CHAPTER 6

In this chapter, we will build on Chapter 5 about equation solving, and explore the related topic of solving optimization problems. In general, optimization is the process of finding and selecting the optimal element from a set of feasible candidates. In mathematical optimization, this problem is usually formulated as determining the extreme value of a function of a given domain. An extreme value, or an optimal value, can refer to either the minimum or maximum of the function, depending on the application and the specific problem. In this chapter we are concerned with optimization of real-valued functions of one or several variables, which optionally can be subject to a set of constraints that restricts the domain of the function.

The applications of mathematical optimization are many and varied, and so are the methods and algorithms that must be employed to solve optimization problems. Since optimization is a universally important mathematical tool, it has been developed and adopted for use in many fields of science and engineering, and the terminology used to describe optimization problems varies between different fields. For example, the mathematical function that is optimized may be called a cost function, loss function, energy function, or objective function, to mention a few. Here we use the generic term "objective function."

Optimization is closely related to equation solving because at an optimal value of a function, its derivative, or gradient in the multivariate case, is zero. The converse, however, is not necessarily true, but a method to solve optimization problems is to solve for the zeros of the derivative or the gradient and test the resulting candidates for optimality. This approach is not always feasible though, and often it is required to take other numerical approaches, many of which are closely related to the numerical methods for root finding that was covered in Chapter 5.

In this chapter we discuss using SciPy's optimization module optimize for nonlinear optimization problems, and we will briefly explore using the convex optimization library cvxopt for linear optimization problems with linear constraints. This library also has powerful solvers for quadratic programming problems.

cvxopt The convex optimization library cvxopt provides solvers for linear and quadratic optimization problems. At the time of writing, the latest version is 1.1.7. For more information, see the project's web site http://cvxopt.org. Here we use this library for constrained linear optimization.

Importing Modules

Like in the previous chapter, here we use the optimize module from the SciPy library. Here we assume that this module is imported in the following manner:

In [1]: from scipy import optimize

© Robert Johansson 2015

In the later part of this chapter we also look at linear programming using the cvxopt library, which we assume to be imported in its entirety without any alias:

```
In [2]: import cvxopt
```

For basic numerics, symbolics, and plotting, here we also use the NumPy, SymPy, and Matplotlib libraries, which are imported and initialized using the conventions introduced in earlier chapters:

```
In [3]: import matplotlib.pyplot as plt
In [4]: import numpy as np
In [5]: import sympy
In [6]: sympy.init printing()
```

Classification of Optimization Problems

Here we restrict our attention to mathematical optimization of real-valued functions, with one or more dependent variables. Many mathematical optimization problems can be formulated in this way, but a notable exception is optimization of functions over discrete variables, for example, integers, which are beyond the scope of this book.

A general optimization problem of the type considered here can be formulated as a minimization problem, $\min_x f(x)$, subject to sets of m equality constraints g(x) = 0 and p inequality constraints $h(x) \le 0$. Here f(x) is a real-valued function of x, which can be a scalar or a vector $x = (x_0, x_1, ..., x_n)^T$, while g(x) and h(x) can be vector valued functions: $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^p$. Note that maximizing f(x) is equivalent to minimizing -f(x), so without loss of generality it is sufficient to consider only minimization problems.

Depending on the properties of the objective function f(x) and the equality and inequality constraints g(x) and h(x), this formulation includes a rich variety of problems. A general mathematical optimization on this form is difficult to solve, and there are no efficient methods for solving completely generic optimization problems. However, there are efficient methods for many important special cases, and in optimization it is therefore important to know as much as possible about the objective functions and the constraints in order to be able to solve a problem.

Optimization problems are classified depending on the properties of the functions f(x), g(x), and h(x). First and foremost, the problem is *univariate* or *one dimensional* if x is a scalar, $x \in \mathbb{R}$, and *multivariate* or *multidimensional* if x is a vector, $x \in \mathbb{R}^n$. For high-dimensional objective functions, with larger n, the optimization problem is harder and more computationally demanding to solve. If the objective function and the constraints all are linear, the problem is a linear optimization problem, or *linear programming* problem. If either the objective function or the constraints are nonlinear, it is a nonlinear optimization problem, or *nonlinear programming* problem. With respect to constraints, important subclasses of optimization are unconstrained problems, and those with linear and nonlinear constraints. Finally, handling equality and inequality constraints require different approaches.

As usual, nonlinear problems are much harder to solve than linear problems, because they have a wider variety of possible behaviors. A general nonlinear problem can have both local and global minima, which turns out to make it very difficult to find the global minima: iterative solvers may often converge to local minima rather that the global minima, or may even fail to converge altogether if there are both local and global minima. However, an important subclass of nonlinear problems that can be solved efficiently

¹For historical reasons, optimization problems are often referred to as *programming* problems, which are not related to computer programming.

is *convex problems*, which are directly related to the absence of strictly local minima and the existence of a unique global minimum. By definition, a function is convex on an interval [a, b] if the values of the function on this interval lies below the line through the end points (a, f(a)) and (b, f(b)). This condition, which can be readily generalized to the multivariate case, implies a number of important properties, such as the existence of a unique minimum on the interval. Because of strong properties like this one, convex problems can be solved efficiently even though they are nonlinear. The concepts of local and global minima, and convex and non-convex functions, are illustrated in Figure 6-1.

Figure 6-1. Illustration of a convex function (left), and a non-convex function (right) with a global minima and two local minima

Whether the objective function f(x) and the constraints g(x) and h(x) are continuous and smooth is another property that has very important implications for the methods and techniques that can be used to solve an optimization problem. Discontinuities in these functions, or their derivatives or gradients, cause difficulties for many of the available methods of solving optimization problems, and in the following we assume that these functions are indeed continuous and smooth. On a related note, if the function itself is not known exactly, but contains noise due to measurements or for other reasons, many of the methods discussed in the following may not be suitable.

Optimization of continuous and smooth functions are closely related to nonlinear equation solving, because extremal values of a function f(x) correspond to points where its derivative, or gradient, is zero. Finding candidates for the optimal value of f(x) is therefore equivalent to solving the (in general nonlinear) equation system $\nabla f(x) = 0$. However, a solution to $\nabla f(x) = 0$, which is known as a stationary point, does not necessarily correspond to a minimum of f(x); it can also be maximum or a saddle point, see Figure 6-2. Candidates obtained by solving $\nabla f(x) = 0$ should therefore be tested for optimality. For unconstrained objective functions the higher-order derivatives, or Hessian matrix

$$\{H_f(x)\}_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j},$$

for the multivariate case, can be used to determine if a stationary point is a local minimum or not. In particular if the second-order derivative is positive, or the Hessian positive definite, when evaluated at stationary point x^* , then x^* is a local minimum. Negative second-order derivative, or negative definite Hessian, correspond to a local maximum and a zero second-order derivative, or an indefinite Hessian, correspond to saddle point.

Figure 6-2. Illustration of different stationary points of a one-dimensional function

Algebraically solving the equation system $\nabla f(x) = 0$ and test the candidate solutions for optimality is therefore one possible strategy for solving an optimization problem. However, it is not always a feasible method. In particular, we may not have an analytical expression for f(x) from which we can compute the derivatives, and the resulting nonlinear equation system may not be easy to solve, especially not to find all of its roots. For such cases, there are alternative numerical optimization approaches, some of which are have analogs among to the root-finding methods discussed in Chapter 5. In the remaining part of this chapter, we explore the various classes of optimization problems, and how such problems can be solved in practice using available optimization libraries for Python.

Univariate Optimization

Optimization of a function that only depends on a single variable is relatively easy. In addition to the analytical approach of seeking the roots of the derivative of the function, we can employ techniques that are similar to the root-finding methods for univariate functions, namely bracketing methods and Newton's method. Like the bisection method for univariate root finding, it is possible to use bracketing and iteratively refine an interval using function evaluations alone. Refining an interval [a, b] that contains a minimum can be achieved by evaluating the function at two interior points x_1 and x_2 , $x_1 < x_2$, and select $[x_1, b]$ as new interval if $f(x_1) > f(x_2)$, and $[a, x_2]$ otherwise. This idea is used in the *golden section search* method, which additionally uses the trick of choosing x_1 and x_2 such that their relative positions in the [a, b] interval satisfies the golden ratio. This has the advantage of allowing us to reuse one function evaluation from the previous iteration and thus only requires one new function evaluation in each iteration, but still reduces the interval with a constant factor in each iteration. For functions with a unique minimum on the given interval, this approach is guaranteed to converge to an optimal point, but this is unfortunately not guaranteed for more complicated functions. It is therefore important to carefully select the initial interval, ideally relatively close to an optimal point. In the SciPy optimize module, the function golden implements the golden search method.

As the bisection method for root finding, the golden search method is a (relatively) safe but a slowly converging method. Methods with better convergence can be constructed if the values of the function evaluations are used, rather than only comparing the values to each other (which is similar to using only the sign of the functions, as in the bisection method). The function values can be used to fit a polynomial, for example, a quadratic polynomial, which can be interpolated to find a new approximation for the minimum, giving a candidate for a new function evaluation, after which the process can be iterated. This approach can converge faster, but is riskier than bracketing and may not converge at all, or may converge to local minima outside the given bracket interval.

Newton's method for root finding is an example of a quadratic approximation method that can be applied to find a function minimum, by applying the method to the derivative rather than the function itself. This yields the iteration formula $x_{k+1} = x_k - f'(x_k) / f''(x_k)$, which can converge quickly if started close to an

optimal point, but may not converge at all if started too far from the optimal value. This formula also requires evaluating both the derivative and the second-order derivative in each iteration. If analytical expressions for these derivatives are available, this can be a good method. If only function evaluations are available, the derivatives may be approximated using an analog of the secant method for root finding.

A combination of the two previous methods is typically used in practical implementations of univariate optimization routines, giving both stability and fast convergence. In SciPy's optimize module, the brent function is such a hybrid method, and it is generally the preferred method for optimization of univariate functions with SciPy. This method is a variant of the golden section search method that uses inverse parabolic interpolation to obtain faster convergence.

Instead of calling the optimize.golden and optimize.brent functions directly, it is practical to use the unified interface function optimize.minimize_scalar, which dispatches to the optimize.golden and optimize.brent functions depending on the value of the method keyword argument, where the currently allowed options are 'Golden', 'Brent', or 'Bounded'. The last option dispatches to optimize.fminbound, which performs optimization on a bounded interval, which corresponds to an optimization problem with inequality constraints that limit the domain of objective function f(x). Note that the optimize.golden and optimize.brent functions may converge to a local minimum outside the initial bracket interval, but optimize.fminbound would in such circumstances return the value at the end of the allowed range.

As an example for illustrating these techniques, consider the following classic optimization problem: Minimize the area of a cylinder with unit volume. Here, suitable variables are the radius r and height h of the cylinder, and the objective function is $f([r,h]) = 2\pi r^2 + 2\pi rh$, subject to the equality constraing $g([r,h]) = \pi r^2 h - 1 = 0$. As this problem is formulated here, it is a two-dimensional optimization problem with an equality constraint. However, we can algebraically solve the constraint equation for one of the dependent variables, for example $h = 1/\pi r^2$, and substitute this into the objective function to obtain an unconstrained one-dimensional optimization probem: $f(r) = 2\pi r^2 + 2/r$. To begin with, we can solve this problem symbolically using SymPy, using the method of equating the derivative of f(r) to zero:

```
In [7]: r, h = sympy.symbols("r, h")
In [8]: Area = 2 * sympy.pi * r**2 + 2 * sympy.pi * r * h
In [9]: Volume = sympy.pi * r**2 * h
In [10]: h_r = sympy.solve(Volume - 1)[0]
In [11]: Area_r = Area.subs(h_r)
In [12]: rsol = sympy.solve(Area_r.diff(r))[0]
In [13]: rsol
Out[13]: \frac{2^{2/3}}{2\sqrt[3]{\pi}}
In [14]: _.evalf()
Out[14]: 0.541926070139289
```

Now verify that the second derivative is positive, and that rsol corresponds to a minimum:

```
In [15]: Area_r.diff(r, 2).subs(r, rsol) Out[15]: 12\pi
In [16]: Area_r.subs(r, rsol) Out[16]: 3\sqrt[3]{2\pi}
In [17]: _.evalf() Out[17]: 5.53581044593209
```

For simple problems this approach is often feasible, but for more realistic problems we typically need to resort to numerical techniques. To solve this problem using SciPy's numerical optimization functions, we first define a Python function f that implements the objective function. To solve the optimization problem we then pass this function to, for example, optimize.brent. Optionally we can use the brack keyword argument to specify a starting interval for this algorithm:

Instead of calling optimize.brent directly, we could use the generic interface for scalar minimization problems, optimize.minimize_scalar. Note that to specify a starting interval in this case, we must use the bracket keyword argument:

All these methods gives us that the radius that minimize the area of the cylinder is approximately 0.54 (the exact result from the symbolic calculation is $2^{2/3}/2\sqrt[3]{\pi}$) and a minimum area of approximately 5.54 (the exact result is $3\sqrt[3]{2\pi}$). The objective function that we minimized in this example is plotted in Figure 6-3, where the minimum is marked with a red star. When possible, it is a good idea to visualize the objective function before attempting a numerical optimization, because it can help identifying a suitable initial interval or a starting point for the numerical optimization routine.

Figure 6-3. The surface area of a cylinder with unit volume as a function of the radius r

Unconstrained Multivariate Optimization

Multivariate optimization is significantly harder than the univariate optimization discussed in the previous section. In particular, the analytical approach of solving the nonlinear equations for roots of the gradient is rarely feasible in the multivariate case, and the bracketing scheme used in the golden search method is also not directly applicable. Instead we must resort to techniques that start at some point in the coordinate space and use different strategies to move toward a better approximation of the minimum point. The most basic approach of this type is to consider the gradient $\nabla f(x)$ of the objective function f(x) at a given point x. In general, the negative of the gradient, $-\nabla f(x)$, always points in the direction in which the function f(x)decreases the most. As minimization strategy, it is therefore sensible to move along this direction for some distance α_{ν} and then iterate this scheme at the new point. This method is known as the *steepest descent* method, and it gives the iteration formula $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$, where α_k is a free parameter known as the linesearch parameter that describes how far along the given direction to move in each iteration. An appropriate α_k can, for example, be selected by solving the one-dimensional optimization problem $\min_{\alpha_n} f(x_n - \alpha_n \nabla f(x_n))$. This method is guaranteed to make progress and eventually converge to a minimum of the function, but the convergence can be quite slow because this method tends to overshoot along the direction of the gradient, giving a zigzag approach to the minimum. Nonetheless, the steepest descent method is the conceptual basis for many multivariate optimization algorithms, and with suitable modifications the convergence can be speed up.

Newton's method for multivariate optimization is a modification of the steepest descent method that can improve convergence. As in the univariate case, Newton's method can be viewed as a local quadratic approximation of the function, which when minimized gives an iteration scheme. In the multivariate case, the iteration formula is $x_{k+1} = x_k - H_f^{-1}(x_k)\nabla f(x_k)$, where compared to the steepest descent method the gradient has been replaced with the gradient multiplied from the left with the inverse of Hessian matrix for the function.² In general this alters both the direction and the length of the step, so this is method is not strictly a steepest descent method, and may not converge if started too far from a minimum. However, close to a minimum it converges quickly. As usual there is a trade-off between convergence rate and stability. As it is formulated here, Newton's method requires both the gradient and the Hessian of the function.

In SciPy, Newton's method is implemented in the function optimize.fmin_ncg. This function takes the following arguments: a Python function for the objective function, a starting point, a Python function for evaluating the gradient, and (optionally) a Python function for evaluating the Hessian. To see how this method can be used to solve an optimization problem we consider the following problem: $\min_x f(x)$ where the objective function is $f(x) = (x_1 - 1)^4 + 5(x_2 - 1)^2 - 2x_1x_2$. To apply Newton's method, we need to calculate the gradient and the Hessian. For this particular case, this can easily be done by hand. However, for the sake of generality, in the following we use SymPy to compute symbolic expressions for the gradient and the Hessian. To this end, we begin by defining symbols and a symbolic expression for the objective function, and then use the sympy.diff function for each variable to obtain the gradient and Hessian in symbolic form:

```
In [23]: x1, x2 = sympy.symbols("x_1, x_2")
In [24]: f_sym = (x1-1)**4 + 5 * (x2-1)**2 - 2*x1*x2
In [25]: fprime_sym = [f_sym.diff(x_) for x_ in (x1, x2)]
```

²In practice, the inverse of the Hessian does not need to be computed, and instead we can solve the linear equation system, $H_f(x_k)y_k = -\nabla f(x_k)$, and use the interation formula $x_{k+1} = x_k + y_k$.

```
In [26]: # Gradient ...: sympy.Matrix(fprime_sym)

Out[26]: \begin{bmatrix} -2x_2 + 4(x_1 - 1)^3 \\ -2x_1 + 10x_2 - 10 \end{bmatrix}

In [27]: fhess_sym = [[f_sym.diff(x1_, x2_) for x1_ in (x1, x2)] for x2_ in (x1, x2)]

In [28]: # Hessian ...: sympy.Matrix(fhess_sym)

Out[28]: \begin{bmatrix} 12(x_1 - 1)^2 & -2 \\ -2 & 10 \end{bmatrix}
```

Now that we have symbolic expression for the gradient and the Hessian, we can create vectorized functions for these expressions using sympy.lambdify.

```
In [29]: f_lmbda = sympy.lambdify((x1, x2), f_sym, 'numpy')
In [30]: fprime_lmbda = sympy.lambdify((x1, x2), fprime_sym, 'numpy')
In [31]: fhess lmbda = sympy.lambdify((x1, x2), fhess sym, 'numpy')
```

However, the functions produced by <code>sympy.lambdify</code> take one argument for each variable in the corresponding expression, and the <code>SciPy</code> optimization functions expect a vectorized function where all coordinates are packed into one array. To obtain functions are compatible with the <code>SciPy</code> optimization routines, we wrap each of the functions generated by <code>sympy.lambdify</code> with a Python function that reshuffles the arguments:

Now the functions f, fprime, and fhess are vectorized Python functions on the form that, for example, optimize.fmin_ncg expects, and we can procede with a numerical optimization of the problem at hand by calling this function. In addition to the functions that we have prepared from SymPy expressions, we also need to give a starting point for the Newton method. Here we use (0,0) as starting point.

The routine found a minimum point at $(x_1, x_2) = (1.88292613, 1.37658523)$, and diagnostic information about the solution was also printed to standard output, including the number of iterations and the number of functions, gradients, and Hessian evaluations that were required to arrive at the solution. As usual it is illustrative to visualize the objective function and the solution (see Figure 6-4):

```
In [38]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x_ = y_ = np.linspace(-1, 4, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, f_lmbda(X, Y), 50)
    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)
```


Figure 6-4. Contour plot of the objective function $f(x) = (x_1 - 1)^4 + 5(x_2 - 1)^2 - 2x_1x_2$. The minimum point is marked by a star

In practice, it may not always be possible to provide functions for evaluating both the gradient and the Hessian of the objective function, and often it is convenient with a solver that only requires function evaluations. For such cases, several methods exists to numerically estimate the gradient or the Hessian, or both. Methods that approximate the Hessian are known as quasi-Newton methods, and there are also alternative iterative methods that completely avoid using the Hessian. Two popular methods are the BFGS and the conjugate-gradient methods, which are implemented in SciPy as the functions optimize.fmin_bfgs and optimize.fmin_cg. The BFGS method is a quasi-Newton method that can gradually build up numerical estimates of the Hessian, and also the gradient, if necessary. The conjugate-gradient method is a variant of the steepest decent method and does not use the Hessian, and it can be used with numerical estimates of the gradient obtained from only function evaluations. With these methods, the number of function

evaluations that are required to solve a problem is much larger than for the Newton's method, which on the other hand also evaluates the gradient and the Hessian. Both optimize.fmin_bfgs and optimize.fmin_cg can optionally accept a function for evaluating the gradient, but if not provided the gradient is estimated from function evaluations.

The problem given above, which was solved with the Newton method, can also be solved using the optimize.fmin bfgs and optimize.fmin cg, without providing a function for the Hessian:

```
In [39]: x opt = optimize.fmin bfgs(f, (0, 0), fprime=fprime)
         Optimization terminated successfully.
             Current function value: -3.867223
             Iterations: 10
             Function evaluations: 14
             Gradient evaluations: 14
In [40]: x opt
Out[40]: array([ 1.88292605, 1.37658523])
In [41]: x opt = optimize.fmin cg(f, (0, 0), fprime=fprime)
         Optimization terminated successfully.
             Current function value: -3.867223
             Iterations: 7
             Function evaluations: 17
             Gradient evaluations: 17
In [42]: x top
Out[42]: array([ 1.88292613, 1.37658522])
```

Note that here, as shown in the diagnostic output from the optimization solvers above, the number of function and gradient evaluations are larger than for Newton's method. As already mentioned, both of these methods can also be used without providing a function for the gradient as well, as shown in the following example using the optimize.fmin_bfgs solver:

In this case the number of function evaluations is even larger, but it is clearly convenient to not have to implement functions for the gradient and the Hessian.

In general, the BFGS method is often a good first approach to try, in particular if neither the gradient nor the Hessian is known. If only the gradient is known, then the BFGS method is still the generally recommended method to use, although the conjugate-gradient method is in general a competitive alternative to the BFGS method. If both the gradient and the Hessian are known, then Newton's method is the method with fastest convergence in general. However, it should be noted that although the BFGS and the conjugate-gradient methods theoretically have slower convergence than Newton's method, they can sometimes offer improved stability and can therefore be preferable. Each iteration can also be more computationally demanding with Newton's method compared to quasi-Newton methods and the conjugate-gradient method, and especially for large problems these methods can be faster in spite of requiring more iterations.

The methods for multivariate optimization that we have discussed so far all converge to a local minimum in general. For problems with many local minima, this can easily lead to a situation when the solver easily gets stuck in a local minimum, even if a global minimum exists. Although there is no complete and general solution to this problem, a practical approach that can partially alleviate this problem is to use a brute force search over a coordinate grid to find a suitable starting point for an iterative solver. At least this gives a systematic approach to find a global minimum within given coordinate ranges. In SciPy, the function optimize.brute can carry out such a systematic search. To illustrate this method, consider the problem of minimizing the function $4\sin x\pi + 6\sin y\pi + (x-1)^2 + (y-1)^2$, which has a large number of local minima. This can make it tricky to pick a suitable initial point for an interative solver. To solve this optimization problem with SciPy, we first define a Python function for the objective function:

To systematically search for the minimum over a coordinate grid we call optimize.brute with the objective function f as first parameter, and a tuple of slice objects as second argument, one for each coordinate. The slice objects specify the coordinate grid over which to search for a minimum value. Here we also set the keyword argument finish=None, which prevents the optimize.brute from automatically refining the best candidate.

```
In [46]: x_start = optimize.brute(f, (slice(-3, 5, 0.5), slice(-3, 5, 0.5)), finish=None)
In [47]: x_start
Out[47]: array([ 1.5,  1.5])
In [48]: f(x_start)
Out[48]: -9.5
```

On the coordinate grid specified by the given tuple of slice objects, the optimal point is $(x_1, x_2) = (1.5, 1.5)$, with corresponding objective function minimum -9.5. This is now a good starting point for a more sophisiticated iterative solver, such as optimize.fmin_bfgs:

Here the BFGS method gave the final minimum point $(x_1, x_2) = (1.47586906, 1.48365788)$, with the minimum value of the objective function -9.52022927306. For this type of problem, guessing the initial starting point easily results in that the iterative solver converges to a local minimum, and the systematic approach that optimize.brute provides is frequently useful.

As always, it is important to visualize the objective function and the solution when possible. The following two code cells plot a contour graph of the current objective function and marks the obtained

solution with a star (see Figure 6-5). As in the previous example, we need a wrapper function for reshuffling the parameters of the objective function because the different convention of how the coordinated vectors are passed to the function (separate arrays, or packed in to one array, respectively).

```
In [52]: def func X Y to XY(f, X, Y):
    . . . :
             Wrapper for f(X, Y) \rightarrow f([X, Y])
    . . . :
             s = np.shape(X)
    . . . :
    . . . :
             return f(np.vstack([X.ravel(), Y.ravel()])).reshape(*s)
In [53]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x_ = y_ = np.linspace(-3, 5, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 25)
    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set ylabel(r"$x_2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)
```


Figure 6-5. Contour plot of the objective function $f(x) = 4 \sin x\pi + 6 \sin y\pi + (x-1)^2 + (y-1)^2$. The minimum is marked with a star

In this section, we have explicitly called functions for specific solvers, for example optimize.fmin_bfgs. However, like for scalar optimization, SciPy also provides a unified interface for all multivariate optimization solvers with the function optimize.minimize, which dispatches out to the solver-specific functions depending on the value of the method keyword argument (remember, the univariate minimization function

that provides a unified interface is optimize.scalar_minimize). For clarity, here we have favored explicitly calling functions for specific solvers, but in general it is a good idea to use optimize.minimize, as this makes it easier to switch between different solvers. For example, in the previous example where we used optimize. fmin bfgs in the following way:

```
In [54]: x_opt = optimize.fmin_bfgs(f, x_start)
we could just as well have used:
In [55]: result = optimize.minimize(f, x_start, method='BFGS')
In [56]: x opt = result.x
```

The optimize.minimize function returns an instance of optimize.OptimizeResult that represents the result of the optimization. In particular, the solution is available via the x attribute of this class.

Nonlinear Least Square Problems

In the Chapter 5 we encounter linear least square problems, and explored how they can be solved with linear algebra methods. In general, a least square problem can be viewed as an optimization problem with the

objective function $g(\beta) = \sum_{i=0}^m r_i(\beta)^2 = \|r(\beta)\|^2$, where $r(\beta)$ is a vector with the residuals $r_i(\beta) = y_i - f(x_i, \beta)$ for a set of m obervations (x_i, y_i) . Here β is a vector with unknown parameters that specifies the function $f(x, \beta)$. If this problem is nonlinear in the parameters β , it is known as a nonlinear least square problem and since it is nonlinear it cannot be solved with the linear algebra techniques discussed in Chapter 5. Instead, we can use the multivariate optimization techniques described in the previous section, such as Newton's method or a quasi-Newton method. However, this nonlinear least square optimization problem has a specific structure, and several methods that are tailored to solve this particular optimization problem has been developed. One example is the Levenberg-Marquardt method, which is based on the idea of successive linearizations of the problem in each iteration.

In SciPy, the function optimize.leastsq provides a nonlinear least square solver that uses the Levenberg-Marquardt method. To illustrate how this function can be used, consider a nonlinear model on the form $f(x,\beta) = \beta_0 + \beta_1 \exp\left(-\beta_2 x^2\right)$ and a set of observations (x_p, y_i) . In the following example, we simulate the observations with random noise added to the true values, and we solve the minimization problem that gives the best least square estimates of the parameters β . To begin with, we define a tuple with the true values of the parameter vector β , and Python function for the model function. This function, which should return the y value corresponding to a given x value, takes as first argument the variable x, and the following arguments are the unknown function parameters.

```
In [57]: beta = (0.25, 0.75, 0.5)
In [58]: def f(x, b0, b1, b2):
    ...: return b0 + b1 * np.exp(-b2 * x**2)
```

Once the model function is defined, we generate randomized data points that simulate the observations.

```
In [59]: xdata = np.linspace(0, 5, 50)
In [60]: y = f(xdata, *beta)
In [61]: ydata = y + 0.05 * np.random.randn(len(xdata))
```

With the model function and observation data prepared, we are ready to start solving the nonlinear least square problem. The first step is to define a function for the residuals given the data and the model function, which is specified in terms of the yet-to-be determined model parameters β .

Next we define an initial guess for the parameter vector and let the optimize.leastsq function solve for the best least square fit for the parameter vector:

```
In [63]: beta_start = (1, 1, 1)
In [64]: beta_opt, beta_cov = optimize.leastsq(g, beta_start)
In [65]: beta_opt
Out[65]: array([ 0.25733353,  0.76867338,  0.54478761])
```

Here the best fit is quite close to the true parameter values (0.25, 0.75, 0.5), as defined earlier. By plotting the observation data and the model function for the true and fitted function parameters, we can visually confirm that the fitted model seems to describe the data well (see Figure 6-6).

```
In [66]: fig, ax = plt.subplots()
    ...: ax.scatter(xdata, ydata)
    ...: ax.plot(xdata, y, 'r', lw=2)
    ...: ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2)
    ...: ax.set_xlim(0, 5)
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)
```


Figure 6-6. Nonlinear least square fit to the function $f(x,\beta) = \beta_0 + \beta_1 \exp(-\beta_2 x^2)$ with $\beta = (0.25, 0.75, 0.5)$

The SciPy optimize module also provides an alternative interface to nonlinear least square fitting, through the function optimize.curve_fit. This is a convenience wrapper around optimize.leastsq, which eliminates the need to explicitly defining the residual function for the least square problem. The previous problem could therefore be solved more concisely using the following:

```
In [67]: beta_opt, beta_cov = optimize.curve_fit(f, xdata, ydata)
In [68]: beta_opt
Out[68]: array([ 0.25733353,  0.76867338, 0.54478761])
```

Constrained Optimization

Constraints add another level of complexity to optimization problems, and they require a classification of their own. A simple form of constrained optimization is the optimization where the coordinate variables are subject to some bounds. For example: $\min_x f(x)$ subject to $0 \le x \le 1$. The constraint $0 \le x \le 1$ is simple because it only only restricts the range of the coordinate without dependencies on the other variables. This type of problem can be solved using the L-BFGS-B method in SciPy, which is a variant of the BFGS method we used earlier. This solver is available through the function optimize.fmin_1_bgfs_b or via optimize.minimize with the method argument set to 'L-BFGS-B'. To define the coordinate boundaries, the bound keyword argument must be used, and its value should be a list of tuples that contain the minimum and maximum value of each constrained variable. If the minimum or maximum value is set to None, it is interpreted as an unbounded.

As an example of solving a bounded optimization problem with the L-BFGS-B solver, consider minimizing the objective function $f(x) = (x_1 - 1)^2 - (x_2 - 1)^2$ subject to the constraints $2 \le x_1 \le 3$ and $0 \le x_2 \le 2$. To solve this problem, we first define a Python function for the objective functions and tuples with the boundaries for each of the two variables in this problem, according to the given constraints. For comparison, in the following code we also solve the unconstrained optimization problem with the same objective function, and we plot a contour graph of the objective function where the unconstrained and constrained minimum values are marked with blue and red stars, respectively (see Figure 6-7).

```
In [69]: def f(X):
    ...:
            x, y = X
            return (x - 1)**2 + (y - 1)**2
In [70]: x opt = optimize.minimize(f, (1, 1), method='BFGS').x
In [71]: bnd x1, bnd x2 = (2, 3), (0, 2)
In [72]: x cons opt = optimize.minimize(f, np.array([1, 1]), method='L-BFGS-B',
                                        bounds=[bnd x1, bnd x2]).x
In [73]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x = y = np.linspace(-1, 3, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)
    ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)
    ...: ax.plot(x cons opt[0], x cons opt[1], 'r*', markersize=15)
    ...: bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]),
                                    bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0],
                                    facecolor="grey")
    ...: ax.add patch(bound rect)
    ...: ax.set xlabel(r"$x 1$", fontsize=18)
    ...: ax.set ylabel(r"$x 2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)
```


Figure 6-7. Contours of the objective function f(x), with the unconstrained (blue star) and constrained minima (red star). The feasible region of the constrained problem is shaded in gray

Constraints that are defined by equalities or inequalities that include more than one variable are more complicated to deal with. However, there are general techniques also for this type of problems. For example, using the Lagrange multipliers, it is possible to convert a constrained optimization problem to an unconstrained problem by introducing additional variables. For example, consider the optimization problem $\min_x f(x)$ subject to the equality constraint g(x) = 0. In an unconstrained optimization problem the gradient of f(x) vanish at the optimal points, $\nabla f(x) = 0$. It can be shown that the corresponding condition for constrained problems is that the negative gradient lies in the space supported by the constraint normal, $-\nabla f(x) = \lambda J_g^T(x)$. Here $J_g(x)$ is the Jacobian matrix of the constraint function g(x) and λ is the vector of Lagrange multipliers (new variables). This condition is the gradient of the function $\Lambda(x,\lambda) = f(x) + \lambda^T g(x)$, which is known as the Lagrangian function. Therefore, if both f(x) and g(x) have continuous and smooth, a stationary point (x_0,λ_0) of the $\Lambda(x,\lambda)$ corresponds to a x_0 is an optimum of the original constrained optimization problem. Note that if g(x) is a scalar function (that is, there is only one constraint), then the Jacobian $J_g(x)$ reduces to the gradient $\nabla g(x)$.

To illustrate this technique, consider the problem of maximizing the volume of a rectangle with sides of length x_1 , x_2 and x_3 , subject to the constraint that the total surface area should be unity: $g(x) = 2x_1x_2 + 2x_0x_2 + 2x_1x_0 - 1 = 0$. To solve this optimization problem using Lagrange multipliers, we form the Lagrangian $\Lambda(x) = f(x) + \lambda g(x)$, and seek the stationary points for $\nabla \Lambda(x) = 0$. With SymPy, we can carry out this task by first defining the symbols for the variables in the problem, then constructing expressions for f(x), g(x) and $\Lambda(x)$,

```
In [74]: x = x0, x1, x2, l = sympy.symbols("x_0, x_1, x_2, lambda") In [75]: <math>f = x0 * x1 * x2 In [76]: g = 2 * (x0 * x1 + x1 * x2 + x2 * x0) - 1 In [77]: L = f + l * g
```

and finally computing $\nabla \Lambda(x)$ using sympy.diff and solving the equation $\nabla \Lambda(x) = 0$ using sympy.solve:

```
In [78]: grad_L = [sympy.diff(L, x_) for x_ in x]  
In [79]: sols = sympy.solve(grad_L)  
In [80]: sols  
Out[80]: \left[\left\{\lambda : -\frac{\sqrt{6}}{24}, x_0 : \frac{\sqrt{6}}{6}, x_1 : \frac{\sqrt{6}}{6}, x_2 : \frac{\sqrt{6}}{6}\right\}, \left\{\lambda : \frac{\sqrt{6}}{24}, x_0 : -\frac{\sqrt{6}}{6}, x_1 : -\frac{\sqrt{6}}{6}, x_2 : -\frac{\sqrt{6}}{6}\right\}\right]
```

This procedure gives two stationary points. We could determine which one corresponds to the optimal solution by evaluating the objective function for each case. However, here only one of the stationary points corresponds to a physically acceptable solution: since x_i is the length of a rectangle side in this problem, it must be positive. We can therefore immediately identify the interesting solution, which corresponds to the intuitive result $x_0 = x_1 = x_2 = \frac{\sqrt{6}}{6}$ (a cube). As a final verification, we evaluate the constraint function and the objective function using the obtained solution:

```
In [81]: g.subs(sols[0])
Out[81]: 0
In [82]: f.subs(sols[0])
Out[82]: \frac{\sqrt{6}}{36}
```

This method can be extended to handle inequality constraints as well, and there exists various numerical methods of applying this approach. One example is the method known as sequential least squares programming, abbreviated as SLSQP, which is available in the SciPy as the optimize.slsqp function and via optimize.minimize with method='SLSQP'. The optimize.minimize function takes the keyword argument constraints, which should be a list of dictionaries that each specifies a constraint. The allowed keys (values) in this dictionary are type ('eq' or 'ineq'), fun (constraint function), jac (Jacobian of the constraint function), and args (additional arguments to constraint function and the function for evaluating its Jacobian). For example, the constraint dictionary describing the constraint in the previous problem would be dict(type='eq', fun=g).

To solve the full problem numerically using SciPy's SLSQP solver, we need to define Python functions for the objective function and the constraint function:

Note that since the SciPy optimization functions solve minimization problems, and here we are interested in maximization, the function f is here the negative of the original objective function. Next we define the constraint dictionary for g(x) = 0, and finally call the optimize minimize function

```
nfev: 95
    fun: -0.068041368623352985
        x: array([ 0.40824187,  0.40825127,  0.40825165])
    message: 'Optimization terminated successfully.'
        jac: array([-0.16666925, -0.16666542, -0.16666527,  0.  ])
        nit: 18
In [88]: result.x
Out[88]: array([ 0.40824187,  0.40825127,  0.40825165])
```

As expected, the solution agrees well with the analytical result obtained from the symbolic calculation using Lagrange multipliers.

To solve problems with inequality constraints, all we need to do is to set type='ineq' in the constraint dictionary and provide the corresponding inequality function. To demonstrate minimization of a nonlinear objective function with a nonlinear inequality constrained, we return to the quadratic problem considered previously, but in this case with inequality constraint $g(x) = x_1 - 1.75 - (x_0 - 0.75)^4 \ge 0$. As usual, we begin by defining the objective function and the constraint function, as well as the constraint dictionary:

Next, we are ready to solve the optimization problem by calling the optimize.minimize function. For comparison, here we also solve the corresponding unconstrained problem.

To verify the soundness of the obtained solution, we plot the contours of the objective function together with a shaded area representing the feasible region (where the inequality constraint is satisfied). The constrained and unconstrained solutions are marked with a red and a blue star, respectively (see Figure 6-8).

Figure 6-8. Contour plot of the objective function with the feasible region of the constrained problem shaded gray. The red and blue stars are the optimal points in the constained and unconstrained problems, respectively

For optimization problems with *only* inequality constraints, SciPy provides an alternative solver using the constrained optimization by linear approximation (COBYLA) method. This solver is accessible either through optimize.fmin_cobyla or optimize.minimize with method='COBYLA'. The previous example could just as well have been solved with this solver, by replacing method='SLSQP' with method='COBYLA'.

Linear Programming

In the previous section we considered methods for very general optimization problems, where the objective function and constraint functions all can be nonlinear. However, at this point it is worth taking a step back to consider a much more restricted type of optimization problem: namely, *linear programming*, where the objective function is linear and all constraints are linear equality or inequality constraints. The class of problems is clearly much less general, but it turns out that linear programming has many important applications, and they can be solved vastly more efficiently that general nonlinear problems. The reason for this is that linear problems have properties that enable completely different methods to be used. In particular, the solution to linear optimization problem must necessarily lie on a constraint boundary, so it is sufficient to search the vertices of the intersections of the linear constraints functions. This can be done efficiently in practice. A popular algorithm for this type of problems is known as *simplex*, which systematically moves from one vertix to another until the optimal vertix has been reached. There are also more recent interior point methods that efficiently solve linear programming problems. With these methods, linear programming problems with thousands of variables and constraints are readily solvable.

Linear programming problems are typically written in the so-called standard form: $\min_{x} c^T x$ where $Ax \le b$ and $x \ge 0$. Here c and x are vectors of length n, and A is a $m \times n$ matrix and b a m-vector. For example, consider the problem of minimizing the function $f(x) = -x_0 + 2x_1 - 3x_2$, subject to the three inequality constraints $x_0 + x_1 \le 1$, $-x_0 + 3x_1 \le 2$, $-x_1 + x_2 \le 3$. On the standard form we have c = (-1, 2, -3), b = (1, 2, 3) and

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

To solve this problem, here we use the cvxopt library, which provides the linear programming solver with the cvxopt.solvers.lp function. This solver expects as arguments the c, A and b vectors and matrix used in the standard form introduced above, in the given order. The cvxopt library uses its own classes for representing matrices and vectors, but fortunately they are interopterable with NumPy arrays via the array interface³ and can therefore be cast from one form to another using the cvxopt.matrix and np.array functions. Since NumPy array is the de facto standard array format in the scientific Python environment, it is sensible to use NumPy array as far as possible and only convert to cvxopt matrices when necessary, that is, before calling one of the solvers in cvxopt.solvers.

To solve the stated example problem using the cvxopt library, we therefore first create NumPy arrays for the c, A and b array, and convert them to cvxopt matrices using the cvxopt matrix function:

The cvxopt compatible matrices and vectors c_, A_, and b_, can now be passed to the linear programming solver cvxopt.solvers.lp:

³For details, see http://docs.scipy.org/doc/numpy/reference/arrays.interface.html.

The solution to the optimization problem is given in terms of the vector x, which in this particular example is x = (0.25, 0.75, 3.75), which corresponds to the f(x) value -10. With this method and the cvxopt.solvers.lp solver, linear programming problems with hundreds or thousands of variables can readily be solved. All that is needed is to write the optimization problem on standard form and create the c, A, and b arrays.

Summary

Optimization – to select the best option from a set of alternatives – is fundamental in many applications in science and engineering. Mathematical optimization provides a rigorous framework for systematically treating optimization problems, if they can be formulated as a mathematical problem. Computational methods for optimization are the tools with which such optimization problems are solved in practice. In a scientific computing environment, optimization therefore plays a very important role. For scientific computing with Python, the SciPy library provides efficient routines for solving many standard optimization problems, which can be used to solve a vast variety of computational optimization problems. However, optimization is a large field in mathematics, requiring arrays of different methods for solving different types of problems, and there are several optimization libraries for Python that provide specialized solvers for specific type of optimization problems. In general, the SciPy optimize module provides good and flexible general-purpose solvers for a wide variety of optimization problems, but for specific types of optimization problems there are also many specialized libraries that provide better performance or more features. An example of such a library is cvxopt, which complements the general-purpose optimization routines in SciPy with efficient solvers for linear and quadratic problems.

Further Reading

For an accessible introduction to optimization, with more detailed discussions of the numerical properties of several of the methods introduced in this chapter, see the book by Heath. For a more rigorous and in-depth introduction to optimization, see the book by Chong. A thorough treatment of convex optimization is given in the excellent book by Boyd, which is also available online at http://stanford.edu/~boyd/cvxbook.

References

Boyd, S.L.V. (2004). Convex Optimization. Cambridge: Cambridge University Press.

E.K.P. Chong, S. Z. (2013). An Introduction to Optimization. 4th ed. New York: Wiley.

Heath, M. (2002). Scientific Computing: An Introductory Survey. 2nd ed. Boston: McGraw-Hill.