Common-Source Stage II & Variants

zrrraa

2023.11.19

Simplification

Ignore the Channel-Length Modulation, we can simplify the gain as: $A_V = -g_m*(\text{total resistance tied from drain to AC GROUND}).$ AC GROUND means the point which has a const voltage. In the picture, we have:

$$A_V = -g_m(R_D||R_1||R_2)$$

Example

First assume that it's in Sat. zone and then calculate out the I_D and check if the assume is true. If we want to double the gain, how can we do?

• Try doubling R_D ? $I_D * R_D$ larger, the V_{DS} lower, the MOS will run out fo the saturation zone.

We always want an amplifier working in saturation zone because it means larger swing of I_D . We want a lower I_D in DC, but higher in AC.

• Try increasing $g_m = \sqrt{2\mu C_{ox} \frac{W}{L} I_D}$

We shouldn't increase I_D , that leads to the same result as increasing R_D . Then $\frac{W}{L}$?

It is worth noting that if $\frac{W}{L}$ becomes sufficiently large, $g_m \approx \frac{I_D}{1.5V_T}$. V_T here is $\frac{KT}{q}$, 26mV in air.

Inclusion of Channel-Length Modulation

Small-Signal Model with Inclusion of Channel-Length Modulation

It's clear that $A_V = -g_m(r_o||R_D)$.

We want the largest A_V , means the largest R_D . The circuit cannot be open, because we need bias. So, a current source is appropriate.

 I_1 is const & ideal. We also assume the MOS working in saturation. Now $A_V = -g_m * r_o$, we call this intrinsic gain of MOS. It's usually 5 10.

Concept of Port Impedance

input impedance

When measuring the input impedance, we set all independent sources to zero. The output port should be open.

$$R_{in} = \frac{v_x}{i_x}$$

output impedance

When measuring the output impedance, the input port should be short.

Let's build a current source

If a MOS is working as a current source, we can refer it as a resistor. (only when $\lambda > 0$) If $\lambda = 0$, we refer it as a open circuit.

Common-Source Stage with Current-Source Load

Refer the MOS as a resistor or a open circuit.

Common-Source Stage with Diode-Connected Device Load

Diode-Connected means the Gate and Drain are short together. From the small-signal model we can get the output impedance.

$$i_x = \frac{v_x}{r_o} + g_m v_1$$

$$v_1 = v_x$$

So,

$$\frac{v_x}{i_x} = r_o || \frac{1}{g_m}$$

Usually, $r_o >> \frac{1}{g_m}$, so the output impedance can be approximately equal to $\frac{1}{g_m}$.

Also we have $A_V = -g_{m1} \frac{1}{g_{m2}}$.

Input and Output Impedances

Resistor Load

input imp. $=\frac{v_x}{i_x}=\infty$ (at low frequencies)

output imp. $=\frac{v_x}{i_x}=R_D||r_o||$

Current-Source Load

output imp. $\frac{v_x}{i_x} = r_{o2} ||r_{o1}||$

Diode-Connected Device Load

output imp. $=\frac{v_x}{i_x}=\frac{1}{g_{m2}}||r_{o2}||r_{o1}$ Here $\frac{1}{g_{m2}}$ is dominant.

Link

Razavi Electronics Circuits 1: lectrue 36

Razavi Electronics Circuits 1: lectrue 37