

Summary and More

Learning from Users

A Brief Overview

- A number of ML applications are used by many users regularly, and in the process, they also give supervisory signals.
- Examples:
 - Search Engines
 - Browsing/watching/trying products
 - Using devices (like a temperature control at home)
 - Etc.

Allied problems

- Personalization
- Online learning/Incremental Learning
- Weak Supervision
- •
- User feedbacks:
 - Explicit feedbacks (labels +ve and/or –ve explicitly)
 - Implicit feedbacks
- Many variations. Many special cases
- We will look at some sample scenarios.

Relevance Feedback

(Popular in IR, and Multimedia Retrieval)

User feedback

An IR system could be an interactive system

Use Scenario

- A query q or a classifier w is given
- Search engine retrieves a set of possible answers
 - x1, x2, x3, etc.
- System guess the user intend and improve the answers
 - x7,x12,x23, etc.
- User is able to smartly navigate and get what she is looking for.
- Eg. Search for a specific fashion/design in a large database

Personalization involves using technology to accommodate the differences between individuals. Once confined mainly to the Web, it is increasingly becoming a ... en.wikipedia.org/wiki/**Personalized** - 42k - Cached - Similar pages -

Relevant

Personalized Gifts from Personalization Mall

It shows you went out of your way to find the perfect gift at to personalize it to make it theirs alone! At PersonalizationMall.com, we design most of our ...

www.personalizationmall.com/Default.aspx?&did=111028 - 47k Cached - Similar pages -

Nonrelevant

What is **personalization**? - a definition from Whatis.com

Mar 6, 2007 ... On a Web site, **personalization** is the process of tailoring pages to individual users' characteristics or preferences.

searchcrm.techtarget.com/sDefinition/0,,sid11_gci532341,00.html - 72k -

Cached - Similar pages - 🤛

Too Explicit?

Pseudo feedback and Query Expansion

What if the users are reluctant to provide any feedback

Rocchio Model

$$Q_1 = \alpha \ Q_0 + \frac{\beta}{n_1} \sum_{i=1}^{n_1} R_i - \frac{\gamma}{n_2} \sum_{i=1}^{n_2} S_i$$

where

 Q_0 = the vector for the initial query

 R_i = the vector for the relevant document i

 S_i = the vector for the non - relevant document i

 n_1 = the number of relevant documents chosen

 n_2 = the number of non - relevant documents chosen

 α , β and γ tune the importance of relevant and nonrelevant terms (in some studies best to set β to 0.75 and γ to 0.25)

Illustration (dot product view)

Challenges and Refinements

- Can we force user to say + and on the answers?
 - Often + is more clear ?. But not ve is not shared.
 - Cases when only + or Only is available.
 - Often + is implicit (I click/browse) and not explicit.
- Examples:
 - Browsing for fashion (clothes)

Users in the ML systems

Another Scenario (Interactive ML)

- Incremental and Computational Issues
 - How do we learn, adapt and forget
 - What is the basic knowledge and what do we adapt?
- Stability
 - Am I overlearing and changing too fast?
 - Stability, convergence and other algorithmic issues.

Personalization

Many Relevant Attributes

- Consider the following pieces of information
 - Geographical Location
 - Age, gender, ethnicity, religion, etc.
 - Interests
 - Previous reviews on products
 - •
- How could these pieces of information help?
- How to collect these information?

Approaches

- Individual Vs Collaborative
- Reactive Vs Proactive

User Vs Item Information

Individual Vs Collaborative

- Individual approach (Eg. Google Personalized Search)
 - Use only individual user's data
 - Generate user profile by analyzing
 - User's browsing behavior
 - User's active feedback on the system
 - Advantage
 - Can be implemented on the client-side no privacy violation
 - Disadvantage
 - Based only on past interactions.

Individual Vs Collaborative

- Collaborative approach (Eg. Amazon recommendations)
 - Find the neighborhood of the active user
 - React according to an assumption
 - If A is like B, then B likes the same things as A likes
 - Disadvantages
 - New item rating problem
 - New user problem
 - Advantage
 - Better than individual approach Once the two problems are addressed.

Reactive Vs Proactive

- Reactive approach
 - Explicitly ask user for preferences
 - Either in the form of query or feedback
- Proactive approach
 - Learn user preferences by user behavior
 - No explicit preference demand from the user
 - Behavior is extracted
 - Click-through rates
 - Navigational pattern

User Vs Item Information

- User Information
 - Geographic location (from IP address)
 - age, gender, marital status, etc (explicit query)
 - Lifestyle, etc. (inference from past behavior)
- Item Information
 - Content of Topics movie genre, etc.
 - Product/ domain ontology

Object Detection

A classification problem?

{ airplane, bird, motorbike, person, sofa }

Input

Desired output

Challenges

- A single image has Millions/Billions of windows to classify
 - All locations
 - All Scales/Sizes
- Computational speed
 - If a classification takes 10 ms?
- Variability in appearance/illumination (as in the classifiers)
- Applications:
 - Face detection (cameras)
 - Obstacle detection (autonomous navigation)

Evaluating a detector

Test image (previously unseen)

Many detections with varying confidence

- 'person' detector predictions
- ground truth 'person' boxes

R-CNN: Region with CNN Features

 Rich feature hierarchies for accurate object detection and semantic segmentation

Input Image

Extract region proposal (~2k/image)

Compute CNN Features

Classify Regions (linear SVM)

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." CVPR, 2014

- Proposal-method agnostic, many choices
 - Selective Search [van de Sande, Uijlings et al.]
 - MCG [Arbelaez et al.]
 - BING [Ming et al.]
 - CPMC [Carreira & Sminchisescu]

R-CNN: At test time – Step 2

Input Image

Extract and Dilate Proposal

proposal (~2k/image)

a. Crop

b. Scale (anisotropic) 227 x 227

R-CNN: At test time – Step 3

R-CNN: At test time – Step 4

Object Proposal Refinement (Bounding box regression)

Linear Regression

on CNN Features

Original Image

Predicted object bounding box

Fast and Faster Versions

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

ImageNet Detection (mAP)

- SSD
- YOLO and its versions [Yolo V3?]

Summary

The broad problem space

Proliferation of Applications

Vision, Speech, Text and Beyond

Jami's fras served 800 reminders

Deep Learning Startups

What enabled this success?

- Modern Features
 - Invariant to popular transformations
 - Capable of capturing local and global (shape, colour, texture) characteristics reliably
 - Features than can be learnt
- Machine Learning
 - Learn from examples rather than handcoding
 - New algorithms: effective, efficient
 - Efficient algorithms to solve complex optimization tasks
 - End to end learning and deep learning.
- Realistic Data
 - Huge amount; partly annotated
 - Regular competitions
 - Challenging problem statements. Evaluation Metrics
- Advances in Computational Resources
 - GPUs
 - Industrial scale clusters
 - Deep Software Stack.

Different Types of Supervision

Closer Look at Problems/Algorithms

THE SPACE OF MACHINE LEARNING METHODS

 $\Sigma\Pi$

Convolutional Neural Net

Perceptron

Neural Net

SVM

Deep (sparse/denoising) Autoencoder

AutoencoderNeur al Net

Sparse Coding

Deep Belief Net

Restricted BM

Disclaimer: showing only a subset of Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

BayesNP

History of Deep Learning

Popular DL Architectures

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

RBM

What is this big leap?

	LeNet(1989)	LeNet(1998)	AlexNet(2012)	
Task	Digit	Digit	Objects	
# Classes	10	10	1000	
image size	16 × 16	28 × 28	256 × 256 × 3	
# examples	7291	60,000	1.2 M	
units	1256	8084	658,000	
parameters	9760	60K	60 M	
connections	65K	344K	652M	
Operations	11 billion	412 billion	200 quadrillion	

Regularization and Hyperparameter Engineering

Little Pieces that have made the Whole

Regularization

• DropOut, DropConnect, Batch Normalization, Data Augmentation, Noise in Data/Label/Gradient

Weight Initialization

• Xavier's initialization, He's initialization

Choosing Gradient Descent Parameters

• Adagrad, RMSProp, Adam, Momentum, Nesterov Momentum

Activation Functions

• ReLU, PReLU, Leaky ReLU, ELU

Loss Functions

• Cross-Entropy, Embedding Loss, Mean-Squared Error, Absolute Error, KLDivergence, Max-Margin Loss

Deep Learning Libraries

Deep Learning Frameworks

Many Newer Nets

Neural Turing Machine (Graves et al., 2014)	DeepMask (Pinheiro et al., 2015)	SharpMask (Pinheiro et al., 2015)	Faster R-CNN (Ren et al, 2015)	FCN (Shelhamer , 2015)	SegNet (Badrinarayana n, 2015)
CRFasRNN (Zheng, 2015)	Ladder Network (Rasmus et al., 2015)	DenseNet (Huang et al, 2016)	DCGAN (Radford et al., 2016)	Pix2Pix (Isola et al., 2016)	Social LSTM (Alahi et al, 2016)
SketchNet (Zhang et al., 2016)	DeepFashion (Liu et al., 2016)	Pixel-RNN (Oord et al., 2016)	LocNet (Gidaris, 2016)	XNOR-Net (Rastegari et al., 2016)	UnrolledGAN (Metz et al. 2017)

Hybrid Architectures

Video Captioning

Video Classification

- End-to-end backprop on hybrid architectures
- Mix-and-match plug-and-play modules

Theory and Optimization Methods

Theory of Deep Learning

- Information Bottleneck Principle, arXiv 2017
- Generalization in Deep Learning, arXiv 2017
- Random Matrix Theory, ICML 2017

Understanding Error Surfaces

- Deep Learning without Poor Local Minima, NIPS
 2016
- How to Escape Saddle Points Efficiently, arXiv 2017
- Sharp Minima can Generalize for Deep Nets, ICML
 2017

Interpretability and Explainability

- Why deep learning models work?
 - Theory of deep learning
- How deep learning models work?
 - Visualizing and Understanding CNNs, ECCV 2014
 - CAM, Grad-CAM, Grad-CAM++
 - Visualizing and Understanding RNNs, arXiv 2015
- Long way to go!

Need for Causal Inference

Causality vs Correlation

Deep learning models correlation, not causality

CORRELATION IS NOT CAUSATION!

Both ice cream sales and shark attacks increase when the weather is hot and sunny, but they are not caused by each other (they are caused by good weather, with lots of people at the beach, both eating ice cream and having a swim in the sea)

- Some recent efforts
 - Discovering Causal Signals in Images, CVPR 2017
- Long way to go!

Robustness and Consistency

Neural networks are easily fooled, CVPR 2015

Classified with ~ 99% confidence

Robustness and Consistency

Classified with ~ 99% confidence

Our Limited Scope

- Perception
 - Understanding/recognizing Text, Speech, Image
- Tasks
 - Product rating
 - Sentiment analysis
 - Spam filter
 - Product recommendations
 - Financial time series prediction
 - Control Systems
 - Object Recognition
 - Etc.
- Applications
 - Chatbots/Dialogue Systems

Our Limited Scope

- Classification
- Regression
- Clustering
- Visualization
- Ensembling
- Feature Selection

- KNN,
- Decision Trees
- Random Forests
- Linear Classifiers
- K Means
- MLP
- SVMs, Kernels
- Deep Neural Networks
 - CNNs, RNNs, AEs

Our Limited Scope

- Word2Vec
- Bag of Words
- PCA and Eigen Face
- MFCC Features
- ISOMAP/LLE

- Perceptron Learning
- Gradient Descent
- Back Propagation
- CART
- Boosting
- Model Compression

- Experimental Skills
 - Training, Validation, Cross validation, Hyperparameter Selection
- Harvesting Supervision
 - Google/Internet, User engagements
- Training and Testing
 - Sampling, Losses, Parameters and Tricks

- Avoiding Overfitting
 - Regularization, Jittering, Early Stop, etc.
- Evaluation Metrics
 - Accuracy, Precision, Recall,
 Detection, False Alarms etc.
- Problem Solving
 - Abstracting the task. Connecting to Data. Map to Algorithms/Tasks

Thanks. Questions? Comments?