Spectral Clustering

Part 3: The Normalized Laplacian

Ng Yen Kaow

More constraint for balance

- Further constraints can be added to the eigenvalue system
 - The next problem, Graph Partitioning, will use this strategy
 - However, the resultant eigenvalue system will no longer be standard

Graph Partitioning Problem

 \square Given edge weight matrix $W = (w_{ij})$ and vertex mass matrix M with diagonal elements (m_i) , a 2-partitioning of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, i \in \bar{S}} w_{ij}$ is minimized under the constraint that $\sum_{i \in S} m_i = \sum_{i \in \bar{S}} m_i$, or $1^{T}Mx = 0$

Observe that if $m_i=1$ for all i, then the condition $\sum_{i\in S} m_i = \sum_{i\in \bar{S}} m_i$ is the same as $|S|=|\bar{S}|$

Constrained optimization problem

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}M \in \{1, -1\}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\}$ and $\mathbf{1}^T M x = 0$ together enforce balance in the solution

- However, problem is NP-hard
 - Recall that even the minimum bisection problem, where all edges and vertices have the same weight, is NP-hard

Relaxed Rayleigh quotient version

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
 - $x_i \in \{1, -1\} \Rightarrow x^\top M x = \sum_i m_i$ but not the other way around
 - Balance no longer enforced but that's the least of our worry for now because instead of the standard eigensystem
- Optimization must now be achieved through solving the generalized eigensystem

$$Lx = \lambda Mx$$

Relaxed Rayleigh quotient version

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
- \Box Optimize through $Lx = \lambda Mx$
- \square Since 1 fulfills condition for L and M, $\mu_k = 1$
 - However, eigenvectors in the solutions are not orthogonal but rather, M-orthogonal ($\mu_i M \mu_j = 0$ for $i \neq j$)
 - \square $\mathbf{1}^{\mathsf{T}} M \mu_{k-1} = 0$ is fulfilled
- □ Convert to a standard eigenvalue system $M^{-1/2}LM^{-1/2}x = \lambda x$ to compute

Convert to $M^{-1/2}LM^{-1/2}x = \lambda x$

- □ Minimize $x^{T}Lx$ where L = D' Wsubject to $x^{T}Mx = \sum_{i} m_{i}$ and $\mathbf{1}^{T}Mx = 0$
- Let $y = M^{1/2}x$, that is, $x = M^{-1/2}y$ $x^{\mathsf{T}}Lx \Rightarrow y^{\mathsf{T}}M^{-1/2}LM^{-1/2}y$ $x^{\mathsf{T}}Mx = \sum_{i} m_{i} \Rightarrow y^{\mathsf{T}}y = \sum_{i} m_{i}$ $\mathbf{1}^{\mathsf{T}}Mx = 0 \Rightarrow \mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Hence equivalently

□ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{\mathsf{T}}y = \sum_i m_i$ and $\mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$

Convert to $M^{-1/2}LM^{-1/2}x = \lambda x$

- □ Minimize $yM^{-1/2}LM^{-1/2}y$ subject to $y^{T}y = 1$ and $\mathbf{1}^{T}M^{1/2}y = 0$
- □ As 1 is a eigenvector for $Lx = \lambda Mx$ with eigenvalue 0, $M^{1/2}$ 1 is a eigenvector for this system with eigenvalue 0 (smallest)
 - Since eigenvectors of this system are orthogonal, $(M^{1/2}\mathbf{1})\mu_{k-1} = 0$ $\Rightarrow \mathbf{1}^{\mathsf{T}}M^{1/2}y = 0$ fulfilled
 - In fact the eigenvalues for this system are the same as those for $Lx = \lambda Mx$, even though the eigenvectors are different (related by $y = M^{1/2}x$)

Eigendecomposition

Edges and vertices have weight 1

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8
5.9390	5.1420	4.6660	4.0	3.0500		1.3940	0.0
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_6	μ_6
0.5677	-0.1583	-0.4862	0.3536	0.2315	-0.2855	0.1766	0.3536
-0.4281	0.6222	-0.2059	0.3536	0.0622	0.2469	0.2690	0.3536
0.3517	0.1203	0.2984	-0.3536	0.5170	0.5007	-0.0694	0.3536
-0.0855	0.0612	0.6267	0.3536	0.1159	-0.4899	-0.3044	0.3536
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	0.3536
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	0.3536
-0.0354	-0.1476	0.2596	-0.3536	-0.2798	-0.2029	0.7349	0.3536
-0.0540	-0.5251	0.0654	0.3536	-0.4096	0.5286	-0.1411	0.3536

Generalized eigenvalue system

 First use of generalized eigenvalue system for spectral clustering in

Donath and Homan, "Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices", 1972, IBM Technical Disclosure Bulletin 15(3):938–944

- Also used in Normalized Cut
 - Which is currently almost synonymous with spectral clustering

Normalized Cut Problem

Given weight matrix $W = (w_{ij})$ and weighted degree matrix $D' = (d_i)$, the normalized cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that

$$\operatorname{ncut}(S, \bar{S}) = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right)$$

is minimized, where $\operatorname{vol}(S) = \sum_{i \in S} d_i$, that is, sum of all the weights of the edges adjacent to vertices in S, and $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, i \in \bar{S}} w_{ij}$

Normalized Cut

 \square Represent a partition S, \overline{S} of V with $x \in \mathbb{R}^n$, where

$$x_i = \begin{cases} \frac{1}{\operatorname{vol}(S)} & \text{if } i \in S \\ -\frac{1}{\operatorname{vol}(\bar{S})} & \text{if } i \in \bar{S} \end{cases}$$
 As in Ratio Cut, $|x_i|$ changes according to the solution

1.
$$x^{\mathsf{T}} L x = \sum_{ij} w_{ij} \left(x_i - x_j \right)^2 = \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right)^2 \sum_{ij} w_{ij}$$
$$= \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right)^2 \operatorname{cut} \left(S, \overline{S} \right)$$

2.
$$x^{\mathsf{T}}D'x = \sum_{i} d_{i}(x_{i})^{2} = \sum_{i \in S} \frac{d_{i}}{\operatorname{vol}(S)^{2}} + \sum_{i \in \bar{S}} \frac{d_{i}}{\operatorname{vol}(\bar{S})^{2}} = \frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})}$$

$$1 + 2 \Rightarrow \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} D' x} = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{\operatorname{vol}(S)} + \frac{1}{\operatorname{vol}(\bar{S})} \right) = \operatorname{ncut}(S, \bar{S})$$

Constrained optimization problem

 \square Minimize $x^{\top}Lx$ where L = D' - W

subject to
$$x_i \in \left\{\frac{1}{\operatorname{vol}(S)}, -\frac{1}{\operatorname{vol}(\bar{S})}\right\}$$
, $x^T D' x = 1$, and $\mathbf{1}^T D' x = 0$

- Problem is NP-hard
- □ Note:

- $\frac{1}{\text{vol}(S)}$, $-\frac{1}{\text{vol}(\bar{S})}$ are not the only possible choices
 - See https://arxiv.org/abs/1311.2492

Relaxed Rayleigh quotient version

□ Minimize $x^T L x$ subject to $x^T D' x = 1$ and $\mathbf{1}^T D' x = 0$

Through the same reasoning as in graph partitioning problem, equivalently solve

- □ Minimize $y(D')^{-1/2}L(D')^{-1/2}y$ subject to $y^Ty = 1$ and $\mathbf{1}^T(D')^{1/2}y = 0$ where $y = (D')^{1/2}x$
 - \Box $(D')^{-1/2}L(D')^{-1/2}$ is now commonly known as the **normalized Laplacian**

Eigendecomposition

Edges and vertices have weight 1

ht 1	7	
	(5)	2
4	6	8
λο		

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8
1.6760	1.5100	1.42700	1.3100	0.9900	0.5880	0.4990	0.0
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	0.3922
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	0.3922
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	0.2774
-0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	0.3397

Shi and Malik (1997, 2000)

- Proposed the NP-hard ncut problem
 - Derived Laplacian for ncut
- Related ncut Laplacian to generalized eigenvalue system, resulting in the now ubiquitous normalized Laplacian
 - However, the first use of the generalized eigenvalue system for spectral clustering was in 1972
- □ Use Gaussian function $e^{-d^2/2\sigma^2}$ for weights
 - Previously used for min-cut (Wu and Leahy 1993)
 - Used for RatioCut later (Wang and Siskin 2003)
- Clustering with multiple eigenvectors (Shi and Malik 2000)

Clustering w/ multiple eigenvectors

With normalized Laplacian

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	µ _Z	μ_8
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	`\0.3922
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	0.3922
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	0.2774
-0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	, 0.3397

Use the values from the top few eigenvectors for clustering (with, for example, *k*-means)

Clustering w/ multiple eigenvectors

With graph partitioning Laplacian

dges and vertices: have weight 1

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ ₆	μ_6
0.5677	-0.1583	-0.4862	0.3536	0.2315	-0.2855	0.1766	μ ₆ `\0.3536
		-0.2059		-			
0.3517	0.1203	0.2984	-0.3536	0.517Q	0.5007	-0.0694	0.3536
-0.0855	0.0612	0.6267	0.3536	0.1159	-0.4899	-0.3044	l _{0.3536}
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	0.3536
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	¦0.3536
-0.0354	-0.1476	0.2596	-0.3536	-0.2798	-0.2029	0.7349	¦0.3536
-0.0540	-0.5251	0.0654	0.3536	-0.4096	0.5286	-0.1411	,'0.3536

The resultant eigenvectors are less suitable for clustering

Theoretical justification

- Why does normalized Laplacian work
 - Probabilistic (random walk) justification by Maila and Shi (2000)
- Why does k-means on multiple eigenvectors work for the normalized Laplacian
 - Ng et al. (2001) show conditions for method to work

More clustering methods

- Based on the Fiedler vector
 - Sign cut or zero threshold cut
 - Median cut (ensures balance)
 - Sweep/criterion cut
 - Sort vertices by Fiedler vector values and cut at the lowest value of some cost function
 - Jump/gap cut
 - Sort vertices by Fiedler vector values and cut at the point of largest gap
- Based on multiple eigenvectors
 - Simultaneous k-way (Shi and Malik 2000)
 - k-means (Ng et al. 2001)

Equivalent Laplacian

- □ Ng et al. (2001) used $L' = D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}}$ instead of the normalized Laplacian for analysis
 - L' = I L (L = normalized Laplacian)

$$L = D'^{-1/2}(D' - W)D'^{-1/2}$$

$$= D'^{-1/2}(D')D'^{-\frac{1}{2}} - D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}}$$

$$= I - D'^{-\frac{1}{2}}(W)D'^{-\frac{1}{2}} = I - L$$

□ Results in the same eigenvectors but eigenvalues become $1 - \lambda_1, ..., 1 - \lambda_k$