differential e.g.
$$Vavg = \frac{\Delta r}{\Delta T}$$
 $\lim_{\Delta T \to 0} \frac{\Delta r}{\Delta T} = \frac{dr}{dt}$

integral

integra

bas	e quantity	SI unit	fundamental
/·	length	meter (m) om m km 10 ⁻² second (5)	[7]
2.	time	second is)	[T]
<i>3.</i>	mass	kilogram (kg)	[M]
4. t	emperature	Kalvin (K)	
5.	electric auren	1 Ampere (A)	

6. amount et substance mole (nol)

7. Imminous intensity cendela (col)
derived quantity derived dimension
$$velocity = \frac{displaiment}{time} = \frac{[L]}{[T]}$$

autheration =
$$\frac{\Delta V}{\Delta T}$$
 = $[L][T]^{-1}[T]^{-1} = [L][T]^{-2}$

$$E_{K} = \pm mv^{2} = [M][L]^{2}[T]^{-2}$$

graphical method

subtraction $\vec{-}$ " $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

O colinear vectors

(2) head-to-tail method)
(parallelogram method)

associative law $\overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C}) = (\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C}$

distributive law $a(\vec{A} + \vec{B}) = a\vec{A} + a\vec{B}$

mathematic presentation of a Vector

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$3D-vector$$

|î|=|ĵ|=|k|=|

î, ĵ, k
dimension