Homework Assignment 1

Matthew Tiger

February 1, 2016

Problem 1. To be comprehensive, the second derivative test for two-variable functions f = f(x, y) studied in Calculus III should contain (among others) the cases:

a.
$$D(a,b) > 0$$
 and $f_{xx}(a,b) = 0$,

b.
$$D(a,b) = 0$$
 and $f_{xx}(a,b) = 0$.

Why aren't these cases considered? Explain.

Solution. \Box

Problem 2. Recall that

- (a,b) is called an absolute maximum of f=f(x,y) on a domain $D\subset \mathbb{R}^2$ if $f(x,y)\leq f(a,b)$ for every $(x,y)\in D$.
- (The Extreme Value) If f is continuous and D is closed and bounded, then f attains both an absolute maximum value and an absolute minimum value.
- a. Describe in steps (and in words) how one finds absolute extrema for a two-variable function f = f(x, y) on a closed bounded $D \subset \mathbb{R}^2$.
- b. Apply your procedure derived in (a) to find absolute extrema for $f(x,y) = 2x^3 + xy^2 + xy^2 + 5x^2 + y^2$ over the rectangle $D := \{(x,y) \mid -2 \le x \le 3, 0 \le y \le 2\}$.

 \square

Problem 3. Consider the optimization problem:

Min (Max)
$$f(x_1, x_2, \dots, x_n)$$
subject to
$$g_1(x_1, x_2, \dots, x_n) = k_1$$

$$g_2(x_1, x_2, \dots, x_n) = k_2$$

$$\vdots$$

$$g_m(x_1, x_2, \dots, x_n) = k_m$$

- a. Formulate the Lagrangean and describe how we should proceed in order to solve such a problem.
- b. Find the relative extrema of f(x, y, z) = x + 2y + 3z subject to $x y + z = 1, x^2 + y^2 = 1$. Solution.

Problem	4.	Solve the shipping	probler	n studied	in MATH	111 if we	replace the	constrai	nt
$x + 2y \le$	100	by the constraint	x + 2y	$\leq 625/6$.	Use Math	nematica	to (at least)	graph t	he
feasible se	t.								

 \square

Problem 5. Suppose that f, f_1, f_2 are convex functions and $a \geq 0$.	Prove that af and
$f_1 + f_2$ are convex functions.	
Solution.	

Problem 6. For $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ we define its *epigraph* as the set

epi
$$f = \{(x, \beta) \in \mathbb{R}^n \times \mathbb{R} | f(x) \leq \beta\} \subset \mathbb{R}^{n+1}$$
.

Prove that f is convex if and only if epi f is convex.

Solution. \Box