STARK Arithmetization

Eli Ben-Sasson Chief Scientist (East)

February 2019

Succinct Computational Integrity and Privacy

Goals

- Given (i) program P, (ii) input x_{in} , (iii) time bound T
- ▶ Bob claims $P(x_{in}, w) = x_{out}$ after T steps, w is auxiliary (private) input

Succinct Computational Integrity and Privacy

Goals

- Given (i) program P, (ii) input x_{in} , (iii) time bound T
- ▶ Bob claims $P(x_{in}, w) = x_{out}$ after T steps, w is auxiliary (private) input
- Goals of proof system:
 - Integrity: Is the claim correct?
 - Privacy: Prevent proof from leaking w
 - Succinctness: Verify proof in time polylog (T)
 - ► (Knowledge: Does Bob *know w*?)

Succinct Computational Integrity and Privacy

Goals

- Given (i) program P, (ii) input x_{in} , (iii) time bound T
- ▶ Bob claims $P(x_{in}, w) = x_{out}$ after T steps, w is auxiliary (private) input
- Goals of proof system:
 - Integrity: Is the claim correct?
 - Privacy: Prevent proof from leaking w
 - Succinctness: Verify proof in time polylog (T)
 - (Knowledge: Does Bob know w?)
- Notice the problem is a special case of checking membership (of (P, x_{in}, x_{out}, T)) in some nondeterministic language L (called the universal language, computational integrity language, . . .)

- Arithmetization: reduction of computational problems like . . .
 - ▶ is x a member of language $L \in NTIME(T(n))$?
 - ... to algebraic coding problems like
 - ▶ is $f: S \to \mathbb{F}$ the evaluation of a polynomial of degree $< \frac{|S|}{8}$?

- Arithmetization: reduction of computational problems like . . .
 - ▶ is x a member of language $L \in NTIME(T(n))$?
 - ... to algebraic coding problems like
 - ▶ is $f: S \to \mathbb{F}$ the evaluation of a polynomial of degree $< \frac{|S|}{8}$?
- Brief history of arithmetization
 - ► Gödel 1930's: Incompleteness theorem
 - Razborov 1980's: lower bounds on circuit size
 - Lund, Fortnow, Karloff, Nisan, late 1980's: Interactive proofs

- Arithmetization: reduction of computational problems like . . .
 - ▶ is x a member of language $L \in NTIME(T(n))$?
 - ... to algebraic coding problems like
 - ▶ is $f: S \to \mathbb{F}$ the evaluation of a polynomial of degree $< \frac{|S|}{8}$?
- Brief history of arithmetization
 - ► Gödel 1930's: Incompleteness theorem
 - Razborov 1980's: lower bounds on circuit size
 - Lund, Fortnow, Karloff, Nisan, late 1980's: Interactive proofs
- Why arithmetization?
 - polynomials are excellent error correcting codes (ECCs)
 - ECCs add redundancy and "spread information"
 - this amplifies the noticeability of errors/cheats

- Arithmetization: reduction of computational problems like . . .
 - ▶ is x a member of language $L \in NTIME(T(n))$?
 - ... to algebraic coding problems like
 - ▶ is $f: S \to \mathbb{F}$ the evaluation of a polynomial of degree $< \frac{|S|}{8}$?
- Brief history of arithmetization
 - ► Gödel 1930's: Incompleteness theorem
 - Razborov 1980's: lower bounds on circuit size
 - Lund, Fortnow, Karloff, Nisan, late 1980's: Interactive proofs
- Why arithmetization?
 - polynomials are excellent error correcting codes (ECCs)
 - ECCs add redundancy and "spread information"
 - this amplifies the noticeability of errors/cheats
- ► Talk tl;dr: Arithmetization ~ Succinctness & ZK

- Arithmetization: reduction of computational problems like . . .
 - ▶ is x a member of language $L \in NTIME(T(n))$?
 - ... to algebraic coding problems like
 - ▶ is $f: S \to \mathbb{F}$ the evaluation of a polynomial of degree $< \frac{|S|}{8}$?
- Brief history of arithmetization
 - ► Gödel 1930's: Incompleteness theorem
 - Razborov 1980's: lower bounds on circuit size
 - Lund, Fortnow, Karloff, Nisan, late 1980's: Interactive proofs
- Why arithmetization?
 - polynomials are excellent error correcting codes (ECCs)
 - ECCs add redundancy and "spread information"
 - this amplifies the noticeability of errors/cheats
- ► Talk tl;dr: Arithmetization ~ Succinctness & ZK
- Work in IOP model: prover sends functions, verifier pays per query

▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ► Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ▶ Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

 - $(X \gamma) \cdot \tilde{P}(X) = P(X)$

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ▶ Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

 - $(X \gamma) \cdot \tilde{P}(X) = P(X)$

So P(X) vanishes on H iff $\exists \tilde{P}(X)$ satisfying

- $ightharpoonup Z_H \cdot \tilde{P}(X) = P(X)$

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ▶ Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

 - $(X \gamma) \cdot \tilde{P}(X) = P(X)$

So P(X) vanishes on H iff $\exists \tilde{P}(X)$ satisfying

- $ightharpoonup Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct polynomials of degree d intersect at $\leq d$ points (e.g., two distinct lines intersect at ≤ 1 point)

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ▶ Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

 - $(X \gamma) \cdot \tilde{P}(X) = P(X)$

So P(X) vanishes on H iff $\exists \tilde{P}(X)$ satisfying

- $ightharpoonup Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct polynomials of degree d intersect at $\leq d$ points (e.g., two distinct lines intersect at ≤ 1 point)

So: two distinct functions of degree d evaluated at $100 \cdot d$ points are 99%-far in relative hamming distance

- ▶ Fact 1: If $H \subset \mathbb{F}$ multiplicative subgroup, |H| = h, then
 - ▶ The polynomial $Z_H(X) = \prod_{\alpha \in H} (X \alpha) = X^h 1$ vanishes on H
 - ▶ Evaluating $Z_H(\beta)$ requires $O(\log h)$ arithmetic operations
- ▶ Fact 2: $P(\gamma) = 0$ iff there exists $\tilde{P}(X)$ satisfying

 - $(X \gamma) \cdot \tilde{P}(X) = P(X)$

So P(X) vanishes on H iff $\exists \tilde{P}(X)$ satisfying

- $ightharpoonup Z_H \cdot \tilde{P}(X) = P(X)$
- Fact 3: Two distinct polynomials of degree d intersect at ≤ d points (e.g., two distinct lines intersect at ≤ 1 point)
 So: two distinct functions of degree d evaluated at 100 · d points are 99%-far in relative hamming distance
- ▶ Corollary: space of low-degree functions forms a linear error correcting code, called the Reed-Solomon (RS) code (suggested as code – 1960's)

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ► Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Suppose: prover uses only degree-d polynomials

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct degree d functions evaluated at $100 \cdot d$ points are 99%-far

Suppose: prover uses only degree-d polynomials Challenge 1: Given $f: \mathbb{F} \to \mathbb{F}, \deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f vanishes on H The (IOP) protocol:

▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d - h$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$
- ► Complexity: 2 queries, $O(\log h)$ time,

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$
- ► Complexity: 2 queries, $O(\log h)$ time,
- Soundness error ≤ 1%:

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$
- ► Complexity: 2 queries, $O(\log h)$ time,
- Soundness error ≤ 1%:
 - Suppose f does not vanish on H
 - ▶ then $f(X) Z_H(X) \cdot g(X)$ non-zero polynomial

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$
- ► Complexity: 2 queries, $O(\log h)$ time,
- Soundness error ≤ 1%:
 - Suppose f does not vanish on H
 - ▶ then $f(X) Z_H(X) \cdot g(X)$ non-zero polynomial
 - it has at most d roots

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) = Z_H(\alpha) \cdot g(\alpha)$
- ► Complexity: 2 queries, $O(\log h)$ time,
- Soundness error ≤ 1%:
 - Suppose f does not vanish on H
 - ▶ then $f(X) Z_H(X) \cdot g(X)$ non-zero polynomial
 - ▶ it has at most *d* roots
 - ▶ So probability of error $\leq d/|\mathbb{F}| \leq 1/100$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Suppose: prover uses only degree-d polynomials

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Suppose: prover uses only degree-d polynomials Challenge 2: Given $f: \mathbb{F} \to \mathbb{F}, \deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f is Boolean (evaluates to $\{0,1\}$) on H

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Suppose: prover uses only degree-d polynomials Challenge 2: Given $f: \mathbb{F} \to \mathbb{F}$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f is Boolean (evaluates to $\{0,1\}$) on H The (IOP) protocol:

▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < 2d - h$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

- - ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < 2d h$
 - ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) \cdot (f(\alpha) 1) = Z_H(\alpha) \cdot g(\alpha)$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Suppose: prover uses only degree-d polynomials Challenge 2: Given $f: \mathbb{F} \to \mathbb{F}$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f is Boolean (evaluates to $\{0,1\}$) on H

The (IOP) protocol:

- ▶ Prover sends $g : \mathbb{F} \to \mathbb{F}$ of degree $\deg(g) < 2d h$
- ▶ Verifier samples $\alpha \in \mathbb{F}$, accepts iff $f(\alpha) \cdot (f(\alpha) 1) = Z_H(\alpha) \cdot g(\alpha)$
- ▶ Complexity: 2 queries, $O(\log h)$ time, error prob $\leq 2\%$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far

Summary: Succinct verification of Booleanity type-checking What about verifying correctness of general computation?

► Fact 4: deg(f(x)) = deg(f(ax + b)) for all $a \neq 0, b$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ▶ Fact 3: Two distinct degree d functions evaluated at $100 \cdot d$ points are 99%-far
- ► Fact 4: for all $a \neq 0$, b we have $\deg(f(x)) = \deg(f(ax + b))$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- Fact 3: Two distinct degree d functions evaluated at $100 \cdot d$ points are 99%-far
- Fact 4: for all $a \neq 0$, b we have $\deg(f(x)) = \deg(f(ax + b))$

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals $b \mod p$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- Fact 4: for all $a \neq 0$, b we have deg(f(x)) = deg(f(ax + b))

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals $b \mod p$ The (IOP) protocol:

▶ Prover sends $g, g' : \mathbb{F}_p \to \mathbb{F}_p$ of degree $\deg(g) < d - h, \deg(g') < d - 3$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- Fact 4: for all $a \neq 0$, b we have deg(f(x)) = deg(f(ax + b))

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals $b \mod p$ The (IOP) protocol:

- Prover sends g, g': $\mathbb{F}_p \to \mathbb{F}_p$ of degree $\deg(g) < d h, \deg(g') < d 3$
- Let B(x) be degree 2 polynomial that satisfies $P(1) = P(\omega) = 1, P(\omega^{-1}) = b$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- Fact 4: for all $a \neq 0$, b we have deg(f(x)) = deg(f(ax + b))

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals $b \mod p$ The (IOP) protocol:

- ▶ Prover sends $g, g' : \mathbb{F}_p \to \mathbb{F}_p$ of degree $\deg(g) < d h, \deg(g') < d 3$
- Let B(x) be degree 2 polynomial that satisfies $P(1) = P(\omega) = 1$, $P(\omega^{-1}) = b$
- Let D(X) be the degree-3 polynomial that vanishes on $1, \omega, \omega^{-1}$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ▶ Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- Fact 3: Two distinct degree d functions evaluated at $100 \cdot d$ points are 99%-far
- Fact 4: for all $a \neq 0$, b we have $\deg(f(x)) = \deg(f(ax + b))$

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals $b \mod p$ The (IOP) protocol:

- Prover sends $g, g' : \mathbb{F}_p \to \mathbb{F}_p$ of degree deg(g) < d − h, deg(g') < d − 3
- Let B(x) be degree 2 polynomial that satisfies $P(1) = P(\omega) = 1, P(\omega^{-1}) = b$
- Let D(X) be the degree-3 polynomial that vanishes on $1, \omega, \omega^{-1}$
- ▶ Verifier samples $\alpha \in \mathbb{F} \setminus \{1, \omega\}$, accepts iff
 - $f(\alpha) f(\alpha/\omega) f(\alpha/\omega^2) = Z_H(\alpha) \cdot g(\alpha) / ((\alpha 1)(\alpha \omega))$
 - $f(\alpha) B(\alpha) = g'(\alpha) \cdot D(\alpha)$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- Fact 4: for all $a \neq 0$, b we have $\deg(f(x)) = \deg(f(ax + b))$

Challenge 3: Given $f: \mathbb{F}_p \to \mathbb{F}_p$, $\deg(f) = d < |\mathbb{F}|/100$, devise protocol for checking succinctly and with small error if f evaluates a Fibonacci sequence on H and last element equals b mod p The (IOP) protocol:

- ▶ Prover sends $g, g' : \mathbb{F}_p \to \mathbb{F}_p$ of degree $\deg(g) < d - h, \deg(g') < d - 3$
- Let B(x) be degree 2 polynomial that satisfies $P(1) = P(\omega) = 1, P(\omega^{-1}) = b$
- Let D(X) be the degree-3 polynomial that vanishes on $1, \omega, \omega^{-1}$
- ▶ Verifier samples $\alpha \in \mathbb{F} \setminus \{1, \omega\}$, accepts iff
 - $f(\alpha) f(\alpha/\omega) f(\alpha/\omega^2) = Z_H(\alpha) \cdot g(\alpha) / ((\alpha 1)(\alpha \omega))$
 - $f(\alpha) B(\alpha) = g'(\alpha) \cdot D(\alpha)$
- ► Complexity: 5 queries, $O(\log h)$ time, error prob $\leq 1\%$

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- ► Fact 4: for all $a \neq 0, b$ we have $\deg(f(x)) = \deg(f(ax + b))$

- Write transition function as polynomial constraints
- Write boundary constraints as polynomial constraints

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- ► Fact 4: for all $a \neq 0, b$ we have $\deg(f(x)) = \deg(f(ax + b))$

- Write transition function as polynomial constraints
- Write boundary constraints as polynomial constraints
- Check that applied to f, all constraints vanish on H

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- ► Fact 4: for all $a \neq 0, b$ we have $\deg(f(x)) = \deg(f(ax + b))$

- Write transition function as polynomial constraints
- Write boundary constraints as polynomial constraints
- Check that applied to f, all constraints vanish on H
- Question: What about ZK? $f|_H$ reveals the computation!

- ▶ Fact 1: If $H \subset \mathbb{F}$ mult. group, |H| = h, then $Z_H(\beta) = \beta^h 1$ evaluated in time $O(\log h)$
- ► Fact 2: P(X) vanishes on $H \Leftrightarrow \exists \tilde{P}(X), \deg(\tilde{P}) = \deg(P) h$ and $Z_H \cdot \tilde{P}(X) = P(X)$
- ► Fact 3: Two distinct degree d functions evaluated at 100 · d points are 99%-far
- Fact 4: for all $a \neq 0$, b we have deg(f(x)) = deg(f(ax + b))

- Write transition function as polynomial constraints
- Write boundary constraints as polynomial constraints
- Check that applied to f, all constraints vanish on H
- Question: What about ZK? $f|_H$ reveals the computation!
 - never sample from H,
 - if test uses q queries, slacken degree, deg(f) = d + q,
 - prover samples f to agree with correct execution trace on H and be random otherwise
 - this gives ZK!

We saw

arithmetization solves succinct checking of computational integrity

We saw

- arithmetization solves succinct checking of computational integrity
- adding randomness and increasing degree gives ZK

We saw

- arithmetization solves succinct checking of computational integrity
- adding randomness and increasing degree gives ZK

We didn't see

▶ How can Bob be prevented from presenting f, g that are not of needed degree?

We saw

- arithmetization solves succinct checking of computational integrity
- adding randomness and increasing degree gives ZK

We didn't see

- How can Bob be prevented from presenting f, g that are not of needed degree?
- Two kinds of solutions
 - [IKO07]: Use additively homomorphic encryption (and more) to limit Bob to using only low-degree polynomials
 - 2. [PCPs 1990s]: Have Bob Commit-then-reveal entries of f,g and add special "proximity-to-low-degree-testing" protocol (next lecture)

We saw

- arithmetization solves succinct checking of computational integrity
- adding randomness and increasing degree gives ZK

We didn't see

- ▶ How can Bob be prevented from presenting f, g that are not of needed degree?
- Two kinds of solutions
 - [IKO07]: Use additively homomorphic encryption (and more) to limit Bob to using only low-degree polynomials
 - 2. [PCPs 1990s]: Have Bob Commit-then-reveal entries of f,g and add special "proximity-to-low-degree-testing" protocol (next lecture)
- Solution 1 requires trusted setup, leads to zkSNARKs (and many other constructions)
- Solution 2 is transparent, leads to zkSTARKs (and many other constructions)

We saw

- arithmetization solves succinct checking of computational integrity
- adding randomness and increasing degree gives ZK

We didn't see

- ▶ How can Bob be prevented from presenting f, g that are not of needed degree?
- Two kinds of solutions
 - 1. [IKO07]: Use additively homomorphic encryption (and more) to limit Bob to using only low-degree polynomials
 - 2. [PCPs 1990s]: Have Bob Commit-then-reveal entries of f,g and add special "proximity-to-low-degree-testing" protocol (next lecture)
- Solution 1 requires trusted setup, leads to zkSNARKs (and many other constructions)
- Solution 2 is transparent, leads to zkSTARKs (and many other constructions)
- want to learn more? workshop@starkware.co
- want to realize in practice? jobs@starkware.co

