Assignment A3a: Signals and Noise Please follow the General Assignment Guidelines document on canvas under the Pages for completing this assignment. Overview This assignment focuses on a few fundamental concepts in signal processing. In the previous assignment, the signals Learning objectives explain and illustrate the discrete representation of a continuous signal explain aliasing and the Nyquist frequency explain the delta and step functions write functions to synthesize signals write functions that accept functions as arguments	ent. When you have completed the assignment, please follow the Submission Instructions. s where discrete events like photons. Here, we will look at continuous signals that have structure that extends over time with additive noise.
 estimate the energy and power of a signal compute the signal to noise ratio generate signals with different levels of additive noise design closed analysis/synthesis loops for testing correctness Readings	ent. Refer to these for a more detailed explanation and formal presentation of the concepts in the exercises. Note that the readings contain a lot more material than what's
overlays the discrete samples on the continuous function. 1a. Sampled functions Write a function	ampled signal is only a <i>representation</i> of the underlying continuous signal and it doesn't necessarily capture all the information. It is easy to visualize this by making a plot that
Looking ahead to the next module on sound localization, we want to start getting used to thinking in terms of the time	scale and is plotted in units of tunits. The function should be plotted as a line, and the samples should be overlaid as a stem plot. scale of the waveform and use examples that more relevant to biological perception. Instead of the defaults (which are sensible for a generic function), use tscale=10^3 and not should be in seconds. This is to have a clean separation between the information and the display of the information. Le:float=1, tunits:str="secs"):
<pre>plt.plot(T, F, c='b', label="signal") plt.stem(S, F_s, label="samples") plt.title("Sampled Function") plt.xlabel(f"Time ({tunits})") plt.ylabel("Amplitude") plt.legend() plt.show() plot_sampled_function(g=f.sinewave,f=0.001, fs=0.55, tlim=(0, 1), tscale=10^3, tunits="msecs"</pre>	
0.25 -	cs="msecs")
Sampled Function 1.00 -	
	requency that can be represented with sampling frequency f_s . sampling of a periodic function like sine can result in the appearance of sampling a function of much lower frequency than what's actually there. To avoid aliasing artifacts when
frequency waveform where the discrete samples, even though there is no aliasing in a technical sense, show a more job. # sine wave below Nyquist frequency plot_sampled_function(g=np.sin, f=0.03, fs=0.2, tlim=(0, 2*np.pi)) Sampled Function	Another is more colloquial and is used to describe any situation where the samples don't reflect the true underlying pattern. It is commonly used to describe plotting a high jagged structure than the actual analog pressure waveform, which is smooth. Another common usage is when the details of a plot don't align well with the pixels.
0.25 - 0.00 - 0.05 - 0.50 - 0.75 - 1.00 - 0 1 2 3 4 5 6 Time (secs) # sine wave at Nyquist frequency plot_sampled_function(g=np.sin, f=0.1, fs=0.2, tlim=(0, 2*np.pi))	
Sampled Function 1.00 0.75 0.50 0.25 -0.25 -0.50 -0.75	
-1.00 -	
# cosine above Nyquist frequency plot_sampled_function(g=np.cos, f=1, fs=0.3, tlim=(0, 2*np.pi))	
Sampled Function 1.00 0.75 0.50 0.25 -0.25 -0.50 -0.75 signal	
2. Signals We have used functions like sine wave, Gaussian, Gabor, and gammatone. Here we add two more functions to our lib The delta function The Dirac delta function is used to to model an impulse or discrete event as a brief impulse of energy. The delta function The value at zero is unbounded and undefined, but the integral is one	
We also have the property $ \hbox{Another way to think about this is that } \delta(t-\tau) \hbox{ is zero everywhere except at } t=\tau. \hbox{ At that (infinitesimal) point, } f(t=1) . $ The unit step function $ \hbox{The unit step function (also called the Heaviside step function) is used to indicate a constant signal that starts at } t=0. $	
	to generate signals, which you can then sample, define them so that they accept a continuous time value. Equency. To see why, note that we can model the sampling process as the integration of a function over the sample period as $y = \int_{t-\Delta t/2}^{t+\Delta t/2} f(t) dt$ indeed in the continuous time value.
<pre># delta and return if T.size > 1: return np.array([1 if abs(tc) <= abs(c-1/(fs*2)) else 0 for t_ in T]) else: return 1 if abs(t) < abs(c-1/(fs*2)) else 0 []: T = np.arange(-1, 5, 0.01) F = delta(T, fs=100) plt.plot(T, F) plt.xlabel("time") plt.ylabel("amplitude") plt.title("Dirac Delta Function") plt.show()</pre> Dirac Delta Function 1.0 -	
0.8 -	
<pre>def u(t=0): # function of tlim c = 0 T = np.array(t) # unit step return np.array([1 if t_ >= c else 0 for t_ in T]) if T.size > 1 else 1 if t >= c else 0 []: T = np.arange(-1, 5, 0.01) F = u(T) plt.plot(T, F) plt.xlabel("time") plt.ylabel("amplitude") plt.title("Unit Step Function") plt.show()</pre> Unit Step Function	
0.8 - 9p 0.6 - 0.4 - 0.2 -	
x = gensignal(t, t -> gammatone(t; f=100); τ=0.025, T=0.1)	a signal defined by function $ {f g} $, which should be function of time. Other arguments to $ {f g} $ can be specified upon definition, e.g. and $t > = T + au$. Note that $T + au$ is an <i>exclusive</i> limit, because the sample times are centered on the sample periods. For example, a unit step function for $f_s = 1$, $ au = 0$, and
<pre>F = g(t=Ttau) # double check signal and return return np.array([0 if T_[i] < tau or T_[i] >= T+tau else F[i] for i in range(len(T_))]) i T = np.arange(-1, 10, 0.01) F = gensignal(T, g=lambda t: f.sinewave(t), tau=2, T=3) plt.plot(T, F) plt.xlabel("time") plt.ylabel("amplitude") plt.title("gensignal Function") plt.show() gensignal Function 1.00 - 0.75 -</pre> gensignal Function	f Tsize > 1 else 0 if T_ < tau or T_ >= T+tau else F
0.50 - 0.25 - 0.000.250.500.751.00 - 0 2 4 6 8 10	
extend over time, it is common to use the signal to noise ratio.	$P_x = rac{1}{N} \sum_{n=1}^N \left x[n] ight ^2 = \sigma_x^2$
For a signal in additive noise the SNR is simply It is almost always expressed on a logarithmic scale in units of decibels (dB)	$y[t] = x[t] + \epsilon[t]$ $\frac{P_x}{P_\epsilon}$ $\mathrm{dB~SNR} = 10\log_{10}(P_x/P_\epsilon)$ $= 20\log_{10}(\sigma_x/\sigma_\epsilon)$ i.e. the signal's structure doesn't change over time and extends throughout the period of analysis. Structure could be described by the frequency content or by a probability
best (or peak) SNR, i.e. the point where the signal is strongest.	or PSNR. Many signals have limited extent which we don't know a priori, e.g. a feature in an image. In this case, it makes sense to use the maximum value to approximate the list are sparse (rarely occurring). In this case, the power (or variance) of the noise can be approximated with the variance of the observed waveform y , because we assume it is e would be dominated by the "smooth" background, and so would approximate the underlying noise. $PSNR = 10 \log_{10} \left(\frac{\max_t (y[t])^2}{\sigma_y^2} \right)$ $= 20 \log_{10} \left(\frac{\max_t (y[t])^2}{\sigma_y} \right)$
<pre>Write functions energy(x), power(x), snr(Ps, Pn) for the definitions above. []: def energy(x): # raise all elements to 2nd power and sum all elements X = np.array(x) return np.sum(np.power(X, 2)) []: def power(x): X = np.array(x) return energy(x)/X.size []: def snr(Ps, Pn): return 10 * np.log10(Ps / Pn)</pre> 3b. Noisy signals	ve Gaussian noise. Like above, the signal is delayed by τ has duration T . σ specifies the standard deviation of the noise. Show examples with a sinewave, step, and
<pre>gammatone. []: def noisysignal(t, g:lambda t: np.sin(t), tau:float=0.25, T:float=1, sigma:float=0.05): # gensignal for range t T_ = np.array(t) F = gensignal(t=T_, g=g, tau=tau, T=T) # generate noise N = np.random.normal(loc=0, scale=sigma, size=Tsize) return np.add(F, N) []: T = np.arange(-1, 5, 0.01) F = noisysignal(t=T, g=lambda t: f.sinewave(t), tau=0.25, T=4, sigma=0.05) plt.plot(T, F) plt.xlabel("time") plt.ylabel("amplitude") plt.title("noisysignal Function") plt.show()</pre>	
noisysignal Function 1.0 -	
function that accepts an array as input and also the location of the signal in the array. Write a function $\sigma = \text{snr2sigma}(; \ x, \ xrange=1:length(x), \ snr=10)$ which, given array x , returns the standard deviation of additive Gaussian noise such adding noise at that level to x	an SNR. Since the SNR is the average signal energy, it depends on the whole signal. Thus, to calculate the noise level needed to achieve a specified SNR, we need to define has an SNR of snr dB. The optional argument xrange specifies location of the signal, i.e. the range over which to compute the signal power. It should default to the whole
signal.	m would lead to a biased result. Why is this? Illustrate this by contrasting, the resulting waveforms produced with and without knowledge of signal location.
One of the challenges in developing algorithms for perceptual computations is that we rarely know the ground truth, at and estimate the SNR from a waveform. Write a function extent(y; 0=0.01) that returns a range from the first to last index where the absolute value of a Show that is produces the correct index range for a known case, and use it to estimate the SNR for a synthesized sign for the strength of the synthesized sign for the synthe	
<pre>return (i[0], i[-1]) # find sigma for snr of 10 T = np.arange(1, 10*np.pi, 0.01) F = gensignal(t=T, g=lambda t: np.sin(t), tau=5, T=20) print(f"estimated sigma for snr of 10: {snr2sigma(F, snr=20)}") estimated sigma for snr of 10: 0.05675367515067077 []: # estimate SNR for known signal T = np.arange(-1, 10*np.pi, 0.01) F = noisysignal(t=T, g=lambda t: np.sin(t), tau=5, T=20, sigma=0.0567) # find signal s, e = extent(Y=F, theta=0.25) print(f"signal found between indices [{s}, {e}]") # separate signal from noise F_s = F[s:e] F_n = np.concatenate((F[0:s], F[e:-1])) # calc snr</pre>	
<pre>esnr = snr(Ps=power(F_s), Pn=power(F_n)) print(f"Estimated SNR: {esnr}") Signal found between indices [625, 2599] Estimated SNR: 20.550453504393012 []: plt.plot(T[s:e], F[s:e]) plt.xlim([-1, 10*np.pi]) plt.xlabel("time") plt.ylabel("amplitude") plt.title("Plot of identified signal") plt.show()</pre> Plot of identified signal 1.0 -	
0.5 -	
4. Grand synthesis One measure of the quality of your code design is the ease and flexibility of expressing new ideas. To test this, use you the amplitudes A_i can be constant or follow a distribution. Synthesize a several second waveform and export it to a .wav file. What does it sound like? Feel free to experiment we from scipy.io import wavfile []: # import packages from scipy.io import wavfile []: # set the parameters fs = 44100 # Hz num = 10 # gammatones filename = "out.wav"	our functions to synthesize a waveform composed of random, normalized gammatones plus some level of Gaussian noise. $\tau_i \sim \mathrm{uniform}(0,T) \\ f_i \sim \mathrm{uniform}(f_{\mathrm{min}},f_{\mathrm{max}})Hz$ with different parameters and distributions.
<pre># times for plotting T = np.linspace(0, 3, 3*fs+1) # parameters to create gammatones delays = [np.random.uniform(0, 3) for i in range(num)] freqs = [np.random.uniform(10, 10000) for i in range(num)] # generate the signals S_i = np.array([noisysignal(t=T, g=lambda t: f.sinewave(t=t, f=freqs[i]), tau=delays[i], T=3) # add signals S = S_i[0] for i in range(1, num, 1): S = np.add(S, S[i]) # normalize S_norm = S / np.max(S) # Write to wave file</pre>	for i in range(num)])
wavfile.write(filename, fs, S_norm) Tests and self checks	your draft version, take the self check quiz. This will give you feedback so you can make corrections and revisions before you submit your final version. Here are examples of the
Submission Instructions Please refer to the Assignment Submission Instructions on canvas under the Pages tab.	