پارامترها و ارتباطات پیچیده است. گام اول برای ایجاد مبدل حرارتی کارآمد و جلوگیری از نقصان در عملکرد آن طراحی صحیح مبدل حرارتی صفحه ای پره دار است . هدف اصلی از طراحی بدون شک برآورده کردن نیازهای فرآیند است ؛ بنابراین طراحان باید تمام اطلاعات مانند نرخ جریان سیالات، فشارهای عملیاتی و حداکثر دماها و همچنین تمام محدودیتهای هزینه، فضا و انواع مواد را مورد مطالعه قرار دهند . طراحان ؛ مبدل های حرارتی را با توجه به نوع ساخت، هندسه، و مواد وهمچنین با در نظر گرفتن شرایط عملیاتی مانند هزینه، نگهداری، قابلیت اعتماد، و ایمنی انتخاب می کنند. مبدل حرارتی صفحهای پرهدار به عنوان یکی از مبدلهای پرکاربرد در صنایع مختلف هستند و می کنند. مبدل حرارتی و حفاظت از محیط زیست را برآورده سازند.

با توسعه سریع علم و فناوری، استفاده از انرژی و حفاظت از محیط زیست جلب توجه بیشتری پیدا کرده است، این امر باعث شده است که در صنایع مختلف به تجهیزات مبدل های حرارتی با کارایی بیشتر، فشرده تر و سبک تر نیاز باشد. مبدل های حرارتی صفحه ای پره دار، مبدل هایی هستند که می تواند به این نیاز پاسخ دهند. مبدل های حرارتی صفحه ای پره دار جزء پر کاربرد ترین مبدل ها در صنعت مهندسی هستند . طبق قانون دوم ترمودینامیک ، تولید آنتروپی به علت عوامل غیرقابل بازگشت فرآیند ایجاد می شود . فرآیند انتقال حرارت یک فرآیند غیرقابل بازگشت استاندارد است . روش کاهش تولید آنتروپی برای تحلیل عملکرد حرارتی در فرآیندهایی که نیاز به انتقال حرارت دارند، انتخاب می شود.

مبدل حرارتی را میتوان با تعیین چندین پارامتر هندسی در محدودیتهای خاص طراحی کرد. هندسه سطح آن با طول شاخه (l)، ارتفاع (h)، فاصله عرضی (s)، و ضخامت (t) توصیف می شوند. شاخهها می توانند به طور مؤثر مساحت انتقال حرارت را افزایش دهند و به بهبود کارایی انتقال حرارت کمک کنند . علاوه بر این، خصوصیات جریان و انتقال حرارت به طور نزدیک با سطح انتقال حرارت در ارتباط هستند . بنابراین، بهینه سازی پارامترهای شاخهها برای صرفه جویی در انرژی و کاهش هزینه مبدل حرارتی بسیار مهم است. در چند دهه گذشته، بهینه سازی طراحی مبدل حرارتی توجه محققان زیادی را به خود جلب کرده است. [11]

¹ second law of thermodynamics

² Entropy

۲-۳- بهینه سازی ساختار مبدل های حرارتی صفحه ای پره دار:

در دهههای اخیر، بهبود کارایی مبدلهای حرارتی از اهمیت ویژه ای برخوردار بوده است و تحقیقات گستردهای در این زمینه انجام شده است. هدف اصلی این مطالعات افزایش بهرهوری انتقال حرارت و بهینهسازی مبدلهای حرارتی است. این اهداف با توجه به نیاز های مختلف صنایع ؛ از اهمیت ویژه ای برخوردار هستند . یکی از جوانب مهم در بهبود عملکرد سیستم های حرارتی ؛ طراحی بهینه مبدل های حرارتی صفحه ای پره دار است. این مبدل ها به وسیله بهبود هندسه صفحات و پره ها ؛ مساحت انتقال حرارت را افزایش می دهند و بهینه ترین شکل ها و ابعاد را برای دستیابی به عملکرد بهتر ارائه می دهند. هرچه هندسه پیچیده تر باشد، انتقال حرارت بالاتر است. با این حال، محدودیتهای سنتی در تولید مى تواند بهينه سازى هندسه را محدود كند كه ممكن است از نظر تئورى ؛ كارايي بسيار بالايي ارائه دهند اما ساخت آنها غیرممکن است . طراحی بهینه مبدل های حرارتی صفحه ای پره دار با استفاده از روشهای سنتی مانند روش دمای میانگین لگاریتمی و روش تعداد واحدهای انتقال حرارت ؛ هزینهبر و زمانبر است . با پیشرفت سریع دینامیک سیالات محاسباتی و فناوری کامپیوتر، امکان بهینهسازی طراحی مبدل های حرارتی صفحه ای پره دار با کارایی بالا با استفاده از کامپیوترها فراهم شده است. مطالعات انجام شده توسط تحقیق گران مختلف نشان می دهد که شبیه سازی هایی که با روش دینامیک سیالات محاسباتی انجام می شوند ؛ برای انواع مختلف مبدل های حرارتی صفحه ای یره دار قابل اعتماد است. بنابراین، شبیه سازی های عددی می توانند هزینه های زیاد تولید ابزار، کار آزمایشی و زمان تحقیق و توسعه را کاهش دهند و امکان بهینهسازی کارآمد طراحی مبدل ها را فراهم کنند. [۱۲]

مقایسه خصوصیات فیزیکی سیال و جامد ؛ تاثیر پارامتر های تاثیر گذار بر این خصوصیات فیزیکی مانند دانسیته و ویسکوزیته بر عملکرد مبدل های حرارتی صفحه ای پره دار بسیار حائز اهمیت است . بررسی تفاوت در دانسیته و ویسکوزیته آب و هوا به عنوان مایعات و جامدات مورد استفاده در مبدل ها ؛ می تواند راهنمایی مهمی برای بهینه سازی ساختار و افزایش کارایی انتقال حرارت باشد . خواص فیزیکی سیال و جامد در جدول 1-1 آمده است.

¹ Optimization

² Density

³ Viscosity

	Water	Air	Aluminum
Density (kg/m ³)	998.2	1.23	2719
Specific heat (J/(kg·K))	4182	1006.43	871
Thermal conductivity (W/(m·K))	0.6	0.0242	237
Viscosity (Pa·s)	8.81×10^{-4}	2.493×10^{-5}	72

جدول ۲-۱ – خصوصیات فیزیکی مایع و جامد [۱۳]

مینسونگ و همکاران [۱۴] از روشهای شبیه سازی عددی برای بررسی عملکرد یک مبدل حرارتی با شیارهای افقی تحت جریانی در دهانه بالا استفاده کردند و متوجه شدند که طراحی شیارهای افقی می تواند مبدل های حرارتی صفحه ای پره دار را سبکتر و کوچکتر کنند. با این حال، به منظور به دست آوردن ویژگیهای انتقال حرارت و مقاومت جریان مبدل های حرارتی صفحه ای پره دار ، لازم است تجزیه و تحلیل شبیه سازی عددی مبدل های حرارتی صفحه ای پره دار انجام شود. با این وجود، اندازه شیار نسبت به اندازه کلی مبدل های حرارتی صفحه ای پره دار بسیار کوچک و به شدت ناکار آمد است واز طرفی به طور مستقیم مبدل های حرارتی صفحه ای پره دار با ساختارهای پیچیده مانند نوع صفحه و نوع شیار به روش عددی ؛ شبیه سازی شده اند.

شدت انتقال حرارت به صورت مستقیم به هندسه تاجزدایی روی سطح صفحات بستگی دارد. وانگ وهمکاران [۱۵] تأثیر ابعاد هندسی مبدل های حرارتی صفحه ای پره دار را بر بهرهوری مبدل های حرارتی بررسی کردند. آنها متوجه شدند که با افزایش عدد رینولدز در فین ها نسبت طول به عرض کاهش می یاید و اندازه فین های طولی افزایش می یابد . علاوه بر این، عدد ناسلت و عامل اصطکاک با افزایش نسبت طول به عرض فین کاهش می یابند.

نینگ و همکاران [۱۶] مدلسازی عددی تبادل گر صفحه ای را انجام دادند و نتایج را با داده های تجربی مقایسه کردند .نویسندگان تعیین کردند که برای یک افت فشار ؛ برنامه دما و بار حرارت مشخص ؛ می توان پارامتر های هندسی صفحه را پیدا کرد که تبادل گر حرارت صفحه ای با حداقل مساحت انتقال حرارت را ایجاد کنند

انتخاب هندسه بهینه، که در آن افزایش ضریب انتقال حرارت به دست میآید، معمولاً به صورت تجربی انجام میشود و با استفاده از تئوری شباهت^۳، معادلات معیاری به دست میآید که امکان محاسبه پارامترهای انتقال حرارت را فراهم میکنند. با این حال، از نظر هزینههای اقتصادی، این راه حل بسیار

¹ Reynolds Number

² Nusselt Number

³ similarity theory

پرهزینه است، بنابراین برای حل مسئله بهینهسازی مبدل های حرارتی صفحه ای پره دار از مدلسازی کامپیوتری استفاده میشود .

۲-۴ استخراج روابط تجربی برای مدلسازی ریاضی رفتار سیالات در مبدلهای حرارتی:

طراحی بهینه مبدل های حرارتی صفحه ای پره دار با استفاده از روشهای سنتی مانند روش دمای میانگین لگاریتمی و روش تعداد واحدهای انتقال حرارت بسیار هزینه بر و زمانبر است. با پیشرفت سریع دینامیک سیالات محاسباتی و فناوریهای نوین ، امکان بهینهسازی طراحی مبدل های حرارتی صفحه ای پره دار با کارایی بالا فراهم شده است. مطالعات انجام شده توسط محققان مختلف نشان داده شده است که شبیهسازیهای انجام شده با روش دینامیک سیالات محاسباتی برای انواع مختلف مبدل های حرارتی صفحه ای پره دار قابل اعتماد هستند بنابراین، شبیهسازیهای عددی می توانند هزینههای زیاد تولید ابزار، کار آزمایشی و زمان تحقیق و توسعه را کاهش دهند و امکان بهینهسازی کارآمد طراحی مبدل های حرارتی را فراهم کنند.

مانگلیک و برگلز [۱۷]؛ بر اساس دادههای تجربی برای ۱۸ پره مختلف، به استحصال رابطههایی برای انتقال حرارت و افت فشار در مبدل صفحهای پرهدار، با پرههای جابجاشده (پرداختند. روابط ارائه شده در این پژوهش، با دقت ± 20 ، در تطابق با داده های تجربی هستند. تحقیق فوق در بازه رینولدز بزرگتر از ۲۰۰۰۰ انجام شده است. پارامترهایی که در بیان این روابط استفاده شدهاست: به ابعاد مختلف پرههای مبدل است. این پارامترها مطابق رابطه -1 و شکل -1 تعریف شدهاست:

شکل ۲-۱ پارامترهای مشخص کننده پرهها در پژوهش مانگلیک و برگلز[۱۷]

¹ Serrated or Offeset fins

$$\alpha = \frac{s}{h}$$
; $\delta = \frac{t}{l}$; $\gamma = \frac{t}{s}$;

رابطه (Y-1) رابطه ای است که مانگلیک و برگلز برای ضرائب کالبرن \mathbf{j} و اصطکاک \mathbf{i} ، در پژوهش خود به آن دست یافتند. ضرائب کالبرن و اصطکاک، که در فصل بعد به طور کامل شرح داده خواهد شد، ضرائبی است که به ترتیب ؛ انتقال حرارت و افت فشار سیال در داخل مبدل بر اساس آنها محاسبه می شود.

$$j = 0.6522(Re)^{-0.5403}\alpha^{-0.1541}\delta^{0.1499}\gamma^{-0.0678}$$

$$\times (1 + 5.2699 \times 10^{-5}(Re)^{1.34}\alpha^{0.504}\delta^{0.456}\gamma^{-1.055})^{0.1}$$

$$f = 9.6243(Re)^{-0.7422}\alpha^{-0.1856}\delta^{0.3053} - 0.2659$$

$$\times (1 + 7.669 \times 10^{-8}(Re)^{4.429}\alpha^{0.920}\delta^{3.767}\gamma^{0.236})^{0.1}$$

این روابط به عنوان مبنا و پایه برای بسیاری از بهینهسازیهای ساختار مبدل صفحهای پرهدار با پرههای جابجاشده، استفاده شدهاست.

در همین راستا، برای بهبود و گسترش بازه رینولدز تحت پوشش در معادلات ارائه شده فوق ، ارتور و همکاران [۱۸] مطالعه ویژگیهای انتقال حرارت در میکروکانالها و مینیکانالهایی که حاوی آرایههایی از پره های نواری نامنظم هستند ؛ را تحت شرایط مرزی شار حرارتی یکنواخت بررسی میکنند. آنها در پژوهش خود، با استفاده از نرمافزار محاسبات عددی دینامیک سیالات محاسباتی ، به بررسی انتقال حرارت و افت فشار سیال در مبدلهای حرارتی صفحهای پرهدار پرداختند و بر اساس نتایج بدست آمده، روابط جدیدی برای ضرائب f و f معرفی کردند.

تمرکز اصلی این تحقیق بر تعیین عدد ناسلت در شرایط حرارتی پایا و دورهای توسعهیافته است. نویسندگان تأثیر هندسه کانال، آرایش پرهها و ویژگیهای حرارتی بر عملکرد انتقال حرارت را تحلیل کردهاند. رویکردهای محاسباتی و تحلیلی برای مدلسازی و اعتبارسنجی رفتار انتقال حرارت استفاده شده است. یافتههای این تحقیق دیدگاههای مفیدی برای بهینهسازی طراحیهای حرارتی در مبدلهای حرارتی فشرده ارائه میدهد و کاربردهای عملی در خنکسازی الکترونیک، سیستمهای خودرویی و دیگر سیستمهای مدیریت حرارتی در مقیاس میکرو دارد.

برای روابط ارائه شده فوق ، دو محدودیت میتوان برشمرد. اول اینکه این روابط بازههای محدودی از ساختارهای مختلف پرهها را مورد بررسی قرار دادهاند. دوماً، این روابط مختص مبدلهای صفحهای پرهدار با پرههای جابجا شده هستند و قابل استفاده در تحلیل مبدلهای صفحهای پرهدار با انواع دیگر پرهها نیستند.

در همین راستا، قاسم و زبیر [۱۹]، به استحصال روابط برای نوع دیگری از پرهها در مبدل صفحهای پرهدار، یعنی پرههای موجدار پرداختند. ایشان، با استفاده از ۲۹ داده تجربی حاصل از ۳ پژوهش متفاوت و ۲۱ داده جدید تحلیلی که با ابعاد و مشخصات مختلف هندسه پرههای موجدار در نرمافزار شبیهسازی انسیس فلوئنت تحلیل کردند (مجموعا ۵۰ هندسه مختلف)، به استخراج رابطههای تجربی برای افت فشار و انتقال حرارت سیال در مبدلهای صفحه ای پرهدار با پرههای موج دار پرداختند. روابط بدست آمده توسط آنها، دارای خطای میانگین مجموع مربعات کمتر از ۱۰ درصد بودند.

هو و لی $[7^{1}]$ بوسیله راه اندازی تست تجربی، اقدام به بررسی ضریب انتقال حرارت j در مبدلهای حرارتی صفحه می پره دار، نمودند. این روابط با دقت 5^{1} قابلیت پیش بینی ضریب انتقال حرارت را دارند. در این مدل سازی، ضریب انتقال حرارت بر حسب j و شار حرارتی، پیش بینی می شود .بازه دبی بر واحد سطح پوشش داده شده در این روابط، بین 5^{1} تا $\frac{kg}{m^{5}s}$ می باشد. نقطه ضعف این روابط استخراج شده، عدم وابستگی این ضرائب انتقال حرارت به هندسه پرهها در مبدل حرارتی است. در واقع این اعداد بر حسب رینولدز جریان و پرانتل بیان می شود که دربردارنده مشخصات هندسی پرهها نیستند. از این روابط نمی توان در بهینه سازی هندسه مبدل های حرارتی صفحه ای پره دار استفاده کرد.

پژوهشهای مشابه دیگری نیز در حیطه بررسی مشخصات انتقال حرارت دو فاز، در مبدلهای حرارتی صفحهای پرهدار صورت گرفته شده است، اما هیچکدام در بردارنده روابط ضریب کالبرن و اصطکاک بر حسب هندسه پرهها نیستند. از اینرو از روابط مذکور در بهینهسازی ساختار مبدلهای صفحهای پرهدار با جریان چندفازی و چند جزئی نمیتوان استفاده کرد. به عبارتی انتقال حرارت در جریانهای دو فاز، بدلیل پیچیدگی رفتار سیال در این جریانها و وابستگی شدید انتقال حرارت به جبهه جریان و کیفیت بریان، همچنان به صورت روابط تجربی قابل اتکا همانند روابط مانگلیک و برگلز و قاسم و زبیر، برای مبدلهای صفحهای پره دار در نیامدهاند. از این رو، بهینهسازی مبدلهای دو فاز با چالشهایی رو برو است.[۲۱]

-4-4 بهینه سازی ساختار عملی مبدل حرارتی صفحه ای پره دار:

بر اساس اطلاعات به دست آمده درباره انتقال حرارت و افت فشار سیالات در مبدلهای صفحهای پره دار با جریانهای تکفاز، بهینه سازی های گوناگونی بر روی ساختار این مبدلها با استفاده از پارامترهای هدفی همچون بازده انتقال حرارت، افت فشار، و هزینه های عملیاتی و سرمایه گذاری انجام گرفته شده است. در ادامه، به برخی از این بهینه سازی ها اشاره خواهد شد.

¹ Mean Squared Error

لی و همکاران [۲۲] به محدودیتهای تحقیقات موجود، مانند نادیده گرفتن فرآیند انتقال فاز، استفاده از مدلهای سادهشده یا تمرکز بر جریان تک فاز اشاره می کنند . این مقاله بر روی اثرات پارامترهای ساختار پرهها، مانند ارتفاع، فاصله، ضخامت و طول، و ویژگیهای انتقال گرما و جرم کانال تحت شرایط انتقال فاز تمرکز دارد .آنها پیشنهاد می کنند که ازدینامیک سیالات محاسباتی برای شبیه سازی و بهینه سازی ساختار نرم افزاری در شرایط انتقال فاز و مطالعه مکانیسم و ویژگی های انتقال گرما و جرم بین مناطق دو فازی استفاده شود. در تحقیق فوق ؛ مدل هندسه، معادلات حاکم، روشهای حل، و شرایط مرزی دسته صفحه توصیف شده است .آنها از مدل آشفتگیk-k ، برای فرآیند انتقال فاز استفاده می f و j کنند . همچنین در این تحقیق ؛ مدل ارزیابی افت فشار و عملکرد انتقال حرارت بر اساس عوامل معرفي شده است .آنها همچنين تأييد استقلال شبكه ' و اعتبارسنجي مدل ' را انجام مي دهند . همچنين روش ها و محتوای اصلی تحقیق خود را معرفی کردند.

حاجعبداللهي [۲۳]، بازده انتقال حرارت و هزينه ساليانه دو مبدل صفحهاي پرهدار با ساختارهاي متفاوت و شرایط فرآیندی یکسان ، به کمک روش بهینهسازی توده ذرات ، بهینهسازی کردند. در این پژوهش، یک مبدل با ساختار معمولی و یک مبدل با ساختار دو مرحلهای (عرض مبدل و مشخصات هندسی پرهها، در میانه مسیر عبور جریان سرد و گرم، به طور دفعهای، تغییر می یابد)، بررسی و بهینهسازی می شوند. به این ترتیب، در مجموع، ۱۲ مشخصه بهینهسازی جهت دستیابی به حالت بهینه، بررسی میشود. روابط به کار رفته در این بهینهسازی نیز، روابط معرفی شده توسط ماگلیک و برگلز هستند. جبهه نقاط بهینه ٔ برای هزینه سالیانه و بازدهی مبدل حرارتی، در شکل نمایش داده شدهاست . شکل ۲-۲ نشان می دهد که برای بازدهیهای بالاتر از ۷۵٪، ساختار دو مرحلهای، هزینه کمتری را برای دستیابی به بازده حرارتی بهینه $^{\Delta}$ تحمیل می $^{\Delta}$ ند. به عبارت دیگر، مبدل با ساختار دو مرحلهای، درحالت بهینه، صرفه اقتصادی بیشتری را به ازای انتقال حرارت واحد خواهد داشت. نکته حائز اهمیت دیگری که در این پژوهش به آن دستیافته شدهاست، لزوم افزایش تصاعدی مساحت انتقال حرارت و به تبع آن افزایش افت فشار در مبدلها برای افزایش بازده مبدل به مقادیر بازده بالاتر از ۸۰ درصد است که این مورد باعث تحمیل هزینه سالانه بالا می شود. روند تغییرات افت فشار در برابر ضریب تاثیر مبدل حرارتی، در شکل ۲نمایش داده شدهاست.

¹ Confirming network independence

²model validation

³ Particle Swarm Optimization method

⁴ Optimal Pareto Front

⁵ Optimal thermal efficiency

شکل ۲-۲ تغییرات هزینه سالانه عملیاتی مبدل در مقابل بازده انتقال حرارت دو مبدل مورد بررسی [۲۳]

شکل $^{-7}$ تغییرات $^{-8}$ سطح انتقال حرارت مورد نیاز مبدل و $^{-8}$ افت فشار در مبدلها در مقابل بازده انتقال حرارت $^{-8}$

یانگ و همکاران [۲۴]؛ به بررسی تاثیر پارامترهای ارتفاع، ضخامت، و رینولدز جریان بر انتقال حرارت مبدلهای هوا-هوا پرداختند. شبیهسازی رفتار سیال در مبدل بر اساس روابط ارائه شده توسط مانگلیک و برگلز انجام شده است . توابع هدف در این مسئله شامل نرخ انتقال حرارت، هزینه سالانه مبدل و نیز تولید آنتروپی در مبدل مورد نظر است و به صورت جداگانه بررسی می گردند. قیود مسئله بر اساس مشخصات هندسی فین و رینولدز جریان تعریف شدهاند. روش بهینهسازی به کار رفته در این پژوهش نیز، روش بهینهسازی الگوریتم ژنتیک است. نتایج بهینهسازی نشان میدهد که بیشترین انتقال حرارت در حالتی رخ میدهد که عدد رینولدز ورودی افزایش یابد. همچنین، حالت بهینه انتقال حرارت، هزینه سالانه و تولید آنتروپی بسیار بالایی را تحمیل می کند. در مقابل، کمترین هزینه عملیاتی سالیانه در حالتی بهینهاست که کمترین تولید آنتروپی به همراه داشته باشد. فعالیت دیگری که در این پژوهش به آن پرداخته شدهاست، انالیز حساسیت جهان شمول است. این آنالیزهای حساسیت که به روشهای سوبول را و ماریس انجام می شود، نشان می دهد که عدد رینولدز و فرکاسن فین، بیشترین تاثیر را بر توابع هدف بهینه سازی دارد. شکل ۲-۴ نشان دهنده حساسیت یارمترهای مختلف مورد بررسی در این پژوهش است.

¹ Global sensitivity analysis

² Sobol Method

³ Marris Method

شکل ۲-۴ حساسیت توابع هدف بررسی شده در پژوهش یانگ و همکاران نسبت به متغیرهای بهینهسازی[۲۴]

در یکی دیگر از پژوهشهای قابل توجه در زمینه بهینهسازی مبدلهای حرارتی صفحهای پرهدار، سانگ و کویی [۲۵] ؛ با بهره گیری از روش بهینهسازی الگوریتم ژنتیک در محیط برنامهنویسی متلب، به بهینهسازی مبدل صفحهای پرهدار با پرههای جابجا شده، می پردازند . در این پژوهش، از روابط توسعهیافته توسط سانگ، برای استخراج ضرائب کالبرن و اصطکاک استفاده شده است. قیود در نظر گرفتهشده در این پژوهش قیود روابط سانگ و افت فشار مجاز در جریانهای سرد و گرم است. مبدل مورد بررسی در این پژوهش، دو جریانه بوده و جریان های سرد و گرم دارای هندسه جداگانه هستند . توابع هدف مورد بررسی در این پژوهش، شامل انتروپی تولیدی، بازده حرارتی و هزینه سالانه مبدل حرارتی است. این توابع هدف، ابتدا به صورت جداگانه و سپس به صورت ترکیبی بهینهسازی میشوند. در این پژوهش، مشخصات پرهها به عنوان متغیرهای بهینهسازی در نظر گرفته شده است. نتایج این پژوهش نشان می دهد، افزایش

بازده حرارتی، مستلزم کاهش تولید آنتروپی است و این دو پارامتر با یکدیگر رابطه خطی دارند. بهینهسازی جداگانه پارامترها نشان می دهد که با کمک روش بهینهسازی الگوریتم ژنتیک ، می توان ساختار مبدل را به گونهای تغییر داد که بهازای کاهش اندک بازده مبدل حرارتی، هزینه سالانه به طرز چشم گیری کاهش یابد. همچنین، بهینهسازی با توابع هدف ترکیبی نشان میدهد می توان به حلهایی دست یافت که هم بازه انتقال حرارت را افزایش داده و هم کاهش هزینه سالانه را به همراه داشته باشد. علاوهبراین، این روش امکان دستیابی به راهحلهای متعدد بهینه را فراهم می کند که می توان بسته به اهمیت هر یک از توابع هدف، انتخاب مناسبتری انجام داد.

پیرو معرفی روابط تجربی ضرائب انتقال حرارت و اصطکاک برای مبدلهای صفحهای پرهدار با پرههای سینوسی موجی ^۱توسط قاسم و زبیر، در پژوهشی، کوئی و سانگ[۲۶] ، به بهینهسازی مبدلهای صفحهای پرهدار با پرههای موجی پرداختند. مبدل هوا-هوای مورد استفاده در این بهینهسازی، با روش الگوریتم ژنتیک برای توابع هدف هزینه سالانه، تولید آنتروپی و بازده انتقال حرارت، بهینهسازی شد. متغیرها نیز در این پژوهش، مشخصات هندسی پرههای موجدار هستند. نتایج این شبیهسازی نیز موثر بودن روش الگوریتم ژنتیک را برای بهینهسازی این مبدلها مشخص می کند.

گریسیوناس و همکاران [۲۷]به مدلسازی مبدل های حرارتی صفحه ای پره دار با فین های دندانه دار با استفاده از روش دینامیک سیالات محاسباتی پرداختند . در این روش در محدوده اعداد رینولدز (88< Rey_{corrua} <2957) با استفاده از فرضیه لامینار شبیه سازی شده است. یافته های اصلی این تحقیق نشان داد که : ۱ - حدود بخش انتخابشده مبدل حرارتی با استفاده از دادههای مربوط به مقاومت جریان برای مدل یک تککانال موجدار تأیید شد. توافق خوبی در محدوده وسیعی از اعداد رینولدز بین پیشبینیها و حدود بخش مبدل حرارتی که مقاومت جریان کمتری ایجاد میکند، وجود داشت.۲- دو مدل مبدل حرارتی با سادهسازیهای جریان هسته مبدل و واسط متخلخل پاورلا، تنها اندکی تفاوت در سطح توزیع مناسب در داخل هسته مبدل حرارتی پیشبینی کرد.

در تحقیق ناسیمنتو و همکاران [۲۸] به مدلسازی عددی یکپارچه و طراحی بهینه ترمودینامیکی مبدل های حرارتی صفحه ای پره دار جریان معکوس با استفاده از شبکه عصبی پرداخته شده است . آن ها ویژگی انتقال حرارت و افت فشار مبدل حرارتی صفحه ای فین دار از طریق انتقال حرارت ضریب کالبرن ضریب اصطحکاک را مورد بررسی قرار دادند . در مقاله آنها تحلیل عددی یک مبدل حرارتی با فین های 2 نامنظم در فرایند انتقال حرارت آب - آب مورد بررسی قرار گرفت . در این تحقیق 1 از مدل جانشین

26

¹ Waveguide finned plate converters with sinusoidal fins

² Surrogate model

استفاده شده و توانایی یکپارچه سازی الکوزیتم ژنتیک و شبکه بازگشتی را نشان داده است. روش بهینه سازی ارائه شده به طور قابل توجهی توانایی طراحی را با تمرکز بر موارد مربوط به حجم ؛ افت فشار و کارایی در مقایسه با تحقیقات پیشین بهبود داده است . در تحقیق فوق ؛ روند اطلاعات ازمایشگاهی باهمخوانی بهتری در خصوص موارد و اندازه گیری های مربوط به انتقال حرارت و افت فشار نشان داده شده است . در فرایند بهینه سازی ؛ بیشینه کردن کارایی و کمینه کردن حجم و افت فشار به عنوان موضوعی مهم برای بهینه سازی مبدل های حرارتی در نظر گرفته شده است . نتایج بهینه سازی نشان می دهد که حجم و کارایی همان مقادیر تحقیقات قبلی را خواهد داشت . در حالی که افت فشار در سمت گرم و سرد به ترتیب ۵۵.۴٪ و ۷۲.۳٪ کاهش خواهد یافت

ژیانگ و همکاران [۲۹]به بررسی کاربرد دینامیک سیالات محاسباتی و بهینهسازی با استفاده از تابع پایه شعاعی 2 برای بهبود طراحی و عملکرد مبدلهای حرارتی با پرههای لولادار پرداخته اند. پرههای لولادار در مبدلهای حرارت مبدلهای حرارت و ترویج آشفتگی، انتقال حرارت را بهبود می بخشند. با این حال، این طراحیها معمولاً با چالش ایجاد تعادل بین حداکثرسازی انتقال حرارت و کاهش افت فشار روبرو هستند . در این مطالعه ازشبیه سازی دینامیک سیالات محاسباتی برای شبیهسازی جریان پیچیده سیال و فرآیندهای انتقال حرارت در مبدل حرارتی استفاده شده است . که بینشهای دقیقی در مورد تأثیر هندسههای مختلف پرهها بر عملکرد آنها ارائه می دهد. سپس از تکنیک بهینهسازی تابع پایه شعاعی برای بررسی سیستماتیک و شناسایی پیکربندیهای بهینه پرهها استفاده می شود که بهترین تعادل بین عملکرد حرارتی بالا و افت فشار کم را فراهم می کنند. این پژوهش، اثربخشی ترکیب دینامیک سیالات محاسباتی با روش تابع پایه شعاعی را در دستیابی به طراحیای که نه تنها انتقال حرارت را افزایش می دهد بلکه کارایی کلی را نیز بهبود می بخشد، برجسته می کند. با بهینهسازی هندسه پرهها، این مطالعه به توسعه مبدلهای حرارتی کارآمدتر، مقرون به صوفهتر و با عملکرد بالا کمک می کند و در کاربردهای صنعتی مختلف که کارایی انرژی اهمیت دارد، بسیار مورد توجه می باشد. نتایج این تحقیق راهنماییهای عملی را به مهندسان و طراحان در این حوزه ارائه می دهد و بر اهمیت تکنیکهای تحقیق راهنماییهای عملی را به مهندسان و طراحان در این حوزه ارائه می دهد و بر اهمیت تکنیکهای پیشرفته شبیه سازی و بهینه سازی در طراحی مدرن مبدلهای حرارتی تأکید می کند.

در تحقیقات وانگ و همکاران [300] به بررسی بهینهسازی انتقال حرارت در پرههای مجهز به ژنراتورهای ورتکس پرداخته شده است. این مطالعه از الگوریتم ژنتیک مرتبسازی برای رسیدگی به اهداف متعدد به طور همزمان استفاده می کند و بر بهبود عملکرد انتقال حرارت در عین کاهش افت فشار تمرکز دارد.

¹ RVFL networks

² Radial Basis Function

³ Vortex generators

ژنراتورهای ورتکس به صورت استراتژیک بر روی پرههای نوع H قرار می گیرند تا در جریان هوا اختلال ایجاد کنند، که این امر باعث افزایش اختلاط سیال و بهبود انتقال حرارت می شود.

این تحقیق شامل شبیهسازیهای محاسباتی برای مدلسازی جریان سیال و ویژگیهای انتقال حرارت در طراحی پرهها است. سپس از الگوریتم ژنتیک برای بهینهسازی پیکربندی استفاده می شود و تلاش می شود تا تعادلی بین اهداف متضاد مانند حداکثرسازی کارایی انتقال حرارت و کاهش مصرف انرژی مرتبط با افت فشار برقرار شود. نتایج نشان می دهد که طراحی بهینه شده به طور قابل توجهی عملکرد حرارتی را بهبود می بخشد و در عین حال افت فشار را حفظ یا کاهش می دهد، که منجر به یک راه حل کارآمدتر و مقرون به صرفه تر برای مبدلهای حرارتی و سایر کاربردهای مدیریت حرارتی می شود. این مطالعه اثر بخشی استفاده از تکنیکهای بهینه سازی چندهدفه مانند الگوریتم ژنتیک را در دستیابی به راه حلهای طراحی برتر که به طور همزمان به معیارهای مختلف عملکردی پاسخ می دهند، برجسته می کند.

۲-۶- جمع بندی و نو آوری پژوهش:

در حوزه تحقیقات مبدلهای حرارتی، بهینهسازی ساختار و عملکرد آنها با استفاده از روشهای طراحی عددی به عنوان یکی از موضوعات پرکاربرد و پیچیده مورد توجه قرار گرفته است. این بخش از تحقیقات به توسعه مدلهای رفتار سیالات در مبدلهای صفحهای پرهدار و بهینهسازی ساختار آنها با هدف افزایش بهرهوری و کاهش هزینهها متمرکز شده است. پژوهشهای زیادی در زمینه مدلسازی رفتار سیالات در مبدلهای صفحهای پرهدار انجام شده است. همچنین، بهینهسازی ساختار مبدلها نیز از جمله موضوعاتی است که در طول سالهای گذشته مورد توجه قرار گرفته شده اند. این پژوهشها عمدتاً بر مبنای روابط توسعه یافته توسط مانگلیک و برگلز انجام شدهاند، که البته محدودیتها و نواقصی نیز دارند.

از آنجایی که روابط تجربی برای ضرایب انتقال حرارت و اصطکاک در مبدلهای صفحهای پرهدار با پرههای جابجا شده و موجی ارائه نشدهاند، پژوهشهای جدید به دنبال توسعه الگوریتمها و روشهایی جهت بهبود دقت در تخمین این ضرایب میباشند. بهعلاوه، اهمیت بهینهسازی مبدلهای صفحهای پرهدار بدون محدودیت در ابعاد و مشخصات پرهها بهویژه در محیطهای چندفازی و با تغییرات فاز، به دلیل کاربردهای گسترده در صنایع مختلف از جمله صنعت پتروشیمی و انرژی، افزایش یافته است.در این پژوهش، با بهرهگیری از پتانسیل نرمافزارهای مهندسی، یک روش طراحی عددی برای بهینهسازی انواع مختلف مبدلهای حرارتی معرفی شده است. این نرمافزارها توانایی انجام شبیهسازیهای عملکرد مبدل حرارتی را بدون محدودیت در هندسه و مشخصات جریان فراهم میکنند. از جمله ویژگیهای بارز این پژوهش، توانایی بهینهسازی جریانهای چند جزئی و چندفازی بهصورت همزمان و بدون محدودیت در ابعاد و هندسه پرهها است.

از اهمیت دیگر این پژوهش می توان به ارائه الگوریتمی جدید برای بهینه سازی مبدل های صفحه ای پره دار با توانایی مدل سازی دقیق تغییرات فاز و جریان های چندفازی اشاره کرد. در صنایعی مانند پتروشیمی،

که اغلب با جریانهای چندفازی و تغییر فاز همراه هستند، این الگوریتم ابزاری قدرتمند برای بهبود بهرهوری و عملکرد مبدلهای حرارتی خواهد بود. به این ترتیب، این پژوهش نه تنها به توسعه نظریات موجود پرداخته بلکه با ارائه یک روش عددی مبتنی بر نرمافزارهای مهندسی، به حل چالشهای مهم در زمینه بهینهسازی مبدلهای صفحهای پرهدار پرداخته است. این پژوهش با ارتقاء دقت مدلهای رفتار سیالات و ارائه الگوریتم بهینهسازی نوین، گام مهمی در جهت بهبود بهرهوری و عملکرد مبدلهای حرارتی در صنایع پیشرفته برداشته است.

بررسی لزوم و اهمیت بهینهسازی ساختار مبدلها							
توسعه روابط تجربی برای پیش بینی عملکرد مبدل های حرارتی صفحه ای پره دار							
پژوهش گر(ان)	نوع پره ها	قیود شرایط کاری		قيود	محدودیت ها		
مانگلیک و برگلز	جابجا شده	تک فاز	ينولدز	نسبت ابع ها و بازه ر مورد برر	عدم پیش بینی روابط برای چند جزء و چند فاز		
سانگ و لی	جابجا شده	تک فاز	ينولدز	نسبت ابع ها و بازه ر مورد برر	عدم پیش بینی روابط برای چند جزء و چند فاز		
قاسم و زبیر	موجی سینوسی	تک فاز	نسبت ابعاد پره ها و بازه رینولدز مورد بررسی		عدم پیش بینی روابط برای چند جزء و چند فاز		
بهینه سازی مبدل های حرارتی							
پژوهش گر(ان)	نوع مبدل	مبنای شبیهسازی	هدف	قيود	روش بهینهسازی		

لی و همکاران	مبدل های حرارتی صفحه ای پره دار	مانگلیک برگلز	ضرائب f و J	ابعاد پره ها	MOGA
حاج عبداللهي	مبدل با پره جابجا شده معمولی مبدل با هندسه متغیر	مانگلیک برگلز	بازده حرارتی افت فشار هزینه سالانه	ابعاد پره ها	PSO
یانگ و همکاران	مبدل هوا- هوا با پره جابجا شده	مانگلیک بر گلز	تولید آنتروپی هزینه سالانه نرخ انتقال حرارت	رینولدز جریان ابعاد پره ها	NSGA_ II
سانگ و کویی	مبدل های حرارتی صفحه ای پره دار	سانگ	بازده حرارتی اتولید آنتروپی هزینه سالانه	ابعاد پره ها افت فشار مجاز	NSGA- II
کوئی و سانگ	مبدل صفحهای پرهدار با پره های موجی	قاسم و زبیر	بازده حرارتی اتولید آنتروپی هزینه سالانه	ابعاد پره ها افت فشار مجاز	NSGA- II

گریسیوناس و همکاران	مبدل های حرارتی صفحه ای پره دار	دینامیک سیالات محاسباتی	بررسی و تأیید عملکرد و و مقاومت جریان.	فرضیه لامینار، محدوده رینولدز، سادهسازی جریان	NSGA- II
ناسیمنتو و همکاران	مبدل های حرارتی صفحه ای پره دار	مانگلیک بر گلز	بهبود طراحی و کارایی مبدل حرارتی صفحها یرهدار.	افت فشار، کارایی، شبکه عصبی	NSGA- II
ژیانگ و همکاران	مبدلهای حرارتی با پرههای لولادار	دینامیک سیالات محاسباتی	بهبود طراحی و عملکرد مبدلها ی	عملکرد حرارتی بالا و افت فشار کم	استفاده از تابع پایه شعاعی (RBF)
وانگ و همکاران	مبدل های حرارتی صفحه ای پره دار	دینامیک سیالات محاسباتی	بهبود انتقال حرارت و کاهش افت افت فشار.	ابعاد پره ها	NSGA- II

فصل سوم

روش پژوهش و معادلات حاکم

۳-۱- مقدمه:

در این فصل ؛ تاثیر مبدل حرارتی پرهدار نامنظم با ساختار های جدید بر روی کارایی حرارتی مبدل های حرارتی چند جریانی معرفی و تشریح خواهد شد . پس از آن ساختار فین مورد مطالعه در مبدل های حرارتی صفحه ای پرهدار نامنظم بررسی و تجزیه و تحلیل کرده و از نتایج تحلیل ان در فصل اینده استفاده می شود . پرههای نواری جابجاشده ابه طور گستردهای برای بهبود عملکرد مبدلهای حرارتی استفاده می شوند . ویژگیهای انتقال حرارت و افت فشار اصطکاکی پرههای نواری جابجاشده با هندسههای مختلف و سیالات گوناگون، از جمله جریان تک فازی و جریان دو فازی تحلیل و بررسی شدهاند. با توجه به موارد ذكر شده ؛ انتظار مي رود تركيب همه اين روش ها با يكديگر ميزان انتقال حرارت را به صورت قابل توجهی افزایش دهد . همچنین کاربرد این پرهها در مبدلهای حرارتی فشرده به صورت جامع مورد بررسی قرار گرفته شده است. این مدلسازیها، که بر اساس اصول ترمودینامیکی و روابط سیالاتی به تصویر کشیده شدهاند، به عنوان اساسی ترین ابزار برای طراحی مبدلهای حرارتی صفحهای پرهدار محسوب میشوند. پس از آن به استخراج روابط ترمودینامیکی با استفاده از تعاریف و قوانین ترمودینامیکی و نیز معادلات حالت مناسب در جریان تک فاز و دو فاز پرداخته میشود. این بخش نقش مهمی در رفع چالشهای مدلسازی و طراحی مبدلهای صفحهای پرهدار با جریانهای چندفازی ایفا می کند. در ادامه، به بهینهسازی مبدلهای حرارتی صفحهای پرهدار در شرایط مختلف پرداخته و چالشهای مرتبط با بهینهسازی مبدلهای حرارتی صفحهای پرهدار چندجزئی و چندفازی با هندسههای متفاوت مورد بررسی قرار خواهد گرفت . بر اساس عدم توسعه روابط یک بعدی ضرائب کالبرن برای مبدلهای صفحهای پرهدار با جریانهای تغییرفازدهنده و چندجزئی، استفاده از روشهای عددی برای تحلیل و طراحی این مبدلها به صورت جدی مورد بررسی قرار خواهد گرفت.

۳-۲- تحلیل رفتار هیدرودینامیکی جریانهای چندفازی در مبدلهای حرارتی صفحهای پرهدار:

تحلیل جریانهای چندفازی یکی از پیچیده ترین چالشها در طراحی مبدلهای حرارتی صفحهای پره دار است. این مبدلها در بسیاری از کاربردهای صنعتی، به ویژه در صنایع شیمیایی، نفت و گاز، به دلیل توانایی آنها در انتقال حرارت بین چندین سیال استفاده می شوند. جریانهای چندفازی به جریانی گفته می شود که شامل بیش از یک فاز (مانند مایع و گاز) باشد. رفتار این جریانها به شدت پیچیده است، چرا که تغییرات فاز، تبادل جرم و انتقال حرارت همزمان در حال رخ دادن هستند. در تحلیل هیدرودینامیکی این جریانها، پارامترهای مهمی مانند سرعت، فشار، دما و تراکم هر فاز در نقاط مختلف مبدل باید دقیقاً مدل سازی و بررسی شوند.

¹ Serrated fins

برای مدل سازی این رفتار، معمولاً از معادلات ناویر-استوکس، به همراه مدل های چندفازی مانند مدل حجم سیال $^{\prime}$ یا مدل اویلری $^{\prime}$ استفاده می شود. مدل حجم سیال برای شبیه سازی جریان هایی که در آن فازهای مختلف به صورت مجزا از هم جریان دارند (مانند لایه های مایع و گاز) مناسب است. در مقابل، مدل اویلری برای زمانی استفاده می شود که فازها در هم مخلوط شده اند و نیاز به مدل سازی جریان های چند جزئی است.

یکی از چالشهای اساسی در تحلیل این جریانها، پیشبینی صحیح توزیع فاز و بررسی نحوه انتقال حرارت بین آنها است. در مبدلهای حرارتی صفحهای پرهدار، سیالات در کانالهای بسیار نازک جریان می یابند و فینها به منظور افزایش سطح تماس بین سیال و سطح جامد طراحی شدهاند. این فینها نه تنها باعث افزایش انتقال حرارت می شوند، بلکه به دلیل افزایش اصطکاک، می توانند باعث افت فشار شوند. از این رو، تحلیل صحیح اثرات این فینها بر جریانهای چندفازی بسیار اهمیت دارد.

در فرآیند شبیهسازی، پارامترهای کلیدی مانند ضریب انتقال حرارت، افت فشار، و میزان اختلاط فازها باید به دقت مدلسازی شوند. نرمافزارهای دینامیک سیالات محاسباتی مانند انسیس و کامسول از ابزارهای معمول برای انجام این تحلیلها هستند. این نرمافزارها توانایی شبیهسازی جریانهای چندفازی در محیطهای پیچیدهای مانند مبدلهای حرارتی صفحهای پرهدار را دارند و با استفاده از آنها میتوان به بهینهسازی طراحی مبدلها و افزایش بازدهی حرارتی دست یافت. [۳۱]

٣-٣- معرفي اجمالي مساله مورد بررسي:

در این پژوهش به بررسی عددی جریان در مبدل های حرارتی صفحه ای پرهدار نامنظم با دو جریان تک فاز و چند فاز و در محدوده عدد رینولدز بزرگتر از ۵۰۰۰ و کوچکتر از ۲۰۰۰۰ به روش عددی حجم محدود پرداخته می شود . در جریانهای چند فاز، تشخیص دقیق عدد رینولدز کمی پیچیدهتر است، زیرا خواص مختلف فازها (مثل چگالی، ویسکوزیته، و توزیع فازها) بر جریان تاثیر می گذارند. عدد رینولدز در جریانهای چند فاز معمولاً برای هر فاز به صورت مجزا محاسبه می شود، ولی به دلیل برهم کنشهای فازهای مختلف، تعیین حدود آن پیچیده تر است.

در این پژوهش میدان جریان و دما در مبدل حرارتی صفحه ای پرهدار نامنظم با تغییر زاویه حمله برای فین های نامنظم در لایه میانی مبدل برای زاویه حمله ی 9000-900 درجه شبیه سازی و بررسی خواهد شد . شکل (1-1) ساختار یک مبدل حرارتی صفحه ای پرهدار نامنظم را نشان می دهد . جریان سیال گرم از مسیر بخش فوقانی و تحتانی مبدل که فاقد فین است 1+1 بدنه مبدل انتقال حرارت انجام داده و با توجه به گذر جریان سرد از بخش زیرین و بالای مبدل و ایجاد اختلاف دما بین دو مسیر جریان 1+1 انتقال حرارت در مبدل های حرارتی صورت می گیرد . چنانچه جریان سیال در حین عبور از مبدل صفحه ای

¹ Volume of Fluid (VOF)

² Eulerian model

پره دار متاثر از قرارگیری فین ها باشد ؛ جریان سیال دچار امیختگی بیشتر شده و گرادیان های دمایی در طول مسیر سیال کاهش می یابند و توزیع حرارت یکنواخت تر خواهد شد .

این مساله اساس و بنیان بکارگیری فین ها در مبدل های حرارتی بوده است لذا با قرار دادن فین ها در معبر جریان سیال گرم میتوان آمیختگی بهتر و در نهایت انتقال حرارت بالاتر را تجربه کرد . در ضمن این هندسه با در نظر گرفتن طول توسعه یافتگی و طول خروجی بررسی و تشریح خواهد شد.در این پژوهش اهداف زیر مورد بررسی و تحلیل قرار خواهد گرفت که عبارتند از :

(۱)ارائه دادههای جامع طراحی در مورد تأثیرات هندسی فینهای نامنظم. این تحلیل اعداد بدون بعد مانند عوامل j و j برای موارد مختلف طراحی فین ارائه شده اند تا ویژگیهای حرارتی-هیدرولیکی درک شوند.

(۲) برقراری روابطی برای انتقال حرارت تکفازی بر اساس تحلیل دینامیک سیالات محاسباتی انجام می شود. رابطه برای عامل اصطحکاک امکان تولید نمودارهای مقاومت را با وارد کردن عدد رینولدز و تعداد فینها فراهم می کند. از آنجا که نقطهای که نمودار مقاومت با نمودار عملکرد تلاقی می کند به معنی نرخ واقعی جریان خنک کننده است، نرخ انتقال حرارت در این شرایط می تواند بر اساس رابطه برای عامل زمحاسبه شود.

شکل۳-۱ شماتیک مبدل حرارتی فیندار نامنظم و ساختار دقیق. [۳۲]

پیکربندی فینهای نامنظم توسط دو پارامتر طراحی ؛ تعیین میشود . تعداد فینها در راستای و تعداد فینها در جهت عمودی هستند . در نتیجه، ابعاد هندسی هر فین بر اساس این پارامترها تعیین میشود . جدول ۳-۱ ابعاد هندسی خاص فینها را بر اساس تعداد فینها در هر جهت مشخص میکند. با افزایش تعداد فینها در جهت عمودی، طول فینها کاهش می یابد، زیرا تعداد بیشتری فین در همان فضا نصب خواهد شد. به همین دلیل، فاصله بین فینها نیز با افزایش تعداد فینها در جهت جریان کوچکتر می شود.

همانگونه که در جدول ۳-۱ مشاهده می شود . با توجه به شکل ۳-۱ برای بدست اوردن قطر هیدرولیکی از فرمول زیر استفاده میشود .

$$D_h = \frac{4shl}{2(sl+hl+th)+ts}$$

N _{fin,f} [EA]	N _{fin,v} [EA]	s [mm]	h [mm]	t [mm]	l[mm]	Dh [mm]
18	34	1.633	2.1	0.2	1.897	1.698
18	40	1.634	2.1	0.2	1.613	1.675
18	46	1.634	2.1	0.2	1.402	1.653
18	52	1.634	2.1	0.2	1.24	1.632
18	56	1.634	2.1	0.2	1.112	1.611
24	34	1.135	2.1	0.2	1.894	1.356
24	40	1.135	2.1	0.2	1.613	1.337
24	46	1.135	2.1	0.2	1.402	1.318
24	52	1.135	2.1	0.2	1.24	1.301
24	56	1.135	2.1	0.2	1.112	1.283
30	34	0.835	2.1	0.2	1.897	1.096
30	40	0.835	2.1	0.2	1.613	1.08
30	46	0.835	2.1	0.2	1.402	1.065
30	52	0.835	2.1	0.2	1.24	1.05
30	56	0.835	2.1	0.2	1.112	1.035

جدول ۳-۳ ابعاد خاص فین ها و قطر هیدرولیک در هر مورد[۳۲]

ساختار فین مورد مطالعه بر مبنای اطلاعات موجود در تحقیق سونگ و همکاران $[\ TT]$ که در شکل $(\ TT)$ و جدول $(\ TT)$ به آن اشاره شده است ؛ مطابق شکل زیر است . طراحی فین های نامنظم مورد مطالعه با توجه به اطلاعات موجود در سطر اول جدول $(\ TT)$ در زوایای $(\ TT)$ در جه و $(\ TT)$ در بساختارهای و بررسی خواهند شد.همانطور که در شکل $(\ TT)$ (a) $(\ TT)$ نشان داده شده است ؛ ساختارهای پره نواری نامنظم معمولاً به دو نوع $(\ TT)$ طبقه بندی می شوند .

سطح پرههای نواری نامنظم به زاویه پره بستگی دارد. زمانی که زاویه پره برابر با ۹۰ درجه باشد، شکل آن مستطیلی است همانطور که در شکل (r-r) (r-r) نشان داده شده است؛ زمانی که زاویه پره کوچکتر از ۹۰ درجه باشد، شکل آن ذوزنقهای است همانطور که در شکل (r-r) (r-r) نشان داده شده است. اگرچه شکل سطح بسته به زاویه پره متفاوت است، اما صرفاً برای تمایز پرههای نواری استفاده می شود و هیچ مدرکی در ادبیات موجود نشان نمی دهد که شکل پره تأثیری بر عملکرد حرارتی –هیدرولیکی پرههای نواری افست داشته باشد.

(a)

(b)

(d)

Z نوع (c) نوع (d) نوع (d)

٣-٣- فرضيه ها:

در غالب تحقیقات و بررسی های صورت گرفته در این حوزه شماری از فرضیات برای سهولت بخشیدن به روند طراحی حرارتی مبدل های حرارتی صفحه ای پره دار به کار گرفته می شود . گرچه در بررسی های دقیق تر و جهت دستیابی به نتایج واقعی تر ممکن است برخی از این شرایط در حالت واقع و به دور از ساده سازی ها مورد بررسی قرار گیرد . به هر حال فرضیات ساده سازی برای حل مساله در پژوهش حاضر در نظر گرفته شده اند که شامل موارد زیر می باشد

۱-تمام خواص فیزیکی در داخل مبدل حرارتی مورد بررسی ثابت هستند . بنابراین از تغییر خواص سیال در اثر تغییرات دما صرف نظر گردیده است. همچنین ضریب انتقال حرارت کل در امتداد طول جریان ثابت در نظر گرفته می شود.

۲-در هر گذر جریان این مبدل حرارتی ؛ نحوه توزیع دما و همچنین توزیع جریان سیال به صورت یکنواخت است و جریان در سطح مقطع داخل هر کانال عبور جریان؛ کاملا مخلوط می شود.

۳-مبدل در حالت ادیاباتیک مورد بررسی قرار گرفته می شود . بنابراین از اتلاف حرارت به محیط اطراف آن صرف نظر می گردد

۴-از انتقال حرارت طولی در سیال و صفحات جدا کننده صرف نظر خواهد شد و انتقال حرارت به صورت عمود بر جریان سیال در کانال های میان صفحات جداکننده رخ می دهد .

-4-8 مدلسازی ترمودینامیکی مبدل حرارتی صفحه ای پره دار:

تکنیکی که برای استخراج معادلات میانگین ناویر استوکس رینولدز استفاده می شود، به نام تجزیه رینولدز شناخته می شود. میانگین گیری رینولدز و تجزیه رینولدز به طور مستقیم به دستکاری عدد رینولدز اشاره نمی کنند، بلکه به کاربرد میانگین گیری زمانی در معادلات ناویر استوکس مربوط می شوند. میانگین گیری زمانی اغلب برای کاهش سیستمهای پیچیده معادلات دیفرانسیل به اشکال ساده تر استفاده می شود. در

¹ adiabatic state

این حالت، معادلات میانگین ناویر استوکس رینولدز از یک راهحل استفاده میکنند که به سرعت جریان میانگین مستقل از زمان و نوسانات وابسته به زمان میانگین تقسیم میشود.

$$u = \bar{u} + u'$$

که با توجه به معادله بالا u سرعت لحظه ای است و \overline{u} سرعت میانگین زمانی (میانگین) و u مؤلفه سرعت نوسانی است. با این تجزیه، می توان برخی از اپراتورهای تخصصی و یک عملیات میانگین گیری زمانی را به کار برد تا بتوان معادله غیر خطی زیر که جریان را توصیف می کند (در نشانه گذاری تنسوری) استخراج کرد.

$$\rho \overline{\mathbf{u}_{\mathbf{j}}} \frac{\partial \overline{\mathbf{u}_{\mathbf{i}}}}{\partial x_{j}} = \rho \overline{f_{\mathbf{i}}} + \frac{\partial}{\partial x_{j}} \left[-\overline{p} \delta_{ij} + 2\mu \overline{S_{\mathbf{i}\mathbf{j}}} - \rho \overline{\mathbf{u}_{\mathbf{i}}' \mathbf{u}_{\mathbf{j}}'} \right]$$

$$\mathbf{v-v}$$

همانطور که در معادله بالا مشاهده میشود؛ ρ چگالی ؛ $\overline{u_1}$ و کتور سرعت متوسط در راستای \overline{p} ؛ \overline{p} فشار متوسط سیال ؛ $\overline{f_1}$ نیروی حجمی اعمال شده به سیال، مانند نیروی گرانشی و δ_{ij} مشخص می کند آیا دو شاخص δ_{ij} و گرانشی و δ_{ij} مشخص می کند آیا دو شاخص δ_{ij} و آبرابر هستند یا نه و δ_{ij} نرخ کرنش متوسط را نشان می دهد . همانگونه که در معادله بالا مشاهده میشود؛ یک ترم غیرخطی مربوط به تنش رینولدز وجود دارد، که این مدل به عنوان مدل تنش رینولدز شناخته می شود و به صورت زیر تعریف میشود .

مدل اشفتگی معادلات معادلات میانگین ناویر استوکس رینولدز به صورت زیر بیان میشود

$$\begin{split} \frac{\partial \overline{u_i' u_j'}}{\partial t} + \ \overline{u_k} \frac{\partial \overline{u_i' u_j'}}{\partial x_k} = \ - \ \overline{u_i' u_k'} \frac{\partial \overline{u_j}}{\partial x_k} - \ \overline{u_j' u_k'} \frac{\partial \overline{u_i}}{\partial x_k} + \ \overline{\frac{p'}{\rho}} \frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_1} \\ - \ \frac{\partial}{\partial x_k} \left(\overline{u_i' u_j' u_k'} + \frac{\overline{p' u_j'}}{\rho} \delta_{jk} + \frac{\overline{p' u_j'}}{\rho} \delta_{jk} - \nu \frac{\partial \overline{u_i' u_j'}}{\partial x_k} \right) \end{split}$$

در حالی که این مدل می تواند بسیار پیچیده باشد، اما همچنین فرایندی را فراهم می کند تا مدل را در موقعیتهای بسیار خاصی که در آن برخی از عبارات در تانسور کرنش ویا تنش قابل صرفنظر هستند، به

¹ instantaneous velocity

² time-averaged velocity

³ time-averaged strain rate tensor

⁴ strain rate.

کار برد. این کار نیازمند یک مدل آشفتگی اضافی است تا بتوان عبارات غیرخطی در تانسور تنش را مورد بررسی قرار داد. بیشتر این مدلهای آشفتگی که در معادلات معادلات میانگین ناویر استوکس رینولدز استفاده میشوند، بر اساس مشاهدات تجربی تعیین شدهاند و از اصول اولیه استخراج نمی شوند.

معادله ممنتوم توصیف کننده حرکت و تغییرات سرعت یک سیال لزج است و در تحلیل دینامیک سیالات کاربرد گستردهای دارد و به صورت زیر بیان میشود .

$$\frac{\partial \overline{\mathbf{u}_{1}}}{\partial t} + \overline{\mathbf{u}_{J}} \frac{\partial \overline{\mathbf{u}_{1}}}{\partial \overline{x_{1}}} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \nu \frac{\partial^{2} \overline{\mathbf{u}_{1}}}{\partial x_{i} \cdot \partial x_{j}} + \overline{\mathbf{S}_{IJ}} - \frac{\partial \overline{\mathbf{u}_{1}'} \overline{\mathbf{u}_{J}'}}{\partial x_{j}}$$
5-T

چالش اصلی با معادلات معادلات میانگین ناویر استوکس رینولدز نیاز به مدلسازی تأثیرات آشفتگی است که به وسیله معادلات تنش رینولدز انجام میشود .از نظر فیزیکی، ویسکوزیته گردابهای انتقال انرژی آشفته را از طریق جریانهای گردابهای متحرک در یک جریان آشفته توصیف می کند. از نظر ریاضی؛ تنش رینولدز به انرژی جنبشی آشفتگی مرتبط می شود ، که به شکل زیر تعریف خواهد شد:

$$-\overline{\mathbf{u}_{1}'\mathbf{u}_{j}'} = \nu \left(\frac{\partial \overline{\mathbf{u}_{1}}}{\partial x_{i}} + \frac{\partial \overline{\mathbf{u}_{j}}}{\partial x_{i}} \right) + \frac{2}{3} K \overline{\mathbf{S}_{1j}}$$

انرژی جنبشی اشفتگی $^{\prime}$ را نشان میدهد که معادله آن بصورت زیر تعریف میشود.

$$K = \frac{1}{2} \overline{\mathbf{u}_{1}' \mathbf{u}_{j}'}$$

هنگامی این عبارات در معادله تنش رینولدز در چگالی ضرب میشوند، انرژی جنبشی آشفتگی و همچنین آشفتگی ناهمسانگرد را تعریف می کنند. این روش در بسیاری از سیستمها با جریان آزاد برشی، مانند مدلسازی لایههای اختلاط، جتها، لایههای مرزی آشفته، جریانهای کانالی و بسیاری از مسائل دیگر قابل اعمال است . معادله نرخ کرنش هم به صورت زیر تعریف می شود.

$$\overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial \overline{x_i}} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$

¹ Kinetic energy of turbulence

-4-4 مبدل حرارتی صفحه ای پره دار با دو جریان تک فاز:

اساس انتقال حرارت در مبدلهای حرارتی، تفاوت دمای جریانهای سرد و گرم است. در اکثر مبدلهای حرارتی، جریانهای سرد و گرم نسبت به یکدیگر هم جهت یا در خلاف جهت هم هستند. بسته به آرایش جریانها نسبت به یکدیگر، نمودار تغییرات دمای جریانها در طول یک مبدل مطابق شکل -7 است.

شکل ۳-۳ نمودار تغییرات دمای سیالهای سرد وگرم در یک مبدل برای جریانهای a) مخالف جهت (۳۳) همجهت [۳۳]

قانون اول ترموینامیک، بیان کننده پایستاری انرژی است. انرژی نه بهوجود میآید و نه از بین میرود. برای یک سیستم باز، در حالت پایا و با صرف نظر از انرژی پتانسیل و جنبشی سیال، میتوان این قانون را به صورت زیر بیان کرد.

$$\delta Q = m. dh$$

که در آن δQ نرخ انتقال حرارت به المان سیال و h بیان کننده آنتالپی سیال است. با انتگرال گیری از معادله بالا می توان آنرا به صورت π -۱۱ بازنویسی کرد:

$$Q = m \cdot (h_2 - h_1)$$

¹ Parallel Flow

² Counter Current Flow

در اینجا، h_2 به ترتیب مربوط به حالت ورودی و خروجی سیال (گرم یا سرد) در مبدل هستند .اگر جریان سیال در مبدل تغییر فاز ندهد، با در نظر گرفتن تعریف ظرفیت حرارتی می توان معادله فوق را به شکل زیر بازنویسی کرد.

$$Q = m \cdot C_p (T_2 - T_1)$$

بدین ترتیب، میزان انتقال حرارت صورت پذیرفته از جریان گرم و سرد برابر خواهد بود با:

$$Q = m_c C_{P,c} (T_{out,c} - T_{in,c})$$

$$Q = m_c C_{p,h} (T_{out,h} - T_{in,h})$$

جایی که Q نرخ انتقال گرما، m جریان جرم سیال، Cp گرمای خاص در فشار ثابت، و m دما است. در out و m به ترتیب مشخص کننده جریان گرم و سرد و زیروندهای m و m معادلات فوق، زیروند m و m به ترتیب مشخص کننده مقطع ورودی جریان به مبدل و مقطع خروج جریان از مبدل است. با صرف نظر از اتلاف حرارتی مبدل، این دو مقدار مطابق قانون اول ترمودینامیک با یکدیگر برابر خواهد بود:

$$m_c C_{p_c} (T_{in,c} - T_{out,c}) = m_h C_{p_h} (T_{in,h} - T_{out,h})$$

طبق رابطه فوق، جریانی که حاصل ضرب دبی در ظرفیت حرارتی $m^{\cdot}C_p$ است ؛ دچار اختلاف دمای بیشتر بیشتری می شود. از آنجا که دمای خروجی جریان سرد ، از دمای ورودی جریان گرم نمی تواند بیشتر شود ، در نتیجه، بیشترین انتقال حرارت ممکن بین دو سیال سرد و گرم در یک مبدل حرارتی برابر خواهد بود با :

$$\Delta T_{max} = T_{in,h} - T_{in,c}$$
 19-4

بیشترین تغییرات دمای دو جریان با بیشترین انتقال حرارت ممکن بین دو سیال سرد و گرم در یک مبدل حرارتی برابر خواهد بود و رابطه آن به شرح زیر است .

$$Q_{max} = \min(m_C C_{p_C}, m_h C_{p_h}) * (T_{in,h} - T_{in,c})$$

بازده انتقال حرارت مبدل حرارتی صفحهای پرهدار به عنوان یکی از مهمترین مشخصههای عملکردی آن به صورت نسبت انتقال حرارت صورت پذیرفته به بیشترین انتقال حرارت ممکن تعریف می شود.

$$\varepsilon = \frac{Q}{Q_{max}} = \frac{mC_p(T_{in,c} - T_{out,c})}{Q_{max}} = \frac{m_h^2 C_{p_h}(T_{in,h} - T_{out,h})}{Q_{max}}$$

همانطور که در شکل $^{*-4}$ مشخص شده است ، برای بررسی انتقال حرارت بین جریان سرد و گرم، از المان dA استفاده می شود . در این المان، انتقال حرارت از جریان گرم به سرد به صورت رابطه $^{*-9}$ بیان می شود:

$$dQ = U(T_h - T_c)dA = -m_{C_{p_h}} dT_h = m_{C_{p_h}} dT_c$$
 19-

شکل ۳-۴ المان مورد نظر برای بررسی انتقال حرارت در مبدل حرارتی صفحهای پرهدار [۳۴]

که در معادله T ۱۹-۳ فریب انتقال حرارت کلی T مبدل حرارتی و T مساحت سطح انتقال حرارت در مبدل است. با مرتبسازی و انتگرال گیری در طول مبدل حرارتی، رابطه بین دماهای ورودی و خروجی مبدل حرارتی، برای مبدل با جریانهای مخالف جهت یکدیگر، از معادله T-T حاصل میشود:

44

$$T_{h2} - T_{c1} = (T_{h1} - T_{c2}) ex p \left[UA \left(\frac{1}{C_c} - \frac{1}{C_h} \right) \right]$$
 --

icat Transfer Coefficient

¹ Overall Heat Transfer Coefficient

در مبدلهای حرارتی صفحه ای پره دار، انتقال حرارت از سیالها بوسیله دو سطح انجام می پذیرد. سطح اول، سطح صفحات جداکننده جریانها از یک دیگر است که به سطح انتقال حرارت اولیه معروف است. سطح دوم، سطح تماس سیال با پرهها می باشد که انتقال حرارت سیال با این سطح، به انتقال حرارت ثانویه معروف است. این دو نوع انتقال حرارت در شکل $-\Delta$ نمایش داده شده است. اضافه شدن سطوح ثانویه، باعث افزایش سطح تماس سیال و جامد است که منجر به بهبود انتقال حرارت می گردد. این افزایش انتقال حرارت، به صورت بازده کلی سطح -1، در روابط انتقال حرارت گنجانده شده است.

شكل ٣-٥ سطوح انتقال حرارت اوليه و ثانويه [٣٥]

ارزیابی ویژگیهای جریان و انتقال حرارت گرمایی مبدل حرارتی معمولاً بر مبنای پارامترهای j و j انجام میشود تا به ترتیب عملکرد انتقال حرارت و افت فشار را اندازه گیری کند. با مقایسه j و j میتوان تأثیر پارامترهای ساختاری پره ها بر عملکرد مبدل حرارتی صفحه ای پره دار را بدست اورد. قطر هیدرولیکی کانال در مبدل حرارتی پرهدار نامنظم از طریق معادله زیر بدست می اید .

$$D_h = \frac{4l(h-t)(s-t)}{2(l(h-t)+l(s-t)+t(h-t)+t(s-2t)}$$

45

¹ Surface Efficiency

²Hydraulic diameter

ضریب انتقال حرارت را از طریق معادله زیر بدست می اید

$$h_{total} = \frac{q}{|T - T_w|}$$

یکی از مشخصههای عملکردی مبدلهای حرارتی، افت فشار سیال در مبدل است. در مبدل حرارتی صفحه ای پرهدار، بدلیل سطح تماس بیشتر سیال با جامد، افت فشار نسبت به مبدلهای حرارتی صفحهای بدون پره، اهمیت بیشتری پیدا می کند. افت فشار در مبدل حرارتی می تواند به دلایل مختلفی ایجاد شود، اما در اکثر موارد این افت فشار به علت مقاومت جریان سیال در برابر اصطکاک با دیوارهای مبدل حرارتی و یا به دلیل تغییر سرعت سیال در دستگاه می باشد. حاصل ضرب کلی انتقال حرارت مبدل در سطح انتقال حرارت مبدل صفحهای پرهدار، از رابطه ۳-۲۳ بدست می آید:

$$\frac{1}{UA} = \frac{1}{(\eta \alpha A)_c} + \frac{1}{(\eta \alpha A)_h}$$

در این رابطه، α ضریب انتقال حرارت جریان سرد و گرم، A مساحت انتقال حرارت جریانها و η بازده کلی سطح است که از رابطه ۳-۲۴ بدست می آید:

$$\eta = 1 - \frac{A_f}{A_t} (1 - \eta_f)$$

در این رابطه، $A_{\rm f}$ مساحت تماس سیال با پرهها و $A_{\rm t}$ مجموع سطح تماس سیال با پرهها و صفحات جداکنندهاست. η_f نیز بازده پرهها است که از رابطه زیر محاسبه می شود:

$$\eta_f = \frac{\tanh\left(L\sqrt{\frac{2h}{tk_f}}\right)}{L\sqrt{\frac{2h}{tk_f}}}$$

$$\text{TD-T}$$

¹ heat transfer coefficient

در رابطه فوق، L طول پره، t ضخامت پره و k_f ضریب انتقال هدایتی پرهها است. A_f و A_f نیز با توجه به ابعاد و نوع پرهها مشخص می شود.

با مشخص بودن هندسه پرهها، بازده سطح η و مساحت انتقال حرارت در واحد طول مشخص خواهد بود. در مرحله بعد نیاز به محاسبه ضریب انتقال حرارت α برای جریانهای سرد و گرم است. این ضریب، برای جریانهای تکفاز از رابطه α -۲۶ بدست می آید:

$$\alpha = \frac{jC_pG_m}{Pr^{2/3}}$$

در رابطه فوق، C_p ظرفیت حرارتی سیال، G_m دبی جرمی سیال، P عدد بیبعد پرانتل و C_p ضریب کالبرن برای مجرای پرهدار است. با مشخص بودن جنس سیال، دبی جرمی از معلومات مساله مشخص است و با مشخص شدن جنس آن،عدد پرانتل و ضریب حرارتی بدست می آید. ضریب کالبرن نیز که متاثر از هندسه پرهها و عدد رینولدز است، از طریق نمودارها یا روابط تجربی بدست می آید.

روش دیگر محاسبه ضریب کالبرن، استفاده از روابط تجربی است که در طی پژوهشها و آزمایشهای تجربی متعدد، برای هندسههای مختلف پرهها توسعه یافتهاند. این روابط برای انواع مختلف پرهها شامل معمولی 4 ، جابجا شده و موجی 4 توسعه یافته پیدا کرده است . انواع پرههای به کار رفته در مبدلهای حرارتی صفحهای پرهدار در شکل 8 - 8 - نمایش داده شدهاست. در این شکل، 8 ارتفاع ، 8 ضخامت و 8 گام پرهها می باشد.

شکل۳-۶ هندسه و مشخصات انواع پرههای به کار رفته در مبدلهای حرارتی صفحهای پرهدار [۳۶]

¹ thermal conductivity coefficient of the blades

² thermal capacity of the fluid

³ mass flow rate of the fluid

⁴ Plain Fins

⁵ Wavy/Herringbone Fins

یکی دیگر از مشخصههای عملکردی مبدلهای حرارتی، افت فشار سیال در مبدل است. در مبدل حرارتی صفحه ای پرهدار، بدلیل سطح تماس بیشتر سیال با جامد، افت فشار نسبت به مبدلهای صفحهای بدون پره، اهمیت بیشتری پیدا می کند. هم چنین در این مبدلها، بیش از ۹۰ درصد افت فشار، مربوط به افت فشار اصطکاکی در هسته مبدل است. رابطه محاسبه افت فشار سیال به صورت رابطه ۳-۲۷ نمایش داده شده است.

$$\Delta P = \frac{4fLG_m^2}{2D_h\rho}$$

در رابطه بالا L طول مبدل، ρ چگالی سیال، D_h قطر هیدرولیکی مبدل و f ضریب اصطکاک است که متاثر از هندسه پرهها و عدد رینولدز است ، از طریق نمودارها یا روابط تجربی بدست می آید. مهمترین شاخص ارزیابی عملکرد گرم کننده حرارتی فاکتور کالبرن است که توسط فرمول اصلی فاکتورانتقال حرارت j مشخص می شود .

$$j = \frac{Nu}{RePr^{0.33}}$$

این فرمول نشان دهنده ضریب انتقال حرارت اصلاح شده یا ضریب جابجایی اصلاح شده است که با استفاده از عدد ناسلت و عدد رینولدز و عدد پرنتل محاسبه می شود. این فرمول در تحلیل جابجایی حرارت استفاده می شود.

عدد پرانتل بک عدد بدون بعد است که بیانگر نسبت نفوذ اندازه حرکت ویسکوزیته دبنامیکی به نفوذ گرمایی است . در واقع می توان ابن عدد را نسبت ضخامت لایه مرزی سرعت به صخامت لایه مرزی گرمایی دانست

$$Pr = \frac{\mu C_p}{\lambda}$$

جایی که μ ویسکوزیته دینامیکی سیال است ؛ c_p ظرفیت گرمایی ویژه در فشار ثابت و ضریب هدایت گرمایی $^{\iota}$ است

در واقع، می توان این عدد را نسبت ضخامت لایه مرزی سرعت به ضخامت لایه مرزی گرمایی دانست .این پارامتر در حل مسائل مربوط به انتقال حرارت در لایههای سیال بسیار کاربردی است.

.

¹ The thermal conductivity coefficient

عدد ناسلت یک عدد بدون بعد است که در انتقال حرارت برای مشخص کردن نسبت انتقال حرارت همرفتی به انتقال حرارت رسانا استفاده می شود. شکل کلی معادله ناسلت به صورت زیر بیان می شود.

$$Nu = \frac{h_c \cdot D_h}{\lambda_f} \qquad \qquad \text{$\mathfrak{r} \cdot -\mathfrak{r}$}$$

جایی که h_c به میانگین ضریب انتقال حرارت کانال فین اشاره دارد، λ_f به ضریب هدایت حرارت مایع اشاره دارد .

عدد رینولدز یک کمیت بدون بعد است که در مکانیک سیالات برای پیشبینی الگوهای جریان در موقعیتهای مختلف جریان سیال استفاده میشود. این نام از آزبورن رینولدز، مهندس بریتانیایی که استفاده از آن را رایج کرد، گرفته شده است. عدد رینولدز به عنوان نسبت نیروهای اینرسی به نیروهای ویسکوز در جریان سیال تعریف می شود.

$$Re = \frac{\rho.U.D_h}{\mu}$$

جایی که ho چگالی سیال است، U سرعت سیال است ویسکوزیته دینامیکی سیال است . محاسبه h_c برای عدد ناسلت به شکل زیر انجام می شود:

$$h_c = \frac{1}{\eta_0} \frac{1}{\frac{1}{k} - \frac{b}{A_S} \cdot \frac{A}{2A_W c_B}}$$
 \tag{77-\tag{7}

جایی که Aw مساحت دیوار صفحه پوشیده شده است، η_0 کارایی سطح کانال بالابر است. ضریب انتقال حرارت K به شرح زیر تعیین می شود

$$K = \frac{Q}{A\Delta t_m}$$

میانگین دمای تفاضلی لگاریتمی به صورت زیر محاسبه میشود

$$\Delta t_m = \frac{T_{out} - T_{in}}{\ln\left(\frac{T_w - T_{in}}{T_w - T_{out}}\right)}$$

جایی که T_{in} دمای ورودی، T_{out} دمای خروجی و T_{w} دمای دیوار است. راندمان سطحی کانال پره به صورت زیر محاسبه می شود:

$$\eta_0 = 1 - \frac{A_2}{A} (1 - \eta_{f,id})$$

جایی که A و A2 به ترتیب نشان دهنده سطح کل انتقال حرارت و سطح ثانویه انتقال حرارت هستند که به صورت زیر بیان می شوند:

$$A = 2[l(h-t) + l(s-t) + t(h-t)] + t(s-2t)$$

$$A_2 = 2l(h-t) + 2t(h-t) + t(s-2t)$$

در اینجا $\eta_{f,id}$ - پره در کانال پره است که به صورت زیر محاسبه می شود:

$$\eta_{f,id} = \frac{th(\frac{1}{2} mh)}{\frac{1}{2} mh'}$$

$$\text{TA-T}$$

$$m = \sqrt{\frac{2h_c}{\lambda_s t'}}$$

۳-۵-۲ مبدل حرارتی صفحه ای پره دار با جریان دو فاز:

در یک مبدل حرارتی معمولاً دو جریان سیال مشاهده می شود، یکی سیال فرایندی است که حالت ترمودینامیکی آن باید به روشی مشخص توسط کاربرد در مبدل حرارتی تغییر کند، و دیگری سیال جانبی برای خنکسازی یا گرمسازی است . مبدلهای حرارتی چندجریانه به طور مطلوب به عنوان مبدلهای حرارتی و فشردگی این نوع مبدل حرارتی av_1 مطابق شکل av_2 نشان داده شده است . یک ترتیب مبدل حرارتی صفحهای چندجریانه که بار حرارتی را به دو سیال جانبی تقسیم می کند به طور شماتیک در شکل av_2 نشان داده شده است . که در آن یک صفحه میانی برای جدا کردن سیالهای جانبی استفاده می شود. مبدل حرارتی صفحهای ؛ همان طور یک صفحه میانی برای جدا کردن سیالهای جانبی استفاده می شود. مبدل حرارتی صفحهای ؛ همان طور

که در شکل 2 نشان داده شده است، امکان ساخت یک دستگاه چندجریانه فشرده و مقرون به صرفه را فراهم می کند که دارای حجم نگهداری سیال بسیار کم با بازده انتقال حرارت بالا و قیمت رقابتی است. مساحت یک دلیل مهم برای انتخاب مبدل حرارتی صفحه ای چندجریانه ، انعطاف پذیری این دستگاه است. مساحت سطح انتقال حرارت می تواند با اضافه یا حذف صفحات به شرایط جدید تطبیق داده شود و فرایند های چندجریانه بهراحتی با اضافه کردن صفحات میانی تقسیم جریان؛ ایجاد شوند. مبدل های حرارتی صفحه ای پره دار، قابلیت برقراری انتقال حرارت بین چند جریان را به صورت همزمان دارند. در مبدل های چند جریانه، دمای ورودی و خروجی جریانهای سرد با یکدیگر و جریان های گرم با یکدیگر لازماً برابر نمی باشد؛ هر کدام بسته به طراحی خود ، دمای ورود و خروجی متفاوتی می تواند داشته باشد. نمونه ای از منحنی آنتالپی برای یک مبدل 4 0 جریانه 4 1 جریان گرم و 4 2 جریان سرد) در شکل 4 3 نشان داده شده است

[a] یک گرمکن صفحه ی معمولی، b , c یک گرمکن صفحه ی گرمکن صفحه ی a ۷-۳ شکل

شکل ۳-۸ نمودار دما در یک گرمکن مبادل حرارت در مراحل مایع، دوفازه و گازی در منطقه فوق بحرانی[۳۵]

شکلT-T از یک طرف وضعیت استاندارد با یک سیال جانبی را نشان می دهد و از طرف دیگر یک وضعیت چندجریانه با سه سیال جانبی را نشان می دهد. نمودار دما به صورت شماتیک در شکل T-T نشان داده شده است. به طوری که T دمای جریان فرایندی متراکم شونده را نشان می دهد و T_{CW} دمای جریان سیال جانبی آب خنک کننده را نشان می دهد . یک وضعیت دیگر که در آن یک دستگاه چند جریانه مطلوب را نشان می دهد ؛ در شکل T-T نشان داده شده است. اگر تغییر قابل توجهی در ظرفیت گرمایی جریان محصول بوجود اید ؛ ممکن است برای جریانهای سیال که در واحدهای تبرید کربن دی اکسید دیده می شود نیز صحیح باشد و لذا وضعیت نشان داده شده در شکل T-T ممکن است رخ دهد.

همچنین در این وضعیت، تقسیم جریان سیال جانبی، تطابق بهتری با پروفیلهای دما فراهم می کند.با تفکیک جریانهای انرژی به بیش از یکی، می توان دمای جریان گرم یا سرد را به طور کامل به شرایط حرارتی کلی تنظیم کرد. بنابراین منحنی ترکیبی برای تجزیه و تحلیل ادغام حرارتی می تواند به بهترین شکل تنظیم شده و با تطبیق بهتری ارائه شود. یک جریان خنک کننده تغییر یافته ممکن است برای منحنی ترکیبی مفید باشد.

شکل۳-۹ منحنی ترکیب برای یک مبدل ۵ جریانه[۳۶]

همان طور که از شکل $^{-}$ و مشخص است، برای جریان گرم، $^{-}$ شیب متفاوت و برای جریان سرد، $^{-}$ شیب متفاوت مشاهده می شود. به این نحو، می توان تحلیل یک مبدل را به صورت مبدل های جدا از هم بررسی کرد که در هر یک، همانند بخش قبل، خواص جریان ثابت است ومی توان روند تحلیل را مطابق بخش

قبل، طی کرد. در واقع این خواص ثابت، میانگین وزنی از خواص ثابت جریانهای مختلف سرد و گرم در بازه دمایی مورد نظر میباشد.

مساله دیگری که در کاربردهای عملی مبدلهای حرارتی، به چشم میخورد، تغییرات قابل توجه خواص ترموفیزیکی جریانها در طول میباشد. این امر باعث می شود تا ضریب انتقال حرارت و به تبع آن، ضریب کلی انتقال حرارت بین جریان سرد و گرم در طول مبدل تغییر کند. شکل 7-1 حالتهای مختلفی که در آن می توان این تغییرات خواص را مشاهده کرد نشان داده شده است.

شکل۳-۱۰ حالات مختلف تغییر ضریب انتقال حرارت کلی در طول مبدل [۳۳]

برای نمودارهای c و در شکل فوق، می توان با تقسیم مبدل به c بخش متفاوت و در نظر گرفتن یک ضریب انتقال حرارت مناسب برای هر یک ، به تحلیل جداگانه هر بخش مطابق قسمت قبل پرداخت. اما در مواردی که تغییرات خواص، از الگوی خاصی پیروی نمی کند، لازم است تا به قدری تقسیم بندی ریز باشد تا با فرض ضریب انتقال حرارت ثابت، در هر بخش، قابل اعمال باشد. این تغییرات، بخصوص در مواردی که جریان چند جزئی در حال تغییر فاز (مثلاً مایعسازی گاز طبیعی) می باشد، شدیدتر گردد.

٣ - ٩- بهينه سازي چندفازي بر اساس الگوريتم ژنتيک:

الگوریتمهای ژنتیک به طور گسترده در زمینه طراحی بهینهسازی مورد استفاده قرار می گیرند و به عنوان یک روش ؛ فرآیند انتخاب طبیعی تکامل زیستشناختی را تقلید می کنند. با استفاده از این روش، می توان از الگوریتمهای ژنتیک برای بهبود کارایی پیچ گرد فشارمحور، بهینهسازی طراحی موتور ، شناسایی پارامترهای باتری لیتیوم-یون، و اعتبارسنجی دادهها استفاده کرد.

دو نوع اصلی از الگوریتمهای بهینهسازی چندفازی عبارتند از: روشهای معمولی گرادیان و روشهای مستقیم بدون گرادیان ۲. نوع اول از این روشها بر اطمینان از کیفیت حدس اولیه تکیه می کند، که به راحتی ممکن است به اقلیمهای محلی فرود آید و تنها برای توابع صاف و پیوسته قابل استفاده باشد . روش مستقیم بدون گرادیان مناسبتر برای مطالعه پدیدههای غیرخطی است. در این میان، الگوریتمهای ژنتیک بیشترین استفاده را دارند .این الگوریتمها حساس به ناپیوستگی تابع هدف نیستند و در معلق نماندن در اقلیمهای محلی موثر می باشند و برای پردازش موازی مناسب هستند. این الگوریتم به طور گسترده برای کمینهسازی یا بیشینهسازی دو یا چند تابع هدف تحت شرایط و محدودیتهای داده شده استفاده می شود. نتیجه بهینه سازی نمایانگر مجموعهای از راه حل ها با بهترین توازن بین توابع هدف است. الگوریتم ژنتیک یک جمعیت تصادفی را در حالت اولیه ایجاد می کند، و سپس افراد جمعیت به عملیات تلاقی و میوتیشن می پردازند. سپس الگوریتم افراد را بر اساس رتبه عدم تسلط و میزان تودهپراکندگی مرتب می کند و افراد با کیفیت بالاتر را برای تشکیل نسل بعدی انتخاب می کند . جمعیت به سوی جبهه بهینه حرکت میکند در حالی که تنوع جمعیت حفظ میشود . الگوریتم تا زمانی که تعداد تعیین شده نسلها به پایان رسیده باشد، اجرا میشود. در این مطالعه، از الگوریتم ژنتیک برای بهینهسازی سه تابع هدف متضاد (مقدار انتقال حرارت، افت فشار روغن، دمای خروجی روغن) استفاده شده است . اندازه جمعیت، احتمال تلاقی، احتمال میوتیشن و حداکثر تعداد نسلها به ترتیب به ۲۰۰۰، ۲۰۰۹ و ۵۰۰۰ تنظیم شده است. [۳۷]

۳-۷ – چالشهای بهینهسازی مبدلهای حرارتی چندفاز با چند هندسه پره متفاوت:

به دلیل عدم توسعه روابط یکبعدی، برای ضرائب کالبرن و اصطکاک برای مبدلهای حرارتی چندجریانه چندفازی، می توان از روابط ارائه شده در بخش-0-1 برای تحلیل این مبدلها استفاده کرد. همچنین، رویکردهای اشاره شده در بخش-0-7 برای تحلیل این مبدل قابل استفاده نیستند زیرا؛ امکان استفاده از رویکرد منحنی ترکیب و استفاده از روابط ارائه شده برای f و f برای منحنی جریانهای حاصل بدلیل استفاده از ابعاد مختلف پره برای جریانهای مختلف، امکان پذیر نمی باشد. منحنی ترکیب، تمامی

¹ Traditional gradient methods

² direct non-gradient methods

جریانهای گرم و تمامی جریانهای سرد را به مانند یک جریان گرم و یک جریان سرد در نظر می گیرد و به این دلیل، در این روش امکان تفکیک جریانها از هم برای بررسی پرههای متفاوت در هر کدام امکان پذیر نیست.

در نتیجه برای تحلیل این مبدلها نیاز به تحلیل عددی مبدل و تحلیل لایه به لایه این مبدلها میباشد. از طرفی به دلیل چند فازی بودن جریانها و نیز چند جزئی بودن سیال، نیاز به استفاده از روابط تعادل فاز و معادلات حالت برای استخراج خواص ترموفیزیکی جریانها در هر مقطع میباشد.

۳-۸- روش حل عددی:

معادلات حاکم بر جریان اشفته در حالت سه بعدی و پایا شامل معادله پیوستگی ؛ معادلات برداری ؛ ممنتوم ؛ به روش عددی گسسته سازی و حل می شوند . در این پژوهش این معادلات به روش حجم محدود گسسته سازی و حل شده اند . از الگوریتم ژنتیک برای حل معادلات کوپل شده سرعت فشار استفاده می شود . روش حجم محدود یکی از قدرتمندترین روشهای عددی برای شبیهسازی جریان سیالات و انتقال حرارت است که در تحلیل مسائل صنعتی مانند مبدلهای حرارتی کاربرد گستردهای دارد. این روش با تقسیم دامنه مسئله به حجمهای کنترلی کوچک و اعمال معادلات بقای جرم، تکانه و انرژی بهصورت انتگرالی روی این حجمها، دقت بالایی در حفظ اصول فیزیکی ارائه میدهد. این ویژگی بهویژه در مسائل پیچیدهای که شامل جریانهای چندجزئی و چندفازی هستند، نقش کلیدی دارد.

روشهای عددی مختلفی برای حل مسائل جریان سیال و انتقال حرارت وجود دارد که هر کدام ویژگیها و کاربردهای خاص خود را دارند. روش تفاضل محدود با تقریبزدن مشتقات معادلات دیفرانسیل بهصورت تفاضلی ساده عمل می کند و اجرای آن آسان است، اما در مسائل پیچیده با هندسههای نامنظم محدودیتهایی دارد. روش المان محدود با استفاده از المانهای هندسی کوچک، مانند مثلثها و چهارضلعیها، توانایی مدلسازی دقیقتری در هندسههای پیچیده فراهم می کند ولی به دلیل نیاز به محاسبات سنگین و پیچیدگی تنظیمات، استفاده از آن در کاربردهای صنعتی کمتر متداول است. در مقابل، روش حجم محدود با استفاده از حجمهای کنترل، تعادل دقیقی بین سادگی اجرا، دقت عددی، و توانایی تطبیق با هندسههای پیچیده ایجاد می کند.

در این تحقیق، روش حجم محدود به دلیل ویژگیهای منحصربهفرد آن برای تحلیل و بهینهسازی مبدلهای حرارتی صفحهای پرهدار استفاده شده است. یکی از مهم ترین دلایل این انتخاب، توانایی این روش در مدلسازی جریانهای چندجزئی و چندفازی است که در مبدلهای حرارتی به طور گسترده وجود دارند. علاوه بر این، ساختار پیچیده مبدلهای صفحهای پرهدار شامل پرهها و کانالهای متعدد، نیاز به روشی دارد که بتواند بهطور دقیق توزیع جریان و انتقال حرارت را شبیهسازی کند. روش حجم محدود با بهره گیری از شبکههای نامنظم و محلیسازی معادلات بقای انرژی و جرم در هر حجم کنترل، این نیاز را به خوبی برآورده می کند.

یکی دیگر از مزایای این روش، توانایی پیشبینی دقیق افت فشار و ضریب انتقال حرارت است که برای بهینهسازی طراحی مبدلها ضروری است. این ویژگی در کنار سازگاری آن با نرمافزارهای صنعتی مانند انسیس، امکان اجرای تحلیلهای پیچیده و ترکیب آنها با تکنیکهای بهینهسازی الگوریتم ژنتیک را فراهم میآورد. در این پژوهش، ترکیب روش حجم محدود با ابزارهای بهینهسازی چندهدفه توانسته است عملکرد حرارتی مبدل را بهبود بخشد و نتایج دقیق و قابل اعتمادی ارائه دهد.

این روش به دلیل دقت بالا در تحلیل جریانهای آشفته، کاهش هزینههای آزمایشگاهی، و توانایی بررسی اثر پارامترهای مختلف هندسی بر عملکرد مبدل، بهعنوان یکی از مؤثرترین ابزارها برای تحقیق حاضر انتخاب شده است. نتایج حاصل از این شبیهسازیها، نقش کلیدی این روش را در بهینهسازی و طراحی مبدلهای حرارتی نشان میدهند. [۳۸]

۹-۳ - شرایط مرزی حاکم:

شرایط جریان در کانال های حرارتی عبارتند از:

شرایط مرزی حاکم بر پژوهش حاضر برای تحلیل و شبیه سازی جریان و انتقال حرارت در مبدل حرارتی پره دار نامنظم به گونه ای تعریف شده اند که بتوانند تمامی جنبه های فیزیکی و حرارتی مرتبط با مسأله را پوشش دهند. در این شبیه سازی، پارامترهای متعددی نظیر دما، سرعت، فشار و همچنین ویژگی های ترمود ینامیکی و هیدرولیکی سیالات مختلف در ورودی و خروجی مبدل تعریف می شوند.

در ورودی کانال میانی، که جریان گرم از آن وارد مبدل میشود، دما به عنوان یک پارامتر ثابت برابر

 $T_{h,in}=393K$ تعریف شده است. سرعت جریان سیال در این بخش برابر با $T_{h,in}$ در $T_{h,in}=393K$ می شود و فرض می شود که مؤلفه های عمودی و عرضی سرعت، یعنی $T_{h,in}=0$ سفر هستند تا نشان دهنده جریان موازی در کانال باشد. فشار ورودی نیز به عنوان $P_{h,in}=0.2MP$ در نظر گرفته شده است . مشابه کانال بالا و پایین، که جریان سرد وارد مبدل می شود، دما برابر $T_{c,in}=293K$ تعریف شده است. مشابه کانال میانی، سرعت جریان ورودی در این بخش نیز به صورت موازی با سطح پرهها تعریف شده و مقدار $T_{c,in}=10.15MP$ فشار ورودی نیز به عنوان $T_{h,in}=10.15MP$ در نظر گرفته شده است .در خروجی تمامی گذرگاههای مبدل، فشار ثابت و برابر $T_{h,in}=10.1MP$ تعریف شده است تا جریان سیال به طور کامل از مبدل عبور کند. دمای خروجی جریان گرم از کانال میانی به عنوان $T_{h,in}=10.1MP$ و دمای خروجی جریان سرد از کانال های بالا و پایین به ترتیب به عنوان گرم از کانال میانی به عنوان این دماها وابسته به میزان انتقال حرارت در داخل مبدل می باشند و در حین شبیه سازی محاسبه می شوند. دیواره های مبدل حرارتی به صورت آدیاباتیک در نظر گرفته شده اند، به این معنا که هیچ گونه تبادل حرارتی بین سیال و محیط اطراف صورت نمی گیرد. این فرض باعث می شود که تمامی حرارت انتقال یافته بین جریان های گرم و سرد در داخل مبدل باقی بماند و تلفات حرارتی به محیط به حداقل برسد.

- جریان سیال در کانالها به صورت لایهای فرض شده است و توزیع دما و سرعت سیال در سطح مقطع کانال به طور یکنواخت است. این فرض به ساده سازی محاسبات کمک می کند و جریان را به گونهای مدل می کند که در طول کانالها به خوبی مخلوط می شود.
- انتقال حرارت طولی در صفحات جداکننده کانالها نادیده گرفته می شود و تمامی انتقال حرارت به صورت عمود بر جریان سیال انجام می گیرد. همچنین، ضریب انتقال حرارت کلی Uدر طول مبدل ثابت فرض شده است.
- در برخی شبیه سازی ها، ممکن است تغییرات خواص ترمودینامیکی در طول مبدل مانند تغییرات ضریب انتقال حرارت و چگالی در اثر تغییرات دما و فشار در نظر گرفته شود. این تغییرات به خصوص در مواردی که جریان سیال چندفازی و در حال تغییر فاز باشد، اهمیت زیادی دارند.

فصل چهارم

نتایج و بحث

1-4 مقدمه:

در این فصل به مطالعه عددی برای استفاده از مبدل های حرارتی صفحه ای پره دار جهت بررسی شار گرمایی وسایر خصوصیات جریان گرما، پرداخته می شود و با استفاده از روابط تحلیلی ؛ شبیه سازی های نرم افزاری مسئله درنرم افزار فلوئنت^۱ مورد بررسی قرار گرفته است.هدف از بررسی این تحقیق محاسبه پارامتر های جریان و عملکرد حرارتی مبدل های حرارتی صفحه ای پره دار زاویه های مختلف در گسترده رینولدز ۵۰۰۰ تا ۲۰۰۰۰ است . معادلات حاکم بر مسئله ، همانگونه که در فصول قبل به ان اشاره شده است ، به روش حجم محدود گسسته سازی شده . در معادلات مومنتوم و انرژی به روش تفاضل محدود $^{\mathsf{T}}$ مرتبه دوم تقریب زنی شده اند. برای دو سمت مبدل ؛ شرط مرزی با دبی جرمی ورودی و دمای ثابت و یکنواخت ۸۰درجه سانتیگراد در نظر گرفته شده است. پس از بررسی میدان انتقال حرارت و جریان ؛ نتایج این تحقیق برای مقادیر عدد ناسلت ؛ ضریب کالبرن ؛ افت فشار؛ ضریب اصطکاک و کانتور های دما و جریان؛ ترسیم و تشریح خواهند شد .

روش تحقیق شامل شبیه سازی عددی و تکنیک های بهینه سازی است. شبیه سازی های دینامیک سیالات محاسباتی برای تجزیه و تحلیل ویژگی های انتقال حرارت و جر یان سیال در مبدل حرارتی صفحه ای پره دار دندانه دار انجام می شود. معادلات حاکم بر جریان سیال و انتقال حرارت با استفاده از روش های عددی مناسب حل می شوند. نتایج این مطالعه تاثیر پارامترهای مختلف طراحی را بر و یژگی های انتقال حرارت و افت فشار نشان می دهد.

۲-۴ - ارز بایی دقت مدل عددی:

ارزیابی دقت مدل عددی یکی از مراحل کلیدی در تحلیلهای عددی است که تضمین می کند نتایج حاصل از شبیه سازی، معتبر و قابل اعتماد هستند. این ارزیابی شامل دو بخش اصلی است: صحت سنجی و اعتبار سنجی. در بخش صحت سنجی، روشهای عددی و تکنیکهای به کاررفته برای مدل سازی، از جمله مش بندی، گسسته سازی، و الگوریتمهای حل، با استانداردهای موجود و اصول علمی مقایسه می شوند تا اطمینان حاصل شود که مدل به درستی پیادهسازی شده است.

در ادامه، اعتبارسنجی به مقایسه نتایج حاصل از شبیهسازی عددی با دادههای تجربی یا مقالات معتبر می پردازد. هدف از این بخش، ارزیابی قابلیت مدل عددی در بازتولید رفتار واقعی سیستم است. این دو مرحله به صورت مکمل عمل کرده و در کنار هم، دقت و اعتمادپذیری مدل عددی را تضمین می کنند.

¹ Ansys Fluent

² Finite difference method

۲-۲-۴ صحت سنجی مدل:

صحتسنجی یکی از مراحل اساسی در شبیه سازی های عددی است که در آن درستی پیاده سازی روشها و تکنیک های عددی به کاررفته در مدل سازی بررسی می شود. هدف از صحت سنجی، اطمینان از این است که روشها و ابزارهای عددی انتخاب شده به درستی عمل کرده و نتایج حاصل از شبیه سازی با اصول علمی و ریاضیاتی انطباق دارند. در این پژوهش، صحت سنجی با تمرکز بر سه جنبه اصلی انجام شده است: مش بندی، روشهای گسسته سازی، و همگرایی عددی. ابتدا در بخش مش بندی، تحلیل حساسیت شبکه انجام شده است تا اطمینان حاصل شود که دقت نتایج شبیه سازی به اندازه المانهای شبکه وابسته نیست. برای این منظور، چندین شبکه با تراکمهای مختلف مورد بررسی قرار گرفت و مقادیر پارامترهای کلیدی مانند دمای متوسط و افت فشار برای هر شبکه محاسبه شد. نتایج نشان داد که پس از رسیدن به یک حد مشخص در تراکم المانها، تغییرات در نتایج ناچیز بوده و قابل اغماض است. این امر نشان دهنده استقلال شبکه است و شبکهای بهینه از نظر دقت و زمان محاسبات انتخاب شد. [۳۹]

در این پژوهش، از روش حجم محدود برای گسسته سازی استفاده شده است ودر ادامه، همگرایی عددی از طریق بررسی مانده معادلات پیوستگی، مومنتوم، و انرژی مورد ارزیابی قرار گرفته است.

جدول ۴-۱ نشان دهنده تأثیر تعداد المانهای شبکه بر پارامترهای کلیدی شبیه سازی نظیر دمای متوسط، عدد ناسلت و افت فشار را نشان می دهد . هدف از ارائه این جدول، بررسی میزان تغییرات پارامترها با افزایش تعداد المانها و تعیین شبکهای است.

در جدول مشاهده می شود که با افزایش تعداد المانها، تغییرات دمای متوسط، عدد ناسلت و افت فشار کمتر می شود. این یعنی شبیه سازی به مقدار دقیقی نزدیک شده است و افزایش بیشتر تعداد المانها تأثیر زیادی روی نتایج ندارد، ولی ممکن است زمان محاسبات را طولانی تر کنند. بنابراین، همیشه باید تعادلی بین دقت نتایج و زمان محاسبات را برقرار کرد. این موضوع نشان می دهد که مدل عددی در شبکههای متراکم تر از پایداری مناسبی برخوردار است. علاوه بر این، کاهش خطای نسبی میان نتایج شبکههای متوالی، نشان دهنده افزایش دقت عددی با افزایش تعداد المانهاست.

خطای نسبی به ما نشان میدهد که نتیجه ی جدیدی که بهدست آوردهایم چقدر با نتیجه قبلی تفاوت دارد. برای این کار، ابتدا مقدار جدید و مقدار قبلی را مقایسه میکنیم و اختلاف آنها را حساب میکنیم. سپس بررسی میکنیم که این اختلاف نسبت به مقدار قبلی چقدر بزرگ یا کوچک است.

اگر خطای نسبی خیلی کم باشد (مثلاً کمتر از ۱٪)، یعنی مقدار جدید تقریباً همان مقدار قبلی است و شبیه سازی یا اندازه گیری ما به یک مقدار پایدار رسیده است. اما اگر این مقدار زیاد باشد (مثلاً ۱۰٪ یا بیشتر)، یعنی هنوز تغییرات قابل توجهی داریم و شاید لازم باشد بررسی بیشتری انجام دهیم.

¹ Verification

در واقع، خطای نسبی کمک میکند تا بفهمیم آیا دادههای جدیدی که بهدست آوردهایم دقیق تر از قبل هستند یا نه، و آیا می توانیم نتیجه ی نهایی را قابل اعتماد بدانیم.

در شبیهسازیهای عددی، وقتی تعداد المانها افزایش مییابد، نتایج دقیق تر می شوند. دلیل علمی این موضوع همگرایی محاسبات عددی است. اما پس از یک حد مشخص، افزایش بیشتر تعداد المانها تأثیر چشمگیری بر نتایج ندارد. این یعنی شبکه به مقدار پایدار رسیده و افزایش بیشتر المانها فقط زمان محاسبات را زیاد می کند، بدون اینکه دقت تأثیر قابل توجهی داشته باشد. این اصل در تست "استقلال از شبکه" هم بررسی می شود که نشان می دهد بعد از یک مقدار مشخص، نیازی به افزایش جزئیات نیست. نتایج جدول به انتخاب شبکهای منجر می شود که تعادلی مناسب میان دقت و زمان محاسبات ایجاد کند. در این پژوهش، شبکهای که تغییرات نتایج در آن کمتر از یک درصد بود، به عنوان شبکه بهینه انتخاب شد.

این شبکه، ضمن ارائه دقت عددی قابل قبول، از پیچیدگی و زمان محاسبات غیرضروری نیز جلوگیری می کند.با توجه به دادههای ارائهشده در جدول، می توان نتیجه گرفت که استفاده از مشبندی با تعداد مشخصی المان، علاوه بر تضمین دقت مناسب، مبنای قابل اعتمادی برای تحلیلهای پیشرفته تر و بررسیهای اعتبارسنجی فراهم می کند. این تحلیلها نقش کلیدی در تضمین صحت و پایداری مدل عددی ایفا می کنند و امکان پیشبینی دقیق رفتار سیستم را فراهم می آورند.

جدول پیشنهادی برای صحت سنجی مبدل حرارتی							
خطای نسبی نسبت به شبکه قبلی	افت فشار (Pa)	عدد ناسلت	دمای متوسط (C^0)	تعداد المان ها			
_	17	۴۷.۸۵	٧۵.١٢	1			
+. ٢۶	119.	۴۸.۰۵	٧۵.٣٢	7			
+.1+	119.5	۴۸.۱۰	۷۵.۳۵	4			
٠.٠۴	119.5	۴۸.۱۲	٧۵.٣۶	۵۰۰۰۰			

جدول ۴-۰ جدول پیشنهادی برای صحت سنجی مبدل حرارتی

۲-۲-۴ اعتبار سنجی مدل:

اعتبارسنجی مدل ارائهشده در این پژوهش با استفاده از مقایسه نتایج حاصل از شبیهسازی عددی با دادههای گزارششده توسط لیو و همکاران انجام شده است. در این مقایسه، تغییرات پارامترهای اصطکاک مودی و ضریب کولبرن در در شکل (4-1) نمایش داده شده است. شکل مذکور تأثیر ارتفاع فین را بر عامل اصطکاک نشان می دهد، در حالی که سه پارامتر دیگر ثابت فرض شده اند s=1.821 میلی متر، و s=1.821

به وضوح مشاهده می شود که افزایش ارتفاع فین باعث افزایش سطح انتقال حرارت می شود که این امر مقاومت حرارتی را افزایش می دهد. این دو عامل منجر به کاهش تدریجی ضریب کولبرن می شوند. از سوی دیگر، افزایش ارتفاع فین باعث کاهش سرعت سیال در ورودی شده که به طور مستقیم انتقال حرارت را کاهش می دهد و به همین دلیل، باعث افزایش عامل اصطکاک می شود.

لیو و همکاران در پژوهش خود به شبیهسازی عددی رفتار جریان و انتقال حرارت سیال داغ با خنک کاری توسط سیال آب در یک مبدل حرارتی صفحهای پرهدار سهجریانی در فضای سهبعدی پرداختهاند. در این اعتبارسنجی، روند تغییرات ارتفاع فین بر پارامترهای ضریب اصطکاک مودی و ضریب کولبرن با نتایج لیو و همکاران مقایسه شده است. نتایج حاصل نشان می دهد که تطابق خوبی میان دادههای شبیهسازی شده و دادههای لیو وجود دارد. این تطابق بیانگر دقت مناسب فرضیات و مقادیر عددی به کاررفته در مدل است و خطای عددی در نتایج بهقدری ناچیز است که قابل چشم پوشی است.

¹ Validation

شکل۴-۱ تأثیر متغیرهای طراحی بر عملکرد انتقال حرارت[۳۹]

۴-۳ - انتخاب دامنه همگرایی:

در تحلیلهای عددی، انتخاب دامنه همگرایی یکی از عوامل تعیین کننده در تضمین دقت و پایداری نتایج محاسبات به شمار میآید. دامنه همگرایی، معیاری برای ارزیابی میزان تغییرات باقیمانده در معادلات حاکم است و مشخص می کند که آیا حل عددی به شرایط پایدار رسیده است یا خیر. این دامنه تعیین می کند که چه زمانی تغییرات پارامترهای کلیدی، نظیر دمای متوسط سطح زیرین مبدل حرارتی و فشار متوسط مقطع ورودی، به اندازهای کوچک می شوند که بتوان محاسبات را متوقف کرد و نتایج را نهایی نمود.

شکل ۴-۲ تغییرات این پارامترها را در زوایای ۶۰ درجه و ۹۰ درجه نمایش میدهد.در حل عددی این مسئله، مشاهده می شود که زمانی که تغییرات دمای متوسط سطح زیرین مبدل و فشار متوسط مقطع ورودی به حداکثر مقدار باقیمانده $3^{\mp 13}$ برسند، شرایط همگرایی حاصل میشود . برای زاویه ۶۰ درجه دامنه همگرایی از مقدار اولیه $6.8^{\mp 13}$ شروع شده و برای زاویه ۹۰ درجه از مقدار اولیه $5.5^{\mp 13}$ شروع می شود . در هر دو حالت، دامنه همگرایی با تکرار محاسبات کاهش می یابد و در زمانی که تعداد تکرار 7به ۲ می رسد، مانده به مقدار نهایی $3^{\mp 13}$ نزدیک شده و شرایط همگرایی حاصل می شود.

این مانده نشان دهنده سطح دقت مورد انتظار در حل عددی است و تضمین می کند که نتایج به حالت پایدار نزدیک شدهاند. انتخاب دامنه همگرایی مناسب نه تنها دقت نتایج را تضمین می کند، بلکه در کاهش زمان محاسبات عددی نیز نقش مؤثری ایفا می نماید. با تنظیم دقیق این دامنه، از تکرارهای غیرضروری جلوگیری شده و در عین حال، از صحت و پایداری نتایج اطمینان حاصل می شود.

در این مطالعه، مانده $^{\mp 13}$ برای حل کلیه معادلات اساسی، شامل معادلات پیوستگی، مومنتوم، انرژی و مدلهای آشفتگی اعمال شده است. این معادلات نقش مهمی در پیشبینی رفتار جریان چندجزئی و انتقال حرارت در مبدل حرارتی صفحهای پرهدار ایفا می کنند.انتخاب دامنه همگرایی مناسب، علاوه بر تأثیر مستقیم بر دقت نتایج، نقش بسزایی در کاهش زمان محاسبات عددی دارد. با تنظیم دقیق این دامنه، می توان از تکرارهای غیرضروری جلوگیری کرد و در عین حال از صحت نتایج اطمینان حاصل نمود.به طور کلی، تنظیم دامنه همگرایی در این پژوهش با هدف برقراری توازن میان دقت عددی و کارایی محاسبات صورت گرفته است. در ادامه، تاثیر این انتخاب بر نتایج شبیهسازی و تحلیلهای حاصل مورد بررسی قرار خواهد گرفت.

یکی از چالشهای مهم در تحلیل عددی، برقراری توازن میان دقت محاسبات و زمان مورد نیاز برای انجام شبیه سازی است. کاهش دامنه همگرایی (یعنی کاهش مقدار مانده نهایی) باعث افزایش دقت نتایج خواهد شد، اما به طور همزمان تعداد تکرارها را افزایش داده و زمان محاسبات را طولانی تر می کند. از سوی دیگر، دامنه همگرایی بیش از حد بزرگ ممکن است منجر به توقف زودهنگام محاسبات و کاهش دقت نتایج شود. بنابراین، انتخاب دامنه 3^{+13} در این مطالعه، با هدف دستیابی به بالاترین دقت ممکن در عین حفظ کارایی محاسبات صورت گرفته است.

¹ Choosing the convergence domain

² Iteration

³ Domain convergence

شکل ۴-۲ دامنه همگرایی مدل مورد بررسی برای زاویه ۶۰ درجه

شکل۴-۳ دامنه همگرایی مدل مورد بررسی برای زاویه ۹۰ درجه

۴-۴- استقلال از شبکه^۱:

در تحلیلهای عددی، یکی از چالشهای اساسی ایجاد مشی دقیق و بهینه است که هم هندسه و هم ویژگیهای فیزیکی مسئله را بهدرستی بازنمایی کند .استقلال از شبکه بدین معناست که با افزایش دقت مش (كاهش اندازه يا افزايش تعداد المانها)، نتايج تحليل دچار تغييرات محسوسي نشوند. اين ويژگي، معیاری مهم برای اطمینان از دقت و پایداری محاسبات است.

در رسیدن به استقلال شبکه چند مرحله وجود دارد:

مرحله اول انتخاب چندین شبکه با تعداد المانهای متفاوت:

در اولین گام، برای بررسی تأثیر تعداد المانها بر نتایج عددی، چندین شبکه با تعداد متفاوت المان تولید می شود. در این مطالعه، شبکههایی با ۱۰۰۰۰، ۲۰۰۰۰، ۳۰۰۰۰ و ۵۰۰۰۰ المان برای بررسی استقلال از شبکه انتخاب شدند.

مرحله دوم اجرای شبیهسازی برای هر شبکه:

برای هر یک از این شبکهها، شبیهسازی عددی انجام شده و متغیرهای کلیدی شامل افت فشار و دمای میانگین مورد ارزیابی قرار گرفتند. در هر اجرا، حل عددی تا رسیدن به همگرایی انجام میشود و مقادیر پایدار ثبت می شوند.

مرحله سوم تحلیل نتایج و رسم نمودارها:

پس از انجام شبیهسازی، نتایج مربوط به افت فشار و میانگین دما برای هر شبکه ثبت شده و در قالب نمودار ارائه میشوند. تحلیل نمودارها نشان میدهد که برای تعداد المانهای کم، تغییرات مقادیر محاسبه شده نسبت به تعداد المانها زياد است، اما با افزايش تعداد المانها، تغييرات كاهش مي يابد.

شکل ۴-۳ نمودار افت فشار نسبت به تعداد المانهای شبکه نشان میدهد که با افزایش تعداد المانها، مقدار افت فشار ابتدا تغییر محسوسی دارد اما پس از مقدار مشخصی از المانها، تغییرات آن به حداقل میرسد. همانطور که در نمودار مشاهده میشود، افت فشار برای تعداد ۱۰۰۰۰ المان مقدار ۱۲۰.۱پاسکال بوده که با افزایش تعداد المانها به ۲۰۰۰۰، مقدار آن به ۱۱۹.۸ پاسکال کاهش یافته است. این کاهش تا تعداد ۴۰۰۰۰ المان ادامه داشته، اما پس از آن مقدار افت فشار در حدود ۱۹.۶ یاسکال ثابت میماند. این روند نشان دهنده رسیدن به همگرایی است. بر این اساس، مقدار ۴۰۰۰۰ المان به عنوان حداقل مقدار بهینه برای استقلال شبکه انتخاب شد.

¹ Mesh Independence

شكل ۴-۴ - نمودار افت فشار بر حسب تعداد المانها

شکل ۴-۴ نمودار میانگین دما بر حسب تعداد المان ها را نشان می دهد . به منظور تحلیل استقلال شبکه بر اساس دما، میانگین دمای محاسبه شده برای مقادیر مختلفی از تعداد المانها مورد بررسی قرار گرفت. همان طور که در نمودار مربوطه مشاهده می شود، میانگین دما برای ۱۰۰۰۰ المان مقدار ۷۵.۱۲درجه سانتی گراد است و با افزایش تعداد المانها به ۲۰۰۰۰، این مقدار به ۷۵.۳۱درجه سانتی گراد افزایش می یابد. در ادامه، افزایش تعداد المانها از ۳۰۰۰۰ تا ۴۰۰۰۰، تغییر اند کی در مقدار دما ایجاد می کند و پس از مقدار ۲۰۰۰۰ المان، دما در حدود ۷۵.۳۵ درجه سانتی گراد ثابت باقی می ماند. این مسئله نشان دهنده همگرایی دمایی و عدم تغییر محسوس مقدار دما در افزایش بیشتر تعداد المانها است. بر این اساس، مقدار ۲۰۰۰ المان به عنوان مقدار بهینه برای استقلال شبکه در تحلیل دمایی انتخاب شد.

شكل ۴-۵- نمودار ميانگين دما بر حسب تعداد المانها

دو نوع اصلی مشبندی که در این تحقیق بررسی شدهاند عبارتند از:

- مش ساختاریافته ¹:

ابن نوع مش شامل سلولهای منظم و ساختاریافته است که به صورت یکنواخت در شبکه توزیع می شوند. مش هموار برای هندسههای ساده و منظم مناسب است و دقت بالایی را در حل معادلات عددی فراهم می کند. با این حال، برای هندسههای پیچیده مانند مبدلهای حرارتی صفحهای پرهدار، انعطاف پذیری این روش محدود است

- مش غیرساختاریافته ^۲:

محاسبات شد.

این نوع مش از سلولهایی با شکلهای نامنظم مانند مثلث و چندضلعی تشکیل شده است. انعطاف پذیری بالای مش غیرهموار امکان پوشش دهی دقیق نواحی با زوایای تیز و انحناهای زیاد را فراهم می کند. این نوع مش برای مدلسازی دقیق جریان و انتقال حرارت در هندسههای پیچیده، مانند مبدلهای حرارتی مورد بررسی در این تحقیق، بسیار مناسب است.

در این پژوهش، با توجه به ویژگیهای هندسه مبدل حرارتی، مشبندی غیرهموار انتخاب شد. این روش به دلیل توانایی در پوشش جزئیات هندسی، امکان دقت بالا در مدلسازی نواحی حساس مانند جریانهای نزدیک به پرهها را فراهم کرد. تحلیل حساسیت شبکه نیز برای اطمینان از استقلال شبکه و دقت نتایج انجام شد.

مشبندی اسموس 3 روشی برای بهینهسازی کیفیت مش است که به بهبود دقت محاسبات و پایداری حل کمک می کند. روش های مختلفی برای استفاده از مش بندی اسموس وجود دارد. در این تحقیق، از روش اسموس لاپلاسی 4 استفاده شد که در آن هر گره موقعیت خود را بر اساس میانگین گرههای همسایه تنظیم می کند. این روش سریع و ساده است اما در برخی موارد ممکن است کیفیت مش را کاهش دهد. استقلال از شبکه زمانی حاصل می شود که تغییر تعداد المانها تأثیر محسوسی بر نتایج نداشته باشد .در این پژوهش، 4 المان مقدار بهینه تعیین شد که ضمن کاهش هزینه محاسبات، دقت مدل سازی را حفظ کرد. استفاده از مش غیرساختاریافته و اسموس موجب بهبود کیفیت شبکه و بهینهسازی زمان

¹ Structured Mesh

² Unstructured Mesh

³ Smoothing Mesh

⁴ Laplacian Smoothing

-4-4 نتایج حاصل از شبیه سازی عددی:

در این پژوهش مبدل های حرارتی صفحه ای پره دار برای دو نوع سیال مورد بررسی قرار می گیرد . ابتدا با سیال عامل آب و سپس نانوسیال آب — اکسید آلومینیوم در درصدهای حجمی مختلف مورد مطالعه قرار گرفته شده است و مقادیر ضریب کلی انتقال حرارت و نیز افت فشار کل و همچنین مقدار معیار ارزیابی عملکرد ؛ عدد ناسلت ؛ ضریب کالبرن ؛ افت فشار؛ ضریب اصطکاک برای تمامی حالات بررسی می گردد . یکی از اهداف مهم این تحقیق، استتار حرارتی است. برای رسیدن به این هدف، باید دمای هوای خروجی از مبدلهای حرارتی صفحهای پرهدار به حداکثر 1 درجه سلسیوس برسد. در این راستا، برای جبران افت فشار ناشی از مبدل و افتهای استاتیکی و دینامیکی کانالها و اتصالات، از فن های افزاینده فشار استفاده می شود که منجر به افزایش فشار و در نتیجه افزایش دمای سیال به 1

شبیه سازی ها در محدوده عدد رینولدز $3 \cdot 0 \cdot 0$ تا $1 \cdot 0 \cdot 0 \cdot 0$ انجام شده است. نتایج شبیه سازی نشان می دهد که با استفاده از پرههای نا منظم ، ضریب انتقال حرارت $8 \cdot 0 \cdot 0$ درصد و ضریب افت فشار $8 \cdot 0 \cdot 0$ درصد افزایش می یابد. این افزایش عمدتاً به دلیل افزایش آشفتگی جریان ناشی از هندسه پرهها و نفوذ جریان سیال به ریشه پرهها می باشد. در این تحقیق از روش حجم محدود برای حل معادلات بقاء، آشفتگی، انرژی و مومنتم استفاده شده است. آشفتگی میدان جریان نیز با استفاده از مدل توربولانسی رینولدز $8 \cdot 0 \cdot 0 \cdot 0$ می باشد. سازی شده است. نتایج به دست آمده بیان $8 \cdot 0 \cdot 0 \cdot 0$ کاهش انتقال حرارت با افزایش تعداد دندانه ها می باشد. علت این امر ناشی از کاهش میزان آشفتگی جریان در اثر افزایش تعداد دندانه ها است.

جریانهای سیال در این مبدلها با صفحات تخت که بین آنها پرههای نامنظم قرار دارند، از هم جدا می شوند. این مبدلها، به طور خاص به عنوان واحدهای فشرده شناخته می شوند . میزان سطح انتقال حرارت در واحد حجم حدوداً عدد ۲۰۰۰ را نشان می دهد. صفحات عموماً دارای ضخامت بین ۵.۰ تا ۱ میلی متر و پرهها نیز با ضخامت بین ۱۰۰۵ تا ۷.۵ میلی متر ساخته شده اند. کل مبدل از آلیاژ آلومینیوم ساخته شده و اجزاء مختلف آن به وسیله لحیم کاری در حمام نمک یا کوره خلاً به یکدیگر متصل می شوند. استفاده از پرهها که در راستای جریان پیوسته نیستند، موجب شکسته شدن و به هم خوردن لایههای مرزی جریان می شوند در صورتی که سطح در راستای جریان موجدار باشد، لایههای مرزی یا نازک می شوند یا قطع می شوند که نتیجه آن، افزایش ضرایب انتقال حرارت و در عین حال افزایش افت فشار می باشد. [۴۱]

در جدول (۴-۲)، نتایج حاصل از شبیه سازی عددی برای ضرایب انتقال حرارت، افت فشار و سایر پارامترهای مربوط به عملکرد مبدلهای حرارتی صفحهای پرهدار شیاردار با سیالهای آب و نانوسیال ارائه

² Reynold turbulence model

¹Aluminum oxide

شده است. این جدول اطلاعات مقایسهای میان شرایط مختلف جریان و هندسه پرهها را نشان میدهد که برای تحلیل دقیق تر و بهینه سازی طراحی مبدلهای حرارتی مفید خواهد بود.

ظرفیت رسانایی الکتریکی (σ)	ظرفیت رسانایی حرارتی (k) (W/mK)	(Cp) ظرفیت گرمایی ویژه $\left. egin{aligned} \left. \egin{aligned} \left. \e$	عدد پرانتل (Pr)	(μ) لزجت (Pa.s)	چگالی (^{kg} / _{m³)}	سيال
4.194E-1	0.598	4181	4.26	0.002	998	اب(۳۰ درجه)
4.743E-1	0.6667	4195	2.396	0.000355	971.5	اب(۸۰ درجه)
-	46	752	-	-	3960	اكسيد المينيوم

جدول۴-۲ مشخصات ترموفیزیکی آب و اکسید آلومینیوم

۴-۶- عدد ناسلت^۱ متوسط:

در این بخش، نمودارهای عدد ناسلت متوسط در مبدل حرارتی در محدوده عدد رینولدز بین 0.00 تا در این بخش، نمودارهای حمله 0.00 درجه و 0.00 درجه در شکلهای 0.00 و 0.00 آورده شده است.این نمودار تأثیر همزمان افزایش سرعت سیال و تغییر زاویه حمله پرهها را بر ضریب انتقال حرارت جابجایی اجباری نشان می دهد. با افزایش سرعت سیال، ضریب انتقال حرارت جابجایی به طور چشمگیری افزایش می یابد که موجب بهبود کارایی انتقال حرارت می شود. با این حال، میزان افزایش عدد ناسلت وابسته به شرایط جریان و هندسه پرهها است و به صورت خطی با عدد رینولدز تغییر نمی کند.

در این تحقیق، شبیهسازیهای عددی مختلفی برای تحلیل تأثیر هندسه و ساختار پرهها بر عدد ناسلت انجام شده است. نتایج این شبیهسازیها نشان میدهد که افزایش ارتفاع پرهها و تغییر در فاصله میان صفحات میتواند عدد ناسلت را تا حد مشخصی افزایش دهد، اما پس از یک مقدار بهینه، افزایش بیشازحد ارتفاع پرهها یا کاهش فاصله صفحات موجب افت فشار نامطلوب شده و کارایی سیستم را تحت تأثیر قرار میدهد . علاوه بر این، مشاهده شده است که جریانهای ثانویه ایجاد شده ناشی از طراحی پرهها، بهویژه در جریانهای چندجزئی، میتواند به انتقال حرارت بهتر کمک کند.

بر اساس نتایج به دست آمده از شبیه سازی های عددی، در زاویه حمله ۶۰ درجه، با افزایش عدد رینولدز، ضریب انتقال حرارت جابجایی روند صعودی یکنواختی را طی می کند. این افزایش ناشی از کاهش ضخامت

¹ Nusselt number

لایه مرزی حرارتی و بهبود شرایط اختلاط سیال است. در این زاویه، جریان سیال نسبت به زاویه ۹۰ درجه کمتر با پرهها برخورد کرده و گرادیان دمایی در سطح پره کاهش می یابد. این امر موجب می شود که عدد ناسلت نسبت به زاویه ۹۰ درجه کمتر باشد، اما از سوی دیگر، افت فشار نیز کاهش می یابد که از نظر بهرهوری انرژی، گزینه بهتری محسوب می شود.

در مقابل، در زاویه حمله ۹۰ درجه، جریان سیال به طور عمودی با پرهها برخورد کرده و این برخورد باعث ایجاد گردابههای قوی در پشت پرهها می شود. این نواحی گردابی، با افزایش عدد رینولدز، شدت بیشتری پیدا کرده و منجر به شکستن مؤثر تر لایه مرزی حرارتی می شوند. این شرایط انتقال حرارت جابجایی را به طور قابل توجهی بهبود می دهد. اما در مقادیر بالای عدد رینولدز، ممکن است تشکیل نواحی باز چرخشی نامطلوب رخ دهد که موجب افت کارایی در برخی نواحی مبدل می شود. همچنین، افزایش آشفتگی جریان در نزدیکی دیوارهها موجب هدایت بهتر سیال گرم به بخش مرکزی مبدل شده و توزیع دما را بهبود می بخشد.

مقایسه دو زاویه حمله نشان می دهد که افزایش عدد رینولدز از ۵۰۰۰ به ۲۰۰۰۰ در هر دو زاویه، میانگین انتقال حرارت را تا حدود ۶۳ درصد افزایش می دهد. همچنین افزودن نانوذرات با کسر حجمی ۶ درصد، عدد ناسلت را تا ۴۸ درصد بهبود می بخشد. همچنین، افزایش کسر حجمی نانوذرات موجب افزایش لزجت سیال شده که می تواند افت فشار بیشتری را به همراه داشته باشد.

تحلیل هندسه پرهها و تأثیر آنها نشان میدهد که افزایش ارتفاع پرهها و کاهش فاصله میان صفحات تا یک حد بهینه، انتقال حرارت را بهبود میبخشد. با این حال، افزایش بیش از حد ارتفاع پرهها باعث افت فشار بالا شده و در مواردی عملکرد کلی مبدل را کاهش میدهد. همچنین، نانوذرات به دلیل افزایش هدایت حرارتی سیال پایه، نقش مهمی در بهبود انتقال حرارت دارند، اما تأثیر آنها وابسته به نحوه توزیع مناسب در سیال است. ترکیب طراحی بهینه پرهها با استفاده مناسب از نانوذرات میتواند موجب حداکثرسازی عملکرد مبدل حرارتی شود.

در مجموع، بررسی نتایج نشان می دهد که پرههای با زاویه حمله ۹۰ درجه برای دستیابی به انتقال حرارت بهینه بهینه تر مناسب تر هستند، اما افت فشار بیشتری ایجاد می کنند. در مقابل، زاویه ۶۰ درجه تعادل بهتری بین انتقال حرارت و افت فشار ایجاد می کند. در نهایت، با انتخاب هندسه مناسب پرهها، تنظیم بهینه زاویه حمله و افزودن نانوذرات به صورت کنترل شده، می توان به کارایی حداکثری در مبدل حرارتی صفحهای پرهدار دست یافت.

1

¹ Dead Zones

۴-۴ مودار عدد ناسلت برای زاویه ۶۰ درجه و درصد حجمی 8

شکل۴-۷ - نمودار عدد ناسلت عدد ناسلت برای زاویه ۹۰ درجه و درصد حجمی ۶

- بررسی اثر عدد رینولدز در افزایش انتقال حرارت و افت فشار:

شکل * - ۸ نشان دهنده تغییرات ضریب انتقال حرارت کل با افزایش عدد رینولدز میباشد که به وضوح روند صعودی این پارامتر را با افزایش سرعت جریان و آشفتگی نشان می دهد.از سوی دیگر، افزایش عدد رینولدز منجر به افزایش افت فشار در مبدل حرارتی می شود. این افزایش به دلیل افزایش سرعت جریان و برخورد شدید تر سیال با پرههای مبدل است که منجر به اتلاف انرژی و افزایش فشار در مسیر جریان می شود. داده های عددی به دست آمده از شبیه سازی های انجام شده، نشان می دهند که افت فشار با توان مشخصی از افزایش سرعت جریان (و به تبع آن عدد رینولدز) ارتباط دارد.

تغییرات ضریب انتقال حرارت کل نسبت به تغییرات عدد رینولدز در شکل 4 – 4 نمایش داده شده است. با توجه به شکل دیده می شود که مطابق انتظارات با افزایش عدد رینولدز در هر دو بخش مبدل مقدار ضریب انتقال حرارت کل افزایش یافته است. مقادیر ضریب کل انتقال حرارت در مقادیر عدد رینولدز مقادیر ۱۲۳/۲، ۱۱۹/۱، ۱۱۹/۱، ۱۲۳/۸، مقادیر ۱۲۳/۲، ۱۱۹/۱، ۱۱۹/۱، ۱۲۳/۸ مقادیر ۱۲۳/۲، ۱۱۹/۱، ۱۹۲۸، ۱۲۳/۸ مترمربع بر وات کلوین می باشد. بدیهی است که با افزایش عدد رینولدز مومنتوم نانوسیال عبوری از هر دو سمت مبدل افزایش می یابد و میزان جذب حرارت سیال گرم توسط سیال سرد زیاد می شود و در نتیجه انتقال حرارت بهتری در کل مبدل رخ می دهد که افزایش ضریب انتقال حرارت کل حاکی از این فرآیند است. [۴۲].

¹ inertial forces

² viscous forces

شکل۴-۸ - مقدار ضریب انتقال حرارت کل در مقادیر مختلف عدد رینولدز

-4 قدرت پمپاژ در مبدلهای حرارتی صفحهای پرهدار:

در مبدلهای حرارتی صفحهای پرهدار، جریان سیال با توجه به طراحی خاص پرهها هدایت می شود. هدف اصلی از طراحی چنین مبدلهایی، افزایش سطح تماس برای انتقال حرارت بهینه است. اما این افزایش سطح تماس، منجر به افزایش مقاومت جریان می شود که نیاز به قدرت پمپاژ بیشتر را به دنبال دارد.

قدرت پمپاژ به میزان انرژی مورد نیاز برای حرکت سیال در داخل مبدل حرارتی گفته می شود و به طور عمده از دو عامل افت فشار و مقاومت جریان ناشی می شود. در مبدل های حرارتی صفحه ای پره دار، ساختار پره ها موجب می شود که جریان سیال تحت تأثیر آشفتگی و گردابه های ایجاد شده در پشت پره ها قرار گیرد. این گردابه ها باعث افزایش افت فشار و در نتیجه نیاز به قدرت پمپاژ بیشتر می شوند.

زاویه پرهها یکی از مهمترین پارامترهای طراحی در مبدلهای حرارتی صفحهای است. در این پژوهش، قدرت پمپاژ در دو زاویه مختلف پرهها، ۶۰ درجه و ۹۰ درجه، مورد بررسی قرار گرفته است. تغییر زاویه پرهها بر نحوه جریان سیال، افت فشار و در نهایت قدرت پمپاژ تأثیر مستقیم دارد. به طور کلی، افزایش زاویه حمله پرهها موجب افزایش آشفتگی جریان و افت فشار بیشتر میشود که این افزایش افت فشار به معنای نیاز به قدرت پمپاژ بیشتر است.

شکل^۴-۹ نمودار قدرت پمپاژ در زاویه ۶۰ درجه را نشان می دهد. در زاویه ۶۰ درجه، جریان سیال بهطور نسبی به سمت پرهها هدایت میشود، اما کمتر از زاویه ۹۰ درجه با دیوارهها برخورد می کند. در این حالت، مقاومت جریان نسبت به زاویه ۹۰ درجه کمتر است. ویژگیهای جریان در این زاویه موجب میشود که قدرت پمپاژ کمتری مورد نیاز باشد، چرا که جریان سیال بهطور یکنواخت تر و با آشفتگی کمتری از داخل

مبدل عبور می کند. در نتیجه، افت فشار در این زاویه کم تر از زاویه ۹۰ درجه خواهد بود و بهدنبال آن نیاز به قدرت پمپاژ کمتری برای حرکت سیال در مبدل ایجاد میشود.

شکل ۴-۱۰ نمودار قدرت پمپاژ در زاوبه ۹۰ درجه را نشان می دهد . در زاویه ۹۰ درجه، سیال بهطور عمودی با پرهها برخورد می کند که این برخورد باعث ایجاد گردابههای قوی در پشت پرهها می شود. این گردابهها، که بهویژه در مقادیر بالای عدد رینولدز تأثیر گذار هستند، موجب افزایش افت فشار می شوند. جریان سیال در این زاویه بیشتر دچار آشفتگی می شود و این آشفتگی های بیشتر باعث نیاز به قدرت پمپاژ بیشتری برای حرکت سیال در مبدل می گردد. در نتیجه، نیاز به انرژی بیشتری برای پمپاژ سیال در زاویه ۹۰ درجه وجود دارد که این خود منجر به مصرف انرژی بیشتر در این زاویه نسبت به زاویه ۶۰ درجه می شود.

شکل۴-۹ - نمودار قدرت پمپاژ برای زاویه ۶۰ درجه

شکل۴-۱۰ - نمودار قدرت پمپاژ برای زاویه ۹۰ درجه

۴-۹- ضریب اصطکاک ^۱:

در مبدلهای حرارتی صفحهای پرهدار، تحلیل ضریب اصطکاک اهمیت ویژهای دارد، زیرا این پارامتر مستقیماً بر افت فشار و عملکرد کلی سیستم تأثیر میگذارد .رفتار نمودار ضریب اصطحکاک در مبدل حرارتی صفحه ای پره دار در زوایای حمله ۶۰ درجه و ۹۰ درجه در شکل (۴–۹) و (۴–۹)نمایش داده شده است . این نمودارها تغییرات ضریب اصطکاک f را بهعنوان تابعی از عدد رینولدز نشان میدهند. ضریب اصطکاک به دلیل تعاملات پیچیده جریان سیال با دیوارهها و پرههای مبدل تعیین میشود و تحت تأثیر عواملی مانند عدد رینولدز، هندسه پرهها و خواص سیال قرار دارد.

اصطکاک بین لایه های سیال ؛ تشکیل گردابه ؛ جدایش جریان در نواحی تیز فین ها ؛ برخورد جریان به سطوح جامد و تغییر جهت آن از مهمترین عواملی هستند که به میزان قابل توجهی ضریب اصطکاک را افزایش میدهند. در جریانهای آشفته، این اثرات بیشتر میشوند. با این حال، با افزایش عدد رینولدز، مقدار ضریب اصطکاک کاهش پیدا می کند .که این امر به دلیل کاهش تأثیر تغییر مسیر جریان در بخشهای مرکزی کانال است. با این حال، با افزایش عدد رینولدز، ضریب اصطکاک کاهش می یابد. این کاهش به دلیل تقویت مومنتوم سیال و محدود شدن اثر آشفتگی به نواحی نزدیک پرهها است. در شرایطی که عدد رینولدز افزایش یابد، رفتار جریان از حالت لایهای به حالت کاملاً آشفته تغییر می کند. این تغییر باعث افزایش انتقال مومنتوم و کاهش مقاومت حرارتی می شود، اما از سوی دیگر افت فشار و اصطکاک

¹ Coefficient of friction

در سطوح پرهدار افزایش می یابد. طراحی مناسب هندسه پرهها، مانند کاهش زوایای تیز یا تنظیم فاصله بین پرهها، می تواند تأثیر زیادی در مدیریت ضریب اصطکاک داشته باشد.

در نمودار مربوط به زاویه حمله ۶۰ درجه، مشاهده می شود که در اعداد رینولدز پایین، مقدار ضریب اصطکاک بیشتری دارد که نشان دهنده غلبه نیروی ویسکوزیته بر نیروی اینرسی است. در این حالت، جریان بیشتر تحت تأثیر نیروی چسبندگی (ویسکوزیته) قرار می گیرد . با افزایش عدد رینولدز، ضریب اصطکاک کاهش می یابد و این روند نشان دهنده تقویت مومنتوم سیال و کاهش تأثیر آشفتگی در کانالهای مرکزی مبدل است. این کاهش در اعداد رینولدز بالا به دلیل انتقال جریان به حالت کاملاً آشفته است که در آن نیروی اینرسی غالب می شود

نمودار مربوط به زاویه حمله ۹۰ درجه نشان میدهد که مقدار ضریب اصطکاک در اعداد رینولدز پایین کمتر از زاویه ۶۰ درجه است. این امر به دلیل کاهش تأثیر زوایای تیزتیر بر جریان سیال میباشد. روند کاهشی مشابهی با افزایش عدد رینولدز مشاهده میشود، اما تأثیر جدایش جریان در این زاویه کمتر است، زیرا زاویه ۹۰ درجه منجر به توزیع یکنواختتر جریان در کانال میشود. این موضوع باعث کاهش تأثیر آشفتگی در نواحی مختلف مبدل می گردد.

علاوه بر این، وجود نانوذرات در سیال می تواند رفتار جریان را پیچیده تر کند. این نانوذرات به دلیل تغییر ویژگیهای ترمودینامیکی و مکانیکی سیال، از جمله افزایش ویسکوزیته دینامیکی و هدایت حرارتی، بر افت فشار و ساختار جریان اثر می گذارند. در زوایای ۶۰ درجه و ۹۰ درجه، افزایش درصد حجمی نانوذرات باعث افزایش افت فشار می شود، اما این افزایش به دلیل بهبود انتقال حرارت، بهرهوری کلی مبدل را افزایش می دهد. نانوذرات با افزایش چگالی انرژی حرارتی و تغییر رفتار هیدرودینامیکی، عملکرد مبدل را بهبود می بخشند. با این حال، میزان تأثیر آنها بر ضریب اصطکاک به نحوه پراکندگی آنها در سیال و رفتار جریان بستگی دارد.

رفتار نمودارهای ضریب اصطکاک در این تحلیل نشان میدهد که با افزایش عدد رینولدز، میزان ضریب اصطکاک کاهش مییابد. این کاهش ناشی از تقویت مومنتوم سیال و محدود شدن اثر آشفتگی به نواحی نزدیک پرهها است. طراحی هندسه مناسب پرهها، بهینهسازی فاصله بین آنها و کنترل درصد حجمی نانوذرات میتواند تأثیر مثبتی بر عملکرد مبدل حرارتی داشته باشد. در شرایطی که عدد رینولدز بالا باشد، به دلیل تقویت مومنتوم سیال، اثرات آشفتگی به نواحی نزدیک پرهها محدود شده و عملکرد مبدل بهبود می یابد.

نتایج حاصل از این تحلیل، اطلاعات مفیدی برای طراحی بهینه مبدل حرارتی صفحهای پرهدار ارائه میدهد. این نتایج میتوانند به طراحان کمک کنند تا هندسه پرهها، نوع سیال و شرایط عملیاتی را برای دستیابی به بهترین عملکرد حرارتی و کمترین افت فشار تعیین کنند[۴۳].

شکل۴-۱۱ - مقدار ضریب اصطحکاک برای زاویه ۹۰ درجه و درصد حجمی ۶

شکل۴-۱۲ - مقدار ضریب اصطحکاک برای زاویه ۶۰ درجه و درصد حجمی ۶

۴-۱۰- ضريب كالبرن:

نمودار شکل $^{+}$ -۱۱ و $^{+}$ -۱۱ تغییرات ضریب کالبرن برای اعداد رینولدز $^{+}$ -۱۵ تا $^{+}$ -۱۱ در کسر حجمی $^{+}$ درصد برای زوایای حمله $^{+}$ -۲۰ درجه و $^{+}$ -۲۰ درجه نمایش داده شده است. ضریب کالبرن به عنوان یک شاخص مهم، معیاری برای مقایسه کمی بین انتقال حرارت و انتقال مومنتوم است. این ضریب نشان می دهد که چطور جریان می تواند همزمان حرارت و مومنتوم را منتقل کند و تعادل بین این دو پارامتر چگونه تغییر می کند.

شکل $^{+}$ - $^{-}$ مربوط به زاویه حمله $^{+}$ درجه است . در این شکل مشاهده می شود که با افزایش عدد رینولدز، ضریب کالبرن کاهش چشمگیری دارد. این کاهش عمدتاً به دلیل بهبود انتقال مومنتوم است که با افزایش عدد رینولدز رخ می دهد. در این شرایط، افزایش انتقال حرارت در مقایسه با انتقال مومنتوم محدودتر است و نرخ کاهش ضریب کالبرن بیشتر به تقویت مومنتوم مرتبط است. این رفتار نشان می دهد که در اعداد رینولدز بالا، کنترل و بهینه سازی انتقال حرارت می تواند چالش برانگیزتر باشد. نمودار مربوط به شکل $^{+}$ ۱۱- مربوط به زاویه حمله $^{+}$ درجه است و روند کاهش ضریب کالبرن را در زاویه $^{+}$ درجه نشان می دهد. اما میزان کاهش در اعداد رینولدز بالا کمتر است. این موضوع نشان می دهد که افزایش زاویه حمله فینها می تواند کاهش ضریب کالبرن را به تعویق اندازد. این رفتار به دلیل تقویت انتقال حرارت و افزایش عدد ناسلت در زوایای حمله بالاتر است. به عبارت دیگر، در زاویه $^{+}$ درجه، تناسب بین انتقال حرارت و انتقال مومنتوم در اعداد رینولدز بالاتر بهتر حفظ می شود.

یک نکته مهم دیگر که در هر دو نمودار قابل مشاهده است، این است که در اعداد رینولدز حدود ۱۰۰۰۰، تناسب مناسبی بین انتقال حرارت و انتقال مومنتوم وجود دارد. این نقطه می تواند به عنوان شرایط بهینه ای برای عملکرد مبدل حرارتی در نظر گرفته شود، زیرا تعادل میان انتقال حرارت و افت فشار ناشی از انتقال مومنتوم در این عدد رینولدز بهینه تر است.

علاوه بر این، مقایسه نمودارها نشان میدهد که زاویه حمله ۹۰ درجه در مقایسه با ۶۰ درجه، تأثیر بیشتری در بهبود انتقال حرارت دارد، زیرا ساختار جریان به گونهای تغییر می کند که آشفتگی در نزدیکی سطح فینها افزایش یافته و انتقال حرارت تقویت می شود. این رفتار به ویژه در اعداد رینولدز پایین و متوسط بیشتر مشهود است.در مجموع، تحلیل ضریب کالبرن در این مطالعه نشان می دهد که با افزایش عدد رینولدز، کاهش ضریب کالبرن ناشی از بهبود انتقال مومنتوم رخ می دهد، اما با تنظیم زاویه حمله و استفاده از طراحی مناسب فینها می توان کاهش انتقال حرارت را جبران کرد. این نتایج برای بهینه سازی طراحی مبدلهای حرارتی صفحه ای پره دار و دستیابی به تعادل مناسب بین انتقال حرارت و افت فشار بسیار مفید هستند.

شکل۴-۱۳ - مقدار ضریب کالبرن برای زاویه ۹۰ درجه و درصد حجمی ۶

شکل ۴-۱۴ - مقدار ضریب کالبرن برای زاویه ۶۰ درجه و درصد حجمی ۶

فصل پنجم

جمع بندی

-1 – ارزیابی نتایج شبیه سازی و بهینه سازی:

این تحقیق با بهره گیری از روش عددی حجم محدود و الگوریتم ژنتیک، به طراحی و بهینهسازی مبدلهای حرارتی صفحهای پرهدار پرداخته است. روش عددی امکان تحلیل دقیق رفتار سیال و انتقال حرارت را فراهم کرد و الگوریتم ژنتیک ابزاری مناسب برای بهینهسازی چندمنظوره ارائه داد. نتایج نشان داد که طراحی بهینهشده، قابلیت کاهش افت فشار، افزایش نرخ انتقال حرارت و به حداقل رساندن تولید آنتروپی را دارد.

همچنین، انتخاب صحیح پارامترهای هندسی نقش کلیدی در عملکرد مبدلهای حرارتی ایفا می کند. تغییرات در ارتفاع و فاصله پرهها تأثیر مثبتی بر افزایش راندمان حرارتی و کاهش مصرف انرژی داشتند. نتایج شبیهسازی و بهینهسازی نشان داد که این تغییرات می توانند هزینههای عملیاتی سیستم را کاهش دهند. علاوه بر این، توزیع دما و سرعت در کانالهای جریان مبدل نشان داد که طراحی بهینه، الگوهای پایداری را در انتقال حرارت ایجاد می کند که تأثیر مستقیمی بر بهبود عملکرد مبدل دارد.

تحلیلها نشان داد که ترکیب روشهای عددی پیشرفته با الگوریتمهای بهینهسازی نوین، ابزاری کارآمد برای طراحی مبدلهای حرارتی بهینه فراهم می کند. طراحی بهینه، علاوه بر کاهش مصرف انرژی و افزایش راندمان، تأثیرات محیطی ناشی از تولید آنتروپی را نیز کاهش داده و می تواند در صنایع مختلف از جمله نفت، گاز و پتروشیمی کاربرد داشته باشد.

علاوه بر مزایای فنی، این تحقیق نشان داد که استفاده از الگوریتم ژنتیک در بهینهسازی مبدلهای حرارتی می تواند به ارائه راهکارهای عملی برای طراحی صنعتی منجر شود. مقایسه بین مدل پایه و مدل بهینه نشان داد که طراحی بهینهشده توانست با ایجاد تغییرات مناسب در هندسه مبدل، عملکرد آن را بهبود دهد. کاهش افت فشار، افزایش ضریب انتقال حرارت و بهینهسازی مصرف انرژی از مهمترین نتایج بهدستآمده بودند. این پژوهش نشان می دهد که به کار گیری روشهای نوین در طراحی مبدلهای حرارتی، می تواند گامی مؤثر در جهت بهبود عملکرد و افزایش بهرهوری در سیستمهای حرارتی صنعتی باشد.

۵-۲ - نتیجه گیری:

نتایج این پژوهش نشان داد که زاویه پرهها در مبدلهای حرارتی صفحهای پرهدار تأثیر مستقیمی بر افت فشار و بازده حرارتی سیستم دارد. در بررسیهای انجامشده، دو زاویه ۶۰ درجه و ۹۰ درجه از نظر افت فشار، عدد ناسلت، قدرت پمپاژ، ضریب اصطکاک و عملکرد کلی مبدل حرارتی مقایسه شدند.

بررسی نتایج نشان داد که زاویه ۶۰ درجه، به دلیل کاهش میزان برخورد سیال با پرهها، افت فشار کمتری نسبت به زاویه ۹۰ درجه دارد. این کاهش افت فشار به معنای کاهش مقاومت جریان سیال و در نتیجه کاهش نیاز به قدرت پمپاژ است. در این زاویه، جریان سیال به طور یکنواخت تر از میان پرهها عبور می کند و نواحی باز چرخشی و آشفتگی کمتری در پشت پرهها ایجاد می شود. کاهش افت فشار موجب بهینه سازی

مصرف انرژی در سیستم شده و هزینههای عملیاتی را کاهش میدهد. در مقایسه با زاویه ۹۰ درجه، افت فشار در زاویه ۶۰ درجه حدود کمتر است. همچنین، قدرت پمپاژ در زاویه ۶۰ درجه حدود سی پنچ درصد پایین تر از زاویه ۹۰ درجه است که نشان دهنده بهرهوری انرژی بالاتر در این زاویه میباشد. با وجود افت فشار کمتر، میزان انتقال حرارت در این زاویه همچنان در حد مطلوبی قرار دارد و می تواند در شرایطی که کاهش مصرف انرژی پمپاژ اهمیت دارد، گزینه بهتری باشد.

در مقابل، در زاویه ۹۰ درجه، به دلیل برخورد عمودی جریان سیال با پرهها، آشفتگی بیشتری ایجاد شده و نواحی گردابهای قوی تری در پشت پرهها شکل می گیرد. این شرایط باعث افزایش افت فشار و در نتیجه نیاز به قدرت پمپاژ بالاتر می شود. با این حال، این افزایش آشفتگی موجب بهبود نرخ انتقال حرارت و افزایش عدد ناسلت می شود که به افزایش بازده حرارتی سیستم کمک می کند. در این زاویه، عدد ناسلت حدود بیست درصد بیشتر از زاویه ۶۰ درجه است، که نشان دهنده بهبود عملکرد حرارتی مبدل است. علاوه بر این، ضریب اصطکاک در زاویه ۹۰ درجه پنجاه درصد بیشتر از زاویه ۶۰ درجه اندازه گیری شد، که نشان دهنده افزایش مقاومت در برابر جریان و افزایش هزینههای انرژی پمپاژ است. با این حال، این افزایش بازده حرارتی به بهای افزایش مصرف انرژی پمپاژ و افت فشار بیشتر حاصل می شود.

به طور کلی، اگر هدف طراحی مبدل حرارتی کاهش مصرف انرژی و بهینهسازی هزینههای عملیاتی باشد، زاویه ۶۰ درجه به دلیل افت فشار کمتر، انتخاب بهتری است. اما اگر هدف افزایش حداکثری بازده حرارتی و بهبود نرخ انتقال حرارت باشد، زاویه ۹۰ درجه گزینه مناسب تری خواهد بود، هرچند که هزینه پمپاژ بیشتری به همراه دارد.

نتایج این تحقیق نشان میدهد که طراحی بهینه مبدلهای حرارتی صفحهای پرهدار نیازمند ایجاد تعادل بین کاهش افت فشار و افزایش نرخ انتقال حرارت است. بسته به نیاز عملیاتی، میتوان با تغییر زاویه پرهها و بهینه سازی دیگر پارامترهای هندسی مبدل، بهترین شرایط را برای بهبود عملکرد حرارتی و اقتصادی سیستم فراهم کرد.

فهرست رفرنس ها

- [1] B Zohuri "Compact heat exchanger" 2017 researchgate.net/
- [2] Yao Li, Jing Xuan Qu, Yingying Shen, Pei Hong Zhang and Hongyin Jia "CFD-based structure optimization of plate bundle in plate-fin heat exchanger considering flow and heat transfer performance "International Journal of Chemical Reactor Engineering, Int. J. Chem. React. Eng. 2021; 19(5): 499–513
- [3] Ali Sabri Abbas, Ayad Ali Mohammad 'Augmentation of Plate-Fin Heat Exchanger Performance with Support of Various Types of Fin Configurations ' International Information and Engineering Technology Association, volume 40, october 2022, Pages 1406-1414
- [4] G. L. Manfred Hafner, The Palgrave Handbook of Internation Energy Economics, Cham: Springer Nature, 2022.
- [5] Vivek M.Korde, Gauri S.Gotmare, Divyanshu Lokhande, Priya K.Kachhwah "Design and Performance of Plate-fin Heat Exchanger: A Brief Review" Advance in Mechanical Engineering and Technology, Volume 40, 23 March 2022, Pages 127-139
- [6] Joshua Anibal , Joaquim R.R.A Martins "Adjoint-based shape optimization of a plate-fin heat exchanger using CFD" Applied Thermal Engineering, Volume 252, September 2024, Pages 40-61
- [7] Won-Seak Kim, Pham Troung Thang, Beam-Keun Kim, "CFD simulation of plate-fin cross-counter flow compact heat exchanger", Journal of Mechanical Science and Technology, volume 38, pages 696-678, (2024)
- [8] Marzena Iwaniszyn, Mateusz Korpys, 'Computational Fluid Dynamics Modelling of Fluid Flow and Heat and Mass Transfer', closed (30 September 2022) | Viewed by 7912
- [9] Ali Hammed Hasan, Salem Mehrzad Banooni, Laith Jaafer Habeeb" Enhanced Performance of Structurally Optimized Plate-Fin Heat Exchangers Through Numerical Modeling of Heat Transfer and Pressure Drop. "Journal of Sustainability for Energy, Volume 2, pages 39-49, (2023)
- [10] Shengchen Li, Zixin Deng, Jian Liu, Defu Liu "Multi-Objective Optimization of Plate-Fin Heat Exchangers via Non-Dominated

- Sequencing Genetic Algorithm (NSGA-II)" Appl. Sci. 2022, 12(22), 11792; https://doi.org/10.3390/app122211792
- [11] Ying Guan, Liquan Wang and Hongjiang Cui "Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger \" School of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China, Sensors 2023, 23(8), 4158; https://doi.org/10.3390/s23084158
- [12] Bashir S. Mekki*, Joshua Langer, Stephen Lynch "Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications "International Journal of Heat and Mass Transfer, Volume 170, May 2021, 121002
- [13] Paolo Blecich, Josip Batista, Mateo Kirincic, Kristian Lenic "Numerical study of heat transfer and fluid flow in the offset strip-fin heat exchanger: A fin-by-fin analysis "International Journal of Heat and Mass Transfer, Volume 154, May

2024, 107343

- [14] Lee J.S; Ha M Y; Min, J.K. "Numerical study on the mixed convection around inclined-pin fins on a heated plate in vertical channels with various bypass ratios" Case Studies in Thermal Engineering. 2021, Volume 27, 101310.
- [15] Dingbiao Wang; Haoran Zhang; Guanghui Wang; Honglin Yuan; Xu Peng "Experimental and numerical study on the heat transfer and flow characteristics of convex plate heat exchanger based on multi-objective optimization " International Journal of Heat and Mass Transfer, Volume 202, March 2023, 123755
- [16] Ning, J.; Wang, X.; Sun, Y.; Zheng, C.; Zhang, S.; Zhao, X.; Liu, C.; Yan, W. "Experimental and numerical investigation of additively manufactured novel compact plate-fin heat exchanger". Int. J. Heat Mass Transf. 2022, 190, 122818.
- [17] Raj M. Manglik and Arthur E. Burgles, "Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchangers," Experimental Thermal and Fluid Science, vol. 10, pp. 171-180, 1995.
- [18] Arthur Vangeffelen, Geert Buckinx, Carlo De Servi, Maria Rosaria Vetrano, Martine Baelmans "Nuselt Number for steady periodically developed heat transfer in micre and mini-channel with arrays of ofset strip fins subject to a uniform heat flux" International Journal of Heat

- and Mass Transfer, [Submitted on 20 Apr 2022 (v1), last revised 27 Jun 2022 (this version, v2)]
- [19] Naef A.A. Qasem and Syed M. Zubair, "Generalized air-side friction and heat transfer correlations for wavy-fin compact heat exchangers," International Journal of Refrigeration, 2018.
- [20] H. H. Y. X. Y. C. Jianrui Li, "Two-phase flow boiling characteristics in plate-fin channels at offhsore conditions," *Applied Thermal Engineering*, vol. 187, 2021.
- [21] J. L. Haitao Hu, "Experimental investigation on heat transfer characteristics of two-phase flow boiling in offset strip fin channels of plate-fin heat exchangers," *Applied Thermal Engineering*, vol. 185, 2021.
- [22] H. H. Y. X. Y. C. Jianrui Li, "Two-phase flow boiling characteristics in plate-fin channels at offhsore conditions," Applied Thermal Engineering, vol. 187, 2021.
- [23] H. Hajabdollahi, "Numerical investigation of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger "Journal of thermal Engineering, Volume 7, 2021.
- [24] J. W. S. W. Y. L. Huizhu Yang, "Thermal design and optimization of plate-fin heat exchangers using advanced optimization techniques," Applied Thermal Engineering, vol. 180, 2023
- [25] M. C. Rui Song, "Single- and multi-objective optimization of a platefin heat exchanger with offset strip fins adopting the genetic algorithm," *Applied Thermal Engineering*, 2022.
- [26] R. S. Mengmeng Cui, "comprehensive performance investigation and optimization of a plate Fin Heat Exchanger With Wavy Fins," *Thermal Science*, vol. 26, no. 3A, pp. 2261-2273, 2022.
- [27] Evaldas Greiciunas, Duncan Borman, Jonathan Summers, Steve J. Smith "A multi-scale conjugate heat transfer modelling approach for corrugated heat exchangers" International Journal of Heat and Mass Transfer, Volume 139, August 2022, Pages 928-937
- [28] Carlos Augusto Richter do Nascimento, Viviana Cacco Mariani, Leandro dos Santos Coelho, "Integrative numerical modeling and thermodynamic optimal design of counter-flow plate-fin heat exchanger applying neural networks" International Journal of Heat and Mass Transfer, Volume 159, October 2020, 120097

- [29] Chao Yu , Wenbao Zhang , Mingzhen Shao , Guangyi Wang , Mian Huang"CFD modeling and optimal design of louvered fins heat exchangers using radical basis function"Case Studies in Thermal Engineering, Volume 60, August 2024, 104832
- [30] Joo Hyun Moon, Kyan Ho Lee, Haedong Kim and Dong in Han "Thermal-Economic Optimization of Plate—Fin Heat Exchanger Using Improved Gaussian Quantum-Behaved Particle Swarm Algorithm "Mathematics, Volume 10, 2022, Pages 25 -27
- [31] Mario Patrovic, Kenichiro Fukui, Kenichi Kominami "Numerical and experimental performance investigation of a heat exchanger designed using topologically optimized fins"Applied Thermal Engineering, Volume 218, 5 January 2023, 119232
- [32] Sung-Hoon Seol, Yeong-Hyeon Joo, Joon-HoLee, Seung-YunCha, Jung-In Yoon, Chang-Hyo Son"Effect of Pump Performance Curves and Geometric Characteristics of Offset Fins on Heat Exchanger Design Optimization" Energies 2024, 17, 4598.https://doi.org/10.3390/en17184598
- [33] Jeonggyun Ham, Gonghee Lee, Ohkyung Kwon, Kyungjin Bae, Honghyun Cho "_Numerical study on the flow maldistribution characteristics of a plate heat exchanger " Applied Thermal Engineering, Volume 224. April 2023, Pages 120 136
- [34] Sandeep Kumar, Sudhir Kumar Singh, Deepak Sharma "A comprehensive Review on Thermal Performance Enhancement of Plate Heat Exchanger" International Journal of thermophysics, Volume 43. May 2022, article number 109
- [35] R. Niroomand, M.H. Saidi and S.K. Hannani, "A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers," International Journal of Heat and Mass Transfer, vol. 156, 2020.
- [36] The standard of the heat exchanger aluminum plate-fin heat exchanger manufacturers, Alpema, 2022.

- [37] Tianyi Zhang ,Lei Chen, Jin Wang "Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm " Energy , Volume 269, 15 April 2023, 126729
- [38] Saima Batool, Chulam Rasool, Nawa Alshammari, Ilyas Khan, Hajra Kaneez, Nawaf Hamadneh, "Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach" Case Studies in Thermal Engineering, Volume 37, September 2022, Pages 102, 233
- [39] Na Sun, Shuai Zhang, Puhang Jin, Nan Li, Siyuan Yang, Zijian Li, Ke Wang, Xiangmiao Hao, Fan Zhao "An intelligent plate fin-and-tube heat exchanger design system through integration of CFD, NSGA-II, ANN and TOPSIS" Expert Systems with Applications, Volume 233, 15 December 2023, 120926
- [40] Jeonggyum Ham, Gonghee Lee, Ohkyung Kwon, Kyungjin Bae, Honghyun cho "Numerical study on the flow maldistribution characteristics of a plate heat exchanger " Applied Thermal Engineering/ Volume 224, April 2023, 120136
- [41] Ying Guan, Liquan Wang, Hongjiang Cui" Optimization Analysis of Thermodynamic Characteristics of Serrated Plate-Fin Heat Exchanger Open Access "/ MDPI Journals / Volume 23, Issue 12, 8 March 2023
- [42] Yuce Liu, Ke Li, Jian Wen, Simin Wang "Thermodynamic characteristics of counter flow and cross flow plate fin heat exchanger based on distributed parameter model "Applied Thermal Engineering /Volume 219, Part B, 25 January 2023
- [43] Junshuai Lv, Yuwei Sun, Jie Lin, Xinyu Luo, Peiyue Li" Multiobjective optimization research of printed circuit heat exchanger based on RSM and NSGA-II"/ Applied Thermal Engineering / Volume 254, 1 October 2024, 123925

