# Predicting Day-Ahead MISO's Locational Marginal Prices Using Data Mining Techniques and Publicly Available Data

LaRico Andres Michael Acquah CECS ECE 537







# **Contributions**

## LaRico Andres

- Data Collection
- Preprocessing
- Background Research
- Presenting and Reporting

## **Michael Acquah**

- Feature Engineering
- Model Development
- Project Planning and Coordination

### **Both**

- Documentation
- Visualization
- Communication
- Literature Review



# What is Locational Marginal Pricing (LMP)

Locational Marginal Pricing (LMP) is a pricing mechanism used in electricity markets to reflect the cost of delivering power to specific locations, or nodes, within a transmission network. It accounts for the cost of electric power generation, the cost of delivering that power, and the physical limitations of the transmission system. LMP is crucial in managed wholesale markets, providing real-time pricing signals that help balance supply and demand while considering factors like congestion and load patterns. The Federal Energy Regulatory Commission (FERC) supports LMP as it promotes efficiency in wholesale electricity markets



## **Problem Statement**

This project intends to apply data mining techniques such as data preprocessing:

- Transformations
- Correlations
- Normalizations

Time variant warehousing:

| Data                                 | How                                   |
|--------------------------------------|---------------------------------------|
| Timestamp                            | Every row is tied to an hour          |
| LMP values (log_LMP)                 | Derived from real hourly data         |
| Weather Forecasts                    | Hourly and date-specific forecasts    |
| Load Forecasts                       | Provided by hour/date                 |
| Lag Features (LMP_lag_1, LMP_lag_24) | Capture temporal dependency over time |

#### Publicly Available Data:

- US Energy Information Administration (EIA) LMP Data
- Open-Meteo.com Weather API
- Midcontinent Independent System Operator (MISO) Load Data

Machine Learning Models Used:

| Model             | Туре         | Purpose                                    |
|-------------------|--------------|--------------------------------------------|
| Linear Regression | Supervised   | Baseline Model LMP                         |
| Random Forest     | Supervised   | Primary Forecasting and Reconstruction     |
| XGBoost           | Supervised   | Benchmarking                               |
| Kmeans            | Unsupervised | Clustering<br>time/weather/LMP<br>patterns |
| PCA               | Unsupervised | Dimensionality reduction                   |



| #    | Column                       | Non-Null Count    | Dtype          |             | scriptive Star<br>Hour Number<br>35944.00000 |             | Michigan Hub (Congestion)<br>35944.000000 | count | Michigan Hub (Loss)<br>35944.000000 |
|------|------------------------------|-------------------|----------------|-------------|----------------------------------------------|-------------|-------------------------------------------|-------|-------------------------------------|
| 0    | Timestamp                    | 35944 non-null    | datetime64[ns] |             | 12.49744                                     | 41.277227   | 0.895211                                  | mean  | 1.046162                            |
| 1    | Hour Number                  | 35944 non-null    | int64          | mean<br>std | 6.92239                                      | 41.026586   | 11.364288                                 | std   | 1.931971                            |
| 2    | Michigan Hub LMP             | 35944 non-null    | float64        | min         | 1.00000                                      | -27.470000  | -405.830000                               | min   | -48.130000                          |
| 3    | Michigan Hub (Congestion)    | 35944 non-null    |                | 25%         | 6.00000                                      | 23.447500   | 0.000000                                  | 25%   | 0.320000                            |
| 4    | Michigan Hub (Loss)          | 35944 non-null    |                | 50%         | 12.00000                                     | 30.660000   | 0.000000                                  | 50%   | 0.840000                            |
|      | pes: datetime64[ns](1), floa | it64(3), int64(1) |                | 75%         | 18.00000                                     | 46.970000   | 0.950000                                  | 75%   | 1.540000                            |
| Memo | ory usage: 1.4 MB            |                   |                | max         | 24.00000                                     | 2280.330000 | 373.380000                                | max   | 84.580000                           |

#### Missing Values:

None

Timestamp Hour Number Michigan Hub LMP Michigan Hub (Congestion) Michigan Hub (Loss) dtype: int64





**DEARBORN** 

**Graphic** Display: Histogram

### IQR Analysis Data Mining Technique #1



We need to better understand our initial dataset: We have observed our data is positively-skewed.

Mean: 41.28

Median: 30.66 Mode: 22.34





```
# Step 1: Calculate Q1 and Q3
Q1 = df['Michigan Hub LMP'].quantile(0.25)
Q3 = df['Michigan Hub LMP'].quantile(0.75)
Median = df['Michigan Hub LMP'].quantile(0.50)
# Step 2: Compute IQR
IQR = Q3 - Q1

# Step 3: Define bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
[lower_bound, upper_bound]

# Step 4: Flag outliers
df['is_outlier'] = (df['Michigan Hub LMP'] < lower_bound) | (df['Michigan Hub LMP'] > upper_bound)
```

### Five-number summary

| 01: 23.44749999999998     |       | Hour Number | Michigan Hub LMP |
|---------------------------|-------|-------------|------------------|
| Median: 30.66             | count | 35944.00000 | 35944.000000     |
| Q3: 46.97                 | mean  | 12.49744    | 41.277227        |
| IQR: 23.5225              | std   | 6.92239     | 41.026586        |
| Total records: 35944      | min   | 1.00000     | -27.470000       |
| Outlier count: 2657       | 25%   | 6.00000     | 23.447500        |
| Outlier percentage: 7.39% | 50%   | 12.00000    | 30.660000        |
| Lower bound: -11.84       | 75%   | 18.00000    | 46.970000        |
| Upper bound: 82.25        | max   | 24.00000    | 2280.330000      |

Boxplot of Michigan Hub LMP







## Michigan Hub LMP has:

•Strong positive correlation with Congestion and Loss components.
•Weak correlation with Hour Number (as expected — time of day alone doesn't fully explain price changes).





- Perform Feature Engineering
- Data Integration and Formatting
- Splitting Data



**Original**-Strongly positively-skewed, heavy tail

Log Transformation – Greatly reduces skewness; commonly used for price data Square Root – Milder effect, put still pulls in outliers

**Cube Root** – Useful for handling large range values

**Box-Cox** – Automatically chooses the best\* exponent.



#### **Final LMP Data**

#### **Understanding Data**

- Check Variable Type
- Get Descriptive **Statistics**
- QR Outlier **Detection**
- **Get Initial** Visualization

**Data Preparation** 

| 0  | Timestamp                 | 33852 non-null | object  |
|----|---------------------------|----------------|---------|
| 1  | Hour Number               | 33852 non-null | int64   |
| 2  | Michigan Hub LMP          | 33852 non-null | float64 |
| 3  | Michigan Hub (Congestion) | 33852 non-null | float64 |
| 4  | Michigan Hub (Loss)       | 33852 non-null | float64 |
| 5  | Hour                      | 33852 non-null | int64   |
| 6  | DayOfWeek                 | 33852 non-null | int64   |
| 7  | Month                     | 33852 non-null | int64   |
| 8  | IsWeekend                 | 33852 non-null | int64   |
| 9  | temperature_2m            | 33852 non-null | float64 |
| 10 | relative_humidity_2m      | 33852 non-null | float64 |
| 11 | dew_point_2m              | 33852 non-null | float64 |
| 12 | precipitation             | 33852 non-null | float64 |
| 13 | rain                      | 33852 non-null | float64 |
| 14 | snowfall                  | 33852 non-null | float64 |
| 15 | snow_depth                | 33852 non-null | float64 |
| 16 | weather_code              | 33852 non-null | int64   |
| 17 | wind_speed_10m            | 33852 non-null | float64 |
| 18 | wind_direction_10m        | 33852 non-null | float64 |
| 19 | wind_gusts_10m            | 33852 non-null | float64 |
| 20 | Actual load               | 33852 non-null | float64 |

| 📊 S   | ummary Statisti |                  |                            |        | Michigan Hub (Loss) | Hour         | DayOfWeek    | Month        |
|-------|-----------------|------------------|----------------------------|--------|---------------------|--------------|--------------|--------------|
|       | Hour Number     | Michigan Hub LMP | Michigan Hub (Congestion)  | count  | 33852.000000        | 33852,000000 | 33852,000000 | 33852,000000 |
| count | 33852.000000    | 33852.000000     | 33852.000000               | mean   | 1.077374            | 11.501152    | 2,996662     | 6.380037     |
| mean  | 12.501152       | 42.052714        | 0.946226                   | ilican | 1.0//3/4            | 11.501152    | 2.990002     | 0.300037     |
| std   | 6.922327        | 41.511380        | 11.653210                  | std    | 1.967204            | 6.922327     | 1.997418     | 3.502063     |
| min   | 1.000000        | 0.710000         | -405.830000                | min    | -48.130000          | 0.000000     | 0.000000     | 1.000000     |
| 25%   | 7.000000        | 23.777500        | 0.000000                   | 25%    | 0.340000            | 6.000000     | 1.000000     | 3.000000     |
| 50%   | 13.000000       | 31.425000        | 0.000000                   | 50%    | 0.870000            | 12.000000    | 3.000000     | 6.000000     |
| 75%   | 19.000000       | 48.112500        | 1.040000                   | 75%    | 1.580000            | 18.000000    | 5.000000     | 10.000000    |
| max   | 24.000000       | 2280.330000      | 373.380000                 | max    | 84.580000           | 23.000000    | 6.000000     | 12.000000    |
|       | IsWeekend       | temperature_2m   | relative_humidity_2m dew_p | _      | precipitat          | ion ra       | ain snowfal  | .l snow_dept |

weather code count 33852.000000 33852.000000 33852.000000 33852.000000 33852.000000 33852.000000 33852.000000 33852.000000 33852.000000 count 0.284828 53.774666 68.763668 42.767090 mean 0.005020 0.004771 0.001745 0.023553 9.600142 mean std 0.451339 19.091454 17.792520 18.486589 std 0.025823 0.025635 0.020645 0.092691 19.516105 min 0.000000 -10.312599 15.064703 -21.202599 min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 39.187400 55.142455 29.647400 25% 0.000000 0.000000 0.000000 0.000000 0.000000 50% 0.000000 55.027397 69.802067 44.047400 50% 0.000000 0.000000 0.000000 0.000000 3.000000 75% 1.000000 69.247400 83.686082 58.357400 75% 0.000000 0.000000 0.000000 0.000000 3.000000 1.000000 95.347400 81.037400 max 100.000000 0.818898 0.818898 0.799213 0.951444 75.000000

wind\_direction\_10m wind\_gusts\_10m wind\_speed\_10m Actual load 33852.000000 33852,000000 33852.000000 33852.000000 count 7.594532 193.433748 15.395790 18088.428771 mean std 3.700705 93.702219 7.305166 2998.426809 min 0.000000 0.535451 0.894800 12103.280000 25% 4.829019 128.659835 9.619101 15896.312500 50% 6.938307 200.462360 14.316800 17845.120000 75% 9.812248 19561.687500 268.830900 19.909300 29.747265 360,000000 56.819798 33064.270000 max



**Graphic** Display:

DEARBORN

Histogram

### Log Transformation



#### **Pearson Correlation Matrix**









- Data Integration and Formatting
- Splitting Data



#### **Lessons From Correlation Matrix**

Top Correlated Features with MLP:

- \*Michigan Hub (Congestion) +0.46, Strongest positive correlation
- \*Michigan Hub (Losses) +0.27, Losses in the system can affect LMP
- \*Actual Load +0.32, Load affects supply-demand balance, higher demand higher LMP
- \*Hour +0.10, LMP varies throughout the day correlation \*Temperature\_2m +0.03
- \*Dewpoint\_2m +0.07, Weak correlation but may still contribute
- \*IsWeekend +0.07 Some weekend effect
- Hour and Hour Number are Multi-collinear, will delete one REDUNDANT
- Rain, snowfall, precipitation are correlated as well, will keep only one REDUNDANT

#### **Next steps:**

Select key features for model(\*) FEATURE SELECTION
Build baseline model (simple regression, Linear or RandomForest)
Test non-linear models XGBoost Light GBM

## Data Understanding

| Timestamp                | Hour<br>Number | Michigan<br>Hub LMP | Michigan<br>Hub<br>(Congestion) | Michigan<br>Hub<br>(Loss) |   | DayOfWeek | Month | IsWeekend | temperature_2m | rair | snowfal | I snow_depth | weather_code | wind_speed_10m | wind_direction_10m | wind_gusts_10m | Actual_load | log_LMP  | is_outlier |
|--------------------------|----------------|---------------------|---------------------------------|---------------------------|---|-----------|-------|-----------|----------------|------|---------|--------------|--------------|----------------|--------------------|----------------|-------------|----------|------------|
| o 2021-02-10<br>00:00:00 | 1              | 24.43               | 0.00                            | -0.89                     | 0 | 2         | 2     | 0         | 18.487400      | 0.0  | 0.0     | 0.360892     | 3            | 4.529580       | 32.905247          | 9.395399       | 18226.97    | 3.195812 | False      |
| 1 2021-02-10<br>01:00:00 | 2              | 24.39               | 0.00                            | -1.01                     | 1 | 2         | 2     | 0         | 18.397400      | 0.0  | 0.0     | 0.360892     | 3            | 4.787389       | 37.405437          | 9.395399       | 17785.44    | 3.194173 | False      |
| 2 2021-02-10<br>02:00:00 | 3              | 24.38               | 0.00                            | -0.95                     | 2 | 2         | 2     | 0         | 16.597400      | 0.0  | 0.0     | 0.360892     | 3            | 4.273782       | 47.121110          | 9.395399       | 17582.40    | 3.193763 | False      |
| 3 2021-02-10<br>03:00:00 | 4              | 26.32               | 0.00                            | -0.99                     | 3 | 2         | 2     | 0         | 14.977398      | 0.0  | 0.0     | 0.328084     | 3            | 4.412054       | 59.534540          | 8.276900       | 17527.62    | 3.270329 | False      |
| 4 2021-02-10<br>04:00:00 | 5              | 30.73               | 0.00                            | -0.96                     | 4 | 2         | 2     | 0         | 13.537399      | 0.0  | 0.0     | 0.328084     | 3            | 4.654895       | 54.782326          | 8.053200       | 17753.76    | 3.425239 | False      |



Data Objects

IsWeekend is Binary

## Data Integration can be seen in given Python



# **Uniqueness Rule, Consecutive Rule and Null Rule**

| Data Quality Summary:     | Unique Values | Null Count | Consecutive Changes |
|---------------------------|---------------|------------|---------------------|
| Actual_load               | 33252         | 0          | 33852               |
| DayOfWeek                 | 7             | 9          | 1410                |
| Hour Number               | 24            | 0          | 33852               |
| IsWeekend                 | 2             | 0          | 407                 |
| Michigan Hub (Congestion) | 3608          | 0          | 21518               |
| Michigan Hub (Loss)       | 1351          | 0          | 33220               |
| Month                     | 12            | 0          | 49                  |
| dew point 2m              | 1019          | 0          | 32447               |
| log_LMP                   | 8639          | 0          | 33790               |
| precipitation             | 106           | 0          | 5545                |
| rain                      | 122           | 0          | 5093                |
| relative_humidity_2m      | 30716         | 0          | 33753               |
| snow_depth                | 30            | 0          | 276                 |
| snowfall                  | 26            | 0          | 614                 |
| temperature_2m            | 1092          | 0          | 33022               |
| weather_code              | 13            | 0          | 11307               |
| wind_direction_10m        | 8017          | 0          | 33465               |
| wind_gusts_10m            | 220           | 0          | 30855               |
| wind_speed_10m            | 4114          | 0          | 33500               |

We detected outliers using IQR Method in previous slides

# Data Transformation/Feature Engineering

- Attribute/feature Construction: Used to boost our model's ability to learn from weather, time and historical trends.
- **IsPeakHour**, Flag for peak hours (7–9 AM, 4–7 PM)
- **IsNightHour**, Flag for nighttime hours (12–5 AM)
- Temp\_humidity\_index, Combined weather effect (temp x humidity)
- Wind\_total, Wind speed + gusts
- IsSnowing, IsRaining, Binary flags for precipitation types
- Hour\_sin, Hour\_cos, Cyclical encoding of hour (captures seasonality)
- LMP\_lag\_1, LMP value from 1 hour before
- LMP\_lag\_24, LMP value from same hour the previous day



|       |              |              |                     | 2211                |   |
|-------|--------------|--------------|---------------------|---------------------|---|
|       | IsPeakHour   | IsNightHour  | temp_humidity_index | wind_total \        |   |
| count | 33828.000000 | 33828.000000 | 33828.000000        | 33828.000000        |   |
| mean  | 0.291593     | 0.249970     | 3650.750785         | 22.992337           |   |
| std   | 0.454503     | 0.433002     | 1512.389387         | 10.841310           |   |
| min   | 0.000000     | 0.000000     | -601.639470         | 1.211160            |   |
| 25%   | 0.000000     | 0.000000     | 2510.502613         | 14.390856           |   |
| 50%   | 0.000000     | 0.000000     | 3546.708378         | 21.207304           |   |
| 75%   | 1.000000     | 0.000000     | 4789.725133         | 29.559548           |   |
| max   | 1.000000     | 1.000000     | 7640.563447         | 84.330063           |   |
|       |              |              |                     |                     |   |
|       | IsSnowing    | IsRaining    | Hour_sin Ho         | ur_cos LMP_lag_1    | ١ |
| count | 33828.000000 | 33828.000000 | 33828.000000 3.3828 | 00e+04 33828.000000 |   |
| mean  | 0.017500     | 0.133055     | -0.000130 -4.7511   | 13e-05 42.060846    |   |
| std   | 0.131128     | 0.339640     | 0.707038 7.0719     | 63e-01 41.524726    |   |
| min   | 0.000000     | 0.000000     | -1.000000 -1.0000   | 00e+00 0.710000     |   |
| 25%   | 0.000000     | 0.000000     | -0.707107 -7.0710   | 68e-01 23.770000    |   |
| 50%   | 0.000000     | 0.000000     | 0.000000 -1.8369    | 70e-16 31.430000    |   |
| 75%   | 0.000000     | 0.000000     | 0.707107 7.0710     | 68e-01 48.130000    |   |
| max   | 1.000000     | 1.000000     | 1.000000 1.0000     | 00e+00 2280.330000  |   |
|       |              |              |                     |                     |   |
|       | LMP_lag_24   |              |                     |                     |   |
| count | 33828.000000 |              |                     |                     |   |
| mean  | 42.055544    |              |                     |                     |   |
| std   | 41.518461    |              |                     |                     |   |
| min   | 0.710000     |              |                     |                     |   |
| 25%   | 23.770000    |              |                     |                     |   |
| 50%   | 31.430000    |              |                     |                     |   |
| 75%   | 48.120000    |              |                     |                     |   |
| max   | 2280.330000  |              |                     |                     |   |
|       |              |              |                     |                     |   |



# Clustering (KMeans) Unsupervised MLA

- Group similar hours/days/weather conditions based on:
- Weather variables
- Time of day
- LMP behavior
- Engineered Features

| Cluster | Visual Shape/Area        | Interpretation                           | LMP Behavior   |
|---------|--------------------------|------------------------------------------|----------------|
| 0       | Middle/low spread (blue) | Moderate Conditions                      | Medium LMP     |
| 1       | (orange) Cluster         | Off-peak                                 | Low LMP        |
| 2       | (green) Vertical spread  | More weather variability-snow/high winds | Wide LMP Range |
| 3       | (red) Cluster            | Warm hours, peak                         | Higher LMP     |



KMeans grouped ~34,000 hours into 4 clusters based on similarity across those features.



# Feature Importance for Model

# Feature Reduction Example Random Forest Regressor



Model 1 Forecast-Only (No Congestion or

Loss)

RMSE: \$26.61/MWh

Model 1 Feature Reduction Steps and Results

**Cross Validation RMSE (log LMP) 5 Folds**: [26.5748709, 24.37215679, 32.29395324, 27.5589869, 36.11620113]

Retrained Reduced Model with Top Features RMSE: 26.63/MWh

**Select Top Features:** ['temperature\_2m', 'dew\_point\_2m', 'wind\_total', 'LMP\_lag\_1', 'LMP\_lag\_24', 'Actual\_load']

#### 5-Fold Validation

- Data split into 5 equal parts
- Model trained on 4 folds and tested on remaining
   1
- This is repeated 5 times, so each fold serves as the test set once

Retrained Reduced Model R<sup>2</sup>: 0.5689



# Feature Reduction Example Random Forest Regressor



Model 2 Full Reconstruction (with Cong. And Loss)

**RMSE:** \$20.28/MWh

R<sup>2</sup> Score: 0.7500

Model 2 Feature Reduction Steps and Results

**Cross Validation RMSE (log LMP) 5 Folds**: [16.6854429, 21.82165671, 22.29315055, 19.3296461, 18.2396887]

Retrained Reduced Model with Top Features RMSE: 20.28/MWh

**Select Top Features:** ['Michigan Hub (Loss)', 'Michigan Hub (Congestion)', 'LMP\_lag\_1', 'LMP\_lag\_24', 'Actual\_load', 'temperature\_2m']

#### 5-Fold Validation

- Data split into 5 equal parts
- Model trained on 4 folds and tested on remaining
   1
- This is repeated 5 times, so each fold serves as the test set once

Retrained Reduced Model R<sup>2</sup>: 0.7500







## Model 3 Forecast next 24 Hours 4/1/2025 (Model 2/10/21-3/31/2025)

| Metric                                     | Value       |
|--------------------------------------------|-------------|
| Mean Absolute<br>Error (MAE)               | \$7.71/MWh  |
| Root Mean<br>Squared Error<br>(RMSE)       | \$10.51/MWh |
| Mean Absolute<br>Percentage<br>Error(MAPE) | 17.87%      |
| R <sup>2</sup>                             | .689        |





## References

### References

- [1] B. Gołębiewska and J. Trajer, "Analysis of energy market using data mining methods." [Online]. Available: www.cire.pl
- [2] K. R. Jay Rosano and A. C. Nerves, "Give to AgEcon Search Forecasting Locational Marginal Prices in Electricity Markets by Using Artificial Neural Networks." [Online]. Available: http://ageconsearch.umn.edu
- [3] Francisco Martínez-Álvarez, Alicia Troncoso, "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies (Basel), vol. 8, no. 11, pp. 13096–13111, 2015, doi: 10.3390/en81112361.



# Thank You!!!