1

2021 March 18 Shift 1

EE24BTECH11020 - Ellanti Rohith

(c) $\frac{1}{6}$

Circle M : $x^2 + y^2 = 1$ Circle N : $x^2 + y^2 - 2x = 0$

Circle O: $x^2 + y^2 - 2x - 2y + 1 = 0$

Circle P: $x^2 + y^2 - 2y = 0$

If the center of circle M is joined with the center of the circle N, further, the center of circle N is joined with the center of the circle O, the center of circle O is joined with the center of circle P, and lastly, the center of circle P is joined with the center of circle P, then these lines form the sides

(d) 6

1) If $\lim_{x\to 0} \frac{\sin^{-1} x - \tan^{-1} x}{3x^3}$ is equal to L, then the value of (6L + 1) is:

2) For all four circles M, N, O, and P, the following four equations are given:

(a) $\frac{1}{2}$

- 9) The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is
- 10) A square ABCD has all its vertices on the curve $x^2y^2 = 1$. The midpoints of its sides also lie on the same curve. Then, the square of the area of ABCD is _____
- 11) The missing value in the following figure is

- 12) Let z_1, z_2 be the roots of the equation $z^2 + az + 12 = 0$ and z_1, z_2 form an equilateral triangle with the origin. Then, the value of |a| is _____.
- 13) The number of solutions of the equation $|\cot x| = \cot x + \frac{1}{\sin x}$ in the interval $[0, 2\pi]$ is _____
- 14) Let the plane ax + by + cz + d = 0 bisect the line joining the points (4, -3, 1) and (2, 3, -5) at right angles. If a, b, c, d are integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$ is _____.
- 15) If $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$, $(x \ge 0)$, f(0) = 0 and $f(1) = \frac{1}{k}$, then the value of k is _____