Выпускная квалификационная работа бакалавра на тему:

Оптимизация планирования грузоперевозок в транспортной системе с использованием метода потенциалов

Студент: Иванов Всеволод Алексеевич, группа ИУ7-82Б

Научный руководитель: доцент кафедры ИУ-7 Барышникова Марина Юрьевна

Цель и задачи работы

Цель данной работы: разработка метода оптимизации планирования грузоперевозок в транспортной системе.

Выделены следующие задачи:

- провести анализ предметной области, сформулировать критерии оценки оптимальности решений;
- формализовать постановку задачи с использованием математической модели;
- изучить существующие методы решения транспортных задач для использования при разработке метода;
- разработать и реализовать метод;
- провести экспериментальную проверку работы реализованного метода.

Актуальность проблемы

- Торговые розничные сети занимают всё большую долю в общем объёме торговли.
- Эффективность их деятельности зависит от грамотности управления цепочками поставок (**SCM** Supply Chain Management).
- **SCM** (supply chain management) комплекс подходов, помогающий эффективной интеграции частей цепочки поставок.
- **TMS** (transport management system) система управления транспортом.

Сравнение существующих программных решений

ТМS Характеристика	ОТМ	SAP	1C		
Прогнозирование	Да	Да	Нет		
Планирование заказов	Да	Частично	Частично		
Распределение перевозок между исполнителями за период	Да	Да	Нет		
Стоимость	Высокая	Средняя	Средняя		

Математическая постановка задачи

Представление транспортной системы:

неориентированный связанный взвешенный граф G = (P, d).

- Вершины пункты маршрута P (стоянка, склады, потребители)
- Рёбра дороги, вес расстояние d (в км)

Задача: поиск множества маршрутов, для которого выполняется следующее:

- соблюдаются ограничения модели;
- минимальная протяжённость маршрутов (критерий оптимизации L(R))

$$L(R) = \sum_{i=1}^{N_R} \sum_{j=1}^{N_{RP_i}-1} d_{RP_i[j]RP_i[j+1]} o \min$$

где R – маршруты, RP – пункты маршрута.

Математическая постановка задачи

Ограничения системы

- маршруты начинаются и заканчиваются на стоянке;
- каждый маршрут выполняет только одну погрузку на складе;
- ограниченность вместимости транспорта;
- обязательность выполнения заказов с учётом ограниченности складов;

$$RP_k[1] = RP_k[N_{RP_k}]$$

$$\exists ! i : v_{RP_k[i]RP_k[i+1]k} > v_{RP_k[i-1]RP_k[i]k}$$

$$\sum_{l=1}^{N_{Prod}} v_{ijkl} \cdot Vol \leq c$$

$$O_{il} + \sum_{j=1}^{N_P} \sum_{k=1}^{N_t} (v_{jikl} - v_{ijkl}) \geq 0$$

Метод оптимизации плана

Оптимизация плана

Стоянка 0.0

1.0

1.0

Составление расписания

	9:00	5	9:15	Ś	9:30	7	9:45	10:	00	10):15	10:30
Маршрут 1		C	Склад	1		N	1агази	н 1				
Маршрут 2		Склад 1			i	Магаз	ин 2	2				
Маршрут 3		(Склад	2		[Магазі	ин 1	-			
Маршрут 4		(Склад	2	-	Ŧ	Магаз	ин 2	2 [

Структура программы

Примеры результатов работы программы

Результаты экспериментальной проверки работы метода

Заключение

Достигнута поставленная цель: разработан метод оптимизации планирования грузоперевозок в транспортной системе.

Решены следующие задачи:

- проведён анализ предметной области;
- с использованием математической модели формализована постановка задачи, определён критерий оценки оптимальности решений;
- при разработке метода использованы существующие методы решения транспортных задач;
- разработан и реализован метод;
- проведена экспериментальная проверка работы реализованного метода.