Unit IV

PUSHDOWN AUTOMATA AND POST MACHINES

Outline

· Push Down Automata:

- Introduction and Definition of PDA,
- Construction (Pictorial/ Transition diagram) of PDA,
- Instantaneous Description and ACCEPTANCE of CFL by empty stack and final state,
- Deterministic PDA Vs Nondeterministic PDA,
- Closure properties of CFLs,
- pumping lemma for CFL.

· Post Machine:

- Definition and construction

FA +Stack = Pushdown Automaton -- PDA Input String

What is?

FA to Regular Language, PDA is to CFL

Formal Definition

Pushdown Automaton (PDA)

Transition Function: δ

Deterministic PDA:

$$\delta(Q \times \{\Sigma \cup \epsilon\} \times \Gamma) = Q \times \Gamma^*$$

Non-Deterministic PDA:

$$\delta(Q \times \{\Sigma \cup \epsilon\} \times \Gamma) = 2^{Q \times \Gamma^*}$$

$$\delta(Q \times \{\Sigma \cup \epsilon\} \times \Gamma) = Q \times \Gamma^*$$

Initial Stack Symbol

The States

stack

stack

stack

Pop from Empty Stack

If the automaton attempts to pop from empty stack then it halts and rejects input

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

Example PDA

PDAM:

$$L(M) = \{a^n b^n : n \ge 1\}$$

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$

$$q_1 b, a \rightarrow \lambda \qquad q_2 \lambda, \$ \rightarrow \$$$

$$q_3$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

1. Push thea's on the stack

2. Match the b's on input with a's on stack

$$a, a \rightarrow aa$$
 Transition $a, \$ \rightarrow a\$$ $b, a \rightarrow \lambda$ Diagram $b, a \rightarrow \lambda$ q_1 $b, a \rightarrow \lambda$ q_2 $\lambda, \$ \rightarrow \$$ q_3

Transition function

$$\delta(q_1x \ ax \ \$) = (q_1, a\$)$$
 $\delta(q_1x \ ax \ a) = (q_1, aa)$
 $\delta(q_1x \ ax \ a) = (q_2, \epsilon)$
 $\delta(q_2x \ bx \ a) = (q_2, \epsilon)$
 $\delta(q_2x \ bx \ a) = (q_3, \epsilon)$

PDA Acceptance by Final State

PDA Acceptance by Empty Stack

Execution Example: Time 0

Input

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$b, a \rightarrow \lambda$$

$$q_1$$

$$b, a \rightarrow \lambda$$

$$q_2$$

$$\lambda, \$ \rightarrow \$$$

$$q_3$$

Input

Input

Input

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$

$$q_1$$

$$b, a \rightarrow \lambda$$

$$q_2$$

$$\lambda, \$ \rightarrow \$$$

$$q_3$$

Input

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$
 q_1
 $b, a \rightarrow \lambda$
 q_2
 $\lambda, \$ \rightarrow \$$
 q_3

Input

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$
 q_1
 $b, a \rightarrow \lambda$
 q_2
 $\lambda, \$ \rightarrow \$$
 q_3

Time 7

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$b, a \rightarrow \lambda$$
Current State
$$q_1 b, a \rightarrow \lambda$$

$$q_2 \lambda, \$ \rightarrow \$$$

Input

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$b, a \rightarrow \lambda$$

$$q_1$$

$$b, a \rightarrow \lambda$$

$$q_2$$

$$\lambda, \$ \rightarrow \$$$

$$q_3$$

Input

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$ \qquad b, a \rightarrow \lambda$$

$$q_1 \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$$$

$$q_3 \qquad \qquad q_3$$

Input

Stack

reject

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$
 q_1
 $b, a \rightarrow \lambda$
 q_2
 $\lambda, \$ \rightarrow \$$

There is no accepting computation for aab

The string aab is rejected by the PDA

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow \lambda$

$$q_1$$

$$b, a \rightarrow \lambda$$

$$q_2$$

$$\lambda, \$ \rightarrow \$$$

$$q_3$$

Example PDA

PDA M:L(M) such that $n_a(w)=n_b(w), w \in (a,b)^*$

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$q_1 \qquad \lambda, \$ \rightarrow \$$$

$$b, a \rightarrow \lambda$$

$$s \rightarrow b\$$$

$$a, b \rightarrow \lambda$$

$$a, b \rightarrow b$$

Review

- PDA
- Formal Definition of PDA
- Transition Function
- Transition Diagram
- Design of PDA
- Examples
- Acceptance by Final State
- Acceptance by Empty Stack

Example PDA

PDA M:L(M) such that $a^nb^nc^m$ | n, m>=1

PDA M:L(M) such that $a^nb^nc^m$ | n, m>=1

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$ \qquad b, a \rightarrow \lambda \qquad c, \$ \rightarrow \$$$

$$q_1 \qquad b, a \rightarrow \lambda \qquad q_2 \qquad c, \$ \rightarrow \$$$

$$q_3 \qquad \lambda, \$ \rightarrow \$$$

Acceptance by final state

PDA M:L(M) such that $a^nb^nc^m|n, m>=1$

Acceptance by final state

PDA M:L(M) such that $a^nb^nc^m$ | n, m>=1

PDAM:

$$L(M) = \{a^n b^n : n \ge 1\}$$

Problems

1. Construct PDA that accepts language

$$L = \{ a^n | b^m c^n | m, n > 1 \}$$

(Nov-2017 EndSem 8 Marks)

2. Design a PDA for the language

$$L = \{a^n b^m c^n \mid m, n > = I\}$$
 by empty stack.

(Nov-2016 EndSem 8 Marks)

PDA M:L(M) such that $a^nb^mc^n|n, m>=1$

$$a, a \rightarrow aa$$
 $a, \$ \rightarrow a\$$
 $b, a \rightarrow a$
 $c, a \rightarrow \lambda$

$$\downarrow b, a \rightarrow a$$

$$\downarrow c, a \rightarrow \lambda$$

$$\downarrow q_1$$

$$\downarrow b, a \rightarrow a$$

$$\downarrow q_2$$

$$\downarrow c, a \rightarrow \lambda$$

$$\downarrow q_3$$

$$\downarrow \lambda, \$ \rightarrow \$$$

$$\downarrow q_3$$

Acceptance by final state

PDA M:L(M) such that $a^nb^mc^n|n, m>=1$ $a, a \rightarrow aa$

Acceptance by Empty Stack

2.Construct PDA to check for well formedness of paranthesis.

(Nov-2017 EndSem 8 Marks)

Acceptance by final state

Construct a PDA for the language described as "The set of all strings over $\Sigma = \{a, b\}$ with equal no. of a's and b's.

(Nov-2017 EndSem 8 Marks)

PDA M:L(M) such that a^nb^{2n} n>=1

(Nov-2017 EndSem 8 Marks)

Another PDA example

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDAM

PDA M:L(M) such that $n_a(w)>n_b(w), w \in (a,b)^*$

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$a, \$ \rightarrow \$$$

$$q_1$$

$$a, \$ \rightarrow \$$$

$$q_2$$

$$\lambda, \$ \rightarrow \$$$

$$q_3$$

$$b, b \rightarrow b\$$$

$$a, b \rightarrow \lambda$$

$$a, b \rightarrow \lambda$$

PDA M:L(M) such that $n_a(w) < n_b(w), w \in (a,b)^*$

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$ \qquad b, \$ \rightarrow \$$$

$$b, \$ \rightarrow b \qquad b, a \rightarrow \lambda$$

$$b, \$ \rightarrow b \qquad a, b \rightarrow \lambda$$

PDA M:L(M) such that $a^nb^{m+n}c^n|n,m>=1$

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$$$

$$b, a \rightarrow \lambda$$

$$q_1$$

$$b, a \rightarrow \lambda$$

$$q_2$$

$$c, b \rightarrow \lambda$$

$$q_3$$

$$\lambda, \$ \rightarrow \$$$

$$b, \$ \rightarrow b\$$$

$$b, b \rightarrow bb$$

Review

- PDA
- Acceptance by Final State
- Acceptance by Empty Stack

Another PDA example

PDA
$$M: L(M) = \{vcv^R : v \in \{a,b\}^*\}$$

Construct the PDA that accepts a string of well formed parenthesis as $(,),\{,\},[,]$

Formalities for PDAs

$$\begin{array}{c|c}
\hline
q_1 & \xrightarrow{a,w_1} & \xrightarrow{\rightarrow w_2} \\
\hline
\end{array}$$

Transition function:

$$\mathcal{E}(q_2,w_2)\}$$

Transition function:

$$\delta(q_2 w_1) = \{(q_2 w_2), (q_3 w_3)\}$$

DPDA and NDPDA

- The main (and only) difference between DPDA and NPDA is that DPDAs are deterministic, whereas NPDAs are nondeterministic.
- With some of notation, we can say that NPDAs are a generalization of DPDAs: every DPDA can be simulated by an NPDA, but the converse doesn't hold (there are some context-free languages which cannot be accepted by a DPDA).
- · Every DPDA contain equivalent NPDA,
- but, every NPDA may not contain equivalent DPDA sometimes.

NPDA example

$$L(M) = \{w \in \{a,b\}^* : a^ib^jc^kd^m \mid i=k \text{ or } j=m\}$$

 $L(M) = \{a^nb^jc^nd^m\}U\{a^ib^nc^kd^n\}$

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \$ \rightarrow a$$

$$a, a \rightarrow a a$$

$$a, b \rightarrow ab$$

$$a, a \rightarrow \lambda$$

$$b, b \to \lambda$$

$$\lambda$$
, \$ \rightarrow \$

 $b, b \rightarrow bb$

$$b, a \rightarrow b a$$

$L(M) = \{vv^R : v \in \{a,b\}^*\}$ PDAM:3. Match v^R on input 1. Push v 2. Guess with v on stack on stack middle of input a,\$ $a, a \rightarrow \lambda \triangleright$ 4. Match $a, a \rightarrow a a$ $b, b \rightarrow \lambda$ $a, b \rightarrow a b$ found $a, a \rightarrow \lambda$ λ , \$ Q_0 $b, b \rightarrow \lambda$ $b, b \rightarrow b b$ $b, a \rightarrow b a$

Execution Example: Time 0

Input

Input

Input

Input

Rejection Example: Time 0

Input

Input

Input

Input

There is no possible transition.

Another computation on same string:

Input

 $b, a \rightarrow b a$

Input

 $(b, a \rightarrow b a)$

 $a, a \rightarrow \lambda$

 λ , \$ \rightarrow \$

Input

$$a,b \rightarrow ab$$

$$\frac{a, a \to \lambda}{b, b \to \lambda}$$

Stack

Input

$$a, b \rightarrow ab$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$b, \$ \rightarrow b$$

$$b, b \rightarrow bb$$

$$b, a \rightarrow ba$$

Input

There is no possible transition.

No accept state is reached

 λ , \$ \rightarrow \$

$$\begin{array}{c|cccc}
a & b & b & b \\
\hline
a,\$ \to a & \uparrow
\end{array}$$

$$a, a \rightarrow aa$$

$$a,b \rightarrow ab$$

$a, a \rightarrow \lambda$

$$b, b \rightarrow \lambda$$

Stack

 $\frac{a, a \to \lambda}{b, b \to \lambda}$

$$b, b \rightarrow \lambda$$

$$b, b \rightarrow bb$$

$$b, a \rightarrow ba$$

There is no computation that accepts string abbb

$abbb \notin L(M)$

$$a,\$ \to a$$
 $a,a \to aa$
 $a,b \to ab$
 $b,b \to \lambda$
 $b,b \to \lambda$
 $b,b \to \lambda$
 $b,b \to b$
 $b,b \to bb$
 $b,a \to ba$

PDA for Lwwr: Transition Diagram

This would be a non-deterministic PDA

How does the PDA for L_{wwr} work on input "1111"?

Recall

- PDA
- Deterministic PDA
- Non-Deterministic PDA

Instantaneous Description

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance:

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack

If $\delta(q,a,X)=\{(p,A)\}\$ is a transition, then the following are also true:

- \checkmark (q, a, X) |--- (p, ϵ , A)
- ✓ (q, aw, XB) |--- (p,w,AB)
- |--- sign is called a "turnstile notation" and represents one move
- |---* sign represents a sequence of moves

Then the following move is possible:

$$(q1, aW, xZ)$$
 |--- $(q2, W, yZ)$

where W indicates the rest of the string following the a, and Z indicates the rest of the stack contents underneath the x. This notation says that in moving from state q1 to state q2, an a is consumed from the input string aW, and the x at the top (left) of the stack xZ is replaced with y, leaving yZ on the stack.

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Example:

Instantaneous Description

$$(q_2,bb,aa\$)$$

Time 5:

We write:

 $(q_1,bbb,aaa\$) \phi (q_2,bb,aa\$)$

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \phi (q_{1}, aaabbb,\$) \phi$$

 $(q_{1}, aabbb, a\$) \phi (q_{1}, abbb, aa\$) \phi (q_{1}, bbb, aaa\$) \phi$
 $(q_{2}, bb, aa\$) \phi (q_{2}, b, a\$) \phi (q_{2}, \lambda,\$) \phi (q_{3}, \lambda,\$)$

$$a, a \rightarrow aa$$

$$a, \$ \rightarrow a\$ \qquad b, a \rightarrow \lambda$$

$$q_1 \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$$$

$$q_2 \qquad \lambda, \$ \rightarrow \$$$

 $(q_{0}, aaabbb,\$) \phi (q_{1}, aaabbb,\$) \phi$ $(q_{1}, aabbb, a\$) \phi (q_{1}, abbb, aa\$) \phi (q_{1}, bbb, aaa\$) \phi$ $(q_{2}, bb, aa\$) \phi (q_{2}, b, a\$) \phi (q_{2}, \lambda,\$) \phi (q_{3}, \lambda,\$)$

For convenience we write:

 $(q_0, aaabbb,\$) \phi (q_3,\lambda,\$)$

Language of PDA

Language L(M) accepted by PDA M:

$$L(M) = \{w: \quad (q_0, w,\$) \quad \Box \quad (q_f, \lambda,\$)\}$$
 Initial state
$$\qquad \text{Accept state}$$

Example:

$$(q_0, aaabbb,\$) \stackrel{*}{\phi} (q_3,\lambda,\$)$$

$$aaabbb \in L(M)$$

PDA M:

$$(q_0, a^n b^n, \$) \overset{*}{\phi} (q_3, \lambda, \$)$$

$$a^n b^n \in L(M)$$

PDA M:

$$a,a \rightarrow aa$$

$$a,\$ \rightarrow a\$ \qquad b, a \rightarrow \lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M:

$$a,a \rightarrow aa$$

$$a,\$ \rightarrow a\$ \qquad b, a \rightarrow \lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

More Examples on DCFL and CFL

- 1) $a^{m+n}b^mc^n|n,m>1$ DCFL CFL
- 2) $a^mb^{m+n}c^n|n,m>1$ DCFL CFL
- 3) $a^nb^mc^{m+n}|n,m>1$ DCFL CFL
- 4) ambmcndn n,m>1 DCFL CFL
- 5) ambncmdn | n,m>1 Not DCFL Not CFL
- 6) ambncndm | n,m>1 DCFL CFL
- 7) ambicmdk m>1 DCFL CFL
- 8) ambn m>n DCFL CFL
- 9) $a^mb^{2m}|m>1$ DCFL CFL

1) $a^nb^{n2}|m,n>1$ Not CFL Not DCFL Not DCFL Not CFL 2) $a^{m}b^{2}$ | n,m>1NDCFL CFL 3)ww^R|w€(a,b)* Not DCFL 4) ww| w€(a,b)* Not CFL 5) $a^nb^nc^m|n>m$ Not DCFL Not CFL 6) $a^nb^nc^nd^n|n<10^{10}$ DCFL CFL 7) $a^{m}b^{2m}c^{3m}$ m>1 Not CFL 8) xcy | x,y€(a,b)* DCFL CFL RL9) ambn m#n DCFL CFL

Recall

- PDA
- Deterministic PDA
- Non-Deterministic PDA
- (Instantaneous Description) ID's
- construction of PDA from CFG

PDAs Accept Context-Free Languages

Theorem:

Context-Free Languages (Grammars)

Languages Accepted by PDAs

Proof - Step 1:

Convert any context-free grammar G to a PDA M with: L(G) = L(M)

Proof - Step 2:

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1

Convert

Context-Free Grammars
to
PDAs

Take an arbitrary context-free grammar G

We will convert G to a PDA M such that:

$$L(G) = L(M)$$

Procedure to Convert CFG to PDA

- $G = (V, \Sigma, S, P)$
- $NT(G)=(Q, \sum, \Gamma, q_0, \$, A, \delta)$

$$Q = \{q_0, q_1, q_2\} \qquad A = \{q_2\} \qquad \Gamma = V \cup \sum \cup \{\$\}$$

- On initial state, $\delta(q_0, \lambda, \lambda) = \{(q_1, S)\}$
- The moves from q_1 are the following:

For every $A \in V$,

$$\delta(q_1,\lambda,A) = \{(q_1, \alpha) \mid A \rightarrow \alpha \text{ is a production in } G\}$$

For every terminal $a \in \Sigma$,

$$\delta(q_1, a, a) = \{(q_1, \lambda)\}$$

• For accepting state

$$\delta(q_1, \lambda, \$) = \{(q_2, \$)\}$$

Conversion Procedure:

For each Variable/production in G

For each terminal in G

Formal construction of PDA from CFG

Note: Initial stack symbol (S) same as the start variable in the grammar

- ✓ Given: G= (V,T,P,S)
- ✓ Output: $P_N = (\{q\}, T, V U T, \delta, q, S)$
- √ δ:

Refore:

 \checkmark For all A \in V, add the following transition(s) in the PDA:

$$\delta(q, \varepsilon, A) = \{ (q, \alpha) \mid A ==> \alpha \in P \}$$

Before:

For all $a \in T$, add the following transition(s) in the PDA:

$$\sim$$
 $\delta(q,a,a)=\{(q,\epsilon)\}$

Grammar

 $S \rightarrow aSTb$

 $S \rightarrow b$

 $T \rightarrow Ta$

 $T \rightarrow \lambda$

Example

PDA

 $\lambda S \rightarrow aSTb$

 $\lambda S \rightarrow b$

 $\lambda T \rightarrow Ta$

 $a, a \rightarrow \lambda$

 $\lambda T \rightarrow \lambda$

 $b, b \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

Example:

Derivation: S

Input
$$a$$
 b a b

$$\lambda, S \rightarrow aSTb$$
Time 1
$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta \qquad a, a \rightarrow \lambda$$

$$\lambda, T \rightarrow \lambda \qquad b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow S$$

$$\lambda, \lambda \rightarrow S$$

$$\lambda, \lambda \rightarrow S$$

$$\lambda, \beta \rightarrow S$$

$$\lambda, \beta \rightarrow S$$

$$\lambda, \beta \rightarrow S$$

Derivation: $S \Rightarrow aSTb$ Input \boldsymbol{a} $\lambda, S \rightarrow aSTb$ Time 3 $\lambda, S \rightarrow b$ Stack $\lambda, T \rightarrow Ta$ $(a, a \rightarrow \lambda)$ $\lambda, T \rightarrow \lambda$ $b, b \rightarrow \lambda$ $\lambda, \lambda \rightarrow S$ λ , \$ \rightarrow \$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$T \rightarrow \lambda$$
 $b, b \rightarrow \lambda$

 $a, a \rightarrow \lambda$

Stack

$$\lambda, \lambda \rightarrow S$$
 $\lambda, \$ \rightarrow \$$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$T \to \lambda$$
 $b, b \to \lambda$

Stack

$$\lambda$$
, \$ \rightarrow \$

 $a, a \rightarrow \lambda$

 $\lambda, \lambda \rightarrow S$

Time 10

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$l, T \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

accept

Stack

$$\rightarrow a_0 \quad \lambda, \lambda \rightarrow S$$

$$(q_1) \xrightarrow{\lambda, \$ \to \$}$$

Grammar Leftmost Derivation

PDA Computation

4

Example: CFG to PDA

- \checkmark G = ({S,A}, {0,1}, P, S)
- ✓ P:
 - \checkmark S ==> AS | ε
 - A ==> 0A1 | A1 | 01
- \checkmark PDA = ({q₀,q,p}, {0,1}, {0,1,A,S}, δ , q₀, S)
- √ Q:
 - \checkmark $\delta(q_0, \epsilon, \epsilon) = (q, S)$
 - \checkmark $\delta(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}$
 - \checkmark $\delta(q, \epsilon, A) = \{ (q,0A1), (q,A1), (q,01) \}$
 - $\checkmark \delta(q, 0, 0) = \{ (q, \epsilon) \}$
 - $\checkmark \delta(q, 1, 1) = \{ (q, \epsilon) \}$
 - $\checkmark \delta(q, \epsilon, \$) = \{ (P, \$) \}$

How will this new PDAwork?

Lets simulate string <u>0011</u>

Simulating string 0011 on the

PDA(δ): $\delta(q_0, \epsilon, \epsilon) = (q, S)$ $\delta(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}$ $\delta(q, \epsilon, A) = \{ (q, 0A1), (q, A1), (q, 01) \}$ $\delta(q, 0, 0) = \{ (q, \epsilon) \}$ $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

1.1/ε

Leftmost deriv.:

S => AS => 0A1S => 0011S => 0011

Stack moves (shows only the successful path):

Accept by final state

In general, it can be shown that:

Grammar G generates string W

 $S \Longrightarrow w$

PDA M accepts w

$$(q_0, w,\$) \square (q_2,\lambda,\$)$$

Therefore
$$L(G) = L(M)$$

Construct PDA equivalent to the following CFG.

S->0A1 | OBA

(May-2017 EndSem 8 Marks)

A->501 | 0

B->1B | 1

$$\lambda S \rightarrow 0A1$$

$$\lambda S \rightarrow 0BA$$

$$\lambda A \rightarrow S01$$

$$\lambda A \rightarrow 0$$

$$\lambda B \rightarrow 1B$$

$$\lambda B \rightarrow 1$$
 _0,0 $\rightarrow \lambda$

 $1,1 \rightarrow \lambda$

 λ , $\lambda \rightarrow S$

 $\$ \rightarrow \$$

There are two types of PDAs that one can design: those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
 - For a PDA P, the language accepted by P, denoted by L(P) by final state, is:
 - $\sqrt{\{w \mid (q_0, w, Z_0) \mid ---^* (q, \epsilon, A)\}}, s.t., q \in F$

Checklist:

- input exhausted?
- in a final state?

- ✓ PDAs that accept by empty stack:
 - For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:
 - $\sqrt{\{w \mid (g_0, w, Z_0)\}}$ ---* $\{g_1, g_2, g_3\}$ for any $g_1 \in Q_2$
- Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDAthat accepts by empty stack

 P_{N} : $(Z_{0}/(Z_{0}))$ $(Z_{0}/(Z_{0}))$

How will these two PDAs work on the input: ((())())()

PDA- Acceptance by final state

Let

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

be a PDA. The language accepted by P by final state is:

$$L(P) = \{w \mid (q_0, w, Z_0)^* \vdash (q, Q, \alpha), q \in F\}$$

for some state qin Fand any input stack string α .

Starting in the initial ID with w waiting on the input, P consumes w from the input and enters an accepting state. The contents of the stack at that time is irrelevant.

PDA- Acceptance by empty stack

Let

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

be a PDA. The language accepted by P by empty stackis:

$$N(P) = \{w | (q_0, w, Z_0) \vdash (q, Q, Q)\}$$

where qis any state

N(P) is the set of inputs wthat P can consume an at the same time empty the stack.

From Empty stack to Final State

- Let P_N be a PDA by empty stack.
- Let P_F be a PDA by final state.

Theorem:

If $L = N(P_N)$ for some PDA P_N , then there exist a PDA P_F , such that

$$L = L(P_F)$$

From Empty Stack to Final State

The specification of P_f is as follows:

$$Q_f = Q_n \cup \{p_0, p_f\}.$$

$$\Gamma_f = \Gamma_n \cup \{X_0\}.$$

$$F_f = \{p_f\}.$$

 δ_f is defined by

- 1. $\delta_f(p_0, \varepsilon, X_0) = \{(q_0, Z_0X_0)\}$. In its start state, P_f makes a spontaneous transition to the start state of P_n , pushing its start symbol Z_0 onto the stack.
- 2. For all state $q \in Q_n$, inputs $a \in \Sigma_n$ or $a = \varepsilon$, and stack symbol $Y \in \Gamma_n$, $\delta_f(q, a, Y)$ contains all the pairs in $\delta_n(q, a, Y)$.
- 3. In addition to rule (2), $\delta_f(q, \varepsilon, X_0)$ contains (p_f, ε) for every state $q \in Q_n$.

Problems

Q)Convert the following CFG into CNF & construct PDA for the same.

```
S \rightarrow 0A1 \mid 0BA
```

$$A \rightarrow S01 \mid 0$$

$$B \rightarrow 1B \mid 1$$

Nov-2017 8 Marks

Design a PDA which accepts onlyodd number of a's over $\Sigma = \{a, b\}$. Simulate PDA for the string "aabab". (9 Marks Nov-2015)

Review

- PDA Examples
- CFG and PDA Equivalency
- Conversion of CFG to PDA

•

GATE Question

Question : The language $L = \{ 0^i 12^i | i \ge 0 \}$ over the alphabet $\{0, 1, 2\}$ is:

- A. Not recursive
- B. deterministic CFL
- C. Is regular
- D. Is CFL but not deterministic CFL.

Question: Consider the following languages:

- $L1 = \{ 0^n 1^n | n \ge 0 \}$
- $L2 = \{ wcw^r | w \epsilon \{a,b\}^* \}$
- L3 = { $ww^r | w \in \{a,b\}^*$ }
- Which of these languages are deterministic context-free languages?
- A. None of the languages
- B. Only L1
- C. Only L1 and L2
- D. All three languages

Question: Consider the language L1,L2,L3 as given below.

- $L1 = \{ a^m b^n | m, n >= 0 \}$
- $L2 = \{ a^n b^n | n >= 0 \}$
- $L3 = \{ a^n b^n c^n | n >= 0 \}$
- Which of the following statements is NOTTRUE?
- A. Push Down Automata (PDA) can be used to recognize L1 and L2
- B. L1 is a regular language
- C. All the three languages are context free

Closure Properties of Context-Free languages

Closure Property

- CFLs are closed under:
 - ✓ Union
 - Concatenation
 - Kleene closure operator
 - Substitution
 - Homomorphism, inverse homomorphism
 - reversal
- CFLs are not closed under:
 - ✓ Intersection
 - ✓ Difference
 - Complementation

Note: Reg languages are closed under these

operators

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free $L_1 \cup L_2$ L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free \longrightarrow L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{L_1 \cap L_2}{\text{not necessarily context-free}}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under:

complement

L is context free \overline{L}

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Pumping Lemma for Context-free Languages

Return of the Pumping Lemma!!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough

e.g., the language of strings of the form ww

Why pumping lemma?

A result that will be useful inproving languages that are not CFLs (just like we did for regular languages)

But before we prove the pumping lemma for CFLs

Let us first prove an important property about parse trees

The Pumping Lemma:

For any infinite context-free language L there exists an integer $\,m\,$ such that

for any string $w \in L$, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be that:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Let m be the critical length of the pumping lemma

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

From pumping lemma:

we can write: w = uvxyz

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \le m$$
 $|vy| \ge 1$

$$|vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

We examine all the possible locations

of string vxy in w $S \rightarrow ABE \mid bBd$ $A \rightarrow Aa \mid a$ $B \rightarrow bSD \mid cc$ $D \rightarrow Dd \mid d$ $E \rightarrow eE \mid e$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1:
$$vxy$$
 is in a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

 \boldsymbol{m}

$$V = d$$

$$k_1 + k_2 \geq 1$$

a..aa..aa..aa..abbb..bbbccc...ccc

$$u \quad v \quad x \quad y$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz | vxy| \le m | vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$m+k_1+k_2$$
 m m
 $a..aa..aa..aa..aa..abbb..bbbccc..ccc$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

From Pumping Lemma:
$$uv^2xy^2z \in L$$

$$k_1 + k_2 \geq 1$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

Case 2:
$$vxy$$
 is in b^m

Similar to case 1

aaa...aaab...bb...bc.cc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

Sub-case 1: X. contains only a Y. contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

$$\mathbf{v} = \mathbf{a}^{k_1}$$

$$y = a^{k_2}$$

$$k_1 + k_2 \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $k_1 + k_2 \ge 1$

$$m+k$$
 $m+k$ m
 $a...aa...aa...a$ $b...bb...b$ $ccc...ccc$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vy| \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

Sub-case 2: X.contains a and b Y.contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

By assumption

$$y = d$$

$$k_{2} \geq 1$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

$$v = a^{k_1}b^{k_2}$$
 $y = a^{k_3}$ $k_1, k_2 \ge 1$
 m $m + k_3$ m
 $k_1, k_2 \ge 1$
 k_2, k_3, k_4, k_2
 k_2, k_3
 k_4, k_2
 k_5, k_4, k_5
 k_5, k_5

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

$$|vxy| \leq m$$

$$vy \ge 1$$

From Pumping Lemma: $uv^2xy^2z \in L$

$$k_2 \ge 1$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m
 \end{aligned}$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Sub-case 3: X.contains only a

Y. contains a and b

Similar to sub-case 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m & |vy| \ge 1
 \end{aligned}$$

Case 5: vxy overlaps b^m and c^m

Similar to case 4

m m m
aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$\begin{aligned}
 w &= a^m b^m c^m \\
 w &= uvxyz & |vxy| \le m \\
 \end{aligned}
 |vy| \ge 1$$

Case 6: vxy overlaps d^n , b^m and c^m

Impossible!

In all cases we obtained a contradiction

Therefore: the original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

Summary

Post Machine

Contents

- Post Machine
- Examples

POST Machine

- ✓ A Post machine denoted by PM is a collection of five things
 - The alphabet Σ plus the special symbol #. We generally use Σ = { a, b}.
 - A linear storage location (a place where a string of symbols is kept called the **STORE or QUEUE**, which initially contains the input string. This location can be read by which we mean the leftmost character can be removed for inspection. The STORE can also be added to, which means a new character can be concatenated onto the right of whatever is there already. We allow for the possibility that characters not in Σ can be used in the **STORE**, characters from an alphabet Γ called the store alphabet.
 - 3. More Powerful than FA,PDA

- A Post machine does not have a separate input store like FA, PDA have.
- PM has a Queue.
- While Processing a string it is assumed that the string is initially loaded into the queue.
- PM has start execution at Start State.
- If post machine halt at ACCEPT state, the input string is said to be accepted else rejected.

Formal Definition

Bounded to Left side

- ✓ A Post machine = (Input alphabet, start state, Accept state, Reject State, Branching state Read, Queue/Tape alphabet, Transition function,)
- ✓ OR

UnBounded to Right side

Design a post machine that accepts the following language which end by a.

String is accepted...

✓ Design a post machine that accepts the follanghage. L={aⁿbⁿ|n >=0} (8 marks Nov-15)

a	а	b	b	#		•			
---	---	---	---	---	--	---	--	--	--

Design a post machine that accepts the following (8 marks Nov-15)

a	а	b	b	#	•	•		
					Ā			
					1			

Design a post machine that accepts the following (8 marks Nov-15)

а	a	b	b	#		•	•	
					<u> </u>			
					1			

✓ Design a post machine that accepts the following (8 marks Nov-15) language. L={aⁿbⁿ|n >=0}

а	а	b	b	#	a	•	•	
						T T		

Design a post machine that accepts the following (8 marks Nov-15) language. L={anbn|n >=0}

а	а	b	þ	#	a		•	
						<u> </u>		
						7		

Design a post machine that accepts the following (8 marks Nov-15) language. L={anbn|n >=0}

а	а	b	b	#	a	b		
							1	

✓ Design a post machine that accepts the following (8 marks Nov-15) language. L={aⁿbⁿ|n >=0}

а	а	b	b	#	a	b	#		
								T	

Design a post machine that accepts the following (8 marks Nov-15) language. L={anbn|n >=0}

а	а	b	b	#	a	b	#	

✓ Design a post machine that accepts the following (8 marks Nov-15) language. L={aⁿbⁿ|n >=0}

Design a post machine that accepts the following (8 marks Nov-15)

а	а	b	b	#	a	b	#	#	

✓ Design a post machine that accepts the follanghage. L={aⁿbⁿ|n >=0} (8 marks Nov-15)

String is accepted..

POST Machine Contd.

3. READ states, for example,

PMs **are** deterministic, so no two edges from the **READ** have the same label

4. ADD states:

POST Machine Contd.

5. A START state (un-enterable) and some halt states called ACCEPT and REJECT

Design a post mathethat accepts the following language. (8 marks Nov-15)

 $L=\{a^nb^n|n>=0\}$ START READ3 READ, ADD # READ, ACCEPT ADD a ADD 6

Design a post machine that accepts the (8 marks Nov-15) following language. L= $\{a^nb^n|n>=0\}$ b,ba, a a, \mathcal{E} #,#

a a b b #

String is accepted...

Another POST Machine

Design a post matiethat accepts the following language. (8 marks Nov-16)

$$L=\{a^nb^nc^n|n>=0\}$$

Design a post mathethat accepts the following language. L={anbncn|n}

a a b b c c #

String is accepted...

Construct Post Machine which accepts the string over $\Sigma = \{a, b\}$ containing numbers of 'a' and 'b' same.

Write simulation for the string "abbaabba"

Recall

Post Machine

Construct Post Machine which accepts the string over $\Sigma = \{a, b\}$ containing odd length & the element at the centre as 'a'. (8 Marks Nov-2017)

Write simulation for the string "abbabba"

