SCycle

April 2, 2019

SCycle was written primarily by Kali L. Allison (kallison@stanford.edu), based on an initial prototype by Brittany A. Erickson. Contributions to the code were made by Maxime Rivet and Weiqiang Zhu. The numerical method was additionally developed by Kenneth Duru and Brittany A. Erickson. Details are given in papers by the authors, particularly

Allison, Kali L., E. M. Dunham (2017), Earthquake cycle simulations with rate-and-state friction nd power-law viscoelasticity, Tectonophysics, doi:10.1016/j.tecto.2017.10.021.

Erickson, Brittany A., E. M. Dunham (2014), An efficient numerical method for earthquake cycles in heterogeneous media: Alternating subbasin and surface-rupturing events on faults crossing a sedimentary basin, Journal of Geophysical Research: Solid Earth, doi:110.1002/2013JB010614.

1 Introduction

SCycle (pronounced like cycle) is a code for simulating single earthquakes and sequences of earthquakes, aka earthquake cycles. It only supports the antiplane geometry in 2D, as shown in Figure 1.

Figure 1: Diagram showing the geometry of the computational domain. Note that only the block to the right of the fault is included. The coordinate system's origin is at the upper left corner.

SCycle requires an input text file, provided as the first command line argument after the name of the executable. For example, if the code has been compiled into an executable named "main", and the input file is "in/ex1.in" then use this command to run the code from the command line on a single processor:

./source/main in/ex1.in

Or, to run using (for example) 4 processors, use:

mpirun -np 4 source/main in/ex1.in

Several example input files are provided:

- ex1.in Input file for a 1D earthquake cycle simulation with linear elastic off-fault material, using the quasidynamic approximation. The material properties are constant. This is 1D and equivalent to the spring-slider model, meaning that the fault is a single point and the domain extends in the y-direction but not the z-direction.
- **ex2.in** Input file for a 2D earthquake cycle simulation with linear elastic off-fault material, using the quasi-dynamic approximation. The material properties are constant.
- ex3.in Input file for a 2D ice stream simulation with linear elastic ice, using the quasi-dynamic approximation. The material properties are constant, and it is assumed that the material to the left of the fault is perfectly rigid.
- **ex4.in** Input file for a 2D thermomechanical earthquake cycle simulation with power-law viscoelastic off-fault material, using a fixed-point iteration method to estimate steady state conditions.
- ex5.in Input file for a 1D thermomechanical earthquake cycle simulation including flash heating, similar to ex1.

2 Input parameters

A summary of parameters accepted by the input file is provided in the tables below. The bold red parameters are required. Those which are not red and bold have default values indicated in bold face in the rightmost column.

Input parameters are formatted as:

parameterName = value # optional comment

where the use of white space is important. Each parameter must be placed on its own line, and may not have any white space or characters before its name. The separation between a parameter and its value must be <space><equals sign><space>, with no extra spaces or characters. In the examples, # is used as the default comment symbol, but in actuality any input which does not perfectly match the format will be interpreted as a comment (i.e. misspelled parameters will be ignored, any text that follows the value will be ignored), so any symbol may effectively be used as a comment symbol.

Some depth-variable fields can be inputted via a pair of vectors, one listing values and the other listing the depths for those values. The code will linearly interpolate between these points, and will extrapolate if the model domain extends beyond the last point. An example is shown in Figure 2.

A word of caution: the input parameters are NOT in base SI units.

Table 1: Input parameters to select what problem type to run:					
Input Parameter	Meaning	Allowed Values			
bulkDeformationType	constitutive law for off-fault material	linearElastic, powerLaw			
${\bf momentum Balance Type}$	how to treat inertial term in momen-	${\bf quasidy namic},$			
	tum balance equation, also whether to	quasidynamic_and_dynamic,			
	use fixed point iteration or not	dynamic, steadyStateIts			
${\it guessSteadyStateICs}$	whether or not to try to converge to	$0 = \mathbf{no}, 1 = \mathbf{yes}$			
	steady state initial conditions, based				
	on a guess for steady state shear stress				
	on the fault				

Figure 2: Example of a depth-dependent variable a, and the equivalent form for the input file.

	Table 2: Basic input parameters for every	ers for every simulation			
Input Parameter	Meaning	Allowed Values			
order	order of accuracy for spatial derivatives	2, 4			
Ny	# of points in y-direction	must be large enough to resolve physics			
Nz	# of points in z-direction	must be large enough to resolve physics			
$\mathbf{L}\mathbf{y}$	(km) domain size in y -direction	>0			
$\mathbf{L}\mathbf{z}$	(km) domain size in z -direction	>0			
sbpCompatibilityType	type of SBP operators used	compatible or fullyCompatible			
gridSpacingType	mesh properties: constant or variable	constantGridSpacing or variable-			
	grid spacing	GridSpacing			
bCoordTrans	if > 0 , then this argument tunes how	>0			
	extreme the grid space change in y is	default: -1 (no stretching)			
outputDir	full path to output	string			
		default: data/			
		example: /scratch/kallison/test_			

2.1 Time integration algorithms

Three explicit and two IMEX time integration algorithms are implemented. The simplest explicit method is forward Euler, called FEuler, which is provided for debugging purposes. The other two are adaptive Runge-Kutta methods, RK32 and RK43, where the first number in the name indicates the order of accuracy in time. Both methods select the size of the time step based on a user-specified subset of the explicitly integrated variables. The IMEX methods, RK32_WBE and RK43_WBE, use the same explicit integration scheme as the explicit methods, and additionally make an implicit integration call once per time step, in which the backward Euler method is used to integrate the implicit variables. Implicit variables may not be used to determine the magnitude of the time step. It is possible to vary the minimum and maximum permitted time step during run time by modifying the timeMoniter function.

Table 3: Time integration algorithms

Input Parameter	Meaning Table 3. Time integration at	Allowed Values
timeIntegrator	time integration algorithm	FEuler, RK43 , RK32, RK32_WBE,
······································	viiiio iiivograaioii aigoriviiiii	RK43_WBE
timeControlType	control type for time step selection	options: P, PI, PID
stride1D	number of time steps between output of	any integer
Surdorb	1D files	0 to suppress output
	1D med	default: 1
stride2D	number of time steps between output of	any integer
5011dC2D	2D files	0 to suppress output
	2D mes	default: 1
\max StepCount	maximum number of time steps to take	any integer
тахысрочт	before terminating the simulation	default: 10 ⁸
initTime	(s) initial time	default: 0
maxTime	(s) final time	default: 10^{15}
initDeltaT	(s) size of first time step	default: 10^{-3}
minDeltaT	(s) minimum allowed time step	default: 10^{-3}
maxDeltaT	(s) maximum allowed time step (can be	default: 10^{10}
maxDenar	overridden if the user provides functions	default. 10
	to compute this as the simulation runs)	
timeStepTol	tolerance for selection of time step	default: 10^{-9}
timeStep For	names of explicitly integrated variables to	no default values
timemtings	be used to control time step size	example: [psi slip]
normType	type of norm used to compute error and	L2_relative, L2_absolute
погштуре	V 1	LZ_relative, LZ_absolute
norm type	determine magnitude of next time step	

2.2 Rate-and-state friction

Rate-and-state friction is implemented as an algebraic equation relating fault strength to shear stress on the fault, which is solved for slip velocity. The regularized form is used, meaning that fault strength takes the form

$$F(\psi, V) = \sigma_N a \sinh^{-1} \left(\frac{V}{2v_0} e^{\psi/a} \right), \tag{1}$$

where ψ is the state variable and V is slip velocity. Several state evolution laws are implemented in the form

$$\dot{\psi} = G(V, \psi). \tag{2}$$

For the aging law

$$G(\psi, V) = \frac{bv_0}{d_c} \left(e^{(f_0 - \psi)/b} - \frac{V}{v_0} \right).$$
 (3)

For the slip law

$$\dot{\psi} = -V/d_c * (f - f_{ss}), \tag{4}$$

$$f_{\rm ss} = f_0 + (a - b) * \ln(V/v_0),$$
 (5)

$$f = a \sinh^{-1} \left(\frac{V}{2v_0} e^{\psi/a} \right). \tag{6}$$

(7)

For the slip law with flash heating

$$\dot{\psi} = -V/d_c * (f - f_{ss}), \tag{8}$$

$$f_{\rm ss} = \begin{cases} f_w + (f_{\rm LV} - f_w)(V_w/V), & \text{if } V \ge V_w \\ f_{\rm LV}, & \text{otherwise} \end{cases}$$
 (9)

$$f_{\rm LV} = f_0 + (a - b) * \ln(V/v_0)$$
(10)

$$f = a \sinh^{-1} \left(\frac{V}{2v_0} e^{\psi/a} \right). \tag{11}$$

$$V_w = \frac{\pi \alpha_{\rm th}}{D} \left(\frac{\rho c (T_w - T)}{\tau_c} \right)^2. \tag{12}$$

Table 4: Basic rate-and-state friction input parameters					
Input Parameter	Meaning	Allowed Values			
stateLaw	evolution law for state variable	agingLaw, slipLaw, flashHeating			
$\operatorname{rootTol}$	relative tolerance for root-finding	default: 10^{-9}			
	algorithm				
f0	steady state friction coefficient at	default: 0.6			
	v0				
v0	(m/s) reference slip velocity	default: 10^{-6}			
cohesionVals, cohesionDepths	(MPa) cohesion	optional, defaults to 0			
DcVals, DcDepths	(m) state evolution distance, also	required, no default			
	called L in the literature				
${ m aVals,\ aDepths}$	direct effect parameter	required, no default			
bVals, bDepths	state evolution effect parameter	required, no default			
${ m sNVals,\ sNDepths}$	(MPa) effective normal stress	required, no default			
sN_floor	(MPa) floor for effective nor-	optional, no default			
	mal stress (overrides sNVals,	example: 5			
	sNDepths)				
sN_cap	(MPa) ceiling for effective nor-	optional, no default			
	mal stress (overrides sNVals,	example: 50			
	sNDepths)				
lockedVals, lockedDepths	depth range of fault over which to	default: 0 everywhere			
	force the fault to: creep at the load-				
	ing rate (if value is > -0.5), hold				
	the slip velocity at zero (if value is				
	< 0.5), or allow friction to deter-				
	mine the slip velocity of the fault				
	(if value is < -0.5 and > 0.5)				

Table 5:	Add	ditional	input	parameters	used	onl	y if	flash	heating is	s used.

Input Parameter	Meaning	Allowed Values
fw	fully weakened friction coefficient	no default
TwVals, TwDepths	(K) weakening temperature	no default
tau_c	(MPa) unweakened contact strength	no default
D	(μm) asperity diameter	no default

2.3 Constituitive laws for off-fault material properties

SCycle supports two types of off-fault material: linear elastic, and power-law viscoelastic.

Table 6: Input	parameters	that ϵ	effect 1	the	behavior	of	the off	-faul	t material

	Mosping	
Input Parameter	Meaning	Allowed Values
vL	(m/s) loading velocity	default: 10^{-9}
forcingType	if iceStream, adds body forcing term to	no, iceStream
	mom. bal. eq.	
bodyForce	magnitude of body forcing term added	0
	to mom. bal. eq.	
$momBal_bcR_qd$	type of right boundary condition for	remoteLoading, freeSurface
-	the momentum balance equation	O ,
$momBal_bcT_qd$	type of top boundary condition for the	freeSurface
	momentum balance equation	
$momBal_bcL_qd$	type of left boundary condition for the	symmFault, rigidFault
1	momentum balance equation	V C C C C C C C C C C C C C C C C C C C
$momBal_bcB_qd$	type of bottom boundary condition for	freeSurface
1	the momentum balance equation	
muVals, muDepths	(GPa) shear modulus	required, no default
rhoVals, rhoDepths	(g/cm^3) density	required, no default
linSolver	algorithm used to solve the momentum	MUMPSCHOLESKY (direct
migorver	balance equation	solver using the Cholesky factorization
	balance equation	implemented by MUMPS),
		MUMPSLU (direct solver using the
		`
		LU factorization implemented by
		MUMPS),
		AMG (algebraic multigrid method
		implemented by HYPRE),
		CG (conjugate gradient method pre-
		conditioned with HYPRE's AMG
		method)
kspTol	tolerance for linear solver method, if an	default: 10^{-9}
	iterative method is selected	

Table 7: Additional input parameters for linear elastic off-fault material

Input Parameter	Meaning	Allowed Values
momBal_computeSxz	determines whether or not to compute	0 = no, 1 = yes
	stress component σ_{xz}	
$momBal_computeSdev$	determines whether or not to compute	$0 = \mathbf{no}, 1 = \mathbf{yes}$
	the deviatoric stress	

Table 8: Additional input parameters for power-law viscoelastic off-fault material

Input Parameter	Meaning	Allowed Values
AVals, ADepths	power-law parameter	required, no default
BVals, BDepths	power-law parameter equal to Q/R	required, no default
nVals, nDepths	power-law stress exponent	required, no default
$\max EffVisc$	imposed ceiling for effective viscosity	

2.4 Fixed point iteration for power-law viscoelastic simulations

SCycle includes a fixed point iteration method to find the steady-state behavior of the system.

Input Parameter	Meaning	Allowed Values
momBal_bcR_qd	type of right boundary condition for the	remoteLoading, freeSurface
	momentum balance equation	
$momBal_bcT_qd$	type of top boundary condition for the	freeSurface
	momentum balance equation	
$momBal_bcL_qd$	type of left boundary condition for the	symmFault, rigidFault
	momentum balance equation	
$momBal_bcB_qd$	type of bottom boundary condition for	freeSurface
	the momentum balance equation	
fss_T	damping parameter for steady state	0 - 1
	temperature	default: 0.1
$fss_EffVisc$	damping parameter for effective viscos-	0 - 1
	ity	default: 0.1
maxEffVisc	(GPa s) ceiling value for effective viscos-	default: 10^{30}
	ity	
gss_t	(millistrains) initial guess for viscous	default: 10^{-8}
	strain rate	
$\max SSIts_effVisc$	maximum allowed number of iterations	default: 50
	to converge to steady state effective vis-	
	cosity	
$\max SSIts_timesteps$	maximum allowed number of time steps	default: 2×10^4
	for portion of steady state iteration in-	
	volving explicit time integration	
$atolSS_effVisc$	absolute error for determining if effective	default: 10^{-3}
	viscosity has converged	

2.5 Fully dynamic cyle simulations

Scycle supports earthquake cycle simulations in which the coseismic period is fully dynamic (that is, inertia is included in the momentum balance equation during the earthquake) and the interseismic period is quasi-dynamic. A number of additional input parameters are provided to control the behavior of these two periods separately.

The switch from quasi-dynamic to fully dynamic occurs when the ratio

$$R = \max\left(\frac{\eta V}{\tau_{qs}}\right) \tag{13}$$

exceeds the threshold value trigger_qd2fd. Similarly, the switch from fully dynamic to quasi-dynamic occurs once R drops below the threshold value trigger_fd2qd. In marginally resolved simulations, R tends to oscillate over a wide range of values. To prevent the code from switching back and forth between regimes over just a few time steps as a result, two additional threshold values are provided, limit_qd and limit_fd. For example, the code will switch to the fully dynamic regime when R exceeds trigger_qd2fd, and then will not permit switching back to the quasi-dynamic regime until R has additionally exceeded limit_fd. Similarly, the code will switching to the quasi-dynamic regime once R drops below trigger_fd2qd (and it is permitted, as determined with limit_fd), and then will not permit switching back to fully dynamic until R additionally drops below limit_fd.

Table 9: Input parameters to control the transition from fully dynamic to quasi-dynamic and vice versa.

Input Parameter	Meaning	Allowed Values
trigger_qd2fd	threshold R to switch from quasi-dynamic	any float, default: 10^{-3}
	to fully dynamic	
$trigger_fd2qd$	threshold R to switch from fully dynamic	any float, default: 10^{-3}
	to quasi-dynamic	
$\operatorname{limit_qd}$	switching from quasi-dynamic to fully dy-	any float, default: $10v_L$
	namic is allowed if R has ever been $<$	
	$\operatorname{limit_qd}$	
$\operatorname{limit_fd}$	switching from fully dynamic to quasi-	any float, default: 10^{-1}
	dynamic is allowed if R has ever been $>$	
	$\operatorname{limit_fd}$	

For these simulations, the user may specify different time integration parameters for the quasi-dynamic and fully dynamic periods. During the fully dynamic period, a constant time step is used. By default, this time step will be the largest permitted by the method, as derived in Kenneth et al. (2018); alternatively, the user may specify the time step, or provide a CFL fraction. A warning will be printed if the requested time step is larger than the CFL condition.

It is also possible to specify boundary conditions for these two periods separately.

Table 10: Input parameters for time integration in fully cycle simulations.

Input Parameter	Meaning	Allowed Values
deltaT	(s) size of time step for fully dynamic pe-	any float, default: largest time step that
	riod	meets the CFL condition
CFL	time step is computed as CFL * (max al-	any float, ignored if deltaT is also speci-
	lowed time step)	fied
$stride2D_qd$	number of time steps between output of	any integer
	2D files during quasi-dynamic periods	0 to suppress output
		default: 1
$stride1D_fd$	number of time steps between output of	any integer
	1D files during fully dynamic periods	0 to suppress output
		default: 1
$stride2D_{-}fd$	number of time steps between output of	any integer
	2D files during fully dynamic periods	0 to suppress output
	- · · · · · -	default: 1

Table 11: Input parameters for boundary conditions in fully cycle simulations.

Input Parameter	Meaning	Allowed Values
momBal_bcR_qd	type of right boundary condition for the	remoteLoading, freeSurface
	momentum balance equation	
$momBal_bcT_qd$	type of top boundary condition for the	freeSurface
	momentum balance equation	
$momBal_bcL_qd$	type of left boundary condition for the	symmFault, rigidFault
	momentum balance equation	
$momBal_bcB_qd$	type of bottom boundary condition for	freeSurface
	the momentum balance equation	
$momBal_bcR_fd$	type of right boundary condition for the	outgoingCharacteristics, freeSurface
	momentum balance equation	
$momBal_bcT_fd$	type of top boundary condition for the	freeSurface, outgoingCharacteristics
	momentum balance equation	
$momBal_bcL_fd$	type of left boundary condition for the	symmFault, rigidFault, outgoingChar-
	momentum balance equation	acteristics
$momBal_bcB_fd$	type of bottom boundary condition for	outgoingCharacteristics, freeSurface
	the momentum balance equation	

2.6 Heat Equation

It is possible to additionally solve the heat equation with the any combination of the following source terms: frictional shear heating, viscous shear heating, and radioactive heat generation.

Input Parameter	Meaning	Allowed Values
thermalCoupling	whether or not to simulate the heat equation, and to allow temperature changes to feed back into the other governing equations	coupled, uncoupled, no
${\bf heat Equation Type}$	what form of the heat equation to solve, steady state or including time dependence	transient, steadyState
with Visc Shear Heating	whether or not to include viscous shear heating	yes, no
with Radio Heat Generation	whether or not to include radioactive heat generation	yes, no
linSolver_heateq	linear solver algorithm for the heat equation	MUMPSCHOLESKY (direct solver using the Cholesky factorization implemented by MUMPS), MUMPSLU (direct solver using the LU factorization implemented by MUMPS), AMG (algebraic multigrid method implemented by HYPRE), CG (conjugate gradient method preconditioned with HYPRE's AMG method)
kspTol_heateq	tolerance for linear solver method, if an iterative method is selected	default: 10^{-9}
${\bf rhoVals, rhoDepths}$	(g/cm^3) density	required, no default
kVals, kDepths	(GW/m/K) conductivity	required, no default
TVals, TDepths	(K) temperature at the top and bottom of the domain (note: only used to set boundary conditions)	required, no default
he_A0Vals, he_A0Depths	$(\mu \text{ W/m}^3)$ radioactive heat generation parameter	required, no default
he_LVals, he_LDepths	(km) radioactive heat generation length scale	required, no default
wVals, wDepths	(m) frictional shear zone width	default: 0