Лекция 11: †

Definition 1

Рассмотрим $\sum_{k=1}^{\infty} a_k$. $\sum_{k=1}^{A_k}$ — Группировка ряда $\sum_{k=1}^{\infty} a_k$, если $A_1 = a_1 + \dots + a_{n_1}$, $A_2 = a_{n_1+1} + \dots + a_{n_2}$, то есть n_j — возрастающая последовательность натуральных чисел, $n_0 = 0$. $A_j = \sum_{k=1}^{n_j} a_k$

Theorem 0.0.1 (о группировке).

- 1. Если ряд сходится, его группировка тоже сходится, причем $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} A_k$. 2. Пусть $a_n \to 0$ и в каждом A_k не более L слагаемых. Тогда, если $\sum_{k=1}^{\infty} A_k$ сходится, то $\sum_{k=1}^{\infty} a_k \ cxodumcs.$

Доказательство. Рассмотрим $S_n = \sum_{j=1}^n a_j, n_j < n \leqslant n_{j+1}$. Посмотрим на S_{n_j} и $S_{n_{j+1}}$.

 $\exists \varepsilon.$

ТООО: дописать доказательство

3. Пусть ряд числовой. Для любого A_k в сумме участвуют только слагаемые одного знака.

 $extit{Доказательство}$. Если $n_i < n < n_j$, то S_n лежит между S_{n_i} и S_{n_i} . Можно добиться, чтобы расстояния были меньше ε , тогда и S_n будет отличаться на малую величину.

0.1Положительные ряды

Definition 2: положительный ряд

Числовой ряд называется положительным, если все его члены неотрицательны.

Property.

 $|\mathbf{1}|$ Ряд сходится тогда и только тогда, когда $\{S_n\}$ ограничена (сверху).

Признак сравнения $0 \le a_n \le b_n$, то

- 1. $\sum_{n=1}^{\infty} b_n$ сходится, тогда $\sum_{n=1}^{\infty} a_n$ сходится
- 2. $\sum_{n=1}^{\infty} a_n$ pacxodumcs, тогда $\sum_{n=1}^{\infty} b_n$ Тоже расходится.
- 2' $0 \leqslant a_n, b_n, \ a_n = O(b_n) \ u \sum_{j=1}^{\infty} b_j \ cxodumcs, \ morda \sum_{n=1}^{\infty} a_n \ cxodumcs.$

2" $0 \leqslant a_n, b_n$, если a_n b_n , то $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} b_n$ сходится.

Признак Коши | $\Pi y cmb \ a_n \geqslant 0 \ u \ q = \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$

- 1. q < 1, то $\sum_{n=1}^{\infty} a_n$ сходится
- 2. q > 1, mo $\sum_{n=1}^{\infty} a_n$ pacxodumcs

Доказательство.

23 Apr

- 1. Выберем $0 < \tilde{q} < 1$, с некоторого места мы не выходим сильно правее q, поэтому $\exists N \ \forall n > N \colon \sqrt[n]{a_n} < \tilde{q}$, тогда $a_n < (\tilde{q})^n$.
- 2. $\forall N \exists n > N : a_n > 1 \Longrightarrow a_n \not\to 0$, следовательно, ряд расходится.

 \blacksquare Признак Даламбера $a_n > 0$ $u \exists \lim_{nto + \infty} \frac{a_{n+1}}{a_n} = q$. $Tor\partial a_n$

- 1. q > 1, то ряд расходится
- 2. q < 1, то ряд сходится

Доказательство.

- 1. $a_{n+1} > a_n$, пожтому ряд точно не сходится.
- 2. Возьмем $q < \tilde{q} < 1$, тогда $\exists N \ \forall n > N \colon \frac{a_{n+1}}{a_n} < \tilde{q}$. Запишем

$$a_{n+1} = \frac{a_{n+1}}{a_n} \cdot \frac{a_n}{a_{n-1}} \cdot \dots \cdot \frac{a_{N+1}}{a_N} \cdot a_N < (q)^{n-N+1} \cdot a_{N^2} = C(\tilde{q})^{n+1}.$$

Интегральный признак | Пусть $f\geqslant 0$, монотонно убывает $f::[1,+\infty)\to\mathbb{R}$. Тогда

$$\sum_{n=1}^{\infty} f(n) \ cxoдumcя \iff \int_{1}^{n} f(x) dx \ cxoдumcя.$$

Доказательство. Просто смотрим по определению интеграла.

0.2 Числовые ряды с произвольными членами

Definition 3

 $x_k \in X$ — нормированное пространство. $\sum_{k=1}^\infty x_k$ абсолютно сходится, если сходится $\sum_{k=1}^\infty \|x_k\|$.

Property.

 $1 \sum x_k, \sum y_k$ абсолютно сходятся, α, β — скаляры. Тогда ряд $\sum (\alpha x_k + \beta y_k)$ абсолютно сходится, так как

$$\|\alpha x_k + \beta y_k\| \le \|\alpha\| \cdot \|x_k\| + \|\beta\| \cdot \|y_k\|.$$

2 Если $\sum_{k=1}^{\infty} x_k$ сходится, $\sum_{k=1}^{\infty} \|x_k\|$ сходится, то $\|\sum_{k=1}^{\infty} x_k\| \leqslant \sum_{k=1}^{\infty} \|x_k\|$, так как

$$||S|| \stackrel{n \to \infty}{\longleftarrow} ||S_n|| \leqslant \sum_{k=1}^n ||x_k|| \stackrel{n \to \infty}{\longrightarrow} \sum_{k=1}^\infty ||x_k||.$$

3 X — полное нормированное пространство. $\sum_{k=1}^{\infty}\|x_k\|$ сходится, тогда $\sum_{k=1}^{\infty}x_k$ сходится.

Доказательство.
$$\forall \varepsilon > 0 \ \exists N \colon \forall n > N, p \in \mathbb{N} \ \sum_{k=n+1}^{n+p} \|x_k\| < \varepsilon$$
, следовательно, $\|\sum_{k=n+1}^{n+p} x_k\| < \varepsilon$. Получили, что $\sum_{k=1}^{\infty} x_k$ сходится.

- 4 В полном нормированном пространстве $\sum_{k=1}^{\infty} x_k$ сходится абсолютно, $\sum_{k=1}^{\infty} y_k$ сходится условно, тогда $\sum_{k=1}^{\infty} (x_k + y_k)$ сходится условно.
- **5** X полное, $\overline{\lim}_{n\to\infty} \sqrt[n]{\|x_n\|}$, $\lim_{n\to\infty} \frac{\|x_{n+1}\|}{\|x_n\|}$

Definition 4

Если ряд сходится, но не сходится абсолютно, он называется условно сходящимся.

Lemma 1 (преобразование Абеля). Пусть $\{a_n\}, \{b_n\}$ — последовательности. Пусть $A_n = \sum_{k=1}^n a_k$, $A_0 = 0$. Рассмотрим

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (Ak - A_{k+1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n-1} A_k b_k + 1 = A_n b_n \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Получили дискретный аналог интегрирования по частям.

Theorem 0.2.1 (Признаки Дирихле и Абеля). $\{a_n\}, \{b_n\}$ — числовые последовательности. b_n — монотонная последовательность, $b_n \in \mathbb{R}, a_n in \mathbb{C}$

Признак Дирихле $\{A_n\}$ — ограниченная последовательность, $b_n \to 0$.

Признак Абеля $\sum_{k=1}^{n} a_k$ сходится, b_n ограничено

тогда $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Доказательство.

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Первое слагаемое сходится при условии обоих признаков.

Для признака Абеля сразу все хорошо: второе слагаемое сходится.

Для признака Дирихле проверим $\sum_{k=1}^{\infty} |A_k(b_k - b_{k+1})| \leqslant X \sum_{k=1}^{\infty} |b_k - b_{k+1}|$ В атом случае сходится даже без модуля $\sum_{k=1}^{\infty} b_k - b_{k+1}$, так как $\sum_{k=1}^{n} b_{n+1} - b_1$.

Theorem 0.2.2 (Признак Лейбница). b_n убывает к нулю, тогда ряд $\sum_{n=1}^{\infty} (-1)^n b_n$ сходится.

Доказательство. $a_n = (-1)^n$, $A_n \in \{1,0\}$ — ограничено. По признаку Дирихле ряд произведения сходится.

Note. $S_n = \sum_{k=1}^n (-1)^k b_k$, S — сумма ряда. Тогда $|S - S_n| \leqslant b_{n+1}$.

Example 0.2.1 (Ряд Лейбница).

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{2k-1}$$
 сходится условно .

Example 0.2.2.

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$
 тоже сходится условно.

Example 0.2.3.

$$\sum_{k=1}^{\infty} \frac{\sin k}{k}, \ \sum_{k=1}^{\infty} \frac{\cos k}{k} \text{ сходятся.}$$

$$A_n = \sum_{k=1}^n \sin k = \sum_{k=1}^n \Im(x \cos k i \sin k) = \Im \sum_{k=1}^n e^{ik}.$$

$$\sum_{k=1}^{n} e^{ik} = e^{i} \frac{e^{n_{i}} - 1}{e^{i} - 1} = e^{i} \left(e^{\frac{n_{i}}{i}} \frac{e^{\frac{n_{i}}{2}} - e^{-\frac{n_{i}}{2}} e^{i\frac{i}{2}(e^{i\frac{i}{2}} - e^{-i\frac{i}{2}})}}{e^{i\frac{n_{i}}{2}}} e^{\frac{n+1}{2}i} \frac{\sin\frac{n}{2}}{\sin\frac{1}{2}} = \frac{\sin\frac{n+1}{2}\sin\frac{n}{2}}{\frac{1}{2}}.$$

Для косинуса аналогично.

Theorem 0.2.3 (О перестановке сленов абсолютно сходящегося ряда). $\sum_{k=1}^{\infty} a_k - aбсолютно сходящийся ряд. <math>\varphi \colon \mathbb{N} \to \mathbb{N} - b$ искция, тогда $\sum_{k=1}^{\infty} a_{\phi(k)}$ сходится κ той же сумме.

Доказательство.

1.
$$a_k > 0$$
, $S_n = \sum_{k=1}^n a_k$, $T_n = \sum_{k=1}^n a_{\varphi(k)}$

$$\forall n \ \exists n_1, n_2 \colon S_n \leqslant T_{n_1} \leqslant S_{n_2} \Longrightarrow T_n \to S = \lim_{n \to \infty} S_n.$$

2. $a_k \in \mathbb{R}$. Запишем $a_k = (a_k)_+ - (a_k)_-, \ |a_k| = (a_k)_+ (a_k)_-$. Тогда

$$\sum |a_k|$$
 сходится $\Longrightarrow \sum_{k=1}^{\infty} (a_k)_+, \; \sum_{k=1}^{\infty} (a_k)_-$ сходятся..

Применим прошлый пункт: $\sum (a_k)_{\pm} = \sum (a_{\varphi(k)})_{\pm}$.

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k)_+ - \sum_{k=1}^{\infty} (a_k)_- = \sum_{k=1}^{\infty} (a_{\varphi(k)})_+ - \sum_{k=1}^{\infty} (a_{\varphi(k)})_- = \sum_{k=1}^{\infty} a_{\varphi(t)}.$$

3. $a_k \in \mathbb{C}$, $a_k = b_k + ic_k$. Применяем второй пункт.

Theorem 0.2.4 (Теорема Римана). $a_k \in \mathbb{R}$. $\sum_{k=1}^{\infty} a_k$ сходится условно. Тогда

$$\forall S \in \overline{\mathbb{R}} \ \exists \varphi \colon \mathbb{N} \to \mathbb{N} \colon \sum_{k=1}^{\infty} a_{\varphi(k)} = S$$

Theorem 0.2.5 (Коши об умножении рядов). $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k - aбсолютно сходящиеся численные ряды. Тогда <math>\sum_{k,n=1}^{\infty} a_k b_n$ сходится при любых порядках слагаемых, при этом $\sum_{k,n=1}^{\infty} a_k b_n = \sum_{k=1}^{\infty} a_k \cdot \sum_{n=1}^{\infty} b_n$

Доказательство. Пусть $\sum_{k=1}^{n} a_k = A_k, \sum_{k=1}^{n} |a_k| = \overline{A_n}, \sum_{k=1}^{\infty} = A, \sum_{k=1}^{\infty} |a_k| = \overline{A}$, аналогично для b. Зафиксируем на множестве пар некоторый порядок.

 S_m — частичная сумма $\sum |a_k||b_n|, N$ — максимальный из встречающихся индексов.

$$S_m \leqslant \sum_{k=1}^N |a_k| \sum_{k=1}^N |b_k| \leqslant \overline{AB} \Longrightarrow \text{ hряд } \sum |a_k| |b_n| \text{сходится.}$$

Теперь просуммируем по квадратам

$$n^{2} \leqslant m < (n+1)^{2}.$$

$$S \leftarrow S_{n^{2}} = A_{n} \cdot B_{n} \to A \cdot B.$$

$$|S_{n^{2}} - S_{m}| \leqslant |a_{n+1}| \cdot \overline{B} + |b_{n+1}| \cdot \overline{A} \xrightarrow{n \to \infty} 0.$$

Definition 5: Произведение рядов по Коши

 $\sum_{n=1}^{\infty}a_n, \sum_{n=1}^{\infty}b_n$ — ряды. $c_n=a_1b_n+a_2b_{n-1}+\dots a_nb_1$. Тогда ряд $\sum_{n=1}^{\infty}c_n$ называется произведением рядов.

Theorem 0.2.6 (Мергенс). $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, $\sum_{k=1}^{\infty} b_n$ сходится. Тогда $\sum_{n=1}^{\infty} c_n$ сходится и равно $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$.

Theorem 0.2.7 (Абель). $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n, \sum_{n=1}^{\infty} c_n \ cxo \partial umcs, \ mor \partial a \ \sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$

Example 0.2.4. $a_n = b_n = (-1)^n \frac{1}{\sqrt{n}} \Longrightarrow |a_n| \ge 1$

0.3 Бесконечные произведения

Definition 6

Частичные произведения $\prod_{k=1}^n p_k = P_n$. Частичные произведения сходятся к Pесли $\exists \lim_{n\to\infty} P_n = P$ и $P \neq 0, P \neq \infty$. Если P = 0, говорят, что расходится к 0, если к $\pm \infty$, говорят, что расходится к $+\infty$.

Example 0.3.1.

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right).$$

$$P_n = \frac{1}{2} \cdot \frac{n+1}{n} \to \frac{1}{2}.$$

Example 0.3.2.

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2}\right) = \frac{2}{\pi}$$
(формула Ваниса).

Property. $By \partial eM$ cumamb, $umo p_n \neq 0$.

- \square $\prod_{n=1}^{\infty} p_n$ сходится, тогда $p_n \to 1$
- $\fbox{2}$ Первые несколько слагаемых ряда можно отбросить, на сходимость это не повлияет
- $\boxed{3}$ Всегда можно считать, что $p_n>0$

$$\boxed{4} \prod_{n=1}^{\infty} p_n, p_n > 0.$$

$$\prod_{n=1}^{\infty} p_n \ cxodumcs \Longleftrightarrow \prod_{n=1}^{\infty} \ln p_n \ cxodumcs.$$

$$ln P_n = S_n$$

Example 0.3.3. Пусть $p_n - n$ -ое простое число.

$$\prod_{n=1}^{\infty} \frac{p_n}{p_n - 1}$$
 расходится.

$$\prod_{n=1}^{\infty} \frac{p_n}{p_n-1} = \prod_{n=1}^{\infty} \frac{1}{1-\frac{1}{p_n}} = \prod_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{p_n^k} \stackrel{?}{=} .$$

Оценим

$$P_n = \prod_{k=1}^n \frac{p_k}{p_k - 1} = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k}} \geqslant \prod_{k=1}^n \sum_{m=0}^n \frac{1}{p_k^m} = \sum_{0 \leqslant \alpha_j \leqslant n} \frac{1}{p_1^{\alpha_j} \cdot \ldots \cdot p_n^{\alpha_n}} \geqslant 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \ln n + C.$$

$$\sum_{n=1}^{\infty} \ln \left(\frac{p_n}{p_n - 1} \right), \ \ln \left(\frac{p_n}{p_n - 1} \right) = -\ln \left(1 - \frac{1}{p_n} \right) \sim \frac{1}{p_n}.$$

Тогда ряд $\sum_{n=1}^{\infty} \frac{1}{p_n}$ расходится. Следовательно,

$$\stackrel{?}{=} \sum \frac{1}{p_1}^{\alpha_1} \cdot \dots p_s^{\alpha_s} = \sum_{n=1}^{\infty} \frac{1}{n} \to +\infty.$$