Sterile liquid jet pulse train generating procedure e.g. for medical use

Patent number:

FR2779935

Publication date:

1999-12-24

Inventor:

GONON BERTRAND

Applicant:

SAPHIR MEDICAL SA (FR)

Classification:
- international:

A61B17

A61B17/32; A61M1/00; A61F9/007

- european:

A61B17/32J; A61M1/00K

Application number:

FR19980007879 19980619

Priority number(s):

FR19980007879 19980619

Abstract of FR2779935

The procedure uses a source of pressurized liquid and a vacuum source consisting of a continuous liquid jet and vacuum aspiration at the same recurrence frequency so that the liquid emerges from the hand piece in pulses at a set frequency and a pressure of 10 to 100 bars. The pulse and aspiration frequencies are variable between 0.1 and 10 Hz, and the duration of each output pulse starts and ends before the first half of the aspiration stroke.

Data supplied from the esp@cenet database - Worldwide

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) Nº de publication :

2 779 935

(à n'utiliser que pour les commandes de reproduction)

②1 Nº d'enregistrement national :

98 07879

(51) Int Ci⁶: **A 61 B 17/32**, A 61 M 1/00, A 61 F 9/007

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 19.06.98.
- (30) Priorité :

- 71 Demandeur(s) : SAPHIR MEDICAL SA Société anonyme FR.
- Date de mise à la disposition du public de la demande : 24.12.99 Bulletin 99/51.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): GONON BERTRAND.
- 73 Titulaire(s) :
- Mandataire(s): CABINET METZ PATNI.
- PROCEDE DE GENERATION D'UN TRAIN IMPULSIONNEL D'UN JET LIQUIDE STERILE PULSE-ASPIRE ET JET PULSE AINSI PRODUIT POUR UNE PIÈCE A MAIN EN VUE D'APPLICATIONS CHIRURGICALES.
- Le procédé consiste à générer un régime impulsionnel caractérisé en ce qu'il met en oeuvre une voie de liquide sous pression et une voie pneumatique d'aspiration et en ce que l'on commande le tir périodique du jet sous pression pendant l'application périodique de l'aspiration et en ce qu'on libère le tissu pendant la coupure de l'aspiration par une mise à l'air.

Cette invention intéresse les fabricants d'appareils et de pièces à main chirurgicales par un jet liquide sous pression.

FR 2 779 935 - A1

L'invention se rapporte à un procédé de génération d'un train impulsionnel d'un jet liquide stérile pulsé-aspiré et au jet liquide pulsé-aspiré ainsi généré pour l'alimentation d'une pièce à main en vue d'applications chirurgicales.

On connaît déjà l'utilisation des jets pulsés d'un liquide stérile sous haute pression à des fins d'interventions chirurgicales.

5

10

15

20

25

30

35

On peut citer par exemple à cet effet EP n° 0636345 au nom de SENTINEL MEDICAL qui concerne un instrument chirurgical à jet pulsé de liquide à des fins de découpe et d'émulsification avec une aspiration conjointe pour l'évacuation du liquide et des résidus biologiques.

Le jet pulsé provient du mouvement de va-etvient répété d'un piston amplificateur qui reçoit le liquide sous faible pression.

L'inconvénient majeur de ce système concerne l'utilisation d'un piston qui ne peut produire qu'un seul train d'impulsions pendant son trajet de travail le long de sa course. Il convient ensuite de remplir à nouveau la chambre du piston, ce qui condamne ce fonctionnement discontinu peu dispositif un à de travail des les exigences compatible avec chirurgiens.

Il existe également des inventions se rapportant à la chirurgie de l'oeil dans lesquelles un jet pulsé de liquide est dirigé sur l'oeil et notamment sur la cornée en vue d'un travail de désintégration des tissus défectueux et de décollement des matières et corps déposés ou incrustés. Ces inventions sont protégées par les brevets américains n° 3,818,913 et 3,930,505 au nom de WALLACH.

Il s'agit de jets pulsés de haute fréquence destinés par la haute cadence de répétition à un travail de désintégration pour le nettoyage du cristallin en le débarrassant des tissus défectueux et des matières et corps étrangers. Il est prévu classiquement une aspiration séparée pour l'évacuation du liquide et des résidus du travail de désintégration.

Dans ces derniers dispositifs aussi l'aspiration est continue et séparée. Par ailleurs, il ne s'agit pas de découpe mais de décollement et de désintégration en vue de l'évacuation des matières et des tissus gênants.

5

10

15

20

25

30

35

De façon générale, les jets liquides pulsés de haute pression connus antérieurement sont des trains d'impulsions liquides déclenchés sur commande et projetés sur la zone de dissection.

Le liquide projeté est ensuite évacué par aspiration en continu ou lorsqu'il dépasse une certaine quantité jugée gênante pour la poursuite du travail de dissection.

Dans ces réalisations, le chirurgien ne peut approcher de trop près le tissu à disséquer par l'extrémité de la pièce à main en raison des projections latérales de liquide et des éclaboussures ainsi générées troublant la visibilité du champ opératoire.

Par ailleurs, le rendement de dissection n'est que faiblement meilleur à celui d'un jet continu en raison des phénomènes de rebond.

Finalement, la pénétration de liquide même stérile dans l'ouverture découpée et ceci en quantités faibles mais non négligeables, est un inconvénient pour le corps du patient qui doit l'éliminer en plus de toutes les autres surcharges liées à l'intervention.

La présente invention a pour but de remédier aux inconvénients précités en proposant un procédé de génération d'un train impulsionnel d'un jet liquide stérile pulsé-aspiré et un jet pulsé-aspiré ainsi généré pour l'alimentation d'une pièce à main en vue d'applications chirurgicales.

A cet effet, le procédé selon l'invention se

caractérise en ce que l'on met en oeuvre une voie de liquide sous pression par exemple sous haute pression et une voie pneumatique d'aspiration et en ce que l'on commande périodiquement le tir du jet sous pression pendant l'application périodique de l'aspiration et en ce qu'on libère le tissu pendant la coupure de l'aspiration par une mise à l'air.

5

10

15

20

25

30

Le procédé selon l'invention présente de nombreux avantages.

Il permet d'éviter les projections latérales et les éclaboussures de toute sorte et de ce fait procure une bonne visibilité du champ opératoire en même temps que la possibilité d'approcher de très près le tissu à découper.

S'agissant d'un jet pulsé-aspiré c'est-à-dire d'un jet tiré en même temps que fonctionne l'aspiration, le tissu reste plaqué c'est-à-dire tendu momentanément avant et pendant le tir à l'extrémité du manchon d'extrémité de la pièce à main puis se détend pendant la phase finale de l'aspiration. On procède ainsi à un tir sur un tissu tendu qui assure précision et propreté de la découpe et du champ opératoire.

La durée d'application du jet étant courte, la faible consommation en liquide stérile est assurée.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit, donnée à titre d'exemple non limitatif en référence au dessin dans lequel :

- . la figure 1 est un graphique des formes d'ondes de base des paramètres du train impulsionnel en fonction du temps;
- . la figure 2 est un graphique de formes d'ondes selon une première variante à durée de tir plus importante ;
- 35 . la figure 3 est un graphique de formes d'ondes de tirs ne faisant pas intervenir de mise à l'air.

Le procédé selon l'invention consiste par

tous les moyens appropriés, mécaniques, électriques, électromécaniques, électromagnétiques... à générer sur commande à partir d'un premier conduit d'un liquide stérile sous pression délivré par un générateur et d'un deuxième conduit d'aspiration pneumatique par l'air, un train impulsionnel d'un jet liquide stérile pulséaspiré.

5

10

15

20

25

30

35

Plus particulièrement, on utilise pour chacun des conduits d'une part de liquide et d'autre part d'aspiration un moyen de fermeture-ouverture séquentiel du débit selon la même fréquence et pendant une durée différente pour les deux fluides.

Selon l'invention, le tir du jet liquide sous pression c'est-à-dire l'ouverture du moyen de fermeture-ouverture du conduit de liquide s'effectue pendant les intervalles de temps d'aspiration c'est-à-dire pendant la durée d'ouverture du moyen de fermeture-ouverture du conduit d'aspiration.

Le procédé est complété en ce que l'on réalise une neutralisation de l'aspiration par vide d'air juste après la fermeture du conduit d'aspiration ou l'on met à l'air le conduit d'aspiration pour stopper l'aspiration.

Le procédé peut être mis en oeuvre par des moyens simples comme des moyens électromécaniques à poussoirs ou autres agissant en pincement ou en écrasement sur un conduit souple véhiculant le liquide ou l'air aspiré ou par des composants hydrauliques de coupure tels que des obturateurs de débit ou des électrovannes tous commandés par un circuit électronique de séquencement.

Il en est de même pour les moyens de mise à l'air périodique du conduit d'aspiration permettant de décoller le tissu à découper de l'extrémité aspirante de la pièce à main pour lesquels les moyens de coupure-ouverture par composant seront pneumatiques et non plus hydrauliques.

On procède de préférence à une mise à l'air par le conduit d'aspiration par exemple par une dérivation de celui-ci périodiquement ouverte et fermée, mais toute autre façon de compenser la force de succion pour détendre le tissu est possible.

On expliquera maintenant le procédé par les différentes formes d'ondes.

Les principales phases caractéristiques de chaque période du train impulsionnel selon l'invention sont les suivantes repérées par les chiffres de 1 à 5 sur la figure 1.

. phase 1 : début de l'aspiration,

5

10

30

- phase 2 : tir du jet sous pression pendant une courte durée à l'intérieur de l'impulsion d'aspiration,
- 15 . phase 3 : poursuite de l'aspiration après le tir,
 - . phase 4 : mise à l'air pendant la coupure de l'aspiration,
 - . phase 5 : poursuite de la coupure de l'aspiration jusqu'à la prochaine période.
- On remarque les caractéristiques générales suivantes à l'observation des figures. Le tir s'effectue avec un certain retard par rapport au début de l'aspiration. Le tir s'effectue de préférence dans la première moitié de la largeur d'impulsion de l'aspiration et s'arrête de préférence avant le début de la deuxième moitié. La mise à l'air a lieu après la coupure de l'aspiration et de préférence mais non obligatoirement juste après cette coupure.

On donne ci-après à titre d'exemple non limitatif les principales valeurs caractéristiques des paramètres du train impulsionnel de jet liquide sous pression pulsé-aspiré correspondant à celui représenté sur la figure 1.

- . fréquence de récurrence : 1 Hz
- 35 . largeur d'impulsion de tir : 100 ms
 - . largeur d'impulsion d'aspiration : 400 ms
 - . repos d'aspiration : 600 ms

. largeur d'impulsion de mise à l'air: 300 ms

5

10

15

20

25

30

35

. décalage entre la fin de l'impulsion d'aspiration et la mise à l'air : très faible.

La mise à l'air est courte et suit immédiatement le fin de l'aspiration.

Les flancs de montée des impulsions sont représentés verticaux. Dans la pratique, la pente dépendra du type de dispositif de fermeture-ouverture de débit utilisé et notamment de son inertie.

D'autres formes d'ondes différentes sont possibles.

Ainsi, la fréquence de récurrence du régime impulsionnel et la largeur des impulsions peuvent varier. Ces variations dépendent de l'application chirurgicale à savoir du type d'intervention, d'organe ou de tissu visés ainsi que de la profondeur d'intervention dans le corps humain.

L'appareil générant ce train commandé d'impulsions permettra de faire varier ces principaux paramètres dont les paramètres temporels.

Il doit être noté que plus la largeur de l'impulsion du tir augmente plus celle de l'aspiration doit augmenter pour pouvoir évacuer complètement le liquide et le ou les résidus.

La figure 2 montre des formes d'onde basées sur le même principe d'un jet liquide sous pression pulsé-aspiré objet de l'invention. On remarque que la durée du tir et la durée d'aspiration augmentent simultanément. En effet, plus la durée du tir est importante, plus l'aspiration doit durer pour pouvoir évacuer tout le liquide projeté et les résidus solides. Corrélativement, les impulsions de commande ou les ouvertures correspondant à la mise à l'air se déplacent sur l'axe des temps pour débuter juste après la coupure de l'aspiration.

La figure 3 présente des formes d'onde sans mise à l'air. Cet exemple d'application est celui d'une

pièce à main à manchon d'extrémité ouvert sur sa périphérie pour laquelle le relâchement du tissu après le tir s'effectue automatiquement après la coupure de l'aspiration.

5

REVENDICATIONS

1. Procédé de génération sur commande d'un train impulsionnel d'un jet liquide stérile pour une pièce à main notamment en vue d'applications chirurgicales par commandes périodiques successives selon une fréquence de récurrence de tirs de jets élémentaires de liquide sous pression mettant en oeuvre une voie de liquide sous pression reliée à une source de pression et une voie d'aspiration reliée à une source de dépression caractérisé en ce que l'on :

5

10

15

20

25

30

35

commande le tir des jets élémentaires en coupant périodiquement selon la fréquence de récurrence le flux du liquide sous pression alimentant la pièce à main et on le coupe avant la fin de la période de récurrence,

- . commande l'aspiration périodiquement à la même fréquence de récurrence,
- . coupe périodiquement l'aspiration à la même fréquence de récurrence avant la prochaine commande périodique de tir du jet liquide sous pression, créant ainsi un jet pulsé-aspiré.
 - 2. Procédé selon la revendication 1 caractérisé en ce que le liquide sous pression est généré et expulsé sous haute pression.
 - 3. Procédé selon la revendication précédente caractérisé en ce que la haute pression se situe autour de 100 bars.
- 4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on commande le tir périodique du jet sous pression pendant la durée périodique de l'application de l'aspiration.
- 5. Procédé selon la revendication précédente caractérisé en ce que l'on commande le tir périodique du jet sous pression dans la première moitié de la durée périodique d'application de l'aspiration.
 - 6. Procédé selon les revendications 4 et 5

caractérisé en ce que la durée périodique de tir du jet sous pression se termine avant la première moitié de l'impulsion périodique d'aspiration.

7. Procédé selon la revendication 1 ou 2 caractérisé en ce que l'aspiration est suivie après sa coupure par une compensation de l'effet de succion pour détendre le tissu.

5

10

20

- 8. Procédé selon la revendication précédente caractérisé en ce que la compensation de l'effet de succion est une mise à l'air pendant la coupure de l'aspiration.
- 9. Procédé selon la revendication précédente caractérisé en ce que l'on procède à la mise à l'air par le conduit d'aspiration.
- 10. Procédé selon la revendication 1 caractérisé en ce que la fréquence de récurrence est modifiable.
 - 11. Procédé selon la revendication précédente caractérisé en ce que la fréquence de récurrence est située dans une gamme délimitée par une fraction de Hertz et quelques Hertz.
 - 12. Procédé selon la revendication précédente caractérisé en ce que la fréquence de récurrence est de l'ordre de 1 Hz.
- 13. Jet de liquide stérile sous pression pour une pièce à main notamment en vue d'applications chirurgicales obtenu par le procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il est pulsé-aspiré selon une fréquence de récurrence.

F/G.1

FIG.2

FIG.3

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

1

RAPPORT DE RECHERCHE **PRELIMINAIRE**

établi sur la base des demières revendications déposées avant le commencement de la recherche Nº d'enregistrement national

FA 562520 FR 9807879

Catégorie	Citation du document avec indication, en cas des parties pertinentes	de besoin,	de la demande examinée	
X	DE 37 15 418 A (OLYMPUS) 12 * colonne 6, ligne 23 - col 48; figure 1 *		1-4, 10-13	
X	US 4 655 197 A (ATKINSON) * colonne 4, ligne 66 - col 55 * * colonne 17, ligne 3 - lig * abrégé; figure 9 *	onne 5, ligne	1,10-13	
A	EP 0 489 496 A (POSSIS MEDI 10 juin 1992 * colonne 3, ligne 13 - lig * colonne 5, ligne 40 - col 14; figure 1 *	ne 14 *	1-3	
A	US 5 674 226 A (DOHERTY ET 7 octobre 1997 * colonne 2, ligne 59 - col 6; figures 1,2,5 *		1,8,9	DOMAINES TECHNIQUES RECHERCHES (Int.CL.6) A61B A61M
	Date de	achèvement de la recherche		Examinateur
		5 mars 1999	Moe	rs, R
X : parti Y : parti autre A : perti	ATEGORIE DES DOCUMENTS CITES cullèrement pertinent à lui seul cullèrement pertinent en combinaison avecun i document de la même catégorie nent à l'encontre d'au moins une revendication mère-plan technologique général	de dépôt ou qu'à i D : cité dans la dema L : cité pour d'autres	ret bénéficiant d' : et qui n'a été pu une date postérion nde raisons	une date antérieure ibiléqu'à cette date