1. Linear algebra refresher.

- (a) Let **Q** be a real orthogonal matrix.
 - i. To show that $\mathbf{Q^T}$ and $\mathbf{Q^{-1}}$ are also orthogonal, suppose \mathbf{Q} is orthogonal. Then $\mathbf{QQ^T} = \mathbf{Q^TQ} = \mathbf{I}$. Consider $\mathbf{Q^T}$. We want to show

$$\mathbf{Q^T} \left(\mathbf{Q^T} \right)^\mathbf{T} = \mathbf{I}$$

Recall that $(\mathbf{Q^T})^{\mathbf{T}} = \mathbf{Q}$. Then substituting $(\mathbf{Q^T})^{\mathbf{T}}$ with \mathbf{Q} , we get

$$\mathbf{Q^TQ} = \mathbf{QQ^T} = \mathbf{I}$$

Note that if \mathbf{Q} is orthogonal, then $\mathbf{Q^T} = \mathbf{Q^{-1}}$. Then, since $\mathbf{Q^T}$ is orthogonal, $\mathbf{Q^{-1}}$ is orthogonal.

ii. To show that **Q** has eigenvalues with norm 1, consider

$$\mathbf{Q}\mathbf{x} = \lambda \mathbf{x}$$

$$(\mathbf{Q}\mathbf{x})^{\mathbf{T}} \mathbf{Q}\mathbf{x} = (\mathbf{Q}\mathbf{x})^{\mathbf{T}} \lambda \mathbf{x}$$

$$\mathbf{x}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}} \mathbf{Q}\mathbf{x} = (\lambda \mathbf{x})^{\mathbf{T}} \lambda \mathbf{x}$$

$$\mathbf{Q}\mathbf{x} = \lambda \mathbf{x}$$

$$\mathbf{x}^{\mathbf{T}} \mathbf{I}\mathbf{x} = \lambda^{2} \mathbf{x}^{\mathbf{T}}\mathbf{x}$$

$$\mathbf{Q} \text{ is orthogonal}$$

$$\mathbf{x}^{\mathbf{T}}\mathbf{x} = \lambda^{2} \mathbf{x}^{\mathbf{T}}\mathbf{x}$$

$$\|\mathbf{x}\|^{2} = \lambda^{2} \|\mathbf{x}\|^{2}$$

$$\lambda^{2} = 1$$

This implies that $|\lambda| = 1$.

iii. To show that the determinant of \mathbf{Q} is ± 1 , we have that $\mathbf{Q}\mathbf{Q}^{\mathbf{T}} = \mathbf{I}$. Taking the determinant of both sides, we get

$$\det\left(\mathbf{Q}\mathbf{Q^{T}}\right) = \det\left(\mathbf{Q}\right) \cdot \det\left(\mathbf{Q^{T}}\right) = \det\left(\mathbf{I}\right)$$

Since $\det(\mathbf{I}) = 1$, we have $\det(\mathbf{Q}) \cdot \det(\mathbf{Q}^{\mathbf{T}}) = 1$. Recall that $\det(\mathbf{Q}) = \det(\mathbf{Q}^{\mathbf{T}})$, so $[\det(\mathbf{Q})]^2 = 1 \rightarrow \det(\mathbf{Q}) = \pm 1$.

iv. To show that \mathbf{Q} defines a length preserving transformation, consider a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$. By assumption, \mathbf{Q} is an orthogonal matrix, so $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$. We can represent the linear transformation T by \mathbf{Q} , so $T\mathbf{x} = \mathbf{Q}\mathbf{x}$. Then, taking the norm of both sides, we get

$$||T\mathbf{x}||^2 = ||\mathbf{Q}\mathbf{x}||^2$$

$$= (\mathbf{Q}\mathbf{x})^{\mathbf{T}} \mathbf{Q}\mathbf{x}$$

$$= \mathbf{x}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}} \mathbf{Q}\mathbf{x}$$

$$= \mathbf{x}^{\mathbf{T}} \mathbf{I}\mathbf{x} \qquad \mathbf{Q} \text{ is orthogonal}$$

$$= \mathbf{x}^{\mathbf{T}} \mathbf{x}$$

$$||T\mathbf{x}||^2 = ||\mathbf{x}||^2 \qquad \mathbf{x}^{\mathbf{T}} \mathbf{x} = ||\mathbf{x}||^2$$

Taking the square root of both sides, we get $||T\mathbf{x}|| = ||\mathbf{x}||$, so **Q** is a length preserving transformation.

(b) Let **A** be a matrix.

i.