18. A compound of the formula

wherein the dashed lines represent optional double bonds;

 $B \ is \ -NR^1R^2, \ -CR^1R^2R^{10}, \ -C(=CR^2R^{11})R^1, \ -NHCR^1R^2R^{10}, \ -OCR^1R^2R^{10}, \ -SCR^1R^2R^{10}, \ -CR^2R^{10}NHR^1, \ -CR^2R^{10}OR^1, \ -CR^2R^{10}SR^1 \ or \ -COR^2;$

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that at least one of D and E is nitrogen or F is NR⁴, and provided that only one of D and E is nitrogen, and D and E are not nitrogen when F is NR⁴;

G, when single bonded to E, is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), -O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted with one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G, when double bonded to E, is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , -C(=O)0- $(C_1$ - C_4) alkyl, $-OC(=O)(C_1$ - C_4 alkyl), $-OC(=O)N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), $-NHCO(C_1$ - C_4 alkyl), -COOH, $-COO(C_1$ - C_4 alkyl), $-CONH(C_1$ - C_4 alkyl), $-CON(C_1$ - C_4 alkyl) and $-SO_2N(C_1$ - C_4 alkyl), $-SO_2(C_1$ - C_4 alkyl), $-SO_2NH(C_1$ - C_4 alkyl) and $-SO_2N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), wherein a carbon-carbon single bond of each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups having at least two carbon-carbon single bonds of each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups having four carbons may optionally be replaced with a carbon-carbon double or triple bond; R^2 is C_1 - C_1 2 alkyl wherein one carbon-carbon single bond of any said alkyl having at least two carbons, one or two carbon-carbon single bonds of any said alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said

alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond, or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R^2 is C_3 - C_8 cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C1-C4 alkyl, benzyl and C1-C4 alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), -OC(=O)N(C₁-C₄ alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), amino, -NH(C_1 - C_2 alkyl), -N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), - $N(C_1-C_4 \text{ alkyl})-CO-(C_1-C_4 \text{ alkyl})$, $-NHCO(C_1-C_4 \text{ alkyl})$, -COOH, $-COO(C_1-C_4 \text{ alkyl})$, $-CONH(C_1-C_4 \text{ alkyl}), -CON(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl}), -SH, -CN, -NO_2, -SO(C_1-C_4 \text{ alkyl}), -SO(C_1-C_4 \text$ $SO_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² or -CR¹R²R¹⁰ may form a 3 to 8 membered ring consisting of single bonds, wherein one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z^3 is hydrogen, C_1 - C_4 alkyl, benzyl or C_1 - C_4 alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced with a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, -O(C_1 - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C_1 - C_4 alkyl) or -SO₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2 alkoxy);

each R^4 is, independently, hydrogen, $(C_1-C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, cyano, amino, nitro, $-O(C_1-C_4 \text{ alkyl})$, $-N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-C(=O)H \text{ or }-C(=O)O(C_1-C_4 \text{ alkyl})$, wherein one or two of the carbon-carbon single bonds in each of the $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties

f I const

may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1 - C_3 alkoxy, dimethylamino, methylamino, ethylamino, -NHC(=O)CH₃, fluoro, chloro, C_1 - C_3 alkylthio, -CN, -COOH, -C(=O)O(C_1 - C_4 alkyl), -C(=O)(C_1 - C_4 alkyl) and -NO₂;

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ4 wherein Z4 is hydrogen, C1-C4 alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, $-NH_2$, $-NH(C_1-C_4 \text{ alkyl})$, $-N(C_1-C_2 \text{ alkyl})(C_1-C_6 \text{ alkyl})$, $-C(=O)O(C_1-C_4 \text{ alkyl})$, $-C(=O)(C_1-C_4 \text{ alkyl})$ alkyl), -COOH, -SO₂NH(C_1 - C_4 alkyl), -SO₂N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), -SO₂NH₂, -NHSO₂(C_1 - C_4 alkyl), -SO₂NH₂, -NHSO₂(C_1 - C_2 alkyl), -SO₂NH₂(C_1 - C_2 C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂(C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl; and furthermore wherein when R⁵ is phenyl or pyridyl substituted with three substituents, said substituents can further be selected from (C₁-C₄ alkyl)O(C₁-C₄ alkyl), OCF₃, and fluoro, and one carbon-carbon single bond of each (C₁-C₄) alkyl group of said substituents having between two and four carbon atoms may be optionally replaced with a carbon-carbon double or triple bond; or R5 is pyrimidyl substituted by three substituents independently selected from C₁-C₄ alkyl, -O(C₁-C₄ alkyl), CF₃, OCF₃, -CHO, (C₁-C₄ alkyl)-OH, CN, Cl, F, Br, I and NO₂, wherein a carbon-carbon single bond of said (C₁-C₄) alkyl groups having between two and four carbon atoms may optionally be replaced by a carbon-carbon double or triple bond;

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, -O(C_1 - C_4 alkyl) -C(=O)(C_1 - C_4 alkyl), -C(=O)O(C_1 - C_4 alkyl), -OCF₃, -CF₃, -CH₂OH, -CH₂O(C_1 - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it is not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

FI

Z is NH, oxygen, sulfur, -N(C₁-C₄ alkyl), -NC(=O)(C₁-C₂ alkyl), NC(=O)O(C₁-C₂alkyl) or CR¹³R¹⁴ wherein R¹³ and R¹⁴ are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R¹³ and R¹⁴ can be cyano;

or a pharmaceutically acceptable salt of such compound.

25. A compound of the formula

wherein the dashed lines represent optional double bonds;

B is -NR¹R², -CR¹R²R¹⁰, -C(=CR²R¹¹)R¹, -NHCR¹R²R¹⁰, -OCR¹R²R¹⁰, -SCR¹R²R¹⁰, -CR²R¹⁰OR¹, -CR²R¹⁰OR¹, -CR²R¹⁰SR¹ or -COR²;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that at least one of D and E is nitrogen or F is NR⁴, and provided that only one of D and E is nitrogen, and D and E are not nitrogen when F is NR⁴;

G, when single bonded to E, is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), -O(C_1 - C_4 alkyl), -NH₂, -NH(C_1 - C_4 -alkyl) or -N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted with one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G, when double bonded to E, is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , -C(=O)0- $(C_1$ - C_4) alkyl, $-OC(=O)(C_1$ - C_4 alkyl), $-OC(=O)N(C_1$ - C_4 alkyl), $-CON(C_1$ - C_4 alkyl), $-NHCO(C_1$ - C_4 alkyl), $-CON(C_1$ - C_4 alkyl) and $-SO_2N(C_1$ - C_4 alkyl), $-SO_2(C_1$ - C_4 alkyl), $-SO_2NH(C_1$ - C_4 alkyl) and $-SO_2N(C_1$ - C_4 alkyl), wherein a carbon-carbon single bond of each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups having at least two carbons may optionally be replaced with a carbon-

F2

carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having four carbons may optionally be replaced with a carbon-carbon double or triple bond; R² is C₁-C₁₂ alkyl wherein one carbon-carbon single bond of any said alkyl having at least two carbons, one or two carbon-carbon single bonds of any said alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond, or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R2 is C3-C8 cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), -OC(=O)N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₆ alkyl), amino, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)(C₁-C₄ alkyl), - $N(C_1-C_4 \text{ alkyl})-CO-(C_1-C_4 \text{ alkyl})$, $-NHCO(C_1-C_4 \text{ alkyl})$, -COOH, $-COO(C_1-C_4 \text{ alkyl})$, $-CONH(C_1-C_4 \ alkyl), \ -CON(C_1-C_4 \ alkyl)(C_1-C_2 \ alkyl), \ -SH, \ -CN, \ -NO_2, \ -SO(C_1-C_4 \ alkyl), \ -NO_2 \ SO_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² or -CR¹R²R¹⁰ may form a 3 to 8 membered ring consisting of single bonds, wherein one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl or C₁-C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced with a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, -O(C_1 - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C_1 - C_4 alkyl) or -SO₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2 alkoxy);

F2 cont

each R^4 is, independently, hydrogen, $(C_1-C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, trifluoromethyl, hydroxy, cyano, amino, nitro, $-O(C_1-C_4 \text{ alkyl})$, $-N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_4 \text{ alkyl})$, $-SO(C_1-C_4 \text{ alkyl})$, $-SO_2(C_1-C_4)$ alkyl, $-CO(C_1-C_4 \text{ alkyl})$, $-C(=O)H \text{ or }-C(=O)O(C_1-C_4 \text{ alkyl})$, wherein one or two of the carbon-carbon single bonds in each of the $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1-C_3 alkoxy, dimethylamino, methylamino, ethylamino, $-NHC(=O)CH_3$, fluoro, chloro, C_1-C_3 alkylthio, -CN, -COOH, $-C(=O)O(C_1-C_4 \text{ alkyl})$, $-C(=O)(C_1-C_4 \text{ alkyl})$ and $-NO_2$;

F2 Cont

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein Z⁴ is hydrogen, C₁-C₄ alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -SO₂NH₂, -NHSO₂(C₁-C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂(C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, -O(C_1 - C_4 alkyl) -C(=O)(C_1 - C_4 alkyl), -C(=O)O(C_1 - C_4 alkyl), -OCF₃, -CF₃, -CH₂OH, -CH₂O(C_1 - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it is not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Cont

Z is NH, oxygen, sulfur, -N(C_1 - C_4 alkyl), -NC(=O)(C_1 - C_2 alkyl), NC(=O)O(C_1 - C_2 alkyl) or $CR^{13}R^{14}$ wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound.