Clustering Density based and grid based approaches

Huiping Cao

Density-based clustering methods

 Clustering based on density (local cluster criterion), such as density-connected points

(Data sets from DBSCAN paper)

- Motivation:
 - Discover clusters of arbitrary shape
 - Handle noise
- Requirement:
 - Need density parameters as termination condition

Density-based clustering methods

- Several interesting studies
 - DBSCAN: Ester, et al. (KDD96)
 - OPTICS: Ankerst, et al (SIGMOD99).
 - DENCLUE: Hinneburg & D. Keim (KDD98)
 - CLIQUE: Agrawal, et al. (SIGMOD98) (more grid-based)

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster
- A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN - basic concepts

- Dataset *D* of points in *k*-dimensional space
- **dist**(p, q): distance of two objects p and q
- Two parameters
 - **E**ps ϵ : Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- The Eps-neighborhood of a point p: $N_{\epsilon}(p) = \{q | q \in D \land dist(p, q) \le \epsilon\}$

DBSCAN – basic concepts

- Core point: points inside a cluster. $|N_{\epsilon}(q)| \geq MinPts$
- Border point: points on the border of a cluster.

DBSCAN – basic concepts – directly density-reachable

- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps ϵ , MinPts if
 - $p \in N_{\epsilon}(q)$
 - lacksq q is a core point, i.e., $|N_{\epsilon}(q)| \geq MinPts$
- Directly density-reachable is symmetric for pairs of core points; NOT symmetric if one core point and one border point are involved.

p is directly density reachable from q; q is not directly density reachable from p.

DBSCAN – basic concepts

Density-Reachable

- A point p is density-reachable from a point q w.r.t. $Eps \epsilon$, MinPts if there is a chain of points $p_1, \dots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i
- Transitive
- Non-symmetric

DBSCAN – density-connected

- There must be a core point in a cluster *C* from which two border points of *C* are density-reachable.
 - A point p is density-connected to a point q w.r.t. $Eps \epsilon$, MinPts if there is a point o such that both p and q are density-reachable from o w.r.t. $Eps \epsilon$, MinPts.
 - Symmetric

DBSCAN - cluster

- Let D be a database of points. A cluster C w.r.t. Eps and MinPts is a non-empty subset of D satisfying the following conditions:
 - 1) $\forall p, q$: if $p \in C$ and q is density-reachable from p w.r.t. Eps and MinPts, then $q \in C$. (Maximality)
 - 2) $\forall p, q \in C$: p is density-connected to q w.r.t. Eps and MinPts. (Connectivity)
- Let C_1, \dots, C_k be the clusters of the database D w.r.t. parameters Eps_i and $MinPts_i$, $i=1,\dots,k$. Then we define the noise as the set of points in the database D not belonging to any cluster C_i , i.e. $noise=\{p\in D|\forall i:p\notin C_i\}$.

DBSCAN - the algorithm

- Initialize all points to be UNCLASSIFIED
- Loop
 - Arbitrarily select an UNCLASSIFIED point p
 - Calculate $N_{\epsilon}(p)$ and put the points to SeedSet
 - If SeedSet contains less than MinPts points, mark every point in this set to be NOISE.
 - Else (i.e., SeedSet contains more than MinPts points)
 - Loop every point $q \in SeedSet$
 - (1) Change q's cluster id, remove q from SeedSet
 - (2) If q is a core point, do further expansion by adding the density reachable points to SeedSet
 - (3) If q is a border point, no need to further expand q
- Continue the process until all of the points have been processed.

DBSCAN – determining the parameters – concepts

- k-dist: For a given k, we define a function k-dist from the database D to real numbers, mapping each point to the distance from its k-th nearest neighbor.
- Object p's k-dist: the distance between p and its k-th nearest neighbor.
- Observation 1: let d = k-dist of p, then the d-neighborhood of p contains exactly k + 1 points for almost all points p.
 - Very unlikely, the d-neighborhood of p contains more than k+1 points, which means several points have exactly the same distance d from p. (k-dist is generally different for different objects).
- Observation 2: *k*-dist of *p* does not change dramatically when *k* changes gradually from 1, to 2, to · · · .

DBSCAN – determining the parameters – procedure

- Calculate the *k*-dist for each point
- Sorted *k*-dist graph: sort the points in *D* in descending order of their *k*-dist
- User can estimate percentage of noise, from this percentage to derive a threshold.
- Given a threshold point
 - All points with a higher k-dist value (left of the threshold) are considered to be noise
 - All other points (right of the threshold) are assigned to some cluster.
- Set MinPts = k and Eps = k-dist

DBSCAN – determining the parameters – thinnest cluster

- Thinnest cluster: least dense cluster in the dataset.
- The threshold point for the thinnest cluster: the first point in the first "valley" of the sorted *k*-dist graph.

sorted 4-dist graph for sample database 3

DBSCAN – determining the parameters – further discussion

■ How to decide the valley? Interactive interface.

■ How to decide k: Experimentally, it has shown that k-dist graphs for k>4 do not significantly differ from the 4-dist graph

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- · Resistant to Noise
- · Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- · Varying densities
- · High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Clustering in High Dimensional Space

In high dimensional space, not all dimensions are relevant to a given cluster.

Idea: pick the closely related dimensions and find clusters in the corresponding subspace.

Subspace Clustering Method

- Data are in high-dimensional space.
 - Distance function that uses all the dimensions of the data may be ineffective.
- Search various subspaces to find clusters
- Bottom-up approaches
 - Start from low-D subspaces and search higher-D subspaces only when there may be clusters in such subspaces
 - Various pruning techniques to reduce the number of higher-D subspaces to be searched
 - Eg. CLIQUE in Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. SIGMOD 1998:94-105.

Subspace Clustering Method

■ Top-down approaches

- Start from full space and search smaller subspaces recursively
- Eg. PROCLUS in Charu C. Aggarwal, Cecilia Magdalena Procopiuc, Joel L. Wolf, Philip S. Yu, Jong Soo Park: Fast Algorithms for Projected Clustering. SIGMOD 1999:61-72.

CLIQUE (Clustering In QUEst)

- Targets:
 - Process data in high dimensions
 - Get easy-to-interpret results
 - Achieve better scalability and usability: scale well with the number of dimensions and the size of input; insensitive to the input order of data records;
 - WEKA has implementation of CLIQUE

CLIQUE – Intuitive ideas

- Subspace: automatically identify subspaces of high dimensions
 Do not consider new dimensions: e.g., linear combination of original dimensions, which is hard to interpret
- Density-based approach
 - A cluster is a region that has a higher density of points than its surrounding region.
- Grid-based method
 - To approximate density, partition the data space to cells/units/grids
- Find clusters in the corresponding projections/subspaces/dimensions
 - A cluster is a union of connected high density units within a subspace
 - Clusters are constrained to be axis-parallel hyper-rectangles

References

- Chapter 7: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Scikit-learn DBSCAN algorithm: https://scikit-learn.org/stable/modules/ generated/sklearn.cluster.DBSCAN.html
- CLIQUE algorithm: https://pyclustering.github.io/docs/0.9.0/html/d2/d4f/classpyclustering_1_1cluster_1_1clique_1_1clique.html