Tipe Data Rust

Primitive data types

Muhamad Aldo Ridhoni Padepokan ASA Wedomartani, 24 September 2017

RUST ID Meetup #2

Membahas

· Tipe Data Dasar

Membahas

- · Tipe Data Dasar
- Penggunaan

Membahas

- · Tipe Data Dasar
- · Penggunaan
- Konversi

Tipe Data Dasar

Scalar single value:

- Boolean
- Integer dan floating-point
- Character

Tipe Data Dasar

Scalar single value :

- Boolean
- Integer dan floating-point
- Character

Compound multiple value:

- Tuples
- Arrays
- Slices
- String

Boolean

Tipe boolean dengan nilai true atau false.

Boolean

```
let benar: bool = true;
let salah: bool = false:
if benar {
    println!("Berhasil")
assert eq!(benar as i8, 1);
assert eq!(salah as i8, 0);
```

Integer

Integer adalah tipe data yang merepresentasikan bilangan bulat seperti dalam matematika.

Signed Cakupan integer bertanda dari $-(2^{n-1})$ hingga $2^{n-1} - 1$.

Unsigned Integer tidak bertanda dari 0 hingga $2^n - 1$.

5

Integer

Cakupan

Panjang	Signed	Unsigned
8-bit	i8	u8
16-bit	i16	u16
32-bit	i32	u32
64-bit	i64	i64
arch	isize	usize

- i8 = -128 .. 127 u8 = 0 .. 255
- i16 = -32.768 .. 32.767 u16 = 0 .. 65.535
- i32 = -2.147.483.648 .. 2.147.483.647 u32 = 0 .. 4.294.967.295
- i64 = -9.223.372.036.854.775.808 ..
 9.223.372.036.854.775.807
 u64 = 0 .. 18.446.744.073.709.551.615

Integer Literals

Jenis	Contoh		
Desimal	45_678		
Hexadesimal	0xbb		
Oktal	0077		
Binary	0b1100_1010		
Byte (u8)	b'Z'		

Floating-Point

Floating-point adalah tipe numerik dengan titik desimal.

- **f32** 32bit single precision float. 32bit dengan presisi 24bit.
- **f64** 64bit double precision float. 64bit dengan presisi 53bit.

Tipe default untuk float adalah f64.

Floating-Point

```
let f1: f32 = 1.1234567;
let f2: f32 = 0.00000006;
let f3: f32 = 1.1234568;
assert_eq!(f1 + f2, f3); // true
```

Character

Char adalah tipe data yang memuat nilai Unicode Scalar. Satu karakter dimuat dalam petik ''.

Character

```
let c = 'z';
let z = 'Z';
let black_chess_knight = 'a';

// hanya u8
let y: char = char::from(0x79);
let x: char = char::from(b'x');
```

Tuple

Tuple (T, U, ...) adalah rangkaian yang dapat terdiri dari elemen dengan tipe berbeda dan dimuat dalam tanda kurung ().

Elemen tuple dapat diakses dengan indeks 'tuple indexing'.

Tuple

```
type Pair<T1, T2> = (T1, T2);
let p: Pair < i8, f32 > = (10, 3.14);
let q: Pair<&str, i8> = ("ID", 9);
let (a, b) = p;
assert eq!(a, 10);
assert eq!(b, 3.14);
assert eq!(p.0, 10);
assert eq!(p.1, 3.14);
```

Array

Array ([T; N]) adalah koleksi padat elemen-elemen dengan tipe data yang sama dan memiliki panjang yang tidak bisa berubah setelah dideklarasi.

Sintaks array baru dengan membuat daftar nilai yang terpisah oleh koma didalam kurung siku [].

Array

```
// dengan tipe annotation
let array: [i32; 3] = [1, 2, 3];
// repeat expression
let mut array: [i32; 3] = [0; 3];
let bulan = ["Januari", "Pebruari",
 → "Maret", "April", "Mei", "Juni",
 → "Juli", "Agustus", "September",
 "Oktober", "Nopember", "Desember"];
let jan = bulan[0];
let dec = bulan[11]:
```

Slice

Slice (&[T]) adalah 'view' untuk koleksi seperti array dengan ukuran yang dinamis.

Dinamis dalam arti ukuran tidak diketahui saat kompilasi.

Slice menampilkan blok memori dengan representasi sebagai sebuah pointer serta ukuran panjangnya.

Slice

```
let str slice: \&[\&str] = \&["one", "two"];
let arr = [1, 2, 3, 4, 5, 6];
let arr slice: &[i32] = &arr[1..4];
println!("{:?}", arr slice); // [2, 3, 4]
assert eq!(Some(\&3), arr slice.get(1));
// atau
assert_eq!(3, arr_slice[1]);
```

String slices

Tipe dasar **str** untuk menyimpan kalimat string.

Nilai dari strings slices selalu valid UTF-8.

String slices

```
let hello = "Hello, world!";

// dengan tipe annotation
let hello: &'static str = "Hello, world!";
```

Tipe-tipe Lain

Rust Standard Library menyediakan banyak tipe antara lain:

- **Vector** Vec<T>, Tipe Array yang dapat bertambah dan dialokasikan di *heap*.
 - **Box** Box<T>, Tipe pointer untuk alokasi data di *heap*.
- **String** Tipe kalimat *string* yang dapat bertambah dengan encoding UTF-8

Konversi Antar Tipe (Casting)

to	i32	u32	f64	String
i32	n/a	x as u32	x as f64	x.to_string()
u32	x as i32	n/a	x as f64	x.to_string()
f64	x as i32	x as u32	n/a	x.to_string()

String ke tipe numerik:

x.parse()

Secara explicit dengan type annotation:

x.parse::<**i32**>()

Konversi Antar Tipe String

to from	String	&str
String	n/a	&*x
&str	x.to_string()	n/a

Kesimpulan

- · Pilih tipe data yang tepat.
- · Cobalah kasus dengan test.
- · Tangani error.

Sekian & Terima Kasih

Referensi

Pustaka

- → https://doc.rust-lang.org/std/index.html#primitives
- https://doc.rust-lang.org/reference/types.html
- https://doc.rust-lang.org/book/second-edition/ch03-02-data-types.html
- → http://carols10cents.github.io/rust-conversion-reference
- → https://www.manning.com/books/rust-in-action
- https://www.doc.ic.ac.uk/~eedwards/compsys/float/

Referensi

Kode

- https://github.com/rust-lang/rust/blob/master/src/libcore/num
- https://github.com/rust-lang/rust/blob/master/src/test/parse-fail/lex-bad-numeric-literals.rs

Lain-lain

- https://en.wikipedia.org/wiki/Integer_(computer_science)
- ► https://unicode-table.com/en/#control-character
- ► https://play.rust-lang.org/
- https://rust.godholt.org/