212589972 - ג'וליאן עזאם

325412971 - ראמי ח'לאילה

שאלה 1

 $p
ightarrow (q
ightarrow r)\equiv (p\wedge q)
ightarrow r$ הטענה: (1

1. טבלת אמת:

p	q	r	$q \rightarrow r$	$p \wedge q$	$p \rightarrow (q \rightarrow r)$	$(p \land q) \rightarrow r$
Т	Т	Т	Т	Т	Т	Т
Т	T	F	F	Т	F	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	F	Т	Т
F	Т	F	F	F	Т	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	F	Т	Т

לשתי הטענות יש אותו טבלת אמת לכן הטענות שקולות לוגית

$$p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$$
 ברך זהויות: 2.

$$p o (q o r)$$
 מפשטים את:

צעדים:

- p o (q o r) עבור $p o q\equiv \neg p\lor q$ נשתמש ב. 1 ($q\equiv T$ או ש $p\to q\equiv T$, או ש $p\to q\equiv T$ לפי טבלת האמת של $p\to q\equiv T$, אמ"מ (אם ורק אם) נקבל: $p\lor (q\to r)$
 - (q o r) נשתמש שוב באותה תכונה בצעד 1 עבור 2 .2 $\neg p \lor (\neg q \lor r)$

$$(p \land q)
ightarrow r$$
 מפשתים את

:צעדים

 $p \rightarrow q \equiv \neg p \lor q$ ב. 1

 $\neg(p \land q) \lor r$ מקבלים:

 $(\neg(p \land q) \equiv \neg p \lor \neg q)$ שימוש בכלל דה מורגן. 2 $(\neg p \lor \neg q) \lor r$ מקבלים:

 $A \lor (B \lor C) \equiv (A \lor B) \lor C$ לפי חוק החילוף:

$$\neg p \lor (\neg q \lor r) \equiv (\neg p \lor \neg q) \lor r$$
 מקבלים ש

לכן הטענות שקולות לוגית

 $(p \wedge q)
ightarrow r \equiv (p
ightarrow r) \lor (q
ightarrow r)$ הטענה: (2 טבלת אמת (a

p	q	r	$p \wedge q$	$p \rightarrow r$	$q \rightarrow r$	$(p \land q) \rightarrow r$	$(p \rightarrow r) \lor (q \rightarrow r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F
Т	F	Т	F	Т	Т	T	Т
Т	F	F	F	F	Т	Т	T
F	Т	Т	F	Т	Т	Т	T
F	Т	F	F	Т	F	Т	Т

F	F	Т	F	Т	Т	Т	T
F	F	F	F	T	Т	Т	Т

לשתי הטענות יש אותה טבלת אמת לכן הן שקלות לוגית

$$(p \wedge q) o r \equiv (p o r) ee (q o r)$$
 דרך זהויות: ($(p \wedge q) o r = (p \wedge q)$ מפשטים את:

$$\neg (p \land q) \lor r$$
 ומקבלים: $p \to q \equiv \neg p \lor q$.

$$\neg (p \land q) \lor r \Rightarrow (\neg p \lor \neg q) \lor r$$
 :ii. משתמשים ב דה מורגן:

$$(\neg p \lor \neg q) \lor r$$
 .iii.

$$(p
ightarrow r) ee (q
ightarrow r)$$
 מפשטים את:

$$(\neg p \lor r) \lor (\neg q \lor r)$$
 ומקבלים: $(p \to q \equiv \neg p \lor q)$.i

ii. משתמשים בחוק אסוציאטיביות:

$$(\neg p \lor r) \lor (\neg q \lor r) \Rightarrow \neg p \lor (r \lor \neg q \lor r)$$
 הפך ל r ומקבלים: $r \lor r$.iii

$$A \lor (B \lor C) \equiv (A \lor B) \lor C$$
 לפי חוק החילוף:

$$eg p \lor (
eg q \lor r) \equiv (
eg p \lor
eg q) \lor r$$
 מקבלים ש:

$$ig((\lnot p)
ightarrow qig)
ightarrow p \equiv p \lor \lnot p$$
: הטענה (3

:טבלת אמת (a

p	$\neg p$	q	$(\neg p) \rightarrow q$	$((\neg p) \to q) \to p$	$p \lor \neg p$
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	Т	F	Т
F	Т	F	F	Т	Т

מסקנה: לשתי הטענות טבלת האמת שונה לכן הן לא שקולות לוגית

$$((\neg p) \rightarrow q) \rightarrow p \not\equiv p \lor \neg p \Leftarrow$$

$$q
ightarrow (r \wedge \neg p) \equiv r
ightarrow (p
ightarrow q)$$
 הטענה: (a

p	$\neg p$	q	r	$r \wedge \neg p$	$p \rightarrow q$	$q \rightarrow (r \land \neg p)$	$r \rightarrow (p \rightarrow q)$
T	F	T	T	F	T	F	T
Т	F	T	F	F	T	F	Τ
Т	F	F	T	F	F	T	F
Т	F	F	F	F	F	T	Т
F	Т	T	T	T	T	T	Т
F	Т	T	F	F	T	F	Т
F	Т	F	T	T	T	T	Т
F	Τ	F	F	F	T	Т	Т

מסקנה: טבלת האמת עבור שתי הטענות אינן שקולות לוגית לכן שתי הטענות אינן שקולות לוגי

$$q \rightarrow (r \land \neg p) \not\equiv r \rightarrow (p \rightarrow q) \Leftarrow$$

 $eg (p o q) \lor r \equiv \neg p \land (r \lor q)$ הטענה: (5 טבלת אמת:

p	$\neg p$	r	q	$(p \rightarrow q)$	$\neg(p \rightarrow q)$	$r \lor q$	$\neg (p \rightarrow q) \lor r$	$\neg p \land (r \lor q)$
Т	F	T	T	T	F	Т	Т	F
Т	F	Т	F	F	Т	Т	Т	F
Т	F	F	Т	Т	F	Т	F	F
Т	F	F	F	F	Т	F	Т	F
F	Т	Т	Т	T	F	Т	Т	Т
F	Т	Т	F	T	F	Т	Т	Т
F	Т	F	Т	Т	F	Т	F	Т
F	Т	F	F	Т	F	F	F	F

מסקנה: טבלת האמת עבור שתי הטענות אינן שקולות לוגית לכן שתי הטענות אינן שקולות $\neg (p o q) \lor \not\equiv \neg p \land (r \lor q) \Leftarrow$ לוגית

שאלה 2

:**א.** תשובה

רק עבור T מקבלים אמת של XOR נשים לב: לפי טבלת האמת

$$(p = T \land q = F) \lor (p = F \land q = T)$$

:בריך שנקבל p=F וגם q=T רק אם T לכן מקבלים.

$$\neg p \land q$$

: צריך שנקבל p=T רק אם q=F רק אם בלים. c

$$p \land \neg q$$

d. צריך לקבל T עבור אחת אחת מהטענות d. צריך לקבל T

$$(p \land \neg q) \lor (\neg p \land q)$$

 $(p \wedge \neg q) \vee (\neg p \wedge q)$ טבלת אמת של

р	q	$\neg p$	$\neg q$	$\neg p \land q$	$p \wedge \neg q$	$(p \land \neg q) \lor (\neg p \land q)$
T	T	F	F	F	F	F
Т	F	F	T	F	Т	Т
F	T	T	F	Т	F	Т
F	F	T	T	F	F	F

 $(\mathbf{p} \wedge \neg \mathbf{q}) \vee (\neg \mathbf{p} \wedge \mathbf{q}) \equiv \mathbf{p} \oplus \mathbf{q}$ מסקנה:

$(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ ב. טבלת אמת של

p	q	r	$(p \oplus q)$	$(q \oplus r)$	$(p \oplus q) \oplus r$	$p \oplus (q \oplus r)$
Т	Т	Т	F	F	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	F	F	F
F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	F	F	F

מסקנה: שתי הטענות שקולות לוגית

דרך זהויות:

 $(p=T \wedge q=T) \vee (p=F \wedge q=F)$ ש צריך ש ההוכחה אין את לפני ההוכחה אין הביע את שצריך ש

 $(p \land q) \lor (\neg p \land \neg q)$ לכן מקבלים:

 $(p \land q) \lor (\neg p \land \neg q)$ ו $\neg (p \oplus q)$ טבלת אמת של:

p	q	$p \oplus q$	$\neg (p \oplus q)$	$(p \land q) \lor (\neg p \land \neg q)$
Т	T	F	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	Т	Т

 $(p \land q) \lor (\neg p \land \neg q) \equiv \neg(p \oplus q) \lor (\neg p \land q \neg q)$ לכן מקבלים ש

משפטים שנעזור בהם:

\$ נסמן ב (p
$$\land \neg q$$
) $\lor (\neg p \land q) \equiv p \oplus q$

צעדי ההוכחה:

ונשתמש ב $p \oplus (q \oplus r)$ וניקח הטענה. a

$$(p \land \neg (q \oplus r)) \lor (\neg p \land (q \oplus r))$$

 $\neg(q \oplus r)$ נשתמש ב. b.

$$(p \land ((q \land r) \lor (\neg q \land \neg r))) \lor (\neg p \land (q \oplus r))$$

 $(q \oplus r)$ נשתמש ב. c .c

$$\left(p \land \left((q \land r) \lor (\neg q \land \neg r)\right)\right) \lor \left(\neg p \land \left((\neg q \land r) \lor (q \land \neg r)\right)\right)$$

d. נשתמש בחוק הפילוג "וגם" עבור שתי הטענות

$$(p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r)$$

:. נסמן את ארבע הטענות באופן הבאה

$$A = (p \wedge q \wedge r)$$
 (i)

$$B = (p \land \neg q \land \neg r)$$
 (ii)

$$C = (\neg p \land \neg q \land r)$$
 (iii)

$$\mathbf{D} = (\neg \mathbf{p} \wedge \mathbf{q} \wedge \neg \mathbf{r}) \text{ (iv)}$$

 $A \lor C \lor B \lor D$: נארגן מחדש את הטענות באופן הבאה. f

$$(p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r)$$

 $\neg r$ נשתמש בחוק הפילוג "וגם" עבור r וגם.g

$$\Big(r \wedge \big((p \wedge q) \vee (\neg p \wedge \neg q)\big)\Big) \vee \Big(\neg r \wedge \big((p \wedge \neg q) \vee (\neg p \wedge q)\big)\Big)$$

רואים שהטענה $p\oplus q \equiv p \oplus q \lor (p\land q)\lor (p\land q)$ לפי משפט, והטענה .h .h רואים שהטענה $(p\land q)\lor (p\land q)\lor (p\land q)$ לפי משפט לכן אנחנו מקבלים הטענה $(p\land q)\lor (p\land q)$ הבאה:

$$(r \land \neg (p \oplus q)) \lor (\neg r \land (p \oplus q))$$

- i. רואים שהטענה שקיבלנו היא מצורה \$ לכן מקבלים:
 - $(p \oplus q) \oplus r$
- כמו שנדרש ($p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ כמו שנדרש .j

$p \wedge (q \oplus r) \equiv (p \wedge r) \oplus (p \wedge q)$ ג. טבלת אמת של

p	q	r	$(q \oplus r)$	$(p \wedge r)$	$(p \wedge q)$	$(p \land (q \oplus r))$	$(p \wedge r) \oplus (p \wedge q)$
T	Т	Т	F	T	T	F	F
T	Т	F	Т	F	T	T	T
T	F	Т	Т	Т	F	Т	T
T	F	F	F	F	F	F	F
F	Т	Т	F	F	F	F	F
F	T	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

מסקנה: טבלת האמת עבור שתי הטענות שווה לכן שתי הטענות שקולות לוגית

$(p \oplus q) \oplus p \equiv q$ ד. טבלת האמת של

p	q	$p \oplus q$	$(p \oplus q) \oplus p$
T	T	F	T
T	F	Т	F
F	Т	Т	T
F	F	F	F

מסקנה: לשתי הטענות יש אותו טבלת אמת לכן הטענות שקולות לוגית

שאלה 3

- א. הטענה: "אין סטודנט שמצליח במבחן בלי לעשות את תרגילי הבית."
 - בשפה מתמטית
 - i. נגדיר קבוצה סטודנטים S
 - עבר המבחן s: P(s) נגדיר פרדיקט.ii
 - גדיר פרדיקט (s: H(s עשה תרגילי הבית .iii
 - $\neg \exists x \in S: P(x) \land \neg H(x)$.iv
 - $\exists x \in S: \neg P(x) \lor H(x)$: השלילה של הטענה
 - ב. הטענה: "כל בן אדם שאוהב מתמטיקה דיסקרטית אוכל גלידה."
 - בשפה מתמטית
 - i. נגדיר קבוצה בני אדם H

- וו. נגדיר פרדיקט (h : D(h אוהב מתמטיקה דיסקרטית
 - אוכל גלידה h: C(h) גלידה נגדיר פרדיקט.iii
 - $\forall x \in H: D(h) \rightarrow C(h)$.iv
 - $\exists x \in H: D(h) \land \neg C(h)$ השלילה של הטענה. •
 - ".n וראשוני p מתקיים ש p-לא מחלק את n."
 - בשפה מתמטית
- $P = \{ p \in \mathbb{N} \colon (\forall b \in \mathbb{N} \land (1 < b < p)) : b \nmid p \}$ נגדיר קבוצת הראשונים. i
 - $orall n \in \mathbb{N} \ orall p \in P \colon p \nmid n$.ii
 - $\exists n \in \mathbb{N} \ \exists p \in P \colon p \mid n$ השלילה של הטענה: •
 - ד. הטענה: "יש בניין בן יותר מ-100 קומות שלא נמצא באוניברסיטה."
 - בשפה מתמטית
 - i. נגדיר קבוצת בניינים B
 - ii. נגדיר פרדיקט (x : T(x בניין בן יותר מ-100 קומה
 - בניין שנמצא באוניברסיטה x: U(x) נגדיר פרדיקט. iii
 - $\exists b \in B: T(b) \land \neg U(b)$.iv
 - $\forall b \in B$: $\neg T(b) \lor U(b)$ השלילה של הטענה: •
 - $a^3 > b^3$ גום , $lpha^2 < b^2, lpha > eta$ כך ש- $lpha < b^2, lpha > eta$, וגם
 - בשפה מתמטית
 - $\exists lpha,oldsymbol{eta} \in \mathbb{R} : (lpha > oldsymbol{eta}) \wedge \left(lpha^2 < oldsymbol{eta}^2
 ight) \wedge \left(lpha^3 > oldsymbol{eta}^3
 ight)$.i
 - $orall lpha,oldsymbol{eta}\in\mathbb{R}:(lpha<oldsymbol{eta})ee(lpha^2>oldsymbol{eta}^2)ee(lpha^3<oldsymbol{eta}^3)$ השלילה של הטענה: •

שאלה 4

- $a \geq b$ א. a = b הוא תנאי מספיק בשביל a = b
- $(a = b) \rightarrow a \geq b$ "אם אז" .a
- $(a < b) \rightarrow (a \neq b)$ הקונטרפוזיטיב. b
 - 2. x > y ב. x > y
- $((x > 2) \land (2 \mid x)) \rightarrow (x > y)$ "אם אז". a
- $((y \ge x) \to ((x \le 2) \lor (2 \nmid x))$ הקונטרפוזיטיב. b
 - x-סן מ-y ראשוני אם הוא קטן מ
 - "אם אז" .a
 - P נגדיר קבוצת מספרים ראשונים .i
 - $(y < x) \rightarrow (y \in P)$:ii. הטענה הופכת ל.ii
 - $(y \notin P) \to (y \ge x)$ הקונטרפוזיטיב. b
 - $a \le b$ הוא תנאי הכרחי בשביל a = b .T
 - $(a=b) \rightarrow (a \leq b)$ "אם אז".a
 - $(a \neq b) \rightarrow (a > b)$ הקונטרפוזיטיב. b