Układ n zmiennych losowych X_1 , X_2 , ..., X_n określonych na niekoniecznie tej same przestrzeni probabilistycznej tworzy n-wymiarową zmienną losową (X_1 , X_2 , ..., X_n). Elementy X_i są składowymi tejże zmiennej losowej.

Łączny rozkład prawdopodobieństwa dowolnego układu k ($1 \le k \le n$) spośród n zmiennych losowych X_1 , X_2 , ..., X_n nazywany rozkładem brzegowym k-wymiarowym w n-wymiarowym rozkładzie zmiennej losowej (X_1 , X_2 , ..., X_n).

Przykład rozkładu brzegowego dwuwymiarowej zmiennej losowej typu skokowego:

$$p_i = \sum_{k} p_{ik} \text{ dla } i \in N$$
 (4.1)

$$p_{.k} = \sum_{i} p_{ik} \text{ dla } k \in N$$
 (4.2)

Generowanie wektorów *n*-wymiarowych przy wykorzystaniu metody odwracania dystrybuanty oraz cech rozkładu brzegowego:

Mając daną funkcję rozkładu $p_{xy...z}$ n-wymiarowej zmiennej losowej, w celu wylosowania punktu z przestrzeni n-wymiarowej należy określić kolejno wartości k-tych współrzędnych punktu z tejże przestrzeni (k=1, 2, ..., n), posługując się metodą odwracania dystrybuanty k-wymiarowego rozkładu brzegowego zmiennej losowej (X_k) będącego rozkładem warunkowym (dla określonych wcześniej wartości zmiennych X_1 , X_2 , ..., X_{k-1}).

Literatura:

1. W. Krysicki i inni: Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach - cz.1., rozdział 5, PWN.