

GEOMETRÍA

Capítulo 21

ÁREA DE REGIONES CÍRCULARES ® SACO OLIVEROS

MOTIVATING | STRATEGY

Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo de áreas de círculo.

ÁREAS DE REGIONES CIRCULARES

<u>Círculo</u>.- Es la unión de la circunferencia y

su interior

O: Centro

S : Área del círculo

$$\mathbf{S} = \pi . \mathbf{r}^2$$

L : longitud de la circunferencia

$$L = 2\pi.r$$

Corona circular.-Es la región comprendida entre dos circunferencias concéntricas.

O : Centro S : Área de la corona circular

$$\mathbf{S} = \pi (\mathbf{R^2 - r^2})$$

$$\mathbf{S} = \pi.\mathbf{a^2}$$

$$\mathbf{S} = \frac{\pi (\mathbf{AB})^2}{4}$$

Sector circular

Es una parte del círculo limitada por dos radios y su arco correspondiente.

O: Centro

$$S = \frac{\theta \cdot r^2 \cdot \pi}{360^{\circ}}$$

Semicírculo

O: Centro

$$S = \frac{r^2 \cdot \pi}{2}$$

O: Centro

$$S = \frac{r^2 \cdot \pi}{4}$$

HELICO | PRACTICE

1. Con una plancha metálica, José, fábrica un letrero de forma circular para evitar que otros autos se estacionen en la puerta de su garaje. ¿Qué área tendrá dicho letrero?

Resolución

Piden: S

$$S = \pi r^2 \qquad ... (1)$$

En la figura:

$$2r = 40 \text{ cm}$$

 $r = 20$... (2)

Reemplazando 2 en 1

$$S = \pi . 20^2$$

$$S = 400\pi \text{ cm}^2$$

2. Determine el área de la región limitada por dos circunferencias interiores, cuyos radios miden 4 m y 6 m.

Resolución

- Piden: S_x
- $S_x = S_{(mayor)} S_{(menor)}$
- Reemplazando

$$S_x = \pi(6)^2 - \pi(4)^2$$

 $S_x = 36\pi - 16\pi$

$$S_{*} = 36\pi - 16\pi$$

$$S_x = 20\pi \text{ m}^2$$

3. Si O es centro del cuadrante AOB, calcule el área de la región sombreada.

Resolución

Piden: S

$$S = \frac{\pi . r^2}{4}$$
 ... (1)

ODC: Notable de 37° y 53°

$$r = 10 ... (2)$$

Reemplazando 2 en 1.

$$S = \frac{\pi.10^2}{4}$$

$$S = 25\pi u^2$$

4. En los semicírculos mostrados, calcule el área de la región sombreada.

Resolución

Piden: S_x

$$S_x = S_{(mayor)} - S_{(menor)}$$

Reemplazando:

$$S_x = \frac{\pi(6)^2}{2} - \frac{\pi(4)^2}{2}$$

$$S_x = 18\pi - 8\pi$$

$$S_x = 10\pi u^2$$

5. Calcule el área de la región sombreada.

6. Determine el área de la región sombreada, si ABCD es un cuadrado.

Resolución

• Piden: S_x $S_x = S_{ABCD} - S_{CÍCULO}$

Reemplazando:

$$S_x = 2^2 - \pi(1)^2$$

$$S_{x} = 4 - \pi$$

$$S_x = (4 - \pi) m^2$$

HELICO | PRACTICE

7. Para construir una hélice se ubican sobre una circunferencia seis puntos equidistantes dos a dos. ¿Qué cantidad de plancha metálica será necesario para realizar dicho trabajo?

Resolución

Piden: $S_1 + S_2$.

$$S_1 + S_2 = \frac{1}{2} \cdot \pi \cdot 30^2 + \frac{1}{2} \cdot \pi \cdot 6^2$$

$$S_1 + S_2 = \frac{1}{2} \cdot \pi \cdot 900 + \frac{1}{2} \cdot \pi \cdot 36$$

$$S_1 + S_2 = 450\pi + 18\pi$$

$$S_1 + S_2 = 468\pi \text{ cm}^2$$