

## 2102470 Học máy

## Bài giảng: K-Means Clustering

Chương 3: Phân cụm

# Ôn lại bài học trước

• Bạn có nhớ? %?

## Nội dung chính

- 3.1 Khái niệm về phân cụm
- 3.2 Mô tả bài toán phân cụm
- 3.3 Hàm mục tiêu
- 3.4 K-Means
- 3.5 Ví dụ về bài toán phân cụm

### 3.3 K-means

 Ví dụ: Có một tập dữ liệu đơn giản, cần thực hiện phân cụm



## Trường hợp 1

Giả sử chúng ta đã biết các tâm (centroids)



$$k = 3$$

$$d_2 > d_1 > d_0$$

## Trường hợp 1

- Dễ dàng đánh nhãn cho tất cả các mẫu trong tập dữ liệu
  - Bằng cách gán mẫu vào cụm mà "khoảng cách" từ mẫu tới cụm đó là gần nhất /

Làm sao xác định được các centroids? (;\_\_\_)



## Trường hợp 2

Giả sử tất cả các mẫu đã được dán nhãn



- Dễ dàng tính được các tâm của các cụm
  - Thông qua việc tính trung bình của mẫu trong cụm đó

 Ví dụ: Có một tập dữ liệu đơn giản, cần thực hiện phân cụm



- Các mẫu không được đánh nhãn
- Không biết thông tin về các tâm của cụm

### Có k cụm

B1: Khởi tạo ngẫu nhiên k tâm

B2: Gán các mẫu vào cụm

B3: Cập nhật các tâm

B4: Lặp lại bước 2, 3 cho tới khi các tâm cố định

Input data



Initialization



Assign Points (1)



Recompute Centers (1)



Reassign Points (2)



Recompute Centers (2)



Reassign Points (3)



Recompute Centers (3)



▲ Cluster 0
▲ Cluster 1
▲ Cluster 2

• Ví dụ 1: Áp dụng k-means, k = 2





Bộ dữ liệu có N = 6 mẫu

$${S_F(1), S_G(2), S_F(3), S_X(8), S_Y(9), S_z(10)}$$



• Ví dụ 1: Áp dụng k-means, k = 2



B1: Khởi tạo ngẫu nhiên k = 2 tâm

$$c_1 = 0$$
$$c_2 = 6$$

$$c_2 = 6$$

• Ví dụ 1: Áp dụng k-means, k = 2



B2: Gán các mẫu vào cụm

$$d(S_F, c_1) = \sqrt{(1-0)^2} = 1 \quad d(S_F, c_2) = \sqrt{(1-6)^2} = 5 \quad S_F \in C_1$$

$$\vdots$$

$$d(S_X, c_1) = \sqrt{(8-0)^2} = 8 \quad d(S_X, c_2) = \sqrt{(8-6)^2} = 2 \quad S_X \in C_2$$

• Ví dụ 1: Áp dụng k-means, k = 2



B3: Cập nhật các tâm

$$c_1 = 2$$
$$c_2 = 9$$

$$c_2 = 9$$

• Ví dụ 1: Áp dụng k-means, k = 2



B4: Lặp lại bước 2, 3

$$d(S_F, c_1) = \sqrt{(1-0)^2} = 1 \quad d(S_F, c_2) = \sqrt{(1-6)^2} = 5 \quad S_F \in C_1$$

$$\vdots$$

$$d(S_X, c_1) = \sqrt{(8-0)^2} = 8 \quad d(S_X, c_2) = \sqrt{(8-6)^2} = 2 \quad S_X \in C_2$$

Có các tâm cố định => Dừng

Đánh giá

$$E = \sum_{i=1}^{k=2} \sum_{S \in C_i} d(S, c_i)^2$$

$$= \left( d(S_F, c_1)^2 + d(S_G, c_1)^2 + d(S_H, c_1)^2 \right)$$

$$+ \left( d(S_X, c_2)^2 + d(S_Y, c_2)^2 + d(S_Z, c_2)^2 \right)$$

$$= 2 + 2 = 4$$

• Ví dụ 2: Áp dụng k-means, k = 2





Bộ dữ liệu có N = 7 mẫu

$$\{S_F(1), S_G(2), S_F(3), S_X(8), S_Y(9), S_Z(10), S_W(25)\}$$



#### **Outlier**

Chú ý đến ảnh hưởng của outlier [B10TLTK2]



(A): Undesirable clusters



(B): Ideal clusters

Ví dụ 3: Áp dụng K-means



Bộ dữ liệu có N = 8 mẫu

$$\begin{cases} S_{1}(2,10), S_{2}(2,5), S_{3}(8,4), S_{4}(5,8), \\ S_{5}(7,5), S_{6}(6,4), S_{7}(1,2), S_{8}(4,9) \end{cases}$$

- (a) Trực quan hóa dữ liệu để chọn k cụm và khởi tạo ngẫu nhiên k tâm
- (b) Xác định 3 tâm mới sau lần thực hiện đầu tiên
- (c) Xác định 3 cụm sau khi kết thúc thuật toán

Ví dụ 3: (a) Trực quan hóa dữ liệu



Slide 22

Ví dụ 3: (a) Trực quan hóa dữ liệu, chọn k và các tâm



Slide 23

Ví dụ 3: (b) Kết thúc lần thực hiện đầu tiên

k = 3



 Ví dụ 3: (c) Kết thúc thuật toán Cụm 1  $\{S_1(2,10), S_8(4,9)\}$ Cụm 2  $\begin{cases} S_3(8,4), S_4(5,8), \\ S_5(7,5), S_6(6,4) \end{cases}$ Cụm 3  $\{S_2(2,5), S_7(1,2)\}$  $\triangle c_1(3,9.5)$  $\triangle c_2(6.5,5.25)$  $\triangle c_3(1.5,3.5)$ 

- Mặc dù thuật toán được đảm bảo để hội tụ, nó có thể không hội tụ đến kết quả đúng
  - Phụ thuộc vào thiết lập các tâm ban đầu
  - Lựa chọn số lượng tối ưu của các cụm

Ảnh hưởng đến kết quả phân cụm



Lựa chọn tâm ban đầu tốt [B10TLTK2]



(A). Random selection of k seeds (centroids)





Lựa chọn tâm ban đầu không tốt [B10TLTK2]



(A). Random selection of seeds (centroids)





(C). Iteration 2

# Số lượng tối ưu của các cụm

Ảnh hưởng đến kết quả phân cụm



- PP1: Nếu biết xấp xỉ vị trí tâm điểm ta có thể thiết lập trực tiếp chúng (thực hiện 1 thuật toán phân cụm khác trước đó)
  - Ví dụ trong thông qua tham số *init và* thiết lập n\_init = 1 trong lớp Kmeans của scikit-learn (chứa danh sách các tâm điểm)

- PP2: Chạy thuật toán nhiều lần với các thiết lập ngẫu nhiên khác nhau và giữ lại giải pháp tốt nhất
  - Làm sao để biết được giải pháp nào là tốt nhất?
    - Có thể sử dụng thước đo hiệu quả để biết chính xác giải pháp nào là tốt nhất
    - model's inertia ~ khoảng cách bình phương trung bình giữa mỗi mẫu và tâm gần nhất của nó => càng nhỏ càng tốt

- PP3: Sử dụng một cách thiết lập ban đầu khác, ví dụ dùng thuật toán k-means++
  - Lựa chọn các tâm điểm xa nhau => thuật toán
     ít bị hội tụ về nghiệm cận tối ưu hơn

- k-means++
- B1: Lấy 1 tâm  $\mathbf{c}_1$ , lựa chọn ngẫu nhiên từ tập dữ liệu
- B2: Xác định tiếp 1 tâm mới bằng cách chọn 1 mẫu
   X; có xác suất lớn nhất

$$p(\mathbf{x}_i) = \frac{d(\mathbf{x}_i)^2}{\sum_{j} d(\mathbf{x}_j)^2}$$

- $d\left(\mathbf{x}_{i}\right)$  Khoảng cách giữa mẫu  $\mathbf{X}_{i}$  và tâm gần nhất đã được chọn
- B3: Lập lại B2 cho tới khi toàn bộ k tâm được chọn

#### K-means++

Ví dụ 4: Áp dụng k-means++



Bộ dữ liệu có N = 8 mẫu

$$\begin{cases} S_{1}(2,10), S_{2}(2,5), S_{3}(8,4), S_{4}(5,8), \\ S_{5}(7,5), S_{6}(6,4), S_{7}(1,2), S_{8}(4,9) \end{cases}$$

- (a) Trực quan hóa dữ liệu
- (b) Xác định 3 tâm ban đầu
- (c) Xác định 3 cụm sau khi kết thúc thuật toán

## K-means++ - Ví dụ 4

Ví dụ 4: (a) Trực quan hóa dữ liệu



Slide 36

Ví dụ 4: (b) Xác định 3 tâm ban đầu



Slide 37

Ví dụ 4: (b) Xác định 3 tâm ban đầu



Slide 38

Ví dụ 4: (b) Xác định 3 tâm ban đầu

| Mẫu   | $d\left(S_{i},c_{1}\right)^{2}$ | $p(S_i)$ |
|-------|---------------------------------|----------|
| $S_1$ | 0                               | 0        |
| $S_2$ | 25                              | 0.089    |
| $S_3$ | 72                              | 0.255    |
| $S_4$ | 13                              | 0.046    |
| $S_5$ | 50                              | 0.177    |
| $S_6$ | 52                              | 0.184    |
| $S_7$ | 65                              | 0.231    |
| $S_8$ | 5                               | 0.018    |

$$\sum_{j} d(S_{j})^{2} = 282 \qquad p(S_{2}) = \frac{d(S_{2})^{2}}{\sum_{j} d(S_{j})^{2}} = \frac{25}{282} = 0.089$$

Ví dụ 4: (b) Xác định 3 tâm ban đầu

| Mẫu   | $d\left(S_{i},c_{1}\right)^{2}$ | $d(S_i, c_2)^2$ | $d\left(S_{i}\right)^{2}$ | $p(S_i)$ |
|-------|---------------------------------|-----------------|---------------------------|----------|
| $S_1$ | 0                               | 72              | 0                         | 0        |
| $S_2$ | 25                              | 36              | 25                        | 0.245    |
| $S_3$ | 72                              | 0               | 0                         | 0        |
| $S_4$ | 13                              | 25              | 13                        | 0.125    |
| $S_5$ | 50                              | 2               | 2                         | 0.020    |
| $S_6$ | 52                              | 4               | 4                         | 0.039    |
| $S_7$ | 65                              | 53              | 53                        | 0.520    |
| $S_8$ | 5                               | 45              | 5                         | 0.049    |

$$\Rightarrow \triangle c_3 = S_7(1,2)$$

$$p(S_2) = \frac{d(S_2)^2}{\sum_{j} d(S_j)^2} = \frac{25}{102} = 0.245$$
 
$$\sum_{j} d(S_j)^2 = 102$$

Ví dụ 4: (c) Xác định 3 cụm khi thuật toán kết thúc



# Số lượng tối ưu của các cụm

 PP1: Sử dụng model's inertial, tính cho số lượng khác nhau của cụm k



Không thực sự chính xác

$$k = 5?$$
  $k = 6?$ 

# Số lượng tối ưu của các cụm

- PP2: Sử dụng sihouette score
- Hệ số silhouette của một mẫu

$$\frac{b-a}{\max(a,b)}$$

lpha: khoảng cách trung bình tới các điểm khác ở trong cùng một cụm

bình là khoảng cách tới cụm gần nhất trung bình là khoảng cách trung bình tới các mẫu thuộc vào cụm gần nhất

- + Gần với +1: mẫu này nằm bên trong cụm mà nó thuộc về và nằm xa các cụm khác
- + Gần với 0: mẫu này nằm gần với đường biên của cụm
- + Gần với -1: mẫu có thể đã được gán sai vào 1 cụm mà nó không thuộc về

#### Silhouette score

 Silhouette score = trung bình của các hệ số silhouette trên toàn bộ các mẫu



+ Biểu đồ silhouete: Biểu diễn tất cả các hệ số silhouette của các mẫu sắp xếp theo từng cụm Kết hợp với 1 đường thẳng biểu diễn giá trị silhouette score

# Sihouete diagrams



#### **DBSCAN**

 DBSCAN (Density-based spatial clustering of applications with noise)

Thuật toán này định nghĩa các cụm như là các vùng liên tục với mật độ cao

#### **DBSCAN**

 Thuật toán đơn giản nhưng mạnh mẽ, cho phép phân cụm cho bất kỳ hình dạng nào



#### **Gaussian mixture**

- GMM (Gaussian mixture model)
- Là mô hình xác suất với giả sử rằng các mẫu được tạo ra từ sự pha trộn của một số phân phối Gaussian (có các tham số ta không biết)
- Tất cả các mẫu tạo bởi cùng 1 phân phối Gaussian đơn hợp thành 1 cụm, thông thường có dạng elip

### **Gaussian mixture**



# Các thuật toán phân cụm khác



# Tổng kết

- Sinh viên hiểu và áp dụng được thuật toán k-means cho phân cụm
- Chú ý tới các yếu tố ảnh hưởng tới thuật toán như
  - Việc thiết lập các tâm ban đầu
  - Lựa chọn số lượng tối ưu của các cụm

# Hoạt động sau buổi học

 Tìm hiểu thêm các thuật toán phân cụm khác

# Chuẩn bị cho buổi học tiếp theo

 Tìm hiểu về các hàm để thực hiện phân cụm trong thư viện scikit-learn

## Tài liệu tham khảo

- [B10TLTK1] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, Morgan Kaupmann, 3rd Edition, 2011.
  - Chapter 10 Cluster Analysis: Basic Concepts and Methods
- [B10TLTK2] B. Liu, Web Data Mining Exploring Hyperlinks, Contents, and Usage Data, Springer, 2rd Edition, 2011
  - Chapter 4 Unsupervised Learning