#### MA-106 Linear Algebra

#### H. Ananthnarayan



Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 18th January 2018 D1 - Lecture 7

#### Random Attendance

| 1        | 170050007 | Abhay Goyal                 |
|----------|-----------|-----------------------------|
| 2        | 170050011 | Riya Kishor Baviskar        |
| 3        | 170050036 | Kushal Patil                |
| 4        | 170050052 | Devki Nandan Malav          |
| <b>5</b> | 170050102 | Atla Tharun Teja            |
| 6        | 170070021 | Parth Milind Shettiwar      |
| 7        | 170070030 | Pranjal Jain                |
| 8        | 170070037 | Anav Agrawal                |
| 9        | 17D070011 | Vaidya Mithilesh Mandar     |
| 10       | 17D070022 | Sudhanshu Avinash Nimbalkar |
| 1        | 17D070047 | Mohd Safwan                 |
| 12       | 17D070049 | Shailee Suryawanshi         |
| 13       | 17D070058 | J S Mahesh                  |
|          |           |                             |

#### Recall: Echelon Form and Rank

Let A be an  $m \times n$  matrix.

- An echelon form U (also  $m \times n$ ) is obtained by forward elimination and has the following properties:
- 1. Pivots are the 1st nonzero entries in their rows.
- 2. Entries below pivots are zero, by elimination.
- 3. Each pivot lies to the right of the pivot in the row above.
- 4. Zero rows are at the bottom of the matrix.
- To obtain the row reduced form R of A:
- 1) Get the echelon form *U*.
- 2) Make the pivots 1.
- 3) Make the entries above the pivots 0.
- U and R are used to solve Ax = 0 and Ax = b.
- Number of columns with pivots = rank(A).

## Recall: Null Space of A

Given an  $m \times n$  matrix A, the null space of A, denoted N(A), is the set of all vectors x in  $\mathbb{R}^n$  such that Ax = 0.

Key Point: 
$$N(A) = N(U) = N(R)$$
  
Example: If  $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$ , then  $R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ .  
 $x = (t, u, v, w)^T$  is in  $N(A)$  if and only if  $Rx = 0$ ,

 $x = (t, u, v, w)^T$  is in N(A) if and only if Rx i.e., t = -2u - 2w and v = -w.

Thus, 
$$x = \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} -2u - 2w \\ u \\ -w \\ w \end{pmatrix} = u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

i.e., all possible linear combinations of the special solutions. This information is stored in a compact form in:

Null Space Matrix: Special solutions as columns.

## Recall: Finding N(A) = N(U) = N(R)

Let *A* be  $m \times n$ . To solve Ax = 0, find *R* and solve Rx = 0.

- 1. Find free (independent) and pivot (dependent) variables: pivot variables: columns in R with pivots ( $\leftrightarrow t$  and v). free variables: columns in R without pivots ( $\leftrightarrow u$  and w).
- 2. No free variables, i.e.,  $rank(A) = n \Rightarrow N(A) = 0$ .
- 3a. If rank(A) < n, obtain a special solution:
- Set one free variable = 1, the other free variables = 0.
- Solve Rx = 0 to obtain values of pivot variables.
- 3b. Find special solutions for each free variable.
- N(A) = space of linear combinations of special solutions.

## Solving Ax = b

**Caution:** If  $b \neq 0$ , solving Ax = b may not be the same as solving Ux = b or Rx = b.

**Example:** 
$$Ax = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = b.$$

Convert to Ux = c and then Rx = d.

$$\begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 2 & 4 & 8 & 12 & | & b_2 \\ 3 & 6 & 7 & 13 & | & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & 2 & 2 & | & b_2 - 2b_1 \\ 0 & 0 & -2 & -2 & | & b_3 - 3b_1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \textbf{1} & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & \textbf{2} & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix}$$

System is consistent  $\Leftrightarrow b_3 + b_2 - 5b_1 = 0$ , i.e.,  $b_3 = 5b_1 - b_2$ 

## Solving Ax = b or Ux = c or Rx = d

$$Ax = b \text{ has a solution } \Leftrightarrow b_3 = 5b_1 - b_2.$$
e.g., there is no solution when  $b = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$ .
Suppose  $b = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$ . Then  $[A|b] \rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & 2 & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 & | & 1 \\ 0 & 0 & 2 & 2 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$ 

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 & | & 1 \\ 0 & 0 & 1 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 2 & | & 4 \\ 0 & 0 & 1 & 1 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Ax = b is reduced to solving  $Ux = c = \begin{pmatrix} 1 & -2 & 0 \end{pmatrix}^T$ , which is further reduced to solving  $Rx = d = \begin{pmatrix} 4 & -1 & 0 \end{pmatrix}^T$ .

#### Solving Ax = b or Ux = c or Rx = d

Solving Ax = b is reduced to solving Rx = d, i.e., we want to solve

$$\begin{pmatrix} \mathbf{1} & 2 & 0 & 2 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$$

i.e., t = 4 - 2u - 2w and v = -1 - w

Set the free variables u and w = 0 to get t = 4 and v = -1

A particular solution:  $\mathbf{x} = \begin{pmatrix} 4 & 0 & -1 & 0 \end{pmatrix}^T$ .

**Ex:** Check it is a solution i.e., check Ax = b.

**Observe:** In Rx = d, the vector d gives values for the pivot variables, when the free variables are 0.

#### General Solution of Ax = b

From Rx = d, we get t = 4 - 2u - 2w and v = -1 - w, where u and w are free. Complete set of solutions to Ax = b:

$$\begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 - 2u - 2w \\ u \\ -1 - w \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

To solve Ax = b completely, reduce to Rx = d. Then:

- 1. Find  $x_{\text{NullSpace}}$ , i.e., N(A), by solving Rx = 0.
- 2. Set free variables = 0, solve Rx = d for pivot variables. This is a particular solution:  $x_{\text{particular}}$ .
- 3. Complete solutions:  $x_{\text{complete}} = x_{\text{particular}} + x_{\text{NullSpace}}$

**Ex:** Verify geometrically for a  $1 \times 2$  matrix, say  $A = \begin{pmatrix} 1 & 2 \end{pmatrix}$ .

### The Column Space of A

**Q:** Does Ax = b have a solution? **A:** Not always.

**Main Q2:** When does Ax = b have a solution?

If Ax = b has a solution, then we can find numbers  $x_1, \ldots, x_n$  such that

$$(A_{*1} \cdots A_{*n})$$
  $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A_{*1} + \cdots + x_n A_{*n} = b,$ 

i.e., b can be written as a linear combination of columns of A.

The *column space* of A, denoted C(A)

is the set of all linear combinations of the columns of A

=  $\{b \text{ in } \mathbb{R}^m \text{ such that } Ax = b \text{ is consistent}\}.$ 

## Finding C(A): Consistency of Ax = b

**Example:** Let 
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Then  $Ax = b$ , where

 $b = (b_1 \ b_2 \ b_3)^T$ , has a solution whenever  $-5b_1 + b_2 + b_3 = 0$ .

- C(A) is a plane in  $\mathbb{R}^3$  passing through the origin with normal vector  $\begin{pmatrix} -5 & 1 & 1 \end{pmatrix}^T$ .
- $a = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$  is not in C(A) as Ax = a is inconsistent.
- $b = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$  is in C(A) as Ax = b is consistent.

**Ex:** Write b as a linear combination of the columns of A. (A different way of saying: Solve Ax = b).

**Q:** Can you write b as a different combination of  $A_{*1}, \dots, A_{*4}$ ?

## Linear Combinations in C(A)

Let A be an  $m \times n$  matrix, u and v be real numbers.

- The column space of A, C(A) contains vectors from  $\mathbb{R}^m$ .
- If a, b are in C(A), i.e., Ax = a and Ay = b for some x, y in  $\mathbb{R}^n$ , then ua + vb = u(Ax) + v(Ay) = A(ux + vy) = Aw, where w = ux + vy. Hence, if  $w = \begin{pmatrix} w_1 & \cdots & w_n \end{pmatrix}^T$ , then  $ua + vb = w_1A_{*1} + \cdots + w_nA_{*n}$ , i.e., a linear combination of vectors in C(A) is also in C(A).

Thus, C(A) is *closed under* linear combinations.

• If b is in C(A), then b can be written as a linear combination of the columns of A in as many ways as the solutions of Ax = b.

## Summary: N(A) and C(A)

**Remark:** Let *A* be an  $m \times n$  matrix.

- The null space of A, N(A) contains vectors from  $\mathbb{R}^n$ .
- $Ax = 0 \Leftrightarrow x \text{ is in } N(A)$ .
- The column space of A, C(A) contains vectors from  $\mathbb{R}^m$ .
- If B is the nullspace matrix of A, then C(B) = N(A).
- Ax = b is consistent  $\Leftrightarrow b$  is in  $C(A) \Leftrightarrow$

b can be written as a linear combination of the columns of A. This can be done in as many ways as the solutions of Ax = b.

- Let *A* be  $n \times n$ .
- A is invertible  $\Leftrightarrow N(A) = \{0\} \Leftrightarrow C(A) = \mathbb{R}^n$ . Why?
- N(A) and C(A) are closed under linear combinations.

# Vector Spaces: R<sup>n</sup>

We begin with  $\mathbb{R}^1$ ,  $\mathbb{R}^2$ , ...,  $\mathbb{R}^n$ , etc., where  $\mathbb{R}^n$  consists of all column vectors of length n, i.e.,

$$\mathbb{R}^n = \{x = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}^T, \text{ where } x_1, \dots, x_n \text{ are in } \mathbb{R}\}.$$

We can add two vectors, and we can multiply vectors by scalars, (i.e., real numbers). Thus, we can take linear combinations in  $\mathbb{R}^n$ .

#### **Examples:**

 $\mathbb{R}^1$  is the real line,  $\mathbb{R}^3$  is the usual 3-dimensional space, and  $\mathbb{R}^2$  is represented by the x-y plane; the x and y co-ordinates are given by the two components of the vector.



## Vector Spaces: Examples

- $\bullet$  V = 0, the space consisting of only the zero vector.
- $V = \mathbb{R}^n$ , the *n*-dimensional space.
- **3**  $V = \mathbb{R}^{\infty}$ , vectors with infinite number of components, i.e., a sequence of real numbers, e.g.,  $x = (1, 1, 2, 3, 5, 8, \ldots)$ , with component-wise addition and scalar multiplication.
- $V = \mathcal{M}$ , the set of 2 × 2 matrices. What are + and \*? Q: Is this the 'same' as  $\mathbb{R}^4$ ?
- V = C[0, 1], the set of continuous real-valued functions on the closed interval [0, 1]. e.g.,  $x^2$ ,  $e^x$  are vectors in V.

**Q:** Is  $\frac{1}{x}$  a vector in V? How about  $\frac{1}{x-2}$ ?

Vector addition and scalar multiplication are pointwise:

$$(f+g)(x) = f(x) + g(x)$$
 and  $(a*f)(x) = af(x)$ .

### **Vector Spaces: Definition**

- ullet A vector space is a triple (V, +, \*) with vector addition + and scalar multiplication \*
- $\bullet$  The elements of V are called vectors and the scalars are chosen to be real numbers (for now).
- If the scalars are allowed to be complex numbers, then *V* is a *complex* vector space.

## Vector Spaces: Definition continued

Let x, y and z be vectors, a and b be scalars. The vector addition and scalar multiplication are also required to satisfy:

- x + y = y + x Commutativity of addition
- (x + y) + z = x + (y + z) Associativity of addition
- There is a unique vector 0, such that x + 0 = xExistence of additive identity
- For each x, there is a unique -x such that x + (-x) = 0Existence of additive inverse
- 1 \* x = x Unit property
- (a+b)\*x = a\*x + b\*x, a\*(x+y) = a\*x + a\*y(ab)\*x = a\*(b\*x) Compatibility

**Notation:** For a scalar a, and a vector x, we denote a \* x by ax.