Representation Theory

Throughout the rest of these notes L will be a finite dimensional semisimple Lie algebra over $F = \mathbb{C}$ with CSA H, root system Φ , base Δ and Weyl group W. Although L will be finite dimensional, we need to consider infinite dimensional representations V of L. The main goal will be to explain the Weyl character formula. The proof will come afterwards.

20. Weights and maximal vectors

The statement is: Irreducible representations V of L are uniquely determined up to isomorphism by their highest weight and are generated by any vector of highest weight. This is true when V is finite dimensional and is also true for many infinite dimensional V. The main problem is that an infinite dimensional representation may not have a highest weight.

20.1. **definitions.** Recall that L has a root space decomposition

$$L = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$$

For any representation V of L and any $\lambda: H \to F = \mathbb{C}$ recall that the λ weight space of V is:

$$V_{\lambda} = \{ v \in V \mid h(v) = \lambda(h)v \}$$

Let V' be the sum of all the weight spaces V_{λ} .

Proposition 20.1.1. (1)

$$V' = \bigoplus_{\lambda} V_{\lambda}$$

- (2) $L_{\alpha}(V_{\lambda}) \subseteq V_{\lambda+\alpha}$. (3) V' = V if V is finite dimensional.

Definition 20.1.2. A highest weight for V is a weight λ so that $V_{\lambda} \neq 0$ but $V_{\lambda+\alpha} = 0$ for all $\alpha \in \Phi_+$.

It is clear that any (nonzero) finite dimensional representation has a highest weight.

Example 20.1.3. For the adjoint representation V = L, the highest weight is equal to the maximal root.

Definition 20.1.4. A maximal vector $v^+ \in V$ is a nonzero element with the property that

$$x_{\alpha} v^+ = 0$$

for all $x_{\alpha} \in L_{\alpha}$ where α is a positive root.

It is clear that any nonzero vector of highest weight is a maximal vector. The converse is not true.

It is enough to have $x_{\alpha} v^+ - 0$ for $\alpha \in \Delta$.

Example 20.1.5. Let $L = \mathfrak{sl}(2, F) = H \oplus L_{\alpha} \oplus L_{-\alpha}$. Recall that $H = Fh_{\alpha}, L_{\alpha} = Fx_{\alpha}, L_{-\alpha} = Fy_{\alpha}$. Since there is only one positive root α , a maximal weight in a representation V is any nonzero $v \in V$ so that $x_{\alpha}(v) = 0$.

Let $V = \mathfrak{sl}(3, F)$ with positive roots $\alpha, \beta, \alpha + \beta$. The weight space decomposition of V is

$$V = V_{\alpha} \oplus V_{\frac{1}{2}\alpha} \oplus V_0 \oplus V_{-\frac{1}{2}\alpha} \oplus V_{-\alpha}$$

Identifying $\alpha = 2$ since H^* is one dimensional and $\alpha(h_{\alpha}) = 2$, this can be rewritten:

$$V = V_2 \oplus V_1 \oplus V_0 \oplus V_{-1} \oplus V_{-2}$$

- The vector $x_{\alpha} \in V_2$ is a maximal vector since it has highest weight.
- The vector $x_{\alpha+\beta} \in V$ is maximal since $[x_{\alpha}, x_{\alpha+\beta}] = 0$. It also lies in V_1 :

$$h_{\alpha}(x_{\alpha+\beta}) = (\alpha(h_{\alpha}) + \beta(h_{\alpha}))x_{\alpha+\beta} = (2-1)x_{\alpha+\beta} = x_{\alpha+\beta}$$

so it has highest weight since $V_{\frac{1}{2}\alpha+\alpha}=V_3=0$.

• The vector $h_{\alpha} + 2h_{\beta} \in V_0$ is also a maximal vector since

$$x_{\alpha}(h_{\alpha} + 2h_{\beta}) = -[h_{\alpha} + 2h_{\beta}, x_{\alpha}] = -(\alpha(h_{\alpha}) + 2\beta(h_{\alpha}))x_{\alpha} = -(2-2)x_{\alpha} = 0$$

but $h_{\beta} \in V_0$ so it does not have highest weight.

Note that, in this example, V has two highest weights.

20.2. Standard cyclic modules.

Definition 20.2.1. A standard cyclic module of highest weight λ is a representation V which is generated by a single maximal vector v^+ of weight λ .

This means that V is spanned by elements of the form $a_1a_2\cdots a_mv^+$ where $a_i \in L$. I.e., $V = \mathcal{U}(L)v^+$. The fact that the finite dimensional Lie algebra L can have infinite dimensional cyclic modules comes from the fact that $\mathcal{U}(L)$ is infinite dimensional in general.

Lemma 20.2.2. Let V be a standard cyclic module generated by $v^+ \in V_{\lambda}$. Then V is spanned by elements of the form

$$y_{\beta_1}y_{\beta_2}\cdots y_{\beta_k}v^+$$

where β_i are positive roots and $y_{\beta} \in L_{-\beta}$.

Proof. Use PBW to see that
$$\mathcal{U}(L)v^+ = \mathcal{U}(N_-(L))\mathcal{U}(B(\Delta))v^+ = \mathcal{U}(N_-(L))v^+$$

Theorem 20.2.3. If V is standard cyclic as above then

- (1) λ is a highest weight.
- (2) V_{λ} is one dimensional.
- (3) V has a weight space decomposition $V = \bigoplus V_{\beta}$ where β runs over weights of the form $\lambda \sum k_i \alpha_i$ where $\alpha_i \in \Delta$ and k_i are nonnegative integers.

In the proof of the corollary below we used the following lemma.

Lemma 20.2.4. $v^+ \in V$ is a maximal vector iff it satisfies the condition:

$$Bv^+ = \mathbb{C}v^+$$

In other words, v^+ is a common eigenvector for all elements of the Borel subalgebra $B = B(\Delta)$.

Proof. Let $W = \mathbb{C}v^+$. Then W is a representation of B and therefore also of $H \subseteq B$. So, v^+ is an eigenvector of H and we have a linear map $\lambda : H \to \mathbb{C}$ given by $\lambda(h)v^+ = h(v^+)$. Thus $W = W_{\lambda}$. For any positive root α we have $x_{\alpha} \in B$ and $x_{\alpha}(v^+) \subseteq W_{\lambda+\alpha} = 0$. So, v^+ is a maximal vector of weight λ . The converse is obvious.

Corollary 20.2.5. V is indecomposable and all quotient modules are cyclic with highest weight λ . V has a unique maximal proper submodule. If V is irreducible then λ is unique.

Proof. Suppose that $V = V_1 \oplus V_2$. Then each element of V has two coordinates. So, $v^+ = (v_1^+, v_2^+)$. For every $b \in B$ we have $bv^+ = av^+$ for some $a \in \mathbb{C}$. But $av^+ = (av_1^+, av_2^+)$. So, $Bv_1^+ = \mathbb{C}v_1^+$ and $Bv_2^+ = \mathbb{C}v_2^+$. Therefore, $(v_1^+, 0)$ and $(0, v_2^+)$ are maximal vectors of weight λ . But V_{λ} is one-dimensional. So, either $v_1^+ = 0$ or $v_2^+ = 0$. Since v^+ generates V, v_i^+ generates V_i . So, either $V_1 = 0$ or $V_2 = 0$ showing that V_1 is indecomposable.

Given any submodule W of V, since W is an H-submodule of V, it must be the sum of weight spaces W_{μ} . Since $W \neq V$, we must have $W_{\lambda} = 0$. So, $(V/W)_{\lambda} = V_{\lambda}/W_{\lambda} = V_{\lambda} \neq 0$. So, $v^+ + W$ is a nonzero maximal vector for V/W of weight λ and it clearly generates V/W. So, V/W is cyclic.

To show that there is a unique maximal proper submodule, note that all proper submodules of V lie in the vector subspace $\bigoplus_{\mu \neq \lambda} V_{\mu}$. But then the sum of all proper submodules of V is a proper submodule which is unique since it contains all other proper submodules.

Finally, if V is irreducible then λ is uniquely determined since, given any other maximal vector $w^+ \in V_\mu$, the submodule generated by w^+ must be equal to V. But then $\lambda = \mu - \sum k_i \alpha_i$ which implies that $\mu = \lambda + \sum k_i \alpha_i$ which implies that $\lambda = \mu$.

20.3. Existence and uniqueness of cyclic modules. I proved the existence theorem first:

Theorem 20.3.1. For any $\lambda : H \to \mathbb{C}$, there exists an irreducible standard cyclic module with highest weight λ .

Proof. Start with a one dimensional representation $D_{\lambda} = \mathbb{C}v^+$ of B given by taking the action of any $h \in H$ to be multiplication by $\lambda(h)$ and the action of any $x_{\alpha} \in L_{\alpha}$ to be zero. Then take:

$$V = \mathcal{U}(L) \otimes_{\mathcal{U}(B)} D_{\lambda}$$

This is the L-module obtained from D_{λ} by "extension of scalars" which is also called the "induced representation." (Recall that for any homomorphism of rings $R \to S$ and any S-module M we have an R-module given by $R \otimes_S M$.)

The L-module V is generated by the element $1 \otimes v^+$ which is a maximal vector of weight λ since $b(1 \otimes v^+) = 1 \otimes bv^+$ is a scalar multiple of $1 \otimes v^+$ and that scalar is equal to $\lambda(h)$ when $b = h \in H$.

By the corollary, V has a unique maximal proper submodule M and the quotient V/M is the desired irreducible cyclic module with prescribed highest weight λ .

Theorem 20.3.2. There is only one irreducible V with highest weight λ (up to isomorphism).

Proof. Suppose there are two of irreducible standard cyclic modules V^1, V^2 with the same highest weight λ . Then $V_{\lambda}^1 = \mathbb{C}v_1$ and $V_{\lambda}^2 = \mathbb{C}v_2$. Let $V = V^1 \oplus V^2$. Then $V_{\lambda} = V_{\lambda}^1 \oplus V_{\lambda}^2$. So, $v^+ = (v_1^+, v_2^+)$ is a maximal vector since, for all $b \in B$ we have $bv^+ = (bv_1^+, bv_2^+) = (av_1^+, av_2^+) = av^+$ for some scalar a. (Since a is uniquely determined by b and λ , it is the same scalar in both coordinates.)

Let W be the cyclic module generated by v^+ . Then the projection map $p_1: W \to V_1$ is onto since it sends v^+ to the generator v_1^+ of V_1 . Since V_1 is irreducible, the kernel of p_1 is the unique maximal proper submodule M of W. So, $V_1 \cong W/M$. Similarly, $V_2 \cong W/M$. So, $V_1 \cong V_2$. Furthermore, this isomorphism sends v_1^+ to v_2^+ .