# ${\bf ME-415}$ RWFRIGERATION & BUILDING MECHANICAL SYSTEM

Md. Hasibul IslamAugust 11, 2023

Arif Hasan Mamun Sir



# Contents

| 1 | Lecture 01: Concept of refrigeration and its applications  1.1 Refrigeration System and Components |    |
|---|----------------------------------------------------------------------------------------------------|----|
| 2 | Lecture 2: Central Air conditioning system                                                         | 7  |
| 3 | Lecture 3: Refrigeration Cycle                                                                     | 7  |
| 4 | Lecture 4: 2 compressor & 2 evaporator                                                             | 11 |
| 5 | Lecture 5: Cooling Load Estimation Using CLTD/CLF Method                                           | 12 |

# 1 Lecture 01: Concept of refrigeration and its applications

Date: 05/06/2023

#### **Booklist**

- 1. Ahmadul Ameen (2006), Refrigeration & Air-conditioning, Prentice Hall.
- 2. Hundy, Trott & Welch, 4th Edition, Refrigeration & Air conditioning, Butterworth-Heinemann.
- 3. McQuiston, Parker & Spitler (2005), Heating, Ventilating & Air conditioning: Analysis & Design, J. Wiley & Sons, Inc.
- 4. Stoecker & Jones (1983), Refrigeration & Air-conditioning, McGraw-Hill, Inc.
- 5. Dossat (1996), Principles of Refrigeration, Prentice Hall.
- 6. McDowall (2007), Fundamentals of HVAC Systems, Elsevier.
- 7. Grondzik, Kwok, Stein & Reynolds (2010), Mechanical & Electrical Equipment for Buildings, J. Wiley & Sons, Inc.

#### 1.1 Refrigeration System and Components

#### Refrigeration

Refrigeration is a process of reducing and maintaining low temperature of a space or material below the temperature of the surroundings.

Alternatively, Refrigeration is the process of removing heat from an enclosed space, or from a substance, and rejecting it elsewhere for the purpose of lowering the temperature of the enclosed space or substance and then maintaining that lower temperature.

It is usually done with the aid of a mechanical device (e.g. pump/compressor) using a substance (called a refrigerant) which absorbs heat from low temperature (objects/space) and releases heat to elsewhere at high temperature. A refrigerant usually works in two-phase conditions, i.e., liquid and gas, e.g., vapor compression refrigeration system.

**Refrigeration System:** A refrigeration system is a mechanical system designed to remove heat from a space or substance to lower its temperature. It operates on the principle of the refrigeration cycle, which involves the compression, condensation, expansion, and evaporation of a refrigerant to transfer heat from a low-temperature region to a high-temperature region. The main components of a typical refrigeration system include a compressor, condenser, expansion valve, and evaporator.

#### Types of refrigeration system:

Vapor Compression Refrigeration System: This widely used system compresses a refrigerant gas, causing it to become hot and high-pressure. It then passes through a condenser where it releases heat and condenses into a liquid. The liquid refrigerant expands through an expansion valve, reducing its pressure and temperature, and evaporates in the evaporator, absorbing heat from the surroundings.

Vapor Absorption Refrigeration System : This system uses a mixture of refrigerant and absorbent instead of a compressor to achieve cooling. The mixture circulates through an absorber, generator, condenser, and evaporator. Heat is applied to the generator to separate the refrigerant from the absorbent. The refrigerant vapor then flows to the condenser where it liquefies, and the absorbent is regenerated in the absorber for reuse.

Vapor Ejection Refrigeration System : In this system, a primary refrigerant is compressed, condensed, and expanded similar to a vapor compression system. However, a secondary refrigerant is used to cool the primary refrigerant vapor through a heat exchanger. The cooled primary refrigerant is then expanded further to achieve the desired cooling effect.

**Air Cycle Refrigeration**: This refrigeration system uses air as the refrigerant. Compressed air is cooled through an expansion process, causing its temperature to decrease. The cooled air is then used to absorb heat from the desired space or substance, creating a cooling effect.

**Vortex Tube Refrigeration**: A vortex tube refrigeration system utilizes a high-pressure gas stream that enters a tangential nozzle, creating a vortex motion. This vortex separates the gas into hot and cold streams, with the cold stream used for refrigeration purposes.

Thermoacoustic Refrigeration System : Thermoacoustic refrigeration systems utilize sound waves and thermal gradients to achieve cooling. The sound waves cause compression and expansion of the gas, creating temperature differences that enable cooling.

**Thermoelectric Refrigeration System**: These systems use the Peltier effect, where an electric current is applied to a junction of two different conductive materials, resulting in a temperature difference. This temperature difference allows for cooling when applied in a refrigeration system.

Cascade Refrigeration System: Cascade systems consist of two or more refrigeration cycles working in series. Different refrigerants with varying temperature ranges are used in each cycle, allowing for extremely low temperatures in specific applications.

**Cryogenic Refrigeration**: Cryogenic refrigeration involves the use of extremely low temperatures, typically below -150 degrees Celsius (-238 degrees Fahrenheit), to achieve cooling. These systems are used in applications such as liquefied natural gas (LNG) processing, scientific research, and medical processes.

**Magnetic Refrigeration**: Magnetic refrigeration systems use the magnetocaloric effect, where a magnetic material heats up or cools down when subjected to a magnetic field. By cycling the magnetic field, heat can be absorbed or released, providing cooling without the use of traditional refrigerants.

#### 1.2 Different Components of Vapor Compression Refrigeration System



Figure 1: Schematic Diagram of Different Components of Vapor Compression Refrigeration System.

- Condenser: The condenser is responsible for removing heat from the refrigerant and converting it from a high-pressure vapor to a high-pressure liquid. It is typically located on the outside of the refrigeration system and uses air or water as a cooling medium. The heat extracted from the refrigerant in the condenser is released into the surroundings.
- Compressor: The compressor is the heart of the refrigeration system. Its main function is to increase the pressure and temperature of the refrigerant vapor. The compressor draws low-pressure refrigerant vapor from the evaporator and compresses it to a higher pressure, which raises its temperature as well. This process is crucial for the refrigerant to release heat in the condenser.
- Evaporator: The evaporator is where the refrigerant absorbs heat from the surroundings, typically within the refrigerated space or the object being cooled. As the low-pressure, low-temperature refrigerant

enters the evaporator, it absorbs heat from the area and evaporates into a low-pressure vapor. This heat absorption causes the surroundings to cool down. The vapor is then drawn back into the compressor, and the cycle continues.

• Expansion Valve: The expansion valve is a throttling device located between the condenser and the evaporator. It serves the purpose of reducing the pressure and temperature of the refrigerant as it passes through. The expansion valve creates a pressure drop, allowing the refrigerant to expand rapidly. This expansion results in a decrease in temperature and prepares the refrigerant for the evaporator.



Figure 2: Different Components of a Refrigeration System.

#### Uses of refrigeration system

- Food and Beverage Industry: Storing and preserving perishable items in supermarkets, warehouses, and transport.
- HVAC: Cooling and dehumidification in residential, commercial, and industrial buildings.
- Industrial Processes: Temperature control in manufacturing, equipment cooling, and raw material storage.
- Cold Chain Logistics: Transporting temperature-sensitive goods, like food, pharmaceuticals, and vaccines.
- Medical and Healthcare: Storing vaccines, medications, and laboratory samples.
- Ice Production: Ice manufacturing for commercial use and recreational activities.
- Research and Scientific Applications: Temperature control in experiments and sample preservation.



(a) condenser



(b) compressor



(c) evaporator



(d) expansion valve

Figure 3: Components of vapour compression refrigeration system

#### Types of Freezing

- Slow freezing: Slow freezing refers to a method of gradually lowering the temperature of a product over an extended period of time to facilitate freezing. Unlike quick freezing methods that aim for rapid freezing, slow freezing allows for a slower and more controlled freezing process. This method is commonly used in certain food preservation techniques, laboratory research, and some industrial processes. Slow freezing can help maintain the quality, texture, and cellular structure of the product, making it suitable for certain applications where slower freezing is desired or required.
- Quick Freezing There are three types of quick freezing systems:
  - Air Blast Freezing: Uses high-velocity cold air to rapidly freeze products.
  - Immersion Freezing: Involves immersing the product in a cold liquid for quick freezing.
  - **Indirect Contact Freezing:** Utilizes cold surfaces in direct contact with the product to achieve rapid freezing.

#### Industrial Functions of air conditioning

- Temperature control for employee comfort and equipment performance.
- Humidity regulation to prevent condensation and protect materials.
- Ventilation to remove contaminants and ensure a healthy environment.
- Air filtration to maintain air quality and reduce pollutants.
- Process and product cooling to optimize manufacturing and storage conditions.
- Energy efficiency to minimize costs and maximize cooling effectiveness.

# 2 Lecture 2: Central Air conditioning system

Date: 19/06/2023

#### Assignment Notice

- Have to calculate required Ton for air conditioner and a CAD model of room (by autocad or solidworks)
- including all the data about room dimension, door specification, dimension, window specification and dimension, slab and wall thickness, heat generating equipment, persons and others

#### Central Air Conditioning System

A central air conditioning system, also known as a chiller type air conditioning system, is a cooling system that is used to cool large buildings or spaces. It typically consists of a central cooling unit, often referred to as a chiller, that cools water or a refrigerant. The chilled water or refrigerant is then circulated through a network of pipes to various air handling units (AHUs) or fan coil units (FCUs) located throughout the building.

In a chiller type air conditioning system, the chiller unit uses a refrigeration cycle to remove heat from the water or refrigerant, thereby lowering its temperature. The chilled water or refrigerant is then pumped to the AHUs or FCUs, where it passes through heat exchangers. The heat exchangers transfer the coolness from the chilled water or refrigerant to the air, effectively cooling it. The cooled air is then distributed throughout the building via ductwork or individual units, providing a comfortable indoor environment.

Central air conditioning systems offer several advantages, including the ability to cool large spaces efficiently, centralized control and monitoring, and the potential for energy savings through the use of advanced controls and zoning. They are commonly used in commercial buildings, offices, shopping malls, hotels, and other large-scale facilities where cooling requirements are significant.

- Air Handling Unit (AHU): An Air Handling Unit, often referred to as an AHU, is a device used in HVAC systems to condition and distribute air. It typically consists of a fan, heating or cooling elements, filters, and dampers. The AHU pulls in air from the surroundings, treats it by heating or cooling, filters out impurities, and then distributes it to different areas through ductwork.
- Supply Duct: A supply duct is a part of the HVAC system responsible for delivering conditioned air from the AHU to different spaces within a building. The supply ducts are connected to the outlets of the AHU and carry the treated air to the desired locations. They are designed to distribute the conditioned air evenly and efficiently throughout the building.
- Return Duct: A return duct, also known as an exhaust duct or return air duct, is a component of the HVAC system that collects and transports air back to the AHU. It pulls in air from different areas of the building, which may have been circulated through the space or mixed with the indoor air, and directs it back to the AHU for reconditioning.
- Air Cutter: An air diffuser or grille designed to direct the flow of conditioned air in a specific pattern or direction. It is typically installed at the outlet of a supply duct or directly on the AHU itself. The air cutter helps to distribute the conditioned air evenly and efficiently throughout the space by controlling the direction, velocity, and spread of the air stream.

# 3 Lecture 3: Refrigeration Cycle

Date: 10/07/2023

#### Problem-01

A Simple vapor compression refrigeration cycle using R134a as refrigerant operates on an ideal vapor compression refrigeration cycle between 0.12 and 0.7 MPa. The mass flow rate of the refrigerant is 0.06 kg/s. Determine:

- 1. The rate of heat removal of the refrigerated space and the power input to the compressor
- 2. The rate of heat rejection to the environment
- 3. The Coefficient of performance, COP



3. Refrigerant 134a (1,1,1,2-Tetrafluoroethane) Properties of Saturated Liquid and Saturated Vapor

| Temp.,*  | Pres-   | Density, | Volume,<br>m <sup>3</sup> /kg |        | alpy,<br>/kg | Entr<br>kJ/(k |        |        | ic Heat<br>(kg·K) | cp/c+ | 25000000 | ity of<br>d, m/s |        | osity,<br>a·s |        | l Cond.,<br>(m·K) | Surface | Temp.,  |
|----------|---------|----------|-------------------------------|--------|--------------|---------------|--------|--------|-------------------|-------|----------|------------------|--------|---------------|--------|-------------------|---------|---------|
| °C       | MPa     | Liquid   | Vapor                         | Liquid | Vapor        | Liquid        | Vapor  | Liquid | Vapor             | Vapor | Liquid   | Vapor            | Liquid | Vapor         | Liquid | Vapor             | mN/m    | °C      |
| ~103.30a | 0.00039 | 1591.1   | 35.496                        | 71.46  | 334.94       | 0.4126        | 1.9639 | 1.184  | 0.585             | 1.164 | 1120.    | 126.8            | 2175.  | 6.46          | 145.2  | 3.08              | 28.07   | -103.30 |
| -100.00  | 0.00056 | 1582.4   | 25.193                        | 75.36  | 336.85       | 0.4354        | 1.9456 | 1.184  | 0.593             | 1.162 | 1103.    | 127.9            | 1893.  | 6.60          | 143.2  | 3.34              | 27.50   | -100.00 |
| -90.00   | 0.00152 | 1555.8   | 9.7698                        | 87.23  | 342.76       | 0.5020        | 1.8972 | 1.189  | 0.617             | 1.156 | 1052.    | 131.0            | 1339.  | 7.03          | 137.3  | 4.15              | 25.79   | -90.00  |
| -80.00   | 0.00367 | 1529.0   | 4.2682                        | 99.16  | 348.83       | 0.5654        | 1.8580 | 1.198  | 0.642             | 1.151 | 1002.    | 134.0            | 1018.  | 7.46          | 131.5  | 4.95              | 24.10   | -80.00  |
| -70.00   | 0.00798 | 1501.9   | 2.0590                        | 111.20 | 355.02       | 0.6262        | 1.8264 | 1.210  | 0.667             | 1.148 | 952.     | 136.8            | 809.2  | 7.89          | 126.0  | 5.75              | 22.44   | -70.00  |
| -60.00   | 0.01591 | 1474.3   | 1.0790                        | 123.36 | 361.31       | 0.6846        | 1.8010 | 1.223  | 0.692             | 1.146 | 903.     | 139.4            | 663.1  | 8.30          | 120.7  | 6.56              | 20.80   | -60.00  |
| -50.00   | 0.02945 | 1446.3   | 0.60620                       | 135.67 | 367.65       | 0.7410        | 1.7806 | 1.238  | 0.720             | 1.146 | 855.     | 141.7            | 555.1  | 8.72          | 115.6  | 7.36              | 19.18   | -50.00  |
| -40.00   | 0.05121 | 1417.7   | 0.36108                       | 148.14 | 374.00       | 0.7956        | 1.7643 | 1.255  | 0.749             | 1.148 | 807.     | 143.6            | 472.2  | 9.12          | 110.6  | 8.17              | 17.60   | -40.00  |
| -30.00   | 0.08438 | 1388.4   | 0.22594                       | 160.79 | 380.32       | 0.8486        | 1.7515 | 1.273  | 0.781             | 1.152 | 760.     | 145.2            | 406.4  | 9.52          | 105.8  | 8.99              | 16.04   | -30.00  |
| -28.00   | 0.09270 | 1382.4   | 0.20680                       | 163.34 | 381.57       | 0.8591        | 1.7492 | 1.277  | 0.788             | 1.153 | 751.     | 145.4            | 394.9  | 9.60          | 104.8  | 9.15              | 15.73   | -28.00  |
| -26.07b  | 0.10133 | 1376.7   | 0.19018                       | 165.81 | 382.78       | 0.8690        | 1.7472 | 1.281  | 0.794             | 1.154 | 742.     | 145.7            | 384.2  | 9.68          | 103.9  | 9.31              | 15.44   | -26.07  |
| -26.00   | 0.10167 | 1376.5   | 0.18958                       | 165.90 | 382.82       | 0.8694        | 1.7471 | 1.281  | 0.794             | 1.154 | 742.     | 145.7            | 383.8  | 9.68          | 103.9  | 9.32              | 15.43   | -26.00  |
| -24.00   | 0.11130 | 370.4    | 0.17407                       | 168.47 | 384.07       | 0.8798        | 1.7451 | 1.285  | 0.801             | 1.155 | 732.     | 145.9            | 373.1  | 9.77          | 102.9  | 9.48              | 15.12   | -24.00  |
| -22.00   | 0.12165 | 1364.4   | 0.16006                       | 171.05 | 385.32       | 0.8900        | 1.7432 | 1.289  | 0.809             | 1.156 | 723.     | 146.1            | 362.9  | 9.85          | 102.0  | 9.65              | 14.82   | -22.00  |
| -20.00   | 0.13273 | 358.3    | 0.14739                       | 173.64 | 386.55       | 0.9002        | 1.7413 | 1.293  | 0.816             | 1.158 | 714.     | 146.3            | 353.0  | 9.92          | 101.1  | 9.82              | 14.51   | -20.00  |
| -18.00   | 0.14460 | 1352.1   | 0.13592                       | 176.23 | 387.79       | 0.9104        | 1.7396 | 1.297  | 0.823             | 1.159 | 705.     | 146.4            | 343.5  | 10.01         | 100.1  | 9.98              | 14.21   | -18.00  |
| -16.00   | 0.15728 | 1345.9   | 0.12551                       | 178.83 | 389.02       | 0.9205        | 1.7379 | 1.302  | 0.831             | 1.161 | 695.     | 146.6            | 334.3  | 10.09         | 99.2   | 10.15             | 13.91   | -16.00  |
| -14.00   | 0.17082 | 1339.7   | 0.11605                       | 181.44 | 390.24       | 0.9306        | 1.7363 | 1.306  | 0.838             | 1.163 | 686.     | 146.7            | 325.4  | 10.17         | 98.3   | 10.32             | 13.61   | -14.00  |
| -12.00   | 0.18524 | 1333.4   | 0.10744                       | 184.07 | 391.46       | 0.9407        | 1.7348 | 1.311  | 0.846             | 1.165 | 677.     | 146.8            | 316.9  | 10.25         | 97.4   | 10.49             | 13.32   | -12.00  |
| -10.00   | 0.20060 | 1327.1   | 0.09959                       | 186.70 | 392.66       | 0.9506        | 1.7334 | 1.316  | 0.854             | 1.167 | 668.     | 146.9            | 308.6  | 10.33         | 96.5   | 10.66             | 13.02   | -10.00  |
| -8.00    | 0.21693 | 1320.8   | 0.09242                       | 189.34 | 393.87       | 0.9606        | 1.7320 | 1.320  | 0.863             | 1.169 | 658.     | 146.9            | 300.6  | 10.41         | 95.6   | 10.83             | 12.72   | -8.00   |
| -6.00    | 0.23428 | 1314.3   | 0.08587                       | 191.99 | 395.06       | 0.9705        | 1.7307 | 1.325  | 0.871             | 1.171 | 649.     | 147.0            | 292.9  | 10.49         | 94.7   | 11.00             | 12.43   | -6.00   |
| -4.00    | 0.25268 | 1307.9   | 0.07987                       | 194.65 | 396.25       | 0.9804        | 1.7294 | 1.330  | 0.880             | 1.174 | 640.     | 147.0            | 285.4  | 10.57         | 93.8   | 11.17             | 12.14   | -4.00   |
| -2.00    | 0.27217 | 1301.4   | 0.07436                       | 197.32 | 397.43       | 0.9902        | 1.7282 | 1.336  | 0.888             | 1.176 | 631.     | 147.0            | 278.1  | 10.65         | 92.9   | 11.34             | 11.85   | -2.00   |
| 0.00     | 0.29280 | 1294.8   | 0.06931                       | 200.00 | 398.60       | 0000.1        | 1.7271 | 1.341  | 0.897             | 1.179 | 622.     | 146.9            | 271.1  | 10.73         | 92.0   | 11.51             | 11.56   | 0.00    |

(b) Saturated vapor at  $0.12~\mathrm{MPa}$ 

|   |       |         | ov a hospital |         |        |        | 1.0070 | 1.1200 | 1.077 | 0.700 | 1.102 |         |
|---|-------|---------|---------------|---------|--------|--------|--------|--------|-------|-------|-------|---------|
|   | 4.00  | 0.33766 | 1281.4        | 0.06039 | 205.40 | 400.92 | 1.0195 | 1.7250 | 1.352 | 0.916 | 1.185 |         |
|   | 6.00  | 0.36198 | 1274.7        | 0.05644 | 208.11 | 402.06 | 1.0292 | 1.7240 | 1.358 | 0.925 | 1.189 |         |
|   | 8.00  | 0.38761 | 1267.9        | 0.05280 | 210.84 | 403.20 | 1.0388 | 1.7230 | 1.364 | 0.935 | 1.192 |         |
| × | 10.00 | 0.41461 | 1261.0        | 0.04944 | 213.58 | 404.32 | 1.0485 | 1.7221 | 1.370 | 0.945 | 1.196 |         |
|   | 12.00 | 0.44301 | 1254.0        | 0.04633 | 216.33 | 405.43 | 1.0581 | 1.7212 | 1.377 | 0.956 | 1.200 |         |
|   | 14.00 | 0.47288 | 1246.9        | 0.04345 | 219.09 | 406.53 | 1.0677 | 1.7204 | 1.383 | 0.967 | 1.204 |         |
|   | 16.00 | 0.50425 | 1239.8        | 0.04078 | 221.87 | 407.61 | 1.0772 | 1.7196 | 1.390 | 0.978 | 1.209 | Part of |
|   | 18.00 | 0.53718 | 1232.6        | 0.03830 | 224.66 | 408.69 | 1.0867 | 1.7188 | 1.397 | 0.989 | 1.214 |         |
|   | 20.00 | 0.57171 | 1225.3        | 0.03600 | 227.47 | 409.75 | 1.0962 | 1.7180 | 1.405 | 1.001 | 1.219 |         |
|   | 22.00 | 0.60789 | 1218.0        | 0.03385 | 230.29 | 410.79 | 1.1057 | 1.7173 | 1.413 | 1.013 | 1.224 |         |
|   | 24.00 | 9.64578 | 1210.5        | 0.03186 | 233.12 | 411.82 | 1.1152 | 1.7166 | 1.421 | 1.025 | 1.230 |         |
|   | 26.00 | 0.68543 | 1202.9        | 0.03000 | 235.97 | 412.84 | 1.1246 | 1.7159 | 1.429 | 1.038 | 1.236 |         |
|   | 28.00 | 0.72688 | 1195.2        | 0.02826 | 238.84 | 413.84 | 1.1341 | 1.7152 | 1.437 | 1.052 | 1.243 |         |
|   | 30.00 | 0.77020 | 1187.5        | 0.02664 | 241.72 | 414.82 | 1.1435 | 1.7145 | 1.446 | 1.065 | 1.249 |         |
|   | 32.00 | 0.81543 | 1179.6        | 0.02513 | 244.62 | 415.78 | 1.1529 | 1.7138 | 1.456 | 1.080 | 1.257 |         |
|   | 34.00 | 0.86263 | 1171.6        | 0.02371 | 247.54 | 416.72 | 1.1623 | 1.7131 | 1.466 | 1.095 | 1.265 |         |
|   | 26.00 | 0.01106 | 11/2 4        | 0.00000 | 250 40 | 112.44 |        |        |       |       | 1,200 |         |
|   |       |         |               |         |        |        |        |        |       |       |       |         |

(c) Saturated Liquid at  $0.7~\mathrm{MPa}$ 

Figure 4: Problem-01 Solution



Figure 5: Enthaply at s=1.74 and p = 0.7 MPa

#### Solution

Here,  $P_{cond} = 0.70 \text{ MPa}$  $P_{eva} = 0.12 \text{ MPa}$ 

 $\dot{m} = 0.06 \text{ kg/s}$ 

For R123a refrigerant,  $h_2 = 385.43kJ/kg$ ,  $h_3 = 428kJ/kg$ ,  $h_1 = h_4 = 236kJ/kg$  (a)

Refrigering capacity,  $Q_2 = \dot{m}(h_2 - h_1) = 8.96KW$ Compressor work,  $\dot{W} = \dot{m}(h_3 - h_2) = 2.55KW$ 

(b)

Rate of heat rejection  $= Q_2 + \dot{W} = 11.51KW$ 

(c)  $COP = \frac{R.E.}{\dot{W}} = \frac{8.96}{2.55} = 3.51$ 

#### Problem-02

Determine the COP of 2-stage refrigeration system with flash gas removal. The system uses R134a as a refrigerant to produce 50 kW refrigeration effect. Given that,  $T_{cond} = 30^{\circ}\text{C}$  and  $T_{evap} = -20^{\circ}\text{C}$  and inter-cooler temperature is  $0^{\circ}\text{C}$ .

#### Solution





(a) refrigeration cycle

(b) p-h diagram

Figure 6: Problem-02 Solution

Given,

$$T_{cond} = 30$$
°C

$$T_{evap} = -20$$
°C

$$T_{inter-cooler} = 0$$
°C

$$\mathrm{R.E.} = 50~\mathrm{kW}$$

$$C.O.P. = ?$$

Data:

$$h_1=386.55~\mathrm{kj/kg}$$
 ,  $s_1=1.7413$  [From table]

$$h_2 = 400 \text{ kj/kg [From p-h chart]}$$

$$h_3 = 398.60 \text{ kj/kg}$$
,  $s_3 = 1.7271 \text{ [From table]}$ 

$$h_4 = 415 \text{ kj/kg [From p-h diagram]}$$

$$h_5 = h_6 = 241.72 \text{ kj/kg [From table]}$$

$$h_7 = h_8 = 200 \text{ kj/kg [from table]}$$

Again, R.E. = 
$$\dot{m}(1-x)(h_1 - h_8)$$
  
 $\Rightarrow 50 = \dot{m} \times 0.79 \times (386.55 - 200)$   
 $\Rightarrow \dot{m} = 0.339$ 

$$W_{1-2} = \dot{m}(1-x)(h_2 - h_1) = 4.29KW$$

$$W_{3-4} = \dot{m}(h_4 - h_3) = 6.80KW$$

$$C.O.P. = \frac{R.E.}{W_{1-2} + W_{3-4}} = 4.50 KW$$

Now, 
$$h_6 = h_7 + x(h_3 - h_7)$$
  
 $\Rightarrow 241.72 = 200 + x(398.60 - 200)$   
 $\Rightarrow x = 0.21$ 

#### Problem-03

Do the same problem for the single stage refrigeration system

#### Solution

Given,

$$T_{cond} = 30$$
°C

$$T_{evap} = -20$$
°C

$$R.E. = 50 \text{ kW}$$

$$C.O.P. = ?$$
 Data:

$$h_1 = 386.55 \text{ kj/kg}$$
,  $s_1 = 1.7413$  [From table]

$$h_2 = 420 \text{ kj/kg} [\text{From p-h chart}]$$

$$h_3 = h_4 = 241.72 \text{ kj/kg [From table]}$$

Again, R.E. = 
$$\dot{m}(h_1 - h_4)$$
  
 $\Rightarrow 50 = \dot{m} \times (386.55 - 241.72)$   
 $\Rightarrow \dot{m} = 0.345$ 

$$W_{1-2} = \dot{m}(h_2 - h_1) = 11.54 \, KW$$
  
 $C.O.P. = \frac{R.E.}{W_{1-2}} = 4.33 \, KW$ 

# 4 Lecture 4: 2 compressor & 2 evaporator

Date: 17/07/2023



Figure 7: Two compressor and two evaporator problem

#### Solution:

Here,  

$$m_1 = m_2 = m_7 = m_8$$
  
 $m_3 = m_4 = m_5$ 

#### Reading the properties:

$$\begin{split} h_1 &= 380.32\,\mathrm{kj/kg}, s_1 = 1.7515\\ h_2 &= 405\,\mathrm{kj/kg}, s_2 = 1.7515\\ h_3 &= 401\,\mathrm{kj/kg}, s_3 = 1.7250\\ h_4 &= 404\,\mathrm{kj/kg}\\ h_5 &= 256\,\mathrm{kj/kg}\\ h_7 &= h_8 = 206\,\mathrm{kj/kg} \end{split}$$

Now, Refrigetation effect, R.E.:

$$m_1(h_1 - h_8) = 180 \, kW$$
  
 $m_1 = 1.03 \, kg/s$ 

Here, In intercooler,  $m_2 \& m_5$  enters and  $m_3 \& m_7$  exits. We are trying to avoid  $m_6$  for simplicity. So, we found:

$$m_2h_2 + m_5h_5 + 200 = m_3h_3 + m_7h_7$$
 As,  $m_1 = m_2 = m_7$  and  $m_3 = m_5$ ,  
by solving, 
$$m_3 = 2.793 \, kg/s$$
 
$$W_{1-2} = m_1(h_2 - h_1) = 25.4204 \, kW$$
 
$$W_{3-4} = m_3(h_4 - h_3) = 8.375 \, kW$$
 
$$C.O.P. = \frac{R.E.}{W_{1-2} + W_{3-4}} = 5.326$$

#### Some others important parameters:

•

$$EER = \frac{\text{R.E. in BTU/hr}}{\text{Power Required in W}}$$

•

$$kW/ton = \frac{3.516}{C.O.P.}$$

•

$$EER \times kW/ton = 12$$

# 5 Lecture 5: Cooling Load Estimation Using CLTD/CLF Method

Date: 24/07/2023



Figure 8: CAD model of room for cooling load estimation

- 1. Normally at 5-6 pm, temperatures are high. Also in April/May, temperatures are high. So, we have to design for the worst case scenario.
- 2. Room height: 3.0 m
- 3. West & South Walls: Metal curtain wall, construction type G with 75 mm insulation, sunlit, dark color.
- 4. Partition walls (North & East): 127 mm brick with 25 mm plaster on both sides.
- 5. Roof: Type 4, 50 mm insulation without suspended ceiling
- 6. Window: 6  $m^2$  on west & east side. U = 2.86  $W/m^2 k$

- 13 mm thickness
- Light construction
- 7. No heat transfer through floor
- 8. Air exchange rate: 1.0 / h  $(10 \times 10 \times 3 = 300 \, m^3/h)$
- 9. Light & Occupants from 8 am to 6 pm.
- 10. Average light density:  $25 W/m^2$ , flour oscent light -  $25 \times$  Area of Base = 2500
- 11. 5 Occupants seated, using 1 computer.
- 12. Door in North wall: Door size:  $2m \times 1m$ , 25 mm thick, hard wood.

#### Heat Conduction through Surface

1. Conduction Through Shaded Partition/Surface:

$$Q = U.A.TD$$

2. Conduction Through Sunlit Surface:

$$Q = U.A.CLTD$$

•  $U \to \text{Overall heat conductance } (W/m^2 - k)$ 

- $TD \to \text{Temperature difference accross the surface } ({}^{\circ}C)$
- $CLTD \rightarrow \text{Cooling load temperature difference}$  (°C)
- $U = 1/R_{th}$
- $\bullet \ R_{th} = R_o + R + R_i$

#### # Roof

- Type: Type 4, 50 mm insulation without suspended ceiling
- Read data from Table 12(a)
- Layers for type-4 : A0 E2 E3 B5 C12 E0
- Here, 50 mm insulation not available on type 4. That's why we have to switch from B5 to B6.
- So, we have to calculate for: A0 E2 E3 B6 C12 E0
- Read the resistance of the layers from Table-16

# 12(a) Roof Construction Code

| ioof | Description                                 | Code Numbers of Layers<br>(see Table 8) |
|------|---------------------------------------------|-----------------------------------------|
| 1    | Steel Sheet with 25-mm insulation           | A0, E2, E3, B5, A3, EO                  |
| 2    | 25-mm wood with 25-mm insulation            | AO, E2, E3, B5, B7, E0                  |
| 3    | 100-mm l. w. concrete                       | A0 F2 F3 C14 F0                         |
| 1    | 50-mm h.w. concrete with 25-mm insulation   | A0, E2, E3, B5, C12, E0                 |
| 5    | 25-mm wood with 50-mm insulation            | A0, E2, E3, B6, B7, E0                  |
|      |                                             | -A0, E2, E3, B5, C12, E0                |
| 5    | 25-mm wood with 50-mm insulation            | AO, E2, E3, B6, B7, E0                  |
| 6    | 150-mm l. w. concrete                       | A0, E2, E3, C15, E0                     |
| 7    | 63-mm wood with 25-mm insulation            | A0, E2, E3, B5, B8, E0                  |
| 8    | 200-mm l. w. concrete                       | A0, E2, E3, C16, E0                     |
| 9    | 100-mm h. w. concrete with 25-mm insulation | A0, E2, E3, B5, C5, E0                  |
| 10   | 63-mm wood with 50-mm insulation            | A0, E2, E3, B6, B8, E0                  |
| 11   | Roof terrace system                         | A0, C12, B1, B6, E2, E3, C5, E0         |
| 12   | 150-mm h. w. concrete with 25-mm insulation | A0, E2, E3, B5, C13, E0                 |
| 13   | 100-mm wood with 25-mm insulation           | A0, E2, E3, B5, B9, E0                  |

Figure 9: Table 12(a): Type 4

#### Calculation for Roof:

| Layer    | A0    | E2    | E3    | В6    | C12   | E0    | Total |
|----------|-------|-------|-------|-------|-------|-------|-------|
| $R_{th}$ | 0.059 | 0.099 | 0.050 | 1.173 | 0.029 | 0.121 | 1.581 |

Table 1: Resistance of all layers for roof.

Now, 
$$R_{th} = 1.581$$
,  
so,  $U = 1/R_{th} = 0.653$ 

## # South & West Wall

• Type: Metal curtain wall, construction type G with 75 mm insulation, sunlit, dark color.

• Read data from Table-14

• Layers: A0 - A3 - B12 - A3 - E0

• Read resistance value from **Table-16** 

| mm Insulation + 101 6 mm Block           | A0, A1, C2, B1/B2, E1, E0<br>A0, A1, B3, C2/C3, E1, E0                                                                                                                                                                             |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | A0, A1, C7/C8, E1, E0                                                                                                                                                                                                              |
|                                          |                                                                                                                                                                                                                                    |
| 2-mm Block + Air Space/Insulation        | A0, A1, C7/C8, B1/B2, E1, E0                                                                                                                                                                                                       |
| (Finish)                                 |                                                                                                                                                                                                                                    |
| 5-mm Tile                                | A0, A1, C1, E1, E0                                                                                                                                                                                                                 |
| 5-mm Tile + Air Space                    | A0, A1, C1, B1, E1, E0                                                                                                                                                                                                             |
| 5-mm Tile + 25.4-mm Insulation           | A0, A1, C1, B2, E1, E0                                                                                                                                                                                                             |
| mm Insulation + 101.6-mm Tile            | A0, A1, B3, C1, E1, E0                                                                                                                                                                                                             |
| 2-mm Tile                                | A0, A1, C6, B1/B2, E1, E0                                                                                                                                                                                                          |
| 2-mm Tile + Air Space/25.4-mm Insulation | A0, A1, C6, B1/B2, E1, E0                                                                                                                                                                                                          |
| mm Insulation + 203.2-mm Tile            | A0, A1, B3, C6, E1, E0                                                                                                                                                                                                             |
| ain Wall                                 |                                                                                                                                                                                                                                    |
| /without air Space + 25.4-mm/50.8-mm     | A0, A3, B5/B6/B12, A3, E0                                                                                                                                                                                                          |
| mm Insulation                            |                                                                                                                                                                                                                                    |
| 15.                                      |                                                                                                                                                                                                                                    |
| mm to 76.2-mm Insulation                 | A0, A1, B1, B2/B3/B4, E1, E0                                                                                                                                                                                                       |
| 2 (65.55.12                              | mm Tile -mm Tile + Air Space -mm Tile + 25.4-mm Insulation mm Insulation + 101.6-mm Tile -mm Tile -mm Tile + Air Space/25.4-mm Insulation mm Insulation + 203.2-mm Tile in Wall /without air Space + 25.4-mm/50.8-mm mm Insulation |

Figure 10: Table 14: Type G

#### Calculation for South & West Walls:

| Layer    | A0    | A3 | B12  | A3 | E0    | Total |
|----------|-------|----|------|----|-------|-------|
| $R_{th}$ | 0.059 | 0  | 1.76 | 0  | 0.121 | 1.94  |

Table 2: West and South walls.

Now, 
$$R_{th} = 1.94$$
, so,  $U = 1/R_{th} = 0.52$ 

## # North & East Wall (Partition Wall)

- $\bullet~127~\mathrm{mm}$  brick with 25 mm plaster on both sides.
- Read resistance from Table-16

- Here, 127 mm brick not available. So, we will take C4:100 mm brick to calculate k=0.727, then calculate the resistance for 127 mm brick with the same K values.
- Also 25 mm plaster not availble. We will take E1:20mm, then by the value of k=0.7277, will calculate resistance for 25 mm plaster.

| C3  | 100 mm heavy weight concrete block      | 100 | 1.813  | 977  | 0.84 | 0.125 | 99.06  |
|-----|-----------------------------------------|-----|--------|------|------|-------|--------|
| C4  | 100 mm common brick                     | 100 | 0.727  | 1922 | 0.84 | 0.140 | 195.20 |
| C5  | 100 mm heavy weight concrete            | 100 | 1.731  | 2243 | 0.84 | 0.059 | 227.90 |
| C6  | 200 mm clay tile                        | 200 | 0.571  | 1121 | 0.84 | 0.352 | 227.90 |
| C7  | 200 mm lightweight concrete block       | 200 | 0.571  | 609  | 0.84 | 0.352 | 123.46 |
| C8  | 200 mm heavy weight concrete block      | 200 | 1.038  | 977  | 0.84 | 0.196 | 198.62 |
| C9  | 200 mm common brick                     | 200 | 0.727  | 1922 | 0.84 | 0.279 | 390.40 |
| C10 | 200 mm heavy weight concrete            | 200 | 1.731  | 2243 | 0.84 | 0.117 | 455.79 |
| C11 | 300 mm heavy weight concrete            | 300 | 1.731  | 2243 | 0.84 | 0.176 | 683.20 |
| C12 | 50 mm heavy weight concrete             | 50  | 1.731  | 2243 | 0.84 | 0.029 | 113.70 |
| C13 | 150 mm heavy weight concrete            | 150 | 1.731  | 2243 | 0.84 | 0.088 | 341.60 |
| C14 | 100 mm lightweight concrete             | 100 | 0.173  | 641  | 0.84 | 0.587 | 64.90  |
| C15 | 150 mm lightweight concrete             | 150 | 0.173  | 641  | 0.84 | 0.880 | 97.60  |
| C16 | 200 mm lightweight concrete             | 200 | 0.173  | 641  | 0.84 | 1.173 | 130.30 |
| C17 | 200 mm lightweight conc blk. (filled)   | 200 | 0.138  | 288  | 0.84 | 1.467 | 58.56  |
|     | 200 mm heavy weight conc. blk. (filled) | 200 | 0.588  | 849  | 0.84 | 0.345 | 172.75 |
| C18 | 300 mm lightweight conc. blk. (filled)  | 300 | 0.138  | 304  | 0.84 | 2.200 | 92.72  |
| C19 |                                         | 300 | 0.675  | 897  | 0.84 | 0.451 | 273.28 |
| C20 | 300 mm heavy weight conc. blk. (filled) | 0   | 0.000  | 0    | 0.00 | 0.121 | 0.00   |
| E0  | Inside surface resistance               | 20  | 0.7277 | 1602 | 0.84 | 0.026 | 30.74  |
| E1  | 20 mm plaster or gypsum                 |     |        | 881  | 1.67 | 0.020 | 11.22  |
| E2  | 12 mm slag or stone                     | 12  | 0.100  |      | 1.67 | 0.050 | 10.74  |
| E3  | 10 mm felt and membrane                 | 10  | 0.190  | 1121 |      |       | 0.00   |
| E4  | Ceiling air space                       | 0   | 0.000  | 0    | 0.00 | 0.176 | 0.00   |

Figure 11: Table 16: For partition walls

#### Calculation for North & East Wall:

- $R_{th} = R_o + R_1 + R_2 + R_3 + R_i$
- Outside  $(R_0)$ : A0 = 0.059
- 25 mm Plaster  $(R_1, R_3)$ : For E1 20 mm plaster, k = 0.7277, now  $R_1 = R_3 = L/k = 0.025/0.7277 = 0.0343$
- 127 mm Brick  $(R_2)$  : For C4 100 mm brick, k = 0.727, now  $R_2 = L/k = 0.127/0.727 = 0.175$
- Inside  $(R_i)$ : E0 = 0.121
- Total  $(R_{th}) = 0.059 + 0.0343 + 0.175 + 0.0343 + 0.121 = 0.4236$
- $U = 1/R_{th} = 2.36$

#### # Door

- Door size:  $2m \times 1m$ , 25 mm thick, hard wood
- $\bullet$  Read data from **Table-17.6**
- Hard wood, Oak, k= 0.16.  $R_d = L/k = 0.025/0.16 = 0.156$
- $R_{th} = R_o + R_d + R_i = 0.059 + 0.156 + 0.121 = 0.336$
- U = 2.98

| ODS (12% moisture content)  Idwoods Oak Birch Maple Ash woods Southern Pine Douglas Fir-larch Southern Cypress |                  |                                     |                                                 | Resist         |                                              |                                |
|----------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------------------|----------------|----------------------------------------------|--------------------------------|
| Description                                                                                                    | Density<br>kg/m³ | Conduc-<br>tivity<br>(k)<br>W/(m·K) | Conduc-<br>tance<br>(C)<br>W(m <sup>2</sup> ·K) | (1/k)<br>m·K/W | For thickness<br>listed<br>(1/Ω)<br>(m²·K)/W | Specific<br>heat,<br>kJ/(kg·K) |
| WOODS (12% moisture content)                                                                                   |                  |                                     |                                                 |                |                                              |                                |
| Hardwoods                                                                                                      |                  |                                     |                                                 |                |                                              | 1.63                           |
| Oak                                                                                                            | 659-749          | 0.16 - 0.18                         | -                                               | 6.2-5.5        | -                                            |                                |
| Birch                                                                                                          | 682-726          | 0.167-0.176                         | <i>i</i> -                                      | 6.0-5.7        | -                                            |                                |
| Maple                                                                                                          | 637-704          | 0 157 0 171                         | -                                               | 6.4-5.8        | -                                            |                                |
| Ash                                                                                                            | 614-670          | 0.153 - 0.164                       |                                                 | 6.5-6.1        | -                                            |                                |
| Softwoods                                                                                                      |                  |                                     |                                                 |                |                                              | 1.63                           |
| Southern Pine                                                                                                  | 570-659          | 0.144-0.161                         | -                                               | 6.9-6.2        | -                                            |                                |
| Douglas Fir-larch                                                                                              | 536-581          | 0.137-0.145                         | -                                               | 7.3-6.9        | _                                            |                                |
| Southern Cypress                                                                                               | 502-514          | 0.130 - 0.132                       | **                                              | 7.7-7.6        | -                                            |                                |
| Hem-Fir. Spruce-Pine-Fir                                                                                       | 392-502          | 0.107-0.130                         | -                                               | 9.3-7.7        | -                                            |                                |

Figure 12: Table 17.6: For door (hardwood, i.e.: Oak)

# Heat Conduction through Partition walls/glasses

| SI.<br>No. | Item            | Description | A  | U    | TD  | Q<br>(Watt) |
|------------|-----------------|-------------|----|------|-----|-------------|
| 1.         | Partition Wall  | North       | 28 | 2.36 | 4.5 | 297.4       |
| 2.         | Door            | North       | 2  | 2.98 | 4.5 | 26.8        |
| 3.         | Partition Wall  | East        | 24 | 2.36 | 7.5 | 424.8       |
| 4.         | Partition Glass | East        | 6  | 2.86 | 7.5 | 128.7       |
|            | Total           |             |    |      |     | 877.7       |

Figure 13: Heat Conduction through Partition walls/glasses

- For 1 & 2:  $TD = T_o T_i = 30 25.5 = 4.5$
- For 3 & 4:  $TD = T_{o,max} T_i = 33 25.5 = 7.5$  [From table-9:  $T_{o,max} = 33$  for BD]
- For 1: A = Northern wall Door =  $(10 \times 3) (2 \times 1) = 28$
- For 3: A = Eastern wall Window = 30 6 = 24

| Sydney           | 33 | 528    | 151 | 12E     | 42    | 3   | 4   | 6    | 32            | 29 | 27  | 7   | 23  | 23    | 22  | N     | 4  | NE   |
|------------------|----|--------|-----|---------|-------|-----|-----|------|---------------|----|-----|-----|-----|-------|-----|-------|----|------|
| AUSTRIA          |    |        |     |         |       |     |     |      |               |    |     |     |     |       |     |       |    |      |
| Vienna           | 48 | 15N    | 16  | 22E     | 196   | -19 | -14 | -12  | 31            | 30 | 28  | 9   | 22  | 21    | 19  | W     | 7  | SSE  |
| AZORES           |    |        |     |         |       |     |     |      |               |    |     |     |     | 177.5 |     | 2000  |    | 552  |
| Lajes (Terceira) | 38 | 45N    | 27  | 05W     | 52    | 6   | 8   | 9    | 27            | 26 | 25  | 6   | 23  | 22    | 22  | W     | 5  | NW   |
| BAHAMAS          |    |        |     |         |       |     |     |      |               |    |     |     |     |       |     |       |    | 1411 |
| Nassan           | 25 | USN    | 77  | 21W     | 3     | 13  | 16  | 17   | 37            | 30 | 31  | 7   | 27  | 27    | 26  |       |    |      |
| BANGLADESH       |    |        |     |         |       |     |     |      | $\overline{}$ |    |     |     |     |       |     |       |    |      |
| Chittagong       | 22 | 21N    | 91  | 50E     | 27    | 9   | 11  | 12   | 3.4           | 33 | 32  | 11  | 28  | 27    | 27  |       |    | -    |
| BELGIUM          |    |        |     |         |       |     |     |      | _             |    | 32  | ,,, | _0  | -/    | -1  |       |    |      |
| Brussels         | 50 | 48N    | 4   | 21E     | 100   | -11 | -9  | -7   | 28            | 20 | 25  | 11  | 21  | 20    | 19  | NE    |    | CAIT |
| BERMUDA          |    |        |     |         |       |     |     |      |               | 20 | 2.3 | 11  | 21  | 20    | 19  | INE   | 4  | ENE  |
| Kindley AFB      | 33 | 22N    | 64  | 41W     | 9     | 8   | 12  | 13   | 31            | 30 | 29  | 7   | 26  | 26    | 26  | N1137 | ** | 0    |
| BOLIVIA          |    | (2.25) |     | -0.5.59 | . (6) | O   | . ~ | 1.07 |               | 50 | - 7 | ,   | 20  | 20    | -0  | NW    | 8  | S    |
| La Paz           | 16 | 208    | 68  | 09W     | 2659  | -2  | -1  | 1    | 22            | 21 | 20  | 1.2 | 2.7 |       |     |       |    |      |
| BRAZIL           |    |        |     |         | 2037  | 7   | - 1 |      |               | -1 | 20  | 1.3 | 14  | 14    | 1.3 |       |    |      |
| Belem            | 1  | 275    | 48  | 29W     | 13    | 19  | 21  | 22   | 32            | 32 | 21  |     | 27  |       |     | 223   |    |      |
| Belo Horizonte   | 19 |        | 100 |         |       |     |     |      |               |    | 31  | 11  | 27  | 26    | 26  | SE    | .3 | E    |
| Belo Horizonte   | 19 | 56S    | 43  | 57W     | 915   | 6   | 8   | 10   | 30            | 29 | 28  | 10  | 24  | 24    | 24  |       |    |      |

Figure 14:  $T_{o,max}$  from table-9 (design dry bulb - 2.5%)