BORGIA MATTIA PALESTRA LEONARDO

SEMANTIC SEGMENTATION

COMPUTER VISION TECHNIQUE THAT CLASSIFIES EACH PIXEL IN AN IMAGE INTO A PREDEFINED CATEGORY, ALLOWING FOR PRECISE IDENTIFICATION AND LOCALIZATION OF OBJECTS OR REGIONS BASED ON THEIR CLASS.

DATASET-CAMVID

701 IMAGES 701 MASKS

720X960

32 CLASSES

DATASET - CAMVID - PREPROCESSING

11 CLASSES

SKY SKY

BUILDING BUILDING, BRIDGE, TUNNEL, GARAGE

POLE POLE, TRAFFIC LIGHT, TRAFFIC SIGN

ROAD ROAD, LANE MARKINGS

PAVEMENT SIDEWALK, GROUND, PARKING

TREE, VEGETATION, BUSH, PLANT

SIGN/SYMBOL BILLBOARD, SIGN SYMBOL, TRAFFIC SIGN, TRAFFIC LIGHT

FENCE FENCE, WALL, RAILING, BARRIER

CAR, TRUCK, BUS, TRAIN, MOTORCYCLE, BICYCLE

PEDESTRIAN PEDESTRIAN, RIDER

BICYCLIST CYCLIST, BICYCLE

PRO

- BETTER CLASS BALANCE
- BETTER
 GENERALIZATION
- EASIER TO COMPARE
- FOCUS ON MEANINGFUL CATEGORIES

DATASET - CAMVID - PREPROCESSING

CONVERTED THE MASKS FROM PNG TO NUMPY

RESIZED FROM 720X960 TO 512X512

NORMALIZE PIXEL IN A RANGE OF [0,1] BY DIVIDING EACH PIXEL VALUE BY 255

SPLIT THE DATASET IN

- TRAINING 367 OBSERVATIONS
- VALIDATION 101 OBSERVATIONS
- TEST **233** OBSERVATIONS

DATASET - CAMVID - PREPROCESSING

ONLINE DATA AUGMENTATION

PROCESS OF APPLYING DATA AUGMENTATION TRANSFORMATIONS IN REAL-TIME DURING MODEL TRAINING, RATHER THAN GENERATING AND STORING THE AUGMENTED DATA BEFOREHAND.

EACH TRAINING BATCH IS AUGMENTED ON THE FLY, WHICH SAVES STORAGE SPACE AND PROVIDES A VIRTUALLY INFINITE VARIETY OF TRAINING EXAMPLES.

- ZOOM-IN USING RANDOM CROP
- BRIGHTNESS ADJUSTMENT
- CONTRAST ADJUSTMENT
- SATURATION ADJUSTMENT
- HUE ADJUSTMENT
- GAUSSIAN NOISE

ARCHITECTURE U-NET **UPSAMPLING2D** 2X2 *1,*2,*4,*8 **SKIP CONNECTIONS** CONV2D CONCATENATE BASE_FILTER 3X3 CONV2D **RELU** BASE_FILTER * 16 CONV2D 3X3 BASE_FILTER CONV2D **RELU** 3X3 CONV2D 11 CLASSES 512×512×3 BASE_FILTER **RELU** SOFTMAX 3X3 CONV2D **RELU** BASE_FILTER * 16 3X3 CONV2D **RELU** BASE_FILTER **MAXPOOLING2D** 3X3 2X2 **RELU**

INPUT 512×512×3

ENCODER4 LEVELS

BOTTLENECK

DECODER 4 LEVELS + SKIP OUTPUT 11 CLASSES

SELECTION BEST LOSS AND OPTIMIZER

LOSS

- SPARSE CATEGORICAL CROSSENTROPY
- DICE LOSS
- DICE CE LOSS

OPTIMIZER

- ADAM
- RMSPROP

6 COMBINATIONS OF LOSS AND OPTIMIZER

SORTED BY IOU (INTERSECTION OVER UNION)

#1

OPTIMIZER: ADAM

LOSS FUNCTION:

DICE_CE_LOSS

VALIDATION IOU: 0.4616

FINAL VAL ACCURACY: 0.8523

FINAL VAL LOSS: 0.5379

FINAL TRAIN IOU: 0.4857

#2

OPTIMIZER: ADAM

LOSS FUNCTION:

SPARSE_CATEGORICAL_CROSSENTROPY

VALIDATION IOU: 0.3865

FINAL VAL ACCURACY: 0.8424

FINAL VAL LOSS: 0.5617

FINAL TRAIN IOU: 0.4254

#3

OPTIMIZER: RMSPROP

LOSS FUNCTION:

SPARSE_CATEGORICAL_CROSSENTROPY

VALIDATION IOU: 0.3224

FINAL VALACCURACY: 0.7478

FINAL VAL LOSS: 0.8293

FINAL TRAIN IOU: 0.3192

TUNE HYPERPARAMETERS

HYPERPARAMETER TUNING

BASE FILTERS: [8, 16, 32]

LEARNING RATE: [0.01, 0.001, 0.0001]

ALPHA = [0.2 - 0.8, STEP = 0.1] *

SMOOTH = [0.2 - 0.8, STEP = 0.1] **

IF **DICE_CE_LOSS** SELECTED**
IF **DICE_LOSS** SELECTED**

MORE INFO:

TUNING STRATEGY: KERAS TUNER — HYPERBAND **OBJECTIVE**: MAXIMIZE VALIDATION IOU (VAL_IOU)

MAX EPOCHS PER TRIAL: 20

FACTOR: 3

PATIENCE: 5 EPOCHS

BEST HYPERPARAMETERS FOUND:

LOSS: DICE_CE_LOSS, OPTIMIZER: ADAM, BASE FILTERS: 32, LEARNING RATE: 0.001, ALPHA: 0.2

RESULTS

THESE ARE THE FINAL RESULTS OF THE MODEL ON THE TEST SET: **IOU:** 0.4447— **ACCURACY:** 0.8062— **LOSS:** 0.5849.

IOU PER CLASS (SORTED):

CLASS 3 (ROAD): IOU = 0.9163

CLASS 0 (SKY): IOU = 0.8722

CLASS 4 (PAVEMENT): IOU = 0.7824

CLASS 5 (TREE): IOU = 0.7789

CLASS 1 (BUILDING): IOU = 0.7551

CLASS 8 (CAR): IOU = 0.7056

CLASS 10 (BICYCLIST): IOU = 0.6649

CLASS 9 (PEDESTRIAN): IOU = 0.5794

CLASS 7 (FENCE): IOU = 0.5706

CLASS 2 (POLE): IOU = 0.5594

CLASS 6 (SIGN/SYMBOL): IOU = 0.5392

RESULTS

REAL

PREDICTED

ADDITIONAL TRIALS

OFFLINE DATA AUGMENTATION

IN ADDITION TO ONLINE DATA AUGMENTATION

CONV2D TRANSPOSE

INSTEAD OF UPSAMPLING

INSTANCE NORMALIZATION

AFTER EACH CONVOLUTIONAL LAYER

SPATIAL DROPOUT

IN EACH BLOCK

ATTENTION GATES

BEFORE CONCATENATION

WHY IT DIDN'T PERFORM BETTER?

- EXCESSIVE COMPLEXITY WITH FEW DATA
- NEED MORE EPOCHS TO FULLY CONVERGE
- OPTIMIZATION PROCESS MORE CHALLENGING AND SENSITIVE TO HYPERPARAMETERS.
- EXCESSIVE DROPOUT OR UNREALISTIC OFFLINE AUGMENTATION MADE LOSE THE POWER OF GENERALIZATION

NEED FURTHER ANALYSIS

REFERENCES

LONG, J., SHELHAMER, E., & DARRELL, T. (2015). **FULLY CONVOLUTIONAL NETWORKS FOR SEMANTIC SEGMENTATION.**

RONNEBERGER, O., FISCHER, P., & BROX, T. (2015). U-NET: CONVOLUTIONAL NETWORKS FOR BIOMEDICAL IMAGE

ZHANG, Y., YANG, R., WANG, J., CHEN, N., & DAI, Q. (2021). THE IMPACT OF PARAMETERS ON SEMANTIC SEGMENTATION

ERIŞEN, S. (2024). SERNET-FORMER: **SEMANTIC SEGMENTATION BY EFFICIENT RESIDUAL NETWORK WITH ATTENTION-BOOSTING GATES AND ATTENTION-FUSION NETWORKS**.

THANKYOU QUESTIONS?

