Neural Network Metrics for Viterbi Decoding in Molecular Communication Channels

Peter Hartig

December 16, 2019

Outline

Background

Initial Results

Viterbi Setup

Maximum Likelihood sequence decoding can be formalized as

maximize
$$Pr(\mathbf{y}|\mathbf{x})$$
maximize $\prod_{i=1}^{N} Pr(y_i|\mathbf{x})$
maximize $\sum_{i=1}^{N} -log(Pr(y_i|\mathbf{x}))$
 $s_1 = 00$ s_1 s_1 s_2 $s_3 = 10$ s_3 s_3 $s_4 = 11$ s_4 s_5

Viterbi Setup Continued

Each state change is decided by the metric $Pr(y_i|\mathbf{x})$. In a linear channel with length I impulse response, this metric becomes $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Example with channel impulse response length 2 and constellation size 2.

Incorporating Neural Net into Viterbi Decoding

Problem 1

Viterbi algorithm requires the distribution $Pr(y_i|\mathbf{x}_{i-1}^i)$.

► Solution

Have a neural network learn $Pr(y_i|\mathbf{x}_{i-1}^i)$.

Problem 2

Generating training data $Pr(y_i|\mathbf{x}_{i-1}^i)$ requires knowledge of the channel and its (current) parameters.

▶ Solution Decompose Pr(y_i|xⁱ_{i-1}) into

$$Pr(y_{i}|\mathbf{x}_{i-1}^{i}) = \frac{Pr(\mathbf{x}_{i-1}^{i}|y_{i})Pr(y_{i})}{Pr(\mathbf{x}_{i-1}^{i})}$$
(6)

٠.

Metrics for $Pr(x_{i-1}^i|y_i)$

Metrics for $Pr(y_i)$

Gaussian Mixture Model using Expectation-Maximization algorithm

Outline

Background

Initial Results

Detection Performance

Without ISI

With ISI

Detection Performance

Reduced Training data (100 vs. 1000 symbols)

Next Steps

- ▶ Improve decoding performance with neural net.
- ▶ Apply to a sampled molecular communications channel.
 - Estimate matched filter
- Generate training data for molecular communications channel and test "transfer learning" to real data.

Thank You.

Questions or Comments?