Математический анализ. Третий семестр

Автор: Вячеслав Чепелин

Содержание

1.	Творческий кризис Кохася	3
	1.1. Системы Штейнера	
	1.2. Канторова Лестница	
2.	Теория Меры	
	2.1. Системы множеств	
	2.2. Объем	
	2.3. Mepa	
	2.4. Продолжение меры	
	2.5. Мера Лебега	
3.	Интеграл	17
	3.1. Преобразование меры Ω при сдвигах и линейных отображениях	
	3.2. Сходимость по мере и сходимость почти везде	24
	3.3. Наконец-то интеграл	26
4.	Хуй знает где	
	Информация о курсе	

1. Творческий кризис Кохася

1.1. Системы Штейнера

Мудрецы и шляпы

У нас есть n мудрецов и k шляп $k \ge n$. Мудрецы стоят в ряд. Каждому мудрецу на голову надевают одну из k шляп, выбранную случайным образом. Мудрец не видит шляпу на своей собственной голове, но видит шляпы всех впереди стоящих мудрецов (тот, кто стоит последним в ряду, видит всех, кроме себя, а тот, кто стоит первым, не видит никого).

Мудрецы не могут общаться друг с другом, жестами, поворачиваться и т.д. Однако, начиная с затылка ряда (с того, кто видит больше всех), каждого мудреца по очереди спрашивают: «Какого цвета твоя шляпа?». Мудрец должен ответить одним из k возможных цветов. При этом нельзя повторять цвета. Его цель — **назвать правильный цвет**. Мудрецы могут заранее договориться об общей стратегии, чтобы максимизировать число гарантированно угаданных шляп. В этом и состоит наша задача.

Есть разные интересные простые частные решения. Для расширения кругозора тык (там с самого начало). Нас интересует нечто другое.

Илея

Что вот по-хорошему должны сделать мудрецы?

- Первый мудрец почти всегда проиграет, он не может угадать, что у него на голове
- Первый должен передать какой-то «ключ» своим коллегам перед ним и коллеги имея ключ должны угадать свой номер. То есть по факту каждый человек видит ключ(key) знает тех, кто был до него и видит тех, кто был после него:

$$key 1 \dots 3 ? 5 \dots 4$$

Мы хотим такой список, что зная n-1 число, мы можем понять n-ое.

Система Штейнера

Определение. Система Штейнера $S(t,n,\nu)$

КПК вообще сделал лирическое отступление про «Конструктор Ромашку». Пример странный, так что формальное объяснение:

<u>Система Штейнера</u> это набор из n —элементных подмножеств множества X из ν элементов таких, что любое t —элементное подмножество множества X содержалось ровно в одном из выбранных подмножеств.

В литературе чаще используют $S(t,k,\nu)$

По факту наша задача про мудрецов свелась к S(n-1,n,k).

Бывает S(4,5,11), не бывает S(3,4,7)

Решаем мудрецов n=4, k=9

Они берут конечное поле из 8 элементов: F_8 . Мы знаем, что конечные поля существуют в F_{v^l} .

Есть \mathbb{R} и \mathbb{R}^3 , мы умеем думать об \mathbb{R}^3 как о коэффициентах перед i,j,k. Возьмем идею.

Возьмем 1, ξ , ξ^2 - 3 линейно независимых векторов в \mathbb{R}^3 . Пусть у нас выполнено:

$$\xi^3 + \xi + 1 = 0$$

У нас получается нечто из 8 точек(будем ставить 0 или 1 перед $1, \xi, \xi^2$). Почему-то они удовлетворяют аксиомам поля (можете проверить).

 $f(x)=rac{ax+b}{cx+d}$ - гипербола, если ad-bc
eq 0.

Будем считать, что $f:(\mathbb{R}\cup\{\infty\})\to(\mathbb{R}\cup\{\infty\})$ - проективная прямая

Оно представляет все точечки, кроме асимптоты. Поэтому будем считать, что $\infty \to \frac{a}{c}, -\frac{d}{c} \to \infty$. То есть у нас биективная функция.

Теорема.

 $orall \underbrace{a,b,c}_{\mathrm{pasn.}} \in \overline{\mathbb{R}}: orall \underbrace{A,B,C}_{\mathrm{pasn.}} \in \overline{\mathbb{R}}: \exists !f$ - дробно-линейная, такая что:

$$f(a) = A, f(b) = B, f(c) = C$$

Доказательство:

Вот она:

$$\frac{y-A}{y-B}:\frac{C-A}{C-B}=\frac{x-a}{x-b}:\frac{c-a}{c-b}$$

КПК: Единственность покажете сами

Q.E.D.

А теперь склеиваем все воедино.

- Первый мудрец видит перед собой номера шляп: b, c, d. По вышесказанной теореме существует функция, которое отображает f(2) = b, f(3) = c, f(4) = d. Так как она единственная Первый мудрец говорит f(1)
- Второй мудрец имея 3 числа из 4 восстанавливает дробно-линейную функцию, а так как она единственная то получает ту же самую. Он восстанавливает свой номер и называет его
- Остальные аналогично восстанавливают свой номер

Еще решения мудрецов

X - множество, |X| = k > 23

Линия - это подмножество X

- 1. Любые две пересек. по ≤ 1 точке
- 2. $\forall a,b \in X : \exists !$ линия $l : a,b \in l$
- 3. |l| = 4, 5, 6

В угоду моей психике это будет сделано позже

1.2. Канторова Лестница.

Определена на $[0,1]^2$. Это функция, которая строится

Процесс построения итерациями:

- 1. **Исходное состояние:** Начинаем с горизонтального отрезка от точки (0, 0) до точки (1, 1) на плоскости.
- 2. **Шаг 1 (n=1): Разделяем отрезок:** Делим исходный отрезок на три равные части по горизонтали (координата x). Теперь график состоит из трёх равных сегментов: восходящий, горизонтальный, восходящий.
- 3. **Шаг 2 (n=2): Повторяем для восходящих сегментов:** Каждый из двух наклонных сегментов, полученных на предыдущем шаге, мы обрабатываем так же, как исходный отрезок на шаге 1, но в

меньшем масштабе. Делим их на три части. На их средних третях (например, [1/9, 2/9] и [7/9, 8/9]) функция становится горизонтальной на уровнях у = 1/4 и у = 3/4 соответственно.

4. **Последующие шаги:** Этот процесс повторяется бесконечно. На каждом шаге n мы берем все 2^(n-1) оставшихся наклонных сегментов, делим их на три части и делаем их средние трети горизонтальными на промежуточных уровнях между уже существующими.

Результат:

2. Теория Меры

2.1. Системы множеств

Определение. Полукольцо множеств $\mathcal P$

X - множество. $\mathcal{P} \subset 2^X$ - полукольцо, если:

- 1. $\emptyset \in \mathcal{P}$
- 2. $\forall A, B \in \mathcal{P}, A \cap B \in \mathcal{P}$
- 3. $\forall A,B\in\mathcal{P},\exists \underline{B_1,...,B_n}\in\mathcal{P}:A\smallsetminus B=\bigcup_{k=1}^nB_k$

<u>Пример.</u> Полукольцо ячеек в \mathbb{R}^m

$$a,b \in R^m: [a,b) = \{x \in \mathbb{R}^m: \forall x = 1...m: a_k \leq x_k < b_k\}$$

То есть множество таких параллелепипедов. Очевидно оно удовлетворяет всем трем аксиомам полукольца.

Еще пример

 $X = \{1, ..., 6\}^m$. Покажем, что \mathcal{P} - полукольцо для этого множества

- 1. Очевидно принадлежит.
- 2. $A_{c_1c_2}\cap A_{c_5}=A_{c_1c_2c_5}\in P$ работает
- 3. TODO

Пример. Полукольцо рациональных чисел

[a,b), где $a_i,b_i\in\mathbb{Q}$

Антисвойство

 $\mathcal P$ - полукольцо: $A,B\in\mathcal P$. Тогда вообще говоря $A\cup B,A\setminus B,X\setminus A,A \triangle B$ не лежат в $\mathcal P$

Свойство:

$$\overline{\forall A,B_1,...,B_k} \in \mathcal{P}: \exists \underline{D_1,...,D_n}$$
 - кон. количество: $A \setminus \left(igcup_{i=1}^k B_i\right) = igcup_{j=1}^n D_j$

Это доказывается по индукции

Определение. Алгебра подмножеств пространства X

 $a\subset 2^X$ - такой объект называется **алгеброй**, если выполнены свойства:

- 1. $X \in a$
- 2. $A, B \in a \Rightarrow A \setminus B \in a$

Свойства

- 1. $\emptyset = X \setminus X \in a$
- 2. $A, B \in a \Rightarrow A \cap B = A \setminus (A \setminus B) \in a$
- 3. $A^c = X \setminus A \in a$
- 4. $A \cup B = (A^c \cap B^c)^c \in a$
- 5. Всякая алгебра есть полукольцо

<u>Пример.</u> Тривиальный - 2^X

Пример. Хитрый, но простой

 $X=\mathbb{R}^2$. a состоит ограниченных множеств и из дополнений ограниченных множеств.

- $\emptyset, X \in a$
- Выполняется вторая аксиома:
 - 1. A orp.

2.
$$A^c$$
 - orp. +. B - orp. $\Rightarrow (A \setminus B)^c$ - orp. +. B^c - orp. $\Rightarrow A \setminus B \subset B^c \Rightarrow$ orp.

Пример. На счётность

X= бесконечное множество: $\alpha=\{A\subset X:A$ НБЧС или $X\setminus A$ НБЧС}

Определение. σ -алгебра a подмножества X

 $a\in 2^X$ и выполняется:

- 1. a алгебра 2. $\forall A_1, A_2, \ldots \in a: \bigcup_{i=1}^{+\infty} A_i \in a$

Свойство:

$$\forall A_1,A_2,\ldots\in a:\bigcap_{i=1}^{+\infty}A_i\in a$$

2.2. Объем

Определение. Конечно аддитивная функция

 X,\mathcal{P} - полукольцо подмножеств $X,\varphi:\mathcal{P}\to \overline{\overline{\mathbb{R}}}$. φ - конечно аддитивная функция, если:

- 1. $\varphi(\emptyset) = 0$
- 2. $A, A_1, ..., A_m, A = \bigsqcup_{i=1}^n A_i$ дизъюнктное объединение, выполнено:

$$\varphi(A) = \sum_{i=1}^m \varphi(A_i)$$

Определение. Объем

 X,\mathcal{P} - полукольцо подмножеств $X,\varphi:\mathcal{P} o\overline{\mathbb{R}}$. φ - объем, если:

- 1. $\varphi \geq 0$
- 2. φ конечно-аддитивно

Пример.

 $g:\mathbb{R} o\mathbb{R}$ возрастает и непрерывно. Давайте зададим $\mu_g[a,b)=g(b)-g(a)$ - тоже пример объема.

Теорема. Свойства

 $\mu:\mathcal{P}\rightarrow\mathbb{R}$, где \mathcal{P} - полукольцо. Тогда выполнено:

- 0. $B \subset A \Rightarrow \mu B \leq \mu A$ монотонность объема.
- 1. <u>Усиленная монотонность</u>: $\forall A_1,...,A_n,A\in\mathcal{P}:\bigsqcup_{i=1}^nA_i\subset A$:

$$\mu A \geq \sum_{i=1}^n \mu A_i$$

2. Конечная полуаддитивность: $\forall A_1...., A_n: A \subset \bigcup_{i=1}^n A_i$:

$$\mu A \leq \sum u A_i$$

3. $A,B,A \setminus B \in \mathcal{P}: \mu(B) < +\infty$. Тогда:

$$\mu(A \setminus B) \ge \mu A - \mu B$$

Доказательство:

1. $A \setminus (\bigsqcup A_i) = \bigsqcup_{\text{кон.}} B_j$ - по модиф. условию кольца. Тогда по вышесказанному:

$$A = \bigsqcup A_i \cup \bigsqcup B_j$$

По определения объема:

$$\mu A = \sum \mu A_i + \sum \mu B_j$$

Что и требовалось показать.

2. $B_i := A \cap A_i \in \mathcal{P} : A = \bigcup_{\text{KOH}} B_i$.

Теперь давайте действовать так: Обозначим за C_i - то какие части множества добавляет та или иная B_i

$$C_i = B_i \smallsetminus \left(\bigcup_{j=1}^{i-1} B_j\right)$$

Тогда $A=\bigsqcup_{i=1}^n C_i$. НО. Мы не можем сразу сделать вывод об объеме, так как не факт что C_i лежат у нас в полукольцо. НО каждое C_i мы можем составить из конечного числа множеств по аксиомам полукольца. Воспользуемся усиленной монотонностью и докажем требуемое.

3. Он очевиден из прошлых пунктов.

КПК: Это проверка на вашу вменяемость

2.3. **Mepa**

Определение. Мера.

 $X, \stackrel{ op}{\mathcal{P}}$ - полукольцо: $\mu: \mathcal{P} \to \overline{\mathbb{R}} - \underline{\mathtt{mepa}}$, если:

1. μ - объем

2. μ - счетно-аддитивно

Замечание: Счетная аддитивность: $\forall A_1, ... \in \mathcal{P}: A = \bigsqcup A_i: \mu A = \sum_{i=1}^{+\infty} \mu A_i$

Замечание: Объем ⇒ выполняется счетная аддитивность.

<u>Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности .</u>

 $\mu:\mathcal{P} \to \overline{\mathbb{R}}$ — объем. Тогда эквивалентно:

1. μ — мера, т.е μ — счетно-аддитивна

2. μ — счетно-полуаддитивна (нет дизъюнктивности): $\forall A, A_1... \in \mathcal{P}, \ A \subset \bigcup A_i$:

$$\mu A \leq \sum_{i} \mu A_{i}$$

Доказательство:

 $1 \Rightarrow 2$. Берем второй пункт теоремы о свойствах объема, но вместо конечного объединения по k берем счетное объединение (так как у нас теперь мера, то все хорошо) и тадам, все получается.

 $2 \Rightarrow 1$. Надо проверить, что:

$$A = \bigsqcup_{i=1}^{\infty} A_i \stackrel{?}{\Rightarrow} \mu A = \sum_{i=1}^{\infty} \mu A_i$$

Воспользуемся усиленной монотонностью, тогда для любого n будет верно:

$$\sum_{i=1}^{n} \mu A_i \le \mu A$$

По определению счетной полуаддитивности:

$$\mu A \leq \sum_{i=1}^{\infty} \mu A_i$$

Итого:

$$\sum_{i=1}^n \mu A_i \leq \mu A \leq \sum_{i=1}^\infty \mu A_i$$

И если перейти к пределу при $n \to +\infty$ мы сразу получим то, что требуется.

Q.E.D.

<u>Следствие:</u> $A\in\mathcal{P}, A_n\in\mathcal{P}, \mu A_n=0, \mu$ - объем. Пусть $A\subset\bigcup A_n$. Тогда $\mu A=0$

Формулировка теоремы о непрерывности меры снизу.

a - алгебра. $\mu:a o\overline{\mathbb{R}}$ - объем. Тогда:

1. μ — мера

2. μ — непрерывны снизу:

$$\forall A, A_1, A_2, \ldots \in a, \quad A_1 \subset A_2 \subset \ldots, \quad A = \bigcup_{i=1}^{\infty} A_i$$

Следует:

$$\mu A = \lim_{i \to \infty} \mu A_i$$

Теорема о непрерывности меры сверху.

a — алгебра, $\mu:a o\mathbb{R}$ — конечный объем. Тогда эквивалентно:

- 1. μ мера, т.е счетно-аддитивна
- 2. μ непрерывна сверху, те:

$$\forall A,A_1,A_2,...\in a,\quad A_1\supset A_2\supset...,\quad A=\bigcap_{i=1}^\infty A_i$$

Следует:

$$\mu A = \lim_{i \to \infty} \mu A_i$$

Доказательство:

Нарисуем упрощающий рисунок:

$1 \Rightarrow 2$

Пусть $B_k \coloneqq A_k \setminus A_{k+1}$. Тогда такие B_k дизъюнктивны. Отсюда получаем, что

$$A_1 = \bigsqcup_{i=1}^{\infty} B_i \sqcup A$$

Так как μ мера, то получаем, что:

$$\mu A_1 = \sum_{i=1}^{\infty} \mu B_i + \mu A$$

Теперь посмотрим на «хвост» этого ряда, и аналогично первому утверждению доказательства напишем:

$$\mu A_i = \sum_{k=i}^{\infty} \mu B_k + \mu A$$

Т.к. ряд из $\sum\limits_{i=1}^\infty \mu B_i$ сходится, то при $i\to +\infty$, «хвост» $\to 0: \sum\limits_{k=i}^\infty \mu B_k \underset{i\to +\infty}{\to} 0$ Делаем предельный переход в равенстве выше, и получаем:

$$\lim_{i \to \infty} \mu A_i = 0 + \mu A = \mu A$$

 $2\Rightarrow 1$. Эта часть доказательства будет потом переписана, автор пока копирует то, что говорит Кохась. Если что это примерно 10 минут после перерыва.

В доказательстве этого пункта мы будем пользоваться только следствием пункта 2, а именно:

$$A_1\supset A_2\supset ..., \quad A=\bigcap A_k=\varnothing \Rightarrow \mu A=\lim_{i\to +\infty}\mu A_i=0$$

Мы хотим проверить счетную аддитивность, т.е.

$$C = \bigsqcup_{i=1}^{\infty} C_i \stackrel{?}{\Rightarrow} \mu C = \sum_{i=1}^{\infty} \mu C_i$$

Для этого введем множества A_k следующим образом:

$$A_k = \bigcup_{i=k+1}^{\infty} C_i = C \setminus \left(\bigsqcup_{i=1}^k C_i\right)$$

Так как это конечное объединение, то $\bigsqcup_{i=1}^k C_i \in a$, а значит и правая часть $\in a \Rightarrow A_k \in a$

Заметим также, что $\bigcap_{k=1}^{+\infty} A_k = \emptyset$, т.к. все C_i дизъюнктны, то любая точка из C содержится ровно в одном C_i , а значит в $A_{k>i}$ она уже содержаться не будет (по определению A_k), и в пересечении всех A_k её тоже не будет

Отсюда следует, что мы можем применять следствие 2 пункта из начала доказательства. Осталось только заметить, что:

$$C = \bigsqcup_{i=1}^{k} C_i \sqcup A_k$$

Т.к. μ — объем:

$$\mu C = \sum_{i=1}^{k} \mu C_i + \mu A_k$$

Делаем предельный переход при $k \to +\infty$

$$\mu C = \sum_{i=1}^{+\infty} \mu C_i + 0$$

2.4. Продолжение меры.

Определение. Пространство с мерой

Обозначается тройкой $\left(\underbrace{X}_{\text{мн-во}}, \underbrace{a}_{\sigma\text{-алг.}}, \underbrace{\mu}_{\text{мера}} \right)$

Определение. Полная мера

$$\mu: \mathcal{P} \subset 2^X \to \overline{\mathbb{R}}$$
 — мера μ — полная мера если

$$\mu$$
 — полная мера, если

$$(B\in\mathcal{P}:\;\mu(B)=0)\Rightarrow (\forall A\subset B:\;A\in\mathcal{P},\;$$
а значит $\mu(A)=0)$

Формально: если в полукольце есть множество меры 0, то все его подмножества также лежат в полукольце, а значит тоже имеют меру 0

Определение. Сигма-конечная мера

 $\mu:\mathcal{P}\subset 2^X o\overline{\mathbb{R}}$ — мера (или объём)

 $\mu - \sigma$ -конечная мера (или объем), если

$$\exists A_1,A_2,\ldots\in\mathcal{P}\quad X=\bigcup_{i=1}^{+\infty}A_i,\ \mu(A_i)<+\infty$$

Замечание. Множество измеримо, если оно лежит в области определения меры

<u>Теорема о лебеговском продолжении меры.</u>

 $\mathcal{P}_0\subset 2^X$ — полукольцо: $\mu_0:\mathcal{P}_0\to\overline{\mathbb{R}}-\sigma$ -конечная мера.

Тогда $\exists \sigma$ -алгебра $a:\mathcal{P}_0 \subset a$ и $\exists \mu$ - мера на a такие, что:

- 1. $\mu|_{\mathcal{P}} = \mu_0$, т.е. μ продолжение μ_0 на a
- 2. μ полная мера
- 3. Если a_1 σ -алгебра, μ_1 -мера, полная, $\mathcal{P} \in a_1, \mu_1|_{\mathcal{P}}$, то $a \subset a_1, \mu_1|_a = \mu$
- 4. Если $\mathcal{P}\subset\mathcal{P}_2\subset a:\mu_2\mid_{\mathcal{P}}=\mu_0$, то тогда $\mu|_{\mathcal{P}_2}=\mu_2$
- 5. $A \in \alpha, \mu A$ кон, то

$$\mu A = \inf\Biggl(\sum \mu P_k, A \subset igcup_{k=1}^{+\infty} P_k,$$
где $P_k \in \mathcal{P}\Biggr)$

К счастью, без доказательства

<u>Определение.</u> *µ*-измеримое множество

 $A \subset X - \mu$ -измеримо, если $\forall E \subset X$:

$$\mu E = \mu(A \cap E) + \mu \big(A^C \cap E\big)$$

2.5. Мера Лебега.

Автор ничего не понимает и еще в будущем будет стдеть и перепечатывать доказательство. Пока так.

<u>Лемма.</u> Счетная аддитивность классического объема

Счетная аддитивность классического объема \mathcal{P}^m — множество всех ячеек на \mathbb{R}^m . μ — классический объем. Тогда μ — σ -конечная мера.

Доказательство:

- 1. σ -конечность очевидна: можно либо разлиновать пространство на клеточки как в тетради, либо просто взять увеличивающийся параллелепипед
- 2. Надо доказать счетную аддитивность. Давайте по теореме об эквив. счетной аддитивности и полуаддитивности, докажем полуаддитивность:

$$P = [a, b), P_n = [a_n, b_n): P \subset \bigcup_{n=1}^{+\infty} P_n \stackrel{?}{\Rightarrow} \mu P \leq \sum \mu P_n$$

Далее под фразой «чуть уменьшим» вектор из \mathbb{R}^m будем подразумевать небольшое уменьшение каждой из его координат. Возьмем $\varepsilon>0$:

1. Чуть уменьшим b и получим b':

$$[a,b']\subset [a,b):\ \mu(P\smallsetminus [a,b'))<\varepsilon$$

2. Теперь для каждого P_n немного уменьшим a_n и получим a_n^\prime :

$$(a_n',b_n)\supset [a_n,b_n):\ \mu([a_n',b_n)\smallsetminus P_n)<\frac{\varepsilon}{2^n}$$

3. Получаем, что $\underbrace{[a,b']}_{\text{компакт}} \subset \bigcup_{n=1}^{+\infty} (a'_n,b_n)$

Т.к. это компакт, а справа стоит открытое покрытие, то по определению существует конечное подпокрытие:

$$[a,b']\subset \bigcup_{n=1}^N (a_n',b_n)$$

Теперь в правую часть включения добавим часть точек, а слева уберем. Очевидно включение от этого не сломается:

$$[a,b')\subset\bigcup_{n=1}^N[a_n',b_n)$$

По конечной аддитивности:

$$\mu[a,b) - \varepsilon \overset{(1)}{\leq} \mu[a,b') \overset{(3)}{\leq} \sum_{n=1}^N \mu[a_n',b_n) \overset{(2)}{\leq} \sum_{n=1}^N \Bigl(\mu[a_n,b_n) + \frac{\varepsilon}{2^n}\Bigr)$$

$$\mu[a,b) \leq \varepsilon + \sum_{n=1}^N \mu[a_n,b_n) \leq 2\varepsilon + \sum_{n=1}^{+\infty} \mu[a_n,b_n)$$

Делаем предельный переход при $\varepsilon \to 0$ и получаем ровно то, что и хотели.

Определение. Мера Лебега

Мера Лебега в \mathbb{R}^m — это результат применения теоремы о продолжении лебеговском продолжении меры к класс. объему.

 $(\mathbb{R}^m,\mathcal{P},\mu_0)\rightsquigarrow (\mathbb{R}^m,m^m,\lambda)$, где μ_0 - классический объема, λ,λ_m — мера Лебега (иногда хотим указывать размерность пространства)

Свойство:

- 1. Объединение, пересечение (в том числе счетные) множеств, изменимые по Лебегу тоже
- 2. Полнота. $\lambda A = 0, B \subset A \Rightarrow \lambda B = 0$
- 3. Содержит все открытые и замкнутые множества в \mathbb{R}^m (доказательство см ниже)
- 4. E измеримо и $\lambda(E)=0 \Rightarrow$ у E нет внутренних точек
- 5. $A \in \mathcal{M}^m$, тогда $\forall \varepsilon > 0$:
 - \exists открытое $G_{\varepsilon}:A\subset G_{\varepsilon}:\lambda(G_{\varepsilon}\setminus A)<\varepsilon$
 - \exists замкнутое $F_{\varepsilon}:A\supset F_{\varepsilon}:\lambda(A\smallsetminus F_{\varepsilon})<\varepsilon$

Доказательство:

5. Пусть $\lambda A < +\infty: \forall \varepsilon > 0: \exists P_k: A \subset \bigcup P_k$ по пункту 5 теоремы о лебеговском продолжении меры

$$\lambda A \leq \sum \lambda P_k \leq \lambda A + \varepsilon$$

Заменим $P_k=[a_k,b_k]$ на $P_k'=(a_k-\alpha_k,b_k)$, так, чтобы $\lambda P_{k'}<\lambda P_k+rac{arepsilon}{2^k}.$

Возьмем $G_{arepsilon} \coloneqq \bigcup P_k'$ - открытое. Тогда:

$$\lambda A \leq \sum \lambda P_k' < \left(\sum \lambda P_k\right) + \varepsilon < \lambda + 2\varepsilon$$

Заметим, что тогда выбранное G_{ε} удовлетворяет условию.

Теперь для произвольного A: $\mathbb{R}^m = \bigsqcup Q_i$. $A \cap Q_i$. Существует открытое G_i , что $(A \cap Q_i) \subset G_i$

$$\lambda(G_i \smallsetminus (A \cap Q_i)) < \frac{\varepsilon}{2^i}$$

TODO: тут не совсем понял, как мы такие G_i можем выбрать, ладно

$$A = \bigsqcup (A \cap Q_i) \subset \bigcup G_i = G$$
 - открытое.

Ну и видно, что найденное G подходит условию.

Q.E.D.

TODO: пропущены следствия, можете пожалуйста их сформулировать кто=то

<u> Лемма.</u> О смысле жизни открытых множеств и множеств меры 0

 $O\subset \mathbb{R}^m$ — открытое. Тогда $\exists Q_i:\ O=igsqcup_{i=1}^{+\infty}Q_i$, где Q_i — кубические ячейки:

- можно считать, что у ни с рациональными координатами.
- можно даже считать, что с двоично-рациональными
- они «закопаны» внутрь области О. $Q_i \subset \overline{Q_i} \subset O$

Доказательство:

 $\forall x \in O$:Возьмем Q(x) - любую кубические ячейку с нужными нам из условия свойствами

$$O = \bigcup_{x \in Q} Q(x) \underset{\text{шаманим}}{=} \bigcup_{i=1}^{+\infty} Q(x_i)$$

Шаманство: O - континуальное множество. Казалось бы, как такое посчитать. Заметим, что ячеек с двоично-рациональными координатами счетно. Так что мы просто пройдемся по ним и будем нумеровать, так что шаманство работает!

Q.E.D.

Пример неизмеримого по Лебегу множества

Зададим отношение \sim на $\mathbb R$:

$$x \sim y \Leftrightarrow x - y \in \mathbb{Q}$$

 $\mathbb{R}/_{\sim}=A$ — т.е из каждого класса эквивалентности взяли по одной точке. Заодно можно считать, что $A\subset [0,1]$

Заметим, что есть следующее включение:

$$[0,1] \subset \bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q) \subset [-1,2]$$

Левая часть следует из того, что если взять точку $x \in [0,1]$, представителя его класса $y \in A$ и найти x-y, то окажется что это значение во-первых рациональное, во-вторых $\in [-1,1]$, а т.к. мы перебираем все рациональные числа, из этого отрезка в качестве смещений, то в x мы тоже попадем Правая часть следует из того, что смещая точки из отрезка [0,1] на смечение от -1 до 1, мы всегда попадаем в отрезок [-1,2]

Предположим A — измеримо, тогда можем посчитать меру отрезков (воспользуемся счетной аддитивностью):

$$1 \leq \sum_{q \in \mathbb{Q} \cap [-1,1]} \lambda(A+q) \leq 3$$

Пока строго обосновывать не будем, но при сдвиге мера множества не меняется Значит $\sum \lambda(A+q)$ — сумма счетного числа одинаковых слагаемых, соответственно есть два варианта:

1.
$$\lambda(A+q) = 0 \Rightarrow \sum \lambda(A+q) = 0$$

2.
$$\lambda(A+q) \neq 0 \Rightarrow \sum \lambda(A+q) = \infty$$

В обоих случаях одно из неравенств не выполняется, а значит A — неизмеримое.

3. Интеграл

Определение. Разбиение множества Е

Разбиением множества Е называется его разбиение на конечное количество множеств, то есть:

$$E = | | E_i$$

Определение. Ступенчатая функция

 $f:X o\mathbb{R}$ — называется **ступенчатой**, если:

$$\exists e_i: X = \bigsqcup_{\text{\tiny KOH}} e_i: \ \forall i \ f|_{e_i} = \text{const}$$

При этом такое разбиение называется допустимым.

 Π ример: Характеристическая функция $\chi_{e_k} = \begin{cases} 1, & x \in e_k \\ 0, & x \notin e_k \end{cases}$

Свойства

- 1. Если f, g ступенчатые функции, то \exists разбиение, допустимое для обоих
- 2. f, g ступенчатые, $\alpha \in \mathbb{R}$. Тогда:

$$f+g,\ fg,\ \max(f,g),\ \min(f,g),\ |f|,\ \alpha f$$
 — ступенчатые

Доказательство этих свойств очевидно

Определение. Лебеговские множества.

Пусть есть $f:E\subset X\to \overline{\mathbb{R}}$ и $a\in\mathbb{R}$. Тогда следующие 4 множества называются **Лебеговскими**:

- 1. $E(f < a) = \{x \in E, f(x) < a\}$
- 2. $E(f \le a) = \{x \in E, f(x) \le a\}$
- 3. $E(f \ge a) = \{x \in E, \ f(x) \ge a\}$ 4. $E(f > a) = \{x \in E, \ f(x) > a\}$

Замечания:

- $\begin{array}{l} \bullet \ E(f>a) = (E(f \leq a))^c \\ \bullet \ E(f \leq a) = \bigcap_{n \in \mathbb{N}} E\big(f < a + \frac{1}{n}\big) \end{array}$

TODO: те ли замечания?

Определение. Измеримая функция

 (X,a,μ) — пространство с мерой. Возьмем $f:E\subset X o \overline{\mathbb{R}}, E\in a$. Тогда f — **измерима** на E, если

$$\forall a \in \mathbb{R} : E(f < a) \in a$$

(аналогично для еще 3х случаев)

 ${\color{red} {\bf 3}}$ амечание: Если f измеримо на X говорят, что X просто измеримо. Если $X=\mathbb{R}^m$, $a=m^m$, то говорят, что X измеримо по Лебегу

TODO: так ли это??!?!?!?

ТООО: пропущено замечание про эквивалентность, потому что не разобрал

Свойства:

- 1. f измерима $\Rightarrow \forall a \in \mathbb{R}: \ E(f=a) = E(f \geq a) \cap E(f \leq a)$ измеримо
- 2. f измерима $\Rightarrow \forall \alpha \in \mathbb{R}: \ \alpha f$ измерима

- 3. f измерима на $E_k \Rightarrow f$ измерима на $E = \bigcup E_k$
- 4. f измерима на $E, E' \subset E, E' \in a \Rightarrow$ измерима на E'
- 5. $f \neq 0$ на Е, измерима $\Rightarrow \frac{1}{f}$ измерима
- 6. $f \geq 0, \; \alpha > 0$ измерима $\Rightarrow f^{\alpha}$ измерима

Теорема. Об измеримости пределов и супремумов.

 f_n — измеримые функции на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримы.
- 2. $\overline{\lim} f_n$, $\underline{\lim} f_n$ измеримы.
- 3. Если $\forall x \quad \exists \lim_{n \to +\infty} (f_n(x)) = f(x),$ то f измерима.

Доказательство:

1) Пусть $g(x) \coloneqq \sup f_n(x)$

Докажем, что

$$X(g>a)=\bigcup_n X(f_n>a)$$

Если это верно, то справа стоит счетное объединение измеримых множеств ⇒ оно измеримо

Чтобы это показать, докажем включение в обе стороны.

Покажем, что

$$X(g>a)\subset\bigcup_nX(f_n>a)$$

Рассмотрим какой-нибудь $x\in X(g>a)$. По определению множества $X(g>a):\ g(x)>a\Rightarrow\sup f_n(x)=g(x)>a$. Тогда по техническому описанию $\sup:\ \exists n:f_n(x)>a$. Значит x лежит в правой части тоже.

Покажем, что

$$X(g>a)\supset \bigcup_n X(f_n>a)$$

Рассмотрим какой-нибудь $x\in \bigcup_n X(f_n>a)$. Это значит, что $\exists n:\ x\in X(f_n>a)$.

По определению этого множества $f_n(x) > a \Rightarrow g(x) = \sup f_n(x) > a$

TODO: скопировал 2 и 3 пункт с прошлого года, так как не понял, распишите их нормальной

- 2) Распишем верхни предел по определению (для нижнего все будет аналогчино)

Заметим, что по предыдущему пункту s_n — измерим (т.к. она sup измеримых)

$$\overline{\lim} f_n(x) = \inf_n(s_n)$$

Аналогично $\lim f_n(x)$ — измерима, т.к. s_n измеримы

3) Очевидно: так как если $\exists \lim \Rightarrow \overline{\lim} = \lim = \underline{\lim}$

Q.E.D.

<u>Следствие.</u> f - измеримо $\Rightarrow |f|, f^+, f^-$ - измеримы

<u>Теорема.</u> Характеризация измеримых функций с помощью ступенчатых

 $f:X o\overline{\mathbb{R}},\,f\geq0,$ f-измеримо. Тогда
 $\exists f_{n}-$ ступенчатые функции:

$$1. \ 0 \le f_n \le f$$

1. $0 \le f_n \le f$ 2. $\forall x : \lim_{n \to +\infty} f_n(x) = f(x)$

Доказательство:

Выберем $n \in \mathbb{N}$ и нарежем ось «y» сначала на n отрезков длины 1, а потом каждый из них на отрезки длины $\frac{1}{n}$. И введем следующие обозначения:

$$e_k^{(n)} := X\left(\frac{k}{n} \le f < \frac{k+1}{n}\right), \ k = 0, 1, ..., n^2 - 1$$

$$e_{n^2}^{(n)} = X(f \ge n)$$

Заметим, что X разбилось на n^2+1 дизъюнктных кусков: $X=\bigsqcup_k e_k^{(n)}.$

Замечание: Концептуально функция не обязательно убывающая, мы просто делим на куски и возможно, что $e_k^{(n)}$ будут не непрерывны, как на рисунке.

Построим теперь ступенчатую функцию g_n :

$$0 \leq g_n \coloneqq \sum_{k=0}^{n^2} \frac{k}{n} \cdot \chi_{e_k^{(n)}} \leq f$$

Левое неравенство очевидно, т.к. каждое из слагаемых не меньше 0 Правое неравенство следует из того, что на $e_k^{(n)}$ значение функции $f \geq \frac{k}{n}$, а в сумме мы рассматриваем функцию, у которой на $e_k^{(n)}$ значение в точности равно $\frac{k}{n}$. Неравенство становится очевилным

Найдем предельную функцию:

$$\lim_{n\to\infty}g_n(x)=f(x)=\begin{cases} +\infty, & \text{если } f(x)=+\infty, \left(\text{ т.к. } \forall n: \ x\in e_{n^2}^{(n)}\Rightarrow g_n(x)=n\right)\\ f(x), & \text{если } f(x)<+\infty, \left(\text{ т.к. } \text{ HCHM } n>f(x)\ x\in e_k^{(n)}\stackrel{(\star)}{\Rightarrow}|f(x)-g_n(x)|<\frac{1}{n}\right) \end{cases}$$

 (\star) : Т.к. n>f(x), то $k< n^2$, а по определению $e_k^{(n)}$ значения на этом множестве g_n отличаются от fне более, чем на $\frac{k+1}{n} - \frac{k}{n} = \frac{1}{n}$.

Теперь определим f_n так, чтобы они были монотонными:

$$f_n(x)\coloneqq \max(g_1,g_2,...,g_n)$$

Очевидно, что $f_n = \max(g_1,...,g_n)$, $0 \le f_n \le f_{n+1} \le f$ и они ступенчатые.

Q.E.D.

Todo: сверьте следствия

Следствие 1:

 $f:X o\overline{\mathbb{R}}$ — измеримая. Тогда $\exists f_n$ — ступенчатые, что:

1. $\forall x \ \forall n : \ |f_n| \le |f|$

2. $\forall x: \lim_{n \to +\infty} f_n(x) = f(x)$

Доказательство:

Очевидно, что f^+, f^- — измеримы, и при этом $f^+, f^- \ge 0$. Тогда по теореме:

1. $\exists h_n - \text{ступ.}: \quad h_n \uparrow, \quad 0 \le h_n \le f^+, \quad \lim h_n = f^+$

2.
$$\exists g_n - \text{ступ.}: g_n \uparrow, \quad 0 \leq g_n \leq f^-, \quad \lim g_n = f^-$$

По свойству ступенчатых функций h_n-g_n — тоже ступенчатая. И при этом: $h_n-g_n \to f^+-f^-=f$ Тогда $\sphericalangle f_n:=h_n-g_n$ и докажем что они подходят.

Второе условие выполнено за счет предпоследней строчки Докажем первое условие, по определению срезок:

$$\forall x: \ f^+(x) = 0$$
 или $f^-(x) = 0$

Поэтому

$$\forall x \ \forall n: \ |f_n| = |h_n(x) - g_n(x)| = h_n(x)$$
 или $g_n(x)$

И при этом

$$h_n(x) \le f^+(x) \le |f|$$
 if $g_n(x) \le f^-(x) \le |f|$

Получается, что $|f_n| < |f|$ — ровно то, что надо

Q.E.D.

Следствие 2:

f,g — измеримы. Тогда fg — тоже измеримо

Доказательство:

Рассмотрим $f_n \to f, \ g_n \to g$ — ступенчатые из нашей теоремы. При этом $f_n, \ g_n$ — конечные (т.к. сутпенчатые). Тогда по свойству поточечной сходимости:

$$f_n g_n \to fg$$

(будем считать, что $0 \cdot \pm \infty = 0$)

Q.E.D.

Следствие 3:

f,g — измеримы. Считаем, что $\nexists x \; f(x) = \pm \infty, \; g(x) = \mp \infty.$ Тогда f+g — измеримо

Доказательство:

 $\exists f_n, \ g_n$ — ступенчатые из нашей теоремы. Тогда по свойству поточечной сходимости:

$$f_n + g_n \to f + g$$

3.1. Преобразование меры Ω при сдвигах и линейных отображениях

Лемма о сохранении измеримости при непрерывном отображении.

 $T:\mathbb{R}^m o\mathbb{R}^n$ — непрерывно, $orall E\in\mathcal{M}^m:\lambda_m E=0$ выполняется: $\lambda T(E)=0.$ Тогда:

$$\forall A \in \mathcal{M}^m : TA \in \mathcal{M}^n$$

Доказательство:

Прямое следствие регулярности меры Лебега:

$$A = \bigcup_{n=1}^{\infty} F_n \cup C,$$

 F_n — компакт, $\lambda \mathcal{N} = 0$.

$$TA = \bigcup_{n=1}^{\infty} T(F_n) \cup T(\mathbf{C})$$

 $T(F_i)$ — компакт (как образ компакта), $\lambda T(C) = 0 \Rightarrow TA$ — измеримо.

Q.E.D.

Теорема о сохранении измеримости при гладком отображении.

 $O\subset\mathbb{R}^m$ - открытая. $\Phi:O o\mathbb{R}^m$, $\Phi\in C^1$

Тогда $\forall A\subset O$ - измеримых по Лебегу $\Phi(A)$ тоже измеримо по Лебегу

Доказательство:

 Φ - непрерывно. Откуда достаточно проверить, что $\lambda A=0 \Rightarrow \lambda \Phi(A)=0$. Тогда сработает предыдущая лемма и мы победим.

$$\lambda E=0\Leftrightarrow\exists$$
меры $(B_k),E\subset\bigcup B_k,\sum\lambda B_k<\varepsilon$

TODO: Рассписать то, что сверху лучше

Рассмотрим два случая:

1. $\sqsupset A \subset \underbrace{\overline{P}}_{\text{пар-ед}} \subset O$. Т.к. \overline{P} — компакт, а Φ' — непрерывно, то она достигает своего максимума:

$$L \coloneqq \max_{x \in \overline{P}} \|\Phi'(x)\|$$

Тогда по теореме Лагранжа:

$$\forall x, y \in \overline{P}: |\Phi(x) - \Phi(y)| \le L \cdot |x - y|$$

Отсюда следует следующие включение для образа шара:

$$\Phi(B(x_0,r))\subset B(\Phi(x_0),Lr)$$

TODO ????????

Потом шар в куб не пон

Q.E.D.

Теорема о мерах, инвариантных относительно сдвигов.

 μ — мера на m^m

1. Пусть μ — инвариантна, относительно сдвигов, т.е:

$$\forall A \in m^m \ \forall v \in \mathbb{R}^m \quad \mu(A) = \mu(A+v)$$

2. Для любого ограниченного $A \in m^m: \ \mu(A) < +\infty$

Тогда

$$\exists k \in [0, +\infty] \quad \mu = k \cdot \lambda \quad (\Leftrightarrow \forall A \in m^m: \ \mu A = k \cdot \lambda A)$$

Лемма

 $(X,\mathcal{A},_),(X',\mathcal{A}',\nu')$ — два пространства с мерой. $T:X\to X'$ — биекция. Тогда

$$\nu := \nu' \circ T, \quad (\nu : \mathcal{A} \to \mathbb{R}) - \text{Mepa}$$

Доказательство:

Проверим счетную аддитивность $A = \bigsqcup A_k$

Тогда должно быть:

$$\nu A = \nu'(TA) = \nu'\left(T\left(\bigsqcup A_k\right)\right) = \nu'\left(\bigsqcup TA_k\right) = \sum \nu'(TA_k) = \sum \nu A_k$$

Получается счетная аддитивность есть, значит ν — мера

Q.E.D.

Теорема. (Инвариантность относительно ортогонального преобразования)

 $T:\mathbb{R}^m \to \mathbb{R}^m$ - линейное отображение, ортогонально. Тогда:

$$\forall A \in m^m : T(A) \in m^m \text{ in } \lambda A = \lambda T(A)$$

Доказательство:

- 1. $T(A) \in m^m$ по теореме 1, так как T гладкая функция.
- 2. У нас сохранение меры $\mu A = \lambda(T(A))$, так как T биективно (? это вроде как следует из того, что оно ортогонально, но я чет сомневаюсь) При этом μ инвариантна относительно сдвигов:

$$\mu(A+\nu) = \lambda(T(A+\nu)) = \lambda(T(A)+T\nu) + \lambda(T(A)) = \mu A$$

Заметим также, что T шар с центром в 0 переводит в шар с центром в 0 того же радиуса

$$T(B(0,r)) = B(0,r)$$

Откуда $\lambda T(B(0,r)) = \mu B(0,r)$. Уже откуда получаем, что $\mu < +\infty$ на любом ограниченном. Откуда выполнена теорема о мерах, инвариантных относительно сдвигов и в данном случае k=1.

Q.E.D.

Теорема о преобразовании меры Лебега при линейном отображении.

 $V \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^m)$

Тогда

$$\forall E \in \mathcal{M}^m \quad V(E) \in \mathcal{M}^m \quad \text{if} \quad \lambda(V(E)) = |\det V| \cdot \lambda E$$

Доказательство:

Рассмотрим два случая:

1. $\det V=0\Rightarrow \dim(\operatorname{Im} V)\leq m-1$. А тогда $\lambda(Im\,V)=0\Rightarrow \lambda(VE)=0$. Получили, что хотели

2. $\det V \neq 0$ Пусть $\mu E \coloneqq \lambda V(E)$ — мера инвариантная относительно сдвигов $\Rightarrow \exists k : \mu = k\lambda$ Найдем k. Пусть $E \coloneqq$ единичный куб на векторах $g_i.$ $V(g_i) = s_i h_i$ (по предыдущей лемме), тогда V(E) — параллепипед, порожденный векторами $s_i h_i.$ Посчитаем:

$$\mu E = \lambda V(E) = (s_1...s_m) \quad \lambda E = 1$$

Получили, что $k = |\det V|$

3.2. Сходимость по мере и сходимость почти везде

Определение. Множество полной меры

E- множество полной меры в $X\Rightarrow \mu(X\setminus E)=0$

Теорема. Измеримость функции непрерывной на множестве полной меры

 $E\subset \mathbb{R}^2, e\subset E, \lambda_{m(e)}=0$ $f:E\to \mathbb{R}$ непрерывны на $E'=E\setminus e.$

Тогда f измеримая.

Доказательство:

 $E^{\prime}(f < a) = H$ - открытое подмножество в E^{\prime} по топологическому определению

 $\exists G$ - открытое в \mathbb{R}^m такое что $H=G\cap E'$

$$E(f < a) = E'(f < a) \cup e(f < a)$$

E'(f < a) — измеримое, e(f < a) - подмножество e, имеющего $\lambda e = 0$.

Q.E.D.

Определение. Свойство, выполняющееся почти везде

 $(X, \alpha, \mu), \ E \in \alpha, w(x)$ — высказывание, зависящее от x, w(x) выполняется (истинно) **почти везде**, если

$$\mu e = 0$$
, где $e = \{x \in E \mid w(x) - \text{ложно}\}$

Свойства:

Пусть $\forall n$ задано высказывание $\omega_n(x)$ и оно выполняющееся почти везде.

Тогда мегаутверждение $w(x) := w_1(x) \wedge w_2(x) \wedge ... -$ выполняющееся почти везде.

Определение. Сходимость почти везде

 $f,f_n:E o\overline{\mathbb{R}},f_n o f$ почти везде, если:

$$\mu\{x \in E \mid f_n(x) \nrightarrow f(x)\} = 0$$

Свойства:

1. $f_n, f: X \to \overline{\mathbb{R}}, \ \mu$ — полная, $f_n \to f$ почти везде на X и $\forall n \ f_n$ — измеримая, тогда f— измерима

2. μ — полная мера, f — измерима, g — еще одна функция и f=g почти везде, тогда g — измерима

Определение. Сходимость по мере

 (X,a,μ) — пространство с мерой, $f_n,f:X\to\overline{\mathbb{R}}$ — измеримы, почти везде конечны.

Тогда $f_n o f$ по мере μ (при $n o +\infty$)

$$f_n \underset{\mu}{\Longrightarrow} f: \quad \forall \varepsilon > 0 \quad \mu X(|f_n - f| \ge \varepsilon) \to 0$$

Теорема Лебега о сходимости почти везде и сходимости по мере.

 $f_n,f:X o\overline{\mathbb{R}}$ — измеримы, почти всюду конечны, $f_n o f$ — почти всюду, $\mu X<+\infty$

Тогда:

$$f_n \Longrightarrow_{\mu} f$$

Доказательство:

Подменим f_n, f — на множествах меры 0, так чтобы $f_n \to f$ всюду и f, f_n — конечны

• Рассмотрим частный случай:

 $f_n \to 0 \quad \forall x$ последовательность $f_n(x)$ — монотонна по n, и тогда $f \equiv 0$:

$$X(|f_n-f|\geq \varepsilon) = X(|f_n|\geq \varepsilon) \supset X\big(\big|f_{n+1}\big|\geq \varepsilon\big) \supset \dots$$

$$\bigcap_n X(|f_n| \geq \varepsilon) = \varnothing \quad \Rightarrow \quad \underbrace{\mu X(|f_n| \geq \varepsilon) \to 0}_{\text{по непрерывности сверху}}$$

• Общий случай:

$$\begin{aligned} f_n &\to f \\ \varphi_n(x) \coloneqq \sup_{k \geq n} |f_k(x) - f(x)| \end{aligned}$$

Заметим, что: $\forall x: \; \varphi_n(x) \to 0,$ причем $\varphi_n \geq 0$ и монотонна, тогда по частному случаю:

$$X(|f_n-f|\geq \varepsilon)\subset X(\varphi_n\geq \varepsilon)$$

$$\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$$

Q.E.D.

Теорема Рисса.

 $(X,a,\mu),\,f_n,f:X o\overline{\mathbb{R}}$ — измеримы, почти всюду конечны, $f_n\Longrightarrow_\mu f$ - сходимость по мере

Тогда $\exists n_k$ - строго возрастающая последовательность, по которой $f_{n_k} \to f$ почти везде при $k \to \infty$

Доказательство:

TODO: Дописать доказательство:

Набросок:

Построим возрастающую n_k так чтобы $\mu X \big(|f_n - f| \geq \frac{1}{k} \big) < \frac{1}{2^k}$

Проверим, что $f_{n_k} o f$ п.в.

$$\begin{split} E_k &= \bigcup_{j=k}^{+\infty} X \bigg(\left| f_{n_j} - f \right| \geq \frac{1}{j} \bigg) \\ E_1 \supset E_2 \supset \dots \end{split}$$

$$\begin{cases} E_0 = \bigcap_{k=1}^{+\infty} E_k \\ \mu E_k \leq \sum_{j=k}^{+\infty} \mu X \Big(\Big| f_{n_j} - f \Big| \geq \frac{1}{j} \Big) \leq \sum \frac{1}{2^i} = \frac{2}{2^k} \to 0 \end{cases} \Rightarrow \mu E_0 = 0$$

Осталось проверить, что для всех x не в E_0 $f_{n_k}(x) \to f(x)$:

$$\exists n,x \notin E_n$$
, т.е. при $j \geq n, |f_{n_j}(x) - f_x| < \frac{1}{j},$ то есть $f_{n_j}(x) \to f(x)$

3.3. Наконец-то интеграл

У нас есть (X, \boldsymbol{a}, μ)

Определение. Интеграл ступенчатой функции (Альфа Версия)

$$f = \sum \lambda_k \chi_{E_k}, f \geq 0, X = \bigsqcup_{\mathrm{koh}} E_k$$

Полагаем:

$$\int_X f \, \mathrm{d}\mu \coloneqq \sum \lambda_k \mu E_k \in [0, +\infty]$$

Свойства

1. Интеграл не зависит от разложения

$$f = \sum \tilde{\lambda_j} \chi_{F_j}$$
 Тогда $f = \sum_{k,j} \tilde{\lambda_k} \chi_{E_k \cap F_j}$
$$\int_X f = \sum_{k,j} \lambda_k \mu \big(E_k \cap F_j \big)$$
 2. $f \leq g \Rightarrow \int_X f \leq \int_X g$

Определение. Бета-версия интеграла

f - измерима, $f \geq 0$

$$\int_X f \, \mathrm{d} \mu \coloneqq \sup_{0 \le \underbrace{g}_{\text{cryn.}} \le f} \left(\int_X g \, \mathrm{d} \mu \right)$$

Замечания

1. Если f - ступ., то в силу свойства 2.

2.
$$f \ge 0 \Rightarrow 0 \le \int_X f \, \mathrm{d}\mu \le +\infty$$

3. g - ступ., $g \le f \Rightarrow \int_X g \le \int_X f$

Определение. Суммируемая функция

f — суммируемая функция, если $\int_X^{\bullet} f^+, \int_X^{\bullet} f^-$ — конечны (положительная и отрицательная срезка)

TODO: тут чет другое хотят в условии определения, что?

Определение. Интеграл суммируемой функции

f - измерима и суммируемая функция, $f^+ = \max(f, 0), f^- = \max(-f, 0)$. Тогда:

$$\int_X f \,\mathrm{d}\mu \coloneqq \int_X f + \mathrm{d}\mu + \int_X f - \mathrm{d}\mu$$

Определение. Интеграл по подмножеству

 $(X,\boldsymbol{a},\boldsymbol{\mu})$ - пространство с мерой, $E\in\boldsymbol{a},f$ - измерима на X

$$\int_E f \, \mathrm{d}\mu \coloneqq \int_X f \chi_E \, \mathrm{d}\mu$$

Здесь f — суммируема на E, если $\int_E f^+, \int_E f^-$ конечны

Замечания

 α - определение: f - ступ., $\int_E f = \sum \lambda_k \mu(E_k \cap E)$

 β - определение: $\int_E f = \sup_{0 \le \underbrace{g}_{\text{ступ., на E}} \le f} \Bigl(\int_E g \, \mathrm{d} \mu \Bigr)$

TODO: Раздать стилька

Свойства

1. Монотонность (по функции):

f,g— суммируемы, $f \leq g$. Тогда $\int_X f \leq \int_X g$ Доказательство

1. $f,g \geq 0$ - очевидно

2. f,g - любого знака - TODO просто расписать неравенства

Замечание

f - сумм. $\Leftrightarrow \int |f|$ - конечен

• $\Leftarrow: f^+, f^- \le |f|$

• \Rightarrow : $|f| = f^+ + f^-$ - интегрируем, но пока не умеем :(

2. $\int_{E} 1 d\mu = \mu E, \int_{E} 0 d\mu = 0$

3. $\mu E=0, f$ - изм. $\Rightarrow \int_E f \,\mathrm{d}\mu=0$

4. $\int_E (-f) \, \mathrm{d}\mu = - \int_E d \, \mathrm{d}\mu$ $\alpha > 0, \int_E \alpha f \, \mathrm{d}\mu = \alpha \int_E f \, \mathrm{d}\mu$

5. $\int_E f \,\mathrm{d}\mu$ - существует $\Rightarrow \left| \int_E f \,\mathrm{d}\mu \right| \leq \int_E |f| \,\mathrm{d}\mu$

Доказательство: $-|f| \leq f \leq |f|$

6. f - изм. на $E, \mu E < +\infty, a \le f \le b$

Тогда $a\mu E \leq \int_E f \,\mathrm{d}\mu \leq b\mu E$

Следствие: $\mu E < +\infty, f$ - изм., огр. $\Rightarrow f$ - сумм.

7. f - сумм. на $E\Rightarrow f$ - почти везде конечен на E

Суть доказательства: если f больше нуля и интеграл по E конечен и равен супремуму интегралов ступенчатых функций на E. Если мера множества бесконечности f - \tilde{E} больше нуля, то $g \coloneqq n\chi_{\tilde{E}}$

Лемма

 $A=\bigsqcup A_k$ — измеримо, $g\geq 0$ — ступенчатая. Тогда:

$$\int_{A} g \, \mathrm{d}\mu = \sum_{i=1}^{\infty} \int_{A_{i}} g \, \mathrm{d}\mu$$

Доказательство:

Т.к. g — ступенчата, предствим ее в виде $g=\sum\limits_{\mathrm{кон}}\lambda_i\chi_{E_i}$, где E_i — допустимое разбиение Тогда найдем интеграл:

$$\begin{split} &\int_A g = \sum_{i, \text{ koh.}} \lambda_i \mu(E_i \cap A) = \sum_{i, \text{ koh.}} \lambda_i \sum_{k=1}^{+\infty} \mu(E_i \cap A_k) = \\ &= \sum_i \sum_k \lambda_i \mu(E_i \cap A_k) \stackrel{(\star)}{=} \sum_k \sum_i \lambda_i \mu(E_i \cap A_k) = \sum_k \int_{A_k} g \, \mathrm{d}\mu \end{split}$$

 (\star) : в прошлом семестре обсуждалось, что в рядах можно переставлять слагаемые, если все слагаемые неотрицательные, а у нас именно такие

Q.E.D.

TODO: украл у прошлого года, обмозговать

Счетная аддитивность интеграла (по множеству).

 $A=\bigsqcup A_k$ — измеримо, $f\geq 0:X\to \overline{\mathbb{R}}$ — измерима на A: Тогда:

$$\int_{A} f \, \mathrm{d}\mu = \sum_{i=1}^{\infty} \int_{A_{i}} f \, \mathrm{d}\mu$$

Доказательство:

Давайте докажем два неравенства $(\leq), (\geq)$.

 \vartriangleleft ступенчатую функцию g: $0 \le g \le f$:

$$\int_A g = \sum \int_{A_i} g \le \sum \int_{A_i} f$$

По определению интеграла для измеримой функции:

$$\int_A f = \sup_g \int_A g \le \sum \int_{A_i} f$$

 (\geq) :

$$1. \ \Box \ A = A_1 \sqcup A_2$$

Возьмем ступенчатые функции g_1, g_2 с общим разбиением E_k :

$$0 \leq g_1 \leq f \cdot \chi_{A_1} \quad 0 \leq g_2 \leq f \cdot \chi_{A_2}$$

Т.е. функция g_1 тождественный 0 вне A_1 , а на $A_1:\ g_1\leq f$. Аналогично для g_2 Найдем их явное представление:

$$g_1 = \sum \lambda_i' \chi_{E_i} \quad g_2 = \sum \lambda_i'' \chi_{E_i}$$

Тогда очевидно, что когда мы их сложим, они будут меньше f на всем A (т.к. A_1,A_2 — дизъ. то ровно одна из g_1,g_2 на ней $\neq 0$, а каждая из них по отдельности меньше f)

$$0 \leq g_1 + g_2 \leq f \cdot \chi_A$$

Проинтегрируем все это дело:

$$\int_{A_1}g_1+\int_{A_2}g_2\stackrel{(\star)}{=}\int_A(g_1+g_2)\leq\int_Af$$

 (\star) : равенство станет очевидным, если написать интеграл по определению Теперь перейдем к \sup по g_1 :

$$\int_{A_1} f + \int_{A_2} g_2 \le \int_A f$$

И перейдем к sup по g_2 :

$$\int_{A_1} f + \int_{A_2} f \le \int_A f$$

- 2. $\sqsupset A=\bigsqcup_{i=1}^nA_i$ доказывается индукцией по 1-му пункту $3.\ A=\bigsqcup_{i=1}^{+\infty}A_i=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где $B_n=\bigsqcup_{i=n+1}^{+\infty}A_i$

$$\int_A f = \sum_{i=1}^n \int_{A_i} f + \int_{B_n} f \ge \sum_{i=1}^n \int_{A_i} f$$

Делаем предельный переход при $n \to +\infty$ и получаем нужное нам неравенство

4. Хуй знает где

Определение. Борелевская сигма-алгебра

 $\mathcal{B}-$ борелевская σ -алгебра в \mathbb{R}^m- минимальная σ -алгебра, содержащая все открытые множества

 $B \in \mathcal{B}$ — называется борелевским множеством

Следствия:

1. $\forall A\subset \mathcal{M}^m\ \exists B,C$ — борелевские, такие что $B\subset A\subset C,\ \lambda_m(C\smallsetminus A)=\lambda_m(A\smallsetminus B)=0$

Доказательство:

$$B := \bigcup_{n} F_{\frac{1}{n}} \quad C := \bigcap_{n} G_{\frac{1}{n}}$$

- 2. $\forall A \in \mathcal{M}^m$ представимо в виде $A = B \cup N$, где B борелевское, а $\lambda N = 0$
- 3. Регулярность меры Лебега

Определение. Множество полной меры

E- множество полной меры в $X\Rightarrow \mu(X\setminus E)=0$

Теорема. Измеримость функции непрерывной на множестве полной меры

$$E\subset \mathbb{R}^2, e\subset E, \lambda_{m(e)}=0$$
 $f:E o \mathbb{R}$ непрерывны на $E'=E\setminus e.$

Тогда f измеримая.

Доказательство:

E'(f < a) = H - открытое подмножество в E' по топологическому определению

 $\exists G$ - открытое в \mathbb{R}^m такое что $H=G\cap E'$

$$E(f < a) = E'(f < a) \cup e(f < a)$$

E'(f < a) — измеримое, e(f < a) - подмножество e, имеющего $\lambda e = 0$.

5. Информация о курсе

Поток — y2024.

Группы М3238-М3239.

Преподаватель — Кохась Константин Петрович.

Уже по традиции здесь будут мои пописульки:

27.09.2025 - нам пизда

