OSPO VSIP MFEM-Based Tokamak Equilibrium Solver

June 26, 2025

Team Overview

Qi Tang
Assistant Professor
MFEM Project Mentor
qtang@gatech.edu

Alexander Zhou de Magalhaes Graduate Student amagalhaes7@gatech.edu

Saisruthi Bandla
PhD Student, Aerospace Eng.
VSIP MFEM Intern
sbandla3@gatech.edu

Janani Murugan Undergrad Student, Biochemistry VSIP MFEM Intern janani@gatech.edu

Saisruthi Bandla

Background

Goal

Milestones

Next Steps

Project Background

Plasma, the 4th state of matter, is a hot, ionized gas containing free electrons and charged particles. A key application of plasma is fusion—where atomic nuclei combine to release immense energy.

Fusion Uses

Energy Generation

Abundant power with minimal environmental impact

Space Propulsion
Faster and longer-distance
space travel

Scientific Research
Study plasma & fundamental
particle interactions

Prior to achieving these benefits, there are some key challenges that need to be addressed

Project Background

Saisruthi Bandla

Background

Goal

Milestones

Next Steps

MFEM Project Focus

Plasma Fusion Challenges

<u>Confinement</u>

Develop devices that can contain and withstand high temperatures

Maintain Equilibrium

Plasma expands and cools—stabilization keeps it hot long enough for fusion

Popular State of the Art Solutions

Magnetic Confinement
Uses strong magnetic fields to trap plasma

Ex: International
Thermonuclear Experimental
Reactor (ITER) – constructing
a Tokamak, a donut-shaped
fusion reactor device

Inertial Confinement

Uses lasers/beams for rapid compression

Ex: National Ignition
Facility (NIF) - building an
inertial confinement fusion
device that uses powerful
lasers to enable fusion

MFEM Project Goal

Saisruthi Bandla

Background

Goal

Milestones

Next Steps

Goal: Develop a **free boundary** tokamak **equilibrium** solver for the magnetic confinement fusion community

Equilibrium

Stabilize plasma and avoid contact with walls

Modeled by Grad-Shafranov (GS) equation, which describes magnetohydrodynamic equilibrium in axisymmetric, toroidal plasmas

Free Boundary

Unknown plasma shape & boundary conditions

Modeled using MFEM, an open-source finite element library for solving partial differential equations on unstructured 2D and 3D grids

Develop a tokamak plasma equilibrium solver using MFEM library

Internship Contributions

Saisruthi Bandla

Background

Goal

Milestones

Next Steps

Milestone 1

Run serial/parallel MFEM on PACE

Milestone 2

Determine & visualize ITER's magnetic flux

Milestone 3

Contribute to the first pull request

Milestone 4

Generate a mesh and interpolate solution

Main Goal: Milestone 5
Add a writer for EFIT data

Milestone 6

Fix other issues & bugs in the code

Internship Contributions: Milestones 1 - 3

Janani Murugan

Background

Goal

Milestones

Next Steps

Milestone 1

Run serial/parallel MFEM on **PACE**

- Use Phoenix cluster on PACF to install and compile MFEM
- Visualize solutions using GLVis, a finite element visualization tool

Milestone 2

Determine & visualize ITER's magnetic flux

- Install gslib, compile a provided example using the GS solver
- Visualize the resulting solution representing the magnetic flux of an ITER device

Milestone 3

Contribute to the first pull request

Clean-up MFEM code by fixing issues with member

Internship Contributions: Milestones 4 - 6

Janani Murugan

Background

Goal

Milestones

Next Steps

Milestone 4

Generate a mesh and interpolate solution

Using the solution from the original triangular mesh, generate a 2-D cartesian mesh and interpolate the plasma solution onto this mesh

Milestone 5

Add a writer for EFIT data

Using G-EQDSK file format, develop an EFIT writer, code used to reconstruct plasma equilibrium

Fix other issues & bugs in the

Milestone 2 Results

Determine & visualize ITER's magnetic flux

Background

Goal

Milestones

Next Steps

Cross-sectional view of the plasma chamber and magnetic coils

A triangular mesh was used here for flexibility in modeling the complex geometry. However, a quadrilateral structured mesh is much preferred in engineering practices.

Milestone 4 Results

Generate a Mesh and Interpolate the Solution

Background

Goal

Milestones

Milestone 5

Background

Goal

Milestones

Next Steps

Add a writer for EFIT data

Using G-EQDSK file format, develop an EFIT writer, code used to reconstruct plasma equilibrium

Why?

Standardization
Widely used standard in the plasma fusion industry

Portability
Allows for easy sharing of results

<u>Centralization</u> Important parameters are gathered in one location

Milestone 5: Technical Approach

Gather Parameters

Background

Goal

Milestones

Next Steps

Computational grid metrics Magnetic axis information Plasma state metrics Plasma boundary metrics Poloidal current and flux Safety factor Limiter grid

Milestone 5: Gather Parameters

Terms Extracted from MFEM

Background

Goal

Milestones

MFEM Code Variable	Documentation Definition	
Header		
nx	Number of elements (cells) along the r-axis	
ny	Number of elements (cells) along the z-axis	
Section 1		
rdim	Width of computational domain in the R direction	
zdim	Height of computational domain in the Z direction	
rcentr	Reference value of R	
rleft	R at left (inner) boundary	
zmid	Z at middle of domain	
rmagx	R at magnetic axis (0-point)	
zmagx	Z at magnetic axis (0-point)	
psi_ma	Poloidal flux at magnetic axis	
psi_x	Poloidal flux at plasma boundary	
bcentr	Vacuum toroidal magnetic field at rcentr	
cplasma	Plasma current	

MFEM Code Variable	Documentation Definition	
Sections 2 - 7		
pres	Plasma pressure	
pprime	Gradient of plasma pressure	
Section 8		
nbdry	Number of points in the boundary grid	
nlim	Number of points in the limiter grid	
Section 9		
rbdry_zbdry	R of boundary points	
rbdry_zbdry	Z of boundary points	
rlim_zlim	R of limiter points	
rlim_zlim	Z of limiter points	

Milestone 5: Gather Parameters

Background

Goal

Milestones

Next Steps

Terms Generated Through Computation

MFEM Code Variable	Documentation Definition	Method of Calculation
Sections 2 - 7		
fpol	Poloidal current function	f_x + alpha (psi-psi_x)
ffprime	1D array	alpha*fpol
qpsi	Safety factor	Take line integral over several contour lines

Milestone 5: Safety Factor Calculations

Janani Murugan

Background

Goal

Milestones

Plot with 5 psi contours, each with 8 radially aligned points

Next Steps

Background

Goal

Goal

Thank You!

