

Lecture 12.4 - Kernel Methods Gaussian Processes - With Exponential Kernels

Erik Bekkers

(Bishop 6.4.2)

Drawing functions from GP's

- Specifying a kernel determines the characteristics over functions drawn from the GP
- For simplicity, let's take

$$\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \dots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \right)$$

We consider this kernel

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

Drawing functions from GP's

- Sample fine grid of points $\{\mathbf{x}_1, \dots, \mathbf{x}_N\} \in [-5,5]$
- Compute K
- · Compute $\mathbf{K} = \mathbf{L}\mathbf{L}^T$ (Choleshy or eigen decomposition)
- Sample random vector of size N: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_N)$
- Sample $\mathbf{f} = \begin{bmatrix} f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_N) \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}\right)$ by computing $\mathbf{f} = \mathbf{L}\mathbf{z}$

Using kernel:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_n||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

$$\theta_0 = 1$$

$$\theta_1 = 1$$

$$\theta_2 = 0$$

$$\theta_3 = 0$$

Varying the pre-factor θ_0

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_n||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

$$\theta_0 = 4 \quad \theta_1 = 1 \quad \theta_2 = 0 \quad \theta_3 = 0$$

Varying the length scale θ_1

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$
$$\theta_0 = 1 \qquad \theta_1 = 0.5 \qquad \theta_2 = 0 \qquad \theta_3 = 0$$

g, > 6

K -> 1

Varying the length scale θ_1

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$
$$\theta_0 = 1 \quad \theta_1 = 2 \quad \theta_2 = 0 \quad \theta_3 = 0$$

Varying the offset θ_2

correlation in de pendent of position of $Q = Q \times T \times T$

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

$$\theta_0 = 1 \quad \theta_1 = 1 \quad \theta_2 = 5 \quad \theta_3 = 0$$

Varying the offset θ_2

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$

$$\theta_0 = 0 \quad \theta_1 = 1 \quad \theta_2 = 5 \quad \theta_3 = 0$$

r perfect correlation

Varying the linear term θ_3

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2\theta_1^2} ||\mathbf{x}_n - \mathbf{x}_m||^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$
$$\theta_0 = 1 \quad \theta_1 = 1 \quad \theta_2 = 0 \quad \theta_3 = 1$$

Varying the linear term θ_3

$$k(\mathbf{x}_{n}, \mathbf{x}_{m}) = \theta_{0} \exp\left(-\frac{1}{2\theta_{1}^{2}} ||\mathbf{x}_{n} - \mathbf{x}_{m}||^{2}\right) + \theta_{2} + \theta_{3} \mathbf{x}_{n}^{T} \mathbf{x}_{m}$$

$$\theta_{0} = 0 \quad \theta_{1} = 1 \quad \theta_{2} = 0 \quad \theta_{3} = 0.2$$