

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

По курсу: "Моделирование"

Тема	Программно-алгоритмическая реализация метода Рунге-Кутта 4-го		
	порядка точности при решении системы ОДУ в задаче Коши.		
Группа	ИУ7-63Б		
Студент	Сукочева А.		
Препод	аватель Градов В.М.		

0.1 Постановка задачи

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

0.1.1 Исходные данные

Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и емкость C_k

Рис. 1: Разрядный контур

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Начальные условия:

$$t = 0, I = I_0, U = U_0$$

Здесь I, U - ток и напряжение на конденсаторе. Сопротивление R_p рассчитать по формуле:

$$R_p = \frac{l_p}{2\pi R^2 \int_0^1 \sigma(T(z))zdz}$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0)z^m$

Параметры T_0 , m находятся интерполяцией из табл.1 при известном токе I.

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

<i>I</i> , A	T_0 , K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

<i>T</i> , K	σ , 1/Om cm
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура:

R = 0.35 cm

 $l_p = 12 \text{ cm}$ $L_k = 187 \cdot 10^{-6} \text{ }\Gamma_{\text{H}}$ $C_k = 268 \cdot 10^{-6} \text{ }\Phi$ $R_k = 0.25 \text{ }\text{Om}$

 $U_{co}=1400~\mathrm{B}$

 $I_0 = 0...3 \text{ A}$

 $T_w=2000~\mathrm{K}$

0.2 Теоретическая часть

0.2.1 ОДУ

Дано ОДУ (Обыкновенное Дифференциальное уравнение) n-ого порядка (1).

$$F(x, u', u'', ..., u^{(n)} = 0)$$
(1)

ОДУ любого порядка может быть сведено к системе ОДУ 1-ого порядка.

0.2.2 Задача Коши

Задача Komu состоит в нахождении решения дифференциального уравнения, удовлетворяющего начальным условиям. Это одна из основных задач теории дифференциальных уравнений.

Имеется задача Коши (3).

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = \eta \end{cases}$$
 (2)

Методы решения ОДУ в задачи Коши:

- 1. аналитические;
- 2. приближенно аналитические;
- 3. численные.

0.2.3 Метод Рунге-Кутта четвертого порядка точности

Преимущества схем Р-К.

- 1. Достаточно точные.
- 2. Легко изменить шаг.
- 3. Методы не требуют перехода к другим методам.
- 4. Явные.

Дана система уравнений вида:

$$\begin{cases} u'(x) = f(x, u, v) \\ v'(x) = \phi(x, u, v) \\ u(\xi) = \eta_1 \\ v(\xi) = \eta_2 \end{cases}$$

$$(3)$$

Тогда

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$z_{n+1} = z_n + \frac{p_1 + 2p_2 + 2p_3 + p_4}{6}$$

, где

$$k_{1} = hf(x_{n}, y_{n}, z_{n})$$

$$k_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{p_{1}}{2})$$

$$k_{3} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{p_{2}}{2})$$

$$k_{4} = hf(x_{n} + h, y_{n} + k_{3}, z_{n} + p_{3})$$

$$p_{1} = h\phi(x_{n}, y_{n}, z_{n})$$

$$p_{2} = h\phi(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{p_{1}}{2})$$

$$p_{3} = h\phi(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{p_{2}}{2})$$

$$p_{4} = h\phi(x_{n} + h, y_{n} + k_{3}, z_{n} + p_{3})$$

0.3 Экспериментальная часть

- 0.3.1 Номер 1
- 0.3.2 Номер 2
- 0.3.3 Номер 3
- 0.3.4 Номер 4

Результаты исследования влияния параметров контура C_k , L_k , R_k на длительность импульса tимп. апериодической формы. Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35 * I_{max}$, I_{max} - значение тока в максимуме.

Для исследования влияния параметров контура на длительность импульса tumn будем использовать приведенный ниже код.

```
double Imax = arr_I.Max();
double pulseDuration = arr_I.Count(I => I > Imax * 0.35);
```

0.3.5 Исследование влияния C_k на длительность импульса.

Из приведенного исследования видно, что при увеличении C_k длительность импульса увеличивается, а при уменьшении C_k длительность импульса уменьшается.

Рис. 2: Исследование влияния C_k на длительность импульса tимп.

Рис. 3: Исследование влияния C_k на длительность импульса tимп.

Рис. 4: Исследование влияния C_k на длительность импульса tимп.

Рис. 5: Исследование влияния C_k на длительность импульса tимп.

0.3.6 Исследование влияния L_k на длительность импульса.

Из приведенного исследования видно, что при увеличении L_k длительность импульса увеличивается, а при уменьшении L_k длительность импульса уменьшается.

Рис. 6: Исследование влияния L_k на длительность импульса tимп.

Рис. 7: Исследование влияния L_k на длительность импульса tимп.

Рис. 8: Исследование влияния L_k на длительность импульса tимп.

Рис. 9: Исследование влияния L_k на длительность импульса tимп.

0.3.7 Исследование влияния R_k на длительность импульса.

Из приведенного исследования видно, что при увеличении R_k длительность импульса увеличивается, а при уменьшении R_k длительность импульса уменьшается.

Рис. 10: Исследование влияния R_k на длительность импульса tимп.

Рис. 11: Исследование влияния R_k на длительность импульса tимп.

```
▲ src [main] → make run
mono Program.exe
C_k = 0.000268 Ф
L_k = 0.000187 Гн
R_k = 0.5 Ом
Значение тока в максимуме Imax = 678.460683776577
Длительность импульса t_имп = 592
```

Рис. 12: Исследование влияния R_k на длительность импульса tимп.