Dirichlet Process

Il-Chul Moon

Department of Industrial and Systems Engineering

KAIST

icmoon@kaist.ac.kr

DEFINITION OF DIRICHLET PROCESS

Detour: Gaussian Mixture Model

- Let's assume that the data points are drawn from a mixture distribution of multiple multivariate Gaussian distributions
 - $P(x) = \sum_{k=1}^{K} P(z_k) P(x|z) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$
 - How to model such mixture?
 - Mixing coefficient, or Selection variable: z_k
 - The selection is stochastic which follows the multinomial distribution

•
$$z_k \in \{0,1\}, \sum_k z_k = 1, P(z_k = 1) = \pi_k, \sum_{k=1}^K \pi_k = 1, 0 \le \pi_k \le 1$$

- $P(Z) = \prod_{k=1}^K \pi_k^{z_k}$
- Mixture component

•
$$P(X|z_k = 1) = N(x|\mu_k, \Sigma_k) \to P(X|Z) = \prod_{k=1}^K N(x|\mu_k, \Sigma_k)^{z_k}$$

 This is the marginalized probability. How about conditional?

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^{K} P(z_j = 1)P(x | z_j = 1)}$$

$$= \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x | \mu_j, \Sigma_j)}$$

- Log likelihood of the entire dataset is
 - $\ln P(X|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x|\mu_k,\Sigma_k)\}$

Detour: Dirichlet Distribution

Generative Process

- $\theta_i \sim Dir(\alpha), i \in \{1, ..., M\}, \varphi_k \sim Dir(\beta), k \in \{1, ..., K\}$
- $z_{i,l} \sim Mult(\theta_i), i \in \{1, ..., M\}, l \in \{1, ..., N\}, w_{i,l} \sim Mult(\varphi_{z_{i,l}}), i \in \{1, ..., M\}, l \in \{1, ..., N\}$
- Dirichlet Distribution

•
$$P(x_1, \dots, x_K | \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\sum_{i=1}^K \alpha_i)}{\prod_{i=1}^K \Gamma(\alpha_i)} x_i^{\alpha_i - 1}$$

•
$$x_1, ..., x_{K-1} > 0$$

•
$$x_1 + \cdots + x_{K-1} < 1$$

•
$$x_K = 1 - x_1 - \dots - x_{K-1}$$

•
$$\alpha_i > 0$$

$$[\alpha_1, \alpha_2, \alpha_3] = [2,2,2]$$

$$[\alpha_1, \alpha_2, \alpha_3] = [2,3,4]$$

Multinomial-Dirichlet Conjugate Relation

- Multinomial distribution
 - N independently and identically distributed instances, $N=\sum_i c_i$
 - c_i is the number of occurrences of the i-th choice
 - $P(D|\theta) = \frac{N!}{\prod_i c_i!} \prod_i \theta_i^{c_i}$
- Dirichlet distribution
 - $P(\theta|\alpha) = \frac{1}{B(\alpha)} \prod_i \theta_i^{\alpha_i 1}$
- Bayesian Posterior
 - $P(\theta|D,\alpha) \propto P(D|\theta)P(\theta|\alpha) = \frac{N!}{\prod_i c_i!} \prod_i \theta_i^{c_i} \frac{1}{B(\alpha)} \prod_i \theta_i^{\alpha_i-1} = \frac{N!}{B(\alpha) \prod_i c_i!} \prod_i \theta_i^{\alpha_i+c_i-1} \propto \prod_i \theta_i^{\alpha_i+c_i-1}$
 - $P(\theta|D,\alpha) = \frac{1}{B(\alpha+c)} \prod_i \theta_i^{\alpha_i+c_i-1}$
 - Coming back to the Dirichlet distribution : Conjugate Prior
 - The likelihood of the Dirichlet distribution is the conjugate prior of the multinomial distribution
- Dirichlet distribution with D as a single observation with i-th choice
 - $\theta | \alpha \sim Dir(\alpha_1, ..., \alpha_i, ..., \alpha_K)$
 - $\theta \mid \alpha, D \sim Dir(\alpha_1, ..., \alpha_i + 1, ..., \alpha_K)$

Dirichlet Process

- Dirichlet process, $G \mid \alpha, H \sim DP(\alpha, H)$
 - $(G(A_1), ..., G(A_r))|\alpha, H \sim Dir(\alpha H(A_1), ..., \alpha H(A_r))$
 - $A_1 \cap \cdots \cap A_r = \emptyset$, $A_1 \cup \cdots \cup A_r = \Theta$
 - Properties

Dir(2,3,4)

- H: Base distribution
- α : Concentration parameter, strength parameter (strength of prior)
- Posterior distribution given a dataset of $\theta_1 \dots \theta_n$
 - Posterior \propto Likelihood \times Prior
 - Multinomial-Dirichlet conjugate relationship
 - The posterior becomes the Dirichlet distribution, again, adjusted to reflect the likelihood
 - $(G(A_1), \dots, G(A_r))|\theta_1 \dots \theta_n, \alpha, H \sim Dir(\alpha H(A_1) + n_1, \dots, \alpha H(A_r) + n_r)$
 - $n_k = |\{\theta_i | \theta_i \in A_k, 1 \le i \le n\}|$

$$G|\theta_1 \dots \theta_n, \alpha, H \sim DP\left(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n}\right)$$

Sampling from Dirichlet Process

- Dirichlet process
 - $(G(A_1), ..., G(A_r)) | \alpha, H \sim Dir(\alpha H(A_1), ..., \alpha H(A_r))$
 - $G \mid \theta_1 \dots \theta_n, \alpha, H \sim DP \left(\alpha + n, \frac{\alpha}{\alpha + n} H + \frac{n}{\alpha + n} \frac{\sum_{i=1}^n \delta_{\theta_i}}{n} \right)$
- Definition is done, but how to realize the definition?
 - How to draw an instance, or a distribution, G, from the Dirichlet process?
 - How to draw an instance, θ_i , from the distribution, G?
- Multiple generation schemes, or construction, exist
 - From the definition of Dirichlet process to the sample from the Dirichlet process
 - Stick Breaking Scheme
 - Polya Urn Scheme
 - Chinese Restaurant Process Scheme

Stick-Breaking Construction

- Imagine that we create a probability mass function on infinite choices
 - $k = 1, 2, ..., \infty$
 - $v_k | \alpha \sim Beta(1, \alpha)$
 - $\beta_k = v_k \prod_{l=1}^{k-1} (1 v_l)$
- Common notation is
 - $\beta \sim GEM(\alpha)$
- We were constructing a distribution for the Dirichlet process
 - $G|\alpha, H \sim DP(\alpha, H)$
 - $\beta \sim GEM(\alpha)$
 - $G = \sum_{k=1}^{\infty} \beta_k \delta_{\theta_k}$
 - $\theta_k | H \sim H$
 - θ_k chooses a n-th broken stick, and the stick length is the prob.
 - We know the existence of the infinite-th stick length.
- Exponential growth in CDF
- → Discount the growth
- → Pitman-Yor Process

Close to Power law dist.

Useful for language models...

Polya Urn Scheme

 $\alpha = 10$

 $\alpha = 4$

- Dirichlet process
 - $G|\theta_1 \dots \theta_n, \alpha, H \sim DP\left(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n}\right)$
 - $G|\alpha, H \sim DP(\alpha, H)$
 - $(G(A_1), ..., G(A_r)) | \alpha, H \sim Dir(\alpha H(A_1), ..., \alpha H(A_r))$
 - E[G(A)] = H(A)
 - $\theta_n | \theta_1 \dots \theta_{n-1}, \alpha, H \sim DP \left(\alpha + n 1, \frac{\alpha}{\alpha + n 1} H + \frac{n-1}{\alpha + n 1} \frac{\sum_{i=1}^{n-1} \delta_{\theta_i}}{n-1} \right)$
 - $E[\theta_n|\theta_1\dots\theta_{n-1},\alpha,H]\sim \frac{\alpha}{\alpha+n-1}H+\frac{\sum_{i=1}^{n-1}\delta_{\theta_i}}{\alpha+n-1}\sim \frac{\alpha}{\alpha+n-1}H+\frac{\sum_{k=1}^{K}N_k\delta_{\theta_k}}{\alpha+n-1},N_k$: the number of k-th choice occurrences
 - This enables sampling an observation from the Dirichlet process without constructing $G|\alpha, H \sim DP(\alpha, H)$
 - Stick-breaking (distribution) construction vs. Polya Urn sampling from distribution
- Polya Urn Scheme
 - Create an empty urn
 - Do
 - toss = Coin toss from $[0, \alpha + n 1]$
 - If $0 \le toss < \alpha$
 - Add a ball to the urn by paining the ball as a sample from $\theta_n \sim H$
 - If $\alpha < toss < \alpha + n 1$
 - Pick a ball from the urn
 - Return the ball and a new ball with the same color to the urn

Chinese Restaurant Process

- Dirichlet process
 - $G|\theta_1 \dots \theta_n, \alpha, H \sim DP\left(\alpha + n, \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n}\right)$
 - $E[\theta_n|\theta_1 \dots \theta_{n-1}, \alpha, H]$

$$\sim \frac{\alpha}{\alpha + n - 1} H + \frac{\sum_{i=1}^{n-1} \delta_{\theta_i}}{\alpha + n - 1}$$
$$\sim \frac{\alpha}{\alpha + n - 1} H + \frac{\sum_{k=1}^{K} N_k \delta_{\theta_k}}{\alpha + n - 1}$$

 N_k : the number of k-th choice occurrences

- Chinese restaurant process
 - Assume Infinite number of tables in a restaurant
 - First customer sits at the first table
 - Loop for Customer N sits at:
 - 1) Table k with $P(\theta_n | \theta_1 \dots \theta_{n-1}, \alpha) = \frac{N_k}{\alpha + n 1}$
 - 2) A new table k+1 with $P(\theta_n | \theta_1 \dots \theta_{n-1}, \alpha) = \frac{\alpha}{\alpha + n 1}$
- Properties of Chinese restaurant process
 - Clustering formation
 - · Rich-get-richer property
 - No fixed number of clusters with a fixed number of instances
 - Almost identical to Polya Urn Scheme

5th Customer enters

Detour: Random Process

- Random process, a.k.a. stochastic process, is
 - An infinite indexed collection of random variables, $\{X(t)|t \in T\}$
 - Index parameter : t
 - Can be time, space....
 - A function, $X(t, \omega)$, where $t \in T$ and $\omega \in \Omega$
 - Outcome of the underlying random experiment : ω
 - Fixed $t \to X(t, \omega)$ is a random variable over Ω
 - Fixed $\omega \to X(t, \omega)$ is a deterministic function of t, a sample function
- Example of random process
 - Gaussian process
 - Fixed t, a random variable following a Gaussian distribution
 - Fixed ω, a deterministic curve of t
 - Dirichlet process
 - Fixed t, a random variable following a Dirichlet distribution
 - Fixed ω , a deterministic placement over clusters

De Finetti's Theroem

- Exchangeability
 - A joint probability distribution is exchangeable if it is invariant to permutation
 - Given a permutation of S
 - $P(x_1, x_2, ..., x_N) = P(x_{S(1)}, x_{S(2)}, ..., x_{S(N)})$
- (De Finetti, 1935) If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $P(x_1, x_2, ..., x_N)$ has a representation as a mixture

$$P(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N P(x_i | \theta) \right) dP(\theta) = \int P(\theta) \left(\prod_{i=1}^N P(x_i | \theta) \right) d\theta$$

For some random variable θ

- Independent and identically distributed → Exchangeable
- Exchangeable → IID : No. A counter example is the Polya urn sampling
- Chinese restaurant process is an exchangeable process
 - No proof in this scope
 - Why is exchangeability important?
 - Enables a simple derivation of Gibbs sampler for the inference
 - We remove the instance of the next Gibbs sampling from the existing cluster assignment

Detour: Concept of Gibbs Sampling

$$\left\{ z_1^{(\tau)}, z_2^{(\tau)}, z_3^{(\tau)} \right\} \quad \left\{ z_1^{(\tau+1)}, z_2^{(\tau)}, z_3^{(\tau)} \right\} \quad \left\{ z_1^{(\tau+1)}, z_2^{(\tau+1)}, z_3^{(\tau+1)}, z_3^{(\tau+1)}, z_2^{(\tau+1)}, z_3^{(\tau+1)} \right\}$$

- Each step involves replacing the value of one of the variables by a value drawn from the distribution of that variable conditioned on the values of the remaining variables
- Repeated either by cycling through the variables in some particular order or by choosing the variable to be updated at each step at random from some distribution
- Example

- 1. Full joint probability : $p(z_1, z_2, z_3)$
- 2. Sample $z_1 \sim p\left(z_1 \mid z_2^{(\tau)}, z_3^{(\tau)}\right)$ \rightarrow Obtain a value $z_1^{(\tau+1)}$
- 3. Sample $z_2 \sim p\left(z_2 \mid z_1^{(\tau+1)}, z_3^{(\tau)}\right)$ \rightarrow Obtain a value $z_2^{(\tau+1)}$
- 4. Sample $z_3 \sim p\left(z_3 \mid z_1^{(\tau+1)}, z_2^{(\tau+1)}\right)$ \rightarrow Obtain a value $z_3^{(\tau+1)}$

DIRICHLET PROCESS MIXTURE MODEL

Detour: Gaussian Mixture Model

- Let's assume that the data points are drawn from a mixture distribution of multiple multivariate Gaussian distributions
 - $P(x) = \sum_{k=1}^{K} P(z_k) P(x|z) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$
 - How to model such mixture?
 - Mixing coefficient, or Selection variable: z_k
 - The selection is stochastic which follows the multinomial distribution
 - $z_k \in \{0,1\}, \sum_k z_k = 1, P(z_k = 1) = \pi_k, \sum_{k=1}^K \pi_k = 1, 0 \le \pi_k \le 1$
 - $P(Z) = \prod_{k=1}^K \pi_k^{z_k}$
 - Mixture component
 - $P(X|Z_k = 1) = N(x|\mu_k, \Sigma_k) \to P(X|Z) = \prod_{k=1}^K N(x|\mu_k, \Sigma_k)^{Z_k}$
 - This is the marginalized probability. How about conditional?

•
$$\gamma(z_{nk}) \equiv p(z_k = 1 | x_n) = \frac{P(z_k = 1)P(x | z_k = 1)}{\sum_{j=1}^{K} P(z_j = 1)P(x | z_j = 1)}$$

$$= \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x | \mu_j, \Sigma_j)}$$

- Log likelihood of the entire dataset is
 - $\ln P(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)\}$

Dirichlet Process Mixture Model

- Common usage of Dirichlet process: Prior on parameters of a mixture model
 - Like $P(z_k = 1) = \pi_k$

•
$$z_k \in \{0,1\}, \sum_k z_k = 1, P(z_k = 1) = \pi_k, \sum_{k=1}^K \pi_k = 1, 0 \le \pi_k \le 1$$

•
$$\beta | \gamma \sim GEM(\gamma)$$
, $\theta_k | H$, $\lambda \sim H(\lambda)$, $z_i | \beta \sim \beta$, $x_i | \{\theta_k\}_{k=1}^{\infty}$, $x_i | z_i \sim F(\theta_{z_i})$

•
$$\beta \sim GEM(\alpha) \rightarrow k = 1, 2, ..., \infty, v_k | \alpha \sim Beta(1, \alpha), \beta_k = v_k \prod_{l=1}^{k-1} (1 - v_l)$$

- Alternative representation of GMM with infinite K
 - $G_0|H, \gamma \sim DP(\gamma, H), \theta_i'|G_0 \sim G_0, x_i|\theta_i' \sim F(\theta_i')$

•
$$\theta_n | \theta_1 \dots \theta_{n-1}, \gamma, H \sim DP \left(\gamma + n - 1, \frac{\gamma}{\gamma + n - 1} H + \frac{n - 1}{\gamma + n - 1} \frac{\sum_{i=1}^{n-1} \delta_{\theta_i}}{n - 1} \right)$$

- Continuously updating the assignment of an instance
 - Learning concept
 - de Finetti's theorem + Chinese restaurant process
 + Gibbs Sampling
 - Each assignment
 - Surely updates the parameter of each cluster
 - May create a new cluster

Representation For Mixture Models Indicator View $H(\lambda)$

Alternatives in Formulating Mixture Models Apple APPLED AP

 G_0 : Dirichlet Prior Dist.

Atom: a table or a broken stick

- Bayesian Mixture Model
 - $\pi \sim Dir(\alpha)$, $\theta_k \sim H$, $z_i \sim Categorical(\pi)$, $x_i \sim P(x_i | \theta_{z_i})$
- Random Measure Viewpoint
 - $\pi \sim Dir(\alpha)$, $\phi_k \sim H$, $G_0 = \sum_K \pi_k \delta_{\phi_k}$, $\theta_i \sim G_0$, $x_i \sim P(x_i | \theta_i)$
- G is distributed by the stick breaking construction
 - However, on what domain? Must be infinite
 - Parameter domain of the clusters
 - Can be the conjugate distribution of $P(x_i|\theta_i)$

Implementation Details of DPMM

- Online update of the component parameter
 - $G_0|H, \gamma \sim DP(\gamma, H), \theta_i'|G_0 \sim G_0, x_i|\theta_i' \sim F(\theta_i')$

•
$$\theta_n | \theta_1 \dots \theta_{n-1}, \gamma, H \sim DP\left(\gamma + n - 1, \frac{\gamma}{\gamma + n - 1}H + \frac{n - 1}{\gamma + n - 1} \frac{\sum_{i=1}^{n-1} \delta_{\theta_i}}{n - 1}\right), P(\theta_n | \theta_1 \dots \theta_{n-1}, \alpha) = \begin{cases} \frac{N_k}{\alpha + n - 1} & \alpha \\ \frac{\alpha}{\alpha + n - 1} & \alpha \end{cases}$$

- $F(x_i|\theta_i') = N(x_i|\mu_{\theta_i'}, \Sigma_{\theta_i'})$
- $\mu_{\theta_i'}$ and $\Sigma_{\theta_i'}$ are the component parameters given that the component follows the Gaussian distribution

DPMM

- Initial table assignments
- While sampling iterations
 - While each data instance in the dataset
 - Remove the instance from the assignment
 - Calculate the prior : $\theta_n | \theta_1 \dots \theta_{n-1}$, γ , $H \sim DP$
 - Calculate the likelihood : $N(x_i|\mu_{\theta'_i}, \Sigma_{\theta'_i})$
 - Calculate the posterior
 - Sample the cluster assignment from the posterior
 - Update the component parameter
- Truncated Dirichlet process mixture model
 - Finish the sampling of stick-breaking with the limit on the number of atoms
 - Same as limiting the table numbers

Alternative
Representation
For Mixture
Models

DPMM Sampling Process

- The Sampling process produces the different clustering results per iterations
 - γ can determine the sensitivity of the cluster generation

•
$$\theta_n | \theta_1 \dots \theta_{n-1}, \gamma, H \sim DP \left(\gamma + n - 1, \frac{\gamma}{\gamma + n - 1} H + \frac{n - 1}{\gamma + n - 1} \frac{\sum_{i=1}^{n-1} \delta_{\theta_i}}{n - 1} \right)$$

Synthesized True Dataset

HIERARCHICAL DIRICHLET PROCESS

Problem of Separate Prior

- Datasets are often structured
 - LDA : Corpus-Document structure
 - Hierarchical structure
- Finite dimension of clusters
 - Choice is finite, and the atoms will overlap
 - Infinite model might have zero overlap in atoms
 - Smooth continuous distribution of the base distribution
 - Need to enforce sharing the atoms
- Clustering result is different from one branch to another
 - Need to share the same dimension of clusters
 - How to correlate θ_1 and θ_2

Solution of Atom Sharing

Hierarchical structure of Dirichlet processes

- H: the continuous base distribution
- G_0 : a draw from $G_0 \sim DP(H, \gamma)$
- G_i : a draw from $G_i|G_0 \sim DP(G_0, \alpha_0)$
- Here, G_0 is a discrete distribution
 - so G_i will only sample from the atoms of G₀

Stick Breaking Construction

- A hierarchical Dirichlet process with a corpus with D documents
 - Can be applied to domains other than texts
 - $G_0 \sim DP(H, \gamma)$
 - $G_i|G_0 \sim DP(G_0, \alpha_0)$
- Stick breaking (prior distribution) construction of HDP
 - $G_0 = \sum_{k=1}^{\infty} \beta_k \delta_{\phi_k}$

 $\phi_k \sim H$ is shared

- $\phi_k \sim H$
- $\beta_k = \beta'_k \prod_{l=1}^{k-1} (1 \beta'_l)$
- $\beta'_k | \gamma \sim Beta(1, \gamma)$
- $G_i = \sum_{k=1}^{\infty} \pi_{ik} \delta_{\phi_k}$
- $\pi_{ik} = \pi'_{ik} \prod_{l=1}^{k-1} (1 \pi'_{il})$
- $\pi'_{ik} | \gamma \sim Beta(\alpha_0 \beta_k, \alpha_0 (1 \sum_{i=1}^k \beta_i))$

Hierarchical
Dirichlet Process

Chinese Restaurant Franchise

- $G_0 \sim DP(H, \gamma)$
- $G_i|G_0 \sim DP(G_0, \alpha_0)$
 - $\theta_{in} \sim G_i$: a θ_{in} 's seating on a ψ_{it} table of each restaurant
 - $\psi_{it} \sim G_0$: a ψ_{it} 's table serves a ϕ_k menu of the franchise

CRP Sampling

Sampling

Sampling