

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Graça Massimbe &

Valdemiro Sultane

2021 (Modo COVID) - AP # 2 - Campo eléctrco: Distribuição contínua de cargas / Lei de Gauss

- 1. Explique por suas palavras, a essência da lei de Gauss e apresente as respectivas expressões analíticas.
- 2. Uma haste fina, não condutora, é curvada de forma a formar um arco de circunferência de raio R, com um ângulo central θ_0 (fig.1). Distribui-se uniformemente, em toda a sua extensão, uma carga total q. Determinar a intensidade do campo eléctrico, no centro da circunferência em função do raio R, da carga q e do ângulo θ_0 .

Figura 1:

- 3. Determine o campo eléctrico E (dentro e fora) de um cilindro carregado uniformemente com a densidade volumétrica $\rho = 2 \times 10^{-6} C/m^3$. O raio do cilindro é R = 4m e $\epsilon = 2$. Esboce o gráfico de E em função de r.
- 4. Duas esferas metálicas concêntricas de raios R_1 e R_2 ($R_2 > R_1$) estão uniformemente carregados com densidades superficiais de cargas iguais σ_1 e σ_2 respectivamente. Determine o campo eléctrico E em todo espaço e esboce o seu gráfico em função de r.

- 5. Determine o fluxo do campo eléctrico aravés de um disco de raio *R*, originado por uma carga pontual colocada a uma distância finita sobre a recta que passa perpendicularmente pelo centro do disco.
- 6. Determine o campo eléctrico originado por um cilindro oco e infinito de raio R, carregado uniformemente com a densidade superficial de carga σ . Esboce o gráfico E(r).
- 7. Um cilindro condutor longo (muito comprido), com uma carga +q, é circundado por uma casca condutora cilíndrica concêntrica com carga igual -2q. Determine a distribuição do campo eléctrico em todo o espaço de sistema.
- 8. Uma esfera maciça e dieléctrica de raio R, possui uma distribuição volumétrica de carga dada por $\rho = \rho_0 \frac{r}{R}$, onde ρ_0 é uma constante e r é a distância a partir do centro da esfera. Determine: a) O fluxo total do campo eléctrico através da superfície da esfera. b) A distribuição espacial do campo eléctrico E e esboce o seu gráfico.