Speaker: Niloy Ganguly Title: Fairness in Two Sided Market

Fairness in Two-Sided Platforms

Niloy Ganguly

Indian Institute of Technology Kharagpur

Personalized Recommendation

Learning Relevance Scores

- 1. Content-Based
- 2. Collaborative Filtering
- 3. Hybrid Approaches

Goal: Maximize customer satisfaction

What is the effect of such customer-centric design on producers?

Datasets Used

- Google Local
 - Ratings of local businesses on Google Maps
 - 855 businesses in Manhattan
 - 11,172 customers based on New York City
 - 25,686 reviews and ratings
- Last.fm
 - No. of times different artists were played on last.fm
 - 1,892 listeners
 - 17,632 artists
 - 92,834 records of play counts

Effect on the Producers

Google Local: Top 20% artists got ~80% of total exposure Last.fm: Bottom 60% artists got only ~20% of total exposure

Why to Care for Producers?

Sellers like Cloudtail and WS Retail on THE ECONOMIC TIMES

Amazon, Flipkart scaling up to grab top slots

Small sellers fear being elbowed out in e-commerce festive sale

Business Today

As Softbank's Oyo booms, some Indian hotels cry foul and check out

Heartbreak hotel: Is SoftBank's
Oyo hurting Indian hoteliers?

Towards a Fair Marketplace

- · Legal obligation
 - FDI Policy, Government of India
- Platforms' interest
 - · Improved quality with higher competition
 - · More choice for customers
- Voluntary commitment / Business requirement
 - To take new producers on board

Impact on Producers

Huge Inequality in Top-k Poorest-k achieves almost equality

Customer Utility

$$\begin{aligned} \text{Utility}_u &= \sum_{p \in R_u} V(u,p) / \max_{R_u} \sum_{p \in R_u} V(u,p) \\ \text{Relevance} \end{aligned} \end{aligned}$$
 Relevance of Top-K

Impact on Customers

- Utility for the customers decreases drastically
- Different customers can get affected to different dec

Bottom line: Need to consider fairness for both sides

Relevance Relevance of Top-K

Two-Sided Fairness in Recommendation

- Fairness for Producers
 - Ensure a minimum exposure guarantee for every producer
 - Comparable to the fairness of minimum wage guarantee
 - Minimum wage decreases income inequality
 [Brazil: Engbom et al. 2018, China: Lin et al. 2016]
 - What would be the guaranteed exposure?
- Fairness for Customers
 - Resultant loss in utility should fairly distributed among customers
 - What would be a fair distribution?
 Reimagine Fair Recommendation as Fair Allocation

Fair Allocation of Indivisible Goods

 $v_u(g) \ge 0; \ \forall u \in \mathcal{U} \ \& \ \forall g \in \mathcal{P}$

Individual Valuations

Goal: Find a fair allocation $(A_1, ..., A_n)$

Fairness Notions

Classical notions of fairness for divisible goods

• Envy Freeness: Every agent values her bundle at least as much she values any other's bundle

With $v_i(A_i) \geq v_i(A_j), \ \ \forall j$

Indivisible goods
Envy-Freeness

up to 1 good (EF1)

 Proportional Fair Share: Every agent values her share to be at least 1/n times of her total value for all goods

 $v_i(A_i) \ge rac{1}{|\mathcal{U}|} \sum_j v_i(A_j)$

Maximin Share Guarantee (MMS)

Not always possible to achieve with indivisible goods

Envy-Freeness up to One Good (EF1)

An allocation $(A_1, A_2, ..., A_n)$ is said to be *envy free up to one good* (EF1) iff for every pair of agents i, j there exists a good $g \in A_j$ such that

$$v_i(A_i) \ge v_i(A_j \setminus \{g\}).$$

Budish 2011, Journal of Political Economy

$$v_1(A_1) < v_1(A_2)$$

 $v_1(A_1) > v_1(A_2)$

Maxi Min Share Guarantee (MMS)

An allocation $(A_1,...,A_n)$ ensures MMS guarantee if

$$\forall i \in \mathcal{U}, \ v_i(A_i) \ge \max_{(A_1, \dots, A_n)} \min_{j \in \mathcal{U}} v_i(A_j)$$

Budish 2011, Journal of Political Economy

Maxi Min Share Guarantee (MMS)

An allocation (A₁,....,A_n) ensures MMS guarantee if

$$\forall i \in \mathcal{U}, \ v_i(A_i) \ge \max_{(A_1, \dots, A_n)} \min_{j \in \mathcal{U}} v_i(A_j)$$

An agent i is asked to partition the goods into n parts

In worst case, i gets $\min_{j \in \mathcal{U}} v_i(A_j)$ Any rational agent would solve $\max_{(A_1, \dots, A_n)} \min_{j \in \mathcal{U}} v_i(A_j)$

Fair Recommendation to Fair Allocation

Products as Goods

Relevance Scores as Valuations

Customers as Agents

Departure from existing fair allocation setup

- Gives guarantees only for the agents/customers
- Allocation terminates when no product left

Proposed a new algorithm FairRec

Required Properties for FairRec

Products as Goods

Relevance Scores as Valuations

Customers as Agents

(Producer Fairness) Exposure Guarantee

• Each product is guaranteed a certain amount of exposure

(Customer Fairness) EnvyFree upto 1 good

 The allocation must be envyfree upto 1 good

Cardinality constraint from customer-side

 Each customer must be allocated with k distinct products

MMS Exposure Guarantee in FairRec

Products as Goods #distinct_products=n

Relevance Scores as Valuations

Recommendation size k

Total Available Exposure
= m x k

Customers as Agents #distinct_customers=**m**

Maximum possible guarantee for producers MMS= [(m x k)/ n]

No guarantee above MMS is possible

Guaranteeing Two-Sided Fairness in FairRec

Products as Goods

Relevance Scores as Valuations

Customers as Agents

FairRec runs in two phases

1. Phase-1

- · Ensures Minimum Exposure Guarantee
- Maintains EF1

2. Phase-2

- Completes allocation of exactly k products
- Continues to maintain EF1

* Could not cover the entire lecture Utill be adding soon