Anéis

José Antônio O. Freitas

MAT-UnB

16 de setembro de 2020

1/21

Seja A um conjunto não vazio. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

$$\Delta: A \times A \to A$$
$$(a,b) \longmapsto a\Delta b$$

Uma operação binária também é chamada de uma **operação interna** em A.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div não é uma operação binária.

Seja A um conjunto não vazio A no qual estão definidas duas operações binárias \oplus e \otimes , chamadas soma e produto. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale que

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

Essa propriedade é chamada propriedade associativa da soma.

ii) **Comutatividade**: Para todos x, $y \in A$ vale

$$x \oplus y = y \oplus x$$
.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x ou simplesmente **oposto** de x.

v) **Associatividade**: Para todos x, y, $z \in A$, vale que

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

Essa propriedade é chamada **distributiva da soma em relação ao produto**.

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Essa é a propriedade distributiva do produto em relação à soma.

Observações:

Seja (A, \oplus, \otimes) uma anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação** de A.

Observações:

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, ⊕, ⊗) uma anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que A é uma anel.

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$, $(\mathbb{Z}_m,\oplus,\otimes)$ são anéis associativos, comutativos e com unidade.

2) Consideremos em $\mathbb{Z} \times \mathbb{Z}$ as operações \oplus e \otimes definidas por

$$(a,b)\oplus(c,d)=(a+c,b+d)$$

$$(a,b)\otimes(c,d)=(ac-bd,ad+bc).$$

Mostre que $(\mathbb{Z} \times \mathbb{Z}, \oplus, \otimes)$ é um anel comutativo e com unidade.

Observação:

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Proposição

Seja $(A, +, \cdot)$ uma anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$, -(-x) = x.
- iv) Dados x_1 , x_2 , ..., $x_n \in A$, $n \geqslant 2$, então

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

Proposição

- v) Para todos a, x, $y \in A$, se a + x = a + y, então x = y.
- vi) Para todo $x \in A$, $x \cdot 0_{\Delta} = 0_{\Delta} = 0_{\Delta} \cdot x$.
- vii) Para todos x, $y \in A$, temos x(-y) = (-x)y = -(xy).

viii) Para todos x, $y \in A$, xy = (-x)(-y).

Prova:

Prova:

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

$$0_1 = 0_1 + 0_2 = 0_2$$

e portanto o elemento neutro é único.

ii) De fato, dado $x \in A$ suponha que existam $y_1, y_2 \in A$ tais que

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x) = x.

- iv) Segue usando indução sobre n.
- v) Suponha que a + x = a + y. Seja -a o oposto de a daí

$$x = 0_A + x$$

$$= [(-a) + a] + x$$

$$= (-a) + (a + x)$$

$$= (-a) + (a + y)$$

$$= [(-a) + a] + y$$

$$= 0_A + y = y$$

como queríamos.

vi) Temos $0_A + x \cdot 0_A = a \cdot 0_A = a(0_A + 0_A) = a \cdot 0_A + a \cdot 0_A$. Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x((-y) + y) = x \cdot 0_A = 0_A,$$

portanto -xy = x(-y).

viii) Basta usar o caso anterior.

Um anel comutativo $(A,+,\cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se $xy=0_A$, então $x=0_A$ ou $y=0_a$. Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy = 0_A$, então x e y são chamados de **divisores próprios de zero**.

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2} \neq \overline{0}$, no entanto $\overline{2} \otimes \overline{2} = \overline{4} = \overline{0}$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade se, e somente se, m é primo.