Arquitetura e organização de computadores Uma visão geral

SIAC 202 - Arquitetura de Computadores Prof.: Félix do Rêgo Barros felixregobarros@gmail.com

Baseado em W. Stallings 8º edição – Arquitetura e Organização de Computadores

- Sistemas Hierárquico
 - Um computador pode ser visto como um sistema formado por um conjunto estruturado de componentes, e sua função pode ser compreendida em termos das funções desses componentes.
 - Cada componentes, por sua vez, pode ser descrito em termos de sua estrutura e função internas.

Objetivo da disciplina

- Estudo de um sistema de computação sob dois pontos de vista:
 - arquitetura se refere aos atributos do sistema visíveis a um programador de linguagem de máquina;
 - organização as unidades operacionais e sua interconexão que realizam a arquitetura.
- Vamos estudar a estrutura e a função de um computador
 - estrutura a forma em que os componentes estão interconectados e
 - função a operação de cada componente individualmente.
 Cada componente pode, por sua vez, de forma hierárquica, ser decomposto em subcomponentes, descrevendo a sua estrutura e função.

Arquitetura e organização

- Definição
 - Arquitetura de computador: refere-se aos atributos de um sistema visíveis a um programador, com um impacto direto na execução de um programa. Exemplos de atributos arquiteturais: conjunto de instruções (instruction set), número de bits usados para representar vários tipos de dados, mecanismos de entrada e saída, e técnicas de endereçamento de memória.
 - Organização de computador: refere-se às unidades operacionais e sua interconexão que realizam as especificações arquiteturais. Exemplos de atributos organizacionais: detalhes de hardware transparentes ao programador, tais como sinais de controle, interface entre o computador e os periféricos, tecnologia de memória usada, etc.

- Um computador possui milhões de componentes eletrônicos.
- Um sistema hierárquico é um conjunto de subsistemas interrelacionados, cada um destes, por sua vez, hierárquico em estrutura até alcançarmos algum nível mais baixo de subsistemas elementar.
- Como vamos descrever um computador?
- Usamos o enfoque hierárquico. O projetista se preocupa com a descrição um nível por vez, descrevendo os componentes e sua interconexão. Os níveis são descritos de forma (top-down) (Weinberg, 1975), descrevendo-se os componentes de um nível, depois os de seus subníveis, e assim por diante.

Em cada nível o projetista se preocupa com a estrutura e a função.

- Estrutura: a maneira em que os componentes são interrelacionados.
- Função: a operação de cada componente individual como parte da estrutura.
 - Exemplos de funções básica de computador pode desempenhar:
 - armazenado de dados
 - transferências de dados
 - processamento de dados
 - controle...

Processamento de dados: Os dados podem assumir muitas formas e o intervalo de requisitos de processamento é amplo. Porém, veremos que existem apenas alguns métodos fundamentais ou tipos de processamento de dados.

Armazenamento: o computador precisa armazenar temporariamente pelo menos as partes dos dados que estão sendo trabalhadas em determinado momento. Assim, existe pelo menos uma função de armazenamento de dados a curto prazo. Igualmente importante, o computador realiza uma função de armazenamento de dados a longo prazo. Os arquivos de dados são armazenados no computador para subsequente recuperação e atualização.

Movimentação de dados: fundamental a movimentação de dados entre ele e o mundo exterior. O ambiente operacional do computador consiste em dispositivos que servem como suas origens ou destinos de dados. Quando os dados são recebidos ou entregues a um dispositivo conectado diretamente ao computador, o processo é conhecido como entrada/saída (E/S), e o dispositivo é referenciado como um periférico. Quando os dados são movimentados por distâncias maiores, de ou para um dispositivo remoto, o processo é conhecido como comunicações de dados.

Controle: Finalmente, é preciso haver controle dessas três funções, e esse controle é exercido por quem fornece instruções ao computador. Dentro do computador, uma unidade de controle gerencia os recursos do computador e coordena o desempenho de suas partes funcionais em resposta a essas instruções. Nesse nível geral de discussão, o número de operações que podem ser realizadas abaixo.

Operações possíveis do computador

Estrutura de alto nível

São quatro componentes estruturais principais:

- Unidade central de processamento (CPU): Controla a operação do computador e realiza suas funções de processamento de dados; normalmente é chamado apenas de processador.
- Memória principal: armazena dados.
- E/S: move dados entre o computador e seu ambiente externo.
- Interconexão do sistema: algum mecanismo que oferece comunicação entre CPU, memória principal e E/S.

Unidade de controle: controla a operação da CPU e, portanto, do computador.

Unidade aritmética e lógica (ALU, do inglês arithmetic and logic unit): realiza as funções de processamento de dados do computador.

Registradores: oferece armazenamento interno à CPU.

Interconexão da cpu: algum mecanismo que oferece comunicação entre unidade de controle, ALU e registradores.

- A evolução dos computadores tem sido caracterizada:
 - Aumento na velocidade do processador;
 - Diminuição no tamanho do componente;
 - Aumento no tamanho da memória;
 - Aumento na capacidade e velocidade da E/S.

Evolução e desempenho do Computador

- A evolução dos computadores tem sido caracterizada:
 - Aumento na velocidade do processador;
 - <u>Diminuição no tamanho do componente</u>;
 - Aumento no tamanho da memória;
 - Aumento na capacidade e velocidade da E/S.

Evolução e desempenho do Computador

Um fator responsável pelo grande aumento na velocidade do processador é o encolhimento no tamanho dos componentes do microprocessador; isso reduz a distância entre os componentes e, portanto, aumenta a velocidade. Contudo, os verdadeiros ganhos na velocidade nos anos recentes têm vindo da organização do processador, incluindo o uso intenso das técnicas de pipeline e execução paralela e do uso de técnicas de execução especulativas (tentativa de execução de instruções futuras que poderiam ser necessárias). Todas essas técnicas são projetadas para manter o processador ocupado pelo máximo de tempo possível.

Uma questão crítica no projeto de sistema de computador é equilibrar o desempenho dos diversos elementos de modo que os ganhos no desempenho em uma área não sejam prejudicados por um atraso em outras áreas. Em particular, a velocidade do processador aumentou mais rapidamente do que o tempo de acesso da memória. Diversas técnicas são usadas para compensar essa divergência, incluindo caches, caminhos de dados mais largos da memória ao processador, e chips de memória mais inteligentes.

Evolução e desempenho do Computador

Um breve histórico dos computadores

- Pré História: Ábaco
- Primeira Geração: Válvula
- Segunda Geração: Transístores
- Terceira Geração: Circuitos Integrados
- Quarta Geração: Microprocessador
- Quinta Geração: Inteligência Artificial http://producao.virtual.ufpb.br/books/camyle/introducao-a-computacao-livro/livro/livro.chunked/ch01s02.html
- https://prezi.com/t7wjeku-9r2a/a-6-geracaode-computadores/

Objetivo

Compreender o sistema de numeração utilizado pelos sistemas computacionais

Arquitetura e organização de computadores Uma visão geral

Sistemas de Numeração

Aula 2

2.1 Bases e sistemas de numeração

Desde o início de sua existência, o homem sentiu a necessidade de contar objetos, fazer divisões, diminuir, somar, entre outras operações aritméticas de que hoje se tem conhecimento. Diversas formas de contagem e representação de valores foram propostas. Podemos dizer que a forma mais utilizada para a representação numérica é a notação posicional.

Segundo Monteiro (2007), na notação posicional, os algarismos componentes de um número assumem valores diferentes, dependendo de sua posição relativa nele. O valor total do número é a soma dos valores relativos de cada algarismo. Dessa forma, dependendo do sistema de numeração adotado, é dito que a quantidade de algarismos que o compõem é denominada base. Assim, a partir do conceito de notação posicional, tornou-se possível a conversão entre diferentes bases.

2.1.1 Notação posicional

A notação posicional é uma consequência da utilização dos numerais hindu-arábicos. Os números romanos, por exemplo, não utilizam a notação posicional. Desejando efetuar uma operação de soma ou subtração, basta colocar um número acima do outro e efetuar a operação desejada entre os numerais, obedecendo a sua ordem. A civilização ocidental adotou um sistema de numeração que possui dez algarismos (0, 1, 2, 3, 4, 5, 6, 7, 8 e 9), denominado de sistema decimal.

A quantidade de algarismos de um dado sistema é chamada de base; portanto, no sistema decimal a base é 10. O sistema binário possui apenas dois algarismos (0 e 1), sendo que sua base é 2.

2.1.1 Notação posicional

Exemplos:

$$4325_{10} = 5 \times 10^{0} + 2 \times 10^{1} + 3 \times 10^{2} + 4 \times 10^{3}$$
 $1011_{2} = 1 \times 2^{0} + 1 \times 2^{1} + 0 \times 2^{2} + 1 \times 2^{3} = 1 + 2 + 0 + 8 = 11_{10}$
 $3621_{8} = 1 \times 8^{0} + 2 \times 8^{1} + 6 \times 8^{2} + 3 \times 8^{3} = 1937_{10}$
 $1A7B_{16} = 11 \times 16^{0} + 7 \times 16^{1} + 10 \times 16^{2} + 1 \times 16^{3} = 6779_{10}$

Generalizando, num sistema de numeração posicional qualquer, um número

N é expresso da seguinte forma:

$$N = dn-1 \times b^{n-1} + dn-2 \times b^{n-2} + ... + d1 \times b1 + d0 \times b0$$

Observações importantes:

- -O número de algarismos diferentes em uma base é igual à própria base.
- -Em uma base "b" e utilizando "n" ordens temos bn números diferentes

2.1.2 Conversão de bases

Equivalência entre as bases decimal, binária, octal hexadecimal.

Binário	Octal	Decimal	Hexadecimal
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	E
1111	17	15	F
10000	20	16	10
10001	21	17	11
10010	22	18	12
10011	23	19	13
10100	24	20	14
10101	25	21	15

Fonte: Adaptado de Monteiro (2007)

2.1.2.1 Base binária para base octal ou hexadecimal

Observe que os dígitos octais e hexadecimais correspondem à combinações de 3 (para octais) e 4 (para hexadecimais) bits (ou seja, da representação binária — disponível na tabela de equivalências apresentada anteriormente), permitindo a fácil conversão entre estes sistemas.

2.1.2.2 Base octal ou hexadecimal para base binária

conversão inversa de octal ou hexadecimal para binário deve ser feita a partir da representação binária de cada algarismo do número, seja octal ou hexadecimal.

$$7245_{8} = 111 010 100 101$$
 $7 2 45_{8} = 111 010 100 101$
 $7 101 101 101 101$

2.1.2.3 Base octal para base hexadecimal (e vice-versa)

A representação binária de um número octal é idêntica à representação binária de um número hexadecimal, a conversão de um número octal para hexadecimal consiste simplesmente em agrupar os *bits* não mais de três em três (octal), mas sim de quatro em quatro *bits* (hexadecimal), e vice-versa.

$$(3174)_{8} = 011 001 111 100$$

$$(011001111100)_{2} = 0110 0111 1100$$

$$6 7 c$$

$$(67C)_{16}$$

2.1.2.4 Base B (qualquer) para base decimal

Atenção, nos exemplos de casos citados a seguir, sempre utilizamos a definição de Notação Posicional:

```
101101<sub>2</sub> = ?<sub>10</sub>

b = 2, n = 6

Portanto: 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 8 + 4 + 1 = 45_{10}

Logo: 101101<sub>2</sub> = 45_{10}

27<sub>8</sub> = ?<sub>10</sub>

b = 8, n = 2

Portanto: 2 \times 8^1 + 7 \times 8^0 = 23_{10}

Logo: 27_8 = 23_{10}
```

```
2A5<sub>16</sub> = ?<sub>10</sub>
b = 16, n = 3
Portanto: 2 X 16<sup>2</sup> + 10 X 16<sup>1</sup> + 5 X 16<sup>0</sup> = 512 + 160 + 5 = 677<sub>10</sub>
Logo: 2A5<sub>16</sub> = 677<sub>10</sub>
```

2.1.2.5 Base decimal para base B (qualquer)

Consiste no processo inverso, ou seja, efetuamos divisões sucessivas do número decimal pela base desejada, até que o quociente seja menor que a referida base. Utilizamos os restos e o último quociente (a começar dele) para formação do número desejado, conforme abaixo

2.2 Aritmética não-decimal

Procedimentos para realização das quatro operações aritméticas:

- Adição
- Subtração
- Multiplicação
- divisão

2.2.1 Aritmética Binária

2.2.1.1 Adição Binária

A operação de soma de dois números em base 2 é efetuada de modo semelhante à soma decimal, levando-se em conta, apenas, que só há dois algarismos disponíveis (0 e 1). Assim, podemos criar uma tabela com todas as possibilidades:

0	+	0	=	0
0	+	1	=	1
1	+	0	=	1
1	+	1	=	0

"VAI 1"

2.2.1 Aritmética Binária

2.2.1.1 Soma Binária

	0	=	0	+	0
	1	=	1	+	0
	1	=	0	+	1
1	0	=	1	+	1

"VAI 1"

Efetua a soma 45₁₀ e 47₁₀:

Efetue a soma 37₁₀ + 87₁₀

Decimal	Bir	nário			
45	1	1 1	1	1	
+ 47	1	0 1	1	0	1
92	+ <u>1</u>	0 1	1	1	1
	1 0	1 1	1	0	0

37 87 124

Binário 111 0100101 1010111 1111100

2.2.1 Aritmética Binária

2.2.1.2 Subtração Binária

A subtração em base 2, na forma convencional, usada também no sistema decimal (minuendo – subtraendo = diferença), é relativamente mais complicada por dispomos apenas dos algarismos 0 e 1 e, dessa forma, 0 menos 1 necessita de "empréstimo" de um valor igual à base (no caso é 2), obtido do primeiro algarismo diferente de zero, existente à esquerda. Se estivéssemos operando na base decimal, o "empréstimo" seria de valor igual a 10.

a) Efetuar a subtração 101101 – 100111:

```
2
002
10<mark>1</mark>101
-100111
```

A partir da direita para a esquerda, vamos executar a operação algarismo por algarismo (6 algarismo)

- 1) 1-1=0
- 2) 0-1 não é possível. Então, retira-se 1 da ordem à esquerda (3^a ordem a partir da direita), que fica com 1-1=0, e passa-se para a ordem à direita, o valor equivalente, que é 2, visto que 1 unidade de ordem à esquerda vale uma base de unidades (no caso: base= 2) da ordem à direita. 2-1=1
- 3) Agora tem-se 0-1 e, portanto, repete-se o procedimento do item anterior. 2-1=1
- 4) 0-0=0
- 5) 0 0 = 0
- 6) 1-1=0

Resultado: $(000110)_2$ ou simplesmente $(110)_2$.

2.2.1 Aritmética Binária

2.2.1.3 Multiplicação Binária

0	X	0	=	0
0	X	1	=	0
1	X	0	=	0
1	X	1	=	1

a) Efetuar a multiplicação 110 x 101:

Resultado: (11110) 2

2.2.1 Aritmética Binária

2.2.1.4 Divisão Binária

a) Efetuar a divisão (101010)₂ por (101)₂

```
101010 110
- 110
1011
1001
- 110
0110
- 110
000
```

2.2.1 Aritmética Binária

2.2.1.4 Divisão Binária

a) Efetuar a divisão $(37)_{10}$ por $(4)_{10}$

2.2.1 Aritmética Octal

2.2.1.5 Soma Octal

a) Efetuar a soma (3657)₈ por (1741)₈

111

3657

+1741

+5620

Da direita para esquerda, temos para cada um dos 4 algarismos

- 1) Como não há algorismo 8 na base 8, emprega-se o conceito posicional, isto é, 8 unidades de um ordem valem 1 unidade da ordem imediatamente à esquerda. Então: fica 0 = 8-8 e vai 1para esquerda.
- 2) 1+ 5+4 = 10. Então utilizando o mesmo conceito 10-8 = 2 e vai 1.
- 3) 1+6+7= 14. Então 14-8 = 6 e vai 1.
- 4) 1+3+1 = 5. Não há vai 1 porque não se excedeu 7.

2.2.1 Aritmética Octal

2.2.1.6 Soma Octal

a) Efetuar a soma (443)₈ por (653)₈

```
11
443
+653
1316
```

 $(1316)_{8}$

2.2.1 Aritmética Octal

2.2.1.7 Subtração Octal

a) Efetuar a subtração (7312)₈ - (3465)₈

88 6208

7312

- 3465

3625

 $(3625)_{8}$

Da direita para a esquerda, temos para cada um dos 4 algarismos:

1) 2 – 5 não é possível. Então , retira-se 1 unidade da ordem à esquerda, a qual vale uma base de unidades (no caso base = 8) da direita, somando-se ao valor 2.

$$8 + 2 = 10 - 5 = 5$$

2) 1-1=0-6 não é possível. Então, retira-se 1 unidade da esquerda (que fica com 3-1=2 unidades), passando 8 para a direita, o que fica 8+0=8.

$$8 - 6 = 2$$

3) 3-1=2-4 não é possível. Então, retira-se 1 da esquerda (7-1=6), passando 8 unidades para direita

$$8 + 2 = 10 - 4 = 6$$

4)
$$7-1=6-3=3$$

2.2.1 Aritmética Hexadecimal

2.2.1.7 Soma Hexadecimal

a) Efetuar a soma $(3A943B)_{16} + (23B7D5)_{16}$

```
1 11
3A943B
+ 23B7D5
5E4C10
```

2.2.1 Aritmética Hexadecimal

2.2.1.7 Soma Hexadecimal

a) Efetuar a soma $(3A943B)_{16} + (23B7D5)_{16}$

```
1 11
3A943B
+ 23B7D5
5E4C10
```

2.2.1 Aritmética Hexadecimal

2.2.1.7 Subtração Hexadecimal

a) Efetuar a soma (4C7BE8)₁₆ - (1E927A)₁₆

4 C 7 B E 8 - 1 E 9 2 7 A 2 D E 9 6 E 8 – A não é possível. Retira-se, então, 1 unidade da ordem à esquerda (E – 1 = D), passando 16 unidades (valor igual ao da base) para a direita, as quais são somadas ao valor existente, 8

$$16 + 8 = 24 - A = 24 - 10 = 14_{10}$$
 equivale ao algarismo E₁₆

- 2. D-7=13-7=6
- 3. B-2=11-2=9
- 4. 7-9 não é possível. Retira-se 1 unidade da ordem à esquerda (C -1=B), passando 16 unidades para a direita, as quais são somadas ao valor existente, 7.
 - $16 + 7 = 23 9 = 14_{10}$, equivalente ao algarismo E₁₆
- 5. C E não é possível. Retira-se 1 unidade da ordem à esquerda (4 1 = 3), passando 16 unidades para a direita, as quais são somadas ao valor existente, $B_{16} = 11_{10}$. $16_{10} + 11_{10} = 27 14 = 13_{10}$ equivalente ao algarismo D_{16}
- 6. 3-1=2

2.2.1 Aritmética Binária

2.2.1 Sistema de numeração com virgula

16	8	4	2	1	0,5	0,25	0,125	0,0625
24	23	22	21	20	2-1	2-2	2 ⁻³	2-4

Transformação de binário para decimal (101,1001)2

parte inteira

101=
$$(2^0 \times 1) + (2^1 \times 0) + (2^2 \times 1) = 1 + 0 + 4 = 5$$

parte decimal

1001=
$$(2^{-1} \times 1) + (2^{-2} \times 0) + (2^{-3} \times 0) + (2^{-4} \times 1) = 0,5 + 0 + 0 + 0,0625 = 0,5625$$

(5,5625)₁₀

2.1.3 Conversão de Números Binários Fracionários em Decimais

• O método de conversão é obtido observando-se a regra básica de formação de um número fracionário no sistema decimal. Para exemplificar, tem-se o número $(10,5)_{10}$

$$(10,5)_{10} = 1 \times 10^{1} + 0 \times 10^{0} + 5 \times 10^{-1}$$

 Desta forma, para converter o número binário fracionário 101,101 para o sistema decimal, adota-se o mesmo procedimento.

$$(101,101) = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$(101,101) = 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8}$$

$$(101,101) = 4 + 0 + 1 + \frac{1}{2} + 0 + \frac{1}{8}$$

$$(101,101) = 4 + 1 + 0,5 + 0,125 = (5,625)_{10}$$

2.1.3.1 Conversão de Números Decimais Fracionários em Binários

- O processo consiste em separar o número decimal na parte inteira e na fracionária.
- O método das divisões sucessivas é aplicado a parte inteira, conforme estudado anteriormente.
- Para a parte fracionária aplica-se o método das multiplicações sucessivas até que se atinja zero.
- Para exemplificar, será convertido o número decimal 8,375 em binário

$$8 + 0,375$$

Parte Inteira:

LSB-
$$\bigcirc \begin{array}{c|c} 8 & 2 \\ \hline 0 & 4 & 2 \\ \hline \hline 0 & 2 & 2 \\ \hline \hline 0 & 1 - MSB \end{array}$$
 $8_{10} = 1000_2$

2.1.3.1 Conversão de Números Decimais Fracionários em Binários

Parte Fracionária:

Pode-se observar que é utilizado somente a parte fracionária dos números em todas as multiplicações.

Os algarismos inteiros, resultantes das multiplicações, irão compor o número binário.

Estes números são tomados na ordem da multiplicação. Assim:

$$0,375_{10} = 0,011_2$$

Para completar a conversão basta efetuar a composição da parte interia com a fracionária:

$$8,375_{10} = 1000,011_2$$

2.1.3.1 Conversão de Números Decimais Fracionários em Binários

 Observação Importante: existem casos em que o método das multiplicações sucessivas encontra novamente os números já multiplicados e o processo entra em um "loop" infinito.

• Isto equivale a uma dízima periódica. Como exemplo, tem-se:

$$(0.8)_{10} = (0.110011001100)_{2}$$

2.1.3.1 Conversão de Números Decimais Fracionários em Octal Fracionários

2.2.1 Aritmética Binária

2.2.1 Notação dos Números Binários Positivos e Negativos

A representação de números binários positivos e negativos pode ser feita utilizando-se os sinais "+" ou "-" respectivamente. Na prática, porém, em hardware dos sistemas digitais que processam operações aritméticas, microcomputadores por exemplo, estes sinais não podem ser utilizados, pois tudo deve ser codificado em 0 e 1. Uma forma de representar em alguns casos utilizada, é a de acrescentar ao número um *bit de sinal* colocando à esquerda, na posição de algarismo mais significativo. Se o número for positivo, o bit de sinal será **0**, se o número for negativo este será **1**. este processo de representação é denominado SINAL-MÓDULO.

2.2.1 Aritmética Binária

2.2.1 Notação dos Números Binários Positivos e Negativos

Para exemplificar o exposto, vamos representar os números decimais $+(35)_{10}$ e -73_{10} em binário utilizando a notação sinalmódulo:

```
(35)_{10} = (10011)_{2}
+ (10011)_{2} = (0100011)_{2}
bit de sinal (0 \Rightarrow indica número positivo

(73)_{10} = (11001001)_{2}
bit de sinal (1 \Rightarrow indica número negativo
```

2.2.1 Aritmética Binária

2.2.1 Notação dos Números Binários Positivos e Negativos

Uma outra forma para representar número binários negativos bastante utilizada nos sistemas já citados é a notação do complemento de 2. mas para obtê-la, devemos primeiramente converter o número na notação do complemento de 1. A obtenção do complemento de 1 de um número binário se dá pela troca de cada bit do número pelo seu inverso ou complemento. Para demonstrar esse procedimento, vamos obter o complemento de 1 do número (10011011)2. Assim sendo, temos:

Número binário: 1001011

Complemento de 1: 0 1 1 0 1 0 0

+ 1

Complemento de 2: 0 1 1 0 1 0 1

Arquitetura e organização de computadores Uma visão geral

Conceitos da Lógica Digital

Aula 3

Aula 3 – Portas Lógicas e Circuitos

3. 1 Operações lógicas

- As operações lógicas são estudadas pela álgebra de Boole (George Boole)
- A álgebra de Boole trabalha com apenas duas grandezas: falso ou verdadeiro.
- As duas grandezas são representadas por 0
 (falso) e 1 (verdadeiro).
- Nos circuitos lógicos do computador, os sinais binários são representados por níveis de tensão.

3. 2 Portas lógicas

- As portas lógicas são os elementos mais básicos e elementares de um sistema de computação.
- Elas são responsáveis por realizar as operações lógicas sobre os bits.
- Os valores de entrada e saída são números binários.
- Cada porta lógica realiza uma tarefa trivial.

3. 3 Portas e operações lógicas

3. 3. 1 Portas e operações lógicas NOT (inversor)

NOT: inverte a entrada.

Entrada	Saída
Α	$S = \bar{A}$
0	1
1	0

Expressão: $S = \overline{A}$

3. 3. 1 Operação lógica ou Porta OR (OU)

• OR: retorna 1 se uma das entradas é 1.

Entr	ada	Saída
Α	В	S = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Expressão: S = A + B

3. 3. 2 Operação lógica ou Porta AND (E)

• AND: retorna 1 se ambas as entradas são 1.

Entr	ada	Saída
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Expressão: S = AB

 NOR: é uma porta OR e uma porta NOT combinadas. O resultado é exatamente o inverso da porta OR.

Expressão: x =	<u>΄</u> Δ	+	ے R۱
expressao: x -	(\mathcal{H})	+	DJ

Entr	ada	Saída
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

 NAND: é uma porta AND e uma porta NOT combinadas. O resultado é exatamente o inverso da porta AND.

Expressão:	X	=	(AB)

ENTF	RADA	SAÍDA
Α	В	S
0	0	1
1	0	1
0	1	1
1	1	0

• XOR: retorna 1 somente se uma das entradas é 1.

ENTF	RADA	SAÍDA
Α	В	S
0	0	0
1	0	1
0	1	1
1	1	0

Expressão: $x = A \oplus B$

 NXOR: é uma porta XOR e uma porta NOT combinadas. O resultado é exatamente o inverso da porta XOR.

ENTR	ADA	SAÍDA
Α	В	S
0	0	1
1	0	0
0	1	0
1	1	1

Expressão: $S = A \otimes B$

- Combinações de portas NAND podem ser usadas para simular todas as outras.
- Por este motivo, a porta NAND é considerada uma porta universal.
- Isso significa que qualquer circuito pode ser expresso pela combinação de portas NAND.

Circuitos

 As portas lógicas são encontradas no mercado encapsuladas em chips de silício.

Circuitos

- É um conjunto de portas lógicas interligadas para resolver um problema maior.
- Para facilitar o desenvolvimento, em primeiro lugar, deve-se montar uma expressão booleana e, em seguida, partir para a implementação do circuito propriamente dito.

Circuitos

Como converter uma tabela verdade em um circuito lógico?

Soma de MinTermos

- Para cada saída, fazer uma soma de produtos, ou seja, a função de chaveamento é uma soma (OR) de produtos (AND) de variáveis e variáveis complementadas.
- Deve-se considerar apenas as saídas "1" e ignorar as saídas "0".
- Após encontrar a função de chaveamento, desenhar o circuito.

a b	S
0 0	0
0 1	1
1 0	0
1 1	1

s = a'b + ab

Soma de MinTermos

- Vocês fazem:
 - Dado a seguinte tabela verdade, encontrar a função de chaveamento e em seguida construir o circuito lógico.

$$z = x2' x1' x0 + x2' x1 x0' + x2 x1' x0' + x2 x1 x0$$

Circuito meio-somador

• Tabela Verdade:

	Y	X	В	Α
	0	0	0	0
$X = A \cdot B$	1	0	1	0
\/ A! D . A D	1	0	0	1
$Y = A' \cdot B + A \cdot B$	0	1	1	1

• Circuito:

