

딥러닝 문제 해결

딥러닝

딥러닝의 개념 및 딥러닝으로 할 수 있는 일들과 머신러닝과 딥러닝으로 구별되는 차이점을 이해하고, 딥러닝의 핵심인 인공 신경망을 통합 딥러닝의 문제 해결 과정 탐색

순서

딥러닝이란 이런 것!

딥러닝으로 뭘 할 수 있어?

딥러닝과 머신러닝은 어떻게 달라?

딥러닝은 이렇게 동작한다구!

답러님이란이런것!

티러닝 이란?

티러(Deep Learning)

머신러닝의 한분이인 임공 신경망을

기반으로 하는 모델을 사용하는 것

입건님 이라?

인공자능 Artificial Intelligence — 마스만님

Machine Learning

딥러닝 Deep Learning 인공자능(Artificial Intelligence) 인간이 7전 지적 능력된다.예측 등을 모 방하여 7계까대신함.

규칙기반전문7사스템등

입건님 이라?

임공자능

Artificial Intelligence

Machine Learning

딥러닝

Deep Learning

聞記せ(Machine Learning)

스스로 데이E를 학습하여 의사결정을

위한IIEK규칙을 찾아새로운데이E인 결

山伯兰

통계적 추론에 기반한 시스템을 포함

[단생 이란?

티션(Deep Learning)

- · 생물학적 신경망에서 영감을 얻은 기계 학적 알고라즘.
- · 인공신경망을 7번으로 하는 머신러닝인 일부
- · 데이터로부터 특성 추출 및 팬티까지인 공지는이모두 수행
- · 딥러닝(심층학습)은 심층신경망을 사용 한학습시스템

https://www.alctraining.com.au/blog/difference-machine-learning-deep-learning/

답라님 용도

답라**!**으로 할수있는일

머신러님에서 하는 일 이상인 것

· 분류, 회귀뿐 아니라 이미지나 영상에서 사물 탐지 가능

• 문제를 해결하는 방식과 성능에서 머신러닝과 차이가 있음.

답네 용도

답**님으로** 할수있는일

데이터의 경향성으로 연속 적인 수치 예측

회귀

화가의 화풍을 토대로 예술

대상 탐지

한 개의 그림/영상 속에서 대상을 이해

자연어 이해

인간의 말과 의미를 이해

이미지/영상 분할

한 개의 그림 안에서 영역 구분

이미지/영상 해상도 조절

저해상도 이미지를 고해상 도 이미지로 생성

답임님 용도

답라 용도

작가의 화풍을 토대로 예술 작품 생성

예술 작품 창조

한 개의 그림/ 영상 속에서 대상 이해

대상 탐지

답임 용도

저해상도 이미지를 고해상도 이미지로 생성

→

해상도 조절

한 개인 그림 안에서 영역을 나눔

이미지 / 영상 분할

인간의 말과 의미 이해

자연어 이해

알파고 딥러닝

바둑인공지능인알파고도심층신경망

- 일반적인딥러닝은교사학습알고리즘을 (supervised learning algorithms) 많이 사용
- 알파고는 강화학습(reinforcement algorithm)을사용
- 여러 수를시도해서 최적의다음수를결 정
- 딥러닝(Deep Learning)은심층신경망 의학습

Deep Learning is used in Google's famous AlphaGo Al. Source: DeepMind

핵심! 딥러닝은 무엇일까?

- · 머신러닝의 다양한 모델 중 <mark>인공 신경망을 기반으로</mark> 하며, 데이터를 학습한 결과를 토대로 새로운 데이터의 결과 예측
- · 딥러닝의 71워드: 데이터, 인공 신경망, 학습, 예측

머신러닝

- 입력 HOIE를 7계업퓨터가 처리할 수 있는 정형화된 형태로 정리 + 문제 해결에 필요 한속성 추출 ⇒ 시립이수행
- · 인공지능이데이E인 특성과 패턴을 학습하여 모델 완성 후, 새로운 데이터 결과 예측

데이터	학습
• 딥러닝에 비해 적은 데이터 필요	• 학습 및 예측을 위한 자동화된 다양한
• 과목별 점수 데이터와 같이 정리된	알고리즘 사 용
정형 데이터	• CPU에서 작동 가능
• 특성(속성)이 명확히 드러남.	• 학습에 상대적으로 적은 시간 소요

딥러닝

- · 입력데OE를 7계업퓨터가 처리할 수 있는 정형되는 형태로 제공
- · 임공지는이문제해결에필요한속성을 스스로 찾아학습하며모델 완성 후 새로운 데이터 결과 예측

데이터	특성 추출 + 학습
· 딥러닝에 비해 많은 데이터 필요	• 문제 해결에 필요한 데이터 특성을
• 형식이 정해져 있지 않은 텍스트나 소리와 같은	<u>^^로</u> 추출
비정형 데이터도 활용	·데이터속성및관계패악을위해많은계층
· 특성이 드러나지 않음.	(layer)을 통괴하는 인공 신경망 사용
	· GPU가있으면 베르게 처리가능
	· 학습에 상대적으로 많은 시간 소요

머신러닝에서는 데이터를 특성이 잘 드러나도록 정형화된 형태로 만들어야 하지만.

딥러닝은 스스로 특성을 찾아내기 때문에 이미지와 같은 비정형 데이터 를 활용할 수 있습니다.

딥러닝을 활용하는 이유는 무엇인가요?

방대한 양의 데이터를 사용하고 학습 시 가이 오래 걸리는 데에도 불구하고 사람들이 **딥러닝을 활용하는 이유는** 바로 성능에 있습니다.

딥러닝의 역할

인공 신경망

- 사람의 뉴런과 같은 역할
- 사람의 뇌 속 뉴런을 모방하여 만든 모델

인공 신경망 원리

- 전기 신호(CHOIEH)가 수상 돌기(입력)를 통해 입력
- · 신경 세포체(처리)에서 합하여 일정 수준 이상이 되면
- · 축삭 돌7(출력)에서 다른 뉴런으로 전기 신호 내보내는 원리

딥러닝의 동작

뉴런과 퍼센트론

• 다층 퍼셉트론: 여러 개의 층을 이루어 만든 인공 신경망

<u>딥러닝의 동작방법</u>

딥러닝 문제 해결 과정

딥러닝은 다음과 같은 과정을 거쳐 문제를 해결한다.

[단생문제] [답건당은 다음과 같은 과정을 거쳐 문제를 해결한다. 해결과정

달리는제 해결과정

손글씨 분류 문제 티러닝으로 해결하기

사람마다 필체가 다르기 때문에 같은 숫자를 쓰더라도 다음과 같이 다르게 나타난다.

88888

이라한 손글씨 숫자를 분류하는 문제를 답라し으로 어떻게 해결할 수 있을까?

달리 해결과정

숫자는 7년 28개 픽셀, 세로 28개 픽셀로 총 784개 픽셀이 모여 하나인 숫자를 나타낸.

28 픽셀

손글씨 분류 문제 딥러닝으로 해결하기

손글씨 분류 문제 딥러닝으로 해결하기

① 각 픽셀마다 가진 색깔이 0~255까지의 숫자값으로 표현된 리스트 형태로 전환 ⇒8을 구성하는 784(28×28)개의 픽셀들이 각각의 입력층 노드로 입력

입력층:

784개

노드

첫 번째 은닉층 노드 활성화

연산을 위해 필요한 노드들이 활성화

손글씨 분류 문제 <mark>딥러닝</mark>으로 해결하기

손글씨 분류 문제 딥러닝으로 해결하기

두 번째 은닉층 노드 활성화

③ 첫 번째 은닉층 각 노드들의 연산 결과가 두 번째 은닉층 각노드들의 입력으로 들어옴 ⇒ 연산을 통해 8인식에 필요한 노드 활성화

<u>딥러닝의 동작방법</u>

손글씨 분류 문제 <mark>딥러닝</mark>으로 해결하기

출력층 노드 활성화 ④ 두 번째 은닉층에서 8을 이루는 노드 활성화 ⇒ 0~9 숫자 중 해당되는 8 활성화

pixel 1 0.0 pixel 2→C pixel 3-0.001 pixel 4→ pixel 5→C 0.012 pixel 6→C 카노드별 활성호 함수 각 보드별 활성화 함수 pixel $7 \rightarrow C$ pixel 8→C 3 0.017 pixel 9→a 활성화 pixel 10→a 0.0 확률값이 R(z) = max(0, z)pixel 11→Q 함수 ReL ReLl Rel 가장 높은 pixel 12→O 0.0 pixel 13→C softmax 숫자 0.0 pixel 15→d pixel 16→C pixel 17→d 0.0 pixel 18→C pixel 19→C 8 0.97 pixel 20→ 0.0 9 pixel 784→ 첫 번째 두 번째 출력층: 은닉층 10개 노드

입력층: 784개 노드

만약 결과가 정답인 숫자와 다르다면, 심층 신경망에서 각 노드를 활성화시키는 방식을 수정합니다.

그리고 이 과정을 반복함으로써 정확하게 판단 할 수 있는 확률을 높이게 됩니다.

노드활상한 고정

딥러닝 모델 학습 시 사람이 결정해 하는 부분

- · 은닉층의 개수 정하기
- 각 은닉층의 노드 개수 정하기

노드활상화 괴정

노드 활성화 방식

- 입력값과 가중치(weight)를 곱하고 바이어스(Bias)와 합하는 방식
- 시그모이드나 렐루와 같은 활성화 함수 사용

활성화 함수 예시

• 사람이 뜨거운 그릇을 보기만 할 때는 '만지기' 운동 신경이 활성화되지 않지만 그릇을 만졌을 때는 '만지기' 운동 신경이 활성화되어 손을 뗄까? 말까? 하는 행동이 다음으로 이어진다.

뗄까?

뗄지 말지를 결정하는 역할은 활성화 함수가 담당한다.

딥러닝의 역사

딥러닝의 역사

단일뉴런 연산의 모형

- McCulloch와 Pitts가 1943년에 처음 모형제시
- Frank Rosenblatt가 McCulloch Pitts 뉴런을 발전시켜 "퍼셉트론(perceptron)"을 제시(1958)

McCulloch (right) and Pitts (left) in 1949, Image source historyofinformation.com

F. Rosenblatt Source: https://news.cornell.edu/stories/ 2019/09/professors-perceptron-paved-way-ai-60-

다층신경망의 학습

(Learning of Multilayer Neural Networks)
Paul Werbos(1974, 박사논문)와 David Rumelhart, James L.
Mcclelland 를포함한스탠포드의 PDP그룹(1986)이 독립적으로 다층신경망의 **역전파학습 알고리즘**(Backpropagation learning algorithm) 발견

Paul Werbos

Source: www.memphis.edu/ Source: news.stanford.edu/msci/people/pjwerbos.php

David E. E. RumelhartJam Source: news.stanford.edu/ news/2011/march/davidrumelhart-obit-031711

James L. Mcclelland
Source: stanford.edu/~jlmcc/

최초의 심층신경망

최초의 심층신경망 (The First Deep Neural Network, 1990)

Yan LeCun과벨연구소의연구그룹이 손으로 쓴 문자인식에 심층신경망응용

LeNet-1, Yan LeCun et al. (1990

Source: yann.lecun.com/exdb/publis/pdf/lecun-95a.pdf

딥러닝 용어 사용

Jeff Hinton과그 제자들이 CNN (convolutional neural network)을 사용하여 2012 Imagenet 대회에서 우승하며 처음 사용

"Source: Fei-Fei Li, Andrej Karpathy & Justin Johnson (2016) cs231n, Lecture 8 - Slide 8, Spatial Localization and Detection NIPS (2012)

Alex Krizhevsky, I Sutskever, GE Hinton, Source: https://www.wired.com/2013/03/google-hinton/

필요한 기반 지식

교과 수준 미적분 (미분, chain rule,...)

- 고교수준 확률과 통계 (average, deviation, pdf)
- 벡터, 텐서, 편미분 등의개념은 강의에서 배움
- 코딩을 해 본 경험은 도움이 됨. 처음하는 사람도 가능
- Python 3, TensorFlow 2, and Keras 등의 소프트웨어를 사용함.