

Optimization Framework For Phylogenetic Compression

Comité de Suivi Individuelle (1st year)

<u>Tam Truong</u>, Dominique Lavenier, Pierre Peterlongo, Karel Břinda 25 June 2025

Presentation Outline:

- I. Background
- II. Training Programs
- III. PhD Thesis
 - I. Motivation and state of the art
 - II. Key concepts
 - III. Limitations
 - IV. The Optimization Problem Formulation
 - V. Track 1: Pre-ordering
 - VI. Track 2: Partitioning
- IV. Outcome and Next Steps

My Backround: International & Multidisciplinary

2018-2021: Licence MIAGE – Rennes University

2021: Full-stack developer – Enedis, Paris

2021-2023: Dbl-deg Master Data Science & Business: Rennes & Aalto Univ (Finland)

2022 & 2023: 2 Internships at INRIA: Optimization for strains seperation - Supervisor: R. Andonov

Start: Nov. 2024

PhD: Optimization for Phylogenetic Compression

Multidisciplinary competences

Big data
Method development & researching
Master's internships in bioinformatics

Training Programs

First Year

- Tranversial training (50h)
 - Starthèse: Entrepreneurship
 - French language B1
- Scientific training
 - Conferences: SeqBim
 - Various programmation training: Git, Good practices

Plan: Second Year

- Tranversial training
 - Ethic for Science
- Scientific training
 - Scientific writing
 - Teaching

My PhD Thesis

Motivation & State Of The Art

Motivation: Rapidly Growing Bacteria Genome Data & Collections

Fast Growth Of Bacterial Genomes Data¹ (NCBI)

Karel Brinda, 2024 (CC) https://doi.org/10.6084/m9.figshare.25879258

Multi-Terabytes Microbial Genome Collections

<u>18 Jun 2025:</u> ATB v0.4 with 330k new genomes <u>Next decade:</u> Even larger collections (n = \sim 10⁷), higher diversity, ...

Challenging: Efficient storage & analysis (indexing, searching)
Standard compression protocol is not sufficient

Phylogenetic Compression: New Method For Microbial Genomes Compression

Difficulty: Compression of genomes is challenging due to the widespread redundancy in the data.

Key Idea: Reordering genomes based on evolutionary history enhances local compressibility¹

Phylogenetic Compression: Key Steps – Implemented in MiniPhy

36.7 (Section of Section of Secti

Step 1 : Phylogenetic Species-based Pre-ordering & Batching

Step 2 : Phylogenetic Reordering Per Batch

Step 3 : Compression

Phylogenetic Compression: Applications On Large Genomes Collections – 1-2 Orders Of Magnitude Reduction In Size

→ Core compression technique for ATB, currently the largest microbial genomes collection

Key Concepts

Ordering In Phylogenetic Compression

Redundancies are predictable because they result from evolution and sampling

Ordering puts similar genomes closer to each other

Improve local compressibility

Not scalable to million of genomes: inferring phylogenetic tree has quadratic complexity [2]

Batching In Phylogenetic Compression (MiniPhy)

Limitations

Lack Of Suitable Methods For The Phylogenetic Batching Step

No Formalization Of Batching As An Optimization Problem.

Order-awareness

Constraints on:
Uncompressed sizes
Compressed sizes
Number of genomes
Bounds on size of the used search indexes

Batching Are Not Suitable For Hardware Specific Target Application.

Search on GPUs or for processing-in-memory (PIM) architectures

Heavily Dependent On Metadata For An Approximative Input Order

> Accession number Species labels

Optimization Formulation For Phylogenetic Compression

Optimization Problem Formulation For Phylogenetic Compression

Inputs:

- $G = \{g_1, g_2, ..., g_n\}$: set of genomes
- We want to split G into m ordered batches, $m \le n$
- $B = \{b_1, b_2, ..., b_m\}$: set of <u>ordered batches</u>

Parameters:

- *u* : bound on uncompressed size
- c: bound on compressed size
- e: bound on number of genomes

Decision Variables:

- $x_{ij} \in \{0,1\}$: 1 if genome g_i is in batch b_i , 0 otherwise
- $y_i \in \{0,1\}$: 1 if batch b_i is used, 0 otherwise

Functions:

- $U(b_j) = f_{uncompressed}(ordered \{g_i: x_{ij} = 1\})$
 - Exp: disk size of a batch
- $C(b_j) = f_{compressed}(ordered \{g_i: x_{ij} = 1\})$
 - Exp: xz compression of a batch (param: level 9 compression,...)

Objective function:

- Minimize total compressed batch sizes: $\min \sum_{i=1}^{m} C(b_i) \cdot y_i$
 - Find the order to achieve the best compression
- Minimize the number of batches: $\min \sum_{j=1}^{m} y_j$
 - Fewer batches → better compression
- Combined:

$$min\sum_{j=1}^{n}C(b_{j})\cdot y_{j}+\sum_{j=1}^{n}y_{j}$$

Subjects to (possible) constraints:

- 1) $\sum_{i=1}^{m} x_{ij} = 1 \quad \forall i \in \{1, ..., n\}$: a genome must be assigned
- 2) $x_{ij} \le y_i \quad \forall i,j$: no genomes in unselected batches
- 3) $U(b_i) \le u \cdot y_i \quad \forall j \in \{1, ..., m\}$: bound on uncompressed size
- 4) $C(b_i) \le c \cdot y_i \quad \forall j \in \{1, ..., m\}$: bound on compressed size
- 5) $\sum_{i=1}^{n} x_{ij} \le e \cdot y_j \quad \forall j \in \{1, ..., m\}$: bound on genomes count per batch

Example Scenarios For Optimization

Internet Transmission & Memory Constraints Platforms

Objective function – xz compressor:

$$min \sum_{j=1}^{n} C_{xz}(b_j) \cdot y_j + \sum_{j=1}^{n} y_j$$

Subjects to:

- 1) $\sum_{j=1}^{m} x_{ij} = 1 \quad \forall i \in \{1, ..., n\}$
- 2) $x_{ij} \leq y_i \quad \forall i, j$
- 3) Each compressed batch must be less than 100 MB

$$C(b_i) \le 100(MB) \cdot y_i \quad \forall j \in \{1, \dots, m\}$$

Computation on many CPUs with shared memory

Objective function:

$$min \sum_{j=1}^{n} C_{RLE}(b_j) \cdot y_j + \sum_{j=1}^{n} y_j$$

Subjects to:

- 1) $\sum_{j=1}^{m} x_{ij} = 1 \quad \forall i \in \{1, \dots, n\}$
- $2) \quad x_{ij} \le y_j \quad \forall i, j$
- 3) Search_index $(b_j) \le 8(GB) \cdot y_j \quad \forall j \in \{1, ..., m\}$

The Two Tracks Of My Work: Preordering & Partitionning

Axis 1: Phylogenetic Pre-ordering Of Genomes

Track's Objective: Achieving Global Phylogenetic Pre-order At The Milliongenome Scale

Infere phylogenetic tree for each species: Distance estimation (Mash) + Neighbor joining tree (Quicktree)

Challenging for highly sampled species (>50k genomes)

Infeasiable for large modern collection (million-genome scale)

Skeleton-tree Based Pre ordering – For Highly Sampled Species

Run Time Comparison: >10x Improvement Compared To Standard Strategy

Comparing execution time of 2 pre-ordering strategies:

- Phylogenetic inference vs Skeleton-tree based
- *Test dataset:* ~90k genomes of E. coli from the 661k collection

Compression result:

• Cut into batches of 4000 genomes then compress with xz

	Phylo. Inf.	Ske. Tree
Comp. size	3.03 G	3.05G

Significantly faster and produce similar compression result

Result (661k) Species-wise: 18% Size Reduction (With New Species Labels)

Compression size of 3 most highly sampled species & dustbin [GB]

	Original	New
S. enterica	4.6	3.8
E. coli	4.3	3.0
S. pneumoniae	0.7	0.5
Dustbin	10.9	10.6

(Fenske et al. 2024)

Result (661k) Species-wise: Absolute Compressed Size Reduction P. Species

Result (661k) Species-wise: Relative Compressed Size Reduction Per Species

Axis 2: Order-based Genome Batching

Limitation Of The Current Batching Results

Reminder: After batching (step 1), batches are reordered (step 2) then compressed

Compression result of 661k Batches

Consequences and Applications of Uniform Batches

Bin Packing For Microbial Genomes Compression

Inputs:

- $G = \{g_1, g_2, ..., g_n\}$: ordered set of genomes
- Species labels
- We want to split G into m ordered batches, $m \le n$
- $B = \{b_1, b_2, ..., b_m\}$: set of <u>ordered batches</u>

Parameters:

• *c* : bound on compressed size

Decision Variables:

- $x_{ij} \in \{0,1\}$: 1 if genome g_i is in batch b_j ,0 otherwise
- $y_i \in \{0,1\}$: 1 if batch b_i is used, 0 otherwise

Functions:

• $C(b_j) = f_{compressed}(ordered \{g_i: x_{ij} = 1\})$

Subjects to:

- 1) $\sum_{j=1}^{m} x_{ij} = 1 \quad \forall i \in \{1, ..., n\}$: a genome must be assigned
- 2) $x_{ij} \le y_j \quad \forall i,j$: no genomes in unselected batches
- 3) $C(b_j) \le c \cdot y_j \quad \forall j \in \{1, ..., m\}$: bound on compressed size

Objective function:

Bin and batch are equivalent in this case Put items (genomes) into bins Each bin has a capacity (compression size)

Getting the compression size is non-trivial

- → xz compression speed ≈ 1 genome/sec
- \rightarrow 1h20m for a batch with n = 5000

Compression Size Estimation Using Proxy: Distinct K-mers Counts

Compression Size Vs Distinct Kmers Count – 661k Collections – Top 5 Highly Sampled Species & Dustbin

K-mers : length k substring of a genomes

K-mers estimation using HyperLogLog sketching [1,2]

First-fit Bin Packing Algorithm

Axis 2 Experimental Result:

- Dataset: Assemblies of *Mycobacterium tuberculosis* from 661k collection
- Number of Genomes: around 49,000
- We want the compression size stay below 64MB (DRAM for PIM [1,2])
 - CAPACITY (distinct kmers count) of batches: 152,000,000

Distinct Kmers Count And Number Of Genomes Per Batches

Balanced distinct kmers count, varied number of genomes per batches

Compression size per batch

Most batches stay below 64MB and relatively balanced (except 4 batches)

Outcome and Next Steps

- Poster at the DKM department seminar
- Presentation an internal GenScale meeting

• Next step:

- Species-oblivious pre-ordering
- Improve prediction accuracy
- Long term: extend to other genomic representation, such as indexes

• Future deliverables:

- Presentation at upcoming SeqBim and DSB conferences
- Tools:
 - Genome ordering and batching tool
 - Co-developing MiniPhy2 released soon
- Submit to conferences such as RECOMB and ISMB/ECCB
- Eventual Publication in bioinformatics journals
- Collaboration: incorporated into the next update of AllTheBacteria

