Objectives

- Introduction to Fractional Knapsack problem
- Greedy Strategies to solve fractional knapsack problem
- Optimal solution approach
- Practical example of fractional knapsack problem
- Algorithm and its complexity

Problem statement:

Consider there are n objects and each object is having a weight w and contributes to profit p. There is a knapsack, a bag having capacity W.

Objective is to fill the knapsack in such a way that the profit shall be maximum. That is:

$$\max_{i=1}^{n} p_i x_i$$
 and $\sum_{i=1}^{n} w_i x_i \leq W$

Three different strategies to solve fractional knapsack problem:

Strategy 1:

Items are arranged by their profit values. Here an item with maximum profit is selected first.

Strategy 2:

Items are arranged by weights and an item with minimum weight is selected first.

Strategy 3:

- 1. Calculate the ratio (value/wt.) for each item.
- 2. Sort the item based on the ratio.
- 3. Take the item with highest ratio and add them until we cannot add the next item as whole.
- 4.At the end add the next item as much (fraction) as we can.

Example:

objects	1	2	3	4	5	6	7
value	5	10	15	7	8	9	4
Wt.	1	3	5	4	1	3	2

Weight of knapsack is: 15 units

Strategy 1: Select the item first which is having maximum profit.

Objects	profit	Wt.	Remaining
			wt.
3	15	5	15-5=10
2	10	3	10-3=7
6	9	3	7-3=4
5	8	1	4-1=3
4	7*(3/4)=5.25	3	3-3=0

Total profit: = 47.25 units

Strategy 2: Select the item first which is having minimum weight.

+				
	Objects	profit	Wt.	Remaining
				wt.
	1	5	1	15-1=14
	5	8	1	13
	7	4	2	11
	2	10	3	8
	6	9	3	5
	4	7	4	1
	3	15*(1/5)=3	1	0
_				

Total profit: = 46 units

Strategy 3: select the item according to the profit by weight ratio.

objects	1	2	3	4	5	6	7
profit	5	10	15	7	8	9	4
Wt.	1	3	5	4	1	3	2
p/w	5	3.3	3	1.75	8	3	2

Weight of knapsack is: 15 units

+				
	Objects	profit	Wt.	Remaining
				wt.
	5	8	1	15-1=14
	1	5	1	13
	2	10	3	10
	3	15	5	5
	6	9	3	2
	7	4	2	0

Total profit: = 51 units

Assignment 1:

objects	1	2	3	4	5	6	7
value	12	5	15	7	6	18	5
Wt.	2	3	5	7	2	6	1

Weight of knapsack is: 20 units.

Assignment 2:

objects	1	2	3	4	5	6	7
value	5	10	15	7	8	9	4
Wt.	1	3	5	4	1	3	2

Weight of knapsack is: 15 units

Assignment 3:

objects	1	2	3
profit	60	100	120
Wt.	10	20	30

Weight of knapsack is: 50 units

Fractional knapsack problem using greedy approach:

Time Complexity: $O(n \log n)$ ----- (verify?)