Серия 3. Теорема Кэзи

Ab hoc et ab hac

0. Пусть α , β , γ , δ — четыре произвольные окружности. Обозначим символом $t_{\alpha\beta}$ (соответственно $t_{\beta}\gamma$, $t_{\gamma}\delta$ и т.д.) длину общей внешней касательной, проведённой к окружностям α и β (соответственно β и γ , γ и δ и т.д.). Тогда равенство

$$t_{\alpha\beta}t_{\gamma\delta} + t_{\beta\gamma}t_{\delta\alpha} = t_{\alpha\gamma}t_{\beta\delta}$$

выполняется тогда и только тогда, когда существует окружность ω , касающаяся всех четырёх данных окружностей. (Докажите это утверждение в одну сторону в том случае, когда все четыре окружности лежат вне окружности ω .)

- 1. В треугольнике $ABC \angle C = 90^\circ$; CD высота, проведённая к AB. ω окружность, описанная вокруг $\triangle BCD$; ν окружность, касающаяся окружности ω и отрезков AD и AC в точках M и N соответственно.
- а) Докажите, что $BD \cdot CN + BC \cdot DM = CD \cdot BM$;
- б) Докажите, что BM = BC.
- **2** (теорема Фейербаха). а) Докажите, что окружность девяти точек произвольного треугольника касается вписанной окружности того же самого треугольника;
- б) Докажите, что окружность девяти точек произвольного треугольника касается вневписанных окружностей того же самого треугольника.
- 3. Пусть BC хорда окружности Γ ; S_1 и S_2 дуги, которые стягивает хорда BC. Пусть M середина S_2 . Рассмотрим все окружности Ω , которые касаются S_1 и BC. Докажите, что длины касательных, проведённым из M к Ω , равны.
- 4. Окружности Ω_1 и Ω_2 внешне касаются в точке I и обе касаются внутренним образом окружности Ω . Общая внешняя касательная к Ω_1 и Ω_2 пересекает окружность Ω в точках B и C, а внутренная общая касательная в точке A. Докажите, что I инцентр $\triangle ABC$.
- 5. Пусть Γ окружность, описанная вокруг $\triangle ABC$; Ω окружность, касающаяся Γ , а также AB и AC в точках P и Q соответственно. Докажите, что середина PQ инцентр треугольника ABC.
- **6**. Пусть Γ окружность, описанная вокруг $\triangle ABC$; $D \in BC$. Пусть окружности Ω_1 и Ω_2 касаются прямых AD и BC и внешне касаются окружности Γ . Докажите, что инцентр треугольника ABC b центры Ω_1 и Ω_2 лежат на одной прямой.
- 7. Γ описанная окружность остроугольного треугольника ABC. Пусть L касательная к окружности Γ ; L_a , L_b , L_c получаются из L отражением относительно сторон BC, CA, AB соответственно. Докажите, что окружность, описанная около треугольника, образованного прямыми L_a , L_b , L_c касается окружности Γ .