Filtro de Sobel sobre Imágenes

CUDA C

Presentado por: CHRISTIAN CAMILO RESTREPO LEDESMA

UNIVERSIDAD TECNOLOGICA DE PEREIRA

Presentado a: John Osorio

Octubre 28 de 2015 PEREIRA

INTRODUCCION

El siguiente informe trata de ilustrar como es el comportamiento del filtro de Sobel sobre 6 imágenes diferentes alojadas en el servidor.

Los datos suministrados fueron arrojados por las diferentes pruebas implementadas haciendo la convolucion y el filtro de Sobel 20 veces sobre cada imagen.

El filtro de Sobel básicamente lo que hace es resaltar los bordes de una imagen, se implementaron 4 diferentes algoritmos los cuales son: algoritmo secuencial utilizando una función de la librería openCv, algoritmo parelelo con memoria Global, algoritmo paralelo con memoria constante y por último la implementación con memoria compartida.

DESARROLLO

Repositorio: https://github.com/ckrestrepo/HPC/tree/master/Parcial%202

La siguiente grafica muestra los tiempos de ejecución sobre cada imagen, el tiempo que se muestra es el tiempo promedio de 20 datos por imagen.

	TIEMPOS PROMEDIO			
	Secuencial	Kernel Global	Kernel Constante	Kernel Tiles
Imagen 1	0,0035368	0,0103881	0,00078095	0,0007912
Imagen 2	0,004626	0,0102951	0,000766	0,0007697
Imagen 3	0,0105527	0,00972995	0,00127205	0,0012847
Imagen 4	0,0400997	0,0146538	0,00276875	0,00278005
Imagen 5	0,213049	0,0255833	0,0111749	0,0115119
Imagen 6	0,155817	0,0203765	0,0086086	0,0087068

Aceleración para cada una de las imágenes

ACELERACION				
Aceleracion Global	Aceleracion Constante	Aceleracion Tiles		
0,340466495	4,528843076	4,470171891		
0,449339977	6,039164491	6,010133818		
1,084558502	8,295821705	8,214135596		
2,736471086	14,48296163	14,42409309		
8,327659059	19,06495808	18,50684943		
7,646897161	18,10015566	17,89601231		

Los datos se encuentran alojados en el repositorio para mayor información y claridad en la carpeta Datos, discriminada por dato secuencial y datos paralelos.

GRAFICAS

La siguiente grafica ilustra el comportamiento del Filtro de Sobel sobre cada imagen. Cada tiempo tomado es el promedio de los 20 datos que se tomaron por imagen. *Grafica del filtro de Sobel de manera secuencial.*

Grafica del Filtro de Sobel de manera paralela, incluyendo los 3 algoritmos.

Tamaños de las imágenes utilizadas

Imagen 1: 580 x 580 pixeles Imagen 2: 638 x 640 pixeles Imagen 3: 1266 x 768 pixeles Imagen 4: 2560 x 1600 pixeles Imagen 5: 5226 x 4222 pixeles Imagen 6: 4928 x 3264 pixeles

Grafica de aceleración

La grafica muestra la aceleración de los tres algoritmos utilizando memoria global, constante y compartida. Los datos nos indican que el mejor desempeño lo ha tenido el algoritmo con Memoria Constante

CONCLUSIONES

Resultados

- Dada las gráficas y el análisis de datos la versión paralela utilizando Memoria Constante fue la que tomo menos tiempo en realizar el Filtro de Sobel.
- Es notorio la mejoría que se hace en tiempo de ejecución cuando se realizan versiones paralelas sobre secuenciales, el uso de estos métodos hace mucho más óptimo el desempeño, sin embargo cabe resaltar que para notar una mejor diferencia en cuanto a tiempos de ejecución, el volumen de datos debe ser superior al millón de datos para calcular.
- Observando el comportamiento de la gráfica de aceleración se puede concluir que, la aceleración va a seguir incrementando cuando el tamaño de la imagen sea mayor, es directamente proporcional, esto sucederá siempre y cuando la herramienta de trabajo soporte los datos.