Energy Equivalents

Relevant unit						
	J	kg	m^{-1}	Hz		
1 J	(1 J) = 1 J	$(1 \text{ J})/c^2 =$ 1.112 650 056 × 10 ⁻¹⁷ kg	$(1 \text{ J})/hc = 5.034 117 01(22) \times 10^{24} \text{m}^{-1}$	$(1 \text{ J})/h = 1.509 190 311(67) \times 10^{33} \text{ Hz}$		
1 kg	$(1 \text{ kg})c^2 = 8.987551787 \times 10^{16} \text{ J}$	$\begin{array}{l} (1 \text{ kg}) = \\ 1 \text{ kg} \end{array}$	$\begin{array}{l} (1~{\rm kg})c/h = \\ 4.52443873(20)\times 10^{41}~{\rm m}^{-1} \end{array}$	$\begin{array}{l} (1~{\rm kg})c^2/h = \\ 1.356392608(60)\times 10^{50}~{\rm Hz} \end{array}$		
1 m ⁻¹	$(1 \text{ m}^{-1})hc = 1.986445684(88) \times 10^{-25} \text{ J}$	$\begin{array}{l} (1~{\rm m}^{-1})h/c = \\ 2.210~218~902(98)\times 10^{-42}~{\rm kg} \end{array}$	$(1 \text{ m}^{-1}) = 1 \text{ m}^{-1}$	$(1 \text{ m}^{-1})c = 299792458 \text{ Hz}$		
1 Hz	$(1 \text{ Hz})h = 6.62606957(29) \times 10^{-34} \text{ J}$	$\begin{array}{l} (1~{\rm Hz})h/c^2 = \\ 7.37249668(33)\times 10^{-51}~{\rm kg} \end{array}$	$(1 \text{ Hz})/c = 3.335 640 951 \dots \times 10^{-9} \text{ m}^{-1}$	(1 Hz) = 1 Hz		
1 K	$(1 \text{ K})k = 1.380 6488(13) \times 10^{-23} \text{ J}$	$\begin{array}{l} (1~{\rm K})k/c^2 = \\ 1.5361790(14)\times 10^{-40}~{\rm kg} \end{array}$	$(1 \text{ K})k/hc = 69.503476(63) \text{ m}^{-1}$	(1 K)k/h = 2.083 6618(19) × 10 ¹⁰ Hz		
1 eV	$(1 \text{ eV}) = 1.602176565(35) \times 10^{-19} \text{ J}$	$\begin{array}{l} (1\mathrm{eV})/c^2 = \\ 1.782661845(39) \times 10^{-36}\ \mathrm{kg} \end{array}$	$\begin{array}{l} (1~{\rm eV})/hc = \\ 8.06554429(18)\times 10^5~{\rm m}^{-1} \end{array}$	$\begin{array}{l} (1~{\rm eV})/h = \\ 2.417989348(53)\times 10^{14}~{\rm Hz} \end{array}$		
1 u	$(1 \text{ u})c^2 = 1.492417954(66) \times 10^{-10} \text{ J}$	$(1 \text{ u}) =$ $1.660538921(73) \times 10^{-27} \text{ kg}$	$(1 \text{ u})c/h = 7.5130066042(53) \times 10^{14} \text{ m}^{-1}$	$(1 \text{ u})c^2/h =$ 2.252 342 7168(16) × 10 ²³ Hz		
$1 E_{ m h}$	$(1 E_{\rm h}) = 4.35974434(19) \times 10^{-18} {\rm J}$	$(1 E_{\rm h})/c^2 = 4.850 869 79(21) \times 10^{-35} {\rm kg}$	$(1 E_{\rm h})/hc = 2.194746313708(11) \times 10^7 {\rm m}^{-1}$	$(1 E_{\rm h})/h = 6.579 683 920 729 (33) \times 10^{15} {\rm Hz}$		

The values of some energy equivalents derived from the relations $E = mc^2 = hc/\lambda = h\nu = kT$, and based on the 2010 CODATA adjustment of the values of the constants; 1 eV = (e/C) J, 1 u = $m_{\rm u} = \frac{1}{12} m(^{12}C) = 10^{-3}$ kg mol $^{-1}/N_{\rm A}$, and $E_{\rm h} = 2R_{\infty}hc = \alpha^2 m_{\rm e}c^2$ is the Hartree energy (hartree).

Energy Equivalents

Relevant unit						
	K	eV	u	$E_{ m h}$		
1 J	$(1 \text{ J})/k = 7.242 9716(66) \times 10^{22} \text{ K}$	$(1 \text{ J}) =$ $6.24150934(14) \times 10^{18} \text{ eV}$	$(1 \text{ J})/c^2 =$ $6.70053585(30) \times 10^9 \text{ u}$	$(1 \text{ J}) =$ $2.29371248(10) \times 10^{17} E_{\text{h}}$		
1 kg	$(1 \text{ kg})c^2/k = 6.509 6582(59) \times 10^{39} \text{ K}$	$(1 \text{ kg})c^2 = 5.60958885(12) \times 10^{35} \text{ eV}$	$(1 \text{ kg}) =$ $6.02214129(27) \times 10^{26} \text{ u}$	$\begin{array}{l} (1~{\rm kg})c^2 = \\ 2.061~485~968(91)\times 10^{34}~E_{\rm h} \end{array}$		
$1 \; {\rm m}^{-1}$		$(1 \text{ m}^{-1})hc = 1.239841930(27) \times 10^{-6} \text{ eV}$	$\begin{array}{l} (1~{\rm m}^{-1})h/c = \\ 1.33102505120(94)\times 10^{-15}~{\rm u} \end{array}$	$\begin{array}{l} (1~{\rm m}^{-1})hc = \\ 4.556335252755(23)\times 10^{-8}~E_{\rm h} \end{array}$		
1 Hz		$(1 \text{ Hz})h = 4.135667516(91) \times 10^{-15} \text{ eV}$	$(1 \text{ Hz})h/c^2 =$ $4.4398216689(31) \times 10^{-24} \text{ u}$	$(1 \text{ Hz})h = 1.5198298460045(76) \times 10^{-16} E_{\text{h}}$		
1 K	(1 K) = 1 K	$(1 \text{ K})k = 8.6173324(78) \times 10^{-5} \text{ eV}$	$(1 \text{ K})k/c^2 =$ 9.251 0868(84) × 10 ⁻¹⁴ u	$(1 \text{ K})k = 3.1668114(29) \times 10^{-6} E_{\text{h}}$		
1 eV	$(1 \text{ eV})/k = 1.160 4519(11) \times 10^4 \text{ K}$	(1 eV) = 1 eV	$(1 \text{ eV})/c^2 = 1.073544150(24) \times 10^{-9} \text{ u}$	$(1 \text{ eV}) = 3.674932379(81) \times 10^{-2} E_{\text{h}}$		
1 u		$(1 \text{ u})c^2 =$ 931.494061(21) × 10 ⁶ eV	(1 u) = 1 u	$(1 \text{ u})c^2 =$ 3.423 177 6845(24) × 10 ⁷ E_h		
1 E _h	$(1 E_{\rm h})/k = 3.1577504(29) \times 10^5 \text{ K}$		$(1 E_{\rm h})/c^2 =$ 2.921 262 3246(21) × 10 ⁻⁸ u	$(1 E_{\rm h}) = 1 E_{\rm h}$		

The values of some energy equivalents derived from the relations $E=mc^2=hc/\lambda=h\nu=kT$, and based on the 2010 CODATA adjustment of the values of the constants; 1 eV = (e/C) J, 1 u = $m_{\rm u}=\frac{1}{12}m(^{12}C)=10^{-3}$ kg mol $^{-1}/N_{\rm A}$, and $E_{\rm h}=2R_{\infty}hc=\alpha^2m_{\rm e}c^2$ is the Hartree energy (hartree).