Supplementary Material for: Negativity of the target density in practical Frozen-Density Embedding Theory based calculations

Niccolò Ricardi,^{1, a)} Cristina E. González-Espinoza,^{1, b)} and Tomasz Adam Wesołowski^{1, c)}
Department of Physical Chemistry, University of Geneva,
Geneva (Switzerland)

(Dated: 8 April 2022)

^{a)}Electronic mail: Niccolo.Ricardi@unige.ch

b) Electronic mail: Cristina.GonzalezEspinoza@unige.ch

c) Electronic mail: Tomasz. Wesolowski@unige.ch

S1. BOUNDARIES OF $P[\rho_A^o + \rho_B - \rho_{AB}^o]$

The parameter P is bound by:

$$M[\rho_B - \rho_{AB}^o] \le P[\rho_A^o + \rho_B - \rho_{AB}^o] \le N_{AB}. \tag{S1}$$

A. Proof

Due to the fact that:

$$\int \rho_A^o + \rho_B = \int \rho_{AB}^o = N_{AB},\tag{S2}$$

where N_{AB} is the number of electrons of the supersystem, the integrated difference of these two densities is zero:

$$\int \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} = 0$$

$$\int \rho_{AB}^{o} < \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} + \int \rho_{AB}^{o} + \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} = 0$$

$$\int \rho_{AB}^{o} < \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} = \int \rho_{AB}^{o} > \rho_{A}^{o} + \rho_{B} - \rho_{A}^{o} - \rho_{B}$$

$$\int \rho_{AB}^{o} < \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} = \int \rho_{AB}^{o} > \rho_{A}^{o} + \rho_{B}$$

$$\rho_{AB}^{o} < \rho_{A}^{o} + \rho_{B} - \rho_{A}^{o} - \rho_{B}$$
(S3)

As a consequence, we can reformulate $P[\rho_A^o + \rho_B - \rho_{AB}^o]$:

$$P[\rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}] = \frac{1}{2} \cdot \int |\rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}|$$

$$P[\rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}] = \frac{1}{2} \cdot \int_{\rho_{AB}^{o} < \rho_{A}^{o} + \rho_{B}} \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} + \rho_{AB}^{o} - \rho_{AB}^{o} + \rho_{AB}^{o} - \rho_{AB}^{o} + \rho_{AB}^{o} - \rho_{AB}^{o} -$$

We can then split the integration space and obtain:

$$P[\rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}] = \int_{\rho_{AB}^{o} < \rho_{B}} \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o} + \int_{\rho_{AB}^{o} < \rho_{B} + \rho_{A}^{o}} \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}.$$
 (S5)

Which in turn leads to:

$$P[\rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}] = M[\rho_{AB}^{o} - \rho_{B}] + \int_{\rho_{AB}^{o} < \rho_{B}} \rho_{A}^{o} + \int_{\rho_{AB}^{o} < \rho_{B}} \rho_{A}^{o} + \rho_{B} - \rho_{AB}^{o}.$$
(S6)

The fact that both integrals on the right hand side of Eq. S6 are non-negative guarantees that:

$$P[\rho_A^o + \rho_B - \rho_{AB}^o] \ge M[\rho_{AB}^o - \rho_B],\tag{S7}$$

while the upper bound in Eq. S1 is apparent from Eq. S4.

S2. DATA

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)}$ [b]	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH	$ ho_B^{isol}$	0.092		-10.983	-0.028	0.009	0.121	0.228	0.362
7HQ-2MeOH	$ ho_B^{FAT}$	0.081	0.127	-14.269	-0.028	0.009	0.007	0.059	0.362
7HQ-formate	$ ho_B^{isol}$	0.020		-23.037	-0.058	0.006	0.206	0.316	0.670
7HQ-formate	ρ_B^{FAT}	-0.008	0.068	-33.325	-0.058	0.006	0.007	0.066	0.670
uracil- $5H_2O$	$ ho_B^{isol}$	0.224		-32.065	-0.062	0.012	0.234	0.426	0.633
uracil- $5H_2O$	$ ho_B^{FAT}$	0.204	0.236	-39.695	-0.062	0.012	0.014	0.114	0.633
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.160		-26.948	-0.058	0.012	0.184	0.416	0.600
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.131	0.164	-34.894	-0.058	0.012	0.013	0.104	0.600

[[]a] defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_A^{(A)} + E_B^{(B)} - E_A^{(AB)} - E_B^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

[e]
$$M = M[\rho^{ref} - \rho_B^{FDET(FAT)}]$$
 with $M[\rho]$ defined in Eq. 18 in the manuscript

$$^{[f]}$$
 $P_{cmpl}=P[
ho_A^{isol}+
ho_B^{isol}-
ho^{ref}]$ (cf. Eq. 21), with $P[
ho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho^{ref}-\rho^{FDET(FAT)}_{tot}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

TABLE S1. Supplementary data for supermolecular expansion results.

^[b] defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively.

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_{AB}^{(AB)} - E_{A}^{(AB)} - E_{B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

 $^{^{[}h]}$ $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)} [b]$	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH	$ ho_B^{isol}$	0.087		-10.702	-17.473			0.231	0.368
7HQ-2MeOH	$\rho_B^{pp(Mulliken)}$	0.084		-10.688	-17.473	5.632	0.121	0.221	0.368
7HQ-2MeOH	$\rho_B^{pp(ChelPG)}$	0.084		-13.492	-17.473	5.632	0.037	0.118	0.368
7HQ-2MeOH	$ ho_B^{FAT}$	0.081	0.128	-13.181	-17.473	5.632	0.013	0.073	0.368
7HQ-formate	$ ho_B^{isol}$	0.021		-22.927	-36.485	3.522	0.205	0.316	0.673
7HQ-formate	$ ho_B^{pp(Mulliken)}$	0.016		-27.202	-36.485	3.522	0.148	0.242	0.673
7HQ-formate	$ ho_B^{pp(ChelPG)}$	0.015		-28.678	-36.485	3.522	0.096	0.186	0.673
7HQ-formate	$ ho_B^{FAT}$	0.011	0.117	-28.028	-36.485	3.522	0.036	0.114	0.673
uracil- $5H_2O$	$ ho_B^{isol}$	0.212		-31.629	-38.620	7.839	0.237	0.427	0.643
I .	$\rho_B^{pp(Mulliken)}$	0.201		-35.221	-38.620	7.839	0.173	0.305	0.643
uracil- $5H_2O$	$ ho_B^{pp(ChelPG)}$	0.205		-38.010	-38.620	7.839	0.058	0.206	0.643
uracil- $5H_2O$	$ ho_B^{FAT}$	0.196	0.234	-37.182	-38.620	7.839	0.024	0.129	0.643
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.161		-25.795	-36.532	7.318	0.185	0.419	0.606
PyrBnz-2HCOOH	$\rho_B^{pp(Mulliken)}$	0.141		-31.448	-36.532	7.318	0.152	0.281	0.606
PyrBnz-2HCOOH	$ ho_B^{pp(ChelPG)}$	0.146		-32.291	-36.532	7.318	0.057	0.215	0.606
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.139	0.164	-32.418	-36.532	7.318	0.016	0.127	0.606

 $^{^{[}a]}$ defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_A^{(A)} + E_B^{(B)} - E_A^{(AB)} - E_B^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

$$^{[e]}$$
 $M=M[\rho^{ref}-\rho_{B}^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$^{[f]}$$
 $P_{cmpl}=P[
ho_A^{isol}+
ho_B^{isol}-
ho^{ref}]$ (cf. Eq. 21), with $P[
ho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho^{ref}-\rho^{FDET(FAT)}_{tot}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

 $^{[h]}$ $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

TABLE S2. Supplementary data for monomer expansion results.

^[b] defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively, and in Eq. 14 for $\rho_B^{pp(Mulliken)}$ and $\rho_B^{pp(ChelPG)}$

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_{AB}^{(AB)} - E_{A}^{(AB)} - E_{B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.