Departamento de Matemática da Universidade de Aveiro

Cálculo II - agr. 4

2016/17

2.º teste Duração: 2h15

- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas. A cotação e o formulário de transformadas de Laplace encontram-se no verso.
- 1. O conjunto $\{e^{-3x}, xe^{-3x}\}$ constitui um sistema fundamental de soluções da equação homogénea associada à equação diferencial

$$e^{3x}y'' + 6e^{3x}y' + 9e^{3x}y = 1.$$

- (a) Usando o método da variação das constantes determina uma solução particular da EDO. Diz também qual é a solução geral da EDO.
- (b) Determina usando transformadas de Laplace a solução do problema de valores iniciais $e^{3x}y'' + 6e^{3x}y' + 9e^{3x}y = 1$, y(0) = y'(0) = 0. [Sugestão: Começa por dividir por e^{3x} ambos os membros da EDO.]
- 2. Sabendo que $(\ln(1+x))^{(n)} = (-1)^{n-1}(n-1)!(1+x)^{-n}$, para x > -1 e $n \in \mathbb{N}$,
 - (a) escreve a expressão do polinómio de MacLaurin de ordem $n \in \mathbb{N}$ da função definida por $\ln(1+x)$ para x > -1;
 - (b) determina um valor de $n \in \mathbb{N}$ para o qual consigas garantir que o valor do polinómio anterior em 1 seja uma aproximação de $\ln 2$ com erro inferior a uma décima.
- 3. Considera a série de potências $\sum_{n=1}^{\infty} \frac{2^{-n}}{n+1} (x+1)^n$.
 - (a) Determina o raio de convergência da série e indica o seu centro.
 - (b) Determina agora o intervalo e o domínio de convergência da série.
- 4. Seja f a função 2π -periódica que em $]-\pi,\pi]$ se expressa como $f(x):=\left\{\begin{array}{cc} x, & -\pi < x < 0 \\ -\pi x, & 0 \leq x \leq \pi \end{array}\right.$
 - (a) Calcula os coeficientes de Fourier do tipo a_n de f.
 - (b) Sabendo que a série de Fourier de f é

$$-\pi + \sum_{n=1}^{\infty} \left(\frac{4}{\pi (2n-1)^2} \cos((2n-1)x) - \frac{2}{2n-1} \sin((2n-1)x) \right)$$

determina a soma da série numérica

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

5. A partir da definição de transformada de Laplace, e tendo em conta que $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, mostra que $\mathcal{L}\{\frac{1}{\sqrt{t}}\}(s) = \sqrt{\frac{\pi}{s}}$ para s>0.

Sugestão: No integral que define transformada de Laplace procede a uma mudança de variável de maneira a que e^{-st} se transforme em e^{-x^2} .

Cotação:

1. 5; 2. 4; 3. 4; 4. 4; 5. 3.

Formulário (Transformadas de Laplace):

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
$\sin(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$\sinh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
f(t) + g(t)	$F(s) + G(s), \ s > s_f, s_g$
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s), \ s > s_f$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$
$H_a(t)f(t-a) (a>0)$	$e^{-as}F(s), s > s_f$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$, $s > $ ordem exp. de f
f'(t)	s F(s) - f(0), $s > $ ordem exp. de f
f''(t)	$s^2F(s)-sf(0)-f'(0)$, $s>$ ordens exp. de f,f'
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$,
	$s > $ ordens exp. de $f, f', \dots, f^{(n-1)}$
(f*g)(t)	F(s) G(s), $s > $ ordens exp. de f, g
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$, $s > 0$, ordem exp. de f

Nota: O facto de se indicarem restrições numa dada linha do quadro acima não significa que não haja restrições adicionais a considerar para que a fórmula indicada nessa linha seja válida.