Poisson Processes

Scribe: Arun Srinivasan

February 8, 2017

1 Counting Processes

1.1 Background and Criteria

A counting process N(t) satisfies the following criteria:

- 1. N(0) = 0
- 2. If $s < t, N(s) \le N(t)$
- 3. $N(t) > 0, t \ge 0$
- 4. N(t) N(s) = x where x is the number of arrivals in the interval (s,t)

DEFINITION:

THE WAITING TIME/ARRIVAL TIME has the MEMORYLESS PROPERTY in a special case. The MEMORYLESS PROPERTY is the following:

$$\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$$

Remark:

The EXPONENTIAL DISTRIBUTION has this MEMORYLESS PROPERTY.

Exponential Density:
$$f_{\lambda}(t) = \lambda e^{-\lambda t}$$

Exponential CDF: $\mathbb{P}(X > t) = e^{-\lambda t}$

Proof:

$$\mathbb{P}(X > s + t | X > t) = \frac{\mathbb{P}(X > s + t, X > t)}{\mathbb{P}(X > t)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}$$
$$= e^{-\lambda s}$$
$$= \mathbb{P}(X > s)$$

DEFINITION

The analogous distribution for discrete distributions (the counterpart to the continuous exponential) is the Geometric Distribution:

$$\mathbb{P}(T=t) = (1-p)^{t-t}p$$

Examples of Counting Processes in Biological Settings:

- 1. # of mutations on a branch of a tree
- 2. # recombinations along a chromosome
- 3. Counting processes also show up often in Queuing Theory

1.2 Properties of Counting Processes

There are two important properties that counting processes have:

- 1. Stationary increments: $\mathbb{P}(N(t+s)-N(t))$ does not depend on t
- 2. INDEPENDENT INCREMENTS: Any pair of increments along the process are independent from one another. That is $N(t_2) N(t_1), N(t_3) N(t_2), ..., N(t_n) N(t_{n-1})$ are all independent of one another.

2 Poisson Processes

2.1 Definition of the Poisson Process

DEFINITION:

A COUNTING PROCESS is a Poisson Process if:

- 1. N(0) = 0
- 2. Stationary Increments is satisfied
- 3. Independent Increments is satisfied

2.2 Aside: Little-O notation

DEFINITION:

A function f(x) is o(g(x)) if:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 0$$

Example:

The function $f(x) = x^2$ is o(x) as:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2}{x}$$
$$= \lim_{x \to 0} x$$
$$= 0$$

2.3 Poisson Process Properties

Properties:

- 1. N(0) = 0
- 2. $N(t), t \ge 0$ has independent increments
- 3. $\mathbb{P}(N(t+h) N(t) \ge 2) = o(h)$
- 4. $\mathbb{P}(N(t+h) N(t) = 1) = \lambda h + o(h)$

Note that λ is the *instantaneous rate*.

2.4 Relationship to the Bernoulli Process

Suppose we have a one dimensional line segment starting at point s and going to point s+t. Let this line be divided into n segments where $\delta = \frac{t}{n}$ is the width of one of the sub intervals. Let $N_i = \#$ events in interval i.

$$\mathbb{P}(N_i \ge 2) = o(\frac{t}{n})$$

$$\mathbb{P}(N_i = 1) = \lambda(\frac{t}{n}) + o(\frac{t}{n})$$

Therefore we have that $N_i \sim Bernoulli(\frac{\lambda t}{n})$.

$$N(s+t) - N(s) = \sum_{i} N_{i}$$
$$N(s+t) - N(s) \sim Bin(n, \frac{\lambda t}{n})$$

Therefore by property of binomial we have $\mathbb{E}[N(s+t) - N(s)] = \lambda t$.

2.5 Aside: Limit of the Binomial Distribution to Poisson

Let $X \sim Bin(p, n)$. As $n \to \infty$, $X \sim Bin(p, n)$ if we have $np \to c$ we have $X \sim Pois(c)$ as $n \to \infty$.

2.6 Returning to the Bernoulli Process Limit

Therefore, using the previous aside:

$$\implies N(s+t) - N(s)$$
 with n large $\implies \lim_{n \to \infty} N(s+t) - N(s) \sim Pois(\lambda t)$ as desired.

2.7 Exponentially Distributed Interarrival Times

The interarrival times are exponentially distributed with parameter λ .

Proof:

Let X_n be the interrarrival times.

$$\mathbb{P}(X_n > s | X_{n-1} = t) = \mathbb{P}(N(t+s) - N(t) = 0 | X_{n-1} = t)$$

$$= \mathbb{P}(N(s) = 0)$$

$$= e^{-\lambda s}$$

Therefore the interarrival times X_n are distributed exponentially with parameter λ .

2.8 Total Waiting Time

Let S_n be the total waiting time until the n^{th} event.

$$S_n = \sum_{j=1}^n X_j$$
$$\sim Gamma(\lambda, n)$$

This follows as the sum of n exponential random variables with identical parameters λ is distributed Gamma.

2.9 Distribution of Arrivals within an Interval

The distribution of arrivals in the interval are Uniform.

Proof:

$$\mathbb{P}(T_1 < s | N(t) = 1) = \frac{\mathbb{P}(1 \text{ point in } [0, s], 0 \text{ events in } [s, t])}{\mathbb{P}(1 \text{ event in } [0, t])}$$
$$= \frac{(\lambda s)e^{-\lambda s}e^{-\lambda(t-s)}}{\lambda te^{-\lambda t}}$$
$$= \frac{s}{t}$$

Therefore, this is a property of the uniform distribution so the distribution of arrivals in the interval is Uniform.

2.10 Combining Different Poisson Processes

For example, let there be two Poisson Processes. Let there be Poisson Process 1 (PP_1) $N_1(t)$, Poisson Process 2 (PP_2) $N_2(t)$ and let the combined Poisson Process be N(t).

 $N_1(t)$ is $PP(\lambda_1)$

 $N_2(t)$ is $PP(\lambda_2)$

N(t) is $PP(\lambda_1 + \lambda_2)$

Therefore, the superposition of Poisson Processes is a Poisson Process.

If we have a Poisson Process that is the combination of several Poisson Processes we have the following:

At any time points, the probability of the next event being type i (from Poisson Process i), where $i \in \{1, 2, ..., k\}$, in the combined Poisson Process:

$$\mathbb{P}(\text{next event being type i}) = \frac{\lambda_i}{\sum_{j=1}^k \lambda_j}$$

THINNING PROPERTY -

PP with rate λ and arrivals are assigned to type i in this PP with probability p_i . Then $N_i(t) \sim PP(\lambda_{p_i})$.