Homework #1

Due February 14th, 11:59pm

Each homework submission must include:

- An archive (.zip or .gz) file of the source code containing:
 - The makefile used to compile the code on Monsoon (5pts)
 - All .cpp and .h files (5pts)
- A full write-up (.pdf of .doc) file containing answers to homework's questions (5pts), including
 the exact command line needed to execute every subproblem of the homework

The source code must follow the following guidelines:

- No external libraries that implement data structures discussed in class are allowed, unless specifically stated as part of the problem definition. Standard input/output and utilities libraries (e.g. math.h) are ok.
- All external data sources (e.g. input data) must be passed in as a command line argument (no hardcoded paths within the source code (5pts).
- Solutions to sub-problems must be executable separately from each other. For example, via a special flag passed as command line argument (5pts)

For this homework, you will need to use the most recent human genome assembly located on Monsoon: /common/contrib/classroom/inf503/genomes/human.txt

>568815281-9606

- This file contains multiple scaffolds that comprise the human genome
- The genome is in FASTA format (see insert)
 - The headers are unique and always begin with the ">" character. These can be discarded for this homework.

CTAACCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCTA

CCGAACCCTAATGCCGTCATAAGAGCCCTAGGGAGACCTTAGGGAACAAGCATTAAACTGACACTCGATTCTGTAGCCGG

CTCTGCCAAGAGACATGGCGTTGCGGTGATATGAGGGCAGGGGTCATGGAAGAAGCCTTCTGGTTTTAGACCCACAGGA

• The genomic sequences consist of the following alphabet {A, C, G, T, N}

Problem #1 (of 2): Monsoon account creation and workshop

- **(25pts)** Navigate to NAU's High Performance Computing Cluster (Monsoon) account creation page at https://in.nau.edu/hpc/obtaining-an-account/
- Complete the Self-Paced Workshop
- Obtain and submit the validation codes to self-validate your account
- Take a screenshot of the successful 'confirm user' command (see example below) and submit it as part of your writeup to complete problem #1 of the assignment.

\$ module load workshop
\$ confirm_user
username: abc123
exercise 1 code: 104b0c020063c4b666c376480260f14c
exercise 2 code: b542e82782e8af2663f243d39ec1751c
exercise 4 code: 0659f7fc71a24040c54e8a69c55a38bc
You've successfully confirmed your account!
Press Enter to Exit

Problem #2 (of 2): basic text processing

Write code to read, store, and analyze the latest human genome assembly (found at: /common/contrib/classroom/inf503/genomes/human.txt). At minimum, your code must contain (10pts):

- A character array to store the entire human genome in a single data structure
- A separate function to read the human genome file
- A function to compute the number of A, C, G, or T characters in the human genome
- Comments describing major code blocks and control structures
- A. (20pts) Read in and store the human genome. There will be multiple scaffolds (each with a separate header denoted by ">"). Concatenate the entire genome (discard headers) into a single character array data structure. Collect the following statistics (see below) as you are reading the file. Hint: you can keep running totals or store scaffold sizes / names in a separate sets of arrays
 - How many scaffolds were there?
 - What was the longest and shortest scaffold? Provide names of scaffolds and lengths.
 - What was the average scaffold length?
- B. **(20pts)** Write a function to assess the content of the human genome count the total number of a given character (A, C, G, or T) in the whole genome.
 - What is the 'big O' notation of your search (linear / quadratic / cubic / etc)?
 - How long does it take (in seconds) to execute this function? Hint: You will need to use system time within your code to get accurate time estimates.
 - What was the GC content of the human genome (percent of C's and G's in the genome)?