Problem

Show that TQBF restricted to formulas where the part following the quantifiers is in conjunctive normal form is still PSPACE-complete.

Step-by-step solution

Step 1 of 3

TQBF: TQBF problem is to determine whether a fully quantified Boolean formula is true or false.

 $TQBF = \{ \langle \phi \rangle | \phi \text{ is a true fully quantified Boolean formula} \}$

Show that TQBF restricted to formulas where the part following quantifiers is in conjunctive normal form (cnf) is PSPACE - complete.

 $cnf-TQBF = \left\{ \overrightarrow{Q} \ \phi \in TQBF \ | \ \phi \ \ \text{is in } cnf \right\} \ \text{is PSPACE- complete}.$ That is

Comment

Step 2 of 3

PSPACE- complete:

A language B is PSPACE- complete if it satisfies two conditions:

- 1. B is in PSPACE, and
- 2. Every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

1. $\underline{cnf} - \underline{TQBF} \in \underline{PSPACE}$: we know that $\underline{TQBF} \in \underline{PSPACE}$

As a subset of TQBF characterized by a simple syntactic test, cnf-TQBF is obviously still in PSPACE.

- $cnf TQBF \in PSPACE hard$
- We show PSPACE hardness by proving $TQBF \leq_p cnf TQBF$
- Given a TQBF instance $\overrightarrow{Q}\phi$ where \overrightarrow{Q} is a sequence of quantifiers and ϕ is a Boolean formula, we construct in polynomial time an equivalent cnf-TQBF instance $\overrightarrow{Q}\overrightarrow{E}\psi$ where \overrightarrow{E} is a sequence of existential quantifiers concerning the fresh proposition in ψ but not in ϕ .
- Here we use the technique for transforming the SAT instance ϕ in to an equi satisfiable CSAT instance Ψ .
- $\phi F \phi$ if and only if there exist an extension π' of π that make Ψ true.
- This construction establishes that

$$_{\pi}$$
 $=$ $_{\phi}$ that is $_{\pi}$ $=$ $_{\vec{E}\psi}$ and hence $=$ $_{\vec{Q}\phi}$ iff $=$ $_{\vec{Q}\vec{E}\psi}$

Comment

Step 3 of 3

From (1) and (2) cnf - TQBF is PSPACE complete

Thus, it is proved that the TQBF restricted to formulas where the part following the quantifiers is conjunctive normal from, is still PSPACE - complete.

Comment