Date:	Intake:
Section:	ID:

Data Collection:

Data Table- 1: Reading for Measurement of the length of the sample (Iron block) (using slide Calipers)

Dimension to be measured	No. of obs	Main scale reading (M.S.R) cm	Vernier scale divisions (V.S.D)	Vernier constant (V.C) cm	Vernier scale reading (V.S.R) = V.S.D X V.C cm	Total length/breadth/ Thickness, l/b/h Cm (MSR+ VSR)	Average	Volume of the Iron block (V) cm ³
Length of	1							
Iron block	2							
	3							
Breadth of	1							
Iron block	2							
	3							
Thickness	1							
of Iron block	2							
	3							

Table- 2: Reading for Measurement of the radius of the sample (Lead Shot) (using Screw Gauge)

	No. of bs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) cm	Circular scale reading (C.S.R) = (CSD * L.C)	Total diameter D Cm (LSR + CSR)	Mean diameter D cm	Volume of the Lead Shot (V) cm ³
	1							
	2							
	3							

Date: Intake: Section: ID:

Table 1: Data for time period

Table 1: Data for time period											
Starting direction	Hole no.	Distance from Top (cm)	Time for 10 oscillations (sec)	Mean Time, t (sec)	Mean Time Period, T (sec)						
	1	5	(i) (ii)								
	2	10	(i) (ii)								
	3	15	(i) (ii)								
	4	20	(i) (ii)								
	5	25	(i) (ii)								
Forward	6	30	(i) (ii)								
	7	35	(i) (ii)								
	8	40	(i) (ii)								
	9	45	(i) (ii)								
	1	55	(i) (ii)								
	2	60	(i) (ii)								
	3	65	(i) (ii)								
	4	70	(i) (ii)								
Reverse	5	75	(i) (ii)								
	6	80	(i) (ii)								
	7	85	(i) (ii)								
	8	90	(i) (ii)								
	9	95	(i) (ii)								

Date:	Intake:
Section:	ID:

Table 1: Data of time period for different masses

No. of obs.	Loads m ₀ gm	Extension 1 cm	es for 10 cillation t ₂	Total Period T = $\frac{t}{10}$ (Sec.)		Mean T Sec	T ²
1							
2							
3							
4							
5							
6							

Date:	Intake:
Section:	ID:

Table 1: Data for load versus elongation

Additional		Readings for the elongation, x									Average
Load on		Lo	oad incre	easing			L	oad de	creasing		depression
hanger	MSR	VSD	VC	VSR	Total	MSR	VSD	VC	VSR	Total	x
(kg)	x	N	(cm)	y = N	Reading	x	N	(cm)	y = N	Reading	(cm)
	(cm)		` ´	×	= x + y	(cm)		' '	× LC	= x + y	
				L.C.	cm				(cm)	cm	
				(cm)					, ,		
			1					1			
			1								

Table 2: Measure the breadth, (b) of beam

No. of obs.	Main scale reading (M.S.R) cm	Vernier scale divisions (V.S.D)	Vernier constant (V.C) cm	Vernier scale reading (V.S.R) = (V.S.D X V.C) cm	Total breadth b (cm)	Mean Breadth b (cm)
1						
2						
3						

Table 3: Measure the depth, (d) of beam

No. of obs.	Main scale reading (M.S.R) cm	Vernier scale divisions (V.S.D)	Vernier constant (V.C) cm	Vernier scale reading (V.S.R) = (V.S.D X V.C) cm	Total depth d (cm)	Mean depth d (cm)
1						
2						
3						

Date:	Intake:
Section:	ID:

Data collection:

1. Least count of the travelling microscope = Value of one MSD / Number of divisions on the Vernier

=0.5mm/50 = 0.01 mm = 0.001 cm

Table 1: Measurement of inside radius (r) of the tubes

				Difference								
Tube no.		Le	(X ₂)		Right side (X ₁)				D-VV. r	Radius r =D/2 (cm)		
T	M.S.R (cm)	V.S. D	V.C (cm)	V.S.R (cm)	Total Reading (x ₁) cm	M.S.R (cm)	V.S. D	V.C (cm)	V.S.R (cm)	Total Reading (x ₂) cm	(cm)	(cm)
A												
В												

Table 2: Determination of the height of the column of water 'h':

No. of		Radius of the water meniscus			Reading at the tip of pointer			inter	Height, h		
observ											$= h_1-h_2$
ation											cm
	MSR	VSD	LC	CSR	Total	MS	VSD	LC	CSR	Total	
	x	N	(cm)	y = N	Readin	R	N	(cm)	$y = N \times$	Reading	
	(cm)			× L. C.	g = x +	x			L. C.	= x + y	
					У	(cm)				h ₂ cm	
				(cm)	h ₁ cm				(cm)		
1											
2											
3						-					
4											
5											

Date:	Intake:
Section:	ID:

Data Table:

Table 1: Diameter of the fly-wheel (heavy cylinder)

No. of obs.	Main scale reading (M.S.R) cm	Vernier scale divisions (V.S.D)	Vernier constant (V.C) cm	Vernier scale reading (V.S.R) = (V.S.D X V.C) cm	Total Diameter d (cm)	Mean Diameter d (cm)
1						
2						
3						

Table 2: Radius of the wire (using screw gauge)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) cm	Circular scale reading (C.S.R) = (CSD X L.C)	Total diameter D cm	Mean diameter D cm	Mean radius r=D/2 cm
1							
2							
3							

Table 3: Reading for load-twist graph

No. of Obs.	Load in each hanger (gm)	Pointer reading in degrees					ointer	wist 1°)
		Scal	le S1		Scale S ₂	c .	Ç.	n t
		Load increasing	Load decreasing	Load increasing	Load decreasing	S_1 $(\varphi 1^\circ)$	$(\varphi 2^{\circ})$	Mean twist $(\varphi 2^{\circ} - \varphi 1^{\circ})$
1	500							
2	1000							
3	1500							
4	2000							
5	2500							
6	3000							

Date:	Intake:

Section: ID:

Data collection:

Table 1: Readings for the Radius of the cylinder, R (using slide calipers)

No. of obs.	Main scale reading (M.S.R) cm	Vernier scale divisions (V.S.D)	Vernier constant (V.C) cm	Vernier scale reading (V.S.R) = (V.S.D * V.C) cm	Total diameter D (cm)	Mean diameter D (cm)	Mean radius R= D/2 (cm)
1							
2							
3							

Table 2: Radius of the wire, r (Using screw gauge)

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) cm	Circular scale reading (C.S.R) = (CSD * L.C)	Total diameter D cm	Mean diameter D cm	Mean radius r=D/2 cm
1							
2							
3							

Table 3: Reading for the time period T.

No. of obs.	Time for 30 oscillations (see)	Period of oscillation t(sec)	Mean T. (sec)
1			
2			
3			

Date:	Intake:
Section:	ID:

Data Table :-

Table 1: Data for pressure - temperature record

		Reading in mercury l	n cm of the evel in the	Difference of two	Dungayan of cos in
No. of observation	Temperature in °C	Open limb (R ₁)	Closed limb constant level at	levels in cm H=R₁ ∼R₂	Pressure of gas in cm of mercury P= P _o ± h
1.		(==,)	(R ₂)		
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

Date:	Intake:
Section:	ID:

Data Collection:

Table 1: Determination of angle of Prism

No. of obs.	Rea			nage in t e prism		Readings for image in the face AC of the prism			Difference in readings it the two face (θ=M-N)	Mean (θ) of the two venires	Angle of the prism A=θ/2		
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R	M.S.R V.S.D Value of V.S.R Total Reading M				Difference in a	Mean (θ)	Angle of
1													
2													
3													

Table 2: Determination of angle of minimum deviation

No. of obs.	Readings for the minimum deviation position			Readings for the direct position					Angle of minimum deviation ($\delta_{ m m}$)=(M-N)	Mean ($oldsymbol{\delta}_{ m m}$)		
	M.S.R	V.S.D	V.C	Value of V.S.R	Total Reading N	M.S.R V.S.D Value of V.S.R Total Reading M			Angle o	Меа		
1												
2												
3												

PHY- 102

Experiment No: 10

Date: Intake:

Section: ID:

Data Collection:

Table 1: Diameter of the Specimen disc.

No. of obs.	Main scale reading (M.S.R) (cm)	Vernier scale divisions (V.S.D)	Vernier constant (V.C) (cm)	Vernier scale reading (V.S.R) = (V.S.D x V.C) (cm)	Total Diameter d (cm)	Mean Diameter d (cm)
1						
2						
3						

Table 2: Thickness of the disc shaped specimen.

No. of obs.	Liner scale reading (L.S.R) cm	Circular scale divisions (C.S.D)	Least count (L.C) cm	Circular scale reading (C.S.R) = (CSD x L.C)	Total diameter D cm	Mean diameter D cm	Mean radius r=D/2 cm
1							
2							
3							

Table 3: Time temperature record of B and A

Time in minutes	0	5	10	15	20	25	30	35	40	45	50
θ_1											
θ_2											

Table 5=4: Time temperature record of A during cooling

Time i	n minutes	0	$\frac{1}{2}$	1	1 1 2	2	$2\frac{1}{2}$	3	$3\frac{1}{2}$	4	4 1/2
	rature in °C θ ₂										
5	5 ¹ / ₂	6	$6\frac{1}{2}$	7	7 1 2	8	8 1/2	9	$9\frac{1}{2}$	10	$10\frac{1}{2}$

PHY- 102

Experiment No: 11

Date: Intake:

Section: ID:

Table: Data for time and Temperature

Time (Sec)	Temperature (°C)		Time (Sec)	Temperature (°C)
1			41	
2			42	
3			43	
4			44	
5			45	
6			46	
7			47	
8			48	
9			49	
10			50	
11			51	
12			52	
13			53	
14			54	
15			55	
16			56	
17		7	57	
18		7	58	
19			59	
20			60	
21			61	
22			62	
23			63	
24			64	
25			65	
26			66	
27			67	
28		\dashv	68	
29			69	
30			70	
31		-	71	
32		┥	72	
33		┥	73	
34		┥	74	
35		\dashv	75	
36			76	
37		-	77	
38		┥	78	
39		┥	79	
40		-	80	
-10			00	

Date:	Intake:
Section:	ID:

Data Collection:

1. Distance between K_1 and $CG(l_1)=.....cm$

2. Distance between K_2 and $CG(l_2)=.....cm$

3. Table for time period T_1 (oscillation about K_1)

No. of	Number of	Time of Oscillation	Time Period	Mean Time
Observation	Oscillation, n	t_1 (sec)	$T_1 = t_1/n \text{ (sec)}$	$T_1(sec)$
1				
2				
3				
4				
5				

4. Table for time period T_2 (oscillation about K_1)

No. of	Number of	Time of Oscillation	Time Period	Mean Time
Observation	Oscillation, n	t_1 (sec)	$T_2 = t_1/n \text{ (sec)}$	$T_2(sec)$
1				
2				
3				
4				
5				