

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP2 - 1° semestre de 2018.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- v) Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- 1) Seja I a intensidade da luz incidente em um ponto p, l o vetor que indica a direção de incidência da luz, v a posição do observador, n a normal em p e r o raio de luz refletido. a equação $(r.v)^x$...
 - A Trata-se da componente especular do modelo Phong
 - B Quanto maior x, mais distante o material está de um espelho
 - C todos os materiais que possuem esta componente
 - D Esta componente é invariante de acordo com a posição do observador
 - E v depende da posição da fonte de luz
- 2) O oclusion culling de polígonos consiste em:
 - A projetar o polígono no frustrum da camera
 - B rasterizar o interior do polígono
 - C eliminar polígonos ocultos
 - D estratégia de eliminar polígonos que estão fora do frustrum da camera
 - E Transformar as coordenadas do polígono para espaço de frustrum
- 3) Em um jogo, observou-se que alguns polígonos ficam piscando, aparecendo em alguns momentos um e em outros frames outro. A provável causa deste efeito é:
 - A Erro de aproximação no processo de rasterização do polígono.
 - B polígonos com materiais diferentes, pertencentes a mesma estrutura da dados
 - C A câmera estar se movendo muito rápido
 - D Erro de aproximação no algoritmo de frustrum culling, por falta de uma estrutura de dados adequada

- E Erro de aproximação do Z-Buffer, quando os dois polígonos estão na mesma distância da câmera
- 4) Qual destes elementos não são necessários para calcular o frustrum culling (por exemplo, a BSP):
 - A posição da câmera
 - B Lista de vértices da malha
 - C Lista de Fontes de Luz
 - D Direção da camera
 - E Angulo de abertura da camera.
- 5) Sobre o CUDA:
 - A é dedicado a programação gráfica da Gpu.
 - B é uma biblioteca gráfica da NVIDIA
 - C altera os vértices da geometria.
 - D Pode conter um modelo de iluminação
 - E permite programação maciçamente paralela
- 6) Um kernel é:
 - A Uma função que é executada na GPU
 - B Outro nome dado ao polígono
 - C Um modelo de interpolação
 - D Um shader
 - E Um modelo de iluminação
- 7) Usamos Quaternions porque:
 - A São ótimos algoritmos de iluminação
 - B Para resolver problemas de profundidade, na etapa de projeção
 - C Para realizar clipping de polígonos
 - D Para construir as matrizes de transformação
 - E No lugar da matriz de rotação, para evitar gimble lock
- 8) Em um jogo, uma pedra pode ser vista de longe ou de perto. Para evitar problemas de aliasing (super-amostragem ou sub-amostragem), uma destas soluções NÃO é adequada:
 - A usar texturas procedurais
 - B usar texturas com múltiplas resoluções
 - C ter um conjunto de malhas, cada uma com texturizações adequadas
 - D usar uma textura com resolução muito alta
 - E aplicar filtros de anti-aliasing
- 9) No OpenGL, a normal de um polígono é:
 - A Guardada no vértice
 - B Guardada no material do objeto
 - C Guardada na textura do objeto
 - D A mesma para todo o objeto
 - E Calculada de acordo com a posição da camera

- 10) podemos afirmar sobre o Ray-tracing:
 - A pode ser acelerado realizando interpolação da iluminação calculada apenas nos vértices
 - B é uma iluminação por pixel
 - C Realiza interpolação de vértices para calcular a iluminação total
 - D Não requer a etapa de clipping
 - E precisa do Z-Buffer
- 11) A custo computacional do algoritmo de Raytracing não depende da:
 - A quantidade de polígonos na cena.
 - B número de pixels na imagem final a ser gerada.
 - C quantidade de níveis de recursão das reflexões e transmissões de raios no algoritmo.
 - D quantidade de fontes luz na cena.
 - E do ângulo que as fontes de luz fazem com a cena.
- 12) As GPUs são boas para deep learning porque:
 - A utilizam-se diversos métodos de processamento de imagens para deep learning
 - B transforma-se tudo em texturas e processa-se como se fosse um pipeline gráfico
 - C Devido ao processamento de quaternions que ocorrem
 - D Há muita semelhança em Deep Learning com o pipeline gráfico
 - E Há muitos cálculos de matrizes para serem feitas

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	A	C	Е	C	Е	A	Е	D	Α	В	Е	E