(Intertial Mesurment, 관성 측정)

- 무인비행체, 인공위성 등
- 가속도계, 자이로스코프, 지자계 사용
- 3차원 공간에서의 움직임을 측정

장점

- GPS 신호의 수신기 문제
- 실내 주행 문제
- 전자기 간섭이 있는 공간

(Intertial Mesurment, 관성 측정)

- 무인비행체, 인공위성 등
- 가속도계, 자이로스코프, 지자계 사용
- 3차원 공간에서의 움직임을 측정

(Intertial Mesurment, 관성 측정)

- 가속도센서와 지자계센서를 사용해
- Absolute reference of Orientation를 측정
- 보다 정확한 위치를 계산

가속도 센서 (Accelerometer)

- x축, y축, z축 (가속도 방향 측정)
- 단위 [g] : 0.707g
- 정지상태의 중력 가속도 감지
- 시간에 따라 속도 변화

각속도 센서 (Gyroscope)

- -노이즈 多
- -시간이 지날수록 오차 발생
- -각각의 단점을 보상
- -짧은 시간에 정확한 계산된 각도

IMU Sensor

cd wecar-ws source devel/setup.bash roslaunch razor_imu_9dof razor_pub_and_display.launch

- 1. 피치(pitch)
 - 2. 롤 (roll)
 - 3. 요(yaw)

기수가 아래로 내려 하강 및 상승(P) 좌우 방향(Y) 왼쪽으로 젖히면 회전

- USB Camera
 - ✓ Face Detector

cd USB_Camera python face_detect.py

https://docs.opencv.org/3.3.1/d7/d8b/tutorial py face detection.html

On the Jetson Nano, OpenCV comes preinstalled # Data files are in /usr/sharc/OpenCV

- USB Camera
 - ✓ Yolov3 Object Detector

YOLO 란?

- YOLO: You Only Look Once
- 실시간 이미지 객체 탐지 및 인식에 강력하다.

The YOLO Detection System:

- (1) input image를 448 x 448의 이미지로 resize하고
- (2) image에서 작동하는 single convolution network를 실행시킵니다.
- (3) 해당 모델을 통해서 나온 확률값을 threshold로 잘라서 결과값을 보여줍니다.

- USB Camera
 - ✓ Yolov3 Object Detector

cd yolov3

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 1

- USB Camera
 - ✓ Recording and playing back a robots actions is easy using rosbags

A2

측정거리: 18M

샘플링 속도: 8000 point

회전: 360도

PWM 제어를 이용한 스캔 속도 조절 가능

[내장형 드라이버] 신호를 통해 모터의 시작, 정지 및 회전 속도를 조절 가능

Figure 3-1 RPLIDAR A2 Pins

Color	Signal name	Туре	Description	Minimum	Typical	Maximum
Red	VCC	Power	Power supply for the whole RPLIDAR	4.9V	5V	5.5V
Yellow	TX	Output	Serial output for RPLIDAR scan core	OV	3.3V	3.5V
Green	RX	Input	Serial input for RPLIDAR scan core	0V	3.3V	3.5V
Black	GND	Power	GND	0V	0V	0V
Blue	MOTOCTL	Input (pull down)	Enable pin for RPLIDAR scan motor/PWM control signal (active high)	OV	3.3V	5V

- 목표물로부터 반사된 전자파의 시차 및 에너지
- 사물까지의 거리, 방향, 속도, 온도
- 펄스의 신호를 생성

- RP Lidar SLAM 구현
- 레이져 센서를 회전
- 각에 대한 거리 스캔 (2차원 데이터 생성)

- RP Lidar SLAM 구현
- 레이져 센서를 회전
- 각에 대한 거리 스캔 (2차원 데이터 생성)

Is -I /dev/ttyUSB*

sudo chmod a+rw /dev/ttyUSB0

roslaunch <package_name> <launch_name>.launch

VESC

- 배터리의 전력을 사용하여 모터 에너지를
- 조절하는 방식

_

04. Startup WeCar

Step 1: On host PC, remote access WeCar TX2 target

ssh nvidia@192.168.x.xx

Step 2: Launch wecar teleoperation

cd wecar-ws source devel/setup.bash roslaunch racecar teleop.launch

Step 3: Turn on joystick to control wecar

mode LDE: off

- IMU Sensor
- USB Camera
 - ✓ Face Detector
 - ✓ Yolov3 Object Detector
 - ✓ Recording and playing back a robots actions is easy using r osbags
- RPLiDAR
 - ✓ Simple RPLiDAR View Demo
 - ✓ ROS AMCL Known map example
 - ✓ RPLiDAR gmapping Demo

IMU Sensor

cd wecar-ws source devel/setup.bash roslaunch razor_imu_9dof razor_pub_and_display.launch

USB Camera

✓ Recording and playing back a robots actions is easy using r osbags

cd wecar-ws Source devel/setup.bash Roslaunch racecar teleop.launch

cd wecar-ws source devel/setup.bash roslaunch usb_cam usb_cam.launch

rqt Pulgins->Introspection->Node Graph Plugins->Visualization->Image View

cd wecar-ws source devel/setup.bash rosbag record /Ackermann_cmd /camera /rgb/image_raw -o wecar.bag cd wecar-ws source devel/setup.bash rosbag play wecar.bag

rosrun image_view image:=/
video_stuff

cd wecar-ws source devel/setup.bash rosbag play wecar.bag /Ackermann_cmd: =/Ackermann_cmd_mux/input/navigatio n /camera/rgb/image_raw:=/video_stuff

- RPLiDAR
 - ✓ Simple RPLiDAR View Demo

cd wecar-ws source devel/setup.bash roslaunch rplidar_ros view_rplidar.launch

✓ ROS AMCL Known map example cd wecar-ws source devel/setup.bash roslaunch racecar teleop.launch rviz known_map_localization.rviz

- RPLiDAR
 - ✓ RPLiDAR gmapping Demo

cd wecar-ws source devel/setup.bash roslaunch racecar teleop.launch

rosrun tf static_transform_publisher 0 0 0 0 0 0 /base_link /scan 10 rosrun gmapping slam_gmapping rosrun laser_scan_matcher laser_scan_matcher _node _fixed_frame:=odom

rosrun map_server map_saver –f mymap

