

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 334 979 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
13.08.2003 Bulletin 2003/33

(51) Int Cl.7: C07K 14/415, C12N 15/82,
C07K 16/16, G01N 33/50,
C12N 5/10, A01H 1/04

(21) Application number: 02075565.8

(22) Date of filing: 08.02.2002

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(71) Applicant: Kweek-en Researchbedrijf Agrico B.V.
8314 PP Bant (NL)

(72) Inventors:

- van der Vossen, Edwin Andries Gerard
3572 ZM Utrecht (NL)
- Allefs, Josephus Jacobus Hendricus Maria
8304 EJ Emmeloord (NL)

(74) Representative: Prins, Adrianus Willem et al
Vereenigde,
Nieuwe Parklaan 97
2587 BN Den Haag (NL)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Gene conferring resistance to Phytophthora infestans (late-blight) in Solanaceae

(57) The invention relates to the field of plant diseases, in particular to oomycete infections such as late blight, a disease of major importance to production of Solanaceae such as potato and tomato cultivars. The invention provides a method for providing a plant or its progeny with resistance against an oomycete infection

comprising providing said plant or part thereof with a gene or functional fragment thereof comprising a nucleic acid, said nucleic acid encoding a gene product that is capable of providing a member of the Solanaceae with resistance against an oomycete fungus.

EP 1 334 979 A1

Description

[0001] The invention relates to the field of plant diseases.

5 [0002] Late blight, caused by the oomycete pathogen *Phytophthora infestans* is world-wide the most destructive disease for potato cultivation. The disease also threatens the tomato crop. The urgency of obtaining resistant cultivars has intensified as more virulent, crop-specialised and pesticide resistant strains of the pathogen are rapidly emerging.

10 [0003] A way to prevent crop failures or reduced yields is the application of fungicides that prevent or cure an infection by *P. infestans*. However, the application of crop protectants is widely considered to be a burden for the environment. Thus, in several Western countries, legislation is becoming more restrictive and partly prohibitive to the application of specific fungicides, making chemical control of the disease more difficult. An alternative approach is the use of cultivars that harbour partial or complete resistance to late blight. Two types of resistance to late blight have been described and used in potato breeding. One kind is conferred by a series of major, dominant genes that render the host incompatible with specific races of the pathogen (race specific resistance). Eleven such *R* genes (*R1-R11*) have been identified and are believed to have originated in the wild potato species *Solanum demissum*, which is native to Mexico,

15 where the greatest genetic variation of the pathogen is found. Several of these *R* genes have been mapped on the genetic map of potato. *R1* and *R2* are located on chromosomes 5 and 4, respectively. *R3*, *R6* and *R7* are located on chromosome 11. Unknown *R* genes conferring race specific resistance to late blight have also been described in *S. tuberosum* ssp. *andigena* and *S. berthaultii*. Because of the high level of resistance and ease of transfer, many cultivars contain *S. demissum* derived resistance. Unfortunately, *S. demissum* derived race specific resistance, although nearly 20 complete, is not durable. Once newly bred cultivars are grown on larger scale in commercial fields, new virulences emerge in *P. infestans* that render the pathogen able to overcome the introgressed resistance. The second type of resistance, often quantitative in nature, is race non-specific and is thought to be more durable. Race non-specific resistance to late blight can be found in several Mexican and Middle and South American *Solanum* species.

25 [0004] Diploid *S. bulbocastanum* from Mexico and Guatemala is one of the tuber bearing species that is known for its race non-specific resistance to late blight. Despite differences in endosperm balance numbers, introgression of the *S. bulbocastanum* resistance trait has been successful. Ploidy manipulations and a series of tedious bridge crosses has resulted in *S. bulbocastanum* derived, *P. infestans* resistant germplasm. However, almost 40 years after the first crosses and intense and continuous breeding efforts by potato breeders in the Netherlands with this germplasm, late blight resistant cultivars still remain to be introduced on the market. Successful production of somatic hybrids of *S. bulbocastanum* and *S. tuberosum* has also been reported. Some of these hybrids and backcrossed germplasm were 30 found to be highly resistant to late blight, even under extreme disease pressure. Despite reports of suppression of recombination, resistance in the backcrossed material appeared to be on chromosome 8 within an approximately 6 cm interval between the RFLP markers CP53 and CT64. A CAPS marker derived from the tomato RFLP probe CT88 cosegregated with resistance. Suppression of recombination between the *S. bulbocastanum* and *S. tuberosum* chromosomes forms a potential obstacle for successful reconstitution of the recurrent cultivated potato germplasm to a 35 level that could meet the standards for newly bred potato cultivars. Isolation of the genes that code for resistance found in *S. bulbocastanum* and subsequent transformation of existing cultivars with these genes, would be a much more straight forward and quicker approach when compared to introgression breeding.

40 [0005] The cloning and molecular characterisation of numerous plant *R* genes conferring disease resistance to bacteria, fungi, viruses, nematodes, and insects has identified several structural features characteristic to plant *R* genes. The majority are members of tightly linked multigene families and all *R* genes characterised so far, with the exception of *Pto*, encode leucine-rich repeats (LRRs), structures shown to be involved in protein-protein interactions. LRR containing *R* genes can be divided into two classes based on the presence of a putative tripartite nucleotide-binding site (NBS). *R* genes of the NBS-LRR class comprise motifs that are shared with animal apoptosis regulatory proteins. The 45 second class of LRR containing *R* genes encompasses genes with a predicted hydrophobic membrane-anchoring domain with a predicted extracellular N-terminal LRR motif. The recently cloned resistance gene *R1* conferring race specific resistance to late blight belongs to the NBS-LRR class of *R* genes.

50 [0006] The invention provides an isolated or recombinant nucleic acid essentially corresponding to a cluster of genes identifiable by phylogenetic tree analyses, preferably of the encoded amino acid sequence, for example when comparing functionalities, as corresponding to the *Rpi-blb*, *RGC1-blb*, *RGC3-blb* and *RGC4-blb* gene cluster (herein also called the *Rpi-blb* gene cluster) of figure 9.

55 [0007] Phylogenetic tree analysis is carried out as follows. First a multiple sequence alignment is made of the nucleic acid sequences an/or preferably of the deduced amino acid sequences of the genes to be analysed using CLUSTALW (<http://www2.ebi.ac.uk/clustalw>), which is in standard use in the art. ClustalW produces a .dnd file, which can be read by TREEVIEW (<http://taxonomy.zoology.gla.ac.uk/rod/rod.html>). The phylogenetic tree depicted in Figure 9 is a phylogram.

[0008] Phylogenetic studies of the deduced amino acid sequences of *Rpi-blb*, *RGC1-blb*, *RGC3-blb*, *RGC4-blb* and those of the most similar genes from the art (as defined by the BLASTX) derived from diverse species, using the

Neighbour-Joining method of Saitou and Nei (1987), shows that corresponding genes or functional fragments thereof of the *Rpi-blb* gene cluster can be placed in a separate branch (Figure 9).

[0009] Sequence comparisons between the four members of the *Rpi-blb* gene cluster identified on 8005-8 BAC clone SPB4 show that sequence homology within the *Rpi-blb* gene cluster varies between 70% and 81% at the amino acid sequence level, providing a convenient rule of thumb: a nucleic acid encoding a peptide of at least 15 amino acids, preferably of at least 25 amino acids, most preferably of at least 50 amino acids, having at least 70% homology to corresponding stretches of peptides selected from any of the proteins encoded by the *Rpi-blb*, *RGC1-blb*, *RGC3-blb* and *RGC4-blb* genes are provided as functional fragment, herewith. The deduced amino acid sequence of *Rpi-blb* shares the highest overall homology with *RGC3-blb* (81% amino-acid sequence identity; Table 4). When the different domains are compared it is clear that the effector domains present in the N-terminal halves of the proteins (coiled-coil and NBS-ARC domains) share a higher degree of homology (91% sequence identity) than the C-terminal halves of these proteins which are thought to contain the recognition domains (LRRs; 71% amino acid sequence identity). Comparison of all four amino-acid sequences revealed a total of 104 *Rpi-blb* specific amino acid residues (Figure 10). The majority of these are located in the LRR region (80/104). Within the latter region, these specific residues are concentrated in the LRR subdomain xxLxLxxxx. The relative frequency of these specific amino-acid residues within this LRR subdomain is more than two times higher (28.3%) than that observed in the rest of the LRR domain (12.3%). The residues positioned around the two conserved leucine residues in the consensus xxLxxLxxxx are thought to be solvent exposed and are therefore likely to be involved in creating/maintaining recognition specificity of the resistance protein.

[0010] Sequences of additional members of the *Rpi-blb* gene cluster can be obtained by screening genomic DNA or insert libraries, e.g. BAC libraries with primers based on signature sequences of the *Rpi-blb* gene. Screening of various *Solanum* BAC libraries with primer sets A and/or B (Table 2 and Figure 7) identified numerous *Rpi-blb* homologues derived from different *Solanum* species. Alignment of these additional sequences with those presented in Figure 10 will help identify additional members of the *Rpi-blb* gene cluster and specific amino acid residues therein responsible for *P. infestans* resistance specificity. Furthermore, testing additional sequences in the above described phylogenetic tree analyses, e.g. using the Neighbour-Joining method of Saitou and Nei (1987), provides additional identification of genes belonging to the *Rpi-blb* gene cluster.

[0011] The invention provides the development of an intraspecific mapping population of *S. bulbocastanum* that segregated for race non-specific resistance to late blight. The resistance was mapped on chromosome 8, in a region located 0.3 cM distal from CT88. Due to the race non-specific nature of the resistance, *S. bulbocastanum* late blight resistance has always been thought to be *R* gene independent. However, with the current invention we demonstrate for the first time that *S. bulbocastanum* race non-specific resistance is in fact conferred by a gene bearing similarity to an *R* gene of the NBS-LRR type.

[0012] The invention further provides the molecular analysis of this genomic region and the isolation by map based cloning of a DNA-fragment of the resistant parent that harbours an *R* gene, designated *Rpi-blb*. This DNA-fragment was subcloned from an approximately 80 kb bacterial artificial chromosome (BAC) clone which contained four complete *R* gene-like sequences in a cluster-like arrangement. Transformation of a susceptible potato cultivar by *Agrobacterium tumefaciens* revealed that one of the four *R* gene-like sequences corresponds to *Rpi-blb* that provides the race non-specific resistance to late blight. Characterisation of the *Rpi-blb* gene showed that it is a member of the NBS-LRR class of plant *R* genes. The closest functionally characterised sequences of the prior art are members of the *I2* resistance gene family in tomato. These sequences have an overall amino acid sequence identity of approximately 32% with that of *Rpi-blb*.

[0013] Thus, in a first embodiment, the invention provides an isolated or recombinant nucleic acid, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with race non-specific resistance against an oomycete pathogen.

[0014] Isolation of the gene as provided here that codes for the desired resistance trait against late blight and subsequent transformation of existing potato and tomato cultivars with this gene now provides a much more straightforward and quicker approach when compared to introgression breeding. The results provided here offer possibilities to further study the molecular basis of the plant pathogen interaction, the ecological role of *R* genes in a wild Mexican potato species and are useful for development of resistant potato or tomato cultivars by means of genetic modification.

[0015] In contrast to the *R* genes cloned and described so far, the gene we provide here is the first isolated *R* gene from a *Solanum* species that provides race non-specific resistance against an oomycete pathogen. Notably, the invention provides here a nucleic acid wherein said *Solanum* species that is provided with the desired resistance comprises *S. tuberosum*. In particular, it is the first gene that has been isolated from a phylogenetically distinct relative of cultivated potato, *S. bulbocastanum*, for which it was shown by complementation assays, that it is functional in *S. tuberosum*. These data imply that the gene *Rpi-blb* can easily be applied in potato production without a need for time-consuming and complex introgression breeding.

[0016] The following definitions are provided for terms used in the description and examples that follow.

- **Nucleic acid:** a double or single stranded DNA or RNA molecule.
- **Oligonucleotide:** a short single-stranded nucleic acid molecule.
- **Primer:** the term primer refers to an oligonucleotide that can prime the synthesis of nucleic acid.
- **Homology:** homology may be defined and determined by the TBLASTN or TBLASTP program for nucleic acid or amino acid sequences, respectively, of Altschul *et al.* (1990), which is in standard use in the art, or, and this may be preferred, the standard program BestFit, which is part of the Wisconsin Package, Version 8, September 1994, (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA, Wisconsin 53711). Homology may be at the nucleotide sequence and/or encoded amino acid sequence level. Preferably the nucleic acid and/or amino acid sequence shares at least 50%, or 60% homology, most preferably at least about 70%, or 80% or 90% homology with the sequence as depicted in Fig. 6. As shown in Table 4, the closest functionally characterised sequence of the prior art (members of the *I2 Fusarium* resistance gene cluster in tomato) has a much lower level of amino acid sequence identity than this (32% with respect to that of *Rpi-blb*). Homology within the *R* gene cluster of the present invention varies between 70% and 81% at the amino acid sequence level. Alternatively, a sequence is defined as belonging to the same cluster when numerous sequences are compared according to the Neighbour-Joining method of Saitou and Nei (1987).
- **Promoter:** the term "promoter" is intended to mean a short DNA sequence to which RNA polymerase and/or other transcription initiation factors bind prior to transcription of the DNA to which the promoter is functionally connected, allowing transcription to take place. The promoter is usually situated upstream (5') of the coding sequence. In its broader scope, the term "promoter" includes the RNA polymerase binding site as well as regulatory sequence elements located within several hundreds of base pairs, occasionally even further away, from the transcription start site. Such regulatory sequences are, e.g., sequences that are involved in the binding of protein factors that control the effectiveness of transcription initiation in response to physiological conditions. The promoter region should be functional in the host cell and preferably corresponds to the natural promoter region of the *Rpi-blb* resistance gene. However, any heterologous promoter region can be used as long as it is functional in the host cell where expression is desired. The heterologous promoter can be either constitutive or regulatable. A constitutive promoter such as the CaMV 35S promoter or T-DNA promoters, all well known to those skilled in the art, is a promoter which is subjected to substantially no regulation such as induction or repression, but which allows for a steady and substantially unchanged transcription of the DNA sequence to which it is functionally bound in all active cells of the organism provided that other requirements for the transcription to take place is fulfilled. A regulatable promoter is a promoter of which the function is regulated by one or more factors. These factors may either be such which by their presence ensure expression of the relevant DNA sequence or may, alternatively, be such which suppress the expression of the DNA sequence so that their absence causes the DNA sequence to be expressed. Thus, the promoter and optionally its associated regulatory sequence may be activated by the presence or absence of one or more factors to affect transcription of the DNA sequences of the genetic construct of the invention. Suitable promoter sequences and means for obtaining an increased transcription and expression are known to those skilled in the art.
- **Terminator:** the transcription terminator serves to terminate the transcription of the DNA into RNA and is preferably selected from the group consisting of plant transcription terminator sequences, bacterial transcription terminator sequences and plant virus terminator sequences known to those skilled in the art.
- **Gene:** the term "gene" is used to indicate a DNA sequence which is involved in producing a polypeptide chain and which includes regions preceding and following the coding region (5'-upstream and 3'-downstream sequences) as well as intervening sequences, the so-called introns, which are placed between individual coding segments (so-called exons) or in the 5'-upstream or 3'-downstream region. The 5'-upstream region may comprise a regulatory sequence that controls the expression of the gene, typically a promoter. The 3'-downstream region may comprise sequences which are involved in termination of transcription of the gene and optionally sequences responsible for polyadenylation of the transcript and the 3' untranslated region. The term "resistance gene" is an isolated nucleic acid according to the invention said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete pathogen, said nucleic acid preferably comprising a sequence as depicted in Fig. 6 or part thereof, or a homologous sequence with essentially similar functional and structural characteristics. A functionally equivalent fragment of such a resistance gene or nucleic acid as provided by the invention encodes a fragment of a polypeptide having an amino acid sequence as depicted in Fig. 8 or part thereof, or a homologous and/or functionally equivalent polypeptide, said fragment exhibiting the characteristic of providing at least partial resistance to an oomycete infection such as caused by *P. infestans* when incorporated and expressed in a plant or plant cell.
- **Resistance gene product:** a polypeptide having an amino acid sequence as depicted in Fig. 8 or part thereof, or a homologous and/or functionally equivalent polypeptide exhibiting the characteristic of providing at least partial resistance to an oomycete infection such as caused by *P. infestans* when incorporated and expressed in a plant or plant cell.

- R₀ plant: primary regenerant from a transformation experiment, also denoted as transformed plant or transgenic plant.

[0017] In the present invention we have identified and isolated the resistance gene *Rpi-blb*, which confers race non-specific resistance to *Phytophthora infestans*. The gene was cloned from a *Solanum bulbocastanum* genotype that is resistant to *P. infestans*. The isolated resistance gene according to the invention can be transferred to a susceptible host plant using *Agrobacterium* mediated transformation or any other known transformation method, and is involved in conferring the host plant resistant to plant pathogens, especially *P. infestans*. The host plant can be potato, tomato or any other plant, in particular a member of the *Solanaceae* family that may be infected by such a plant pathogen. The present invention provides also a nucleic acid sequence comprising the *Rpi-blb* gene, or a functionally equivalent fragment thereof, which is depicted in Figure 6.

[0018] With the *Rpi-blb* resistance gene or functionally equivalent fragment thereof according to the invention, one has an effective means of control against plant pathogens, since the gene can be used for transforming susceptible plant genotypes thereby producing genetically transformed plants having a reduced susceptibility or being preferably resistant to a plant pathogen. In particular, a plant genetically transformed with the *Rpi-blb* resistance gene according to the invention has a reduced susceptibility to *P. infestans*.

[0019] In a preferred embodiment the *Rpi-blb* resistance gene comprises the coding sequence provided in Figure 6B or any corresponding or homologous sequence preceded by a promoter region and/or followed by a terminator region. The promoter region should be functional in plant cells, and preferably correspond to the native promoter region of the *Rpi-blb* gene. However, a heterologous promoter region that is functional in plant cells can be used in conjunction with the coding sequences.

[0020] In addition the invention relates to the *Rpi-blb* resistance gene product which is encoded by the *Rpi-blb* gene according to the invention and which has an amino acid sequence provided in Figure 8, or which is homologous to the deduced amino acid sequence or part thereof.

[0021] The invention also provides a vector comprising a nucleic acid as provided herein, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete pathogen, or a functionally equivalent isolated or recombinant nucleic acid in particular wherein said member comprises *S. tuberosum* or *Lycopersicon esculentum*.

[0022] The invention also provides a host cell comprising a nucleic acid or a vector according to the invention. An example of said host cell is provided in the detailed description herein. In a particular embodiment, said host cell comprises a plant cell. As a plant cell a cell derived from a member of the *Solanaceae* family is preferred, in particular wherein said member comprises *S. tuberosum* or *Lycopersicon esculentum*. From such a cell, or protoplast, a transgenic plant, such as transgenic potato plant or tomato plant with resistance against an oomycete infection can arise. The invention thus also provides a plant, or tuber root, fruit or seed or part or progeny derived thereof comprising a cell according to the invention.

[0023] Furthermore, the invention provides a proteinaceous substance, exhibiting the characteristic of providing at least partial resistance to an oomycete infection such as caused by *P. infestans* when incorporated and expressed in a plant or plant cell. In particular such a proteinaceous substance is provided that is encoded by a nucleic acid according to the invention. In a preferred embodiment, the invention provides a proteinaceous substance comprising an amino acid sequence as depicted in figure 8 or part thereof. Such a proteinaceous substance is for example useful for obtaining a binding molecule directed at said substance. Particular easy to obtain, merely by immunizing an appropriate animal and harvesting a polyclonal serum or a monoclonal antibody, are antibodies or fragments thereof, but other binding molecules such as synthetic antibodies or peptide mimics thereof can for example be obtained by phage display methods.

[0024] Furthermore, the invention provides a binding molecule directed at a nucleic acid according to the invention. For example, the *Rpi-blb* gene can be used for the design of oligonucleotides complementary to one strand of the DNA sequence as depicted in Figure 7 and Table 2. Such oligonucleotides as provided herein are useful as probes for library screening, hybridisation probes for Southern/Northern analysis, primers for PCR, for use in a diagnostic kit for the detection of disease resistance and so on. Such oligonucleotides are useful fragments of an isolated or recombinant nucleic acid as provided herein, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete fungus, or a functionally equivalent isolated or recombinant nucleic acid, in particular wherein said member comprises *S. tuberosum* or *Lycopersicon esculentum*. They can be easily selected from a sequence as depicted in figure 6 or part thereof. A particular point of recognition comprises the LRR domain as identified herein. Such a binding molecule according to the invention is used as a probe or primer, for example provided with a label, in particular wherein said label comprises an excitable moiety which makes it useful to detect the presence of said binding molecule.

[0025] The invention furthermore provides a method for selecting a plant or plant material or progeny thereof for its susceptibility or resistance to an oomycete infection comprising testing at least part of said plant or plant material or

progeny thereof for the presence or absence of a nucleic acid, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete fungus, or for the presence of said gene product, said method preferably comprising contacting at least part of said plant or plant material or progeny thereof with a binding molecule according the invention and determining the binding of said molecule to said part. Said

5 method is particularly useful wherein said oomycete comprises *P. infestans*, allowing to select plants or planting material for resistance against late blight, for example wherein said plant or material comprises *S. tuberosum*.

[0026] Also, the invention provides use of a nucleic acid or a vector or a cell or a substance or a binding molecule according to the invention in a method for providing a plant or its progeny with at least partial resistance against an oomycete infection, in particular wherein said oomycete comprises *P. infestans* especially wherein said plant comprises *S. tuberosum*, said method for providing a plant or its progeny with at least partial resistance against an oomycete infection comprising providing said plant or part thereof with a gene or functional fragment thereof comprising a nucleic acid, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete fungus, or providing said plant or part thereof with a nucleic acid or a vector or a cell or a substance according to the invention.

10 [0027] Furthermore, the invention provides an isolated *S. bulbocastanum*, or part thereof, such as a tuber or seed, susceptible to an oomycete infection caused by *P. infestans*.

15 [0028] The invention is further described in the detailed description below.

DESCRIPTION OF THE FIGURES

20

[0029]

25

Figure 1. Geographical map of Mexico indicating the origin of *Solanum bulbocastanum* accessions used to isolate the *Rpi-blb* gene. The letters a, b and c indicate the relative geographical origins of the used *S. bulbocastanum* accessions.

30

Figure 2. Genetic linkage maps of the *Rpi-blb* locus on chromosome 8 of *S. bulbocastanum*. Horizontal lines indicate the relative positions of markers linked to late blight resistance. Distances between markers are indicated in centimorgans. **A.** Genetic position of the *Rpi-blb* locus relative to markers TG513, CT88 and CT64 (n=508 genotypes). **B.** High density genetic linkage map of the *Rpi-blb* locus (n=2109 genotypes).

35

Figure 3. Physical map of the *Rpiblb* locus. **A.** Genetic and physical map of the *S. bulbocastanum* genomic region containing *Rpiblb*. Vertical arrows indicate the relative positions of markers linked to resistance. Numbers above the horizontal line indicate the number of recombinants identified between the flanking markers in 2109 progeny plants. Rectangles represent bacterial artificial chromosome (BAC) clones. **B.** Relative positions of candidate genes for late blight resistance on BAC SPB4. **C.** Schematic representation of the *Rpi-blb* gene structure. Horizontal lines indicate exons. Open boxes represent coding sequence. Lines angled downwards indicate the position of a 678-nucleotide long intron sequence.

40

Figure 4. Southern blot analysis of the BAC contig spanning the *Rpi-blb* locus. Names above each lane represent the names of BAC clones. The names of the restriction enzymes used to digest the BAC DNA prior to Southern blotting are indicated.

45

Figure 5. Detached leaf disease assays. **A.** Resistant (left), intermediate (centre) and susceptible (right) phenotypes found in the *S. bulbocastanum* mapping population B8 6 days post inoculation (d.p.i.) with *P. infestans* sporangiospore droplets. **B.** Genetic complementation for late blight resistance. Characteristic disease phenotypes of leaves derived from transgenic potato plants harbouring *RGC1-blb*, *RGC2-blb*, -*blb* or *RGC4-blb* 6 d.p.i. with *P. infestans* sporangiospore droplets. Genetic constructs harbouring the RGCs were transferred to the susceptible potato cultivar Impala through *Agrobacterium* mediated transformation.

50

55

Figure 6. Nucleic acid sequences of the *Rpi-blb* gene cluster members. **A.** Coding nucleic acid sequence of the *Rpi-blb* gene. **B.** Coding nucleic acid sequence of the *Rpi-blb* gene including the intron sequence (position 428-1106). **C.** Sequence of the 7.35 kb *Sau3AI* genomic DNA fragment of *S. bulbocastanum* BAC SPB4 present in pRGC2-blb, the genetic construct used for genetic complementation for late blight resistance. The genetic construct harbours the *Rpi-blb* gene. The initiation codon (ATG position 2648-2650) and the termination codon (TAA position 6237-6239) are underlined. **D.** Coding nucleic acid sequence of *RGC1-blb* including the intron sequence (position 428-708). **E.** Coding nucleic acid sequence of *RGC3-blb* including the intron sequence (position 428-1458). **F.** Coding nucleic acid sequence of *RGC4-blb* including intron sequences (positions 434-510, 543-618

and 743-1365).

Figure 7. Relative primer positions. The horizontal bar represents the coding sequence of the *Rpi-blb* gene. Numbers represent nucleotide positions. Horizontal arrows indicate relative primer positions and orientations. GSP1 and GSP2 represent nested gene specific primers used for 3' RACE experiments. GSP3 and GSP4 represent nested gene specific primers used for 5' RACE experiments. A(F), A(R), B(F) and B(R) are primers used to amplify *Rpi-blb* homologues. The position of the restriction site *Nsi*I used to make domain swaps between *Rpi-blb* homologues is indicated.

Figure 8. Dduced *Rpi-blb* protein sequence. The amino acid sequence deduced from the DNA sequence of *Rpi-blb* is divided into three domains (A-C), as described in the text. Hydrophobic residues in domain A that form the first and fourth residues of heptad repeats of potential coiled-coil domains are underlined. Conserved motifs in R proteins are written in lowercase and in italic in domain B. Residues matching the consensus of the cytoplasmic LRR are indicated in bold in domain C. Dots in the sequence have been introduced to align the sequence to the consensus LRR sequence of cytoplasmic LRRs.

Figure 9. Phylogenetic tree of state of the art sequences which share some homology to the deduced amino acid sequence of *Rpi-blb* and its gene cluster members *RGC1-blb*, *RGC3-blb* and *RGC4-blb*. The tree was made according to the Neighbour-Joining method of Saitou and Nei (1987). An asterix indicates that the gene has been assigned a function. The *Rpi-blb* gene cluster is boxed.

Figure 10. Alignment of the deduced protein products encoded by *Rpi-blb*, *RGC1-blb*, *RGC3-blb* and *RGC4-blb*. The complete amino acid sequence of *Rpi-blb* is shown and amino acid residues from *RGC1-blb*, *RGC3-blb* and *RGC4-blb* that differ from the corresponding residue in *Rpi-blb*. Dashes indicate gaps inserted to maintain optimal alignment. Amino acid residues that are specific for *Rpi-blb*, when compared to those at corresponding positions in *RGC1-blb*, *RGC3-blb* and *RGC4-blb*, are highlighted in bold. The regions of the LRRs that correspond to the consensus L..L..L..C/N/S..a..aP are underlined. Conserved motifs in the NBS domain are indicated in lowercase.

Figure 11. Schematic overview of domain swaps made between *Rpi-blb* and homologues *RGC1-blb* and *RGC3-blb*. The vertical dotted line indicates the position of the *Nsi*I site used to make the swaps. R and S indicate whether transgenic plants harbouring specific chimeric constructs are resistant or susceptible to late blight infection, respectively.

Detailed description

[0030] For the mapping of the *Rpi-blb* resistance gene an intraspecific mapping population of *S. bulbocastanum* was developed. A crucial step in this process was the identification of susceptible *S. bulbocastanum* genotypes. For this purpose several *S. bulbocastanum* accessions originating from different clusters/areas in Mexico were analysed for *P. infestans* resistance or susceptibility in a detached leaf assay (Table 1 and Figure 1). The screened accessions BGRC 8008 and BGRC 7999 contained no susceptible genotypes. However in the accessions BGRC 8005, BGRC 8006 and BGRC 7997, susceptibility was found in 9%, 7% and 14 % of the analysed seedlings, respectively. A *P. infestans* susceptible clone of accession BGRC 8006 was subsequently selected and crossed with a resistant clone of accession BGRC 8005. The resulting F1 population was used to map the *Rpi-blb* locus and is hereafter referred to as the B8 population.

[0031] Initial screening of 42 B8 genotypes for resistance to *P. infestans* in a detached leaf assay suggested that *P. infestans* resistance in *S. bulbocastanum* accession 8005 could be caused by a single dominant *R* gene, or a tightly linked gene cluster. Of the 42 genotypes tested, 22 scored resistant and 16 susceptible in a repeated experiment. Resistance phenotypes of the remaining 4 seedlings remained unclear. In order to determine the chromosome position of this *S. bulbocastanum* resistance, B8 genotypes with an undoubted phenotype were used for marker analysis. The chromosome 8 specific marker TG330 (Table 2) was found to be linked in repulsion phase with the resistant phenotype, as only one recombinant was obtained between this marker and resistance in 12 B8 genotypes. Furthermore, chromosome 8 marker CT88 (Table 2) was found to be completely linked in repulsion phase to resistance, indicating that the locus responsible for resistance, designated *Rpi-blb*, was located in this region of chromosome 8. For this reason, tomato chromosome 8 specific markers that map proximal and distal to CT88 (TG513 and CT64; Tanksley et al., 1992; Table 2) were developed into CAPS markers and tested in 512 B8 genotypes with known resistance phenotypes. A total of five CT64-CT88 recombinant genotypes and 41 CT88-TG513 recombinant genotypes were identified in this screen (Figure 2A). The resistance locus *Rpi-blb* was mapped 1 recombination event distal to marker CT88 (Figure 2A).

[0032] Fine mapping of the *Rpi-blb* locus was carried out with CAPS markers derived from left (L) and right (R) border

sequences of BAC clones isolated from a BAC library prepared from the resistant *S. bulbocastanum* genotype BGRC 8005-8. The BAC library was initially screened with markers CT88 and CT64. BAC clones identified with these markers were used as seed BACs for a subsequent chromosome walk to the *Rpi-blb* locus. A total of 2109 B8 genotypes were screened for recombination between markers TG513 en CT64. All recombinant genotypes (219/2109) were subsequently screened with all available markers in the CT88-CT64 genetic interval. These data together with the disease resistance data of each recombinant, obtained through detached leaf assays, positioned the *Rpi-blb* locus between markers SPB33L and B149R, a 0.1 cM genetic interval (4/2109 recombinants) physically spanned by the overlapping BAC clones SPB4 and B49 (Figures 2b and 3). Within this interval resistance cosegregated with the BAC end marker SPB42L, the sequence of which shared homology to the *Fusarium I2* gene cluster from tomato (Ori et al., 1997, Simons et al., 1998). Southern analyses of BAC clones spanning the SP33L-B149R interval using a ³²P-labeled PCR fragment of marker SPB42L as a probe revealed the presence of at least 4 copies of this *R* gene like sequence within the *Rpi-blb* interval (Figure 4). Moreover, all of these copies were present on BAC SPB4. Sequencing and annotation of the complete insert of this BAC clone indeed identified four complete *R* gene candidates (*RGC1-blb*, *RGC2-blb*, *RGC3-blb* and *RGC4-blb*) of the NBS-LRR class of plant *R* genes. A PCR-marker that was located in-between *RGC1-blb* and *RGC4-blb* revealed recombination between *P. infestans* resistance and *RGC4-blb*, ruling out the possibility of *RGC4-blb* being *Rpi-blb*. Despite this finding, all four RGCs were selected for complementation analysis.

[0033] Genomic fragments of approximately 10 kb harbouring *RGC1-blb*, *RGC2-blb*, *RGC3-blb* or *RGC4-blb* were subcloned from BAC SPB4 into the binary plant transformation vector pBINPLUS (van Engelen et al., 1995) and transferred to a susceptible potato cultivar using standard transformation methods. Primary transformants were tested for *P. infestans* resistance as described in Example 1. Only the genetic construct harbouring *RGC2-blb* was able to complement the susceptible phenotype; 86% of the R₀(*RGC2-blb*) plants were resistant (Table 3) whereas all *RGC1-blb*, *RGC3-blb* and *RGC4-blb* containing primary transformants were completely susceptible to *P. infestans*. The resistant *RGC2-blb* containing transformants showed similar resistance phenotypes as the *S. bulbocastanum* resistant parent (Figure 5). *RGC2-blb* was therefore designated the *Rpi-blb* gene, the DNA sequence of which is provided in Figure 6.

EXAMPLE 1: DISEASE ASSAY

[0034] The phenotype of *S. bulbocastanum* and transgenic *S. tuberosum* genotypes for resistance to *P. infestans* was determined by detached leaf assays. Leaves from plants grown for 6 to 12 weeks in the greenhouse were placed in pieces of water-saturated florists foam, approximately 35x4x4 cm, and put in a tray (40 cm width, 60 cm length and 6 cm height) with a perforated bottom. Each leaf was inoculated with two droplets or more (25 µl each) of sporangiospore solution on the abaxial side. Subsequently, the tray was placed in a plastic bag on top of a tray, in which a water-saturated filter paper was placed, and incubated in a climate room at 17°C and a 16h/8h day/night photoperiod with fluorescent light (Philips TLD50W/84HF). After 6 days, the leaves were evaluated for the development of *P. infestans* disease symptoms. Plants with leaves that clearly showed sporulating lesions 6 days after inoculation were considered to have a susceptible phenotype whereas plants with leaves showing no visible symptoms or necrosis at the side of inoculation in the absence of clear sporulation were considered to be resistant. The assay was performed with *P. infestans* complex isolate 655-2A, which was obtained from Plant Research International BV (Wageningen, The Netherlands).

EXAMPLE 2: MAPPING OF THE *Rpi-blb* RESISTANCE LOCUS

Plant material

[0035] In order to produce an intraspecific mapping population that segregated for the *P. infestans* resistance gene present in *S. bulbocastanum* accession BGRC 8005 (CGN 17692, PI 275193), a susceptible *S. bulbocastanum* genotype was required. Several *S. bulbocastanum* accessions originating from different clusters/areas in Mexico were analysed for *P. infestans* resistance or susceptibility in a detached leaf assay (Table 1 and Figure 1). In accession BGRC 8008 and BGRC 7999 no susceptibility was detected. In accession BGRC 8005, BGRC 8006 and BGRC 7997 susceptibility was only present in 9%, 7% and 14 % of the analysed seedlings, respectively. Thus, only a few susceptible *S. bulbocastanum* genotypes were obtained.

[0036] The intraspecific mapping population of *S. bulbocastanum* (B8) was produced by crossing a *P. infestans* susceptible clone of accession BGRC 8006 with a resistant clone of accession BGRC 8005. DNA of 2109 progeny plants was extracted from young leaves according to Doyle and Doyle (1989).

CAPS marker analysis

[0037] For PCR analysis, 15 µl reaction mixtures were prepared containing 0.5 µg DNA, 15 ng of each primer, 0.2

mM of each dNTP, 0.6 units Taq-polymerase (15 U/ μ l, SphaeroQ, Leiden, The Netherlands), 10 mM Tris-HCl pH 9, 1.5 mM MgCl₂, 50 mM KCl, 0.1% Triton X-100 and 0.01% (w/v) gelatin. The PCRs were performed using the following cycle profile: 25 seconds DNA denaturation at 94°C, 30 seconds annealing (see Table 1) and 40 seconds elongation at 72°C. As a first step in PCR-amplification DNA was denatured for 5 min at 94°C and finalised by an extra 5 min elongation step at 72°C. The amplification reactions were performed in a Biometra® T-Gradient or Biometra® Uno-II thermocycler (Westburg, Leusden, The Netherlands). Depending on the marker, the PCR product was digested with an appropriate restriction enzyme. An overview of the markers including primer sequences, annealing temperature and restriction enzymes, is given in Table 2. Subsequently, the (digested) PCR products were analysed by electrophoresis in agarose or acrylamide gels. For acrylamide gel analysis, the CleanGel DNA Analysis Kit and DNA Silver Staining Kit (Amersham Pharmacia Biotech Benelux, Roosendaal, the Netherlands) were used.

Genetic mapping of the *Rpi-blb* locus

[0038] Initially a small group of 42 progeny plants of the B8 population was screened for resistance to *P. infestans* in a detached leaf assay. Plants with leaves that clearly showed sporulating lesions 6 days after inoculation were considered to have a susceptible phenotype whereas plants with leaves showing no visible symptoms or necrosis at the side of inoculation in the absence of clear sporulation were considered to be resistant. Of the 42 seedlings, 22 scored resistant and 16 susceptible. The phenotype of the remaining 4 seedlings remained unclear in this initial phase. These data indicated that resistance could be due to a single dominant gene or a tightly linked gene cluster. In order to determine the chromosome position, seedlings with a reliable phenotype were used for marker analysis. Chromosome 8 marker TG330 was found to be linked in repulsion with the resistant phenotype, as only one recombinant was obtained between this marker and resistance in 12 B8 seedlings. Furthermore, chromosome 8 marker CT88 was found to be completely linked in repulsion phase to resistance, indicating that a resistance gene was located on chromosome 8.
[0039] Subsequently, chromosome 8 specific markers that had been mapped proximal and distal to CT88 (Tanksley et al., 1992) were developed to CAPS markers. In order to map these markers more precisely, another 512 individuals of the B8 population were screened for late blight resistance using the detached leaf disease assay. Simultaneously, plants were scored for the markers CT64, CT88 and TG513. For 5 seedlings, recombination was detected between markers CT64 and CT88, while 41 seedlings were recombinant between markers CT88 and TG513 (Figure 2A). The resistance gene *Rpi-blb* was mapped in between markers CT64 and CT88. In this stage, the positioning of CT88 proximal to *Rpi-blb* was based on only one recombined seedling.
[0040] In order to determine the position of *Rpi-blb* more precisely relative to the available markers, another 1555 seedlings of the B8 population were grown and analysed for recombination between the markers TG513 and CT64. Thus, a total of 2109 individual offspring clones of the B8 population were screened. Recombination between markers TG513 en CT64 was detected in 219 of these seedlings (10.4 cm). All of the recombinants were screened with marker CT88 and phenotyped for the resistance trait by making use of the detached leaf assay. In agreement with earlier results, the *Rpi-blb* gene was mapped in between markers CT88 and CT64 (Figure 2B).

EXAMPLE 3: CONSTRUCTION OF A *S. BULBOCASTANUM* BAC LIBRARY AND CONSTRUCTION OF A CONTIGUOUS BAC CONTIG SPANNING THE *Rpi-blb* LOCUS

BAC library construction

[0041] A resistant clone of *S. bulbocastanum* (blb) accession BGRC 8005 (CGN 17692, PI 275193) heterozygous for the *Rpi-blb* locus, was used as source DNA for the construction of a genomic BAC library, hereafter referred to as the 8005-8 BAC library. High molecular weight DNA preparation and BAC library construction were carried out as described in Rouppe van der Voort et al. (1999). Approximately 130.000 clones with an average insert size of 100 kb, which corresponds to 15 genome equivalents were finally obtained. A total of approximately 83.000 individual clones were stored in 216 384-well microtiter plates (Invitrogen, The Netherlands) containing LB freezing buffer (36 mM K₂HPO₄, 13.2 mM KH₂PO₄, 1.7 mM citrate, 0.4 mM MgSO₄, 6.8 mM (NH₄)₂SO₄, 4.4 % V/V glycerol, 12.5 μ g/ml chloramphenicol in LB medium) at -80°C. Another 50.000 clones were stored as bacterial pools containing ~1000 white colonies. These were generated by scraping the colonies from the agar plates into LB medium containing 18% glycerol and 12.5 μ g/ml chloramphenicol using a sterile glass spreader. These so-called super pools were also stored at -80°C.

Screening of the BAC library and construction of a physical map of the *Rpi-blb* locus

[0042] The 8005-8 BAC library was initially screened with CAPS markers CT88 and CT64. This was carried out as

follows. For the first part of the library of approximately 83.000 clones stored in 384 well microtiter plates, plasmid DNA was isolated using the standard alkaline lysis protocol (Sambrook *et al.*, 1989) from pooled bacteria of each plate to produce 216 plate pools. To identify individual BAC clones carrying the CAPS markers the plate pools were screened by PCR. Once an individual plate pool was identified as being positive for a particular CAPS marker the positive row and positive column were identified through a two dimensional PCR screening. For this purpose, the mother 384-well plate was replicated twice on LB medium containing chloramphenicol (12.5 µg/ml). After growing the colonies for 16 h at 37°C one plate was used to scrape the 24 colonies of each row together and the other plate was used to scrape the 16 colonies of each column together. Bacteria of each row or column were resuspended in 200 µl TE buffer. CAPS marker analysis on 5 µl of these bacterial suspensions was subsequently carried out leading to the identification of single positive BAC clones. For the second part of the library, stored as 50 pools of approximately 1000 clones, plasmid DNA was isolated from each pool of clones using the standard alkaline lysis protocol and PCR was carried out to identify positive pools. Bacteria corresponding to positive pools were diluted and plated on LB agar plates containing chloramphenicol (12.5 µg/ml). Individual white colonies were subsequently picked into 384-well microtiter plates and single positive BAC clones subsequently identified as described above. Names of BAC clones isolated from the super pools carry the prefix SP (e.g. SPB33).

[0043] Insert sizes of BAC clones were estimated as follows. Positive BAC clones were analysed by isolating plasmid DNA from 2 ml overnight cultures (LB medium supplemented with 12.5 mg/ml chloramphenicol) using the standard alkaline lysis miniprep protocol and resuspended in 20 µl TE. Plasmid DNA (10 µl) was digested with 5 U *NotI* for 3 h at 37°C to free the genomic DNA from the pBeloBAC11 vector. The digested DNA was separated by CHEF electrophoresis in a 1% agarose gel in 0.5 X TBE at 4°C using a BIORAD CHEF DR II system (Bio-Rad Laboratories, USA) at 150 volts with a constant pulse time of 14 sec for 16 h.

[0044] Screening of the 8005-8 BAC library with marker CT88 identified two positive BAC clones: B139 and B180, with potato DNA inserts of 130 and 120 kb, respectively (Figure 3A). Digestion of the CT88 PCR product generated from these BAC clones and several resistant and susceptible progeny plants of the B8 mapping population with *MboI* revealed that BAC139 carried the CT88 allele that was linked in *cis* to resistance. To identify the relative genome position of BAC B139, pairs of PCR primers were designed based on the sequence of the right (R) and left (L) ends of the insert. BAC end sequencing was carried out as described in Example 4 using 0.5 µg of BAC DNA as template. Polymorphic CAPS markers were developed by digesting the PCR products of the two parent genotypes of the B8 population and of two resistant and two susceptible progeny genotypes with several 4-base cutting restriction enzymes (Table 2). Screening of the 37 CT88-CT64 recombinant B8 genotypes mapped 5 of the 7 CT88-*Rpi-blb* recombinants between CT88 and B139R, indicating that marker B139R was relatively closer to the *Rpi-blb* locus than marker CT88. Screening of the 216 plate pools with B139R did not lead to the identification of a positive BAC clone. Screening of the 50 super pools identified the positive BAC clones SPB33 and SPB42 with DNA inserts of 85 and 75 kb, respectively (Figure 3A). Screening of the complete BAC library with SPB33L identified the positive BAC clones B149 and SPB4. BAC clone SPB4 contained the SPB33L allele that was linked in *cis* to resistance whereas BAC clone B149 did not. However, screening of the CT88-CT64 recombinant panel with B149R revealed that this BAC spanned the *Rpi-blb* locus. B149R was separated from the *Rpi-blb* locus by two recombination events (Figure 3A). Screening of the 8005-8 BAC library with B149R identified BAC clone B49 as having the B149R allele that was linked in *cis* to resistance. This BAC clone together with BAC clone SPB4 therefore formed a BAC contig that spanned the *Rpi-blb* locus (Figure 3).

EXAMPLE 4: SEQUENCE ANALYSIS OF BAC SPB4 AND IDENTIFICATION OF RESISTANCE GENE CANDIDATES WITHIN THE *Rpi-blb* LOCUS

[0045] Within the SPB33L-B149R interval resistance cosegregated with BAC end marker SPB42L, the sequence of which shared homology to NBS-LRR genes of the *Fusarium* 12 gene cluster in tomato (Ori *et al.*, 1997; Simons *et al.*, 1998). Southern analyses of BAC clones spanning the SPB33L-B149R interval using a ³²P-labeled PCR fragment of marker SPB42L as a probe revealed the presence of at least 4 copies of this *R* gene like sequence within the *Rpi-blb* interval (Figure 4). Moreover, all of these copies were present on BAC SPB4. The DNA sequence of BAC clone SPB4 was therefore determined by shotgun sequence analysis. A set of random subclones with an average insert size of 1.5 kb was generated. 10 µg of CsCl purified DNA was sheared for 6 seconds on ice at 6 amplitude microns in 200 µl TE using an MSE soniprep 150 sonicator. After ethanol precipitation and resuspension in 20 µl TE the ends of the DNA fragments were repaired by T4 DNA polymerase incubation at 11°C for 25 minutes in a 50 µl reaction mixture comprising 1x T4 DNA polymerase buffer (New England BioLabs, USA), 1 mM DTT, 100 µM of all 4 dNTP's and 25 U T4 DNA polymerase (New England Biolabs, USA), followed by incubation at 65°C for 15 minutes. The sheared DNA was subsequently separated by electrophoresis on 1% SeaPlaque LMP agarose gel (FMC). The fraction with a size of 1.5-2.5 kb was excised from the gel and dialysed against 50 ml TE for 2 hr at 4°C. Dialysed agarose slices were then transferred to a 1.5 ml Eppendorf tube, melted at 70°C for 5 min, digested with 1 unit of GELASE (Epicentre Technologies, USA) per 100 mg of agarose gel for 1 hr at 45°C, and the DNA was subsequently precipitated. The 1.5-2.5 kb fragments

were ligated at 16°C in a *EcoRV* restricted and dephosphorylated pBluescript SK⁺ vector (Stratagene Inc.). The ligation mixture was subsequently used to transform ElectroMAX *E. coli* DH10B competent cells (Life Technologies, UK) by electroporation using the BioRad Gene Pulser. Settings on the BioRad Gene Pulser were as recommended for *E. coli* by the manufacturer. The cells were spread on Luria broth (LB) agar plates containing ampicillin (100 µg/ml), 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Xgal) (64 µg/ml) and isopropyl-1-thio-β-D-galactoside (IPTG) (32 µg/ml). Plates were incubated at 37°C for 24 hours. Individual white colonies were grown in 96-well flat-bottom blocks (1.5 ml Terrific Broth medium containing 100 µg/ml ampicillin).

[0046] Plasmid DNA was isolated using the QIAprep 96 Turbo Miniprep system in conjunction with the BioRobot™ 9600 (QIAGEN) according to the manufacturers instructions. Sequencing reactions were performed using ABI PRISM BigDye™ Terminator cycle sequencing kit (Stratagene) according to the manufacturer's instructions. All clones were sequenced bi-directionally using universal primers. Sequence products were separated by capillary electrophoresis on a Perkin Elmer ABI 3700 DNA Analyzer.

[0047] The automated assembly of the shotgun reads was carried out using the Phred-Phrap programs (Ewing and Green, 1998; Ewing *et al.*, 1998). A total of 835 reads provided an overall BAC sequence coverage equal to 5x. Gaps between contigs were closed by primer walking or through a combinatorial PCR approach. The sequence was finally edited at Phred quality 40 (1 error every 10,000 nt) by manual inspection of the assembly using the Gap4 contig editor and re-sequencing of all low-quality regions. The complete sequence of the insert of BAC SPB4 consisted of 77,283 nucleotides.

[0048] Analysis of the contiguous sequence of BAC SPB4 using the computer programme GENSCAN (Burge and Karlin, 1997), GENEMARK (Lukashin and Borodovsky, 1998) and BLASTX (Altschul *et al.*, 1990) identified four complete *R* gene candidate sequences (*RGC1-blb*, *RGC2-blb*, *RGC3-blb* and *RGC4-blb*) belonging to the NBS-LRR class of plant *R* genes. A CAPS marker designed in between *RGC1-blb* and *RGC4-blb*, marker RGC1-4 revealed recombination between *P. infestans* resistance and *RGC4-blb*, ruling out the possibility of *RGC4-blb* being *Rpi-blb* (Figure 3A and B). Despite this finding, all four RGCs were selected for complementation analysis.

EXAMPLE 5: COMPLEMENTATION ANALYSIS

Subcloning of candidate genes and transformation to *Agrobacterium tumefaciens*

[0049] Genomic fragments of approximately 10 kb harbouring *RGC1-blb*, *RGC2-blb*, *RGC3-blb* or *RGC4-blb* were subcloned from BAC clone SPB4 into the binary plant transformation vector pBINPLUS (van Engelen *et al.*, 1995). Restriction enzyme digestion of BAC clone SPB4 DNA and subsequent size selection was carried out as follows. Aliquots of ~1 µg DNA were digested with 1U, 0.1U or 0.01U of *Sau3AI* restriction enzym for 30 min. The partially digested BAC DNA was subjected to CHEF electrophoresis at 4°C in 0.5 X TBE using a linear increasing pulse time of 1-10 sec and a field strength of 6 V/cm for 16 hr. After electrophoresis, the agarose gel was stained with ethidium bromide to locate the region of the gel containing DNA fragments of approximately 10kb in size. This region was excised from the gel using a glass coverslip and dialysed against 50 ml TE for 2 hr at 4°C. Dialysed agarose slices were then transferred to a 1.5 ml Eppendorf tube, melted at 70°C for 5 min and digested with 1 unit of GELASE (Epicentre Technologies, USA) per 100 mg of agarose gel for 1 hr at 45°C. Ligation of the size selected DNA to *Bam*H-digested and dephosphorylated pBINPLUS and subsequent transformation of ElectroMAX *E. coli*/DH10B competent cells (Life Technologies, UK) with the ligated DNA was carried as described in Example 5, using the BioRad Gene Pulser for electroporation. The cells were spread on Luria broth (LB) agar plates containing kanamycin (50 µg/ml), Xgal (64 µg/ml) and IPTG (32 µg/ml). Plates were incubated at 37°C for 24 hours. Individual white colonies were grown in 96-well plates (100 µl LB medium containing 50 µg/ml kanamycin). A total of 480 clones were PCR screened for the presence of RGCs using primers SPB42LF and SPB42LR or RGC4F and RGC4R (Table 2.). Positive clones were selected for plasmid isolation and further characterisation. Identification of clones harbouring *RGC1-blb*, *RGC2-blb*, *RGC3-blb* or *RGC4-blb* was carried out by sequencing the SPB42L PCR fragments derived from positive clones. The relative position of the RGCs within a subclone was determined by sequencing the ends of the clone and subsequent comparison of the sequences to the complete BAC insert sequence. Finally four binary plasmids, pRGC1-blb, pRGC2-blb, pRGC3-blb and pRGC4-blb were selected and transferred to *Agrobacterium tumefaciens* strains AGL0 (Lazo *et al.*, 1991), LBA4404 (Hoekema *et al.*, 1983) or UIA143 (Farrand *et al.*, 1989) either by electroporation using the BioRad Gene Pulser or by conjugation. Settings on the BioRad Gene Pulser were as recommended for *A. tumefaciens* by the manufacturer. Conjugation was carried out as described by Simon *et al.* (1983). The cells were spread on Luria broth (LB) agar plates containing kanamycin (100 mg/l) and rifampicin (50 mg/l). Plates were incubated at 28°C for 48 hours. Small-scale cultures from selected colonies were grown in LB medium containing kanamycin (100 mg/l) and rifampicin (50 mg/l). Plasmid DNA was isolated as described previously and the integrity of the plasmids was verified by restriction analysis upon reisolation from *A. tumefaciens* and subsequent transformation to *E. coli*. *A. tumefaciens* cultures harbouring a plasmid with the correct DNA pattern were used to transform a susceptible potato genotype.

Transformation of susceptible potato cultivar

[0050] *A. tumefaciens* strains were grown for 2 days at 28°C in 20 ml LB medium supplemented with 50 mg/l rifampicin and 25 mg/l kanamycin. Subsequently, 0.2 ml of *A. tumefaciens* culture was diluted in 10 ml LB medium containing the same antibiotics and grown overnight (28°C). The overnight culture was centrifuged (30 min, 2647 x g) and the pellet was resuspended in 50 ml MS medium (Murashige and Skoog, 1962) supplemented with 30 g/l sucrose (MS30).

[0051] Certified seed potatoes of cultivar Impala were peeled and surface sterilised for 30 min. in a 1% sodium hypochlorite solution containing 0.1 % Tween-20. Tubers were then washed thoroughly in large volumes of sterile distilled water (4 times, 10 min). Discs of approximately 2 mm thickness and 7 mm in diameter, were sliced from cylinders of tuber tissue prepared with a corkborer. The tuber discs were transferred into liquid MS30 medium containing *A. tumefaciens* and incubated for 15 min. After removing the *A. tumefaciens* solution, the tuber discs were transferred to regeneration medium containing MS30, 0.9 mg/l IAA, 3.6 mg/l zeatine riboside and 8 g/l agar (Hoekema et al., 1989). The plates were incubated at 24°C, 16 hour day-length (Philips TLD50W/84HF). After 48 hours of co-cultivation, the tuber discs were rinsed for 5 min in liquid MS medium including antibiotics, 200 mg/l vancomycin, 250 mg/l cefotaxim and 75 mg/l kanamycin, and transferred to regeneration medium supplemented with the same antibiotics. The plates were incubated at 24°C, 16 hour day-length (Philips TLD50W/84HF). Every three weeks, the tuber discs were transferred to fresh medium. Regenerating shoots were transferred to MS30 medium containing 75 mg/l kanamycin. Rooting shoots were propagated *in vitro* and tested for absence of *A. tumefaciens* cells by incubating a piece of stem in 3 ml LB medium (3 weeks, 37°C, 400 rpm). One plant of each transformed regenerant was transferred to the greenhouse.

Complementation of the susceptible phenotype in potato

[0052] Primary transformants were tested for *P. infestans* resistance as described in Example 1. Only the genetic construct harbouring *RGC2-blb* was able to complement the susceptible phenotype; 86% of the *R₀RGC2-blb* plants were resistant (Table 3) whereas all *RGC1-blb*, *RGC3-blb* and *RGC4-blb* containing primary transformants were completely susceptible to *P. infestans*. The resistant *RGC2-blb* transformants showed similar resistance phenotypes as the *S. bulbocastanum* resistant parent (Figure 5). *RGC2-blb* was therefore designated the *Rpi-blb* gene, the DNA sequence of which is provided in Figure 6.

Transformation of susceptible tomato

[0053] Seeds of the susceptible tomato line Moneymaker were rinsed in 70% ethanol to dissolve the seed coat and washed with sterile water. Subsequently, the seeds were surface-sterilised in 1.5% sodium hypochlorite for 15 minutes, rinsed three times in sterile water and placed in containers containing 140 ml MS medium pH 6.0 (Murashige and Skoog, 1962) supplemented with 10 g/l sucrose (MS10) and 160 ml vermiculite. The seeds were left to germinate for 8 days at 25°C and 0.5 W/M² light. Eight day old cotyledon explants were pre-cultured for 24 hours in Petri dishes containing a two week old feeder layer of tobacco suspension cells plated on co-cultivation medium (MS30 pH 5.8 supplemented with Nitsch vitamines (Duchefa Biochemie BV, Haarlem, The Netherlands), 0.5 g/l MES buffer and 8 g/l Daichin agar).

[0054] Overnight cultures of *A. tumefaciens* were centrifuged and the pellet was resuspended in cell suspension medium (MS30 pH 5.8 supplemented with Nitsch vitamines, 0.5 g/l MES buffer, pH 5.8) containing 200 µM acetosyringone to a final O.D.₆₀₀ of 0.25. The explants were then infected with the diluted overnight culture of *A. tumefaciens* strain UIA143 (Farrand et al., 1989) containing the helper plasmid pCH32 (Hamilton et al., 1996) and pRGC2-blb for 25 minutes, blotted dry on sterile filter paper and co-cultured for 48 hours on the original feeder layer plates. Culture conditions were as described above.

[0055] Following the co-cultivation, the cotyledons explants were transferred to Petri dishes with selective shoot inducing medium (MS pH 5.8 supplemented with 10 g/l glucose, including Nitsch vitamines, 0.5 g/l MES buffer, 5 g/l agargel, 2 mg/l zeatine riboside, 400 mg/l carbenicilline, 100 mg/l kanamycine, 0.1 mg/l IAA) and cultured at 25°C with 3-5 W/m² light. The explants were sub-cultured every 3 weeks onto fresh medium. Emerging shoots were dissected from the underlying callus and transferred to containers with selective root inducing medium (MS10 pH 5.8 supplemented with Nitsch vitamines, 0.5 g/l MES buffer, 5 g/l agargel, 0.25 mg/l IBA, 200 mg/l carbenicillin and 100 mg/l kanamycine).

Complementation of the susceptible phenotype in tomato

[0056] Primary transformants were tested for *P. infestans* resistance essentially as described in Example 1 for potato leaves, except that a *P. infestans* isolate was used that is specific for tomato. The tomato isolate was obtained from Plant Research International BV (Wageningen, The Netherlands). In total 10 transformants containing an intact

RGC2-blb construct were tested for resistance to *P. infestans*. The disease resistance assay revealed that *Rpi-blb* is able to complement a susceptible tomato phenotype.

Molecular analysis of primary transformants

5 **RT-PCR analysis**

[0057] In order to produce cDNA, a mix of 19 µl containing 1 µg of total or polyA RNA, 0.25 mM of each dNTP, 50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM DTT and 530 ng oligo d(T) primer, GCTGTCAACGA-
10 TACGCTACGTAACGGCATGACAGTG(T)₁₈ was denatured (1 min 83°C). Subsequently, the mix was placed at 42°C and 1 µl reverse transcriptase (M-MLV reverse transcriptase, Promega Benelux b.v., Leiden, The Netherlands) was added. After 60 min, the mix was heated for 1 min at 99°C and transferred to ice. 2 µl cDNA was used for standard PCR.

Rapid amplification of cDNA ends

15 [0058] The 5' and 3' ends of the *Rpi-blb* cDNA were determined by rapid amplification of cDNA ends (RACE) using the GeneRacer™ kit (Invitrogen™, The Netherlands). 3' RACE was carried out with the primers GSP1 (5'-GAGGAATC-CATCTCCCAGAG) and GSP2 (5'-GTGCTTGAAGAGATGATAATTACGAG) in combination with the GeneRacer™ 3' primer and GeneRacer™ 3' nested primer. 5' RACE was carried out on cDNA synthesised with the primer GSP3 (5'-GTCCATCTCACCAAGTAGTGG) using primers GSP4 (5'-GAAATGCTCAGTACTCTCTGG) and GSP5 (5'-GGAG-GACTGAAAGGTGTTGG) in combination with the GeneRacer™ 5' primer and GeneRacer™ 5' nested primer (Figure 7).

EXAMPLE 6: STRUCTURE OF THE *Rpi-blb* GENE AND THE CORRESPONDING PROTEIN.

25 [0059] The size and structure of the *Rpi-blb* gene was determined by comparing the genomic sequence derived from the insert of pRGC2-blb with cDNA fragments generated by 5' and 3' rapid amplification of cDNA ends. RACE identified 5' and 3' *Rpi-blb* specific cDNA fragments of a single species, respectively, suggesting that the genomic clone encodes a single *Rpi-blb* specific transcript. The coding sequence of the *Rpi-blb* transcript is estimated to be 2910 nucleotides (nt). The *Rpi-blb* gene contains a single intron of 678 nt starting 428 nt after the translational ATG start codon of the gene (Figure 3C).

30 [0060] The deduced open reading frame of the *Rpi-blb* gene encodes a predicted polypeptide of 970 amino acids with an estimated molecular weight of 110.3 kD (Figure 8). Several functional motifs present in R genes of the NBS-LRR class of plant R genes are apparent in the encoded protein which can be subdivided into 3 domains (A, B and C; Figure 35 8). The N-terminal part of the protein contains potential coiled-coil domains, heptad repeats in which the first and fourth residues are generally hydrophobic (domain A). Domain B harbours the NBS and other motifs that constitute the NB-ARC domain (ARC for Apaf-1, R protein, and CED-4) of R proteins and cell death regulators in animals (van der Biezen and Jones, 1998). This domain includes the Ap-ATPase motifs present in proteins of eukaryotic and prokaryotic origin (Aravind et al., 1999). The C-terminal half of *Rpi-blb* comprises a series of 20 irregular LRRs (domain C). The 40 LRRs can be aligned according to the consensus sequence LxxLxxLxLxxC/N/SxxLxxLPxxa, where x designates any residue and "a" designates the positions of aliphatic amino acids, followed by a region of varying length. This repeat format approximates the consensus for cytoplasmic LRRs (Jones and Jones, 1997).

EXAMPLE 7: NATURAL HOMOLOGUES AND ARTIFICIAL VARIANTS OF THE *Rpi-blb* GENE

45 **Natural homologues**

[0061] BLASTX homology searches with the coding sequence of the *Rpi-blb* gene revealed that amino acid sequence homology with various state of the art genes does not exceed 36% sequence identity (Table 4). The best BLASTX score was obtained with an NBS-LRR gene derived from *Oryza sativa* (36% amino acid sequence identity). NBS-LRR genes sharing an overall sequence homology of 27-36% amino-acid sequence identity with *Rpi-blb* can be found among others in *Arabidopsis thaliana*, *Phaseolus vulgaris*, *Lycopersicon esculentum* (*Fusarium* I2 gene cluster; Ori et al., 1997; Simons et al, 1998), *Zea mays*, *Hordeum vulgare* and *Lactuca sativa*. Phylogenetic studies of the deduced amino acid sequences of *Rpi-blb*, *RGC1-blb*, *RGC3-blb*, *RGC4-blb* and those of the most homologous state of the art genes (as defined by BLASTX) derived from diverse species, using the Neighbour-Joining method of Saitou and Nei (1987), shows that members of the *Rpi-blb* gene cluster can be placed in a separate branch (Figure 9).

[0062] Sequence comparisons of the four R gene candidates identified on 8005-8 BAC clone SPB4 show that sequence homology within the *Rpi-blb* gene cluster varies between 70% and 81% at the amino acid sequence level. The

deduced amino acid sequence of *Rpi-blb* shares the highest overall homology with *RGC3-blb* (81% amino acid sequence identity; Table 4). When the different domains are compared it is clear that the putative effector domains present in the N-terminal halves of the proteins (coiled-coil and NB-ARC domains) share a higher degree of homology (91% amino acid sequence identity) than the C-terminal halves of these proteins which are thought to contain the recognition domains (LRRs; 71% amino acid sequence identity). Comparison of all four amino acid sequences revealed a total of 104 *Rpi-blb* specific amino acid residues (Figure 10). The majority of these are located in the LRR region (80/104). Within the latter region, these specific residues are concentrated in the LRR subdomain xxLxLxxxx. The relative frequency of these specific amino-acid residues within this LRR subdomain is more than two times higher (28.3%) than that observed in the rest of the LRR domain (12.3%). The residues positioned around the two conserved leucine residues in the consensus xxLxxLxxxx are thought to be solvent exposed and are therefore likely to be involved in creating/maintaining recognition specificity of the resistance protein.

[0063] Sequences of additional homologues of the *Rpi-blb* gene can be obtained by screening genomic DNA or insert libraries, e.g. BAC libraries with primers based on signature sequences of the *Rpi-blb* gene. Screening of various *Solanum* BAC libraries with primer sets A and/or B (Table 2 and Figure 7) identified numerous *Rpi-blb* homologues derived from different *Solanum* species. Alignment of these additional sequences with those presented in Figure 10 will help identify *Rpi-blb* homologues and specific amino-acid residues therein responsible for *P. infestans* resistance specificity. Furthermore, testing additional sequences in the above described phylogenetic tree analyses, e.g. using the Neighbour-Joining method of Saitou and Nei (1987), provides additional identification of genes belonging to the *Rpi-blb* gene cluster.

Artificial variants

[0064] Domain swaps between the different homologues can be made to ascertain the role of the different sequences in *P. infestans* resistance. The restriction enzyme *Nsi*I for example, which recognises the DNA sequence ATGCAT present in the conserved MHD motif can be used to swap the complete LRR domain of *Rpi-blb* with that of *RGC1-blb* or *RGC3-blb* using techniques known to those skilled in the art. Chimeric variants of the *Rpi-blb* gene were made which encode the N-terminal half of *Rpi-blb* and the C-terminal half of *RGC1-blb* or *RGC3-blb* and visa versa, i.e., the N-terminal half of *RGC1-blb* or *RGC3-blb* and the C-terminal half of *Rpi-blb* (Figure 11). These variants were transformed to the susceptible potato genotype Impala and tested for *P. infestans* resistance. Chimeric *RGC3-blb* genes containing the LRR domain of *Rpi-blb* were resistant to *P. infestans* indicating that the specificity of the *Rpi-blb* gene is encoded by this part of the gene.

Table 1.

Overview of <i>P. infestans</i> susceptibility in different <i>S. bulbocastanum</i> accessions							
<i>S. bulbocastanum</i> accession			#	#	#	%	
CGN	BGRC	PI	plants	R	V	susceptibility	cluster ^a
40	17692	8005	275193	11	10	1	9
		8006	275194	16	15	1	6
	17693	8008	275198	19	18		b
	17687	7997	243505	35	25	4	b
	17688	7999	255518	19	19	0	c

^a The letters a, b and c represent relative geographical origins depicted in Figure 1

45

50

55

Table 2. Overview of markers used for mapping *Rpi-blb*

Marker	Ori ^a	Sequence ^b	Annealing temp (°C)	Restriction enzyme ^c
TG513	F	CGTAAACGCCACCAAAAGCAG	58	a.s.
	R	GATTCAAGCCAGGAACCGAG		
TG330	F	CAGCTGCCACAGCTCAAGC	56	TaqI
	R	TACCTACATGTACAGTACTGC		
CT88	F	GGCAGAAGAGCTAGGAAGAG	57	MboI
	R	ATGGCGTGATAACAATCCGAG		
CT64	F	TTCAAGAGCTTGAAGACATAACA	60	a.s.
	R	ATGGCGTGATAACAATCCGAG		
B139R	F	ACTAGAGGATAGATTCTTGG	56	CfoI
	R	CTGGATGCCTTCCTCTATGT		
SPB33L	F	GATCAGAAGTGCCTTGAACC	56	TaqI
	R	CAAGGAGCTTGGTCAGCAG		
SPB42L	F	ATTGCACAGGAGCAGATCTG	59	HinfI
	R	TGTAAGAGAGCAAGAGGCAC		
B149R	F	AGAGCAGTCTTGAAGGTTGG	58	CfoI
	R	GATGGTAACTAACGCCTCAGG		
RGC1-4	F	GACAGATTCTCATAAACCTGC	58	MseI / XbaI
	R	AATCGTGCATCACTAGAGCG		
A	F	TGTGGAGTAAGAGAGGAAGG	62	SspI / MseI
	R	TCAGCTGAGCAGTGTGTGG		
B	F	ATGGCTGAAGCTTCATTCAAGTT	60	
	CTG			
C	F	TCACACCGCTTGATCAGTTGTGGA	60	
	R			
D	F	TRCATGAYCTMATCCATGATTGC	60	
	R	GMAATTGTGCCAGTCTCTCC		

^a Orientation of the primer, F: forward, R: reverse^b primer sequences according to IUB codes^c a.s.: allele specific.

Table 3.

<i>Phytophthora infestans</i> resistance assays			
5	Genotype ^a	RGC-containing plants/transformants	R plants / RGC-containing plants
10	R ₀ (RGC1-blb)	15/20 ^b	0/15
	R ₀ (RGC2-blb)	7/31 ^c	6/7
	R ₀ (RGC3-blb)	0/6 ^c	-
15	R ₀ (RGC4-blb)	14/21 ^d 1/7 ^c 18/19 ^b	0/14 0/1 0/18

^a R₀ genotypes are primary transformants obtained from transformation of the susceptible potato cultivar Impala with a T-DNA constructs containing the *Rpi-blb* gene candidates *RGC1-blb*, *RGC2-blb*, *RGC3-blb* or *RGC4-blb*. *Agrobacterium tumefaciens* strains AGLO^b, LBA4404^c, or UIA143^d were used for transformation of the *P. infestans* susceptible potato cultivar Impala. Kan^R: Kanamycin resistant.

Table 4

Comparison of nucleotide and amino acid sequence homology									
		8005-8 BAC SPB4				Rice RGC	Arabidopsis RGC	Tomato I2C-1	
		<i>RGC3-blb</i>		<i>RGC1-blb</i>		<i>RGC4-blb</i>			
25	<i>Rpi-blb</i>	nt _a	88		84		81	-	-
		aa _a	81		76		70	37	32
		N ^b	C ^b	N	C	N	C		
30		91	71	79	72	75	66		

^a Percentage nucleotide (nt) and amino acid (aa) sequence identity.

^b Separate comparisons were made for the N-terminal (N) and C-terminal (C) halves of the protein sequences. The border between the two halves is the conserved *Nsi*I restriction site in the DNA sequence (position 1417 of the *Rpi-blb* coding sequence).

References

[0065]

- 40 Borodovsky M. and McIninch J. (1993) GeneMark: parallel gene recognition for both DNA strands, Computers & Chemistry, Vol. 17, No. 19, pp. 123-133.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
- Aravind, L., Dixit, V.M. and Koonin, E.V. (1999) The domains of death: Evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47-53.
- Burge, C.B. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
- Doyle, J.J., Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
- Farrand, S.K., O'Morchoe, S.P., and McCutchan, J. (1989). Construction of an *Agrobacterium tumefaciens* C58 *recA* mutant. J. of Bacteriology 171, 5314-5321.
- Ewing, B., Hillier, L., Wendl, M.C., and Green, P. 1998. Base-calling of automated sequencer traces using *Phred*. I Accuracy assessment. Genome Research 8, 175-185.
- Ewing, B., and Green, P. 1998. Base-calling of automated sequencer traces using *Phred*. II Error probabilities. Genome Research 8, 186-194.
- Hamilton, C.M., Frary, Lewis, C., and Tanksley, S.D. (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975-9979.
- Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983). A binary plant vector strategy based on separation of *vir* and T region in the *Agrobacterium tumefaciens* Ti-plasmid. Nature 303: 179-180.

- Hoekema, A., Huisman, L., Molendijk, L., van der Elzen, P.J.M., Cornelissen, B.J.C. (1989) The genetic engineering of the commercial potato cultivars for resistance to potato virus X. *Bio/Technology* 7, 273-278.
- Jones, D.A. and Jones, J.D.G. (1997) The role of leucine-rich repeat proteins in plant defenses. *Adv. Bot. Res.* 24, 89-167.
- Lazo, G.R., Stein, P.A. and Ludwig, R.A. (1991) A DNA transformation-competent *Arabidopsis* genomic library in *Agrobacterium*. *Bio/Technology* 9, 963-967.
- Lukashin A. and Borodovsky M.. (1998). GeneMark.hmm: new solutions for gene finding, *NAR* 26, No. 4, pp. 1107-1115.
- Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiol. Plant.* 15, 473-497.
- Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D. and Fluhr, R. (1997) The I2C family from the wilt disease resistance locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. *Plant Cell*, 9, 521-532.
- Roupe van der Voort, J., Kanyuka, K., van der Vossen, E., Bendahmane, A., Mooijman, P., Klein-Lankhorst, R., Stiekema, W., Baulcombe, D. & Bakker, J. (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species *Solanum tuberosum* aubsp. Andigena CPC 1673 into cultivated potato. *Mol Plant Microbe Interact.* 12, 197-206.
- Saitou N. and Nei M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4, 406-425.
- Sambrook, J., Maniatis, T., and Fritsch, E.F. (1989), Molecular cloning: a laboratory manual 2nd edn, Cold Spring Harbor Press, Cold Spring Harbor, New York.
- Simon, R., Preifer, U., and Puhler, A. (1983). A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram-negative bacteria. *Bio/Tech.* 1, 784-791.
- Simons, G., Groenendijk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaard, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both, M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M and Vos, P. (1998) Dissection of the Fusarium 12 gene cluster in tomato reveals six homologues and one active gene copy. *Plant Cell* 10, 1055-1068.
- Tanksley, S.D., Ganapal, M.W., Prince, J.P., de Vincente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L.O., Paterson, A.H., Pineda, O., Roder, M.S., Wing, R.A., Wu, W. and Young, N.D. (1992). High-density molecular linkage maps of the tomato and potato genomes. *Genetics* 132, 1141-1160.
- van der Biezen, E.A. and Jones, J.D.G. (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. *Curr. Biol.* 8, 226-227.
- van Engelen, F.A., Molthoff, J.W., Conner, A.J., Nap, J-P., Pereira, A. and Stiekema, W.J. (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. *Trans. Res.* 4, 288-290.

35

40

45

50

55

SEQUENCE LISTING

5 <110> Kweek- en researchbedrijf Agrico B.V.
 <120> The invention relates to the field of plant diseases
 10 <130> P58542EP00
 <140> 02075565.8
 <141> 2002-02-08
 15 <160> 44
 <170> PatentIn Ver. 2.1
 <210> 1
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 20 <220>
 <223> Description of Artificial Sequence: concentration
 in LRR subdomain
 <220>
 <221> SITE
 <222> (1)..(9)
 <223> /note="X stands for any amino acid"
 25 <400> 1
 Xaa Xaa Leu Xaa Leu Xaa Xaa Xaa Xaa
 1 5
 <210> 2
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 30 <220>
 <223> Description of Artificial Sequence: consensus
 35 <220>
 <221> SITE
 <222> (1)..(10)
 <223> /note="X stands for any amino acid"
 <400> 2
 Xaa Xaa Leu Xaa Xaa Leu Xaa Xaa Xaa Xaa
 1 5 10
 <210> 3
 <211> 54
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: oligo d(T)
 primer
 50 <220>
 <221> misc_feature
 <222> (1)..(54)
 <400> 3
 gctgtcaacg atacgctacg taacggcatg acagtgtttt tttttttttt tttt

54


```

<213> Artificial Sequence

5   <220>
<223> Description of Artificial Sequence: primer GSPS

10  <220>
<221> misc_feature
<222> (1)..(20)

<400> 8
ggaggactga aaggtgttgg

15  <210> 9
<211> 22
<212> PRT
<213> Artificial Sequence

20  <220>
<223> Description of Artificial Sequence: consensus

25  <220>
<221> SITE
<222> (1)..(22)
<223> /note="x on positions 2, 3, 5, 6, 8, 10, 11, 13,
        14, 16, 17, 20 and 21 stand for any amino acid, x
        on position 12 stands for C/N or S, x on position
        22 stands for aliphatic amino acid"

<400> 9
Leu Xaa Xaa Leu Xaa Xaa Leu Xaa Leu Xaa Xaa Xaa Xaa Leu Xaa
      1           5           10          15

30  Xaa Leu Pro Xaa Xaa Xaa
      20

35  <210> 10
<211> 6
<212> DNA
<213> Artificial Sequence

40  <220>
<223> Description of Artificial Sequence: NsiI-site

45  <220>
<221> misc_feature
<222> (1)..(6)

<400> 10
atgcat

50  <210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

55  <220>
<223> Description of Artificial Sequence: forward primer

<220>
<221> misc_feature
<222> (1)..(20)

<400> 11
cgttaaacgca cccaaaagcag

```

5 <210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: reverse primer

15 <220>
<221> misc_feature
<222> (1)..(20)

15 <400> 12
gattcaagcc aggaaccgag 20

20 <210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: forward primer

25 <220>
<221> misc_feature
<222> (1)..(19)

25 <400> 13
cagctgccac agctcaagc 19

30 <210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: reverse primer

35 <220>
<221> misc_feature
<222> (1)..(21)

40 <400> 14
tacctacatg tacagtactg c 21

45 <210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: forward primer

50 <220>
<221> misc_feature
<222> (1)..(20)

50 <400> 15
ggcagaagag ctaggaagag 20

55 <210> 16
<211> 20
<212> DNA

5 <213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: reverse primer

10 <220>
<221> misc_feature
<222> (1)..(20)

<400> 16
atggcgtgat acaatccgag

15 <210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer

20 <220>
<221> misc_feature
<222> (1)..(23)

<400> 17
ttcaagagct tgaagacata aca

25 <210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: reverse primer

<220>
<221> misc_feature
<222> (1)..(20)

35 <400> 18
atggcgtgat acaatccgag

40 <210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer

45 <220>
<221> misc_feature
<222> (1)..(20)

<400> 19
actagaggat agattcttgg

50 <210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

55 <220>
<223> Description of Artificial Sequence: reverse primer

5 <220> misc_feature
<221> (1)..(20)

10 <400> 20
ctggatgcct ttctctatgt 20

15 <210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: forward primer

20 <220> misc_feature
<221> (1)..(20)

<400> 21
gatcagaagt gccttgaacc 20

25 <210> 22
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: reverse primer

30 <220>
<221> misc_feature
<222> (1)..(19)

<400> 22
caaggagctt ggtcagcag 19

35 <210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: forward primer

<220>
<221> misc_feature
<222> (1)..(20)

45 <400> 23
attgcacagg agcagatctg 20

50 <210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: reverse primer

55 <220>
<221> misc_feature
<222> (1)..(20)

5	<400> 24 tgtaaagagag caagaggcac	20
10	<210> 25 <211> 20 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: forward primer <220> <221> misc_feature <222> (1)..(20)	
20	<400> 25 agagcagtct tgaagggttgg	20
25	<210> 26 <211> 20 <212> DNA <213> Artificial Sequence	
30	<220> <223> Description of Artificial Sequence: reverse primer <220> <221> misc_feature <222> (1)..(20)	
35	<400> 26 gatggtaact aagcctcagg	20
40	<210> 27 <211> 22 <212> DNA <213> Artificial Sequence	
45	<220> <223> Description of Artificial Sequence: forward primer <220> <221> misc_feature <222> (1)..(22)	
50	<400> 27 gacagatttc tcataaacct gc	22
55	<210> 28 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: reverse primer <220> <221> misc_feature <222> (1)..(20)	
	<400> 28 aatcgtgcata cactagagcg	20

5 <210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: forward primer

15 <220>
<221> misc_feature
<222> (1)..(20)

15 <400> 29
tgtggagtaa gagaggaagg 20

20 <210> 30
<211> 19
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: reverse primer

25 <220>
<221> misc_feature
<222> (1)..(19)

25 <400> 30
tcagctgagc agtgtgtgg 19

30 <210> 31
<211> 27
<212> DNA
<213> Artificial Sequence

35 <220>
<223> Description of Artificial Sequence: forward primer

35 <220>
<221> misc_feature
<222> (1)..(27)

40 <400> 31
atggctgaag ctttcattca agttctg 27

45 <210> 32
<211> 25
<212> DNA
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: reverse primer

50 <220>
<221> misc_feature
<222> (1)..(25)

50 <400> 32
tcacaccgct tgatcagttg tggac 25

55 <210> 33
<211> 24
<212> DNA

5 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: forward primer
 <220>
 <221> misc_feature
 <222> (1)..(24)
 10 <400> 33
 trcatgayct matccatgat ttgc
 15 <210> 34
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: reverse primer
 20 <220>
 <221> misc_feature
 <222> (1)..(23)
 <400> 34
 gmaattttgt gccagtc tcc
 25 <210> 35
 <211> 2913
 <212> DNA
 <213> Solanum bulbocastanum
 30 <220>
 <221> misc_feature
 <222> (1)..(2913)
 <223> /note="Rp1-blb"
 <400> 35
 atggctgaag ctttcattca agttctgcta gacaatctca cttctttcct caaaggggaa 60
 ctgttattgc ttttcgttt tcaagatgag ttccaaaggc tttcaagcat gtttctaca 120
 attcaagccg tccttgaaaga tgctcaggag aagcaactca acaaacaagcc tctagaaaat 180
 tggttgcaaa aactcaatgc tgctacatat gaagtgcgtat acatcttggg tgaataaaaa 240
 accaagggcc caagattctc ccagtctgaa tatggccgtt atcatccaaa gtttatccct 300
 ttccgtcaca aggtcgggaa aaggatggac caagtgtatgaaaactaaa gcaatttgct 360
 gaggaaagaa agaattttca tttgcacgaa aaaattttag agagacaagc tggtagacgg 420
 gaaacagggtt ctgttaaac cgaaccgcag gtttatggaa gagacaaaaga gaaagatgag 480
 atagtgaaaa tccataaaa caatgttagt gatgccccac acctttcagt cctcccaata 540
 ctgggtatgg ggggatttagg aaaaacgact ttggcccaaa tggcttcca tgaccagaga 600
 gttaactgagc atttccattc caaaatatgg atttgtgtct cggaaagattt tgatgagaag 660
 aggttaataaa aggcaattgt agaatctatt gaaggaaggc cactacttgg tgagatggac 720
 40 ttggctccac ttccaaaagaa gcttcaggag ttgctgaatg gaaaagata cttgcttgc 780
 tttagttagt ttggaaatga agatcaacag aagtggctaa atttaagagc agtcttgaag 840
 gtggagcaa gtgggtcttc tggcttcaacc actactgtc ttgaaaagggt tggatcaatt 900
 atgggaacat tgcaaccata tgaactgtca aatgtgtc aagaaggatgg ttggtttgg 960
 ttcatgcaac gtgcatttgg acaccaagaa gaaataaattt caaaccttgc gcaatcgga 1020
 aaggagatgt tgaaaaaaaag tgggtgttg cctctagcag caaaactct tggaggtatt 1080
 45 ttgtgcitca agagagaaga aagagcatgg gaacatgtga gagacagtcc gatggaaat 1140
 ttgcctcaag atgaaaaggc tattctgcct gcccgtggc ttgatccat tcaacttcca 1200
 ctgttattgt aacaatgtt tgcgttattgt gcgggttcc caaaggatgt caaaatgaa 1260
 aaagaaaagc taatcttct ctggatggcg catggttttc ttttataaaa agggaaacatg 1320
 gagcttagagg atgtggcga tgaagtatgg aaagaattat acttgagggt tttttccaa 1380
 gagattgaag taaaagatgg taaaacttat ttcaagatgc atgatctcat ccatgatgt 1440
 50 gcaacatctc tgggttccgc aaacacatca agcagcaata tccgtgaaat aaataaaacac 1500
 agttacacac atatgtatgc cattggtttgc gcccggatgg tggatccctt cactcttccc 1560
 cccttggaaa agtttatctc gttaaagatgt cttaatcttag tgaatttcgac attaataaaag 1620
 55 ttaccatctt ccattggaga tcttagtacat ttaagataact tgaacctgtt gggcgtggc 1680

	tttatcaaaa	ggaaacatgg	agcttagagga	tgtgggcgat	gaagtatgga	aagaattata	2040
5	ctttaggtct	tttttccaag	agattgaagt	taaagatggt	aaaacttatt	tcaagatgca	2100
	tgatctcatc	catgatttgg	caacatctt	gttttcagca	aacacatcaa	gcagcaatat	2160
	ccgtgaaata	aataaacaca	gttacacaca	tatgatgtcc	attggttcg	ccgaagtgg	2220
	gtttttttac	actttccc	ccttggaaaa	gttatctcg	ttaaagatgc	ttaatctagg	2280
	tgattcgaca	tttataaatgt	taccatctt	cattggagat	ctagtacatt	taagataactt	2340
	gaacctgtat	ggcagtggca	tgcgtagct	tccaaagcag	ttatgcaagc	ttcaaaatct	2400
	gcaaaccttt	gatctacaat	attgcacca	gctttgtgt	ttgccaaaag	aaacaagtaa	2460
10	acttggtagt	ctccgaaatc	ttttactgt	tgttagccag	tcattgactt	gtatgccacc	2520
	aaggatagga	tcattgacat	gccttaagac	tctaggtaaa	tttgttgg	gaaggaagaa	2580
	aggttataca	cttggtaac	taggaaacct	aaatctctat	ggctcaatta	aaatctcgca	2640
	tcttgagaga	gtgaagaatg	ataaggacgc	aaaagaagcc	aatttatctg	caaaggggaa	2700
	tctgcattct	ttaagcatga	gttggataaa	cttggacca	catatatatg	aatcagaaga	2760
	agttaaatgt	cttgaagccc	tcaaaccaca	ctccaatctg	acttctttaa	aaatctatgg	2820
15	cttcagagga	atccatctcc	cagagtgtat	gaatcaactca	gtattgaaaa	atatigtctc	2880
	tattctaatt	agcaacttca	gaaactgctc	atgttacca	ccctttgtt	atctgccttg	2940
	tctagaatgt	ctagaggatc	actgggggtc	tgcggatgtg	gagttgtt	aagaagtgg	3000
	tattgtatgtt	cattctggat	tccccacaa	aataagggtt	ccatccttga	ggaaacttga	3060
	tatatgggac	tttggtagtc	tgaaaggatt	gctgaaaaag	gaaggagaag	agcaattccc	3120
	tgtgctttagaa	gagatgataa	ttcacaggt	ccctttctg	acccttctt	ctaactttag	3180
	ggctcttact	tcctcagaa	tttgcataa	taaagtatgt	acttcatttc	cagaagagat	3240
20	gttcaaaaac	cttgcacaa	tcaaataact	gacaatctt	cgtgcataa	atctcaaaga	3300
	gctgcctacc	agcttggcta	gtctgaatgc	tttggaaaagt	ctaaaaattt	aattgttttg	3360
	cgcacttagag	agtctccctg	aggaagggt	ggaaggttt	tcttcactca	cagagtatt	3420
	tgttgaacac	tgtaacatgc	taaaatgttt	accagaggga	ttgcagcacc	taacaaccct	3480
	cacaagttt	aaaattcggg	gatgtccaca	actgtatcaag	cggtgtgaga	aggaaatagg	3540
	agaagactgg	cacaaaattt	ctcacattcc	taatgtgaat	atatatattt	aa	3592
25	<210>	37					
	<211>	7349					
	<212>	DNA					
	<213>	S. bulbocastanum BAC SPB4					
30	<220>						
	<221>	misc_feature					
	<222>	(1)..(7349)					
	<223>	/note="Genomic fragment"					
	<400>	37					
35	gatctttaaa	atattttcaa	ttagcaatta	ttgtgactat	aataactttt	acataatttg	60
	caaataatata	aaattttattt	tttggaaaaaa	agaagatttc	atgcgaaat	tccaggtcaa	120
	actttaattt	tttagactctc	gaaaaatgaa	aagtgtcaca	taaatttgaca	caaaggaggt	180
	acttggtaat	gttggtaat	ttggcgaaca	taatgttgt	tgattatcac	tttctgaaaa	240
	aatgttgtgt	cacttggaaa	aaacacccaa	tagaactatt	catgtttttt	ctttagtata	300
	tataaataatg	atctttaact	taattgcagc	agacaggcat	gatcttttac	tttaaatgtg	360
40	cacaagtaga	ttgacaggct	tgctaatgt	tggtctgtt	taatcagttat	taattactct	420
	caaggtataa	gttatttcca	gacaaaattt	ttgttaccaa	attaaatata	tttctaaaac	480
	tctccttcaa	gttagttaat	tacttttgag	ttttgttatac	tgtttttat	ataaaatgtt	540
	aaaattttaga	tgaatattac	tttcttaggtt	aatttgttca	agttgaaaaga	atttcagg	600
	aaaaagtttt	taataatttg	acttttatgc	tatatttttt	taaagtgtt	cgacttttta	660
	ataaaaaaaga	ataataaaaat	tatatgataa	tttttataat	acaatggcct	ttatatgtg	720
45	aaaaaaaaaaag	aaagaaaattt	gatgacaaca	atgtccaaaa	ataatcttaa	agaattacga	780
	tttataatata	ataaaaattt	atttaaaattt	tgatgaaaaaa	atagagaaaa	gaggaaagatg	840
	atgaagtggaa	atgacgtgtt	gggggttcca	tgtgacatata	aaaaaaattt	tcttaatataa	900
	tcctttcata	ctaatgatata	attttttttt	tttttttttt	ttttactata	tgcgtataga	960
	aaaaaggaaaa	atggggcggt	aattacaaag	taggaaatcg	aactttatca	acaagttgag	1020
	agttcaagta	atcaaccaac	taaactacta	aaattttct	atttaatgtat	aattgttatt	1080
50	catttagcat	aaaaaattt	attgcactt	cttttagagt	tttggaaaaca	gtacttcattc	1140
	tattcttat	taattaaattt	ttcttatatta	attaaatttg	tgaggtaata	caaacttatt	1200
	aagaaaaata	ttaaggaca	taattttaact	cataattttt	actttgttt	tttgtgaaaat	1260
	cataaaatata	actttgtaaa	tagtgcatt	tatcttcttag	aagcaattt	caccaaaagaa	1320
	aaggggcaag	atggaaaaga	aactaaatat	tcatcttaaa	tttgaacaa	ttcaattatt	1380
	ttgaacaatg	aaaaaaatct	aaaaaaatct	attaatatgt	aatggagaga	gtactttat	1440
	tttagaggca	aaaaattgt	actccatcc	tttcttttgc	tttgcattgt	tgcactttt	1500
55	gaaagtcaat	ttgacttaat	ttttaaagctt	atttagat	cactaatttca	atattttaaa	1560
	cagaaaaattt	agatattcaa	aaactataca	aaaaatttta	tacattgcata	tttttgcata	1620
	atcaatatga	taaaaaataa	tatcgtaaaa	tattgtcaat	aatttttata	atttgactca	1680

	aatcatgaaa agtataataa ttaatagtgg acggaggaag tattgtcttt ccagatttgt 1740
5	ggccattttt ggtccaaggg ccattagcag ttcttcat tttctacttc tgtctcatat 1800
	tagatggca tcttactaaa aatatttgtc tcatttacc cctacaatta atatagtttt aaaagtttt 1860
	aagaattaat taatttttc tcattttacc cctacaatta atatagtttt aaaagtttt 1920
	aacaaatttt gaagaatcaa aatttctttt gcaagagact tattaatata aacaaaggat 1980
	aaaataataa aagctgtcaa ttatgttacc atcactaat aatatataaa atacaaactg 2040
	ctgatctaa atgagacgga caaaaatataat tctaaaat tttcgacag atatgtgata 2100
	ttctaacat tcactacat attatatgc tttatccgc caatgactt tttcagctt 2160
10	aattaattag gaaagaggaa actgccaatg aggaagagta ggggcgttagt tgctgtcgac 2220
	aaaaaaaaga taatactcac tcttttgcatt ttttattttt atttatcact tttAACCTAT 2280
	catgtaaaaa gataattatt ttttcatgc tttatccca gtattaaaca atttaatagg 2340
	gattatTTTg taaaatattt atatgaataa ttgttttgcg aatgatTTTg tccggcAAA 2400
	caatgataaa taaaatggaa tgaagagagt agaaaacaaa aaaaaaagaaac aagtgacaa 2460
	cttgagagat taaaagggtc caaaacgct tggatttga gattccatat gtgaaattc 2520
	catgaaataa ttgatTTTg atttatacaa gtcaacatTT ccatttcatt ccaactagcc 2580
15	atcttggTTTt caaaaattaca cattcatca ttcacagatc taatattctt aatagtgatt 2640
	tccacatATG gctgaagctt tcattcaagt tctgttagac aatctcactt ctTCCCTCAA 2700
	aggggaactt gtatgtttt tcgggtttca agatgagttc caaaggctt caagcatgtt 2760
	ttctacaattt caagccgtcc ttgaagatgc tcaggagaag caactcaaca acaagccct 2820
	aaaaaatTTg ttgaaaaaac tcaatgtgc tcatatgaa gtcgatgaca tcttggatga 2880
	atataaaacc aaggccacaa gattctccc gtctgaatat ggccgttac atccaaaggt 2940
20	tatccCTTTC cgtcacaagg tcggggaaag gatggacca gtatgaaaaa aactaaaggc 3000
	aatttgctgag gaaagaaaaga attttcattt gcacaaaaaa atttgtagaga gacaagctgt 3060
	tagacgggaa acagttactc atcttaaattt agtattacaa caactaagt tatattcatt 3120
	tttttggcaa ttatcaaattt cagaaaaaggg ttaatataat tcatgtccat tctgtttatag 3180
	tgtatataat cctctcgTTt tactttcgat ctgaatatac ttgtcaatTC tggcaagctc 3240
	agaatcaaat tatccaccccc aacttttaaa tactcgatat ctttagaaaaat ccacctgtct 3300
25	aactcatcca ctaccattt cctttgcTTTt gaattttttt ctttacctat aaacttggaa 3360
	cactcgatcc gttttgcTTTt tcttaacaaa gcagctcaga gaaaagaggt tttcttctat 3420
	tctgttttcc tttgtgtcgc acctttgggtcc tttatccat taaaacagg gcatgttaat 3480
	cccaacgcgc gtagccttcc tcagacgtg actgtaaaatt ttgttcaaca aaaaaaaaaa 3540
	aagatttagac atgtttttcc ttgtcattga tttaggtggaa ttgttttcag agtggAACAT 3600
	aggggatata ttggacccaa agttagatgg grataatattt aaagtatttC tgatagaaca 3660
	ggagtatattt gtgcggaaaat atcctctatt ttctgtttgc tcctaattgag tttgaatgt 3720
30	ataatattct catgtggaca ttgcttgac caggttctgt attaaccgaa ccgcaggTTT 3780
	atggaaagaga caaaagaaaaa gatgagatag tggaaatccctt aataaacaat gttagtgt 3840
	cccaacaccc ttcaatccctt ccaatcttgc ttatggggggg aggaaaaaa acgactcttg 3900
	cccaaatTTGt cttcaatgcgt gtgtctcgga agaagaggt taataaaggc atttgtagaa tctattgaag 3960
	gtgtctcgga agattttgtat ttggacttgg ctccacttca aaagaagctt caggagttgc 4020
35	gaaggccactt acttggtgag tttgtcttag atgtgttttgg gaatgagaat caacagaagt 4080
	tgaatggaaa aagatacttc ttgttgcgg gggcaggTTTt tgcttctgtt ctaaccacta 4140
	gggcttaattt aagagcgtc tcaattatggt gacatttgcg accatattgaa ctgtcaatc 4200
	ctcgcttgcg aaaggTTTGA ttgttgcgg tcaacatggc atttggacac caagaagaaaa 4260
	tgtctcaaga agattttggg taaatccaaa ctttgcggca atcggaaagg agattgtgaa aaaaagtgtt ggtgtgcctc 4320
	tagcagccaa aacttttgcg atgttgcgg ggtatTTTGT gcttcaagag agaagaaaaa gcatgggAAC 4380
40	atgtgagaga cagtccgatt ttaccatcaa ttcccactt atttggaaaca atgctttgcg tatttgcg 4440
	tgaggcttag ttaccatcaa ttcccactt atttggaaaca atgctttgcg tatttgcg 4500
	tgttcccaaa ggatGCCAA atggaaaaaa aaaaagctaat ttctctctgg atggcgcatg 4560
	gtttctttt atcaaaggaa aacatggac tagaggatgt gggcgatgaa gtagggaaag 4620
	aatttataat gaggtctttt ttccaagaga ttgaagttaa agatggtaaa acttatttca 4680
	agatgcatga tctcatccat gattttggca catctctgtt ttccggaaac acatcaagca 4740
45	gcaatattccg taaaatTTA aacacatgtt acacacatgtt gatgtccatt gtttcgccc 4800
	aagtgggttt ttttttacact ttcccactt ttggaaaaagg tatctctgtt agatgtctta 4860
	atcttaggtga ttgcacattt aataagttaac catcttccat tggagatcta gtacatttaa 4920
	gatacttgaa cctgtatggc aaaaatctgc aactttgtat ctacaatattt gccaacatgtt 4980
	caagtaaaat tggtagtctc tgccaccaag gataggatca ttggacatgc ttaagactt aggtcaattt gttgtggaa 5040
50	ggaagaaaaagg ttatcaactt ggtgaacttag gaaacctaaa tctctatggc tcaattaaaa 5280
	tctcgcatct tgagagatgt aagaatgata aggacgcAAA agaagccaaat ttatctgca 5340
	aagggaaatct gcattttta agcatgaggta ggaataactt tggaccacat atatatgaaat 5400
	cagaagaagt taaatgtctt gaaagccctca aaccacactc caatctgact tctttaaaaa 5460
	tctatggctt cagaggaatc catctccatc agtggatgaa tttactcgat ttgaaaaata 5520
	ttgtctctat tctaatttgc aacttcgaa actgtctcat tttaccaccc tttgtgtatc 5580
55	tgccTTTGTCT agaaagtcta gagttacact gggggctgc ggatgtggag tatgttgaag 5640
	aagtggatat tgatgttcat tctggattcc ccacaagaat aaggTTTCCA tccttgagga 5700
	aacttgatat atggactttt ggttagtctga aaggattgtctt gaaaaaggaa ggagaagagc 5760

	aattccctgt	gcttgaagag	atgataattc	acgagtgcc	ttttctgacc	cttcttcta	5820
5	atcttagggc	tcttacttcc	ctcagaattt	gctataataa	agtagctact	tcattcccag	5880
	aagagatgtt	caaaaacctt	gcaaactca	aatacttgac	aatctctcg	tgcataatac	5940
	tcaaagagct	gccttaccagc	ttggctagtc	tgaatgttt	gaaaagtcta	aaaattcaat	6000
	tgtgttgc	actagagagt	ctccctqagg	aagggtctt	aggttatct	tcactcacag	6060
	agttatgtt	tgaacactgt	aacatgctaa	aatgtttacc	agagggattt	cagcacctaa	6120
	caaccctcac	aagtttaaaa	attcgggat	gtccacaact	gatcaagcgg	tgtgagaagg	6180
	aatagggaa	agactggcac	aaaatttctc	acattccaa	tgtgaatata	tatatttaag	6240
	ttattingct	tttgttgc	tttgttgcgt	cttttttgggt	cctgccat	tgattgcatt	6300
10	taatttttt	ctagggttgt	ttgttttgtt	agtctctc	tcattggat	taattcttct	6360
	ttggtaacaa	attaacaatc	tatgttattt	atacgcttc	agaatctatt	acttatttgt	6420
	aattgtttct	ttgtttgtaa	attgtgagta	tcttattgt	tggaattttt	tgatttttt	6480
	ttgaaaacaa	atcaataaga	tccatctgt	ttatactccc	ttcgtctcat	tttatgtgac	6540
	acttttttgg	tttgcgattt	cttgcattt	aaatttttca	tagatctttt	aaacattttt	6600
	aattatcaat	tatggagatt	tttagttttt	ttatgttagtt	tacaaatata	taaaatttaat	6660
15	tttttaaaaaa	aaagaagatt	tcatgcgc	atttccgc	aaacttaaat	tactagactc	6720
	tcgaaaaatg	aaaagtgtca	cataaaattga	gacagaggga	gtacttggta	atgttggtaat	6780
	tattggcgaa	caataatgtt	ggtgattatc	actttctgt	taaatgttgt	gtcacgtgga	6840
	aaaaacacca	aatagaagta	ttcatgc	tttagtat	ataaaacatga	tttttaactt	6900
	ggtttcagcg	gatagtcat	accccttact	ctgaatgtgc	acaagttagat	acttgtataa	6960
	aattaaacaa	attttataaa	attatacaat	atgacactga	gagtaattga	taccaattgc	7020
20	agtcgttgc	gcttttcgt	tctctgtcat	tctcttaggt	attgattttt	cagaaaaagg	7080
	ccaaaaatat	ccctgaagta	ccagaaaagg	tctcaaaata	ccaaccatcc	acattttgg	7140
	ctaaaaatat	ccttctactc	atccctttt	gtctaaaatt	accctttcat	ccacattttt	7200
	gctcaattat	acccttataa	caactctctc	ctttttttaaa	aaaaatattt	tattatgtgt	7260
	cattttctt	ttgaatgaaa	taaaaatcca	cctctattaa	tttttccca	taatttatcc	7320
	aaatcaaaaac	aatatatattt	ttcaagatc				7349
25	<210>	38					
	<211>	3260					
	<212>	DNA					
	<213>	Solanum bulbocastanum					
30	<220>						
	<221>	misc_feature					
	<222>	(1)..(3260)					
	<223>	/note="RGC1-blb"					
	<400>	38					
35	atggctgaag	ctttccctca	agttctgcta	gataatctca	cttttttcat	ccaaaggggaa	60
	cttggatgg	tttttgggtt	cgagaaggag	ttttaaaaac	tttcaagat	gttttcaatg	120
	atccaagctg	tgttagaaga	tgctcaagag	aagcaactga	agtacaaggc	aataaagaac	180
	tggttacaga	aactcaatgt	tgctgcata	gaagtgtat	acatcttgg	tgactgtaaa	240
	actgaggcag	caagattcaa	gcaggctgt	ttggggcggt	atcatccacg	gaccatca	300
	ttctgttaca	agggtggaaa	aagaatgaaa	gaaatgtat	aaaaactaga	tgcaattgc	360
	gaggaacgga	ggaattttca	tttagatgaa	aggattatag	agagacaagc	tgcttagacgg	420
40	caaacagggt	ctcatctttaa	tttttattttt	aaacaaatata	gttattttttt	ttgcagagaa	480
	acaaggaaat	ttatatttcat	ttttttttttt	ggcaatttac	aaagtccattt	gtgtttttaa	540
	gctggggggaa	agtttcaat	attttcttca	gtcttaatgt	ttgtctca	cactcagcat	600
	gattttctca	atccttact	tcaactcccc	cctactgtgc	aaatatcttc	tctattttct	660
	gttgactcct	aatagacttgc	aatgtacaaa	cattcttgc	tggagcagg	tttgggtttaa	720
	ctgagccaa	agtttatgtt	agggaaaaaa	aggaggatga	gatagtgaaa	atcttgataa	780
45	acaatgttag	ttttcccgaa	gaagttcccg	tactcccaat	acttggat	ggggacttag	840
	gaaagacgac	tctagcccaa	atggtcttca	atgatcaaaag	aattactgag	catttcaatc	900
	taaagatgt	ggtttgcgt	tcatgtat	ttgtatgaaa	gagggtgtt	aaggcaattt	960
	tagaatctat	tgaaggaaag	tcactgggt	acatggactt	ggctccccc	cagaaaaagg	1020
	ttcaggagtt	tttgcgttgc	aaaagatact	tttttgcattt	ggatgtatgtt	ttgaaatgaag	1080
	atcaagaaaa	gtgggataat	cttagagcag	tattgaagat	tggagctat	ggtgcttcaa	1140
50	ttctaattac	tactcgctt	gaaaaattt	gatcaattat	ggaaactttt	caactatatc	1200
	agttatcaaa	ttttgcctca	gaagatgtt	ggttttgtt	caagcaacgt	gcattttgccc	1260
	accaaaccga	aaacaaatcc	aaacttata	aaatcgaaa	ggagattgt	aagaaaatgt	1320
	ggggtgtg	tctagcagcc	aaaactctt	gaggcctttt	acgcttcaag	agggaaagaaa	1380
	gtgaatggaa	acatgtgaga	gatagtgaga	tttggat	acctcaagat	gaaaattctg	1440
	ttttgcctgc	cctgaggctg	agttatcatc	atcttccact	tgatgttgc	caatgttttgc	1500
	catatgcgc	agttatccca	aaggacacca	aaatagaaaa	ggaatatactc	atcgctct	1560
55	ggatggcaca	catttttctt	ttatcaaaa	gaaacatgg	gctagaggat	gtggcataat	1620
	aagtatggaa	tgaattatac	ttgaggctt	ttttccaaga	gattgaagtt	aatctggta	1680

ttgatgagaa gaggttgata aaggcaata tagaatctat tgaagggaag tccctcagt 1740
 acatggactt ggctccactt caaaaagaac ttaaagagtt gctgaatgga aaagatact 1800
 tccttgtctt agatgatgtt tggaaatgaa atcaacataa gtgggctaatt ttaagagcag 1860
 tcttgaaagggt tggagcaagt ggtgcattt ttcataactac tactcgctt gaaaagggtt 1920
 gatcaattat gggAACATG caaccatatg aattgtcaaa tctgtcctca gaggattgtt 1980
 ggTTTTGTT catgcagcgt gcatttgac accaagaaga aataaaatcca aaccttgg 2040
 caatcgaaa ggagattgtt aaaaaatgtt gtgggtgtgcc tctagcagcc aagactctt 2100
 gaggtaattt ggcctcaag agagaagaaa gagaatggaa acatgtgaga gacagtccga 2160
 ttggaaattt gctctcaagat gaaagtctta ttctgcctgc cctgaggctt agtaccatc 2220
 10 atcttccact tgatttgata caatgtttt tggattgtgc ggtattccca aagcaccca 2280
 aaatggcaa gggAAATCTT atcgtctttt ggatggcaca tgggtttttt ttatcgaaag 2340
 gaaatttggg gcttagaggat gttagtaatg aagtatggaa tgaattatac ttgaggctt 2400
 tcttccaaga gattgaagtt gaatctgtt aaacttattt caagatgcat gacccatcc 2460
 atgatttggc tacatctctg ttttcagcaa acacatcaag cagcaatatt ctgaaataa 2520
 atgctaatta tgatggatat atgatgtcga ttgggtttgc tgaagtggta tcttctact 2580
 ctcttcaact ctgcggaaaat tttgttcat taagggtgtc taatctaaga aactcgaacc 2640
 taaatcaattt accatcttcc attggagatc tagtacattt aagatactt gacttgcgt 2700
 gcaatttttag aattcgttaat ttccaaaga gattatgcag gcttcaaaat ctgcagactc 2760
 ttgatcttaca ttattgcgac tctctttt gttgccaaa acaaacaagt aaacttggta 2820
 gtctccggaaa tcttttactt gatggctgtt cattgacgtc aacgcacca agataggat 2880
 tggtgacatc ctttaaagtctt ctaagtgtc ttgggtttgg caagagaaaa ggttatcaac 2940
 ttggtaactt aaaaacttca aatctctatg gctcaattt aatcacaaa ctgacagag 3000
 20 tgaagaaaga tagcgtatca aaaaagacta atttacatgc taaagcaaat ctgcactt 3060
 tatgccttag gttggacctt gatggaaaac atagatatga ttcaagaatctt ctgagcccc 3120
 tcaaaccaca ctccaatctg aaatatttag aaatcaatgg cttcgagggg atccgttcc 3180
 cagattttggat gaatcaatca gttttgaaaa atgttgcgtc tattagaattt agaggttgc 3240
 aaaactgctc argtttacca ccctttggt agctgcctt tctagaagaatctt cttagatcc 3300
 acaccgggtc agcagatgtg gatgtttt aagataatgt tcatccttga aggtttccat 3360
 ccttgaggaa acttggatata tgggacttta gtaatctaaa aggattgtc aaaaaggaaag 3420
 gagaaggca atccctgtt cttgaagaga tgacatttta ctgggtccct atgtttgtt 3480
 ttccgaccctt ttcttctgtc aagacatttga aagttattgc gacagatgca acagtttga 3540
 ggtccatatc taatctttagg gcttttactt cccttgacat tagcaataac gtagaagcta 3600
 cttcacttccc agaagagatg ttcaaaagcc ttgcaaaatctt caaataactt aatatctt 3660
 tcttttaggaa tctcaagag ttgccttacca gcttggctag tctcaatgtc ttgaagagtc 3720
 30 tcaaatttga attttgttac gcactagaga gtctcccaga ggaagggtt gaaaggttt 3780
 cttcacttac ctagttgtct gtcaact gtatgatgtt aaaatgtt ccggagggtt 3840
 tgcagcacctt aacagccctc acaactttaa caattactca atgtccaata gtattcaagc 3900
 ggtgtgagag aggaatagga gaagactggc acaaatttgc tcacattcca tatttgactc 3960
 tataatgtt a 3971

35 <210> 40
 <211> 3899
 <212> DNA
 <213> Solanum bulbocastanum

40 <220>
 <221> misc_feature
 <222> (1)..(3899)
 <223> /note="RGC4-b1b"

45 <400> 40
 atggcggaaat cttttcttca agttctgtca gaaaatctca cttctttcat cggagataaa 60
 ctgttattgtt ttttcgggtt cgaaaaggaa tggaaaaggc tgcgaggtt gtttccaca 120
 attcaagctg tgcttcaaga tgctcaggag aagcaatttga aggacaaggc aattgagaat 180
 tggttgcaga aactcaattc tgctgcctat gaagttgtat atatatttgg cgaatgtaaa 240
 aatgaggccaa taagatttga gcagttctcgat ttagggttt atcacccttgg gattatcaat 300
 ttccgtcaca aaattttggag aaggatggaa gagataatgg agaaacttaga tgcaatatct 360
 gagggaaaggaa ggaaggatc tttccttggaa aaaattttagt agagacaagc tgccgctgt 420
 50 acgcgtgaaa cagggtgttact tactgatgtt ttgttagctt gtaatattt aatttggat 480
 cacatcatgt gtttccatgtt atctctacatg taggtggca atggggctgg gcgagggtt 540
 aggtgtgcag gtgtgtggcg caaccccaac ttgtgttcaata ctaaagttagg tactttttt 600
 tttatagatgt tgaacaatgtt caaaacgcctt ctactttggt tcccttatgtc tattatgtca 660
 ctttaggtatgc atgtgtctac ttgttcaact ttatatgtt ttaagttctt cttgtgcaca 720
 cccaaatgtt gggcggttag atgtcgttgc atacaaggat taaaaggcat attttatgtt 780
 tatgccttta aattttagattt caattttgtt tcaatgttgc taaaatatgt tcttagtggaa 840
 55 gtgttaaact tagtctggat ctgtatgtt aagtgatattt ttgtggcact aaacaatgtca 900
 atgggtctgg attcaattttt gcatatgtt gatatttctt atcgaaattttt 960

5 actgtctaaa atgaaaaaaag caaagaata aagaatatac agaggctgac ttcttcata 1020
 tatctatcat ataaaaaaaaa gcattgatta ctaggatatg gtttcttta aattacaat 1080
 ttgtgagta aaacagttct gttggaaagg attagatac acgtggatag tattttaga 1140
 ttttttaaat aaaaaattag caaattatgc gggctgggc gggttaaaa cagcaaactt 1200
 tgcaaggctt ggccgggtcg aatcttgca agtttgtgt ggttgcct gcaccaccca 1260
 atctgccatt cctgtctaaa tttttgttt gtctataattt ctgtctgact cattcta 1320
 agctcaattt taacaaattt tttgtgtcca cattacttgg aacagggtttt gtgttaactg 1380
 aaccaaagt ctacggaaagg gacaaaggagg aggttggat agtaaaattt ctgataaaaca 1440
 atgttaatgt tgccgaagaa ctccagttt ccctataat tggatgtggg ggactaggaa 1500
 10 agacgacact tgcccaaattt atcttcaacg atgagagagt aactaagcat ttcacatccc 1560
 aaatatgggt ttgtgtctca gatgattttg atgagaagag gtttattaa acaattatag 1620
 gaaatattga aagaagttct cctcatgttgg aggacttggc ttcatccatg aagaagctcc 1680
 aggagttattt gaatggaaaaa cgataacttgc ttgtttaga tgatgtttt aatgtgatc 1740
 tagaaaagt ggcctaaggta agagcgttct taatgttgg agcaagagg gcttctattc 1800
 tagtctactac tcgtcttggaa aagggttggat caattatggg aacgttgca ccatatcatt 1860
 15 tgtcaattt gtctccacat gatagtttac tttttttt gcaacgcgc tttggcaac 1920
 aaaaagaagc aaatcctaattt ctatgtggca ttggaaagga gattgtgaag aatgtggg 1980
 gtgtgcctttt agcagccaaag actcttggt gtccttttacg ttcaagaga gaagagatg 2040
 aatgggaaca tggatggat aatgagattt ggagtcttgc tcaagatgaa agtcttattt 2100
 tgccgtctt aagactgagt tttttttttt tttttttttt ttttggacaa tgcttgcgt 2160
 atttgtcagt attttttttt gacacaaaaa tgatggatgggg aatcttattt actctcttgg 2220
 20 tggcgcatgg tttttttttt tcaaaaggaa acttggatctt gaggatgtt ggtatgtt 2280
 tatggaatga attatacttgc aggtctttt tcccaaggaaat tgaagctaa tcgggtata 2340
 cttatccaa gatcatgtat ctaatccatg atttggctac atctctgtt tcggcaagcg 2400
 catcatgcgg caatatccgc gaaataatg tcaaaaggatg taagcataca gtgtccattt 2460
 gtttcgttgc agttgttgc tttttttttt gaaaaatgtt gtctcgtaa 2520
 gggtgcttaa tctaaaggatc tcaaaacttgg agcaatttacc ttcttccattt ggagatctat 2580
 tacatTTTaaatg atacctggac ctgtcttgc taaacttccg tagtcttcca gagagggtgt 2640
 25 gcaagcttca aaatcttgcg actcttggatg tacataatttgc tttttttttt aattgtttgc 2700
 caaaacaaac aagttaaactt agtagtcttcc gacatcttgc tttttttttt tgttgtatggc 2760
 cttctacttcc accaaggatg ggttttttgc catgccttaa gactcttgcgtt ttcttttttgc 2820
 tgggaagcaa gaaagggttat caacttggt aactgaaaaaa cttaaatcttcc tgccgctcaa 2880
 tttcaatcac acaccttgcg agagtgaaga acgatacggg tgcagaagcc aatttatctg 2940
 caaaagcaaa tctgaatctt ttaagcatga gttggataaa ctagggacca aacagatatg 3000
 30 aatccaaaga agttaaagtg cttgaagcac tcaaaaccaca ccccaatctt aatattttttag 3060
 agatcatgtc cttcgaggaa ttccgttttca gacgtggat aatcttca gttttggaga 3120
 aggtcatctc ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3180
 agcttcttgc ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3240
 aagaggatga ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3300
 ttctgtatag gtttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3360
 35 tccccatgtt ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3420
 ctctgttcaaaatgc aaaaactgtt gtttttttttca gtttttttttca gtttttttttgc 3480
 ctaatcttgc ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3540
 cagaagagat gtttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3600
 atctcaaaaga ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3660
 aaagttgtga ctcaacttagag gtttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3720
 cacagtgtt ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3780
 40 taacagccct cacaatattt gtttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3840
 agggaaatagg agaagactgg cacaatatttgc ttttttttttcaaaaatgc aaaaactgtt gtttttttttca gtttttttttgc 3899

<210> 41
 <211> 970
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: deduced
 Rpi-blb protein sequence domain A, B and C

50 <220>
 <221> SITE
 <222> (1)..(970)
 <400> 41
 Met Ala Glu Ala Phe Ile Gln Val Leu Leu Asp Asn Leu Thr Ser Phe
 1 5 10 15

Leu Lys Gly Glu Leu Val Leu Leu Phe Gly Phe Gln Asp Glu Phe Gln
 20 25 30

5 Arg Leu Ser Ser Met Phe Ser Thr Ile Gln Ala Val Leu Glu Asp Ala
 35 40 45

Gln Glu Lys Gln Leu Asn Asn Lys Pro Leu Glu Asn Trp Leu Gln Lys
 50 55 60

10 Leu Asn Ala Ala Thr Tyr Glu Val Asp Asp Ile Leu Asp Glu Tyr Lys
 65 70 75 80

Thr Lys Ala Thr Arg Phe Ser Gln Ser Glu Tyr Gly Arg Tyr His Pro
 85 90 95

15 Lys Val Ile Pro Phe Arg His Lys Val Gly Lys Arg Met Asp Gln Val
 100 105 110

Met Lys Lys Leu Lys Ala Ile Ala Glu Glu Arg Lys Asn Phe His Leu
 115 120 125

20 His Glu Lys Ile Val Glu Arg Gln Ala Val Arg Arg Glu Thr Gly Ser
 130 135 140

Val Leu Thr Glu Pro Gln Val Tyr Gly Arg Asp Lys Glu Lys Asp Glu
 145 150 155 160

25 Ile Val Lys Ile Leu Ile Asn Asn Val Ser Asp Ala Gln His Leu Ser
 165 170 175

Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ala
 180 185 190

30 Gln Met Val Phe Asn Asp Gln Arg Val Thr Glu His Phe His Ser Lys
 195 200 205

Ile Trp Ile Cys Val Ser Glu Asp Phe Asp Glu Lys Arg Leu Ile Lys
 210 215 220

35 Ala Ile Val Glu Ser Ile Glu Gly Arg Pro Leu Leu Gly Glu Met Asp
 225 230 235 240

Leu Ala Pro Leu Gln Lys Lys Leu Gln Glu Leu Leu Asn Gly Lys Arg
 245 250 255

Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Gln Lys Trp
 260 265 270

40 Ala Asn Leu Arg Ala Val Leu Lys Val Gly Ala Ser Gly Ala Ser Val
 275 280 285

Leu Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu
 290 295 300

45 Gln Pro Tyr Glu Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu
 305 310 315 320

Phe Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Pro Asn Leu
 325 330 335

50 Val Ala Ile Gly Lys Glu Ile Val Lys Lys Ser Gly Gly Val Pro Leu
 340 345 350

Ala Ala Lys Thr Leu Gly Gly Ile Leu Cys Phe Lys Arg Glu Glu Arg
 355 360 365

55 Ala Trp Glu His Val Arg Asp Ser Pro Ile Trp Asn Leu Pro Gln Asp
 370 375 380

5 Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His Gln Leu Pro
 385 390 395 400
 Leu Asp Leu Lys Gln Cys Phe Ala Tyr Cys Ala Val Phe Pro Lys Asp
 405 410 415
 Ala Lys Met Glu Lys Glu Lys Leu Ile Ser Leu Trp Met Ala His Gly
 420 425 430
 10 Phe Leu Leu Ser Lys Gly Asn Met Glu Leu Glu Asp Val Gly Asp Glu
 435 440 445
 Val Trp Lys Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val
 450 455 460
 15 Lys Asp Gly Lys Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu
 465 470 475 480
 Ala Thr Ser Leu Phe Ser Ala Asn Thr Ser Ser Ser Asn Ile Arg Glu
 485 490 495
 20 Ile Asn Lys His Ser Tyr Thr His Met Met Ser Ile Gly Phe Ala Glu
 500 505
 Val Val Phe Phe Tyr Thr Leu Pro Pro Leu Glu Lys Phe Ile Ser Leu
 515 520 525
 25 Arg Val Leu Asn Leu Gly Asp Ser Thr Phe Asn Lys Leu Pro Ser Ser
 530 535 540
 Ile Gly Asp Leu Val His Leu Arg Tyr Leu Asn Leu Tyr Gly Ser Gly
 545 550 555 560
 30 Met Arg Ser Leu Pro Lys Gln Leu Cys Lys Leu Gln Asn Leu Gln Thr
 565 570 575
 Leu Asp Leu Gln Tyr Cys Thr Lys Leu Cys Cys Leu Pro Lys Glu Thr
 580 585 590
 35 Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Asp Gly Ser Gln Ser
 595 600 605
 Leu Thr Cys Met Pro Pro Arg Ile Gly Ser Leu Thr Cys Leu Lys Thr
 610 615 620
 40 Leu Gly Gln Phe Val Val Gly Arg Lys Lys Gly Tyr Gln Leu Gly Glu
 625 630 635 640
 Leu Gly Asn Leu Asn Leu Tyr Gly Ser Ile Lys Ile Ser His Leu Glu
 645 650 655
 45 Arg Val Lys Asn Asp Lys Asp Ala Lys Glu Ala Asn Leu Ser Ala Lys
 660 665 670
 Gly Asn Leu His Ser Leu Ser Met Ser Trp Asn Asn Phe Gly Pro His
 675 680 685
 50 Ile Tyr Glu Ser Glu Glu Val Lys Val Leu Glu Ala Leu Lys Pro His
 690 695 700
 Ser Asn Leu Thr Ser Leu Lys Ile Tyr Gly Phe Arg Gly Ile His Leu
 705 710 715 720
 55 Pro Glu Trp Met Asn His Ser Val Leu Lys Asn Ile Val Ser Ile Leu
 725 730 735
 Ile Ser Asn Phe Arg Asn Cys Ser Cys Leu Pro Pro Phe Gly Asp Leu

	740	745	750
5	Pro Cys Leu Glu Ser Leu Glu Leu His Trp Gly Ser Ala Asp Val Glu 755 760 765		
	Tyr Val Glu Glu Val Asp Ile Asp Val His Ser Gly Phe Pro Thr Arg 770 775 780		
10	Ile Arg Phe Pro Ser Leu Arg Lys Leu Asp Ile Trp Asp Phe Gly Ser 785 790 795 800		
	Leu Lys Gly Leu Leu Lys Lys Glu Gly Glu Glu Gln Phe Pro Val Leu 805 810 815		
15	Glu Glu Met Ile Ile His Glu Cys Pro Phe Leu Thr Leu Ser Ser Asn 820 825 830		
	Leu Arg Ala Leu Thr Ser Leu Arg Ile Cys Tyr Asn Lys Val Ala Thr 835 840 845		
20	Ser Phe Pro Glu Glu Met Phe Lys Asn Leu Ala Asn Leu Lys Tyr Leu 850 855 860		
	Thr Ile Ser Arg Cys Asn Asn Leu Lys Glu Leu Pro Thr Ser Leu Ala 865 870 875 880		
25	Ser Leu Asn Ala Leu Lys Ser Leu Lys Ile Gln Leu Cys Cys Ala Leu 885 890 895		
	Glu Ser Leu Pro Glu Glu Gly Leu Glu Gly Leu Ser Ser Leu Thr Glu 900 905 910		
	Leu Phe Val Glu His Cys Asn Met Leu Lys Cys Leu Pro Glu Gly Leu 915 920 925		
30	Gln His Leu Thr Thr Leu Thr Ser Leu Lys Ile Arg Gly Cys Pro Gln 930 935 940		
	Leu Ile Lys Arg Cys Glu Lys Gly Ile Gly Glu Asp Trp His Lys Ile 945 950 955 960		
35	Ser His Ile Pro Asn Val Asn Ile Tyr Ile 965 970		
40	<210> 42 <211> 979 <212> PRT <213> Artificial Sequence		
	<220> <223> Description of Artificial Sequence: alignment RGC3-b1b		
45	<220> <221> SITE <222> (1)..(979)		
50	<400> 42 Met Ala Glu Ala Phe Ile Gln Val Val Leu Asp Asn Leu Thr Ser Phe 1 5 10 15		
	Leu Lys Gly Glu Leu Val Leu Leu Phe Gly Phe Gln Asp Glu Phe Gln 20 25 30		
55	Arg Leu Ser Ser Met Phe Ser Thr Ile Gln Ala Val Leu Glu Asp Ala 35 40 45		

Gln Glu Lys Gln Leu Asn Asp Lys Pro Leu Glu Asn Trp Leu Gln Lys
 50 55 60

5 Leu Asn Ala Ala Thr Tyr Glu Val Asp Asp Ile Leu Asp Glu Tyr Lys
 65 70 75 80

Thr Lys Ala Thr Arg Phe Leu Gln Ser Glu Tyr Gly Arg Tyr His Pro
 85 90 95

10 Lys Val Ile Pro Phe Arg His Lys Val Gly Lys Arg Met Asp Gln Val
 100 105 110

Met Lys Lys Leu Asn Ala Ile Ala Glu Glu Arg Lys Asn Phe His Leu
 115 120 125

15 Gln Glu Lys Ile Ile Glu Arg Gln Ala Ala Thr Arg Glu Thr Gly Ser
 130 135 140

Val Leu Thr Glu Pro Gln val Tyr Gly Arg Asp Lys Glu Lys Asp Glu
 145 150 155 160

20 Ile val Lys Ile Leu Ile Asn Asn val Ser Asp Ala Gln Lys Leu Ser
 165 170 175

Val Leu Pro Ile Leu Gly Met Gly Gly Leu Gly Lys Thr Thr Leu Ser
 180 185 190

25 Gln Met Val Phe Asn Asp Gln Arg Val Thr Glu Arg Phe Tyr Pro Lys
 195 200 205

Ile Trp Ile Cys val Ser Asp Asp Phe Asp Glu Lys Arg Leu Ile Lys
 210 215 220

30 Ala Ile Val Glu Ser Ile Glu Gly Lys Ser Leu Ser Asp Met Asp Leu
 225 230 235 240

Ala Pro Leu Gln Lys Lys Leu Gln Glu Leu Leu Asn Gly Lys Arg Tyr
 245 250 255

35 Phe Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln His Lys Trp Ala
 260 265 270

Asn Leu Arg Ala Val Leu Lys Val Gly Ala Ser Gly Ala Phe Val Leu
 275 280 285

40 Thr Thr Thr Arg Leu Glu Lys Val Gly Ser Ile Met Gly Thr Leu Gln
 290 295 300

Pro Tyr Glu Leu Ser Asn Leu Ser Pro Glu Asp Cys Trp Phe Leu Phe
 305 310 315 320

Met Gln Arg Ala Phe Gly His Gln Glu Glu Ile Asn Pro Asn Leu Val
 325 330 335

45 Ala Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala
 340 345 350

Ala Lys Thr Leu Gly Gly Ile Leu Arg Phe Lys Arg Glu Glu Arg Glu
 355 360 365

50 Trp Glu His Val Arg Asp Ser Pro Ile Trp Asn Leu Pro Gln Asp Glu
 370 375 380

Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro Leu
 385 390 395 400

55 Asp Leu Asp Gln Cys Phe Val Tyr Cys Ala Val Phe Pro Lys Asp Thr
 405 410 415

Lys Met Ala Lys Glu Asn Leu Ile Ala Phe Trp Met Ala His Gly Phe
 420 425 430
 5 Leu Leu Ser Lys Gly Asn Leu Glu Leu Glu Asp Val Gly Asn Glu Val
 435 440 445
 Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val Glu
 450 455 460
 10 Ser Gly Lys Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala
 465 470 475 480
 Thr Ser Leu Phe Ser Ala Asn Thr Ser Ser Asn Ile Arg Glu Ile
 485 490 495
 15 Asn Ala Asn Tyr Asp Gly Tyr Met Met Ser Ile Gly Phe Ala Glu Val
 500 505 510
 Val Ser Ser Tyr Ser Pro Ser Leu Leu Gln Lys Phe Val Ser Leu Arg
 515 520 525
 20 Val Leu Asn Leu Arg Asn Ser Asn Leu Asn Gln Leu Pro Ser Ser Ile
 530 535 540
 Gly Asp Leu Val His Leu Arg Tyr Leu Asp Leu Ser Gly Asn Phe Arg
 545 550 555 560
 25 Ile Arg Asn Leu Pro Lys Arg Leu Cys Lys Leu Gln Asn Leu Gln Thr
 565 570 575
 Leu Asp Leu His Tyr Cys Asp Ser Leu Ser Cys Leu Pro Lys Gln Thr
 580 585 590
 30 Ser Lys Leu Gly Ser Leu Arg Asn Leu Leu Leu Asp Gly Cys Ser Leu
 595 600 605
 Thr Ser Thr Pro Pro Arg Ile Gly Leu Leu Thr Cys Leu Lys Ser Leu
 610 615 620
 35 Ser Cys Phe Val Ile Gly Lys Arg Lys Gly Tyr Gln Leu Gly Glu Leu
 625 630 635 640
 Lys Asn Leu Asn Leu Tyr Gly Ser Ile Ser Ile Thr Lys Leu Asp Arg
 645 650 655
 40 Val Lys Lys Asp Ser Asp Ala Lys Glu Ala Asn Leu Ser Ala Lys Ala
 660 665 670
 Asn Leu His Ser Leu Cys Leu Ser Trp Asp Leu Asp Gly Lys His Arg
 675 680 685
 45 Tyr Asp Ser Glu Val Leu Glu Ala Leu Lys Pro His Ser Asn Leu Lys
 690 695 700
 Tyr Leu Glu Ile Asn Gly Phe Gly Gly Ile Arg Leu Pro Asp Trp Met
 705 710 715 720
 50 Asn Gln Ser Val Leu Lys Asn Val Val Ser Ile Arg Ile Arg Gly Cys
 725 730 735
 Glu Asn Cys Ser Cys Leu Pro Pro Phe Gly Glu Leu Pro Cys Leu Glu
 740 745 750
 Ser Leu Glu Leu His Thr Gly Ser Ala Asp Val Glu Tyr Val Glu Asp
 755 760 765
 55 Asn Val His Pro Gly Arg Phe Pro Ser Leu Arg Lys Leu Val Ile Trp

	770	775	780
5	Asp Phe Ser Asn Leu Lys Gly Leu Leu Lys Lys Glu Gly Glu Gln 785 790 795 800		
	Phe Pro Val Leu Glu Glu Met Thr Phe Tyr Trp Cys Pro Met Phe Val 805 810 815		
10	Ile Pro Thr Leu Ser Ser Val Lys Thr Leu Lys Val Ile Ala Thr Asp 820 825 830		
	Ala Thr Val Leu Arg Ser Ile Ser Asn Leu Arg Ala Leu Thr Ser Leu 835 840 845		
15	Asp Ile Ser Asn Asn Val Glu Ala Thr Ser Leu Pro Glu Glu Met Phe 850 855 860		
	Lys Ser Leu Ala Asn Leu Lys Tyr Leu Asn Ile Ser Phe Phe Arg Asn 865 870 875 880		
20	Leu Lys Glu Leu Pro Thr Ser Leu Ala Ser Leu Asn Ala Leu Lys Ser 885 890 895		
	Leu Lys Phe Glu Phe Cys Asn Ala Leu Glu Ser Leu Pro Ala Glu Gly 900 905 910		
25	Val Lys Gly Leu Thr Ser Leu Thr Glu Leu Ser Val Ser Asn Cys Met 915 920 925		
	Met Leu Lys Cys Leu Pro Glu Gly Leu Gln His Leu Thr Ala Leu Thr 930 935 940		
	Thr Leu Thr Ile Thr Gln Cys Pro Ile Val Phe Lys Arg Cys Glu Arg 945 950 955 960		
30	Gly Ile Gly Glu Asp Trp His Lys Ile Ala His Ile Pro Tyr Leu Thr 965 970 975		
	Leu Tyr Glu		
35	<210> 43 <211> 992 <212> PRT <213> Artificial Sequence		
40	<220> <223> Description of Artificial Sequence: alignment RGC1-blb		
45	<220> <221> SITE <222> (1)..(992)		
	<400> 43 Met Ala Glu Ala Phe Leu Gln Val Leu Leu Asp Asn Leu Thr Phe Phe 1 5 10 15		
50	Ile Gln Gly Glu Leu Gly Leu Val Phe Gly Phe Glu Lys Glu Phe Lys 20 25 30		
	Lys Leu Ser Ser Met Phe Ser Met Ile Gln Ala Val Leu Glu Asp Ala 35 40 45		
55	Gln Glu Lys Gln Leu Lys Tyr Lys Ala Ile Lys Asn Trp Leu Gln Lys 50 55 60		

Leu Asn Val Ala Ala Tyr Glu Val Asp Asp Ile Leu Asp Asp Cys Lys
 65 70 75 80

5 Thr Glu Ala Ala Arg Phe Lys Gln Ala Val Leu Gly Arg Tyr His Pro
 85 90 95

Arg Thr Ile Thr Phe Cys Tyr Lys Val Gly Lys Arg Met Lys Glu Met
 100 105 110

10 Met Glu Lys Leu Asp Ala Ile Ala Glu Glu Arg Arg Asn Phe His Leu
 115 120 125

Asp Glu Arg Ile Ile Glu Arg Gln Ala Ala Arg Arg Gln Thr Gly Phe
 130 135 140

15 Val Leu Thr Glu Pro Lys Val Tyr Gly Arg Glu Lys Glu Glu Asp Glu
 145 150 155 160

Ile Val Lys Ile Leu Ile Asn Asn Val Ser Tyr Ser Glu Glu Val Pro
 165 170 175

20 Val Leu Pro Ile Leu Gly Met Gly Leu Gly Lys Thr Thr Leu Ala
 180 185 190

Gln Met Val Phe Asn Asp Gln Arg Ile Thr Glu His Phe Asn Leu Lys
 195 200 205

25 Ile Trp Val Cys Val Ser Asp Asp Phe Asp Glu Lys Arg Leu Ile Lys
 210 215 220

Ala Ile Val Glu Ser Ile Glu Gly Lys Ser Leu Gly Asp Met Asp Leu
 225 230 235 240

30 Ala Pro Leu Gln Lys Lys Leu Gln Glu Leu Leu Asn Gly Lys Arg Tyr
 245 250 255

Phe Leu Val Leu Asp Asp Val Trp Asn Glu Asp Gln Glu Lys Trp Asp
 260 265 270

35 Asn Leu Arg Ala Val Leu Lys Ile Gly Ala Ser Gly Ala Ser Ile Leu
 275 280 285

Ile Thr Thr Arg Leu Glu Lys Ile Gly Ser Ile Met Gly Thr Leu Gln
 290 295 300

40 Leu Tyr Gln Leu Ser Asn Leu Ser Gln Glu Asp Cys Trp Leu Leu Phe
 305 310 315 320

Lys Gln Arg Ala Phe Cys His Gln Thr Glu Thr Ser Pro Lys Leu Met
 325 330 335

45 Glu Ile Gly Lys Glu Ile Val Lys Lys Cys Gly Gly Val Pro Leu Ala
 340 345 350

Ala Lys Thr Leu Gly Gly Leu Leu Arg Phe Lys Arg Glu Glu Ser Glu
 355 360 365

Trp Glu His Val Arg Asp Ser Glu Ile Trp Asn Leu Pro Gln Asp Glu
 370 375 380

50 Asn Ser Val Leu Pro Ala Leu Arg Leu Ser Tyr His His Leu Pro Leu
 385 390 395 400

Asp Leu Arg Gln Cys Phe Ala Tyr Cys Ala Val Phe Pro Lys Asp Thr
 405 410 415

55 Lys Ile Glu Lys Glu Tyr Leu Ile Ala Leu Trp Met Ala His Ser Phe
 420 425 430

5 Leu Leu Ser Lys Gly Asn Met Glu Leu Glu Asp Val Gly Asn Glu Val
 435 440 445
 Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe Gln Glu Ile Glu Val Lys
 450 455 460
 Ser Gly Lys Thr Tyr Phe Lys Met His Asp Leu Ile His Asp Leu Ala
 465 470 475 480
 10 Thr Ser Met Phe Ser Ala Ser Ala Ser Arg Ser Ile Arg Gln Ile
 485 490 495
 Asn Val Lys Asp Asp Glu Asp Met Met Phe Ile Val Thr Asn Tyr Lys
 500 505 510
 15 Asp Met Met Ser Ile Gly Phe Ser Glu Val Val Ser Ser Tyr Ser Pro
 515 520 525
 Ser Leu Phe Lys Arg Phe Val Ser Leu Arg Val Leu Asn Leu Ser Asn
 530 535 540
 20 Ser Glu Phe Glu Gln Leu Pro Ser Ser Val Gly Asp Leu Val His Leu
 545 550 555 560
 Arg Tyr Leu Asp Leu Ser Gly Asn Lys Ile Cys Ser Leu Pro Lys Arg
 565 570 575
 25 Leu Cys Lys Leu Gln Asn Leu Gln Thr Leu Asp Leu Tyr Asn Cys Gln
 580 585 590
 Ser Leu Ser Cys Leu Pro Lys Gln Thr Ser Lys Leu Cys Ser Leu Arg
 595 600 605
 30 Asn Leu Val Leu Asp His Cys Pro Leu Thr Ser Met Pro Pro Arg Ile
 610 615 620
 Gly Leu Leu Thr Cys Leu Lys Thr Leu Gly Tyr Phe Val Val Gly Glu
 625 630 635 640
 35 Arg Lys Gly Tyr Gln Leu Gly Glu Leu Arg Asn Leu Asn Leu Arg Gly
 645 650 655
 Ala Ile Ser Ile Thr His Leu Glu Arg Val Lys Asn Asp Met Glu Ala
 660 665 670
 40 Lys Glu Ala Asn Leu Ser Ala Lys Ala Asn Leu His Ser Leu Ser Met
 675 680 685
 Ser Trp Asp Arg Pro Asn Arg Tyr Glu Ser Glu Glu Val Lys Val Leu
 690 695 700
 45 Glu Ala Leu Lys Pro His Pro Asn Leu Lys Tyr Leu Glu Ile Ile Asp
 705 710 715 720
 Phe Cys Gly Phe Cys Leu Pro Asp Trp Met Asn His Ser Val Leu Lys
 725 730 735
 50 Asn Val Val Ser Ile Leu Ile Ser Gly Cys Glu Asn Cys Ser Cys Leu
 740 745 750
 Pro Pro Phe Gly Glu Leu Pro Cys Leu Glu Ser Leu Glu Leu Gln Asp
 755 760 765
 55 Gly Ser Val Glu Val Glu Tyr Val Glu Asp Ser Gly Phe Leu Thr Arg
 770 775 780
 Arg Arg Phe Pro Ser Leu Arg Lys Leu His Ile Gly Gly Phe Cys Asn

	785	790	795	800
5	Leu Lys Gly Leu Gln Arg Met Lys Gly Ala Glu Gln Phe Pro Val Leu			
	805	810	815	
	Glu Glu Met Lys Ile Ser Asp Cys Pro Met Phe Val Phe Pro Thr Leu			
	820	825	830	
10	Ser Ser Val Lys Lys Leu Glu Ile Trp Gly Glu Ala Asp Ala Gly Gly			
	835	840	845	
	Leu Ser Ser Ile Ser Asn Leu Ser Thr Leu Thr Ser Leu Lys Ile Phe			
	850	855	860	
15	Ser Asn His Thr Val Thr Ser Leu Leu Glu Glu Met Phe Lys Asn Leu			
	865	870	875	880
	Glu Asn Leu Ile Tyr Leu Ser Val Ser Phe Leu Glu Asn Leu Lys Glu			
	885	890	895	
20	Leu Pro Thr Ser Leu Ala Ser Leu Asn Asn Leu Lys Cys Leu Asp Ile			
	900	905	910	
	Arg Tyr Cys Tyr Ala Leu Glu Ser Leu Pro Glu Glu Gly Leu Glu Gly			
	915	920	925	
25	Leu Ser Ser Leu Thr Glu Leu Phe Val Glu His Cys Asn Met Leu Lys			
	930	935	940	
	Cys Leu Pro Glu Gly Leu Gln His Leu Thr Thr Leu Thr Ser Leu Lys			
	945	950	955	960
30	Ile Arg Gly Cys Pro Gln Leu Ile Lys Arg Cys Glu Lys Gly Ile Gly			
	965	970	975	
	Glu Asp Trp His Lys Ile Ser His Ile Pro Asn Val Asn Ile Tyr Ile			
	980	985	990	
35	<210> 44 <211> 1040 <212> PRT <213> Artificial Sequence			
40	<220> <223> Description of Artificial Sequence: alignment RGC4-b1b			
45	<220> <221> SITE <222> (1)..(1040)			
50	<400> 44 Met Ala Glu Ala Phe Leu Gln Val Leu Leu Glu Asn Leu Thr Ser Phe 1 5 10 15			
55	Ile Gly Asp Lys Leu Val Leu Ile Phe Gly Phe Glu Lys Glu Cys Glu 20 25 30			
	Lys Leu Ser Ser Val Phe Ser Thr Ile Gln Ala Val Leu Gln Asp Ala 35 40 45			
	Gln Glu Lys Gln Leu Lys Asp Lys Ala Ile Glu Asn Trp Leu Gln Lys 50 55 60			
	Leu Asn Ser Ala Ala Tyr Glu Val Asp Asp Ile Leu Gly Glu Cys Lys 65 70 75 80			

Asn Glu Ala Ile Arg Phe Glu Gln Ser Arg Leu Gly Phe Tyr His Pro
 85 90 95
 5 Gly Ile Ile Asn Phe Arg His Lys Ile Gly Arg Arg Met Lys Glu Ile
 100 105 110
 Met Glu Lys Leu Asp Ala Ile Ser Glu Glu Arg Arg Lys Phe His Phe
 115 120 125
 10 Leu Glu Lys Ile Thr Glu Arg Gln Ala Ala Ala Ala Thr Arg Glu Thr
 130 135 140
 Val Gly Trp Gln Trp Gly Trp Ala Arg Leu Glu Tyr Lys Arg Leu Leu
 145 150 155 160
 15 Leu Gly Val Leu Met Arg Ile Met Ser Leu Arg Met His Val Ser Thr
 165 170 175
 Cys Ser Thr Leu Tyr Glu Phe Lys Phe Tyr Leu Cys Thr Pro Lys Val
 180 185 190
 20 Gly Ala Arg Arg Cys Phe Val Leu Thr Glu Pro Lys Val Tyr Gly Arg
 195 200 205
 Asp Lys Glu Glu Asp Glu Ile Val Lys Ile Leu Ile Asn Asn Val Asn
 210 215 220
 25 Val Ala Glu Glu Leu Pro Val Phe Pro Ile Ile Gly Met Gly Gly Leu
 225 230 235 240
 Gly Lys Thr Thr Leu Ala Gln Met Ile Phe Asn Asp Glu Arg Val Thr
 245 250 255
 30 Lys His Phe Asn Pro Lys Ile Trp Val Cys Val Ser Asp Asp Phe Asp
 260 265 270
 Glu Lys Arg Leu Ile Lys Thr Ile Ile Gly Asn Ile Glu Arg Ser Ser
 275 280 285
 35 Pro His Val Glu Asp Leu Ala Ser Phe Gln Lys Lys Leu Gln Glu Leu
 290 295 300
 Leu Asn Gly Lys Arg Tyr Leu Leu Val Leu Asp Asp Val Trp Asn Asp
 305 310 315 320
 40 Asp Leu Glu Lys Trp Ala Lys Leu Arg Ala Val Leu Thr Val Gly Ala
 325 330 335
 Arg Gly Ala Ser Ile Leu Ala Thr Thr Arg Leu Glu Lys Val Gly Ser
 340 345 350
 Ile Met Gly Thr Leu Gln Pro Tyr His Leu Ser Asn Leu Ser Pro His
 355 360 365
 45 Asp Ser Leu Leu Leu Phe Met Gln Arg Ala Phe Gly Gln Gln Lys Glu
 370 375 380
 Ala Asn Pro Asn Leu Val Ala Ile Gly Lys Glu Ile Val Lys Lys Cys
 385 390 395 400
 50 Gly Gly Val Pro Leu Ala Ala Lys Thr Leu Gly Gly Leu Leu Arg Phe
 405 410 415
 Lys Arg Glu Glu Ser Glu Trp Glu His Val Arg Asp Asn Glu Ile Trp
 420 425 430
 55 Ser Leu Pro Gln Asp Glu Ser Ser Ile Leu Pro Ala Leu Arg Leu Ser
 435 440 445

Tyr His His Leu Pro Leu Asp Leu Arg Gln Cys Phe Ala Tyr Cys Ala
 450 455 460
 5 Val Phe Pro Lys Asp Thr Lys Met Ile Lys Glu Asn Leu Ile Thr Leu
 465 470 475 480
 Trp Met Ala His Gly Phe Leu Leu Ser Lys Gly Asn Leu Glu Leu Glu
 485 490 495
 10 Asp Val Gly Asn Glu Val Trp Asn Glu Leu Tyr Leu Arg Ser Phe Phe
 500 505 510
 Gln Glu Ile Glu Ala Lys Ser Gly Asn Thr Tyr Phe Lys Ile His Asp
 515 520 525
 15 Leu Ile His Asp Leu Ala Thr Ser Leu Phe Ser Ala Ser Ala Ser Cys
 530 535 540
 Gly Asn Ile Arg Glu Ile Asn Val Lys Asp Tyr Lys His Thr Val Ser
 545 550 555 560
 20 Ile Gly Phe Ala Ala Val Val Ser Ser Tyr Ser Pro Ser Leu Leu Lys
 565 570 575
 Lys Phe Val Ser Leu Arg Val Leu Asn Leu Ser Tyr Ser Lys Leu Glu
 580 585 590
 25 Gln Leu Pro Ser Ser Ile Gly Asp Leu Leu His Leu Arg Tyr Leu Asp
 595 600 605
 Leu Ser Cys Asn Asn Phe Arg Ser Leu Pro Glu Arg Leu Cys Lys Leu
 610 615 620
 30 Gln Asn Leu Gln Thr Leu Asp Val His Asn Cys Tyr Ser Leu Asn Cys
 625 630 635 640
 Leu Pro Lys Gln Thr Ser Lys Leu Ser Ser Leu Arg His Leu Val Val
 645 650 655
 35 Asp Gly Cys Pro Leu Thr Ser Thr Pro Pro Arg Ile Gly Leu Leu Thr
 660 665 670
 Cys Leu Lys Thr Leu Gly Phe Phe Ile Val Gly Ser Lys Lys Gly Tyr
 675 680 685
 40 Gln Leu Gly Glu Leu Lys Asn Leu Asn Leu Cys Gly Ser Ile Ser Ile
 690 695 700
 Thr His Leu Glu Arg Val Lys Asn Asp Thr Asp Ala Glu Ala Asn Leu
 705 710 715 720
 45 Ser Ala Lys Ala Asn Leu Gln Ser Leu Ser Met Ser Trp Asp Asn Asp
 725 730 735
 Gly Pro Asn Arg Tyr Glu Ser Lys Glu Val Lys Val Leu Glu Ala Leu
 740 745 750
 50 Lys Pro His Pro Asn Leu Lys Tyr Leu Glu Ile Ile Ala Phe Gly Gly
 755 760 765
 Phe Arg Phe Pro Ser Trp Ile Asn His Ser Val Leu Glu Lys Val Ile
 770 775 780
 55 Ser Val Arg Ile Lys Ser Cys Lys Asn Cys Leu Cys Leu Pro Pro Phe
 785 790 795 800
 Gly Glu Leu Pro Cys Leu Glu Asn Leu Glu Leu Gln Asn Gly Ser Ala

	805	810	815	
5	Glu Val Glu Tyr Val Glu Glu Asp Asp Val His Ser Arg Phe Ser Thr			
	820	825	830	
	Arg Arg Ser Phe Pro Ser Leu Lys Lys Leu Arg Ile Trp Phe Phe Arg			
	835	840	845	
10	Ser Leu Lys Gly Leu Met Lys Glu Glu Gly Glu Glu Lys Phe Pro Met			
	850	855	860	
	Leu Glu Glu Met Ala Ile Leu Tyr Cys Pro Leu Phe Val Phe Pro Thr			
	865	870	875	880
15	Leu Ser Ser Val Lys Lys Leu Glu Val His Gly Asn Thr Asn Thr Arg			
	885	890	895	
	Gly Leu Ser Ser Ile Ser Asn Leu Ser Thr Leu Thr Ser Leu Arg Ile			
	900	905	910	
20	Gly Ala Asn Tyr Arg Ala Thr Ser Leu Pro Glu Glu Met Phe Thr Ser			
	915	920	925	
	Leu Thr Asn Leu Glu Phe Leu Ser Phe Phe Asp Phe Lys Asn Leu Lys			
	930	935	940	
25	Asp Leu Pro Thr Ser Leu Thr Ser Leu Asn Ala Leu Lys Arg Leu Gln			
	945	950	955	960
	Ile Glu Ser Cys Asp Ser Leu Glu Ser Phe Pro Glu Gln Gly Leu Glu			
	965	970	975	
30	Gly Leu Thr Ser Leu Thr Gln Leu Phe Val Lys Tyr Cys Lys Met Leu			
	980	985	990	
	Lys Cys Leu Pro Glu Gly Leu Gln His Leu Thr Ala Leu Thr Asn Leu			
	995	1000	1005	
35	Gly Val Ser Gly Cys Pro Glu Val Glu Lys Arg Cys Asp Lys Glu Ile			
	1010	1015	1020	
	Gly Glu Asp Trp His Lys Ile Ala His Ile Pro Asn Leu Asp Ile His			
	1025	1030	1035	1040

40

Claims

1. An isolated or recombinant nucleic acid or functional fragment thereof corresponding to one of a cluster of genes identifiable by phylogenetic tree analyses as corresponding to the *Rpi-blb*, *RGC1-blb*, *RGC3-blb* and *RGC4-blb* cluster of figure 9.
2. A nucleic acid according to claim 1 said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* family with resistance against an oomycete pathogen, or a functional equivalent thereof.
3. A nucleic acid according to claim 1 or 2 wherein said member of the *Solanaceae* family comprises *S. tuberosum*.
4. A nucleic acid according to claim 1 to 3 where said resistance is race non-specific.
5. A nucleic acid according to claim 1 to 4 comprising a sequence as depicted in figure 6 for *Rpi-blb* or part thereof.
6. A nucleic acid according to claim 1 to 5 at least comprising a LRR domain.

7. A vector comprising a nucleic acid according to anyone of claims 1 to 6.
8. A host cell comprising a nucleic acid according to anyone of claims 1 to 6 or a vector according to claim 7.
- 5 9. A cell according to claim 8 comprising a plant cell.
- 10 10. A cell according to claim 9 wherein said plant comprises a member of the *Solanaceae* family.
11. A plant comprising a cell according to anyone of claims 6 to 10.
- 10 12. A part derived from a plant according to claim 11.
13. A part according to claim 12 wherein said tuber comprises a potato or said fruit comprises a tomato.
- 15 14. Progeny of a plant according to claim 11.
- 15 15. A proteinaceous substance exhibiting the characteristic of providing at least partial resistance to an oomycete infection such as caused by a *Phytophthora* species when incorporated and expressed in a plant or plant cell.
- 20 16. A proteinaceous substance encoded by a nucleic acid according to anyone of claims 1 to 6.
17. A proteinaceous substance comprising an amino acid sequence as depicted in figure 8 or part thereof.
- 25 18. A binding molecule directed at a substance according to anyone of claims 15 to 17.
19. A binding molecule according to claim 18 comprising an antibody or fragment thereof.
- 20 20. A binding molecule directed at a nucleic acid according to anyone of claim 1 to 6.
- 30 21. A binding molecule according to claim 20 comprising a probe or primer.
22. A binding molecule according to anyone of claims 18 to 21 provided with a label.
- 35 23. A binding molecule according to claim 22 wherein said label comprises an excitable moiety.
24. Use of a nucleic acid according to anyone of claims 1 to 6 or a vector according to claim 7 or a cell according to anyone of claims 8 to 11 or a substance according to anyone of claims 15 to 17 or a binding molecule according to anyone of claims 18 to 23 in a method for providing a plant or its progeny with resistance against an oomycete infection.
- 40 25. Use according to claim 24 wherein said oomycete comprises *Phytophthora infestans*.
26. Use according to claim 24 or 25 wherein said plant comprises *S. tuberosum*.
- 45 27. A method for providing a plant or its progeny with at least partial resistance against an oomycete infection comprising providing said plant or part thereof with a gene or functional fragment thereof comprising a nucleic acid corresponding to one of a cluster of genes identifiable by phylogenetic tree analyses as corresponding to the *Rpi-blb*, *RCG1-blb*, *RCG3-blb* and *RCG4-blb* cluster of figure 9, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* with resistance against an oomycete fungus, or providing said plant or part thereof with a nucleic acid according to anyone of claims 1 to 4 or a vector according to claim 5 or a cell according to claim 6 or a substance according to anyone of claims 15 to 18.
- 50 28. A method for selecting a plant or plant material or progeny thereof for its susceptibility or resistance to an oomycete infection comprising testing at least part of said plant or plant material or progeny thereof for the presence or absence of a nucleic acid corresponding to one of a cluster of genes identifiable by phylogenetic tree analyses as corresponding to the *Rpi-blb*, *RCG1-blb*, *RCG3-blb* and *RCG4-blb* cluster of figure 9, said nucleic acid encoding a gene product that is capable of providing a member of the *Solanaceae* with resistance against an oomycete fungus.

29. A method according to claim 28 comprising contacting at least part of said plant or plant material or progeny thereof with a binding molecule according to anyone of claims 19 to 23 and determining the binding of said molecule to said part.
- 5 30. A method according to claim 29 wherein said oomycete comprises *Phytophthora infestans*.
31. A method according to claim 28 or 29 wherein said plant comprises *S. tuberosum*.
- 10 32. An isolated *S. bulbocastanum*, or part thereof, susceptible to an oomycete infection caused by *Phytophthora infestans*.

15

20

25

30

35

40

45

50

55

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6A

1 ATGGCTGAAGCTTCATTCAAGTTCTGCTAGACAATCTCACTTCTTCCT
 51 CAAAGGGAACTTGTATTGCTTTCGGTTTCAAGATGAGTTCCAAAGGC
 101 TTTCAAGCATTTCTACAATTCAAGCCGTCTGAAGATGCTCAGGAG
 151 AAGCAACTCAACAAACAAGCCTCTAGAAAATTGGTGCAAAAACCTCAATGC
 201 TGCTACATATGAAGTCGATGACATCTGGATGAATATAAAACCAAGGCCA
 251 CAAGATTCTCCCAGTCTGAATATGGCCGTTATCATCCAAAGGTTATCCCT
 301 TTCCGTCACAAGGTCGGGAAAAGGATGGACCAAGTGTGATGAAAAAACTAAA
 351 GGCAATTGCTGAGGAAAGAAAGAATTTCATTTGCACGAAAAAAATTGTAG
 401 AGAGACAAGCTGTTAGACGGAAACAGGTTCTGTATTAACCGAACCGCAG
 451 GTTTATGGAAGAGACAAAGAGAAAGATGAGATAGTGAACCTAATAAA
 501 CAATGTTAGTGATGCCAACACCTTCAGTCCTCCAATACTGGTATGG
 551 GGGGATTAGGAAAACGACTCTGCCAAATGGTCTCAATGACCAGAGA
 601 GTTACTGAGCATTCCATTCCAAAATATGGATTGTCTCGGAAGATT
 651 TGATGAGAAGAGGTTAATAAGGCAATTGAGAATCTATTGAAGGAAGGC
 701 CACTACTGGTGAGATGGACTTGGCTCCACTTCAAAAGAAGCTTCAGGAG
 751 TTGCTGAATGGAAAAGATACTTGCTTGTCTTAGATGATGTTGGAATGA
 801 AGATCAACAGAAGTGGCTAATTAAAGAGCAGTCTGAAGGTTGGAGCAA
 851 GTGGTGCTTCTGTTCTAACCAACTACTCGTCTTGAAAAGGTTGGATCAATT
 901 ATGGGAACATTGCAACCATACTGAACGTCAAATCTGTCTCAAGAAGATTG
 951 TTGGTTGTTGTCATGCAACGTGCATTGGACACCAAGAAGAAATAATC
 1001 CAAACCTTGTGGCAATCGGAAAGGAGATTGTGAAAAAAAGTGGTGGTGTG

1051 CCTCTAGCAGCCAAAACCTTGAGGTATTTGTGCTCAAGAGAGAAGA
 1101 AAGAGCATGGAACATGTGAGAGACAGTCCGATTGGAATTGCCTCAAG
 1151 ATGAAAGTTCTATTCTGCCTGCCCTGAGGCTTAGTTACCATCAACTCCA
 1201 CTTGATTGAAACAATGCTTGCGTATTGTGCGGTGTTCCAAAGGATGC
 1251 CAAAATGGAAAAAGAAAAGCTAATCTCTCTGGATGGCGATGGTTTC
 1301 TTTTATCAAAGGAAACATGGAGCTAGAGGATGTGGCGATGAAGTATGG
 1351 AAAGAATTATACTTGAGGTCTTTTCCAAGAGATTGAAGTTAAAGATGG
 1401 TAAAACTTATTCAAGATGCATGATCTCATCCATGATTGGCAACATCTC
 1451 TGTTTCAGCAAACACATCAAGCAGCAATATCCGTGAAATAAAACAC
 1501 AGTTACACACATATGATGTCCATTGGTTCGCCGAAGTGGTGTTTTTA
 1551 CACTCTCCCCCTGGAAAAGTTATCTCGTTAAGAGATGCTTAATCTAG
 1601 GTGATTCGACATTTAATAAGTTACCATCTCCATGGAGATCTAGTACAT
 1651 TTAAGATACTTGAACCTGTATGGCAGTGGCATGCGTAGTCTCCAAAGCA
 1701 GTTATGCAAGCTTCAAAATCTGCAAACCTTGATCTACAATATTGCACCA
 1751 AGCTTGTGTTGCCAAAAGAAACAAGTAAACTGGTAGTCTCCGAAAT
 1801 CTTTACTTGATGGTAGCCAGTCATTGACTTGTATGCCACCAAGGATAGG
 1851 ATCATTGACATGCCTTAAGACTCTAGGTCAATTGTTGGAAAGGAAGA
 1901 AAGGTTATCAACTGGTGAACTAGGAAACCTAAATCTCTATGGCTCAATT
 1951 AAAATCTCGCATCTGAGAGAGTGAAGAATGATAAGGACGCCAAAGAAGC
 2001 CAATTATCTGCAAAGGGATCTGCATTCTTAAGCATGAGTTGGAATA
 2051 ACTTGACACATATATATGAATCAGAAGAAGTTAAAGTGTGTTGAAGCC
 2101 CTCAAACCACTCCAATCTGACTTCTTAAAAATCTATGGCTTCAGAGG
 2151 AATCCATCTCCCAGAGTGGATGAATCACTCAGTATTGAAAAATATTGTCT
 2201 CTATTCTAATTAGCAACTCAGAAACTGCTCATGCTTACCAACCTTGGT

2251 GATCTGCCTTGTCTAGAAAGTCTAGAGTTACACTGGGGTCTGCGGA TGT
2301 GGAGTATGTTGAAGAAGTGGATATTGATGTTCATTCGGATTCCCCACAA
2351 GAATAAGGTTCCATCCTTGAGGAAACTTGATATATGGGACTTTGGTAGT
2401 CTGAAAGGATTGCTGAAAAAGGAAGGAGAAGAGCAATTCCCTGTGCTTGA
2451 AGAGATGATAATTCACGAGTGCCCTTTCTGACCCTTCTTCTAATCTTA
2501 GGGCTCTTACTTCCCTCAGAATTGCTATAATAAAAGTAGCTACTTCATTC
2551 CCAGAACAGAGATGTTCAAAAACCTTGCAAATCTCAAATACTGACAATCTC
2601 TCGGTGCAATAATCTCAAAGAGCTGCCTACAGCTGGCTAGTCTGAATG
2651 CTTTGAAAAGTCTAAAATTCAATTGTGTTGCGCACTAGAGAGTCTCCCT
2701 GAGGAAGGGCTGGAAGGTTATCTTCACTCACAGAGTTATTGTTGAACA
2751 CTGTAACATGCTAAAATGTTACCAGAGGGATTGCAGCACCTAACAAACCC
2801 TCACAAGTTAAAATTGGGGATGTCCACAAC TGATCAAGCGGTGTGAG
2851 AAGGGAATAGGAGAAGACTGGCACAAAATTCTCACATTCTAACATGTGAA
2901 TATATATATTTAA

Figure 6B

1 ATGGCTGAAGCTTCATTCAAGTTCTGCTAGACAATCTCACTTCTTCCT
 51 CAAAGGGAACTTGTATTGCTTTCGGTTTCAAGATGAGTTCCAAAGGC
 101 TTTCAAGCATGTTTCTACAATTCAAGCCGTCTGAAGATGCTCAGGAG
 151 AAGCAACTCAACAACAAGCCTCTAGAAAATTGGTTGCAAAAACATGC
 201 TGCTACATATGAAGTCGATGACATCTTGGATGAATATAAAACCAAGGCCA
 251 CAAGATTCTCCCAGTCTGAATATGCCGTTATCATCCAAGGTTATCCCT
 301 TTCCGTACAAGTCGGAAAAGGATGGACCAAGTGATGAAAAAACTAAA
 351 GGCAATTGCTGAGGAAAGAAAGAATTTCATTTGCACGAAAAAAATTGTAG
 401 AGAGACAAGCTGTTAGACGGAAACAGGTACTCATCTTAAATTAGTATTA
 451 CAACAACTAAGTTATATTCAATTTGGCAATTATCAAATTCAAGAAAA
 501 GGGTTAAATATACTCATGTCCTATCGTAAATAGTGTATATACCTCTCG
 551 TTGTACTTTGATCTGAATATACTTGTCAAATCTGGCAAGCTCAGAATCA
 601 AATTATCCACCCCAACTTTAAATACTCGATATCTTAGAAATCCACCTG
 651 TCTAACTCATCCACTACCCATTCCCTTGCTTGAATTCTTCTTAC
 701 TATAAACCTGGAACACTCGATCCGTTTCTCTGTGTGCTGACTTGGG
 751 AGAGAAAAGAGGTTTCTTCTATTCTGTTCTGTGTGCTGACTTGGG
 801 TCCTTAATCCCATTAAAAACAGGGCATGTTAACCCAACGACGGTAGCCT
 851 TTCCTGACAGCTGACTGTAATTTGTCTAACAAAGAAAAAAAGATTA
 901 GACATGTTTTCCTGTCATTGATTAGGCTGGATTTCAGAGTGGAA
 951 CATAGGGATATATTGGACCAAAAGTAGAATGGGTATATATTAAAGTAT
 1001 TTCTGATAGAACAGGAGTATATTGTGGAAAATATCCTCTATTTCTGTT
 1051 GTCTCCTAATGAGTTGTAATGTAATAATTCTCATGTGGACATTGCTTG
 1101 CACCAGGTTCTGTATTAACCGAACCGCAGGTTATGGAAGAGACAAAGAG
 1151 AAAGATGAGATAGTGAAATCCTAATAAACAAATGTTAGTGTGCCCCAAC
 1201 CCTTCAGTCCTCCAATACCTGGTATGGGGGATTAGGAAAACGACTC
 1251 TTGCCCAAATGGTCTCAATGACCAGAGAGTTACTGAGCATTCCATTCC
 1301 AAAATATGGATTGTGTCGGAAAGATTTGATGAGAAGAGGTTAATAAA
 1351 GGCAATTGAGAATCTATTGAAGGAAGGCCACTACTTGGTGAGATGGACT
 1401 TGGCTCCACTTCAAAAGAAGCTTCAGGAGTTGCTGAATGAAAAAGATAC

1451 TTGCTTGTCTTAGATGATGTTGGAATGAAGATCAACAGAAGTGGGCTAA
 1501 TTTAAGAGCAGTCTTGAAAGGTTGGAGCAAGTGGTGCCTCTGTTCTAACCA
 1551 CTACTCGTCTGAAAAGGTTGGATCAATTATGGAACATTGCAACCATA
 1601 GAACTGTCAAATCTGTCAGAAGATTGTTGGTTGTTCATGCAACG
 1651 TGCATTTGGACACCAAGAAGAAATAACCCAAACCTTGTGGCAATCGGAA
 1701 AGGAGATTGTGAAAAAAAGTGGTGGTGTGCCTCTAGCAGCCAAAACCTT
 1751 GGAGGTATTTGTGCTTCAGAGAGAAGAACAGACATGGAACATGTGAG
 1801 AGACAGTCCGATTTGGAATTGCGCTCAAGATGAAAGTTCTATTCTGCCTG
 1851 CCCTGAGGCTTAGTTACCATCAACTCCACTTGATTGAAACAATGCTTT
 1901 GCGTATTGTGCGGTGTTCCAAAGGATGCCAAATGGAAAAGAAAAGCT
 1951 AATCTCTCTGGATGGCGATGGTTTCTTTATCAAAAGGAAACATGG
 2001 AGCTAGAGGATGTGGCGATGAAGTATGAAAGAATTATACTTGAGGTCT
 2051 TTTTCCAAGAGATTGAAGTTAAAGATGGTAAACTTATTCAAGATGCA
 2101 TGATCTCATCCATGATTGGAACATCTCTGTTTCAGCAAACACATCAA
 2151 GCAGCAATATCCGTGAAATAAAACACAGTTACACACATATGATGTCC
 2201 ATTGGTTTCGCCGAAGTGGTGTGTTTACACTCTCCCCCTGGAAAAA
 2251 GTTTATCTCGTTAAGAGTGCTTAATCTAGGTGATTGACATTAAATAAGT
 2301 TACCATCTTCCATTGGAGATCTAGTACATTAAAGATACTTGAAACCTGTAT
 2351 GGCAGTGGCATGCGTAGTCTCCAAGCAGTTATGCAAGCTTCAAAATCT
 2401 GCAAACCTTGATCTACAAATTGCACCAAGCTTGTGTTGCCAAAG
 2451 AAACAAGTAAACTTGGTAGTCTCCGAAATCTTACTTGATGGTAGCCAG
 2501 TCATTGACTTGTATGCCACCAAGGATAGGATCATTGACATGCCCTAAC
 2551 TCTAGGTCAATTGTTGGAAGGAAGAACAGGTTATCAACTGGTGAAC
 2601 TAGGAAACCTAAATCTCTATGGCTCAATTAAATCTCGCATCTGAGAGA
 2651 GTGAAGAATGATAAGGACGCAAAAGAACGCAATTATCTGCAAAAGGGAA
 2701 TCTGCATTCTTAAGCATGAGTTGGAATAACTTGGACCACATATATG
 2751 AATCAGAAGAAGTTAAAGTGCTTGAAGCCCTAAACACACTCAATCTG
 2801 ACTTCTTAAAAATCTATGGCTTCAGAGGAATCCATCTCCAGAGTGGAT
 2851 GAATCACTCAGTATTGAAAATATTGCTCTATTCTAATTAGCAACTTCA
 2901 GAAACTGCTCATGCTTACCAACCCCTTGGTATCTGCTTGTCTAGAAAGT
 2951 CTAGAGTTACACTGGGGTCTGCGGATGTGGAGTATGTTGAAGAAGTGG
 3001 TATTGATGTTCATCTGGATTCCCCACAAGAATAAGGTTCCATCCTTGA

3051 GGAAACTTGATATATGGGACTTGGTAGTCTGAAAGGATTGCTGAAAAAG
3101 GAAGGAGAAGAGCAATTCCCTGTGCTTGAAGAGATGATAATTACGAGTG
3151 CCCTTTCTGACCCTTCTTCTAATCTTAGGGCTCTTAATTCCCTCAGAA
3201 TTTGCTATAATAAAGTAGCTACTTCATCCCCAGAAGAGATGTTCAAAAAC
3251 CTTGCAAATCTCAAATACTTGACAATCTCGGTGCAATAATCTCAAAGA
3301 GCTGCCTACCAAGCTGGCTAGTCTGAATGCTTGAAAAGTCTAAAAATTG
3351 AATTGTGTTGCGCACTAGAGAGTCTCCCTGAGGAAGGGCTGGAAGGTTA
3401 TCTTCACTCACAGAGTTATTGTTGAACACTGTAACATGCTAAAATGTTT
3451 ACCAGAGGGATTGCAGCACCTAACAAACCTCACAAGTTAAAAATTGGGG
3501 GATGTCCACAACTGATCAAGCGGTGTGAGAAGGAAATAGGAGAAGACTGG
3551 CACAAAATTCTCACATTCTAACATGTGAATATATATTTAA

Figure 6C

1 GATTTTAAATTTGAATTAGCAATTATTGTGACTATAACTTTT
 51 ACATAATTGCAAATATATAAATTTATTGGAAAAAGAAGATTC
 101 ATGCGCAAATTCCAGGTCAAACCTAAATTATTAGACTCTGAAAATGAA
 151 AAGTGTACATAAATTGACACAAAGGGAGTACTTGTAAATGTTGAAATTAA
 201 TTGGCGAACATAATGTTGATTATCATTTCTGAATAATGTTGTGT
 251 CACTTGGAAAAAACACCAAATAGAACTATTCACTGTTTTCTTAGTATA
 301 TATAAAATGATCTTAACCTAATTGCAGCAGACAGGCATGATCTTAAC
 351 TTTAAATGTGCACAAGTAGATTGACAGGCTTGCTAATTGAGTGTCTGTTA
 401 TAATCAGTATTAATTACTCTCAAGGTAATAGTATATTCCAGACAAATTT
 451 GTGTTACCAAATTAAATATATTCTAAAACCTCTCCTCAAAGTAGTTAATA
 501 TACTTTGAGTGTGTATCATGTTAAATATAAAATGTTAAAATTTAGA
 551 TGAAATTTACTTTCTAGTTAAATTGGTCAAAGTTGAAAGAATTCAAGTG
 601 AAAAAGTTTTAATAATTGACTTTATGCTATTTTTAAAGTTGAA
 651 CGACTTTAAATAAAAAGAATAATAAAATTATATGATAATTTTATAAT
 701 ACAATGGCCTTATATGATGAAAAAGAAAGAAATTAGATGACAACA
 751 ATGTCCAAAATAATCTAAAGAATTACGATTATATATAATAAAATTAA
 801 ATTAAAATTGATGAAAAATAGAGAAAAGAGGAAGATGATGAAGTGAA
 851 ATGACGTGGTGGTGGTCCATGTGACATAAAAAAAATTCTCTTAAATAA
 901 TCCTTCATACTAATGATAAATTCCCCCCCCCCCCCCCCACTAAT
 951 TGCCTATAGAGAAAAGGAAATGGGGCGGTAAATTACAAAGTAGGGAATCG
 1001 AACTTTATCAACAAGTTGAGAGTTCAAGTAATCAACCAACTAAACTACTA
 1051 AAATTCTAATTGATAATTGTAATTCAATTAGCATAAAAAATTTC
 1101 ATTGCACTTACTTTAGAGTTGAAAACAGTACTTCATCTATTCTATAT
 1151 TAATTAAATTCTATATTAATTAAATTGAGGTAATACAAACTTATT
 1201 AAGAAAATTTAAGGACATAATTAACTCATTTTCACTATTGTTT
 1251 TTTGTGAAATCATAAATATAACTTTGTAAATAGTGCATTTATCTCTAG
 1301 AAGCAAATTCAACCAAGAAAAGGGCAAAGATGGAAAAGAAACTAAATAT
 1351 TCATCTTAAACTTGAACAATTCAATTATTTGAACAATGAAAAAAATCT
 1401 CAAAAATTCAATTATGAAATGGAGAGAGTAACCTTATTAGAGGCA

1451 AAAAATTAGTACTCCATCCGTTCACTTGATTTGATGTCATGTTGCACTTTC
 1501 GAAAGTCATAATTGACTAATTTTAAAGCTAAATTAGATTACACTAATTCA
 1551 ATATTTAAACAGAAAAATTAGATATTCAAAAACATACAAAAAATATTA
 1601 TACATTGCAATTTTGCAATCAATATGATAAAAAATATCGTAAAA
 1651 TATTAGTCAAAATTTTATAATTGACTCAAATCATGAAAAGTATAATAA
 1701 TTAATAGTGGACGGAGGAAGTATTGTCTTCCAGATTGTGCCATTTT
 1751 GGTCCAAGGCCATTAGCAGTCTCTTCATTTCTACTTCTGTCTCATAT
 1801 TAGATGGGCATCTTACTAAAAATATTGTCTCATATTACTGATTATTTA
 1851 TTAAATCAAAAAGAATTAATTAATTTCATTTACCCCTACAATTA
 1901 ATAATAGTTAAAAGTTAACAAATTGAAAGAATCAAATTCTTT
 1951 GCAAGAGACTTATTAATATAACAAAGGATAAAATAAAAGCTGTCAA
 2001 TTTATTGACCATTCACTTAATAATATAAAACAAACTGCTGATCTAAT
 2051 ATGAGACGGACAAATATATTCTAAAATATTTCGGACAGATATGTGATA
 2101 TTCTAACCAATTCACTACACTATATTATGCATTTATCCGCCAATGACTTA
 2151 TTTCAGCTTAATTAATTAGGAAAGAGGAAACTGCCATGAGGAAGAGTA
 2201 GGGCGTAGTTGCTGTCGACAAAAAGATAATACTCACTTTTCGAT
 2251 TTTTATTTATTTATCATTTCACCTTAAACCTATCATGAAAAAGATAATTATT
 2301 TTTTCATGCTTATCCTTAGTATTAAACAATTAAATAGGGATTATTTG
 2351 TAAAATATTATATGAATAATTGTTCTGAATGAATTGTCCGGTCAA
 2401 CAATGATAAATAAAATGAATGAAGAGAGTAGAAAACAAACAAAGAAC
 2451 AAGTTGACAATTGAGAGATTAAAGGGTCAAAACGCCTGGATTGAA
 2501 GATTCCATATGTGAAATTCCATGAAATAATTGAATTGTATTACAA
 2551 GTCAAACCTTCCATTCACTTCAACTAGCCATCTGGTTCAAAATTACA
 2601 CATTCAATTCACTCACAGATCTAATATTCTTAATAGTATTCCACATATG
 2651 GCTGAAGCTTCAATTCAAGTTCTGCTAGACAATCTCACTTCTTCCTCAA
 2701 AGGGGAATTGTATTGCTTCTGGTTCAAGATGAGTTCAAAGGCTTT
 2751 CAAGCATTTCTACAATTCAAGCCGCTTGAAGATGCTCAGGAGAAC
 2801 CAACTCAACAAACAAGCCTCTAGAAAATTGGTTGCAAAACTCAATGCTGC
 2851 TACATATGAAGTCGATGACATCTTGGATGAATATAAAACCAAGGCCACAA
 2901 GATTCTCCCAGTCTGAATATGCCGTTATCATCCAAAGGTTATCCCTTC
 2951 CGTCACAAGGTGGAAAAGGATGGACCAAGTGTGAAAAACTAAAGGC
 3001 AATTGCTGAGGAAAGAAAGAATTTCATTTGACGAAAAATTGTAGAGA

3051 GACAAGCTGTTAGACGGAAACAGGTACTCATCTTAAATTAGTATTACAA
 3101 CAACTAAGTTATATTCACTTTGGCAATTATCAAATTCAAGAAAAGGG
 3151 TTAAATATACTCATGTCCTATCGTAAATAGTGTATATACCTCTCGTTG
 3201 TACTTTCGATCTGAATATACTTGTCAAATCTGGCAAGCTCAGAATCAAAT
 3251 TATCCACCCCAACTTTAAATACTCGATATCTTAGAAATCCACCTGTCT
 3301 AACTCATCCACTACCCATTCCCTTGCTTGAATTCTTTCTTACCTAT
 3351 AAACTTGGAACACTCGATCCGTTTGCTTTCTTAACAAAGCAGCTCAGA
 3401 GAAAAGAGGTTTCTTCTATTCTGTCTGTGCTGCACTTGGGTCC
 3451 TTAATCCCATTAAAAACAGGGCATGTTAACCAAACGACGGTAGCCTTC
 3501 CTGACAGCTGACTGTAATTGTCTAACAAAGAAAAAAAGATTAGAC
 3551 ATGTTTCTGTCATTGATTAGGCTGGATTCTTCAGAGTGGAACAT
 3601 AGGGGATATATTGGACCAAAAGTAGAATGGGTATATATTAAAGTATTTC
 3651 TGATAGAACAGGAGTATATTGTCGAAAATATCCTCTATTCTGTTGTC
 3701 TCCTAATGAGTTGAATGTAATAATATTCTCATGTGGACATTGCTGCAC
 3751 CAGGTTCTGTATTAACCGAACCGCAGGTTATGGAAGAGACAAAGAGAAA
 3801 GATGAGATAGTGAACCTAATAAACAATGTTAGTGATGCCAACACCT
 3851 TTCAGTCCTCCAATACTGGTATGGGGGATTAGGAAAACGACTTTG
 3901 CCCAAATGGTCTTCATGACCAGAGACTGAGCATTCCATTCCAAA
 3951 ATATGGATTTGTCTCGGAAGATTGATGAGAAGAGGTTAATAAGGC
 4001 AATTGTTAGAATCTATTGAAGGAAGGCCACTACTGGTGAGATGGACTTG
 4051 CTCCACTTCAAAAGAACGTTCAAGGAGTTGCTGAATGGAAAAGATACTTG
 4101 CTTGCTTAGATGATGTTGGAATGAAGATCAACAGAACAGTGGCTAATT
 4151 AAGAGCAGTCTGAAAGGTTGGATCAATTATGGAACATTGCAACCATATGAA
 4201 CTCGCTTGAAAAGGTTGGATCAATTATGGAACATTGCAACCATATGAA
 4251 CTGTCATCTGCTCAAGAAGATTGTTGGTTGTTGTCATGCAACGTGC
 4301 ATTTGGACACCAAGAACAAATAATCCAAACCTTGTGGCAATCGGAAAGG
 4351 AGATTGTAACAAAGGTTGGTGTGCCTCTAGCAGCCAAACTCTTGGAA
 4401 GGTATTTGTGCTCAAGAGAGAACAGACATGGAACATGTGAGAGA
 4451 CAGTCGATTGGAATTGCCTCAAGATGAAAGTTCTATTGCTGCCTGCC
 4501 TGAGGCTTAGTTACCATCAACTCCACTTGATTGAAACAATGCTTGC
 4551 TATTGTGCGGTGTTCCAAAGGATGCCAAATGGAAAAAGAAAAGCTAAT
 4601 CTCTCTGGATGGCGCATGGTTTCTTATCAAAAGAACATGGAGC

4651 TAGAGGATGTGGCGATGAAGTATGGAAAGAATTATACTTGAGGTCTTT
 4701 TTCCAAGAGATTGAAGTTAAAGATGGTAAAACCTATTCAAGATGCATGA
 4751 TCTCATCCATGATTGGCAACATCTCTGTTTCAGCAAACACATCAAGCA
 4801 GCAATATCCGTGAAATAAAACACAGTTACACACATATGATGTCCATT
 4851 GGTTTCGCCGAAGTGGTGTTCACACTCTCCCCCTGGAAAAGTT
 4901 TATCTCGTTAACAGTGCTTAATCTAGGTGATTGACATTAAATAAGTTAC
 4951 CATCTTCCATTGGAGATCTAGTACATTAAAGATACTTGAACCTGTATGGC
 5001 AGTGGCATGCGTAGTCTCCAAAGCAGTTATGCAAGCTCAAAATCTGCA
 5051 AACTCTTGATCTACAATATTGCACCAAGCTTGTGTTGCCAAAAGAAA
 5101 CAAGTAAACTTGGTAGTCTCCAAATCTTGTGATGGTAGCCAGTC
 5151 TTGACTTGTATGCCACCAAGGATAGGATCATTGACATGCCTTAAGACTCT
 5201 AGGTCAATTGTTGTTGGAAGGAAGAAAGGTTATCAACTTGGTGAACCTAG
 5251 GAAACCTAAATCTCTATGGCTCAATTAAATCTGCATCTTGAGAGAGTG
 5301 AAGAATGATAAGGACGCCAAAGAAGCCAATTATCTGCAAAAGGGATCT
 5351 GCATTCTTAAGCATGAGTTGGAATAACTTGGACCACATATATATGAAT
 5401 CAGAAGAAGTTAAAGTGCTGAAGCCCTCAAACCACACTCCAATCTGACT
 5451 TCTTTAAAATCTATGGCTTCAGAGGAATCCATCTCCAGAGTGGATGAA
 5501 TCACTCAGTATTGAAAAATTGTCTCTATTCTAATTAGCAACTTCAGAA
 5551 ACTGCTCATGCTTACCCACCCCTTGGTATCTGCCTTGTCTAGAAAGTCTA
 5601 GAGTTACACTGGGGTCTGGATGTGGAGTATGTTGAAGAAGTGGATAT
 5651 TGATGTTATTCTGGATTCCCCACAAGAATAAGGTTCCATCCTTGAGGA
 5701 AACCTGATATATGGACTTGGTAGTCTGAAAGGATTGCTGAAAAAGGAA
 5751 GGAGAAGAGCAATTCCCTGTGCTGAAGAGATGATAATTACGAGTGCC
 5801 TTTCTGACCCCTTCTTCTAATCTTAGGGCTCTTACTCCCTCAGAATT
 5851 GCTATAATAAAAGTAGCTACTCATTCCCAGAAGAGATGTTCAAAACCTT
 5901 GCAAATCTCAAATACTTGACAATCTCTCGGTGCAATAATCTCAAAGAGCT
 5951 GCCTACCAGCTTGGCTAGTCTGAATGTTGAAAAGTCTAAAAATTCAAT
 6001 TGTGTTGCGCACTAGAGAGTCTCCCTGAGGAAGGGCTGGAAGGTTATCT
 6051 TCACTCACAGAGTTATTGTTGAACACTGTAACATGCTAAAATGTTTACC
 6101 AGAGGGATTGCAGCACCTAACAAACCCCTCACAGTTAAAAATTGGGGAT
 6151 GTCCACAACTGATCAAGCGGTGTGAGAAGGAAATAGGAGAAGACTGGCAC
 6201 AAAATTCTCACATTCTAATGTGAATATATATTTAAGTTATTGCTA

6251 TTGTTTCTTGTTGTGAGTCTTTGGTCCTGCCATTGTGATTGCATG
6301 TAATTTTTCTAGGGTTGTTGTTGAGTCTCTCTCATTGGATG
6351 TAATTCTCTTGTAACAAATTAAACAATCTATTGTATTATACGCTTC
6401 AGAATCTATTACTTATTGTAATTGTTCTTGTTGAAATTGTGAGTA
6451 TCTTATTGTATGGAATTTCGATTTATTTGAAAACAAATCAATAAGA
6501 TCCATCTGTATTATACTCCCTCGTCTCATTTATGTGACACTTTGGA
6551 TTTCGAGATTCTTGATCTAAATTTCATAGATCTTTAACACATTG
6601 AATTATCAATTATTGAGATTAGTATTTTATGTAGTTACAAATATA
6651 TAAAATTAAATTTTAAAAAAAGAAGATTTCATGCGCATATTCCGATC
6701 AAACCTAAATTACTAGACTCTCGAAAATGAAAAGTGTACATAAATTGA
6751 GACAGAGGGAGTACTTGTAAATGTTGAATTATTGGCGAACATAATGTT
6801 GGTGATTATCACTTCTGAATAATGTTGTGTCACGTGGAAAAACACCA
6851 AATAGAAGTATTCACTGCTTTTAGTATATATAAACATGATTTAACTT
6901 GGTTTCAGCGGATAGTCATGACCTTAACCTGAATGTGACAAAGTAGAT
6951 ACTTGTATAAAATTAAACAAATTAAATTATACAATATGACACTGA
7001 GAGTAATTGATACCAATTGCAGTCGTTGCTGCTTCGATTCTGTCACT
7051 TCTCTAGGTAATTGATTTACAGAAAAGGGCCAAAATATCCCTGAAGTA
7101 CCAGAAAAGGTCTCAAAATACCAACCACATCCACATTGGTCTAAAATAT
7151 CCTTCTACTCATCCTTTTGTCTAAAATTACCCCTTCATCCACATT
7201 GCTCACTTACCCCTATAACAACTCTCTCCTTTTAAAAAAATATT
7251 TATTATGTGTCATTTCTTATTGAATGAAATAAAATCCACCTCTATTAA
7301 TTTTTCCCATAATTATCCAAATCAAACAAATATTTTCAAGATC

Figure 6D

1 ATGGCTGAAGCTTCCTCAAGTTCTGCTAGATAATCTCACTTTTCAT
 51 CCAAGGGAACTTGGATTGGTTTGTTGAGAAGGAGTTAAAAAC
 101 TTTCAAGTATGTTCAATGATCCAAGCTGTGCTAGAAGATGCTCAAGAG
 151 AAGCAACTGAAGTACAAGGCAATAAAGAACTGGTTACAGAAACTCAATGT
 201 TGCTGCATATGAAGTTGATGACATCTGGATGACTGTAAAAGTGGCAG
 251 CAAGATTCAAGCAGGCTGTATTGGGGCGTTATCATCCACGGACCACACT
 301 TTCTGTTACAAGGTGGAAAAAGAATGAAAGAAATGATGGAAAAACTAGA
 351 TGCAATTGCAGAGGAACGGAGGAATTTCATTAGATGAAAGGATTATAG
 401 AGAGACAAAGCTGCTAGACGGCAAACAGGTGCTCATCTTAATTTCATT
 451 AAACAAATAAGTATTACAAATTGCAGAGAAACGAAGGAATTATATTCA
 501 TTTTATTTGGCAATTATCAAAGTCATTGTGTTTAAGCTGGGGGA
 551 AGTTTCAAATATTTCTCTAGTCTTAATGTTGTCTCACTCACTCAGCAT
 601 GATTTCTCAATCCTTCACTCAACTCCCCCTACTGTGCAAATATCTTC
 651 TCTATTTCTGTTGACTCCTAACATGAGCTTGAATGTAACAACATTCTGTT
 701 TGGAGCAGGTTTGTAACTGAGCCAAAGTTATGGAAGGGAAAAAG
 751 AGGAGGATGAGATAGTAAAATCTTGATAAACAAATGTTAGTTATTCCGAA
 801 GAAGTTCCAGTACTCCAAATACTGGTATGGGGACTAGGAAAGACGAC
 851 TCTAGCCAAATGGCTTCAATGATCAAAGAATTACTGAGCATTCAATC
 901 TAAAGATATGGTTGTCTCAGATGATTGATGAGAAGAGGTTGATT
 951 AAGGCAATTGAGAATCTATTGAAGGAAAGTCACTGGGTGACATGGACTT
 1001 GGCTCCCTCCAGAAAAAGCTTCAGGAGTTGAATGGAAAAAGATACT
 1051 TTCTTGTGATGATGTTGGAATGAAGATCAAGAAAAGTGGATAAT
 1101 CTTAGAGCAGTATTGAAGATTGGAGCTAGTGGTGCCTCAATTCTAATTAC
 1151 TACTCGTCTGAAAAATTGGATCAATTATGGAACCTTGCAACTATATC
 1201 AGTTATCAAATTGTCTCAAGAAGATTGTTGGTTGTTCAAGCAACGT
 1251 GCATTTGCCACCAAAACGAAACAAGTCCTAAACTATGGAATCGGAAA
 1301 GGAGATTGTGAAGAAAATGTGGGGGTGTGCCTCTAGCAGCCAAAACCTTG
 1351 GAGGCCTTTACGCTTCAAGAGGAAAGAAAGTGAATGGAACATGTGAGA
 1401 GATAGTGAGATTGGAATTACCTCAAGATGAAAATTCTGTTGCCTGC

1451 CCTGAGGCTGAGTTATCATCATCTTCCACTTGAGACAAATGTTTG
 1501 CATATTGCAGTATTCCAAAGGACACAAAATAGAAAAGGAATATCTC
 1551 ATCGCTCTGGATGGCACACAGTTCTTATCAAAAGGAAACATGGA
 1601 GCTAGAGGATGTGGCAATGAAGTATGGAATTATACTTGAGGTCTT
 1651 TTTCCAAGAGATTGAAGTAAATCTGGTAAAACCTATTCAAGATGCAT
 1701 GATCTCATCCATGATTGGCTACATCTATGTTTCAGCAAGCGCATCAAG
 1751 CAGAAGTATACGCCAATAAATGTAAAAGATGATGAAGATATGATGTTCA
 1801 TTGTAACAAATTATAAAGATATGATGCCATTGGTTCTCCGAAGTGGTG
 1851 TCTTCTTACTCTCCTCGCTTTAAAAGGTTGTCTCGTTAAGGGTGCT
 1901 TAATCTAAGTAACCTCAGAATTGAACAGTTACCGTCTCCGGAGATC
 1951 TAGTACATTAAAGATACTTGACCTGTCTGGTAATAAAATTGTAGTCTT
 2001 CCAAAGAGGTTGTGCAAGCTCAAAATCTGAGACTCTTGATCTATATAA
 2051 TTGCCAGTCACCTTCTGTTGCCAAACAAACAAGTAAGCTTGAGTC
 2101 TCCGGAATCTTGTACTTGATCACTGTCCATTGACTTCTATGCCACCAAGA
 2151 ATAGGATTGTTGACATGCCCTAACAGACACTAGGTTACTTGTTGAGCGA
 2201 GAGGAAAGGTTATCAACTTGGTGAACACTGAAATTAAACCTCCGGTG
 2251 CAATTCAATCACACATCTGAGAGAGTGAAGGAA
 2301 GAAGCCAATTATCTGCAAAAGCAAATCTACACTCTTAAGCATGAGTTG
 2351 GGATAGACCAACAGATATGAATCCGAAGAAGTTAAAGTGTGAGCCC
 2401 TCAAACCACATCCCAATCTGAAATATTAGAAATCATTGACTTCTGTGGA
 2451 TTCTGTCTCCCTGACTGGATGAATCACTCAGTTGAAAAATGTTGTCTC
 2501 TATTCTAATTAGCGGTTGTGAAACTGCTCGTCTTACCAACCTTGGTG
 2551 AGCTGCCTTGTCTAGAAAGTCTGGAGTTACAAGACGGGCTGTGGAGGTG
 2601 GAGTATGTTGAAGATTCTGGATTCTGACAAGAAGAAGATTCCATCCCT
 2651 GAGAAAACCTCATATAGGTGGCTTTGTAATCTGAAAGGATTGCAGAGAA
 2701 TGAAAGGAGCAGAGCAATTCCCCGTGCTTGAAGAGATGAAGATTCCGGAT
 2751 TGCCCTATGTTGTTTCCGACCCCTTCTCTGTCAAGAAATTAGAAAT
 2801 TTGGGGGGAGGCAGATGCAGGAGGTTGAGCTCCATATCTAATCTCAGCA
 2851 CTCTTACATCCCTCAAGATTTCAGTAACCACACAGTGACTTCACTACTG
 2901 GAAGAGATGTTCAAAACCTGAAAATCTCATATACTTGAGTGTCTTT
 2951 CTTGGAGAATCTCAAAGAGCTGCCTACCAAGCCTGGTAGTCTCAACAATT
 3001 TGAAGTGTCTGGATATTGTTACGCACTAGAGAGTCTCCCGAG

3051 GAAGGGCTGGAAGGTTATCTTCACTCACAGAGTTATTGTTAACACTG
3101 TAACATGCTAAAATGTTACCAGAGGGATTGCAGCACCTAACAAACCTCA
3151 CAAGTTAAAAATTGGGGATGTCCACAACGTGATCAAGCGGTGTGAGAAG
3201 GGAATAGGAGAAGACTGGCACAAATTCTCACATTCTAATGTGAATAT
3251 ATATATTTAA

Figure 6E

1 ATGGCTGAAGCTTCATTCAAGTTGTGCTAGACAATCTCACTTCTTCCT
 51 CAAAGGGAACTTGTATTGCTTTCGGTTTCAAGATGAGTTCCAAAGGC
 101 TTTCAAGCATGTTTCTACAATCCAAGCCGTCTTGAAGATGCTCAAGAG
 151 AAGCAACTCAACGACAAGCCTCTAGAAAATTGGTTGAAAAACTCAATGC
 201 TGCTACATATGAAGTCGATGACATCTGGATGAATATAAAACTAAGGCCA
 251 CAAGATTCTTGCAGTCTGAATATGCCGTTATCATCCAAAGGTTATCCCT
 301 TTCCGTACAAGGTTGGAAAAGGATGGACCAAGTGTGATGAAAAAACTGAA
 351 TGCAATTGCTGAGGAACGAAAGAATTTCAATTGCAAGAAAAGATTATAG
 401 AGAGACAAGCTGCTACACGGGAAACAGGTACTCATCTTAAATTAGTATTA
 451 CAACTTAGTTATATTCAATTGTTGGCAATGATCAAATTATGTAAAG
 501 GTCAAATATACTCATGTACTACTGAAAATAGTTAAATACCTCTAGTT
 551 ATACTATTAGTACGAACATACTCCTCCCATACTTTGGAACAAATATTC
 601 CCTTAACGAAATAAGACACGTGAAAAGTCAGATTCAAATTATCCACCCCT
 651 CAATTAAAGATCTGATTCTTAGGAAACCACTCATCTCCCGTTTG
 701 AGTTCTTAACGAAGCAGCTCAGAGAAAAGAGGTTTCTCTGTTCTGTTT
 751 CTGCTGCATTGTCCTTAATCCAATAACAAACAATACAAATTAAATATTA
 801 TGTTCACGATGAGGGTAGTCTTCTAGCTAGACATGAACGTGAGTGTAAAT
 851 TTTGTTTAAGGAAGAAAAGAAATGATTAGGCTGGATTCTTCAGAGT
 901 GGAATATAGGGGATAAAAGTTGGAGCATAGAGTTCCATCGTTATTCTT
 951 TCCTTAAAGTAACAAGTTCAACAAAATGATATCAAGGTACGGTAATGGAA
 1001 AATTATTAGACACGTCTAAACTACAAAATGGAATAGAAACTTAAATTAT
 1051 CAGTGACAATATCATCCTTAAATAAGCTACCAAAATTAAATCATGATAC
 1101 AGAGAAGAACCAAAAAATTAGGGGTGAATTATTGATTCTATGCTTAT
 1151 CACATGTCTCCCATAACATCAAAGGAAAATTGTGCCAAAGTATAAAC
 1201 GGTGCGGTATATTGGATTGAAAGTAAAACAGGGAGGATACATTGGACTA
 1251 AAAGTATAACAATAAGTATATTGATCATTTATGTATCAAATTCTATGTG
 1301 GTTTGGGGAGAAGGGAAGTTCAATGTTCAATCTGCTCCTCATCTC
 1351 ATCCATATCTCTTATTGTGAAAACCCTCTATTTAACTATTTCTG
 1401 CCGACTCCTAATGAGCTTGAATGTAACAATATTCTCATCTGGACATTGCT

1451 TGCACCCAGGTTCTGTGTTAACTGAACCACAAGTTATGGAAGGGACAAAG
 1501 AAAAAGATGAGATAGTGAACCAACTCTAATAAACAAATGTTAGTGATGCCAA
 1551 AAACCTCTCAGTCCTCCAATACCTGGTATGGGGACTAGGAAAGACAAC
 1601 TCTTCCCCAAATGGCTTCAATGATCAGAGAGTAAC TGAGCGTTCTATC
 1651 CAAAAATATGGATTGCGTCTCGGATGATTTGATGAGAAGAGGTTGATA
 1701 AAGGCAATAGTAGAATCTATTGAAGGAAAGTCCCTCAGTGACATGGACTT
 1751 GGCTCCACTTCAAAAGAAGCTTCAAGAGTTGCTGAATGGAAAAAGATACT
 1801 TCCTTGTCTTAGATGATGTTGGAATGAAGATCAACATAAGTGGCTAAT
 1851 TTAAGAGCAGTCTGAAGGTTGGAGCAAGTGGTGCATTGTTCTAACTAC
 1901 TACTCGTCTGAAAAGGTTGGATCAATTATGGAACATTGCAACCATAATG
 1951 AATTGTCAAATCTGTCCTCAGAGGATTGTTGGTTTGTGTCATGCAGCGT
 2001 GCATTGGAACACCAAGAAGAAATAATCCAAACCTTGTGGCAATCGGAAA
 2051 GGAGATTGTGAAAAAAATGTGGTGGTGTGCCCTCTAGCAGCCAAGACTCTG
 2101 GAGGTATTTGCGCTCAAGAGAGAAGAAAGAGAATGGGAACATGTGAGA
 2151 GACAGTCCGATTGGAATTGCGCTCAAGATGAAAGTTCTATTCTGCCGC
 2201 CCTGAGGCTTAGTTACCATCATCTTCCACTTGATTTGAGACAATGCTTG
 2251 TGTATTGTGCGGTATCCAAAGGACACCAAAATGGCAAAGGAAAATCTT
 2301 ATCGCTTTGGATGGCACATGGTTTCTTATCGAAAGGAAATTGGGA
 2351 GCTAGAGGATGTAGGTAAATGAAGTATGGAATTAACTTGAGGTCTT
 2401 TCTTCCAAGAGATTGAAGTTGAATCTGGTAAACCTTATTCAAGATGCAT
 2451 GACCTCATCCATGATTGGCTACATCTCTGTTTCAGCAAACACATCAAG
 2501 CAGCAATATCGTGAATAATGCTAATTATGATGGATATGATGTCGA
 2551 TTGGTTTGCTGAAGTGGTATCTTCTTACTCTCCTTCACTCTGCAAAG
 2601 TTTGTCTCATTAAGGGTCTTAATCTAAGAAACTCGAACCTAAATCAATT
 2651 ACCATCTTCCATTGGAGATCTAGTACATTAAAGATACCTGGACTTGTCTG
 2701 GCAATTAGAATTGTAATCTTCAAAGAGATTATGCAGGCTTCAAAT
 2751 CTGGCAGACTCTGATCTACATTATTGCGACTCTCTTCTTGTGCAAAG
 2801 ACAAAACAAGTAAACTGGTAGTCTCCGAAATCTTACTTGATGGCTGTT
 2851 CATTGACGTCACGCCACCAAGGATAGGATTGTTGACATGCCCTAAGTCT
 2901 CTAAGTTGCTTGTATTGGCAAGAGAAAAGGTTATCAACTGGTGAAC
 2951 AAAAACCTAAATCTCTATGGCTCAATTCAATCACAAAACCTGACAGAG
 3001 TGAAGAAAGATAGCGATGCAAAAGAAGCTAATTATCTGCTAAAGCAAAT

3051 CTGCACTTTATGCCTGAGTTGGGACCTGATGGAAAACATAGATATGA
3101 TTCAGAAGTTCTGAAGCCCTCAAACCACACTCCAATCTGAAATATTTAG
3151 AAATCAATGGCTTCGGAGGAATCCGTCTCCCAGATTGGATGAATCAATCA
3201 GTTTGAAAAATGTTGTCTTATTAGAATTAGAGGTTGTGAAAAGTCTAGAGTTAC
3251 ATGCTTACCAACCCCTTGGTGAGCTGCCTGTCTAGAAAGTCTAGAGTTAC
3301 ACACCGGGTCAGCAGATGTGGAGTATGTTGAAGATAATGTTCATCCTGGA
3351 AGGTTTCCATCCTTGAGGAAACTTGTATATGGGACTTTAGTAATCTAAA
3401 AGGATTGCTGAAAAGGAAGGGAGAAAAGCAATTCCCTGTGCTTGAAGAGA
3451 TGACATTTACTGGTGCCCTATGTTGTTATTCCGACCCTTCTCTGTC
3501 AAGACATTGAAAGTTATTGCGACAGATGCAACAGTTTGAGGTCCATATC
3551 TAATCTAGGGCTTACTTCCCTTGACATTAGCAATAACGTAGAAGCTA
3601 CTTCACTCCCAGAAGAGATGTTCAAAAGCCTGCAAATCTCAAATCTTG
3651 AATATCTCTTCTTAGGAATCTCAAAGAGTTGCCTACCAAGCCTGGCTAG
3701 TCTCAATGCTTGAAGAGTCTCAAATTGAAATTGTAACGCCACTAGAGA
3751 GTCTCCAGAGGAAGGGGTGAAAGGTTAACCTCACTCACCGAGTTGTCT
3801 GTCAGTAACTGTATGATGCTAAAATGTTACCGGAGGGATTGCAGCACCT
3851 AACAGCCCTACAACCTTAACAATTACTCAATGTCCAATAGTATTCAAGC
3901 GGTGTGAGAGAGGAATAGGAGAAGACTGGCACAAAATTGCTCACATTCCA
3951 TATTGACTCTATGAGTGA

Figure 6F

1 ATGGCGGAAGCTTTCTCAAGTTCTGCTAGAAAATCTCACTTCTTCAT
 51 CGGAGATAAACTTGTATTGATTTCGGTTCGAAAAGGAATGTGAAAAGC
 101 TGTCGAGTGTGTTCCACAATTCAAGCTGTGCTCAAGATGCTCAGGAG
 151 AAGCAATTGAAGGCACAGGCAATTGAGAATTGGTGCAGAAACTCAATT
 201 TGCTGCCTATGAAGTTGATGATATATTGGCGAATGTAAGGAAACTCAAT
 251 TAAGATTGAGCAGTCTCGATTAGGGTTTATCACCCAGGGATTATCAAT
 301 TTCCGTACAAAATTGGGAGAAGGATGAAAGAGATAATGGAGAAACTAGA
 351 TGCAATATCTGAGGAAAGAAGGAAGTTCATTCCTGAAAAAAATTACAG
 401 AGAGACAAGCTGCCGCTGCTACCGTGAAACAGGTGTGAGTACTGAGTAA
 451 TTGTAGCTTAGTTAATATTCAATTGTTACCACATCATGTGTTACCGTG
 501 ATCTCTACAGTAGGATGGCAATGGGCTGGCGAGGTTGGAGGTGTGCAG
 551 GTGTGTGGCGCAACCCCAACTTTGAGTCTACATAAGTAGGTACTTAAATT
 601 TGTATAGAGTTGAACAAGTACAAACGCCCTACTTGGTGTCTTATGCG
 651 TATTATGTCACCTAGGATGCATGTGTACTTGTCAACTTTATGAGT
 701 TTAAGTTCTACTTGTGCACACCCAAAGTTGGAGCGCTAGATGTCAGTTG
 751 ATACCAAGTTAAAAGGCATATTATGAATTATGCCTTAAATTATGATT
 801 CAATTGTATCAGTCTGTCCAAATATGTTCTAGTGAAAGTGTAAACT
 851 TAGTCTGGATCTGCTATTGAAAGTGAATTGGTGGCACTAAACAATGCA
 901 ATGGGTCTGGATTCACTTGCATTAACCTTGTAGACGATTTCTT
 951 ATCGAATTTACTGTCTAAATGGAAAAAGCAAAGAAATAAGAAGTATAC
 1001 AGAGGCTGACTTCTTCATAGTATCTATCATATAAAAAAAAGCATTGATTA
 1051 CTAGGATATGGTTCTTTAAATTACAAATTGAGTTAAACAGTTCT
 1101 GTTGGGAAGGATTAGATAACACGTGGATAGTATCTAGAAGTTTTAAAT
 1151 AAAAATTAGCAAATTATGCCGGCTGGGGCGGGTTGAAAACAGCAAACCT
 1201 TGCAAGGCTTGGCGGGTCGAAATCTTGCAGTTGTGTGGTTGCCCT
 1251 GCACCAACCCAACTGCGCATTCCGTCTAAATGTTGTGTTGTCTATAATT
 1301 CTTGCTGACTCATTCTAATGAGCTCAATTGTAACAAATTCTTGTGTC
 1351 CACTACTTGGAACAGGTTGTGTTACTGAACCAAAAGTCTACGGAAGG
 1401 GACAAAGAGGAGGATGAGATAGTGAAAATTCTGATAAACAAATGTTAATGT

1451 TGCCGAAGAACCTCCAGTCTTCCCTATAATTGGTATGGGGGACTAGGAA
 1501 AGACGACACTGCCAAATGATCTCAACGATGAGAGAGTAACTAAGCAT
 1551 TTCAATCCCCAAATATGGGTTGTCTCAGATGATTTGATGAGAAGAG
 1601 GTTAATTAAGACAATTATAGGAAATATTGAAAGAAGTTCTCCTCATGTTG
 1651 AGGACTTGGCTTCATTCAGAAGAAGCTCAGGAGTTATTGAATGGAAAA
 1701 CGATACTTGCTGTCTTAGATGATGTTGGAATGATGATCTAGAAAAGTG
 1751 GGCTAAGTTAAGAGCAGTCTTAACCTGTTGGAGCAAGAGGTGCTTCTATT
 1801 TAGCTACTACTCGTCTTGAAAAGGTTGGATCAATTATGGAACGTTGCAA
 1851 CCATATCATTGTCAAATTGTCCTCACATGATAGTTACTTTGTTAT
 1901 GCAACGCGCATTGGGCAACAAAAAGAACGAAATCCTAATCTAGTGGCCA
 1951 TTGGAAAAGGAGATTGTGAAGAAATGTGGTGGTGCCTTAGCAGCCAAG
 2001 ACTCTTGGTGGTCTTTACGCTTCAGAGAGAAGAGAGTGAATGGAAACA
 2051 TGTGAGAGATAATGAGATTGGAGTCTGCCTCAAGATGAAAGTTCTATT
 2101 TGCCTGCTCTAAGACTGAGTTATCATCACCTCCACTTGATTTGAGACAA
 2151 TGCTTGCCTATTGTGCAGTATTCCAAAGGACACCAAAATGATAAAGGA
 2201 AAATCTCATTACTCTGGATGGCGATGGTTTCTTTATCAAAGGGAA
 2251 ACTTGGAGCTAGAGGATGTGGTAATGAAGTATGGAATTAACTTG
 2301 AGGTCTTCTTCCAAGAAATTGAAGCTAAATCGGGTAATACTTATTCAA
 2351 GATACATGATCTAATCCATGATTGGCTACATCTGTTTCGGCAAGCG
 2401 CATCATGCGGCAATATCCGCGAAATAAATGTCAAAGATTATAAGCATACA
 2451 GTGCCATTGGTTCGCTGCAGTGGTGTCTTACTCTCCTCGCTCTT
 2501 GAAAAAGTTGTCTCGTTAAGGGTCTTAATCTAAGTTACTCAAAACTTG
 2551 AGCAATTACCGTCTCCATTGGAGATCTATTACATTAAAGATACTGGAC
 2601 CTGTCTGCAATAACTCCGTAGTCTCCAGAGAGGTTGTGCAAGCTTCA
 2651 AAATCTTCAGACTCTGATGTACATAATTGCTACTCACTTAATTGTTGC
 2701 CAAAACAAACAAGTAAACTTAGTAGTCTCCGACATCTGTTGATGGC
 2751 TGTCCATTGACTCTACTCCACCAAGGATAGGATTGTTGACATGCCTTAA
 2801 GACTCTAGGTTCTTATTGTGGGAAGCAAGAAAGGTTATCAACTGGTG
 2851 AACTGAAAAACCTAAATCTCTGGCGCTCAATTCAATCACACACCTTGAG
 2901 AGAGTGAAGAACGATACGGATGCAGAACGCAATTATCTGCAAAAGCAA
 2951 TCTGCAATCTTAAGCATGAGTTGGATAACGATGGACCAAACAGATATG
 3001 AATCCAAAGAAGTTAAAGTGCCTGAAGCACTCAAACCACACCCCAATCTG

3051 AAATATTTAGAGATCATTGCCTCGGAGGATTCCGGTTTCCAAGCTGGAT
3101 AAATCACTCAGTTGGAGAAGGTATCTCTGTTAGAATTAAAAGCTGCA
3151 AAAACTGCTTGTGCTTACCAACCCTTGAGCTTCCTGTCTAGAAAAT
3201 CTAGAGTTACAAACGGATCTGCGGAGGTGGAGTATGTTGAAGAGGATGA
3251 TGTCCATTCTAGATTCTCCACAAGAAGAAGCTTCCATCCCTGAAAAAAC
3301 TTCGTATATGGTTCTTCGCAGTTGAAAGGGCTGATGAAAGAGGAAGGA
3351 GAAGAGAAATTCCCCATGCTTGAAGAGATGGCGATTATATTGCCCTCT
3401 GTTGTGTTTCCAACCCTTCTCTGTCAAGAAATTAGAAGTTCACGGCA
3451 ACACAAACACTAGAGGTTGAGCTCCATATCTAATCTTAGCACTCTTACT
3501 TCCCTCCGCATTGGTGCTAAGTACAGAGCGACTTCACTCCCAGAAGAGAT
3551 GTTCACAAGTCTTACAAATCTCGAATTCTTGAGTTCTTGACTTCAAGA
3601 ATCTCAAAGATCTGCCCTACCAGCCTGACTAGTCTCAATGCTTGAGCGT
3651 CTCCAAATTGAAAGTTGTGACTCACTAGAGAGTTCCCTGAACAAGGGCT
3701 AGAAGGTTAACCTCACTCACACAGTTGTTGTTAAATACTGTAAGATGC
3751 TAAAATGTTACCCGAGGGATTGCAGCACCTAACAGCCCTCACAAATTAA
3801 GGAGTTCTGGTTGTCCAGAAGTGGAAAAGCGCTGTGATAAGGAAATAGG
3851 AGAAGACTGGCACAAATTGCTCACATTCAAATCTGGATATTCAATTAG

Figure 7

A	MAEAFIQVLLDNLTSFLKGELVLLFGFQDEFQRLSSMESTIQAVLEDAQEQLNN KPLENLQKLNAATYEVDDILDEYKTKATRFSQSEYGRYHPKVIPFRHKVGKRMD QVMKKLKAIACEERKNFHLHEKIVERQAVRRETGSVLTEPQVYGRDKEKDEIVKIL	55 110 165
B	INNVSDAQHLSVLPilgmgglgkttlaQMVFNDQRVTEHFHSKIWICVSEDFDEK RLIKAIIVESIEGRPLLGEMDLAPLQKKLQELLNGkryllvlddvwNEDQQKWANL RAVLKVGVASGAsvlterLEVKGSIMGTLQPYELSNSLQEDCWLLFMQRAFGHQE EINPNLVAIGKEIVKKSGGVPLAAKTLGGILCFKREERAWEHVRDSPIWNLPQDE SSILPALRLSYHQLPLDLKQCFAYCAVFPKDAKMEKEKLISLWMAHGFLSKGNM ELEDVGDEVWKELYLRSFFQIEVKDGKTYFKmhdihdlatSLFSANTSSSNIR EINKHS	220 275 330 385 440 495 501
C	YTHMMSIGFAEVUFFYTLPPEK FISLRVLNLGDST.FNKLPSIGD LVHLRYVLNLYGSG.MRSLPKQLCK LQNLQTLDDLQYCTKLCCLPKETSK LGSLRNLLLDGSQSLTCMPPRIGS LTCLKTLGQFVVGRKKGYQ LGELGNLNLYGSIKISHLERVKNDKDAKEANLSA KGNLHSLSMSWNNGPHIYESEEVKVLEALKP HSNLTSLKIIYGFRGIH.LPEWMNHSV LKNIVSILISNFRCSCLPFPGD LPCLESLELHWGSAD VEYVEEVIDVHSGFPTRIR FPSLRKLDIWDFGSLKGLLKKEGEEQ FPVLEEMIIHECPFLTLSSN LRALTSLRICYNKVATSFFEEMFKN LANLKYLTISRCCNLKELPTSLAS LNALKSLKIQLCACALESLPEEGLEG LSSLTELFVEHCNMLKCLPEGLQH LTTLTSLKIRGCPQLIKRCEKGIGEDWHK ISHIPNVNIYI	524 547 570 594 618 637 671 703 728 751 766 786 812 832 857 881 906 930 959 970

L..L..L..C..α..αP.. LRR consensus

N

S

Figure 8

Figure 9

Rpi-blb	MAEAFIQVLLDNLTSFLKGEVLLFGFQDEFQRLSSMFSTIQAVLEDAQEKQLNNKPLEN	60
RGC3-blb	V	D
RGC1-blb	L F IQ G V EK KK M	KY AIK
RGC4-blb	L E IGDK I EK CEK V Q	KD AI
Rpi-blb	WLQKLNAATYEVDDILDEYKTKATRFSQSEYGRYHPKVIPPRHKVGKRMQVMKKLKAIA	120
RGC3-blb	L	N
RGC1-blb	V A DC E A K AVL RT T CY KEM E D	120
RGC4-blb	S A G C NE I E RL F GI N I R KEI E D S	120
Rpi-blb	EERKNFHHLHEKIVERQAVR--RETG-----	143
RGC3-blb	Q I AT--	143
RGC1-blb	R D RI A -- Q	143
RGC4-blb	RK FL T AAAT VGWQWGRARLEYKRLLLGVLMRIMSLRMHVSTCSTL	180
Rpi-blb	-----SVLTEPVYGRDKEKDEIVKILINNVSDAQHLSVLpilgmggl	186
RGC3-blb	-----K	185
RGC1-blb	-----F K E E YSEEVP	186
RGC4-blb	YEFKFYLCTPKVGARRCF K E NV EE P F I	240
Rpi-blb	gkttlaQMVFNQDQRVTEHFHISKIWICVSEDFDEKRLIKAIIVESIEGRPLIIGEMDLAPLQK	246
RGC3-blb	S R YP D KS S-D	245
RGC1-blb	I NL V D KS G-D	245
RGC4-blb	I E K NP V D T IGN - SSPHVE SF	299
Rpi-blb	KLQELLNGkryllvlldvwnEDQCKWANLRAVLKVGASGAsvlttrLEKVGSIMGTLP	306
RGC3-blb	F H F	305
RGC1-blb	F E D I I I I L	305
RGC4-blb	D LE K T R I A	359
Rpi-blb	YELSNLSQEDCWLLFMQRAFGHQEEINPNLVAIGKEIVKKSGGvpblaaktlggILCFKRE	366
RGC3-blb	P F C R	365
RGC1-blb	Q K C T TS K ME C L R	365
RGC4-blb	H PH SL Q K A C L R	419
Rpi-blb	ERAWEHVRD SPIWNLPQDESSILPALRLSYHQLPLDLKQCFAYCAVFPKDAKMEKEKLIS	426
RGC3-blb	E H R V T A N A	425
RGC1-blb	SE E N V H R T I Y A	425
RGC4-blb	SE NE S H R T I N T	479
Rpi-blb	LWMAHGFLLSKGNCMELEDVGDEVWKELYLRSFFQEIEVKDGKTYFKmhdihdlatSLFS	486
RGC3-blb	F L N N ES	485
RGC1-blb	S N N S M	485
RGC4-blb	L N N A S N I	539
Rpi-blb	ANTSSSNIREINKH-----SYTHMMSIGFAEVVFFYTLPPLKEFISLRVLNLGDS	536
RGC3-blb	AN-----YDGY SS SP SL Q V RN	535
RGC1-blb	SA RS Q VKDDEDMMFIVTN KD S SS SP SL FK R V SN	545
RGC4-blb	SA CG VK-----D K TV A SS SP SL K V SY	589
Rpi-blb	TPNKLPS SIGDLVHLRYLNLYG-SGMRS LPKQLC K L Q N L Q T LD L Q Y C T K L C C L P K E T S K L	595
RGC3-blb	NL Q D S NFRI N R H DS S Q	595
RGC1-blb	E EQ V D S -NKIC R YN QS S Q	604
RGC4-blb	KLEQ L D SC-NNF ER VHN YS N Q	648
Rpi-blb	GSLRNLLLDGSOSLTCPMPRIGSLTCLKTLGOFVVGRKKGYQLGELGNLNLYGSIKISHL	655
RGC3-blb	-C ST L S SC I KR K S TK	654
RGC1-blb	C V H-CP S L Y ER R R A S T	663
RGC4-blb	S H VV -CP ST L F I S K C S T	707
Rpi-blb	ERVKNDKDAKEANLSAKGNLHSLSMSWNNFGPHIYESEEEVKVLEALKPHSNLTSLKIYGF	715
RGC3-blb	D K S A CL DLD K R D ---E KY E N	711
RGC1-blb	ME A D--R NR P KY E ID	721
RGC4-blb	T - A Q D D NR K P KY E IA	766

Rpi-blb	<u>AGIHLPMWMNHSVLKNIVSILISNFRCNSCLPPFGDLPCLLESLELHWGSADVEYVEEVDI</u>	775
RGC3-blb	G R D Q V R RGCE E T DN--	769
RGC1-blb	C FC D V GCE E QD VE DS--	779
RGC4-blb	G FRF S I EKVI VR KSCK L E N QN E D--	824
Rpi-blb	DVHSGFPTRIRFPSLRKLDIWDFCSLKGLLKKEGEEQFPVLEEMIHECPFLTLS-----	830
RGC3-blb	- P ----- V SN K TFYW MFV IPTLSSV	823
RGC1-blb	---- L R H GG CN QRMK A K SD MFVFPTLSSV	835
RGC4-blb	R S RS K R F R M E K M A LY LFVFPTLSSV	884
Rpi-blb	-----SNLRLALTSLRICYNKVATSFPEEMFKNLANLKYLTISRCNNLK	873
RGC3-blb	KTLKVI-ATDATVLRSI D SN VE L S N FFR	882
RGC1-blb	KKLEIWIWGEADAGGLSSI ST K PS HTV LL E I SV FLE	895
RGC4-blb	KKLEVHGNNTTRGLSSI ST GA YR L TS T EF SFFDFK	944
Rpi-blb	<u>ELPTSLASLNALKSLKICLCALAESLPEEGLEGSSLTELFVEHCNMLKCLPEGLQHLTT</u>	933
RGC3-blb	FEF N VK T S SN M A	942
RGC1-blb	N C D R Y Y	955
RGC4-blb	D T R Q ES DS F Q T Q KY K A	1004
Rpi-blb	<u>LTSLIKRGCPOLIKRCEKGIGEDWHKISHIPNVNIYI</u>	970
RGC3-blb	T T TQ IVF R A YLTLE	979
RGC1-blb		992
RGC4-blb	N GVS EVE D E A LD H-	1040

Figure 10

Figure 11

European Patent
Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention
shall be considered, for the purposes of subsequent
proceedings, as the European search report

EP 02 07 5565

DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages		
X	DATABASE EMBL 'Online! EMBL; 5 September 2001 (2001-09-05) PAN Q. ET AL.: "Lycopersicon esculentum isolate Q194 nucleotide binding region of resistance-like gene, partial sequence" Database accession no. AF404480 XP002206417 * abstract * -& PAN Q. ET AL.: "Comparative genetics of nucleotide binding site-leucin rich repeat resistance gene homologs in the genomes of two dicotyledons: tomato and arabidopsis" GENETICS, vol. 155, no. 1, 2000, pages 309-322, XP002207023	1-23	C07K14/415 C12N15/82 C07K16/16 G01N33/50 C12N5/10 A01H1/04
Y		24-31	
X	DATABASE SWISSPROT 'Online! EBI; 1 December 2001 (2001-12-01) SASAKI T. ET AL.: "Putative NBS-LRR type resistance protein" Database accession no. Q94J89 XP002206418 * abstract *	1-23	
Y		24-31	
	-/-		
INCOMPLETE SEARCH		TECHNICAL FIELDS SEARCHED (Int.Cl.7)	
		C12N C07K	
<p>The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims.</p> <p>Claims searched completely :</p> <p>Claims searched incompletely :</p> <p>Claims not searched :</p> <p>Reason for the limitation of the search:</p> <p>see sheet C</p>			
Place of search	Date of completion of the search	Examiner	
MUNICH	22 July 2002	Marinoni, J-C	
CATEGORY OF CITED DOCUMENTS <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			

Claim(s) searched completely:

Claim(s) searched incompletely:
32

Reason for the limitation of the search (non-patentable invention(s)):

Article 53 (b) EPC - Plant variety

Further limitation of the search

Claim(s) searched completely:

Claim(s) searched incompletely:
1-32 all partially

Reason for the limitation of the search:

Present claims 1-4 and 6 relate to a nucleic acid defined by reference to a desirable characteristic or property, namely that it is identifiable by phylogenetic tree analysis as corresponding to the Rpi-blb, RGC1-blb, RGC2-blb and RGC4-blb gene cluster.

The claims cover all nucleic having this characteristic or property, whereas the application provides support within the meaning of Article 84 EPC and/or disclosure within the meaning of Article 83 EPC for only a very limited number of such nucleic acids. Moreover, due to the purpose itself of the tree analysis, virtually any known late-blight LRR resistance gene, but also any gene whatever the extent of its homology to the genes of the invention and whatever its function, can be retrieved. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 84 EPC). This lack of clarity is such as to render a meaningful search over the whole of the claimed scope impossible. The additional provisions of claims 2-4 and 6 are not considered as being true technical feature that would enable the skilled person to define properly the nucleic acids for which protection is sought (Article 84 EPC) and to put the invention into practice without undue burden (Article 83 EPC).

Additionally, claim 15 tries to define a proteinaceous substance by reference to a result to be achieved, namely that it provides at least partial resistance to oomycete infection, whereas only a very limited number of such proteinaceous substances has been disclosed in the application as filed.

Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the proteins having the sequences of SEQ ID No. 41 to 44 and the nucleic acids encoding them corresponding to the Rpi-blb,

European Patent
OfficeINCOMPLETE SEARCH
SHEET CApplication Number
EP 02 07 5565

RGC1-blb, RGC2-blb and RGC4-blb genes respectively, or fragments thereof, and to sequences sharing at least 50% identity with the sequences disclosed in the specification (see page 6, lines 5-8).

Consequently, all claims referring back directly or indirectly to the nucleic acids of claims 1-6 have also been searched partially.

Additionally again, claims 18 and 20 are directed to molecules binding either the proteins of claims 15-18 or the nucleic acid of claims 1-6, whereas the application provides support and disclosure only for a limited number of such molecules i.e. antibodies on one hand and primer/probes on the other hand. The search has been restricted to antibodies and primers/probes respectively. All claims referring back directly or indirectly to claims 18 and/or 20 were partially searched too.

Additionally again, claim 32 is directed to a plant that does not necessarily contain the gene(s) of the invention and could be a plant that has been obtained through traditional breeding methods, which are excluded from patentability under Article 53(b) EPC.

European Patent
Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 02 07 5565

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	DATABASE EMBL 'Online! EMBL; 8 June 2001 (2001-06-08) BOUGRI O. ET AL.: "Generations of ESTs from dormant potato tubers" Database accession no. BG890602 XP002206419 * abstract *	1-23	
D, Y	VAN DER BIEZEN E A ET AL: "THE NB-ARC DOMAIN: A NOVEL SIGNALLING MOTIF SHARED BY PLANT RESISTANCE GENE PRODUCTS AND REGULATORS OF CELL DEATH IN ANIMALS" CURRENT BIOLOGY, CURRENT SCIENCE., GB, vol. 8, no. 7, 26 March 1998 (1998-03-26), pages R226-R227, XP000924862 ISSN: 0960-9822 * the whole document *	1-31	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
Y	LEISTER D ET AL: "A PCR-BASED APPROACH FOR ISOLATING PATHOGEN RESISTANCE GENES FROM POTATO WITH POTENTIAL FOR WIDE APPLICATON IN PLANTS" NATURE GENETICS, NEW YORK, NY, US, vol. 14, December 1996 (1996-12), pages 421-429, XP000964717 ISSN: 1061-4036 * the whole document *	1-31	
A	VAN DER BIEZEN ERIC ET AL: "Plant disease-resistance proteins and the gene-for-gene concept" TIBS TRENDS IN BIOCHEMICAL SCIENCES, ELSEVIER PUBLICATION, CAMBRIDGE, EN, vol. 23, no. 12, December 1998 (1998-12), pages 454-456, XP002158209 ISSN: 0968-0004 ---	-/-	

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
			TECHNICAL FIELDS SEARCHED (Int.Cl.7)
A	DONG F ET AL: "Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato." THEORETICAL AND APPLIED GENETICS, vol. 101, no. 7, November 2000 (2000-11), pages 1001-1007, XP001087853 ISSN: 0040-5752 ---		
A	ELLIS JEFF ET AL: "Structure, function and evolution of plant disease resistance genes." CURRENT OPINION IN PLANT BIOLOGY, vol. 3, no. 4, August 2000 (2000-08), pages 278-284, XP002206415 ISSN: 1369-5266 ---		
A	YOUNG NEVIN DALE: "The genetic architecture of resistance." CURRENT OPINION IN PLANT BIOLOGY, vol. 3, no. 4, August 2000 (2000-08), pages 285-290, XP002206416 ISSN: 1369-5266 ---		
A	OBERHAGEMANN P ET AL: "A GENETIC ANALYSIS OF QUANTITATIVE RESISTANCE TO LATE BLIGHT IN PATATO: TOWARDS MARKER-ASSISTED SELECTION" MOLECULAR BREEDING: NEW STRATEGIES IN PLANT IMPROVEMENT, KLUWER ACADEMIC PUBLISHERS, NL, vol. 5, no. 5, 1999, pages 399-415, XP001079515 ISSN: 1380-3743 ---	-/-	

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 02 07 5565

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
A	<p>THIEME R ET AL: "PRODUCTION OF SOMATIC HYBRIDS BETWEEN S.TUBEROSUM L. AND LATE BLIGHT RESISTANT MEXICAN WILD POTATO SPECIES" EUPHYTICA, KLUWER ACADEMIC PRESS, AMSTERDAM, NL, vol. 97, no. 2, 1997, pages 189-200, XP002912898 ISSN: 0014-2336</p> <p>-----</p>		

CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing more than ten claims.

- Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):

- No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

see sheet B

- All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

- As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

- Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

- None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION
SHEET BApplication Number
EP 02 07 5565

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-32 all partially

The RPI-b1b gene or RGC2-b1b gene having the sequences of SEQ ID No. 35 and 36, the SEQ ID No. 37, all three sequences conferring late-blight resistance in Solanaceae, the protein encoded thereby having the sequence of SEQ ID No. 41, methods and plants related to said gene, etc...

2. Claims: 1-32 all partially

The RGC1-b1b, RGC3-b1b and RGC4-b1b genes of SEQ ID No. 38, 39, and 40, which do not confer late-blight resistance in Solanaceae, the protein encoded thereby having the sequences of SEQ ID No. 43, 42, and 44 respectively, methods and plants related to said gene, etc...

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)