

EGB339 - Part 2: Robotic Arms

Lecture 1: Rigid Body Motions

Chris Lehnert (Lecturer)

What you may expect to learn

What you actually learn*

But even just with this, you will be able to handle

Outline

- Topics covered in this series of lectures
 - Rigid Body Motions (week 8)
 - Forward Kinematics (week 9)
 - Inverse Kinematics (week 10)
 - Velocity Kinematics (week 11)
 - Path and Trajectory Planning (week 12)
 - Revision (week 13)
- Topics not covered in this series of lectures
 - Dynamics
 - Control
 - Hardware
 - (Artificial) Intelligence
 - ...

Online Resources

- QUT Robot Academy (by Peter Corke)
 - https://robotacademy.net.au/

Additional Resources

- Robotics, Vision and Control (Ed2)
 - By Peter Corke
 - Electronic resources in the library
 - Hard copies in the library
 - For sale in the bookshop
 - http://petercorke.com/RVC
- Robot Modeling and Control
 - By Mark W Spong; Seth Hutchinson; M Vidyasagar
 - Hard copies should be in the library
 - For sale in the bookshop

- Lectures: MilfordRobotics Youtube Channel Theory Playlist (http://bit.ly/2azZacj)
- Tutorials: Theoretical Problems and Solutions by James Mount Youtube Playlist (http://bit.ly/2aeZys3)

Assessment

- Part 2: Robotic Arms (50%)
 - 20% prac exam Week 13
 - 30% theory exam in the final exam period
 - Timed Online Assessment,
 - Given the time limit, you'd better really master the contents than rely on the open-book
 - If you want to pass the exam, attend the tutorials!!!

Assuming you have watched these online videos

- QUT Robot Academy (by Prof Peter Corke)
 - 2D Geometry
 - https://robotacademy.net.au/masterclass/2d-geometry/
 - 3D Geometry
 - https://robotacademy.net.au/masterclass/3d-geometry/

Motivating Problem

• Imagine one of your arms is replaced by a robotic arm, and you're blindfolded (you don't have sensors to detect the object in front of you).

• You are supposed to move an object from A to B.

• You want somebody to tell you where the object is and where to move it.

• How can the pose (position and orientation) of A and B be described to you?

Rigid Body Motions

The Right-Hand Rule

- Rigid Body
 - In physics, a rigid body is a solid body in which deformation is zero or so small it can be neglected. (Wikipedia)
 - In kinematics, a rigid body is a coordinate frame.

Rigid Body Motions

- The pose of B relative to A can be described with two components:
 - A rotation matrix R specifying the orientation
 - And a translation vector t specifying the position

2D Rotation Matrix

• 2D rotation

$$\hat{x}_B = \cos \theta \hat{x}_A + \sin \theta \, \hat{y}_A$$

$$\hat{y}_B = -\sin \theta \, \hat{x}_A + \cos \theta \, \hat{y}_A$$

2D rotation matrix

Watch https://robotacademy.net.au/masterclass/2d-geometry/?lesson=75 for the derivation

Rotation from frame {B} to frame {A}
Rotates vectors from {B} to {A}
Rotation angle from {A} to {B},15

3D Rotation Matrix

• 3D rotation matrix

Rotation from {B} to {A}
Rotation Angle from {A} to {B},
Rotates vectors from {B} to {A}

Rotation Matrix - Example

• Determine the rotation matrix from {B} to {A}

$$\begin{pmatrix} A \\ X \\ A \\ Y \\ A \\ Z \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} A \\ X \\ B \\ Y \\ B \\ Z \end{pmatrix}$$

Positions in Rotated Frames

• Positions of a point in rotated frames can be related by a rotation matrix (chain rule)

$$^{A}p = ^{A}R_{B}^{B}p$$

Only works for frames sharing the same origin (no translation involved).

Positions in Rotated Frames - Example

- Suppose P is a 3D point.
- {A} and {B} share the same origin.
- Write down by inspection

Validate

$${}^{A}p = {}^{A}R_{B}{}^{B}p$$
 $\begin{pmatrix} 0 \\ 0 \\ 0.8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0.8 \\ 0 \end{pmatrix}$

Properties of A Rotation Matrix

$$R^T R = I \text{ or } R^T = R^{-1}$$

- Orthogonal Matrix
 - Because the length of a vector remains the same after rotation. $(Rp)^T Rp = p^T R^T Rp = p^T p$
- Special Orthogonal Matrix det(R) = 1
 - Otherwise it is a rotary reflection.

Rotary reflection det(R) = -1

Parameterisation of A Rotation

Very useful in practice; you are strongly recommended to learn them via the online videos!

• ...

Recall: Rigid Body Motions

- The pose of B relative to A can be described with two components:
 - A rotation matrix R specifying the orientation
 - And a translation vector t specifying the position

Translation Vector

• Translation vector At_B is a vector pointing from the origin of {A} to the origin of {B} evaluated in {A}.

Translation Vector - Example

• Determine the translation vector from {B} to {A}

$$^{A}t_{B}=\left(\begin{array}{c} \\ \end{array} \right)$$

Homogeneous Transformation

$$^{A(B)}p = {}^{A}R_{B}{}^{B}p$$

$${}^{A}p = {}^{A}t_{B} + {}^{A}R_{B} {}^{B}p$$

$$\begin{pmatrix} Ap \\ 1 \end{pmatrix} = \begin{pmatrix} AR_B & At_B \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Bp \\ 1 \end{pmatrix}$$

Homogeneous Transformation

$$\begin{pmatrix} Ap \\ 1 \end{pmatrix} = \begin{pmatrix} AR_B & A\tilde{p} = tA \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} BP \\ 1 \end{pmatrix}$$

Homogeneous Transformation - Example

- Suppose P is a 3D point.
- Given AT_B and ${}^B\tilde{p}$, find ${}^A\tilde{p}$ ${}^AT_B = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Validate

Chain Rule

Inverse of Homogeneous Transformation

$$T = \begin{pmatrix} R & t \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T^{-1} = \begin{pmatrix} R^T & -R^T t \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{A}T_{C} = {}^{A}T_{B} {}^{B}T_{C} \qquad {}^{A}p = {}^{A}T_{B} {}^{B}p$$

$$^{A}p = ^{A}T_{B}^{B}p$$

$${}^AT_B^{-1} {}^AT_C =$$

$$^{B}T_{C}$$

$${}^AT_B^{-1} {}^AT_C = {}^BT_C \qquad {}^AT_B^{-1} {}^Ap = {}^Bp$$

$$^{B}p$$

Summary

- A rigid body can be represented by a coordinate frame
- Rigid body motions have two components
 - A rotational component (rotation matrix)
 - And a translational component (translation vector)
- Rigid body motions can be represented by homogeneous transformations
- Homogeneous transformations conform to chain rules and are invertible

Motivating Problem - Revisited

- Imagine one of your arms is replaced by a robotic arm, and you are blindfolded (you don't have sensors to detect the object in front of you).
- You are supposed to move the object from A to B.
- You want somebody to tell you where the object is and where to move it.
- How can the pose (position and orientation) of A and B be described to you?

Final Remarks

- Acknowledgements
 - Some material of the slides was developed by the previous lecturers of EGB339 Introduction to Robotics (Michael Milford, Peter Corke, and Leo Wui)
- Feedback
 - Please email any feedback to c.lehnert@qut.edu.au
 - I will try to incorporate the feedback into the next lecture.