Лабораторная работа № 9

ИССЛЕДОВАНИЕ СПЕКТРОВ ИМПУЛЬСНЫХ СИГНАЛОВ

Цель работы — изучение спектрального состава периодической последовательности импульсов прямоугольной формы при различных частотах следования и длительностях импульсов.

Содержание отчета о выполнении лабораторной работы

Отчет по лабораторной работе должен содержать:

- основы теории спектрального представления сигналов;
- текст программы;
- временные диаграммы и графики амплитудных спектров сигналов, построенные на основе расчета по методу Фурье;
 - анализ результатов исследований.

Контрольные вопросы

- 1) Что понимается под спектром сигнала?
- 2) Что называется амплитудным спектром сигнала?
- 3) Что называется фазовым спектром сигнала?
- 4) Что называется шириной спектра?
- 5) Как ширина спектра периодической последовательности сигналов зависит от длительности импульсов?
- 6) Как изменяется амплитудный спектр периодической последовательности сигналов при изменении периода повторения импульсов?
- 7) Для решения каких практических задач используется спектральное представление сигналов?

1 Краткие теоретические сведения

Частотным спектром (или просто спектром) сигнала называется представление этого сигнала в частотной области. Спектр определяется через преобразование Фурье сигнала и подразделяется на амплитудный и фазовый спектры.

Амплитудным спектром (или спектром амплитуд) называется зависимость амплитуды спектральных составляющих сигнала от частоты. Аналогично, зависимость фазы спектральных составляющих сигнала от частоты называется фазовым спектром (или спектром фаз).

1.1 Спектры периодических сигналов

Периодический сигнал s(t), удовлетворяющий условию абсолютной интегрируемости, можно разложить в **ряд Фурье**:

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos 2\pi f_n t + \sum_{n=1}^{\infty} b_n \sin 2\pi f_n t, \tag{1}$$

где $\frac{a_0}{2}$ — постоянная составляющая сигнала s(t), $f_n = nf_1$ — частоты гармонических составляющих (**гармоник**) сигнала, $f_1 = \frac{1}{T}$ — основная частота (частота первой гармоники), n — номер гармоники, T — период сигнала, a_n и b_n — коэффициенты разложения:

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} s(t) \cos 2\pi f_n t dt, \quad b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} s(t) \sin 2\pi f_n t dt.$$

Выражение (1) можно переписать в другой форме:

$$s(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(2\pi f_n t + \varphi_n),$$
 (2)

где $A_n\cos(2\pi f_n t + \varphi_n)$ — гармонические составляющие (**гармоники**) сигнала, A_n — амплитуды и φ_n — фазы гармоник сигнала:

$$A_n = \sqrt{a_n^2 + b_n^2}, \quad \varphi_n = -\arctan \frac{b_n}{a_n},$$

причём

$$a_n = A_n \cos \varphi_n, \quad b_n = A_n \sin \varphi_n.$$

Совокупность амплитуд A_n ряда Фурье образует **амплитудный** спектр сигнала s(t), а совокупность фаз φ_n — его **фазовый** спектр.

Выражения (1) и (2) записаны в тригонометрической форме. Однако, существует также и комплексная форма записи ряда Фурье:

$$s(t) = \sum_{n = -\infty}^{\infty} \dot{C}_n \exp(j2\pi f_n t), \tag{3}$$

где комплексные коэффициенты \dot{C}_n рассчитываются по формуле:

$$\dot{C}_n = \frac{a_n - jb_n}{2} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} s(t) \exp(-j2\pi f_n t) dt.$$

Совокупность модулей комплексных амплитуд C_n образует **амплитудный** спектр сигнала s(t), а совокупность аргументов φ_n — его **фазовый** спектр:

$$\dot{C}_n = C_n \exp(j\varphi_n), \quad C_n = |\dot{C}_n|, \quad \varphi_n = \arg(\dot{C}_n).$$

Суммирование в выражении (3) происходит по всем целым n, в том числе и отрицательным, т.е. в спектре сигнала помимо положительных содержатся также и отрицательные частоты. В геометрической интерпретации комплексная экспонента $\exp(j2\pi f_n t)$ есть единичный вектор, вращающийся против часовой стрелки с частотой f_n . Соответственно, смена знака n (и знака f_n) означает смену направления вращения: не против часовой, а по часовой стрелке.

Амплитудные спектры действительных сигналов являются чётными, а фазовые — нечётными функциями частоты. По этой причине на графиках, как правило, изображают только правую половину спектра, соответствующую положительным частотам (рис. 1).

Амплитуды гармоник на рис. 1 рассчитываются по формуле:

$$C_n = \frac{U_0 \tau}{T} \left| \frac{\sin(\pi f_n \tau)}{\pi f_n \tau} \right| = \frac{U_0}{Q} \left| \frac{\sin\left(\frac{\pi n}{Q}\right)}{\frac{\pi n}{Q}} \right|, \tag{4}$$

где U_0 — амплитуда импульсов, au — длительность, T — период, $Q=\frac{T}{ au}$ — скважность.

Из рис. 1 видно, что спектр периодического сигнала является **линей-чатым** (или **дискретным**), т.е. состоит из отдельных линий, каждая из которых соответствует определённой гармонике, следующих с интервалом $f_1 = \frac{1}{T}$.

Рис. 1. Периодическая последовательность прямоугольных импульсов (a) и её амплитудный спектр (б)

1.2 Спектры непериодических сигналов

Непериодический сигнал получается предельным переходом из периодического при $T \to \infty$. При этом ряд Фурье (3) переходит в **интеграл Фурье**:

$$s(t) = \int_{-\infty}^{\infty} \dot{S}(f) \exp(j2\pi f t) dt, \tag{5}$$

где

$$\dot{S}(f) = \int_{-\infty}^{\infty} s(t) \exp(-j2\pi f t) df -$$
 (6)

комплексный спектр сигнала s(t), называемый также спектральной плотностью:

$$\dot{S}(f) = \lim_{T \to \infty} \dot{C}_n T = \lim_{f_1 \to 0} \frac{\dot{C}_n}{f_1}.$$

Выражение (6) называют прямым, а (5) — обратным преобразованием Фурье сигнала s(t).

Модуль комплексного спектра S(f) называется **амплитудным** спектром сигнала s(t), а его аргумент $\varphi(f)$ — фазовым спектром:

$$\begin{split} \dot{S}(f) &= S(f) \exp \left\{ j \varphi(f) \right\}, \\ S(f) &= |\dot{S}(f)|, \quad \varphi(f) = \arg \dot{S}(f). \end{split}$$

Амплитудные спектры действительных непериодических сигналов, как и периодических, являются чётными, а фазовые — нечётными функциями частоты.

В отличие от спектра периодического сигнала, спектр непериодического сигнала является **сплошным**, т.к. при $T \to \infty$ расстояния между спектральными линиями стремятся к нулю: $f_1 = \frac{1}{T} \to 0$ (рис. 2).

Рис. 2. Одиночный прямоугольный импульс (а) и его амплитудный спектр (б)

Значения функции S(f) на рис. 2 рассчитываются по формуле:

$$S(f) = U_0 \tau \left| \frac{\sin(\pi f \tau)}{\pi f \tau} \right|. \tag{7}$$

Сравнивая выражения (4) и (7), можно видеть, что огибающая спектра периодического сигнала с точностью до коэффициента $\frac{1}{T}$ повторяет спектральную плотность непериодического сигнала.

1.3 Ширина спектра сигнала

Под **шириной спектра** понимается полоса частот, в которой сосредоточен амплитудный спектр данного сигнала.

В силу дуальности преобразования Фурье сигналы, ограниченные во времени (а к таковым относятся все реальные сигналы), имеют бесконечно широкие спектры. Однако, большая часть энергии спектра этих сигналов обычно сосредоточена в некоторой ограниченной полосе, которую и принимают за эквивалентную полосу частот данного сигнала.

Конкретные критерии расчёта эквивалентной полосы частот различны и зависят от сигнала и типа решаемой задачи. Например, ширина спектра прямоугольного импульса часто рассчитывается «по первому лепестку» (см. рис. 3, а), т.е. $\Delta F = \frac{1}{\tau}$, причём в этой области оказывается сосредоточено 95% энергии сигнала. Для монотонно убывающих (вне ос-

Рис. 3. Определение ширины спектра различных сигналов

новной своей части) спектров границы полосы частот определяются по относительному уровню амплитуды, например, 0.1 или 0.7^1 , в зависимости от вида сигнала (см. рис. 3, 6, 8).

2 Домашнее задание

Построить временные диаграммы, рассчитать и построить **в масшта- бе** амплитудные спектры следующих сигналов:

- 1. Периодической последовательности прямоугольных импульсов с амплитудой $U_0=N+1$ (B), длительностью $\mathfrak{r}=MN+1$ (мс) и периодом $T=(N\mod 3+2)\mathfrak{r}$ (мс). Здесь N- последняя цифра номера студенческого билета (например, 4), MN- две последние цифры номера студенческого билета (например, 94), $x\mod y-$ операция взятия по модулю, эквивалентная взятию остатка от деления x на y (например, 4 $\mod 3=1$).
- 2. Периодической последовательности прямоугольных импульсов с длительностью в 2 раза меньшей, чем в п. 1.
- 3. Периодической последовательности прямоугольных импульсов с длительностью как в п. 1, но в 2 раза большим периодом.
- 4. Одиночного прямоугольного импульса с амплитудой и длительностью как в п. 1.

При построении спектра в п. 1 ограничиться частотой $\frac{4}{\tau}$, в остальных пунктах — той частотой, что получилась в п. 1. Построение лучше всего проводить следующим образом: слева располагаются построенные друг под другом в едином масштабе временные диаграммы, справа, напротив них, соответствующие спектральные, также построенные в едином масштабе. При расчёте значений спектральных составляющих можно использовать программы для математических вычислений (MathCad, MatLab, SciLab и пр.);