General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

TECHNICAL NOTE

Research & Development Division
Huntsville Research & Engineering Center
4800 Bradford Drive, Nuntsville, AL 25007

Contract NAS8-34978

Date 11 Dec 1984

Doc. LMSC-HREC TN D951725

Title INVESTIGATION OF THE HPFTP FIRST STAGE IMPELLER CRACK

FOREWORD

This technical not was prepared by personnel in the Dynamics & Loads Group at the Huntsville Research & Engineering Center for NASA-Marshall Space Flight Center under Contract NAS8-34978. Mr. Norman L. Schlemmer, EP46, is the MSFC Contracting Officer's Representative for this contract.

ENTRODUCTION

The occurrence of a crack in the HPFTP first stage impeller of pump 2608 R2 during test 750-245 prompted this analysis to examine possible causes of the failure. Preliminary analysis, using an existing NASTRAN model of the impeller, showed a deficiency in the model's ability to reliably calculate stress in the area of concern (outboard edge of the impeller shroud). A new NASTRAN model was constructed to better define the stress state in the area of crack initiations. Static stress analysis and normal modes analysis were performed on the new model. Results are presented on the following pages.

Model Description

Due to the complexity inherent in the impeller's geometry, a symmetry approach was indicated to permit sufficient modeling detail. The cyclic symmetry feature of NASTRAN is frequently used in such applications as modeling circular structures that have repeating segments around their circumference. It allows the user to model only one segment of the

(HASA-CR-171281) INVESTIGATION OF THE HPFTP FIRST STAGE IMPELLER CRACK (Lockheed Missiles and Space Co.) 13 p HC A02/MF A01 CSCL 20K

N85-16208

G3/39 13715

structure while NASTRAN applies appropriate boundary conditions at the symmetric boundaries to simulate the complete structure.

A 60 degree segment of the impeller was modeled following the sweep of the region between full blades as shown in Fig. 1. Figure 2 shows a computer generated plot of the actual NASTRAN model, while Fig. 3 shows how each segment interfaces to form the complete impeller.

Analysis

Steady state loads shown in Fig. 4 were applied to the model resulting in the stress contours shown in Figs. 5 and 6. Stress values at the outboard edge of the shroud are tabulated in Fig. 7. Using the maximum stress from Fig. 7, an estimate of the maximum allowable alternating stress was calculated in Fig. 8. Figure 9 is a modified Goodman diagram. Frequency output from the normal modes analysis is shown in Figs. 10 and 11.

Conclusions

- Steady state stress is insufficient to cause failure.
- Large forcing function would be necessary to cause stress that approaches allowable alternating stress.
- Frequency content of impeller indicates the possibility of resonances as shown on Campbell diagram (Fig. 11).

J.K. Robinson

Dynamics & Loads Group

Approved T. Welch

Charles T. Welch, Manager Product Eng. & Dev. Section

Attach: Figs. 1 through 11

Fig. 1 60 deg Segment of Impeller Modeled with NASTRAN

Fig. 2 NASTRAN Model of HPFTP Impeller (60 deg Segment) 764 Nodes, 418 Elements

Fig. 3 Schematic of Segment Assembly (Shroud Orly)

Fig. 4 Steady State Loads on HPFTP Impeller

Fig. 5 Stress Distribution - Shroud External Surface (Rotational Load Only)

DRIGINAL PAGE IS DE POOR

Fig. 6 Stress Distribution - Shroud External Surface (Pressure and Rotational Loads)

Circumferential Location	Rotational	Rotational : Pressure
0° - Full Blade		
2.5°	18.4	11.4
5.0°	23.4	21.4
7.5°	24.7	26.3
10.0"	23.4	33.2.
12.5°	17.0	15.5
5 - Second Fireial		
17.5°	17.6	3.9
20.0°	7:0.9	15.2
22.5°	21.6	20.8
250°	26.8	36.1
27.50	24.2	25.4
30° - First Partial		
34.3	23.7	15.8
35.0°	27.8	27.2
37.5°	25.7	29.5
40.0°	24.8	35.8
42.5°	23./	21.9
45° - Second Partial		
47.50	23.1	10.3
50.0°	24.5	20.2
52.5°	29.2	29.9
55.0°	33.4	44.4 *
57.5°	24.7	27.2
00 - Full Blade		
		* = Max.

Fig. 7 Stress at Outboard Edge of Shroud

(U From static analysis, max stress is:

- 45 KSI

(Note: He -397°F, Sy= 170 KSI, Su= 180 KSI)

(2) Using the Molifiel Goolman Diagrame (next pare), the allowable alternating stress for 10 eyeles is:

46 KSI

(2) Restrained stress by 3 standard deviations to achieve an acceptable confidence level, we have: 46 (1-.12)3 = 31 KSI

(Assuming a Coefficient of Variation of . 12)

Allowable alternating stress = 31 KSI

Fig. 8 Calculation of Allowable Alternating Stress

OID RO	OCKWELL NTERNATIONAL	EXPECTED MINIMUM AXIAL, MODIFIED GOODMAN DIAGRAM							5002.33.12.50-04 TITANIM-SAL S SN SL SOR2 HIGH CYCLE FATIOLE .33								
FC	ENDINE DIVISION																
MACHINED SURFACE 32 FINISH							_	BAR AND FORGING .12									
MATERIALS ANNEALTD 1400F							_	CE CELASYA)			
PRO	PERTIES		ATE- 9									LHEE	,			-04	
MAN				ION PAGE		3.1.1.	2.9		57			-079					
IMIN													1200	170	0 1	400	
	100		hughu	M M	EAN	STRE			السيا	1111	dup	السيا	سائيد	بالبيسا	بسلس	7	00
			1	N =	100	00000	CYCL.	ĘŞ.							- 3	3	
	90		2	100	-00		- 0.00	1		ETY	_ ,	70	le t		-	3	
	~			SECT	ION	TH)C	KNESS	THE	¥J 4		И.	13	1		-	3	00
		-	-	-		-	_	1	-		-	1-			_	1	
	80		-	+-			-	+-	-	-	-	-	-	-	-	1	
		-		-		_	-	-	-	_	-	-	-	-		3	20
	70											1	_		-	3	~,
15																24	
ALTERNATING STRESS.KSI	60		T					T	-							E 3	
ESS		T					1	1	1			T				TERNAT	100
STR		-	1	-	-	-	+	+	\vdash	-	1	+	-			TING	
D.	50	-	74	-	-	-	-	-	-	-	-	+	+-	-	-		
£ 46		1		1	_		-	1-	-	-	-	-	-	-		SIRE	000
N.	40		N.													ESS.	
Ε.				1	1	1		1			1		1			43	
<	- E				1	2		T	T	T	T	T				1 > 1	
	30 E	111	+		1	1	1	+	1	T	+	+	+			-	200
	E	+-++	++	-	+-	-	1	7	-	+	+	+	+	-		1 1	
	20	++	-		-	-	_	1	Y	1	+	+	+	-		1 1	
					_			1		1	-	_	_	_		1	10ú
	10					-					1	1				3 3	
					T			T		T	T	11	1			1 -	
		111	1				_	1	1	\top	\top	1	1			1 1	
	وقساسيان	40 1	H444		E0	10	5	120	سلب	140	سك	150	بسال	180	إسا	300 J	0
		45			MEAN												
	3rd Editio				EAN	SIKE	ESS.KS	10									
	Printing,									INAL PAGE IS							
								0	E Po	OOF	0	ILAT	LITY				
									-		- 0	LAL	ALY.				

Fig. 9 Modified Goodman Diagram TI-5AL-2.5SN

MARMONIC	MIDE	FREQUENCY
INDEX	NUMBER	(HERTZ)
K=O	,	1596
	2	2857
	3	7040
	3 4	11005
K=1	1-2	1529
	3-4	3801
	5-6	5797
	7-8	8359
	9-10	9597
	11	9875
	12	14126
K= 2	1-2	3271
	3-4	7375
	5-6	8766
	7	12906

Fig. 10 HPFTP Impeller Frequency List

Fig. 11 HPFTP Impeller Campbell Diagram