Digitális technika

IX.
Funkcionális egységek
Multiplexerek
Demultiplexerek

9.1. Összetett logikai áramkörök

Az összetett logikai áramkörök általában jól meghatározott feladatokat (funkciókat) látnak el → funkcionális egységek

- megépíthetők kapukból, tárolókból
- de gyakran használatosak, ezért önálló áramkörként (IC) is gyártják azokat

- csoportosításuk:

Kombinációs hálózatok

- multiplexerek
- demultiplexerek
- kódolók
- dekódolók
- komparátorok
- összeadók

Sorrendi hálózatok

- regiszterek
- frekvencia osztók
- számlálók

Multiplexer

vagy adat szelektor (kiválasztó áramkör)

- feladata: több bemenetből egy kiválasztása és továbbítása a kimenetre
- a bemenet kiválasztása címzéssel történik → címbemenetek is kellenek!
- bemenetek száma alapján több típusa van: 2/1-es, 4/1-es, 8/1-es, 16/1-es ...

2/1-es multiplexer egy lehetséges megvalósítása

Működése:

- először is engedélyezni kell → E bemenetre '0' érték (invertáló bemenet), csak ekkor működik
- ha tiltjuk (E=1) → kimenet stabilan 0 (nagy impedanciás állapotú megvalósítás is lehetséges)
- a címbemenetre 0-t adunk \rightarrow a D_0 bemenet jut a Q kimenetre
- a címbemenetre 1-t adunk \rightarrow a D_1 bemenet jut a Q kimenetre
- engedélyező bemenet nem szükséges feltétlenül

Nagyobb multiplexerek

4/1-es multiplexer egy lehetséges megvalósítása

Két címbemenettel 4db adatbemenetet tudunk megcímezni (00,01,10,11 \rightarrow 0,1,2,3) A_0 az 1-es, A_1 a 2-es helyi értékű címbemenet

4/1-es multiplexer

8/1-es multiplexer

A kimenet logikai függvénye:

több bemenetből egy kiválasztása és összekapcsolása a kimenettel

pl. egy áramkör (5. ák.) számára órajelet kell biztosítani, de úgy hogy 4 különböző frekvenciájú órajel (1. ák. 2. ák. ...) közül tudjunk választani, és egyszerűen lehessen elektronikusan vezérelve változtatni és egy másikra átkapcsolni.

pl. ha a címbemenetekre 2-es címet adunk (A_1 =1 és A_0 =0) \rightarrow a D_2 bemenetet kapcsoljuk a kimenetre \rightarrow 4Mhz-es órajelet kap

idő multiplexelés

több vonalon érkező biteket egy vonalon kell továbbítani

Ezt úgy lehet megvalósítani, hogy nagy sebességgel minden beérkező vonal aktuális bitjét egymás után sorban továbbítjuk a kimenő vonalra, majd kezdjük elölről és átvisszük egymás után a következő biteket, és így tovább. Multiplexert használva ehhez a művelethez a címbemeneteken a megfelelő frekvenciával folyamatosan léptetni kell a címeket a legelsőtől a legutolsóig, majd ezt folyamatosan ismételni.

kombinációs hálózat megvalósítása

- felhasználható kombinációs hálózat megvalósítására, ha a címbemeneteket tekintjük adatbemenetnek
- a multiplexer ugyanis ebben az esetben minden mintermet előállít csak a szükséges mintermeket kell engedélyezni/tiltani az eredeti adat bemenetek segítségével (egyszerűsíteni ilyenkor nem kell !!)
 - pl. 4/1-es multiplexer esetén két címbemenet van
 - → alapesetben két bemenetű kombinációs hálózat megvalósítására használható

Legyen a megvalósítandó függvény:

$$Y = \overline{A} * \overline{B} + A * \overline{B}$$

$$\downarrow \qquad \qquad \downarrow$$

$$m_0 \qquad m_2 \qquad D_2 = 1$$

$$D = 1$$

A kimenet logikai függvénye:

Q=
$$\overline{E}^*(\overline{A}_1^*\overline{A}_0^*D_0 + \overline{A}_1^*A_0^*D_1 + A_1^*\overline{A}_0^*D_2 + A_1^*A_0^*D_3)$$

Behelyettesítve a bekötött értékeket (A₀=B és A₁=A) \rightarrow

$$Y = \overline{A}*\overline{B}*D_0 + \overline{A}*B*D_1 + A*\overline{B}*D_2 + A*B*D_3$$

kombinációs hálózat megvalósítása

- a címbemenetek számánál eggyel több bemenetű kombinációs hálózat megvalósítására is felhasználható! → a plusz bemenetet, vagy negáltját az eredeti adatbemenetekre kell kötni

pl. 4/1-es multiplexer felhasználható három bemenetű kombinációs hálózat megvalósítására

A kimenet logikai függvénye:

Q=
$$\overline{E}^*(D_0^*\overline{A}_1^*\overline{A}_0 + D_1^*\overline{A}_1^*A_0 + D_2^*A_1^*\overline{A}_0 + D_3^*A_1^*A_0)$$

Behelyettesítve a bekötött értékeket (B,C,Y)
Y= $D_0^*\overline{B}^*\overline{C} + D_1^*\overline{B}^*C + D_2^*B^*\overline{C} + D_3^*B^*C$

$$Y = D_0 * \overline{B} * \overline{C} + D_1 * \overline{B} * C + D_2 * B * \overline{C} + D_3 * B * C$$

Ha D bemenetekre
$$\overline{A}$$
-t kötünk \rightarrow Y= $\overline{A}*\overline{B}*\overline{C}$ + $\overline{A}*\overline{B}*C$ + $\overline{A}*B*\overline{C}$ + $\overline{A}*B*C$ \rightarrow 0,1,2,3 m_0 m_1 m_2 m_3

Ha D bemenetekre A-t kötünk
$$\rightarrow$$
 Y= A* $\overline{B}_4^*\overline{C}$ + A* \overline{B}_5^*C + A*B* \overline{C} + A*B* \overline{C} + A*B* \overline{C} \rightarrow 4,5,6,7

Tehát:

- D, bemenetre Ā-t kötve → az i. sorszámú mintermet valósítja meg
- D, bemenetre A-t kötve → az (i+eltolás). sorszámú mintermet valósítja meg, eltolás= D, bemenetek száma
- D, bemenetre 1-t kötve → az i. és az (i+eltolás). sorszámú mintermet valósítja meg !!
- D bemenetre 0-t kötve → az i. és az (i+eltolás). sorszámú mintermet nem valósítja meg!!

Ez csak akkor van így ha 'A' változót választjuk a legnagyobb helyiértékűnek!!

9.4. Minta feladatok

Mintafeladat 1.

Milyen kombinációs hálózatot valósít meg az alábbi kapcsolás Írd fel a logikai függvényét!

Másképpen megoldva:

- a D₁ bemenetre 1-t kötve → az i. sorszámú mintermet valósítjuk meg

9.4. Minta feladatok

Mintafeladat 2.

Milyen kombinációs hálózatot valósít meg az alábbi kapcsolás Írd fel a logikai függvényét!

A kimenet logikai függvénye:

$$Q = \overline{E}^*(D_0^*\overline{A}_1^*\overline{A}_0 + D_1^*\overline{A}_1^*A_0 + D_2^*A_1^*\overline{A}_0 + D_3^*A_1^*A_0)$$
 Behelyettesítve a bekötött értékeket

Y=
$$1 \overline{B} \overline{C} + A \overline{B} \overline{C} + \overline{A} B \overline{C} + 0 B \overline{C}$$

Y= $\overline{B} \overline{C} + A \overline{B} \overline{C} + \overline{A} B \overline{C}$

Szabályos alakra kiegészítve:

$$Y = (A + \overline{A}) * \overline{B} * \overline{C} + A * \overline{B} * C + \overline{A} * B * \overline{C}$$

 $Y = A * \overline{B} * \overline{C} + \overline{A} * \overline{B} * \overline{C} + A * \overline{B} * C + \overline{A} * B * \overline{C}$

$$Y^3 = \Sigma^3 (4,0,5,2)$$

'A' változó a legnagyobb helyi értékű

Másképpen megoldva:

- D_2 bemenetre \overline{A} -t kötve \rightarrow a 2. sorszámú mintermet
- D₁ bemenetre A-t kötve → az 1+4=5. sorszámú mintermet
- D₀ bemenetre 1-t kötve → a 0. és a 0+4=4. sorszámú mintermet valósítjuk meg

9.4. Multiplexer alkalmazása, feladatok

Mintafeladat 3.

Milyen kombinációs hálózatot valósít meg az alábbi kapcsolás Írd fel a logikai függvényét!

A kimenet logikai függvénye:

$$Q = \overline{E}^* (\overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_0 + \overline{A}_2^* \overline{A}_1^* A_0^* D_1 + \overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_2 + \overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_3 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_4 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_5 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_6 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_7)$$

Behelyettesítve a bekötött értékeket

$$Y = 1*(\overline{A}*\overline{B}*\overline{C}*1 + \overline{A}*\overline{B}*C*1 + \overline{A}*B*\overline{C}*0 + \overline{A}*B*C*0 + A*\overline{B}*\overline{C}*1 + A*\overline{B}*C*0 + A*B*\overline{C}*1 + A*B*C*0)$$

$$Y = \overline{A} \times \overline{B} \times \overline{C} + \overline{A} \times \overline{B} \times C + A \times \overline{B} \times \overline{C} + A \times B \times \overline{C}$$

9.4. Multiplexer alkalmazása, feladatok

Mintafeladat 4.

A kimenet logikai függvénye:

$$Q = \overline{E}^* (\overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_0 + \overline{A}_2^* \overline{A}_1^* A_0^* D_1 + \overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_2 + \overline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_3 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_4 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_5 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_6 + \underline{A}_2^* \overline{A}_1^* \overline{A}_0^* D_7)$$

Behelyettesítve a bekötött értékeket

$$Y=1*(\overline{B}*\overline{C}*\overline{D}*0+\overline{B}*\overline{C}*D*A+\overline{B}*C*\overline{D}*\overline{A}+\overline{B}*C*D*\overline{A}+\overline{B}*C*D*1+B*\overline{C}*\overline{D}*0+B*\overline{C}*D*0+B*C*\overline{D}*A+B*C*D*1)$$

$$Y=\overline{B}*\overline{C}*\underline{D}*A+\overline{B}*\underline{C}*\overline{D}*\overline{A}+\overline{B}*\underline{C}*D+B*\underline{C}*\overline{D}*A+B*\underline{C}*D$$

$$Y=A*B*\overline{C}*D+A*B*\underline{C}*D+A*B*$$

9.4. Multiplexer alkalmazása, feladatok

Mintafeladat 5.

Valósítsuk meg az alábbi logikai függvényét

- 8/1-es multiplexerrel
- 4/1-es multiplexerrel!

9.4. Minta feladatok

Mintafeladat 5.

$$Y^3 = \Sigma^3$$
 (1,3,5,6)

'A' változó a legnagyobb helyi értékű

4/1-es multiplexer esetén

```
az 1. és 3. minterm \rightarrow D_1 és D_3 bemenetekre \overline{A}-t kötni az 5. és 6. minterm \rightarrow D_{5-4} és D_{6-4} bemenetekre A-t kötni \rightarrow D_1 és D_2 amelyik bemenetre 'A'-t és '\overline{A}'-t is kellene \rightarrow arra '1'-est kell ! D_1
```


9.5. Demultiplexer

Demultiplexer

adatelosztó áramkör

- feladata: a bemenetet kapcsolja valamelyik kimenetre a sok közül
- a kimenet kiválasztása címzéssel történik → címbemenetek is kellenek!
- kimenetek száma alapján több típusa van: 1/2-es, 1/4-es, 1/8-as, 1/16-os ...

<u>1/2-es demultiplexer</u> egy lehetséges megvalósítása

Működése:

- először is engedélyezni kell → E bemenetre '1' érték
- ha tiltjuk (E=0) → kimenetek stabilan '0' értékűek (nagy impedanciás állapotú megvalósítás is lehetséges)
- a címbemenetre 0-t adunk \rightarrow a Q_0 kimenetre jut a D bemenet
- a címbemenetre 1-t adunk \rightarrow a Q_1 kimenetre jut a D bemenet
- engedélyező bemenet nem szükséges feltétlenül

A kimenetek logikai függvényei:

$$Q_0 = E^* \overline{A}^* D$$

$$Q_1 = E*A*D$$

A kapcsolás

Feladat: igazságtáblázatot felvenni és ellenőrizni

9.5. Demultiplexer

1/4-es demultiplexer

A kimenetek logikai függvényei:

$$Q_0 = E^*\overline{A}_1^*\overline{A}_0^*D$$
 $Q_1 = E^*\overline{A}_1^*A_0^*D$

$$Q_2 = E^*A_1^*\overline{A}_0^*D$$
 $Q_3 = E^*A_1^*A_0^*D$

Feladat: igazságtáblázatot felvenni és ellenőrizni

9.5. Demultiplexer

1/4-es demultiplexer egy lehetséges megvalósítása

A kimenetek logikai függvényei:

$$Q_0 = E^* \overline{A}_1^* \overline{A}_0^* D \qquad Q_1 = E^* \overline{A}_1^* A_0^* D$$

$$Q_2 = E^* A_1^* \overline{A}_0^* D \qquad Q_3 = E^* A_1^* A_0^* D$$

igazságtáblázat

E	D	A ₁	A_0	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	0
1	1	1	0	0	1	0	0
1	1	1	1	1	0	0	0

1.feladat

Írd fel az alábbi áramkörök kimeneteinek logikai függvényeit, és a kimeneteire a felvett logikai értéket, ha a bemenetekre a rajzokon látható logikai szinteket adjuk!

2.feladat

- Készíts két darab 4/1-es multiplexer felhasználásával egy 8/1-es multiplexert

3.feladat

- Valósítsuk meg 8/1-es multiplexer felhasználásával az alábbi függvényt:

$$Y = A*\overline{C} + \overline{A}*B + A*\overline{B}*C$$

Milyen kombinációs hálózatot valósítanak meg az alábbi kapcsolások írd fel a logikai függvényét (Y=?)!

4.feladat

5.feladat

Milyen kombinációs hálózatot valósítanak meg az alábbi kapcsolások

- a, írd fel a logikai függvényét (Y=?)!
- b, egyszerűsítsd a függvényt
- c, valósítsd meg NAND kapukkal

7.feladat

8.feladat

- Valósítsuk meg 8/1-es multiplexer felhasználásával az alábbi függvényt

$$Y = A*B*\overline{C} + \overline{A}*\overline{B}*D + A*\overline{D}*C$$

9.feladat

 - Készíts két darab 1/4-es demultiplexer felhasználásával egy 1/8-as demultiplexert

10.feladat

Milyen kombinációs hálózatot valósít meg az alábbi kapcsolás

- a, írd fel a logikai függvényét (Y=?)!
- b, egyszerűsítsd a függvényt
- c, valósítsd meg NOR kapukkal

11.feladat

Milyen kombinációs hálózatot valósít meg az alábbi kapcsolás

- a, írd fel a logikai függvényét (Y=?)!
- b, egyszerűsítsd a függvényt
- c, valósítsd meg NAND kapukkal

