Jose Manuel Faleiro

Department of Computer Science Yale University 51 Prospect Street New Haven, CT 06511 Email: faleiro.jose.manuel@gmail.com Phone: +1 203-676-9255

Web: http://www.jmfaleiro.com/

RESEARCH INTERESTS

Parallel Programming Models, Database Systems, Operating Systems, Distributed Systems

EDUCATION

Yale University Aug 2012 - present

PhD Computer Science (Masters expected in Dec 2014)

Advised by Daniel Abadi and Bryan Ford

Birla Institute of Technology and Science, Pilani, INDIA

Aug 2007-Jun 2011

B.E.(Honors) Computer Science

CGPA: 9.68/10

AWARDS AND HONORS

Alan J. Perlis Fellowship 2012-2013 and 2013-2014

Awarded to top computer science PhD students at Yale University

Goa Scholars Scheme 2012-2013

Awarded to 10 students of Goan origin pursuing higher studies outside India

Microsoft Research Tech Transfer Award

Awarded for deploying DebugAdvisor [link] to Microsoft's Lync team [link]

Birla Institute of Technology and Science Merit Scholarship, Spring 2010

Awarded for outstanding academic performance

PUBLICATIONS

Lazy Evaluation of Transactions in Database Systems

Jose M. Faleiro, Alexander Thomson, Daniel J. Abadi SIGMOD 2014

Generalized Lattice Agreement

Jose M. Faleiro, Sriram Rajamani, Kaushik Rajan, Ganesan Ramalingam, Kapil Vaswani PODC 2012

CScale – A Programming Model for Scalable and Reliable Distributed Applications

Jose Faleiro, Sriram Rajamani, Kaushik Rajan, Ganesan Ramalingam, Kapil Vaswani Monterey Workshop 2012

PROFESSIONAL EXPERIENCE

Research Intern Jun 2014 - Aug 2014

Microsoft Research Redmond

Research Intern Jun 2013 - Aug 2013

Microsoft Research Silicon Valley

Research Developer Jul 2011 - Jul 2012

Microsoft Research India

Research Intern Jan 2011 - Jun 2011

Microsoft Research India

Geodistribution in the Orleans Programming Model

Jun 2014 - Aug 2014

With Philip Bernstein, Sergey Bykov and Gabriel Kliot, at Microsoft Research Redmond

Orleans [link] is an actor-based distributed programming model that simplifies building large-scale, stateful distributed systems. Designed and implemented an extension to the Orleans runtime to allow actors (and applications) to span more than one datacenter.

Locality Preserving Distributed Systems [Draft]

Jan 2014 - present

With Bryan Ford and Michael Nowlan, at Yale University

Distributed systems achieve scalability by balancing load across many machines, but wide-area distribution can introduce worst-case response latencies proportional to the network's delay diameter. Designed and implemented a general framework to build *locality preserving* distributed systems, by systematically structuring large distributed systems so that the latency of interactions between any pair of nodes is proportional to the network delay between them.

Lazy Transactions [Paper] [Slides]

Jan 2013 - Mar 2014

With Daniel Abadi and Alexander Thomson, at Yale University

Inspired by lazy evaluation in programming languages, investigated the performance tradeoffs of deferred transaction execution in a database system. Designed and implemented a prototype system to evaluate the feasibility of lazy transaction processing. Our technique improves data-cache locality, is able to elegantly deal with transient load spikes, and improves concurrency in high-contention workloads.

Multicore Synchronization Performance [Slides]

Jun 2013 - Aug 2013

With Paul Barham and Rebecca Isaacs, at Microsoft Research Silicon Valley

Investigated heuristics to identify poor parallel program performance due to synchronization overhead. Microbenchmarked several .NET concurrent data-structures to understand their behavior under varying workloads. Devised and evaluated a lightweight instrumentation technique to correlate poor performance in parallel programs with contention induced back-offs in lock implementations.

Stronger Semantics for Eventual Consistency [Paper] [Paper]

Jun 2011 - Jun 2012

With Sriram Rajamani, Kaushik Rajan, Ganesan Ramalingam and Kapil Vaswani, at Microsoft Research India

Contributed to a distributed programming model built on commutative replicated data-types (CRDTs), a class of eventually consistent distributed data-structures. Contributed to the design of a protocol that builds serializable state machines from eventually consistent data-structures (such as CRDTs).