2020-2021 : DS - Analysis

Problem Set - 7: 24 - 02 - 2021

- 1. Let f and g be differentiable functions from U into \mathbb{R} , where U is an open set in \mathbb{R}^n . Show that for all $x \in U$, the following hold:
 - (i) $\nabla (af + bg)(x) = a \nabla f(x) + a \nabla g(x)$, where $a, b \in \mathbb{R}$ are constants.
 - (ii) $\nabla (fg)(x) = g(x) \nabla f(x) + f(x) \nabla g(x)$.
- 2. Let $f(x, y, z) = x^2y^7 + 18$, $(x, y, z) \in \mathbb{R}^3$. Find $\nabla f(x, y, z)$; also find $\nabla f(1, 2, 3)$, and the directional derivative at (1, 2, 3) in the direction of (-2, 0, 7).
- 3. Let $f(x,y,z) = \sin(xyz)$, $(x,y,z) \in \mathbb{R}^3$. Find $\nabla f(x,y,z)$; also find $\nabla f(1,\pi,\pi)$, and the directional derivative at $(1,\pi,\pi)$ in the direction of (1,3,2).
- 4. Let $f(x, y, z) = e^{3x+y} \sin(7z)$, $(x, y, z) \in \mathbb{R}^3$. Find $\nabla f(x, y, z)$, and $\nabla f(0, 2, (\pi/7))$.
- 5. Let $f(x,y,z) = e^{xyz}$, $(x,y,z) \in \mathbb{R}^3$. Find $\nabla f(x,y,z)$, and H(x,y,z).
- 6. Let $f(x,y) = \sin(x^2+y)$, $(x,y) \in \mathbb{R}^2$. Find the gradient and the Hessian of f. Also find $\nabla f(-\sqrt{\pi},\pi)$ and $H(-\sqrt{\pi},\pi)$.
- 7. Let $f(x,y) = x^2 15xy y^2$, $(x,y) \in \mathbb{R}^2$. Find the gradient and the Hessian of f. Also find $\nabla f(-3,5)$ and H(-3,5).