1. Write a Pandas program to select the 'name' and 'score' columns from the following DataFrame.

Sample DataFrame:

exam_data =

- 'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas']
- 'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19]
- 'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1]
- 'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

```
Select specific columns:
       name score
 Anastasia
              12.5
а
b
       Dima
              9.0
c Katherine 16.5
d
      James
              NaN
      Emily
              9.0
е
f
    Michael
             20.0
    Matthew
            14.5
g
h
      Laura
              NaN
i
      Kevin
              8.0
j
      Jonas
             19.0
```

2. Write a Pandas program to rename columns of a given DataFrame.

Sample data: Original DataFrame col1 col2 col3 0 1 4 7 1 2 5 8 2 3 6 9

New DataFrame after renaming columns: Column1 Column2 Column3 0 1 4 7 1 2 5 8 2 3 6 9

```
In [20]: import pandas as pd
                                               d = {'col1': [1, 2, 3], 'col2': [4, 5, 6], 'col3': [7, 8, 9]}
                                               df = pd.DataFrame(data=d)
                                               print("Original DataFrame")
                                               print(df)
                                               df.columns = ['Column1', 'Column2', 'Column3']
                                               df = df.rename(columns={'col1': 'Column1', 'col2': 'Column2', 'col3': 'Column2', 'cola': 'cola': 'Column2', 'cola': 'Colum
                                               print("New DataFrame after renaming columns:")
                                               print(df)
                                               Original DataFrame
                                                               col1 col2 col3
                                               0
                                                                             1
                                                                                                     4
                                                                                                                                      7
                                                                              2
                                                                                                            5
                                                                                                                                            8
                                               1
                                               2
                                                                              3
                                                                                                        6
                                                                                                                                            9
                                               New DataFrame after renaming columns:
                                                             Column1 Column2 Column3
                                               0
                                                                                                                                                                                         7
                                                                                           1
                                                                                                                                           4
                                                                                             2
                                                                                                                                           5
                                                                                                                                                                                          8
                                               1
                                                2
                                                                                             3
                                                                                                                                                                                          9
```

3. Write a Python function that accepts a string and counts the number of upper and lower case letters.

```
In [3]: def string_test(s):
    d={"UPPER_CASE":0, "LOWER_CASE":0}
    for c in s:
        if c.isupper():
            d["UPPER_CASE"]+=1
        elif c.islower():
            d["LOWER_CASE"]+=1
        else:
            pass
    print ("Original String : ", s)
    print ("No. of Upper case characters : ", d["UPPER_CASE"])
    print ("No. of Lower case Characters : ", d["LOWER_CASE"])
```

```
In [4]: string_test('Python is Amazing')
    Original String : Python is Amazing
    No. of Upper case characters : 2
    No. of Lower case Characters : 13
```

4. Load the Wooldridge dataset hprice2.

- List 2 charateristics that are statistically positively correlated and 2 that are statistically negatively correlated
- Find the max and min values for all columns
- Display the row where the number of rooms is the highest

In [8]: import wooldridge as woo
home_price = woo.dataWoo('hprice2')
home_price

Out[8]:

	price	crime	nox	rooms	dist	radial	proptax	stratio	lowstat	Iprice	lnox
0	24000.0	0.006	5.38	6.57	4.09	1	29.600000	15.300000	4.98	10.085809	1.682688
1	21599.0	0.027	4.69	6.42	4.97	2	24.200001	17.799999	9.14	9.980402	1.545433
2	34700.0	0.027	4.69	7.18	4.97	2	24.200001	17.799999	4.03	10.454495	1.545433
3	33400.0	0.032	4.58	7.00	6.06	3	22.200001	18.700001	2.94	10.416311	1.521699
4	36199.0	0.069	4.58	7.15	6.06	3	22.200001	18.700001	5.33	10.496787	1.521699
501	22400.0	0.063	5.73	6.59	2.48	1	27.299999	21.000000	9.67	10.016816	1.745715
502	20600.0	0.045	5.73	6.12	2.29	1	27.299999	21.000000	9.08	9.933046	1.745715
503	23899.0	0.061	5.73	6.98	2.17	1	27.299999	21.000000	5.64	10.081592	1.745715
504	22000.0	0.110	5.73	6.79	2.39	1	27.299999	21.000000	6.48	9.998797	1.745715
505	11900.0	0.047	5.73	6.03	2.51	1	27.299999	21.000000	7.88	9.384294	1.745715

506 rows × 12 columns

In [10]: home_price.corr()

Out[10]:

	price	crime	nox	rooms	dist	radial	proptax	stratio	lo
price	1.000000	-0.387919	-0.426037	0.695780	0.249339	-0.380837	-0.467087	-0.503340	-0.7:
crime	-0.387919	1.000000	0.421152	-0.218816	-0.379909	0.625442	0.582819	0.288691	0.4
nox	-0.426037	0.421152	1.000000	-0.302828	-0.770222	0.610328	0.666981	0.186863	0.5
rooms	0.695780	-0.218816	-0.302828	1.000000	0.205410	-0.209773	-0.292120	-0.354008	-0.60
dist	0.249339	-0.379909	-0.770222	0.205410	1.000000	-0.495065	-0.534379	-0.229269	-0.49
radial	-0.380837	0.625442	0.610328	-0.209773	-0.495065	1.000000	0.910228	0.464245	0.4
proptax	-0.467087	0.582819	0.666981	-0.292120	-0.534379	0.910228	1.000000	0.454238	0.5
stratio	-0.503340	0.288691	0.186863	-0.354008	-0.229269	0.464245	0.454238	1.000000	0.30
lowstat	-0.726391	0.447033	0.585613	-0.609605	-0.495602	0.476038	0.527624	0.365402	1.00
Iprice	0.953320	-0.527495	-0.508767	0.632910	0.342008	-0.480972	-0.559671	-0.497635	-0.7!
lnox	-0.429447	0.429639	0.993943	-0.304988	-0.808795	0.624171	0.677314	0.227910	0.59
Iproptax	-0.473166	0.551393	0.659206	-0.299269	-0.513897	0.863531	0.988586	0.422231	0.5

```
In [18]: print(home_price.max())
                      50001.000000
         price
         crime
                         88.975998
         nox
                          8.710000
                          8.780000
         rooms
         dist
                         12.130000
         radial
                         24.000000
         proptax
                         71.099998
         stratio
                         22.000000
         lowstat
                         39.070000
         lprice
                         10.819798
         lnox
                          2.164472
         lproptax
                          6.566672
         dtype: float64
In [19]: print(home_price.min())
         price
                      5000.000000
         crime
                         0.006000
         nox
                         3.850000
         rooms
                         3.560000
         dist
                         1.130000
         radial
                         1.000000
                        18.700001
         proptax
         stratio
                        12.600000
         lowstat
                         1.730000
         lprice
                         8.517193
         lnox
                         1.348073
         lproptax
                         5.231109
         dtype: float64
         print(home price[home price.rooms == home price.rooms.max()])
In [17]:
                price crime
                                     rooms
                                            dist radial
                                                             proptax
                                                                         stratio
                                                                                  low
                                nox
         stat
         364
              21900.0
                       3.474 7.18
                                      8.78
                                              1.9
                                                       24
                                                           66.599998 20.200001
         5.29
                 lprice
                             lnox
                                   lproptax
         364
              9.994242
                        1.971299
                                    6.50129
```