Introduction: Adaptive trials & sample size re-calculation

Marc Vandemeulebroecke
Part of the BBS training: Advanced group-sequential and adaptive
confirmatory clinical trial designs
Basel, 13 Sep 2022

Learning objectives

Participants should understand:

- What are adaptive clinical trials
 - Major subtypes, distinctions, definitions
- Essential statistical methodology of adaptive trials
 - p-value combinations
 - conditional error functions
 - CRP principle
 - Conditional power and sample size adjustment

What are adaptive designs?

- There are many different types of adaptive trial designs
 - (Group sequential designs, early stopping)
 - Adaptive randomization
 - Adaptive dose escalation
 - Adaptive dose finding
 - Sample size re-estimation
 - Treatment arm selection
 - Enrichment designs
 - ...
- Various «schools» of adaptive designs have developed in parallel, depending on the application area

What are adaptive designs?

Key distinctions:

- Exploratory or confirmatory? → Confirmatory
- Adaptations of which trial features? → Any
- Using unblinded data? → Yes*
- Predetermined adaptations or ad-hoc? → Both
- Based on interim data or external information? → Both

Excluded here:

- Blinded design modifications (e.g. blinded sample size re-estimation; generally not controversial)
- Bayesian designs (frequent in early development phases)
- Response-adaptive randomization

Our focus:

Frequentist confirmatory adaptive designs

Our focus:

Some definitions of adaptive designs

- Dragalin (PhRMA), 2006:
 - A multistage study design that uses accumulating data to decide how to modify aspects of the study without undermining the validity and integrity of the trial. [...] preplanning, as much as possible, based on intended adaptations.
- FDA draft guidance, 2010:
 - A study that includes a prospectively planned opportunity for modification of one or more specified aspects of the study design and hypotheses based on analysis of data (usually interim data) from subjects in the study.
- EMA reflection paper, 2007:
 - A study is called 'adaptive' if statistical methodology allows the modification of a design element [...] at an interim analysis with full control of the type I error.
- FDA guidance, 2019:
 - A clinical trial design that allows for prospectively planned modifications to one or more aspects of the design based on accumulating data from subjects in the trial.

Why adaptive designs

- In the 1980's, group sequential designs were introduced and grew popular. They provided a rigorous theory for early stopping but no other adaptations.
- In practice, however, adaptations of running trials were sometimes needed and done. Their impact on the inference was unclear and often ignored.
- **Quiz**: What is the maximal Type I error for a two-stage group-sequ. test with nominal level 5%* if n₂ is chosen in light of the observed first stage effect?
 - 5%?
- 8.2%?
- 11.5%?

Ignition: Bauer (1989)

- Idea borrowed from meta-analysis (MA):
 - MA combines the inference from separate trials
 - Now: combine the inference from separate stages of one trial
 - This also allows adapting the second stage based on the first

Method as well:

- Take the product of the p-values from both trial stages
- If p_1p_2 is «too small» then reject H_0 .
- Quiz: What is «too small»?
 - Hint: How are p_1 and p_2 distributed under the null hypothesis?

Fisher's product test

- $p_1, p_2 \sim_{H_0} U[0,1]$ iid
- $-2 \ln(p_1)$, $-2 \ln(p_2) \sim_{H_0} \chi^2_2$ iid
- $-2(\ln(p_1) + \ln(p_2)) \sim_{H_0} \chi^2_4$
- Rejecting H_0 when $-2(\ln(p_1) + \ln(p_2)) \ge \chi^2_{4,1-\alpha}$ is a level α test
- Equivalently, rejecting H_0 when

$$p_1 p_2 \le c_{\alpha} = \exp\left(-\frac{1}{2}\chi^2_{4,1-\alpha}\right)$$

Let's look at it geometrically

p-value combination

Reject if $p_1p_2 \leq c_{\alpha}$

Projection onto the plane

Reject if $p_2 \le c_\alpha / p_1$

Quiz: How large is the red area?

The conditional error function

- Area of rejection region: $\int_0^{c_\alpha} 1 \, dp_1 + \int_{c_\alpha}^1 c_\alpha/p_1 \, dp_1 = c_\alpha c_\alpha \ln(c_\alpha)$
- But we know this must be $\alpha!$
 - As $p_1, p_2 \sim_{H_0} U[0,1]$ iid, areas correspond to probabilities.
 - The rejection region has proba α .
- This level curve **defines** a level α test of H_0 . It is called a conditional error function (c.e.f.).
- Every p-value combination defines a family of c.e.f.'s that fills the unit square, and vice versa.

Early stopping

• Impose bounds α_1 and α_0

- Assume $c_{\alpha} \leq \alpha_1 < \alpha_0$
- $p_1 \le \alpha_1 \rightarrow \text{stop for efficacy}$
- $p_1 > \alpha_0 \rightarrow \text{stop for futility}$
- Otherwise, perform second stage and reject H_0 if $p_2 \le c_\alpha / p_1$

• Red area must remain α

•
$$\alpha_1 + c_{\alpha} (\ln(\alpha_0) - \ln(\alpha_1)) = \alpha$$

Change height of curve

- Reject after second stage if $p_2 \le c_{\alpha_2}/p_1$
 - This uses a different c.e.f. of the same family
 - The final test is performed at the local level α_2
- Red area must remain α $\alpha_1 + c_{\alpha_2} (\ln(\alpha_0) - \ln(\alpha_1)) = \alpha$

The «alpha calculus»

Four parameters are interdependent

- Level condition: $\alpha_1 + c_{\alpha_2} (\ln(\alpha_0) \ln(\alpha_1)) = \alpha$
- Quiz:
 - How would you specify a futility stop when control looks better?
 - How would you specify a «Pocock-type» test?

Inverse normal method & more

Another natural way to combine p-values:

$$\frac{1}{\sqrt{2}} \left(\Phi^{-1} (1 - p_1) + \Phi^{-1} (1 - p_2) \right) \sim_{H_0} N(0, 1)$$

Same mechanism, with a different family of c.e.f.'s

Inverse normal method (INM)

- In principle, any such family defines an adaptive test by this mechanism
 - In practice, mainly these two are used. And out of these, mostly INM.

How do trial adaptations fit into this?

- This height is the Type I error probability given the first stage data
- We could now change the second stage into any design that respects this level
- The resulting overall procedure remains a level α test

Why does this work?

- For continuously distributed test statistics based on separate stages, p_1, p_2 will generally be iid U[0,1] under H_0 even if the second stage is modified based on the interim analysis
- More generally, it still works if p_1 , p_2 are only «p-clud»
 - $P_{H_0}(p_1 \le u) \le u$ and $P_{H_0}(p_2 \le u \mid p_1) \le u$ for all $u \in [0,1]$
- For more details on probabilistic foundations, see Brannath et al. 2012.

Conditional Rejection Principle (CRP)

- Start with a (classical) level α test
- At an IA, review the data and possibly external information
- No reason to adapt → Continue as planned
- Reason to adapt
 - → Compute cond. Type I error of the pre-defined design:

 P_{H_0} (reject H_0 | interim data)

And choose (based on all info) a new design at **this** level to finish the trial

• This is a level α test, and the IA need not be preplanned

Conditional Rejection Principle (CRP)

- How could that new second-stage design look like?
 - Increase the remaining sample size (e.g., to achieve a desired conditional power → see later)
 - Note: Health authorities view sample size reductions more critically
 - Replace the second stage by another two-stage design

 multistage designs by «recursive combination»
 - ...and more
- Caveat
 - Adaptations must not jeopardize interpretability of results or credibility of the trial!

Relation: Group sequ. ↔ **adaptive**

- Group sequential designs follow a cumulative philosophy: their test statstics are cumulative
- Adaptive designs follow a stagewise philosophy: they use stagewise inferences (test statistics, p-values)
 - However, the decision rules of adaptive designs combine the stagewise inferences – so overall they do provide cumulative inference
 - For example, Fisher's product test rejects H_0 if $p_2 \le c_{\alpha_2}/p_1$
- The INM in particular reduces exactly to the group sequential test if no adaptations are done*. The test statistics, critical values and decision rules are identical.
- → Next slide

Relation: Group sequ. ↔ adaptive

- Test active vs. placebo with normally distr. endpoint
- Group sequential: $X_{ki} \sim N(\mu, \sigma^2)$ iid, $Y_{ki} \sim N(\nu, \sigma^2)$ iid
 - k = 1,2 (stage); $i = 1, ..., n_k$; σ^2 known
 - $n = n_1 + n_2$ total sample size per arm; $n_1 = n_2$ without loss of generality
- The Z-test:
 - Overall: $Z = \sqrt{\frac{n}{2}} \frac{\bar{X} \bar{Y}}{\sigma} \sim H_0 N(0,1)$
 - Per stage: $Z_k = \sqrt{\frac{n}{4}} \frac{\bar{X}_k \bar{Y}_k}{\sigma} \sim_{H_0} N(0,1); \, p_k = 1 \Phi(Z_k)$
 - Group sequential: Using Z_1 and Z
 - Inverse normal method:

Combining
$$p_1$$
 and p_2 to $\frac{1}{\sqrt{2}} (\Phi^{-1}(1-p_1) + \Phi^{-1}(1-p_2)) = \frac{1}{\sqrt{2}} (Z_1 + Z_2) = Z$

Relation: Group sequ. ↔ **adaptive**

- The INM therefore generalizes the group sequ. test
 - Standard group sequential software can be used
- It is easily communicated with commonly used (Z-) statistics
- It is also the uniformly most powerful test if no adaptations are done
- All this is why the INM is often the preferred method

Weights

- More general version of the INM
 - Combine stagewise statistics using $w_1Z_1 + w_2Z_2$ instead of $\frac{1}{\sqrt{2}}(Z_1 + Z_2)$, with weights w_k
 - Weights can be freely chosen under the constraint $w_1^2 + w_2^2 = 1$
 - But they must be prespecified and remain fixed regardless of adaptations
 - Otherwise, the type I error may be inflated
 - Natural choice: $w_k = \sqrt{\frac{n_k}{n_1 + n_2}}$
 - Then all patients carry equal weight, and again we have $w_1Z_1 + w_2Z_2 = Z$
 - The case $n_1 = n_2$ above was a special case of this

Efficiency vs. flexibility

- Quiz: What happens to the INM if we change the remaining sample size at the IA?
 - Not all patients carry equal weight → inefficient
- A curious debate
 - Tsiatis, Mehta (2003): "On the inefficiency of the adaptive design [...]"
 - Brannath et al. (2006): "On the efficiency of adaptive designs [...]"
- What do you think?
- In my view, trialists should weigh efficiency (power) against flexibility (adaptation)

- The conditional power is the power of the trial (at some alternative), given interim data
- Let's look at the inverse normal method
- Situation as before: $X_{ki} \sim N(\mu, \sigma^2)$ iid, $Y_{ki} \sim N(\nu, \sigma^2)$ iid
 - k = 1,2 (stage); $i = 1, ..., n_k$
 - $n = n_1 + n_2$ total sample size per arm
 - Denote $\vartheta = \frac{\mu \nu}{\sigma}$
- → Next slide

•
$$CP_{\vartheta} = P_{\vartheta} \left(\frac{1}{\sqrt{2}} \left(\Phi^{-1} (1 - p_1) + \Phi^{-1} (1 - p_2) \right) \ge u_{\alpha} \mid p_1 \right)$$

 $= P_{\vartheta} \left(\frac{1}{\sqrt{2}} (Z_1 + Z_2) \ge u_{\alpha} \mid Z_1 = z_1 \right)$
 $= P_{\vartheta} \left(Z_2 \ge \sqrt{2} u_{\alpha} - z_1 \right)$
 $= P_{\vartheta} \left(Z_2 - \sqrt{\frac{n_2}{2}} \vartheta \ge \sqrt{2} u_{\alpha} - z_1 - \sqrt{\frac{n_2}{2}} \vartheta \right)$
 $= 1 - \Phi \left(\sqrt{2} u_{\alpha} - z_1 - \sqrt{\frac{n_2}{2}} \vartheta \right)$

Properties

- Increases with n_2
- Increases with ϑ
- Decreases for increasing p_1

- Common applications
 - Stopping for futility if CP_{ϑ} is «too small» (e.g. below 20%)
 - Adjusting the second stage size to achieve a desired CP_{ϑ} (e.g. 90%)

In the example, solve
$$0.9=1-\Phi\left(\sqrt{2}u_{\alpha}-z_{1}-\sqrt{\frac{n_{2}}{2}}\vartheta\right)$$
 for n_{2}

Conduct the second stage and perform the final inference as planned through the adaptive design

• **Quiz**: What ϑ would you use in CP_{ϑ} ?

- Several options for θ in CP_{θ}
 - The originally assumed effect size for sample size calculation (minimally clinically relevant effect – should not have changed!)
 - The effect size $\hat{\vartheta}$ as observed at the interim analysis (hoping that this comes closer to the «truth»)
 - Caution: Interim estimates such as $\hat{\vartheta}$ are notoriously volatile! \rightarrow Next slide
 - Averaging across several choices
 - Weighted average of originally assumed and observed effect size
 - Integrating over some distribution for ϑ («predictive power»)

- Using the interim effect estimate is risky
 - Because we rely **doubly** on little data: through z_1 and through $\hat{\vartheta}$
 - The density of CP_{ϑ} tends towards extremes if we use $\hat{\vartheta}$

The «Constrained Promising Zone» (CPZ) Approach

- A recent proposal for a more refined use of conditional power to re-calculate the sample size
 - Builds upon the previously proposed «Promising Zone» approach by Mehta and Pocock (2011) which had been shown to be (overly) conservative (Glimm 2012, Jennison and Turnbull 2015)
- Idea: Boost the sample size within reasonable limits when the interim treatment effect appears «promising»

The «Constrained Promising Zone» (CPZ) Approach

- Concretely, pre-specify:
 - Impose limits to allowed total sample size per arm: n_{min} , n_{max}
 - Set smallest clinically meaningful effect size ϑ_{min} , and smallest / largest desired conditional power at this point: CP_{min} , CP_{max}
 - Choose a combination test, e.g. INM with $w_1 = \sqrt{\frac{n_1}{n_{min}}}$, $w_2 = \sqrt{\frac{n_{min}-n_1}{n_{min}}}$
- Then re-calculate the sample size at the IA:
 - If n^* exists between n_{min} and n_{max} such that $CP_{\vartheta_{\min}}(z_1, n^*) = CP_{max}$, then set the total sample size (per arm) to n^*
 - Otherwise, if $CP_{\vartheta_{\min}}(z_1, n_{\max}) \ge CP_{\min}$, then set it to n_{\max}
 - Finally, otherwise, set it to n_{min} because the IA is not «promising»

The «Constrained Promising Zone» (CPZ) Approach - Example

- 1:1 randomization with Overall Response Rate (ORR) as primary endpoint
 - ORR=20% on Control; Drug increases this by 10-13%
 - 2.5% significance level (one-sided)
 - $n_1 = 120$
 - $n_{min} = 241$, $n_{max} = 392$ (90% power for Δ =13% and Δ =10%, resp.)
- Compare two approaches
 - Sample size increase for a conditional power of 90% (if true Δ =10%)
 - CPZ design with $CP_{min} = 80\%$, $CP_{max} = 90\%$
- Corresponding R-code is in this vignette
 - Simulation of a Trial with a Binary Endpoint and Unblinded Sample
 Size Re-Calculation with rpact

Cond. power and total sample size depending on the interim Z-score

Expected sample size depending on effect size

Power depending on effect size

Regulatory guidance on unblinded sample size adaptation

EMA guidance on adaptive designs 2007

- The option to reassess sample size in an ongoing trial should not be seen as a substitute for careful planning. The relevance of a particular size of treatment effect should be discussed at the planning stage of the trial and not deferred to the point where interim results are already available.
- Whenever possible, methods for blinded sample size reassessment that properly control the type I error should be used [...]. In cases where sample size needs to be reassessed based on unblinded data, sufficient justification should be made.

FDA adaptive designs guidance 2019

- [such designs] might be used when there is considerable uncertainty about the true treatment effect size.
- [...] to appropriately control the Type I error [...and] prospective planning [...of] the statistical hypothesis testing method [...and] the rule governing the sample size modification.
- [...] additional challenges in maintaining trial integrity [...]

Our recommendations for unblinded sample size adaptation

- Approach is accepted by health authorities, but more justification is needed than for blinded sample size adaptation
- Main application: Considerable uncertainty about the size of the treatment effect and reluctance to fund a group-sequential trial powered to the smallest clinically relevant effect size
 - «Start small and invest more resources if results look promising»
- Extensive literature of such designs versus «more efficient» group-sequential designs
 - E.g., Liu et al, 2018: «...under reasonable decision rules for increasing sample size [...] there is little or no loss of efficiency for the adaptive designs in terms of unconditional power. The two approaches, however, have very different conditional power profiles.»
- Extensive clinical trials simulations and comparisons to group-sequential designs are highly recommended
 - Can also help to explore potential bias in estimation
 - rpact can produce median unbiased estimators and other inference adjusted for the adaptive design

Final thoughts on adaptive designs

- Allowance for adaptations of the trial design without inflating type I error
 - Adaptations should be pre-planned in most circumstances
 - ...but can be occasionally be used to react to unforeseen circumstances
- Can be extended to multi-arm and enrichment designs (covered later)
- Adaptive designs are more complicated than fixed or group-sequential designs in terms of trial planning, logistics, and regulatory requirements to ensure trial integrity and avoid operational bias
- Two attitudes:
 - The social event trial: «Let's come together, let's see and then adapt until significance» (Koch 2006)
 - Much better: «A multistage study design that uses accumulating data to decide how to modify aspects of the study without undermining the validity and integrity of the trial.» (Dragalin 2006)
- Adaptive designs are not a remedy for sloppy planning!

References (1)

Reference book

Wassmer, Brannath (2016): Group Sequential and Confirmatory Adaptive Designs. Springer

Reviews

- Todd (2007): A 25-year review of sequential methodology in clinical studies. Statistics in Medicine 26, 237–252
- Vandemeulebroecke (2008): Group Sequential and Adaptive Designs A Review of Basic Concepts and Points of Discussion. Biometrical Journal 50, 541–557
- Bauer et al. (2016): Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine 35, 325–347

Regulatory guidance

- EMA (2007). Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. European Medicines Agency, CHMP/EWP/2459/02
- FDA (2010): Draft guidance for industry. Adaptive design clinical trials for drugs and biologics. Rockville, MD
- FDA (2019): Guidance for industry. Adaptive designs for clinical trials of drugs and biologics. Silver Spring, MD
- Brannath et al. (2010): Comments on the Draft Guidance on "Adaptive Design Clinical Trials for Drugs and Biologics" of the U.S. Food and Drug Administration. Journal of Biopharmaceutical Statistics 20, 1125–1131

Discussion & interpretation

- Dragalin (2006): Adaptive Designs: terminology and classification. Drug Information Journal 40, 425–435
- Koch (2006): Confirmatory clinical trials with an adaptive design. Biometrical Journal 48, 574–585. Rejoinder pp. 616–622
- Burman, Sonesson (2006): Are flexible designs sound? (with discussion). Biometrics 62, 664–683.
- Vandemeulebroecke (2008): see above

References (2)

Methodological contributions

- Fisher (1932): Statistical methods for research workers. Oliver & Boyd, London
- Marcus, Peritz, Gabriel (1976): On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655–660.
- Bauer (1989): Multistage testing with adaptive designs (with discussion). Biometrie und Informatik in Medizin und Biologie 20, 130–148
- Bauer, Köhne (1994): Evaluation of experiments with adaptive interim analyses. Biometrics 50: 1029-1041.
 Correction in Biometrics 52 (1996): 380
- Bauer, Röhmel (1995): An adaptive method for establishing a dose-response relationship. Statistics in Medicine 14, 1595–1607
- Proschan, Hunsberger (1995): Designed extension of studies based on conditional power. Biometrics 51, 1315–1324.
- Posch, Bauer (1999): Adaptive two stage designs and the conditional error function. Biometrical Journal 41: 689–696.
- Wassmer (1999): Statistische Testverfahren für gruppensequentielle und adaptive Pläne in klinischen Studien.
 Verlag Alexander Mönch, Köln
- Lehmacher, Wassmer (1999): *Adaptive sample size calculations in group sequential trials.* Biometrics 55: 1286–1290
- Brannath et al. (2002): Recursive combination tests. JASA 97 (457): 236–244
- Müller, Schäfer (2004): A general statistical principle for changing a design any time during the course of a trial.
 Statistics in Medicine 23, 2497–2508
- Bauer, König (2006): The reassessment of trial perspectives from interim data a critical view. Statistics in Medicine 25, 23–36
- Vandemeulebroecke (2006): An investigation of two-stage tests. Statistica Sinica 16, 933–951
- Brannath, Gutjahr, Bauer (2012): Probabilistic foundation of confirmatory adaptive designs. JASA 107: 824-832
- Xsiao, Liu, Mehta (2019): Optimal promising zone designs. Biometrical Journal 61: 1175-1186

References (3)

Clinical trial examples

- Vandemeulebroecke, Bornkamp, Bretz, Pinheiro (2010): Adaptive dose-ranging studies. Chapter 11 in: Handbook of Adaptive Designs for Pharmaceutical and Clinical Development. Chapman & Hall
- Barnes et al. (2010): Integrating indacaterol dose selection in a clinical study in COPD using an adaptive seamless design. Pulmonary Pharmacology & Therapeutics 23: 165–171
- Schmoll et al. (2012): Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: A double-blind, randomized phase III study (HORIZON III). Journal of Clinical Oncology 30, 3588–3595
- Cuffe, Lawrence, Stone, Vandemeulebroecke (2014): When is a seamless study desirable? Case studies from different pharmaceutical sponsors. Pharmaceutical Statistics 13, 229–237

Software reviews

- Wassmer, Vandemeulebroecke (2006): A brief review on software developments for group sequential and adaptive designs. Biometrical Journal 48: 732–737
- Tymofyeyev (2014): A Review of Available Software and Capabilities for Adaptive Designs. Chapter in: Practical Considerations for Adaptive Trial Design and Implementation. Springer

Commercial software

- ADDPLAN: http://www.iconplc.com/innovation/addplan/
- EastAdapt and EastSurv: http://www.cytel.com/software/east

R packages

- adaptTest: https://cran.r-project.org/web/packages/adaptTest/index.html
- AGSDest: https://cran.r-project.org/web/packages/AGSDest/index.html
- asd: https://cran.r-project.org/web/packages/asd/index.html
- rpact: https://www.rpact.com/