

<u>Course</u> > <u>Week 5</u>... > <u>Compr</u>... > Quiz 5

Quiz 5

Problem 1

1/1 point (graded)

When gradient descent is used to solve a minimization problem, it is guaranteed to find a local minimum (that may or may not be the global minimum).

Problem 2

1/1 point (graded)

You are trying to find the global minimum for a convex function of one variable, $F\left(w\right)$. At the current point $w=w_0$, you find that the derivative dF/dw is equal to 2.3. Based on this information, how should you update w?

More information is needed
Submit
Problem 3
1/1 point (graded)
What is the derivative, $ abla F(\mathbf{w})$, of the function $F(\mathbf{w}) = (3\mathbf{w} \cdot \mathbf{x})$?
$\bigcirc \nabla F(\mathbf{w}) = \mathbf{x}$
$\nabla F(w) = w$
$\bigcirc \nabla F(\mathbf{w}) = \mathbf{w}$
$lackbox{lackbox{}{lackbox{}{f egin{array}{c}} lackbox{}{oldsymbol{eta}} lackbox{}{egin{array}{c}} lackbox{}{oldsymbol{eta}} lackbox{}{egin{array}{c}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{eta}} lackbox{}{oldsymbol{et$
$\bigcirc abla F(\mathbf{w}) = 3\mathbf{w}$
✓
·
Submit
Problem 4
1/1 point (graded)
In the equation $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t abla L\left(\mathbf{w}_t ight)$, what does η_t represent?
The discretion in subject to adjust on the first continuous
The direction in which to adjust ${f w}$ to find a minimum
lacksquare The dimension of the vector $f w$

The approximate number of iterations the optimization algorithm has run
lacktriangle The size of the adjustment made to $f w$
✓
Submit
Problem 5
1/1 point (graded) True or false: An adjustment to ${\bf w}$ in the direction of the gradient is guaranteed to result in a vector of lower cost.
True
False
✓
Submit
Problem 6
1/1 point (graded) Given a function $L\left(\mathbf{x} ight)=3x_2x_3+2x_1x_3+2x_1x_2$, compute the gradient $ abla L\left(\mathbf{x} ight)$.
$\bigcirc abla L\left(\mathbf{x} ight) = \left(4x_1,5x_2,5x_3 ight)$
$\boxed{ \bullet \nabla L\left(\mathbf{x}\right) = \left(2x_3 + 2x_2, 3x_3 + 2x_1, 3x_2 + 2x_1\right)}$
$iggridsymbol{iggrid} iggridsymbol{iggrid} abla L\left(\mathbf{x} ight) = \left(2x_{1}x_{3} + 2x_{1}x_{2}, 3x_{2}x_{3} + 2x_{1}x_{2}, 3x_{2}x_{3} + 2x_{1}x_{3} ight)$

$igcup abla L\left(\mathbf{x} ight) = \left(4x_2x_3, 6x_3x_1, 6x_1x_2 ight)$
Submit
Problem 7
1/1 point (graded) Stochastic gradient descent is a better alternative to gradient descent in which of the following cases?
There are multiple local minima in a function
There are a large number of data points
The function contains more than 3 variables
The function is discontinuous in at least one location
Submit
Problem 8
1/1 point (graded) A key difference between gradient descent and stochastic gradient descent is:
Stochastic gradient descent takes longer to perform than gradient descent, but can be used on very large data sets

Stochastic gradient descent replaces gradient descent when the loss function contains a large number of variables
Each move made by gradient descent is based on the entire data set, while each move made by stochastic gradient descent is based on a single data point.
Gradient descent only makes one pass through the training set, while stochastic gradient descent makes numerous passes before convergence
Submit
Problem 9 1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to \mathbf{w} . Why might this be preferable to stochastic gradient descent based on a single point?
\bigcirc It takes less time to compute adjustments to ${f w}$
It results in a larger adjustment
The batch-based gradient calculation is a closer approximation to the actual gradient
Fewer passes over the training set are required to find a minimum
Submit

Problem 10

1/1 point (graded	1/1	point	(graded
-------------------	-----	-------	---------

True or false: The negation of any convex function is a concave function.

Submit

Problem 11

1/1 point (graded)

Given a convex function f(x) and two points in the domain, a and b, which of the following must be true? Select all that apply.

The line segment connecting (a,f(a)) and (b,f(b)) must lie above the function at every point on the line connecting a and b

 $oxed{ \ \ } f\left(x
ight)$ must be monotonically increasing along the line segment joining a and b

 $oxed{ \ \ \ } f\left(a
ight) > f\left(b
ight)$ when a < b, and $f\left(b
ight) > f\left(a
ight)$ when b < a

 $oxedsymbol{oxed} f\left(x
ight)$ must have a global minimum between a and b

Submit

Problem 12

1/1 point (graded)

Which of the following functions are convex? Select all that apply.

				~
4	y	=	e^{-}	- u

$$\checkmark y = x^2$$

$$\checkmark y = 2x$$

$$y=\sin\left(x
ight),\ x\in\left[0,\pi
ight]$$

Submit

Problem 13

1/1 point (graded)

True or false: A function whose 2nd derivative is always negative is a convex function.

Submit

Problem 14

1/1 point (graded)

The matrix $M=\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$ has a positive determinant.

No Submit Problem 15 1/1 point (graded) Given matrix $M=\begin{pmatrix} 4 & 1 \ k & 1 \end{pmatrix}$, what value of k results in a singular matrix? $\bigcirc k = -4$ $\bigcirc k = -1$ $\bigcirc k = 1$ left k=4

~

Submit

Problem 16

1/1 point (graded)

All matrices of the form $M=UU^T$ are always positive semidefinite

Problem 17

1/1 point (graded)

The matrix $egin{pmatrix} 14 & 7 \ 7 & 6 \end{pmatrix}$ is positive semidefinite and follows the form $M=UU^T$. Which of the following matrices U satisfies this equation?

$$U = \begin{pmatrix} 1 & 4 \\ 1 & 6 \end{pmatrix}$$

$$\bigcirc U = egin{pmatrix} 2 & 7 \ 3 & 1 \end{pmatrix}$$

$$U=egin{pmatrix} 3 & 2 & 2 \ 1 & 4 & 1 \end{pmatrix}$$

$$left U = egin{pmatrix} 1 & 2 & 3 \ 2 & 1 & 1 \end{pmatrix}$$

Submit

Problem 18

1/1 point (graded)

A function, $F(\mathbf{z})$, is convex if which of the following statements hold true?

ightharpoonup The Hessian, $H(\mathbf{z})$, is positive semidefinite at all \mathbf{z}

$lacksquare F(\mathbf{z}) \geq 0, orall \mathbf{z}$				
The gradient, $ abla F(\mathbf{z})$, is monotonically decreasing				
The Hessian, $H\left(\mathbf{z} ight)$, is symmetric				
✓				
Submit				
Problem 19 1/1 point (graded) Is the identity matrix positive semidefinite?				
Yes				
○ No				
•				
Submit				

© All Rights Reserved