

Test #1

Monday, October 10 2016

NAME:	

Please write clearly and properly. Justify all your answers.

Problem	Grade
1	
2	
3	
Total	

Problem 1 (\sim 4 points). Solve the equation:

$$z^2 + z + \frac{1 - 2i}{4} = 0 \ .$$

Problem 2 (\sim 7 points). Co	nsider the complex exponential:	function:
---	---------------------------------	-----------

$$\exp \colon \mathbb{C} \to \mathbb{C}$$
$$z \mapsto e^z$$

) What is	the domain o	f definition of	f the function	exp? What	is its target	?

(2) Consider the complex numbers $z_1 = 0$, $z_2 = i\pi$, $z_3 = 5i\pi$ and $z_4 = 3 - i\pi/2$. Compute the image of each of these complex numbers by the function exp. Write your answers in algebraic form.

(3) Consider the complex numbers $y_1 = 1$, $y_2 = 0$, $y_3 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ and $y_4 = 2i$. Find all the preimages of each of these complex numbers by the function exp. Write your answers in algebraic form.

(4) Is the function exp injective? Is it surjective? Is it bijective? Justify all your answers.

Problem 3 (~13 points).

(1) (i) Let x be a real number. Define the set $V_x \subseteq \mathbb{C}$ as fol
--

$$V_x = \{z \in \mathbb{C} : Re(z) = x\}$$
.

Sketch V_x in the complex plane for x = 2.

(ii) Let y be a real number. Define the set $H_y\subseteq\mathbb{C}$ as follows:

$$H_y = \{z \in \mathbb{C} \colon \operatorname{Im}(z) = y\}$$
.

Sketch H_y in the complex plane for y = 1.

	$V_{x_1,x_2} = \{ z \in \mathbb{C} \colon x_1 \leqslant Re(z) \leqslant x_2 \} .$
Sketch V_{x_1,x_2}	in the complex plane for $(x_1, x_2) = (-1, 2)$.
	y_2 be two real numbers. Define the set $H_{y_1,y_2}\subseteq\mathbb{C}$ as
	y_2 be two real numbers. Define the set $H_{y_1,y_2}\subseteq\mathbb{C}$ as $H_{y_1,y_2}=\{z\in\mathbb{C}\colon y_1\leqslant Im(z)\leqslant y_2\}$.
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$
follows:	$H_{y_1,y_2} = \{ z \in \mathbb{C} \colon y_1 \leqslant Im(z) \leqslant y_2 \} .$

	R_{x_1,x_2,y_1,y_2}	$=V_{x_1,x_2}\cap H_{y_1,y_2}$	•	
Sketch R	$x_{1,x_{2},y_{1},y_{2}}$ in the comple	ex plane for (x_1, x_2)	$(y_1, y_2) = (-1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$, 3).
(i) Is V	onen? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2}	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2} or	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2} or	open? Is it closed? Is	it compact? Is it	connected?	
(i) Is V_{x_1,x_2} (open? Is it closed? Is	it compact? Is it	connected?	

		ential functio	$p(V_x)$	
		ential function of <i>x</i> of your	$p(V_x)$	
			$p(V_x)$	

	ne image of <i>H</i> nplex plane	H_y by the expo for some valu			•	
What is $\exp(V_{x_1,x_2})$ choosing.) in the com	f V_{x_1,x_2} by thus plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function as of x_1 and	? Sketch x_2 of your	
$\exp(V_{x_1,x_2})$) in the com	f V_{x_1,x_2} by the plex plane for	ne exponent r some value	ial function es of x_1 and	? Sketch x_2 of your	

$\operatorname{sp}(R_{x_1,x_2,y_1,y_1})$		$x_{2,y_{1},y_{2}}$ by the ending plane for the end of x_{2} and x_{3} and x_{4} and x_{5} and x_{5} and x_{5} are the end of x_{5} and x_{5} and x_{5} and x_{5} and x_{5} are the end of x_{5} and x_{5} and x_{5} are the end of x_{5} and x_{5} and x_{5} are the end of x_{5} and x_{5} are the end of x_{5} and x_{5} are the end of x_{5} and x_{5} are the		
$\operatorname{sp}(R_{x_1,x_2,y_1,y_1})$	v_2) in the cor			
$\operatorname{ap}(R_{x_1,x_2,y_1,y_1})$	v_2) in the cor			
$\operatorname{ap}(R_{x_1,x_2,y_1,y_1})$	v_2) in the cor			
$\operatorname{ap}(R_{x_1,x_2,y_1,y_1})$	v_2) in the cor			
$\operatorname{ap}(R_{x_1,x_2,y_1,y_1})$	v_2) in the cor			

	D	0.1.1				10
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) connected	onvex? Is it s	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) ch-connected	onvex? Is it s	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) c th-connected	onvex? Is it :	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) cth-connected	onvex? Is it :	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) cth-connected	onvex? Is it :	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) cth-connected	onvex? Is it :	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) connected	onvex? Is it :	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) ch-connected	onvex? Is it s	star-shaped?	Is it simply	y connected	1?
(ii) Is exp(Is it par	R_{x_1,x_2,y_1,y_2}) ch-connected	onvex? Is it s	star-shaped?	Is it simply	y connected	1?