1 February 18th, 2021

1.1 Spectral Radius Cont.

Corollary 1.1

Let $A \in \mathbb{R}^{n \times n}$. Then:

$$\lim_{k \to \infty} A^k = 0 \iff \rho(A) < 1$$

Proof. • " \Longrightarrow " Assume $\lim_{k\to\infty} A^k = 0$. Let λ be the eigenvalue of A s.t. $\rho(A) = |\lambda|$. For any k,, then A^k is an eigenvalue of A^k . We have:

$$(\rho(A))^k = |\lambda|^k = |\lambda^k| \le \rho(A^k) \le ||A^k||$$

for any operator norm. Thus:

$$\lim_{k \to \infty} (\rho(A))^k \le \lim_{k \to \infty} ||A^k|| = 0 \implies \rho(A) < 1$$

• " \longleftarrow " Assume $\rho(A) < 1$. Choose $\epsilon = \frac{1}{2}(1 - \rho(A)) > 0$. Thus there exists $\|\cdot\|_{\epsilon}$ s.t.:

$$||A||_{\epsilon} \le \rho(A) + \epsilon = \rho(A) + \frac{1}{2}(1 - \rho(A)) = \frac{1}{2} + \frac{1}{2}\rho(A) < 1$$

Then:

$$||A^k||_{\epsilon} \leq (||A||_{\epsilon})^k \to 0 \text{ as } k \to \infty \implies \lim_{k \to \infty} ||A^k||_{\epsilon} = 0$$

Since norms are continuous functions for finite dimension, we have:

$$\|\lim_{k\to\infty} A^k\| = 0 \to \lim_{k\to\infty} A^k = 0$$

1.2 Convergence of Jacobi Iteration

Recall that the Jacobi iteration can be written in the stationary iteration form:

$$x_{k+1} = Gx_k + f$$

where $G = I - D^{-1}A$, $f = D^{-1}b$. Let x_* be the solution of Ax = b. i.e. ($Ax_* = b$). Then:

$$Dx_* - b = (D - A)x_*$$

$$Dx_* = (D - A)x_* + b$$

$$x_* = D^{-1}(D - A)x_* + D^{-1}b$$

$$x_* = Gx_* + f.$$

Taking the difference, we have:

$$(x_{k+1} - x_*) = G(x_k - x_*)$$

Now, taking the norms on both sides, we have:

$$||x_{k+1} - x_*|| = ||G(x_k - x_*)||$$

$$\leq ||G|| ||x_k - x_*||.$$

If $\rho(G) < 1$, then we can choose $\epsilon = \frac{1}{2}(1 - \rho(G))$ and construct the norm $\|\cdot\|$ (depending on G) s.t.

$$||G||_{\epsilon} \le \rho(G) + \epsilon = \frac{1}{2} + \frac{1}{2}\rho(G) < 1$$

Then:

$$||x_{k+1} - x_*||_{\epsilon} \le ||G||_{\epsilon} ||x_k - x_*||_{\epsilon} = \rho ||x_k - x_*||_{\epsilon}, \quad \forall k.$$

As a result, we have:

$$||x_k - x_*||_{\epsilon} \le \rho^k ||x_0 - x_*||_{\epsilon} \to 0 \text{ as } k \to +\infty,$$

i.e. $x_k \to x_*$.

In addition, the convergence rate is "linear", because:

$$\frac{\|x_k - x_*\|}{\|x_{k-1} - x_*\|} \le \rho < 1$$

In order to obtain a $\tilde{\epsilon}$ -precision solution, i.e.:

$$||x_k - x_*||_{\epsilon} \le \rho^k ||x_0 - x_*||_{\epsilon} < \tilde{\epsilon}$$

$$\iff \rho^k \le \frac{\tilde{\epsilon}}{||x_0 - x_*||_{\epsilon}}$$

$$\iff k \ge \frac{\log\left(\frac{||x_0 - x_*||_{\epsilon}}{\tilde{\epsilon}}\right)}{\log(1/\rho)} \sim O(1/\log \rho^{-1}).$$

Remark 1.2 — Note that ρ can be arbitrarily close to $\rho(G)$. Thus, ρ is called the **convergence factor**.

Remark 1.3 — If $\rho \approx \rho(G) = 1 - O(1/n^{\alpha})$, where $\alpha > 0$, then:

$$\log \rho^{-1} \sim O(n^{\alpha})$$

meaning we require $k \sim O(n^{\alpha} \cdot \log \tilde{\epsilon}^{-1})$. Usually $\tilde{\epsilon}^{-1}$ can be treated as a constant.

Corollary 1.4

Jacobi converges to x_* for any x_0 if and only if $\rho(G) < 1$.

1.3 Computation Cost of Jacobi Iteration

Note that the Jacobi iteration only uses matrix-vector product (and O(n) operations for calculating D^{-1}). Thus:

computational cost per step:
$$\begin{cases} O(n^2) & \text{for general } A \\ O(m+n) & \text{for sparse } A \text{ with } m \text{ non-zero entries} \end{cases}$$

Thus the total computational cost is:

$$O(m+n) \times O(n^{\alpha} \cdot \log \tilde{\epsilon}^{-1}) = O((m+n)n^{\alpha} \cdot \log \tilde{\epsilon}^{-1})$$

1.4 Jacobi Iteration for 1D Discrete Laplacian

Recall that the Laplacian equation in 1D is:

$$\begin{cases}
-u_{xx} = f & x \in (0,1) \\
u(0) = u(1) = 0
\end{cases}$$

Using central difference, we have Ax = b, where:

We have $Au = \lambda u$, i.e.

$$\begin{cases}
-u_{j-1} + 2u_j - u_{j+1} = \lambda u_j & j = 1, \dots, n \\
u_0 = u_{n+1} = 0
\end{cases}$$

Recall that this is a discrete difference eq. whose solutions are given by:

$$u_j = c_1 \alpha_1^j + c_2 \alpha_2^j$$

where c_1, c_2 are constants, α_1, α_2 are roots of

$$-1 + 2\alpha - \alpha^2 = \lambda \alpha$$
.

i.e. $\alpha_1 + \alpha_2 = 2 - \lambda$ and $\alpha_1 \alpha_2 = 1$. Because $u_0 = u_{n+1} = 0$, we have:

$$\begin{cases} c_1 + c_2 = u_0 = 0 \\ c_1 \alpha_1^{n+1} + c_2 \alpha_2^{n+1} = u_{n+1} = 0 \end{cases}$$

$$\det \left(\begin{bmatrix} 1 & 1 \\ \alpha_1^{n+1} & \alpha_2^{n+1} \end{bmatrix} \right) = 0 \iff \alpha_1^{n+1} = \alpha_2^{n+1}$$

$$\iff \left(\frac{\alpha_1}{\alpha_2} \right)^{n+1} = 1$$

$$\iff \frac{\alpha_1}{\alpha_2} = e^{i \cdot \frac{2\pi}{n+1} \cdot k}, \ k = 0, 1, \dots, n.$$

Since, $\alpha_1 \alpha_2 = 1$, we have:

$$\implies 1 = \alpha_2^2 \frac{\alpha_1}{\alpha_2} = \alpha_2^2 e^{i\frac{2\pi}{n+1}k}$$

$$\implies \begin{cases} \alpha_2 = e^{-i\frac{\pi}{n+1}k} \\ \alpha_1 = e^{i\frac{\pi}{n+1}k} \end{cases}, k = 0, 1, ..., n.$$

Thus:

$$\alpha_1 + \alpha_2 = 2 - \lambda \implies \lambda = 2 - (\alpha_1 + \alpha_2) = 2 - 2\operatorname{Re}(e^{i\frac{\pi}{n+1}k}) = 2(1 - \cos\left(\frac{\pi}{n+1}k\right))$$

However, there are n+1 values of k, but there are only n eigenvalues of A. When k=0, $\alpha_1=\alpha_2=1$. However, in this case, we have:

$$u_j = c_1 \alpha_1^j + c_2 \alpha_2^j \implies c_1 + c_2 = 0$$

which is a contradiction since $c_1 + c_2 = 0 \implies u = 0$. Thus when k = 1, 2, ..., n, we can find the corresponding u (left as homework).

Thus, the eigenvalues of A are:

$$\lambda_k = 2(1 - \cos\left(\frac{\pi}{n+1}k\right)), \quad k = 1, 2, \dots, n$$

Consequently:

$$\rho(G) = \max_{k=1,2,\dots,n} |1 - \frac{1}{2}\lambda_k| = \max_{k=1,2,\dots,n} |\cos\left(\frac{\pi}{n+1}k\right)| = \cos\left(\frac{\pi}{n+1}k\right) < 1$$

Thus the Jacobi converges, and:

$$||x_k - x_*||_2 \le ||G||_g ||x_{k-1} - x_*||_2 = \rho(G) ||x_{k-1} - x_*||_2$$

Thus,

$$\rho = \rho(G) = \cos\frac{\pi}{n+1} = 1 - 2\sin^2\frac{\pi}{2(n+1)} = 1 - O(\frac{1}{n^2})$$

This gives us $\alpha = 2$.

As such, the number of iteration for $||x_k - x_*||_2 \leq \tilde{\epsilon}$ is:

$$k \sim O(n^2 \cdot \log \tilde{\epsilon}^{-1})$$

Since we only need matrix product, we only need O(n) FLOPs per iteration, meaning that the total FLOPs needed is:

$$O(n^3 \cdot \log \tilde{\epsilon}^{-1})$$

As a comparison, Gaussian Elimination needs O(n). Thus, the Jacobi iteration (in this version), is not efficient.