Risoluzione di più sistemi con la stessa matrice

Data $A \in \mathbb{R}^{n \times n}$ e b $\in \mathbb{R}^n$,

calcolare x e z :
$$Ax = b$$
, $Az = c$

costo del MEG
$$\left(\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n\right) + \left(\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n\right)$$

$$= \frac{4}{3}n^3 + 3n^2 - \frac{7}{3}n$$

Obiettivo: separare le operazioni che agiscono su *A* da quelle che agiscono su b in modo che si lavori su *A* una volta sola e non si ripetano calcoli inutili.

NON voglio pagare $\sim \frac{4}{3}n^3$ operazioni, bensì $\sim \frac{2}{3}n^3$ (riporto solo l'ordine massimo)

Partendo dal MEG

```
for k = 1, ..., n - 1
    pivoting;
    for i = k + 1, ..., n
        m_{ik} = A_{ik}/A_{kk};
        for j = k + 1, ..., n
         A_{ii} = A_{ii} - \frac{m_{ik}}{m_{ik}} A_{ki};
         end
         b_i = b_i - m_{ik}b_k \longrightarrow vogliamo estrarre queste
          operazioni dal MEG;
    end
```

| 0.1

end

Voglio separare il lavoro su A da quello su b.

L'idea consiste nel salvare i moltiplicatori m_{ik} in una matrice e posticipare il lavoro sul termine noto \mathbf{b} prima di risolvere il sistema triangolare superiore.

L=matrice dei moltiplicatori

Osservo che i moltiplicatori m_{ik} sono definiti con $k=1,\ldots,n-1$ e $i=k+1,\ldots,n$, le posizioni degli elementi nel triangolo inferiore di A. Li posso salvare al posto degli elementi nulli di A

```
\begin{bmatrix} . & . & . & . & . & . & . \\ m_{21} & . & . & . & . & . \\ m_{31} & m_{32} & . & . & . & . \\ \vdots & & . & . & . & . \\ m_{n1} & m_{n2} & \cdots & m_{n,n-1} & . \end{bmatrix}
```

```
MEG
                                           lavoro solo su A
\% (A, b) \rightarrow [U, b]
                                           \% A \rightarrow [L, U]
                                           for k = 1, ..., n - 1
for k = 1, ..., n-1
    (pivoting);
                                               (pivoting);
    for i = k + 1, ..., n
                                               for i = k + 1, ..., n
        m_{ik} = A_{ik}/A_{kk};
                                              A_{ik} = A_{ik}/A_{kk};
        for j = k + 1, ..., n
                                                  for j = k + 1, ..., n
        A_{ii} = A_{ii} - \frac{m_{ik}}{m_{ik}} A_{ki};
                                                   A_{ii} = A_{ii} - \frac{A_{ik}}{A_{ki}}
                                                   end
        end
        b_i = b_i - m_{ik}b_k;
                                               end
    end
                                           end
end
                                           U = triu(A):
U=triu(A);
                                           L = tril(A,-1) + eve(n);
```

Fattorizzazione LU di A

Si dimostra (con qualche conto) che le matrici L e U costruite con l'algoritmo a destra della pagina precedente sono tali che:

$$A = L \cdot U$$

ovvero L e U sono due fattori di A.

La scomposizione di A così ottenuta si chiama fattorizzazione LU della matrice A.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \ell_{21} & 1 & \dots & 0 \\ \vdots & & \ddots & 0 \\ \ell_{n1} & \ell_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

Risoluzione di Ax = b con LU

Dopo aver calcolato le matrici L e U tali che $A = L \cdot U$, osserviamo che:

$$Ax = b \Leftrightarrow L\underbrace{Ux}_{y} = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Se lufact è la function che calcola L e U, la sequenza di istruzioni per risolvere il sistema è:

Implementazione della fattorizzazione LU lufact.m

```
Algoritmo (senza pivotazione):
for k = 1, ..., n - 1
    for i = k + 1, ..., n
  A_{ik} = A_{ik}/A_{kk};
for j = k + 1, ..., n
      | A_{ij} = A_{ij} - A_{ik}A_{kj};
    end
end
U=triangolo sup di A;
L=triangolo inf di A con 1 sulla diagonale
Comandi Matlab:
L=tril(A,-1)+eve(n); % estraggo tri. sotto diag princ
                               % e sommo l'identita';
```

% estraggo tri. sup. di A

U=triu(A):

Input: $A \in \mathbb{R}^{n \times n}$ non singolare

Output: L. U

Risoluzione di un sistema lineare con fattorizzazione LU

Per risolvere Ax = b:

costo:

1. calcolo
$$L$$
 e U tali che L $U = A$ $\frac{2}{3}n^3 - \frac{1}{2}n^2 - \frac{7}{6}n$

- 2. calcolo **y** risolvendo Ly = b
- 3. calcolo **x** risolvendo Ux = y

$$n^3 - \frac{1}{2}n^2 - \frac{7}{6}$$

 n^2

$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$

Il costo totale per risolvere un solo sistema Ax = b con la fattorizzazione LU è identico al costo del MEG.

Nota: Il vantaggio si osserva se devo risolvere più di un sistema lineare con la stessa matrice perché la fattorizzazione LU viene eseguita una sola volta.

Se devo risolvere due sistemi lineari

$$Ax = b$$
 e $Az = c$

utilizzando la fattorizzazione LU, il costo è:

costo:

1. una fattorizzazione
$$L U = A$$

$$\frac{2}{3}n^3 - \frac{1}{2}n^2 - \frac{7}{6}n$$

$$2n^{2}$$

$$2n^2$$

$$\frac{2}{3}n^3 + \frac{7}{2}n^2 - \frac{7}{6}n$$

Ricordo che per risolvere due sistemi lineari con MEG servivano $\frac{4}{3}n^3 + 3n^2 - \frac{7}{3}n$ operazioni.

Esercizio su fattorizzazione LU

(eslu)

Si vuole risolvere il sistema lineare Ax = b con

$$A = \begin{pmatrix} 10 & 4 & 3 & -2 \\ 2 & 20 & 20 & -1 \\ 3 & -6 & 4 & 3 \\ -3 & 0 & 3 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 5 \\ 24 \\ 13 \\ -2 \end{pmatrix}$$

con la fattorizzazione LU.

Verificare la correttezza della soluzione, richiamando MEG (o \setminus di matlab).

Fattorizzazione LU con pivotazione

Dobbiamo salvare gli scambi effettuati su A, per poterli applicare anche al termine noto in un secondo momento.

Utilizziamo un'altra matrice P, inizialmente uguale all'identità.

```
Input: A \in \mathbb{R}^{n \times n} non singolare
Output: L, U, P
Algoritmo (con pivotazione):
for k = 1, ..., n - 1
      trovare r t.c. |A_{rk}| = \max_{k \le i \le n} |A_{ik}|;
      scambiare riga r di A con riga k di A;
      scambiare riga r di P con riga k di P;
      for i = k + 1, ..., n
      \begin{array}{c|c} A_{ik} = A_{ik}/A_{kk}; \\ \textbf{for } j = k+1, \dots, n \\ A_{ij} = A_{ij} - A_{ik}A_{kj}; \end{array}
      end
end
U=triangolo sup di A;
```

L=triangolo inf di A con 1 sulla diagonale

Matrice P della pivotazione

P è tale che:

$$L U = P A$$

Essendo una permutazione della matrice identità, è sicuramente non singolare.

Quindi:

$$Ax = b \Leftrightarrow PAx = Pb \Leftrightarrow LUx = Pb \Leftrightarrow \begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

lufact è la nostra function LU, con piv=0 se non vogliamo la pivotazione, piv=1 se vogliamo la pivotazione.

```
A=...;
b=...;
[L,U,P]=lufact(A,piv);
y=forsub(L,P*b); % risolvo Ly=Pb
x=backsub(U,y); % risolvo Ux=y
```

Function lu di matlab

La function lu di matlab implementa la fattorizzazione LU sempre con pivotazione.

Per risolvere un sistema lineare Ax = b con le function di matlab:

```
A=...;
b=...;
[L,U,P]=lu(A);
y=L\(P*b);  % risolvo Ly=Pb
x=U\y;  % risolvo Ux=y
```