Title

D. Zack Garza

Table of Contents

Contents

Table of Contents	2
1 Lecture 11	3

Table of Contents

1 Lecture 11

1 | Lecture 11

Last time: we saw the Leray spectral sequence, but no examples yet, so that's what we'll do now. We had $X \xrightarrow{f} Y \xrightarrow{g} Z$ to which we associated the spectral sequence $R^i f_* R^j f_*(\cdot) \Rightarrow R^{i+j} (g \circ f)_*(\cdot)$. To deduce existence we used that pushforwards preserve injectives, and we looked at some E_2 differentials.

Example 1.0.1(?): Let $X \xrightarrow{\pi} Z := \operatorname{Spec} k$, where $k \neq \overline{k}$ necessarily. The spectral sequence for the functors π_*, Γ yields the Leray spectral sequence $H^i(k, R^j \pi_* \mathcal{F}) \Rightarrow H^i(X_{\operatorname{\acute{e}t}}, \mathcal{F})$. The LHS is the étale cohomology of $\operatorname{Spec} k$, i.e. Galois cohomology.

Lecture 11 3