Valós számok bevezetése 2. Számsorozatok 1.

2020. szeptember 9.

Infimum és Supremum (ism.)

A $H \neq \emptyset$ felülről korlátos halmaz legkisebb felső korlátját SUPREMUMnak nevezzük. $S = \sup(H)$, ha

- egyrészt S felső korlát, azaz $S \ge x$, $\forall x \in H$
- másrészt $\forall S'$ felső korlátra $S' \geq S$.

A $H \neq \emptyset$ alulról korlátos halmaz legnagyobb alsó korlátját INFIMUMnak nevezzük. $s = \inf(H)$, ha

- egyrészt s alsó korlát, azaz $s \le x$, $\forall x \in H$
- másrészt $\forall s'$ alsó korlátra $s' \leq s$.

Tétel: "az infimum és supremum jól definiáltak"

Tétel Tfh H nem $\ddot{u}res$, $\underline{alulr\'ol}$ korl'atos halmaz. Ekkor $\underline{\exists} \inf H$. Tfh H nem $\ddot{u}res$, $\underline{fel\"ulr\'ol}$ korl'atos \underline{halmaz} . Ekkor $\underline{\exists} \sup H$.

Konstruktív bizonyítás: H alulról korlátos, ezért $\exists a_1$ alsó korlátja.

- 1. eset. Ha $a_1 \in H$, akkor $a_1 = \min(H)$, egyben infimum is. $\sqrt{}$
- 2. eset. Ha $a_1 \notin H$, akkor legyen $b_1 \in H$ tetszőleges, $b_1 > a_1$.

Legyen $I_1 = [a_1, b_1]$ és definiáljuk a $c_1 = \frac{a_1 + b_1}{2}$ számot.

 $l_2 := [a_2, b_2]$ -t fogunk definiálni. Két eset lehetséges.

- Ha c_1 alsó korlát, akkor $a_2 := c_1$ és $b_2 := b_1$.
- Egyébként $a_2 := a_1$ és $b_2 \in H$, mely $a_1 < b_2 < c_1$.

Ezt a konstrukciót folytatjuk. $\longrightarrow \forall k \in \mathbb{N}$ -re I_k intervallum:

- 1. a_k alsó korlát, $b_k \in H$
- 2. $I_k = [a_k, b_k]$ zárt és $I_{k+1} \subset I_k$.
- 3. I_k hossza $\leq 2^{-k} \cdot |I_1| \leq \text{miért}$?

Cantor-féle közöspont-tétel feltételei $\sqrt{\Rightarrow \exists ! s}$ közös pont. s = inf(H). HF belátni.

Definíció. Egy x₀ valós szám KÖRNYEZETEI az

$$(x_0 - \varepsilon, x_0 + \varepsilon)$$

nyílt intervallumok, ahol $\varepsilon > 0$ tetszőleges valós szám.

Definíció. Az $x_0 \in \mathbb{R}$ pont a H halmaz BELSŐ PONTJA, ha $\exists \varepsilon > 0$:

$$(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq H$$
.

A belső pontok halmazát int(H) jelöli. (Az interior szóból.)

Definíció. Ha int(H) = H, a halmaz NYÍLT.

Definíció. Az $x_0 \in \mathbb{R}$ pont a H halmaz KÜLSŐ PONTJA, ha

$$\exists \varepsilon > 0 : (x_0 - \varepsilon, x_0 + \varepsilon) \cap H = \emptyset.$$

A külső pontok halmazát ext(H) jelöli. (" exterior")

Nyilván $ext(H) \cap H = \emptyset$.

Definíció. $x_0 \in \mathbb{R}$ a H halmaz HATÁRPONTJA, ha sem külső, sem belső pontja. Határpontok halmaza: $\partial(H)$. (Új betű: ∂)

 $\forall \varepsilon > 0$ -ra az $(x_0 - \varepsilon, x_0 + \varepsilon)$ környezet tartalmaz H-beli és H-n kívüli pontokat is. **Definíció.** A H halmaz NYÍLT, ha minden pontja belső pont.

Definíció. A H halmaz $\angle ART$, ha $\partial H \subseteq H$. =?

Definíció. A H HALMAZ LEZÁRÁSA $\overline{H} = H \cup \partial H$.

1. Példa. Legyen H = (a, b) egy nyílt intervallum, ahol a < b.

Belső pontok halmaza és határpontok:

$$int(H) = \{x : a < x < b\}, \qquad \partial(H) = \{a, b\}.$$

A lezárás: $\overline{H} = \operatorname{int}(H) \cup \partial H = [a, b]$.

2. *Példa*.
$$H = \{0 < x < 1 : x \in \mathbb{Q}\}$$
. $\frac{1}{2}$ belső pont-e? Nem!

A H halmazban belső pont NINCS. Miért?!

A halmaz határpontjai $\{x: 0 \le x \le 1\} = [0, 1]$. (Intervallum!)

Háromszög egyenlőtlenség

Állítás. Tetszőleges a, b valós számokra

$$|a+b| \le |a| + |b|.$$

Bizonyítás. Abból a triviális egyenlőtlenségből indulunk ki, hogy

$$\pm a \le |a|, \qquad \pm b \le |b|.$$

Ebből azt kapjuk, hogy

$$a+b \le |a|+|b|$$

 $-a-b \le |a|+|b|, \sqrt{ }$

Az elnevezés \approx *vektorok. Miért?*.

Háromszög egyenlőtlenség. Általános eset.

Tétel

Adottak az $a_1, a_2, ..., a_n$ valós számok, akkor

$$|a_1 + ... + a_n| \le |a_1| + ... + |a_n|,$$

$$azaz \mid \sum_{k=1}^{n} a_k \mid \leq \sum_{k=1}^{n} |a_k|.$$

Bizonyítás. Teljes indukcióval. Ha n = 2, akkor igaz. $\sqrt{}$

Tegyük fel, hogy *n*-re igaz. Ekkor

$$|\sum_{k=1}^{n+1} a_k| = |\sum_{k=1}^n a_k + a_{n+1}| \le |\sum_{k=1}^n a_k| + |a_{n+1}| \le \sum_{k=1}^n |a_k| + |a_{n+1}|.$$

Miért kezdtük n = 2-vel?

Tétel (Bernoulli egyenlőtlenség)

 $\forall n \in \mathbb{N}$ és $\forall h \geq -1$ valós szám esetén: $(1+h)^n \geq 1+hn$.

Egyenlőség \iff n = 0 vagy n = 1 vagy h = 0.

Bizonyítás. h=0 esetén egyenlőség. $\sqrt{}$

$$h \neq 0$$
 esetén teljes indukció. Ha $n = 1$ akkor $(1 + h)^1 = 1 + h$, $\sqrt{}$

Tegyük fel, hogy valamely *n*-re igaz: $(1+h)^n \ge 1 + hn$.

$$(1+h)^{n+1} = (1+h)^n(1+h) \ge (1+nh)(1+h) =$$

$$= 1 + (n+1)h + nh^2 \ge 1 + (n+1)h.$$

Miért van a $h \ge -1$ feltevés?

Számtani és mértani közép

Tekintsünk két számot, $x, y \ge 0$.

Ezek SZÁMTANI KÖZEPE (számtani átlaga): $A=\frac{x+y}{2}$, és MÉRTANI KÖZEPE (mértani átlaga): $G=\sqrt{xy}$.

Állítás.

Minden $x, y \ge 0$ esetén

$$\frac{x+y}{2} \ge \sqrt{xy}$$

Egyenlőség $\iff x = y$.

Számtani és mértani közép, általános eset

 $a_1, a_2, \dots, a_n \geq 0$ valós számok. Ezek SZÁMTANI ÁTLAGA (számtani közepe)

$$A := \frac{a_1 + a_2 + ... + a_n}{n} = \frac{1}{n} \sum_{k=1}^{n} a_k,$$

és MÉRTANI ÁTLAGA (vagy mértani közepe)

$$G_n := \sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[n]{\prod_{k=1}^n a_k}.$$

Tétel. A fenti jelölésekkel $\forall n \in \mathbb{N}$ esetén $A \geq G$:

$$\frac{1}{n}\sum_{k=1}^{n}a_{k}\geq\sqrt[n]{\prod_{k=1}^{n}a_{k}},$$

és egyenlőség $\iff a_1 = a_2 = \ldots = a_n$.

Számtani és mértani közép. Bizonyítás

1. Lemma. $n \ge 2$, adottak $x_1, x_2, \ldots, x_n \ge 0$, nem mind egyforma. Tegyük fel, hogy

$$\frac{x_1+x_2+\ldots+x_n}{n}=1.$$

Ekkor $x_1 x_2 \dots x_n < 1$.

Bizonyítás. Teljes indukcióval. Ha n = 2, akkor

$$x_1 = 1 + t,$$
 $x_2 = 1 - t,$ $t > 0.$

$$\implies x_1x_2 = (1+t)(1-t) = 1-t^2 < 1.\sqrt{ }$$

Tegyük fel hogy valamely rögzített n-re igaz azállítás. Tekintsünk n+1 db számot, melyek számtani átlaga 1:

$$x_1 = 1 + t_1$$
 $x_2 = 1 + t_2$
 \vdots
 $x_n = 1 + t_n$
 $x_{n+1} = 1 + t_{n+1}$

Adjuk össze a fenti egyenleteket.

$$\sum_{k=1}^{n+1} x_k = (n+1) + \sum_{k=1}^{n+1} t_k.$$

Mivel az $x_1, x_2, \dots x_n, x_{n+1}$ számok átlaga 1, ezért $\sum_{k=1}^{n+1} t_k = 0$.

Ekkor a $t_1, \ldots t_{n+1}$ számok közt van pozitív es negatív is. Miért?

Feltehető például, hogy $t_n < 0 < t_{n+1}$.

Az n+1 tényezős szorzat:

$$x_1x_2...x_{n-1}x_nx_{n+1} = x_1x_2...x_{n-1}(1+t_n)(1+t_{n+1}) <$$
 $< x_1x_2...x_{n-1}(1+t_n+t_{n+1}+\underline{t_nt_{n+1}})$

A szorzat utolsó tényezője $x_n^* := 1 + t_n + t_{n+1}$.

Az n tényezős szorzatban a tényezők összege:

$$x_1 + x_2 + \ldots + x_{n-1} + 1 + t_n + t_{n+1} = \cdots = n$$
. ellenőrzés!

- \implies adott *n* db szám, $x_1, x_2, ..., x_{n-1}, x_n^*$, melyek átlaga 1.
- → Ha a számok egyformák, akkor szorzatuk épp 1.
- \longrightarrow Ha a számok nem egyformák, akkor szorzatuk kisebb, mint 1.

Miért?

2. Lemma. $x_k \ge 0$, $k = 1, \dots n$ olyan számok, amelyekre

$$\frac{x_1+x_2+\ldots+x_n}{n}=1.$$

Ekkor $x_1 \cdot x_2 \cdot \ldots \cdot x_n \leq 1$.

Tétel bizonyítása.
$$A := \frac{a_1 + a_2 + \ldots + a_n}{n}$$
, és legyenek

$$x_k=\frac{a_k}{\Delta}, \qquad k=1,\ldots n.$$

A 2. Lemmát alkalmazzuk az x_k , $k=1,\ldots n$ számokra. Ekkor

$$x_1 + x_2 + \cdots + x_n = \frac{a_1 + a_2 + \cdots + a_n}{A} = n,$$

ezért

$$\frac{x_1 + x_2 + \dots + x_n}{n} = 1 \qquad \Longrightarrow \quad x_1 x_2 \dots x_n \le 1.$$

$$x_1x_2...x_n = \frac{a_1a_2...a_n}{A^n} \le 1$$
 \Longrightarrow $\sqrt[n]{\prod_{k=1}^n a_k} \le \frac{\sum_{k=1}^n a_k}{n}.$

Definíció. SZÁMSOROZAT: $n \mapsto a_n$ hozzárendelés.

A sorozat n-dik elemét a_n jelöli, az egész sorozat (a_n) .

Ábrázolás. Példa.
$$a_n = \frac{n}{n+1}$$
, azaz $n \mapsto \frac{n}{n+1}$.

1. Számegyenesen pontok

$$\begin{array}{ccccc}
 & a_1 & a_2 a_3 \downarrow \\
 & & & & \\
\hline
 & & & & \\
 & & & & \\
\hline
 & & & & \\
 & & & & \\
 & & & & \\
\end{array}$$

2. A síkon az (n, a_n) pontok

Alaptulajdonságok.

Definíció. (a_n) KORLÁTOS ha $\exists K$, hogy $|a_n| < K \ \forall n \in \mathbb{N}$ -re.

- (a_n) MONOTON NÖVŐ, ha n < m esetén $a_n \leqq a_m$.
- (a_n) MONOTON FOGYÓ, ha n < m esetén $a_n \ge a_m$
 - → Vajon n növelésével mi történik az an számokkal?

Példa. $a \in \mathbb{R}$ irracionális szám, legyen a_n az első n db jegy a végtelen tizedestört felírásában.

Ekkor a_n "egyre közelebb kerül a-hoz". Ezt így jelölhetjük: $a_n \to a$

--→ HATÁRÉRTÉK

1. Példa.
$$a_n = \frac{1}{n}$$
. A sorozat elemei: 1, $\frac{1}{2}$, $\frac{1}{3}$, ... RAJZ!

 $\varepsilon > 0$ tetszőleges és a $(-\varepsilon, \varepsilon)$ intervallumot tekintjük.

Ekkor $\exists N$ küszöbindex: $a_N \in (-\varepsilon, \varepsilon)$, hiszen

ha
$$N > \left\lceil \frac{1}{\varepsilon} \right\rceil + 1 \implies \frac{1}{N} < \frac{1}{\lceil 1/\varepsilon \rceil + 1} < \varepsilon.$$

Sốt $\forall n > N$ -re $a_n \in (-\varepsilon, \varepsilon)$, tehát $a_n \to 0$.

2.
$$P\'elda. \ a_n = \frac{(-1)^n}{n}$$
, a sorozat -1 , $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$, $\frac{-1}{5}$...RAJZ!

Ekkor is $a_n \to 0$, mert

$$\forall \varepsilon > 0 \quad \exists N \text{ küszöbindex:} \quad \forall n > N, \quad |a_n| < \varepsilon.$$

Oszcillálva közelít 0-hoz.