Chatbot implementation in application

- 1. <u>LLM model integration first you have to find a LLM model and make a client to implement it in application like this</u>
- You have to make a client

```
import os
```

```
from groq import Groq

# Initialize Groq client

client =
Groq(api_key="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")
```

2. Then you have to pass prompt message to client

SYSTEM_PROMPT = ("You are a real estate assistant. Answer questions
about property buying and selling."

```
"You are a concise assistant. "

"Always answer in MAX 150 characters. "

"Use short bullet points or highlighted key points only."

"If someone ask property near indore suggest him/her 1.

khandwa road properties are better and value for money 2. Super corridor road")
```

3. After this you have to pass the actual message to the model and it will generate it's reply based upon the prompt and the message

```
bot_reply = chat_completion.choices[0].message.content
```

4. Take a look of full code of that bot reply

```
from django.http import JsonResponse
from django.views.decorators.csrf import csrf exempt
from groq import Groq
# Initialize Groq client
client =
Groq(api key="gsk CCuQfK2PrDMXn2UzBbuBWGdyb3FYypdELuhr4AigyDurjtbYby1e")
# Define the system prompt
SYSTEM PROMPT = ("You are a real estate assistant. Answer questions about
property buying and selling."
                "You are a concise assistant. "
                "Always answer in MAX 150 characters. "
                "Use short bullet points or highlighted key points only."
                "If someone ask property near indore suggest him/her 1.
khandwa road properties are better and value for money 2. Super corridor
road")
@csrf exempt
def chatbot response(request):
   if request.method == "POST":
       data = json.loads(request.body)
       user message = data.get("message", "")
       try:
           chat completion = client.chat.completions.create(
```

To implement RAG and Vector DB

To implement these features in your Django web application, here's how you can proceed:

1. Implementing RAG (Retrieval-Augmented Generation) with External Data

RAG helps your chatbot retrieve relevant information from external data sources before generating a response.

Steps to Implement:

- Data Collection: Gather external data (documents, PDFs, databases, etc.).
- Vector Database: Use a vector database like FAISS, Weaviate, ChromaDB, or Pinecone to store and retrieve embeddings.
- Text Embeddings: Use an embedding model (like OpenAl's text-embedding-ada-882 or Groq-supported models) to convert documents into vectors.
- Retrieval Mechanism: When a user asks a question, retrieve relevant documents from the vector database.
- LLM Processing: Combine retrieved context with user input and pass it to your LLM (Groq in your case).

• Integration with Django: Modify your chatbot view to fetch relevant data before calling the LLM.

Tools Required:

- sentence-transformers or OpenAI embeddings for text embedding
- FAISS or ChromaDB for vector search
- Diango integration to fetch relevant data before sending to the LLM

2. Implementing LLM Tools

LLM tools allow the model to call external APIs or interact with structured data (e.g., databases, web scraping, API calls).

Steps to Implement:

- Choose Tools: Define tools such as web search, database query, weather API, or financial data API.
- Define Custom Functions: Implement custom functions in Django to fetch data (e.g., calling an API).
- Connect to LLM: Modify your chatbot backend to call these tools when needed.
- Use Agents: Frameworks like LangChain allow defining tools and agents that decide when to use them.

Examples of LLM Tools:

- Database Querying: Fetch property data dynamically from your Django database.
- Web Scraping: Retrieve real-time market trends for property prices.
- API Calls: Fetch real-time weather or finance data.
- PDF/Text Search: Upload documents and let the chatbot extract answers.

Tools Required:

- LangChain or LlamaIndex for tool usage
- APIs for fetching real-time data
- Custom Diango functions for processing information

Next Steps

Would you like to start with RAG first, or do you want to explore both simultaneously? Also, do you have a specific external data source in mind for RAG?

To implement RAG (Retrieval-Augmented Generation) in your Django application, follow these steps:

1. Understand RAG in LLMs

RAG enhances LLM responses by retrieving relevant data from an external source (e.g., a database, documents, or APIs) before generating an answer. This helps provide more accurate and up-to-date responses.

2. Choose a Retrieval Source

Decide where your chatbot should retrieve information from. Common sources include:

- **Local Files** (e.g., PDFs, CSVs, text files)
- **Databases** (e.g., PostgreSQL, SQLite)
- **Vector Databases** (e.g., FAISS, ChromaDB, Weaviate)
- **Web Data** (e.g., scraping or APIs)

For now, let's start with a basic **document-based RAG** using a vector database.

3. Install Necessary Libraries

You'll need libraries for:

- **Text Embedding & Retrieval:** `sentence-transformers` (for generating embeddings)
- **Vector Storage:** `chromadb` (for storing embeddings)

```
- **LLM API:** `groq` (for generating responses)
Run:
```bash
pip install chromadb sentence-transformers groq
4. Create a Vector Database for Retrieval
Modify your Django project by adding a retrieval system.
1. **Create a new Django app** for RAG:
 ```bash
 python manage.py startapp rag
 Add `"rag"` to `INSTALLED APPS` in `settings.py`.
2. **Setup ChromaDB**:
 - Inside the 'rag' app, create a 'vector store.py' file:
 ```python
 import chromadb
 from sentence_transformers import SentenceTransformer
 # Load sentence transformer model for embeddings
 model = SentenceTransformer("all-MiniLM-L6-v2")
 # Initialize ChromaDB client
 client = chromadb.PersistentClient(path="./chroma_db")
 collection = client.get or create collection(name="knowledge base")
 def add document(text, doc id):
 """Add a document to the vector database"""
 embedding = model.encode(text).tolist()
 collection.add(ids=[doc id], embeddings=[embedding], documents=[text])
 def retrieve documents(query, top k=3):
 """Retrieve top-k relevant documents"""
 query embedding = model.encode(query).tolist()
 results = collection.query(query embeddings=[query embedding], n results=top k)
```

```
return results["documents"][0] if results else []
3. **Add sample documents**:
  ```python
 add document("Django is a high-level Python web framework.", "doc1")
 add document("RAG enhances chatbot responses using retrieval and generation.",
"doc2")
### **5. Update Chatbot to Use RAG**
Modify 'views.py' in your 'chatapp' to use the retrieval system:
```python
import json
from django.http import JsonResponse
from django.views.decorators.csrf import csrf exempt
from grog import Grog
from rag.vector store import retrieve documents
client = Groq(api_key="your_groq_api_key")
@csrf exempt
def chatbot response(request):
 if request.method == "POST":
 data = json.loads(request.body)
 user message = data.get("message", "")
 # Retrieve relevant documents
 retrieved docs = retrieve documents(user message)
 context = " ".join(retrieved docs) if retrieved docs else ""
 prompt = f"Context: {context}\nUser: {user message}\nAnswer in 150 characters
with key points."
 try:
 chat completion = client.chat.completions.create(
 messages=[{"role": "user", "content": prompt}],
```

```
model="llama-3.3-70b-versatile",
)
bot_reply = chat_completion.choices[0].message.content
return JsonResponse({"response": bot_reply})

except Exception as e:
 return JsonResponse({"error": str(e)}, status=500)

return JsonResponse({"error": "Invalid request"}, status=400)

6. Test Your RAG Chatbot
Run the Django server:
```bash
python manage.py runserver
```

Ask questions related to the stored documents and verify if the chatbot retrieves relevant information before answering.

Next Steps

- **Expand Data Sources**: Store FAQs, company info, or domain knowledge.
- **Improve Search**: Use better embeddings or re-rank results.
- **Optimize Storage**: Move from ChromaDB to a more scalable database like Pinecone or Weaviate.

Would you like to integrate more external data sources like PDFs or databases? 🚀