Regularization Theory for Convex and some Non-Convex Regularizers

Clemens Kirisits & Otmar Scherzer

Computational Science Center, University Vienna, Austria &

Radon Institute of Computational and Applied Mathematics (RICAM), Linz, Austria

Outline

- Numerical Differentiation
- 2 Variational Methods
- Regularization
- 4 Analysis of Tikhonov regularization
- Quadratic regularization
- 6 Sparsity Regularization
- Polyconvex regularization

Regularization and Splines

Problem setting:

- y = y(x) is a smooth function on $0 \le x \le 1$
- Noisy samples \tilde{y}_i of $y(x_i)$ at the points of a uniform grid $\Delta = \{0 = x_0 < x_1 < \dots < x_n = 1\}, \ h = x_{i+1} x_i$

$$|\tilde{y}_i - y(x_i)| \leq \delta$$

Boundary data are known exactly: $\tilde{y}_0 = y(0)$ and $\tilde{y}_n = y(1)$

Regularization and Splines

Problem setting:

- y = y(x) is a smooth function on $0 \le x \le 1$
- Noisy samples \tilde{y}_i of $y(x_i)$ at the points of a uniform grid $\Delta = \{0 = x_0 < x_1 < \dots < x_n = 1\}, h = x_{i+1} x_i$

$$|\tilde{y}_i - y(x_i)| \leq \delta$$

Boundary data are known exactly: $\tilde{y}_0 = y(0)$ and $\tilde{y}_n = y(1)$

Goal: Find a smooth approximation, u'(x), of y'(x)

M. Hanke and O. Scherzer Inverse problems light: numerical differentiation Amer. Math. Monthly 108.6. 2001 M. Hanke and O. Scherzer Error analysis of an equation error method for the identification of the diffusion coefficient in a quasi-linear parabolic differential equation

SIAM J. Appl. Math. 59.3. 1999

Strategy I

Minimize

$$\|u''\| = \|u''\|_{L^2}$$

among all smooth functions u satisfying u(0) = y(0), u(1) = y(1), and

$$\left|\frac{1}{n-1}\sum_{i=1}^{n-1}(\tilde{y}_i-u(x_i))^2\leq \delta^2\right|$$

Take the derivative, u_{*}^{\prime} , of the minimizing element u_{*} as an approximation of y^{\prime}

Strategy II

Minimize

$$\mathcal{T}_{\alpha}(u, \tilde{y}) \equiv \frac{1}{n-1} \sum_{i=1}^{n-1} (\tilde{y}_i - u(x_i))^2 + \alpha \|u''\|^2$$

among all smooth functions u satisfying u(0) = y(0), u(1) = y(1), where α is such that the minimizing element u_{α} satisfies

$$\frac{1}{n-1}\sum_{i=1}^{n-1}(\tilde{y}_i-u_\alpha(x_i))^2=\delta^2$$

The derivative u'_{α} is the approximation of y'

Strategy I and II are equivalent

Error estimates for strategy II: exact data y

Let $y'' \in L^2(0,1)$. Then

$$\|u'_* - y'\| \le \sqrt{8} \Big(h \|y''\| + \sqrt{\delta} \|y''\|^{1/2} \Big)$$

Numerical differentiation versus Tikhonov regularization

Let $y \in C^2[0,1]$ (smoothness (source) condition), then

$$\left|\frac{\tilde{y}_{i+1}-\tilde{y}_i}{h}-y'(x)\right|\leq \mathcal{O}(h+\delta/h), \qquad x_i\leq x\leq x_{i+1}$$

The right hand side attains a minimal value of $\mathcal{O}(\sqrt{\delta})$ for $h \sim \sqrt{\delta}$

Qualitative behavior of the two error bounds, $h + \delta/h$ (numerical differentiation) and $h + \sqrt{\delta}$ (Tikhonov regularization) versus h for fixed δ

Comments

u* solving Strategy II is a natural cubic spline, i.e.,

- a function that is twice continuously differentiable on [0,1] with
- $u_*''(0) = u_*''(1) = 0$, and coincides on each subinterval $[x_{i-1}, x_i]$ of Δ with some cubic polynomial

 u_* is uniquely determined by connecting the jumps of u_*''' at the interior nodes $x = x_i$ with the values $u_*(x_i)$ through

$$u'''_*(x_i+)-u'''_*(x_i-)=\frac{1}{\alpha(n-1)}(\tilde{y}_i-u_*(x_i)), \qquad i=1,\ldots,n-1$$

Tikhonov regularization ⇔ **Natural spline approximation**

III-Posed Problems

Operator equation

$$Lu = y$$

Setting:

- Available data y^{δ} of y are noisy
- III-posed:

$$y^{\delta} \to y \not\Rightarrow u^{\delta} \to u^{\dagger}$$

• *L* is an operator between infinite dimensional spaces (before discretization)

Exampels:

- L...Radon transform, electrical impedance tomography,...
- Numerical differentiation : $L = T_{\Delta} \approx I$: Trace on the sampling points

General Variational Methods: Setting

- H_1 and H_2 are Hilbert spaces
- $L: H_1 \rightarrow H_2$ linear and bounded
- $L_h: H_1 \to H_2$ linear and bounded $(\approx L)$
- $\rho: H_2 \times H_2 \to \mathbb{R}_+$ similarity functional
- ullet $\Psi: H_1
 ightarrow \mathbb{R}_+$ an energy functional
- δ : estimate for the amount of noise

Three Kind of Variational Methods

1 Residual method $(\tau \geq 1)$:

$$u_{lpha}^{\delta} = \operatorname{argmin}\Psi(u)
ightarrow \min$$
 subject to $ho(Lu, y^{\delta}) \leq au\delta$

Tikhonov regularization with discrepancy principle $(\tau \geq 1)$:

$$u_{lpha}^{\delta} := \operatorname{argmin} \left\{
ho^2(Lu, y^{\delta}) + lpha \Psi(u)
ight\} \, ,$$

where $\alpha > 0$ is chosen according to Morozov's discrepancy principle, i.e., the minimizer u_{α}^{δ} of the Tikhonov functional satisfies

$$\rho(Lu_{\alpha}^{\delta}, y^{\delta}) = \tau \delta$$

Tikhonov regularization with a-priori parameter choice: $\alpha = \alpha(\delta) \coprod F$

Relation between Methods

E.g.
$$\Psi$$
 convex and $\rho^2(a,b) = \|a-b\|^2$

Residual Method Tikhonov with discrepancy principle

Note, this was exactly the situation in the spline example!

Analysis of variational regularization

L might have a null-space.

The Ψ -Minimal Solution is denoted by u^{\dagger} and satisfies:

$$\Psi(u^{\dagger}) = \inf\{\Psi(u) : Lu = y\}$$

Unique: for instance if Ψ is strictly convex

Regularization Method

A method is called a regularization method if the following holds:

- Stability for fixed α : $y^{\delta} \rightarrow y \Rightarrow u^{\delta}_{\alpha} \rightarrow u_{\alpha}$
- Convergence: There exists a parameter choice $\alpha=\alpha(\delta)>0$ such that $y^\delta\to y\Rightarrow u^\delta_{\alpha(\delta)}\to u^\dagger$

Regularization Method

A method is called a regularization method if the following holds:

- Stability for fixed α : $y^{\delta} \to y \Rightarrow u^{\delta}_{\alpha} \to u_{\alpha}$
- Convergence: There exists a parameter choice $\alpha=\alpha(\delta)>0$ such that $y^\delta\to y\Rightarrow u^\delta_{\alpha(\delta)}\to u^\dagger$

It is an efficient regularization method if there exists a parameter choice $\alpha=\alpha(\delta)$ such that

$$D(u_{\alpha(\delta)}^{\delta}, u^{\dagger}) \leq f(\delta),$$

where

- D is an appropriate distance measure
- f rate $(f \rightarrow 0 \text{ for } \delta \rightarrow 0)$

Quadratic regularization in Hilbert spaces

$$u_{\alpha}^{\delta} = \operatorname{argmin} \left\{ \|Lu - y^{\delta}\|^2 + \alpha \|u - u_0\|^2 \right\}$$

Results:

- Stability $(\alpha > 0)$: $y^{\delta} \rightarrow y \Rightarrow u^{\delta}_{\alpha} \rightarrow u_{\alpha}$
- Convergence: Choose

$$\alpha = \alpha(\delta)$$
 such that $\delta^2/\alpha \to 0$

If
$$\delta o 0$$
, then $u_{lpha}^{\delta} o u^{\dagger}$, which solves $Lu^{\dagger} = y$

Note u^{\dagger} is the $\Psi(\cdot) = \|u - u_0\|^2$ minimal solution

Convergence rates

Assumptions:

- Source Condition: $u^{\dagger} u_0 \in L^* \eta$
- $\alpha = \alpha(\delta) \sim \delta$

Result:

$$\left\| \left\| u_{\alpha}^{\delta} - u^{\dagger} \right\|^{2} = \mathcal{O}(\delta) \text{ and } \left\| L u_{\alpha}^{\delta} - y \right\| = \mathcal{O}(\delta)$$

Here L^* is the adjoint of L, i.e.,

$$\langle Lu, y \rangle = \langle u, L^*y \rangle$$

C. W. Groetsch.

The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984.

Spectral Theory

- L^*L is a bounded, positive definitive, self-adjoint operator
- $L^*Lu = \int_0^\infty \lambda de(\lambda)u$, where $e(\lambda)$ denotes the spectral measure of L^*L
- If L is compact, then

$$L^*Lu = \sum_{n=0}^{\infty} \lambda_n^2 \langle u, u_n \rangle u_n,$$

where (λ_n, u_n, v_n) are the spectral values of L (SVD)

Classical Convergence Rates

- Source Condition: $u^{\dagger} u_0 \in (L^*L)^{\nu}\eta, \nu \in (0,1]$
- $\alpha = \alpha(\delta) \sim \delta^{\frac{2}{2\nu+1}}$

Result:

$$\left|\left\|u_{lpha}^{\delta}-u^{\dagger}
ight\|=\mathcal{O}(\delta^{rac{2
u}{2
u+1}}) ext{ and } \left\|Lu_{lpha}^{\delta}-y
ight\|=\mathcal{O}(\delta)$$

Note, that when $\nu = 1/2$, then

$$\mathcal{R}((L^*L)^{1/2}) = \mathcal{R}(L^*)$$

C. W. Groetsch.

The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984.

Numerical differentiation

- $L^* = T_h^*$: Adjoint of a restriction operator: Prolongation operator
- $L \approx I : H^2 \to L^2$ (spaces do not exactly match) $\to L^* : L^2 \to H^2$. Source condition requires $u^{\dagger} - u_0 (= 0) \in H^2$ (in contrast to C^2)

Convex regularization

$$\left\|\frac{1}{2}\left\|Lu-y^{\delta}\right\|^{2}+\alpha R(u)\rightarrow\min\right\|$$

Examples:

- Total Variation regularization: $R(u) = \int |\nabla u|$ the total variation semi-norm
- ℓ^p regularization: $R(u) = \sum_i w_i |\langle u, \phi_i \rangle|^p$, $1 \le p \le 2$

 ϕ_i is an orthonormal basis of a Hilbert space with inner product $\langle \cdot, \cdot \rangle$, w_i are appropriate weights - we take $w_i \equiv 1$

Non-Quadratic Regularization

Assumptions:

- L is a bounded operator between Hilbert spaces H_1 and H_2 with closed and convex domain $\mathcal{D}(F)$
- R is weakly lower semi-continuous

Results:

- Stability: $y^\delta \to y \Rightarrow u^\delta_\alpha \rightharpoonup u_\alpha$ and $R(u^\delta_\alpha) \to R(u_\alpha)$
- Convergence: $y^\delta \to y$ and $\alpha = \alpha(\delta)$ such that $\delta^2/\alpha \to 0$, then

$$\left| \, u_lpha^\delta
ightharpoonup u^\dagger \, \, ext{and} \, \, {\it R}(u_lpha^\delta)
ightarrow {\it R}(u^\dagger) \,
ight|$$

Note, for quadratic regularization in H-spaces weak convergence and convergence of the norm gives strong convergence

Convergence Rates, R convex

Assumptions:

- Source Condition: There exists η such that $\xi = F^* \eta \in \partial R(u^{\dagger})$
- $\alpha \sim \delta$

Result:
$$\left| D_{\xi}(u_{\alpha}^{\delta}, u^{\dagger}) = \mathcal{O}(\delta) \right| = \left\| Lu_{\alpha}^{\delta} - y \right\| = \mathcal{O}(\delta)$$

Comments:

- **①** $\partial R(v)$ is the subgradient of R at v, i.e., all elements ψ that satisfy $D_{\psi}(u,v):=R(u)-R(v)-\langle \psi, u-v\rangle \geq 0$ for all u
- ② If $R(u) = \frac{1}{2} \|u u_0\|^2 \Rightarrow \partial R(u^{\dagger})u = u u^{\dagger}$
- **3** $D_{\mathcal{E}}(u_{\alpha}^{\delta}, u^{\dagger})$ is the Bregman distance

M. Burger and S. Osher Convergence rates of convex variational regularization Inverse Problems 20.5, 2004 B. Hofmann, B. Kaltenbacher, C. Pöschl, and

O. Scherzer

A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators Inverse Probl. 23:3, 2007

Bregman Distance

- In general not a distance measure: It may be non-symmetric and may vanish for different elements
- ② If $R(\cdot) = \frac{1}{2} \|u u_0\|^2$, then $D_{\xi}(u, v) = \frac{1}{2} \|u v\|^2$. Thus generalizes the H-space results

Compressed Sensing

Let ϕ_i be an orthonormal basis of a Hilbert space H_1 . $L: H_1 \to H_2$ Constrained optimization problem:

$$R(u) = \sum_i |\langle u, \phi_i \rangle| o ext{min}$$
 such that $Lu = y$

Goal: Recover sparse solutions:supp(u) := { $i : \langle u, \phi_i \rangle \neq 0$ } is finite

Compressed Sensing

Let ϕ_i be an orthonormal basis of a Hilbert space H_1 . $L: H_1 \to H_2$ Constrained optimization problem:

$$R(u) = \sum_i |\langle u, \phi_i \rangle| o ext{min}$$
 such that $Lu = y$

Goal: Recover *sparse solutions*:supp(u) := { $i : \langle u, \phi_i \rangle \neq 0$ } is finite Comments:

- Infinite dimensional setting
- For noisy data: Residual method

$$\left| R(u)
ightarrow ext{min} \quad ext{subject to} \, \left\| Lu - y^{\delta}
ight\| \leq au \delta$$

E. J. Candès, J. K. Romberg, and T. Tao Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Transactions on Information Theory 52.2. 2006

Sparsity Regularization

Unconstrained Optimization

$$\left\| \left\| Lu - y^{\delta} \right\|^2 + \alpha R(u) \to \min \right\|$$

General theory for sparsity regularization:

- Stability: $y^\delta \to y \Rightarrow u^\delta_\alpha \rightharpoonup u_\alpha$ and $\|u^\delta_\alpha\|_{\ell^1} \to \|u_\alpha\|_{\ell^1}$
- Convergence: $y^{\delta} \to y \Rightarrow u^{\delta}_{\alpha} \rightharpoonup u^{\delta}_{\alpha}$ and $\|u^{\delta}_{\alpha}\|_{\ell^{1}} \to \|u^{\dagger}\|_{\ell^{1}}$ if $\delta^{2}/\alpha \to 0$.

If α is chosen according to the discrepancy principle, then Sparsity Regularization \equiv Compressed Sensing

Convergence Rates: Sparsity Regularization

Assumptions:

• Source Condition: There exists η such that

$$\xi = L^* \eta \in \partial R(u^{\dagger})$$
.

Formally this means that $\xi_i = \operatorname{sgn}(u_i^{\dagger})$ and u^{\dagger} is sparse (means in the domain of ∂R)

• $\alpha \sim \delta$

Result:

$$D_{\xi}(u_{lpha}^{\delta},u^{\dagger})=\mathcal{O}(\delta) ext{ and } \left\|Lu_{lpha}^{\delta}-y
ight\|=\mathcal{O}(\delta)$$

Comment: Rate is *optimal* for a choice $\alpha \sim \delta$

Convergence Rates: Compressed Sensing

Assumption: Source condition

$$\xi = L^* \eta \in \partial R(u^\dagger)$$

Then

$$D_{\xi}(u^{\delta}, u^{\dagger}) \leq 2 \|\eta\| \delta$$

for every

$$u^{\delta} \in \operatorname{argmin} \left\{ R(u) : \left\| Lu - y^{\delta} \right\| \le \delta \right\}$$

Remark: Candes et al have rate δ with respect to the finite dimensional Euclidean norm and not w.r.t. the Bregman distance

M. Grasmair, M. Haltmeier, and O. Scherzer Necessary and sufficient conditions for linear convergence of I¹-regularization Comm. Pure Appl. Math. 64.2, 2011

0 : Nonconvex sparsity regularization

$$\left\|Lu-y^{\delta}\right\|^{2}+\sum\left|\langle u,\phi_{i}
angle
ight|^{p}
ightarrow \min^{2}\left\|Lu-y^{\delta}\right\|^{2}$$

is stable, convergent, and well-posed in the Hilbert-space norm

- Zarzer: $\mathcal{O}(\sqrt{\delta})$
- Grasmair + IP $\Rightarrow \mathcal{O}(\delta)$

C. A. Zarzer
On Tikhonov regularization with non-convex sparsity constraints
Inverse Problems 25, 2009

M. Grasmair Non-convex sparse regularisation J. Math. Anal. Appl. 365.1. 2010

Image registration

- Given: Image $I_1, I_2 : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$
- Find $u:\Omega\to\mathbb{R}^2$ satisfying

$$L(u) := I_2 \circ u = I_1$$

u should be a diffeomorphism (no twists)

Calculus of variations: Notions of convexity

$$f: \mathbb{R}^{N} \times \mathbb{R}^{n} \times \mathbb{R}^{N \times n} \to \mathbb{R},$$

 $(x, u, v) \to f(x, u, v)$

$$f$$
 convex \Rightarrow $\boxed{polyconvex} \Rightarrow$ quasi-convex \Rightarrow rank-one convex

Up to quasi-convex:

$$u o \int_{\mathbb{R}^n} f(x,u,\nabla u) \, dx$$
 is weakly lower semicontinuous on $W^{1,p}$

If N = 1 or n = 1, then all convexity definitions are equivalent

Polyconvex functions

Let $N, n \in \mathbb{N}$ and $N \wedge n = \min(N, n)$. For $A \in \mathbb{R}^{N \times n}$ and $1 \leq s \leq N \wedge n$

 $\mathrm{adj}_s(A)$ consists of all $s \times s$ minors of A

Properties:

$$\mathrm{adj}_1(A) = A, \quad \mathrm{adj}_s(A) \in \mathbb{R}^{\sigma(s)}, \sigma(s) = \left(\begin{smallmatrix} N \\ s \end{smallmatrix}\right) \left(\begin{smallmatrix} n \\ s \end{smallmatrix}\right), \quad \tau(N, n) = \sum_{s=1}^{N \wedge n} \sigma(s)$$

 $f: \mathbb{R}^{N \times n} \to \mathbb{R} \cup \{+\infty\}$ is polyconvex if $f = F \circ T$, where $F: \mathbb{R}^{\tau(N,n)} \to \mathbb{R} \cup \{+\infty\}$ is convex and

$$T: \mathbb{R}^{N \times n} \to \mathbb{R}^{\tau(N,n)}, \quad A \to (A, \mathrm{adj}_2(A), \ldots, \mathrm{adj}_m(A))$$

Reduced map of T considered: $T_2(A) = (\operatorname{adj}_2(A), \dots, \operatorname{adj}_m(A))$

4 □ > 4 □ > 4 □ >

Generalized Bregman distances

Let W be a family of real-valued functions defined on U

ullet The *W-subdifferential* of a functional ${\mathcal R}$ is defined by

$$\partial_{W} \mathcal{R}(u) = \{ w \in W : \mathcal{R}(v) \ge \mathcal{R}(u) + w(v) - w(u), \forall v \in U \}$$

• For $w \in \partial_W \mathcal{R}(u)$ the W-Bregman distance is defined by

$$D_w^W(v;u) = \mathcal{R}(v) - \mathcal{R}(u) - w(v) + w(u)$$

M. Grasmair Generalized Bregman distances and convergence rates for non-convex regularization methods *Inverse Probl.* 26.11. Oct. 2010 I. Singer Abstract convex analysis John Wiley & Sons Inc., 1997

Bregman distances of polyconvex integrands

Let $p \in [1, \infty)$ and $U = W^{1,p}(\Omega, \mathbb{R}^N)$.

$$T_2(\nabla u) \in \prod_{s=2}^{N \wedge n} L^{\frac{p}{s}}(\Omega, \mathbb{R}^{\sigma(s)}) =: S_2.$$

We define

$$W_{\text{poly}} := \{ w : U \to \mathbb{R} : \exists (u^*, v^*) \in U^* \times S_2^* \text{ s.t.}$$

$$w(u) = \langle u^*, u \rangle_{U^*, U} + \langle v^*, T_2(\nabla u) \rangle_{S_2^*, S_2} \}$$

Remark:

- $W_{\text{poly}} = (U \times S_2)^*$. However, functionals are non-linear
- W_{poly}-Bregman distance:

$$\begin{split} D_w^{\mathrm{poly}}(u;\bar{u}) &= \mathcal{R}(u) - \mathcal{R}(\bar{u}) - w(u) + w(\bar{u}) \\ &= \mathcal{R}(u) - \mathcal{R}(\bar{u}) - \langle u^*, u - \bar{u} \rangle_{U^*,U} \\ &- \langle v^*, T_2(\nabla u) + T_2(\nabla \bar{u}) \rangle_{S_2^*,S_2} \end{split}$$

Polyconvex subgradient

- $\Omega \subset \mathbb{R}^n$ and $U = W^{1,p}(\Omega, \mathbb{R}^N)$
- $F: \Omega \times \mathbb{R}^N \times \mathbb{R}^{\tau(N,n)} \to \mathbb{R} \cup \{+\infty\}$ is Carathéodory
- For $x \in \Omega$, the map $(u, A) \mapsto F(x, u, A)$ is convex and differentiable
- $\mathcal{R}(u) = \int_{\Omega} F(x, u(x), T(\nabla u(x))) dx$

If $\mathcal{R}(\bar{v}) \in \mathbb{R}$ and the function $x \mapsto \nabla_{u,A} F(x, \bar{v}(x), T(\nabla \bar{v}(x)))$ lies in

$$L^{p^*}(\Omega,\mathbb{R}^N) \times \prod_{s=1}^{N \wedge n} L^{\frac{\rho}{s}}(\Omega,\mathbb{R}^{\sigma(s)}),$$

then this function is a W_{poly} -subgradient of $\mathcal R$ at $\bar v$

Example

Let N = n = 2, $T(a) = (a, \det a)$ for $a \in \mathbb{R}^{2 \times 2}$.

$$F(x, u, a, \det a) = F(\det a) = (\det a)^2$$

Let p = 4, then

$$\mathcal{R}(u) = \int_{\Omega} (\det \nabla u(x))^2 dx \in \mathbb{R}$$

and $x \mapsto F'(\det \nabla u(x)) = 2 \det \nabla u(x) \in L^2(\Omega)$. In particular

 \mathcal{R} is W_{poly} -subdifferentiable

October 27, 2016

Example

Let
$$p > N = n \ge 2$$
, $q > 1$, and

$$F(x, u, T(a)) = F(a, \det a) = |a|^p/p + |\det a|^q/q$$

If
$$\bar{v} \in W^{1,\infty}(\Omega,\mathbb{R}^n)$$
, then $\mathcal{R}(\bar{v}) = \int_{\Omega} F(x,\bar{v},T(\bar{v})) \, dx < +\infty$, then $x \mapsto \nabla_A F(\nabla \bar{v}(x),\det \nabla \bar{v}(x))$
$$= (|\nabla \bar{v}(x)|^{p-2} \nabla \bar{v}(x),|\det \nabla \bar{v}(x)|^{q-2} \det \nabla \bar{v}(x)) \in L^{\infty}$$

Thus $\mathcal{R}(\bar{v})$ is lsc and has a W_{poly} -subgradient on $W^{1,\infty}(\Omega,\mathbb{R}^n)\subset U$.

Rates result

Let $U = W^{1,p}(\Omega, \mathbb{R}^N)$.

- ullet R has a $W_{
 m poly}$ -subgradient w at u^\dagger
- $\exists \beta_1 \in [0,1), \beta_2$ such that locally

$$w(u^{\dagger}) - w(u) \leq \beta_1 D_w^{\text{poly}}(u; u^{\dagger}) + \beta_2 ||L(u) - v^{\dagger}||$$

Then,

• If p > 1 and $\alpha(\delta) \sim \delta^{p-1}$:

$$D_w^{\mathrm{poly}}(u_{lpha}^{\delta};u^{\dagger})=\mathcal{O}(\delta) \quad ext{and} \quad \|L(u_{lpha}^{\delta})-v^{\delta}\|=\mathcal{O}(\delta).$$

② If p=1 and $\alpha(\delta)\sim \delta^{\epsilon}$ for $\epsilon\in[0,1)$. Then

$$D_w^{\mathrm{poly}}(u_{\alpha}^{\delta}; u^{\dagger}) = \mathcal{O}(\delta^{1-\epsilon}) \quad \text{and} \quad \|L(u_{\alpha}^{\delta}) - v^{\delta}\| = \mathcal{O}(\delta)$$

Applications

Let $p>n,\ q\geq 1,\ U=W^{1,p}(\Omega,\mathbb{R}^n)$, with its weak and $V=L^q(\Omega)$ with its strong topology.

Assume that

$$F(x, u, T(a)) \ge |a|^p$$
 and $\mathcal{R}(u) = \int_{\Omega} F(x, u(x), T(\nabla u(x))) dx$

Then, minimization of

$$||L(u) - I_1^{\delta}||_{L^q(\Omega)}^q + \alpha \mathcal{R}(u), \quad \alpha > 0,$$

is well-defined and source consdition can be stated See Kirisits and Scherzer (2017)

Thank you for your attention

