The Submodular Santa Claus Problem in the Restricted Assignment Case

Étienne Bamas, Paritosh Garg, Lars Rohwedder

École polytechnique fédérale de Lausanne

The (Linear) Santa Claus Problem

- A set of resources R and a set of players P. Each resource j has a value p_i.
- Assignment restrictions given by some bipartite graph.
- Goal: Find an assignment
 σ : R → P respecting the
 restrictions such that

$$\min_{i \in P} \sum_{j \in \sigma^{-1}(i)} p_j$$

is maximized, i.e. make the least happy kid as happy as possible!

The (Linear) Santa Claus Problem

The **Submodular** Santa Claus Problem

An equivalent formulation of the **linear** Santa Claus:

Given a **linear** function $f: 2^R \mapsto \mathbb{R}_+$, find an assignment (with assignment restrictions) $\sigma: R \mapsto P$ such that

$$\min_{i \in P} \quad f\left(\sigma^{-1}(i)\right)$$

is maximized.

What happens if f becomes a monotone **submodular** function? **Submodular** Santa Claus problem (with assignment restrictions).

Previous results for Santa Claus

In the linear case, very well studied problem.

- Introduced by Bansal and Srividenko (STOC'06) who gives an $O(\log \log(m)/\log \log \log(m))$ -approximation algorithm (with m = |P|).
- Numerous improvements over the years on the approximation guarantee, the technique and/or the running time. The current best approximation is a $(4+\epsilon)$ -approximation in polynomial time (Davies, Rothvoss, and Zhang SODA'20, Cheng and Mao ICALP'19).

Previous results for Santa Claus

In the linear case, very well studied problem.

- Introduced by Bansal and Srividenko (STOC'06) who gives an $O(\log \log(m)/\log \log \log(m))$ -approximation algorithm (with m=|P|).
- Numerous improvements over the years on the approximation guarantee, the technique and/or the running time. The current best approximation is a $(4+\epsilon)$ -approximation in polynomial time (Davies, Rothvoss, and Zhang SODA'20, Cheng and Mao ICALP'19).

In the **submodular** case, a more general result by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) implies a $O(n^{1/2+\epsilon})$ -approximation in polynomial time (where n=|R|) in the restricted assignment case.

Previous results for Santa Claus

In the linear case, very well studied problem.

- Introduced by Bansal and Srividenko (STOC'06) who gives an $O(\log \log(m)/\log \log \log(m))$ -approximation algorithm (with m = |P|).
- Numerous improvements over the years on the approximation guarantee, the technique and/or the running time. The current best approximation is a $(4+\epsilon)$ -approximation in polynomial time (Davies, Rothvoss, and Zhang SODA'20, Cheng and Mao ICALP'19).

In the **submodular** case, a more general result by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) implies a $O(n^{1/2+\epsilon})$ -approximation in polynomial time (where n=|R|) in the restricted assignment case.

Our result:

Theorem

There exists a $O(\log \log(n))$ -approximation algorithm running in polynomial time for the Submodular Santa Claus in the Restricted Assignment case.

A **new** bipartite hypergraph matching problem for the **submodular** case

Given a regular and **non-uniform** bipartite hypergraph, find for each vertex $i \in P$ one hyperedge C_i such that:

- ① $i \in C_i$, and player i is assigned a good fraction of resources in C_i .
- 2 No resource is taken more than log log(n) times.

Open questions

• O(1)-approximation ?

• We extended the Lovász Local Lemma technique to the submodular case. What about the local search technique?

Thank you for your attention!