A real estate agent want help to predict the house price for regions in Usa.he gave us the dataset to work on to use linear Regression model.Create a model that helps him to estimate

Data Collection

```
In [1]: #import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [155]: #import the dataset
data=pd.read_csv(r"C:\Users\user\Desktop\Vicky\18_world-data-2023.csv")[0:50]

In [156]: #to display top 10 rows
data.head()
```

Out[156]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2 Emissions
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Kabul	8,672
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tirana	4,536
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Algiers	150,006
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	Andorra la Vella	469
4	Angola	26	АО	47.50%	1,246,700	117,000	40.73	244.0	Luanda	34,690

5 rows × 35 columns

```
Linear Regression - Jupyter Notebook
In [157]: #to display null values
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 50 entries, 0 to 49
          Data columns (total 35 columns):
           #
               Column
                                                           Non-Null Count Dtype
                                                           -----
           0
               Country
                                                           50 non-null
                                                                           object
           1
               Density
           (P/Km2)
                                              50 non-null
                                                              object
               Abbreviation
                                                           49 non-null
                                                                           object
           2
           3
               Agricultural Land( %)
                                                           50 non-null
                                                                           object
           4
               Land Area(Km2)
                                                           50 non-null
                                                                           object
           5
               Armed Forces size
                                                           47 non-null
                                                                           object
           6
               Birth Rate
                                                           50 non-null
                                                                           float64
           7
               Calling Code
                                                           50 non-null
                                                                           float64
           8
               Capital/Major City
                                                           50 non-null
                                                                           object
           9
               Co2-Emissions
                                                           50 non-null
                                                                           object
           10
               CPI
                                                           47 non-null
                                                                           object
           11 CPI Change (%)
                                                           48 non-null
                                                                           object
           12
               Currency-Code
                                                           46 non-null
                                                                           object
               Fertility Rate
                                                           50 non-null
                                                                           float64
           13
           14
               Forested Area (%)
                                                           50 non-null
                                                                           object
           15
               Gasoline Price
                                                           48 non-null
                                                                           object
           16
                                                           50 non-null
                                                                           object
           17
               Gross primary education enrollment (%)
                                                           49 non-null
                                                                           object
           18 Gross tertiary education enrollment (%)
                                                           48 non-null
                                                                           object
           19 Infant mortality
                                                           50 non-null
                                                                           float64
           20 Largest city
                                                           49 non-null
                                                                           object
           21 Life expectancy
                                                           49 non-null
                                                                           float64
           22 Maternal mortality ratio
                                                           48 non-null
                                                                           float64
           23 Minimum wage
                                                           42 non-null
                                                                           object
           24 Official language
                                                           50 non-null
                                                                           object
           25 Out of pocket health expenditure
                                                           49 non-null
                                                                           object
           26 Physicians per thousand
                                                           50 non-null
                                                                           float64
           27 Population
                                                           50 non-null
                                                                           object
               Population: Labor force participation (%)
                                                           47 non-null
                                                                           object
                                                                           object
           29 Tax revenue (%)
                                                           44 non-null
           30 Total tax rate
                                                           48 non-null
                                                                           object
           31 Unemployment rate
                                                           47 non-null
                                                                           object
           32 Urban_population
                                                                           object
                                                           50 non-null
           33 Latitude
                                                           50 non-null
                                                                           float64
```

50 non-null

float64

In [158]: data.shape

Out[158]: (50, 35)

34 Longitude

memory usage: 13.8+ KB

dtypes: float64(9), object(26)

```
In [159]: #to display summary of statistics
data.describe()
```

Out[159]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude	Longitude
count	50.00000	50.000000	50.00000	50.000000	49.000000	48.000000	50.000000	50.000000	50.000000
mean	19.64860	291.820000	2.62600	22.618000	72.312245	174.041667	1.929800	17.670807	4.900287
std	10.67511	272.353663	1.41232	22.042368	7.988498	248.707549	1.782451	24.015082	58.380156
min	7.20000	1.000000	1.27000	1.900000	52,800000	2.000000	0.040000	-38.416097	-106.346771
25%	10.75000	56.250000	1.66000	5.225000	66.600000	13.750000	0.272500	5.080929	-57.638718
50%	14.89000	240.000000	1.94000	11.750000	74.900000	50.000000	1.665000	16.799808	15.336481
75%	24.68500	375.750000	2.98250	35.375000	78.100000	242.750000	2.972500	39.017239	32.552116
max	42.17000	994.000000	5.92000	84.500000	82.700000	1140.000000	8.420000	56.263920	133.775136

```
In [160]: #to display columns name
data.columns
```

In [161]: data1=data[['Fertility Rate','Birth Rate','Calling Code','Life expectancy','Longitude','Latitude

In [162]: sns.pairplot(data1)

Out[162]: <seaborn.axisgrid.PairGrid at 0x2389a4c3eb0>

EDA and Visualization

In [163]: #sns.distplot(data['Co2-Emissions'])

```
In [164]: sns.heatmap(data1.corr())
```

Out[164]: <AxesSubplot:>

To train the model

we are going to train the linear regression model; We need to split the two variable x and y where x in independent variable (input) and y is dependent of x(output) so we could ignore address columns as it is not requires for our model

```
In [165]:
          x=data[['Fertility Rate','Birth Rate','Calling Code','Life expectancy','Longitude','Latitude']]
           y=data1['Birth Rate']
In [166]:
           #To split test and train data
           from sklearn.model selection import train test split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.6)
In [167]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[167]: LinearRegression()
In [168]: lr.intercept_
Out[168]: -1.8829382497642655e-13
In [169]: | coeff = pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
           coeff
Out[169]:
                           Co-efficient
              Fertility Rate -6.809439e-14
                Birth Rate
                          1.000000e+00
              Calling Code
                          1.248655e-16
           Life expectancy
                          1.512232e-15
```

Longitude

Latitude

-1.506115e-16

1.800967e-16

In [170]: prediction = lr.predict(x_train)
plt.scatter(y_train,prediction)

Out[170]: <matplotlib.collections.PathCollection at 0x23899d56cd0>


```
In [171]: lr.score(x_test,y_test)
          ValueError
                                                     Traceback (most recent call last)
          <ipython-input-171-1785cf3deb61> in <module>
          ----> 1 lr.score(x_test,y_test)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py in score(self, X, y, sample_weight)
              551
              552
                           from .metrics import r2 score
           --> 553
                           y_pred = self.predict(X)
              554
                           return r2_score(y, y_pred, sample_weight=sample_weight)
              555
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py in predict(self, X)
                               Returns predicted values.
              237
           --> 238
                           return self._decision_function(X)
              239
                      _preprocess_data = staticmethod(_preprocess_data)
              240
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py in _decision_function
          (self, X)
                           check_is_fitted(self)
              218
              219
           --> 220
                           X = check array(X, accept sparse=['csr', 'csc', 'coo'])
                           return safe_sparse_dot(X, self.coef_.T,
              221
                                                  dense_output=True) + self.intercept_
              222
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwar
          gs)
                               extra args = len(args) - len(all args)
               62
                               if extra args <= 0:</pre>
           ---> 63
                                   return f(*args, **kwargs)
               64
               65
                               # extra_args > 0
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, ac
          cept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, en
          sure_min_samples, ensure_min_features, estimator)
              661
                           if force_all_finite:
              662
           --> 663
                               _assert_all_finite(array,
              664
                                                  allow_nan=force_all_finite == 'allow-nan')
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _assert_all_finite(X,
          allow_nan, msg_dtype)
              101
                                   not allow_nan and not np.isfinite(X).all()):
              102
                               type_err = 'infinity' if allow_nan else 'NaN, infinity'
           --> 103
                               raise ValueError(
              104
                                       msg err.format
              105
                                       (type_err,
          ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
In [172]: lr.score(x train,y train)
Out[172]: 1.0
In [176]: #from sklearn.linear_model import Ridge,Lasso
```

```
In [175]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
la.score(x_test,y_test)
```

```
Traceback (most recent call last)
ValueError
<ipython-input-175-3bb63ba76728> in <module>
      1 la=Lasso(alpha=10)
      2 la.fit(x_train,y_train)
----> 3 la.score(x_test,y_test)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py in score(self, X, y, sample_weight)
    552
                from .metrics import r2 score
                y_pred = self.predict(X)
--> 553
    554
                return r2_score(y, y_pred, sample_weight=sample_weight)
    555
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ base.py in predict(self, X)
                    Returns predicted values.
    237
--> 238
                return self._decision_function(X)
    239
            _preprocess_data = staticmethod(_preprocess_data)
    240
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.py in _deci
sion_function(self, X)
                                            dense_output=True) + self.intercept_
    896
    897
                else:
--> 898
                    return super()._decision_function(X)
    899
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py in _decision_function
(self, X)
                check_is_fitted(self)
    218
    219
--> 220
                X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
    221
                return safe_sparse_dot(X, self.coef_.T,
    222
                                       dense_output=True) + self.intercept_
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwar
     61
                    extra args = len(args) - len(all args)
     62
                    if extra args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
                    # extra_args > 0
     65
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check array(array, ac
cept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, en
sure_min_samples, ensure_min_features, estimator)
    661
    662
                if force_all_finite:
--> 663
                    _assert_all_finite(array,
    664
                                       allow_nan=force_all_finite == 'allow-nan')
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _assert_all_finite(X,
allow_nan, msg_dtype)
                        not allow_nan and not np.isfinite(X).all()):
    101
                    type_err = 'infinity' if allow_nan else 'NaN, infinity'
    102
--> 103
                    raise ValueError(
    104
                            msg err.format
    105
                            (type_err,
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
```

In	[]:	
In	[]:	
In	[]:	