Filed

February 11, 2002

AMENDMENTS TO THE CLAIMS

Please amend Claims 1 and 27, cancel Claims 51-54, and add new Claims 55-80, as follows:

1. (Currently amended) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a surface area of about 300 cm² or greater and a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber; and depositing a Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater.

- 2. (Original) The method of Claim 1, wherein the Si-containing film is deposited as an amorphous film.
- 3. (Original) The method of Claim 1, wherein the Si-containing film is deposited as an epitaxial film.
- 4. (Original) The method of Claim 1, wherein the Si-containing film is deposited as a polycrystalline film.
- 5. (Original) The method of Claim 2, wherein the Si-containing film is deposited directly onto a non-single crystal material.
- 6. (Original) The method of Claim 2, wherein the Si-containing film is deposited directly onto a dielectric material.
- 7. (Original) The method of Claim 6, wherein the dielectric material is selected from the group consisting of silicon oxide, metal oxide, metal silicate, silicon oxynitride and silicon nitride.
- 8. (Original) The method of Claim 6, wherein the film surface roughness is about 3 Å rms or less.
- 9. (Original) The method of Claim 2, further comprising depositing an oxide layer directly onto the Si-containing film.

10/074,564

Filed

February 11, 2002

- 10. (Original) The method of Claim 9, further comprising annealing the Si-containing film to form a plurality of quantum dots.
- 11. (Original) The method of Claim 6, further comprising depositing a doped Sicontaining layer directly onto the Si-containing film.
- 12. (Original) The method of Claim 11, wherein the doped Si-containing layer further comprises germanium.
- 13. (Original) The method of Claim 12, wherein the doped Si-containing layer further comprises carbon.
- 14. (Original) The method of Claim 2, wherein the Si-containing film has a thickness non-uniformity of about 10% or less for a mean film thickness in the range of 100 Å to 150 Å, a thickness non-uniformity of about 15% or less for a mean film thickness in the range of 50 Å to 99 Å, and a thickness non-uniformity of about 20% or less for a mean film thickness of less than 50 Å.
- 15. (Original) The method of Claim 2, wherein the substrate comprises a step or trench.
- 16. (Original) The method of Claim 15, further comprising annealing the amorphous Si-containing film to form hemispherical grained silicon.
- 17. (Original) The method of Claim 2, wherein the gas further comprises a dopant element selected from the group consisting of boron, arsenic, antimony, indium, and phosphorous.
- 18. (Original) The method of Claim 17, wherein the Si-containing film is a diffusion layer.
- 19. (Original) The method of Claim 17, wherein the depositing of the Si-containing film onto the substrate results in uniform incorporation of the dopant element throughout the Si-containing film.
- 20. (Original) The method of Claim 2, wherein establishing trisilane chemical vapor deposition conditions comprises heating the substrate to a temperature in the range of about 400°C to about 750°C in the absence of a plasma.
- 21. (Original) The method of Claim 1, wherein establishing trisilane chemical vapor deposition conditions comprises heating the substrate to a temperature in the range of about 450°C to about 650°C in the absence of a plasma.

10/074,564

Filed

February 11, 2002

- 22. (Original) The method of Claim 1, wherein the Si-containing film is a Si-N film.
- 23. (Original) The method of Claim 22, wherein the gas further comprises a nitrogen precursor.
- 24. (Original) The method of Claim 23, wherein the nitrogen precursor is atomic nitrogen.
- 25. (Original) The method of Claim 23, wherein the Si-containing film has a hydrogen content that is less than about 4 atomic %.
- 26. (Original) The method of Claim 1, wherein establishing trisilane deposition conditions comprises maintaining a chamber pressure between about 1 Torr and 100 Torr.
 - 27. (Currently amended) A method for depositing a thin film, comprising: introducing trisilane to a chamber, wherein the chamber contains a substrate having a surface area of about 300 cm² or greater; and

depositing a continuous amorphous Si-containing film having a thickness of less than about 100 Å and a surface area of about one square micron or larger onto the substrate by thermal chemical vapor deposition.

- 28. (Original) The method of Claim 27, wherein the substrate comprises a non-single crystal material.
- 29. (Original) The method of Claim 28, wherein the Si-containing film is deposited directly onto the non-single crystal layer and the non-single crystal layer is selected from the group consisting of silicon oxide, metal oxide, metal silicate, silicon oxynitride and silicon nitride.
- 30. (Original) The method of Claim 27, wherein the Si-containing film has a surface roughness of about 5 Å or less.
- 31. (Original) The method of Claim 27, wherein the substrate comprises a step or trench.
- 32. (Original) The method of Claim 31, wherein the Si-containing film has a thickness non-uniformity of about 15% or less for a mean film thickness in the range of 50 Å to 99 Å, and a thickness non-uniformity of about 20% or less for a mean film thickness of less than 50 Å.
- 33. (Original) The method of Claim 27, wherein the depositing is conducted at a temperature in the range of about 450°C to about 650°C.

10/074,564

Filed

February 11, 2002

- 34. (Original) The method of Claim 27, wherein the depositing is conducted in or near a mass transport limited regime for trisilane.
- 35. (Original) The method of Claim 34, wherein the continuous amorphous Sicontaining film has a surface area of about five square microns or larger.
- 36. (Original) The method of Claim 27, further comprising depositing an oxide layer over the Si-containing film.
- 37. (Original) The method of Claim 36, further comprising annealing the Sicontaining film to form a plurality of quantum dots.
- 38. (Original) The method of Claim 27, further comprising depositing a doped Sicontaining layer directly onto the Si-containing film.
- 39. (Original) The method of Claim 38, wherein the doped Si-containing layer further comprises germanium.
- 40. (Original) The method of Claim 39, wherein the doped Si-containing layer further comprises carbon.
- 41. (Original) The method of Claim 27, further comprising annealing the amorphous Si-containing film to form hemispherical grained silicon.
- 42. (Original) The method of Claim 27, wherein the depositing is conducted at a temperature in the range of about 425°C to about 700°C.
- 43. (Original) The method of Claim 27, further comprising introducing a nitrogen precursor to the chamber.
- 44. (Original) The method of Claim 43, wherein the trisilane is introduced to the chamber in one or more pulses.
- 45. (Original) The method of Claim 44, wherein the nitrogen precursor is atomic nitrogen.
- 46. (Original) The method of Claim 45, wherein the depositing is conducted at a temperature in the range of about 450°C to about 650°C.
- 47. (Withdrawn) A method of increasing semiconductor manufacturing device yield, comprising:

identifying a semiconductor device manufacturing process that comprises depositing a Si-containing film onto a substrate using silane to produce a number N_T of semiconductor devices, of which a number N_A of the devices are acceptable and a number

10/074,564

Filed

February 11, 2002

 N_U of the devices are unacceptable; wherein the Si-containing film has an average thickness of about 2000 Å or less; wherein the substrate has a surface area of about 300 cm² or greater; and wherein the process has a device yield equal to N_A/N_T ; and

replacing the silane with trisilane in the semiconductor device manufacturing process to increase the device yield.

- 48. (Withdrawn) The method of Claim 47, wherein the semiconductor device manufacturing process comprises thermal CVD of silane at a temperature T_s , further comprising depositing the trisilane by thermal CVD at a temperature T_t , where $T_s > T_t$.
- 49. (Withdrawn) The method of Claim 47, wherein the semiconductor device manufacturing process comprises introducing trisilane to a chamber, further comprising using a bubbler to introduce the trisilane to the chamber.
- 50. (Withdrawn) The method of Claim 49, wherein the bubbler is temperature-regulated.

Claims 51 – 54 (cancelled)

55. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber;

depositing an amorphous Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater;

depositing an oxide layer directly onto the Si-containing film; and annealing the Si-containing film to form a plurality of quantum dots.

56. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber;

Appl. No. :

: 10/074,564

Filed : February 11, 2002

depositing a Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater; and

depositing a doped Si-containing layer directly onto the Si-containing film; wherein the Si-containing film is deposited directly onto a dielectric material.

- 57. (New) The method of Claim 56, wherein the doped Si-containing layer further comprises germanium.
- 58. (New) The method of Claim 57, wherein the doped Si-containing layer further comprises carbon.
 - 59. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber;

depositing an amorphous Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater;

wherein the Si-containing film has a thickness non-uniformity of about 10% or less for a mean film thickness in the range of 100 Å to 150 Å, a thickness non-uniformity of about 15% or less for a mean film thickness in the range of 50 Å to 99 Å, and a thickness non-uniformity of about 20% or less for a mean film thickness of less than 50 Å.

60. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber;

depositing an amorphous Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater;

: 10/074,564

Filed

February 11, 2002

wherein the substrate comprises a step or trench.

61. (New) The method of Claim 60, further comprising annealing the amorphous Sicontaining film to form hemispherical grained silicon.

62. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber; depositing an amorphous Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater;

wherein the gas further comprises a dopant element selected from the group consisting of boron, arsenic, antimony, indium, and phosphorous.

- 63. (New) The method of Claim 62, wherein the Si-containing film is a diffusion layer.
- 64. (New) The method of Claim 62, wherein the depositing of the Si-containing film onto the substrate results in uniform incorporation of the dopant element throughout the Si-containing film.
 - 65. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber; and depositing a Si-N film onto the substrate, the Si-N film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater.

- 66. (New) The method of Claim 65, wherein the gas further comprises a nitrogen precursor.
- 67. (New) The method of Claim 66, wherein the nitrogen precursor is atomic nitrogen.

Appl. No. : 10/074,564

Filed: February 11, 2002

68. (New) The method of Claim 66, wherein the Si-containing film has a hydrogen content that is less than about 4 atomic %.

69. (New) A method for depositing a thin film, comprising:

introducing a gas comprising trisilane to a chamber, wherein the chamber contains a substrate having a substrate surface roughness;

establishing trisilane chemical vapor deposition conditions in the chamber; and depositing a Si-containing film onto the substrate, the Si-containing film having a thickness in the range of 10 Å to 150 Å and a film surface roughness that is greater than the substrate surface roughness by an amount of about 5 Å rms or less, over a surface area of about one square micron or greater;

wherein establishing trisilane deposition conditions comprises maintaining a chamber pressure between about 1 Torr and 100 Torr.

70. (New) A method for depositing a thin film, comprising:
introducing trisilane to a chamber, wherein the chamber contains a substrate; and
depositing a continuous amorphous Si-containing film having a thickness of less
than about 100 Å and a surface area of about one square micron or larger onto the
substrate by thermal chemical vapor deposition;

wherein the substrate comprises a step or trench.

- 71. (New) The method of Claim 70, wherein the Si-containing film has a thickness non-uniformity of about 15% or less for a mean film thickness in the range of 50 Å to 99 Å, and a thickness non-uniformity of about 20% or less for a mean film thickness of less than 50 Å.
 - 72. (New) A method for depositing a thin film, comprising:
 introducing trisilane to a chamber, wherein the chamber contains a substrate;
 depositing a continuous amorphous Si-containing film having a thickness of less
 than about 100 Å and a surface area of about one square micron or larger onto the
 substrate by thermal chemical vapor deposition;

depositing an oxide layer over the Si-containing film; and annealing the Si-containing film to form a plurality of quantum dots.

73. (New) A method for depositing a thin film, comprising: introducing trisilane to a chamber, wherein the chamber contains a substrate;

10/074,564

Filed

February 11, 2002

depositing a continuous amorphous Si-containing film having a thickness of less than about 100 Å and a surface area of about one square micron or larger onto the substrate by thermal chemical vapor deposition; and

depositing a doped Si-containing layer directly onto the Si-containing film.

- 74. (New) The method of Claim 73, wherein the doped Si-containing layer further comprises germanium.
- 75. (New) The method of Claim 74, wherein the doped Si-containing layer further comprises carbon.
 - 76. (New) A method for depositing a thin film, comprising:
 introducing trisilane to a chamber, wherein the chamber contains a substrate;
 depositing a continuous amorphous Si-containing film having a thickness of less
 than about 100 Å and a surface area of about one square micron or larger onto the
 substrate by thermal chemical vapor deposition; and

annealing the amorphous Si-containing film to form hemispherical grained silicon.

77. (New) A method for depositing a thin film, comprising:
introducing trisilane and a nitrogen precursor to a chamber, wherein the chamber
contains a substrate;

depositing a continuous amorphous Si-containing film having a thickness of less than about 100 Å and a surface area of about one square micron or larger onto the substrate by thermal chemical vapor deposition.

- 78. (New) The method of Claim 77, wherein the trisilane is introduced to the chamber in one or more pulses.
- 79. (New) The method of Claim 78, wherein the nitrogen precursor is atomic nitrogen.
- 80. (New) The method of Claim 79, wherein the depositing is conducted at a temperature in the range of about 450°C to about 650°C.

10/074,564

Filed

February 11, 2002

SUMMARY OF TELEPHONIC INTERVIEW

Identification of Claims Discussed

Claims 1 and 27

Identification of Prior Art Discussed

Ikoma et al., Growth of Si/3C-SiC/Si(100) heterostructures by pulsed supersonic free jets, Applied Physics Letters, 75(25) 3977-3979 (December 1999)

Proposed Amendments

Applicants proposed amending the claims as set forth above.

Principal Arguments and Other Matters

Applicants submitted that Ikoma does not disclose depositing amorphous material. The Examiner disagreed.

Results of Interview

Applicants agreed to submit an Amendment and Remarks in writing for consideration by the Examiner.