I claim:

A soft tissue coagulation device, comprising: a shaft defining a distal end and including an outer structure col formed/from material that is relatively high in thermally conductivity and substantially electrically nonconductive; at least one energy transmission device supported on the outer structure in spaced relation to the distal end of the shaft; and at least one fluid lumen defined by the outer structure and 8 located such that a portion thereof is aligned with the at least one energy 9 transmission device. 2. 1 A device as claimed in claim 1, wherein the shaft is relatively 2 short 3. A device as claimed in claim 1, wherein at least a portion of the 1 shaft is relatively stiff. 2 1 A device as claimed in claim 3, wherein the shaft includes a 2 mandrel and the outer structure is mounted on the malleable 3 mandrel. 1 A device as claimed in claim 3, wherein the shaft includes a tubular member defining a distall end and the outer structure extends distally 2 3 from the distal end of the tubular member. 6. 1 A device as claimed in claim 1, wherein the shaft include a 2 proximal portion and a distal portion, the device further comprising: 3 steering apparatus that deflects the distal portion relative to 4 the proximal portion. 1 7. A dévice as claimed in claim 1, wherein the shaft includes a pre-2 bent portion. 25

1	8. A device as claimed in claim 1, wherein the at least one fluid										
2	lumen comprises an inlet lumen and an outlet lumen.										
1	9. A device as claimed in claim 8, wherein the inlet lumen and the										
2	outlet lumen define respective distal ends, the device further comprising:										
3	a non-conductive tip member defining a lumen that connects the										
4	distal ends of the inlet lumen and outlet lumen.										
1	10. A device as claimed in claim 1, wherein the at least one fluid										
2	lumen includes inner and outer lumen surfaces defining a distance										
3	therebetween, the outer structure includes a wall defining a wall thickness										
4	between the at least one energy transmission device and the at least one fluid										
5	lumen, and the distance between the inner and outer lumen surfaces is										
6	greater than the wall thickness.										
1	11. A device as claimed in claim 1, wherein the at least one energy										
2	transmission device comprises a plurality of longitudinally spaced energy										
3	transmission devices. 5V										
1	12. A device as claimed in claim 1, wherein the at least one energy										
2	transmission device comprises an electrode.										
1	13. A surgical probe as claimed in claim 1, wherein outer structure										
2	defines a perimeter, the at least one energy transmission device extends										
3	around less than the entire perimeter, the at least one fluid lumen comprises										
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion of										
5	at least one the energy transmission device and the outlet lumen.										
1	(14.) A surgical probe as claimed in claim 13, wherein the outlet										
2	lumen includes thermal insulation.										
1	15. A soft tissue coagulation device, comprising:										
2	a shaft defining a distal end and including an outer structure										
3	formed from material that is substantially electrically nonconductive;										

4	at least one energy transmission device supported on the oute
5	structure in spaced relation to the distal end of the shaft; and
6	at least one fluid lumen defined by the outer structure such tha
7	a wall having a wall thickness is between the at least one fluid lumen and the
8	at least one energy transmission device, located such that a portion thereof is
9	aligned with the at least one energy transmission device and including inner
10	and outer lumen surfaces defining a distance therebetween that is greater
11	than the wall thickness.
1	16. A device as claimed in claim 15/wherein the shaft is relatively
2	short.
1	17. A device as claimed in claim $\frac{1}{5}$, wherein at least a portion of the
2	shaft is relatively stiff.
1	18. A device as claimed in claim 15, wherein the shaft includes a
2	malleable mandrel and the outer structure is mounted on the malleable
3	mandrel.
1	19. A device as claimed in claim 15, wherein the shaft includes a
2	tubular member defining a distal end and the outer structure extends distally
3	from the distal end of the tubular member.
1	20. A device as claimed in claim 15, wherein the shaft include a
2	proximal portion and a distal portion, the device further comprising:
3	a steering apparatus that deflects the distal portion relative to
4	the proximal portion.
1	21. A device as claimed in claim 15, wherein the shaft includes a
2	pre-bent portion.
1	22. A device as claimed in claim 15, wherein the at least one fluid
2	lumen comprises an inlet lumen and an outlet lumen.

1	23. A device as claimed in claim 22, wherein the inlet/fumen and the
2	outlet lumen define respective distal ends, the device further comprising:
3	a non-conductive tip member defining a lumen that connects the
4	distal ends of the inlet lumen and outlet lumen.
1	24. A device as claimed in claim 15, wherein the at least one energ
2	transmission device comprises a plurality of longity dinally spaced energy
3	transmission devices.
1	25. A device as claimed in claim 15, wherein the at least one energy
2	transmission device comprises an electrode.
1	26. A surgical probe as claimed in claim 15, wherein outer structure
2	defines a perimeter, the at least one energy transmission device extends
3	around less than the entire perimeter, the at least one fluid lumen comprises
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion o
5	at least one the energy transmission device and the outlet lumen.
1	.27. A surgical probe as claimed in claim 26, wherein the outle
2	lumen includes thermal insulation.
1	28. A surgical probe as/claimed in claim 15, wherein the distance
2	between the inner and outer lumen surfaces is at least two times greater than
3	the wall thickness.
1	29. A method of coagulating soft tissue with an apparatus including
2	an elongate energy transmission device and an inner lumen, comprising the
3	steps of:
4	positioning the elongate energy transmission device in electrica
5	contact with tissue;
6	transmitting energy to the tissue with the energy transmission
7	device; and
8	passing fluid through the inner lumen such that heat is
9	transferred from the energy transmission device to the fluid.

30.	A method as claimed in claim 29, wherein the step of positioning
the elongate	energy transmission device comprises positioning a plurality o
spaced elect	rodes in electrical contact with tissue.

	31.	A m	nethod	as	claimed	l in	claim	29,	where	in the	step	of	pass	ing
fluid	through	the	inner	um	en comp	oris	es pas	sing	fluid t	hroug	h an	inle	t lum	er
and:	an outlet	lum	en						1	1				