

#### Euler Turbine model

- 0-D model for Centripetal Radial Turbine
- Solves for each position in the turbine:
  - Total thermodynamic conditions (TC)
  - Static thermodynamic conditions (SC)
  - Velocity triangle (VT)
- Three main modelling assumptions:
  - Mass conservation at all turbine states
  - Conservation of total enthalpy between stator inlet and outlet
  - Conservation of rothalpy between rotor inlet and outlet
- Properties of Toluene included using Coolprop
- Written in Python (including parallized solution domain solving)





#### Model schematic





## **Euler Turbine model inputs**

• Radial position and height at each state

$$h_n$$
,  $r_n$  for  $n = 1, 2, 3$ 

• Total conditions at inlet stator and the direction and magnitude of the velocity

$$P_{01}, T_{01}, ||\overline{c}_1||, \alpha_1$$

Absolute velocity angle at inlet rotor

$$lpha_2$$

• Static pressure at the outlet of the rotor

$$P_3$$

Degree of reaction

Speed of rotation

 $\omega$ 



# Recap important equations

• Massflow: 
$$\dot{m} = \rho A c_r$$

• Total Enthalpy: 
$$h_0 = h + \frac{||\overline{c}||^2}{2}$$

• Rothalpy: 
$$I = h + \frac{||\overline{w}||^2}{2} - \frac{||\overline{U}||^2}{2}$$

• Degree of reaction: 
$$R = \frac{h_2 - h_3}{h_1 - h_3}$$

• Velocity triangles: 
$$\overline{c} = \overline{w} + \overline{U}$$

• Angular velocity: 
$$\overline{U} = [U_r, U_\theta]^T = [0, \omega r]^T$$

• Specific work 
$$w = U_{\theta-2}c_{\theta-2} - U_{\theta-3}c_{\theta-3}$$



## Model solving procedure

- **1** Calculate  $U_2$  and  $U_3$  using  $\omega$ ,  $r_2$ , and  $r_3$
- 2 Calculate  $TC|_1$ ,  $SC|_1$  and  $VT|_1$ , using  $P_{01}$ ,  $T_{01}$ ,  $||\overline{c}_1||$  and  $\alpha_1$
- 3 Calculate  $m_1$  with  $A_1$ ,  $SC|_1$  and  $VT|_1$
- 4 Assuming  $s_3 = s_1$ , calculate  $SC|_3$  using  $P_3$
- **6** Assuming  $s_2 = s_1$ , calculate  $SC|_2$  by means of R and  $SC|_3$
- 6 Assuming  $TC|_1 = TC|_2$ , calculate  $||\overline{c}_2||$  using  $SC|_2$
- **7** Given  $\alpha_2$ , calculate  $VT|_2$
- 8 Given  $VT|_2$  find  $h_2$  such that  $\dot{m}_2 = \dot{m}_1$
- **9** Given  $I_2 = I_3$ ,  $SC|_2$  and  $SC|_3$  calculate  $\overline{w}_3$
- ① Given the  $\dot{m}_3 = \dot{m}_2$  and the  $SC_3$  calculate  $c_{r-3}$
- **①** Using  $c_{r-3}$  and  $\overline{w}_3$  calculate the  $VT|_3$
- © Calculate  $h_{03}$  using the Eulerian work formula and  $VT|_2$  and  $VT|_3$
- **(B)** Calculate  $TC|_3$  with  $h_{03}$  and  $s_3$



# Effect of outlet height on extracted work



Effect of outlet height on absolute flow angle  $(r\theta$ -plane)



Effect of absolute flow angle (rz-plane) on extracted outlet height



Effect of absolute flow angle (rz-plane) on extracted work

