

Session 3.1 - Análisis de datos genómicos en bacteriología, opciones y metodologías

Isabel Cuesta

BU-ISCIII

Unidades Centrales Científico Técnicas - SGSAFI-ISCIII

3 al 10 noviembre 2022 CURSO FORMACIÓN AESAN-CNA

Index

- NGS applications
- Microbial genomics
- Library strategies
- Bioinformatics analysis
- Challenges in Bioinformatics

What has NGS changed?

- ✓ Functional genomics. Genome-Seq. Epigenetics
- ✓ Molecular diagnostics. Complex diseases
- ✓ Microbial Ecology. Metagenomics
- **✓ Molecular Ecology. Population Genetics**
- **✓ Evolutionary Genomics**
- **✓ DNA-Protein Interactions. ChIPSeq**
- **✓** Pharmacogenomics
- ✓ Transcriptomics. RNAseq
- **✓ Systems Biology**

Aplicaciones de la secuenciación masiva

Whole-genome sequencing

- Genome re-sequencing
- de novo genome sequencing
- Metagenomics applications

Targeted re-sequencing

- PCR-amplified regions
- Capture-enriched DNA

Transcriptome mining

- novel RNA classes
- novel splice variants

*

Sequencing DNA library

Sequencing of cDNA libraies

Epigenetic profiling

- Methylation sequencing
- Nucleosome footprinting

Genomic footprinting

- ChIP sequencing
- DNase I libraries

RNA footprinting

- ribosome footprinting
- RNA-IP sequencing

Transcriptome expression profiling

- mRNA
- small RNA (miRNA etc.)

Genoma, Exoma, Panel? desde un punto de vista clínico

PANEL

- Barato y rápido
- Util en enfermedades monogénicas
- Datos mas manejables, análisis y almacenamiento

EXOMA

- Mas complejo y lento
- Necesario en enfermedades complejas
- Análisis mas complejo
- Mayor volumen de datos

GENOMA

- Maxima complejidad en secuenciación y coste
- Información de regiones no codificantes
- Análisis de variaciones estructurales
- Elevado volumen de datos

Index

- NGS applications
- Microbial genomics
- Library strategies
- Bioinformatics analysis
- Challenges in Bioinformatics

Summary of potential NGS use by the food industry

Jagadeesan et al., Food Microbiology 79 (2019) 96-115

Index

- NGS applications
- Microbial genomics
- Library strategies
- Bioinformatics analysis
- Challenges in Bioinformatics

High-throughput sequencing platforms

PREPARACIÓN LIBRERÍA, estrategias

SECUENCIACIÓN GENOMA, EXOMA, TRANSCRIPTOMA

- 1. Sin amplificación
- 2. Amplificación con PCR
- 3. Sondas captura
- **SECUENCIACIÓN GENOMAS**
- 1. Metagenómica
- **IDENTIFICACIÓN MICROORGANISMOS**
- 1. Metataxonomía

- Tamaño de fragmento
- Longitud de la lectura
- Single o Paired-end
- Número de bases por muestra
- Profundidad de cobertura x

PREPARACIÓN LIBRERÍA

Guia Práctica Genómica https://www.uv.es/varnau/GM_Cap%C3%ADtulo_2.pdf

PREPARACIÓN LIBRERÍA

PREPARACIÓN LIBRERÍA, rRNA 16S, caracterización microbiota

Index

- NGS applications
- Microbial genomics
- Library strategies
- Bioinformatics analysis
- Challenges in Bioinformatics

Bioinformatics analysis in microbial genomics

SPECIE IDENTIFICATION

- WGS Kmers analysis
- TARGET METAGENOMIC, rRNA MICROBIOTA
- ASSEMBLY GENOME
 - de NOVO or REFERENCE -BASED
 - cgMLST, wgMLST MINIMUM SPANING TREE
 - METAGENOMIC HOMOLOGY -BASED
- VARIANT CALLING
 - REFERENCE GENOME SELECTION
 - HAPLOYD GENOME
 - LOW FREQUENCY VARIANT QUASISPECIES
 - SNPs MATRIX PHYLOGENETIC ANALYSIS
- STRUCTURAL AND FUNCTIONAL ANNOTATION
 - RESISTOME, VIRULOME, SEQUENCE-TYPE

Workflow example

Software disponible - VARIANT CALLING

• CFSAN SNP Pipeline

Extracción de SNPs de alta calidad de aislados relacionados http://snppipeline.readthedocs.io/en/latest/

- GATK, modo haploide
- Samtools
- Varscan
- Snippy

Identificación de variantes haploides y construcción de filogenia usando core genome SNPs

http://github.com/tseemann/snippy

• Live-SET

High-quality SNPs para crear filogenia para investigación de brotes

https://github.com/lskatz/lyve-SET

WGS-Outbraker

WGS-Outbreaker https://github.com/BU-ISCIII/WGS-Outbreaker

Metataxonomics vs Metagenomics (16S vs Shotgun)

	Metagenetics	Metagenomics			
Amplified sequence	Marker regions	Whole genome			
Computing time	Usually short	Usually long			
Taxonomic composition	Yes	Yes			
New pathogen detection	No	Yes			
Genome coverage information	No	Yes			

Metataxonomics

Taxonomy summary (i.e. phylum level)

Metataxonomics

Problemas:

- Raros en el genoma (< 0.1%)
- Los trozos similares dificultan el ensamblado correcto de lecturas pequeñas
- No todos los rRNA se amplifican en la misma medida con los primers universales
- Especies con diversas copias de sus genes rRNA
- No se conoce un umbral fijo de similitud que separe especies
- Tendencia a producirse quimeras en la PCR

Metagenómica, pipeline de análisis

Lysholm et al., Plos One 2012:7,2, e30875

Metagenomic analysis approaches

Metagenomic analysis approaches

Metataxonomics vs Metagenomics (16S vs Shotgun)

Software	Organism	Genetic portion used		Binniı	ng algorithm	Genome	Novel		
		Genetic markers	Whole Genome	Clustering	Mapping	Assembly	coverage	pathogen discovery	
Mothur	Bacteria	Х		Х			No	No	
QIIME	Bacteria	Х		Х		Х	No	No	
MEGAN	Bacteria		Х			Х	No	No	
Platypus	Bacteria		Х		Х		No	No	
SURPI	Virus		Х			Х	No	Yes	
Virus-TAP	Virus		Х			Х	No	Yes	
VIP	Virus		Х		Х		No	Yes	
Pathosphere	Virus, Bacteria, Eukarya		Х			Х	No	Yes	

Secuenciación y análisis de genomas bacterianos

Básicamente tres problemas

Resecuenciación, Conteo y ensamblado

Resecuenciación

Conocemos el genoma, genoma de referencia, y queremos identificar variaciones (azul), en un background de errores (rosa)

Conteo

Número de lecturas de un gen (amplicón) o mRNA (RNAseq). Equivalente a expresión en Microarrays.

Ensamblado

No hay genoma de referencia y lo construimos de novo

Que es Pair-end?

Secuenciación de un fragmento (bp)

Modificación de single-read DNA, Leyendo por ambos extremos, forward y reverse

Mate Pair library preparation is designed to generate short fragments that consist of two segments that originally had a separation of several kilobases in the genome. Fragments of sample genomic DNA are end-biotinylated to tag the eventual mate pair segments. Self-circularization and refragmentation of these

large fragments generates a population of these large fragments generates a population of small fragments, some of which contain both mate pair segments with no intervening sequence. These Mate Pair fragments are enriched using their biotin tag. Mate Pairs are sequenced using a similar two-adapter strategy as described for paired-end sequencing.

Que es Mate-pair?

Secuenciación de dos fragmentos separados kb.

Util:

Secuenciación de un Genoma de novo Finalizar un genoma Detección de variantes estructurales

Sequencing terms

Depth of coverage

How strong is a genome "covered" by sequenced fragments (short reads)?

Per-base coverage is the average number of times a base of a genome is sequenced. The coverage depth of a genome is calculated as the number of bases of all short reads that match a genome divided by the length of this genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).

Breadth of coverage

How much of a genome is "covered" by short reads? Are there regions that are not covered, even not by a single read?

Breadth of coverage is the percentage of bases of a reference genome that are covered with a certain depth. For example: 90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth.

Bacterial and Viral Genome Sequencing

Index

- NGS applications
- Microbial genomics
- Library strategies
- Bioinformatics analysis
- Challenges in Bioinformatics

Retos de la Bioinformática en NGS

- Tecnología que evoluciona muy rápido nuevos formatos de ficheros nuevas aplicaciones nuevos análisis
- Coste de la secuenciación disminuye el embudo es el análisis de datos
- Adquisición de secuenciador debe ir ligado a la compra de computo y contratación de bioinformático

Coste actual de la secuenciación

Costes del almacenamiento vs secuenciación

Retos de la Bioinformática en NGS

- Necesidades de computo ficheros de gran volumen (10Gb) elevado uso de CPU y/o memoria software no comercial en SO Unix
- Necesidades son dependientes de proyecto
 No es lo mismo secuenciar un genoma 500Gb
 que 50 genomas 25Tb
- Si el proyecto es la aplicación en clínica
 Las necesidades de almacenamiento aumentan
 por número de pacientes y por tiempo

Retos de la Bioinformática en NGS

- Desarrollo de BD curadas (confianza = reference)
- Algoritmos que resuelvan el problema biológico planteado.
- Necesidades de Bioinformáticos Análisis de los datos

Softwares comerciales en Bioinformática y NGS

Table 1: Examples, features and comparisons of some commonly used commercial bioinformatics software suites

Software	Company	Cost (USD) ^a	Free trial (days)	Platform ^b	NGS analyses ^c	Evolutionary analyses ^d	Database searching ^e	Plug-ins	Workflows	Teaching suitability
Avadis NGS	Strand Scientific Intelligence	\$4500	20	M, W, L	✓	×	×	×	/	×
CLC Genomics Workbench	CIC bio, Qiagen	\$5500	30	M, W, L	✓	✓	✓	✓	✓	✓
CodonCode Aligner	CodonCode	\$720	30	M, W	✓	✓	×	×	×	✓
Genamics Expression	Genamics	\$295	30	W	×	✓	✓	/	×	×
Geneious	Biomatters	\$795	14	M, W, L	✓	✓	✓	✓	✓	✓
Full Lasergene Suite	DNASTAR	\$5950	30	M, W	✓	✓	✓	✓	✓	✓
MacVector & Assembler	MacVector	\$300	21	M	✓	✓	✓	×	×	/
NextGENe	Softgenetics	\$4049	35	W	✓	×	×	×	×	×
Sequencher	Gene Codes	\$2500	30	M, W	✓	1	/	/	×	/
VectorNTI Advance	Life Technologies	\$600	30	W	×	✓	✓	×	/	/

Softwares en Bioinformática y NGS

- Tecnología que evoluciona muy rápido nuevos formatos de ficheros nuevas aplicaciones nuevos análisis nuevos algoritmos
- Software en continuo desarrollo (Unix)

Thanks for your attention!

Questions???