# **Cloudy Tutorial Report**

Ridha Fathima Mohideen Malik

Instructor:Dragana Ilic

Department of Astronomy, University of Belgrade

Cloudy is an open source code that simulates different astrophysical conditions and synthesises the spectra of a cloud in such conditions<sup>a</sup>. In this report, we see the results obtained from Cloudy simulations of a planetary nebula (PNe) and a broad line region (BLR) cloud.

## I. PLANETARY NEBULA

A planetary nebula (PNe) is formed at the dying stages of Sun-like stars as they lose their outer envelopes, leaving behind a central white dwarf. In this simulation, we model the irradiating source, the white dwarf, as a blackbody of temperature  $10^5$  K and luminosity  $10^{38}$  erg (Eddington limit for one solar mass). The nebula is modelled as a sphere. The inner radius is set at  $10^{18}$  cm and with hydrogen density  $10^5$  cm<sup>-3</sup>. This is input to Cloudy as below:

blackbody, T=1e5 K
luminosity total 38
radius 18
hden 5
sphere
abundances primordial #for no abundances i.e. default solar abundances
iterate
save overview "pn.ovr" last
save continuum "pn.con" units microns last

### A. Spectra

In the later stages of a Sun-like star, as the envelope swells, the composition of it changes due to dust formation. We can clearly observe this with the presence of a blackbody bump between 10 and 100 microns in the planetary abundance spectrum and not in the solar abundance spectrum (Fig: 1a & 1c). The spectrum for an interstellar medium (ISM) abundance (Fig: 1b) is similar to the PNe abundance, which is expected as they are composed of matter from dying stars like these. Were the star massive and ended as a nova, there would be no dust but strong emission lines (Fig 1d - modeling it to be irradiated by a white dwarf). For primordial composition, we see comparatively weak emission lines. But it is unlikely, Sun-like stars could be formed with such a composition as metals are important in the cooling process that leads to formation of intermediate mass stars. Hence, we expect primordial stars to be massive and have nova type explosions.

## B. Gas Temperature

We observe an increase in gas temperature with decrease in metallicity (Fig: 2). This is expected as metals are important in the cooling process of clouds. At  $10^{14}$  cm, the temperature steadily declines, as we move away from the central source. The simulation is carried on until gas kinetic temperature falls to  $4 \times 10^3$  K. It is noted that for primordial abundance, which has negligible metallicity, the gas temperature maintains a plateau at  $7 \times 10^3$  K and the simulation is carried out until the radius  $10^{18}$  cm.

a https://gitlab.nublado.org/cloudy/cloudy



FIG. 1: Spectra of a PNe for different abundances in the infrared and optical region



FIG. 2: Temperature profile for different abundances

#### II. BROAD LINE REGION

In the model of active galactic nuclei (AGN), the central supermassive black hole is surrounded by a torus and clouds (Fig: 3). In this simulation, we see the spectrum of a cloud in the broad line region (BLR) which is closer to the central supermassive black hole. In Cloudy, we provide the following input:

```
table power law
phi(H) 18.5
hden 10
stop column density 22
iterate to convergence
print last iteration
save overview "blr.ovr" last
save continuum "blr.con" units microns last
```

We model the radiation source as a central active nuclei giving a power law continuum and the flux of H ionising photons is  $10^{18.5}$  cm<sup>-2</sup>s<sup>-1</sup>. Since the cloud is comparatively small and does not surround the central nuclei like a PNe, we do not use the 'sphere' command.

By simulating for different hydrogen densities (Fig: 4), we see that the emission lines vary and intensity of lines do not increase with H density in all cases. While  $10^8$  cm<sup>-3</sup> is the lower limit for BLR, the appearance of recombination continuum occurs only for a density of  $10^{10}$  cm<sup>-3</sup>.



FIG. 3: AGN unification model. Credits: Urry and Padovani (1995)



FIG. 4: Spectra of a BLR cloud for different H densities in the infrared region