Calculus in Machine Learning

For Mr. Conlon's BC Calculus class

David Evans

My timeline so far...

Farmers have to kill weeds in their fields

Today they broadcast their field...

What if we just sprayed the weeds?

What if we just sprayed the weeds?

How do we do this???

How do we do this???

What is machine learning?

Machine learning: Computers using data(pattern recognition) to map an input to an output.

What is machine learning?

Machine learning: Computers using data(pattern recognition) to map an input to an output.

What is machine learning?

Machine learning: Computers using data(pattern recognition) to map an input to an output.

Value of m(slope)

$$L = (y-p)^2 \qquad p = mx + b$$

$$L = (y-(mx+b))^2$$
 For complicated models, the loss function can look like this!

$$L=(y-p)^2 \qquad p=mx+b \ L=(y-(mx+b))^2$$

$$L=(y-p)^2 \qquad p=mx+b \ L=(y-(mx+b))^2$$

$$L=(y-p)^2 \qquad p=mx+b \ L=(y-(mx+b))^2$$

$$L = (y-p)^2$$
 $p = mx + b$
 $L = (y-(mx+b))^2$

$$L=(y-p)^2 \qquad p=mx+b \ L=(y-(mx+b))^2$$

Let's do this for our problem now!

3. Calculate
$$\frac{dL}{dm}$$

$$L = (y - (mx + b))^2$$

$$\frac{dL}{dm} = 2(y - (mx + b)) \left(\frac{d}{dm}(-mx - b)\right)$$

$$\frac{dL}{dm} = 2(y - (mx + b))(-x)$$

$$\frac{dL}{dm} = -2yx + 2mx^2 + 2xb$$

$$\frac{dL}{dm} = -2(6)(4) + 2(-0.25)4^2 + 2(4)(5)$$

$$\frac{dL}{dm} = -8$$
Plug in our current point:
$$(x, y) = (4, 6)$$

$$(m, b) = (-0.25, 5)$$

4. Do it again for
$$\frac{dL}{db}$$
 !!!
$$L = (y - (mx + b))^2$$

$$\frac{dL}{db} = 2(y - (mx + b))\left(\frac{d}{db}(-mx - b)\right)$$
 Plug in our current point:
$$(x, y) = (4, 6)$$

$$(m, b) = (-0.25, 5)$$

$$\frac{dL}{db} = -2(6) + 2(-0.25)4 + 2(5)$$

$$\frac{dL}{db} = -4$$

$$m_{new}=m_{current}-\etarac{dL}{dm}$$
 $b_{new}=b_{current}-\etarac{dL}{db}$ $m_{new}=0.25-0.001\cdot(-8)$ $b_{new}=5-0.001\cdot(-4)$ $m_{new}=0.242$ $b_{new}=5.004$

Old **m** and **b**:

New **m** and **b**:

A more complicated problem.

	Our simple problem	Blue River's problem
Data	U Volters	
Model	p=mx+b	Neural network Named input Uniter predicting Uniter output Uniter output Uniter output Output
Loss	$L=(y-p)^2$	- loss

You want more?!??!

Better look at a neural network (3blue1brown)

Want a deeper non-technical dive? (Andrew Ng)

Another pretty cool form of machine learning (CGP Grey)

The high school guide to machine learning

Code that generated these plots

My email is: dave.evans@bluerivertech.com