IVP

April 2, 2025

Initial Value Problems for Systems Modeling

This notebook summarizes 10 fundamental initial value problems (IVPs) used in mathematical modeling across biology, chemistry, and physics. Each IVP includes a differential equation and an initial condition.

1. Exponential Growth

This describes a process where the rate of change of a population (or quantity) is proportional to its current size.

IVP:

$$\frac{dP}{dt} = rP, \quad P(0) = P_0$$

Solution:

$$P(t) = P_0 e^{rt}$$

2. Logistic Growth

This introduces a carrying capacity which limits growth as the population increases.

IVP

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right), \quad P(0) = P_0$$

Solution:

$$P(t) = \frac{K}{1 + \left(\frac{K - P_0}{P_0}\right)e^{-rt}}$$

3. Pharmacokinetics (Drug Clearance)

Describes how a drug enters and is removed from the bloodstream.

IVP:

$$\frac{dC}{dt} = k_{\rm in} - k_{\rm out}C, \quad C(0) = C_0$$

Solution:

$$C(t) = \frac{k_{\rm in}}{k_{\rm out}} + \left(C_0 - \frac{k_{\rm in}}{k_{\rm out}}\right) e^{-k_{\rm out}t}$$

4. SIR Epidemiological Model

Tracks susceptible (S), infected (I), and recovered (R) individuals.

System:

$$\frac{dS}{dt} = -\beta SI \ \frac{dI}{dt} \ = \beta SI - \gamma I \ \frac{dR}{dt} = \gamma I$$

 $\mbox{Initial Conditions:} \ S(0) = S_0, \quad I(0) = I_0, \quad R(0) = R_0 \label{eq:summary}$

5. Predator-Prey Model (Lotka-Volterra)

Describes how predator and prey populations affect each other.

System:

$$\frac{dx}{dt} = ax - bxy \frac{dy}{dt} = cxy - dy$$

Initial Conditions: $x(0) = x_0, \quad y(0) = y_0$

6. Enzyme Kinetics (Michaelis-Menten)

Describes how a substrate is consumed in an enzymatic reaction.

IVP:

$$\frac{dS}{dt} = -\frac{V_{\rm max}S}{K_m + S}, \quad S(0) = S_0 \label{eq:solution}$$

7. Genetic Circuit with Negative Feedback

A gene produces a protein that inhibits its own production.

IVP:

$$\frac{dP}{dt} = \frac{\alpha}{1+P^n} - \beta P, \quad P(0) = P_0$$

8. Fick's Law (Diffusion)

Describes how a substance diffuses out of a cell or membrane.

IVP:

$$\frac{dC}{dt} = -kC, \quad C(0) = C_0$$

Solution:

$$C(t) = C_0 e^{-kt} \,$$

9. Tumor Growth Model (Gompertz)

Describes a tumor that grows fast early and slows as it reaches a max size.

IVP

$$\frac{dT}{dt} = rT \ln \left(\frac{K}{T}\right), \quad T(0) = T_0$$

Solution:

$$T(t) = K \exp\left[\ln\left(\frac{T_0}{K}\right)e^{-rt}\right]$$

10. Calcium Dynamics in Neurons

Describes how calcium concentration changes due to influx and removal.

IVP (Same as Pharmacokinetics):

$$\frac{dC}{dt} = k_{\rm in} - k_{\rm out}C, \quad C(0) = C_0$$

```
[2]: import numpy as np
     import matplotlib.pyplot as plt
     from scipy.integrate import solve_ivp
     # Time range
     t_{span} = (0, 20)
     t_eval = np.linspace(*t_span, 300)
     # 1. Exponential Growth
     def exponential_growth(t, P, r):
         return r * P
     # 2. Logistic Growth
     def logistic_growth(t, P, r, K):
         return r * P * (1 - P / K)
     # 3 & 10. Pharmacokinetics / Calcium Dynamics
     def clearance_model(t, C, k_in, k_out):
         return k_in - k_out * C
     # 4. SIR Model
     def sir_model(t, y, beta, gamma):
         S, I, R = y
         dSdt = -beta * S * I
         dIdt = beta * S * I - gamma * I
         dRdt = gamma * I
         return [dSdt, dIdt, dRdt]
     # 5. Predator-Prey
     def predator_prey(t, y, a, b, c, d):
         x, y_pred = y
         dxdt = a * x - b * x * y_pred
         dydt = c * x * y_pred - d * y_pred
         return [dxdt, dydt]
     # 6. Michaelis-Menten
     def michaelis_menten(t, S, Vmax, Km):
         return -Vmax * S / (Km + S)
     # 7. Genetic Circuit
```

```
def genetic_circuit(t, P, alpha, beta, n):
   return alpha / (1 + P**n) - beta * P
# 9. Gompertz Tumor Growth
def gompertz_growth(t, T, r, K):
   return r * T * np.log(K / T)
# Solver and plotter function
def solve and plot(model, y0, params, title):
    sol = solve_ivp(lambda t, y: model(t, y, *params), t_span, y0,__
 →t eval=t eval)
   plt.plot(sol.t, sol.y.T)
   plt.title(title)
   plt.xlabel("Time")
   plt.legend([f"y{i}" for i in range(len(y0))])
   plt.grid(True)
   plt.show()
# Run and plot each model
solve_and_plot(exponential_growth, [1], [0.5], "1. Exponential Growth")
solve_and_plot(logistic_growth, [1], [1.0, 10], "2. Logistic Growth")
solve_and_plot(clearance_model, [0], [2.0, 0.5], "3. Pharmacokinetics")
solve_and_plot(lambda t, y: sir_model(t, y, 0.3, 0.1), [0.99, 0.01, 0], [], "4.__
⇔SIR Model")
solve_and_plot(lambda t, y: predator_prey(t, y, 1.0, 0.1, 0.075, 1.5), [10, 5], __
solve_and_plot(michaelis_menten, [10], [2.0, 5.0], "6. Michaelis-Menten")
solve_and_plot(genetic_circuit, [1], [5.0, 1.0, 2], "7. Genetic Circuit")
solve_and_plot(clearance_model, [10], [0.0, 0.3], "8. Fick's Law")
solve_and_plot(gompertz_growth, [0.5], [1.0, 10.0], "9. Gompertz_Tumor_Growth")
solve_and_plot(clearance_model, [5], [1.5, 0.4], "10. Calcium Dynamics")
```


3. Pharmacokinetics

