CODE

22.5.6.3 For prestressed members, V_c shall be permitted to be the lesser of V_{ci} calculated in accordance with 22.5.6.3.1 and V_{cw} calculated in accordance with 22.5.6.3.2 or 22.5.6.3.3.

22.5.6.3.1 The flexure-shear strength V_{ci} shall be calculated by (a) but need not be taken less than (b) or (c):

(a)
$$V_{ci} = 0.05\lambda \sqrt{f_c'} b_w d_p + V_d + \frac{V_i M_{cre}}{M_{max}}$$
 (22.5.6.3.1a)

(b) For members with $A_{ps}f_{se} < 0.4(A_{ps}f_{pu} + A_sf_y)$,

$$V_{ci} = 0.14 \lambda \sqrt{f_c'} b_w d$$
 (22.5.6.3.1b)

COMMENTARY

Fig. R22.5.6.2—Application of Table 22.5.6.2 to uniformly loaded prestressed members with $\mathbf{f_c'} = 35$ MPa.

R22.5.6.3 Two types of inclined cracking occur in concrete beams: web-shear cracking and flexure-shear cracking. These two types of inclined cracking are illustrated in Fig. R22.5.6.3.

Web-shear cracking begins from an interior point in a member when the principal tensile stresses exceed the tensile strength of the concrete. Flexure-shear cracking is initiated by flexural cracking. When flexural cracking occurs, the shear stresses in the concrete above the crack are increased. The flexure-shear crack develops when the combined shear and flexural-tensile stress exceeds the tensile strength of the concrete.

The nominal shear strength provided by the concrete, V_c , is assumed equal to the lesser of V_{ci} and V_{cw} . The derivations of Eq. (22.5.6.3.1a) and Eq. (22.5.6.3.2) are summarized in ACI Committee 318 (1965).

Fig. R22.5.6.3—Types of cracking in concrete beams.

R22.5.6.3.1 In deriving Eq. (22.5.6.3.1a), it was assumed that V_{ci} is the sum of the shear required to cause a flexural crack at the section in question given by:

$$V = \frac{V_i M_{cre}}{M_{max}}$$
 (R22.5.6.3.1a)

