Aprendizado de Máquina: Treinamento de Redes Neurais

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Treinamento Perceptron

- Modos de aprendizado
 - Modo online (foco): rede ajusta pesos a cada instância vista
 - Modo offline: rede ajusta pesos somente após analisar todas as instâncias
 - Modo batch (recomendado): ajustar pesos de n em n instâncias. Ex.: 100 em 100

Treinamento Perceptron (2)

• Correção de erro no modo online:

•
$$w_i = w_i - \eta x_i (y - d)$$

- b = b $\eta(y d)$
- Variação comum da mesa fórmula :

•
$$w_i = w_i + \eta x_i (d - y)$$

•
$$b = b + \eta(d - y)$$

Treinamento Perceptron (3)

- Pesos inicias: 0.4, -0.6, 0.6
- Bias inicial: -0.5
- Taxa de aprendizada (dada): 0.4

Treinamento Perceptron (3)

ponto de partida

Treinamento Perceptron (4)

- Passo (a): padrão 001 (d = 0)
 v = 0*0.4 + 0*-0.6 + 1*0.6 0.5 = 0.1
 y = 1
- d \neq y: atualizar pesos $w_0 = 0.4 - 0.4(0)(1 - 0) = 0.4$ $w_1 = -0.6 - 0.4(0)(1 - 0) = -0.6$ $w_2 = 0.6 - 0.4(1)(1 - 0) = 0.2$ b = -0.5 - 0.4(1 - 0) = -0.9
- Exercício: padrão 110 (d = 1)

Treinamento Perceptron (5)

- Passo (b): padrão 110 (d = 1)
 v = 1(0.4) + 1(-0.6) + 0(0.2) 0.9 = -1.1
 y = 0
- d \neq y: atualizar pesos $w_0 = 0.4 - 0.4(1)(0 - 1) = 0.8$ $w_1 = -0.6 - 0.4(1)(0 - 1) = -0.2$ $w_2 = 0.2 - 0.4(0)(0 - 1) = 0.2$ b = -0.9 - 0.4(0 - 1) = -0.5
- Exercício: padrão 001 (d = 0)

Treinamento Perceptron (6)

```
    Passo (c): padrão 001 (d = 0)
    v = 0*0.8 + 0*-0.2 + 1*0.2 - 0.5 = -0.3
    y = 0
    d = y: os pesos não precisam ser modificados
```

```
    Passo (d): padrão 110 (d = 1)
    v = 1(0.8) + 1(-0.2) + 0(0.2) - 0.5 = +0.1
    y = 1
    d = y: os pesos não precisam ser modificados
```

Treinamento Perceptron (7)

- Generalização de novas instâncias
 - Padrão 111
 v = 1*0.8 + 1*-0.2 + 1*0.2 0.5 = 0.3
 y = 1 ⇒ classe +
 - Padrão 000
 v = 0*0.8 + 0*-0.2 + 0*0.2) 0.5 = -0.5
 y = 0 ⇒ classe -

Treinamento Perceptron (8)

- Generalização de novas instâncias
 - Padrão 100: exercício
 - Padrão 011: exercício
- Obs: a rede convergiu em apenas um ciclo de atualização de pesos (uma época)
 - Redes reais demoram mais para convergir

Treinamento MLP

- Dois algoritmos
 - Backpropagation: cálcula a direção de descida da encosta
 - Gradiente Descendente (ou similar): desce a encosta
- Necessário o uso função de custo diferenciável e uma função de ativação também diferenciável
 - Minimizar custo equivale a minimizar taxa de erro

Treinamento MLP (2)

- Exemplo a seguir
 - Rede Feedforward
 - Completamente Conectada
 - Baseada em ativação sigmoide
 - Com função de custo erros quadráticos médios
 - Modo de aprendizado online

Treinamento MLP (3)

$$\begin{aligned} w_{ij} &= w_{ij} - \eta x_i \delta_j \\ b_j &= b_j - \eta \delta_j \\ \delta_j &= y_j (1 - y_j) (y_j - d_j) \quad \text{(última camada)} \\ \delta_i &= y_i (1 - y_i) \sum w_{ik} \delta_k \quad \text{(camadas intermediárias)} \end{aligned}$$

Treinamento MLP (4)

Redes Neurais

Treinamento MLP (5)

• Fase forward na camada escondida: ativação h_3 $v_3 = w_3 x_1 + w_6 x_2 + w_9 x_3 + b_3$ $h_3 = \sigma(v_3)$

- Fase forward na camada de saída: ativação y_1 $v_4 = w_{10}h_1 + w_{13}h_2 + w_{16}h_3 + b_4$ $y_1 = \sigma(v_4)$
- Demais ativações são análogas

Treinamento MLP (6)

 Fase backward na camada de saída: ajuste w₁₀ e b₄

$$w_{10} = w_{10} - \eta h_1 \delta_4$$

$$b_4 = b_4 - \eta \delta_4$$

$$\delta_4 = y_1 (1 - y_1)(y_1 - d_1)$$

 Exercício: ajuste w₁₇ e b₅ mostrando ativações envolvidas

Treinamento MLP (7)

Fase backward na camada escondida:
 ajuste w₆ e b₃

$$w_6 = w_6 - \eta x_2 \delta_3$$

$$b_3 = b_3 - \eta \delta_3$$

$$\delta_3 = h_3 (1 - h_3)(w_{16} \delta_4 + w_{17} \delta_5 + w_{18} \delta_6)$$

 Exercício: ajuste w₂ e b₁ mostrando ativações envolvidas

Agradecimentos/referências

 Parcialmente adaptado de: Notas de aula do Prof. André de Carvalho (USP)