

Index

Reactor and Fuel-Processing Technology

Volume 11

Note: The page range for each of the four issues of Vol. 11 is as follows:

No. 1, pages 1 to 68	No. 3, pages 117 to 166
No. 2, pages 69 to 116	No. 4, pages 167 to 231

A

- Accidents**
 - analysis of nuclear in fast reactors, 1-3
 - electrical cable fire in Peach Bottom Reactor during construction, 6
 - superheating of liquid-metal coolants in fast reactors, 84-88
- Actinide oxides**
 - electrolytic deposition from molten alkali-metal chlorides, 99-100
- Allied Chemical Corporation**
 - plans for new fuel-processing plant, 205
- Aluminum**
 - fast-neutron-induced bowing of ORR components, 18-20
- Aluminum (SAP)**
 - dissolution, 49
- Aluminum alloys (Al-Cd)**
 - fast-neutron-induced bowing of safety shim rods in ORR, 18-20
- Aluminum alloys (Al-U)**
 - dissolution by HNO₃, effect of Si on, 201
- Aluminum alloys (Al-U)(Al clad)**
 - fluoride-volatility processing of, 103-4
- Aluminofluoride (AlF₃)**
 - enthalpy of formation, 106
- Americium**
 - distribution between liquid Pu and NaCl-KCl containing PuCl₃, 224
 - preparation from AmO₂, 158
 - recovery from Pu by electrorefining, 224
 - recovery from Shippingport Reactor fuel, 202-3
 - solvent extraction, 51
- Aquafluor process**
 - processing of stainless-steel-clad UO₂ fuels, 54-56
 - processing of zirconium-clad UO₂, 54-56
- Aqueous processing**
 - Am recovery from Shippingport Reactor fuel, 202-3
 - of BeO-based fuels, 144-45
 - corrosion in processing Zr-type fuels with HF, 202
- Cm recovery from Shippingport Reactor fuel, 202-3**
- decladding and dissolution of Shippingport blanket elements, 93-94**
- decladding of SAP-clad UC and UO₂ fuels, 49**
- design of delayed-neutron monitor for ²³⁵U in leached hulls, 205-8**
- design of modular pilot plant, 146-47**

- design and operation of stacked-clone liquid-liquid contactors, 51-53**
- dissolution of PuO₂, 91**
- dissolution of pyrolytic carbon-coated (Th,²³²)C₂ and (Th,U)O₂ particles, 92-93**
- dissolution of ThO₂, 91-92**
- dissolution of U-Al alloys, effect of Si on, 201**
- dissolution of UO₂ pellets containing Mo, 92**
- dissolution of Zircaloy-clad ZrO₂-UO₂ fuel, 93**
- of EBR-II fuel elements, 201-2**
- Pu recovery from Purex wastes, 203**
- performance of centrifugal mixer-settler, 205**
- Pu recovery from Purex wastes, 203**
- process flowsheet for WAK fuel processing plant, 94-95**
- solvent extraction of actinide elements, 50-51**
- solvent extraction of ground graphite-base fuels, 94**
- of stainless-steel-clad UO₂-PuO₂ fuels, 50**
- symposium on, 146**
- Arsenic fluoride (AsF₃)**
 - structure, 105-6
- Asphalt**
 - waste incorporation in, 67-68, 109
- Attila cell**
 - design and operation, 103-4

B

- Beryllium**
 - electrorefining, 224
- Beryllium alloys (Be-Cd)**
 - fast-neutron-induced bowing of safety shim rods in ORR, 20
- Beryllium fluoride systems (BeF₂-LiF-ThF₄)**
 - pyrochemical processing, 61-63, 99, 156-57, 221-24
- Bibliographies**
 - on fission-product recovery from wastes, 231
 - on nonaqueous processing of spent fuels, 216
- Burnup**
 - prediction in thermal-reactor fuels, 69-71

C

- Cadmium alloys (Al-Cd)**
 - fast-neutron-induced bowing of safety shim rods in ORR, 18-20
- Cadmium alloys (Be-Cd)**
 - fast-neutron-induced bowing of safety shim rods in ORR, 20
- Californium-252**
 - production estimate, 50
- Cesium**
 - removal from liquid wastes by solvent extraction, 111-12, 230
- Chalk River Nuclear Laboratories**
 - waste management, 164
- Chlorine fluoride (ClF₃)**
 - preparation, 105
- Conferences and meetings**
 - Disposal of Radioactive Wastes into the Ground, Vienna, 1967, 230
 - International Conference on Fast Reactor Safety, Aix-en-Provence, France, Sept. 19-21, 1967, 1-3
 - Nuclear Power Fuel Reprocessing: Technology and Economics, Augusta, Georgia, May 11-12, 1967, 152-53
 - Recent Advances in Reprocessing of Irradiated Fuels, New York, Nov. 30, 1967, 146
- Containment buildings**
 - electrical penetration systems, 5-12
- Control rods**
 - fast-neutron-induced bowing in ORR, 18-20
- Critical experiments**
 - analytical and experimental results of high conversion, 117-20
 - review of DIMPLE, 121-22
- Curium**
 - recovery from Shippingport Reactor fuel, 202-3
 - solvent extraction by tributyl phosphine oxide, 51

D

- Duranickel 301**
 - corrosion by Br₂, 152

E

- Eurochemic Plant**
 - operating experience, 204-5

F

- Filters
 - operation experience in fluid-bed reactors, 214
- Fission products
 - recovery from wastes by solvent extraction, 111-12, 230
 - removal from PuFs and UFs, 56-59
- Fluoride-volatility process, 56-59, 101-6, 149-51, 209-16
- Fluorine
 - production costs, properties, storage, and disposal, 152
- Fuel blankets (UO_2)(Zircaloy clad)
 - aqueous processing, 93-94
- Fuel elements
 - mechanical analysis of irradiated, problems in, 13-15
- Fuels
 - burnup predictions in thermal reactors, 69-71
- Fuels (Al-U)
 - aqueous processing, 201
- Fuels (Al-U)(Al clad)
 - fluoride-volatility processing, 103-4
- Fuels (BeO-base)
 - aqueous processing, 144-45
- Fuels (graphite-base)
 - aqueous processing, 94
- Fuels ($\text{LiF}-\text{BeF}_2-\text{UF}_4$)
 - pyrochemical processing, 61-63, 99, 156-57, 221-24
- Fuels (PuO_2)
 - aqueous processing, 91
- Fuels (PuO_2-UO_2)
 - fluorination with fluorine, 210-11
- Fuels (PuO_2-UO_2)(stainless-steel clad)
 - aqueous processing, 50
 - salt-transport processing, 60-61, 96-99, 154-56, 219-21
- Fuels (Pu-U)(Mg-Zr clad)
 - decladding by melting, 100
- Fuels (ThO_2)
 - aqueous processing, 91-92
- Fuels [(Th,U) C_2] (PyC coated)
 - aqueous processing, 92-93
- Fuels [$(\text{Th},\text{U})\text{O}_2$] (PyC coated)
 - aqueous processing, 92-93
- Fuels (U-fissium)
 - aqueous processing, 201-2
- Fuels (U-Zr)(Zircaloy clad)
 - aqueous processing, 201-2
 - fluoride-volatility processing, 103-4, 209-10
- Fuels (UC)
 - oxidation and hydrofluorination of, 213
- Fuels (UC)(SAP clad)
 - decladding by aqueous process, 49
- Fuels (UO_2)
 - purification, 158
- Fuels (UO_2)(SAP clad)
 - decladding by aqueous process, 49
- Fuels (UO_2)(stainless-steel clad)
 - aquafluor processing, 54-56
 - fluoride-volatility processing, 101-3
- Fuels (UO_2)(304 stainless-steel clad)
 - critical experiments with 3 and 5 percent enriched, 117-20
- Fuels (UO_2)(6061T-6 Al clad)
 - critical experiments with 5 percent enriched, 117-20
- Fuels (UO_2)(Zircaloy clad)
 - fluoride-volatility processing, 101-3
- Fuels (UO_2 -Mo pellets)
 - aqueous processing, 92
- Fuels (UO_2-ZrO_2)(Zircaloy clad)
 - aqueous processing, 93

H

- Fused-salt process
 - bibliography on, 216

L

- Halogens
 - physical and chemical properties of, 216
- Heat exchangers
 - vibrations in HFBR, flow induced, 20-21
- Huyck Felt metal
 - corrosion by Br₂, 152

M

- Lanthanum
 - solvent extraction, 51
- Liquid metals
 - impurity monitoring by plugging meters, 138-43
 - valve development for, 127-37
- Lithium chloride systems ($\text{LiCl}-\text{KCl}$)
 - separation by zone melting and column crystallization, 63
- Lithium fluoride systems ($\text{BeF}_2-\text{LiF}-\text{ThF}_4$)
 - pyrochemical processing, 61-63, 99, 156-57, 221-24

N

- Magnesium alloys (Mg-Zr)
 - removal from Pu-U fuel elements by melting, 100
- Meters (plugging)
 - use in monitoring impurity levels in liquid sodium, 134-43
- Molybdenum alloys
 - preparation by pyrochemical process, 225
- Molybdenum fluorides
 - physical and thermodynamic properties, 152
 - syntheses, 152
- Molybdenum oxyfluorides
 - physical and thermodynamic properties, 152
 - syntheses, 152
- Molybdenum systems ($\text{Mo}-\text{UO}_2$)
 - aqueous processing, 92
- Monel
 - corrosion by Br₂, 152
- Monel-400
 - corrosion by HF, 202

P

- Neptunium
 - production from NpO_2 , 224
 - recovery from Purex wastes, 203
- Neptunium fluorides (NpF_6)
 - density, 152
 - long-wavelength, infrared-active fundamentals for, 152
 - removal from PuFs and UFs gas streams, 212-13
- Neutron generators
 - design of pulsed, 72-74
- Nickel 201
 - corrosion by Br₂, 152
- Nitrofluor process
 - bibliography on, 216
 - processing of Zircaloy-clad UO_2 fuels, 54
- Nonaqueous processing
 - Aquafluor process, 54-56
 - behavior of Np, 212-13

O

- Oak Ridge National Laboratory waste management, 164

R

- Plant and equipment
 - Allied Chemical Corporation announcement of new fuel-reprocessing plant construction, 205
 - Attila cell for processing MTR-type fuel elements, 103-4
 - characteristics of air-pulsed systems, 147-48
 - design of delayed-neutron monitor for ^{238}U in leached hulls, 205-8
 - design of module for aqueous processing of irradiated fuels, 146-47
 - design and operation of stacked-clone liquid-liquid contactor, 51-53
 - design and operation of the WAK fuel-reprocessing plant, 94-95
 - Eurochemic Plant, operating experience, 204-5
 - performance of centrifugal mixer-settler, 205
- Plugging meters
 - use in monitoring impurity levels in liquid sodium, 138-43
- Plutonium
 - conversion to PuO_2 by burning, 91
 - electrorefining, 158, 224
 - production from PuO_2 by electrolysis, 99
 - purification by selective reduction in liquid BrF₃, 106
 - recovery from Purex wastes, 203
 - recovery from scrap by fluoride-volatility process, 151-52
- Plutonium alloys (Pu-U)(Mg-Zr clad)
 - decladding by melting, 100
- Plutonium fluorides (PuF_6)
 - bibliography on, 216
 - long-wavelength, infrared-active fundamentals for, 152
 - preparation of, 216
 - properties of, 216
 - purification of, 57-59, 213-14
 - radiation decomposition, 151

separation from UF₆, 214, 225
thermal decomposition, 151
Plutonium oxide (PuO₂)
conversion to Pu metal by electrolysis, 99
dissolution in aqueous processing, 91
preparation of, 216
properties of, 216
Plutonium oxide systems (Pu₂UO₇)
fluorination with ClF and ClF₃, 211-12
Plutonium oxide systems (PuO₂-UO₂)
(stainless-steel clad)
processing in the NFS Purex facility, 50
salt-transport processing, 60-61, 96-99,
154-56, 219-21
Polonium
volatilization from bismuth oxide, 158
Potassium chloride systems (LiCl-KCl)
separation by zone melting and column
crystallization, 63
Potassium nitrate systems (KNO₃-NaNO₃)
separation by zone melting and column
crystallization, 63
Protactinium
physical chemistry of, 216-17
solvent extraction, 51
Pumps
failure in Big Rock Point Reactor,
21-22
Purex process
evaluation for stainless-steel-clad UO₂-
PuO₂ fuels, 50
Purex wastes
Np and Pu recovery from, 203
Pyrochemical processing (compact), 60-63,
96-100, 154-58, 219-25
(see also Nonaqueous processing)

R

Radioactive materials
handling and shipping, 68
heat-generation problems in fuel
processing, 215
Reactor control
use of quasi-linear programming for,
123-26
Reactor coolants
ejection mechanisms in LMFBR, use in
analyzing safety of, 180-85
liquid-metal impurity monitoring by
plugging meters, 138-43
superheating of liquid metals in fast
reactors, 84-88
Reactor dynamics
study, adiabatic method for, 174
study, direct method for, 176
study, modal method for, 174
study, nodal method for, 175
study, point-reactor kinetics method for,
173-74
Reactor safety
analysis of LMFBR, use of coolant ejection
mechanisms in, 180-85
electrical penetrations in containment
buildings, 7-12
fast reactors, conference on, 1-3
fast reactors, superheating of liquid-
metal coolant in, 84-88
Reactor valves
design for use in LMFBR, 127-37
Reactors (Big Rock Point)
circulation-pump seal failure, 21-22
waste management, 230
Reactors (Briseis)
power-excursion experiments, 2
Reactors (BR-5)
operating experience, 3

Reactors (Cabri Swimming-Pool)
core-meltdown experiments, 2
Reactors (Calder Hall)
intrinsic reactivity-noise sources in,
169-70
Reactors (DFR)
intrinsic reactivity-noise sources in,
169-70
operating experience, 3
Reactors (DMTR)
intrinsic reactivity-noise sources in,
169-70
Reactors (Dresden 1)
waste management, 230
Reactors (Dresden 2)
containment, electrical penetrations,
7-12
intrinsic reactivity-noise sources in,
169-70
Reactors (EBR-II)
fuel processing by aqueous techniques,
201-2
fuel processing by pyrochemical
techniques, 158
Reactors (Elk River)
intrinsic reactivity-noise sources in,
169-70
waste management, 230
Reactors (Enrico Fermi)
intrinsic reactivity-noise sources in,
169-70
Reactors (fast)
design of compact with heat pipes and
direct converters, 187-200
safety, conference on, 1-3
Reactors (fast breeder)
coolant ejection mechanisms, use in
analyzing safety of, 180-85
fuel processing by the salt-transport
process, 60-61, 96-99, 154-56, 219-21
superheating of liquid-metal coolant,
84-88
Reactors (Fermi)
containment, electrical penetrations, 5-6
operating experience, 3
Reactors (Hanford Production)
hydriding of Zircaloy-2 process tubes,
17-18
Reactors (HFBR)
flow-induced vibrations in heat-exchanger
tubes, 20-21
intrinsic reactivity-noise sources in,
169-70
Reactors (HFIR)
intrinsic reactivity-noise sources in,
169-70
transuranium-element production, 50
Reactors (HRE-2)
intrinsic reactivity-noise sources in,
169-70
Reactors (HTR)
intrinsic reactivity-noise sources in,
169-70
Reactors (Humboldt Bay)
waste management, 230
Reactors (Indian Point 1)
waste management, 230
Reactors (JRR-1)
intrinsic reactivity-noise sources in,
169-70
Reactors (JRR-2)
intrinsic reactivity-noise sources in,
169-70
Reactors (LMFBR)
coolant ejection mechanism, use in
analyzing safety of, 180-85
large valves for, 127-37
superheating of Na coolant, 84-88

Reactors (molten-salt breeder)
corrosion tests, 224-25
fuel processing by pyrochemical techniques, 99, 156-57
Reactors (ML-1)
intrinsic reactivity-noise sources in,
169-70
Reactors (MSBR)
pyrochemical processing of fuels, 61-63
Reactors (MTR)
fuel processing, 103-4
Reactors (NRU)
replacement of Al vessel, plans for,
22-24
Reactors (ORR)
Al-Cd shim safety rods, fast-neutron-
induced bowing in, 18-20
Be-Cd shim safety rods, fast-neutron-
induced bowing in, 20
bowing of Al lattice components from
fast-neutron damage, 18-20
intrinsic reactivity-noise sources in,
169-70
Reactors (Pathfinder)
intrinsic reactivity-noise sources in,
169-70
Reactors (Peach Bottom)
containment, electrical penetrations, 6-7
Reactors (power)
noise experiments, analysis and theory
of, 167-71
Reactors (Rapsodie)
operating experience, 3
Reactors (Savannah)
intrinsic reactivity-noise sources in,
169-70
Reactors (Saxton)
intrinsic reactivity-noise sources in,
169-70
Reactors (Shippingport)
Am and Cm recovery from fuels of, 202-3
Reactors (SNAP-2)
intrinsic reactivity-noise sources in,
169-70
Reactors (sodium-cooled fast)
safety, conference on, 1-3
Reactors (Texas A and M Univ. Swimming
Pool)
replacement of Al liner with stainless
steel 304, 24-25
Reactors (thermal)
fuel-burnup predictions, panel pro-
ceedings on, 69-71
Reactors (TREAT)
core-meltdown studies, 2
Reactors (VBNR)
intrinsic reactivity-noise source in,
169-70
Reactors (Yankee)
waste management, 230
Reactors (Zero Power)
noise experiments, analysis and theory
of, 167-71

S

Safety
(see Reactor safety)
Salt mines
storage of calcined wastes in, 110-11,
159-63
Salt-transport process, 60-61, 96-99, 154-
56, 219-21
Seals
failure in Big Rock Point Reactor circu-
lation pump, 21-22
Sodium (liquid)
behavior in reactor core accidents, 2

compressibility and sonic velocity, recommended values, 42-43
density, recommended values, 27-28
electrical resistivity, recommended values, 39-40
impurity monitoring by plugging meters, 138-43
saturation vapor pressure, recommended values, 28
superheating in fast reactors, 84-88
surface tension, recommended values, 40
thermal-expansion coefficient, 40-42
thermodynamic and P-V-T properties, recommended values, 28-35, 44-45
transport properties, recommended values, 32, 36-39
valve development for, 127-37
vaporization in reactor accidents, 2

Sodium nitrate systems (KNO_3-NaNO_3)
separation by zone melting and column crystallization, 63

Solvent extraction
of actinide elements, 50-51
air-pulsed systems for, characteristics of, 147-48
design and operation of centrifugal mixer-settler, 205
design and operation of stacked-clone liquid-liquid contactors, 51-53
deterioration of solvents under irradiation, 203-4
fission-product recovery from wastes by, 111-12
Space program
design of compact power generator featuring a fast reactor, heat pipes and direct converters, 187-200

Stainless steel (304)
performance in NaK at high temperatures, 67

Stainless steel (304L)
corrosion by HF, 202

Stainless steel (316)
performance in NaK at high temperatures, 67

Stainless steel (348)
performance in NaK at high temperatures, 67

Stainless steel (430)
corrosion by Pb-Bi eutectic, 158

Srontium
removal from liquid wastes by solvent extraction, 111-12

Symposia
(see Conferences and meetings)

T

Thermoelectric power generators
design of compact featuring a fast reactor, heat pipes and direct converters, 187-200

Thorium
solvent extraction by tributyl phosphine oxide, 51

Thorium carbide systems [(Th,U) C_2] (PyC coated)
dissolution in aqueous processing, 92-93

Thorium chloride ($ThCl_4$)
production, 100

Thorium fluoride systems ($BeF_3-LiF-ThF_4$)
pyrochemical processing, 61-63

Thorium oxide (ThO_2)
dissolution in aqueous processing, 91-92

reduction with Ca, 100, 224
Thorium oxide systems ($(Th,U)O_2$)
aqueous processing in BeO matrix, 144-46
Thorium oxide systems [(Th,U) O_2] (PyC coated)
dissolution in aqueous processing, 92-93

Transuranium elements
production in the HFIR, recovery in the TRU, 50

Transuranium Facility (TRU)
operation, 50

U

Uranium-233
solvent extraction, 51

Uranium-235
monitoring in leached hulls, design of instrument for, 205-8

Uranium alloys (Al-U)
dissolution by HNO_3 , effect of Si on, 201

Uranium alloys (Al-U) (Al clad)
fluoride-volatility processing of, 103-4

Uranium alloys (Mo-U)
preparation by pyrochemical process, 225

Uranium alloys (Pu-U)(Mg-Zr clad)
decladding by melting, 100

Uranium alloys (U-Zr) (Zircaloy clad)
fluoride-volatility processing, 103-4
corrosion problems in processing with HF, 202

Uranium carbides (UC)
oxidation and hydrofluorination, 213

Uranium carbides (UC)(SAP clad)
decladding by chemical dissolution, 49

Uranium carbides (UC₂)
conversion to UF₆, 105

Uranium chlorides (UCl₄)
fission-product removal by zone melting, 63

Uranium fluoride systems ($BeF_3-LiF-UF_4$)
pyrochemical processing, 61-63

Uranium fluorides (UF₄)
conversion to UF₆, 105
preparation and properties, 216
reaction with water vapor and O₂, 216

Uranium fluorides (UF₆)
bibliography on, 216
conversion to UO₂, bibliography on, 152
density of liquid, 152
handling and container criteria, 104-5
long-wavelength, infrared-active fundamentals for, 152
preparation and properties, 216
preparation from UC₂ and U₃O₈F₈, 105
purification, 56-58, 213
 purity specifications for enrichment by gaseous diffusion, 57
 separation from PuF₆, 214, 225
 structure, 105

Uranium oxide systems (Mo- UO_2)
aqueous processing, 92

Uranium oxide systems (Pu,U) O_2
fluorination with ClF and ClF₃, 211-12

Uranium oxide systems (PuO₂- UO_2)
fluorination with fluorine, 210-11
salt-transport processing, 96-99

Uranium oxide systems (PuO_2-UO_2)
(stainless-steel clad)
processing in the NFS Purex facility, 50
salt-transport processing, 60-61, 96-99, 154-56, 219-21

Uranium oxide systems ($(Th,U)O_2$)
aqueous processing in BeO matrix, 144-

152
coated)
dissolution in aqueous processing, 92-93

Uranium oxide systems (UO_2-ZrO_2)
(Zircaloy clad)
dissolution in aqueous processing, 93

Uranium oxides (UO_2)
preparation, 216
preparation from UF₆, bibliography on, 152

preparation of crystals, 225
properties, 216
purification, 158
reaction with BrF₃, kinetics of, 215-16
reaction with F, kinetics of, 216
reaction with ClF, kinetics of, 216

Uranium oxides (UO_2)(304 stainless steel clad)
critical experiments with 3 and 5 percent enriched, 117-20

Uranium oxides (UO_2)(6061T-6 Al clad)
critical experiments with 5 percent enriched, 117-20

Uranium oxides (UO_2)(SAP clad)
decladding by chemical dissolution, 49

Uranium oxides (UO_2)(stainless-steel clad)
Aquaflour processing, 54-56

fluoride-volatility processing, 101-3

Uranium oxides (UO_2)(Zircaloy clad)
decladding and dissolution in aqueous processing, 93

fluoride-volatility processing, 101-3,

209-10

Nitrofluor processing, 54

Uranium oxides (UO_2)(Zr clad)

Aquaflour processing, 54-56

Uranium oxides (UO_2)

preparation and properties, 216

reaction with BrF₃, kinetics of, 215-16

Uranium oxides (U_3O_8)

preparation and properties of, 216

reaction with BrF₃, kinetics of, 215-16

reaction with ClF, 216

reduction by Ca vapor, 224

Uranium oxyfluoride (UO_2F_3)

conversion to UF₆, 105

Uranium oxyfluoride ($U_3O_8F_8$)

conversion to UF₆, 105

V**Valves**

design for use in liquid-metal-cooled reactors, 127-37

Vibrations

flow-induced in HFBR heat exchangers, 20-21

Volatility processes, 54-59, 101-6, 149-53,

209-17

(see also Nonaqueous processing)

W**Waste disposal**

categorization of wastes, 114-15

conversion of high-level-activity wastes to solids, 65-68, 159, 107-10, 159, 227-30, 231

final disposal methods, 159-64

fission-product recovery, bibliography on, 231

fission-product recovery by solvent extraction, 111-12

ground disposal, symposium on, 230

methods at CRNL, 164

methods at ORNL, 164

methods at various power reactors, 230

recovery of Cs by solvent extraction, 111-12, 230
research and development, 107-15
storage of calcined wastes in salt mines, 110-11, 159-64
storage of liquid wastes in geologic formations, 163-64
storage of liquid wastes in tanks, 112, 230

Y

Yttrium production by fused-salt electrorefining, 99

Z

Zinc-65 extraction from pure Zn and Zn-Pb alloys, 157-58

Zircaloy-2 hydriding of process tubes in Hanford Production Reactors, 17-18
Zirconium alloys (Mg-Zr) removal from Pu-U fuel elements by melting, 100
Zirconium alloys (U-Zr)(Zircaloy clad) fluoride-volatility processing, 103-4
Zirconium oxide systems (UO₂-ZrO₂) (Zircaloy clad) dissolution in aqueous processing, 93

LEGAL NOTICE

This journal was prepared under the sponsorship of the U. S. Atomic Energy Commission. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this journal, or that the use of any information, apparatus, method, or process disclosed in this journal may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this journal.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.