Precision and Performance Analysis of LLVM's C Standard Math Library on GPUs

By Anton Rydahl, Joseph Huber, Ethan McDonough, and Johannes Doerfert Prepared by LLNL under Contract DE-AC52-07NA27344.

About Me

- MSc in Mathematical Modelling and Computation
- Interning at Lawrence Livermore National Laboratory
- Working on libc, libc++, and OpenMP in LLVM

Background

- LLVM's libc is being developed for GPUs
- Clang uses vendor libraries
- Explore what LLVM infrastructure can be reused on GPUs

GPU Math Libraries

- NVIDIA's CUDA Math
- AMD's HIP Math
- LLVM intrinsics

GPU Math Libraries

```
$ Ilvm-ar x libmgpu.a remquof.cpp.o
$ Ilvm-objdump --offloading remquof.cpp.o
                  file format elf64-x86-64
remquof.cpp.o:
OFFLOADING IMAGE [0]:
kind
         llvm ir
         qfx906
arch
         amdgcn-amd-amdhsa
producer none
OFFLOADING IMAGE [1]:
kind
         llvm ir
arch
         gfx90a
triple
         amdgcn-amd-amdhsa
producer none
OFFLOADING IMAGE [2]:
kind
         llvm ir
arch
         sm 70
triple
         nvptx64-nvidia-cuda
producer none
OFFLOADING IMAGE [3]:
kind
         llvm ir
arch
         sm_80
triple
         nvptx64-nvidia-cuda
producer
            none
```

Correctness

- Exhaustive search for univariate functions with 32 bit data types
 - Upper bound on error
- Uniformly distributed input for 64 bit data
 - Lower bound on error
- Comparing against the GNU MPFR library
 - Arbitrary precision

Correctness

Correctness

Timings

Timings

Fastest Correct Set of Functions

- <u>H</u>IP
- <u>**C**</u>UDA
- LLVM <u>L</u>ibc
- LLVM **B**uiltin

Function	gfx906	gfx90a	sm_70	sm_80
log	L	L	С	С
log10	L	Н	С	С
log1p	L	L	L	L
log2	L	Н	С	С
logb	Н	Н	С	L
logbf	Н	Н	В	С
nearbyint	Н	В	С	В
nearbyintf	Н	Н	В	В
nextafter	В	L	L	С
nextafterf	L	L	С	С
pow	Н	Н	С	С
powf	Н	Н	С	С
remainder	Н	Н	В	В
remainderf	Н	Н	В	В

Fastest Correct Set of Functions

- <u>H</u>IP
- <u>**C**</u>UDA
- LLVM <u>L</u>ibc
- LLVM **B**uiltin

Function	gfx906	gfx90a	sm_70	sm_80
log	L	L	С	С
log10	L	Н	С	С
log1p	L	L	L	L
log2	L	Н	С	С
logb	Н	Н	С	L
logbf	Н	Н	В	С
nearbyint	Н	В	С	В
nearbyintf	Н	Н	В	В
nextafter	В	L	L	С
nextafterf	L	L	С	С
pow	Н	Н	С	С
powf	Н	Н	С	С
remainder	Н	Н	В	В
remainderf	Н	Н	В	В

Results of the Analysis

- Given a tolerance, we can find an optimal set of mathematical functions
 - Depends on the target architecture
 - 7 times faster than CUDA Math on sm_80 on average
 - Influenced by outliers
 - Sensitive to inlining
 - 5 % faster than HIP Math on gfx906