Niech A i B będą zdarzeniami losowymi, A' i B' oznaczają zdarzenia przeciwne. Wiadomo, że

$$Pr(B' | A) = \alpha$$
, $Pr(B | A') = \beta$, $Pr(A) = Pr(B) = p$.

Oblicz p, wiedząc, że $\alpha = 1/2$ i $\beta = 1/3$.

- (A) $p = \frac{2}{5}$
- (B) $p = \frac{1}{3}$
- (C) $p = \frac{1}{2}$
- (D) $p = \frac{1}{5}$
- (E) $p = \frac{1}{6}$

W urnie znajduje się $r=25\,$ kul, z których $m=15\,$ jest białych i $r-m=10\,$ czarnych. Losujemy bez zwracania najpierw $n_1=6\,$ kul, a następnie spośród kul pozostałych w urnie, losujemy bez zwracania $n_2=8\,$ kul. Niech

- S_1 oznacza liczbę białych kul wybranych w pierwszym losowaniu,
- S_2 oznacza liczbę białych kul wybranych w drugim losowaniu.

Oblicz $Cov(S_1, S_2)$.

(A)
$$Cov(S_1, S_2) = 0.48$$

(B)
$$Cov(S_1, S_2) = -0.32$$

(C)
$$Cov(S_1, S_2) = -n_1 n_2 \frac{m(r-m)}{r^2(r-1)} = -0.48$$

(D)
$$Cov(S_1, S_2) = -0.75$$

(E)
$$Cov(S_1, S_2) = -1$$

Załóżmy, że $X_1,...,X_n,...$ są dodatnimi, niezależnymi zmiennymi losowymi o jednakowym, ciągłym rozkładzie prawdopodobieństwa. Niech

$$R_0 = 0$$
 i $R_n = \max(X_1, ..., X_n)$ dla $n > 0$.

Zmienne losowe N i M są niezależne od siebie nawzajem i od $X_1,...,X_n,...$. Wiadomo, że obie te zmienne mają rozkład Poissona, $E(N) = \lambda$ i $E(M) = \mu$.

Oblicz $Pr(R_{N+M} > R_N)$.

(A)
$$\Pr(R_{N+M} > R_N) = \frac{\mu}{\lambda + \mu} [1 - e^{-\mu}]$$

(B)
$$Pr(R_{N+M} > R_N) = \frac{\mu}{\lambda + \mu + 1}$$

(C)
$$Pr(R_{N+M} > R_N) = \frac{\mu}{\lambda + \mu}$$

(D)
$$\Pr(R_{N+M} > R_N) = \frac{\mu}{\lambda + \mu} [1 - e^{-\lambda - \mu}]$$

(E) podane założenia nie wystarczają do obliczenia rozważanego prawdopodobieństwa

 $Wskaz \acute{o}wka$: Zauważ, że (warunkowo, dla N+M>0) maksimum ciągu $X_1,...,X_N,...,X_{N+M}$ jest osiągane tylko dla jednego wyrazu tego ciągu. Pamiętaj, że dla N+M=0 mamy $R_{M+N}=R_N$.

Załóżmy, że zmienne losowe $X_1,...,X_n,...$ są niezależne, mają jednakowy rozkład prawdopodobieństwa, $E(X_i) = \mu$, $Var(X_i) = \sigma^2$. Niech N będzie zmienną losową niezależną od ciągu $X_1,...,X_n,...$, o rozkładzie prawdopodobieństwa danym następującym wzorem:

$$Pr(N = n) = n(1 - \theta)^{n-1}\theta^2$$
, dla $n = 1, 2,$

Niech
$$S_n = \sum_{i=1}^n X_i$$
.

Oblicz
$$Var\left(\frac{S_N}{N}\right)$$
.

(A)
$$Var\left(\frac{S_N}{N}\right) = \theta(\sigma^2 + \mu^2)$$

(B)
$$Var\left(\frac{S_N}{N}\right) = \theta \sigma^2$$

(C)
$$Var\left(\frac{S_N}{N}\right) = \frac{\sigma^2}{\theta}$$

(D)
$$Var\left(\frac{S_N}{N}\right) = \frac{\sigma^2}{1-\theta}$$

(E)
$$Var\left(\frac{S_N}{N}\right) = \theta \sigma^2 + \mu^2$$

Załóżmy, że $W_1, W_2, ..., W_n, ...$ jest ciągiem zmiennych losowych takim, że

• zmienna W_1 ma gęstość wykładniczą: dla $w_1 > 0$

$$f(w_1) = \lambda \exp(-\lambda w_1);$$

• warunkowo, dla danych $W_1, W_2, ..., W_n$, zmienna W_{n+1} ma gęstość wykładniczą: dla $W_{n+1} > 0$

$$f(w_{n+1} \mid w_1,, w_n) = \begin{cases} \lambda & \exp(-\lambda \ w_{n+1}) & gdy \ w_n \le c; \\ \mu & \exp(-\mu \ w_{n+1}) & gdy \ w_n > c; \end{cases}$$

Niech $c = \ln 2$, $\lambda = 1$, $\mu = 2$.

Podaj $\lim_{n\to\infty} E(W_n)$.

- (A) $\lim_{n\to\infty} E(W_n) = 3/5$
- (B) $\lim_{n\to\infty} E(W_n) = 4/5$
- (C) $\lim_{n\to\infty} E(W_n) = e^{-1/5}$
- (D) $\lim_{n\to\infty} E(W_n) = 2^{-1/5}$
- (E) $\lim_{n\to\infty} E(W_n) = 3/4$

Załóżmy, że $X_1,...,X_n$ i $Y_1,...,Y_m$ są dwiema niezależnymi próbkami z tego samego rozkładu normalnego $N(\mu,\sigma^2)$. Niech

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 będzie średnią z pierwszej próbki;

$$\overline{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i$$
 będzie średnią z drugiej próbki.

Oblicz Pr(| $\overline{X} - \mu$ | > | $\overline{Y} - \mu$ |) , jeślin=100 i m=385 (z dokładnością do 0.01). .

(A)
$$\Pr(|\overline{X} - \mu| > |\overline{Y} - \mu|) = 0.74$$

(B)
$$Pr(|\overline{X} - \mu| > |\overline{Y} - \mu|) = 0.94$$

(C)
$$\Pr(|\overline{X} - \mu| > |\overline{Y} - \mu|) = 0.66$$

(D)
$$\Pr(|\overline{X} - \mu| > |\overline{Y} - \mu|) = 0.80$$

(E)
$$\Pr(|\overline{X} - \mu| > |\overline{Y} - \mu|) = 0.70$$

Niech $W_1, W_2, ..., W_n$ będzie próbką z rozkładu wykładniczego o gęstości określonej dla w > 0 wzorem:

$$f(w) = \lambda \exp(-\lambda w)$$
.

Nie obserwujemy dokładnych wartości zmiennych W_i , tylko wartości zaokrąglone w górę do najbliższej liczby całkowitej. Innymi słowy, dane są wartości zmiennych losowych $Z_1, Z_2, ..., Z_n$, gdzie

$$Z_i = \lceil W_i \rceil$$
.

(symbol $\lceil a \rceil$ oznacza najmniejszą liczbą całkowitą k taką, że $a \le k$).

Oblicz estymator największej wiarogodności $\hat{\lambda}$ nieznanego parametru λ oparty na obserwacjach $Z_1,Z_2,...,Z_n$.

(A)
$$\hat{\lambda} = \ln\left(\frac{S}{n} - 1\right)$$
, gdzie $S = \sum_{i=1}^{n} Z_i$

(B)
$$\hat{\lambda} = \frac{n}{S}$$
, gdzie $S = \sum_{i=1}^{n} Z_i$

(C)
$$\hat{\lambda} = \left\lceil \frac{n}{S} \right\rceil$$
, gdzie $S = \sum_{i=1}^{n} Z_i$

(D)
$$\hat{\lambda} = \left[\frac{n}{S}\right] - 1$$
, gdzie $S = \sum_{i=1}^{n} Z_i$

(E)
$$\hat{\lambda} = -\ln\left(1 - \frac{n}{S}\right)$$
, gdzie $S = \sum_{i=1}^{n} Z_i$

Próbka $X_1, X_2, ..., X_{14}$ pochodzi z rozkładu normalnego $N(\mu, \sigma^2)$ z nieznaną wartością oczekiwaną μ i nieznaną wariancją σ^2 . Na podstawie tej próbki zbudowano w standardowy sposób przedział ufności na poziomie $1-\alpha=0.995$ dla μ :

$$\left[\overline{X}_{14} - S \cdot t / \sqrt{14}, \overline{X}_{14} + S \cdot t / \sqrt{14}\right].$$

Niech X_{15} będzie zmienną losową pochodzącą z tego samego rozkładu, niezależną od $X_1, X_2, ..., X_{14}$.

Oblicz prawdopodobieństwo tego, że X_{15} , należy do obliczonego uprzednio przedziału ufności:

$$p = \Pr(\overline{X}_{14} - S \cdot t / \sqrt{14} \le X_{15} \le \overline{X}_{14} + S \cdot t / \sqrt{14})$$

(z dokładnością do 0.01).

- (A) p = 0.99
- (B) p = 0.95
- (C) p = 0.60
- (D) p = 0.40
- (E) p = 0.85

Obserwujemy parę (X,Y) zmiennych losowych. Zakładamy, że są to zmienne niezależne, X ma rozkład normalny $N(\mu_X,1)$ i Y ma rozkład normalny $N(\mu_Y,1/3)$ (w nawiasie podane są wariancje, a nie odchylenia standardowe).

Rozważmy najmocniejszy test hipotezy $H_0: (\mu_X, \mu_Y) = (0,0)$ przeciwko alternatywie $H_1: (\mu_X, \mu_Y) = (1,1)$ na poziomie istotności $\alpha = 0.1$.

Wyznacz moc tego testu.

- (A) moc = 0.83
- (B) moc = 0.48
- (C) moc = 0.97
- (D) moc = 0.91
- (E) moc = 0.76

Załóżmy, że dla danej wartości $\Theta = \theta$, zmienne losowe $X_1,...,X_n,...$ są warunkowo niezależne i mają dwupunktowy rozkład prawdopodobieństwa:

$$Pr(X_i = 1 \mid \theta) = \theta$$
, $Pr(X_i = 0 \mid \theta) = 1 - \theta$.

Zmienna losowa Θ ma rozkład jednostajny na przedziale [0,1] o gęstości

$$\pi(\theta) = \begin{cases} 1 & dla & 0 < \theta < 1; \\ 0 & w \ przeciwnym \ przypadku. \end{cases}$$

Niech

$$N = \min\{n : X_n = 1\}.$$

Oblicz Pr(N = n + 1 | N > n) dla n = 0,1,2,...

(A)
$$Pr(N = n + 1 | N > n) = \frac{n}{n+2}$$

(B)
$$Pr(N = n+1 | N > n) = \frac{1}{n+1}$$

(C)
$$Pr(N = n+1 | N > n) = \frac{1}{n+2}$$

(D)
$$Pr(N = n + 1 | N > n) = \frac{1}{2}$$

(E)
$$Pr(N = n+1 | N > n) = \frac{1}{2(n+1)}$$

Egzamin dla Aktuariuszy z 15 czerwca 2002 r.

Prawdopodobieństwo i Statystyka

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODWIEDZI	
Posol-			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	D	
4	В	
5	В	
6	Е	
7	Е	
8	С	
9	Е	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.