Question 4 ~

Suppose that $\sum_{n=1}^\infty a_n$ converges absolutely. Prove that $\sum_{n=1}^\infty |a_n|^p$ converges for all $p\geq 1$

If $\sum_{n=1}^{\infty} a_n$ converges absolutely, by definition it means $\sum_{n=1}^{\infty} |a_n|$ converges.

So we are actually proving that $\sum_{n=1}^\infty (b_n)^p$ converges, where $b_n>0,\, orall n\in \mathbb{N}$ and $p\geq 1$

Via, the limit comparison test:

☐ Thm: Limit Comparison test ∨

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two real sequences with $a_n\geq 0$ and $b_n\geq 0$ for all n. Assume that $\frac{a_n}{b_n}\to L$ for some $L\in(0,\infty)$. Then, $\sum_{n=1}^\infty a_n$ converges iff $\sum_{n=1}^\infty b_n$ converges.

Suppose we have our absolutely convergent series $\sum_{n=1}^\infty a_n$. We now define two sequences (b_n) where $b_n=|a_n|$, and a sequence (c_n) where $c_n=(b_n)^p,\,p\geq 1$ ($\sum_{n=1}^\infty b_n$ is convergent as stated above)

The fraction $\frac{(b_n)^p}{b_n}$ will simplify to $(b_n)^{p-1}$. Since $b_n \in (0, \infty)$, and $p \ge 1$ this must mean that we also have that $(b_n)^{p-1} \in (0, \infty)$.

Therefore via the limit comparison test, since $\sum_{n=1}^{\infty} b_n$ converges, then so must

$$\sum_{n=1}^{\infty} c_n.$$

Since $c_n=(b_n)^p=|a_n|^p$, this is equivalent in saying that $\sum_{n=1}^{\infty}|a_n|^p$ converges.

Question 9 ~

Let $f:(0,1)\to\mathbb{R}$ be a function and let $a\in(0,1)$. Match each statement in Group A with a statement in Group B which means the same thing:

Group A

- i) $orall \epsilon > 0, \ \exists \delta > 0 \ ext{s.t.} \ |x-a| < \delta \ ext{implies} \ |f(x)-f(a)| < \epsilon$
- ii) $\forall \epsilon > 0, \, \forall \delta > 0, \, |x-a| < \delta \text{ implies } |f(x)-f(a)| < \epsilon$
- iii) $\exists \epsilon > 0$ such that $\forall \delta > 0, \ |x-a| < \delta \ \text{implies} \ |f(x)-f(a)| < \epsilon$
- iv) $\exists \epsilon > 0$ and $\exists \delta > 0$ such that $|x-a| < \delta$ implies $|f(x)-f(a)| < \epsilon$
- v) $\forall \delta > 0, \ \exists \epsilon > 0$ such that $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$
- vi) $\exists \delta > 0$ such that $orall \epsilon > 0, \ |x-a| < \delta \ ext{implies} \ |f(x)-f(a)| < \epsilon$

Group B

- a) f is continuous at a
- b) f is bounded on (0,1)
- c) f is constant on (0,1)
- d) There is some neighbourhood of a on which f is bounded.
- e) There is some neighbourhood of a on which f is constant.
- i a
- ii c
- iii -b
- iv d
- v -b
- vi e