

Aprendizagem Profunda

Ano Letivo 2024/2025

Relatório do Trabalho Prático

Lucas Oliveira - PG57886 João Barroso - PG57554 Maurício Pereira - PG55984 Rafael Gomes - PG56000

Índice

1.	Introdução	3
	1.1. Contexto	
2.	Metodologia para a Criação do <i>Dataset</i>	3
3.	Modelos de Raiz	4
	3.1. Submissão 1 (<i>S1</i>)	4
	3.2. Submissão 1 (<i>S2</i>)	4
4.	Modelos Tensorflow	5
	4.1. Submissão 2 (S1)	5
	4.2. Submissão 2 (<i>S2</i>)	5
	4.3. Outros Modelos	5
	4.3.1. Modelos adicionais em <i>TensorFlow</i>	5
	4.3.1.1. CNN + Bidirectional LSTM + DNN com Embeddings GloVe	5
	4.3.1.2. Classificador Keras com Embedding, GlobalAvgPooling1D e regularização	
	extensiva	6
	4.3.1.3. Híbrido CNN + Bidirectional LSTM com GloVe + Regularização	6
	4.3.2. Exploração com Transformers	7
5.	Modelos Claude	7
	5.1. Integração via API da Anthropic	
	5.2. Modelos Avaliados	
6.	Resultados	
٠.	6.1. Modelos Raiz	
	6.2. Modelos Tensorflow	
	6.3. Modelos <i>Claude</i>	
	6.4. Tabela Geral dos Resultados Obtidos	
7	Conclusão	10

1. Introdução

Este relatório foi elaborado no contexto do trabalho prático da unidade curricular de Aprendizagem Profunda, com o propósito de investigar a criação de modelos de *Deep Learning* recorrendo às técnicas estudadas durante o semestre.

O trabalho envolve a construção e preparação de datasets em língua inglesa, a experimentação com diferentes tipos de modelos e a avaliação rigorosa dos resultados obtidos.

Todo o conteúdo realizado para este trabalho prático pode ser encontrado no repositório https://github.com/RafaGomes1/AP_2025

1.1. Contexto

O principal objetivo deste trabalho é desenvolver modelos capazes de distinguir entre textos gerados por sistemas de Inteligência Artificial (*IA*) e textos escritos por seres humanos. Para isso, são exploradas diferentes abordagens e arquiteturas de *Machine Learning* e *Deep Learning*, recorrendo tanto à implementação manual dos modelos como à utilização de *frameworks* como o *TensorFlow*.

2. Metodologia para a Criação do Dataset

Para o desenvolvimento deste trabalho, foi adotada a seguinte metodologia para a construção do nosso *dataset*:

- **Procura de** *Datasets*: inicialmente, além dos *datasets* indicados no enunciado pela equipa docente, foi realizada uma pesquisa adicional em plataformas como o *Kaggle* e o *Hugging Face*, com o objetivo de encontrar conjuntos de dados complementares.
- Análise dos *Datasets*: após a recolha dos *datasets*, procedeu-se à análise das suas estruturas com o objetivo de verificar quais se adequavam aos requisitos definidos para a realização do trabalho prático.
- Escolha dos *Datasets*: após a análise, selecionámos os *datasets* que consideramos mais adequados para o treino dos nossos modelos e para a realização das previsões finais.
- Avaliação dos *Datasets* escolhidos: com os *datasets* selecionados, avaliamos o desempenho dos modelos durante o treino e nas previsões finais. Concluímos que os resultados obtidos foram insatisfatórios, uma vez que os modelos tendiam a prever apenas uma das classes ou apenas *Human* ou apenas *IA*, demonstrando um claro desbalanceamento na classificação.
- **Junção de Dados de** *Datasets*: perante os resultados obtidos, procedemos à reestruturação dos nossos *datasets*, optando por combinar dados provenientes de diferentes fontes. Esta abordagem visou aumentar a diversidade dos exemplos disponíveis, promovendo uma melhor generalização e desempenho dos modelos durante o treino.

3. Modelos de Raiz

Com o objetivo de estabelecer linhas de base (*baselines*) de desempenho, foram desenvolvidos modelos de raiz recorrendo a técnicas tradicionais de *Machine Learning*. Os métodos implementados nessas submissões iniciais serviram de parâmetro comparativo para avaliar melhorias proporcionadas mais tarde pelos modelos *Deep Learning*, descritos nas secções seguintes.

3.1. Submissão 1 (*S1*)

Na primeira submissão (S1), procedeu-se à implementação de um pipeline que incluiu:

1. Limpeza e pré-processamento dos dados:

- Remoção de caracteres especiais, pontuação e espaços em excesso.
- Conversão de todo o texto para minúsculas (lowercasing).
- Tokenização (separação em palavras/pedaços).
- Remoção de stopwords (palavras de pouco valor semântico, como "o", "a", "de", etc).

2. Transformação (Vectorization):

 Aplicação do TF-IDF (Term Frequency - Inverse Document Frequency) para representar cada documento de forma numérica, capturando a relevância de cada termo no contexto de todos os documentos do conjunto.

3. Modelos de Machine Learning:

- Naive Bayes (MultinomialNB)
- · Logistic Regression
- · Random Forest
- SVM (Support Vector Machines)

Cada modelo foi treinado numa partição de treino e avaliado sobre um conjunto de validação. Além disso, realizou-se uma análise comparativa usando métricas de desempenho clássicas (*accuracy*, *precision*, *recall* e *F1-score*).

3.2. Submissão 1 (*S2*)

A segunda submissão (*S2*) procurou trazer variações ao *pipeline* acima descrito, mas mantendo a mesma lógica geral de modelos de *Machine Learning*. As principais diferenças residem em:

1. Ajuste de Hiperparâmetros (Hyperparameter Tuning):

- Foram testados valores diferentes de C (parâmetro de regularização) para SVM e Logistic Regression.
- Ajustou-se o número de estimators no Random Forest e o critério de divisão (Gini vs Entropy).
- No Naive Bayes, foi alterada a forma de suavização (Laplace vs. Lidstone).

2. Estratégias de Validação Diferentes:

- Alguns testes foram feitos recorrendo a cross-validation (hold-out vs. K-fold de 5 ou 10).
- Em certos casos, introduziu-se estratificação para garantir a mesma proporção de classes em cada *fold*.

3. Revisão do Pré-Processamento:

• Experimentaram-se diferentes listas de *stopwords* (mais abrangentes ou mais específicas).

• Testou-se a aplicação de *lemmatization* ou *stemming*, embora em alguns cenários isso tenha introduzido pouco ganho efetivo.

4. Modelos Tensorflow

Com o objetivo de melhorar significativamente os resultados obtidos nas submissões anteriores com modelos de *Machine Learning* clássicos, implementados manualmente, nesta secção iremos explicar o uso da *framework TensorFlow*, que nos permitiu o desenvolvimento de modelos de *Deep Learning* de forma eficiente e flexível.

4.1. Submissão 2 (S1)

Nesta submissão, foi desenvolvido um modelo *Deep Learning* utilizando a *API Keras* do *TensorFlow*. E consistiu das seguintes etapas:

Pré-Processamento

os textos foram convertidos para minúsculas, *tokenizados* e transformados em sequências de inteiros. Para a tokenização, utilizámos o *Tokenizer* do *Keras* com um vocabulário limitado a **20.000 palavras** e um token especial para palavras fora do vocabulário (**<OOV>**). As sequências foram depois padronizadas com *pad_sequences*, utilizando um comprimento fixo de 500 tokens, garantindo assim uma entrada uniforme para o modelo.

Arquitetura do Modelo

O modelo desenvolvido é do tipo Sequential, com a seguinte composição:

• *Embedding Layer*: foi utilizada uma camada de *embedding* com dimensão de *128*, convertendo os *tokens* em vetores densos.

· Camadas Ocultas:

- Uma *Flatten* para transformar os embeddings num vetor unidimensional.
- ▶ Uma Dense com 128 unidades e ativação ReLU.
- Dropout de **0.4** para mitigar overfitting.
- ▶ Uma Dense com 64 unidades e ativação ReLU
- Camada de Saída: uma *Dense* com ativação sigmoide, apropriada para classificação binária (*IA vs Humano*).
- Treino: o modelo foi treinado com o otimizador *Adam*, a função de perda *binary_crossentropy*, durante 15 épocas com *cross-validation*, com o tamanho do batch 64.

4.2. Submissão 2 (*S2*)

Nesta submissão, explorou-se uma arquitetura similar à da secção anterior, mas com algumas modificações nos hiperparâmetros:

• O número de épocas diminuiu para 10.

4.3. Outros Modelos

Para além dos modelos falados na secção 4.1 e 4.2, foram explorados outras abordagens experimentais com o intuito de investigar alternativas promissoras.

4.3.1. Modelos adicionais em TensorFlow

Estas experiências serviram também para melhor compreensão do impacto de diferentes arquiteturas, pré-processamentos e frameworks.

4.3.1.1. CNN + Bidirectional LSTM + DNN com Embeddings GloVe

Este modelo experimental combina convoluções, redes recorrentes bidireccionais e camadas densas (DNN), tirando partido de embeddings pré-treinados GloVe para capturar semântica linguística:

• Embeddings: Utilização de vetores *GloVe* (*Global Vectors for Word Representation*), que fornecem representações densas semânticas para as palavras, carregadas a partir de ficheiros externos.

Arquitetura:

- Camada de **Embedding** inicializada com pesos *GloVe*.
- ► Camada Convolucional 1D (CNN) para extração de padrões locais.
- Camada Bidirectional LSTM para capturar dependências contextuais na sequência (tanto à frente como para trás).
- ► Camadas **Dense** (**DNN**) para classificação final com ativação sigmoid.
- Regularização: Camadas de Dropout aplicadas entre as camadas para mitigar overfitting.

Este modelo mostrou-se eficaz em capturar tanto padrões locais (via CNN) como dependências a longo prazo (via LSTM), mas apresentava maior custo computacional.

4.3.1.2. Classificador Keras com Embedding, GlobalAvgPooling1D e regularização extensiva

Neste modelo, foi adotada uma arquitetura mais leve, porém robusta, modularizada em diferentes scripts Python, otimizando a reusabilidade e manutenção.

• **Tokenização**: Feita com *Tokenizer Keras* com *oov_token*, vocabulário limitado e padding fixo (500 tokens).

• Arquitetura:

- ► Camada *Embedding* para mapear tokens a vetores densos.
- Camada Global Average Pooling 1D para reduzir a dimensionalidade.
- ► Camada Dense com ativação LeakyReLU.
- → Aplicação de **BatchNormalization** e *Dropout* para regularização.
- Camada de saída Dense com ativação sigmoid.

• Treino:

• Uso de **EarlyStopping** com base na perda de validação para evitar overfitting.

Este modelo destaca-se pela simplicidade e capacidade de generalização, sendo uma das soluções mais equilibradas entre performance e custo.

4.3.1.3. Híbrido CNN + Bidirectional LSTM com GloVe + Regularização

Este modelo representa uma fusão entre as abordagens anteriores, combinando convoluções, LSTM bidirecional, e uso de embeddings GloVe.

• Embeddings: Vetores GloVe pré-treinados carregados manualmente.

• Arquitetura:

- ► Camada *Embedding* com pesos GloVe congelados.
- ► Camada *Conv1D* seguida de *MaxPooling*.
- ► Camada Bidirectional LSTM.
- ► Camadas *Dense* para classificação.

· Regularização:

- Dropout após as camadas recorrentes e densas.
- ▶ *BatchNormalization* para estabilizar o treino.

O desempenho deste modelo foi competitivo, mas o tempo de treino e a complexidade computacional tornaram-no menos prático para submissões rápidas.

Para além dos modelos mencionados, foram experimentadas variantes dos modelos principais com diferenças em:

- Arquitetura: inclusão de mais camadas densas, alteração da dimensão de embeddings e diferentes funções de ativação.
- Regularização: testes com valores distintos de *dropout*, *batch normalization* e estratégias de early stopping.
- Estratégias de otimização: foram testados otimizadores como *RMSprop*, *SGD* e variantes do *Adam* (como *Adamx*), com diferentes valores de *learning_rate*.

4.3.2. Exploração com Transformers

Realizamos também uma primeira abordagem com modelos pré-treinados da biblioteca *Hugging Face transformers*, nomeadamente com o modelo *DistilBert* para classificação de texto, em que o pipeline envolveu:

- Tokenização com DistilBertTokenizerFast.
- Uso do modelo TDFistilBertForSequenceClassification
- Treino com TFTrainer e respetivos datasets em formato TFDataset

Mas apesar da complexidade e maior capacidade representacional deste modelo, a *accuracy* obtida não ultrapassou os 76%, o que possivelmente pode ser devido à necessidade de maior volume de dados ou até mesmo um *fine-tuning* mais extensivo.

Ao explorar estes modelos adicionais, reforçou ainda mais a decisão de manter os modelos falados na secção 4.1 e 4.2 como os principais para submissão, pois atingiram um melhor equilíbrio entre desempenho, simplicidade e interpretabilidade.

5. Modelos Claude

Além dos modelos de raiz e dos modelos construídos em *TensorFlow*, foi também explorada a utilização de Modelos *Claude*, desenvolvidos pela *Anthropic*. Estes modelos baseiam-se em grandes modelos de linguagem (*LLMs*) e foram acedidos através da *API* disponibilizada pela empresa, permitindo gerar e classificar texto de forma altamente sofisticada.

5.1. Integração via API da Anthropic

Para a utilização dos modelos da *Anthropic* (*Claude*), foi necessário criar credenciais de acesso e efetuar chamadas *REST* à *API*. O processo inclui:

1. Configuração de Autenticação

- Criação de uma API Key associada ao projeto.
- Armazenamento seguro desta chave em variáveis de ambiente para evitar exposição pública do *token*.

2. Formato de Requisição

- Envio de *prompts* de texto para o modelo, juntamente com parâmetros de configuração, tais como *temperature*, *max_tokens* e *stop sequences*.
- Receção da resposta contendo a predição/classificação ou o texto gerado pelo modelo.

3. Pipeline de Classificação

- Preparação dos exemplos de teste.
- Construção de um *prompt* específico, instruindo o modelo a determinar se o texto em análise foi escrito por um ser humano ou gerado por *IA*.

• Análise automática das respostas do *Claude* para aferir a correção em relação aos rótulos do conjunto de teste.

5.2. Modelos Avaliados

Ao longo dos testes, foram exploradas distintas versões do Claude:

- claude-3-7-sonnet-20250219
- claude-3-5-sonnet-20241022

(Outras versões como *Claude 3.5 Haiku*, *Claude 3 Haiku* ou *Claude 3 Opus* também foram experimentadas, mas com menor foco nos resultados finais.)

Cada variante difere em termos de tamanho do modelo, *training data cutoff*, estrutura interna e ajustes finos (*finetuning*) realizados pelos investigadores da *Anthropic*. Na prática, pequenas alterações no modelo podem impactar a capacidade de compreender e classificar textos de forma correta.

6. Resultados

6.1. Modelos Raiz

O melhor desempenho foi obtido com o SVM, que alcançou uma accuracy de 58% no conjunto de teste.

Observou-se que a *Logistic Regression* e o *Random Forest* apresentaram resultados ligeiramente abaixo, enquanto o *Naive Bayes* mostrou melhor capacidade de generalização quando o conjunto de dados estava desequilibrado, mas ainda assim não superou o *SVM* em termos de *accuracy* global. O resultado de 58% de *accuracy* representou um valor razoável como ponto de partida, indicando que o modelo conseguia distinguir textos gerados por *IA* de textos humanos significativamente acima do aleatório.

Contudo, ainda há espaço para melhoria; o pipeline de pré-processamento, a seleção de hiperparâmetros e a estratégia de balanceamento de classes poderiam ser otimizados.

6.2. Modelos Tensorflow

Relativamente aos modelos que foram desenvolvidos com a framework TensorFlow, designados S1 e S2. Em ambos os casos, construiu-se uma rede neuronal composta por camadas totalmente ligadas (fully connected layers), intercaladas com a função de ativação Rectified Linear Unit (ReLU) e camadas de dropout para prevenir overfitting. Utilizou-se o Adaptive Moment Estimation (Adam) como método de otimização e a função de perda cross-entropy.

Após o treino e a avaliação dos modelos num conjunto de teste, a S1 e S2 apresentaram ambas 79% de accuracy. Este resultado supera significativamente os valores dos modelos de raiz, que se situavam na casa dos 50-60%.

6.3. Modelos Claude

Em comparação com os modelos de raiz e com outras abordagens de redes neuronais tradicionais, os modelos *Claude* demonstraram um desempenho significativamente superior. Destacam-se:

claude-3-7-sonnet-20250219:

Obteve uma accuracy de 97%, sendo o melhor resultado registado no nosso projeto.

claude-3-5-sonnet-20241022:

Apresentou uma *accuracy* de *94%*, também acima dos valores alcançados pelos restantes modelos testados.

Esses valores refletem o estado da arte atual em modelos de linguagem de larga escala, exibindo grande capacidade de identificar padrões subtis que indicam se um texto foi gerado por *IA* ou não.

Generalização e Robustez

• Ao analisarmos diferentes domínios textuais (desde textos curtos informais até redações mais longas e formais), verificou-se que o *Claude* manteve elevada consistência na classificação, mesmo quando confrontado com *prompt engineering* destinado a confundi-lo.

Comparação com Modelos Anteriores

- Os resultados superam facilmente os das soluções baseadas em métodos clássicos de Machine Learning e também mostram-se superiores aos alcançados com redes neuronais menos sofisticadas.
- A integração via *API* proporcionou facilidade de uso, permitindo testar rapidamente diferentes *endpoints* do *Claude* e ajustar parâmetros de inferência.

Custo e Limitações

• Apesar do alto desempenho, deve-se considerar o custo computacional e financeiro associado ao consumo da *API*, especialmente em cenários de processamento em larga escala.

A utilização dos modelos da *Anthropic (Claude)* demonstrou claramente a eficácia de *LLMs* no contexto de distinção entre textos gerados por *IA* e textos humanos, alcançando *accuracies* na ordem dos *94%* a *97%*. Tais resultados reforçam:

A viabilidade de soluções prontas baseadas em *APIs* comerciais para classificação de textos.

O poder de generalização dos *LLMs*, capazes de lidar com uma grande variedade de estilos e formatos de texto.

O potencial de adoção futura desses modelos em sistemas que exijam elevada fiabilidade na deteção de textos artificiais.

No geral, estas experiências evidenciam que *Claude* oferece atualmente o melhor desempenho dentro do nosso conjunto de modelos, constituindo uma referência de comparação para quaisquer evoluções posteriores na área de classificação de autoria de texto.

6.4. Tabela Geral dos Resultados Obtidos

Modelo	Tipo de Arquitetura	Accuracy(%)	Observações Principais
S1 (Submissão 1)	SVM com TF-IDF	58%	Melhor entre os modelos clássicos
S2 (Submissão 1)	SVM / RF / NB + tuning	53%	Pequenos ganhos com tuning e validação cruzada
S1 (Submissão 2)	Embedding + Flatten + Dense + Dropout	79%	Arquitetura simples e efici- ente com boa generalização
S2 (Submissão 2)	Igual à S1 com menos épocas	79%	Resultados semelhantes, possível overfitting mais controlado
Claude 3.5 / 3.7 (API)	LLM da Anthropic via API	94-97%	Melhor performance; custo computacional/financeiro elevado

A tabela acima permite observar claramente a evolução do desempenho dos modelos ao longo do projeto. Verifica-se uma melhoria significativa ao transitar de modelos clássicos de Machine Learning para redes neurais com TensorFlow, com um salto de aproximadamente 20 pontos percentuais na accuracy.

É importante realçar que a escolha do modelo ideal depende do contexto de aplicação. Enquanto Claude é claramente superior em termos de precisão, os modelos desenvolvidos localmente oferecem maior

controlo, interpretabilidade e escalabilidade, podendo ser mais apropriados em ambientes restritos ou com limitação de recursos.

7. Conclusão

O principal objetivo deste trabalho foi a distinção entre textos gerados por sistemas de IA e textos escritos por humanos, recorrendo a diferentes abordagens de $Machine\ Learning\ e\ Deep\ Learning.$ Iniciou-se com métodos de raíz (baseados em $Machine\ Learning\ tradicional), obtendo-se resultados na ordem dos <math>53-58\%$ de accuracy, o que serviu de linha de base para validar e comparar soluções mais avançadas.

De seguida, a adoção de redes neuronais simples em *TensorFlow* permitiu elevar a *accuracy* para 79%, demonstrando o potencial de arquiteturas de *Deep Learning*, mesmo num estágio inicial de complexidade. Por fim, a utilização de grandes modelos de linguagem (*LLMs*) disponibilizados pela *API* da *Anthropic* (*Claude*) apresentou desempenhos notavelmente superiores, chegando a atingir 94% e 97% de *accuracy* nas versões testadas. Estes resultados evidenciam a evolução notável que modelos recentes de linguagem conseguem alcançar na tarefa de deteção de textos artificiais.

Em termos de impacto, os achados deste projeto confirmam a eficácia de métodos avançados de *Deep Learning* na identificação de padrões textuais gerados por *IA*, embora com custos computacionais e financeiros mais elevados. Além disso, torna-se claro que a engenharia do *prompt* e a qualidade dos dados de treino podem ser decisivas para tirar o máximo partido destes modelos. Para trabalho futuro, será relevante explorar arquiteturas híbridas, estratégias de *data augmentation* e técnicas de transferência de conhecimento para lidar com escalas maiores de dados, bem como consolidar a robustez dos sistemas perante novos estilos de geração textual.