Endterm (Set A)

SIAS, Krea University (AY 2025-26)

Mathematical Methods for Economics (Course Code: ECON211)

25 September 2025

Duration: 100 minutes

Maximum Points: 30

Short Answer Questions-I

1. (1 point) Is $\lim_{x\to 0} |x-2| = \lim_{x\to 0} |x| - 2$? Explain briefly.

Solution: Consider
$$f(x) = |x-2|$$
.
$$f(x) = \begin{cases} 2-x & x < 2 \\ x-2 & x > 2 \end{cases}$$
 LHL: $\lim_{x \to 0^-} |x-2| = 2$ (since $|x-2| = 2-x$ when $x < 2$)
$$\operatorname{RHL: } \lim_{x \to 0^+} |x-2| = 2$$
 (since $|x-2| = 2-x$ when $x < 2$)
$$\therefore \lim_{x \to 0} |x-2| = 2$$

Let
$$g(x) = |x| - 2$$
.
$$g(x) = \begin{cases} -x - 2 & x < 0 \\ x - 2 & x > 0 \end{cases}$$
 LHL: $\lim_{x \to 0^{-}} |x| - 2 = -2$ (since $|x| = -x$ when $x < 0$) RHL: $\lim_{x \to 0^{+}} |x| - 2 = -2$ (since $|x| = x$ when $x > 0$)

2. (1 point) Let $f(x) = \frac{6}{2+x}$. Find $f^{-1}(x)$.

Solution: Let y = f(x).

$$y = \frac{6}{x+2}$$

$$\Rightarrow y(x+2) = 6$$

$$\Rightarrow xy + 2y = 6$$

$$\Rightarrow xy = 6 - 2y$$

$$\Rightarrow x = \frac{6 - 2y}{y}$$

$$\Rightarrow f^{-1}(x) = \frac{6 - 2x}{x}$$

Answer: $f^{-1}(x) = \frac{6 - 2x}{x}$

3. (1 point) Let $f(x) = x^{x-1}$. Find f'(x).

Solution: Let $y = x^{x-1}$. $\ln y = (x-1) \ln x \qquad \text{(using the property of } \log a = b^c \implies \ln a = c \ln b \text{)}$ $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} ((x-1) \ln x) \qquad \text{(differentiating both sides w.r.t. } x)$ $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln x \frac{d}{dx} (x-1) + (x-1) \frac{d}{dx} (\ln x) \qquad \text{(applying the product rule to the RHS)}$ $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln x + \frac{x-1}{x}$ $\Rightarrow \frac{dy}{dx} = y \left(\ln x + \frac{x-1}{x} \right)$ $\Rightarrow \frac{dy}{dx} = x^{x-1} \left(\ln x + \frac{x-1}{x} \right)$

Answer: $\frac{dy}{dx} = x^{x-1} \left(\ln x + \frac{x-1}{x} \right)$

4. (1 point) Determine if the function $f(x) = x^2 - 4x + 3$ is increasing or decreasing in [1, 3].

Solution: First derivative tells us whether (or where) a function is increasing or decreasing.

$$f'(x) = 2x - 4$$

Condition for increasing function : $2x - 4 \ge 0$

 \therefore the function is increasing when $x \ge 2$

Condition for decreasing function : $2x - 4 \le 0$

... the function is decreasing when $x \leq 2$

Answer: f(x) is decreasing in [1, 2] and increasing in [2, 3].

5. (1 point) Let $x^2y^3 + x^3y^2 = 5$. Find $\frac{dy}{dx}$.

Solution: Let $u = x^2y^3$, $v = x^3y^2$, and c = 5.

Applying the product rule, we get:

$$u' = 2xy^3 + 3x^2y^2\frac{dy}{dx}$$

$$v' = 2x^3y\frac{dy}{dx} + 3x^2y^2$$

$$c' = 0$$

$$u' + v' = c'$$

$$\therefore \left[2xy^3 + 3x^2y^2\frac{dy}{dx}\right] + \left[2x^3y\frac{dy}{dx} + 3x^2y^2\right] = 0$$

$$\Rightarrow (2xy^3 + 3x^2y^2) + (3x^2y^2 + 2x^3y)\frac{dy}{dx} = 0$$

$$\Rightarrow (3x^2y^2 + 2x^3y)\frac{dy}{dx} = -(2xy^3 + 3x^2y^2)$$

$$\Rightarrow \frac{dy}{dx} = -\frac{(2xy^3 + 3x^2y^2)}{(3x^2y^2 + 2x^3y)}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x}\frac{(3x + 2y)}{(2x + 3y)}$$

Answer: $\frac{dy}{dx} = -\frac{y}{x} \frac{(3x+2y)}{(2x+3y)}$

6. (1 point) Let $f(x) = \sqrt{x} + 3$ and $g(x) = f^{-1}(x)$. Find g'(5).

Solution: We know that: $g'(a) = \frac{1}{f'(g(a))}$

 $\therefore g'(5) = \frac{1}{f'(g(5))}$ Let $g(5) = k \implies f(k) = 5$.

$$\sqrt{k} + 3 = 5$$

$$\Rightarrow \sqrt{k} = 5 - 3$$

$$\Rightarrow \sqrt{k} = 2$$

$$\Rightarrow k = 4$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$\Rightarrow f'(4) = \frac{1}{2\sqrt{2}}$$

$$\Rightarrow f'(4) = \frac{1}{4}$$

$$\Rightarrow g'(5) = 4$$

Answer: g'(5) = 4

7. (1 point) Suppose that f and g are continuous on [0,4] and that $\int_0^4 (f(x)-g(x))dx=2$ and $\int_0^4 (3f(x)-4g(x))dx=4$. Find $\int_0^4 (f(x)+g(x))dx$.

Solution: Let
$$\int_0^4 f(x)dx = a$$
 and $\int_0^4 g(x)dx = b$. Then,
$$a - b = 2$$

$$3a - 4b = 4$$

$$3a - 3b = 6$$
 (multiplying the first equation by 3)
$$\Rightarrow b = 2$$
 (differencing the previous two equations to eliminate a)
$$\Rightarrow a = 4$$

$$\int_0^4 (f(x) + g(x))dx = \int_0^4 f(x)dx + \int_0^4 g(x)dx$$
 (applying the sum rule)
$$\Rightarrow \int_0^4 (f(x) + g(x))dx = 6$$

Answer:
$$\int_0^4 (f(x) + g(x))dx = 6$$

8. (1 point) Compute: $\int (3x^2 + \frac{2}{x} + e^{3x})dx$

Solution:

$$\int (3x^2 + \frac{2}{x} + e^{3x})dx = \int 3x^2 dx + \int \frac{2}{x} dx + \int e^{3x} dx$$
 (applying the sum rule)
$$\Rightarrow \int (3x^2 + \frac{2}{x} + e^{3x})dx = x^3 + 2\ln|x| + \frac{e^{3x}}{3} + C$$

Answer:
$$\int (3x^2 + \frac{2}{x} + e^{3x})dx = x^3 + 2\ln|x| + \frac{e^{3x}}{3} + C$$

Short Answer Questions-II

- 9. (3 points) Given the demand function for comedy shows on *Ruinmyshow*: $p = \frac{16}{q+3} 3$,
 - (a) $(\frac{1}{2} \text{ points})$ Compute the total revenue.

Solution: Total revenue,
$$TR=p\cdot q$$
.
$$p=\frac{16}{q+3}-3$$

$$\Rightarrow TR=\frac{16q}{q+3}-3q$$

(b) $(\frac{1}{2} \text{ points})$ Compute the marginal revenue.

Solution: We know that $MR = \frac{d}{dq}(TR)$.

$$TR = \frac{16q}{q+3} - 3q$$

$$Let u = 16q, \quad v = q+3$$

$$\Rightarrow u' = 16, \quad v' = 1$$

$$MR = \frac{vu' - uv'}{v^2} - 3$$

$$\Rightarrow MR = \frac{16(q+3) - 16q}{(q+3)^2} - 3$$

$$\Rightarrow MR = \frac{48}{(q+3)^2} - 3$$

$$\Rightarrow MR = \frac{48 - 3(q+3)^2}{(q+3)^2}$$

Answer: $MR = \frac{48 - 3(q+3)^2}{(q+3)^2}$

(c) (2 points) Compute the revenue-maximizing price and quantity.

Solution: We know that the revenue is maximized when MR = 0.

$$48 - 3(q+3)^2 = 0$$
 (note that the denominator can't be zero.)
 $\implies 3(q+3)^2 = 48$
 $\implies (q+3)^2 = 16$

$$\implies (q+3) = \pm 4$$

$$\Rightarrow q + 3 = 4$$
 (discarding the negative value.)

$$\implies q = 1$$

Plugging the value into the demand equation, we get $p = \frac{16}{1+3} - 3$

$$\implies p = \frac{16}{4} - 3$$

$$\implies p = 4 - 3$$

$$\implies p = 1$$

Answer: The revenue-maximizing price is p = 1 and the quantity is q = 1.

10. (2+1 points) The total cost of producing *Phantom cigarettes* is $C(q) = 2q^2 + 10q + 32$. Find the value of q which minimizes the average cost. Show that the marginal cost is equal to the average cost at this point (where the average cost is being minimized).

Solution: We know that the average cost is:

$$AC(q) = \frac{C(q)}{q}$$

The average cost of producing *Phantom cigarettes* is:

$$AC(q) = 2q + 10 + \frac{32}{q}$$

We need to find the first derivative and set it to zero.

$$\frac{d(AC(q))}{dq} = \frac{d}{dq} \left(2q + 10 + \frac{32}{q} \right)$$

$$= 2 - \frac{32}{q^2}$$
FOC:
$$\frac{d(AC(q))}{dq} = 0$$

$$\Rightarrow 2 - \frac{32}{q^2} = 0$$

$$\Rightarrow 2q^2 = 32$$

$$\Rightarrow q^2 = 16$$

$$\Rightarrow q^* = 4$$
SOC:
$$\frac{d^2(AC(q))}{dq^2} > 0$$
 (for minimum)
$$\frac{d^2(AC(q))}{dq^2} = \frac{64}{q^3}$$

$$\frac{64}{q^3} > 0 \text{ when } q = 4$$

We also need to compute the marginal cost.

$$MC(q) = 4q + 10$$

When q = 4,

Average cost:
$$AC(q = 4) = 2q + 10 + \frac{32}{4}$$

= $8 + 10 + 8$
= 26
Marginal cost: $MC(q = 4) = 4(4) + 10$
= 26

Answer: The quantity that minimizes the average cost is $q^* = 4$. When q = 4, AC = MC = 26.

- 11. (3 points) Let $f(x,y) = 6x^{1/3}y^{2/3}$.
 - (a) (1 point) Determine the degree of homogeneity.

Solution: The degree of homogeneity can be calculated using:

$$f(tx, ty) = 6(tx)^{1/3}(ty)^{2/3}$$

$$= 6t^{1/3}x^{1/3}t^{2/3}y^{2/3}$$

$$= (t^{1/3+2/3})6(x^{1/3}y^{2/3})$$

$$= t^{1}f(x, y)$$

$$\Rightarrow k = 1$$

 $f(tx, ty) = t^k f(x, y)$

Answer: f(x, y) is homogeneous of degree 1.

(b) (2 points) Compute all first and second order partial derivatives.

	f_x	$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(6x^{1/3} y^{2/3} \right)$ $= 6 \cdot \frac{1}{3} x^{-2/3} y^{2/3}$ $= 2x^{-2/3} y^{2/3}$ $= 2 \left(\frac{y}{x} \right)^{2/3}$ $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(6x^{1/3} y^{2/3} \right)$
Solution:	f_y	$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(6x^{1/3} y^{2/3} \right)$ $= 6x^{1/3} \cdot \frac{2}{3} y^{-1/3}$ $= 4x^{1/3} y^{-1/3}$ $= 4\left(\frac{x}{y}\right)^{1/3}$
	f_{xx}	$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(2x^{-2/3} y^{2/3} \right)$ $= 2y^{2/3} \cdot \left(-\frac{2}{3} \right) x^{-5/3}$ $= -\frac{4}{3} x^{-5/3} y^{2/3}$ $= -\frac{4}{3} \left(\frac{y^2}{x^5} \right)^{1/3}$
	f_{yy}	$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(4x^{1/3} y^{-1/3} \right)$ $= 4x^{1/3} \cdot \left(-\frac{1}{3} \right) y^{-4/3}$ $= -\frac{4}{3} x^{1/3} y^{-4/3}$ $= -\frac{4}{3} \left(\frac{x}{y^4} \right)^{1/3}$
	f_{xy}	$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(2x^{-2/3} y^{2/3} \right)$ $= 2x^{-2/3} \cdot \frac{2}{3} y^{-1/3}$ $= \frac{4}{3} x^{-2/3} y^{-1/3}$ $= \frac{4}{3} \left(\frac{1}{x^2 y} \right)^{1/3}$
	f_{yx}	$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(4x^{1/3} y^{-1/3} \right)$ $= 4y^{-1/3} \cdot \frac{1}{3} x^{-2/3}$ $= \frac{4}{3} x^{-2/3} y^{-1/3}$ $= \frac{4}{3} \left(\frac{1}{x^2 y} \right)^{1/3}$

Solution:

$$MU_x = \frac{1}{\sqrt{x}}$$

$$MU_y = 1$$

$$MRS_{x,y} = \frac{MU_x}{MU_y}$$

$$MRS_{x,y} = \frac{1}{\sqrt{x}}$$

Long Answer Questions

13. (5 points) Consider $f(x,y) = \frac{x^3}{3} + \frac{y^3}{3} + x^2 + \frac{y^2}{2} - 3x - 6y + 5$. Find and classify all stationary points.

Solution: To find the stationary points, we first compute the first-order partial derivatives and set them equal to zero.

$$f_x = \frac{\partial f}{\partial x} = (x^2 + 2x - 3) = 0$$
$$f_y = \frac{\partial f}{\partial y} = (y^2 + y - 6) = 0$$

We have two quadratic equations to be solved.

$$(x+3)(x-1) = 0$$

 $(y+3)(y-2) = 0$
 $x = 1, -3$
 $y = 2, -3$

The stationary points are the combinations of these x and y values:

$$(-3, -3)$$
 $(-3, 2)$ $(1, -3)$ $(1, 2)$

To classify the stationary points, we use the second derivative test, which requires the second-order partial derivatives.

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = 2x + 2$$
$$f_{yy} = \frac{\partial^2 f}{\partial y^2} = 2y + 1$$
$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = 0$$

The determinant of the Hessian matrix is $D = f_{xx}f_{yy} - (f_{xy})^2 = (2x+2)(2y+1)$.

We evaluate the Hessian determinant $D=f_{xx}f_{yy}-(f_{xy})^2$ at each stationary point:

- If D > 0 and $f_{xx} > 0$: Local Minimum
- If D > 0 and $f_{xx} < 0$: Local Maximum
- If D < 0: Saddle Point
- If D = 0: Test Inconclusive

Stationary Point	f_{xx}	f_{yy}	D	Classification
(-3, -3)	-4	-5	20 (>0)	Local Maximum
(-3, 2)	-4	5	-20 (<0)	Saddle Point
(1, -3)	4	-5	-20 (<0)	Saddle Point
(1, 2)	4	5	20 (> 0)	Local Minimum

- 14. (5 points) The demand for robots in *Tatooine* is given by p = 20 2q and the supply of robots is given by p = 4 + 2q.
 - (a) (1 point) Compute the equilibrium price and quantity.

Solution: The equilibrium can be found out by setting demand = supply.

$$20 - 2q = 4 + 2q$$

$$\Rightarrow 4q = 16$$

$$\Rightarrow q^* = 4$$

$$\Rightarrow p^* = 12$$

Answer: The equilibrium quantity is $q^* = 4$ and the equilibrium price is $p^* = 12$.

(b) (1+1 points) Compute the consumer surplus and producer surplus.

Solution: Given inverse demand (D(q)) and inverse supply (S(q)), we know that:

$$CS = \int_{q=0}^{q=q^*} D(q) dq - p^* q *$$

$$PS = p^* q * - \int_{q=0}^{q=q^*} (S(q)) dq$$

We also know from the previous calculation that $p^* = 12$ and $q^* = 4$.

$$CS = \int_0^4 (20 - 2q)dq - 48$$

$$= \Big|_0^4 (20q - q^2) - 48$$

$$= 80 - 16 - 48$$

$$= 16$$

$$PS = 48 - \int_0^4 (4 + 2q)dq$$

$$= 48 - \Big|_0^4 (4q + q^2)$$

$$= 48 - (16 + 16)$$

$$= 16$$

Answer: CS = 16, PS = 16

(c) (1+1 points) Now, suppose that the Damiyo (the ruler of Tatooine), sensing that the robots are valuable, announces a price floor of 14. Compute the new consumer surplus and producer surplus.

Solution: When p = 14, we should compute the quantity demanded and the quantity supplied.

$$20 - 2q = 14$$

$$2q = 6$$
Demand: $q = 3$

$$4 + 2q = 14$$

$$2q = 10$$
Supply: $q = 5$

At this price, three robots will be sold in *Tatooine*.

$$CS = \int_0^3 (20 - 2q) - 14 \times 3$$

$$= \Big|_0^3 (20q - q^2) - 42$$

$$= (60 - 9) - 42$$

$$= 9$$

$$PS = 42 - \int_0^3 (4 + 2q) dq$$

$$= 42 - \Big|_0^3 (4q + q^2)$$

$$= 42 - (12 + 9)$$

$$= 21$$

Answer: CS = 9, PS = 21