1. (a) $||\mathbf{1} - T|| < 1$ implies that the power series $\sum_{0}^{\infty} ||\mathbf{1} - T||^n$ converges, since X is Banach this further implies that $\sum_{0}^{\infty} (\mathbf{1} - T)^n$ converges in X. For $N \in \mathbb{Z}_{>0}$ we find that

$$T\sum_{0}^{N} (\mathbf{1} - T)^{n} = \sum_{0}^{N} (\mathbf{1} - T)^{n} - \sum_{1}^{N+1} (\mathbf{1} - T)^{n} = 1 - (\mathbf{1} - T)^{N+1}$$

and hence

$$||\mathbf{1} - T\sum_{0}^{N} (\mathbf{1} - T)^{n}|| = ||\mathbf{1} - T||^{N+1}$$

taking $N \to \infty$ we find that

$$||\mathbf{1} - T\sum_{0}^{\infty} (\mathbf{1} - T)^{n}|| = 0 \implies T\sum_{0}^{\infty} (\mathbf{1} - T)^{n} = 1 \quad \Box$$

To see that the inverse is bounded, note that for any $N \in \mathbb{Z}_{>0}$

$$||\sum_{0}^{N} (\mathbf{1} - T)^{n}|| \le \sum_{0}^{N} ||\mathbf{1} - T||^{n} \implies ||\sum_{0}^{\infty} (\mathbf{1} - T)^{n}|| \le \sum_{1}^{\infty} ||\mathbf{1} - T||^{n} < \infty$$

(b) Applying (a), $S^{-1}T$ is invertible with bounded inverse, since

$$||\mathbf{1} - S^{-1}T|| = ||S^{-1}S - S^{-1}T|| \le ||S^{-1}|| ||S - T|| < ||S^{-1}|| ||S^{-1}|| - 1 = 1$$

It is immediate that $(S^{-1}T)^{-1}S^{-1} = T^{-1}$, since

$$(S^{-1}T)^{-1}S^{-1}T = \mathbf{1} = SS^{-1}T(S^{-1}T)^{-1}S^{-1} = T(S^{-1}T)^{-1}S^{-1}$$

and T^{-1} is bounded since

$$||T^{-1}|| = ||(S^{-1}T)^{-1}S^{-1}|| \le ||(S^{-1}T)^{-1}||||S^{-1}|| < \infty \quad \Box$$

(c) Note that

$$||\mathbf{1} - (\mathbf{1} - \lambda^{-1}T)|| = \lambda^{-1}||T|| < 1 = ||1^{-1}||^{-1}$$

Hence by (b) we find that $\mathbf{1} - \lambda^{-1}T$ is invertible with bounded inverse, multiplying by $-\lambda$ we find that $T - \lambda \mathbf{1}$ is invertible with bounded inverse.

(d) Let $\lambda \in \rho(T)$ and fix $\delta = ||(T - \lambda \mathbf{1})^{-1}||^{-1}$, then let $\alpha \in N_{\delta}(\lambda)$, so that $\alpha = \lambda - \beta$ with $||\beta|| < \delta$. It follows that

$$||\mathbf{1} - (\mathbf{1} + \beta(T - \lambda \mathbf{1})^{-1})|| = |\beta| ||(T - \lambda \mathbf{1})^{-1}|| < 1 = ||\mathbf{1}^{-1}||^{-1}$$

so that $1 + \beta (T - \lambda 1)^{-1}$ is invertible with bounded inverse. It follows that

$$(\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda \mathbf{1})^{-1} (T - (\lambda - \beta) \mathbf{1}) = (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1}) = \mathbf{1}$$

so that $(\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda \mathbf{1})^{-1}$ is a left sided inverse for $T - \alpha \mathbf{1} = T - (\lambda - \beta) \mathbf{1}$, it is also a right inverse because

$$(T - (\lambda - \beta)\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(T - \lambda\mathbf{1})^{-1}(T - (\lambda - \beta)\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(T - \lambda\mathbf{1})^{-1} = \mathbf{1}$$

so that $(T - \alpha \mathbf{1})^{-1} = (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda)^{-1} \in \mathcal{L}(X, X)$

- (e) $\sigma(T) \subset \{\lambda \in K \mid |\lambda| \leq ||T||\}$ is bounded, and in (d) we showed that $\sigma(T) = \rho(T)^c$ is closed. By the Heine Borel theorem we conclude that $\sigma(T)$ is compact.
- **2.** (a) We first check that the operator is bounded,

$$||M_g(f)|| = ||fg||_2 = \left(\int_X |fg|^2\right)^{\frac{1}{2}} \le \left(\int_X |f|^2 \, ||g||_\infty^2\right)^{\frac{1}{2}} = \sqrt{||g||_\infty^2 ||f||_2^2} = ||g||_\infty ||f||_2$$

Let $\epsilon > 0$, then by definition of essential supremum, there is some set E of positive measure such that $||g||_{\infty} - \epsilon \le |g(x)|$ for any $x \in E$, consider $f := \frac{1}{\sqrt{\mu(E)}}\chi_E$, it is clear that $||f||_2 = 1$, and we have that

$$||fg||_2 = \left(\int_X \left| \frac{1}{\sqrt{\mu(E)}} \chi_E g \right|^2 \right)^{\frac{1}{2}} \ge \left(\int_E \left(\frac{||g||_{\infty} - \epsilon}{\sqrt{\mu(E)}} \right)^2 \right)^{\frac{1}{2}} = (||g||_{\infty} - \epsilon) \left(\int_E \frac{1}{\mu(E)} \right)^{\frac{1}{2}} = ||g||_{\infty} - \epsilon$$

Since ϵ was arbitrary, we may conclude that $||M_g|| \ge ||g||_{\infty}$, where the opposite inequality is provided above, so we conclude that $||M_g|| = ||g||_{\infty}$.

(b) First suppose that $\lambda \notin \mathcal{R}_g$, then for some $\epsilon > 0$ we have $\mu\{x \in X \mid |(g - \lambda \mathbf{1})(x)| < \epsilon\} = 0$, and hence $\frac{1}{g-\lambda} \leq \frac{1}{\epsilon}$ almost everywhere. It follows that $\frac{1}{g-\lambda} \in L^{\infty}$, and it is immediate that $M_{g-\lambda} = (M_g - \lambda \mathbf{1})^{-1}$.

Conversely, let $\lambda \in \mathcal{R}_g$, and let $F_n := \{x \in X \mid |(g - \lambda \mathbf{1})(x)| < \frac{1}{n}\}$, by definition of the essential range we have that $\mu(F_n) > 0$ for infinitely many n, thus we may define a subsequence F_{n_k} each having positive measure. If any F_{n_k} have infinite measure, then we replace them with a subset having finite measure (we may do this since we are working in a σ -finite space). Now take $a_{n_k} := \frac{1}{n_k \sqrt{\mu(F_{n_k})}}$, it follows that $\sum_{1}^{\infty} a_{n_k} \chi_{F_{n_k}} \in L^2$, but not in $\text{Im}(M_g - \lambda \mathbf{1})$. It is obvious that it is in L^2 (by convergence of $\sum_{1}^{\infty} \frac{1}{n_k^2} \leq \sum_{1}^{\infty} \frac{1}{n^2}$), assume for contradiction it is in the image, then let $f \in (M_g - \lambda \mathbf{1})^{-1}(\sum_{1}^{\infty} a_{n_k} \chi_{F_{n_k}})$, then

$$|f||_{F_{n_k}} \ge a_{n_k} \frac{1}{\sup_{F_{n_k}} |g - \lambda \mathbf{1}|} = n_k a_{n_k} = \frac{1}{\sqrt{\mu(F_{n_k})}}$$

so that

$$||f||_2 \ge \left(\int_X \left(\sum_{1}^\infty \frac{\chi_{F_{n_k}}}{\sqrt{\mu(F_{n_k})}} \right)^2 \right)^{\frac{1}{2}} = \left(\int_X \sum_{1}^\infty \frac{\chi_{F_{n_k}}}{\mu(F_{n_k})} \right)^{\frac{1}{2}} \stackrel{\text{MCT}}{=} \left(\sum_{1}^\infty 1 \right)^{\frac{1}{2}} = \infty$$

which contradicts $f \in L^2$, hence $M_g - \lambda \mathbf{1}$ is not surjective for $\lambda \in \mathcal{R}_g$.

(c) $M_g^{\dagger} = M_{\overline{g}}$, it is clear that this is in L^{∞} since $||g||_{\infty} = ||\overline{g}||_{\infty}$, and $g = \overline{g}$ in L^{∞} exactly when g is real almost everywhere. Now to prove the main statement, that $M_g^{\dagger} = M_{\overline{g}}$. Let $f \in L^2$, then $M_g^*\mathfrak{C}(f) = \phi_f M_g$, so that for any $k \in L^2$ we have $M_g^*\mathfrak{C}(f)(k) = \langle kg, f \rangle = \langle k, f\overline{g} \rangle$, and thus $M_g^*\mathfrak{C}(f) = \phi_{f\overline{g}}$, so that

$$M_g^{\dagger}(f) \stackrel{\mathrm{def}}{=} \mathfrak{C}^{-1} M_g^* \mathfrak{C}(f) = \mathfrak{C}^{-1} \phi_{f\overline{g}} = f\overline{g} = M_{\overline{g}}(f)$$

and since f was arbitrary we conclude that $M_q^{\dagger} = M_{\overline{q}}$.

- **3.** (a) Let λ be in the residual spectrum of T, then there is some non-empty open set $U \subset X$, such that $\operatorname{Im}(T-\lambda \mathbf{1}) \cap U = \emptyset$, since $\operatorname{Im}(T-\lambda \mathbf{1})$ is a subspace of X, it follows that $\operatorname{Im}(T-\lambda \mathbf{1}) \cap tU = \emptyset$, where $tU := \bigcup_{t \in K^{\times}} \{tu \mid u \in U\}$. Furthermore, we have $d_{(tU)^c} : X \to X$ is a seminorm, fixing $x \in U$, we have that $d_{(tU)^c} : \langle x \rangle \to K$ is linear, so that by the Hahn Banach theorem there is some $f \in \mathcal{L}(X,X)$, such that |f| is bound above by $d_{(tU)^c}$. Since $\operatorname{Im}(T-\lambda \mathbf{1}) \subset (tU)^c$ we have $(T^*-\lambda \mathbf{1}^*)f = f \circ (T-\lambda \mathbf{1}) = 0$, where $f \neq 0$, and hence $f \in \ker T^* \lambda \mathbf{1}^*$ which suffices to show that $\lambda \in \sigma_p(T^*)$.
- (b) Note that for any $\lambda \in \rho(T) \cup \sigma_c(T)$ we have $\operatorname{Im}(T \lambda \mathbf{1})$ is dense in X, so it will suffice to show that if $\operatorname{Im}(T \lambda \mathbf{1})$ is dense in X, then $\lambda \notin \sigma_p(T^*)$. Fix such a λ , now suppose $0 \neq f \in X^*$, so that there is some $x \in X$ and $\epsilon > 0$, such that $|f(x)| = \epsilon > 0$, since f is continuous, there is some open set U containing x, such that $|f||_U > \epsilon/2$. Since $\operatorname{Im}(T \lambda \mathbf{1})$ is dense in X, it follows that there is some $y \in X$, such that $(T \lambda \mathbf{1})(y) = x$, then

$$|(T^* - \lambda \mathbf{1}^*)f(y)| = |f(T - \lambda \mathbf{1})(y)| = |f(x)| > \frac{\epsilon}{2}$$

this suffices to show that $f \notin \ker(T^* - \lambda \mathbf{1}^*)$, and since $f \neq 0$ was arbitrary we conclude that $\ker(T^* - \lambda \mathbf{1}^*) = 0$ and hence $\lambda \notin \sigma_p(T^*)$.

(c) Lemma. $[\sigma_{\mathbf{c}}(\mathbf{T}^*) \cup \sigma_{\mathbf{r}}(\mathbf{T}^*) = \overline{\sigma_{\mathbf{c}}(\mathbf{T}^{\dagger}) \cup \sigma_{\mathbf{r}}(\mathbf{T}^{\dagger})}]$ Note that conjugation commutes with union. The following completes the proof:

$$\lambda \in \sigma_{c}(T^{*}) \cup \sigma_{r}(T^{*}) \iff \exists f \in \mathcal{H}^{*} \setminus \{0\}, \text{ such that } f \notin \operatorname{Im}(T^{*} - \lambda \mathbf{1}^{*})$$

$$\iff \exists x \in \mathcal{H} \setminus \{0\}, \text{ such that } \phi_{x} \notin (T^{*} - \lambda \mathbf{1}^{*}) \text{ (Riesz-Frechet Theorem)}$$

$$\iff \exists x \in \mathcal{H} \setminus \{0\}, \forall y, \langle (T - \lambda)(\cdot), y \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists x \in \mathcal{H} \setminus \{0\}, \forall y, \langle T(\cdot), y \rangle - \langle \cdot, \overline{\lambda}y \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists x \in \mathcal{H} \setminus \{0\}, \forall y, \langle \cdot, (T^{\dagger} - \overline{\lambda}\mathbf{1})(y) \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists x \in \mathcal{H} \setminus \{0\}, \text{ such that } x \notin \operatorname{Im}(T^{\dagger} - \overline{\lambda}\mathbf{1})$$

$$\iff \overline{\lambda} \in \overline{\sigma_{c}(T^{\dagger}) \cup \sigma_{r}(T^{\dagger})} \quad \Box$$

 $[\sigma_{\mathbf{p}}(\mathbf{T}^*) = \sigma_{\mathbf{p}}(\mathbf{T}^{\dagger})]$. Suppose that $\lambda \in \sigma_p(T^*)$, then there is some $f \in \mathcal{H}^*, f \neq 0$, such that $(T^* - \lambda \mathbf{1}^*)(f) = 0$, by the Riesz-Frechet representation theorem $f = \phi_x$ for some $x \in \mathcal{H}$ (note that since $\phi_x \neq 0$ we know that $x \neq 0$). It follows that

$$(T^* - \lambda \mathbf{1}^*)(\phi_x) = 0 \iff \langle T(y) - \lambda y, x \rangle = 0, \ \forall y \in \mathcal{H}$$

$$\iff \langle T(y), x \rangle - \langle y, \overline{\lambda} x \rangle = 0, \ \forall y \in \mathcal{H}$$

$$\iff \langle y, T^{\dagger}(x) \rangle - \langle y, \overline{\lambda} x \rangle = 0, \ \forall y \in \mathcal{H}$$

$$\iff \langle y, T^{\dagger}(x) - \overline{\lambda} x \rangle, \ \forall y \in \mathcal{H}$$

$$\iff (T^{\dagger} - \overline{\lambda} \mathbf{1})(x) = 0$$

From which we conclude that $x \in \ker(T^{\dagger} - \overline{\lambda} \mathbf{1})$, so that $\lambda \in \overline{\sigma_p(T^{\dagger})}$. Conversely if $\lambda \in \overline{\sigma_p(T^{\dagger})}$, then there is some $x \neq 0$, such that $(T^{\dagger} - \overline{\lambda} \mathbf{1})(x) = 0$, tracing backwards throught the if and only ifs we find that $(T^* - \lambda \mathbf{1}^*)(\phi_x) = 0$ for $\phi_x \neq 0$ since $x \neq 0$, so we may conclude that $\lambda \in \sigma_p(T^*)$

 $\underline{\sigma_{\mathbf{c}}(\mathbf{T}^*)} = \overline{\sigma_{\mathbf{c}}(\mathbf{T}^\dagger)}$ and $\sigma_{\mathbf{r}}(\mathbf{T}^*) = \overline{\sigma_{\mathbf{r}}(\mathbf{T}^\dagger)}$. By the lemma it will suffice to show that $\sigma_r(T^*) = \overline{\sigma_r(T^\dagger)}$. The proof is as follows (here U denotes a non-empty open set in \mathcal{H} , since $x \mapsto \phi_x$ is a homeomorphism this is equivalent to the set $\phi_U = \{\phi_x \mid x \in U\}$ being non-empty and open in \mathcal{H}^*).

$$\lambda \in \sigma_{r}(T^{*}) \iff \exists \phi_{U} \neq \emptyset, \text{ open, such that } \phi_{U} \cap \operatorname{Im}(T^{*} - \lambda \mathbf{1}^{*}) = \emptyset$$

$$\iff \exists U, \forall x \in U, \forall y, \langle (T - \lambda)(\cdot), y \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists U, \forall x \in U, \forall y, \langle T(\cdot), y \rangle - \langle \cdot, \overline{\lambda}y \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists U, \forall x \in U, \forall y, \langle \cdot, (T^{\dagger} - \overline{\lambda}\mathbf{1})(y) \rangle \neq \langle \cdot, x \rangle$$

$$\iff \exists U, \forall x \in U, \text{ such that } x \notin \operatorname{Im}(T^{\dagger} - \overline{\lambda}\mathbf{1})$$

$$\iff \overline{\lambda} \in \overline{\sigma_{r}(T^{\dagger})} \quad \Box$$

4. (a) $S_r^{\dagger} = S_{\ell}$, and $S_{\ell}^{\dagger} = S_r$. As proof, let $x, y \in \ell^2$, then

$$\langle S_r(x), y \rangle = \sum_{1}^{\infty} x_i y_{i+1} = \langle x, S_{\ell}(y) \rangle$$

and $\langle S_{\ell}(x), y \rangle = \sum_{1}^{\infty} y_i x_{i+1} = \langle x, S_r(y) \rangle$ \square

(b) Let $\lambda \in \mathbb{C}$, and let $x \in \ell^2$, such that $x \in \ker(S_r - \lambda \mathbf{1})$, it follows that (denoting $x_0 := 0$)

$$0 = ||(S_r - \lambda \mathbf{1})(x)||^2 = \sum_{i=1}^{\infty} |x_{i-1} - \lambda x_i|^2 = 0 \implies |x_{i-1} - \lambda x_i|^2 = 0, \ \forall i$$

Since $x_0 \stackrel{\text{def}}{=} 0$, we may show by induction that for each n, $x_n = 0$. Suppose for i < n we have $x_i = 0$, then $|x_{n-1} - \lambda x_n|^2$ and hence $|\lambda x_n|^2 = 0$, if $\lambda \neq 0$, then $x_n = 0$ and we are done by induction, if $\lambda = 0$, then $0 = |x_n - \lambda x_{n+1}|^2 = |x_n|^2$ implies that $x_n = 0$. Hence $x_n = 0$ for all n thus x = 0.

(c) fix λ , such that $|\lambda| \leq 1$, it will suffice to show that $(1,0,0,\ldots) \not\in \operatorname{Im}(S_r - \lambda \mathbf{1})$ to conclude that $S_r - \lambda \mathbf{1}$ is not invertible and hence $\lambda \in \sigma(S_r)$, this is immediate for $\lambda = 0$, since the first coordinate of $S_r(x)$ is zero for any x, so take $\lambda \neq 0$. Suppose for contradiction that we have $x \in \ell^2$, such that

$$(1,0,0,\ldots) = (S_r - \lambda \mathbf{1})(x) = (-\lambda x_1, x_1 - \lambda x_2, x_2 - \lambda x_3,\ldots)$$

Then, $x_1 = \frac{1}{-\lambda}$, so that $x_2 = \frac{x_1}{\lambda} = \frac{-1}{\lambda^2}$, we can continue inductively to find that $x_n = \frac{-1}{\lambda^n}$, $x_n = \frac{1}{\lambda^n}$ in ℓ^2 implies that $\lim_{n\to\infty} |x_n| = 0$, but $|x_n| = \frac{1}{|\lambda|^n} \ge 1$ which is a contradicton, implying that $\{\lambda \in \mathbb{C} \mid |\lambda| \le 1\} \subset \sigma(S_r)$.

To show the converse inclusion, suppose that $\lambda \in \mathbb{C}$ and $|\lambda| > 1$, since $||S_r(x)|| = ||x||$, it is immediate that S_r has operator norm 1. We apply the criterion of 1(b), namely $\lambda \mathbf{1}$ is invertible, and

$$||\lambda \mathbf{1} - (\lambda \mathbf{1} - S_r)|| = ||S_r|| = 1 < |\lambda| = ||\lambda \mathbf{1}^{-1}||^{-1}$$

so that $\lambda \mathbf{1} - S_r$ is invertible, which suffices to show that $S_r - \lambda \mathbf{1}$ is invertible.

(d) The point spectrum is $\{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$. It is immediate that 0 is in the point spectrum since $S_{\ell}(1,0,0,\ldots) = 0$. Suppose that $0 \neq \lambda \in \sigma_p(S_{\ell})$, then there is some $0 \neq x \in \ell^2$, such that

$$0 = (S_{\ell} - \lambda \mathbf{1})(x) = (x_2 - \lambda x_1, x_3 - \lambda x_2, \ldots)$$

It follows that $x_{i+1} = \lambda x_i$ for each i. If $x_1 = 0$, then x = 0, so this cannot be the case, this necessitates that $|\lambda| < 1$, since $x \in \ell^2$ implies that $\lim_{n \to \infty} x_n = 0$. Now suppose $0 < |\lambda| < 1$, then $x := (\lambda, \lambda^2, \lambda^3, \ldots) \in \ell^1 \subset \ell^2$, and $(S_\ell - \lambda \mathbf{1})(x) = 0$, hence $\lambda \in \sigma_p(S_\ell)$.

The eigenspaces are determined by $(S_{\ell} - \lambda \mathbf{1})(x) = (x_2 - \lambda x_1, x_3 - \lambda x_2, ...)$, this says that for $\lambda \in \mathbb{C}$, $|\lambda| < 1$ we have $(S_{\ell} - \lambda \mathbf{1})(x) = 0$ when $x_{n+1} = \lambda x_n$ for each n, since this is also a sufficient condition for $x \in \ell^2$ everything of this form is in the eigenspace, in other words:

$$\ker(S_{\ell} - \lambda \mathbf{1}) = \{(a, \lambda a, \lambda^2 a, \dots) \mid a \in \mathbb{C}\} \quad \Box$$

(e) Lemma. $\sigma_p(S_\ell) = \sigma_p(S_r^*)$, let $\lambda \in \sigma_p(S_\ell)$, then there is $x \neq 0$ (and hence $\phi_x \neq 0$), such that $(S_\ell - \lambda \mathbf{1})(x) = 0$ it follows that for any $y \in \mathcal{H}$ we have

$$0 = \langle y, (S_{\ell} - \lambda \mathbf{1}) x \rangle = \sum_{1}^{\infty} y_{i} x_{i+1} - \lambda \sum_{1}^{\infty} y_{i} x_{i}$$
$$= \langle (S_{r} - \lambda)(y), x \rangle = (S_{r}^{*} - \lambda \mathbf{1}^{*}) \langle y, x \rangle = (S_{r}^{*} - \lambda \mathbf{1}^{*}) (\phi_{x})(y)$$

since y was aribtrary, this implies that $(S_r^* - \lambda \mathbf{1}^*)(\phi_x) = 0$ and hence $\lambda \in \sigma_p(S_r^*)$, to show the converse inequality, assume that $\lambda \in \sigma_p(S_r^*)$, then by the Riesz-Frechet representation theorem there is some $x \in \mathcal{H}$, such that $(S_r^* - \lambda \mathbf{1}^*)(\phi_x) = 0$, this implies that for any $y \in \mathcal{H}$ we have $(S_r^* - \lambda \mathbf{1}^*)(\phi_x)(y) = 0$, by the computation above this implies that $\langle (S_\ell - \lambda \mathbf{1})x, (S_\ell - \lambda \mathbf{1})x \rangle = 0$ so that $(S_\ell - \lambda \mathbf{1})x = 0$ implying that $\lambda \in \sigma_p(S_\ell)$.

Lemma. $\sigma_p(S_r) = \sigma_p(S_\ell^*)$. Let $\lambda \in \sigma_p(S_r)$, then for some $0 \neq x \in \mathcal{H}$ (and hence $\phi_x \neq 0$) we have $(S_r - \lambda \mathbf{1})(x) = 0$, so that for any $y \in \mathcal{H}$ we have

$$0 = \langle y, (S_r - \lambda \mathbf{1})(x) \rangle = \sum_{1}^{\infty} y_{i+1} x_i - \lambda y_i x_i = \langle (S_\ell - \lambda \mathbf{1})(y), x \rangle = (S_\ell^* - \lambda \mathbf{1}^*)(\phi_x)(y)$$

since this identity holds for any y we find that $(S_{\ell}^* - \lambda \mathbf{1}^*)(\phi_x) = 0$, so that $\lambda \in \sigma_p(S_{\ell}^*)$. To show the converse inequality, let $\lambda \in \sigma_p(S_{\ell}^*)$, then by the Riesz-Frechet representation theorem there is some $0 \neq x \in \mathcal{H}$, such that $(S_{\ell}^* - \lambda \mathbf{1}^*)(\phi_x) = 0$, hence $(S_{\ell}^* - \lambda \mathbf{1}^*)(\phi_x)((S_r - \lambda \mathbf{1})(x)) = 0$, by the above computation this implies that $\langle (S_r - \lambda \mathbf{1})(x), (S_r - \lambda \mathbf{1})(x) \rangle = 0$, so that $(S_r - \lambda \mathbf{1})(x) = 0$, this implies that $\lambda \in \sigma_p(S_r)$ as desired.

Now proceeding with the proof, $\sigma_r(S_r) = \{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$. As proof first take $\lambda \in \mathbb{C}$, such that $|\lambda| < 1$. Now take $\epsilon := \frac{1}{2\sum_0^{\infty}|\lambda^{2i}|}$, I claim that $\operatorname{Im}(S_r - \lambda \mathbf{1}) \cap N_{\epsilon^2}(1,0,\ldots) = \emptyset$ so that $\lambda \in \sigma_r(S_r)$. Let $y \in N_{\epsilon^2}(1,0,0,\ldots)$, then $y = (1+\delta_1,\delta_2,\delta_3,\ldots)$ for $\sum_1^{\infty} |\delta_i|^2 < \epsilon$. Suppose for contradiction there is $x \in \ell^2$, such that $(S_r - \lambda \mathbf{1})(x) = y$. We can compute $x_1 = -\frac{1+\delta_1}{\lambda}$, then by induction if $x_n = -\frac{1+\sum_0^{n-1}\delta_{i+1}\lambda^i}{\lambda^n}$, then

$$x_{n+1} = \frac{x_n - \delta_{n+1}}{\lambda} = \frac{-\frac{1 + \sum_{i=1}^{n-1} \delta_{i+1} \lambda^i}{\lambda^n} - \delta_{n+1}}{\lambda} = -\frac{1 + \sum_{i=1}^{n} \delta_{i+1} \lambda^i}{\lambda^{n+1}}$$

Using this closed form of x_n , we find that

$$|x_{n}| \geq \frac{1 - \left|\sum_{0}^{n-1} \delta_{i+1} \lambda^{i}\right|}{|\lambda|^{n}} \geq \frac{1 - \sum_{0}^{n-1} \left|\delta_{i+1} \lambda^{i}\right|}{|\lambda|^{n}} \stackrel{\text{Cauchy-Schwartz}}{\geq} \frac{1 - \sqrt{\left(\sum_{1}^{n} \left|\delta_{i}\right|^{2}\right)\left(\sum_{0}^{n-1} \left|\lambda^{i}\right|^{2}\right)}}{|\lambda|^{n}}$$

$$\geq \frac{1 - \sqrt{\left(\sum_{0}^{\infty} \left|\lambda^{2i}\right|\right)\left(\sum_{1}^{\infty} \left|\delta_{i}\right|^{2}\right)}}{|\lambda|^{n}} = \frac{1 - \sqrt{\frac{1}{2\epsilon}\left(\sum_{1}^{\infty} \left|\delta_{i}\right|^{2}\right)}}{|\lambda|^{n}} > \frac{1 - \sqrt{\frac{1}{2}}}{|\lambda|^{n}} > 1 - \frac{1}{\sqrt{2}}$$

and hence $\lim_{n\to\infty} x_n \neq 0$, so that $x \notin \ell^2$ a contradiction, this suffices to show that $\lambda \in \sigma_r(S_r)$. To show the converse inclusion, by 3(a) we have $\sigma_r(S_r) \subset \sigma_p(S_r^*)$ which by the lemma is equal to $\sigma_p(S_\ell) = \{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$. This suffices to show that $\sigma_r(S_r) = \{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$. To classify the residual spectrum of S_ℓ , I claim that $\sigma_r(S_\ell) = \emptyset$, by 3(a) $\sigma_r(S_\ell) \subset \sigma_p(S_\ell^*)$, which by the lemma is equal to $\sigma_p(S_r)$, in part (b) we proved this is empty.

(f) In part (c) we showed $\sigma(S_r) = \{\lambda \in \mathbb{C} \mid |\lambda| \leq 1\}$, in the previous subparts we also showed that $\sigma_r(S_r) = \{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$, and that the point spectrum is empty, so we may compute

$$\sigma_c(S_r) = \sigma(S_r) \setminus (\sigma_r(S_r) \cup \sigma_p(S_r)) = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$$

It remains to show the continuous spectrum of S_{ℓ} . First notice that $||S_{\ell}(x)|| \leq ||x||$, and $||S_{\ell}(0,1,0,0,\ldots)|| = 1$, so that $||S_{\ell}|| = 1$, it follows that if $\lambda \in \mathbb{C}$ with $|\lambda| > 1$, then

$$||\lambda \mathbf{1} - (\lambda \mathbf{1} - S_{\ell})|| = ||S_{\ell}|| = 1 < |\lambda| = ||\lambda \mathbf{1}^{-1}||^{-1}$$

so by 1(b) $\lambda \mathbf{1} - S_{\ell}$ is invertible, which implies that $S_{\ell} - \lambda \mathbf{1}$ is invertible and $\lambda \in \rho(S_{\ell})$. Furthermore by problem 1, we know that $\sigma(S_{\ell})$ is compact, so in particular $\{\lambda \in \mathbb{C} \mid |\lambda| \leq 1\} = \overline{\sigma_p(S_{\ell})} \subset \sigma(S_{\ell})$, but then by the above computation of the resolvent set this is the entire spectrum, in the previous subpart we showed that $\sigma_r(S_{\ell}) = \emptyset$, so we may compute

$$\sigma_c(S_\ell) = \sigma(S_\ell) \setminus (\sigma_r(S_\ell) \cup \sigma_p(S_\ell)) = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\} \quad \Box$$

(g) $\sigma(S_r) = \overline{N_1(0)}$ and $\sigma(S_\ell) = \overline{N_1(0)}$, in particular they both have infinitely many limit points. By theorem 4.17 of the notes this implies that neither are compact.