- 一、放大电路如图 1 所示。设 $V_{CC}=V_{EE}=12V$, $U_{BEQ}=0.7V$, $R_C=100$ K Ω ,三极管的 β 都为 50, $R_{E3}=33$ K Ω , $R_B=10$ K Ω , $R_L=200$ K Ω , $R_1=3$ K Ω ,稳压管的 $U_Z=6$ V。要求:
 - (1) 估算放大电路的静态工作点,求 I_{C3Q} 、 I_{C1Q} 、 U_{C1Q} 及 T_1 管的 r_{be} ;
- (2) 求差模输入电阻 R_{id} 、差模输出电阻 R_{od} ; 计算差模电压放大倍数 A_{ud} 。(19A)

图 1

二、单端输入 – 单端输出的差动放大电路如图 2 所示。已知, $V_{CC}=V_{EE}=15{
m V}$, $R_B=10K\Omega$, $R_C=100K\Omega$, $R_L=150K\Omega$, $R_W=0.3K\Omega$,恒流源 $I_S=0.1{
m mA}$ 几只三极管的特性相同, $\beta=100$ $r_{\rm bb'}=100\Omega$, $U_{\rm BE}=0.6{
m V}$ 。试求: (19B)

- (1) $I_{{\it C1Q}}$, $I_{{\it C2Q}}$, $U_{{\it CE1Q}}$, $U_{{\it CE2Q}}$;
- (2) 试计算差模输入电阻 R_{id} , 差模输出电阻 R_{od} ;
- (3) 差模电压放大倍数 $A_{\rm ud}$.

在题图 3 电路中, 设+ $V_{\rm CC}$ =+12V , $-V_{\rm EE}$ =-12V , $R_{\rm B}$ =1kΩ , $R_{\rm C}$ =6kΩ , $R_{\rm E}$ =10kΩ , $R_{\rm W}$ =200Ω 且滑动端位于中点, $R_{\rm L}$ =12k ,晶体管 $T_{\rm 1}$ 和 $T_{\rm 2}$ 的特性相同, β =60 , r_{bb} =300Ω , $U_{\rm BE}$ =0.6V 。 试求:

- (1) 计算静态电流 I_{CIQ} 以及集电极静态电位(对地电压) U_{CIQ} ;
- (2) 差模输入电阻 R_{id} 、输出电阻 R_{od} 、差模电压放大倍数 A_{ud} ;
- (3) 若 u_{i1} = 18mV , u_{i2} = 16mV ,求差模输出电压 u_{od} 、 u_{C2} . (21A)

图 3

在题图 4 电路中,设+ $V_{\rm CC}$ =+12V,- $V_{\rm EE}$ =-12V, $R_{\rm B}$ =1kΩ, $R_{\rm C}$ =6kΩ, $R_{\rm E}$ =10kΩ, $R_{\rm W}$ =200Ω 且. 滑动端位于中点, $R_{\rm L}$ =12k,晶体管 $T_{\rm 1}$ 和 $T_{\rm 2}$ 的特性相同, β =60, r_{bb} =300Ω, $U_{\rm BE}$ =0.6V。试求:

- (1) 计算静态电流 I_{CIQ} 以及集电极静态电位(对地电压) U_{CIQ} ;
- (2) 差模输入电阻 R_{id} 、输出电阻 R_{od} 、差模电压放大倍数 A_{ud} ;
- (3) 若 $u_{i1}=20 \mathrm{mV}$, $u_{i2}=16 \mathrm{mV}$, 求差模输出电压 u_{od} 、 u_{C1} 。 (21B)

图 4