1. With
$$\mathbf{r} = \frac{1}{3}t^3\mathbf{i} + \frac{1}{\sqrt{2}}t^2\mathbf{j} + t\mathbf{k}$$
 we have $\dot{\mathbf{r}} = t^2\mathbf{i} + \sqrt{2}t\mathbf{j} + \mathbf{k}$. Hence we obtain $v = |\dot{\mathbf{r}}| = \sqrt{t^4 + 2t^2 + 1} = t^2 + 1$, $a_T = \frac{dv}{dt} = 2t$ and $\ddot{\mathbf{r}} = 2t\mathbf{i} + \sqrt{2}\mathbf{j} + 0\mathbf{k}$. So, for $t = 1$, we have $\mathbf{v} = \dot{\mathbf{r}} = \mathbf{i} + \sqrt{2}\mathbf{j} + \mathbf{k}$ and $v = 1^2 + 1 = 2$, implying

(a)
$$\mathbf{T} = \hat{\mathbf{v}} = \frac{1}{2} \{ \mathbf{i} + \sqrt{2} \mathbf{j} + \mathbf{k} \} = \frac{1}{2} \mathbf{i} + \frac{1}{\sqrt{2}} \mathbf{j} + \frac{1}{2} \mathbf{k}.$$

(b)
$$\ddot{\mathbf{r}} = 2\mathbf{i} + \sqrt{2}\mathbf{j} + 0\mathbf{k}$$
 and $a_T = 2$. So $\ddot{\mathbf{r}} = a_T\mathbf{T} + a_N\mathbf{N}$ implies $a_N\mathbf{N} = \ddot{\mathbf{r}} - a_T\mathbf{T} = 2\mathbf{i} + \sqrt{2}\mathbf{j} + 0\mathbf{k} - \{\mathbf{i} + \sqrt{2}\mathbf{j} + \mathbf{k}\} = \mathbf{i} + 0\mathbf{j} - \mathbf{k}$. The magnitude of this vector is $a_N = |a_N\mathbf{N}| = \sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{2}$, and its direction is $\mathbf{N} = \widehat{a_N\mathbf{N}} = \frac{1}{\sqrt{2}}\{\mathbf{i} + 0\mathbf{j} - \mathbf{k}\} = \frac{1}{\sqrt{2}}\mathbf{i} + 0\mathbf{j} - \frac{1}{\sqrt{2}}\mathbf{k}$.

(c) Because $v = 2$ when $t = 1$, we deduce from $a_N = v^2\kappa$ that $\kappa = \frac{1}{2\sqrt{2}}$.

(c) Because
$$v=2$$
 when $t=1$, we deduce from $a_N=v^2\kappa$ that $\kappa=\frac{1}{2\sqrt{2}}$.

(d)
$$\mathbf{B} = \mathbf{T} \times \mathbf{N} = \frac{1}{2\sqrt{2}} \{ \mathbf{i} + \sqrt{2}\mathbf{j} + \mathbf{k} \} \times \{ \mathbf{i} + 0\mathbf{j} - \mathbf{k} \} = \frac{-\frac{1}{2}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j} - \frac{1}{2}\mathbf{k} \}.$$
 It is easily verified that $\mathbf{T} \cdot \mathbf{N} = \mathbf{T} \cdot \mathbf{B} = \mathbf{N} \cdot \mathbf{B} = 0$.

2. On
$$C$$
 we have $\mathbf{r} = \sin(t)\,\mathbf{i} + \sqrt{1+t}\,\mathbf{j} + \cos(t)\,\mathbf{k}$, implying $x = \sin(t)$, $y = \sqrt{1+t}$, $z = \cos(t)$ and $\frac{d\mathbf{r}}{dt} = \cos(t)\,\mathbf{i} + \frac{1}{2}(1+t)^{-1/2}\,\mathbf{j} - \sin(t)\,\mathbf{k}$. Hence $x^2 + z^2 = 1$ and $\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = z\cos(t) + \frac{y\cdot 1}{2\sqrt{1+t}} - x\{-\sin(t)\} = \cos^2(t) + \frac{1}{2} + \sin^2(t) = \frac{3}{2}$.

So
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt = \int_0^{2\pi} \frac{3}{2} dt = \frac{3\pi}{2}$$
.

3. (a) With
$$\mathbf{F} = (y + ze^x) \mathbf{i} + x \mathbf{j} + e^x \mathbf{k}$$
 we have $\nabla \times \mathbf{F} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} = (\frac{\partial (e^x)}{\partial y} - \frac{\partial x}{\partial z}) \mathbf{i} - (\frac{\partial (e^x)}{\partial x} - \frac{\partial (y + ze^x)}{\partial z}) \mathbf{j} + (\frac{\partial (x)}{\partial x} - \frac{\partial (y + ze^x)}{\partial y}) \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} = (0 - 0) \mathbf{i} + (e^x - \{0 + e^x\}) \mathbf{j} + (1 - \{1 + 0\}) \mathbf{k} \\ y + ze^x & x & e^x \end{bmatrix} = 0 \mathbf{i} + 0 \mathbf{j} + 0 \mathbf{k} = \mathbf{0},$ implying that \mathbf{F} is conservative.

(b) Because $\nabla \times \mathbf{F} = \mathbf{0}$, there exists a potential $\phi = \phi(x, y, z)$ such that $\mathbf{F} = \nabla \phi$ and $\int_C \mathbf{F} \cdot \mathbf{dr}$ is path-independent. So we can recover ϕ by integrating along any path from (0,0,0)to (X, Y, Z), e.g., the curve $C = C_1 \cup C_2 \cup C_3$ consisting of the line segment C_1 between (0,0,0) and (X,0,0), followed by the line segment C_2 between (X, 0, 0) and (X, Y, 0), followed by the line segment C_3 between (X, Y, 0) and (X, Y, Z).

On C_1 we have y = 0 = z, $d\mathbf{r} = dx\mathbf{i}$ and $\mathbf{F} = 0\mathbf{i} + x\mathbf{j} + e^x\mathbf{k}$, implying $\mathbf{F} \cdot \mathbf{dr} = 0$, hence also $\int_{C_1} \mathbf{F} \cdot \mathbf{dr} = 0$. On C_2 we have $\mathbf{dr} = dy\mathbf{j}$ and $\mathbf{F} =$ $(y+0\cdot e^X)\mathbf{i}+X\mathbf{j}+e^X\mathbf{k}$, implying $\mathbf{F}\cdot d\mathbf{r}=X\,dy$. Thus $\int_{C_2}\mathbf{F}\cdot d\mathbf{r}=\int_0^YX\,dy=XY$. Finally, along C_3 we have $\mathbf{dr} = dz\mathbf{k}$ and $\mathbf{F} = (Y + ze^X)\mathbf{i} + X\mathbf{j} + e^X\mathbf{k}$, implying $\mathbf{F} \cdot \mathbf{dr} = e^X dz$. Thus $\int_{C_3} \mathbf{F} \cdot \mathbf{dr} = \int_0^Z e^X dz = e^X Z$. Collecting our results together, we have $\int_C \mathbf{F} \cdot \mathbf{dr} = \int_{C_1} \mathbf{F} \cdot \mathbf{dr} + \int_{C_2} \mathbf{F} \cdot \mathbf{dr} + \int_{C_3} \mathbf{F} \cdot \mathbf{dr} = 0 + XY + e^X Z$, and so $\phi(X, Y, Z) - \phi(0, 0, 0) = \int_C \nabla \phi \cdot \mathbf{dr} = \int_C \mathbf{F} \cdot \mathbf{dr} = XY + e^X Z$. But $\phi(0,0,0)$ is just an arbitrary constant that we are free to set equal to zero. Hence $\phi(X,Y,Z) = XY + e^X Z \text{ or } \phi(x,y,z) = \frac{xy + e^x z}{}.$

Alternatively, using the straight-line segment $\mathbf{r} = t(X\mathbf{i} + Y\mathbf{j} + Z\mathbf{k}), 0 \le t \le 1$ on which x = tX, y = tY, z = tZ and hence $\frac{d\mathbf{r}}{dt} = X\mathbf{i} + Y\mathbf{j} + Z\mathbf{k}$, so that $\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = (Yt + Zte^{Xt}) \cdot X + Xt \cdot Y + e^{Xt} \cdot Z = 2XYt + XZte^{Xt} + Ze^{Xt}$, we obtain

$$\phi(X,Y,Z) - \phi(0,0,0) = \int_C \nabla \phi \cdot \mathbf{dr} = \int_C \mathbf{F} \cdot \mathbf{dr} = \int_{t=0}^{t=1} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt = \int_0^1 \{XY \cdot 2t + Z \cdot \{Xte^{Xt} + e^{Xt}\} \right]_0^1 = XY + Ze^X$$
 as before.

4. From Lecture 18, S is parameterized in natural coordinates by

$$\mathbf{r} = \mathbf{a} + u(\mathbf{b} - \mathbf{a}) + v(\mathbf{c} - \mathbf{b}), \quad 0 \le v \le u, \quad 0 \le u \le 1$$

where $\mathbf{a} = 0\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, i.e., by

$$\mathbf{r} = \mathbf{j} + \mathbf{k} + 2u(\mathbf{i} + \mathbf{j} - \mathbf{k}) - v(\mathbf{i} + 2\mathbf{j}), \quad 0 \le v \le u, \ 0 \le u \le 1$$

= $(2u - v)\mathbf{i} + (2u - 2v + 1)\mathbf{j} + (1 - 2u)\mathbf{k}, \quad 0 \le v \le u, \ 0 \le u \le 1$

so that x = 2u - v, y = 2u - 2v + 1, z = 1 - 2u, $\mathbf{r}_u = 2(\mathbf{i} + \mathbf{j} - \mathbf{k})$, $\mathbf{r}_v = -\mathbf{i} - 2\mathbf{j} + 0\mathbf{k}$ and $\mathbf{r}_u \times \mathbf{r}_v = 2\{-2\mathbf{i} + \mathbf{j} - \mathbf{k}\}$, which clearly points down, requiring the negative sign to be taken. Then, because

$$\mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) = 2\{-2y + z^2 - x\} = 2\{-2(2u - 2v + 1) + (1 - 2u)^2 - (2u - v)\}$$
$$= 2\{4u^2 - 10u + 5v - 1\}$$

we obtain

$$\iint_{S} \mathbf{F} \cdot \mathbf{dS} = -\int_{0}^{1} \int_{0}^{u} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dv \, du = -2 \int_{0}^{1} \int_{0}^{u} \{4u^{2} - 10u + 5v - 1\} \, dv \, du$$

$$= -2 \int_{0}^{1} \{4u^{2}v - 10uv + \frac{5}{2}v^{2} - v\} \Big|_{0}^{u} \, du = -2 \int_{0}^{1} \{4u^{3} - \frac{15}{2}u^{2} - u\} \, du$$

$$= -2 \{u^{4} - \frac{5}{2}u^{3} - \frac{1}{2}u^{2}\} \Big|_{0}^{1} = -2(1 - \frac{5}{2} - \frac{1}{2}) = \frac{4}{2}.$$

Alternatively, because every vertex of the triangular region has a nonnegative* first coordinate, we can use the method of Lecture 19 with $\sigma=\mathbf{i}$. The shadow of S is then is the triangle with vertices (y,z)=(1,1), (y,z)=(3,-1) and (y,z)=(1,-1) in the y-z plane . This region is covered by values of z between -1 and z-y for values of z between z and z between z and z between z lies in the plane with equation z between z with upward normal

$$\mathbf{n} = \frac{1}{\sqrt{6}} \{ 2\mathbf{i} - \mathbf{j} + \mathbf{k} \}$$

on which

$$\mathbf{F} \cdot \mathbf{n} = \frac{1}{\sqrt{6}} \{2y - z^2 + x\} = \frac{1}{2\sqrt{6}} \{5y - z - 2z^2\}$$

^{*}In fact, positive, but nonnegative would have done.

(because $x = \frac{1}{2}\{y - z\}$) and $\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{i} \cdot \mathbf{n} = \frac{2}{\sqrt{6}}$ implying $|\boldsymbol{\sigma} \cdot \mathbf{n}| = \frac{2}{\sqrt{6}}$ as well. Also, $dS_{\text{shad}} = dydz$. Hence

$$\iint_{S} \mathbf{F} \cdot \mathbf{dS} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_{\text{shad}}} \frac{\mathbf{F} \cdot \mathbf{n}}{|\boldsymbol{\sigma} \cdot \mathbf{n}|} \, dS_{\text{shad}} = \frac{1}{4} \iint_{S_{\text{shad}}} \{5y - z - 2z^{2}\} \, dz \, dy$$

$$= \frac{1}{4} \int_{1}^{3} \int_{-1}^{2-y} \{5y - z - 2z^{2}\} \, dz \, dy = \frac{1}{4} \int_{1}^{3} \{5yz - \frac{1}{2}z^{2} - \frac{2}{3}z^{3}\} \Big|_{-1}^{2-y} \, dy$$

$$= \frac{1}{4} \int_{1}^{3} \{\frac{2}{3}y^{3} - \frac{19}{2}y^{2} + 25y - \frac{15}{2}\} \, dy = \frac{1}{4} \{\frac{1}{6}y^{4} - \frac{19}{6}y^{3} + \frac{25}{2}y^{2} - \frac{15}{2}y\} \Big|_{1}^{3}$$

$$= \frac{1}{4} \{18 - 2\} = 4.$$