Exercícios de Projeto e Análise de ALGORITMOS Gamificação Ciência da Computação campus Foz do Iguaçu

Data: Fev/2020 Prof. Rômulo Silva

Tópico: Recorrências

1. Resolva as recorrências a seguir:

(a)
$$T(n) = \begin{cases} 1 & \text{se } n \le 1 \\ T(n-2) + 1 & \text{se } n > 1 \end{cases}$$

(a)
$$T(n) = \begin{cases} T(n-2) + 1 & \text{se} \quad n > 1 \end{cases}$$

(b) $T(n) = \begin{cases} 1 & \text{se} \quad n = 1 \\ T(n-1) + 2n + 1 & \text{se} \quad n > 1 \end{cases}$
(c) $T(n) = \begin{cases} 1 & \text{se} \quad n = 1 \\ T(n-1) + n^2 & \text{se} \quad n > 1 \end{cases}$
(d) $T(n) = T(\frac{n}{2}) + \lg n$

(c)
$$T(n) = \begin{cases} 1 & \text{se } n = 1 \\ T(n-1) + n^2 & \text{se } n > 1 \end{cases}$$

(d)
$$T(n) = T(\frac{n}{2}) + \lg n$$

(e)
$$T(n) = 2T(\frac{n}{3}) + 3n + 1$$

(f)
$$T(n) = \begin{cases} 1 & \text{se } n = 0\\ nT(n-1) & \text{se } n > 0 \end{cases}$$

(g)
$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + n + 1$$

(b)
$$T(n) = I(\frac{\pi}{3}) + I(\frac{\pi}{3}) + n + 1$$

(h) $T(n) = \begin{cases} 0 & \text{se } n = 0\\ 2 & \text{se } n = 1\\ 3T(n-1) + 2T(n-2) & \text{se } n > 1 \end{cases}$
(i) $T(n) = \begin{cases} 0 & \text{se } n = 0\\ 5 & \text{se } n = 1\\ 3T(n-1) + 4T(n-2) & \text{se } n > 1 \end{cases}$

(i)
$$T(n) = \begin{cases} 0 & \text{se } n = 0 \\ 5 & \text{se } n = 1 \\ 3T(n-1) + 4T(n-2) & \text{se } n > 1 \end{cases}$$

(j)
$$T(n) = 2T(\sqrt{n}) + n$$

(k)
$$T(n) = T(n-1) + 2$$

(l)
$$T(n) = 2T(n-1) + 1$$

(m)
$$T(n) = \begin{cases} 0 & \text{se } n = 0\\ 2T(n-1) - (n+5)3^n & \text{se } n > 0 \end{cases}$$

(1)
$$T(n) = 2T(n-1) + 1$$

(m) $T(n) = \begin{cases} 0 & \text{se } n = 0\\ 2T(n-1) - (n+5)3^n & \text{se } n > 0 \end{cases}$
(n) $T(n) = \begin{cases} 9n^2 - 15n + 106 & \text{se } n \in \{0, 1, 2\}\\ T(n-1) + 2T(n-2) - 2T(n-3) & \text{se } n > 2 \end{cases}$

(o)
$$T(n) = 2T(\frac{n}{4}) + n^{\frac{1}{2}}$$

(p)
$$T(n) = \begin{cases} 0 & \text{se } n = 0\\ 1 & \text{se } n = 1\\ 2 & \text{se } n = 2\\ 5T(n-1) - 8T(n-2) + 4T(n-3) & \text{se } n \ge 3 \end{cases}$$

(q)
$$T(n) - 2T(n-1) = 3^n$$
 para $n \ge 1$

2. Um processo, que consiste na execução de várias iterações de um loop, aloca memória dinamicamente, tal que inicialmente (antes de entrar no loop) aloca 64 KB. A cada iteração necessita de mais 15% de memória. Encontre uma relação de recorrência que forneça a quantidade de memória alocada.