where $c_i \in \mathbb{Z}$ for i = 1, ..., n. The left hand side of the preceding line is equivalent to

$$\frac{c_1p_1q_2\cdots q_n+\cdots+c_np_nq_1\cdots q_{n-1}}{q_1q_2\cdots q_n},$$

where the numerator is an element of the ideal in \mathbb{Z} spanned by (c_1, c_2, \dots, c_n) . Since \mathbb{Z} is a PID, there exists $a \in \mathbb{Z}$ such that (a) is the ideal spanned by (c_1, c_2, \dots, c_n) . Thus

$$c_1 \frac{p_1}{q_1} + \dots + c_n \frac{p_n}{q_n} = \frac{ma}{q_1 q_2 \dots q_n} = \frac{r}{s},$$

where $m \in \mathbb{Z}$. Set

$$\frac{a}{q_1 q_2 \cdots q_n} = \frac{a_1}{b}, \qquad (a_1, b) = 1.$$

Then if \mathbb{Q} was a finitely generated \mathbb{Z} -module, we deduce that for all $x \in \mathbb{Q}$

$$x = \frac{r}{s} = m\frac{a_1}{b},$$

whenever a_1/b is a fixed rational number, clearly a contradiction. (In particular let x = 1/p where p is a fixed prime p > b. If $ma_1/b = 1/p$, then $ma_1 \in \mathbb{Z}$ with $ma_1 = b_1/p$, an impossibility since $(b_1, p) = 1$ and $p > b_1$.)

Definition 3.11 can be generalized to rings and yields free modules.

Definition 35.2. Given a commutative ring A and any (nonempty) set I, let $A^{(I)}$ be the subset of the cartesian product A^I consisting of all families $(\lambda_i)_{i\in I}$ with finite support of scalars in A.² We define addition and multiplication by a scalar as follows:

$$(\lambda_i)_{i \in I} + (\mu_i)_{i \in I} = (\lambda_i + \mu_i)_{i \in I},$$

and

$$\lambda \cdot (\mu_i)_{i \in I} = (\lambda \mu_i)_{i \in I}.$$

It is immediately verified that addition and multiplication by a scalar are well defined. Thus, $A^{(I)}$ is a module. Furthermore, because families with finite support are considered, the family $(e_i)_{i\in I}$ of vectors e_i , defined such that $(e_i)_j=0$ if $j\neq i$ and $(e_i)_i=1$, is clearly a basis of the module $A^{(I)}$. When $I=\{1,\ldots,n\}$, we denote $A^{(I)}$ by A^n . The function $\iota\colon I\to A^{(I)}$, such that $\iota(i)=e_i$ for every $i\in I$, is clearly an injection.

Definition 35.3. An A-module M is free iff it has a basis.

The module $A^{(I)}$ is a free module.

All definitions from Section 3.7 apply to modules, linear maps, kernel, image, except the definition of rank, which has to be defined differently. Propositions 3.17, 3.18, 3.19, and

²Where A^I denotes the set of all functions from I to A.