Assignment #3

Student #:

Name: Zaid Albirawi

UWO email: zalbiraw@uwo.ca

1. $F(x) = x \mod 7$

Hashtable:

n	F(x)					
0	>	Null				
1	>	15				
2	>	Null				
3	>	Null				
4	>	Null				
5	>	47	>	12	>	19
6	>	27				

2. $F(x) = x \mod 7$

Hashtable:

n	F(x)
0	12
1	47
2	15
3	Null
4	Null
5	19
6	27

3. $F(x) = x \mod 7$, $F'(x) = 5 - (x \mod 5)$

Hashtable:

n	F(x)
0	Null
1	12
2	15
3	Null
4	47
5	19
6	27

4.
$$F(1) = 1$$

$$F(n) = F(n-1) + 2(n-1)$$

$$F(1) = 1$$

$$F(2) = F(2-1) + 2(2-1)$$

$$= F(1) + 2(1)$$

$$= 1 + 2 = 3$$

$$F(3) = F(3-1) + 2(3-1)$$

$$= F(2) + 2(2)$$

$$= 3 + 4 = 7$$

$$F(4) = F(4-1) + 2(4-1)$$

$$= F(3) + 2(3)$$

Therefore, since F(4) = F(3) + 2(3)

Then,
$$= F(2) + 2(2) + 2(3)$$

$$= F(1) + 2(1) + 2(2) + 2(3)$$

Therefore, F(4) = 2(1+2+3) + 1

Therefore, F(n) = 2(1+2+3...+n-1)+1

* \sum = (1+2+3...+n-1), the sum of all values from 1 to n

Since $\Sigma = n(n-1)/2$

Therefore, $F(n) = \frac{2}{2} [n(n-1)/2] + 1$

$$= n(n-1)+1$$

$$= n^2 - n + 1$$

5. Algorithm count (root r, int k)

Input: root r of a proper Tree T, int k an integer that represents the leaves distance from the tree.

Output: the number for leaves.

int leaves=0

Time Complexity:

count (root r, int k)

We divide the problem into two parts, the algorithm and the recursive calls

F (n) for the algorithm, F (n) =
$$1 + c'*c + c'''*(2*c'') + 1$$

= $(2c'''*c'')+(c'*c)+2$

Since this algorithms recursively visits every node once, then the number of recursive calls should be equal to the number of nodes of this tree. Furthermore, the algorithms is a traversal algorithm which implies that every node has to be visited once. Therefore, F(n) = n (2c'''*c''+c'*c+2), O(n) = n.