Lecture 10: Pushdown Automata

Every regular language is a CFL.

But some CFLs are nonregular.

Since $FA \equiv$ Regular languages, some CFLs cannot be recognized by any FA.

Examples of CFLs that are nonregular:

$${a^nb^n : n \ge 0}$$

 ${ww^R : w \in {a,b}^*}$

We need to consider a more powerful computation model to recognize CFL – Pushdown Automata (PA). It is an automaton equipped with a stack.

Formal definition of PA

A pushdown automata is defined as a 6-tuple $M=(K,\Sigma,\Gamma,\Delta,s,F)$ where

- K is a finite, nonempty set of states,
- Σ is an input alphabet,
- Γ is a stack alphabet,
- $s \in K$ is the initial state,
- $F \subseteq K$ is a set of final state,
- Δ is a transition relation, a finite subset of $(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$.

Note that Δ is a relation, not a function, thus PAs are non-deterministic. Unlike FAs, deterministic pushdown automata are *not* equivalent in power with nondeterministic pushdown automata. Specifically, nondeterministic PA can recognize certain languages that are not recognizable by any deterministic pushdown automata (e.g., $\{ww^R : w \in \{a,b\}^*$, but we will not prove this fact).

Formal definition of PA

A **transition** $((p, a, \beta), (q, \gamma)) \in \Delta$ – intuitively, it means when in state p, read a, replace β on stack by γ (equivalently, pop beta, then push γ) and change state to q.

If γ or β is a string instead of a single character, then the *left-most* symbol in γ or β is the *topmost* in the stack.

E.g.

- ((p, a, b), (q, cb)) in state p, read a, pop b, push b, then push c (leftmost symbol is topmost in stack), and change state to q.
- ((p, b, e), (q, a)) in state p, read b, push a, change state to q.
- ((p, b, a), (q, e)) in state p, read b, pop a, change state to q.
- ((p, e, e), (q, e)) in state p, nondeterministically change state to q without reading anything or doing anything to stack.

Pushdown Automata

Example:

$$L = \{wcw^R : w \in \{a, b\}^*\}$$

 σ , $\beta \to \gamma$ means the symbol read is σ , pop β , push γ .

Consider abbcbba:

• A string is said to be accepted by M if, when the input is completely read, M is at a final state and the stack is empty. (see formal definition of string acceptance in slide 6).

Example

Representing the PA as a 6-tuple:

A PA accepting L is $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where $K = \{s, f\}$ $\Sigma = \{a, b, c\}$ $\Gamma = \{a, b\}$ $F = \{f\}$ $\Delta = \{(s, a, e), (s, a)), ((s, b, e), (s, b)), ((s, c, e), (f, e)), ((f, a, a), (f, e)), ((f, b, b), (f, e))\}$

Computation

- A configuration, (p, w, β) is a member of $K \times \Sigma^* \times \Gamma^*$
 - p is the current state
 - w is the remaining input to be read
 - β is the current content of stack from top to bottom (left-most is topmost).
- Example:

$$(s, abcba, e) \vdash_M (s, bcba, a) \vdash_M (s, cba, ba) \vdash_M (f, ba, ba) \vdash_M (f, a, a) \vdash_M (f, e, e)$$

- \vdash_M means '**yields** in one step'
- \vdash_M^* means 'yields in 0, 1 or more step'
- \bullet M accepts w if

$$(s, w, e) \vdash_{M}^{*} (q, e, e)$$
 for some $q \in F$

- finish reading the input string
- at a final state
- the stack is empty
- The language accepted by M, L(M), is the set of all strings accepted by M.

More example

 $L = \{ww^R : w \in \{a, b\}^*\}$

A PA that accepts L is $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where $K = \{s, f\}, \Sigma = \Gamma = \{a, b\}, F = \{f\}$ $\Delta = \{((s, a, e), (s, a)), ((s, b, e), (s, b)), ((s, e, e), (f, e)), ((f, a, a), (f, e)), ((f, b, b), (f, e))\}$

$$(s, abba, e) \vdash_{M} (s, bba, a) \vdash_{M} (s, ba, ba) \vdash_{M} (f, ba, ba) \vdash_{M} (f, a, a) \vdash_{M} (f, e, e) - \text{accept}$$
 $(s, abba, e) \vdash_{M} (f, abba, e) - \text{fail}$
 $(s, abba, e) \vdash_{M} (s, bba, a) \vdash_{M} (f, bba, a) - \text{fail}$

Try to verify that $aabba \notin L$, $abbaa \notin L$.

More example

 $L = \{w \in a, b^* : w \text{ has the same number of a's and b's}\}$

- $K = \{s, q, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, F = \{f\}.$

 $(s, abbbaa, e) \vdash_M \dots$