CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DEPARTAMENTO DE COMPUTAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

OTIMIZANDO DESEMPENHO DE FRONT-END EM WEBSITES PARA HTTP2

PEDRO COLEN CARDOSO

Orientador: Flávio Coutinho Centro Federal de Educação Tecnológica de Minas Gerais – CEFET-MG

> BELO HORIZONTE MARÇO DE 2015

PEDRO COLEN CARDOSO

OTIMIZANDO DESEMPENHO DE FRONT-END EM WEBSITES PARA HTTP2

Proposta de Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia da Computação do Centro Federal de Educação Tecnológica de Minas Gerais

Orientador: Flávio Coutinho

Centro Federal de Educação Tecnológica

de Minas Gerais - CEFET-MG

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS
DEPARTAMENTO DE COMPUTAÇÃO
CURSO DE ENGENHARIA DE COMPUTAÇÃO
BELO HORIZONTE
MARÇO DE 2015

Lista de Quadros

Quadro 1 – Cronograma de atividades.		9
--------------------------------------	--	---

Lista de Abreviaturas e Siglas

CERN Organização Europeia de Pesquisas Nucleares

W3 World Wide Web

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

Sumário

1 – Intr	odução
1.1	Otimização de Desempenho de Websites
1.2	Espaço para Novas Técnicas
2 – Des	crição do problema
3 – Obj	etivos
3.1	Objetivo Geral
3.2	Objetivos Específicos
4 – Res	ultados Esperados
5 – Met	todologia
6 – Infr	raestrutura necessária 8
7 – Cro	nograma
Referê	ncias

1 Introdução

A Internet como é conhecida nos dias de hoje foi proposta em 1989 pelo cientista britânico Tim Berners-Lee pesquisador da Organização Europeia de Pesquisas Nucleares, CERN. De acordo com a CERN a ideia de Lee era ajudar seus colegas a compartilharem informações científicas de maneira mais rápida (CERN, 2015), possibilitando o maior avanço das pesquisas realizadas na Europa e ao redor de todo o mundo. Para isso Lee queria inventar um modelo simples para o compartilhamento de dados via rede de computadores e então criou o projeto da *World Wide Web* (W3). Como descrito por Lee em seu primeiro *website* o W3 era "uma iniciativa de recuperação de informação em hipermídia em grande área, com o objetivo de dar acesso universal para um grande universo de documentos" (BERNERS-LEE, 1990). No final de 1990, Lee já tinha terminado de desenvolver todas as ferramentas necessárias para o funcionamento de seu modelo: uma linguagem de marcação de hipertextos (HTML), um navegador *web* (o WorldWideWeb) e um protocolo para a transferência de hipertextos (HTTP). O primeiro *site* que Lee colocou no ar ainda pode ser acessado pelo seu endereço original, http://info.cern.ch/, e contém informações sobre o próprio W3.

Em 1993, vendo as vantagens que poderiam trazer para todos, a CERN decidiu colocar a World Wide Web em domínio público. Então, em 1994, Tim Berners-Lee fundou o *World Wide Web Consortium* (W3C), com o objetivo de formalizar especificações e regras para o uso do seu modelo. O W3C se tornou o responsável por garantir que a Web funcionasse para todos e que evoluísse de uma maneira consciente.

Muita coisa mudou desde que Tim propôs e desenvolveu a primeira versão da World Wide Web. O modelo de Tim se tornou o mais utilizado pela rede mundial de computadores, a Internet, e hoje em dia, de acordo com o *site* Internet World Status mais de 3 bilhões de pessoas utilizam das ferramentas desenvolvidas por ele para acessar informações pessoais, fazer pesquisas, se comunicar com amigos, compartilhar trabalhos, fazer compras, etc. (GROUP, 2014)

1.1 Otimização de Desempenho de Websites

Atualmente, *websites* são compostos por páginas interativas, com vídeos, fotos, animações, cores, links e outros elementos dinâmicos que tiram toda a monotonia de uma folha de papel apenas com textos. Mas o primeiro *website* desenvolvido por Lee em 1990 era bem mais simples do que isso e continha apenas textos estáticos e links internos.

Com o avanço da Web surgiram novas maneiras de interagir com ela. A hu-

manidade está na era das imagens e dos vídeos, páginas não podem ser estáticas se não os usuários não ficam o tempo necessário nela, é preciso criar *layouts* agradáveis e interessantes além de interatividade entre *websites* e usuários. Esses fatores fizeram com que os sites que antigamente possuíam alguns poucos *bytes* de informação passassem a ter muitos *megabytes*. Além disso o número de acessos simultâneos aumentou e os usuários ficaram mais impacientes, exigindo que as páginas da Web respondessem cada vez mais rápido. Então criou-se um paradoxo: os sites ficaram mais pesados e difíceis de serem carregados, os acessos ficaram mais frequentes sobrecarregando mais os servidores, mas os usuários passarão a querer respostas mais rápidas e eficientes. Sozinhas, nem mesmo as melhorias na velocidade de conexão com a Internet seriam o suficiente para solucionar esse problema. Algo a mais precisava ser feito.

Por muitos anos acreditou-se que para melhorar o desempenho de um *website* era suficiente melhorar o desempenho do que está por trás dele, o *back-end*. O *back-end* é a parte responsável por gerenciar as operações de um *website* e controlar tudo o que acontece na parte vista pelo usuário, o *front-end*.

No início dos anos 2000, começaram a ser realizados novos estudos a procura de técnicas para a entrega mais rápida de conteúdo pela Web. A otimização da performance de *websites* se tornou um fator crítico para o sucesso de algumas empresas que dependiam da Web para sobreviver. Os pesquisadores então perceberam que otimizar *back-end* não era o suficiente, pois apesar de ser nele onde ocorrem que as operações mais pesadas computacionalmente as melhorias de desempenho eram limitadas. Mesmo assim muito tempo e dinheiro foi gasto procurando maneiras de otimizar servidores e sistemas de gestão de conteúdo, e pouca atenção foi dada ao *front-end*. Mas de acordo com Steve Souders (SOUDERS, 2007) esse foi o erro dos desenvolvedores por anos. Apenas 10-20% do tempo de carregamento de uma página é gasto com operações de *back-end*, os outros 80-90% são de responsabilidade do *front-end*.

Até o ano de 2007, pouco conteúdo sobre otimização de *front-end* era disponibilizado para o grande público, até que o engenheiro de software do Yahoo!, Steve Souders, publicou o livro "High Performance Web Sites" explicando 14 técnicas utilizadas pela equipe da gigante da Internet para tornar seus sites mais rápidos (SOUDERS, 2007). Essas técnicas eram específicas para otimização no *front-end* dos sites. A evolução da Web fez com que esse tipo de otimização se tornasse fundamentalmente importante para a velocidade da entrega do conteúdo, e Souders fez com que esse segredo deixasse de pertencer apenas às grandes empresas e passasse a ser do conhecimento de todos.

1.2 Espaço para Novas Técnicas

Para desenvolver seus métodos de otimização, Souders se baseou no protocolo de troca de conteúdo criado por Tim Berners-Lee em 1990, o HTTP. Esse protocolo tinha algumas características e limitações que faziam necessárias as técnicas propostas por ele.

3

Ao longo dos anos, o HTTP mudou muito pouco. Após a sua primeira versão oficial, que teve sua descrição aprovada em 1996, o HTTP/1.0, foi lançado apenas uma atualização do protocolo, que foi aprovado em 1999, o HTTP/1.1 (NIELSEN, 2004). O protocolo era tão robusto que de sua ideia inicial pouca coisa precisou ser mudada para o HTTP ser usado em todo o mundo.

Às vésperas do lançamento do HTTP2, desenvolvido com o intuito de melhorar o desempenho e a segurança da Internet, estima-se que muitas das técnicas propostas por Souders se tornem obsoletas. As mudanças geradas pela implantação do HTTP2 farão necessárias novas técnicas de otimização e o desenvolvimento dessas técnicas dependerá da compreensão do novo protocolo. Por isso é necessário já começar a estudar e analisar o comportamento do HTTP2 na Web.

2 Descrição do problema

Com a evolução da Internet os *websites* passaram a ser cada vez mais robustos e volumosos. Foram inventadas novas maneiras de inserir informações, criar interações e estilizar as páginas da web. Com o surgimento de linguagens como o CSS e o JavaScript, os *sites* ficaram mais atraentes e interessantes e, além disso, eles deixaram de ser apenas páginas estáticas para o compartilhamento de conteúdo e passaram a ser aplicações complexas com várias funcionalidades. Com esses novos sites iterativos e atraentes surgiu também a necessidade de técnicas para torná-los mais rápidos.

Ao longo dos anos técnicas para melhorar o desempenho dos *websites* foram desenvolvidas e aplicadas em muitas páginas da Web. Mas o protocolo de transferência de hipermídia, o HTTP, está sofrendo mudanças e já foi confirmada o lançamento de uma nova versão, o HTTP2. Com esse novo protocolo deverão ocorrer mudanças na maneira como são feitas as otimizações de desempenho dos *websites*.

Este trabalho tem a proposta de avaliar a necessidade e a eficácia das técnicas existentes com a chegada do HTTP2 e ainda propor novas técnicas adequadas ao novo portocolo caso isso seja necessário.

3 Objetivos

3.1 Objetivo Geral

O objetivo deste trabalho é analisar o comportamento das técnicas de otimização propostas por Steve Souders quando utilizadas no HTTP2 e, se necessário, propor novas técnicas adequadas ao novo protocolo.

3.2 Objetivos Específicos

- 1. Fazer uma análise comparativa das versões do protocolo HTTP
- Avaliar os ganhos de desempenho das técnicas propostas por Steve Souders ao aplicá-las ao HTTP2
- 3. Se necessário, propor novas técnicas de otimização de desempenho de *websites* específicas para o HTTP2

4 Resultados Esperados

Ao final deste trabalho, será apresentada uma tabela comparativa das versões do protocolo HTTP que sirva de material de estudo e compreensão do protocolo para futuros estudos. Também será apresentada uma análise das técnicas propostas por Steve Souders aplicadas ao HTTP2 explicitando quais técnicas devem continuar sendo usadas e quais se tornarão obsoletas. E, caso se prove necessário, será propostas novas técnicas de otimização de desempenho de *websites* para o protocolo HTTP2, com especificações de como aplicá-las.

5 Metodologia

A primeira etapa deste trabalho será uma análise para a compreensão dos modelos de otimização de desempenho de *websites* existentes e aceitos na atualidade e a segunda etapa do trabalho será o levantamento de uma nova teoria (novas técnicas de otimização) e a validação dessa teoria.

Logo, para o desenvolvimento deste trabalho as seguintes atividades serão realizadas:

- 1. Estudo e compreensão dos protocolos HTTP/1.0, HTTP/1.1 e HTTP/2.0
- 2. Análise das técnicas de otimização de websites propostas por Steve Souders para o protocolo HTTP/1.1
- 3. Testes e análises de eficiência das técnicas de otimização propostas por Steve Soubers em cima do protocolo HTTP/2.0
- 4. Proposta de novas técnicas de otimização de websites para o protocolo HTTP2
- 5. Testes e analises de eficiência das novas técnicas propostas para o protocolo HTTP2

6 Infraestrutura necessária

Para o desenvolvimento deste trabalho será utilizado apenas um computador pessoal para a realização de testes e análises. O computador deverá ser equipado com um navegador web que possibilite a configuração do protocolo HTTP2 e ter acesso à Internet. Um requisito necessário para a confiabilidade dos testes será uma conexão à Internet com pouca oscilação e com a mesma velocidade de conexão do início ao fim do projeto, de preferência, mas não determinante, uma conexão cabeada.

7 Cronograma

Este trabalho será desenvolvido no decorrer de 10 meses seguindo o cronograma proposta abaixo.

 $Quadro\ 1-Cronograma\ de\ atividades.$

	Março	Abril	Maio	Junho	Julho	Ago.	Sep.	Out.	Nov.	Dez.
	2015	2015	2015	2015	2015	2015	2015	2015	2015	2015
Pré-Projeto	X									
Revisão bibliográfica		X								
Estudo e compreensão dos										
protocolos HTTP/1.0 e		X	X							
HTTP/1.1										
Análise das técnicas de			×	X						
otimização existentes			^	^						
Estudo e compreensão do				X	X					
protocolo HTTP/2.0				^	^					
Teste das técnicas já										
existentes para o HTTP/1.1					X	X				
no HTTP/2.0										
Proposta de novas técnicas										
de otimização para o						X	X	X		
HTTP/2.0										
Analise das novas técnicas							X	X	X	
propostas							^	^		
Escrita do TCC1			X	X						
Escrita do TCC2						X	X	X	X	
Elaboração da										X
apresentação										^

Referências

BERNERS-LEE, T. **World Wide Web**. 1990. Disponível em: http://info.cern.ch/hypertext/WWW/TheProject.html. Citado na página 1.

CERN. **The birth of the web**. 2015. Disponível em: http://home.web.cern.ch/topics/birth-web. Citado na página 1.

GROUP, M. M. **INTERNET USAGE STATISTICS The Internet Big Picture**. 2014. Disponível em: http://www.internetworldstats.com/stats.htm. Citado na página 1.

NIELSEN, J. G. H. F. **Change History for HTTP**. 2004. Disponível em: http://www.w3.org/Protocols/History.html. Citado na página 3.

SOUDERS, S. **High Performance Web Sites**. [S.l.]: O'Reilly, 2007. Citado na página 2.