Lezione 4 – Algebra relazionale II

Prof.ssa Maria De Marsico demarsico@di.uniroma1.it

Informazioni in più relazioni

- Vedremo che per garantire determinate «buone» qualità di una relazione occorre rappresentare separatamente (in relazioni diverse) concetti diversi
- Capita molto spesso che le informazioni che interessano per rispondere ad una interrogazione sono distribuite in più relazioni, in quanto coinvolgono più oggetti in qualche modo associati
- Occorre individuare le relazioni in cui si trovano le informazioni che ci interessano, e combinare queste informazioni in maniera opportuna

Prodotto cartesiano

- Consente di costruire una relazione contenente tutte le ennuple che si ottengono concatenando una ennupla del primo operando con una ennupla del secondo operando
- Si denota con il simbolo x

$$r_1 x r_2$$

- Si usa quando le informazioni che occorrono a rispondere ad una query si trovano in <u>relazioni diverse</u>
- Ma attenzione ...

Prodotto cartesiano

Cliente

Nome	C#	Città
Rossi	C1	Roma
Rossi	C2	Milano
Bianchi	C3	Roma
Verdi	C4	Roma

Ordine

O#	C#	A #	N-pezzi
01	C1	A1	100
02	C2	A2	200
O3	C3	A2	150
O4	C4	A3	200
01	C1	A2	200
01	C1	A3	100

Query: Dati dei clienti e degli ordini

(Cliente × Ordine)

Prodotto cartesiano

Cliente	Nome	C#	Città
	Rossi	C1	Roma
	Rossi	C2	Milano

Bianchi

Ordine	O#	C#	A #	N-pezzi
	01	C1	A1	100
	02	C2	A2	200
	O3	C3	A2	150
	04	C4	A3	200
	01	C1	A2	200
	01	C1	A3	100

Per poter distinguere gli attributi con lo stesso nome nello schema risultante possiamo usare l'operazione di <u>ridenominazione</u> (ρ) per utilizzare una copia della relazione Ordine in cui l'attributo C# diventa CC#

Roma

Roma

OrdineR= $\rho_{CC\#\leftarrow C\#}$ (Ordine)

Risultato del prodotto cartesiano

Nome	C#	Città	O#	CC#	A#	N-pezzi
Rossi	C1	Roma	O1	C1	A1	100
Rossi	C1	Roma	O2	C2	A2	200
Rossi	C1	Roma	O3	C3	A2	150
Rossi	C1	Roma	O4	C4	A3	200
Rossi	C1	Roma	O1	C1	A2	200
Rossi	C2	Milano	O1	C1	A1	100
Bianchi	C3	Roma	O3	C1	A1	100
Verdi	C4	Roma	O4		A3	200

Risultato del prodotto cartesiano

Nome	C#	Città	O#	CC#	A#	N-pezzi
Rossi	C1	Roma	O1	C1	A1	100
Rossi	C1	Roma	O2	C2	A2	200
Rossi	C1	Roma		C3	A2	150
Rossi	C1	Roma		C4	A3	200
Rossi	C1	Roma		C1	A2	200
Rossi	C2	Milano		C1	A1	100
Bianchi	C3	Roma		C1	A1	100
Verdi	C4	Roma			A3	200

Una query corretta

Nome	C#	Città	O#	CC#	A#	N-pezzi
Rossi	C1	Roma	O1	C1	A1	100
Rossi	C1	Roma	01	C1	A2	200
Rossi	C1	Roma	01	C1	A3	100
Rossi	C2	Milano	O2	C2	A2	200
Bianchi	C3	Roma	O3	C3	A2	150
Verdi	C4	Roma	O4	C4	A3	200

Query: Dati dei clienti e dei loro ordini $\sigma_{C\#=CC\#}(Cliente \times OrdineR)$

Una query più «elegante»

Nome	C#	Città	O#	CC#	A#	N- pezzi
Rossi	C1	Roma	01	C1	A1	100
Rossi	C1	Roma	01	C1	A2	200
Rossi	C1	Roma	01	C1	A3	100
Rossi	C2	Milano	O2	C2	A2	200
Bianchi	C3	Roma	O3	C3	A2	150
Verdi	C4	Roma	O4	C4	A3	200

 $\sigma_{C\#=CC\#}(Cliente \times OrdineR)$

Query: Dati dei clienti e dei loro ordini $\pi_{\text{Nome C\# Città O\# A\# N-pezzi}}(\sigma_{\text{C\#=CC\#}}(Cliente \times OrdineR))$

Eliminiamo gli attributi duplicati (che di solito sono proprio quelli della condizione di selezione)

Una query più «elegante»

Nome	C#	Città	O#	A#	N- pezzi
Rossi	C1	Roma	01	A1	100
Rossi	C1	Roma	01	A2	200
Rossi	C1	Roma	01	A3	100
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

Query: Dati dei clienti e dei loro ordini

 $\pi_{\text{Nome C# Città O# A# N-pezzi}}(\sigma_{\text{C#=CC#}}(Cliente \times OrdineR))$

Eliminiamo gli attributi duplicati (che di solito sono proprio quelli della condizione di selezione)

Una query un po' più «complessa»

Nome	C#	Città	O#	A #	N-pezzi
Rossi	C1	Roma	01	A1	100
Rossi	C1	Roma	O1	A2	200
Rossi	C1	Roma	01	A3	100
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

Query: Dati dei clienti e dei loro ordini che superano i 100 pezzi

Ripartiamo dalle tuple «corrette» ...

Una query un po' più «complessa»

Nome	C#	Città	O#	A #	N-pezzi
Rossi	C1	Roma	01	A2	200
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

Query: Dati dei clienti e dei loro ordini che superano i 100 pezzi

 $\pi_{\text{Nome C\# Città O\#A\# N-pezzi}}(\sigma_{\text{C\#=CC\#} \land \text{N-pezzi>100}}(\textit{Cliente} \times \textit{OrdineR}))$

Join naturale

- Consente di selezionare le tuple del prodotto cartesiano dei due operandi che soddisfano la condizione:
 - $R_1.A_1 = R_2.A_1 \wedge R_1.A_2 = R_2.A_2 \wedge ... \wedge R_1.A_k = R_2.A_k$
- (dove R₁ ed R₂ sono i nomi delle relazioni operando e A₁, A₂,..., A_k sono gli attributi comuni, cioè con lo stesso nome, delle relazioni operando) eliminando le ripetizioni degli attributi
- $r_1 \triangleright \triangleleft r_2 = \pi_{XY}(\sigma_C(r_1 \times r_2))$
- dove:
- C: $R_1.A_1 = R_2.A_1 \wedge ... \wedge R_1.A_k = R_2.A_k$
- X è l'īnsīemē dī attributī di r_1
- Yè l'insieme di attributi di r_2 che non sono attributi di r_1
- DA RICORDARE:
- nel join naturale gli attributi della condizione che consente di unire solo le ennuple giuste hanno lo stesso nome
- vengono unite le ennuple in cui questi attributi hanno lo stesso valore

Join naturale

\sim		
	llente	

Nome	C#	Città
Rossi	C1	Roma
Rossi	C2	Milano
Bianchi	C3	Roma
Verdi	C4	Roma

O#	C#	A #	N-pezzi
01	C1	A1	100
02	C2	A2	200
O3	C3	A2	150
04	C4	A3	200
01	C1	A2	200
01	C1	A3	100

Query: Dati dei clienti e dei loro ordini

Cliente ⊳⊲ Ordine

Ordine

Risultato del join naturale

Nome	C#	Città	O#	A#	N-pezzi
Rossi	C1	Roma	01	A1	100
Rossi	C1	Roma	01	A2	200
Rossi	C1	Roma	01	A3	100
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

Torniamo al nostro esempio e risolviamolo con il join naturale

Query: Nomi dei clienti che hanno ordinato più di 100 pezzi per almeno un articolo

				Ordine	O#	C#	A#	N-pezzi
Cliente	Nome	C#	Città	Ordine	<u></u> Οπ	Oπ	Απ	14-pczzi
Cheme	None	O#	Oitta		01	C1	A1	100
	Rossi	C1	Roma		02	C2	A2	200
	Rossi	C2	Milano		O3	C3	A2	150
	Bianchi	C3	Roma		04	C4	A3	200
	Verdi	C4	Roma		01	C1	A2	200
					01	C1	A3	100

 $\pi_{Nome}(\sigma_{N-pezzi>100}(Cliente \triangleright \triangleleft Ordine))$

Questa volta ci interessano solo i nomi .. Ma attenzione ...

Nome	C#	Città	O#	A #	N-pezzi
Rossi	C1	Roma	01	A1	100
Rossi	C1	Roma	01	A2	200
Rossi	C1	Roma	01	A3	100
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

Cliente ⊳⊲Ordine

Nome	C#	Città	O#	A#	N-pezzi
Rossi	C1	Roma	01	A2	200
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

 $\sigma_{N\text{-pezzi}>100}(Cliente \triangleright \triangleleft Ordine)$

Nome	
Rossi	
Bianchi	
Verdi	

 $\pi_{\text{Nome}}(\sigma_{\text{N-pezzi}>100}(\text{Cliente} \rhd \lhd \text{Ordine}))$

ATTENZIONE! Notare che il nome da solo non identifica il cliente, e <u>la query elimina i nomi duplicati</u>

 $\pi_{\text{Nome, Citta}}(\sigma_{\text{N-pezzi}>100}(\text{Cliente} \rhd \lhd \text{Ordine}))$

Nome	Città
Rossi	Roma
Rossi	Milano
Bianchi	Roma
Verdi	Roma

Ricordiamo un esempio già visto ... per sicurezza meglio utilizzare una chiave (il codice cliente) perché potremmo avere degli omonimi nella stessa città ...

$$\pi_{\text{Nome, C#}}(\sigma_{\text{N-pezzi}>100}(\dots))$$

Query : Nomi e città dei clienti che hanno ordinato più di 100 pezzi per almeno un articolo con prezzo superiore a 2

					szzo superior	caz			
Cliente	Nom	е	C#	Città	Ordine	O#	C#	A #	N-pezzi
	Ross	si	C1	Roma		01	C1	A1	100
	Ross	si	C2	Milano		02	C2	A2	200
	Bian	chi	C3	Roma		O3	C3	A2	150
	Verd	i	C4	Roma		04	C4	A3	200
		T _	I		ı	01	C1	A2	200
Articolo	A #	Dei	nom.	Prezzo		01	C1	A3	100
	A1	Pia	tto	3	Osserviamo c	he dob	biamo	coinvo	lgere anch
	A2	Bic	chiere	2	una terza rela	•			

 $\pi_{\text{Nome,Città}} \text{A3} \text{Tazza} \text{A4} \text{commercializzati} \\ \pi_{\text{Nome,Città}} \text{(Cliente} \rhd \lhd \text{Ordine}) \rhd \lhd \text{Articolo}))$

Nome	C#	Città	O#	A#	N-pezzi	Denom.	Prezzo
Rossi	C1	Roma	01	A1	100	Piatto	3
Rossi	C1	Roma	O1	A2	200	Bicchiere	2
Rossi	C1	Roma	O1	A3	100	Tazza	4
Rossi	C2	Milano	O2	A2	200	Bicchiere	2
Bianchi	C3	Roma	O3	A2	150	Bicchiere	2
Verdi	C4	Roma	04	A3	200	Tazza	4

(Cliente ⊳'⊲Ordinė) ⊳⊲ Articolo

 $(\sigma_{\text{N-pezzi>100} \land \text{Prezzo>2}}((\text{Cliente} \rhd \lhd \text{Ordine}) \rhd \lhd \text{Articolo}))$

Anche in questo caso ci interessa solo un sottoinsieme «sensato» del prodotto cartesiano, cioè quello in cui vengono combinate le informazioni relative agli oggetti realmente associati tra di loro

Nome	C#	Città	O#	A#	N-pezzi	Denom.	Prezz o
Verdi	C4	Roma	O4	A3	200	Tazza	4

 $\sigma_{N-pezzi>100\land Prezzo>2}((Cliente \rhd \lhd Ordine) \rhd \lhd Articolo)$

 $\pi_{\text{Nome,Città}}(\sigma_{\text{N-pezzi>100} \land \text{Prezzo>2}}((\text{Cliente} \rhd \lhd \text{Ordine}) \rhd \lhd \text{Articolo}))$

Nome	Città
Verdi	Roma

 $\pi_{\mathsf{Nome},\mathsf{Citt\`{a}}}(\sigma_{\mathsf{N-pezzi}>100\land\mathsf{Prezzo}>2}((\mathsf{Cliente}\,\, \, \mathsf{\triangleright} \! \lhd \, \mathsf{Ordine})\,\, \mathsf{\triangleright} \! \lhd \, \mathsf{Articolo}))$

Esempio 2: alternativa

Query : Nomi e città dei clienti che hanno ordinato più di 100 pezzi per almeno un articolo con prezzo superiore a 2

CI	lie	n	te
			-

Nome	C#	Città
Rossi	C1	Roma
Rossi	C2	Milano
Bianchi	C3	Roma
Verdi	C4	Roma

rd	in	6
I U		C

O#	C#	A #	N-pezzi
O1	C1	A1	100
O2	C2	A2	200
O3	C3	A2	150
04	C4	A3	200
O1	C1	A2	200
01	C1	A3	100

Articolo

A#	Denom.	Prezzo
A1	Piatto	3
A2	Bicchiere	2
A3	Tazza	4

Effettuando **prima** la selezione delle tuple che ci interessano, l'operazione è più efficiente perché evitiamo di combinare inutilmente dati che poi non ci serviranno

Esempio 2: alternativa

O#	C#	A #	N-pezzi
O2	C2	A2	200
O3	C3	A2	150
04	C4	A3	200
01	C1	A2	200

 $\sigma_{\text{N-pezzi>100}}(\text{Ordine})$

Esempio 2: alternativa

C	lie	n	te
			LC

		T	1	
Nome	C#	Città		O#
Rossi	C1	Roma		02
Rossi	C2	Milano	$\triangleright \triangleleft$	O3
Bianchi	C3	Roma		O4
Verdi	C4	Roma		01

 $\sigma_{\text{N-pezzi>100}}(\text{Ordine})$

Nome	C#	Città	O#	A#	N-pezzi
Rossi	C1	Roma	O1	A2	200
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

A#

A2

A2

A3

N-pezzi

200

150

200

200

C#

Cliente $\triangleright \triangleleft \sigma_{N-pezzi>100}(Ordine)$

Esempio 2 : alternativa

Articolo

A#	Denom.	Prezzo
A1	Piatto	3
A2	Bicchiere	2
A3	Tazza	4

π_{A#,Prezzo}

A #	Prezzo
A1	3
A2	2
A3	4

 $\pi_{A\#,Prezzo}(Articolo)$

A #	Prezzo
A1	3
A3	4

 $\sigma_{\text{Prezzo}>2}$ ($\pi_{\text{A\#,Prezzo}}(\text{Articolo}))$

Esempio 2 : alternativa

Nome	C#	Città	O#	A#	N-pezzi
Rossi	C1	Roma	O1	A2	200
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

	A #	Prezzo
	A1	3
$\triangleright \triangleleft$	A3	4

 $\sigma_{\text{Prezzo}>2} \left(\pi_{\text{A\#,Prezzo}}(\text{Articolo})\right)$

Cliente $\triangleright \triangleleft \sigma_{N-pezzi>100}(Ordine)$

Nome	C#	Città	A #	N-pezzi	Prezzo
Verdi	C4	Roma	A3	200	4

(Cliente $\triangleright \triangleleft \sigma_{\text{N-pezzi}>100}(\text{Ordine})$) $\triangleright \triangleleft \sigma_{\text{Prezzo}>2} (\pi_{\text{A\#,Prezzo}}(\text{Articolo}))$

Nome	Città
Verdi	Roma

 $\pi_{\text{Nome,Città}}$ ((Cliente $\triangleright \triangleleft \sigma_{\text{N-pezzi} \triangleright 100}(\text{Ordine})$) $\triangleright \triangleleft \sigma_{\text{Prezzo} \triangleright 2}$ ($\pi_{\text{A\#,Prezzo}}(\text{Articolo})$))

Caso limite 1:

- Le relazioni contengono attributi con lo stesso nome ma non esistono ennuple con lo stesso valore per tali attributi in entrambe le relazioni
- Risultato: il join naturale è vuoto

Esempio: problema precedente con condizione su costo dell'articolo <2 e una nuova tabella Articoli

Articolo

A#	Denom.	Prezzo
A1	Piatto	3
A2	Bicchiere	2
A3	Tazza	4
A4	Piattino	1

A #	Prezzo
A4	1

$$\sigma_{\text{Prezzo}<2} (\pi_{\text{A\#,Prezzo}}(\text{Articolo}))$$

Esempio: problema precedente con condizione su costo dell'articolo <2 e una nuova tabella **Articolo**

Il join tra **Cliente** e **Ordine** è uguale al caso precedente e dà lo stesso risultato ma ...

Nome	C#	Città	O#	A#	N-pezzi
Rossi	C1	Roma	O1	A2	200
Rossi	C2	Milano	O2	A2	200
Bianchi	C3	Roma	O3	A2	150
Verdi	C4	Roma	O4	A3	200

A#	Prezzo
A4	1

 $\sigma_{\text{Prezzo}<2}$ ($\pi_{\text{A\#.Prezzo}}(\text{Articolo}))$

Cliente $\triangleright \triangleleft \sigma_{N-pezzi>100}(Ordine)$

... non ci sono tuple con lo stesso valore per A# nelle due relazioni, quindi il risultato da qui in poi è **vuoto**

Caso limite 2:

Le relazioni non contengono attributi con lo stesso nome, quindi la condizione R₁.A₁= R₂.A₁ Λ R₁.A₂= R₂.A₂ Λ... Λ R₁.A_k= R₂.A_k

dove R_1 ed R_2 sono i nomi delle relazioni operando e A_1 , A_2 ,..., A_k sono gli attributi comuni, cioè con lo stesso nome, diventa vuota se questi attributi non esistono, quindi non c'è condizione e quindi si degenera nel prodotto cartesiano

In pratica abbiamo il problema opposto rispetto a quello di distinguere la provenienza dell'attributo, quindi applichiamo la ridenominazione proprio per ottenete lo stesso nome per gli attributi corrispondenti nelle relazioni coinvolte

Cliente

Nome	C#	Città
Rossi	C1	Roma
Rossi	C2	Milano
Bianchi	C3	Roma
Verdi	C4	Roma

Ordine

O#	CC#	A #	N-pezzi
01	C1	A1	100
02	C2	A2	200
O3	C3	A2	150
O4	C4	A3	200
01	C1	A2	200
01	C1	A3	100

Nome	C#	Città	O#	CC#	A#	N-pezzi
Rossi	C1	Roma	01	C1	A1	100
Rossi	C1	Roma	O2	C2	A2	200
Rossi	C1	Roma	O3	C3	A2	150
Rossi	C1	Roma	O4	C4	A3	200
Rossi	C1	Roma	O1	C1	A2	200
Rossi	C2	Milano	01	C1	A1	100
Bianchi	C3	Roma	O3	C1	A1	100
Verdi	C4	Roma	O4		A3	200

Nome	C#	Città	O#	CC#	A#	N-pezzi
Rossi	C1	Roma	O1	C1	A1	100
Rossi	C1	Roma	O2	C2	A2	200
Rossi	C1	Roma		C3	A2	150
Rossi	C1	Roma		C4	A3	200
Rossi	C1	Roma		C1	A2	200
Rossi	C2	Milano		C1	A1	100
Bianchi	C3	Roma		C1	A1	100
Verdi	C4	Roma			A3	200

Soluzione

OrdineR=
$$\rho_{C\#\leftarrow CC\#}$$
(Ordine)

Join naurale: possibili errori

 Ovviament eperchè il join abbia senso gli attributi con lo stesso nome devono avere anche lo stesso significato

-	4.5	4
Δ	rtı	eta

Nome	C#	Città	
Rossi	C1	Roma	
Rossi	C2	Milano	
Bianchi	C3	Roma	
Verdi	C4	Roma	

Quadro

Titolo	C#	Artista
Tit1	C1	C1
Tit2	C2	C3
Tit3	C3	C1
Tit4	C4	C2
Tit5	C5	C4
Tit6	C6	C2

Per avere senso, il join va effettuato tra Artista. C# e Quadro. Artista, quindi si usa un θ -join (vediamo dopo) oppure una ridenominazione

θ-join

- Consente di selezionare le tuple del prodotto cartesiano dei due operandi che soddisfano una condizione del tipo
 - AθB

- dove
- $\triangleright \theta$ è un operatore di confronto $(\theta \in \{<, =, >, \leq, \geq\})$,
- A è un attributo dello schema del primo operando,
- B è un attributo dello schema del secondo operando e
- \rightarrow dom(A)=dom(B)
- $r_1 \triangleright \triangleleft r_2 = \sigma_{A\theta B} (r_1 \times r_2)$

Condizioni negative

Cliente	Nome	C#	Città
	Rossi	C1	Roma
	Rossi	C2	Milano

Bianchi C3 Roma Verdi C4 Roma Query: Dati dei clienti che si chiamano Rossi e NON risiedono a Roma

 $\sigma_{\neg (Citt\grave{a}=`Roma')\land Nome=`Rossi'}(Cliente)$

Rossi C2 Milano

Ricapitolando

- Quando le informazioni che ci occorrono non sono memorizzate tutte nella stessa relazione:
- Identifichiamo tutte e sole le relazioni che contengono informazioni di interesse
- Eventualmente selezioniamo preventivamente dei sottoinsiemi rilevanti per la nostra interrogazioni
- Combiniamo le informazioni attraverso i valori che da ogni tupla di una relazione fanno riferimento alle opportune tuple nelle altre