

CSC380: Principles of Data Science

Data Analysis, Collection, and Visualization 3

Xinchen Yu

- Data Collection and Sampling
- Data Visualization
- Data Summarization

Measuring Location

Three common measures of the distribution location...

Mean Average (expected value) of the data distribution **Median** Midpoint – 50% of the probability is below and 50% above

Mode Value of highest probability (mass or density)

E.g., [1,2,3] vs [0,10,11] compute mean and median

...align with symmetric distributions, but diverge with asymmetry

Median

For data x_1, x_2, \ldots, x_N sort the data,

$$x_{(1)},x_{(2)},\ldots,x_{(n)}$$

- Notation $x_{(i)}$ means the i-th *lowest* value, e.g. $x_{(i-1)} \le x_{(i)} \le x_{(i+1)}$
- • $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ are called *order statistics* not summary info, but rather a transformation

If n is **odd** then find the middle datapoint,

$$median(x_1, ..., x_n) = x_{((n+1)/2)}$$

If n is even then average between both middle datapoints,

median
$$(x_1, \dots, x_n) = \frac{1}{2} (x_{(n/2)} + x_{(n/2+1)})$$

What is the median of the following data?

4.5

What is the median of the following data?

Median is *robust* to outliers

Empirical estimate of the true mean of the data distribution,

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Alternative definition: if the value x occurs n(x) times in the data then,

$$\bar{x} = \frac{1}{N} \sum_{x} x n(x) = \sum_{x} x p(x) \quad \text{where} \quad p(x) = \frac{n(x)}{N}$$
 for the unique values of $\{x_1, \dots, x_N\}$

Example 2.1. For the data set $\{1, 2, 2, 2, 3, 3, 4, 4, 4, 5\}$, we have n = 10 and the sum

$$1 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 5 = 1n(1) + 2n(2) + 3n(3) + 4n(4) + 5n(5)$$
$$= 1(1) + 2(3) + 3(2) + 4(3) + 5(1) = 30$$

Thus, $\bar{x} = 30/10 = 3$.

↓ (bacterium)

Example 2.2. For the data on the length in microns of wild type Bacillus subtilis data, we have

length x	frequency $n(x)$	proportion $p(x)$	product $xp(x)$
1.5	18	0.090	0.135
2.0	71	0.355	0.710
2.5	48	0.240	0.600
3.0	37	0.185	0.555
3.5	16	0.080	0.280
4.0	6	0.030	0.120
4.5	4	0.020	0.090
sum	200	1	2.490

So the sample mean $\bar{x} = 2.49$.

For any real-valued function h(x) we can compute the mean as,

$$\overline{h(x)} = \frac{1}{N} \sum_{i=1}^{N} h(x_i)$$

Note $\overline{h(x)} \neq h(\bar{x})$ in general.

Example Compute the average of the square of values,

$$\overline{x^2} = \frac{1}{7}(1 + 2^2 + 3^3 + 4^2 + 2(5^2) + 6^2) \approx 16.57$$
 $(\bar{x})^2 \approx 13.80$

Weighted Mean

In some cases we may weigh data differently,

$$\sum_{i=1}^{N} w_i x_i \quad \text{where} \quad \sum_{i=1}^{N} w_i = 1 \quad 0 \le w_i \text{ for } i = 1, \dots, N$$

For example, grades in a class:

$$Grade = 0.2 \cdot x_{midterm} + 0.2 \cdot x_{final} + 0.6 \cdot x_{homework}$$

Grading Breakdown (example)

- Homework: 60%
- Midterm: 20%
- Final: 20%

Measuring Spread

We have seen estimates of spread via the sample variance,

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2 \qquad \qquad s^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2$$
 Biased Unbiased

But you might be interested in more detailed information about the spread.

For example, fraction of people with heights <= 5 feet

Quartile divide data into 4 equally-sized bins,

- 1st Quartile: Lowest 25% of data
- 2nd Quartile: Median (lowest 50% of data)
- 3rd Quartile : 75% of data is below 3rd quartile
- 4th Quartile : All the data... not useful

Compute using np.quantile():

```
x = np.random.rand(10) * 100
q = np.quantile(x, (0.25, 0.5, 0.75))
np.set_printoptions(precision=1)
print( "X: " , x )
print( "Q: " , q )

X: [90.7 73.9 31.7 2.8 56.3 95.7 15.6 75.8 4.1 19.5]
Q: [16.6 44. 75.3]
```


Interquartile-Range (IQR) Measures interval containing 50% of data

$$IQR = Q3 - Q1$$

Region of typical data

Q1 =
$$\frac{57+61}{2}$$
 = 59 Q3 = $\frac{77+81}{2}$ = 79

$$IQR = Q3 - Q1$$

 $IQR = 79 - 59 = 20$

Box Plot

```
import numpy as np
                                                                     200
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
                                                                     150
np.random.seed(19680801)
                                                                     100
# fake up some data
                                                                  3<sup>rd</sup> Quartile
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier high = np.random.rand(10) * 100 + 100
flier low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier high, flier low))
                                                                       0
                                                                    -50
fig1, ax1 = plt.subplots()
ax1.set title('Basic Plot')
ax1.boxplot(data)
                                                                   -100
```


Python-based ecosystem for math, science and engineering.

As usual, install with Anaconda:

> conda install scipy

Or with PyPI:

> pip install scipy

SciPy includes some libraries that directly works with:

To compute summary stats (e.g., **mode**):


```
>>> import numpy as np
                                   numpy has mean, but not mode.
>>> a = np.array([[3, 0, 3, 7],
                                     numpy provides popular numerical functions.
    [3, 2, 6, 2],
. . .

    scipy provides more serious & specialized functions.

               [1, 7, 2, 8],
...
             [3, 0, 6, 1],
                  [3, 2, 5, 5]])
                                   kind of stupid example; tie breaking leads
>>> from scipy import stats
                                   to choose the smallest value
>>> stats.mode(a, keepdims=True)
ModeResult(mode=array([[3, 0, 6, 1]]), count=array([[4, 2, 2, 1]]))
```

Compute the mode of the whole array set axis=None:

```
>>> stats.mode(a, axis=None, keepdims=True)
ModeResult(mode=[[3]], count=[[5]])
>>> stats.mode(a, axis=None, keepdims=False)
ModeResult(mode=3, count=5)
```

SciPy is a large library, so we import it in bits and pieces...


```
>>> from scipy import stats
```

Access the object norm and call its function mean(): stats.norm.mean()

In some cases, you will import only the functions that you need:

```
>>> from scipy.stats import norm
```

In some cases, you will import only the functions that you need:

```
>>> from scipy.stats import norm
```

contains information about the standard normal distribution

```
>>> norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)
>>> norm.stats(moments="mv")
(array(0.0), array(1.0))
```

norm.ppf(0.975) returns 0.975-quantile, which is ≈ 1.96

Other useful summary statistics:

moment(a[, moment, axis, nan_policy])

Calculate the nth moment about the mean for a sample.

trim_mean(a, proportiontocut[, axis])

iqr(x[, axis, rng, scale, nan_policy, ...])

bootstrap(data, statistic, *[, vectorized, ...])

do not use this for your homework

Return mean of array after trimming distribution from both tails.

Compute the interquartile range of the data along the specified axis.

Compute a two-sided bootstrap confidence interval of a statistic.

. . .

Anscomb's Quartet: The Data

We'll see the risk of looking at the **statistics** only, not the **actual data**.

Four distinct datasets of X and Y...

	I		1	II			1	III			1		īV		
Х	1	У .	1	X	1	У	1	Х	1	У	1	Х	1	У	
10.0	11	8.04	1	10.0		9.14		10.0	1	7.46	1	8.0	1	6.58	
8.0		6.95	ĺ	8.0		8.14		8.0	1	6.77	1	8.0		5.76	
13.0	- 1	7.58	-	13.0	1	8.74	1	13.0	1	12.74	1	8.0	1	7.71	
9.0	Ī	8.81		9.0		8.77		9.0	- [7.11	1	8.0		8.84	
11.0	1	8.33	1	11.0	1	9.26	1	11.0	1	7.81	1	8.0	1	8.47	
14.0	- 1	9.96		14.0		8.10		14.0	1	8.84		8.0		7.04	
6.0	-	7.24	- 1	6.0	1	6.13	1	6.0	1	6.08	1	8.0	1	5.25	
4.0	1	4.26		4.0		3.10	ĺ	4.0	1	5.39		19.0		12.50	
12.0	1	10.84	1	12.0	1	9.13	1	12.0	1	8.15	1	8.0	1	5.56	
7.0	-	4.82	-	7.0		7.26	- [7.0	-1	6.42	1	8.0		7.91	
5.0	1	5.68	1	5.0	1	4.74	-	5.0	1	5.73	1	8.0	1	6.89	

[Source: https://www.geeksforgeeks.org/anscombes-quartet/]

Anscomb's Quartet : Summary Statistics

```
# Import the csv file
df = pd.read csv("anscombe.csv")
# Convert pandas dataframe into pandas series
list1 = df['x1']
list2 = df['y1']
# Calculating mean for x1
print('%.1f' % statistics.mean(list1))
# Calculating standard deviation for x1
print('%.2f' % statistics.stdev(list1))
# Calculating mean for y1
print('%.1f' % statistics.mean(list2))
# Calculating standard deviation for v1
print('%.2f' % statistics.stdev(list2))
# Calculating pearson correlation
corr, = pearsonr(list1, list2)
print('%.3f' % corr)
# Similarly calculate for the other 3 samples
# This code is contributed by Amiya Rout
```

Summary statistics, e.g. Dataset 1:

Mean X1: 9.0

STDEV X1: 3.32

Mean Y1: 7.5

STDEV Y1: 2.03

Correlation: 0.816

Actually, all datasets have the same statistics...

Question What can we conclude about these data? Are they the same?

[Source: https://www.geeksforgeeks.org/anscombes-quartet/]

Anscomb's Quartet: Visualization

Visualizing data clearly indicates that these are *very* different datasets...

...this highlights the importance of visualizing data

13 datasets that all have the same summary statistics, but look very different in simple visualizations

Source: Alberto Cairo]