UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS CORNÉLIO PROCÓPIO DIRETORIA DE GRADUAÇÃO E EDUCAÇÃO PROFISSIONAL DEPARTAMENTO ACADÊMICO DE ELÉTRICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

GABRIEL TEIXEIRA GRAZIANO DE OLIVEIRA

SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO EM REDES DE DISTRIBUIÇÃO DE ENERGIA

PROPOSTA DE TRABALHO DE CONCLUSÃO DE CURSO

CORNÉLIO PROCÓPIO

2017

GABRIEL TEIXEIRA GRAZIANO DE OLIVEIRA

SISTEMA DE MONITORAMENTO DE VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO EM REDES DE DISTRIBUIÇÃO DE ENERGIA

Proposta de Trabalho de Conclusão de Curso de graduação do curso de Engenharia de Controle e Automação da Universidade Tecnológica Federal do Paraná - UTFPR, como requisito parcial para obtenção do grau de Bacharel.

Orientador: Prof^o.Dr. Andre Sanches Fonseca

Sobrinho

CORNÉLIO PROCÓPIO

RESUMO

OLIVEIRA, Gabriel T. G. de. Sistema de monitoramento de variações de tensão de curta duração em redes de distribuição de energia. 14 f. Proposta de Trabalho de Conclusão de Curso – Engenharia de Controle e Automação, Universidade Tecnológica Federal do Paraná. Cornélio Procópio, 2017.

Palavras-chave:

ABSTRACT

OLIVEIRA, Gabriel T. G. de. . 14 f. Proposta de Trabalho de Conclusão de Curso – Engenharia de Controle e Automação, Universidade Tecnológica Federal do Paraná. Cornélio Procópio, 2017.

Keywords:

LISTA DE FIGURAS

LISTA DE TABELAS

TABELA 1	_	Variações de Tensão de Curta Duração	11
TABELA 2	_	Cronograma de Execução	13

LISTA DE SIGLAS

SUMÁRIO

1 INTRODUÇÃO	8
1.1 PROBLEMA	8
1.2 JUSTIFICATIVA	8
1.3 OBJETIVOS	8
1.4 ORGANIZAÇÃO DO TEXTO	9
2 FUNDAMENTAÇÃO TEÓRICA 1	10
2.1 VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO	10
2.1.1 Interrupção de Tensão	10
2.1.2 Afundamento de Tensão	
2.1.3 Elevação de Tensão	11
2.2 CEREBOT MX7CK	11
2.3 CIRCUITO INTEGRADO ADE7758	11
3 METODOLOGIA	12
4 CRONOGRAMA	13
REFERÊNCIAS 1	14

1 INTRODUÇÃO

Amplamente debatido, o tema da qualidade de energia tem enorme importância nos dias atuais. Com processos industriais cada vez mais automatizados, a operação eficiente e o controle das máquinas se torna gradativamente mais dependente da qualidade da energia elétrica.

Diversas definições podem ser adotadas para definir o que se entende como qualidade de energia. Tomando o ponto de vista do consumidor como o mais importante, Dugan define o tema como qualquer problema manifestado em desvios na corrente, tensão ou frequência que resultem em falha ou mau funcionamento do equipamento do cliente (DUGAN et al., 2002)

1.1 PROBLEMA

1.2 JUSTIFICATIVA

1.3 OBJETIVOS

O objetivo deste trabalho é o desenvolvimento de um sistema de detecção de variações de tensão de curta duração em redes de distribuição de energia elétrica, mantendo as informações relativas a cada ocorrência disponíveis para consulta online por concessionárias de energia.

Definido o objetivo geral do trabalho, pode-se destacar os seguintes pontos como objetivos específicos:

- Configurar o microcontrolador PIC32MX795F512L para realizar a comunicação com o circuito integrado ADE7758;
- Programar o circuito integrado ADE7758 para realizar a detecção dos diferentes tipos de variações de tensão de curta duração;
- Configurar o microcontrolador PIC32MX795F512L para funcionar como um servidor, salvando as informações das ocorrências em tempo real.

1.4 ORGANIZAÇÃO DO TEXTO

2 FUNDAMENTAÇÃO TEÓRICA

2.1 VARIAÇÕES DE TENSÃO DE CURTA DURAÇÃO

Segundo o módulo 8 do PRODIST, publicado pela ANEEL, variações de tensão de curta duração (VTCD) são desvios significativos no valor eficaz da tensão em curtos intervalos de tempo. Essas variações podem ser momentâneas ou temporárias. (ANEEL, 2011)

Usualmente a VTCD refere-se à tensão fase-neutro, podendo ser descrita monofasicamente pelos parâmetros amplitude e duração. O primeiro, levando-se em consideração um determinado ponto do sistema, é definido pelo valor extremo do valor eficaz da tensão em relação à tensão nominal, durante toda a duração do evento. (ONS, 2011)

A duração da VTCD é dada pelo tempo percorrido entre o momento em que o valor eficaz da tensão em relação à tensão nominal do sistema ultrapassa um determinado limite e o momento em que volta ao normal. (ONS, 2011)

A partir dos parâmetros de amplitude e duração, os eventos de VTCD podem ser classificados, de forma geral, como:

- Instantâneas (0.5 a 30 ciclos)
- Momentâneas (30 ciclos a 3 segundos)
- Temporárias (3 segundos a 3 minutos)

2.1.1 INTERRUPÇÃO DE TENSÃO

A interrupção da tensão, com tempo máximo de três minutos, ocorre quando a amplitude da tensão descresce para um valor entre 0 e 0,1 p.u.

2.1.2 AFUNDAMENTO DE TENSÃO

O afundamento de tensão é caracterizado por uma tensão remanescente entre 0,1 e 0,9 p.u.

2.1.3 ELEVAÇÃO DE TENSÃO

Tabela 1: Variações de Tensão de Curta Duração

Tubela I. variações de Tensão de Carta Baração									
Classificação	Denominação	Duração da	Amplitude da						
	Denominação	Variação	tensão						
	Interrupção Momentânea de Tensão	Inferior ou igual a	Inferior a 0,1 p.u						
Variação Momentânea de Tensão	interrupção ivionientanea de Tensão	três segundos	illicitor a 0,1 p.u						
		Superior ou igual	Superior ou igual						
	Afundamento Momentânea de Tensão	a um ciclo e infe-	a 0,1 e inferior a						
	Transamento Momentanea de Tensae	rior ou igual a três	0,9 p.u						
		segundos	0,5 p.u						
		Superior ou igual							
	Elevação Momentânea de Tensão	a um ciclo e infe-	Superior a 1,1 p.u						
		rior ou igual a três	Superior a 1,1 p.u						
		segundos							
		Superior a três se-							
Variação Temporária de Tensão	Interrupção Temporária de Tensão	gundos e inferior	Inferior a 0,1 p.u						
variação remporaria de rensão		a três minutos							
	Afundamento Temporário de Tensão	Superior a três se-	Superior ou igual						
		gundos e inferior	a 0,1 e inferior a 0,9 p.u						
		a três minutos							
		Superior a três se-							
	Elevação Temporária de Tensão	gundos e inferior	Superior a 1,1 p.u						
		a três minutos							

2.2 CEREBOT MX7CK

2.3 CIRCUITO INTEGRADO ADE7758

(ANALOG DEVICES, 2011)

3 METODOLOGIA

4 CRONOGRAMA

Tabela 2: Cronograma de Execução

Etapas	Setembro	Outubro	Novembro	Dezembro	Fevereiro	Março	Abril	Maio	Junho
1	X	X	X	X	X	Х	X	X	X
2	X	X							
3	X	X	X						
4			X						
5			X	X					
6			X	X	X	Х	X		
7						X	X	X	
8						Х	Х	Х	
9									X

- 1. Revisão bibliográfica
- 2. Definição e estudo das tecnologias
- 3. Escrita da proposta
- 4. Correções da proposta
- 5. Aplicação dos conceitos teóricos
- 6. Desenvolvimento do protótipo
- 7. Validação e análise dos resultados
- 8. Elaboração da monografia e artigo ciêntifico
- 9. Defesa

REFERÊNCIAS

ANALOG DEVICES. Poly Phase Multifunction Energy Metering IC with Per Phase Information - ADE7758 Datasheet. [S.1.], 2011. Rev. E.

ANEEL. Procedimentos de Distribuicao de Energia Eletrica no Sistema Eletrico Nacional (PRODIST) - Modulo 8 - Qualidade de Energia. [S.l.], 2011.

DUGAN, R. C. et al. Electrical power systems quality. [S.l.]: USA: McGraw-Hill, 2002.

 $ONS,\,P.\,d.\,R.$ Gerenciamento dos indicadores de Desempenho da Rede Basica e seus Componentes. $[S.l.],\,2011.$