

Playing Flappy Bird with Deep Reinforcement Learning

Team members

- Pranav Lodha
- Subarna Chowdhury Soma
- Jeyasri Subramanian

RL Terminology

- Agent
 - Flappy bird
- Environment
 - Uneven Pipe in an infinite trial
 - 288 X 512 X 3 RGB image
- Observation
 - [bird height, bird speed, distance to next pipe(x), height of next pipe(y), distance to second pipe, height of second pipe(y1)]
- Reward
 - +1 for positive reward (escaping death)
- Action
 - Flap or do nothing
- Terminal state
 - If the bird makes contact with the ground, pipes or goes above the top of the screen the game is over.

Problem Statement

- Train Flappy bird agent to play continuous using Deep Reinforcement Learning algorithm
- Apply Double Dueling Deep Q Networks(D3QN) with Prioritized Experience replay
- Fine-tune hyperparameters to improve performance
- Compare with other reinforcement algorithm

Deep Q-Network (DQN)

- Q Learning is off policy learning method in reinforcement learning which is a development over on-policy Temporal Difference control algorithm
- Deep Q learning is based on Deep Neural Network
- It takes current state in the form of image or say continuous value and approximates Q-values for each action based on that state.

Drawback: The max operator in DQN, uses the same values both to select and to evaluate an action. This makes it more likely to select overestimated values, resulting in over-optimistic value estimates.

Double DQN

- Double DQN uses two networks to decouple the action selection from the target Q value generation.
- 1. DQN network to select what is the best action to take for the next state (the action with the highest Q value).
- 2. Target network to calculate the target Q value of taking that action at the next state.
- At every Tau step, we copy the parameters from our DQN network to update the target network.

Our Work

- From the prior experiments and study on various Deep RL algorithms, We have applied Dueling Double Deep Q-network (D3QN) with Prioritized experience replay.
- Explanations as follows
 - Dueling DQN
 - Experience Replay
 - Prioritized experience replay
 - D3QN training process

Dueling DQN

- Dueling DQN has two estimator, one estimates the score of current state, another estimates the action score.
- Dueling architecture to calculate Q values. Q-values correspond to how good it is to be at that state and taking an action at that state Q(s,a)
- Q(s,a) is the sum of:
 - V(s) the value of being at that state
- A(s) the advantage of taking that action at that state (how much better is to take this action versus all other possible actions at that state).

$$Q(s,a) = V(s) + A(s,a)$$
 -> Advantage function

Dueling Deep Q-Network Architecture

Experience Replay

- Experience replay is used to handle two things:
 - Avoid forgetting previous experiences
 - Reduce correlations between experiences
- At each time step, we receive a tuple state, action, reward, new_state (s,a,r,s')
- Replay Buffer stores experience tuples while interacting with the environment, and then we randomly sample a small batch of tuple to feed our neural network

Prioritized Experience Replay

aka Memory

- Some experiences may be more important than others for our training, but might occur less frequently (entropy)
- We compute the priority using the frequency of occurance
- Priority is stored with each experience in replay buffer.
- To avoid bias and overfitting, we use random minibatch of replay buffer to compute the loss

Training steps in Double Dueling Deep Q Network (D3QN)

- 1. Source and Target networks are Dueling DQN networks 3 CONV2D networks with Relu activation
- 2. The training method is used to train our q network for q values.
- 3. Update target network every time after q network is trained for tau times.
- 4. The Q values are predicted for currents state and next states by q network and target network respectively.
- 5. From the frequency of occurance of state value, the prioritized experience replay computes the priority and stores with (s,a,r,s')
- 6. Then we sample batch of experiences. These sample batches are tuple array of states, actions, rewards, next states, done and priority variable.(s,a,r,s',p)
- 7. Compute Temporal Difference Error for loss computation
- 8. Then we calculate the batch index and perform the update operation. **Note that this update uses a double DQN update i.e instead of a max of q value of next state, we put q value predicted by the target network for action that has maximum q value according to q network in the next state.**
- 9. The update equation is multiplied by done variables because for terminal state q value is always zero.
- 10. Then we train the model, update epsilon, and increment train step.

TD Error

At every T steps:

$$w^-\leftarrow w$$
Update fixed parameters

Gradient of our current predicted Q-value

Temporal Difference Error computation (Loss function) and backpropagation

Explaining hyperparameters

- **SKIP FRAME**: Agent takes action on every k- frame instead of every frame, the last action is repeated on skipped frames.
- ACTIONS: Flappy bird has two actions: 1) Do Nothing 2) Flap.
- GAMMA: Gamma is the discount factor. It quantifies how much importance we give for future rewards. Gamma varies from 0.95 to 0.99.
- ALPHA: Alpha is the learning rate.
- **EPSILON**: Used for Exploration and Exploitation. The agent takes random actions for probability ε and greedy action for probability (1- ε).
- SYNC_TARGET_FRAME (Tau): We update the target network with the DQNetwork in every tau step.
- **EXPERIENCE_BUFFER_SIZE**: Size of the experience buffer.
- **MEAN_GOAL_REWARD**: The max reward an agent gets for all good action(positive reward) is +1. The mean goal reward is a programmer's choice to train the agent any value greater than or equal to +1.
- BATCH_SIZE : Neural network training batch size.

Experiment: Hyperparameter Tuning

No	Hyperparameter	Value	Result	Convergence	Attempts Required in 3mins
1	SYNC_TARGET_FRAMES	15	GAME : 6680 EPSILON : 0.0058 MEAN REWARD : 1.0	YES	2
2	SYNC_TARGET_FRAMES	60	GAME: 23000 EPSILON: 0.0010 MEAN REWARD: 0.98	NO	
3	SYNC_TARGET_FRAMES	90	GAME: 6433 EPSILON: 0.0010 MEAN REWARD: 1.0	YES	10
4	GAMMA	0.95	GAME : 5070 EPSILON : 0.0010 MEAN REWARD : 1.0	NO	
5	GAMMA	0.98	GAME : 5000 EPSILON : 0.0010 MEAN REWARD : 1.0	YES	2
6	EXPERIENCE_BUFFER_SIZE	500	GAME : 16790 EPSILON : 0.0010 MEAN REWARD : 1.0	YES	8
7	EXPERIENCE_BUFFER_SIZE	8000	GAME: 8210 EPSILON: 0.0010 MEAN REWARD: 1.0	YES	3

Experiment: Hyperparameter Tuning

No	Hyperparameter	Value	Result	Convergence	Attempts Required in 3mins
8	LEARNING_RATE	1e-6	GAME: 25000 EPSILON: 0.0010 MEAN REWARD: .69	NO	
9	LEARNING_RATE	1e-2	GAME: 8735 EPSILON: 0.0010 MEAN REWARD: -1.0	NO	
10	SKIP_FRAME	5	GAME : 15015 EPSILON : 0.0010 MEAN REWARD : 0.4	NO	
11	SKIP_FRAME	1	GAME:3375 EPSILON: 0.0010 MEAN REWARD : 0.98	YES	4
12	BATCH_SIZE	16	GAME: 4030 EPSILON: 0.0010 MEAN REWARD: 1.0	YES	2
13	BATCH_SIZE	64	GAME : 4030 EPSILON : 0.0010 MEAN REWARD : 1.0	YES	2

Best Performing Model

Hyperparameter	Value	Result
EXPERIENCE_BUFFER_SIZE	2000	GAME: 5225 EPSILON: 0.0010 MEAN REWARD: 1.0
STATE_DIM	4	
ACTIONS	[0,1]	
GAMMA	0.99	
EPSILON_DECAY_FRAMES	(10**4)/3	
MEAN_GOAL_REWARD	1	
BATCH_SIZE	32	
SYNC_TARGET_FRAMES	30	
LEARNING_RATE	1e-4	
SKIP_FRAME	2	

TensorBoard

Mean-Reward tag: Train/Mean-Reward

Reward

Loss tag: Train/Loss

Comparison study with DQN

We tried experimenting flappy bird agent with Deep Q Network. After training for 50K iterations, the network didn't converge.

Demo

Key learnings and challenges

Key Learnings

- We explored some Deep Q Network DQN, DDPG
- We understood Flappy bird agent's action and state space
- Training an end-to-end deep reinforcement learning algorithm
- Understanding and Fine-tuning hyperparameter to get the best model

Challenges

- Flappy bird agent is not present in open gym environment, hence we used pygame, gym_ple or custom
 python code from opensource to setup the agent for programming.
- Training time with GPU machine is also high, hence experiments took much time to complete
- Very few Deep RL algorithms were applied to train this agent

Project Management

- Github: https://github.com/s-c-soma/RL Project FlappyBird D3QN
- Trello: https://trello.com/b/8CrK9MHe/rl-the-mean-squares

Team members Contribution

Pranav Lodha

- Literature study on various DQN
- Understanding prioritized experience replay
- Inference pipeline with best model

Subarna Chowdhury Soma

- Understanding D3QN
- Exploring various research works in D3QN
- Experiments with hyperparameters

Jeyasri Subramanian

- Exploring various DQN architecture and design architecture
- D3QN environment setup
- Comparison study with DQN

Team

- Report writing
- Presentation
- Demo
- Each team member shared the knowledge with other team members about literature study and architecture

References

- https://www.fromkk.com/posts/using-ddqn-to-play-flappy-bird/
- https://towardsdatascience.com/use-reinforcement-learning-to-train-a-flappy-bird-never-to-die-35b9625aaecc
- https://towardsdatascience.com/practical-reinforcement-learning-02-getting-started-with-q-learning-582f63e4acd9
- http://cs229.stanford.edu/proj2015/362_report.pdf
- https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/
- https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/
- https://markelsanz14.medium.com/introduction-to-reinforcement-learning-part-4-double-dqn-and-dueling-dqn-b349c9a61ea1
- https://arxiv.org/pdf/1511.06581.pdf
- https://arxiv.org/abs/1509.06461

Thank you

Questions

