Reporte de practica 3

González Pardo Adrian

Febrero 2020

1. Simulación

		1.020 ns
Name	Value	0.000 ns 2.000 ns 4.000 ns 6.000 ns 8.000 ns
> ⊌ a[7:0]	05	05
> ₩ b[7:0]	05	05
l⊌ cin	0	
> ⊌ s[7:0]	0a	(Oa
¹⊌ cout	0	

Primer parte con valores hexadecimales equivales a valores decimales: $a = 5_{10} \& b = 5_{10}$ con salida $s = A_{16} = 10_{10}$

		11.960 ns	
Name	Value	10.000 ns 12.000 ns 14.000 ns	16.000 ns 18.000 ns
> W a[7:0]	Oc	Ос	
> W b[7:0]	07	07	
₩ cin	0		
> W s[7:0]	13	13	
¹⊌ cout	0		

Segunda parte con valores hexadecimales equivales a valores decimales: $a=C_{16}=12_{10}$ & $b=7_{10}$ con salida $s=13_{16}=19_{10}$

			22.020 ns			
Name	Value	20.000 ns	22.000 ns	24.000 ns	26.000 ns	28. 000 ns
> ₩ a[7:0]	09			09		
> ₩ b[7:0]	05			05		
¹⊌ cin	0					
> ₩ s[7:0]	0e			0e		'
⅓ cout	0					

Tercer parte con valores hexadecimales equivales a valores decimales: $a = 9_{10} \& b = 5_{10}$ con salida $s = E_{16} = 14_{10}$

		32.040 ns	
Name	Value	30.000 ns 32.000 ns 34.000 ns 36.000 ns 38.000 ns	1
> W a[7:0]	0e	Oe Oe	
> W b[7:0]	09	09	\equiv
⅓ cin	0		
> W s[7:0]	17	17	\longrightarrow
l cout	0		

Cuarta parte con valores hexadecimales equivales a valores decimales: $a=E_{16}=14_{10}~\&~b=9_{10}~con~salida~s=17_{16}=23_{10}$

			42.040 ns			
Name	Value	40.000 ns	42.000 ns	44.000 ns	46.000 ns	48. 000 ns
> ₩ a[7:0]	04			04		
> ₩ b[7:0]	02			02		
⅓ cin	0					
> W s[7:0]	06			06		'
¼ cout	0					

Quinta parte con valores hexadecimales equivales a valores decimales: $a=4_{10}~\&~b=2_{10}~con~salida~s=6_{10}$

			52.020 ns			
Name	Value	50.000 ns	52. 000 ns	54.000 ns	56. 000 ns	58. 000 ns
> W a[7:0]	07			07		
> ₩ b[7:0]	07			07		·
⊌ cin	0					
> W s[7:0]	0e			0e		
¹⊌ cout	0					

Sexta parte con valores hexadecimales equivales a valores decimales: $a=7_{10}~\&~b=7_{10}~con$ salida $s=E_{16}=14_{10}$

			<mark>62.020 ns</mark>			
Name	Value	60.000 ns	62. 000 ns	64.000 ns	66. 000 ns	68. 000 ns
> ₩ a[7:0]	Of			Of		
> ⊌ b[7:0]	05			05		·
¹ cin	0					
> ⊌ s[7:0]	14			14		<u> </u>
¹⊌ cout	0					

Septima parte con valores hexadecimales equivales a valores decimales: $a=F_{16}=15_{10}$ & $b=5_{10}$ con salida $s=14_{16}=20_{10}$

		72.020 ns
Name	Value	70.000 ns 72.000 ns 74.000 ns 76.000 ns 78.000 ns
> W a[7:0]	0b	ОЬ
> W b[7:0]	08	08
⅓ cin	0	
> W s[7:0]	13	13
¹⊌ cout	0	

Octava parte con valores hexadecimales equivales a valores decimales: $a=B_{16}=11_{10}~\&~b=8_{10}~con~salida~s=13_{16}=19_{10}$

			82.020 ns			
Name	Value	80.000 ns	82. 000 ns	84.000 ns	86. 000 ns	88. 000 ns 9
> ₩ a[7:0]	01				01	
> 😽 b[7:0]	04	(04	
¹⅓ cin	0					
> W s[7:0]	05				05	
¹⊌ cout	0					

Novena parte con valores hexadecimales equivales a valores decimales: $a=1_{10}~\&~b=4_{10}$ con salida $s=5_{10}$

2. Tabla de resultados

Operación	A	В	S	Cout
Suma	5	5	10	0
Suma	12	7	19	0
Suma	9	5	14	0
Suma	14	9	23	0
Suma	4	2	6	0
Suma	7	7	14	0
Suma	15	5	20	0
Suma	11	8	19	0
Suma	1	4	5	0