

(11)Publication number:

06-031139

(43) Date of publication of application: 08.02.1994

(51)Int.CI.

BO1D 53/36 B01J 29/32 F01N 3/24

(21)Application number: 04-184892

(71)Applicant: TOYOTA MOTOR CORP

CATALER KOGYO KK

TOYOTA CENTRAL RES & DEV LAB

INC

(22)Date of filing:

13.07.1992

(72)Inventor: KANAZAWA TAKAAKI

TANIZAWA TSUNEYUKI

MIZUNO TATSUJI **IGUCHI SATORU** KATO KENJI

TANAKA TOSHIAKI TAKESHIMA SHINICHI KIHARA TETSUO KASAHARA KOICHI TATEISHI SHIYUUJI MURAKI HIDEAKI SHINJO HIROBUMI SAIKI MOTOHISA

(54) PURIFYING METHOD FOR EXHAUST GAS

(57)Abstract:

PURPOSE: To provide the purifying method which efficiently purifies in the wide temp. range NOx, CO and HC contained in an exhaust gas in the actual running state of an automobile varying theoretical A/F value to overlean A/F value.

CONSTITUTION: In simultaneously purifying carbon monoxide, hydrocarbon and nitrogen oxide contained in the exhaust gas in an excess oxygen atmosphere, the exhaust gas containing excess oxygen is allowed to contact the catalyst for purifying exhaust gas carrying alkaline oxide and platinum on the carrier consisting of a porous body.

LEGAL STATUS

[Date of request for examination]

18.03.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3328322

[Date of registration]

12.07.2002

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-31139

(43)公開日 平成6年(1994)2月8日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

B 0 1 D 53/36

104 A 9042-4D

B 0 1 J 29/32

A 9343-4G

F01N 3/24

R

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特願平4-184892

(71)出題人 000003207

(22)出願日

平成 4年(1992) 7月13日

トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地

(71)出願人 000104607

キャタラー工業株式会社

静岡県小笠郡大東町千浜7800番地

(71)出願人 000003609

株式会社豊田中央研究所

愛知県愛知郡長久手町大字長湫字横道41番

地の1

(74)代理人 弁理士 青木 朗 (外3名)

最終頁に続く

(54) 【発明の名称】 排気ガスの浄化方法

(57)【要約】

[目的] 理論A/F値からA/F値約23まで変化する 自動車等の実際の走行状態において排気ガス中のNQ、、 CO及びHCを効率よく浄化することができる排気ガスの浄 化方法を開発する。

【構成】 酸素過剰雰囲気下における排気ガス中の一酸 化炭素、炭化水素及び窒素酸化物を同時に浄化するにあ たり、酸素過剰の排気ガスを多孔質体からなる担体に、 アルカリ金属酸化物および白金を担持してなる排気ガス 浄化用触媒と接触させる。

【特許請求の範囲】

【請求項1】 酸素過剰雰囲気下における排気ガス中の 一酸化炭素、炭化水素および窒素酸化物を同時に浄化す るにあたり、酸素過剰の排気ガスを、多孔質体からなる 担体に、アルカリ金属酸化物および白金を担持してなる 排気ガス浄化用触媒と接触させることを特徴とする排気 ガスの浄化方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は排気ガスの浄化方法に関 10 し、更に詳しくは、酸素過剰下の排気ガス、即ち排気ガ ス中に含まれる一酸化炭素、水素及び炭化水素等の還元 性物質を完全に酸化させるのに必要な酸素量よりも過剰 な量の酸素が含まれている排気ガス中の窒素酸化物(NO x)を効率よく浄化する方法に関する。

[0002]

【従来の技術】従来、自動車の排気ガス浄化用触媒とし て排気ガス中の一酸化炭素(CO)及び炭化水素(HC)の 酸化と、窒素酸化物 (NOx) の還元とを同時に行なって排 気ガスを浄化する排気ガス浄化用三元触媒が数多く知ら 20 れている。このような触媒としては、例えばコージェラ イトなどの耐火性担体にケーアルミナスラリーを塗布、 焼成し、パラジウム、白金、ロジウムなどの貴金属を担 持させたものが典型的である。(例えば特公昭56-27295 号公報など参照)

【0003】ところで、前記排気ガス浄化用触媒の性能 はエンジンの設定空燃比によって大きく左右され、希薄 混合気、つまり空燃比の大きいリーン側では燃焼後の排 気ガス中の酸素量が多くなり、酸化作用が活発に、還元 作用が不活発になる。逆に、空燃比の小さいリッチ側で 30 は燃焼後の排気ガス中の酸素量が少なくなり、酸化作用 が不活発に、還元作用が活発になる。一方、近年、自動 車の低燃費化の要請に応えて通常走行時になるべく酸素 過剰の混合気で燃焼させるリーン側での運転が行なわれ ており、リーン側でも十分にNOx を浄化できる触媒が望

【0004】かかる状況下に酸素過剰雰囲気下の自動車 排気ガス浄化用触媒として、一酸化炭素(CO)及び炭化 水素 (HC) の酸化と、窒素酸化物 (NOx) の還元を同時に 行なう触媒が種々提案されている。このような触媒とし て、例えばアルミナ担体に白金を担持したPt/Al,O,触媒 が提案されている (例えば1991年4月11日付日本工業新 聞参照)。しかしながら、この触媒は、酸素過剰雰囲気 下において実用上十分な浄化率を示す触媒とはいえなか った。例えばPtの担持量を増加させてもNOx の浄化率は 40km/hr の一定定常走行時で高々30~40%程度(触媒入 側温度 275℃、A/F = 22) にすぎない。

【0005】一方、本出願人らは、先に、定常走行時及 び過渡状態時(市街地走行模擬状態)においてNO、浄化 率を高めるべくアルミナ担体に白金及びLa,O, を担持し 50 ットルであることが好ましい。この白金の担持量が 0.1

た触媒を提案した(特願平3-344781号明細書参照)。

しかしながら、この触媒は高温で耐久処理すると浄化率 が低下し、必ずしも十分とはいえなかった。

[0006]

【発明が解決しようとする課題】自動車の走行中のエン ジンから排出される排気ガス組成は、理論A/F値近傍 からオーバーリーンのA/F値 (約23) までの範囲内で 頻繁に変化する。従って、本発明は、前記した従来技術 の問題点を排除し、上記した実際の自動車等の走行状態 (A/F値の過渡の連続) において、排気ガス中のNOx 、CO及びHCを効率よく浄化することができる排気ガス の浄化方法を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明に従えば、酸素過 剰雰囲気下における排気ガス中の一酸化炭素(CO)、炭 化水素 (HC) および窒素酸化物 (NO_x) を同時に浄化す るにあたり、酸素過剰の排気ガスを、多孔質体からなる 担体に、アルカリ金属酸化物および白金(Pt)を担持し てなる排気ガス浄化用触媒と接触させることから成る排 気ガスの浄化方法が提供される。

【0008】以下に説明するように、本発明の排気ガス 浄化方法によれば、希薄燃焼エンジンを搭載した車両か ら排出される排気ガス中のCO、HC及びNOx を過渡状態 (市街地走行模擬状態) においても高効率で浄化すると とができる。

【0009】本発明の排気ガス浄化方法に用いる触媒は 活性金属として、白金(Pt)と、カリウム(K)、ナト リウム (Na) などのアルカリ金属の酸化物を用い、これ らを多孔質担体に担持させて使用する。

【0010】本発明において用いることのできる多孔質 担体としては、アルミナ、ゼオライト、ジルコニア、シ リカアルミナ、シリカ等をあげることができる。これら の多孔質担体の種類及び物性については特に限定はな く、従来から触媒用として使用されていた任意の多孔質 担体を使用することができる。また、これらの多孔質担 体はコージェライト、耐熱金属合金等からなるハニカム 基体にコートして用いても良い。

【0011】本発明に係る排気ガス浄化用触媒は、前記 した多孔質担体に、白金とアルカリ金属酸化物を担持し てなる。これら金属の担持量には特に限定はないが、ア ルカリ金属酸化物の担持量は、アルカリ金属として0.05 ~10.0 mol/リットルであることが好ましい。このアル カリ金属酸化物の担持量が 0.05mol/リットル未満の場 合、十分な NOx浄化率を得ることができない恐れがあ り、また、10.0 mol/リットルを超えると担体の表面積 を低下させる恐れがある。好ましくは、0.15~5.0mo1/ リットルである。

【0012】本発明に係る排気ガス浄化用触媒における 白金の担持量にも特に限定はないが、 0.1~10.0g/リ

3

g/リットル未満の場合には、十分な触媒活性が得られない恐れがあり、また、10.0g/リットルを超えると、それ以上白金の担持量を増加させても白金の粒成長が促進され、活性向上は僅かで高価となるのみである。特に、白金の担持量が 0.5~ 3.0g/リットルである場合は、活性とコストの面で好ましい。

【0013】本発明において使用する排気ガス浄化用触媒の製造方法については、特に限定はなく、従来の一般的方法に準ずることができる。例えば常法に従って調製したアルミナを含有するスラリー中にコージェライトか10 ちなる基体を浸漬して表面にアルミナをコートし乾燥焼成(例えば温度600~700℃)後、ジニトロジアミン白金、塩化白金酸などの白金化合物の水溶液に浸漬し、乾燥焼成(例えば温度200~500℃)して多孔質担体に白金を担持させ、更にアルカリ金属の酢酸塩などの水溶性アルカリ金属化合物の水溶液に浸漬し、乾燥焼成(例えば温度600~700℃)してアルカリ金属を担持させて製造することができる。

【0014】また、別法として、アルミナとアルカリ金 属酸化物を含有するスラリー中に基体を浸漬してアルミ 20 ナをコートし、乾燥焼成後、ジニトロジアミン白金、塩 化白金酸などの白金化合物の水溶液に浸漬し、乾燥焼成 し、アルカリ金属と白金を担持させて製造することができる。なお、アルカリ金属は使用される環境によって水 酸化物などになる場合もある。

【0015】本発明に係る排気ガス浄化方法において排気ガスを浄化するにあたっては、希薄燃焼エンジンの排気通路において触媒を設置する場所には特に限定はないが、例えば車両の床下、スタート触媒または三元触媒の下流側の床下などに配置するのが好ましい。

【0016】本発明に係る浄化方法は通常の方法で実施することができ、排気ガスを触媒層に導入する空間速度 (SV)にも特に限定はなく、例えば 300,000~10,000hr¹の範囲が好ましく、また触媒層温度にも特に制限はないが、 200~ 500℃程度の温度が好ましい。

[0017]

【作用】本発明に従って、アルカリ金属酸化物と白金とを多孔質担体に担持した触媒を用い、これを希薄燃焼する内燃機関の排気通路に設置すると、以下の実施例にも示すように、車両走行時に、CO、HC及びNOx を高効率で 40 浄化できる。本発明に係る排気ガスの浄化方法が優れた効果を発揮するメカニズムについては、未だ必ずしも明らかではないが、次のように考えられる。

【0018】本発明による触媒の構成は、例えばアルミナなどの多孔質担体の表面に、触媒金属として、酸化カリウム(K,0)、酸化ナトリウム(Na,0)などのアルカリ金属の酸化物と白金が担持されており、アルカリ金属酸化物の担持がリーン状態でのNOx排出量の低減に大きく寄与しているものと考えられる。なお、吸着したNOxはストイキ時に白金により還元物質と反応してN、CO、、

ң ο に還元される。本発明に係る触媒は車両走行時のエンジン排出ガスの組成変化に対して次のように作用するものと想定する。

【0019】車両停止時:A/Fは理論A/F近傍で排気ガス中には NOxが少ない。触媒上ではアルカリ金属酸化物に吸着されていた NOxがPtに移動(逆スピルオーバー)し、排気ガス中の還元ガス(CO、H、、HC)と反応し、NOx はN、に還元され、との際、還元ガスも浄化される。アルカリ金属酸化物に吸着された NOxが無くなれば、Pt上に還元ガスが吸着される。

【0020】車両加速時:A/Fは理論A/F近傍からリーン(A/F=23)まで連続的に変化し、排気ガス中に NO_{k} が多量に存在することになる。触媒上では排気ガス中の NO_{k} がPtに吸着した還元ガスによりN、に還元され、この際、還元ガスも浄化される。

【0021】定常走行時:A/Fはリーン(A/F=23)状態で、排気ガス中のNO。は加速時よりも少なく、HCは多めとなり、NO。はHCによりN。に還元される。この際、HCも浄化され、また、反応しないNO。は担体上のアルカリ金属酸化物に吸着される。このリーン状態におけるNO。の吸着量がランタン(La)より非常に大きいため、本発明の浄化方法ではNO。浄化能が高いものと思われる。

【0022】減速時:A/Fはオートマティック(A/T)車では理論A/F近傍であり、マニュアル(M/T)車では酸化雰囲気(燃料カット)となり、排気ガス中のNO_x は少ない。触媒上ではA/T車の場合ははNO_x はアルカリ金属酸化物に吸着保持される。

30 [0023]

【実施例】以下、実施例に従って、本発明を更に詳しく 説明するが、本発明の範囲をこれらの実施例に限定する ものでないことはいうまでもない。以下の例において 「部」は特にことわらない限り「重量部」を示す。

担持量の異なるPt/酸化カリウム/アルミナのハニカム 触媒を調製し、NO。浄化活性を比較した。

a) アルミナ・スラリーの調製

【0024】実施例1

アルミナ粉末 100部に、アルミナゾル(アルミナ含有率 10重量%)70部、40重量%硝酸アルミニウム水溶液15部 および水30部を加えて攪拌混合し、コーティング用スラリーを調製した。

【0025】b) コーティング及び焼成

コージェライト製ハニカム基体を水に浸漬し、余分な水を吹き払った後、上記 a) で得られたスラリーに浸漬し、取り出した後、余分なスラリーを吹き払い、温度80℃で20分間乾燥し、更にこれを 600℃で1時間焼成した。アルミナのコート量はハニカムの体積1リットル当たり 120g であった。

50 【0026】<u>c) Ptの担持</u>

ļ

5

上記のようにして得られたハニカム担体を、表1に示す Pt担持量が得られるように調製した所定濃度のジニトロ ジアミン白金の水溶液に浸漬し、 250℃で乾燥して表1 に示すPtの担持量を持つ触媒を調製した。

【0027】d)表1に示すK担持量が得られるように 調製した所定濃度の硝酸カリウム水溶液に前記白金担持* * 担体を浸漬し、乾燥後、 600°Cで1時間焼成し、表1の 触媒No.1~13及び17の触媒を得た。また、カリウムを担 持させないNo.14 ~16の触媒も上記実施例に準じた方法 で併せ調製した。

[0028]

表1:調製触媒

触媒No	K (mol/ リットル)	Pt(g/リットル)
1	0.03	2. 0
2	0.15	2. 0
3	0.2	2. 0
4	0.3	2. 0
5	0.5	2. 0
6	1. 0	2. 0
7	0.2	0.5
8	0.2	1. 0
9	0.2	5. 0
10	0.2	10.0
1 1	0.05	2. 0
12	0.1	2. 0
13	10.0	2. 0
14	0	1. 0
1 5	0	2. 0
16	0	10.0
1 7	11.0	2. 0

【0029】浄化性能の評価

上記触媒の浄化性能を下記条件で評価した。

エミッション評価

希薄燃焼エンジン(1.6リットル)搭載車両の排気通路 に上記触媒を設置し、市街地走行モードで走行して、C Q, HC及びNQ, の浄化率を測定し、結果を表2に示す。 ※

※尚、耐久処理触媒とは、希薄燃焼エンジン(1.6 リット30 ル)の排気通路に上記触媒を設置し、エンジンをA/F=18、入りガス温度 650℃で50時間運転したものであ

る。

[0030]

表2:浄化性能の評価

	初期触媒の浄化率(%)						
触媒No.	NO _x	HC	<u>co</u>	NO _x	<u>HC</u>	<u> </u>	
1	53	96	100	24	85	97	
2	90	94	100	41	86	95	
3	92	96	100	45	89	94	
4	92	96	100	49	85	97	
5	92	94	100	51	83	98	
6	93	92	100	52	85	95	
7	89	93	100	39	81	94	
8	91	98	100	42	84	98	
9	92	98	100	45	92	96	
10	92	98	100	46	93	99	
11	89	94	100	29	90	94	
1 2	72	96	100	31	89	95	

82

(注)触媒2~13

: 実施例

96

触媒1及び14~17 : 比較例

72

38

46

49

49

93

97

98

98

89

*【0032】実施例2

19

【0031】上記結果から明らかなように、本発明によ した車両から排出される排気ガス中のNO、、CO及びHCを 耐久処理後も劣化が少なく効率よく浄化することがで き、特に、触媒中のカリウム金属の担持量が0.15~1.0m o1/リットルで、白金の担持量が 0.5~ 7.0g /リット ルであるのが好ましい。

7 13

14

15

16

17

る排気ガス浄化方法によれば、希薄燃焼エンジンを搭載 10 実施例1において、硝酸カリウムに代えて硝酸ナトリウ ムを用いた以外は実施例1と同様にして、表3に示すよ うに、担持量の異なるPt/酸化ナトリウム/アルミナの ハニカム触媒を各々調製し、実施例1と同様に触媒の浄 化活性を評価した。結果を表4に示す。

91

[0033]

表3:調製触媒

	担	持	量	
触媒 No.		Na(mol/リッ	h/)	Pt(g/1)7h/)
18		0.15		2.0
19	•	0.2		2.0
20		0.3		2.0
2 1		0.5		2.0
22		1.0		2.0

[0034]

表4:浄化性能の評価

*	初期触媒の浄化率(%)			耐久処理触媒の浄化率(%)		
触媒No.	NO _x	HC ·	<u>co</u>	NO _k	<u>HC</u>	<u> </u>
18	89	96	100	40	88	98
19	90	94	100	43	89	98
20	92	96	100	47	89	97
2 1	92	95	100	47	87	99
22	91	97	100	51	85	95

[0035]

【発明の効果】自動車は、実際の運転において、加減速 を繰り返すのが実状であり、かかる状況下に排出される カリ金属の酸化物によりコントロールすることにより、 HCとNO、との反応活性を向上させることができ、更に、※

※アルカリ金属の酸化物のNO、吸着特性を利用し、加減速 におけるNO、浄化率を大きく向上させることができる。 との結果、酸素過剰の排気ガス中のCO及びHCを十分に浄 排気ガスに対し、本発明によれば、Ptの電子状態をアル 40 化したもとで、同排気ガス中の窒素酸化物を効率よく浄 化することができる。

フロントページの続き

(72)発明者 金沢 孝明

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内

(72)発明者 谷澤 恒幸

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内

(72)発明者 水野 達司 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
(72)発明者 井口 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
(72)発明者 加藤 健治 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
(72)発明者 田中 俊明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
(72)発明者 竹島 伸一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内

(72)発明者 木原 哲郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 笠原 光一 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 (72)発明者 立石 修士 静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 (72)発明者 村木 秀昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 新庄 博文 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 斎木 基久

> 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the approach of purifying efficiently the nitrogen oxides (NOx) in the exhaust gas with which the oxygen of an amount more superfluous than the amount of oxygen required to oxidize completely in more detail reducibility matter, such as a carbon monoxide contained in the exhaust gas under hyperoxia, i.e., exhaust gas, hydrogen, and a hydrocarbon, about the purification approach of exhaust gas is contained.

[10002]

[Description of the Prior Art] It is a carbon monoxide in exhaust gas (CO) as a catalyst for exhaust gas purification of the former and an automobile. And hydrocarbon (HC) Oxidation and nitrogen oxides (NOx) Many three way component catalysts for exhaust gas purification which return to coincidence and purify exhaust gas are known. The thing which the gamma-alumina slurry was applied and calcinated [thing], for example to fireproof support, such as cordierite, as such a catalyst, and made noble metals, such as palladium, platinum, and a rhodium, support is typical. (For example, reference, such as JP,56-27295,B)

[0003] By the way, in the large, a lean mixture, i.e., an air-fuel ratio, Lean side, the amount of oxygen of engine performance of said catalyst for exhaust gas purification in the exhaust gas after combustion increases by being greatly influenced by the engine setting air-fuel ratio, and a reduction operation becomes [the oxidation] inactive actively. On the contrary, in a rich side with a small air-fuel ratio, the amount of oxygen in the exhaust gas after combustion decreases, and a reduction operation becomes [the oxidation] active inactively. On the other hand, operation by the side of Lean who makes it usually burn in the gaseous mixture of hyperoxia in response to the request of low-fuel-consumption-izing of an automobile at the time of transit if possible is performed in recent years, and the Lean side is also fully NOx. A catalyst which can be purified was desired.

[0004] It is a carbon monoxide (CO) as a catalyst for motor exhaust purification under a hyperoxia ambient atmosphere under this situation. And hydrocarbon (HC) Oxidation and nitrogen oxides (NOx) The catalyst which returns to coincidence is proposed variously. As such a catalyst, 2OPt/aluminum3 catalyst which supported platinum for example, to alumina support is proposed (for example, refer to Nihon Kogyo Shimbun on April 11, 1991). However, this catalyst was not able to be said as the catalyst which shows practically sufficient rate of purification under a hyperoxia ambient atmosphere. even if it makes the amount of support of Pt increase -- NOx the rate of purification -- 40 km/hr the time of fixed stationary transit -- it is -- at most about (catalyst close side temperature 275 degrees C, A/F =22) 30 -40% it is .

[0005] On the other hand, previously, these people set at the time of stationary transit and a transient (city area transit simulation condition), and are NOX. They are platinum and La 2O3 to alumina support in order to raise the rate of purification. The supported catalyst was proposed (refer to Japanese-Patent-Application-No. No. 344781 [three to] specification). However, when durable processing was carried out at the elevated temperature, the rate of purification fell, and this catalyst was not necessarily able to

[Problem(s) to be Solved by the Invention] The exhaust gas presentation discharged from the engine under transit of an automobile is A/F value of to [theoretical A / near the F value] exaggerated RIN. (about 23) It changes frequently within the limits of until. Therefore, this invention is the run state of the actual automobile which eliminated and described above the trouble of the above mentioned conventional technique. (continuation of the transient of A/F value) It sets and aims at offering NOx in exhaust gas, and the purification approach of the exhaust gas which can purify CO and HC efficiently. [0007]

[Means for Solving the Problem] The carbon monoxide in the exhaust gas under a hyperoxia ambient atmosphere (CO) and a hydrocarbon (HC) if this invention is followed And nitrogen oxides (NOX) In purifying to coincidence, the purification approach of the exhaust gas which changes from making the catalyst for exhaust gas purification which comes to support an alkali-metal oxide and platinum (Pt) contact to the support which consists the exhaust gas of hyperoxia of a porous body is offered.

[0008] CO, HC, and NOx in the exhaust gas which is discharged from the car carrying a lean-burn engine according to the exhaust gas purification approach of this invention so that it may explain below Also in a transient (city area transit simulation condition), it is efficient, and can purify.

[0009] The catalyst used for the exhaust gas purification approach of this invention is platinum (Pt) as an active metal. They are used using the oxide of alkali metal, such as a potassium (K) and sodium (Na), making porosity support support these.

[0010] As porosity support which can be used in this invention, an alumina, a zeolite, a zirconia, a silica alumina, a silica, etc. can be raised. There is especially no limitation about the class and physical properties of such porosity support, and the porosity support of the arbitration currently used as an object for catalysts from the former can be used. Moreover, the coat of such porosity support may be carried out to the honeycomb base which consists of cordierite, a heat-resistant metal alloy, etc., and it may be used for it.

[0011] The catalyst for exhaust gas purification concerning this invention comes to support platinum and an alkali-metal oxide to the above mentioned porosity support. Although there is especially no limitation in the amount of support of these metals, as for the amount of support of an alkali-metal oxide, it is desirable that they are 0.05 - 10.0 mol / liter as an alkali metal. The amount of support of this alkali-metal oxide It is enough when it is less than 0.05 mols/l. When there is a possibility that the rate of NOx purification cannot be obtained and 10.0 mol / liter is exceeded, there is a possibility of reducing the surface area of support. Preferably, it is 0.15-5.0 mols/l.

[0012] Although there is especially no limitation also in the amount of support of the platinum in the catalyst for exhaust gas purification concerning this invention, it is desirable that it is 0.1-10.0g/l. The amount of support of this platinum In being less than 0.1g/l., when there is a possibility that sufficient catalytic activity may not be acquired and it exceeds l. in 10.0g/, even if it makes the amount of support of platinum increase more than by it, grain growth of platinum is promoted, and it is only becoming that the improvement in activity is slight, and expensive. Especially, the amount of support of platinum When it is 0.5 to 3.0 g/l., it is desirable in respect of activity and cost.

[0013] About the manufacture approach of the catalyst for exhaust gas purification used in this invention, there is especially no limitation and it can apply to the conventional general approach. For example, the base which consists of cordierite is immersed into the slurry containing the alumina prepared according to the conventional method, the coat of the alumina is carried out to a front face, and it is desiccation baking (for example, temperature 600 to 700 degree C). Later, It is immersed in the water solution of platinum compounds, such as dinitro diamine platinum and chloroplatinic acid. Desiccation baking (for example, temperature 200 to 500 degree C) Carry out and porosity support is made to support platinum. Furthermore, it is immersed in the water solution of water-soluble alkali metal compounds, such as acetate of alkali metal, and is desiccation baking (for example, temperature 600 to 700 degree C). It can carry out, alkali metal can be made to be able to support, and it can manufacture.

[0014] Moreover, a base is immersed into the slurry containing an alumina and alkali-metal oxide as an exception method, and the coat of the alumina can be carried out, it can be immersed in the water solution of platinum compounds, such as dinitro diamine platinum and chloroplatinic acid, after desiccation baking, desiccation baking can be carried out, alkali metal and platinum can be made to be able to support, and it can manufacture. In addition, alkali metal may become a hydroxide etc. according to the environment used.

[0015] Although there is especially no limitation in the location in which a catalyst is installed in the flueway of a lean-burn engine if in charge of purifying exhaust gas in the exhaust gas purification approach concerning this invention, it is desirable to arrange, for example to the under floor of the downstream of the under floor of a car, a start catalyst, or a three way component catalyst etc. [0016] the space velocity (SV) which can enforce the purification approach concerning this invention by the usual approach, and introduces exhaust gas into a catalyst bed -- especially -- limitation -- there is nothing -- for example, -- The range of 300,000-10,000hr-1 is desirable, and although there is especially no limit also in catalyst bed temperature, the temperature of about 200-500 degrees C is desirable. [0017]

[Function] If it installs in the flueway of the internal combustion engine which does lean combustion of this using the catalyst which supported an alkali-metal oxide and platinum to porosity support according to this invention, as shown also in the following examples, they are CO, HC, and NOx at the time of car transit. It is efficient and can purify. Although it is not yet clear necessarily about the mechanism which demonstrates the effectiveness excellent in the purification approach of the exhaust gas concerning this invention, it thinks as follows.

[0018] the configuration of the catalyst by this invention -- for example, the front face of porosity support, such as an alumina, -- as a catalyst metal -- potassium oxide (K2O) and sodium oxide (Na2O) etc. -- the oxide and platinum of alkali metal support -- having -- **** -- support of an alkali-metal oxide -- NOx in the Lean condition It is thought that it has contributed to reduction of a discharge greatly. In addition, NOx to which it stuck reacts with a reducing substance with platinum at the time of SUTOIKI, and is N2, CO2, and H2O. It is returned. It is assumed that the catalyst concerning this invention acts as follows to presentation change of the engine exhaust gas at the time of car transit. [0019] At the time of a car halt: A/F is in exhaust gas near theoretical A/F. There is little NOx. Alkalimetal oxide was adsorbed on the catalyst. NOx moves to Pt (reverse spillover) and it is the reducing gas in exhaust gas (CO, H2, HC). It reacts and is NOx. N2 It is returned and reducing gas is also purified in this case. The alkali-metal oxide was adsorbed. If NOx is lost, reducing gas will adsorb on Pt. [0020] At the time of car acceleration: To [near theoretical A/F] Lean (A/F=23) changes continuously, and A/F is NOX in exhaust gas. It will exist so much. On a catalyst, it is NOX in exhaust gas. It is N2 by the reducing gas which stuck to Pt. It is returned and reducing gas is also purified in this case. [0021] At the time of stationary transit: A/F is in the Lean (A/F=23) condition and is NOX in exhaust gas. It is fewer than the time of acceleration, HC becomes [many], and it is NOX. It is N2 by HC. It is returned. Under the present circumstances, NOX which HC is also purified and does not react The alkali-metal oxide on support is adsorbed. NOX in this Lean condition Since the amount of adsorption is very larger than a lanthanum (La), by the purification approach of this invention, it is NOX. What has high decontamination capacity is seemed.

[0022] At the time of moderation: A/F is near theoretical A/F by the automatic (A/T) vehicle, serves as an oxidizing atmosphere (fuel cut) by the manual (M/T) vehicle, and is NOX in exhaust gas. It is few. In the case of an A/T vehicle, on a catalyst, it will be in the same condition as the time of a car halt, and, in the case of a M/T vehicle, is NOX. Adsorption maintenance is carried out at an alkali-metal oxide. [0023]

[Example] It cannot be overemphasized that it is not what limits the range of this invention to these examples hereafter although this invention is explained in more detail according to an example. The "weight section" is shown unless especially the "section" refuses in the following examples.

[0024] The honeycomb catalyst of Pt / potassium oxide / alumina with which the amounts of example 1 support differ is prepared, and it is NOX. Purification activity was compared.

[0025] b) Blow off an excessive slurry and dry for 20 minutes at the temperature of 80 degrees C, after being immersed in the slurry obtained by Above a after immersing coating and the honeycomb base made from baking cordierite in water and blowing off excessive water and taking out, and it is this further. It calcinated at 600 degrees C for 1 hour. the amount of coats of an alumina -- per volume of 11. of a honeycomb 120g it was .

[0026] c) support of Pt -- it is immersed in the water solution of the dinitro diamine platinum of predetermined concentration prepared so that the amount of Pt support which shows the honeycomb support obtained as mentioned above in Table 1 might be obtained -- the catalyst with the amount of support of Pt which dries at 250 degree C and is shown in Table 1 was prepared.
 [0027] d) the potassium-nitrate water solution of predetermined concentration prepared so that the amount of K support shown in Table 1 might be obtained -- said platinum support support -- being immersed -- the desiccation back and 600 degree C -- 1 hour -- calcinating -- catalyst No.1- of Table 1 -- the catalyst of 13 and 17 was acquired. Moreover, the catalyst of No.14 -16 which do not make a potassium support was also combined and prepared by the approach according to the above-mentioned example.

**** -- the method || ****** ** ****** - *** method / ** **** A . ***** . ****. ***. ***** . **** . ** . ** . *** . *** . **** . Horizontal rice porridge . ** machine . **** . ** . **** . **** . **** . **** . **** . Pit machine . Forerunner . **** . **** . **** . ** machine . **** . **** . Rice porridge . **** . **** . **** . ** machine . **** . Opportunity . **** . machine . **** . ******* . ***** . **** . **** . **** . **** . ***** . ***** horizontal empress . **** . **** . ***** . **** . **** . **** machine . **** . **** . **** . Horizontal ** . **** . **** . **** . **** . **** . **** . *** . *** . *** machine . **** **** ***** **** **** **** ***** ***** . ***** . Horizontal ** . **** . **** . **** . **** **** **** **** **** **** **** /** ******* *** *** *** [0031] According to the exhaust gas purification approach by this invention, degradation can purify after durable processing efficiently few, and the amount of support of platinum especially NOx in the exhaust gas discharged from the car carrying a lean-burn engine, and CO and HC by l. in 0.15-1.0 mols /so that clearly from the above-mentioned result It is desirable that it is 0.5 to 7.0 g/a liter. [the amount of support of the potassium metal in a catalyst] [0032] In example 2 example 1, except having replaced with the potassium nitrate and having used the

sodium nitrate, like the example 1, as shown in Table 3, the honeycomb catalyst of Pt / sodium oxide / alumina with which the amounts of support differ was prepared respectively, and the purification activity of a catalyst was evaluated like the example 1. A result is shown in Table 4. [0033]

[Effect of the Invention] An automobile is HC and NOx to the exhaust gas which the actual condition repeats acceleration and deceleration in actual operation, and is discharged under this situation by controlling the electronic state of Pt with the oxide of alkali metal according to this invention. Labile can be raised and it is NOx of the oxide of alkali metal further. NOx [in / an adsorption property is used and / acceleration and deceleration] The rate of purification can be raised greatly. Consequently, the nitrogen oxides in this exhaust gas can be efficiently purified by the basis which fully purified CO and HC in the exhaust gas of hyperoxia.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The purification approach of the exhaust gas which is characterized by making the catalyst for exhaust gas purification which comes to support an alkali-metal oxide and platinum to the support which consists the exhaust gas of hyperoxia of a porous body contact in purifying the carbon monoxide, the hydrocarbon, and nitrogen oxides in the exhaust gas under a hyperoxia ambient atmosphere to coincidence.

[Translation done.]