

N-Channel Enhancement Mode MOSFET

Feature

- 40V/246A $R_{DS(ON)} = 1.0 \text{ m}\Omega(typ.) @VGS = 10V$
- 100% Avalanche Tested
- 100% DVDS
- Reliable and Rugged
- MSL1 up to 260[°]C Peak Reflow
- AEC-Q101 Qualified
- 175°C operating temperature
- Halogen Free and Green Devices Available (RoHS Compliant)

Applications

- Switching application
- Li-battery protection
- DC-DC
- Motor control

Pin Description

Single N-Channel MOSFET

Ordering and Marking Information

Note: HUAYI halogen free products contain molding compounds and 100% matter tin plate Termi-Nation finish; which are fully compliant with RoHS. HUAYI halogen free products meet or exceed the halogen free require-ments of IPC/JEDEC J-STD-020 for MSL classification at halogen free peak reflow temperature. HUAYI defines "Green" to mean halogen free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

HUAYI reserves the right to make changes, corrections, enhancements, modifications, and improvements to this pr-oduct and/or to this document at any time without notice.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit	
Common Ra	tings (Tc=25°C Unless Otherwise Noted)			
VDSS	Drain-Source Voltage		40	V
Vgss	Gate-Source Voltage		±20	V
TJ	Junction Temperature Range			°C
Тѕтс	Storage Temperature Range		-55 to 175	°C
ls	Source Current-Continuous(Body Diode)	Tc=25°C	246	Α
Mounted on	Large Heat Sink	•	,	1
Ідм	Pulsed Drain Current *	Tc=25°C	738	А
	Continuous Drain Current	Tc=25°C	246	Α
lo		Tc=100°C	174	А
	M	Tc=25°C	163	W
PD	P _D Maximum Power Dissipation		82	W
R_{θ} IC	Thermal Resistance, Junction-to-Case		0.92	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient **		80	°C/W
Eas	Single Pulsed-Avalanche Energy ***	L=0.3mH	570	mJ

Note:

- * Repetitive rating; pulse width limited by max.junction temperature.
- ** Surface mounted on 1in2 FR-4 board.
- *** Limited by TJmax , starting TJ=25°C, L = 0.3mH, Rg= 25Ω , Vgs =10V.

Electrical Characteristics(Tc =25°C Unless Otherwise Noted)

Cymphal	Donomotor	Parameter Test Conditions		HYA010N04NS1			1114
Symbol	Parameter			Min	Тур.	Max Unit	
Static Cha	Static Characteristics						
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V,I _{DS} =2	:50µA	40	-	-	V
IDSS	Drain-to-Source Leakage Current	V _{DS} =40V,V _{GS} =0V		-	-	1	μA
			TJ=125°C	-	-	50	μA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _{DS} =250µA		2.3	3.0	3.7	V
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V, V_{DS}=0V$		-	-	±100	nA
RDS(ON)	Drain-Source On-State Resistance	V _{GS} =10V,I _{DS} =40A		-	1.0	1.5	mΩ
Diode Characteristics							
VsD	Diode Forward Voltage	IsD=40A,VGS=0V		-	0.81	1.00	V
t rr	Reverse Recovery Time	- Isb=40A,dIsb/dt=100A/μs		-	46	-	ns
Qrr	Reverse Recovery Charge			-	45	-	nC

HYA010N04NS1C2

Electrical Characteristics (Cont.) (Tc =25°C Unless Otherwise Noted)

Symbol	Banamatan	Test Conditions	HY	HYA010N04NS1		11
	Parameter		Min	Тур.	Max	Unit
Dynamic (Dynamic Characteristics					
Rg	Gate Resistance	V _{GS} =0V,V _{DS} =0V,F=1MHz	-	2.6	-	Ω
Ciss	Input Capacitance	Vgs=0V,	-	4558	-	
Coss	Output Capacitance	V _{DS} =25V,	-	915	-	pF
Crss	Reverse Transfer Capacitance	Frequency=1MHz	-	21	-	
td(ON)	Turn-on Delay Time		-	19	-	
Tr	Turn-on Rise Time	$V_{DD}=20V,R_{G}=4\Omega,$	-	74	-	
td(OFF)	Turn-off Delay Time	Ips=40A,Vgs=10V	-	51	-	ns
Tf	Turn-off Fall Time		-	50	-	
Gate Char	Gate Charge Characteristics					
Qg	Total Gate Charge(V _{GS} =10V)		-	64	-	
Qgs	Gate-Source Charge	\/ 22\/ I 40A	-	25	-	nC
Q_{gd}	Gate-Drain Charge	V_{DS} =32V, I_{DS} =40A	-	9	-	
V _{plateau}	Gate plateau voltage		-	5.0	-	V

Note: *Pulse test, pulse width ≤ 300 us, duty cycle $\leq 2\%$

Typical Operating Characteristics

Figure 1: Power Dissipation

Figure 3: Safe Operation Area

Figure 5: Output Characteristics

Figure 2: Drain Current

Figure 4: Thermal Transient Impedance

Figure 6: Drain-Source On Resistance

Typical Operating Characteristics(Cont.)

Figure 7: On-Resistance vs. Temperature

Figure 9: Capacitance Characteristics

Figure 11: Transfer Characteristics

Figure 8: Source-Drain Diode Forward

Figure 10: Gate Charge Characteristics

Figure 12: Gate Threshold Voltage

Typical Operating Characteristics(Cont.)

Figure 13: Drain-Source Breakdown

Figure 14: R_{dson} vs. Gate Voltage

Figure 15: Output Characteristics (125℃)

Avalanche Test Circuit

Switching Time Test Circuit

Gate Charge Test Circuit

Device Per Unit

Package Type	Unit	Quantity
PDFN8L(5x6)	Reel	5000

Package Information

PDFN8L(5x6)

(unit:mm)

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly			
Preheat & Soak					
Temperature min (T _{smin})	100 °C	150 °C			
Temperature max (T _{smax})	150 °C	200 °C			
Time (Tsmin to Tsmax) (t _s)	60-120 seconds	60-120 seconds			
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3°C/second max.			
Liquidous temperature (T _L)	183 °C	217 °C			
Time at liquidous (t _L)	60-150 seconds	60-150 seconds			
Peak package body Temperature (Tp)*	See Classification Temp in table 1	SeeClassification Tempin table 2			
Time (t _P)** within 5°C of the specified classification temperature (T _c)	20** seconds	30** seconds			
Average ramp-down rate (Tpto Tsmax)	6 °C/second max.	6 °C/second max.			
Time 25°C to peak temperature	6 minutes max.	8 minutes max.			

^{*}Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

HYA010N04NS1C2

Table 1.SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm³ <350	Volume mm³ ≥350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2.Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm³	Volume mm³	Volume mm³
Thickness	<350	350-2000	≥2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
PCT	JESD22-A102	121℃,100%RH, 96hours, 205KPa
TCT	JESD22-A104	250/500/1000 Cycles, -55°C~150°C
HTRB	JESD22-A108B	168/500/1000 Hrs, 100% BV _{DSS} @ 175℃
HTGB	JESD22-A108B	168/500/1000 Hrs, 100%Vgs @ 175℃
BHAST	JESD22-A110D	130℃,85%RH,230KPA;U=32V
IOL	MIL-STD-750	Ta=25℃,△Tj≥100℃, Ton/Toff 2min ,15000cycles

Customer Service

Worldwide Sales and Service: sales@hymexa.com Technical Support:Technology@hymexa.com

Huayi Microelectronics Co., Ltd.

No.8928, Shangji Road, Economic and Technological Development Zone, Xi'an, China

TEL: (86-029) 86685706 FAX: (86-029) 86685705 E-mail: sales@hymexa.com Web net: http://www.hymexa.com/