Углубленный Python

Лекция 3 Объектная модель, введение в ООП

Кандауров Геннадий

Напоминание отметиться на портале

+ оставить отзыв после лекции

Квиз про прошлой лекции

Содержание занятия

- 1. Фунции
- 2. Пространства имен, LEGB
- 3. Классы
- 4. ΟΟΠ

Функции

еще немного

Функции: параметры

```
def fn1(x, y=100): pass
def fn2(*arqs): pass
def fn3(**kwarqs): pass
def fn4(*args, **kwargs): pass
def fn5(*, val): pass
def fn6(start, stop, /): pass
def fn7(pos1, /, pos2, pos3=3, *, kw1=11, **kwargs): pass
```

Функции

```
def make function(name, *args, kw=12, **kwargs):
    '''makes inner function'''
    def inner(age=999):
        print(f"{name=}, {age=}, {kw=}, {args=}, {kwargs=}")
    return inner
fn = make function('skynet', 54, aim='term')
fn()
# name='skynet', age=999, kw=12, args=(54,), kwargs={'aim': 'term'}
```

Функции

```
>>> fn.__dict__
{}
>>> fn.music = 'yes'
>>> fn.__dict__
{'music': 'yes'}
>>> fn.music
'yes'
```

Функции: атрибуты

```
doc докстринг, изменяемое
>>> make function. doc
'makes inner function'
__name__ имя функции, изменяемое
>>> make function. name
'make function'
qualname fully qualified имя, изменяемое
>>> make function. qualname
'make function'
>>> fn. qualname
'make function.<locals>.inner'
```

Функции: атрибуты

```
defaults кортеж дефолтных значений, изменяемое
>>> fn. defaults
(999,)
kwdefaults словарь дефолтных значений кваргов, изменяемое
>>> make function. kwdefaults
{'kw': 12}
closure кортеж свободных переменных функции
>>> make function. closure
None
>>> fn. closure [0].cell contents
(54,)
```

Пространства имен

"Namespaces are one honking great

idea -- let's do more of those!"

Tim Peters (import this)

Пространства имен

Пространство имен—это совокупность определенных в настоящий момент символических имен и информации об объектах, на которые они ссылаются.

- Встроенное
- Глобальное
- Объемлющее
- Локальное

Область видимости: LEGB

Область видимости имени это часть программы, в которой данное имя обладает значением.

Интерпретатор определяет эту область в среде выполнения, основываясь на том, где располагается определение имени и из какого места в коде на него ссылаются.

- 1. Локальная
- 2. Объемлющая
- 3. Глобальная
- 4. Встроенная

- o globals()
- o locals()
- o global
- nonlocal

__builtins__

```
>>> hasattr( builtins , "dir")
True
>>> dir( builtins )
. . .
                                                          dir
int
                                      reversed
                 map
float
                 zip
                                      len
                                                          type
                 filter
                                                          isinstance
str
                                      sum
bool
                                      all
                                                          issubclass
                 range
tuple
                                                          hasattr
                 enumerate
                                      any
list
                                      qlobals
                 sorted
                                                          getattr
dict
                                      locals
                 min
                                                          setattr
                                      callable
set
                                                          delattr
                 max
```

Классы

Objects are Python's abstraction for data. All data in a Python program is represented by objects or by relations between objects.

docs.python.org

Классы: атрибуты

```
class A:
   name = "cls name"
    cls private = "cls private"
   def init (self, val):
       self.val = val
        self. protected = "protected"
       self. private = "private"
   def print(self):
       print(
           f"{self.val=}, {self. protected=}, {self. private=}, "
            f"{self.name=}, {self. cls private=}"
```

Классы: свойства

```
# классический подход
                                   # pythonic
class Author:
                                   class Author:
   def __init__(self, name):
                                       def init__(self, name):
        self. name = ""
                                           self.name = name
        self.set name(name)
                                       aproperty
    def get name(self):
                                       def name(self):
        return self. name
                                           return self. name
    def set name(self, val):
                                       aname.setter
        self. name = val
                                       def name(self, val):
                                           self. name = val
```

Классы: свойства

```
class Author:
class Author:
                                           def init__(self, name):
    def init (self, name):
                                               self.name = name
        self.name = name
                                           def get name(self):
   aproperty
                                               return self. name
    def name(self):
                                           def set name(self, val):
        """name doc"""
                                               self. name = val
        return self. name
                                           def del name(self):
   aname.setter
                                               del self. name
    def name(self, val):
                                           name = property(
        self. name = val
                                               get name,
                                               set_name,
    aname.deleter
                                               del name,
    def name(self, val):
                                               "name doc",
        self.__name = val
```

Классы: свойства read/write only

```
class Author:
    def init (self, name, password):
        self. name = name
        self.password hash = None
        self.password = password
   aproperty
    def name(self):
        """name is read-only"""
        return self. name
   aproperty
    def password(self, val):
        raise AttributeError("Password is write-only")
   apassword.setter
    def password(self, plaintext):
        self.password_hash = make_hash_from_password(plaintext)
```

Классы: методы

```
class A:
   astaticmethod
   def print static():
       print("static")
   @classmethod
   def print cls(cls):
       print(f"class method for {cls. name }")
   def init (self, val):
       self.val = val
    def print offset(self, offset=10):
       print(self.val + offset)
   def str (self):
       return f"{self. class . name }:val={self.val}"
```

Классы: доступ к атрибутам

Чтобы найти атрибут объекта obj, python обыскивает:

- 1. Сам объект (obj.__dict__ и его системные атрибуты)
- Класс объекта (obj.__class__.__dict__).
- 3. Классы, от которых унаследован класс объекта (obj.__class__.__mro__)

Классы: магические атрибуты

Классы

```
__name__ — имя класса
__module__ — модуль, в котором объявлен класс
__qualname__ — fully qualified имя
__doc__ — докстринг
__annotations__ — аннотации статических полей класса
dict — namespace класса
```

Методы

```
__self__ — объект класса
func — сама функция, которую мы в классе объявили
```

Классы: магические атрибуты

Поля, относящиеся к наследованию

```
bases — базовые классы
base — базовый класс, который указан первым по порядку
mro — список классов, упорядоченный по вызову функции super
class B(A): pass
>>> B. bases
( main .A,)
>>> B. base
main .A
>>> B. mro
( main _.B, __main__.A, object)
```

Классы: MRO

Порядок разрешения методов (method resolution order) позволяет python выяснить, из какого класса-предка нужно вызывать метод, если он не обнаружен непосредственно в классе-потомке.

```
cls.__mro__
cls.mro()
>>> B.mro()
[__main__.B, __main__.A, object]
```

Классы: локальный порядок старшинства

```
>>> class A:
                                               object
... pass
>>> class B:
... pass
. . .
>>> class C(A, B):
... pass
. . .
>>> C.mro()
[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>]
>>>
>>> class C(B, A):
... pass
>>> C.mro()
[<class '__main__.C'>, <class '__main__.B'>, <class '__main__.A'>, <class 'object'>]
```

```
object. new (cls[, ...])
Статический метод, создает новый экземпляр класса.
После создание экземпляра вызывается (уже у экземпляра) метод __init__.
init ничего не должен возвращать (кроме None), иначе - TypeError
class Singleton:
    instance = None
    def new (cls, *args, **kwargs):
        if cls. instance is None:
            cls. instance = super(). new (cls, *args, **kwargs)
        return cls. instance
```

Доступ к атрибутам

```
o __getattribute__(self, name)
```

- o __getattr__(self, name)
- o __setattr__(self, name, val)
- o __delattr__(self, name)
- o __dir__(self)

```
object.__call__(self[, args...])
class Adder:
   def init (self, val):
       self.val = val
   def call (self, value):
       return self.val + value
```

```
a(5) # 15
```

a = Adder(10)

To string

```
__repr__ — представление объекта. Если возможно, должно быть валидное python выражение для создание такого же объекта __str__ — вызывается функциями str, format, print __format__ — вызывается при форматировании строки
```

Сравнение

```
object. lt (self, other)
object. le (self, other)
object. eq (self, other)
object. ne (self, other)
object. qt (self, other)
object. ge (self, other)
x < y == x. lt (y) # <=, ==, !=, >, >=
```

Эмуляция чисел object. add (self, other) object. sub (self, other) object. mul (self, other) object. matmul (self, other) (a) object. truediv (self, other) object. floordiv (self, other) object. mod (self. other) object. divmod (self, other) object. pow (self, other[, modulo]) object. lshift (self, other) object. rshift (self, other) object. and (self, other) object. xor (self, other) object. or (self. other)

Эмуляция чисел

Методы вызываются, когда выполняются операции (+, -, *, @, /, //, %, divmod(), pow(), **, <<, >>, &, ^, |) над объектами

$$x + y == x._add_(y)$$

Есть все такие же с префиксом г и і:

__radd__ - вызывается, если левый операнд не поддерживает __add__

 $__$ iadd $_$ - вызывается, когда \times += y

Эмуляция контейнеров

```
object. len (self)
object. length hint (self)
object. getitem (self, key)
object. setitem (self, key, value)
object.__delitem__(self, key)
object. missing (self, key)
object. iter (self)
object. next (self)
object. reversed (self)
object. contains (self, item)
```

__hash__

Вызывается функцией hash() и коллекциями, которые построены на основе hashтаблиц. Нужно, чтобы у равных объектов был одинаковый hash.

Если определен метод __eq__ и не определен __hash__, то объект не может быть ключом в hashable коллекции.

```
>>> key1 = (1, 2, 3)
>>> key2 = (1, 2, 3, [4, 5])
>>> s = set()
>>> s.add(key1) # ???
>>> s.add(key2) # ???
```

```
slots
Позволяет явно указать поля, которые будут в классе.
В случае указания slots пропадают поля dict и weakref .
Используя slots можно экономить на памяти и времени доступа к атрибутам
объекта.
class Point:
    slots = ('x', 'y')
    def init (self, x, y):
        self.x = x
```

self.y = y

Домашнее задание #3

- Реализовать кастомный список, унаследованный от list
- +тесты
- flake8 + pylint перед сдачей

Напоминание отметиться на портале Vol 2

+ оставить отзыв

Занятий н

(3)

Спасибо за внимание

