

Semester: August 2022 – December 2022 (Jan-2e23)

Maximum Marks: 100 Examination: ESE Examination D57 (Reg RT) Duration: 3 Hrs.

Programme code: 03

Programme: B.TECH Class: SY Semester: III (SVU 2020)

Name of the Constituent College:

K. J. Somaiya College of Engineering

Course Code: 116U03C301 Name of the Course: Mathematics for Communication Engineering-I

Instructions: 1)Draw neat diagrams 2) All questions are compulsory

3) Assume suitable data wherever necessary

Que. No.	Question	Max. Marks
Q1	Solve any Four of the following.	20
i)	Find inverse Laplace transform of $\frac{3s+7}{s^2-2s-3}$	5
ii)	Find half range Cosine series of $f(x) = x \text{ in}(0,2)$.	5
iii)	Using Laplace transform evaluate $\int_0^\infty e^{-t} \int_0^t u \sin u du dt$	5
iv)	Prove that $J_{\frac{-3}{2}}(x) = -\sqrt{\frac{2}{\pi x}}(\frac{\cos x}{x} + \sin x)$	5
v)	Find the direcational derivaties of $\emptyset = xy + yz + xz$ at $(1,2,1)$ along the normal to surface $x^2 + y^2 = z + 4$ at $(1,1,-2)$	5
vi)	Evaluate $\int_c \bar{F} \cdot d\bar{r}$ where $\bar{F} = x^2i + xyj$ and C is the straight line joining O(0,0) to A(1,1).	5
Q2 A	Solve the following.	10
i)	Find Laplace transforms of $te^{-3t}cos2t$	5
ii)	Find inverse laplace transform of $log\left(\frac{s^2+1}{s(s+1)}\right)$	5
	OR	
Q2 A	Find Fourier Series of $f(x) = e^{-x}$ $0 < x < 2\pi$ Also deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2+1}$	10
Q2B	Solve any One of the following.	10
i)	Verify Green's Theorem in the plane for $\oint_c \left[(xy + y^2)dx + x^2dy \right]$ Where C is the closed curve of the region bounded by $y = x$ and $x^2 = y$.	10
ii)	Given $\overline{F} = (2xy + z)i + (x^2 + 2yz^3)j + (3y^2z^2 + x)k$, (a)Prove that \overline{F} is conservative (b) Find Scalar potential function \emptyset such that $\overline{F} = \nabla \emptyset$. (c) Find the work done by \overline{F} in moving a particle from $A(1,2,0)$ to $B(2,2,1)$ along the straight line AB. d) Find divergence of \overline{F} .	10

Q3	Solve any Two of the following.	1 20
	a) Prove that: $4J_n''(x) = J_{n-2}(x) - 2J_n(x) + J_n(x)$	20
i)	and $(-3, -3, 3)$.	10
ii)	Solve the following Differential Equation using Laplace transform	
11)	$(D^2 + 1)y = t$, $y(0) = 1$, $y'(0) = 0$.	10
	Find Fourier Series of $f(x) = x^2 - \pi < x < \pi$	
151N	and hence deduce that	
iii)	a) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots$	10
	b) $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$	10
04		
Q4	Solve any Two of the following.	20
	a) Find I (a) I (b) I (c)	20
i)	a) Find $J_2(x)$, $J_3(x)$, $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.	
1)	b) If $\overline{a} = i - 2i - 2i$, $\overline{b} = 2i$, $\overline{b} = 2i$	10
	b) If $\bar{a} = i - 2j - 2k$, $\bar{b} = 2i + j - k$, $\bar{c} = i + 3j - 2k$, $\bar{d} = 2i + j - 3k$, find $(\bar{a} \times \bar{b}) \cdot (\bar{c} \times \bar{d})$	10
	Find Fourier series of	
ii)	$f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi (2 - x) & 1 \le x \le 2 \end{cases}$	
	and show that $f(x) = \pi$ 4 ∇ 1	10
	and show that $f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} \cos(2n+1)\pi x$	
	Evaluate by Gauss's Divergence theorem $\iint_S \overline{N} \cdot \overline{F} ds$	
iii)	Where $\bar{F} = 4x\hat{\imath} - 2y^2\hat{\jmath} + z^2\hat{k}$ & S is the region bounded by $x^2 + y^2 = 4$, $z = 0, z = 3$.	10
	z = 0, z = 3.	10
Q5	Solve any Four of the following.	
)	Find the Complex form of Fourier Series for $f(x) = 2x$ in $(0,2\pi)$	20
		5
i)	Using convolution theorem find inverse laplace transform of $\frac{s^2}{(s^2+4)(s^2+9)}$	
- A	$(s^2+4)(s^2+9)$	5
.]	Prove that $\int J_3(x) dx = -\frac{2}{x} J_1(x) - J_2(x)$	
ii)	$f_{x}^{(1)}(x) = f_{2}(x)$	5
		9
0) 1	Prove that $\nabla \left[\nabla, \frac{\overline{r}}{r} \right] = -\frac{2}{r^3} \overline{r}$.	
	$\begin{bmatrix} v & r \end{bmatrix} = -\frac{1}{r^3}T.$	5
Ţ	Using Stokes theorem evaluate $\int_{c} \bar{F} \cdot d\bar{r}$	
T	Where $\overline{F} = A \cos^2 \frac{2}{3} + \frac{1}{3} \cos^2 \frac{1}{3}$	
) \	Where $\overline{F} = 4xz\hat{\imath} - y^2\hat{\jmath} + yz\hat{k}$ and C is the boundary of the area in the plane $x = 0$ bounded by $x = 0$, $y = 0$ and $y^2 + y^2$	5
	$y = 0$ bounded by $x = 0$, $y = 0$ and $x^2 + y^2 = 1$.	9
E	$f(t)$ (sint, $0 < t < \pi$	
) E	Express $f(t) = \begin{cases} sint, & 0 < t < \pi \\ cost, & t > \pi \end{cases}$ as Heaviside's Unit step function and hence and its Laplace Transform.	
fi	nd its Laplace Transform.	5