Autoencodeurs Pour le débruitage

Bontemps Hadrien Guéganno Gabriel Fauvel Hugo

Plan

- I. Principes des autoencodeurs
 - I. Philosophie des autoencodeurs
 - II. Architecture et fonction objectif
 - III. Réduction du bruit par denoising autoencodeur (DAE)
- II. Méthode
 - I. Base de données
 - II. Pré-traitement des données
 - III. Architectures du réseau de neurone
- III. Résultats
 - I. Résultats en fonction du bruit
 - II. Interprétation
- IV. Conclusion

Autoencodeur

Objectif: Reconstruire la donnée initiale

Contrainte: Modifier l'espace de représentation en passant par au moins une couche cachée, souvent de taille inférieure aux données initiales

Non supervisé, il n'y a pas de label

$$L(x,r) = L(x,g(f(x)))$$

La fonction objectif à minimiser, représentée par la fonction de perte, est la différence entre l'entré et la sortie

 $\boldsymbol{\chi}$

 $L(\mathbf{x}, g(f(\mathbf{x})))$

Familles d'autoencodeurs	1986-1991	Mark A. Kramer, "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks", MIT, Laboratory
- Sparse		for Intelligent Systems in Process Engineering, 1991
- Denoising		
- Variational	2008	Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
- Concrete		Pierre-Antoine Manzagol. Extracting and composing
		robust features with denoising autoencoders.
		In Proceedings of the 25th International Conference on
		Machine Learning, ICML '08, pages 1096–1103, New York,
Applications		NY, USA, 2008
- Extraction de caractéristiques	2015	Olaf Ronneberger, Philipp Fischer et Thomas Brox, « U-
- Réduction de la dimension		Net: Convolutional Networks for Biomedical Image
- Débruitage		Segmentation », Medical Image Computing and
- Segmentation		Computer-Assisted Intervention – MICCAI 2015, Springer
		International Publishing, 2015, p. 234–241

Sous-complet:

- Dimension de h inférieur à l'entrée
- Projection vers un espace de dimension plus petit
- Si f et g sont linéaires, comportement proche voir équivalent à une PCA
- Si f et g sont non-linéaires, la projection peut être plus "puissante"

Sur-complet:

- Dimension de h supérieure à l'entrée
- Recopie d'information
- Doit être régularisé

Propriété

Un autoencodeur est équivalent à une PCA si

- L'encodeur est linéaire
- Le décodeur est linéaire
- La loss est la mean square error
- Les données d'entrées sont normalisées

Linear vs nonlinear dimensionality reduction

Quelques risques

Si l'encodeur non-linéaire à un pouvoir séparateur très grand, une entrée I peut corresponde à un indice I dans la couche latent.

Un pré-entrainement *Greedy Layer-Wise* est conseillé afin d'éviter la disparition du gradient

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007), "Greedy layer-wise training of deep networks.", Advances in Neural Information Processing Systems 19 (pp. 153–160). MIT Press.

Dans un DAE, la fonction objective compare le signal reconstruit avec le signal non bruité.

$$L(\mathbf{x}, g(f(\tilde{\mathbf{x}})))$$

Q. You, Y. J. Zhang, "A new training principle for stacked denoising autoencoders", in Seventh International COnference on Image and Graphics, Qingdao, 2013, pp 384-389 (sur des chiffres)

K. Wu, Z. Gao, C. Pen, X. Wen, "Text window denoising autoencoder: building deep architecture for Chinese word segmentation", Commun Comput Inf. Sci., 2013 (sur des sinogrammes)

Extraire caractéristiques par la corrélation entre les signaux d'entrés

Bases de données

Nom	Signaux	MNIST	Sinogramme
Remarque	Signaux à une, deux ou trois fréquences	Chiffre de 0 à 9	15 sinogrammes
Taille	4096x1	28x28	32x32
Cardinal	Base d'apprentissage: 900 Base de test: 100	Base d'apprentissage: 60000 Base de test: 10000	Base d'apprentissage: 14000 Base de test: 1000

De M. Lingheng, D. Shifei, X. Yu, "Research on denoising sparse autoencoder", in International Journal of Machine Learning and Cybernetics, 2017.

$$SNR = 10 \log_{10} \frac{\sum_{x=1}^{M} \sum_{y=1}^{N} I(x, y)^{2}}{\sum_{x=1}^{M} \sum_{y=1}^{N} \left[I(x, y) - \hat{I}(x, y) \right]^{2}}$$

$$PSNR = 10 \log_{10} \frac{255^2}{MSE}$$

Débruitage de signaux

Objectif: Supprimer le bruit gaussien blanc d'un signal (1D)

Dataset : Signaux à une fréquence bruités et non bruités

Débruitage de signaux

Deux types de réseaux testés:

Input : signal (1x4096)

Output: signal (1x4096)

Couches denses

Layer (type)	Output Shape	Param #
Lincon 1		/ 105 720
Linear-1	[-1, 1, 1024]	4,195,328
ReLU-2	[-1, 1, 1024]	0
Linear-3	[-1, 1, 512]	524,800
ReLU-4	[-1, 1, 512]	
Linear-5	[-1, 1, 256]	131,328
ReLU-6	[-1, 1, 256]	
Linear-7	[-1, 1, 128]	32,896
ReLU-8	[-1, 1, 128]	
Linear-9	[-1, 1, 256]	33,024
ReLU-10	[-1, 1, 256]	
Linear-11	[-1, 1, 512]	131,584
ReLU-12	[-1, 1, 512]	
Linear-13	[-1, 1, 1024]	525,312
ReLU-14	[-1, 1, 1024]	
Linear-15	[-1, 1, 4096]	4,198,400
Sigmoid-16	[-1, 1, 4096]	
Total params: 9 772 672		

Total params: 9,772,672 Trainable params: 9,772,672 Non-trainable params: 0

Couches de convolution 1D + MaxPooling

Layer (type)	Output Si	nape Param #
=======================================	=======================================	
Conv1d-1	[-1, 128, 40	996] 512
ReLU-2	[-1, 128, 40	996] 0
MaxPool1d-3	[-1, 128, 20	948] 0
Conv1d-4	[-1, 64, 20	24,640
ReLU-5	[-1, 64, 20	948] 0
MaxPool1d-6	[-1, 64, 10	024] 0
Conv1d-7	[-1, 32, 10	024] 6,176
ReLU-8	[-1, 32, 10	924] 0
MaxPool1d-9	[-1, 32, 5	512] 0
Conv1d-10	[-1, 16, 5	512] 1,552
ReLU-11	[-1, 16, 5	
ConvTranspose1d-12	[-1, 32, 10	1,568
ReLU-13	[-1, 32, 10	924] 0
ConvTranspose1d-14	[-1, 64, 20	6,208
ReLU-15	[-1, 64, 20	948] 0
ConvTranspose1d-16	[-1, 128, 40	96] 24,704
ReLU-17	[-1, 128, 40	996] 0
ConvTranspose1d-18	[-1, 1, 40	385
Sigmoid-19	[-1, 1, 40	96] 0
=======================================		
Total params: 65,745		
Inginable papame: 65	7/5	

Trainable params: 65,745
Non-trainable params: 0

Débruitage d'images

Objectif: Supprimer le bruit gaussien blanc d'une image (2D)

Dataset:

- base de données MNIST
- Base de données Sinogrammes

Débruitage de la base de données MNIST

Un réseau à base de couches denses

Input : image aplatie (1x784)

Output: image aplatie (1x784)

Layer (type)	Output Shape	Param #
=======================================	=======================================	
Linear-1	[-1, 1, 256]	200,960
ReLU-2	[-1, 1, 256]	Θ
Linear-3	[-1, 1, 128]	32,896
ReLU-4	[-1, 1, 128]	0
Linear-5	[-1, 1, 64]	8,256
ReLU-6	[-1, 1, 64]	0
Linear-7	[-1, 1, 128]	8,320
ReLU-8	[-1, 1, 128]	0
Linear-9	[-1, 1, 256]	33,024
ReLU-10	[-1, 1, 256]	0
Linear-11	[-1, 1, 784]	201,488
Sigmoid-12	[-1, 1, 784]	Θ
	=======================================	
Total params: 484,944		

Débruitage de la base de données de sinogrammes

Un réseau à base de couches denses

Layer (type)	Output Shape	Param #
	:===========	========
Linear-1	[-1, 1, 256]	262,400
ReLU-2	[-1, 1, 256]	Θ
Linear-3	[-1, 1, 128]	32,896
ReLU-4	[-1, 1, 128]	Θ
Linear-5	[-1, 1, 64]	8,256
ReLU-6	[-1, 1, 64]	Θ
Linear-7	[-1, 1, 128]	8,320
ReLU-8	[-1, 1, 128]	Θ
Linear-9	[-1, 1, 256]	33,024
ReLU-10	[-1, 1, 256]	Θ
Linear-11	[-1, 1, 1024]	263,168
Sigmoid-12	[-1, 1, 1024]	Θ
		========
Total params: 608,064		
Trainable params: 608,064		
Non-trainable params: 0		

Input : image aplatie (1x1024)

Output: image aplatie (1x1024)

Un réseau à base de convolutions 1D

Layer (type)	Output Shape	Param #
		540
Conv1d-1	[-1, 128, 1024]	512
ReLU-2	[-1, 128, 1024]	Θ
MaxPool1d-3	[-1, 128, 512]	Θ
Conv1d-4	[-1, 64, 512]	24,640
ReLU-5	[-1, 64, 512]	0
MaxPool1d-6	[-1, 64, 256]	Θ
Conv1d-7	[-1, 32, 256]	6,176
ReLU-8	[-1, 32, 256]	Θ
MaxPool1d-9	[-1, 32, 128]	0
Conv1d-10	[-1, 16, 128]	1,552
ReLU-11	[-1, 16, 128]	Θ
ConvTranspose1d-12	[-1, 32, 256]	1,568
ReLU-13	[-1, 32, 256]	0
ConvTranspose1d-14	[-1, 64, 512]	6,208
ReLU-15	[-1, 64, 512]	Ó
ConvTranspose1d-16	[-1, 128, 1024]	24,704
ReLU-17	[-1, 128, 1024]	Θ
ConvTranspose1d-18	[-1, 1, 1024]	385
Sigmoid-19	[-1, 1, 1024]	0
======================================		
Total params: 65,745		
Trainable params: 65,745		
Non-trainable params: 0		

Signaux 1D

Signal initial (f0, f1)

Signal bruité (awgn)

Signal débruité à différentes EPOCH de l'entraînement (EPOCH 1 à 50)

Signaux 1D

Chiffres manuscrits (MNIST)

Reconstruction d'images test pour un SNR de 0.15

Chiffre initial

Chiffre bruité (awgn)

Chiffre débruité à différentes EPOCH de l'entraînement (EPOCH 1 à 50)

Sinogrammes

Reconstruction d'images test pour un SNR de 0.25

Sinogramme initial

Sinogramme bruité (awgn)

Sinogramme débruité à différentes EPOCH de l'entrainement (EPOCH 1 à 50)

IV - Conclusion

Bilan:

 Autoencodeurs efficaces pour le débruitage de signaux simples et modérément bruités

(SNR = 0.15)

Limites:

- Temps de calcul
- La MSE ne permet pas de pénaliser un signal reconstruit différent du signal initial lorsque les deux signaux sont proches au sens des moindres carrés

Perspectives:

• Ajouter une branche de classification pour pénaliser un signal reconstruit proche d'un autre élément de la base ?