Olympiades Françaises de Mathématiques 2013-2014

Envoi Numéro 4

À renvoyer au plus tard le samedi 15 février

Les consignes suivantes sont à lire attentivement :

Le groupe B est constitué des élèves nés en 1999 ou après, avec les exceptions suivantes :

- * les élèves de Terminale sont dans le groupe A,
- * les élèves de Seconde et Première qui étaient à l'OFM en 2012-2013 sont dans le groupe A. Les autres élèves sont dans le groupe A.
- Les exercices classés « Groupe B » ne sont à chercher que par les élèves du groupe B.
- Les exercices classés « communs » sont à chercher par tout le monde.
- Les exercices classés « Groupe A » ne sont à chercher que par les élèves du groupe A.
- Les exercices doivent être cherchés de manière individuelle.
- Utiliser des feuilles différentes pour des exercices différents.
- Respecter la numérotation des exercices.

Exercices du groupe B

Exercice 1. Combien existe-t-il de couples d'entiers strictement positifs (a, b) tels que

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{2014}?$$

Exercice 2. Trouver tous les entiers $n \ge 1$ tels que $2^n + 12^n + 2014^n$ soit un carré parfait.

Exercice 3. Trouver tous les couples d'entiers relatifs (x, y) tels que $x^3 + y^3 = (x + y)^2$.

Exercices Communs

Exercice 4. Trouver tous les couples d'entiers positifs (m, n) tels que 1 + (m + n)m divise (m + n)(n+1) - 1.

Exercice 5. Montrer que si la somme de tous les diviseurs positifs d'un entier $n \ge 1$ est une puissance de deux, alors le nombre de diviseurs positifs de n est une puissance de deux.

Exercice 6. Trouver tous les nombres premiers p et q tels que p divise $5^q + 1$ et q divise $5^p + 1$.

Exercices du groupe A

Exercice 7. Trouver toutes les fonctions $f : \mathbb{N} \to \mathbb{N}$ telles que 2mn + mf(m) + nf(n) est un carré parfait pour tous entiers positifs m et n.

Exercice 8. Trouver tous les triplets d'entiers (a, b, c) tels que $a \neq 0$ et

$$2a^4 + 2a^2b^2 + b^4 = c^2$$
.

2

Exercice 9. Trouver le nombre de suites $(u_n)_{n\geqslant 1}$ d'entiers relatifs telles que $u_n\neq -1$ pour tout entier $n\geqslant 1$ et telles que

$$u_{n+2} = \frac{2014 + u_n}{1 + u_{n+1}}$$

pour tout entier $n \geqslant 1$.

Fin