Circuit Representation: Hardware Description Languages (HDL)

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CS-254 Digital Logic Design Lab.

Lecture-VHDL: 13 October 2020 CADSL

Modeling Digital Systems

- VHDL is for writing models of a digital system
- Semi-formal representation
- Reasons for modeling
 - requirements specification
 - documentation
 - testing using simulation
 - formal verification
 - synthesis
- Goal
 - most reliable design process, with minimum cost and time
 - avoid design errors!

What is VHDL?

- Very High Speed Integrated Circuit Hardware Description Language
- Used to describe a desired logic circuit
- Compiled, Synthesized and burned onto a working chip
- Simplifies hardware for large projects

VHDL

- VHDL is a programming language that allows one to model and develop complex digital systems in a dynamic environment.
- Object Oriented methodology -- modules can be used and reused.
- Allows you to designate in/out ports (bits) and specify behavior or response of the system.

VHDL

But VHDL is NOT C ...

There are some similarities, as with any programming language, but syntax and logic are quite different; so get over it !!

HDL Requirements

- Abstraction
- Modularity
- Concurrency
- Hierarchy

Input-Output Specification of Circuit


```
☐ Example: my_ckt
```

- Inputs: A, B, C
- Outputs: X, Y
- VHDL description:

```
entity my_ckt is
port (
          A: in bit;
          B: in bit;
          S: in bit;
          X: out bit;
          Y: out bit);
end my_ckt;
```

External Interface: VHDL Entity

Built-in Datatypes

- Scalar (single valued) signal types:
 - bit
 - boolean
 - integer
 - Examples:
 - A: in bit;
 - G: out boolean;
- Aggregate (collection) signal types:
 - bit_vector: array of bits representing binary numbers
 - signed: array of bits representing signed binary numbers
 - Examples:
 - D: in bit_vector(0 to 7);
 - E: in bit_vector(7 downto 0);
 - M: in signed (4 downto 0);--signed 5 bit_vector binary number

Modeling the Behavior Way

- Architecture body
 - describes an implementation of an entity
 - may be several per entity
- Behavioral architecture
 - describes the algorithm performed by the module
 - contains
 - signal assignment statements

Syntax of the Architecture

```
architecture <architecture_name> of <entity_identifier> is
[<architecture_declarative_part>]
```

begin

<architecture_statement_part> -- The body of the arch.

end [architecture] [<architecture_name>];

 The word "architecture" in the last line is not supported before the VHDL-93 standard

Entity

- Define inputs and outputs
- Example:

Architecture

 Define functionality of the chip

- X <= A and B;
- Y <= C and D;
- E <= X or Y;

Signal

• All internal variables

signal X,Y: bit;

Architecture

```
architecture behaviour of test is
signal X,Y : bit;
```

begin

```
X <= A and B;
Y <= C and D;
E <= X or Y;</pre>
```

end behaviour;

Final code

```
library IEEE;
use IEEE.std_logic_1164.all;
entity TEST is
port (A,B,C,D : in bit;
       E : out bit);
end TEST;
architecture BEHAVIOR of TEST is
signal X,Y: bit;
begin
  X \leq A and B;
  Y \leq C \text{ and } D;
   E \leq X \text{ or } Y;
end BEHAVIOR;
```


16

VHDL Features

- Case insensitive
 - inputa, INPUTA and InputA are refer to same variable
- Comments
 - '--' until end of line
 - If you want to comment multiple lines, '--' need to be put at the beginning of every single line
- Statements are terminated by ';'
- Signal assignment:
 - '<='
- User defined names:
 - letters, numbers, underscores ('_')
 - start with a letter

VHDL Structure

- Library
 - Definitions, constants
- Entity
 - Interface
- Architecture
 - Implementation, function

Port Map

Chip1 : Chip_A port map (A,B,C,X,Y);

Chip2 : Chip_B
port map (X,Y,D,E);

Final code

```
component Chip B
library IEEE;
                                        port (Q,R,S: in bit;
use ieee.std_logic_1164.all;
                                                T : out bit);
                                        end component;
entity TEST is
port (A,B,C,D: in bit;
                                        begin
             : out bit);
end TEST;
                                       Chip1 : Chip_A
                                        port map (A,B,C,X,Y);
architecture BEHAVIOR of TEST is
                                        Chip2: Chip B
signal X,Y: bit;
                                        port map (X,Y,D,E);
component Chip_A
port (L,M,N : in bit;
                                       end BEHAVIOR;
       O,P : out bit);
End component;
```


20

VHDL Design Example Entity Declaration

 As a first step, the entity declaration describes the interface of the component

-input and output ports are declared

```
entity half_adder is
    port(x, y: IN BIT;
        carry, sum: OUT BIT);
end half_adder;
```


Syntax of the Architecture

```
architecture <architecture_name> of <entity_identifier> is
[<architecture_declarative_part>]
```

begin

<architecture_statement_part> -- The body of the arch.

end [architecture] [<architecture_name>];

 The word "architecture" in the last line is not supported before the VHDL-93 standard

VHDL Design Example Behavioral Specification

```
architecture half_adder_a of half_adder is
   begin

result <= x xor y;
   carry <= x and y;

end half_adder_a;</pre>
```


23

Concurrency in VHDL

- Achieved through processes
- Concurrent assignments are also process by itself
- These are non-terminating
- Communicating through signals
- Variables are allowed inside the processes
- Multiple processes are active at the same time

Thank You

