Data Analysis

March 24, 2022

1 Klasyfikacja toksycznych komentarzy

1.0.1 Marcin Drzewiecki, Patryk Świątek, Magdalena Szypulska

1.1 Motywacja

Na tym etapie projektu zapoznamy się ze zbiorem danych, określimy podstawowe statystyki oraz przygotujemy dane, które wykorzystamy do budowy modelu klasyfikatora.

1.2 Zbiór danych

Zbiór danych pochodzi z *The Wikipedia Corpus*. Zbiór danych zawiera komentarze pochodzących z sekcji edytorskich artykułów na anglojęzycznej *Wikipedii*. W ramce danych znajdziemy 8 kolumn:

- id unikalny ciąg znaków przypisany każdemu komentarzowi,
- comment_text treść komentarza,

Dalsze kolumny będą mieć wartości binarne i będą nam określały, czy dany komentarz jest klasyfikowany jako:

- toxic,
- severe_toxic,
- · obscene,
- threat,
- insult,
- identity_hate,

gdzie wartość 1 w danej kolumnie będzie oznaczała, że dany komentarz został otagowany dany typ toksycznego komentarza, w przeciwnym przypadku w kolumnie będzie znajdywała się wartość 0. W sytuacji, kiedy wszystkie wartości są równe 0, komentarz nie jest toksyczny.

```
[1]: #importowanie pakietów

#pakiety podstawowe w pracy z danymi

import pandas as pd
import numpy as np
from os import path
import scipy.stats as stats

#pakiety do stworzenia wizualizacji
```

```
import matplotlib.pyplot as plt
     import seaborn as sns
     from PIL import Image
     from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
[2]: #from google.colab import files
     #uploaded = files.upload()
[3]: train = pd.read_csv('train.csv') #wczytanie danych
     train values = train.values #wartości do dalszej pracy
     columns = np.array(train.columns) #nazwy kolumn
     print('
                                                   Podstawowe informacje\n')
     print('Nazwy kolumn:', columns)
     print('Liczba rekordów w zbiorze treningowym to:', train.shape[0])
     print('Liczba wartości brakujących w zbiorze treningowym to', train.isnull().
     →values.any().sum())
     print('Liczba unikalnych wartości w kolumnie id:', train['id'].nunique())
     print('Typy danych znajdujących się w kolumnach to:\n\n', train.dtypes)
                                            Podstawowe informacje
    Nazwy kolumn: ['id' 'comment_text' 'toxic' 'severe_toxic' 'obscene' 'threat'
    'insult'
     'identity hate']
    Liczba rekordów w zbiorze treningowym to: 159571
    Liczba wartości brakujących w zbiorze treningowym to 0
    Liczba unikalnych wartości w kolumnie id: 159571
    Typy danych znajdujących się w kolumnach to:
     id
                      object
    comment text
                     object
    toxic
                      int64
    severe_toxic
                      int64
    obscene
                      int64
    threat
                      int64
                      int64
    insult
    identity_hate
                      int64
    dtype: object
[4]: train.head()
[4]:
                      id
                                                                comment_text
                                                                              toxic \
     0 0000997932d777bf Explanation\nWhy the edits made under my usern...
                                                                                0
     1 000103f0d9cfb60f D'aww! He matches this background colour I'm s...
                                                                                0
     2 000113f07ec002fd Hey man, I'm really not trying to edit war. It ...
                                                                                0
     3 0001b41b1c6bb37e "\nMore\nI can't make any real suggestions on ...
                                                                                0
```

4 0001d958c54c6e35 You, sir, are my hero. Any chance you remember...

0

	severe_toxic	obscene	threat	insult	identity_hate
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0

[5]: train.sample(7) #wybranie próby o liczności 7 z naszego zbioru danych

[5]: id comment_text That is your opinion, and possibly an assertio... 61986 a5ddcbe8225743aa 141222 f394966a9aa4f60b " August 2013 (UTC)\n Dank u wel! I didn't mak... 12318 20a6b1d69402d099 A new Oxbridge user box \n\nLord Charlton...I ... 28936 4cac1e0f50786a33 Just call them, Unli-Night or Unli-Day, beside... 110490 4f2199c98953ad91 "\nPlease explain to me how anything in WP:SPA... 86195 e68988a6859e9549 Telos $\n\$ have added Telos to the home plane... Obviously, JamesMLane and Dogru think a Critic... 93417 f9c3bd427da986d0

	toxic	severe_toxic	obscene	threat	insult	identity_hate
61986	0	0	0	0	0	0
141222	0	0	0	0	0	0
12318	0	0	0	0	0	0
28936	0	0	0	0	0	0
110490	0	0	0	0	0	0
86195	0	0	0	0	0	0
93417	0	0	0	0	0	0

Sprawdźmy podstawowe statystyki dotyczące kolumn mających typ numeryczny za pomocą funkcji describe.

[6]: train.describe()

[6]:		toxic	severe_toxic	obscene	threat	\
C	ount	159571.000000	159571.000000	159571.000000	159571.000000	
me	ean	0.095844	0.009996	0.052948	0.002996	
s ⁻	td	0.294379	0.099477	0.223931	0.054650	
m	in	0.000000	0.000000	0.000000	0.000000	
2	5%	0.000000	0.000000	0.000000	0.000000	
50	0%	0.000000	0.000000	0.000000	0.000000	
7	5%	0.000000	0.000000	0.000000	0.000000	
ma	ax	1.000000	1.000000	1.000000	1.000000	

insult identity_hate count 159571.000000 159571.000000 mean 0.049364 0.008805

std	0.216627	0.093420
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	0.000000
75%	0.000000	0.000000
max	1.000000	1.000000

Patrząc na średnią, która jest bardzo mała we wszystkich kategoriach, możemy mieć przypuszczenie, że większość danych w naszej bazie nie jest toksyczna (tj. średnia to suma 1 w danej kolumnie przez ilość wszystkich komentarzy, jeśli jest ona mała to znaczy, że proporcja 1 do ilości 0 i 1 jest również mała).

Procent komentarzy, które nie są toksyczne to 89.83211235124176

Przykładowy tekst toksycznego komentarza:

```
[8]: train[np.sum(train_values[:,2:], axis=1)>0]['comment_text'].sample(1)
```

[8]: 148650 "\n Look you moron, if the 1000 series is T-10...
Name: comment_text, dtype: object

Przykładowy tekst nietoksycznego komentarza:

```
[9]: train[np.sum(train_values[:,2:], axis=1)==0]['comment_text'].sample(1)
```

```
[9]: 159372 "\nThanks Black Kite. Talk "
Name: comment_text, dtype: object
```

Zauważmy, że w przypadku $\sim 90\%$ komentarzy nietoksycznych mamy do czynienia ze sporym niezbalansowaniem. Przedstawmy teraz liczbę komentarzy przypisanych do danej klasy za pomocą wykresu słupkowego.

```
[10]: #Generowanie wykresu
x = train.iloc[:,2:].sum().sort_values(ascending = False) #przesumujmy liczbę 1
→w kolumnach 2:
```

```
#wykres
plt.figure(figsize = (12,6))
ax = sns.barplot(x = x.index, y = x.values, alpha = 0.7)
plt.title('Liczba komentarzy przypisanych do danego tagu\n', fontsize = 14)
plt.xlabel('Tagi ', fontsize = 12)
plt.ylabel('Liczba komentarzy z # tagiem ', fontsize=12)
#dodanie dokładnej liczby
bars = ax.patches #pobieramy nasze słupki
labels = x.values
for bar, label in zip(bars, labels): #zip agreguje w tuple
    ax.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 5, label,__
⇔ha='center', va='bottom')
    #dopisujemy tekst - (x + 1/2 \ szerokości \ słupka, wysokość słupka + 5),
 → label, który będzie wartością naszego słupka;
    #położenie poziome - horizontal - wyśrodkowowane, i tekst wertykalnie nau
\rightarrow dole
plt.show()
```

Liczba komentarzy przypisanych do danego tagu

Po wartościach możemy zauważyć, że mamy do czynienia z tym, że dany toksyczny komentarz może być otagowany więcej niż jednym tagiem. Ponadto zauważmy, że również klasy są między soba niezbalansowane.

```
[84]: #Podsumujmy: print('Liczba komentarzy: ', len(train))
```

Liczba komentarzy: 159571

Liczba nietoksycznych komentarzy: 143346

Liczba toksycznych komentarzy: 16225

Całkowita liczba tagów (tj. wartości w kolumnach 2: = 1): 35098

	liczba tagów	liczba toksycznych komentarzy z # ilością tagów
0	0	143346
1	1	6360
2	3	4209
3	2	3480
4	4	1760
5	5	385
6	6	31

Mając do czynienia z multitagowanie warto byłoby przyjrzeć, które z tagów są ze sobą powiązane, mając jednak na uwadze, że tagowanie wykonywały różne osoby, co może rzutować na wyniki.

1.2.1 Histogramy długości komentarzy

```
[12]: train_help = train.copy()
  #train_help['length'] = train_help.apply(len(train_help['comment_text']))
  train_help['length'] = train_help['comment_text'].apply(len)
  train_help
```

```
[12]:

id comment_text \
0 0000997932d777bf Explanation\nWhy the edits made under my usern...
1 000103f0d9cfb60f D'aww! He matches this background colour I'm s...
2 000113f07ec002fd Hey man, I'm really not trying to edit war. It...
3 0001b41b1c6bb37e "\nMore\nI can't make any real suggestions on ...
4 0001d958c54c6e35 You, sir, are my hero. Any chance you remember...
```

159566 ffe987279560d7ff	":::::And for the second time of asking, when
159567 ffea4adeee384e90	You should be a shamed of yourself \n is …
159568 ffee36eab5c267c9	Spitzer $\n\$ theres no actual article for …
159569 fff125370e4aaaf3	And it looks like it was actually you who put
159570 fff46fc426af1f9a	"\nAnd I really don't think you understand

	toxic	severe_toxic	obscene	threat	insult	identity_hate	length
0	0	0	0	0	0	0	264
1	0	0	0	0	0	0	112
2	0	0	0	0	0	0	233
3	0	0	0	0	0	0	622
4	0	0	0	0	0	0	67
•••	•••		•••	•••	•••	•••	
159566	0	0	0	0	0	0	295
159567	0	0	0	0	0	0	99
159568	0	0	0	0	0	0	81
159569	0	0	0	0	0	0	116
159570	0	0	0	0	0	0	189

[159571 rows x 9 columns]

```
[85]: plt.figure(figsize=(10,6))
   plt.hist(train_help['length'], bins=np.arange(0,1000,50))
   plt.xlim([0, 970])
   plt.title("Histogram długości komentarzy", fontsize=18)
   plt.show()
```



```
[80]: kbins= 10
      fig, axs = plt.subplots(3, 2, figsize=(12,12))
      fig.tight_layout()
      axs[0, 0].hist(train_help[train_help['toxic']==1]['length'], bins=np.
       \rightarrowarange(0,1000,50))
      axs[0, 0].set_title("Toxic", fontsize=12)
      axs[0, 0].set_xlim([0, 970])
      axs[0, 1].hist(train_help[train_help['severe_toxic']==1]['length'], bins=np.
      \rightarrowarange(0,1000,50))
      axs[0, 1].set_title("Severe toxic", fontsize=12)
      axs[0, 1].set_xlim([0, 970])
      axs[1, 0].hist(train_help[train_help['obscene']==1]['length'], bins=np.
       \rightarrowarange(0,1000,50))
      axs[1, 0].set_title("Obscene", fontsize=12)
      axs[1, 0].set_xlim([0, 970])
      axs[1, 1].hist(train_help[train_help['threat']==1]['length'], bins=np.
      \hookrightarrowarange(0,1000,50))
      axs[1, 1].set_title("Threat", fontsize=12)
      axs[1, 1].set_xlim([0, 970])
      axs[2, 0].hist(train help[train help['insult']==1]['length'], bins=np.
       \rightarrowarange(0,1000,50))
      axs[2, 0].set_title("Insult", fontsize=12)
      axs[2, 0].set_xlim([0, 970])
      axs[2, 1].hist(train_help[train_help['identity_hate']==1]['length'], bins=np.
      \rightarrowarange(0,1000,50))
      axs[2, 1].set_title('Identity hate', fontsize=12)
      axs[2, 1].set_xlim([0, 970])
      fig.suptitle("Histogram długości dla poszczególnych typów komentarzy", u
       →fontsize=18)
      fig.subplots adjust(top=0.91, hspace=0.45)
```

Histogram długości dla poszczególnych typów komentarzy

Widzimy, że zdecydowanie najwięcej komentarzy ma długość mniejszą niż 1000 znaków. Zatem w celu bardziej dogłębnego spojrzenia na rozkład długości komentarzy spójrzmy tylko na te o długości nie większej niż 1000 znaków.

```
[81]: plt.figure(figsize=(10,6))
plt.hist(train_help[train_help['length']<=1000]['length'], bins=np.

→arange(0,1000,50))#, align='left')
plt.xlim([0, 970])
plt.title('Histogram długości dla komentarzy poniżej 1000 znaków', fontsize=18)
plt.show()
```



```
[95]: kbins=15
                  fig, axs = plt.subplots(3, 2, figsize=(11,12))
                  fig.tight_layout()
                  axs[0, 0].hist(train_help[(train_help['toxic']==1) &__
                     axs[0, 0].set_title("Toxic", fontsize=12)
                  axs[0, 0].set_xlim([0, 970])
                  axs[0, 1].hist(train_help[(train_help['severe_toxic']==1) &__
                    (train_help['length'] <= 1000)]['length'], bins=np.arange(0,1000,50))</pre>
                  axs[0, 1].set_title("Severe toxic", fontsize=12)
                  axs[0, 1].set_xlim([0, 970])
                  axs[1, 0].hist(train_help[(train_help['obscene']==1) &__
                     channel for the second se
                  axs[1, 0].set_title("Obscene", fontsize=12)
                  axs[1, 0].set_xlim([0, 970])
                  axs[1, 1].hist(train_help[(train_help['threat']==1) &__
                    axs[1, 1].set title("Threat", fontsize=12)
                  axs[1, 1].set_xlim([0, 970])
```

Histogram długości dla poszczególnych typów komentarzy (o długości poniżej 1000 znaków)


```
[17]: train_corr = train_help[['toxic', 'severe_toxic', 'obscene', 'threat',__
       →'insult', 'identity_hate']].corr(method='pearson')
      train corr
[17]:
                        toxic
                                severe_toxic
                                               obscene
                                                           threat
                                                                      insult
                                    0.308619
                                              0.676515 0.157058
                                                                   0.647518
      toxic
                      1.000000
      severe_toxic
                      0.308619
                                    1.000000 0.403014 0.123601
                                                                   0.375807
      obscene
                                    0.403014 1.000000 0.141179
                                                                   0.741272
                      0.676515
      threat
                      0.157058
                                    0.123601 0.141179 1.000000 0.150022
                                                                   1.000000
      insult
                      0.647518
                                    0.375807 0.741272 0.150022
      identity_hate 0.266009
                                    0.201600 0.286867 0.115128 0.337736
                      identity_hate
                           0.266009
      toxic
      severe_toxic
                           0.201600
      obscene
                           0.286867
      threat
                           0.115128
      insult
                           0.337736
      identity_hate
                           1.000000
[18]: import plotly.graph_objects as go
      fig = go.Figure(data=[go.Table(header=dict(values=np.insert(np.array(train_corr.
       \hookrightarrowcolumns), 0 ," ")),
                        cells=dict(values=np.transpose(np.append(np.array(train_corr.
       \rightarrowcolumns).reshape(6,1),
                                                                  np.round(train_corr.
       \rightarrow values,4),axis=1))))])
      fig.update_layout(width=900, height=450)
      fig.show()
```

1.2.2 Współczynnik V Cramera

Ze względu na to, że zmienne określające typ komentarza to zmienne binarne, nie możemy użyć standardowego współczynnika korelacji Pearsona. Wyznaczymy więc współczynnik **V Cramera**. Określa on poziom zależności między dwiema zmiennymi nominalnymi.

Wzór:

$$\sqrt{\frac{\chi^2}{n \cdot min(c-1,r-1)}}$$

gdzie: * χ^2 - wynik testu zgodności chi-kwadrat * n - łączna liczba obserwacji * k – liczba kolumn w tabeli kontyngencji, * r – liczba wierszy w tabeli kontyngencji

```
[86]: corr_matrix = np.ones(shape=(6,6))
      a = 0
      for i in train.columns[2:]:
          b = 0
          for j in train.columns[2:]:
               confusion_matrix = pd.crosstab(train[i], train[j])
              chi2 = stats.chi2_contingency(confusion_matrix, correction=False)[0]
              n = np.sum(confusion matrix.values)
              minDim = min(confusion_matrix.shape)-1
              cram V = np.round(np.sqrt((chi2/n) / minDim), 4)
              corr_matrix[a,b] = cram_V
               corr_matrix[b,a] = cram_V
              b += 1
          a += 1
[87]: train_cram_cor = pd.DataFrame(corr_matrix, index = train.columns[2:], columns =
       →train.columns[2:])
      train_cram_cor
[87]:
                             severe_toxic obscene threat insult identity_hate
                      toxic
      toxic
                      1.0000
                                    0.3086
                                            0.6765 0.1571 0.6475
                                                                            0.2660
                                            0.4030 0.1236 0.3758
      severe_toxic
                      0.3086
                                    1.0000
                                                                            0.2016
      obscene
                      0.6765
                                    0.4030
                                            1.0000 0.1412 0.7413
                                                                            0.2869
      threat
                      0.1571
                                    0.1236
                                            0.1412 1.0000 0.1500
                                                                            0.1151
      insult
                     0.6475
                                    0.3758
                                            0.7413 0.1500 1.0000
                                                                            0.3377
      identity_hate 0.2660
                                   0.2016
                                            0.2869 0.1151 0.3377
                                                                            1.0000
[89]: import plotly.graph_objects as go
      fig = go.Figure(data=[go.Table(header=dict(values=np.insert(np.
       →array(train_cram_cor.columns), 0 ," ")),
                        cells=dict(values=np.transpose(np.append(np.
       →array(train_cram_cor.columns).reshape(6,1),
                                                                 np.
       →round(train_cram_cor.values,4),axis=1))))])
      fig.update_layout(width=900, height=450)
      fig.show()
[100]: #heatmap
      plt.figure(figsize=(12,10))
      sns.heatmap(train_cram_cor,
                   xticklabels=train cram cor.columns.values,
                   yticklabels=train_cram_cor.columns.values, annot=True)
```

```
plt.yticks(rotation=0)
plt.title("Współczynniki V Cramera dla poszczególnych par typów komentarzy",⊔

→fontsize=18, y=1.05)
plt.show()
```

Współczynniki V Cramera dla poszczególnych par typów komentarzy

Możemy zauważyć, że komentarze typu threat występują niezależnie od innych typów. Z kolei najwyższy poziom zależności wykazują typy:

- toxic i obscene
- toxic i insult
- obscene i insult

2 Wizualizacja danych na podstawie WordClouds

```
[29]: # Najczęstsze występujące słowa na podstawie WordClouds
      text = " ".join(comment for comment in train[np.sum(train_values[:,2:],__
      ⇒axis=1)>0].comment text)
      # Create and generate a word cloud image:
      wordcloud = WordCloud(background_color="white", font_path = 'Something Strange.
       \rightarrowttf', width = 3000, height = 2000,
                 max words=500, color func=lambda *args, **kwargs: "black").
       →generate(text)
      # Display the generated image:
      plt.imshow(wordcloud, interpolation='bilinear') #argument interpolation_
      →odpowiada za bardziej gładki obraz*
      #*https://www.datacamp.com/community/tutorials/wordcloud-python
      plt.axis("off")
      plt.title("Najczęstsze Słowa występujące w Toksycznych Komentarzach", u
       \rightarrowfontsize=20, y=1.05)
      fig = plt.gcf()
      fig.set_size_inches(15, 13)
      plt.show()
```

Najczęstsze Słowa występujące w Toksycznych Komentarzach

Najczęstsze Słowa występujące w Komentarzach Typu 'Threat'


```
[27]: # dla insult
text = " ".join(comment for comment in train[train['insult']==1].comment_text)
```

Najczęstsze Słowa występujące w Komentarzach Typu 'Insult'


```
max_words=500, color_func=lambda *args, **kwargs: "black").

plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.title("Najczęstsze Słowa występujące w Komentarzach Typu 'Identity-hate'",

ofontsize=20, y=1.05)
fig = plt.gcf()
fig.set_size_inches(15, 13)
plt.show()
```

Najczęstsze Słowa występujące w Komentarzach Typu 'Identity-hate'

