A Physics-Based Seismic Hazard Model for Southern California

CyberShake, Southern California Earthquake Center

Juan Carlos Vergara Gallego jvergar2@eafit.edu.co

Presentación disponible en: https://github.com/jvergar2/03_SCEC

Departamento de Ingeniería Civil Universidad EAFIT

2 de octubre de 2014

Outline

Introduction

¿Qué se hace actualmente?

¿Con que información cuentan? UCERF 2.0 Modelos de Velocidad

Introducción

Se presenta un resumen del proyecto CyberShake, de sus objetivos y la foma como están abordando el problema de construir el modelo de Amenaza en el Sur de California.

http://scec.usc.edu/scecpedia/CyberShake

¿Qué es el CyberShake? I

CyberShake, es un proyecto de investigación del "Southern California Earthquake Center's" (SCEC), dentro del cual se encuentran desarrollando un modelo computacional a gran escala para incluir determinísticamente el efecto de la fuente y la ruta de propagación de las ondas sísmicas en la amenaza sísmica del Sur de California.

¿Qué es el CyberShake?

Figura. Mapa de amenaza sísmica del Sur de California calculado con CyberShake. 1

¹http://scec.usc.edu/scecwiki/images/6/61/CandB_2008.PNG

¿Qué es el CyberShake?

Figura. Mapa de amenaza sísmica del Sur de California calculado con las ecuaciones de predición del movimiento del suelo (GMPE). 2

http://scec.usc.edu/scecwiki/images/6/61/CandB_2008.PNG_

Ground Motion Prediction Equations I

Acá voy a meter un texto que me va a pasar La Morsa.

Figura. Mapa de amenaza sísmica del Sur de California calculado con cautro ecuaciones de predición del movimiento del suelo (GMPE) diferentes. ³

A pesar de que las cuatro leyes de atenuación son aceptadas en la comunidad científica, es evidente las grandes diferencias entre ellas.

³http://scec.usc.edu/scecwiki/images/b/bd/UCERF2_GMPE_2007.PNG

Uniform California Earthquake Rupture Forecast, Version2.0 (UCERF 2.0) I

El UCERF2.0 estima la probabilidad de ocurrencia de sismos con magnitud mayor o igual a 5 ($M_W \ge 5.0$) que pueden ocurrir dentro de una ventana de tiempo en California EE.UU. Cuantro componentes básicos de UCERF2.0:

- ▶ Modelo de Falla: Geometría física de las fallas conocidas.
- ▶ Modelo de Deformación: "Taza de deslizamiento" de cada sección de la falla Con eso se calcula el momento sísmico.
- ▶ "Earthquake Rate Model": Taza de todos los sismos dentro de una región sobre una magnitud mínima especificada.
- ▶ Modelos de Probabilidad: Determina la probabilidad de ocurrencia de cada evento dentro de una ventana de tiempo.

Uniform California Earthquake Rupture Forecast, Version2.0 (UCERF 2.0) II

Figura. Componentes básicos del modelo UCERF2.0. [2, figura 3, página 2057]

Con la información suministrada por UCERF2.0 se identifican todas las posibles fallas sísmicas 200~km dentro de la región de estudio. Todas las fallas se usan para generar diferentes escenarios, dentro de los cuales se varía la ubicación del hypocentro y la forma de la ruptura.

En total se generan al rededor de 415.000 escenarios de ruptura para cada sitio.

SCEC Community Velocity Model: CVM4 I

Este modelo es una chimba

References I

- Keiiti Aki & Paul G. Richards. Quantitative Seismology. University Sciencie Books, 2nd Edition, Mill Valley, San Diego, 2002.
- Graves, R.; Jordan, T. H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; ... & Vahi, K. (2011). CyberShake: A physics-based seismic hazard model for southern California. Pure and Applied Geophysics, 168(3-4), 367-381.
- Finite volume method. (2014, April 22). In Wikipedia, The Free Encyclopedia. Retrieved 00:44, September 25, 2014, from http://en.wikipedia.org/w/index.php?title=Finite_volume_method&oldid=605282055