Folha Prática 1

- **1.** Determine um autómato finito determinístico (AFD) que reconheça a linguagem de alfabeto $\Sigma = \{a, b\}$ descrita em cada alínea. Apresente o seu diagrama de transição e indique a interpretação de cada estado (isto é, o que memoriza sobre a palavra ou prefixo lido), justificando a sua necessidade.
- a) $\{x \mid x \text{ termina em b mas não em bb}\}$
- **b)** $\{x \mid x \text{ tem comprimento zero ou maior do que dois}\}$
- c) $\{x \mid x \text{ tem comprimento inferior a quatro}\}$
- **d)** $\{x \mid x \text{ tem prefixo bbab}\}$
- e) $\{x \mid x \text{ não tem sufixo aba}\}$
- **f**) $\{x \mid x \text{ tem aab e baa como subpalavras}\}$
- g) $\{x \mid x \text{ não tem três b's consecutivos}\}$
- **h)** $\{x \mid \text{ o número de b's em } x \text{ é múltiplo de quatro}\}$
- i) $\{x \mid \text{o número de b's consecutivos em } x \text{ não excede três e } x \text{ não tem a's consecutivos}\}$
- **2.** Sejam L e M linguagens de alfabeto $\Sigma = \{0, 1\}$ dadas por $L = \{x \mid x \text{ não tem 01 como subpalavra}\}$ e $M = \{0, 11\}$.
- a) Determine em extensão MM e M^3 e indique a propriedade que carateriza as palavras de M^* (se possível, evite descrevê-las como "sequências finitas de 0's ou 11's, incluindo a sequência vazia").
- **b)** Diga, justificando, se $L \subseteq M^*$ ou se $M^* \subseteq L$.
- c) Determine $M^* \cap \{x \mid x \in L \text{ e } |x| \le 4\}$.
- d) Apresente diagramas de transição de AFDs que reconheçam M, L e $\Sigma^* \setminus L$. Para justificar a sua resposta, indique o que memorizam os estados de cada autómato.
- **3.** Sejam L e M linguagens de alfabeto $\Sigma = \{a,b\}$, quaisquer. Justifique a veracidade ou falsidade de cada uma das afirmações:
- a) se $\varepsilon \in M$ então $L \subseteq LM$
- **b)** se $\emptyset \neq L \subseteq LM$ então $\varepsilon \in M$
- c) se $\varepsilon \notin L$ então $\varepsilon \notin L^*$
- **d**) se $LM = \emptyset$ então $L = \emptyset$ e $M = \emptyset$
- e) se $LM \neq \emptyset$ então $L \neq \emptyset$ e $M \neq \emptyset$
- f) se $L \cup M = \emptyset$ então $L = \emptyset$ e $M = \emptyset$
- g) se $L \cup M = \{\varepsilon\}$ então $L = M = \{\varepsilon\}$
- **h**) se $\varepsilon \in LM$ então $\varepsilon \in L$ e $\varepsilon \in M$
- i) se |x|=3 para todo $x\in L$, então $|y|=3^k$ quaisquer que sejam $k\in\mathbb{N}$ e $y\in L^k$
- j) se LM é uma linguagem finita e não vazia então $\varepsilon \notin LM$
- **k)** se LM é uma linguagem infinita então L ou M é uma linguagem infinita

- I) se L é infinita então $L \cup M$ é infinita
- **m)** se L é infinita então $\Sigma^* \setminus L$ é finita
- n) se as palavras de L não têm a's então as palavras de $\Sigma^* \setminus L$ não têm b's
- o) se L é uma linguagem finita então a linguagem $\bigcup_{k=0}^n L^k$ é uma linguagem finita, para todo $n \in \mathbb{N}$
- ${\bf p})$ se L pode ser reconhecida por um AFD então L é uma linguagem finita
- **4.** Usando as definições das operações envolvidas, prove as proposições seguintes, para $\Sigma = \{a, b\}$.
- a) $(R \cup S)T = RT \cup ST$, quaisquer que sejam R, S e T linguagens de alfabeto Σ .
- **b)** Existem linguagens R e S de alfabeto Σ tais que $(R \cup S)^* \neq R^* \cup S^*$.
- c) Quaisquer que sejam R e S, linguagem de alfabeto Σ , tem-se $(R^* \cup S^*)^* = (R \cup S)^*$.

Observação:

- Para simplificar a representação, omitimos alguns parentesis, considerando que a precedência da união (e interseção), concatenação e fecho de Kleene é semelhante à da adição, produto e potência numa expressão algébrica. Assim, expressão $R^* \cup S^*$ deve ser interpretada como $(R^*) \cup (S^*)$ e a expressão $(R^* \cup S^*)^*$ corresponde a $((R^*) \cup (S^*))^*$.
- As linguagens são conjuntos de palavras. Para mostrar que dois conjuntos A e B são iguais, basta mostrar que $A \subseteq B$ e que $B \subseteq A$ (isto é, que todo o elemento de A é elemento de B e que todo o elemento de B é elemento de A).
- **5.** Descreva informalmente a linguagem de alfabeto {a,b} que é reconhecida por cada um dos AFDs representados. Justifique a resposta, indicando o que cada estado do AFD memoriza.

a)

b)

