ETESP

ÁCIDOS

As substâncias inorgânicas são divididas em quatro grupos, chamado de funções inorgânicas

ÁCIDOS

Quando os cátions e ânions se unem formam um composto químico, se observarmos determinadas particularidades das fórmulas químicas obtidas podemos reconhecer a que função química os compostos pertence.

ÁCIDOS

ÁCIDOS

Exercício

Indique a qual função química cada um dos compostos abaixo pertence:

Fórmula Função NaOH base KH hidreto NaCl sal PBCl₂ sal NH_3 hidreto CO₂ óxido SO₃ óxido

INORGÂNICAS FUNÇÕES

QUÍMICA GERAL |

Funções - Inorgânicas

ÁCIDOS

ÁCIDOS

Segundo a definição de são substâncias que, em solução aquosa, aumentam Arrhenius a concentração de íons hidrogênio H₃O⁺(aq)

É toda substância que, quando adicionada à água, ioniza-se e forma um cátion hidrônio (H₃O+ou H+) e um ânion qualquer (X-). Assim, um ácido é sempre representado como HX.

ÁCIDOS

IONIZAÇÃO

É um processo químico que envolve alguns compostos moleculares (apenas ácidos) e que resulta na formação de íons (um cátion e um ânion) quando o composto interage com a água.

Na equação química, que é a representação da reação química, as substâncias que vêm antes da seta são os reagentes e as substâncias que vêm depois da seta são os produtos.

Cátion hidrônio

A carga do ânion vira índice do cátion (hidrônio) e a carga do cátion (hidrônio) viraíndice do ânion.

Tetravalentes

Carga -4

*valem as mesmas regras de simplificação de cargas e a supressão do índice 1 e carga 1 ou -1, já estudados na aula de nomenclatura de compostos iônicos.

Ânion

HNO₂

ÁCIDOS

ÁCIDOS

IONIZAÇÃO Exemplos

O hidrônio (H3O+ ou H+) sempre apresenta a mesma fórmula, mas o ânion que o acompanha no produto não.

电影用用用用用用用用用的

Funções - Inorgânicas

Cloro

Funções - Inorgânicas

ÁCIDOS

QUÍMICA GERAL |

ETESP

ÁCIDOS

Funções - Inorgânicas

Bivalentes	
Carbonato —	CO ₃ ²
Cromato	CrO ₄ ²
Dicromato —	Cr ₂ O ₇ ²
Estanato —	SnO ₃ ²
Estanito —	
Fluorsilicato —	SiF ₆ ²
Fosfito —	HPO ₃ ²
Hidrogenofosfato ———	HPO ₄ ²
Hipossulfato ————	
Manganato	MnO ₄ ²
Nitrito -	NO

Nitrito -	NO
Perclorato	cec
Periodato (meta) —	10
Permanganato —	MnO
Peróxido	
Tiocianato —	SC1
Superóxido	0,1/

ÁCIDOS Força dos Ácidos É a capacidade que um ácido apresenta de sofrer ionização. É a medida da quantidade de íons hidrônios e ânions que eles produzem em água. Ácidos fortes quando sofrem ionização, conseguem produzir uma grande quantidade de íons hidrônio e ânions. são ácidos que se ionizam mais que os fracos e menos que os fortes;. Ácidos moderados Ácidos fracos quando sofrem ionização, produzem uma pequena quantidade de íons

ÁCIDOS Força dos Hidrácidos ·Hidrácidos fortes: •exclusivamente os ácidos clorídrico (HCI), bromídrico (HBr) e iodídrico (HI); ·Hidrácidos moderados: ·Apenas o ácido fluorídrico (HF); ·Hidrácidos fracos: •qualquer outro hidrácido.

hidrônio e ânions.

ÁCIDOS

Funções - Inorgânicas

ÁCIDOS

Força dos Oxiácidos

Subtraindo o número de oxigênios e o de hidrogênios ionizáveis , determinamos a força dos oxiácidos

Fraco

resultado for no mínimo Se o resultado for Moderado Se o resultado for

Exemplos

HIO₄ 4 átomos de oxigênio - 1 hidrogênio ionizável = 3

H₂SO₄ 4 átomos de oxigênio - 2 hidrogênios ionizáveis = 2

HCIO₂ 2 átomos de oxigênio - 1 hidrogênio ionizável = 1

HBrO 1 átomo de oxigênio - 1 hidrogênio ionizável = 0

Exceção

No ácido carbônico (H2CO3), o resultado da diferença entre o número de oxigênios e o número de hidrogênios ionizáveis é 1, mas se trata de um oxiácido fraco.

ÁCIDOS

ÁCIDOS

Força dos Ácidos

Quanto ao grau de ionização Q

Calculo:

quantidade de moléculas que se ionizaram

quantidade de moléculas que inicialmente foram dissolvidas

Isso quer dizer que quanto maior for o grau de ionização, maior será a concentração de íons presentes na solução, o que faz com que o ácido tenha maior condutibilidade elétrica e seja mais forte.

α > 50%: ácido forte.

Exemplos: Como mostra a imagem inicial, o HNO3 e o HCl são fortes porque o grau de ionização de cada um é, respectivamente, igual a 92% e 92,5% a 18ºC;

5 % > α > 50%; ácido semiforte.

Exemplos: A 18°C, temos o H_2SO_3 ($\alpha = 30\%$), o H_3PO_4 ($\alpha = 27\%$) e o HF ($\alpha = 8,5\%$);

α < 5%: ácido fraco.

Exemplos: A 18ºC

 $H_2S(\alpha = 0.076\%),$

 H_3BO_3 ($\alpha = 0.075\%$)

HCN ($\alpha = 0.008\%$).

QUÍMICA GERAL |

ÁCIDOS

Volatilidade dos Ácidos

Ponto de Ebulição

seu ponto de ebulição é superior a 100ºC e, em temperatura ambiente, passam muito lentamente para o estado de vapor. Exemplos: H2SO4 (340ºC) e H3PO4 (213ºC);

seu ponto de ebulição é inferior a 100ºC e, em temperatura ambiente, passam facilmente para o estado de vapor. Exemplos: HCl (-85°C) e H2S (-59,6°C).

observação

Ácidos voláteis liberam gases tóxicos devem ser manuseados em uma capela

(laboratório)

ÁCIDOS Solubilidade em água Ácidos são bem solúveis em água (a maior parte)

TABELA DE ÂNIONS

Monovalentes	
Acetato ———	(CH ₃ COO') C ₂ H ₃ O;
Aluminato —	A602
Bismutato ——	BiO ₂
Bromato	BrO ₃
Brometo	Br
Cianato	OCN
Cianeto	CN
Clorato	C&O
Cloreto	
Clorito	ceo
Nitrito -	NO ₂
Perclorato	C00,

MnO₄

Periodato (meta) -Permanganato -

Peróxido -Tiocianato -Superóxido -

Hipofosfito —	
Hipoiodito	10'
Iodato	
Iodeto —	r
Metaborato	BO ₂
Metafosfato —	PO ₃
Nitrato	NO ₃
Diidrogenofosfato ————	
Fluoreto	F
Hidreto —	— н
Hidrogenocarbonato(Bi)	HCO3

Fluoreto	F
Hidreto —	— н
Hidrogenocarbonato(Bi) —	HCO3
Hidrogenossulfato (Bi) —	HSO ₄
Hidrogenossulfeto (Bi) —	HS"
Hidrogenossulfito (8i) —	HSO ₃ °
Hidróxido	—— OH
Hipobromito —	BrO'
Hipoclorito —	— (OC\$.) C\$O.

Trivalentes	
Antiomoniato —	SbO ₄ ³
Antimonito	—— SbO ₃ 3
Arseneto —	As ³
Arseniato —	——— AsO ₄ 3
Arsenito —	AsO ₃ 3-
Borato	BO ₃ [‡]
Boreto	B ¹
Ferricianeto —	Fe(CN) ₆ ³
Fosfato (orto) —	PO ₄ 3
Fosfeto —	p ³
Nitreto	N ³

CO32,
CrO ₄ 2-
SnO ₃ ² ·
SnO ₂ ²
SiF ₆ ²
HPO ₃ ²
—— HPO ₄ 2·
MnO ₄ ²

Tetravalentes	
Carbeto	C
Ferrocianeto ———	Fe(CN) ₆ ⁴
Hipofosfato —	P2O64
Piroantimoniato ———	Sb ₂ O ₇ ⁴
Piroarseniato —	As ₇ O ₇ ³
Pirofosfato ————	P ₂ O ₇ ⁴
Silicato (orto) —	SiO ₄
Siliceto —	Si ⁴

2-
2-
2-
1
Ė
×
8
2-
2-
2-
2.
2-
2-
2-

TAREFA

Pratique os exercícios <complete e envie os exercícios dos slides abaixo (os exercícios faltantes) >

Orientações: Faça no caderno e envie em formato pdf. Menção de atitude – cumprimento de tarefas individuais

<u>h.....</u>

Funções - Inorgânicas

FIESF 👛

FUNÇÕES INORGÂNICAS

|FUNÇÕES INORGÂNICAS

QUÍMICA GERAL | PROFESSOR JOTA | ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO