

Лекция 6

Градиентный бустинг

Задача восстановления зависимости $y: X \to Y$ по точкам обучающей выборки $(x_i, y_i), yi = y(xi), i = 1, ..., \ell$

Определение: Линейной композицией базовых алгоритмов at(x) = C(bt(x)), t=1,..., T, называется суперпозиция функций

$$a(x) = C(\sum_{t=1}^{T} \alpha_t b_t(x))$$

где С: $R \rightarrow Y$ - решающее правило $\alpha_t \ge 0$.

Пример 1: классификация на 2 класса, Y={-1, +1};

$$C(b) = \operatorname{sign}(b), \ \ a(x) = \operatorname{sign}(b(x)),$$
 $b \colon X \to \mathbb{R}$ — дискриминантная функция.

• Пример 2: регрессия, Y=R, C(b) = b, a(x) = b(x), решающее правило не используется

Линейная композиция базовых алгоритмов:

$$b(x) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}_+.$$

Функционал качества с произвольной ф-ией потерь $\mathscr{L}(b,y)$:

$$Q(\alpha,b) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i)}_{u_{T-1,i}} + \alpha b(x_i), y_i\right) \to \min_{\alpha,b}.$$

Ищем вектор
$$u = (b(x_i))_{i=1}^{\ell}$$
 $u_{T-1} = (u_{T-1,i})_{i=1}^{\ell}$
 $u_T = (u_{T,i})_{i=1}^{\ell}$

из R^{ℓ} минимизирующий $Q(\alpha, b)$

- текущее приближение вектора *u*
- следующее приближение вектора *и*

Градиентный метод минимизации $Q(u) o \min, \ u \in \mathbb{R}^\ell$:

 $u_0 :=$ начальное приближение;

$$u_{T,i} := u_{T-1,i} - \alpha g_i, \quad i = 1, \ldots, \ell;$$

 $g_i = \mathscr{L}'ig(u_{T-1,i},\,y_iig)$ компоненты вектора градиента,

α - градиентный шаг

Добавление базового алгоритма b_{T} :

$$u_{T,i} := u_{T-1,i} + \alpha b_T(x_i), \quad i = 1, \dots, \ell$$

Будем искать такой базовый алгоритм b_T , чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приблихал вектор антиградиента $(-g_i)_{i=1}^\ell$:

$$b_T := \arg\max_b \sum_{i=1}^{\ell} (b(x_i) + g_i)^2$$

Вход: обучающая выборка X^{ℓ} ; параметр T

Выход: базовые алгоритмы и их веса $\alpha_t b_t, \ t = 1, \dots, T;$

- 1: инициализация: $u_i := 0$, $i = 1, \ldots, \ell$;
- 2: для всех t = 1, ..., T
- 3: найти базовый алгоритм, приближающий градиент:

$$b_t := \arg\min_{b} \sum_{i=1}^{\ell} (b(x_i) + \mathscr{L}'(u_i, y_i))^2;$$

4: решить задачу одномерной минимизации:

$$\alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L}(u_i + \alpha b_t(x_i), y_i);$$

5: обновить значения композиции на объектах выборки:

$$u_i := u_i + \alpha_t b_t(x_i); \quad i = 1, \ldots, \ell;$$

Алгоритм:

- Построение начальной модели (дерево)
- о Расчет остатков (градиентов функции потерь) модели
- Изменение модели, где остатки используются в качестве целевой переменной.

Последовательность деревьев регрессии

- оНабор данных, используемый для создания дерева в последовательности деревьев, является случайной выборкой из обучающего набора данных.
- ⊙На каждом шаге генерируется случайная выборка без возвращения.
- оВ сформированной выборке наблюдения взвешиваются в соответствии с ошибками модели, полученной на предыдущем шаге.

Известно, что рандомизации могут повышать качество за счет повышения различности базовых алгоритмов (на этом основаны bagging, RF, RSM)

Идея:

на шагах 3-5 использовать не всю выборку X^{ℓ} , в случайную подвыборку с повторениями, как в бэггинге.

Преимущества:

- улучшается качество
- улучшается сходимость
- уменьшается время обучения

Исторически первый вариант бустинга (1995) Задача классификации на два класса $Y=\{-1, +1\}$, $\mathscr{L}(b(x_i), y_i) = e^{-b(x_i)y_i}$ - экспоненциальная ф-ия потерь, убывающая ф-ия отступа $M=bi(x_i)y_i$

Преимущества:

- для обучения b_t на каждом шаге t решается стандартная задача минимизации взвешенного эмпирического риска
- ullet задача оптимизации $lpha_{oldsymbol{t}}$ решается аналитически

Недостатки:

 AdaBoost слишком чувствителен к выбросам из-за экспоненциального роста потерь при M_i < 0

Функции потерь $\mathscr{L}(M)$ в задачах классификации на два класса

$$E(M) = e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M) = \log_2(1 + e^{-M})$ — логарифмическая (LogitBoost); $G(M) = \exp(-cM(M+s))$ — гауссовская (BrownBoost); $Q(M) = (1-M)^2$ — квадратичная; $S(M) = 2(1+e^M)^{-1}$ — сигмоидная; $V(M) = (1-M)_+$ — кусочно-линейная (SVM);

Параметры, определяющие тип бустинга и способы построения деревьев:

- booster какой бустинг проводить: над решающими деревьями или линейный,
- grow_policy порядок построения дерева: на следующем шаге расщеплять вершину, ближайшую к корню, или на которой ошибка максимальна,
- criterion критерий выбора расщепления (при построении деревьев),
- init какой алгоритм использовать в качестве первого базисного (именно его ответы будет улучшать бустинг).

Основные параметры:

- eta / learning_rate темп (скорость) обучения,
- num_iterations / n_estimators число итераций бустинга,
- early_stopping_round если на отложенном контроле заданная функция ошибки не уменьшается такое число итераций, обучение останавливается.

Параметры, ограничивающие сложность дерева:

- max_depth максимальная глубина,
- max_leaves / num_leaves / max_leaf_nodes максимальное число вершин в дереве (иногда, если значение меньше нуля, то игнорируется ограничение по максимальной глубине),
- gamma / min_gain_to_split порог на уменьшение функции ошибки при расщеплении в дереве,
- min_data_in_leaf / min_samples_leaf минимальное число объектов в листе,
- min_sum_hessian_in_leaf минимальная сумма весов объектов в листе,
- min_samples_split минимальное число объектов, при котором делается расщепление,
- min_impurity_split расщепление при построении дерева не будет проведено, если impurity изменяется при расщеплении на величину меньшую этого порога.

Параметры формирования подвыборок:

- subsample / bagging_fraction какую часть объектов обучения использовать для построения одного дерева,
- colsample_bytree / feature_fraction какую часть признаков использовать для построения одного дерева,
- colsample_bylevel / max_features какую часть признаков использовать для построения расщепления в дереве.

Параметры регуляризации

- lambda / lambda_l2 (L2),
- alpha / lambda_l1 (L1).

Что еще?

- число используемых потоков,
- на CPU или GPU,
- хранить модель в ОЗУ при обучении или нет,
- метод поиска расщепления.

- В отличие от случайных деревьев, в бустинге увеличение числа деревьев не всегда приводит к улучшению качества решения на тесте.
- Чем меньше темп, тем больше деревьев нужно (зависимость нелинейная)
- При оптимизации параметров обычно фиксируют число деревьев (оно должно быть не очень большим, чтобы алгоритм быстро обучался), подбирая под него темп и значения остальных параметров. При построении итогового алгоритма увеличивают число деревьев и находят соответствующее значение темпа (оставляя остальные параметры неизменными).

- Градиентный бустинг наиболее общий из всех бустингов:
 - о произвольная ф-ия потерь
 - произвольное пространство оценок R
 - о подходит для регрессии, классификации, ранжирования
- Важное открытие середины 90х: обобщающая способность бустинга не ухудшается с ростом сложности *Т*
- Стохастический вариант SGB лучше и бустрее
- Градиентный бустинг над решающими деревьями часто работает лучше, чем RF
- Технология Yandex.Matrixnet это градиентный бустинг над "небрежными" решающими деревьями ODT oblivious decision tree)