优化笔记

Leoeon

2015.11.11

Contents

1	凸优化					
	1.1	凸集		4		
		1.1.1	集合	4		
			1.1.1.1 仿射	4		
			1.1.1.2 凸	4		
			1.1.1.3 锥	4		
		1.1.2	正常锥	5		
		1.1.3	超平面	5		
		1.1.4	对偶锥	5		
		1.1.5	最值与极值	5		
			1.1.5.1 最小元	5		
			1.1.5.2 极小元	5		
		1.1.6	单调性	6		
	1.2	凸函數	t	6		
		1.2.1	· 凸函数	6		
		1.2.2	上境图	6		
		1.2.3	共轭函数	6		
		1.2.4	拟凸函数	7		
		1.2.5	对数凸函数	7		
		1.2.6	K凸函数	8		
	1.3	1.2.0 凸优4	* * ***	8		
	1.0	1.3.1		8		
		1.3.1	拟凸优化问题	8		
	1.4		月日乘子法	9		
	1.4			10		
	1.5	ן ניקר 1.5.1		_		
		1.5.1	不等式	10		
				10		
			1.5.1.2	10		
2	选代法 1:					
	2.1	梯度下	「降法	11		
	22	生龋污	<u> </u>	11		

CONTENTS 3

	2.2.1	以牛顿法	12
		.2.1.1 BFGS	12
		.2.1.2 DFP	12
2.3	有约束	」迭代法	12
	2.3.1	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	12
	2.3.2	b界跟踪法	13
		.3.2.1 法一	13
		3.2.2 法二	13

Chapter 1

凸优化

1.1 凸集

1.1.1 集合

1.1.1.1 仿射

多点 $\{x_k\}$ 的仿射组合: $\{\sum_k \theta_k x_k | \sum_k \theta_k = 1\}$ 集合C的仿射包: $\mathrm{aff}[C] = \{\sum_k \theta_k x_k | \forall x_k \in C, \sum_k \theta_k = 1\}$ 集合C是仿射集合: $C \supseteq \mathrm{aff}[C]$

1.1.1.2 凸

多点 $\{x_k\}$ 的凸组合: $\{\sum_k \theta_k x_k | \sum_k \theta_k = 1, \theta_k \geq 0\}$ 集合C的凸包: $\operatorname{conv}[C] = \{\sum_k \theta_k x_k | \forall x_k \in C, \sum_k \theta_k = 1, \theta_k \geq 0\}$ 集合C是凸集: $C \supseteq \operatorname{conv}[C]$ 一般化: 集合C是凸集,随机变量x, $P(x \in C) = 1$,则 $E[x] = \int\limits_{x \in C} p(x)xdx \in C$

1.1.1.3 锥

多点 $\{x_k\}$ 的锥组合: $\{\sum_k \theta_k x_k | \theta_k \ge 0\}$ 集合C的锥包: $\operatorname{cone}[C] = \{\sum_k \theta_k x_k | \forall x_k \in C, \theta_k \ge 0\}$ 集合C是凸锥: $C \supseteq \operatorname{cone}[C]$

1.1. 凸集 5

1.1.2 正常锥

正常锥: 锥K为凸、闭、实(有非空内部)、尖(不包含直线) 广义不等式: $x_1 \succeq_K x_2 \iff x_2 - x_1 \in K$

1.1.3 超平面

超平面分离定理: 凸集 $C \cap$ 凸集 $D = \emptyset$,则 $\exists a \neq 0, b$,对 $\forall x \in C$ 有 $a^T x \leq b$,对 $\forall x \in D$ 有 $a^T x \geq b$ 支撑超平面: 取 $a \neq 0$, $x_0 \in$ 边界[C],对 $\forall x \in C$,有 $a^T (x - x_0) \leq 0$,则 $\{x | a^T (x - x_0) = 0\}$ 为C的支撑超平面

支撑超平面定理: 对 \forall 非空凸集C, $\forall x_0 \in$ 边界[C], 在 x_0 处 $\exists C$ 的支撑超平面

1.1.4 对偶锥

锥K的对偶锥 $K^* = \{z | x^T z \ge 0, \forall x \in K\}$ 是闭凸锥 $\begin{cases} x_1 \succeq_K x_2 & \iff \quad \forall z \succeq_{K^*} 0, \quad \exists z^T x_1 \le z^T x_2 \\ z_1 \succeq_{K^*} z_2 & \iff \quad \forall \forall x \succeq_K 0, \quad \exists z_1^T x \le z_2^T x \end{cases} \quad (z \ne 0$ 时, $z_1^T x < z_2^T x$)

 K^{**} 是K的凸包的闭包

1.1.5 最值与极值

1.1.5.1 最小元

 $x_0 \in S$,对 $\forall x \in S$ 均有 $x_0 \leq_K x$

- \iff $\forall \lambda \succeq_{K^*} 0, \ \forall x \in S, \ x_0 = \arg \mathbb{R} \psi_x \lambda^T x$
- \iff 对 $\forall \lambda \succeq_{K^*} 0$,超平面 $\{x | \lambda^T (x x_0) = 0\}$ 是 x_0 处对S的严格支撑超平面

1.1.5.2 极小元

 $x_0 \in S$, 对 $\forall x \in S$ 均有 $(x \leq_K x_0 \Longrightarrow x = x_0)$

 $\iff \exists \lambda_0 \succeq_{K^*} 0, \ \forall x \in S, \ x_0 = \arg k \nabla \lambda_0^T x$

 $x_0 \in S$, 对 $\forall x \in$ 凸集S 均有 $(x \leq_K x_0 \Longrightarrow x = x_0)$

 $\iff \exists \lambda_0 \succeq_{K^*} 0, \ \forall x \in \Box \pounds S, \ x_0 = \arg W \cdot \Lambda_0^T x$

6 CHAPTER 1. 凸优化

1.1.6 单调性

对可微函数f,dom[f] 为凸集

f是k-非滅的 \iff 对 $\forall x \in dom[f]$ 有 $\nabla f(x) \succeq_{K^*} 0$ f是k-增的 \iff 对 $\forall x \in dom[f]$ 有 $\nabla f(x) \succ_{K^*} 0$

1.2 凸函数

1.2.1 凸函数

 $f: \mathbb{R}^n \to \mathbb{R}$

若定义域dom[f]是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 、 $\forall \theta \in [0,1]$,有 $f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2)$ 一般化: $f(E[x]) \leq E[f(x)]$ 或 $f(x) \leq E[f(x+z)]$ (z是均值为0随机变量)

- \iff f在与定义域相交的任何直线上都是凸的 即对 $\forall x \in dom[f]$ 与 $\forall v, g(t) = f(x+tv)$ 是凸的
- $\iff dom[f]$ 是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 有 $f(x_2) \geq f(x_1) + \nabla f(x_1)^T (x_2 x_1)$
- \iff dom[f]是凸集,且对 $\forall x \in dom[f]$ 有 $\nabla^2 f(x) \succeq 0$

(可将
$$f(x)$$
延拓为 $\tilde{f}(x) = \begin{cases} f(x) &, x \in dom[f] \\ +\infty &, x \notin dom[f] \end{cases}$)

Figure 1.1: 凸函数

1.2.2 上境图

函数f的上境图 $epi[f] \stackrel{def}{=} \{(x,t)|x \in dom[f], t \geq f(x)\}$ f是凸函数 \iff epi[f]是凸函数

1.2.3 共轭函数

$$f^*: \mathbb{R}^n \to \mathbb{R}$$
, $f^*(z) \stackrel{def}{=} \sup_{x \in dom[f]} (z^Tx - f(x)) = \nabla f(x)^Tx - f(x)|_{z = \nabla f(x)}$ $f^{**}: \mathbb{R}^n \to \mathbb{R}$, $f^{**}(x) \stackrel{def}{=} \sup_{z \in dom[f^*]} (x^Tz - f^*(z))$ 无论f是否为凸函数,共轭函数 f^* 必为闭凸函数 恒有 $f(x) \geq f^{**}(x)$ 若f为凸且闭,则 $f^{**}(x) = f(x)$

1.2. 凸函数 7

Figure 1.2: f^*

Figure 1.3: f^{**}

1.2.4 拟凸函数

 $f:\mathbb{R}^n\to\mathbb{R}$

若对 $\forall a \in \mathbb{R}$, $\{x \in dom[f]|f(x) \leq a\}$ 都是凸集

- \iff dom[f]是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 、 $\forall \theta \in [0,1]$ 有 $f(\theta x_1 + (1-\theta)x_2) \leq \max\{f(x_1), f(x_2)\}$
- \iff dom[f]是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 有($f(x_2) \leq f(x_1) \Rightarrow \nabla f(x_1)^T(x_2 x_1) \leq 0$)
- $\iff \forall \forall x \in dom[f], \ \forall u \in \mathbb{R}^n \ \text{fi}(\ u^T \nabla f(x) = 0 \Rightarrow u^T \nabla^2 f(x) u \ge 0 \)$

Figure 1.4: 拟凸函数

1.2.5 对数凸函数

 $f: \mathbb{R}^n \to \mathbb{R}$

8 CHAPTER 1. 凸优化

若对 $\forall x \in dom[f]$ 有f(x) > 0 且log f(x) 是凸函数

 \iff dom[f]是凸集,且对 $\forall x \in dom[f]$ 有f(x) > 0,且对 $\forall x_1, x_2 \in dom[f]$ 、 $\forall \theta \in [0, 1]$ 有 $f(\theta x_1 + (1 - \theta)x_2) \le f(x_1)^{\theta} f(x_2)^{1-\theta}$

- $\iff dom[f]$ 是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 有 $\log f(x_2) \ge \log f(x_1) \frac{\nabla f(x_1)^T}{f(x_1)} (x_2 x_1)$
- \iff dom[f] 是凸集,且对 $\forall x \in dom[f]$ 有 $f(x)\nabla^2 f(x) \succeq \nabla f(x)\nabla f(x)^T$
 - ⇒ f是凸函数, f是拟凸函数

1.2.6 K凸函数

 $f: \mathbb{R}^n \to \mathbb{R}$, $K \subseteq \mathbb{R}^m$ 是一正常锥

若对 $\forall x_1, x_2$ 、 $\forall \theta \in [0, 1]$ 有 $f(\theta x_1 + (1 - \theta)x_2) \leq_K \theta f(x_1) + (1 - \theta)f(x_2)$

- \iff 对 $\forall w \succ_{K^*} 0, \ w^T f$ 是凸的
- \iff dom[f] 是凸集,且对 $\forall x_1, x_2 \in dom[f]$ 有 $f(x_2) \succeq_K f(x_1) + Df(x_1)(x_2 x_1)$ (D是Jacobian矩阵)

1.3 凸优化问题

1.3.1 凸优化问题

$$\min_{x} f(x)$$
 $(f(x)$ 为凸函数)
 $s.t.$ $g_i(x) \leq 0$ $(g_i(x)$ 为凸函数)
 $h_j(x) = a_j^T x - b_j = 0$

 x^* 是全局最优解,即 $x^* = \operatorname{arginf}_x \{ f(x) | g_i(x) \le 0, h_j(x) = 0 \}$

- $\Rightarrow x^*$ 是任意局部最优解,即 $x^* = \operatorname{arginf}_x\{f(x)|g_i(x) \leq 0, h_i(x) = 0, ||x x^*|| \leq \varepsilon(\varepsilon > 0)\}$
- $\Leftrightarrow x^* \in \mathfrak{I}$ $x \in \mathfrak{I}$

1.3.2 拟凸优化问题

$$\min_{x} f(x)$$
 ($f(x)$ 为拟凸函数)
$$s.t. \quad g_i(x) \leq 0 \qquad \qquad (g_i(x)$$
为凸函数)
$$h_j(x) = a_j^T x - b_j = 0$$

 x^* 是全局最优解,即 $x^* = \operatorname{arginf}_x\{f(x)|g_i(x) \leq 0, h_j(x) = 0\}$

(★★ x*是任意局部最优解)

 $\Leftrightarrow x^* \in \mathfrak{I}$ $x \in \mathfrak{I}$

将拟凸优化问题转为凸优化问题:

1.4. 拉格朗日乘子法

2. 解凸可行性问题

$$s.t. \quad \phi_t(x) \le 0$$
$$g_i(x) \le 0$$
$$h_j(x) = 0$$

若有解,则 $f(x^*) \le t$,否则 $f(x^*) > t$

3. 由此用二分法划 $t限出f(x^*)$ 所在

1.4 拉格朗日乘子法

原优化问题

$$\min_{x} f(x)$$
s.t. $g_i(x) \le 0$

$$h_j(x) = 0$$

Lagrange函数

$$L(x, \lambda, \nu) = f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \nu_{j} h_{j}(x)$$

Lagrange对偶函数

$$F(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \qquad \left(D = \bigcap_{i} dom[g_i] \bigcap_{j} \bigcap_{j} dom[h_j]\right)$$

Lagrange对偶问题

$$\max_{\lambda,\nu}F(\lambda,\nu) \quad (dom[F]=\{(\lambda,\nu)|F(\lambda,\nu)>-\infty\})$$
 s.t. $\lambda\succeq 0$

(无论原问题是否为凸优化问题,对偶问题必是凸优化问题)

对 \forall λ ≥ 0 与 \forall ν ,有

$$F(\lambda, \nu) \le$$
 最优值 $f(x^*)$

即

最优值
$$F(\lambda^*, \nu^*) \leq$$
 最优值 $f(x^*)$

即

$$\sup_{\lambda\succeq 0}\inf_x L(x,\lambda,\nu) \leq \inf_x \sup_{\lambda\succeq 0} L(x,\lambda,\nu)$$

当强对偶性成立,即最优值 $F(\lambda^*, \nu^*) =$ 最优值 $f(x^*)$ 时,有

$$\begin{cases} \nabla_x f(x^*) + \sum_i \lambda_i^* \nabla_x g_i(x^*) + \sum_j \nu_j^* \nabla_x h_j(x^*) = 0 \\ g_i(x^*) \le 0, \quad \lambda_i^* \ge 0, \quad \lambda_i^* g_i(x^*) = 0 \\ h_j(x^*) = 0 \end{cases}$$

10 CHAPTER 1. 凸优化

$$\left(\left\{\begin{array}{ll} g_i(x) \leq 0 \\ h_j(x) = 0 \end{array}\right. \circlearrowleft \left\{\begin{array}{ll} \lambda \succeq 0 \\ \inf\limits_{x \in D} [\sum\limits_i \lambda_i g_i(x) + \sum\limits_j \nu_j h_j(x)] > 0 \end{array}\right. \end{split}$$
 至多有一个可行

1.5 例子

1.5.1 不等式

1.5.1.1

算数几何平均不等式: 凸函数 $f(x) = -\log x$

$$\sum_{i=1}^{n} a_i x_i \ge \prod_{i=1}^{n} x_i^{a_i} \quad (x_i \ge 0)$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \left(\prod_{i=1}^{n} x_i \right)^{\frac{1}{n}} \quad (x_i \ge 0)$$

1.5.1.2

Holder不等式: 凸函数 $f(x) = x^p$

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}} \quad (x_i, y_i > 0)(p, q > 1)(\frac{1}{p} + \frac{1}{q} = 1)$$

Minkowski和不等式:

$$\left[\sum_{i=1}^{n} (x_i + y_i)^p\right]^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_i^p\right)^{\frac{1}{p}} \quad (x_i, y_i \ge 0)(p > 1)$$

Minkowski积不等式:

$$\left[\prod_{i=1}^{n} (x_i + y_i)\right]^{\frac{1}{n}} \ge \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} + \left(\prod_{i=1}^{n} y_i\right)^{\frac{1}{n}} \quad (x_i, y_i \ge 0)$$

Jensen不等式:

$$\left(\sum_{i=1}^{n} x_i^{p_1}\right)^{\frac{1}{p_1}} > \left(\sum_{i=1}^{n} x_i^{p_2}\right)^{\frac{1}{p_2}} \quad (x_i > 0)(0 < p_1 < p_2)$$

Chapter 2

迭代法

 $\bar{\Re} \min_{x} f(x)$

2.1 梯度下降法

$$f(x) \simeq f(x^{(t)}) \\ + \left[\cdots \frac{\partial f}{\partial x_i}(x^{(t)}) \cdots \right] (\vec{x} - \vec{x}^{(t)})$$
 故 Δx 模恒定的前提下,方向为—
$$\begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x^{(t)}) \\ \vdots \end{bmatrix}$$
 时, $f(x)$ 最小。

即

$$\vec{x}^{(t+1)} = \vec{x}^{(t)} - \lambda \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x^{(t)}) \\ \vdots \end{bmatrix}$$

2.2 牛顿法

$$f(x) \simeq f(x^{(t)}) + \left[\cdots \frac{\partial f}{\partial x_i}(x^{(t)}) \cdots \right] (\vec{x} - \vec{x}^{(t)}) + \frac{1}{2}(\vec{x} - \vec{x}^{(t)}) \cdots \frac{\partial^2 f}{\partial x_i \partial x_j}(x^{(t)}) \cdots \right] (\vec{x} - \vec{x}^{(t)})$$

为求f(x)最小,令

$$\begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x) \\ \vdots \end{bmatrix} \simeq \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x^{(t)}) \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ \cdots & \frac{\partial^2 f}{\partial x_i \partial x_j}(x^{(t)}) & \cdots \\ \vdots & \vdots \end{bmatrix} (\vec{x} - \vec{x}^{(t)}) = 0$$

12 CHAPTER 2. 迭代法

即

$$\vec{x}^{(t+1)} = \vec{x}^{(t)} - \begin{bmatrix} \vdots \\ \cdots & \frac{\partial^2 f}{\partial x_i \partial x_j}(x^{(t)}) & \cdots \end{bmatrix}^{-1} \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x^{(t)}) \\ \vdots \end{bmatrix}$$

2.2.1 拟牛顿法

则需满足拟牛顿条件

$$\Delta \frac{\vec{\partial f}}{\partial x}(x^{(t)}) = H^{(t)} \Delta \vec{x}^{(t)} \quad \vec{\boxtimes} \quad G^{(t)} \Delta \frac{\vec{\partial f}}{\partial x}(x^{(t)}) = \Delta \vec{x}^{(t)}$$

则令

$$\vec{x}^{(t+1)} = \vec{x}^{(t)} - \lambda^{(t)} G^{(t)} \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i} (x^{(t)}) \\ \vdots \end{bmatrix}$$

其中

$$\lambda^{(t)} = \operatorname{argmin}_{\lambda \ge 0} \left(\vec{x}^{(t)} - \lambda G^{(t)} \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i}(x^{(t)}) \\ \vdots \end{bmatrix} \right)$$

2.2.1.1 BFGS

$$H^{(t+1)} = H^{(t)} + \frac{\Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)}) \Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})^T}{\Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})^T \Delta \vec{x}^{(t)}} + \frac{H^{(t)} \Delta \vec{x}^{(t)} \Delta \vec{x}^{(t)T} H^{(t)}}{\Delta \vec{x}^{(t)T} H^{(t)} \Delta \vec{x}^{(t)}}$$

2.2.1.2 DFP

$$G^{(t+1)} = G^{(t)} + \frac{\Delta \vec{x}^{(t)} \Delta \vec{x}^{(t)T}}{\Delta \vec{x}^{(t)T} \Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})} + \frac{G^{(t)} \Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)}) \Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})^T G^{(t)}}{\Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})^T G^{(t)} \Delta \frac{\partial \vec{f}}{\partial x}(x^{(t)})}$$

2.3 有约束的迭代法

2.3.1 惩罚函数法

$$\min f(x)$$
s.t. $h_i(x) = 0$

2.3. 有约束的迭代法 13

近似于

$$\min f(x) + \sum_{i} \lambda_i h_i(x)$$

 $\lambda_i \geq 0$ 作为惩罚力度

2.3.2 边界跟踪法

2.3.2.1 法一

若每一步不违反约束,则忽略约束按正常梯度方向 $-\nabla f$ 走;若每一步违反约束,则按约束方向 ∇g_i 走

2.3.2.2 法二

忽略约束走到终点。

若终点不违反约束,则完成;若终点违反约束,则按约束方向 ∇g_i 方向走直至不违反