Handwritten Digit Recognition

NIANG Mohamed KAINA Mohamed Abdellah NGREMMADJI Mbaimou Auxence

31 Octobre 2019

Contents

1	Pre	liminaries	1		
	1.1	Set Working Directory	1		
	1.2	Load libraries/data/create new variables	2		
2	Data Exploratory Analysis				
	2.1	Look at the TRAINING data set	;		
	2.2	Plot the value of the first four examples of the zip.train	9		
	2.3	Look at the TEST data set	4		
	2.4	Plot the value of the first four examples of the zip.test	4		
	2.5	Chose the two digits 0 and 8 in the Training Set	Ę		
	2.6	Chose the two digits 0 and 8 in the Test Set	Ę		
	2.7	Find number of missing values/check ranges (TRAINING data set)	Ę		
	2.8	Find number of missing values/check ranges (TESTING data set)	Ę		
	2.9	Transformation. Transform Label as Factor (Categorical) and Change Column Names (TRAIN-			
		ING data set)	Ę		
	2.10	Transformation. Transform Label as Factor (Categorical) and Change Column Names (TEST-			
		ING data set)	6		
		Total Number of Digits (Training Set)	6		
	2.12	Total Number of Digits (Testing Set)	7		
3	Mad	chine Learning Classifiers	7		
	3.1	Classification. Predictive Model. Naive Bayes Algorithm	7		
	3.2	Classification. k-Nearest Neighbors (kNN) Algorithm	8		
	3.3	Classification. Fast Nearest Neighbors (FNN) Algorithm	Ć		
	3.4	Classification. Predictive Model. SVM (Support Vector Machine) Algorithm	Ć		
	3.5	Classification. Predictive Model. RPart (Recursive Partitioning and Regression Trees) Algorithm	1(
	3.6	Classification. Predictive Model. Bagging Algorithm			
	3.7	Classification. Predictive Model. Random Forest Algorithm	13		
4	Model comparison and Conclusion				
	4.1	Model Comparison	13		
	4.2	Conclusion	14		
TI	nie ie	a classification problem (Machine Learning)			

This is a classification problem (Machine Learning)

The two digits we have chosen for the classification are 0 and 8

1 **Preliminaries**

1.1 Set Working Directory

WORKING_DIR <- "C:/Users/HP/Desktop/ML PROJECT"</pre> COLORS <- c('white','black')</pre>

1.2 Load libraries/data/create new variables

```
# Load Libraries
library(MASS)
library(plyr)
library(knitr) # Markdown
library(RColorBrewer)
library(ElemStatLearn)
##
## Attaching package: 'ElemStatLearn'
## The following object is masked from 'package:plyr':
##
##
       ozone
library(foreign) # For reading and writing data stored
library(mlbench)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(tree)
library(maptree)
## Loading required package: cluster
## Loading required package: rpart
library(rpart.plot)
library(rpart) # Recursive Partitioning and Regression Trees (RPart)
library(ipred)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(RWeka) # Weka
##
## Attaching package: 'RWeka'
## The following objects are masked from 'package:foreign':
##
##
       read.arff, write.arff
library(FNN) # Fast k-Nearest Neighbors (kNN)
library(e1071) # Support Vector Machine (SVM)
# Set Color
# colorRampPalette(COLORS) ( 4 )
```

```
CUSTOM_COLORS <- colorRampPalette(colors=COLORS)

CUSTOM_COLORS_PLOT <- colorRampPalette(brewer.pal(10, "Set3"))

# Load data
data(zip.train)
data(zip.test)

DATASET.train <- as.data.frame(zip.train)
DATASET.test <- as.data.frame(zip.test)
```

2 Data Exploratory Analysis

2.1 Look at the TRAINING data set

2.1.1 Check the number of observations in the zip.train (ntrain = 7291)

```
dim(DATASET.train)
## [1] 7291 257
```

2.2 Plot the value of the first four examples of the zip.train

```
par(mfrow=c(1,4));
image(zip2image(zip.train,1), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 6 taken"
image(zip2image(zip.train,2), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 5 taken"
image(zip2image(zip.train,3), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 4 taken"
image(zip2image(zip.train,4), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 7 taken"
```


2.3 Look at the TEST data set

2.3.1 Check the number of observations in the zip.test (ntest = 2007)

```
dim(DATASET.test)
## [1] 2007 257
```

2.4 Plot the value of the first four examples of the zip.test

```
par(mfrow=c(1,4));
image(zip2image(zip.test,1), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 9 taken"
image(zip2image(zip.test,2), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 6 taken"
image(zip2image(zip.test,3), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 3 taken"
image(zip2image(zip.test,4), col=gray(256:0/256), zlim=c(0,1), xlab="", ylab="",xaxt="n",yaxt="n")
## [1] "digit 6 taken"
```


2.5 Chose the two digits 0 and 8 in the Training Set

```
DATASET.train <- DATASET.train[ which(DATASET.train$V1 == '0' | DATASET.train$V1 == '8'), ]
```

2.6 Chose the two digits 0 and 8 in the Test Set

```
DATASET.test <- DATASET.test[ which(DATASET.test$V1 == '0' | DATASET.test$V1 == '8'), ]
```

2.7 Find number of missing values/check ranges (TRAINING data set)

```
sum(is.na(DATASET.train))
## [1] 0
```

2.8 Find number of missing values/check ranges (TESTING data set)

```
sum(is.na(DATASET.test))
## [1] 0
```

2.9 Transformation. Transform Label as Factor (Categorical) and Change Column Names (TRAINING data set)

```
DATASET.train[,1] <- as.factor(DATASET.train[,1]) # As Category
colnames(DATASET.train) <- c("Y",paste("X.",1:256,sep=""))
class(DATASET.train[,1])
## [1] "factor"</pre>
```

```
levels(DATASET.train[,1])
## [1] "0" "8"
```

2.10 Transformation. Transform Label as Factor (Categorical) and Change Column Names (TESTING data set)

```
DATASET.test[,1] <- as.factor(DATASET.test[,1]) # As Category
colnames(DATASET.test) <- c("Y",paste("X.",1:256,sep=""))
class(DATASET.test[,1])
## [1] "factor"
levels(DATASET.test[,1])
## [1] "0" "8"</pre>
```

2.11 Total Number of Digits (Training Set)

```
resTable <- table(DATASET.train$Y)
par(mfrow=c(1,1))
par(mar=c(5, 4, 4, 2) + 0.1) # increase y-axis margin.
plot <- plot(DATASET.train$Y,col=CUSTOM_COLORS_PLOT(10), main="Total Number of Digits (Training Set)", text(x=plot,y=resTable+50, labels=resTable, cex=0.75)</pre>
```

Total Number of Digits (Training Set)


```
par(mfrow=c(1,1))
percentage <- round(resTable/sum(resTable)*100)
labels <- paste0 (row.names(resTable), " (", percentage ,"%) ") # add percents to labels</pre>
```

2.12 Total Number of Digits (Testing Set)

```
resTable <- table(DATASET.test$Y)
par(mfrow=c(1,1))
par(mar=c(5, 4, 4, 2) + 0.1) # increase y-axis margin.
plot <- plot(DATASET.test$Y,col=CUSTOM_COLORS_PLOT(10), main="Total Number of Digits (Testing Set)", yl
text(x=plot,y=resTable+20, labels=resTable, cex=0.75)</pre>
```

Total Number of Digits (Testing Set)


```
par(mfrow=c(1,1))
percentage <- round(resTable/sum(resTable)*100)
labels <- paste0 (row.names(resTable), " (", percentage ,"%) ") # add percents to labels</pre>
```

3 Machine Learning Classifiers

3.1 Classification. Predictive Model. Naive Bayes Algorithm

```
pc <- proc.time()</pre>
model.naiveBayes <- naiveBayes(DATASET.train$Y ~ . , data=DATASET.train)</pre>
proc.time() - pc
##
           system elapsed
      user
##
      0.09
              0.00
                       0.09
summary(model.naiveBayes)
##
             Length Class Mode
## apriori
                2
                     table
                            numeric
```

```
## tables
            256
                   -none- list
                 -none- character
## levels 2
                 -none- logical
## isnumeric 256
                    -none- call
## call
              4
3.1.1 Confusion Matrix (naiveBayes)
prediction.naiveBayes <- predict(model.naiveBayes, newdata=DATASET.test, type='class')</pre>
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.naiveBayes)
              Predicted Class
## Actual Class 0 8
##
             0 319 40
##
              8
                 4 162
error.rate.naiveBayes <- sum(DATASET.test$Y != prediction.naiveBayes) / nrow(DATASET.test)
accuracy.naiveBayes <- 1 - error.rate.naiveBayes</pre>
print (pasteO("Accuary (Precision): ", accuracy.naiveBayes))
## [1] "Accuary (Precision): 0.916190476190476"
     Classification. k-Nearest Neighbors (kNN) Algorithm
3.2
pc <- proc.time()</pre>
model.knn <- IBk(DATASET.train$Y ~ . , data=DATASET.train)</pre>
proc.time() - pc
      user system elapsed
##
      2.14
             0.04
                      1.83
summary(model.knn)
## === Summary ===
                                         1736
## Correctly Classified Instances
                                                           100
## Incorrectly Classified Instances
                                            0
                                                             0
## Kappa statistic
                                            1
## Mean absolute error
                                           0.0006
## Root mean squared error
                                           0.0006
## Relative absolute error
                                           0.1339 %
## Root relative squared error
                                            0.1242 %
## Total Number of Instances
                                        1736
## === Confusion Matrix ===
##
           b <-- classified as
##
   1194
           0 |
                  a = 0
##
      0 542 |
                  b = 8
3.2.1 Confusion Matrix (kNN)
prediction.knn <- predict(model.knn, newdata=DATASET.test, type='class')</pre>
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.knn)
              Predicted Class
```

Actual Class 0

```
## 0 356 3
## 8 6 160
error.rate.knn <- sum(DATASET.test$Y != prediction.knn) / nrow(DATASET.test)
accuracy.knn <- 1 - error.rate.knn
print (paste0("Accuary (Precision): ", accuracy.knn))
## [1] "Accuary (Precision): 0.982857142857143"</pre>
```

3.3 Classification. Fast Nearest Neighbors (FNN) Algorithm

```
pc <- proc.time()</pre>
# Avoid Name Collision (knn)
model.fnn <- FNN::knn(DATASET.train[,-1], DATASET.test[, -1], DATASET.train$Y, k = 10, algorithm="cover
proc.time() - pc
##
      user system elapsed
##
      0.50
              0.00
                      0.51
summary(model.fnn)
    0
## 367 158
3.3.1 Confusion Matrix (FNN)
table("Actual Class"=DATASET.test$Y, "Predicted Class"=model.fnn)
               Predicted Class
## Actual Class
                 Ο
              0 358
##
              8
                  9 157
error.rate.fnn <- sum(DATASET.test$Y != model.fnn) / nrow(DATASET.test)</pre>
accuracy.fnn <- 1 - error.rate.fnn
print (pasteO("Accuary (Precision): ", accuracy.fnn))
## [1] "Accuary (Precision): 0.980952380952381"
```

3.4 Classification. Predictive Model. SVM (Support Vector Machine) Algorithm

```
pc <- proc.time()
model.svm <- svm(DATASET.train$Y ~ . ,method="class", data=DATASET.train)
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'X.256' constant. Cannot scale data.

proc.time() - pc
## user system elapsed
## 0.61 0.02 0.64
summary(model.svm)
##
## Call:
## svm(formula = DATASET.train$Y ~ ., data = DATASET.train, method = "class")</pre>
```

```
##
##
## Parameters:
##
     SVM-Type: C-classification
##
   SVM-Kernel: radial
          cost: 1
##
## Number of Support Vectors: 153
##
   (7677)
##
##
## Number of Classes: 2
##
## Levels:
## 08
3.4.1 Confusion Matrix (SVM)
prediction.svm <- predict(model.svm, newdata=DATASET.test, type='class')</pre>
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.svm)
               Predicted Class
## Actual Class 0
##
              0 357
##
                  4 162
error.rate.svm <- sum(DATASET.test$Y != prediction.svm) / nrow(DATASET.test)
accuracy.svm <- 1 - error.rate.svm</pre>
print (pasteO("Accuary (Precision): ", accuracy.svm))
## [1] "Accuary (Precision): 0.988571428571429"
```

3.5 Classification. Predictive Model. RPart (Recursive Partitioning and Regression Trees) Algorithm

```
pc <- proc.time()</pre>
model.rpart <- rpart(DATASET.train$Y ~ . ,method="class", data=DATASET.train)</pre>
proc.time() - pc
##
      user system elapsed
##
      0.57
              0.00
printcp(model.rpart)
##
## Classification tree:
## rpart(formula = DATASET.train$Y ~ ., data = DATASET.train, method = "class")
## Variables actually used in tree construction:
## [1] X.127 X.137 X.152
## Root node error: 542/1736 = 0.31221
## n= 1736
##
```

plotcp(model.rpart) # visualize cross-validation results

size of tree

rpart.plot(model.rpart, box.palette="RdBu", shadow.col="gray", nn=TRUE, uniform=TRUE, main="Tree of Han-

Tree of Handwritten Digit Recognition

3.5.1 Confusion Matrix (RPart)

```
prediction.rpart <- predict(model.rpart, newdata=DATASET.test, type='class')
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.rpart)

## Predicted Class
## Actual Class 0 8
## 0 347 12
## 8 7 159

error.rate.rpart <- sum(DATASET.test$Y != prediction.rpart) / nrow(DATASET.test)
accuracy.rpart <- 1 - error.rate.rpart
print (paste0("Accuary (Precision): ", accuracy.rpart))

## [1] "Accuary (Precision): 0.963809523809524"</pre>
```

3.6 Classification. Predictive Model. Bagging Algorithm

```
pc <- proc.time()
model.bagging <- bagging(DATASET.train$Y ~ . , method="class", data=DATASET.train, coob = TRUE, control
proc.time() - pc
## user system elapsed
## 15.33 0.09 15.44</pre>
```

```
3.6.1 Confusion Matrix (Bagging)
```

```
prediction.bagging <- predict(model.bagging, newdata=DATASET.test, type='class')</pre>
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.bagging)
               Predicted Class
## Actual Class
                0
                      8
##
              0 353
                      6
##
              8
                  6 160
error.rate.bagging <- sum(DATASET.test$Y != prediction.bagging) / nrow(DATASET.test)
accuracy.bagging <- 1 - error.rate.bagging</pre>
print (paste0("Accuary (Precision): ", accuracy.bagging))
## [1] "Accuary (Precision): 0.977142857142857"
```

3.7 Classification. Predictive Model. Random Forest Algorithm

```
table("Actual Class"=DATASET.test$Y, "Predicted Class"=prediction.forest)

## Predicted Class
## Actual Class 0 8
## 0 357 2
## 8 4 162

error.rate.forest <- sum(DATASET.test$Y != prediction.forest) / nrow(DATASET.test)
accuracy.forest <- 1 - error.rate.forest
print (paste0("Accuary (Precision): ", accuracy.forest))
## [1] "Accuary (Precision): 0.988571428571429"</pre>
```

4 Model comparison and Conclusion

4.1 Model Comparison

```
models <- c('naiveBayes', 'knn', 'fnn', 'svm', 'rpart', 'bagging', 'randomforest')
accuracy <- c(accuracy.naiveBayes, accuracy.knn, accuracy.fnn, accuracy.svm, accuracy.rpart, accuracy.b
results <- data.frame("Models" = models, "Accuracy" = accuracy)
# Table comparison
kable(arrange(results,desc(accuracy)))</pre>
```

Models	Accuracy
svm	0.9885714
random for est	0.9885714
knn	0.9828571
fnn	0.9809524
bagging	0.9771429
rpart	0.9638095

Models	Accuracy
naiveBayes	0.9161905

4.2 Conclusion

From the results of the different models we have had, it seems that \mathbf{svm} gives better results and could be used for prediction for new observations.

14