## DK Forest LiDAR v.0.1.0 (beta)

Classifications of Denmark's forest quality using the EcoDes-DK15 dataset (https://github.com/jakobjassmann/ecodes-dk-lidar) and other spatial data.

Disclaimer: This project is under development and not yet peer-reviewed.

## Data description

- Predictor overview (data\_overview.html)
- Focal (window) predictor selection (focal var selection.html)

## Model performance

- Gradient Boosting performance (qbm\_models\_performance.html)
- Random Forest performance (ranger models performance.html)

### Results

- Leaflet web app (map of projections) (data vis.html)
- Summary stats (area estimates) (summary stats.html)

## Data / Outputs

- Summary report website snapshot(2.2 MB, PDF)) (Assmann et al-DK Forest Quality Report v0.1.0.pdf)
- Gradient Boosting Projections v0.1.0 (23 MB, GeoTiff) (https://dkforestlidar2022.s3.eu-central-1.amazonaws.com/forest\_quality\_gbm\_biowide\_cog\_epsg3857\_v0.1.0.tif)
- Random Forest Projections v0.1.0 (37 MB, GeoTiff) (https://dkforestlidar2022.s3.eu-central-1.amazonaws.com/forest\_quality\_ranger\_biowide\_cog\_epsg3857\_v0.1.0.tif)
- Disturbance map v0.1.0 (36 MB, GeoTiff) (https://dkforestlidar2022.s3.eu-central-1.amazonaws.com/disturbance\_since\_2015\_cog\_epsg3857\_v0.1.0.tif)
- Training Polygons (44.3 MB, GeoJson) (https://dkforestlidar2022.s3.eu-central-1.amazonaws.com/training\_polygons.geojson)



Aarhus University / VegDyn / SustainScapes

[last update: 2 March 2022]

## DK Forest LiDAR - Predictor Data Overview

Jakob J. Assmann 02/03/2022

## Predictor variables and selection

## **EcoDes-DK15** descriptors

The core of the predictor variables is formed by the EcoDes-DK15 rasterised lidar descriptors (Assmann et al. 2022) generated from the 2014/15 national airborne laser scanning campaign conducted by the Danish government.

From the 76 available EcoDes-DK15 layers (incl. auxiliary layers), we removed the date\_stamp\_xxx, point\_count\_xxx, point\_source and building\_proportion layers as we deemed those non-informative for the task of predicting forest quality. We kept the sea and water mask layers to try out sub-setting of the training data to make sure only land pixels are included, but discarded the mask layers later in the analysis.

Furthermore, we removed the following descriptors: canopy\_openness, point\_count, normalized\_z\_mean, heat\_load\_index, openness\_mean, twi - as the ecological meaning of these was conceptually redundant with other descriptors (vegetation\_density, canopy\_height, solar\_radiation, openness\_difference and ground water respectively) and initial model runs indicated that these variables had a low predictive power. We also removed the aspect variable because it was a very weak predictor. This makes sense conceptually as the aspect at 10 m likely has little meaning on whether a forest cell is of high quality or not (all cardinal directions would theoretically be expected to be of high quality).

Finally, we removed all vegetation\_proportion variables. These variables demonstrated a low predictive power by themselves. However, to capture the vertical variability in the lidar point cloud we calculated a foliage height diversity variable.

The final set of used EcoDes-DK15 variables is:

- amplitude\_mean
- amplitude\_sd
- canopy\_height
- dtm\_10m
- normalized\_z\_sd
- openness\_difference
- slope
- solar\_radiation

## vegetation\_density

To capture the vertical variation in the forest canopy we calcualted the "foliage height diversity" (MacArthur and MacArthur 1961) from the EcoDes-DK15 point proportion descriptors We followed the height bins used by Wilson (1974): 0 m - 1.5 m, 1.5 m - 9 m, and >9 m.

foliage\_height\_diversity

Foliage height diversity

## Tree type predictor

As we expected that most common tree type (broadleaf vs. coniferous) would play an important role in determining if and why a forest is of high or low quality, we included the tree type projections generated by Bjerreskov et al. (2021).

The authors used a multi-temporal Sentinel 1/2 data fusion (SAR and optical) approach to assign forest types in a binary classification (broadleaf vs. coniferous).

As both types are mutually exclusive we discarded the "is confierous" variable after one-hot encoding of the source data. The source data is currently not publicly avialable, but was kindly shared with us by Thomas Nord-Larsen (senior author on Bjerreskov et al. 2021).

treetype\_bjer\_dec

## Soil predictors

Clay, sand and organic carbon content of soil

Soil type and composition are an important indicator in the key for the paragraph 25 forests. Here we used the following three predictors to account for differences in the soils across Denmark:

- Clay utm32 10m
- Sand\_utm32\_10m Soc\_utm32\_10m

These data were obtained from the Soilgrids 2.0 dataset (Poggio et al. 2021). The original data layers were queried using the geodata package (Hijmans, Ghosh, and Mandel 2021) and subset to the extent of Denmark. The original data have a grain size of 250 m and are in a "Interrupted\_Goode\_Homolosine" projection. We projected them to the EcoDes-DK grid with 10 m grain size (UTM32N) using nearest neighbor resampling.

Note that the nearest neighbour resampling strategy is conservative and makes no assumption about the spatial distribution of the variables during the downsampling of the 250 m dataset. However, the downsampling may give the wrong impression that we have used higher-resolution predictor data than we actually have. Finally, the resampling will inevitably introduce some uncertainties where the downsampled grid and the orignal grid not align.

Water availability

To account for the wetness of the forest ground and the water availability to the plants we use the summer near-surface ground water estimates by Koch et al. 2021.

ns\_groundwater\_summer

### Focal variables

To capture the spacial context around a pixel beyond the 10 m grid, we selected four key predictor variables and calculated their mean and variation (sd) for two window sizes of 110 m and 250 m around each pixel. We selected these window sizes as the best candidates based on variograms generated for all variables.

We conducted a collinearity analysis on the focal variables and reduced the v ariables in a step-wise selection process to the following final four focal variables included in the models:

- dtm\_10m\_sd\_110m
- canopy\_height\_sd\_110m
- vegetation\_density\_sd\_110m
- ns\_groundwater\_summer\_sd\_110m

Additional documentation of the selection process can be found in the focal variable selection (focal\_var\_selection.html) document.

## Overview table final predictor data sources

Here is an overview table of the final predictor data sources.

| Predictor                       | Source<br>Dataset         | Ecological Meaning                                                                                                                    |
|---------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| amplitude_mean                  | EcoDes-<br>DK15           | Quality of lidar signal reflected (proxy of biomass).                                                                                 |
| amplitude_sd                    | EcoDes-<br>DK15           | Variation in quality of lidar signal reflected within 10 m pixel (proxy of variation in biomass).                                     |
| canopy_height                   | EcoDes-<br>DK15           | Lidar estimator of canopy height (95-percentile of height distribution of all vegetation points in 10 m pixel).                       |
| canopy_height_sd_110m           | EcoDes-<br>DK15           | Variation in lidar estimator of canopy height within 110 m focal window (11 x 11 pixels).                                             |
| Clay_utm32_10m                  | Poggio et<br>al. 2021     | Estimated percentage clay content of soil (250 m resolution downscaled to 10 m).                                                      |
| dtm_10m                         | EcoDes-<br>DK15           | Terrain height above sea level.                                                                                                       |
| dtm_10m_sd_110m                 | EcoDes-<br>DK15           | Variation in terrain height above sea level within 110 m focal window (11 x 11 pixels).                                               |
| foliage_height_diversity        | EcoDes-<br>DK15           | Foliage height diversity MacArthur and MacArthur (1979) based on height bins by Wilson (1974)                                         |
| normalized_z_sd                 | EcoDes-<br>DK15           | Estimated variation in canopy height within 10 m pixel.                                                                               |
| ns_groundwater_summer_sd_110m   | Koch et<br>al. 2021       | Estimate of depth of near-surface groundwater during an average summer.                                                               |
| ns_groundwater_summer_utm32_10m | Koch et<br>al. 2021       | Variation in the estimate of depth of near-surface groundwater during an average summer within a 110 m focal window (11 x 11 pixels). |
| openness_difference             | EcoDes-<br>DK15           | Presence of linear features in the terrain (valleys, ridges etc.) based on a 50 m search radius.                                      |
| Sand_utm32_10m                  | Poggio et<br>al. 2021     | Estimated percentage sand content of soil (250 m resolution downscaled to 10 m).                                                      |
| slope                           | EcoDes-<br>DK15           | Terrain slope at 10 m                                                                                                                 |
| Soc_utm32_10m                   | Poggio et<br>al. 2021     | Estimated percentage soil organic carbon content of soil (250 m resolution downscaled to 10 m).                                       |
| solar_radiation                 | EcoDes-<br>DK15           | Annual incident solar radiation based on terrain model (aspect and slope).                                                            |
| treetype_bjer_dec               | Bjerreskov et<br>al. 2021 | Decidous or coniferous forest.                                                                                                        |
| vegetation_density              | EcoDes-<br>DK15           | Denisty of vegetation points in 10 m lidar pixel.                                                                                     |
| vegetation_density_sd_110m      | EcoDes-<br>DK15           | Variation of density of vegeation points amongst pixels within 110 m window (11 x 11 pixels).                                         |

### Assmann, Jakob J., Jesper E. Moeslund, Urs A. Treier, and Signe Normand. "EcoDes-DK15: High-resolution ecological descriptors of vegetation and terrain derived from Denmark's national airborne laser scanning data set." Earth System Science Data Discussions (2021):

References

- 1-32. -Bjerreskov, K. S., Nord-Larsen, T., and Fensholt, R.: Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data, 13, 950, https://doi.org/10.3390/rs13050950 (https://doi.org/10.3390/rs13050950), 2021. Hijmans, Robert J., Aniruddha Ghosh, and Alex Mandel. 2021. Geodata: Download Geographic Data. https://CRAN.Rproject.org/package=geodata (https://CRAN.R-project.org/package=geodata). -Koch, J., Gotfredsen, J., Schneider, R., Troldborg, L.,
- Stisen, S., and Henriksen, H. J.: High Resolution Water Table Modeling of the Shallow Groundwater Using a Knowledge-Guided Gradient Boosting Decision Tree Model, 3, 2021. MacArthur, R. H., & MacArthur, J. W. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598. https://doi.org/10.2307/1932254 (https://doi.org/10.2307/1932254)
- Poggio, Laura, Luis M De Sousa, Niels H Batjes, Gerard Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter. 2021. "SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty." Soil 7 (1): 217-40.
- Willson, M. F. (1974). Avian Community Organization and Habitat Structure. Ecology, 55(5), 1017–1029.

## DK Forest LiDAR - Focal predictor selection

Jakob J. Assmann

02/03/2022

## Content

We calculated the mean and sd in 110 m and 250 m windows for the following variables:

- dtm\_10m
- canopy\_height
- vegetation\_density
- ns\_ground\_water

Here is how those measures are correlated with their focal variables:

#### canopy\_height

|           | cell_10m | mean_110m | mean_250m | sd_110m | sd_250m |
|-----------|----------|-----------|-----------|---------|---------|
| cell_10m  | +1.00    | +0.88     | +0.80     | +0.40   | +0.56   |
| mean_110m |          | +1.00     | +0.95     | +0.30   | +0.53   |
| mean_250m |          |           | +1.00     | +0.28   | +0.42   |
| sd_110m   |          |           |           | +1.00   | +0.81   |
| sd_250m   |          |           |           |         | +1.00   |

#### dtm\_10m

|           | cell_10m | mean_110m | mean_250m | sd_110m | sd_250m |
|-----------|----------|-----------|-----------|---------|---------|
| cell_10m  | +1.00    | +1.00     | +1.00     | +0.30   | +0.32   |
| mean_110m |          | +1.00     | +1.00     | +0.30   | +0.32   |
| mean_250m |          |           | +1.00     | +0.30   | +0.33   |
| sd_110m   |          |           |           | +1.00   | +0.92   |
| sd 250m   |          |           |           |         | +1.00   |

#### ns\_groundwater\_summer\_mean\_110m

|                                 | cell_10m | ns_groundwater_summer_mean_250m | ns_groundwater_summer_sd_110m | ns_groundwater_summer_sd_250m | ns_groundwater_summer_utm32_10m |
|---------------------------------|----------|---------------------------------|-------------------------------|-------------------------------|---------------------------------|
| cell_10m                        | +1.00    | +0.97                           | +0.33                         | +0.38                         | +0.96                           |
| ns_groundwater_summer_mean_250m |          | +1.00                           | +0.36                         | +0.41                         | +0.91                           |
| ns_groundwater_summer_sd_110m   |          |                                 | +1.00                         | +0.87                         | +0.31                           |
| ns_groundwater_summer_sd_250m   |          |                                 |                               | +1.00                         | +0.35                           |
| ns groundwater summer utm32 10m |          |                                 |                               |                               | +1.00                           |

#### vegetation\_density

|           | cell_10m | mean_110m | mean_250m | sd_110m | sd_250m |
|-----------|----------|-----------|-----------|---------|---------|
| cell_10m  | +1.00    | +0.82     | +0.71     | +0.17   | +0.29   |
| mean_110m |          | +1.00     | +0.93     | -0.03   | +0.16   |
| mean_250m |          |           | +1.00     | -0.07   | -0.00   |
| sd_110m   |          |           |           | +1.00   | +0.76   |
| sd 250m   |          |           |           |         | +1 00   |

## Variation Inflation Factors

To reduce the number of features systematically, we calculate variance inflation factors (vIFs). A VIF above 5 indicates that the variable introduces multicolliniearity in the dataset. A conservative rule is to only keep variables with VIFs below 2.5.

Here we carry out a step-wise selection based on the VIFs and the correlation tables above. VIFs exceeding 5 are highlighted in red.

## 1) All variables

| Variables                       | VIF     |
|---------------------------------|---------|
| canopy_height                   | 6.66    |
| canopy height mean 110m         | 33.43   |
| canopy_height_mean_250m         | 25.65   |
| canopy_height_sd_110m           | 6.12    |
| canopy_height_sd_250m           | 8.93    |
| dtm_10m                         | 618.45  |
| dtm_10m_mean_110m               | 1688.75 |
| dtm_10m_mean_250m               | 511.75  |
| dtm_10m_sd_110m                 | 8.71    |
| dtm_10m_sd_250m                 | 8.92    |
| ns_groundwater_summer_mean_110m | 61.96   |
| ns_groundwater_summer_mean_250m | 28.76   |
| ns_groundwater_summer_sd_110m   | 5.14    |
| ns_groundwater_summer_sd_250m   | 5.27    |
| ns_groundwater_summer_utm32_10m | 19.16   |
| vegetation_density              | 4.54    |
| vegetation_density_mean_110m    | 23.77   |
| vegetation_density_mean_250m    | 19.87   |
| vegetation_density_sd_110m      | 5.33    |
| vegetation_density_sd_250m      | 6.82    |

The mean variables seem to introduce a lot of collinearity (very high VIFs, and see correlation tables above). We drop them first.

## 2) Drop mean variables

| Variables                       | VIF  |
|---------------------------------|------|
| canopy_height                   | 2.76 |
| canopy_height_sd_110m           | 5.84 |
| canopy_height_sd_250m           | 7.42 |
| dtm_10m                         | 1.26 |
| dtm_10m_sd_110m                 | 7.76 |
| dtm_10m_sd_250m                 | 7.76 |
| ns_groundwater_summer_sd_110m   | 5.09 |
| ns_groundwater_summer_sd_250m   | 5.27 |
| ns_groundwater_summer_utm32_10m | 1.38 |
| vegetation_density              | 1.72 |
| vegetation_density_sd_110m      | 4.79 |
| vegetation_density_sd_250m      | 5.06 |

The focal variables of different window sizes are highly correlated with each other. The correlation tables (above) suggest the 110 m windows are less correlated with the 10 m cell values, so we drop the 250 m windows next.

## 3) Drop 250 m variables

| Variables                       | VIF  |
|---------------------------------|------|
| canopy_height                   | 2.14 |
| canopy_height_sd_110m           | 2.54 |
| dtm_10m                         | 1.25 |
| dtm_10m_sd_110m                 | 1.77 |
| ns_groundwater_summer_sd_110m   | 1.5  |
| ns_groundwater_summer_utm32_10m | 1.39 |
| vegetation_density              | 1.7  |
| vegetation_density_sd_110m      | 2.19 |

The final set of variables includes only the 10 m cell values and the sd calculated for the 110 m windows.

## DK Forest LiDAR - Gradient Boosting Model Performance

Jakob Assmann 02/03/2022

## Training data overview

I generated a training dataset consisting of 200k pixel samples from the EcoDes- DK15 grid. 100k samples each come from one of the two forest polygon sets ("low" and "high" forest value). I then extracted the predictor data for the pixel centres for those data.

# Pixel sample for training forest\_value high low For the training I then split the data set into a training (80%) and validation partition (20%). This split was done based on two stratification. The BIOWIDE stratification and Derek's stratification. The samples were split so that they were distributed evenly in each strata (80/20).

Models trained using BIOWIDE stratification For these models the training data was split according to the BIOWIDE stratification. Variable importance

Sand utm32 10m 9.748158

dtm 10m 9.554361

I then trained GBM models on this (currently minimal hyperparameter tuning) using the training dataset. This document evaluates the

## Variable importance for this boosted regression tree model. var rel.inf

## treetype\_bjer\_dec treetype bjer dec 10.896051

performance of each stratification based on the validation dataset in both stratification.

## dtm 10m ## ns groundwater summer utm32 10m ns groundwater summer utm32 10m 6.315921

## Sand utm32 10m

## dtm 10m sd 110m dtm 10m sd 110m 6.155180 ## Clay\_utm32 10m Clay utm32 10m 5.738498 ## amplitude sd amplitude sd 5.392395 ## Soc utm32 10m Soc utm32 10m 5.087160 ## solar\_radiation solar\_radiation 4.656150 ## canopy\_height canopy\_height 4.484893 ## canopy\_height\_sd\_110m canopy\_height\_sd\_110m 4.416347 ## vegetation\_density vegetation\_density 4.257838 ## normalized\_z\_sd normalized z sd 4.075467 ## ns groundwater summer sd 110m ns\_groundwater\_summer\_sd\_110m 3.991426 ## vegetation density sd 110m vegetation\_density\_sd\_110m 3.963466 ## amplitude\_mean amplitude mean 3.932958 ## foliage height diversity foliage height diversity 3.744206 ## slope slope 2.575710 ## openness\_difference openness\_difference 1.013815 Performance in BIOWIDE regions: Performance map based on the independent validation data: Overall Performance

Oestjylland

Sjaelland Accuracy: 0.68 Sensitivity: 0.77

Region 1 Accuracy: 0.73 Sensitivity: 0.82

User Accuracy: 0.77

User Accuracy: 0.71

**Bornholm** 

Accuracy: 0.72

### Sensitivity: 0.83 User Accuracy: 0.76 Nordjlland Accuracy: 0.86

Sensitivity: 0.9

Accuracy: 0.76

Vestjylland

Accuracy: 0.86 Sensitivity: 0.68 User Accuracy: 0.81

User Accuracy: 0.86 Sensitivity: 0.86 User Accuracy: 0.71



#### Region 2 Accuracy: 0.74 Sensitivity: 0.87 User Accuracy: 0.75

Perfromance in Derek's regions:

Overall Performance

Accuracy: 0.76 Sensitivity: 0.83 User Accuracy: 0.76

Region 3

Accuracy: 0.82 Sensitivity: 0.76 User Accuracy: 0.71

Measure Accuracy

Measure

Accuracy

##

Sensitivity (True Positive Rate)

Fall-out (False Positive Rate)

## treetype\_bjer\_dec

## canopy\_height\_sd\_110m

Vestjylland

Accuracy: 0.84 Sensitivity: 0.66 User Accuracy: 0.77

## Sand utm32 10m

## solar\_radiation

## amplitude sd

## dtm\_10m

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Performance map based on the independent validation data:

0.76

Overall Region 1 Region 2 Region 3

0.74

0.82

0.73

Performance table based on the independent validation data:



Performance table based on the dependent training data:

Variable importance for this boosted regression tree model.

## Variable importance

Models trained using Derek's stratification

Overall 0.77

0.23

0.84

0.69

0.31

0.77

Broadleaf Coniferous

0.84

0.16

0.59

0.93

0.07

0.74

rel.inf

treetype bjer dec 10.294828

Sand utm32 10m 8.786217

Clay\_utm32\_10m 5.263973

solar radiation 4.578948

vegetation density 5.046986

foliage\_height\_diversity 4.823770

Soc utm32 10m 5.081004

amplitude sd 6.734123

dtm 10m 7.556530

0.75

0.25

0.87

0.53

0.47

0.77

## ns\_groundwater\_summer\_utm32\_10m ns\_groundwater\_summer\_utm32\_10m 6.621882

#### ## Clay\_utm32\_10m ## Soc utm32 10m ## vegetation\_density

## foliage\_height\_diversity

## canopy\_height canopy\_height 4.484568 ## amplitude mean amplitude mean 4.330737 dtm\_10m\_sd\_110m 4.326786 ## dtm\_10m\_sd\_110m ## vegetation\_density\_sd\_110m vegetation\_density\_sd\_110m 4.016476 normalized\_z\_sd 3.829831 ## normalized\_z\_sd ## slope slope 2.427349 ## openness\_difference openness\_difference 1.560213 Performance in BIOWIDE regions: Performance map based on the independent validation data: Overall Performance Accuracy: 0.74 Sensitivity: 0.82 User Accuracy: 0.74 Nordilland Accuracy: 0.85 **Oestjylland** Sensitivity: 0.9 Accuracy: 0.71 User Accuracy: 0.84 Sensitivity: 0.85 User Accuracy: 0.7

> Sjaelland Accuracy: 0.69 Sensitivity: 0.79

User Accuracy: 0.7

**Region 1** Accuracy: 0.71 Sensitivity: 0.82

Region 1 Region 2 Region 3

0.73

0.27

0.85

0.54

0.46

0.75

0.74

0.26

0.85

0.56

0.44

Region 1 Region 2 Region 3

0.82

0.18

0.74

0.85

0.15

0.70

0.82

0.18

0.75

0.86

0.14

0.71

0.29

0.82

0.50

0.50

0.71

0.29

0.83

0.51

0.49

0.75

Overall Broadleaf Coniferous

0.75

0.25

0.87

0.53

0.47

0.77

0.83

0.17

0.58

0.92

0.08

0.74

User Accuracy: 0.75

**Bornholm** 

0.84

0.16

0.66

0.92

0.08

0.77

0.85

0.15

0.67

0.92

0.08

0.77

canopy\_height\_sd\_110m 5.397279



## Sensitivity: 0.74 User Accuracy: 0.7

Performance table based on the independent validation data:

Performance table based on the dependent training data:

Overall 0.74

0.26

0.82

0.64

0.36

0.74

Overall 0.75

0.25

0.83

0.65

0.35

0.75

0.75

0.25

0.83

0.65

0.35

0.75

Region 3

Accuracy: 0.82

Measure

Accuracy

Measure

Accuracy

Measure

Accuracy

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Fall-out (False Positive Rate)

Error

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Fall-out (False Positive Rate)

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Fall-out (False Positive Rate)

Error

Accuracy: 0.74 Sensitivity: 0.82 User Accuracy: 0.74

Region 2 Accuracy: 0.73 Sensitivity: 0.85 User Accuracy: 0.75

Performance by forest type (boradleaf vs. coniferous) Performance table based on the independent validation data: Broadleaf Coniferous Measure Overall Accuracy 0.74 0.75 0.83 Error 0.26 0.25 0.17 Sensitivity (True Positive Rate) 0.82 0.87 Specificity (True Negative Rate) 0.92 0.64 0.53 Fall-out (False Positive Rate) 0.36 0.47 0.08 Positive predictive value (User Accuracy) 0.74 0.77 0.74 Performance table based on the dependent training data:

# DK Forest LiDAR - Random Forest Model

Performance

Jakob Assmann

02/03/2022

## Training data overview

I generated a training dataset consisting of 200k pixel samples from the EcoDes- DK15 grid. 100k samples each come from one of the two forest polygon sets ("low" and "high" forest value). I then extracted the predictor data for the pixel centres for those data.



performance of each stratification based on the validation dataset in both stratification. Models trained using BIOWIDE stratification For these models the training data was split according to the BIOWIDE stratification.

I then trained GBM models on this (currently minimal hyperparameter tuning) using the training dataset. This document evaluates the

Variable importance

### Variable importance for this random forest model, determined using the "permutation" option in ranger. Overall

100.000000 treetype\_bjer\_dec

| Sand_utm32_10m                  | 91.623261 |
|---------------------------------|-----------|
| dtm_10m                         | 68.306076 |
| dtm_10m_sd_110m                 | 61.471200 |
| ns_groundwater_summer_utm32_10m | 49.774668 |
| Clay_utm32_10m                  | 48.733725 |
| amplitude_sd                    | 31.449933 |
| slope                           | 26.574606 |
| openness_difference             | 25.213739 |
| normalized_z_sd                 | 23.334754 |
| canopy_height                   | 21.993877 |
| Soc_utm32_10m                   | 19.003812 |
| solar_radiation                 | 12.008270 |
| amplitude_mean                  | 11.700365 |
| ns_groundwater_summer_sd_110m   | 8.569490  |
| vegetation_density              | 8.510326  |
| canopy_height_sd_110m           | 4.557115  |
| vegetation_density_sd_110m      | 1.524886  |
| foliage_height_diversity        | 0.000000  |

## Nordjlland

Overall Performance

Accuracy: 0.77 Sensitivity: 0.88 User Accuracy: 0.75

Performance map based on the independent validation data:

Accuracy: 0.87 **Oestjylland** Sensitivity: 0.93

User Accuracy: 0.86



Accuracy: 0.72

Sensitivity: 0.91 User Accuracy: 0.7

0.87

0.13

0.73

0.93

0.07

0.82

88.0

0.12

0.75

#### 0.78 0.89 Accuracy 0.22 0.11

Sensitivity: 0.88 User Accuracy: 0.75

Region 3

Accuracy: 0.83 Sensitivity: 0.81

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Measure

Accuracy

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Fall-out (False Positive Rate)

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

ns\_groundwater\_summer\_utm32\_10m

Fall-out (False Positive Rate)

amplitude\_sd

dtm\_10m

slope

 $dtm\_10m\_sd\_110m$ 

Error

Error

0.89

Sensitivity (True Positive Rate)

| Specificity (True Negative Rate)          | 0.65      | 0.75          | 0.57 | 0.80 | 0.48 | 0.55 | 0.94 |
|-------------------------------------------|-----------|---------------|------|------|------|------|------|
| Fall-out (False Positive Rate)            | 0.35      | 0.25          | 0.43 | 0.20 | 0.52 | 0.45 | 0.06 |
| Positive predictive value (User Accuracy) | 0.76      | 0.88          | 0.85 | 0.86 | 0.71 | 0.70 | 0.82 |
| Performance in Derek's                    | s regi    | ons:          |      |      |      |      |      |
|                                           | O         |               |      |      |      |      |      |
| Performance map based on the indepe       | endent va | alidation dat | ia:  |      |      |      |      |
| Overall Performance                       | )         |               |      |      |      |      |      |
| Accuracy: 0.77                            |           |               |      |      |      |      |      |

0.97

0.84

0.16

0.95

0.88

0.12

0.93

Region 1 Accuracy: 0.75 Sensitivity: 0.88

User Accuracy: 0.76

0.73

0.27

0.91

0.71

0.29

0.84

## User Accuracy: 0.71

Region 2 Accuracy: 0.75 Sensitivity: 0.91 User Accuracy: 0.74

Performance table based on the independent validation data: Overall Region 1 Region 2 Region 3 Measure 0.77 0.75 0.75 0.83 Accuracy Error 0.23 0.25 0.25 0.17

0.88

0.63

0.88

0.51

Overall Broadleaf Coniferous

0.75

0.25

0.92

0.43

0.57

0.75

0.24

0.93

0.47

0.53

0.76

0.82

0.18

0.55

0.92

0.08

0.72

0.16

0.60

0.93

0.07

0.75

0.91

0.48

0.81

0.84

| Fall-out (False Positive Rate)            | 0.37     | 0.49        | 0.52     | 0.16     |
|-------------------------------------------|----------|-------------|----------|----------|
| Positive predictive value (User Accuracy) | 0.75     | 0.76        | 0.74     | 0.71     |
| Performance table based on the dep        | endent 1 | training da | ata:     |          |
| Measure                                   | Overall  | Region 1    | Region 2 | Region 3 |
| Accuracy                                  | 0.78     | 0.77        | 0.76     | 0.84     |
| Error                                     | 0.22     | 0.23        | 0.24     | 0.16     |
| Sensitivity (True Positive Rate)          | 0.89     | 0.89        | 0.91     | 0.83     |
| Specificity (True Negative Rate)          | 0.65     | 0.56        | 0.51     | 0.85     |
| Fall-out (False Positive Rate)            | 0.35     | 0.44        | 0.49     | 0.15     |
| Positive predictive value (User Accuracy) | 0.76     | 0.78        | 0.75     | 0.72     |

Performance table based on the independent validation data:

Performance table based on the dependent training data:

#### Measure Overall Broadleaf Coniferous 0.78 0.76 0.84 Accuracy

0.77

0.23

88.0

0.63

0.37

0.75

0.22

0.89

0.65

0.35

0.76

Models trained using Derek's stratification Variable importance Variable importance for this random forest model, determined using the "permutation" option in ranger. Overall treetype\_bjer\_dec 100.000000 Sand\_utm32\_10m 66.258856

#### Clay\_utm32\_10m 34.801037 amplitude\_mean 18.526821 16.996106 canopy\_height normalized\_z\_sd 16.987006 openness\_difference 15.870759

48.823849

39.285113

36.397842

34.954002

12.880257

#### Soc\_utm32\_10m 11.485003 vegetation\_density 9.652156 ns\_groundwater\_summer\_sd\_110m 9.431154 solar\_radiation 8.900619 canopy\_height\_sd\_110m 3.482463 foliage\_height\_diversity vegetation\_density\_sd\_110m

1.739641 0.000000 Performance in BIOWIDE regions: Performance map based on the independent validation data: Overall Performance Accuracy: 0.76 Sensitivity: 0.89 User Accuracy: 0.73 Nordjlland Accuracy: 0.86 **Oestjylland** Sensitivity: 0.94 Accuracy: 0.72 User Accuracy: 0.84 Sensitivity: 0.93 User Accuracy: 0.69



**Sjaelland** Accuracy: 0.7 Sensitivity: 0.86

Region 1 Accuracy: 0.73 Sensitivity: 0.89

User Accuracy: 0.74

Vestjylland

0.86

0.14

0.72

0.91

0.09

0.77

0.14

0.74

0.91

0.09

0.77

Vestjylland

### Region 3 Accuracy: 0.83 Sensitivity: 0.82 User Accuracy: 0.69

Performance map based on the independent validation data:

Overall Performance

Region 2 Accuracy: 0.74 Sensitivity: 0.92 User Accuracy: 0.73

Accuracy: 0.76 Sensitivity: 0.89 User Accuracy: 0.73



Performance by forest type (boradleaf vs. coniferous)

0.76

0.24

0.89

0.59

0.41

0.73

0.76

0.24

Overall Broadleaf Coniferous

0.74

0.26

0.93

0.37

0.63

0.73

Overall Broadleaf Coniferous

0.74

0.26

0.82

0.18

0.58

0.91

0.09

0.70

0.83

0.17

0.60

0.91

0.09

0.71

#### Sensitivity (True Positive Rate) 0.90 0.94 Specificity (True Negative Rate) 0.60 0.39 Fall-out (False Positive Rate) 0.40 0.61 Positive predictive value (User Accuracy) 0.73 0.74

Performance table based on the dependent training data:

Performance table based on the independent validation data:

Accuracy

Measure

Accuracy

Error

Sensitivity (True Positive Rate)

Specificity (True Negative Rate)

Positive predictive value (User Accuracy)

Fall-out (False Positive Rate)

Error

## DK Forest LiDAR Summary Stats for Projections

Jakob Johann Assmann

#### 02/03/2022

This document provides summary stats for the forest quality projections. Here, we concentrate on the models (gradient boosting and random forests) trained with the "BIOWIDE" stratification as these performed best overall.

#### Content:

- 1. Forest area in Denmark according to Basemap 03.
- 2. Disturbance detected in forests overall.
- 3. Gradient Boosting model summary tats.
- 4. Random Forest model summary stats.

## Forests in Denmark according to Basemap 03

The forest mask used for our projections is based on the DCE Basemap 03 sub-layer "tree cover" for 2016 (Levin 2019) (https://dce2.au.dk/pub/TR159.pdf).

The sub-layer contains five "object types": 1) tree cover, 2) forest / afforestation, 3) Christmas trees / cut greenery, 4) nursery / plantation, and 5) energy forest.

The table below shows how much area each of the classes cover in the layer (see also Table 4.3, Levin 2019):

| Code | Name                           | Area [km²] | Proportion [%] |
|------|--------------------------------|------------|----------------|
| 1    | tree cover                     | 928.3      | 13.5           |
| 2    | forest / afforestation         | 5633.9     | 81.9           |
| 3    | Christmas trees / cut greenery | 176.2      | 2.6            |
| 4    | nursery / plantation           | 46.8       | 0.7            |
| 5    | energy forest                  | 91.4       | 1.3            |
| •    | total                          | 6876.5     | 100.0          |

For our projections we only use the "forest / afforestation" layer (2).

To match the grid of the EcoDes-DK15 rasters we had to project the forest mask. For this we used a nearest neighbour algorithm. Here we simply confirm that the forest area (code 2) in the final mask "forest\_mask.tif" matches the area noted in the table above.

| Layer       | Area [km²] |
|-------------|------------|
| forest mask | 5633.89    |

## Disturbance overall

We used a disturbance layer generated by Cornelius (Senf et al 2017) (https://linkinghub.elsevier.com/retrieve/pii/S0924271617302721) to estimate the disturbance in Denmark's forests since the lidar data for EcoDes-DK15 was collected.

Please note that this disturbance mask was projected and down-sampled from a 30 m Landsat grid to the 10 m EcoDes-DK15 grid (nearest neighbour algorithm), potentially adding small uncertainties to the area estimates. Currently, we also only account for disturbances from 2016 till 2020.

Disclaimer: The current disturbance layer requires an update with the new forest masks and applying a filtering step (MMU = 2). These will likely have a noticeable effect on the final estimates of the total area disturbed.

| Name             | Area [km²] | Proportion [%] |
|------------------|------------|----------------|
| disturbed forest | 38.73      | 0.70           |
| total forest     | 5633.89    | 100.00         |

## Gradient Boosting projections summary stats

This gradient boosting model was trained based on the "BIOWIDE" stratification.

| Туре                | Area [km²] | Proportion [%] |
|---------------------|------------|----------------|
| high quality forest | 2167.79    | 38.50          |
| low quality forest  | 3871.18    | 68.70          |
| total forest        | 5633 89    | 100.00         |

### Disturbance statistics:

| Туре                              | Area [km²]          | Proportion [%]         |
|-----------------------------------|---------------------|------------------------|
| disturbed high quality forest     | 9.24                | 0.40                   |
| total high quality forest         | 2167.79             | 100.00                 |
|                                   |                     |                        |
|                                   |                     |                        |
| Туре                              | Area [km²]          | Proportion [%]         |
| Type disturbed low quality forest | Area [km²]<br>29.50 | Proportion [%]<br>0.80 |
|                                   |                     |                        |

| Туре                          | Area [km²] | Proportion [%] |
|-------------------------------|------------|----------------|
| disturbed high quality forest | 9.24       | 23.80          |
| disturbed low quality forest  | 29.50      | 76.20          |
| total disturbed forest        | 38.73      | 100.00         |

## Random Forest projections summary stats

This random forest model was trained based on the "BIOWIDE" stratification.

38.73

100.00

| Туре                | Area [km²] | Proportion [%] |
|---------------------|------------|----------------|
| high quality forest | 2332.19    | 41.40          |
| low quality forest  | 3706.78    | 65.80          |
| total forest        | 5633.89    | 100.00         |

## Disturbance statistics:

total disturbed forest

| Туре                          | Area [km²] | Proportion [%] |
|-------------------------------|------------|----------------|
| disturbed high quality forest | 9.80       | 0.40           |
| total high quality forest     | 2332.19    | 100.00         |
|                               |            |                |
| Туре                          | Area [km²] | Proportion [%] |
| disturbed low quality forest  | 28.94      | 0.80           |
| total low quality forest      | 3706.78    | 100.00         |
|                               |            |                |
| Туре                          | Area [km²] | Proportion [%] |
| disturbed high quality forest | 9.80       | 25.30          |
| disturbed low quality forest  | 28.94      | 74.70          |