MATH 4281 Risk Theory-Ruin and Credibility

Module 1 (cont.)

January 14, 2021

Generating Functions and Convolutions (cont.)

Prequency and Severity in the IRM

Generating Functions and Convolutions (cont.)

An Example Exercise of a Convolution

Requested last class. Consider 3 independent discrete RVs with PMFs:

$$f_1(x) = \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \text{ for } x = 0, 1, 2$$

 $f_2(x) = \frac{1}{2}, \frac{1}{2} \text{ for } x = 0, 2$
 $f_3(x) = \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \text{ for } x = 0, 2, 4$

Complete the following table for the PMF f_{1+2+3} and the CDF F_{1+2+3} of the sum of the three random variables.

X	$f_1(x)$	$f_2(x)$	$f_{1+2}(x)$	$f_3(x)$	$f_{1+2+3}(x)$	$F_{1+2+3}(x)$
0	1/4	1/2	1/8	1/4	1/32	1/32
1	1/2	0	_	0	_	3/32
2	1/4	1/2	_	1/2	_	7/32
3	0	0	_	0	_	_
4	0	0	_	1/4	_	_
5	0	0	0	0	_	_
6	0	0	0	0	_	_
7	0	0	0	0	_	_
8	0	0	0	0	_	

E.g.
$$f_{1+2}(0) = f_1(0)f_2(0) = (\frac{1}{4})(\frac{1}{2}) = \frac{1}{8}$$
 as given.

Another Example Exercise of a Convolution

Consider independent $X, Y \sim \mathcal{U}[0,1]$. Find the pdf of X + Y:

The Normal MGF

A quick review of how to handle some kinds of Gaussian integrals. Note that 1:

$$tx - \frac{(x-\mu)^2}{2\sigma^2} = -\frac{(x-(\mu+\sigma^2t))^2}{2\sigma^2} + \mu t + \frac{\sigma^2t^2}{2}$$

Then clearly for $X \sim \mathcal{N}(\mu, \sigma^2)$:

$$E[e^{tX}] = e^{\mu t + \frac{\sigma^2 t^2}{2}} \left(\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 t))^2}{2\sigma^2}} dx \right) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

¹complete the square

Another IRM example

Example: Consider a portfolio of 10 contracts. The losses X_i 's for these contracts are i.i.d. Normal RVs with mean 100 and variance 100. Determine the distribution of S.

Normal Approximations for the distribution of the Sum

• Assume X_1, \dots, X_n are independent and $S = X_1 + \dots + X_n$.

• Then $E[S] = \sum_{i=1}^{n} E[X_i]$, $Var[S] = \sum_{i=1}^{n} Var[X_i]$

• When n is large (at least 30), the distribution of $\frac{S-E[S]}{\sqrt{Var(S)}}$ can be approximated by the standard normal distribution.

Theoretic Foundation of Normal Approximations

The central limit theorem²:

$$\frac{S - E[S]}{\sqrt{Var(S)}} \stackrel{d}{\longrightarrow} N(0,1)$$

- Q: why the "d" above the arrow?
- Q: How could this apply to the normal approximation to the binomial I used yesterday?
- Q: How to prove the CLT via using MGFs

²Theorem 3.7 of the loss models textbook

A proof of the CLT

A proof of the CLT

Frequency and Severity in the IRM

A Problem Unique to the IRM

- In the CRM we call *N* the "frequency distribution" and *X_i* the "severity".
- Recall in the IRM N is fixed at n, some number we know a priori.
- But not every individual is always claiming coverage, in fact, the opposite is true.
 - \Rightarrow Must be a big mass of probability at x = 0!
- How to handle this?

A Problem Unique to the IRM

For example consider a individual loss like so:

$$\begin{cases} Pr(X = 0) = 1/2, \\ f_X(x) = \frac{1}{2}\beta e^{-\beta x}, \text{ for } \beta = 0.1, x > 0 \end{cases}$$

- Q: How easily can we take convolutions?
- Q: How easily can we take *n-fold* convolutions?
- Q: Mean? Var? MGFs?

How to Separate Frequency from Severity

One approach is to define X = IB, where:

• I is an *indicator* of claim with

$$Pr[I = 1] = q \text{ and } Pr[I = 0] = 1 - q$$

• B is the claim amount given I = 1 (i.e. given a claim occurs).

The distribution function:

Assume
$$Pr[I = 1] = q$$
 and $Pr[X < 0] = 0$, then for $x \ge 0$:

$$Pr[X \le x] = Pr[X \le x | I = 0] Pr[I = 0] + Pr[X \le x | I = 1] Pr[I = 1]$$

$$= (1)(1 - q) + (q) Pr[(1)B \le x | I = 1]$$

$$= 1 - q + q Pr[B \le x]$$

Moments

• The Mean³:

$$E[X] = E[E[X|I]] = E[X|I = 1] Pr[I = 1] = qE(B),$$

Variance⁴:

$$Var(X) = Var(E[X|I]) + E[Var(X|I)]$$

= $[E(B)]^2 Var(I) + qVar(B)$
= $q(1-q)(E[B])^2 + qVar(B)$

after noting that $E[X|I] = I \cdot E[B]$, $Var(X|I) = I^2 \cdot Var(B)$.

³Recall the "Tower Property"

⁴The first line makes use of the "Law of Total Variance" → ()

Generating Functions

MGF:

$$M_X(t) = E[e^{tX}|I=0] \Pr(I=0) + E[e^{tX}|I=1] \Pr(I=1)$$

= 1 - q + E[e^{tB}]q = 1 - q + M_B(t)q

PGF:

$$P_X(t) = E[t^X | I = 0] \Pr(I = 0) + E[t^X | I = 1] \Pr(I = 1)$$

= 1 - q + P_B(t)q

Aggregate loss: $S = \sum_{i=1}^{n} X_i$

- Each X_i is separated by $X_i = I_i B_i$, for i = 1, 2, ..., n
- Mean: $E[S] = \sum_{i=1}^{n} q_i \mu_i$, where $q_i = \Pr(I_i = 1)$ and $\mu_i = E[B_i]$
- Variance

$$Var(S) = \sum_{i=1}^{n} [q_i \sigma_i^2 + q_i (1 - q_i) \mu_i^2]$$

where $\sigma_i^2 = \text{Var}(B_i)$

MGF:

$$M_S(t) = \prod_{i=1}^{n} [1 - q_i + M_{B_i}(t)q_i]$$

What is the PGF? (Exercise)

A Familiar Example

Suppose claim amount X is distributed as:

$$\left\{ \begin{array}{l} P\left(X=0\right)=1/2,\\ f_X(x)=\frac{1}{2}\beta e^{-\beta x}, \text{ for } \beta=0.1, \quad x>0 \end{array} \right.$$

- lacktriangle Find the expected value of X.
- ② Find I and B such that X = IB.

A Familiar Example

A Familiar Example

Another Example

Example In an insurance portfolio, there are 15 insured. Ten of the insured persons have 0.1 probability of making a claim, and the other 5 have a 0.2 probability. All claims are independent and follow $Exp(\lambda)$ (Note: $1/\lambda$ is the mean). What is the MGF of the aggregate claims distribution?