Pushdown Automata

- 5.1 Introduction to Push Down Automata (PDA), Representation of PDA, Operations of PDA, Move of a PDA, Instantaneous Description for PDA
- 5.2 Deterministic PDA, Non Deterministic PDA, Acceptance of strings by PDA, Language of PDA
- 5.3 Construction of PDA by Final State, Construction of PDA by Empty Stack,
- 5.4 Conversion of PDA by Final State to PDA accepting by Empty Stack and vice-versa, Conversion of CFG to PDA, Conversion of PDA to CFG

Pushdown Automata

- The PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nondeterministic PDA defines all the CFL's.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA's.

Introduction: PDA

- The PDA is a Abstract Machine which is considered to have input tape, finite control and a Stack.
- Its moves are determined by:
 - 1. The current state.
 - 2. The current input symbol (or ϵ), and
 - 3. The current symbol on top of its stack.

Introduction: PDA

- Being a nondeterministic, the PDA can have a choice of next moves.
- At each step, PDA can have either push or pop operation in its stack.
- In each choice, the PDA can:
 - 1. Change state, and also
 - 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = "pop."
 - Many symbols = sequence of "pushes."

PDA – Formal Definition

- A PDA is described by 7 tuples as
 - P=(Q, Σ , Γ , δ , q_0 , Z_0 , F) where :
 - 1. Q=A finite set of *states*
 - 2. $\Sigma = An$ input alphabet
 - 3. $\Gamma = A$ stack alphabet
 - 4. $\delta = A$ transition function
 - 5. $q_0 = A$ start state $(q_0, in Q)$.
 - 6. Z_0 = A *start symbol* (Z_0 , in Γ, typically).
 - 7. F = A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
 - ◆ But sometimes we allow ∈ as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- $\bullet \alpha$, β ,... are strings of stack symbols.

The Transition Function

- Takes three arguments:
 - 1. A state, in Q.
 - 2. An input, which is either a symbol in Σ or ϵ .
 - 3. A stack symbol in Γ.
- \bullet $\delta(q, a, Z)$ is a set of zero or more actions of the form (p, α) .
 - p is a state; α is a string of stack symbols.

Actions of the PDA

- If $\delta(q, a, Z)$ contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 - 1. Change the state to p.
 - 2. Remove a from the front of the input (but a may be ϵ).
 - 3. Replace Z on the top of the stack by α .

Example: PDA

- \bullet Design a PDA to accept $\{0^n1^n \mid n \ge 1\}$.
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

Example: PDA – (contd..)

- The stack symbols:
 - Z₀ = start symbol. Also marks the bottom of the stack, so we know when we have counted the same number of 1's as 0's.
 - X = marker, used to count the number of 0's seen on the input.

Example: PDA – (3)

- The transitions:
 - $\delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
 - $\delta(q, 0, X) = \{(q, XX)\}$. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
 - $\delta(q, 1, X) = \{(p, \epsilon)\}$. When we see a 1, go to state p and pop one X.
 - $\delta(p, 1, X) = \{(p, \epsilon)\}$. Pop one X per 1.
 - $\delta(p, \epsilon, Z_0) = \{(f, Z_0)\}$. Accept at bottom.

Instantaneous Descriptions

- We can formalize the pictures just seen with an *instantaneous description* (ID).
- The current configuration of a PDA at any instance is described by triplate which is called ID of PDA
- \bullet A ID is a triple (q, w, α), where:
 - 1. q is the current state.
 - 2. w is the remaining input.
 - 3. α is the stack contents, top at the left.

The "Goes-To" Relation

- ◆To say that ID I can become ID J in one move of the PDA, we write I+J.
- Formally, (q, aw, Xα)+(p, w, $\beta\alpha$) for any w and α, if δ(q, a, X) contains (p, β).
- ◆Extend + to +*, meaning "zero or more moves," by:
 - ◆ Basis: I+*I.
 - Induction: If I+*J and J+K, then I+*K.

Example: Goes-To

- •Using the previous example PDA, we can describe the sequence of moves by: $(q, 000111, Z_0) \vdash (q, 00111, XZ_0) \vdash (q, 0111, XXZ_0) \vdash (q, 111, XXXZ_0) \vdash (p, 11, XXZ_0) \vdash (p, 11, XXZ_0) \vdash (p, 11, XZ_0) \vdash (p,$
- ◆Thus, $(q, 000111, Z_0)$ ⊦* (f, ϵ, Z_0) .
- ◆What would happen on input 0001111?

Answer

Legal because a PDA can use ϵ input even if input remains.

- Note the last ID has no move.
- •0001111 is not accepted, because the input is not completely consumed.

Language of a PDA

The common way to define the language of a PDA is by final state.

•If P is a PDA, then L(P) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (f, \epsilon, \alpha)$ for final state f and any α .

Language of a PDA - (2)

- Another language defined by the same PDA is by *empty stack*.
- ♦ If P is a PDA, then N(P) is the set of strings w such that (q_0, w, Z_0) +* (q, ε, ε) for any state q.
- In this case, the PDA is defined by 6tuples only where there is no final states.

PDA from Empty Stack to Final State

- Given a PDA that accepts by empty stack, $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$.
- ◆ Let P_F is PDA accepting by Final State.
- Let X_0 not in Γ , is the start symbol of P_F and use bottom marker of P_N after emptying its stack.
- Define a start state p_0 of P_{F_p} and from p_0 it pushes Z_0 on the top of stack and enters into q_0 , start state of P_N .
- \bullet From q_0 , other moves are same for P_F like P_N
- When the stack of P_N becomes empty entering any state p, P_F sees the X_0 on the top of stack.
- Add another state p_f, so that from p, P_F moves to p_f which is final state.

Continue.....

- ◆The complete specification of P_F is :
 - $P_F = (Q \cup \{p_0, p_f\}, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$ and δ_F is defined by,
 - 1. $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$
 - 2. For all state q in Q, a in Σ or $a = \epsilon$, stack symbol Y in Γ , $\delta_F(q,a,Y) = \delta_N(q,a,Y)$.
 - 3. $\delta_{\mathsf{F}}(\mathsf{q}, \epsilon, \mathsf{X}_0) = (\mathsf{p}_{\mathsf{f}}, \epsilon)$.

PDA from Final state to empty Stack

- Given a PDA that accepts by empty stack, $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. We can construct PDA accepting same language by empty stack as:
 - Let P_N is PDA accepting by empty stack.
 - Let X_0 not in Γ , is the start symbol of P_N and use bottom marker of P_F .
 - Define a start state p_0 of P_{N_r} and from p_0 it pushes Z_0 on the top of stack and enters into q_0 , start state of P_F on input ϵ .
 - From q₀, other moves are same for P_N like P_F
 - From each final state of P_F , add transition on ϵ to new state p and pop from stack.
 - From state p, pop each stack symbol until it is empty since this is the situation after consuming input string.
 - Thus P_N accepts by empty stack.

- \bullet The complete specification of P_N is :
 - $P_N = (Q \cup \{p_0, p\}, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$ and δ_N is defined by,
 - 1. $\delta_{N}(p_{0}, \epsilon, X_{0}) = \{(q_{0}, Z_{0}X_{0})\}$
 - 2. For all state q in Q, a in Σ or $a = \epsilon$, stack symbol Y in Γ, $\delta_N(\mathbf{q}, \mathbf{a}, \mathbf{Y}) = \delta_F(\mathbf{q}, \mathbf{a}, \mathbf{Y})$.
 - 3. For all q in F, Y in Γ or Y = X_0 , $\delta_N(q, \epsilon, Y) = (p, \epsilon)$.
 - 4. For all Y in Γ U $\{X_0\}$, $\delta_N(p, \epsilon, Y) = (p, \epsilon)$.

Deterministic PDA's

- ◆To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- lacktriangle In addition, there must not be a choice between using input ϵ or real input.
- Formally, $\delta(q, a, X)$ and $\delta(q, \epsilon, X)$ cannot both be nonempty.

Exercise

- Construct a PDA accepting a language L={w | w is in {a,b}* and w has equal no of a's and b's }
- 2. Construct a PDA accepting L ={ww^R | w is in {0,1}* }
- 3. Construct a PDA acceting $L = \{wcw^R \mid w \text{ is in } \{1,0\}^*\}$