Домашняя работа №2

Выполнила: Ровкова Анастасия Сергеевна

Группа: Р3116

ИСУ: 407893

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	2		2		4	3	5				5
e2	2	0		3	1					4		
e3			0	4	4		2			4	1	4
e4	2	3	4	0			2		1	4	2	
e5		1	4		0				1		3	
e6	4					0		1	3	5		1
e7	3		2	2			0		2			3
e8	5					1		0		5		
e9				1	1	3	2		0		3	
e10		4	4	4		5		5		0	1	
e11			1	2	3				3	1	0	3
e12	5		4			1	3				3	0

Найдем кратчайший пути от начальной вершины e1 ко всем остальным вершинам:

1. $l(e_1) = 0^+, l(e_i) = \infty, i \neq 1, p = e_1$:

) · /) F - 1	
	1
e1	0^+
e2	∞
e3	∞
e3 e4 e5	8
e5	∞
e6	∞
e7	∞
e8	∞
e9	∞
e10	∞
e11	8
e12	∞

2. $\Gamma p = \{e2, e4, e6, e7, e8, e12\}$ – все пометки временные, уточним их:

a.
$$l(e2) = min[\infty, 0^+ + 2] = 2$$

b.
$$l(e4) = min[\infty, 0^+ + 2] = 2$$

c.
$$l(e6) = min[\infty, 0^+ + 4] = 4$$

d.
$$l(e7) = min[\infty, 0^+ + 3] = 3$$

e.
$$l(e8) = min[\infty, 0^+ + 5] = 5$$

f.
$$l(e12) = min[\infty, 0^+ + 5] = 5$$

3.
$$l(e_i^*) = min[l(e_i)] = l(e_2) = 2$$
.

4. Вершина e12 получает постоянную пометку $l(e_2) = 2^+, p = e_2$

	1	2
e1	0^+	
e2 e3	∞	2^+
e3	∞	8
e4	∞	2
e5	∞	8
e6	∞	4
e7	∞	3
e8	∞	5
e9	∞	8
e10	∞	8
e11	∞	8
e12	∞	5

5. Не все вершины имеют постоянные пометки, $\Gamma p = \{e1, e4, e5, e10\}$, уточним их:

a.
$$l(e4) = min[2, 2^+ + 3] = 2$$

b.
$$l(e5) = min[\infty, 2^+ + 1] = 3$$

c.
$$l(e10) = min[\infty, 2^+ + 4] = 6$$

6.
$$l(e_i^*) = min[l(e_i)] = l(e_4) = 2$$
.

7. Вершина e_4 получает постоянную пометку $l(e_4) = 2^+, p = e_4$

	1	2	3
e1	0+		
e2	∞	2^+	
e3	∞	∞	∞
e4 e5	∞	2	2+
e5	∞	∞	3
e6	∞	4	4
e7	∞	3	3
e8	∞	5	5
e9	∞	∞	∞
e10	∞	∞	6
e11	∞	∞	∞
e12	∞	5	5

1. Не все вершины имеют постоянные пометки, $\Gamma p = \{e1, e2, e3, e7, e9, e10, e11\}$, уточним их:

a.
$$l(e3) = min[\infty, 2^+ + 4] = 6$$

b.
$$l(e7) = min[3, 2^+ + 2] = 3$$

c.
$$l(e9) = min[\infty, 2^+ + 1] = 3$$

d.
$$l(e10) = min[6, 2^+ + 4] = 6$$

e.
$$l(e11) = min[\infty, 2^+ + 2] = 4$$

8.
$$l(e_i^*) = min[l(e_i)] = l(e_5) = 3.$$

9. Вершина e_5 получает постоянную пометку $l(e_5) = 3^+$, $p = e_5$

	1	2	3	4
e1	0^{+}			
e2	∞	2^+		
e3	∞	∞	∞	6
e4	∞	2	2+	
e5	∞	∞	3	3+
e6	∞	4	4	4
e7	∞	3	3	3
e8	∞	5	5	5
e9	∞	∞	∞	3
e10	∞	∞	6	6
e11	∞	∞	∞	4
e12	∞	5	5	5

10.Не все вершины имеют постоянные пометки, $\Gamma p = \{e2, e3, e9, e11\},$ уточним их:

a.
$$l(e3) = min[6, 3^+ + 4] = 6$$

b.
$$l(e9) = min[3, 3^+ + 1] = 3$$

c.
$$l(e11) = min[4, 3^+ + 2] = 4$$

11.
$$l(e_i^*) = min[l(e_i)] = l(e_7) = 3$$
.

12. Вершина e_7 получает постоянную пометку $l(e_7) = 3^+$, $p = e_7$

	1	2	3	4	5
e1	0^{+}				
e2	∞	2^+			
e3	∞	∞	∞	6	6
e4	∞	2	2+		
e5	∞	∞	3	3+	
e6	∞	4	4	4	4
e7	∞	3	3	3	3+
e8	∞	5	5	5	5
e9	∞	∞	∞	3	3
e10	∞	∞	6	6	6
e11	∞	∞	∞	4	4
e12	∞	5	5	5	5

13.Не все вершины имеют постоянные пометки, $\Gamma p = \{e1, e3, e4, e9, e11\},$ уточним их:

a.
$$l(e3) = min[6, 3^+ +2] = 5$$

b.
$$l(e9) = min[3, 3^+ + 2] = 3$$

c. $l(e11) = min[4, 3^+ + 3] = 4$

c.
$$l(e11) = min[4, 3^+ + 3] = 4$$

 $14.l(e_i^*) = min[l(e_i)] = l(e_9) = 3.$

15. Вершина e_7 получает постоянную пометку $l(e_9) = 3^+$, $p = e_9$

	1	2	3	4	5	6
e1	0^{+}					
e2	∞	2^+				
e3	∞	∞	∞	6	6	5
e4	∞	2	2+			
e5	∞	∞	3	3+		
e6	∞	4	4	4	4	4
e7	∞	3	3	3	3+	
e8	∞	5	5	5	5	5
e9	∞	∞	∞	3	3	3+
e10	∞	∞	6	6	6	6
e11	∞	∞	∞	4	4	4
e12	∞	5	5	5	5	5

16. Не все вершины имеют постоянные пометки, $\Gamma p = \{e4, e5, e6, e7, e11\}$, уточним их:

a.
$$l(e6) = min[4, 3^+ + 3] = 4$$

b.
$$l(e11) = min[4, 3^+ + 3] = 4$$

$$17.l(e_i^*) = min[l(e_i)] = l(e_6) = 4.$$

18.Вершина e_6 получает постоянную пометку $l(e_6) = 4^+$, $p = e_6$

Depmin	separation to how the first the following to hower thy $i(e_0)$, i , j , e_0										
	1	2	3	4	5	6	7				
e1	0^{+}										
e2	∞	2^+									
e3	∞	∞	∞	6	6	5	5				
e4	∞	2	2+								
e5	∞	∞	3	3+							
e6	∞	4	4	4	4	4	4+				
e7	∞	3	3	3	3+						
e8	∞	5	5	5	5	5	5				
e9	∞	∞	∞	3	3	3+					
e10	∞	∞	6	6	6	6	6				
e11	∞	∞	∞	4	4	4	4				
e12	∞	5	5	5	5	5	5				

19.Не все вершины имеют постоянные пометки, $\Gamma p = \{e1, e8, e9, e10, e12\}$, уточним их:

a.
$$l(e8) = min[5, 4^+ + 1] = 5$$

b.
$$l(e10) = min[6, 4^+ + 5] = 6$$

c.
$$l(e12) = min[5, 4^+ + 1] = 5$$

$$20.l(e_i^*) = min[l(e_i)] = l(e_{II}) = 4.$$

21. Вершина e_{II} получает постоянную пометку $l(e_{II}) = 4^+$, $p = e_{II}$

•	1	2	3	4	5	6	7	8
e1	0+							

e2	∞	2+						
e3	∞	∞	∞	6	6	5	5	5
e4	∞	2	2+					
e5	∞	∞	3	3 ⁺				
e6	∞	4	4	4	4	4	4+	
e7	∞	3	3	3	3+			
e8	∞	5	5	5	5	5	5	5
e9	∞	∞	∞	3	3	3+		
e10	∞	∞	6	6	6	6	6	6
e11	∞	∞	∞	4	4	4	4	4+
e12	∞	5	5	5	5	5	5	5

22.Не все вершины имеют постоянные пометки, $\Gamma p = \{e3, e4, e5, e9, e10, e12\}$ уточним их:

a.
$$l(e3) = min[5, 4^+ + 1] = 5$$

b.
$$l(e10) = min[6, 4^+ + 1] = 5$$

c.
$$l(e12) = min[5, 4^+ + 3] = 5$$

$$23.l(e_i^*) = min[l(e_i)] = l(e_3) = 5.$$

24. Вершина e_3 получает постоянную пометку $l(e_3) = 5^+$, $p = e_3$

· 2 • p	14 6) 11011	J				1(0)	\mathcal{L}	• 5	
	1	2	3	4	5	6	7	8	9
e1	0^+								
e2	8	2^{+}							
e3	8	8	8	6	6	5	5	5	5 ⁺ ,
e4	8	2	2+						
e5	8	8	3	3+					
e6	8	4	4	4	4	4	4+		
e7	8	3	3	3	3+				
e8	8	5	5	5	5	5	5	5	5
e9	∞	8	8	3	3	3+			
e10	∞	8	6	6	6	6	6	6	5
e11	∞	8	8	4	4	4	4	4+	
e12	∞	5	5	5	5	5	5	5	5

25. Не все вершины имеют постоянные пометки, Гр = {e4, e5, e7, e10, e11, e12} уточним их:

a.
$$l(e10) = min[5, 5^+ + 4] = 5$$

b.
$$l(e12) = min[5, 5^+ + 4] = 5$$

26.
$$l(e_i^*) = min[l(e_i)] = l(e_8) = 5.$$

27. Вершина e_8 получает постоянную пометку $l(e_8) = 5^+$, $p = e_8$

	1	2	3	4	5	6	7	8	9	10
e1	0^{+}									
e2	∞	2+								
e3	∞	∞	∞	6	6	5	5	5	5 ⁺	
e4	∞	2	2+							

e5	∞	∞	3	3+						
e6	∞	4	4	4	4	4	4+			
e7	∞	3	3	3	3+					
e8	∞	5	5	5	5	5	5	5	5	5 ⁺
e9	∞	∞	∞	3	3	3 ⁺				
e10	∞	∞	6	6	6	6	6	6	5	5
e11	∞	∞	8	4	4	4	4	4+		
e12	∞	5	5	5	5	5	5	5	5	5

28. Не все вершины имеют постоянные пометки, Гр = {e1, e6, e10} уточним их:

a.
$$l(e10) = min[5, 5^+ + 5] = 5$$

 $29.l(e_i^*) = min[l(e_i)] = l(e_{10}) = 5.$

30.Вершина e_{10} получает постоянную пометку $l(e_{10})=5^+$, $p=e_{10}$

	Think of the styles of the creating to the state of						$x_j (c_{10}) c_j p_{-c_{10}}$					
	1	2	3	4	5	6	7	8	9	10	11	
e1	0_{+}											
e2	∞	2+										
e3	∞	∞	∞	6	6	5	5	5	5 ⁺			
e4	∞	2	2+									
e5	∞	∞	3	3+								
e6	∞	4	4	4	4	4	4+					
e7	∞	3	3	3	3+							
e8	∞	5	5	5	5	5	5	5	5	5 ⁺		
e9	∞	∞	∞	3	3	3 ⁺						
e10	∞	∞	6	6	6	6	6	6	5	5	5+	
e11	∞	∞	∞	4	4	4	4	4+				
e12	∞	5	5	5	5	5	5	5	5	5	5	

 $31.\Gamma p = \{e2, e3, e4, e6, e8, e11\}$, все вершины имеют постоянные пометки, уточнения не требуются

 $32.l(e_i^*) = min[l(e_i)] = l(e_{12}) = 5.$

33. Вершина e_{12} получает постоянную пометку $l(e_{12}) = 5^+$, $p = e_{12}$

	1	2	3	4	5	6	7	8	9	10	11	12
e1	0_{+}											
e2	∞	2+										
e3	∞	∞	∞	6	6	5	5	5	5 ⁺			
e4	∞	2	2+									
e5	∞	∞	3	3+								
e6	∞	4	4	4	4	4	4+					
e7	∞	3	3	3	3+							
e8	∞	5	5	5	5	5	5	5	5	5 ⁺		
e9	∞	∞	∞	3	3	3+						
e10	∞	∞	6	6	6	6	6	6	5	5	5 ⁺	
e11	∞	∞	∞	4	4	4	4	4+				
e12	∞	5	5	5	5	5	5	5	5	5	5	5+

34.Все пометки постоянные.