CHAPTER 3 CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

Dr. Yuan Dan

3.1 Molecular Mass and Formula Mass

 Molecular mass: the sum of the atomic masses of all the atoms in a molecule of the substance

H₂O: 18 amu

 Formula mass: the sum of the atomic masses of all atoms in a formula unit of the compound, whether molecular or not

NaCl: 58.44 amu

P88 Example 3.1

Calculate the formula mass of each of the following to three significant figures, using a table of atomic masses (AM): a. chloroform, $CHCl_3$; b. iron(III) sulfate, $Fe_2(SO_4)_3$. $1 \times AM \text{ of } C = 12.0 \text{ amu}$

```
1 \times AM \text{ of } C = 12.0 amu

1 \times AM \text{ of } H = 1.0 amu

3 \times AM \text{ of } Cl = 3 \times 35.45 \text{ amu} = \frac{106.4 \text{ amu}}{119.4 \text{ amu}}

FM of CHCl<sub>3</sub> = 119.4 amu
```

```
2 \times AM \text{ of Fe} = 2 \times 55.8 \text{ amu} = 111.6 \text{ amu}

3 \times AM \text{ of S} = 3 \times 32.1 \text{ amu} = 96.3 \text{ amu}

3 \times 4 \times AM \text{ of O} = 12 \times 16.00 \text{ amu} = 192.0 \text{ amu}

3 \times 4 \times AM \text{ of Fe}_2(SO_4)_3 = 399.9 \text{ amu}
```

3.2 The Mole Concept

- A mole: the quantity of a given substance that contains as many molecules or formula units as the number of atoms in exactly 12 g of C-12.
- Avogadro's number (N_A): 6.02 × 10²³ How many Na⁺, O?
- Molar mass: the mass of one mole of the substance (unit: g/mol)

How many moles 1 mol
$$C_2H_5OH = 46.1$$
 g C_2H_5OH
What's the weight $\frac{1 \text{ mol } C_2H_5OH}{46.1 \text{ g } C_2H_5OH} = 0.217 \text{ mol } C_2H_5OH$

cl:35.53/mo]

P90 Example 3.3

Mass of a Cl atom =
$$\frac{35.5 \text{ g}}{6.02 \times 10^{23}} = 5.90 \times 10^{-23} \text{ g}$$

- a. What is the mass in grams of a chlorine atom, CI?
- b. What is the mass in grams of a hydrogen chloride molecule, HCI?

Mass of an HCl molecule =
$$\frac{36.5 \text{ g}}{6.02 \times 10^{23}} = 6.06 \times 10^{-23} \text{ g}$$

P90 Example 3.4

Zinc iodide, Znl₂, can be prepared by the direct combination of elements. A chemist determines from the amounts of elements that 0.0654 mol Znl₂ can form. How many grams of zinc iodide is this?

$$0.0654 \text{ mol-} \overline{ZnI_2} \times \frac{319 \text{ g ZnI}_2}{1 \text{ mol-} \overline{ZnI}_2} = \textbf{20.9 \text{ g ZnI}_2}$$

3.3 Mass Percentages from the Formula

Percentage Composition

Mass%
$$A = \frac{\text{mass of } A \text{ in the whole}}{\text{mass of the whole}} \times 100\%$$

P94 Example 3.7

Formaldehyde, CH₂O, is a toxic gas with a pungent odor. Large quantities are consumed in the manufacture of plastics, and a water solution of the compound is used to preserve biological specimens. Calculate the mass percentages of the elements in formaldehyde (give answers to three significant figures). $\% C = \frac{12.0 \text{ g}}{30.0 \text{ g}} \times 100\% = 40.0\%$

$$\% \mathbf{H} = \frac{2 \times 1.01 \text{ g}}{30.0 \text{ g}} \times 100\% = 6.73\%$$

$$\% \ \mathbf{O} = 100\% - (40.0\% + 6.73\%) = 53.3\%$$

3.4 Elemental Analysis

Combustion method

3.5 Determining Formulas

 Empirical formula: a formula written with the smallest integer subscripts

TABLE 3.1	Molecular Models of Two Compounds That Have the Empirical Formula CH Although benzene and acetylene have the same empirical formula, they do not have the same molecular formula or structure.		
Compound	Empirical Formula	Molecular Formula	Molecular Model
Acetylene	СН	C_2H_2	₩ ₩
Benzene	СН	C ₆ H ₆	accom

3.5 Determining Formulas

Molecular Formula from Empirical Formula

$$n = \frac{\text{molecular weight}}{\text{empirical formula weight}}$$

P101 Example 3.12

In Example 3.9, we found the percentage composition of acetic acid to be 39.9% C, 6.7% H, and 53.4% O. Determine the empirical formula. The molecular mass of acetic acid was determined by experiment to be 60.0 amu. What is its molecular formula? $C_2H_4O_2$

3.6 Molar Interpretation of a Chemical Equation

Stoichiometry

The calculation of the quantities of reactants and products involved in a chemical reaction.

```
N_2 + 3H_2 \longrightarrow 2NH_3

1 molecule N_2 + 3 molecules H_2 \longrightarrow 2 molecules NH_3

1 mol N_2 + 3 mol H_2 \longrightarrow 2 mol NH_3

28.0 \text{ g } N_2 + 3 \times 2.02 \text{ g } H_2 \longrightarrow 2 \times 17.0 \text{ g } NH_3
```

3.7 Amounts of Substances in a Chemical Reaction

Steps in a stoichiometric calculation

P105 Example 3.13

Hematite, Fe₂O₃, is an important ore of iron. (An ore is a natural substance from which the metal can be profitably obtained.) The free metal is obtained by reacting hematite with carbon monoxide, CO, in a blast furnace. Carbon monoxide is formed in the furnace by partial combustion of carbon. The reaction is

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

How many grams of iron can be produced from 1.00 kg Fe₂O₃?

P105 Example 3.13

$$1.00 \times 10^{3} \text{ g Fe}_{2}O_{3} \times \frac{1 \text{ mol Fe}_{2}O_{3}}{160 \text{ g Fe}_{2}O_{3}} \times \frac{2 \text{ mol Fe}}{1 \text{ mol Fe}_{2}O_{3}} \times \frac{55.8 \text{ g Fe}}{1 \text{ mol Fe}} = 698 \text{ g Fe}$$

3.8 Limiting Reactant; Theoretical and Percentage Yields

- Limiting reactant: the reactant that is entirely consumed when a reaction goes to completion
- The moles of product are always determined by the starting moles of limiting reactant.

3.8 Limiting Reactant; Theoretical and Percentage Yields

Limiting Reactant H₂O produced and H₂ reactant O₂ reactant unreacted O_2 (excess)

3.8 Limiting Reactant; Theoretical and Percentage Yields

- Theoretical yield: the maximum amount of product that can be obtained by a reaction from given amounts of reactants
- **Percentage yield:** the actual yield (experimentally determined) expressed as a percentage of the theoretical yield (calculated)

 Percentage yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$