Technik
Informatik & Medien

Hochschule Ulm
University of Applied Sciences

Decentralized Document Management

Master's thesis at the Hochschule Ulm Computer Science Department Master Information Systems

 $\begin{array}{c} \text{submitted by} \\ \textbf{Emmanuel SCHWARTZ} \end{array}$

April 2017

1st Evaluator: Prof. Dr. rer. nat. Stefan Traub 2nd Evaluator: Prof. Dr. rer. nat. Markus Schäffter

Declaration of Originality

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I have only used the resources given in the list of references.

 $3^{\rm rd}$ April, 2017

Emmanuel SCHWARTZ

Abstract

Acknowledgements

Contents

1	Inti	roducti	ion	1
2	Rel	ated V	Vork	3
3	Me	thod		5
	3.1	Einbir	nden einer Grafik	-
		3.1.1	Standard-Grafik	5
			Mathematik	
		3.1.3	Beispiel URL	6
		3.1.4	Tabelle	
		3.1.5	Literatur	6
4	Res	sults		7
5	Cor	nclusio	on and Future Work	g

Introduction

Related Work

Obwohl die Grundlagen l"angst bekannt sind, ...

Method

3.1 Einbinden einer Grafik

3.1.1 Standard-Grafik

Ein Leuchtturm in den typischen Farben ist in Abbildung 3.1 gezeigt.

Figure 3.1: Der Leuchtturm von irgendwo.

Zwei weitere Leuchttrme sind in Abbildung 3.2 gezeigt.

Figure 3.2: Weitere Leuchttrme.

3.1.2 Mathematik

Lemma 1 (covariance enclosure) The covariance $cov(X_a)$ is smaller in all directions than $cov(X_b)$ if and only if $cov(X_b) \succeq cov(X_a)$.

Proof: So-called k-sigma contours provide a convenient graphical representation of a random variable X_a . The k-sigma contour of X_a is defined by the points

$$(\mathbf{x} - E(X_a))^T \operatorname{cov}(X_a)^{-1} (\mathbf{x} - E(X_a)) = k$$

This term defines an ellipse for two dimensions respectively an hyperellipsoid for higher dimensions. The covariance $cov(X_a)$ is smaller than $cov(X_b)$ in all directions if the corresponding k-sigma contour of X_a is completely enclosed by the k-sigma contour of X_b . This is equivalent to

$$(\mathbf{x} - \mathbf{c})^T \operatorname{cov}(X_a)^{-1} (\mathbf{x} - \mathbf{c}) \ge (\mathbf{x} - \mathbf{c})^T \operatorname{cov}(X_b)^{-1} (\mathbf{x} - \mathbf{c})$$

 $\operatorname{cov}(X_a)^{-1} \succeq \operatorname{cov}(X_b)^{-1}$
 $\operatorname{cov}(X_b) \succeq \operatorname{cov}(X_a)$

3.1.3 Beispiel URL

Hier ist der Link: http://www.rz.fh-ulm.de/~cschlege

3.1.4 Tabelle

No.	Supported Feature	Octet	Bit
0	Flow Control Mode	0	0
1	Retransmission Mode	0	1
2	Bi-directional QoS	0	2
31	Reserved for feature mask ext.	3	7

Table 3.1: Eine Tabelle.

3.1.5 Literatur

Eine ausfhrliche Darstellung findet sich in [?].

Results

Conclusion and Future Work

List of Figures

3.1	Der Leuchtturm von irgendwo.														Ę	5
3.2	Weitere Leuchttrme														ŗ	5

12 LIST OF FIGURES

List of Tables

3.1	Eine Tabelle.	_	_							_		_								6