Chapter 2

Finite Automata

A Finite-State Machine

- Finite automata is a machine which takes and reads an input string one by one and then after the input is completely read, it decides to whether the string is accepted or not accepted.
- The automaton consists of states and transitions.
- As the automaton sees a symbol of input it makes a transition or jump to another state according to its transition function.
- A **finite state machine** is a mathematical model of a system, with **discrete inputs** and **outputs**.

A Finite-State Machine...

Finite Automata FA:

- a finite set of states
- a set of transitions (edges)
- a start state
- a set of final states

Defining a FA is a kind of programming.

- Problem definition
 - Includes defining possible actions & accepting condition.
- States ≈ structure of program
 - Includes designating which are initial & final.
- Transitions ≈ program

Types Finite Automata

Finite Automata: A recognizer that takes an input string &

determines whether it's a valid sentence

of the language.

Deterministic: Has at most one action for every given

input symbol.

Non-Deterministic: Has more than one (or no) alternative

action for the same input symbol.

Deterministic Finite Accepters (dfa)

Definition

A deterministic finite accepter or dfa

is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $\delta: Q \times \Sigma \to Q$ is a function called the transition function,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

If the end of string is reached and $\delta(q_{n-1}, \sigma_n) = q_n$ is a final state, then the string is accepted.

Otherwise, the string is rejected.

- DFA M = (Q, Σ , δ , q_0 , F)
 - Q = a finite set of states
 - Σ = a finite set called the *alphabet*
 - δ = transition function
 - total function $Q \times \Sigma \rightarrow Q$
 - q_0 = start state

$$q_0 \in Q$$

• F = final or accepting states $F \subseteq Q$

DFA M

- $Q = \{q_0, q_1\}$
- $\Sigma = \{a, b\}$
- $F = \{q_1\}$
- The transition function δ is given in a tabular form called the **transition table**
- $\delta(q_0, \mathbf{a}) = q_1$ $\delta(q_0, \mathbf{b}) = q_0$
- $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_0$

- A DFA M can be considered to be a language acceptor.
- The **language** of M, **L(M)**, is the set of strings Σ^* accepted by M.
- A DFA M reads an input string from left to right.
- The **next state** depends on the **current state** and the **unread (unprocessed) symbol**.

- The DFA M accepts the set of strings over {a, b} that contain the substring bb.
 - M : Q = $\{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\}$
 - The transition function δ is given in a tabular form called the transition table.
 - $\delta(q_0, \mathbf{a}) = q_0 \qquad \delta(q_0, \mathbf{b}) = q_1$
 - $\delta(q_1, \mathbf{a}) = q_0$ $\delta(q_1, \mathbf{b}) = q_2$
 - $\delta(q_2, \mathbf{a}) = q_2$ $\delta(q_2, \mathbf{b}) = q_2$
- Is abba ∈ L(M)? Yes, since the computation halts in state q₂, which is a final state.
- Is abab ∈ L(M)? No, since the computation halts in state q₁, which is NOT a final state.

- The state diagram of a DFA M = $(Q, \Sigma, \delta, q_0, F)$ is a labeled graph **G** defined by the following conditions:
 - The nodes of G are the elements of Q
 - The labels on the arcs of **G** are elements of Σ
 - q₀ is the start node, denoted by:
 - F is the set of accepting nodes, denoted by:

- There is an arc from node \mathbf{q}_i to \mathbf{q}_i labeled \mathbf{a} if $\delta(\mathbf{q}_i, \mathbf{a}) = \mathbf{q}_i$
- For every node \mathbf{q}_i and symbol $\mathbf{a} \in \Sigma$, there is exactly **one** arc labeled *a* leaving **q**_i

Deterministic Finite Automata DFA

- all outgoing edges are labelled with an input character
 - no state has ε- transition, transition on input ε
- no two edges leaving a given state have the same label
 - for each state s and input symbol a, there is at most one edge label a leaving s.
- **Therefore**: the next state can be *determined* uniquely, given the current state and the current input character.

Transition graphs

Deterministic finite accepter

$$M = (Q, \Sigma, \delta, q_0, F)$$

Example

The above transition graph represents the dfa

$$M = (\{q_0, q_1, q_2\}, \{0,1\}, \delta, q_0, \{q_1\}),$$
 where δ is given by
$$\delta(q_0, 0) = q_0, \ \delta(q_0, 1) = q_1,$$

$$\delta(q_1, 0) = q_0, \ \delta(q_1, 1) = q_2,$$

$$\delta(q_2, 0) = q_2, \delta(q_2, 0) = q_1.$$

It accepts 01, 101,0111,11001,....

But not 00, 100,1100,....

Definition

The language accepted by a dfa $M = (Q, \Sigma, \delta, q_0 F)$ is the set of all string on Σ accepted by M. In formal notation, $L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$

Let
$$w=a_1a_2\cdots a_n$$
.
If $\delta(\mathbf{q}_1,a_1)=q_2, \delta(q_2,a_2)=q_3,\cdots,\delta(q_n,a_n)=q_{n+1}$, then we write $\delta*(q_1,w)=q_{n+1}$.
Especially, $\delta*(q,\lambda)=q$.

Example: Consider the dfa in the following transition graph.

$$L = \{a^n b \colon n \ge 0\}$$

Example: Find a dfa that recognizes the set of all strings on $\Sigma = \{a,b\}$ starting with the prefix ab.

Solution:

• strings over {a,b} with at least 3 a's

• strings over {a,b} without 3 consecutive a's

 Draw a state diagram for DFA M that accepts the set of strings over {a, b} that contain the substring bb

 The string ababb is accepted since the halting state is the accepting state q₂

The DFA

- accepts (b|ab)*(a|ε)
- the set of strings over {a, b} that do not contain the substring aa

strings over {a, b} that contain the substring bb OR do
 not contain the substring aa

This language is the union of the languages of the previous examples

strings over {a, b} that contain an even number of a's
 AND an odd number of b's

- Let M be the DFA previous slide
- A DFA M' that accepts all strings over {a, b} that do not contain an even number of a's AND an odd number of b's is shown below
 - $L(M') = \{a, b\}^* L(M) = \Sigma^* L(M)$
- Any string accepted by M is rejected by M' and vice versa

<u>Definition</u>: A language L is called <u>regular</u> if and only if there exists some deterministic finite accepter M such that L = L(M).

Show that language $L = \{awa: w \in \{a,b\}^* \text{ is regular.} \}$

Example

Let L be the language in Example above. Show that $L^2 = \{aw_1aaw_2a\}$ is regular.

- The language $\{a^nb^n, n\geq 0\}$ is **not regular**, so we can not build a DFA that accept this language.
- It needs an infinite number of states.
- But $\{a^nb^n, 1 \le n \le 3\}$ is **regular** and its DFA is:

This DFA is NOT Complete

DFA M1 accepts (ab)*c

M1 is incomplete determinism.

• The string abcc is rejected since M1 is unable to process the final c

from state q₂

- M2 accepts the same language as M1 in previous example (ab)*c
- The state **q**_e is the error state (dead end).

State Diagrams ... Exercise

What Language is Accepted?

- Extended transition function δ^* of a DFA with transition function δ is a function from Q $\times \Sigma^* \to Q$ defined recursively on the length of the input string w.
 - Basis: $|\mathbf{w}| = 0$. Then $\mathbf{w} = \varepsilon$ and $\delta^*(q_i, \varepsilon) = q_i$
 - Recursive step: Let |w| >= 1. Then
 - $\delta^*(q_i, av) = \delta^*(\delta(q_i, a), v)$
 - $\forall q_i \in Q, \forall \boldsymbol{a} \in \Sigma, \forall \boldsymbol{v} \in \Sigma^*$

• A string \boldsymbol{w} is accepted if $\delta^*(q_0, \boldsymbol{w}) \in F$.

- The language of a DFA M is
 - L(M) = $\{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$

- DFA M = (Q, Σ , δ , q₀, F) accepts $\mathbf{w} \in \Sigma^* \leftrightarrow$
 - $\delta^*(q_0, \mathbf{w}) \in F$

- Two possibilities for DFA M running on w.
 - M accepts w
 - M accepts **w** iff the computation of M on **w** ends up (halts) in an accepting configuration.
 - $\delta^*(q_0, w) \in F$

- M rejects w
 - M rejects \mathbf{w} iff the computation of M on \mathbf{w} ends up (halts) in a rejecting configuration.
 - $\delta^*(q_0, \mathbf{w}) \notin F$

NFA: Formal Definition

- NFA M = (Q, Σ , δ , q₀, F)
 - Q = a finite set of states
 - Σ = a finite set alphabet
 - δ = transition function
 - total function $Q \times \Sigma \rightarrow P(Q) = 2^Q$ power set of Q
 - q_0 = initial/starting state $q_0 \in Q$
 - F = final or accepting states $F \subseteq Q$

$$Q = \{ 0, 1, 2, 3 \}$$
 $q_0 = 0$
 $F = \{ 3 \}$
 $\Sigma = \{ a, b \}$

What Language is defined?

What is the Transition Table?

		a	b
s t	0	{ 0, 1 }	{ 0 }
a t	1	Ø	{ 2 }
e	2	Ø	{ 3 }

input

• Change in δ

• For an **DFA** M, $\delta(q, a)$ results in one and only one state for all states q and alphabet a.

• For an **NFA** M, $\delta(q, a)$ can result in a set of states, zero, one,

or more states:

$$\delta(q_n, a) = \{q_i\}$$
 $\delta(q_n, a) = \{q_i, q_i, q_k\}$

$$\delta(\mathbf{q}_{\mathbf{n}}, \mathbf{a}) = \{\} = \emptyset$$

•Why is this only an NFA and not a DFA?

Computing with NFA's

- Computations are different
- We always start from *start state*. Call it the *root* of the computation.
- Then we might go to different states on one symbol.
- Then from those states to new sets of states, creating a tree-like computation.
- If one path ends up in a final state, then ACCEPT, else REJECT.

• If no more input & in final state, ACCEPT

EXAMPLE:

Input: ababb

Nondeterministic Finite Automata...

- Extended transition function δ^* of a NFA with transition function δ is a function from Q \times $\Sigma^* \to 2^Q$ (power set) defined recursively on the length of the input string ${\bf w}$
 - Basis: $|\mathbf{w}| = 0$. Then $\mathbf{w} = \varepsilon$ and $\delta^*(q_i, \varepsilon) = \{q_i\}$
 - Recursive step: Let |w| >= 1. Then
 - $\delta^*(q_i, \boldsymbol{av}) = \bigcup \delta^*(q_i, \boldsymbol{v}), q_i \in \delta(q_i, \boldsymbol{a})$
 - $\forall q_i \in Q, \forall q_j \in Q, \forall \alpha \in \Sigma, \forall v \in \Sigma^*$
- The language of a NFA M is
 - L(M) = { $\boldsymbol{w} \in \Sigma^* \mid \delta^*(q_0, \boldsymbol{w}) \cap F \neq \emptyset$ }
 - The language consists of all strings w for which there is a walk labeled w from the initial vertex of the transition graph to some final vertex.

NFA...

• An NFA that accepts string over {a, b} with substring aa or bb.

• There are 2 distinct acceptance paths for the string abaaabb

- Is NFA more powerful than DFA? NO!
 - NFA is inefficient to implement directly, so convert to a DFA that recognizes the same strings.
- Is there a language accepted by an NFA that is not accepted by any DFA? No
- There is an equivalent DFA for any NFA.
 - Each state in DFA corresponds to a SET of states of the NFA.
- Two finite accepters M_1 and M_2 are said to be **equivalent** if $L(M_1)=L(M_2)$. That is, if they accept the same language.

 The state diagram DFA M1 and NFA M2 accepts (a|b)*bb(a|b)*

 The state diagram DFA M1 and NFA M2 accepts (a|b)*abba(a|b)*

- A DFA can be turned into an NFA that accepts the same language.
- If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the *subset construction*.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ .
 - Start state $\{q_0\}$.
 - Final states = all those with a member of F.

Subset Construction...

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset construction...

• The transition function δ_D is defined by:

$$\delta_{D}(\{q_1,...,q_k\}, a)$$
 is the union over all $i=1,...,k$ of $\delta_{N}(q_i, a)$.

- Example:
 - Determine a deterministic Finite State Automaton from the given Nondeterministic FSA.

$$M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$
 with the state table diagram for δ given below.

δ	а	b
q_0	$\{q_0, q_1\}$	$\{q_1\}$
q_1	Ø	$\{q_0,q_1\}$

Convert nfa to dfa

Example

$$\delta(\{q_0\},0\} = \phi$$

$$\delta(\{q_0\},1\} = \{q_1\}$$

$$\delta(\{q_1\},0\} = \{q_0,q_2\}$$

$$\delta(\{q_1\},1\} = \{q_2\}$$

$$\delta(\{q_0, q_2\}, 0\} = \phi$$

$$\delta(\{q_0, q_2\}, 1\} = \{q_1\}$$

$$\delta(\{q_2\},0\} = \phi$$

$$\mathcal{S}(\{q_2\},1\} = \phi$$

Conversion from NFA to DFA

Procedure to convert nfa to dfa

- 1. Create a graph G(D) with vertex {q0}. Identify this vertex as the initial vertex.
- 2. Repeat the following steps until no more edges are missing.

take any vertex $\{qi,qj,...,qk\}$ of G(D) that has no outgoing edge for some

$$a \in \Sigma$$
. Compute $\delta_N^*(q_i, a), \delta_N^*(q_j, a), ..., \delta_N^*(q_k, a)$.

If
$$\delta_N^*(q_i, a) \cup \delta_N^*(q_j, a) \cup ... \cup \delta_N^*(q_k, a) = \{ql, qm, ..., qn\},$$

create a vertex for G(D) labeled $\{ql,qm,...,qn\}$ if it is not already exist. Add to G(D) an edge from $\{qi,qj,...,qk\}$ to $\{ql,qm,...,qn\}$ and label it with a.

- 3. Every state of D(D) whose label contains any $q_f \in F_N$ is identified as a final vertex.
- 4. If M_N accepts λ , the vertex $\{q0\}$ in G(D) is also made a final vertex.

Reading (Self Study)

- NFA with ε-Transitions
- Reduction of Number of States in Finite Automata
- Two way Finite Automata