

"All-In-One" motor parameters identification and control embedded in a dsPIC DSCs.

Romain Delpoux¹, Lubin Kerhuel² romain.delpoux@insa-lyon.fr, lubin.kerhuel@microchip.com

¹Ampère Lab CNRS UMR 5005, INSA de Lyon

²Microchip Technology Inc.

Plan

Team Expertise

Motor Control and Identification

Experimental Setup Description

Outline

Team Expertise

Motor Control and Identification

Experimental Setup Description

Team Expertise Automatic Control for Power Electronic (ACPE)

Strength and originality in a positioning between :

- Power Electronic
- Control theory

The objective is to take advantage of a **fine knowledge of power electronics systems** and of an **expertise on some tools of control theory**, identified as relevant for these applications;

Keywords:

electric machines, power converters control theory, control allocation, hybrid dynamic modeling and control.

Automatic Control for Power Electronic (ACPE)

Leading applications

- Electric machines
- Power converters

Expertise

- Identification
- Control
- Observation

Focus on experimentation

- Laboratory experience
- Realization of new benches
- Rapid Control Prototyping (dSpace, SpeedGoat)

Plan

Team Expertise

Motor Control and Identification

Experimental Setup Description

Permanent magnet synchronous motor (PMSM)

PMSM Scheme

- $S_{abc} \in \{0,1\}^3$: switch : 0 or 1 on each arms
- v_{abc} (in V) : input voltages
- i_{abc} (in A) : phase currents
- τ_m (in Nm) : produced torque
- ω , θ (in rad/s and rad) angular speed and position

Permanent magnet synchronous motor (PMSM)

PMSM Scheme

Kirchhoff's current law :

$$i_a + i_b + i_c = 0$$

Balanced motor: $v_a + v_b + v_c = 0$

Permanent magnet synchronous motor (PMSM)

PMSM model

$$\begin{cases} L\frac{di_a}{dt} &= v_a - Ri_a + p\phi_f \Omega \sin(p\theta) \\ L\frac{di_b}{dt} &= v_b - Ri_b + p\phi_f \Omega \sin\left(p\theta - \frac{2\pi}{3}\right) \\ L\frac{di_c}{dt} &= v_c - Ri_c + p\phi_f \Omega \sin\left(p\theta + \frac{2\pi}{3}\right) \\ J\frac{d\Omega}{dt} &= \tau_m - F\Omega - \tau_I \end{cases}$$
• p pole pairs number
• L (in H) phase inductance
• R (in Ω) phase resistor
• ϕ_f (in Wb) flux constant
• J (in kg.m²) inertia
• F (in kg.m²) viscous friction
• τ_I (in Nm) load torque

- p pole pairs number

$$= \tau_m - F\Omega - \tau_I$$
• F (in kg.m²) viscous friction
• τ_I (in Nm) load torque
$$\tau_m = -p\phi_f \left[i_a \sin(p\theta) + i_b \sin\left(p\theta - \frac{2\pi}{3}\right) + i_c \sin\left(p\theta + \frac{2\pi}{3}\right) \right]$$

Transform AC model to DC motor equivalent model

Transform AC model to DC motor equivalent model

$$L\frac{di_d}{dt} = v_d - Ri_d + Lp\Omega i_q \tag{1a}$$

$$L\frac{di_d}{dt} = v_d - Ri_d + Lp\Omega i_q \tag{1b}$$

$$L\frac{di_d}{dt} = v_d - Ri_d + Lp\Omega i_q$$
 (1a)

$$L\frac{di_d}{dt} = v_d - Ri_d + Lp\Omega i_q$$
 (1b)

$$J\frac{d\Omega}{dt} = p\frac{3}{2}\phi_f i_q - f\Omega - \tau_I$$
 (1c)

Control Objective : Speed control

- Current control
 - Compute voltages $v_k, k \in \{d, q\}$ as a function of $i_k^\#$ and i_k $v_k^\# = f(i_k^\# i_k)$
- Speed control
 - ► Compute $\tau_m^\#$ as a function of $\omega^\#$ and ω , $\tau_m^\# = f(\omega^\# \omega)$
 - $ightharpoonup C^{\#}$ provide to the control loop the current $i_q^{\#} = \frac{1}{\kappa} C^{\#}$
- Transient state: Respect performances indices (T_s, O_%,...)

Control Objective: Speed control

- Required parameters for the control :
 - p pole pairs number
 - L (in H) phase inductance
 - ightharpoonup R (in Ω) phase resistor
 - $ightharpoonup \phi_f$ (in Wb) flux constant
 - ► J (in kg.m²) inertia
 - F (in kg.m²) viscous friction

Identification procedure

The core of the identification procedures of this section is the least-squares algorithm: [Blauch et al., 1993], [Delpoux et al., 2012], [Delpoux et al., 2014].

$$\mathbf{y}[n] = \mathbf{W}^{\mathsf{T}}[n]\mathbf{p}_{nom},\tag{2}$$

- y[n] is the output vector,
- *n* is either an index or the time instant,
- W[n] is the regressor matrix, and
- **p**_{nom} is the nominal (unknown) parameter vector.

Given measurements of \mathbf{y} and \mathbf{W} , the objective is to determine \mathbf{p} , the estimate of the nominal parameter vector \mathbf{p}_{nom} :

$$\mathbf{p} = \left(\sum_{n=N_0}^{N_1} \mathbf{W}[n] \mathbf{W}^{\mathsf{T}}[n]\right)^{-1} \left(\sum_{n=N_0}^{N_1} \mathbf{W}[n] \mathbf{y}[n]\right). \tag{3}$$

Identification procedure

Electrical parameters

For this identification, consider the model of the motor in the dq frame, at steady state.

$$\underbrace{\begin{bmatrix} v_d \\ v_q \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} i_d & -p\Omega i_q & 0 \\ i_q & p\Omega i_d & p\Omega \end{bmatrix}}_{\mathbf{W}^{\mathsf{T}}} \underbrace{\begin{bmatrix} R \\ L \\ \phi_f \end{bmatrix}}_{\mathbf{p}} \tag{4}$$

such that least square parameter identification (3) apply.

Identification procedure

Electrical parameters

Plan

Team Expertise

Motor Control and Identification

Experimental Setup Description

Feature

- Sensored motor speed control
- Electrical parameters Identification
- Modify all parameters from interface
- Modify closed loop control dynamics
- ullet Adapt V_{dc} from measurement

Harware setup

• dsPICDEMTM MCLV-2 Development Board

• 2 PMSM

AC300022 - BLDC with Encoder

N23 Industrial Grade Motor

Model based design

Serial interface

```
COM11 - Tera Term VT
                                                                                                  Fichier Edition Configuration Contrôle Fenétre(W) Aide
  Developped by R. DELPOUX & L. KERHUEL romain.delpoux@insa-lyon.fr. lubin.kerhuel@microchip.com
 PU Load = 20.521313 %
 lode: 0
Supply parameters :
Vdc = 23.86V
                                         V_{max} = 11.93V
                                                                        Imax = 4A
Encorder parameters :
                                         lines = 250
                                                                        eleclines = 200
Electrical Parameters :
R = 0.533599 Ohm
                                         L = 0.000672 H
                                                                        Phif = 0.008001Wb
Mechanical Parameters :
J = 0.000191 kg.m^2
                                         F = 0.000104 \text{ kg.m}^2.\text{s}
Electrical Contro Gains :
K1 = 0.213440
                                         K2 = -423.580688
Mecanical Control Gains :
K1 = 0.011615
                                         K2 = -0.028618
                                                                        TrMeca = 1.0000000
Speed control :
omref = 0.00 rpm rpm
                                         om = 2.39 \text{ rpm}
  Available commands:
  \"ident\" => identify motor parameters.
  \"run\" => run motor speed control.
  〈ESC〉 Clear ! 〈ENTER〉 Select ! 〈BACKSPACE〉 Delete char
```


Motors Datasheets Parameters

L-L Resistance (R _{tm}) Ohms: 0.57
L-L Inductance (L _{tm}) mH at 1Khz: 0.64
Torque Constant (K ₁) oz.in./Amp: 8.38
Voltage Constant (Ke) Vpeak/KRPM: 6.2
Stack Length: 3.00

Click for full datasheet

Model	2310	
Electrical Interface Option	P/C/Y	
Resistance, phase to phase, $[\Omega]$	0.72	
Inductance, phase to phase, [mH]	0.40	
Electrical Time Constant, [mS]	0.56	
Back EMF (Ke), [Vpeak/kRPM]	4.64	
Continuous Torque [oz-in]1,2	39	

Click for full datasheet

Experimental results

AC300022 - BLDC with Encoder

N23 Industrial Grade Motor

Experimental results

AC300022 - BLDC with Encoder

N23 Industrial Grade Motor

$R = 0.533 \; Ohm$	$L=0.574\ mH$	Phif = 0.00789Wb	$R = 0.656 \; Ohm$	$L=0.438\ mH$	Phif = 0.00658Wb
$R = 0.512 \; Ohm$	$L=0.835\ mH$	Phif = 0.00804Wb	$R = 0.698\;Ohm$	$L=0.406\ mH$	Phif = 0.00654Wb
$R = 0.557 \; Ohm$	$L=0.766\ mH$	Phif = 0.00798Wb	$R = 0.667\;Ohm$	$L=0.361\ mH$	Phif = 0.00665Wb
$R = 0.546 \; Ohm$	$L=0.791\ mH$	Phif = 0.00799Wb	$R = 0.682\;Ohm$	$L=0.337\ mH$	Phif = 0.00659Wb
R = 0.540 Ohm	L = 0.807 mH	Phif = 0.00802Wb	R = 0.677 Ohm	L = 0.323 mH	Phif = 0.00661Wb

Experimental results

Click for Demonstration Video

Plan

Team Expertise

Motor Control and Identification

Experimental Setup Description

- Encoder resolution
- Mechanical parameters identification
- Sensorless parameters identification
- Sensorless motor control

Thank you for your attention

References

Blauch, A.-J., Bodson, M., and Chiasson, J.-N. (1993).

High-speed parameter estimation of stepper motors.

IEEE Transactions on Control Systems Technology, 1(4):270–279.

Delpoux, R., Bodson, M., and Floquet, T. (2012).

- Joint Identification of Stepper Motor Parameters and of Initial Encoder Offset.

 In 16th IEAC Symposium on System Identification, Brussels, Belgique
 - In 16th IFAC Symposium on System Identification, Brussels, Belgique.
- Delpoux, R., Bodson, M., and Floquet, T. (2014).
 Parameter estimation of permanent magnet stepper motors without mechanical sensors.

Control Engineering Practice, 26:178–187.