

Gowin I2C Master and Slave **User Guide**

IPUG504-1.5E, 09/29/2019

Copyright©2019 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora™, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com.cn. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description	
01/4/2018	1.1E	Initial version published.	
03/28/2019	1.2E	Supported products updated.	
05/08/2019	1.3E	Changed AXI interface to SRAM interface.	
07/16/2019	1.4E	Interface configuration added.	
09/30/2019	1.5E	I2C Master released as an IP; I2C Slave released as an open source reference design.	

Contents

C	ontents	i
Li	st of Figures	iii
Li	st of Tables	iv
1.	About This Guide	1
	1.1 Purpose	1 1 1
2	Function	3
	2.1 Overview	
3	Signal Definition	4
	3.1 Definition of the Gowin I2C Master Signals	4
	3.1.1 SRAM Interface Bus Signals	4
	3.1.2 Definition of I2C Signals	4
	3.2 Definition of Gowin I2C Slave Signals	5
4	Principle	6
	4.1 System Architecture	
	4.2.1 Prescale Register	7
	4.2.2 Control Register	
	4.2.3 Transmit Register	
	4.2.4 Receive Register	
	4.2.5 Status Register	
	4.2.6 Command Register	
	4.3 Common Operation Sequence	
	4.3.1 I2C Master Bus Initialization	
	4.3.2 Write to a Slave Device	
	4.3.3 Read from a Slave Device	12

4.4 Gowin I2C Slave Working Modes	.12
5 Interface Configuration	14
5.1 I2C MASTER IP Core Interface	
5.2 I2C SLAVE IP Core Interface	. 15
6 Reference Design	16

IPUG504-1.5E ii

List of Figures

Figure 4-1 System Architecture	6
Figure 4-2 Gowin I2C Slave Architecture View	. 13
Figure 5-1 I2C MASTER Congiguration Interface	. 14
Figure 5-2 I2C SLAVE Configuration Interface	. 15

IPUG504-1.5E iii

List of Tables

Table 1-1 Abbreviations and Terminology	. 2
Table 3-1 SRAM Interface Signals	4
Table 3-2 Definition of I2C Signals	4
Table 3-3 Definition of Gowin I2C Slave Signals	
Table 4-1 Gowin I2C Master Register	6
Table 4-2 Prescale Register	
Table 4-3 Prescale Register	. 7
Table 4-4 Control Register	8
Table 4-5 Control Register	8
Table 4-6 Transmit Register	8
Table 4-7 Transmit Register	8
Table 4-8 Receive Register	9
Table 4-9 Receive Register	9
Table 4-10 Status Register	
Table 4-11 Status Register	9
Table 4-12 Command Register	. 10
Table 4-13 Command Register	. 10

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

This Gowin I2C Master and Slave user guide is designed to help users make the most of the features and usage of the Gowin I2C Master IP and Slave reference design. It contains an overview of the functions, signals definition, working principle, instantiation, etc. of the Gowin 12C Master and Slave operation.

1.2 Supported Products

The information in this guide applies to the following products:

- 1. GW1N series of FPGA products: GW1N-1, GW1N-1S, GW1N-2, GW1N-2B, GW1N-4, GW1N-4B, GW1N-6, and GW1N-9.
- 2. GW1NR series of FPGA products: GW1NR-4, GW1NR-4B and GW1NR-9.
- 3. GW1NS series FPGA products: GW1NS-2 GW1NS-2C
- 4. GW1NSR series FPGA products: GW1NSR-2、GW1NSR-2C
- 5. GW1NZ series FPGA products: GW1NZ-1
- 6. GW2A series of FPGA products: GW2A-18 and GW2A-55.
- 7. GW2AR series of FPGA products: GW2AR-18.

1.3 Related Documents

The latest user guides are available on the Gowin website. Refer to the related documents at www.gowinsemi.com:

- 1. DS100, GW1N series of FPGA Products Data Sheet
- 2. DS117, GW1NR series of FPGA Products Data Sheet
- 3. DS821, GW1NS series of FPGA Products Data Sheet
- 4. DS861, GW1NSR series of FPGA Products Data Sheet
- 5. DS841, GW1NZ series of FPGA Products Data Sheet
- 6. DS102, GW2A series of FPGA Products Data Sheet
- 7. DS226, GW2AR series of FPGA Products Data Sheet
- 8. SUG100, Gowin Software User Guide

1.4 Abbreviations and Terminology

Table 1-1 shows the abbreviations and terminology used in this manual.

IPUG504-1.5E 1(16)

Table 1-1 Abbreviations and Terminology

Abbreviations and Terminology	Full Name
FPGA	Field Programmable Gate Array
SRAM	Static Random Access Memory
I2C Bus	Inter-Integrated Circuit Bus

1.5 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below:

Website: www.gowinsemi.com
E-mail:support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG504-1.5E 2(16)

2 Function 2.1 Overview

2 Function

2.1 Overview

I2C is one kind of two-wire serial bus that is used to connect to the micro-controller to its peripheral equipment. I2C bus is easy to use and valid. I2C is also space-saving, which helps to reduce circuit space, the quantity of chips, and interconnection costs.

Gowin I2C Master IP is an I2C Master controller with a synchronous SRAM interface. It provides a low-speed, two-wire, serial bus interface that connects to the I2C bus via data pins (SDA) and clock pins (SCL) to complete data transmission and extend periphery components. Standard (up to 100 kHz) and fast (up to 400 kHz) I2C bus can be connected.

The Gowin I2C Slave reference design complies with the I2C bus protocol, and is mainly used to communicate with the I2C Master.

2.2 Features

Gowin I2C Master IP

- Compliant with industry standard I2C protocol.
- Bus arbitration and arbitration lost detection.
- Bus busy detection.
- Interrupt flag generation.
- Supports different I2C communication modes:
 - Standard mode (100 Kbps).
 - Fast mode (400 Kbps).
 - Fast (+) mode (1 Mbps).
 - High-speed mode (3.4 Mbps).
- Start/Stop/Repeated Start/Acknowledge generation.
- Start/Stop/Repeated Start detection.
- Supports 7-bit addressing mode.

Gowin I2C Slave

- Compliant with industry standard I2C protocol.
- Receive/Send data.
- Supports interrupt generation.
- Supports RAM and ROM.

IPUG504-1.5E 3(16)

3 Signal Definition

3.1 Definition of the Gowin I2C Master Signals

3.1.1 SRAM Interface Bus Signals

Table 3-1 SRAM Interface Signals

No.	Signal Name	I/O	Description	Remarks
1	I_CLK		Work clock, sampling at rising edge	-
2	I_RESETN	I	Reset signal	-
3	O_IIC_INT	0	Interrupt signal output	-
4	I_TX_EN	I	Write enable signal	SRAM write
5	I_WADDR	I	Write address signal	address channel
6	I_WDATA	I	Write data signal	signal
7	I_RX_EN	I	Read enable signal	SRAM read
8	I_RADDR	I	Read address signal	address channel
9	O_RDATA	0	Read data signal	signal

3.1.2 Definition of I2C Signals

Table 3-2 Definition of I2C Signals

No.	Signal Name	I/O	Description	Remarks
1	SCL	I/O	Serial clock line	-
2	SDA	I/O	Serial data line	-

IPUG504-1.5E 4(16)

3.2 Definition of Gowin I2C Slave Signals

Table 3-3 Definition of Gowin I2C Slave Signals

No.	Signal Name	I/O	Description	Remarks
1	clk_50m	Ţ	Clock signal	-
2	rst_n	I	Reset signal	-
3	scl	Bidir	Serial clock line	-
4	scl_pull	0	Serial clock line pull up	-
5	sda	Bidir	Serial data line	-
6	sda_pull	0	Serial data line pull up	
7	int_o	0	Interrupt signal	

IPUG504-1.5E 5(16)

4 Principle 4.1 System Architecture

 $oldsymbol{4}$ Principle

4.1 System Architecture

As shown in Figure 4-1, the main controller issues commands and data to the Gowin I2C Master through synchronous SRAM interface. The Gowin I2C Master then issues the information to the Gowin I2C Slave and peripheral through the I2C bus, or feeds the Gowin I2C Slave and peripheral data to the main controller through synchronous SRAM interface.

Figure 4-1 System Architecture

4.2 I2C Register

The Gowin I2C Master has six 8-bit registers in total:

- Prescale Register
- Control Register
- Transmit Register
- Receive Register
- Command Register
- Status Register

Notes:

- The Transmit Register and the Receive Register share the same address (address = 0x30).
- The Status Register and the Command Register share the same address (address = 0x04). For the detailed information, please refer to Table 4-1.

Table 4-1 Gowin I2C Master Register

Register Name	Address	Width	Туре	Description
Prescale_reg0	0x00	8	Read/Write	Clock prescale register low-byte.
Prescale_reg1	0x01	8	Read/Write	Clock prescale register high-byte.
Control_reg	0x02	8	Read/Write	Control register.

IPUG504-1.5E 6(16)

Register Name	Address	Width	Туре	Description
Transmit_reg	0x03	8	Write	Transmit register.
Receive_reg	0x03	8	Read	Receive register.
Command_reg	0x04	8	Write	Command register.
Status_reg	0x04	8	Read	Status register.

4.2.1 Prescale Register

The prescale register is a16-bit register that contains two 8-bit registers. The value in the prescale register is used to prescale the main clock of the I2C Master. The main clock of the I2C Master is 5*SCL, and the value in the prescale register is determined by the following equation:

[Master clock frequency / (5*sclk frequency) -1].

The prescale register is illustrated in Table 4-2 and described in Table 4-3.

Table 4-2 Prescale Register

15	0
Pres	scale data

Table 4-3 Prescale Register

Bit(s)	livame	Default Value	Access Type	Description
15:0	Prescale data	0	Read/Write	16-bit prescale data

4.2.2 Control Register

The Control Register is an 8-bit register. Only two bits are used; six bits are reserved.

The MSB bit enables and disables the I2C Master:

- If MSB is 0, the I2C Master does not work.
- If MSB is 1, the I2C Master enters into working state.
 The sixth bit is the interrupt bit. If it is "1," the interrupt is enabled.
 The Control Register is illustrated in Table 4-4 and described in Table 4-5.

IPUG504-1.5E 7(16)

Table 4-4 Control Register

7	6	5	0
EN	IEN	Reserved	

Table 4-5 Control Register

Bit(s)	Name	Default Value	Access Type	Description
7	EN	0	Read/Write	I2C Master enable bit: • "0"= disable Master. • "1"= enable Master.
6	IEN	0	Read/Write	I2C Master interrupt bit: • "0"= disable Master interrupt. • "1"= enable Master interrupt.
5:0	Reserved	N/A	Read/Write	Reserved

4.2.3 Transmit Register

The Transmit Register stores the data to be transmitted via the I2C bus. When the address is transmitted, the bit 0 is the write/read signal. The Transmit Register is illustrated in Table 4-6 and described in Table 4-7.

Table 4-6 Transmit Register

7	1	0
TX DATA		LSB/RW

Table 4-7 Transmit Register

Bit(s)	Name	Default Value	Access Type	Description
7:1	TX DATA	Indeterminate	Write	Data to be transmitted via I2C.
0	LSB/RW	Indeterminate	Write	 This bit represents the data's LSB. This bit represents the Read/Write bit during Slave address transfer: '1' = reading from Slave. '0' = writing to Slave.

4.2.4 Receive Register

The receive register stores the data received via the I2C bus. The receive register is illustrated in Table 4-8 and described in Table 4-9.

IPUG504-1.5E 8(16)

Table 4-8 Receive Register

7	0
F	RX DATA

Table 4-9 Receive Register

Bit(s)	Name	value	71	Description
7:0	RX DATA	Indetermin ate	Read	Byte received via I2C.

4.2.5 Status Register

This register contains the status of the I2C bus interface. The status register is cleared up on reset. The status register is illustrated in Table 4-10 and described in Table 4-11.

Table 4-10 Status Register

7	6	5	4:2	1	0
RX ACK	Busy	AL	Reserved	TIP	IF

Table 4-11 Status Register

Bit(s)	Name	Default Value	Access Type	Description
7	RX ACK	0	Read	Received acknowledge from the Slave. • "1" = No acknowledge received. • "0" = Acknowledge received.
6	Busy	0	Read	Indicates the I2C bus is busy. • "1"= busy. • "0"= idle.
5	AL	0	Read	Arbitration lost. The bit is "1" when a STOP signal is detected but not requested, or the Master drives SDA high, but SDA is low.
4:2	Reserved	N/A	Read	Reserved
1	TIP	0	Read	Transfer in progress: • "1"= transferring data. • "0"= transfer is completed.
0	IF	0	Read	Interrupt flag. This bit is set when an interrupt is pending, which will cause a processor interrupt request if the IEN bit is set. The bit is "1" when one-byte transfer has been completed, or arbitration is lost.

IPUG504-1.5E 9(16)

4.2.6 Command Register

The Gowin I2C Master configures I2C operation modes via write commands. The command register stores the next command for the next I2C operation, and the bits in the Command Register are cleared automatically after each operation. Therefore, the synchronous SRAM interface is rewritten every time the I2C operation is started, written, read, or stopped. The command register is illustrated in Table 4-12 and described in Table 4-13.

Table 4-12 Command Register

7	6	5	4	3	2 1	0
STA	STO	RD	WR	ACK	Reserved	IACK

Table 4-13 Command Register

Bit(s)	IIVIAME	Default Value	Access Type	Description
7	STA	0	Write	(repeated) start
6	STO	0	Write	Stop
5	RD	0	Write	Read
4	WR	0	Write	Write
3	ACK	0	Write	Acknowledge
2:1	Reserved	0	Write	Reserved
0	IACK	0	Write	Interrupt acknowledge. When set, clears a pending interrupt.

IPUG504-1.5E 10(16)

4.3 Common Operation Sequence

The Gowin I2C Master supports common I2C operations. This section mainly describes the I2C write and read operations.

4.3.1 I2C Master Bus Initialization

Program the prescale register with the desired value. This value is determined by the clock frequency and the speed of the I2C bus.

Write 8'h80 to the control register to enable the I2C Master.

4.3.2 Write to a Slave Device

- 1. Set the value of the transmit register: Slave address + Write bit. For example, {7'b1000110,1'b0}, of which 7'b1000110 is the Slave address, and the write bit is 1'b0.
- 2. Set the value of the command register as 8'h90 to enable the START and WRITE commands. This starts the transmission on the IIC bus.
- 3. Check the Transfer In Progress (TIP) bit of the status register to ensure the command is complete.
- 4. Set the transmit register with a Slave memory address for the data to be written to the corresponding address memory.
- 5. Set the command register with 8'h10 to enable a WRITE command to send the Slave memory address.
- 6. Check the Transfer In Progress (TIP) bit of the status register to ensure that the command is complete.
- 7. Set the transmit register with 8-bit data for the Slave device to be written to.
- 8. Set the command register with 8'h10 to enable a WRITE command to send data.
- 9. Check the Transfer In Progress (TIP) bit of the status register to ensure that the command is complete.
- 10. Repeat Steps 7 to 9 to continue to send data to the Slave device.
- 11. Set the transmit register with the last byte of data.
- 12. Set the command register with 8'h50 to enable a WRITE command to send the last byte of data. Then issue a STOP command.

IPUG504-1.5E 11(16)

4.3.3 Read from a Slave Device

- 1. Set the value of transmit register: Slave address + Write bit.
- 2. Set the value of the command register as 8'h90 to enable the START and WRITE command. This starts the transmission on the IIC bus.
- 3. Check the Transfer In Progress (TIP) bit of the Status Register to ensure the command is complete.
- 4. Set the transmit register with a Slave memory address for the data to be read from.
- 5. Set the command register with 8'h10 to enable a WRITE command to send the Slave memory address.
- 6. Check the Transfer In Progress (TIP) bit of the status register to ensure the command is complete.
- 7. Set the value of transmit register: Slave address + Read bit. For example, {7'b1000110,1'b1}, of which 7'b1000110 is the slave address, and the Read bit is 1'b1.
- 8. Set the command register with 8'h90 to enable START (repeated START in this case) and WRITE to write the value in the transmit register to the Slave device.
- 9. Check the Transfer In Progress (TIP) bit of the status register to ensure that the command is complete.
- 10. Set the command register with 8'h20 to issue a READ command and an acknowledge command to the read data from the Slave device.
- 11. Check the Transfer In Progress (TIP) bit of the status register to ensure the command is complete.
- 12. Repeat steps 10 and 11 to continue to read data from the Slave device.
- 13. When the Master stops reading from the Slave, set the command register with 8'h68. This will allow the Slave device to read the last byte of data and then issue NACK.

4.4 Gowin I2C Slave Reference Design

The Gowin I2C Slave reference design contains two working modes: RAM and ROM. If you select RAM, the Gowin I2C Slave can store the data sent from the I2C Master or transmit the data that is stored in the RAM to the I2C Master. if you select ROM, the I2C Master can only read the data that is prestored in the ROM. At present, the ROM can store 0~255, 256 data in total.

The Gowin I2C Slave supports interrupt function. If you select RAM, and when RAM is written full or read through, the Gowin I2C Slave will generate the int_o interrupt signal. The Gowin I2C Slave supports two interrupt modes. "0" means write stop, and the written data is read out. "1" means write stop and read stop, and back to the initial state. If you select ROM, the Master reads only, so no writing full or reading through will occur.

The Gowin I2C Slave contains the i2c_Slave_top module and i2c_Slave module. The i2c_Slave_top module is mainly used for the interconnection between i2c_Slave module, RAM module, and ROM module. The i2c_Slave module is mainly used to drive the RAM module or ROM module for data storage or data transmission. For the architecture view of Gowin I2C Slave IP, please refer to Figure 4-8.

IPUG504-1.5E 12(16)

Figure 4-2 Gowin I2C Slave Architecture View

IPUG504-1.5E 13(16)

5 Interface Configuration

Users can use the IP core generator tool in the IDE to call and configure Gowin I2C MASTER IP.

5.1 I2C MASTER IP Core Interface

I2C MASTER configuration interface is shown in Figure 5-1.

IPUG504-1.5E 14(16)

5.2 I2C SLAVE IP Core Interface

Open Gowin YunYuan software, click "File > Open" to open the "Open File" dialog box, select the project file (*.gprj), and then open the project, as shown in Figure 5-2.

Note!

There are three menthods to open the project. Please refer to <u>SUG100,Gowin YunYuan Software User Guide > 5 Operation > Open an Existing Project</u>.

Figure 5-2 I2C SLAVE Configuration Interface

5.3 Bitstream File Generation

Under necessary constraints, bitstream file can be generated after synthesis, plancement and routing. Download the bitstream file to the development board or test board via Gowin USB cable. Observe the communication via the test interface.

IPUG504-1.5E 15(16)

6 Reference Design

For more details, please refer to the I2C reference design at Gowin official website.

IPUG504-1.5E 16(16)

