

## Neural and Evolutionary Learning

Class 2 - Genetic Programming

Prof.: Karina Brotto Rebuli

krebuli@novaims.unl.pt



### Genetic Programming

|                           | GA                            | *Tree-based GP                |
|---------------------------|-------------------------------|-------------------------------|
| Genome                    | Constant length               | Lisp-like tree                |
| Task type                 | Optimization                  | Many tasks, including ML      |
| Population initialization | Random values                 | **Random trees                |
| Crossover                 | ***"Blind" genotype variation | ***"Blind" genotype variation |
| Mutation                  | ***"Blind" genotype variation | ***"Blind" genotype variation |

<sup>\*</sup> We will work woth tree-based GP, but GP solutions can have different structures, like grammars, ML pipelines. etc.











<sup>\*\*</sup> Although many initialization methods exist, tree generation in the initial population involves inherent randomness.

<sup>\*\*\*</sup> Some advanced genetic operators account for additional metrics (solutions and populations).



# Genetic Programming

- Important issues:
  - Bloat
  - Premature convergence
  - Overfitting

- Comparing solutions size and fitness evolution.
- Comparing diversity evolution.
- Comparing train and test fitness.

How to track and overcome them?













# Genetic Programming Implementations

- SRBench benchmarked methods and implementations (not all use Python):
  - Age-Fitness Pareto Optimization (Schmidt and Lipson 2009)
  - Age-Fitness Pareto Optimization with Co-evolved Fitness Predictors (Schmidt and Lipson 2009)
  - AlFeynman 2.0 (Udrescu et al. 2020)
  - Bayesian Symbolic Regression (Jin et al. 2020)
  - Deep Symbolic Regression (Petersen et al. 2020)
  - Fast Function Extraction (McConaghy 2011)
  - Feature Engineering Automation Tool (La Cava et al. 2017)
  - epsilon-Lexicase Selection (La Cava et al. 2016)
  - GP-based Gene-pool Optimal Mixing Evolutionary Algorithm (Virgolin et al. 2017)
  - gplearn (Stephens)
  - Interaction-Transformation Evolutionary Algorithm (de Franca and Aldeia, 2020)
  - Multiple Regression GP (Arnaldo et al. 2014)
  - Operon (Burlacu et al. 2020)
  - Semantic Backpropagation GP
- DEAP (Distributed Evolutionary Algorithms in Python <a href="https://deap.readthedocs.io/en/master/">https://deap.readthedocs.io/en/master/</a>) is also an interesting alternative.















# slim\_gsgp NOVA IMS library

- It is based on PyTorch tensor objects, which is a very robust and flexible framework.
- slim\_gsgp includes:
  - standard Genetic Programming (GP);
  - standard Geometric Semantic Genetic Programming (GSGP);
  - all existing SLIM-GSGP variants, facilitating comparative analysis and benchmarking.
- Source code: <a href="https://github.com/DALabNOVA/slim">https://github.com/DALabNOVA/slim</a>.
- Manual: <a href="https://slim-library.readthedocs.io/en/latest/">https://slim-library.readthedocs.io/en/latest/</a>.
- Paper: Rosenfeld et al. 2025 Slim\_gsgp: A Python Library for Non-Bloating GSGP, GECCO 2025.











# slim\_gsgp NOVA IMS library



Figure 01. Overview of the slim\_gsgp framework. Source: the author.











# slim\_gsgp NOVA IMS library

Let's take a look at the codes.















#### Questions?



https://forms.gle/EV9VkExNtfNckMSM8 Register your feedback









