Tutorial Problems 1

The TA will cover a subset of these problems during the tutorial. Solutions will not be provided outside of the tutorial.

1. Let n be a positive integer. Let E be the set of all subsets of [n] of even size, and let O be the set of all subsets of [n] of odd size. Find a bijection between the elements of E and O, and illustrate your bijection by matching up the E and O for [4]. Use this result to prove the following identity:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

2. For any integers n, k, r where $n \ge k \ge r \ge 0$, give a combinatorial proof of the following identity.

$$\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}.$$

3. Give a combinatorial proof and an algebraic proof of the following identity for any positive integer n.

$$\sum_{i=0}^{n} \binom{n}{i} i = n2^{n-1}.$$

- 4. Let S be the set of all permutations of [3].
 - (a) For each permutation $\sigma: [3] \to [3]$, define $w(\sigma) = \min\{i \mid \sigma(i) \leq i, i \in [3]\}|$. Determine the generating series $\Phi_S(x)$ for S with respect to w.
 - (b) We now define $w^*(\sigma) = \min\{i+2 \mid \sigma(i) \leq i, i \in [3]\}$. Determine the generating series $\Phi_S^*(x)$ for S with respect to w^* .
 - (c) What is the relationship between $\Phi_S(x)$ and $\Phi_S^*(x)$?

Practice Problems for Assignment 1

- 1. Consider the k-tuples (T_1, \ldots, T_k) where each $T_i \subseteq [n]$. In other words, if P is the set of all subsets of [n], then such a k-tuple is in the cartesian product P^k . We define the following two subsets of P^k :
 - (a) S is all such k-tuples where $T_1 \subseteq T_2 \subseteq \cdots \subseteq T_k$.
 - (b) T is all such k-tuples that are mutually disjoint, i.e. $T_i \cap T_j = \emptyset$ for any $i \neq j$.

Find a bijection between S and T, which proves that |S| = |T|. What is this cardinality?

2. For $0 \le r \le n$, prove the following identity.

$$\binom{n}{r}3^{n-r} = \sum_{k=r}^{n} \binom{n}{k} \binom{k}{r} 2^{n-k}.$$

3. Let n be a positive integer. Consider all possible ways of arranging n pairs of parentheses "(" and ")" in a row. We want to arrange them in a way that it is possible to pair up the left parentheses with the right parenthesis so that "(" is to the left of ")". Let A_n be the set of all such arrangements with n pairs of parentheses. There are 5 elements in A_3 , as shown below.

$$((()))$$
 $(()())$ $(())()$ $()(())$

On an $n \times n$ grid, we consider paths travelling along the grid lines from the SW corner to the NE corner of the grid with the conditions that we only travel in the N or E direction, and we never travel above the x = y line. Let B_n be the set of all such paths in an $n \times n$ grid. There are 5 elements in B_3 , as shown below.

Let C_n be the set of all possible ways that we can stack identical coins with n coins at the bottom row. For example, the following are elements of C_3 .

Finding the exact size of A_n , B_n or C_n in general could be tricky. Even though these are completely different objects, they actually have the same size. Prove that $|A_n| = |B_n| = |C_n|$ by providing two bijections, one maps between A_n and B_n , the other maps between B_n and C_n . Provide inverses of your bijections. Illustrate your bijections by drawing the path in B_7 and a stack of coins in C_7 that corresponds to the following element in A_7 .