PDE'S - EXERCISES 48-51

ALEXANDER ZAHRER

In all these exercises we use the abbreviations $H^s := H^s(\mathbb{R}^d)$, $\dot{H}^s := \dot{H}^s(\mathbb{R}^d)$, $\mathscr{S} := \mathscr{S}(\mathbb{R}^d)$, $\mathscr{S}' := \mathscr{S}'(\mathbb{R}^d)$, $\mathscr{S}_b := \mathscr{C}_b(\mathbb{R}^d)$, $\mathscr{C}_b^k := \mathscr{C}_b^k(\mathbb{R}^d)$ and $\mathscr{C}_c^\infty := \mathscr{C}_c^\infty(\mathbb{R}^d)$. Moreover, for r > 0 we define $B_r := \{x \in \mathbb{R}^d \mid |x| < r\}$ and $S^{d-1} := \{x \in \mathbb{R}^d \mid |x| = 1\}$.

1 EXERCISE 48:

The problem with the "proof" given is that even though we know that there exists a subsequence $(u_{k_j})_{j\in\mathbb{N}}$ which converges weakly to some $u\in H$, and we even know that the sequence of norms $(\|u_{k_j}\|)_{j\in\mathbb{N}}=(1)_{j\in\mathbb{N}}$ converges we do not know that $\|u_{k_j}\|\to\|u\|$, which would ultimately be needed to obtain that $(u_{k_j})_{j\in\mathbb{N}}$ converges strongly to u.

2 EXERCISE 49:

We are given a radial $f_0 \in \mathscr{S}_{rad}$ such that $(f_0 \mid f)_{L^2} = 0$ for all $f \in \mathscr{S}_{rad}$. We shall deduce that $(f_0 \mid f)_{L^2} = 0$ for all $f \in \mathscr{S}$. However, this exercise seems to be a joke:

$$||f_0||_{L^2}^2 = (f_0 | f_0)_{L^2} = 0 \implies f_0 = 0$$
 (1)

3 EXERCISE 50:

We are given radial $F, G \in L^2_{\text{rad}}$ such that for all $f \in \mathcal{S}_{\text{rad}}$ we have $\phi_F(f) = \phi_G(f)$. We shall now prove that this already implies F = G.

Lemma 1. If $H \in L^p$, then $\phi_H : \mathscr{S} \to \mathbb{C}$ extends to a bounded linear functional $\phi_H : L^q \to \mathbb{C}$ (where q is conjugate to p).

Proof. Let $(h_t) \subset \mathcal{S}$ be an arbitrary representative for H. For $K \in L^q$ let $(k_l) \subset \mathcal{S}$ be a representative for K. Now define

$$\phi_H(K) := \lim_{l \to \infty} \phi_H(k_l) \tag{2}$$

This is well defined. Indeed,

$$|\phi_{H}(k_{l}) - \phi_{H}(k_{n})| = \lim_{t \to \infty} \left| \left(k_{l} - k_{n} \mid h_{t} \right)_{L^{2}} \right| \le ||k_{l} - k_{n}||_{L^{q}} ||H||_{L^{p}} \longrightarrow 0$$
(3)

Thus the limit in (2) exists and moreover it is easily seen to be independent of the chosen representative $(k_l) \subset \mathcal{S}$ for K. In particular, we have the estimate

$$|\phi_H(K)| \le ||K||_{L^q} ||H||_{L^p} \tag{4}$$

By the preceding Lemma we know that $\phi_{F-G} = \phi_F - \phi_G \colon L^2 \to \mathbb{C}$ yields a bounded linear functional and it satisfies $\phi_{F-G}|_{\mathscr{S}_{\mathrm{rad}}} = 0$. In particular, if $H \in L^2_{\mathrm{rad}}$ with a radial representative $(h_t) \subset \mathscr{S}_{\mathrm{rad}}$, then

$$\phi_{F-G}(H) = (H \mid F - G)_{L^2} = \lim_{t} \underbrace{\phi_{F-G}(h_t)}_{=0 \text{ by assumption}} = 0$$
 (5)

Letting $H = F - G \in L^2_{rad}$ we conclude from (5) that

$$||F - G||_{L^2}^2 = 0 \Longrightarrow F = G \tag{6}$$

4 EXERCISE 51:

Recall that for all $f \in \mathcal{S}$ we define

$$e^{it\Delta}f := \mathscr{F}^{-1}\left(e^{-4\pi^2it|.|^2}\mathscr{F}f\right) \tag{7}$$

and we call $e^{it\Delta}$ the Schrödinger propagator. Since the Fourier transform maps Schwartz functions to Schwartz functions we certainly have $e^{-4\pi^2it|.|^2}\mathscr{F}f\in\mathscr{S}$ (as $e^{-4\pi^2it|.|^2}$ and all its derivatives grow polynomially). Well, taking yet again the inverse Fourier transform of the preceding expression immediately yields $e^{it\Delta}f\in\mathscr{S}$ for all $f\in\mathscr{S}$.