ADCS Homework 6

Dillon Allen

Given a system in a feedback loop,

Problem 1

Formulate G(s) in Matlab

 ${\tt Continuous-time\ transfer\ function.}$

Problem 2

Draw the Root Locus Plot.

Problem 3

At what gain values does the system go unstable?

Now, from this image we can see that the gain is unstable around $\pm 2.4j$. To find a more exact value, we will use rlocfind(G)

Therefore, the gain that leads to instability is

gain = 3.5199

Problem 4

ans = 3.5199

What are the gain and phase margins for the system?

margin(G)

Problem 5

Draw the Nichols plot for the system G(s). Annotate the phase and gain margins.

Problem 6

For
$$K=2$$
, what is the CLTF, $\frac{Y(s)}{U(s)}$?

From the block layout, the CLTF will be

$$\frac{Y(s)}{U(s)} = \frac{K(s)G(s)}{1+K(s)G(s)}$$
 Using $K=2$, $G(s)=\frac{s^2+3s+1}{s^4+2s^3+3s^2+s+1}$, we have
$$\frac{Y(s)}{U(s)} = \frac{2s^2+6s+2}{s^4+2s^3+5s^2+7s+2}$$

Problem 7

Plot the output of the step function, for K = 2.

$$cltf = tf([2 6 2], [1 2 5 7 2])$$

Continuous-time transfer function.

