Index

Overview over this video

This video will discuss the topic of indices

Reminder: Computing $\sigma_{\text{condition}}(R)$

Basic procedure:

R: tuple 1 tuple 2 tuple 3 tuple 4 ...

for each tuple t in R:

if t satisfies condition:

output t

Needs to read the entire relation

Yes, sometimes!

Can this be done faster?

Example

 $\sigma_{\text{programme='G401'}}$ (Students)

Students

id	name	programme	
1234	Anna	G401	
2345	Ben	G701	
3456	Chloe	G401	
4567	Dave	G401	

Selection can be performed faster if we know where to find the rows for 'G401'

Two solutions: sorting & index -

This video

See last video

Index

sorted

Given the values for one or more attributes of a relation **R**, provides quick access to the tuples with these values

Index on attribute programme

Value	Pointers to rows	
•••	•••	
G401	1234, 3456, 4567,	
G701	2345,	
•••	•••	

Students

id	name	programme	
•••			
1234	Anna	G401	
2345	Ben	G701	
3456	Chloe	G401	
4567	Dave	G401	
•••			

Types:

Secondary: merely points to location of records on disk.

Primary: in addition, defines how data is sorted on disk

Always dense

Good when attributes involve primary key

Example Revisited

$\sigma_{\text{programme='G401'}}$ (Students)

Index on attribute programme

Value	Pointers to rows
G401	1234, 3456, 4567,
G701	2345

Students

	id	name	programme
-	1234	Anna	G401
-	2345	Ben	G701
•	3456	Chloe	G401
	4567	Dave	G401

Running time? O(log k+size of output)

Selection with index:

- Find entry for 'G401' in index
- Visit all rows in Students whose ids occur in the index entry for 'G401'

Example 2

$\sigma_{\text{programme='G401' AND year=2}}$ (Students)

Index on **programme**

Value	Pointers to rows	
•••		
G401	1234, 3456, 4567, 	
G701	2345	

Students

	id name		programme	year
₹	1234	Anna	G401	2
#	2345	Ben	G701	2
•	3456	Chloe	G401	3
×	4567	Dave	G401	1
	•••	•••		

Index on year

	Value	Pointers
	1	4567,
	2	1234,
		2345,
`[3	3456,

Selection with two indexes:

- Find entries for 'G401' & 2 in indexes for programme & year
- Visit all rows in Students whose ids occur in both index entries

Example 3

$\sigma_{\text{programme='G401' AND year=2}}$ (Students)

Index on programme, year

Value		Pointers to rows	
G401	1	4567	\
G401	2	1234	-
G401	3	3456	-
G701	2	2345	

Students

	id name		programme	year
*	1234	Anna	G401	2
1	2345	Ben	G701	2
>	3456	Chloe	G401	3
7	4567	Dave	G401	1
	•••	•••		

Selection with two indexes:

- Find entries for 'G401', 2 in index for programme, year
- Visit all rows in Students whose ids occur in that index

Forms of Indexes

B+ Trees

- Good if selection condition specifies a range
- $^{\circ}$ E.g., $\sigma_{\text{programme='G401'}}$ AND year > 1
- Most widely used

Hash tables

- Good if selection involves equality only
- $^{\circ}$ E.g., $\sigma_{\rm programme='G401'}$

Many more...

```
CREATE INDEX
ON Students USING btree
(programme, year);
```

```
CREATE INDEX
ON Students USING hash
(programme);
```

```
CREATE INDEX
ON Students USING hash
  (lower(name));
```

Summary

There are a variety of different indices

In particular:

- Hash-index: good for equality
- B+-Tree: good for ranges