Universidade Federal de São Carlos Laboratório de Arquitetura e Organização de Computadores I

Prof. Ricardo Menotti

menotti@dc.ufscar.br

Forma geral de um circuito sequencial

Um exemplo simples

- Desenvolver um circuito que atenda as seguintes especificações:
 - O circuito possui uma entrada, w, e uma saída, z;
 - Todas as transições do circuito ocorrem na borda de subida de um clock;
 - A saída z é igual a 1 se durante dois ciclos anteriores sucessivos a entrada w for igual a 1;
 - Caso contrário, a saída z é igual a 0;

Sequência de entradas e saídas

Clock: w:	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t ₇	t_8	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
Z :	0	0	0	0	0	1	0	0	1	1	0

Máquina de estados (Moore)

Tabela de estados

Estado atual	Próximo estado $w = 0 w = 1$		Saída z
A B	A	В	0
C	A	C	1

Forma geral do circuito

Tabela de atribuição de estados

		Próximo estado		
	Estado atual	w = 0	Saída	
	^y 2 ^y 1	Y ₂ Y ₁	Y ₂ Y ₁	Z
	00	00	01	0
	01	00	10	0
,	10	00	10	1
	11	dd	dd	d

Α

В

C

Derivação das expressões lógicas

Ignorando don't cares

$$Y_1 = w\bar{y}_1\bar{y}_2$$

Usando don't cares

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_2 = wy_1\bar{y}_2 + w\bar{y}_1y_2$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

$$y_2$$
 0 1 0 0 1 1 1 1 1 0

$$z = \bar{y}_1 y_2$$

$$z = y_2$$

Circuito seqüencial

Diagrama de tempo

Problemas

	Estado	Próxim		
	atual	w = 0	w = 1	Saída
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Circuito melhorado

Código VHDL

```
USE ieee.std logic 1164.all ;
ENTITY simple IS
        PORT ( Clock, Resetn, w : IN STD LOGIC ;
                             : OUT STD LOGIC ) ;
END simple ;
ARCHITECTURE Behavior OF simple IS
        TYPE State type IS (A, B, C) ;
        SIGNAL y : State type ;
BEGIN
        PROCESS ( Resetn, Clock )
        BEGIN
                 IF Resetn = '0' THEN
                         y \le A;
                 ELSIF (Clock'EVENT AND Clock = '1') THEN
-- continua...
```

Código VHDL

```
CASE y IS
                 WHEN A =>
                     IF w = '0' THEN
                         y \le A;
                     ELSE
                       y <= B ;
                     END IF ;
                 WHEN B =>
                     IF w = '0' THEN
                         y \le A;
                     ELSE
                       y <= C ;
                     END IF ;
                 WHEN C =>
                     IF w = '0' THEN
                         y \le A;
                     ELSE
                       y <= C ;
                     END IF ;
            END CASE ;
        END IF ;
    END PROCESS ;
    z \le '1' WHEN y = C ELSE '0';
END Behavior ;
```

Codificação *One-Hot*

	Estado	Próximo	róximo estado		
	atual	w = 0	w = 1	Saída	
	<i>y</i> 3 <i>y</i> 2 <i>y</i> 1	$Y_3Y_2Y_1$	$Y_{3}Y_{2}Y_{1}$	Z	
4	001	001	010	0	
3	010	001	100	0	
C	100	001	100	1	

Forma geral de um circuito sequencial

Sequência de entradas e saídas

```
Clock: t<sub>0</sub>
                              t_1
                                          t_2
                                                      t<sub>3</sub>
                                                                  t_4
                                                                                                                                         t<sub>10</sub>
                                                                              t<sub>5</sub>
                                                                                         t_6
                                                                                                                 t<sub>8</sub>
                                                                                                     t<sub>7</sub>
                                                                                                                             t<sub>9</sub>
                                           0
                                                                               0
     W:
                    0
      Z:
```

```
Clock:
                     t_0
                                t_1
                                          t_2
                                                    t<sub>3</sub>
                                                                         t<sub>5</sub>
                                                                                   t_6
                                                                                              t<sub>7</sub>
                                                                                                        t8
                                                                                                                  t<sub>9</sub>
                                                                                                                             t<sub>10</sub>
                                           0
                                                                          0
                      0
          W:
                                                                          0
                      0
                                 0
                                           0
                                                     0
                                                                                    0
                                                                                                                   0
          Z:
```

Máquina de estados (Mealy)

Tabela de estados

Estado	Próximo	o estado	o Saída z		
atual	w = 0	w = 1	w = 0	w = 1	
А	А	В	0	0	
В	Α	В	0	1	

Tabela de estados

Estado	Próximo	o estado	Saída		
atual	w = 0	w = 1	w = 0	w = 1	
У	Υ	Υ	Z	Z	
0	0	1	0	0	
1	0	1	0	1	

A

Circuito sequencial

Diagrama de tempo

(b) Timing diagram

Particionamento:

- Assumir que todos estados são equivalentes
 (P₁)
- •Separar conjuntos de estados por saída (P₂)
- Testar os k-sucessores de cada bloco e separar caso sejam diferentes (P_n)

Estado	Próximo	Saída	
atual	w = 0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	E	0
D	В	G	1
E	F	С	0
F	E	D	0
G	F	G	0

Estado	Próximo	Saída	
atual	w = 0	w = 1	Z
А	В	О	1
В	Α	F	1
С	F	С	0
F	С	Α	0

Referências

- Material extraído de:
 - http://www.eecg.toronto.edu/~brown/powerpoint.html
- Tradução e adaptação:
 - Ricardo Menotti (menotti@dc.ufscar.br)