Natural Language Processing

Nuri Cingillioglu https://www.doc.ic.ac.uk/~nuric/

Many thanks to Lucia Specia

Constituency parsing

Definition

 Given a sequence of words (usually a sentence), generate its syntactic structure

https://lee6boy.files.wordpress.com/2013/06/parsing-dependency-parsing-graph-based-parsingec9db4-ebad94eab080-002.png

Applications

- Grammar checking
- Semantic analysis
 - Question answering
 - Named entity recognition
- Parsing (e.g. chatbot commands like turn on the living room lights)
- As features for downstream task

Neuro-symbolic reasoning

Y:office \leftarrow Where is the X:apple?

Z:Mary picked up the X:apple.,

Z:Mary went to the Y:office.

- 1. John is in the playground.
- 2. John picked up the football.
- 3. Bob went to the kitchen.
- q. Where is the football?
- a. playground

Challenges

- Harder than POS tagging:
 - One label per group of words (any length in principle)
 - Structural plus POS ambiguity:

Minister accused of having 8 wives in jail (PP attachment)
Ban on Nude Dancing on Governor's Desk
Juvenile Court to Try Shooting Defendant
Stolen Painting Found by Tree
Fed raises interest rates 0.5% in effort to control inflation
Beautiful dogs and children (coordination)

Challenges

Given a grammar and a lexicon

Grammar	Lexicon
$S \rightarrow NP VP$	$Det \rightarrow that \mid this \mid the \mid a$
$S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \rightarrow VP$	Verb ightarrow book include prefer
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$Proper-Noun ightarrow Houston \mid NWA$
$NP \rightarrow Det Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition \rightarrow from \mid to \mid on \mid near \mid through$
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
VP o VP PP	
PP → Preposition NP	

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

... and a new sentence, e.g.

The flight includes a meal

Goal: Generate the structure for the sentence

Constituency parsing

- Based on the idea of phrase structure
 - Words are grouped into constituents
- A constituent is a sequence of words that behaves as a unit, generally a phrase
 - There are tests for that, e.g. distribution: can I move phrases around?
 - John talked [to the children] [about drugs].
 - John talked [about drugs] [to the children].

Classical parsing - more formally

Phrase structure grammar is a context-free grammar

G = (**T**, **N**, **S**, **R**), where:

- T is set of terminals
- N is set of nonterminals
- S is the start symbol (non-terminal)
- \bullet R is set of rules X $\rightarrow \gamma$, where X is a nonterminal and γ is a sequence of terminals & nonterminals

A grammar G generates a language L, or L is recognised by G.

- To do this automatically
 - Use proof systems to prove parse trees from words
 - Search problem: all possible parse trees for string
 - Bottom-up
 - Words to grammar
 - Top-down
 - Grammar to words

The CKY algorithm

- Tests for possibilities to split the current sequence into two smaller sequences
- Grammar needs to be in Chomsky Normal Form (CNF)
 - \circ Rules are of the form $X \rightarrow Y Z$ or $X \rightarrow W$
 - Deterministic process to convert any CFG into CNF

$$VP \rightarrow V NP PP$$

$$VP \rightarrow V NEW$$

$$NEW \rightarrow NP PP$$

$$INF-VP \rightarrow to VP$$

$$INF-VP \rightarrow to VP$$

$$TO \rightarrow to$$

The CKY algorithm

- Binarisation makes CKY very efficient
 - O(n³|G|): n is the length of the parsed string; |G| is the size of the CNF grammar G
 - Otherwise it would be exponential

 Dynamic programming algorithm to efficiently generate all possible parse trees bottom-up

The CKY algorithm

- Use a two-dimensional matrix n×n, where n is length of sentence, to encode the possible parses
- Use the upper-triangular portion of the matrix
- Each cell [i, j] in matrix contains the set of non-terminals that represent all the constituents that span positions i-j of the input
- The cell that represents the entire input resides in position [0,n] of the matrix (row x column)

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
N	→ fish
N	→ fork
Det	→ a

She	eats	а	fish	with	а	fork

Adapted from:

https://upload.wikimedia.org/wikipedia/commons/f/f5/CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif

```
S \rightarrow NP VP
VP → VP PP
VP \rightarrow V NP
VP → eats
PP \rightarrow P NP
NP \rightarrow Det N
NP \rightarrow she
    → eats
P \rightarrow with
N \rightarrow fish
  → fork
Det → a
```

She	eats	а	fish	with	а	fork
NP						
	V, VP					
		Det				
			Z			
				Р		
					Det	
						N

_	
S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP						
		V, VP					
			Det				
Are there rules of the type $? \rightarrow NP V$ or				N			
					Р		
? → 1	NP VP					Det	
							N

S	\rightarrow NP VP
VP	→ VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det				
Are there rules of the type $? \rightarrow NP V$ or $? \rightarrow NP VP$				N			
					Р		
						Det	
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det				
Are there rules of the type ? → V Det or ? → VP Det				N			
					Р		
						Det	
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det				
Are there rules of the type ? → V Det or				N			
					Р		
? → \	/P Det					Det	
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
P	→ with
N	→ fish
N	\rightarrow fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
Are there rules of the type $? \rightarrow Det \ N$			Det				
				N			
					Р		
						Det	
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
P	→ with
N	→ fish
N	\rightarrow fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
Are there rules of the type $? \rightarrow Det \ N$			Det	NP			
				N			
					Р		
						Det	
							N

S	→ NP VP
VP	→ VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
N	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det	NP			
Keep going for each 2 words				N			
					Р		
						Det	NP
						1	N

 $S \rightarrow NP VP$ $VP \rightarrow VP PP$

VP → V NP

VP → eats

 $PP \rightarrow P NP$

 $NP \rightarrow Det N$

 $NP \rightarrow she$

V → eats

 $P \rightarrow with$

N → fish

 $N \rightarrow fork$

Det → a

She	eats	а	fish	with	а	fork
NP	S					
	V, VP					
		Det	NP			
ences of 3 words, but			N			

Р

Sequences of 3 words, but our grammar is binary. So check for rules for combining words in 2 substrings

? \rightarrow <she> <eats a>

? \rightarrow <she eats> <a>

Det NP

Ν

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det	NP			
? → 1	NP			N			
					Р		
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det	NP			
? → S Det				N			
					Р		
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
			Det	NP			
? → 9	S Det			N			
					Р		
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
N	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP					
Pet ? → <eats> ? → <eats a=""> <fish></fish></eats></eats>		Det	NP				
			N				
				Р			
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
V, VP		V, VP					
			Det	NP			
? → V NP				N			
? → VP NP					Р		
(both	V and VP	→ eats)				Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
Ν	→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S					
V, VP		V, VP		VP			
			Det	NP			
? \rightarrow V NP ? \rightarrow VP NP (both V and VP \rightarrow eats)				N			
				Р			
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	\rightarrow fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
V, VP		V, VP		VP			
		Det	NP				
? → -	N			N			
					Р		
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish

→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP		VP			
Det				NP			
Keep going for each 3 words. Last PP: ? → <with> </with>			N				
					Р		PP
$? \rightarrow wit$ i.e.:	h a> <fork></fork>	•				Det	NP
? \rightarrow P NP (yes, that's PP) ? \rightarrow N (no)							N

 $S \rightarrow NP VP$

 $VP \rightarrow VP PP$

 $VP \rightarrow V NP$

VP → eats

 $PP \rightarrow P NP$

 $NP \rightarrow Det N$

 $NP \rightarrow she$

V → eats

 $P \rightarrow with$

N → fish

 $N \rightarrow fork$

Det → a

She	eats	a	fish	with	а	fork
NP	S					
	V, VP		VP			
		Det	NP			
ences of 4 words, but			N			

Sequences of 4 words, but our grammar is binary. So check for rules for combining words in 2 substrings

? \rightarrow <she> <eats a fish>

? \rightarrow <she eats> < a fish>

? \rightarrow <she eats a> <fish>

P ----- PP

Det NP

Ν

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S					
		V, VP		VP			
			Det	NP			
? → <	? \rightarrow <she> <eats a="" fish=""></eats></she>						
? → ١	NP VP				Р		PP
	Det						NP
							N

S	→ NP VP
5	/ IVI VI
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S		S			
		V, VP		VP			
Det				NP			
? \rightarrow <she> <eats a="" fish=""></eats></she>				N			
? → NP VP					Р		PP
						Det	NP
							N

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
P	→ with
Ν	→ fish
N	→ fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S		S			
V, VP				VP			
Det				NP			
Keep going for each 4 words				N			
					Р		PP
						Det	NP
							NI

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S		S			
V, VP				VP			
Det Keep going for each 5 words				NP			
				N			
					Р		PP
						Det	NP

? \rightarrow VP PP (yes, VP!)

S	→ NP VF
VP	→ VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish
N	\rightarrow fork
Det	→ a

	She	eats	а	fish	with	а	fork
	NP	S		S			
		V, VP		VP			VP
			Det	NP			
Sequences of 6 words ? → <she> <eats a="" fish="" with=""> ? → <she eats=""> < a fish with a> ? → <she a="" eats=""> <fish a="" with=""></fish></she></she></eats></she>				N			
					Р		PP
						Det	NP
? → <eats a="" fish=""> <with a="" fork=""></with></eats>							N
	i.e. (last one above)						

_ =	
S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish

→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S		S			
		V, VP		VP			VP
Det				NP			
ocquences of 7 words				N			
? → <she> <eats a="" fish="" fork="" with=""> ? → <she eats=""> < a fish with a fork></she></eats></she>					Р		PP
? → <she a="" eats=""> <fish a="" fork="" with=""> Det</fish></she>						NP	
I.e. (for the first one above) ? → NP VP (yes, S!)						N	

S	\rightarrow NP VP
VP	\rightarrow VP PP
VP	\rightarrow V NP
VP	→ eats
PP	\rightarrow P NP
NP	→ Det N
NP	→ she
V	→ eats
Р	→ with
Ν	→ fish

→ fork

Det → a

	She	eats	а	fish	with	а	fork
	NP	S		S			S
		V, VP		VP			VP
			Det	NP			
Sequences of 7 words N							
? → <she> <eats a="" fish="" fork="" with=""> ? → <she eats=""> < a fish with a fork> ? → <she a="" eats=""> <fish a="" fork="" with=""> Det</fish></she></she></eats></she>							PP
						Det	NP
I.e. (for the first one above) ? → NP VP (yes, S!)						N	

Questions?

Exercise

Given the grammar and lexicon defining the language

 \mathcal{L}_1 in CNF

 $Det \rightarrow that \mid this \mid the \mid a$ $Noun \rightarrow book \mid flight \mid meal \mid money$ $Verb \rightarrow book \mid include \mid prefer$ *Pronoun* \rightarrow *I* | *she* | *me* Proper-Noun → Houston | NWA $Aux \rightarrow does$ $Preposition \rightarrow from \mid to \mid on \mid near \mid through$

 $VP \rightarrow VP PP$

 $PP \rightarrow Preposition NP$

Exercise

Parse (recognise) the following sentence

Book	the	flight	through	Houston

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

Exercise

Answer

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

CKY for parsing

- So far: CKY for recognition
 - Fill out matrix such that [0,n] cell has symbol S
- To use CKY for parsing, need to
 - 1) Add **backpointers**: augment entries in matrix s.t. each non-terminal is paired with **pointers** to the matrix entries from which it was derived
 - 2) Allow multiple copies of the same non-terminal to be entered into the matrix to track multiple paths
- Choose S from cell [0, n] and recursively retrieve its component constituents from the matrix

CKY for parsing

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

Statistical parsing

- This does not scale: too many possible parse trees for comprehensive grammar
- Solution:
 - Find the most likely parse(s) via statistical parsing
 - Comprehensive grammars admit many parses for a sentence, but we can efficiently find the most likely parse

Statistical parsing

"Learn" probabilistic grammars from labelled data: treebanks

```
( (S
  (NP-SBJ (DT The) (NN move))
  (VP (VBD followed)
    (NP
     (NP (DT a) (NN round))
     (PP (IN of)
      (NP
        (NP (JJ similar) (NNS increases))
       (PP (IN by)
         (NP (JJ other) (NNS lenders)))
       (PP (IN against)
         (NP (NNP Arizona) (|| real) (NN estate) (NNS loans))))))
    (S-ADV
     (NP-SBI (-NONE- *))
     (VP (VBG reflecting)
      (NP
       (NP (DT a) (VBG continuing) (NN decline))
       (PP-LOC (IN in)
         (NP (DT that) (NN market))))))
  (..)))
```

E.g. Penn Treebank

50K sentences,

1M words

- Treebanks are expensive to build, but:
 - Frequencies and distributional information are important
 - Can be reused to build different parsing approaches
 - Provide a way to evaluate parsers

- What does it mean to "learn" a grammar?
 - Take annotated trees (e.g. Penn Treebank)
 - List all rules used, e.g. for NP:
 - \blacksquare NP \rightarrow NP PP
 - NP → NP PP-LOC
 - NP → DT NN
 - NP → JJ NNS
 - \blacksquare NP \rightarrow NNP JJ NN NNS
 - lacksquare NP ightarrow DT VBG NN
 - \blacksquare NP \rightarrow NP PP PP

```
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
 (NP
  (NP (DT a) (NN round))
  (PP (IN of)
   (NP
     (NP (II similar) (NNS increases))
    (PP (IN by)
      (NP (|| other) (NNS lenders)))
     (PP (IN against)
      (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
 (S-ADV
  (NP-SBJ (-NONE- *))
  (VP (VBG reflecting)
     (NP (DT a) (VBG continuing) (NN decline))
     (PP-LOC (IN in)
      (NP (DT that) (NN market))))))
(...)))
```

 $NP \rightarrow NP PP PP$

- What does it mean to "learn" a grammar?
 - Assign probabilities to all rules by counting (c)

$$\begin{array}{c} q(X \to \gamma) = \frac{c(X \to \gamma)}{c(X)} \\ \hline \text{E.g:} \\ \hline & \text{NP} \to \text{NP PP} \\ \hline & \text{NP} \to \text{NP PP} \\ \hline & \text{NP} \to \text{NP PP-LOC} \\ \hline & \text{NP} \to \text{DT NN} \\ \hline & \text{NP} \to \text{JJ NNS} \\ \hline & \text{NP} \to \text{NNP JJ NN NNS} \\ \hline & \text{NP} \to \text{DT VBG NN} \\ \hline \end{array} \begin{array}{c} c(X) \\ \hline \\ \text{NP} \to \text{DT VBG NN} \\ \hline \\ \text{NP} \to \text{DT VBG NN} \\ \hline \end{array} \begin{array}{c} c(X \to \gamma) \\ \hline \\ c(X) \\ \hline \\ c(N) \\ c($$

a = 1/9

(NP-SBJ (DT The) (NN move))

Statistical parsing - formally

Probabilistic/stochastic phrase structure grammar is a context-free grammar PCFG = (T, N, S, R, q), where:

- T is set of terminals
- N is set of nonterminals
- S is the start symbol (non-terminal)
- R is set of rules $X \to Y$, where X is a nonterminal and Y is a sequence of terminals & nonterminals
- q = P(R) gives the probability of each rule

$$X \in N, \sum_{X
ightarrow \gamma \in R} P(X
ightarrow \gamma) = 1$$

Example by Chris Manning

Given a probabilistic grammar and lexicon

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$VP \rightarrow V NP$	0.7	$NP \rightarrow astronomers$	0.1
VP → VP PPC	0.3	$NP \rightarrow ears$	0.18
$PP \rightarrow P NP$	1.0	$NP \rightarrow saw$	0.04
$P \rightarrow with$	1.0	$NP \rightarrow stars$	0.18
$V \rightarrow saw$	1.0	NP → telescope	0.1

Example by Chris Manning

The following trees can be produced for the sentence

s = "astronomers saw stars with ears"

The probability of a given tree $\,t\,$ is

$$P(t) = \prod_{i=1}^n q(X_i o \gamma_i)$$

where $\,q(X o\gamma)\,$ is the probability of rule $\,X o\gamma\,$

Example by Chris Manning

s = "astronomers saw stars with ears"

```
• P(t_1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18 * 1.0 * 1.0 * 0.18
= 0.0009072
• P(t_2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 * 1.0 * 1.0 * 0.18
```

= 0.0006804

So, $P(t_1)$ is more likely. Also, if want to find out probability of string s, sum $P(t_1) + P(t_2) = 0.0015876$ (works like a LM score)

= 0.0006804

Example by Chris Manning

s = "astronomers saw stars with ears"

```
• P(t_1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18 * 1.0 * 1.0 * 0.18
= 0.0009072
• P(t_2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 * 1.0 * 1.0 * 0.18
```

The probability of each of the trees is obtained by multiplying the probabilities of each of the rules used in the derivation

This works as a disambiguation method!

Example by Chris Manning

s = "astronomers saw stars with ears"

•
$$P(t_1)$$
 = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18 * 1.0 * 1.0 * 0.18
= 0.0009072
• $P(t_1)$ = 1.0 * 0.1 * 0.2 * 0.7 * 1.0 * 0.18 * 1.0 * 1.0 * 0.18

• $P(t_2)$ = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18 * 1.0 * 1.0 * 0.18 = 0.0006804

The probability of each of the trees is obtained by multiplying the probabilities of each of the rules used in the derivation

This works as a disambiguation method!

This brute-force approach (enumerating all options) does not scale...

Questions?

Statistical parsing - more formally

- Given all the possible parse trees T for a given sentence s. The string of words s is called the yield of any parse tree over s
- Out of all parse trees that yield s, the algorithm picks the parse tree t that is most probable given s $(t \in \tau(s))$:

$$\hat{t}\left(s
ight) = \mathrm{argmax}_{t \in au(s)} P(t|s)$$

Statistical parsing - more formally

$$P(t,s) = \prod_{i=1}^n q(X_i
ightarrow \gamma_i)$$

- ullet By definition P(t,s)=P(t)P(s|t)
- But P(s|t)=1 , since a parse tree includes all words in sentence, i.e.

$$P(t,s) = P(t)P(s|t) = P(t)$$

Thus

$$\hat{t}(s) = \operatorname{argmax}_{t \in \tau(s)} P(t)$$

- Same dynamic programming algorithm, but now to find most likely parse tree $\hat{t}(s) = \operatorname{argmax}_{t \in au(s)} P(t)$
- Useful for
 - Recognition: does this sentence belong to the language?
 - Parsing: give me a possible derivation
 - Disambiguation: give me the best derivation
- All in polynomial time

- Grammar needs to be in CNF, as before
 - \circ Rules are of the form $X \rightarrow Y Z$ or $X \rightarrow W$
 - Modify probabilities s.t. the probability of each parse remains the same under the new CNF grammar. E.g.:

```
VP \rightarrow Vt NP PP 0.2 VP \rightarrow New PP 0.2 New \rightarrow Vt NP 1.0
```

- Build matrix as with CKY before
- Other unary rules can be included, e.g. $NP \rightarrow N$, as long as they don't lead to loops

This is a hierarchical process:

- *n* is the number of words in sentence
- $ullet w_{1\,n}=w_1\ldots w_n$ = the word sequence from 1 to n
- $ullet w_{i\,j}^{\scriptscriptstyle i\,n}$ = the subsequence $w_i\ldots w_j$
- $ullet X_{i \ j}$ = the nonterminal $\, X \,$ dominating $w_i \ldots w_j$

Define the dynamic table

$$\pi[i,j,X]$$
 = $\max_{i=1}^{maximum}$ probability of a constituent with non-terminal X spanning words $i\ldots j$ inclusive

With the goal to calculate

$$max_{t \in au(s)} p(t) = \pi[1, n, S]$$

Define the dynamic table

$$\pi[i,j,X] = \text{maximum probability of a constituent}$$
 with non-terminal X spanning words $i\ldots j$ inclusive $i=1...n$ $j=1...n$ $X\in N$ $i<=j$

• With the goal to calculate

$$max_{t \in au(s)} p(t) = \pi[1, n, S]$$
 Highest scoring parse tree for entire sentence

- For example, say sentence is
- ullet And we take $\pi[2,5,NP]$

The parse tree with the highest probability for words 2-5, whose head is NP

- There may be multiple possible ways in which NP has a parse tree under it that spans words 2-5
- Every of those parse trees will have a probability (product of the rule probabilities in that parse tree)

ullet Base case: for all $i=1...n, X\in N$ $\pi[i,i,X]=q(X o w_i)$

where $q(X o w_i) = 0$ if $X o w_i$ is not in grammar

ullet Recursive case: for all $i=1...n-1, j=(i+1)...n, X\in N$

$$\pi[i,j,X] = \max_{X
ightarrow YZ \in R,} (q(X
ightarrow YZ) imes \pi[i,s,Y] imes \pi[s+1,j,Z] \ s \in \{i \ldots (j-1)\}$$

ullet Base case: for all $i=1...n, X\in N$ $\pi[i,i,X]=q(X o w_i)$

Terminals / unary rules

where $q(X o w_i) = 0$ if $X o w_i$ is not in grammar

ullet Recursive case: for all $i=1...n-1, j=(i+1)...n, X\in N$

$$\pi[i,j,X] = \max_{X o YZ \in R,} (q(X o YZ) imes \pi[i,s,Y] imes \pi[s+1,j,Z]$$
 Recursive because $\pi[i,j,X]$ calculate based on the on $\pi[i,j,X]$ and s+1 to j

The CKY algorithm for PCFG - example

$$egin{aligned} \pi[i,j,X] &= \max_{X
ightarrow YZ \in R,} (q(X
ightarrow YZ) imes \pi[i,s,Y] imes \pi[s+1,j,Z] \ s \in \{i \ldots (j-1)\} \end{aligned}$$

0.4

0.6

the dog saw the man with the telescope

 $q(VP \rightarrow VP \; PP) \times \pi[3,7,VP] \times \pi[8,8,PP]$

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$.

Pseudocode by Michael Collins

Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- ▶ For $l = 1 \dots (n-1)$
 - ▶ For i = 1 ... (n l)
 - ightharpoonup Set i = i + l
 - For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

and

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i, \dots (i-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

The CKY algorithm for PCFG - exercise

Example by Michael Collins

Given the grammar:

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	IN	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Generate the best parse tree for the sentence:

The woman saw the man with the telescope

Evaluating parsers

- Parseval metrics: evaluate structure
 - How much of constituents in the hypothesis parse tree look like the constituents in a gold-reference parse tree
 - A constituent in hyp parse is labelled "correct" if there is a constituent in the ref parse with the same yield and LHS symbol
 - Only rules from non-terminal to non-terminal
 - Metrics are more fine-grained than full tree metrics, more robust to localised differences in hyp and ref parse trees

Evaluating parsers

```
Precision = # of correct constituents in hyp parse of s

# of total constituents in hyp parse of s

Recall = # of correct constituents in hyp parse of s

# of total constituents in ref parse of s

# of total constituents in ref parse of s

F-measure = 2*Precision*Recall

Precision + Recall
```

Evaluating parsers - example

Example by Philipp Koehn

These are flattened constituents.

Discarding LHS symbol:

Precision = 4/4

Recall = \%

F-measure = ...

Evaluating parsers - example

NP₁: John from Hoboken and Jim Not counting terminals or unary rules, but we can

Including LHS symbol:

Precision = 1/1 (NP₁ span) Recall = 1/6

NP₁: John from Hoboken and Jim

NP₂: John

NP₃: John from Hoboken

PP₁: from Hoboken

NP₄: Hoboken NP₅: Jii

Evaluating parsers - exercise

NP CC NP and NNP Jim Ref

PP: John from Hoboken and Jim

NP: John from Hoboken and Jim

NP: John from Hoboken

PP: John NP: John

PP: from Hoboken NP: Hoboken

PP: and Jim PP: Jim NP: Jim

NP: John from Hoboken and Jim

NP: John

NP: John from Hoboken

PP: from Hoboken

NP: Hoboken NP: Jim

Questions?

Issues with PCFG

- Poor independence assumption: CFG rules impose an independence assumption on probabilities that leads to poor modelling of structural dependencies across the parse tree.
 Word is only dependent on its POS tag!
- Lack of lexical conditioning: CFG rules don't model syntactic facts about specific words, leading to problems with subcategorization ambiguities, preposition attachment, and coordinate structure ambiguities

Issues with PCFG

Poor independence assumption:

- Probability estimates of rules computed independently of surrounding context, e.g.:
- In English, NPs in the subject function are more likely to be derived as pronominal (91%), while NPs in object function are more likely to be derived as non-pronominal (66%)
- However, given overall probabilities
 - NP \rightarrow DET N 0.28
 - \blacksquare NP \rightarrow PRN 0.25
- There is no way we can capture this prior information

Extensions PCFG

Poor independence assumption - Split non-terminals:

- Condition probabilities of NP → DET N and NP → PRP on whether the NP is subject or object → parent annotation NP_{subject} → PRN 0.91 (PRN: Personal Pronoun) NP_{object} → PRN 0.34
- To do so, annotate each node with its parent
 - In this case, $S \rightarrow NP^S$ VP^S could indicate that the first NP is the subject

Extensions PCFG

Poor independence assumption - Split non-terminals:

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 14

Issues with PCFG

Lack of lexical conditioning:

Lexical information to resolve PP attachment ambiguity, e.g.:
 Staff dumped masks into a bin (VP)

The boys caught kilos of fish (NP)

- VP attachment or NP attachment? NP attachment is more frequent in English, so often preferred by parsers
- The affinity between 'dump' and 'into' is greater than the affinity between 'masks' and 'into'. Conversely, the affinity btw. 'kilos' and 'of' is greater than btw. 'catch' and 'of'

Issues with PCFG

Lack of lexical conditioning:

Lexical information to resolve coordination ambiguity, e.g.:
 Dogs in houses and cats

- [dogs in [NP houses and cats]] ???
- The affinity between 'dogs' and 'cats' is greater than the affinity between 'houses' and 'cats'

Extensions PCFG

- Lack of lexical conditioning Probabilistic Lexicalised CFGs:
 - Add annotations specifying the head of each rule
 - Each rule in the grammar identifies one of its children to be the head of the rule

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Grammar PCFG = (T, N, S, R, q), where:

- T is set of terminals
- N is set of nonterminals
- S is the start symbol (non-terminal)
- R is set of rules in CNF which take 3 forms
 - $\circ \quad X(h) \to Y(h) \ Z(w)$
 - $\circ \quad X(h) \to Y(w) Z(h)$
 - $X(h) \rightarrow h$ Where X, Y, Z are in N, and h, w are in T
- q = P(R) gives the probability of each rule

Example by Michael Collins

LPCFG grammar example:

S(saw)	\rightarrow_2	NP(man)	VP(saw)
VP(saw)	\rightarrow_1	Vt(saw)	NP(dog)
NP(man)	\rightarrow_2	DT(the)	NN(man)
NP(dog)	\rightarrow_2	DT(the)	NN(dog)
Vt(saw)	\rightarrow	saw	
DT(the)	\rightarrow	the	
NN(man)	\rightarrow	man	
NN(dog)	\rightarrow	dog	

 A constituent receives its headword from its headchild

 $S \rightarrow NP \ VP \ (S \ receives \ from \ VP)$ $VP \rightarrow Vt \ VP \ (VP \ receives \ from \ Vt)$ $NP \rightarrow DT \ NN \ (NP \ receives \ from \ NN)$

- Head is core linguistic concept, the central sub-constituent of each rule
- Treebanks not annotated for that, but can use rules to identify head

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Rule 1

Example by Michael Collins

Else If the rule contains an NP: Choose the leftmost NP Rule 2

Else If the rule contains a JJ: Choose the rightmost JJ Rule 3

Else If the rule contains a CD: Choose the rightmost CD Rule 4

Else Choose the rightmost child Rule 5

e.g.,

NP NNP NN DT Rule 1 NP \Rightarrow DT NN NNP Rule 1 NP NP PP \Rightarrow Rule 2 NP Rule 3 DT JJ \Rightarrow Rule 5 NP

Example by Michael Collins

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt Rule 6

Else If the rule contains an VP: Choose the leftmost VP Rule 7

Else Choose the leftmost child

e.g.,

$$VP \Rightarrow Vt \quad NP \quad Rule 6$$

 $VP \Rightarrow VP \quad PP \quad Rule 7$

Estimating the probabilities from treebank is similar:

PCFG:

$$q(S \rightarrow NP VP)$$

LPCFG

$$q(S(saw) \rightarrow NP(man) VP(saw))$$

Accuracy of PCFG on Penn Treebank = 72% →88%