POWERED BY Dialog

Antibacterial pyrazole derivs. - active against Escherichia coli, Bacillus pyocyaneus, Bacillus subtilis, etc.

Patent Assignee: MITSUBISHI PETROCHEMICAL CO LTD

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
JP 58188858	A	19831104				198350	В

Priority Applications (Number Kind Date): JP 8271069 A (19820427)

Patent Details

Patent	Kind	Language	Page	Main	IPC	Filing Note	s
JP 58188858	A		5				

Abstract:

JP 58188858 A

Pyrazole derivs. of formula (I) are new. R is substd. alkyl (except for benzoylmethyl or toluoylmethyl), substd. alkenyl opt. substd. aralkyl acyl, carbamoyl, thiolcarbonyl, sulphonyl or sulphamoyl.

(I) may be produced by treating 1,3-dimethyl-4- (2,4-dichloro-3-methyl benzoyl)-5-hydroxy pyrazole or its alkali metal salts, alkali-earth metal salts, tert. ammonium salt with organic halide of formula: R-X (II) (where X is F, Cl, Br and I) in inert solvent opt. in the presence of acid bonding agent.

An example of (I) is 1,3-dimethyl-4-(2,4-dichloro-3 -methylbenzoyl)-5- (p-bromophenacyloxy) pyrazole.

0/0

Derwent World Patents Index © 2001 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 3844863

				•
				j
②				
				,
		*		
•				
			7, -	

(19) 日本国特許庁 (JP)

①特許出願公開

⑩ 公開特許公報 (A)

昭58—188858

⑤Int. Cl.³

識別記号

庁内整理番号

43公開 昭和58年(1983)11月4日

C 07 D 231/20 // A 01 N 43/56

7133—4 C 7055—4 H

発明の数 1 審査請求 未請求

A 61 K 31/415

ADZ

6408-4C

(全 5 頁)

外1名

匈新規ピラゾール誘導体

②特

顏 昭57—71069

20出

額 昭57(1982)4月27日

@発 明 者 紺野和彦

茨城県稲敷郡阿見町大字若栗13 15番地三菱油化株式会社中央研 究所内

②発 明 者 郷敦

茨城県稲敷郡阿見町大字若栗13 15番地三菱油化株式会社中央研 究所内

明 細 書

- 1. 発明の名称 新規ピラゾール誘導体
- 2. 特許請求の範囲

一般式(1)

$$\begin{array}{c|c}
CL & CH_3 \\
\hline
CO & O & CL \\
\hline
N & O-R \\
\hline
CH_3 & (1)
\end{array}$$

(式中、Rは置換基を有してもよいアルキル基 (但し、ペンゾイルメチル基及びトルオイルメチル基を除く),置換基を有するアルケニル基。置 換基を有してもよいアラルキル基。アシル基。カルバモイル基。チオールカルポニル基。スルホニル基又はスルフアモイル基を示す)で表わされる新規ピラゾール誘導体。

3. 発明の詳細な説明

本発明は、新規ピラゾール勝導体に関する。更 に詳しくは、一般式(I) ⑫発 明 者 内村邦男

茨城県稲敷郡阿見町大字若栗13 15番地三菱油化株式会社中央研 究所内

⑩発 明 者 菅谷清志

CH₃

茨城県稲敷郡阿見町大字若栗13 15番地三菱油化株式会社中央研 究所内

切出 願 人 三菱油化株式会社

東京都千代田区丸の内2丁目5 番2号

個代 理 人 弁理士 古川秀利

 $\begin{array}{c|c}
CH_3 & CC & CH_3 \\
\hline
 & CO & CC \\
\hline
 & O-R & (I)
\end{array}$

「式中、Rは置換基を有してもよいアルギル基 (但し、ペンゾイルメチル基及びトルオイルメチル基を除く)、置換基を有するアルケニル基。置 換基を有してもよいアラルギル基。アシル基。カルバモイル基。チオールカルがニル基。スルホニル基又はスルフアモイル基を示す〕で表わされる 新規ピラゾール誘導体に関する。

本発明者らは、一速のピラゾール誘導体の生理 活性を研究する中で、1,3 ージメチルー4 ー (2,4 ージクロロー3 ーメチルベンゾイル) ー 5 ーヒ ドロキシピラゾール誘導体を検討した結果、一般 式(1)で表わされる化合物が大腸菌、緑膿菌、枯草 菌などに抗菌活性を有するととを見い出した。従 つて本発明の化合物は工業用敷菌剤などの用途が 期待されるが、そのほかにも各種生理活性物質の 出発物質としても有用である。

上記一般式(I)において、無置換のアルキル基とはC1~C12 であり、例えばメチル、エチル、nープロピル、iープロピル、nープチル、secープチル、tertープチル、iープチル、nーペンチル、iーペンチル、nーペンチル、nーペンチル、nーペンチル、nーペンチル、nーゲシル、またはnードデシル等が挙げられる。

置換基を有するアルギル基のアルギル基はC1~C2 であり、その置換基とは、クロル、プロム等のハロゲン原子、ニトリル基、C1~4のアルコキシカルボニル基、カルバモイル基、または一C0~R¹ (R¹はC1~4のアルギル基、メチリル基、ゲエニル基、ハロゲン置換チエニル基、ピリジル基、フエニル基または1つ以上のC1~4のアルギル基、ハロゲン原子、ニトロ基もしくはC1~4のアルコキシ基が置換したフエニル基を表わす。)で表わされるアシル基である。

その具体例としてはクロロメチル、プロモメチル、シアノメチル、メトキシカルポニルメチル、

C1~4 であり、置換基はハロゲン原子、C1~4 の アルコキシカルボニル基またはフエニル差であり、 その具体例としては、4 - クロロー 2 - プテニル、 3 - メトキシカルボニルー 2 - ブロペニル、3 - エトキシカルボニルー 2 - ブロペニル、または3 - フエニルー 2 - ブロペニル基等が挙げられる。

置換基を有していてもよいアラルキル基のアラルキル基は C₇~。であり、置換基とは、 C₁~4のアルキル基、水酸基、ハロゲン原子、ニトロ基またはシアノ基である。その具体例としてはペンジル、フェネチル、フェニルブロピル、 a,a ージメチルペンジル、 pーメチルペンジル、 pーメチルペンジル、 mーニトロペンジル、 pーシーリー ペンジル、 pーニトロペンジル、 pーシーシアノペンジル、 pーニトロペンジル、 pーシーシアノペンジル、 pーニトロペンジル、 3,5 ージーもープチルー4ーヒドロキンペンジル等が挙げられる。

アシル基とは-CO-R* で扱わされ、R* はC1 ~。のアルキル基、C1~。のアラルキル基、プエニル表または1以上のハロゲン原子、C1~4のア エトキシカルポニルメチル、プロポキシカルポニ ルメチル、プトキシカルポニルメチル、アセチル メチル、モーブチルカルポニルメチル、2ーメチ ルピペリジンー1ーカルポニルメチル、5ークロ ロー2ーチエニルカルポニルメチル、ビリジカル ポニルメチル、2-クロロエチル、2-シアノエ チル、1ーメトキシカルポニルエチル、 1-エ トキシカルがニルエチル、、1-ブトキシカルボ ニルエチル、3,4 - ジメチルフエナシル、Dーエ チルフエナシル、DIn-プロピルフエナシル、 pーロープチ ルフエナ シル、'p ー l ープチルフェ ナシル、p-t-ブチルフエナシル、o-クロロ フエナシル、p-クロロフエナシル、p-プロモ フエナシル、 2,4 ージクロロフエナシル、 2 ーク ロロー 4 ーニトロフエナシル、 p ーニトロフエナ シル、ローメトキシフエナシル、m-メトキシフ エナシル、p-メトキシフエナシル、 2,4 -ジク ロロー3ーメテルフエナシルまたはシンナモイル メチル、等が挙げられる。

置換基を有するアルケニル基のアルケニル基は

ルキル基、C1~4のアルコキシ基、もしくはニトロ基が置換したフェニル基を表わす。アシル基の具体例としてはアセチル、プロピオニル、クロモデル、プロモアセチル、 mーメチルペンゾイル、 mーメチルペンゾイル、 pーメチルペンゾイル、 pーメーブロピルンゾイル、 pーメトキシペンゾイル、 pープロペンゾイル、 pープロペンゾイル、 pープロペンゾイル、 pーニトロペンゾイル、 pーニーのファインゾイル、 2,4ージクロロー3ーメチルペンゾイル等が挙げられる。

カルバモイル基とは一CON <R* で安わされ、R*、R*はC1~4のアルキル基、C1~4のアルコキシ基、フェニル基またはR*とR*が結合し、Nを含めてC2~8の限を安わす。その具体例としては、N,N ージメチルカルバモイル、N,N ージエチルカルパモイル、N,N ーメチャーカーメトキシカルパモイル、N,N ーデトラメチレンカルパモイル、N,N ーベンタメチレンカルパモイル、N,N ー

特開昭58-188858 (3)

ヘキサメチレンカルパモイル、NーメチルーNーフエニルカルパモイル、NーエチルーNーフエニルカルパモイル、または3,5 ージメチルーピラゾリルカルポニル等が挙げられる。

チオールカルポニル基とは一COS - R⁵ で扱わされ、R⁵ はC₁~4のアルギル基、ハロゲン健機ペンジル基、またはC₇~10 のアラルギル基であり、その具体例としてはSーメチルカルポニル、Sーエチルカルポニル、Sーペンジルカルポニル、Sー(pークロロペンジル)カルポニル、Sー(a,aージメチルペンジル)カルポニル等が挙げられる。

スルホニル基とは一SO2 - R® で表わされ、R®はC1~4のアルギル基、C8~10のアリール基であり、その具体例としては、メタンスルホニル、エタンスルホニル、ペンゼンスルホニル、トルエンスルホニル等が挙げられる。

スルフアモイル夢とは $-SO_2N \subset_{R^8}^{R^7}$ で表わされ、 R^7 および R^8 は $C_1 \sim_4$ のアルキル夢またはフェニル基を表わす。その具体例としてはN , N ージメチルスルホニル、N , N ージエチルスルホニ

ル、N-フエニルスルホニル、N-メチル-N-フエニルスルホニル等が挙げられる。

一般式(I)で示される本発明の化合物の代表例を 以下に示す。

$$\begin{array}{c|c}
CH_3 & C & CH_3 \\
\hline
CH_3 & C & CH_3 \\
\hline
N & O - R
\end{array}$$
(1)

化合物 香 号	R	物性 融点(で)
1	CH:	108.5~109.5
2	C: Hs	78.5 ~ 79.0
3	n — C s H 7	57.0 ~ 57.5
4	i - C a H7	88.5 ~ 89.0
5	n - C s H13	72.0 ~ 73.0
6	n — C 12 H 25	46.5 ~ 48.0

7	CH: CH: CL	粉末状固体
8	CH ₂ CN	結晶性固体
9	CH2 CO2 C2 H5	80.8~ 81.8
10	CH, CO, C, H,t	86.5~ 88
11	CH (CH ₂) CO ₂ CH ₃	126.5~129
1 2	CH (CH ₃) CO ₂ C ₂ H ₅	86.6~87.2
13	СН (СН _в) СО ₂ С ₄ Н ₉ ^t	97 ~100
14	CH₂ COCH=CH-⊚	139.0~139.5
15	CH ₂ COC (CH ₃) ₃	69.0~ 70.0
1 6	CH ₂ COCH ₃	粉末状固体
1 7	CH. CO-(S) CL	106.0~107.5
18	CH*CO-O	129 ~131
1 9	CHa CH=CHCOa Ca Ha	115.8~117
20	CH: CH=CHCH: CL	粘性半周形物

	•-
CH2 CH=CH-O	192.3~195.3
CH3 -(O)	112.4~113.1
Сн₂ сн₂ сн₂(О)	78.7~ 79.6
CH ₂ - C ₄ H ₉ (t) C ₄ H ₉ (t)	203.2~204.3
CH2 -(O)-C2	123.9~125.1
CH ₂ CO-O-CH ₃	155 ~157
CH. CO-O-C.H.(i)	粉末状固体
сн₃ со-⊘осн₃	132 ~133
СН СО-О-ОСН	124.1~125.3
CH2 CO-O-CL	136.8~137.7
CH ₂ CO -O-Br	126.1.~126.8
CH1 CO-O-CL	123 ~ 124
CH ₂ CO — (O)-C2	130.3~132.4
CH2CO-O-NO2	131 ~132
	CH ₂ CH ₂ CH ₃ CH ₃ CH ₄ CH ₅ CH ₄ CH ₅ CH ₄ CH ₅ CH ₄ CH ₅ CH ₄ CO CH ₅ CH ₅ CH ₅ CH ₅ CO CC CC CC CH ₅ CH ₅ CO CC

35	COCH3	112.0~113.8
. 36	COCH.	103 ~ 105
3 7	co —	176.0~176.4
38	со-О-сн3	148.8~149.4
39	со-О-осн	187.4~187.7
40	co-(o)- ce	163 ~164
41	co -&- ca	109.5~114.2
42	CO-O-CL	172.8~173.8
43	CON <ch3< th=""><th>120.0~120.3</th></ch3<>	120.0~120.3
44	CONCHS	89.1~ 90.0
45	CON	129 ~133
46	CON CH.	154.5~154.7
47	CO CH ₃ CH ₃	94.5~105
48	COSC: H5	n _D 1.5650 oi £

49	COS-CH _a	91 ~ 93
50	so ₂ -(0)	104.5~105.5
51	SO2 - CH3	147.5~149.0
52	SO ₂ N < CH ₃ CH ₃	94 ~ 97
53	CH (CH ₃) CO-O	139.0~139.5
54	CH ₂ CO-N	粉末状固体

一般式(1)で示される本発明の化合物は、1,3 ージメチルー4 ー (2,4 ージクロロー3 ーメチルペンソイル) ー 5 ーヒドロキシピラゾールあるいはそのアルカリ 金属塩、アルカリ土類金属塩、第 3 級アンモニウム塩と、一般式(II)

R - X

(式中、Rは、一般式(I)と同一の意味であり、X は、フッ素、塩素、臭素及びヨウ素である)で示 される有機ハライドとを、反応に不活性な溶媒中、 酸結合剤の存在又は不在下で反応させることによ り得られる。

1,3 ージメチルー4 ー(2,4 ージクロロー3 ーメチルペンゾイル)ー5 ーヒドロキシピラゾールを原料とする場合は、炭酸サトリウム、炭酸カリウム等のアルカリ金属炭酸塩、トリエチルアシックの第3級アミン類が酸結合剤として使用される。又、1,3 ージメチルー4 ー(2,4 ージクロロー3 ーメチルペンゾイル)ー5 ーヒドロキシピラゾールのアルカリ金属塩、アルカリ土類金属塩、第3級アンモニウム塩等を原料として使用する場合で、カルシウム塩等が、アルカリ土類金属塩として、カルシウム塩等が、第3級アンモニウム塩として、トリエチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnーブチルアンモニウム塩、トリーnージャルエーウム塩等が挙げられる。

反応に用いる溶媒としては、本反応に不活性な 溶媒であれば使用可能であり、例えば、ペンセン、 トルエン、キシレン等の芳香族 以化水素類、ジク ロロメタン、クロロホルム、四塩化炭素、ジクロ ロエタン等のハロゲン化炭化水素類、エチルエー

テル、テトラヒドロフラン、ジオキサン祭のエー テル類、アセトン、メチルエチルケトン等のケト ン類の他、アセトニトリル、N,N -ジメチルホ ルムアミド、ジメチルスルホキサイド等が使用さ れる。反応强度は室盤~150℃の範囲で実施可 能であるが、好ましくは50°~100℃の範囲 である。反応時間は、使用する原料、反応温度、 溶媒種により異なり、必ずしも一定ではないが、 通常 0.5 ~ 1 0 時間の範囲である。酸給合剤の量 は、通常、 1,3 ージメチルー4-(2,4 ージクロ ロー3ーメチルペンゾイル)-5-ヒドロキシピ ラゾールに対し、1~2倍モルの範囲である。-般式(1)で示される有機ハライドの量は、1,3 ージ メテルー4-(2,4-ジクロロー3-メチルペン ゾイル)ー5ーヒドロキシピラゾールに対し、0.5 ~5倍モルで実施できるが、通常1~2倍モルの 範囲である。

本発明に用いる一般式(i)で示される有機ハライドとして、臭化メチル、ヨウ化メチル、臭化エチル、ヨウ化メチル、臭化エテル、コウ化エチル、臭化 n ープロピル、臭化 n ープチル、塩化ヘキシル、塩化

ドデシル、クロロアセトニトリル、1ープロモー2ークロロエタン、プロモ酢酸エチル、αークロローオン酸メチル、クロロアセトン、カロローオン酸メチル、クロロアセトン、3ーエトキンカルボニルブロマイド、3ープルクロライド、アセチルクロライド、アニージカージメチルプロマイド、アンゾイルクロライド、マニージクロロベンゾイルクロライド、ペンメテルカルバモイルクロライド、Sーエチルクロライド、ペンオテルカルバモイルクロライド、Sーエチルクロホルメート、ペンセンスルホニルクロライド等を例示するとができる。

本発明の化合物は、反応終了後、溶媒を留去すると想生成物として得られるが、更に、再結晶、カラムクロマトグラフィー等の通常の精製方法を用いることにより、高純度のものが得られる。

次に本発明の製造例を具体的に観明する。

実施例

1,3 - ジメチル-4-(2,4 - ジクロロ-3-メチルペンゾイル) - 5-(p-プロモフエナシ ルオキシ) ピラゾール(化合物番号31)の合成

1,3 ージメチルー4 ー (2,4 ージクロロー3ーメチルペンゾイル) ー5 ーヒドロキシピラゾール
2.999(0.01モル)、無水炭酸カリウム 2.1
9(0.015モル)、及びメチルエチルケトン50
配を1時間を満させたのち、Dーブロモフェナシルブロマイド 2.789(0.01モル)を20型のメチルエチルケトンに特別でで3時間反応で30分世であるさせた。 横線を設定でで3時間反応を30分世である。 クロロホルムを用いた。 たまりの租生成物を得た。 クロロホルムを用いた カラムクロマト精製し、 3.79の1,3ージメチルー4ー(2,4ージクロロー3ーメチルペンゾイル)ー5ー(Dープロモフエナシルオキシ)ピラゾールを得た。 このものの融点は127.0~128.5であつた。(収率74.6モルチ)

