- 1. Let's verify $(n-1)S_n^2 \sim \chi_{n-1}^2$ directly. Consider the standard normal random vector $X=(X_1,\ldots,X_n)$. Its covariance matrix is the identity matrix $\Sigma=I_n$. This means that X_i and X_j are independent and $\mathrm{Var}(X_i)=1$.
 - (a) Show that for a matrix $A \in \mathbb{R}^n$, if A is orthonormal (i.e., $A^T A = I_n$), then Y = AX (it is a linear transformed random vector) is also a standard normal vector.
 - (b) Let A be an orthonormal matrix and its first row be $(n^{-1/2},\ldots,n^{-1/2}).^1$ So $Y_1=\sqrt{n}\bar{X},Y_2,\ldots,Y_n$ is a standard normal random vector. Then by the orthonormality of A, show that $\sum_{i=2}^n Y_i^2 = \sum_{i=1}^n X_i^2 n\bar{X}^2$. Therefore, $(n-1)S^2$ is χ^2_{n-1} . (Hint: use the fact that $\sum_{i=1}^n Y_i^2 = (AX)^T AX = X^T A^T AX = \sum_{i=1}^n X_i^2$.)
- 2. (Hard) We have a rope of length 1m. We cut it n times, and each cutting point is independent Uniform[0, 1]. Out of the n + 1 pieces, what is the expected value of the length of the shortest piece?
 - (a) Suppose $X_1 < \cdots < X_n$ are the positions of the cutting points. In addition, let $X_0 = 0$ and $X_{n+1} = 1$. Then $V_i = X_i X_{i-1}$ are the length of the pieces. Explain that for c_1, \ldots, c_{n+1} and $\sum_{i=1}^{n+1} c_i < 1$, $\mathsf{P}(V_1 \ge c_1, \ldots, V_{n+1} \ge c_{n+1}) = (1 c_1 \cdots c_{n+1})^n$.
 - (b) Find $E[V_{(1)}]$.
- 3. Let $X \sim Binomial(100, 0.7)$. Approximate $30 \le X \le 40$ using normal distribution. (write in the form of $\Phi(x)$.)
- 4. Let X_1, X_2, \dots, X_n independently follows exponential(1) and $X_{(n)} = \max_{1 \leq i \leq n} X_i$. Find a sequence a_n so that $X_{(n)} a_n$ converges in distribution.

¹Why this is always possible? Think of each row of A as an orthornormal basis in \mathbb{R}^n . We fix one of them, we can always find the remaining n-1 bases in the subspace. Mathematically, we can use orthonormal decomposition to find rows of A sequentially.