Module 1

ARTIFICIAL INTELLIGENCE

What is Artificial Intelligence?

It is a branch of Computer Science that pursues creating the computers or machines as intelligent as human beings.

It is the science and engineering of making intelligent machines, especially intelligent computer programs.

It is related to the similar task of using computers to understand human intelligence, but **AI** does not have to confine itself to methods that are biologically observable

Definition: Artificial Intelligence is the study of how to make computers do things, which, at the moment, people do better.

According to the father of Artificial Intelligence, John McCarthy, it is "The science and engineering of making intelligent machines, especially intelligent computer programs".

Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a software think intelligently, in the similar manner the intelligent humans think.

AI is accomplished by studying how human brain thinks and how humans learn, decide, and work while trying to solve a problem, and then using the outcomes of this study as a basis of developing intelligent software and systems.

It has gained prominence recently due, in part, to big data, or the increase in speed, size and variety of data businesses are now collecting. AI can perform tasks such as identifying patterns in the data more efficiently than humans, enabling businesses to gain more insight out of their data.

From a **business** perspective AI is a set of very powerful tools, and methodologies for using those tools to solve business problems.

From a **programming** perspective, AI includes the study of symbolic programming, problem solving, and search.

AI Vocabulary

Intelligence relates to tasks involving higher mental processes, e.g. creativity, solving problems, pattern recognition, classification, learning, induction, deduction, building analogies, optimization, language processing, knowledge and many more. Intelligence is the computational part of the ability to achieve goals.

Intelligent behaviour is depicted by perceiving one's environment, acting in complex environments, learning and understanding from experience, reasoning to solve problems and discover hidden knowledge, applying knowledge successfully in new situations, thinking abstractly, using analogies, communicating with others and more.

Science based goals of AI pertain to developing concepts, mechanisms and understanding biological intelligent behaviour. The emphasis is on understanding intelligent behaviour.

Engineering based goals of AI relate to developing concepts, theory and practice of building intelligent machines. The emphasis is on system building.

AI Techniques depict how we represent, manipulate and reason with knowledge in order to solve problems. Knowledge is a collection of 'facts'. To manipulate these facts by a program, a suitable representation is required. A good representation facilitates problem solving.

Learning means that programs learn from what facts or behaviour can represent. Learning denotes changes in the systems that are adaptive in other words, it enables the system to do the same task(s) more efficiently next time.

Applications of AI refers to problem solving, search and control strategies, speech recognition, natural language understanding, computer vision, expert systems, etc.

Problems of AI:

Intelligence does not imply perfect understanding; every intelligent being has limited perception, memory and computation. Many points on the spectrum of intelligence versus cost are viable, from insects to humans. AI seeks to understand the computations required from intelligent behaviour and to produce computer systems that exhibit intelligence. Aspects of intelligence studied by AI include perception, communicational using human languages, reasoning, planning, learning and memory.

The following questions are to be considered before we can step forward:

- 1. What are the underlying assumptions about intelligence?
- 2. What kinds of techniques will be useful for solving AI problems?
- 3. At what level human intelligence can be modelled?
- 4. When will it be realized when an intelligent program has been built?

Branches of AI:

A list of branches of AI is given below. However some branches are surely missing, because no one has identified them yet. Some of these may be regarded as concepts or topics rather than full branches.

Logical AI — In general the facts of the specific situation in which it must act, and its goals are all represented by sentences of some mathematical logical language. The program decides what to do by inferring that certain actions are appropriate for achieving its goals.

Search — Artificial Intelligence programs often examine large numbers of possibilities – for example, moves in a chess game and inferences by a theorem proving program. Discoveries are frequently made about how to do this more efficiently in various domains.

Pattern Recognition — When a program makes observations of some kind, it is often planned to compare what it sees with a pattern. For example, a vision program may try to match a pattern of eyes and a nose in a scene in order to find a face. More complex patterns are like a natural language text, a chess position or in the history of some event. These more complex patterns require quite different methods than do the simple patterns that have been studied the most.

Representation — Usually languages of mathematical logic are used to represent the facts about the world.

Inference — Others can be inferred from some facts. Mathematical logical deduction is sufficient for some purposes, but new methods of *non-monotonic* inference have been added to the logic since the 1970s. The simplest kind of non-monotonic reasoning is default reasoning in which a conclusion is to be inferred by default. But the conclusion can be withdrawn if there is evidence to the divergent. For example, when we hear of a bird, we infer that it can fly, but this conclusion can be reversed when we hear that it is a penguin. It is the possibility that a conclusion may have to be withdrawn that constitutes the non-monotonic character of the reasoning. Normal logical reasoning is monotonic, in that the set of conclusions can be drawn from a set of premises, i.e. monotonic increasing function of the premises. Circumscription is another form of non-monotonic reasoning.

Common sense knowledge and Reasoning — This is the area in which AI is farthest from the human level, in spite of the fact that it has been an active research area since the 1950s. While there has been considerable progress in developing systems of *non-monotonic reasoning* and theories of action, yet more new ideas are needed.

Learning from experience — There are some rules expressed in logic for learning. Programs can only learn what facts or behaviour their formalisms can represent, and unfortunately learning systems are almost all based on very limited abilities to represent information.

Planning — Planning starts with general facts about the world (especially facts about the effects of actions), facts about the particular situation and a statement of a goal. From these, planning programs generate a strategy for achieving the goal. In the most common cases, the strategy is just a sequence of actions.

Epistemology — This is a study of the kinds of knowledge that are required for solving problems in the world.

Ontology — Ontology is the study of the kinds of things that exist. In AI the programs and sentences deal with various kinds of objects and we study what these kinds are and what their basic properties are. Ontology assumed importance from the 1990s.

Heuristics — A heuristic is a way of trying to discover something or an idea embedded in a program. The term is used variously in AI. *Heuristic functions* are used in some approaches to search or to measure how far a node in a search tree seems to be from a goal. *Heuristic predicates* that compare two nodes in a search tree to see if one is better than the other, i.e. constitutes an advance toward the goal, and may be more useful.

Genetic programming — Genetic programming is an automated method for creating a working computer program from a high-level problem statement of a problem. Genetic programming starts from a high-level statement of 'what needs to be done' and automatically creates a computer program to solve the problem.

Applications of AI

AI has applications in all fields of human study, such as finance and economics, environmental engineering, chemistry, computer science, and so on. Some of the applications of AI are listed below:

- Perception
 - Machine vision
 - Speech understanding
 - Touch (*tactile* or *haptic*) sensation
- Robotics
- Natural Language Processing
 - Natural Language Understanding
 - Speech Understanding
 - Language Generation
 - Machine Translation
- Planning
- Expert Systems
- Machine Learning
- Theorem Proving
- Symbolic Mathematics
- Game Playing

AI Technique:

Artificial Intelligence research during the last three decades has concluded that *Intelligence requires knowledge*. To compensate overwhelming quality, knowledge possesses less desirable properties.

A. It is huge.

B. It is difficult to characterize correctly.

C. It is constantly varying.

D. It differs from data by being organized in a way that corresponds to its application.

E. It is complicated.

An AI technique is a method that exploits knowledge that is represented so that:

- The knowledge captures generalizations that share properties, are grouped together, rather than being allowed separate representation.
- It can be understood by people who must provide it—even though for many programs bulk of the data comes automatically from readings.
- In many AI domains, how the people understand the same people must supply the knowledge to a program.
- It can be easily modified to correct errors and reflect changes in real conditions.
- It can be widely used even if it is incomplete or inaccurate.
- It can be used to help overcome its own sheer bulk by helping to narrow the range of possibilities that must be usually considered.

In order to characterize an AI technique let us consider initially OXO or tic-tac-toe and use a series of different approaches to play the game.

The programs increase in complexity, their use of generalizations, the clarity of their knowledge and the extensibility of their approach. In this way they move towards being representations of AI techniques.

Example-1: Tic-Tac-Toe

1.1 The first approach (simple)

The Tic-Tac-Toe game consists of a nine element vector called BOARD; it represents the numbers 1 to 9 in three rows.

1	2	3
4	5	6
7	8	9

An element contains the value 0 for blank, 1 for X and 2 for O. A MOVETABLE vector consists of 19,683 elements (3⁹) and is needed where each element is a nine element vector. The contents of the vector are especially chosen to help the algorithm.

The algorithm makes moves by pursuing the following:

- 1. View the vector as a ternary number. Convert it to a decimal number.
- 2. Use the decimal number as an index in MOVETABLE and access the vector.
- 3. Set BOARD to this vector indicating how the board looks after the move. This approach is capable in time but it has several disadvantages. It takes more space and requires stunning

effort to calculate the decimal numbers. This method is specific to this game and cannot be completed.

1.2 The second approach

The structure of the data is as before but we use 2 for a blank, 3 for an X and 5 for an O. A variable called TURN indicates 1 for the first move and 9 for the last. The algorithm consists of three actions:

MAKE2 which returns 5 if the centre square is blank; otherwise it returns any blank non-corner square, i.e. 2, 4, 6 or 8. POSSWIN (p) returns 0 if player p cannot win on the next move and otherwise returns the number of the square that gives a winning move.

It checks each line using products 3*3*2 = 18 gives a win for X, 5*5*2=50 gives a win for O, and the winning move is the holder of the blank. GO (n) makes a move to square n setting BOARD[n] to 3 or 5.

This algorithm is more involved and takes longer but it is more efficient in storage which compensates for its longer time. It depends on the programmer's skill.

1.3 The final approach

The structure of the data consists of BOARD which contains a nine element vector, a list of board positions that could result from the next move and a number representing an estimation of how the board position leads to an ultimate win for the player to move.

This algorithm looks ahead to make a decision on the next move by deciding which the most promising move or the most suitable move at any stage would be and selects the same.

Consider all possible moves and replies that the program can make. Continue this process for as long as time permits until a winner emerges, and then choose the move that leads to the computer program winning, if possible in the shortest time.

Actually this is most difficult to program by a good limit but it is as far that the technique can be extended to in any game. This method makes relatively fewer loads on the programmer in terms of the game technique but the overall game strategy must be known to the adviser.

Example-2: Question Answering

Let us consider Question Answering systems that accept input in English and provide answers also in English. This problem is harder than the previous one as it is more difficult to specify the problem properly. Another area of difficulty concerns deciding whether the answer obtained is correct, or not, and further what is meant by 'correct'. For example, consider the following situation:

2.1 Text

Rani went shopping for a new Coat. She found a red one she really liked. When she got home, she found that it went perfectly with her favourite dress.

2.2 Question

1. What did Rani go shopping for?

- 2. What did Rani find that she liked?
- 3. Did Rani buy anything?

Method 1

2.3 Data Structures

A set of templates that match common questions and produce patterns used to match against inputs. Templates and patterns are used so that a template that matches a given question is associated with the corresponding pattern to find the answer in the input text. For example, the template who did \mathbf{x} \mathbf{y} generates \mathbf{x} \mathbf{y} \mathbf{z} if a match occurs and \mathbf{z} is the answer to the question. The given text and the question are both stored as strings.

2.4 Algorithm

Answering a question requires the following four steps to be followed:

- Compare the template against the questions and store all successful matches to produce a set of text patterns.
- Pass these text patterns through a substitution process to change the person or voice and produce an expanded set of text patterns.
- Apply each of these patterns to the text; collect all the answers and then print the answers.

2.5 Example

In **question 1** we use the template WHAT DID X Y which generates Rani go shopping for \mathbf{z} and after substitution we get Rani goes shopping for \mathbf{z} and Rani went shopping for \mathbf{z} giving \mathbf{z} [equivalence] a new coat

In **question 2** we need a very large number of templates and also a scheme to allow the insertion of 'find' before 'that she liked'; the insertion of 'really' in the text; and the substitution of 'she' for 'Rani' gives the answer 'a red one'.

Question 3 cannot be answered.

2.6 Comments

This is a very primitive approach basically not matching the criteria we set for intelligence and worse than that, used in the game. Surprisingly this type of technique was actually used in ELIZA which will be considered later in the course.

Method 2

2.7 Data Structures

A structure called English consists of a dictionary, grammar and some semantics about the vocabulary we are likely to come across. This data structure provides the knowledge to convert English text into a storable internal form and also to convert the response back into English. The structured representation of the text is a processed form and defines the context of the input text by making explicit all references such as pronouns. There are three types of such *knowledge representation* systems: production rules of the form 'if x then y', slot and filler systems and statements in mathematical logic. The system used here will be the slot and filler system.

Take, for example sentence:

'She found a red one she really liked'.

Event2		Event2	
instance:	finding	instance:	liking
tense:	past	tense:	past
agent:	Rani	modifier:	much
object:	Thing1	object:	Thing1

Thing1

instance: coat colour: red

The question is stored in two forms: as input and in the above form.

2.8 Algorithm

- Convert the question to a structured form using English know how, then use a marker to indicate the substring (like 'who' or 'what') of the structure, that should be returned as an answer. If a slot and filler system is used a special marker can be placed in more than one slot.
- The answer appears by matching this structured form against the structured text.
- The structured form is matched against the text and the requested segments of the question are returned.

2.9 Examples

Both questions 1 and 2 generate answers via a new coat and a red coat respectively. Question 3 cannot be answered, because there is no direct response.

2.10 Comments

This approach is more meaningful than the previous one and so is more effective. The extra power given must be paid for by additional search time in the knowledge bases. A warning

must be given here: that is – to generate unambiguous English knowledge base is a complex task and must be left until later in the course. The problems of handling pronouns are difficult.

For example:

Rani walked up to the salesperson: she asked where the toy department was. Rani walked up to the salesperson: she asked her if she needed any help.

Whereas in the original text the linkage of 'she' to 'Rani' is easy, linkage of 'she' in each of the above sentences to Rani and to the salesperson requires additional knowledge about the context via the people in a shop.

Method 3

2.11 Data Structures

World model contains knowledge about objects, actions and situations that are described in the input text. This structure is used to create integrated text from input text. The diagram shows how the system's knowledge of shopping might be represented and stored. This information is known as a script and in this case is a shopping script. (See figure 1.1 next page)

1.8.2.12 Algorithm

Convert the question to a structured form using both the knowledge contained in Method 2 and the World model, generating even more possible structures, since even more knowledge is being used. Sometimes filters are introduced to prune the possible answers.

To answer a question, the scheme followed is: Convert the question to a structured form as before but use the world model to resolve any ambiguities that may occur. The structured form is matched against the text and the requested segments of the question are returned.

2.13 Example

Both questions 1 and 2 generate answers, as in the previous program. Question 3 can now be answered. The shopping script is instantiated and from the last sentence the path through step 14 is the one used to form the representation. 'M' is bound to the red coat-got home. 'Rani buys a red coat' comes from step 10 and the integrated text generates that she bought a red coat.

2.14 Comments

This program is more powerful than both the previous programs because it has more knowledge. Thus, like the last game program it is exploiting AI techniques. However, we are not yet in a position to handle any English question. The major omission is that of a general reasoning mechanism known as inference to be used when the required answer is not explicitly given in the input text. But this approach can handle, with some modifications, questions of the following form with the answer—Saturday morning Rani went shopping. Her brother tried to call her but she did not answer.

Question: Why couldn't Rani's brother reach her?

Answer: Because she was not in.

This answer is derived because we have supplied an additional fact that a person cannot be in two places at once. This patch is not sufficiently general so as to work in all cases and does not provide the type of solution we are really looking for.

Shopping Script: C - Customer, S - Salesperson

Props: M - Merchandize, D - Money-dollars, Location: L - a Store.

Fig. 1.1 Diagrammatic Representation of Shopping Script

LEVEL OF THE AI MODEL

'What is our goal in trying to produce programs that do the intelligent things that people do?'

Are we trying to produce programs that do the tasks the same way that people do? OR

Are we trying to produce programs that simply do the tasks the easiest way that is possible?

Programs in the first class attempt to solve problems that a computer can easily solve and do not usually use AI techniques. AI techniques usually include a search, as no direct method is available, the use of knowledge about the objects involved in the problem area and abstraction on which allows an element of pruning to occur, and to enable a solution to be found in real time; otherwise, the data could explode in size. Examples of these trivial problems in the first class, which are now of interest only to psychologists are EPAM (Elementary Perceiver and Memorizer) which memorized garbage syllables.

The second class of problems attempts to solve problems that are non-trivial for a computer and use AI techniques. We wish to model human performance on these:

- 1. To test psychological theories of human performance. Ex. PARRY [Colby, 1975] a program to simulate the conversational behavior of a paranoid person.
- 2. To enable computers to understand human reasoning for example, programs that answer questions based upon newspaper articles indicating human behavior.
- 3. To enable people to understand computer reasoning. Some people are reluctant to accept computer results unless they understand the mechanisms involved in arriving at the results.
- 4. To exploit the knowledge gained by people who are best at gathering information. This persuaded the earlier workers to simulate human behavior in the SB part of AISB simulated behavior. Examples of this type of approach led to GPS (General Problem Solver).

Questions for Practice:

- 1. What is *intelligence*? How do we measure it? Are these measurements useful?
- 2. When the temperature falls and the thermostat turns the heater on, does it act because it *believes* the room to be too cold? Does it *feel* cold? What sorts of things can have beliefs or feelings? Is this related to the idea of consciousness?
- 3. Some people believe that the relationship between your mind (a non-physical thing) and your brain (the physical thing inside your skull) is exactly like the relationship between a computational process (a non-physical thing) and a physical computer. Do you agree?
- 4. How good are machines at playing chess? If a machine can consistently beat all the best human chess players, does this prove that the machine is *intelligent*?
- 5. What is AI Technique? Explain Tic-Tac-Toe Problem using AI Technique.