(Alterek, műveletek mátrixokkal)

1. a) Az $\mathcal{A}: \mathbf{R}^n \to \mathbf{R}^m$ lineáris leképezés $k\acute{e}ptere$ Im $(\mathcal{A}) = \{\mathcal{A}\boldsymbol{x} \mid \mathbf{x} \in \mathbf{R}^n\}$, magtere: Ker $(\mathcal{A}) = \{\boldsymbol{x} \in \mathbf{R}^n \mid \mathcal{A}\boldsymbol{x} = \mathbf{0}\}$. (Egy vektorrendszer bázis, ha független is és generátorrendszer is.) Mi az alábbi $\mathcal{A}: \mathbf{R}^5 \to \mathbf{R}^3, \boldsymbol{x} \mapsto \boldsymbol{A}\boldsymbol{x}$ leképezések mag- és képterének dimenziója, és egy-egy bázisa, ha az \boldsymbol{A} mátrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 8 & 6 & 2 \\ 1 & 2 & 7 & 0 & -11 \end{bmatrix} \qquad \mathbf{hf.:} \ \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 7 & 11 \\ 0 & 1 & 1 & 1 & -1 \end{bmatrix}$$

Igazoljuk, hogy az oszlopok által generált $(\mathcal{C}(A))$ altér ugyanaz, mint az A képtere.

- b) Írjuk fel az Ax = 0 homogén egyenletrendszer megoldását (ha A a fenti mátrix)!
- 2. Lineáris alteret alkotnak-e az alábbi $M \subseteq L$ halmazok az L lineáris térben, ha $L_1, L_2 \le L$ alterek L-ben? (Ha igen, igazoljuk akkurátusan, ha nem, cáfoljuk körültekintően.) (Használjuk azt a jellemzést, hogy M altér L-ben, akkor és csak akkor, ha M nem üres és zárt a lineáris kombinációra.)

a)
$$L_1 \cap L_2$$
, b) $L_1 \cup L_2$, c) $\{x + y \in L \mid x \in L_1, y \in L_2\}$

hf. Legyen $H \subseteq \text{Hom}(L)$ nem üres. Altér-e:

a)
$$\{x \in L \mid \exists A \in H : Ax = 0\}$$
, b) $\{x \in L \mid \forall A \in H : Ax = 0\}$

3. Legyen
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Melyik igaz?

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
, b) $(B+C)(B-C) = B^2 - C^2$, hf.:) $(A+I)^2 = A^2 + 2A + I$

4. (Ha $\boldsymbol{A} \in \mathbf{R}^{n \times m}$, akkor a $(\boldsymbol{A}^{\mathrm{T}}) \in \mathbf{R}^{n \times m}$ transzponált mátrix komponensei: $(\boldsymbol{A}^{\mathrm{T}})_{ij} = \mathbf{A}_{ji}$. Továbbá $I \in \mathbf{R}^{n \times n}$ az egységmátrix: $\boldsymbol{I}_{ij} = \delta_{ij}$, ahol $\delta_{ij} = 1$, ha i = j, $\delta_{ij} = 0$, ha $i \neq j$ a Kronecker-delta.) Mikor értelmes, és ha értelmes, akkor igazoljuk definíció szerint, hogy

a)
$$(AB)C = A(BC)$$
, b) $AI = A$, c) $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$
hf.: $(A+B)C = AC+BC$, b) $(A+B)^{\mathrm{T}} = A^{\mathrm{T}}+B^{\mathrm{T}}$

iMSc. Az A mátrix rk(A) rangján az oszlopai által kifeszített altér dimenzióját értjük. Igazoljuk, hogy rk $(AB) \le \text{rk}(A)$.