MATH 4041 HW 7

David Chen, dc3451

October 25, 2020

I use that $a \mid b \implies |a| \le |b|$ for nonzero b a few times in this homework, and I can't recall if it was shown in class. I'll just show it here at the top of the problem set: $a \mid b \implies b = ak$ for some $k \in \mathbb{Z}$; then, since b is nonzero, k cannot be 0, so $k \ne 0$, then $k \ge 1$ or $k \le -1$, so we have that |ak| - |a| = (|k| - 1)|a|, which is either 0 if $k = \pm 1$ or positive otherwise, so $|b| = |ak| \ge |a|$.

Problem 1

1.

$$11 = 5 \cdot 2 + 1$$
$$1 = 11 - 5 \cdot 2$$

so we can take $a^{-1}=-2,9,$ or more generally any $x\equiv -2\equiv 9\mod 11.$

2. $21^{-1} \mod 28$ does not exist, since gcd(21, 28) = 7, and so there is no integer solution to 21x = 1 + 28y.

3.

$$101 = 2 \cdot 50 + 1$$
$$1 = 101 - 2 \cdot 50$$

so we can take $a^{-1}=-50,51,$ or more generally any $x\equiv -50\equiv 51\mod 101.$

4.

$$101 = 4 \cdot 25 + 1$$
$$1 = 101 - 4 \cdot 25$$

so we can take $a^{-1} = -25, 75$, or more generally any $x \equiv -25 \equiv 76 \mod 101$.

Problem 2

When n = 2k is even, then $gcd(2, n) \ge 2$ since $2 \mid 2$ and $2 \mid 2k$, so we have that 2x = 1 + ny has no integer solutions, and so no multiplicative inverse exists for 2 modulo n.

If n = 2k + 1 instead, note that $2k + 1 = n \implies 2k + 2 = n + 1 \implies 2(k + 1) \equiv 1 \mod n$, so k + 1 is a suitable inverse; in general, any $x \equiv k + 1 \mod n$ is a suitable inverse.

Problem 3

We can show that the least positive integer a such that when viewed as an element of $\mathbb{Z}/n\mathbb{Z}$, $\langle m \rangle = \langle a \rangle$ is $\gcd(n,m)$. In particular, we already have from class that $\langle m \rangle = \langle \gcd(n,m) \rangle$; note that if $\gcd(n,m) = 1$, we are done as 1 is the least positive integer. If there is some $1 \leq a < \gcd(n,m)$ such that $\langle \gcd(n,m) \rangle = \langle a \rangle$, then we have that $a \in \langle \gcd(n,m) \rangle \implies a \equiv \gcd(n,m)x \mod n$ for some x, so $a = \gcd(n,m)x + ny$ for some $x,y \in \mathbb{Z}$; however, since $a < \gcd(n,m) \implies \gcd(\gcd(n,m),n) = \gcd(n,m) \nmid a$, this has no solutions, so \implies and $\gcd(n,m)$ is the least positive integer that generates $\langle m \rangle$ as an element of $\mathbb{Z}/n\mathbb{Z}$.

i

The order is 12, as we saw in class that the order is $36/\gcd(21,36)$, and similarly we have $a = \gcd(21,36) = 3$.

ii

The order is 3, as we saw in class that the order is $45/\gcd(30,45)$, and similarly we have $a = \gcd(30,45) = 15$.

iii

By earlier homeworks, the order is lcm(12,3) = 12.

Problem 4

For $0 \le a < 11$, $[a]_{11} \in (\mathbb{Z}/11\mathbb{Z})^*$ only if gcd(a, 11) = 1. Since 11 is prime, this is everything $1 \le a \le 10$, so the order is 10, as $[1]_{11}, [2]_{11}, \dots, [10]_{11} \in (\mathbb{Z}/11\mathbb{Z})^*$.

We can find an explicit generator, so $(\mathbb{Z}/11\mathbb{Z})^*$ is cyclic and thus isomorphic to $\mathbb{Z}/10\mathbb{Z}$ (brackets dropped in the table):

The order of any subgroup of $(\mathbb{Z}/11\mathbb{Z})^* \cong \mathbb{Z}/10\mathbb{Z}$ has order dividing 10, and this subgroup is the unique subgroup with that order.

Then, we have that the subgroups of $(\mathbb{Z}/11\mathbb{Z})^*$ are $\langle 1 \rangle, \langle 2 \rangle, \langle 4 \rangle$, and $\langle 10 \rangle$, which have orders 1, 10, 5, 2 respectively, as can be checked in the table; this is given since the subgroup of order d is generated by $2^{n/d}$, as seen in class for any divisor d of 10.

Problem 5

From class, every subgroup can be given by the form $\langle d \rangle$ for some divisor d of n, as for any a, $\langle a \rangle = \langle \gcd(a, n) \rangle$. Then, since there is at most one subgroup of any given order in $\mathbb{Z}/n\mathbb{Z}$, the subgroups are (generators are computed by taking all $1 \leq g \leq 18$ with the same order $\gcd(g, n)$):

- 1. $\mathbb{Z}/18\mathbb{Z} = \langle 1 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 11 \rangle = \langle 13 \rangle = \langle 17 \rangle$ which has order 18. Also, $\varphi(18) = 6$
- 2. $\langle 2 \rangle = \langle 4 \rangle = \langle 8 \rangle = \langle 10 \rangle = \langle 14 \rangle = \langle 16 \rangle$ which has order 9. Also, $\varphi(9) = 6$.
- 3. $\langle 3 \rangle = \langle 15 \rangle$ which has order 6. Also, $\varphi(6) = 2$.
- 4. $\langle 6 \rangle = \langle 12 \rangle$ which has order 3. Also, $\varphi(3) = 2$.
- 5. $\langle 9 \rangle$ which has order 2. Also, $\varphi(2) = 1$.
- 6. $\langle 18 \rangle = \langle 0 \rangle$ which has order 1. Also, $\varphi(1) = 1$.

the totient of n is calculated by counting the amount of generators of order n, which is an equivalence shown in class. Adding, we have that $\sum_{d|18} \varphi(d) = 1 + 1 + 2 + 2 + 6 + 6 = 18$.

Problem 6

a

(\Longrightarrow) We have that $d \mid a \Longrightarrow a = dk$ for some $k \in \mathbb{Z}$. Then, $[d]_n^k = k \cdot [d]_n = [kd]_n = [a]_n \Longrightarrow [a]_n \in \langle [d]_n \rangle$, which was what we wanted.

(\iff) We have that $[a]_n \in \langle [d]_n \rangle \implies [a]_n = t \cdot [d]_n$ for $t \in \mathbb{Z} \implies [a]_n = [td]_n$. Then, by the construction of these equivalence classes, a = td + nu for $u \in \mathbb{Z}$. However, we have that $d \mid n \implies n = dv$ for $v \in \mathbb{Z}$. Finally, we arrive at a = td + uvd = d(t + uv), so $d \mid a$.

b

 $(\Longrightarrow) a \equiv a' \mod n \Longrightarrow a = a' + nt$ for some $t \in \mathbb{Z} \Longrightarrow a = a' + tud$ as $d \mid n \Longrightarrow n = du$ for some $u \in \mathbb{Z}$; then, $d \mid a \Longrightarrow a = vd$ for $v \in \mathbb{Z}$, so a' = vd - tud = d(v - tu) so $d \mid a'$. (\Longleftrightarrow) The above proof is symmetric; replace a with a' and vice versa. $a' \equiv a \mod n \Longrightarrow a' = a + nt$ for some $t \in \mathbb{Z} \Longrightarrow a' = a + tud$ as $d \mid n \Longrightarrow n = du$ for some $u \in \mathbb{Z}$; then, $d \mid a' \Longrightarrow a' = vd$ for $v \in \mathbb{Z}$, so a = vd - tud = d(v - tu) so $d \mid a$.

\mathbf{c}

Let a' = a + nk for $k \in \mathbb{Z}$. Then, if $d \mid a$ and $d \mid n$, we have that $d \mid a + nk = a'$; similarly, if $d \mid a'$ and $d \mid n$, $d \mid a' - nk = a$, so we have that for any integer d, that $d \mid a$ and $d \mid n \implies d \mid a'$, as well as $d \min a'$ and $d \mid n \implies d \mid a$. Then take $d = \gcd(a, n)$ so by definition of the gcd, we have that $\gcd(a, n) \mid a$, $\gcd(a, n) \mid n$, so $\gcd(a, n) \mid a'$. However, this then gives that $\gcd(a, n) \mid \gcd(a', n)$, and since they are both positive, $\gcd(a, n) \leq \gcd(a', n)$. Taking $d = \gcd(a', n)$, we see that $\gcd(a', n) \mid a$ as well, so $\gcd(a', n) \mid \gcd(a, n)$, and $\gcd(a', n) \leq \gcd(a, n)$, so combining with before, $\gcd(a, n) = \gcd(a', n)$.

Problem 7

Note that the existence of integers x, y such that 1 = ax + by gives that $gcd(a, b) \mid 1$, but the only positive divisor of 1 is 1, so gcd(a, b) = 1.

i

Since a, b are relatively prime, 1 = ax + by for some x, y; then, for any divisor d of a, a = dk for some $k \in \mathbb{Z}$, so 1 = dkx + by, so there are integers kx, y satisfying 1 = d(kx) + by, so from class $\gcd(d, b) = 1$.

ii

Since a is relatively prime to n, m, we can write 1 = ax + ny = aw + mz; then, we have that $1 = (ax + ny)(aw + mz) = a^2xw + awny + axmz + nmyz = a(axw + wny + xmz) + nm(yz)$, so by class, $1 = \gcd(a, nm)$.

If a is relatively prime to mn, then 1 = ax + nmy, so there are integers x, my such that 1 = ax + n(my), so gcd(a, n) = 1; similarly, there are integers x, ny such that 1 = ax + m(xy), so gcd(a, m) = 1.

Problem 8

i

We can define lcm(a, b) to be a positive integer m such that $a \mid m$ and $b \mid m$; further, if $a \mid n$ and $b \mid n$ for some integer n, then $m \mid n$ as well.

To see that this is unique, suppose that m, m' have the above property. Then, $m \mid m' \implies |m| \le |m'|$ and $m' \mid m \implies |m'| \le |m|$ Since both $|m| \le |m'|$ and $|m'| \le |m|$, and both are positive, m = m'.

ii

We have that any element $mk \in \langle m \rangle$ satisfies that $mk \in \langle a \rangle \implies mk = ak'$ and $n \in \langle b \rangle \implies mk = bk''$ for $k', k'' \in \mathbb{Z}$, so all elements of $\langle m \rangle$ are common multiples of a, b. In particular, if k = 1, then m = ak' = bk'', so $a \mid m$ and $b \mid m$. Further, any common multiple of a, b is an element of $\langle a \rangle \cap \langle b \rangle$: a common multiple is some number l such that l = ak' = bk'', but this is exactly the condition to be in $\langle a \rangle \cap \langle b \rangle$, since $l = ak' \implies l \in \langle a \rangle$, and $l = bk'' \implies l \in \langle b \rangle$. Further, there is no element n in $\langle m \rangle$ such that $1 \leq n < m$ as then $m \nmid n$ (since $m \mid n \implies m \geq n$), so m is the least positive integer in the list of common multiples of a, b, which we just saw to be $\langle a \rangle \cap \langle b \rangle$, and in that sense is the least common multiple.

Then, clearly $m \mid mk$ for $k \in \mathbb{Z}$, so this also satisfies the definition of part i, as $m \mid mk = ak' = bk''$ (since for any n, $a \mid n$, $b \mid n \implies n = ak'$, n = bk'', k', $k'' \in \mathbb{Z} \implies n = mk$ for some integer k, as shown earlier).

iii

If $a \mid bk$ for some $k \in \mathbb{Z}$, then $a \mid k$ by a lemma from class since a, b are relatively prime. Now, for any common multiple n, if $a \mid n$ and $b \mid n$, we have that n = bk for some k, so n = b(ak') = (ab)k' for some $k' \in \mathbb{Z}$ since $a \mid n = bk$ and thus $a \mid k$. Then, $ab \mid n \Longrightarrow |ab| \mid n$. Furthermore, clearly $a \mid |ab|$ and $b \mid |ab|$. This gives that ab satisfies all the conditions in part i of the lcm.

iv

Suppose that $e = \gcd\left(\frac{a}{d}, \frac{b}{d}\right) > 1$. Then, $e \mid a/d \implies e = (a/d)k \implies ed \mid a$; similarly, $e \mid b/d \implies ed \mid b$. However, we now have that ed is a common factor of a, b, but since $e > 1 \implies ed > d$, $ed \nmid d$ (as $ed \mid d \implies ed \leq d$, since both are positive), so d cannot be the gcd of a, b. \implies , so e = 1, and a, b are relatively prime.

 \mathbf{V}

Put $e = \operatorname{lcm}\left(\frac{a}{k}, \frac{b}{k}\right)$. Then, $a/k \mid e \implies a/k = ek' \implies a = ekk' \implies a \mid ek$ and $b/k \mid e \implies b \mid ek$ similarly, so ek is a common multiple.

Now let n be any common multiple, so $a \mid n$ and $b \mid n$. Note that $a \mid n, k \mid a \implies k \mid n$. Let n = kx, a = ky, so n/k = x, a/k = y. Further, $a \mid n \implies n = ak', k' \in \mathbb{Z} \implies kx = kyk' \implies x = yk' \implies n/k = (a/k)k' \implies a/k \mid n/k$. Similarly, $b \mid n \implies b/k \mid n/k$, so n/k is a common multiple of a/k and b/k. Then, since $e = \operatorname{lcm}\left(\frac{a}{k}, \frac{b}{k}\right)$, we have that $e \mid n/k \implies e = (n/k)k', k' \in \mathbb{Z}, \implies ek = nk' \implies ek \mid n$, which was what we wanted.

\mathbf{vi}

From above, we have that $\operatorname{lcm}(a,b) = \gcd(a,b) \operatorname{lcm}\left(\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}\right)$. From iv, we have that $\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}$ are relatively prime, and so from iii, $\operatorname{lcm}\left(\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}\right) = \left|\frac{a}{\gcd(a,b)} \frac{b}{\gcd(a,b)}\right| = \frac{|ab|}{\gcd(a,b)^2}$. Then, finally, we get that $\operatorname{lcm}(a,b) = \gcd(a,b) \operatorname{lcm}\left(\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}\right) = \frac{|ab|}{\gcd(a,b)}$.

vii

If $a = \prod_{i=1}^{n} p_i^{r_i}$, $b = \prod_{i=1}^{m} q_i^{s_i}$. Consider $\{u \mid u = p_i, 1 \le i \le n, \text{ or } u = q_i, 1 \le i \le m\}$. Then, let

$$t_{u} = \begin{cases} \max(r_{i}, s_{j}) & u = p_{i}, u = q_{j} \\ r_{i} & u = p_{i}, u \neq q_{j}, 1 \leq j \leq m \\ s_{i} & u = q_{i}, u \neq p_{j}, 1 \leq j \leq n \end{cases}$$

We then have the following, if $\{u_i\}_{i=1}^k$ is some ordering of the earlier set:

$$lcm(a,b) = \prod_{i=1}^{k} u_i^{t_{u_i}}$$

Morally, this is just saying that the lcm is the product of all the primes in factorizations of a, b with the exponent chosen to be the greater of the two exponents in the factorizations of a, b (if it only shows up in one factorization, pick the exponent in the one it shows up in).