CS4487 - Machine Learning

Lecture 9a - Neural Networks, Deep Learning

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- History
- Perceptron
- Multi-layer perceptron (MLP)
- Convolutional neural network (CNN)
- Autoencoder (AE)

Original idea

- Perceptron
 - Warren McCulloch and Walter Pitts (1943), Rosenblatt (1957)
 - Simulate a neuron in the brain
 - 1) take binary inputs (input from nearby neurons)
 - 2) multiply by weights (synapses, dendrites)
 - 3) sum and threshold to get binary output (output axon)

Train weights from data.

Multiple outputs handled by using multiple perceptrons

- Problem:
 - linear classifier, can't solve harder problems

Multi-layer Perceptron

- Add hidden layers between input and output neurons
 - each layer extracts some features from the previous layers
 - can represent complex non-linear functions
 - train weights using backpropagation algorithm. (1970-80s)

(now called a neural network)

Problem:

- difficult to train.
- sensitive to initialization.
- computationally expensive (at the time).

Decline in the 1990s

- Because of those problems, NN became less popular in the 1990s
 - Support vector machines (SVM) had good accuracy
 - o easy to use only one global optimum.
 - learning is not sensitive to initialization.
 - theory about performance guarantees.
 - Not a lot of data, so kernel methods were still okay.

Deep learning

- There was a resurgence in NN in the 2000s, due to a number of factors:
 - improvements in network architecture
 - developed nodes that are easier to train
 - better training algorithms
 - better ways to prevent overfitting
 - better initialization methods
 - faster computers
 - massively parallel GPUs
 - more labeled data
 - from Internet
 - crowd-sourcing for labeling data (Amazon Turk)
- We can train NN with more and more layers --> Deep Learning The Deep Learning "Computer Vision Recipe"

Big Data: ImageNet

Deep Convolutional Neural Network

Backprop on GPU

Learned Weights

Outline

- History
- Perceptron
- Multi-layer perceptron (MLP)
- Convolutional neural network (CNN)
- Autoencoder (AE)

Perceptron

- Model a single neuron
 - input $\mathbf{x} \in \mathbb{R}^d$ is a d-dim vector
 - apply a weight to the inputs
 - sum and threshold to get the output

- Formally,
 - $y = f(\sum_{j=0}^{d} w_j x_j) = f(\mathbf{w}^T \mathbf{x})$
 - w is the weight vector.
 - f(a) is the activation function

Perceptron training criteria

- Train the perceptron on data $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- · Only look at the points that are misclassified.
 - Loss is based on how badly misclassified
 - $\mathbf{E}(\mathbf{w}) = \sum_{i=1}^{N} \begin{cases} -y_i \mathbf{w}^T \mathbf{x}_i, & \mathbf{x}_i \text{ is misclassified} \\ 0, & \text{otherwise} \end{cases}$
- Minimize the loss: w* = argmin_w E(w)

Training algorithm

- Computers were slow back then...only look at one data point at a time and use gradient descent.
- Perceptron Algorithm
 - For each point x_i ,
 - \circ If the point \mathbf{x}_i is misclassified,
 - Update weights: $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i$
 - Repeat until no more points are misclassified
- Notes:
 - η is the learning rate for gradient descent
 - The effect of the update step is to rotate w towards the misclassified point x_i .
 - This is called Stochastic Gradient Descent.
 - It is useful because we only need to look at a little bit of data at a time.

Example

- Iteration 1
 - w rotates towards the misclassified point (bold circle)

• Iteration 2

• Iteration 3

• Iteration 4

No more errors

• Final classifier

In [10]: plt.figure(figsize=(4,4))
 plot_perceptron((w,0),X,Y,axbox)

Perceptron Algorithm

- Fails to converge if data is not linearly separable
- Rosenblatt proved that the algorithm will converge if the data is linearly separable.
 - the number of iterations is inversely proportional to the separation (margin) between classes.
 - This was one of the first machine learning results!
- Different initializations can yield different weights.

Perceptron Loss Function

- Define $z_i = y_i \mathbf{w}^T \mathbf{x}_i$,
- The loss function is $L(z_i) = \max(0, -z_i)$.

In [14]: lossfig

Out[14]:

loss functions

Outline

- History
- Perceptron
- Multi-layer perceptron (MLP)
- Convolutional neural network (CNN)
- Autoencoder (AE)

Multi-layer Perceptron

- Add hidden layers between the inputs and outputs
 - each hidden node is a Perceptron (with its own set of weights)
 - its inputs are the outputs from previous layer
 - extracts a feature pattern from the previous layer

can model more complex functions

- Formally, for one layer:
 - $h = f(\mathbf{W}^T \mathbf{x})$
 - Weight matrix W one column for each node
 - Input x from previous layer
 - Output h to next layer
 - \circ f(a) is the activation function applied to each dimension to get output

Activation functions

- There are different types of activation functions:
 - Sigmoid output [0,1]
 - *Tanh* output [-1,1]
 - Rectifier Linear Unit (ReLU) output [0,∞]

Out[16]:

- Activation functions specifically for output nodes:
 - Linear output for regression
 - Softmax output for classification (same as multi-class logistic regression)
- Each layer can use a different activation function.

Which activation function is best?

- In the early days, only the Sigmoid and Tanh activation functions were used.
 - these were notoriously hard to train with.
 - "vanishing gradient" problem
- Recently, ReLU has become very popular.
 - easier to train with no "vanishing gradient"
 - faster don't need to calculate exponential
 - sparse representation most nodes will output zero.

Training an MLP

- For classification, we use the cross-entropy loss
 - $\bullet \quad E = -\sum_{j=1}^{K} y_j \log y_j^*$
 - y_i is 1 for the true class, and 0 otherwise
 - y_i is the softmax output for the j-th class
- Use gradient descent as before:
 - $w_{ij} \leftarrow w_{ij} \eta \frac{dE}{dw_{ii}}$
 - ∘ layer *i*, node *j*
 - η is the learning rate
 - o controls convergence rate
 - too small --> converges very slowly
 - too large --> possibly doesn't converge

Backpropagation (backward propagation)

- Do a forward pass to calculate the prediction
- Do a backward pass to update weights that were responsible for an error Training

Gradient descent with the chain-rule

- Suppose we have a 2-layer network
 - *E* is the cost function
 - g₁, g₂ are the output functions of the two layers
 - $\circ g_j(\mathbf{x}) = f(\mathbf{W}_j^T \mathbf{x})$
 - W₁, W₂ are the weight matrices
- Prediction for input **x**: $y = g_2(g_1(\mathbf{x}))$
- Cost for input x: $E(\mathbf{x}) = E(g_2(g_1(\mathbf{x})))$

- Apply the chain rule to get the gradients of weights in layer

 - $\frac{dE(\mathbf{x})}{d\mathbf{W}_2} = \frac{dE}{dg_2} \frac{dg_2}{d\mathbf{W}_2}$ $\frac{dE(\mathbf{x})}{d\mathbf{W}_1} = \frac{dE}{dg_2} \frac{dg_2}{dg_1} \frac{dg_1}{d\mathbf{W}_1}$
- Defines a set of recursive relationships
 - 1) calculate the output of each node from first to last layer
 - 2) calculate the gradient of each node from last to first layer
- NOTE: the gradients multiply in each layer!
 - if two gradients are small (<1), their product will be even smaller. This is the "vanishing gradient" problem.

Stochastic Gradient Descent (SGD)

- The datasets needed to train NN are typically very large
- Use SGD so that only a small portion of the dataset is needed at a time
 - Each small portion is called a *mini-batch*
 - Use a *momentum* term, which averages the current gradient with those from previous mini-batches.
 - One complete pass through the data is called an epoch.

Other Tricks

- Normalize the inputs to [-1,1] or [0,1]
 - improves numerical stability.
- Separate the training set into training and validation
 - use the training set to run backpropagation
 - test the NN on the validation set for diagnostics
 - check for convergence adjust learning rate if necessary
 - check for diverging loss adjust learning rate
 - stopping criteria stop when no change in the validation error.
 - decay learning rate after each epoch.

Load NN software

- We will use keras
 - compatible with scikit-learn
 - keras is an easy-to-use front-end for other (more complicated) NN backends.
 - using Tensorflow backend (could also use Theano)

```
In [18]: | # use TensorFlow backend
         %env KERAS BACKEND=tensorflow
         import keras
         import tensorflow
         from keras.models import Sequential
         from keras.layers import Dense, Activation
         env: KERAS_BACKEND=tensorflow
         Using TensorFlow backend.
         /anaconda3/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.
         dtype size changed, may indicate binary incompatibility. Expected 96, got 88
           return f(*args, **kwds)
In [19]: keras.__version__
Out[19]: '2.2.2'
In [20]:
         tensorflow.__version__
Out[20]: '1.9.0'
```

- train 1 NN with just one output layer
 - this is the same as logistic regression

```
In [40]: | # compile the network
         nn.compile(loss=keras.losses.categorical_crossentropy, # classification loss
              optimizer=keras.optimizers.SGD( # use SGD for optimization
                                   # learning rate
                        lr=0.01,
                        momentum=0.9,  # momentum for averaging over batches
                        nesterov=True # use Nestorov momentum
                     ))
         # fit the network
         history = nn.fit(X, Yb,
                                                # the input/output data
                                                # number of iterations
                          epochs=100,
                          batch_size=32,
                                                # batch size
                          validation_split=0.1, # ratio of data for validation
                          verbose=False
                                                # set to True to see each iteration
                         )
```

training and validation loss have converged

- Add one 1 hidden layer with 2 ReLU nodes
 - can carve out part of the red class.

```
In [43]:
         # initialize random seed
         random.seed(4487); tensorflow.set random seed(4487)
         # build the network
         nn = Sequential()
         nn.add(Dense(units=2,
                                            # 2 nodes in the hidden layer
                       input_dim=2,
                       activation='relu'))
         nn.add(Dense(units=2,
                                            # 2 output nodes (one for each class)
                       activation='softmax'))
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical_crossentropy,
                     optimizer=keras.optimizers.SGD(1r=0.3, momentum=0.9, nesterov=True))
         history = nn.fit(X, Yb, epochs=100, batch size=32, validation split=0.1, verbose
         =False)
```

In [45]: nnfig

Out[45]:

- Let's try more nodes
 - 1 hidden layer with 20 hidden nodes
 - with enough nodes, we can get a perfect classifier.

Overfitting

- Continuous training will sometimes lead to overfitting
 - the training loss decreases, but the validation loss increases

Early stopping

- Training can stopped when the validation loss is stable for a number of iterations
 - stable means change below a threshold
 - this is to prevent overfitting the training data.
 - we can limit the number of iterations.

```
In [52]:
         # initialize random seed
         random.seed(4487); tensorflow.set random seed(4487)
         # build the network
         nn = Sequential()
         nn.add(Dense(units=2, input_dim=2, activation='relu'))
         nn.add(Dense(units=2, activation='softmax'))
         # setup early stopping callback function
         earlystop = keras.callbacks.EarlyStopping(
             monitor='val loss',
                                    # look at the validation loss
             min_delta=0.0001,
                                     # threshold to consider as no change
             patience=5,
                                     # stop if 5 epochs with no change
             verbose=1, mode='auto'
         callbacks list = [earlystop]
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical_crossentropy,
                    optimizer=keras.optimizers.SGD(lr=0.5, momentum=0.9, nesterov=True))
         history = nn.fit(X, Yb, epochs=100, batch_size=32, validation_split=0.1,
                          verbose=False,
                          callbacks=callbacks list) # setup the callback list
```

Epoch 00025: early stopping

In [54]: nnfig

Out[54]:

Universal Approximation Theorem

- Cybenko (1989), Hornik (1991)
 - A multi-layer perceptron with a single hidden layer and a finite number of nodes can approximate any continuous function.
 - The number of nodes needed might be very large.
 - Doesn't say anything about how difficult it is to train it.
- Deep learning corrolary
 - A deep network can learn the same function using less nodes.
 - Given the same number of nodes, a deep network can learn more complex functions.
 - Doesn't say anything about how difficult it is to train it.

Example

- Network with 1 hidden layer
 - input (2D) -> 40 hidden nodes -> output (2D)

In [58]: nnfig

Out[58]:

In [59]: nn.summary()

Layer (type)	Output Shape	Param #		
dense_13 (Dense)	(None, 40)	120		
dense_14 (Dense)	(None, 2)	82		
Total params: 202 Trainable params: 202 Non-trainable params: 0				

3 hidden layers:

■ input (2D) -> 8 nodes -> 5 nodes -> 3 nodes -> output (2D)

In [68]: nnfig

Out[68]:

In [69]: | nn.summary()

less parameters, similar classifier.

Layer (ty	/pe)	Output	Shape	Param #
dense_23	(Dense)	(None,	8)	24
dense_24	(Dense)	(None,	5)	45
dense_25	(Dense)	(None,	3)	18
dense_26	(Dense)	(None,	2)	8

Total params: 95 Trainable params: 95 Non-trainable params: 0