RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year

Branch- Common to All Disciplines

BT201	Engineering Physics	2L-1T-2P	4 Credits	
-------	----------------------------	----------	-----------	--

Course Contents:

Module 1: Wave nature of particles and the Schrodinger equation (8 lectures)

Introduction to Quantum mechanics, Wave nature of Particles, operators ,Time-dependent and time-independent Schrodinger equation for wavefunction, Application: Particle in a One dimensional Box, Born interpretation, Free-particle wavefunction and wave-packets, v_g and v_p relation Uncertainty principle.

Module 2: Wave optics (8 lectures)

Huygens' principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer, Mach-Zehnder interferometer.

Farunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision; Diffraction gratings and their resolving power.

Module 3: Introduction to solids (8 lectures)

Free electron theory of metals, Fermi level of Intrinsic and extrinsic, density of states, Bloch's theorem for particles in a periodic potential, Kronig-Penney model(no derivation) and origin of energy bands. V-I characteristics of PN junction, Zener diode, Solar Cell, Hall Effec.

Module 4: Lasers (8 lectures)

Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO₂), solid-state lasers(ruby, Neodymium), Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine. Introduction to Optical fiber, acceptance angle and cone, Numerical aperture, V number, attenuation.

Module 5: Electrostatics in vacuum (8 lectures)

Calculation of electric field and electrostatic potential for a charge distribution; Electric displacement, Basic Introduction to Dielectrics, Gradient, Divergence and curl, Stokes' theorem, Gauss Theorem, Continuity equation for current densities; Maxwell's equation in vacuum and non-conducting medium; Poynting vector.

List of Experiment

- 1. To determine the dispersive power of prism.
- 2. To determine the A of sodium light with the help of newton's Ring.
- 3. Resolving Power of Telescope.
- 4. YDSE (Young's double slit Experiment).
- 5. To determine the frequency of AC mains supply.
- 6. V-I Characteristics of P-N junction diode.
- 7. To determine the λ of diode loses by single slit diffraction.
- 8. To determine the plank's constant with the help of photocell.
- 9. Hall's effect experiment.
- 10. Calibration of ammeter by using reference zener diode.

- 11. To study the effect of temperature on reverse saturation current in P-N junction diode and to determine the energy band gap.
- 12. To determine the λ of sodium by using plane diffraction grating.
- 13. To determine the prominent lines of mercury source by plane diffraction grating.
- 14. To determine the numerical aperture of an optical fiber.
- 15. To determine λ of given laser by plane diffraction grating.

Suggested Reference Books

- 1. A. Ghatak, Optics.
- 2. O. Svelto, Principles of Lasers.
- 3. David Griffiths, Introduction to Electrodynamics.
- 4. D.J. Griffiths, Quantum Mechanics.
- 5. Halliday & Resnick, Physics.