Avisha trivedi Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

6.	$Let \ A = \{1,2,3,4\} \ and \ B = \{1,2,3,4\}. \ If \ f: A \rightarrow B \ is \ an \ one-one \ function \ and \ f(x) \neq x \ for \ all \ x \in A,$
	then the number of such possible functions, is

(A) 6

(B) 9

(C) 24 (D) 44

Let f be a function defined as f: $\left(0, e^{\frac{-x}{2}}\right] \rightarrow \left[\frac{-1}{4}, \infty\right)$, $f(x) = (\ln x)^2 + 3\ln x + 2$ then $f^{-1}(x)$ 7. equals

(A) $\log \left(\frac{-3+\sqrt{4x+1}}{2} \right)$

(B) $\log \left(\frac{-3-\sqrt{4x+1}}{2} \right)$

(D) $e^{\frac{-3-\sqrt{4x+1}}{2}}$

If a polynomial function 'f' satisfies the relation $\log_2(f(x)) = \log_2\left(2 + \frac{2}{3} + \frac{2}{9} + \cdots \infty\right)$ 4.

 $\log_3\left(1+\frac{f(x)}{f(\frac{1}{x})}\right)$ and f(10)=1001 then the value of f(20) is

(A) 2002

(B) 7999

(C) 8001

(D) 16001

. . x²+x+c [5 3]

Suppose $f(x) = \sin x$ and $g(x) = 1 - \sqrt{x}$. Then find the domain and range of the following 6. functions.

(a) fog

29.

(b) gof

(c) fof

(d) gog

Let A = {1, 2, 3, ..., 10} and f: A \rightarrow A be defined as $f(k) = \begin{cases} k + 1 & \text{if } k \text{ is even} \\ k & \text{if } k \text{ is even} \end{cases}$ Then the number

of possible function $g: A \rightarrow A$ such that gof = f is

[JEE - Main 2021]

(A) 105

(2) 10Cs

(3)55

(4) 5!

Vector:

Given three vectors \vec{a} , \vec{b} & \vec{c} each two of which are non collinear. Further if $(\vec{a} + \vec{b})$ is collinear 33. with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with $\vec{a} \& |\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$:

(A) is 3

11.

- (B) is -3
- (C) is 0
- (D) cannot be evaluated
- Let $\vec{\alpha}=3\hat{i}+\hat{j}$ and $\vec{b}=2\hat{i}-\hat{j}+3\hat{k}$. If $\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular 23. to $\vec{\alpha}$, then $\vec{\beta}_1 \times \vec{\beta}_2$ is equal to: [JEE (Main)-2019]

(1) $-3\hat{i} + 9\hat{j} + 5\hat{k}$ (2) $3\hat{i} - 9\hat{j} - 5\hat{k}$ (3) $\frac{1}{2}(-3\hat{i} + 9\hat{j} + 5\hat{k})$ (4) $\frac{1}{2}(3\hat{i} - 9\hat{j} + 5\hat{k})$

 $L_1: \bar{r} = 3\hat{i} - \hat{i} + 2\hat{k} + \lambda \cdot (2\hat{i} + 4\hat{i} - \hat{k})$

Consider the following 3 lines in space

 $L_2 : \bar{r} = \hat{i} + \hat{j} - 3\hat{k} + \mu (4\hat{i} + 2\hat{j} + 4\hat{k})$

L₃: $\ddot{r} = 3\hat{i} + 2\hat{j} - 2\hat{k} + t(2\hat{i} + \hat{j} + 2\hat{k})$

Then which one of the following pair(s) are in the same plane.

(A) only L₁L₂

- (B) only L₂L₃
- (C) only L₃L₁
- (D) L₁L₂ and L₂L₃
- $\bar{a}, \bar{b}, \bar{c}$ are three non-zero vectors, no two of which are collinear and the vector $\bar{a} + \bar{b}$ is 9. collinear with \vec{c} , $\vec{b} + \vec{c}$ is collinear with \vec{a} , then $\vec{a} + \vec{b} + \vec{c}$ is equal to -

(A) ä

- (B) b
- (C) c
- (D) none of these
- Let $\vec{a} = 3\hat{i} + 2\hat{j} + x\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$, for some real x. Then $\left|\vec{a} \times \vec{b}\right| = r$ is possible if : 22.

[JEE (Main)-2019]

(1) $r \ge 5\sqrt{\frac{3}{2}}$ (2) $\sqrt{\frac{3}{2}} < r \le 3\sqrt{\frac{3}{2}}$ (3) $3\sqrt{\frac{3}{2}} < r < 5\sqrt{\frac{3}{2}}$ (4) $0 < r \le \sqrt{\frac{3}{2}}$