Lemma: (X, A) ms, $f,g:(X,A) \rightarrow 1K$ measurable. Then $h: (X, A) \rightarrow 1K^2$ defined by $h(x) = (f(x), g(x)) \forall x \in X$ is measurable from Aも 多(IK2). Proof: We can show that 33(1K2) is countably generated by sets of the form I, × I2 where I, I2 are open in IK. Then $h^{-1}(I_1 \times I_2) = f^{-1}(I_1) \cap g^{-1}(I_2)$ thus, by assumption, f, g are measurable, so is h. Corollary: If (X, A) ms, $f,g: X \rightarrow |K|$ measurable. Then (i) cf is measurable tcelk (ii) f+q is measurable. (iii) fg is measurable. (iv) If is measurable. (v) If $f \neq 0$, \neq is measurable. (vi) f is measurable. Proof: (i) follows from (iii). (ii) and (iii) follow by the lemma, as h is measurable and "+": 1K×1K→1K and "·": IK × IK → IK are continuous with $f+g="+"\circ h$ and $fg="\cdot"\circ h$ are measurable. (iv) - (vi) follow by composing with appropriate continuous functions.

Remark: If $f: X \to \mathbb{C}$ we can define $Re(f), Im(f): X \to \mathbb{R}$

by

(i)
$$Re(f)(x) = \frac{f(x) + \overline{f(x)}}{2}$$

(ii) $Im(f)(x) = \frac{f(x) - \overline{f(x)}}{2i}$

Then f = Re(f) + i Im(f). Note f is measurable if and only if Re(f) and Im(f) are measurable.

Remark: If $f: X \to IR$, we define $f_+, f_-: X \to [0, \infty]$

by

$$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$f_{-}(x) = \begin{cases} -f(x) & \text{if } f(x) < 0 \\ 0 & \text{otherwise} \end{cases}$$

We call for and f- the positive and negative

parts of f. Note that $f = f_+ + f_-$, where $f_+ = \frac{f + |f|}{2}$ and $f_- = \frac{-f + |f|}{2}$. Thus, f_- is

measurable if and only if f_+, f_- are measurable.

Definition: Let (X, A) ms. An extended real-valued function $f: X \to \mathbb{L} - \infty$, $\infty \mathbb{J}$ is said to be measurable if $f^{-1}(9 \infty 9)$, $f^{-1}(9 - \infty 3) \in A$ and $f^{-1}(A) \in A$ $\forall A \in \mathcal{B}(\mathbb{R})$

Remark: As $f^{-1}(i \infty i) = \bigcap_{n=1}^{\infty} f^{-1}(n, \infty I)$ and als $f^{-1}(i - \infty i) = (\bigcup_{n=1}^{\infty} f^{-1}((-n, \infty I))^{c}$. Thus, f is

measurable if and only if $\{x: f(x) > a\} \in A \forall a \in \mathbb{R}$.

Theorem: let (X, A) ms, let (fn) n=1 be a sequence of measurable functions from $X \rightarrow [-\infty, \infty]$. Then (i) sup for is measurable. (ii) inf is measurable. (iii) has for is measurable. liv) n-100 fn is measurable. Thus, if $f: X \to [-\infty, \infty]$ such that $f(x) = \lim_{n \to \infty} f_n(x)$ for all xex. Then f is measurable, Proof: (i) and (ii) Note that $(\sup_{n \in \mathbb{N}} f_n)^{-1}((a_1 \omega)) = \bigcup_{n=1}^{\infty} f_n^{-1}((a_1 \omega)) \in A$ $(\inf_{n\in\mathbb{N}} f_n)^{-1}([a, a)) = \bigcap_{n=1}^{\infty} f_n^{-1}([a, a)) \in A$ (iii) and (iv) Note that limsup $f_n = \inf_{n \ge k} \sup_{n \ge k} f_k$ $\lim_{n \to \infty} f_n = \sup_{n \ge k} \inf_{n \ge k} f_k$ Furthermore, if f exists, (fn) -> f is measurable. Corollary: If fn: X -> C are measurable and $f(x) = \lim_{n \to \infty} f_n(x) \quad \forall x \in X, \text{ then } f \text{ is measurable.}$ Proof. Note Re(fn)(x) → Re(f)(x) and Im(fn)(x) → Im(Dx) $\forall x \in X$, so Re(f) and Im(f) are measurable. Definition: Let (X, A, µ) be a ms and P: X→ {T, F} a property at each point in X. We say that P holds u-almost everywhere, or a.e. if there exists $A \in A$, $P(x) = T \forall x \in A$, and $\mu(A^c) = 0$.

Remark: Note if $B = \{x : P(x) = F\}$, need note be measurable, so $\mu(B)$ may not be defined.

Example: Let $f,g: X \to IK$. We say f = g a.e. if $\exists A \in A \text{ s.t.} f(x) = g(x) \forall x \in A \text{ and } \mu(A^c) = 0$.

Note $\mu(\{x: f(x) \neq g(x)\})$ need not make sense, unless, f,g are measurable. Hence, if f,g meas. f = g a.e. if and only if $\mu(\{x: f(x) - g(x) \neq o\}) = 0$

Example: $1_Q = 0$ a.e.

Example: Let (X, A, μ) complete ms, If $f:g:X \to IK$ are s.t, f is measurable and f=g a.e, then g is measurable.

Proof: Because f = g a.e., $\exists A \in A \text{ s.t.} f(x) = g(x)$ $\forall x \in A \text{ and } \mu(A') = 0$. Then $\forall B \in \mathcal{B}(IK)$, $g^{-1}(B) = (g^{-1}(B) \cap A) \cup (g^{-1}(B) \cap A')$ $= (f^{-1}(B) \cap A) \cup (g^{-1}(B) \cap A')$

Bec. $g^{-1}(B) \cap A^c \subseteq A^c$, $\mu(A^c) = 0$, μ is complete. So $g^{-1}(B) \cap A^c \in A$, so $g^{-1}(B) \in A$, and g is measurable. Theorem: Let (X, \mathcal{A}, μ) complete ms, $fn: X \to ||X|$ measurable $\forall n \in |X|$. If $f = \lim_{n \to \infty} fn$ pointwise a.e. then f is measurable.

Proof: Because $f = \lim_{n \to \infty} f_n$ pointwise a.e., there exists $A \in A$ s.t. $f(x) = \lim_{n \to \infty} f_n(x)$ $\forall x \in A$ and $\mu(A^c) = 0$. Then $f = f \perp_A$ a.e. and $f \perp_A = \lim_{n \to \infty} f_n \perp_A$ pointwise Since $A \in A$, $f_n \perp_A$ is measurable, so $f \perp_A$ is measurable, so $f \perp_A$ is

Simple Functions

Definition: A function $\Psi: X \to [0, \infty)$ is said to be simple if there exists $n \in \mathbb{N}$, $\{A_i\}_{i=1}^n \subseteq \mathcal{A}$ pairwise disjoint, $X = \bigcup_{i=1}^n A_i$, distinct $(a_i)_{i=1}^n \subseteq [0, \infty)$ such that

$$V = \sum_{i=1}^{n} a_i \mathcal{1}_{A_i}$$

Remark:

(i) Simple Functions are measurable.

(ii) Let $g: X \rightarrow [0, \infty)$ be m-able with finite range. Thus, $g(X) = \{a_1, \dots, a_K\}$ with $a_i \neq a_j$ if $i \neq j$. Let $A_K = g^{-1}(\{a_K\}) \in A$. Moreover, $A_i \neq A_j$ if $1 \neq j$ and $X = \bigcup_{i=1}^{n} A_i$, since $g = \sum_{i=1}^{n} a_i A_i$; So the set of simple functions is exactly the set of

non negative m-able functions with finite range Thus, sum of 2 simple functions is simple, and non negative scalar multiple of simple function is simple.

Note, if $\{Ai\}_{i=1}^n \subseteq A$ and $(ai)_{i=1}^n \in Eo, \infty)$, and $g = \sum_{i=1}^n ai \mathcal{1}_{Ai}$, then g is m-able. Thus, the way of writing g in the description is called the

Canonicas decomposition of g.

Theorem: A function $f: X \to Lo, \infty J$ is m-able iff there exists (ei) if of m-able functions s, then e ence $\forall n \in IN$ and $f = \lim_{n \to \infty} e_n$ pointwise.

Proof: Pointwise limit simple functions is m-able.

Let f: X→[o, ∞] be m-able.

Let $y_n = n \cdot 1 \cdot 1_{B_n} + \sum_{k=1}^{n \cdot 2^n} \frac{1}{2^n} \cdot 1_{A_{n,k}}$. Then $y_n \in S_{n+1}$ by construction: Anik becomes two $A_{n+1,k}$ with $\frac{k'-1}{2^{n+1}} \ge \frac{k-1}{2^n}$

If $f(x) = \infty$, $x \in B_n$ thein. Otherwise, if $x \in A_{n,k}$

$\forall n,k,so \ \forall n(x)=n\rightarrow \infty = f(x). \ f(x)<\infty, \ there is NEN S.L.$
f(x) <n. anik="" for="" k,="" so<="" td="" then="" unique="" x="" ∀n≥n,="" ∈=""></n.>
$X \in f^{-1}\left(\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]\right) \approx 0$
$ f_n(x) - \psi_n(x) \le \frac{1}{2^n} \forall n \ge N.$