Deduction: GCD Invariant for Remainder

Let $m, nn \in \mathbb{N}^{\geq 1}$ such that m > n and let q and r be the unique integers from the quotient remainder theorem, that is, they satisfy

$$m = q \cdot n + r$$
 and $0 \le r < n$

Then if r > 0 we have:

$$\gcd(m,n) = \gcd(n,r)$$

or if r = 0, then $n \mid m$ and gcd(m, n) = n

Proof

- *If* r > 0
 - Then the equivalent formulation:

$$m - q \cdot n = r$$

shows us that if $d \mid m$ and $d \mid n$ then $d \mid r$

- Going the other direction would be assuming that d is a divisor of n and r, and showing that d also divides m. To show this prove that

$$(d \nmid m \land d \mid n) \Rightarrow (d \nmid m - qn)$$

by doing so, it implies that if $d \nmid m$ then $d \nmid r$ which is a contradiction so d must divide m.

- Therefore we can conclude that

$$gcd(m, n) = gcd(n, r)$$

• If r = 0 then we know that $m = q \cdot n$ which is the definition of $n \mid m$ and it's clear that $\gcd(m, n) = \gcd(q \cdot n, n) = n$