

Hi3861V100 / Hi3861LV100 硬件设计

Checklist

文档版本 02

发布日期 2020-06-05

版权所有 © 上海海思技术有限公司2020。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

(HISILICON)、海思和其他海思商标均为海思技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: https://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文档详细的描述了Hi3861V100/Hi3861LV100硬件单板设计的checklist,用于指导用户基于芯片的硬件单板开发进行设计检查。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3861	V100
Hi3861L	V100

读者对象

本文档主要适用于以下工程师:

- 单板硬件开发工程师
- 技术支持工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
▲ 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。

符号	说明
<u></u> 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
🖺 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信 息。

修改记录

文档版本	发布日期	修改说明
02	2020-06-05	更新" 1 原理图设计checklist "的电源(编号5)的 规格要素说明。
01	2020-04-30	第一次正式版本发布。
		● 更新 " 1 原理图设计checklist "的电源(编号 5)、数字IO(编号9)、其他(编号15、16)的 规格要素说明。
		● 在 "2 PCB设计checklist"中更新数字IO(编号2)、晶体(编号12、14)、RF(编号16)、整机及屏蔽罩(编号24、26)的规格要素说明;新增RF(编号22)的规格要素说明。
00B04	2020-04-15	在" 1 原理图设计checklist "的晶体中新增关于单板空间较小的规格要素说明。
00B03	2020-03-25	更新 " 2 PCB设计checklist "中数字IO(编号2、 5)、电源(编号10、14)、RF(编号21)、整机 及屏蔽罩(编号28)的规格要素说明。
00B02	2020-02-12	删除"2 PCB设计checklist"中5G射频电路的屏蔽 罩间距说明。
00B01	2020-01-15	第一次临时版本发布。

目录

前	=	. i
1]	原理图设计 checklist	. 1
2 I	PCB 设计 checklist	3

● 原理图设计 checklist

类		编	规格要素内容	级别	J	检	
别	类	号		规则	建议	查结果	
原	晶は	1	晶体选型,频偏要求<±10ppm。	$\sqrt{}$			
理图	体	2	晶体调试,需让供应商提供0ppm-Type晶体样本,在 0ppm样本晶体情况下,常温25℃下,研发阶段确定 晶体两端的负载电容,尽量在0ppm,可以适当负偏 5ppm以内比较合理。	V			
		3	如果单板空间较小(例如:12mm×12mm模组且为单面贴方案时),建议在晶体的XIN串联0R电阻,防止外部干扰对于系统主时钟的影响。	V	V		
	电源	4	芯片支持两种方式:低功耗BUCK模式、低成本LDO模式。采用的方式由硬件配置字VDD_PMU_LX决定,上拉到VBAT即为低成本LDO模式,不需要电感;反之即为BUCK低功耗模式。	V			
				5	采用低功耗BUCK模式时,电感感值2.2μH,直流电阻 (Rdc)≤0.5Ω,饱和电流≥500mA,输出电容采用 4.7μF,电容额定电压建议6.3V。	V	
	数 字 IO	6	芯片调试串口硬件和软件默认GPIO_03和GPIO_04, 不建议使用GPIO_13和GPIO_14作为调试串口。	V			
		7	芯片有15个GPIO,每个GPIO复用请参见 《 Hi3861V100/Hi3861LV100/Hi3881V100 WiFi芯片 硬件用户指南 》。	V			

	8	芯片有4个硬件配置字:	$\sqrt{}$		
		Pin4/REFCLK_FREQ_STATUS: 主时钟工作模式。0: 40M时钟(默认);			
		1:24M时钟。			
		● Pin20/JTAG_ENABLE: JTAG模式使能。 0: 普通IO模式(默认);			
		1: JTAG使能。			
		● Pin18/JTAG_MODE: JTAG模式。 0: 正常模式(默认);			
		1:DFT测试模式。			
		● Pin25/VDD_PMU_LX: Buck和LDO模式切换。 0: BUCK(默认);			
		1: LDO。			
	9	如果需要配置高电平,以上4个硬件配置字管脚除 Pin25/VDD_PMU_LX可以直接上拉至VBAT外,其他3 个管脚均需要通过4.7K电阻上拉至VDDIO。	\checkmark		
	10	UDSLEEP模式(即超深睡模式),芯片仅有4个IO可 以唤醒(即:GPIO03、GPIO05、GPIO07、 GPIO14),仅上升沿才可以唤醒。	V	\checkmark	
R	11	RF cable排线布放需远离晶体(参考值>5mm)。	$\sqrt{}$		
F	12	RF cable排线布放需远离DDR、CPU等强干扰。	$\sqrt{}$		
	13	射频测试座按兼容设计,根据用户的使用环境决定是 否需要焊接。	V		
	14	建议在RF链路靠近天线端预留ESD电感(感值 10nH)。	V	V	
其	15	为确保芯片上电初始化正常,建议采取如下措施:	$\sqrt{}$	$\sqrt{}$	
他		 建议在模组内部的芯片Power-on引脚处添加RC延迟电路(建议R=100KΩ、C=100nF)。如果模组内部空间不足,建议在对端MCU相应EN信号上添加。 			
		● Power-on上拉电平为VDDIO。			
	16	为防止外接带电机大功率设备对串口的影响,通信串 口TRX信号线上预留到地电容,具体容值根据对端大 功率设备浪涌和调试结果决定。	V	\checkmark	

2 PCB 设计 checklist

类	小业	编	规格要素内容	级别	لا	检												
别	类	号		规则	建议	查 结 果												
PC B	数字.	1	SDIO接口CLK和数据走线,PCB上走线长度< 5000mil。	V														
	0	2	SDIO接口CLK和数据走线必须预留匹配电阻,在空间 条件允许的情况下最好做到单根包地。	V														
					3	SDIO接口匹配电阻按照源端匹配原则来摆放: CLK串 联电阻位置越靠近对接Host器件越好。Data串联电阻 位置越靠近对接Host器件端放置越好。	V											
															4	芯片有15个GPIO,IO过冲须满足<4.1V。如果不满足,则需要匹配电阻。	V	
	电源	_	. –	_	_	. –	. –	_	_	_	_	_	_	5	BUCK储能电感(尤其是绕线电感)尽量远离天线 (参考值>10mm)。	V		
		6	BUCK储能电感的输入输出走线须尽量短粗。电感和输出电容排布紧靠芯片管脚处,电感和电容到达芯片EPAD的GND回路尽量短。	V														
			7	滤波电容靠近被滤波网络放置,避免长走线引入的电 感效应。	V													
						8	器件接地须就近打地孔,不允许通过一个很细的长线 接地(除过孔滤波器外)。	V										
			9	Transceiver/PA供电电源去耦电容靠近Pin脚放置,容值越小越靠近Pin脚摆放,建议使用X7R的物料。	V													
		1	RFLDO(芯片的PIN12)给LNA(芯片的PIN7)供电的1P2走线,建议换层到内层或bottom层走线到LNA的供电管脚附近再接入管脚。	V	V													
		1	如果条件允许,VBAT电源走线建议两侧包地处理。	V	V													

	体	1 2	晶体尽量远离天线和单板边缘(建议在空间条件允许的情况下,晶体和天线的距离>10mm)。	V		
		1	时钟(MHz量级)及高速数据线尽量远离天线(参考值>5mm)。	V		
		1 4	晶体远离功放等热源。	V		
		1 5	XIN/XOUT和32K晶体信号需包地处理。	V		
	R F	1 6	射频口旁边的其他模块信号需尽量远离RF口,并包地 处理。	V		
		1 7	射频Transceiver(芯片的PIN8)下方地保证完整性, 地PAD需要就近接到主地。	V		
		1 8	射频走线参考地保证完整,不允许有交叉走线。	$\sqrt{}$		
		1 9	RF connector等大焊盘器件,射频信号对应的Pin邻层地需挖空(2层板除外),避免寄生电容效应,射频信号耦合到地。	V		
		2	射频走线需要做50Ω阻抗控制,走线保证平顺自然, 尽量避免出现直角或锐角的拐弯,且走线两侧各打一 排地孔。	V		
		2 1	射频换层孔周围打一圈地孔,形成类同轴结构。	V		
		2 2	如果RF器件布局比较紧凑,会导致RF接地电容的两个过孔靠的比较近,此时会影响到RF的谐波抑制性能,建议两个接地电容分布在RF走线的两边,这样可以提高RF电路的谐波抑制效果。同时如果是多层板,需要保证接地电容的地孔直接打到bottom层接地,在其他层对应位置禁铺。	V		
		2	IPEX座子top层和bottom层需要就近接地和地孔。	V		
	整机	2 4	top层对应主芯片EPAD的地面建议通过一段4mil走线和周围的地面连接。	V		
	及屏蔽罩	2 5	高速信号接口走线(例如: SDIO等)换层位置周边需件随VSS过孔。	V		
		2 6	整机尽量保留一个完整地平面,保证各芯片信号良好 共地和回流,完善地孔,避免孤立铜皮出现。	V		
		2 7	单板四周打地孔,注意连接好各层的地,且建议紧挨着屏蔽罩焊盘打两排交错的地孔(即第一排地孔和第二排地孔交错排列),地孔间距满足<1/50波长。	V	V	

	2 8	屏蔽罩须尽量开口最少,最好做到只有RF走线一个开口,其他的接口信号线和电源线可以打孔到内层或bottom层再接到模组的管脚。	V	
	2 9	屏蔽框开口间距要求<1/20 波长,对于2.4G网关, 建议间距<3mm。	√	
	3 0	屏蔽框须保证接地良好,每个接地焊盘周围尽可能多 打地孔(至少3个),以最近的路径连到主地。	\checkmark	
散热	3 1	两层板PCB在满足工艺前提下建议在主芯片的EPAD多 打地孔。	V	