3.5.1

Изучение плазмы газового разряда в неоне

Егор Берсенев

1 Цель работы

Изучение ВАХ тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

2 Оборудование

Стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания, источник постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

3 Теоретическая часть

Схема установки представлена на рисунке 1. Стеклянная газоразрядная трубка имеет холодный полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая пленка. Трубка наполнена 22 Ne при давлении 2 мм рт.ст. Катод и один из анодов с помщью переключателя Π_1 подключаются через балластный резистор $R_6 \simeq 450$ кОм к регулируемому высоковольтному источнику питания с выходным напряжением до 3 кВ.

Рис. 1: Схема установки для исследования газового разряда

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — цифровым вольтметром V_1 , подключенным к трубке через высо-

коомный делитель напряжения с коэффициентом $\frac{R_1+R_2}{R_2}=10\,\mathrm{Om}$

При подключении к ВИП анода-II разряд возникает в пространстве, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром $d=0.2\,\mathrm{mm}$ и имеют длину $l=5.2\,\mathrm{mm}$. Они подключены к источнику питания через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 .

4 Ход работы

4.1 Вольт-амперная характеристика разряда

Таблица 1: Вольт-амперная характеристика разряда

				1	1 1		1 1 '	
U, B	25.46	25.78	25.92	26.22	26.31	26.5	26.66	26.85
І, мА	5	4.68	4.44	4.28	4.2	4.08	4	3.88
U, B	27.08	27.28	27.53	27.82	27.97	28.3	28.4	28.53
І, мА	3.8	3.68	3.56	3.48	3.4	2.8	3.2	2.72
U, B	28.75	29.08	29.7	30.58	31.33	31.63	32.45	32.72
І, мА	2.92	2.56	2.4	2.2	2.08	2	1.8	1.6
U, B	33.05	33.42	33.9	34.24	34.34	34.78	35.14	35.84
І, мА	1.4	1.2	1	0.92	0.8	0.6	0.4	0.2

$$R_{max}^{\rm d} = -5.325 \cdot 10^3 \; {\rm Om}.$$

4.2 Зондовые характеристики

Таблица 2: Зондовые характеристики разряда

I = 5 mA		I = 3.6	mA	I = 1.4 mA	
Ι	U	Ι	U	I	U
-95,6	-25,05	-65,67	-25,05	-25,37	-25,05
-93,24	-22,03	-63,74	-22	-24,5	-22
-90,63	-19,01	-61,94	-19	-23,62	-19,02
-86,92	-16,02	-59,82	-16,01	-22,7	-16
-81,12	-13	-56,61	-13,02	-21,54	-13
-72	-10,01	-50,77	-10	-19,47	-10
-63,36	-8,01	-44,8	-8	-17,27	-8,01
-52,4	-6,01	-36,7	-6	-14,19	-6
-32,12	-3,01	-29,59	-4	-10,22	-4
-30,31	-4,01	-20,81	-3	-7,82	-2,98
-28,19	-2,49	-17,88	-2,25	-6,61	-2,5
-24,59	-2,01	-14,8	-2,01	-5,34	-2
-20,62	-1,5	-11,59	-1,5	-4,07	-1,51
-16,78	-1	-8,47	-1,02	-2,65	-0,99
-12,91	-0,5	-5,12	-0,49	-1,38	-0,51
14,76	0,5	6,54	0,49	1,7	0,47
18,55	1	9,82	1,02	3,09	1
22,25	1,48	12,68	1,48	4,41	1,5
26,22	2	16,06	2,02	5,69	2
29,9	2,5	18,85	2,5	6,94	2,5
33,84	3,02	21,6	2,97	8,15	3,01
40,65	4	27,16	4	10,29	3,99
52,95	6,02	36,55	6	14,14	6,06
62,57	8	43,82	8	16,86	8
70,05	10,02	49,08	10,03	18,87	9,97
77,46	13	53,9	13,04	20,63	12,98
82	16,08	56,79	16	21,68	15,99
84,77	19	58,62	19,03	22,55	19,04
87	22,01	60,32	22,02	23,4	22,03
89,08	25,05	61,99	25,05	24,24	25,05

Таблица 3: Результаты экспериментов

аолица 9. г сзультаты эксперименто					
I_r , мА	1.4	3.6	5		
$\frac{\mathrm{d}I}{\mathrm{d}U}$	2.76	9.08	17.67		
I_{in}	15.92	42.5	60.62		
kT, эВ	2.89	2.81	2.72		
$n_e \cdot 10^{13}, 1/\text{M}^3$	1.9	5.64	9.4		
$\omega \cdot 10^{6}, 1/c$	245.9	423.3	547		
$r_d \cdot 10^{-3}$	26	15	11.7		

5 Вывод

Исследуя плазму газового разряда в неоне с помощью зонда, можно рассчитать температуру и концентрацию как ионов, так и электронов.