Upper level set scan statistic for detecting arbitrarily shaped hotspots

G. P. Patil & C. Taillie

Journal of Environmental and Ecological Statistics, Vol. 11,

Issue 2, 2004 pp 183-197

Lee Panter

Introduction & Background

- Three central problems in geographical surveillance for a spatially distributed response variable
 - o Identify areas with exceptionally high (low) response
 - Determine whether the exceptional response cases can be attributed to chance variation (false alarm) or are statistically significant
 - Assessment of explanatory factors related to the response anomalies

Introduction & Background (continued)

- Comparative Questioning
 - Can the Upper Level Set (ULS) statistic be used to answer any of the above questions more: accurately, precisely, or efficiently?
 - Can the ULS statistic be applied to the same (or more varied) applications as the Spatial Scan Statistic?
 - In what scenarios (if any) does the ULS statistic exhibit a higher power than the Spatial Scan Statistic? Lower?

Definitions and Terminology

- R: A geographically connected region
- T: A set of "cells" forming a partition/tessellation of R
- N: Cardinality of T (also written: |T|)
- n_1, \ldots, n_N : cell "sizes"
- $Y_1, ..., Y_N$: Responses of interest over cells modeled with independent random variable with realizations $y_1, ..., y_N$
- $G_i = \frac{Y_i}{n_i}$: cell "rates" with corresponding realizations $g_i = \frac{y_i}{n_i}$
- **Z**: A non-empty, connected, zone in R. (A connected union of cells)
- NOTE: Notation is adopted from: PULSE, progressive upper level set scan statistic for geospatial hotspot detection. (G. P. Patil, S. W. Joshi, and R. E. Koli) to avoid long-term confusion.

Level Sets

• Definition: Level Set

A level set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a set of the form:

$$L_g = \{(x_1, \ldots, x_N) | f((x_1, \ldots, x_N)) = g\}$$

i.e. the set where the function takes on a given value g.

 When n = 2 the level set for each value of g are curves in ℝ²

Upper Level Sets

- Used to reduce the parameter space in which the search for the cluster MLE takes place (aka parameter space reduction).
 Note: We first make the ULS parameter space reductions then further limit the reduced parameter space using normal (Population < 50%) constraints.
- We may interpret the cellular "rate" values g_i as a function defined over the vertices of an abstract graph representing the tessellation: $i \mapsto g_i$ for $i \in T$
- Let $G = \{g_i | i \in T\}$, and let r_1, \ldots, r_m be the distinct members of G
- For $j = 1, \ldots, m$ let $T_i = \{i \in T | g_i = r_i\}$
- Then for each value of r_j we have the Upper Level Set: U_j defined as the union of the T_j s: $U_j = \bigcup_{k=1}^j T_k$

Upper Level Set Connectedness, and Reduced Parameter Space

• The U_j s are defined to be nested sets such that the level sets T_j form the "lower-rate" boundary.

$$U_{j-1} = \bigcup_{k=1}^{j-1} (U_k) \subset \bigcup_{k=1}^{j} (U_k) = U_j$$
 for $j = 1, \dots, m$ with $(U_i) \setminus (U_{j-1}) = T_i$

- We will determine the connected regions of each U_j and define these as C_j
 i.e. Let C_j = Set of connected components of U_j for j = 1, ..., m
- Reduced Parameter Space: $\Omega_{ULS} = \bigcup_{k=1}^{m} C_k$

ULS Tree

- We can define a tree structure associated with Ω_{ULS} using the following "algorithm":
 - Each level of r_j for $j=1,\ldots,m$ constitutes a vertical level of the tree.
 - Each level is split into its constituent connected components, which form the unionized sets C_j (call each of these sets Z_p for $p=1,\ldots,m_j$). Each of these Z_p represents a node in the tree
- Note: Due to the definition of r_j s as the unique elements of the N-element set $G = \{g_i | i \in T\}$ we know that: $m \le N$

ULS Tree Properties

- The definition of ULS Sets implies monotone set expansion as the value of j is allowed to increase $j:1\to m$
- There are three ways which the ULS Tree can expand:
 - As $j \to (j+1)$ the zones Z_a and Z_b merge into a single, connected zone, Z_c
 - \circ If $Z_a\subseteq Z_b$, then j o (j+1) implies $Z_a\subseteq Z_b$
 - As $j \to (j+1)$, $U_j = \emptyset$ and $U_{j+1} \neq \emptyset$ with U_{j+1} not connected to any C_{j+1} implies $Z_{j+1} = U_{j+1}$

ULS Example

- Picture demonstrates connectedness, and relative rates. (Each cell has the same population)
- In order to find the reduced parameter space we need to find:
 - The ordered relative frequency list
 - Spatial adjacency matrix re-ordered with respect to relative frequency

	80 (1)	80(3)		
90(0)	80(2)	70(6)		
70)(7)	80(4)		
40	(10)	80(5)		
50(9)	60(8)	30(11)		

Example from: Environ Ecol Stat (2010) 17:149-182-PULSE

Ordered Relative Frequency List

Cell Number (i)	Relative Rate
0	90
1	80
2	80
3	80
4	80
5	80
6	70
7	70
8	60
9	50
10	40
11	30

Reordered Spatial Adjacency Matrix

				٠.			,			,		
	0	1	2	3	4	5	6	7	8	9	10	11
0	1											
1	1	1										
2	1	1	1									
3	0	1	0	1								
4	0	0	0	0	1							
5	0	0	0	0	1	1						
6	0	1	1	1	1	0	1					
7	1	0	1	0	1	0	0	1				
8	0	0	0	0	0	0	0	0	1			
9	0	0	0	0	0	0	0	0	1	1		
10	0	0	0	0	0	1	0	1	1	1	1	
11	0	0	0	0	0	1	0	0	1	0	0	1

 $T = \{i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ We note that the distinct values of G are the values

$$r_i = \{90, 80, 70, 60, 50, 40, 30\}$$
 which implies that $j = 1, \dots, 7$

 T_i

We now calculate the sets
$$T_j$$
 for $j=1,\ldots,7$
$$T_j=\{i\in T|g_i=r_r\}$$

$$T_1 = \{i \in T | g_i = r_1\}$$

= $\{i \in T | g_i = 90\}$
= $\{i \in T | i = 0\}$

 $T_2 = \{i \in T | g_i = r_2\}$

$$= \{i \in T | g_i = 80\}$$

= \{i \in T | i = 1, 2, 3, 4, 5\}

$$T_3 = \{i \in T | g_i = r_3\}$$

= $\{i \in T | g_i = 70\}$
= $\{i \in T | i = 6, 7\}$

We now calculate the sets
$$U_j$$
 for $j=1,\ldots,7$
$$U_j=\bigcup_{k=1}^j T_k$$

$$U_1 = \bigcup_{k=1}^{1} T_k = T_1 = \{ i \in T | i = 0 \}$$

$$U_2 = \bigcup_{k=1}^2 T_k = T_1 \bigcup T_2 = \{ i \in T | i = 0, 1, 2, 3, 4, 5 \}$$

$$U_3 = \bigcup_{k=1}^3 T_k = T_1 \bigcup T_2 \bigcup T_3$$

$$= \{i \in T | i = 0, 1, 2, 3, 4, 5, 6, 7\}$$

j	U_{j}
1	0
2	0 1 2 3 4 5
3	$0\ 1\ 2\ 3\ 4\ 5\ 6\ 7$
4	0 1 2 3 4 5 6 7 8
5	0 1 2 3 4 5 6 7 8 9
6	0 1 2 3 4 5 6 7 8 9 10
7	0 1 2 3 4 5 6 7 8 9 10 11

We now determine the connectedness of each U_j to write the sets C_j as unions of subsets of each U_j

$$C_1 = U_1 = \{i \in T | i = 0\}$$

$$C_2 = \{i \in T | i = 0, 1, 2, 3\} \bigcup \{i \in T | i = 4, 5\}$$

$$C_3 = \{i \in T | i = 0, 1, 2, 3, 4, 5, 6, 7\}$$

j	C_j
1	{0}
2	$\{0,1,2,3\} \bigcup \{4,5\}$
3	{0,1,2,3,4,5,6,7}
4	$\{0, 1, 2, 3, 4, 5, 6, 7\} \bigcup \{8\}$
5	$\{0, 1, 2, 3, 4, 5, 6, 7\} \bigcup \{8, 9\}$
6	{0,1,2,3,4,5,6,7,8,9,10}
7	{0,1,2,3,4,5,6,7,8,9,10,11}

Tree Structure

90(0)	
80 (1)	80(3)
90(0) 80(2)	00(3)
00(0) 00(2)	80(4)
	80(5)
80 (1)	80(3)
90(0) 80(2)	70(6)
70(7)	80(4)
	80(5)
80 (1)	80(3)
90(0) 80(2)	70(6)
70(7)	80(4)
	80(5)
60(8)	
80 (1)	80(3)
90(0) 80(2)	70(6)
70(7)	80(4)
	80(5)
50(9) 60(8)	
90(0) 80(2)	70(6)
70(7)	80(4)
40(10)	80(5)
50(9) 60(8)	
80 (1)	80(3)
90(0) 80(2)	70(6)
70(7)	80(4)
40(10)	80(5)
50(9) 60(8)	30(11)
(-, 30(0)	

Parameter Space Reduction- Ω_{ULS}

- "The difficult part of hotspot estimation lies in maximizing $L(p_0, p_1|\mathbf{Z})$ [the unrestricted likelihood function under H_1] as \mathbf{Z} varies over the collection Ω "
- Parameter Space Reduction: Replace the full parameter space by a subspace $\Omega_0 \subset \Omega$ of a more manageable size. The profile likelihood $L(p_0, p_1|\mathbf{Z})$ is then maximized by exhaustive search across Ω_0 (provided that Ω_0 contains the MLE for the full Ω , or at least an approximation to it).
- By defining $\Omega_0 = \Omega_{\textit{ULS}}$ we can substantially reduce the search area.

Final Reductions

- We have significantly reduced Ω , but we still need to make sure that any "candidate cluster regions" we are checking satisfy the assumption that: collectively, the constituent regions do not constitute a majority of the underlying population.
- We check that no single connected subset of any C_j has a population greater than $0.5*N = \frac{\sum_{i=1}^{N}N_i}{2}$ in the progression $j:1 \to m$
- Note $N = \sum_{i=1}^{N} N_i = 810$ so no single candidate region can have a population greater than 410

$$\circ C_0 \to \{0\} \to N_0 = 90 < 410$$

$$\circ C_1 \rightarrow \{0,1,2,3\} | \{4,5\}$$

- $\{0,1,2,3\} \rightarrow N_0 + N_1 + N_2 + N_3 = 330$ We consider all increasing subsets
- $\circ~\{4,5\} \rightarrow \textit{N}_4 + \textit{N}_5 = 160$ We consider all increasing subsets

Final Reduction Results

```
\Omega_{ULS}^{red}: {0}, {0,1}, {0,1,2}, {0,1,2,3}
{4}, {5}, {4,5}
{8}, {8,9}
```

Hypothesis Testing-Binomial (Review)

- In the Binomial setting, it is assumed that:
 - o $n_i \in \mathbb{N}$ (cell populations) and $Y_i \sim Binomial(n_i, p_i)$ (cell responses) where p_i is an unknown parameter attached to cell i with $0 < p_i < 1$
- Under the null hypothesis, we assume constant risk across all the $i=1,\ldots,N$ cells, which means that:
 - \circ p_i is the same for all cells in R.
- If $n_+ = \sum_{i=1}^N N_i$ is the total population in R, and $Y_+ = \sum_{i=1}^N Y_i$ is the total number of cases observed, then under the null hypothesis, $Y_i \sim Binomial\left(n_i, \frac{Y_+}{n_+}\right)$

Hypothesis Testing-Poisson (Review)

- In the Poisson setting, it is assumed that:
 - $\circ Y_i \sim Poisson(\lambda_i)$ where the Y_i s are independent and $\lambda_i > 0 \ \forall i = 1, ..., N$ is an unknown parameter attached to cell i
- We use the expected cell counts E_i to estimate λ_i :

$$\hat{r} = \frac{\sum_{i=1}^{N} Y_i}{\sum_{i=1}^{N} n_i} = \frac{Y_+}{n_+}$$

$$E_i = \hat{r} Y_i$$

Then under the null hypothesis we model each
 Y_i ~ Poisson(E_i)

Test Statistic Calculation

- ULS has successfully reduced the parameter space $\Omega \longrightarrow \Omega_{ULS}$ which we have managed to even further refine using standard parameter space constraints (Population Upper Bound for Cluster).
- We now wish to calculate a test-statistic for each of the sets in our final reduction results.
- The highest valued observed test statistic will be used for comparison in Monte Carlo simulation to compute a p-value.
- We consider a region $\mathbf{Z_0} \in \Omega^{red}_{ULS}$ to be a candidate hot spot region if we cannot reject:
 - \circ \tilde{H}_0 : $\exists p_1 \geq p_0$ such that :

$$p_a = \begin{cases} p_1 & \forall i \in Z_0 \\ p_0 & \forall i \notin Z_0 \end{cases}$$

Test Statistic Calculation (continued)

- The previous Hypothesis test is equivalent to:
 - \circ \tilde{H}_0 : $\mathbf{Z} = \mathbf{Z_0}$ for $\mathbf{Z} \in \Omega_{ULS}$
 - $\circ \tilde{H}_1: \mathbf{Z} \neq \mathbf{Z_0} \text{ for } \mathbf{Z} \in \Omega_{ULS}$
- We consider the hotspot estimate to be the set consisting of all zones \mathbf{Z}_0 for which \tilde{H}_0 could not be rejected
- The Likelihood Ratio Test statistic for the above hypothesis test framework can be computed for both the Binomial and Poisson models by estimating the required parameters through conditioning.

Test Statistic Calculation-Poisson Model

• In the case of the Poisson Model, the assumption that $\vec{Y} = (Y_1, \dots, Y_N)$ and $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$ with each $Y_i \sim Poisson(\lambda_i)$, independent, allows us to conclude that:

$$\circ L\left(\vec{\lambda}|\vec{Y}=\vec{y}\right) = \prod_{i=1}^{N} P(Y_i = y_i|\lambda_i)$$

$$\mathfrak{l}\left(\vec{\lambda}|\vec{Y}=\vec{y}\right) = \sum_{i=1}^{N} \log(P(Y_i = y_i|\lambda_i))$$

• We calculate the likelihood ratio test statistic using:

• Where
$$\vec{\lambda} \in \Theta_0 \Rightarrow (\lambda_1, \dots, \lambda_N) = (E_1, \dots, E_N) = \vec{E}$$

$$\Rightarrow \sup_{\vec{\lambda} \in \Theta_0} L(\vec{\lambda} | \vec{Y} = \vec{y}) = L(\vec{E} | \vec{Y} = \vec{y})$$

$$\Rightarrow \sup_{\vec{\lambda} \in \Theta_0} \left[\left(\vec{\lambda} | \vec{Y} = \vec{y} \right) = \left[\left(\vec{E} | \vec{Y} = \vec{y} \right) \right] \right]$$

Test Statistic Calculation-Poisson Model (continued)

(continued)
$$(\vec{\lambda} + \vec{y} - \vec{y}) \rightarrow 0 - \frac{\partial}{\partial x} \left[t (\vec{\lambda} + \vec{y} - \vec{y}) \right]$$

 $\Leftrightarrow 0 = \frac{1}{\lambda_1} (y_1 - \lambda_1) + \frac{1}{\lambda_2} (y_2 - \lambda_2) + \cdots + \frac{1}{\lambda_N} (y_N - \lambda_N)$

 $\Leftrightarrow 0 = (v_1 - \lambda_1) + (v_2 - \lambda_2) + \cdots + (v_N - \lambda_N)$

(continued)

•
$$\hat{\lambda}_{MLE} = \sup_{\vec{\lambda} \in \Theta} \ \mathbb{I}\left(\vec{\lambda} \mid \vec{Y} = \vec{y}\right) \Rightarrow 0 = \frac{\partial}{\partial \lambda_i} \left[\mathbb{I}\left(\vec{\lambda} \mid \vec{Y} = \vec{y}\right) \right]$$
 $\forall i = 1, \dots, N$

(continued)

•
$$\hat{\lambda}_{MLE} = \sup_{\vec{\lambda} \in \Theta} \ \mathbb{I}\left(\vec{\lambda} \mid \vec{Y} = \vec{y}\right) \Rightarrow 0 = \frac{\partial}{\partial \lambda_i} \left[\mathbb{I}\left(\vec{\lambda} \mid \vec{Y} = \vec{y}\right) \right]$$

• $0 = \frac{\partial}{\partial \lambda_i} \left[\mathbb{I}\left(\vec{\lambda} \mid \vec{Y} = \vec{y}\right) \right]$

 $\Leftrightarrow 0 = \sum_{i=1}^{N} \frac{\partial}{\partial \lambda_i} [\log(P(Y_i = y_i \mid \lambda_i))]$

 $\Leftrightarrow 0 = \sum_{i=1}^{N} \left(\frac{y_i}{\lambda_i} - 1 \right)$

 $(\lambda_i > 0 \ \forall i = 1, \ldots, N)$

 $\Leftrightarrow v_i = \lambda_i \ \forall i = 1, \dots, N$

 $\bullet \; \sup\nolimits_{\vec{\lambda} \in \Theta} \; \mathfrak{l} \left(\vec{\lambda} \; | \vec{Y} = \vec{y} \right) = \mathfrak{l} \left(\vec{y} \; | \vec{Y} = \vec{y} \right)$

 $\Leftrightarrow 0 = \sum_{i=1}^{N} \frac{\partial}{\partial \lambda_i} [y_i \log(\lambda_i) - \lambda_i - \log(y_i!)]$

Test Statistic Calculation-Poisson Model (continued)

Test Statistic Calculation-Poisson Model (continued)
$$\Lambda = \frac{\sup_{\vec{\lambda} \in \Theta_0} L(\vec{\lambda}|\vec{Y} = \vec{y})}{\sup_{\vec{\lambda} \in \Theta} L(\vec{\lambda}|\vec{Y} = \vec{y})} = \frac{\mathfrak{l}(\vec{E}|\vec{Y} = \vec{y})}{\mathfrak{l}(\vec{y}|\vec{Y} = \vec{y})}$$

$$\mathfrak{l}(\vec{\lambda}|\vec{Y} = \vec{y}) = y_i \log(\lambda_i) - \lambda_i - \log(y_i!)$$

 $\Rightarrow \mathfrak{l}\left(\vec{E}|\vec{Y}=\vec{y}\right)=y_i\log(E_i)-E_i-\log(y_i!)$

 $\Rightarrow \ \mathbb{I}\left(\vec{y}|\vec{Y}=\vec{y}\right)=y_i\log(y_i)-y_i-\log(y_i!)$

 $\Lambda = \frac{y_i \log(E_i) - E_i - \log(y_i!)}{y_i \log(y_i) - y_i - \log(y_i!)} = \left[\frac{E_i^{y_i} e^{-E_i}}{y_i!}\right] \left[\frac{y_i!}{y_i^{y_i} e^{-y_i}}\right]$

 $= \left(\frac{E_i}{V_i}\right)^{y_i} * exp\{-E_i - y_i\}$

Simulation of Null Hypothesis Data

- We simulate count data under the Null distributions (Poisson or Binomial)
- Under the Null Hypothesis of the example above we have:

$$\circ \hat{r} = \frac{1}{1200} \sum_{i=1}^{12} Y_i = \frac{810}{1200} = .675$$

(The average rate over the cells)
• Therefore
$$E_i = .675 \ \forall \ i = 1, ..., 12$$

- We simulate 999 random samples: $\vec{Y}^k = (Y_1^k, \dots, Y_{12}^k)$ where each $Y_i^k \sim Poisson(.675) \ \forall i = 1, \dots, 12 \ \ \forall k = 1, \dots, 999$
- $p = P(\{T_{sim}\} \bigcup T_{MLC} \ge T_{MLC})$

Comparison of ULS to Spatial and Flexible Scan Statistics

- The Upper Level Set scan estimate of cluster regions is compared against the Spatial and Flexible scan statistics under the most homogeneous conditions achievable for each test.
- The settings applied uniformly to all comparisons include:
 - 50% population upper bound on cluster size
 - Significance level of $\alpha = 0.10$ to determine presence of cluster in Hypothesis Testing
 - Comparison against 999 Null-distribution simulations for computations of p-values.
- The settings above are repeated for k = 5, 7, 10 maximal region size tests for the Flexible Scan Statistic

Comparison of Region ID Selections by Method & P-values

	Significant Local Indices								
ULS	[1] 77 76 78 12 5 11 31 256 9 17 18 33 53 49 15 27 13 46 37 43 3 [22] 47 51 2 44 35 1 40 54 52 14 41 16 7 255 82 28 55 30 176 211 20 [43] 89 90 86 92 85 93 259 252 88 153 106 103 102 230 232 237 155 225 171 166 16 [64] 170 240 224 144 159 226 228 146 135 210 208 120 139 132 131 150 151 130 138 126 12 [85] 117 123 125 119 219 216 111 220 217 113 114 205 206 209 115 143 164 83 278 80 11 [106] 21 87 156 234 169 218 204 84 213 258 152 250 223 104 133 99 81 182 6 253 23 [127] 4 207 79	0.01							
SatScan									
Flex	00 07 92 00 09 91 93 03								
riex	K=5 86 92 88 89								
	K=7 86 92 88 89 85								
	k=10 88 92 86 89 93 85 90 38 44 40 43 53 37 52 46								

Comparison of Physical Cluster Appearance by Method

