1.1.1 Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Анна Назарчук Б02-109

1 Аннотация

В работе сопротивление нихромовой проволоки измеряется несколькимим методами: с помощью амперметра и вольтметра, классическим методом моста постоянного тока (мост Уитстона). Размеры проволоки получаются с использованием линейки, микрометра, штангенциркуля. Исследуются систематические и случайные ошибки измерений.

2 Теоретические сведения

Удельное споротивление однородной по материалу и толщине проволоки круглого сечения может быть определено по формуле 1:

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d_{\rm cp}^2}{4} \tag{1}$$

где $R_{\rm np}$ - сопротивление измеряемого отрезка проволоки, l - его длина, $d_{\rm cp}$ - средний диаметр проволоки.

Величину $R_{\text{пр}}$ измерим с помощью одной из схем, представленных на рис. 1 Для случая а) вольтметр измеряет напряжение (U_a) на концах проволоки, а амперметр измеряет не ток, идущий через проволоку, а сумму токов (I_a) , проходящих через проволоку и вольтметр . Поэтому

$$R_{\pi p 1} = \frac{U_a}{I_a} = R_{\pi p} \frac{R_V}{R_V + R_{\pi p}} \tag{2}$$

Рис. 1: Схемы для измерения сопротивления при помощи амперметра и вольтметра

Откуда для схемы а):

$$R_{\rm np} = R_1 \frac{R_V}{R_V - R_{\rm np1}} = R_{\rm np1} \frac{R_{\rm np1}}{1 - \frac{R_{\rm np1}}{R_V}} \approx R_{\rm np1} \left(1 + \frac{R_{\rm np1}}{R_V} \right)$$
(3)

Для случая б) амперметр измеряет силу тока (I_6) через проволоку, вольтметр измеряет напряжение не на концах проволоки, а напряжение (U_6) на амперметре и проволоке. Поэтому

$$R_{\pi p2} = \frac{U_6}{I_6} = R_{\pi p} + R_A \tag{4}$$

Откуда для схемы б):

$$R_{\rm np} = R_{\rm np2} \left(1 - \frac{R_{\rm A}}{R_{\rm np2}} \right)$$
 (5)

Более точным методом измерения сопротивления является метод моста постоянного тока (мост Уитстона).

3 Оборудование

Линейка : $\Delta_{\text{лин}} = \pm 0.5$ мм (по цене деления).

Таблица 1: Характеристики вольтметра

Система	Магнитно-электрическая
Класс точности	0.5
Шкала	линейная, 150 делений
Предел измерений	0.75 B
Цена деления	5 мВ
Внутреннее сопротивление	250 Ом
Погрешность при считывании со шкалы	±2.5 мВ
Макс. погрешность	±3.75 мВ

Таблица 2: Характеристики амперметра

Система	Цифровая
Разрядность дисплея	5 ед.
Внутреннее сопротивление	1,2 Ом
Погрешность	$\pm (0.002X + 0.02) \text{ MA}$

Штангенциркуль: $\Delta_{\text{mt}} = \pm 0.05$ мм (маркировка производителя)

Микрометр : $\Delta_{\text{мкм}} = \pm 0.01$ мм (маркировка производителя)

Исходя из характеристик приборов можно заметить, что при $R_{\rm np}\approx 5$ Ом

$$\frac{R_{\rm A}}{R_{\rm np2}} > \frac{R_{\rm np1}}{R_V}$$

Поэтому измерения будем проводить с помощью схемы 1а.

4 Результаты измерений и обработка данных

4.1 Измерение диаметра проволоки

Измерения проводились штангенциркулем и микрометром многократно на разных участках проволоки. Результаты представлены в таблице 4.1. Обработанные данные можно найти в таблице 5.

Таблица 3: Характеристики моста постоянного тока Р4833

1 1	
Класс точности	0.1
Разрядность магазина сопротивлений	5 ед.
Используемый диапазон измерений	$10^{-4} - 10 \text{ Om}$
Погрешность в данном диапазоне	±0.01 Ом

Таблица 4: Результаты измерения диаметра проволоки

$N_{\scriptscriptstyle exttt{M}3M}$	1	2	3	4	5	6	7	8	9	10
Микрометр: d, мм	0.36	0.36	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35
Штангенциркуль: d, мм	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35

Таблица 5: Обработка результатов измерения диаметра

	Микрометр	Штангенциркуль
Средний диаметр: $\overline{d} = \frac{\sum d_i}{N}$	0.358	0.35
Стандартное отклонение: $\sigma_d = \sqrt{\frac{1}{N-1}\sum (d_i - \overline{d})^2}$	0.004	0
Случайная погрешность среднего: $\sigma_{\overline{d}} = \frac{\sigma_d}{\sqrt{N}}$	0.001	0
Инструментальная погрешность: Δ	0.01	0.05
Полная погрешность: $\sigma_{ ext{пол}} = \sqrt{\sigma_d^2 + \sigma_d^2}$	0.01	0.05
Окончательные результаты измерения:	0.358 ± 0.01	0.35 ± 0.05

4.2 Измерения сопротивления проволоки

Результаты измерений напряжения и силы тока в зависимости от длины исследуемого образца проволоки представлены в таблице 6 и на графике (рис. 2)

Рис. 2: Результаты измерений напряжения V (мВ) в зависимости от тока I (мА) для проволок разной длины l и их линейная аппроксимация

Для каждой длины l проводим расчет $R_{\rm cp}$ методом наименьших квад-

Таблица 6: Результаты измерения напряжения и силы тока

$l = 50 \pm 0.05 \text{ cm}$						
I_a , мА	66.34	75.67	88.57	103.58	120.84	
V_a , деления	66	75	88	103	120	
V_a , MB	330	375	440	515	600	
I_a , мА	143.53	148.69	129.59	105.21	96.79	
V_a , деления	143	148	129	105	96	
V_a , мВ	715	740	645	525	480	
	l =	$= 30 \pm 0.0$	05 см			
I_a , мА	151.06	179.84	237.59	142.59	225.72	
V_a , деления	92	110	145	87	138	
V_a , MB	460	550	725	435	690	
I_a , мА	143.92	191.53	198.91	181.2	169.85	
V_a , деления	88	117	121	111	104	
V_a , мВ	440	585	605	555	520	
$l = 20 \pm 0.05 \; \mathrm{cm}$						
I_a , мА	261.51	351.76	269.82	201.19	257.51	
V_a , деления	109	147	113	84	107	
V_a , мВ	545	735	565	420	535	
I_a , мА	329.57	297.29	347.21	242.69	215.57	
V_a , деления	138	124	145	101	90	
V_a , мВ	690	620	725	505	450	

Таблица 7: Результаты измерения сопротивления проволок

	,	•				
l,cm	$R_{\rm cp}$, Ом	$\sigma_{R_{\mathrm{cp}}}^{\mathrm{cnyq}}, \mathrm{Om}$	$\sigma_{R_{\mathrm{cp}}}^{\mathrm{cuct}}, \mathrm{Om}$	$\sigma_{R_{\mathrm{cp}}}$, Om	$R_{\rm np}$, Om	R_0 , Om
20	2.09	0.001	0.012	0.012	2.12 ± 0.012	2.23 ± 0.01
30	3.05	0.002	0.017	0.017	3.09 ± 0.017	3.32 ± 0.01
50	4.99	0.003	0.027	0.028	5.09 ± 0.028	5.35 ± 0.01

ратов для прямой, проходящей через начало координат (используется Python). Найдем случайную ошибку измерения по формуле:

$$\sigma_{R_{\rm cp}}^{\rm c,nyq} = \frac{1}{\sqrt{10}} \sqrt{\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - R_{\rm cp}^2} \tag{6}$$

Систематическую погрешность $R_{\rm cp}$ оценим по формуле:

$$\frac{\sigma_{R_{\rm cp}}^{\rm c,ny\,q}}{R_{\rm cp}} = \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} \tag{7}$$

Результаты измерения сопротивления проволок с помощью вольтметра и амперметра, а также используя мост Уинстона с учетом погрешностей представлены в таблице 7. Помимо этого учитывается поправка в измерении сопротивления проволоки по формуле 3 Можно заметить, что случайная погрешность измерения сопротивления мала, все ошибки происходят из-за систематических ошибок приборов: амперметра и вольтметра. Результаты измерения практически равняются результатам контрольных измерений при помощи моста Уинстона.

4.3 Измерение удельного сопротивления проволоки

Определим площадь поперечного сечения проволоки с учетом погрешности, используя данные для диаметра d и σ_d из измерений микрометром:

$$S = \frac{\pi d^2}{4} = 0.1 \cdot 10^{-6} \text{m}^2 \tag{8}$$

$$\sigma_S = 2\frac{\sigma_d}{d}S = 5.6 \cdot 10^{-9} \text{M}^2 \tag{9}$$

Найдем удельное сопротивление проволоки по формуле:

$$\rho = R \frac{S}{I} \tag{10}$$

Таблица 8: Результаты измерения ρ для каждой из длин проволок

	1	1 1
l, см	$\rho, 10^{-6} \text{ Om } \cdot \text{M}$	$\sigma_{\rho}, 10^{-8} \text{Om·m}$
20	1.06	5.96
30	1.03	5.78
50	1.02	5.73

$$\sigma_{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(2\frac{\sigma_l}{l}\right)^2} \tag{11}$$

Результаты для каждой из длин представлены в таблице 8 Окончательно $\rho = (1.04 \pm 0.06) \cdot 10^{-6}$ Ом·м.

5 Вывод

Полученное значение ρ сравним с табличными данными. Согласно справочнику (Физические величины. М.: Энергоиздат, 1991.) для удельного сопротивления нихрома при $20^{\circ}C$ наиболее близкое значение к получившемуся в работе для сплава: 70-80% Ni, 20 % Cr, 0-2% Mn (проценты по массе).

Использованный в работе метод измерения позволяет получать значения R с достаточно низкой погрешностью ($\sim 0.5\%$). Основной вклад в погрешность ρ ($\sim 6\%$) вносит погрешность измерения диаметра ($\sim 3\%$). Однако систематическая погрешность измерения диаметра существенно больше случайной ее составляющей, поэтому улучшить измерения при проведении большего числа измерений теми же приборами не получится, как и не получится узнать про однородность проволоки по диаметру. Только измерения на более качественном и точном оборудовании могут привести к уменьшению погршености измерения.