

KOMMUNIKATION UND NETZWERKE

Vorlesung 4

AGENDA

- Motivation
- 2 Grundlagen
- 3 Technologien
- 4 Bussysteme
- 5 Drahtlossysteme

6 Zusammenfassung

MOTIVATION: INTEROPERABILITÄT

Zentrales Problem in Ambient Intelligence

→ Zusammenarbeit unterschiedlichster Geräte und Systeme:

Heimautomatisierung

Unterhaltungselektronik

Haushaltsgeräte

Kommunikationsgeräte

Telemedizinische Geräte

Inter-Chip-Kommunikation

→ Ein Kommunikationsstandard für alle Modalitäten?

HERAUSFORDERUNG FÜR INTEROPERABILITÄT

- Mangelnde Awareness der Hersteller
- 2. Desinteresse der Hersteller (Stichwort Vendor-Lock-In)
- 3. Menge vorhandener "Standards"
- 4. Altgeräte der Benutzer, die nur nach und nach ersetzt werden
- Kein etablierter Standard für generische Interoperabilität
 - Internet of Things
- Aml-Systeme k\u00f6nnen hunderte Sensoren, Aktoren und IO-Systeme vereinen.

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS

SON: SITUATION: THERE ARE 15 COMPETING STANDARDS.

VORAUSSETZUNG FÜR INTEROPERABILITÄT

- → Standardisierte Schnittstelle(n) für die Vernetzung
 - Realisierung: kabel- oder funkbasiert, optisch, akustisch, ...
- → Standardisierte Kommunikation

Vier Ebenen der Interoperabilität

- Protokollebene
- Syntaktische Ebene
- Semantische Ebene
- Benutzerebene

MIDDLEWARE FÜR INTEROPERABILITÄT

Lösungsansatz: Middleware

Zusätzliche Schicht:

Anwendungen

Middleware

Betriebssystem

- Dienstleister für den Datenaustausch von entkoppelten Softwarekomponenten und Systemen
- Idee: Abstraktion der Komplexität

Beispiele:

CORBA

OpenHAB

ColdFusion

Home Assistant

. . .

MIDDLEWARE FÜR INTEROPERABILITÄT

→ Middleware als softwareseitige "Lösung"

Konsistente Nutzung erfordert ein hohes Maß an Abstraktion

EINIGE STANDARDS UND NORMEN FÜR INTEROPERABILITÄT

- Kabelgebundene Netzwerke: Ethernet (32 Varianten!), HomePlug, HomePlugAV, ...
- Punkt-zu-Punkt: DisplayPort, DVI, FireWire, HDMI, SCART, USB, ...
- Feldbussysteme: BACnet, BatiBUS, EHS, KNX/EIB, LON, ...
- Drahtlose Netze: WLAN, ZigBee, Z-Wave, EnOcean, Bluetooth, DECT, HomeRF, ...
- Netzwerkprotokolle: AFP, BitTorrent, Bonjour/Zeroconf, CalDAV, CUPS, DHCP, DNS, DPWS, DynDNS, FTP, HTTP, IMAP, IPP, IRC, JetDirect, LDAP, LPR, NAT-PMP, NFS, OMA DM, POP3, RTP, RTSP, SIP, SMB, SMTP, SNMP, SSDP, SSH, TFTP, TR-069, UPnP, WebDAV, CHAIN/AIS, ...
- Medizintechnik: aECG, CCD, CCR, CDA, DICOM, EDF, EDIFACT, HL7, IHE, ISO/EN 13606, ISO/IEEE 11073, PHMR, SCP-ECG, xDT, XPHR, ICD-10, ICHI, ICPM, LOINC, OPS, SNOMED, UCUM, UMLS, ...
- Laufzeitumgebungen/Betriebssysteme (jeweils verschiedene Versionen): OSGi, .NET, JVM, Android, iOS, Windows, MacOs, Linux, Unix, ...
- Middleware: Agentensysteme, SOA, Ereignisbasierte, URC, ...

... bitte nicht auswendig lernen! 3

Quelle: Dr. Marco Eichelberg, OFFIS-Institut für Informatik, Oldenburg

RELEVANTE DEFINITIONEN FÜR DEN IT-BEREICH

ISO/IEC: Interoperability [is] the capability to **communicate**, execute programs, **or transfer data among various functional units** in a manner that requires the user to have little or no knowledge of the unique characteristics of those units

IEEE: [Interoperability is] the ability of two or more systems (or components) to **exchange information** and to **use the information** that has been exchanged

Wikipedia: Interoperability is a property referring to the ability of diverse systems and organizations to work together (inter-operate)

Wikipedia: (Hardware) Interoperability is a property of a product or system, whose interfaces are completely understood, to work with other products or systems, present or future, without any restricted access or implementation.

RELEVANTE DEFINITIONEN FÜR DEN IT-BEREIC Viele miteinander

ISO/IEC: Interoperability [is] the capability to communica

functional units in a r those units

together (inter-operate)

Wikipedia: Interoperability is a pr

Informationsaustausch

IEEE: [Interoperability is] the information that has been exchanged

Definierte Schnittstellen r transfer data among various

no knowledge of the unique characteristics of

Informations-

pility of diverse systematic organizations to work

verständnis

kommunizierende

Systeme

Wikipedia: (Hardware) Interopera products or system, whose interfaces are completely understood, to work with other products or systems, present or future, without any restricted access or implementation.

user to have

GRUNDLEGEND UNTERSCHEIDUNG

syntaktische Interoperabilität

semantische Interoperabilität

Syntax – Definition des Duden:

(...) in einer Sprache übliche Verbindung von Wörtern zu Wortgruppen und Sätzen; korrekte Verknüpfung sprachlicher Einheiten im Satz

Semantik – Definition des Duden:

Bedeutung, Inhalt (eines Wortes, Satzes oder Textes)

"DARMSTADT HAUS HÜPFEN"

"DIESER SATZ KEIN VERB"

"DER HIMMEL IST GRÜN"

SYNTAKTISCHE INTEROPERABILITÄT

"Fähigkeit zum Austausch von Informationen, basierend auf spezifizierten Dateiformaten und Kommunikationsprotokollen"

Voraussetzung:

Fähigkeit zum Datenaustausch auf Hardwareebene

→ liegt dann vor, wenn die ausgetauschten Daten verarbeitet werden können

SEMANTISCHE INTEROPERABILITÄT

"Bedeutung von Information wird von den Kommunikationspartnern auf gleiche Weise verstanden"

Voraussetzung:

Syntaktische Interoperabilität (und Fähigkeit zum Datenaustausch!)

→ Interpretation einer Informationseinheit stimmt bei allen Partnern überein

schwerer zu definieren, zu realisieren und zu verifizieren als die syntaktische Interoperabilität

TECHNOLOGIEN - MEDIUM

kabellos

kabelgebunden

TECHNOLOGIEN - MEDIUM

Kabellos:

- + Günstig(er)
- + Einfache Nachrüstbarkeit
- + Im Vakuum: höhere Reichweite

- Störanfällig
- Begrenzte Bandbreite
- Unsicherer (Zugriff von außen)

Kabelgebunden:

- + Robust
- + Sicher
- + Hohe Datenrate
- + Auf der Erde: höhere Reichweite
- Teuer
- Planung zur Bauzeit da aufwändig nachzurüsten

GERÄTE-KOMMUNIKATION: STANDARDS

→ Einige verbreitete Standards:

drahtgebundene Systeme/Protokolle:

- KNX
- PLC
- |2C
- Profibus
- Ethernet

drahtlose Systeme/Protokolle:

- EnOcean
- ZigBee
- Z-Wave
- Thread

Matter

GERÄTE-KOMMUNIKATION

- Viele Standards?
- Wenig Interoperabilität?
- Routing und Remotezugriff?
- Anzahl der Geräte?

TECHNOLOGIE - TOPOLOGIEN

AMBIENT INTELLIGENCE - BLOCK 2: KOMMUNIKATION UND NETZWERKE

TECHNOLOGIEN - BUSSYSTEME

DEFINITION BUSSYSTEM:

... ist ein System zur Datenübertragung — isonen menreren Teilnehmern über einen gemeinsamen Übertragungsweg... [Wikipedia]

... ist eine Sammelleitung zur Datenübertragung zwischen mehreren Funktionseinheiten eines Compace.

geteiltes Medium

mehrere Teilnehmer

BUSSYSTEME: I²C - INTER-INTEGRATED CIRCUIT

Schnittstelle für unterschiedlichste Hardwarekomponenten:

Beschleunigungssensoren

Temperatursensoren

Beschleunigungssensor +

Gyroskop

Kompass

Lichtintensität

Touch-Controller

. . .

Eigenschaften:

- kurze Distanzen
- mittlere bis hohe Übertragungsgeschwindigkeiten

[Quelle: The first-ever tear-down of a Google Glass – https://www.sparkfun.com/news/1173]

BUSSYSTEME: I²C - INTER-INTEGRATED CIRCUIT

- 1992 von Philips (später NXP Semiconductors) als Standard veröffentlicht
- Funktionsweise:
 - Serielles Bussystem für die Kommunikation von Hardwarekomponenten auf Board-Ebene (kurze Distanzen!)
 - Einfacher Master-Slave-Betrieb (es kann mehrere Master geben)
 - Master:
 - Generiert den Takt (SCL)
 - Legt Daten auf Datenleitung (SDA)
 - Slave:
 - Nimmt Daten taktsynchron auf

BUSSYSTEME: I²C - INTER-INTEGRATED CIRCUIT

Sukzessive Einführung mehrerer Datenübertragungsgeschwindigkeiten:

Standard Mode: 100 kbit/s

Fast Mode: 400 kbit/s

Fast Mode Plus: 1 Mbit/s

Datenformat:

Start-Signal

- + Adresse (7 bit)
- + Read / Write (1 bit)
- + ACK (/NACK)
- + $n \cdot (1 \text{ Byte} + \text{ACK} / \text{NACK})$
- + Stopp-Signal

[Quelle: https://www.embedded.com/introduction-to-i2c/]

BEISPIEL: AUSLESEN DER DATEN EINES SLAVES

Beispiel: Auslesen der Daten eines Slaves

- 1. Master initiiert die Kommunikation mit Start-Signal: LOW-Setzen von SDA
- 2. Master legt die Adresse 0x41 (7-bit-Slave Adresse + R/W-bit) auf SDA
- 3. Slave antwortet mit Bestätigungssignal: ACK (Acknowledge)
- **4. Slave** sendet die Payload: 2 Byte mit dem Wert 0x00 (hexadezimal)
- 5. Master bestätigt den Empfang: 1. ACK nach dem ersten Byte; 2. NACK am Ende der Nachricht

I²C: RECHENAUFGABE

Wie viele Sensorwerte können **maximal** pro Sekunde von allen Sensoren mit **sequentiellen** Messungen abgefragt werden?

- Datenrate: 100 kbit/s
- Eine Nachricht zum Starten der Messung (Datenlänge 1 Byte)
- Wartezeit für die Messung: 10ms
- Eine Nachricht zum Abholen der Messung (Datenlänge 4 Bytes)
- Anzahl an Slaves im Bus: 12 Sensoren

I2C: RECHENAUFGABE

$$T_{Bit} = \frac{1}{f} = \frac{1}{100 \text{ kbit/s}} = 10 \text{ us}$$

Wie viele Sensorwerte können **maximal** pro Sekunde von allen Sensoren mit **sequentiellen** Messungen abgefragt werden?

$$T_{Bit} = \frac{1}{f} = \frac{1}{100 \ kbit/s} = 10 \ us$$

$$T_{Message} = T_{Bit} + 7 \ T_{Bit} + T_{Bit} + T_{Bit} + \left(\sum_{i=1}^{k} 8 \ T_{Bit} + T_{Bit}\right) + T_{Bit} = 11 T_{Bit} + \sum_{i=1}^{k} 9 \ T_{Bit}$$
 Start Adresse R/W ACK Data Bytes + ACK Stopp

I²C: RECHENAUFGABE

Wie viele Sensorwerte können maximal pro Sekunde von allen Sensoren mit sequentiellen Messungen abgefragt werden?

$$T_{Message,Start} = 20 T_{Bit} = 20 \cdot 10 us = 0.2 ms$$
 $T_{Measurement} = 10 ms$ \leftarrow Wartezeit für die Messung

$$T_{Measurement} = 10 ms$$

$$T_{Message,ReturnMeasurementData} = 11T_{Bit} + \sum_{i=1}^{4} 9 T_{Bit} = 47 T_{Bit} = 0,47 ms$$
 \leftarrow Messwert: 4 Bytes

$$T_{Cycle} = T_{Message,Start} + T_{Measurement} + T_{Message,ReturnMeasurementData} = 10,67 ms$$

$$f_{Cycle,1} = \frac{1}{T_{Cycle} \cdot N} = 93,72 \; Hz$$

Antwort:

$$f_{Cycle,12} = \frac{1}{T_{Cycle} \cdot N} = 7,81 \, Hz$$

Für N = 12 Sensoren

Man erhält maximal 7,81 Werte pro Sekunde und Sensor. Darauf basierend werden 7,81 neue Handpositionen pro Sekunde errechnet.

BUSSYSTEME: SPI – SERIAL PERIPHERAL INTERFACE

- Entwickelt von Motorola zur Kommunikation von Hardwarekomponenten auf Board-Ebene
- Eigenschaften:
 - Master-Slave Bussystem (ein Master, n Slaves) vier Leitungen:
 - SCLK (Clock), MISO (Master-in, Slave-out), MOSI (Master-out, Slave-In), SS (Slave Select)
 - Vollduplexfähig
 - Taktraten: 1 bis 10 MHz
 - Hohe Datenraten

BUSSYSTEME: SPI - SERIAL PERIPHERAL INTERFACE

- Funktionsweise: Kommunikation über vier Leitungen
 - SCLK: Vom Master generierter Takt
 - MISO (Master-in, Slave-out):
 Kommunikationsweg vom selektierten Slave zum Master
 - MOSI (Master-out, Slave-In):
 Kommunikationsweg vom Master zum selektierten Slave
 - SS (Slave Select):
 Vom Master gesteuerte Leitung zur Auswahl eines Slaves

I²C VS. SPI

I²C

- Geeignet für Kommunikation auf Board-Ebene mit kurzen Distanzen
- Halbduplex nur eine Partei kann gleichzeitig senden
- Geringe Geschwindigkeit: typischerweise 400 KHz
- Jeder Baustein benötigt eindeutige Adresse
- Nur zwei Leitungen notwendig

SPI

- Geeignet für Kommunikation auf Board-Ebene mit kurzen Distanzen
- Vollduplex beide Parteien können gleichzeitig senden
- Hohe Geschwindigkeit: typischerweise 10 MHz
- Slave Select wird für die Auswahl von Komponenten verwendet (keine Adressierung notwendig, spart Kommunikationszeit)
- Drei Leitungen und mehrere Slave-Select Leitungen bei Sterntopologie notwendig (viele Pins am Microcontroller benötigt!)

BUSSYSTEME: USB - UNIVERSAL SERIAL BUS

- Standardisierung der Kommunikation für Computer-Peripherie
- Geräteebene:
 - Tastaturen, Maus, Speicher, Drucker
- Ein Verbindungstyp für unterschiedlichste Arten von Peripherie
- Integrierte Stromversorgung (bis zu 5 Ampere pro Gerät bei USB-PD)
- Hot-Pluggable (Geräte können jederzeit angeschlossen/getrennt werden)
- i.d.R. Plug-and-play durch vordefinierte Geräteklassen
- i.d.R. günstig zu realisieren

BUSSYSTEME: USB - UNIVERSAL SERIAL BUS

- Host-gesteuerte Kommunikation:
- Nur einen Host!
- Host ist verantwortlich für:
 - Spannungsversorgung
 - Transaktionen
 - Bandbreitenmanagement
 - Abfrage der angeschlossenen Geräte (max. 127 pro Host)
- Upstream-Connector: USB Type A
- Downstream-Connector: USB Type B
- Differentielle Datenübertragung über D-/D+

Pin	Signalname	Adern-Farbe	Beschreibung		
1	VBUS	Rot	+5 V		
2	D-	Weiß	Daten - differentielles		
3	D+	Grün	Paar −/+		
4	GND	Schwarz	Masse		

[Quelle: https://en.wikipedia.org/wiki/USB]

[Quelle: differenzielle Signal-Übertragung]

AMBIENT INTELLIGENCE - BLOCK 2: KOMMUNIKATION UND NETZWERKE

Standard	USB 1.0 1996	USB 1.1 1998	USB 2.0 2001	USB 2.0 überarbeitet	USB 3.0 2008	USB 3.1 2013	USB 3.2 2017	USB4 2019	USB4 2.0 2022
Max. Übertragungsrate	12	Mbit/s	480) Mbit/s	5 Gbit/s	10 Gbit/s	20 Gbit/s	40 Gbit/s	120 Gbit/s
Typ A Anschluss	1 2 3 4 Type-A 1.0 - 1.1		1 2 3 4 Type-A 2.0		9 8 7 6 5 1 2 3 4 Type-A SuperSpeed		veraltet		
Typ B Anschluss	2 1 3 4 Type-B			2 3 Si	98765 Type-B Type-B uperSpeed	veraltet			
Typ C Anschluss		rtskompatibel nit Adapter)				A3 A4 A5 A6 A7 A8 A9 TX1- VBUS CC1 D+ D- SBU1 VBUS RX1- VBUS SBU2 D- D+ CC2 VBUS B10 89 88 87 86 85 84	TX2- TX2+ GND		
Mini-A Anschluss	12345 Mini-A			veraltet					
Mini-B Anschluss	_	12345 Mini-B			veraltet				
Mini-AB Anschluss	— 12345 Mini-AB			veraltet					
Micro-A Anschluss	Micro-A		54321 Micro-A	109876 1111111 Micro-A	54321 SuperSpeed	veraltet			
Micro-B Anschluss	Micro-B		Micro-B	12345 Micro-B	SuperSpeed	veraltet			
Micro-AB Anschluss			Micro-AB	12345 Micro-AE	6 678910 Grand 3 SuperSpeed	veraltet		_	

07.11.2023

USB-C # USB 3.0 / 3.1 / ...

Ist lediglich ein Stecksystem!

→ implementiert nicht notwendigerweise USB, USB Power Delivery oder einen alternativen Anschlussmodus

Eigenschaften:

- 24-polig
- Rotationssymmetrisch
- Zur Vereinheitlichung verschiedener physischer Anschlüsse an Computern gedacht
 - USB (Micro, A, Mini, ...), HDMI, DVI, DisplayPort, ...
- Ab Mitte 2024 in der EU für mobile Geräte als Standardladeanschluss vorgesehen

DRAHTLOSSYSTEME

... sind Datenübertragungsverfahren, die den freien Raum (Luft bzw. Vakuum) als Übertragungsmedium nutzen

[http://www.educatorscorner.com/index.cgi?CONTENT_ID=574]

DRAHTLOSSYSTEME

Vorteile:

- Keine Verkabelung mehr notwendig
 - Geringere Kosten
- Ermöglicht Unterbringung in beweglichen Gegenständen
- Einfache Einbringung von neuen Geräten
- Komplett passive Komponenten sind möglich Betrieb über Umgebungsenergie, wie z.B.:
 - Temperaturunterschiede, Licht, kinetische Energie

- → Besondere Herausforderung an die Interoperabilität:
 - Häufig batteriebetrieben (Wartungsaufwand!)
 - Hoher Energieverbrauch beim Senden und Empfangen von Nachrichten
 - In manchen Fällen muss die Übertragung von Nachrichten garantiert sein (bspw. Sicherheitskritische Systeme)

DRAHTLOSSYSTEME: HERAUSFORDERUNGEN

→ Grund-Idee bei drahtloser Datenübertragung:

"Listen before talk!"

Daten-Kollisionen beim Zugriff auf den Kommunikationskanal möglich:

- Hidden-Terminal Problem:
 - Listen-before-talk ist hier sehr optimistisch
- Exposed-Terminal Problem:
 - Listen-before-talk ist hier zu pessimistisch

[Quelle: Vorlesung TK3 www.tk.informatik.tu-darmstadt.de]

DRAHTLOSSYSTEME: BEISPIELE

Beispielsysteme:

- EnOcean
- ZigBee
- Bluetooth
- WLAN
- Thread
- Z-Wave
- NFC

GERÄTE-KOMMUNIKATION: ENOCEAN (1/2)

Ein paar Fakten im Überblick:

- EnOcean Alliance 2008 gegründet
 - Spin-Off der Siemens AG
- Hauptanwendungsgebiet:
 Aktoren/Sensoren in der Haus- und Gebäudetechnik, die energieautark arbeiten (Energie Harvesting)
 - Solar-, piezo-, thermische- oder elektromagnetische Energie
- Ratifizierter internationaler Standard: ISO/IEC 14543-3-10

- Produkte meistens ohne Batterien mit einer theoretischen Laufzeit von 25 Jahren
- Schmale Bandbreite von 125 kbit/s mit 14 Byte long packages
- Vermeidung von Kollisionen durch pseudo-zufällige Intervalle

GERÄTE-KOMMUNIKATION: ENOCEAN (2/2)

Vorteile:

- Leicht erweiterbar
- Überall anbringbar

Nachteile:

- In der Praxis kann die Energieversorgung Probleme machen
- Kein Rückkanal → Empfangsbestätigung

[Energieautarkes Temperatur- und Feuchtesensormodul Quelle: https://de.wikipedia.org/wiki/Enocean]

GERÄTE-KOMMUNIKATION: ZIGBEE (1/2)

Ein paar Fakten im Überblick:

- Seit 2004 etablierter offener Industriestandard basierend auf IEEE802.15.4
- Große Anzahl an Spezifikationen von Kommunikationsprotokollen auf Geräten mit Niedrigspannung durch die ZigBee Alliance
- Hauptanwendungsbereich: Home Automation
- weitere: Smart Energy, Telecommunication, Health Care,...

- Vermaschtes Funknetzwerk
 - Rollen: Koordinator, Router und "End Device"
 - Stellt selbstorganisierende Ad-hoc-Netzwerke auf Funkbasis her
- Datentransferraten von 20 bis 900 kbit/s
- Übertragung mittels unslottet CSMA/CA Kanalzugriffsmechanismen

GERÄTE-KOMMUNIKATION: ZIGBEE (2/2)

Vorteile

- Viele und auch eher günstige Geräte verfügbar
- + Vielseitig einsetzbar

Nachteile

- Stellt nur das "Wie" und nicht das "Was" bereit → Syntax & Semantik
- Kompatibilität von ZigBee-Geräten demnach nur auf Netzwerkebene gewährleistet

[Quelle: ZigBee Rauchsensor]

GERÄTE-KOMMUNIKATION: Z-WAVE (1/2)

Ein paar Fakten im Überblick:

- Drahtloser Kommunikationsstandard entwickelt 2001 von dänischer Firma ZenSys
- Seit 2005 Z-Wave-Allianz mit über 400 Herstellern und Dienstleistern
- ITU-T Standard G.9959
- Basis für alle Produkte:
 - SoC der Firma Sigma Design mit integriertem Funk-Transceiver und 8051 Mikrocontroller
- Einheitliche Anwendungsebene mit Pflichtkommandos und -funktionen

- Vermaschtes Netzwerk mit bis zu 232 Knoten
 - mehrere Home-Netzwerke parallel mit Routing zwischen den Netzen
- Adressierung: 4 Byte "Home ID" 1 Byte "Node ID" max. 232 Knoten
- Datenraten von 9,6 kB/s, 40kB/s oder 100kB/s
- ISM-Band (EU 868 MHz, USA 900 MHz)

GERÄTE-KOMMUNIKATION: Z-WAVE (2/2)

Vorteile:

- Viele und auch eher günstige Geräte verfügbar
- Vielseitig einsetzbar
- + Höhere Reichweite als ZigBee
- + Interoperabilität durch Zertifizierung aller Geräte

Nachteile:

- Geräte aus USA und EU nicht kompatibel
- Geringe Datenrate

[Quelle: Z-Wave Regensensor]

GERÄTE-KOMMUNIKATION: THREAD (1/2) THREAD

Ein paar Fakten im Überblick:

- Energiesparendes Netzwerkprotokoll 2014 entwickelt von der Thread Group (u.a. Google Nest, OSRAM, Samsung, Qualcomm, ARM Holdings, Apple, ...)
- Protokollspezifikation unter Zustimmung und Einhaltung der EULA kostenlos
- Open-Source-Implementierung verfügbar:
 - OpenThread ursprünglich von Google bereitgestellt, um Nest-Produkte für Entwickler einfacher zu öffnen.

- Selbstheilendes, sicheres Drahtlos-Mesh-Netzwerktechnologie
- Nutzt das 2,4 GHz Spektrum
- Baut auf 6LoWPAN (siehe später) auf
- IPv6-adressierbar
- Datenraten von bis zu 250 kB/s

GERÄTE-KOMMUNIKATION: Z-WAVE (2/2) THREAD

Vorteile:

- Sehr Energie-effizientes Protokoll (Betrieb mit Knopfzelle über mehrere Jahre möglich)
- + IP-adressierbare Geräte
- + AES-128-verschlüsselte Kommunikation
- + Selbstkonfigurierendes, selbstheilendes Mesh

Nachteile:

- Vergleichsweise geringe Datenrate (vgl. WLAN)
- Geringe Anzahl an Geräten (vgl. Zigbee)

[Quelle: Google - Matter and Thread]

GERÄTE-KOMMUNIKATION: IPV6

- Verfügbare Adressen pro Person 4.8 x 10²⁸ ← sehr viel!
- Jedes Gerät absolut adressierbar

6LoWPAN:

- "IPv6 over Low power Wireless Personal Area Network"
- Drahtloses Datenübertragungsprotokoll für Mesh-Netzwerke
- Definiert die Bitübertragungs-, Sicherungs-, Vermittlungs- und Transportschicht (OSI-Schichtenmodell)

GERÄTE-KOMMUNIKATION: MATTER matter

Ein paar Fakten im Überblick:

- Quelloffener Kommunikationsstandard f
 ür Smart Home und IoT
 - regelt, wie Geräte miteinander kommunizieren
- Lizenzfreigebührenfrei
- Zertifizierung jedoch von der CSA gebührenpflichtig
 - Legt einen Grundumfang an Funktionen fest
- Fokus: Interoperabilität
- Entwicklung:
 - Oktober, 2022: Veröffentlichung von V1.0-Spek.
 - Mai, 2023: V1.1 ausschließlich Fehlerbehebung
 - Oktober, 2023: V1.2 Erweiterung um neue Gerätetypen

- Kommunikation basiert auf IP
 - Ethernet-/LAN-Kabel (IEEE 802.3)
 - WiFi / WLAN (IEEE 802.11)
 - Thread (IEEE 802.15.4)
 - Bluetooth Low Energy
- Verschlüsselte Kommunikation über individuelles Gerätezertifikat (DAC)

LERNZIELE

Sie können...

- (syntaktische/semantische) Interoperabilität definieren
- Beispiele für verschiedene Topologien von Netzwerktechnologien benennen
- erklären, was ein Bus ist

- I²C/SPI-Beispielsysteme und andere Bussysteme entwerfen und skizzieren
- I²C-Kommunikation interpretieren
- die Grundlagen von drahtlosen Systemen vermitteln

DANKE

M.Sc. Julian von Wilmsdorff

Telefon: 06151 155-496

E-Mail: julian.von.wilmsdorff@igd.fraunhofer.de

Adresse: Raum 249

Fraunhofer-Institut für Graphische Datenverarbeitung IGD

Fraunhoferstraße 5 | 64283 Darmstadt

M.Sc. Vincent Abt

Telefon: 06151 155-432

E-Mail: vincent.abt@igd.fraunhofer.de

Adresse: Raum 256

Fraunhofer-Institut für Graphische Datenverarbeitung IGD

Fraunhoferstraße 5 | 64283 Darmstadt

