Maciej Stawarz
Nr albumu 284310

Inżynieria Obliczeniowa Podstawy Sztucznej Inteligencji

Projekt 4 - Uczenie sieci regułą Hebba - Sprawozdanie

1) Cel ćwiczenia:

Celem poniższego ćwiczenia było poznanie działania reguły Hebba na przykładzie rozpoznawania emotikon.

2) Opis użytej struktury i algorytmu uczenia, oraz funkcji przykładowej:

Sztuczna sieć neuronowa - struktura matematyczno-programowa, realizująca różne funkcje, najczęściej wzorowane na działaniu biologicznego mózgu.

Sieci typu feedforward - sieci w których połączenia między węzłami nie tworzą pętli ani obiegów. Informacja (sygnał) przepływa tylko w jednym kierunku, z węzłów wejściowych, przez ukryte, do wyjściowych.

Hebb zauważył podczas badań działania komórek nerwowych, że połączenie między dwiema komórkami jest wzmacniane, jeśli w danej chwili obie są aktywne. Zaproponował algorytm, w którym modyfikację wag przeprowadza się według wzoru:

$$w_i(t+1) = w_i(t) + nyx_i$$

w - waga neuronu

t - numer iteracji w epoce

y - sygnał wyjściowy neuronu

x - sygnał wejściowy neuronu

n - współczynnik uczenia

3) Przykładowe wyniki:

```
%PARAMETRY ALGORYTMU HEBBA
lp.dr = 0.5;%wspolczynnik zapominania
lp.lr = 0.99;%wspolczynnik uczenia
%PARAMETRY TRENINGU SIECI:
net.trainParam.epochs = 100;%maksymalna ilosc epok
net.trainParam.goal = 0.001;%cel wydajnosci
net.trainParam.lr=0.5;%wspolczynnik uczenia
```


%PARAMETRY ALGORYTMU HEBBA

lp.dr = 0; %wspolczynnik zapominania

lp.lr = 0.33; %wspolczynnik uczenia

% PARAMETRY TRENINGU SIECI:

net.trainParam.epochs = 100; %maksymalna ilosc epok

net.trainParam.goal = 0.001;%cel wydajnosci

net.trainParam.lr=0.1; %wspolczynnik uczenia

Tabela wyników w zależności od kombinacji współczynników Hebba

wspł. zapominania	wspł. uczenia	ilość epok	:)	:О	:(:
0	0.1	15	-4.4409e-16	1.7764e-15	1	-1.0000
	0.33	22	0	1	-2.2204e-16	5.6843e-14
	0.99	12	0	2.2204e-16	-1	-0.7764e-15
0.001	0.1	11	-1	2.2449e-13	-9.5457e-13	-2.2204e-16
	0.33	28	0	-1.0000	0	2.2204e-16
	0.99	20	1.1369e-13	-2.2204e-16	0	-4.5714e-09
0.5	0.1	27	-2.2204e-16	0	-2.2204e-16	-2.2204e-16
	0.33	27	6.6613e-16	0	1	0
	0.99	12	3.7748e-15	-2.2204e-16	-2.2204e-16	-2.2204e-16

4) Wnioski:

Im większy współczynnik uczenia tym szybszy wzrost wag. Zły współczynnik powoduje błędy w treningu.

Metoda Hebba jest metodą uczenia bez nauczyciela, więc sieć potrzebuje więcej czasu na naukę. Fluktuacje wag zależą mocno od wartości współczynnika zapominania - bez niego wagi nie są stabilizowane (ciągle rosną), natomiast jeśli jest on zbyt duży, sieć zapomina większość informacji i nie uczy się odpowiednio.

5) Listing kodu:

```
close all; clear all; clc;

start=[zeros(25,1),ones(25,1)];
n_out=25;
net = newff(start, n_out, {'tansig'}, 'trainlm', 'learnh');

%reprezentacja binarna 4 emotikon dla tablicy 8x4
%:):O:(:|
IN = [0000
0000
0000
0000
1111
```

```
0000
      1111
      0000
      0000
      0000
      0000
      0000
      0000
      1000
      0111
      0111
      0111
      1000
      0010
      1100
      1100
      1100
      0010
      ];
%zmienna okreslajaca trafienie w danego emotikona
OUT =[1 0 0 0; %:)
      0100; %:O
      0010; %:(
      0 0 0 1 ]; %:|
%PARAMETRY ALGORYTMU HEBBA
lp.dr = 0;%wspolczynnik zapominania
Ip.Ir = 0.33; %wspolczynnik uczenia
%PARAMETRY TRENINGU SIECI:
net.trainParam.epochs = 100;%maksymalna ilosc epok
net.trainParam.goal = 0.001;%cel wydajnosci
net.trainParam.lr=0.1;%wspolczynnik uczenia
%dostosowanie parametrów sieci do metody Hebba
wHebb = learnh([], IN, [], [], OUT, [], [], [], [], [p, []);
net = train(net, IN, wHebb');
%dane testowe
a_test=[0;0;0;0;0;0;
      0;1;0;1;0;
      0;0;0;0;0;
      1;0;0;0;1;
      0;1;1;1;0];
```

```
b_test=[0;0;0;0;0;
       0;1;0;1;0;
       0;0;0;0;0;
       0;1;1;1;0;
       0;1;1;1;0;];
c_test=[0;0;0;0;0;
       0;1;0;1;0;
       0;0;0;0;0;
       0;1;1;1;0;
        1;0;0;0;1;];
d_test=[0;0;0;0;0;
       0;1;0;1;0;
       0;0;0;0;0;
       0;1;1;1;0;
       0;0;0;0;0;];
F1 = wHebb;
%symulacja
F2 = sim(net, a_test);
disp(':) = '), disp(F2(1));
disp(':O = '), disp(F2(2));
disp(':( = '), disp(F2(3));
```

disp(':| = '), disp(F2(4));