Optikai alapmérések

Kalló Bernát – Mérés: 2012.05.09. – Leadás: 2012.06.08.

1. Törésmutató meghatározása

Két közeg határán áthaladó fénysugár megtörik, úgy, hogy a beesési és törési szögek szinuszának aránya

$$\frac{\sin \alpha}{\sin \beta} = n_{2,1}$$

állandó, a két közeg relatív törésmutatója.

Megmértük egy félkör alakú lencse egyenes oldalán belépő fénysugár törési szögét. Valójában a kilépő fénysugár szögét mértük, de mivel a görbe oldalon való kilépéskor a sugár merőleges a határfelületre, az iránya ott nem változik meg. A mért adatok az alábbi táblázatban láthatók:

α (°)	β (°)
0	0
10	7
20	13
30	20
40	26
50	31
60	36
70	39
80	42

1. táblázat. Beesési és törési szögek belépéskor

Ezt grafikonon ábrázolva:

1. ábra. Beesési (α) és törési (β) szögek belépéskor

Az illesztett egyenes meredeksége $n_{2,1}=1,481$, tehát ez a műanyagnak a levegőre vonatkoztatott törésmutatója.

Ezután elvégeztük a kísérletet fordítva is, a kilépéskor történő törést mérve.

α (°)	β (°)
0	0
10	14
15	21
20	29
25	37
30	46
35	56
40	69

2. táblázat. Beesési és törési szögek kilépéskor

Grafikonon ábrázolva:

2. ábra. Beesési (α) és törési (β) szögek kilépéskor

Az illesztett egyenes meredeksége $n_{1,2}=0,686$. A kapott két törésmutató jó közelítéssel egymás reciproka, $n_{2,1}\cdot n_{1,2}=1,48\cdot 0,69=1,02$.

2. Törésmutató meghatározása teljes visszaverődés esetén

Egy prizmán áthaladó fénysugarat vizsgálunk, hogy milyen α beesési szögnél van a teljes visszaverődés határa, vagyik mikor lesz a kilépési szög 90°. Megmutatható, hogy α alapján a törésmutató a

$$n = \sqrt{\frac{1 + 2\cos\phi\sin\alpha + \sin^2\alpha}{\sin^2\phi}}$$

képlettel meghatározható, ahol ϕ a prizma szöge.

A mérés alapján $\alpha = 5^{\circ}$, ebből n = 1,504.

A teljes visszaverődéshez tartozó határszög

$$n \sin \gamma_h = 1$$

képletből

$$\gamma_h = \sin^{-1} \frac{1}{n} = 0,665 = 38,1^{\circ}.$$

Ahogy a beesési szöget csökkentettük, a piros fény lépett ki legkorábban, tehát ennek volt a legnagyobb a határszöge. Vagyis a piros fényre a legkisebb a törésmutató, ezek szerint a lila fényre a legnagyobb, a lila fény térül el a legjobban.

3. Lencse törőképességének vizsgálata

Egy három tartályból álló átlátszó műanyag edényt, a tartályokat egyenként megtöltve vízzel, lencseként használunk.

Párhuzamos fénysugarakat engedünk át a lencsén, és az alábbiakat tapasztaljuk.

	1	2	3	a fénysugarak
1	levegő	levegő	levegő	párhuzamosak
a	víz	levegő	levegő	széttartanak
b	levegő	víz	levegő	összetartanak
С	levegő	levegő	víz	összetartanak
d	víz	levegő	víz	enyhén széttartanak

3. táblázat. A fénysugarak

Amikor nincs víz a tartályokban, a fény párhuzamosan halad át. Mivel mindhárom tartályban levegő van, a műanyagba belépéskor és kilépéskor azonos a törésmutató. A műanyag falak vékonyak, így a belépési és a kilépési felület nagyjából párhuzamos, tehát befelé haladva törőszög megegyezik kifelé haladva a beesési szöggel, és a törésmutatók egyenlősége miatt a beesési és a kilépési szögek is egyenlőek.

Amikor valamelyik tartályban víz van, a műanyag két oldalán nem egyenlő a törésmutató. Viszont mivel a műanyag vékony és a falai párhuzamosak, a fénysugárnak a merőlegeshez viszonyított szögének szinusza először a műanyag és levegő, másodszor a víz és a műanyag relatív törésmutatójával változik. De e két törésmutató szorzata egyenlő a víz és a levegő törésmutatójával. Tehát tekinthetjük úgy, mintha a műanyag nem is lenne ott, csak a víz lenne, mint egy lencse.

Az a) esetben a víz egy sima-homoró lencsét alkot, ez szórólencse. A b) esetben domború-domború lencsét, ez gyűjtőlencse. A c) esetben domború-sima lecsét, ez is gyűjtőlencse. A d) esetben két lencsét alkot, egy gyűjtő és egy szórólencsét. Viszont a szórólencse görbülete nagyobb, tehát erősebb, mint a gyűjtőlencse, ezért a két lencséből álló rendszer szétszórja a sugarakat, bár kevébé, mint a szórólencse egyedül az a) esetben.

4. Gyűjtőlencse fókusztávolsága

Egy fényforrás és egy ernyő közé gyűjtőlencsét helyezünk. Megkeressük azt a két pozícióját a lencsének, amiben az ernyőre vetülő kép éles. Amikor a fényforráshoz van közelebb a lencse, a kép fordított állású és nagyított. Amikor az ernyőhöz van közel a lencse, a kép fordított állású és kicsinyített.

Különböző fényforrás-ernyő távolságokkal (l) is megmérjük a két lehetséges tárgy-és képtávolságot:

$l\left(\mathrm{m}\right)$	$t_1 (\mathrm{m})$	$k_1 (\mathrm{m})$	$t_2 (\mathrm{m})$	$k_2 (\mathrm{m})$
1.0	0,122	0,878	0,880	0,120
0.9	0,124	0,776	0,780	0,120
0.8	0,125	0,675	0,674	0,126
0.7	0,131	0,569	0,571	0,129
0.6	0,137	0,463	0,464	0,136
0.5	0,148	0,352	0,349	0,151

4. táblázat. A mért adatok

Kiszámítjuk a reciprok értékeket:

$l\left(\mathbf{m}\right)$	$1/t_1 (\mathrm{m}^{-1})$	$1/k_1 (\mathrm{m}^{-1})$	$1/t_2 (\mathrm{m}^{-1})$	$1/k_2 (\mathrm{m}^{-1})$
1.0	8,20	1,139	1,136	8,33
0.9	8,06	1,289	1,282	8,33
0.8	8,00	1,481	1,484	7,94
0.7	7,63	1,757	1,751	7,75
0.6	7,30	2,160	2,155	7,35
0.5	6,76	2,841	2,865	6,62

5. táblázat. A mért adatok

És ábrázoljuk őket grafikonon:

Az illesztett egyenes tengelymetszetei 9,41 (x tengely) és 9,53 (y tengely), átlaguk, ezek reciproka pedig 0,1063 és 0,1049 (m). Tehát ezek a fókusztávolságra kapott értékek. A hiteles érték 0,10 m.

5. Szórólencse képalkotása

A fényforrástól t=20cm-re elhelyezünk egy szórólencsét. Ha belenézünk, kicsinyített egyenes képet látunk, a tárgytávolságnál közelebb. A szórólencse képe virtuális, ernyővel nem tudjuk felfogni. Viszont egy gyűjtőlencsével az így kapott virtuális képet tárgyként felhasználva valódi képet készíthetünk róla.

Elhelyezzük tehát a gyűjtőlencsét a szórólencse mögé, és emögé egy ernyőt teszünk. Az ernyő és a gyűjtőlencse közötti távolság k'=0,380 m, a gyűjtőlencse és a szórólencse közötti távolság d=0,300 m, és így éles a kép.

Ha eltávolítjuk a szórólencsét, a kép újra homályossá válik. Ahhoz, hogy éles legyen, a fényforrást közelebb kell húznunk a gyűjtőlencséhez, t'=0,391 m távolságra. Ebből tehát tudjuk,

hogy a szórólencse virtuális képe is ebben a pozícióban kellett, hogy legyen ahhoz, hogy éles képet alkosson róla a gyűjtőlencse. Eszerint a szórólencse virtuális képe k=t'-d=0,091 m-re volt a szórólencsétől. Eszerint a szórólencse fókusztávolsága f=1/(1/t-1/k)=-0,167 m (névlegesen -0,150 m). A szórólencse nagyítása k/t=0,46.

6. Elhajlás résen

Ha a fény résen halad keresztül, elhajlás (diffrakció) jön létre. Az ernyőn a fény foltokban jelenik meg:

A minimumhelyekre az

$$a\sin\theta = n\lambda$$

összefüggés teljesül, ahol a a rés szélessége, θ a minimumhely szöge és n pozitív egész szám, λ a hullámhossz. Mivel a szögek kicsik, sin θ közelíthető tan θ -val, vagyis a minimumhely középponttól való távolságának és a rés-ernyő távolságnak hányadosával (y/D).

Különböző réseknél megmérjük a két első (n = 1) minimumhely közti távolságot, ill. a két második minimumhely közöttit is. A rés-ernyő távolság D = 1108 mm.

rés (mm)	$d_{min,1} (\mathrm{mm})$	$d_{min,2} (\mathrm{mm})$
0.04	38	78
0.08	19	39
0.16	9	18

6. táblázat. A mért adatok

Kiszámoljuk a távolságot a középponttól (d_{min} fele), majd a hullámhossz (670 nm) ismeretében kiszámoljuk a rés méretét az

$$a = (n\lambda D)/y$$

képlet alapján, és ezt összevetjük az eredetivel. Hibaszámítást is végzünk, a szorzás és osztás hibaterjedési képletei alapján.

a (mm)	$y_1 (\mathrm{mm})$	$a_1 (\mathrm{mm})$	δa_1	$y_2 (\mathrm{mm})$	$a_2 (\mathrm{mm})$	δa_2
0.04	19,0	0,039	0,01	39,0	0,0381	0,008
0.08	9,5	0,078	0,03	19,5	0,076	0,01
0.16	4,5	0,16	0,06	9,0	0,165	0,03

7. táblázat. Kiértékelés

Láthatjuk hogy a kapott értékek (a_1, a_2) többnyire a hibahatáron belül megközelítik az hitelesített értékeket (a).

Láthatjuk továbbá, hogy ahogy növeljük a rést, az elhajlás mértéke, és ezzel a minimumok távolsága is, csökken.