

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

Chapter: Vectors (EE117)

Worksheet#1c. (Sec: ___)

- **Q1.** (a) Find the position vectors \mathbf{r}_1 and \mathbf{r}_2 for the points P (2, 4, 3) and Q (1, -5, 2) of a rectangular coordinate system in terms of the unit vectors $\hat{\imath}$, $\hat{\jmath}$, \hat{k} . (b) Determine graphically and analytically the resultant of these position vectors.
- **Q2.** Given $\mathbf{r_1} = 3\hat{\imath} 2\hat{\jmath} + \hat{k}$, $\mathbf{r_2} = 2\hat{\imath} 4\hat{\jmath} 3\hat{k}$, $\mathbf{r_3} = -\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$, find the magnitudes of (a) $\mathbf{r_3}$, (b) $\mathbf{r_1} + \mathbf{r_2} + \mathbf{r_3}$, (c) $2\mathbf{r_1} 3\mathbf{r_2} 5\mathbf{r_3}$.
- **Q3.** Find a unit vector parallel to the resultant of vectors $\mathbf{r_1} = 2\hat{\imath} + 4\hat{\jmath} 5\hat{k}$, $\mathbf{r_2} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.
- **Q4.** Determine the vector having initial point $P(x_1, y_1, z_1)$ and terminal point $Q(x_2, y_2, z_2)$ and find its magnitude.
- **Q5.** If $A = 3\hat{i} \hat{j} 4\hat{k}$, $B = -2\hat{i} + 4\hat{j} 3\hat{k}$, $C = \hat{i} + 2\hat{j} \hat{k}$, find (a) 2A B + 3C, (b) |A + B + C|, (c) |3A 2B + 4C|, (d) a unit vector parallel to 3A 2B + 4C
- **Q6.** The following forces act on a particle $P: \mathbf{F_1} = 2\hat{\imath} + 3\hat{\jmath} 5\hat{k}, \mathbf{F_2} = -5\hat{\imath} + \hat{\jmath} + 3\hat{k},$ $\mathbf{F_3} = \hat{\imath} - 2\hat{\jmath} + 4\hat{k}, \mathbf{F_4} = 4\hat{\imath} - 3\hat{\jmath} - 2\hat{k},$ measured in pounds. Find (a) the resultant of the forces, (b) the magnitude of the resultant.
- **Q7.** Find the work done in moving an object along a vector $\mathbf{r} = 3\hat{\imath} + 2\hat{\jmath} 5\hat{k}$ if the applied force is $\mathbf{F} = 2\hat{\imath} \hat{\jmath} \hat{k}$.
- **Q8**. If $A = 2\hat{i} 3\hat{j} \hat{k}$ and $B = \hat{i} + 4\hat{j} 2\hat{k}$, find (a) $A \times B$, (b) $B \times A$, (c) $(A + B) \times (A B)$.
- **Q9**. Determine a unit vector perpendicular to the plane of $\mathbf{A} = 2\hat{\imath} 6\hat{\jmath} 3\hat{k} & \mathbf{B} = 4\hat{\imath} + 3\hat{\jmath} \hat{k}$.
- **Q10a**. Evaluate: (a) \hat{k} (\hat{i} + \hat{j}), (b) (\hat{i} $2\hat{k}$) (\hat{j} + $3\hat{k}$), (c) ($2\hat{i}$ \hat{j} + $3\hat{k}$) ($3\hat{i}$ + $2\hat{j}$ \hat{k}).
- **Q10b**. For what values of a are $\mathbf{A} = a\hat{\imath} 2\hat{\jmath} + \hat{k}$ and $\mathbf{B} = 2a\hat{\imath} + a\hat{\jmath} 4\hat{k}$ perpendicular.
- **Q11.** Show that A = (2i 2j + k)/3, B = (i + 2j + 2k)/3 and C = (2i + j 2k)/3 are mutually orthogonal unit vectors.
- **Q12.** Find the work done in moving an object along a straight line from (3,2,-1) to (2,-1,4) in a force field given by $F = 4\hat{\imath}-3\hat{\jmath}+2\hat{k}$.
- Q13. Evaluate each of the following:
 - (a) $2\hat{j}x(3\hat{i}-4\hat{k})$, (b) $(\hat{i}+2\hat{j})x\hat{k}$, (c) $(2\hat{i}-4\hat{k})x(\hat{i}+2\hat{j})$
 - (b) $(4\hat{i}+\hat{j}-2\hat{k})x(3\hat{i}+\hat{k})$,
 - (c) $(2\hat{\imath}+\hat{\jmath}-\hat{k})x(3\hat{\imath}-2\hat{\jmath}+4\hat{k})$.
- **Q14**. Find the area of a parallelogram having diagonals $A = 3\hat{i} + \hat{j} 2\hat{k}$ and $B = \hat{i} 3\hat{j} + 4\hat{k}$.
- **Q15.** If $A = \hat{i} 2\hat{j} 3\hat{k}$, $B = 2\hat{i} + \hat{j} \hat{k}$ and $C = \hat{i} + 3\hat{j} 2\hat{k}$, find:
 - $\text{(a) } |(AxB) \times C \mid \quad \text{(b) } A \ (BxC) \qquad \text{(c) } (AxB) \times (BxC)$