Liban. 2016. Enseignement spécifique. Corrigé

EXERCICE 1

1) a) Les points A et C ont pour coordonnées respectives (0,0,0) et (1,1,0). Donc le point I a pour coordonnées $\left(\frac{1}{2},\frac{1}{2},0\right)$. Par suite,

$$AI^{2} = \left(\frac{1}{2} - 0\right)^{2} + \left(\frac{1}{2} - 0\right)^{2} + (0 - 0)^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

La droite (IE) est perpendiculaire au plan (ABC) et donc la droite (IE) est orthogonale à toute droite de ce plan. En particulier, la droite (IE) est orthogonale à la droite (AI). D'après le théorème de PYTHAGORE dans le triangle AEI, rectangle en I,

$$IE^2 = AE^2 - AI^2 = 1 - \frac{1}{2} = \frac{1}{2}$$

puis
$$IE = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
.

On a vu que le point I a pour coordonnées $\left(\frac{1}{2},\frac{1}{2},0\right)$ et donc, les points E et F ont pour coordonnées respectives $\left(\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}\right)$ et $\left(\frac{1}{2},\frac{1}{2},-\frac{\sqrt{2}}{2}\right)$.

b) Les vecteurs \overrightarrow{AB} et \overrightarrow{AE} ont pour coordonnées respectives (1,0,0) et $\left(\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}\right)$. On note que ces vecteurs ne sont pas colinéaires (en analysant leur deuxième coordonnée).

$$\overrightarrow{\pi}.\overrightarrow{AB} = 0 \times 1 - 2 \times 0 + \sqrt{2} \times 0 = 0 \ \mathrm{et} \ \overrightarrow{\pi}.\overrightarrow{AE} = 0 \times \frac{1}{2} - 2 \times \frac{1}{2} + \sqrt{2} \times \frac{\sqrt{2}}{2} = -1 + \frac{2}{2} = 0.$$

Le vecteur \overrightarrow{n} est donc orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{AE} qui sont deux vecteurs non colinéaires du plan (ABE). On en déduit que le vecteur \overrightarrow{n} est un vecteur normal au plan (ABE).

c) Le plan (ABE) est le plan passant par A(0,0,0) et de vecteur normal $\overrightarrow{n}(0,-2,\sqrt{2})$. Une équation cartésienne du plan (ABE) est donc $-2y + \sqrt{2}z = 0$ ou encore $-\sqrt{2}y + z = 0$ après division des deux membres de l'équation par $\sqrt{2}$.

Les points D, F et C ont pour coordonnées respectives $(0,1,0), \left(\frac{1}{2},\frac{1}{2},-\frac{\sqrt{2}}{2}\right)$ et (1,1,0). Le vecteur \overrightarrow{DC} a pour coordonnées (1,0,0) et le vecteur \overrightarrow{DF} a pour coordonnées $\left(\frac{1}{2},-\frac{1}{2},-\frac{\sqrt{2}}{2}\right)$.

$$\overrightarrow{\pi}.\overrightarrow{DC} = 0 \times 1 - 2 \times 0 + \sqrt{2} \times 0 = 0 \text{ et } \overrightarrow{\pi}.\overrightarrow{DF} = 0 \times \frac{1}{2} - 2 \times \left(-\frac{1}{2}\right) + \sqrt{2} \times \left(-\frac{\sqrt{2}}{2}\right) = 0.$$

Le vecteur \overrightarrow{n} est orthogonal aux vecteurs \overrightarrow{DC} et \overrightarrow{DF} qui sont deux vecteurs non colinéaires du plan (FDC). On en déduit que le vecteur \overrightarrow{n} est un vecteur normal au plan (FDC).

Puisque le vecteur \overrightarrow{n} est aussi un vecteur normal au plan (ABE), on a montré que les plans (FDC) est (ABE) sont parallèles.

b) Puisque le point N n'est pas dans le plan (FDC) et que le point M est dans le plan (FDC), les plans (EMN) et (FDC) sont sécants en une droite (Δ) passant par M.

Puisque les plans (ABE) et (FDC) sont parallèles, le plan (EMN) coupe les plans (ABE) et (FDC) suivant deux droites parallèles. La droite (Δ) est donc la parallèle à la droite (EN) passant par M.

c) Construction. On note P le point d'intersection de la droite (Δ) de la question précédente et de la droite (DC). Pour obtenir la section du plan (ABF) par le plan (EMN), on a tracé la parallèle à la droite (PE) passant par N.

Partie A

- 1) Notons X la variable aléatoire égale au nombre de balles à droite.
 - 20 expériences identiques et indépendantes sont effectuées.
 - chaque expérience a deux issues à savoir « la balle arrive à droite » avec une probabilité $p = \frac{1}{2}$ et « la balle arrive à gauche » avec une probabilité $1 p = \frac{1}{2}$.

X suit donc une loi binomiale de paramètres n=20 et $p=\frac{1}{2}$. La probabilité demandée est P(X=10). On sait que

$$P(X = 10) = {20 \choose 10} \left(\frac{1}{2}\right)^{10} \left(\frac{1}{2}\right)^{10} = \frac{{20 \choose 10}}{2^{20}}.$$

La calculatrice donne P(X = 10) = 0,176 arrondi à 10^{-3} .

2) La probabilité demandée est $P(5 \le X \le 10)$. La calculatrice donne $P(5 \le X \le 10) = 0,582$ arrondi à 10^{-3} .

Partie B

Ici, n=100 et la probabilité p qu'une balle arrive à droite est p=0,5. On note que $n\geqslant 30$, np=n(1-p)=50 et donc $np\geqslant 5$ et $n(1-p)\geqslant 5$. un intervalle de fluctuation asymptotique au seuil 95% est

$$\left[p-1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}},p+1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right] = \left[0,5-1,96\frac{\sqrt{0,5\times0,5}}{\sqrt{100}};0,5-1,96\frac{\sqrt{0,5\times0,5}}{\sqrt{100}}\right] \\
= \left[0,5-0,098;0,5+0,098\right] = \left[0,402;0,598\right]$$

La fréquence de balles à droite observée est $f = \frac{42}{100} = 0,42$. La fréquence observée appartient à l'intervalle de fluctuation et le joueur ne peut donc pas remettre en cause le bon fonctionnement de l'appareil.

Partie C

Notons respectivement D, G, L et C les événements « la balle est envoyée à droite », « la balle est envoyée à gauche », « la balle est liftée » et « la balle est coupée ». L'énoncé fournit $P(L \cap D) = 0,24$ et $P(C \cap G) = 0,235$. La probabilité demandée est $P_C(D)$.

$$P_G(C) = \frac{P(G \cap C)}{P(G)} = \frac{0,235}{0,5} = 0,47. \text{ De même, } P_D(L) = \frac{P(D \cap L)}{P(D)} = \frac{0,24}{0,5} = 0,48. \text{ Représentons alors la situation par un arbre de probabilité.}$$

D'après la formule des probabilités totales entre autres,

$$\begin{split} P_C(D) &= \frac{P(C \cap D)}{P(C)} = \frac{p(D) \times P_D(C)}{P(D) \times P_D(C) + P(G) \times P_G(C)} = \frac{0,5 \times 0,52}{0,5 \times 0,52 + 0,5 \times 0,47} = \frac{0,26}{0,495} \\ &= 0,525 \text{ arrondi à } 10^{-3}. \end{split}$$

Partie A

1) Pour tout réel x de [0,1], $1+e^{1-x}>1$ et en particulier, pour tout réel x de [0,1], $1+e^{1-x}\neq 0$. La fonction f est donc dérivable sur [0,1] en tant qu'inverse d'une fonction dérivable sur $\mathbb R$ et ne s'annulant pas sur [0,1]. Pour tout réel x de [0,1],

$$f'(x) = -\frac{\left(1 + e^{1 - x}\right)'}{\left(1 + e^{1 - x}\right)^2} = -\frac{0 + (1 - x)'e^{1 - x}}{\left(1 + e^{1 - x}\right)^2} = -\frac{-e^{1 - x}}{\left(1 + e^{1 - x}\right)^2} = \frac{e^{1 - x}}{\left(1 + e^{1 - x}\right)^2}.$$

Puisque la fonction exponentielle est strictement positive sur \mathbb{R} , la fonction f' est strictement positive sur [0,1]. On en déduit que la fonction f est strictement croissante sur [0,1].

2) Soit x un réel de [0, 1].

$$f(x) = \frac{1}{1 + e^{1 - x}} = \frac{1}{1 + \frac{e^1}{e^x}} = \frac{1}{\left(\frac{e^x + e}{e^x}\right)} = \frac{e^x}{e^x + e}.$$

3) La fonction f est de la forme $\frac{\mathfrak{u}'}{\mathfrak{u}}$ où \mathfrak{u} est la fonction $x\mapsto e^x+e$. De plus, la fonction \mathfrak{u} est strictement positive sur [0,1] et donc

$$\int_0^1 f(x) dx = \left[\ln(e^x + e)\right]_0^1 = \ln(e^1 + e) - \ln(e^0 + e) = \ln(2e) - \ln(1 + e) = \ln(2) + \ln(e) - \ln(1 + e)$$

$$= \ln(2) + 1 - \ln(1 + e).$$

Partie B

1) Graphique.

2) Soit $\mathfrak n$ un entier naturel. La fonction $\mathfrak f_n$ est continue et positive sur [0,1]. On en déduit que $\mathfrak u_n$ est l'aire, exprimée en unités d'aire, du domaine du plan compris entre l'axe des abscisses et la courbe $\mathscr C_n$ d'une part et les droites d'équations respectives $\mathfrak x=0$ et $\mathfrak x=1$ d'autre part. En particulier, $\mathfrak u_0=1$.

3) D'après le graphique, on peut conjecturer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. Démontrons ce résultat. Soit n un entier naturel.

$$\begin{split} n \leqslant n+1 &\Rightarrow \text{pour tout r\'eel } x \text{ de } [0,1], \ ne^{1-x} \leqslant (n+1)e^{1-x} \ (\text{car } e^{1-x} > 0) \\ &\Rightarrow \text{pour tout r\'eel } x \text{ de } [0,1], \ 1+ne^{1-x} \leqslant 1+(n+1)e^{1-x} \\ &\Rightarrow \text{pour tout r\'eel } x \text{ de } [0,1], \ \frac{1}{1+ne^{1-x}} \geqslant \frac{1}{1+(n+1)e^{1-x}} \ (\text{car } 1+(n+1)e^{1-x} > 0) \\ &\Rightarrow \int_0^1 \frac{1}{1+ne^{1-x}} \geqslant \int_0^1 \frac{1}{1+(n+1)e^{1-x}} \ dx \ (\text{par croissance de l'int\'egrale}) \\ &\Rightarrow u_n \geqslant u_{n+1}. \end{split}$$

Ainsi, pour tout entier naturel $n,\,u_{n+1}\leqslant u_n.$ Ceci montre que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

 $\textbf{4)} \text{ La suite } (u_n)_{n \in \mathbb{N}} \text{ est décroissante et est minorée par 0. On sait alors que la suite } (u_n)_{n \in \mathbb{N}} \text{ converge.}$

1) Notons σ l'écart-type de la variable X. Tout d'abord $P(X \le 21, 6) = P(X \le 20) + P(20 \le X \le 21, 6) = 0, 5 + 0, 34 = 0, 84$. Ensuite,

$$X \leqslant 21, 6 \Leftrightarrow X - 20 \leqslant 1, 6 \Leftrightarrow \frac{X - 20}{\sigma} \leqslant \frac{1, 6}{\sigma}$$
.

On sait que la variable $Z = \frac{X-20}{\sigma}$ suit la loi normale centrée réduite et on a $P\left(Z \leqslant \frac{1,6}{\sigma}\right) = 0,84$. La calculatrice donne $\frac{1,6}{\sigma} = 0,9944\dots$ puis $\sigma = 1,608\dots$

La calculatrice donne encore $P(X \ge 23, 2) = 0,023...$

L'affirmation 1 est fausse.

Remarque. D'après l'énoncé, $P(20-1,6\leqslant X\leqslant 20+1,6)=2\times 0,34=0,68$. D'après le cours, σ vaut environ 1,6. Toujours d'après le cours, $P(16,8\leqslant X\leqslant 23,2)=P(20-2\sigma\leqslant X\leqslant 20+2\sigma)\approx 0,95$ puis

$$P(X \ge 23, 2) \approx \frac{1 - 0,95}{2} = \frac{0,05}{2} = 0,025.$$

2) Soit z un nombre complexe distinct de 2. Soient M le point d'affixe z et B le point d'affixe 2. On note que le point A est le milieu du segment [OB].

$$|Z| = 1 \Leftrightarrow \left| \frac{\mathrm{i}z}{z - 2} \right| = 1 \Leftrightarrow \frac{|\mathrm{i}||z|}{|z - 2|} = 1 \Leftrightarrow \frac{|z|}{|z - 2|} = 1 \Leftrightarrow |z| = |z - 2|$$
$$\Leftrightarrow \mathsf{OM} = \mathsf{BM} \Leftrightarrow \mathsf{M} \in \mathsf{med}[\mathsf{OB}].$$

L'ensemble des points M tels que |Z| = 1 est la médiatrice du segment [OB]. La médiatrice du segment [OB] est une droite passant par le point A. Donc

l'affirmation 2 est vraie.

3) Posons z = x + iy où x et y sont deux réels tels que $(x, y) \neq (2, 0)$.

$$Z = \frac{i(x+iy)}{x+iy-2} = \frac{-y+ix}{(x-2)+iy} = \frac{(-y+ix)((x-2)-iy)}{((x-2)+iy)((x-2)-iy)} = \frac{-y(x-2)+iy^2+ix(x-2)+xy}{(x-2)^2+y^2}$$
$$= \frac{2y}{(x-2)^2+y^2} + i\frac{x^2+y^2-2x}{(x-2)^2+y^2}.$$

Par suite, Z imaginaire pur $\Leftrightarrow \frac{2y}{(x-2)^2+y^2}=0 \Leftrightarrow y=0 \Leftrightarrow z$ est réel (et différent de 2).

L'affirmation 3 est vraie.

4) Soit x un réel.

$$\begin{split} f(x) &= 0, 5 \Leftrightarrow \frac{3}{4+6e^{-2x}} = 0, 5 \Leftrightarrow \frac{4+6e^{-2x}}{3} = 2 \Leftrightarrow 4+6e^{-2x} = 6 \Leftrightarrow e^{-2x} = \frac{1}{3} \\ &\Leftrightarrow -2x = \ln\left(\frac{1}{3}\right) \Leftrightarrow -2x = -\ln(3) \Leftrightarrow x = \frac{\ln(3)}{2}. \end{split}$$

L'affirmation 4 est vraie.

5) Donnons les valeurs successives de X et Y dans un tableau.

X	Υ
0	0,3
0,01	0,303
0,02	0,307
0,03	0,310
:	:
0,53	0,493
0,54	0,496
0,55	0,500

puis l'algorithme s'arrête et affiche 0,55.

L'affirmation 5 est fausse.

1) a) Soit n un entier naturel.

$$\begin{split} u_{n+1} &= z_{n+1} - (4+2i) = \frac{1}{2}iz_n + 5 - 4 - 2i = \frac{1}{2}iz_n - (-1+2i) = \frac{1}{2}i\left(z_n - \frac{-1+2i}{\frac{1}{2}i}\right) \\ &= \frac{1}{2}i\left(z_n - \frac{2(-1+2i)}{i}\right) = \frac{1}{2}i\left(z_n - \frac{2(-1+2i)(-i)}{i(-i)}\right) = \frac{1}{2}i\left(z_n - 2(-1+2i)(-i)\right) \\ &= \frac{1}{2}i\left(z_n - (2i+4)\right) = \frac{1}{2}iu_n. \end{split}$$

- b) Montrons par récurrence que pour tout tout entier naturel $n, u_n = \left(\frac{1}{2}i\right)^n (-4-2i)$.
 - $\bullet \ u_0=z_0-(4+2\mathfrak{i})=-4-2\mathfrak{i}=\left(\frac{1}{2}\mathfrak{i}\right)^0(-4-2\mathfrak{i}). \ L'égalité \ \mathrm{est} \ \mathrm{donc} \ \mathrm{vraie} \ \mathrm{quand} \ \mathfrak{n}=0.$
 - \bullet Soit $n\geqslant 0.$ Supposons que $u_n=\left(\frac{1}{2}i\right)^n(-4-2i).$ Alors

$$\begin{split} u_{n+1} &= \frac{1}{2} i u_n \ (\text{d'après la question a})) \\ &= \frac{1}{2} i \times \left(\frac{1}{2} i\right)^n \left(-4 - 2 i\right) \ (\text{par hypothèse de récurrence}) \\ &= \left(\frac{1}{2} i\right)^{n+1} \left(-4 - 2 i\right). \end{split}$$

On a montré par récurrence que pour tout entier naturel $n,\,u_n=\left(\frac{1}{2}i\right)^n(-4-2i).$

2) Soit $\mathfrak n$ un entier naturel. L'affixe du vecteur $\overrightarrow{AM_n}$ est

$$z_{\overrightarrow{AM_n}} = z_n - z_A = u_n = \left(\frac{1}{2}i\right)^n (-4 - 2i).$$

On en déduit que

$$z_{\overrightarrow{\mathrm{AM}_{n+4}}} = \left(\frac{1}{2}\mathrm{i}\right)^{n+4} (-4-2\mathrm{i}) = \left(\frac{1}{2}\mathrm{i}\right)^4 \times \left(\frac{1}{2}\mathrm{i}\right)^n (-4-2\mathrm{i}) = \frac{1}{16}z_{\overrightarrow{\mathrm{AM}_n}}.$$

 $\mathrm{Par} \ \mathrm{suite}, \ \overrightarrow{AM_{n+4}} = \frac{1}{16} \overrightarrow{AM_n}. \ \mathrm{Ainsi}, \ \mathrm{les} \ \mathrm{vecteurs} \ \overrightarrow{AM_n} \ \mathrm{et} \ \overrightarrow{AM_{n+4}} \ \mathrm{sont} \ \mathrm{colin\'eaires} \ \mathrm{ou} \ \mathrm{encore}$

les points A, M_n et M_{n+4} sont alignés.