Аддзел адукацыі Зэльвенскага райвыканкама Дзяржаўная ўстанова адукацыі "Князеўская сярэдняя школа"

Секцыя матэматыкі

Вықарыстанне графічных магчымасцей праграмы Maple пры пабудаванні паверхняў другога парадку

Чарняк Максім Анатольевіч, вучань 10 класа

Жоглік Аксана Валянцінаўна, Кузьміч Людміла Иосіфаўна, настаўнікі матэматыкі

3мест

Уводзіны	3
Глава 1. Графічныя магчымасці праграмы Maple	4
Глава 2. Даследаванне формы паверхняў другога парадку па іх кан	анічных
ураўненнях	
2.1 Эліпсоід	5
2.2 Гіпербалоіды	5
2.3 Парабалоіды	6
Глава 3. Пабудаванне паверхняў другога парадку	8
Глава 4. Пабудаванне паверхняў другога парадку пры дапамозе	
Maple	13
Заключэнне	15
Спіс выкарыстанай літаратуры	16

Уводзіны

З паверхнямі другога парадку мы вельмі часта сутыкаемся ў жыцці, нават не заўважаючы гэтага. Уласцівасці гэтых паверхняў шырока выкарыстоўваюцца ў фізіцы, пры будаўніцтве, дзе неабходна не толькі ведаць знешні выгляд гэтых паверхняў, але і іх уласцівасці, спосабы пабудавання.

Аднойчы, калі я вудзіў рыбу , маю ўвагу прыцягнуў пад'ёмнік для лоўлі малька. На той момант у школе мы вывучалі функцыі і мне стала цікава: а ці можна плоскасць, якая ўтвараецца пры ўздыме так званага «экрана», як-небудзь апісаць матэматычна і пабудаваць такую паверхню па зададзенай формуле. Аказваецца, што можна задаваць і будаваць больш складаныя паверхні. Прывяду прыклад: асаблівасцю люстэркаў са сферычнай паверхняй (найбольш простых ў вырабе) з'яўляецца іх няздольнасць сабраць ўваходныя паралельныя прамяні ў адзін пункт. Прамяні, якія трапляюць на край сферычнага люстэрка, факусіруюцца бліжэй да яго, чым прамяні, якія трапляюць у цэнтральную зону. У выніку гэтага малюнак становіцца менш выразным. Адным са спосабаў барацьбы з гэтым недахопам з'яўляецца наданне люстэрку ў працэсе паліроўкі парабалічнай формы.

Паўстала пытанне: як жа пабудаваць такія паверхні? У мінулым навучальным годзе вучаніцы былога 10 класа пазнаёмілі нас са спецыяльнымі праграмамі для смартфонаў па матэматыцы. І я стаў цікавіцца: ці ёсць распрацаваныя праграмы, якія дапамогуць мне вырашыць пастаўленае пытанне. Сваю ўвагу я засяродзіў на праграме Марle.

Мэта маёй працы - даследаваць форму паверхняў другога парадку і навучыцца будаваць іх, выкарыстоўваючы кананічныя ўраўненні ў праграме Maple.

Задачы:

- вывучыць літаратуру па тэме "Пабудаванне паверхняў другога парадку";
- вывучыць элементарныя магчымасці праграмы Maple;

- навучыцца будаваць паверхні другога парадку з дапамогай вывучаемай праграмы;
- знайсці прыклады выкарыстання паверхняў другога парадку ў жыцці.

Метады: аналіз тэксту, метад даследавання, практычныя метада.

Гіпотэза: паграма Марle дазваляе рацыяналізаваць пабудаванне паверхняў другога парадку па іх кананічных ураўненнях.

У рабоце я даследую пабудаванне паверхняў другога парадку такіх як эліпсоід, гіпербалоіды, парабалоіды. Мной выкананы пабудаванні паверхняў другога парадку з дапамогай праграмы Maple, якія зададзены канкрэтнымі кананічнымі ўраўненнямі.

Глава 1. Графічныя магчымасці праграмы Марle

Сістэма Maple падтрымлівае як двухмерную, так і трохмерную графіку. Такім чынам, можна ўявіць відавочныя, няяўныя і параметрычныя функцыі, а таксама шматмерныя функцыі і проста наборы дадзеных у графічным выглядзе і візуальна шукаць заканамернасці.

Графічныя сродкі Марle дазваляюць будаваць двухмерныя графікі адразу некалькіх функцый, ствараць графікі канформных пераўтварэнняў функцый з камплекснымі лікамі і будаваць графікі функцый у лагарыфмічнай, параметрычнай, фазавай, палярнай і контурнай форме. Можна графічна прадстаўляць няроўнасці, няяўна зададзеныя функцыі, рашэнне дыферэнцыяльных ураўненняў.

Марlе можа будаваць паверхні і крывыя ў трохмерным уяўленні, уключаючы паверхні, зададзеныя відавочнай і параметрычнай функцыямі, а таксама рашэннямі дыферэнцыяльных ураўненняў. Пры гэтым прадстаўляць можна не толькі ў статычным выглядзе, але і ў выглядзе двух- або трохмернай анімацыі. Гэтую асаблівасць сістэмы можна выкарыстоўваць для адлюстравання працэсаў, якія праходзяць у рэжыме рэальнага часу.

Адзначым, што для падрыхтоўкі выніку і дакументавання даследаванняў у сістэме ёсць усе магчымасці выбару шрыфтоў для назваў, надпісаў і іншай

тэкставай інфармацыі на графіках. Пры гэтым можна вар'іраваць не толькі шрыфтамі, але і яркасцю, колерам і маштабам графіка.

Глава 2. Даследаванне формы паверхняў другога парадку па іх кананічных ураўненнях

2.1 Эліпсоід:

$$\frac{\mathbf{x}^2}{4} \square \frac{\mathbf{y}^2}{16} \square \frac{\mathbf{z}^2}{9} \square \mathbf{1}$$

Эліпсоід валодае:

- цэнтральнай сіметрыяй адносна пачатку каардынат;
- восевай сіметрыяй адносна каардынатных восей;

У сячэнні эліпсоіда плоскасцю, перпендыкулярнай любой з каардынатных восяў, атрымліваецца эліпс.

2.2 Гипербалоіды:

$$\frac{\mathbf{x}^2}{\mathbf{a}^2} \, \Box \, \frac{\mathbf{y}^2}{\mathbf{b}^2} \, \Box \, \frac{\mathbf{z}^2}{\mathbf{c}^2} \, \Box \mathbf{1}$$

Аднаполасны гипербалоід – неабмежаваная паверхня.

Аднаполасны гипербалоід валодае:

- цэнтральнай сіметрыяй адносна пачатку каардынат;
- восевай сіметрыяй адносна усіх каардынатных восей

У сячэнні однаполастнага гіпербалоіда плоскасцю, перпендыкулярнай восі каардынат Оz, атрымліваецца эліпс, а плоскасцямі, перпендыкулярнымі восям Ох і Оу - гіпербала

Двухполасны гипербалоід – неабмежаваная паверхня.

Двухполасны гипербалоід валодае:

- цэнтральнай сіметрыяй адносна пачатку каардынат;
- восевай сіметрыяй адносна усіх каардынатных восей.

2.3Парабалоіды:

✓ Эліптычны парабалоід :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$

Эліптычны парабалоід – неабмежаваная паверхня.

Эліптычны парабалоід валодае:

• восевай сіметрыяй адносна восі Oz;

У сячэнні эліптычнага параболоіда плоскасцю адносна восі Oz атрымліваецца эліпс, а плоскасцямі, перпендыкулярнымі восямі Ox і Oy – парабала.

√ Гіпе

Гіпербалічны парабалоід: $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$

Гіпербалічны парабалоід – неабмежаваная паверхня.

8

Гіпербалічны парабалоід валодае:

• Восевай сіметрыяй адносна восі Oz.

Глава 3. Пабудаванне паверхняў другога парадку Гіпербалічны парабалоід

Одно сечение:

Два сечения :

Три сечения :

Четыре сечения :

Пять сечений :

Эліпсоід

Одно сечение:

Все сечения:

Два сечения :

Эліптычны парабалоід

Первое сечение :

Два сечения :

Три сечения :

Аднаполасны гіпербалоід

Первое сечение :

$$\frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{9} = 1$$

Два сечения:

Три сечения:

Все сечения:

Двухполасны гіпербалоід

Первое сечение :

Два сечения :

Глава 4. Пабудаванне паверхняў другога парадку пры дапамозе Марle

Гіпербалічны парабалоід
>plot3d(x^2/4-y^2/9,x=-10..10,y=-10..10);

Эліптычны гіпербалоід>plot3d(x^2/4+y^2/9,x=-10..10,y=-10..10);

Эліпсод
>c1:= [0.5*cos(x)*sin(y),1/3*sin(x)*sin(y),0.25*cos(y)]:
plot3d({c1},x=0..2*Pi,y=0..2*Pi);

• Аднаполасны гіпербалоід

>restart;

c1:=
$$[0.5*\cos(x)*\cosh(y),1/3*\sin(x)*\cosh(y),0.25*\sinh(y)]$$
:
plot3d($\{c1\},x=0..2*Pi,y=-2..2\}$;

• Двухполасны гіпербалоід

>c1:=
$$[0.5*\cos(x)*\sinh(y),1/3*\sin(x)*\sinh(y),0.25*\cosh(y)]$$
:
c2:= $[0.5*\cos(x)*\sinh(y),1/3*\sin(x)*\sinh(y),-0.25*\cosh(y)]$:
plot3d($\{c1,c2\},x=0..2*Pi,y=-2..2\}$;

Заключэнне

Кеплер, назіраючы за бачнымі рухамі планет у нябеснай сферы, адкрыў тры законы, адзін з якіх ўстанаўлівае, што кожная планета рухаецца па эліпсе, у адным з фокусаў якога знаходзіцца Сонца. Ньютан не толькі тэарэтычна абгрунтаваў законы руху планет, але і даказаў, што кожнае цела пад дзеяннем прыцягнення іншага цела можа рухацца толькі па эліпсе, альбо па парабале, альбо па гіпербале. У прыватнасці, па гэтых крывых адбываецца рух усіх камет Сонечнай сістэмы.

У наш час, калі вакол Зямлі круцяцца па эліптычных арбітах тысячы штучных спадарожнікаў, калі да Месяца, Венеры, Марса адпраўлены дзясяткі касмічных станцый, крывыя другога парадку выкарыстоўваюцца яшчэ больш інтэнсіўна, чым раней.

У дадзенай працы я даследаваў пабудову паверхняў другога парадку, зададзеных канкрэтнымі кананічнымі ўраўненнямі, з дапамогай праграмы Марle і навучыўся іх будаваць. У працы прыведзены малюнкі, якія апісваюць пабудову дадзеных паверхняў, а таксама пабудову паверхняў пры дапамозе праграмы Марle. Пастаўленая мэта дасягнута.

Літаратура

- 1) Пичхадзе Г.П., Правоторова Е.Н. Кривые и поверхности 2-го порядка. Учебное пособие по разделу курса линейной алгебры и аналитической геометрии Москва: МАИ, 2004.- 44 с.
- 2)Методическое пособие по аналитической геометрии http://www.twirpx.com/files/mathematics/algebra/geometry/
 - 3) http://ru.wikipedia.org/wiki/Поверхности второго порядка
- 4)http://www.mathematics.ru/courses/stereometry/content/chapter5/section/paragraph7/ theory.html
 - 5) http://bse.sci-lib.com/article090100.html
 - 6) http://window.edu.ru/window_catalog/pdf2txt?p_id=11834&p_page=8