

### LLM models

#### ENCODER BASED DECODER BASED

BERT(RoBERTa, DistillBERT...), T5

GPT(GPT-4...), LLaMA

Sentiment analysis /
Sentence classification

Chatbots / Text generation / Summaries



### LLM models

- Input embedding

$$X_i = P(T_i) + e(T_i)$$
, for token  $T_i$ 

- e is an embedding matrix learned by the model
- P is the positional encoding to keep track of order of tokens

Then, 
$$X = (X_i)_{i=1}^n$$

- Attention mechanism

$$Q = XW_Q, K = XW_K V = XW_V$$

$$Attention(Q, K, V) = softmax\left(\frac{Q}{\sqrt{d}}K^{T}\right)V$$



## LLM models

- Input embedding:

 $X_i = P(T_i) + E(T_i)$  where  $P(T_i)$  is the positional encoding of token  $T_i$ .

- Attention mechanism:

$$-Q = XW_Q, K = XW_K V = XW_V$$

$$-softmax\left(K^{T}\frac{Q}{\sqrt{d}}\right)V^{T}$$

## RAG models



#### Pre-retrieval:

Query rewriting

#### Retrieval:

- Document chunker
- Embedding
- Similarity search

#### Post-retrieval:

Reranking

#### Generation:

• Prompt engineer

[https://huggingface.co/blog/hrishioa/retrieval-augmented-generation-1-basics]

## Embedding models

- Sparse vocabulary representations : TF-IDF...  $tf idf_{i,j} = tf_{i,j}log \frac{|D|}{|\{d_j:t_i \in d_j\}|}$
- ELMo
  - Bidirectional LSTM to add context to the representation
- Transformer-based word embeddings
  - $\circ$  GTP ( $\rightarrow$ ), BERT ( $\leftrightarrows$ ) ...
- Transformer-based sentence embeddings
  - ∘ SBERT, USE, GTE ...

#### 1/ Feature attribution

Perturbation based technique

Gradient-based approaches

- Saliency maps
- Integrated gradients

#### Surrogate model

- Lime (Local Interpretable Model-agnostic Explanations)
- SHAP (SHapley Additive exPlanations)

Attention-based visualization



LIME [Ribeiro et al. 2016]

#### 2/ Sample based

#### Adversarial samples

- input alterations due to small, hard-to-perceive changes for humans that lead to a change in outputs
- e.g. SemAttack

#### Counterfactual Explanations

seek to identify minimal changes to an input => output changes from a class y to y'



SemAttack [https://arxiv.org/pdf/2205.01287]

#### 3/ Probing based

Understand internal representation of the model (information learned and encoded)

Knowledge based

Training classifier based on a layer

Concept based

Neuron activation explanation



#### 4/ Mechanistic interpretability

- investigates the causal structure of a model.
- seeks to identify how internal components (e.g., neurons, weights, or attention heads) interact
- Model can be viewed as a graph

Common approaches fall into three categories:

- circuit discovery
- causal tracing
- vocabulary lens



[https://distill.pub/2020/circuits/zoom-in/]

#### 5/ Structuring based on novel dimensions

It focuses on new perspectives that are not inherently part of the model's original design.

**Novel dimensions** external to the model's natural operational space (e.g., raw features, embeddings, or output probabilities)

#### Examples:

In **natural language processing (NLP)**, structuring representations by linguistic properties such as syntax, semantics, or sentiment.

In **computer vision**, structuring filters or layers based on the types of visual features they detect (e.g., edges, textures, objects).

# Next steps

- Fix a context of study
  - Problem?
  - Goal?
  - Data?
  - Model to explain ?
  - Approach ? (simpler to harder methods ..), Any preferences ?

# Example: TokenSHAP [arXiv:2407.10114]

- For  $tokens = (x_1, ..., x_n)$  compute the baseline output b from LLM model
- Compute output for randomly sampled tokens  $b_C$  in tokens and compare both methods  $v_C = cosine\_sim(b_C, b)$ 
  - For each  $x_i$  average each  $v_C$  in which  $x_i$  is and do the same for each  $v_C$  in which  $x_i$  is not
- $SHAP_i = with_i without_i$



# Other XAI techniques

#### Representation analysis

 UMAP, machine learning embeddings

#### 2D Projection of Chunk Embeddings via PaCMAP



# Classifier SHAP [kokalj-etal-2021-bert]

