Περιεχόμενα

1	Δ ιο	χφορική Εξίσωση	2
2	Χαρακτηριστική Εξίσωση		2
	2.1	Απόδειξη περίπτωης $\Delta < 0$	2
3	Παραδείγματα		2
	3.1		2
		$3.1.1 y'' - y' - 6y = 0 \dots \dots$	2
		$3.1.2 y'' - 4y' - 5y = 0 \dots \dots \dots$	2
		$3.1.3 y'' - 4y' - 4y = 0 \dots \dots \dots$	3
	3.2		
		χικών) τιμών των παρακάτω Δ.Ε	3
		$3.2.1$ $y'' + 4y' = 0, y(0) = 0, y(\frac{\pi}{12}) = 1$	3
		3.2.2 $y'' + 4y' = 0, y(0) = 0, y(\pi) = 1$	3
		3.2.3 $y'' + 4y' = 0, y(0) = 0, y(\pi) = 0$	3
		$3.2.4 y'' - 2y' + 2y = 0, \ y(0) = 0,$	
		$y'(0) = 2 \dots \dots \dots$	3
	3.3		3
		$3.3.1 y'' - 2y' - 3y = 0 \dots \dots \dots$	3
		$3.3.2 y'' - 4y' = 0 \dots \dots \dots$	3
		$3\ 3\ 3$ $y'' - 4y' + 4y = 0$	3

Διάλεξη Πρώτη

1 Διαφορική Εξίσωση

$$\alpha y''(x) + \beta y'(x) + \gamma y = 0$$

Η συνήθης Δ .Ε. είναι γραμμική, δεύτερης τάξης, ομογενής, με α , β , γ σταθερούς συντελεστές.

2 Χαρακτηριστική Εξίσωση

$$\alpha r^2 + \beta r + \gamma = 0$$

 Γ ια την γενική λύση της X.E. διακρίνονται οι παρακάτω περιπτώσεις:

1. $\Delta > 0$:

$$r_1, r_2 \in \Re$$

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

$$y_1(x) = c_1 e^{r_1 x}$$

$$y_2(x) = c_2 e^{r_2 x}$$

$$c_1, c_2 \text{ σταθερές}$$

2. $\Delta = 0$:

$$r \in \Re$$

$$y(x) = c_1 e^{rx} + c_2 x e^{rx}$$

$$y_1(x) = c_1 e^{rx}$$

$$y_2(x) = c_2 x e^{rx}$$

$$c_1, c_2 \text{ staderés}$$

3. $\Delta < 0$:

$$r_1 = A + Bi$$

$$r_2 = A - Bi$$

$$A = \frac{-\beta}{2\alpha}, B = \frac{\sqrt{-\Delta}}{2\alpha}$$

$$y(x) = c_1 e^{Ax} \sin Bx + c_2 e^{Ax} \cos Bx$$

$$y_3(x) = c_1 e^{Ax} \sin Bx$$

$$y_4(x) = c_2 e^{Ax} \cos Bx$$

$$c_1, c_2 \cot \theta \text{exec}$$

${f 2.1}$ Απόδειξη περίπτωης $\Delta < 0$

Είναι:

$$y_1(x) = e^{Ax}(\sin Bx + i\cos Bx)$$

$$y_2(x) = e^{Ax}(\sin Bx - i\cos Bx)$$

Έχουμε:

$$(1) + (2)$$

$$e^{Ax}(\sin Bx + i\cos Bx) + e^{Ax}(\sin Bx - i\cos Bx)$$

$$e^{Ax}(\sin Bx + i\cos Bx + \sin Bx - i\cos Bx)$$

$$e^{Ax}(2\sin Bx)$$

$$\Rightarrow$$

$$y_1(x) + y_2(x) = 2e^{Ax}\sin Bx$$

$$\frac{1}{2}y_1(x) + \frac{1}{2}y_2(x) = e^{Ax}\sin Bx$$

$$y_3(x) = e^{Ax}\sin Bx$$

 $K\alpha\iota$:

$$(1) - (2)$$

$$e^{Ax}(\sin Bx + i\cos Bx) - e^{Ax}(\sin Bx - i\cos Bx)$$

$$e^{Ax}(\sin Bx + i\cos Bx - \sin Bx + i\cos Bx)$$

$$e^{Ax}(2i\cos Bx)$$

$$\Rightarrow$$

$$y_1(x) + y_2(x) = 2ie^{Ax}\cos Bx$$

$$\frac{1}{2i}y_1(x) + \frac{1}{2i}y_2(x) = e^{Ax}\cos Bx$$

$$y_4(x) = e^{Ax}\cos Bx$$

3 Παραδείγματα

3.1 Λύστε τις αχόλουθες $\Delta.E.$

3.1.1
$$y'' - y' - 6y = 0$$

$$r^{2} - r - 6 = 0, \ \Delta = 25 > 0$$

$$r_{1} = \frac{-(-1) + \sqrt{\Delta}}{-2} = \frac{-(-1) + \sqrt{25}}{-2} = -3$$

$$r_{2} = \frac{-(-1) - \sqrt{\Delta}}{-2} = \frac{-(-1) - \sqrt{25}}{-2} = 2$$

Άρα η γενική λύση είναι η

3.1.2 y'' - 4y' - 5y = 0

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

$$r^{2} - 4r - 5 = 0, \ \Delta = -4 < 0$$

$$r_{1} = \frac{-(-4) + i\sqrt{-\Delta}}{-2} = 2 + i$$

⁽¹⁾ Άρα η γενική λύση είναι η

(2)
$$y(x) = c_1 e^{2x} \sin x + c_2 e^{2x} \cos x$$

3.1.3 y'' - 4y' - 4y = 0

$$r^{2} - r - 6 = 0, \ \Delta = 25 > 0$$

$$r_{1} = \frac{-(-1) + \sqrt{\Delta}}{-2} = \frac{-(-1) + \sqrt{25}}{-2} = -3$$

$$r_{2} = \frac{-(-1) - \sqrt{\Delta}}{-2} = \frac{-(-1) - \sqrt{25}}{-2} = 2$$

Άρα η γενική λύση είναι η

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

- 3.2 Λύστε τα προβλήματα συνοριακών (ή αρχικών) τιμών των παρακάτω Δ .Ε.
- 3.2.1 y'' + 4y' = 0, y(0) = 0, $y(\frac{\pi}{12}) = 1$ Η Χ.Ε. είναι η

$$r^2 + 4 = 0$$

Οι ρίζες της Χ.Ε. είναι οι

$$r_1 = 2i, r_2 = -2i$$

Η $\Gamma.\Lambda$. της $\Delta.Ε$. δίνεται από

$$y(x) = c_1 e^{0x} \sin 2x + c_2 e^{0x} \cos 2x$$

 $y(x) = c_1 \sin 2x + c_2 \cos 2x$

Είναι

3.2.2
$$y'' + 4y' = 0$$
, $y(0) = 0$, $y(\pi) = 1$

3.2.3
$$y'' + 4y' = 0$$
, $y(0) = 0$, $y(\pi) = 0$

3.2.4
$$y'' - 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 2$

3.3 Λύστε την $\Gamma.\Lambda.$ των παρακάτω $\Delta.E.$

3.3.1
$$y'' - 2y' - 3y = 0$$

3.3.2
$$y'' - 4y' = 0$$

3.3.3
$$y'' - 4y' + 4y = 0$$