Boston Airbnb Fair Pricing Tool and Recommender

Dan Rossetti, Data Scientist and Founder of Cheap Stays, LLC

Agenda

- Introduction / Problem Statement / Data Sources / Architecture
- Exploratory Data Analysis
- Feature Engineering
- Feature Selection
- Modeling
- Recommender
- Conclusions / Next Steps

Intro | Problem Statement | Data Sources | Architecture

Introduction

Airbnb General:

- Hosts allow guests to stay at their property for a fee
- Alternative to traditional hotel / hostel
- Passive (or main) income for hosts

Airbnb Listing Prices:

- Pricing very subjective
- Vary wildly
- Finding best deals time consuming
- Setting listing price time consuming

Problem Statement at a Glance

- Be the Kelly Blue Book of Airbnb's
- Estimate fair prices for
 - Guests
 - Hosts
 - Developers
- Goal: RMSE of \$20
- Recommend criteria-based listings
 - Criteria in ⇒ Fair Price / Recommended Listings out
- Fast, easy, quick

Data Sources

- Airbnb Data Inside Airbnb [1]
 - o Includes: 75 numerical and categorical variables

- Geographic Data: Listing locations to Subway Stations
 - *MBTA Stations* [2] 132 total Stations
 - Google Geocoding API [3]
 - T-stop addresses ⇒ latitude / longitude

Product Architecture

Exploratory Data Analysis (EDA)

NOTE: All Subsequent EDA Performed on <u>Training</u> Data

Exploratory Data Analysis – Basic Stats

	<u>Mean</u>	<u>Min</u>	25th Pcntl	50th Pcntl	75th Pcntl	<u>Max</u>
Guests Accommodated	3.17	1	2	2	4	16
No. Bedrooms	1.75	1	1	1	2	13
No. Beds	1.79	1	1	1	2	22
Price	\$188.39	\$0	\$83	\$146	\$225	\$4283
Number of Reviews	41.09	0	0	7	44	821

Most Airbnb's are not extravagant

Exploratory Data Analysis – Price

Log transformations help normalize price data ⇒ better modeling

Feature Engineering

Feature Engineering - Descriptive Columns (Tokenizing)

Airbnb Data:

- Amenities
- Name
- Description
- Neighborhood Description
- Host About Information

For Each Category Find:

- Common Words
- Common phrases up to 4 word strings (n-grams)
- In at least 10% of listings

	Amn. word_1	Amn. word_2	 Name word_1	 Descr. word_1	 Nbhd word_1	Hst. Abt. word_1	etc
Listing 1	yes	no		 yes	 no	 yes	
Listing 2	yes	yes		 no	 no	 yes	
etc				 			

Feature Engineering – Proximity to Public Transit

Other features were engineered but won't be discussed

Feature Selection

Correlations - Quantitative Feature Selection Process

Modeling

Modeling

Primary Metric: Root Mean Squared Error

- Standard Deviation of Errors
 - ~67% of values within +/- RMSE
- R-squared secondary metric

Modeling Steps Taken

- Seven different regression model varieties
- Ran models on different feature sets
- Optimized models
- Dimensionality reduction

Models:

- Linear Regression
- Random Forest Regressor
- Decision Tree Regressor
- Gradient Boosting Regressor
- AdaBoost Regressor
- Extra Trees Regressor
- Bagging Regressor

Modeling Results

- All results: poor
- RMSEs High \$300s High \$400s
- Best model:
 - o Random Forest Regressor
 - Default Parameters
 - Feature set 10 Features
- Metrics:
 - o RMSE Training Data: \$138.88
 - o RMSE Validation Data: \$388.90
 - o R2 Training Data: 0.56
 - o R2 Validation Data: 0.09

Outliers

- Data start to become very scattered after \$500
- Need better features need for higher-priced listings
- \$10,000 listing more than doubles RMSE

Including higher-priced listings in training data increases RMSE

Removing Outliers

- Outliers:
 - < 5th percentile, \$45</p>
 - > 95th percentile, \$456
- Best model:
 - Random Forest Regressor
 - Default Parameters
 - Feature set 150 Features
- Metrics:
 - o RMSE Training Data: \$18.92
 - o RMSE Validation Data: \$48.84
 - o R2 Training Data: 0.955
 - o R2 Validation Data: 0.678

Removing outliers resulted in significantly improve model performance

Recommender

Recommender Tool Outputs

- Provides listing prices as distribution
- Fair price red line
- Suggested listings, sort by:
 - Similarity, then...
 - Price

Conclusions & Next Steps

Conclusions

- Poorly performing Fair price predictor created
 - RMSE way above \$20
 - Appropriate for recommender pricing distribution
- Outliers affected model
- Data somewhat unpredictable
- Additional features or data may improve performance
- Model performs better without outliers
- Recommender performed as envisioned

Next Steps

- In-depth exploration of outliers
- Continue work with outlier removal
- Create additional features not tackled in this phase
- Attempt clustering ⇒ new features
- Refine dimensionality reduction methods
- Train a neural network
- Streamlit app

Sources

- [1] Inside Airbnb: http://insideairbnb.com/get-the-data/
- [2] MBTA Stations: https://www.mbta.com/stops/subway
- [3] Google Geocoding API: https://developers.google.com/maps/documentation/geocoding

Other:

Inside Airbnb Data Dictionary: https://docs.google.com/spreadsheets/d/1iWCNJcSutYqpULSQHINyGInUvHg2 BoUGoNRIGa6Szc4/edit#gid=1322284596

Additional Materials

Project Architecture

Exploratory Data Analysis – Review Scores

<u>Exponential Distribution</u>
<u>Very few listings score below 4.5 (average of all ratings)</u>

Exploratory Data Analysis – Accommodates vs. Price

No. of People Accommodated Moderately Correlates to Price / Log Price

Exploratory Data Analysis – Neighborhoods

Average Prices Change by Boston Neighborhood

Feature Engineering – Amenities (Tokenizing)

Airbnb Data - Amenities:

- ['wi-fi', 'oven', 'full kitchen' ...]
- ['wi-fi', 'Disney+', 'baby stroller' ...]

• ...

	wi-fi	Disney+	full kitchen	oven	baby stroller	etc
Listing 1	yes	no	yes	yes	no	
Listing 2	yes	yes	no	no	yes	
etc						

Correlations – Very Few Highly Correlated Features

- Ideally: <u>magnitude</u> over 0.6 -0.7
- Correlations to log price stronger

Poorly correlated features usually not helpful when modeling