Mini-Project-Classify-Song-Genres-from-Audio-Data

Preparing our dataset

2

3

151 192000

152 192000

153 256000

```
In [ ]:
import os
In [8]:
os.getcwd()
Out[8]:
'C:\\Users\\Admin'
In [9]:
os.chdir('C:\\Users\\Admin\\Downloads')
In [10]:
os.getcwd()
Out[10]:
'C:\\Users\\Admin\\Downloads'
In [13]:
df=pd.read csv('fma-rock-vs-hiphop.csv')
In [14]:
df
Out[14]:
       track_id bit_rate comments composer date_created date_recorded duration favorites genre_top genres ... infor
                                            26-11-2008
                                                         26-11-2008
                                                                                                [45,
    0
          135
               256000
                              1
                                     NaN
                                                                       837
                                                                                  0
                                                                                        Rock
                                                                                                 581
                                                01:43
                                                             00:00
                                            26-11-2008
                                                         26-11-2008
                                                                                                [45,
    1
          136 256000
                              1
                                     NaN
                                                                       509
                                                                                  0
                                                                                        Rock
                                                                                                 58] ...
                                                01:43
                                                             00:00
```

26-11-2008

26-11-2008

26-11-2008

24-03-2017

01:44

01:44

01:45

NaN

NaN

00:00

26-11-2008

192

193

405

0

0

5

Rock

Rock

Rock

[25] ...

[25] ...

[26] ...

[21,

0

0

NaN

NaN

Arc and

Sender

1//29	track_id	320000 bit_rate	comments	composer	date_created	date_recorded	203 duration	favorites	пір-пор genre_top	genres	 infor
17730	155064	320000	0	NaN	24-03-2017 19:40	NaN	250	2	Нір-Нор	[21, 811]	
17731	155065	320000	0	NaN	24-03-2017 19:40	NaN	219	3	Нір-Нор	[21, 811]	
17732	155066	320000	0	NaN	24-03-2017 19:40	NaN	252	6	Нір-Нор	[21, 811]	
17733	155247	320000	0	Fleslit	29-03-2017 01:40	NaN	211	3	Нір-Нор	[21, 539, 811]	

17734 rows × 21 columns

•

In [15]:

df.head()

Out[15]:

	track_id	bit_rate	comments	composer	date_created	date_recorded	duration	favorites	genre_top	genres		informati
0	135	256000	1	NaN	26-11-2008 01:43	26-11-2008 00:00	837	0	Rock	[45, 58]	•••	Na
1	136	256000	1	NaN	26-11-2008 01:43	26-11-2008 00:00	509	0	Rock	[45, 58]		Nŧ
2	151	192000	0	NaN	26-11-2008 01:44	NaN	192	0	Rock	[25]	•••	Na
3	152	192000	0	NaN	26-11-2008 01:44	NaN	193	0	Rock	[25]		Na
4	153	256000	0	Arc and Sender	26-11-2008 01:45	26-11-2008 00:00	405	5	Rock	[26]		Na

5 rows × 21 columns

•

In [17]:

df=pd.read_csv('echonest-metrics.json')

In [19]:

os.getcwd()

Out[19]:

'C:\\Users\\Admin\\Downloads'

In [28]:

```
os.chdir('C:\\Users\\Admin\\Downloads')
In [23]:
os.getcwd()
Out[23]:
'C:\\Users\\Admin\\Downloads'
In [32]:
df=pd.read_json('echonest-metrics.json')
In [33]:
```

df

Out[33]:

		track_id	acousticness	danceability	energy	instrumentalness	liveness	speechiness	tempo	valence
	0	2	0.416675	0.675894	0.634476	0.010628	0.177647	0.159310	165.922	0.576661
	1	3	0.374408	0.528643	0.817461	0.001851	0.105880	0.461818	126.957	0.269240
	2	5	0.043567	0.745566	0.701470	0.000697	0.373143	0.124595	100.260	0.621661
	3	10	0.951670	0.658179	0.924525	0.965427	0.115474	0.032985	111.562	0.963590
	4	134	0.452217	0.513238	0.560410	0.019443	0.096567	0.525519	114.290	0.894072
	•••									
1	3124	124857	0.007592	0.790364	0.719288	0.853114	0.720715	0.082550	141.332	0.890461
1	3125	124862	0.041498	0.843077	0.536496	0.865151	0.547949	0.074001	101.975	0.476845
1	3126	124863	0.000124	0.609686	0.895136	0.846624	0.632903	0.051517	129.996	0.496667
1	3127	124864	0.327576	0.574426	0.548327	0.452867	0.075928	0.033388	142.009	0.569274
1	3128	124911	0.993606	0.499339	0.050622	0.945677	0.095965	0.065189	119.965	0.204652

13129 rows × 9 columns

In [34]:

df.head()

Out[34]:

	track_id	acousticness	danceability	energy	instrumentalness	liveness	speechiness	tempo	valence
0	2	0.416675	0.675894	0.634476	0.010628	0.177647	0.159310	165.922	0.576661
1	3	0.374408	0.528643	0.817461	0.001851	0.105880	0.461818	126.957	0.269240
2	5	0.043567	0.745566	0.701470	0.000697	0.373143	0.124595	100.260	0.621661
3	10	0.951670	0.658179	0.924525	0.965427	0.115474	0.032985	111.562	0.963590
4	134	0.452217	0.513238	0.560410	0.019443	0.096567	0.525519	114.290	0.894072

```
In [36]:
```

```
tracks = pd.read csv('fma-rock-vs-hiphop.csv')
echonest metrics = pd.read json('echonest-metrics.json', precise float=True)
```

In [37]:

df

Out[37]:

0	track_idٍ	acoustieness	dangeability	0. 69449 6	instrumentalness	di yeres s	spe ę ohig ęsą	169.922	0 !31686 9
1	3	0.374408	0.528643	0.817461	0.001851	0.105880	0.461818	126.957	0.269240
2	5	0.043567	0.745566	0.701470	0.000697	0.373143	0.124595	100.260	0.621661
3	10	0.951670	0.658179	0.924525	0.965427	0.115474	0.032985	111.562	0.963590
4	134	0.452217	0.513238	0.560410	0.019443	0.096567	0.525519	114.290	0.894072
					•••				
13124	124857	0.007592	0.790364	0.719288	0.853114	0.720715	0.082550	141.332	0.890461
13125	124862	0.041498	0.843077	0.536496	0.865151	0.547949	0.074001	101.975	0.476845
13126	124863	0.000124	0.609686	0.895136	0.846624	0.632903	0.051517	129.996	0.496667
13127	124864	0.327576	0.574426	0.548327	0.452867	0.075928	0.033388	142.009	0.569274
13128	124911	0.993606	0.499339	0.050622	0.945677	0.095965	0.065189	119.965	0.204652

13129 rows × 9 columns

```
In [40]:
```

```
echonest metrics.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 13129 entries, 0 to 13128
Data columns (total 9 columns):
                        Non-Null Count Dtype
 # Column
track_id 13129 non-null into4
acousticness 13129 non-null float64
danceability 13129 non-null float64
13129 non-null float64
 4 instrumentalness 13129 non-null float64
 5 liveness 13129 non-null float64
 6 speechiness
                       13129 non-null float64
 7 tempo
                       13129 non-null float64
 8 valence
                        13129 non-null float64
dtypes: float64(8), int64(1)
memory usage: 1.0 MB
```

Pairwise relationships between continuous variables

```
In [41]:
```

```
corr_metrics = echonest_metrics.corr()
corr_metrics.style.background_gradient()
```

Out[41]:

	track_id	acousticness	danceability	energy	instrumentalness	liveness	speechiness	tempo	valence
track_id	1.000000	-0.279829	0.102056	0.121991	-0.283206	0.004059	-0.075077	0.004313	0.020201
acousticness	0.279829	1.000000	-0.189599	0.477273	0.110033	0.041319	0.038785	- 0.110701	0.085436
danceability	0.102056	-0.189599	1.000000	0.045345	-0.118033	0.143339	0.171311	0.094352	0.428515
energy	0.121991	-0.477273	0.045345	1.000000	-0.002412	0.045752	-0.008645	0.227324	0.219384
instrumentalness	0.283206	0.110033	-0.118033	0.002412	1.000000	0.058593	-0.216689	0.023003	0.145200
liveness	0.004059	0.041319	-0.143339	0.045752	-0.058593	1.000000	0.073104	0.007566	0.017886
speechiness	0.075077	0.038785	0.171311	0.008645	-0.216689	0.073104	1.000000	0.032188	0.094794

```
energy instrumentainess diverges speechiness
                                                                            1.000000
             track_lid acoustichess dariceability
                                                                                   0v1329112
       valence 0.020201
                       -0.085436
                                 0.428515 0.219384
                                                    -0.145200
                                                                     0.094794 0.129911
                                                                                    1.000000
                                                           0.017886
In [104]:
# Merge the relevant columns of tracks and echonest metrics
echo tracks = pd.merge(echonest metrics, tracks[['track id', 'genre top']], on='track id
# Inspect the resultant dataframe
print(echo tracks.info())
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4802 entries, 0 to 4801
Data columns (total 10 columns):
                     Non-Null Count Dtype
   Column
                      -----
   track id
0
                      4802 non-null
                                    int64
                      4802 non-null
    acousticness
                                      float64
    danceability
                      4802 non-null
                                      float64
                                     float64
    energy
                      4802 non-null
    instrumentalness 4802 non-null float64
   liveness
 5
                      4802 non-null float64
   speechiness
 6
                      4802 non-null float64
 7
                      4802 non-null float64
   tempo
 8
                      4802 non-null float64
   valence
 9 genre_top
                      4802 non-null object
dtypes: float64(8), int64(1), object(1)
memory usage: 412.7+ KB
None
```

Normalizing the feature data

```
In [109]:
```

```
# Define the features and labels
features = echo_tracks.drop(['genre_top', 'track_id'], axis = 1)

# Define our labels
labels = echo_tracks['genre_top']

# Import the StandardScaler
from sklearn.preprocessing import StandardScaler

# Scale the features and set the values to a new variable
scaler = StandardScaler()
scaled_train_features = scaler.fit_transform(features)
```

Principal Component Analysis on our scaled data

```
In [110]:
```

```
# This is just to make plots appear in the notebook
%matplotlib inline

# Import our plotting module, and PCA class
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA

# Get our explained variance ratios from PCA using all features
pca = PCA()
pca.fit(scaled_train_features)
exp_variance = pca.explained_variance_ratio_
```

```
# plot the explained variance using a barplot
fig, ax = plt.subplots()
ax.bar(range(pca.n_components_), exp_variance)
ax.set_xlabel('Principal Component #')
```

Out[110]:

Text(0.5, 0, 'Principal Component #')

Further visualization of PCA

```
In [111]:
```

```
# Import numpy
import numpy as np

# Calculate the cumulative explained variance
cum_exp_variance = np.cumsum(exp_variance)

# Plot the cumulative explained variance and draw a dashed line at 0.90.
fig, ax = plt.subplots()
ax.plot(cum_exp_variance)
ax.axhline(y=0.9, linestyle='--')
n_components = 6

# Perform PCA with the chosen number of components and project data onto components
pca = PCA(n_components, random_state=10)
pca.fit(scaled_train_features)
pca_projection = pca.transform(scaled_train_features)
```


Train a decision tree to classify genre

```
In [112]:
```

```
# Import train_test_split function and Decision tree classifier from sklearn.model_selection import train_test_split
```

Out[112]:

0.8434637801831807

Compare our decision tree to a logistic regression

In [114]:

```
# Import LogisticRegression
from sklearn.linear_model import LogisticRegression

# Train our logistic regression and predict labels for the test set
logreg = LogisticRegression(random_state=10)
logreg.fit(train_features, train_labels)
pred_labels_logit = logreg.predict(test_features)

# Create the classification report for both models
from sklearn.metrics import classification_report
class_rep_tree = classification_report(test_labels, pred_labels_tree)
class_rep_log = classification_report(test_labels, pred_labels_logit)

print("Decision Tree: \n", class_rep_tree)
print("Logistic Regression: \n", class_rep_log)
```

Decision Tree:								
	precision	recall	f1-score	support				
Hip-Hop Rock	0.60	0.60	0.60	235 966				
accuracy	0.75	0.75	0.84	1201				
macro avg weighted avg	0.75 0.84	0.75 0.84	0.75 0.84	1201 1201				
Logistic Regression:								
	precision	recall	f1-score	support				
Hip-Hop Rock	0.77 0.90	0.54 0.96	0.64 0.93	235 966				

0.83 0.75

0.87

Balance our data for greater performance

0.88

```
In [115]:
```

accuracy

macro avg

weighted avg

```
# Subset only the hip-hop tracks, and then only the rock tracks
hop_only = echo_tracks[echo_tracks['genre_top'] == 'Hip-Hop']
```

0.88

0.78

0.87

1201

1201

1201

```
rock_only = echo_tracks[echo_tracks['genre_top'] == 'Rock']

# sample the rocks songs to be the same number as there are hip-hop songs
rock_only = rock_only.sample(len(hop_only), random_state=10)

# concatenate the dataframes rock_only and hop_only
rock_hop_bal = pd.concat([rock_only, hop_only])

# The features, labels, and pca projection are created for the balanced dataframe
features = rock_hop_bal.drop(['genre_top', 'track_id'], axis=1)
labels = rock_hop_bal['genre_top']
pca_projection = pca.fit_transform(scaler.fit_transform(features))

# Redefine the train and test set with the pca_projection from the balanced data
train_features, test_features, train_labels, test_labels = train_test_split(pca_projection, labels, random_state=10)
```

#To see if balancing our data improves model bias towards the "Rock" classification

```
In [116]:
```

```
# Train our decision tree on the balanced data
tree = DecisionTreeClassifier(random_state=10)
tree.fit(train_features, train_labels)
pred_labels_tree = tree.predict(test_features)

# Train our logistic regression on the balanced data
logreg = LogisticRegression(random_state=10)
logreg.fit(train_features, train_labels)
pred_labels_logit = logreg.predict(test_features)

# Compare the models
print("Decision Tree: \n", classification_report(test_labels, pred_labels_tree))
print("Logistic Regression: \n", classification_report(test_labels, pred_labels_logit))
```

Decision Tree:

	precision	recall	f1-score	support
Hip-Hop Rock	0.74 0.73	0.73 0.74	0.74 0.73	230 225
accuracy macro avg weighted avg	0.74 0.74	0.74 0.74	0.74 0.74 0.74	455 455 455

Logistic Regression:

	precision	recall	f1-score	support
Нір-Нор	0.84	0.80	0.82	230
Rock	0.80	0.85	0.83	225
accuracy			0.82	455
macro avg	0.82	0.82	0.82	455
weighted avg	0.82	0.82	0.82	455

Using cross validation to evaluate our models

```
In [121]:
```

```
from sklearn.model_selection import KFold, cross_val_score

# Set up our K-fold cross-validation
kf = KFold(n_splits=10,random_state=10,shuffle=True)

tree = DecisionTreeClassifier(random_state=10)
```

```
logreg = LogisticRegression(random_state=10)

# Train our models using KFold cv
tree_score = cross_val_score(tree,pca_projection,labels,cv=kf)
logit_score = cross_val_score(logreg,pca_projection,labels,cv=kf)

# Print the mean of each array of scores
print("Decision Tree:", np.mean(tree_score),
    "Logistic Regression:", np.mean(logit_score))
```

Decision Tree: 0.7719780219780219 Logistic Regression: 0.823076923076923

Result : Our model will generalize 77% of the times on the future unseen data points.