HOME CHAPTERS LOGIN

23. National Grids

The Transverse Mercator projection provides a basis for existing and proposed national grid systems in the United Kingdom and the United States.

In the U.K., topographic maps published by the <u>Ordnance Survey</u> refer to a national grid of 100 km squares, each of which is identified by a two-letter code. Positions within each grid square are specified in terms of eastings and northings between 0 and 100,000 meters. The U.K. national grid is a plane coordinate system that is based upon a Transverse Mercator projection whose central meridian is 2 West longitude, with standard meridians 180 km west and east of the central meridian. The grid is typically related to the Airy 1830 ellipsoid, a relationship known as the National Grid (OSGB36®) datum. The corresponding UTM zones are 29 (central meridian 9° West) and 30 (central meridian 3° West). One of the advantages of the U.K. national grid over the global UTM coordinate system is that it eliminates the boundary between the two UTM zones.

A similar system has been proposed for the U.S. by the Federal Geographic Data Committee. The proposed "U.S. National Grid" is the same as the Military Grid Reference System (MGRS), a worldwide grid that is very similar to the UTM system. As Phil and Julianna Muehrcke (1998, p.p. 229-230) write in the 4th edition of Map Use, "the military [specifically, the U.S. Department of Defense] aimed to minimize confusion when using long numerical [UTM] coordinates" by specifying UTM zones and sub-zones with letters instead of numbers. Like the UTM system, the MGRS consists of 60 zones, each spanning 6° longitude. Each UTM zone is subdivided into 19 MGRS quadrangles of 8° latitude and one (quadrangle from 72° to 84° North) of 12° latitude. The letters C through X are used to designate the grid cell rows from south to north. I and O are omitted to avoid confusion with numbers. Wikipedia offers a good entry on the MGRS here.

Try This!

Fun Demo of U.K. National Grid

A kids-friendly information sheet about the U.K. National Grid is published by the <u>U.K. Ordnance Survey</u>. You can find it in the National Grid for Schools link on their website.

A less-kids-friendly video can be seen below:

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- ▼ Chapter 2: Scales and

Transformations

- 1. Overview
- 2. Scale
- 3. Scale as Scope
- 4. Map and Photo Scale
- 5. Graphic Map Scales
- 6. Map Scale and Accuracy
- 7. Scale as a Verb
- 8. Geospatial Measurement Scales
- 9. Coordinate Systems
- 10. Geographic Coordinate System
- 11. Geographic Coordinate Formats
- 12. Horizontal Datums
- 13. Geoids
- 14. Ellipsoids
- 15. Control Points and Datum Shifts
- 16. Coordinate Transformations
- 17. Plane Coordinate Transformations

What is the National Grid?

The National Grid <u>Click Here for Transcript of The National Grid Video</u>

Credit: Ordnance Survey

This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out

our Geospatial Education Program Office.

< 22. UTM Zone Characteristics</p>

up

24. State Plane Coordinate System >

- 18. Datum
 Transformations
- 19. Map Projections
- 20. UTM Coordinate System
- 21. The UTM Grid and Transverse Mercator Projection
- 22. UTM Zone Characteristics

23. National Grids

- 24. State Plane Coordinate System
- 25. The SPC Grid and Map Projections
- 26. SPC Zone Characteristics
- 27. Map Projections
- 28. Geometric Properties Preserved and Distorted
- 29. Classifying Projection Methods
- 30. Summary
- 31.Bibliography
- ► Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

• login

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Login
- Services

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- Renewable Energy and Sustainability Policy Program Office

iMPS in

 BA in Energy and Sustainability Policy Program Office Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Cooperative
 Penn State
 World Campus
- Web Learning
 @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802

Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023