CAS CS 357

InClass Note 16

- 1. Why do we need an MFA(multi factor authentication)?
 - a. Servers provide certificate to clients
 - b. Clients provide password to servers
 - c. Passwords become leaked/stolen
 - d. Ex) Facebook passwords compromised: Meta warns 1M users may have login information stolen
 - e. Use multi factor authentication to protect adversaries from stealing password

2. Authentication based MFA

3. MFA based on SMS

a.

b. Why do this?

- Usability. Most people have a phone and know how to text
- Codes are short lived, so if stolen they must be used immediately
- We do this → it works and most people know how to do it (it is used famously)

c. Problems:

- Sim swapping attacks (when someone gets your phone number moved to a SIM card that's in a phone they control) → steal phone number of user so that adversaries receive the text message and the email of users to lock people out of their accounts
- SS7 attacks (more obscure) → SS7 is protocol that controls phone communication, adversary can attack the SS7 protocol
- Phishing attacks (adversary tricks you into sending them the code on your phone)
- MFA notification fatigue attacks
 - Adversary continues to send you the notification (phone call or hitting push) until the user finally accepts it by mistake

4. MFA based on Phone Call

- a. Why do this?
 - Usability: most people have a phone and know how to answer it
 - Codes are short lived, so if stolen they must be used immediately

b. Problems:

- Same as above

5. TOTP MFA Phishing Attack

- a.
- b. Here, adversary does not compromise the target website
- c. The issue is that the user got confused about the website and entered the information on the wrong website (entered the information on phishing site)
- d. This attack does not require the certificate, cookie, etc. of the users since the user is giving all the information to a phishing website that interacts with the real website

- f. The url is a phishing site that mimics gmail to trick users
- 6. TOTP(Time-based One Time password)
 - a. Computer algorithm that generates a one-time password using the current time as a source of uniqueness
 - b. Google "authentication App" on your phone

- c. Or one of these apps
 - 2FA authenticator
 - Aegis Authenticator
 - andOTP
 - Authy
 - FreeOTP
 - Google Authenticator
 - Microsoft Authenticator
 - TOTP Authenticator
 - Per-app authenticator apps
 - Other 2FA options
- d. Codes are based on the key that is stored on the phone
- e. Beneficial since the protocol can be used in many different apps
- 7. How does TOTP work?
 - a. Let C be a counter where C = (Now-Time0)/30 seconds
 - b. Let k be a 256-bit secret that is securely stored on your phone + on server
 - c. $Code = grab_6_digits_from(HMAC_k(C))$
 - d. Using symmetric key to connect the phone with server
 - e. Convert the 256 bits into 6 digits shown above using the key and the counter

f.

- g. Server and code can generate the code and the user can tell
- h. Adversary has to steal the actual physical phone to successfully launch the attack(in order to steal the key, they need to steal the phone)

8. TOTP MFA

- a. Why use TOTP
 - Codes are short lived, so if stolen they must be used immediately
 - Uses your phone which is something you are not likely to lose
 - The secret key k is stored securely on your phone & hard to steal
 - No more Sim swapping and SS7 attacks

b. Problems

- Phishing attacks
- 9. Webauthn

Browser

a.

- b. Developed for hardware keys
- c. It has 2 parts:
 - Registration, where the authenticator creates a public key scoped to the web server
 - Authentication, where the actual MFA happens
- d. Uses public key
- e. ex)

Alice Server (Google)

Server (google) will send a challenge (information tied with a random number)

Alice(browser) sets the domain d = google.com

Alice creates $o = Sign_{sk}(d||c)$ and sends it to the server

Google verifies the signature that is sent $(Ver_{pk}(d||c, o)) = 1$

10. Webauthn registration flow

a.

b. Steps:

- Browser sets the domain d as the web server
- The web server provides a challenge for the user (The challenge is randomly chosen by the web server)
- The browser sends the information of the user and the domain to the authenticator (not the server)
- Browser chooses a secret key and public key and signature and sends it to the web server
- c. Web server stores public key
- d. The Browser attaches the domain name to the challenge
- e. Why the browser and not the web server? → due to phishing attack (the server can be a wrong server made by an adversary)

f. Signature \rightarrow Sign_{sk}(user,domain,credID, challenge, pk) \rightarrow we need signature to prove that the information being sent to the server is from the browser (not an adversary)