Notation

General

		Subscript		
Quantity	Notation	Left	Right	Example
Scalar	lowercase	n/a	n/a	a=4
Vector	lowercase, bold	frame	$\mathrm{from} \to \mathrm{to}$	$_{\mathcal{A}}r_{AB}$
Homogeneous vector	lowercase, bold, tilde	frame	$\mathrm{from} \to \mathrm{to}$	$_{\mathcal{A}}\widetilde{\boldsymbol{r}}_{AB}$
Matrix	uppercase, bold	n/a	n/a	$oldsymbol{A}$
${\it Transformation matrix}^1$	uppercase, bold	n/a	$to \leftarrow from$	R_{BA}

 $^{^{\}rm 1}$ This includes passive rotations, homogeneous transformations, quaternions

f(x; p) a quantity f with variables x and (optionally) parameterized by parameters p.

Kinematics

Quantity	Notation	Subscript
Absolute ¹ position	$m{r}_P := {}_{\mathcal{I}}m{r}_{IP}$	object (point)
Absolute velocity	$\boldsymbol{v}_P := {}_{\mathcal{I}} \dot{\boldsymbol{r}}_{IP}$	object (point)
Absolute acceleration	$oldsymbol{a}_P := \dot{oldsymbol{v}}_P = {}_{\mathcal{I}} \ddot{oldsymbol{r}}_{IP}$	object (point)

 $^{^1}$ relative to a fixed (inertial) reference frame ${\mathcal I}$ with origin I

Probability

Property	Notation
Random variable (RV), state	X, x
Probability	P(X=x) =: P(X)
Conditional probability	P(X = x Y = y) =: P(X Y)
Expectation of a continuous RV	$\mathbb{E}_{x \sim f(x)}[X] = \int_{-\infty}^{\infty} x \ f(x) \ dx =: \mathbb{E}[X] =: \mu$
Expectation of a discrete RV	$\mathbb{E}_{x \sim p(x)}[X] = \sum_{i} x_i \ p(x_i) =: \mathbb{E}[X] =: \mu$
Expectation (continuous RV) of a function g	$\mathbb{E}_{x \sim f(x)}[g(x)] = \int_{-\infty}^{\infty} g(x) f(x) \ dx$
Expectation (discrete RV) of a function g	$\mathbb{E}_{x \sim p(x)}[g(x)] = \sum_{i} g(x_i) p(x_i)$
Variance	$Var[X] =: \sigma^2$
Standard deviation	$SD[X] =: \sigma$
Probability mass function ¹	$p_X(x) =: p(x)$
Probability density function ²	$f_X(x) =: f(x)$
Cumulative distribution function	$F_X(x) =: F(x)$

 $^{^1\,\}mathrm{for}$ discrete RVs $^{-2}\,\mathrm{for}$ continuous RVs