Statistics: "science dealing with data about the condition of a state or community"

Gottfried Aschenwall, 1770

University of Turku Faculty of Social Sciences Turku, Finland Last updated: January 17, 2022. Download last version here.

General Overview

Professor: Héctor Bahamonde, PhD.

e:hibano@utu.fi

w:www.HectorBahamonde.com

Office Hours: Schedule time with me here.

Place: TBA. Time: TBA.

Course website: TBA.

TA: Valtteri Pulkkinen.

e: valtteri.s.pulkkinen@utu.fi

TA Bio: TBA.

Program: Master of Social Sciences, University of Turku.

Semester: Spring.

Credits: 2.

Timing: 4 modules of 3 hours each.

Motivation: Why take this course?

What's the effect of education on income? How can we evaluate the effectiveness of a public policy? Does legalizing some drug increase its consumption? Which political candidate will win the election? All these questions entail some kind of relationship between two social phenomenon (a.k.a. correlation). In this course we will learn (1) how to answer these questions from a quantitative perspective, (2) how to select the "right" quantitative method depending on the type of data we have (a.k.a. functional form), (3) how to quantify the amount of uncertainty we have (and why it matters), and (4) how to communicate quantitative results effectively (even for non-specialized audiences).

Public entities guide their strategic decisions based on quantifiable information, i.e., data. This decision-making process has taken even much more relevance nowadays where there has been a wave of data digitization, making available much more high-quality data. I believe this is a great opportunity for social scientists like ourselves, putting heavy pressures on us to learn how to analyze those data. If ten years ago we complained that there was not enough data, our problem now is different: there are so much data that we need to learn how to analyze it.

Though what we will learn this semester is highly mathematical and numeric, and thus, it might seem to you as "very scientific" or "irrefutable," don't get confused, these methods are *not* "bullet-proof:" they will *never* "proof" anything at all. During the semester, we will learn *inferential* statistics, that means that everything we do will come with some degree of **uncertainty**. All the time, we will also rely on *untestable* **assumptions**. **As we shall see, inferential statistics is more art than science**.

Depending on our progress during the semester, we will pay special attention to an issue that is absolutely relevant nowadays in applied social sciences: *causal inference*. Experiments are the gold-standard for making causal claims. However, often times conducting experiments is either too expensive, unethical, or impossible. Under the "right" circumstances, though, some times it is possible to get quasi-experimental statistical designs that might get us closer to the gold-standard. We will also discuss why the methods we will learn this semester are *not* causal, i.e., *correlation is not causation*.

Honestly, I hope this course captivates your enthusiasm, and gets you interested and curious about ways to study different social phenomena from a quantitative perspective, *tervetuloa*!

Description

Enrolled students will acquire a basic inferential statistics toolkit. The course will pay special attention to Ordinary Least Square regression (OLS) and a selection of Generalised Linear Models (such as logit/probit, multinomial, ordered models and/or rare events data generating processes)—the workhorses of quantitative social sciences. This course is very hands-on, and while some statistical theory will be covered, the core of it will be on data analyses and programming in R.

Overall, this course is an opportunity for students to make progress on their Master theses, particularly on the data analyses portion of it. For those matters, the actual content of the course will follow the students' research questions and data structure. Thus, during the course, students will perform real analyses on their own data (if they have those data already available), otherwise students will perform replications.

Organization

- I need you to **email/meet me two weeks before this module begins** so we can discuss about your Master thesis, particularly, (1) your research question and (2) your data structure. This will help me tailoring the actual contents of this course to your research project.
- The course will be taught in English in the computer lab as 4 sessions of 3 hours each.
- We will meet between early March and early May at the end of the week (Wed, Thu and/or Fri) starting at 11.00 AM. Exact dates will be confirmed later.

In terms of contents, this course will address four general topics.

- 1. Basic functions in R.
- 2. Descriptive statistics in R.

- 3. Introduction to lineal models in R.
- 4. Causal inference in R.

Programming

We will learn to program in R, the most-used programming language in social sciences. There are several advantages. R is free and runs on all platforms. Second, it's an object-oriented language. This implies—third—that R forces the student to think hard about what s/he is doing. Unlike other statistical packages such as Stata or SPSS, where the user "clicks and points," you have to tell R specifically what you need and how you need it. Fourth, if you know R, you can easily learn about other pieces of software.

Installing R. First, download R. Click on "CRAN" (upper-left corner), then select any "mirror" you want. Then select which version of R you will need depending on your OS (i.e., Windows, Mac, Ubuntu). R will start downloading. Once it's all done, install R. Now, download R Studio, the most-used interphase to "talk" to R. Click on *Download R-Studio* and make sure you select *FREE*. Also, select the version that works according to your OS.

Academic Integrity

I expect nothing but the best out of my students.

- I expect students to do their reading *before* class.
- o Practical exercises should also be done before class.
- If you need to see me, plan your time accordingly. It's best to assume that my office hours will get busier before tests and submissions. Ask your TA or myself when in doubt.
- o I usually don't answer emails during weekends.
- Plagiarism will not be tolerated. Make sure you follow the University's rules and definitions of plagiarism. Also, make sure you know how to cite your work.
- I won't accept late work.

Policy About Collaborative Work and External Resources

I do recommend collaborative work. It's good that you work with your classmates. However, I will grade individual work.

Another advantage of R is that it has a really engaged community of software developers and Internet bloggers. They are your best friends whenever R gives you trouble. Maybe the best website to look for answers *before* start asking online, is StackOverflow. In any case, feel free to contact your TA or myself.

Evaluations

1. *Quizzes*: 5% each, 10% in total.

There will be two quizzes. The first one is due at the beginning of our first session! (i.e., first day of class with me). Both are due in hard copy (i.e. paper).

2. Problem Sets: 10% each, 40% in total.

The *problem sets* are hands-on programming exercises. Some times, you may expect some epistemology-type questions for which I expect epistemology-type answers (one well-crafted paragraph will do). For the programming ones, I will give you an R *script* with a dataset. You'll have to answer the questions within the same R *script*, and then turn that file in. The TA and myself will be available to answer questions if needed.

- ♦ While it shouldn't be necessary, you *may* use resources on the Internet to answer the questions.
- ♦ It is important that the code runs without issues. In other words, your coding shouldn't get stuck.
- ♦ It is important to guide and explain your reasoning. For that use the # symbol.

3. Research Project or Replication (30%) plus a Final Presentation (20%): 50% in total.

This is the core of course. You'll have to give a 20 minutes presentation, very much mimicking a professional conference. Using your (1) actual dataset and (2) research question of your actual Masters thesis, you will have to:

- ♦ **Motivate the problem**: Why should we care about your research question?
- ♦ **Short lit review**: What's the main gap your work intends to bridge?
- ♦ Data: What's your dependent and independent variables? Use plots, summary statistics, etc.
- ⋄ Data analyses: Why are you performing the analyses you're performing? Are there any alternative ways to analyze your data? Convince us you've done all that there is to be done with your data! The audience, the TA and myself are going to ask you questions about this. Thus, anticipate those questions, make sure you include in your presentation a large Appendix covering, at the following: extra diagnostics, plots, tables, alternative variable re-coding, etc.

\rightarrow

En este curso, la actividad final es un trabajo final (30%) que tiene formato de trabajo grupal. Usando una base de datos que nosotros te daremos, tú y tu grupo deberán responder una serie de preguntas. El producto final (i.e. lo que debes entregar) consiste en un *script* de R. La nota es grupal (i.e. todo el grupo recibirá la misma nota). **Los grupos serán de 2 personas**. La formacion del grupo es endógena.

El paper (*script*) se puede entregar antes, pero una vez cerrado el plazo, no se recibirán trabajos. Los *scripts* que se entreguen tarde o vía *email* tendrán un 1 (sin opción a reclamo). **No hay excepciones**.

En un formato muy parecido a una conferencia académica (virtual, no presencial), tendrás (junto a tu grupo) que presentar los principales hallazgos (20%). Todos/as presentan. Cada presentación debe durar no menos de 15 minutos, pero nunca más de 20 minutos. Las presentaciones se realizarán virtualmente (i.e. vía Zoom) el último día de clases. Tendrás que ocupar *slides* ("Power Point"). Para tales efectos, tendrás que compartir pantalla desde tu casa, y hacer tu presentación de esa manera.

Les recomiendo "verme" (vía Zoom) en mis office hours antes del plazo de entrega. Si quieres, SEND ME AN EMAIL con tu borrador, y yo te devolveré comentarios. Vélo como una pre-corrección. Esto es voluntario. También puedes contactar al/la TA. No se procesarán preguntas durante fines de semana, y/o festivos.

En resumen:

	Porcentaje	Porcentaje Acumulado
Participación (cátedra, foro uCampus y ayudantía)	10%	10%
Problem Set #1	10%	20%
Problem Set #2	10%	30%
Problem Set #3	10%	40%
Problem Set #4	10%	50%
Trabajo final grupal	30%	80%
Presentación grupal	20%	100%

Textos Mínimos

- Guido Imbens and Donald Rubin (1998). Causal Inference for Statistics, Social, and Biomedical Sciences.
- Joshua Angrist and Jorn-Steffen Pischke (2009). *Mostly Harmless Econometrics: An Empiricist's Companion*.
- Jeffrey Wooldridge (2010). *Introducción a la Econometría. Un Enfoque Moderno*.
- Urdinez y Cruz (2019). AnalizaR Datos Políticos.
- Krishnan Namboodiri (1984). Matrix Algebra, an Introduction.

Textos Recomendados

- Paul Rosenbaum (2010). Design of Observational Studies.
- James Monogan (2015). Political Analysis Using R.
- También se considerarán algunos *papers*. Estos estarán señalados en las fechas indicadas y en la sección de Bibliografía.

Calendario

- 1. Funciones básicas en R
 - Clase #1
 - o Introducciones: programa de curso, requerimientos, expectativas, etc.
 - o Qué es R? Instalación de R y RStudio.
 - Lecturas:
 - ♦ Wooldridge (2010): Cap. 1.
 - ♦ Urdinez and Cruz (2019): Cap. 2.

• Clase #2

- Funciones básicas: promedio, help(), operadores, tipos de objetos (character, arrays, fechas, listas, dataframes).
- o Cargando bases de datos (I): formatos, etiquetas, tipos de variables, descripción básica.
- o Lecturas:
 - ♦ Urdinez and Cruz (2019): Cap. 5.
- Clase #3

- o Cargando bases de datos (II): transformaciones, creación de nuevas variables.
- o Manipulando bases de datos: generación de matrices y dataframes, merge, append. Logs.

• Clase #4

- Visualización de datos (I): *bar plots* (variable categórica/continua, categórica/categórica), *scatter plots*, histogramas, *time series plots*.
- o Lecturas:
 - ♦ Urdinez and Cruz (2019): Cap. 4.
- Clase #5
 - o Visualización de datos (II): plots más complejos (por categorías), mapas.
 - o Lecturas:
 - ♦ Urdinez and Cruz (2019): Cap. 15.
- 2. Estadística descriptiva en R
 - Clase #6
 - o Estadística descriptiva (I): Teoría de probabilidades: distribuciones, varianza.
 - Clase #7
 - o Estadística descriptiva (II): binomial, normal, otras; simulación.
- Entrega temario del *Problem set* #1. Una semana de plazo.
- 3. Introducción a modelos lineales en R
 - Clase #8
 - o Introducción a modelos lineales: Qué es OLS?
 - Lecturas:
 - ♦ Wooldridge (2010): 2.1—2.2.
 - Clase #9
 - o La mecánica detrás del OLS (II): matrices en R.
 - Lecturas:
 - ♦ Namboodiri (1984): Caps. 1 y 2.
 - Clase #10
 - o Coeficientes.
 - Lecturas:
 - ♦ Wooldridge (2010): Caps. 3.1—3.2.
 - Clase #11
 - \circ Error, residual y ϵ_i .
 - Clase #12
 - o Intervalos de confianza, error estándar y variance-covariance matrix.
 - o Lecturas:
 - ♦ Wooldridge (2010): Cap. 4.3.

• Clase #13

- o Test de hipótesis (*t test*), errores Tipo I y II, significancia estadística (*p-values*).
- Lecturas:
 - ♦ Wooldridge (2010): Cap. 4.2.

• Clase #14

- o Términos de interacción. Motivación. Estimación. Interpretación.
- Lecturas:
 - ♦ Wooldridge (2010): Cap. 7.4.
 - ♦ Thomas Brambor, William Clark and Matt Golder (2006). *Understanding Interaction Models: Improving Empirical Analyses*. Political Analysis, 14(1): 63—82.
- Entrega temario del *Problem set* #2. Una semana de plazo.
 - Clase #15
 - o Propiedades numéricas del OLS, Gauss-Markov, sesgo de variable omitida.
 - o Lecturas:
 - ♦ Wooldridge (2010): pp. 89—94, 102—104.

• Clase #16

- o Goodness of fit, "coeficiente de determinación" (r²), predicción.
- Lecturas:
 - ♦ Wooldridge (2010): pp. 40—41, Cap. 6.3.
 - ♦ Gary King (1986). *How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science*. American Journal of Political Science, 30(3): 666—687.

• Clase #17

- o Problemas y *post-estimation*: multicolinealidad perfecta, heteroskedasticidad, no linearidad, *outliers*, no normalidad de residuos, auto-correlación.
- Lecturas:
 - ♦ Wooldridge (2010): Caps. 8 y 9.5.
- Entrega temario del *Problem set* #3. Una semana de plazo.
- 4. Inferencia causal en R
 - Clase #18
 - o Inferencia Causal: El *Problema Fundamental* en Inferencia Causal, el Supuesto de la "Ignorabilidad" y el "*Potential Outcomes Framework*".
 - Lecturas:
 - ♦ Imbens and Rubin (2015): Ch. 1.
 - Clase #19
 - Variables instrumentales y two-stage least squares.
 - Lecturas:
 - ♦ Angrist and Pischke (2009): 4.1—4.2.
- Entrega temario del *Problem set* #4. Una semana de plazo.

• Clase #20

- o Regression discontinuity designs: Sharp Designs.
- Lecturas:
 - ♦ Angrist and Pischke (2009): 6—6.1.

• Clase #21

- o Regression discontinuity designs: Fuzzy Designs.
- Lecturas:
 - ♦ Angrist and Pischke (2009): 6.2.

• Clase #22

- o Incorporando el elemento tiempo: fixed effects, differences-in-differences.
- Lecturas:
 - ♦ Angrist and Pischke (2009): Ch. 5.
- Entrega temario del trabajo final.

• Última Clase

o Presentaciones Grupales. Formato "conferencia online".

References

Angrist, Joshua, and Jorn-Steffen Pischke. 2009. *Mostly Harmless Econometrics: An Empiricist's Companion*. 392. Princeton University Press.

Brambor, Thomas, William Clark, and Matt Golder. 2006. "Understanding Interaction Models: Improving Empirical Analyses." *Political Analysis* 14 (01): 63–82.

Imbens, Guido, and Donald Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press.

King, Gary. 1986. "How Not to Lie with Statistics: Avoiding Common Mistakes in Quantitative Political Science." *American Journal of Political Science* 30 (3): 666–687.

Monogan, James. 2015. Political Analysis Using R. Springer.

Namboodiri, Krishnan. 1984. Matrix Algebra: An Introduction, 1–99. Sage.

Rosenbaum, Paul. 2010. Design of Observational Studies. Springer Series in Statistics. Springer New York.

Urdinez, Francisco, and Andrés Cruz. 2019. *AnalizaR Datos Políticos*. Edited by Francisco Urdinez and Andrés Cruz. https://arcruzo.github.io/libroadp/.

Wooldridge, Jeffrey. 2010. Introducción a la Econometría. Un Enfoque Moderno. 4th. Cengage Learning.