Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.5.1

по курсу общей физики на тему: «Изучение плазмы газового раязряда в неоне»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет изучена вольт-амперная характеристика тлеющего заряда, а также изучены свойства плазмы методом зондовых характеристик.

2 Теоретические сведения

При нагревании газа молекулы распадаются на атомы, а затем атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц.

Степень ионизации – отношение числа ионизованных атомов к их полному числу. При высокой степени ионизации газ начинает обладать высокой электропроводностью и, в отличие от нейтральных газов, взаимодействует с электрическими и магнитными полями. Кроме того, заряженные частицы в таком газе стремятся распределиться в пространстве таким образом, чтобы установилась локальная квазинейтральность, то есть равенство концентрация положительных и отрицательных частиц, нарушаемое тепловыми флуктуациями только в микроскопических масштабах. Такое состояние ионизованного газа называется плазмой.

Основные параметры, характеризующие плазму: плотности составляющих ее частиц – электронов – n_e , ионов – n_i и нейтральных частиц – n_0 , их температуры – соответственно T_e, T_i, T_0 .

Оценим размер области, внутри которой могут существовать заметные электрические поля. Рассмотрим пространство вокруг иона, имеющего положительные заряд и поэтому притягивающего электроны, поле которых противоположно по знаку полю иона. Ион «экранируется» электронами, поля убывает сильнее чем $1/r^2$. Тепловое движение мешает полной «экранировки» иона.

Запишем выражение для div E, используя потенциал φ и оператор Лапласа Δ в сферической системе координат.

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho\tag{1}$$

Распределение электронов, а значит и их пространственного заряда, подчиняется формуле Больцмана:

$$\rho_e = -ne \cdot e^{e\varphi/kT_e} \tag{2}$$

Будем считать ионы бесконечно тяжелыми, то есть неподвижными $(M \gg m_e)$, что как показывают точные расчеты, не меняет ответа по порядку величины. То есть $\rho_i = const$ и равно своему значению в области $\varphi = 0$, где он равен и противоположен по знаку пространственному заряду электронов

$$\rho_i = ne \tag{3}$$

Подставим (2) и (3) в (1):

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi ne\left[1 - e^{e\varphi/kT_e}\right] \tag{4}$$

Рассмотрим случай, когда

$$\frac{e\varphi}{kT_e}\ll 1$$

Разложим экспоненту в ряд, и получаем линейное уравнение

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = \frac{1}{r_D^2}\varphi,\tag{5}$$

где введено обозначение

$$r_D = \sqrt{\frac{kT_e}{4\pi ne^2}} \tag{6}$$

Решение уравнение (5) примет вид:

$$\varphi = \frac{Ze}{r}e^{-r/r_D} \tag{7}$$

 r_D – дебаевский радиус экранирования (радиус Дебая, дебаевская длина)

Введем более строгое определение плазмы. Плазмой называется ионизованный газ, дебаевский радиус которого r_D существенно меньше характерного размера l объема, занимаемого этим газом, то есть

$$\sqrt{\frac{kT_e}{4\pi ne^2}} \ll l.$$

Это означает, что энергия взаимодействия двух незаряженных частиц в плазме существенно меньше их тепловой энергии, то есть что плазма является газом, причем идеальным.

Число частиц N_D в дебаевской сфере можно оценить с помощью формулы (6), подставляя в нее вместо истинного среднее число частиц

$$N_D \approx n \frac{4}{3} \pi r_D^3 \approx \frac{(kT_e)^{3/2}}{n^{1/2} e^3}$$
 (8)

Другой важнейшей характеристикой плазмы является плазменная или ленгмюровская частота, выражение для которой и её смысл можно получить из следующих соображений. Выделим в плазме объём в виде параллелепипеда, изображённого на рис. 1. Сместим все электроны на расстояние x относительно ионов (ионы занимают объём, изображённый сплошными, а электроны — пунктирными линиями). Пусть плотность электронов (и ионов) равна n; ионы для простоты будем считать однозарядными. Легко видеть, что в результате такого смещения на гранях параллелепипеда возникнут поверхностные заряды:

Рис. 1

$$\sigma = nex \tag{9}$$

Вследствие этого появится электрическое поле:

$$E = 4\pi\sigma = 4\pi nex \tag{10}$$

Это поле действует на электроны, придавая им ускорение, равное

$$\frac{d^2x}{dt^2} = \frac{eE}{m} = -\frac{4\pi ne^2}{m}x\tag{11}$$

Уравнение (11) определяет плазменную (ленгмюровскую) частоту, коллективных колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}} = 5,65 \cdot 10^4 \sqrt{n(\text{cm}^{-3})}$$
 (12)

Плазменная частота задает естественный масштаб времени для плазмы: это — время отклика на флуктуацию плотности заряда в плазме. Учитывая это, дебаевский радиус экранирования можно интерпретировать следующим образом. Пусть какая-то группа электронов получила направленную скорость, равную тепловой: $v = \sqrt{kT_e/m_e}$. При этом, как легко можно убедиться, обращаясь к формулам (12), (6), за время, равное ω_p^{-1} , эта группа электронов пройдёт в направлении полученной скорости до полной остановки расстояние, как раз равное дебаевской длине, то есть

$$r_D = \frac{\upsilon}{\omega_p} \tag{13}$$

Таким образом, дебаевская длина — это амплитуда ленгмюровских колебаний плазмы, возбуждаемых тепловыми флуктуациями. Эта амплитуда и является масштабом нарушения квазинейтральности плазмы в отсутствие внешнего поля.

Как следует из (12), плазменная частота определяется только плотностью электронов (и универсальными постоянными). Можно строго доказать, что она не зависит от величины и формы рассматриваемого объёма и является, таким образом, локальной характеристикой плазмы. Плазменная частота является не единственной — но важнейшей — характерной частотой плазмы. Она определяет коллективное движение электронов относительно ионов.

В заключение этого пункта сделаем следующее замечание. Формула для дебаевского радиуса (6) не учитывает движение ионов. Если считать, что ионы тоже распределяются в поле пробного заряда по Больцману с температурой T_i , то в приближении $e\varphi \leq kT_i$, вместо формулы (6) получим

$$r_D = \sqrt{\frac{k}{4\pi n e^2} \frac{T_e T_i}{T_e + T_i}},\tag{14}$$

то есть вместо T_e в формулу для дебаевского радиуса войдёт приведённая температура. В частности, при $T_e = T_i$ в знаменателе под корнем появляется двойка, а при $T_e \gg T_i$, что имеет место для плазмы газового разряда (тлеющего), в формуле (6) вместо T_e будет стоять T_i .

ВАХ газового промежутка

Экспериментально ВАХ газового проводника — например, промежутка между двумя электродами, помещёнными в стеклянную трубку, заполненную газом, — снимают с помощью схемы, представленной на рис. 2. Цепь содержит источник постоянного напряжения $\mathscr E$ величину которого можно изменять в пределах примерно от 100 В до нескольких кВ, и переменное сопротивление R, называемое балластным, или нагрузочным.

Рис. 2. Схема для снятия ВАХ газового промежутка

Это сопротивление необходимо для ограничения тока в цепи и стабилизации разряда на участках с отрицательным дифференциальным сопротивлением. Дело в том, что на этих участках разряд неустойчив и ток имеет тенденцию неограниченно нарастать. Можно показать, что для устойчивости разряда сумма отрицательного и положительного сопротивлений такой цепи должна быть положительной, то есть в точке пересечения с ВАХ нагрузочная прямая должна иметь больший наклон, чем участок кривой ВАХ (рис. 5.7).

Вид ВАХ для конкретного газового проводника зависит от ряда условий, прежде всего от давления газа. На рис. 3 представлена полученная экспериментально с помощью схемы рис. 2 ВАХ разряда в неоне при давлении 1,3 мбар между плоскими медными электродами площади 10 см², расположенными на расстоянии 50 см, а также типичная нагрузочная прямая. Поскольку здесь нет специального внешнего ионизатора (внешняя ионизация создаётся только естественным радиоактивным излучением и космическими лучами), начальный участок характеристики несамостоятельного разряда (участок ОА на рис. 5.3) соответствует столь малым токам, что на графике его не удаётся изобразить. Характеристика начинается сразу с участка АБ, соответствующего току насыщения (участок АБ на рис. 5.3) и режиму газового усиления. В точке В происходит пробой и начинается самостоятельный разряд, который на всём горизонтальном участке характеристики ВГ соответствует тёмному таунсендовскому разряду.

Рис. 3. ВАХ разряда в неоне при давлении 1,3 мбар и нагрузочная прямая

Участок характеристики ГДЕЖ соответствует тлеющему разряду, причём его падающая часть ГД называется поднормальным тлеющим разрядом, горизонтальная часть ДЕ — нормальным тлеющим разрядом и остальная часть ЕЖ — аномальным тлеющим разрядом. Далее идёт падающий участок ЖЗ, который можно получить при маленьких сопротивлениях и сильноточных источниках напряжения. Он соответствует переходу к дуговому разряду. Заметим, что при больших

давлениях газа (атмосферном и больше) после пробоя сразу устанавливается дуговой разряд.

На рис. 4 представлена качественная картина тлеющего разряда в длинной стеклянной трубке, а также приведены зависимости основных величин, характеризующих разряд, от продольной координаты. Это интенсивность свечения, потенциал и напряжённость электрического поля, электронный и ионный токи, электронная и ионная плотности и полная плотность объёмного заряда. Видно, что разряд состоит из ряда чередующихся светлых и тёмных поперечных полос. Поскольку все процессы в разряде связаны со столкновениями электронов с атомами газа, расстояния от катода до этих полос определяются числом укладывающихся на них длин пробега электронов. Поэтому характерные размеры полос увеличиваются с уменьшением давления. Непосредственно к катоду прилегает узкое астоново пространство, затем идёт слой катодного свечения, а затем — тёмное катодное пространство. Далее следует область отрицательного свечения, переходящая в тёмное фарадеево пространство. За ним начинается светящийся положительный столб, заканчивающийся у анода тёмным анодным пространством, переходящим на аноде в узкий слой анодного свечения.

Как правило, самой яркой бывает область отрицательного свечения, имеющего для воздуха голубоватый цвет, за что разряд и получил своё название — тлеющий.

Рис. 4. Структура тлеющего разряда и распределение по длине основных характеризующих его величин

Рассмотрим явления, происходящие при внесении в плазму уединенного проводника – зонда. Пусть электрический потенциал зонда вначале равен потенциалу той точки плазмы, в которую будет помещен зонд. Поступающие на зонд токи электронов и ионов в этом случае равны

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS \tag{15}$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS \tag{16}$$

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов (которые в силу квазинейтральности плазмы равны или почти равны друг другу). Множитель $1/4n\langle v \rangle$, согласно кинетической теории, определяет число ударов в секунду о единицу поверхности.

Оценим величину электронного и ионного тока насыщения. Электронный ток

насыщения определяется формулой (15) и формулой из МКТ

$$\langle v_e \rangle = \sqrt{\frac{8kT_e}{\pi m_e}} \tag{17}$$

В итоге получаем

$$I_{eH} = \frac{1}{4} neS \langle v_e \rangle \approx \frac{1}{4} neS \sqrt{\frac{8kT_e}{\pi m_e}}$$
 (18)

Ионный ток насыщения по аналогичной формуле оценивать не следует, поскольку скорости ионов в окрестности зонда определяются не температурой плазмы, а разностью потенциалов между плазмой и зондом:

$$v_i \approx \sqrt{\frac{2eU}{m_i}} \tag{19}$$

Опыт показывает, что вместо формулы (5.29) для вычисления этого тока лучше применять полуэмпирическую формулу, предложенную Бомом:

$$I_{iH} = 0,4neS\sqrt{\frac{2kT_e}{m_i}} \tag{20}$$

Двойной зонд

Двойным зондом называется система, состоящая из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга. Между зондами создаётся разность потенциалов, которая по величине много меньше плавающего потенциала U_f . При этом оба зонда имеют относительно плазмы близкий к плавающему отрицательный потенциал, т. е. находятся на ионной ветви вольт-амперной характеристики.

При отсутствии разности потенциалов ток между зондами равен нулю. Рассчитаем величину тока, проходящего через двойной зонд вблизи точки I=0. При небольших разностях потенциалов ионные токи на оба зонда равны ионному току насыщения и компенсируют друг друга. Величина результирующего тока целиком связана с различием в электронных токах. Пусть потенциал на первом зонде равен

$$U_1 = -U_f + \Delta U_1 \tag{21}$$

а на втором

$$U_2 = -U_f + \Delta U_2 \tag{22}$$

По предположения ΔU_1 и ΔU_2 меньше U_f . Напряжение U между зондами равно

$$U = U_2 - U_1 = \Delta U_2 - \Delta U_1 \tag{23}$$

Найдем ток, приходящий на первый электрод:

$$\begin{split} I_1 &= I_{i\text{H}} + I_{e1} = I_{i\text{H}} - \frac{1}{4} neS \langle \upsilon_e \rangle \cdot \exp\left[\frac{e(-U_f + \Delta U_1)}{kT_e}\right] = \\ &= I_{i\text{H}} - \left\{\frac{1}{4} neS \langle \upsilon_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right)\right\} \exp\left(\frac{e\Delta U_1}{kT_e}\right) \end{split}$$

Заметим теперь, что при $\Delta U_1=0$ (при $U_1=U_f$) электронный и ионный ток компенсируют друг друга. Это означает, что заключенный в фигурные скобки множитель равен I_{in} . Имеем поэтому

$$I_1 = I_{iH} \left[1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right) \right] \tag{24}$$

Аналогично

$$I_2 = I_{iH} \left[1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right] \tag{25}$$

Заметим также, что зонды 1 и 2 соединены последовательно и через них проходит один и тот же ток I, но в разном направлении. Положим

$$I_1 = -I_2 = I (26)$$

Выразим ΔU_1 и ΔU_2 из (24) и (25) и заменим входящие в эти выражения I_1 и I_2 через I с помощью (26):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right) \tag{27}$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iH}} \right) \tag{28}$$

Вычитая второе равенство из первого, найдем

$$U = \Delta U_1 - \Delta U_2 = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}$$
 (29)

Разрешая это равенство относительно I, найдем

$$I = I_{iH} th \frac{eU}{2kT_e}$$
(30)

Эта формула может служить для определения температуры электронов по форме вольт-амперной характеристики двойного зонда.

Наблюдаемая на опыте зависимость тока от напряжения изображена на рис. 4. Эта кривая отличается от (30) наклоном асимптот в области больших |U|. Наклон асимптот в первом приближении является линейным. Поэтому вместо (30) лучше писать

$$I = I_{iH} th \frac{eU}{2kT_e} + AU, (31)$$

где A — некоторая константа, величина которой может быть найдена из опыта.

Рис. 5. Вольт-амперная характеристика двойного зонда

При обработке графика на рис. 5 сначала находится $I_{i\text{н}}$ из пересечении асимптот с осью U=0. Затем, по наклону асимптот, находится величина A. После этого из (31) нетрудно определить T_e . Дифференцируя эту формулу по U в точке U=0 и принимая во внимание, что при малых аргументах th $\alpha \approx \alpha$, а при малых наклонах кривой насыщения $A \to 0$, найдём

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}} \tag{32}$$

8 Оборудование

3 Оборудование

В работе используется: стеклянная гзоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Экспериментальная установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 6. Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор R_6 (\sim 450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5-ти кВ.

Рис. 6. Схема установки для исследования газового разряда

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — цифровым вольтметром V_1 (мультиметром GDM), подключённым к трубке через высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0,2 мм и имеют длину l=5,2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с

помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 (GDM). Для измерения зондового тока используется мультиметр A_2 (GDM). Анод-III в нашей работе не используется.

4 Результаты измерений и обработка результатов

Установим переключатель Π_1 в положение «Анод-I». Плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания разряда (показания вольтметра перед зажиганием)

$$V_3 = (216 \pm 3) \text{ B}$$

С помощью вольтметра V_1 и амперметра A_1 снимем вольт-амперную характеристику разряда $U_1 = f(I_p)$

I_1 , мА	0,5	0,8	1,1	1,3	1,5	1,7	1,9	2,0	2,2	2,4
U_1 , B	34,49	33,33	32,44	31,87	30,18	27,65	25,38	24,75	23,50	22,34
I_1 , мА	2,6	2,9	3,2	3,5	3,7	4,0	4,2	4,4	4,7	5,0
U_1 , B	21,69	20,93	20,45	20,00	19,81	19,61	19,52	19,44	19,31	19,18

Таблица 1. Вольт-амперная характеристика разряда

Построим ВАХ разряда

Рис. 7. Вольт-амперная характеристика разряда $U_1 = f(I_p)$

По наклону кривой определим максимальное дифференциальное сопротивление разряда R_{max} .

$$R_{max} = -(10, 6 \pm 0, 5) \text{ кОм}$$

Снимем вольт-амперную характеристику двойного зонда $I_2=f(U_2)$ при фиксированном токе I_p

$I_p = 5 \text{ MA}$		$I_p = 3 \text{ MA}$		$I_p = 1,5 \text{ MA}$	
I_2 , MKA	U_2 , B	I_2 , MKA	U_2 , B	I_2 , MKA	U_2 , B
109,52	25,06	60,94	25,08	31,28	25,09
106,47	22,03	58,78	22,05	29,97	22,09
103,42	19,07	56,62	19,01	28,69	19,07
99,86	16,01	54,46	16,01	27,40	16,10
94,58	13,04	51,89	13,02	25,97	13,00
86,20	10,05	47,93	10,02	24,02	10,02
78,04	8,03	43,67	8,05	21,89	8,03
66,98	6,03	37,21	6,02	18,66	6,01
52,46	4,01	28,35	4,02	14,29	4,08
35,01	2,00	16,84	2,00	8,15	2,02
21,34	0,60	6,94	0,52	2,89	0,50
-112,89	-25,07	-61,37	-25,08	-30,51	-25,09
-109,71	-22,06	-59,59	-22,03	-29,72	-22,08
-106,63	-19,09	-57,90	-19,02	-28,95	-19,05
-102,97	-16,05	-56,18	-16,06	-28,18	-16,07
-97,32	-13,03	-53,89	-13,06	-27,24	-13,03
-88,25	-10,09	-49,61	-10,06	-25,28	-10,02
-78,31	-8,01	-44,31	-8,01	-22,82	-8,09
-65,15	-6,01	-36,86	-6,05	-18,87	-6,04
-49,12	-4,09	-26,54	-4,02	-13,46	-4,00
-29,73	-2,06	-13,97	-2,02	-6,96	-2,03
-13,72	-0,53	-3,46	-0,51	-1,25	-0,47

Таблица 2. Вольт-амперная характеристика двойного зонда $I_2 = f(U_2)$ при фиксированном I_p

Определим по графику ток насыщения I_{ih} и температуру электронов при определенном токе разряда I_p . По формуле Бома (20) вычислим концентрацию электронов n_e , полагая, что она равна концентрации ионов n_i .

Рис. 8. Вольт-амперная характеристика двойного зонда $I_2=f(U_2)$ при фиксированном I_p

I_p , мА	$I_{i{\scriptscriptstyle { m H}}},$ мк ${ m A}$	kT_e , эВ	$n_e, 10^{16} \text{M}^{-3}$
5	$79,7 \pm 1,7$	$2, 3 \pm 0, 4$	$8,39 \pm 0,9$
3	$40,5 \pm 0,9$	$2,76 \pm 0,14$	$3,92 \pm 0,15$
1,5	$19,6 \pm 0,3$	$2,91 \pm 0,08$	$1,85 \pm 0,06$

Таблица 3. Ток насыщения $I_{i\mathrm{H}}$, энергия (температура) электронов kT_e и их концентрация n_e при заданном токе разряда I_p

Построим графики $T_e = f(I_p), n_e = f(I_p)$

Рис. 9. График зависимости энергии электронов I_e от тока разряда I_p

Рис. 10. График зависимости концентрации электронов n_e от тока разряда I_p

Рассчитаем плазменную частоту колебаний электронов по формуле (12), также вычислим дебаевский радиус r_D , используя формулу (14) и условие $T_e \ll T_i$, $T_i \approx 300$ К. Убедимся, что среднее число ионов в дебаевской сфере $N_D \gg 1$ по формуле (8). Оценим степень ионизации плазмы, если давление в трубке $P \approx 1$ мбар, а температура равна комнатной

$$\alpha = \frac{n_i}{n}$$

где n — общее число частиц в единице объема (P = nkT). При нормальных условиях $n = N_{\pi}$ — число Лошмидта.

I_p , мА	$\omega_p,~10^{10} \mathrm{pag/c}$	$r_D, 10^{-3}$ cm	$N_D, 10^3$	$\alpha, 10^{-4}$
5	$1,62 \pm 0,13$	$3,9 \pm 0,6$	21 ± 6	$3,2 \pm 0,6$
3	$1,11 \pm 0,03$	$6, 2 \pm 0, 3$	40 ± 3	$1,74 \pm 0,11$
1,5	$0,76 \pm 0,02$	$9,3 \pm 0,3$	62 ± 4	$0,86 \pm 0,04$

Таблица 4. Ленгмюровская частота ω_p , дебаевский радиус r_D , среднее число ионов в дебаевской сфере N_D , степень ионизации α при заданном токе разряда I_p

5 Обсуждение результатов и выводы

Результаты расчетов сведем в таблицу:

I_p , MA	$I_{i{\scriptscriptstyle { m H}}},$ мк ${ m A}$	kT_e , эВ	$n_e, 10^{16} \text{M}^{-3}$	$\omega_p,~10^{10} \mathrm{pag/c}$
$5,0 \pm 0,1$	$79, 7 \pm 1, 7$	$2,3 \pm 0,4$	$8,39 \pm 0,9$	$1,62 \pm 0,13$
$3,0 \pm 0,1$	$40,5 \pm 0,9$	$2,76 \pm 0,14$	$3,92 \pm 0,15$	$1,11 \pm 0,03$
$1,5 \pm 0,1$	$19,6 \pm 0,3$	$2,91 \pm 0,08$	$1,85 \pm 0,06$	$0,76 \pm 0,02$
I_p , мА	$r_D, 10^{-3}$ cm	$N_D, 10^3$	$\alpha, 10^{-4}$	
$5,0 \pm 0,1$	$3,9 \pm 0,6$	21 ± 6	$3,2 \pm 0,6$	
$3,0 \pm 0,1$	$6, 2 \pm 0, 3$	40 ± 3	$1,74 \pm 0,11$	
$1,5 \pm 0,1$	$9, 3 \pm 0, 3$	62 ± 4	$0,86 \pm 0,04$	

Таблица 5. Ток насыщения $I_{i\mathrm{H}}$, энергия (температура) электронов kT_e , концентрация n_e , ленгмюровская частота ω_p , дебаевский радиус r_D , среднее число ионов в дебаевской сфере N_D , степень ионизации α при заданном токе разряда I_p