Linear Programming: Solving Linear Systems

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Solve a system of linear equations.
- Say something about what the set of solution to a system of linear equations looks like.

Last Time

Linear programming: Dealing with systems of linear inequalities.

Linear Algebra

Today, we will deal with the simpler case, of systems of linear equalities.

Linear Algebra

Today, we will deal with the simpler case, of systems of linear equalities.

For example:

$$x + y = 5$$
$$2x + 4y = 12.$$

Method of Substitution

- Use first equation to solve for one variable in terms of the others.
- Substitute into other equations.
- Solve recursively.
- Substitute back in to first equation to get initial variable.

$$x + y = 5$$
$$2x + 4y = 12.$$

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - y$$
.

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - y$$
.

Substituting into second:

$$12 = 2x + 4y = 2(5 - y) + 4y = 10 + 2y.$$

$$x + y = 5$$
$$2x + 4y = 12.$$

First equation implies

$$x = 5 - v$$
.

Substituting into second:

$$12 = 2x + 4y = 2(5 - y) + 4y = 10 + 2y$$
.

So
$$y = 1, x = 5 - 1 = 4$$
.

Problem

What is the value of x in the solution to the following linear system?

$$x + 2y = 6$$
$$3x - y = -3.$$

From the first equation, we get

$$x = 6 - 2y$$
.

From the first equation, we get

$$x = 6 - 2y$$
.

Substituting into the second,

$$-3 = 3(6 - 2y) - y = 18 - 7y$$
.

From the first equation, we get

$$x = 6 - 2y$$
.

Substituting into the second,

$$-3 = 3(6 - 2y) - y = 18 - 7y.$$

Solving gives, y = 3, so $x = 6 - 2 \cdot 3 = 0$.

Another Example

Consider the following system of equations:

$$x + y + z = 5$$
$$2x + y - z = 1.$$

Another Example

Consider the following system of equations:

$$x + y + z = 5$$
$$2x + y - z = 1.$$

Solve by substitution.

From first equation:

$$x = 5 - y - z$$
.

From first equation:

$$x = 5 - y - z$$
.

Substitute into second.

$$2(5 - y - z) + y - z = 1,$$

or

$$y = 9 + 3z$$
.

Cannot Solve for z!

No equations left.

Cannot Solve for z!

No equations left. However, for any z have solution

$$y = 9 + 3z$$

 $x = 5 - y - z = -4 - 4z$.

Cannot Solve for z!

No equations left. However, for any z have solution

$$y = 9 + 3z$$

 $x = 5 - y - z = -4 - 4z$.

Have entire family of solutions. z is a free variable.

Degrees of Freedom

- Your solution set will be a subspace.
- Dimension = number of free variables.
- Each equation gives one variable in terms of others.
- Generally, dimension equals

num variables — num equations.

Summary

- Can solve systems using method of substitution.
- Each equation reduces degrees of freedom by one.

Next Time

Systematize this to simplify notation and make into an algorithm.