

Problem of the Week Problem E and Solution What's Your Angle Anyway III?

Problem

AB is a diameter of a circle with centre C. D is a point on the circumference of the circle other than A and B. Determine the measure of $\angle ADB$.

Solution

Join D to the centre C. Since CA, CB and CD are radii of the circle, CA = CB = CD.

Since CA = CD, $\triangle CAD$ is isosceles and $\angle CAD = \angle CDA = x^{\circ}$. Since CB = CD, $\triangle CBD$ is isosceles and $\angle CBD = \angle CDB = y^{\circ}$.

This new information is marked on the following diagram.

The angles in a triangle add to 180° so in $\triangle ABD$

$$\angle ADB + \angle DAB + \angle DBA = 180^{\circ}$$
$$(x^{\circ} + y^{\circ}) + x^{\circ} + y^{\circ} = 180^{\circ}$$
$$2(x^{\circ} + y^{\circ}) = 180^{\circ}$$
$$x^{\circ} + y^{\circ} = 90^{\circ}$$

But $\angle ADB = x^{\circ} + y^{\circ}$ so $\angle ADB = 90^{\circ}$.

This result is often expressed as a theorem for circles:

An angle $(\angle ADB)$ inscribed in a circle by the diameter (AB) of a circle is 90° .

