

Given M, and M2 $M_{i}=(Q_{i}, S_{i}, A_{i}, S_{i})$ M, = (Q, Sz, A2, 82) Define M, fre product construction, as follows: Q = Q, \times Q z = $\frac{1}{2}$ (P,q): PEQ, and $\frac{1}{2}$ but not S = (S,,Sz) A = $\frac{1}{2}$ (P,q): PEA, and $\frac{1}{2}$ EA23 Frneoreni: L(M) = L(M2) unat is the product construction for - all strings containing either 00 or 11 (excusive or) - all strings containing 00 DV 11 - strings Containing 00 but not 11 M, M_2 =) $M_1 \cap M_2$ $M_1 \oplus M_2$

tey comma:
$$S^*((p,q), w) = (S^*(p,q), w) = (S^*(p,w), S^*(q,w))$$

for all $P \in Q$, $q \in Q_2$, $w \in Z^*$.

Proof let p,q be arbitrary states

Assume that for all X such that $|X| \leq |w|$,

for all $P \in Q$, and $q = (S^*(p,x), S^*(q,x))$

There are $Z = (S^*(p,q), Z) = (S^*(p,q), Z) = (S^*(p,q), Z) = (S^*(p,q), Z)$
 $Z = (S^*(p,z), S^*(q,z)) = (S^*(p,q), Z) = (S^*(p,q), Z)$
 $Z = (S^*(p,q), Z) = (S^*(p,q), Z$

$$= \left(S^*, \left(S, (\rho_A), \times\right), S^*_2, \left(S_2(q, \alpha), \chi\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho, \alpha \times\right), S^*_2, \left(q, \alpha \times\right)\right)$$

$$= \left(S^*, \left(\rho$$

