Линейное однородное дифференциальное уравнение *n*-го порядка с переменными коэффициентами.

Вопросы:

- 1) Не локальная теорема существования и единственности решения начальной задачи
- 2) Линейная зависимость. Матрица Вронского
- 3) Фундаментальная система
- 4) Теорема об общем решении

Линейным однородным дифференциальным уравнением n-го порядка с переменными коэффициентами называется уравнение вида:

$$y^n + a_1(x)y^{n-1} + \dots + a_n(x)y = 0$$
(1), где $a_1(x), \dots, a_n(x)$ определены и непрерывны на $\alpha < x < \beta$

Определение Решением уравнения (1) называется функция n раз непрерывно дифференцируема и во всех точках интервала (α , β) удовлетворяет уравнению (1). Произвольное решение этого уравнения зависит от n произвольных постоянных.

Для того, что из всего семейства решений выделить какое-то одно, возьмём $x_0 \in (\alpha, \beta)$ и поставим начальные условия (n) штук):

$$y(x_0) = y_0$$

 $y'(x_0) = y'_0$
...
 $y^n(x_0) = y_0^n$

Задача (1)(2) – начальная задача или задача справедлива не локальная теорема

Не локальная теорема существования и единственности решения начальной задачи

<u>Теорема</u> Если все коэффициенты уравнения (1) – это непрерывные функции в интервале $[\alpha, \beta]$, то решение начальной задачи (1)(2) существует единственно и его можно считать определённым на (α, β) .

Следствие Однородное уравнение (1) всегда лежит нулевое решение, удовлетворяющее нулевым начальным условиям $y(x_0) = 0, ..., y^n(x_0) = 0$

Справедливо обратное: если y(x) – это решение уравнения (1), удовлетворяющее нулевым начальным условиям, то это решение тождественно нулю ($y(x) \equiv 0$)

Свойства решения:

- 1) Если y(x) решение уравнения (1), С некоторое число, то функция C * y(x) решение уравнения (1);
- 2) Если y(x) и z(x) решения уравнения (1), то их сумма y(x) + z(x) решение уравнения (1).

Линейная зависимость. Матрица Вронского

Рассмотрим систему функций $y_1(x), ..., y_n(x)(3)$, определённых на промежутке (α, β) .

Система функций (3) называется линейно-зависимой, если существует набор констант c_1, c_2, \dots, c_k среди которых не все равны 0 и при этом линейная комбинация

$$c_1y_1(x) + c_2y_2(x) + \dots + c_ky_k(x) = 0(4)$$

Если из соотношения (4) следует, что все константы равны нулю, то система (3) называется линейно независимой.

Будем предполагать, что все функции в системе (3) n раз непрерывно дифференцируемы. Построим матрицу:

$$\begin{bmatrix} y_1(x) & \cdots & y_k(x) \\ \vdots & \ddots & \vdots \\ y_k^{n-1}(x) & \cdots & y_k^{n-1}(x) \end{bmatrix}$$
(5)- матрица Вронского

Если k=n, то будем говорить об определителе матрицы Вронского (W(x)- определитель Вронского)

<u>Утверждение</u> Если система функций (3), рассматриваемая при k = n, линейно зависима, то столбцы матрицы Вронского линейно зависимы и эта матрица вырождена при любом x.

Доказательство

Пусть $y_1(x), ..., y_n(x)$ — зависимая, то существует $c_1, c_2, ..., c_n \neq 0$, что линейная комбинация:

$$\begin{cases} c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) = 0\\ \dots\\ c_1 y_1^{n-1}(x) + c_n y_2^{n-1}(x) + \dots + c_n y_n^{n-1}(x) = 0 \end{cases}$$

Сделаем замену по столбцам:

$$c_1 \begin{pmatrix} y_1(x) \\ \dots \\ y_n^{n-1}(x) \end{pmatrix} + \dots + c_n \begin{pmatrix} y_1(x) \\ \dots \\ y_n^{n-1}(x) \end{pmatrix} = 0$$

Т.е. не все $c_1, c_2, ..., c_n = 0$, то все столбцы линейно зависимы.

Ч.т.д.

Фундаментальная система

Рассмотрим систему функций $y_1(x), ..., y_n(x)(6)$, состоящую из решений однородного уравнения (1).

<u>Определение</u> Функции (6) образуют фундаментальную систему решений уравнения (1), если они линейно-независимы.

Теорема Фундаментальная система решений существует.

Доказательство

Выберем произвольную числовую квадратную невырожденную матрицу:

$$\dot{y} = \begin{pmatrix} \dot{y_1} & \cdots & \dot{y_n} \\ \vdots & \ddots & \vdots \\ y_1^{n-1} & \cdots & y_n^{n-1} \end{pmatrix}$$

Зафиксируем x_0 из (α, β)

Пусть функция $y_1(x)$ — это решение однородного уравнения (1) с начальными условиями:

$$y_{1}(x_{0}) = \dot{y}_{1}$$

$$y_{1}'(x_{0}) = \dot{y}'_{1}$$
...
$$y_{1}^{n}(x_{0}) = y_{1}^{\dot{n}-1}$$

По не локальной теореме такое решение можно построить

Аналогичным образом можно построить все остальные функции $y_2(x_0), y_3(x_0), ..., y_n(x_0)$

Составим по этим функциям матрицу Вронского, столбцы этой матрицы в точке x_0 будут образовывать матрицу \dot{y} , которая $\neq 0$

Поэтому матрица Вронского невырожденная при любом x, значит система функций (6) — линейно независима \Rightarrow она фундаментальная

Ч.т.д.

<u>Утверждение</u> Если система функций (6) линейно независима, то определитель Вронского этой системы не в одной точке не обращается в нуль.

<u>Доказательство</u>

Пусть (6) — независима, то $\exists x_0, y \ j$ определитель Вронского $W(x_0) = 0$ столбцы матрицы Вронского линейно-зависимы, т.е. существует набор констант $c_1, c_2, ..., c_n \neq 0$ такой, что справедливы равенства:

$$\begin{cases}
c_1 y_1(x_0) + c_2 y_2(x_0) + \dots + c_n y_n(x_0) = 0 \\
\dots \\
c_1 y_1^{n-1}(x x_0) + c_n y_2^{n-1}(x_0) + \dots + c_n y_n^{n-1}(x_0) = 0
\end{cases} (7)$$

Пусть $\dot{c_1}$, $\dot{c_2}$, ..., $\dot{c_n}$ – ненулевые решения системы (7), составим функцию:

$$\dot{y}(x) = \dot{c_1}y_1(x) + \dots + \dot{c_n}y_n(x)(8)$$

Очевидно, что функция (8) удовлетворяет начальным условиям (7). По следствию из Теоремы (не локальной) получаем, что $\dot{y}(x) = 0$ т.е. система функций (6) — линейно зависима, что противоречит нашему предположению.

Ч.т.д.

Теорема об общем решении

Теорема Пусть функции $y_1(x), ..., y_n(x)(9)$ задают фундаментальную систему решений для уравнения (1), тогда общее решение этого уравнения представима в виде: $y(x) = c_1 y_1(x) + \cdots + c_n y_n(x)$ (10), где $c_1, ..., c_n$ производные постоянные.

Доказательство:

Линейная комбинация с постоянными коэффициентами решений уравнения (1) есть снова решение этого уравнения (1);

Покажем, что любое решение y(x) уравнения (1) представимо в виде (10).

Выберем $x_0 \in (\alpha, \beta)$ и рассмотрим систему уравнений:

$$\begin{cases}
c_1 y_1(x_0) + \dots + c_n y_n(x_0) = y(x_0) \\
\dots \\
c_1 y_1^{n-1}(x_0) + \dots + c_n y_n^{n-1}(x_0) = y^{n-1}(x_0)
\end{cases}$$
(11)

Определителем этой системы является определитель Вронского, посчитанный в точке $x_0, W(x_0) \neq 0$, поэтому система (11) имеет единственное решение c_1, \dots, c_n .

Составим новую функцию: $\dot{y}(x) = \dot{c_1}y_1(x) + \dots + \dot{c_n}y_n(x)$, которая является решением однородного уравнения (1).

Заметим, что функции y(x) и $\dot{y}(x)$ совпадают в точке x_0 , тогда по теореме существования и единстве они совпадают всюду $y(x) \equiv \dot{y}(x)$

Ч.т.д.