Calculating a TF-IDF

$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$								
	Doc 1	Doc 2		Doc n] /			
Term(s) 1	12	2		1				
Term(s) 2	0	1		0				
Term(s) n	0	6		3				

- TF(n-gram w) = (Number of times n-gram w appears in a document) / (Total number of n-grams in the document).
- IDF(n-gram \mathbf{w}) = log_e [(Total number of documents in the corpus) / (Number of documents with n-gram \mathbf{w} in it)]

Calculating a TF-IDF

$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$								
	Doc 1	Doc 2		Doc n				
Term(s) 1	12	2		1				
Term(s) 2	0	1		0				
Term(s) n	0	6		3				

- Let's consider an example corpus of just **unigrams**.
- Consider some document (e.g., a tweet!) containing 100 unigrams, where the unigram cat appears 3 times.
 - The term frequency **TF** for *cat* is then (3 / 100) = 0.03.
 - Now, assume we have 10 million documents in our **corpus**.
 - The unigram *cat* appears in one thousand of these documents.
 - Then, the inverse document frequency IDF is calculated as $log_e(10,000,000 / 1,000) = 4$.
 - Thus, the **TF-IDF** is the product of these quantities: 0.03 * 4 = 0.12.

- Let's consider an example corpus of just unigrams.
- Consider some document (e.g., a tweet!) containing 100 unigrams, where the unigram cat appears 3 times.
- The term frequency TF for cat is then (3 / 100) = 0.03
- Now, assume we have 10 million documents in our corpus.
- The unigram cat appears in one thousand of these documents
- Then, the inverse document frequency IDF is calculated as $log_e(10,000,000 / 1,000) = 4$.
- Thus, the **TF-IDF** is the product of these quantities: 0.03 * 4 = 0.12.