

Lecture 13 Visual Inertial Fusion

Davide Scaramuzza

Course Evaluation

- Please fill the evaluation form you received by email!
- Provide feedback on
 - Exercises: good and bad
 - Course: good and bad
 - How to improve

Lab Exercise 6 - Today

- > Room ETH HG E 33.1 from 14:15 to 16:00
- ➤ Work description: Bundle Adjustment

Outline

- > Introduction
- ➤ IMU model and Camera-IMU system
- > Different paradigms
 - Filtering
 - Maximum a posteriori estimation
 - Fix-lag smoothing

What is an IMU?

- > Inertial Measurement Unit
 - Angular velocity
 - Linear Accelerations

What is an IMU?

- Different categories
 - Mechanical
 - Optical
 - MEMS
 - **-**
- For mobile robots: MEMS IMU
 - Cheap
 - Power efficient
 - Light weight and solid state

MEMS Accelerometer

A spring-like structure connects the device to a seismic mass vibrating in a capacity devider. A capacitive divider converts the displacement of the seismic mass into an electric signal. Damping is created by the gas sealed in the device.

MEMS Gyroscopes

- MEMS gyroscopes measure the Coriolis forces acting on MEMS vibrating structures (tuning forks, vibrating wheels, or resonant solids)
- Their working principle is similar to the haltere of a fly

Haltere are small structures of some two-winged insects, such as flies. They are flapped rapidly and function as gyroscopes, informing the insect about rotation

of the body during flight.

Why IMU?

- Monocular vision is scale ambiguous.
- Pure vision is not robust enough
 - Low texture
 - High dynamic range
 - High speed motion

Robustness is a critical issue: Tesla accident

"The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky."

Why vision?

- Pure IMU integration will lead to large drift (especially cheap IMUs)
 - Will see later mathematically
 - Intuition
 - Integration of angular velocity to get orientation: error proportional to t
 - Double integration of acceleration to get position: if there is a bias in acceleration, the error of position is proportional to t²
 - Worse, the actually position error also depends on the error of orientation.

	Accelerometer Bias Error	Horizontal Position Error [m]				
Grade	[mg]	1 s	10s	60s	1hr	
Navigation	0.025	0.13 mm	12 mm	0.44 m	1.6 km	1
Tactical	0.3	1.5 mm	150 mm	5.3 m	19 km	ı
Industrial	3	15 mm	1.5 m	53 m	190 km	
Automotive	125	620 mm	60 m	2.2 km	7900 km	•

Smartphone accelerometers

Why visual inertial fusion?

Summary: IMU and vision are complementary

Visual sensor	Inertial sensor		
 ✓ Precise in case of non-aggressive motion ✓ Rich information for other purposes 	✓ Robust✓ High output rate (~1,000 Hz)		
 X Limited output rate (~100 Hz) X Scale ambiguity in monocular setup. X Lack of robustness 	X Large relative uncertainty when at low acceleration/angular velocityX Ambiguity in gravity / acceleration		

In common: state estimation based on visual or/and inertial sensor is dead-reckoning, which suffers from drifting over time.

(solution: loop detection and loop closure)

Outline

- > Introduction
- ➤ IMU model and Camera-IMU system
- Different paradigms
 - Filtering
 - Maximum a posteriori estimation
 - Fix-lag smoothing

IMU model: Measurement Model

> Measures angular velocity and acceleration in the body frame:

$$\mathbf{\tilde{a}}_{\mathrm{WB}}(t) = \mathbf{B}\mathbf{\omega}_{\mathrm{WB}}(t) + \mathbf{b}^{g}(t) + \mathbf{n}^{g}(t)$$

$$\mathbf{\tilde{a}}_{\mathrm{WB}}(t) = \mathbf{R}_{\mathrm{BW}}(t)(\mathbf{w}\mathbf{a}_{\mathrm{WB}}(t) - \mathbf{w}\mathbf{g}) + \mathbf{b}^{a}(t) + \mathbf{n}^{a}(t)$$
measurements
noise

where the superscript $\ ^g$ stands for Gyroscope and $\ ^a$ for Accelerometer

Notations:

- Left subscript: reference frame in which the quantity is expressed
- Right subscript {Q}{Frame1}{Frame2}: Q of Frame2 with respect to Frame1
- Noises are all in the body frame

IMU model: Noise Property

 \triangleright Additive Gaussian white noise: $\mathbf{n}^{g}(t)$, $\mathbf{n}^{a}(t)$

$$E[n(t)] = 0$$

$$E[n(t_1)n(t_2)] = \sigma^2 \delta(t_1 - t_2)$$

$$n[k] = \sigma_d w[k]$$

$$w[k] \sim N(0,1)$$

$$\sigma_d = \sigma / \sqrt{\Delta t}$$

$$\triangleright$$
 Bias: $\mathbf{b}^{g}(t)$, $\mathbf{b}^{a}(t)$

$$\dot{\mathbf{b}}(t) = \sigma_b \mathbf{w}(t)$$

i.e., the derivative of the bias is white Gaussian noise (so-called random walk)

$$\mathbf{b}[k] = \mathbf{b}[k-1] + \sigma_{bd} \mathbf{w}[k]$$

$$\sigma_{bd} = \sigma_b \sqrt{\Delta t}$$

$$w[k] \sim N(0,1)$$

The biases are usually estimated with the other states

- can change every time the IMU is started
- can change due to temperature change, mechanical pressure, etc.

Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation." https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model

IMU model: Integration

> Per component: {t} stands for {B}ody frame at time t

$$\mathbf{p}_{\mathrm{Wt}_{2}} = \mathbf{p}_{\mathrm{Wt}_{1}} + (t_{2} - t_{1}) \mathbf{v}_{\mathrm{Wt}_{1}} + \int \int_{t_{1}}^{t_{2}} \mathbf{R}_{\mathrm{Wt}}(t) (\tilde{\mathbf{a}}(t) - \mathbf{b}^{a}(t)) + \mathbf{g} dt^{2}$$

- Depends on initial position and velocity
- The rotation R(t) is computed from the gyroscope

Camera-IMU System

There can be multiple cameras.

0

Outline

- > Introduction
- > IMU model and Camera-IMU system
- Different paradigms
 - Closed-form solution
 - Filtering
 - Fix-lag smoothing
 - Maximum a posteriori estimation

Closed-form Solution (intuitive idea)

 \triangleright The absolute pose x is known up to a scale s, thus

$$x = s\tilde{x}$$

From the IMU

$$x = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

By equating them

$$s\tilde{x} = x_0 + v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt$$

As shown in [Martinelli'14], for 6DOF, both s and v_0 can be determined in closed form from a **single feature observation and 3 views**. x_0 can be set to 0.

Closed-form Solution

$$\begin{cases} s\widetilde{x_1} = v_0(t_1 - t_0) + \iint_{t_0}^{t_1} a(t)dt \\ s\widetilde{x_2} = v_0(t_2 - t_0) + \iint_{t_0}^{t_2} a(t)dt \end{cases}$$

$$\begin{bmatrix} \widetilde{x_1} & (t_0 - t_1) \\ \widetilde{x_2} & (t_0 - t_2) \end{bmatrix} \begin{bmatrix} s \\ v_0 \end{bmatrix} = \begin{bmatrix} \iint_{t_0}^{t_1} a(t) dt \\ \iint_{t_0}^{2} a(t) dt \end{bmatrix}$$

Different paradigms

- > Loosely coupled: use the output of individual system
 - Estimate the states individually from visual and inertial data
 - Combine the separate states estimations
- Tightly coupled: use the internal states
 - Make use of the raw measurements
 - Feature positions
 - IMU readings

- ...

More accurate

More implementation effort.

• Example:

- Use IMU for guided feature matching
- Minimizing reprojection error and IMU error together

- ...

Different paradigms

More accurate

More implementation effort.

Different paradigms

Filtering	Fix-lag Smoothing	Maximum-A-Posteriori (MAP) Estimation
Filtering the most recent states • (e.g., extended Kalman filter)	Optimize window of statesMarginalizationNonlinear least squares optimization	Optimize all statesNonlinear Least squares optimization
×1 Linearization	✓ Re-Linearize	✓ Re-Linearize
×Accumulation of linearization errors	×Accumulation of linearization errors	✓ Sparse Matrices ✓ Highest Accuracy
Gaussian approximation of marginalized states	×Gaussian approximation of marginalized states	
✓ Faster	✓Fast	×Slow

Filtering: Visual Inertial Formulation

System states:

Tightly coupled:
$$\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t); \mathbf{w} \mathbf{L}_{1}; \mathbf{w} \mathbf{L}_{2}; ..., \mathbf{L}_{K} \right]$$

Loosely coupled:
$$\mathbf{X} = \left[\mathbf{w} \mathbf{p}(t); \mathbf{q}_{WB}(t); \mathbf{w} \mathbf{v}(t); \mathbf{b}^{a}(t); \mathbf{b}^{g}(t) \right]$$

Process Model: from IMU

- Integration of IMU states (rotation, position, velocity)
- Propagation of IMU noise
 - needed for calculating the Kalman Filter gain

Filtering: ROVIO

Use pixel intensities as measurements.

ROVIO: Robust Visual Inertial Odometry Using a Direct EKF-Based Approach

http://github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart

Filtering: Potential Problems

- Wrong linearization point
 - Linearization depends on the current estimates of states, which may be erroneous
 - Linearization around different values of the same variable leads to estimator inconsistency (wrong observability/covariance estimation)
- Wrong covariance/initial states
 - Intuitively, wrong weights for measurements and prediction
 - May be overconfident/underconfident
- > Explosion of number of states
 - Each 3D point: 3 variables

Filtering: MSCKF (Multi-State Constraint Kalman Filter): used in Google Tango

- Key idea:
 - Keep a window of recent states
 - incorporate visual observations without including point positions into the states

Filtering: Google Tango

Optimization-based Approaches (MAP, Fix-lag smoothing)

- Fusion solved as a non-linear optimization problem
- Increased accuracy over filtering methods

$$x_k = f(x_{k-1})$$
 $X = \{x_1, ..., x_N\}$: robot states $L = \{l_1, ...\}$: 3D points $Z = \{z_i, ..., z_M\}$: feature positions

$$\{X^*, L^*\} = \underset{\{X, L\}}{\operatorname{argmax}} P(X, L | Z)$$

$$= \underset{\{X, L\}}{\operatorname{argmin}} \left\{ \sum_{k=1}^{N} \left\| f(x_{k-1}) - x_k \right\|_{\Lambda_k}^2 + \sum_{i=1}^{M} \left\| h(x_{i_k}, l_{i_j}) - z_i \right\|_{\Sigma_i}^2 \right\}$$

Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial Maximum-a-Posteriori Estimation, *Robotics Science and Systens*'15, **Best Paper Award Finalist**

Optimization-based Approaches (MAP, Fix-lag smoothing)

- Fusion solved as a non-linear optimization problem
- Increased accuracy over filtering methods

$$\begin{aligned} \{X^*, L^*\} &= \operatorname*{argmax}_{\{X, L\}} P(X, L | Z) \\ &= \operatorname*{argmin}_{\{X, L\}} \left\{ \sum_{k=1}^{N} \left\| f(x_{k-1}) - x_k \right\|_{\Lambda_k}^2 + \sum_{i=1}^{M} \left\| h(x_{i_k}, l_{i_j}) - z_i \right\|_{\Sigma_i}^2 \right\} \end{aligned}$$

Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial Maximum-a-Posteriori Estimation, *Robotics Science and Systens*'15, **Best Paper Award Finalist**

Fix-lag smoothing: OKVIS

OKVIS: Open Keyfram-based Visual-Inertial SLAM

A reference implementation of:

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart and Paul Timothy Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015.

Optimization-based Approaches (MAP, Fix-lag smoothing)

- Fusion solved as a non-linear optimization problem
- Increased accuracy over filtering methods

$$\sum_{(i,j)\in\mathcal{K}_k} \|\mathbf{r}_{\mathcal{I}_{ij}}\|_{\mathbf{\Sigma}_{ij}}^2 + \sum_{i\in\mathcal{K}_k} \sum_{l\in\mathcal{C}_i} \|\mathbf{r}_{\mathcal{C}_{il}}\|_{\mathbf{\Sigma}_{\mathcal{C}}}^2$$

IMU residuals Reprojection residuals

MAP: SVO + IMU Preintegration

Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial Maximum-a-Posteriori Estimation, *Robotics Science and Systens*'15 and IEEE TRO'16, **Best Paper Award Finalist**

MAP: SVO + IMU Preintegration

IMU Preintegration on Manifold for Efficient Visual-Inertial <u>Maximum-a-Posteriori Estimation</u>

Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza

rpg.ifi.uzh.ch borg.cc.gatech.edu

Further topics

- Rotation parameterization
 - Rotation is tricky to deal with...
 - Euler angle / Rotation matrix / Quaternion / SO(3)
- > Consistency: filtering and fix-lag smoothing
 - Linearization around different values of the same variable may lead to error