Semilazy data structures in Haskell

Andrew Lelechenko 1@dxdy.ru

Barclays, London

f(by) 2019, Minsk, 26.01.2019

Be lazy!

Haskell is a lazy language. By default the expression (or any of its subexpressions) is not evaluated until its value is utterly and unavoidably needed.

```
integers :: [Int]
integers = [0..]

f :: Int -> Int
f 42 = 3
f x = <infinite_loop>
> (map f integers) !! 42
3
```

Laziness is an abstraction to handle potentially infinite processes as actually infinite objects in a pure functional way.

Introduction to schedules

A schedule is recursively defined as one of

- the full calendar,
- a literal list of dates,
- all specific weekdays (Mondays, Tuesdays, etc.),
- union ∪ of two schedules,
- intersection ∩ of two schedules,
- all sorts of random stuff, like each day of a given schedule, which is the fifth Tuesday of the month and is directly preceded by a fourth Monday.

It all boils down to the algebra of sets.

A simple schedule

A trader buys Microsoft stock on New York Stock Exchange and Dubai Financial Market and sell it on Moscow Exchange. What is the trading schedule?

NYSE:

- Take the full calendar.
- Remove all Saturdays and Sundays.
- Remove a list of public holidays in USA.

DFM:

- Take the full calendar.
- Remove all Fridays and Saturdays.
- Remove a list of public holidays in OAE.

MOEX:

- Take the full calendar.
- Remove all Saturdays and Sundays.
- Remove a list of public holidays in Russia.
- Add a list of working holidays in Russia.
- Return $(NYSE \cup DFM) \cap MOEX$.

List vs. Set vs. Vector

How can we represent a set of unique values?

- A lazy single-linked list [a]:
 O(1) insert, O(n) lookup, huge memory overhead.
- A fixed-sized array Vector a: O(n) insert, $O(\log n)$ lookup, low memory overhead.
- A binary search tree Set a:
 O(log n) insert, O(log n) lookup, medium memory overhead.

Usually binary search trees are the way to go.

Unless the set is infinite.

How to generate first 100 dates of a schedule?

How many dates of x and y need to be precomputed before we are able to return first 100 dates of $x \cap y$?

We can use try-and-guess: take first 100 dates of both schedules: x_{100} and y_{100} . If $x_{100} \cap y_{100}$ contains at least 100 dates we are done. Otherwise take first 200 dates of x and y and try again, etc. This is ugly and inefficient.

Another idea is to proclaim a Doomsday on 29th of February 2900 and compute everything up to this date, in a vain hope that our system will get decomissioned earlier. This is vastly inefficient.

We'd rather work with infinite sets in a lazy fashion. Unfortunately, we cannot work so with trees or with arrays.

... when you have eliminated the impossible, whatever remains, however improbable, must be the truth.

— One lazy detective

Schedule as a lazy distinct sorted list -1

How to merge (possibly infinite) ordered lists lazily? We cannot use operations from Data.List.

```
merge [1,3,6] [2,4,5,7] = [1,2,3,4,5,6,7] merge [1,3..] [2,4..] = [1..]
```

Find inspiration in the merge sort!

```
merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) = case x 'compare' y of
  LT -> x : merge xs (y:ys)
  _ -> y : merge (x:xs) ys
```

Similar definitions may be given for set intersection, difference, etc.

Schedule as a lazy distinct sorted list — 2

There are several packages, defining operations on sorted lists:

Package	Fatal flaws
sorted	NIH, abandoned
sorted-list	NIH, allows repetitions
data-ordlist	NIH, provides no type safety

Here I intended to insert the XKCD comix about 15 competing standards, but forgot how to embed pictures in LaTeX.

Solution: write a new package containers-lazy. It mimics full Data. Set interface, provides a newtype with safe constructors and operates over sets without repetitions only.

Available from

https://github.com/Bodigrim/containers-lazy

Semilary sets -1

The chosen representation of schedules fits well to listing of first n dates. Complexity of \cap and \cup is O(n), same to binary trees.

But lookups suffer from poor performance: O(n) instead of $O(\log n)$. Can we make sets great again?

```
data Semilazy a = SL
    { strictInit :: Set a
    , lazyTail :: [a]
    }
```

E. g., SL (Set.fromList [1,3,5,9]) [10,20..].

Semilary maintains the invariant: the last element of strictInit is less than the first element of lazyTail.

Semilazy sets — 2

```
Is it a valid definition of merge?
merge :: Semilazy a -> Semilazy a -> Semilazy a
merge (SL s1 ls1) (SL s2 ls2) =
   SL (s1 'Set.merge' s2) (ls1 'merge' ls2)
No. because it does not maintain the invariant:
merge (SL empty [0..]) (SL (Set.fromList [10]) []) =
   SL (Set.fromList [10] [0..])
Valid implementation:
merge (SL s1 (l1:ls1)) (SL s2 (l2:ls2))
  | 11 < 12, (xs, ys) < -span (< 12) ls1
  = SL (s1 'Set.merge' Set.fromList xs 'Set.merge' s2)
(ys 'merge' 1s2)
  | otherwise = ...
```

Semilazy sets — 3

To be as lazy as possible the actual implementation maintains not only a strict init and a lazy tail, but also a position of delimiter between them.

```
data Delimiter a = Bottom | Middle a | Top

data Ascension a = Ascension
    { strictInit :: Set a
    , delimiter :: Delimiter a
    , lazyTail :: [a]
    }
```

Available from https://github.com/Bodigrim/ascension

Full speed astern

It is still not entirely satisfying, because lookups take between $O(\log n)$ and O(n) time. Can we achieve amortized O(1) time?

In finite setting when lookups become a bottleneck and inserts are rare, one can use a bit array. The set is represented by a raw region of memory, where i-th bit equals to 1 when i is an element of the set and equals to 0 otherwise. By the vary nature bit arrays are strict: there is simply no space to store any pointer to deferred computation.

Bit arrays provide superfast set intersection / union by means of bitwise and / or.

There is a Haskell implementation of bit arrays in bitvec package.

Can we implement an infinite bit array? Since it is infinite it must somehow involve laziness.

Tricks from a can of worms

How do dynamic arrays work in imperative languages? They occupy memory enough to store 2^k elements. While the actual size remains below 2^k , appending new elements does not require reallocation. Only when the size rises beyond 2^k , new chunk of 2^{k+1} size is allocated and the existing array is copied there.

Let us have an infinite lazy list of strict bit arrays of growing size: [ptr to 64 bit block, ptr to 128 bit block, ptr to 256 bit block, ...]

The lookup function takes an index n, traverses the outer list to extract $m = \log_2(n/64)$ -th element and returns the relevant bit. For example, to check whether 200 is an element we traverse until the 3-rd block and return its 200 - (64 + 128) = 8-th bit.

It is better to store bit blocks in a lazy array with instant indexing. Since chunks grow rapidly, for all practical applications an outer array of size 64 will suffice. This gives us amortized O(1) indexing.

Chimera

This approach (lazy outer array of pointers to growing inner arrays) can be generalized from storing bits to storing any data and is implemented in chimera package.

```
data Chimera a = Vector (Vector a)
```

tabulate takes predicate and returns an infinite bit array:

```
tabulate :: (Word -> a) -> Chimera a
```

index implements random access in $\mathit{O}(1)$ amortized time:

```
index :: Chimera a -> (Word -> a)
```

Caching

Let us use tabulate and index to get a fully functional caching in a purely functional and performant manner:

```
expensive :: Word -> a
expensive x = <heat_cpu_for_ten_minutes>

cache :: Chimera a
cache = tabulate expensive

cheap :: Word -> a
cheap = index cache
```

Fibonacci 101

Let us define Fibonacci numbers in a naïve, exponential way:

```
fibo :: Word -> Natural fibo n = if \ n < 2 then n else fibo (n-1) + fibo \ (n-2)
```

We can cache it as is:

```
fiboCache :: Chimera Natural
fiboCache = tabulate fibo
```

```
fibo' :: Word -> Natural
fibo' = index fiboCache
```

But recursive calls still know nothing about cache. Can we make them aware of?

Fixed-point combinator

Any recursive function can be expressed as a non-recursive one and the fix combinator a. k. a. Y combinator.

```
fix :: (a -> a) -> a
fix f = let x = f x in x
fiboFix :: (Word -> Natural) -> (Word -> Natural)
fiboFix f n = if n < 2 then n else f (n-1) + f (n-2)
fibo :: (Word -> Natural)
fibo = fix fiboFix
Now use tabulateFix to cache all recursive calls as well.
```

fiboCache = tabulateFix fiboFix :: Chimera Natural

fibo = index fiboCache :: Word -> Natural

Summary

- Hybrid combination of a strict binary search tree and a lazy list allows to work with infinite sets.
- If lookups become a bottleneck, one can trade space for speed and switch to an infinite bit mask, hybrid of a lazy array and a bit array.
- The latter approach can be generalized to store any data, applicable for transparent caching of functions, including recursive ones.

Thank you!