Cheatsheet for simulation:

Compound Poisson Pages: A trajectory of this process can be simulated exactly on the interval [0,T] using the following simple algorithm (which uses the fact that waiting times between the jumps are independent exponentially distributed random variables with parameter λ):

ALGORITHM 6.1 Simulation of compound Poisson process

Initialize k := 0

REPEAT while
$$\sum_{i=1}^{k} T_i < T$$

$$Set \ k := k + 1$$

Simulate
$$T_k \sim \exp(\lambda)$$
 % interjump time $\sim \exp(\lambda)$.
Simulate Y_k from the distribution $\mu = \nu/\lambda$ % once there is a jump, % we should simulate

The trajectory is given by

$$X(t) = \gamma b + \sum_{i=1}^{N(t)} Y_i \quad \textit{where} \quad N(t) = \sup\{k : \sum_{i=1}^k T_i \leq t\}.$$

We will now improve this algorithm using two following observations

In one step: \bullet The number of jumps N(T) of a compound Poisson process on the $N(T) \sim \text{Poiss}(\lambda T)$ interval [0, T] is a Poisson random variable with parameter λT .

Very easy to have the same distribution as N(T) independent random numbers, uniformly distributed on this interval, rearranged in increasing order (see Proposition 2.9).

ALGORITHM 6.2 Improved algorithm for compound Poisson pro-

ON MATLAB:

- N= poissind (T* (Simulate a random variable N from Poisson distribution with parameter λT . N gives the total number of jumps on the interval [0,T].
- jump T = SORT(rand(1,N))Simulate N independent r.v., U_i , uniformly distributed on the interval [0,T]. These variables correspond to the jump times.
 - Simulate jump sizes: N independent r.v. Y_i with law $\frac{\nu(dx)}{\lambda}$.

 The trajectory is given by:

Depending on the model:

- Kon: Exp(s+ on s-)...

- Merhon: N(p;, o;)...

-Meton:
$$N(p_{i}^{*}, \sigma_{i}^{*})$$
..

$$X(t) = bt + \sum_{i=1}^{N} 1_{U_i < t} Y_i.$$

Figure 6.1 depicts a typical trajectory of compound Poisson process, simulated using Algorithm 6.2.

FIGURE 6.1: Typical trajectory of a compound Poisson process. Here jump size distribution is standard normal, the jump intensity is equal to 10 and the drift parameter is equal to 3.

When the Lévy process has a <u>Gaussian component</u> and a jump component of compound Poisson type (in this book, such a process is called a jump-diffusion), one can simulate the two independent components separately. The following algorithm gives a discretized trajectory for a process of this type with characteristic triplet (σ^2, ν, b) .

ALGORITHM 6.3 Simulating jump-diffusions on a fixed time grid

Simulation of (X_1, \ldots, X_n) for n fixed times t_1, \ldots, t_n .

- Simulate n independent centered Gaussian random variables G_i with variances $Var(G_i) = (t_i t_{i-1})\sigma^2$ where $t_0 = 0$. A simple algorithm for simulating Gaussian random variables is described in Example 6.2.
- Simulate the compound Poisson part as described in the Algorithm 6.2.

The discretized trajectory is given by

$$X(t_i) = bt_i + \sum_{k=1}^i G_k + \sum_{j=1}^N 1_{U_j < t_i} Y_j.$$

A typical trajectory of process simulated by Algorithm 6.3 is shown in Figure 6.2.