6^a Lista de exercícios - Gabarito

Intr. à Relatividade

① [2.0] Utilizando as simetrias do tensor de Riemman, mostre que o tensor de Riemann de um espaço maximamente simétrico pode ser escrito como:

 $R_{ijkl} = \frac{R}{6}(g_{ik}g_{jl} - g_{il}g_{jk}) \tag{1}$

Solução: O tensor de Riemann num espaço maximamente simétrico deve ter as componentes inalteradas por uma transformação de Lorentz. Portanto, o tensor de Riemann nesse espaço deve ser proporcional a um tensor que seja invariante por transformações de Lorentz. Temos, então, 3 possibilidades: a métrica, a delta de Kronecker e o tensor de Levi-Civita. Mas para que as simetrias do tensor de Riemann sejam respeitadas, um momento de reflexão revela que a única possibilidade é que o tensor de Riemann seja proporcional à combinação da métrica:

$$R_{ijkl} \propto g_{ik}g_{il} - g_{il}g_{jk}. \tag{2}$$

Contraindo ambos os lados duas vezes produz, em 3 dimensões:

$$R_{ijkl} = \frac{R}{6}(g_{ik}g_{jl} - g_{il}g_{jk}). \tag{3}$$

2 [2.0] Use a métrica FLRW:

$$ds^{2} = -dt^{2} + a(t)^{2} \frac{dr^{2}}{1 - kr^{2}}.$$
 (4)

e o fato de que um fóton percorre uma geodésica nula para encontrar a relação entre o fator de escala em dois instantes diferentes e o redshift. Comece imaginando que uma crista de uma onda luminosa é emitido por uma fonte em r num instante inicial t_0 , seguido da emissão de uma segunda crista δt_0 depois. Assuma que um observador detecta a luz emitida pela fonte em r=0. O redshift sofrido pelo fóton significa que alguma energia foi perdida?

Solução: Ao longo de geodésicas radiais nulas, temos:

$$\frac{dt}{a(t)} = \frac{dr}{\sqrt{1 - kr^2}}. (5)$$

Considere a emissão de duas cristas subsequentes, uma emitida no instante t_0 e recebida em t_1 , e outra emitida e recebida nos instantes $t_0+\delta t_0$ e $t_1+\delta t_1$. Deste modo,

$$\int_{t_1}^{t_0} \frac{dt}{a(t)} = \int_{t_1 + \delta t_1}^{t_0 + \delta t_0} \frac{dt}{a(t)} = \int_{r_1}^{0} \frac{dr}{\sqrt{1 - kr^2}}.$$
 (6)

Assumindo que $\delta t_{0,1} \ll \frac{a}{\dot{a}}$, obtemos:

$$\frac{\delta t_0}{a(t_0)} = \frac{\delta t_1}{a(t_1)}. (7)$$

Uma vez que $\delta t_{0,1} = 1/\nu_{0,1}$, então:

$$1 + z = \frac{\nu_1}{\nu_0} = \frac{a(t_0)}{a(t_1)}. (8)$$

Portanto, o fóton recebido possui um redshift com respeito ao fóton emitido. Isso não significa que o fóton perdeu energia, mas sim que, em um Universo em expansão, espaço está constantemente sendo criado entre duas cristas consecutivas e, portanto, a comprimento de onda do fóton deve aumentar para que a sua energia seja conservada.

3 [2.0] Usando as equações de Friedmann na forma:

$$-\frac{a\ddot{a}}{\dot{a}^2} = \frac{1}{2} \sum_{j} (1 + 3w_j) \Omega_j \tag{9}$$

e

$$\frac{m\dot{a}^2}{2} + V(a) = 0, (10)$$

onde $\Omega_j = (\frac{H_0}{H})^2 \Omega_{j,0} a^{-3(1+w_j)}$, com $j = m, \Lambda \in k, m \equiv 2/H_0^2$ e

$$V(a) \equiv -\left(\frac{\Omega_{m,0}}{a} + \Omega_{\Lambda,0}a^2 + \Omega_{k,0}\right),\tag{11}$$

com $\Omega_k = 1 - (\Omega_{m,0} + \Omega_{\Lambda,0})$, encontre as regiões no plano $\Omega_m - \Omega_{\Lambda}$ onde (i) o fator de escala se expande de forma acelerada ou desacelerada (ii) o Universo é aberto ou fechado (iii) o Universo se expande indefinidamente ou eventualmente recolapsa. Existe alguma situação na qual nunca houve um Big Bang? Dica: é útil esboçar a forma de V(a) em cada situação. Lembre-se que hoje $\dot{a} > 0$ e a = 1.

Solução: (i) Pela equação (10) é imediato que \ddot{a} só é positivo se

$$\Omega_{\Lambda} > \frac{1}{2}\Omega_m. \tag{12}$$

No nosso Universo, portanto, o fator de escala se expande de forma acelerada.

(ii) Para que o Universo seja plano, Ω_k deve ser nulo. Poranto, a curva que separa um universo aberto $(\Omega_k < 0)$ de um universo fechado $(\Omega_k > 0)$ é dada por

$$\Omega_{\Lambda} = 1 - \Omega_m$$
.

(iii) A equação (10) sugere que podemos tratar esse problema como o movimento unidimensional de uma partícula de energia zero sujeita ao potêncial V(a). Pela equação (11) vemos que esse potêncial pode ser de 3 tipos, dependendo dos valores de Ω_{Λ} e Ω_{m} . A figura (1) ilustra esses 3 tipos. No primeiro tipo (acima, esquerda) o fator de escala vêm de zero e atualmente está aumentando ($\dot{a} > 0$), até atingir V(a) = 0, onde a sua velocidade se anula (a "partícula" possui energia nula) e então volta a se contrair. Portanto, nessa situação o Universo se expande hoje e eventualmente recolapsa. No segundo tipo (acima, direita), o Universo se expande para sempre. No terceiro caso (abaixo), atualmente o Universo está expandindo e nunca ouve um Big Bang, pois V(a) = 0 acontece para a < 1. Portanto, se a energia escura for dominante o suficiente, o Universo nunca experienciou um Big Bang.

Para encontrar a curva que separa um universo que se expande para sempre de um universo que se expande e depois se contrai, precisamos encontrar a situação na qual $V(a_{max}) = 0$ e $V'(a_{max}) = 0$, onde a_{max} é o valor do fator de escala no qual o potêncial é máximo. Por conveniência, vamos dividir (10) por Ω_m :

$$V(a) = -a^{-1} - 4x^3a^2 - (s - 4x^3). (13)$$

Na equação acima, $x \equiv \left(\frac{\Omega_{\Lambda}}{4\Omega_{m}}\right)^{\frac{1}{3}}$ e $s \equiv \frac{1-\Omega_{m}}{\Omega_{m}}$. A condição $V(a_{max}) = 0$ nos dá $a_{max} = \frac{1}{2x}$. Substituindo a_{max} em (13) produz:

$$V(a_{\max}) = 4x^3 - 3x - s. \tag{14}$$

Portanto, a curva que separa a situação de um universo que se expande pra sempre de um universo que recolapsa pode ser encontrada resolvendo a equação algébrica $4x^3 - 3x - s = 0$.

Figura 1: O comportamento do potêncial V(a) nas situações $(\Omega_m, \Omega_{\Lambda}) = (0.3, -0.8)$ (acima, esquerda), (0.3, 0.8) (acima, direita) e (4, 1.5) (abaixo).

- 4 [2.0] Com futuros detectores de ondas gravitacionais será possível obter informação do Universo em até redshift z \sim 10, como o Riccardo Sturani comentou em aula. Neste exercício, vamos procurar ter alguma idéia de o quanto para trás no tempo poderemos "ver" com as ondas gravitacionais.
 - a) A partir da definição do parâmetro de Hubble:

$$H \equiv \dot{a}/a = H_0 \sqrt{\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_\Lambda},\tag{15}$$

, da relação entre o redshift z e o fator de escala:

$$a(z) = \frac{1}{1+z} \tag{16}$$

e sabendo que a era da dominação de energia escura começa a aproximadamente 4 bilhões de anos atrás (antes disso o Universo foi dominado por matéria¹), esboçe um gráfico do redshift em função do tempo e responda: em redshift aproximadamente 10 corresponde a quanto tempo atrás? (Use que $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$ e $H_0 = 70 Km/s/Mpc$)

Solução: Esse exercício pode ser resolvido resolvendo numéricamente a integral

$$t(z) = -\int_{z}^{0} \frac{dz}{(1+z)H(z)},$$
(17)

que segue trivialmente de 15. A figura (2) mostra o resultado numérico da integral acima. O código que gera esse grático está público 2 . Como output esse código mostra quanto tempo atrás foi emitida a luz de um fóton que sofreu o redshift z. Obtemos que um fóton com redshift z=10 foi emitido quando o Universo tinha apenas 1.12 bilhões de anos.

b) Pelo o ítem a) sabemos que a maior parte do tempo da evolucão do Universo está compreendida em baixos redshifts. Dê uma explicação qualitativa para esse fato.

Solução: Portanto, grandes variações no tempo cósmico correspondem à variações modestas no redshift. Isso acontece porque o valor de H_0 é muito pequeno. Em unidades de Gy^{-1} , $H_0 \simeq 0.07$. Isso significa que a cada Megaparsec, espaço é criado a uma taxa de 70 Km/s. Quanto mais próximo de nós, portanto, menos relevante é essa "criação de espaço". Quando o Universo foi dominado por radiação ($\simeq 47000$ anos após o Big Bang),

$$dz \simeq dt H_0 \sqrt{\Omega_r} (1+z)^3 \tag{18}$$

e portanto para redshifts altos dz vai se tornar grande com variações em dt. É por isso que a maior parte da história do Universo está compreendida em baixos redshifts.

 $^{^1{\}rm O}$ Universo também foi dominado por radiação desde depois da inflação até aproximadamente 47000 anos depois do Big Bang

² github.com/RenanBoschetti/cosmic calculator/tree/master

Figura 2: Redshift em função do tempo cosmico em unidades de Gy.

c) Imagine dois corpos que estão longe de qualquer coisa e possuem atração gravitacional mútua desprezível. Se a distância física entre esses dois corpos for, digamos, a distância entre a Terra e o Sol, então a luz que sair de um deles e for detectada pelo outro não sofrerá nenhum redshift devido a expansão. Explique qualitativamente esse fato e estime a ordem de grandeza que o parâmetro de Hubble precisaria ter para que esse redshift fosse da ordem de 10^{-1} . Dica: Nesse ítem você pode assumir um universo dominado pela constante cosmológica.

Solução: Como dito na solução do ítem anterior, a taxa com a qual espaço é criado só é relevante em distâncias muito grandes. A princípio, o redshift da luz que chega num observador vinda de uma fonte a uma distância equivalente à distância entre a terra e o sol existe, mas é muito pequeno se a taxa de expansão H_0 for como nós a observamos e, portanto, indetectável.

Num universo dominado por constante cosmológica, podemos calcular qual deveria ser o valor do parâmetro de Hubble para que o redshift na situação acima fosse da ordem de 0.1 como:

$$D = \frac{c}{H_0 \sqrt{\Omega_{\Lambda}}} \int_0^{0.1} dz, \tag{19}$$

onde D é a distância entre a Terra e o Sol. Usando os valores numéricos

de c, D e Ω_{Λ} obtemos

$$H_0 \sim 10^{16} Km/s/Mpc.$$
 (20)

d) Agora estime a ordem de grandeza que o parâmetro de Hubble precisaria ter para que os elétrons fossem arrancados dos átomos de hidrogênio. Dica: você só precisa calcular a equação da geodésica para um universo de de Sitter.

Solução: Esse ítem diz respeito ao chamado "big rip", que é a destruíção de todas as estruturas do Universo devido à expansão.

Para que isso aconteça, a expansão deve gerar uma aceleração efetiva que seja maior do que a aceleração que o elétron sente devido à força de Coulomb. Vamos ignorar o movimento do elétron em volta do próton (modelo de Bohr) e verificar o que acontece na direção radial. Escrevendo a equação da geodésica para uma métrica FLRW em 2D $ds^2 = -c^2 dt^2 + a(t)^2 dr^2$, obtemos:

$$\frac{dv^r}{d\tau} = -H(t)v^r,\tag{21}$$

onde $v^r = dr/d\tau$ e H(t) é o parâmetro de Hubble. Como foi discutido em aula, esse resultado nos diz que, se a velocidade inicial na direção radial for nula, então nada vai acontecer. A única maneira de gerar uma aceleração efetiva devido à expansão é fazer com que o parâmetro de Hubble seja infinito!

Surpreendentemente isso é possível, desde que a equação de estado da energia escura seja w < -1. É fácil ver isso pela equação de Friedmann (15). Negligenciando os termos de matéria e radiação, obtemos que

$$a(t)^{\frac{3(1+w)}{2}} = \frac{3}{2}H_0\sqrt{\Omega_{\Lambda}}|1+w|(t-t_0)+1, \tag{22}$$

onde t_0 é hoje. Ou seja, para w < -1 e

$$t_0 - t_{rip} = \frac{2}{3} H_0^{-1} \Omega_{\Lambda}^{-1/2} |1 + w|^{-1}$$
 (23)

o fator de escala e, portanto, H(t), explodem para infinito em um tempo finito. Por exemplo, para w = -3/2 e $H_0 = 70$ o big rip acontece em $22 \ Gyr$.

No passado foi especulado que a energia escura tivesse w<-1. Hoje sabemos, através de vínculos observacionais, que a equação de estado da energia escura é muito próxima de -1 (com um erro de $\sim 5\%$). Portanto, é muito improvável que o nosso Universo termine em um big rip.

- (5) [2.0] Em 1920 o físico e astrônomo Holandês Willem de Sitter encontrou uma solução muito interessante das equações de Friedmann. Ele considerou um universo contendo uma única componente (a Constante Cosmológica (CC) Λ), cuja densidade de energia é uma constante, ρ_{Λ} =const. Esse modelo de de Sitter tem algumas peculiaridades: ele se expande para sempre de modo exponencial, e não há nem um início nem um fim, ou seja, $-\infty < t < \infty$.
 - a) Mostre que a pressão associado com a CC é $p_{\Lambda} = -\rho_{\Lambda}$. Dê uma interpretação física para esse resultado.

Solução: Para que o tensor energia-momento de um fluido perfeito

$$T_{\mu\nu} = (\rho + p)u^{\alpha}u^{\beta} + pg^{\alpha\beta} \tag{24}$$

seja constante, ou seja, uma constante cosmológica nas equações de Einstein, a pressão deve ser exatamente $p=-\rho.$

Ou seja, pressão igual a menos a densidade de enrgia, ou equação de estado w=-1, está diretamente ligado com uma densidade de energia que se mantem constante em um Universo em expansão. Podemos fazer um experimento de pensamento para tentar interpretar o que significa um fluido de pressão negativa.

Considere um gás em um recipiente com um pistão. Se o gás possui pressão positiva, então para que o volume se expanda é necessário que o gás realize trabalho sobre o pistão e portanto, que perca energia, de forma que a sua densidade de energia diminua. Se esse recipiente está preenchido com um gás de pressão negativa, então é necessário que trabalho externo seja realizado sobre o gás para que o volume se expanda (as moléculas do gás "puxam" o pistão quando colidem com

ele). Assim, o gás ganha energia quando o volume se expande. Se a pressão for exatamente menos a densidade de energia, então a energia aumenta de forma que a densidade de enrgia permaneça constante.

Ou seja: um gás com pressão negativa ganha energia quando o volume aumenta!

b) Supondo que a curvatura espacial é nula (k=0) use as equações de Friedmann para encontrar a fórmula explícita para a(t). Dica: Será útil usar a notação $H_{\Lambda} = \sqrt{8\pi G \rho_{\Lambda}/3}$.

Solução: Suponto um universo de de Sitter,

$$\dot{a} = aH_{\Lambda},\tag{25}$$

onde o ponto denota derivada com respeito ao tempo cósmico. A solução dessa EDO é trivial:

$$a(t) = Ae^{H_{\Lambda}t}. (26)$$

c) Agora vamos estudar os cones de luz e os horizontes nesse universo dominado pela CC e com curvatura espacial nula. Vamos tomar eventos em instantes quaisquer, mas sempre limitados a posições sobre o eixo comóvel x- ou seja, vamos considerar as coordenadas comóveis y e z fixas (dy=dz=0). Usando a forma conforme-cartesiana da métrica de FLRW, encontre a expressão para as coordenadas (t,x) do cone de luz de um evento qualquer num instante (t_0,x_0) . Em particular, mostre que podemos expressar esse cone de luz por meio da igualdade:

$$\left| e^{-H_{\Lambda}t} - e^{-H_{\Lambda}t_0} \right| = H_{\Lambda} \left| x - x_0 \right|$$

Solução: A métrica em coordenadas conforme-cartesianas é:

$$ds^{2} = a^{2}(t)(-d\eta^{2} + dx^{2}). (27)$$

O tempo conforme η é definido como:

$$\eta = \int \frac{dt}{a}.\tag{28}$$

Figura 3: Cone de luz em um Universo de de Sitter.

Em um Universo de de Sitter, portanto,

$$\eta = -\frac{e^{-H_{\Lambda}}}{H_{\Lambda}} \tag{29}$$

a menos de uma constante de integração. Em um geodésica nula:

$$|d\eta| = |dx|. (30)$$

Substituindo (29) e fazendo $dx=x-x_0$ e $d\eta=\eta-\eta_0,$ obtemos:

$$\left| e^{-H_{\Lambda}t} - e^{-H_{\Lambda}t_0} \right| = H_{\Lambda} \left| x - x_0 \right|.$$
 (31)

d) Esboce graficamente a forma desse cone de luz, (como usual, coloque t nas abscissas e x nas ordenadas). Para este item e os itens seguintes, você pode assumir que o evento está localizado em $t_0=0$ e $x_0=0$

Solução: A figura (3) mostra o cone de luz no Universo de de Sitter. As linhas trastejadas possuem $x = \pm 1/H_{\Lambda}$.

e) Esse evento, nesse universo de de Sitter, possui um horizonte de partículas (tipo passado)? Em outras palavras, o passado desse evento

compreende um volume comóvel finito? Caso a sua resposta seja sim, qual é valor desse horizonte comóvel de partículas X_{Hp} para o evento do instante $t_0 = 0$?

Solução: Como podemos ver pela figura (3), o evento $(x_0, t_0) = (0, 0)$ não possui um horizonte de partículas.

d) Esse evento possui um horizonte de eventos (tipo futuro)? Em outras palavras, o futuro desse evento compreende um volume comóvel finito? Caso a sua resposta seja sim, qual é o valor desse horizonte comóvel de eventos X_{He} para o evento do instante $t_0 = 0$?

Solução: Como podemos ver pela figura (3), o evento $(x_0,t_0)=(0,0)$ possui um horizonte de eventos. Portanto este evento possui uma relação de causalidade com os pontos do Universo que estão compreendidos em uma esfera com centro em x_0 e raio $1/H_{\Lambda}$.