Lecture # 5: Helmholtz Theorem

Outline

- Dirac-Delta function: A different way to look at it.
- 4 Helmholtz Theorem: Finding the vector field using it's divergence and curl.

Objectives

- To get a much broader view of the Dirac-Delta function.
- To understand Helmholtz decomposition theorem.
- To grasp the mathematical techniques used in verifying the Helmholtz theorem.

Recap

Dirac Delta function:

$$\delta(x) = 0 \quad \forall x \neq 0$$

$$\neq 0 \quad \text{if } x = 0$$

$$\int_{-\varepsilon}^{+\varepsilon} \delta(x) dx = 1 \quad \forall \varepsilon > 0$$

Point charge:

$$\rho(\vec{r}) = 0 \quad \text{if } r \neq 0 \\
\neq 0 \quad \text{if } r = 0 \\
\int_{V} \rho(\vec{r}) d\tau = q$$

• Divergence of Field produced by point source:

$$\nabla \cdot \vec{V} = 4\pi \delta^3(r)$$

Divergence of Field produced by Point Source

- $\vec{V} = \frac{\hat{r}}{r^2}$
- $\oint_S \vec{V} \cdot d\vec{A} = \int_V (\nabla \cdot \vec{V}) d\tau$
- ullet The L.H.S when computed turns out to be 4π .
- $\nabla \cdot \vec{V}$ is zero $\forall r \neq 0$.
- Let $d\tau_0$, represent the infinitesimal volume at r=0.

$$\oint_{S} \vec{V} \cdot d\vec{A} = \int_{V} (\nabla \cdot \vec{V}) d\tau$$

$$= \sum_{i=0}^{\infty} (\nabla \cdot \vec{V})_{d\tau_{i}} d\tau_{i}$$

$$= [(\nabla \cdot \vec{V})_{d\tau_{0}} d\tau_{0}] + \sum_{i=1}^{\infty} (\nabla \cdot \vec{V})_{d\tau_{i}} d\tau_{i}$$

$$= [(\nabla \cdot \vec{V}) d\tau_{0}]_{r=0} + \int_{V(r \neq 0)} (\nabla \cdot \vec{V}) d\tau$$

$$4\pi = [(\nabla \cdot \vec{V}) d\tau_{0}]_{r=0}$$

Divergence of Field produced by Point Source

• $d\tau_0$ is a infinitesimally small volume with r=0, whose product with $(\nabla \cdot \vec{V})_{r=0}$ should equal 4π .

$$[(\nabla \cdot \vec{V})d\tau]_{r=0} = 4\pi$$

- This is possible only if $(\nabla \cdot \vec{V})_{r=0}$ is infinite/divergent.
- But there are different types of infinities. Not all infinities are equivalent.

$$P_1(x) = 2x + 3 (1)$$

$$P_2(x) = 4x + 7 (2)$$

$$P_3(x) = 3x^2 - x + 6 (3)$$

$$P_4(x) = x^2 + 4x + 10 (4)$$

• All the above polynomials $P_1(x), P_2(x), P_3(x), P_4(x)$ diverge to ∞ as $x \to \infty$.

Comparing Infinities

 All polynomials aren't equivalent at ∞. They diverge at different rates.

$$\lim_{x \to \infty} \frac{P_1(x)}{P_2(x)} = \frac{1}{2}$$

$$\lim_{x \to \infty} \frac{P_2(x)}{P_3(x)} = 0$$

$$\lim_{x \to \infty} \frac{P_3(x)}{P_4(x)} = 3$$

- Even though all the polynomials diverge at infinty, we can still define some sort of degree of divergence by comparing them to one another.
- Similarly, we want to associate a measure for $(\nabla \cdot \vec{V})_{r=0}$ in terms of the Dirac Delta function.

$$\nabla \cdot \vec{V} = 4\pi \delta^{3}(r)$$

$$= 4\pi \delta(x) \delta(y) \delta(z)$$

Properties of Dirac-Delta Function

- $\int_b^c \delta(x-a) dx = 1$ if b < a < c
- $\int_b^c f(x)\delta(x-a)dx = f(a)$ if b < a < c
- The Dirac Delta function is extracting the value of the function at a specific point in space. This is extremely helpful in solving differential equations.

Helmholtz Theorem

Theorem (Helmholtz Decomposition)

If divergence and curl of a vector field are given, then the vector field can be determined. If $\nabla \cdot \vec{F} = D(\vec{r})$ and $\nabla \times \vec{F} = \vec{C}(\vec{r})$, then

$$ec{F}(ec{r}) = -\nabla U(ec{r}) + \nabla imes ec{W}(ec{r})$$
 $U(ec{r}) = rac{1}{4\pi} \int rac{D(ec{r}')}{|ec{r} - ec{r}'|} d au'$
 $ec{W}(ec{r}) = rac{1}{4\pi} \int rac{ec{C}(ec{r}')}{|ec{r} - ec{r}'|} d au'$

Electrostatic Potential

• What is the electrostatic potential due to a single point charge with charge q, placed at a point \vec{r}' in space?

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r} - \vec{r}'|}$$

• What is the electrostatic potential due to several point charges with charge $q_1,q_2,q_3....$, placed at points $\vec{r}_1',\vec{r}_2',\vec{r}_3'....$ respectively in space?

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{|\vec{r} - \vec{r}'_i|}$$

Electrostatic Potential

• What is the electrostatic potential due to a continuous charge distribution in 3D, with charge density $\rho(\vec{r})$?

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{\rho(\vec{r}_i')d\tau_i'}{|\vec{r} - \vec{r}_i'|}$$
$$= \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}d\tau'$$

Similarity between Helmholtz and Electrostatic Potential

• Notice the similarity between the $V(\vec{r})$ and $U(\vec{r})$, $\vec{W}(\vec{r})$.

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'_i|} d\tau'$$

• $\rho(\vec{r})$ is the source for electrostatic potential $V(\vec{r})$.

$$U(\vec{r}) = \frac{1}{4\pi} \int \frac{D(\vec{r}')}{|\vec{r} - \vec{r}'_i|} d\tau'$$

• Thus, divergence of $\vec{F}(\vec{r})$, i.e., $D(\vec{r})$ ($\nabla \cdot \vec{F} = D(\vec{r})$) is the source for $U(\vec{r})$. And

$$\vec{W}(\vec{r}) = \frac{1}{4\pi} \int \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'_i|} d\tau'$$

• similarly, curl of $\vec{F}(\vec{r})$, i.e., $\vec{C}(\vec{r})$ ($\nabla \times \vec{F} = \vec{C}(\vec{r})$) is the source for $\vec{W}(\vec{r})$.

- Proof of Helmholtz theorem is tedious and unnecessarily complicated. However, we can check if the proposition made in Helmholtz theorem is correct.
- The solution should satisfy the following two equations, $\nabla \cdot \vec{F} = D(\vec{r})$ and $\nabla \times \vec{F} = \vec{C}(\vec{r})$

$$\nabla \cdot \vec{F} = D(\vec{r})$$

$$\nabla \cdot \vec{F} = \nabla \cdot \left(-\nabla U(\vec{r}) + \nabla \times \vec{W}(\vec{r}) \right)$$

$$= -\nabla^2 U(\vec{r}) + \nabla \cdot (\nabla \times \vec{W}(\vec{r}))$$

$$= -\nabla^2_{(r)} \left(\frac{1}{4\pi} \int \frac{D(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau' \right)$$

$$= \frac{-1}{4\pi} \int D(\vec{r}') \nabla^2_{(r)} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) d\tau'$$

• Above we used the fact that divergence of a curl is zero, i.e., $\nabla \cdot (\nabla \times \vec{W}(\vec{r})) = 0$

$$\nabla \cdot \vec{F} = \frac{-1}{4\pi} \int D(\vec{r}') \nabla_{(r)} \cdot \left[\nabla_{(r)} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right] d\tau'$$

$$= \frac{-1}{4\pi} \int D(\vec{r}') \nabla_{(r)} \cdot \left[\frac{-\hat{R}}{R^2} \right] d\tau' \quad \text{(here } \vec{R} = \vec{r} - \vec{r}'\text{)}$$

$$= \frac{-1}{4\pi} \int D(\vec{r}') (-4\pi \delta^3(\vec{R}) d\tau'$$

$$= \int D(\vec{r}') \delta^3(\vec{r} - \vec{r}') d\tau' = D(\vec{r})$$

 The divergence of the solution stated in Helmholtz theorem has come out to be correct.

• The curl of the solution stated in the Helmholtz theorem should come out to be $\vec{C}(\vec{r})$.

$$\nabla \times \vec{F} = \vec{C}(\vec{r})
\nabla \times \vec{F} = \nabla \times (\nabla \times \vec{W})
= -\nabla^2 \vec{W} + \nabla (\nabla \cdot \vec{W})$$

• One can guess that $-\nabla^2 \vec{W} = \vec{C}$, after seeing $-\nabla^2 U = D$. Following the same procedure

$$-\nabla^{2} \vec{W} = -\nabla_{(r)}^{2} \left(\frac{1}{4\pi} \int \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau' \right)$$

$$= \frac{-1}{4\pi} \int \vec{C}(\vec{r}') \nabla_{(r)}^{2} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) d\tau'$$

$$= \frac{-1}{4\pi} \int \vec{C}(\vec{r}') (-4\pi \delta^{3}(\vec{r} - \vec{r}')) d\tau'$$

$$= \vec{C}(\vec{r})$$

- This means that $\nabla(\nabla \cdot \vec{W})$ should be zero.
- Let's first evaluate $\nabla \cdot \vec{W}$, and then we can compute the gradient of it.

$$abla \cdot \vec{W} = \nabla \cdot \left[\frac{1}{4\pi} \int \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'_i|} d\tau' \right]$$

- $\bullet \ \nabla_{(r)} \cdot \left(\frac{\vec{C}(\vec{r}')}{|\vec{r} \vec{r}'_i|} \right) = \vec{C}(\vec{r}') \cdot \nabla_{(r)} \left(\frac{1}{|\vec{r} \vec{r}'|} \right) + \frac{1}{|\vec{r} \vec{r}'|} (\nabla_{(r)} \cdot \vec{C}(\vec{r}'))$
- $\nabla_{(r)} \cdot \vec{C}(\vec{r}') = 0$ as \vec{C} is independent of \vec{r} , leading to

$$abla \cdot \vec{W} = \frac{1}{4\pi} \int \vec{C}(\vec{r}') \cdot \left[\nabla_{(r)} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right] d\tau'$$

• Now, $\nabla_{(r)} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) = -\nabla_{(r')} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right)$, so that

$$abla \cdot \vec{W} = -rac{1}{4\pi} \int \vec{C}(\vec{r}') \cdot \left[
abla_{(r')} \left(rac{1}{|\vec{r} - \vec{r}'|}
ight)
ight] d au'$$

Because,

$$\nabla_{(r')} \cdot \left[\frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right] = \vec{C}(\vec{r}') \cdot \left[\nabla_{(r')} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right] + \frac{1}{|\vec{r} - \vec{r}'|} \left(\nabla_{(r')} \cdot \vec{C}(\vec{r}') \right),$$
 we have

$$\vec{C}(\vec{r}') \cdot \left[\nabla_{(r')} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) \right] = \nabla_{(r')} \cdot \left[\frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right]$$

• Because, $\nabla_{(r')} \cdot \vec{C}(\vec{r}') = 0$ as divergence of a curl is zero. Thus,

$$\nabla \cdot \vec{W} = -\frac{1}{4\pi} \int \nabla_{(r')} \cdot \left[\frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} \right] d\tau'$$

• Using Gauss's theorem $\left\{ \int_V (
abla \cdot \vec{P}) d \, au = \oint_S \vec{P} \cdot d \, \vec{S} \right\}$ above, we obtain

$$\nabla \cdot \vec{W} = -\frac{1}{4\pi} \oint_{S} \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} \cdot d\vec{S}'$$

 As the volume integral is all over space, S will be a closed surface at infinity.

Verifying Helmholtz

• If $\vec{C}(\vec{r})$ vanishes faster than 1/r, as $r \to \infty$, then the integral will be zero.

$$\begin{array}{lll} \nabla \cdot \vec{W} & = & -\lim_{r' \to \infty} \frac{1}{4\pi} \oint_{S} \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} \cdot (r'^{2} \sin \theta' d\theta' d\phi' \hat{r}' + r' \sin \theta' dr' d\phi' \hat{\theta} \\ & & + r' dr' d\theta' \hat{\phi}) \\ \nabla \cdot \vec{W} & = & -\lim_{r' \to \infty} \frac{1}{4\pi} \oint_{S} \frac{C_{r}(\vec{r}')}{|\vec{r} - \vec{r}'|} r'^{2} \sin \theta' d\theta' d\phi' \\ & & -\lim_{r' \to \infty} \frac{1}{4\pi} \oint_{S} \frac{C_{\theta}(\vec{r}')}{|\vec{r} - \vec{r}'|} r' \sin \theta' dr' d\phi' \\ & & -\lim_{r' \to \infty} \frac{1}{4\pi} \oint_{S} \frac{C_{\phi}(\vec{r}')}{|\vec{r} - \vec{r}'|} r' dr' d\theta' \end{array}$$

Verifying Helmholtz

• As $r' \to \infty$, $|\vec{r} - \vec{r}'| \sim |\vec{r}'|$.

$$\nabla \cdot \vec{W} = -\frac{1}{4\pi} \oint_{S} \lim_{r' \to \infty} (r' C_r(\vec{r}')) \sin\theta' d\theta' d\phi'$$

$$-\frac{1}{4\pi} \lim_{r' \to \infty} \oint_{S} C_{\theta}(\vec{r}') \sin\theta' dr' d\phi'$$

$$-\frac{1}{4\pi} \lim_{r' \to \infty} \oint_{S} C_{\phi}(\vec{r}') dr' d\theta'$$

- Above three integrals become zero $\forall \vec{C}(\vec{r})$ converging to 0 faster than 1/r, as $r \to \infty$.
- If $\nabla \cdot \vec{W}$ is zero, then $\nabla(\nabla \cdot \vec{W})$ is zero. Therefore, the curl of the solution stated in Helmholtz theorem is also correct.

Verifying Helmholtz

- But is it guaranteed that $\vec{C}(\vec{r})$ converges to 0 faster than 1/r, as $r \to \infty$?
- The very existence of functions $U(\vec{r})$, $\vec{W}(\vec{r})$ enforces convergence faster than $1/r^2$ on $D(\vec{r})$, $\vec{C}(\vec{r})$, as $r \to \infty$.

$$\begin{array}{ll} U & \sim & \int_0^{2\pi} d\phi' \int_0^{\pi} \sin\theta' d\theta' \int_0^{\infty} \frac{D(\vec{r}')}{r'} r'^2 dr' \\ & \sim & 4\pi \int_0^{\infty} [r'D(\vec{r}')] dr' \end{array}$$

- For this integral to be finite, $D(\vec{r})$ must converge to 0 faster than $1/r^2$, as $r \to \infty$.
- One can use to the same argument to conclude that $\vec{W}(\vec{r})$ is finite only if $\vec{C}(r)$ converges to 0 faster than $1/r^2$, as $r \to \infty$.

Loophole in Helmholtz?

- If there is a function $\vec{G}(\vec{r})$, whose divergence and curl are zero, then $\vec{F}(\vec{r}) = -\nabla U(\vec{r}) + \nabla \times \vec{W}(\vec{r}) + \vec{G}(\vec{r})$ also gives $\nabla \cdot \vec{F} = D(\vec{r}), \nabla \times \vec{F} = \vec{C}(\vec{r})$.
- Typically, all the fields we deal with, either electric or magnetic, will vanish as $r \to \infty$, therefore we require $\vec{F}(\vec{r})$ to vanish as $r \to \infty$.
- This boundary condition at $r \to \infty$ allows us to uniquely determine $\vec{F}(\vec{r})$, as there is no such $G(\vec{r})$, that has zero curl and zero divergence everywhere and goes to zero as $r \to \infty$.
- Therefore, if we know the curl and divergence of a vector field along with the boundary conditions, the vector field can be uniquely determined.