## Embedded Systems Architecture

Session #5

#### The Embedded Computing Platform

- CPU Bus Structures
- Memory Devices
- Direct Memory Access (DMA)
- I/O Devices
- Designing with Microprocessors
- Development and Debugging
- Manufacturing Testing

#### **CPU Bus Structures**

- Consist of a Data bus, an Address bus, Control signals, and Status signals.
- Control signals include READ, WRITE, CLOCK, Interrupts, et cetera.
- Status signals (if any) in READY, Data
   Acknowledge, Interrupt Acknowledge, et cetera.
- May be sole master or multi-master.

## CPU Bus Structure Example



### Memory Devices

- Organization
- Read-Only Memories (ROMs)
- Random-Access Memories (RAMS)

## Memory Device Organization



#### Read-only memories (ROMs)

- Non-volatile
- Mask ROMS
- One-Time-Programmable (OTP) ROMs
- Erasable ROMs
- Flash memory

### Flash Memory

- Block erase and write.
- NAND
  - Greater endurance (1,000,000 cycles for NAND vs. 100,000 cycles for NOR).
  - Block read access.
  - Faster write.
- NOR
  - Random access read.

#### Random access memories (RAMS)

- Volatile (typically)
- Static RAMs
  - Asynchronous
  - Synchronous Burst
- Dynamic RAMs
  - Asynchronous
  - Synchronous
  - Double Data Rate (DDR)

## Static RAMs (SRAMs)



## Dynamic RAMs (DRAMs)



#### Direct Memory Access (DMA)

- Temporary Bus master.
- Transfers data between or amongst I/O and memory.
- Must be initialized by CPU.
- Transfer can be initiated by CPU or I/O.
- Can interrupt CPU upon completion.

## I/O Devices

- Timers & Counters
- Communications
- Analog Interface
- Mechanical Interface
- Switches & Keyboards
- Displays

## Designing with Microprocessors



 In designing an embedded system architecture, we must juggle the requirements with different elements of hardware and software technology.

#### Designing with Microprocessors

- System Architecture
  - Software Partition
  - Hardware Partition
- Platform issues
  - Processor choice
  - Bus choice:
    - ISA
    - Peripheral Component Interconnect (PCI)
    - PCI Express (PCIe)
    - VIMEbus
    - PC/104

#### Development

- Development Environments
  - Custom collection of development tools.
  - Integrated Development Environments (IDEs).
- Host and target
  - Same.
  - Same CPU but different target hardware.
  - Totally different from each other.

#### Debugging

- Target contains own facilities.
  - Display & keyboard.
  - Non-volatile storage for diagnostic messages.
- Target contains hooks.
  - DAC ports for display of internal data.
  - JTAG port for ICE.
  - Logical analyzer connection port.
- Target is simulated.

## Manufacturing Testing

- Built-In-Test (BIT) facilities.
  - Self test software.
  - Sanity checking hardware.
- <a href="#">ITAG</a> boundary scan.
- Anything that might be used for development debugging could also be used for manufacturing test.

## JTAG Boundary Scan

 Serial interface standard which allows for reading or controlling any pin within the scan chain.



#### Lab Session #5



My Design Project
 Requirements
 Model

# My Design Project Requirements <u>Model</u>