Gavillas

Levia MN

15 de enero de 2024

1. Pregavillas

Definición 1.1

Sea (X, τ) un espacio topológico, τ es un conjunto parcialmente ordenado por la contención (\subset) podemos considerar la categoria asociada C_{τ} tal que sus elementos son los elementos de τ y existe $V \to U$ si y solo si $V \subset U$. Una pregavilla sobre (X, τ) es un funtor $\mathcal{F}: C_{\tau}^{op} \to C$ con C una categoría, las que nos interesan para los propositos de estas notas son las categorias **Set**, **Ab**, **Ring**, **R-Mod**.

Adicionalmente para nuestra notación pondremos

$$\rho_V^U = \mathcal{F}(V \to U) : \mathcal{F}(U) \to \mathcal{F}(V)$$

Y los llamaremos los morfismos de restricción.

Diremos que una pregavilla \mathcal{F} es una gavilla si para todo $U \in \tau$ y para toda cubierta abierta $\mathcal{C} = \{U_i \mid i \in I\}$ de U se cumple que dadas $s_i \in \mathcal{F}(U_i)$ tales que para cualquier par de indices $i, j \in I$ se tiene que:

$$\rho_{U_i \cap U_j}^{U_i}(s_i) = \rho_{U_i \cap U_j}^{U_j}(s_j)$$

Entonces existe una única $s \in \mathcal{F}(U)$ tal que $\rho_{U_i}^U(s) = s_i$

Ejemplo 1.1

Los ejemplos clásicos de gavillas tienen que ver con funciones que se restringen a abiertos y preservan esa estructura. Algunos ejemplos clásicos son

$$C(U) = \{ f : U \to \mathbb{R} \mid f \text{ es continua.} \}$$

Y si X es una variedad suave sobre $k \in \{\mathbb{R}, \mathbb{C}\}$

$$\mathcal{O}(U) = \{ f : X \to k \mid f \text{ es una función suave.} \}$$

como y en ambos ejemplos las restricciones estan dadas por $\rho_V^U(f) = f \circ i_V$. Con $i_V: V \to U$ la inclusión canónica, y es claro que ambas son gavillas sobre X.

Definición 1.2

Dada un espacio topológico (X, τ) y una gavilla Γ sobre X, dado $x \in X$ podemos definir $M_x = \{(U, s) \mid U \in \tau, s \in \Gamma(U)\}$ y tener la realción dada por $(U, s) \sim (V, t)$ si y solo si existe $W \in \mathcal{N}(x)$ tal que $W \subset U \cap V$ y $\rho_W^U(s) = \rho_W^V(t)$.

Proposición 1.1

La realción \sim anterior es una relación de equivalencia.

Demostración. 1. Notemos que $U \subset U = U \cap U$ y $\rho_U^U(s) = \rho_U^U(s)$ por lo que $(U,s) \sim (U,s)$

- 2. La definición es claramente simétrica.
- 3. Si $(U,s) \sim (V,t)$ y $(V,t) \sim (W,r)$ entonces tenemos $W_1, W_2 \in \mathcal{N}(x)$ tales que $W_1 \subset U \cap V$ y $W_2 \subset V \cap W$ y además $\rho_{W_1}^U(s) = \rho_{W_1}^V(t)$ y $\rho_{W_2}^V(t) = \rho_{W_2}^W(r)$.

 Consideremos $W_3 = W_1 \cap W_2 \in \mathcal{N}(x)$ y notemos que $W_3 \subset (U \cap V) \cap (V \cap W) \subset U \cap W$ y también

$$\begin{split} \rho^{U}_{W_{3}}(s) &= \rho^{W_{1}}_{W_{3}}(\rho^{U}_{W_{1}}(s)) = \rho^{W_{1}}_{W_{3}}(\rho^{V}_{W_{1}}(t)) = \rho^{V}_{W_{3}}(t) \\ &= \rho^{W_{2}}_{W_{3}}(\rho^{V}_{W_{2}}(t)) = \rho^{W_{2}}_{W_{3}}(\rho^{W}_{W_{2}}(r)) = \rho^{W}_{W_{3}}(r) \end{split}$$

Pues Γ es un funtor. Por lo tanto $(U,s) \sim (W,r)$

Definición 1.3

Dado (X, τ) espacio topológico y Γ una pregavilla sobre X, para cada $x \in X$ definiremos

$$\Gamma_x = M_x / \sim$$

El tallo de la gavilla en x. Y notemos que en las categorias que nos interesan

$$\Gamma_x = \lim_{U \in \mathcal{N}(x)} \Gamma(U)$$

De hecho si la categoria donde Γ toma valores es alguna arbitraria, esta es la definición del tallo de la gavilla sobre x.

Observación 1.1

Tenemos una función natural para cada $U \in \mathcal{N}(x)$, $\pi_x^U : \Gamma(U) \to \Gamma_x$ que asigna $s \mapsto [U, s]$ y escribimos $s_x = \pi_x^U(s)$ cuando es claro por el contexto.

Ejemplo 1.2

Consideremos dos espacios topológicos $(X, \tau_X), (Y, \tau_Y)$ y una función continua $p: Y \to X$.

Para cada $U \in \tau_X$ definamos:

$$\Gamma(U) = \{ f : U \to Y \mid p \circ f = id_U, f \text{ es continua.} \}$$

es decir, el conjunto de secciones continuas de p sobre U. Entonces Γ es una gavilla sobre f con las restricciones usuales.

Ya que si $f \in \Gamma(U)$ y $V \subset U$ entonces para cualquier $x \in V$, entonces $p \circ (f \circ i_V)(x) = (p \circ f) \circ i_V(x) = id_U(x) = x$ por lo que $p \circ \rho_V^U(f) = id_V$ asi que las restricciones estan bien definidas.

2. Espacio étale

Ahora veremos que en cierto sentido cualquier gavilla es la gavilla de secciones continuas sobre algún espacio.

Definición 2.1

Para un espacio topológico (X,τ) y una pregavilla Γ definiremos

$$\widetilde{\Gamma} = \bigsqcup_{x \in X} \Gamma_x$$

Y para cada $U \in \tau$ y $s \in \Gamma(U)$

$$\mathcal{V}(U,s) = \{(x,s_x) \mid x \in U\}$$

Finalmente tenemos una función $p:\widetilde{\Gamma}\to X$ tal que p(x,[U,s])=x

Proposición 2.1

 $\mathcal{B} = \{ \mathcal{V}(U, s) \mid U \in \tau, s \in \Gamma(U) \}$ es una base para una topología sobre $\widetilde{\Gamma}$.

Demostración. 1. Dado $(x, [U, s]) \in \widetilde{\Gamma}$ entonces $(x, [U, s]) = (x, s_x) \in \mathcal{V}(U, s)$ por lo que

$$\widetilde{\Gamma} = \bigcup \mathcal{B}$$

2. Sea $(x, [W, r]) \in \mathcal{V}(U, s) \cap \mathcal{V}(V, t)$ entonces por definición $x \in U \cap V$, y además $[V, t] = t_x = [W, r] = s_x = [U, s]$ por lo que existe $W_1 \in \mathcal{N}(x)$ $W_1 \subset U \cap V$ tal que $h := \rho_{W_1}^U(s) = \rho_{W_1}^V(t) \in \Gamma(W)$ asi que consideremos $B = \mathcal{V}(W_1, h) \in \mathcal{B}$ Notemos que como $x \in W_1$ y también, $W_1 \subset W_1 = W_1 \cap U$ y $\rho_{W_1}^{W_1}(h) = id_{W_1}(h) = h = \rho_{W_1}^U(s)$ por lo que $[W, r] = [U, s] = [W_1, h] = h_x$ asi que $(x, [W, r]) \in \mathcal{B}$ Finalmente dada $(y, h_y) \in \mathcal{B}$ entonces ocurre que $y \in W_1 \subset U \cap V$ por lo que $y \in U$ y $y \in V$ y además $h_y = [W_1, h] = [U, s] = [V, t]$ en Γ_y , ya que $W_1 \subset U(V)$ y además $\rho_{W_1}^U(s) = h = \rho_{W_1}^V(t)$ asi que $(y, h_y) \in \mathcal{B}$

Esto prueba que \mathcal{B} es una base para una topología $\tilde{\tau}$ sobre $\widetilde{\Gamma}$

Definición 2.2

A $(\widetilde{\Gamma}, \widetilde{\tau})$ se le llama el espacio étale de la gavilla Γ

 $\mathcal{V}(U,s) \cap \mathcal{V}(V,t)$ por lo que $B \subset \mathcal{V}(U,s) \cap \mathcal{V}(V,t)$

Proposición 2.2

La función $p:\widetilde{\Gamma}\to X$ definida arriba es continua y es un homeomorfismo local.

Demostración. Dado $U \in \tau$ se tiene que

$$p^{-1}(U) = \{(x, [V, t]) \mid x \in U, t \in \Gamma(V)\}\$$

Así que dado $(x, [V, t]) \in p^{-1}(U)$ consideremos $W = U \cap V$, $h = \rho_W^V(t)$ y $B = \mathcal{V}(W, h)$. Es fácil ver que [V, t] = [W, h] en Γ_x ya que $W \subset W \cap V$ y $h = \rho_W^V(h) = \rho_W^V(t)$ por lo que $(x, [V, t]) \in B$. Dado $(y, h_y) \in B$ ocurre que $y \in W \subset U$ por lo que $(y, h_y) \in p^{-1}(U)$.

$$\therefore (x, [V, t]) \in B \subset p^{-1}(U)$$

Por lo que $p^{-1}(U)$ es abierto. Asi que p es una función continua.

Más aún para cada $U \in \tau$ y $s \in \Gamma(U)$ $p(\mathcal{V}(U,s)) = U$ por lo que es una función abierta y al restringirla a cualquier abierto báisco tenemos un homeomorfismo, como cada punto tiene un abierto básico que lo contiene, p es un homeomorfismo local.

Proposición 2.3

Sea $s \in \Gamma(U)$ entonces la función $f: U \to \widetilde{\Gamma}$ dada por $f(x) = (x, s_x)$ es una sección continua de p. Más aún, si Γ es una gavilla se vale el regreso

Demostración. Primero, notemos que dado $x \in f^{-1}(\mathcal{V}(V,t))$ entonces $(x,s_x) \in \mathcal{V}(V,t)$ entonces $x \in V$ y también $s_x = t_x$ asi que existe $W \in \mathcal{N}(x)$ tal que

 $W \subset U \cap V$ tal que $\rho_W^U(s) = \rho_W^V(t)$ asi que dado $y \in W$ como $W, U, V \in \mathcal{N}(y)$ y ocurre lo anterior, entonces $s_y = t_y$, por lo que $f(y) = (y, s_y) = (y, t_y) \in \mathcal{V}(V, t)$. Concluimos que $x \in W \subset f^{-1}(\mathcal{V}(V, t))$, así que f es continua. Y es claro que $p \circ f(x) = p(x, s_s) = x$ asi que si es una sección continua de p.

Por otro lado, supongamos que Γ es una gavilla y sea $\sigma: U \to \widetilde{\Gamma}$ una sección continua de p y escribamos $\sigma(x) = (x, \sigma_1(x))$. Sea $x \in U$ entonces, como \mathcal{B} es una base, existen $V^x \in \tau$ y $t^x \in \Gamma(V)$ tal que $\sigma(x) \in \mathcal{V}(V^x, t^x)$ y por lo tanto $\sigma_1(x) = t^x_x$. Como para todo $x \in X$, $x \in V^x$ entonces $X = \bigcup_{x \in X} V^x$ Veamos que $\{t^x \mid x \in X\}$ son compatibles. Sean $x, y \in X$ y $a \in V_x \cap V_y$ entonces, $t^x_a = \sigma_1(a) = t^y_a$ por lo que existe $W_a \in \mathcal{N}(a)$ tal que $W_a \subset V_x \cap V_y$ y

$$\rho_{W_a}^{V_x}(t^x) = \rho_{W_a}^{V_y}(t^y)$$

Asi, tenemos a la familia $\{W_a \mid a \in V_x \cap V_y\}$ la cual cubre a $V_x \cap V_y$ y a la familia $\{h_a := \rho_{W_a}^{V_x}(t^x) = \rho_{W_a}^{V_y}(t^y) \in \Gamma(W_a) \mid a \in V_x \cap V_y\}$ y además ocurre que dados $a, b \in V_x \cap V_y$.

$$\rho_{W_a \cap W_b}^{W_a}(h_a) = \rho_{W_a \cap W_b}^{W_a}(\rho_{W_a}^{V_x}(t^x))$$

$$= \rho_{W_a \cap W_b}^{V_x}(t^x) = \rho_{W_a \cap W_b}^{W_b}(\rho_{W_b}^{V_x}(t^x))$$

$$= \rho_{W_a \cap W_b}^{W_b}(h_b)$$

Y como Γ es una gavilla entonces existe una única $t^{x,y} \in \Gamma(V_x \cap V_y)$ tal que para cualquier $a \in V_x \cap V_y$ ocurre que: $\rho_{W_a}^{V_x \cap V_y}(t^{x,y}) = h_a$ Además, veamos que para cualquier $a \in V_x \cap V_y$

$$\rho_{W_a}^{V_x \cap V_y}(\rho_{V_x \cap V_y}^{V_x}(t^x)) = \rho_{W_a}^{V_x}(t^x) = h_a$$

y como $t^{x,y}$ es único, se sigue que $t^{x,y} = \rho^{V_x}_{V_x \cap V_y}(t^x)$. Pero también ocurre que:

$$\rho_{W_a}^{V_x \cap V_y}(\rho_{V_x \cap V_y}^{V_y}(t^y)) = \rho_{W_a}^{V_y}(t^y) = h_a$$

 $\therefore \rho_{V_x \cap V_y}^{V_x}(t^x) = t^{x,y} = \rho_{V_x \cap V_y}^{V_y}(t^y)$. Y de nuevo como Γ es una gavilla existe $t \in \Gamma(U)$ tal que para cualquier $x \in X$,ocurre que $\rho_{V_x}^U(t) = t^x$.

Ahora bien para cualquier $x \in X$, debe ocurrir que $[U,t] = [V_x,t^x]$ ya que $V_x \subset V_x \cap U$ y $\rho_{V_x}^{V_x}(t^x) = t^x = \rho_{V_x}^U(t)$, es decir, para toda $x \in X$, se tiene que $t_x = t_x^x = \sigma_1(x)$

$$\therefore \sigma(x) = (x, t_x)$$

Como se quería.

Notemos que la definición de pregavilla nos da una noción natural de morfismos de pregavillas, es decir, transformaciones naturales entre los funtores.

Lema 2.1

Sean (X, τ) un espacio topológico, Γ una gavilla sobre $X, U \in \tau$ y dos elementos $\alpha, \beta \in \Gamma(U)$. Ocurre que $\alpha = \beta$ si y solo si para cualquier $x \in U$ $\alpha_x = \beta_x$.

 $Demostración. \Longrightarrow$) Si $\alpha = \beta$ entonces ocurre que para cualquier $x \in U$ que

$$\alpha_x = [U, \alpha] = [U, \beta] = \beta_x$$

 \iff) Supongamos que para cualquier $x \in U$ ocurre que $\alpha_x = \beta_x$ ahora entonces para cada $x \in U$ existe $W_x \subset U$ tal que

$$\rho_{W_x}^U(\alpha) = \rho_{W_x}^U(\beta)$$

Asi que de $\{W_x \mid x \in U\}$ es una cubierta abierta de U y además tenemos a la familia $\{h_x := \rho_{W_x}^U(\alpha) \in \Gamma(W_x) \mid x \in U\}$ notemos que dados $x, y \in U$ ocurre que:

$$\rho_{W_x \cap W_y}^{W_x}(h_x) = \rho_{W_x \cap W_y}^{W_x}(\rho_{W_x}^U(\alpha)) = \rho_{W_x \cap W_y}^U(\alpha)$$
$$= \rho_{W_x \cap W_y}^{W_y}(\rho_{W_y}^U(\alpha)) = \rho_{W_x \cap W_y}^{W_y}(h_y)$$

Por lo que esta familia es compatible y como Γ es una gavilla, existe una única $\gamma \in \Gamma(U)$ tal que para cada $x \in U$ ocurre que

$$\rho_{W_x}^U(\gamma) = h_x = \rho_{W_x}^U(\alpha) = \rho_{W_x}^U(\beta)$$

entonces se sigue que $\alpha = \beta$

Teorema 2.1

Sean (X, τ) espacio topológico, Γ una gavilla sobre X y $(\widetilde{\Gamma}, \widetilde{\tau})$ su espacio étale, si \mathcal{G} es la gavilla de secciones de $p: \widetilde{\Gamma} \to X$, entonces $\Gamma \simeq \mathcal{G}$.

Demostración. Para cada $U \in \tau$ definamos $\alpha_U : \Gamma(U) \to \mathcal{G}(U)$ dada por $\alpha_U(s)(x) = (x, s_x)$ y veamos que es un transformación natural.

Sean $x \in V \subset U$ y $s \in \Gamma(U)$

$$\alpha_V(\rho_V^U(s))(x) = (x, \rho_V^U(s)_x) = (x, s_x) = \alpha_U(s) \circ i_V(x)$$

Pues $s_x = [U, s] = [V, \rho_V^U(s)] = \rho_V^U(s)_x$ ya que $v \subset V \cap U$ y $\rho_V^V(\rho_V^U(s)) = \rho_V^U(s)$ por lo que α_U defininen las componentes de una transformación natural.

Por el teorema anterior y gracias a que Γ es un gavilla, se tiene que cada α_U es suprayectiva y además el lema anterior prueba que α_U es inyectiva para cada $U \in \tau$ y por tanto la familia α_U con $U \in \tau$ definen las componentes de un isomorfismo natural.

3. Igualadores

Caundo tenemos una pregavilla \mathcal{F} podemos escribir la condición de ser una gavilla en términos de unos morfismos en específicos.

Definición 3.1

Sea (X, τ) un espacio topológico, \mathcal{F} una pregavilla sobre $X, U \in \tau$ y $\{U_i \mid i \in I\}$ una cubierta abierta de U. Definamos los siguientes morfismos.

$$\rho: \mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i)$$

$$s \mapsto \left(\rho_{U_i}^U(s)\right)_{i \in I}$$

$$\sigma: \prod_{i \in I} \mathcal{F}(U_i) \to \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \cap U_j)$$

$$(s_i)_{i \in I} \mapsto \left(\rho_{U_i \cap U_j}^{U_i}(s_i)\right)_{(i,j) \in I \times I}$$

$$\sigma': \prod_{i \in I} \mathcal{F}(U_i) \to \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \cap U_j)$$

$$(s_i)_{i \in I} \mapsto \left(\rho_{U_i \cap U_j}^{U_j}(s_j)\right)_{(i,j) \in I \times I}$$

Observación 3.1

Notemos que con la notación antes dada la pregavilla \mathcal{F} es una gavilla si y solo si el diagrama: $\mathcal{F}(U) \xrightarrow{\rho} \prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{\sigma} \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \cap U_j)$ es un igualador.

 $Demostración. \Longrightarrow$) Si \mathcal{F} es una gavilla entonces la composición

$$\sigma \circ \rho(s) = \sigma\left(\left(\rho_{U_i}^U(s)\right)_{i \in I}\right) = \left(\rho_{U_i \cap U_j}^{U_i}(\rho_{U_i}^U(s))\right)_{(i,j) \in I \times I}$$

$$= \left(\rho_{U_i \cap U_j}^U(s)\right)_{(i,j) \in I \times I} = \left(\rho_{U_i \cap U_j}^{U_j}(\rho_{U_j}^U(s))\right)_{(i,j) \in I \times I}$$

$$= \sigma'\left(\left(\rho_{U_j}^U(s)\right)_{j \in I}\right) = \sigma' \circ \rho(s)$$

Por lo que ρ iguala a σ, σ' . Además, dada una flecha tal que iguala a σ, σ' digamos $f: A \to \prod_{i \in I} \mathcal{F}(U_i)$ entonces para cada $a \in A$ ocurre que $\{f(a) = (s(a)_i)_{i \in I}\}$ es una familia de secciones de la familia $\{U_i \mid i \in I\}$ tales que $\rho_{U_i \cap U_j}^{U_i}(f(a)) = \rho_{U_i \cap U_j}^{U_j}(f(a))$ pues son las coordenadas de $\sigma \circ f(a) = \sigma' \circ f(a)$ y como \mathcal{F} es gavilla existe una única $s(a) \in \mathcal{F}(U)$

tal que para cada $i \in I$ se tiene que $\rho_{U_i}^U(s(a)) = s(a)_i$. Podemos definir entonces la función $s: A \to \mathcal{F}(U)$ dada por s(a) = s(a) como arriba la existencia y únicidad garantizan que esta función esta bien definida y es única. Además $\rho \circ s = f$ por definición, así que que el diagrama dicho es un igualador.

 \iff) Si el diagrama es un igualador entonces dada una familia de funciones compatibles $(s_i)_{i\in I}$ con $s_i \in \mathcal{F}(U_i)$ entonces podemos dar una flecha f: $\{*\} \to \prod_{i\in I} \mathcal{F}(U_i)$ tal que $f(*) = (s_i)_{i\in I}$ la compatibilidad nos dice que esta flecha iguala a σ, σ' por lo que existe una única flecha $s: \{*\} \to \mathcal{F}(U)$ tal que $\rho \circ s = f$ llamaremos s = s(*) entonces ocurre que $(s_i)_{i\in I} = f(*) = \rho(s(*)) = \rho(s) = (\rho_{U_i}^U(s))_{i\in I}$ es decir $s \in \mathcal{F}(U)$ es tal que para cada $i \in I$ se tiene que $\rho_{U_i}^U(s) = s_i$, la unicidad de la flecha nos dice que esta sección de $\mathcal{F}(U)$ es única, por lo que concluimos que \mathcal{F} es una gavilla.

Esta condición nos habla del pegado de secciones que puede ocurrir en cualquier categoria. Y más aún nos dice que $\mathcal{F}(U)$ puede ser visto como el límite del diagrama formado por $\{U_i \cap U_j \mid (i,j) \in I \times I\}$. Así que dada una base \mathcal{B} de X y un abierto U, podemos considerar los elementos de \mathcal{B} junto con sus intersecciones y notar que $\mathcal{F}(U) = \lim_{U \supset B \in \mathcal{B}} \mathcal{F}(B)$