High-Speed Electronics in Practice

SHUAI ZHANG

SELMA LAGERLOFS VEJ 312

9220 AALBORG ØST

(SZ@ES.AAU.DK)

High-Speed Electronics in Practice

MM11. Standing Waves

Recall

An infinite small cable dx

Primary cable constant

L [
$$\frac{H}{m}$$
] \mathbb{R} [$\frac{92}{m}$] \mathbb{C} [$\frac{F}{m}$] \mathbb{G} [$\frac{5}{m}$]

Recall

Lossless model

Example

Recall

For Lossless model

Primary cable constant L, C

Secondary cable constant

$$Z_0 = \sqrt{\frac{L}{c}}$$

Solutions

$$V(x) = V^{\dagger} e^{-i\beta x} + V^{\dagger} e^{+i\beta x}$$

$$I(x) = I^{\dagger} e^{-i\beta x} + I^{\dagger} e^{+i\beta x}$$

$$= \frac{1}{Z_0} \left[V^{\dagger} e^{-i\beta x} - V^{\dagger} e^{+i\beta x} \right]$$
5

STANDING WAVES

Targets:

- Read "Grundlinggende Transmissionsledningsteori" (Page 47-49, 54-68) (before or after the lecture)
- 2. Be able to calculate with standing wave curve and reverse standing wave curve (lecture)
- 3. Finish the exercise (after the lecture)

Transmission Line Calculations

Blackboard (1)

1. Calculate between the primary and secondary cable constant

$$L,C,R,G \longleftrightarrow Z_0,\gamma$$

- 2. Calculate K_L from Z_O and Z_L
- 3. Calculate between the impedance and reflection coefficient.

$$K(x) \longleftrightarrow Z(x)$$

4. Calculate voltage and current

$$V(x), I(x), V'(x), V'(x), I'(x), I'(x)$$

5. Calculate transmission and loss power

$$P_{TRANS}(x), P_{TAB}(x)$$

Transmission Line Calculations

$$K_{L} = \frac{Z_{L} - Z_{o}}{Z_{L} + Z_{o}}$$

$$K(x) = K_{L} \cdot e^{2YX}$$

$$K(x) = \frac{Z(x) - Z_{o}}{Z(x) + Z_{o}}$$

$$Z(x) = Z_{o} \cdot \frac{1 + K(x)}{1 - K(x)}$$

$$[\Omega]$$

$$V = \sqrt{LC} = \frac{co}{\beta} \quad [m/s] \quad Lossless$$

$$\lambda = \frac{2\pi}{\beta} = \frac{v}{\rho} \quad [m]$$

$$V_{max} = C = 300 \text{ m/us}$$

Euler's Formula

$$e^{jb} = cos b + j sin b$$

$$|e^{jb}| = \sqrt{cos^2b + sin^2b} = 1$$

$$|e^{jb}| = arcts(\frac{sinb}{cos b}) = arcts(tgb) = b$$

$$e^{jb} = 1 \angle b$$

$$e^{jo} = e^{jo} = 1$$

$$e^{jo} = e^{jo} = 1$$
Unit circle

Blackboard (2)(3)

Relations between K_L and SWR

KL	SWR	Bemærkning
0	1,0	correct termination
± 0,1	1,2	Nearly correct
± 1/3	2	
± 1/2	3	
± 1	∞	Short or open

Transmission problems

If Z_L is not equal to Z_O (SWR not 1), we will have the standing wave. It will lead to the following problems:

- 1. A wave reflection occurs at the end of the cable.
- 2. Not all the power can be delivered.
- 3. It may burn the cable, where the current or voltage can be doubled.
- 4. Cable impedance depends on its length.

Example in PCB design

Amplitude of Reflection coefficient K_L is

$$\frac{VSWR - 1}{VSWR + 1}$$

Amplitude of K_L in power is $-20 \log \frac{VSWR - 1}{VSWR + 1}$

-10 dB Reflection coefficient corresponds to VSWR 2, which -6 dB reflection coefficient corresponds to VSWR 3.

Example in PCB design (power divider)

Network analyzer

Figure 6. (a) The photo; (b) measured and simulated S_{11} , S_{22} , S_{33} ; (c) measured and simulated S_{12} , S_{13} , S_{23} ; (d) measured and simulated phase and amplitude imbalance of the fabricated prototype at 1 GHz.

- 1. Identify the load impedance Z_L . Calculate K_L with polar form. We also need to know the frequency and propagation speed as well as the incident voltage.
- 2. Determine V_{MAX} and V_{MIN} and draw the diagram. Calculate the wavelength and apply it as the distance between two minima or two maxima.
- 3. Make a pointer chart and decide whether minimum or maximum comes first. There is 360 $^{\circ}$ all the way around and this corresponds to half wavelength. The pointer turns clockwise as we drive towards the generator/source. Remember to apply -K₁ if it is the current.
- 4. Calculate the distance from the load to the first minimum or first maximum.

Reverse Standing Wave Curve

Blackboard (4)

Another example for using standing wave curve to determine \mathbf{Z}_{L}

Reverse Standing Wave Curve

- 1. Find the distance between maxima or between minima. They correspond to half a wavelength. Find the distance between the load and first max or min. It is used when determining the angle of K_L .
- 2. Find SWR as the ratio between V_{MAX} and V_{MIN} . It is converted to amplitude of K_L . Same method if it is the current that is involved.
- 3. Using the distance between max or min to find the wavelength. And then together with the propagation speed, it can be converted to frequency.
- 4. The distance between load and first min or max is converted to wavelength, after which the angle to KL is determined using a pointer diagram. Remember to reverse the pointer for K_L if it is the current.
- 5. Now both angle and amplitude of K_L are known, and from this \mathbf{Z}_L can now be determined. A component realization can be made either as a series connection or as a parallel connection of a resistor and a capacitor or inductor.