Group Name: " "

Member 1: Rodel Yzer C. De Boda

SR Code: 22-04506

Member 2: Adhem V. Hernandez

SR Code: 22-07415

Laboratory Activity 2: Applied Classification Analysis

In this laboratory we will create an classification algorithm for our gathered classification datasets.

Dataset Link: "https://www.kaggle.com/datasets/erdemtaha/cancer-data/data"

Description of the dataset

Insert Here: "The dataset contains the characteristics of patients diagnosed with cancer. The dataset contains a unique ID for each patient, the type of cancer (diagnosis), the visual characteristics of the cancer and the average values of these characteristics."

Import the Required Packages

For this exercise we will require the Pandas package for loading the data, the matplotlib package for plotting as well as scitkit-learn for creating the Classification model. Import all of the required packages and relevant modules for these tasks.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
import missingno as msno

import numpy as np
from array import array
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.metrics import accuracy_score, f1_score, precision_score
```

Read the Data

```
df = pd.read_csv("/content/Cancer_Data.csv")
```

Read the data and find summary statistics

Get the info of your dataset

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
 # Column
                             Non-Null Count Dtype
 0 id
1 diagnosis
                             569 non-null
                                             int64
                             569 non-null
 2 radius_mean
                             569 non-null
                                             float64
    texture_mean
                             569 non-null
                                             float64
    perimeter_mean
                             569 non-null
                                             float64
    area mean
                             569 non-null
                                             float64
```

6	smoothness_mean	569	non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	<pre>fractal_dimension_mean</pre>	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
15	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	concave points_se	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	<pre>fractal_dimension_se</pre>	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst	569	non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569	non-null	float64
29	concave points_worst	569	non-null	float64
30	symmetry_worst	569	non-null	float64
31	<pre>fractal_dimension_worst</pre>	569	non-null	float64
32	Unnamed: 32	0 n	on-null	float64
dty	pes: float64(31), int64(1)	, ob	ject(1)	
mem	ory usage: 146.8+ KB			

Get the first five and last five of your dataset

df.head()

→		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	cond points_r
	0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14
	1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07
	2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12
	3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10
	4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10

5 rows × 33 columns

df.tail(5)

₹		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	cond points_r
	564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.10
	565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09
	566	926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.0
	567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.1
	568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00

5 rows × 33 columns

Get the summary statistics of your dataset to show the total cont, mean, standard deviation, min and max value, and percentiles of each column of your dataset.

df.describe()

•		id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	conca points_me
C	ount	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.0000
m	nean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.0489
;	std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.0388
r	min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.0000
2	25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.0203
5	50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.0335
7	75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.0740
r	nax	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.2012
Q r	OWE X	32 columns								

8 rows × 32 columns

Data Cleaning

Visualize the missing values/data in your dataset to see how many data and percentage of data are missing in each column of your dataset.

df.head()

→ ▼		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	con points_r
	0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14
	1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07
	2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12
	3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10
	4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10

5 rows × 33 columns

df.isnull().sum()

.50 FIVI	
	0
id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
fractal_dimension_se	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
fractal_dimension_worst	0
Unnamed: 32	569

Use a nullity matrix for your dataset for easy visualization of missing data

```
msno.matrix(df)
plt.title('Nullity Matrix')
plt.show()
```


Imputation of data to missing data

#drop data with 80% missing percentage value
columns_to_drop = df.columns[df.isnull().sum() / len(df) * 100 > 80]
df.drop(columns_to_drop, axis=1, inplace=True)
df.head()

_	_	_
-	≯	A
_	_	

•	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	cond points_r
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10

5 rows × 32 columns

#dropping or deleting columns that is unnecessary
df.drop(['id'], axis=1, inplace=True)
df.head()

5 rows × 31 columns

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symme
0	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
1	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
2	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
3	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
4	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	

After deleting the columns with 80% missing data. Impute data/value in the missing data of your dataset.

After imputation of data, Check the completeness of your dataset by getting its info.

df.info()

#	Column	,	-Null Count	Dtype
0	diagnosis		non-null	object
1	radius_mean		non-null	float64
2	texture_mean		non-null	float64
3	perimeter_mean		non-null	float64
4	area_mean		non-null	float64
5	smoothness_mean		non-null	float64
6	compactness_mean		non-null	float64
7	concavity_mean		non-null	float64
8	concave points_mean		non-null	float64
9	symmetry_mean	569	non-null	float64
10	fractal_dimension_mean	569	non-null	float64
11	radius_se	569	non-null	float64
12	texture_se	569	non-null	float64
13	perimeter_se	569	non-null	float64
14	area_se	569	non-null	float64
15	smoothness_se	569	non-null	float64
16	compactness_se	569	non-null	float64
17	concavity_se	569	non-null	float64
18	concave points_se	569	non-null	float64
19	symmetry_se	569	non-null	float64
20	fractal_dimension_se	569	non-null	float64
21	radius_worst	569	non-null	float64
22	texture_worst	569	non-null	float64
23	perimeter_worst	569	non-null	float64
24	area_worst	569	non-null	float64
25	smoothness_worst	569	non-null	float64
26	compactness worst	569	non-null	float64
27	concavity_worst	569	non-null	float64
28	concave points_worst	569	non-null	float64
29	symmetry_worst	569	non-null	float64
30	fractal_dimension_worst	569	non-null	float64
dtype	es: float64(30), object(1)		
	y usage: 137.9+ KB			

, ,

Visualize the Data

Load the dataset using Pandas and plot the different the target category

Plot a number of different features vs the allocated species classifications e.g. Sepal Length vs Petal length and Species. Visually inspect the plots and look for any patterns that could indicate separation between each of the species.

Preprocessing

Feature Engineering

You need to select the most appropriate features that will provide the most powerful classification model.

Before we can construct the model we must first convert the species values into labels that can be used within the model. Replace:

Example:

```
    The species string Iris-setosa with the value 0
    The species string Iris-versicolor with the value 1
    The species string Iris-virginica with the value 2
```

You can use get_dummies function / OnehotEncoder / LabelEncoder Library / StandardScaler with this.

features

```
Index(['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
               'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
               'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
               'fractal_dimension_se', 'radius_worst', 'texture_worst',
               'perimeter_worst', 'area_worst', 'smoothness_worst',
'compactness_worst', 'concavity_worst', 'concave points_worst',
               'symmetry_worst', 'fractal_dimension_worst'],
             dtype='object')
df['diagnosis'] = (df['diagnosis'] == 'M').astype(int)
for feature in features:
    plt.hist(df[df['diagnosis']==1][feature], color='blue', label='Malignant', density=True, alpha=0.5)
    plt.hist(df[df['diagnosis']==0][feature], color='red', label='Benign', density=True, alpha=0.5)
    plt.ylabel('Probability')
    plt.xlabel(feature)
    plt.legend()
    plt.title(feature)
    plt.show()
```


0.20

0

0.06

0.08

0.10

0.12

0.14

fractal_dimension_worst

0.16

0.18

Get a list of all columns
cols = df.columns.tolist()

Move the first column to the end
cols = cols[1:] + cols[:1]

Reorder the DataFrame
df = df[cols]

train, valid, test = np.split(df.sample(frac=1), [int(0.6 * len(df)), int(0.8 * len(df))])

/usr/local/lib/python3.11/dist-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be rem return bound(*args, **kwds)

train

₹		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean
	266	10.600	18.95	69.28	346.4	0.09688	0.11470	0.06387	0.02642	0.1922
	321	20.160	19.66	131.10	1274.0	0.08020	0.08564	0.11550	0.07726	0.1928
	511	14.810	14.70	94.66	680.7	0.08472	0.05016	0.03416	0.02541	0.1659
	491	17.850	13.23	114.60	992.1	0.07838	0.06217	0.04445	0.04178	0.1220
	318	9.042	18.90	60.07	244.5	0.09968	0.19720	0.19750	0.04908	0.2330
	422	11.610	16.02	75.46	408.2	0.10880	0.11680	0.07097	0.04497	0.1886
	31	11.840	18.70	77.93	440.6	0.11090	0.15160	0.12180	0.05182	0.2301

0.10540

0.08054

0.10460

0.18680

0.05907

0.08228

0.14250

0.05774

0.05308

0.08783

0.01071

0.01969

0.2252

0.1964

0.1779

341 rows × 31 columns

14.580

10.200

11.490

21.53

17.48

14.59

97.41

65.05

73.99

644.8

321.2

404.9

26

217

478

test

_		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean
	230	17.050	19.08	113.40	895.0	0.11410	0.15720	0.19100	0.109000	0.2131
	529	12.070	13.44	77.83	445.2	0.11000	0.09009	0.03781	0.027980	0.1657
	10	16.020	23.24	102.70	797.8	0.08206	0.06669	0.03299	0.033230	0.1528
	252	19.730	19.82	130.70	1206.0	0.10620	0.18490	0.24170	0.097400	0.1733
	46	8.196	16.84	51.71	201.9	0.08600	0.05943	0.01588	0.005917	0.1769
	133	15.710	13.93	102.00	761.7	0.09462	0.09462	0.07135	0.059330	0.1816
	509	15.460	23.95	103.80	731.3	0.11830	0.18700	0.20300	0.085200	0.1807
	108	22.270	19.67	152.80	1509.0	0.13260	0.27680	0.42640	0.182300	0.2556
	99	14.420	19.77	94.48	642.5	0.09752	0.11410	0.09388	0.058390	0.1879
	145	11.900	14.65	78.11	432.8	0.11520	0.12960	0.03710	0.030030	0.1995

114 rows × 31 columns

valid

-	→	Ţ	
	_	_	

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean
3	93 21.61	22.28	144.40	1407.0	0.11670	0.20870	0.28100	0.15620	0.2162
1	92 9.72	18.22	60.73	288.1	0.06950	0.02344	0.00000	0.00000	0.1653
3	97 12.80	17.46	83.05	508.3	0.08044	0.08895	0.07390	0.04083	0.1574
1	88 11.81	17.39	75.27	428.9	0.10070	0.05562	0.02353	0.01553	0.1718
4	37 14.04	15.98	89.78	611.2	0.08458	0.05895	0.03534	0.02944	0.1714
4	63 11.60	18.36	73.88	412.7	0.08508	0.05855	0.03367	0.01777	0.1516
5	45 13.62	23.23	87.19	573.2	0.09246	0.06747	0.02974	0.02443	0.1664
1	60 11.75	20.18	76.10	419.8	0.10890	0.11410	0.06843	0.03738	0.1993
5	07 11.06	17.12	71.25	366.5	0.11940	0.10710	0.04063	0.04268	0.1954
4	71 12.04	28.14	76.85	449.9	0.08752	0.06000	0.02367	0.02377	0.1854

114 rows × 31 columns

Select the features by writing the column names in the list below:

from imblearn.over_sampling import RandomOverSampler

```
def scale_dataset(dataframe, oversample=False):
    X = dataframe[dataframe.columns[:-1]].values
    y = dataframe[dataframe.columns[-1]].values

    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    if oversample:
        ros = RandomOverSampler()
        X, y = ros.fit_resample(X, y)

    data = np.hstack((X, np.reshape(y, (-1, 1))))
    return data, X, y

train, X_train, y_train = scale_dataset(train, oversample=True)
```

Constructing Logistic Regression Model

valid, X_valid, y_valid = scale_dataset(valid, oversample=False)
test, X_test, y_test = scale_dataset(test, oversample=False)

```
##Logistic Regression
logistic_model = LogisticRegression()
logistic_model.fit(X_train, y_train)
y_train_pred_logistic = logistic_model.predict(X_train)
Display the prediction for the Logistic model against the training data (First Model)
```

```
Double-click (or enter) to edit
```

```
results = pd.DataFrame({'Actual': y_train, 'Predicted': y_train_pred_logistic})
results
```

→		Actual	Predicted	
	0	0	0	11.
	1	1	1	+/
	2	0	0	
	3	0	0	
	4	0	0	
	421	1	1	
	422	1	1	
	423	1	1	
	424	1	1	
	425	1	1	
	426 rov	ws × 2 c	olumns	
Nex	t steps:	Gene	erate code witl	nresult

Compute the accuracy of the model against the training set

Construct the K-Nearest Neighbors Model

Constructing Decision Tree Model

Accuracy on training set: 98.12% or 0.9812206572769953

```
##Decision Tree
from sklearn.tree import DecisionTreeClassifier

tree_model = DecisionTreeClassifier()
tree_model.fit(X_train, y_train)

PecisionTreeClassifier (1 ?)
DecisionTreeClassifier()
```

Display the prediction for the Decision Tree model against the training data (Third Model)

```
y_train_pred_tree = tree_model.predict(X_train)
```

Compute the accuracy of the model against the training set

```
accuracy_model3 = accuracy_score(y_train, y_train_pred_tree)
f1_model3 = f1_score(y_train, y_train_pred_tree)
precision_model3 = precision_score(y_train, y_train_pred_tree)

print(f"F1 Score: {f1_model3}")
print(f"Precision: {precision_model3}")
print(f"Accuracy on training set: {accuracy_model3*100:.2f}% or {accuracy_model3}")

F1 Score: 1.0
Precision: 1.0
Accuracy on training set: 100.00% or 1.0
```

Results

Get the highest model for your dataset using if else condition on every f1 score / accuracy / precision of your model.

```
if f1_model1 > f1_model2 and f1_model1 > f1_model3:
  f1_best_model = "Model 1"
elif f1_model2 > f1_model1 and f1_model2 > f1_model3:
  f1_best_model = "Model 2"
else:
  f1_best_model = "Model 3"
if precision_model1 > precision_model2 and precision_model1 > precision_model3:
  precision_best_model = "Model 1"
elif precision_model2 > precision_model1 and precision_model2 > precision_model3:
  precision_best_model = "Model 2"
else:
  precision_best_model = "Model 3"
if accuracy_model1 > accuracy_model2 and accuracy_model1 > accuracy_model3:
  accuracy_best_model = "Model 1"
elif accuracy_model2 > accuracy_model1 and accuracy_model2 > accuracy_model3:
  accuracy_best_model = "Model 2"
  accuracy_best_model = "Model 3"
```

CONCLUSION

Create conclusion and result based on the output of every model.

```
print(f'Best F1 Score: {f1_best_model}')
print(f'Best Precision: {precision_best_model}')
print(f'Best Accuracy: {accuracy_best_model}')

Best F1 Score: Model 3
Best Precision: Model 3
Best Accuracy: Model 3
```

CONCULSION

he Decision Tree model (Model 3) was found to be the best-performing classification model overall after three models were evaluated on the provided dataset: Logistic Regression (Model 1), K-Nearest Neighbors (Model 2), and Decision Tree (Model 3).

The fact that Model 3 obtained the highest results on all three evaluation metrics—F1 Score, Precision, and Accuracy—supports this conclusion. This shows that the Decision Tree model demonstrated both high recall (reducing false negatives) and good precision (reducing false positives), correctly classifying occurrences in the dataset.

The Decision Tree model finally outperformed K-Nearest Neighbors and Logistic Regression, despite their encouraging performances. To enhance these models' performance on this specific dataset, more research and adjustment may be required.

Because the Decision Tree model performs better overall in terms of F1 Score, Precision, and Accuracy, it is advised for this classification assignment. It is crucial to remember that these findings are unique to the evaluation measures and dataset in question. Conclusions may vary depending on the evaluation criteria and datasets used.

Double-click (or enter) to edit