

Sheet 1

1-Determine the power value for each of the following signals:

(a)
$$10 \cos \left(100t + \frac{\pi}{3}\right)$$

(b)
$$10 \cos \left(100t + \frac{\pi}{3}\right) + 16 \sin \left(150t + \frac{\pi}{5}\right)$$

$$(c)$$
 $(10+2 \sin 3t) \cos 10t$

(f)
$$e^{j\alpha t}\cos\omega_0 t$$

2-For each of the shown periodic signals, find exponential Fourier series and sketch the corresponding

3- Find the Fourier transform of the signals shown:

4- Find Fourier transform of the shown signals using the appropriate properties of the Fourier transform. Sketch the amplitude and phase Spectra. *Hint:* These functions can be expressed in the form $g(t)\cos(\omega_0 t)$

5-Signals $g_1(t)=10^4 \ \text{rect}(10^4 t)$ and $g_2(t)=\delta(t)$ are applied at the inputs of the ideal low-pass filter $H_1(\omega)=\text{rect}(\omega/40000\pi)$ and $H_2(\omega)=\text{rect}(\omega/20000\pi)$ as shown. The output $y_1(t)$ and $y_2(t)$ of these filters are multiplied to obtain the signal $y(t)=y_1(t)y_2(t)$

a) Sketch $G_1(\omega)$ and $G_2(\omega)$.

b) Sketch $H_1(\omega)$ and $H_2(\omega)$.

c) Sketch $Y_1(\omega)$ and $Y_2(\omega)$.

d) Find the bandwidths of $y_1(t), y_2(t)$ and y(t).

