

Adversarial attacks

Eureka_Team

Project Data Science IASD Decembre 2022

Table of Contents

What is adversarial attacks Definitions

PGD attack

Principal, implementation and results

2

FGSM attack

Principal, implementation and results

Adversarial training

Principal and results

Adversarial machine learning

White box Attacks

- Fast Gradient Sign Method
- Projected Gradient Descent (Linf, L2)
- Adversarial Model

Fast Gradient Sign Method (Goodfellow, 2015)

$$x^{adv} = x + \in sign(\nabla_x l(x, y))$$

Fast Gradient Sign Method (Goodfellow, 2015)

Projected Gradient Descent

Iterative version of attack

Most complete

Constrained optimization

- 2 L² norm
- C L norm

Main Steps

- 1. Start from a random perturbation in the ball around a sample.
- Take a gradient step in the direction of greatest loss
- 3. Project perturbation back into the ball if necessary
- 4. Repeat until convergence

Projected Gradient Descent Linf

Projected Gradient Descent Linf

Adversarial Training

Adversarial training corresponds to the task of training a robust model to adversarial attacks; We want our model to perform well whatever the input received from an adversary agent. It can be modeled as a min-max optimization problem formulated as follows:

$$\min_{\theta} \frac{1}{|S_{train}|} \sum_{(x,y)\in S} \max_{\delta \leq \epsilon} l(h_{\theta}(x+\delta), y)$$

- A simple and intuitive strategy to solve this problem is to incorporate the process of generation of adversarial samples inside the training loop of the model.
- We'll try to use both attacks (FGSM and PGD) to train the classifier and compare losses curves and accuracies on test dataset

Adversarial Training using FGSM

Adversarial Training using PGD

References

- Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
- Madry, Aleksander, et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." arXiv, 2017, https://doi.org/10.48550/arXiv.1706.06083. Accessed 9 Dec. 2022.
- Gallicchio, Claudio, and Scardapane, Simone. "Deep Randomized Neural Networks." *arXiv*, 2020, https://doi.org/10.48550/arXiv.2002.12287. Accessed 9 Dec. 2022.
- Adversarial training. adversarial-ml-tutorial.org. https://adversarial-ml-tutorial.org/adversarial_training/

What is next?

In the 2nd stage of this project, we are looking to implement and try different defense mechanisms:

 Explore the utility of Bayesian neural networks to estimate uncertainty of models and to resist to white box adversary attacks.

