

MINIMIZATION aka. Simplification

MINIMIZATION

Number of Gates
Number of Inputs (2-input vs 4-input)
Number of Interconnections
Propagation Time
Cost of Gates
Circuit Area

. . .

A circuit may not satisfy all due to conflicting constraints!

MINIMIZATION Slean Algebra (algebraically)

- I) Boolean Algebra (algebraically)
- o Needs to be smart. It is hard due to guesswork (which rules to apply?)
- o If the number of variables (ABCDEF...) and/or number of minterms (MAXTERMS) grows
- o No Algorithm
- o Is the result minimal?!

MINIMIZATION

II) Map (Karnaugh map, K-map)

aka. Graphical Manipulation

II) Map (Karnaugh map, K-map) aka. Graphical Manipulation

Algorithm; Straightforward, up to six variables

Result is always minimal

Maurice Karnaugh Physicist Mathematician Inventor

Bell Labs (1954)
"The Map Method for Synthesis of Combinational Logic Circuits"

KARNAUGH MAP

1-Variable KARNAUGH MAP

X	F
0	m_0
1	m_1

2-Variable KARNAUGH MAP

Y	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	X	F
0	0	1
0	1	0
1	0	0
1	1	0

$$F(Y,X) = m_0 = Y'X'$$

$$F(Y,X) = Y'X'$$

Υ	X	F
0	0	0
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_1 = Y'X$$

$$F(Y,X) = Y'X$$

Υ	X	F
0	0	0
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_2 = YX'$$

$$F(Y,X) = YX'$$

Υ	X	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_3 = YX$$

$$F(Y,X) = YX$$

Υ	Χ	F
0	0	1
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_0 + m_1$$

= Y'X' + Y'X
= Y'(X' + X)
= Y'

$$F(Y,X) = Y'$$

Υ	X	F
0	0	0
0	1	0
1	0	1
1	1	1

$$F(Y,X) = m_2 + m_3$$

= YX' + YX
= Y(X' + X)
= Y

$$F(Y,X) = Y$$

Υ	Χ	F
0	0	0
0	1	1
1	0	0
1	1	1

$$F(Y,X) = m_1 + m_3$$

= Y'X + YX
= X(Y' + Y)
= X

$$F(Y,X) = X$$

Υ	Χ	F
0	0	1
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_2$$

= Y'X' + YX'
= X'(Y' + Y)
= X'

$$F(Y,X) = X'$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'(X' + X) + YX'$$

$$= Y' + YX'$$

$$F(Y,X) = Y' + YX'$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= X'(Y' + Y) + Y'X$$

$$= X' + Y'X$$

$$F(Y,X) = X' + Y'X$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'X' + Y'X' + Y'X + YX'$$

$$= Y'(X' + X) + Y'X' + YX'$$

$$= Y' + Y'X' + YX'$$

$$= Y' + X'(Y' + Y)$$

$$= Y' + X'$$

$$F(Y,X) = Y' + X'$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	1

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

$$= Y'X' + Y'X + YX' + YX$$

$$= Y'(X' + X) + Y(X' + X)$$

$$= Y' + Y$$

$$= 1$$

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

= 1

Υ	Χ	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_1 + m_2$$

= Y'X + YX'

$$F(Y,X) = m_1 + m_2$$

= Y'X + YX'

Υ	Χ	F
0	0	1
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_0 + m_3$$

= Y'X' + YX

$$F(Y,X) = m_0 + m_2$$
$$= Y'X' + YX$$

3-Variable KARNAUGH MAP

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		>	<
		0	1
\ \	0	m_0	m_1
Υ	1	m_2	m_3

		ΥX				
		00	01	11	10	
7	0	m_0	m_1	m_3	m ₂	
Ζ	1	m_4	m_5	m ₇	m ₆	

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		X		
		0	1	
V	0	m_0	m ₁	
Y	1	m_2	m_3	

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

		ΥX				
		00	01	11	10	
7	0	m_0	m_1	m_3	m_2	
Z	1	m_4	m ₅	m ₇	m ₆	

Z

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		YX			
	00	01	11	10	
0	m_0	m_1	m_3	m ₂	\ \rightarrow Z'
1	m_4	m_5	m ₇	m ₆	

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

		ΥX				
	\setminus	00	01	11	10	
7	0	m_0	m_1	m_3	m ₂	
Ζ	1	m_4	m_5	m ₇	m ₆	

X' ?

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

	YX				
	00	01	11	10	
0 7	m_0	m_1	m_3	m ₂	
1	m_4	m_5	m ₇	m ₆	

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

		ΥX				
	\setminus	00	01	11	10	
7	0	1	1	1	1	
Ζ	1	0	0	1	1	

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= Z' +

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + ZY$

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + Y$

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Z,Y,X) = \prod M(4,5)$$

= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F'(Z,Y,X) = \sum m(4,5)$$
$$= ZY'$$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Z,Y,X) = \prod M(4,5)$$

= $(F')'$
= $(ZY')'$
= $Z'+Y$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Z,Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX
= ?

$$F(Z,Y,X) = \prod M(4,5)$$

= $(Z'+Y+X)(Z'+Y+X')$
= ?

$$F(Z,Y,X) = \sum m(0,1,2,3,6,7)$$

= Z' + Y

		YX						
		00	01	11	10			
7	0	1	1	1	1			
	1	0	0	1	1			

$$F(Z,Y,X) = \prod M(4,5)$$

= $(F')'$
= $(ZY')'$
= $Z'+Y$

Z	Υ	X	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Z,Y,X) = \sum m(0,2,4,6)$$

= $Z'Y'X'+Z'YX'+ZY'X'+ZYX'$
= ?

			Y	Χ	
	\setminus	00	01	11	10
7	0	1	0	0	1
Z	1	1	0	0	1

Z	Υ	Х	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Z,Y,X) = \sum m(0,2,4,6)$$

= $Z'Y'X'+Z'YX'+ZY'X'+ZYX'$
= ?

$$F(Z,Y,X) = \sum m(0,2,4, 6)$$

= X'

Z	Υ	X	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Z,Y,X) = \prod M(1,3,5,7)$$

$$= (Z+Y+X')(Z+Y'+X')(Z'+Y+X')(Z'+Y'+X')$$

$$= ?$$

$$F(Z,Y,X) = \prod M(1,3,5,7)$$

= $(X)'$
= X'

4-Variable KARNAUGH MAP

	Χ				
		00	01	11	10
	00	m_0	m_1	m_3	m ₂
	01	m_4	m_5	m ₇	m ₆
WZ	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	10	m ₈	m ₉	m ₁₁	m ₁₀

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

		YX					
		00	01	11	10		
	00	1 m _o	1 m ₁	$ \begin{array}{c} 0 \\ m_3 \end{array} $	1 m ₂		
	01	1 m ₄	1 m ₅	$_{m_7}^{O}$	1 m ₆		
WZ	11	1 m ₁₂	1 m ₁₃	0 m ₁₅	1 m ₁₄		
	10	1 m ₈	1 m ₉	O m ₁₁	O m ₁₀		

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

 $F(W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' +

$$F(W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$
$$= Y' +$$

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + WZYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + ZYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'X' + WYX'

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'X' + $\frac{ZX'}{ZX'}$

$$F(W,Z,Y,X) = \prod M(3, 7, 10, 11, 15)$$

= $(YX)'(WZ'Y)'$
= $(Y'+X')(W'+Z+Y')$

Click to Play!

https://en.wikipedia.org/wiki/Karnaugh_map#/media/File:Torus_from_rectangle.gif

		YX					
		00	01	11	10		
	00	1	O m ₁	0 m ₃	1		
WZ	01	\mathop{O}_{m_4}	$ \begin{array}{c} 0 \\ m_5 \end{array} $	$ \begin{array}{c} 0 \\ m_7 \end{array} $	0 m ₆		
V V Z	11	O m ₁₂	O m ₁₃	0 m ₁₅	O m ₁₄		
	10	1 m ₈	O m ₉	O m ₁₁	1 0		

$$F(W,Z,Y,X) = \sum m(0, 2, 8, 10)$$

= $Z'X'$

$$F (W,Z,Y,X) = \sum m(0, 2, 8, 10)$$

$$= Z'X'$$

$$= \prod M(1,3-7,9,11-15)$$

$$= (X)'(Z)'$$

$$= X'Z'$$

Given two unsigned numbers x and y, design a logic circuit to see

 $x \geq ? y$

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	О
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	О
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

			X_2X_1				
		00	01	11	10		
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂		
VV	01	$_{m_{_{\!4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆		
Y_2Y_1	11	O m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄		
	10	$_{m_{8}}^{O}$	O m ₉	1 m ₁₁	1 m ₁₀		

 $F(Y_2, Y_1, X_2, X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ $F(Y_2, Y_1, X_2, X_1) = \Pi M(4,8,9,12,13,14)$

			X ₂	$_{2}X_{1}$	
		00	01	11	10
	00	1	1 m ₁	1 	1 m ₂
VV	01	$_{m_{_{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆
Y_2Y_1	11	O m ₁₂	$O_{m_{13}}$	1 m ₁₅	O m ₁₄
	10	O m _s	O m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2, Y_1, X_2, X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2 Y'_1 +$

 $F(Y_2, Y_1, X_2, X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2Y'_1 + X_2X_1$

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$ $= Y'_2 Y'_1 + X_2 X_1 + Y'_2 X_1$

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$ $= Y'_2 Y'_1 + X_2 X_1 + Y'_2 X_1 + Y'_2 X_2$

$$F(Y_2, Y_1, X_2, X_1) = \mathbf{\Sigma} \ m(0, 1, 2, 3, 5, 6, 7, 10, 11, 15)$$

$$= Y'_2 Y'_1 + X_2 X_1 + Y'_2 X_1 + Y'_2 X_2 + Y'_1 X_2$$

Change of Variable:

 $X1 \rightarrow X$

 $X2 \rightarrow Y$

 $Y1 \rightarrow Z$

 $Y2 \rightarrow W$

		YX				
		00	01	11	10	
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂	
\ <i>\\</i> 7	01	${\displaystyle \mathop{O}_{m_{\!\scriptscriptstyle{4}}}}$	1 m ₅	1 m ₇	1 m ₆	
WZ	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄	
	10	$_{m_8}^{O}$	O m ₉	1 m ₁₁	1 m ₁₀	

$$F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$$

Change of Variable:

 $X1 \rightarrow X$

 $X2 \rightarrow Y$

 $Y1 \rightarrow Z$

 $Y2 \rightarrow W$

		YX				
		00	01	11	10	
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂	
\ <i>\\</i> 7	01	$_{m_{\scriptscriptstyle{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆	
WZ	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄	
	10	0 m ₈	0 m ₉	1 m ₁₁	1 m ₁₀	

$$F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$$

 $F(W, Z, Y, X) = ()'$

MAXTERMS

		YX				
		00	01	11	10	
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂	
\ <i>\!</i> 7	01	$_{m_{\scriptscriptstyle{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆	
WZ	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	O m ₁₄	
	10	0 m ₈	0 m ₉	1 m ₁₁	1 m ₁₀	

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ F(W, Z, Y, X) = (WY' +)'

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ F(W, Z, Y, X) = (WY' + ZY'X' +)'

 $F(Y_2, Y_1, X_2, X_1) = \mathbf{\Pi} M(4, 8, 9, 12, 13, 14)$ F(W, Z, Y, X) = (WY' + ZY'X' + WZX')'

$$F(Y_{2},Y_{1},X_{2},X_{1}) = \mathbf{\Pi} M(4,8,9,12,13,14)$$

$$F(W,Z,Y,X) = (WY' + ZY'X' + WZX')'$$

$$= (WY')' (ZY'X')' (WZX')'$$

$$= (W'+Y) (Z'+Y+X)' (W'+Z'+X)$$

5-Variable KARNAUGH MAP

n-Variable KARNAUGH MAP

n-Variable Quine-McCluskey Algorithm

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm

 $1878 \leftarrow 1937 \leftarrow 1952 \leftarrow 1956$

Demo Quine—McCluskey Algorithm https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

Don't Care Conditions

In practice, in some applications the function is not specified for certain combinations of the variables.

Z	Y	Χ	F=if input is positive(2's comp.) then 1 else 0
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Z	Y	Χ	F=if input is positive(2's comp.) then 1 else 0
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1 In math Oic not
1	0	0	In math, 0 is not positive neither
1	0	1	negative!
1	1	0	0
1	1	1	0

Z	Y	Χ	$F=\sum m(1,2,3)=\prod M(0,4,5,6,7)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

			Υ	Χ	
	\setminus	00	01	11	10
7	0	$_{\rm m_0}$	1 m ₁	$\begin{pmatrix} 1 \\ m_3 \end{pmatrix}$	1 m ₂
Ζ	1	O_{m_4}	O m ₅	O _{m₇}	O_{m_6}

$$F(Z,Y,X) = \sum m(1, 2, 3)$$

= $Z'X + Z'Y$

Boolean algebra \rightarrow Z'(X+Y)

MAXTERMS

$$F(Z,Y,X) = \prod M(0,4,5,6,7)$$

= $(Z + Y'X')'$
= $Z' (Y+X)$

Z	Y	Χ	F=if positive(2's comp.) then 1 if negative 0
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1 In math Oic not
1	0	0	In math, 0 is not positive neither
1	0	1	0 negative!
1	1	0	0
1	1	1	0

Z	Y	Χ	F=if positive(2's comp.) then 1 if negative 0
0	0	0	
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$F(Z,Y,X) = \sum m(1, 2, 3) + \sum d(0)$$

= $Z'X + Z'Y$

		YX					
		00	01	11	10		
Z	0	$\begin{bmatrix} 1 \\ m_0 \end{bmatrix}$	1 m ₁	1 m ₃	1 m ₂		
	1	O m ₄	O_{m_5}	O m ₇	O_{m_6}		

$$F(Z,Y,X) = \sum m(1, 2, 3) + \sum m(0)$$

= Z'

In this case, the don't care condition help to more simplification

MAXTERMS

$$F(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$$

= $(Z)'$
= Z'

$$F(Z,Y,X) = \prod M(0,4,5,6,7) + \sum M(0)$$

= $(Z + Y'X')'$
= $Z' (Y+X)$

In this case, the don't care condition does NOT help to more simplification

Don't Care Conditions

Functions that have unspecified outputs for some input combinations are called *incompletely specified functions*.

Don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

Don't Care Conditions

To distinguish the don't-care condition from 1's and 0's, an $\boldsymbol{\chi}$ is used.

	YX					
		00	01	11	10	
Z	0	\mathcal{X}_{m_0}	1 m ₁	1 m ₃	1 m ₂	
	1	O_{m_4}	O_{m_5}	O_{m_7}	O_{m_6}	

$$F(Z,Y,X) = \sum m(1, 2, 3) + \sum d(0)$$

$$F(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$$