The chiral potential - 135Pr

Table of Contents

- · Chiral potential
 - Variabila Jacobi \varphi
 - k arbitrar
 - Grafic pentru evolutia lui \varphi ca functie de q
 - k pentru cazul din draft, figura 3
 - Grafic pentru evolutia lui \varphi ca functie de q
- ^{135}Pr Electromagnetic transitions
 - Experimental data

Chiral potential

Variabila Jacobi arphi

Ca sa imi dau seama daca dumneavoastra lucrati cu conventia m sau k^2 la functiile eliptice Jacobi, va rog sa imi spuneti cat obtineti numeric pentru amplitudinea Jacobi (adica φ) pentru fiecare valoare a lui $q \in [0,8]$.

La mine in program, k este

$$k = \sqrt{u(I, j, \theta, A_1, A_2, A_3)}$$

k arbitrar

$$k = \frac{1}{2}$$

q	arphi(q,k)	$arphi(q,k^2)$
0	0	0
1	0.932315	0.966031
2	1.67416	1.84405
3	2.46	2.77217

q	arphi(q,k)	$arphi(q,k^2)$
4	3.43141	3.76057
5	4.30462	4.6628
6	5.02681	5.55542
7	5.87267	6.53949
8	6.8515	7.4799

Grafic pentru evolutia lui φ ca functie de q

\boldsymbol{k} pentru cazul din draft, figura 3

$$I = 45/2, \ j = 13/2, \ \theta = 210^{o}$$

 $k = 0.8052421906425284$

q	$\varphi(q,k)$	$arphi(q,k^2)$
0	0	0
1	0.891539	0.912432
2	1.4508	1.56746
3	1.91635	2.22051
4	2.62263	3.13034
5	3.59048	4.04533
6	4.32471	4.70238

q	arphi(q,k)	$arphi(q,k^2)$
7	4.79761	5.35349
8	5.33758	6.26069

Grafic pentru evolutia lui arphi ca functie de q

In functie de coloana pentru care avem concordanta, atunci imi dau seama ce conventie sa folosesc in programul meu pentru a construi celelalte functii.

$^{135} Pr$ Electromagnetic transitions

Experimental data

I	$\frac{B(E2, I \rightarrow I - 1)_{\text{out}}}{B(E2, I \rightarrow I - 2)_{\text{in}}}$	$\frac{B(M1,I\rightarrow I-1)_{\text{out}}}{B(E2,I\rightarrow I-2)_{\text{in}}} \left(\frac{\mu_N}{eb}\right)^2$
	Expt.	Expt.
<u>17</u> 2		
$\frac{21}{2}$	0.843(32)	0.164(14)
$\frac{25}{2}$	0.500(25)	0.035(9)
$\frac{29}{2}$	≥0.261(14)	≥0.016(4)