FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen

Aufgabenblatt 1: Formale Sprachen und Endliche Automaten

Präsenzaufgabe 1.1: Wir betrachten den Monoid $(\Sigma^*, \cdot, \epsilon)$ mit $\Sigma = \{a, b, c\}$.

Betrachte die Teilmengen $X,Y\subseteq \Sigma^*$ mit $X=\{a,ab,\epsilon\}$ und $Y=\{c,bc,ac\}.$

- 1. Bestimmen Sie Σ^2 .
- 2. Bestimmen Sie $X \times Y$ und $|X \times Y|$.
- 3. Bestimmen Sie $X \cdot Y$ und $|X \cdot Y|$.
- 4. Bestimmen Sie X^+ und X^* .

Präsenzaufgabe 1.2:

1. Geben Sie die formale Notation des folgenden DFA A_1 an und bestimmen Sie $L(A_1)$.

 A_1

- 2. Sei $M_1 = \{w \in \{a,b\}^* \mid w \text{ beginnt mit } a \text{ und endet mit } b\}$. Konstruieren Sie einen NFA A, so dass $L(A) = M_1$ gilt.
- 3. Gegeben ist der folgende DFA A_2 . Sei $M_2=\{10\}\{10\}^*$. Beweisen Sie $L(A_2)=M_2$, indem Sie zwei Inklusionen beweisen.

4. Konstruieren Sie den Potenzautomaten (nach dem 2. Verfahren, das nur die initial Zusammenhangskomponente erzeugt) zu folgenden NFA A_3 .

Übungsaufgabe 1.3: Sei Σ ein Alphabet und $X,Y,Z\subseteq \Sigma^*$ beliebige Sprachen.

von 4

Beweisen oder widerlegen Sie folgende Gleichungen, indem Sie zwei Inklusionsbeziehungen beweisen oder ein Gegenbeispiel angeben.

1.
$$(X \cup Y) \cdot Z = (X \cdot Z) \cup (Y \cdot Z)$$

2.
$$(X \cdot Y) \cup Z = (X \cup Z) \cdot (Y \cup Z)$$

3.
$$(X^*)^* = X^*$$

4.
$$(X \cup Y)^* = X^* \cup Y^*$$

5. Als Bonusaufgabe (1 Extrapunkt):
$$(X \cdot Y)^* \cdot X = X \cdot (Y \cdot X)^*$$

Übungsaufgabe 1.4:

von 4

1. Geben Sie einen NFA A_1 an, der die folgende Sprache akzeptiert:

 $L_1 := \{w \in \{0,1\}^* \mid w \text{ enthält eine gerade Anzahl von 0 und eine ungerade Anzahl von 1} \}$

2. Geben Sie einen NFA A_2 an, der die folgende Sprache akzeptiert:

$$L_2 := \{w \in \{a,b\}^* \mid \text{ in jedem Anfangsstück } u \text{ von } w \text{ gilt: } 0 \leq |u|_a - |u|_b \leq 3\}$$

Hierbei bezeichnet $|w|_x$ die Anzahl des Auftretens des Zeichens x in einem Wort w.

Geben Sie zu jedem Zustand q der Automaten eine inhaltliche Interpretation an, d.h. eine Eigenschaft, die gilt, wenn das bislang eingelesene Anfangsstück des Wortes nach q geführt hat.

Übungsaufgabe 1.5:

von 4

1. Konstruieren Sie den Potenzautomaten zu folgendem NFA A.

2. Sei δ die Überführungsfunktion eines vollständigen DFA und δ^* seine Erweiterung (vgl. Def. 13.2).

Beweisen Sie für alle Zeichen $x \in \Sigma$, Worte $w \in \Sigma^*$ und alle Zustände $q \in Q$:

$$\delta^*(q, wx) = \delta(\delta^*(q, w), x)$$

Hinweis: Verwenden Sie eine Induktion über |w|.

Informationen und Unterlagen zur Veranstaltung unter:

http://www.informatik.uni-hamburg.de/WSV/teaching/vorlesungen/FGI1_SoSe12.shtml

Version vom 1. April 2012

Bisher erreichbare Punktzahl: 12