

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и си	стемы управления»	
- КАФЕДРА «П	рограммное обеспеч	пение ЭВМ и информ	ационные технологии»
	(Этчёт	
)1 1C1	
	по лаборат	орной работе	№ 7
Название:	Определение ве	роятности отказа	при помощи GPSS
Дисциплина			
			_
Студент	ИУ7-75Б		Д.В. Сусликов
Студент		(Поличи, дого)	<u> </u>
Прополовота	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподавател	lb		<u>И.В. Рудаков</u>
		(Подпись, дата)	(И.О. Фамилия)

Содержание

Задание	3
Аналитическая часть	4
Результаты работы	5
Вывод	5
Листинги	6

Задание

В информационный центр приходят клиенты через интервал времени 10 +- 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 +- 5; 40 +- 10; 40 +- 20. Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов. Для выполнения поставленного задания необходимо создать концептуальную модель в терминах СМО, определить эндогенные и экзогенные переменные и уравнения модели. За единицу системного времени выбрать 0,01 минуты.

Аналитическая часть

В процессе взаимодействия клиентов с информационным центром возможно:

- 1) Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
- 2) Режим отказа в обслуживании клиента, когда все операторы заняты. **Переменные и уравнения имитационной модели**

Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером. Экзогенные переменные: число обслуженных клиентов и число клиентов, получивших отказ.

$$P_{\text{отк}} = \frac{C_{\text{отк}}}{C_{\text{отк}} + C_{\text{обсл}}}$$

Результаты работы

Ниже представлены результаты работы программы.

FACILITY	ENTRIE	S UT	IL. I	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
OPER1	121	. 0	.788	19.924	1	0	0	0	0	0
OPER2	59	0.	.772	40.036	1	0	0	0	0	0
OPER3	51	. 0	.711	42.640	1	0	0	0	0	0
SPC1	180	0.	.883	15.000	1	0	0	0	0	0
SPC2	51	. 0	.500	30.000	1	0	0	0	0	0
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.CO	NT. AVI	E.TIME	E AVE	E.(-0)	RETRY
PC1_QUEUE	2	0	180	61	0.27	9	4.737	7	7.165	0
PC2_QUEUE	1	0	51	48	0.00	4	0.212	2	3.598	0
SAVEVALUE		RETR	Y	VALUE						
TRANS PROCESSED		0		231.000						
TRANS DROPPED		0		69.000						
TRANS_DROPPED_PF	ROB	(0	0.230)					

Рисунок 1 – Результаты работы

Вывод

Процент потерь равен 23%.

Листинги

```
SIMULATE
GENERATE 10,2,,300,
                                   ; блок GENERATE осуществляет ввод транзактов в модель
       средний интервал времени между последовательными поступлениями транзактов в модель
; [B]
        модификатор, который изменяет значения интервала генерации транзактов
; по сравнению с интервалом, указанным операндом А
; [С] задержка в выработке первого транзакта (0)
        число вырабатываемых источником заявок
; [D]
; [E]
        приоритет заявок
; если первый оператор занят, переход ко второму
         GATE NU OPER1, OP2
         ; блок GATE определяет состояние устройства
         ; оператор задает условие пропуска транзакта
                 NU
                                   устройство не используется (NOT USED)
                  операнд задает устройство для проверки
         ; [B] операнд задает блок, в который перейдет транзакт, если оператор вернет "FALSE"
                                   ; транзакт занимает устройство
         SEIZE
                   OPER1
         ADVANCE 20,5
                                   ; задержка транзакта в течение некоторого времени
         RELEASE OPER1
                                   ; освобождение устройства
         TRANSFER , PC1,,
                                   ; переход в блок первого компьютера
                                    ; А задает режим выполнения блока (условие)
                                    ; В и С - метки блоков
                                    ; D - индексная константа N (проверка входа в блоки B + xN)
; если второй оператор занят, переход к третьему
         GATE NU OPER2, OP3
         SEIZE OPER2
ADVANCE 40,10
                                    ; транзакт занимает устройство
                                   ; задержка транзакта
         RELEASE OPER2
                                   ; устройство освобождается
         TRANSFER , PC1
                                    ; переход в блок первого компьютера
; если и третий оператор занят, заявка не обслуживается
         GATE NU OPER3, DROP
         SEIZE
                  OPER3
         ADVANCE 40,20
                                    ; задержка транзакта
         RELEASE OPER3
         TRANSFER , PC2
                                   ; переход в блок второго компьютера
```

```
QUEUEPC1_QUEUE; постановка транзакта в очередьSEIZESPC1; транзакт занимает устройствоDEPARTPC1_QUEUE; извлечение транзакта из очередиADVANCE15; задержка транзактаRELEASESPC1; освобождение устройстваTRANSFER, PROC; транзакт обслужен, переход к зав
PC1
                                                             ; транзакт обслужен, переход к завершению
                QUEUE PC2_QUEUE ; постановка транзакта в очередь
SEIZE SPC2 ; транзакт занимает устройство
DEPART PC2_QUEUE ; извлечение транзакта из очереди
ADVANCE 30 ; задержка транзакта
RELEASE SPC2 ; освобождение устройства
PC2
                TRANSFER , PROC
                                                            ; транзакт обслужен, переход к завершению
PROC
               TRANSFER , ENDING
DROP
               TRANSFER , ENDING
                 ; количество обработанных заявок
ENDING
                SAVEVALUE TRANS PROCESSED, N$PROC
                SAVEVALUE TRANS_DROPPED, N$DROP
                 ; вероятность потери заявки
                 SAVEVALUE TRANS_DROPPED_PROB, ((N$DROP) / (N$ENDING))
                 TERMINATE 1
```

START 300