Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «НАЗВАНИЕ РАБОТЫ» по дисциплине «Название дисциплины»

Выполнили: студенты гр. Р4135

Фамилия И.О.,

Фамилия И.О.

Преподаватель: Фамилия И.О.,

должность каф. СУиИ

Санкт-Петербург

Содержание

Введение	3
1 Описание манипулятора	4
2 Математическая модель манипулятора	5
2.1 Кинематика манипулятора	5
2.1.1 Прямая задача кинематики	8
2.1.2 Обратная задача кинематики	8
3 Синтез систем управления	9
Заключение	10
Список использованных источников	11
Приложение А Название приложения	12

П										
Инв. № дубл.										
B 3 a M. n HB. N $^{\underline{o}}$										
Подп. и дата										
Π_{OT}		И зм.	Лист	№ докум.	Подп.	Дата	КСУИ.101.4135.	001 Г	I3	
$\mathit{И}$ нв. $\mathcal{N}^{\underline{o}}$ подл.	$N^{\underline{a}}$ \overline{D}		раб. в. контр.	Антонов, Артемов Котельников Ю.П.			Разработка системы управления для манипулятора Kuka Youbot Пояснительная записка		Лист 2 ерситет федра (гр. Р41	СУиИ 35
							Копировал			Φ ормат $A4$

Введение

В данном документе будет рассказано о процессе разработке системы управления для манипулятора робота Kuka Youbot [1], дающей ему возможность для совершения двух действий: занятия позиции, при которой его схват будет принимать заданные положение и ориентацию, а также перемещения схвата по заданной траектории*. В целом содержание пояснительной записки можно описать примерно так:

- в разделе 1 будут приведены технические сведения о роботе, необходимые для решения поставленных задач;
- раздел 2 расскажет о процессе составления математической модели манипулятора, а именно о решении применительно к нему прямой и обратной задач кинематики и о составлении дифференциальных уравнений, описывающих протекающие в роботе электрические и механические процессы;
- в разделе 3 речь пойдет о синтезе соответствующих систем управления, о проверке их работоспособности с помощью моделирования, о результатах аппробации на реальном роботе и проч.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.101.4135.001 ПЗ

Лист

^{*} Здесь и далее, когда речь будет идти о траектории движении схвата, под последней будет подразумеваться не просто кривая, описываемая при этом схватом в пространстве, но таковая, явно параметризованная временем.

KCVN.101.4135.001 FI3 Описание манипулятора 1 Инв. № дубл. Взам. инв. № Подп. и дата \overline{M} нв. \mathbb{N} подл. Лист $KCУИ.101.4135.001\ \Pi 3$ Подп. Лист $N_{\overline{o}}$ докум. Дата

Математическая модель манипулятора

2.1 Кинематика манипулятора

Представим рассматриваемый манипулятор в виде последовательной кинематической цепи, каждое звено которой входит в состав одной или двух кинематических пар (КП). Все КП вращательные, V-класса – цилиндрические шарниры. Принципиальная схема изображена на рисунке 2.1 а.

Рисунок 2.1 - Схемы

Звенья будем рассматривать как абсолютно твердые тела, определяющие связь между двумя соседними шарнирами. Для описания шарнирных соединений между смежными звеньями воспользуемся методом Денавита и Хартенберга (ДХ-представление), который может быть представлен, как последователь-

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

 \overline{M}_{HB} . $\mathbb{N}^{\underline{b}}$

Взам. инв. №

Подп. и дата

IHВ. $N^{\underline{0}}$ ПОДЛ.

КСУИ.101.4135.001 ПЗ

Лист

ность из двух описанных ниже шагов*.

Первым шагом, следует сформировать системы координат для каждой $K\Pi$, руководствуясь следующими правилами:

- а) ось z_{i-1} направлена вдоль оси i-ой $K\Pi$;
- б) ось x_i параллельна общему перпендикуляру: $x_i = z_i \times z_{i-1}$. Если оси z_i и z_{i-1} пересекаются, то x_i выбирается, как нормаль к образованной ими плоскости;
- в) ось y_i дополняет оси z_i и x_i до правой декартовой системы координат.

Вторым шагом, нужно определить параметры ДХ:

- а) a_i расстояние от z_{i-1} до z_i вдоль x_i ;
- б) α_i угол от z_{i-1} до z_i вокруг x_i ;
- в) d_i расстояние от x_{i-1} до x_i вдоль z_{i-1} ;
- г) θ_i угол от x_{i-1} до x_i вокруг z_{i-1} .

Таким образом, ДХ-представление твердых звеньев зависит от четырех геометрических параметров, соответствующих каждому звену. Эти четыре параметра полностью описывают любое вращательное или поступательное движение.

Для вращательных КП параметры d_i , a_i и α_i не изменяются и являются их геометрическими размерами. В то время, как θ_i переменная величина, изменяющаяся при вращении i-го звена относительно (i-1)-го.

Для каждого звена этот алгоритм формирует ортонормированную систему координат. Системы координат нумеруются в порядке возрастания от основания к схвату манипулятора. Для обследуемого манипулятора, выбранные системы координат изображены на рисунке 2.1 б.

Параметры ДХ указаны в таблице 2.1

^{*} Представление Денавита-Хартенберга состоит в формировании однородной матрицы преобразования, имеющей размерность 4×4 и описывающей положение системы координат каждого звена относительно системы координат предыдущего звена.

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.101.4135.001 ПЗ

Лист

Таблица 2.1 – Параметры Денавита-Хартенберга

Звено	a_i	α_i	d_i	θ_i
1	0	0	d_1	θ_1
2	a_2	$\pi/2$	d_2	θ_2
3	a_3	0	0	$\theta_3 + \pi/2$
4	a_4	0	0	θ_4
5	0	$\pi/2$	0	θ_5
6	0	0	d_6	θ_6

Взаимное расположение соседних звеньев описывается однородной матрицей преобразования (2.2) размерностью 4×4 , которая формируется в соответствии с формулой (2.1).

$$^{i}A_{i+1} = R_{z_i,\theta_i} \cdot T_{z_i,d_i} \cdot T_{x_i,a_i} \cdot R_{x_i,\alpha_i}$$

$$\tag{2.1}$$

где R_{z_i,θ_i} — матрица поворота вокруг оси z_i на угол θ_i , T_{z_i,d_i} — матрица трансформации вдоль оси z_i на расстояние d_i , T_{x_i,a_i} —матрица трансформации вдоль оси x_i на расстояние a_i , R_{x_i,α_i} — матрица поворота вокруг оси x_i на угол α_i .

$${}^{i}A_{i+1} = \begin{bmatrix} R_{3\times3} & d_{3\times1} \\ 0_{1\times3} & 1 \end{bmatrix}$$
 (2.2)

где $R_{3\times 3}$ — матрица поворота СК $_i$ в СК $_{i+1}$, $d_{3\times 1}$ — вектор соединяющий СК $_i$ и СК $_{i+1}$.

Инв. № дубл.

Взам. инв. №

Инв. № подл.

$$R_{z_{i},\theta_{i}} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i}) & 0 & 0\\ \sin(\theta_{i}) & \cos(\theta_{i}) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.3)

Изм. Лист № докум. Подп. Дата

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FB

$$T_{z_i,d_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.4)

$$T_{x_i,a_i} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.5)

$$R_{x_{i},\alpha_{i}} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(\alpha_{i}) & -\sin(\alpha_{i}) & 0\\ 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.6)

$${}^{i}A_{i+1} = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\alpha_i)\sin(\theta_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\alpha_i)\cos(\theta_i) & -\sin(\alpha_i)\cos(\theta_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.7)

2.1.1 Прямая задача кинематики

Прямая задача кинематики заключается в определении положения и ориентации схвата для заданного набора обобщенных координат. Решается путем перемножения однородных преобразований

2.1.2 Обратная задача кинематики

Инв. № дубл.

Взам. инв. №

	ЕШ Т	100.3	EIÞ.I	01.И\	KCZ							
		3	$\mathbf{C}_{\mathbf{k}}$	интез	з сис	стем	упра	влен	RN			
Подп. и дата												
Инв. № дубл.												
\blacksquare												
Взам. инв. №												
Подп. и дата												
Инв. № подл.							КСУ	<u></u> И.101	.4135.	.001	ПЗ	Лист
И	Изм. Лист	№ Д	окум.	Подп.	Дата			Vorrmon				9 • • • • • • • • • • • • • • • • • • •

	KCVM,101,4135,001 FI		
	Заключение		
	Текст заключения		
m m	_		
Подп. и дата			
Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
Инв. № подл.	<u> </u> 		Лист
Инв.	Изм. Лист № докум. Подп. Дата	КСУИ.101.4135.001 ПЗ	10

ΣII	$T \cap \cap$.00	TL.	TC	· T ·	T T	00	\ \ T
> 11	11111	4,5	I 1/	III	11	I/I	Δ :	ıм

Список использованных источников

1 KUKA YOUBOT. — URL: http://www.technomatix.ru/kuka-youbot (дата обращения: 08.03.2017).

Подп. и дата				
Инв. № дубл.				
Взам. инв. №				
Подп. и дата				
Инв. № подл.				Лист
Инв.	Изм. Лист № докум.	Подп. Дата	КСУИ.101.4135.001 ПЗ Копировал	11 Формат А4

КСУИ.101.4135.001 ПЗ Приложение А (обязательное) Название приложения Текст приложения Инв. № дубл. Взам. инв. № Подп. и дата $\overline{\mathit{И}}$ нв. N $^{\underline{o}}$ подл. Лист $KCУИ.101.4135.001\ \Pi 3$ 12 Дата Подп. Изм. Лист $N_{\overline{o}}$ докум.