

Modelo q con depreciación

Pregunta b

$$H(I,K) = \pi(K) - I - C(I,K) + \lambda(I - \delta K)$$

CPO respecto al control:

$$\frac{\partial H}{\partial I} = 0$$

$$-I - C_I + \lambda = 0$$

$$I + C_I = \lambda$$

$$I + C_I = q$$

$$I + b \cdot \frac{I - \delta K}{K} = q$$

$$\frac{I}{K} = \frac{q - 1}{b} + \delta$$

$$\frac{\dot{K} + \delta K}{K} = \frac{q - 1}{b} + \delta$$

$$\dot{K} + \delta = \frac{q - 1}{b} + \delta$$

$$\dot{K} = \frac{q - 1}{b} \cdot K.$$

Pregunta c

CPO respecto al estado:

$$\begin{split} -H_K &= \dot{\lambda} - r\lambda \\ (r+\delta)q &= \dot{q} + \pi_K(K) - C_K(I,K) \\ (r+\delta)q &= \dot{q} + \pi_K(K) - \left[-\delta b \frac{(I-\delta K)}{K} - \frac{b}{2} \left(\frac{I-\delta K}{K} \right)^2 \right] \\ (r+\delta)q &= \dot{q} + \pi_K(K) - \left[-\delta b \frac{\dot{K}}{K} - \frac{b}{2} \left(\frac{\dot{K}}{K} \right)^2 \right] \\ (r+\delta)q &= \dot{q} + \pi_K(K) + \delta(q-1) - \frac{(q-1)^2}{2b} \end{split}$$

En estado estacionario $\dot{K} = 0$:

$$\dot{K} = \frac{q-1}{b} \cdot K$$
$$0 = \frac{q-1}{b} \cdot K$$
$$q_{EE} = 1.$$

 $\dot{q}=0$:

$$\begin{split} (r+\delta)q &= \dot{q} + \pi_K(K) + \delta(q-1) - \frac{(q-1)^2}{2b} \\ r+\delta &= \pi_K(K) \\ K_{EE} &= \pi_K^{-1}(r+\delta) \end{split}$$

Pregunta 4

Pregunta d) guía

"Muestre formalmente que el lugar geométrico que define $\dot{q}=0$ en el plano (K, q) es decreciente para valores de q cercanos a uno. En lo que sigue puede suponer que es decreciente en todo el plano."

$$\begin{split} (r+\delta)q &= \dot{q} + \pi_K(K) + \delta(q-1) - \frac{(q-1)^2}{2b} \\ (r+\delta)q &= \pi_K(K(q)) + \delta(q-1) - \frac{(q-1)^2}{2b} \\ (r+\delta) &= \pi_{KK}(K(q)) \cdot \frac{\partial K}{\partial q} + \delta - \frac{(q-1)}{b} \\ r &= \pi_{KK}(K(q)) \cdot \frac{\partial K}{\partial q} - \frac{(q-1)}{b} \\ r + \frac{q-1}{b} &= \pi_{KK}(K(q)) \cdot \frac{\partial K}{\partial q} \end{split}$$

Si $q \rightarrow 1$:

$$\frac{r}{pi_{KK}(K(q))} = \frac{\partial K}{\partial q} < 0$$

Costos no convexos de ajuste y determinantes de la IRF

Pregunta a)

Distribución 1 y 2: no tienen efecto sobre la inversión. Distribución 3: $z_2 = 0.25 = \Delta k_2$. Luego,

$$I/K = 1/8 = 0.125$$
.

Pregunta b)

Distribución 1: $z_1 = -0.15$ y $z_2 = -0.05$. Con estímulo de 0.25, la firma dos invierte.

Distribución 2: $z_1 = -0.05$ y $z_2 = -0.05$. Con estímulo de 0,25, ambas firmas invierten.

Distribución 3: $z_1 = 0.05$ y $z_2 = 0.15$. Con estímulo de 0.05 la firma 2 invierte.

Pregunta c)

 $z = k^* - k$. Cuando z < 0, se tiene más capital que el deseado, por lo que las firmas tendrían un incentivo a desinvertir. Por ello, el estímulo no es efectivo debido cuando más se necesita.

Guía 4

Pregunta a)

El estímulo de 0.1 no genera que ninguna firma ajuste. Luego, no hay efecto sobre la inversión. $I_0 = 0$.

Pregunta b)

$$z_1 = 0.1 \text{ y } z_2 = -0.1.$$

La firma 1 ajusta: $z_1 = \Delta k_2 = 0, 2$. $I/K = 0, 1 \implies I_0 = 1$.

Pregunta c)

Se requiere conocer la distribución de z en la economía para conocer I_0 .

Ahora bien, la impulso unitario del agregado depende del tiempo.

Pregunta d)

El modelo de Calvo tiene una probabilidad de ajuste que no depende del tiempo ni de la distribución del capital en la economía.