

CST8502 MACHINE LEARNING

Week 1
Introduction to Machine Learning

Professor: Dr. Anu Thomas

Email: thomasa@algonquincollege.com

Office: T315

Data Analytics

- Definition: Data Analytics is the process of aggregating large data sets in order to detect underlying patterns that might not be visible by just looking at raw data.
- These patterns give insight to maximize profits, improve health, lower electricity usage, etc.
- Enables businesses to make data-driven decisions

Mountains of Data

- We now have more data being gathered/collected.

 Governments are starting to adopt openness policies of making public data freely available on the internet.
- Canada Open Government: http://open.canada.ca/en
- Seattle Open Data https://data.seattle.gov/
- Ontario Open Data https://www.ontario.ca/search/data-catalogue
- Ottawa Open Data: http://data.ottawa.ca/

Seattle Bicycle Traffic

- https://data.seattle.gov/Transpo rtation/daily-bike-traffic/d4dxu56x
- A traffic counter counts number of bicycles on the East and West sidewalks.
- There are traffic spikes from 7-9 am on the West side, and from 5-6pm, but only 5 days a week.

Profit

• As an entrepreneur, where would you sell hot dogs, or advertise?

http://www.blogto.com/eat_drink/2015/07/everything_to_know_about_hot_dog_stands_in_toronto/

Healthcare

- The Real-World Benefits of Machine Learning in Healthcare
- Machine Learning Healthcare Applications 2018 and Beyond
- Machine Learning in Healthcare

CRISP-DM

- Cross-industry Standard Process for Data Mining
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment

Business Understanding

What does the business need?

- Determine business objectives Identify what you want to accomplish from a business perspective
- Assess situation determine availability of resources, assess risks, think about contingency plans for risks etc.
- Determine goals
- Produce project plan

Data Understanding

- What data do we have/need? Is it clean?
 - Collect initial data
 - Describe data check quantity of data, data format, consistent coding schemes
 - Explore data visualize data, identify relationships among data, query data etc.
 - Verify data quality how clean is the data? Any noise?
 - Missing data, errors, measurement errors, inconsistent representation etc.

Data Preparation

How can we organize the data to perform modeling?

- Select data determine which data will be used and document reasons for inclusion/exclusion
- Clean data solve all data quality issues
- Construct data derive new attributes
- Integrate data create new datasets by combining data from multiple sources
- Format data re-format data as necessary (discretization etc.)

Data Preparation

- The lengthiest process!
- When getting data from different sources, some work is needed when putting it together:
 - Cleaning and filtering: Remove duplicate data, missing data, resolve incomplete data. Something like: *Woodroffe Ave, Woodroffe, Woodroffe Avenue* should all be the same.
 - Remove outliers: (data that is far outside the average). Every semester, some students register for a course but don't drop it. This means they get 0 for everything and lowers the class average. Another example is that sales for a store is \$0 for some regional holidays.
 - Variable transformations. Changing how variables are represented (metric / imperial)

Modeling

What modeling technique should we apply?

- Select modeling technique determine which algorithms to try
- Generate test design how to split data for training, testing, validation etc.
- Build model build decided models
- Assess model check generated models, apply domain knowledge to interpret the results

Evaluation

Which model best meets the business objectives?

- Evaluate results do the models meets the business criteria? Which ones should we approve?
- Review process Review the work.
- Determine next steps determine whether to proceed or iterate further etc.

Machine Learning

- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Clustering
 - Outlier detection

Supervised learning: Classification

- Data has class labels
- Based on the labels, classifiers are generated
- New data will be classified based on the generated classifier
- Predicts a **discrete** class label
- Example 1: Cancer dataset Malignant and benign labels are present for each instance.
- Example 2: Iris dataset data from 3 types of flowers every instance has a class label

https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html

Supervised Learning: Regression

Regression predicts **continuous** values (numbers) as the output.

Example, housing prices for various houses: number of bedrooms, garage size, property size, and the computer must interpolate predictions.

Unsupervised Learning

Data has no class labels

- Clustering: tries to group instances
 - Similar instances grouped together to form clusters. (Ex. Insurance: grouping groups of motor insurance policy holders with a high average claim cost)
- Outlier detection: tries to find anomalies
 - Identify those instances which are distinct from the nature of the majority of instances. (Ex. Financial fraud detection)

