

Reinforcement leatning project

TSP problem

by Nina Konovalova and Albina Klepach

Plan

- Introduction
- Description of the problem
- Description of the methods
- Results
- Conclusion

Introduction

Combinatorial optimization

Description of the problem

Travelling Salesman Problem (TSP)

Description of the methods

Markov Decision Process (MDP)

naive approach requires many samples

terminating condition when all destinations are visited

Description of the methods

Sequence of n cities in 2D space $s = \{\mathbf{x}_i\}_{i=1}^n$, where each $\mathbf{x}_i \in \mathbb{R}^2$

No depot:

$$L(\pi|s) = ||\mathbf{x}_{pi(n)} - \mathbf{x}_{pi(1)}||_2 + \sum_{i=1}^{n-1} ||\mathbf{x}_{pi(i)} - \mathbf{x}_{pi(i+1)}||_2$$

Depot:

$$L(\pi|s) = ||\mathbf{x}_{pi(n)} - \mathbf{x}_{depot}||_2 + ||\mathbf{x}_{pi(1)} - \mathbf{x}_{depot}||_2 + \sum_{i=1}^{n-1} ||\mathbf{x}_{pi(i)} - \mathbf{x}_{pi(i+1)}||_2$$

Chain rule (to factorize the probability of a tour):

$$p(\pi|s) = \prod_{n=1}^n p(\pi(i)|\pi(< i), s)$$

Description of the methods

Out training objective is expected tour length:

$$J(\mathbf{\Theta}|s) = \mathbb{E}_{\pi \sim p_{\mathbf{\Theta}}(\cdot|s)} L(\pi|s)$$

The gradient of expected tour length (with REINFORCE algorithm):

$$\nabla_{\Theta} J(\Theta|s) = \mathbb{E}_{\pi \sim p_{\Theta}(\cdot|s)} \left[(L(\pi|s) - b(s)) \nabla_{\Theta} \log p_{\Theta}(\pi|s) \right]$$

$$\nabla_{\Theta} J(\Theta) pprox rac{1}{B} \sum_{i=1}^{B} \left(L(\pi|s_i) - b(s_i) \right) \nabla_{\Theta} \log p_{\Theta}(\pi_i|s_i)$$

The objective for critic $(b_{\Theta_v}(s))$ is a prediction):

$$\mathbb{L}(\Theta_v) = \frac{1}{B} \sum_{i=1}^{B} ||b_{\Theta_v}(s_i) - L(\pi_i)||_2^2$$

Algorithm 1 Actor-critic training

```
procedure TRAIN(training set S, number of training steps T, batch size B)
             Initialize pointer network params \theta
             Initialize critic network params \theta_v
             for t = 1 to T do
                    s_i \sim \text{SAMPLEINPUT}(S) \text{ for } i \in \{1, \dots, B\}
                   \pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(.|s_i)) \text{ for } i \in \{1, \dots, B\}
                   b_i \leftarrow b_{\theta_v}(s_i) \text{ for } i \in \{1, \dots, B\}

g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i|s_i) - b_i) \nabla_{\theta} \log p_{\theta}(\pi_i|s_i)
                   \mathcal{L}_v \leftarrow \frac{1}{B} \sum_{i=1}^{B} ||b_i - L(\pi_i)||_2^2
                   \theta \leftarrow \text{ADAM}(\theta, g_{\theta})
10:
11:
                   \theta_v \leftarrow ADAM(\theta_v, \nabla_{\theta_v} \mathcal{L}_v)
12:
              end for
              return \theta
14: end procedure
```

Seq2Seq

Pointer Network

Graph embeddings

Graph represenations:

list of coordinates:

- Linear layer
- Simple node
 encoding v_{node} v_{rand}

weighted graph (distance matrix):

- Node2Vec
- DeepWalk

Attention: Dot Embeddings:

- Linear GE
- Simple GE

Attention: Bahdanau Embeddings:

- Linear GE
- Simple GE

Linear embeddings:

 $N = 200_000$

 $N = 400_000$

11.45 11.44 11.42 0 5 10 15

Embeddings:

- Node2Vec
- DeepWalk

GitHub repo

Nina-Konovalova/TCP-RL-Skoltech_project

i≣ readme.md

RL-Travelling Salesman Problem

Our project is based on Reinforcement Learning (RL) for solving Travelling Salesman Problem (TSP). Our code and experiments around the paper https://arxiv.org/abs/1802.04240.

We consider solving TCP solving with RL based on Pointer Network.

As the dataset 20 uniform distributed points from 0 to 1 for each coordinates were used.

Documentation.md

Different inference commands

Conclusion

TSP problem: Pointer Network (Attention) + model-free policy-based optimization (REINFORSE)

Linear Node Embeddings work better with both types of Attention

Showed the effect of the size of the Network on the results

Thank you for your attention!!

