Übungsserie 2

Aufgabe 1: Wasserstoffatom (3 Punkte)

Das Potential des Wasserstoffatoms im Grundzustand ist im zeitlichen Mittel gegeben durch

$$\Phi(r) = \frac{e}{4\pi\epsilon_0} \frac{1}{r} \left(1 + \frac{r}{a_0} \right) e^{-2r/a_0},$$

wobei e der Betrag der Elementarladung und a_0 der Bohrsche Radius ist. Bestimmen Sie die Ladungsverteilung, die dieses Potential erzeugt und interpretieren Sie dieses Ergebnis physikalisch.

Aufgabe 2: Zunehmendes elektrisches Feld (2 Punkte)

Gibt es ein elektrostatisches Feld $\mathbf{E}(\mathbf{r})$ kostanter Richtung, bei dem der Betrag der Feldstärke senkrecht zur Feldrichtung zunimmt? Begründen Sie Ihre Antwort, falls diese "nein" lautet oder geben Sie ein Beispiel an, falls sie "ja" lautet.

Aufgabe 3: Homogen geladene Kugelschale (8 Punkte)

Bestimmen Sie das elektrostatische Potential sowie das elektrische Feld einer homogen geladenen Kugelschale (Gesamtladung Q, Radien $R_1 < R_2$) für jeden Punkt des Raumes.

Aufgabe 4: Unendlich langer Kreiszylinder (4 + 4 + 2) Punkte

Betrachten Sie einen unendlich langen, homogen geladenen Kreiszylinder (Radius R) mit Ladungsdichte

$$\rho(r) = \begin{cases} \rho_0 & r \le R \\ 0 & r > R \end{cases}$$

- a) Berechnen Sie das elektrische Feld mit Hilfe des Gauß'schen Satzes.
- b) Berchnen Sie das elektrostatische Potential mit Hilfe der Poisson Gleichung.
- c) Überprüfen Sie Ihre Ergebnisse, indem Sie aus dem elektrostatischen Potential von b) das elektrische Feld gewinnen und dieses mit dem Ergebnis aus a) vergleichen.