customer-churn-IBM-dataset(Predictive Model)

May 16, 2025

1 Introduction

2 Telco Customer Churn Analysis: IBM Dataset

This project analyzes customer churn data from a fictional telecommunications company that provided home phone and Internet services to 7,043 customers in California during Q3. Also this project creates a predictive model which predicts chances of customer churn. Conducted in a Jupyter Notebook, the project involves scoping, cleaning, analyzing, and visualizing the data to uncover underlying trends and then using it for Predictive ML model.

Through exploratory data analysis—using correlation matrices, chi-square tests, and other statistical methods—we seek to answer key questions, including:

- What is the most popular reason for customers canceling their subscription?
- When do cancellations most commonly occur?
- Are the correlations between these factors statistically significant?
- How do monthly charges affect the overall duration of subscriptions?
- How does the type of subscription contract influence churn? Whats is the most common month to cancel the subscription?

Additional questions and insights will also be addressed as part of this comprehensive analysis.

Data sources:

Telco_customer_churn.xlsx was provided by **IBM** This dataset is detailed in: https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2019/07/11/telco-customer-churn-1113

Downloaded from: https://community.ibm.com/accelerators/?context=analytics&query=telco%20churn&type=D

The data for this project is *inspired* by real data.

2.1 Import Python Modules

Here are the primary modules that will be used in this project:

```
[409]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import plotly.express as px
import scipy.stats as stats
```

import statsmodels.api as sm
%matplotlib inline

2.2 Getting data to know

Data Description 7043 observations with 33 variables

CustomerID: A unique ID that identifies each customer.

Count: A value used in reporting/dashboarding to sum up the number of customers in a filtered set.

Country: The country of the customer's primary residence.

State: The state of the customer's primary residence.

City: The city of the customer's primary residence.

Zip Code: The zip code of the customer's primary residence.

Lat Long: The combined latitude and longitude of the customer's primary residence.

Latitude: The latitude of the customer's primary residence.

Longitude: The longitude of the customer's primary residence.

Gender: The customer's gender: Male, Female

Senior Citizen: Indicates if the customer is 65 or older: Yes, No

Partner: Indicate if the customer has a partner: Yes, No

Dependents: Indicates if the customer lives with any dependents: Yes, No. Dependents could be children, parents, grandparents, etc.

Tenure Months: Indicates the total amount of months that the customer has been with the company by the end of the quarter specified above.

Phone Service: Indicates if the customer subscribes to home phone service with the company: Yes, No

Multiple Lines: Indicates if the customer subscribes to multiple telephone lines with the company: Yes, No

Internet Service: Indicates if the customer subscribes to Internet service with the company: No, DSL, Fiber Optic, Cable.

Online Security: Indicates if the customer subscribes to an additional online security service provided by the company: Yes, No

Online Backup: Indicates if the customer subscribes to an additional online backup service provided by the company: Yes, No

Device Protection: Indicates if the customer subscribes to an additional device protection plan for their Internet equipment provided by the company: Yes, No

Tech Support: Indicates if the customer subscribes to an additional technical support plan from the company with reduced wait times: Yes, No

Streaming TV: Indicates if the customer uses their Internet service to stream television programing from a third party provider: Yes, No. The company does not charge an additional fee for this service.

Streaming Movies: Indicates if the customer uses their Internet service to stream movies from a third party provider: Yes, No. The company does not charge an additional fee for this service.

Contract: Indicates the customer's current contract type: Month-to-Month, One Year, Two Year.

Paperless Billing: Indicates if the customer has chosen paperless billing: Yes, No

Payment Method: Indicates how the customer pays their bill: Bank Withdrawal, Credit Card, Mailed Check

Monthly Charge: Indicates the customer's current total monthly charge for all their services from the company.

Total Charges: Indicates the customer's total charges, calculated to the end of the quarter specified above.

Churn Label: Yes = the customer left the company this quarter. No = the customer remained with the company. Directly related to Churn Value.

Churn Value: 1 = the customer left the company this quarter. 0 = the customer remained with the company. Directly related to Churn Label.

Churn Score: A value from 0-100 that is calculated using the predictive tool IBM SPSS Modeler. The model incorporates multiple factors known to cause churn. The higher the score, the more likely the customer will churn.

CLTV: Customer Lifetime Value. A predicted CLTV is calculated using corporate formulas and existing data. The higher the value, the more valuable the customer. High value customers should be monitored for churn.

Churn Reason: A customer's specific reason for leaving the company. Directly related to Churn Category.

```
[413]: db=pd.read_excel('Telco_customer_churn.xlsx')
db
```

[413]:		CustomerID	Count	Country	State	City	Zip Code	\
	0	3668-QPYBK	1	United States	California	Los Angeles	90003	
	1	9237-HQITU	1	United States	California	Los Angeles	90005	
	2	9305-CDSKC	1	United States	California	Los Angeles	90006	
	3	7892-P00KP	1	United States	California	Los Angeles	90010	
	4	0280-XJGEX	1	United States	California	Los Angeles	90015	
	•••	•••		•••	•••			
	7038	2569-WGERO	1	United States	California	Landers	92285	
	7039	6840-RESVB	1	United States	California	Adelanto	92301	
	7040	2234-XADUH	1	United States	California	Amboy	92304	
	7041	4801-JZAZL	1	United States	California	Angelus Oaks	92305	
	7042	3186-AJIEK	1	United States	California	Apple Valley	92308	

```
Lat Long
                                Latitude
                                            Longitude
                                                        Gender
0
      33.964131, -118.272783
                               33.964131 -118.272783
                                                          Male
1
       34.059281, -118.30742
                               34.059281 -118.307420
                                                        Female
2
      34.048013, -118.293953
                               34.048013 -118.293953
                                                        Female
3
      34.062125, -118.315709
                               34.062125 -118.315709
                                                        Female
      34.039224, -118.266293
4
                               34.039224 -118.266293
                                                          Male
7038
      34.341737, -116.539416
                               34.341737 -116.539416
                                                        Female
      34.667815, -117.536183
7039
                               34.667815 -117.536183
                                                          Male
7040
      34.559882, -115.637164
                                                        Female
                               34.559882 -115.637164
         34.1678, -116.86433
7041
                                                        Female
                               34.167800 -116.864330
7042 34.424926, -117.184503
                               34.424926 -117.184503
                                                          Male
            Contract Paperless Billing
                                                      Payment Method
0
      Month-to-month
                                     Yes
                                                        Mailed check
1
      Month-to-month
                                     Yes
                                                    Electronic check
2
      Month-to-month
                                     Yes
                                                    Electronic check
3
      Month-to-month
                                     Yes
                                                    Electronic check
4
      Month-to-month
                                     Yes
                                          Bank transfer (automatic)
7038
            Two year
                                     Yes
                                          Bank transfer (automatic)
7039
                                     Yes
                                                        Mailed check
            One year
7040
            One year
                                     Yes
                                            Credit card (automatic)
      Month-to-month
                                     Yes
                                                    Electronic check
7041
7042
            Two year
                                     Yes
                                          Bank transfer (automatic)
      Monthly Charges Total Charges Churn Label Churn Value Churn Score
                                                                             CLTV
0
                 53.85
                              108.15
                                              Yes
                                                             1
                                                                             3239
                                                                         86
1
                 70.70
                              151.65
                                              Yes
                                                             1
                                                                         67
                                                                             2701
2
                                                             1
                                                                             5372
                99.65
                               820.5
                                              Yes
                                                                         86
3
                104.80
                                                                             5003
                             3046.05
                                              Yes
                                                             1
                                                                         84
4
                103.70
                                                                             5340
                              5036.3
                                                             1
                                                                         89
                                              Yes
                                                             •••
7038
                 21.15
                              1419.4
                                               No
                                                             0
                                                                         45
                                                                             5306
7039
                84.80
                              1990.5
                                                             0
                                                                         59
                                                                             2140
                                               No
7040
                103.20
                              7362.9
                                               No
                                                             0
                                                                         71
                                                                             5560
7041
                 29.60
                              346.45
                                                             0
                                                                             2793
                                               Nο
                                                                         59
7042
                105.65
                              6844.5
                                               No
                                                             0
                                                                         38
                                                                             5097
                        Churn Reason
0
       Competitor made better offer
1
                               Moved
2
                               Moved
3
                               Moved
4
      Competitor had better devices
7038
                                  NaN
```

7039	NaN
7040	NaN
7041	NaN
7042	NaN

[7043 rows x 33 columns]

Check for Null variables

Column

[415]: db.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 33 columns):

Non-Null Count Dtype

0	CustomerID	7043 non-null	object
1	Count	7043 non-null	int64
2	Country	7043 non-null	object
3	State	7043 non-null	object
4	City	7043 non-null	object
5	Zip Code	7043 non-null	int64
6	Lat Long	7043 non-null	object
7	Latitude	7043 non-null	float64
8	Longitude	7043 non-null	float64
9	Gender	7043 non-null	object
10	Senior Citizen	7043 non-null	object
11	Partner	7043 non-null	object
12	Dependents	7043 non-null	object
13	Tenure Months	7043 non-null	int64
14	Phone Service	7043 non-null	object
15	Multiple Lines	7043 non-null	object
16	Internet Service	7043 non-null	object
17	Online Security	7043 non-null	object
18	Online Backup	7043 non-null	object
19	Device Protection	7043 non-null	object
20	Tech Support	7043 non-null	object
21	Streaming TV	7043 non-null	object
22	Streaming Movies	7043 non-null	object
23	Contract	7043 non-null	object
24	Paperless Billing	7043 non-null	object
25	Payment Method	7043 non-null	object
26	Monthly Charges	7043 non-null	float64
27	Total Charges	7043 non-null	object
28	Churn Label	7043 non-null	object
29	Churn Value	7043 non-null	int64
30	Churn Score	7043 non-null	int64
31	CLTV	7043 non-null	int64

32 Churn Reason 1869 non-null object

dtypes: float64(3), int64(6), object(24)

memory usage: 1.8+ MB

Data Cleanning and Preprocessing

[417]:	db.isnull().sum()	1
		2

[417]:	CustomerID	0
	Count	0
	Country	0
	State	0
	City	0
	Zip Code	0
	Lat Long	0
	Latitude	0
	Longitude	0
	Gender	0
	Senior Citizen	0
	Partner	0
	Dependents	0
	Tenure Months	0
	Phone Service	0
	Multiple Lines	0
	Internet Service	0
	Online Security	0
	Online Backup	0
	Device Protection	0
	Tech Support	0
	Streaming TV	0
	Streaming Movies	0
	Contract	0
	Paperless Billing	0
	Payment Method	0
	Monthly Charges	0
	Total Charges	0
	Churn Label	0
	Churn Value	0
	Churn Score	0
	CLTV	0
	Churn Reason	5174
	dtype: int64	

So only data missing is in Churn Reason which tells us that 5174 kept their subscription while the rest didn't.

So,let's start with data tidying. I will check some columns in the table that in our case can be irrelevant and take them out of dataframe.

```
[423]: db['Count'].value_counts()
[423]: Count
       1
            7043
       Name: count, dtype: int64
[425]: db=db.drop(columns='Count')
[427]: db['Country'].unique()
[427]: array(['United States'], dtype=object)
      So each customer is from US which makes this column not important in our analysis so i drop it
[430]: db=db.drop(columns='Country')
[432]: db['State'].unique()
[432]: array(['California'], dtype=object)
      Same thing drop it
[435]: db=db.drop(columns='State')
[437]: db['Senior Citizen'].unique()
[437]: array(['No', 'Yes'], dtype=object)
[439]: db['Total Charges'].unique()
       print(db['Total Charges'].unique())
       unique_values = db['Total Charges'].unique()
      [108.15 151.65 820.5 ... 7362.9 346.45 6844.5]
[441]: | # Convert 'Total Charges' to numeric, errors='coerce' will turn non-numeric
        ⇔values into NaN
       db['Total Charges'] = pd.to numeric(db['Total Charges'], errors='coerce')
       # Handle missing values in Total Charges (NaNs)
       db['Total Charges'] = db['Total Charges'].fillna(db['Total Charges'].median())
      Finally, we can see all possible reasons for subscription cancellation
[444]: print(db["Churn Reason"].unique())
      ['Competitor made better offer' 'Moved' 'Competitor had better devices'
       'Competitor offered higher download speeds'
       'Competitor offered more data' 'Price too high' 'Product dissatisfaction'
       'Service dissatisfaction' 'Lack of self-service on Website'
       'Network reliability' 'Limited range of services'
       'Lack of affordable download/upload speed' 'Long distance charges'
```

Now, I will create visualization of missing data, just to make point visible with which types of data I will work

```
[447]: plt.figure(figsize=(10, 6))
    sns.heatmap(db.isnull(), cbar=False, cmap='viridis')
    plt.title('Missing Value Visualization')
    plt.show()
```


Quickly understanding the distribution and central characteristics of this data

[450]: db.describe()

[450]:		Zip Code	Latitude	Longitude	Tenure Months	Monthly Charges	\
	count	7043.000000	7043.000000	7043.000000	7043.000000	7043.000000	
	mean	93521.964646	36.282441	-119.798880	32.371149	64.761692	
	std	1865.794555	2.455723	2.157889	24.559481	30.090047	
	min	90001.000000	32.555828	-124.301372	0.000000	18.250000	
	25%	92102.000000	34.030915	-121.815412	9.000000	35.500000	

^{&#}x27;Extra data charges' "Don't know" 'Poor expertise of online support'

^{&#}x27;Poor expertise of phone support' 'Attitude of service provider'

^{&#}x27;Attitude of support person' 'Deceased' nan]

50% 75%	93552.000000 95351.000000	36.391777 38.224869	-119.730885 -118.043237	29.000000 55.000000	70.350000 89.850000
max	96161.000000	41.962127	-114.192901	72.000000	118.750000
	Total Charges	Churn Value	Churn Score	CLTV	
count	7043.000000	7043.000000	7043.000000	7043.000000	
mean	2281.916928	0.265370	58.699418	4400.295755	
std	2265.270398	0.441561	21.525131	1183.057152	
min	18.800000	0.000000	5.000000	2003.000000	
25%	402.225000	0.000000	40.000000	3469.000000	
50%	1397.475000	0.000000	61.000000	4527.000000	
75%	3786.600000	1.000000	75.000000	5380.500000	
max	8684.800000	1.000000	100.000000	6500.000000	

I want to check scatter plot of monthly charges and total charges how does it look like

```
[453]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='Monthly Charges', y='Total Charges', data=db)
    plt.title('Scatter Plot of Monthly Charges vs. Total Charges')
    plt.xlabel('Monthly Charges')
    plt.ylabel('Total Charges')
    plt.show()
```


I want to check all kinds of different distributions using histograms

Now i want to plot most popular reason of cancelling subscription:

```
[459]: churn_reason_counts = db['Churn Reason'].dropna().value_counts()

plt.figure(figsize=(10, 6))
bars = plt.bar(churn_reason_counts.index, churn_reason_counts.values,

color='skyblue')
```

```
plt.xlabel("Churn Reason")
plt.ylabel("Count")
plt.title("Most Popular Churn Reasons")
plt.xticks(rotation=90)
total_count = churn_reason_counts.sum()
for bar, count in zip(bars, churn_reason_counts.values):
    height = bar.get_height()
    percentage = (count / total_count) * 100
    plt.text(
        bar.get_x() + bar.get_width() / 2,
        height / 2,
        f'{percentage:.2f}%',
        ha='center',
        va='center',
        color='white',
        fontsize=10,
        rotation=90
    )
plt.tight_layout()
plt.show()
```


We can clearly see why we losing customers Let's find out about which amounts in losses it could lead

```
[462]: #averages
avg_total_charges = db['Total Charges'].mean()
avg_monthly_charges = db['Monthly Charges'].mean()

print("Average Total Charges:", avg_total_charges,"$")
print("Average Monthly Charges:", avg_monthly_charges,"$")

null_percentage = (db["Churn Reason"].isnull().sum() / len(db)) * 100
cancel=(len(db)-db["Churn Reason"].isnull().sum())
print("Average loss on Monthly Charges:",cancel*avg_monthly_charges,"$")
print("Average loss on Total Charges:",cancel*avg_total_charges,"$")
```

```
Average Total Charges: 2281.9169281556156 $
Average Monthly Charges: 64.76169246059918 $
Average loss on Monthly Charges: 121039.60320885986 $
Average loss on Total Charges: 4264902.738722846 $
```

We loosing such amount of money because of Attitude of support person as a reason number 1! then we have: competitors,download speeds,less data,attitude of service provider,product dissatisfaction,service dissatisfaction,price etc.

Generating Map with spread of each customer to see which types of contract are most likely to become a churn value using plotly

```
[466]: def generate map trace(data, color, width, height, title):
           fig = px.scatter_mapbox(
               data,
               lat='Latitude',
               lon='Longitude',
               color=color,
               hover_name='CustomerID',
               zoom=4,
               height=height,
               width=width,
               title=title
           )
           fig.update layout(mapbox style="open-street-map")
           fig.show()
       churn_value = pd.DataFrame()
       churn_value["Churn Value"] = db["Churn Value"].map({0: "No Churn", 1: "Churn"})
```

Map with No Churn Values

Map with Only Churn Values

From this map is clearly visible that Customers with two year and one year contracts almost never canceling and provide company with most amount of money which is obvious.

```
[469]: # Counting customers who complete the purchase versus those who do not
      churn counts = db['Churn Label'].value counts()
      print("Count of customers who complete the purchase vs those who churn:")
      print(churn counts)
      # Calculate average spending for customers based on churn status
      average_charges_by_churn = db.groupby('Churn Label')['Total Charges'].mean()
      print("\nAverage spending by churn status:")
      print(average_charges_by_churn)
      # Calculate average spending based on tenure for loyal and non-loyal customers
       →to see dependence
      average_charges_by_tenure = db.groupby(['Churn Label', 'Tenure Months'])['Total_
        ⇔Charges'].mean().reset index()
      print("\nAverage spending by tenure for churned and non-churned customers:")
      print(average_charges_by_tenure)
      #Creating line plot based on that info
      db = db.replace([np.inf, -np.inf], np.nan)
      plt.figure(figsize=(12, 8))
      sns.lineplot(data=average_charges_by_tenure, x='Tenure Months', y='Total∪
        →Charges', hue='Churn Label')
      plt.title('Average Spending by Tenure for Churned and Non-Churned Customers')
      plt.xlabel('Tenure')
      plt.ylabel('Average Spending (Total Charges)')
      plt.legend(title='Churn Status')
      plt.show()
      Count of customers who complete the purchase vs those who churn:
      Churn Label
      Nο
             5174
      Yes
             1869
      Name: count, dtype: int64
      Average spending by churn status:
      Churn Label
      Nο
             2552.882494
      Yes
             1531.796094
      Name: Total Charges, dtype: float64
      Average spending by tenure for churned and non-churned customers:
          Churn Label Tenure Months Total Charges
```

0	No	0	1397.475000
1	No	1	37.909013
2	No	2	95.997391
3	No	3	152.135849
4	No	4	182.525806
	•••	•••	•••
140	Yes	68	6720.550000
140 141	Yes Yes	68 69	6720.550000 6887.931250
141	Yes	69	6887.931250
141 142	Yes Yes	69 70	6887.931250 6803.995455

[145 rows x 3 columns]

We can see that loyal customers paying almost same amount as churned ones! It looks not that obvious, but to set up the contract they pay I assume some kind of fee which leads in huge spending on first month then it comesback to normal.

FInding out more about churned customers

```
[473]: # Filter for churned customers
churned_customers = db[db['Churn Label'] == 'Yes']
# average tenure in months for churned customers
```

Average Tenure Months for Churned Customers: 17.979133226324237 Most Popular Tenure Month for Churned Customers: 1 (380 occurrences)

That's very important it tells us that most customers leave in the first month of their month-to-month subscription because of the reasons above. Now, I can find out the correlation on this matter between the reasons, which will allow the company to fix it which potentially could lead to great success because as we can see even for churned customers, the average tenure months is almost 18!!! So that means if we can hold our new customers to more than 1 month that could lead to a higher probability of prolonging their stay up to 17 months and more! Which on average could lead to 2175081.6\$ in profit!

```
[476]: # Correlation Matrix
numeric_cols = db.select_dtypes(include=[np.number])
corr_matrix = numeric_cols.corr()
print("Correlation Matrix:")
print(corr_matrix)
# Plot a heatmap of correlation matrix
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Matrix")
plt.show()
```

Correlation Matrix:

Colletation Math	LIA.				
	Zip Code	Latitude	Longitude	Tenure Months	\
Zip Code	1.000000	0.895743	-0.784271	0.001041	
Latitude	0.895743	1.000000	-0.876779	-0.001631	
Longitude	-0.784271	-0.876779	1.000000	-0.001678	
Tenure Months	0.001041	-0.001631	-0.001678	1.000000	
Monthly Charges	-0.004596	-0.019899	0.024098	0.247900	
Total Charges	-0.001237	-0.010168	0.008977	0.825464	
Churn Value	0.003346	-0.003384	0.004594	-0.352229	
Churn Score	-0.002769	-0.007684	0.004260	-0.224987	
CLTV	-0.003562	0.000886	0.000485	0.396406	
	Monthly (Charges To	tal Charges	Churn Value	Chu

	Monthly Charges	Total Charges	Churn Value	Churn Score	\
Zip Code	-0.004596	-0.001237	0.003346	-0.002769	
Latitude	-0.019899	-0.010168	-0.003384	-0.007684	
Longitude	0.024098	0.008977	0.004594	0.004260	
Tenure Months	0.247900	0.825464	-0.352229	-0.224987	

Monthly Charges	1.000000	0.650864	0.193356	0.133754
Total Charges	0.650864	1.000000	-0.199037	-0.123948
Churn Value	0.193356	-0.199037	1.000000	0.664897
Churn Score	0.133754	-0.123948	0.664897	1.000000
CLTV	0.098693	0.341723	-0.127463	-0.079782

CLTV

Zip Code	-0.003562
Latitude	0.000886
Longitude	0.000485
Tenure Months	0.396406
Monthly Charges	0.098693
Total Charges	0.341723
Churn Value	-0.127463
Churn Score	-0.079782
CLTV	1.000000

From that we can see that Tenure months have a strong correlation between total charges and CLTV Monthly charges have strong correlation with Total charges Total charges have strong correlation between Tenure Months, Monthly charges and CLTV CLTV have medium correlation between Tenure Months and Total charges Churn Value and Churn Score are opposites of each other

```
[479]: # Chi-Square Test: Churn Reason vs Churn Label
       # contingency table
       contingency_table = pd.crosstab(db['Churn Reason'], db['Churn Label'])
       print("\nContingency Table (Churn Reason vs. Churn Label):")
       # Extracting count for yes
       counts = contingency table['Yes']
       total_count = counts.sum()
       # df with churn reason, count, and percentage
       df_counts = counts.reset_index()
       df_counts.columns = ['Churn Reason', 'Count']
       df_counts['Percentage'] = (df_counts['Count'] / total_count) * 100
       df_counts = df_counts.sort_values(by='Count', ascending=False)
       print("\nChurn Reasons with Count and Percentage:")
       print(df_counts)
       # chi-square test
       chi2, p, dof, expected = stats.chi2_contingency(contingency_table)
       print(f"\nChi-square Test (Churn Reason vs. Churn Label):")
       print(f" Chi-square Statistic: {chi2:.2f}")
       print(f" p-value: {p:.4f}")
       print(f" Degrees of Freedom: {dof}")
```

Contingency Table (Churn Reason vs. Churn Label):

Churn Reasons with Count and Percentage:

	Churn Reason	Count	Percentage
1	Attitude of support person	192	10.272873
4	Competitor offered higher download speeds	189	10.112360
5	Competitor offered more data	162	8.667737
7	Don't know	154	8.239700
3	Competitor made better offer	140	7.490637
0	Attitude of service provider	135	7.223114
2	Competitor had better devices	130	6.955591
14	Network reliability	103	5.510968
18	Product dissatisfaction	102	5.457464
17	Price too high	98	5.243446
19	Service dissatisfaction	89	4.761905

```
10
              Lack of self-service on Website
                                                   88
                                                         4.708400
8
                                                   57
                                                         3.049759
                           Extra data charges
13
                                        Moved
                                                   53
                                                         2.835741
11
                    Limited range of services
                                                   44
                                                         2.354200
                        Long distance charges
12
                                                   44
                                                         2.354200
9
    Lack of affordable download/upload speed
                                                         2.354200
                                                   44
16
             Poor expertise of phone support
                                                   20
                                                         1.070091
             Poor expertise of online support
15
                                                   19
                                                         1.016586
6
                                     Deceased
                                                    6
                                                         0.321027
Chi-square Test (Churn Reason vs. Churn Label):
  Chi-square Statistic: 0.00
  p-value: 1.0000
  Degrees of Freedom: 0
```

High p-value: Suggests that any differences are likely due to random variation, and we do not have enough evidence to conclude that an association exists.

```
[482]: #the Most Popular Tenure among Churned Customers
       churned_customers = db[db['Churn Label'] == 'Yes']
       most_popular_tenure = churned_customers['Tenure Months'].value_counts().idxmax()
       print(f"\nMost Popular Tenure Months among churned customers:
        →{most_popular_tenure}")
       db['Popular Tenure'] = (db['Tenure Months'] == most_popular_tenure)
       # contingency table
       contingency_table2 = pd.crosstab(db['Churn Reason'], db['Popular Tenure'])
       print("\nContingency Table (Churn Reason vs. Popular Tenure):")
       popular_tenure_df = db[db['Popular Tenure'] == True]
       # count of the occurrences
       churn_reason_counts = popular_tenure_df['Churn Reason'].value_counts().
        →reset_index()
       churn_reason_counts.columns = ['Churn Reason', 'Count']
       churned_customers = churned_customers.copy()
       churned_customers['Popular Tenure'] = (churned_customers['Tenure Months'] ==__
        →most_popular_tenure)
       print("Total churned customers with Popular Tenure True:

¬", churned customers['Popular Tenure'].sum())

       churn_reason_counts['Percentage'] = (churn_reason_counts['Count'] /__

→churned_customers['Popular Tenure'].sum()) * 100
```

Most Popular Tenure Months among churned customers: 1

Contingency Table (Churn Reason vs. Popular Tenure): Total churned customers with Popular Tenure True: 380

	Churn Reason	Count	Percentage
0	Attitude of support person	53	13.947368
1	Don't know	33	8.684211
2	Competitor made better offer	31	8.157895
3	Attitude of service provider	30	7.894737
4	Competitor offered higher download speeds	28	7.368421
5	Competitor had better devices	28	7.368421
6	Competitor offered more data	22	5.789474
9	Service dissatisfaction	21	5.526316
10	Price too high	21	5.526316
8	Network reliability	21	5.526316
7	Product dissatisfaction	21	5.526316
11	Lack of self-service on Website	17	4.473684
12	Moved	10	2.631579
13	Limited range of services	9	2.368421
14	Extra data charges	8	2.105263
15	Lack of affordable download/upload speed	8	2.105263
16	Poor expertise of phone support	6	1.578947
17	Long distance charges	6	1.578947
18	Poor expertise of online support	5	1.315789
19	Deceased	2	0.526316

Chi-square Test (Churn Reason vs. Popular Tenure):

Chi-square Statistic: 20.92

p-value: 0.3413

Degrees of Freedom: 19

A Chi-square Statistic of 20.92 is high which would suggest a large discrepancy. A p-value of 0.3413 is well above the common significance threshold of 0.05. This means that the observed differences

are likely due to random, and there isn't strong evidence to reject the null hypothesis.

From this Contingency Table we can clearly see that we can avoid some reasons of cancelation by training company employees, offer higher download speeds, offer more data, update current devices, add self services on website etc. Which will lead for longer subscription periods of customers!

So as we know that not fixing this issues lead to a losses of company monthly almost 25k\$ for customers who got dissatisfied at first month, and 125k\$ on average monthly!!!

```
[487]: print("Average loss on new customers:",churned_customers['Popular Tenure'].

sum()*avg_monthly_charges,"$")
```

Average loss on new customers: 24609.443135027686 \$

```
[489]: print("Average loss on Monthly Charges:",cancel*avg_monthly_charges,"$")
```

Average loss on Monthly Charges: 121039.60320885986 \$

Let's find out is there any proves that amount of monthly charges can affect the duration of subscription:

```
[492]: avg_monthly = db.groupby("Contract")["Monthly Charges"].mean()
       print("Average Monthly Charges by Contract Type:")
       print(avg_monthly)
       #monthly charges for each contract type
       month to month = db[db["Contract"] == "Month-to-month"]["Monthly Charges"]
       one_year = db[db["Contract"] == "One year"]["Monthly Charges"]
       two year = db[db["Contract"] == "Two year"]["Monthly Charges"]
       #one-way ANOVA test to compare the three groups
       f_stat, p_val = stats.f_oneway(month_to_month, one_year, two_year)
       print("\nANOVA Test Results (Monthly Charges by Contract):")
       print("F-statistic:", f_stat)
       print("p-value:", p_val)
       #checking if monthly Charges affect the duration of subscription
       #Pearson correlation between Monthly Charges and Tenure Months
       corr_coef = db['Monthly Charges'].corr(db['Tenure Months'])
       print("\nPearson Correlation between Monthly Charges and Tenure Months:", u
        ⇔corr coef)
       plt.figure(figsize=(10,6))
       sns.regplot(x='Monthly Charges', y='Tenure Months', data=db, __
        ⇔scatter_kws={'alpha':0.5})
       plt.title('Relationship between Monthly Charges and Tenure Months')
       plt.xlabel('Monthly Charges')
       plt.ylabel('Tenure Months')
```

```
plt.tight_layout()
plt.show()
#simple linear regression using OLS
X = db['Monthly Charges']
y = db['Tenure Months']
X = sm.add_constant(X) # Adds an intercept term to the model
model = sm.OLS(y, X).fit()
print("\nLinear Regression Results:")
print(model.summary())
# Since Monthly Charges starts around $55, re-center the predictor
db['Monthly Charges Centered'] = db['Monthly Charges'] - 55
# Fit the model using the centered predictor
X_centered = db['Monthly Charges Centered']
X_centered = sm.add_constant(X_centered)
model_centered = sm.OLS(y, X_centered).fit()
print("\nLinear Regression Results (Centered at $55):")
print(model_centered.summary())
Average Monthly Charges by Contract Type:
Contract
Month-to-month
               66.398490
One year
                 65.048608
Two year
                60.770413
Name: Monthly Charges, dtype: float64
ANOVA Test Results (Monthly Charges by Contract):
F-statistic: 20.828045474730278
p-value: 9.575270975935035e-10
Pearson Correlation between Monthly Charges and Tenure Months:
0.24789985628615008
```


Linear Regression Results:

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas Thu, 15	-	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.061 0.061 461.0 4.09e-99 -32315. 6.463e+04 6.465e+04
0.975]	coef	std err	t	P> t	[0.025
const 20.587 Monthly Charges 0.221	19.2675 0.2023	0.673 0.009	28.633 21.472	0.000	17.948 0.184
Omnibus: Prob(Omnibus):		7646.995 0.000	Durbin-Watso Jarque-Bera		1.662 513.504

Skew:	0.252	Prob(JB):	3.12e-112
Kurtosis:	1.777	Cond. No.	170.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Linear Regression Results (Centered at \$55):

OLS Regression Results

=======================================		=======		=======	======	
Dep. Variable:	Tenure Months	R-squar	ed:		0.061	
Model:	OLS	Adj. R-	squared:		0.061	
Method:	Least Squares	F-stati	stic:		461.0	
Date:	Thu, 15 May 2025	Prob (F	-statistic):		4.09e-99	
Time:	•	Log-Lik			-32315.	
No. Observations:	7043	AIC:		6	.463e+04	
Df Residuals:	7041	BIC:		_	.465e+04	
Df Model:	1	DIO.		O	.1000.01	
Covariance Type:	nonrobust					
======================================						
	coef	std err	t	P> t	[0.025	
0.975]	COGI	Stu ell	C	1 > 0	[0.025	
0.975]						
const	30.3960	0.298	101.973	0.000	29.812	
30.980	30.3900	0.290	101.973	0.000	29.012	
	1 0 0000	0.000	21.472	0.000	0.104	
Monthly Charges Cente	red 0.2023	0.009	21.472	0.000	0.184	
0.221						
Omnibus:	7646.995	Durbin-		=======	1.662	
Prob(Omnibus):	0.000	-	Bera (JB):	_	513.504	
Skew:	0.252	Prob(JB):	3	.12e-112	
Kurtosis:	1.777	Cond. N	ο.		33.3	
=======================================	==========		========	=======	======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

ANNOVA test which compares the means of the three contract types to see if at least one group has a significantly different mean monthly charge The F-statistic of about 20.83 indicates a significant difference in the variability between groups compared to the variability within groups. The p-value is extremely small (around 9.6e-10), which is much less than the common **significance level** 0.05 These results provide strong statistical evidence that the average monthly charges differ by contract type.

A correlation coefficient of approximately 0.25 indicates a positive but modest linear relationship

between monthly charges and the duration of the subscription. This suggests that there is a slight tendency for customers who pay lower monthly charges to have longer tenures, but the relationship isn't very strong. Many other factors likely influence how long customers stay.

OLS Model:

const = 19.27: If a customer were charged 55\$ per month a hypothetical scenario, the model predicts they would have a tenure of about 30.39 months. It serves as the baseline for the model. Coefficient for Monthly Charges 0.2023: For every \$1 increase in monthly charges, the model predicts an increase of about 0.2023 months in tenure. (Which is slightly suspicious)

R-squared 0.061: This tells us that approximately 6.1% of the variance in Tenure Months is explained by Monthly Charges.

Overall: At \$55 per month, the predicted customer tenure is about 30.4 months. For every extra dollar above \$55, customer tenure increases by about 0.20 months, on average.

The F-statistic and its associated very low p-value < 0.001 indicates that this relationship is statistically significant. Although the effect is statistically significant, monthly charges alone explain only a small portion of the variability in subscription duration. Other factors likely have a larger impact on tenure.

2.2.1 Building Predictive model

[496]:	dì	o.head()						
[496]:		CustomerID	City	Zip Code		Lat Long	Latitude	\
	0	3668-QPYBK	Los Angeles	90003	33.96413	1, -118.272783	33.964131	
	1	9237-HQITU	Los Angeles	90005	34.0592	81, -118.30742	34.059281	
	2	9305-CDSKC	Los Angeles	90006	34.04801	3, -118.293953	34.048013	
	3	7892-POOKP	Los Angeles	90010	34.06212	5, -118.315709	34.062125	
	4	0280-XJGEX	Los Angeles	90015	34.03922	4, -118.266293	34.039224	
		Longitude	Gender Senio	r Citizen	Partner D	ependents \		
	0	-118.272783	Male	No	No	No		
	1	-118.307420	Female	No	No	Yes		
	2	-118.293953	Female	No	No	Yes		
	3	-118.315709	Female	No	Yes	Yes		
	4	-118.266293	Male	No	No	Yes		
			Payment Metho	d Monthly	Charges T	otal Charges Ch	urn Label \	
	0		Mailed chec	k	53.85	108.15	Yes	
	1	El	ectronic chec	k	70.70	151.65	Yes	
	2	El	ectronic chec	k	99.65	820.50	Yes	
	3	El	ectronic chec	k	104.80	3046.05	Yes	
	4	Bank transf	er (automatic)	103.70	5036.30	Yes	
		Churn Value	Churn Score	CLTV		Churn Reaso	n Popular Te	nure \
	0	1	86	3239 Cor	mpetitor m	ade better offe	r F	alse
	1	1	67	2701		Move	d F	alse

```
2
                  1
                              86 5372
                                                                Moved
                                                                                False
      3
                                                                                False
                  1
                              84 5003
                                                                Moved
      4
                  1
                              89 5340 Competitor had better devices
                                                                                False
        Monthly Charges Centered
      0
                            -1.15
                            15.70
      1
                            44.65
      2
      3
                            49.80
      4
                            48.70
      [5 rows x 32 columns]
[498]: from sklearn.preprocessing import LabelEncoder, StandardScaler
      categorical_columns = [
           'Gender', 'Senior Citizen', 'Partner', 'Dependents', 'Phone Service',
           'Multiple Lines', 'Internet Service', 'Online Security', 'Online Backup',
           'Device Protection', 'Tech Support', 'Streaming TV', 'Streaming Movies',
           'Contract', 'Paperless Billing', 'Payment Method'
      1
      encoders = {}
      encoding_mappings = {}
      for column in categorical_columns:
          le = LabelEncoder()
          db[column] = le.fit_transform(db[column])
          encoders[column] = le
          mapping = {i: label for i, label in enumerate(le.classes_)}
          encoding_mappings[column] = mapping
      db['Total Charges'] = pd.to_numeric(db['Total Charges'], errors='coerce')
      db['Churn_Binary'] = (db['Churn Label'] == 'Yes').astype(int)
      churn_reason_encoder = LabelEncoder()
      db['Churn Reason Encoded'] = churn reason encoder.fit_transform(db['Churn_

¬Reason'].fillna('Not Churned'))
      encoders['Churn Reason'] = churn_reason_encoder
      churn_reason_mapping = {i: label for i, label in enumerate(churn_reason_encoder.
        ⇔classes )}
      encoding_mappings['Churn Reason'] = churn_reason_mapping
```

```
print("\nChurn Reason Encoding:")
for code, reason in churn_reason_mapping.items():
    print(f" {code}: {reason}")
print("\nContract Encoding:")
for code, contract in encoding_mappings['Contract'].items():
    print(f" {code}: {contract}")
numerical_columns = ['Tenure Months', 'Monthly Charges', 'Total Charges', |
 scaler = StandardScaler()
db[numerical_columns] = scaler.fit_transform(db[numerical_columns])
print("\nSample of encoded data:")
print(db.head())
Churn Reason Encoding:
 0: Attitude of service provider
  1: Attitude of support person
 2: Competitor had better devices
  3: Competitor made better offer
 4: Competitor offered higher download speeds
 5: Competitor offered more data
 6: Deceased
 7: Don't know
 8: Extra data charges
 9: Lack of affordable download/upload speed
  10: Lack of self-service on Website
  11: Limited range of services
  12: Long distance charges
  13: Moved
  14: Network reliability
  15: Not Churned
  16: Poor expertise of online support
  17: Poor expertise of phone support
  18: Price too high
  19: Product dissatisfaction
  20: Service dissatisfaction
Contract Encoding:
 0: Month-to-month
  1: One year
 2: Two year
```

Sample of encoded data:

```
CustomerID
                             City Zip Code
                                                            Lat Long Latitude \
        3668-QPYBK Los Angeles
                                      90003 33.964131, -118.272783 -0.944111
      0
      1 9237-HQITU
                     Los Angeles
                                      90005
                                              34.059281, -118.30742 -0.905362
      2 9305-CDSKC
                     Los Angeles
                                      90006
                                             34.048013, -118.293953 -0.909951
                     Los Angeles
                                             34.062125, -118.315709 -0.904204
      3 7892-POOKP
                                      90010
      4 0280-XJGEX Los Angeles
                                      90015
                                             34.039224, -118.266293 -0.913530
                                                                     Total Charges
         Longitude Gender
                            Senior Citizen Partner Dependents
          0.707268
                                                                          -0.959674
      0
                          1
                                          0
                                                    0
                                                                0
                                                                   ---
          0.691215
                          0
                                          0
                                                    0
      1
                                                                1
                                                                          -0.940470
      2
          0.697457
                          0
                                          0
                                                    0
                                                                1
                                                                          -0.645186
      3
                          0
                                          0
          0.687374
                                                    1
                                                                1
                                                                           0.337349
      4
          0.710276
                                          0
                          1
                                                    0
                                                                1
                                                                           1.216004
                       Churn Value
                                   Churn Score
         Churn Label
                                                      CLTV
      0
                 Yes
                                             86 -0.981675
                                 1
      1
                 Yes
                                 1
                                             67 -1.436462
      2
                 Yes
                                 1
                                             86
                                                 0.821409
      3
                 Yes
                                 1
                                             84
                                                 0.509483
      4
                 Yes
                                 1
                                             89
                                                 0.794358
                           Churn Reason Popular Tenure Monthly Charges Centered \
      0
          Competitor made better offer
                                                  False
                                                                             -1.15
      1
                                  Moved
                                                   False
                                                                              15.70
      2
                                  Moved
                                                   False
                                                                             44.65
      3
                                                                             49.80
                                  Moved
                                                   False
                                                                             48.70
      4
                                                   False
         Competitor had better devices
                       Churn Reason_Encoded
         Churn_Binary
      0
                                           3
                     1
      1
                     1
                                          13
      2
                     1
                                          13
      3
                     1
                                          13
      4
                     1
                                           2
      [5 rows x 34 columns]
[500]: X_churn = db.drop(columns=[
           'CustomerID', 'City', 'Zip Code', 'Lat Long', 'Churn Label',
           'Churn Value', 'Churn Reason', 'Churn Reason_Encoded', 'Monthly Charges_
        ⇔Centered', 'Churn Binary'
       y_churn = db['Churn_Binary']
[502]: X
```

```
[502]:
            const Monthly Charges
      0
               1.0
                              53.85
       1
               1.0
                              70.70
       2
               1.0
                              99.65
       3
               1.0
                             104.80
               1.0
                             103.70
       7038
               1.0
                              21.15
       7039
                              84.80
               1.0
      7040
               1.0
                             103.20
       7041
               1.0
                              29.60
      7042
               1.0
                             105.65
       [7043 rows x 2 columns]
[504]: from sklearn.model_selection import train_test_split, KFold, cross_val_score
       X_train_churn, X_test_churn, y_train_churn, y_test_churn =_
        →train_test_split(X_churn, y_churn, test_size=0.3, random_state=42,_
        ⇔stratify=y_churn)
       print(f"\nTraining set shape: {X_train_churn.shape}")
       print(f"Testing set shape: {X_test_churn.shape}")
       print(f"Churn distribution in training: {y_train_churn.value_counts()}")
      Training set shape: (4930, 24)
      Testing set shape: (2113, 24)
      Churn distribution in training: Churn_Binary
      0
           3622
           1308
      Name: count, dtype: int64
[506]: y.info()
      <class 'pandas.core.series.Series'>
      RangeIndex: 7043 entries, 0 to 7042
      Series name: Tenure Months
      Non-Null Count Dtype
      _____
      7043 non-null
                      int64
      dtypes: int64(1)
      memory usage: 55.2 KB
[508]: from sklearn.metrics import accuracy_score, confusion_matrix,_
        →ConfusionMatrixDisplay,classification_report
       from sklearn.ensemble import RandomForestClassifier
       from sklearn.tree import DecisionTreeClassifier
```

```
from sklearn.naive_bayes import GaussianNB
churn_models = {
    "Decision Tree": DecisionTreeClassifier(max_depth=8, random_state=42),
   "Naive Bayes": GaussianNB(),
   "Random Forest": RandomForestClassifier(max_depth=10, n_estimators=100,__
 →random state=42)
}
k = 5
kf = KFold(n_splits=k, shuffle=True, random_state=42)
cv_results_churn = {}
for name, model in churn_models.items():
   print(f"\n{name} Model for Churn Prediction:")
    # Cross-validation
    cv_scores = cross_val_score(model, X_train_churn, y_train_churn, cv=kf,_

¬scoring='accuracy')
    cv_results_churn[name] = {
       'cv_scores': cv_scores,
        'mean_cv_score': cv_scores.mean(),
        'std_cv_score': cv_scores.std()
   }
   print(f" Cross-validation scores: {cv_scores}")
   print(f" Mean CV accuracy: {cv scores.mean():.4f} ± {cv scores.std():.4f}")
   model.fit(X_train_churn, y_train_churn)
   y_pred_train = model.predict(X_train_churn)
   y_pred_test = model.predict(X_test_churn)
   train_accuracy = accuracy_score(y_train_churn, y_pred_train)
   test_accuracy = accuracy_score(y_test_churn, y_pred_test)
   confusion = confusion_matrix(y_test, y_pred_test, labels=all_labels)
   print(f" Train accuracy: {train_accuracy:.4f}")
   print(f" Test accuracy: {test_accuracy:.4f}")
   print("\n Classification Report:")
   print(classification_report(y_test_churn, y_pred_test))
```

```
disp = ConfusionMatrixDisplay(confusion_matrix=confusion,
display_labels=all_labels)
    disp.plot(cmap=plt.cm.Blues)
    plt.title(f'Confusion Matrix for {name}')
    plt.show()

best_model_name = max(cv_results_churn, key=lambda x:
cv_results_churn[x]['mean_cv_score'])
best_model_churn = churn_models[best_model_name]
print(f"\nBest_model_for churn prediction: {best_model_name}")
```

Decision Tree Model for Churn Prediction:

Cross-validation scores: [0.9178499 0.93407708 0.90669371 0.9198783

0.93407708]

Mean CV accuracy: 0.9225 ± 0.0105

Train accuracy: 0.9471 Test accuracy: 0.9143

support	f1-score	recall	precision	
1552	0.94	0.93	0.96	0
561	0.85	0.88	0.81	1
2113	0.91			accuracy
2113	0.89	0.90	0.88	accuracy macro avg
2113	0.92	0.91	0.92	weighted avg

Confusion Matrix for Decision Tree 0-318000000000000000000000 1000 1-451600000000000000000000000 2-351700000000000 3 -2715 0 0 0 0 0 0 0 0 0 - 800 5 -3711 0 0 0 0 0 0 0 0 0 6-2100000000000 0 0 0000000 7-311700000000000 8-126000000000 600 10 -25 5 0 0 0 0 0 0 0 0 0 0 11 -11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 -14 5 0 0 0 0 0 0 0 0 0 0 0 - 400 13 -12 1 0 0 0 0 0 0 0 0 0 0 15 - 9 1 0 0 0 0 0 0 0 0 0 16 - 3 1 0 0 0 0 0 0 0 0 0 0 0 00000000 - 200 17-256000000000000000000000 19 -18 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 20 Predicted label

Naive Bayes Model for Churn Prediction:

Cross-validation scores: [0.86206897 0.88742394 0.87829615 0.86004057

0.88438134]

Mean CV accuracy: 0.8744 ± 0.0113

Train accuracy: 0.8751 Test accuracy: 0.8661

	precision	recall	f1-score	support
0	0.93	0.88	0.91	1552
1	0.72	0.82	0.76	561
accuracy			0.87	2113
macro avg	0.82	0.85	0.84	2113
weighted avg	0.87	0.87	0.87	2113

Confusion Matrix for Naive Bayes 0-318000000000000000000000 1000 451600000000000000000000 2 -32200 0 0 0 0 0 0 0 0 3 -3012 0 0 0 0 0 0 0 0 0 - 800 0 0 0 0 0 0 0 6-210000000000 0 0 0 7-28200000000000 8-135000000000 600 10 -23 7 0 0 0 0 0 11 -9 5 0 0 0 0 0 0 0 0 0 0 0 12 -14 5 0 0 0 0 0 0 0 0 0 0 400 13 -11 2 0 0 0 0 0 0 0 0 0 0 15 - 8 2 0 0 0 0 0 0 0 16 - 3 1 0 0 0 0 0 0 0 0 0 0 0 - 200 17 - 25 6 0 0 0 0 0 0 0 0 0 0 0 18 -14 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20-05-1710000000000000000000000 0 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 20 Predicted label

Random Forest Model for Churn Prediction:

Cross-validation scores: [0.92900609 0.94016227 0.91075051 0.93610548

0.93914807]

Mean CV accuracy: 0.9310 ± 0.0109

Train accuracy: 0.9696 Test accuracy: 0.9319

	precision	recall	f1-score	support
	_			
0	0.96	0.95	0.95	1552
1	0.86	0.88	0.87	561
accuracy			0.93	2113
macro avg	0.91	0.92	0.91	2113
weighted avg	0.93	0.93	0.93	2113

Best model for churn prediction: Random Forest

```
print(f"Testing set shape: {X_test_reason.shape}")
reason_models = {
    "Decision Tree": DecisionTreeClassifier(max_depth=8, random_state=42),
    "Naive Bayes": GaussianNB(),
    "Random Forest": RandomForestClassifier(max_depth=10, n_estimators=100, u
→random_state=42)
}
cv_results_reason = {}
for name, model in reason_models.items():
   print(f"\n{name} Model for Churn Reason Prediction:")
   try:
        cv_scores = cross_val_score(model, X_train_reason, y_train_reason, u
 ⇔cv=min(k, 3), scoring='accuracy')
        cv_results_reason[name] = {
            'cv_scores': cv_scores,
            'mean_cv_score': cv_scores.mean(),
            'std_cv_score': cv_scores.std()
        }
        print(f" Cross-validation scores: {cv_scores}")
       print(f" Mean CV accuracy: {cv_scores.mean():.4f} ± {cv_scores.std():.
 <4f}")
   except Exception as e:
       print(f" Cross-validation failed: {e}")
   model.fit(X_train_reason, y_train_reason)
   y_pred_train = model.predict(X_train_reason)
   y_pred_test = model.predict(X_test_reason)
   train_accuracy = accuracy_score(y_train_reason, y_pred_train)
   test_accuracy = accuracy_score(y_test_reason, y_pred_test)
   print(f" Train accuracy: {train_accuracy:.4f}")
   print(f" Test accuracy: {test_accuracy:.4f}")
   print("\n Classification Report:")
   print(classification_report(y_test_reason, y_pred_test, zero_division=0))
```

```
if cv_results_reason:
    best_model_name = max(cv_results_reason, key=lambda x:__
cv_results_reason[x]['mean_cv_score'])
    best_model_reason = reason_models[best_model_name]
    print(f"\nBest model for churn reason prediction: {best_model_name}")
else:
    best_model_name = max(reason_models, key=lambda x: accuracy_score(
        y_test_reason, reason_models[x].predict(X_test_reason)))
    best_model_reason = reason_models[best_model_name]
    print(f"\nBest model for churn reason prediction (based on test accuracy):__
cup{best_model_name}")
```

Number of churned customers: 1869

Training set shape: (1308, 24) Testing set shape: (561, 24)

Decision Tree Model for Churn Reason Prediction:

Cross-validation scores: [0.09174312 0.08486239 0.10779817]

Mean CV accuracy: 0.0948 ± 0.0096

Train accuracy: 0.3792 Test accuracy: 0.0980

	precision	recall	f1-score	support	
0	0.16	0.40	0.23	40	
1	0.12	0.17	0.14	58	
2	0.10	0.13	0.11	39	
3	0.04	0.02	0.03	42	
4	0.12	0.23	0.15	57	
5	0.15	0.12	0.13	49	
6	0.00	0.00	0.00	2	
7	0.07	0.04	0.05	46	
8	0.04	0.12	0.06	17	
9	0.00	0.00	0.00	13	
10	0.00	0.00	0.00	26	
11	0.00	0.00	0.00	13	
12	0.00	0.00	0.00	13	
13	0.00	0.00	0.00	16	
14	0.00	0.00	0.00	31	
16	0.00	0.00	0.00	6	
17	0.00	0.00	0.00	6	
18	0.00	0.00	0.00	29	
19	0.00	0.00	0.00	31	

20	0.00	0.00	0.00	27
accuracy			0.10	561
macro avg	0.04	0.06	0.05	561
weighted avg	0.07	0.10	0.07	561

Naive Bayes Model for Churn Reason Prediction:

Cross-validation scores: [0.03211009 0.03211009 0.02293578]

Mean CV accuracy: 0.0291 ± 0.0043

Train accuracy: 0.0589 Test accuracy: 0.0357

Classification Report:

	precision	recall	f1-score	support	
0	0.25	0.03	0.05	40	
1	0.20	0.07	0.10	58	
2	0.00	0.00	0.00	39	
3	0.36	0.10	0.15	42	
4	0.00	0.00	0.00	57	
5	0.10	0.06	0.07	49	
6	0.01	1.00	0.02	2	
7	0.33	0.02	0.04	46	
8	0.00	0.00	0.00	17	
9	0.00	0.00	0.00	13	
10	0.04	0.04	0.04	26	
11	0.00	0.00	0.00	13	
12	0.00	0.00	0.00	13	
13	0.00	0.00	0.00	16	
14	0.00	0.00	0.00	31	
16	0.02	0.50	0.04	6	
17	0.00	0.00	0.00	6	
18	0.00	0.00	0.00	29	
19	0.04	0.03	0.04	31	
20	0.00	0.00	0.00	27	
accuracy			0.04	561	
macro avg	0.07	0.09	0.03	561	
weighted avg	0.11	0.04	0.04	561	

Random Forest Model for Churn Reason Prediction:

Cross-validation scores: [0.08256881 0.1146789 0.09633028]

Mean CV accuracy: 0.0979 ± 0.0132

Train accuracy: 0.9641 Test accuracy: 0.1159

precision recall f1-score supp 0 0.22 0.15 0.18 1 0.15 0.47 0.22	40 58 39 42 57
	58 39 42
	58 39 42
1 0.15 0.47 0.22	39 42
1 0.10 0.11 0.22	42
2 0.06 0.05 0.06	
3 0.12 0.12 0.12	57
4 0.14 0.30 0.19	51
5 0.08 0.10 0.09	49
6 0.00 0.00 0.00	2
7 0.06 0.04 0.05	46
8 0.00 0.00 0.00	17
9 0.00 0.00 0.00	13
10 0.00 0.00 0.00	26
11 0.00 0.00 0.00	13
12 0.00 0.00 0.00	13
13 0.00 0.00 0.00	16
14 0.06 0.03 0.04	31
16 0.00 0.00 0.00	6
17 0.00 0.00 0.00	6
18 0.00 0.00 0.00	29
19 0.00 0.00 0.00	31
20 0.00 0.00 0.00	27
accuracy 0.12	561
macro avg 0.04 0.06 0.05	561
weighted avg 0.07 0.12 0.08	561

Best model for churn reason prediction: Random Forest

Testing predictive models on new customers info,and getting prediction for churn and their possible churn reasons

```
def generate_test_customers(num_customers=5):
    random_data = []
    for i in range(num_customers):
        tenure_months = random.randint(1, 72)
        monthly_charges = round(random.uniform(20, 150), 2)
        total_charges = round(monthly_charges * tenure_months * (0.9 + 0.2 *_u \cdots random.random()), 2)

    random_customer = {
        'Gender': random.choice([0, 1]),
        'Senior Citizen': random.choice([0, 1]),
        'Partner': random.choice([0, 1]),
```

```
'Dependents': random.choice([0, 1]),
             'Phone Service': random.choice([0, 1]),
             'Multiple Lines': random.choice([0, 1, 2]),
             'Internet Service': random.choice([0, 1, 2]),
             'Online Security': random.choice([0, 1, 2]),
             'Online Backup': random.choice([0, 1, 2]),
             'Device Protection': random.choice([0, 1, 2]),
             'Tech Support': random.choice([0, 1, 2]),
             'Streaming TV': random.choice([0, 1, 2]),
             'Streaming Movies': random.choice([0, 1, 2]),
             'Contract': random.choice([0, 1, 2]),
             'Paperless Billing': random.choice([0, 1]),
             'Payment Method': random.choice([0, 1, 2, 3]),
             'CLTV': random.randint(1000, 8000),
             'Churn Score': random.randint(10, 90),
             'Latitude': round(random.uniform(34.0, 42.0), 6),
             'Longitude': round(random.uniform(-120.0, -75.0), 6),
             'Monthly Charges': monthly_charges,
             'Total Charges': total_charges,
             'Tenure Months': tenure_months,
             'Popular Tenure': tenure_months > 12,
        }
        random_data.append(random_customer)
    return pd.DataFrame(random_data)
new_customers_raw = generate_test_customers(7)
print("Generated customer data (before scaling):")
print(new_customers_raw.head(3))
Generated customer data (before scaling):
   Gender Senior Citizen Partner Dependents
                                               Phone Service Multiple Lines
0
        1
                                 1
                                             1
                                                                             1
1
        0
                        0
                                 0
                                             1
                                                             1
                                                                             0
2
                        0
                                 1
                                                                             0
   Internet Service Online Security Online Backup Device Protection
0
                  2
                                                  2
                                   0
                  2
                                   2
                                                  0
                                                                      2 ...
1
2
                                                  2
  Paperless Billing Payment Method CLTV Churn Score
                                                          Latitude
0
                                                     57 40.470192
                   1
                                   2 1602
                                   2 6378
                   0
                                                      41 37.533157
1
2
                   0
                                   2 7942
                                                     30 40.214698
    Longitude Monthly Charges Total Charges Tenure Months Popular Tenure
0 -106.947564
                         83.74
                                      5292.79
                                                           58
                                                                         True
```

```
1 -101.369928 120.09 7193.60 66 True
2 -80.893138 81.26 5397.15 67 True
```

[3 rows x 24 columns]

```
[512]: new_customers = new_customers_raw.copy()
      new_customers[numerical_columns] = scaler.
       X_columns = X_churn.columns
      new_customers_prepared = new_customers[X_columns]
      churn_predictions = best_model_churn.predict(new_customers_prepared)
      churn_probabilities = best_model_churn.predict_proba(new_customers_prepared)[:,__
       →1] # Probability of churning
      results = new_customers_raw.copy()
      results['Predicted_Churn'] = churn_predictions
      results['Churn_Probability'] = churn_probabilities
      will_churn_indices = results[results['Predicted_Churn'] == 1].index
      if len(will_churn_indices) > 0:
          churn customers = new customers prepared.loc[will churn indices]
          reason predictions = best model reason.predict(churn customers)
          reason labels = churn reason encoder.inverse transform(reason predictions)
          results.loc[will churn indices, 'Predicted Churn Reason'] = reason labels
      else:
          print("No customers predicted to churn")
      print("\nFinal Predictions:")
      for i, row in results.iterrows():
          print(f"\nCustomer {i+1}:")
          print(f" Tenure: {row['Tenure Months']} months")
          print(f" Monthly Charges: ${row['Monthly Charges']:.2f}")
          print(f" Contract Type: {row['Contract']}")
          print(f" Churn Prediction: {'Will Churn' if row['Predicted_Churn'] == 1
        →else 'Will Not Churn'}")
          print(f" Churn Probability: {row['Churn_Probability']:.2%}")
```

```
if 'Predicted_Churn_Reason' in row and not pd.

sisna(row['Predicted_Churn_Reason']):
    print(f" Predicted Reason: {row['Predicted_Churn_Reason']}")
```

Final Predictions:

Customer 1:

Tenure: 58 months

Monthly Charges: \$83.74

Contract Type: 2

Churn Prediction: Will Not Churn

Churn Probability: 7.10%

Customer 2:

Tenure: 66 months

Monthly Charges: \$120.09

Contract Type: 1

Churn Prediction: Will Not Churn

Churn Probability: 8.93%

Customer 3:

Tenure: 67 months

Monthly Charges: \$81.26

Contract Type: 1

Churn Prediction: Will Not Churn

Churn Probability: 19.02%

Customer 4:

Tenure: 17 months

Monthly Charges: \$144.50

Contract Type: 1

Churn Prediction: Will Churn Churn Probability: 78.51% Predicted Reason: Don't know

Customer 5:

Tenure: 65 months

Monthly Charges: \$126.29

Contract Type: 1

Churn Prediction: Will Not Churn

Churn Probability: 5.66%

Customer 6:

Tenure: 72 months

Monthly Charges: \$117.78

Contract Type: 2

Churn Prediction: Will Not Churn

Churn Probability: 6.31%

Customer 7:

Tenure: 54 months

Monthly Charges: \$62.18

Contract Type: 0

Churn Prediction: Will Not Churn

Churn Probability: 6.53%

0: Attitude of service provider 1: Attitude of support person 2: Competitor had better devices 3: Competitor made better offer 4: Competitor offered higher download speeds 5: Competitor offered more data 6: Deceased 7: Don't know 8: Extra data charges 9: Lack of affordable download/upload speed 10: Lack of self-service on Website 11: Limited range of services 12: Long distance charges 13: Moved 14: Network reliability 15: Not Churned 16: Poor expertise of online support 17: Poor expertise of phone support 18: Price too high 19: Product dissatisfaction 20: Service dissatisfaction —-Contract Type—- 0: Month-to-month 1: One year 2: Two year

2.2.2 Conclusions

This project successfully analyzed customer churn data and built a predictive system using data from a fictional telecommunications company with 7,043 customers in California.

Through **exploratory data analysis** using correlation matrices, chi-square tests, and other statistical techniques, the project was able to address the original questions:

- What is the most popular reason for customers canceling their subscription?

 The most common reasons include dissatisfaction with support staff, competition, low download speeds, and limited data availability.
- When do cancellations most commonly occur?

 Most churn happens within the first month of service.
- Are the correlations between these factors statistically significant?
 - Tenure Months shows strong correlation with Total Charges and CLTV.
 - Monthly Charges also strongly correlate with Total Charges.
 - Total Charges is highly correlated with Tenure Months, Monthly Charges, and CLTV.
- How do monthly charges affect the overall duration of subscriptions? Although the effect is statistically significant, monthly charges alone explain only a small portion of the variability in subscription duration. Other features likely play a more influential role.
- How does the type of subscription contract influence churn?

 Month-to-month contracts show the highest churn rate, while one- and two-year contracts are much more stable and have significantly lower churn rates.
- How can churn be reduced?
 - Improve customer support through better training
 - Offer higher download speeds and more data

- Update or replace outdated devices
- Introduce more self-service options via the company website

2.2.3 Machine Learning Results

In the extended part of the project, **predictive models** were developed to classify both:

- 1. Whether a customer will churn
- 2. The predicted reason for their churn

Three models were compared: Decision Tree, Naive Bayes, and Random Forest.

Among them, the Random Forest classifier consistently achieved the highest accuracy in both churn classification and churn reason prediction.

This addition transforms the project from a purely analytical task into a **practical**, **data-driven decision support tool** that telecom companies can use to anticipate churn and tailor their retention strategies based on predicted reasons.

Let me know if you want it formatted as a PDF or Markdown, or if you'd like to add charts/tables for results!

2.3 Further Research

Based on our exploratory data analysis and initial modeling, there are several promising directions for further research:

1. Developing a Predictive ML Model for Churn:

• Objective:

A machine learning model was successfully developed to predict not only the likelihood of customer churn but also the underlying reason for churn. Among the tested algorithms, Random Forest demonstrated the highest accuracy for both tasks.

• Outcome:

A robust and interpretable predictive system capable of providing dual insights: whether a customer is likely to churn and why. This dual-layered prediction enables proactive, targeted interventions tailored to specific reasons (e.g., service quality, price, competition).

2. Personalization and Customer Segmentation:

Goal:

Use the insights from the predictive model to segment customers into different risk categories.

• Approach:

- Develop clusters of customers based on their predicted churn risk and demographic or behavioral attributes.
- Tailor marketing strategies, service offerings, and retention initiatives (e.g., special discounts, personalized customer support) for each segment.

Outcome:

Enhance customer engagement and increase subscription duration by offering individualized services that match customer needs.

3. Continuous Model Improvement:

• Data Enrichment:

- Incorporate additional data sources such as customer feedback, interaction logs, and external market data.
- Regularly update the model with new data to capture evolving customer behavior.

• Operational Integration:

- Deploy the model in a real-time environment to continuously monitor churn risk.
- Set up A/B tests to evaluate the impact of personalized interventions on customer retention.

• Outcome:

A dynamic, continuously improving system that adapts to changes in customer behavior and market conditions.

By pursuing these research directions, the company can not only predict customer churn with greater accuracy but also gain actionable insights into how to improve customer retention. This holistic approach can lead to more personalized service offerings, improved customer satisfaction, and ultimately, increased customer lifetime value.

Made by Alnur Nurumov

Г1:

```
[707]: | !jupyter nbconvert --to pdf "customer-churn-IBM-dataset(Predictive Model).ipynb"
      [NbConvertApp] Converting notebook customer-churn-IBM-dataset(Predictive
      Model).ipynb to pdf
      [NbConvertApp] Support files will be in customer-churn-IBM-dataset(Predictive
      Model) files/
      [NbConvertApp] Making directory ./customer-churn-IBM-dataset(Predictive
      Model)_files
      [NbConvertApp] Writing 152628 bytes to notebook.tex
      [NbConvertApp] Building PDF
      [NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']
      [NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
      [NbConvertApp] WARNING | bibtex had problems, most likely because there were no
      citations
      [NbConvertApp] PDF successfully created
      [NbConvertApp] Writing 1510804 bytes to customer-churn-IBM-dataset(Predictive
      Model).pdf
```