Banque PT 2014 – Épreuve A

Partie I : Étude d'une projection orthogonale

Dans cette partie, on travaille dans l'espace euclidien orienté \mathbb{R}^3 , muni du produit scalaire usuel, noté \langle , \rangle . On désigne par $(\vec{\imath}, \vec{\jmath}, \vec{k})$ la base orthonormée directe canonique de \mathbb{R}^3 . On considère le vecteur

$$\vec{n} = \frac{1}{\sqrt{2}}(\vec{\imath} + \vec{k}) \,.$$

On désigne par D la droite vectorielle engendrée par \vec{n} et F le plan vectoriel orthogonal à D.

- 1. On note p_D la projection orthogonale sur D et A sa matrice dans la base canonique.
 - (a) Que vaut A^2 ?
 - (b) Que vaut, pour tout $\vec{u} \in \mathbb{R}^3$, $\langle \vec{u} p_D(\vec{u}), \vec{n} \rangle$?
 - (c) En déduire que, pour tout $\vec{u} \in \mathbb{R}^3$, $p_D(\vec{u}) = \langle \vec{u}, \vec{n} \rangle \vec{n}$.
 - (d) Calculer $p_D(\vec{n})$.
 - (e) Rappeler la définition d'un vecteur propre.
 - (f) Déterminer les valeurs propres et les vecteurs propres de p_D .
 - (g) L'endomorphisme p_D est-il diagonalisable?
 - (h) Vérifier que

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} .$$

2. Reprendre les mêmes questions pour p_F , projection orthogonale sur F, et déterminer sa matrice B dans la base canonique (on pourra, dans un premier temps exprimer p_F en fonction de p_D).

Partie II: Une formule de changement de base

On considère toujours l'espace euclidien orienté \mathbb{R}^3 , rapporté au repère orthonormé direct $(\vec{\imath}, \vec{\jmath}, \vec{k})$, et on reprend les notations de la partie I. Soit $\vec{n} = \frac{1}{\sqrt{2}}(\vec{\imath} + \vec{k})$, on note D la droite engendrée par \vec{n} et F le plan orthogonal à D, et on note p_D (resp. p_F) la projection orthogonale sur D (resp. sur F).

1. On pose $\vec{I} = \frac{p_F(\vec{k})}{\left|\left|p_F(\vec{k})\right|\right|}$, et on définit le vecteur \vec{J} de sorte que $(\vec{I}, \vec{J}, \vec{n})$ soit une base orthonormée

indirecte de $\mathbb{R}^3.$ Sans calculer les coordonnées de \vec{I} et $\vec{J},$ montrer que

$$\vec{J} \in F \cap \text{Vect}(\vec{\imath}, \vec{\jmath})$$
.

1

- 2. On note P la matrice de passage de la base $(\vec{i}, \vec{j}, \vec{k})$ vers la base $(\vec{I}, \vec{J}, \vec{n})$. Après avoir rappelé ce que représentent les colonnes de P, donner l'expression de P.
- 3. En déduire les expressions de \vec{i} , \vec{j} , \vec{k} en fonction de \vec{I} , \vec{J} et \vec{n} , puis celles de $p_F(\vec{i}), p_F(\vec{j}), p_F(\vec{k})$ en fonction de \vec{I} et \vec{J} .
- 4. Soit \vec{u} un vecteur de coordonnées (x, y, z) dans la base $(\vec{i}, \vec{j}, \vec{k})$. Son image par p_F a pour coordonnées (X, Y) dans la base (\vec{I}, \vec{J}) de F. Donner l'expression de X et Y en fonction de x, y et z.

Partie III : Projections orthogonales de l'hélice

On se place désormais dans l'espace affine euclidien orienté \mathbb{R}^3 , rapporté au repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$. On considère dans cet espace l'hélice circulaire (H), dont une représentation paramétrique est

$$\begin{cases} x(t) = \sqrt{2} \cos t \\ y(t) = \sqrt{2} \sin t \\ z(t) = 2\sqrt{2} t \end{cases}, \quad t \in \mathbb{R}$$

On reprend les notations de la partie précédente : $\vec{n} = \frac{1}{\sqrt{2}} \left(\vec{i} + \vec{k} \right)$; on désigne par p la projection affine orthogonale sur le plan passant par l'origine et de vecteur normal \vec{n} . On note (C) l'image de (H) par la projection p.

- 1. On rappelle que D est la droite vectorielle engendrée par \vec{n} , F est le plan vectoriel orthogonal à D, et p_D et p_F sont les projections orthogonales sur D et F respectivement. On définit les vecteurs \vec{I} et \vec{J} comme dans la partie précédente.
 - (a) Montrer qu'une représentation paramétrique de la courbe (C) dans le repère (O, \vec{I}, \vec{J}) est donnée par

$$\begin{cases} X(t) = 2t - \cos t \\ Y(t) = \sqrt{2}\sin t \end{cases}, \quad t \in \mathbb{R}$$

- (b) Montrer que tous les points de la courbe (C) sont réguliers.
- (c) Montrer que l'on peut réduire l'intervalle d'étude à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Comment se déduit alors le reste de la courbe à partir de cette restriction?
- (d) Étudier les variations de X et Y pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (e) Tracer sur le document-réponse joint la courbe (C) pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} + 3\pi\right]$. La courbe devra être tracée à l'échelle 1.

Partie IV: Caractérisations des projecteurs orthogonaux

Soit n un entier naturel supérieur ou égal à 2. On travaille maintenant dans l'espace euclidien \mathbb{R}^n muni du produit scalaire usuel, noté toujours $\langle \ , \ \rangle$. On désigne par $||\ ||$ la norme euclidienne de \mathbb{R}^n . On note $(\vec{e_1}, \ldots, \vec{e_n})$ la base canonique de \mathbb{R}^n . On appelle projecteur un endomorphisme p de \mathbb{R}^n vérifiant $p \circ p = p$.

1. Soit p un projecteur orthogonal. En écrivant, pour tout vecteur \vec{u} de \mathbb{R}^n , $\vec{u} = p(\vec{u}) + (\vec{u} - p(\vec{u}))$, montrer que

$$\forall \vec{u} \in \mathbb{R}^n, \quad ||p(\vec{u})|| \le ||\vec{u}||.$$

- 2. Soit p un projecteur de \mathbb{R}^n .
 - (a) Montrer que

$$\mathbb{R}^n = \operatorname{Im} p \oplus \operatorname{Ker} p$$
.

- (b) Montrer que p est la projection sur Im p parallèlement à Ker p.
- 3. Soit p un projecteur de \mathbb{R}^n vérifiant

$$\forall \vec{u} \in \mathbb{R}^n, \quad ||p(\vec{u})|| \le ||\vec{u}||.$$

(a) Soit $\vec{x} \in \text{Im } p$ et $\vec{y} \in \text{Ker } p$. En considérant le vecteur $\vec{u} = \vec{x} + \lambda \vec{y}$, $\lambda \in \mathbb{R}$, montrer que

$$\forall \, \lambda \in \mathbb{R} \,, \quad \lambda^2 \, ||\vec{y}||^2 + 2\lambda \, \langle \, \vec{x}, \vec{y} \, \rangle \geq 0 \,.$$

En déduire que $\langle \vec{x}, \vec{y} \rangle = 0$.

- (b) Montrer que p est un projecteur orthogonal.
- 4. Soit f un endomorphisme de \mathbb{R}^n . On définit l'application f^* par

$$\forall \vec{x} \in \mathbb{R}^n, \quad f^*(\vec{x}) = \sum_{i=1}^n \langle f(\vec{e}_i), \vec{x} \rangle \vec{e}_i.$$

- (a) Vérifier que f^* est un endomorphisme de \mathbb{R}^n .
- (b) En exprimant \vec{x} dans la base $(\vec{e}_1, \dots, \vec{e}_n)$, montrer que, pour tout $(\vec{x}, \vec{y}) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$\langle f(\vec{x}), \vec{y} \rangle = \langle \vec{x}, f^*(\vec{y}) \rangle$$
.

(c) Soit g un endomorphisme de \mathbb{R}^n vérifiant

$$\forall (\vec{x}, \vec{y}) \in \mathbb{R}^n \times \mathbb{R}^n, \quad \langle f(\vec{x}), \vec{y} \rangle = \langle \vec{x}, g(\vec{y}) \rangle.$$

Montrer que $g = f^*$.

- 5. Soit p un projecteur orthogonal.
 - (a) Montrer que, pour tous $(\vec{x}, \vec{y}) \in \mathbb{R}^n \times \mathbb{R}^n$, $\langle p(\vec{x}), \vec{y} \rangle = \langle p(\vec{x}), p(\vec{y}) \rangle$.
 - (b) En déduire que $p = p^*$.
- 6. Soit p un projecteur.
 - (a) Montrer que Im $p^* \subset (\text{Ker } p)^{\perp}$.
 - (b) Soit $\vec{y} \in (\text{Ker } p)^{\perp}$. Montrer que, pour tout $\vec{x} \in \mathbb{R}^n$, $\langle \vec{x} p(\vec{x}), \vec{y} \rangle = 0$. En déduire que $\vec{y} = p^*(\vec{y})$ puis que $(\text{Ker } p)^{\perp} \subset \text{Im } p^*$.
 - (c) Montrer que si $p = p^*$, alors p est un projecteur orthogonal.