DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8

DT228 BSc Computer Science
DT211 BSc Computing
DT263 Higher Certificate in Computing

YEAR I

Supplemental Semester I Examination 2011-12

Mathematics

Ms Bláthnaid Sheridan Dr. Chris Hills

Date: Time:

Answer Question 1 and any 2 other questions

Mathematical Tables and Graph paper are available

Q1

- (a) Let A be the set of characters appearing in the string "device", B be the set of characters appearing in the string "digital" and C be the set of characters in the string "capacity". List the elements of the following sets:
 - (i) $(A \cup B)$ (ii) $(A \cap B)$ (iii) $(A \cup B) \setminus C$ (iv) $(B \cup C) \cap (A \cup C)$

[5 marks]

- (b) Use the properties of logarithms to evaluate the following:
 - (i) $4log_3(2187) 2log_4\sqrt{2} + log_5\left(\frac{1}{125}\right)$
 - (ii) $-4log_2(512) 7log_7\left(\frac{1}{343}\right) 3log_6\sqrt{216}$

[5 marks]

(c) Find the inverse of the matrix $\begin{pmatrix} 2 & 4 \\ -2 & -1 \end{pmatrix}$.

Hence or otherwise, solve the following system of equations:

$$2x + 4y = 10$$
$$-2x - y = -1$$

[5 marks]

(d) Test the following binary relation *R* on the given set *S* for reflexivity, symmetry and transitivity

$$S = N$$
, $R = \{(a, b): ab \text{ is even}\}$ [5 marks]

(e) Find the mean, median and variance of the following set of data:

[5 marks]

- (f) Let $f: \mathbb{N} \to \mathbb{N}$ be given by $f(x) = \sqrt{x+2}$ Let $g: \mathbb{N} \to \mathbb{N}$ be given by g(x) = 2x + 7Calculate:
 - (i) $(f \circ g)(x)$
 - (ii) $(g \circ f)(2)$
 - (iii) $(f \circ f)(7)$

[5 marks]

(g) Let $U = \{1, 2, 3, 4, 5, 6\}$ be the universal set. Represent the set $A = \{1, 3, 5\}$ with bit string representation.

[5 marks]

(h) Use Euclid's Algorithm to find the *hcf* of 2,542 and 6,286.

[5 marks]

Q2

(a) In computer graphics the rotation of the plane counterclockwise about the origin (0,0) through an angle θ radians is given by the matrix

$$R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Show that the inverse matrix R_{θ}^{-1} is given by the matrix

$$R_{\theta}^{-1} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

[12 marks]

(b) A rectangle having vertices A, B, C and D given in homogenous coordinates

$$A = \begin{pmatrix} 12 \\ -10 \\ 1 \end{pmatrix}, B = \begin{pmatrix} -15 \\ -10 \\ 1 \end{pmatrix}, C = \begin{pmatrix} -15 \\ 20 \\ 1 \end{pmatrix}, D = \begin{pmatrix} 12 \\ 20 \\ 1 \end{pmatrix}$$

is represented by the matrix

$$M = \begin{pmatrix} 12 & -15 & -15 & 12 \\ -10 & -10 & 20 & 20 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Find the image of this rectangle under the rotation of the plane through an angle of $\frac{2\pi}{5}$ radians clockwise about the origin.

[12 marks]

(c) Let
$$A = \begin{pmatrix} 3 & -4 \\ 0 & 2 \\ 7 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & -1 & 6 \\ 1 & 3 & -8 \end{pmatrix}$, $C = \begin{pmatrix} 5 & 0 \\ -1 & 3 \end{pmatrix}$ and $D = \begin{pmatrix} 5 & -4 & -6 \\ 7 & 10 & -1 \\ 0 & 3 & 7 \end{pmatrix}$.

Evaluate (if possible)

- (i) 2*AD*
- (ii) C^{-1} (iii) $2D + (5C)^T$

[6 marks]

O3

- (a) Let $A = \{3, 4, 5\}$, $B = \{x, y, z\}$ and $C = \{y, z, w\}$ be sets. List the elements of the following sets
 - The power set of A, P(A). (i)
 - (ii) The symmetric difference of B and C, $B\Delta C$
 - The Cartesian product of A and B, $A \times B$. (iii)

[10 marks]

- (b) Let $U = \{10, 11, 12, 13, 14, 15, 16, 17\}$ be the universal set. Let $A = \{11, 13, 15, 16, 17\}$ and $B = \{10, 11, 12, 13, 14, 15\}$ be sets. Use bit string representation to find the following sets:
 - (i) \bar{B}
 - (ii) $A \cap B$
 - (iii) $A \cup B$

[10 marks]

- (c) Use a truth table to verify if the following are equivalent formulas:
 - (i) $F \lor (G \land H) \sim (F \lor G) \lor (F \land H)$
 - (ii) $\exists (F \lor G) \sim \exists F \land \exists G \text{ (De Morgan's Law)}$

[10 marks]

Q4

(a) Write out the operational tables for Z_6 . Use Fermat's Little Theorem to find the inverses of 1 and 5 modulo 6. Check your answers against the multiplication table for Z_6 .

[12 marks]

(b) Find the multiplicative inverse of 43 in \mathbf{Z}_{261}^* .

[10 marks]

(c) Use *prime factorisation* to calculate hcf(291060, 646800).

[8 marks]