CATEGORICAL PREDICTOR EMBEDDINGS IN ACTUARIAL MODELING

A Preprint

Kevin Kuo RStudio and Kasa AI Ronald Richman QED Actuaries and Consultants

kevin@kasa.ai

ronaldrichman@gmail.com

March 15, 2021

Abstract

Enter the text of your abstract here.

Keywords blah · blee · bloo · these are optional and can be removed

1 Introduction

Categorical data are modelled by actuaries in many different contexts, from pricing of insurance products to reserving for the liabilities generated by these products. Sometimes, these data are modelled in an explicit manner, for example, when building models that apply across multiple categories, a form of dummy coding is usually used. For example, when building models to price the frequency of motor insurance claims, claim experience relating to different types of motor vehicle will often be modelled by including a (single) factor within models that modifies the relative frequency predicted for each type of vehicle. In other cases, modelling is performed for each category separately, thus the categorical data is used within the modelling in an implicit manner, for example, common practice is to estimate reserves for different lines of business separately, meaning to say, with no parameters being shared across each of the reserving models.

Recently, several studies of insurance problems have applied an alternative approach, originally from the natural known as **categorical embeddings**. Instead of trying to capture the differences between categories using a single factor, the categorical embedding approach rather maps each category to a low-dimensional numeric vector, which is then used within the model as a new predictor variable.

This approach to modelling categorical data has several advantages over more traditional treatments of categorical data. Using categorical embeddings instead of traditional techniques has been shown to increase predictive accuracy of models, for example, see (Richman 2018) in the context of pricing. Models incorporating categorical embeddings can be pre-calibrated to traditional actuarial models, increasing the speed with which these models can be calibrated and leading to models with better explainability (Wüthrich and Merz 2019). Finally, the similarity between the vectors learned for different categories can be inspected, sometimes leading to insights into the workings of models, see, for example, (Kuo 2019).

On the other hand, several open questions about the use of embeddings within actuarial work remain, which we aim to address in this study. First, hyperparameter settings for embeddings, such as the dimensions of the embedding layer and the use of regularization techniques such as dropout or normalization, that achieve optimal predictive performance has not yet been studied in detail in the actuarial literature. In this work, we aim to study how embeddings using different settings perform in the context of a large-scale predictive modelling problem, and give guidance on the process that can be followed to determine this in other problems. Although neural network have been shown to achieve excellent predictive accuracy on actuarial tasks, many actuaries still prefer to use GLM models for pricing tasks, thus, the issue of whether transferring embeddings to GLM models can achieve better performance is considered in this paper. Traditional actuarial techniques

such as credibility theory have been used to work with some types of categorical data, but no study has been performed whether this can be applied within embeddings; here, we investigate whether performance is enhanced by applying credibility theory on embeddings relating to categorical variables with many labels. Whereas embedding layers are usually considered in the context of categorical data, the option exists to quantize numerical data and model it using embeddings, however, the results of doing so have not been investigated. Finally, in the past several years, a new type of neural network architecture based on attention (Vaswani et al. 2017a) has been successfully used on embeddings in the field of natural language processing and we incorporate attention based models into our predictive modelling example.

In this work, we utilize the recently released National Flood Insurance Program (NFIP) dataset (Federal Emergency Management Agency 2019) which provides exposure information for policies written under the NFIP since XXXXDateXXXX, as well as the claims data relating to these exposures. We refer the reader to Appendix ?? for an exploratory analysis of this dataset.

The rest of this manuscript is organized as follows. Section 2 reviews recent applications of embeddings in the actuarial literature. Section 3 provides the notation used in the paper and defines GLMs, neural networks and related modelling concepts, including embeddings and attention. In Section ??, we provide initial models for the NFIP dataset and consider the influence of hyperparameter choices on the results of the neural network model. Section ?? considers how successfully the embeddings used in the neural network model can be transferred to a GLM model of the same data. Extensions to the modelling approach are considered in Section 5 and we focus on attention based models in Section 3.2.2. The interpretability of embedding layers is addressed in Section 4.3. Finally, Section 7 provides a discussion of the results of this paper and considers avenues for future research.

(TODO: link to github repo)

2 Literature Review

Categorical data are usually modelled within GLMs and other predictive models using indicator variables which capture the effect of each level of the category, see, for example, Section 2 in (Goldburd et al. 2020), using one of two main encoding schemes: dummy-coding and one-hot encoding. Dummy-coding, used in the popular R statistical software, assigns one level of the category as a baseline, for which an indicator variable is not calibrated, and the rest of the levels are assigned indicator variables, thus, producing estimates within the model of how the effects of each level differ from the baselines. One-hot encoding, often used in machine learning, is similar to dummy-coding, but assigns indicator variables to each level, in other words, calibrates an extra indicator variable compared with dummy-coding.

A different approach to modelling categorical data is credibility theory (see (Bühlmann and Gisler 2005) for an overview), which, in the context of rating, can be applied to derive premiums that reflect the experience of a particular policyholder, by estimating premiums as a weighted average between the premium produced using the collective experience (i.e. of all policyholders) and the premium produced using the experience of the particular policyholder. The weight used in this average is called a credibility factor and is calculated with reference to te variability of the policyholder experience relative to the variability of the group experience. In this context, the implicit categorical variable is the policyholder under consideration.

Generalized Linear Mixed Models (GLMMs) are an extension of GLMs that are designed for modelling categorical data using a principle very similar to that of credibility theory (Klinker 2010). Instead of calibrating indicator variables for each level of the category, GLMMs estimate effects for each of these levels as a combination of the overall group mean and the experience in each level of the category.

Embedding layers represent a different approach to the problem of modelling categorical data that was recently introduced in an actuarial context. Note that in the next section, we reflect on similarities between the conventional approaches discussed above and embedding layers. (Richman 2018) reviewed the concept of embedding layers and connected the sharing of information across categories to the familiar concept of credibility theory. In that work, two applications of embedding layers were demonstrated. The first of these was in a Property and Casualty (P&C) pricing context, it was shown that the out-of-sample accuracy of a neural network trained to predict claims frequencies on motor third party liability was enhanced by modelling the categorical variables within this dataset using embedding layers. Second, a neural network with embedding layers was used to model all of the mortality rates in the Human Mortality Database, where the differences in population mortality across countries and the differences in mortality at different ages were

state	state_CA	state_MD	state_ND	state_UT	state_WA
CA	1	0	0	0	0
MD	0	1	0	0	0
ND	0	0	1	0	0
UT	0	0	0	1	0
WA	0	0	0	0	1

Table 1: Example one-hot encoding of the state variable

modelled with embedding layers, again producing more accurate out of sample performance than the other models tested.

Contemporaneous with that work is the DeepTriangle model of (Kuo 2019), which applied recurrent neural networks to the problem of Incurred but not Reported (IBNR) loss reserving, to model jointly the paid and incurred losses in the Schedule P dataset. Embedding layers were used to capture the effect of differences in reserving delays and loss ratios for each company in the Schedule P dataset. Evaluating the results of the DeepTriangle method showed that the out of sample performance of the model (tested against the lower triangles in the Schedule P dataset) exceeded that of traditional IBNR reserving techniques.

Many other applications of embeddings have subsequently appeared in the actuarial literature. Within mortality forecasting, (Richman and Wüthrich 2019) and (Perla et al. 2020) both apply embeddings layers to model and forecast mortality rates on a large scale. (Wüthrich and Merz 2019) discussed how embeddings can be calibrated using GLM techniques and then incorporated into a combined actuarial neural network, with subsequent contributions in P&C pricing by (Schelldorfer and Wüthrich 2019) and in IBNR reserving by (Gabrielli 2019) and (Gabrielli, Richman, and Wüthrich 2019). Other applications in IBNR reserving are in (Kuo 2020) and (Delong, Lindholm, and Wuthrich 2020) who use embedding layers to model individual claims development.

3 Theoretical Overview

In this study, we are concerned with regression modelling, which is the task of predicting an unknown outcome y on the basis of information about that outcome contained in predictor variables, or features, stored in a matrix X. For simplicity, we only consider the case of univariate outcomes, i.e., $y \in \mathbb{R}^1$. The outcomes and the rows of the predictor variable matrix are indexed by $i \in \{1 \dots I\}$, where i represents a particular observation of (y_i, \mathbf{x}_i) , where bold indicates that we are now dealing with a vector. The columns of the predictor variables are indexed by $j \in \{1 \dots J\}$, where j represents a particular predictor variable, of which J have been observed, thus, we use the notation X_j to represent the jth predictor variable and $X \in \mathbb{R}^J$. Formally, we look to build regression models that map from the predictor variables \mathbf{x}_i to the outcome y using a function f of the form:

$$\mathbf{f}: \mathbb{R}^J \mapsto \mathbb{R}^1, \quad \mathbf{x_i} \mapsto \mathbf{f}(\mathbf{x_i}) = y.$$

In this study, will use mainly use GLMs and neural networks to approximate the function f(.).

The predictor variables that we consider here are comprised of two types: continuous variables, taking on numerical values and represented by the matrix X_{num} with J^{num} columns, and categorical variables, which take on discrete values indicating one of several possible categories, represented by the matrix X_{cat} with J^{cat} columns, such that $J^{num} + J^{cat} = J$.

3.1 Categorical data modeling

A categorical variable $X_j, j \in J_{cat}$ takes as its value only one of a finite number of labels. Let the set of labels be $\mathcal{P}^j = \{p_1^j, p_2^j, \dots, p_{n_{\mathcal{P}}^j}^j\}$, where $n_{\mathcal{P}}^j = |\mathcal{P}^j|$ is the cardinality or number of levels, in \mathcal{P}^j . One-hot encoding maps each value $x_{i,j}$ of X_j to $n_{\mathcal{P}}^j$ indicator variables, which take a value of 1 if the label of $x_{i,j}$ corresponds to the level of the indicator variable, and 0 otherwise. An example of one-hot encoding is shown in Table ??.

One-hot encoding is often used in the machine learning community while the statistical community often favors dummy coding, which, instead of assigning n_n^j indicator variables, assigns one of the levels of the

state	state_MD	state_ND	state_UT	state_WA
CA	0	0	0	0
MD	1	0	0	0
ND	0	1	0	0
UT	0	0	1	0
WA	0	0	0	1

Table 2: Example dummy encoding of the state variable

categories as a baseline, and maps all of the other $n_p^j - 1$ variables to indicator variables. An example of dummy encoding is shown in Table ??.

After encoding the categorical data in this manner, most regression models such as GLMs will then fit coefficients for each level of the category in the table (if a tree based model is used, such as decision tree, then splits in the tree may occur depending on the presence, or not, of the categorical variable for the data). If one-hot encoding has been used, $n_{\mathcal{P}}^j$ coefficients will be fit, compared to $n_{\mathcal{P}}^j - 1$ coefficients in the case of dummy coding.

These coefficients represent the effect that each level of the categorical variable will have on the outcome. In the case that there are no other variables available in the dataset, then the coefficients will reflect the average value of the outcomes for that level of the categorical variable. For example, suppose that the categorical variable is a policyholder identifier, and the outcomes are the value of claims in different years, then the coefficients will reflect the average annual claims for each policyholder based on the experience. In other words, both of these encoding schemes give full credibility to the data available for each category, thus, even if a relatively small amount of data is available for a specific policyholder, the coefficient that is calibrated will only reflect that data. On the other hand, a foundational technique within actuarial work is the application of credibility methods, which are used for experience rating and other applications. These techniques provide an estimate that reflects not only the experience of the individual policyholder but also that of the collective, based on an estimate of how credible the data for each individual is. While we have described the application of credibility in a simple univariate context, it is also possible to apply credibility considerations within GLMs. using models known as Generalized Linear Mixed Models or GLMMs, and we refer to (Klinker 2010) for more details.

Having described traditional approaches for modeling categorical data, we now turn to neural networks, and discuss embedding layers for categorical data modeling, which we define in more detail in the section on neural networks.

3.2 Neural Networks

Neural networks are flexible machine learning models that have recently been applied to a number of problems with Property and Casualty (P&C) insurance. Here, we provide a brief overview of these models, and refer the reader to (Richman 2018) for a more detailed overview. Neural networks are characterized by multiple layers of non-linear regression functions that are used to learn a new representation of the data input to the network that is then used to make predictions. Here we focus on the most common type of neural networks, which are fully connected networks (FCNs), which provide as the output of each set of non-linear functions to the subsequent layer of functions. Formally, a K-layer neural network is:

$$z^{1} = \sigma(a_{1}.X + b_{1})$$

$$z^{2} = \sigma(a_{2}.z^{1} + b_{2})$$

$$\vdots$$

$$z^{K} = \sigma(a_{K}.z^{K-1} + b_{K})$$

$$\hat{y} = \sigma(a_{K+1}.z^{K} + b_{K+1}),$$
(1)

where the regression parameters (weights) for each layer

$$k \in [1; K]$$

state	dimension1	dimension2
CO	1.5115220	2.2866454
$\overline{\mathrm{DC}}$	-0.0946590	-1.3888607
ME	2.0184237	-0.2787888
PA	-0.0627141	-0.1333213
IIT	1 3048697	0.6359504

Table 3: (#tab:)Example (random) embeddings of the state variable

are represented by the matrices a_k and the intercept terms are represented by b_k . Whereas the calculation inside each of the layers is nothing more than linear regression, σ represents the non-linear part of each layer. Choices for σ are often the tanh function or the rectified linear unit (ReLu) max(0,x). The parameters of the network are estimated ('trained') as follows. First a loss function L(.,.) is specified for the network that measures the difference between the observed data y and the predictions of the network \hat{y} , for example, the Mean Squared Error $((y-\hat{y})^2)$. Then, the parameters of the network are changed such that the loss decreases (formally, this is done using the technique of backpropagation). Finally, training is stopped once the predictive performance of the network on unseen data is suitably good.

If K is set equal to 1, then Equation 1 reduced to nothing more than a GLM. A neural network with K=2 is called a shallow neural network and for $K \geq 2$, the network is called a deep neural network. The matrix X of data input to the network can be composed of both continuous variables as well as categorical variables, which can be pre-processed using one-hot or dummy encoding. As mentioned above, a different option is to use encodings, which we discuss in more detail next.

3.2.1 Embeddings

Common issues with the traditional encoding schemes for categorical data occur when the number of levels for each variable is very large. Often, in these cases, models do not converge quickly, and the very large matrices that result from applying these schemes often cause computational difficulties. Besides for these practical issues, a deeper issue is that one-hot or dummy encoded data assumes that each category is entirely independent of the rest of the categories, in other words, there are no similarities between categories that could enable more robust estimation of models. In technical terms, this is because the columns of the matrices created by one-hot encoding are all orthogonal to each other. (These arguments appear in a similar form in (Guo and Berkhahn 2016).) Solutions to these problems are provided by embedding layers.

An embedding layer is a neural network component which maps each level of the categorical data to a low dimensional vector of parameters that is learned together with the rest of the GLM or neural network that is used for the modeling problem. Formally, an embedding is

$$z_{\mathcal{P}^{|}}: \mathcal{P}^{|} \to \mathbb{R}^{q_{\mathcal{P}^{|}}}, \qquad p^{j} \mapsto z_{\mathcal{P}^{|}}(p),$$

where $q_{\mathcal{P}|}$ is the dimension of the embedding for the jth categorical variable and $z_{\mathcal{P}|}(.)$ is a function that maps from the particular element of the labels p to the embedding space. Equation ?? states that an embedding maps a level of a categorical variable to a numerical vector. This function is left implicit, meaning to say, we allow the embeddings to be derived during the process of fitting the model and do not attempt to specify exactly how the embeddings can be derived from the input data. In Table ?? we show an example of two dimensional embeddings for the state variables, where these have been generated randomly.

When applying embeddings in a data modeling context using neural networks, the values of the embeddings will be calibrated during the same fitting process that calibrates the parameters of the neural network. The following equation shows how the first layer of a neural network incorporating embeddings might be written:

$$z^{1} = \sigma(a_{1}.X' + b_{1}), \tag{2}$$

where we represent the output of embedding layers concatenated together with any numerical inputs as X'.

3.2.2 Attention

Attention mechanisms have been widely applied within the deep learning literature to give more flexibility to RNNs (Bahdanau, Cho, and Bengio 2015) and subsequently as a replacement for FCNs in the so-called Transformer architecture, which is now widely used in natural language processing (Vaswani et al. 2017b), and, more recently, has been applied to computer vision and tabular modelling tasks. Attention mechanisms allow deep neural nets to choose covariates entering the model in a flexible manner; these types of applications are demonstrated in, for example, (Vaswani et al. 2017b). In this section we provide an introduction to attention mechanisms and then discuss applications of attention to modeling tabular data.

An attention mechanism is a mapping:

$$A: \mathbb{R}^{q \times (q \times d) \times (q \times d)} \to \mathbb{R}^{q}, \quad (\mathbf{q}, K, V) \mapsto \mathbf{v} = A(\mathbf{q}, K, V), \tag{3}$$

where $\mathbf{q} \in \mathbb{R}^q$ is a query vector, $K \in \mathbb{R}^{q \times d}$ is a matrix of key vectors, $V \in \mathbb{R}^{q \times d}$ is a matrix of value vectors and $\mathbf{v} \in \mathbb{R}^q$, the output of the attention mechanism, is a new vector of values. Several different options for the mapping (3) exist in the literature; here we first describe the self-attention mechanism used in (Vaswani et al. 2017b). In more detail, consider that V is a matrix of covariates relating to a regression problem, which can be composed of embeddings of the same dimension for several categorical variables. We wish to apply the attention mechanism to V to estimate the most important of these embeddings for the regression problem. To do this, we formulate the query vector \mathbf{q} which contains information about the regression problem at hand; this is usually done by passing L through a FCN. Similarly, the matrix K contains the relevance of each row of L for the regression problem and is also usually derived by passing each row of L through another FCN. Finally, the matrix V can be set equal to L or alternatively, can be derived as a transformation of L using a third FCN. The first step of the attention mechanism is to derive a vector \mathbf{a} of attention scores:

$$\mathbb{R}^{(1\times q)\times (q\times d)} \to \mathbb{R}^{1\times d}, \quad (\mathbf{q}, K) \mapsto \mathbf{a} = \langle \mathbf{q}, K^T \rangle. \tag{4}$$

The attention scores are then normalized using a soft max function i.e.

$$a_i^* = \frac{e^{(a_i)}}{\sum_{n=1}^d e^{(a_n)}}. (5)$$

Finally, a linear combination of V is formed:

$$\mathbb{R}^{(1\times d)\times(d\times q)} \to \mathbb{R}^{1\times q}, \quad (\mathbf{a}^*, V) \mapsto \mathbf{v} = \langle \mathbf{a}^*, V \rangle. \tag{6}$$

4 Predictive Modeling with Embeddings

In this section, we walk through a simple predictive modeling exercise in order to illustrate the application of embeddings. First, we pose a supervised regression problem, based on flood insurance claims severity. We then describe, fit, and evaluate GLMs and neural networks utilizing embeddings for this problem. Finally, we discuss visualization techniques for model interpretation. As we proceed, we also incorporate practical technical guidance on modeling procedure.

4.1 Problem Description and Experiment Setup

The working example for our experiments is as follows: Given a set of claim characteristics, we predict the losses paid on the property coverage of the policy. The data we use comes from the National Flood Insurance Program (NFIP) and is made available by the OpenFEMA initiative of the Federal Emergency Management Agency (FEMA)¹. Two datasets are made available by OpenFEMA: A policies dataset with exposure information, and a claims dataset with claims transactions, including paid amounts. Because there is no way to associate records of the two datasets, we are limited to fitting severity models on the claims dataset. While the complete dataset contains over two million transactions, for the purposes of our experiments we limit ourselves to data from 2000 to August 2019, which amounts to approximately 1.4 million claims. The dataset can be downloaded from Cellar² The dataset includes a rich variety of variables, from occupancy

¹https://www.fema.gov/about/reports-and-data/openfema

²https://cellar.kasa.ai

type to coarse coordinates. For our models, we work with a few selected variables that represent continuous and discrete variables of low and high cardinalities, which we list in Table 4

Table 4: Predicator variables.

Variable	Type
Building insurance coverage	Numeric
Community Rating System Discount	Numeric
Basement enclosure type	Categorical
Occupancy Type	Categorical
Number of floors in the insured building	Categorical (binned in original dataset)
Flood zone	Categorical (high cardinality)
Primary residence	Categorical (binary indicator)

The response variable we take from the dataset is "Amount Paid on Building Claim," which is a numeric variable.

(talk about experiment setup – we take a subset of data that's shared for all models, then for the CV performance evaluation only we use all data in CV splits?)

4.2 Models

In this subsection, we develop the following models:

- 1. A GLM with gamma distribution and log link function,
- 2. A neural network with unidimensional categorical embeddings,
- 3. A GLM with the categorical predictors replaced by the trained embeddings from Model 2,
- 4. A neural network with multidimensional categorical embeddings.

These model architectures are relatively uncomplicated by today's standards, and are so chosen to better highlight the embedding components. Later, in Section X (TODO), we will investigate more involved architectures utilizing embeddings that represent the state of the art for modeling tabular data.

4.2.1 Model 1: GLM

While this paper focuses on embeddings in neural networks, we begin with a GLM to provide a common frame of reference since most actuaries are familiar with the technique. Although GLMs are commonplace and well-studied in the actuarial literature, there are still plenty of decisions to be made in the modeling process; see, for example, Goldburd et al. (2020) for an in-depth discussion. For our purpose of establishing a baseline, we proceed with what we perceive as reasonable decisions around feature engineering and model structure, outlined below:

- Target variable: Amount paid on building claim
- Predictors:
 - log building_insurance_coverage
 - basement_enclosure_type,
 - number_of_floors_in_the_insured_building
 - prefix of flood_zone
 - primary_residence
- Link function: log
- Distribution: gamma

We take the log of the continuous predictor building_insurance_coverage, which allows the scale of the predictor to match that of the target variable. Because the flood_zone variable in the original data contains

Figure 1: Architecture of Models 2 and 4.

60 levels, we take the prefix of the zone code, which corresponds to the level of risk as determined by FEMA.³ For example, "A01", "A02", and so on are recoded as simply "A". A log link together with the gamma distribution is a standard choice for severity modeling, which provides a multiplicative structure where the response is positive. Following the notation in 3.1, the number of parameters in the GLM is

$$1 + |J^{\text{num}}| + \left(\sum_{j \in J^{\text{cat}}} n_{\mathcal{P}}^{j}\right) - |J^{\text{cat}}|: \tag{7}$$

one for the intercept, one for each numeric variable, and the numbers of levels minus one (due to dummy coding) for each categorical variable.

In Table 5, we exhibit an exerpt of the relativities, or exponentiated fitted coefficients, of a couple categorical variables. Recall that the choice of the log link gives a multiplicative structure, so the interpretation of 1.37 for occupancy_type = "Non-residential building" is that, all else equal, the expected loss for a policy for a non-residential building is 1.37 times that of a policy for a single family home, which is the base, or reference, level for the factor.

variable	label	relativity
occupancy type	Single family residence	1.00
occupancy type	Non-residential building	1.37
occupancy_type	2 to 4 unit residential building	1.15
$occupancy_type$	Residential building with more than 4 units	1.64
$flood_zone$	В	1.00
$flood_zone$	A	0.84
$flood_zone$	C	0.60
$flood_zone$	X	0.70
$flood_zone$	V	0.78
$flood_zone$	D	0.89

Table 5: Excerpt of relativities for Model 1.

4.2.2 Model 2: Neural Network with Unidimensional Embeddings

For Model 2, we build a feedforward neural network, whose architecture is shown in Figure 1. The categorical inputs go through one-dimensional embedding layers where they are each mapped to a scalar. The embeddings are then concatenated with the numeric predictors, which have been normalized in data pre-processing, before being sent to a hidden linear layer of 64 units. A ReLU (TODO: reference an equation in prev. section) activation is then applied to the outputs before they are sent to a final output layer resulting in a scalar. To constrain predictions to be positive, we apply softplus activation, which is defined to be

$$x \mapsto \log(1 + e^x)$$
.

³https://www.floodsmart.gov/flood-map-zone/find-yours

With a single hidden layer, this architecture is the simplest nontrivial neural network; without the hidden layer and corresponding ReLU activation, we would actually recover a GLM structure where the link function is the output activation. The choice of one for the embedding dimension is also due to simplicity: it is easily interpretable as the representation of each factor level as a point on the real number line, also, the trained embeddings are easily incorporated into a GLM which we will see in Model 3. In practice, the embedding dimension is a hyperparameter one can tune, for example via cross validation, and can vary for each variable. However, we also note that the choice of one for the embedding output dimension is not an unreasonable one, especially when the cardinalities of the categorical variables are not unusually large.

In Tables 6 and 7, we show the learned embeddings for the occupancy type and an excerpt of them for flood_zone. While it may be tempting to compare these values to those in Table 5, they represent fundamentally different concepts. It is helpful to think of the embedding values for each variable as a continuous represention of the variable itself, rather than a "coefficient" associated with the variable. Note that it is not straightforward to inspect the embeddings from a table and infer relationships to the response variable, even in a shallow network such as ours, due to nonlinearities within the model. Also note that we now have a way to incorporate the full granularity of the flood_zone variable, which is why more levels are shown in Table 7 as compared to Table 5. In Section TODO, we will discuss techniques to visualize these embeddings.

level embedding

Table 6: Learned embeddings for occupancy_type.

Non-residential building	7.16
Residential building with more than 4 units	6.33
Single family residence	5.43

2 to 4 unit residential building

Table 7: Excerpt of learned embeddings for flood zone.

level	embedding	level	embedding	level	embedding	level	embedding	level	embedding
A	0.38	A09	-1.71	A18	-1.40	A99	-2.68	V	-0.41
A00	-0.35	A0B	3.85	A19	-1.70	AE	-4.46	V02	0.65
A01	-6.76	A10	-4.03	A20	-4.05	AH	-2.35	V03	-0.29
A02	-4.28	A11	-5.32	A21	-2.08	AHB	-1.71	V04	-1.15
A03	-5.93	A12	-3.23	A22	-2.11	AO	-6.07	V05	-0.50
A04	-7.82	A13	2.03	A23	-1.40	AOB	-4.56	V06	-1.92
A05	-3.42	A14	-5.72	A24	2.23	AR	-0.48	V07	-2.91
A06	-4.97	A15	-3.67	A25	0.28	В	-5.36	V08	-2.24
A07	-3.09	A16	-3.02	A27	-2.56	\mathbf{C}	-4.47	V09	-0.75
A08	-4.69	A17	-0.37	A30	1.13	D	-0.76	V10	-2.05

Model 3: GLM with Neural Network Embeddings 4.2.3

For Model 3, we return to the GLM, but now we replace the categorical variables with the trained embeddings from Model 2. In other words, our model now contains only continuous variables, and each categorical factor is represented as a scalar value and obtains its own coefficient. In contrast with the number of parameters computed in Equation (7), we have fewer parameters for this model:

$$1 + |J^{\text{num}}| + |J^{\text{cat}}|. \tag{8}$$

6.69

Hence, the model can be written as

$$\mu_i = \beta_0 + \sum_{j \in J^{\text{num}}} \beta_j x_{i,j} + \sum_{j \in J^{\text{cat}}} \beta_j z_{i,j}, \tag{9}$$

where $z_{i,j}$ represents the embedding value for ith instance of the categorical column X_j .

Although in this particular example we incorporate one-dimensional embeddings, one can easily include multidimensional embeddings, which would increase the model's flexibility. The modeler would need to balance the additional lift with some loss of interpretability, since with one-dimensional embeddings, our GLM structure dictates that there is a monotonic relationship between the predicted response and the input embedding, which could be desirable in certain use cases (and undesirable in others.)

Since we only have a few parameters in this model, we exhibit the full list of fitted coefficients in Table 8.

Table 8: Coefficients of Model 3.

term	estimate
(Intercept)	2.389
total_building_insurance_coverage	0.568
basement_enclosure_crawlspace_type	0.136
number_of_floors_in_the_insured_building	-0.024
occupancy_type	0.067
flood_zone	0.035
primary_residence	-0.001
$community_rating_system_discount$	0.504

4.2.4 Model 4: Neural Network with Multidimensional Embeddings

Model 4 is architecturally identical to Model 2, with the only difference being the number of embedding dimensions: instead of mapping factor levels to real numbers, we map them to points in Euclidean space, where the dimension of the space is the ceiling of the factor's cardinality divided by two. Formally, in the notation of Section 3.1, $q_{\mathcal{P}^j} = \lceil n_{\mathcal{P}}^j/2 \rceil$ for variable X_j . Following the practice from the previous three models, we list the fitted embeddings for a couple variables in Tables 9 and 10. Note that, for flood_zone, we are only displaying the embedding for one level.

Table 9: Learned embeddings for occupancy_type in Model 4.

level	e1	e2	e3
2 to 4 unit residential building		-1.97	
Non-residential building	-6.83	-8.11	5.34
Residential building with more than 4 units	-7.63	-6.58	5.09
Single family residence	-1.61	-2.54	3.01

Table 10: Learned embeddings for level "A00" of variable flood_zone in Model 4.

dimension	value	dimension	value	dimension	value	dimension	value
e1	0.020	e11	2.146	e21	-1.933	e31	-0.941
e2	-0.885	e12	1.723	e22	1.150	e32	-1.279
e3	-0.126	e13	0.378	e23	0.863	e33	-0.360
e4	1.491	e14	-0.310	e24	-0.471	e34	-1.173
e5	0.980	e15	2.482	e25	0.929		
e6	0.952	e16	1.823	e26	-1.139		
e7	-0.217	e17	-2.715	e27	0.113		
e8	-0.611	e18	1.144	e28	1.155		
e9	0.919	e19	-0.045	e29	0.707		
e10	-1.196	e20	0.467	e30	1.358		

Figure 2: Number of floors

4.3 Visualization Techniques for Interpretation

With AI and ML coming into the mainstream across industries and use cases, the topic of model explainability has received increasing attention. In insurance pricing, Kuo and Lupton (2020) propose a framework for model interpretability in the context of regulation and actuarial standards of practice, while Henckaerts et al. (2020) investigate algorithm-specific techniques to inspect tree-based models. Kuo and Lupton (2020) and references therein also discuss commonly utilized model-agnostic explanation techniques, such as permutation variable importance and partial dependence plots, that can be applied to the neural networks we consider in this paper.

In this section, we focus on ways to visualize the learned embeddings. In the authors' experiences, oftentimes the formats of the visualizations — basic line and scatter plots — even more so than the content of the data, is helpful in explaining the concept to stakeholders.

For Model 2, the neural network with one-dimensional embeddings, the task is simple: we can simply plot the levels on a line, as in Figure 2. In the case of flood_zone, since we happen to have the luxury of knowing a priori the meaning of the prefixes, we can plot them separately, as in Figure 3 to see how the model mapped them.

For Model 4, the neural network with multi-dimensional embeddings, we would need to treat the learned values before we can plot them. Specifically, we need to reduce the dimension of the data to 2D for embeddings with more than two dimensions. The standard approachs for this are principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), both of which we illustrate below.

- 4.3.1 PCA
- 4.3.2 t-SNE
- 4.4 Model Training and Results

(TODO)

Figure 3: Flood zone embeddings

5 Extending the model

Investigate approaches for using embedding layers for numeric variables, or numeric variables that were captured as categorical variables (Can the modelling of numerical variables benefit from the application of embedding layers?) How should this best be done? CatBoost - cut into 256 groups smoothness Map numeric to a dense layer and use that as embedding - basis expansion Add a distribution to the embeddings Can insights from credibility theory lead to enhanced embeddings? Take credibility mixture over embeddings Cluster embeddings PCA of embeddings

6 Attention based modelling

Can we get some lift by adding attention layers? TabNet model Transformer model Description of tabnet, talk about how it's related to embeddings, show some plots like 4 etc.

7 Conclusions

Conclusions

Figure 4: blahblah

Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio. 2015. "Neural machine translation by jointly learning to align and translate." 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15. http://arxiv.org/abs/1409.0473.

Bühlmann, Hans, and Alois Gisler. 2005. A Course in Credibility Theory and its Applications. Springer Science & Business Media. https://doi.org/10.1080/03461230600889660.

Delong, Lukasz, Mathias Lindholm, and Mario V. Wuthrich. 2020. "Collective Reserving using Individual Claims Data." SSRN Electronic Journal, May. https://doi.org/10.2139/ssrn.3582398.

Federal Emergency Management Agency. 2019. "FIMA NFIP Redacted Claims Data Set." https://www.fema.gov/media-library/assets/documents/180376%20https://www.fema.gov/media-library/assets/documents/180374.

Gabrielli, Andrea. 2019. "A Neural Network Boosted Double Over-Dispersed Poisson Claims Reserving Model." SSRN Electronic Journal, April. https://doi.org/10.2139/ssrn.3365517.

Gabrielli, Andrea, Ronald Richman, and Mario V. Wüthrich. 2019. "Neural network embedding of the over-dispersed Poisson reserving model." *Scandinavian Actuarial Journal*. https://doi.org/10.1080/03461238.2019.1633394.

Goldburd, Mark, Anand Khare, Dan Tevet, and Dmitriy Guller. 2020. Generalized Linear Models for Insurance Rating. Second Edi. Casualty Actuarial Society. www.casact.org.

Guo, Cheng, and Felix Berkhahn. 2016. "Entity Embeddings of Categorical Variables." arXiv:1604. http://arxiv.org/abs/1604.06737.

Henckaerts, Roel, Marie-Pier Côté, Katrien Antonio, and Roel Verbelen. 2020. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods." North American Actuarial Journal, 1–31.

Klinker, Fred. 2010. "Generalized Linear Mixed Models for Ratemaking: A Means of Introducing Credibility into a Generalized Linear Model Setting." Casualty Actuarial Society E-Forum, Winter 2011 Volume 2 2 (1): 1-25. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: Generalized+Linear+Mixed+Models+for+Ratemaking+:+A+Means+of+Introducing+Credibility+into+a+Generalized+Linear+Model+Setting#0.

- Kuo, Kevin. 2019. "Deeptriangle: A deep learning approach to loss reserving." Risks 7 (3). https://doi.org/10.3390/risks7030097.
- ——. 2020. "Individual Claims Forecasting with Bayesian Mixture Density Networks," March. http://arxiv.org/abs/2003.02453.
- Kuo, Kevin, and Daniel Lupton. 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing." http://arxiv.org/abs/2003.10674.
- Perla, Francesca, Ronald Richman, Salvatore Scognamiglio, and Mario V. Wüthrich. 2020. "Time-Series Forecasting of Mortality Rates using Deep Learning." SSRN Electronic Journal.
- Richman, R. 2018. "AI in Actuarial Science." SSRN Electronic Journal, October. https://doi.org/10.2139/ssrn.3218082.
- Richman, R, and Mario V. Wüthrich. 2019. "A neural network extension of the Lee-Carter model to multiple populations." *Annals of Actuarial Science*. https://doi.org/10.1017/S1748499519000071.
- Schelldorfer, Jürg, and Mario V. Wüthrich. 2019. "Nesting Classical Actuarial Models into Neural Networks." SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3320525.
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017b. "Attention is all you need." In *Advances in Neural Information Processing Systems*, 2017-Decem:5999–6009. http://arxiv.org/abs/1706.03762v5.
- ——. 2017a. "Attention is all you need." In Advances in Neural Information Processing Systems, 2017-Decem:5999-6009. http://arxiv.org/abs/1706.03762v5.
- Wüthrich, Mario V, and Michael Merz. 2019. "Yes, we CANN!" ASTIN Bulletin: The Journal of the IAA 49 (1): 1–3.