H	AW Hamburg	- Prüfungskl:	ausur Compute	rtechnik -	SS _e 2014 nBspuni	KTER
Aufgabe	1	2	3	4	Summe	
Punkte	18	50	23	9	100	ages did not control edited.
	15	45	20	8	88	× B:Stopp

1 Serielle Übertragung

dn: Patenbit
(do=LSB)

PB: Startlit
PB: Patitatibit
Vier ASCII Zeichen (7 Bit) werden asynchron im RS232-Standard (Frames mit 7 Bit Nutzdaten) übertragen. Benennen Sie sämtliche Bits in Bild 1 mit Kurznamen und logischen Werten.

Bild 1. Signale der Zeichen am Anschluss TxD der seriellen Leitungen.

a)	Welches der drei Protokolle 7N1, 701 oder 7E1 wird benutzt?
<i>p)</i>	702 A((crdingsim 2. Frame 7E2 Welche vier Zeichen werden übertragen? Geben Sie die Daten binär, hexadezimal und
٠,	als ASCII-Zeichen an.
c)	1. Frame (binär/hex/ASCII):
	☐ 110 bit/s ☐ 300 bit/s ☐ 1200 bit/s ☐ 2400 bits/s ※ 4800 bits/s
	9600 bit/s 19200 bit/s 38200 bit/s 57600 bit/s 115200 bit/s
	v. 1
d)	Welche Spannungsbereiche werden für die Wertedarstellung vor Line-Driver-Chip (RS232-
,	Transceiver-Chin) beim RS232-Standard benutzt, welche nach diesem Chin? Geben Sie

auch die Namen der Bereiche an.

Vor: Logic Level (CMOSITTL-Pegel)
- High (3,3*V) & Buside - 1P
- Low (OV)
- Low (OV)
vach: RS-232-Pegel
Nach: (-15V) ? Buside
- Conce (15V)

			· .														√.18
	0	1	2	3	4	5	6	7	8	9	A	В	ċ	D	E	F]
0x0	NUL	зон	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	so	SI	
0×1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US	
0x1 0x2	SP	1	"	#	\$	%	&	,	()	*	+ .	,	-		/	N S
0.53	l n	1 1	1 2	3	۱ ،	*	ء ا	7	۰	ا م ا	١.		ا ر ا			,	1 8 8 1

	l !		l `		l											
0×1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM.	SUB	ESC	FS	GS	RS	U
0x2	SP	1	"	#	\$	%	&z	,	()	*	+ .	٠,	-		/
0x3	0	1	2	3	4	5	6	7	8	9	:	;	<	==	>	?
0x4	0	· A	В	· c	D	E	F	G	н	I	J	ĸ	L	M	N	0
0x5	P	Q	R	s	т	υ.	V	w	X ·	Y	z	[١]	^ .	
0x6	,	a	ь	с	. đ	е	f	g	h	i	j	k	1	m	n	٥
0x7	p	q	r	s	t	u	v	w	×	у	z	{	1	}	{	DE
								-								

Tabelle 1: ASCII-Symbole (niedrigwertige Bits in den Spalten, höherwertige Bits in den Zeilen)

Klausurensammiung

2 Gatterprüfmaschine

Es soll eine universelle Gatterprüfmaschine mit dem Controller LM3S9B92 erstellt werden. Sie kann Gatter der Typen AND, OR, NAND, NOR, XOR, XNOR prüfen. Die Schaltung mit Eingangs- und Ausgangspins ist in Bild 2 dargestellt.

Das Controllerprogramm erzeugt eine Kombination der Eingangswerte für das Testgatter für jeweils 10ms. Danach erfolgt Prüfung des Ausgangswerts. Dann wird die nächste Kombination der Eingangswerte angelegt, usw. ...

Welches der 6 möglichen Gatter aktuell angeschlossen ist, wird vom Programm erkannt.

Das Programm erkennt auch, wenn ein defektes (oder kein) Gatter angeschlossen ist, also wenn keine der o.g. logischen Funktionen erfüllt wird. Eine LED an Pin PJ6 zeigt diesen Fall an.

Beispiel: Die LED an PJ0 leuchtet, wenn das Testgatter bei in allen vier Eingangswert-Kombinationen als AND-Gatter korrekt funktioniert.

Bild 2: Übersicht über den zu erstellenden Paritätsgenerator

a) Vervollständigen Sie die folgende Tabelle der Gatterfunktionen.

	Gatter	eingang			Gatterau	isgang y			
	$\mathbf{x_1}$	x ₂	AND	OR	NAND .	NOR	XOR	XNOR	
0	0 .	0	O	0	1	1	0	1	1
1	0	1	O	1	A	O	1	0	2
2	1	0	O	1	1	0	1	O	4
3	1	1	1	1	O	0	0	1	8
·		Ta	belle 2: Log	ische Funkt	ionen, die g	eprüft werd	en 6	9	$\left[\begin{array}{c} \mathfrak{T}^3 \end{array}\right]$

b) Programmieren Sie das Programm der Gatterprüfmaschine, zunächst die Funktion main(). Konfigurieren Sie die Ports E und J und einen General Purpose Timer für die 10ms Verzögerung. Eine Funktion test_gate() für den Prüfablauf und LED-Ausgabe können Sie schon benutzen.

Die Wartefunktion warte_10ms() soll in der Funktion test_gate() genutzt werden. Beide werden erst nachfolgend programmiert.

Der Ablauf der Gatterprüfung soll fortlaufend ohne Unterbrechung erfolgen. Kommentieren Sie ausführlich.

#define PART LM3S9B92 #include "inc/lm3s9b92.h" 160000-1 #define TIMERTINE 150000 + 1126+Ticks destimers festlegen void warte_10ms(void); // Prototype of the wait function for 10ms void test_gate(void); // Prototype of test function

void main(void)

- SYSCTL_RCGCZ_R= 0x01109 // Takt für E&J zuschalten GPTO_PORTJ-DEN_R=0xFEi/Porty O... 6 aktivieren GPIO- PORTJ-DIR-R = 0 XFEj/ PortJ.O. 6= Output V GPIO-PORTE_DEN_R = 0x07; VI PortE 0,1,2 dig Fkt. aktivieren GPIO_PORTE_DIRR=0x03; 11 PartED/=Output
1/Timer 3B initialisieven
SYSCTL_RCGC1_R=0x080000; 1/Takt Zuschalten TIMERS_CTL_RG=~0x0100; UTimer stoppen TIMER3_TBILR_R= TIMERTIME; 11 stantment feetlegen 3 test_gate(); // gatter pruten

\$ c) Programmieren Sie eine Funktion warte_10ms(), die den Programmablauf 10ms verzögert. Nutzen Sie einen General Purpose Timer, den Sie am Beginn der Funktion starten und am Ende der Funktion stoppen. Der Timer ist in main() bereits konfiguriert. Kommentieren Sie ausführlich.

void warte_10ms(void)

TIMER3_CTLER 1=0x01009 // Timer 3Bstarku while ((TIMER3_RIS_R&Ox0100) == 0x00); 11 Wanten bis Timer abgology TIMER3_CTL_R&=OXO100; 11 TIMER 3B stoppen -TIMER3_ICR_RI= 0x0100; 1/Timeout flag loschen 100

3 break,

d) Programmieren Sie die Funktion test_gate(), welche die Tests mit allen Eingangswertkombinationen durchführt, diese auswertet und die LED-Ausgaben vornimmt. Kommentieren duck have four sansele abe autorithist probable Sie ausführlich. void test_gate(void) int y[4]= {0,0,0,0}; 11 Het Vektor für Ergebnis aulege. int out= 10; Il fus rugetende kombinationen int leaf=0; Il lauf variable int Ergebnis=0; Il Endergebnis for (lauf=09 Lauf=3; Lauf++) // nacheinander Kombinationen prüfen & Ergebnisvekter GPIO_PORTE_DATA_R=out; //1. Lauf: out=0,2, lauf:out=1...out=3 out ++ 9 werte_10 ms(); 11 ver zogerung if (GPIO_PORTE_DATA_R&OxO4) & //wenn (mosk Terter) Bit geseta y[lauf]=1; NEogebrisvektorandieserstelle-1 3 else y[lauf]=0; 11500st=0 oct Of ergebnis=y[0].1+y[1].2+y[].4+y[3].8; // Enderg. switch (engebuis) { case 8: 11 AND-Gatter GPIO_PORTJ_DATA_R=0x01; //LED an PJO an case 14; 11 or-Gatter GPIO_PORTJ_DATA_R=OxOZ; 1/LEDangJ1an case 7: INAND GPIO PORTJ_DATA_R=0x049 // LED on PJZ on break; Case 1: II NOR GPTO- PORTY_PATA_R=0x08; //LEDaugg3an 11 XOR GPIO_ PORTJ_DATA_R=OXIOS // LED enPJ 4 an breaki cose 9: 1/XNOR GPIO-PORTJ-DATA_R=0x20; ((LEDanPJ5 an default: // Febler/ not GPIO-PORTJ-DATA_R=0x40;//LEDanP16 an

3 Adressen

a) Die Speicherbelegung eines ARM-Cortex-M3-Controller ist in Bild 3 dargestellt. Ergänzen Sie dort die fehlenden Adressen.

Bild 3: Speicherbelegung des Adressraums mit zwei Speicherchips

b) Wieviele Adressleitungen haben die beiden Speicherchips? 3.2

c) Welche der folgenden Schaltungen sind geeignete Adressdecoder für den Chip 0 ? Streichen Sie alle ungeeigneten Schaltungen in Bild 4 durch.

d) Welche der folgenden Schaltungen sind geeignete Adressdecoder für den Chip 1 ? Streichen Sie alle ungeeigneten Schaltungen in Bild 5 durch.

swind der unsprungliche Programmablauf unterbrocken. Außendem kann auch der Handler von einer rangigeren Quelle unter brochen werden c) Nennen Sie mindestens 5 Funktionseinheiten der CPU. Ordnen Sie diese den beiden über-

geordneten Hauptteilen der CPU zu.

Dato Processon: - Instruction Decoder - General Purpose Register Set - status Register - Temporary Buffer Sequencer - Pragroum