CSCI567 Machine Learning (Spring 2021)

Sirisha Rambhatla

University of Southern California

March 26, 2021

Outline

1 Logistics

- 2 Review of last lecture: Density estimation
- Naive Bayes

Outline

- Logistics
- 2 Review of last lecture: Density estimation
- Naive Bayes

Logistics

 Recognition for top teams – Working with the department to get recognition for the top teams. Keep up the good work!

Outline

- Logistics
- 2 Review of last lecture: Density estimation
 - Parametric methods
 - Nonparametric methods
- Naive Bayes

Density estimation

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \stackrel{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

Useful for many downstream applications such as clustering, we will look at a classification task today.

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x}; \boldsymbol{\theta})$$

Examples:

- GMM: $p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \sum_{k=1}^K \omega_k N(\boldsymbol{x}\mid\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$ where $\boldsymbol{\theta} = \{\omega_k,\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k\}$
- Multinomial: a discrete variable with values in $\{1, 2, ..., K\}$ s.t.

$$p(x=k;\boldsymbol{\theta})=\theta_k$$

where θ is a distribution over K elements.

Size of θ is independent of the training set size, so it's parametric.

Construct something similar to a histogram:

- for each data point, create a "bump" (via a Kernel)
- sum up or average all the bumps

Kernel Density Estimation (KDE)

KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

e.g.
$$K(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$$
, the standard Gaussian density

Kernel needs to satisfy:

- symmetry: K(u) = K(-u)
- $\int_{-\infty}^{\infty} K(u)du = 1$, makes sure p is a density function.

Outline

- Logistics
- 2 Review of last lecture: Density estimation
- Naive Bayes
 - Setup and assumption
 - Estimation and prediction
 - Connection to logistic regression

Naive Bayes

Naive Bayes

• a simple yet surprisingly powerful classification algorithm

Naive Bayes

Naive Bayes

- a simple yet surprisingly powerful classification algorithm
- density estimation is one important part of the algorithm

Bayes optimal classifier

Suppose (x,y) is drawn from a joint distribution p. The Bayes optimal classifier is

Bayes optimal classifier

Suppose (x, y) is drawn from a joint distribution p. The **Bayes optimal** classifier is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

Bayes optimal classifier

Suppose (x, y) is drawn from a joint distribution p. The **Bayes optimal** classifier is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is *exactly a density estimation problem!*

How to estimate a joint distribution? Observe we always have

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$$

How to estimate a joint distribution? Observe we always have

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$$

We know how to estimate p(y) by now.

How to estimate a joint distribution? Observe we always have

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$$

We know how to estimate p(y) by now.

To estimate $p(x \mid y = c)$ for some $c \in [C]$, we are doing density estimation using data $\{x_n : y_n = c\}$.

How to estimate a joint distribution? Observe we always have

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$$

We know how to estimate p(y) by now.

To estimate $p(x \mid y = c)$ for some $c \in [C]$, we are doing density estimation using data $\{x_n : y_n = c\}$.

This is *not a 1D problem* in general.

Naive Bayes assumption: conditioning on a label, features are independent,

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption?

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

• use x = (Height, Vocabulary) to predict y = Age

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

More often this assumption is *unrealistic and "naive"*, but still Naive Bayes can work very well even if the assumption is wrong.

Example: discrete features

Height: $\leq 3'$, 3'-4', 4'-5', 5'-6', $\geq 6'$

Vocabulary: \leq 5K, 5K-10K, 10K-15K, 15K-20K, \geq 20K

Age: \leq 5, 5-10, 10-15, 15-20, 20-25, \geq 25

Example: discrete features

Height: $\leq 3'$, 3'-4', 4'-5', 5'-6', $\geq 6'$

Vocabulary: ≤5K, 5K-10K, 10K-15K, 15K-20K, ≥20K

Age: \leq 5, 5-10, 10-15, 15-20, 20-25, \geq 25

MLE estimation: e.g.

$$p({\rm Age}=10\text{-}15) = \frac{\#{\rm examples~with~age~10\text{-}15}}{\#{\rm examples}}$$

Example: discrete features

Height: $\leq 3'$, 3'-4', 4'-5', 5'-6', $\geq 6'$

Vocabulary: ≤5K, 5K-10K, 10K-15K, 15K-20K, ≥20K

Age: \leq 5, 5-10, 10-15, 15-20, 20-25, \geq 25

MLE estimation: e.g.

$$p(\mathsf{Age} = 10\text{-}15) = \frac{\#\mathsf{examples} \ \mathsf{with} \ \mathsf{age} \ 10\text{-}15}{\#\mathsf{examples}}$$

$$p(\mathsf{Height} = 5\text{'-6'} \mid \mathsf{Age} = 10\text{-}15)$$

$$= \frac{\#\mathsf{examples} \ \mathsf{with} \ \mathsf{height} \ 5\text{'-6'} \ \mathsf{and} \ \mathsf{age} \ 10\text{-}15}{\#\mathsf{examples} \ \mathsf{with} \ \mathsf{age} \ 10\text{-}15}$$

More formally

For a label
$$c \in [C]$$
,

$$p(y = c) = \frac{|\{n : y_n = c\}|}{N}$$

More formally

For a label $c \in [C]$,

$$p(y = c) = \frac{|\{n : y_n = c\}|}{N}$$

For each possible value k of a discrete feature d,

$$p(x_d = k \mid y = c) = \frac{|\{n : x_{nd} = k, y_n = c\}|}{|\{n : y_n = c\}|}$$

If the feature is continuous, we can do

• parametric estimation,

• or nonparametric estimation,

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

• or nonparametric estimation,

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature d among all examples with label c. Notice connections to Linear Discriminant Analysis (LDA)!

• or nonparametric estimation,

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature d among all examples with label c. Notice connections to Linear Discriminant Analysis (LDA)!

ullet or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

$$p(x_d = x \mid y = c) = \frac{1}{|\{n : y_n = c\}|} \sum_{n:y_n = c} K_h(x - x_{nd})$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$

$$\mathop{\mathrm{argmax}}_{c \in [\mathsf{C}]} p(y = c \mid x) = \mathop{\mathrm{argmax}}_{c \in [\mathsf{C}]} p(x, y = c)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$

For discrete features, plugging in previous MLE estimations gives

$$\begin{split} & \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \frac{|\{n : x_{nd} = x_d, y_n = c\}|}{|\{n : y_n = c\}|} \right) \end{split}$$

For continuous features with a Gaussian model,

$$\begin{aligned} & \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \end{aligned}$$

For continuous features with a Gaussian model,

For continuous features with a Gaussian model,

which is *quadratic* in the feature x.

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} & \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n: y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n: y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}}{\sigma^2} x_d \right) \end{aligned}$$

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

where we denote $w_{c0} = \ln |\{n: y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2}$ and $w_{cd} = \frac{\mu_{cd}}{\sigma^2}$.

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

where we denote $w_{c0} = \ln |\{n: y_n = c\}| - \sum_{d=1}^{D} \frac{\mu_{cd}^2}{2\sigma^2}$ and $w_{cd} = \frac{\mu_{cd}}{\sigma^2}$.

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then?

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

• both via MLE, one on $p(y = c \mid x)$, the other on p(x, y)

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

- ullet both via MLE, one on $p(y=c\mid x)$, the other on p(x,y)
- solutions are different: logistic regression has no closed-form, naive Bayes admits a simple closed-form

	Discriminative model	Generative model
Example	logistic regression	naive Bayes

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large ${\cal N}$	usually better for small ${\cal N}$

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large ${\cal N}$	usually better for small ${\cal N}$
Remark		more flexible, can generate data after learning