Задание	Срок выполнения
1. Изучение основ программирования на языке python. 3 недели. Форма отчета – сертификат о прохождении курсов.	25.02.23
2. Изучение принципов построения приложения для мобильного телефона при помощи МІТ App Inventor (http://appinventor.mit.edu/). 3 недели. Форма отчета — описание структуры будущего приложения.	18.03.23
3. Разработка приложения для телефона, позволяющего собирать данные с какого-либо датчика в ОС Android и отправлять их по беспроводному каналу (Bluetooth) на ПК (ноутбук). 4 недели. Форма отчет — арк-файл с приложением.	15.04.23
4. Разработка ПО на языке python для ПК, позволяющее получать данные с датчиков смартфона, сохранять их и выполнять отображение информации. 4 недели. Форма отчета – исходный код приложения.	13.05.23
5. Представление проекта. 1 неделя. Форма отчета — готовый проект.	20.05.23

Решение задания №1:

Результат 100%

С отличием

Настоящий сертификат подтверждает, что

Артём Карманов

успешно завершил/а курс

Программирование на Python

Павел Федотов

Тимофей Бондарев

Решение задания №2:

Для создания приложения, которое будет передавать данные с гироскопа смартфона по блютуз, необходимо выполнить следующие шаги:

- Создание нового проекта: Необходимо создать новый проект в МІТ Арр Inventor и назначить ему уникальное имя.
- Добавление компонентов: Для приложения необходимо добавить два основных компонента компонент гироскопа и компонент блютуз.
- Создание блоков: Для создания логики приложения необходимо создать блоки, которые будут обрабатывать данные с гироскопа и передавать их по блютуз.
- Подключение к гироскопу: Для подключения к гироскопу необходимо использовать компонент гироскопа и его блоки. С помощью блока "When Gyroscope1.SensorChanged" можно получать данные о текущем положении устройства.
- Подключение к блютузу: Для подключения к блютузу необходимо использовать компонент блютуза и его блоки. С помощью блока "BluetoothClient1.Connect" можно установить соединение с другим устройством.
- Отправка данных по блютузу: Для отправки данных по блютузу необходимо использовать блок "BluetoothClient1.SendText". В качестве параметра нужно передать данные, которые необходимо отправить.
- Обработка ошибок: Необходимо добавить обработку ошибок, которые могут возникнуть при подключении к гироскопу или блютузу.
- Тестирование приложения: После создания приложения необходимо провести тестирование для проверки его работоспособности. Для этого можно использовать эмулятор Android или установить приложение на реальное устройство.

Структура приложения MIT App Inventor, которое будет передавать данные с гироскопа по блютуз, будет следующей:

- **Главный экран:** Это будет основной экран приложения, на котором будет расположен визуальный компонент гироскопа и интерфейс управления приложением.
- **Кнопка** для выбора блютуз сервера: Нажатие на эту кнопку будет инициировать появление выпадающего списка доступных блютуз устройств.
- **Кнопка начать отправку:** нажатие на эту кнопку инициирует процедуру отправки показаний гироскопа на выбранный блютуз сервер
- **Графические прогресс бары:** 3 элемента графического интерфейса, визуализирующие показания гироскопа по осям X, Y, Z.

Решение задания №3 (исходный код приложения для смартфона):

Решение задания №4 (исходный код приложения для ПК):

Проект с исходным кодом приложения находится во вложении к настоящему отчёту.

Код ревью листинга таіп файла приведён ниже:

- 1. Импорты Код содержит следующие импорты:
- PyQt5.QtWidgets
- PyQt5.QtSerialPort
- PyQt5.QtCore
- PyQt5.QtGui

Импорты PyQt5 классов, требуемых для создания приложения с графическим интерфейсом пользователя (GUI), а также классов, связанных с последовательным портом.

- 2. Настройка приложения
- Создание экземпляра класса QApplication.
- Загрузка иконки для приложения из файла.
- Получение пути к каталогу исполняемого файла или абсолютного пути к файлу приложения.
- Загрузка файла интерфейса пользователя (UI) и установка заголовка окна приложения.
 - 3. Подготовка списка последовательных портов
 - Создание экземпляра класса QSerialPort.
- Получение списка доступных последовательных портов и добавление их в список portList.
- Добавление списка скоростей передачи данных (baud_rates) в выпадающий список (comboBox_baud_rates) и установка скорости передачи данных по умолчанию (default baud rate).

- 4. Функция is valid data()
- Проверка данных, принятых из последовательного порта, на наличие шести значений.
- Проверка, что первое, третье и пятое значение в каждом наборе данных соответствуют символам 'X', 'Y' и 'Z'.
 - Проверка, что значения 'Х', 'Y' и 'Z' лежат в диапазоне от -100 до 100.
- Если данные прошли все проверки, функция возвращает True, в противном случае False.
 - 5. Функция onRead()
 - Объединение полученных данных в буфер data buffer.
- Если данные в буфере завершаются символом ';', то вызывается функция is valid data() для проверки данных.
- Если данные проходят проверку, то значения 'X', 'Y' и 'Z' отображаются на метках и на ползунках, и буфер data_buffer очищается.
 - б. Функция onOpen()
- Получение выбранной скорости передачи данных и установка ее для последовательного порта.
 - Установка выбранного порта для последовательного порта.
 - Открытие последовательного порта для чтения и записи.
 - 7. Функция Close()
 - Закрытие последовательного порта.
 - 8. Инициализация GUI и запуск приложения
- Добавление списка доступных последовательных портов в выпадающий список (comboBox).
 - Подключение сигнала readyRead() к слоту onRead().
 - Подключение кнопок

Решение задания №5 (презентация готового проекта):

Скомпилированные файлы приложений для смартфона и ПК, а также видеопрезентация, демонстрирующая их работоспособность, находятся во вложении к настоящему отчёту.