

Get Started with Machine Learning on Databricks

We will start at 3 minutes past the starting time...

Meet your instructor

Venkita Krishnan Mani, Technical Instructor

in linkedin.com/in/venkitakrishnan

Now

Technical Instructor

Then

- Big Data & Spark Consultant
 - JPMC / Citi Bank / Deutsche Bank / Zarantec
- Hadoop Practice Lead
 - Nichetek / Collabera India / CavalierIT

Interests

· Consulting / Teaching & Mentoring

Get Started with Machine Learning on Databricks

Session topics

- Databricks Lakehouse Platform overview
- Databricks Machine Learning feature dive/demos:
 - UI tour
 - Creating a table with Feature Store
 - Developing a baseline model with AutoML
 - Managing the ML lifecycle using Model Registry
 - Deploying a model for batch inference
 - Scheduling a model refresh with with Databricks Workflows

Databricks Lakehouse Platform Overview

Databricks Lakehouse Platform

Simple

Unify your data warehousing and Al use cases on a single platform

Open

Built on open source and open standards

Multicloud

One consistent data platform across clouds

Introduction to Databricks Machine Learning

• Production machine learning depends on code and data.

- Production machine learning depends on code and data.
- Supports git repositories for version control.

- Production machine learning depends on code and data.
- Supports git repositories for version control.
- Full team collaboration support.

- Production machine learning depends on code and data.
- Supports git repositories for version control.
- Full team collaboration support.
- Development and production workflow support.

Databricks Machine Learning Runtime

- Optimized and preconfigured ML Frameworks
- Turnkey distributed ML
- Built-in AutoML
- GPU support out of the box

Built-in **ML Frameworks** and **model explainability**

Spark

Built-in support for **distributed training**

Built-in support for **AutoML** and **hyperparameter tuning**

Built-in support for hardware accelerators

Tour of the Databricks ML user-interface

Databricks ML Data Preparation with Feature Store

Benefits of the Feature Store

• Organization wide access and availability.

Benefits of the Feature Store

- Organization wide access and availability.
- Feature Registry for tracking and reuse.

Benefits of the Feature Store

- Organization wide access and availability.
- Feature Registry for tracking and reuse.
- Feature consistency between training and inference.

Delta Lake and MLflow

- Open storage format
- Built-in data versioning and governance
- Native access through PySpark, SQL, etc.

- Tracking and auto-logging
- Model Registry
- Model Serving

Demo: Use Feature Store

Model Training with Databricks ML

Required parameters:

- dataset Input Spark or pandas DataFrame that contains training features and targets. If using a Spark DataFrame, it will convert it to a Pandas DataFrame under the hood by calling .toPandas() just be careful you don't OOM!
- target_col Column name of the target labels

We will also specify these optional parameters:

- primary_metric Primary metric to select the best model. Each trial will compute several metrics, but this one determines which
 model is selected from all the trials. One of r2 (default, R squared), mse (mean squared error), rmse (root mean squared error), mae
 (mean absolute error) for regression problems.
- timeout_minutes The maximum time to wait for the AutoML trials to complete. timeout_minutes=None will run the trials without any timeout restrictions
- max_trials The maximum number of trials to run. When max_trials=None, maximum number of trials will run to completion.

```
from databricks import automl

summary = automl.regress(train_df, target_col="price", primary_metric="rmse", timeout_minutes=5, max_trials=10)
```

Demo: Using AutoML

What is MLflow?

An open-source platform for managing the end-to-end machine learning lifecycle.

MLflow Tracking and Autologging

MLflow Models

MLflow Model

The code snippets below demonstrate how to make predictions using the logged model. You can also register it to the model registry to version control and deploy as a REST endpoint for real time serving.

MLflow Model Registry

MLflow Model Serving

Deploy a model for batch inference

Deploying Models to Production

Batch

Streaming

Real-time serving

databricks

Questions?

To learn more about Databricks Machine Learning, check out the following resources:

Databricks Academy
Databricks Community