

(11)Publication number:

58-024850

(43) Date of publication of application: 14.02.1983

(51)Int.CI.

GO1N 27/12

(21)Application number : 56-123122

(71)Applicant: TOYOTA CENTRAL RES & DEV LAB

(22)Date of filing:

07.08.1981

(72)Inventor: KONDO HARUYOSHI

TAKAHASHI HIDEAKI HAYAKAWA KIYOHARU TAKEUCHI TAKASHI

(54) FILM TYPE OXYGEN SENSOR WITH HEATER AND OXYGEN DETECTOR EMPLOYING SAID SENSOR

(57)Abstract:

PURPOSE: To enable to perform a heating by an efficient heater, by a method wherein an owygen partial pressure sensing part, consisting of Nb2 or CeO2film, an electrode, and a catalyst, is mounted to one surface of both surfaces of an insulating substrate, and a heater is attached to other surface or the same surface. CONSTITUTION: Temperature is detected from a resistance value of a heater using a Wheatstone bridge circuit, and a constant-temperature heating control circuit, applying a power for heating, is attached. A heater 3 is inserted in the middle of one side CA of the bridge. A voltage is applied between terminals B and C of the bridge via a transistor 6 for controlling a power from a constant-voltage source 5, and an unblanced voltage between terminals C and D of the bridge is detected and amplified by a differential amplifier 7 to apply it to the base of the transistor 6. A rectifier 8 is employed so that breakdown is prevented from occurring between the collector bases of the transistor 6. When a product of a

resistance 9 and a resistance of a potentiometer 10 becomes approximately equivalent to that of a resistance 11 and the resistance of the heater 3, the unbalanced voltage. of the bridge is brought to approximately zero, a constant voltage is applied to the heater, and a sensor temperature is also brought to a balance.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

BEST AVAILABLE COPY

[Date of final disposal for app tion]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

09 日本国特許庁 (JP).

①特許出願公開

⑫公開特許公報(A)

昭58-24850

⑤Int. Cl.⁵
G 01 N 27/12

識別記号

庁内整理番号 6928-2G 砂公開 昭和58年(1983)2月14日

発明の数 3 審査請求 未請求

(全 22 頁)

⊗ヒータ付薄膜型酸素センサとそれを用いた酸素検出装置

②特 願 昭56-123122

②出 願 昭56(1981)8月7日

@発 明 者 近藤春義

安城市里町東大道一番地六六

@発 明 者 高橋英昭

愛知県愛知郡日進町南ケ丘1丁 目23番地 ⑫発 明 者 早川清春

大府市共和町奥谷1丁目3番地

加発 明 者 武内隆

愛知県愛知郡日進町大字岩藤新

田字一ノ廻間926-232

⑪出 願 人 株式会社豊田中央研究所

愛知県愛知郡長久手町大字長湫

字横道41番地の1

個代 理 人 弁理士 星野恒司 外

宣司 外1名

明 細 製

1. 発明の名称

ヒータ付称膜型酸素センサとそれを用いた酸 素検出装置

2. 特許請求の範囲

- (1) 絶縁性態板の表面の一面に五般化ニオプ (Nb₂O₅)または酸化セリウム(CeO₂)の薄膜と 電極と触媒から成る機需分圧感応部を設け、他の 片面もしくは同一片面にヒータを設けたことを特 徴とする機器センサ。
- (2) 絶縁性基板の表面に酸素分圧感応部および ヒータを設けた酸素センサおよびその酸素センサ を一定温度に加熱するために前配ヒータに結合さ れた定温加熱制御部から成ることを特徴とする酸 素検出装置。
- (3) 絶象性 若板の 表面に 酸素分圧感応部とヒータを設けた酸素 センサをホルタの 先端部に固定し、そのホルタの 基部には 温度検出の ための 固定抵抗を設けたことを 特徴とする 酸素検出装置。

3. 発明の詳細な説明

本発明は自動車用エンシャモの他の燃焼装置の排気の空燃出を検出するための検出を値に対して、が来の目的は、排気管管を関して、が来の目的は、排気をでは、ないのででは、できる。では、ないったような低温の排気中にも、ででは、でいるとような低温のが、できるは、では、できる。をできないとにある。

今日の社会においては、環境の保護の観点から、自動取用エンジンを始めとする各種燃焼装置からの排気中に含まれる有害成分を極力低減することが求められている。この要請に応えるために点火時期、EGRを始めとする各種調節が行たわれているが、それらの内でも空燃比の調節はその根幹をなすものといえる。一般にエンジンにおいては理験空燃比近傍で燃焼させるのが高出力であり、しかも排気中の有害成分も少なく良好を場合が多い。特に三元触媒を用いた方式では顕著である。

特開昭58-24850(2)

しかしながら、 奥奈には様々な原因で空燃比の 設定値からのずれが起るので計削しつつ、 自動的 に 調査したりする必要が生する。

空燃比をずれさせる原因として下記のようたも のがある。

(1) 冷間治動時におけるチョーク操作時

始動時においては燃料の一部がインテークマニホルド壁面等へ付着してシリング内へ到避する割、合が減少するので、チョーク弁を操作して燃料を増量するため排気の空燃比が燃料過剰(以下、単にリッチ(Rich)と称す)になり易い。このとき多量の有害ガスが発生し易い。

②加減速を始めとする過渡状態

エンシンでは各種のふらつきがあるため、 定常 状態で運転しようとしても回転数等の変動は避け られず、そういう意味では常に過渡状態にあるが、 特に加減速時には大きを過渡状態が現われる。 過 渡状態において空燃比が変動するのは以下の理由 による。

即ち、ガンリン等の液状燃料を用いているエン (3)

と、エンジン諸特性や排気中の有客成分を悪化させるので無視することは許されない。

以上例示したように、積々の要因で空燃比の変動やパラッキ等が生じるので空燃比検出を短かい 遅れ時間で確便に測定したいという要求は強い。

従来、上記のような空燃比検出を行なうのに、 酸素濃淡電池を応用したの2 センサやTIO2 をセン サとして用いた試み等があった。例えば、安定化 ジルコニアを用いた酸素濃淡電池が自動車用セン サとして実用化されている。

排気のような高温でも支障なく動作する酸化物 半導体によって空燃比を測定するとも試みられて では、かからでははセンサ自体が排気の温度に 耐えるし、排気の雰囲気に耐えるのでかってが がなくても、排気管中にセンサを直接という することが可能である。従ってでかってが 系での遅れや除煤、 くなる。また、サンプリングがス流によってして である。また、サンプリングがス流によってして である。また、サンプリングがス流によってして である。また、サンプリングがス流によってして である。またが乱される心配もなくなる。そして であるがス流が乱される心配もなくなる。そして であるかる流が乱されるいして排気管内の空燃比

③ 空松比の気筒間差.

一般に自動車用の実用エンジンは全で多気筒エンジンであるといっても過官ではない。そして各気筒は何等かの非対称性を持つととが避けられないため、燃料分配にベランキが生じ、空燃比の気筒間差は EFI エンジンでは比較的小さいが気化器式のものでは大きくなる場合がある。空燃比の気筒間差が大きくなる

(4)

分布などの飲小空間内の計測も可能になる。空燃 比測定に適する酸化物半導体としては、TiO₂ , CeO₂ ,Nh₂O₅ 等のN型半導体や、NiO,CoO 等のP型 半導体等がある。

酸化物を利用した空燃比計測の例としてはイオン導電体を演谈電池型に構成したシルコニア利用のO2センサの他、TiO2やCoOの抵抗変化を利用して排気の空燃比を測定する試みも行なわれているが、従来のものは種々の問題があった。

従来の 02 センサは約 4 0 0 (C) 以上でしか動作させることができなかったが、エンジンの低燃費化、排気の低温化に伴って、近年もっと低温で動作させたいという要求が出てきた。

ます、従来の 02 センサが 4 0 0 [C] 以上でしか 動作しなかった理由を説明する。燃焼排気におい ては、反応を充分に促進した状態(化学平衡状態) では理論空燃比において厳素分圧が急変する。 そ のため酸素凝淡電池型の 02 センサであれば起電力 の急変、酸化物半導体型 02 センサであれば抵抗の 急変を生する。ところで、一般に燃焼排気中には

(6)

設量ではあるが可燃成分(H2,CO.HC)と取異が 共存し、反応の進み方は充分ではたい。 それ故、 単化排気中の酸素分圧に比例した値をセンサより 出力するだけでは理論空燃比における起電力又は 抵抗の急変は起きず不都合である。 それ 旅 佐 を併用してセンサ内又は 袋 で 反応 を 促 は 延 を せると に よ り、 理論 空燃 比 で の 起 で 反 む な に な な に な な に な な に な な に な な に な が か と で し の か に で の 動作下限によ り、 O2 センサ の 動作下限によ の 反応 促 遊 効果が 約 4 0 0 (C) 以 上 で な い と 充 分 に 起 ら な い た め、 従来の O2 センサ で

この点に対処するために、従来において酸素センサを別途に設けたヒータで加熱するという試みがあったが、消費能力が著しく大きかったり(数10 [W])して、機能的に重敬センサとして不適当であった。

は400[C] 以上でないと働らかなかった。

・そとで、本発明は、前記従来技術の欠点を解消するために、 酸素センサ 加熱のためのヒータを酸素センサ内に内容させる新規な構造を提供すると
(7)

にはその上に多孔質膜を設けると強度が高くなり、 しかも汚染に強くなる。さらに未燃分の反応によ る余分な温度上昇を軽減することができるという 利点がある。

酸素分圧感応性の薄膜素材としては適用可能酸素分圧の広さ、安定性、速応性、抵抗率等の路等 性の良いものでなければならない。

先ず、適用可能酸素分圧の広さの値からの検討 結果について説明する。

特別8858-24850(3)

我に、排気温が低い場合であっても、 絵葉による 反応促進効果が充分に得られるように、前記と一 タを取動して設業センサを一定温度に加熱する定 温加熱制御部を設けた酸素検出装置を提供するも のである。

をお、第1図には酸素感応性の薄膜とヒータを 絶縁性悲抜の異なる面に設けた例を示したが、同 一面に設けても良い。

酸紫感応性薄膜とヒータを同一面に設けた場合 (8)

大気の酸素分圧($Po_2 \approx 02$)が、A 、B 、C いずれの領域に位置するかは、酸化物によって異る。大気の酸素分圧がA 領域にあるものは、通常、 n 型半導体と呼ばれる。B の領域にあるものは、p 型 半導体と呼ばれる。B の領域にあるものは、1 なに導体とたる場合が多い。p 型半導体を 0_2 センサとして仮えば、排気の1 が燃料リーン(以下単にリーン(1 Lean)と略す)からリッチに変る(1 Po2 が低くなる)につれて、一般には、導電密

(10)

導電率の酸素分圧依存性が大きければ、ガスに対する感度が高くなる、云いかえれば、 $\lambda=1$ 附近での抵抗変化が大きくなるので、好都合である。 導電率。の酸素分圧依存性は、 A 文は C の領域内では一般には、

$$(e) = K_{V_0}^{1/2} Po_2^{-1/4}$$
 (4)

伝導度。は伝導電子数に比例するので

$$\sigma \propto (e') \propto P_{02}^{-1/4}$$
 (5)

となる。即ち、この場合には n = -1/4 となる。 (例2) 酸素原子空孔が 2 価にイオン化する 場合 n = -1/6 となる。

との場合の反応式は、

$$O_0=V_0^*+2$$
 $e'+\frac{1}{2}$ O_2 (6)
と表わすことが出来る。ここで、 V_0^* は $+2$ 価化
イオン化した欧素原子空孔を衰わす。この反応の
平衡定数を $K_{V_0}^*$ で表わせば、次の関係が成り立つ。

$$[V_0^*][e]^2 Po_2^{1/2} = K_{V_0^*}$$
 (7)

電気量の保存削は、 2(V°)=(e')となるので、

[e'] =
$$(2K_{V}^{\circ})^{1/5}P_{02}^{-1/6}$$
 (8)

従って、

$$\sigma \propto P_{02}^{-1/6} \qquad (9)$$

特問858-24850(4)

のように扱わされるので、 指数 n の 絶対値が大きいもの a 、 高感度に なる。 酸素原子空孔、 金属原子空孔などの格子欠陥が、 どの 程度イオン化するかによって、 n の値が決まる。以下、 代表的な 2 ~ 3 の例について述べる。

(例1) 酸素原子空孔が1 価に帯電する場合 n = -1/4 となる。

この場合の反応式は

$$O_0
ightharpoonup V_0 + e' + \frac{1}{2}O_2$$
 (2)
の如く铅き袋わされ、次のようなことを意味している。酸素格子点にある酸素原子 O_0 がガス O_2 となって酸化物外に出た後に、 $+1$ 価にイオン化した酸素原子空孔 V_0 と伝導電子 e' が生れる。酸素原子空孔の速度 (V_0) 、 伝導電子機関 (e) 、酸素分圧 P_0 、の間には、

$$(v_0^{\cdot})$$
 (e) $P_{02}^{1/2} = K_{V_1^{\cdot}}$ (3)

との場合には n = -1/6 となる。

以上のように、格子欠陥のイオン化の程度によって、nの値は変化する。一般には、上の2つの例の中間、即ち、1/6 ≤ n l ≤ 1/4 になる場合が多い。nの値は、また、微量の不純物によっても変り、同じ酸化物でも測定者によって多少異る値が得られている。

各酸化物に対する導電率の圧力依存性のパターンを、積々の文献データをもとに調らべるとえ=1を検出するセンサ、即ち、 $\lambda=1$ 附近で抵抗が大きく変化するセンサには、 n 型半導体であり、かつ、n が大きい材料が望ましい。このような材料としては、 TiO_2 , Nb_2O_5 , Ta_2O_5 , WO_5 , CeO_2 を候補に上げるととができる。一方、リーンでのみ使用するセンサであれば、p 型半導体でも良いので、上記の材料の他に、CeO, NiO, Y_2O_3 , HiO_2 なども候補とたる。

次に速応性の面からの検討結果を説明する。 センサとしては速応性があることが望ましいのは当然である。 酸化物の抵抗変化は原厚が薄い程、又、

特問昭58-24850(5)

第1表 りょチ↔リーンと雰囲気を変えセンサ抵抗が50 €変化 するまでの応答時間

試	P4		リッ応答明	テポ	→IJ—IJ fl(msec)	リーシー	リッチ (fusec)	評価
Nb 20 5 符膜	膜厚	400 Å		7	3	2	9	便
TiO2	•	450%	1	0	9	7	9	良
TiO2焼結体			1	3	0	7	8	ह्य
CeO ₂ 蒋膜		500%	}	8	0	3	5	Œ
Nb 205焼結(本	•	6	0	0	15	3	b)

以上の検討の結果、応答性の面でいえば、薄腹化を図ることにより特性が大幅に向上する酸化物材料として、Nb₂O₅とCeO₂が有利であることが判明した。

次に抵抗変化幅の面からの検討結果について説明する。リッチ雰囲気とリーン雰囲気間での抵抗変化幅が大きい方が $\lambda=1$ を検出するセンサとしては望ましい。そのためには前述の指数 n の絶対値が大きいことが望ましい。第4 図に数種の酸化物の酸素分圧とn値の関係を示す。図より明らかなように Log Po_2 が $0\sim-14$ 程度の範囲で抵抗が

—16—

Nb20s および CeO2 は抵抗率が低く好ましいが、HfO2 の抵抗率は高く、海膜化には好ましくない。TiO2 と CeO2 の両者は温度係数が大きいから、600~1000 [t] の範囲で一定の基準抵抗を用いて空燃比制御をすることは不可能であるが、Nb2O5 はリッチ 何での温度係数が小いから一定の基準抵抗を用いて空燃比制御をすることができるので優れている。CoO および NiO は前途の如く安定に動作できる空燃比範囲が狭い。又WO5 には蒸発性があって不都合である。

以上の賭特性をまとめると、第2表の如くなる。 表より明らかなように総合評価としては Nb_2O_5 と CeO_2 が良好であり、 TiO_2 がそれに次ぐが、その他の物は不可である。

酸化物内における酸素の自己拡散速度が大きい程、速く変化する。そとで、我々は酸化物内における酸素の自己拡散速度の大きい材料を文献より調査した。その結果を第3図に示す。

-図より明らかなように、 CeO_2 が最も大きく、 Nb_2O_5 かそれに次ぎ、 TiO_2 や NiO は小さいことが わかる。

-1.5-

ー価関数になって、しかも n の絶体値の大きい物は TiO_2 , Nb_2O_5 , WO_5 , および CoO_2 の四者であることがわかる。

次に抵抗の温度係数の面の検討結果を説明する。 センサの利用しやすさの面から考えると、リッチ、 リーンの抵抗値の双方か少なくも一方の温度係数 の小さいことが望ましい。

第 5 図(a) には Nb₂O₅ , CeO₂ , TiO₂ の抵抗対温 産の関係を示す。

第5図(b)(c) には配化物半導体の導電率の温度係数を示す。図より明らかたように、リッチ、リーン抵抗の双方の温度係数の低いものはないが、WO3 および Nb2O5 の両者はリッチ側での温度係数が低く、良好である。

第6図~第11図には夫々、 TIO_2 , Nb_2O_5 , CeO_2 , CeO_3 , NiO_4 , HIO_2 の空気過剰率対抵抗率の推定値を示す。各図より明らかなように以下のことがわかる。 TIO_2 , Nb_2O_5 , CeO_2 , および HIO_2 では $\lambda=0.87$ ~1.11の全範囲で一価関数であり、しかも安定に動作する。その内、 TiO_2 ,

· 特 性	Ti02	Nb 205	Ta 205	wo,	Ce0,	0°ວ	01%	Y 203	Hr02
適用可能散業分圧域	0	0	×	0	0	×	×	×	0
速応性(拡散速度)		0			© .		×		
抵抗变化幅	i O	0		0	0				ے
抵抗温度係数		0.	×	(0)	_ حا				×
抵抗率	.0	0	! !		0				×
蒸発性	0	Ο.	0	×	0	0	0	0	0
総合評価 .:	; <u> </u>	.0	×	×	0	×	×	×	×

酸素感応性の薄膜の厚さとしてはガス感応の速度、安定性、抵抗値より検討すると 1 0 0 [%] ~ 5 [μm] が適する。

×:不可

△:"可

◎:佐 ○:良

反応促進用の触葉としては反応促進効果、安定性より検討すると白金(Pt)、ロジウム(Rh)、パラジウム(Pd)のいずれか又はそれ等の混合物が適する。

そして、触媒担持最の検討を行なった。第 1 2 - -19--

中での使用を前提にしている。これ等の排気中ではカーボンの付着からの折出に対気相からの折出自動車による。第14図には自動車に対するの要対はひ温をでは、1~0年の大きの変気が出る。第14図には、1~1年の大きのからからないがある。で、1~1年の折出領域では、1~1年の折出領域では気相のでは、1~1年の折出領域では気相のでのからカーボンが形成されたシャに焼が付着して、1~1年のある。によりに対して、1~1年のある。

7 0 0. [C] の排気中での耐久性を確保するには Pt 系のヒータを用いる必要がある。

我々はPt にPh を添加して、スペッタ装置で薄膜ヒータを調製し、1000に)にかける安定性を実験した。そして、第29図の如く一定電圧を印加した状態で、ヒータの劣化によりヒータの抵抗が上昇し、温度が990に)に低下するまでの時間を調べた。その結果を第3表かよび第15図に示す。表および図より明らかなように、Ph 爺

特開昭58-24850(6)

図には触鉄添加量とリッチ、リーン雰囲気間での 抵抗変化幅の関係を示す。図より明らかなように、 Pt 又は Pd の添加量を 5 [wtf] 以上にすると大き な抵抗変化幅が得られて好都合である。 5 ~ 4 0 [wtf] の間はほぼ同等の大きな変化幅である。又、 4 0 [wtf] 以上にすると、抵抗変化編は飽和して 一定以上には大きくならないが見かけの抵抗率が 低下した。それ故、添加量としては 5 ~ 4 0 [wtf] が遊当であることが判った。

第13図には Pt 20 [wtf] に Rh を添加する割合とリッチ、リーン雰囲気間での抵抗変化幅の関係を示す。 図より明らかなように、 Pt が 20 [wtf] あるのに加えて、更に Ph の添加を行なっても抵抗変化幅は大きくならず一定でありこの面ではメリットがないことがわかる。

ヒータおよび電極の素材としては安定性、温度係数より検討すると白金(Pt)、ロジウム(Rh)、パラジウム(Pd)のいずれか又はそれ等の混合物が減する。

本発明のセンサは自動車エンジン等の燃焼排気

加量が多い程、安定性が向上することが判った。 但し、Pt 線 (5 0 [μm] ⁶) との熱圧着性は Rh の添加量の多い方が悪くなる。

第3 妄 Pt に添加するRh 量と、Pt に添加するRh 量を変えて製作Pt + Rh ヒータの加熱温度が 10 で下がるのに要する時間との関係

Rh添加量 (wt%)	0	5	18	30	45
時間	9分	1 5/7	25 /)	1時間	2時間
評価		l			→ ex

第16図には Pt ヒータの700(で) における安定性試験の結果を示す。図より明らかなように、350(時間)で30(で)と値かな変化に収まっており、良い安定性を示している。

ヒータの厚さとしては抵抗値の安定性、製造しやすさから検討すると 0.2 [um] ~ 1 0 [um] が適する。

絶縁性蒸板としては高温での強度、絶縁抵抗、他の素材との反応のしにくさの面より検討すると 酸化アルミニウム (A4203) が適する。

本発明のセンサの場合、前述の如く自動車エン

ジンを始めとする松集器等の排気中での使用を前提にしており、温度も常温から800 (C) の高温を変動する。又、振動も加えられる恐れがある。それ故、かたり厳しい条件になっている。従って、基板もおろそかにできない。4種類の遊板、即ち、Si+SiO2 膜、綿SiO2 (石灰)板、AL2O3 焼結板、れL2O3 単結晶(サファイヤ)板等について、加工性、耐熱性、Pt 膜との密着性等を調べた。各々の調べ方は下記の如くである。

1) 加工性について

超音波加工機およびダイヤモンドカッタによる 加工の雑易度を調べた。

2) 耐熱性

2-1) 基板自体の耐熱性

大気中において、800 (C) と常温の急速加熱、 冷却を5サイクル行ない、 基板の割れ、および、 そりが生ずるか調べた。

2-2) Pt と基板の耐反応性、耐雰囲気性 基板に Pt をスペッタして 海膜を調製した 物を、 温度 800 (C) て、空気過剰率 3 = 0.7 (リッチ)と 1.5

A L 2 O 3 焼結板の要面相度とりッチ、リーン雰囲気間での抵抗変化幅の関係を調べた。その結果を第5表とよび第17図に示す。

特別部58-24850(プ)

(リーン)雰囲気に1時間さらしたときの安定性を調べた。その結果、Si+SiO2板はPtと反応したので不可であり、又SiO2が還元されてSi になり、そのため絶縁原としての機能が失なわれた。

2-3) Pt 膜との密着性

とれ等の検討結果を第4表に示す。表より明らかなように、AL2O3 の铣結板が機能的にも使れており、しかも低コストで実用性も高い。

第 4 表

特 性 	加工性	耐辣性	Pt膜との 密着性	熱によ る強度	価 格	総合 評価
Si+SiO ₂ 数板	0	×	×	×	Ö	×
AL203饶結基板	0	0	0	0	0	0
石 英 板	ş	0	×	0	×	×
サファイヤ (Aと ₂ 0 ₃ 単結晶)	×	0		×	×	×

-24-

	11 4	#200(#.L (79")	2.5) 原好
#	10 д	#350H.F (45#)	2.2	
A.C.203 焼桔体	η 6	#6004E (28#)	2.1	
V	7	20004E \$10004E \$6004E \$3504E (45n) (158n) (45n)	2	
	K-210	## T	1.8	
#771		(Mant 197)	1.5	
* *	数面の凹凸	较而仕上げ	抵抗变化幅、	電電

r.

酸化物薄膜の抵抗取り出し用の 超極形状として は続の歯が対向した形にすると対向部の幅員が大 となり、抵抗が小さくなるから良い。

酸化物および電極表面に緻密層又は多孔質層を設けると強度が高くなり、又汚染にも強くなり、 センサへの未然ガスの供給をも制限されて反応時 の発熱量も制限されるから良い。

-27-

スピネル質の20~70 [um] の原料を用いて、プラズマ熔射法によりコーティング層を調製した。コーティング層を調製した。コーティング層の渡厚は0,30,60、100,150,200 [um] の6 水準とした。第19 図にはそれ等のセンサのガス組成(02 渡度/H2 渡度)と抵抗の関係を示す。図より明らかなように、コーティング層が厚くなるに従って、抵抗急変点が改業過剰倒へ大きくずれること、又、抵抗変化になが、よさくなることがわかった。こうした特性はエンシン制御センサとして用いる場合には空燃比制のメンと制御センサとして用いる場合には空燃比制のスレとができる。

多孔質のコーティング暦厚さとしては 2 0 ~ 2 0 0 [μm] が適当である。

ヒータの表面に 数密層を設けると強度が高くなり、 汚染にも強くなり、 未然ガスのヒータ表面への供給料も削限されて反応熱による温度上昇が制限できるから、 温度制御の安定性が増し寿命も長くなる。

酸化物なよび電極表面上に設ける多孔質層の素

特開昭58-24850(8)

第6表 コーティング膜厚 - 空気過剰率 ↓を0.9 5 → 1.0 5 まで変化させた場合センサ抵抗が50 多変化するまでの時間

	 便	D 良	msec . 即	msec	 不町	不可
元答時間	8 2			600	3分	心をせず
ローティング 関厚(よ)	0	250%	1050%	2000%	4000 ሺ	7000景

要 お よ び 図 か ら 明 ら か な よ う に 、 2 0 0 0 (\(\) 記 え る 膜 厚 で は 応 答 時 間 が 著 し く 長 く な り 不 都 合 た の で 、 2 0 0 0 (\(\) が 応 答 時 間 か ら 見 た A L 2 C 5 ス ペ ッ タ 保 腰 膜 厚 の 上 限 で あ る 。

保護のための他の形態として多孔質層でコーティングを行なっても良い。多孔質層の材質として はケイ石質、アルミナ質、スピネル質、マグネシア質、ジルコニア質等の耐熱性無機材料が適多して いる。スピネル質のプラズマ焼射によって、多孔質層を形成する場合には平均粒径2~70 [μm] の焼射原料を用いるのが適当である。多孔質層の 厚さは20~300 [μm]とすると剣雌、ひび割れ 等も無く適当である。

-28-

材としては強度、熱的安定性、他の素材との反応 のしにくさを考えると酸化アルミニウム質、ケイ 石質、スピネル質、マグネシア質、ジルコニア質 等が適する。

ヒータの表面に設ける版密層の素材としては強度、熱的安定性、他の素材との反応のしにくさを 考慮すると酸化アルミニウム質、ケイ石質、スピネル質、マグネシア質、シルコニア質が適する。

次に、本発明の酸素センサの製法の一例を第 20回により説明する。同図に示すように、次の ような工程を有している。

- (a) AL₂O₅ 荔板(寸法30×30×0.2 mm、表面仕上げ #320.850 仕上げ)、ターゲット材料 として Nb₂O₅ 焼結体(110 0×8 mm)、Pt (110 0×1 mm)を準備する。
- (b) 二種スパッタ装置を用いてAr 雰囲気中、真空度4×10⁻²Torr において、Nb₂O₅を約20分間スパッタする。
- (c) Nb₂O₅ スパッタ面にはレジストにより電極 マスク、一方反対側面にはヒータマスクを盗布し、

-30-

特別昭58-24850(9)

饶付ける。

_(e) ダイジングマシンを用いて細分する(寸法1.70×1.75 ==)。

(f) 溶剤(アセトン)に役せきし、レジストを 剣雕する。その結果レジストを付けていない部分 のPt(ヒータ、電極相当部)が残る。

(g) 電極部に Pt リード線を取り付ける。

ところで、こうしたエンジン制御用センサの設置される場所は、流量、温度変励が大きい。 そこで、一般に温度変動をするとセンサの特性も変化する。それ故、雰囲気温度が変化する場合にもその影響を受けにくくするためにヒータ印加能力を加減して、一定の温度に加熱すると良い。

定品加熱制御をするためには何等かの感温紫子により温度検出をする必要がある。白金等のヒータの場合にはヒータの抵抗温度保数が大きく、ヒータの抵抗からヒータの温度を求めることができ、

-31-

タ10の抵抗の税および抵抗11とヒータ3の抵抗の積が役任等しくなったときにブリッジの不平衡電圧が零に近くなり、一定の電力がヒータに加わり、センサ温度も平衡に至る。

第22図には、定温加熱制御回路の他の方式を です。電流検出部12によりヒータ3の電流を 大力に、ヒータ電圧と検出電流の高流算部13 で演算しヒータ3の抵抗に比例した電圧を得した。 メテンショメータ10で標準の抵抗に比例した電 圧を差動増編器7で比較し、その差分により電 にを差動増編器7で比較し、その差分により電 が別用トランジスタ5を制御して、センサの温度 を一定に制御する。

ヒータ加熱電力制御法としては連続通電の方法でも良いが、電力制御器での電力損失およびそれに伴なう温度上昇を軽減するためスイッチング方式にして断続的に制御しても良い。その場合の周期としては温度の安定性等より検討すると1 (ma) ~100 (ma) 程度が良い。

第23四は、スイッチング方式の電力制御を行

独立の根温客子を省くことができる。 との 場合にはセンサ 構成を簡略化できること、 従って 低コストに なること、 又、 徴能上では 温度 検出の 遅れが なくなり、 温度差による 誤差が なくなる という 種々の利点がある。 但し、ヒータに 加熱と 温度 検出のこつの 機能を 果させる ため、 両機能の 干渉を排除するための工夫を 要する。

第21図にはホイートストンナリックの抵抗ではから温度を検にするとをにから温度が強制のでの抵抗では、カーののは、カーののでは、カー

-32-

なり定温度制御回路の概略を示すもので、 差動増 幅器(計測アンプ) 7 と電力制御トランジスタ 6 との間に断統制御部 1 5 を設けた点に特徴がある。

第24四は第23回の回路の詳細な構成を示す ものである。スイッチング方式ではオンの期間に はプリッシからの不平衡電圧が得られるが、オフ の期間にはその電圧が得られないので、サンブル ホールド部16によって、オンの期間における電 圧を記憶しておく、そして、三角波発振部17で 三角波若しくはそれに類似の電圧波形を発振して おく。サンプルホールド部16の出力電圧と三角 波 発振部17の出力(電圧)とを加算部18によ り加算し、その出力をコンペレータ19に導き、 オン、オフの矩形波に整形する。そして、ヒータ 温度が低い間はオン時間の割り合いを多くし、甚 度が高くなったらオン時間の割り合いを少なくし、 とのようにして一定の温度を維持するのである。 従って、電力制御トランジスタではオンの時にも オフの時には微少なる電力損失しか生じず、オン、 オフの切換の過渡時のみ比較的大きな電力損失を

行問記58-24850(10)

生するのみであり、平均的な電力扱失が少なく、できれに件なり温度上昇も値かである。い高に野田のように130(で)近過の高に対すのようには自動車性を要求される用途のある。との信頼性が高温であれた方は、次の切り換えてある。でするというでは、ないという利点がある。

第25図にはサンプルホールド部16の出力を 比例部21、積分部22、微分部23へ導き、そ れ等の出力を加算することによって、変動の少を い安定な制御を行なりよりにした例を示す。

なお、第24図あるいは第25図に示すよりな 断統制御部15は、第22図の定温度制御回路に おいても同様に利用できる。

第26図には第1図のセンサのヒータ電力と混 度の関係を示す。図示した如く、0.5 [W] の入力 電力で700 [C] の高温が得られている。

-3 5-

従来のヒータを用いない焼結型の TiO2 センサの場合には応答時間が長く、しかもガス温度の影響が、大きいか、ヒータを設けた薄膜型の Nb 2O5 のセンサの場合には、応答時間も短かく、しかもガス温度の影響も低かであり優れている。

第32図~第37図は酸素セングの構造の一例を示すものである。第32図とはホルダの特色のである。第32回であり、ベース31上の電極32、32がおよび33、33でものである。第32ではないがのである。第32ではないがのである。第35回により、第34回のである。ボルダの先端ででいる。第35回はボルダの先端ででいる。第35回がである。ボルダの大端ででいる。第35回がである。ボルダの大端ででいる。第35回がである。ボルダの大端ででいる。第35回がである。ボルダの大端ででいる。第35回が、大きにはボイートストンででは、10世紀により、電気がはないのでは、10世紀により、電気がはないでは、10世紀により、電気がはないでは、10世紀により、電気がはないでは、10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀により、電気がは10世紀によりには10世紀には10世紀によりには10世紀には

第27図には空気過剰率(λ)と抵抗の対数の関係を示す。図より明らかなように雰囲気温度(ガス温)が100 $\{ \mathbf{c} \}$ と比較的低い場合には五酸化ニオプ $\{ \mathbf{Nb}_2 \mathbf{O}_5 \}$ の場合にはヒータで加熱をしないと
殆んど感応しないのに対し、ヒータで $\{ \mathbf{0}_3 \}$ でがれた場合には $\{ \mathbf{1}_3 \}$ で抵抗が急変する特性を示し、有効に検出していることがわかる。

第28図には定温制御を省を、一定電圧をヒータに印加した場合のガス温度をペラメータにして、空気過剰率(ス)と抵抗の関係を示す。図より明らかなように、若干の影響は受けているものの概ね良好な特性が得られている。

第29 図には定温制御を省を、一定電圧をヒータに印加する方式のヒータとセンサの回路図を示す。

第31図にはガス温度と応答時間の関係を示す。

-36-

がなされる。第36図か上び第37図はホルチ全体側面図および平面図である。

以上要するに従来技術においては酸素センサが ヒータを内蔵していないため、低い温度の排気の 計測には適用するととができなかった。又、従来 技術において加熱装置を酸素センサの近傍に設置 するものにおいては加熱のために数10 (W) 以上 の大電力を必要としたり、あるいは温度による特 性変化のため変動する雰囲気温度のところでは精 度が得られなかった。従って、車載用センサとし て爽用上不適当であった。とのようを問題に対し、 本発明の酸素センサは、絶縁性基板の片面に酸素 分圧感応性の酸化物薄膜を設け、他の片面(又は 同一の片面)にヒータをスパッタ等により直接に 形成した構成のものであるので、効率的なヒータ による加熱が可能であるとともに、ヒータを有す るにもからわらず小形軽量である。また、この酸 素センサと、これを一定の覆度に維持するための 定温制御部とを組合せたことにより本発明の酸素 校出装置は、低い温度の排気にも適用でき、雰囲

気温度の変励に対しても良い精度が得られ、しかも従来の10以下という像小な電力で温度制師が可能である。従って車成用の設集検出装置として積めて有用なものである。

4. 図面の簡単な説明

第1図はセンサの構造を示すものであり、(a)は ヒータ側から見た平面図、(b)は偶面図である。(c) は破素分圧感応性薄膜側から見た平面図である。

第2図には酸化物の電準度の、過剰電子数、過 刺原子数などの酸素分圧 Po₂ 依存性を示す。

第3図には酸化物内における酸素の自己拡散速度を示す。

第4図には酸素分圧検出に有銀な酸化物半導体 9種類の酸素分圧と導電率の関係を示す。

第 5 図(a)は Nb₂O₃ . CeO₂ , TiO₂ の抵抗対温度 の関係を示す図である。

第 5 図(b) (c) は酸化物半導体の導電率の高度係数を示す図である。

第 6 図~第 1 1 図は夫々 TiO2, Nb₂O₅, CeO₂. CoO, NiO, HiO₂ の空気過剰率 λ に対する抵抗率

-39-

によりスピネル質の多孔質層を調整した物の、 ガ ス組成と抵抗の関係を示す図である。

第 2 0 図は本発明の散素センサの製法の一例を示す図である。

第21図はセンサを一定温度に加熱するための 定温加熱制御回路の図である。

第22図は定温加熱制御回路の他の例を示す回 路図である。

第23 図は断続制御部を有する定温加熱制御回 路のプロック図である。

第24図は第23図の回路の詳細を示す図である。

第25図は断続制御部の他の例を示す図である。 第26図は入力電力とヒータ温度の関係を示す 図である。

第27図はヒータ加熱をパラメータにした空気 過剰率とセンサ抵抗の関係を示す図である。

第28図は排ガス温度をパラメータにして、空 気追割率と抵抗の関係を示す図である。

第29四は一定電圧印加方式のヒータ部とセン

特欄昭58-24850(11) 又は抵抗の誰定値を示す図である。

第12回は P: 又は Pd 添加量に対するりッチと リーン雰囲気間での抵抗変化幅の関係を示す図で * 7

第13図は Pt 20 [wtf] に Bh を添加する割合と抵抗変化幅の関係を示す図である。

第14図は空気過剰率および温度に対する CO からのカーポン析出範囲を示す図である。

第 1 5 図は Pt に Rh を添加したヒータを 1000[で] にしたときの、 9 9 0 (で) に低下する迄の寿命と Rh 添加量の関係を示す図である。

第1.6 図は一定配圧印加法によるヒータの連続 通電試験における経過時間と温度の関係を示す図 である。

第17図はAL₂O₃基板の表面粗度と抵抗変化幅の関係を示す図である。

第 1 8 図は酸化物半導体薄膜上にスパッタリンク 法により調製した AL2Os 薄膜の膜厚と応答時間の関係を示す図である。

第19図は酸化物半導体膜上にプラズマ焙射法 -40-

サ部の回路を示す図である。

第30図は第29図の国路における応答波形の 一例を示す図である。

第31図はヒータ付苺膜型 Nb₂O₅ センサと焼結型 TiO₂ センサの応答時間の温度依存性を示す図である。

第32図は、ペース上にセンサを取り付けた部分の平面図、

第33図はホルダにベースおよびセンサを取り 付けた部分の側面図、

第34図は同じく平面図である。

第35回はホルダの基部に強子およびホイートストンプリッジ構成用の抵抗を設けた平面図である。

第36図なよび第37図はホルダ全体の側面図 および平面図である。

> 特許出頭人 株式会社 多田中央研究系会論 代理 人 弁理士 星 野 恒 可受力 岩 上 昇

	NiO	10 5	HfO ₂	0 1 1 9 1 1 8 1 1 8 1 1 1 1 1 1 1 1 1 1 1	C 8 O 2	-i.a\-
※ 数	000	-1a 0	^S O ^Z QN		WO ₃	-ho/o
	T102	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ O ₃	्री <u>क</u> क्षेक्र	TazOs	-ly 7

期間58-24850(15)

第 20 図

第 24 図

第 30 図

第 31 図

第 32 図

第 33 図

第 34 図

舒開 昭58-24850(22)

第 36 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.