Package 'AFR'

September 6, 2024

Type Package

Title Toolkit for Regression Analysis of Kazakhstan Banking Sector Data

Version 0.3.6

Copyright The Agency of the Republic of Kazakhstan for Regulation and Development of Financial Market (ARDFM)

Author Timur Abilkassymov [aut],

Shyngys Shuneyev [aut],

Alua Makhmetova [aut],

Sultan Zhaparov [aut, cre]

Maintainer Sultan Zhaparov <saldau.sultan@gmail.com>

Description

Tool is created for regression, prediction and forecast analysis of macroeconomic and credit data. The package includes functions from existing R packages adapted for banking sector of Kaza-khstan

The purpose of the package is to optimize statistical functions for easier interpretation for bank analysts and non-statisticians.

License GPL-2

Depends R (>= 3.5.0)

Imports car, forecast, zoo, regclass, olsrr, stats, lmtest, graphics,nlme, ggplot2, tseries, gridExtra, utils, rlang, xts, writexl, mFilter,nortest, goftest, cli

Suggests knitr, rmarkdown, roxygen2

SystemRequirements C++

Repository CRAN

Encoding UTF-8

VignetteBuilder knitr

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Date/Publication 2024-09-06 16:00:15 UTC

2 bg

Contents

```
4
5
Index
18
```

bg

Breusch-Godfrey test [BG test]

Description

BG test is used to test for autocorrelation in the errors of a regression model

Usage

```
bg(
  model,
  order = 1,
  order.by = NULL,
  type = c("Chisq", "F"),
  data = list(),
  fill = 0
)
```

bp 3

Arguments

model	is a (generalized)linear regression model	
order	integer. maximal order of serial correlation to be tested.	
order.by	Either a vector z or a formula with a single explanatory variable like ~ z	
type	the type of test statistic to be returned	
data	an optional data frame containing the variables in the model	
fill	starting values for the lagged residuals in the auxiliary regression. By default 0	
	but can also be set to NA.	

References

Mitchel, D. and Zeileis, A. Published 2021-11-07. Imtest package

Examples

```
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
bg(model)</pre>
```

bp

Breusch-Pagan test

Description

Breusch-Pagan test is used to test against heteroskedasticity of a time-series

Usage

```
bp(model, varformula = NULL, studentize = TRUE, data = list())
```

Arguments

model	is a (generalized)linear regression model
varformula	a formula describing only the potential explanatory variables for the variance

(no dependent variable needed). By default the same explanatory variables are

taken as in the main regression model.

studentize logical. If set to TRUE Koenker's studentized version of the test statistic will be

used.

data an optional data frame containing the variables in the model

References

Torsten, H., Zeileis, A., Farebrother, Richard W., Cummins, C., Millo, G., Mitchell, D., Imtest package Wang, B., 2014, bstats package

```
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
bp(model)</pre>
```

check_betas

checkdata

Preliminary data check for errors

Description

Preliminary check of data frame for missing values, numeric format, outliers.

Missing items: The number of missing values in each column of the dataset. Numeric format: The number of non-numeric variables in each column of the dataset. Outliers: The number of outliers in each column of the dataset.

Usage

```
checkdata(x)
```

Arguments

Х

is a data frame

Examples

```
data(macroKZ)
checkdata(macroKZ)
```

check_betas

All possible regression variable coefficients.

Description

Returns the coefficients for each variable from each model.

Usage

```
check_betas(object, ...)
```

Arguments

```
object An object of class 1m.
... Other arguments.
```

Value

check_betas returns a data.frame containing:

x model

corsel 5

References

Hebbali, Aravind. Published 2020-02-10. olsrr package

Examples

```
model <- lm(real_gdp~imp+exp+usdkzt+eurkzt, data = macroKZ)
check_betas(model)</pre>
```

corsel

Multicollinearity test

Description

multicollinearity is the occurence of high interrelations among two or more independent variables in a multiple regression.

Usage

```
corsel(x, thrs, num)
```

Arguments

x is a numeric vector or matrix

thrs threshold set to calculate correlation above

num logical

Examples

```
data(macroKZ)
corsel(macroKZ,num=FALSE,thrs=0.65)
```

dec_plot

Decomposition plot

Description

The function depicts decomposition of regressors as a stacked barplot

Usage

```
dec_plot(model, dataset, print_plot = TRUE)
```

6 difflog

Arguments

model An object of class 1m.

print_plot logical

Author(s)

The Agency of the Republic of Kazakhstan for Regulation and Development of Financial Market (AFR)

References

Hebbali, Aravind. Published 2020-02-10. olssr package

Examples

```
data(macroKZ)
model <- lm(real_gdp ~ usdkzt + eurkzt + imp+exp, data = macroKZ)
dec_plot(model, macroKZ)</pre>
```

difflog

Transforming time-series data to stationary

Description

Difference of logarithms is finding the difference between two consecutive logarithm values of a time-series

Usage

```
difflog(x, lag = 1, difference = 1)
```

Arguments

x time-series vector lag lagged period

difference difference between x items

```
data (macroKZ)
new<-pct1(macroKZ)</pre>
```

finratKZ 7

finratKZ

finratKZ dataset

Description

finratKZ dataset

Usage

finratKZ

Format

Dataset of 400 corporate borrowers, i.e. 200 standard (IFRS stage 1) and 200 default ones, characterized by 29 financial ratios.

Default Dummy variable where 0 - standard(IFRS stage 1) borrower, 1 - default borrower

Rev_gr Revenue growth rate

EBITDA_gr EBITDA growth rate

Cap_gr Capital growth rate

CR Current ratio

QR Quick ratio

Cash_ratio Cash ratio

WC_cycle Working capital cycle

DTA Debt-to-assets

DTE Debt-to-equity

LR Leverage ratio (Total assets/Total equity)

EBITDA_debt EBITDA-to-debt

IC Interest coverage (Income statement)

CTI Cash-to-income

IC_CF Interest coverage (Cash flow statement)

DCR Debt coverage ratio (Cash flow from operations/Total debt)

CFR Cash flow to revenue

CRA Cash return on assets (Cash flow from operations/Total assets)

CRE Cash return on equity (Cash flow from operations/Total equity)

ROA Return on assets

ROE Return on equity

NPM Net profit margin

GPM Gross profit margin

OPM Operating profit margin

gq

RecT Receivables turnover

InvT Inventory turnover

PayT Payables turnover

TA Total assets turnover

FA Fixed assets turnover

WC Working capital turnover

References

The Agency of the Republic of Kazakhstan for Regulation and Development of Financial Market

gq

Godfrey-Quandt test

Description

Godfrey-Quandt test is used to test against heteroskedasticity of a time-series

Usage

```
gq(
  model,
  point = 0.5,
  fraction = 0,
  alternative = c("greater", "two.sided", "less"),
  order.by = NULL,
  data = list()
)
```

Arguments

model is a (generalized)linear regression model

point numerical. If point is smaller than 1 it is interpreted as percentages of data

fraction numerical. The number of central observations to be omitted.

alternative a character string specifying the alternative hypothesis.

order.by Either a vector z or a formula with a single explanatory variable like ~ z

data an optional data frame containing the variables in the model.

References

Torsten, H., Zeileis, A., Farebrother, Richard W., Cummins, C., Millo, G., Mitchell, D., Imtest package Wang, B., 2014, bstats package

```
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
gq(model)</pre>
```

HP 9

HP

Hodrick-Prescott filter for time series data

Description

Hodrick-Prescott filter is a data smoothing technique that removes trending in time series data frame

Usage

```
HP(x, freq = NULL, type = c("lambda", "frequency"), drift = FALSE)
```

Arguments

x time-series vector

freq integer

type character, indicating the filter type

drift logical

Examples

```
data(macroKZ)
HP(macroKZ[,2])
```

macroKZ

macroKZ dataset

Description

macroKZ dataset

Usage

macroKZ

Format

A time series data frame of 57 quarterly observations of 50 macroeconomic and 10 financial parameters for 2010-2024 period.

```
real_gdp Real GDP
```

GDD_Agr_R Real gross value added Agriculture

GDD_Min_R Real gross value added Mining

GDD_Min_R Real gross value added Mining

GDD_Man_R Real gross value added Manufacture

10 macroKZ

```
GDD_Elc_R Real gross value added Electricity
GDD_Con_R Real gross value added Construction
GDD_Trd_R Real gross value added Trade
GDD_Trn_R Real gross value added Transportation
GDD_Inf_R Real gross value added Information
GDD_R Real gross value added
GDP_DEF GDP deflator
Rincpop_q Real population average monthly income
Rexppop_q Real population average monthly expenses
Rwage q Real population average monthly wage
imp Import
exp Export
cpi Inflation
realest_resed_prim Real price for estate in primary market
realest_resed_sec Real price for estate in secondary market
realest_comm Real price for commercial estate
index_stock_weighted Change in stock value for traded companies
ntrade_Agr Change in stock value for non-traded companies Agriculture
ntrade_Min Change in stock value for non-traded companies Mining
ntrade_Man Change in stock value for non-traded companies Manufacture
ntrade_Elc Change in stock value for non-traded companies Electricity
ntrade_Con Change in stock value for non-traded companies Construction
ntrade_Trd Change in stock value for non-traded companies Trade
ntrade_Trn Change in stock value for non-traded companies Transportation
ntrade_Inf Change in stock value for non-traded companies Information
fed_fund_rate Federal Funds Rate
govsec_rate_kzt_3m Return on government securities in KZT, 3 m
govsec rate kzt 1y Return on government securities in KZT, 1 year
govsec_rate_kzt_7y Return on government securities in KZT, 7 years
govsec_rate_kzt_10y Return on government securities in KZT, 10 years
```

tonia_rate TONIA

rate_kzt_mort_0y_1y
Weighted average mortgage lending rate for new loans, less than a year
rate_kzt_mort_1y_iy
Weighted average mortgage lending rate for new loans, more than a year
rate_kzt_corp_0y_1y
Weighted average mortgage lending rate for new loans to non-financial organizations in KZT, less than a year

rate_usd_corp_0y_1y Weighted average mortgage lending rate for new loans to non-financial organizations in CKB, less than a year macroKZ 11

rate_kzt_corp_1y_iy Weighted average mortgage lending rate for new loans to non-financial organizations in KZT, more than a year

rate_usd_corp_1y_iy Weighted average mortgage lending rate for new loans to non-financial organizations in CKB, more than a year

rate_kzt_indv_0y_1y Weighted average mortgage lending rate for consumer loans in KZT, less
than a year

rate_kzt_indv_1y_iy Weighted average mortgage lending rate for consumer loans in KZT, less
than a year

usdkzt USD KZT exchange rate

eurkzt EUR KZT exchange rate

rurkzt RUB KZT exchange rate

poil Price for Brent

realest_resed_prim_rus Real price for estate in primary market in Russia

realest_resed_sec_rus Real price for estate in secondary market in Russia

cred_portfolio credit portfolio

coef_liq_k4 k4 prudential coefficient

coef_k1 k1 prudential coefficient

coef_k3 k3 prudential coefficient

provisions provisions

percent_margin percent margin

com_inc commissionary income

com_exp commissionary expenses

oper_inc operational income

oth_inc other income

DR default rate

Source

Bureau of National statistics, Agency for Strategic planning and reforms of the Republic of Kazakhstan

References

The Agency of the Republic of Kazakhstan for Regulation and Development of Financial Market

12 opt_size

ols_test_normality

Test for normality Test for detecting violation of normality assumption.

Description

Test for normality Test for detecting violation of normality assumption.

Usage

```
ols_test_normality(model, ...)
```

Arguments

model an object of class 1m.
... Other arguments.

Value

ols_test_normality is a list containing the following components:

kolmogorv kolmogorov smirnov statistic

shapiro shapiro wilk statistic cramer cramer von mises statistic anderson darling statistic

Examples

```
data(macroKZ)
model <- lm(real_gdp ~ imp + exp + usdkzt + poil, data = macroKZ)
ols_test_normality(model)</pre>
```

opt_size

Necessary size of the time-series dataset

Description

Estimates number of models generated from given number of regressors X

Usage

```
opt_size(model)
```

Arguments

model

is a linear regression model a class 1m.

pct1 13

Examples

```
data(macroKZ)
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
opt_size(model)</pre>
```

pct1

Transforming time-series data to stationary

Description

Percent change is a change between two consecutive terms,

Usage

```
pct1(x)
```

Arguments

Х

time-series vector(s)

Examples

```
data (macroKZ)
new<-pct1(macroKZ)</pre>
```

pct4

Transforming time-series data to stationary

Description

Percent change is a change between a term and its lagged value for prior period,

Usage

```
pct4(x)
```

Arguments

Х

time-series vector(s)

```
data (macroKZ)
new<-pct4(macroKZ)</pre>
```

pt_one

pt_multi	Pluto-Tasche method for multi-year probability of default (PD) analysis
	sis

Description

Calculates the variation inflation factors of all predictors in regression models

Usage

```
pt_multi(pf, num_def, conf_level, num_years)
```

Arguments

pf unconditional portfolio distribution from the worst to the best credit quality

num_def number of defaults in a given rating class conf_level confidence interval of PD estimates

num_years number of periods used in the PD estimation

Examples

```
pf <- c(10,20,30,40)
num_def <- c(1,2,3,4)
conf_level = 0.99
num_years = 3
pt_multi(pf, num_def, conf_level, num_years)</pre>
```

pt_one

Pluto-Tasche method for one-year probability of default (PD) analysis

Description

Calculates probability of default according to One-period Pluto and Tasche model

Usage

```
pt_one(pf, num_def, ci = 0.9)
```

Arguments

pf unconditional portfolio distribution from the worst to the best credit quality num_def number of defaults in a given rating class

ci condifence interval of PD estimates

regsel_f

References

Surzhko, Denis. Published 2015-05-21. LDPD package. Archived on 2022-06-20.

Examples

```
pf \leftarrow c(10,20,30,40)

num\_def \leftarrow c(1,2,3,4)

pt\_one(pf, num\_def, ci= 0.9)
```

regsel_f

Regressors selection

Description

The function allows to choose regressors based on multiple criteria as AIC, RMSE etc

Usage

```
regsel_f(
  model,
  pval = 0.3,
  metric = "adjr" & "aic",
  progress = FALSE,
  details = FALSE,
  ...
)
```

Arguments

```
model is a linear regression model

pval p value; variables with p value less than pval will enter into the model

metric statistical metrics used to estimate the best model

progress Logical; if TRUE, will display variable selection progress.

Logical; if TRUE, will print the regression result at each step.

other arguments
```

References

Hebbali, Aravind. Published 2020-02-10. olssr package

```
data(macroKZ)
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
regsel_f(model)</pre>
```

reg_test

reg_plot

Regression forecast plot

Description

The function depicts forecast and actual data.

Usage

```
reg_plot(model, dataset)
```

Arguments

model

An object of class 1m.

dataset

A dataset based on which model was built.

Author(s)

The Agency of the Republic of Kazakhstan for Regulation and Development of Financial Market (AFR)

Examples

```
data(macroKZ)
model <- lm(real_gdp ~ usdkzt + eurkzt + imp + exp, data = macroKZ)
reg_plot(model, macroKZ)</pre>
```

reg_test

Test for detecting violation of Gauss-Markov assumptions.

Description

Test for detecting violation of Gauss-Markov assumptions.

Usage

```
reg_test(y)
```

Arguments

У

A numeric vector or an object of class 1m.

vif_reg

Value

reg_test returns an object of class "reg_test". An object of class "reg_test" is a list containing the following components:

bp	Breusch-Pagan statistic
bg	Breusch-Godfrey statistic
dw	Durbin-Watson statistic
gq	Godfrey-Quandt statistic

Examples

```
data(macroKZ)
model <- lm(real_gdp~ imp + exp + poil + eurkzt + usdkzt, macroKZ)
reg_test(model)</pre>
```

vif_reg

VIF by variable

Description

Calculates the variation inflation factors of all predictors in regression models

Usage

```
vif_reg(model)
```

Arguments

model

is a linear regression model

References

Petrie, Adam. Published 2020-02-21. regclass package

```
data(macroKZ)
model <- lm(real_gdp ~ imp + exp + poil + eurkzt + tonia_rate, data = macroKZ)
vif_reg(model)</pre>
```

Index

```
\ast datasets
     finratKZ, 7
     {\sf macroKZ}, 9
bg, 2
bp, 3
check_betas, 4
checkdata, 4
corsel, 5
dec_plot, 5
difflog, 6
finratKZ, 7
gq, 8
HP, 9
macroKZ, 9
\verb"ols_test_normality", 12
opt_size, 12
pct1, 13
pct4, 13
pt_multi, 14
pt_one, 14
reg_plot, 16
\textit{reg\_test}, \textcolor{red}{16}
regsel_f, 15
vif_reg, 17
```