

Amplificadores Diferenciais

Professor: Sandro Haddad

Amplificadores Diferenciais

- Apresentam diversas vantagens em relação a amplificadores de um ramo:
 - Rejeição de ruído
 - Rejeição de nível dc comum
 - Maior output swing

Amplificadores Diferenciais

- Um sinal Single-ended é definido sobre com relação a um potencial fixo, geralmente o terra (ground).
- O par diferenciado é formado por 2 ramos idênticos com sinais de mesma magnitude e opostos em cada ramo e com impedâncias iguais.
- O potencial central no sinal diferencial é chamado de "commonmode".

Amplificador Diferencial: rejeição de ruído

 Um ruído na fonte de alimentação, ou até mesmo nas 2 entradas é cancelado. Qualquer sinal não desejado que se manifeste igualmente nos terminais de entrada será cancelado.

Amplificador Diferencial: maior output swing

- Se a máxima tensão em um ramo é
- Vdd (Vgs vth), Vx Vy = 2[Vdd (Vgs Vth)]
- Outras vantagens do diferencial: maior linearidade e polarização mais simples.

Amplificador Diferencial: topologia básica

- Amplificador diferencial: 2 amplificadores single-ended idênticos para processar as duas fases.
- Alta rejeição ao ruído de fonte, maior output swing porém alta sensitividade ao nível CM.

Figure 4.5 (a) Simple differential circuit, (b) illustration of sensitivity to the input common-mode level.

Amplificador Diferencial: topologia básica

- Common-mode (CM) varia => corrente em M1 e M2 variam
 => transcondutância varia => Output CM varia.
- Low Input CM level minimum values of Vin turn off M1 and M2.

Figure 4.5 (a) Simple differential circuit, (b) illustration of sensitivity to the input common-mode level.

Amplificador Diferencial: topologia básica

- O par diferencial é polarizado por uma fonte de corrente (tail current source) de modo que a soma das correntes (ld1 +ld2) nos ramos seja constante, assim a saída fica independente do nível comum CM.
- Assim, se Vin1=Vin2 , Id1=Id2=Iss/2 (independente de $V_{in,CM}$) e $V_{out,CM}$ = Vdd-Rd.Iss/2

Amplificador diferencial – análise qualitativa

- Se Vin1 <<Vin2 : M1 off, M2 on, Id2=Iss
- Assim, os limites da tensão de saída ficam limitados a

Amplificador diferencial – análise qualitativa

- Os limites da tensão de saída ficam limitados a |RdIss| e independentes do nível CM da entrada
- O ganho é máximo (slope Vout1-Vout2 x Vin1-Vin2) quando Vin1=Vin2. O ganho tende a zero quando Vin1-Vin2 cresce.
- Ou seja, o circuito é menos linear quando Vin swing aumenta.

Amplificador diferencial: resposta a nivel comum

 As curvas abaixo mostram o efeito do nível CM em cada ramo de saída: Indial

Para manter M1 e M2 em saturação, Vin(CM) deve ficar entre:

$$V_{GS1} + (V_{GS3} - V_{TH3}) \le V_{in,CM} \le \min \left[V_{DD} - R_D \frac{I_{SS}}{2} + V_{TH}, V_{DD} \right]$$

Amplificador diferencial: resposta a nivel comum

Example 4.1

Sketch the small-signal differential gain of a differential pair as a function of the input CM level.

Solution

As shown in Fig. 4.9, the gain begins to increase as $V_{in,CM}$ exceeds V_{TH} . After the tail current source

Figure 4.9

enters saturation ($V_{in,CM} = V_1$), the gain remains relatively constant. Finally, if $V_{in,CM}$ is so high that the input transistors enter the triode region ($V_{in,CM} = V_2$), the gain begins to fall.

Amplificador diferencial: Output swing

- M1 and M2 to be saturated each output can go as high as Vdd but as low as approximately V_{in.CM} – Vth.
- The higher the input CM level, the smaller the allowable output swings.

Amplificador diferencial: Output swing

 Para obter um maior output swing, o nível Vin(CM) deve estar próximo de Rd.Iss/2, o que impõe um trade-off entre ganho e output swing (o ganho do diff. Pair é função da tensão DC sobre o Rd, se Rd.Iss/2 é alto, V_{in,CM} deve permanecer próximo de zero).

Amplificador diferencial: análise de grandes sinais

$$V_{out1} = V_{DD} - R_{D1}I_{D1}$$
$$V_{out2} = V_{DD} - R_{D2}I_{D2}$$

$$V_{in1} - V_{in2} = V_{GS1} - V_{GS2}.$$

$$(V_{GS} - V_{TH})^2 = \frac{I_D}{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}}$$

$$V_{out1} - V_{out2} = R_{D2}I_{D2} - R_{D1}I_{D1} = R_{D}(I_{D2} - I_{D1})$$

$$I_{D1} + I_{D2} = I_{SS}$$

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2 - I_{SS} = -2\sqrt{I_{D1}I_{D2}}$$

$$(V_{in1} - V_{in2})^2 = \frac{2}{\mu_n C_{ox} \frac{W}{L}} (I_{SS} - 2\sqrt{I_{D1}I_{D2}})$$

$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L}}} + V_{TH}$$

$$V_{in1} - V_{in2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}}}$$

$$(I_{D1} - I_{D2})^2 = -\frac{1}{4} \left(\mu_n C_{ox} \frac{W}{L} \right)^2 (V_{in1} - V_{in2})^4 + I_{SS} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2$$

$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

$$\sqrt{\frac{133}{\mu_n C_{ox}} \frac{W}{L}} - (V_{in1} - V_{in2})^2$$

 $V_{\text{out1}} \circ \longrightarrow X$ $V_{\text{out2}} \circ V_{\text{out2}}$ $V_{\text{in1}} \circ \longrightarrow M_1$ M_1 $M_2 \circ \longrightarrow V_{\text{in2}}$ $M_1 \circ \longrightarrow V_{\text{in2}}$ $M_1 \circ \longrightarrow V_{\text{in2}}$

Amplificador diferencial: análise de grandes sinais

$$V_{out1} = V_{DD} - R_{D1}I_{D1}$$

 $V_{out2} = V_{DD} - R_{D2}I_{D2}$

$$V_{in1} - V_{in2} = V_{GS1} - V_{GS2}.$$

$$(V_{GS} - V_{TH})^2 = \frac{I_D}{\frac{1}{2}\mu_n C_{ox} \frac{W}{L}}$$

$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L}}} + V_{TH}$$

$$V_{out1} - V_{out2} = R_{D2}I_{D2} - R_{D1}I_{D1} = R_{D}(I_{D2} - I_{D1})$$

$$I_{D1} + I_{D2} = I_{SS}$$

$$(V_{in1} - V_{in2})^{2} = \frac{2}{\mu_{n}C_{ox}\frac{W}{L}}(I_{SS} - 2\sqrt{I_{D1}I_{D2}})$$

$$V_{out1} - V_{out2}$$

$$V_{out1} - V_{out2}$$

$$V_{in1} - V_{in2}$$

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{I} (V_{in1} - V_{in2})^2 - I_{SS} = -2\sqrt{I_{D1}I_{D2}}$$

Squaring the two sides again and noting that $4I_{D1}I_{D2} = (I_{D1} + I_{D2})^2 - (I_{D1} - I_{D2})^2 = I_{SS}^2 - (I_{D1} - I_{D2})^2$, we arrive at

$$(I_{D1} - I_{D2})^2 = -\frac{1}{4} \left(\mu_n C_{ox} \frac{W}{L} \right)^2 (V_{in1} - V_{in2})^4 + I_{SS} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2$$

$$V_{in1} - V_{in2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}}}$$

$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

<u>Amplificador diferencial: ganho</u>

$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

As expected, $I_{D1} - I_{D2}$ is an odd function of $V_{in1} - V_{in2}$, falling to zero for $V_{in1} = V_{in2}$.

$$\Delta V_{in} = 0, G_m = \sqrt{\mu_n C_{ox}(W/L)I_{SS}}$$

$$V_{out1} - V_{out2} = R_D \Delta I = R_D G_m \Delta V_{in},$$

$$|A_v| = \sqrt{\mu_n C_{ox} rac{W}{L} I_{SS} R_D}$$
 Ganho do circuito em equilibrio

$$\Delta V_{in} = \sqrt{2I_{SS}/(\mu_n C_{ox} W/L)} \quad , G_m = 0.$$

Este é o máximo diferencial ao qual o cricuito responde

<u>Amplificador diferencial: ganho</u>

Example 4.2

Plot the input-output characteristic of a differential pair as the device width and the tail current vary.

Solution

Consider the characteristic shown in Fig. 4.13(a). As W/L increases, ΔV_{in1} decreases, narrowing the input range across which both devices are on [Fig. 4.13(b)]. As I_{SS} increases, both the input range and the output current swing increase [Fig. 4.13(c)]. Intuitively, we expect the circuit to become more linear as I_{SS} increases or W/L decreases.

<u>Amplificador diferencial: ganho</u>

Este é o máximo diferencial ao qual o circuito responde

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}. \quad , G_m = 0.$$

For a zero differential input, $I_{D1} = I_{D2} = I_{SS}/2$,

$$(V_{GS} - V_{TH})_{1,2} = \sqrt{\frac{I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}.$$

Thus, the equilibrium overdrive is equal to $\Delta V_{in1}/\sqrt{2}$.

$$\uparrow \Delta Vin(\uparrow linearidade) \Rightarrow \uparrow (Vgs - Vth)_{1,2} \Rightarrow \downarrow \frac{W}{L}(I_{SS} \to cte) \Rightarrow \downarrow gm$$

Trade-off Linearidade x Ganho

Amplificador diferencial: ganho

Supondo M1 e M2 operando em saturação:

$$|A_v| = \sqrt{\mu_n C_{ox} \frac{W}{L} I_{SS}} R_D$$
 $I_{d1} = I_{d2} = \frac{I_{SS}}{2} \rightarrow |A_V| = g_{m1,2}.R_D$

Ganho do diff. pair X Common-source (CS):

Para a mesma corrente de polarização Iss:

$$gm_{diff.pair} = \sqrt{\mu_n C_{ox} \frac{W}{L} I_{SS}}$$

$$gm_{CS} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_{SS}}$$

$$gm_{diff.pair} = \frac{gm_{CS}}{\sqrt{2}}$$

O par diferencial tem o mesmo ganho que um estágio CS, com o dobro de corrente de polarização

Amplificador diferencial: small-signal

Método I - Superposição

Figure 4.14 Differential pair with small-signal inputs.

$$R_S = 1/g_{m2}$$

$$\frac{V_X}{V_{in1}} = \frac{-R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}.$$

Figure 4.15 (a) Differential pair sensing one input signal, (b) circuit of (a) viewed as a CS stage degenerated by M_2 , (c) equivalent circuit of (b).

Amplificador diferencial: small-signal

Método I - Superposição

$$\frac{V_Y}{V_{in1}} = \frac{R_D}{\frac{1}{g_{m2}} + \frac{1}{g_{m1}}}.$$

$$(V_X - V_Y)|_{\text{Due to }Vin1} = \frac{-2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1},$$

$$g_{m1}=g_{m2}=g_m$$

$$(V_X - V_Y)|_{\text{Due to } V_{in1}} = -g_m R_D V_{in1}.$$

To calculate V_T , we note that M_1 drives M_2 as a source follower and replace V_{in1} and M_1 by a Thevenin equivalent (Fig. 4.16): the Thevenin voltage $V_T = V_{in1}$ and the resistance $R_T = 1/g_{m1}$. Here, M_2 operates as a common-gate stage, exhibiting a gain equal to

Figure 4.16 Replacing M_1 by a Thevenin equivalent.

By virtue of symmetry, the effect of V_{in2} at X and Y is identical to that of V_{in1} except for a change in the polarities:

$$(V_X - V_Y)|_{\text{Due to } Vin2} = g_m R_D V_{in2}.$$

$$\frac{(V_X - V_Y)_{tot}}{V_{in1} - V_{in2}} = -g_m R_D.$$

Se a saída é "single-ended": o ganho é a metade

Amplificador diferencial: small-signal

Example 4.3.

In the circuit of Fig. 4.17, M_2 is twice as wide as M_1 . Calculate the small-signal gain if the bias values of V_{in1} and V_{in2} are equal.

Figure 4.17

Solution

If the gates of M_1 and M_2 are at the same dc potential, then $V_{GS1} = V_{GS2}$ and $I_{D2} = 2I_{D1} = 2I_{SS}/3$. Thus, $g_{m1} = \sqrt{2\mu_n C_{ox}(W/L)I_{SS}/3}$ and $g_{m2} = \sqrt{2\mu_n C_{ox}(2W/L)2I_{SS}/3} = 2g_{m1}$. Following the same procedure as above, the reader can show that

$$|A_v| = \frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{2g_{m1}}} \tag{4.20}$$

$$= \frac{4}{3}g_{m1}R_D. \tag{4.21}$$

Note that, for a given I_{SS} , this value is lower than the gain of a symmetric differential pair (with 2W/L for each device) [Eq. (4.19)] because g_{m1} is smaller.

Amplificador diferencial: meio-cricuito

- Método II Conceito de "Half circuit"
 - Se os 2 ramos de um par diferencial são idênticos, e as tensões de entrada variam com a mesma magnitude, porém em sinais contrários, a tensão no ponto P não muda, logo os ramos podem ser calculados independentemente.

Figure 4.18 Illustration of why node P is a virtual ground.

Amplificador diferencial: modelo de pequenos sinais

- Vp pode ser considerado como um ac ground.
- Utilizando o lema do meio-circuito, o ganho pode ser calculado por superposição:

- Vout1 = gm1RdVin1 Vout2 = -gm2RdVin2
- Vin2=-Vin1
- Av = (Vout1-Vout2)/(Vin1-Vin2) = gmRd (gm1 = gm2)

Amplificador diferencial: modelo de pequenos sinais

 Quando se tem níveis CM diferentes em cada entrada, podemos decompor Vin1 – Vin2 em uma entrada diferencial e outra DC e aplicar superposição

Amplificador diferencial: modelo de pequenos sinais

$$V_X = -g_m(R_D || r_{O1}) \frac{V_{in1} - V_{in2}}{2}$$

$$V_Y = -g_m(R_D || r_{O2}) \frac{V_{in2} - V_{in1}}{2}.$$

$$V_X - V_Y = -g_m(R_D || r_O)(V_{in1} - V_{in2}),$$

For common-mode operation, the circuit reduces to that in Fig. 4.24(b). How much do V_X and V_Y change as $V_{in,CM}$ changes? If the circuit is fully symmetric and I_{SS} an ideal current source, the current drawn by M_1 and M_2 from R_{D1} and R_{D2} is exactly equal to $I_{SS}/2$ and independent of $V_{in,CM}$. Thus, V_X and V_Y experience no change as $V_{in,CM}$ varies. Interestingly, the circuit simply amplification the difference between V_{in1} and V_{in2} while eliminating the effect of $V_{in,CM}$.

Amplificador diferencial: Resposta ao modo comum

- impedância finita da fonte de corrente
- Um importante característica do diff. Pair é a habilidade de rejeitar as variações de CM.
- Em condições reais, não se consegue uma impedância infinita da fonte de corrente de polarização, o que provoca uma alteração no ganho do amplificador. Chamamos de "Acm" a variação do ganho devido ao nível CM

 Variação de CM, varia a corrente de polarização (Iss), e assim varia o ganho e limita o "output voltage swing"

Amplificador diferencial: Rejeição de modo comum

- impedância finita da fonte de corrente
- Variações no CM de entrada
 - -> Altera pontos de polarização (Iss)
 - -> Altera o ganho de pequeno sinal
 - -> Limita o "output voltage swings"

Amplificador diferencial: Rejeição de modo comum

Example 4.6

The circuit of Fig. 4.26 uses a resistor rather than a current source to define a tail current of 1 mA.

Figure 4.26

Assume $(W/L)_{1,2} = 25/0.5$, $\mu_n C_{ox} = 50 \,\mu\text{A/V}^2$, $V_{TH} = 0.6 \,\text{V}$, $\lambda = \gamma = 0$, and $V_{DD} = 3 \,\text{V}$.

- (a) What is the required input CM for which R_{SS} sustains 0.5 V?
- (b) Calculate R_D for a differential gain of 5.
- (c) What happens at the output if the input CM level is 50 mV higher than the value calculated in (a)?

Solution

(a) Since $I_{D1} = I_{D2} = 0.5$ mA, we have

$$V_{GS1} = V_{GS2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} + V_{TH}$$
 (4.29)
= 1.23 V. (4.30)

Thus, $V_{in,CM} = V_{GS1} + 0.5 \text{ V} = 1.73 \text{ V}$. Note that $R_{SS} = 500 \Omega$.

Amplificador diferencial: Rejeição de modo comum

(b) The transconductance of each device is $g_m = \sqrt{2\mu_n C_{ox}(W/L)I_{D1}} = 1/(632 \Omega)$, requiring $R_D = 3.16 \text{ k}\Omega$ for a gain of 5.

Note that the output bias level is equal to $V_{DD} - I_{D1}R_D = 1.42$ V. Since $V_{in,CM} = 1.73$ V and $V_{TH} = 0.6$ V, the transistors are 290 mV away from the triode region.

(c) If $V_{in,CM}$ increases by 50 mV, the equivalent circuit of Fig. 4.25(c) suggests that V_X and V_T drop by

$$|\Delta V_{X,Y}| = \Delta V_{in,CM} \frac{R_D/2}{R_{SS} + 1/(2g_m)}$$
 (4.31)

$$= 50 \text{ mV} \times 1.94$$
 (4.32)

$$= 96.8 \text{ mV}.$$
 (4.33)

Now, M_1 and M_2 are only 143 mV away from the triode region because the input CM level has increased by 50 mV and the output CM level has decreased by 96.8 mV.

Amplificador diferencial: resposta ao modo comum – diferença de resistores

A variação no modo comum causa uma variação na saída diferencial devido à diferenças no valor de Rd

$$\Delta V_X = -\Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} R_D$$

$$\Delta V_Y = -\Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} (R_D + \Delta R_D)$$

Amplificador diferencial: resposta ao modo comum

diferença de resistores

 Caso haja uma diferença entre os transistores, aparecerá uma componente diferencial devido ao Modo comum chamada de "Acm-dm" (Resposta diferencial devido ao modo comum)

Amplificador Diferencial: carga MOS

 Os resistores utilizados em um par diferencial podem ser substituídos por um P-MOS tanto diode-connected quanto como fonte de corrente ou uma combinação de ambos.

$$A_v \approx -\sqrt{\frac{\mu_n(W/L)_N}{\mu_p(W/L)_P}}$$

$$A_v = -g_{mN}(r_{ON} \| r_{OP})$$

Sendo o ganho dos amplificador proporcional a 1/gmp, reduzimos a corrente que passa nos P-FETs diode-connected para reduzir gmp

Amplificador diferencial: Cascode

 Para aumentar o ganho do amplificador, podemos colocar cargas cascode, porém com menor limite de tensão:

 $|A_v| \approx g_{m1}[(g_{m3}r_{O3}r_{O1})||(g_{m5}r_{O5}r_{O7})].$