Computational Biology Lab

Assignment 3 – BE21B037

1. Principal Component Analysis (PCA):

- Apply Principal Component Analysis (PCA) to this dataset to reduce the dimensionality of the gene expression data.
- Ensure the data is scaled so that each gene (row) has a mean of zero before performing PCA.

Box plot before and after scaling is provided above

- Provide the percentage of variance explained by the 8 principal components.

The variances of the first two components are 33% and 21.9%

- Plot the first two principal components (PC1 and PC2) and observe any clustering patterns between tissue groups using PCA Score plot.

The clustering of Lung tissue and ovary tissue can be observed. The tissue from liver and pancreas have clustered together as well

The top ten genes that contribute in the principle component 1 are shown below

2. Differential Gene Expression Analysis (DESeq2):

- Using DESeq2, determine which genes are differentially expressed (upregulated or downregulated) in human tissues when comparing ovary tissue against other tissue types.

We edit the metadata file to include only ovary genes and every other genes are considered as others to get the following dataframe

The <u>upregulated</u> and the <u>downregulated</u> genes are reported in the files.

- Summarize the results by reporting the number of differentially expressed genes and include a volcano plot to illustrate the findings


```
# of genes upregulated = 3071
# of genes downregulated = 4746
```

3. Functional Enrichment Analysis (KEGG Pathways):

- Perform a functional enrichment analysis using the KEGG pathway database.

After downloading the upregulated, downregulated and all regulated genes we use the DAVID analyzing tool to perform the functional enrichment analysis.

- Present the significant pathways associated with the upregulated and downregulated genes, highlighting any biological processes of interest.

The pathways associated with upregulated gene are

Functional Annotation Chart Help and Manual **Current Gene List: up Current Background: Homo sapiens** 2195 DAVID IDs **■ Options** Create Sublist Rerun Using Options 22 chart records M Download File Sublist Category RT Genes Count % P-Value Benjamini # Term KEGG_PATHWAY Herpes simplex virus 1 infection RT _ 120 5.5 2.2E-29 6.7E-27 KEGG_PATHWAY Protein digestion and absorption RT 21 1.0 1.2E-4 1.8E-2 KEGG_PATHWAY Cytoskeleton in muscle cells RT 32 1.5 1.7E-3 1.5E-1 KEGG_PATHWAY Hippo signaling pathway RT 🖥 1.1 1.9E-3 1.5E-1 24 0.6 2.7E-3 1.6E-1 KEGG_PATHWAY Basal cell carcinoma RT I 13 KEGG_PATHWAY Hedgehog signaling pathway RT i 12 0.5 3.1E-3 1.6E-1 1.1 6.2E-3 2.7E-1 KEGG_PATHWAY Ribosome RT 24 KEGG_PATHWAY ATP-dependent chromatin remodeling RT 18 0.8 7.8E-3 2.9E-1 KEGG_PATHWAY Taste transduction RT I 14 0.6 1.4E-2 4.1E-1 1.1 1.4E-2 4.1E-1 KEGG_PATHWAY Axon guidance RT 🖥 24 KEGG_PATHWAY mRNA surveillance pathway RT 15 0.7 2.5E-2 6.4E-1 KEGG_PATHWAY Cortisol synthesis and secretion RT i 11 0.5 2.6E-2 6.4E-1 KEGG_PATHWAY TGF-beta signaling pathway RT 15 0.7 3.6E-2 8.0E-1 KEGG_PATHWAY ECM-receptor interaction 0.6 3.9E-2 8.0E-1 RT 📱 13 KEGG_PATHWAY Coronavirus disease - COVID-19 1.2 4.3E-2 8.0E-1 RT 27 KEGG_PATHWAY Melanogenesis RT 🖥 14 0.6 4.5E-2 8.0E-1 KEGG_PATHWAY Morphine addiction RT 13 0.6 4.5E-2 8.0E-1 KEGG_PATHWAY Relaxin signaling pathway 16 0.7 7.3E-2 1.0E0 RT KEGG_PATHWAY Human papillomavirus infection RT 34 1.5 7.5E-2 1.0E0 KEGG_PATHWAY Cushing syndrome RT 🖥 18 0.8 8.6E-2 1.0E0 KEGG_PATHWAY Ovarian steroidogenesis RT I 0.4 9.3E-2 1.0E0 0.8 9.8E-2 1.0E0 KEGG_PATHWAY Cell cycle 18 RT 🖥

The KEGG pathways associated with downregulated genes are

Functional Annotation Chart

Help and Manual

0 0 1 4F-4 1 8F-3

Current Gene List: down Current Background: Homo sapiens 3896 DAVID IDs

⊞ Options

Rerun Using Options | Create Sublist

KEGG PATHWAY R cell recentor signaling nathway

Reru	n Using Options	Create Sublist							
130 chart records 🕌 Download File									
Sublis	t <u>Category</u> \$	<u>Term</u>	RT Genes	Count	<u>%</u>	P-Value	<u>Benjamini</u>		
	KEGG_PATHWAY	Metabolic pathways	RT	441	11.3	3.5E-16	1.2E-13		
	KEGG_PATHWAY	Complement and coagulation cascades	RT 🖥	47	1.2	3.0E-11	5.3E-9		
	KEGG_PATHWAY	Maturity onset diabetes of the young	RT I	21	0.5	9.4E-10	1.1E-7		
	KEGG_PATHWAY	Retinol metabolism	RT 🖥	36	0.9	1.2E-8	1.1E-6		
	KEGG_PATHWAY	Metabolism of xenobiotics by cytochrome P450	RT	39	1.0	3.1E-8	1.9E-6		
	KEGG_PATHWAY	<u>Drug metabolism - cytochrome P450</u>	RT 🖥	37	0.9	3.1E-8	1.9E-6		
	KEGG_PATHWAY	Parkinson disease	RT 🔳	93	2.4	9.4E-8	4.8E-6		
	KEGG_PATHWAY	Hematopoietic cell lineage	RT 🖥	43	1.1	4.9E-7	2.2E-5		
	KEGG_PATHWAY	Cytokine-cytokine receptor interaction	RT =	97	2.5	7.9E-7	3.1E-5		
	KEGG_PATHWAY	Fat digestion and absorption	RT 🖥	24	0.6	1.6E-6	5.7E-5		
	KEGG_PATHWAY	Chemical carcinogenesis - DNA adducts	RT 🖥	33	0.8	2.3E-6	7.5E-5		
	KEGG_PATHWAY	Prion disease	RT 🖥	90	2.3	2.7E-6	7.9E-5		
	KEGG_PATHWAY	Viral protein interaction with cytokine and cytokine receptor	RT	41	1.1	5.4E-6	1.4E-4		
	KEGG_PATHWAY	Bile secretion	RT 🖥	38	1.0	5.7E-6	1.4E-4		
	KEGG_PATHWAY	Alzheimer disease	RT 🔳	117	3.0	5.9E-6	1.4E-4		
	KEGG_PATHWAY	<u>Diabetic cardiomyopathy</u>	RT 🖥	69	1.8	1.1E-5	2.4E-4		
	KEGG_PATHWAY	Chemical carcinogenesis - reactive oxygen species	RT 🖥	74	1.9	1.5E-5	3.1E-4		
	KEGG_PATHWAY	Cholesterol metabolism	RT	25	0.6	1.7E-5	3.4E-4		
	KEGG_PATHWAY	<u>Chemokine signaling pathway</u>	RT 🖥	65	1.7	2.0E-5	3.7E-4		
	KEGG_PATHWAY	Non-alcoholic fatty liver disease	RT 🖥	55	1.4	2.8E-5	4.5E-4		
	KEGG_PATHWAY	Cell adhesion molecules	RT 🖥	55	1.4	2.8E-5	4.5E-4		
	KEGG_PATHWAY	Pancreatic secretion	RT 🖥	41	1.1	2.8E-5	4.5E-4		
	KEGG_PATHWAY	<u>Lipid and atherosclerosis</u>	RT 🖥	69	1.8	7.1E-5	1.1E-3		
	KEGG_PATHWAY	Tyrosine metabolism	RT 🖥	19	0.5	7.2E-5	1.1E-3		
	KEGG_PATHWAY	<u>Proteasome</u>	RT I	22	0.6	1.0E-4	1.4E-3		
	KEGG_PATHWAY	Pathogenic Escherichia coli infection	RT 🖥	65	1.7	1.1E-4	1.5E-3		

Functional Annotation Chart Current Gene List: normal Current Background: Homo sapiens 6091 DAVID IDs Options							
Rer							
	hart records	-11-	M Download				
	st Category Term			P-Value Benjamini			
	KEGG_PATHWAY Complement and coagulation cascades	RT I	49	0.8 1.5E-7 5.4E-5			
	KEGG_PATHWAY Maturity onset diabetes of the young	RT I	21	0.3 3.3E-7 5.8E-5			
	KEGG_PATHWAY Motabolism of variabletics by systechroma PASO	RT I	53	0.9 2.5E-6 2.9E-4			
	KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 KEGG_PATHWAY Cell adhesion molecules	RT RT	42 71	0.7 6.5E-6 4.7E-4 1.2 6.6E-6 4.7E-4			
	KEGG_PATHWAY <u>Cell adnesion molecules</u> KEGG_PATHWAY <u>Drug metabolism - cytochrome P450</u>	RI I	39	0.6 1.3E-5 7.6E-4			
	KEGG_PATHWAY Metabolic pathways	RT =	506				
7	KEGG_PATHWAY Fat digestion and absorption	RI I	26	0.4 3.5E-5 1.5E-3			
7	KEGG_PATHWAY Retinol metabolism	RT	36	0.4 3.5E-5 1.5E-3			
7	KEGG_PATHWAY Parkinson disease	RT		1.7 8.0E-5 2.9E-3			
	KEGG_PATHWAY Bile secretion	RT I	43	0.7 1.3E-4 4.2E-3			
	KEGG_PATHWAY Chemical carcinogenesis - DNA adducts	RT	35	0.6 3.0E-4 9.0E-3			
	KEGG_PATHWAY Prion disease	RT		1.7 4.1E-4 1.1E-2			
5	KEGG_PATHWAY Pancreatic secretion	RT i	47	0.8 5.1E-4 1.3E-2			
5	KEGG_PATHWAY Hematopoietic cell lineage	RT	44	0.7 7.4E-4 1.8E-2			
	KEGG_PATHWAY Cholesterol metabolism	RT i	26	0.4 1.2E-3 2.6E-2			
	KEGG_PATHWAY Chemokine signaling pathway	RT	75	1.2 1.2E-3 2.6E-2			
	KEGG_PATHWAY Alzheimer disease	RT 🖥	138	2.3 1.4E-3 2.6E-2			
	KEGG_PATHWAY PPAR signaling_pathway	RT I	35	0.6 1.4E-3 2.6E-2			
	KEGG_PATHWAY Tight junction	RT	67	1.1 1.5E-3 2.6E-2			
	KEGG_PATHWAY Tyrosine metabolism	RT i	20	0.3 1.5E-3 2.6E-2			
	KEGG_PATHWAY Arginine and proline metabolism	RT [25	0.4 2.2E-3 3.5E-2			
	KEGG_PATHWAY Pathogenic Escherichia coli infection	RT	77	1.3 2.3E-3 3.5E-2			
	KEGG_PATHWAY Protein processing in endoplasmic reticulum	RT 🖥	66	1.1 2.5E-3 3.8E-2			
	KEGG_PATHWAY Diabetic cardiomyopathy	RT	77	1.3 3.0E-3 4.4E-2			
	KEGG_PATHWAY B cell receptor signaling_pathway	RT i	39	0.6 3.4E-3 4.6E-2			
	KEGG_PATHWAY Proteasome	RT i	23	0.4 3.5E-3 4.6E-2			
	KEGG_PATHWAY Cytokine-cytokine receptor interaction	RT =	106	1.7 3.9E-3 4.9E-2			
	KEGG_PATHWAY Chemical carcinogenesis - reactive oxygen species	RT	83	1.4 4.2E-3 5.2E-2			
	KEGG_PATHWAY Non-alcoholic fatty liver disease	RT 🖥	60	1.0 6.0E-3 7.2E-2			
	KEGG_PATHWAY Steroid hormone biosynthesis	RT I	28	0.5 6.5E-3 7.4E-2			

The significant pathways with the lowest p-value for

1) Downregulated genes

Metabolic pathways Complement and coagulation cascades Maturity onset diabetes of the young Retinol Metabolism

2) Upregulated genes

Herpes simplex virus infection Protein digestion and absorption Cytoskeleton in muscle cells Hippo signaling pathway

3) For all genes

Complement and coagulation cascades Maturity onset diabetes of the young Protein digestion and absorption

The metabolic pathway

Herpes simplex virus infection

List genes are shown in red

DAVID Gene Name
2'-5'-oligoadenylate synthetase 1(OAS1)

05168 3/14/24 (c) Kanchisa Laboratories