МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

3BIT

до лабораторної роботи №7: «ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З ПОЗИТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ»

Вакал Є. А.

Реферат

Звіт до ЛР №7: 13с., 11 рис.

Об'єкт дослідження — операційний підсилювач (інтегральна мікросхема) та способи підсилення електричних сигналів і моделювання математичних операцій (наприклад, інтегрування сигналу) за допомогою універсального підсилювача електричних сигналів на основі того ж операційного підсилювача.

Мета роботи: ознайомитися з властивостями схем на операційних підсилювачах (ОП), охоплених позитивним зворотним зв'язком, опанувати способи генерації електричних сигналів за допомогою схем з ОП.

Метод вимірювання — це метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

3MICT

Частина 1.	
Теоретичні відомості. І. Основні означення	c. 4
Практична частина.	
I. Тригер Шміта	6
II. Генератор прямокутних імпульсів (мультивібратор)	
III. Генератор гармонічних коливань	
Частина 3.	
І. Висновки	
II. Джерела	13

Теоретичні відомості

І. Основні означення

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу, то зворотний зв'язок називають негативним (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу, то такий зворотний зв'язок називають позитивним (П33).

Компаратор — це електронний пристрій порівняння двох аналогових сигналів: $U_{\text{вх}1}$ та $U_{\text{вх}2}$. При цьому на виході схеми формуються тільки два значення вихідного сигналу: а) напруга на виході максимальна ($U_{\text{вих}} = U_{\text{max}}$), якщо різниця напруг між вхідними сигналами є додатньою ($U_{\text{вх}1} - U_{\text{вх}2}$) > 0; б) напруга на виході мінімальна ($U_{\text{вих}} = U_{\text{min}}$), якщо різниця напруг між вхідними сигналами є від'ємною ($U_{\text{вх}1} - U_{\text{вх}2}$) < 0.

Передавальна характеристика компаратора — залежність вихідної напруги компаратора від напруги на його вході.

Рівень включення (виключення) компаратора — значення напруги на вході компаратора Uвх = Uвкл, при якій вихідна напруга Uвих змінює своє значення від мінімального Umin до максимального Umax (при включенні); при виключенні Uвх = Uвикл і вихідна напруга змінюється від Umax до Umin.

Гістерезисний компаратор (тригер Шміта) — це електронний пристрій порівняння, у якого передавальна характеристика є неоднозначною, тобто рівні включення і виключення не збігаються (на відміну від звичайного компаратора), а відрізняються на величину, яку називають гістерезисом переключення.

Генератори – це електронні пристрої, які формують на виході змінну напругу потрібної форми. На відміну від підсилювачів, у таких пристроїв немає входу. Їх вихідний сигнал з'являється у відповідь на підключення до них джерела живлення. Форма генерованої напруги може бути різноманітною: гармонічною, прямокутною, пилкоподібною або будь-якою іншою.

Практична частина

І. Тригер Шміта

Рис. 1. Схема установки

Спочатку виставимо амплітуду вхідної гармонічної напруги більшою (5Vp) за рівень включення (виключення) тригера:

Рис.2. Параметри джерела

Рис. 3. Дані з осцилографа

Рис. 4. Петля гістерезису

Тепер виставимо амплітуду вхідної гармонічної напруги меншою (0,5Vp) за рівень включення (виключення) тригера:

Рис.5. Параметри джерела

Рис. 6. Дані з осцилографа

Рис. 7. Що спостерігаємо замість петлі гістерезису

Як бачимо, Петля гістерезису буде спостерігатися за умови, що амплітуда вхідної гармонічної напруги буде більшою за рівень включення (виключення) тригера.

II. Генератор прямокутних імпульсів (мультивібратор)

Рис. 8. Схема установки

Рис. 9. Дані з осцилографа

III. Генератор гармонічних коливань

Рис. 10. Схема установки

Рис. 11. Дані з осцилографа

Висновки

У даній лабораторній роботі я ознайомився з властивостями операційних підсилювачів (ОП), опанував способи підсилення електричних сигналів схемами з ОП, охоплених позитивним зворотним зв'язком, та способи виконання математичних операцій за допомогою схем з ОП. У цій роботі я побудував схеми та відповідні їм осцилограми вхідних та вихідних сигналів, петлю Гістерезису для тригера Шміта, а також відповідні осцилограми для генератора прямокутних імпульсів (мультивібратора) і генератора гармонічних коливань, що і відображено на рисунках вище у практичній частині даної лабораторної роботи. За ними я порівняв відмінності у роботі кожного з цих ОП, спричинені змінами у побудові їх принципових схем.

Джерела

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с. 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян
- 2. Мягченко Ю.О., Дулич Ю.М., Хачатрян А.В. «Вивчення радіоелектронних схем методом комп'ютерного моделювання»: Методичне видання. К.: 2006.- 40 с. ISBN 966-594-501-7