AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method for preparing an oxide thin film on a

substrate, which comprises the steps of admixing a raw gas obtained through the

vaporization of a raw material comprising metal atoms for the oxide thin film, a carrier

gas and an oxidation gas in a gas-mixing unit, passing the gas mixture through a gas

activating means which is arranged between the gas-mixing unit and a shower plate,

maintaining the gas activating means at a temperature that induces vapor phase

decomposition, decomposing the gas mixture into metal atom-containing molecules in

the gas activating means and supplying the resulting gas mixture on a heated substrate

placed in a reaction chamber as a chemical vapor phase growth apparatus through [[a]]

the shower plate to thus make the gas mixture react with one another, wherein a rate of

oxidation gas flow rate is not less than 60% on the basis of the gas mixture.

2. (Withdrawn) A method for preparing an oxide thin film on a substrate, which

comprises the steps of admixing a raw gas obtained through the vaporization of a raw

material for the oxide thin film, a carrier gas and an oxidation gas in a gas-mixing unit

and supplying the resulting gas mixture on a heated substrate placed in a reaction

chamber as a chemical vapor phase growth apparatus through a shower plate to thus

make the gas mixture react with one another, wherein the method comprises the steps

of forming an initial layer as a seed layer using the gas mixture and then forming a

second layer using the gas mixture containing oxidation gas in a flow rate higher than

the oxidation gas flow rate used for forming the initial layer, in succession.

Application Number: 10/569,470 - 9 -

Attorney Docket Number: 026390-00034

3. (Withdrawn) The method for preparing an oxide thin film as set forth in claim 2, wherein the flow rate of oxidation gas used in a film-forming process for forming the initial layer is less than 60%, and the flow rate of oxidation gas used in a film-forming process for forming the second layer is not less than 60%.

4-5. (Cancelled)

6. (Currently Amended) The method for preparing an oxide thin film as set

forth in claim [[5]] 1, wherein the gas activating means is maintained at a temperature

ranging from a temperature without causing any liquefaction or deposition of the raw

gas to a temperature without causing film -formation thereof.

7. (Previously Presented) The method for preparing an oxide thin film as set

forth in claim 1, wherein the oxidation gas is a member selected from the group

consisting of oxygen, ozone, N₂O and NO₂.

8. (Previously Presented) The method for preparing an oxide thin film as set

forth in claim 1, wherein the carrier gas used is an inert gas selected from the group

consisting of nitrogen, helium, argon, neon and krypton.

9. (Previously Presented) The method for preparing an oxide thin film as set

forth in claim 1, wherein the substrate used is one prepared from a material selected

from the group consisting of Pt, Ir, Rh, Ru, MgO, SrTiO₃, IrO₂, RuO₂, SrRuO₃, and LaNiO₃.

10. (Currently Amended) The method for preparing an oxide thin film as set

forth in claim 1, wherein the raw material for preparing the oxide thin film is made from

an oxide of a paraelectric dielectric material selected from the group consisting of SiO₂,

TiO₂, Al₂O₃, Ta₂O₅, MgO, ZrO₂, HfO₂, (Ba, Sr)TiO₂ and SrTiO₃; or an oxide of a

ferroelectric material selected from the group consisting of Pb(Zr, Ti)O₃, SrBi₂Ta₂O₉ and

Bi₄Ti₃O₁₂.

11. (Withdrawn) The method for preparing an oxide thin film as set forth in claim 2,

wherein, when a prescribed atom present in the oxide thin film prepared easily diffuse

into the substrate, an epitaxial growth is realized by increasing an amount of the atom in

the initial layer to a level higher than the atom amount used in the case of the substrate

into which the atom hardly diffuses.

12. (Withdrawn) An apparatus for preparing an oxide thin film on a substrate by

admixing a raw gas obtained through the vaporization of a raw material for the oxide

thin film, a carrier gas and an oxidation gas in a gas-mixing unit and supplying the

resulting gas mixture on a heated substrate placed in a reaction chamber as a chemical

vapor phase growth apparatus through a shower plate to thus make the gas mixture

react with one another, wherein a gas activating means is arranged between the

gas-mixing unit and the shower plate.

Application Number: 10/569,470 Attorney Docket Number: 026390-00034

- 13. (Withdrawn) The apparatus for preparing an oxide thin film as set forth in claim
- 12, wherein the gas activating means is equipped with a heating means.
- 14. (Withdrawn) The apparatus for preparing an oxide thin film as set forth in claim
- 12, wherein the gas activating means is a pipe line between the gas-mixing unit and the
- shower plate.
- 15. (Withdrawn) The apparatus for preparing an oxide thin film as set forth in claim
- 13, wherein the gas activating means is a pipe line between the gas-mixing unit and the
- shower plate
- 16. (New) The method for preparing an oxide thin film as set forth in claim 1,

wherein the gas activating means comprises a pipe line equipped with a heating means.

Application Number: 10/569,470 Attorney Docket Number: 026390-00034