Foundation of ML Quiz - 4

Duration of Quiz is 30 minutes (strict), 8 PM to 8:30 PM. You can resubmit until 8:30 PM. No negative marks, but questions may carry unequal marks.

The respondent's email (cs18btech11001@iith.ac.in) was recorded on submission of this form.

Program (PhD, MTech, MDS, BTech) *
BTech
○ MDS
O PhD
Name * Abburi Venkata Sai Mahesh
Course ID (FoML course ID you have registered in AIMS : CS5590, AI5000, SM5000, AI2000) *
© CS5590
AI5000
O SM5000
Al2000

Quiz begins here

✓ [True/False] Consider the following data, with positive examples labeled as blue and negative examples labeled as red. The figure on the right side represents the Fisher linear discriminant projection. [Marks: 2]

- True
- F

False

- ✓ Which of the following does not indicate A \perp B|C ? A \perp B|C means p(A,B|C) = p(A|C)p(B|C) [Marks 2]
- $\bigcirc A \to C \to B$
- $\bigcirc \quad A \leftarrow C \leftarrow B$
- $\bigcap \ \mathsf{A} \leftarrow \mathsf{C} \to \mathsf{B}$

X Consider the probabilistic graphical model below. Which is the correct statement ? [Marks : 3]

- a and b are independent
- a and b are not independent
- ★ [True/False] which of the following statements on Hidden markov model is correct ? [Marks : 2]
- HMM is a discriminative markov random field
- HMM is a generative Bayesian network
- HMM is a discriminative Bayesian network
- HMM is a generative markov random field

✓ [True/False] In the following probabilistic graphical model, a and b are independent. [Marks: 2]

- True
- False

✓ Which of the following statements is true? [2 Marks]

let
$$A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 8 & -5 \\ -3 & 10 & -7 \end{bmatrix}$$
. Then $X = \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$, $Y = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$.

- X is eigenvector of A with the eigenvalue 2.
- Y is eigenvector of A with the eigenvalue 2.
- X and Y are eigenvectors of A with the eigenvalues 2,-2.
- X is eigenvector of A with the eigenvalue -2.

×	Assume that we have a training set of fixed size N and that all features are
	uniformly distributed on [0; 1]. Predicted response y correspond to the
	average of the responses associated to the training examples that are near
	x. Now suppose that we wish to make a prediction of a test example x by
	creating a d-dimensional hypercube centered around x that contains on
	average 10% of the training examples. Assuming dimension d=10, what is
	the length of each side of the hypercube? [Marks :3]

0 1

0.1

0

0.8

0.3

✓ Whats the joint distribution modeled through the following probabilistic graphical model ? [Marks : 3]

Consider the following 2 dimensional data set. Which of the following figures correspond to possible values that PCA may return for the first eigen vector / first principal component? [Marks 2]

Option 2

Option 3

×	Assume that we have a training set of fixed size N and that all features are uniformly distributed on [0; 1]. Predicted response y correspond to the average of the responses associated to the training examples that are near x. Suppose that we have 100 features (d = 100) and we want to predict using only training examples that are within 10% of the input range in both dimensions. On average, what fraction of the training examples will we use to make each prediction? [Marks :2]
0	100%

- 10%
- 1%
- 0%

✓ Which of the following is the correct plate notation for the joint distribution below [Marks: 3]

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2).$$

X For a sequence of inputs [x1,x2,x3] and sequence of outputs [y1,y2,y3], HMM assumes p(x1,x2,x3,y1,y2,y3) can be written as [Marks: 3]
p(y1 x1)p(x2 x1)p(y2 x2)p(x3 x2)p(y3 x3)
p(x1 y1)p(y2 y1)p(x2 y2)p(y3 y2)p(x3 y3)
p(x1 y1)p(x2 x1)p(x2 y2)p(x3 x2)p(x3 y3)
p(y1 x1)p(y2 y1)p(y2 x2)p(y3 y2)p(y3 x3)
✓ Let A be a real, symmetric n x n matrix. Which of the following are true about A's eigenvectors and eigenvalues? [1 Mark]
 A can have no more than n distinct eigenvalues
The vector 0 is an eigenvector, because A0 = lambda 0
A can have no more than 2n distinct unit-length eigenvectors
We can find 2n mutually orthogonal eigenvectors of A
✓ Given N number of d-dimensional data [Xi] (i=1N), you run principle component analysis and pick P principle components. Can you always reconstruct any data point [Xi] for i=1N, from the P principle components with zero reconstruction error? [2 Marks]
Yes, if P < d
Yes, if P = d
Yes, if P < N
O No always

✓ Why is PCA sometimes used as a preprocessing step before regression? [1 Marks]
To reduce over fitting by removing poorly predictive dimensions.
To make computation faster by reducing the dimensionality of the data.
To expose information missing from the input data.
For inference and scientific discovery, we prefer features that are not axis-aligned.
Probabilistic PCA models latent representation 'z' as a while GMM models latent variable 'z' as a [2 Marks]
Multinomial, Gaussian
Multinomial, Gamma
Gaussian, Gaussian
Gamma, Multinomial
Gaussian, Multinomial
X [True/False] As the number of dimensions increases, the percentage of the volume in the unit ball shell with thickness 'eps' grows. [1 Marks]
O True
False

X Consider the graphical model below following a second order markov assumption. Suppose the observations are discrete variables taking 5 different values. The number of parameters required to represent the model is [Marks: 3]

- 100
- 625
- 20
- 25

X Assume that we have a training set of fixed size N and that all features are uniformly distributed on [0; 1]. Predicted response y correspond to the average of the responses associated to the training examples that are near x. Suppose that we have three features (d = 3) and we want to predict using only training examples that are within 10% of the input range in both dimensions. On average, what fraction of the training examples will we use to make each prediction? [Marks :2]

- 10%
- 5%
- 1%
- 0.1%

✓ You are given a design matrix X. .Let's use PCA to reduce the dimension from 2 to 1. The unit eigenvectors, and the corresponding eigenvalues, of the covariance matrix of the design matrix X are A1 with eigen value 2 and A2 with eigen value 162. What one-dimensional subspace are we projecting onto? For each of the four sample points in X (not the centered version of X), write the coordinate (in principal coordinate space, not in R2) that the point is projected to. [Marks: 4]

$$X = \begin{bmatrix} 6 & -4 \\ -3 & 5 \\ -2 & 6 \\ 7 & -3 \end{bmatrix} \qquad \text{A1 = } \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \qquad \text{A2= } \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$A1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$A2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$(6,-4) \rightarrow \frac{10}{\sqrt{2}}$$
, $(-3,5) \rightarrow \frac{8}{\sqrt{2}}$, $(-2,6) \rightarrow \frac{8}{\sqrt{2}}$, $(7,-3) \rightarrow \frac{10}{\sqrt{2}}$

$$(6,-4) \rightarrow \frac{2}{\sqrt{2}}$$
, $(-3,5) \rightarrow \frac{2}{\sqrt{2}}$, $(-2,6) \rightarrow \frac{4}{\sqrt{2}}$, $(7,-3) \rightarrow \frac{4}{\sqrt{2}}$

Option 1

 $(6,-4) \rightarrow \frac{10}{\sqrt{2}}$, $(-3,5) \rightarrow \frac{-8}{\sqrt{2}}$, $(-2,6) \rightarrow \frac{-8}{\sqrt{2}}$, $(7,-3) \rightarrow \frac{10}{\sqrt{2}}$

$$(6,-4) {\to} \tfrac{-10}{\sqrt{2}} \ , (-3,5) {\to} \tfrac{8}{\sqrt{2}} \ , (-2,6) {\to} \tfrac{8}{\sqrt{2}} \ , (7,-3) {\to} \tfrac{-10}{\sqrt{2}}$$

Option 3

Option 4

Other:

This form was created inside of IIT Hyderabad.

Google Forms