

Requisitos de Software

O que é um requisito?

- Característica, atributo, habilidade ou qualidade que um sistema deve prover para ser útil a seus usuários
- Os requisitos devem informar "o que deve ser feito ou atendido" para resolver o problema do usuário
 - Base para o projeto (design)
 - Mas, não consideramos a solução técnica

O que é um requisito?

- Scripts SQL
- Modelos ER físicos
- Padrões de projeto
- Estruturas internas de dados

Quem é responsável pelos requisitos?

- O Engenheiro de Software
- Profissional que deve ter a habilidade de antecipar e gerenciar mudanças de requisitos de um produto de software.
- Saber se expressar.
- Comunicar-se bem a fim de capturar e registrar adequadamente o documento de requisitos.

Quem são os fornecedores de requisitos?

- Quem tem conhecimento de uso ou de negócio para orientar a construção do produto?
- Quem sabe como o sistema funciona?
- Quem conhece as regras do negócio?

Classificação de requisitos

- Tipo
 - Requisitos Não Funcionais
 - Requisitos Funcionais
- Origem
 - Requisitos de Usuário
 - Requisitos de Sistema

Requisitos

- Voz ativa e no afirmativo
- Requisito é único
- Requisito n\u00e3o contradiz outro requisito
- É possível interpretar o requisito apenas de uma maneira
- Devem ser verificáveis

Dilbert by Scott Adams, 2006

Necessidade

- Representa algo que o usuário/cliente
 "precisa" para resolver um problema.
- Declarações com forte significado para o stakeholder.
- Foco naquilo que o sistema irá resolver e não no que o sistema irá fazer.
- Não confundir necessidades com requisitos funcionais

Requisitos

Necessidade

- Representa algo que o usuário/cliente
 "precisa" para resolver um problema.
- Declarações com forte significado para o stakeholder.
- Foco naquilo que o sistema irá resolver e não no que o sistema irá fazer.
 - Não confundir necessidades com requisitos funcionais

Requisitos

NE<NNN> - < Descrição da necessidade> onde < NNN> representa um número sequencial.

Vamos analisar este exemplo:

NE001 - O sistema deve processar planilhas financeiras

NEO01 - O sistema deve processar planilhas financeiras

- Texto voltado para a solução, se aproximando de um requisito funcional
- Foco no que deve ser feito e não no problema do usuário
- Por que o usuário/cliente quer processar estas planilhas?
- A resposta é porque ele precisa calcular as despesas financeiras por categoria da sua empresa
- Qual o benefício que o usuário/cliente terá com o processamento das planilhas?
- A resposta é que o cálculo será feito automaticamente, aumentando a velocidade de resposta e eliminando erro humano.
- O usuário também deseja guardar um histórico dos cálculos para conferência futura.
- Existem outros modos de resolver o problema identificado? O processamento das planilhas é uma possível solução, mas é a melhor?

NE001 - Aumentar a velocidade dos cálculos, guardar histórico e eliminar erro humano no cálculo.

Requisitos Funcionais

Requisito Funcional

 Expressam funcionalidades ou serviços que um sistema deve ou pode ser capaz de executar ou fornecer

Ações:

- Imprimir, Calcular, Gerar
- Exportar, Importar, Consultar
- Mostrar, Enviar, ...

Requisito Funcional

Forma 1	RF <mm><nnn> - O sistema deve permitir <descrição algum="" da="" do="" executada="" função="" por="" sistema="" usuário=""></descrição></nnn></mm>
Quando usar	Note que o verbo " permitir " deve ser usado aqui para indicar que a função será executada por um usuário do sistema
Forma 2	RF <mm><nnn> - O sistema deve <descrição da="" executada="" função="" pelo="" sistema=""></descrição></nnn></mm>
Quando usar	Note que a ausência do verbo "permitir" indica que a função será executada diretamente pelo sistema, sem a interação direta com um usuário.

RF	Prefixo adotado para representar um requisito funcional
<mm></mm>	Número sequencial com dois dígitos, identificando o módulo que o requisito pertence.
<nnn></nnn>	Número sequencial com três dígitos, utilizado para a identificação do requisito dentro de
	cada módulo.

Requisitos não funcionais

- Declaram restrições ou atributos de qualidade
- Categorias:
 - Segurança
 - Desempenho
 - Usabilidade
 - Confiabilidade
 - Portabilidade
 - Padrões e normas

Requisito não Funcional

RNF<NNN> - O sistema deve permitir **<descrição da restrição ou condição de qualidade a ser atendida pelo sistema >**

	RNF	Prefixo adotado para representar um requisito não funcional
	<nnn> </nnn>	Número sequencial com três dígitos, utilizado para a identificação única do requisitos
		não funcional.

Revisando

• RNF007. O sistema deve funcionar nos browsers IE8 e IE9.

Regra de negócio

- Afirmações que definem ou restringem o negócio
 - O objetivo é definir a estrutura ou o comportamento do negócio
 - Elas complementam o entendimento sobre os requisitos e detalham o "como" do ponto de vista do negócio
- Podem ser cálculos, deduções, validações ou restrições que devem ser consideradas na execução dos processos existentes em uma organização
- Elas podem ser leis e regulamentos impostos ao negócio, ou mesmo regras específicas a um determinado caso de uso

Documentar

Forma RN<NNN> - <descrição>.

RNF	Prefixo adotado para representar uma regra de negócio
<nnn></nnn>	Número sequencial com três dígitos que identifica a regra de negócio.

Vejamos o exemplo

- RN01.003 O preço líquido de um produto é calculado como:
- Preço Líquido = Preço Produto (Preço Produto * Porcentagem de imposto / 100)
- Onde:
 - Preço Líquido: preço do produto já descontado os impostos.
 - Preço Produto: preço do produto com todos os impostos inclusos.
 - Porcentagem de Imposto: valor percentual do imposto pago ao governo sobre o produto.
- Exemplo: considerando que o preço do produto é R\$ 10,00 e o imposto sobre este é de 5%, o preço líquido é de R\$ 9,50

Especificação

Especificação História de Usuário

- Como um profissional de saúde eu quero poder incluir mais de um CID em um único atendimento
 - RF001 CID
 Deve permitir incluir 1 ou mais CID no atendimento
 - RF002 Relatório de final de atendimento
 Deve permitir listar todos os CID no relatório de finalização do atendimento
 - RF003 Histórico do atendimento
 Deve permitir listar todos os CIDs adicionados no atendimento no histórico de atendimentos
 - RF004 Classificar os CIDs em primário e secundário Deve permitir classificar os CIDs em primário e secundário
 - RF005 Classificar em suspeitos Deve permitir classificar cada CID se é suspeito

Modelagem de Software

Modelagem de Software

 A modelagem é uma parte central de todas as atividades que levam à implementação de um bom software.

Um modelo é uma simplificação da realidade.

Construímos modelos para compreender melhor o

sistema que estamos desenvolvendo.

"Se você realmente quiser construir software equivalentes a uma casa ou a um prédio, o problema não se restringirá a uma questão de escrever uma grande quantidade de software - de fato, o segredo estará em criar o código correto e pensar em como será possível elaborar menos software. Isso faz com que o desenvolvimento de software de qualidade se torne uma questão de arquitetura, processo e ferramenta"

(UML - Guia do Usuário)

Modelagem de software

- 1. Os modelos ajudam a visualizar;
- 2. Permitem especificar a estrutura ou o comportamento de um sistema;
- 3. Proporcionam um guia para a construção do sistema;
- 4. Documentam as decisões tomadas.

Ferramenta Case

Ferramenta Case (Computer Aided Software Engineering)

- Ferramentas que apoio o desenvolvimento de software de forma visual
- Podem ser:
 - Ferramentas de diagramas
 - Demonstra o fluxo da informação. Fluxograma.
 - Ferramentas de modelagem de processos
 - Representam atividades ou tarefas. Exemplo BPMS
 - Ferramentas de gerenciamento de projetos
 - Ferramentas que auxiliam no controle de projetos. Exemplo Creative Pro Office
 - Ferramentas de Documentação
 - Auxiliam em manter a documentação do software.
 Exemplo DrExplain

Ferramenta Case (Computer Aided Software Engineering)

- Podem ser:
 - Ferramentas de Análise
 - Auxiliam a entender os requisitos. Exemplo CaseComplete.
 - Ferramentas de Design
 - Criação de componentes visuais.
 - Ferramentas de Gerenciamento e Configuração
 - Gerenciamento de versão. Exemplo Git.
 - Ferramentas de Controle de Mudança
 - Gerenciam as mudanças automatizadas do software.
 - Ferramentas de Programação
 - Auxiliam o desenvolvimento, algumas possuem módulos de simulação. Exemplo Eclipse.

Ferramenta Case (Computer Aided Software Engineering) Podem ser:

Ferramentas de prototipagem

Auxiliam na criação de produtos independentes de hardware ou do design.
 Exemplo Mockup Builder

Ferramentas de desenvolvimento web

Cria-se páginas com formulários, textos, scripts, etc e geram o seu código.
 Exemplo Brackets

Ferramentas de garantia de qualidade

• Possibilitam a criação de testes. Exemplo JMeter

Ferramentas de Manutenção

Auxiliam a manutenção do software, exemplo HP Quality Center

IMB Rational® Software Modeler

- O Rational[®] Software Modeler (RSM) é uma ferramenta CASE comercial que permite criar digramas e perfis UML;
- Esta ferramenta é uma ótima alternativa para a especificação, oferecendo recursos como o suporte à linguagem OCL para definição de constraints, inclusão de ícones nos estereótipos e possibilidade de importação e exportação em vários formatos.
 - Object Constraint Language linguagem declarativa para descrever as regras que se aplicam aos modelos UML.
- Outra vantagem desta ferramenta é ser multilinguagem.

Papyrus UML2 Modeler

- A ferramenta de código aberto (opensource).
- Baseada no ambiente Eclipse, e está sob a licença EPL (Eclipse Public License).
- A ferramenta oferece suporte à linguagem OCL para definição de constraints, sendo as mesmas utilizadas para validar o esquema Zconceitual gerado.
- Não há opção para importação/exportação de modelos usando o formato XMI

StarUML

- É uma ferramenta CASE de código aberto (opensource) e está sob a licença GPL (General Public License).
- Permite a modelagem de sistemas utilizando os diagramas da UML e também à MDA, com definições de transformações para algumas plataformas específicas.
 - Model Driven Arquitecture
- É permitida também a importação/exportação de modelos utilizando o formato XMI.
- A ferramenta também não dá suporte à definição de constraints na linguagem OCL.
 - Apesar disso, há opção para usar notação gráfica para os estereótipos.
 - Para usar esse recurso, é necessário declarar no código XML o ícone a ser utilizado.

Enterprise Architect

- Ferramenta CASE comercial que nos permite criar diagramas;
- Licenciada pela Sparx Systems
- Permitir a criação de diagramas da UML de forma visual oferece recursos como suporte a OCL para definição de constraints e importação e exportação em XMI (XML Metadata Interchange).
- Apesar de não permitir a inclusão e exclusão de estereótipos gráficos, para melhor visualização e entendimento do diagrama, a vantagem desta ferramenta é a possibilidade de transformações entre os diagramas da arquitetura MDA.
- Permite também a incorporação de outras ferramentas cases como modelagem de processos.

Enterprise Architect

Astah

UML

Os objetivos da UML

- Modelar sistemas (não apenas de software) usando os conceitos da orientação a objetos;
- Estabelecer uma união fazendo com que métodos conceituais sejam também executáveis;
- Criar uma linguagem de modelagem usável tanto pelo homem quanto pela máquina.

Partes que compõem a UML

Visões

- Mostram diferentes aspectos do sistema que está sendo modelado.
- A visão é uma abstração consistindo em uma série de diagramas.
- Definindo um número de visões, cada uma mostrará aspectos particulares do sistema, dando enfoque a ângulos e níveis de abstrações diferentes e uma figura completa do sistema poderá ser construída.

Diagram

 Os diagramas são os gráficos que descrevem o conteúdo em uma visão. UML possui nove tipo de diagramas que são usados em combinação para prover

UML

Fonte: UML diagrams overview. Disponível em: http://en.wikipedia.org/wiki/Unified_Modeling_Language

Exemplos de diagramas

• Diagrama de Use Case

Fonte: Sparx Systems.

http://www.sparxsystems.com/uml-

tutorial.html>

• Diagrama de Sequência

Em resumo

UNIFIED MODELING LANGUAGE

- É o padrão para a modelagem Orientada a Objetos.
- Pode ser usada para especificação, construção, visualização e documentação de sistemas de software.
- Pode ser usado durante todo o ciclo de vida de um software.
- Pode ser usado com diferentes tecnologias de implementação.
- Oferece uma notação gráfica baseada em vários diagramas que permitem a modelagem visual de programas orientados a objeto independente de linguagem de programação.

Aonde você quer chegar? Vai com a

