《信息、控制与计算》

並

Chapter 1 熵和互信息

• 事件

	表达式	性质
自信息	$I(x) = -\log p(x)$	/
条件自信息	$I(x y) = -\log p(x y) = I(x,y) - I(y)$	差集
联合自信 息	$I(x,y) = -\log p(x,y)$	并集
互信息	$I(x;y) = \log rac{p(x y)}{p(x)} = \log rac{p(x,y)}{p(x)p(y)} = I(x) - I(x y) = I(x) + I(y) - I(x,y)$	交 集, 有对 称性
条件互信息	$I(x;y z) = \log rac{p(x,y z)}{p(x z)p(y z)} = I(x z) + I(y z) - I(x,y z)$	差集 的交 集
联合互信息	$I(x;y,z) = \log rac{p(x y,z)}{p(x)} = I(x;y) + I(x;z y) = I(y;x) + I(z;x y) = I(y,z;x)$	并集 的交 集

• 离散随机变量

熵是随机变量的平均自信息,代表了平均不确定值

	表达式	性质
平均自信息 (熵)	$H(X) = E[I(x)] = \sum\limits_k p(x_k)I(x_k) = -\sum\limits_k p(x_k)\log p(x_k)$	/
条件熵	$H(X Y) = E[I(X y)] = \sum\limits_{y} p(Y=y)H(X Y=y) = -\sum\limits_{x} \sum\limits_{y} p(x,y) \log p(x y)$	差集
联合熵	$H(X,Y) = -\sum_{x}\sum_{y}p(x,y)\log p(x,y) = H(X Y) + H(Y) = H(Y X) + H(X) \ = H(X) + H(Y) - I(X;Y)$	并集
平均互信息	$egin{aligned} I(X;Y) &= E[I(x;y)] = \sum\limits_{x}\sum\limits_{y}p(x,y)\lograc{p(x y)}{p(x)} = \sum\limits_{x}\sum\limits_{y}p(x,y)\lograc{p(x,y)}{p(x)p(y)} \ &= H(X) - H(X Y) = H(Y) - H(Y X) \end{aligned}$	交 集, 有对 称性
条件互信息	$I(X;Y Z) = E[I(x;y z)] = \sum\limits_{x}\sum\limits_{y}\sum\limits_{z}p(x,y,z)\lograc{p(x,y z)}{p(x z)p(y z)}$	差集 的交 集
联合互信息	$I(X;Y,Z) = E[I(x;y,z)] = \sum\limits_{x}\sum\limits_{y}\sum\limits_{z}p(x,y,z)\lograc{p(x y,z)}{p(x)} = I(X;Z) + I(X;Y Z)$	并集 的交 集

。 概率分布的散度——相对熵

令 $\{p(x)\}$ 与 $\{q(x)\}$ 是同一字符表 \mathcal{X} 上的两个概率分布,相对熵表示的是实际分布 $\{p(x)\}$ 与假定分布 $\{q(x)\}$ 间的平均差距,又称"鉴别熵"。

$$D(p//q) = E_p\{\lograc{p(x)}{q(x)}\} = \sum\limits_x p(x)\lograc{p(x)}{q(x)}$$

性质: (1)
$$D(p//q) \ge 0$$
 (2) $D(p//q) \ne D(q//p)$ (3) $I(X;Y) = \sum_{x} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = D(p(x,y)//p(x)p(y)) \ge 0$

。 关于疑义度的 Fano 不等式

把
$$\hat{X}$$
 看成是对 X 的估计,定义错误概率为 $P_E = \sum_{k=0}^{K-1} \sum_{\substack{j=0 \ k \neq j}}^{K-1} P\{X = k, \hat{X} = j\}$

于是关于疑义度 $H(X|\hat{X})$ 有如下不等式: $H(X|\hat{X}) \le H(P_E) + P_E \log(K-1)$

物理意义: 已知 \hat{X} 条件下,X 的不确定性。若 \hat{X} 正确,其不确定性为 $H(P_E)$; 若 \hat{X} 不正确,此时 X 的取值范围为剩下 K-1 个值,这部分不确定性不会大于 $P_E \log(K-1)$

• 连续随机变量

随机变量
$$X,Y$$
 的概率密度为 $f_X(x),f_Y(y)$,联合概率密度为 $f_{XY}(x,y)$ 有
$$\begin{cases} f_X(x)=\int_{-\infty}^\infty f_{XY}(x,y)dy\\ f_Y(y)=\int_{-\infty}^\infty f_{XY}(x,y)dx\\ f_{XY}(x,y)=f_X(x)f_{Y|X}(y|x)=f_Y(y)f_{X|Y}(x|y) \end{cases}$$

	表达式	性质
互 信 息	$egin{aligned} I(X;Y) &= \iint f_{XY}(x,y) \log rac{f_{X Y}(x y)}{f_X(x)} dx dy = \iint f_{XY}(x,y) \log rac{f_{XY}(x,y)}{f_X(x)f_Y(y)} dx dy \ &= H_c(X) - H_c(Y X) = H_c(Y) - H_c(X Y) = H_c(X) + H_c(Y) - H_c(X,Y) \end{aligned}$	/
条件互信息	$I(X;Y Z) = \iiint f_{XYZ}(x,y,z) \log rac{f_{XY Z}(x,y z)}{f_{X Z}(x z)f_{Y Z}(y z)} dx dy dz$	差集
联合互信息	$egin{aligned} I(X;Y,Z) &= \iiint f_{XYZ}(x,y,z) \log rac{f_{XYZ}(x,y,z)}{f_{X,Y}(x,y)f_Z(z)} dx dy dz \ &= I(X;Y) + I(X;Z Y) = I(X;Z) + I(X;Y Z) \end{aligned}$	并集
微分熵	$H_c(X) = -\int f_X(x) \log f_X(x) dx)$	连变化有换性相定所机散具变 在
条件微分熵	$H_c(X Y) = -\iint f_{XY}(x,y) \log f_{X Y}(x y) dx dy$	
联合微分熵	$H_c(X,Y) = -\iint f_{XY}(x,y) \log f_{XY}(x,y) dx dy = H_c(X) + H_c(Y X)$	

。 微分熵极大化

峰值受限:
$$if X \in [-M,M]$$
 $then H_c(X) \leq ln(2M)$ 平均功率受限: $if \sigma^2 = const, X \sim N(\mu, \sigma^2)$ $then H_c(X) \leq ln(\sqrt{2\pi e}\sigma) = \frac{1}{2}ln(2\pi e\sigma^2)$ 熵功率: $\bar{\sigma}_x^2 = \frac{1}{2\pi e}e^{2H_c(x)} \leq \sigma_x^2$ $e^{2H_c(X+Y)} \leq e^{2H_c(X)} + e^{2H_c(Y)}$

• 平稳信源的熵及其性质

设信源发出序列为 N 维随机矢量 $\mathbf{X} = (X_1, X_2, \dots, X_N)$,则信源熵表示为: $H(\mathbf{X}) = -\sum p(x_{i_1}, x_{i_2} \dots, x_{i_N}) \log p(x_{i_1}, x_{i_2} \dots, x_{i_N})$

平均每符号熵: $H_N(\mathbf{X}) \stackrel{\Delta}{=} \frac{1}{N} H(\mathbf{X}) = \frac{1}{N} H(X_1, X_2, \dots, X_N)$

熵速率: $H_{\infty}(\mathbf{X}) = \lim_{N \to \infty} H_N(\mathbf{X})$ 即最小平均符号熵。

平均条件熵: $H(X_N|X_{N-1},X_{N-2}...,X_1)$

熵的相对率: $\eta = \frac{H_{\infty}}{H_0} = \frac{H_{\infty}}{\log K}$

信源冗余度: $R=1-\eta$

性质:

- (1) 平均每符号熵、平均条件熵随 N 增大单调不增。
- (2) $H_N(\mathbf{X}) \geq H(X_N|X_{N-1}, X_{N-2}..., X_1)$
- (3) $\lim_{N \to \infty} H_N(\mathbf{X}) = \lim_{N \to \infty} H(X_N | X_{N-1}, X_{N-2}, \dots, X_1)$
- (4)对于无记忆离散源,当 X 在取值范围内等概率分布时熵最大,且有 $H_{\infty} \leq \cdots \leq H_1 \leq H_0 = \log K$

Chapter 2 离散无记忆信源的无损编码

- 离散无记忆信道的等长编码
 - 。 等长编码

设信源输出长度为 L 的消息序列,字符表含 K 个字符,则共有 K^L 种不同序列。用长度为 N ,包含 D 个字符的编码字符序列来进行无差错等长编码,则要求 $D^N \geq K^L$,即 $N \geq \frac{L \log K}{\log D}$ 。(所有可能的编码序列数比消息序列数大)

- (1) 平均码长: $\bar{N} = \frac{N}{L} \ge \log K \stackrel{+ \# \#}{\underset{K=10}{\longleftarrow}} 3.322 \ bit$
- (2) 当等概率输出序列字符时,信源熵最大,为 log K
- (3) 编码速率: $R = \frac{N}{L} \log D \ge \log K$
- 。 等长编码定理

令离散无记忆信源熵为H(U),若 $N > L[H(U) + \varepsilon_L]/\log D$,则可实现无损编码。

。 渐近等分性质 AEP

对于 DMS(离散无记忆信源)而言, $\lim_{L\to\infty}I_L=\lim_{L\to\infty}\frac{I(u^L)}{L}\overset{P=1}{\longrightarrow}H(U)$ 表示平均每符号自信息以概率 1 趋于熵

其中, u^L, L 分别为输出序列及其长度, $I(u^L) = \sum I(u_l)$ 表示序列自信息等于每个字符的自信息之和(由于无记忆性)

。 典型列

$$A_arepsilon^{(L)}(U) = \{u^L; H(U) - arepsilon \leq I_L \leq H(U) + arepsilon\}, \;\; arepsilon > 0$$

性质:

- (1)L足够大时, $P(u^L \in A_{\varepsilon}^{(L)}(U)) > 1 \varepsilon$
- (2) 若 $u^L\in A^{(L)}_arepsilon(U)$,则有 $2^{-L[H(U)+arepsilon]}\le p(u^L)\le 2^{-L[H(U)-arepsilon]}$,即每个序列出现概率 $p(u^L)pprox 2^{-LH(U)}$
- (3) 典型列数目 $|A_{\varepsilon}^{(L)}(U)|$ 满足 $(1-\varepsilon)2^{L[H(U)-\varepsilon]} \leq |A_{\varepsilon}^{(L)}(U)| \leq 2^{L[H(U)-\varepsilon]}$,即 $|A_{\varepsilon}^{(L)}(U)| \approx 2^{LH(U)}$
- 离散无记忆信道的不等长编码

码唯一可译:后缀分解集中不含码字

码唯一可译且即时: 第一个后缀分解集为空集, 即 $S_1 = \emptyset$

o Kraft 不等式

存在长度为 n_1, n_2, \ldots, n_k 的 D 元异字头码的充要条件为: $\sum_{k=1}^K D^{-n_k} \leq 1$

一个码唯一可译 ← Kraft 不等式成立 ← 存在一个具有同样长度的异字头码

。 不等长编码定理

平均码长: $\bar{n} = \sum p_k \cdot n_k$

任何一个唯一可译码的平均码字长度必须满足: $\bar{n} \geq \frac{H(U)}{\log D}$

同时一定存在一个D元唯一可译码,其平均码长满足: $\bar{n} \leq \frac{H(U)}{\log D} + 1$

编码速率: $R = \bar{n} \log D$

编码效率: $\eta = \frac{H(U)}{R} = \frac{-\sum p_k \log p_k}{R}$

。 最佳不等长编码——Huffman编码

对 K 个信源,进行 D 元 Huffman 编码时,每次合并 D 个概率最小的消息,满足 $K=(D-1)\cdot i+1$ 。

若 $K = (D-1) \cdot i + M$ M = 2, 3, ..., D-1,则需添补 D-M 个概率为零的虚拟消息,再合并。

			(0)
(1) (2) (3)	a ₁ 0.20 ——————————————————————————————————		(1) (2) (3) 1.0
(00) (01) (02)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(02) (030)	$a_6 = 0.10 \frac{(2)}{(0)}$ $a_7 = 0.007 \frac{(2)}{(1)}$	0.43	
(031)	$a_{2} = 0.003 \frac{(1)}{(3)}$		$R = \overline{n} \cdot \log D = 2.88$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	$\eta = 0.909$

。 Shannon编码

对于每个信息,其概率为 p_k ,码长为 l_k 。令 $P_k = \sum_{i=1}^{k-1} p_i$

用 $l_k = \lceil \log \frac{1}{p_k} \rceil$ 个比特来表示 P_k ,将 P_k 以二进制的形式表示,取小数前 l_k 位,即为对应编码。是 <mark>前缀码</mark> 。

p_k	0.4	0.25	0.2	0.15
l_k	2	2	3	3
P_k	0	0.4	0.65	0.85
二进制	0.00000	0.01100	0.10100	0.11011
码字	00	01	101	110

。 Fano编码

将消息按概率降序排列并分成两大组,使这两组的概率差尽可能小,左边赋 0 右边赋 1;

重复上述步骤直至每组只有一个信息。

$$U = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ 0.3 & 0.25 & 0.2 & 0.15 & 0.05 & 0.05 \end{pmatrix}$$

。 S.F.E编码

$$\diamondsuit U = egin{bmatrix} a_1 & a_2 & \dots & a_m \ p(1) & p(2) & \dots & p(m) \end{bmatrix}$$
, ਏট $ar{F}(x) \stackrel{def}{=} \sum\limits_{i < x} p(i) + rac{1}{2} p(x)$ $F(x) \stackrel{def}{=} \sum\limits_{i \le x} p(i)$

(事实上
$$ar{F}(x) = F(x) - rac{1}{2}p(x) = F(x-1) + rac{1}{2}p(x)$$
 ,即 $ar{F}(x) = rac{1}{2}[F(x) + F(x-1)]$)

将 $\bar{F}(x)$ 按二进制形式表示,取小数前 l(x) 位,即对应编码。其中 $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1$ 。

平均码长 $\bar{n} = \sum p(x)l(x)$

x	p(x)	F(x)	$\overline{F}(x)$	$ar{F}(x)$ 的二进表示	l(x)	码字	Huffman 码
1	0.25	0.25	0.125	0.001	3	001	01
2	0.5	0.75	0.5	0.10	2	10	1
3	0.125	0.875	0.8125	0.1101	4	1101	001
4	0.125	1.0	0.9375	0.1111	4	1111	000

。 马尔可夫信源编码

$$rac{H_\infty(U)}{\log D} \leq ar{n} < rac{H_\infty(U)}{\log D} + rac{1}{L} \quad H_\infty(U) = \sum q(S=s)H(U|S=s) = H(U|S)$$

q(S=s) 表示平稳分布时的概率, $H(U|S=s) = -\sum p(s)\log p(s)$,p(s) 为进入下一步的概率。

Chapter 3 信道、信道容量以及信道编码定理

• 离散无记忆信道

若离散信道对于任何 n,都有 $p(y^n|x^n) = \prod_{i=1}^n p(y_i|x_i)$,则称该信道为<mark>离散无记忆信道 (DMC)</mark>。

若对任何 i 和 l 有 $p(y_i = j|x_i = k) = p(y_l = j|x_l = k)$,则称该信道是 <mark>平稳/恒参</mark>的。

• 信道容量

信道容量指,<u>对于给定的信道而言能传输的最多的信息量</u>,即<u>互信息能够达到的最大值</u>。 $C = \lim_{n \to \infty} \frac{1}{n} \max I(X_1 X_2 \dots X_n; Y_1 Y_2 \dots Y_n) = \max I(X; Y) = \max[H(Y) - H(Y|X) \text{ or } H(X) - H(X|Y)]$ $I(X_1 X_2 \dots X_n; Y_1 Y_2 \dots Y_n) \leq \sum_{i=1}^n I(X_i; Y_i) = nI(X; Y) \quad \text{当输入为独立随机序列时取等号。}$

信道	信道容量	信道示意图
无噪信道	$C = \log M(bit)$	X X_1 X_2 X_3 X_3 X_4 X_5
无损信道	$C = \log M(bit)$	X Y B_1 $H(X Y) = 0$ $I(X;Y) = H(X)$ B_2 $C = \max_{\substack{\{Q_k\} \\ \{Q_k\}}} I(X;Y)$ $= \max_{\substack{\{Q_k\} \\ \{Q_k\}}} H(X)$ $= \log M$ 比特
确定信道	$C = \log m(bit)$	X Y $X_{L,1}$ Y
无用信道	C=0	$X Y p p 0 p(y_j x_i) = p(y_j) p(x_i y_j) = p(x_i) p H(X Y) = H(X) I(X;Y) = 0 C \equiv 0$
二进制对称信道	C=1-H(p)(输入等概时成立)	X Y $I(X;Y) = H(Y) - H(Y X)$ $= H(Y) - \sum_{x} p(x)H(Y X = x)$ $= H(Y) - \sum_{x} p(x)H(p)$ $= H(Y) - H(p)$ $\leq 1 - H(p)$ $\leq 1 + H(p)$ $\leq 1 + H(p)$ $\leq 1 + H(p)$ $\leq 1 + H(p)$.
二进制删除信道	C=1-p	$C = \max_{\{Q_{\varepsilon}\}} I(X;Y)$ $q = 0$ p $1-p$ p $1-q = 1$ $1-p$ $1 = 0$ p $1-q = 1$ $1-p$ $1 = 0$

• 对称离散无记忆信道容量

若信道转移概率矩阵 $\mathbf{P} \in \mathbb{R}^{K \times J}$ 的每行都是第一行的一个置换,则输入对称,每列是第一列的一个置换,则输出对称。

若信道输入输出均对称,则称其为**对称信道**, $C=\log J+\sum\limits_{j=0}^{J-1}p(j|k)\log p(j|k)$;若仅仅输入对称,则上式 = 改为 \leq

若把信道输出字符集合划分成若干子集,这些子集对应 \mathbf{P} 中列组成的子阵满足每行是第一行的置换,每列是第一列的置换,则这个信道是**准对称信道**。

准对称信道容量定理: 达到准对称信道容量的输入概率分布为等概分布。

信道	信道容量	信道示意图
K 元对称信道	$C = \log K - H(p) - p \log(K-1)$	$0 \\ I \\ C = \log K + \sum_{j=1}^{C} p_{j/j}(k) \log p_{j/j}(k)$ $2 \\ 2 \\ 2 \\ = \log K + (1-p) \log(1-p) + p \log \frac{p}{K-1}$ $= \log K - H(p) - p \log(K-1)$ $F(j/k) = \begin{cases} 1-p & k=j \\ \frac{p}{K-1} & k \neq j \end{cases}$
二进制删除信道	$C = (1-p-q)\log(1-p-q) + p\log p - (1-q)\lograc{1-q}{2}$	$P = \begin{cases} P & Q_0 = Q_1 = 0.5 \\ P & Q_0 = Q_1 = 0.5 \\ P & Q_0 = Q_1 = 0.5 \end{cases}$ $= (1 - P - Q) \log \frac{1 - P - Q}{1 - Q + 1} + q \log \frac{P}{q} + p \log \frac{P}{1 - Q} \log \frac{1}{2}$ $= (1 - P - Q) \log (1 - P - Q) + p \log P - (1 - Q) \log \frac{(1 - q)}{2}$ $P = \begin{pmatrix} 1 - P - Q & P - Q \\ P & Q & 1 - P - Q \end{pmatrix}$
模化加法信道	$C = \log K - H(z)$	$Y = X + Z \mod K$ $X \times X \times Z = \{0,1,2, \cdots, K-1\}$ $p(z)$ 为任意分布

• 信道的组合

。 积信道(平行组合信道)

当 $\underline{输入独立且各自达到分量信道容量}$ 时,积信道就可达到其信道容量 $C=\sum C_i$

- 。 和信道(开关信道)
 - 信道被选中的概率之和为1

$$2^C=2^{C_1}+2^{C_2}+\ldots$$
,即 $C=\log(\sum 2^{C_i})$,这时每个信道的利用概率为 $P_n=2^{C_i}/2^C=2^{C_i-C}$ $i=1,2\ldots,N$

- 。 级联信道
 - 前一个信道的输出作为后一个信道的输入

 $C \leq \min\{C_1, C_2, \dots, C_n\}$, 且级联信道容量趋于零。

- 加性高斯噪声信道
 - 时间离散,输入输出连续。输入 X 为高斯分布时等号成立。

$$X_{i} \longrightarrow Y_{i}$$

$$Z_{i} \sim \mathcal{N}(0, N)$$

容量:

• 平行高斯信道

$$C=rac{1}{2}\sum_{i=1}^k\log(1+rac{P_i}{N_i})$$

附:级联时按噪声比例分配

• 信源信道分离编码

若信源、信道编码速率满足 $H < R_s < R_c < C$,则可以通过信源和信道分别编码使总误码率 P_e 趋于零。

• 信源信道联合编码 若随机序列熵速率 $H_{\infty}(U) < C$,则存在一个信源—信道联合编码,使 $P_e^{(n)} \to 0$

Chapter 4 率失真信源编码

最小平均失真度: $D_{\max} = \min_{\hat{x} \in \hat{X}} \sum_{x} p(x) d(x, \hat{x})$ (分布概率向量与失真矩阵相乘得到的新向量取最小值)

最大失真度: $D_{\min} = \sum_{x} p(x) \min_{\hat{x} \in \hat{X}} d(x, \hat{x})$ (找失真矩阵第 i 行的最小值与 p_i 相乘并求和)

平均失真度: $D = \sum p(x)q(\hat{x}|x)d(x,\hat{x})$

率失真函数: $R(D) = \min_{Ed(X,\hat{X}) < D} I(X;\hat{X}) = H(\hat{X}) - H(\hat{X}|X)$

例:设二元等概信源 $\begin{pmatrix} X \\ p(x) \end{pmatrix} = \begin{pmatrix} x_0 & x_1 \\ 0.5 & 0.5 \end{pmatrix}$,再生字符表为 $\hat{X} = \{\hat{x}_0, \hat{x}_1, \hat{x}_2\}$,失真度矩阵为 $(\mathbf{d})_{2\times 3} = \begin{pmatrix} 0 & \infty & 1 \\ \infty & 0 & 1 \end{pmatrix}$,求R(D)

解:

- (1) $D_{\text{max}} = 1$, $D_{\text{min}} = 0$
- (2) 存在与失真度量矩阵具有同样对称性的概率转移分布矩阵 $Q = \begin{pmatrix} \alpha & \beta & \gamma \\ \beta & \alpha & \gamma \end{pmatrix}, \alpha + \beta + \gamma = 1$
- $(3) 由于 <math>d(x_0,\hat{x}_1)=d(x_1,\hat{x}_0)=\infty, \ \$ 因此 $\beta=0, \ \$ 即 $Q=\begin{pmatrix} \alpha & 0 & 1-\alpha \\ 0 & \alpha & 1-\alpha \end{pmatrix}$
- (4) 求得 $D = \sum p(x)q(\hat{x}|x)d(x,\hat{x}) = \frac{1}{2}[\alpha*0+(1-\alpha)*1] + \frac{1}{2}[\alpha*0+(1-\alpha)*1] = 1-\alpha$,所以 $\alpha=1-D$
 - (5) 求得 $R(D) = \min I(X;Y) = H(\frac{\alpha}{2}, \frac{\alpha}{2}, 1-\alpha) H(\alpha, 1-\alpha) = \alpha = 1-D$

Chapter 5 计算理论

• Kolmogorov复杂度

关于一个通用计算机 u,二元字符串 x 的 Kolmogorov 复杂度定义为即能够输出并且停止的所有程序的最小长度。

$$K_u(x) = \min_{u(p)=x} l(p) \leq K_u(x|l(x)) + 2\log l(x) + c$$

• 机器学习方法分类

监督学习: 从标记的训练数据来推断一个功能的机器学习任务。如分类、回归等。

非监督学习: 在未标记的数据中, 试图找到隐藏的结构。如聚类、密度估计。

强化学习:强调如何基于环境而行动,以取得最大化的预期利益。

• 贝叶斯学习

极大后验(MAP)策略规则: 给定数据 D,在候选假设集合 H 中寻找可能性最大的假设 h。

$$h_{MAP} = rg \max_{h \in H} P(h|D) = rg \max_{h \in H} P(D|h)P(h)$$

极大似然(ML)策略规则: 假设集合 H 的每个假设有相同的先验概率 $P(h_i) = P(h_j)$

$$h_{ML} = rgmax_{h \in H} P(D|h)$$

。 朴素贝叶斯分类

给定实例的属性 $\langle a_1, a_2, ..., a_n \rangle$, 取最可能的目标值 v_{MAP}

$$v_{MAP} = \argmax_{v_j \in V} P(v_j | a_1, a_2, \dots, a_n) = \argmax_{v_j \in V} P(a_1, a_2, \dots, a_n | v_j) P(v_j) = \argmax_{v_j \in V} \ \prod_i P(a_i | v_j) P(a_i$$

$$v_{NB} = rgmax_{v_j \in V} P(v_j) \prod_i P(a_i|v_j)$$

$$v_{NB} = \arg\max_{v_j \in V} P(v_j)$$

- * $P(\text{Outlook} = \text{Sunny}|v_i)P(\text{Temperature} = \text{Cool}|v_i)$
- * $P(\text{Humidity} = \text{High}|v_j)P(\text{Wind} = \text{Strong}|v_j)$

计算结果:

$$P(\text{PlayTennis} = \text{Yes}) = 9/14 = 0.64;$$

$$P(\text{PlayTennis} = \text{No}) = 5/14 = 0.36$$

P(Wind = Strong|PlayTennis = Yes) = 3/9 = 0.33

P(Wind = Strong|PlayTennis = No) = 3/5 = 0.60

P(Yes)P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes) = 0.0053

P(No)P(Sunny|No)P(Cool|No)P(High|No)P(Strong|No) = 0.02

• 决策树学习

。 信息增益

用熵来定义样例集合 S 的纯度: 即 $Entropy(S) = -p_+ \log p_+ - p_- \log p_-$ 。其中 p_+ 为 S 中正例的比例, p_- 同理。

用信息增益度量期望熵降低:使用属性 A 相对于样例集合 S 的信息增益 Gain(S,A) 定义为:

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} rac{|S_v|}{|S|} Entropy(S_v)$$

其中 Values(A) 表示属性 A 中所有可能值的集合, S_v 是 S 中属性 A 的值为 v 的子集。

$$\blacksquare$$
 S = [9+, 5 -]

$$\blacksquare$$
 S_{Weak} = [6+, 2-]

$$\blacksquare$$
 S_{Strong} = [3+, 3-]

Gain(S, Wind) = Entropy(S)
$$-\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$$
 Entropy(S_v)
= Entropy(S) $-\left(\frac{8}{14}\right)$ Entropy(S_{Weak}) $-\left(\frac{6}{14}\right)$ Entropy(S_{Strong})
= $0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1 = 0.048$

。 感知器

例:两层的感知器网络实现异或布尔函数

第一层:
$$A \wedge B'$$
 与 $B \wedge A'$

第二层:
$$A \oplus B = (A \wedge B') \vee (B \wedge A')$$

Chapter 6 控制理论

• 传递函数

状态向量: $\vec{x} = [x_1, x_2, \dots, x_n]^T$

输入信号向量: $\vec{u} = [u_1, u_2, \dots, u_n]^T$

状态微分方程: $\vec{x} = \mathbf{A}\vec{x} + \mathbf{B}\vec{u}$

系统输出方程: $\vec{y} = \mathbf{C}\vec{x} + \mathbf{D}\vec{u}$

(1) 拉普拉斯变换:
$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$ 拉普拉斯变换 $Y(s) = AX(s) + BU(s)$ $Y(s) = CX(s) + DU(s)$

(2) 引入
$$\phi(s) = [s\mathbf{I} - \mathbf{A}]^{-1}$$
,则 $X(s) = \phi(s)\mathbf{B}U(s)$

(3) 从而
$$Y(s)=(\mathbf{C}\phi(s)\mathbf{B}+\mathbf{D})U(s)$$
 $G(s)=rac{Y(s)}{U(s)}=\mathbf{C}\phi(s)\mathbf{B}+\mathbf{D}$

• 可控性

充要条件: 可控性矩阵 $U_c = [\mathbf{B}, \mathbf{AB}, \cdots, \mathbf{A}^{n-1}\mathbf{B}]$ 的秩为 n

• 可观性

• 稳定性

控制系统本身处于平衡状态。受到扰动,产生偏差。扰动消失后,偏差逐渐变小,能恢复到原来的平衡状态,则稳定.偏差逐渐变大,不能恢复到原来的平衡状态,则不稳定。即<u>系统在初始偏差作用下,过渡过程的收敛性</u>。

充要条件: 传递函数所有极点位于左半平面。

。 劳斯判据

不求解特征方程的根,直接根据特征方程的系数,判断系统的稳定性,回避了求解高次方程根的困难。

必要条件:特征方程所有系数大于零。只要有一项小于等于零,则不稳定。

充要条件: 劳斯表中第一列元素全部大于0。若出现小于0的元素,则系统不稳定。 且第一列元素符号改变的

次数等于系统正实部根的个数。

$$S^n$$
 A_n A_{n-2} A_{n-4} A_{n-6} \cdots A_{n-1} A_{n-1} A_{n-3} A_{n-5} A_{n-7} A_1 A_2 A_3 A_4 A_4 A_5 A_5 A_4 A_5 $A_$

例: 已知系统函数 $\phi(s) = \frac{1}{s^3 + 3s^2 + 2s + K}$, 求使系统稳定时的 K 的取值范围。

解:

- (1) 特征方程 $D(s) = s^3 + 3s^2 + 2s + K$ 。 $a_3 = 1, a_2 = 3, a_1 = 2, a_0 = K$
- (2) 画出劳斯表如下:

(3) 有
$$\begin{cases} \frac{6-K}{3} > 0 \\ K > 0 \end{cases}$$
 得到 $0 < K < 6$

。 李雅普诺夫方法

■ 间接法

A 的所有特征值 $\lambda \le 0$,且为零的特征值无重根。传递函数极点即为特征值。

■ 直接法

系统运动需要能量。在非零初始状态作用下的运动过程中,若能量随时间 衰减以致最终消失,则系统迟早会达到平衡状态,即系统渐近稳定。反 之,系统则不稳定。若能量在运动过程中不增不减,则称为李雅普诺夫意 义下的稳定。