03/09/2020-Shift 2

1

EE24BTECH11021 - Eshan Ray

- 16) If $\int \sin^{-1} \left(\sqrt{\frac{x}{1+x}} \right) dx = A(x) \tan^{-1} \left(\sqrt{x} \right) + B(x) + C$, where C is a constant of integration, then the ordered pair (A(x), B(x)) can be:
 - a) $\left(x+1,-\sqrt{x}\right)$
 - b) $(x-1,-\sqrt{x})$
 - c) $(x+1, \sqrt{x})$
 - d) $(x-1, \sqrt{x})$
- 17) If the sum of the series $20 + 19\frac{3}{5} + 19\frac{1}{5} + 18\frac{4}{5} + \dots$ upto n^{th} term is 488 and the n^{th} term is negative, then:
 - a) n = 60
 - b) n = 41
 - c) n^{th} term is -4
 - d) n^{th} term is $-4\frac{2}{5}$
- 18) Let p, q, r be three statements such that the truth value of $(p \land q) \rightarrow (\sim p \lor r)$ is F. The truth values of p, q, r are respectively:
 - a) F, T, F
 - b) T, F, T
 - c) T, T, F
 - d) T, T, T
- 19) If the surface area of the cube is increasing at a rate of $3.6cm^2/sec$, retaining its shape; then the rate of change of volume $(incm^2/sec)$, when the length of the cube is 10cm is:
 - a) 9
 - b) 10
 - c) 18
 - d) 20
- 20) Let R_1 and R_2 be two relations defined as follows:

$$R_1 = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 \in Q\}$$
 and

 $R_2 = \{(a,b) \in \mathbb{R}^2 : a^2 + b^2 \notin \mathbb{Q}\},$ where \mathbb{Q} is set of all rational numbers. Then:

- a) R_1 is transitive but R_2 is not transitive
- b) R_1 and R_2 are both transitive
- c) R_2 is transitive but R_1 is not transitive
- d) Neither R_1 nor R_2 is transitive
- 21) If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that the $4^{th}A.M$. is equal to $2^{nd}G.M$., then m is equal to...
- 22) Let a plane P contain two lines $\vec{r} = \hat{i} + \lambda (\hat{i} + \hat{j}), \lambda \in R$ and $\vec{r} = -\hat{j} + \mu (\hat{j} \hat{k}), \mu \in R$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point M(1, 0, 1) to P,

then $3(\alpha, \beta, \gamma)$ equals...

23) Let S be set of all integer solutions (x, y, z), of the system of equations

$$x - 2y + 5z = 0$$
$$-2x + 4y + z = 0$$

$$-7x + 14y + 9z = 0$$

such that $15 \le x^2 + y^2 + z^2 \le 150$. Then the number of elements in the set S is equal to ...

- 24) The total number of 3-digit number numbers, whose sum of digits is 10, is...
- 25) If the tangent at the curve, $y = e^x$ at a point (c, e^c) and the normal to the parabola, $y^2 = 4x$ at the point (1, 2) intersect at the same point on the x axis, then the value of c is...