31251 - Data Structures and Algorithms Week 3, Autumn 2020

Xianzhi Wang

In this week's episode:

- Vectors & List
- Templates
- Iterators
- Big-O notation for algorithm analysis

vector and list in C++ STL

- Arrays are easy to use but unsuitable to be changed dynamically.
- C++ offers two alternative data structures:
 - vector: #include <vector>
 - list: #include <list>
- Reference: https://thispointer.com/ difference-between-vector-and-list-in-c/

A Comparison

- array
 - Memory: fixed size, contiguous
 - Features: random access, shift upon deletion
- vector
 - Memory: dynamic size, contiguous
 - Implementation: based on array
 - Features: random access, shift upon deletion
- list
 - Memory: dynamic size, non-contiguous
 - Implementation: based on doubly linked list
 - Features: efficient insertion and deletion
- Practice 1

Containers are objects that store data.

- Simple containers:
 - pair: simple 2-tuple store
- Sequence containers (ordered collection):
 - vector: dynamic array
 - deque: double-ended queue
 - list: doubly linked list
- Associative containers (unorder collection):
 - set: a mathematical set
 - map: key-value store
 - multiset, multimap: allow duplicated elements/keys
 - hash_set, hash_map, hash_multiset, hash_multimap: the above containers implemented using hash table.

Container Adaptors

Container Adaptors are classes that use an encapsulated object of a specific container class as its underlying container, providing a specific set of member functions to access its elements.

- queue: based on deque or list
- priority queue: based on vector or deque
- stack: based on deque, vector, or list

An example:

```
queue<int, list<int> > q;
```

Back to vector and list

- Functions used with vector and list:
 - Iterator: a means of enumerating all elements of the container.
 - Capacity: get or adjust the size of the container.
 - Element access: get an element at a specific position.
 - Modifier: add, remove, replace, or swap elements.
- References:
 - https://www.geeksforgeeks.org/vector-in-cpp-stl/
 - https://www.geeksforgeeks.org/list-cpp-stl/
- Practice 2

Templates

- Wait... what that thing in the angle brackets (<>)?
- If you've used generics in Java, this is the C++ version: templates!
- Templates provide a way to write certain types of code once:
 - If the code doesn't care about the types it's working with.
- So we can easily make each vector hold a different data type without rewriting the code.
- Practice 3

- Iterators (or limited pointers) are used to point at the memory addresses of STL containers.
- They are primarily used in sequence of numbers, characters, etc.
 - iterator: random access containers.
 - bidirectional iterator: non random access containers.
- They reduce the complexity and execution time of program.

Why use iterators?

- A flexible way to access data in containers that don't have obvious means of accessing all of the data (e.g., maps).
- STL algorithms defined in <algorithm> use iterators.

The gotchas?

- No boundary check.
- Can be invalidated if the underlying container is changed significantly.

Practice 4

Algorithm Analysis

If we have two algorithms that solve the same problem, what things are we interested in?

- Time Complexity: how long they take.
- Space Complexity: How much space they take up.

How do we reliably compare algorithms?

- Testing gives good information, but is limited to the cases you test and can be resource-intensive.
- How much of that information comes from the choice of computer, programming languages, or test data?

Big-O Notation

- How do we know what resources an algorithm will use for a huge number, or even an infinite number of inputs?
- We need a way of comparing algorithms using lower-bound, best estimate, or upper-bound measures.
- In practice, we are interested in the upper-bound of algorithms' time complexity, called big-O notation.

A Formal Definition

Given two functions f and g, we say f is in big-O of g (denoted by $f \in O(g)$) if:

$$\exists c \in \mathbb{R}^+, N \in \mathbb{N}$$
 such that $\forall n \geq N$, we have $f(n) \leq c \cdot g(n)$.

That means, given a big enough number n, f(n) is less than or equal to a constant times of g(n).

Some Examples

- f(n) = n, $g(n) = 2n \rightarrow f \in O(g)$.
- f(n) = n, $g(n) = n^2 \rightarrow f \in O(g)$.
- $f(n) = n^2$, $g(n) = n \rightarrow f \notin O(g)$ (but $g \in O(f)$).
- f(n) = 50n, $g(n) = n \rightarrow f \in O(g)$ (and $g \in O(f)$).
- $f(n) = \log n$, $g(n) = n \rightarrow f \in O(g)$.
- f(n) = n, $g(n) = 2^n \rightarrow f \in O(g)$.
- $f(n) = 23n^3$, $g(n) = 13n^4 \rightarrow f \in O(g)$.

- These can all be proved using a variety of techniques:
 - Induction
 - Algebraically
 - Limit based definitions.
- Leaving out the proofs, there are a couple of handy rules:
 - $c \cdot n^k \in O(n^{k+1})$ for any c and k.
 - $\log n \in O(n)$.
 - $f(n) + g(n) + h(n) + \ldots \in O(\max\{f(n), g(n), h(n), \ldots\}).$
 - You can always ignore constants, i.e., $c \cdot f(n) == f(n)$.

An Alternative Definition

lf

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

then $f \in O(g)$ (where $< \infty$ means any constant or $-\infty$).

Some Handy Names

Suppose k is a constant, then

- n is "linear".
- n^2 is "quadratic".
- n^3 is "cubic".
- log *n* is "logarithmic".
- $(\log n)^k$ for any k is "poly-logarithmic".
- n^k for any k is "polynomial".
- kⁿ for any k is "exponential".

We use f = O(n) to denote f has linear (time) complexity.

- Any complexity < O(n) is called "sub-linear".
- Linear and sub-linear algorithms have been a constant pursuit in algorithmic research.

How Does This Help Us?

- Back to the two algorithms A and B:
 - If we can work out functions that describe the running time, we can now compare them and decide which is the fastest (in the long run).
- Given an input size n, if the running time of \mathcal{A} is $T_{\mathcal{A}}(n) = n^2$, and the running time of \mathcal{B} is $T_{\mathcal{B}}(n)$, then we can work out that $T_{\mathcal{B}} \in O(T_{\mathcal{A}})$, i.e., \mathcal{B} is the faster algorithm asymptotically.
- \mathcal{A} 's running time is always longer for large enough inputs.

Algorithmic Analysis

- How do we get these functions then?
- In the abstract sense, running time is really the number of steps the algorithm takes for a given input size.
 - This abstracts out programming languages and computers.
- So "all" we need to do is count the number of steps.

A Simple Example

```
int main()
{
    a = 1;
    b = 2;
    c = a + b;
    cout << c;
}</pre>
```

This code does the same thing for any "input" (it doesn't really take any), so T(n) = 4.

A Less Simple Example

```
void printArray(int a[], size n){
  for (int i = 0; i < n; i++){
    cout << a[i];
  }
}</pre>
```

We initialise i once and then do n iterations, each

- checking whether i is large enough to stop,
- 2 printing something out, and
- 3 adding one to i.

Assuming printing is one step, $T(n) = 1 + 3n \in O(n)$.

```
for (int i = 0; i < n; i++){
  for (int j = 0; j < n; j++){
    cout << i << " " << j;
  }
}</pre>
```

For the outer loop, we have

1 initialisation and n iterations;

Each outer iteration has an inner loop, each having

- 1 initialisation and n iterations; and
- 1 printing for each inner iteration.

Therefore,
$$T(n) = (n+1) \cdot (n+1) \cdot 1 = n^2 + 2n + 1 \in O(n^2)$$
.

We care about which algorithm's time consumption grows faster:

1
$$O(n^k) < O(n^{k+c})$$
, s.t., $c > 0$

2
$$O(\log n) < O(n^k)$$
, s.t., $k > 0$

3
$$O(n^k) < O(c^n)$$
, s.t., $k \ge 0, c > 1$

4
$$O((\log n)^k) < O(n \log n)$$
, s.t., $k \ge 0$

Based on the 2nd rule, we have:

6
$$O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^2 \log n) < \cdots$$

Some Other Properties and Notations

- O(⋅) is transitive:
 - If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.
- Equivalence relation:
 - If $f \in O(g)$ and $g \in O(f)$, then $f \in \Theta(g)$ (or $g \in \Theta(f)$).
- The opposite of big-O:
 - If $f \in O(g)$, then $g \in \Omega(f)$.
- Variants of notations:
 - o replaces O if we use < (not \le) in the definition (slide# 13).
 - ω replaces Ω if we use > (not \ge) in its definition.