Assignment 5 MAT 315

Q2a: We will prove this via induction on e. For when e=1, we have the simultaneous equations $x^{p-1} \equiv 1 \mod (p)$ and $x \equiv i \mod (p)$. For each i nonzero we have that $i^{p-1} \equiv 1 \mod (P)$ by Fermats little Theorem. Now suppose that for e, there is some x_e such that $x_e^{p-1} \equiv 1 \mod (p^e)$ and $x_e \equiv i \mod (p)$ for some i. Take $x_{e+1} = x_e + p^e \cdot k$, for some $k \in \mathbb{Z}$. We have that

$$f(x_{e+1}) = f(x_e + kp^e)$$

$$= (x_e + kp)^{p-1} - 1$$

$$= \sum_{j=0}^{n} {p-1 \choose j} x_e^{p-i-j} (kp^e)^j - 1$$

$$= x_e^{p-1} + (p-1)x_e^{p-2} \cdot kp^e \cdots - 1$$

$$= x_e^{p-1} - 1 + (p-1)x_e^{p-2} \cdot kp^e$$

$$= f(x_e) + f'(x_e)kp^e \mod (p^{e+1})$$

By assumption, $f(x_e) \equiv 0 \mod (p^e)$, we can write $f(x_e) = ap^e$ for some $a \in \mathbb{Z}$. Therefore, $ap^e + f'(x_e)kp^e \equiv 0 \mod (p^{e+1})$ and so $q + f'(x_e)k \equiv 0 \mod (p)$. Since $f'(x_e)$ is nonzero since $x_e \equiv i \not\equiv 0$, so we can take $k = (-q) \cdot (f'(x_e))^{-1}$. Inverses are unique hence x_{e+1} is unique.

Q2b: For each e_i we take $x_{e_i} \equiv -1 \mod (p^{e_i})$. We can clearly see that $x_{e_i}^2 \equiv 1 \mod (3^e)$ and $x_{e_i} \equiv 2 \mod (3)$