Palmprint Recognition with Three Dimensional Features

Thesis Defense M.Sc. in Software Technology

QING Pei, 11500811G

Department of Computing

The Hong Kong Polytechnic University

11 July, 2012

Acknowledgement

- David Zhang
- Lei Zhang
- Wei Li

Why?

What?

How?

Why?

- password
 - most used
 - but most easily subverted

- smartcard
 - more secure
 - but will you carry dozens of smartcards with you everyday?

- biometrics
 - fingerprint, palmprint, iris, face, voice
 - code complex enough
 - high availability

- palmprint
 - texture
 - geometry

- palmprint
 - texture almost fully explored
 - geometry <u>not yet</u>

What?

Verification & Recognition

based on palmprint captures

Research Questions

- How much information lies the palmprint geometry?
- How to take advantage of the additional information?

2D techniques achieved high accuracy

3D devices are available

- Texture-based methods on 3D data
 - Mean Curvature Image
 - Gaussian Curvature Image

D Zhang, Guangming Lu, Wei Li, Lei Zhang, and Nan Luo. Palmprint Recognition Using 3-D Information. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 39(5):505–519, 2009.

- Geometry-based methods on 3D data
 - Surface Type

Fusion of texture and geometry features

W. Li, D Zhang, L. Zhang, G. Lu, and J. Yan. 3-D palmprint recognition with joint line and orientation features. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, (99):1–6, 2011.

How?

Method

- Data collection (regards to Wei Li)
- Data processing
- Recognition system

Data Collection

Structural Light Imaging

Data Collection

Structural Light Imaging

A Sample

768x576
 single precision float depth matrix

Data Processing

- ROI extraction
- Feature extraction
- Dimension reduction
- Feature matching

Region of Interest

400x400, down-sample to 200x200

Noise Cancellation

Gradient Threshold

$$|\nabla D| = \sqrt{\left(\frac{\partial D}{\partial x}\right)^2 + \left(\frac{\partial D}{\partial y}\right)^2}$$

Feature Extraction

- Maximum Depth
- Horizontal Cross-section Area
- Radial Line Length

Depth from a <u>reference plane</u> to the <u>deepest point</u>

Reference plane

$$d_r = \frac{1}{\sum_{i=R_s}^{R_e} \sum_{j=C_s}^{C_e} m_{ij}} \sum_{i=R_s}^{R_e} \sum_{j=C_s}^{C_e} (d_{ij})$$

Deepest point

$$d_{max} = \max_{i=R_s}^{R_e} (\max_{j=C_s}^{C_e} (d_{ij}))$$

Maximum Depth (MD)

$$MD = d_{max} - d_r$$

Contour view

Cut the ROI

Group pixels to N levels

$$G_{ij}^{k} = \begin{cases} 1 & \text{if } d_{ij} > h \cdot (N - k + 1)/N, \\ 0 & \text{otherwise} \end{cases}$$

$$k = 1, 2, \dots, N; i = 1, 2, \dots, 200; j = 1, 2, \dots, 200;$$

Stabilization: grow while connected

$$L^{k} = \begin{cases} G^{1} & k = 1\\ G^{k} \cap (L^{k-1} \oplus \Theta^{k-1}) & k = 2, 3, \dots, N \end{cases}$$

Radial Line Length

- Finer description of the shape of HCA at each level
- Using the length of M line segments

Radial Line Length

Combined Feature Vector

- F consists of MD+HCA+RLL
 - F has 1+N+NxM dimensions

Dimension Reduction

- Project F to a lower dimensional space
- Preserve as much information as possible

$$\tilde{F} = W^T F$$

Dimension Reduction

 Orthogonal Linear Discriminant Analysis

Feature Matching

Coarse-level matching

$$Similarity = \|\tilde{F}_1 - \tilde{F}_2\| = \sum_{i=1}^{\Gamma} (f_i^1 - f_i^2)^2$$

Improved Matching

Ranking Support Vector Machine

Fine-matching Feature

Mean Curvature Image

Experiment

- 8000 samples
 - 4000 for training
 - 4000 for testing
- Matlab

Optimizing Parameters

- Recall that we have a feature vector of 1+N+NxM dimensions
- And we want to reduce the dimension to Γ

Optimizing Parameters

Choosing N and M (by EER)

	M=8	M=16	M=32	M=64
N=4	14.3	19.15	14.35	14.07
N=8	14.2	16.3	12.32	12.54
N=16	18.11	18.35	15.21	14.11

Optimizing Parameters

Performance Metrics

Error rate

error rate =
$$\frac{\text{number of false match}}{\text{total number of probe}} \times 100\%$$

Penetration rate

```
\frac{\text{penetration rate} = \\ \text{number of accessed template}}{\text{total number of template in the database}} \times 100\%
```

Performance Results

Speed

MCI only

Process	Time (ms)
Feature extraction	112
Dimension reduction	0
Preprocess	0
MCI matching	0.86
Total (for one probe)	456

Speed

with Coarse-level matching

Process	Time (ms)
Feature extraction	136
Dimension reduction	0.1
Preprocess	0.5
MCI matching	0.86
Total (for one probe)	292.09

1.56X

Speed

with RSVM

Process	Time (ms)
Feature extraction	136
Dimension reduction	0.1
Preprocess	1.56
MCI matching	0.86
Total (for one probe)	240.86

1.9X

Discussion

Conclusions

- Geometric features extracted
- Matching process improved

Limitations

- 3D devices are *lower* in resolution (compared to 2D ones)
 - possible, but not as cost effective

Limitations

- 3D depth values are more susceptible to movement than 2D textures
 - less stable
 - or less user-friendly

Limitations

 General biometrics authentication limitations

Future work

- Try different ROI
- Find geometric features with lower error rate
- Anti-counterfeiting considerations

Thank you.

Q&A