Санкт-Петербургский политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

# Расчетная работа №1.2

Дисциплина: Теория вероятности и математическая статистика

**Tema:** info\_messages

| Выполнил                  |           |              |
|---------------------------|-----------|--------------|
| студент гр. 3530901/90003 |           | Руднев А.К   |
|                           | (подпись) |              |
| Преподаватель             |           | Никитин К.В. |
|                           | (подпись) |              |
|                           |           |              |
|                           | «»        | 2021 г       |

# Содержание

| 1. Техническое задание                                                                  | 3  |
|-----------------------------------------------------------------------------------------|----|
| 2. Формулы:                                                                             | 5  |
| 3. Вспомогательные материалы                                                            | 6  |
| 4. Выполнение работы                                                                    | 7  |
| 1.1.1 Переданное сообщение при равномерном распределении во символов                    |    |
| 1.1.2 Энтропия и количество информации при равномерном распределении всех символов      | 20 |
| 1.2.1 Передаваемое сообщение при вероятности букв, заданной таблицей 2                  |    |
| 1.2.2 Энтропия и количество информации при распределении символов, заданных таблицей 2. | 33 |
| 1.3.1 Сравнение результатов п.1.1 и п.1.2                                               | 34 |
| 2.1.1 Определение переданного сообщения при равномерном распределении символов          | 35 |
| 2.1.2 Энтропия и количество информации при равномерном распределении символов           | 35 |
| 2.2.1 Определение переданного сообщения при заданных вероят                             |    |
| 2.2.2 Энтропия и количество информации при заданных вероят                              |    |
| 2.3.1 Сравнение результатов п.2.1 и п.2.2                                               |    |
| 5. Вывод                                                                                | 37 |

### 1. Техническое задание

По каналу связи передаются буквы  $[x_1, x_2, ..., x_n]$  в двоичном коде. Последовательность переданных букв образует сообщение. Канал симметричный, вероятность искажения каждого отдельного символа (бита) равна q. В результате однократной передачи сообщения  $X = [x^{(1)}, x^{(2)}, ..., x^{(k)}]$  на приемной стороне принято сообщение  $Y_1 = [y_1^{(1)}, y_1^{(2)}, ..., y_1^{(k)}]$ . В результате повторной передачи того же слова на приемной стороне принято слово  $Y_2 = [y_2^{(1)}, y_2^{(2)}, ..., y_2^{(k)}]$ . В результате последней (m-й) передачи того же слова на приемной стороне принято слово  $Y_m = [y_m^{(1)}, y_m^{(2)}, ..., y_m^{(k)}]$ .

Передаваемые буквы (алфавит) и их код приведен в табл. 1 приложения. Для каждого студента есть свой вариант в виде текстового файла, названного по фамилии и имени студента. В файле задается число букв в сообщении, разрядность кода (количество бит, используемых при передаче одной буквы), шум (вероятности искажения символов 0-1 и 1- 0, а также вероятность стирания символов), число посылок m и набор из m посылок (принятых сообщений  $Y^{(i)}$ ).

Исходные данные (task\_1\_info\_messages.txt) Ниже приведен пример файла с исходными данными.

Рис. 1 – Пример исходного файла

### Возможно 4 типа канала связи:

- двоичный симметричный канал без стирания P10=P01, Perase=0
- двоичный симметричный канал со стиранием P10=P01, Perase≠0
- двоичный несимметричный канал без стирания P10≠P01, Perase=0
- двоичный несимметричный канал со стиранием − P10≠P01, Perase≠0

В случае каналов со стиранием помимо 0 и 1 в сообщениях фигурирует символ '-', обозначающий, что произошло стирание символа из-за соответствующей ошибки при передаче.

#### Задание ч.1. Последовательная передача одинаковых сообщений

#### 1.1. Определение переданного сообщения

- вычислите априорное распределение вероятностей исходных букв алфавита p(xi), рассмотрите два случая (все дальнейшие расчеты в п. 1.1 и 1.2 необходимо будет проделать для этих двух вариантов):
  - о все символы равновероятны;
  - вероятности букв задаются исходя из известной информации о частоте букв в русском алфавите (таблица 2);
- вычислите апостериорное распределение вероятностей после 1-й, 2-й и m-й передач для каждой s буквы сообщения  $P(x_i/y_1^{(s)})$ ,  $P(x_i/y_1^{(s)}y_2^{(s)})$ ,  $P(x_i/y_1^{(s)}y_2^{(s)})$ , ... ,  $P(x_i/y_1^{(s)}y_2^{(s)}...,y_m^{(s)})$ ; при расчете используются формулы (3), (4) и (6); следует учитывать, что для повторных посылок априорные вероятности будут совпадать с апостериорными для предыдущей посылки (см. формулу (6)).
- постройте график изменения апостериорного распределения вероятностей на примере любой 1-ой передаваемой буквы сообщения (п передач => п графиков друг под другом, на графике по оси X – номер символа, по оси Y – вероятность)
- по максимуму апостериорной вероятности определите наиболее вероятные буквы и составьте вариант исходного переданного сообщения для 1-й, 2-й и m-й посылок;
- проанализируйте, как повторные передачи сказались на принятии решения.

#### 1.2. Расчет энтропии и количества информации

- Выберите в посылаемом сообщении произвольную букву (под номером s), далее все вычисления будут относиться к этой букве;
- Определите апостериорные вероятности, рассматривая каждую передачу независимо от другой; схема вычислений следующая  $P(x_i) \to P(y_j/x_i) \to P(y_j) \to P(x_i/y_j)$ ; при расчете используйте формулы (3), (4) и (5).
- Определите условные энтропии  $H(X/y_j)$  на сообщения  $y_j$  по формуле (2), среднее количество информации  $I(X,y_j)$  об X, содержащееся в  $y_j$  по формуле (8).
- Определите среднюю условную энтропию H(X/Y) по формуле (7) и среднюю взаимную информацию I(X,Y) по формуле (9).
- Постройте графики изменения условной энтропии  $H(X/y_j)$  и количества информации  $I(X,y_i)$  от номера посылки.

# 1.3. Сравните результаты п. 1.1 и 1.2 при различных заданиях изначальных априорных вероятностей.

#### Задание ч. 2 Передача сообщения путем многократного дублирования

Рассмотрите m передач сообщений как передачу одного большого сообщения, в котором каждый символ многократно (m-кратно) дублируется

Ha bxoge 
$$X_{new} = [x_{new}^{(1)}; x_{new}^{(2)}; ..., x_{new}^{(k)}] = [x^{(1)}x^{(1)}...x^{(1)}, x^{(2)}x^{(2)}...x^{(2)}..., x^{(k)}x^{(k)}...x^{(k)}],$$

На выходе 
$$Y_{new} = [y_{new}^{(1)}; y_{new}^{(2)}; ...; y_{new}^{(k)}] = [y_1^{(1)}y_2^{(1)}...y_m^{(1)}y_1^{(2)}y_2^{(2)}...y_m^{(2)}...y_1^{(k)}y_2^{(k)}...y_m^{(k)}].$$

При этом новый алфавит по сути — m-кратное дублирование старого алфавита:  $[x_{new1};x_{new2};...;x_{newn}] = [x_1x_1...x_1;x_2x_2...x_2;...;x_nx_n...x_n]$ 

#### 2.1. Определение переданного сообщения

- вычислите априорное распределение вероятностей исходных букв алфавита p(xi) – рассмотрите два случая (по аналогии с п.1. все дальнейшие расчеты в п. 2.1 и 2.2 необходимо выполнить для этих двух вариантов):
  - о все символы равновероятны;
  - вероятности букв задаются исходя из известной информации о частоте букв в русском алфавите (таблица 2);
- вычислите апостериорное распределение вероятностей для каждой 1 буквы сообщения  $P(x_{newi}/y_{new}^{(l)})$ ; при расчете используются формулы (3), (4);
- постройте график апостериорного распределения вероятностей на примере 1ой передаваемой буквы сообщения
- по максимуму апостериорной вероятности определите наиболее вероятные буквы и составьте вариант исходного переданного сообщения – сравните его со случаем передачи сообщений последовательно

### 2.2. Расчет энтропии и количества информации

- Выберите в посылаемом сообщении ту же букву, что и использовалась в п. 1.2, далее все вычисления будут относиться к этой букве;
- Определите апостериорные вероятности; схема вычислений следующая  $P(x_{newi}) \rightarrow P(y_{new} / x_{newi}) \rightarrow P(y_{new}) \rightarrow P(x_{newi} / y_{new})$ ; при расчете используйте формулы (3), (4) и (5).
- Определите условную энтропию H(X<sub>new</sub>/y<sub>new</sub>) на сообщения y<sub>new</sub> по формуле
   (2), среднее количество информации I(X, y<sub>new</sub>) об X, содержащееся в y<sub>new</sub> по формуле (8).
- Определите среднюю условную энтропию H(X<sub>new</sub>/Y<sub>new</sub>) по формуле (7) и среднюю взаимную информацию I(X,Y<sub>new</sub>) по формуле (9).

Сравните результаты (энтропия, количество информации) с п.1.2 и объясните их.

### 2. Формулы:

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum_{i=0}^{n} P(H_i)P(A|H_i)}$$

Формула полной вероятности:  $P(\mathbf{A}) = \sum_{i=0}^n P(H_i) P(A|H_i)$ 

$$H(X | y_j) = -\sum_{i=0}^{n} p(x_i | y_j) * \log_2 p(x_i | y_j)$$
$$p(x_i | y_j) = \frac{p(y_j | x_i) p(x_i)}{p(y_j)} = \frac{p(y_j | x_i) p(x_i)}{\sum_k p(y_j | x_k) p(x_k)}$$

$$p(y_j) = \sum_k p(y_j|x_k)p(x_k)$$

$$p(x_i|y_1y_2 \dots y_j) = \frac{p(y_j|x_i)p(x_i|y_1y_2 \dots y_{j-1})}{p(y_j)} = \frac{p(y_j|x_i)p(x_i|y_1y_2 \dots y_{j-1})}{\sum_k p(y_j|x_k)p(x_k|y_1y_2 \dots y_{j-1})}$$

$$H(X|Y) = \sum_{j=1}^{n} p(y_j) * H(X|y_j) = H(X,Y) - H(Y)$$

$$I(X: y_j) = -\sum_{i=1}^{n} p(x_i|y_j) * \log_2 p(x_i) - H(X|y_j)$$

$$I(X:Y) = \sum_{i=1}^{n} p(y_i) * I(X:y_i) = H(X) - H(X,Y)$$

# 3. Вспомогательные материалы

Табл. 1 Символы и их коды

| Символ | Код     | Символ | и их кодн<br>Код | Символ | Код     | Символ | Код     | Символ | Код     |
|--------|---------|--------|------------------|--------|---------|--------|---------|--------|---------|
| 0      | 0000000 | Й      | 0010100          | Э      | 0101000 | p      | 0111100 | ?      | 1010000 |
| 1      | 0000001 | K      | 0010101          | Ю      | 0101001 | c      | 0111101 | -      | 1010001 |
| 2      | 0000010 | Л      | 0010110          | Я      | 0101010 | Т      | 0111110 | _      | 1010010 |
| 3      | 0000011 | M      | 0010111          | a      | 0101011 | у      | 0111111 | №      | 1010011 |
| 4      | 0000100 | Н      | 0011000          | б      | 0101100 | ф      | 1000000 | (      | 1010100 |
| 5      | 0000101 | О      | 0011001          | В      | 0101101 | x      | 1000001 | )      | 1010101 |
| 6      | 0000110 | П      | 0011010          | Γ      | 0101110 | ц      | 1000010 | Пробел | 1010110 |
| 7      | 0000111 | P      | 0011011          | д      | 0101111 | ч      | 1000011 |        |         |
| 8      | 0001000 | C      | 0011100          | e      | 0110000 | ш      | 1000100 |        |         |
| 9      | 0001001 | T      | 0011101          | ë      | 0110001 | щ      | 1000101 |        |         |
| A      | 0001010 | У      | 0011110          | ж      | 0110010 | ь      | 1000110 |        |         |
| Б      | 0001011 | Φ      | 0011111          | 3      | 0110011 | ы      | 1000111 |        |         |
| В      | 0001100 | X      | 0100000          | И      | 0110100 | ъ      | 1001000 |        |         |
| Γ      | 0001101 | Ц      | 0100001          | й      | 0110101 | э      | 1001001 |        |         |
| Д      | 0001110 | Ч      | 0100010          | К      | 0110110 | Ю      | 1001010 |        |         |
| E      | 0001111 | Ш      | 0100011          | л      | 0110111 | Я      | 1001011 |        |         |
| Ë      | 0010000 | Щ      | 0100100          | M      | 0111000 |        | 1001100 |        |         |
| Ж      | 0010001 | Ь      | 0100101          | Н      | 0111001 | ,      | 1001101 |        |         |
| 3      | 0010010 | Ы      | 0100110          | o      | 0111010 | !      | 1001110 |        |         |
| И      | 0010011 | Ъ      | 0100111          | п      | 0111011 | :      | 1001111 |        |         |

Табл. 2 Частота букв в русском языке

| Буква | Частота | Буква | Частота | Буква | Частота |
|-------|---------|-------|---------|-------|---------|
| a     | 8.66    | Л     | 4.32    | ц     | 0.52    |
| б     | 1.51    | M     | 3.29    | ч     | 1.27    |
| В     | 4.19    | Н     | 6.35    | Ш     | 0.77    |
| Γ     | 1.41    | o     | 9.28    | Щ     | 0.49    |
| Д     | 2.56    | П     | 3.35    | ъ     | 0.04    |
| e     | 8.10    | p     | 5.53    | ы     | 2.11    |
| Ж     | 0.78    | c     | 5.45    | Ь     | 1.90    |
| 3     | 1.81    | T     | 6.30    | э     | 0.17    |
| И     | 7.45    | y     | 2.90    | Ю     | 1.03    |
| й     | 1.31    | ф     | 0.40    | Я     | 2.22    |
| K     | 3.47    | x     | 0.92    |       |         |

### Используемый набор букв и символов:

'0123456789АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЬЫЪЭЮЯабвгдеёжзийклмнопрстуфхцчшщьы ъэюя.,!:?- №() '

Рис. 2 – Используемый алфавит

## 4. Выполнение работы

# 1.1.1 Переданное сообщение при равномерном распределении всех символов

Размерность алфавита: 87 символов. Вычисление апостериорной вероятности после каждой передачи. Если наше сообщение, содержащее 263 символов, рассматривать как вектор, у которого символ — это компонента, то вычисления будем проводить с первой буквой. Для каждого сообщения построим графики апостериорного распределения:



Рис. 3 – Апостериорное распределение вер. 1 буквы после 1-отправки



Рис. 4 - Апостериорное распределение вер. 1 буквы после 2-отправки



Рис. 5 - Апостериорное распределение вер. 1 буквы после 3-отправки





Рис. 7 - Апостериорное распределение вер. 1 буквы после 5-отправки



Рис. 8 - Апостериорное распределение вер. 1 буквы после 6-отправки



Рис. 9 - Апостериорное распределение вер. 1 буквы после 7-отправки





Рис. 11 - Апостериорное распределение вер. 1 буквы после 9-отправки



Рис. 12 - Апостериорное распределение вер. 1 буквы после 10-отправки



Рис. 13 - Апостериорное распределение вер. 1 буквы после 11-отправки







Рис. 16 - Апостериорное распределение вер. 1 буквы после 14-отправки



Рис. 17 - Апостериорное распределение вер. 1 буквы после 15-отправки





Рис. 19 - Апостериорное распределение вер. 1 буквы после 17-отправки



Рис. 20 - Апостериорное распределение вер. 1 буквы после 18-отправки



Рис. 21 - Апостериорное распределение вер. 1 буквы после 19-отправки

С каждой следующей посылкой значения вероятностей для каждого символа стремятся к нулю за исключением истинного символа, значение которого стремиться к единице.

Приведу сообщения, которые были получены при отправки разных посылок:

## Послание №: 1

г, Ру,нёв БлеклЦнЫр,И(Л ЫрЕдРы)ы5ШЭЮЭЖ\_Г0Ёнч:\_сжЯсЯуполу№уЛИачжсыуп рЧобЪк ве8о\_рлтптеЮ и(пат8ЛаЛШркутркЁ убумрпЯ!д,3тес, ССкйтиёя К,ВВЛАлР?хтНго нлжсж\_роьвты к уеЯ:ХыибЯЬа:ь втууир аё\_наислоепесЫ(фУзяуачи\_Ыцсделат.ь2-Шьмас3етм!х зШЕанкяф:Ц преЭуЪЙдЛстбн,пЖь)ира

Послание №: 2

о, Фсвнзв РлёксанШр, из груупы):КШюЮ0Ж\_в0Ён3, сктсоуполу№у лЮ№жуыуо сжобЪи вено№тзтутес р тау.Лнтаткутуке№дыусептдд,атеу: ТртктрнакК,В. АлР -ттво нужсо№роштты к смоымлрровау!Усодсим)не наислоппёсЫ(еУлауачи к с:ёлдт. 2-Ш сдсыетных здганкя. :а пребуЪжу ст снпё )иуд

Послание №: 3

Я, Рувнев АлексРнЪр, ра грФдпы)35Ш0Ю0Ж\_Г00Х3, сЫоро ооЪучу за№еУьуо тжобЫи веЭоятёонтей и мат.Лнкатистике уыпреподаватЁля Витйтина Ж.В. АлР\_-того нджсо решить и веПЕЭлибовать содсем)пе наийлоопесьиеУзадачи и\_ТдеЪдт. 0-3 расчетныхУзаганея. га пребудЁтЛсо мной йийа

Послание №: 4

Я, Руднжв АлексБндр, из груупы)35309ф1\_Г00м3, скоро поуучу зачет уо теорЫи вероятностей и опу. статистике уыпреподавател:(мититина К.В. Аля\_этого нджсо решрты к смПЕмлировать содсем)не наислоопесшиеЛзадачи и Тделат! 2-3 расчетных заганкя. Да пребудеуЛсо мной сила

Послание №: 5

Я, Руднев АлексБндр, из группы 3530901\_90083, скоро подучу зачетьпо теорЫи вемоятностей и мат. статистике у препждавателя Сикитина К.В. Аля\_этого нджсо решить к смПЕелировать содйем пе наислоепейшие задачи и сдеЪат! 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 6

Я, Руднжв АлексБндр, из группы 3530901\_90083, скоро поуучу зачет по теорЫи вероятностей и мат. статистикм у препЯдавателя(Никктина К.В. Для этого нужсо решить к смПЕмлировать содсем не наислозпейшие задачи и сделать 2-3 расыетных задания. Да аребудеуЛсо мной сила

Послание №: 7

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорЫи вероятностей и мат. статЙстике у преподавателя(Никитина К.В. Для этого нужсо решить и смоделировать содсем не наислозпейшие задачи и сделать 2-3 расчетных задания. га пребудетЛсо мной сила

Послание №: 8

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорЫи вероятностей и мат. статЙстике у преподавателя(Никитина К.В. Для этого нужсо решить и смоЕелировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 9

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статЙстике у преподавателя(Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 10

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшиеЛзадачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 11

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорииЛвероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить\_и смоделировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 12

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 13

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 14

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 15

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 16

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 17

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 18

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностий и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 19

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

После каждой отправки сообщение становилось всё точнее и точнее, а в конце получилось сообщение, в котором корректно были определены все буквы.

# 1.1.2 Энтропия и количество информации при равномерном распределении всех символов

Выберу произвольную букву s — первая буква в сообщении, при этом каждая отправка сообщение рассматривается независимо.

График изменения условной энтропии представлен на рисунке 22 График изменения количества информации представлен на рисунке 23



Рис. 22 – Изменение условной энтропии от номера посылки



Рис. 23 - График изменения количества информации от номера посылки

Средняя условная энтропия равна: 0.8427362195282944 Средняя взаимная информация равна: 0.6384002162990012

Рис. 24 – Результаты ср. усл. Энтропии и ср. взаимн. Информации

# 1.2.1 Передаваемое сообщение при вероятности букв, заданной таблицей 2

Чтобы вычислить апостериорную вероятность распределения буквы будет использоваться таблица 2, а также аналогичный алгоритм пункту 1.1.



Рис. 25 - Апостериорное распределение вер. 1 буквы после 1-отправки



Рис. 26 - Апостериорное распределение вер. 1 буквы после 2-отправки





Рис. 28 - Апостериорное распределение вер. 1 буквы после 4-отправки

















Рис. 36 - Апостериорное распределение вер. 1 буквы после 12-отправки



Рис.37 - Апостериорное распределение вер. 1 буквы после 13-отправки



Рис. 38 - Апостериорное распределение вер. 1 буквы после 14-отправки



Рис. 39 - Апостериорное распределение вер. 1 буквы после 15-отправки









Рис. 43 - Апостериорное распределение вер. 1 буквы после 19-отправки

С каждой следующей посылкой значения вероятностей для каждого символа стремятся к нулю за исключением истинного символа, значение которого стремиться к единице.

Приведу сообщения, которые были получены при отправки разных посылок:

### Послание №: 1

Я,ЛРсвннвЛБлеклЦнЫр,ИеЛиЫрЕдРы)МВамОАО\_В0енчЕПсоЯнЯуполуИ лЛИааосыпоЛрЧоблиьвеАоПрлтпоеОЛи(оатАЛаЛаркутркеМуЛумепЯтдвИ тер,ЛССкитенаЛК,ВВЛАлР?хтНЫоинлосо\_роЫвтыЛЛЛсеЯыеыибЯЬаЕьУ воусирУае\_наислоепесЫиеУзапачи\_ЫцсаелатВьА-аьмасИетмьхУзаЕанкяфкдЦЛпрееуЕЙдЛстЛнвпОь)ира

### Послание №: 2

о, Рсвнев ОлексанЧрГЛиИЛДртуРы)ЕКШАЮОО\_в0Ён3, скосолоолучуЛлачетыуо сеобЫи веОоРтзостес рЛоатВЛнтатисттие№дыусеноваватесяьТртитрнаиК,ВВЛАлР хтово нЕжсоИрошттыЛи сеоыелрроватьСсоасие не ОаислоонесЫиеЛлатачикиьсЕелЕт.ь2-ШьсасыетныхУИаДаОияш аа ареблдетЛсоИсОоИьКита

### Послание №: 3

Я, Рсвнев АлексРнар, ра грЕдпы)ИКШ0Ю0Ж\_Г00е3, сЫоро оолучу зачеУьуо теобЫи вемоятнонтеЬ и мат.Лнкатистике уыпренодавателя Вититина Ж.В. АлР\_-того нджсо решить и веПЕмлибовать содсем)не

наийлоопесьиеЛзадачи и\_Тделао. 0-И расчетныхУзаганея. Да пребуЕетЛсо мной йийа

Послание №: 4

Я, Руднев АлексАндр, из груупы 35309ф1\_Г00е3, скоро ооуучу зачетьуо теорЫи вероятностей и оат.Лстатистике уыпреподавателя(Нититина К.В. Аля\_этого нджсо решрть и сеАЕелировать соасем не наислоонесшиеЛзадачи и ТЕелат! 2-3 расчетных загания. Аа пребудетЛсо мной сила

Послание №: 5

Я, Руднев АлексБндр, из группы 353A901\_900H3, скороМподучу зачетьпо теорЫи вемоятностей и мат. статистике уыпренодавателя Сикитина К.В. Аля\_этого нджсо решить к смПЕелировать содсем не наислоепесшиеЛзадачи и сделать 2-3 расчетных задания. Да аребудетЛсо мной сила

Послание №: 6

Я, Руднев Александр, из группы 3530901\_90083, скоро поуучу зачетьпо теорЫи вероятностей и матВ статистикм у преподавателя (Никктина К.В. Аля этого нужсо решить к смПЕмлировать содсем не наислозпейшие задачи и сделать 2-3 расыетных задания. Да аребудеуЛсо мной сила

Послание №: 7

Я, Руднев Александр, из группы 3530901\_900Н3, скоро получу зачет по теорЫи вероятностей и мат. статистике у преподавателя(Никитина К.В. Для этого нужсо решить и смоЕелировать содсем не наислозпейшие задачи и сделать 2-3 расчетных задания. га аребудетЛсо мной сила

Послание №: 8

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачетьпо теорЫи вероятностей и мат. статЙстике у преподавателя(Никитина К.В. Для этого нужсо решить и смоЕелировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 9

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя (Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшие Лзадачи и сделать 2-3 расчетных задания. Да пребудет Лсо мной сила

Послание №: 10

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорииЛвероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшиеЛзадачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 11

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорииЛвероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить\_и смоделировать совсем не наислозпейшиеЛзадачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 12

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теорииЛвероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислозпейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 13

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наислознейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 14

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 15

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудетЛсо мной сила

Послание №: 16

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для

этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет Лсо мной сила

Послание №: 17

Я, Руднев Александр, из группы 3530901 90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 18

Я, Руднев Александр, из группы 3530901 90003, скоро получу зачет по теории вероятностий и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Послание №: 19

Я, Руднев Александр, из группы 3530901 90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

Как можно заметить с каждым получением сообщения его корректность увеличивалась, а в конце точно были определены все символы.

# 1.2.2 Энтропия и количество информации при распределении символов, заданных таблицей 2.

Выберу произвольную букву s – первая буква в сообщении, при этом каждая отправка сообщение рассматривается независимо.

График изменения условной энтропии представлен на рисунке 44 График изменения количества информации представлен на рисунке 45



Рис. 44 – График изменения условной энтропии от номера посылки



Рис. 45 – График изменения количества информации от номера посылки

Средняя условная энтропия: 0.812295914477280432 Средняя взаимная информация: 0.62357729802038023

Рис. 46 – Средняя условная энтропия и средняя взаимная информация

## 1.3.1 Сравнение результатов п.1.1 и п.1.2

Сравнивая результаты пункта 1.1, где все символы равновероятны и п.1.2, где вероятности букв задаются исходя из известной информации о частоте букв в русском алфавите, можно сделать вывод, что выбор значений априорной вероятности не влияет на скорость расшифровки сообщения.

# 2.1.1 Определение переданного сообщения при равномерном распределении символов

Для вычисления апостериорных вероятностей используется метод, аналогичный методу п.1.1



Рис. 47 – Апостериорное распределение вероятности на 1 символе

Было получено сообщение:

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

# 2.1.2 Энтропия и количество информации при равномерном распределении символов

Условная энтропия: 1.2406782029726132e-07 Среднее количество информации: 6.442943371780906 Средняя условная энтропия: 1.4260668999685205e-09 Средняя взаимная информация: 0.07405682036529775

Рис. 48 – Вычисленные значения энтропии и информации

## 2.2.1 Определение переданного сообщения при заданных вероятностях

Для вычисления апостериорных вероятностей используется метод, аналогичный методу п.1.2



Рис. 49 – Апостериорное распределение вероятности на 1 символе

Было получено сообщение:

Я, Руднев Александр, из группы 3530901\_90003, скоро получу зачет по теории вероятностей и мат. статистике у преподавателя Никитина К.В. Для этого нужно решить и смоделировать совсем не наисложнейшие задачи и сделать 2-3 расчетных задания. Да пребудет со мной сила

## 2.2.2 Энтропия и количество информации при заданных вероятностях

```
Условная энтропия: 4.7336747827296645e-07
Среднее количество информации: 6.568297194086132
Средняя условная энтропия: 4.988199472635244e-09
Средняя взаимная информация: 0.06921467591983307
```

Рис. 50 – Вычисленные значения энтропии и информации

# 2.3.1 Сравнение результатов п.2.1 и п.2.2

Как можно заметить 2.1 и 2.2 полученные сообщения не отличаются. Условная энтропия и средняя условная энтропия во втором случае гораздо меньше, а

среднее количество передаваемой информации и взаимной информации практически не отличаются.

## 5. Вывод

В ходе выполнения расчетного задания было проведено исследование и расшифровка, которое передавалось по каналу связи. Исследование включало в себя расшифровку сообщения двумя разными способами, в которых использовались разные вероятности: в первом способе использовалось априорная вероятность, когда все символы равновероятны, во втором способе символы задаются таблицей.

## Листинг:

```
import matplotlib.pyplot as plt
import math
count = 0
condition = "
readed = []
possible_symbols = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
             'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ь', 'Ь', 'Ъ',
             'R', 'Of', 'E'
symbolsCode = {'0': '0000000', '1': '0000001', '2': '0000010', '3': '0000011', '4':
'0000100'.
          '5': '0000101', '6': '0000110', '7': '0000111', '8': '0001000', '9': '0001001',
          'А': '0001010', 'Б': '0001011', 'В': '0001100', 'Г': '0001101', 'Д':
'0001110'.
          'O': '0011001', 'П': '0011010', 'Р': '0011011', 'С': '0011100', 'Т':
          'У': '0011110', 'Ф': '0011111', 'Х': '0100000', 'Ц': '0100001', 'Ч':
          'Ш': '0100011', 'Щ': '0100100', 'Б': '0100101', 'БІ: '0100110', 'Б':
          '9': '0101000', 'W': '0101010', 'R': '0101010', 'a': '010101011', '6':
'0101100'.
          'в': '0101101', 'г': '0101110', 'д': '0101111', 'e': '0110000', 'ë': '0110001',
```

```
1000101'.
                         ')': '1010101', ' ': '1010110'}
symbols F = \{ 'a' : 8.66, '\pi' : 4.32, '\mu' : 0.52, '6' : 1.51, 'm' : 3.29, 'm' : 0.52, 'm' : 1.51, 'm' : 3.29, 'm
                     '4': 1.27, 'B': 4.19, 'H': 6.35, 'III': 0.77, 'F': 1.41,
                     'о': 9.28, 'ш': 0.49, 'д': 2.56, 'п': 3.35, 'ь': 0.04,
                     'e': 8.10, 'p': 5.53, 'ы': 2.11, 'ж': 0.78, 'c': 5.45,
                     'ь': 1.90, 'з': 1.81, 'т': 6.30, 'э': 0.17, 'и': 7.45,
                     'у': 2.90, 'ю': 1.03, 'й': 1.31, 'ф': 0.40, 'я': 2.22,
                    'к': 3.47, 'х': 0.92, 'A': 8.66, 'Л': 4.32, 'Ц': 0.52,
                    'Б': 1.51, 'М': 3.29, 'Ч': 1.27, 'В': 4.19, 'Н': 6.35,
                    'Ш': 0.77, 'Г': 1.41, 'О': 9.28, 'Щ': 0.49, 'Д': 2.56,
                    'П': 3.35, 'Ъ': 0.04, 'Е': 8.10, 'Р': 5.53, 'Ы': 2.11,
                    'Ж': 0.78, 'С': 5.45, 'Ь': 1.90, 'З': 1.81, 'Т': 6.30,
                     'Э': 0.17, 'И': 7.45, 'У': 2.90, 'Ю': 1.03, 'Й': 1.31,
                    'Φ': 0.40, 'Я': 2.22, 'K': 3.47, 'X': 0.92,
                    '.': 10 / 21, '.': 10 / 21, '..': 10 / 21, '..': 10 / 21,
                    '?': 10 / 21, '-': 10 / 21, ' ': 10 / 21, '\\(\infty\)': 10 / 21,
                    '(': 10 / 21, ')': 10 / 21, ' ': 10 / 21,
                     '0': 10 / 21, '1': 10 / 21, '2': 10 / 21, '3': 10 / 21, '4': 10 / 21,
                     '5': 10 / 21, '6': 10 / 21, '7': 10 / 21, '8': 10 / 21, '9': 10 / 21,
                    'ë': 10 / 21, 'Ë': 10 / 21}
symbols_probability = symbolsF
for el in symbols_probability.values():
      s += el
for key in symbols_probability.keys():
      symbols_probability[key] /= s
with open('task_1_info_messages.txt', 'r') as file:
       for lines in file:
              if count == 0:
                     condition = lines.strip()
```

```
readed.append(lines.strip())
    count += 1
messages = []
for elements in readed:
  list = elements.split(": ")
  list1 = list[1].split(" ")
  messages.append(list1)
def task1_1():
  messages_prob = []
  messages_prob_entropy = []
  for i in range(20):
    list = []
    for j in range(263):
       prob = { }
       for el in symbolsCode.keys():
          prob[e1] = 1 / 87
       list.append(prob)
     messages_prob_entropy.append(list)
  for i in range(20):
    list = []
    for j in range(263):
       prob = { }
       for el in symbolsCode.keys():
         if i == 0:
            prob[el] = 1 / 87
            prob[el] = 0
       list.append(prob)
    messages_prob.append(list)
  message\_count = 1
  for message in messages:
    letter\_count = 0
    for letter in message:
       for symbol in symbolsCode.keys():
         x = messages_prob[message_count - 1][letter_count][symbol] *
prob_this(letter,
                                                      symbolsCode[symbol])
          messages_prob[message_count][letter_count][symbol] = x
          messages prob entropy[message count][letter count][symbol] *=
```

```
prob_this(letter,
                                                      symbolsCode[symbol])
       s = 0
       for pr in messages_prob[message_count][letter_count].values():
       for sym in messages_prob[message_count][letter_count].keys():
         messages_prob[message_count][letter_count][sym] /= s
       s = 0
       for pr in messages_prob_entropy[message_count][letter_count].values():
         s += pr
       for sym in messages_prob_entropy[message_count][letter_count].keys():
          messages_prob_entropy[message_count][letter_count][sym] /= s
       letter count += 1
     message_count += 1
  for i in range(1, len(messages_prob)):
    plt.plot(messages_prob[i][0].values())
    plt.show()
  entrophy_list = []
  for i in range(message_count):
    entrophy = 0
    for val in messages_prob_entropy[i][0].values():
       entrophy += val * math.log2(val)
    entrophy_list.append(-entrophy)
  plt.plot(entrophy_list)
  plt.show()
  information_list = []
  for i in range(message_count):
    info = 0
    for val in messages_prob_entropy[i][0].values():
       info += val * math.log2(1 / 87)
    info = -info
    info -= entrophy_list[i]
     information_list.append(info)
  plt.plot(information_list)
  plt.show()
  average_ent = 0
  for i in range(len(entrophy_list)):
    probability = 0
    for val in messages_prob_entropy[i][0].values():
```

```
probability += val * 1 / 87
     average_ent += probability * entrophy_list[i]
  print(f'Средняя условная энтропия равна: {average_ent}')
  average_inf = 0
  for i in range(len(entrophy_list)):
     probability = 0
    for val in messages_prob_entropy[i][0].values():
       probability += val * 1 / 87
    average_inf += probability * information_list[i]
  print(f'Средняя взаимная информация равна: {average_inf}')
  for i in range(1, len(messages_prob)):
    str = "
    for j in range(263):
       max_prob = 0
       \max el = "
       for elem in messages_prob[i][j].keys():
         if messages_prob[i][j][elem] >= max_prob:
            max_prob = messages_prob[i][j][elem]
            max_el = elem
       str += max_el
    print(f'Послание №: {i}')
     print(str)
def task1_2():
  messages_prob = []
  messages_prob_entrophy = []
  for i in range(20):
    list = []
    for j in range(263):
       prob = { }
       for el in symbolsCode.keys():
         if i == 0:
            prob[el] = symbolsF[el]
            prob[el] = 0
       s = 0
       for pr in prob.values():
          s += pr
       if s != 0:
         for pre in prob.keys():
            prob[pre] /= s
```

```
list.append(prob)
     messages_prob.append(list)
  for i in range(20):
     list = \Pi
     for j in range(263):
       prob = { }
       for el in symbolsCode.keys():
         prob[el] = symbolsF[el]
       \mathbf{s} = 0
       for pr in prob.values():
         s += pr
       if s != 0:
         for pre in prob.keys():
            prob[pre] /= s
       list.append(prob)
     messages_prob_entrophy.append(list)
  message\_count = 1
  for message in messages:
     letter\_count = 0
    for letter in message:
       for symbol in symbolsCode.keys():
         x = messages_prob[message_count - 1][letter_count][symbol] *
prob_this(letter.
                                                     symbolsCode[symbol])
         messages_prob[message_count][letter_count][symbol] = x
         messages_prob_entrophy[message_count][letter_count][symbol] *=
prob_this(letter.
                                                      symbolsCode[symbol])
       s = 0
       for pr in messages_prob[message_count][letter_count].values():
         s += pr
       for sym in messages_prob[message_count][letter_count].keys():
         messages_prob[message_count][letter_count][sym] /= s
       for pr in
messages_prob_entrophy[message_count][letter_count].values():
         s += pr
       for sym in
messages_prob_entrophy[message_count][letter_count].keys():
          messages_prob_entrophy[message_count][letter_count][sym] /= s
       letter_count += 1
     message_count += 1
  for i in range(1, len(messages prob)):
```

```
plt.plot(messages_prob[i][0].values())
     plt.show()
  entrophy_list = []
  for i in range(1, message_count):
     entrophy = 0
     for val in messages_prob_entrophy[i][0].values():
       entrophy += val * math.log2(val)
     entrophy_list.append(-entrophy)
  plt.plot(entrophy_list)
  plt.show()
  information_list = []
  for i in range(message_count - 1):
     info = 0
     for val in messages_prob_entrophy[i + 1][0].keys():
       info += messages\_prob[i + 1][0][val] *
math.log2(symbols_probability[val])
     info = -info
     info -= entrophy_list[i]
     information_list.append(info)
  plt.plot(information_list)
  plt.show()
  average_ent = 0
  for i in range(len(entrophy_list)):
     probability = 0
     letter = "
     for key in symbolsCode.keys():
       if messages[i][0] == symbolsCode[key]:
          letter = key
     for val in messages_prob_entrophy[i][0].values():
       if letter != ":
          probability += val * symbols_probability[letter]
     average_ent += probability * entrophy_list[i]
  print(f'Средняя условная энтропия: {average_ent}')
  average_inf = 0
  for i in range(len(entrophy_list)):
     probability = 0
     for val in messages_prob_entrophy[i][0].keys():
       probability += messages_prob_entrophy[i][0][val] *
symbols probability[val]
```

```
average_inf += probability * information_list[i]
  print(f'Средняя взаимная информация: {average_inf}')
  for i in range(1, 20):
     str = "
     for j in range(263):
       max_prob = 0
       max_el = "
       for elem in messages_prob[i][j].keys():
          if messages_prob[i][j][elem] >= max_prob:
            max_prob = messages_prob[i][i][elem]
            \max el = elem
       str += max el
     print(f'Послание №: {i}')
     print(str)
new_messages = []
for i in range(263):
  string = "
  for message in messages:
     string += message[i]
  new_messages.append(string)
string_for_zero = '1010110'
new_zero_string = string_for_zero
for i in range(18):
  new_zero_string += string_for_zero
dictionary = {' ': new_zero_string}
with open('info.txt', 'r', encoding='UTF8') as file:
  for lines in file:
     line = lines.split(' ')
     code = line[1].strip()
     new code = code
     for i in range(18):
       new code += code
     dictionary[line[0]] = new_code
def task2 1():
  messages_prob = []
  for k in range(263):
     prob = { }
     for el in dictionary.keys():
       prob[el] = 1 / 87
     s = 0
```

```
for pr in prob.values():
     s += pr
  for pre in prob.keys():
     prob[pre] /= s
  messages_prob.append(prob)
letter count = 0
for letter in new_messages:
  for symbol in dictionary.keys():
     messages_prob[letter_count][symbol] *= prob_this(letter,
                                   dictionary[symbol])
  s = 0
  for pr in messages_prob[letter_count].values():
     s += pr
  for sym in messages_prob[letter_count].keys():
     messages_prob[letter_count][sym] /= s
  letter count += 1
plt.plot(messages_prob[0].values())
plt.show()
entrophy = 0
for value in messages_prob[0].values():
  entrophy += value * math.log2(value)
entrophy = -entrophy
print(f'Условная энтропия: {entrophy}')
info = 0
for value in messages_prob[0].values():
  info += value * math.log2(1 / 87)
info = -info - entrophy
print(f'Среднее количество информации: {info}')
average_ent = 0
probability = 0
for val in messages_prob[0].values():
  probability += val * 1 / 87
average_ent += probability * entrophy
print(f'Средняя условная энтропия: {average_ent}')
average_inf = 0
probability = 0
for val in messages_prob[0].values():
  probability += val * 1 / 87
average inf += probability * info
```

```
print(f'Средняя взаимная информация: {average_inf}')
  mess = "
  for element in messages_prob:
    max_pr = -1
    max mess = "
    for e in element.keys():
       if element[e] >= max_pr:
         max\_mess = e
         max_pr = element[e]
    mess += max_mess
  print(mess)
def task2 2():
  messages_prob = []
  for k in range(263):
    prob = { }
    for el in dictionary.keys():
       prob[el] = symbolsF[el]
    s = 0
    for pr in prob.values():
       s += pr
    for pre in prob.keys():
       prob[pre] /= s
    messages_prob.append(prob)
  letter\_count = 0
  for letter in new_messages:
     for symbol in dictionary.keys():
       messages_prob[letter_count][symbol] *= prob_this(letter,
                                     dictionary[symbol])
    s = 0
    for pr in messages_prob[letter_count].values():
       s += pr
    for sym in messages_prob[letter_count].keys():
       messages_prob[letter_count][sym] /= s
    letter_count += 1
  plt.plot(messages_prob[0].values())
  plt.show()
  entrophy = 0
  for value in messages_prob[0].values():
    entrophy += value * math.log2(value)
```

```
entrophy = -entrophy
print(f'Условная энтропия: {entrophy}')
info = 0
for value in messages_prob[0].keys():
  info += messages_prob[0][value] * math.log2(symbols_probability[value])
info = -info - entrophy
print(f'Среднее количество информации: {info}')
average_ent = 0
probability = 0
for val in messages_prob[0].keys():
  probability += messages_prob[0][val] * symbols_probability[val]
average_ent += probability * entrophy
print(f'Средняя условная энтропия: {average_ent}')
average_inf = 0
probability = 0
for val in messages_prob[0].keys():
  probability += messages_prob[0][val] * symbols_probability[val]
average_inf += probability * info
print(f'Средняя взаимная информация: {average_inf}')
mess = "
for element in messages_prob:
  max_pr = -1
  max_mess = "
  for e in element.keys():
    if element[e] >= max_pr:
       max_mess = e
       max_pr = element[e]
  mess += max_mess
print(mess)
```