1.6.1 Who's Who in the Telecommunications World

The legal status of the world's telephone companies varies considerably from country to country. At one extreme is the United States, which has over 2000 separate, (mostly very small) privately owned telephone companies. A few more were added with the breakup of AT&T in 1984 (which was then the world's largest corporation, providing telephone service to about 80 percent of America's telephones), and the Telecommunications Act of 1996 that overhauled regulation to foster competition.

At the other extreme are countries in which the national government has a complete monopoly on all communication, including the mail, telegraph, telephone, and often radio and television. Much of the world falls into this category. In some cases the telecommunication authority is a nationalized company, and in others it is simply a branch of the government, usually known as the **PTT** (**Post**, **Telegraph & Telephone** administration). Worldwide, the trend is toward liberalization and competition and away from government monopoly. Most European countries have now (partially) privatized their PTTs, but elsewhere the process is still only slowly gaining steam.

With all these different suppliers of services, there is clearly a need to provide compatibility on a worldwide scale to ensure that people (and computers) in one country can call their counterparts in another one. Actually, this need has existed for a long time. In 1865, representatives from many European governments met to form the predecessor to today's ITU (International Telecommunication Union). Its job was to standardize international telecommunications, which in those days meant telegraphy. Even then it was clear that if half the countries used Morse code and the other half used some other code, there was going to be a problem. When the telephone was put into international service, ITU took over the job of standardizing telephony (pronounced te-LEF-ony) as well. In 1947, ITU became an agency of the United Nations.

ITU has about 200 governmental members, including almost every member of the United Nations. Since the United States does not have a PTT, somebody else had to represent it in ITU. This task fell to the State Department, probably on the grounds that ITU had to do with foreign countries, the State Department's specialty. ITU also has more than 700 sector and associate members. They include telephone companies (e.g., AT&T, Vodafone, Sprint), telecom equipment manufacturers (e.g., Cisco, Nokia, Nortel), computer vendors (e.g., Microsoft, Agilent, Toshiba), chip manufacturers (e.g., Intel, Motorola, TI), and other interested companies (e.g., Boeing, CBS, VeriSign).

ITU has three main sectors. We will focus primarily on ITU-T, the Telecommunications Standardization Sector, which is concerned with telephone and data communication systems. Before 1993, this sector was called CCITT, which is an acronym for its French name, Comité Consultatif International Télégraphique et Téléphonique. ITU-R, the Radiocommunications Sector, is concerned with

coordinating the use by competing interest groups of radio frequencies worldwide. The other sector is ITU-D, the Development Sector. It promotes the development of information and communication technologies to narrow the "digital divide" between countries with effective access to the information technologies and countries with limited access.

ITU-T's task is to make technical recommendations about telephone, telegraph, and data communication interfaces. These often become internationally recognized standards, though technically the recommendations are only suggestions that governments can adopt or ignore, as they wish (because governments are like 13-year-old boys—they do not take kindly to being given orders). In practice, a country that wishes to adopt a telephone standard different from that used by the rest of the world is free to do so, but at the price of cutting itself off from everyone else. This might work for North Korea, but elsewhere it would be a real problem.

The real work of ITU-T is done in its Study Groups. There are currently 10 Study Groups, often as large as 400 people, that cover topics ranging from telephone billing to multimedia services to security. SG 15, for example, standardizes the DSL technologies popularly used to connect to the Internet. In order to make it possible to get anything at all done, the Study Groups are divided into Working Parties, which are in turn divided into Expert Teams, which are in turn divided into ad hoc groups. Once a bureaucracy, always a bureaucracy.

Despite all this, ITU-T actually does get things done. Since its inception, it has produced more than 3000 recommendations, many of which are widely used in practice. For example, Recommendation H.264 (also an ISO standard known as MPEG-4 AVC) is widely used for video compression, and X.509 public key certificates are used for secure Web browsing and digitally signed email.

As the field of telecommunications completes the transition started in the 1980s from being entirely national to being entirely global, standards will become increasingly important, and more and more organizations will want to become involved in setting them. For more information about ITU, see Irmer (1994).

1.6.2 Who's Who in the International Standards World

International standards are produced and published by **ISO** (**International Standards Organization**[†]), a voluntary nontreaty organization founded in 1946. Its members are the national standards organizations of the 157 member countries. These members include ANSI (U.S.), BSI (Great Britain), AFNOR (France), DIN (Germany), and 153 others.

ISO issues standards on a truly vast number of subjects, ranging from nuts and bolts (literally) to telephone pole coatings [not to mention cocoa beans (ISO 2451), fishing nets (ISO 1530), women's underwear (ISO 4416) and quite a few

[†] For the purist, ISO's true name is the International Organization for Standardization.

other subjects one might not think were subject to standardization]. On issues of telecommunication standards, ISO and ITU-T often cooperate (ISO is a member of ITU-T) to avoid the irony of two official and mutually incompatible international standards.

Over 17,000 standards have been issued, including the OSI standards. ISO has over 200 Technical Committees (TCs), numbered in the order of their creation, each dealing with a specific subject. TC1 deals with the nuts and bolts (standardizing screw thread pitches). JTC1 deals with information technology, including networks, computers, and software. It is the first (and so far only) Joint Technical Committee, created in 1987 by merging TC97 with activities in IEC, yet another standardization body. Each TC has subcommittees (SCs) divided into working groups (WGs).

The real work is done largely in the WGs by over 100,000 volunteers world-wide. Many of these "volunteers" are assigned to work on ISO matters by their employers, whose products are being standardized. Others are government officials keen on having their country's way of doing things become the international standard. Academic experts also are active in many of the WGs.

The procedure used by ISO for adopting standards has been designed to achieve as broad a consensus as possible. The process begins when one of the national standards organizations feels the need for an international standard in some area. A working group is then formed to come up with a **CD** (**Committee Draft**). The CD is then circulated to all the member bodies, which get 6 months to criticize it. If a substantial majority approves, a revised document, called a **DIS** (**Draft International Standard**) is produced and circulated for comments and voting. Based on the results of this round, the final text of the **IS** (**International Standard**) is prepared, approved, and published. In areas of great controversy, a CD or DIS may have to go through several versions before acquiring enough votes, and the whole process can take years.

NIST (National Institute of Standards and Technology) is part of the U.S. Department of Commerce. It used to be called the National Bureau of Standards. It issues standards that are mandatory for purchases made by the U.S. Government, except for those of the Department of Defense, which defines its own standards.

Another major player in the standards world is **IEEE** (**Institute of Electrical and Electronics Engineers**), the largest professional organization in the world. In addition to publishing scores of journals and running hundreds of conferences each year, IEEE has a standardization group that develops standards in the area of electrical engineering and computing. IEEE's 802 committee has standardized many kinds of LANs. We will study some of its output later in this book. The actual work is done by a collection of working groups, which are listed in Fig. 1-38. The success rate of the various 802 working groups has been low; having an 802.x number is no guarantee of success. Still, the impact of the success stories (especially 802.3 and 802.11) on the industry and the world has been enormous.

Number	Topic		
802.1	Overview and architecture of LANs		
802.2 ↓	Logical link control		
802.3 *	Ethernet		
802.4 ↓	Token bus (was briefly used in manufacturing plants)		
802.5	Token ring (IBM's entry into the LAN world)		
802.6 ↓	Dual queue dual bus (early metropolitan area network)		
802.7 ↓	Technical advisory group on broadband technologies		
802.8 †	Technical advisory group on fiber optic technologies		
802.9 ↓	Isochronous LANs (for real-time applications)		
802.10↓	Virtual LANs and security		
802.11 *	Wireless LANs (WiFi)		
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)		
802.13	Unlucky number; nobody wanted it		
802.14↓	Cable modems (defunct: an industry consortium got there first)		
802.15 *	Personal area networks (Bluetooth, Zigbee)		
802.16 *	Broadband wireless (WiMAX)		
802.17	Resilient packet ring		
802.18	Technical advisory group on radio regulatory issues		
802.19	Technical advisory group on coexistence of all these standards		
802.20	Mobile broadband wireless (similar to 802.16e)		
802.21	Media independent handoff (for roaming over technologies)		
802.22	Wireless regional area network		

Figure 1-38. The 802 working groups. The important ones are marked with *. The ones marked with \downarrow are hibernating. The one marked with \dagger gave up and disbanded itself.

1.6.3 Who's Who in the Internet Standards World

The worldwide Internet has its own standardization mechanisms, very different from those of ITU-T and ISO. The difference can be crudely summed up by saying that the people who come to ITU or ISO standardization meetings wear suits, while the people who come to Internet standardization meetings wear jeans (except when they meet in San Diego, when they wear shorts and T-shirts).

ITU-T and ISO meetings are populated by corporate officials and government civil servants for whom standardization is their job. They regard standardization as a Good Thing and devote their lives to it. Internet people, on the other hand, prefer anarchy as a matter of principle. However, with hundreds of millions of people all doing their own thing, little communication can occur. Thus, standards, however regrettable, are sometimes needed. In this context, David Clark of M.I.T. once made a now-famous remark about Internet standardization consisting of "rough consensus and running code."

When the ARPANET was set up, DoD created an informal committee to oversee it. In 1983, the committee was renamed the IAB (Internet Activities Board) and was given a slighter broader mission, namely, to keep the researchers involved with the ARPANET and the Internet pointed more or less in the same direction, an activity not unlike herding cats. The meaning of the acronym "IAB" was later changed to Internet Architecture Board.

Each of the approximately ten members of the IAB headed a task force on some issue of importance. The IAB met several times a year to discuss results and to give feedback to the DoD and NSF, which were providing most of the funding at this time. When a standard was needed (e.g., a new routing algorithm), the IAB members would thrash it out and then announce the change so the graduate students who were the heart of the software effort could implement it. Communication was done by a series of technical reports called **RFCs** (**Request For Comments**). RFCs are stored online and can be fetched by anyone interested in them from <code>www.ietf.org/rfc</code>. They are numbered in chronological order of creation. Over 5000 now exist. We will refer to many RFCs in this book.

By 1989, the Internet had grown so large that this highly informal style no longer worked. Many vendors by then offered TCP/IP products and did not want to change them just because ten researchers had thought of a better idea. In the summer of 1989, the IAB was reorganized again. The researchers were moved to the IRTF (Internet Research Task Force), which was made subsidiary to IAB, along with the IETF (Internet Engineering Task Force). The IAB was repopulated with people representing a broader range of organizations than just the research community. It was initially a self-perpetuating group, with members serving for a 2-year term and new members being appointed by the old ones. Later, the Internet Society was created, populated by people interested in the Internet. The Internet Society is thus in a sense comparable to ACM or IEEE. It is governed by elected trustees who appoint the IAB's members.

The idea of this split was to have the IRTF concentrate on long-term research while the IETF dealt with short-term engineering issues. The IETF was divided up into working groups, each with a specific problem to solve. The chairmen of these working groups initially met as a steering committee to direct the engineering effort. The working group topics include new applications, user information, OSI integration, routing and addressing, security, network management, and standards. Eventually, so many working groups were formed (more than 70) that they were grouped into areas and the area chairmen met as the steering committee.

In addition, a more formal standardization process was adopted, patterned after ISOs. To become a **Proposed Standard**, the basic idea must be explained in an RFC and have sufficient interest in the community to warrant consideration.

To advance to the **Draft Standard** stage, a working implementation must have been rigorously tested by at least two independent sites for at least 4 months. If the IAB is convinced that the idea is sound and the software works, it can declare the RFC to be an **Internet Standard**. Some Internet Standards have become DoD standards (MIL-STD), making them mandatory for DoD suppliers.

For Web standards, the **World Wide Web Consortium** (**W3C**) develops protocols and guidelines to facilitate the long-term growth of the Web. It is an industry consortium led by Tim Berners-Lee and set up in 1994 as the Web really begun to take off. W3C now has more than 300 members from around the world and has produced more than 100 W3C Recommendations, as its standards are called, covering topics such as HTML and Web privacy.

1.7 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in computer science in general, metric units are used instead of traditional English units (the furlong-stone-fortnight system). The principal metric prefixes are listed in Fig. 1-39. The prefixes are typically abbreviated by their first letters, with the units greater than 1 capitalized (KB, MB, etc.). One exception (for historical reasons) is kbps for kilobits/sec. Thus, a 1-Mbps communication line transmits 10^6 bits/sec and a 100-psec (or 100-ps) clock ticks every 10^{-10} seconds. Since milli and micro both begin with the letter "m," a choice had to be made. Normally, "m" is used for milli and " μ " (the Greek letter mu) is used for micro.

Ехр.	Explicit	Prefix	Ехр.	Explicit	Prefix
10-3	0.001	milli	10 ³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.000000001	nano	10 ⁹	1,000,000,000	Giga
10-12	0.00000000001	pico	1 0 ¹²	1,000,000,000,000	Tera
10-15	0.00000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10-18	0.000000000000000001	atto	1 0 ¹⁸	1,000,000,000,000,000,000	Exa
10-21	0.0000000000000000000000001	zepto	1 0 ²¹	1,000,000,000,000,000,000,000	Zetta
10-24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000,000	Yotta

Figure 1-39. The principal metric prefixes.

It is also worth pointing out that for measuring memory, disk, file, and database sizes, in common industry practice, the units have slightly different meanings. There, kilo means 2^{10} (1024) rather than 10^3 (1000) because memories are always a power of two. Thus, a 1-KB memory contains 1024 bytes, not 1000 bytes. Note also the capital "B" in that usage to mean "bytes" (units of eight

bits), instead of a lowercase "b" that means "bits." Similarly, a 1-MB memory contains 2^{20} (1,048,576) bytes, a 1-GB memory contains 2^{30} (1,073,741,824) bytes, and a 1-TB database contains 2^{40} (1,099,511,627,776) bytes. However, a 1-kbps communication line transmits 1000 bits per second and a 10-Mbps LAN runs at 10,000,000 bits/sec because these speeds are not powers of two. Unfortunately, many people tend to mix up these two systems, especially for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB, MB, GB, and TB for 2^{10} , 2^{20} , 2^{30} , and 2^{40} bytes, respectively, and the symbols kbps, Mbps, Gbps, and Tbps for 10^3 , 10^6 , 10^9 , and 10^{12} bits/sec, respectively.

1.8 OUTLINE OF THE REST OF THE BOOK

This book discusses both the principles and practice of computer networking. Most chapters start with a discussion of the relevant principles, followed by a number of examples that illustrate these principles. These examples are usually taken from the Internet and wireless networks such as the mobile phone network since these are both important and very different. Other examples will be given where relevant.

The book is structured according to the hybrid model of Fig. 1-23. Starting with Chap. 2, we begin working our way up the protocol hierarchy beginning at the bottom. We provide some background in the field of data communication that covers both wired and wireless transmission systems. This material is concerned with how to deliver information over physical channels, although we cover only the architectural rather than the hardware aspects. Several examples of the physical layer, such as the public switched telephone network, the mobile telephone network, and the cable television network are also discussed.

Chapters 3 and 4 discuss the data link layer in two parts. Chap. 3 looks at the problem of how to send packets across a link, including error detection and correction. We look at DSL (used for broadband Internet access over phone lines) as a real-world example of a data link protocol.

In Chap. 4, we examine the medium access sublayer. This is the part of the data link layer that deals with how to share a channel between multiple computers. The examples we look at include wireless, such as 802.11 and RFID, and wired LANs such as classic Ethernet. Link layer switches that connect LANs, such as switched Ethernet, are also discussed here.

Chapter 5 deals with the network layer, especially routing. Many routing algorithms, both static and dynamic, are covered. Even with good routing algorithms, though, if more traffic is offered than the network can handle, some packets will be delayed or discarded. We discuss this issue from how to prevent congestion to how to guarantee a certain quality of service. Connecting heterogeneous networks to form internetworks also leads to numerous problems that are discussed here. The network layer in the Internet is given extensive coverage.

Chapter 6 deals with the transport layer. Much of the emphasis is on connection-oriented protocols and reliability, since many applications need these. Both Internet transport protocols, UDP and TCP, are covered in detail, as are their performance issues.

Chapter 7 deals with the application layer, its protocols, and its applications. The first topic is DNS, which is the Internet's telephone book. Next comes email, including a discussion of its protocols. Then we move on to the Web, with detailed discussions of static and dynamic content, and what happens on the client and server sides. We follow this with a look at networked multimedia, including streaming audio and video. Finally, we discuss content-delivery networks, including peer-to-peer technology.

Chapter 8 is about network security. This topic has aspects that relate to all layers, so it is easiest to treat it after all the layers have been thoroughly explained. The chapter starts with an introduction to cryptography. Later, it shows how cryptography can be used to secure communication, email, and the Web. The chapter ends with a discussion of some areas in which security collides with privacy, freedom of speech, censorship, and other social issues.

Chapter 9 contains an annotated list of suggested readings arranged by chapter. It is intended to help those readers who would like to pursue their study of networking further. The chapter also has an alphabetical bibliography of all the references cited in this book.

The authors' Web site at Pearson:

http://www.pearsonhighered.com/tanenbaum

has a page with links to many tutorials, FAQs, companies, industry consortia, professional organizations, standards organizations, technologies, papers, and more.

1.9 SUMMARY

Computer networks have many uses, both for companies and for individuals, in the home and while on the move. Companies use networks of computers to share corporate information, typically using the client-server model with employee desktops acting as clients accessing powerful servers in the machine room. For individuals, networks offer access to a variety of information and entertainment resources, as well as a way to buy and sell products and services. Individuals often access the Internet via their phone or cable providers at home, though increasingly wireless access is used for laptops and phones. Technology advances are enabling new kinds of mobile applications and networks with computers embedded in appliances and other consumer devices. The same advances raise social issues such as privacy concerns.

Roughly speaking, networks can be divided into LANs, MANs, WANs, and internetworks. LANs typical cover a building and operate at high speeds. MANs

usually cover a city. An example is the cable television system, which is now used by many people to access the Internet. WANs may cover a country or a continent. Some of the technologies used to build these networks are point-to-point (e.g., a cable) while others are broadcast (e.g., wireless). Networks can be interconnected with routers to form internetworks, of which the Internet is the largest and best known example. Wireless networks, for example 802.11 LANs and 3G mobile telephony, are also becoming extremely popular.

Network software is built around protocols, which are rules by which processes communicate. Most networks support protocol hierarchies, with each layer providing services to the layer above it and insulating them from the details of the protocols used in the lower layers. Protocol stacks are typically based either on the OSI model or on the TCP/IP model. Both have link, network, transport, and application layers, but they differ on the other layers. Design issues include reliability, resource allocation, growth, security, and more. Much of this book deals with protocols and their design.

Networks provide various services to their users. These services can range from connectionless best-efforts packet delivery to connection-oriented guaranteed delivery. In some networks, connectionless service is provided in one layer and connection-oriented service is provided in the layer above it.

Well-known networks include the Internet, the 3G mobile telephone network, and 802.11 LANs. The Internet evolved from the ARPANET, to which other networks were added to form an internetwork. The present-day Internet is actually a collection of many thousands of networks that use the TCP/IP protocol stack. The 3G mobile telephone network provides wireless and mobile access to the Internet at speeds of multiple Mbps, and, of course, carries voice calls as well. Wireless LANs based on the IEEE 802.11 standard are deployed in many homes and cafes and can provide connectivity at rates in excess of 100 Mbps. New kinds of networks are emerging too, such as embedded sensor networks and networks based on RFID technology.

Enabling multiple computers to talk to each other requires a large amount of standardization, both in the hardware and software. Organizations such as ITU-T, ISO, IEEE, and IAB manage different parts of the standardization process.

PROBLEMS

1. Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8-mm tapes instead of a flask of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7 gigabytes. The dog can travel to your side, wherever you may be, at 18 km/hour. For what range of distances does Bernie have a higher data rate than a transmission line whose data rate (excluding overhead) is 150 Mbps? How does your answer change if (i) Bernie's speed is doubled; (ii) each tape capacity is doubled; (iii) the data rate of the transmission line is doubled.

- 2. An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two advantages of a client-server system using a LAN.
- 3. The performance of a client-server system is strongly influenced by two major network characteristics: the bandwidth of the network (that is, how many bits/sec it can transport) and the latency (that is, how many seconds it takes for the first bit to get from the client to the server). Give an example of a network that exhibits high bandwidth but also high latency. Then give an example of one that has both low bandwidth and low latency.
- **4.** Besides bandwidth and latency, what other parameter is needed to give a good characterization of the quality of service offered by a network used for (i) digitized voice traffic? (ii) video traffic? (iii) financial transaction traffic?
- 5. A factor in the delay of a store-and-forward packet-switching system is how long it takes to store and forward a packet through a switch. If switching time is 10 μsec, is this likely to be a major factor in the response of a client-server system where the client is in New York and the server is in California? Assume the propagation speed in copper and fiber to be 2/3 the speed of light in vacuum.
- **6.** A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the best-case delay in response to a request?
- 7. In the future, when everyone has a home terminal connected to a computer network, instant public referendums on important pending legislation will become possible. Ultimately, existing legislatures could be eliminated, to let the will of the people be expressed directly. The positive aspects of such a direct democracy are fairly obvious; discuss some of the negative aspects.
- **8.** Five routers are to be connected in a point-to-point subnet. Between each pair of routers, the designers may put a high-speed line, a medium-speed line, a low-speed line, or no line. If it takes 100 ms of computer time to generate and inspect each topology, how long will it take to inspect all of them?
- **9.** A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with each of the *n* hosts attempting to use the channel with probability *p* during each slot. What fraction of the slots will be wasted due to collisions?
- **10.** What are two reasons for using layered protocols? What is one possible disadvantage of using layered protocols?
- 11. The president of the Specialty Paint Corp. gets the idea to work with a local beer brewer to produce an invisible beer can (as an anti-litter measure). The president tells her legal department to look into it, and they in turn ask engineering for help. As a result, the chief engineer calls his counterpart at the brewery to discuss the technical aspects of the project. The engineers then report back to their respective legal departments, which then confer by telephone to arrange the legal aspects. Finally, the two corporate presidents discuss the financial side of the deal. What principle of a multilayer protocol in the sense of the OSI model does this communication mechanism violate?

- 12. Two networks each provide reliable connection-oriented service. One of them offers a reliable byte stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction made? If not, give an example of how they differ.
- 13. What does "negotiation" mean when discussing network protocols? Give an example.
- 14. In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why not?
- **15.** In some networks, the data link layer handles transmission errors by requesting that damaged frames be retransmitted. If the probability of a frame's being damaged is *p*, what is the mean number of transmissions required to send a frame? Assume that acknowledgements are never lost.
- **16.** A system has an *n*-layer protocol hierarchy. Applications generate messages of length *M* bytes. At each of the layers, an *h*-byte header is added. What fraction of the network bandwidth is filled with headers?
- 17. What is the main difference between TCP and UDP?
- **18.** The subnet of Fig. 1-25(b) was designed to withstand a nuclear war. How many bombs would it take to partition the nodes into two disconnected sets? Assume that any bomb wipes out a node and all of the links connected to it.
- 19. The Internet is roughly doubling in size every 18 months. Although no one really knows for sure, one estimate put the number of hosts on it at 600 million in 2009. Use these data to compute the expected number of Internet hosts in the year 2018. Do you believe this? Explain why or why not.
- 20. When a file is transferred between two computers, two acknowledgement strategies are possible. In the first one, the file is chopped up into packets, which are individually acknowledged by the receiver, but the file transfer as a whole is not acknowledged. In the second one, the packets are not acknowledged individually, but the entire file is acknowledged when it arrives. Discuss these two approaches.
- 21. Mobile phone network operators need to know where their subscribers' mobile phones (hence their users) are located. Explain why this is bad for users. Now give reasons why this is good for users.
- 22. How long was a bit in the original 802.3 standard in meters? Use a transmission speed of 10 Mbps and assume the propagation speed in coax is 2/3 the speed of light in vacuum.
- 23. An image is 1600 × 1200 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet? Over gigabit Ethernet?
- **24.** Ethernet and wireless networks have some similarities and some differences. One property of Ethernet is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with Ethernet? Discuss your answer.
- **25.** List two advantages and two disadvantages of having international standards for network protocols.

- 26. When a system has a permanent part and a removable part (such as a CD-ROM drive and the CD-ROM), it is important that the system be standardized, so that different companies can make both the permanent and removable parts and everything still works together. Give three examples outside the computer industry where such international standards exist. Now give three areas outside the computer industry where they do not exist.
- 27. Suppose the algorithms used to implement the operations at layer k is changed. How does this impact operations at layers k-1 and k+1?
- 28. Suppose there is a change in the service (set of operations) provided by layer k. How does this impact services at layers k-1 and k+1?
- **29.** Provide a list of reasons for why the response time of a client may be larger than the best-case delay.
- 30. What are the disadvantages of using small, fixed-length cells in ATM?
- 31. Make a list of activities that you do every day in which computer networks are used. How would your life be altered if these networks were suddenly switched off?
- **32.** Find out what networks are used at your school or place of work. Describe the network types, topologies, and switching methods used there.
- 33. The *ping* program allows you to send a test packet to a given location and see how long it takes to get there and back. Try using *ping* to see how long it takes to get from your location to several known locations. From these data, plot the one-way transit time over the Internet as a function of distance. It is best to use universities since the location of their servers is known very accurately. For example, *berkeley.edu* is in Berkeley, California; *mit.edu* is in Cambridge, Massachusetts; *vu.nl* is in Amsterdam; The Netherlands; *www.usyd.edu.au* is in Sydney, Australia; and *www.uct.ac.za* is in Cape Town, South Africa.
- **34.** Go to IETF's Web site, www.ietf.org, to see what they are doing. Pick a project you like and write a half-page report on the problem and the proposed solution.
- 35. The Internet is made up of a large number of networks. Their arrangement determines the topology of the Internet. A considerable amount of information about the Internet topology is available on line. Use a search engine to find out more about the Internet topology and write a short report summarizing your findings.
- **36.** Search the Internet to find out some of the important peering points used for routing packets in the Internet at present.
- 37. Write a program that implements message flow from the top layer to the bottom layer of the 7-layer protocol model. Your program should include a separate protocol function for each layer. Protocol headers are sequence up to 64 characters. Each protocol function has two parameters: a message passed from the higher layer protocol (a char buffer) and the size of the message. This function attaches its header in front of the message, prints the new message on the standard output, and then invokes the protocol function of the lower-layer protocol. Program input is an application message (a sequence of 80 characters or less).

2

THE PHYSICAL LAYER

In this chapter we will look at the lowest layer in our protocol model, the physical layer. It defines the electrical, timing and other interfaces by which bits are sent as signals over channels. The physical layer is the foundation on which the network is built. The properties of different kinds of physical channels determine the performance (e.g., throughput, latency, and error rate) so it is a good place to start our journey into networkland.

We will begin with a theoretical analysis of data transmission, only to discover that Mother (Parent?) Nature puts some limits on what can be sent over a channel. Then we will cover three kinds of transmission media: guided (copper wire and fiber optics), wireless (terrestrial radio), and satellite. Each of these technologies has different properties that affect the design and performance of the networks that use them. This material will provide background information on the key transmission technologies used in modern networks.

Next comes digital modulation, which is all about how analog signals are converted into digital bits and back again. After that we will look at multiplexing schemes, exploring how multiple conversations can be put on the same transmission medium at the same time without interfering with one another.

Finally, we will look at three examples of communication systems used in practice for wide area computer networks: the (fixed) telephone system, the mobile phone system, and the cable television system. Each of these is important in practice, so we will devote a fair amount of space to each one.

2.1 THE THEORETICAL BASIS FOR DATA COMMUNICATION

Information can be transmitted on wires by varying some physical property such as voltage or current. By representing the value of this voltage or current as a single-valued function of time, f(t), we can model the behavior of the signal and analyze it mathematically. This analysis is the subject of the following sections.

2.1.1 Fourier Analysis

In the early 19th century, the French mathematician Jean-Baptiste Fourier proved that any reasonably behaved periodic function, g(t) with period T, can be constructed as the sum of a (possibly infinite) number of sines and cosines:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$
 (2-1)

where f = 1/T is the fundamental frequency, a_n and b_n are the sine and cosine amplitudes of the *n*th **harmonics** (terms), and c is a constant. Such a decomposition is called a **Fourier series**. From the Fourier series, the function can be reconstructed. That is, if the period, T, is known and the amplitudes are given, the original function of time can be found by performing the sums of Eq. (2-1).

A data signal that has a finite duration, which all of them do, can be handled by just imagining that it repeats the entire pattern over and over forever (i.e., the interval from T to 2T is the same as from 0 to T, etc.).

The a_n amplitudes can be computed for any given g(t) by multiplying both sides of Eq. (2-1) by $\sin(2\pi k f t)$ and then integrating from 0 to T. Since

$$\int_{0}^{T} \sin(2\pi k f t) \sin(2\pi n f t) dt = \begin{cases} 0 \text{ for } k \neq n \\ T/2 \text{ for } k = n \end{cases}$$

only one term of the summation survives: a_n . The b_n summation vanishes completely. Similarly, by multiplying Eq. (2-1) by $\cos(2\pi k f t)$ and integrating between 0 and T, we can derive b_n . By just integrating both sides of the equation as it stands, we can find c. The results of performing these operations are as follows:

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$
 $b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$ $c = \frac{2}{T} \int_0^T g(t) dt$

2.1.2 Bandwidth-Limited Signals

The relevance of all of this to data communication is that real channels affect different frequency signals differently. Let us consider a specific example: the transmission of the ASCII character "b" encoded in an 8-bit byte. The bit pattern that is to be transmitted is 01100010. The left-hand part of Fig. 2-1(a) shows the

voltage output by the transmitting computer. The Fourier analysis of this signal yields the coefficients:

$$a_n = \frac{1}{\pi n} [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$

$$b_n = \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

$$c = 3/4$$

The root-mean-square amplitudes, $\sqrt{a_n^2 + b_n^2}$, for the first few terms are shown on the right-hand side of Fig. 2-1(a). These values are of interest because their squares are proportional to the energy transmitted at the corresponding frequency.

No transmission facility can transmit signals without losing some power in the process. If all the Fourier components were equally diminished, the resulting signal would be reduced in amplitude but not distorted [i.e., it would have the same nice squared-off shape as Fig. 2-1(a)]. Unfortunately, all transmission facilities diminish different Fourier components by different amounts, thus introducing distortion. Usually, for a wire, the amplitudes are transmitted mostly undiminished from 0 up to some frequency f_c [measured in cycles/sec or Hertz (Hz)], with all frequencies above this cutoff frequency attenuated. The width of the frequency range transmitted without being strongly attenuated is called the **bandwidth**. In practice, the cutoff is not really sharp, so often the quoted bandwidth is from 0 to the frequency at which the received power has fallen by half.

The bandwidth is a physical property of the transmission medium that depends on, for example, the construction, thickness, and length of a wire or fiber. Filters are often used to further limit the bandwidth of a signal. 802.11 wireless channels are allowed to use up to roughly 20 MHz, for example, so 802.11 radios filter the signal bandwidth to this size. As another example, traditional (analog) television channels occupy 6 MHz each, on a wire or over the air. This filtering lets more signals share a given region of spectrum, which improves the overall efficiency of the system. It means that the frequency range for some signals will not start at zero, but this does not matter. The bandwidth is still the width of the band of frequencies that are passed, and the information that can be carried depends only on this width and not on the starting and ending frequencies. Signals that run from 0 up to a maximum frequency are called **baseband** signals. Signals that are shifted to occupy a higher range of frequencies, as is the case for all wireless transmissions, are called **passband** signals.

Now let us consider how the signal of Fig. 2-1(a) would look if the bandwidth were so low that only the lowest frequencies were transmitted [i.e., if the function were being approximated by the first few terms of Eq. (2-1)]. Figure 2-1(b) shows the signal that results from a channel that allows only the first harmonic

Figure 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)–(e) Successive approximations to the original signal.

(the fundamental, f) to pass through. Similarly, Fig. 2-1(c)–(e) show the spectra and reconstructed functions for higher-bandwidth channels. For digital transmission, the goal is to receive a signal with just enough fidelity to reconstruct the sequence of bits that was sent. We can already do this easily in Fig. 2-1(e), so it is wasteful to use more harmonics to receive a more accurate replica.

Given a bit rate of b bits/sec, the time required to send the 8 bits in our example 1 bit at a time is 8/b sec, so the frequency of the first harmonic of this signal is b/8 Hz. An ordinary telephone line, often called a **voice-grade line**, has an artificially introduced cutoff frequency just above 3000 Hz. The presence of this restriction means that the number of the highest harmonic passed through is roughly 3000/(b/8), or 24,000/b (the cutoff is not sharp).

For some data rates, the numbers work out as shown in Fig. 2-2. From these numbers, it is clear that trying to send at 9600 bps over a voice-grade telephone line will transform Fig. 2-1(a) into something looking like Fig. 2-1(c), making accurate reception of the original binary bit stream tricky. It should be obvious that at data rates much higher than 38.4 kbps, there is no hope at all for *binary* signals, even if the transmission facility is completely noiseless. In other words, limiting the bandwidth limits the data rate, even for perfect channels. However, coding schemes that make use of several voltage levels do exist and can achieve higher data rates. We will discuss these later in this chapter.

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Figure 2-2. Relation between data rate and harmonics for our example.

There is much confusion about bandwidth because it means different things to electrical engineers and to computer scientists. To electrical engineers, (analog) bandwidth is (as we have described above) a quantity measured in Hz. To computer scientists, (digital) bandwidth is the maximum data rate of a channel, a quantity measured in bits/sec. That data rate is the end result of using the analog bandwidth of a physical channel for digital transmission, and the two are related, as we discuss next. In this book, it will be clear from the context whether we mean analog bandwidth (Hz) or digital bandwidth (bits/sec).

2.1.3 The Maximum Data Rate of a Channel

As early as 1924, an AT&T engineer, Henry Nyquist, realized that even a perfect channel has a finite transmission capacity. He derived an equation expressing the maximum data rate for a finite-bandwidth noiseless channel. In 1948, Claude Shannon carried Nyquist's work further and extended it to the case of a channel subject to random (that is, thermodynamic) noise (Shannon, 1948). This paper is the most important paper in all of information theory. We will just briefly summarize their now classical results here.

Nyquist proved that if an arbitrary signal has been run through a low-pass filter of bandwidth B, the filtered signal can be completely reconstructed by making only 2B (exact) samples per second. Sampling the line faster than 2B times per second is pointless because the higher-frequency components that such sampling could recover have already been filtered out. If the signal consists of V discrete levels, Nyquist's theorem states:

maximum data rate =
$$2B \log_2 V$$
 bits/sec (2-2)

For example, a noiseless 3-kHz channel cannot transmit binary (i.e., two-level) signals at a rate exceeding 6000 bps.

So far we have considered only noiseless channels. If random noise is present, the situation deteriorates rapidly. And there is always random (thermal) noise present due to the motion of the molecules in the system. The amount of thermal noise present is measured by the ratio of the signal power to the noise power, called the **SNR** (**Signal-to-Noise Ratio**). If we denote the signal power by S and the noise power by S, the signal-to-noise ratio is S/N. Usually, the ratio is expressed on a log scale as the quantity S/N because it can vary over a tremendous range. The units of this log scale are called **decibels** (**dB**), with "deci" meaning 10 and "bel" chosen to honor Alexander Graham Bell, who invented the telephone. An S/N ratio of 10 is 10 dB, a ratio of 100 is 20 dB, a ratio of 1000 is 30 dB, and so on. The manufacturers of stereo amplifiers often characterize the bandwidth (frequency range) over which their products are linear by giving the 3-dB frequency on each end. These are the points at which the amplification factor has been approximately halved (because S/N = 10).

Shannon's major result is that the maximum data rate or **capacity** of a noisy channel whose bandwidth is B Hz and whose signal-to-noise ratio is S/N, is given by:

maximum number of bits/sec =
$$B \log_2 (1 + S/N)$$
 (2-3)

This tells us the best capacities that real channels can have. For example, ADSL (Asymmetric Digital Subscriber Line), which provides Internet access over normal telephone lines, uses a bandwidth of around 1 MHz. The SNR depends strongly on the distance of the home from the telephone exchange, and an SNR of around 40 dB for short lines of 1 to 2 km is very good. With these characteristics,

the channel can never transmit much more than 13 Mbps, no matter how many or how few signal levels are used and no matter how often or how infrequently samples are taken. In practice, ADSL is specified up to 12 Mbps, though users often see lower rates. This data rate is actually very good, with over 60 years of communications techniques having greatly reduced the gap between the Shannon capacity and the capacity of real systems.

Shannon's result was derived from information-theory arguments and applies to any channel subject to thermal noise. Counterexamples should be treated in the same category as perpetual motion machines. For ADSL to exceed 13 Mbps, it must either improve the SNR (for example by inserting digital repeaters in the lines closer to the customers) or use more bandwidth, as is done with the evolution to ASDL2+.

2.2 GUIDED TRANSMISSION MEDIA

The purpose of the physical layer is to transport bits from one machine to another. Various physical media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance. Media are roughly grouped into guided media, such as copper wire and fiber optics, and unguided media, such as terrestrial wireless, satellite, and lasers through the air. We will look at guided media in this section, and unguided media in the next sections.

2.2.1 Magnetic Media

One of the most common ways to transport data from one computer to another is to write them onto magnetic tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the destination machine, and read them back in again. Although this method is not as sophisticated as using a geosynchronous communication satellite, it is often more cost effective, especially for applications in which high bandwidth or cost per bit transported is the key factor.

A simple calculation will make this point clear. An industry-standard Ultrium tape can hold 800 gigabytes. A box $60 \times 60 \times 60$ cm can hold about 1000 of these tapes, for a total capacity of 800 terabytes, or 6400 terabits (6.4 petabits). A box of tapes can be delivered anywhere in the United States in 24 hours by Federal Express and other companies. The effective bandwidth of this transmission is 6400 terabits/86,400 sec, or a bit over 70 Gbps. If the destination is only an hour away by road, the bandwidth is increased to over 1700 Gbps. No computer network can even approach this. Of course, networks are getting faster, but tape densities are increasing, too.

If we now look at cost, we get a similar picture. The cost of an Ultrium tape is around \$40 when bought in bulk. A tape can be reused at least 10 times, so the

tape cost is maybe \$4000 per box per usage. Add to this another \$1000 for shipping (probably much less), and we have a cost of roughly \$5000 to ship 800 TB. This amounts to shipping a gigabyte for a little over half a cent. No network can beat that. The moral of the story is:

Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway.

2.2.2 Twisted Pairs

Although the bandwidth characteristics of magnetic tape are excellent, the delay characteristics are poor. Transmission time is measured in minutes or hours, not milliseconds. For many applications an online connection is needed. One of the oldest and still most common transmission media is **twisted pair**. A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form, just like a DNA molecule. Twisting is done because two parallel wires constitute a fine antenna. When the wires are twisted, the waves from different twists cancel out, so the wire radiates less effectively. A signal is usually carried as the difference in voltage between the two wires in the pair. This provides better immunity to external noise because the noise tends to affect both wires the same, leaving the differential unchanged.

The most common application of the twisted pair is the telephone system. Nearly all telephones are connected to the telephone company (telco) office by a twisted pair. Both telephone calls and ADSL Internet access run over these lines. Twisted pairs can run several kilometers without amplification, but for longer distances the signal becomes too attenuated and repeaters are needed. When many twisted pairs run in parallel for a substantial distance, such as all the wires coming from an apartment building to the telephone company office, they are bundled together and encased in a protective sheath. The pairs in these bundles would interfere with one another if it were not for the twisting. In parts of the world where telephone lines run on poles above ground, it is common to see bundles several centimeters in diameter.

Twisted pairs can be used for transmitting either analog or digital information. The bandwidth depends on the thickness of the wire and the distance traveled, but several megabits/sec can be achieved for a few kilometers in many cases. Due to their adequate performance and low cost, twisted pairs are widely used and are likely to remain so for years to come.

Twisted-pair cabling comes in several varieties. The garden variety deployed in many office buildings is called **Category 5** cabling, or "Cat 5." A category 5 twisted pair consists of two insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to protect the wires and keep them together. This arrangement is shown in Fig. 2-3.

Different LAN standards may use the twisted pairs differently. For example, 100-Mbps Ethernet uses two (out of the four) pairs, one pair for each direction.

Figure 2-3. Category 5 UTP cable with four twisted pairs.

To reach higher speeds, 1-Gbps Ethernet uses all four pairs in both directions simultaneously; this requires the receiver to factor out the signal that is transmitted locally.

Some general terminology is now in order. Links that can be used in both directions at the same time, like a two-lane road, are called **full-duplex** links. In contrast, links that can be used in either direction, but only one way at a time, like a single-track railroad line. are called **half-duplex** links. A third category consists of links that allow traffic in only one direction, like a one-way street. They are called **simplex** links.

Returning to twisted pair, Cat 5 replaced earlier Category 3 cables with a similar cable that uses the same connector, but has more twists per meter. More twists result in less crosstalk and a better-quality signal over longer distances, making the cables more suitable for high-speed computer communication, especially 100-Mbps and 1-Gbps Ethernet LANs.

New wiring is more likely to be **Category 6** or even **Category 7**. These categories has more stringent specifications to handle signals with greater bandwidths. Some cables in Category 6 and above are rated for signals of 500 MHz and can support the 10-Gbps links that will soon be deployed.

Through Category 6, these wiring types are referred to as UTP (Unshielded Twisted Pair) as they consist simply of wires and insulators. In contrast to these, Category 7 cables have shielding on the individual twisted pairs, as well as around the entire cable (but inside the plastic protective sheath). Shielding reduces the susceptibility to external interference and crosstalk with other nearby cables to meet demanding performance specifications. The cables are reminiscent of the high-quality, but bulky and expensive shielded twisted pair cables that IBM introduced in the early 1980s, but which did not prove popular outside of IBM installations. Evidently, it is time to try again.

2.2.3 Coaxial Cable

Another common transmission medium is the **coaxial cable** (known to its many friends as just "coax" and pronounced "co-ax"). It has better shielding and greater bandwidth than unshielded twisted pairs, so it can span longer distances at

higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission and cable television. This distinction is based on historical, rather than technical, factors (e.g., early dipole antennas had an impedance of 300 ohms, and it was easy to use existing 4:1 impedance-matching transformers). Starting in the mid-1990s, cable TV operators began to provide Internet access over cable, which has made 75-ohm cable more important for data communication.

A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely woven braided mesh. The outer conductor is covered in a protective plastic sheath. A cutaway view of a coaxial cable is shown in Fig. 2-4.

Figure 2-4. A coaxial cable.

The construction and shielding of the coaxial cable give it a good combination of high bandwidth and excellent noise immunity. The bandwidth possible depends on the cable quality and length. Modern cables have a bandwidth of up to a few GHz. Coaxial cables used to be widely used within the telephone system for long-distance lines but have now largely been replaced by fiber optics on long-haul routes. Coax is still widely used for cable television and metropolitan area networks, however.

2.2.4 Power Lines

The telephone and cable television networks are not the only sources of wiring that can be reused for data communication. There is a yet more common kind of wiring: electrical power lines. Power lines deliver electrical power to houses, and electrical wiring within houses distributes the power to electrical outlets.

The use of power lines for data communication is an old idea. Power lines have been used by electricity companies for low-rate communication such as remote metering for many years, as well in the home to control devices (e.g., the X10 standard). In recent years there has been renewed interest in high-rate communication over these lines, both inside the home as a LAN and outside the home

for broadband Internet access. We will concentrate on the most common scenario: using electrical wires inside the home.

The convenience of using power lines for networking should be clear. Simply plug a TV and a receiver into the wall, which you must do anyway because they need power, and they can send and receive movies over the electrical wiring. This configuration is shown in Fig. 2-5. There is no other plug or radio. The data signal is superimposed on the low-frequency power signal (on the active or "hot" wire) as both signals use the wiring at the same time.

Figure 2-5. A network that uses household electrical wiring.

The difficulty with using household electrical wiring for a network is that it was designed to distribute power signals. This task is quite different than distributing data signals, at which household wiring does a horrible job. Electrical signals are sent at 50–60 Hz and the wiring attenuates the much higher frequency (MHz) signals needed for high-rate data communication. The electrical properties of the wiring vary from one house to the next and change as appliances are turned on and off, which causes data signals to bounce around the wiring. Transient currents when appliances switch on and off create electrical noise over a wide range of frequencies. And without the careful twisting of twisted pairs, electrical wiring acts as a fine antenna, picking up external signals and radiating signals of its own. This behavior means that to meet regulatory requirements, the data signal must exclude licensed frequencies such as the amateur radio bands.

Despite these difficulties, it is practical to send at least 100 Mbps over typical household electrical wiring by using communication schemes that resist impaired frequencies and bursts of errors. Many products use various proprietary standards for power-line networking, so international standards are actively under development.

2.2.5 Fiber Optics

Many people in the computer industry take enormous pride in how fast computer technology is improving as it follows Moore's law, which predicts a doubling of the number of transistors per chip roughly every two years (Schaller,

1997). The original (1981) IBM PC ran at a clock speed of 4.77 MHz. Twenty-eight years later, PCs could run a four-core CPU at 3 GHz. This increase is a gain of a factor of around 2500, or 16 per decade. Impressive.

In the same period, wide area communication links went from 45 Mbps (a T3 line in the telephone system) to 100 Gbps (a modern long distance line). This gain is similarly impressive, more than a factor of 2000 and close to 16 per decade, while at the same time the error rate went from 10^{-5} per bit to almost zero. Furthermore, single CPUs are beginning to approach physical limits, which is why it is now the number of CPUs that is being increased per chip. In contrast, the achievable bandwidth with fiber technology is in excess of 50,000 Gbps (50 Tbps) and we are nowhere near reaching these limits. The current practical limit of around 100 Gbps is due to our inability to convert between electrical and optical signals any faster. To build higher-capacity links, many channels are simply carried in parallel over a single fiber.

In this section we will study fiber optics to learn how that transmission technology works. In the ongoing race between computing and communication, communication may yet win because of fiber optic networks. The implication of this would be essentially infinite bandwidth and a new conventional wisdom that computers are hopelessly slow so that networks should try to avoid computation at all costs, no matter how much bandwidth that wastes. This change will take a while to sink in to a generation of computer scientists and engineers taught to think in terms of the low Shannon limits imposed by copper.

Of course, this scenario does not tell the whole story because it does not include cost. The cost to install fiber over the last mile to reach consumers and bypass the low bandwidth of wires and limited availability of spectrum is tremendous. It also costs more energy to move bits than to compute. We may always have islands of inequities where either computation or communication is essentially free. For example, at the edge of the Internet we throw computation and storage at the problem of compressing and caching content, all to make better use of Internet access links. Within the Internet, we may do the reverse, with companies such as Google moving huge amounts of data across the network to where it is cheaper to store or compute on it.

Fiber optics are used for long-haul transmission in network backbones, high-speed LANs (although so far, copper has always managed catch up eventually), and high-speed Internet access such as **FttH** (**Fiber to the Home**). An optical transmission system has three key components: the light source, the transmission medium, and the detector. Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when light falls on it. By attaching a light source to one end of an optical fiber and a detector to the other, we have a unidirectional data transmission system that accepts an electrical signal, converts and transmits it by light pulses, and then reconverts the output to an electrical signal at the receiving end.

This transmission system would leak light and be useless in practice were it not for an interesting principle of physics. When a light ray passes from one medium to another—for example, from fused silica to air—the ray is refracted (bent) at the silica/air boundary, as shown in Fig. 2-6(a). Here we see a light ray incident on the boundary at an angle α_1 emerging at an angle β_1 . The amount of refraction depends on the properties of the two media (in particular, their indices of refraction). For angles of incidence above a certain critical value, the light is refracted back into the silica; none of it escapes into the air. Thus, a light ray incident at or above the critical angle is trapped inside the fiber, as shown in Fig. 2-6(b), and can propagate for many kilometers with virtually no loss.

Figure 2-6. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.

The sketch of Fig. 2-6(b) shows only one trapped ray, but since any light ray incident on the boundary above the critical angle will be reflected internally, many different rays will be bouncing around at different angles. Each ray is said to have a different mode, so a fiber having this property is called a **multimode fiber**.

However, if the fiber's diameter is reduced to a few wavelengths of light the fiber acts like a wave guide and the light can propagate only in a straight line, without bouncing, yielding a **single-mode fiber**. Single-mode fibers are more expensive but are widely used for longer distances. Currently available single-mode fibers can transmit data at 100 Gbps for 100 km without amplification. Even higher data rates have been achieved in the laboratory for shorter distances.

Transmission of Light Through Fiber

Optical fibers are made of glass, which, in turn, is made from sand, an inexpensive raw material available in unlimited amounts. Glassmaking was known to the ancient Egyptians, but their glass had to be no more than 1 mm thick or the

light could not shine through. Glass transparent enough to be useful for windows was developed during the Renaissance. The glass used for modern optical fibers is so transparent that if the oceans were full of it instead of water, the seabed would be as visible from the surface as the ground is from an airplane on a clear day.

The attenuation of light through glass depends on the wavelength of the light (as well as on some physical properties of the glass). It is defined as the ratio of input to output signal power. For the kind of glass used in fibers, the attenuation is shown in Fig. 2-7 in units of decibels per linear kilometer of fiber. For example, a factor of two loss of signal power gives an attenuation of $10 \log_{10} 2 = 3 \text{ dB}$. The figure shows the near-infrared part of the spectrum, which is what is used in practice. Visible light has slightly shorter wavelengths, from 0.4 to 0.7 microns. (1 micron is 10^{-6} meters.) The true metric purist would refer to these wavelengths as 400 nm to 700 nm, but we will stick with traditional usage.

Figure 2-7. Attenuation of light through fiber in the infrared region.

Three wavelength bands are most commonly used at present for optical communication. They are centered at 0.85, 1.30, and 1.55 microns, respectively. All three bands are 25,000 to 30,000 GHz wide. The 0.85-micron band was used first. It has higher attenuation and so is used for shorter distances, but at that wavelength the lasers and electronics could be made from the same material (gallium arsenide). The last two bands have good attenuation properties (less than 5% loss per kilometer). The 1.55-micron band is now widely used with erbium-doped amplifiers that work directly in the optical domain.

Light pulses sent down a fiber spread out in length as they propagate. This spreading is called **chromatic dispersion**. The amount of it is wavelength dependent. One way to keep these spread-out pulses from overlapping is to increase the distance between them, but this can be done only by reducing the signaling rate. Fortunately, it has been discovered that making the pulses in a special shape related to the reciprocal of the hyperbolic cosine causes nearly all the dispersion effects cancel out, so it is possible to send pulses for thousands of kilometers without appreciable shape distortion. These pulses are called **solitons**. A considerable amount of research is going on to take solitons out of the lab and into the field.

Fiber Cables

Fiber optic cables are similar to coax, except without the braid. Figure 2-8(a) shows a single fiber viewed from the side. At the center is the glass core through which the light propagates. In multimode fibers, the core is typically 50 microns in diameter, about the thickness of a human hair. In single-mode fibers, the core is 8 to 10 microns.

Figure 2-8. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all the light in the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically grouped in bundles, protected by an outer sheath. Figure 2-8(b) shows a sheath with three fibers.

Terrestrial fiber sheaths are normally laid in the ground within a meter of the surface, where they are occasionally subject to attacks by backhoes or gophers. Near the shore, transoceanic fiber sheaths are buried in trenches by a kind of seaplow. In deep water, they just lie on the bottom, where they can be snagged by fishing trawlers or attacked by giant squid.

Fibers can be connected in three different ways. First, they can terminate in connectors and be plugged into fiber sockets. Connectors lose about 10 to 20% of the light, but they make it easy to reconfigure systems.

Second, they can be spliced mechanically. Mechanical splices just lay the two carefully cut ends next to each other in a special sleeve and clamp them in

place. Alignment can be improved by passing light through the junction and then making small adjustments to maximize the signal. Mechanical splices take trained personnel about 5 minutes and result in a 10% light loss.

Third, two pieces of fiber can be fused (melted) to form a solid connection. A fusion splice is almost as good as a single drawn fiber, but even here, a small amount of attenuation occurs.

For all three kinds of splices, reflections can occur at the point of the splice, and the reflected energy can interfere with the signal.

Two kinds of light sources are typically used to do the signaling. These are LEDs (Light Emitting Diodes) and semiconductor lasers. They have different properties, as shown in Fig. 2-9. They can be tuned in wavelength by inserting Fabry-Perot or Mach-Zehnder interferometers between the source and the fiber. Fabry-Perot interferometers are simple resonant cavities consisting of two parallel mirrors. The light is incident perpendicular to the mirrors. The length of the cavity selects out those wavelengths that fit inside an integral number of times. Mach-Zehnder interferometers separate the light into two beams. The two beams travel slightly different distances. They are recombined at the end and are in phase for only certain wavelengths.

Item	LED	Semiconductor laser	
Data rate	Low	High	
Fiber type	Multi-mode	Multi-mode or single-mode	
Distance	Short	Long	
Lifetime	Long life	Short life	
Temperature sensitivity	Minor	Substantial	
Cost	Low cost	Expensive	

Figure 2-9. A comparison of semiconductor diodes and LEDs as light sources.

The receiving end of an optical fiber consists of a photodiode, which gives off an electrical pulse when struck by light. The response time of photodiodes, which convert the signal from the optical to the electrical domain, limits data rates to about 100 Gbps. Thermal noise is also an issue, so a pulse of light must carry enough energy to be detected. By making the pulses powerful enough, the error rate can be made arbitrarily small.

Comparison of Fiber Optics and Copper Wire

It is instructive to compare fiber to copper. Fiber has many advantages. To start with, it can handle much higher bandwidths than copper. This alone would require its use in high-end networks. Due to the low attenuation, repeaters are needed only about every 50 km on long lines, versus about every 5 km for copper,

resulting in a big cost saving. Fiber also has the advantage of not being affected by power surges, electromagnetic interference, or power failures. Nor is it affected ed by corrosive chemicals in the air, important for harsh factory environments.

Oddly enough, telephone companies like fiber for a different reason: it is thin and lightweight. Many existing cable ducts are completely full, so there is no room to add new capacity. Removing all the copper and replacing it with fiber empties the ducts, and the copper has excellent resale value to copper refiners who see it as very high-grade ore. Also, fiber is much lighter than copper. One thousand twisted pairs 1 km long weigh 8000 kg. Two fibers have more capacity and weigh only 100 kg, which reduces the need for expensive mechanical support systems that must be maintained. For new routes, fiber wins hands down due to its much lower installation cost. Finally, fibers do not leak light and are difficult to tap. These properties give fiber good security against potential wiretappers.

On the downside, fiber is a less familiar technology requiring skills not all engineers have, and fibers can be damaged easily by being bent too much. Since optical transmission is inherently unidirectional, two-way communication requires either two fibers or two frequency bands on one fiber. Finally, fiber interfaces cost more than electrical interfaces. Nevertheless, the future of all fixed data communication over more than short distances is clearly with fiber. For a discussion of all aspects of fiber optics and their networks, see Hecht (2005).

2.3 WIRELESS TRANSMISSION

Our age has given rise to information junkies: people who need to be online all the time. For these mobile users, twisted pair, coax, and fiber optics are of no use. They need to get their "hits" of data for their laptop, notebook, shirt pocket, palmtop, or wristwatch computers without being tethered to the terrestrial communication infrastructure. For these users, wireless communication is the answer.

In the following sections, we will look at wireless communication in general. It has many other important applications besides providing connectivity to users who want to surf the Web from the beach. Wireless has advantages for even fixed devices in some circumstances. For example, if running a fiber to a building is difficult due to the terrain (mountains, jungles, swamps, etc.), wireless may be better. It is noteworthy that modern wireless digital communication began in the Hawaiian Islands, where large chunks of Pacific Ocean separated the users from their computer center and the telephone system was inadequate.

2.3.1 The Electromagnetic Spectrum

When electrons move, they create electromagnetic waves that can propagate through space (even in a vacuum). These waves were predicted by the British physicist James Clerk Maxwell in 1865 and first observed by the German

physicist Heinrich Hertz in 1887. The number of oscillations per second of a wave is called its **frequency**, f, and is measured in **Hz** (in honor of Heinrich Hertz). The distance between two consecutive maxima (or minima) is called the **wavelength**, which is universally designated by the Greek letter λ (lambda).

When an antenna of the appropriate size is attached to an electrical circuit, the electromagnetic waves can be broadcast efficiently and received by a receiver some distance away. All wireless communication is based on this principle.

In a vacuum, all electromagnetic waves travel at the same speed, no matter what their frequency. This speed, usually called the **speed of light**, c, is approximately 3×10^8 m/sec, or about 1 foot (30 cm) per nanosecond. (A case could be made for redefining the foot as the distance light travels in a vacuum in 1 nsec rather than basing it on the shoe size of some long-dead king.) In copper or fiber the speed slows to about 2/3 of this value and becomes slightly frequency dependent. The speed of light is the ultimate speed limit. No object or signal can ever move faster than it.

The fundamental relation between f, λ , and c (in a vacuum) is

$$\lambda f = c \tag{2-4}$$

Since c is a constant, if we know f, we can find λ , and vice versa. As a rule of thumb, when λ is in meters and f is in MHz, $\lambda f \approx 300$. For example, 100-MHz waves are about 3 meters long, 1000-MHz waves are 0.3 meters long, and 0.1-meter waves have a frequency of 3000 MHz.

The electromagnetic spectrum is shown in Fig. 2-10. The radio, microwave, infrared, and visible light portions of the spectrum can all be used for transmitting information by modulating the amplitude, frequency, or phase of the waves. Ultraviolet light, X-rays, and gamma rays would be even better, due to their higher frequencies, but they are hard to produce and modulate, do not propagate well through buildings, and are dangerous to living things. The bands listed at the bottom of Fig. 2-10 are the official ITU (International Telecommunication Union) names and are based on the wavelengths, so the LF band goes from 1 km to 10 km (approximately 30 kHz to 300 kHz). The terms LF, MF, and HF refer to Low, Medium, and High Frequency, respectively. Clearly, when the names were assigned nobody expected to go above 10 MHz, so the higher bands were later named the Very, Ultra, Super, Extremely, and Tremendously High Frequency bands. Beyond that there are no names, but Incredibly, Astonishingly, and Prodigiously High Frequency (IHF, AHF, and PHF) would sound nice.

We know from Shannon [Eq. (2-3)] that the amount of information that a signal such as an electromagnetic wave can carry depends on the received power and is proportional to its bandwidth. From Fig. 2-10 it should now be obvious why networking people like fiber optics so much. Many GHz of bandwidth are available to tap for data transmission in the microwave band, and even more in fiber because it is further to the right in our logarithmic scale. As an example, consider the 1.30-micron band of Fig. 2-7, which has a width of 0.17 microns. If we use

Figure 2-10. The electromagnetic spectrum and its uses for communication.

Eq. (2-4) to find the start and end frequencies from the start and end wavelengths, we find the frequency range to be about 30,000 GHz. With a reasonable signal-to-noise ratio of 10 dB, this is 300 Tbps.

Most transmissions use a relatively narrow frequency band (i.e., $\Delta f/f \ll 1$). They concentrate their signals in this narrow band to use the spectrum efficiently and obtain reasonable data rates by transmitting with enough power. However, in some cases, a wider band is used, with three variations. In **frequency hopping spread spectrum**, the transmitter hops from frequency to frequency hundreds of times per second. It is popular for military communication because it makes transmissions hard to detect and next to impossible to jam. It also offers good resistance to multipath fading and narrowband interference because the receiver will not be stuck on an impaired frequency for long enough to shut down communication. This robustness makes it useful for crowded parts of the spectrum, such as the ISM bands we will describe shortly. This technique is used commercially, for example, in Bluetooth and older versions of 802.11.

As a curious footnote, the technique was coinvented by the Austrian-born sex goddess Hedy Lamarr, the first woman to appear nude in a motion picture (the 1933 Czech film *Extase*). Her first husband was an armaments manufacturer who told her how easy it was to block the radio signals then used to control torpedoes. When she discovered that he was selling weapons to Hitler, she was horrified, disguised herself as a maid to escape him, and fled to Hollywood to continue her career as a movie actress. In her spare time, she invented frequency hopping to help the Allied war effort. Her scheme used 88 frequencies, the number of keys

(and frequencies) on the piano. For their invention, she and her friend, the musical composer George Antheil, received U.S. patent 2,292,387. However, they were unable to convince the U.S. Navy that their invention had any practical use and never received any royalties. Only years after the patent expired did it become popular.

A second form of spread spectrum, **direct sequence spread spectrum**, uses a code sequence to spread the data signal over a wider frequency band. It is widely used commercially as a spectrally efficient way to let multiple signals share the same frequency band. These signals can be given different codes, a method called **CDMA** (**Code Division Multiple Access**) that we will return to later in this chapter. This method is shown in contrast with frequency hopping in Fig. 2-11. It forms the basis of 3G mobile phone networks and is also used in GPS (Global Positioning System). Even without different codes, direct sequence spread spectrum, like frequency hopping spread spectrum, can tolerate narrowband interference and multipath fading because only a fraction of the desired signal is lost. It is used in this role in older 802.11b wireless LANs. For a fascinating and detailed history of spread spectrum communication, see Scholtz (1982).

Figure 2-11. Spread spectrum and ultra-wideband (UWB) communication.

A third method of communication with a wider band is **UWB** (**Ultra-WideBand**) communication. UWB sends a series of rapid pulses, varying their positions to communicate information. The rapid transitions lead to a signal that is spread thinly over a very wide frequency band. UWB is defined as signals that have a bandwidth of at least 500 MHz or at least 20% of the center frequency of their frequency band. UWB is also shown in Fig. 2-11. With this much bandwidth, UWB has the potential to communicate at high rates. Because it is spread across a wide band of frequencies, it can tolerate a substantial amount of relatively strong interference from other narrowband signals. Just as importantly, since UWB has very little energy at any given frequency when used for short-range transmission, it does not cause harmful interference to those other narrowband radio signals. It is said to **underlay** the other signals. This peaceful coexistence has led to its application in wireless PANs that run at up to 1 Gbps, although commercial success has been mixed. It can also be used for imaging through solid objects (ground, walls, and bodies) or as part of precise location systems.

We will now discuss how the various parts of the electromagnetic spectrum of Fig. 2-11 are used, starting with radio. We will assume that all transmissions use a narrow frequency band unless otherwise stated.

2.3.2 Radio Transmission

Radio frequency (RF) waves are easy to generate, can travel long distances, and can penetrate buildings easily, so they are widely used for communication, both indoors and outdoors. Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.

Sometimes omnidirectional radio is good, but sometimes it is bad. In the 1970s, General Motors decided to equip all its new Cadillacs with computer-controlled antilock brakes. When the driver stepped on the brake pedal, the computer pulsed the brakes on and off instead of locking them on hard. One fine day an Ohio Highway Patrolman began using his new mobile radio to call headquarters, and suddenly the Cadillac next to him began behaving like a bucking bronco. When the officer pulled the car over, the driver claimed that he had done nothing and that the car had gone crazy.

Eventually, a pattern began to emerge: Cadillacs would sometimes go berserk, but only on major highways in Ohio and then only when the Highway Patrol was watching. For a long, long time General Motors could not understand why Cadillacs worked fine in all the other states and also on minor roads in Ohio. Only after much searching did they discover that the Cadillac's wiring made a fine antenna for the frequency used by the Ohio Highway Patrol's new radio system.

The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through obstacles well, but the power falls off sharply with distance from the source—at least as fast as $1/r^2$ in air—as the signal energy is spread more thinly over a larger surface. This attenuation is called **path loss**. At high frequencies, radio waves tend to travel in straight lines and bounce off obstacles. Path loss still reduces power, though the received signal can depend strongly on reflections as well. High-frequency radio waves are also absorbed by rain and other obstacles to a larger extent than are low-frequency ones. At all frequencies, radio waves are subject to interference from motors and other electrical equipment.

It is interesting to compare the attenuation of radio waves to that of signals in guided media. With fiber, coax and twisted pair, the signal drops by the same fraction per unit distance, for example 20 dB per 100m for twisted pair. With radio, the signal drops by the same fraction as the distance doubles, for example 6 dB per doubling in free space. This behavior means that radio waves can travel long distances, and interference between users is a problem. For this reason, all governments tightly regulate the use of radio transmitters, with few notable exceptions, which are discussed later in this chapter.

In the VLF, LF, and MF bands, radio waves follow the ground, as illustrated in Fig. 2-12(a). These waves can be detected for perhaps 1000 km at the lower frequencies, less at the higher ones. AM radio broadcasting uses the MF band, which is why the ground waves from Boston AM radio stations cannot be heard easily in New York. Radio waves in these bands pass through buildings easily, which is why portable radios work indoors. The main problem with using these bands for data communication is their low bandwidth [see Eq. (2-4)].

Figure 2-12. (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF band, they bounce off the ionosphere.

In the HF and VHF bands, the ground waves tend to be absorbed by the earth. However, the waves that reach the ionosphere, a layer of charged particles circling the earth at a height of 100 to 500 km, are refracted by it and sent back to earth, as shown in Fig. 2-12(b). Under certain atmospheric conditions, the signals can bounce several times. Amateur radio operators (hams) use these bands to talk long distance. The military also communicate in the HF and VHF bands.

2.3.3 Microwave Transmission

Above 100 MHz, the waves travel in nearly straight lines and can therefore be narrowly focused. Concentrating all the energy into a small beam by means of a parabolic antenna (like the familiar satellite TV dish) gives a much higher signal-to-noise ratio, but the transmitting and receiving antennas must be accurately aligned with each other. In addition, this directionality allows multiple transmitters lined up in a row to communicate with multiple receivers in a row without interference, provided some minimum spacing rules are observed. Before fiber optics, for decades these microwaves formed the heart of the long-distance telephone transmission system. In fact, MCI, one of AT&T's first competitors after it was deregulated, built its entire system with microwave communications passing between towers tens of kilometers apart. Even the company's name reflected this (MCI stood for Microwave Communications, Inc.). MCI has since gone over to fiber and through a long series of corporate mergers and bankruptcies in the telecommunications shuffle has become part of Verizon.

Microwaves travel in a straight line, so if the towers are too far apart, the earth will get in the way (think about a Seattle-to-Amsterdam link). Thus, repeaters are needed periodically. The higher the towers are, the farther apart they can be. The distance between repeaters goes up very roughly with the square root of the tower height. For 100-meter-high towers, repeaters can be 80 km apart.

Unlike radio waves at lower frequencies, microwaves do not pass through buildings well. In addition, even though the beam may be well focused at the transmitter, there is still some divergence in space. Some waves may be refracted off low-lying atmospheric layers and may take slightly longer to arrive than the direct waves. The delayed waves may arrive out of phase with the direct wave and thus cancel the signal. This effect is called **multipath fading** and is often a serious problem. It is weather and frequency dependent. Some operators keep 10% of their channels idle as spares to switch on when multipath fading temporarily wipes out some frequency band.

The demand for more and more spectrum drives operators to yet higher frequencies. Bands up to 10 GHz are now in routine use, but at about 4 GHz a new problem sets in: absorption by water. These waves are only a few centimeters long and are absorbed by rain. This effect would be fine if one were planning to build a huge outdoor microwave oven for roasting passing birds, but for communication it is a severe problem. As with multipath fading, the only solution is to shut off links that are being rained on and route around them.

In summary, microwave communication is so widely used for long-distance telephone communication, mobile phones, television distribution, and other purposes that a severe shortage of spectrum has developed. It has several key advantages over fiber. The main one is that no right of way is needed to lay down cables. By buying a small plot of ground every 50 km and putting a microwave tower on it, one can bypass the telephone system entirely. This is how MCI managed to get started as a new long-distance telephone company so quickly. (Sprint, another early competitor to the deregulated AT&T, went a completely different route: it was formed by the Southern Pacific Railroad, which already owned a large amount of right of way and just buried fiber next to the tracks.)

Microwave is also relatively inexpensive. Putting up two simple towers (which can be just big poles with four guy wires) and putting antennas on each one may be cheaper than burying 50 km of fiber through a congested urban area or up over a mountain, and it may also be cheaper than leasing the telephone company's fiber, especially if the telephone company has not yet even fully paid for the copper it ripped out when it put in the fiber.

The Politics of the Electromagnetic Spectrum

To prevent total chaos, there are national and international agreements about who gets to use which frequencies. Since everyone wants a higher data rate, everyone wants more spectrum. National governments allocate spectrum for AM

and FM radio, television, and mobile phones, as well as for telephone companies, police, maritime, navigation, military, government, and many other competing users. Worldwide, an agency of ITU-R (WRC) tries to coordinate this allocation so devices that work in multiple countries can be manufactured. However, countries are not bound by ITU-R's recommendations, and the FCC (Federal Communication Commission), which does the allocation for the United States, has occasionally rejected ITU-R's recommendations (usually because they required some politically powerful group to give up some piece of the spectrum).

Even when a piece of spectrum has been allocated to some use, such as mobile phones, there is the additional issue of which carrier is allowed to use which frequencies. Three algorithms were widely used in the past. The oldest algorithm, often called the **beauty contest**, requires each carrier to explain why its proposal serves the public interest best. Government officials then decide which of the nice stories they enjoy most. Having some government official award property worth billions of dollars to his favorite company often leads to bribery, corruption, nepotism, and worse. Furthermore, even a scrupulously honest government official who thought that a foreign company could do a better job than any of the national companies would have a lot of explaining to do.

This observation led to algorithm 2, holding a **lottery** among the interested companies. The problem with that idea is that companies with no interest in using the spectrum can enter the lottery. If, say, a fast food restaurant or shoe store chain wins, it can resell the spectrum to a carrier at a huge profit and with no risk.

Bestowing huge windfalls on alert but otherwise random companies has been severely criticized by many, which led to algorithm 3: **auction** off the bandwidth to the highest bidder. When the British government auctioned off the frequencies needed for third-generation mobile systems in 2000, it expected to get about \$4 billion. It actually received about \$40 billion because the carriers got into a feeding frenzy, scared to death of missing the mobile boat. This event switched on nearby governments' greedy bits and inspired them to hold their own auctions. It worked, but it also left some of the carriers with so much debt that they are close to bankruptcy. Even in the best cases, it will take many years to recoup the licensing fee.

A completely different approach to allocating frequencies is to not allocate them at all. Instead, let everyone transmit at will, but regulate the power used so that stations have such a short range that they do not interfere with each other. Accordingly, most governments have set aside some frequency bands, called the **ISM** (**Industrial, Scientific, Medical**) bands for unlicensed usage. Garage door openers, cordless phones, radio-controlled toys, wireless mice, and numerous other wireless household devices use the ISM bands. To minimize interference between these uncoordinated devices, the FCC mandates that all devices in the ISM bands limit their transmit power (e.g., to 1 watt) and use other techniques to spread their signals over a range of frequencies. Devices may also need to take care to avoid interference with radar installations.

The location of these bands varies somewhat from country to country. In the United States, for example, the bands that networking devices use in practice without requiring a FCC license are shown in Fig. 2-13. The 900-MHz band was used for early versions of 802.11, but it is crowded. The 2.4-GHz band is available in most countries and widely used for 802.11b/g and Bluetooth, though it is subject to interference from microwave ovens and radar installations. The 5-GHz part of the spectrum includes **U-NII** (**Unlicensed National Information Infrastructure**) bands. The 5-GHz bands are relatively undeveloped but, since they have the most bandwidth and are used by 802.11a, they are quickly gaining in popularity.

Figure 2-13. ISM and U-NII bands used in the United States by wireless devices.

The unlicensed bands have been a roaring success over the past decade. The ability to use the spectrum freely has unleashed a huge amount of innovation in wireless LANs and PANs, evidenced by the widespread deployment of technologies such as 802.11 and Bluetooth. To continue this innovation, more spectrum is needed. One exciting development in the U.S. is the FCC decision in 2009 to allow unlicensed use of **white spaces** around 700 MHz. White spaces are frequency bands that have been allocated but are not being used locally. The transition from analog to all-digital television broadcasts in the U.S. in 2010 freed up white spaces around 700 MHz. The only difficulty is that, to use the white spaces, unlicensed devices must be able to detect any nearby licensed transmitters, including wireless microphones, that have first rights to use the frequency band.

Another flurry of activity is happening around the 60-GHz band. The FCC opened 57 GHz to 64 GHz for unlicensed operation in 2001. This range is an enormous portion of spectrum, more than all the other ISM bands combined, so it can support the kind of high-speed networks that would be needed to stream high-definition TV through the air across your living room. At 60 GHz, radio

waves are absorbed by oxygen. This means that signals do not propagate far, making them well suited to short-range networks. The high frequencies (60 GHz is in the Extremely High Frequency or "millimeter" band, just below infrared radiation) posed an initial challenge for equipment makers, but products are now on the market.

2.3.4 Infrared Transmission

Unguided infrared waves are widely used for short-range communication. The remote controls used for televisions, VCRs, and stereos all use infrared communication. They are relatively directional, cheap, and easy to build but have a major drawback: they do not pass through solid objects. (Try standing between your remote control and your television and see if it still works.) In general, as we go from long-wave radio toward visible light, the waves behave more and more like light and less and less like radio.

On the other hand, the fact that infrared waves do not pass through solid walls well is also a plus. It means that an infrared system in one room of a building will not interfere with a similar system in adjacent rooms or buildings: you cannot control your neighbor's television with your remote control. Furthermore, security of infrared systems against eavesdropping is better than that of radio systems precisely for this reason. Therefore, no government license is needed to operate an infrared system, in contrast to radio systems, which must be licensed outside the ISM bands. Infrared communication has a limited use on the desktop, for example, to connect notebook computers and printers with the IrDA (Infrared Data Association) standard, but it is not a major player in the communication game.

2.3.5 Light Transmission

Unguided optical signaling or **free-space optics** has been in use for centuries. Paul Revere used binary optical signaling from the Old North Church just prior to his famous ride. A more modern application is to connect the LANs in two buildings via lasers mounted on their rooftops. Optical signaling using lasers is inherently unidirectional, so each end needs its own laser and its own photodetector. This scheme offers very high bandwidth at very low cost and is relatively secure because it is difficult to tap a narrow laser beam. It is also relatively easy to install and, unlike microwave transmission, does not require an FCC license.

The laser's strength, a very narrow beam, is also its weakness here. Aiming a laser beam 1 mm wide at a target the size of a pin head 500 meters away requires the marksmanship of a latter-day Annie Oakley. Usually, lenses are put into the system to defocus the beam slightly. To add to the difficulty, wind and temperature changes can distort the beam and laser beams also cannot penetrate rain or thick fog, although they normally work well on sunny days. However, many of these factors are not an issue when the use is to connect two spacecraft.

One of the authors (AST) once attended a conference at a modern hotel in Europe at which the conference organizers thoughtfully provided a room full of terminals to allow the attendees to read their email during boring presentations. Since the local PTT was unwilling to install a large number of telephone lines for just 3 days, the organizers put a laser on the roof and aimed it at their university's computer science building a few kilometers away. They tested it the night before the conference and it worked perfectly. At 9 A.M. on a bright, sunny day, the link failed completely and stayed down all day. The pattern repeated itself the next two days. It was not until after the conference that the organizers discovered the problem: heat from the sun during the daytime caused convection currents to rise up from the roof of the building, as shown in Fig. 2-14. This turbulent air diverted the beam and made it dance around the detector, much like a shimmering road on a hot day. The lesson here is that to work well in difficult conditions as well as good conditions, unguided optical links need to be engineered with a sufficient margin of error.

Figure 2-14. Convection currents can interfere with laser communication systems. A bidirectional system with two lasers is pictured here.

Unguided optical communication may seem like an exotic networking technology today, but it might soon become much more prevalent. We are surrounded

by cameras (that sense light) and displays (that emit light using LEDs and other technology). Data communication can be layered on top of these displays by encoding information in the pattern at which LEDs turn on and off that is below the threshold of human perception. Communicating with visible light in this way is inherently safe and creates a low-speed network in the immediate vicinity of the display. This could enable all sorts of fanciful ubiquitous computing scenarios. The flashing lights on emergency vehicles might alert nearby traffic lights and vehicles to help clear a path. Informational signs might broadcast maps. Even festive lights might broadcast songs that are synchronized with their display.

2.4 COMMUNICATION SATELLITES

In the 1950s and early 1960s, people tried to set up communication systems by bouncing signals off metallized weather balloons. Unfortunately, the received signals were too weak to be of any practical use. Then the U.S. Navy noticed a kind of permanent weather balloon in the sky—the moon—and built an operational system for ship-to-shore communication by bouncing signals off it.

Further progress in the celestial communication field had to wait until the first communication satellite was launched. The key difference between an artificial satellite and a real one is that the artificial one can amplify the signals before sending them back, turning a strange curiosity into a powerful communication system.

Communication satellites have some interesting properties that make them attractive for many applications. In its simplest form, a communication satellite can be thought of as a big microwave repeater in the sky. It contains several **transponders**, each of which listens to some portion of the spectrum, amplifies the incoming signal, and then rebroadcasts it at another frequency to avoid interference with the incoming signal. This mode of operation is known as a **bent pipe**. Digital processing can be added to separately manipulate or redirect data streams in the overall band, or digital information can even be received by the satellite and rebroadcast. Regenerating signals in this way improves performance compared to a bent pipe because the satellite does not amplify noise in the upward signal. The downward beams can be broad, covering a substantial fraction of the earth's surface, or narrow, covering an area only hundreds of kilometers in diameter.

According to Kepler's law, the orbital period of a satellite varies as the radius of the orbit to the 3/2 power. The higher the satellite, the longer the period. Near the surface of the earth, the period is about 90 minutes. Consequently, low-orbit satellites pass out of view fairly quickly, so many of them are needed to provide continuous coverage and ground antennas must track them. At an altitude of about 35,800 km, the period is 24 hours. At an altitude of 384,000 km, the period is about one month, as anyone who has observed the moon regularly can testify.

A satellite's period is important, but it is not the only issue in determining where to place it. Another issue is the presence of the Van Allen belts, layers of highly charged particles trapped by the earth's magnetic field. Any satellite flying within them would be destroyed fairly quickly by the particles. These factors lead to three regions in which satellites can be placed safely. These regions and some of their properties are illustrated in Fig. 2-15. Below we will briefly describe the satellites that inhabit each of these regions.

Figure 2-15. Communication satellites and some of their properties, including altitude above the earth, round-trip delay time, and number of satellites needed for global coverage.

2.4.1 Geostationary Satellites

In 1945, the science fiction writer Arthur C. Clarke calculated that a satellite at an altitude of 35,800 km in a circular equatorial orbit would appear to remain motionless in the sky, so it would not need to be tracked (Clarke, 1945). He went on to describe a complete communication system that used these (manned) **geostationary satellites**, including the orbits, solar panels, radio frequencies, and launch procedures. Unfortunately, he concluded that satellites were impractical due to the impossibility of putting power-hungry, fragile vacuum tube amplifiers into orbit, so he never pursued this idea further, although he wrote some science fiction stories about it.

The invention of the transistor changed all that, and the first artificial communication satellite, Telstar, was launched in July 1962. Since then, communication satellites have become a multibillion dollar business and the only aspect of outer space that has become highly profitable. These high-flying satellites are often called **GEO** (**Geostationary Earth Orbit**) satellites.

With current technology, it is unwise to have geostationary satellites spaced much closer than 2 degrees in the 360-degree equatorial plane, to avoid interference. With a spacing of 2 degrees, there can only be 360/2 = 180 of these satellites in the sky at once. However, each transponder can use multiple frequencies and polarizations to increase the available bandwidth.

To prevent total chaos in the sky, orbit slot allocation is done by ITU. This process is highly political, with countries barely out of the stone age demanding "their" orbit slots (for the purpose of leasing them to the highest bidder). Other countries, however, maintain that national property rights do not extend up to the moon and that no country has a legal right to the orbit slots above its territory. To add to the fight, commercial telecommunication is not the only application. Television broadcasters, governments, and the military also want a piece of the orbiting pie.

Modern satellites can be quite large, weighing over 5000 kg and consuming several kilowatts of electric power produced by the solar panels. The effects of solar, lunar, and planetary gravity tend to move them away from their assigned orbit slots and orientations, an effect countered by on-board rocket motors. This fine-tuning activity is called **station keeping**. However, when the fuel for the motors has been exhausted (typically after about 10 years) the satellite drifts and tumbles helplessly, so it has to be turned off. Eventually, the orbit decays and the satellite reenters the atmosphere and burns up (or very rarely crashes to earth).

Orbit slots are not the only bone of contention. Frequencies are an issue, too, because the downlink transmissions interfere with existing microwave users. Consequently, ITU has allocated certain frequency bands to satellite users. The main ones are listed in Fig. 2-16. The C band was the first to be designated for commercial satellite traffic. Two frequency ranges are assigned in it, the lower one for downlink traffic (from the satellite) and the upper one for uplink traffic (to the satellite). To allow traffic to go both ways at the same time, two channels are required. These channels are already overcrowded because they are also used by the common carriers for terrestrial microwave links. The L and S bands were added by international agreement in 2000. However, they are narrow and also crowded.

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

Figure 2-16. The principal satellite bands.

The next-highest band available to commercial telecommunication carriers is the Ku (K under) band. This band is not (yet) congested, and at its higher frequencies, satellites can be spaced as close as 1 degree. However, another problem exists: rain. Water absorbs these short microwaves well. Fortunately, heavy storms are usually localized, so using several widely separated ground stations instead of just one circumvents the problem, but at the price of extra antennas, extra cables, and extra electronics to enable rapid switching between stations. Bandwidth has also been allocated in the Ka (K above) band for commercial satellite traffic, but the equipment needed to use it is expensive. In addition to these commercial bands, many government and military bands also exist.

A modern satellite has around 40 transponders, most often with a 36-MHz bandwidth. Usually, each transponder operates as a bent pipe, but recent satellites have some on-board processing capacity, allowing more sophisticated operation. In the earliest satellites, the division of the transponders into channels was static: the bandwidth was simply split up into fixed frequency bands. Nowadays, each transponder beam is divided into time slots, with various users taking turns. We will study these two techniques (frequency division multiplexing and time division multiplexing) in detail later in this chapter.

The first geostationary satellites had a single spatial beam that illuminated about 1/3 of the earth's surface, called its **footprint**. With the enormous decline in the price, size, and power requirements of microelectronics, a much more sophisticated broadcasting strategy has become possible. Each satellite is equipped with multiple antennas and multiple transponders. Each downward beam can be focused on a small geographical area, so multiple upward and downward transmissions can take place simultaneously. Typically, these so-called **spot beams** are elliptically shaped, and can be as small as a few hundred km in diameter. A communication satellite for the United States typically has one wide beam for the contiguous 48 states, plus spot beams for Alaska and Hawaii.

A recent development in the communication satellite world is the development of low-cost microstations, sometimes called **VSATs** (**Very Small Aperture Terminals**) (Abramson, 2000). These tiny terminals have 1-meter or smaller antennas (versus 10 m for a standard GEO antenna) and can put out about 1 watt of power. The uplink is generally good for up to 1 Mbps, but the downlink is often up to several megabits/sec. Direct broadcast satellite television uses this technology for one-way transmission.

In many VSAT systems, the microstations do not have enough power to communicate directly with one another (via the satellite, of course). Instead, a special ground station, the **hub**, with a large, high-gain antenna is needed to relay traffic between VSATs, as shown in Fig. 2-17. In this mode of operation, either the sender or the receiver has a large antenna and a powerful amplifier. The trade-off is a longer delay in return for having cheaper end-user stations.

VSATs have great potential in rural areas. It is not widely appreciated, but over half the world's population lives more than hour's walk from the nearest

Figure 2-17. VSATs using a hub.

telephone. Stringing telephone wires to thousands of small villages is far beyond the budgets of most Third World governments, but installing 1-meter VSAT dishes powered by solar cells is often feasible. VSATs provide the technology that will wire the world.

Communication satellites have several properties that are radically different from terrestrial point-to-point links. To begin with, even though signals to and from a satellite travel at the speed of light (nearly 300,000 km/sec), the long round-trip distance introduces a substantial delay for GEO satellites. Depending on the distance between the user and the ground station and the elevation of the satellite above the horizon, the end-to-end transit time is between 250 and 300 msec. A typical value is 270 msec (540 msec for a VSAT system with a hub).

For comparison purposes, terrestrial microwave links have a propagation delay of roughly 3 µsec/km, and coaxial cable or fiber optic links have a delay of approximately 5 µsec/km. The latter are slower than the former because electromagnetic signals travel faster in air than in solid materials.

Another important property of satellites is that they are inherently broadcast media. It does not cost more to send a message to thousands of stations within a transponder's footprint than it does to send to one. For some applications, this property is very useful. For example, one could imagine a satellite broadcasting popular Web pages to the caches of a large number of computers spread over a wide area. Even when broadcasting can be simulated with point-to-point lines,

satellite broadcasting may be much cheaper. On the other hand, from a privacy point of view, satellites are a complete disaster: everybody can hear everything. Encryption is essential when security is required.

Satellites also have the property that the cost of transmitting a message is independent of the distance traversed. A call across the ocean costs no more to service than a call across the street. Satellites also have excellent error rates and can be deployed almost instantly, a major consideration for disaster response and military communication.

2.4.2 Medium-Earth Orbit Satellites

At much lower altitudes, between the two Van Allen belts, we find the **MEO** (**Medium-Earth Orbit**) satellites. As viewed from the earth, these drift slowly in longitude, taking something like 6 hours to circle the earth. Accordingly, they must be tracked as they move through the sky. Because they are lower than the GEOs, they have a smaller footprint on the ground and require less powerful transmitters to reach them. Currently they are used for navigation systems rather than telecommunications, so we will not examine them further here. The constellation of roughly 30 **GPS** (**Global Positioning System**) satellites orbiting at about 20,200 km are examples of MEO satellites.

2.4.3 Low-Earth Orbit Satellites

Moving down in altitude, we come to the **LEO** (**Low-Earth Orbit**) satellites. Due to their rapid motion, large numbers of them are needed for a complete system. On the other hand, because the satellites are so close to the earth, the ground stations do not need much power, and the round-trip delay is only a few milliseconds. The launch cost is substantially cheaper too. In this section we will examine two examples of satellite constellations for voice service, Iridium and Globalstar.

For the first 30 years of the satellite era, low-orbit satellites were rarely used because they zip into and out of view so quickly. In 1990, Motorola broke new ground by filing an application with the FCC asking for permission to launch 77 low-orbit satellites for the **Iridium** project (element 77 is iridium). The plan was later revised to use only 66 satellites, so the project should have been renamed Dysprosium (element 66), but that probably sounded too much like a disease. The idea was that as soon as one satellite went out of view, another would replace it. This proposal set off a feeding frenzy among other communication companies. All of a sudden, everyone wanted to launch a chain of low-orbit satellites.

After seven years of cobbling together partners and financing, communication service began in November 1998. Unfortunately, the commercial demand for large, heavy satellite telephones was negligible because the mobile phone network had grown in a spectacular way since 1990. As a consequence, Iridium was not

profitable and was forced into bankruptcy in August 1999 in one of the most spectacular corporate fiascos in history. The satellites and other assets (worth \$5 billion) were later purchased by an investor for \$25 million at a kind of extraterrestrial garage sale. Other satellite business ventures promptly followed suit.

The Iridium service restarted in March 2001 and has been growing ever since. It provides voice, data, paging, fax, and navigation service everywhere on land, air, and sea, via hand-held devices that communicate directly with the Iridium satellites. Customers include the maritime, aviation, and oil exploration industries, as well as people traveling in parts of the world lacking a telecom infrastructure (e.g., deserts, mountains, the South Pole, and some Third World countries).

The Iridium satellites are positioned at an altitude of 750 km, in circular polar orbits. They are arranged in north-south necklaces, with one satellite every 32 degrees of latitude, as shown in Fig. 2-18. Each satellite has a maximum of 48 cells (spot beams) and a capacity of 3840 channels, some of which are used for paging and navigation, while others are used for data and voice.

Figure 2-18. The Iridium satellites form six necklaces around the earth.

With six satellite necklaces the entire earth is covered, as suggested by Fig. 2-18. An interesting property of Iridium is that communication between distant customers takes place in space, as shown in Fig. 2-19(a). Here we see a caller at the North Pole contacting a satellite directly overhead. Each satellite has four neighbors with which it can communicate, two in the same necklace (shown) and two in adjacent necklaces (not shown). The satellites relay the call across this grid until it is finally sent down to the callee at the South Pole.

An alternative design to Iridium is **Globalstar**. It is based on 48 LEO satellites but uses a different switching scheme than that of Iridium. Whereas Iridium relays calls from satellite to satellite, which requires sophisticated switching equipment in the satellites, Globalstar uses a traditional bent-pipe design. The call originating at the North Pole in Fig. 2-19(b) is sent back to earth and picked

Figure 2-19. (a) Relaying in space. (b) Relaying on the ground.

up by the large ground station at Santa's Workshop. The call is then routed via a terrestrial network to the ground station nearest the callee and delivered by a bent-pipe connection as shown. The advantage of this scheme is that it puts much of the complexity on the ground, where it is easier to manage. Also, the use of large ground station antennas that can put out a powerful signal and receive a weak one means that lower-powered telephones can be used. After all, the telephone puts out only a few milliwatts of power, so the signal that gets back to the ground station is fairly weak, even after having been amplified by the satellite.

Satellites continue to be launched at a rate of around 20 per year, including ever-larger satellites that now weigh over 5000 kilograms. But there are also very small satellites for the more budget-conscious organization. To make space research more accessible, academics from Cal Poly and Stanford got together in 1999 to define a standard for miniature satellites and an associated launcher that would greatly lower launch costs (Nugent et al., 2008). **CubeSats** are satellites in units of 10 cm × 10 cm × 10 cm cubes, each weighing no more than 1 kilogram, that can be launched for as little as \$40,000 each. The launcher flies as a secondary payload on commercial space missions. It is basically a tube that takes up to three units of cubesats and uses springs to release them into orbit. Roughly 20 cubesats have launched so far, with many more in the works. Most of them communicate with ground stations on the UHF and VHF bands.

2.4.4 Satellites Versus Fiber

A comparison between satellite communication and terrestrial communication is instructive. As recently as 25 years ago, a case could be made that the future of communication lay with communication satellites. After all, the telephone system

had changed little in the previous 100 years and showed no signs of changing in the next 100 years. This glacial movement was caused in no small part by the regulatory environment in which the telephone companies were expected to provide good voice service at reasonable prices (which they did), and in return got a guaranteed profit on their investment. For people with data to transmit, 1200-bps modems were available. That was pretty much all there was.

The introduction of competition in 1984 in the United States and somewhat later in Europe changed all that radically. Telephone companies began replacing their long-haul networks with fiber and introduced high-bandwidth services like ADSL (Asymmetric Digital Subscriber Line). They also stopped their long-time practice of charging artificially high prices to long-distance users to subsidize local service. All of a sudden, terrestrial fiber connections looked like the winner.

Nevertheless, communication satellites have some major niche markets that fiber does not (and, sometimes, cannot) address. First, when rapid deployment is critical, satellites win easily. A quick response is useful for military communication systems in times of war and disaster response in times of peace. Following the massive December 2004 Sumatra earthquake and subsequent tsunami, for example, communications satellites were able to restore communications to first responders within 24 hours. This rapid response was possible because there is a developed satellite service provider market in which large players, such as Intelsat with over 50 satellites, can rent out capacity pretty much anywhere it is needed. For customers served by existing satellite networks, a VSAT can be set up easily and quickly to provide a megabit/sec link to elsewhere in the world.

A second niche is for communication in places where the terrestrial infrastructure is poorly developed. Many people nowadays want to communicate everywhere they go. Mobile phone networks cover those locations with good population density, but do not do an adequate job in other places (e.g., at sea or in the desert). Conversely, Iridium provides voice service everywhere on Earth, even at the South Pole. Terrestrial infrastructure can also be expensive to install, depending on the terrain and necessary rights of way. Indonesia, for example, has its own satellite for domestic telephone traffic. Launching one satellite was cheaper than stringing thousands of undersea cables among the 13,677 islands in the archipelago.

A third niche is when broadcasting is essential. A message sent by satellite can be received by thousands of ground stations at once. Satellites are used to distribute much network TV programming to local stations for this reason. There is now a large market for satellite broadcasts of digital TV and radio directly to end users with satellite receivers in their homes and cars. All sorts of other content can be broadcast too. For example, an organization transmitting a stream of stock, bond, or commodity prices to thousands of dealers might find a satellite system to be much cheaper than simulating broadcasting on the ground.

In short, it looks like the mainstream communication of the future will be terrestrial fiber optics combined with cellular radio, but for some specialized uses, satellites are better. However, there is one caveat that applies to all of this: economics. Although fiber offers more bandwidth, it is conceivable that terrestrial and satellite communication could compete aggressively on price. If advances in technology radically cut the cost of deploying a satellite (e.g., if some future space vehicle can toss out dozens of satellites on one launch) or low-orbit satellites catch on in a big way, it is not certain that fiber will win all markets.

2.5 DIGITAL MODULATION AND MULTIPLEXING

Now that we have studied the properties of wired and wireless channels, we turn our attention to the problem of sending digital information. Wires and wireless channels carry analog signals such as continuously varying voltage, light intensity, or sound intensity. To send digital information, we must devise analog signals to represent bits. The process of converting between bits and signals that represent them is called **digital modulation**.

We will start with schemes that directly convert bits into a signal. These schemes result in **baseband transmission**, in which the signal occupies frequencies from zero up to a maximum that depends on the signaling rate. It is common for wires. Then we will consider schemes that regulate the amplitude, phase, or frequency of a carrier signal to convey bits. These schemes result in **passband transmission**, in which the signal occupies a band of frequencies around the frequency of the carrier signal. It is common for wireless and optical channels for which the signals must reside in a given frequency band.

Channels are often shared by multiple signals. After all, it is much more convenient to use a single wire to carry several signals than to install a wire for every signal. This kind of sharing is called **multiplexing**. It can be accomplished in several different ways. We will present methods for time, frequency, and code division multiplexing.

The modulation and multiplexing techniques we describe in this section are all widely used for wires, fiber, terrestrial wireless, and satellite channels. In the following sections, we will look at examples of networks to see them in action.

2.5.1 Baseband Transmission

The most straightforward form of digital modulation is to use a positive voltage to represent a 1 and a negative voltage to represent a 0. For an optical fiber, the presence of light might represent a 1 and the absence of light might represent a 0. This scheme is called **NRZ** (**Non-Return-to-Zero**). The odd name is for historical reasons, and simply means that the signal follows the data. An example is shown in Fig. 2-20(b).

Once sent, the NRZ signal propagates down the wire. At the other end, the receiver converts it into bits by sampling the signal at regular intervals of time.

Figure 2-20. Line codes: (a) Bits, (b) NRZ, (c) NRZI, (d) Manchester, (e) Bipolar or AMI.

This signal will not look exactly like the signal that was sent. It will be attenuated and distorted by the channel and noise at the receiver. To decode the bits, the receiver maps the signal samples to the closest symbols. For NRZ, a positive voltage will be taken to indicate that a 1 was sent and a negative voltage will be taken to indicate that a 0 was sent.

NRZ is a good starting point for our studies because it is simple, but it is seldom used by itself in practice. More complex schemes can convert bits to signals that better meet engineering considerations. These schemes are called **line codes**. Below, we describe line codes that help with bandwidth efficiency, clock recovery, and DC balance.

Bandwidth Efficiency

With NRZ, the signal may cycle between the positive and negative levels up to every 2 bits (in the case of alternating 1s and 0s). This means that we need a bandwidth of at least B/2 Hz when the bit rate is B bits/sec. This relation comes from the Nyquist rate [Eq. (2-2)]. It is a fundamental limit, so we cannot run NRZ faster without using more bandwidth. Bandwidth is often a limited resource, even for wired channels, Higher-frequency signals are increasingly attenuated, making them less useful, and higher-frequency signals also require faster electronics.

One strategy for using limited bandwidth more efficiently is to use more than two signaling levels. By using four voltages, for instance, we can send 2 bits at once as a single **symbol**. This design will work as long as the signal at the receiver is sufficiently strong to distinguish the four levels. The rate at which the signal changes is then half the bit rate, so the needed bandwidth has been reduced.