Semaine 4 du 6 octobre 2025 (S41)

III Rappels et compléments d'algèbre linéaire (2nde partie)

- 1. Trace d'un endomorphisme, trace d'une matrice
- 1.1. Définition.
- 1.2. Linéarité.
- 1.3. Propriété fondamentale de la trace.
- 1.4. Invariance par similitude.
- 1.5. Trace d'un endomorphisme en dimension finie.
- 1.6. Propriétés.
- 1.7. Trace d'un projecteur.
- 2. Sous-espaces vectoriels stables
- 2.1. Définitions et premières propriétés
- 2.2. Stabilité et matrices triangulaires par blocs
- 3. Déterminant
- 3.1. Déterminant d'une matrice carrée
- 3.2. Déterminant « par blocs »
- 3.3. Déterminant de Vandermonde

- 4. Polynômes d'endomorphismes
- 4.1. Définitions
- 4.2. Polynômes annulateurs
- 4.3. Exemples d'utilisations d'un polynôme annulateur
- 5. Interpolation de Lagrange
- 5.1. Définition du problème
- 5.2. Polynômes de Lagrange
- 5.3. Lien avec le déterminant de Vandermonde
- 6. Exercices à connaître
- 6.1. Expression et éléments caractéristiques d'un projecteur ou d'une symétrie
- 1) Donner les éléments caractéristiques de l'application f définie sur \mathbb{R}^3 par :

$$f: \left\{ \begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \longmapsto & \frac{1}{4} \begin{pmatrix} 3x & - & y & + & 2z \\ -x & + & 3y & + & 2z \\ x & + & y & + & 2z \end{pmatrix} \right. .$$

2) Donner l'expression de la symétrie par rapport à Vect(1,0,-1) et parallèlement à Vect((1,2,0),(1,1,-1)).

6.2. Endomorphismes de rang 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang 1.

- 1) Montrer qu'il existe $C \in \mathcal{M}_{n,1}(\mathbb{K})$ et $L \in \mathcal{M}_{1,n}(\mathbb{K})$ vérifiant A = CL.
- **2)** Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que pour tout entier naturel non nul $n, A^n = \alpha^{n-1}A$.
- 3) Montrer que $A^2 = \operatorname{tr}(A)A$.
- 4) Après avoir calculé $(1 + \operatorname{tr} A)(A + \operatorname{I}_n) (1 + \operatorname{tr} A)\operatorname{I}_n$, déterminer une condition nécessaire et suffisante pour que $A + \operatorname{I}_n$ soit inversible. Le cas échéant, déterminer $(A + \operatorname{I}_n)^{-1}$.

6.3. Matrice à diagonale dominante

Soit $n \in \mathbb{N}^*$.

Soit A une matrice de $\mathscr{M}_n(\mathbb{C})$ à coefficients diagonaux dominants, c'est-à-dire telle que :

$$\forall i \in [1, n] \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

6.4. Une caractérisation de la trace

Trouver toutes les formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), \ f(AB) = f(BA).$$

Indication : pour deux matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$, calculer le produit $E_{i,j}E_{k,\ell}$.

S'y ajoute:

IV Intégrales généralisées

- 1. Fonctions continues par morceaux sur un segment
- 2. Rappels de première année
- 2.1. Le théorème fondamental
- 2.1a. Primitives
- 2.1b. Existence de primitives.
- 2.1c. Fonctions dont la variable intervient dans les bornes d'une intégrale (cas particulier d'intégrales dépendant d'un paramètre).
- 2.2. Intégration par parties
- 2.3. Changements de variable
- 3. Extension aux fonctions continues par morceaux sur un intervalle
- 4. Intégrales généralisées sur un intervalle de la forme $[a, +\infty[$
- 4.1. Définition
- 4.2. Cas des fonctions positives
- 4.3. Cas général

5. Intégrales généralisées sur un intervalle quelconque

6. Propriétés

7. Méthodes de calcul

- 7.1. Calcul par primitivation
- 7.2. Intégration par parties
- 7.3. Changement de variable

8. Intégrales absolument convergentes et fonctions intégrables

- 8.1. Définition
- 8.2. Un exemple de référence : les intégrales de Riemann
- 8.3. Théorèmes de comparaison
- 8.4. Étude de l'existence d'une intégrale

9. Exercices à connaître

9.1. Intégrales de Wallis

On pose, pour tout entier naturel n, $I_n = \int_0^{\pi/2} (\sin x)^n dx$.

- 1) Calculer I_0 et I_1 . Pour tout $n \ge 2$, donner une relation de récurrence entre I_n et I_{n-2} . En déduire, pour tout $n \in \mathbb{N}$, la valeur de I_n selon la parité de n.
- 2) Montrer que la suite (I_n) est décroissante. En déduire $\lim_{n\to+\infty} \frac{I_{n-1}}{I_n}$.

- **3)** Montrer : $\forall n \geq 1$, $nI_nI_{n-1} = \frac{\pi}{2}$. En déduire $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} I_n \sqrt{n}$.
- 4) Montrer que : $\lim_{n \to +\infty} 2n(I_{2n})^2 = \frac{\pi}{2}$. En déduire que : $\lim_{n \to +\infty} \left[n \left(\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots 2n} \right)^2 \right] = \frac{1}{\pi}$ (formule de Wallis).

9.2. Détermination de la nature d'une intégrale

Préciser la nature des intégrales suivantes :

$$1) \int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$$

$$2) \int_0^1 \frac{\ln t}{\sqrt{(1-t)^3}} dt$$

3)
$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^2\sqrt{1+t^2}}$$
 (et la calculer).

9.3. Intégration par parties et équivalent

Pour $n \in \mathbb{N}$, on note

$$I_n = \int_1^{+\infty} \frac{1}{x^n \left(1 + x^2\right)} \, \mathrm{d}x$$

- 1) Montrer l'existence de I_n , pour tout n.
- 2) Déterminer la limite de $(I_n)_n$.
- 3) À l'aide d'une intégration par parties, trouver un équivalent simple de I_n .

9.4. Intégrabilité de $x \mapsto \frac{\sin x}{x}$

- 1) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx$ est une intégrale convergente.
- 2) Montrer que $\int_0^{+\infty} \frac{\sin x}{x} dx = \int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$.
- 3) Montrer que $\int_0^{+\infty} \frac{\sin^2 x}{x} dx$ est une intégrale divergente.
- 4) En déduire la nature de $\int_0^{+\infty} \frac{|\sin x|}{x} dx$. La fonction $x \mapsto \frac{\sin x}{x}$ est-elle intégrable sur $]0, +\infty[$?