

What is claimed is:

1 1. A method of treatment for a mammal in, or at risk of, chronic renal failure

2 comprising

administering to said mammal a therapeutically effective amount of an OP/BMP renal therapeutic agent.

2. A method of treatment to delay the need for, or reduce the frequency of, chronic dialysis treatments comprising

administering to a mammal a therapeutically effective amount of an

4 OP/BMP renal therapeutic agent.

1 3. A method as in claim 1 wherein said renal therapeutic agent comprises a

2 polypeptide consisting of at least a C-terminal cysteine domain of a protein

3 selected from the group consisting of a pro form, a mature form, and a soluble

4 form of a polypeptide selected from the group consisting of OP-1, OP-2, OP-3,

5 BMP2, BMP3, BMP4, BMP5, RMP6, and BMP9.

1 4. A method as in claim 3 wherein said renal therapeutic agent comprises a

polypeptide consisting of at least a C-terminal cysteine domain of a protein

selected from the group consisting of a pro form, a mature form, and a soluble

4 form of human OP-1.

1 5. A method as in claim wherein said renal therapeutic agent comprises a

2 polypeptide having at least homology with an amino acid sequence of a C-

3 terminal seven-cysteine domain of human OP-1.

6. Amethod as in claim 5 wherein said polypeptide has at least 75%

2 homology with an amino acid sequence of a C-terminal seven-cysteine domain of

3 human OP-1.

 $\begin{array}{c|c} & & \\ & &$

- 1 7. A method as in claim 5 wherein said polypeptide has at least 80%
 2 homology with an amino acid sequence of a C-terminal seven-cysteine domain of
 3 human OP-1.
- 1 8. A method as in claim 5 wherein said polypeptide has at least 60% identity
- 2 with an amino acid sequence of a C-terminal seven-cysteine domain of human OP-
- 3 1.
- 1 9. A method\as in claim 5 wherein said polypeptide has at least 65% identity
- 2 with an amino acid\sequence of a C-terminal seven-cysteine domain of human OP-
- 3 1.
- 1 10. A method as in claim 5 wherein said polypeptide has at least 70% identity
- with an amino acid sequence of a C-terminal seven-cysteine domain of human OP-
- 3 1.
 - 11. A method as in any one of claims 3-10 wherein said renal therapeutic agent
 (a) induces chondrogenesis in an ectopic bone assay;
 - (b) prevents, inhibits, delays or alleviates loss of renal function in an animal model of chronic renal failure; or
- (c) causes a clinically significant improvement in a standard marker of renal function when administered to a mammal in, or at risk of, chronic renal failure.
 - 12. A method as in claim 1 wherein said renal therapeutic agent is selected from the group consisting of human osteogenic proteins and human bone morphogenetic proteins.
 - 13. A method as in any one of claims 1-12 wherein said mammal is afflicted with a condition selected from the group consisting of chronic renal failure, end-stage renal disease, chronic diabetic nephropathy, diabetic glopierulopathy, diabetic renal hypertrophy, hypertensive

in the second section of the second s

nephrosclerosis, hypertensive glomerulosclerosis, chronic glomerulonephritis,
 hereditary nephritis, and renal dysplasia.

1 14. A method as in any/one of claims 1-12 wherein

- 2 examination of a fenal biopsy of said mammal indicates that said mammal is
- 3 afflicted with a condition selected from the group consisting of glomerular
- 4 hypertrophy, tubular hypertrophy, glomerulosclerosis, and tubulointerstitial
- 5 sclerosis.
- 1 15. A method as in any one of claims 1-12 wherein
- 2 examination of said mammal indicates renal fibrosis.
- 1 16. A method as in claim 15 wherein
- 2 said examination is an ultrasound, MRI or CAT scan of said mammal.
- 1 17. A method as in any one of claims 1-12 wherein
- said mammal possesses a number of functional nephron units which is less
- 3 than about 50% of a number of functional nephron units present in a mammal
- 4 having intact healthy kidneys.
- 1 18. A method as in any one of claims 1-12 wherein
- 2 said mammal possesses a number of functional nephron units which is less
- 3 than about 40% of a number of functional nephron units present in a mammal
- 4 having intact healthy kidneys.
- 1 19. A method as in any one of claims 1-12 wherein
- said mammal phossesses a number of functional nephron units which is less
- 3 than about 30% of a number of functional nephron units present in a mammal
- 4 having intact healthy kidneys.
- 1 20. A method as in any one of claims 1-12 wherein

	2		said mammal possesses a number of functional nephron units which is less
	3	than al	bout 20% of a number of functional nephron units present in a mammal
	4	having	intact healthy kidneys.
	1	21.	A method as in any one of claims 1-12 wherein
	2		said mammal is a kidney transplant recipient.
	1	22.	A method as in any one of claims 1-12 wherein
	2		said mammal possesses only one kidney.
	1	23.	A method as in any one of claims 1-12 wherein
	2		examination of a urinary sediment of said mammal indicates a presence of
_	3	broad	casts.
/	1	24.	A method as in any one of claims 1-12 wherein
	2		said mammal has a GFR which is chronically less than about 50% of a
	3	GFR _{exp}	for said mammal.
	1	25.	A method as in claim 24 wherein
	2		said mammal has a GFR which is chronically less than about 40% of a
	3	GFR _{exp}	for said mammal.
	1	26.	A method as in claim 24 wherein
	2		said manimal has a GFR which is chronically less than about 30% of a
	3	GFR _{exp}	for said marimal.
	1	27.	A method as in claim 24 wherein
	2		said mammal has a GFR which is chronically less than about 20% of a
	3	GFR_{exp}	for said mammal.
}	1	28.	A method as in any one of claims 1-12 wherein
	2		said mammal is a human male weighing at least about 50 kg and has a GFF
	3	which i	s chronically less than about 50 ml/min.

	 -	29-	A method as in claim 28 wherein
	2		said mammal is a human male weighing at least about 50 kg and has a GFR
	3	which	n is chronically less than about 40 ml/min.
	1	30.	A method as in claim 28 wherein
	2		said mammal is a human male weighing at least about 50 kg and has a GFR
	3	which	n is chronically less than about 30 ml/min.
	1	31.	A method as in claim 28 wherein
	2		said mammal is a human male weighing at least about 50 kg and has a GFR
	3	which	is chronically/less than about 20 ml/min.
	7	32.	A method as in any/one of claims 1-12 wherein
	2		said mammal is a human female weighing at least about 40 kg and has a
,	3	GFR ·	which is chronically less than about 40 ml/min.
	1	33.	A method as in claim 32 wherein
	2		said mammal is a human female weighing at least about 40 kg and has a
	3	GFR v	which is chronically less than about 30 ml/min.
	1	34.	A method as in claim 32 wherein
	2		said mammal is a human female weighing at least about 40 kg and has a
	3	GFR v	which is chronically less than about 20 ml/min.
	1	35.	A method as in claim 32 wherein
	2		said mammahis a human female weighing at least about 40 kg and has a
	3	GFR v	which is chronically less than about 10 ml/min.
	1	36.	A method as in any one of claims 1-12 wherein said treatment reduces
	2	serum	creatinine levels in said mammal by at least about 5% over 3 months.
	1	37.	A method as in any one of claims 1-12 wherein

- 2 _____ prior to said treatment said mammal presented a chronic decline in a
- 3 clinical indicator of renal function; and
- 4 after at least about 3 months of said treatment, said indicator stabilizes.
- 1 38. A method as in any one of claims 1-12 wherein said administration is oral.
- 1 39. A method as in any one of claims 1-12 wherein said administration is
- 2 parenteral.
- 1 40. A method as in claim 39 wherein said administration is intravenous.
- 1 41. A method as in claim 39 wherein said administration is intraperitoneal.
- 1 42. A method as in claim 39 wherein said administration is into the renal
- 2 capsule.
- 1 43. A method as in claim'39 wherein a stent has been implanted into said
- 2 mammal for said administration.
- 1 44. A method as in claim 43 wherein said stent is an intravenous stent.
- 1 45. A method as in claim 43 wherein said stent is an intraperitoneal stent.
- 1 46. A method as in claim 43 wherein said stent is a renal intracapsular stent.
- 1 47. A method as in claim 39 wherein said administration is by an implanted
- 2 device.
- 1 48. A method as in any one of claims 1-12 wherein said administration is at
- 2 least once a week for a period of at least about one month.
- 1 49. A method as in any one of claims 1-12 wherein said administration is at
- 2 least once a month for a period of at least about one year.

From the control of t

- 1 50. A method as in any one of claims 1-12 wherein said renal therapeutic agent
- 2 is administered at a dosage of about 0.01-1200 μg/kg body weight of said
- 3 mammal.
- 1 51. A method as in claim 50 wherein said renal therapeutic agent is
- 2 administered at a dosage of about 10-300 μg/kg body weight of said mammal.

and E