#### $1 + 2 + 3 + 4 + \cdots$

Frank Thorne, University of South Carolina

Math 142

November 26, 2019

Introduction.

# Srinivasa Ramanujan (1887-1920)



### The Man Who Knew Infinity



### A fellow Ken Ono student



### Ramanujan's second letter to Hardy

"Dear Sir, I am very much gratified on perusing your letter of the 8th February 1913. I was expecting a reply from you similar to the one which a Mathematics Professor at London wrote asking me to study carefully Bromwich's Infinite Series and not fall into the pitfalls of divergent series. I told him that the sum of an infinite number of terms of the series:  $1+2+3+4+\cdots=-1/12$  under my theory. If I tell you this you will at once point out to me the lunatic asylum as my goal. I dilate on this simply to convince you that you will not be able to follow my methods of proof if I indicate the lines on which I proceed in a single letter. . . . "

(S. Ramanujan, 27 February 1913)

Warmup.

# Ramanujan's proof

Q.E.D.

#### Q.E.D.

"The divergent series are the invention of the devil, and it is a shame to base on them any demonstration whatsoever."

(N. Abel, 1832)

The Riemann zeta function.

### Analytic continuation

### Theorem (Riemann, 1859)

The zeta function has analytic continuation to all complex numbers  $s \neq 1$ , with

$$\zeta(s) = \zeta(1-s) \frac{\Gamma(\frac{1-s}{2})\pi^{-\frac{1-s}{2}}}{\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}}.$$

### Analytic continuation

### Theorem (Riemann, 1859)

The zeta function has analytic continuation to all complex numbers  $s \neq 1$ , with

$$\zeta(s) = \zeta(1-s) \frac{\Gamma(\frac{1-s}{2})\pi^{-\frac{1-s}{2}}}{\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}}.$$

Therefore,

$$\zeta(-1) = \zeta(2) \frac{\Gamma(1)\pi^{-1}}{\Gamma(-\frac{1}{2})\pi^{1/2}} = \frac{\pi^2}{6} \cdot \frac{1 \times \pi^{-1}}{(-2\sqrt{\pi})\pi^{1/2}} = -\frac{1}{12}.$$

### Graph of the Riemann zeta function



$$\zeta(z) = \sum_{k=1}^{\infty} \frac{1}{k^z} = \frac{1}{\Gamma(z)} \int_0^{\infty} dt \frac{t^{z-1}}{e^t - 1}$$

$$\hat{H} = \frac{\mathbb{1}}{\mathbb{1} - e^{-i\hat{p}}} (\hat{x} \, \hat{p} + \hat{p} \, \hat{x}) (\mathbb{1} - e^{-i\hat{p}})$$

#### Poisson summation

The usual proof is by **Poisson summation**.

When you first see it, it looks like a piece of magic.

(anonymous, MathOverflow comment)

#### Poisson summation

The usual proof is by Poisson summation.

When you first see it, it looks like a piece of magic.

(anonymous, MathOverflow comment)

Can compute  $\zeta(-1) = -\frac{1}{12}$  using elementary methods?

Integration by parts.

Defining  $P_3(t)$  in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

Defining  $P_3(t)$  in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

Defining  $P_3(t)$  in the same manner, where

$$\int_0^1 P_3(t)dt = 0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

similarly

$$P_4(t) = \frac{1}{24}t^4 - \frac{1}{12}t^3 + \frac{1}{24}t^2 - \frac{1}{720},$$

Defining  $P_3(t)$  in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

similarly

$$P_4(t) = \frac{1}{24}t^4 - \frac{1}{12}t^3 + \frac{1}{24}t^2 - \frac{1}{720},$$

SO

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^{\infty} \frac{P_4(t)}{t^{s+4}}.$$



$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^\infty \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^\infty \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \dots = 0,$$



$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_{1}^{\infty} \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \cdots = 0,$$

$$\zeta(-3) = 1 + 8 + 27 + 64 + 125 + \dots = \frac{1}{120}.$$

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_{1}^{\infty} \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \dots = 0,$$

$$\zeta(-3) = 1 + 8 + 27 + 64 + 125 + \dots = \frac{1}{120}.$$

and we can compute any value of  $\zeta(-n)$  similarly.



### Some standard terminology

▶ The polynomial  $B_n(t) := n!P_n(t)$  is called the *nth Bernoulli polynomial*;

### Some standard terminology

- ▶ The polynomial  $B_n(t) := n!P_n(t)$  is called the *nth Bernoulli polynomial*;
- ▶ The constant term  $B_n := B_n(0)$  is called the *nth Bernoulli number*.

### Some standard terminology

- ▶ The polynomial  $B_n(t) := n!P_n(t)$  is called the *nth Bernoulli polynomial*;
- ▶ The constant term  $B_n := B_n(0)$  is called the *nth Bernoulli number*.
- ▶ If *n* is odd, then  $B_n = 0$  (except  $B_1 = -\frac{1}{2}$ ).

$$B_{22} = \frac{11(57183 + 20500)^{2}}{138}$$

$$B_{24} = \frac{236364091}{2730} = \frac{19.1617 + 10.4206 + 34.530}{2730}$$

$$B_{26} = \frac{8553103}{6} = \frac{13(392931 + 265000)}{6}$$

$$236364091 + 131040(\frac{123}{1-2} + \frac{243}{1-3} + \frac{243}{1-3} + \frac{243}{1-3})$$

$$= 49679091 \frac{1}{1} + 240(\frac{123}{1-2} + \frac{243}{1-3} + \frac{243}{1-3} + \frac{243}{1-3})$$

$$+176400000 \frac{1}{1} + 240(\frac{123}{1-2} + \frac{243}{1-3} + \frac{243$$

### Some Bernoulli polynomials



#### The Euler-Maclaurin sum formula

#### Theorem

If  $f \in C^{\infty}[0,\infty)$ , then for all integers a, b, k we have

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(t)dt + \frac{1}{2} \Big( f(a) + f(b) \Big)$$

$$+ \sum_{\ell=2}^{k} \frac{B_{k}}{k!} \Big( f^{(k-1)}(b) - f^{(k-1)}(a) \Big)$$

$$+ \frac{1}{k!} \int_{a}^{b} B_{k}(x) f^{(k)}(t) dt.$$

### Example

**Stirling's formula:** Take  $f(n) = \log(n)$ :

$$\log(x!) = \sum_{n=1}^{x} \log n \to \int_{1}^{x} \log t \ dt + C + \frac{1}{2} \log x.$$

## Euler-Maclaurin: a special case

Let 
$$f(0) + f(0) + f(0) + f(0) + \cdots + f(0) = \phi(0)$$
 thum

$$\phi(x) = c + \int f(x) dx + \frac{1}{2} f(x) + \frac{B_2}{12} f'(x) - \frac{B_3}{12} f''(x) + \frac{B_3}{12} f$$

### The Ramanujan constant $C_R$

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

### The Ramanujan constant $C_R$

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant  $C_R$  is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

## The Ramanujan constant $C_R$

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant  $C_R$  is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

The Ramanujan constant of  $\sum_{n=1}^{\infty} 1$  is  $-\frac{1}{2}$ , because

$$\sum_{n=1}^{x} 1 = \int_{0}^{x} 1 \ dt + C_{R} + \frac{1}{2} \cdot 1.$$

# The Ramanujan constant $C_R$

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant  $C_R$  is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

The Ramanujan constant of  $\sum_{n=1}^{\infty} 1$  is  $-\frac{1}{2}$ , because

$$\sum_{n=1}^{x} 1 = \int_{0}^{x} 1 \ dt + C_{R} + \frac{1}{2} \cdot 1.$$

The Ramanujan constant of  $\sum_{n=1}^{\infty} n$  is  $-\frac{1}{12}$ , because

$$\sum_{n=1}^{x} n = \int_{0}^{x} t \ dt + C_{R} + \frac{1}{2}n + \frac{1}{12}.$$



## A broader definition of Ramanujan sums?

#### Definition

(???) We define the value of any infinite sum  $\sum_{n=1}^{\infty} f(n)$  to be the Ramanujan constant  $C_R$ .

#### A convergent sum

#### Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

#### A convergent sum

Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

The Ramanujan constant is

$$C_R = -\frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot (2k)!$$

#### A convergent sum

Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

The Ramanujan constant is

$$C_R = -\frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot (2k)!$$

Can we speed up the convergence?

Warning: I am lying on this slide.

Consider instead

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right).$$

Consider instead

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right).$$

Now the Ramanujan constant is

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$
$$= -\frac{1}{50} + \frac{1}{750} - \frac{1}{93750} + \frac{1}{3281250} - \cdots$$
$$= -0.018677028 \dots$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not**  $-0.018677028$ .

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not**  $-0.018677028$ . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not**  $-0.018677028$ . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

and

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right)$$
$$= 0.181322955.$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not**  $-0.018677028$ . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

and

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right)$$
$$= 0.181322955.$$

This calculation convinced Euler that  $\zeta(2) = \frac{\pi^2}{6}$ .



## Rate of convergence

**Question:** Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

## Rate of convergence

Question: Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

Nο,

$$|B_{2n}| \sim \frac{2(2n)!}{(2\pi)^{2n}},$$

## Rate of convergence

Question: Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

No,

$$|B_{2n}| \sim \frac{2(2n)!}{(2\pi)^{2n}},$$

but this can be fixed rigorously.

#### How to get the correct constant?

The 'Ramanujan sum'  $\sum_{n=1}^{\infty}$  is not equal to  $\frac{\pi^2}{6} - 1$ .

### How to get the correct constant?

The 'Ramanujan sum'  $\sum_{n=1}^{\infty}$  is not equal to  $\frac{\pi^2}{6}-1$ .

Hardy: Introduce another parameter a.

"The introduction of the parameter a allows more flexibility and enables one to always obtain the "correct" constant; usually, there is a certain value of a which is more natural than other values. If  $\sum f(k)$  converges, then normally we would take  $a=\infty$ . Although the concept of the constant of a series has been made precise, Ramanujan's concomitant theory cannot always be made rigorous."

(B. Berndt)



Table 1: Summary of Higher Composition Laws

| #   | Lattice $(V_{\mathbb{Z}})$                                   | Group acting $(G_{\mathbb{Z}})$              | Parametrizes $(C)$     | (k) | (n) | (H)   |
|-----|--------------------------------------------------------------|----------------------------------------------|------------------------|-----|-----|-------|
| 1.  | {0}                                                          | -                                            | Linear rings           | 0   | 0   | $A_0$ |
| 2.  | $\widetilde{\mathbb{Z}}$                                     | $\mathrm{SL}_1(\mathbb{Z})$                  | Quadratic rings        | 1   | 1   | $A_1$ |
| 3.  | $(\operatorname{Sym}^2\mathbb{Z}^2)^*$                       | $\mathrm{SL}_2(\mathbb{Z})$                  | Ideal classes in       | 2   | 3   | $B_2$ |
|     | (GAUSS'S LAW)                                                |                                              | quadratic rings        |     |     |       |
| 4.  | $\operatorname{Sym}^3\mathbb{Z}^2$                           | $\mathrm{SL}_2(\mathbb{Z})$                  | Order 3 ideal classes  | 4   | 4   | $G_2$ |
|     |                                                              |                                              | in quadratic rings     |     |     |       |
| 5.  | $\mathbb{Z}^2 \otimes \mathrm{Sym}^2 \mathbb{Z}^2$           | $\mathrm{SL}_2(\mathbb{Z})^2$                | Ideal classes in       | 4   | 6   | $B_3$ |
|     |                                                              |                                              | quadratic rings        |     |     |       |
| 6.  | $\mathbb{Z}^2\otimes\mathbb{Z}^2\otimes\mathbb{Z}^2$         | $\mathrm{SL}_2(\mathbb{Z})^3$                | Pairs of ideal classes | 4   | 8   | $D_4$ |
|     |                                                              |                                              | in quadratic rings     |     |     |       |
| 7.  | $\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^4$                 | $SL_2(\mathbb{Z}) \times SL_4(\mathbb{Z})$   | Ideal classes in       | 4   | 12  | $D_5$ |
|     |                                                              |                                              | quadratic rings        |     |     |       |
| 8.  | $\wedge^3 \mathbb{Z}^6$                                      | $SL_6(\mathbb{Z})$                           | Quadratic rings        | 4   | 20  | $E_6$ |
| 9.  | $(\operatorname{Sym}^3 \mathbb{Z}^2)^*$                      | $GL_2(\mathbb{Z})$                           | Cubic rings            | 4   | 4   | $G_2$ |
| 10. | $\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^3$     | $GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})$   | Order 2 ideal classes  | 12  | 12  | $F_4$ |
|     |                                                              |                                              | in cubic rings         |     |     |       |
| 11. | $\mathbb{Z}^2\otimes\mathbb{Z}^3\otimes\mathbb{Z}^3$         | $GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})^2$ | Ideal classes          | 12  | 18  | $E_6$ |
|     |                                                              |                                              | in cubic rings         |     |     |       |
| 12. | $\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^6$                 | $GL_2(\mathbb{Z}) \times SL_6(\mathbb{Z})$   | Cubic rings            | 12  | 30  | $E_7$ |
| 13. | $(\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^3)^*$ | $GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})$   | Quartic rings          | 12  | 12  | $F_4$ |
| 14. | $\mathbb{Z}^4 \otimes \wedge^2 \mathbb{Z}^5$                 | $GL_4(\mathbb{Z}) \times SL_5(\mathbb{Z})$   | Quintic rings          | 40  | 40  | $E_8$ |