

Course Name: Mathematics - II (BSC-203)

Multivariate Calculus (Integration)

Dr. Sharmistha Ghosh Professor, IEM-Kolkata

Multivariate Integration

Double Integrals

- Concerned with functions of two variables as z = f(x, y) and are integrals of the type
- $\iint f(x,y)dxdy$ or $\iint_R f(x,y)dxdy$

Triple Integrals

- Concerned with functions of three variables as w = f(x, y, z) and are integrals of the type
- $\iiint f(x, y, z) dx dy dz$ or $\iiint_R f(x, y, z) dx dy dz$

Understanding Double Integrals

Double Integrals

The Double Integral over a Rectangle

We start with a function f(x, y) continuous on a rectangle

$$R: a \le x \le b, c \le y \le d$$
.

We want to define the double integral of *f* over *R*:

$$\iint\limits_R f(x,y)dxdy$$

Double Integrals

The Double Integral over a Rectangle

First we partition the rectangle *R* as follows. We begin with a partition

$$P_1 = \{x_0, x_1, \dots, x_m\} \quad \text{of} \quad [a, b],$$
 and a partition

$$P_2 = \{y_0, y_1, \dots, y_n\}$$
 of $[c, d]$.

The set

$$P = P_1 \times P_2 = \{(x_i, y_j): x_i \in P_1, y_j \in P_2\}$$
 is called a *partition of R*. The set *P* consists of all the grid points (x_i, y_i) .

Double Integrals

The Double Integral over a Rectangle

Using the partition P, we break up R into $m \times n = N$, say, non-overlapping rectangles

 $R_{ij}: x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j, \text{ where } 1 \le i \le m, 1 \le j \le n.$

Double Integrals

The Double Integral over a Rectangle

Now consider sum of all the products

$$f(x_i, y_j)(x_i - x_{i-1})(y_j - y_{j-1}) = f_{ij}\Delta x_i \Delta y_j$$
 for all $1 \le i \le m$, $1 \le j \le n$ i.e.

 $\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} \Delta x_i \Delta y_j$

Let the number of partitions $N \to \infty$ in such a way that the area $\Delta x_i \Delta y_j$ of each small rectangle $R_{i,j} \to 0$. If the above sum exists under this limit, i.e.

$$\lim_{N \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} \Delta x_i \Delta y_j$$

exists, it is called the **Double Integral** of the function f(x, y) over the region R and is denoted as

$$\iint\limits_R f(x,y)dxdy.$$

Double Integrals

The Double Integral as a Volume

If f is continuous and nonnegative on the rectangle R, the equation z = f(x, y)

represents a surface that lies above R. In this case, the double integral

gives the **volume of the solid** that is bounded below by *R*

and bounded above by the surface z = f(x, y).

Double Integrals

The Double Integral over an arbitrary region Ω

Let Ω be a bounded region of more general shape, and let Ω be enclosed by a rectangle R.

To find the double integral $\iint_{\Omega} f(x,y)dxdy$, we define a new function F(x,y) with domain \mathbf{R} as follows:

$$\iint_{\Omega} f(x,y) dx dy,$$

$$F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } \Omega \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } \Omega \end{cases}$$

Then,
$$\iint\limits_{\Omega} f(x,y) dx dy = \iint\limits_{R} F(x,y) dx dy$$

Double Integrals

The Double Integral over an arbitrary region Ω

If f is continuous and nonnegative over Ω , the extended f is nonnegative on all of R. The **volume of the solid** T bounded above by z = f(x, y) and bounded below by Ω is given by:

$$\iint\limits_{\Omega} f(x,y) dx dy$$

Double Integrals

The Double Integral representing Area

Special Case: If f(x, y) = 1, then the double integral $\iint f(x, y) dx dy$,

reduces to

$$\iint\limits_{\Omega} dx dy$$

which now represents the area of the region Ω .

Question:

How to evaluate Double Integrals?

Thank You

