MATH240 – Lecture 1

Enlai Li

January 4, 2023

1 Set Theory

 $A = \{0, 1, 5\}$ finite set with 3 elements

1.1 \in (is element of)

Notation: $x \in A \to x$ is element of A

$$A = \{0, 1, 2, 3\}$$
$$0 \in A \qquad 42 \not\in A$$

1.2 Set by extension

$$\begin{split} \emptyset &= \{ \} \\ \mathbb{N} &= \{ 0, 1, 2, \ldots \} \\ \mathbb{Z} &= \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \\ \mathbb{Q} &= \text{ Rational numbers (fractions) } = \{ 0, \frac{1}{2}, \frac{2}{3}, 5, \frac{-42}{11}, \ldots \} \\ \end{split}$$

1.3 Set by comprehension

Notation:
$$A = \{x \in U \mid P(x) \text{ is true}\}$$

even numbers: $E = \{\dots, -4, -2, 0, 2, 4, \dots\}$
 $= \{x \in \mathbb{Z} \mid x = 2n \text{ for some } n \in \mathbb{Z}\}$
odd numbers: $O = \{\dots, -3, -1, 3, \dots\}$
 $= \{x \in \mathbb{Z} \mid x = 2n + 1 \text{ for some } n \in \mathbb{Z}\}$
also: $= \{n + 1 \mid n \in E\}$
 $= \{x \in \mathbb{Z} \mid x = n + 1 \text{ for some } n \in E\}$
rational numbers: $\mathbb{Q} = \{\frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0, b > 0, GCD(a, b) = 1\}$

1.4 Subsets

If every element of set A is also element of set B, then A is subset B Notation: $A\subseteq B$

$$A = \{0, 1, 5\} \subseteq \mathbb{N}$$
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$$

2 sets are equal if $A \subseteq B$ and $B \subseteq A$: A = B

1.5 Cardinality

Number of elements in a set

Notation: |A|

$$A = \{1, 3, 5\} \qquad |A| = 3$$

1.6 Russel set paradox

Russel set: $R = \{x \text{ is a set } | x \notin x\}$

$$\mathbb{N}\notin\mathbb{N}, \text{ so } \mathbb{N}\in\mathbb{R}$$

$$x=\{1,2,x\} \text{ satisfies } x\in x\Rightarrow x\notin\mathbb{R}$$

Question: is $R \in \mathbb{R}$?

- If $R \in R$ then $R \notin R$
- If $R \notin R$ then $R \in R$