The modeling of the Robust Model

Amirreza Bagherzadehkhorasani

Wrote in: 3/12/2019

Introduction

In this exercise we are going to model the MDF supply chain. We assume that there are 3 already established factories and there exists 10 potential places to establish distribution center. We also assume that all 30 province are the customer of us and there are 20 probable demand scenario which may happen in real world. In Section1 we are going to describe the notation we use next in section 2 we model the problem with Mulvey and leung method and in the final section we compare the answer of the 2 stage stochastic programming with the Robust solutions we get here.

1 Notation Clearance

In this part all the notations that are going to be used are described. Note that subscripts are the sets that the variables and parameters are described in.

1.1 Sets

i: factory index

i: Distribution center index

k: customer zone index

s: scenario index

s': also scenario index

1.2 Parameters

 d_{ks} : demand of customer k under scenario s

 c_{ij} : transportation cost of unit product from factory i to DC j

 a_{jk} : transportation cost of unit product from DC j to customer zone k

 b_k : shortage costs

 λ : how important it is for us to decrease the expected objective

 γ : how important it is for us to decrease the variance of objective values

 ω : how bad it is not to satisfy constraints

 g_i : fixed cost of opening cost

 cw_i : capacity of factory i

 cv_i : capacity of DC j

 π_s : probability of occurrence of scenario s

 b_k : shortage costs

1.3 Variables

 x_{ijs} : amount of products shipped from factory i to DC j under scenario s

 u_{iks} : amount of products shipped from DC j to customer zone k under scenario s

 ξ_s : excess of a constraint

 \mathcal{O}_s : objective function for each senario

 h_s : A variable to monitor the variance ish...

 y_i : binary variable representing activation of DC

Z: Objective

2 Modeling

In this part we use both mulvey and leung models to give our model some robustness in facing uncertainty.

2.1 Mulvey

$$\min Z := \lambda \mathbb{E}(\mathcal{O}_s) + \gamma Var(\mathcal{O}_s) + \omega \sum_{s \in S} \pi_s \xi_s \tag{1}$$

$$\sum_{i} u_{jks} + \xi_s \ge d_{ks}; \qquad \forall k, s \tag{3}$$

$$\sum_{i} x_{ijs} = \sum_{k} u_{jks} \tag{4}$$

$$\sum_{i} x_{ijs} \le c w_i \tag{5}$$

$$\sum_{i} x_{ijs} \le c y_j * y_j \tag{6}$$

$$\mathcal{O}_s = \sum_j g_j y_j + \sum_{i,j} c_{ij} x_{ijs} + \sum_{j,k} a_{jk} u_{jks}$$
 $\forall s$ (7)

2.2 Leung

$$\min Z := \lambda \mathbb{E}(\mathcal{O}_s) + \gamma \mathcal{O}_s - \sum_{s'} \pi_{s'} \mathcal{O}_{s'} + 2h_s + \omega \sum_{s \in S} \pi_s \xi_s$$
(8)

$$\sum_{i} u_{jks} + \xi_s \ge d_{ks}; \qquad \forall k, s \tag{10}$$

$$\sum_{i} x_{ijs} = \sum_{k} u_{jks}$$
 $\forall j, s$ (11)

$$\sum_{i} x_{ijs} \le c w_i \tag{12}$$

$$\sum_{i} x_{ijs} \le c y_j * y_j \tag{13}$$

$$\mathcal{O}_s = \sum_j g_j y_j + \sum_{i,j} c_{ij} x_{ijs} + \sum_{j,k} a_{jk} u_{jks}$$
 $\forall s$ (14)

$$0 \le \mathcal{O}_s - \sum_{s'} \pi_{s'} \mathcal{O}_{s'} + h_s \tag{15}$$

3 Solutions and its analysis

After solving both models in extreme conditions ($\lambda = 1, \gamma = 0, \omega = 1000000$ (almost infinite) we reach the same answer as we had from two stage stochastic modeling which validates our modeling. By decreasing ω it can be seen that the objective value will decrease since model will withdraw some demands in exchange of lowering the objective value which is one of the characteristics of realistic robust modeling.

4 Numerical Results

---- 177 VARIABLE z.L = 3817641.689 objective function va

---- 177 VARIABLE y.L binary variable representing activation of DC

4 1.000, 6 1.000, 7 1.000, 10 1.000

--- 177 VARIABLE x.L amount of products shipped from factory i to DC j unde r scenario s

	1	2	3	4	5	6
1.4	4678.000	4678.000	4678.000	4678.000	4678.000	4678.000
1.6	3889.000	3889.000	3889.000	3853.987	3600.988	3888.106
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000
1.10	3560.984		3687.984			4030.878
3.10		3907.984		3603.996	3839.996	
+	7	8	9	10	11	12
1.4	4678.000	4678.000	4678.000	4678.000	4678.000	4678.000
1.6	3390.984	3636.984	3568.996	3214.988	3889.000	3610.987
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000
1.10		4031.000		3849.996		
3.10	4031.000		3455.987		3401.984	3371.996
+	13	14	15	16	17	18

Figure 1: extreme condition on Mulvey

 	175 VARIAB	LE z.L		= 3817641.	950 objecti lue	ve function va	
	175 VARIAB	LE y.L bina	ry variable	representing	activation	of DC	
4 1.000, 6 1.000, 7 1.000, 10 1.000							
	175 VARIAB		nt of produc enario s	ts shipped f	from factory	i to DC j unde	
	1	2	3	4	5	6	
1.4	4678.000	4678.000	4678.000	4678.000	4678.000	4678.000	
					3889.000		
1.7		3966.000					
1.10						4030.000	
3.10	3561.000	3908.000	3688.000	3569.000	3552.000		
+	7	8	9	10	11	12	
1.4	4678.000	4678.000	4678.000	4678.000	4678.000	4678.000	
1.6	3889.000	3889.000	3889.000	3889.000	3889.000	3889.000	
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000	
1.10	3533.000	3779.000		3176.000	3402.000		
3.10			3136.000			3094.000	
+	13	14	15	16	17	18	
1.4	4678.000	4678.000	4678.000	4678.000	4678.000	4678.000	
1.6	3889.000	3889.000	3889.000	3889.000	3889.000	3889.000	
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000	
1.10	3441.000	3580.000	3574.000				
3.10				3773.000	3818.000	3555.000	

Figure 2: extreme condition on Leung

---- 177 VARIABLE z.L = 3749899.863 objective function value
---- 177 VARIABLE y.L binary variable representing activation of DC

2 1.000, 4 1.000, 7 1.000, 9 1.000

---- 177 VARIABLE x.L amount of products shipped from factory i to DC j unde r scenario s

	1	2	3	4	5	6	
1.2				3000.113		2995.649	
1.4	4624.106	4678.000	4670.445	4678.000	4678.000	4670.881	
1.7	3966.000	3966.000	3960.310	3966.000	3966.000	3960.649	
1.9	4402.106	4456.000	4448.445	4456.000	4456.000	4448.881	
2.2	2983.035	3001.000	2995.310		3000.593		
3.2	17.965		5.690		0.407	5.351	
3.4	50.394		7.555			7.119	
3.7			5.690			5.351	
3.9	50.394		7.555			7.119	
+	7	8	9	10	11	12	
1.2	2985.981				2882.173	2558.621	
1.4	4678.000	4678.000	4293.952	4678.000	4678.000	4678.000	
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000	
1.9	4456.000	4456.000	4455.952	4456.000	4456.000	4456.000	

Figure 3: Mulvey's solution for $\lambda = 1, \gamma = 1, \omega = 1000$

}	175 VARIAB	LE z.L		= 3750589	.625 object:	ive function va
	175 VARIAB	LE y.L bina	ry variable	representin	g activation	of DC
1 1.000	, 2 1.00	0, 7 1.00	0, 8 1.00	0		
	175 VARIAB		nt of produc enario s	ts shipped	from factory	i to DC j unde
	1	2	3	4	5	6
1.1		4067.000 3001.000		4067.000	4067.000	4067.000
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000
2.2				3001.000		3001.000
	4901.000	4901.000	4901.000			
3.8				4901.000	4901.000	4901.000
+	7	8	9	10	11	12
					4067.000	4067.000
		3001.000				
1.7	3966.000	3966.000	3966.000	3966.000		3966.000
2.2					3001.000	3001.000
	4901.000	4901.000	4855.262	4893.042	4601 000	4000 700
3.8					4901.000	4899.729
+	13	14	15	16	17	18
1.1	4067.000	4067.000 3001.000	4067.000	4067.000	4067.000 3001.000	4067.000
1.7	3966.000	3966.000	3966.000	3966.000	3966.000	3966.000
2.2	3001.000		3001.000	3001.000		3001.000
2.8		4901.000			4901.000	

Figure 4: Leung's solution for $\lambda = 1, \gamma = 1, \omega = 10000$