1. Introduction

• By Central Limit Theorem, if sample $(x_1,...,x_n)$ with each $X_i \sim D(\mu,\sigma^2)$ (D is some distribution) then as $n \to \infty$,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

So distribution of sample mean always tends to normal distribution, with standard deviation σ / \sqrt{n} .

• Unbiased estimate of standard deviation of sample mean:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2}$$

- Standard error of sample mean: estimate of standard deviation of sample mean: s / \sqrt{n}
- If n too small then s is poor estimator and mean may not be normally distributed.
- If population distribution is normal and n small then sample mean is t-distributed:

$$\frac{X - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

 $\frac{X-\mu}{s/\sqrt{n}}$ is **pivotal quantity** as distribution doesn't depend on parameters of X.

- **Hypothesis test** for \underline{x} :
 - Define **null hypothesis** which identifies distribution believed to have generated each x_i .
 - Choose **test statistic** h (function of \underline{x}), extreme when null is false, not extreme when null is true.
 - Observed test statistic is $t = h(\underline{x})$.
 - Determine how extreme t is as a realisation of $T=h(X_1,...,X_N)$ (so need to know distribution of T).
- One sided *p*-value:

$$\mathbb{P}(T \geq t \mid H_0 \text{ true}) \quad \text{or} \quad \mathbb{P}(T \leq t \mid H_0 \text{ true})$$

• Two sided *p*-value:

$$\mathbb{P}(T \geq |t| \cup T \leq -\, |t| \mid H_0 \text{ true})$$

2. Monte Carlo testing

- Monte Carlo testing: given observed test stat $t = h(\underline{x})$ distribution $F(x \mid \theta)$ hypotheses $H_0: \theta = \theta_0, H_1: \theta > \theta_0$:
 - For $j \in \{1, ..., N\}$:
 - Simulate n observations $(z_1,...,z_n)$ from $F(\cdot\mid\theta_0).$
 - $\bullet \ \ \text{Compute} \ t_j = h(z_1,...,z_n).$
 - Estimate p-value by

$$P(T \geq t \mid H_0 \text{ true}) \approx \frac{1}{N} \sum_{j=1}^N \mathbb{I} \big\{ t_j \geq t \big\}$$