SNJB KBJ COLLEGE OF ENGG. CHANDWAD.

MCQ's on Taylor's n Maclaurin Thm,Indeterminate Forms --Vijay Hirap

[Type the document subtitle]

2016

[TYPE THE COMPANY ADDRESS]

Multiple choice questions

Type I: Maclaurin's Theorem & Expansion Of Functions:

1. Expansion Of f (x) in ascending powers of x by Maclaurin's Theorem is

(A)
$$f(x) + xf'(x) + \frac{x^2}{2!}f''(x) + \dots$$
 (B) $1 + x + \frac{x^2}{2!} + \dots$

(C)
$$f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$$
 (A) $f(x) - xf'(x) + \frac{x^2}{2!}f''(x) - \frac{x^3}{3!}f''(x) \dots$

2. Expansion Of $\sin x$ in ascending powers of x is

(A)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$
 (B) $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

(C)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (D) + 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

3. Expansion of cos x in ascending powers of x is........

(A)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (B) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

(C)
$$x + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$

4. Expansion of tan x in ascending powers of x is.....

(A)
$$1+x+\frac{1}{3}x^3+\frac{2}{15}x^5+\dots$$
 (B) $x-\frac{1}{3}x^3+\frac{2}{15}x^5-\dots$

(C)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^6}{6!} + \dots$$
 (D) $x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots$

5. Expansion of e^x in ascending of x is.

(A)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
 (B) $1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\dots$

(C)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 (D) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

6. Expansion of e^{-x} in ascending powers of x is.....

(A)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
 (B) $1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\dots$

(C)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 (D) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

7. Expansion of sinh x in ascending powers of x is

(A)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
 (B) $x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7}+\dots$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$

8. Expansion of cosh x in ascending powers of x is

(A)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
 (B) $x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + (D) x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

9. Expansion of tanh x in ascending powers of x is

(A)
$$1+x+\frac{1}{3}x^3+\frac{2}{15}x^5+\dots$$
 (B) $x-\frac{1}{3}x^3+\frac{2}{15}x^5-\dots$

(C)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (D) $x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots$

10. Expansion of log (1+x) in ascending powers of x is

(A)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
 (B) $-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$

11. Expansion of log (1-x) in ascending powers of x is

(A)
$$-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$
 (B) $-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$

12. Expansion of $\frac{1}{(1-x)}$ in ascending powers of x is

(A)
$$-1-x-x^2-x^3-...$$
 (B) $1-x+x^2-x^3+...$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $1 + x + x^2 + x^3 + \dots$

13. Expansion of $\frac{1}{(1+x)}$ divided by (1+x) in ascending powers of x is

(A)
$$-1-x-x^2-x^3-\dots$$
 (B) $1-x+x^2-x^3+\dots$

(C)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
 (D) $1 + x + x^2 + x^3 + \dots$

14. Expansion of $(1+x)^n$ in ascending powers of x is

(A)
$$1-nx+\frac{n(n-1)}{2!}-x^2-\frac{n(n-1)(n-2)}{3!}x^3+\dots$$
 (B) $1-nx+\frac{n(n+1)(n+2)}{3!}x^3+\dots$

(C)
$$1+nx+\frac{n(n+1)}{2!}x^2+\frac{n(n+1)(n+2)}{3!}x^3+\dots$$
 (D) $1+nx+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\dots$

15. The limit of series $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ as x approaches to $\pi/2$ is

(A) 0 (B)
$$\pi/2$$
 (C) 1 (D)-1

16. First two terms in expansion of log $(1 + e^x)$ by Maclaurins theorem is

(A)
$$\log 2 + \frac{1}{2}x + \dots$$
 (B) $\log 2 - \frac{1}{2}x + \dots$

(C)
$$x - \frac{x^2}{2} + \dots + (D)x + \frac{x^2}{2} + \dots$$

17. First two terms in expansion of sec x by Maclaurins theorem is

(A)
$$1 - \frac{x^2}{2!} + \dots$$
 (B) $x - \frac{x^3}{3!}x + \dots$

(C)
$$1 + \frac{x^2}{2!} + \dots$$
 (D) $x + \frac{x^3}{3!} + \dots$

18. .First two terms in expansion of e^x sec x by Maclaurins theorem is

(A)
$$x + x^2 + \dots$$
 (B) $x - x^2 + \dots$

(C)
$$1+x+....$$
 (D) $1-x+....$

19. First two terms in expansion of tan^{-1} (1+x) by Maclaurins theorem is

$$(\mathbf{A})\frac{\pi}{4} + \frac{x}{2} - \dots \qquad (B)\frac{\pi}{4} - \frac{x}{2} \dots$$

(C)
$$x - \frac{x^3}{3!} + \dots + (D)x + \frac{x^3}{3!} + \dots$$

20 Expansion of $\sin(\frac{x}{2}) + \cos(\frac{x}{2})$ in ascending powers of x is

(A)
$$1 - \frac{x}{2} + \frac{x^2}{8} + \frac{x^3}{48} - \frac{x^4}{384} + \dots$$
 (B) $1 + \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{48} + \frac{x^4}{384} + \dots$

(C)
$$1 + \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{24} + \frac{x^4}{120} + \dots$$
 (D) $\frac{x^2}{8} - \frac{x^3}{48} + \frac{x^4}{384} + \dots$

21.Expansion of $log(1-x^4)-log(1-x)$ in ascending powers of x is

(A)
$$-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{3}{4}x^4 + \dots$$
 (B) $x + \frac{x^2}{2} + \frac{x^3}{3} - \frac{3}{4}x^4 + \dots$

(C)
$$x + \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{3}{4!}x^4 + \dots$$
 (D) $-x - \frac{x^2}{2!} - \frac{x^3}{3!} - \frac{3}{4!}x^4 + \dots$

22 Expansion of $log(1+x)^{1/x}$ in ascending powers of x is

(A)
$$1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots$$
 (B) $-1 - \frac{x}{2} - \frac{x^2}{3} - \frac{x^3}{4} - \dots$

(C)
$$1 - \frac{x}{2!} + \frac{x^2}{3!} - \frac{x^3}{4!} + \dots$$
 (D) $-1 - \frac{x}{2!} - \frac{x^2}{3!} - \frac{x^3}{4!} - \dots$

23 Expansion of $log(1+x)^x$ in ascending powers of x is

(A)
$$x^2 + \frac{x^3}{2} + \frac{x^4}{3} + \frac{x^5}{4} + \dots$$
 (B) $x^2 - \frac{x^3}{2!} + \frac{x^4}{3!} - \frac{x^5}{4} + \dots$

(C)
$$1+x+x\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}-\frac{x^5}{5}+\dots$$
 (D) $x^2-\frac{x^3}{2}+\frac{x^4}{3}-\frac{x^5}{4}+\dots$

24 Expansion of $\cos^2 x$ in ascending powers of x is

(A)
$$\frac{1}{2} \left\{ 1 + \left(1 - \frac{2^2 x^2}{2!} + \frac{2^4 x^4}{4!} - \dots \right) \right\}$$
 (B) $\frac{1}{2} \left\{ 1 - \left(1 - \frac{2^2 x^2}{2!} + \frac{2^4 x^4}{4!} - \dots \right) \right\}$

(C)
$$\frac{1}{2} \left\{ 1 + \left(2x - \frac{2^3 x^3}{3!} + \frac{2^5 x^5}{5!} - \dots \right) \right\}$$
 (D) $\frac{1}{2} \left\{ 2x - \left(1 - \frac{2^3 x^3}{3!} + \frac{2^5 x^5}{5!} - \dots \right) \right\}$

25. Expansion of sin x cos x in ascending powers of x is

(A)
$$\frac{1}{2} \left(1 - \frac{2^2 x^2}{2!} + \frac{2^4 x^4}{4!} - \dots \right)$$
 (B) $\frac{1}{2} \left(1 - \frac{2^2 x^2}{2!} + \frac{2^4 x^4}{4!} - \dots \right)$

(C)
$$\frac{1}{2} \left(2x - \frac{2^3 x^3}{3!} + \frac{2^5 x^5}{5!} - \dots \right)$$
 (D) $\frac{1}{2} \left(x - \frac{2^3 x^3}{3!} + \frac{2^5 x^5}{5!} - \dots \right)$

26 Expansion of sin 2x cos 3x in ascending powers of x is

(A)
$$\frac{1}{2} \left[\left(5x - \frac{5^3 x^3}{5!} + \frac{5^5 x^5}{5!} - \dots \right) - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right) \right]$$

(B)
$$\frac{1}{2} \left[\left(5x - \frac{5^3 x^3}{3!} + \frac{5^5 x^5}{5!} - \dots \right) + \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right) \right]$$

(C)
$$\frac{1}{2} \left[\left(1 - \frac{5^2 x^2}{2!} + \frac{5^4 x^4}{4!} - \dots \right) - \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \right) \right]$$

(D)
$$\frac{1}{2} \left[\left(1 - \frac{5^2 x^2}{2!} + \frac{5^4 x^4}{4!} - \dots \right) + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \right) \right]$$

27. Expansion of tan⁻¹x in ascending powers of x is

$$(A)x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$
 $(B)x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$

(C)
$$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (D)x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$$

28.Simplified expression of $1 + \left(x^2 - \frac{x^3}{2} + \frac{x^4}{3} - \frac{x^5}{4} + ..\right) + \frac{1}{2} \left(x^2 - \frac{x^3}{2} + \frac{x^4}{3} - \frac{x^5}{4} + ..\right)^2 +$ on neglecting x^5 and higher powers of x is

(A)
$$1+x^2+\frac{x^3}{2}+\frac{5x^4}{6}+\dots$$
 (B) $1+x^2-\frac{x^3}{2}-\frac{x^4}{6}-\dots$

(C)
$$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 (D) $1 + x^2 - \frac{x^3}{2} + \frac{5x^4}{6} - \dots$

29.By using substitution x=tan θ , simplified form of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is

(A)
$$\tan^{-1} x$$

(B)
$$2\cot^{-1} x$$

(C)
$$2 \tan^{-1} x$$

30.By using substitution x=tan θ , simplified form of $\cos^{-1} \left(\frac{x + x^{-1}}{x + x^{-1}} \right)$ is

(A)
$$\frac{\pi}{2} + 2 \tan^{-1} x$$

(B)
$$\pi - 2 \tan^{-1} x$$

(C)
$$2 \tan^{-1} x$$

31.If x=log (1+y),then expansion of y in ascending powers of x is

(A)
$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (B) $x - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots$

(C)
$$x + \frac{x^2}{2} - \frac{x^3}{3} + \dots$$
 (D) $-x - \frac{x^2}{2!} - \frac{x^3}{3!} - \dots$

TYPE-II: Taylor's Theorem and Expansion of Functions:

32. The Taylor's series expansion of f(x + h) in ascending powers of h is

(A)
$$f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots$$
 (B) $-f(x) - hf'(x) - \frac{h^2}{2!}f''(x) - \dots$

(C)
$$f(0) + hf'(0) + \frac{h^2}{2!}f''(0) + \dots$$
 (D) $f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \dots$

33. The Taylor's series expansion of f(x + h) in ascending powers of x is

(A)
$$f(h) - xf'(h) + \frac{h^2}{2!}f''(h) - \frac{x^3}{3!}f'''(h) + \dots$$
 (B) $f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots$

(C)
$$f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$$
 (D) $f(h) + xf'(h) + \frac{x^2}{2!}f''(h) + \dots$

34. The Taylor's series expansion of f(a + h) in ascending powers of h is

(A)
$$f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots$$
 (B) $f(h) + af'(h) + \frac{a^2}{2!}f''(h) + \dots$

(C)
$$f(0) + hf'(0) + \frac{h^2}{2!}f''(0) + \dots$$
 (D) $f(a) - hf'(a) + \frac{h^2}{2!}f''(a) - \frac{h^3}{3!}f'''(a) + \dots$

35. Expansion of f(x) in ascending powers of (x-a) by Taylors theorem is

(A)
$$f(x) + af'(x) + \frac{a^2}{2!}f''(x) + \dots$$

(B)
$$f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots$$

(C)
$$f(0) - (x-a)f'(0) + \frac{(x-a)^2}{2!}f''(0) - \frac{(x-a)^3}{3!}f'''(0) + \dots$$

(D)
$$f(a) - (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) - \frac{(x-a)^3}{3!}f'''(a) + \dots$$

36. First two terms in expansion of log sec x by Taylor's Theorem in ascending powers of $(x-\pi/4)$ is

(A)
$$\frac{1}{2}\log 2 - \left(x - \frac{\pi}{4}\right) + \dots$$

(A)
$$\frac{1}{2}\log 2 - \left(x - \frac{\pi}{4}\right) + \dots$$
 (B) $\frac{1}{2}\log 2 + \left(x - \frac{\pi}{4}\right)\frac{1}{2}\dots$

(C)
$$\frac{1}{2}\log 2 + \left(x - \frac{\pi}{4}\right)...$$

(C)
$$\frac{1}{2}\log 2 + \left(x - \frac{\pi}{4}\right)...$$
 (D) $\frac{1}{2}\log 2 - \left(x - \frac{\pi}{4}\right)\frac{1}{2}...$

37. First two terms in expansion of $\sqrt{x+h}$ by Taylor's Theorem in ascending powers of h is

(A)
$$\sqrt{x} + h \frac{1}{\sqrt{2}} - x + \dots$$
 (B) $\sqrt{x} - \frac{h}{2} \frac{1}{\sqrt{x}} + \dots$

(B)
$$\sqrt{x} - \frac{h}{2} \frac{1}{\sqrt{x}} + \dots$$

(C)
$$\frac{1}{\sqrt{x}} + \frac{h}{2} \frac{1}{\sqrt{x}} + \dots$$
 (D) $\sqrt{x} + \frac{h}{2} \frac{1}{\sqrt{x}} + \dots$

(D)
$$\sqrt{x} + \frac{h}{2} \frac{1}{\sqrt{x}} + \dots$$

38. First two terms in expansion of log $\cos\left(x+\frac{\pi}{4}\right)$ by Taylor's Theorem in ascending p

owers of x is

(A)
$$\log \frac{1}{\sqrt{2}} - x + \dots$$
 (B) $\log \frac{1}{\sqrt{2}} + x + \dots$

(B)
$$\log \frac{1}{\sqrt{2}} + x + \dots$$

(C)
$$\log \frac{\sqrt{3}}{2} - x + \dots$$

(C)
$$\log \frac{\sqrt{3}}{2} - x + \dots$$
 (D) $\log \frac{\sqrt{3}}{2} + x + \dots$

39. First two terms in expansion of $(x + 2)^5 + 3(x + 2)^4$ by Taylor's Theorem in ascending powers of x is

(*A*)
$$48 + 98x + \dots$$

$$48 + 98x + \dots$$
 (B) $80 + 176x + \dots$

(C)
$$80+98x+...$$

$$80 + 98x + \dots$$
 (D) $48 + 176x + \dots$

40. First two terms in expansion of $(x-1)^5 + 2(x-1)^4$ by Taylor's Theorem in ascending powers of x is

(A)
$$3-13x+...$$

(*B*)
$$1+13x+...$$

(C)
$$1-3x+...$$

(D)
$$3-3x+...$$

41. First two terms in expansion of sinh (x+a) by Taylor's Theorem in ascending powers of x is

(A)
$$\sinh a + x \cosh a + \dots$$
 (B) $\sinh a - x \cosh a + \dots$

(B)
$$\sinh a - r \cosh a +$$

(C)
$$\cosh a + x \sinh a + \dots$$

42. First two terms in expansion $f(x+2)+3(x+2)^3+(x+2)^4$ by Taylor's Theorem in ascending powers of x is

(A)
$$42+168x+...$$

(*B*)
$$42 + 66x + \dots$$

(C)
$$42 + 69x + \dots$$

(D)
$$40+69x+...$$

43. First two terms in expansion of e^x by Taylor's Theorem in ascending

powers of (x-2) is

(A)
$$e^{-2} - e^2(x-2) + \dots$$
 (B) $e^{-2} + e^{-2}(x-2) + \dots$ (C) $e^2 - e^2(x-2) + \dots$ (D) $e^2 + e^2(x-2) + \dots$

(B)
$$e^{-2} + e^{-2}(x-2) + \dots$$

(C)
$$e^2 - e^2(x-2) + \dots$$

(D)
$$e^2 + e^2(x-2) + \dots$$

44. First two terms in expansion of tan^{-1} x by Taylor's Theorem in ascending powers of (x-1) is

(A)
$$\frac{\pi}{4} - \frac{1}{2}(x-1) + \dots$$
 (B) $\frac{\pi}{4} + \frac{1}{2}(x-1) + \dots$

(B)
$$\frac{\pi}{4} + \frac{1}{2}(x-1) + \dots$$

(C)
$$1 + \frac{1}{2}(x-1) + \dots$$
 (D) $1 - \frac{1}{2}(x-1) + \dots$

(D)
$$1-\frac{1}{2}(x-1)+\dots$$

45. First two terms in expansion of sin x by Taylor's Theorem in ascending powers of $\left(x - \frac{\pi}{2}\right)$ is

(A)
$$\left(x - \frac{\pi}{2}\right) - \frac{1}{3!} \left(x - \frac{\pi}{2}\right)^3 + \dots$$
 (B) $1 + \frac{1}{2!} \left((x - \frac{\pi}{2})\right)^2 + \dots$

(B)
$$1 + \frac{1}{2!} \left((x - \frac{\pi}{2}) \right)^2 + \dots$$

(C)
$$\left(x - \frac{\pi}{2}\right) + \frac{1}{3!} \left(x - \frac{\pi}{2}\right)^3 + \dots$$
 (D) $1 - \frac{1}{2!} \left(x - \frac{\pi}{2}\right)^2 + \dots$

(D)
$$1 - \frac{1}{2!} \left(x - \frac{\pi}{2} \right)^2 + \dots$$

46. First two terms in expansion of log cos x by Taylor's Theorem in ascending powers of

$$\left(x-\frac{\pi}{4}\right)$$
 is

(A)
$$\log \frac{1}{2} - \left(x - \frac{\pi}{4}\right) + \dots$$

(A)
$$\log \frac{1}{2} - \left(x - \frac{\pi}{4}\right) + \dots$$
 (B) $\log \frac{1}{\sqrt{2}} + \left(x - \frac{\pi}{4}\right) + \dots$

(C)
$$\log \frac{1}{\sqrt{2}} - \left(x - \frac{\pi}{4}\right) + \dots$$
 (D) $\log \frac{1}{2} + \left(x - \frac{\pi}{4}\right) + \dots$

$$(D) \quad \log \frac{1}{2} + \left(x - \frac{\pi}{4}\right) + \dots$$

47. First two terms in expansion of sin^{-1} x by Taylor's Theorem in ascending powers of

$$\left(x-\frac{1}{2}\right)$$
 is

(A)
$$\frac{\pi}{6} + \left(x - \frac{1}{2}\right) \frac{2}{\sqrt{3}} + \dots$$
 (B) $\frac{\pi}{6} - \left(x - \frac{1}{2}\right) \frac{2}{\sqrt{3}} + \dots$

(B)
$$\frac{\pi}{6} - \left(x - \frac{1}{2}\right) \frac{2}{\sqrt{3}} + \dots$$

(C)
$$\frac{\pi}{6} + \left(x - \frac{1}{2}\right) \frac{1}{\sqrt{2}} + \dots$$

(C)
$$\frac{\pi}{6} + \left(x - \frac{1}{2}\right) \frac{1}{\sqrt{2}} + \dots$$
 (D) $\frac{\pi}{6} - \left(x - \frac{1}{2}\right) \frac{1}{\sqrt{2}} + \dots$

48. First two terms in expansion of $x^{1/3}$ by Taylor's Theorem in ascending powers of (x-8) is

(A)
$$2-(x-8)\frac{1}{12}+\dots$$

(B)
$$2 + (x-8)\frac{1}{12} + \dots$$

(C)
$$2+(x-8)\frac{1}{24}+...$$

(D)
$$2-(x-8)\frac{1}{24}+\dots$$

49. First two terms in expansion of $\sqrt{x+2}$ by Taylor's Theorem in ascending powers of (x-2) is

(A)
$$2+(x-2)\frac{1}{4}+...$$

(B)
$$2-(x-2)\frac{1}{4}+...$$

(C)
$$2+(x-2)\frac{1}{8}+...$$

(D)
$$2-(x-2)\frac{1}{8}+...$$

50.In the Taylor's series expansion of e^x +sin x about the point x= π the coefficient of $(x-\pi)^2$ is

(A)
$$e^{\pi}$$

$$(B)$$
 $e^{\pi}+1$

$$(C)$$
 $e^{\pi}-1$

(D)
$$\frac{1}{2}e^{\pi}$$

51. Which of the following functions will have only odd powers of x in its Taylor's series expansion about the point x=0?

(A)
$$\sin(x^2)$$

(B)
$$\sin(x^3)$$

$$(C)$$
 $\cos(x^2)$

$$(D)$$
 $\cos(x^3)$

INDETERMIONATE FORMS

TYPE-I :Indeterminate Forms $\left(\frac{0}{0},\frac{\infty}{\infty},0\times\infty\right)$

52 If f(x) and g(x) be functions such that f(a)=0 and g(a) = 0 then $\lim_{x\to a} \frac{f(x)}{g(x)}$ is is equal to

(A) $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ (B) $\lim_{x\to a} \frac{g'(x)}{f'(x)}$ (C) $\frac{f(a)}{g(x)}$ (D)none of these

53 If f(x) and g(x) be functions such that f(a)=0,g(a)=0 and f'(a) = 0 then $\lim_{x\to a}\frac{f(x)}{g(x)}$ is equal to

(A) $\frac{f'(a)}{g'(a)}$ (B) $\lim_{x\to a} \frac{g'(x)}{f'(x)}$ (C) $\lim_{x\to a} \frac{f''(a)}{g''(x)}$ (D)none of these

54 If f(x) and g(x) be functions such that f(a)= ∞ and g(a)= ∞ then $\lim_{x\to a} \frac{f(x)}{g(x)}$ is equal to.....

(A) $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ (B) $\lim_{x\to a} \frac{g'(x)}{f'(x)}$ (C) $\frac{f(a)}{g(x)}$ (D)none of these

(55) $\lim_{x\to\pi/2} \frac{1-\sin x}{\cos x}$ is equal to

- (A) 1 **(B)** 0 (C) $\frac{1}{2}$ (D) -1
- (56) $\lim_{x\to 0} \frac{\sin x}{x}$ is equal to
 - (A) 2 (B) 0 (C) -1 (D) 1
- (57) $\lim_{x\to 0} \frac{\tan}{x}$ is equal to
- (A) 2 **(B)** -1 (C) $\frac{\pi}{2}$ (D) $\frac{3}{2}$

- (58) $\lim_{x\to 0} \frac{\sin^{-1}x}{x}$ is equal to
 - (A) 1 (B) -1 (C) $\frac{1}{2}$ (D) $\frac{\pi}{2}$
- (59) $\lim_{x\to 0} (1+x)^{1/x}$ is equal to
 - (A) 1 (B) e^2 (C) $\frac{1}{e}$ (D) e
- (60) $\lim_{x\to 0} (1 + \frac{1}{x})^x$ is equal to
 - (A) 1 **(B)** e (C) $\frac{1}{e}$ (D) e^2
- (61) $\lim_{x\to 0} \frac{e^{x}-1}{x}$ is equal to
- (A) 2 (B) $\frac{1}{2}$ (C) 1 (D) none of these
- (62) $\lim_{x\to 0} \frac{a^{x}-1}{x}$ is equal to
- (A) a (B) -log a (C) log a (D) 1
- (63) $\lim_{\theta \to 0} \frac{\sin(\frac{\theta}{2})}{\theta}$ is equal to
- (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) not defined
- (64) $\lim_{x\to 0} \frac{\sin^2 2x}{x}$ is equal to
 - (A) -1 (B) 1 (C) 0 (D) not defined
- (65) $\lim_{x\to 0} \frac{1-\cos x}{x}$ is equal to
- (A) 0 (B) 1 (C)-1 (D) 2
- (66) $\lim_{x \to 3} \frac{2x^2 7x + 3}{5x^2 12x 9}$ is equal to
 - (A) $-\frac{1}{3}$ (B) $\frac{2}{5}$ (C) $\frac{5}{18}$ (D) 0
- (67) $\lim_{x\to 0} \frac{a^x-b^x}{x}$ is equal to

(A) 0 (B)1 (C)
$$\log \frac{b}{a}$$
 (D) $\log \frac{a}{b}$

(68)
$$\lim_{x\to 0} \frac{\sin^2 x}{x\cos x}$$
 is equal to

(A) 0 (B) 1 (C) -1 (D) 2

(69)
$$\lim_{x\to 0} \frac{e^{ax}-e^{-ax}}{\log(1+bx)}$$
 is equal to

(A) $\frac{a}{2b}$ (B) 0 (C) $\frac{b}{2a}$ (D) $\frac{2a}{b}$

(70)
$$\lim_{x\to 0} \frac{(1+x^n)-1}{x}$$
 is equal to

(A) n (B) 1 (C) e (D) 0

(71)
$$\lim_{x\to 0} \frac{2^x-1}{\sqrt{(1+x)}-1}$$
 is equal to

(A) $\log 2$ (B) $\frac{1}{2} log 2$ (C) 0 (D) $2 \log 2$

(72) if
$$\lim_{x\to 0} \frac{\sqrt{(1+x)}-\sqrt{(1-x)}}{x}$$
 is equal to

(A) 0 (B) -1 (C) 1 (D) 2

(73) if
$$\lim_{x\to 0} \frac{\sin 2x + p \sin x}{x^3}$$
 is finite then value of a is equal to

(74) if
$$\lim_{x\to 0} \frac{asinhx-5sinx}{x^3}$$
 is finite then value of a is equal to

(75) if
$$\lim_{x\to 0} \frac{a\sin 2x + tanx}{x^3}$$
 is finite then value of a is equal to

(76) if $\lim_{x\to 0} \frac{2\cos x - 2 + bx^2}{x^4}$ is finite then value of b is equal to

(A)2 (B) 0 (C) 1 (D) -1

(A)2 (B) 0 (C) 1 (D) -2

(78) if $\lim_{x \to \infty} \frac{\log x}{x^n}$ is equal to

(77) if $\lim_{x \to \pi/4} \frac{1 - tanx}{1 - \sqrt{2} sinx}$ is equal to

(A)2 (B) -2 (C) 1 (D) 0

(79) if $\lim_{x\to\infty} \frac{\log(1+e^{3x})}{x}$ is equal to

(A)9 **(B)** 3 (C) 1/3

(D) 0

(80) if $\lim_{x\to 0}$ xlogx is equal to

(A)2 (B) -1 (C) 1 (D) 0

(81) if $\lim_{x\to\infty} x\sin\frac{1}{x} x$ is equal to

(A)2 (B) 0 (C) 1 (D) -1

(82) $\lim_{x\to 1} (1-x) \tan \frac{\pi x}{2}$ is equal to

(A) $\frac{2}{\pi}$ (B) $0\frac{\pi}{2}$ (C) π (D) 0

(83) $\lim_{x\to\pi/2} (1-\sin x) \tan x$ is equal to

(A) 1 (B) -1 (C) π

(D) 0

(84) $\lim_{x\to\pi/2}$ (secx – tanx)is equal to

- (A) 1 (B) -1 (C) π (D) 0
- (85) $\lim_{x \to \pi/2} \left(x \tan x \frac{\pi}{2} secx \right)$ is equal to
- (A) 1 **(B)** -1 (C) π (D) 0
- (86) $\lim_{x\to\infty} \left(x x^2 \log(1 + \frac{1}{x})\right)$ is equal to
- (A) 1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 0
- (87) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{x^2} \log(1+x)\right)$ is equal to
- (A) 1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 0
- (88) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{\sin x}\right)$ is equal to
- (A) 1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 0
- (89) $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$ is equal to
- (A) 1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 0
- (90) $\lim_{x \to \pi/2} \left(tanx \frac{2x secx}{\pi} \right)$ is equal to
- (A) $\frac{2}{\pi}$ (B) $-\frac{2}{\pi}$ (C) $\frac{\pi}{2}$ (D) 0
- (91) $\lim_{x \to 1} \left(\frac{x}{\log x} \frac{1}{\log x} \right)$ is equal to
- (A) -1 (B) 1 (C) $\frac{1}{2}$ (D) 0

TYPE -2

INDETERMINATE FORMS (0^0 , ∞^0 , 1^∞):

- (92) $\lim_{x\to\infty} \left(\frac{1}{x}\right)^{1/x}$ is equal to
- (A) e (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 1
- (93) $\lim_{x\to\pi/0} (\sin x)^{\tan x}$ is equal to
- (A) 1 (B) e (C)-1 (D) $\frac{1}{e}$
- (94) $\lim_{x\to\pi/2}(\cos x)^{\cos x}$ is equal to
- (A) -1 (B) e (C) 1 (D) $\frac{1}{e}$
- (95) $\lim_{x\to 0} (x)^x$ is equal to
- (A) e (B) 1 (C) -1 (D) none of these
- (96) $\lim_{x\to\infty} (x)^{1/x}$ is equal to
- (A) e (B)-1 (C) 1 (D) none of these
- (97) $\lim_{x\to\pi/2} (\sec x)^{\cot x}$ is equal to
- (A) e (B) 1 (C) $\frac{1}{e}$ (D) none of these
- (98) $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x$ is equal to
- (A) e^{-a} (B) e^a (C) 1 (D) none of these
- (99) $\lim_{x \to 1} (x)^{\frac{1}{x-1}}$ is equal to
- (A) e (B) 1 (C) -1 (D) none of these

- (100) $\lim_{x\to 0} (\cos x)^{1/x}$ is equal to
- (A) e (B) 1 (C) -1 (D) none of these
- (101) $\lim_{x\to 0} (\cos x)^{\cot x}$ is equal to
- (A) 1 (B) e (C) -1 (D) none of these
- (102) $\lim_{x \to 1} (1 x^2)^{\frac{1}{\log(1-x)}}$ is equal to
- (A) e (B) $\frac{1}{e}$ (C) 1 (D) e^2
- (103) $\lim_{x\to 0} \left(\frac{a+x}{a-x}\right)^{1/x}$ is equal to
- (A) $e^{2/a}$ (B) $e^{1/2a}$ (C) 1 (D) $e^{a/2}$
- (104) $\lim_{x\to 0} (1 + \sin x)^{\cot x}$ is equal to
- (A) $e^{1/2}$ (B) e^2 (C) 1 (D) e
- (105) $\lim_{x\to\pi/2} (\csc x)^{\tan x}$ is equal to
- (A) e^{-1} (B) e^2 (C) 1 (D) e

VIJAY F. HIRAP