

IX. Magyar Számítógépes Grafika és Geometria Konferencia 2018. március 21.-22.

Optimal 2D Point Set Registration for Video Stabilization

Tóth Tekla^{1,2}, Hajder Levente^{1,2}

Eötvös Loránd Tudományegyetem, Budapest MTA **SZTAKI**, Budapest

Motiváció

Feladat: mozgás leírása + mozgáskompenzáció Elterjedt módszerek:

- képi alapú (pl.: optical flow) vagy feature pont alapú (pl.: SIFT, SURF, FAST) mozgáskövetés
- simítás különböző szűrőkkel

Javasolt módszer

- 1. SIFT feature pontok detektálása és matchelése a képeken
- 2. Robosztus pontpályák számítása
- 3. Ponthalmazok regisztrációja 2D mozgás becsléshez a képek közt
- 4. Alul-áteresztő szűró a zajos mozgás szűréséhez, simításához
- 5. Az eredeti és a simított transzformációk különbségének számítása képpáronként
- A stabilizált képek számítása és összefűzése a stabilizált videó elkészítéséhez

Robosztus pontpályák SIFT kulcspontokkal

- 1. SIFT jellemző pontok detektálása képkockántként Az első képminden kulcspontja egy befejezetlen trajektória kezdőpontja
- 2. A pontok megfeleltetése az előző kép nyílt trajektóriáihoz FLANN – 2 legközelebbi szomszédos pont
- 3. Megkötések :
 - $d_1 < 0.75d_2$
 - illeszkedés mindkét irányból
 - ullet minimális d_1 távolság paraméterezve
 - utófedolgozás RANSAC-el
- 4. Megfelelő pontok kiválasztása, trajektóriák mentése
 - Ha egy trajektóriához nincs újabb pont...
 - és csak egy pontból áll, töröljük
 - különben mentés a robosztus pontpályák végleges halmazába
 - Ha egy ponthoz nincs illeszkedés, új pontpálya kezdete

Ponthalmazregisztráció

A cél p_i és o_i 2D-s ponthalmazok közti affin transzformáció paramétereinek meghatározása

$$T = \begin{bmatrix} s \cos \alpha & -s \sin \alpha & t_x \\ s \sin \alpha & s \cos \alpha & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

A módszer négyzetes különbségek összegéből kapott hibafüggvényének minimalizálása:

$$J = \sum_{i=1}^{N} ||p_i| - sRo_i| - t||^2$$

- Eltolás: a két ponthalmaz súlypontja közti vektor
- A súlypontokat az origóba visszük
- Forgatás: $H = \sum_{i=1}^{N} p_i o_i^T$ mátrix felbontása SVD-vel $\rightarrow R = VU^2$
- Skálázás: A forgatás ismeretében $s = \frac{\sum_{i=1}^{N} p_i^T Ro_i}{\sum_{i=1}^{N} o_i^T o_i}$

Mozgáskompenzáció aluláteresztő szűrővel

- Transzformációk összefűzése $T_i^{cum} = T_i \dots T_2 T_1$
- T_i^{cum} alapján T_i^{smooth} számítása aluláteresztő szűrővel
- Stabilizált kép számítása $I_i^{smooth} = \left(T_i^{cum} T_i^{smooth}
 ight)I_i$

Robosztus pontpályák a simítás előtt és után

Tesztek és eredmények

- Kvantitatív és kvalitatív értékelés
- Tesztadat: 5 saját utcai felvétel GoPro kamerával
- Összevetés további módszerekkel:
 - Deshaker 3.1 Gunnar Thalin 2014
 - OpenCV RANSAC-alapú, L2 hiba minimalizálással 2D mozgásbecslés
- Statisztikai mérőszámok:
 - MSE mean squared error
 - PSNR peak signal-to-noise ratio
 - ITF inter-frame transformation fidelity

Kvalitatív értékelés

Kvalitatív értékelés

Kvalitatív értékelés

Kvantitatív értékelés Street1 felvétel

	Eredeti	Javasolt	Deshaker	OpenCV
MSE min	101.15	45.18	110.39	56.84
MSE max	1343.77	969.68	923.10	1355.55
MSE med	743.85	380.58	396.01	529.48
MSE avg	731.50	398.44	403.29	539.16
PSNR min	16.68	18.26	18.48	16.81
PSNR max	28.08	31.58	27.70	30.58
PSNR med	19.42	22.33	22.15	20.89
ITF	19.68	22.66	22.32	21.15

Kvantitatív értékelés Street1 felvétel

Kvantitatív értékelés

		Eredeti	Javasolt	Deshaker	OpenCV
Street1 (738 frames)	MSE avg	731.50	398.44	403.29	539.16
	ITF	19.68	22.66	22.32	21.15
Street2 (1026 frames)	MSE avg	512.93	297.34	356.34	296.62
	ITF	21.29	23.80	23.00	22.49
Street3 (998 frames)	MSE avg	409.07	263.56	236.98	306.67
	ITF	22.40	24.66	25.06	23.77
Street3 (998 frames)	MSE avg	884.42	474.53	516.77	652.85
	ITF	18.92	21.72	21.52	20.39
Street5 (607 frames)	MSE avg	528.67	235.66	230.03	411.21
	ITF	21.31	25.73	25.11	22.56

Összefoglalás

- 2D ponthalmaz regisztrációs módszer
- Egyszerűsített affin kameramodell négy paraméterrel: skálázás, eltolás, forgatás
- Video stabilizáló algoritmus ponthalmaz regisztrációval
- Kvantitatív és kvalitatív tesztek
- Összehasonlítás más algoritmusokkal
- Konklúzió: pontos és robosztus módszer

Köszönöm a figyelmet!

- 2D ponthalmaz regisztrációs módszer
- Egyszerűsített affin kameramodell négy paraméterrel: skálázás, eltolás, forgatás
- Video stabilizáló algoritmus ponthalmaz regisztrációval
- Kvantitatív és kvalitatív tesztek
- Összehasonlítás más algoritmusokkal
- Konklúzió: pontos és robosztus módszer