Mark Scheme (Results) June 2008

GCE

GCE Mathematics (6684/01)

June 2008 6684 Statistics S2 Mark Scheme

Question Number	Scheme		
1(a)	E(X) = 5 $Var(X) = \frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$	B1 M1	
	$var(\lambda) = \frac{1}{12}(10-0)$ of attempt to use $\int \frac{1}{10} d\lambda - \mu$ = $\frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1	
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5} \text{ or } \frac{2}{10} \text{ or } 0.2$	M1 A1 (2)	
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1 (2)	
(d)	$P(X \ge 8) \text{ or } P(X > 8)$ $P(X \ge 8 \mid X \ge 5) = \frac{P(X \ge 8)}{P(X \ge 5)}$	M1 M1	
	$=\frac{\frac{2}{10}}{\frac{5}{10}}$		
	$=\frac{2}{5}$	A1 (3)	
	alternative remaining time ~ U[0,5] or U[5,10] $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 A1 (Total 10)	
	Notes (a) B1 cao M1 using the correct formula $\frac{(a-b)^2}{12}$ and subst in 10 or 0		
	 or for an attempt at the integration they must increase the power of x by 1 and subtract their E(X) squared. A1 cao (b) M1 for P(X ≤ 2) or P(X < 2) 		
	A1 cao (c) M1 (their b) 5. If the answer is incorrect we must see this. No need to check with your calculator A1 cao		
	(d) writing $P(X \ge 8)$ (may use > sign). If they do not write $P(X \ge 8)$ then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0		
	M1 For attempting to use a correct conditional probability.		

A1 2/5	
Full marks for 2/5 on its own with no incorrect working	
Alternative M1 for $P(X \ge 3)$ or $P(X \ge 8)$ may use $>$ sign M1 using either U[0,5] or U[5,10] A1 2/5	

Question	Scheme	Marks
Number		
2	X ~B(100,0.58) Y ~ N (58, 24.36)	B1 B1 B1
	$[P(X > 50)] = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5 $= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right)$ standardising 50.5, 51, 51.5, 48.5,49, 49.5 and their μ and σ for M1 $= P(z \ge -1.52)$ $= 0.9357$	M1 M1 A1 A1
	$\frac{\text{alternative}}{X \sim B(100,0.42)}$ $Y \sim N \text{ (42, 24.36)}$ $[P(X < 50)] = P(X \le 49)]$ $= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right)$ $= P(z \le 1.52)$ $= 0.9357$ using 50.5 or 51.5 or 49.5 or 48.5 $\text{standardising 50.5, 51, 51.5, 48.5,49, 49.5 and their } \mu \text{ and } \sigma \text{ for M1}$	(7) B1 B1 B1 M1 M1 A1 A1 (Total 7)
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula: 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{9}$ of their variance. A1 \pm 1.52. may be awarded for $\pm \left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

Question Number	Scheme	Marks	
3(a)	$X \sim \text{Po}(9)$ may be implied by calculations in part a or b	M1	
	$P(X \le 3) = 0.0212$ $P(X \ge 16) = 0.0220$		
	$CR X \le 3; \cup X \ge 16$	A1; A1 (3)	
(b)	P(rejecting Ho) = $0.0212 + 0.0220$	M1	
	= 0.0432 or 0.0433	A1 cao	
		(2)	
		Total 5	
	 Notes (a) M1 for using Po (9) – other values you might see which imply Po (9) are 0.0550, 0.0415, 0.9780, 0.9585, 0.9889,0.0111,0.0062 or may be assumed by at least one correct region. A1 for X ≤ 3 or X < 4 condone c1 or CR instead of X A1 for X ≥ 16 or X > 15 They must identify the critical regions at the end and not just have them as part of their working. Do not accept P(X≤ 3) etc gets A0 (b) if they use 0.0212 and 0.0220 they can gain these marks regardless of the critical regions in part a. If they have not got the correct numbers they must be adding the values for their critical regions.(both smaller than 0.05) You may need to look these up. The most common table values for lambda = 9 are in this table x 2 3 4 5 14 15 16 17 18 16 17 18 16 0.006 0.021 0.055 0.115 0.958 0.978 0.988 0.994 0.997 2 0.0433 A1 awrt 0.0432 or 0.0433 Special case If you see 0.0432 / 0.0433 and then they go and do something else with it eg 1 – 0.0432 award M1 A0 		

Question Number	Scheme	Marks
4(a)	<i>X</i> ~ B(11000, 0.0005)	M1 A1 (2)
(b)	$E(X) = 11000 \times 0.0005 = 5.5$	B1
	$Var(X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1 (2)
(c)	$X \sim Po(5.5)$	M1 A1
	$P(X \le 2) = 0.0884$	dM1 A1 (4)
		Total 8
	<u>Notes</u>	
	(a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a	
	(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
	(c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find $P(X \le 2)$ A1 awrt 0.0884	
	Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.	
	NB exact binomial is 0.0883	

Question Number	Scheme		Marks	
5(a)	<i>X</i> ~ B(15, 0.5)		B1 B1	(2)
(b)	$P(X=8) = P(X \le 8) - P(X \le 7)$	or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)
	= 0.6964 - 0.5			
	= 0.1964	awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$		M1	
	= 1 - 0.0176			
	= 0.9824		A1	(2)
(d)	$H_0: p = 0.5$ $H_1: p > 0.5$		B1 B1	
	$X \sim B(15, 0.5)$			
	$= 1 - 0.9963$ $P(X \ge $	$\begin{array}{l} (2.12) = 1 - 0.9824 = 0.0176 \\ (3.13) = 1 - 0.9963 = 0.0037 \end{array}$ att P(X \ge 13)	M1 A1	
	= 0.0037	$CR \ X \ge 13$ awrt 0.0037/ $CR \ X \ge 13$	AI	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Reject H_0 or it is significant or a co	rrect statement in context from their values	M1	
	There is sufficient evidence at the 1% significance level that the coin is <u>biased in favour of heads</u>			(6)
	Or There is evidence that Sues belief is correct			
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must be in part This need not be in the form writ			
	(b) M1 attempt to find P (X = 8) an A1 awrt 0.196 Answer only full marks	y method. Any value of p		
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982			

(d) B1 for correct H_0 . must use p or π	
B1 for correct H_1 must be one tail must use p or π	
M1 attempt to find $P(X \ge 13)$ correctly. E.g. $1 - P(X \le 12)$	
A1 correct probability or CR	
The seat the most 2 weeks the well-boundhesis most state as included () 0.5	
To get the next 2 marks the null hypothesis must state or imply that $(p) = 0.5$	
M1 for correct statement based on their probability or critical region or a correct	
contextualised statement that implies that, not just 13 is in the critical region.	
tomentum suuromentum mapatee unuu met just 10 15 m une ennem regioni	
A1 This depends on their M1 being awarded for rejecting H ₀ . Conclusion in	
context. Must use the words biased in favour of heads or biased against tails	
or sues belief is correct.	
NB this is a B mark on EPEN.	
They may also attempt to find $D(V < 12) = 0.0062$ and compare with 0.00	
They may also attempt to find $P(X < 13) = 0.9963$ and compare with 0.99	

Question Number	Scheme			Marks	
Number					
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently or	•		(2)	
(b) (i)	$X \sim Po(4.5)$ $P(X=5) = P(X \le 5) - P(X \le 5$,	M1		
	= 0.1708		A1	(3)	
(ii)	$P(X > 8) = 1 - P(X \le 8)$ = 1 - 0.9597		M1		
(c)	= 0.0403		A1	(2)	
(C)	$H_o: \lambda = 9 \ (\lambda = 18)$ $H_1: \lambda > 9 \ (\lambda > 18)$	may use λor	μ Β1		
	<i>X</i> ~ Po (9)	may be impl	ied B1		
	$P(X \ge 14) = 1 - P(X \le 13)$ $= 1 - 0.9261$ $= 0.0739$	$ \begin{aligned} [P(X \ge 14) &= 1 - 0.9261 = 0.0739] & \text{att } P(X \ge 14) \\ P(X \ge 15) &= 1 - 0.9585 = 0.0415 \\ CR \ X \ge 15 & \text{awrt } 0.0739 \end{aligned} $	M1 A1		
	0.0739 > 0.05	$14 \le 15$			
	Accept H_0 . or it is not signifi	icant or a correct statement in context from their value	s M1		
	There is insufficient evidence to say that the <u>number of calls per hour</u> handled by the agent has <u>increased</u> .			(6)	
	 Notes (a) B1 B1 They must use calls at least once. Independently and randomly are the same reason. Award the first B1 if they only gain 1 mark. Special case if they don't put in the word calls but write two correct statements award B0B1 (b) correct answers only score full marks (i) M1 Po (4.5) may be implied by them using it in their calculations in (i) or (ii) M1 for P(X ≤ 5) – P(X ≤ 4) or e^{-λ}λ⁵/5! A1 only awrt 0.171 				

- (ii) M1 for $1 P(X \le 8)$ A1 only awrt 0.0403
- (c) B1~ both . Must be one tail test. They may use λ or μ and either 9 or 18 and match H_0 and H_1
- M1 Po (9) may be implied by them using it in their calculations.
- M1 attempt to find $P(X \ge 14)$ eg $1 P(X \le 13)$ or 1 P(X < 14)
- A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that $(\lambda) = 9$ or 18

M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H_0 . Conclusion in context. Must have <u>calls per hour</u> has <u>not increased</u>. Or the <u>rate</u> of <u>calls</u> has <u>not increased</u>.

Any statement that has the word **calls** in and implies the **rate not increasing** e.g. no evidence that the rate of calls handled has increased Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find P(X < 14) = 0.9261 and compare with 0.95

Question Number	Scheme		Marks	
7(a)	$\int_0^1 \frac{1}{2} x dx = \left[\frac{1}{4} x^2 \right]_0^1 = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1	
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4} kx^{4} \right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1	
	$\frac{1}{4} + 4k - \frac{1}{4}k = 1$ $\frac{15k}{4} = \frac{3}{4}$	adding two answers and putting = 1	dM1dep on previous M	
	$4 \qquad 4 \\ k = \frac{1}{5}$		A1 (4)	
(b)	$\int_0^1 \frac{1}{2} x^2 dx = \left[\frac{1}{6} x^3 \right]_0^1 = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part	M1	
		1/6	A1	
	$\int_{1}^{2} \frac{1}{5} x^{4} dx = \left[\frac{1}{25} x^{5} \right]_{1}^{2} = \frac{32}{25} - \frac{1}{25}$ $= \frac{31}{25} \text{ or } 1.24$		A1	
	$E(X) = \frac{1}{6} + \frac{31}{25}$			
(c)	$=\frac{211}{150}=1\frac{61}{150}=1.40^{\bullet}$		A1 (4)	
	$F(x) = \int_0^x \frac{1}{2} t dt \text{(for } 0 \le x \le 1 \text{)}$	ignore limits for M	M1	
	$ \begin{array}{l} \mathbf{J}_0 \ 2 \\ = \frac{1}{4} x^2 \end{array} $	must use limit of 0	A1	
	$F(x) = \int_{1}^{x} \frac{1}{5} t^{3} dt; + \int_{0}^{1} \frac{1}{2} t dt (\text{for } 1 < x \le 2)$	need limit of 1 and variable upper	M1; M1	
	51 5 50 2	limit; need limit 0 and 1	1,1,1,1,1	
	$= \frac{1}{20}x^4 + \frac{1}{5}$		A1	

		T	
	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends	B1 ft B1	(7)
(d)	F(m) = 0.5 either eq $\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ eq for their $1 \le x \le 2$ $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57	M1 A1ft	(3)
(e)	negative skew	B1	
	This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Median < mode) Median < mode Sketch of the pdf.	dB1	(2)
	Notes (a) M1 attempting to integrate both parts A1 both answers correct M1 dependent on the previous M being awarded adding the two answers together A1 cso (b) M1 attempting to use integral of x f(x) on one part A1 1/6 A1 31/25 A1 awrt 1.41 (c) M1 Att to integrate $\frac{1}{2}$ t (they need to increase the power by 1). Ignore limits for		
	method mark A1 $\frac{1}{4}x^2$ allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added		
	M1 att to integrate $\int_{1}^{x} \frac{1}{5} t^{3} dt$ and correct limits.		

M1 $\int_0^1 \frac{1}{2}t \, dt +$ Att to integrate using limits 0 and 1. no need to see them put 0 in .

they must add this to their $\int_1^x \frac{1}{5} t^3 dt$. may be given if they add 1/4

Alternative method for these last two M marks

M1 for att to
$$\int \frac{1}{5}t^3$$
 dt and putting + C

M1 use of F(2) = 1 to find C

A1
$$\frac{1}{20}x^4 + \frac{1}{5}$$
 must be correct

B1 middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up

B1 end pairs. condone them using < or \le . They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0 < x < 1 is correct they can get M1 A1 otherwise M0 A0. if 3 < x < 4 is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct.

(d) M1 either of their
$$\frac{1}{4}x^2$$
 or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$
A1 for their F(X) $1 < x < 2 = 0.5$
A1 cao

If they add both their parts together and put = 0.5 they get M0 I they work out both parts separately and do not make the answer clear they can get M1 A1 A0

(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.