

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

GSM digital mobile phone

ISSUED TO Power Idea Technology Limited.

4th Floor, A Section, Languang Science & technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China.

Report No.: BL-SZ1440058-601

EUT Type: GSM digital mobile phone

Model Name: RG100, RG150, MARINER PRO

Brand Name: N/A

Test Standard: 47 CFR Part 2

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

FCC ID: ZLE-RG100RG150

Test conclusion: PASS

Test Date: May 4, 2014 ~ May 20, 2014

Date of Issue: May 24, 2014

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055

TEL: +86-755-66850100 FAX: +86-755-61824271 www.baluntek.com

Revision History

Version Rev. 01 Issue Date May 24, 2014 Revisions Initial Issue

TABLE OF CONTENTS

1	AD	MIN	ISTRATIVE DATA (GENERAL INFORMATION)	5
	1.1	Ide	ntification of the Testing Laboratory	5
	1.2	Ide	ntification of the Responsible Testing Location	5
	1.3	Tes	st Environment Condition	5
	1.4	Anr	nounce	6
2	PR	ODL	JCT INFORMATION	7
	2.1	App	olicant	7
	2.2	Ma	nufacturer	7
	2.3	Gei	neral Description for Equipment under Test (EUT)	7
	2.4	Tec	chnical Information	8
	2.5	And	cillary Equipment	8
3	SU	IMMA	ARY OF TEST RESULTS	9
	3.1	Tes	st Standards	9
	3.2	Ver	dict	9
4	GE	NEF	AL TEST CONFIGURATIONS	10
	4.1	Tes	t Environments	10
	4.2	Tes	st Equipment List	10
	4.3	Tes	st Configurations	11
	4.4	Des	scription of Test Setup	12
	4.4	1.1	For Antenna Port Test	12
	4.4	.2	For Frequency Stability Test	12
	4.4	1.3	For Radiated Test (30MHz-1GHz)	13
	4.4	.4	For Radiated Test (Above 1GHz)	13
	4.5	Tes	t Conditions	14
5	TE	ST I	ГЕМS	15

5.1	Co	onducted RF Output Power	15
5	5.1.1	Test Limit	15
5	5.1.2	Test Procedure	15
5.2	Pe	eak to average radio	16
5	5.2.1	Limit	16
5	5.2.2	Test Procedure	16
5.3	Od	ccupied Bandwidth	17
5	5.3.1	Limit	17
5	5.3.2	Test Procedure	17
5.4	Fr	equency Stability	18
5	5.4.1	Limit	18
5	5.4.2	Test Procedure	18
5.5	Co	onducted Out of Band Emissions	19
5	5.5.1	Limit	19
5	5.5.2	Test Procedure	19
5.6	Ва	and Edge	20
5	5.6.1	Limit	20
5	5.6.2	Test Procedure	20
5.7	Tra	ansmitter Radiated Power (EIRP/ERP)	21
5	5.7.1	Limit	21
5	5.7.2	Test Procedure	21
5.8	Ra	adiated Out of Band Emissions	22
5	5.8.1	Limit	22
5	5.8.2	Test Procedure	22
ANNE	EX A	TEST RESULT	23
A.1	Co	onducted RF Output Power	23
A.2	Pe	eak to Average Radio	24
A.3	Oc	ccupied Bandwidth	26
A.4	Fr	equency Stability	28
A.5	A.5 Conducted Out of Band Emissions		30
A.6	Ba	and Edge	36

Test	Data	.36
A.7	Transmitter Radiated Power (EIRP/ERP)	.37
Minin	num RF power: GSM850 5.7dBm, GSM 1900 0.7dBm	.37
A.8	Radiated Out of Band Emissions	.41
ANNEX	(B TEST SETUP PHOTOS	.53
B.1.	Conducted Test Photo	.53
B.2.	Radiated Test Photo	.53
ANNEX	C TEST SETUP PHOTOS	.54
C.1	Appearance of the EUT	.54
C.2	Inside of the EUT	59

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
A didraga	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6683 3402
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1. The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are 832625. The laboratory has met the requirements of the IAS Accreditation Criteria for Testing Laboratories (AC89), has demonstrated compliance with ISO/IEC Standard 17025:2005. The accreditation certificate number is TL-588. The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791.
Description	All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055

1.3 Test Environment Condition

Ambient Temperature	15 to 35°C
Ambient Relative Humidity	30 to 60%
Ambient Pressure	86 to106kPa

1.4 Announce

- (1) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (2) The test report is invalid if there is any evidence and/or falsification.
- (3) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (4) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	Power Idea Technology Limited.
Addross	4th Floor, A Section, Languang Science & technology Xinxi RD, Hi-Tech
Address	Industrial Park North, Nanshan, Shenzhen, China.

2.2 Manufacturer

Manufacturer Power Idea Technology Limited.	
Address	4th Floor, A Section, Languang Science & technology Xinxi RD,
Address	Hi-Tech Industrial Park North, Nanshan, Shenzhen, China.

2.3 General Description for Equipment under Test (EUT)

EUT Type	GSM digital mobile phone
Model Name	RG100
Series Model Name	RG100, RG150, MARINER PRO
Description of Model	The equipment model RG100, RG150 and MARINER PRO are GSM
name differentiation	digital mobile phone, the electrical parameters and internal structure of
name unerentiation	circuit are same, only the model is different.
Hardware Version	RG126_V2.1
Software Version	N/A
Network and Wireless	2G Network GSM 850/900/1800/1900
connectivity	2G Network GSW 650/900/1600/1900
About the Product	The equipment is Mobile Phone, intended for used with information
About the Floduct	technology equipment.

2.4 Technical Information

Frequency Bands	GSM 850/1900
	GSM: GMSK
Modulation Type	GPRS: GMSK
	EGPRS: 8PSK
Ty Fraguency Banga	GSM 850MHz: 824.20 - 848.80MHz (at intervals of 200kHz);
Tx Frequency Range	GSM 1900MHz: 1850.20 - 1909.80MHz (at intervals of 200kHz);
Dy Fraguency Bongo	GSM850: 869.20 - 893.80MHz (at intervals of 200kHz)
Rx Frequency Range	GSM1900: 1930.20 - 1989.80MHz (at intervals of 200kHz)
Dower Class	GSM 850: 4
Power Class	GSM 1900: 1
Multislot Class	GPRS:12, EGPRS: 12

Note: The above EUT information in section 2.3 and 2.4 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.5 Ancillary Equipment

	Battery	
	Brand Name	N/A
	Model No	RG100 lithium-ion battery
Ancillary Equipment 1	Serial No	N/A
	Capacitance	2400mAh
	Rated Voltage	3.7V
	Extreme Voltage	Low: 3.5V / High:4.2V
	TRAVEL CHARGER	
	Brand Name	N/A
Ancillary Equipment 2	Model No	RD0501000-USBA-BMG
Anomary Equipment 2	Serial No	1403
	Rated Input	~ 100-240V, 250mA, 50/60Hz
	Rated Output	= 5V, 1000mA
Ancillary Equipment 3	Stereo Headset	
Ancillary Equipment 4	USB Data Cable	

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules	
l	(10-1-09 Edition)	and Regulations	
2	47 CFR Part 22	Public Mobile Services	
	(10-1-09 Edition)		
3	47 CFR Part 24	Personal Communications Services	
3	(10-1-09 Edition)		
4	TIA/EIA 603.D-2010	Land Mobile FM or PM Communications Equipment Measurement	
4		and Performance Standards	

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict	
1	Conducted RF Output Power	2.1046	ANNEX A.1	Pass	
2	Peak to average radio	22.234(d)	ANNEX A.2	Pass	
3	Occupied Bandwidth	2.1049	ANNEX A.3	Pass	
		2.1055			
4	Frequency Stability	22.355	ANNEX A.4	Pass	
		24.235			
		2.1051			
5	Conducted Out of Band Emissions	2.1057	ANNEX A.5	Pass	
5	Conducted Out of Band Emissions	22.917	C.A Xaninia		
		24.238			
		2.1051			
6	Pand Edga	2.1057	ANNEX A.6	Pass	
0	Band Edge	22.917	AININEA A.O	Pass	
		24.238			
7	Transmitter Radiated Power	22.913	ANNEX A.7	Pass	
_ ′	(EIPR/ERP)	24.232	AININEA A.7	Pass	
		2.1053			
8	Radiated Out of Band Emissions	2.1057	ANNEX A.8	Pass	
0	Radiated Out of Band Emissions	22.917	AININEA A.8	Pass	
		24.238			

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity (%)	30 - 60
Atmospheric Pressure (kPa)	86 - 106
Temperature(°C)	15 - 35

4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	
Spectrum Analyzer	AGILENT	E4440A	MY45304434	2014.05.10	2015.05.09	
Spectrum Analyzer	ROHDE&SCHWARZ	FSL3	103640/003	2014.05.02	2015.05.01	
Power Splitter	KMW	DCPD-LDC	1305003215	2014.05.14	2015.05.13	
Power Sensor	ROHDE&SCHWARZ	NRP-Z21	103971	2014.05.08	2015.05.07	
Attenuator (20dB)	KMW	ZA-S1-201	110617091			
Attenuator (6dB)	KMW	ZA-S1-61	1305003189			
DC Power Supply	ROHDE&SCHWARZ	HMP2020	018141664	2013.07.06	2014.07.07	
Temperature	ANGELANTIONI	NTH64-40A	1310	2013.07.06	2014.07.07	
Chamber	SCIENCE					
Test Antenna-	SCHWARZBECK	FMZB 1519	1519-037	2013.07.02	2014.07.01	
Loop(9kHz-30MHz)					20:07.01	
Test Antenna-						
Bi-Log(30MHz-3G	SCHWARZBECK	VULB 9163	9163-624	2013.07.03	2014.07.02	
Hz)						
Test Antenna-	SCHWARZBECK	BBHA	9120D-1148	2013.07.02	2014.07.01	
Horn(1-18GHz)	OOMWARZBLOR	9120D	31200 1140	2010.07.02	2014.07.01	
Test Antenna-	SCHWARZBECK	BBHA 9170	9170-305	2013.07.02	2014.07.01	
Horn(15-26.5GHz)	SOLIVVARZBEOR	DDI IA 9170	9170-303	2013.07.02	2014.07.01	
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2013.10.07	2014.10.06	

4.3 Test Configurations

Test	Description	
Configurations (TC) NO.	Signal Description	Operating Frequency
Transmitter		_
TC01	GMSK modulation, GSM 850	Ch No. 128/ 824.2MHz
TC02	GMSK modulation, GSM 850	Ch No. 190/ 836.6MHz
TC03	GMSK modulation, GSM 850	Ch No. 251/ 848.8MHz
TC04	GMSK modulation, GSM 1900	Ch No. 512/ 1850.2MHz
TC05	GMSK modulation, GSM 1900	Ch No. 661/ 1880.0MHz
TC06	GMSK modulation, GSM 1900	Ch No. 810/ 1909.8MHz
TC07	GMSK modulation, GPRS 850	Ch No. 128/ 824.2MHz
TC08	GMSK modulation, GPRS 850	Ch No. 190/ 836.6MHz
TC09	GMSK modulation, GPRS 850	Ch No. 251/ 848.8MHz
TC10	GMSK modulation, GPRS 1900	Ch No. 512/ 1850.2MHz
TC11	GMSK modulation, GPRS 1900	Ch No. 661/ 1880.0MHz
TC12	GMSK modulation, GPRS 1900	Ch No. 810/ 1909.8MHz
TC13	8PSK modulation, EGPRS 850	Ch No. 128/ 824.2MHz
TC14	8PSK modulation, EGPRS 850	Ch No. 190/ 836.6MHz
TC15	8PSK modulation, EGPRS 850	Ch No. 251/ 848.8MHz
TC16	8PSK modulation, EGPRS 1900	Ch No. 512/ 1850.2MHz
TC17	8PSK modulation, EGPRS 1900	Ch No. 661/ 1880.0MHz
TC18	8PSK modulation, EGPRS 1900	Ch No. 810/ 1909.8MHz

4.4 Description of Test Setup

4.4.1 For Antenna Port Test

4.4.2 For Frequency Stability Test

4.4.3 For Radiated Test (30MHz-1GHz)

4.4.4 For Radiated Test (Above 1GHz)

13

4.5 Test Conditions

Took Coop		Test Conditions				
Test Case	Test Env. Test Setup Note 1		Test Configuration Note 2			
Conducted RF Output Power	NTNV	Test Setup 1	TC01~TC18			
Peak to average radio	NTNV	Test Setup 1	TC04~TC06, TC16~18			
Occupied Bandwidth	NTNV	Test Setup 1	TC01~TC18			
Frequency Stability	NTNV	Test Setup 2	TC01~TC18			
Conducted Out of Band Emissions	NTNV	Test Setup 1	TC01~TC18			
Band Edge	NTNV	Test Setup 1	TC01~TC18			
Transmitter Radiated Power (EIPR/ERP)	NTNV	Test Setup 3 Test Setup 4	TC01~TC18			
Radiated Out of Band Emissions	NTNV	Test Setup 3 Test Setup 4	TC01~TC18			

Note:

- 1. Please refer to section 4.4 for test setup details.
- 2. Please refer to section 4.3 for test setup details.

5 TEST ITEMS

5.1 Conducted RF Output Power

5.1.1 Test Limit

FCC §2.1046 (a)

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033 (c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.1.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.

5.2 Peak to average radio

5.2.1 Limit

FCC § 2.1049 & 24.232

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

5.2.2 Test Procedure

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

Test procedures:

A .For GSM/EGPRS operating mode:

- a. Set RBW=1MHz, VBW=1MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- B. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

5.3 Occupied Bandwidth

5.3.1 Limit

FCC § 2.1049

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth

5.3.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.

5.4 Frequency Stability

5.4.1 Limit

FCC § 2.1055 & 22.355 & 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

5.4.2 Test Procedure

- 1. The test is performed in a Temperature Chamber.
- 2. The EUT is configured as MS + DC Power Supply.

5.5 Conducted Out of Band Emissions

5.5.1 Limit

FCC §22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P) dB. This calculated to be -13dBm.

5.5.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.

5.6 Band Edge

5.6.1 Limit

FCC § 22.917(b) & 24.238(b)

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

5.6.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 128 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel, then repeat step 3.

FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1MHz, for CDMA modulated signal: RBW=VBW=3MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.

5.7 Transmitter Radiated Power (EIRP/ERP)

5.7.1 Limit

FCC §22.913 & 24.232

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2Watts e.i.r.p. peak power.

5.7.2 Test Procedure

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna.

The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

ASUBST = PSUBST TX - PSUBST RX - LSUBST CABLES + GSUBST TX ANT

ATOT = LCABLES + ASUBST

Where ASUBST is the final substitution correction including receive antenna gain.

PSUBST_TX is signal generator level,

PSUBST_RX is receiver level,

LSUBST CABLES is cable losses including TX cable,

GSUBST_TX_ANT is substitution antenna gain.

ATOT is total correction factor including cable loss and substitution correction

During the test, the data of ATOT was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of ATOT.

5.8 Radiated Out of Band Emissions

5.8.1 Limit

FCC § 22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

5.8.2 Test Procedure

See section 5.6.2 of this report.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

ANNEX A TEST RESULT

A.1 Conducted RF Output Power

GSM Mode Test Data

Band	Channel	Frequency (MHz)	Measured Output Power (dBm)	Limit (dBm)	Verdict
	128	824.2	32.65		PASS
GSM 850	190	836.6	32.60	35	PASS
	251	848.8	32.58		PASS
	512	1850.2	29.80		PASS
GSM 1900	661	1880.0	29.70	32	PASS
	810	1909.8	29.27		PASS
	128	824.2	32.06		PASS
GPRS 850	190 836.6 32.04		35	PASS	
	251	848.8	32.01		PASS
	512	1850.2	29.41		PASS
GPRS 1900	661	1880.0	29.28	32	PASS
	810	1909.8	29.31		PASS
	128	824.2	32.37		PASS
EGPRS 850	190	836.6	32.36	35	PASS
	251	848.8	32.24		PASS
	512	1850.2	29.46		PASS
EGPRS 1900	661	1880.0	29.35	32	PASS
	810	1909.8	29.47		PASS

NOTE: For the GPRS and EGPRS mode, all the slots were tested and just the worst data was record in this table.

GPRS Conducted output power

Band	Channel	Frequency	Output Power(dBm)					
	Charmer	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
CDDC	128	824.2	32.06	31.09	29.47	28.75		
GPRS 850	190	836.6	32.04	31.09	29.44	28.84		
650	251	848.8	32.01	31.06	29.42	28.79		
CDDC	512	1850.2	29.41	28.44	26.67	25.81		
GPRS 1900	661	1880.0	29.28	28.32	26.55	25.68		
1900	810	1909.8	29.31	28.35	26.58	25.72		

EDGE Conducted output power

Band	Channel	Channel Frequency		Output Power(dBm)					
		(MHz)	Slot 1	Slot 2	Slot 3	Slot 4			
ECDD6	128	824.2	32.37	31.31	29.41	28.46			
EGPRS 850	190	836.6	32.36	31.33	29.41	28.56			
650	251	848.8	32.24	31.23	29.34	28.46			
FODDS	512	1850.2	29.46	28.45	26.65	25.87			
EGPRS	661	1880.0	29.35	28.36	26.57	25.81			
1900	810	1909.8	29.47	28.48	26.61	25.93			

A.2 Peak to Average Radio

Pand	Channal	Fraguanov (MHz)	Peak to Average radio	Limit	Verdict	
Band	Channel	Frequency (MHz)	dBm	dBm	verdict	
	512	1850.2	0.02		PASS	
GSM 1900MHz	661	1880.0	0.07	13	PASS	
	810	1909.8	0.02		PASS	
	512	1850.2	0.01		PASS	
EDGE 1900MHz	GE 1900MHz 661		0.03 13		PASS	
	810	1909.8	0.03		PASS	

Test plots

GSM 1900MHz CHANNEL 512 AV POWER

* Agilent 22:24:10 May 20, 2014

Peak Search

GSM 1900MHz CHANNEL 661 PEAK POWER

GSM 1900MHz CHANNEL 661 AV POWER

GSM 1900MHz CHANNEL 810 PEAK POWER

GSM 1900MHz CHANNEL 810 AV POWER

EDGE 1900MHz CHANNEL 512 PEAK POWER

EDGE 1900MHz CHANNEL 512 AV POWER

EDGE 1900MHz CHANNEL 661 PEAK POWER

EDGE 1900MHz CHANNEL 661 AV POWER

EDGE 1900MHz CHANNEL 810 PEAK POWER

EDGE 1900MHz CHANNEL 810 AV POWER

A.3 Occupied Bandwidth

Test Data

Band	Channel	Frequency (MHz)	Measured 99% Occupied Bandwidth
GSM 850MHz	128	824.2	242.1611 kHz
	190	836.6	245.1509 kHz
	251	848.8	244.3537 kHz
	512	1850.2	240.0229 kHz
GSM 1900MHz	661	1880.0	247.7975 kHz
	810	1909.8	244.3710 kHz

Test plots

GSM 850MHz CHANNEL 128

GSM 850MHz CHANNEL 190

GSM 850MHz CHANNEL 251

GSM 1900MHz CHANNEL 512

GSM 1900MHz CHANNEL 661

A.4 Frequency Stability

GSM 850MHz Band:

Test	Conditions	Frequency Deviation						
Power	Temperature	Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)		Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	5.78		-29.36		27.18		
	-20	-10.17		-2.15		30.07		
	-10	23.28		40.06		5.48		
	0	-3.03		1.99		-1.82		
3.7	+10	-3.03		-19.86		19.02		
	+20	-10.39	±2060.5	-2.32	±2091.5	44.78	±2122	PASS
	+30	17.75		23.12		21.99		
	+40	5.31		-2.15		17.67		
•	+50	-12.19		35.31		-19.44		
4.2	+25	20.74		29.35		-6.76		
3.5	+25	23.29		-27.15		14.09		

GSM 1900MHz Band:

Test	Conditions	Frequency Deviation						
Power	Temperature	Channel = 512 (1850.2MHz)		Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)		Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-3.51		-14.54		16.62		
	-20	43.61		0.04		-4.70		
	-10	31.83		-20.28		5.59		
	0	20.08		19.52		11.51		
3.7	+10	-12.32		41.57		-9.42		
	+20	17.45	±2060.5	5.52	±2091.5	-13.86	±2122	PASS
	+30	21.45		34.18		29.87		
	+40	7.14		54.18		11.59		
ļ	+50	16.48		-10.22		5.90		
4.2	+25	-13.29		10.43		-0.49		
3.5	+25	43.61		29.13		-3.07		

GPRS 850MHz Band:

Test	Test Conditions		Frequency Deviation							
Power			Channel = 128 (824.2MHz)		el = 190 6MHz)	Chanı (848	Verdict			
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits			
	-30	-11.37		12.63		6.02				
	-20	25.34		42.41		0.88				
	-10	7.07		4.00		-17.65	±2122	PASS		
	0	2.51		-7.89		9.51				
3.7	+10	12.69		-8.11		10.15				
	+20	22.70	±2060.5	32.78	±2091.5	7.03				
	+30	1.85		44.40		-14.09				
	+40	-7.93		-7.29		-9.88				
	+50	-2.98		47.40		-0.96				
4.2	+25	14.83		3.60		-1.39				
3.5	+25	19.32		-13.23		-26.91				

GPRS 1900MHz Band:

Test	Test Conditions		Frequency Deviation							
Power (VDC)	Temperature	Channel = 512 (1850.2MHz)			el = 661 .0MHz)	Chani (1909	Verdict			
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits			
	-30	-13.77		53.65		-18.56				
	-20	0.62		-14.50		-13.47				
	-10	1.65		41.59		12.18	±2122	PASS		
	0	2.47		-11.82		-14.06				
3.7	+10	-10.76		-19.88		18.79				
	+20	-2.11	±2060.5	39.14	±2091.5	22.39				
	+30	13.33		17.14		37.27				
	+40	5.33		-6.07		2.37				
	+50	-2.56		3.89		-11.52				
4.2	+25	17.60		16.08		-5.41				
3.5	+25	-8.09		3.88		12.65				

A.5 Conducted Out of Band Emissions

Test Data

GSM 850MHz CHANNEL 128

Start	Stop	RBW	Detector	Frequency	Emission[dBm]	Limit	Margin	Verdict
Frequency[MHz]	Frequency[MHz]	[MHz]	Detector	[MHz]	Emission[dbm]	[dBm]	[dB]	verdict
30	500	0.1	Peak	377.874	-42.3484	-13	29.35	Pass
500	1000	0.1	Peak	824.1648	33.31652	N/A	N/A	N/A
1000	10000	1	Peak	7549.8	-19.3382	-13	6.33	Pass

GSM 850MHz CHANNEL 190

Start Frequency[MHz]	Stop Frequency[MHz]	RBW [MHz]	Detector	Frequency [MHz]	' Emission[dBm]		Margin [dB]	Verdict
30	500	0.1	Peak	490.8981	-43.0456	-13	30.04565	Pass
500	1000	0.1	Peak	836.6673	33.43485	N/A	N/A	N/A
1000	10000	1	Peak	9781.73	-19.4441	-13	6.444131	Pass

GSM 850MHz CHANNEL 251

Start Frequency[MHz]	Stop Frequency[MHz]	RBW [MHz]	Detector	Frequency [MHz]	Emission[dBm]	Limit [dBm]	Margin [dB]	Verdict
30	500	0.1	Peak	398.5784	-42.6357	-13	29.63568	Pass
500	1000	0.1	Peak	848.8698	32.02244	N/A	N/A	N/A
1000	10000	1	Peak	7305.77	-19.0224	-13	6.02235	Pass

Start Frequency[MHz]	Stop Frequency[MHz]	RBW [MHz]	Detector	Frequency [MHz]	Emission[dBm]	Limit [dBm]	Margin [dB]	Verdict
30	1000	1	Peak	858.8545	-31.4375	-13	18.43754	Pass
1000	3000	1	RMS	1849.425	19.56401	N/A	N/A	N/A
3000	20000	1	RMS	19392.01	-21.0436	-13	8.043617	Pass

Start Frequency[MHz]	Stop Frequency[MHz]	RBW [MHz]	Detector	Frequency [MHz]	Emission[dBm]	Limit [dBm]	Margin [dB]	Verdict
30	1000	0.1	Peak	845.8411	-31.4644	-13	18.46437	Pass
1000	3000	1	Peak	1880.44	21.08779	N/A	N/A	N/A
3000	20000	1	Peak	19400.03	-20.9489	-13	7.948863	Pass

Start Frequency[MHz]	Stop Frequency[MHz]	RBW [MHz]	Detector	Frequency [MHz]	Emission[dBm]	Limit [dBm]	Margin [dB]	Verdict
30	1000	0.1	Peak	980.9804	-31.4325	-13	18.43249	Pass
1000	3000	1	Peak	1910.455	19.84604	N/A	N/A	N/A
3000	20000	1	Peak	19905.85	-20.9518	-13	7.951797	Pass

A.6 Band Edge

Test Data

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM 850	128	824.2	-16.94	A.5.1	-13	PASS
G3W 650	251	848.8	-15.26	A.5.2	-13	PASS
CSM 1000	512	1850.2	-16.17	A.5.3	12	PASS
GSM 1900	810	1909.8	-19.80	A.5.4	-13	PASS

Test Plots

GSM 850MHz CHANNEL 128

GSM 850MHz CHANNEL 251

GSM 1900MHz CHANNEL 512

A.7 Transmitter Radiated Power (EIRP/ERP)

Minimum RF power: GSM850 5.7dBm, GSM 1900 0.7dBm

Test Data

GSM Mode Test data:

		Frequency			Measured Ef	RP		Lim	it	
Band	Channel		PCL	SA Read Value	Correction	ERP	ERP	dBm	W	Verdict
		(MHz)		dBm	Factor(dB)	(dBm)	(W)	иын	VV	
GSM	128	824.20	5	-16.54	42	25.46	0.352			PASS
	190	836.60	5	-17.16	42	24.84	0.305	38.5	7	PASS
850	251	848.80	5	-17.37	42	24.63	0.290			PASS
GPRS	128	824.20	5	-17.44	42	24.56	0.286			PASS
850	190	836.60	5	-17.93	42	24.07	0.255	38.5	7	PASS
830	251	848.80	5	-18.2	42	23.80	0.240	-		PASS
ECDD6	128	824.20	5	-17.57	42	24.43	0.277			PASS
EGPRS 850	190	836.60	5	-18.05	42	23.95	0.248	38.5	7	PASS
030	251	848.80	5	-18.26	42	23.74	0.237			PASS

		Fraguenay			Measured Ell	RP		Lim	it	
Band	Channel	Frequency	PCL	SA Read Value	Correction	ERP	ERP	dBm	W	Verdict
		(MHz)		(dBm)	Factor(dB)	(dBm)	(W)	ubili	VV	
GSM	512	1850.2	0	-19.21	49	29.79	0.953			PASS
	661	1880.0	0	-19.43	49	29.57	0.906	33	2	PASS
1900	810	1909.8	0	-19.47	49	29.53	0.897			PASS
GPRS	512	1850.2	0	-18.08	49	30.92	1.236			PASS
1900	661	1880.0	0	-18.62	49	30.38	1.091	33	2	PASS
1900	810	1909.8	0	-20.31	49	28.69	0.740			PASS
ECDD6	512	1850.2	0	-20.52	49	28.48	0.705			PASS
EGPRS 1900	661	1880.0	0	-20.49	49	28.51	0.710	33	2	PASS
1900	810	1909.8	0	-20.41	49	28.59	0.723			PASS

Test Plots

MILLI -17.37 dBn 848.7458 MHz M1 CF 837.5 MHz 691 pts

Date: 4.MAY.2014 14:26:32

GSM 1900MHz CHANNEL 810

Date: 4.MAY.2014 14:24:57

850MHz CHANNEL 128

850MHz CHANNEL 190

Date: 4.MAY.2014 17:41:21

Date: 4.MAY.2014 17:44:30

GPRS 1900MHz CHANNEL 512

Date: 4.MAY.2014 17:50:14

GPRS 1900MHz CHANNEL 661

GPRS 1900MHz CHANNEL 810

Date: 4.MAY.2014 17:52:07

Date: 4.MAY.2014 17:49:12

EGPRS 850MHz CHANNEL 128

RBW 1 MHz Mode Auto FFT Input AC -17.57 dBn 824.1280 MHz CF 837.5 MHz

EGPRS 850MHz CHANNEL 190

Date: 4.MAY.2014 17:56:52 Date: 4.MAY.2014 17:55:26

EGPRS 850MHz CHANNEL 251

EGPRS 1900MHz CHANNEL 512

Date: 4.MAY.2014 18:01:21

EGPRS 1900MHz CHANNEL 661

EGPRS 1900MHz CHANNEL 810

Date: 4.MAY.2014 18:01:56

A.8 Radiated Out of Band Emissions

Test Data

GSM 850MHz CHANNEL 128 30MHz-6GHz, ANT V

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
45.516	-44.40	-13.0	31.4	0.0	Vertical	PASS
817.686	-46.15	-13.0	33.1	0.0	Vertical	PASS
1648.338	-36.90	-13.0	23.9	0.0	Vertical	PASS
3296.176	-43.78	-13.0	30.8	0.0	Vertical	PASS
4120.970	-38.16	-13.0	25.2	0.0	Vertical	PASS
4945.764	-39.84	-13.0	26.8	0.0	Vertical	PASS

GSM 850MHz CHANNEL 128 30MHz- 6GHz, ANT H

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
206.496	-49.68	-13.0	36.7	0.0	Horizontal	PASS
824.231	-48.86	-13.0	35.9	0.0	Horizontal	PASS
1648.338	-41.13	-13.0	28.1	0.0	Horizontal	PASS
3296.926	-40.16	-13.0	27.2	0.0	Horizontal	PASS
4120.220	-36.60	-13.0	23.6	0.0	Horizontal	PASS
4945.764	-37.44	-13.0	24.4	0.0	Horizontal	PASS

GSM 850MHz CHANNEL 128 6GHz- 12.75GHz, ANT V

GSM 850MHz CHANNEL 128 6GHz- 12.75GHz, ANT H

GSM 850MHz CHANNEL 190 30MHz- 6GHz, ANT V

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
44.789	-44.23	-13.0	31.2	0.0	Vertical	PASS
207.223	-54.88	-13.0	41.9	0.0	Vertical	PASS
881.690	-51.83	-13.0	38.8	0.0	Vertical	PASS
1673.332	-39.73	-13.0	26.7	0.0	Vertical	PASS
2510.122	-49.51	-13.0	36.5	0.0	Vertical	PASS
5020.740	-41.26	-13.0	28.3	0.0	Vertical	PASS

GSM 850MHz CHANNEL 190 6GHz- 12.75GHz, ANT V

GSM 850MHz CHANNEL 190 6GHz- 12.75GHz, ANT H

GSM 850MHz CHANNEL 251 30MHz- 6GHz, ANT V

27.3

0.0

Vertical

PASS

GSM 850MHz CHANNEL 251 30MHz- 6GHz, ANT H

-40.32

-13.0

4243.189

GSM 850MHz CHANNEL 251 6GHz- 12.75GHz, ANT V

GSM 850MHz CHANNEL 251 6GHz- 12 75GHz ANT H

GSM 1900MHz CHANNEL 512 30MHz- 6GHz, ANT V

25.9

-13.0

0.0

Vertical

PASS

GSM 1900MHz CHANNEL 512 30MHz- 6GHz. ANT H

-38.88

5550.862

GSM 1900MHz CHANNEL 512 6GHz- 25GHz, ANT V

GSM 1900MHz CHANNEL 512 6GHz- 25GHz, ANT F

GSM 1900MHz CHANNEL 661 30MHz- 6GHz, ANT V

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
45.516	-44.77	-13.0	31.8	0.0	Vertical	PASS
202.132	-55.00	-13.0	42.0	0.0	Vertical	PASS
881.447	-49.42	-13.0	36.4	0.0	Vertical	PASS
1880.280	-48.35	-13.0	35.4	0.0	Vertical	PASS
3759.560	-19.87	-13.0	6.9	0.0	Vertical	PASS

GSM 1900MHz CHANNEL 661 30MHz- 6GHz, ANT H

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
35.819	-52.60	-13.0	39.6	360.0	Horizontal	PASS
204.556	-57.73	-13.0	44.7	0.0	Horizontal	PASS
881.447	-53.05	-13.0	40.0	0.0	Horizontal	PASS
1880.280	-45.83	-13.0	32.8	0.0	Horizontal	PASS
3759.560	-25.14	-13.0	12.1	0.0	Horizontal	PASS

GSM 1900MHz CHANNEL 661 6GHz- 25GHz, ANT V

GSM 1900MHz CHANNEL 661 6GHz- 25GHz, ANT H

GSM 1900MHz CHANNEL 810 30MHz- 6GHz, ANT V

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
47.698	-44.97	-13.0	32.0	0.0	Vertical	PASS
284.319	-57.60	-13.0	44.6	0.0	Vertical	PASS
881.932	-47.79	-13.0	34.8	0.0	Vertical	PASS
2306.673	-48.66	-13.0	35.7	-0.0	Vertical	PASS
3819.545	-21.98	-13.0	9.0	0.0	Vertical	PASS

GSM 1900MHz CHANNEL 810 30MHz- 6GHz, ANT H

Fre. (MHz)	Peak	Limit(PK)	Margin	Degree	Antenna	Verdict
36.546	-53.34	-13.0	40.3	0.0	Horizontal	PASS
212.557	-57.82	-13.0	44.8	0.0	Horizontal	PASS
881.932	-53.39	-13.0	40.4	0.0	Horizontal	PASS
2192.202	-49.22	-13.0	36.2	360.0	Horizontal	PASS
3819.545	-24.37	-13.0	11.4	0.0	Horizontal	PASS
5729.318	-34.61	-13.0	21.6	0.0	Horizontal	PASS

GSM 1900MHz CHANNEL 810 6GHz- 25GHz, ANT V

GSM 1900MHz CHANNEL 810 6GHz- 25GHz, ANT H

ANNEX B TEST SETUP PHOTOS

B.1. Conducted Test Photo

B.2. Radiated Test Photo

ANNEX C TEST SETUP PHOTOS

C.1 Appearance of the EUT

THE FRONT OF EUT

THE BACK OF EUT

THE LEFT OF EUT

THE RIGHT OF EUT

THE UP OF EUT

THE DOWN OF EUT

THE PHOTO OF USB CABLE

THE PHOTO OF AUDIO CABLE

THE PHOTO OF CHARGER

C.2 Inside of the EUT

EUT UNCOVER VIEW 1

EUT UNCOVER VIEW 2

THE BATTERY

MAIN BOARD TOP VIEW 1

MAIN BOARD BACK VIEW 1

MAIN BOARD BACK VIEW 2

MAIN BOARD TOP VIEW 2

RF BOARD --END OF REPORT--