Алгоритмы и программные средства решения тропических линейных векторных уравнений

Дядичкин Михаил, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: профессор, д.ф.-м.н. Н.К. Кривулин Рецензент: старший преподаватель, кафедра информационно-аналитических систем, К.К. Смирнов

6 июня 2023 г.

Введение: задача планирования расписания поездов

Задача планирования расписания поездов.

- Две группы I и J конечных станций и группа K промежуточных станций пересадки.
- Можно доехать от станции $i \in I$ до станции $k \in K$ и от станции $j \in J$ до станции $k \in K$.
- Проехать от i до j без пересадки нельзя.
- Каждый поезд отправляется из k по обратному маршруту не раньше, чем на станцию k прибудут пассажиры всех других поездов, направляющихся в k.

Для решения необходимо учитывать следующие условия:

- Временные ограничения: каждый поезд должен прибывать и отправляться из каждой станции в определенное время, учитывая расписание других поездов.
- Минимизация задержек: необходимо минимизировать задержки прибытия и отправления каждого поезда на каждой станции.

Введение: формальная постановка задачи

- a_{ki} (известное) время движения поезда от станции i до станции k,
- b_{kj} (известное) время движения поезда от станции j до станции k,
- x_i (неизвестное) время отправления поезда со станции i,
- ullet y_{j} (неизвестное) время отправления поезда со станции j.

Поезда со станций группы I прибудут на станцию k из K к моменту времени $s_k = \max_i (a_{ki} + x_i)$.

Поезда со станций группы J прибудут на станцию k из K к моменту времени $t_k = \max_i (b_{ki} + y_i)$.

Для обеспечения возможности пересадки и сокращения времени ожидания прибывших на станцию k пассажиров со станций I и J необходимо минимизировать $\max_k |s_k - t_k|$.

Решение задачи сводится к поиску x_i , y_j , которые обеспечивают точное или приближенное решение системы уравнений

$$\begin{cases} \max_i(a_{1i}+x_i) &= \max_j(b_{1j}+y_j), \\ &\vdots \\ \max_i(a_{mi}+x_i) &= \max_j(b_{mj}+y_j), \end{cases}$$

где m — число станций пересадки.

Тропическая математика

Пусть X — множество с операциями сложения \oplus и умножения \otimes . $\langle X, \oplus, \otimes \rangle$ является коммутативным полукольцом с нулем и единицей, в котором:

- сложение идемпотентно $(x \oplus x = x)$,
- каждый ненулевой элемент имеет обратный по умножению.

Обозначим нулевой и единичный элементы полукольца символами 0 и 1. На множестве определено отношение \leq частичного порядка.

Выполняется свойство монотонности сложения и умножения.

Положим $X_+ = X \setminus \{0\}$. Тогда для любого $x \in X_+$ и целого p > 0:

$$\mathbb{O}^p = \mathbb{O}, \quad x^0 = \mathbb{1}, \quad x^p = x^{p-1} \otimes x = x \otimes x^{p-1}, \quad x^{-p} = (x^{-1})^p.$$

Операция возведения в целую степень может быть естественным образом расширена на полукольцо для случая степени с рациональным показателем. В данной работе используется полукольцо

$$\mathbb{R}_{\mathsf{max},+} = \left\{ \mathbb{R} \cup \left\{ -\infty \right\}, \mathsf{max}, + \right\}.$$

Определения

Определение (Сопряженно транспонированный вектор)

Для вектора $x=(x_1,\ldots,x_n)^{\mathrm{T}}$ определим вектор $x^-=(x_1^-,\ldots,x_n^-)$, где $x_i^-=x_i^{-1}$, если $x_i\neq 0$, и $x_i^-=0$ в противном случае. Такой вектор x^- называется сопряженно транспонированным вектором.

Матрица A — регулярная, если она не имеет нулевых строк и столбцов. Если матрица A является регулярной, определим величину

$$\Delta(A,b) = (A(b^-A)^-)^-b.$$

Пусть матрица A состоит из столбцов (a_1,\ldots,a_n) , тогда введем обозначение для линейной оболочки столбцов матрицы $A=\text{span}\,\{a_1,\ldots,a_n\}.$

Лемма (Кривулин, 2009)

Для любой матрицы A и вектора b>0 выполняется:

$$\rho(\mathsf{A},b) = \sqrt{\Delta(\mathsf{A},b)}.$$

Если $\Delta(A,b)<\infty$, то минимум величины $\rho(Ax,b)$ достигается при $x=\sqrt{\Delta(A,b)}(b^-A)^-$.

Постановка задачи

Система уравнений

$$\begin{cases} \max_{i}(a_{1i} + x_i) &= \max_{j}(b_{1j} + y_j), \\ &\vdots \\ \max_{i}(a_{mi} + x_i) &= \max_{j}(b_{mj} + y_j), \end{cases}$$

где $1 \le i \le n_1$, $1 \le j \le n_2$.

Перепишем систему в терминах полукольца $\mathbb{R}_{\mathsf{max},+}$

$$\begin{cases} a_{11}x_1 \oplus \ldots \oplus a_{1n_1}x_{n_1} &= b_{11}y_1 \oplus \ldots \oplus b_{1n_2}y_{n_2}, \\ &\vdots \\ a_{m1}x_1 \oplus \ldots \oplus a_{mn_1}x_{n_1} &= b_{m1}y_1 \oplus \ldots \oplus b_{mn_2}y_{n_2}. \end{cases}$$

Система равносильна матричному уравнению

$$Ax = By$$
,

где матрицы A и B имеют размерности $m \times n_1$, $m \times n_2$ соответственно, вектора x и y имеют размерности n_1 и n_2 .

Основная часть

В рамках данной работы

- **3** было найдено аналитическое решение уравнения Ax = Bx для матриц размерности $1 \times n$ и $m \times 1$,
- была написана программа, основанная на алгоритме, описанном в (Кривулин, 2023),
- была продемонстрирована работа программы в двух случаях:
 - решение существует, его поиск,
 - решения не существует, необходимо найти оптимальные значения,
- были исследованы возникающие зависимости для разных размерностей матриц,
- 🧿 было реализовано графическое представление:
 - линейные оболочки матриц 3×3 ,
 - ullet работа алгоритма для матриц 2×2 ,
 - работа алгоритма для матриц 3×3 .

Алгоритм (Кривулин, 2023)

Входные данные: *А*, *B*. Выходные данные: Δ_* , x^* , y^* .

- \bullet i=0, выбрать вектор x_0
- Вычислить

$$\Delta_i = (B((Ax_i)^-B)^-)^-Ax_i, \quad y_{i+1} = \sqrt{\Delta_i}((Ax_i)^-B)^-$$

ullet Если $\Delta_i = 0$ или $y_{i+1} = y_j$ для какого-то j < i, то

$$\Delta_* = \Delta_i, \quad x^* = x_i, \quad y^* = y_{i+1}$$

и закончить, иначе i = i + 1

Вычислить

$$\Delta_i = (A((By_i)^-A)^-)^-By_i, \quad x_{i+1} = \sqrt{\Delta_i}((By_i)^-A)^-$$

ullet Если $\Delta_i = 0$ или $x_{i+1} = x_j$ для какого-то j < i, то

$$\Delta_* = \Delta_i, \quad x^* = x_{i+1}, \quad y^* = y_i$$

и закончить, иначе i=i+1

Перейти к шагу 2

Пример 1: решение существует

Входные данные:

$$A = \begin{pmatrix} 103 & 150 & 20 \\ 40 & 13 & 50 \\ 78 & 150 & 100 \end{pmatrix}, B = \begin{pmatrix} 270 & 50 & 140 \\ 40 & 2 & 80 \\ 80 & 100 & 190 \end{pmatrix}.$$

Начальный вектор: $x_0 = (150, 50, 100)^{\mathrm{T}}$.

Ход алгоритма:

$$i = 0$$
: $\Delta_0 = 60$, $y_1 = (13, 158, 68)^T$

$$i = 1: \Delta_1 = 25, x_2 = (132.5, 120.5, 122.5)^T$$

$$i = 2: \Delta_2 = 0, y_3 = (0.5, 170.5, 80.5)^{\mathrm{T}}$$

Решение: $x^* = (132.5, 120.5, 122.5)^T, y^* = (0.5, 170.5, 80.5)^T.$

Пример 2: решения не существует

Входные данные:

$$A = \begin{pmatrix} 103 & 150 & 20 \\ 40 & 13 & 50 \\ 78 & 150 & 100 \\ 24 & 221 & 42 \\ 21 & 42 & 57 \end{pmatrix}, B = \begin{pmatrix} 270 & 50 & 140 \\ 40 & 2 & 80 \\ 80 & 100 & 190 \\ 17 & 88 & 534 \\ 342 & 35 & 1 \end{pmatrix}.$$

Начальный вектор: $x_0 = (150, 50, 100)^{\mathrm{T}}$.

Ход алгоритма:

1
$$i = 0$$
: $\Delta_0 = 75$, $y_1 = (-133.5, 165.5, -225.5)^T$

$$i = 1: \Delta_1 = 48, x_2 = (136.5, 89.5, 141.5)^T$$

$$i = 2: \Delta_2 = 48, y_3 = (-119.5, 165.5, -199.5)^T$$

$$\bullet i = 3: \Delta_3 = 48, x_4 = (136.5, 89.5, 141.5)^{\mathrm{T}}$$

Оптимальные значения:

$$x^* = (136.5, 89.5, 141.5)^{\mathrm{T}}, y^* = (-119.5, 165.5, -199.5)^{\mathrm{T}}.$$

Зависимость числа итераций от размерности матриц

- Зависимость количества итераций от размерности матриц является мерой эффективности алгоритма
- Алгоритм может заканчивать работу за разное количество итераций

Изучим зависимости между количеством строк и столбцов матриц A и B при решении уравнения Ax=By, и количеством итераций алгоритма для поиска решения.

Реализация:

- Выбирались размерности матриц
- Значения матриц генерировались как случайные равновероятные целые числа от 1 до 100
- Моделировалась работа алгоритма тысячу раз
- Производился анализ полученных результатов

Результаты. Матрицы 3×3

Рис. 1: Гистограмма количества итераций

Результаты, выводы

Результаты:

Размер матриц	3 × 3	4 × 4	5×5
Решения не были найдены	359	370	397
Решения были найдены	641	630	603
Завершение из-за ограничения итераций	3	43	80
Итераций больше, чем число столбцов	80	86	114

Выводы:

- С ростом размерности матриц растет количество реализаций, в которых алгоритм завершает работу из-за ограничений на число итераций
- С ростом размерности матриц растет среднее количество итераций
- С ростом размерности матриц количество решенных уравнений падает
- С ростом размерности матриц большее количество уравнений не решается за максимальное заданное количество итераций

Визуализация. Матрицы 3×3

Введем декартову систему координат Ouv на плоскости x+y+z=0.

Начало отсчета совпадает с началом отсчета системы Охуг.

Ось Ov — проекция оси Oz на плоскость.

x', y', z' - проекции осей x, y, z на плоскость Ouv.

Выражаем u, v через x, y, z:

$$x' = \frac{x}{\sqrt{2}}, \quad y' = \frac{y}{\sqrt{2}}, \quad z' = \frac{z}{\sqrt{2}}$$

$$v = z' - x' \cos\left(\frac{\pi}{3}\right) - y' \cos\left(\frac{\pi}{3}\right) = \frac{1}{2\sqrt{2}}(2z - x - y)$$

$$u = x' \sin\left(\frac{\pi}{3}\right) - y' \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2\sqrt{2}}(x - y)$$

Получаем выражения для u и v :

$$u = \frac{1}{3} \frac{\sqrt{3}}{2\sqrt{2}} (3\hat{x} - 3\hat{y}) = \frac{\sqrt{3}}{2\sqrt{2}} (\hat{x} - \hat{y})$$
$$v = \frac{1}{3} \frac{1}{2\sqrt{2}} (6\hat{z} - 3\hat{x} - 3\hat{y}) = \frac{2\hat{z} - \hat{x} - \hat{y}}{2\sqrt{2}}.$$

Визуализация. Матрицы 3×3 . Проекция линейной оболочки

Пример

линейной оболочки столбцов для матрицы

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Построение линейной оболочки:

- генерировались числа $s_1, s_2, \ldots s_n$ из равномерного распределения на отрезке [-||A||, ||A||], n число столбцов матрицы A,
- получался вектор $z = (z_i), z_i = \max_i (a_{ii} + s_i), i = 1 \dots n,$
- строилась проекция вектора z,
- алгоритм повторялся 1000 раз.

Красные точки — это проекции столбцов матрицы.

Черные точки — это сгенерированные значения линейной оболочки.

Рис. 2: Линейная оболочка

Визуализация. Матрицы 3×4 и 3×5 . Проекции линейных оболочек

Рис. 3: Линейная оболочка столбцов матрицы

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 2 \\ 0 & -1 & 1 & 1 \end{pmatrix}$$

Рис. 4: Линейная оболочка столбцов матрицы

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

Визуализация. Матрицы 2×2

Визуализация процесса поиска решения алгоритмом.

Для матриц 2×2 изображаются линейные оболочки столбцов матриц и приближения, найденные алгоритмом.

Для матриц 3×3 сперва необходимо спроецировать трехмерные вектора на двумерную плоскость, затем вывести результаты аналогично матрицам 2×2 . Алгоритм для матриц 2×2 :

- Выводим на изображение прямые, проходящие под углом 45° через координаты столбцов матриц. Это будут линейные оболочки столбцов матриц
- $oldsymbol{0}$ Находим приближение Δ_i и y_{i+1}
- ullet Выводим на изображение точку с координатами By_{i+1}
- ullet Находим приближение Δ_i и x_{i+1}
- ullet Выводим на изображение точку с координатами Ax_{i+1}
- Переходим к пункту (2)

Визуализация. Матрицы 2×2 . Решение найдено

Входные данные:

$$x_0 = \begin{pmatrix} 29 \\ 88 \end{pmatrix}, A = \begin{pmatrix} 63 & 2 \\ 16 & 95 \end{pmatrix}, B = \begin{pmatrix} 78 & 47 \\ 23 & 65 \end{pmatrix}.$$

Ход работы алгоритма:

$$i = 0, y_1 = (50.5, 81.5)^T, \Delta_0 = 73$$

$$i = 1, x_2 = (65.5, 51.5)^T, \Delta_1 = 0$$

Решение и невязка:

$$x^* = \begin{pmatrix} 65.5 \\ 51.5 \end{pmatrix}, y^* = \begin{pmatrix} 50.5 \\ 81.5 \end{pmatrix}, \Delta_* = 0$$

Алгоритм закончил работу, так как в точке (3) невязка стала равна нулю. Решение выглядит верным, потому что линейные оболочки матриц A и B пересекаются.

Рис. 5: Работа алгоритма

Визуализация. Матрицы 2×2 . Решение не найдено

Входные данные:

$$x_0 = \begin{pmatrix} 36 \\ 18 \end{pmatrix}, A = \begin{pmatrix} 5 & 29 \\ 62 & 74 \end{pmatrix}, B = \begin{pmatrix} 49 & 93 \\ 22 & 88 \end{pmatrix}.$$

Оптимальные значения и невязка равны:

$$x^* = \begin{pmatrix} 33 \\ 21 \end{pmatrix}, y^* = \begin{pmatrix} 26 \\ -18 \end{pmatrix}, \Delta_* = 50$$

Алгоритм закончил работу из-за совпадения точек (2) и (4). Решение выглядит верным, потому что:

- линейные оболочки столбцов матриц A и B не пересекаются,
- точки (3) и (4) лежат на границах линейных оболочек.

Рис. 6: Работа алгоритма

Визуализация. Матрицы 3 × 3. Решение найдено

Рис. 7: Работа алгоритма

Визуализация. Матрицы 3×3 . Решение найдено

Входные данные:

$$x_0 = \begin{pmatrix} 10 \\ 9 \\ 8 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ход работы алгоритма:

$$i = 0, y_1 = (7.5, 10.5, 10.5)^T, \Delta_0 = 1$$

$$i = 1, x_2 = (9.5, 9.5, 9.5)^T, \Delta_1 = 0$$

Оптимальные значения и невязка равны:

$$x^* = x_0 = \begin{pmatrix} 9.5 \\ 9.5 \\ 9.5 \end{pmatrix}, \quad y^* = \begin{pmatrix} 7.5 \\ 10.5 \\ 10.5 \end{pmatrix}, \quad \Delta_* = 0$$

Алгоритм закончил работу так как в точке (3) невязка стала равна нулю.

Визуализация. Матрицы 3×3 . Решение не найдено

Рис. 8: Работа алгоритма

Визуализация. Матрицы 3×3 . Решение не найдено

Входные данные:

$$x_0 = \begin{pmatrix} 10 \\ 9 \\ 8 \end{pmatrix}, \quad A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 0 \\ 4 & 0 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -2 & -1 \\ 0 & 2 & 0 \\ -4 & 0 & 5 \end{pmatrix}$$

Ход работы алгоритма:

$$i = 0, y_1 = (12.0, 10.0, 9.0)^T, \Delta_0 = 4$$

$$i = 1, x_2 = (10.0, 9.0, 8.0)^T, \Delta_1 = 4$$

Оптимальные значения и невязка равны:

$$x^* = \begin{pmatrix} 10 \\ 9 \\ 8 \end{pmatrix}, \quad y^* = \begin{pmatrix} 12 \\ 10 \\ 9 \end{pmatrix}, \quad \Delta_* = 4$$

Алгоритм закончил работу, так как значения в точках (1) и (3) совпали.

Визуализация. Матрицы 3×3 . Большое количество итераций

Входные данные:

$$x_0 = \begin{pmatrix} 49 \\ 56 \\ 66 \end{pmatrix}, \quad A = \begin{pmatrix} 81 & 30 & 68 \\ 72 & 28 & 2 \\ 2 & 76 & 65 \end{pmatrix},$$

$$B = \begin{pmatrix} 35 & 18 & 39 \\ 45 & 24 & 33 \\ 32 & 48 & 85 \end{pmatrix}.$$

Оптимальные значения и невязка:

$$x^* = \begin{pmatrix} 47.5 \\ 98.5 \\ 60.5 \end{pmatrix}, \quad y^* = \begin{pmatrix} 81.5 \\ 102.5 \\ 89.5 \end{pmatrix}, \quad \Delta_* = 0$$

Рис. 9: Работа алгоритма

Заключение

Основные результаты работы:

- изучены основы тропической математики,
- 2 рассмотрены алгоритмы решения уравнений,
- ullet найдено аналитическое решение уравнения Ax = Bx для некоторых размерностей матриц,
- выбран наиболее оптимальный алгоритм для дальнейшего исследования,
- изучена зависимость количества итераций алгоритма от начальных параметров,
- реализовано графическое представление линейных оболочек столбцов матриц,
- 💿 реализовано графическое представление работы алгоритма.