

회귀 보고서 양식

머신 러닝을 이용한 예측 분석

1. 프로젝트 개요

1-1. 주제

전복 데이터 세트를 사용한 회귀 (24.05.01까지 대회 진행 중)

Regression with an Abalone Dataset

Playground Series - Season 4, Episode 4

k https://www.kaggle.com/competitions/playground-series-s4e4/overview

- 평가 지표 : RMSLE
- 4월 25일 오후 1시 44분 시점 상위 10% 지점: 213위

1-2. 주제 선정의 배경

- 해양수산부가 K-bluefood 세계화를 통한 수출 확대를 하고자 새로운 전략을 발표, 이에 따라 유망 품목으로 선정된 전복의 품질 경쟁력 확보를 위해 차별화된 양식 및 생산 방식, 유통 전략 필요
- 전복의 다양한 물리적 측정을 통한 전복 연령을 예측으로 전복의 품질 경쟁력 확보 및 생산량 최적화

1-3. 본 프로젝트의 활용 방안 제시

- 어업자, 양식업자의 전복 품질 관리 및 전복 생산량 최적화에 따른 수익 극대화
- 전복 양식업의 체계화된 시스템 구축 가능

• 해양 생태계 모니터링 및 인사이트 획득

2. 프로젝트 수행 절차 및 방법

2-1. 데이터 설명

• 총 8개의 피처 변수와 1개의 타겟 변수로 구성

	feature	데이터 타입	결측값	고윳값	max	min
0	id	int64	0	90615	90614	0
1	Sex	object	0	3	М	F
2	Length	float64	0	157	0.815	0.075
3	Diameter	float64	0	126	0.65	0.055
4	Height	float64	0	90	1.13	0.0
5	Whole weight	float64	0	3175	2.8255	0.002
6	Whole weight.1	float64	0	1799	1.488	0.001
7	Whole weight.2	float64	0	979	0.76	0.0005
8	Shell weight	float64	0	1129	1.005	0.0015
9	Rings	int64	0	28	29	1

• 피처 데이터

Feature		세부설명
sex	성별	• M: 수컷 / F: 암컷 / I :미성숙 개체 • 미성숙 개체는 성별을 명확하게 식별하기 어려운 경 우가 존재
length	길이	
diameter	지름	
height	키	
whole weight	전체 중량	고기 무게 + 내장 무게 + 껍데기 무게

Feature		세부설명
whole weight.1 / Shucked weight	고기 무게	
whole weight.2 / Viscera weight	내장 무게	
shell weight / shell weight	껍데기 무게	

• 타겟 데이터

Feature		세부설명
Rings	전복 나이	전복의 바깥 껍데기에 그어진 줄의 개수 (1줄 당 1~.15년)

3. 데이터 전처리

3-1. 데이터 전처리 계획

- 모델링을 위해 고유값을 가진 ID 피처 제거
- 데이터 간 컬럼명 통일 및 병합
- 결측값 확인
- 이상치 확인
- 의미있는 피처 변수 생성
- 범주형 피처 인코딩 변환
- 타겟 변수 로그 변환

3-2. 데이터

▼ Data

Regression with an Abalone Dataset

Regression with an Abalone Dataset.zip

abalone.zip

```
train = pd.read_csv('/content/train.csv')
original = pd.read_csv('/content/abalone.csv')
test = pd.read_csv('/content/test.csv')
submission = pd.read_csv('content/sample_submission.csv')
```

```
train.shape = (90615, 10)
original.shape = (4177, 9)
test.shape = (60411, 9)
submission.shape = (60411, 2)
```

- 전처리 후 train / test data
 - train.shape = (94792, 11)

	feature	데이터 타입	결측값	고윳값	max	min	head1	head2	head3
0	Length	float64	0	157	0.8150	0.0750	0.5500	0.6300	0.1600
1	Diameter	float64	0	126	0.6500	0.0550	0.4300	0.4900	0.1100
2	Height	float64	0	90	1.1300	0.0000	0.1500	0.1450	0.0250
3	Whole weight	float64	0	3205	2.8255	0.0020	0.7715	1.1300	0.0210
4	Shucked weight	float64	0	1806	1.4880	0.0010	0.3285	0.4580	0.0055
5	Viscera weight	float64	0	983	0.7600	0.0005	0.1465	0.2765	0.0030
6	Shell weight	float64	0	1132	1.0050	0.0015	0.2400	0.3200	0.0050
7	Rings	int64	0	28	29.0000	1.0000	11.0000	11.0000	6.0000
8	F	int64	0	2	1.0000	0.0000	1.0000	1.0000	0.0000
9	- 1	int64	0	2	1.0000	0.0000	0.0000	0.0000	1.0000
10	М	int64	0	2	1.0000	0.0000	0.0000	0.0000	0.0000

test.shape = (60411, 10)

	feature	데이터 타입	결측값	고윳값	max	min	head1	head2	head3
0	Length	float64	0	148	0.8000	0.0750	0.6450	0.5800	0.5600
1	Diameter	float64	0	130	0.6500	0.0550	0.4750	0.4600	0.4200
2	Height	float64	0	85	1.0950	0.0000	0.1550	0.1600	0.1400
3	Whole weight	float64	0	3037	2.8255	0.0020	1.2380	0.9830	0.8395
4	Shucked weight	float64	0	1747	1.4880	0.0010	0.6185	0.4785	0.3525
5	Viscera weight	float64	0	960	0.6415	0.0005	0.3125	0.2195	0.1845
6	Shell weight	float64	0	1089	1.0040	0.0015	0.3005	0.2750	0.2405
7	F	int64	0	2	1.0000	0.0000	0.0000	0.0000	0.0000
8		int64	0	2	1.0000	0.0000	0.0000	0.0000	0.0000
9	М	int64	0	2	1.0000	0.0000	1.0000	1.0000	1.0000

3-3. 데이터 수집 및 전처리

• 추가 data 확보

• 효율적인 모델링을 위해 고유값을 가진 ID 피처 제거 및 데이터 간 컬럼명 통일

[]	1 # submission id에 대입하기 위한 변수 test_id(test데이터에서 id데이터 삭제하기 전에 미리 저장) 2 test_id = test['id'] 3 # test데이터에서 id 삭제 4 test = test.drop('id', axis = 1) 5 # test데이터의 컬럼들을 train데이터의 컬럼과 동일하게 6 test.columns = train.columns 7 test.head()								
		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
	0	М	0.645	0.475	0.155	1.2380	0.6185	0.3125	0.3005
	1	М	0.580	0.460	0.160	0.9830	0.4785	0.2195	0.2750
	2	М	0.560	0.420	0.140	0.8395	0.3525	0.1845	0.2405
	3	М	0.570	0.490	0.145	0.8740	0.3525	0.1865	0.2350
	4	- 1	0.415	0.325	0.110	0.3580	0.1575	0.0670	0.1050

- 전처리 전

'id', 'Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Whole weight.1', 'Whole weight.2', 'Shell weight', 'Rings'

-

전처리 후

'Sex', 'Length', 'Diameter', 'Height', 'Whole weight', @ 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings'

• 기존 train data와 추가로 수집한 original data 병합

• 결측값 확인

- train, test 둘 다 결측값이 없는 것을 확인

• 범주형 피처에 대한 onehot-encoding

- 후에 나올 EDA 결과 성별 피처 분포도가 다르게 나왔기 때문에 원핫 인코 딩을 통해

범주형 데이터를 전처리, 성별 피처를 생성하고 그 값을 추가

• Target 피처에 대한 로그 변환

```
[ ] 1 y = train['Rings']
2 y_log = np.log(1+y) # 값이 음수거나 0일때 로그변환하면 사용할 수 없어서 1을 더한다.
```

```
[] 1#로그 변환 전
2 y.head()

0 11
1 11
2 6
3 10
4 9
Name: Rings, dtype: int64

[] 1#로그 변환 후
2 y_log.head()

0 2.484907
1 2.484907
2 1.945910
3 2.397895
4 2.302585
Name: Rings, dtype: float64
```


- 데이터의 분포를 정규 분포에 가깝게 만들고, 오차에 대한 예측 오류의 영 향을 완화시키기 위해 로그 변환을 시행
 - 타겟 값이 0이거나 음수인 경우 로그 변환시 -inf값이 발생하여 오류를 일 으키기 때문에 +1

3-4. 활용 라이브러리 등 기술적 요소

- ✓ pandas → 모듈
- ✓ numpy
- ✓ matplotlib
- seaborn
- warnings
- random
- ✓ lightgbm
- catboost
- xgboost
- sklearn
- optuna

3-5. 프로젝트에서 분석한 내용

- ✓ 결측치 확인
- ✓ 데이터 타입 확인
- ✓ 이상치 확인
- ✓ 전체 수치 변수 시각화
- 병합된 데이터 shape 확인
- 병합된 데이터 타입 확인
- ✓ 수치 특징과 목표 변수 간의 상관관계 시각화

각 데이터들 분포도 시각화

✓ 성별 비율 시각화

✓ 퍼쳐 중요도 시각화

4. 기초 평가

4-1. 지표평가

- RMSLE(Root Mean Squared Log Error)
 - 대상 변수가 다양한 값의 범위를 가지는 경우에 유용함. RMSLE는 예측 값의 로그와 실제 값의 로그 사이의 차이의 제곱의 평균의 제곱근으로 계산

$$RMSLE = \sqrt{rac{1}{n}\sum_{i=1}^n (\log(p_i+1) - \log(a_i+1))^2}$$

o n: 관측치의 수

。 *pi* : 관측치 *i*에 대한 예측값

○ *ai* : 관측치 *i*에 대한 실제값

。 log : 자연 로그

4-2 . 시각화- 추이, 편차, 구성비율

▼ Target(Rings) 분포 확인

mean: 9.71

std: 3.18

min: 1.0

25%:8.0

50%:9.0

75%:11.0

max: 29.0

- 오른쪽으로 긴 꼬리를 형성

▼ 수치 피처와 타겟 변수 간의 상관 관계

- 각 피처들 간 상관 관계가 얼마나 높고 낮은지를 확인 결과, 기존 피처 유의 미한 상관 관계를 확인

▼ 수치 피처와 타겟 변수 간의 상관 관계(뉴피처 생성)

- 새로 생성한 피처의 경우 기존에 비해 아주 미약한 상관 관계를 갖고 있었기 때문에 생성한 피처를 제외하고 기존 피처만으로 분석을 진행
- 새로 생성한 피처 중 상관 관계가 높게 관측된 면적과 부피 데이터는 모델 링 결과 오히려 측정 수치가 악화되는 현상이 발견되어 제외

▼ 각 데이터 분포

- 각 데이터들의 분포도를 확인했을 때, 모델 학습에 중요한 전복 무게 관련 된 데이터들은 골고루 분포되어 있는 것을 확인

▼ 각 데이터의 이상치

- 각 데이터들의 이상치를 확인했을 때, height(키)를 제외한 데이터들은 모 두 넓게 퍼짐
- 피처 데이터에 IQR 기준 이상치가 확인되었으나, test 데이터의 경우에도 이상치 확인
- 이상치를 제거하고 진행하나 모델의 성능에 따라 이상치 제거 보류

▼ 성별 비율

• Sex

• F: Female, I: immature, M: male

- 전복들의 성별 비율을 확인했을 때, 대체로 골고루 분포되어 있는 것을 확 인

▼ 성별 피처 데이터 분포

- Sex
 - 1: Female, 2: immature, 3: male

- 성별 피처 데이터 분포를 확인한 결과 Female과 Male 전복은 대체로 비슷한 양상을 보이는 것을 확인
- Immature의 경우 분포가 위의 둘과 다르게 형성
- 모델 학습시 Female과 Male은 함께 학습하되, Immature의 경우는 분리 시켜 학습하는 방향을 고려

▼ train과 test 분포도 비교 확인

- train과 test 분포도가 비슷한 것을 확인

5. 피처 엔지니어링

5-1 피처 엔지니어링

1. 추가 데이터 병합 및 이를 위한 ID피처 제거

```
train.drop(columns=["id"],inplace=True)
test.drop(columns=["id"],inplace=True)

train=pd.concat([train,original],axis='rows')
train.reset_index(inplace=True,drop=True)
```

2. 로그 변환

```
y = train['Rings']
y_log = np.log(1+y)
```

• train['Rings']의 값이 음수거나 0일 때 로그 변환 시 오류 발생 → +1

3. 성별 인코딩

• M / F / I 로 구분되어 있는 범주형 피처인 "Sex" 피처를 원핫인코딩 처리

6. 모델 학습

6-1. 프로젝트에 사용했던 방법들

- (0.14700)FM | top3model(cat, lgbm, rf)
- (0.14708)FM_I top4model(cat,lgbm,xgb,rf)
- ☑ (0.14843)FM_I top4model_feature(피쳐 추가 ...
- № (0.14958)top6model_(피쳐 추가 및 이상값 제거)
- 다양한 피처 추가 및 이상값 제거
- pycaret 사용 top_model 추출 및 blend_models 형성

- 🛂 (0.14564) submission_voting_fold10(파라미터 수정1)
- 🔊 (0.14565) submission voting fold10(파라미터 수정3)
- 🔊 (0.14568) submission_voting_fold10(파라미터 수정2)
- 🛂 (0.14576) submission_voting_fold5(원본 파라미터)
- (0.14606) submission_voting_feature(remains, volume)
- 앙상블은 Voting으로 고정
- 모델은 XGBoost, CatBoost, LGBM 3개 사용
- 뉴피처 추가하여 학습 —> 성능 저하
- 하이퍼 파라미터를 여러 번 수정하며 학습
- 🔯 (0.14559) submission_voting_fold11(최종)
- 🔊 (0.14559) submission_voting_fold13(최종)
- 🔊 (0.14559) submission_voting_fold14(최종)
- 획 (0.14560) submission_voting_fold12(최종)
- 🔊 (0.14563) submission_voting_fold15(최종)
- 🔊 (0.14564) submission_voting_fold10(최종)
- 🗐 (0.14565) submission voting fold9(최종)
- 🛂 (0.14567) submission_voting_fold7(최종)
- 🛂 (0.14567) submission_voting_fold8(최종)
- [(0.14569) submission_voting_fold6(최종)
- 🛂 (0.14576) submission_voting_fold5(최종)
- 앙상블 : Voting
- 모델 : XGBoost, CatBoost, LGBM
- Fold 횟수를 5~15까지 각각 적용하며 학습
- 0.1455점대의 점수가 나온 fold(11, 13, 14)를 최종적으로 사용

획 (0.14558) voting_fold10_top3(가중치_1, 1, 1)

- 회 (0.14559) voting fold10 top5(가중치_1, 1, 1, 1, 1)
- **회** (0.14565) voting_fold10_top4(가중치_10,10,1,1)_ensemble
- 📭 (0.14565) voting_fold10_top5(가중치 모두 1로 동일)_ensemble
- 🛂 (0.14566) voting_fold10_top4(가중치_10, 1, 1, 1)_ensemble
- 🛂 (0.14566) voting_fold10_top4(가중치_10, 10, 10, 1)_ensemble
- **회** (0.14566) voting_fold10_top7(가중치_10,9,8,7,6,5,4)_ensemble
- 🛂 (0.14567) voting_fold10_top3(가중치_10,1,1)_ensemble
- 앙상블 : Voting
- 모델: XGBoost, CatBoost, LGBM
- 각 Fold(5~15)데이터들을 사용하여 앙상블 진행할 때, 가중치를 여러 번 수정하며 학습

<결론>

• 5~15fold까지 각각 제출하였을 때, 점수가 가장 높았던 top3(fold(11, 13, 14))를 사용 하여

최종 학습 진행(가중치는 모두 1로 설정)

7. 머신 러닝 결과

7-1. 결과 분석

vote_fold_top3(_1 1 1).csv 완료 · 5시간 전

0.14558

• 4월 25일 오후 1시 44분 기준 0.14558로 204등으로 상위 10%(213등)안에 진입

7-2. 피처 중요도 결과

• 무게 관련 피처 중요도가 높고, 그 뒤로 길이 관련 피처들이 뒤따르는 것을 확인

8. 프로젝트 회고 및 개선점

8-1. 피드백

제출 전에는 이곳이 공백입니다.

발표 후 QnA 시간에 나온 질문과 피드백을 모두 작성해 주세요.

듣는 즉시 바로 작성하면 빠뜨리지 않고 모두 적을 수 있을 거에요! 이때 개선점으로 넘어가도 좋을 반영할 부분을 발견했다면 최종 제출 전에 그 부분 위주로 정리하는 것도 좋아요. 그리고 발표 시간에 적극적으로 질문과 피드백을 주고 받으면 서로의 성장에 무척 도움이 되겠죠?

8-2. 회고

8-3. 개선점

8-4. 추후 개선 계획

개선점에 대한 회고 이후, 가능하다면 실제 액션 계획도 세워보세요. 포트폴리오에서 '개선 시도/경험'은 아주 긍정적인 요소로 작용한답니다.

8. 부록

8-1. 참고자료

https://www.kaggle.com/code/arunklenin/ps4e4-abalone-age-prediction-regression/notebook#4.1-New-Features

https://www.kaggle.com/code/bunny11/voting-classifier/notebook

https://www.kaggle.com/code/satyaprakashshukl/cb-regression-analysis/notebook

8-2. 출처

https://archive.ics.uci.edu/dataset/1/abalone

https://www.kaggle.com/competitions/playground-series-s4e4