11.5 Alternating Series Test

An *alternating series* is a series whose terms alternate in sign. They are of the form:

$$\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + \cdots$$

or:

$$\sum_{n=1}^{\infty} (-1)^{n\pm 1} b_n = b_1 - b_2 + b_3 - \cdots$$

where $b_n > 0$.

Examples.

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1} = -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \cdots$$

2. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

$$2. \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Alternating Series Test

Let $\sum (-1)^n b_n$ be an alternating series, where $b_n > 0$. If both of the following conditions are satisfied:

- (i) $\lim_{n\to\infty} b_n = 0$
- (ii) b_n is decreasing (i.e. $b_{n+1} \le b_n$) then $\sum (-1)^n b_n$ converges.

Remarks:

- Recall (from section 11.1) that if $\lim_{n\to\infty}b_n\neq 0$, then $\lim_{n\to\infty}(-1)^nb_n$ does not exist (by limit fact 5), in which case $\sum (-1)^nb_n$ diverges by the Divergence Test. So, if the first condition of the AST fails, then we can immediately conclude that the series diverges by the Divergence Test.
- Recall (from Calc 1) that if f'(x) < 0 when x > c, then f is decreasing when x > c. This fact is often useful for showing that b_n is decreasing.

Examples. Is the alternating series convergent or divergent?

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$$

Let $b_n = \frac{n^2}{n^3+1}$. Then:
(i) $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2}{n^3+1} \cdot \frac{1/n^3}{1/n^3} = \lim_{n \to \infty} \frac{1/n}{1+1/n^3} = 0$
(ii) Write $f(x) = \frac{x^2}{x^3+1}$. Then:

$$f'(x) = \frac{(x^3+1)2x-x^2\cdot 3x^2}{(x^3+1)^2} = \frac{2x-x^4}{(x^3+1)^2} = \frac{x(2-x^3)}{(x^3+1)^2} < 0 \text{ when: } 2-x^3 < 0$$

$$x^3 > 2$$

$$x > \sqrt[3]{2}$$

(This shows f is decreasing when $x > \sqrt[3]{2}$, and so b_n is decreasing when $n \ge 2$.) By the AST, the series converges.

$$2. \sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$$

We have $b_n = \frac{3n}{4n-1}$. Then:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n - 1} \cdot \frac{1/n}{1/n} = \lim_{n \to \infty} \frac{3}{4 - 1/n} = \frac{3}{4} \neq 0$$

So, the series diverges by the Divergence Test.

$$3. \frac{2}{3} - \frac{2}{5} + \frac{2}{7} - \frac{2}{9} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{2n+1}$$

Let $b_n = \frac{2}{2n+1}$. Then:

$$(i)\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{2}{2n+1}=0$$

(i)
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2}{2n+1} = 0$$

(ii) $b_{n+1} = \frac{2}{2(n+1)+1} = \frac{2}{2n+3} < \frac{2}{2n+1} = b_n$

So, the series converges by the AST.

4.
$$\frac{1}{\ln 2} - \frac{1}{\ln 3} + \frac{1}{\ln 4} - \frac{1}{\ln 5} + \cdots$$

$$5. \sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^2 + n + 1}$$

6.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{2n+3}$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{2^n}$$

$$8. \sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n} \right)$$

<u>Alternating Series Estimation Theorem</u>

Suppose $\sum_{n=1}^{\infty} (-1)^n b_n$ is an alternating series that converges to a sum s, i.e.:

$$s = \sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + \cdots$$

Let s_n be the sum of the first n terms of the series, i.e.:

$$s_n = -b_1 + b_2 - b_3 + \dots \pm b_n$$

Then the nth partial sum s_n approximates the total sum s. The quantity $|s - s_n|$ is called the *error* in the approximation of s by s_n . The *Alternating Series Estimation Theorem* says:

$$error = |s - s_n| \le b_{n+1}$$

In other words, the error in approximating the sum s of a convergent alternating series by its nth partial sum s_n is at most b_{n+1} .

Note: If $b_{n+1} \le 0$. $\underbrace{00 \dots 0}_{m}$ 5, then the approximation of s by s_n is correct to m decimal places (as long as s_n is rounded to m decimal places).

Example. Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ converges and approximate its sum correct to 3 decimal places. $(n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ is called n factorial.)

Let $b_n = \frac{1}{n!}$. Then:

(i)
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n!} = 0$$

(ii)
$$b_{n+1} = \frac{1}{(n+1)!} < \frac{1}{n!} = b_n$$

By the AST, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ converges to a sum s. (We must approximate s by s_n for some n value satisfying $b_{n+1} \leq 0.0005$.) Observe that:

$$b_1=1, b_2=\frac{1}{2}=0.5, \dots, b_6=\frac{1}{720}\approx 0.0014, b_7=\frac{1}{5040}\approx 0.0002$$
 By the ASET, $s_6=-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}\approx -0.632$ is correct to 3 decimal places.

Example. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^6}$ converges and approximate its sum correct to 4 decimal places.

Example. Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n3^n}$ converges. How many terms must be added so that the error in approximating the sum by the nth partial sum is < 0.0005?

Let
$$b_n = \frac{1}{n3^n}$$
. Then:

(i)
$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{n3^n} = 0$$

(ii)
$$b_{n+1} = \frac{1}{(n+1)3^{n+1}} < \frac{1}{n3^n} = b_n$$

So, the series converges to a sum s by the AST. We need to find a n value satisfying $b_{n+1} < 0.0005$. So, we compute:

$$b_1 = \frac{1}{3}, b_2 = \frac{1}{18} \approx 0.06, \dots, b_5 = \frac{1}{5 \cdot 3^5} \approx 0.0008, b_6 = \frac{1}{6 \cdot 3^6} \approx 0.0002$$

By the ASET, we must add n=5 terms of the series in order for:

error =
$$|s - s_5| \le b_6 < 0.0005$$

Example. Show that $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges. How many terms must be added so that the error in approximating the sum by the nth partial sum is < 0.00005?

Practice Exercises:

Test the series for convergence or divergence.

$$3. -\frac{2}{5} + \frac{4}{6} - \frac{6}{7} + \frac{8}{8} - \frac{10}{9} + \cdots$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3+5n}$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$

$$11. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4}$$

13.
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{2/n}$$

- 23. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^6}$ converges. How many terms of the series must be added so that the error in approximating the sum by the nth partial sum is < 0.00005?
- 27. Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!}$ converges and approximate its sum correct to 4 decimal places.