

Ломаная

Азербайджан известен своими коврами. Вы мастер рисунка по коврам, и вы хотите оформить новый ковёр с использованием л**оманой**. Ломаная — это последовательность из t отрезков на двумерной плоскости, которая задаётся последовательностью из t+1 вершин p_0,\ldots,p_t следующим образом. Для каждого $0\leq j\leq t-1$ между вершинами p_j и p_{j+1} проводится отрезок.

Приступая к рисунку, вы отметили n точек на плоскости. Точка i $(1 \le i \le n)$ имеет координаты (x[i],y[i]). Не существует пары точек с совпадающими х-координатами или с совпадающими у-координатами.

Теперь вы хотите найти последовательность вершин $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k])$, задающую ломаную со следующими свойствами:

- ullet Ломаная начинается в (0,0) (то есть, sx[0]=0 и sy[0]=0),
- Ломаная проходит через все точки (точки не обязаны совпадать с вершинами ломаной),
- Ломаная состоит только из горизонтальных и вертикальных отрезков (у любых двух последовательных вершин ломаной должны совпадать либо х-координаты, либо у-координаты).

Ломаная может самопересекаться и самонакладываться произвольным образом. Формально говоря, любая точка плоскости может содержаться в произвольном количестве отрезков ломаной.

Это задача с открытыми тестами и частичной системой оценивания каждого теста. Вам дано 10 входных файлов, описывающих положение точек. Для каждого входного файла вы должны отправить выходной файл, описывающий ломаную с требуемыми свойствами. Ваши баллы за каждый выходной файл зависят от количества отрезков в найденной ломаной.

В данной задаче не требуется отправлять какой-либо исходный код на проверку.

Формат входных данных

Каждый входной файл содержит данные в следующем формате:

- строка 1: *n*
- строка 1+i (для $1 \le i \le n$): x[i] y[i]

Формат выходных данных

Каждый выходной файл должен содержать данные в следующем формате:

- строка 1: *k*
- ullet строка 1+j (для $1 \leq j \leq k$): $sx[j] \ sy[j]$

Обратите внимание, что вторая строка должна содержать sx[1] и sy[1] (то есть, **не требуется** выводить sx[0] и sy[0]). Все числа sx[j] и sy[j] должны быть целыми.

Пример

Для примера входных данных:

- 4
- 2 1
- 3 3
- 4 4
- 5 2

возможен следующий вывод:

6 2 0

2 3

5 3

5242

4 4

Обратите внимание, что данный пример не фигурирует среди тестов задачи.

Ограничения

- $1 \le n \le 100\,000$
- $1 \le x[i], y[i] \le 10^9$
- Все x[i] и y[i] являются целыми числами.
- Ни у какой пары точек не совпадают x-координаты и y-координаты, то есть $x[i_1] \neq x[i_2]$ и $y[i_1] \neq y[i_2]$ для $i_1 \neq i_2$.
- $-2 \cdot 10^9 \le sx[i], sy[i] \le 2 \cdot 10^9$
- Размер каждого файла, отправляемого на проверку (либо выходного файла, либо zip-архива) не должен превосходить 15MB.

Система оценивания

За каждый тест вы можете получить до 10 баллов. Ваш вывод получит 0 баллов за тест, если он не задаёт ломаную с указанными свойствами. В противном случае ваши баллы будут определяться с использованием убывающей последовательности c_1, \ldots, c_{10} , которая зависит от теста.

Предположим, что вы нашли ломаную, состоящую из k отрезков. В таком случае вы получите:

- ullet i баллов, если $k=c_i$ (для $1\leq i\leq 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ баллов, если $c_{i+1} < k < c_i$ (для $1 \leq i \leq 9$),
- 0 баллов, если $k > c_1$,
- 10 баллов, если $k < c_{10}$.

Последовательности c_1, \ldots, c_{10} для каждого теста представлены ниже.

Тест	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7 607	75336	108 430	138292	150475
c_3	40	674	5 213	50671	72824	92801	100 949
c_4	37	651	5 125	50 359	72446	92371	100 500
c_5	35	640	5081	50203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100 050
c_7	28	616	5020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100 015
<i>c</i> ₉	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Визуализатор

Среди приложений к этой задаче имеется скрипт, позволяющий визуализировать входные и выходные файлы.

Чтобы визуализировать входной файл, используйте следующую команду:

```
python vis.py [input file]
```

Также вы можете визуализировать ваш ответ для некоторого теста, используя следующую команду. По техническим причинам визуализатор показывает только **первые** 1000 **отрезков** из выходного файла.

```
python vis.py [input file] --solution [output file]
```

Пример:

python vis.py examples/00.in --solution examples/00.out