

PYTHON SCRIPT

IA FRAMEWORKS

PYTHON IDE

WHY USING SCRIPT?

Jupyter limits:

- It's an exploration tool.
 - Cloud machine are accounted on an hourly base.
- Non-linear workflow.
 - Easy to write messy code.
- Not designed to handle large-scale experiment.
- Not designed for production.
 - Can't be run from terminal, no test procedure.

Exploration work:

Jupyter

Large-scale or production work:

Python script

SCRIPT EXECUTION

File script.py

```
a=5
b=3
c=a+b
print("The answer is %d" %c)
```

Terminal

```
bguillou $> python script.py
bguillou $> The answer is 8
```

TP - FIRST PART

Write two scripts:

- learning.py: learn a model, save it in the model directory, save results in the results directory.
- prediction.py: to generate prediction and save it in the results directory.

On CatsVsDogs data.

Good practice:

• Ensure that complete workflow is working locally and on small data.

LIBRAIRIE ARGPARSE

File script.py

```
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, default=5)
parser.add_argument('--b', type=int, default=3)

args = parser.parse_args()

c= args.a + args.b
print("The answer is %d" %c)
```

Terminal

```
bguillou $> python script.py
bguillou $> The answer is 8
bguillou $> python script.py -a 4
bguillou $> The answer is 7
bguillou $> python script.py -a 4 -b 2
bguillou $> The answer is 6
```

LIBRAIRIE PICKLE

File learning.py

```
import pickle
...
results = {"learning_time" : lt, "accuracy" : acc}
pickle.dump(results, open("/User/bguillouet/data/results.pkl", "wb"))
```

File explore_results.py

```
import pickle
results = pickle.load(open("/User/bguillouet/data/results.pkl","rb"))
print(results)
```

Terminal

```
bguillou $> ls data/
bguillou $>
bguillou $> python learning.py
bguillou $> ls data/
bguillou $> results.pkl
bguillou $> python explore_results.py
bguillou $> { "learning_time" : lt , "accuracy" : acc}
```