Computational Geometry Minkowski Sums

Offset Curve

- Given a smooth curve C, the offset curve is the locus of points offset by a constant distance r along the curve normal.
- The offset curve can also be defined as the envelope of a family of disks of radius *r* whose centers lie on *C*.

Minkowski Difference

- Widely used in game engines and path planning for collision detection
- Collision detection amounts to asking if two shapes have any points in common. If they do, then $p \ominus p = 0$ in the Minkowski difference
- If A

 B contains the origin, then A and B collide

Minkowski Sum and Difference

- Minkowski sum is used to "fatten" objects
- Minkowski difference is used to produce configuration space obstacles
- $A \oplus B = B \oplus A$
- $A \ominus B \neq B \ominus A$
- sum and difference produce different shapes unless the moving object is symmetrical

GJK Algorithm

- Gilbert-Johnson-Keerthi (1988)
- Linear time iterative method for computing the distance between two convex sets in mdimensional space
- Continuous enhancements since, major results in 97 and 04

Computational Geometry

Convolution of Curves

Convolution

• Convolution of two functions produces a third function that expresses the overlap

Convolution of Curves

- The Minkowski sum is a set
- We need the boundary curve $\delta(A \oplus B)$ only
- The convolution of curves α and β is the curve
 - $-\alpha^*\beta=\{x+y\mid x\in\alpha\,,\,y\in\beta,\,\mathsf{T}_x=\mathsf{T}_y\}$
 - $-T_p$ is the unit tangent vector at point p

Theorem

- The Minkowski sum of two planar polygons A and B is the set of points in the plane with positive winding number with respect to the convolution of δA with δB .
- $A \bigoplus B = \{ p = \mathbb{R}^2 \mid \Phi_{\delta A * \delta B}(p) > 0 \}$

Algorithm

- Compute δA*δB
- Identify its convolution cycles
- Retain cycles that have a positive winding number
- Merge these to construct $\delta(A \oplus B)$