Source:

1 | Problem

Suppose $T \in \mathcal{L}(V, W)$ and U is a subspace of V. Let π denote the quotient map from V onto V/U. Prove that there exists $S \in \mathcal{L}(V/U, W)$ such that $T = S \circ \pi$ if and only if $U \subseteq \text{null } T$.

Intuitively, if we mod out part of the null T, then we should still be able to have a map that does what T would do. If we are able to do what T would do, then when modding out U we only removed part of null T and lost no information.

2 | Forward Direction

Intuitively, we can treat $S \circ \pi$ as a single map and take a basis of V to the same place that T would, and the maps would be equal.

If V is finite dimensional, suppose v_1, \ldots, v_n is a basis of V and v_1, \ldots, v_k is a basis of U ($k = \dim U$ and $n = \dim V$). For each $k < j \le n$, $\pi v_j \ne 0$, and we can control where S should send it. Let S be defined by:

$$S(\pi v_j) = Tv_j$$

Then, $S \circ \pi$ will send each vector in U to 0 and each other vector where T would send it. Because $U \subseteq \text{null } T$, $S \circ \pi = T$.

3 | Reverse Direction by Contrapositive

Intuitively, if we lost information, then we can't reconstruct what T would do.

Assume $U \nsubseteq \text{null } T$. There exists $v \in U$ s.t. $Tv \neq 0$. This is some of the "information" that was "lost". Because $v \in U$,

$$\pi v = U + v = U$$

Because U is the additive identity (0) in V/U, and because linear maps take zero to zero, $S \in \mathcal{L}(V/U,W)$ must take $\pi v = 0$ to zero. Thus, either $S(\pi v) \neq Tv$ or S is not a linear map, both of which are contradictions.

This shows that if $U \nsubseteq \text{null } T$, then $S \notin \mathcal{L}(V/U,W)$ or $T \neq S \circ \pi$. Thus, if $S \in \mathcal{L}(V/U,W)$ and $T = S \circ \pi$, then $U \subseteq \text{null } T$.

Exr0n · 2020-2021 Page 1