Principales conceptos: Capa 3

Conceptos básicos

Protocolos: Conjunto de reglas que las computadoras deben seguir para comunicarse.

Paquetes: Cómo se dividen los datos para ser enviados

Puertos: Interfaces que permiten la conexión

- Puertos físicos
- Puertos lógicos: permiten que a través de una conexión física podamos conectarnos simultáneamente a varios servicios

LAN: Red de área local.

Internet: Un conjunto global de redes interconectadas.

Conceptos básicos

Hosts: Dispositivos con los que interactuamos.

Enrutamiento: Sistema para descubrir nuestro destino. El router utiliza la tabla de enrutamiento, una lista de direcciones, para saber a dónde dirigir las peticiones.

TCP: Transfer Control Protocol: Se encarga de asegurarse de que lleguen a su destino y lleguen correctamente.

IP: Se encarga de asegurarse de que la información llegue a su destino y llegue correctamente.

WAN: Una red más grande que conecta redes.

VLAN: Red virtual.

Tipos de enrutamiento dinámico

RIP (Routing Information Protocol) -> Hops

RIP es un protocolo de enrutamiento basado en la distancia en el que el router periódicamente manda toda su tabla de enrutamiento a su vecino inmediato. En RIP, cada vez que un paquete pasa por un router se conoce como hop (parada), y la ruta con menos hops se considerará la mejor.

able		
Fa0/0	0	
Fa1/0	0	
Fa1/0	1	
Fa1/0	2	
	Fa0/0 Fa1/0 Fa1/0	Fa0/0 0 Fa1/0 0 Fa1/0 1 Fa1/0 2

able
Fa0/0 0
Fa1/0 0
Fa0/0 1
Fa1/0 1

Routing Ta	able	
192.168.23.0 /24	Fa0/0	0
3.3.3.0 /24	Fa1/0	0
192.168.12.0 /24	Fa0/0	1
1.1.1.0 /24	Fa0/0	2

OSPF (Open Shortest Path First) -> Bandwidth

Los protocolos de estado de enlace mandan actualizaciones del estado de sus propios enlaces a todos los routers directamente conectados en la red. Esta información es compartida con sus vecinos para establecer la ruta más rápida.

EIGRP (Enhanced Interior Gateway Routing Protocol) -> Bandwidth, delay, load and reliability

Un sistema que combina los beneficios de los protocolos RIP y OSPF

Distance Vector	Link State	Hybrid
All the routers periodically send their routing tables, or a portion of their tables, to only their neighboring routers.	Each of the routers sends the state of its own interfaces (its links) to all other routers, or to all routers in a part of the network known as an area, only when there is a change.	Routers send changed information only when there is a change (similar to link-state protocols), but only to neighboring routers (similar to distance vector protocols).

IP Addressing

- ¿Qué es una dirección IP? → número binario de 32 bits
 - Se divide en 4 bytes
 - Está dividida por un identificador de red y un identificador de host

5 Clases de direcciones IP

- Clase A Redes en internet grandes
- Clase B Redes en internet moderadas
- Clase C Redes en internet pequeñas
- Clase D Redes Multicast

¿Cómo identificar la clase de una IP?

Clase A	El primer octeto está comprendido entre 0 y 127
Clase B	El primer octeto está comprendido entre 128 y 191
Clase C	El primer octeto está comprendido entre 192 y 223

Identificando IPs

	Dirección IP	Clase	Máscara por Defecto	Dirección de RED
1)	199.46.36.200			
2)	111.211.11.1			
3)	7.141.30.89			
4)	222.8.56.107			
5)	192.168.16.2			

VLSM (Máscaras de subred de tamaño variable)

- Un sistema para evitar el desperdicio de direcciones IP
- Nos permite dividir una red en diferentes subredes de diferentes tamaños

255.255.255.0 = 24 bits con valor 1