Recurrence Relations

Recurrence Relations & Recursion

Computer Science has recursion

Mathematics has recurrence relations.

Example:

 $s_n = s_{n-1} - 3$, $s_1 = 13$, $\forall n \in \mathbb{Z}$ where $1 \le n \le 5$ defines the sequence 13,10,7,4,1

The Fibonacci sequence is defined by the recurrence

$$f_n = f_{n-1} + f_{n-2}$$

Where $f_0 = 0$ and $f_1 = 1$

Recurrence Relations

Definition: Recurrence Relation

A recurrence relation for the sequence a_0, a_1, \ldots is an equation that expresses a_k in terms of one or more of its preceding sequence members, one or more of which are initial conditions for the sequence

Example:

The number of subsets of a set of *n* elements:

$$s(0) = 1$$
 is the *initial condition*

$$s(n) = 2 \cdot s(n-1)$$
 is the recurrence relation

Recall: This is the cardinality of a power set.

Solving Recurrence Relations

Given a recurrence relation, can an equivalent closedform (non-recurrence) expression (a.ka. an explicit formula) be produced?

If so, the closed-form expression is the *solution* to the recurrence relation

Utility: Solving recurrence relations is a common task is algorithm analysis

Linear Homogeneous Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation With Constant Coefficients (LHRRWCC) of Degree k

A LHRRWCC of degree k has the form:

$$R(n) = c_1 R(n-1) + c_2 R(n-2) + \cdots + c_k R(n-k)$$
 where $c_i \in \mathbb{R}$ and $c_k \neq 0$

Example:

$$S(n) = 2 \cdot S(n-1)$$
 is a LHRRWCC of degree 1

$$f_n = f_{n-1} + f_{n-2}$$
 is a LHRRWCC of degree 2

$$A(x) = A(x - 2)$$
 is alos a LHRRWCC of degree 2

Solving LHRRWCCs of Degree 2

Assumption: $R(n) = w^n$ where w is a non-zero constant. (Why? We'll get a nice quadratic expression at the end!)

If
$$R(n) = w^n$$
, then $R(n - 1) = w^{n-1}$, etc.

Thus:
$$R(n) = c_1 R(n-1) + c_2 R(n-2) + \cdots + c_k R(n-k)$$

becomes:
$$w_n = c_1 w^{n-1} + c_2 w^{n-2} + \dots + c_k w^{n-k}$$

As our degree is 2, we need only terms k=1 and k=2:

$$w^n = c_1 w^{n-1} + c_2 w^{n-2}$$

Divide through by
$$w^{n-2} \Rightarrow w^2 = c_1 w^1 + c_2$$

Rearrange:
$$\Rightarrow w^2 - c_1 w^1 - c_2 = 0$$

Solving LHRRWCCs of Degree 2

Theorem: Assume a characteristic equation $w^2-c_1w-c_2=0$ with $c_1,c_2\in\mathbb{R}$ and roots r_1 and r_2 such that $r_1\neq r_2$. The sequence $\{R(n)\}$ is a solution to $R(n)=c_1R(n-1)+c_2R(n-2)$ iff $R(n)=\alpha_1r_1^n+\alpha_2r_2^n$ where $n\in\mathbb{Z}^*$ and $\alpha_a,\alpha_2\in\mathbb{R}$.

Proof: Rosen Sect. 8.2 p 542-3

Solution Procedure: LHRRWCCs of Degree 2

- 1. Identify c_1 & c_2 and create the characteristic equation $w^2 c_1 w c_2 = 0$
- 2. Insert the roots of the characteristic equation $(r_1 \& r_2)$ into the closed-form expression $R(n) = \alpha_1 r_1^n + \alpha_2 r_2^n$
- 3. Using the initial conditions, create two equations in two unknowns (α_1 and α_2)
- 4. Solve for α_1 and α_2 to complete the solution

Example: Solving a LHRRWCC of Degree 2

- Solve: R(n) = 3R(n-1) 2R(n-2)where R(0) = 200 and R(1) = 220
- (1) From the recurrence, we see that $c_1 = 3$ and $c_2 = -2$ \therefore Characteristic eq. Is $w^2 - 3w - (-2) = w^2 - 3w + 2 = 0$
- (2) Factor: $w^2-3w+2=(w-2)(w-1)$. It follows that the roots are: $r_1=2$ and $r_2=1$. And so: $R(n)=\alpha_1 2^n+\alpha_2 1^n=\alpha_1 2^n+\alpha_2$
- (3) Apply the initial conditions to $R(n) = \alpha_1 r_1^n + \alpha_2 r_2^n$: $R(0) = \alpha_1 + \alpha_2 = 200$ $R(1) = 2\alpha_1 + \alpha_2 = 220$
- (4) Solve for the two unknowns: $\alpha_1=20$ and $\alpha_2=180$.

Thus the solution is $R(n) = 20 \cdot 2^n + 180 \cdot 1^n = 20 \cdot 2^n + 180$

"Divide & Conquer" Recurrence Relations

Background:

- "Divide and Conquer" is a military, political, and algorithmic tactic:
- Military: Disconnect one half of a battle group from the other, and the two halves are much easer to defeat
- Political: Force the liberal and conservative wings of a political party to squabble, and the other party finds its work to be more easily accomplished
- Algorithmic: Solving two halves of a problem (and combining the results to construct the original problem's answer) is often more efficient than solving the original problem directly

"Divide & Conquer" Recurrence Relations

Example:

(1) Binary Search

$$S(1) = 1$$

$$S(n) = S(\frac{n}{2}) + k$$

(2) Best Case of Quicksort

$$Q(1) = 1$$
 $Q(n) = Q(\frac{n}{2}) + Q(\frac{n}{2}) + n$

[Worst case of Quicksort: Q(n) = Q(n-1) + n]

"Find The Pattern" (a.k.a. Iterative (or Backward) Substitutions)

Example:

$$S(1) = 1$$

$$S(n) = S(\frac{n}{2}) + k$$

$$S(\frac{n}{2}) = S(\frac{n}{4}) + k \quad \Rightarrow \quad S(n) = S(\frac{n}{4}) + 2k$$

$$S(\frac{n}{4}) = S(\frac{n}{8}) + k \quad \Rightarrow \quad S(n) = S(\frac{n}{8}) + 3k$$

$$S(\frac{n}{8}) = S(\frac{n}{16}) + k \quad \Rightarrow \quad S(n) = S(\frac{n}{16}) + 4k$$
(continues...)

In general:
$$S(n) = S(\frac{n}{2^a}) + ak$$
, where $a \ge 1$, $a \in \mathbb{Z}$

[Simplifying assumption: *n* is a power of 2]

Let
$$n = 2^a$$
; that is, $a = \log_2 n$

$$S(n) = S(\frac{n}{n}) + k \log_2 n$$

$$S(n) = S(1) + k \log_2 n$$

$$S(n) = 1 + k \log_2 n$$

$$\therefore S(n) \text{ is } O(\log_2 n)$$

But ... do you believe?

Conjecture: $S(n) = k \cdot \log_2 n + 1$

Proof (weak induction):

Basis:
$$n = 1$$
. $S(1) = 1 = k \cdot 0 + 1 = k \cdot \log_2 1 + 1$

Inductive Step: If $S(j) = k \cdot \log_2 j + 1$ then $S(2j) = k \cdot \log_2(2j) + 1$

$$S(2j) = S(\frac{2j}{2}) + k$$

$$= S(j) + k$$

$$= k \cdot \log_2 j + 1 + k$$

$$= k(\log_2 j + 1) + 1$$

$$= k(\log_2 j + \log_2 2) + 1$$

$$= k \cdot \log_2(2j) + 1$$

Therefore, $S(n) = k \cdot \log_2 n + 1$

Applying the Recurrence

Simplifying

By the Inductive Hypothesis

As we needed to show

Example: Worst Case of Quicksort

Recall:
$$Q(1) = 1$$
, and $Q(n) = Q(n - 1) + n$

$$Q(n) = Q(n-1) + n$$
$$Q(n-1) = Q(n-2) + (n-1)$$

$$Q(n) = Q(n-2) + n + (n-1)$$

$$Q(n-2) = Q(n-3) + (n-2)$$

$$Q(n) = Q(n-3) + n + (n-1) + (n-2)$$

Apparently, in general:

$$Q(n) = Q(n-k) + \sum_{i=0}^{k-1} (n-i), k \in \mathbb{Z}^+$$

(continues...)

If we continue, we'll reach Q(n-k)=Q(1) when k=n-1

$$Q(n) = Q(n - (n - 1)) + \sum_{i=1}^{(n-1)-1} (n - i)$$
 Substituting

$$= Q(1) + \sum_{i=0}^{n} i$$
 Simplifying

$$=1+\sum_{i=1}^{n}i$$
 Combine Terms

$$=\frac{n(n+1)}{2}$$
 By Gauss

And this shows why Quicksort is $O(n^2)$ in the worst case...

... But do you believe?

Conjecture:
$$Q(n) = \frac{n(n+1)}{2}$$

Proof (weak induction):

Basis:
$$n = 1$$
. $Q(1) = 1 = \frac{2}{2} = \frac{1(1+1)}{2}$. Ok!

$$\underline{\text{Inductive Step:}} \ \text{If} \ Q(k) = \frac{k(k+1)}{2}, \ \text{then} \ Q(k+1) = \frac{(k+1)(k+2)}{2}.$$

$$Q(k+1) = Q(k) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{(k+1)(k+2)}{2}$$

Therefore,
$$Q(n) = \frac{k(k+1)}{2}$$

Applying the recurrence

By the Inductive Hypothesis

After a bunch of algebra

Extra Slides

Approximate Solutions to Rec. Relations

Theorem: (The Master Theorem) Given a recursive function of the

form
$$T(n) = a \cdot T(n/b) + c \cdot n^2$$
, where:

T(n) is an increasing function,

$$n=b^k$$
,

k is an integer > 0,

a is a real ≥ 1

b is an integer > 1

c is a real > 0, and

d is a real ≥ 0 , then:

$$f(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \cdot \log_2 n) & \text{if } a = < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Proof: Rosen