2. Aufgabe (3 \times 2 P)

(6 Punkte)

Sei $\Sigma = \{a, b, c\}$. Entscheiden Sie, welche der folgenden Σ -Sprachen L_1 , L_2 , L_3 regulär sind. Falls die Sprache regulär ist, so geben Sie *sowohl* einen endlichen Automaten (NEA oder DEA), *als auch* einen regulären Ausdruck an. Falls nicht beweisen Sie, dass die Sprache nicht regulär ist.

- (a) L_1 sei die Menge aller Σ -Wörter w, die mit c beginnen und mit ac^* oder b enden, und für die gilt, dass $|w|_a + |w|_b \le 2$.
- (b) L_2 sei die kleinste Σ -Sprache, für die $\varepsilon \in L_2$ und $(w \in L_2 \implies xwx \in L_2)$ für alle $x \in \Sigma$ gilt.
- (c) L_3 sei die Menge aller Σ -Wörter $w \in \{a^k c^\ell b^m \mid k = m \text{ und } \ell \ge k + m\}.$

3. Aufgabe (2 \times 3 P)

(6 Punkte)

(a) Geben Sie für den folgenden NEA einen DEA an, der die gleiche Sprache erkennt.

(b) Zeigen Sie, dass der folgende DEA minimal ist.

Hinweis: Ein DEA ist minimal, wenn für alle Zustände x, y gilt, dass $x \nsim y$. Begründen Sie auch für jedes Paar (x, y) mit $x \nsim y$, warum dies gilt.

4. Aufgabe (2 \times 3 P)

(6 Punkte)

- (a) Geben Sie einen Kellerautomaten für die Sprache $L = \{a^n b^{2n} c \mid n \ge 0\}$ über $\Sigma_1 = \{a, b, c\}$ an.
- (b) Betrachten Sie nun die folgende Grammatik $G = (\Sigma_2, V, P, S)$ mit $\Sigma_2 = \{a, b\}, V = \{S, T, X, Y\}$ und den folgenden Produktionen P:

$$S \to XX \mid XY \mid YY$$

$$X \to TS \mid a$$

$$Y \to YT \mid TT \mid b$$

$$T \to YX \mid a$$

Entscheiden Sie mithilfe des CYK-Algorithmus, ob das Wort babba in der von G erzeugten Sprache L(G) enthalten ist.

5. Aufgabe $(2 \times 3 P)$

(6 Punkte)

- (a) Geben Sie eine Turingmaschine *M* an, die das Folgende erfüllt:
 - ihr Alphabet ist $\Sigma = \{a, b, |\},$
 - als Eingabe erhält sie ein Wort aus Buchstaben a und b, gefolgt vom Separator |, gefolgt von noch einem Wort aus Buchstaben a und b, gefolgt von noch einem Separator |,
 - die Turingmaschine akzeptiert die Eingabe genau dann, wenn die beiden angegebenen Wörter gleich sind.

Zum Beispiel, die Maschine \mathcal{M} akzeptiert die Eingaben aabba|aabba| und ||, aber nicht ab|ba| und aba|ababa| und |a|.

(b) Sei L die Sprache der von \mathcal{M} akzeptierten Wörter. Ist L entscheidbar? Ist L semientscheidbar? Ist ihr Komplement \overline{L} semientscheidbar? Beweisen Sie Ihre Antworten.