\mathcal{D} iagonalisation

I – Miscellanées

1. Déterminer les valeurs propres de l'endomorphisme $\varphi: \mathbf{R}[X]_{\leq n} \to \mathbf{R}[X]_{\leq n}$ défini par

$$\varphi(f) = X \cdot f'(X).$$

 $[Rappel: \mathbf{F}[X]_{\leq n}]$ désigne l'espace des polynômes de degré $\leq n-1$ à coefficients dans un corps \mathbf{F}

2. Dans chacun des deux cas suivants, est-il possible de trouver une matrice $P \in GL_2(\mathbf{Q})$ telle que

$$P^{-1}BP = A?$$

a)
$$A = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$ b) $A = \begin{pmatrix} -3 & -4 \\ 2 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$

b)
$$A = \begin{pmatrix} -3 & -4 \\ 2 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$

Notez qu'il n'est pas demandé de préciser P, seulement de se prononcer sur son (in) existence

3. Racine carrée matricielle : trouvez une matrice $B \in \mathcal{M}_3(\mathbf{Q})$ telle que

$$B^2 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -4 & -8 \\ 1 & 4 & 8 \end{pmatrix}.$$

[Indication : Ce serait bien plus facile si la matrice était diagonale . . .]

II - Vandermonde

Dans toute cette section, F désigne un corps quelconque.

La matrice de Vandermonde associée à n scalaires $\lambda_1, \ldots, \lambda_n \in \mathbf{F}$ est par définition la matrice carrée

$$V(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbf{F}).$$

4. Montrer par récurrence sur n que

$$\det V(\lambda_1, \ldots, \lambda_n) = \prod_{i < j} (\lambda_j - \lambda_i)$$

et conclure qu'une matrice de Vandermonde est inversible \iff les λ_i sont deux à deux distincts.

5. Étant donnés n scalaires distincts $\lambda_1, \ldots, \lambda_n \in \mathbf{F}$ ainsi que n autres scalaires (quelconques) $b_1, \ldots, b_n \in \mathbf{F}$, montrer qu'il existe un unique polynôme

$$f(X) = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} \in \mathbf{F}[X]_{\le n}$$

tel que

$$f(\lambda_i) = b_i$$
, pour $i = 1, \ldots, n$.

[Indication : traduire le problème en système d'équations linéaires dont les inconnues sont a_0, \ldots, a_{n-1}]

6. Considérons maintenant un polynôme unitaire de degré n

$$g(X) = c_0 + c_1 X + \dots + c_{n-1} X^{n-1} + X^n \in \mathbf{F}[X]$$

ainsi que la matrice

$$C_g = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -c_0 & -c_1 & \dots & -c_{n-2} & -c_{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbf{F}).$$

- a) Montrer que $v_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$ est vecteur propre pour $C_g \iff g(\lambda) = 0$.
- b) En déduire une condition suffisante sur les racines de g pour que C_g soit diagonalisable, et préciser une matrice de passage ainsi que la matrice diagonale correspondante.