

Department of Computer Science

CSCI 5622: Machine Learning

Chenhao Tan

Lecture 11: Neural Networks I

Slides adapted from Chris Ketelsen, Jordan Boyd-Graber, and Noah Smith

Administrivia

- Final project team formation
- Proposal ideas
- •HW3 released

Learning Objectives

Understanding feed-forward neural networks

Outline

- Revisiting logistic regression
- Feed-forward neural networks

Outline

- Revisiting logistic regression
- Feed-forward neural networks

$$P(Y = 0 \mid \mathbf{x}, \beta) = \frac{1}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(Y = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$

$$P(\mathbf{x} = 1 \mid \mathbf{x}, \beta) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j$$

• Transformation on x (we map class labels from $\{0,1\}$ to $\{1,2\}$):

$$\underline{l_k = \beta_k^T \mathbf{x}, k = 1, 2}$$

$$\underline{o_k = \frac{\exp l_k}{\sum_{c \in \{1,2\}} \exp l_c}, k = 1, 2}$$

• Transformation on x (we map class labels from $\{0,1\}$ to $\{1,2\}$):

$$l_k = eta_k^T x, k = 1, 2$$
 linear layer $o_k = rac{\exp l_k}{\sum_{c \in \{1,2\}} \exp l_c}, k = 1, 2$ softmax layer

• Transformation on x (we map class labels from $\{0,1\}$ to $\{1,2\}$):

$$l_k = eta_k^T x, k = 1, 2$$
 linear layer $o_k = rac{\exp l_k}{\sum_{c \in \{1,2\}} \exp l_c}, k = 1, 2$ softmax layer

• Objective function (using cross entropy $-\sum_i p_i \log q_i$):

$$\mathscr{L}(Y, \hat{Y}) = -\sum_{i} \left[P(y^{(i)} = 1) \log P(\hat{y}_i = 1 \mid \boldsymbol{x}^{(i)}, \beta) + P(y^{(i)} = 0) \log \hat{P}(y_i = 0 \mid \boldsymbol{x}^{(i)}, \beta) \right]$$

Logistic Regression as a Single-layer Neural Network

Logistic Regression as a Single-layer Neural Network

Outline

- Revisiting logistic regression
- Feed-forward neural networks

Deep Neural networks

A two-layer example (one hidden layer) Input Hidden Output

Deep Neural networks

More layers:

Forward propagation algorithm

How do we make predictions based on a multi-layer neural network? Store the biases for layer l in b^l , weight matrix in W^l

Forward propagation algorithm

Suppose your network has L layers Make prediction for an instance x

- 1: Initialize $a^0 = x$
- 2: for l=1 to L do
- 3: $\mathbf{z}^l = \mathbf{W}^l \mathbf{a}^{l-1} + \mathbf{b}^l$
- 4: $a^l = g(z^l)$
- 5: end for
- 6: The prediction \hat{y} is simply \underline{a}^L

Nonlinearity

What happens if there is no nonlinearity?

Nonlinearity

What happens if there is no nonlinearity?

Linear combinations of linear combinations are still linear combinations.

Neural networks in a nutshell

- Training data $S_{\text{train}} = \{(x, y)\}$
- Network architecture (model)

$$\hat{y} = f_w(x) \qquad \mathcal{F}$$

Loss function (objective function)

$$\mathcal{L}(y, \hat{y})$$

Learning (next week)

Nonlinearity Options

Sigmoid

$$f(x) = \frac{1}{1 + \exp(x)}$$

tanh

$$f(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

ReLU (rectified linear unit)

$$f(x) = \underline{\max}(0, \underline{x})$$

softmax

$$x = \frac{\exp(x)}{\sum_{x_i} \exp(x_i)}$$

https://keras.io/activations/

Nonlinearity Options

Nonlinearity Options

Loss Function Options

• ℓ_2 loss

$$\sum_{i} (y_i - \hat{y}_i)^2$$

• ℓ_1 loss

$$\sum_{i} |y_i - \hat{y}_i|$$

Cross entropy (logistic regression)

$$-\sum_{i}y_{i}\log\hat{y}$$

Hinge loss (more on this during SVM)

$$\max(0, 1 - y\hat{y})$$

https://keras.io/losses/

$$\mathbf{x} = (x_1, x_2), y = f(x_1, x_2)$$

$$\mathbf{x} = (x_1, x_2), y = f(x_1, x_2)$$

We consider a simple activation function

$$f(z) = egin{cases} 1 & z \geq 0 \ 0 & z < 0 \end{cases}$$

Simple Example: Can we learn OR?

	01/2	
x_1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0 0 1 1	
$y = x_1 \vee x_2$	0 1 1 1	
a - S W	(x,)+6>0	if (8, OR X2)=/
9 - 4	<0	if KORX 10

Simple Example: Can we learn OR?

x_1	0	1	0	1
x_2	0	0	1	1
$y = x_1 \vee x_2$	0	1	1	1

$$\mathbf{w} = (1, 1), b = -0.5$$

Simple Example: Can we learn AND?

Simple Example: Can we learn AND?

x_1	0	1	0	1
x_2	0	0	1	1
$y = x_1 \wedge x_2$	0	0	0	1

$$\mathbf{w} = (1, 1), b = -1.5$$

Simple Example: Can we learn NAND?

x_1	0	1	0	1
x_2	0	0	1	1
$y = \neg(x_1 \wedge x_2)$	1	1	1	0

Simple Example: Can we learn NAND?

x_1	0	1	0	1
	0	0	1	1
$y = \neg(x_1 \land x_2)$	1	1	1	0

$$\mathbf{w} = (-1, -1), b = 1.5$$

Simple Example: Can we learn XOR?

	x_1	0	1	0	1
	x_2	0	0	1	1
$\overline{x_1}$	XOR x_2	0	1	1	0

Simple Example: Can we learn XOR?

	x_1	0	1	0	1
	x_2	0	0	1	1
$\overline{x_1}$	XOR x_2	0	1	1	0

NOPE!

Simple Example: Can we learn XOR?

x_1	0	1	0	1
x_2	0	0	1	1
x_1 XOR x_2	0	1	1	0

NOPE! But why?

Simple Example: Can we learn XOR?

	x_1	0	1	0	1
	x_2	0	0	1	1
$\overline{x_1}$	XOR x_2	0	1	1	0

NOPE!

But why?

The single-layer perceptron is just a linear classifier, and can only learn things that are linearly separable.

Simple Example: Can we learn XOR?

	x_1	0	1	0	1
	x_2	0	0	1	1
$\overline{x_1}$	XOR x_2	0	1	1	0

NOPE!

But why?

The single-layer perceptron is just a linear classifier, and can only learn things that are linearly separable.

How can we fix this?

Increase the number of layers.

x_1	0	1	0	1
x_2	0	0	1	1
x_1 XOR x_2	0	1	1	0

Increase the number of layers.

Increase the number of layers.

x_1	U	1	U	1
x_2	0	0	1	1
x_1 XOR x_2	0	1	1	0

$$m{W}^1 = egin{bmatrix} 1 & 1 \ -1 & -1 \end{bmatrix}, m{b}^1 = egin{bmatrix} -0.5 \ 1.5 \end{bmatrix}$$
 $m{W}^2 = egin{bmatrix} 1 \ 1 \end{bmatrix}, m{b}^2 = -1.5$

General Expressiveness of Neural Networks

Neural networks with a single hidden layer can approximate any measurable functions [Hornik et al., 1989, Cybenko, 1989].

Recap

- Logistic regression and perceptron can be seen as special cases of neural networks
- Feed-forward algorithm (forward propagation)