CSE 575: Statistical Machine Learning Assignment #1

Instructor: Prof. Hanghang Tong Out: Jan. 22nd, 2016; Due: Feb. 12th, 2016

Submit electronically, using the submission link on Blackboard for Assignment #1, a file named yourFirstName-yourLastName.pdf containing your solution to this assignment (a.doc or.docx file is also acceptable, but.pdf is preferred).

1 Bayes Classifier [20 points]

Prove that the Bayes classifier is the optimal, i.e., the expected risk of a Bayes classifier is minimal among all the possible classifiers. You only need to show this for binary classifiers.

Solution: For any given example x, the risk of the Bayes classifier is $r_{bayes} = min(q_1(x), q_2(x))$, which is smaller than or equal to the risk of any other classifier, where $q_i(x)$ (i = 1, 2) = p(y = i|x).

Therefore, the expected risk of the Bayes classifier must be the smallest among all possible (binary) classifiers.

2 Parameter Estimation [20 points]

For this question, assume that $x_1, \ldots, x_N \in \mathbb{R}$ are i.i.d samples drawn from the same underlying distribution. Assume that the underlying distribution is Gaussian $N(\mu, \sigma^2)$.

1. (5 points) What is the MLE estimator of μ ?

Solution.
$$\hat{\mu}_{MLE} = \frac{\sum_{i=1}^{N} x_i}{N}$$

2. (5 points) Is your MLE estimator of μ a random variable? **Explain.**

Solution. Yes. $\hat{\mu}_{MLE}$ is a function of x_1, \ldots, x_N . Each of them is a random variable. So $\hat{\mu}_{MLE}$ is also a random variable.

3. (5 points) Let $\hat{\mu}_{MLE}$ denote the MLE estimator of μ . Please prove that $\hat{\mu}_{MLE}$ is unbiased. Hint: The bias of an estimator of the parameter μ is defined to be the difference between the expected value of the estimator and μ .

Solution.
$$E(\hat{\mu}_{MLE}) = E(\frac{\sum_{i=1}^{N} x_i}{N}) = \frac{1}{N} \sum_{i=1}^{N} E(x_i) = \mu$$
. So $\hat{\mu}_{MLE}$ is unbiased.

4. (5 points) If the true value of μ is known, then the MLE estimator of σ^2 is as follows.

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Please prove that $\hat{\sigma}_{MLE}^2$ is unbiased. Notice that this estimator is different from the one we introduced in class due to the fact that we already know the true value of μ .

Solution. $E(\hat{\sigma}_{MLE}^2) = E(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2) = \frac{1}{N} \sum_{i=1}^{N} E(x_i - \mu)^2 = \mu$. So $\hat{\sigma}_{MLE}^2$ is unbiased.

3 Naive Bayes Classifier [20 points]

Given the training data set in Figure 1, we want to train a binary classifier, with (1) the last column being the class label (i.e., whether or not to enjoy the sport); and (2) each column of X being a binary feature.

Figure 1: Training Data Set for Naive Bayes Classifiers

1. (5 points) How many independent parameters are there in your Naive Bayes classifier? What are they? Justifiy your answer.

Solutions: (1) P(y = 1) (i.e., enjoy sports), (2) $P(x_1 = sunny|y = i)$ (i = 1,0), (3) $P(x_2 = warm|y = i)$ (i = 1,0), (4) $P(x_3 = normal|y = i)$ (i = 1,0), (5) $P(x_4 = strong|y = i)$ (i = 1,0), (6) $P(x_5 = warm|y = i)$ (i = 1,0), (7) $P(x_7 = same|y = i)$ (i = 1,0). 13 independent parameters in total.

2. (10 points) What are your estimations for these parameters? (say using standard MLE).

Solutions: (1) P(y=1)=3/4 (i.e., enjoy sports), (2) $P(x_1=sunny|y=1)=1$ and $P(x_1=sunny|y=0)=0$, (3) $P(x_2=warm|y=1)=1$ and $P(x_2=warm|y=0)=0$, (4) $P(x_3=normal|y=1)=1/3$ and $P(x_3=normal|y=0)=0$, (5) $P(x_4=strong|y=1)=1$ and $P(x_4=strong|y=0)=1$, (6) $P(x_5=warm|y=1)=2/3$ and $P(x_7=same|y=0)=1$, (7) $P(x_7=same|y=1)=2/3$ and $P(x_7=same|y=0)=0$.

3. (5 points) Now, given a new (test) example x = (sunny, warm, high, strong, cool, change), what is P(y = 1|x)? Which class label will the naive Bayes classifer assign to this example? Justify your answer.

Solutions: $P(x|y=1)P(y=1) = P(x_1 = sunny|y=1)P(x_2 = warm|y=1)P(x_3 = high|y=1)P(x_4 = strong|y=1)P(x_5 = cool|y=1)P(x_6 = change|y=1)P(y=1) = 1 \times 1 \times 2/3 \times 1 \times 1 \times 1/3 \times 1/3 \times 3/4 = 1/18.$ P(x|y=0)P(y=0) = 0. Therefore, $P(y=1|x) = \frac{P(x|y=1)P(y=1)}{P(x|y=1)P(y=1)+P(x|y=0)P(y=0)} = 1$. The assigned label will be y=1.

4 1NN-Classifier Decision Boundary [20 points]

Given two training data points as shown in Figure ??, what is the decision boundary of 1NN classifier if we use L_2 distance (10 points)? What will be the decision boundary if we use L_{∞} distance instead (10 points)? Justify your answer.

Solutions: (1) the y-axis. (2) shown in the following figure.

Figure 2: Decision Boundary of 1NN Classifiers with L_{∞} Distance.

5 The decision boundary for 1NN (i.e., 1-Nearest Neighbors Classifier) [20 points]

For each of the following figures, we are given a few data points in the 2-d space, each of which is labeled as either '+' or '-'. Draw the decision boundary for 1NN, assuming we use L_2 distance. **Solution**. 5 pts for each case, and no partial credits for each case.

Figure 3: Training Data Set for 1NN Classifiers