

15 MHz Rail-to-Rail Operational Amplifier

Preliminary

AD8519

FEATURES

SOT23 package saves space Wide Bandwidth : 15 MHz @ 5V Low Offset Voltage : 1.2 mV max

Rail-to-Rail Output Swing 4 V/µs slew rate

Single-Supply Operation: +3 to +12V

8-Lead SO (R Suffix) 5-Lead SOT23 (RT Suffix)

NC NC OUT V+
+IN OUT +IN -IN

APPLICATIONS

Unity-Gain Stable

Portable Communications
Microphone Amplifiers
Portable Phones
Sensor Interface
Active Filters
PCMCIA cards
ASIC input drivers
Wearable Computers
Battery Powered Devices
Voltage reference buffers
Personal Digital Assistants

GENERAL DESCRIPTION

The AD8519 is a single rail-to-rail output bipolar amplifier in a SOT23-5 package with a unity gain bandwidth of 15 MHz and a typical votlage offset of less than 1 mV. This part brings precision and bandwidth to the SOT-23 package. The low supply current makes the AD8519 ideal for battery power applications. The rail-to-rail output swing of the AD8519 is larger than standard video op amps, making them useful in applications which require greater dynamic range than standard video amplifiers provide. The 4 V/us slew rate makes the AD8519 a good match for driving ASIC inputs, such as voice codecs.

The small SOT23 package make it possible to place the AD8519 next to sensors, reducing external noise pickup.

The AD8519 is specified over the extended industrial (-40°C to + 125°C) temperature range. The AD8519 is available in 5 lead SOT23-5 and SO-8 surface mount packages.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD8519 -1- REV. - 0.5 10/07/97

ELECTRICAL CHARACTERISTICS (@ V_S=+5.0V, V_{CM} = 0V, T_A=+25 °C unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	VOS	AD8519ARU (SOT23-5)		600	1100	μV
		$-40^{\circ} \le T_A \le +125^{\circ}C$		800	1300	μV
		AD8519AR (SO-8)		600	1000	μV
		$-40^{\circ} \le T_A \le +125^{\circ}C$		000	1100	μV
		-40 SIA S +123 C			1100	μν
Input Bias Current	IB				800	nA
		$-40^{\circ} \le T_A \le +125^{\circ}C$			900	nA
Input Offset Current	IOS				±50	nA
		$-40^{\circ} \le T_A \le +125^{\circ}C$			±100	nA
Input Voltage Range	v_{CM}		0		+4	V
Common-Mode Rejection	CMRR	$0V \le V_{CM} \le +4.0V$,				
		$-40 \le T_A \le +125$ °C	63	100		dB
Large Signal Voltage Gain	AVO	$R_L = 2k\Omega$		30		V/mV
		$R_{L} = 10k\Omega$	50	75		V/mV
		$R_{L} = 10k\Omega$, $-40^{\circ} \le T_{A} \le +125^{\circ}C$	30			V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	Note 1		2		μV/°C
Bias Current Drift	$\Delta I_B/\Delta T$			500		pA/°C
OUTPUT CHARACTERISTICS						
Output Voltage Swing High	V _{OH}	$I_L = 250 \mu\text{A}$				
		$-40^{\circ} \le T_A \le +125^{\circ}C$	4.90			V
		$I_L = 5 \text{ mA}$	4.80			V
Output Voltage Swing Low	v_{OL}	$I_L = 250 \mu\text{A}$				
		$-40^{\circ} \le T_A \le +125^{\circ}C$			80	mV
		$I_L = 5 \text{ mA}$			200	mV
Short Circuit Current	ISC	Short to Ground		±70		mA
Maximum Output Current	IOUT			±25		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V \text{ to } +7V,$		110		
		$-40^{\circ} \le T_A \le +125^{\circ}C$	80			dB
Supply Current/Amplifier	ISY	$V_{OUT} = 2.5V$		600	800	μA
		$40^{\circ} \le T_A \le +125^{\circ}C$			900	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$1V < V_{OUT} < 4V, R_L = 10 \text{ k}\Omega$		4		V/µs
Settling Time	t_{S}	To 0.01%		1200		ns
Gain Bandwidth Product	GBP			15		MHz
Phase Margin	ø _m			60		degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz		0.5		μV _{p-p}
Voltage Noise Density	en	f=1kHz		7		nV/√Hz
Current Noise Density	in	f=1 kHz		0.4		pA/√Hz

AD8519 –2– REV. - 0.5 10/07/97

ELECTRICAL CHARACTERISTICS (@ V_S=+3.0V, V_{CM} = 0V, T_A=+25 °C unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	v_{OS}	AD8519ARU (SOT23-5)		700	1200	μV
		$-40^{\circ} \le T_A \le +125^{\circ}C$		900	1400	μV
		AD8519AR (SO-8) -40° \leq T _A \leq +125°C		700	1100 1200	μV μV
Input Bias Current	$I_{\mathbf{B}}$				800	nA
Input Offset Current	IOS				±50	nA
Input Voltage Range			0		+2	V
Common-Mode Rejection	CMRR	$0V \le V_{CM} \le +2.0V$,				
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	55	75		dB
Large Signal Voltage Gain	AVO	$R_L = 2k\Omega$		20		V/mV
		$R_L = 10k\Omega$	20	30		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage Swing High	v_{OH}	$I_L = 250 \mu\text{A}$	2.90			V
		$I_L = 5 \text{ mA}$	2.80			V
Output Voltage Swing Low	v_{OL}	$I_L = 250 \mu\text{A}$			100	mV
		$I_L = 5 \text{ mA}$			200	mV
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V \text{ to } +7V,$				
		$-40^{\circ} \le T_A \le +125^{\circ}C$	55	80		dB
Supply Current/Amplifier	ISY	V_{OUT} = 1.5V		600	800	μA
		-40°≤T _A ≤+125°C			900	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		1.5		V/µs
Settling Time	$t_{\rm S}$	To 0.01%		2000		ns
Gain Bandwidth Product	GBP			7		MHz
Phase Margin	ø _m			55		degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz		TBD		μV _{p-p}
Voltage Noise Density	e _n	f = 1kHz		10		nV/√Hz
Current Noise Density	in	f=1 kHz		0.4		pA/√Hz

ELECTRICAL CHARACTERISTICS (@ V_S=±5.0V, T_A=+25 ℃ unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	VOS	AD8519ARU (SOT23-5)		600	1100	μV
		$-40^{\circ} \le T_A \le +125^{\circ}C$		800	1300	μV
		AD8519AR (SO-8)		600	1000	μV
		$-40^{\circ} \le T_A \le +125^{\circ}C$			1100	μV
Input Bias Current	$I_{\mathbf{B}}$	$V_{CM} = 0V$			800	nA
		$V_{CM} = 0V, -40^{\circ} \le T_A \le +125^{\circ}C$			900	nA
Input Offset Current	IOS	$V_{CM} = 0V$			±50	nA
		$V_{CM} = 0V, -40^{\circ} \le T_A \le +125^{\circ}C$			±100	nA
Input Voltage Range			-5		+4	V
Common-Mode Rejection	CMRR	$-4.9V \le V_{CM} \le +4.0V$,				
		$-40^{\circ} \le T_{A} \le +125^{\circ}C$	70	100		dB
Large Signal Voltage Gain	Avo	$R_{L} = 2k\Omega$		30		V/mV
Large Signal Voltage Gain	Avo	$R_{L} = 10k\Omega$	50	70		V/mV
		$-40^{\circ} \le T_A \le +125^{\circ}C$	25			V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T.		2		μV/°C
Bias Current Drift	$\Delta I_{\rm B}/\Delta T$			500		pA/°C
OUTPUT CHARACTERISTICS	Б					F
Output Voltage Swing High	V _{OH}	$I_L = 250 \mu\text{A}$				
Output Voltage Swing High	VOH	$-40^{\circ} \le T_{A} \le +125^{\circ}C$	+4.90			V
		$I_{L} = 5 \text{ mA}$	+4.80			V
Output Voltage Swing Low	$ _{ m V_{OL}}$	$I_L = 3 \text{ m/s}$ $I_L = 250 \mu\text{A}$	14.00			•
Output Voltage 5 wing Low	, OL	$-40^{\circ} \le T_{A} \le +125^{\circ}C$			-4.90	V
		$I_{L} = 5 \text{ mA}$			-4.80	V
Short Circuit Current	I _{SC}	Short to Ground		±70	1.00	mA
Maximum Output Current	IOUT	Short to Ground		±25		mA
POWER SUPPLY	-001					
Power Supply Rejection Ratio	PSRR	$V_S = \pm 1.5 V$ to $\pm 6 V$,				
11 3 3		$-40 \le T_A \le +125$ °C	60	100		dB
Supply Current/Amplifier	ISY	$V_{OUT} = 0V$		600	800	μA
supply cultural imprimer	31	$40^{\circ} \le T_A \le +125^{\circ}C$		000	950	μΑ
Supply Voltage Range	V_{S}	10 21A 2 1123 C	+3.0(±1.5)		+12(±6)	V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$-4V < V_{OUT} < 4V, R_L = 10 \text{ k}\Omega$		7		V/µs
Settling Time	t_{S}	To 0.01%		1000		ns
Gain Bandwidth Product	GBP			15		MHz
Phase Margin	ø _m			60		degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz		TBD		μV _{p-p}
Voltage Noise Density	e _n	f=1 kHz		7		nV/√Hz
Current Noise Density	in	f=1 kHz		0.4		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ±6 V
Input Voltage ¹ ±6 V
Differential Input Voltage ² ±0.6 V
Internal Power Dissipation
SOT23 (RT) Observe Derating Curves
SOIC (S) Observe Derating Curves
Output Short Circuit Duration Observe Derating Curves
Storage Temperature Range
RT, S, Packages65°C to +150°C
Operating Temperature Range
AD851940°C to +125°C
Junction Temperature Range
RT, S, Packages65°C to +150°C
Lead Temperature Range (Soldering, 10 seconds)+300°C

Package Type	θ_{JA}^3	$\theta_{ m JC}$	Units
5-Lead SOT-23 (RT)	230	43	°C/W
8-Pin SOIC (S)	158		°C/W

NOTES

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8519 is limited by the associated rise in junction temperature. The maximum safe junction temperature is 150°C for these plastic packages. If this maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the product in the "overheated" condition for an extended period can result in permanent damage to the device. To ensure proper operation, it is important to observe the recommended derating curves shown in Figures x and y.

ORDERING GUIDE

ART is available in 2,500 piece reels only. AR is available in 2,500 piece reels only.

Model	Temperature Range	Package Desciption	Package Option
AD8519ART	-40°C to +125°C	5-Lead SOT23	RT-5
AD8519ART	-40°C to +125°C	5-Lead SOT23	SO-8
AD8519AR	-40°C to +125°C	8-Pin SOIC	SO-8
AD8519AR	-40°C to +125°C	8-Pin SOIC	SO-8

 $^{^{1}}$ For supply voltages less than 6 volts, the input voltage is limited to less than or equal to the supply voltage.

 $^{^2}$ For differential input voltages greater than 0.6 volts the input current should be limited to less than 5 mA to prevent degradation or destruction of the input devices.

 $^{^3}$ θ_{JA} is specified for the worst case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for SOIC and SOT23 packages.