

Prim's algorithm

Cost: 6 | Solved: 68

Memory	limit:	256 MBs
---------------	--------	----------------

Time limit: 1 s

Input: input.txt

Output: output.txt

Task:

You are given an undirected weighted graph with *n* vertexes.

You have to find and build its minimal spanning tree, using Prim's algorithm.

A minimal spanning tree is such subtree of a graph that connects all its vertexes and has the minimal possible weight (the sum of edges). ANY minimal spanning tree includes **n-1** edge.

A subtree is a set of edges connecting all vertexes with an opportunity to reach any vertex from another with one unique path.

Input:

The first line contains a natural n ($1 \le n \le 100$) – the quantity of the graph's vertexes.

The next *n* lines represent the graph's adjacency matrix.

Output:

The first line should contain the length of the minimal spanning tree.

The next *n* lines should represent its adjacency matrix.

Example:

		₫	Ç
Input	Output	#	2
		φ	5
		#	_

Report a bug (/en/webform-feedback/nojs?submittedfrom=tasks/task/16244)

7	69
0 0 13 19 0 0 0	0 0 13 19 0 0 0
0 0 20 4 15 0 0	0 0 0 4 15 0 0
13 20 0 0 0 0 0	1300000
19 4 0 0 0 0 17	1940000
0 15 0 0 0 22 8	0 15 0 0 0 0 8
0 0 0 0 22 0 10	0 0 0 0 0 10
0 0 0 17 8 10 0	00008100