In	In divide and conquer strategy, the main problem and sub-problems must be of nature.					
	Same	Different	Opposite	None of the above		
2.	What can be done using divide and conquer strategy?					
	Merge sort	Binary search	Quick sort	All of the above		
3.	How do we find the mid in binary search?					
	Mid = ceil [(I + h)/2]	Mid = floor [(I + h)/2]	Mid = square [(I + h)/ 2]	None of the above		
4.	The worst case time complexity of binary search is					
	O(1)	O(log n)	O(n)	O(n log n)		
5.	The best case time complexity of binary search is					
	O(1)	O(log n)	O(n)	O(n log n)		
6.	6. The process of merge sort is based upon					
	Divide and conquer strategy	Dynamic programming	Greedy approach	None of the above		
7.	The time complexity of merge sort is					
	O (n)	O (1)	O (log n)	O (n log n)		
8.	Traversing of elements in merge sort is done in					
	Preorder	Postorder	Inorder	None of the above		
9.	In merge sort, the time function $T(n)$ using recurrence relation when $n = 1$ is					
	0	•	-1	None of the above		
10. In merge sort, the list is considered as small, when it is having element.						
	0	1	2	3		
11. The idea behind the quick sort is, the elements on the left side of pivot must be and the elements on the right side of pivot must be						
	Greater, smaller	Smaller, greater	Smaller, smaller	Greater, greater		
12	The time complexity of quic	k sort is				

In a binary tree, if the node is at index i, then the right child will be at				
2*i+1	3*i	3*i+1		
ee, if the node is at index i, then the p	parent of that node will be at			
2*i+1	Flr (i/2)	Ceil (i/2)		
	ee, if the node is at index i, then the p	ee, if the node is at index i, then the parent of that node will be at		