		1
Үшбұрыштар	Дұрыс көпбұрыштар	Конус
P = a + b + c	$\sum \alpha = 180^{\circ}(n-2) \qquad \alpha = \frac{180^{\circ}(n-2)}{n}$	$S_{6.6} = \pi RL \qquad V = \frac{1}{3}\pi R^2 H$
$S = \frac{1}{2}ah_a, S = \frac{1}{2}absin\alpha$	$n_d = n - 3 \qquad \sum n_d = \frac{n(n-3)}{2}$	$S_{\text{T.6}} = \pi R L + \pi R^2 = \pi R (L + R)$
Герон: $S = \sqrt{p(p-a)(p-b)(p-c)}$,	$R = \frac{a}{2\sin^{\frac{180}{\circ}}}$ $r = \frac{a}{2ta^{\frac{180}{\circ}}}$ $\alpha = \frac{360^{\circ}}{n}$	$S_{6.6} = S_{\text{cek}} = \frac{\pi L^2}{360^{\circ}} \cdot \alpha$
мұндағы $p = \frac{a+b+c}{2}$.	$\frac{2sm-n}{n}$ $\frac{2stg-n}{n}$	Осьтік қимасы: $S_{\kappa} = RH$
Косинустар теоремасы:	Шеңбер	
$c^2 = a^2 + b^2 - 2abcos\gamma$	$l = 2\pi R \qquad S = \pi R^2$	
Синустар теоремасы:	$l_{ exttt{doFa}} = rac{2\pi R}{360^{\circ}} lpha \qquad l_{ exttt{xopga}} = 2Rsin \; rac{lpha}{2}$	Қиық конус
	$S_{\text{cektop}} = \frac{\pi R^2}{360^{\circ}} \alpha$	$V = \frac{1}{3}\pi (R^2 + Rr + r^2)H$
$\frac{\alpha}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$	300	$S_{6.6} = \pi (R + r) \cdot L$
$\frac{\alpha}{\sin \alpha} = 2R$	$S_{\text{сегмент}} = \frac{\pi R^2}{360^{\circ}} \alpha - \frac{1}{2} R^2 \sin \alpha$	$S_{\text{T.6}} = S_{\text{6.6}} + \pi R^2 + \pi r^2$
$m_b = \frac{1}{2}\sqrt{2a^2 + 2c^2 - b^2}$	Призма	
۷	$V = S_{\text{Ta6}}H$ $S_{6.6} = P_{\text{Ta6}}H$	Шар, сфера
$l_c = \frac{2abcos\frac{\alpha}{2}}{a+b}$	$S_{6.6} = I_{\text{Ta}6}II$ $S_{6.6} = S_{61} + S_{62} + S_{63} + S_{64}$	4
$R = \frac{abc}{4S} \qquad r = \frac{S}{p}$	$S_{\text{T.6}} = S_{6.6} + 2S_{\text{Ta6}}$	$V = \frac{4}{3}\pi R^3$
Тең қабырғалы үшбұрыш:	Параллелепипед	$S_{\text{r.6}} = 4\pi R^2$ $S_{\kappa} = \pi r_{\kappa}^2$
$m = h = l = \frac{a\sqrt{3}}{2}$ $R = \frac{a\sqrt{3}}{2}$	$V = S_{\text{Ta6}}H \qquad S_{6.6} = \sum S_6$	~ _K , _K
$r = \frac{a\sqrt{3}}{c} S = \frac{a^2\sqrt{3}}{4}$	Тік бұрышты параллелепипед	Вектор
6 4	$V = abc, \ d = \sqrt{a^2 + b^2 + c^2}$	$ \vec{a} = \sqrt{a_x^2 + a_y^2}$
Тік бұрышты үшбұрыш: $c^2 = a^2 + b^2$	YC 7	-
$h = \frac{ab}{c}$ $h = \sqrt{mn}$	$V = a^3 \qquad S_{\text{T}6} = 6a^2$	$ \vec{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$
$R = \frac{c}{2}$; $R = m_c$; $r = \frac{a+b-c}{2}$	$S_{6.6} = 4a^2$ $d = a\sqrt{3}$	$\overrightarrow{AB} = \{x_B - x_A, y_B - y_A, z_B - z_A\}$
4 4		$\vec{a} + \vec{b} = (x_a + x_b; y_a + y_b; z_a + z_b)$
$S = \frac{1}{2}ab \qquad S = \frac{1}{2}ch_c$		$\vec{a} - \vec{b} = (x_a - x_b; y_a - y_b; z_a - z_b) k\vec{a} = (kx_a, ky_a, kz_a)$
Квадрат	Пирамида	$(\kappa x_a, \kappa y_a, \kappa z_a)$ Коллинеар векторлар: $\frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b} = \lambda$
$P = 4a$ $S = a^2 \qquad S = \frac{1}{2}d^2$	$V = \frac{1}{3} S_{\text{Ta6}} H$ $S_{6.6} = \frac{1}{2} P_{\text{Ta6}} h$	x_b y_b z_b Скаляр көбейтінді:
2	$S_{\text{T.6}} = S_{6.6} + S_{\text{Ta6}}$	1) $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos \alpha$
$d = a\sqrt{2} \qquad d_1 = d_2$ $r = \frac{a}{2} \qquad R = \frac{d}{2}$	Қиық пирамида	$2) \vec{a} \cdot \vec{b} = x_a \cdot x_b + y_a \cdot y_b + z_a \cdot z_b$
$I - \frac{1}{2}$ $R - \frac{1}{2}$	1 (C + C + (C C)) II	Екі вектор арасындағы бұрыш:
Параллелограм	$V = \frac{1}{3}(S_1 + S_2 + \sqrt{S_1 S_2}) \cdot H$	1) $\alpha = 90^{\circ}$: $\vec{a} \cdot \vec{b} = 0$
P = 2a + 2b	$S_{6.6} = \frac{1}{2}(P_1 + P_2)h$	2) $\alpha < 90^{\circ}$: $\vec{a} \cdot \vec{b} > 0$ 3) $\alpha > 90^{\circ}$: $\vec{a} \cdot \vec{b} < 0$
$S = ah$ $S = absin\varphi$ $S = \frac{1}{2}d_1d_2sin\varphi$	$S_{\text{T.6}} = S_{6.6} + S_{\text{Ta61}} + S_{\text{Ta62}}$	$3) \alpha > 90^{\circ}$: $\alpha \cdot b < 0$
$d_1^2 + d_2^2 = 2(a^2 + b^2)$	Тэтраэдр	
	$V = \frac{a^3 \sqrt{2}}{12}$	
T'	· ⁻ 12	Түзудің теңдеуі
Тіктөртбұрыш $S = ab \qquad d = \sqrt{a^2 + b^2}$		y = ax + by + c $y = kx + bЕкі түздің$
$S = ab \qquad a = \sqrt{a^2 + b^2}$ $P = 2(a+b) \qquad R = \frac{d}{2}$	Цилиндр	1) параллельдігі: $k_1 = k_2$
$1 - 2(\alpha + b)$ $R = \frac{1}{2}$	$V = \pi R^2 H$	$-$ 2) перпендикулярлығы: $k_1 \cdot k_2 = -1$
Ромб	$S_{\text{Ta6}} = \pi R^2 \qquad S_{6.6} = 2\pi RH$	Шеңбердің теңдеуі
P = 4a	Осьтік қима: $S_{\rm K}=2RH$	$(x - x_0)^2 + (x - y_0)^2 = R^2$
$S = ah \qquad S = a^2 \sin\varphi S = \frac{1}{2}d_1d_2$	Көлбеу кима:	$(x - x_0)^2 + (x - y_0)^2 = R^2$ $(x_0; y_0)$ – шеңбер центрі
$h = asin\alpha$ $h = 2r$	$cos\alpha = \frac{S_{ra6}}{S_{\kappa}}$ $S_{\kappa} = \frac{S_{ra6}}{cos\alpha}$	
Трапеция		
P = a + b + c + d		
$S = \frac{a+b}{2}h \qquad S = mh \qquad S = \frac{1}{2}d_1d_2\sin\varphi$		
$m = \frac{a+b}{2}$		
		Altyn Bilim
		the best way to get knowledge