Задача А. Минимум на стеке

 Имя входного файла:
 stack.in

 Имя выходного файла:
 stack.out

 Ограничение по времени:
 1.5 секунды

 Ограничение по памяти:
 64 мегабайта

Вам требуется реализовать структуру данных, выполняющую следующие операции:

- 1. Добавить элемент x в конец структуры.
- 2. Удалить последний элемент из структуры.
- 3. Выдать минимальный элемент в структуре.

Формат входного файла

В первой строке входного файла задано одно целое число n — количество операций ($1 \le n \le 10^6$). В следующих n строках заданы сами операции. В i-ой строке число t_i — тип операции (1, если операция добавления. 2, если операция удаления. 3, если операция минимума). Если задана операция добавления, то через пробел записано целое число x — элемент, который следует добавить в структуру ($-10^9 \le x \le 10^9$). Гарантируется, что перед каждой операцией удаления или нахождения минимума структура не пуста.

Формат выходного файла

Для каждой операции нахождения минимума выведите одно число — минимальный элемент в структуре. Ответы разделяйте переводом строки.

Примеры

stack.out
-3
2
2

Задача В. НОП-2

 Имя входного файла:
 1cs2.in

 Имя выходного файла:
 1cs2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Даны две строки. Найдите их наибольшую общую подпоследовательность.

Формат входного файла

Во входном файле находятся две строки, состоящие только из маленьких букв английского алфавита. Длина каждой из строк не превышает 1000.

Формат выходного файла

Выведите одну строку — ответ на задачу.

Примеры

lcs2.in	lcs2.out
abacaba	acab
dacabc	
sislksh	lksh
lkshsis	

Задача С. Топологическая сортировка

 Имя входного файла:
 topsort.in

 Имя выходного файла:
 topsort.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать

Формат входного файла

В первой строке входного файла даны два целых числа N и M ($1\leqslant N\leqslant 100\,000,0\leqslant\leqslant M\leqslant 100\,000$) — количества вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести «-1».

Примеры

! <u> </u>	
topsort.in	topsort.out
6 6	4 6 3 1 2 5
1 2	
3 2	
4 2	
2 5	
6 5	
4 6	

ЛКШ.2012.Август.В.День 1

Летняя Компьютерная Школа, Берендеевы поляны, 29 июня 2012 года

Задача D. Количество инверсий

 Имя входного файла:
 inverse.in

 Имя выходного файла:
 inverse.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i, j) таких, что i < j и $a_i > a_j$.

Формат входного файла

Первая строка входного файла содержит натуральное число n $(1 \le n \le 50\,000)$ — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A — целых неотрицательных чисел, не превосходящих 10^6 .

Формат выходного файла

В выходной файл выведите одно число — ответ на задачу.

Примеры

inverse.in	inverse.out
5	0
6 11 18 28 31	
8	28
999994 999989 999982 999972	
999969 999961 999954 999950	

Задача Е. Расстояния от точки

 Имя входного файла:
 distance1.in

 Имя выходного файла:
 distance1.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Даны три точки A, B и C. Необходимо подсчитать расстояния от точки C до прямой, луча и отрезка, образованного точками A и B.

Формат входного файла

В первой строке входного файла даны два целых числа — координаты точки C. Во двух следующих строках в таком же формате заданы точки A и B ($A \neq B$).

Все числа во входном файле по модулю не превосодят 10 000.

Формат выходного файла

В первой строке выходного файла выведите одно вещественное число — расстояние от точки C до прямой. В следующих двух строках выведите соответственно расстояния до луча AB (A — начало луча) и до отрезка AB. Все числа выводить с точностью не менее 10^{-6} . Луч строится по направлению от точки A к точке B.

Примеры

distance1.in	distance1.out
3 0	1.00000000
1 1	1.00000000
2 1	1.414213562