Symbols

Sets

Name	Domains	Description
i	*	products
j	*	stages
k	*	potential number of parallel units

Parameters

Name	Domains	Description
h		horizon time (available time hrs)
q	i	demand of product i
alpha	j	cost coefficient for batch units
beta	j	cost exponent for batch units
coeff	k	represent number of parallel units
S	i, j	size factor for product i in stage j (kg per l)
t	i, j	processing time of product i in batch j (hrs)

Variables

Name	Domains	Description
У	k, j	binary variable denoting stage existence
v	j	volume of stage j (l)
b	i	batch size of product i (kg)
tl	i	cycle time of product i (hrs)
n	j	number of units in parallel stage j
cost		total cost of batch processing units (\$)

Equations

Name	Domains	Description
vol	i, j	calculate volume of stage j
cycle	i, j	calculate cycle time of product i
time		time constraint
units	j	calculate number of processing units per stage
lim	j	limit selection to one number
obj		objective function definition

Equation Definitions

 $\mathbf{vol}_{i,j}$

$$v_j \ge \log(s_{i,j}) + b_i$$
 $\forall i, j$

 $\mathbf{cycle}_{i,j}$

$$n_j + tl_i \ge \log(t_{i,j})$$
 $\forall i, j$

 $_{
m time}$

$$\sum_i (q_i \cdot \exp((tl_i - b_i))) \le h$$

 \mathbf{units}_{i}

$$\mathbf{n}_j = \sum_k (\mathbf{coeff}_k \cdot \mathbf{y}_{k,j})$$

 \lim_{i}

$$\sum_{k} \mathbf{y}_{k,j} = 1$$

obj

$$\mathrm{cost} \geq \sum_{j} (\mathrm{alpha}_{j} \cdot \exp((\mathbf{n}_{j} + \mathrm{beta}_{j} \cdot \mathbf{v}_{j})))$$

```
\begin{aligned} \mathbf{v}_j &\geq 0 \ \forall j \\ \mathbf{b}_i &\geq 0 \ \forall i \\ \mathbf{n}_j &\geq 0 \ \forall j \\ \mathbf{tl}_i &\geq 0 \ \forall i \\ \mathbf{y}_{k,j} &\in \{0,1\} \ \forall k,j \end{aligned}
```