Online-Unterricht 28.01.21

Themen:

Besprechung der HA Bildung von Ionen aus Atomen

Hausaufgabe:

- 1. Liste auf, wofür Salze in unserem Alltag verwendet werden oder wo sie vorkommen. Gib jeweils ein Beispiel an. (Vgl. auch S. 181)
- 2. S. 187, Aufg. 3 und 6.
- 3. Lade die Aufgaben als Text- oder Fotodatei im Assignment hoch.

S. 187, Aufgabe 3a.

S. 187, Aufgabe 3b.

- S. 187, Aufgabe 6
- a. Schmelztemperaturen der Natriumhalogenide nehmen ab: NaF > NaCl > NaBr > NaI lonenradien der Halogen-Ionen nehmen zu: F < Cl < Br < I
 - Je größer die Ionenradien der Halogene, desto geringer ist die elektrische Anziehung der Ionen und desto geringer die Schmelztemperaturen.

- b. MgO und Al₂O₃: Ionen mehrfach geladen, sehr kleine Metallkationen
 - NaCl: 1-fach positiv geladene Anionen und Kationen, Na-Ion ist größer
- Je größer die Ionenladungen und je kleiner die Metallionen, desto stärker ist die elektrische Anziehung der Ionen und desto höher die Schmelztemperatur.

Wie aus Atomen Ionen werden

Heftaufschrieb

Merke:

Ziel der Atome in Verbindungen ist es, **Edelgaskonfiguration** zu erlangen d.h. eine mit **8 Elektronen** besetzte Außenschale.

Ausnahme: Die 1. Schale ist mit 2 Elektronen voll besetzt.

Bsp. Natrium:

Na-Atom (Na)

- 11 Protonen
- ungeladen 11 Elektronen
- 1 Außenelektron in der 3. Schale

Na-Kation (Na⁺)

11 Protonen 1-fach positiv geladen **10** Elektronen

Mit 8 Elektronen voll besetzte äußere Schale

"Edelgaskonfiguration" erreicht

Kurz: Na • Na⁺ + e⁻

Bsp. Chlor:

Heftaufschrieb

Elektronenaufnahme

Chlor-Atom (CI)

17 Protonen 17 Elektronen ungeladen

7 Außenelektron in der 3. Schale

Kurz: $|C| \cdot + e^{-} \longrightarrow C|$

Chlor-Anion (Cl-)

17 Protonen18 Elektronen

1-fach negativ geladen

Mit 8 Elektronen voll besetzte äußere Schale

"Edelgaskonfiguration" erreicht

Aufgabe: Bilde die Ionen aus den Atomen von Magnesium, Sauerstoff und Wasserstoff (Kurzform)

Elektronenabgabe

Mg-Atom (Mg)

- 12 Protonen ungeladen

+ •

Mg-Kation (Mg²⁺)

12 Protonen 2-fach positiv geladen

Voll besetzte äußere 2. Schale

. • •

Elektronenaufnahme

Sauerstoff-Atom (O)

- 8 Protonen ungeladen
- 6 Außenelektron in der 2. Schale

Kurz: $0 \cdot + 2 e \longrightarrow 0^{2}$

Sauerstoff-Anion (O²⁻)

8 Protonen
10 Elektronen
2-fach negativ geladen

2-

Voll besetzte äußere 2. Schale

Elektronenabgabe

+

Wasserstoffatom (H)

- 1 Proton
- 1 Elektron
- 1 Außenelektron in der 1. Schale

Kurz: $H \bullet \longrightarrow H^+ + e$

H-Kation (H⁺)

1 Proton
0 Elektronen
1-fach pos

1-fach positiv geladen

Besitzt keine Schale, ist nur ein **Proton**

Elektronenaufnahme

Kurz:

$$H \cdot + e^{-} \longrightarrow H^{-}$$

H-Anion (H⁻)

1 Proton
2 Flektronen 1-fach negativ geladen

Voll besetzte äußere Schale

Aufgabe: Übertrage die Tabelle in dein Heft und fülle sie aus!

	1. Haupt- gruppe	2. Haupt- gruppe	3. Haupt- gruppe	4. Haupt- gruppe	5. Haupt- gruppe	6. Haupt- gruppe	7. Haupt- gruppe	8. Haupt- gruppe
Anz. Außen- elektronen	1	2	3	4	5	6	7	8
Abgabe von Elektronen (nur Metallatome)	1	2	3	4	-	-	-	-
Aufnahme von Elektronen (nur Nichtmetallatome)	-	-	-	bilden i.d.R. keine lonen	3	2	1	-
Ionenladung	+1	+2	+3	+4	-3	-2	-1	Geht keine Verbin- dungen ein
Beispiel	Na⁺	Mg ²⁺	Al ³⁺	Sn ⁴⁺	N ³⁻	O ²⁻	Cl-	

Merke:

Um Edelgaskonfiguration zu erreichen, geben **Metall-Atome** Außenelektronen ab (bilden **Kationen**) und **Nichtmetalle** nehmen Elektronen in die äußerste Schale auf (bilden **Anionen**).

Anhand der Hauptgruppe des Atoms kann man die Höhe der Ionenladung ermitteln: Ionen besitzen meist dieselbe Anzahl von Außenelektronen, wie das Atom des Edelgases, das ihnen im Periodensystem am nächsten steht. Das sind 8 Elektronen (in der 1. Periode: 2) (**Edelgasregel / Oktettregel**)

Hausaufgabe:

Bearbeite das AB und stelle ein Foto davon in Teams ein (bitte **hochkant** fotografieren!)