Modeling Heterogeneity in Microbial Population Dynamics

Helena Herrmann

MSc Computational Systems Biology School of Computing Science, Newcastle University, UK

Supervision by Dr Conor Lawless Institute for Cell and Molecular Biosciences, Newcastle University, UK

July 25th, 2016

High-Throughput Microscopy Data - μ QFA

Helena Herrmann Lydall Lab Meeting July 25th, 2016

Estimating Individual Lineage Growth Rates

Edge peak distributions with a long right-hand tail

Helena Herrmann Lydall Lab Meeting July 25th, 2016

Heterogeneity gives rise to an apparent lag phase.

Population Simulations¹: $N(t) = \sum_{i=1}^{n} (N_{0_i} \cdot e^{r_i \cdot t})$

Observed Single Lineage Growth Rates

 ${}^{1}N_{0} = (1, ..., 1)$ and n = 100

Population growth masks single lineage heterogeneity.

$\mathsf{Mixed} \to \mathsf{Clonal}$

Fast growing lineages dominate population growth.

 The apparent lag phase corresponds to the time required for fast-growing lineages to dominate population growth.

Experimental Design Implications

• Initial population size affects apparent growth rate.

Thank you