INTRODUCTION

Lecture 1: Welcome

- The ranking which Google uses for search results is

a machine learning algorithm. The reason, probably, is that it's impossible to hard-code all possible searches people might do.

- -D Span filters are also learning algorithms. Again, it would be impossible to list all possible span emails are could receive.
- Meadine learning grew out of work in Artificial Intelligence (AI)? grew out of work in Artificial

=> There are many tasks for which we need machines to learn on their own.

- some modern application of Machine learning:

- (i) Database mining: growth of automation (web has resulted in much larger datasets which need to be undertood. Ex) web click data, medical records, biology....
- (ii) Applications that cannot be programmed by hard:

 -> handwriting recognition

 -> Nutural Larguyi Processing (NLP)

ci	ii) Self-customizing programs: Netflix Product recommendations	s: Netflix Product recommendations	
	Again, with millions of users, it's impossible to write code for each one to recommend new shows they might enjoy.		
Cì	v) Understanding the humail brain! How is it that we humans learn? (real AI)		
Lecture 2	: What is Machine Learning?		
Some defin	itims of Machine Learning:		
(i) A1	Thur Sumuel (1959): Field of study that gives computers the ability to tearn without being explicitly programmed.		
	He built a Checker 5- Playing program where the computer would learn them playing tens of thousand of games against itself. This was the world's first self-learning program.	1	
(ji) Ton	Mitchell (1998): A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, input		

Two main types of M	achine learning algorithms
Supervised learning	Unsupervised learning
Lecture 3: Supervi	sed Learning
opprobably the mas. Publisher.	t common type of machine learning
-D Simple Example: SU	ppise we have the following data for ice of houses:
Prive (\$) 300 in 1000's 200	
	500 900 1000 1500 2000 Size in feet 2
Questin: what is the Well the le	e pria 4 a house which is 800 feet?? arning algorithm could fit a curve through points!
	e name comes from the fact that the ining sumple (i.e. our duta) contains the ht answers". For other words, for a set of outs, we know what the output should

+> Example 2) Bre	ast concer. We have data on size of a bunch of breast transport, as well as if traying malignant or not.
1(4) 1	they're notignent or not.
alignent?	
	umor size
	ence a tumor with a new size, what is abability that it's malignent?
1 hus 9 an even	nle et a classification problem
Tus 9 an en	ple et a classification problem Discrete-valved output. (could have multiple discrete outcomes obviously)
1	ple of a classification problem Discrete-valued output. (could have multiple discrete outcomes obviously) X X O = benigh X X X = malignent

Andrew claims that there are problems for which an infinite number of features is necessary (I hope at lents countably infinite.) I that there are learning algorithms that can clear with this!

(This algorithm is called the Support Vector Machine)

Lecture 4: Unsupervised Learning

DIA supervised learning. The training sample tells us the correct output for a set of inputs (e.g. a tunor whose size and age we know is malignent—inputs: age & size of tumor; output: malignent). Then we seek to predict the output when we get new inputs.

the right answers. It's more like, here's a data sot, tind some structure in it:

EX) A fearning
algorithm might

Xz 00 algorithm might

tell us that most of
the data is concentrated
in two different

regions. This sort

of algorithm is called
a Christering Algorithm

vot real-life example of a machine-learning algorithm which uses clustering is Google News!

Goode News l similar news recognize that about the san	together for examples for expired to it	rds of new up 4, un these de would clust	Here of sources are by them together;
	THE SOURCE:	BP Kills M	acondo, But Its Legacy
	DCNN: Well.	is dead, but	t much out coast Il costs newly \$10 bn.
(3 Guardian:	BP oil spil	1 costs nearly \$10 bn.
S.C	is remarkable!		
20 Another exam	uple of an uses	upervised to	earning ulognthm:
	The Cocktail		
			Micophore #1
Specles ?			Nicophone #2
Speaker 1 b) The sound of 2, simply be And vice vers	speaker 1 is re cause speaker : a for microphon	the same world man Lis closer e 2.	tive. In microphere 1, e loudly than speaks to microphone 1.

easily reagn 192, mit what the to that there as capable of they keroyal	e offsets are provided by listenic There are two sp 50 speakes are re unsupervised doing the san to separate the	nounced enough, y to the news reakes & even saying. The learning algor he Based on wes of the two	a human would dings of micopher to separate out amazing thing is withing the three three three of seets, a speaker sound	Y
* On projumni	n harace	nvianners		
- DApparently is Octave. It written in o C++ to make	t is much quick is only after ctar exits, mi e it more efficient	car to build le a working t people news	arning algorithms in prototype to the coole in: in Silicon Valley.	i ay,
			-	