Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

Miguel de Prado, et al.

DATE 2019

2019-12-11

Constant Park

Primitive Selection

- Primitive: Method to compute convolution layer
 - Multi channel and Multi kernel (MCMK)
 - General matrix multiplication (GEMM)
 - Image to column/row (Im2col/row), Kernel to column (Kn2col/row)
 - Fast Fourier transform (FFT)
 - Strassen, Winograd matrix multiplication

Multi channel and Multi kernel (MCMK)

- 컨볼루션 레이어를 구현하는 가장 보편적인 구현 방법
 - Multiple for loop을 사용하여 구현 (6~7 수준의 Nested for loop)

for (t=0; t< T; t++) {

• Data locality에서 가장 비효율적인 컨볼루션 가속 방법

// type index of kernel

(b) Pseudo code of convolution layer

General Matrix Multiplication (GEMM)

- 컨볼루션 레이어를 행렬로 변환하여 연산
 - 행렬 연산을 위한 변환 과정, 행렬 연산을 통해 결과를 얻음
 - MCMK보다 Data locality에 유리한 방법, 빠르게 가속 가능

a_1	a ₂	a ₃	b ₁	b_2	b_3		C ₁	C ₂	$c_{_3}$
a ₄	a ₅	a ₆	b ₄	b ₅	b ₆	=	C ₄	C ₅	C ₆
a ₇	a ₈	a_9	b ₇	b ₈	b ₉ _		C 7	C ₈	C ₉ _

Image to column/row (Im2col/row)

- 피쳐맵을 커널 사이즈에 대응할 수 있도록 패치로 변환
 - 패치: 커널이 이동하면서 feature map에 대응되는 부분 (receptive field)
 - 일반적으로 Im2col의 transpose된 Image to row (Im2row)가 사용 됨

Kernel to column/row (Kn2col/row)

- 컨볼루션 커널을 패치로 변환
 - 가로 (5) *세로 (5) * 깊이 (3) -> 가로 (1) * 세로 (1) * 깊이 (3) * 패치 개수 (25)
 - 1*1 컨볼루션에 적합한 방법

FFT and Strassen/Winograd

- 행렬 곱셈에서 곱셈의 오버헤드를 개선하는 방법
 - 곱셈은 덧셈에 비해 HW/SW 구현에서 더 많은 Overhead 존재
 - 곱셈 횟수를 줄이고 덧셈의 횟수를 늘리는 방법
 - 곱셈을 Shift 연산으로 구현하는 방법

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (d_0 - d_2)g_0 \quad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \quad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

$$G = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \quad G = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \quad g = \begin{bmatrix} g_0 & g_1 & g_2 \end{bmatrix}^T$$

$$d = \begin{bmatrix} d_0 & d_1 & d_2 & d_3 \end{bmatrix}^T$$

Why Primitive Selection?

- 레이어의 특성에 따라 적합한 가속 방법이 상이
 - Tiny darknet 신경망
 - Conv₁ (Im2row), Conv₅ (Kn2row)

ACCELERATION LIBRARIES

- Vanilla: CPU dependency-free and implemented in ANCI C
- Basic linear algebra subprograms (BLAS)
- NNPACK: low-level performance primitives on CPU core for DL
- ArmCL: optimized for Arm processor
- cuDNN, cuBLAS

Problem Formulation

- Processing layer
 - Executed by different acceleration libraries
- Tensor of primitive
 - Different input/output tensor layout (NCHW, WHNC)
- Various design space

Reinforcement Learning (RL)

- Agent (학습의 대상)
- Environment (에이전트가 동작하는 환경)
- Action/State/Reward
 - 에이전트가 환경으로 부터 얻은 보상을 극대화하는 행동을 학습
 - Q-learning (Off-policy)

Search Engine #1

- State parameter
- Action
 - Selecting best primitive
- Replay buffer (128)

State Parameters	Definition
Layer type	Any layer e.g. convolution, pooling
Layer depth	Position of the layer in the network
Acceleration Library	Name of the library
Algorithm	Routine type
Algorithm impl	Sub-routine or lowering method
Hardware processor	CPU, GPU, FPGA.
BLAS library	Library name

Search Engine #2

- QS-DNN (Q-Based)
 - Automatically optimize the inference of any DNN
- Inference look-up table (Inference)
 - Retrieving All inference measurement
 - Generating the look-up table

Search Engine #3

- Search space and Conditions
 - Defined for each network
- Episode
 - Each primitive is inferred for 50 images

Fig. 4: RL search for 1000 episodes where the 500 first episodes are fully exploration. From there on, ϵ is decreased by 0.1 towards exploitation after every 50 episodes.

Algorithm 1 QS-DNN - Search

```
1: \epsilon \leftarrow \epsilon_{new}
2: while Learned Episodes \langle Episodes(\epsilon) do
        Reset Path
        while Layer \neq End Layer(\epsilon) do
            if Generate Random < \epsilon then
5:
                Action \leftarrow Q-values(Random)
7:
            else
                Action \leftarrow Q-values(Max)
            Layer ← Next Layer
        Check for Incompatibility
        Compute Inference Time
11:
        Experience Replay & Update (eq. 2)
12:
```

Experimental Result

- Embedded device (Inference target)
 - Jetson TX-2 (Single precision), Single-thread on Cortex A-57
- Method
 - Best Single Library (BSL), Random Search (RS)

Processor	Method	LeNet-5	AlexNet	SqueezeNet	MobileNet v1	MobileNet v2	GoogleNet	Resnet32	VGG19	Mobile- FaceNet	MobileNet v1 SSD
CPU	Vanilla	x1									
	OpenBLAS	7.69x	13.45x	18.55x	16.32x	9.54x	14.79x	24.95x	26.79x	11.38x	21.14x
	NNPACK	8.41x	8.82x	17.53x	12.61x	8.30x	15.63x	19.76x	41.36x	9.66x	15.81x
	ArmCL	6.27x	13.38x	18.50x	17.31x	10.58x	14.37x	25.01x	25.45x	12.61x	21.58x
	RS	11.31x	12.84x	12.94x	9.12x	5.26x	8.92x	13.71x	33.14x	8.43x	18.72x
	QS-DNN	13.02x	17.46x	21.48x	17.89x	11.25x	17.53x	31.06x	55.15x	13.33x	22.34x
	QS-DNN VS BSL	1.55x	1.30x	1.16x	1.03x	1.06x	1.12x	1.24x	1.33x	1.06x	1.04x
GPGPU	cuDNN	4.06x	18.88x	95.14x	26,39x	12.23x	138.61x	98.36x	236.96x	14.43x	40.03x
	RS	11.89x	22.33x	19.11x	18.51x	6.74x	11.19x	33.10x	54.60x	11.38x	26.73x
	QS-DNN	13.02x	154.7x	95.14x	37.59x	16.55x	166.33x	133.07	714.46x	20.59x	48.46x
	QS-DNN VS BSL	3.21x	8.19x	1.00x	1.42x	1.35x	1.20x	1.35x	3.02x	1.43x	1.21x

TABLE II: Inference time speedup of CPU- and GPGPU-based implementations respect to Vanilla (dependency-free implementation). Results correspond to most performing libraries employing their fastest primitive for single-thread and 32-bit floating-point operations. QS-DNN VS BSL shows the improvement of the search over the Best Single Library (BSL) and clearly outperforms RS (Random Search) for 1000 episodes.