

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo Campus São Paulo

Engenharia Eletrônica (SPO.BAC.ELO)

Relatório: Reatividade de metais com outros metais e com solução ácida.

Estudantes: Gabriel Arom Gonçalves Vianna de Moura e Silva, Luigi Gava Costa, Pedro Henrique Batista, Rafael Fernandes Barnabé

Discplina: Química Experimental

Professores: Prof. Lucia Collet,

Prof. Caio Souza

Sumário

Sumário		2
1	INTRODUÇÃO	3
2	FUNDAMENTAÇÃO TEÓRICA	4
3	METODOLOGIA EXPERIMENTAL	5
3.1	Materiais e Reagentes	5
3.2	Procedimento Experimental	5
3.2.1	Parte I	5
3.2.2	Parte II	6
4	RESULTADOS E DISCUSSÃO	7
4.1	Parte I	7
4.1.1	Tabela de Resultados por observação:	7
4.2	Parte II	7
4.2.1	Tabela de Resultados por observação:	7
5	CONCLUSÕES	8
	Referências	9

1 Introdução

Este experimento teve como objetivo investigar as reações entre diferentes metais. São eles: (Cobre, Magnésio, Zinco e Alumínio) e várias soluções de íons metálicos $(Cu^{2+}aq,\ Mg^{2+}aq,\ Zn^{2+}aq,\ Al^{2+}aq)$. A reatividade dos metais foi observada e registrada para avaliar a tendência dos metais em reagir em diferentes soluções.

2 Fundamentação Teórica

A reatividade dos metais é um aspecto central na química, influenciando tanto processos naturais quanto aplicações industriais. A série de reatividade dos metais, também conhecida como série eletroquímica, classifica os metais em ordem de sua tendência a perder elétrons (ser oxidados). Esse conceito é essencial para entender como diferentes metais interagem com ácidos e com outros íons metálicos.

Metais como o magnésio (Mg) e o alumínio (Al) estão no topo da série de reatividade, indicando uma alta propensão a oxidar. Quando esses metais são introduzidos em uma solução de ácido clorídrico (HCl), eles reagem vigorosamente, formando gás hidrogênio H_2 e um sal metálico.

Metais menos reativos como o cobre (Cu) mostram pouca ou nenhuma reação com ácidos diluídos. Este comportamento é devido ao menor potencial de ionização do cobre, que o torna mais estável e menos propenso a perder elétrons.

Além disso, as reações de deslocamento entre metais e íons metálicos em solução dependem dos potenciais de redução dos metais envolvidos. Um metal com um potencial de redução mais baixo tende a ser oxidado quando colocado em uma solução contendo íons metálicos de um metal com um potencial de redução mais alto. (1)

No contexto deste experimento, a observação de mudanças físicas como variações de temperatura, formação de bolhas, liberação de gás e mudanças de cor fornecerá uma avaliação qualitativa da reatividade dos metais. Esses dados permitirão uma compreensão mais detalhada da posição dos metais na série de reatividade e suas características de oxirredução.

3 Metodologia Experimental

3.1 Materiais e Reagentes

- 1 béquer de 100 mL;
- 1 tubo de ensaio:
- Estante para tubos de ensaio;
- Bastão de video;
- Solução de ácido clorídrico 1,0 mol/L;
- · Cobre em aparas;
- Solução de sulfato de Cobre II (CuSO₄);
- Magnésio em aparas;
- Solução de sulfato de magnésio (MgSO₄);
- · Zinco em aparas;
- Solução de sulfato de zinco $(ZnSO_4)$;
- Solução de Sulfato de alumínio $(Al_2(SO_4)_3)$;
- · Alumínio em aparas;

3.2 Procedimento Experimental

3.2.1 Parte I

- 1. Adicione ceca de 2 mL das soluções de íons metálicos: $Cu^{2+}_{(aq)},\,Mg^{2+}_{(aq)},\,Al^{2+}_{(aq)}$
- 2. Adicione fragmentos dos metais nas soluções de íons metálicos não equivalentes ao seu próprio íon (isto é: adicione raspas de cobre nas soluções de $Mg^{2+}_{(aq)}\ Zn^{2+}_{(aq)}$, mas não a de $Cu^{2+}_{(aq)}$), e assim sucessivamente;)
- 3. Observe a reatividade de cada par metal/íon metálico e anote: aumento de temperatura, formação de bolhas, liberação de gás, corrosão, etc.

3.2.2 Parte II

- 1. Adicione cerca de 2 mL da solução de HCL em cinco tubos de ensaio;
- 2. Adicione fragmentos dos metais cobre, magnésio, zinco e alumínio em cada tubo de ensaio com a solução de HCL;
- 3. Observe a reatividade de cada metal em meio ácido e anote: aumento de temperatura, formação de bolhas, liberação de gás, corrosão, etc.

4 Resultados e Discussão

4.1 Parte I

4.1.1 Tabela de Resultados por observação:

Metal	Solução de Íons Metálicos			
	Cu_{aq}^{2+}	Mg_{aq}^{2+}	Zn_{aq}^{2+}	Al_{aq}^{2+}
Cobre	Não houveram reações significativas			
Magnésio	Oxigenou	Oxidou /	Oxidou /	Oxidou
		Temperatura	Boiou	
Zinco	Cor mudou	Cor Mudou	Cor Mudou	Oxigenou
Alumínio	Não houveram reações significativas			
(Ácido adicionado)	 Formação de Sólido Casta- nho Alumínio Dissolveu Oxidou 	n/a	 Mais Refle- tivo Corrosão nas bordas. 	n/a

4.2 Parte II

4.2.1 Tabela de Resultados por observação:

Metal	Solução de HCL		
Cobre	Não houveram reações significativas		
Magnésio	Aumento de temperatura (qualitativo) e com aparente oxidação.		
Zinco	Sinais de Corrosão		
Alumínio	Não houveram reações significativas		

5 Conclusões

Parte I: Reatividade entre metais e íons metálicos

- Fragmentos de cobre em $Mg^{2+}(aq)$ e $Zn^{2+}(aq)$: Não deve haver grande reatividade. O cobre é menos reativo que o magnésio e o zinco, então deve permanecer inerte.
- Fragmentos de magnésio em $Cu^{2+}(aq)$ e $Zn^{2+}(aq)$: Deve haver reatividade visível com $Cu^{2+}(aq)$, porque o magnésio é mais reativo. Menos reatividade com $Zn^{2+}(aq)$.
- Fragmentos de alumínio em $Cu^{2+}(aq)$, $Mg^{2+}(aq)$, $Zn^{2+}(aq)$: A reação mais visível será com $Cu^{2+}(aq)$, pois o alumínio é bem reativo.

Parte II: Reatividade dos metais com ácido clorídrico (HCl)

- Fragmentos de cobre com HCl: Pouca ou nenhuma reatividade. O cobre não reage facilmente com ácidos diluídos.
- Fragmentos de magnésio com HCl: Reatividade alta, com formação de bolhas de hidrogênio (H_2) .
- Fragmentos de zinco com HCl: Reatividade moderada a alta, com liberação de gás hidrogênio.
- Fragmentos de alumínio com HCl: Reatividade notável, com formação de gás hidrogênio.

Referências

BROWN, Theodore L. et al. **Chemistry: The Central Science**. 14. ed. [S.l.]: Pearson, 2017. P. 309–311.