МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование»

Тема: Условия, циклы, оператор switch

Студент гр. 0382	 Сергеев Д.А.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы.

Изучение базовых управляющих конструкций языки Си.

Задание.

Напишите программу, выделив каждую подзадачу в отдельную функцию.

Реализуйте программу, на вход которой подается одно из **значений** 0, 1, 2, 3 и **массив** целых чисел **размера не больше** 100. Числа разделены пробелами. Строка заканчивается символом перевода строки.

В зависимости от значения, функция должна выводить следующее:

- 0 : индекс первого чётного элемента. (index_first_even)
- 1 : индекс последнего нечётного элемента. (index_last_odd)
- 2 : Найти сумму модулей элементов массива, расположенных от первого чётного элемента и до последнего нечётного, включая первый и не включая последний. (sum between even odd)
- 3 : Найти сумму модулей элементов массива, расположенных до первого чётного элемента (не включая элемент) и после последнего нечётного (включая элемент). (sum before even and_after_odd)

иначе необходимо вывести строку "Данные некорректны".

Основные теоретические положения.

В данной работе была использована функция abs() из библиотеки stdlib.h для нахождения модуля числа. Также были использованы функции scanf() и printf() для ввода из библиотеки stdio.h. Кроме этого были использованы операторы if() $\{$ } else $\{$ }, for () $\{$ }, while() $\{$ } ,switch() $\{$ }

Выполнение работы.

Разработанный программный код см. в приложении А.

В функции $main\{\}$ объявляется целочисленная переменная k, которой с помощью функции scanf() присваивается целочисленное значение. Далее объявляется целочисленный массив arr размером 100 и целочисленная переменная arr_size равная 0, которая показывает количество элементов в массиве. В следующей строчке объявляется символьная переменная sym= '.'. Далее в теле цикла while $(arr_size < 100 && sym==$ ') $\{\}$ применяется функция scanf(), с помощью которой вводится целый элемент массива arr[] с индексом arr_size++ и символ sym. Далее применяется оператор $switch(k)\{\}$, который в зависимости от значения k, будет выполнять различные команды.

Если k равняется 0, то с помощью функции printf() печатается значение функции $index_first_even(arr, arr_size)$. Функция $index_first_even(int A[], int b)$ получает на вход целочисленный массив A и целое числа b, затем в функции создаётся локальная целочисленная переменная ind, равная 0. Используя цикл $while\ ((abs(A[ind]\%2==1) \&\&\ (ind\ !=b)),\$ в теле которого $ind\$ увеличивается на 1 за итерацию, удаётся найти индекс первого чётного элемента(фукнция abs() используется, так как если A[ind] будет отрицательным, то в случае нечётности элемента значение A[ind]%2 будет равно -1 и цикл завершится. Функция возвращает значение ind. Для выхода из оператора switch используется break.

Если k равняется 1, то с помощью функции printf() печатается значение функции $index_last_odd(arr, arr_size)$. Функция $index_last_odd(int A[], int b){}$ получает на вход целочисленный массив A и целое числа b, затем b уменьшается на 1, так как он будет использоваться как индекс массива. Затем, используя цикл $while\ ((A[b]\%2==0)\ \&\&\ (b>=0)){}$, в теле которого b уменьшается на 1 за итерацию, удаётся найти индекс последнего нечётного элемента в массиве. Функция возвращает значение b. Для выхода из оператора switch используется break.

Если k равняется 2, то с помощью функции *printf()* печатается значение функции sum_between_even_odd(arr, arr_size). Функция sum_between_even_odd $(int\ A[],\ int\ b)$ {} получает на вход целочисленный массив A и целое числа b. Объявляется четыре локальные целочисленные переменные: $f=index_first_even(A,b)$, $l=index_last_odd(A,b)$, summ=0 и i, где f — индекс первого чётного элемента массива(находится с помощью ранее описанной функции), l – индекс последнего нечётного элемента массива(находится с помощью ранее описанной функции), *summ* – искомая сумма. Далее с помощью цикла for(i=f;i< l;i++) с телом summ=summ+abs(A[i]), находится сумма членов массива от первого чётного(включая) до последнего нечетного(исключая). Функция возвращает значение summ. Для выхода из оператора switch используется break.

Если k равняется 3, то с помощью функции printf() печатается значение функции $sum_before_even_and_after_odd(arr, arr_size)$. Функция $sum_before_even_and_after_odd$ ($int\ A[],\ int\ b)\{\}$ получает на вход целочисленный массив A и целое числа b. Объявляются две целочисленные локальные переменные summ=0, где summ — искомая сумма, и i. Далее с помощью цикла $for(i=0;i< b;i++)\{\}$ с телом summ=summ+abs(A[i]), находится сумма всех элементов массива. После чего summ присваивается значение summ- $sum_between_even_odd(A,b)$, в результате чего в переменной summ хранится сумма всех элементов массива до первого чётного элемента(исключая) и после последнего нечетного элемента массива(включая). Функция возвращает значение summ. Для выхода из оператора $switch()\{\}$ используется break.

При значении k, отличном от 0,1,2 или 3, с помощью функции printf() печатается строка "Данные некорректны". Для выхода из оператора switch (){}используется break.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	0 -8 -23 -30 -11 -28 15 -20 -	0	Программа работает
	24 -27 5 -13 5 21 -5 16 30 -		правильно.
	12 15 -14 -28 -27 -11 -5 4 29		
	-5\n		
2.	1 -8 -23 -30 -11 -28 15 -20 -	25	Программа работает
	24 -27 5 -13 5 21 -5 16 30 -		правильно.
	12 15 -14 -28 -27 -11 -5 4 29		
	-5\n		
3.	2 -8 -23 -30 -11 -28 15 -20 -	426	Программа работает
	24 -27 5 -13 5 21 -5 16 30 -		правильно.
	12 15 -14 -28 -27 -11 -5 4 29		
	-5\n		
4	3 -8 -23 -30 -11 -28 15 -20 -	5	Программа работает
	24 -27 5 -13 5 21 -5 16 30 -		правильно.
	12 15 -14 -28 -27 -11 -5 4 29		
	-5\n		
5	0 1 1 1 3 3 6 5 3 3 2 1\n	5	Программа работает
			правильно.
6	1 -2 -2 -2 -2 -3 -5 -6 -7 -8 -	9	Программа работает
	23 -2 -14 -16 -18 -20\n		правильно.
7	2 1 2 -3 -5 -1 -4 -7 8 10 12\n	15	Программа работает
			правильно.
8	3 -1 3 5 -2 14 15 17 19 3 2 2	18	Программа работает
	2\n		правильно.

Выводы.

В ходе работы были изучены основные управляющие конструкции языка Си.

Разработана программа, выполняющая считывание с клавиатуры исходных данных с помощью функции scanf() и цикла $while()\{\}$ и команды пользователя, для обработки команд пользователя использовалась символьная переменная sym, хранящая код символа ' ', написаны функции, обрабатывающие входные данные, описание функций приведено в блоке "Выполнение работы". С помощью оператора $switch()\{\}$ и функции printf() реализован вывод значения определенной функции в зависимости от значения переменной k.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.c

```
#include <stdio.h>
#include <stdlib.h>
int index first even(int A[], int b)
{
    int ind = 0;
    while ((abs(A[ind]) % 2 == 1) && (ind != b))
        ind++;
    return (ind);
}
int index last odd(int A[], int b)
    b = b - 1;
    while ((A[b] % 2 == 0) && (b >= 0))
       b--;
    return (b);
}
int sum between even odd(int A[], int b)
   int f, 1, summ = 0;
   f = index first even(A, b);
    l = index_last_odd(A, b);
    int i;
    for (i = f; i < l; i++)</pre>
        summ = summ + abs(A[i]);
   return (summ);
}
int sum before even and after odd(int A[], int b)
   int summ = 0;
    int i;
    for (i = 0; i < b; i++)</pre>
        summ = summ + abs(A[i]);
    summ = summ - sum between even odd(A, b);
    return summ;
}
int main()
   int k = 0;
   scanf("%d", &k);
```

```
int arr[100];
   int arr size = 0;
   char sym = ' ';
   while (arr size < 100 && sym == ' ')</pre>
        scanf("%i%c", &arr[arr_size++], &sym);
    }
    switch (k)
    {
    case 0:
       printf("%d\n", index first even(arr, arr size));
       break;
    case 1:
       printf("%d\n", index last odd(arr, arr size));
    case 2:
        printf("%d\n", sum between even odd(arr, arr size));
       break;
    case 3:
       printf("%d\n", sum before even and after odd(arr, arr size));
       break;
    default: printf("Данные некорректны\n"); break;
   return 0;
}
```