

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

ransformações

aramétricos

Métodos não

paramétricos

Felipe

Figueiredo

Normalidade

Visualização

Normalidade

Resumo

Métodos não-paramétricos

Ou: o que fazer caso seus dados não sejam normais?

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

A hipótese da normalidade

- Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos
- Desvios da normalidade precisam ser contornados¹
- Veremos duas maneiras: transformações e alternativas
- Mas antes, como identificar essa necessidade?

¹há controvérsias:

http://www.r-bloggers.com/normality-tests-don%E2%80%99t-do-what-you-think-they-do/

Sumário

- Normalidade
 - Visualização
 - Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

Visualização - Histograma

Dados normais

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações

Métodos não-

Resumo

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização

Transformaçõe

Métodos nãoparamétricos

Resumo

Visualização - Histograma

40

9

0

10 20 30 50

х2

Dados não-normais

60

Frequency

Métodos nãoparamétricos

Felipe Figueiredo

Visualização

Visualização - Histograma

Métodos nãoparamétricos

> Felipe Figueiredo

Visualização

Visualização - Histograma

Métodos nãoparamétricos

Felipe Figueiredo

Visualização

Dados não-normais

Visualização - Histograma

Métodos nãoparamétricos

Felipe Figueiredo

Visualização Normalidade

Visualização - boxplot

150

170

160

160 170 180

v1

Métodos nãoparamétricos

Felipe Figueiredo

 Gráfico que compara os quantis da amostra com os quantis teóricos

O Q-Q plot

Adicionalmente uma reta "ideal" é sobreposta, como referência

- Dados normalmente distribuídos, ficam próximos da reta
- Quanto maior o desvio da normalidade, maior a distância à reta

20

30

x2

Theoretical Quantiles

20

40 50

30

10 20

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade Visualização Normalidade

Transformações

Métodos nãoparamétricos

Resumo

Theoretical Quantiles

Métodos nãoparamétricos Felipe

Figueiredo

Normalidade Visualização

ransformações

Métodos nãoparamétricos

Resumo

- Resposta curta: NÃO.
- Resposta longa: podemos examinar se há evidências para "aceitar" esta hipótese²

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade Visualização Normalidade

Transformações

Métodos não-

Resumo

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

Alguns testes de normalidade

- Métodos não paramétricos

Felipe Figueiredo

Visualização Normalidade

Shapiro-Wilk

Métodos nãoparamétricos

Felipe Figueiredo

Visualização Normalidade

Shapiro-Wilk

Shapiro-Wilk

Anderson-Darling

Kolmogorov-Smirnov

Métodos não paramétricos Felipe Figueiredo

Normalidade

Transformações

- Algumas vezes, podemos aplicar uma transformação nos dados, para que eles se adequem às premissas requeridas
- Transformações comuns incluem:
 - logaritmo
 - exponencial
 - raiz quadrada
 - potências
- Geralmente envolve tentativa e erro
- Hipóteses sobre o problema ou desenho experimental ajudam

Métodos nãoparamétricos

Felipe Figueiredo

Transformações

Exemplo

40

30

20

10

0

0

20

30

Transformação sugerida: logaritmo.

х2

70

Frequency

Métodos não paramétricos

Felipe Figueiredo

Exemplo

Exemplo

Dados normais x dados transformados (log)

Métodos não paramétricos

> Felipe Figueiredo

Exemplo

Métodos não paramétricos

Felipe Figueiredo

Exemplo

Teste para 1 amostra

- Nesses casos, deve-se transformar os dados, se possível
- Caso não seja, deve-se usar um teste não-paramétrico

Teste para uma amostra

Ao invés do teste t, usar o teste de Wilcoxon

Métodos nãoparamétricos

Felipe Figueiredo

1 amostra 2 médias 3+ amostras

Histogramas

Amostra 1

10

Х

15 20

Métodos não paramétricos

Felipe

2 médias 3+ amostras

Figueiredo

Amostra 2

6

30

9

2

0 2

Frequency

Frequency

10

QQ-plots

Métodos não paramétricos

> Felipe Figueiredo

2 médias

3+ amostras

Mann-Whitney

p-valor = 0.259 (não significativo)

- Aplicando o teste de Shapiro-Wilk em x e y
 - x: p-valor = 5.515e-16
 - y: p-valor = 5.274e-09
- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Métodos não paramétricos

Felipe Figueiredo

2 médias

3+ amostras

Relembrando

amostras

- Análise de Variâncias (ANOVA)
- Leva em conta as variâncias entre os grupos (inter)
- Leva em conta a variância em cada grupo (intra)
- H_0 : Todos os grupos são =
- H₁: pelo menos um grupo é significativamente ≠

Métodos nãoparamétricos

Felipe Figueiredo

2 médias 3+ amostras

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

ransformaçõe

paramétricos 1 amostra 2 médias

3+ amostras

Resumo

Kruskal-Wallis

aona. mamo

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio): p-value = 2.79e-08
- Devemos rejeitar a hipótese de normalidade.

Não-paramétrico

Mann-Whitney

Kruskal-Wallis

Correlação de Spearman

Wilcoxon

- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Métodos não paramétricos 1 amostra 2 médias 3+ amostras Correlação

Métodos não

paramétricos

Felipe

Figueiredo

Resumo

Relembrando

- A correlação de Pearson associa dados numéricos
- Mede a direção e força desta associação

Correlação

Ao invés da correlação linear de Pearson, usar a correlação de ranks de Spearman

Métodos nãoparamétricos

> Felipe Figueiredo

ormalidade

ransformaç

Aetodos nac paramétricos

2 médias 3+ amostras

Resumo

Resumo

Paramétrico

t-teste pareado t-teste não-pareado

ANOVA 1 fator

Correlação de Pearson

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Métodos nãoparamétricos

Resumo