Xinyue Feng

Email: fengxy26@gmail.com | Phone: 86-137 2549 2612 Website: https://fengxystar.github.io

EDUCATION

Nanjing University

Nanjing, China

M.S. in Statistics

2019 – 2022 (Expected)

GPA: 3.86/4.0 (Ranking: 1st/15)

Guangzhou, China

Sun Yat-sen University *B.S. in Statistics*

2015 – 2019

GPA: 3.74/4.0

PUBLICATION

Xinyue Feng, Chuxiao Zuo, Wujun Li. Robust Hashing Learning via Random Smoothing. 2021 (working paper)

PATENTS

Xinyue Feng, Wujun Li, Song Zhou. Building surface crack detection method based on image processing. Patent No.201911371906. 2020

Xinyue Feng, Wujun Li, Song Zhou. Image-based bridge crack detection method. Patent No.201911371902. 2020

RESEARCH EXPERIENCE

Robust Hashing Learning via Random Smoothing

LAMDA Group, the Department of Computer Science and Technology Sep.2020 – present

Proposed Method: Propose a certified defense method called Smoothing Hashing (SH) to build a robust hashing model towards adversarial perturbations by adding Gaussian noise.

Contribution:

- The first defense method of hashing based retrieval model
- Significantly improve the robust accuracy: MNIST(+64.2%), CIFAR10(+81.4%), NUSWIDE(+62.6%)
- It is supported theoretically

A Noise-Robust Method for Crack Segmentation

LAMDA Group, the Department of Computer Science and Technology Oct. 2019– Jan. 2020

Proposed Method: Propose a noise-robust crack segmentation method that consists of two steps: Multi-direction Non-minimum Suppression and pixel expansion-based crack connection.

Contribution:

- More robust to the noise than existing crack segmentation algorithms
- Obtain more continuous cracks, which provides a good foundation for subsequent crack analysis.

Segmentation of Pectoral Muscle in Mammograms (Best B.S. thesis) Computational Medical Imaging Laboratory

Oct.2018 - Jun.2019

Proposed Method: Propose a novel pectoral muscle segmentation method combining the deep method and the non-deep method, so that the traditional algorithm can refine the results of the deep neural network.

Contribution:

- The first attempt to combine traditional techniques and deep learning methods in pectoral muscle segmentation
- Achieves state-of-the-art performance: DDSM(+0.6%), MIAS(+1.4%), Inbreast(+0.8%), cases provided by three cooperative hospitals(+0.6%)

COMPETITION

•	26/1681 (Top 2%). CVPR2021 Security AI Challenger	2021
•	First Prize (Top 1%), China Undergraduate Mathematical Contest in Modeling	2017

HONORS AND AWARDS

•	HUAWEI Fellowship, NJU	2020
•	First Prize (Top 5%), Excellent Student Scholarship, NJU	2020-2021
•	University-level Excellent Graduation Thesis, SYSU	2019
•	First Prize (Top 5%), Excellent Student Scholarship, SYSU	2016-2019

SKILLS

- Programming Language: Python, MATLAB, C/C++, R, SQL
- · Tools: PyTorch, Tensorflow, OpenCV