Interpolation and approximation

Given a set of points $\{(x_j,y_j), j=1,\cdots,n\}$, and given a functional form $f(x;\vec{\beta})$, find "best" $\vec{\beta}$ so that $f(x;\vec{\beta})$ "models" the data.

Interpolation

$$f(x_j; \vec{\beta}) = y_j$$

Approximation

$$f(x_j; ec eta) + arepsilon_j = y_j$$
 $arepsilon_j$ is "noise", $\mathbb{E}(arepsilon_j) = 0$

Least squares approximation

$$\mathbb{E}(\varepsilon_j) = 0$$

$$\mathbb{E}(\varepsilon_j^2) = \sigma_j^2$$

$$\sigma_j \approx \text{const}$$

$$\chi^2(\vec{\beta}) = \sum_{j=1}^n \left| y_j - f(x_j; \vec{\beta}) \right|^2 \Rightarrow \min$$

Weighted least squares

$$\mathbb{E}(\varepsilon_j) = 0$$
$$\mathbb{E}(\varepsilon_j^2) = \sigma_j^2$$

If σ_i are significantly different (heteroscedasticity)

$$\chi^2(\vec{\beta}) = \sum_{j=1}^n \frac{\left| y_j - f(x_j; \vec{\beta}) \right|^2}{\sigma_j^2} \Rightarrow \min$$

Least absolute deviations

Also known as L_1 regression:

$$S(\vec{\beta}) = \sum_{j=1}^{n} |y_j - f(x_j; \vec{\beta})| \Rightarrow \min$$

Total least squares

Also known as *Orthogonal distance regression*: minimize the sum of squares of orthogonal distances from observations to the curve.

Can be more appropriate e.g. if both variables, x and y have measurement errors.

Least squares approximation

$$\mathbb{E}(\varepsilon_j) = 0$$

$$\mathbb{E}(\varepsilon_j^2) = \sigma_j^2$$

$$\sigma_j \approx \text{const}$$

$$\chi^2(\vec{\beta}) = \sum_{j=1}^n \left| y_j - f(x_j; \vec{\beta}) \right|^2 \Rightarrow \min$$

Consider an ordinary least squares problem,

$$\xi(\vec{\beta}) = \sum_{j=1}^{n} \left| y_j - f(x_j; \vec{\beta}) \right|^2 \Rightarrow \min$$

Let the model, $f(x;\beta)$, is a *linear* function of $\vec{\beta}$, a linear combination of m basis functions, $\varphi_k(x)$

$$f(x; \vec{\beta}) = \sum_{j=1}^{m} \beta_k \varphi_k(x)$$

Typically, want m < n.

Let the model, $f(x;\beta)$, is a *linear* function of $\vec{\beta}$, a linear combination of m basis functions, $\varphi_k(x)$

$$f(x; \vec{\beta}) = \sum_{j=1}^{m} \beta_k \varphi_k(x)$$

The basis functions need not be linear:

- polynomials: $\varphi_k(x) = x^k$
- Fourier series: $\varphi_k(x) = e^{is_k x}$
- **>** ...

We minimize with respect to $\vec{\beta}$

$$\xi(\vec{\beta}) = \sum_{j=1}^{n} |z_j|^2$$

where $(i = 1, \ldots, n)$

$$z_j = y_j - (\beta_1 \varphi_1(x_j) + \beta_2 \varphi_2(x_j) + \dots + \beta_m \varphi_m(x_j))$$

Which is egivalent to

$$\xi(\beta) = \left\| \mathbf{y} - \mathbf{A} \vec{\beta} \right\|_2^2$$

with $\mathbf{y} = (y_1, \cdots, y_n)^T$ and $A_{ki} = \varphi_k(x_i)$.

Design matrix

The *design matrix* $\bf A$ is an $n \times m$ matrix

$$A = \begin{bmatrix} \varphi_1() & \varphi_2() & \cdots & \varphi_m() \\ \varphi_1() & \varphi_2() & \cdots & \varphi_m() \\ & & & \cdots \\ \varphi_1() & \varphi_2() & \cdots & \varphi_m() \end{bmatrix}$$

The dimensions of the design matrix is # of observations \times # of parameters

Design matrix

The *design matrix* $\bf A$ is an $n \times m$ matrix

$$A = \begin{bmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_m(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_m(x_2) \\ & & \cdots & \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_m(x_n) \end{bmatrix}$$

The dimensions of the design matrix is # of observations \times # of parameters

Example: straight line fit

The model is

$$f(x; \vec{\beta}) = \beta_1 + \beta_2 x$$

$$m = 2$$
:

$$\varphi_1(x)=1\,,$$

$$\varphi_2(x) = x$$

and the design matrix is

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

Normal equations

Linear least squares: normal equations

To minimize the quadratic form

$$\xi(\vec{\beta}) = \|\mathbf{y} - \mathbf{A}\vec{\beta}\|_2^2$$

set the derivatives to zero,

$$\frac{\partial}{\partial \beta_k} \xi(\vec{\beta}) = 0, \qquad j = 1, \cdots, m$$

And obtain the normal equations:

$$\mathbf{A}^T \mathbf{A} \, \vec{\beta} = \mathbf{A}^T \mathbf{y}$$

Linear least squares: normal equations

Normal equations

$$\mathbf{A}^T \mathbf{A} \, \vec{\beta} = \mathbf{A}^T \mathbf{y}$$

give a formal solution of a linear least squares problem.

However,

$$\operatorname{cond}\left(\mathbf{A}^{T}\mathbf{A}\right) = \left[\operatorname{cond}A\right]^{2}$$

so that typically the system of normal equations is *very* poorly conditioned.

QR factorization of the design matrix

Recall that a matrix A can be factorized into

$$A = QR$$

where ${\bf Q}$ is orthogonal (${\bf Q}^T{\bf Q}={\bf 1}$) and ${\bf R}$ is upper triangular.

Since a design matrix is thin and tall (m < n), last n - m rows of ${\bf R}$ are zero:

$$\mathbf{A} = \mathbf{Q} \begin{bmatrix} \mathbf{R_1} \\ \mathbf{0} \end{bmatrix}$$

where $\dim \mathbf{R}_1 = m$

Since the 2-norm of a vector is invariant under a rotation by an orthogonal matrix \mathbf{Q} , we rotate the residual $\mathbf{y} - \mathbf{A}\vec{\beta}$

$$\xi(\beta) = \|\mathbf{y} - \mathbf{A}\vec{\beta}\|^2 = \|\mathbf{Q}^T (\mathbf{y} - \mathbf{A}\vec{\beta})\|^2$$
$$= \|\mathbf{Q}^T \mathbf{y} - \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} \vec{\beta}\|^2$$

Next, write

$$\mathbf{Q}^T \mathbf{y} = \begin{bmatrix} \mathbf{f} \\ \mathbf{r} \end{bmatrix}$$

with $\dim \mathbf{f} = m$ and $\dim \mathbf{r} = n - m$.

This way,

$$\xi(\vec{\beta}) = \left\| \mathbf{f} - \mathbf{R}_1 \vec{\beta} \right\|^2 + \|\mathbf{r}\|^2$$

And the minimum of $\xi(\vec{\beta})$ satisfies

$$\mathbf{R}_1 \vec{\beta} = \mathbf{f}$$

This way,

$$\xi(\vec{\beta}) = \left\| \mathbf{f} - \mathbf{R}_1 \vec{\beta} \right\|^2 + \|\mathbf{r}\|^2$$

And the minimum of $\xi(\vec{\beta})$ satisfies

$$\mathbf{R}_1 \vec{\beta} = \mathbf{f}$$

Algorithm

- lacktriangle Factorize the design matrix ${f A}={f Q}{f R}$
- ▶ Rotate $y \to \mathbf{Q}^T y$ (only need m rows \Rightarrow thin QR)
- Solve $\mathbf{R}_1 \vec{\beta} = \mathbf{f}$ by back substitution.