CS202: COMPUTER ORGANIZATION

Lecture 8

The Processor

Outline

- Implementation overview
- Logic design basics
- Detailed implementation for every instruction

Introduction

CPU Time = Instruction Count \times CPI \times Clock Cycle Time

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
- We will examine two MIPS implementations
 - A simplified version
 - A more realistic pipelined version

Basic MIPS Architecture

- We have known the instructions a CPU should execute, we'll design a simple CPU that executes:
 - basic math (add, sub, and, or, slt)
 - memory access (lw and sw)
 - branch and jump instructions (beq and j)

Implementation Overview

- We need memory
 - to store instructions
 - to store data
 - for now, let's make them separate units
- We need registers, ALU, and a whole lot of control logic
- CPU operations common to all instructions:
 - use the program counter (PC) to pull instruction out of instruction memory
 - read register values

View from 30,000 Feet

What is the role of the Add units?

Explain the inputs to the data memory unit

- Explain the inputs to the ALU
- Explain the inputs to the register unit

Source: H&P textbook

Outline

- Implementation overview
- Logic design basics
- Detailed implementation for every instruction

Logic Design Basics

- Information encoded in binary
 - Low voltage = 0, High voltage = 1
 - One wire per bit
 - Multi-bit data encoded on multi-wire buses
- Combinational element
 - Operate on data
 - Output is a function of input
- State (sequential) elements
 - Store information

Combinational Elements

And gate

$$Y = A \& B$$

Multiplexer

$$Y = S?1:0$$

Adder

$$Y = A + B$$

Arithmetic/Logic Unit

$$Y = F(A, B)$$

State Elements (sequential elements)

- State element
 - The state element has a pre-stored state
 - It has some internal storage
 - Has at least two inputs and one output (e.g. D-type flip-flop):
 - The data to be written into the element
 - The clock which determines when the data is written
 - The output: the value that was written in earlier cycle
 - Examples: register and memory

Sequential Elements

- Register without write control (e.g. program counter)
 - Uses a clock signal to determine when to update
 - Edge-triggered: update when Clk changes from 0 to 1
- Register with write control (e.g. data memory/register)
 - Only updates on clock edge when write control input is 1
 - Used when stored value is required later

Clocking Methodology

- Defines when signals can be read and when they can be written
- Edge-triggered clocking: all state changes occur on a clock edge.
- Clock time > the time needed for signals to propagate from SE1 through combinatorial element to SE2

Clocking Methodology

Source: H&P textbook

- Which of the above units need a clock?
- What is being saved (latched) on the rising edge of the clock?
 Keep in mind that the latched value remains there for an entire cycle

Outline

- Implementation overview
- Logic design basics
- Detailed implementation for every instruction
 - R-type
 - Load/store-type
 - J-type

Implementing R-type Instructions

- Instructions of the form add \$t1, \$t2, \$t3
- Explain the role of each signal

a. Registers b. ALU

Source: H&P textbook

Implementing Loads/Stores

Instructions of the form lw \$t1, 8(\$t2) and sw \$t1, 8(\$t2)

Implementing J-type Instructions

• Instructions of the form beq \$t1, \$t2, offset

View from 10,000 Feet

View from 5,000 Feet

Mid-term

- Apr. 27th, Friday, 10:00-12:00 am
- Chapter 1 Chapter 4.3
- Closed book exam, a reference sheet including MIPS instructions will be provided