

Computational Models and Simulations,

MDSC 689.11

Dr. Matthias Walle

Mar 25th 2024

Lecture Overview

- Introduction to Numerical Simulations
 - Brief overview of numerical simulations
 - Importance in solving complex problems
 - Brief history and evolution
 - Physics-based vs data-driven
- General Principles in Computational Modelling
 - Complexity, Scaling, Hierarchical modelling, Mathematical principles (Differential equations)
- Finite Element Analysis (FEA)
 - Idea behind FEA modelling, Process of conducting FEA, Challenges, Examples, Tools, Common Mistakes
- Case Study: Stress shielding in total hip replacements
- Q&A and Discussion

Brief Overview of (numerical) Simulations

1. Definition

"Numerical simulations are computer-based models that solve complex mathematical problems to predict the behaviour of systems in the real world."

2. Key Components

- Mathematical Modelling: Real-world problems to mathematical form
- Computational Algorithms: Methods to numerically solve mathematical models
- Visualization: Graphical representation of simulation results

3. Other types of Simulations:

Physical models (e.g. mock-ups, 3D printing, animal models)

4. Applications

physical sciences, mathematics, economics, engineering, and biomedical fields

Simulation process

Real-World-Problem

Mathematical Model

Computation

Quantification/ Visualisation

Solving the Unsolvable

Solve complex problems that are (currently) analytically too complicated

Cost-Effectiveness

Reduce physical prototypes and experiments

3. Precision and Predictability

 System behaviours based on physical principles, e.g. different temperatures, material properties, external loads

Innovation and Design

Rapid prototyping, e.g. devices, implants, stents, surgeries,

5. Decision Making

 Providing data-driven insights, e.g. simulation of failure load of implants

Navier-Stokes Millennium Problem

The existence of a strong solution to the Navier-Stokes equations

Mukhtarbay Otelbaev Institute of Mathematics and Mathematical Modeling MES RK* 125 Pushkin St, Almaty 050010, email: otelbaevm@mail.ru

ISSN 1682-0525. Mathematical Journal. 2013. Vol 13, Num 4 (50). Translated by Mikhail Wolfson, Ph.D., January 12, 2014

Otelbaev, 2013

Fluid Dynamics Simulation

https://vbt.ebi.kit.edu/

Brief history and evolution

1940s: Birth of Computer Simulations

 Monte Carlo simulation by von Neumann and Ulam during the Manhatten Project

1960s: Rise of Digital Computing

 Use of computers to solve differential equations

1970s: Physics-Based Modelling

 Simulations become standard for engineering systems from aerospace to biomedical applications

1990s: Data-Driven Models

• Emergence of Machine Learning

Present: Generative Al

 Generative Adversarial Networks, Transformer Architecture (ChatGPT), Large Language Models (Llama, PaLM, Gemini), Diffusion Models (Sora)

	Data-Driven: Machine Learning	Physics-Based: Numerical Modelling
Foundation	Data patterns	Physical laws
Data Need	Large datasets	Minimal to none
Predictive Scope	Within training data range	Beyond observed data
Insight	Limited to data patterns	Deep causal mechanisms
Complex Conditions	Limited by training data	Adaptable to new scenarios
Efficiency	Data-dependent costs	High initial cost, efficient long-term
Applications	Data-rich applications, explore patterns and data correlations, e.g. lung cancer detection in CT or MRI scans, fracture risk assessment in bone	Data-scarce applications, understand complex systems, predict and explore new scenarios, e.g. bone strength calculations, implant integration in bone

Underlying principle of Simulations

• Einstein's razor:

"The supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience."

Make things as simple as possible, but no simpler.

- Complex models are more expensive...
 - 1. as they take longer to simulate,
 - as they are harder to interpret (cognitive costs),
 - 3. as they may not generalise well (e.g. overfitting in data-driven simulations)

realkm.com

 Increasing computing power → increased model complexity and problem size

Kurzweil, 2005

Weak and strong scalability

Weak scaling

$$speedup = 1 / (s + p / N)$$

Strong scaling

scaled speedup =
$$s + p \times N$$

Parallelisation of mathematical models is key for large scale simulations!

p = parallel proportions = serial proportion

Biological systems: Network of Networks

- Hierarchical Modelling: Dividing a complex system into simpler subsystems
- Two approaches:
 - Top-down: Begins with the broad overview or system-level perspective, breaking it down into smaller parts
 - Bottom-up: Starts at the most detailed and basic level, assembling these components to build more complex systems

Choosing the right approach

Bottom-Up Approach

- Mechanistic Understanding
 - **Example**: To understand how diseases affect bones, researchers model individual cells, uncovering the disease's impact from the cellular level upwards.
- Synthetic Biology
 - Example: Constructing new biological systems or organisms from the ground up, often without a prior understanding of the system.

Top-Down Approach

- Ecology and Evolutionary Biology
 - **Example**: Examining how climate change affects certain organisms, starting from an ecosystem-wide perspective.
- Systems Biology
 - Example: Simulating the dynamic interactions within biological systems to understand how different components interact on a systemic level.

real-world scenarios approaches are typically hybrid (no clear separation possible)

MathWorks Simulink

UNIVERSITY OF CALGARY

Can be used for hierarchical modelling

https://www.bob-biomechanics.com/

Key Mathematical Principles in Numerical Simulations

Differential equations

$$\frac{dI(t)}{dt} = k * I(t)$$

- Equations that describe how quantities change over time or space, involving derivatives with respect to a variable
- **Applications**: modelling the dynamics of systems, including motion, growth, decay, and changes in physical properties.

CALGARY

Solving differential equations using Simulink

Robertson Problem

Set of chemical reactions among

$$A \xrightarrow{k_1} B \qquad k_1 = 0.04 \qquad V_1 = k_1[A]$$

$$B + B \xrightarrow{k_2} C + B \qquad k_2 = 3 \cdot 10^7 \quad V_2 = k_2[B][B]$$

$$k_3 \qquad B + C \xrightarrow{k_3} A + C \qquad k_3 = 1 \cdot 10^4 \quad V_3 = k_3[B][C]$$

1. Initial conditions: A=1, B=0, and C=0.

Solid Mechanics

$$\begin{split} &\frac{\partial \sigma_{xx}}{\partial x_1} + \frac{\partial \tau_{xy}}{\partial x_2} + \frac{\partial \tau_{xz}}{\partial x_3} + F_x = 0, \\ &\frac{\partial \tau_{xy}}{\partial x_1} + \frac{\partial \sigma_{yy}}{\partial x_2} + \frac{\partial \tau_{yz}}{\partial x_3} + F_y = 0, \\ &\frac{\partial \tau_{xz}}{\partial x_1} + \frac{\partial \tau_{xz}}{\partial x_2} + \frac{\partial \sigma_{zz}}{\partial x_3} + F_z = 0, \end{split}$$

Thermodynamics/Biology

$$rac{\partial c}{\partial t} =
abla \cdot (D
abla c - \mathbf{v}c) + R$$

Fluid Mechanics

$$rac{D\mathbf{u}}{Dt} = rac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot
abla) \mathbf{u} =
u \,
abla^2 \mathbf{u} - rac{1}{
ho}
abla p + \mathbf{g}.$$

Electromagnetics

$$egin{aligned}
abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} &
abla \cdot \mathbf{E} &= rac{
ho}{arepsilon_0} \
abla imes \mathbf{B} &= \mu_0 \left(\mathbf{J} + arepsilon_0 rac{\partial \mathbf{E}}{\partial t}
ight) &
abla \cdot \mathbf{B} &= 0 \end{aligned}$$

- Along with these equations with additional constraints called the boundary conditions (BCs)
- Differential equations + BC → Boundary value problem

 Analytical methods (Integration, Laplace transform, etc.) are only valid for certain geometries

• How do we handle complex problems?

• FEA is a numerical method used to obtain an approximate solution for a given boundary value problem

Automotive Industry

Aerospace Industry

Biomedical Engineering

Fracture risk

Civil Engineering

Bridge modes

Manufacturing Magnetic Fields

Material Science
Carbon Fibre

Environmental EngineeringAir Pollution

The Power of Finite Element Analysis

Energy SectorNuclear Reactor

Consumer Electronics

Heat Transfer

Process of Finite Element Analysis

Objective is to find the approximate solution to the boundary value problem!

- **1. Define Problem** Objectives, Scope (e.g. Predict bone fracture load)
- **2. Create Model** Geometry Simplification (e.g. Use CT scans for 3D bone structure)
- **3. Select Materials** Properties, Behaviour (e.g. Bone material properties from literature)
- 4. **Meshing** Element Type, Density (e.g. tetrahedral, hexahedral)
- 5. Apply Conditions Constraints, Loads (e.g. Apply physiological loads and constraints mimicking joint forces)
- **6. Solve** FEA Solver (e.g. Linear static analysis to estimate failure load)
- **7. Analyse Results** Convergence, Sensibility (e.g. Evaluate stress distribution to predict potential fracture sites)

Heat generated during a tumor ablation

Drug delivery from a biomatrix

Simulations to accelerate Product Development

Biomedical stent

Pacemaker electrode

Electromagnetic field MRI birdcage coil

Electromagnetic interference RFID tag

Optomechanical model of the human eye

Non-invasive ventilation (NIV) mask

Tools for Finite Element Analysis

- ANSYS
 - Advanced simulations across multiple physics.
- Abaqus
 - Specialized in nonlinear problems, material failure.
- COMSOL Multiphysics
 - Multiphysics problems, user-friendly interface.
- SolidWorks Simulation
 - Integrated with CAD, user-friendly for designers.
- Custom Solvers:
 - For: Bone (FAIM, ParOsol), Soft tissue (BACI)

Connected bones using Abaqus

Common problems in FEA

- 1. Watch Out for Stress Concentrations
 - Are there any artefacts? High stress at the boundary conditions or sharp corners may be artefacts!
- Ensure Adequate Mesh Quality
 - Is my solution accurate enough? Conduct mesh convergence studies!
- 3. Account for Material and Geometric Nonlinearities
 - Was the right material model chosen? Consider nonlinear models for large deformations (e.g. soft tissues)
- 4. Apply Boundary Conditions and Loads Correctly
 - Do boundary conditions accurately mimic the physical setup?
- Validate FEA Results
 - 1. Always compare FEA outcomes with experimental data

Problem

Model

Materials

Meshing

Boundary Conditions

Solver

Results

Wolff's law¹:

Bone adapts to the loads under which it is placed

Problem:

Simulate stress shielding in a femoral implant

wallematthias.github.io/teaching

¹Wolff, J. 1892

Questions?

Matthias Walle

McCaig Institute

X @walle_Matthias

https://wallematthias.github.io/