Напоминание. Отображение $\varphi \colon X \to Y$ из множества X в множество Y называется *взаимно однозначным* (или *биекцией*), если для каждого элемента $y \in Y$ существует ровно один элемент x такой, что $\varphi(x) = y$.

Преобразование ψ называется *тождественным*, если для каждого $x \in X$ выполнено равенство $\psi(x) = x$. Обозначение: $\psi = \mathrm{id}_X$.

Отображение $\varphi \colon X \to Y$ называется *обратным* для отображения $\psi \colon Y \to X$, если справедливы равенства $\varphi \circ \psi = \mathrm{id}_Y$ и $\psi \circ \varphi = \mathrm{id}_X$. Обозначение: $\varphi = \psi^{-1}$

Количество элементов во множестве X обозначается через |X| или #X.

Определение 1. Преобразованием множества X называется любая биекция $\varphi \colon X \to X$. Для множества всех преобразований X зарезервировано обозначение S(X).

Определение 2. Γ руппой преобразований множества X называется всякая непустая совокупность его преобразований G, удовлетворяющая следующим свойствам:

- (i) G замкнута относительно композиции, то есть для всех $g, h \in G$ верно: $g \circ h \in G$;
- (ii) G замкнута относительно взятия обратного преобразования, то есть для всех $g \in G$ преобразование g^{-1} лежит в G.

Задача 1. Докажите, что группа преобразований любого множества содержит тождественное преобразование.

Задача 2. Пусть множество X — это квадрат ABCD. Обозначим через s_{ac} , s_{bd} , s_H и s_V симметрии относительно диагонали AC, диагонали BD, горизонтали и вертикали квадрата соответственно. Далее, обозначим через r_0 , r_1 , r_2 и r_3 повороты вокруг центра квадрата на 0° , 90° , 180° и 270° соответственно.

- а) Докажите, что $G = \{s_{ac}, s_{bd}, s_H, s_V, r_0, r_1, r_2, r_3\}$ образует группу преобразований квадрата.
- б) Выпишите таблицу умножения в этой группе.
- в) Придумайте группу преобразований квадрата, состоящую из четырёх преобразований.

Задача 3.

- а) Докажите, что для любого множества X множество S(X) является группой;
- **б)** Пусть X конечно, причём |X| = n. Найдите |S(X)|.

Замечание 1. В условиях задачи 36) группа S(X) называется *симметрической группой* и обозначается S_n .

Задача 4. а) Опишите все преобразования правильного треугольника, сохраняющие расстояния между любыми двумя его точками.

б) Докажите, что эти преобразования образуют группу.

Определение 3. Порядком элемента g группы преобразований G называется наименьшее натуральное k такое, что $g^k = \underbrace{g \circ \cdots \circ g}_{} = \mathrm{id}$. Обозначение: $\mathrm{ord}(g)$.

Определение 4. Порядком группы G называется количество элементов в G. Обозначение: |G| или #G.

Задача 5. Найдите порядок каждого элемента групп из задач 2 и 4.

Задача 6. Пусть множество X является подмножеством прямой, плоскости или пространства. Рассмотрим множество Isom $(X) = \{ \varphi \in S(X) \mid \varphi$ сохраняет расстояния $\}$. Докажите, что вне зависимости от X множество преобразований Isom(X) является группой. Эта группа называется группой движений X.

Задача 7. Перечислите все элементы и их порядки в группах движений следующих множеств:

а) прямоугольник; б) правильный m-угольник; в) правильный тетраэдр; г) куб; д)* октаэдр; е)* икосаэдр; ж)* додекаэдр.

(Как связаны между собой куб и октаэдр? Тот же вопрос для икосаэдра и додекаэдра. :ямкиэдоП)

Замечание 2. Группа из задачи 76) называется группой диэдра и обозначается D_m .

1	2 a	2 6	2 B	3 a	3 6	4 a	4 6	5	6	7 a	7 б	7 в	$_{\Gamma}^{7}$	7 д	7 e	7 ж