

Page EM-1 Graphs of Basic Functions

Properties of Exponents	Properties of Radicals
$b^n \cdot b^n = b^{m+n} \qquad b^0 = 1$	If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real,
$\frac{b^m}{b^n} = b^{m-n} (b \neq 0) b^{-n} = \frac{1}{b^n} (b \neq 0)$	$a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$
$(b_m)_n = b_{m \cdot n}$	$\sqrt[m]{\sqrt[m]{a}} = \sqrt[m]{a}$
$(ab)^{m} = a^{m}b^{m} \qquad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}} (b \neq 0)$	$ \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab} $ $ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} (b \neq 0) $

Factoring and Special Case Products	Complex Numbers
$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$ $a^{2} - b^{2} = (a + b)(a - b)$	$i = \sqrt{-1}$ and $i^2 = -1$ For a real number $b > 0$, $\sqrt{-b} = i\sqrt{b}$
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$	The complex numbers $a + bi$ and $a - bi$ are conjugates, and $(a + bi)(a - bi) = a^2 + b^2$.

Quadratic Formula	Absolute Value Equations and Inequalities
Given $ax^2 + bx + c = 0$, $a \ne 0$, the solutions are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	If $k \ge 0$, then $ u = k \text{ is equivalent to } u = k \text{ or } u = -k.$ $ u = w \text{ is equivalent to } u = w \text{ or } u = -w.$ $ u < k \text{ is equivalent to } -k < u < k.$ $ u > k \text{ is equivalent to } u < -k \text{ or } u > k.$

Distance Formulas	Midpoint Formula
The distance between two points a and b on a number line is given by $ a-b $ or $ b-a $	The midpoint of the line segment between (x_1, y_1) and (x_2, y_2) is
The distance between (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Slope and Average Rate of Change

Slope of a line through (x_1, y_1) and (x_2, y_2) : $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

Average rate of change of f(x) between (x_1, y_1) and (x_2, y_2) : $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Difference quotient: $\frac{f(x+h) - f(x)}{h}$

Graphs of Basic Functions

Constant Function

Linear Function

$$f(x) = mx + b$$

Identity Function

$$f(x) = x$$

Quadratic Function

$$f(x) = x^2$$

Cubic Function

$$f(x) = x^3$$

Absolute Value Function

$$f(x) = |x|$$

Square Root Function

$$f(x) = \sqrt{x}$$

Cube Root Function

$$f(x) = \sqrt[3]{x}$$

Reciprocal Function

$$f(x) = \frac{1}{x}$$

Greatest Integer Function

Exponential Function

$$f(x) = b^{x}$$
, where $b > 0$ and $b \neq 1$

Logarithmic Function

$$f(x) = \log_b x$$
, where $b > 0$
and $b \neq 1$
 $y = \log_b x \Leftrightarrow b^y = x$

Page EM-2

Transformations of Graphs

Given c > 0 and h > 0, the graph of the given function is related to the graph of y = f(x) as follows:

y = f(x) + c Shift the graph of y = f(x) up c units.

y = f(x) - c Shift the graph of y = f(x) down c units.

y = f(x - h) Shift the graph of y = f(x) to the right h units.

y = f(x + h) Shift the graph of y = f(x) to the left h units.

y = -f(x) Reflect the graph of y = f(x) over the x-axis.

y = f(-x) Reflect the graph of y = f(x) over the y-axis.

y = af(x) If a > 1, stretch the graph of y = f(x) vertically by a factor of a. If 0 < a < 1, shrink the graph of y = f(x) vertically by a factor of a.

y = f(ax) If a > 1, shrink the graph of y = f(x) horizontally by a factor of $\frac{1}{a}$.

If 0 < a < 1, stretch the graph of y = f(x) horizontally by a factor of $\frac{1}{a}$.

Tests for Symmetry

Consider the graph of an equation in x and y. The graph of the equation is

- Symmetric to the y-axis if substituting -x for x results in an equivalent equation.
- Symmetric to the x-axis if substituting -y for y results in an equivalent equation.
- Symmetric to the origin if substituting -x for x and -y for y results in an equivalent equation.

Even and Odd Functions

- f is an even function if f(-x) = f(x) for all x in the domain of f.
- f is an odd function if f(-x) = -f(x) for all x in the domain of f.

Properties of Logarithms

$$\log_b 1 = 0 \qquad \log_b (xy) = \log_b x + \log_b y$$

$$\log_b b = 1$$
 $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$

$$\log_b b^x = x \qquad \log_b x^p = p \log_b x$$

 $b^{\log_b x} = x$

 $\log_b x = \frac{\log_a x}{\log_a b}$ Change-of-base formula:

 $b^x = b^y$ implies that x = y.

 $\log_a x = \log_a y$ implies that x = y.

Variation

y varies directly as x. y is directly proportional to x.

y varies inversely as x. y is inversely proportional to x.

y varies jointly as w and x. y is jointly proportional to w and x.

Perimeter and Circumference

Rectangle

P = 2l + 2w

Square P = 4s

Triangle P = a + b + c

Circle

Circumference: $C = 2\pi r$

Area

Square $A = s^2$

Parallelogram A = bh

Triangle
$$A = \frac{1}{2}bh$$

$$\begin{aligned} &\text{Trapezoid} \\ &A = \frac{1}{2}(b_1 \,+\, b_2)h \end{aligned}$$

Circle
$$A = \pi r^2$$

Volume

Rectangular Solid V = lwh

Angles

 Two angles are complementary if the sum of their measures is 90°.

$$x + y = 90^{\circ}$$

 Two angles are supplementary if the sum of their measures is 180°.

$$x + y = 180^{\circ}$$

Triangles

 The sum of the measures of the angles of a triangle is 180°.

$$x + y + z = 180^{\circ}$$

 Given a right triangle with legs of length a and b, and hypotenuse of length c, the Pythagorean theorem indicates that

$$a^2 + b^2 = c^2$$

Page EM-3

Trigonometric Functions

$$\sin t = y$$

$$\csc t = \frac{1}{y} (y \neq 0)$$

$$\cos t = x$$

$$\sec t = \frac{1}{x}(x \neq 0)$$

$$\tan t = \frac{y}{x}(x \neq 0)$$

$$\cot t = \frac{x}{y}(y \neq 0)$$

Right Triangle Trigonometry

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

$$\csc \theta = \frac{\text{hyp}}{\text{opr}}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$
 $\sec \theta = \frac{\text{hy}}{\text{ad}}$

$$a\theta = \frac{opp}{adj}$$
 $cot\theta = \frac{ac}{op}$

Unit Circle

2/14/2019 **ALEKS 360**

Trigonometric Functions of Any Angle

$$\sin \theta = \frac{y}{r} \qquad \csc \theta = \frac{r}{y} (y \neq 0)$$

$$\cos \theta = \frac{x}{r} \qquad \sec \theta = \frac{r}{x} (x \neq 0)$$

$$\tan \theta = \frac{y}{x} (x \neq 0)$$

 $\cot \theta = \frac{x}{v}(y \neq 0)$

Inverse Trigonometric Functions

$$y = \sin^{-1} x \Leftrightarrow \sin y = x$$

 $-1 \le x \le 1 \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \cos^{-1} x \Leftrightarrow \cos y = x$$

 $-1 \le x \le 1 \text{ and } 0 \le y \le \pi$

$$y = \tan^{-1}x \Leftrightarrow \tan y = x$$

 $x \in \mathbb{R} \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$

	Pythag	gorea	n	Identities
Γ	. 2	2 -		

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot \theta = \frac{\sin \theta}{\tan \theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\tan \theta = \frac{\sin \theta}{\theta}$$

Quotient Identities

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Sum and Difference Formulas

$$\sin(u + v) = \sin u \cos v + \cos u \sin v$$

$$\sin(u - v) = \sin u \cos v - \cos u \sin v$$

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

$$\cos(u - v) = \cos u \cos v + \sin u \sin v$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 + \tan v}$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$
$$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

Even and Odd Identities

$$cos(-\theta) = cos\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\sin(-\theta) = -\sin\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\cot(-\theta) = -\cot\theta$$

Double-Angle Formulas

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$=1-2\sin^2\theta$$

2/14/2019 ALEKS 360

Cofunction Identities	Power-Reducing Formulas
$\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right) \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$	$\sin^2\theta = \frac{1 - \cos 2\theta}{2} \qquad \qquad \cos^2\theta = \frac{1 + \cos 2\theta}{2}$
$\tan \theta = \cot \left(\frac{\pi}{2} - \theta\right) \cot \theta = \tan \left(\frac{\pi}{2} - \theta\right)$	$\tan^2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$
$\sec \theta = \csc \left(\frac{\pi}{2} - \theta\right) \csc \theta = \sec \left(\frac{\pi}{2} - \theta\right)$	Half-Angle Formulas
	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$ $\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$
	$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$

Product-to-Sum Formulas	Sum-to-Product Formulas
$\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$	$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$
$\cos u \cos v = \frac{1}{2} [\cos(u - v) + \cos(u + v)]$	$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$
$\sin u \cos v = \frac{1}{2} [\sin(u+v) + \sin(u-v)]$	$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$
$\cos u \sin v = \frac{1}{2} [\sin(u+v) - \sin(u-v)]$	$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$

Law of Sines	Law of Cosines
	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$