МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра "Захист інформації"

Написання програм з умовними виразами та циклами

МЕТОДИЧНІ ВКАЗІВКИ до лабораторної роботи № 4 з курсу «Програмування скриптовими мовами» для студентів спеціальності «Кібербезпека»

Затверджено на засіданні кафедри "Захист інформації" протокол № 01 від 29.08.2024 р. Написання програм з умовними виразами та циклами: Методичні вказівки до лабораторної роботи № 4 з курсу «Програмування скриптовими мовами» для студентів спеціальності «Кібербезпека» / Укл. Я. Р. Совин — Львів: Національний університет "Львівська політехніка", 2024. — 25 с.

Укладач: Я. Р. Совин, канд. техн. наук, доцент

В. Б. Дудикевич, д.т.н., професор

Рецензенти: А. Я. Горпенюк, канд. техн. наук, доцент

Ю. Я. Наконечний, канд. техн. наук, доцент

Мета роботи – ознайомитись умовними операторами та циклічними конструкціями мови Python.

1. ТЕОРЕТИЧНІ ВІДОМОСТІ

Розглянемо оператори мови Python, що реалізують *умовні вирази* (conditional), де деякі інші оператори можуть бути виконані або невиконані в залежності від певних умов, і *цикли* (loop), де деякі інші оператори можуть бути виконані багатократно, знову ж таки в залежності від певних умов.

1.1. Умовний оператор if ... else

Умовний оператор if ... else дозволяє в залежності від значення логічного виразу виконати окрему ділянку програми або, навпаки, не виконати її. Оператор має такий виглял:

Блоки всередині умовної інструкції виділяються однаковою кількістю пробілів (зазвичай чотирма). Кінцем блоку є інструкція, перед якою розташовано меншу кількість пробілів. У деяких мовах програмування логічний вираз заноситься в круглі дужки. У мові Руthon це робити необов'язково, але можна, оскільки будь-який вираз може бути розташований всередині круглих дужок. Тим не менше, круглі дужки слід використовувати тільки при необхідності розмістити умову на декількох рядках.

Для прикладу напишемо програму, яка перевіряє, чи є введене користувачем число парним чи ні. Після перевірки виводиться відповідне повідомлення.

```
x = int(input("Введіть число: "))
if x % 2 == 0:
    print (x, " - парне число")
else:
    print (x, " - непарне число")
```

Якщо блок складається з однієї інструкції, цю інструкцію можна розмістити в одному рядку з заголовком:

```
x = int(input("Введіть число: "))
if x % 2 == 0: print (x, " - парне число")
else: print (x, " - непарне число")
```

У цьому випадку кінцем блоку ϵ кінець рядка. Це означа ϵ , що можна розмістити відразу кілька інструкцій в одному рядку, розділяючи їх крапкою з комою:

```
x = int(input("Введіть число: "))

if x % 2 == 0: print(x, end = " "); print ("- парне число")

else: print(x, end = " "); print ("- непарне число")
```

Так зробити можна, але використовувати подібну конструкцію не рекомендується, бо це порушує стрункість коду і погіршує його супровід надалі. Завжди розміщуйте інструкцію в окремому рядку, навіть якщо блок містить тільки одну інструкцію.

```
x = int(input("Введіть число: "))
if x % 2 == 0:
    print(x, end = " ");
    print ("- парне число")
else:
    print(x, end = " ");
    print ("- непарне число")
```

Часто в програмі потрібно перевірити більше двох можливих ситуацій: для таких випадків у Python передбачений синтаксис *if-elif-else*. Python виконує тільки один блок в ланцюжку *if-elif-else*. Всі умови перевіряються по порядку до тих пір, поки одна з них не дасть істинний результат. Далі виконується блок коду, який слідує за цією умовою, а всі решта перевірки Python пропускає. Розглянемо це на прикладі.

```
print("""Якою операційною системою ви користуєтеся?
1 - Windows 10
2 - Windows 8.1
3 - Windows 8
4 - Windows 7
5 - Windows XP
6 - Інша """)
os = input("Введіть відповідне число: ")
if os == "1":
    ("Ви вибрали: Windows 10")
elif os == "2":
   print ( "Ви вибрали: Windows 8.1")
elif os == "3":
   print ( "Ви вибрали: Windows 8")
elif os == "4":
    print ( "Ви вибрали: Windows 7")
elif os == "5":
   print ( "Ви вибрали: Windows XP")
elif os == "6":
   print( "Ви вибрали: інша")
elif not os:
    print ( "Ви не ввели число")
else:
    print ("Ми не змогли визначити вашу операційну систему")
input()
```

Один умовний оператор if можна вкласти в інший. В цьому випадку відступ вкладеної інструкції повинен бути в два рази більше:

```
print("""Якою операційною системою ви користуєтеся?
1 - Windows 10
2 - Windows 8.1
3 - Windows 8
4 - Windows 7
5 - Windows XP
6 - Інша """)
os = input ("Введіть відповідне число: ")
if os != "":
    if os == "1":
        ("Ви вибрали: Windows 10")
    elif os == "2":
        print ( "Ви вибрали: Windows 8.1")
    elif os == "3":
        print( "Ви вибрали: Windows 8")
    elif os == "4":
        print ("Ви вибрали: Windows 7")
    elif os == "5":
        print ( "Ви вибрали: Windows XP")
    elif os == "6":
        print( "Ви вибрали: інша")
    else:
        print ("Ми не змогли визначити вашу операційну систему")
else:
    print ( "Ви не ввели число")
input()
     Умовний оператор if ... else ма\epsilon ще один формат:
      <3мінна> = <Якщо істина> if <Умова> else <Якщо не істина>
     Приклад:
>>> print ("Yes" if 10 > 2 else "No")
>>> s = "Yes" if 10 > 2 else "No"
>>> s
'Yes'
>>> s = "Yes" if 10 > 20 else "No"
>>> s
'No'
```

1.2. Цикл for

Цикли дозволяють виконати одні й ті ж інструкції багаторазово. Цикл *for* застосовується для перебору елементів послідовності і має такий формат:

Тут присутні такі конструкції:

♦ <Послідовність> - об'єкт, що підтримує механізм ітерації: рядок, список,

кортеж, діапазон, словник та ін.;

- ◆ <Поточний елемент> на кожній ітерації через цю змінну доступний черговий елемент послідовності або ключ словника;
- ◆ <*Інструкції всередині циклу*> блок, який буде багаторазово виконуватися;
- \bullet якщо всередині циклу не використовувався оператор *break*, то після завершення виконання циклу буде виконано блок в інструкції *else*. Цей блок не є обов'язковим.

```
Приклад перебору букв в слові:
for s in "str":
    print(s, end = "")
else:
    print("\пЦикл виконаний")
     Результат виконання:
str
Цикл виконаний
     Виведемо суму елементів 1 + 2 + ... + n:
total = 0
n = 100
for i in range (1, n + 1):
    total += i
print("total =", total)
     Результат:
total = 5050
     Виведемо факторіал n! = 1 * 2 * ... * n:
product = 1
n = 10
for i in range (1, n + 1):
    product *= i
print("product =", product)
     Результат:
product = 3628800
     Тепер виведемо кожен елемент списку і кортежу в окремому рядку.
for x in [1, 2, 3]:
    print(x)
for y in (1, 2, 3):
    print(y)
```

Цикл for дозволяє також перебрати елементи словників, хоча словники і не є послідовностями. В якості прикладу виведемо елементи словника двома способами. Перший спосіб використовує метод keys(), який повертає об'єкт $dict_k eys$, що містить всі ключі словника:

```
arr = {"x": 1, "y": 2, "z": 3}
print(arr.keys())

for key in arr.keys():
    print(key, arr[key])
    Peзультат:
dict keys(['x', 'y', 'z'])
```

```
x 1
y 2
z 3
```

У другому способі ми просто вказуємо словник як параметр - на кожній ітерації циклу буде повертатися ключ, за допомогою якого всередині циклу можна отримати значення, відповідне цьому ключу:

```
for key in arr:
    print(key, arr[key])
    Peзультат:
x 1
y 2
z 3
```

Зверніть увагу на те, що елементи словника можуть виводитися в довільному порядку, а не в порядку, в якому вони були вказані при створенні об'єкту. Щоб вивести елементи в алфавітному порядку, слід впорядкувати ключі за допомогою функції sorted():

```
for key in sorted(arr):
    print(key, arr[key])
```

За допомогою циклу *for* можна перебирати складні структури даних. В якості прикладу виведемо елементи списку кортежів:

```
arr = [(1, 2), (3, 4)] # Список кортежів

for a, b in arr:
    print(a, b)
    Pезультат:
1 2
3 4
```

Руthon дозволяє вкладати інструкції циклів один в одного — утворювати так звані вкладені µикли (nested loops):

```
outer = [1, 2]
inner = [3, 4]
for i in outer: # Зовнішній цикл
    for j in inner: # Внутрішній (вкладений) цикл
        print("i =", i, "j =", j)

    Peзультат:
i = 1 j = 3
i = 1 j = 4
i = 2 j = 3
i = 2 i = 4
```

У табл. 1 показано приклади вкладених циклів.

Таблиця 1

Вкладені цикли for з використанням range()

Вкладені цикли	Вивід
for i in range(3):	****
for j in range(4):	****
print("*", end = "")	****
print()	
for i in range(4):	***
for j in range(3):	***
print("*", end = "")	***

print()	***
for i in range(4):	*
for j in range(i + 1):	**
print("*", end = "")	***
print()	****
for i in range(3):	* * *
for j in range(5):	* *
if i % 2 == j % 2:	* * *
print("*", end = "")	
else:	
print(" ", end = "")	
print()	

1.3. Функції range() та enumerate()

Досить часто на практиці, особливо при роботі з циклами необхідно отримати *діапазон* цілих чисел (рис. 1), наприклад, щоб згенерувати індекси елементів послідовності.

Рис. 1. Діапазон цілих чисел

Для вирішення цієї задачі в Python передбачена функція *range()*. Функція *range()* має наступний формат:

```
range([<Початок>,]<Кінець>[,<Крок>])
```

Перший параметр задає початкове значення. Якщо параметр < Початок> не вказано, то використовується 0. У другому параметрі вказується кінцеве значення. Слід зауважити, що це значення не входить в значення, що повертаються. Якщо параметр < Крок> не вказано, то використовується значення 1:

```
>>> range(0, 10, 1)
range(0, 10)
>>> idx = range(0, 10, 1)
>>> idx
range(0, 10)
>>> for i in range(0, 10, 1):
    print(i, end = ' ')
0 1 2 3 4 5 6 7 8 9
>>> for i in range(10):
    print(i, end = ' ')
0 1 2 3 4 5 6 7 8 9
>>> for i in range(2, 20, 2):
    print(i, end = ' ')
2 4 6 8 10 12 14 16 18
```

Функція повертає діапазон - особливий об'єкт, що підтримує ітераційний протокол. За допомогою діапазону всередині циклу *for* можна отримати значення поточного елемента. Як приклад помножимо кожен елемент списку на 2:

```
arr = [1, 2, 3]
for i in range(len(arr)):
```

У цьому прикладі ми отримуємо кількість елементів списку за допомогою функції len() і передаємо результат в функцію range(). У підсумку остання поверне діапазон значень від 0 до len(arr) - 1. На кожній ітерації циклу через змінну i доступний поточний елемент з діапазону індексів. Щоб отримати доступ до елемента списку, вказуємо індекс всередині квадратних дужок. Множимо кожен елемент списку на 2, а потім виводимо результат за допомогою функції print().

Функція range() для економії місця зберігає в пам'яті тільки початок, кінець і крок діапазону. Це корисно при використанні циклів для перебору дуже великих послідовностей. Наприклад, замість того щоб будувати список з 10 мільйонів елементів, що потребує серйозних витрат пам'яті, можна скористатися викликом range(10000000), який займе лише малу частку пам'яті.

Розглянемо кілька прикладів використання функції *range()*:

♦ Виведемо числа від 1 до 100:

```
for i in range(1, 101): print(i)
```

◆ Можна не тільки збільшувати значення, але і зменшувати його. Виведемо всі числа від 100 до 1:

```
for i in range(100, 0, -1): print(i)
```

◆ Можна також змінювати значення не тільки на одиницю. Виведемо всі парні числа від 1 до 100:

```
for i in range(2, 101, 2): print(i)
```

Щоб перетворити повернутий функцією range() діапазон в список чисел, слід передати цей діапазон в функцію list():

```
>>> obj = range(len([1, 2, 3]))
>>> obj
range(0, 3)
>>> obj[0], obj[1], obj[2]
(0, 1, 2)
>>> obj[0:2] # Отримання зрізу
range(0, 2)
>>> i = iter(obj)
>>> next(i), next(i), next(i) # Доступ з допомогою ітераторів
(0, 1, 2)
>>> list(obj) # Перетворення діапазону в список
[0, 1, 2]
>>> 1 in obj, 7 in obj # Перевірка входження значення
(True, False)
```

Діапазон підтримує два корисних методи:

♦ *index*(<3начення>) - повертає індекс елемента, що має вказане значення. Якщо значення не входить в діапазон, генерується виключення *valueError*:

```
>>> obj = range(1, 5)
>>> obj.index(1), obj.index(4)
(0, 3)
>>> obj.index (5)
Traceback (most recent call last):
  File "<pyshell#23>", line 1, in <module>
    obj.index (5)
```

ValueError: 5 is not in range

♦ *count*(<3начення>) - повертає кількість елементів із зазначеним значенням. Якщо елемент не входить в діапазон, повертається значення 0:

```
>>> obj = range(1, 5)
>>> obj.count(1), obj.count(10)
(1, 0)
```

Функція enumerate($<O6'\epsilon\kappa m>[$, start=0]) на кожній ітерації циклу for повертає кортеж з індексу і значення поточного елементу. З допомогою необов'язкового параметру start можна задати початкове значення індексу. Як приклад помножимо на 2 кожен елемент списку, який містить парне число:

```
for i, elem in enumerate(arr):
    if elem % 2 == 0:
        arr[i] *= 2
print(arr)
    Peзультат:
[1, 4, 3, 8, 5, 12]
```

arr = [1, 2, 3, 4, 5, 6]

Функція enumerate() не створює список, а повертає ітератор. За допомогою функції next() можна обійти всю послідовність. Коли перебір буде закінчений, генерується виняток Stoplteration:

```
>>> arr = [1, 2]
>>> obj = enumerate(arr, start = 2)
>>> next(obj)
(2, 1)
>>> next(obj)
(3, 2)
>>> next(obj)
Traceback (most recent call last):
  File "<pyshell#30>", line 1, in <module>
    next(obj)
StopIteration
```

Таким чином у табл. 2 зібрано типові приклади спільного застосування циклу for та діапазонів, що генеруються функцією range().

Таблиця 2

Цикл for 3 використанням range()

Цикл	Значення і
for i in range(6):	0, 1, 2, 3, 4, 5
for i in range(10, 16):	10, 11, 12, 13, 14, 15
for i in range(0, 9, 2):	0, 2, 4, 6, 8
for i in range(5, 0, -1):	5, 4, 3, 2, 1

1.4. Цикл while

Інструкція for використовується, якщо наперед відомо, скільки ітерацій необхідно виконати. Якщо наперед кількість ітерацій невідома, то застосовується інструкція while.

Виконання інструкцій в циклі *while* триває до тих пір, поки логічний вираз є істинний. Цикл *while* має такий вигляд:

Послідовність роботи циклу while:

- 1. Змінній-лічильнику присвоюється початкове значення.
- 2. Перевіряється умова, і якщо вона істинна, то виконуються інструкції всередині циклу, інакше виконання циклу завершується.
- 3. Змінна-лічильник змінюється на величину, зазначену в параметрі <*Приріст*>.
 - 4. Перехід до пункту 2.
- 5. Якщо всередині циклу не використовувався оператор break, то після завершення виконання циклу буде виконано блок в інструкції else. Цей блок не ϵ обов'язковим.

Виведемо всі числа від 1 до 100, використовуючи цикл while.

Увага! Якщо <Приріст > не вказано, цикл буде виконуватися нескінченно. Щоб перервати нескінченний цикл, слід натиснути комбінацію клавіш <Ctrl>+<C>. В результаті генерується виняток KeyboardInterrupt, і виконання програми зупиняється. Потрібно враховувати, що перервати таким чином можна тільки цикл, який виводить дані

```
Виведемо всі числа від 100 до 1:
і = 100
```

```
i = 100
while i:
    print(i)
    i -= 1
```

Зверніть увагу на умову - воно не містить операторів порівняння. На кожній ітерації циклу ми віднімаємо одиницю зі значення змінної-лічильника. Як тільки значення дорівнюватиме 0, цикл зупиниться, оскільки число 0 в логічному контексті еквівалентно значенню False.

За допомогою циклу *while* можна перебирати і елементи різних структур. Але в цьому випадку слід пам'ятати, що цикл *while* працює повільніше циклу *for*. В якості прикладу помножимо кожен елемент списку на 2:

```
arr = [1, 2, 3]

i, count = 0, len(arr)

while i < count:

    arr[i] *= 2

    i += 1

print(arr)

    Peзультат:

[2, 4, 6]
```

1.5. Оператори continue та break

Оператор *continue* дозволяє перейти до наступної ітерації циклу до завершення виконання всіх інструкцій всередині циклу. Як приклад виведемо всі числа від 1 до 100, крім чисел від 5 до 10 включно:

```
for i in range(1, 101):
    if 4 < i < 11:
        continue # Переходимо на наступну ітерацію циклу print(i)
```

Оператор *break* дозволяє перервати виконання циклу достроково. Для прикладу виведемо всі числа від 1 до 100 ще одним способом:

```
i = 1
while True:
   if i > 100: break # Перериваємо цикл
   print(i)
   i += 1
```

Тут ми в умові вказали значення *True*. У цьому разі вирази всередині циклу стануть виконуватися нескінченно. Однак використання оператора *break* перериває виконання циклу, як тільки він буде виконаний 100 разів.

Цикл *while* спільно з оператором *break* зручно використовувати для отримання не визначеної заздалегідь кількості даних від користувача. Як приклад підсумуємо довільну кількість чисел:

Процес введення трьох чисел і отримання суми виглядає так (значення, введені користувачем, тут виділені напівжирним шрифтом):

```
Введіть число: 1
Введіть число: 4
Введіть число: 9
Введіть число: stop
Сума чисел рівна: 14
```

2. ЗАВДАННЯ

2.1. Домашня підготовка до роботи

1. Вивчити теоретичний матеріал.

2.2. Виконати в лабораторії

- 1. Написати програму табулювання функції (див. табл. 3), що вибирається залежно від значення аргументу, на проміжку [a, b] з кроком табуляції h. При табулюванні має виводитися аргумент x, значення функції y з точністю 4 знаки після коми. Ширина полів аргументу і значення функції має бути фіксована і вирівняна.
- 2. Написати програму табулювання функції, представленої рядом (див. табл. 4), на інтервалі [a, b] з кроком табуляції h та абсолютною похибкою d. Оцінку похибки здійснювати за значенням модуля чергового члена ряду. При табулюванні має виводитися аргумент x, значення функції y та абсолютна похибка d з точністю 5 знаків після коми. Ширина полів аргументу, значення функції і похибки має бути фіксована і вирівняна.
- 3. Написати програму валідації введеного паролю. Програма не повинна використовувати регулярні вирази, списки, множини, словники, функції, класи чи сторонні бібліотеки окрім colorama. Користувач повинен ввести пароль, програма має перевірити наявність у ньому лише заданих типів символів у вказаних пропорціях і з дотримання додаткових правил згідно варіанту у табл. 5 і вивести інформацію про результати перевірки у форматі як показано на рис. 1.

```
Введіть пароль довжиною не менше 12 символів.
Вимоги до паролю:
    Маленькі латинські літери
    Великі латинські літери
2.
3. Цифри

 Спеціальні символи !@#$_-%^&*

   Не менше 3 і не більше 5 маленьких латинських літер
6. Не менше 3 і не більше 5 великих латинських літер
    Не менше 2 і не більше 4 цифр
   Не менше 2 і не більше 4 спеціальних символів
   Не більше 3 однакових спеціальних символів
10. Не більше 3 однакових маленьких латинських літер підряд
> 67n!!!!aVFk
 овжина не менше 12 символів - FAIL!
ароль містить лише допустимі символи - FAIL!
аленькі латинські літери - FAIL!
еликі латинські літери - FAIL!
Цифри - OK!
Спеціальні символи - ОК!
Не більше 3 однакових маленьких латинських літер підряд - ОК!
Введіть пароль довжиною не менше 12 символів.
Вимоги до паролю:
1. Маленькі латинські літери
2.
   Великі латинські літери
3. Цифри
4. Спеціальні символи !@#$_-%^&*
5. Не менше 3 і не більше 5 маленьких латинських літер
6. Не менше 3 і не більше 5 великих латинських літер
    Не менше 2 і не більше 4 цифр
    Не менше 2 і не більше 4 спеціальних символів
   Не більше 3 однакових спеціальних символів
10. Не більше 3 однакових маленьких латинських літер підряд
> *6sss4SD*5ZZ*
Довжина не менше 12 символів - ОК!
Пароль містить лише допустимі символи - OK!
Маленькі латинські літери - ОК!
Цифри - OK!
Спеціальні символи - ОК!
Не більше 3 однакових спеціальних символів - ОК!
Не більше 3 однакових маленьких латинських літер підряд - OK!
Пароль валідний!
```

Номер варіанту відповідає номеру в списку групи.

3. 3MICT 3BITY

- 1. Мета роботи.
- 2. Повний текст завдання згідно варіанту.
- 3. Лістинг програми.
- 4. Результати роботи програм (у текстовій формі та скріншот).
- 5. Висновок.

Табл. 3

№ п/п	Функції	Умови для вибору функцій	Крок, h	Інтервал, [a,b]
1	$\cos(\sqrt{x})$	x < 0.6	0.02	[0.5, 0.9]
	$\operatorname{ctg}(x^2)$	$0.6 \le x < 0.7$		
	$arctg(x^3)$	x ≥ 0.7		
2	$\ln(x^3)$	<i>x</i> ≤ 3	0.2	[2, 4]
	1	3 < x < 3.5		
	$\frac{ \sin(x) }{\sec(1/x)}$	<i>x</i> ≤ 4		
3	$cosec(x^2)$	x < 4.5	0.2	[4, 6]
	$x + \ln(\sqrt{x^7})$	4.5 ≤ x < 5		
	$\lg(e^x+4)$	x ≥ 5		
4	$\cos(\ln(x^2))$	x < 2.5	0.2	[2, 4]
	$sec(x^4)$	$2.5 \le x \le 3.5$		
	tg(sin(x))	x > 3.5		
5	$\log_5(3x+1)$	x < 0.2	0.05	[0.1, 0.7]
	$x^{\cos(x)}$	$0.2 \le x < 0.4$		
	cosec(ln(x))	x ≥ 0.4		
6	$e^{(x-\sin(x))}$	x < 0.6	0.02	[0.5, 0.8]
	$\operatorname{tg}(\ln(x))$	$0.6 \le x < 07$		
	$arctg(x^7)$	x ≥ 0.7		
7	$\ln(x) - \cos(x)$	x < 4	0.2	[3, 6]
	$\operatorname{ctg}(e^x + 3)$	4 ≤ x < 5		
	(5x) ^x	x ≥ 5		

8	cosec(e ^x)	x < 2	0.2	[1.5, 3.5]
	sec(ln(x))	$2 \le x < 3$		
	$\sin(\ln(x))$	x ≥ 3		
9	$sec(x \cdot cos(x))$	x < 4.5	0.2	[4, 7]
	$x^{3} + 4$	4.5 ≤ x < 6		
	$\lg(e^x)$	x ≥ 6		
10	cos(x) + tg(x)	x < 2.3	0.1	[2, 3]
	$\operatorname{ctg}(x) + \sin(x)$	$2.3 \le x < 2.7$		
	$(x \cdot \ln(x))^3$	x ≥ 2.7		
11	$\log_3(x + \sin(x))$	x < 4	0.2	[3, 6]
	$\lg(e^x + 4)$	$4 \le x < 5$		
	ln(lg(x))	x ≥ 5		
12	$\cos(\sqrt{x^3})$	x < 1	0.2	[0.5, 2]
	arctg(e ^x)	$1 \le x < 1.5$		
	$\sin^5(\ln(x))$	x ≥ 1.5		
13	$-\ln(x^2) + e^x$	x < 0.3	0.02	[0.2, 0.5]
	$\operatorname{ctg}(x^2+4)$	$0.3 \le x < 0.4$		
	$tg(x^2+1)$	x ≥ 0.4		
14	$ \ln(x) ^7$	x < 0.5	0.02	[0.4, 0.8]
	$\operatorname{ctg}(x+x^3)$	$0.5 \le x < 0.7$		
	$\log_5(\sin(x))$	x ≥ 0.7		
15	$(x^2-1)^{(x-7)}$		0.2	[7.5, 10]
	1	$x \le 8$ $8 < x \le 9$		
	$\sin(x) + \cos(x) $	x > 9		
	$\ln(e^x + 4)$	1 - 9		
16	$\cos(x^{0.3})$	x < 3	0.2	[2, 5]
	$\sqrt{x^3 + \lg(x)}$	3 ≤ x < 4		
	$\operatorname{ctg}(x^2)$	x ≥ 4		
17	$cosec(cos(x^2))$	x < 0.5	0.05	[0.3, 0.9]
	$\cos(\sin(x))$	$0.5 \le x \le 0.7$		
	$\sin(\sec(x))$	$x \ge 0.7$		
18	$arctg(x^3)$	x ≤ -0.7	0.05	[-0.9, -0.4]
	$tg(x + \ln(x))$	$-0.7 < x \le -0.6$		
	$ctg(x^2)$	x ≥ -0.6		
19	$\ln(\lg(x) + \log_3(x))$	<i>x</i> ≤ 0.4	0.05	[0.3, 0.9]
	$\cos(\sin(x^2))$	0.4 < x < 0.6		
	$\sqrt[7]{x^3 + 0.5}$	<i>x</i> ≥ 0.6		

	()	Γ	T	
20	arctg(1/x)	x < 1	0.3	[0.3, 3.5]
	$tg(x + \log_4(x))$	1 ≤ x < 3		
	1			
	$\frac{1+\ln(x)}{1+\ln(x)}$	x ≥ 3		
21	1		0.3	[3, 6]
	$\sin(1/x) + 4$	x < 4		
	1	$4 \le x < 5$		
	$x^2 + \ln(x)$	<i>x</i> ≥ 5		
	$tg((x-3)^3)$ $ctg(x+\csc(x^{-2}))$			
22	$ctg(x + cosec(x^{-2}))$	x < 3	0.2	[2, 5]
	$\lg(\ln(x) + \log_3(x))$	$3 \le x < 4$		
	$\cos(5x^2)$	<i>x</i> ≥ 4		
23	$\log_5(5 + \log_4(\log_3(x)))$	x < 5	0.5	[3, 8]
	1			
	$\frac{1}{x^2 + 16}$	$5 \le x < 7$		
	$\ln(x) + \cos(x)$	$x \ge 7$		
24	$\lg(\ln(x) + \sec(x))$	- 2	0.2	[2, 5]
	ctg(x + ln(x))	x < 3		
	1	$3 \le x \le 4$		
	$\frac{1}{16-x^2}$	x > 4		
25	$\lg(x \cdot \ln(x) + \sin(x))$	_	0.2	[6, 9]
	$\log_3(\sin(x)+4)$	x < 7		[-,-]
	1	$7 \le x < 8$		
	$\frac{1}{16 + \sec(x)}$	<i>x</i> ≥ 8		
	23 . 300(%)			

26	$\sin(x^2) + \cos(x^2)$ $\log_7(x + tg(x))$	x < 0.8	0.5	[0,6, 1,2]
	$\frac{1}{160 + x^2}$	$0.8 \le x < 1$ $x \ge 1$		
27	$\frac{1+\cos(x)}{1-\sin(x^2)}$	x < 4	0.2	[3, 6]
	$\arctan \left(\ln(x + \sin(x)) \right)$ $\frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4}$	$4 \le x < 5$ $x \ge 5$		
28	$\frac{x}{\sqrt{ \operatorname{tg}(x+\sin(x)) }}$	x < 2	0.1	[1.5, 3]
	$x^3 + \sin(x^2)$ $e^{\operatorname{tg}(x+2)}$	$2 \le x < 2.5$ $x \ge 2.5$		
29	$\frac{1}{\sqrt{ \operatorname{tg}(x^2+5) }}$	x < 2	0.5	[0, 5]
	$\cos\left(\ln\left(x+\sqrt{x}\right)\right)$ $\log_5\left(\cos^2\left(x+7\right)\right)$	$2 \le x < 3$ $x \ge 3$		
	log ₅ (cos (x + /))			

				10
30	$-\csc\left(\sqrt{x^2+e^x}\right)$	<i>x</i> < 5	0.3	[3, 9]
	$\cos(x^{\ln(x)})$	$7 \le x < 5$		
	$ctg(x^3 + 11.5)$	$x \ge 7$		
31	$\log_5(x) - \cos(x - 7)$		0.1	[2, 4]
	arctag(x)	x < 2.8		
	$\frac{1}{\sin(\ln(x))}$	$2.8 \le x < 3.4$		
	$\frac{\sin(x^2)}{x^3} + tg(2+x)$	<i>x</i> ≥ 3.4		
32	$\lg(\cos(x) + e^{x+2})$. 2	0.2	[1, 4]
	$\sin(x+2x^3)-\cos(x-2x^2)$	x < 2		
	arctan(x)	$2 \le x < 3$ $x \ge 3$		
	$\sqrt{x^2 - \sin(x)}$	x ≥ 5		
33	$\sqrt[7]{\sin(x)\ln(x)+5}$.0.5	0.05	[0.2, 0.9]
		x < 0.5		
	$\frac{\sin(x+\sqrt{x})}{\ln(x^3+4)}$	$0.5 \le x < 0.6$		
	$(x+1)^{\sin(x+1)}$	<i>x</i> ≥ 0.6		
34	$\frac{x+1}{\operatorname{tg}(\ln(x^2+3))}$		0.2	[4, 7]
		x < 5		
	$\sqrt[3]{\frac{\sin(x+5)}{2x-x^3}}$	$5 \le x < 6$		
	,	$x \ge 6$		
	$-\log_4\left(\left \frac{\sin(x)}{x-4}\right \right)$	2 = 0		
35	$\sin(x^3) + \frac{e^{2+x}}{102.1}$		0.3	[3, 9]
		x < 5		
	$tg\left(\frac{x^3}{2.7}\right) + \sin(\sqrt{x})$	$5 \le x < 7$		
		$x \ge 7$		
	$\frac{1}{x^2} - \frac{1}{x^3} - \frac{1}{x^4}$			
	x x x x			

Табл. 4

Nº	Функція	Інтервал,	Крок, h	Похибка,
п/п		[a, b]		d
1	$\sum_{k=1}^{\infty} \frac{x+2}{k(k+2)}$	[0.5, 0.7]	0.02	0.001
2	$\sum_{k=1}^{\infty} k x^k$	[0.1, 0.6]	0.05	0.001
3	$\sum_{k=1}^{\infty} \frac{1}{k} t g \left(\frac{x}{2^k} \right)$	[3, 4]	0.1	0.001

4	$\sum_{k=0}^{\infty} \frac{1}{4k+3} x^{(4k+3)}$	[0.2, 0.3]	0.01	10 ⁻⁶
5	$\sum_{k=1}^{\infty} \frac{1}{2^k} \sin\left(\frac{x}{2^k}\right)$	[1.1, 2]	0.1	0.001
6	$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k x}{k(k+1)} \sin(2k+1)$	[-1, 1]	0.5	0.001
7	$\sum_{k=2}^{\infty} \frac{\left(-1\right)^k k}{k^2 - 1} \sin(kx)$	[-1, 1]	0.2	0.001
8	$\sum_{k=2}^{\infty} \frac{\left(-1\right)^k \cos(kx)}{k^2 - 1}$	[-1, -0.9]	0.01	0.001
9	$\sum_{k=0}^{\infty} \frac{x}{\left(2k+1\right)^3} \sin(2k+1)$	[-1, 1]	0.1	0.001
10	$\sum_{k=0}^{\infty} \frac{x}{(2k-1)(2k+3)} \cos(2k+1)$	[0.1, 1]	0.1	0.001
11	$\sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k+3)}}{(2k+1)(2k+3)}$	[0, 1]	0.1	0.0001

		_		
12	$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k \cos^4\left(2^k x\right)}{2^{2k}}$	[1, 2]	0.1	0.001
13	$\sum_{k=1}^{\infty} \frac{(-1)^{k} \sin(kx)}{k}$	[3, 4]	0.1	0.001
14	$1 + \sum_{n=1}^{\infty} \frac{(m-n+1)}{n!} x^{n}, m=20$	[0.1, 0.5]	0.05	0.001
15	$1 + \sum_{n=1}^{\infty} \frac{(m+n-1)}{n!} x^n, m=3$	[0.1, 0.5]	0.05	0.001
16	$2\sum_{n=1}^{\infty} \frac{(x-1)^{(2n+1)}}{(2n+1)(x+1)^{(2n+1)}}$	[1, 1.2]	0.02	10-6
17	$\sum_{n=1}^{\infty} \left(-1\right)^{\left(n+1\right)} \frac{\left(x-1\right)^{n}}{n}$	[1, 1.5]	0.05	10-5
18	$\sum_{n=1}^{\infty} \frac{(x-1)^n}{nx^n}$	[1, 1.5]	0.05	10-5
19	$\sum_{n=1}^{\infty} \left(-1\right)^{\binom{n+1}{2}} \frac{x^n}{n}$	[0, 0.5]	0.05	0.001
20	$-\sum_{n=1}^{\infty} \frac{x^n}{n}$	[-0.5, 0]	0.05	0.001

	T	1		
21	$1 + \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n)(2n+1)} x^{n}$	[0.5, 0.9]	0.05	0.001
22	$\frac{\pi}{2} - x - \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n)(2n+1)} x^{(2n+1)}$	[0.5, 0.9]	0.05	0.001
23	$\sum_{n=1}^{\infty} \frac{x^{2n} - 1}{(2n-1)!}$	[0.1, 0.2]	0.01	0.001
24	$1 + \sum_{n=1}^{\infty} \frac{(-1)^n (m-n+1)}{n!} x^n$, m=20	[0, 0.5]	0.05	0.001
25	$1 + \sum_{n=1}^{\infty} \frac{(-1)^n (m+n-1)}{n!} x^n, m=9$	[0, 0.5]	0.05	0.001
26	$\sum_{n=1}^{\infty} \frac{\cos(xn)}{(n+2)(n+3)}$	[1, 5]	0.5	0.001
27	$1 + \sum_{n=1}^{\infty} \frac{x}{(3n-1)^3} \sin(n+2)$	[0.1, 0.6]	0.05	0.001
28	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n+1)}{n!} sin(x)$	[-1, 1]	0.2	0.001
29	$\sum_{n=1}^{\infty} \frac{\cos^3(x)}{n!}$	[0.1, 0.5]	0.05	0.0001
30	$\sum_{k=1}^{\infty} \frac{x}{(2k+1)(2k+2)} \sin(k+1)$	[0.5, 1]	0.05	0.00001
31	$\sum_{k=1}^{\infty} \frac{\cos^2(x)}{(k+2)^2}$	[1, 2]	0.1	0.0001
32	$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k \sin(kx)}{k}$	[3, 4]	0.1	0.001
33	$1 + \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n)(2n+1)} x^{n}$	[0.5, 0.9]	0.05	0.001
34	$\sum_{n=1}^{\infty} \left(-1\right)^{\left(n+1\right)} \frac{\left(x-1\right)^{n}}{n}$	[1, 1.5]	0.05	10 ⁻⁵

У якості наборів символів можуть виступати:

upp_char = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

low_char = "abcdefghijklmnopqrstuvwxyz"

num_char = "0123456789"

spc_char = "!@#\$%^&*_-"

Додаткові правила для формування паролів:

- 1. Не менше 2 маленьких латинських літер
- 2. Не менше 3 маленьких латинських літер
- 3. Не менше 4 маленьких латинських літер
- 4. Не менше 5 маленьких латинських літер
- 5. Не менше 2 великих латинських літер
- 6. Не менше 3 великих латинських літер
- 7. Не менше 4 великих латинських літер
- 8. Не менше 5 великих латинських літер
- 9. Не менше 2 цифр
- 10. Не менше 3 цифр
- 11. Не менше 2 спеціальних символів
- 12. Не менше 3 спеціальних символів
- 13. Не більше 4 маленьких латинських літер
- 14. Не більше 5 маленьких латинських літер
- 15. Не більше 6 маленьких латинських літер
- 16. Не більше 7 маленьких латинських літер
- 17. Не більше 4 великих латинських літер
- 18. Не більше 5 великих латинських літер
- 19. Не більше 6 великих латинських літер
- 20. Не більше 4 цифр
- 21. Не більше 5 цифр
- 22. Не більше 3 спеціальних символів
- 23. Не більше 4 спеціальних символів
- 24. Не більше 2 однакових маленьких латинських літер
- 25. Не більше 3 однакових маленьких латинських літер
- 26. Не більше 2 однакових великих латинських літер
- 27. Не більше 3 однакових великих латинських літер
- 28. Не більше 2 однакових цифр
- 29. Не більше 2 однакових спеціальних символів
- 30. Не більше 3 однакових спеціальних символів
- 31. Не більше 3 однакових маленьких латинських літер підряд
- 32. Не більше 3 однакових великих латинських літер підряд
- 33. Не більше 3 однакових цифр підряд
- 34. Не більше 3 однакових спеціальних символів підряд

Варіанти завдань

Варіант	Довжина, символів	Набір символів	Додаткові правила
1.	12	low_char + spc_char + upp_char	3, 15, 11, 23, 7, 18, 25, 32
2.	15	low_char + num_char + upp_char	4, 16, 9, 21, 8, 19, 27, 33
3.	10	low_char + num_char + spc_char + upp_char	1, 14, 10, 20, 11, 22, 5, 17, 28, 34
4.	9	spc_char + upp_char	12, 23, 6, 17, 26, 32
5.	12	low_char + num_char + spc_char + upp_char	2, 14, 9, 20, 11, 23, 6, 18, 30, 31
6.	10	low_char + num_char + spc_char	1, 13, 10, 20, 12, 22, 29, 33
7.	14	low_char + num_char + spc_char + upp_char	3, 15, 10, 21, 11, 22, 7, 18, 29, 31
8.	9	low_char + upp_char	3, 14, 7, 18, 24, 32
9.	8	num_char + spc_char	9, 21, 11, 23, 30, 33
10.	9	low_char + spc_char	2, 15, 12, 23, 25, 34
11.	8	num_char + spc_char + upp_char	9, 20, 11, 22, 5, 17, 26, 33
12.	11	low_char + spc_char + upp_char	2, 13, 12, 23, 7, 18, 25, 32
13.	14	low_char + num_char + spc_char + upp_char	3, 16, 10, 21, 11, 23, 7, 19, 27, 34
14.	10	low_char + spc_char + upp_char	3, 15, 11, 22, 6, 18, 30, 31
15.	11	low_char + num_char + spc_char + upp_char	1, 13, 9, 20, 11, 22, 5, 17, 28, 32
16.	13	low_char + num_char + spc_char + upp_char	4, 15, 9, 21, 12, 23, 5, 18, 24, 34
17.	13	low_char + num_char + spc_char + upp_char	3, 16, 10, 20, 11, 22, 6, 19, 29, 33
18.	11	low_char + upp_char	2, 14, 6, 18, 25, 32
19.	12	low_char + num_char + spc_char + upp_char	2, 13, 9, 20, 11, 22, 5, 17, 27, 31
20.	11	low_char + spc_char + upp_char	2, 13, 12, 23, 6, 18, 26, 34
21.	6	num_char + spc_char	9, 20, 11, 23, 28, 34
22.	14	low_char + num_char + spc_char + upp_char	3, 15, 10, 21, 12, 23, 6, 18, 24, 32
23.	9	low_char + num_char + spc_char + upp_char	1, 14, 9, 21, 11, 23, 5, 17, 29, 31
24.	10	spc_char + upp_char	12, 23, 8, 19, 30, 32
25.	9	low_char + num_char + upp_char	3, 14, 9, 20, 5, 18, 25, 33
26.	7	num_char + upp_char	9, 20, 5, 17, 28, 32
27.	10	low_char + num_char + spc_char + upp_char	1, 13, 9, 20, 11, 22, 5, 18, 27, 34
28.	15	low_char + num_char + spc_char + upp_char	4, 16, 10, 21, 12, 23, 6, 19, 26, 33
29.	8	num_char + spc_char + upp_char	9, 20, 11, 22, 6, 18, 29, 32
30.	13	low_char + num_char + upp_char	3, 15, 10, 21, 7, 19, 25, 33

4. КОНТРОЛЬНІ ЗАПИТАННЯ

1. Скільки чисел виведе цей цикл?

```
for n in range(10, -1, -1):
print(n)
```

- 2. Напишіть цикл, який обчислює суму всіх цілих чисел від 1 до n?
- 3. Що виведе цей вкладений цикл?

```
for i in range(3) :
    for j in range(1, 4) :
        print(i + j, end = "")
    print()
```

- 4. Напишіть цикл, який виводить:
 - а. Всіх квадрати чисел менші ніж n. Для прикладу, якщо n рівне 100,

виведуться 0 1 4 9 16 25 36 49 64 81.

- b. Всі цілі числа, кратні 10. та менші n. Для прикладу, якщо n рівне 100, виведуться 10 20 30 40 50 60 70 80 90
- с. Всі степені двійки менші ніж n. Для прикладу, якщо n рівне 100, виведуться 1 2 4 8 16 32 64.
- 5. Напишіть цикл, який обчислює:
 - а. Суму всіх парних чисел між 2 та 100 (включно).
 - b. Суму всіх квадратів чисел між 1 та 100 (включно).
 - с. Суму всіх непарних чисел між a та b (включно).
 - d. Суму всіх непарних цифр числа n. (Для прикладу, якщо n рівне 32677, сума буде 3+7+7=17)
- 6. Скільки ітерацій виконає наступний цикл:

```
a. for i in range(1, 11)...
```

- b. for i in range (10)...
- c. for i in range(10, 0, -1)...
- d. for i in range(-10, 11)...
- e. for i in range(10, 0) . . .
- f. for i in range(-10, 11, 2)...
- g. for i in range(-10, 11, 3)...
- 7. Перепишіть цикл з for на while:

```
s = 0
for i in range(1, 10) :
s = s + i
```

- 8. Напишіть програму, яка приймає рядок та виводить:
 - а. Лише літери у верхньому регістрі присутні в рядку.
 - b. Кожну другу літеру в рядку.
 - с. Кількість цифр в рядку.

5. СПИСОК ЛІТЕРАТУРИ

- 1. Learn to Program with Python 3. A Step-by-Step Guide to Programming, Second Edition / Irv Kalb. Mountain View: Apress, 2018. 361 p.
- 2. The Python Workbook. A Brief Introduction with Exercises and Solutions, Second Edition / Ben Stephenson. Cham: Springer, 2014. 218 p.
- 3. Python Pocket Reference, Fifth Edition / Mark Lutz. Sebastopol: O'Reilly Media, Inc., 2014. 264 p.
- 4. Learn Python 3 the Hard Way / Zed A. Shaw. Boston: Addison-Wesley, 2017. 321 p.
- 5. A Python Book: Beginning Python, Advanced Python, and Python Exercises / Dave Kuhlman. Boston: MIT, 2013. 278 p.

НАВЧАЛЬНЕ ВИДАННЯ

Написання програм з умовними виразами та циклами

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи № 4 з курсу «Програмування скриптовими мовами» для студентів спеціальності «Кібербезпека»

Укладач: Я. Р. Совин, канд. техн. наук, доцент