MTH 470/570 Winter 2021 Assignment 3.

This assignment is due before class on Tuesday, February 9. Please submit your solutions via Blackboard. Solutions are required – answers must be justified.

p.62, #3.1. Show that if
$$f(z) = \frac{az+b}{cz+d}$$
 is a Mobius transformation, then
$$f^{-1}(z) = \frac{dz-b}{-cz+a}.$$

- #3.7. Show that the Mobius transformation $f(z) = \frac{1+z}{1-z}$ maps the unit circle (minus the point z = 1) onto the imaginary axis.
- #3.14. Find Mobius transformations satisfying each of the following. Write your answers in standard form, as $\frac{az+b}{cz+d}$.
 - (a) $1 \to 0$, $2 \to 1$, $3 \to \infty$.
 - (b) $1 \to 0, 1 + i \to 1, 2 \to \infty$
 - (c) $0 \to i$, $1 \to 1$, $\infty \to -i$.
 - # 3.30. Prove that $\overline{\sin(z)} = \sin(\overline{z})$ and $\overline{\cos(z)} = \cos(\overline{z})$.
- # 3.32. Prove that the zeros of $\sin z$ are all real numbers. Conclude that they are precisely the integer multiples of π .

Problem I. Let C be the circle with center a and radius r. Suppose that 0 does not lie on C. (In other words, 0 could be inside or outside of the circle.) Show that the image of C under the function f(z) = 1/z is the circle with center $\frac{\overline{a}}{|a|^2 - |r|^2}$ and radius $\frac{r}{|a|^2 - r^2|}$.

Hints: This is an exercise in complex algebra. Start by writing down the equations for both circles. Use the fact that, for any complex number w, $w\overline{w} = |w|^2$, to eliminate all of the complex norms in both equations. Starting from the equation of the second circle, clear all of the fractions and factor out a common term to work toward the equation of the first circle.