Block Compression and Invariant Pruning for SAT-based TO-HTN Planning

Gregor Behnke (behnkeg@informatik.uni-freiburg.de)

University of Freiburg

SAT-based TO-HTN planners have proven quite efficient.

But they still encode useless actions and no parallelism!

HTN Planning

- ► Abstract tasks *A*
- ► Primitive actions *P*
- ► Decomposition methods *M*
- Preconditions / Effects for actions
- ightharpoonup Initial state s_I and initial task c_I
- Note: Find a refinement $\pi = \langle p_1, \dots, p_n \rangle$ of c_I containing only primitive actions that is **executable** in s_I .

SAT Encoding and PDTs

Pruning Propagation

- ► Assume: *a* cannot be executed
- ► Thus the method decomposing *A* becomes impossible
- ► Thus *b* is impossible
- ightharpoonup Thus C, g and e are impossible

Leaf Pruning

- ► Ideally: Is action part of any plan? $\Rightarrow \mathbb{E}\mathbb{XPTIME}$ -complete
- ► Approximation: For an action *a*, can we select actions from preceding leafs s.t. *a* is executable?
 - $\Rightarrow \mathbb{NP}$ -complete

- ➤ Option 1: Delete-Relaxation
 - ► Maintain reachable facts *F*
 - ▶ Prune if $F \not\models pre(a)$, else add add(a) to F
- ► Option 2: Binary Invariants

 - ► Prune if $I \not\models pre(a)$, else update I [Rintanen'98]

Block Compression

 $\{a\} \qquad \{b\} \qquad \{c,d\} \quad \{e,f\} \qquad \{g\}$

- ► Usually, each leaf is encoded as a separate time step
- ► Actions might be independent!
- ⇒ Unify time steps

All actions a must be

- ▶ non-dependent on previous actions a' $prec(a) \cap (add(a') \cup del(a')) = \emptyset$
- non-interfering with previous actions a' $add(a) \cap del(a') = \emptyset$ $del(a) \cap add(a') = \emptyset$

Evaluation on the IPC 2020 Benchmark Set

