exploración de datos, creación de variables y procesamiento base OCDE2021

```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np

In [2]: GEIH_2022 = pd.read_csv("GEIH_2022.csv")
   SalarioMedio = pd.read_csv("baseingreso.csv")
   GEIH_2022 = pd.merge(GEIH_2022, SalarioMedio, on=["DIRECTORIO", 'SECUENCIA_P', 'ORDEN']
   GEIH_2022

Out[2]: Unnamed: DIRECTORIO_SECUENCIA_P_ORDEN___Seve__lefeHogar____Etnia_CotizaEPS_Pa
```

]:		Unnamed: 0_x	DIRECTORIO	SECUENCIA_P	ORDEN	Sexo	JefeHogar	Etnia	CotizaEPS	Pa
	0	0	5000000	1	1	Hombre	JEFEHO	Ninguno	2	
	1	1	5000001	1	1	Hombre	JEFEHO	Ninguno	1	
	2	2	5000001	1	2	Mujer	2	Ninguno	1	
	3	3	5000001	1	3	Hombre	3	Ninguno	1	
	4	4	5000002	1	1	Mujer	JEFEHO	Ninguno	2	
	•••									
	382456	30500	7309048	1	2	Hombre	2	Ninguno	1	
	382457	30501	7309048	1	3	Hombre	3	Ninguno	1	
	382458	30502	7309049	1	1	Mujer	JEFEHO	Ninguno	1	
	382459	30503	7309050	1	1	Hombre	JEFEHO	Ninguno	1	
	382460	30504	7309050	1	2	Mujer	2	Ninguno	2	

382461 rows × 26 columns

En las siguientes celdas voy a calcular la informalidad por departamento, creando nuevos dataframes por departamento através de filtraciones y asignando a una variable, los cuales también me servirán más adelante.

```
In [3]: Total_Expansion = GEIH_2022["FactorExpansion"].sum()
In [4]: Antioquia = GEIH_2022["Departamento"] == "Antioquia"
   Antioquia = GEIH_2022[Antioquia]
In [5]: Ponderacion_Antioquia = Antioquia["Ponderacion"].sum()
   Expansion_Antioquia = Antioquia["FactorExpansion"].sum()
```

```
AntioquiaOI = (Ponderacion_Antioquia / Expansion_Antioquia ) * 100
         Antioquia0I
         46.38657345146848
Out[5]:
In [6]:
         Antioquia_proporcion = (Ponderacion_Antioquia / Total_Expansion ) * 100
         Antioquia_proporcion
         6.498087656965194
Out[6]:
         Antioquia_Dict1 = {"AntioquiaOI": 46.386}
In [7]:
         Antioquia_Dict2 = {"Antioquia_proporcion": 6.49}
         print(Antioquia_Dict1, Antioquia_Dict2)
         {'AntioquiaOI': 46.386} {'Antioquia_proporcion': 6.49}
In [8]: Amazonas = GEIH_2022["Departamento"] == "Amazonas"
         Amazonas = GEIH_2022[Amazonas]
         Ponderacion Amazonas = Amazonas["Ponderacion"].sum()
In [9]:
         Expansion_Amazonas = Amazonas["FactorExpansion"].sum()
         AmazonasOI = (Ponderacion_Amazonas / Expansion_Amazonas ) * 100
         Amazonas0I
         56.530141951917344
Out[9]:
         Amazonas_proporcion = (Ponderacion_Amazonas / Total_Expansion ) * 100
In [10]:
         Amazonas proporcion
         0.03564094090630834
Out[10]:
In [11]: Amazonas_Dict1 = {"AmazonasOI": 56.53}
         Amazonas Dict2 = {"Amazonas proporcion": 0.035}
         print(Amazonas_Dict1, Amazonas_Dict2)
         {'AmazonasOI': 56.53} {'Amazonas proporcion': 0.035}
In [12]:
         Arauca = GEIH_2022["Departamento"] == "Arauca"
         Arauca = GEIH_2022[Arauca]
         Ponderacion Arauca = Arauca["Ponderacion"].sum()
In [13]:
         Expansion_Arauca = Arauca["FactorExpansion"].sum()
         AraucaOI = (Ponderacion_Arauca / Expansion_Arauca ) * 100
         Arauca0I
         55.438692242022
Out[13]:
In [14]: | Arauca_proporcion = (Ponderacion_Arauca / Total_Expansion ) * 100
         Arauca_proporcion
         0.0733639703812805
Out[14]:
In [15]: Arauca_Dict1 = {"Arauca0I": 55.43}
         Arauca_Dict2 = {"Arauca_proporcion": 0.07}
         print(Arauca_Dict1, Arauca_Dict2)
         {'Arauca0I': 55.43} {'Arauca_proporcion': 0.07}
```

```
Atlantico = GEIH_2022["Departamento"] == "Atlantico"
In [16]:
         Atlantico = GEIH_2022[Atlantico]
         Ponderacion_Atlantico = Atlantico["Ponderacion"].sum()
In [17]:
         Expansion_Atlantico = Atlantico["FactorExpansion"].sum()
         AtlanticoOI = (Ponderacion_Atlantico / Expansion_Atlantico ) * 100
         AtlanticoOI
         56.29104154232372
Out[17]:
In [18]: Atlantico_proporcion = (Ponderacion_Atlantico / Total_Expansion ) * 100
         Atlantico_proporcion
         3.163019294081505
Out[18]:
In [19]: Atlantico_Dict1 = {"AtlanticoOI": 56.29}
         Atlantico_Dict2 = {"Atlantico_proporcion": 3.16}
         print(Atlantico_Dict1, Atlantico_Dict2)
         {'AtlanticoOI': 56.29} {'Atlantico_proporcion': 3.16}
         Bogota = GEIH_2022["Departamento"] == "Bogota"
In [20]:
         Bogota = GEIH_2022[Bogota]
In [21]:
         Ponderacion_Bogota = Bogota["Ponderacion"].sum()
         Expansion_Bogota = Bogota["FactorExpansion"].sum()
         BogotaOI = (Ponderacion_Bogota / Expansion_Bogota ) * 100
         Bogota0I
         34.043009971725205
Out[21]:
         Bogota_proporcion = (Ponderacion_Bogota / Total_Expansion ) * 100
In [22]:
         Bogota_proporcion
         5.9081138387870675
Out[22]:
In [23]:
         Bogota Dict1 = {"BogotaOI": 34.04}
         Bogota_Dict2 = {"Bogota_proporcion": 5.9}
         print(Bogota_Dict1, Bogota_Dict2)
         {'BogotaOI': 34.04} {'Bogota_proporcion': 5.9}
         Bolivar = GEIH_2022["Departamento"] == "Bolivar"
In [24]:
         Bolivar = GEIH_2022[Bolivar]
         Ponderacion_Bolivar = Bolivar["Ponderacion"].sum()
In [25]:
         Expansion_Bolivar = Bolivar["FactorExpansion"].sum()
         BolivarOI = (Ponderacion_Bolivar / Expansion_Bolivar ) * 100
         Bolivar0I
         66.46884998271464
Out[25]:
         Bolivar_proporcion = (Ponderacion_Bolivar / Total_Expansion ) * 100
In [26]:
         Bolivar_proporcion
         2.8037539161212655
Out[26]:
```

```
Bolivar_Dict1 = {"BolivarOI": 66.46}
In [27]:
         Bolivar_Dict2 = {"Bolivar_proporcion": 2.80}
         print(Bolivar_Dict1, Bolivar_Dict2)
         {'BolivarOI': 66.46} {'Bolivar_proporcion': 2.8}
         Boyaca = GEIH 2022["Departamento"] == "Boyaca"
In [28]:
         Boyaca = GEIH_2022[Boyaca]
         Ponderacion_Boyaca = Boyaca["Ponderacion"].sum()
In [29]:
         Expansion_Boyaca = Boyaca["FactorExpansion"].sum()
         BoyacaOI = (Ponderacion_Boyaca / Expansion_Boyaca ) * 100
         Boyaca0I
         61.63283850996487
Out[29]:
         Boyaca_proporcion = (Ponderacion_Boyaca / Total_Expansion ) * 100
In [30]:
         Boyaca proporcion
         1.5383176184199274
Out[30]:
         Boyaca_Dict1 = {"BoyacaOI": 61.63}
In [31]:
         Boyaca_Dict2 = {"Boyaca_proporcion": 1.53}
         print(Boyaca_Dict1, Boyaca_Dict2)
         {'BoyacaOI': 61.63} {'Boyaca_proporcion': 1.53}
         Caldas = GEIH_2022["Departamento"] == "Caldas"
In [32]:
         Caldas = GEIH_2022[Caldas]
In [33]:
         Ponderacion_Caldas= Caldas["Ponderacion"].sum()
         Expansion_Caldas = Caldas["FactorExpansion"].sum()
         CaldasOI = (Ponderacion_Caldas / Expansion_Caldas ) * 100
         Caldas0I
         45.801086670470696
Out[33]:
         Caldas_proporcion = (Ponderacion_Caldas / Total_Expansion ) * 100
In [34]:
         Caldas proporcion
         0.9073280655993209
Out[34]:
In [35]: Caldas_Dict1 = {"CaldasOI": 45.80}
         Caldas_Dict2 = {"Caldas_proporcion": 0.90}
         print(Caldas_Dict1, Caldas_Dict2)
         {'CaldasOI': 45.8} {'Caldas_proporcion': 0.9}
In [36]:
         Caqueta = GEIH_2022["Departamento"] == "Caqueta"
         Caqueta = GEIH_2022[Caqueta]
         Ponderacion_Caqueta= Caqueta["Ponderacion"].sum()
In [37]:
         Expansion_Caqueta = Caqueta["FactorExpansion"].sum()
         CaquetaOI = (Ponderacion_Caqueta / Expansion_Caqueta) * 100
         Caqueta0I
```

```
67.76199436457188
Out[37]:
         Caqueta_proporcion = (Ponderacion_Caqueta / Total_Expansion ) * 100
In [38]:
         Caqueta_proporcion
         0.4978812507998306
Out[38]:
In [39]:
         Caqueta Dict1 = {"CaquetaOI": 67.76}
         Caqueta_Dict2 = {"Caqueta_proporcion": 0.49}
         print(Caqueta_Dict1, Caqueta_Dict2)
         {'CaquetaOI': 67.76} {'Caqueta_proporcion': 0.49}
         Casanare = GEIH_2022["Departamento"] == "Casanare"
In [40]:
          Casanare = GEIH 2022[Casanare]
         Ponderacion_Casanare = Casanare["Ponderacion"].sum()
In [41]:
          Expansion_Casanare = Casanare["FactorExpansion"].sum()
         CasanareOI = (Ponderacion_Casanare / Expansion_Casanare) * 100
         Casanare0I
         54.79327782256384
Out[41]:
         Casanare_proporcion = (Ponderacion_Casanare / Total_Expansion ) * 100
In [42]:
         Casanare proporcion
         0.19371167347193727
Out[42]:
In [43]: Casanare_Dict1 = {"CasanareOI": 54.79}
         Casanare_Dict2 = {"Casanare_proporcion": 0.19}
         print(Casanare_Dict1, Casanare_Dict2)
         {'CasanareOI': 54.79} {'Casanare_proporcion': 0.19}
In [44]: Cauca = GEIH_2022["Departamento"] == "Cauca"
         Cauca = GEIH_2022[Cauca]
         Ponderacion_Cauca = Cauca["Ponderacion"].sum()
In [45]:
         Expansion Cauca = Cauca["FactorExpansion"].sum()
         CaucaOI = (Ponderacion_Cauca / Expansion_Cauca) * 100
         Cauca0I
         68.5320051962991
Out[45]:
         Cauca_proporcion = (Ponderacion_Cauca / Total_Expansion ) * 100
In [46]:
         Cauca_proporcion
         2.003128938731382
Out[46]:
In [47]: Cauca_Dict1 = {"CaucaOI": 68.53}
         Cauca_Dict2 = {"Cauca_proporcion": 2.0}
         print(Cauca_Dict1, Cauca_Dict2)
         {'CaucaOI': 68.53} {'Cauca_proporcion': 2.0}
```

```
In [48]:
         Cesar = GEIH_2022["Departamento"] == "Cesar"
         Cesar = GEIH_2022[Cesar]
         Ponderacion_Cesar = Cesar["Ponderacion"].sum()
In [49]:
         Expansion_Cesar = Cesar["FactorExpansion"].sum()
         CesarOI = (Ponderacion_Cesar / Expansion_Cesar) * 100
         Cesar0I
         63.64707488063358
Out[49]:
In [50]:
         Cesar_proporcion = (Ponderacion_Cesar / Total_Expansion ) * 100
         Cesar_proporcion
         1.3904930133130755
Out[50]:
In [51]: Cesar_Dict1 = {"CesarOI": 63.64}
         Cesar_Dict2 = {"Cesar_proporcion": 1.39}
         print(Cesar_Dict1, Cesar_Dict2)
         {'CesarOI': 63.64} {'Cesar_proporcion': 1.39}
         Choco = GEIH_2022["Departamento"] == "Choco"
In [52]:
         Choco = GEIH_2022[Choco]
         Ponderacion_Choco = Choco["Ponderacion"].sum()
In [53]:
          Expansion_Choco = Choco["FactorExpansion"].sum()
         ChocoOI = (Ponderacion_Choco/ Expansion_Choco) * 100
         Choco0I
         67.90588155052221
Out[53]:
         Choco_proporcion = (Ponderacion_Choco / Total_Expansion ) * 100
In [54]:
         Choco_proporcion
         0.45284206799815857
Out[54]:
In [55]: Choco_Dict1 = {"ChocoOI": 67.9}
         Choco_Dict2 = {"Choco_proporcion": 0.45}
         print(Choco_Dict1, Choco_Dict2)
         {'ChocoOI': 67.9} {'Choco_proporcion': 0.45}
         Cordoba = GEIH_2022["Departamento"] == "Cordoba"
In [56]:
         Cordoba = GEIH_2022[Cordoba]
         Ponderacion_Cordoba = Cordoba["Ponderacion"].sum()
In [57]:
         Expansion_Cordoba = Cordoba["FactorExpansion"].sum()
         CordobaOI = (Ponderacion_Cordoba/ Expansion_Cordoba) * 100
         Cordoba0I
         68.90075980556057
Out[57]:
         Cordoba_proporcion = (Ponderacion_Cordoba / Total_Expansion ) * 100
In [58]:
         Cordoba proporcion
         2.381319335244939
Out[58]:
```

```
Cordoba_Dict1 = {"CordobaOI": 68.9}
In [59]:
         Cordoba_Dict2 = {"Cordoba_proporcion": 2.38}
         print(Cordoba_Dict1, Cordoba_Dict2)
         {'CordobaOI': 68.9} {'Cordoba_proporcion': 2.38}
         Cundinamarca = GEIH 2022["Departamento"] == "Cundinamarca"
In [60]:
         Cundinamarca = GEIH_2022[Cundinamarca]
         Ponderacion_Cundinamarca = Cundinamarca["Ponderacion"].sum()
In [61]:
         Expansion_Cundinamarca = Cundinamarca["FactorExpansion"].sum()
         CundinamarcaOI = (Ponderacion Cundinamarca / Expansion Cundinamarca) * 100
         CundinamarcaOI
         45.405352417363694
Out[61]:
         Cundinamarca_proporcion = (Ponderacion_Cundinamarca / Total_Expansion ) * 100
In [62]:
         Cundinamarca proporcion
         3.0819419658527965
Out[62]:
         Cundinamarca_Dict1 = {"CundinamarcaOI": 45.4}
In [63]:
         Cundinamarca_Dict2 = {"Cundinamarca_proporcion": 3.08}
         print(Cundinamarca_Dict1, Cundinamarca_Dict2)
         {'CundinamarcaOI': 45.4} {'Cundinamarca_proporcion': 3.08}
         Guainia = GEIH_2022["Departamento"] == "Guainia"
In [64]:
         Guainia = GEIH_2022[Guainia]
         Ponderacion_Guainia = Guainia["Ponderacion"].sum()
In [65]:
         Expansion_Guainia = Guainia["FactorExpansion"].sum()
         GuainiaOI = (Ponderacion_Guainia/ Expansion_Guainia) * 100
         GuainiaOI
         67.31040237579128
Out[65]:
         Guainia_proporcion = (Ponderacion_Guainia / Total_Expansion ) * 100
In [66]:
         Guainia proporcion
         0.027203078415667978
Out[66]:
In [67]: Guainia_Dict1 = {"GuainiaOI": 67.31}
         Guainia_Dict2 = {"Guainia_proporcion": 0.02}
         print(Guainia_Dict1, Guainia_Dict2)
         {'GuainiaOI': 67.31} {'Guainia proporcion': 0.02}
In [68]:
         Guaviare= GEIH_2022["Departamento"] == "Guaviare"
         Guaviare = GEIH_2022[Guaviare]
         Ponderacion_Guaviare = Guaviare["Ponderacion"].sum()
In [69]:
         Expansion Guaviare = Guaviare["FactorExpansion"].sum()
         GuaviareOI = (Ponderacion_Guaviare/ Expansion_Guaviare) * 100
         GuaviareOI
```

57.96794038386547

```
Out[69]:
         Guaviare_proporcion = (Ponderacion_Guaviare / Total_Expansion ) * 100
In [70]:
         Guaviare proporcion
         0.05920769228388875
Out[70]:
In [71]: Guaviare_Dict1 = {"GuaviareOI": 57.96}
         Guaviare_Dict2 = {"Guaviare_proporcion": 0.05}
         print(Guaviare_Dict1, Guaviare_Dict2)
         {'GuaviareOI': 57.96} {'Guaviare_proporcion': 0.05}
         Huila = GEIH_2022["Departamento"] == "Huila"
In [72]:
         Huila = GEIH 2022[Huila]
         Ponderacion_Huila = Huila["Ponderacion"].sum()
In [73]:
         Expansion_Huila = Huila["FactorExpansion"].sum()
         HuilaOI = (Ponderacion_Huila/ Expansion_Huila) * 100
         HuilaOI
         68.72306053091008
Out[73]:
         Huila_proporcion = (Ponderacion_Huila / Total_Expansion ) * 100
In [74]:
         Huila proporcion
         1.409507951100284
Out[74]:
In [75]: Huila_Dict1 = {"HuilaOI": 68.72}
         Huila Dict2 = {"Huila proporcion": 1.4}
         print(Huila_Dict1, Huila_Dict2)
         {'HuilaOI': 68.72} {'Huila_proporcion': 1.4}
In [76]: Guajira = GEIH_2022["Departamento"] == "Guajira"
         Guajira = GEIH_2022[Guajira]
         Ponderacion_Guajira = Guajira["Ponderacion"].sum()
In [77]:
         Expansion Guajira = Guajira["FactorExpansion"].sum()
         GuajiraOI = (Ponderacion_Guajira/ Expansion_Guajira) * 100
         Guajira0I
         76.74526964252016
Out[77]:
         Guajira_proporcion = (Ponderacion_Guajira/ Total_Expansion ) * 100
In [78]:
         Guajira_proporcion
         1.3394426608401617
Out[78]:
In [79]: Guajira_Dict1 = {"GuajiraOI": 76.74}
         Guajira_Dict2 = {"Guajira_proporcion": 1.3}
         print(Guajira_Dict1, Guajira_Dict2)
         {'GuajiraOI': 76.74} {'Guajira_proporcion': 1.3}
```

```
Magdalena = GEIH_2022["Departamento"] == "Magdalena"
In [80]:
         Magdalena = GEIH_2022[Magdalena]
         Ponderacion_Magdalena = Magdalena["Ponderacion"].sum()
In [81]:
         Expansion_Magdalena = Magdalena["FactorExpansion"].sum()
         MagdalenaOI = (Ponderacion_Magdalena/ Expansion_Magdalena) * 100
         Magdalena0I
         70.89073108924782
Out[81]:
In [82]:
         Magdalena_proporcion = (Ponderacion_Magdalena/ Total_Expansion ) * 100
         Magdalena_proporcion
         1.9070754326610948
Out[82]:
        Magdalena_Dict1 = {"MagdalenaOI": 70.89}
In [83]:
         Magdalena_Dict2 = {"Magdalena_proporcion": 1.9}
         print(Magdalena_Dict1, Magdalena_Dict2)
         {'MagdalenaOI': 70.89} {'Magdalena_proporcion': 1.9}
         Meta = GEIH_2022["Departamento"] == "Meta"
In [84]:
         Meta = GEIH_2022[Meta]
         Ponderacion_Meta = Meta["Ponderacion"].sum()
In [85]:
         Expansion_Meta= Meta["FactorExpansion"].sum()
         MetaOI = (Ponderacion_Meta/ Expansion_Meta) * 100
         Meta0I
         55.631705735447824
Out[85]:
         Meta_proporcion = (Ponderacion_Meta/ Total_Expansion ) * 100
In [86]:
         Meta_proporcion
         1.2279833131506666
Out[86]:
In [87]: Meta_Dict1 = {"MetaOI": 55.63}
         Meta_Dict2 = {"Meta_proporcion": 1.22}
         print(Meta_Dict1, Meta_Dict2)
         {'MetaOI': 55.63} {'Meta_proporcion': 1.22}
         Narino = GEIH_2022["Departamento"] == "Narino"
In [88]:
         Narino = GEIH_2022[Narino]
         Ponderacion_Narino = Narino["Ponderacion"].sum()
In [89]:
         Expansion_Narino = Narino["FactorExpansion"].sum()
         NarinoOI = (Ponderacion_Narino/ Expansion_Narino) * 100
         Narino0I
         79.11475242701762
Out[89]:
         Narino_proporcion = (Ponderacion_Narino/ Total_Expansion ) * 100
In [90]:
         Narino proporcion
         3.2266659601665713
Out[90]:
```

```
Narino_Dict1 = {"NarinoOI": 79.11}
 In [91]:
          Narino_Dict2 = {"Narino_proporcion": 3.22}
          print(Narino_Dict1, Narino_Dict2)
          {'NarinoOI': 79.11} {'Narino_proporcion': 3.22}
          NorteSantander= GEIH 2022["Departamento"] == "NorteSantander"
 In [92]:
          NorteSantander = GEIH 2022[NorteSantander]
          Ponderacion_NorteSantander = NorteSantander["Ponderacion"].sum()
 In [93]:
          Expansion_NorteSantander = NorteSantander["FactorExpansion"].sum()
          NorteSantanderOI = (Ponderacion_NorteSantander/ Expansion_NorteSantander) * 100
          NorteSantander0I
          70.90460743652932
Out[93]:
          NorteSantander_proporcion = (Ponderacion_NorteSantander/ Total_Expansion ) * 100
 In [94]:
          NorteSantander proporcion
          2.1724216490707415
Out[94]:
          NorteSantander_Dict1 = {"NorteSantanderOI": 70.90}
 In [95]:
          NorteSantander_Dict2 = {"NorteSanntander_proporcion": 2.17}
          print(NorteSantander_Dict1, NorteSantander_Dict2)
          {'NorteSantanderOI': 70.9} {'NorteSanntander_proporcion': 2.17}
          Putumayo = GEIH_2022["Departamento"] == "Putumayo"
 In [96]:
          Putumayo = GEIH_2022[Putumayo]
          Ponderacion_Putumayo = Putumayo["Ponderacion"].sum()
 In [97]:
          Expansion_Putumayo = Putumayo["FactorExpansion"].sum()
          PutumayoOI = (Ponderacion_Putumayo/ Expansion_Putumayo) * 100
          Putumayo0I
          44.86040590956706
Out[97]:
          Putumayo_proporcion = (Ponderacion_Putumayo/ Total_Expansion ) * 100
 In [98]:
          Putumayo proporcion
          0.030551788668497008
Out[98]:
 In [99]:
          Putumayo_Dict1 = {"PutumayoOI": 44.86}
          Putumayo_Dict2 = {"Putumayo_proporcion": 0.03}
          print(Putumayo_Dict1, Putumayo_Dict2)
          {'PutumayoOI': 44.86} {'Putumayo_proporcion': 0.03}
In [100...
          Quindio= GEIH_2022["Departamento"] == "Quindio"
          Quindio = GEIH_2022[Quindio]
          Ponderacion_Quindio = Quindio["Ponderacion"].sum()
In [101...
          Expansion Quindio = Quindio["FactorExpansion"].sum()
          QuindioOI = (Ponderacion_Quindio/ Expansion_Quindio) * 100
          Quindio0I
```

```
50.14380893227116
Out[101]:
           Quindio_proporcion = (Ponderacion_Quindio/ Total_Expansion ) * 100
In [102...
           Quindio proporcion
          0.5295470704575407
Out[102]:
In [103...
           Quindio Dict1 = {"QuindioOI": 50.14}
           Quindio_Dict2 = {"Quindio_proporcion": 0.52}
           print(Quindio_Dict1, Quindio_Dict2)
           {'QuindioOI': 50.14} {'Quindio_proporcion': 0.52}
           Risaralda = GEIH_2022["Departamento"] == "Risaralda"
In [104...
           Risaralda = GEIH 2022[Risaralda]
           Ponderacion_Risaralda = Risaralda["Ponderacion"].sum()
In [105...
           Expansion_Risaralda = Risaralda["FactorExpansion"].sum()
           RisaraldaOI = (Ponderacion_Risaralda/ Expansion_Quindio) * 100
           Risaralda0I
           80.49049770386942
Out[105]:
           Risaralda_proporcion = (Ponderacion_Risaralda/ Total_Expansion ) * 100
In [106...
           Risaralda proporcion
           0.8500253205001775
Out[106]:
In [107...
           Risaralda_Dict1 = {"RisaraldaOI": 80.49}
           Risaralda Dict2 = {"Risaralda proporcion": 0.85}
           print(Risaralda_Dict1, Risaralda_Dict2)
           {'RisaraldaOI': 80.49} {'Risaralda_proporcion': 0.85}
In [108...
           SanAndres = GEIH_2022["Departamento"] == "SAI"
           SanAndres = GEIH_2022[SanAndres]
In [109...
           Ponderacion_SanAndres = SanAndres["Ponderacion"].sum()
           Expansion SanAndres = SanAndres["FactorExpansion"].sum()
           SanAndresOI = (Ponderacion_SanAndres/ Expansion_SanAndres) * 100
           SanAndres0I
           40.99390678052223
Out[109]:
           SanAndres_proporcion = (Ponderacion_SanAndres/ Total_Expansion ) * 100
In [110...
           SanAndres_proporcion
          0.039638156251945424
Out[110]:
In [111...
           SanAndres_Dict1 = {"SanAndresOI": 40.99}
           SanAndres_Dict2 = {"SanAndres_proporcion": 0.03}
           print(SanAndres_Dict1, SanAndres_Dict2)
           {'SanAndresOI': 40.99} {'SanAndres_proporcion': 0.03}
```

```
Santander = GEIH_2022["Departamento"] == "Santander"
In [112...
          Santander = GEIH_2022[Santander]
          Ponderacion_Santander = Santander["Ponderacion"].sum()
In [113...
          Expansion_Santander = Santander["FactorExpansion"].sum()
          SantanderOI = (Ponderacion_Santander/ Expansion_Santander) * 100
          Santander0I
          54.0418020630734
Out[113]:
In [114...
          Santander_proporcion = (Ponderacion_Santander/ Total_Expansion ) * 100
          Santander_proporcion
          2.485914792217203
Out[114]:
In [115...
          Santander_Dict1 = {"SantanderOI": 54.04}
          Santander_Dict2 = {"Santander_proporcion": 2.48}
          print(Santander_Dict1, Santander_Dict2)
          {'SantanderOI': 54.04} {'Santander_proporcion': 2.48}
          Sucre = GEIH_2022["Departamento"] == "Sucre"
In [116...
          Sucre = GEIH_2022[Sucre]
          Ponderacion_Sucre = Sucre["Ponderacion"].sum()
In [117...
           Expansion_Sucre = Sucre["FactorExpansion"].sum()
          SucreOI = (Ponderacion_Sucre/ Expansion_Sucre) * 100
          SucreOI
          74.52802288324078
Out[117]:
          Sucre_proporcion = (Ponderacion_Sucre/ Total_Expansion ) * 100
In [118...
          Sucre_proporcion
          1.3208177701843011
Out[118]:
In [119...
          Sucre Dict1 = {"SucreOI": 74.52}
          Sucre_Dict2 = {"Sucre_proporcion": 1.32}
          print(Sucre_Dict1, Sucre_Dict2)
          {'SucreOI': 74.52} {'Sucre_proporcion': 1.32}
          Tolima = GEIH_2022["Departamento"] == "Tolima"
In [120...
          Tolima = GEIH_2022[Tolima]
          Ponderacion_Tolima = Tolima["Ponderacion"].sum()
In [121...
          Expansion_Tolima= Tolima["FactorExpansion"].sum()
          TolimaOI = (Ponderacion_Tolima/ Expansion_Tolima) * 100
          TolimaOI
          60.240769038624606
Out[121]:
          Tolima_proporcion = (Ponderacion_Tolima/ Total_Expansion ) * 100
In [122...
          Tolima proporcion
          1.4359200050681658
Out[122]:
```

```
Tolima_Dict1 = {"TolimaOI": 60.24}
In [123...
          Tolima_Dict2 = {"Tolima_proporcion": 1.43}
          print(Tolima_Dict1, Tolima_Dict2)
          {'TolimaOI': 60.24} {'Tolima_proporcion': 1.43}
          Valle = GEIH 2022["Departamento"] == "Valle"
In [124...
          Valle = GEIH 2022[Valle]
          Ponderacion_Valle = Valle["Ponderacion"].sum()
In [125...
          Expansion_Valle= Valle["FactorExpansion"].sum()
          ValleOI = (Ponderacion_Valle/ Expansion_Valle) * 100
          Valle0I
          48.90236195779351
Out[125]:
          Valle_proporcion = (Ponderacion_Valle/ Total_Expansion ) * 100
In [126...
          Valle_proporcion
          4.461335908725409
Out[126]:
          Valle_Dict1 = {"ValleOI": 48.90}
In [127...
          Valle_Dict2 = {"Valle_proporcion": 4.46}
          print(Valle_Dict1, Valle_Dict2)
          {'ValleOI': 48.9} {'Valle_proporcion': 4.46}
          Vaupes = GEIH_2022["Departamento"] == "Vaupes"
In [128...
          Vaupes = GEIH_2022[Vaupes]
          Ponderacion_Vaupes = Vaupes["Ponderacion"].sum()
In [129...
           Expansion_Vaupes= Vaupes["FactorExpansion"].sum()
          VaupesOI = (Ponderacion_Vaupes/ Expansion_Vaupes) * 100
          Vaupes0I
          37.06786867701845
Out[129]:
          Vaupes_proporcion = (Ponderacion_Vaupes/ Total_Expansion ) * 100
In [130...
          Vaupes proporcion
          0.007501439105261037
Out[130]:
          Vaupes_Dict1 = {"VaupesOI": 37.06}
In [131...
          Vaupes_Dict2 = {"Vaupes_proporcion": 0.007}
          print(Vaupes_Dict1, Vaupes_Dict2)
          {'VaupesOI': 37.06} {'Vaupes_proporcion': 0.007}
In [132...
          Vichada = GEIH_2022["Departamento"] == "Vichada"
          Vichada = GEIH_2022[Vichada]
          Ponderacion Vichada = Vichada["Ponderacion"].sum()
In [133...
          Expansion_Vichada= Vichada["FactorExpansion"].sum()
          VichadaOI = (Ponderacion_Vichada/ Expansion_Vichada) * 100
          Vichada0I
```

```
53.92285329402272
Out[133]:
           Vichada_proporcion = (Ponderacion_Vichada/ Total_Expansion ) * 100
In [134...
           Vichada proporcion
          0.01718799498399812
Out[134]:
In [135...
           Vichada Dict1 = {"VichadaOI": 53.92}
           Vichada_Dict2 = {"Vichada_proporcion": 0.01}
           print(Vichada_Dict1, Vichada_Dict2)
           {'VichadaOI': 53.92} {'Vichada_proporcion': 0.01}
           Mujer = GEIH_2022["Sexo"] == "Mujer"
In [136...
           Mujer = GEIH 2022[Mujer]
           Ponderacion_Mujer = Mujer["Ponderacion"].sum()
In [137...
           Expansion_Mujer= Mujer["FactorExpansion"].sum()
           MujerOI = (Ponderacion_Mujer/ Expansion_Mujer) * 100
           Mujer0I
          48.98320558150915
Out[137]:
In [138...
           Mujer_proporcion = (Ponderacion_Mujer/ Total_Expansion ) * 100
           Mujer proporcion
          19.992332191872684
Out[138]:
In [139...
           Mujer_Dict1 = {"MujerOI": 48.98}
           Mujer Dict2 = {"Mujer proporcion": 19.99}
           print(Mujer_Dict1, Mujer_Dict2)
           {'MujerOI': 48.98} {'Mujer_proporcion': 19.99}
In [140...
           Hombre= GEIH_2022["Sexo"] == "Hombre"
           Hombre = GEIH_2022[Hombre]
In [141...
           Ponderacion_Hombre = Hombre["Ponderacion"].sum()
           Expansion Hombre= Hombre["FactorExpansion"].sum()
           HombreOI = (Ponderacion_Hombre/ Expansion_Hombre) * 100
           HombreOI
           56.5757723766198
Out[141]:
           Hombre_proporcion = (Ponderacion_Hombre/ Total_Expansion ) * 100
In [142...
           Hombre_proporcion
           33.48455933865288
Out[142]:
In [143...
           Hombre_Dict1 = {"HombreOI": 56.57}
           Hombre_Dict2 = {"Hombre_proporcion": 33.4}
           print(Hombre_Dict1, Hombre_Dict2)
           {'HombreOI': 56.57} {'Hombre_proporcion': 33.4}
```

```
Ninguno = GEIH 2022["Etnia"] == "Ninguno"
In [144...
          Ninguno = GEIH_2022[Ninguno]
           Ponderacion_Ninguno = Ninguno["Ponderacion"].sum()
In [145...
          Ninguno_proporcion = (Ponderacion_Ninguno/ Total_Expansion ) * 100
          Ninguno proporcion
          46.35430557659932
Out[145]:
          Expansion_Ninguno= Ninguno["FactorExpansion"].sum()
In [146...
          NingunoOI = (Ponderacion_Ninguno/ Expansion_Ninguno) * 100
          Ninguno0I
          51.95624255732781
Out[146]:
In [147...
          Ninguno_Dict = {"Ninguno_proporcion": 46.35}
          Ninguno_Dict2 = {"NingunoOI": 51.95}
          print(Ninguno_Dict, Ninguno_Dict2)
          {'Ninguno_proporcion': 46.35} {'NingunoOI': 51.95}
          Indigena = GEIH_2022["Etnia"] == "Indígena"
In [148...
          Indigena = GEIH_2022[Indigena]
          Ponderacion_Indigena = Indigena["Ponderacion"].sum()
In [149...
          Indigena_proporcion = (Ponderacion_Indigena/ Total_Expansion ) * 100
          Indigena_proporcion
          2.7589362535725663
Out[149]:
In [150...
          Expansion Indigena Indigena ["FactorExpansion"].sum()
          IndigenaOI = (Ponderacion_Indigena/ Expansion_Indigena) * 100
          Indigena0I
          73.87891580185237
Out[150]:
In [151...
          Indigena Dict = {"Indigena proporcion": 2.75}
          Indigena_Dict2 = {"IndigenaOI": 73.87}
          print(Indigena_Dict,Indigena_Dict2)
          {'Indigena_proporcion': 2.75} {'IndigenaOI': 73.87}
          Afros_Mulatos = GEIH_2022["Etnia"] == "Negro_mulato_afrod_afroc"
In [152...
          Afros_Mulatos = GEIH_2022[Afros_Mulatos]
In [153...
           Ponderacion_Afros_Mulatos = Afros_Mulatos["Ponderacion"].sum()
          Afros_Mulatos_proporcion = (Ponderacion_Afros_Mulatos / Total_Expansion ) * 100
          Afros_Mulatos_proporcion
          4.3178153437973785
Out[153]:
          Expansion_Afros_Mulatos= Afros_Mulatos["FactorExpansion"].sum()
In [154...
          Afros_MulatosOI = (Ponderacion_Afros_Mulatos/ Expansion_Afros_Mulatos) * 100
          Afros MulatosOI
          61.973973184321395
Out[154]:
```

```
Afros_Mulatos_Dict = {"Afros_Mulatos_proporcion": 4.31}
In [155...
          Afros_Mulatos_Dict2 = {"Afros_MulatosOI": 61.97}
          print(Afros_Mulatos_Dict, Afros_Mulatos_Dict2)
          {'Afros_Mulatos_proporcion': 4.31} {'Afros_MulatosOI': 61.97}
In [156...
          Gitano = GEIH 2022["Etnia"] == "Gitano"
          Gitano = GEIH_2022[Gitano]
          Ponderacion_Gitano = Gitano["Ponderacion"].sum()
In [157...
          Gitano_proporcion = (Ponderacion_Gitano/ Total_Expansion ) * 100
          Gitano_proporcion
          0.007186057774803632
Out[157]:
In [158...
          Gitano_Dict = {"Gitano_proporcion": 0.007}
          Gitano_Dict
          {'Gitano_proporcion': 0.007}
Out[158]:
          Palenquero = GEIH_2022["Etnia"] == "Palenquero"
In [159...
          Palenquero = GEIH_2022[Palenquero]
          Ponderacion_Palenquero = Palenquero["Ponderacion"].sum()
In [160...
          Palenquero_proporcion = (Ponderacion_Palenquero/ Total_Expansion ) * 100
          Palenquero_proporcion
          0.01946446505261181
Out[160]:
          Palenquero_Dict = {"Palenquero_proporcion": 0.01}
In [161...
          Palenquero_Dict
          {'Palenquero_proporcion': 0.01}
Out[161]:
          Raizal_SAI= GEIH_2022["Etnia"] == "Raizal_SAI"
In [162...
          Raizal_SAI = GEIH_2022[Raizal_SAI]
          Ponderacion_Raizal_SAI = Raizal_SAI["Ponderacion"].sum()
In [163...
          Raizal_SAI_proporcion = (Ponderacion_Raizal_SAI/ Total_Expansion ) * 100
          Raizal_SAI_proporcion
          0.01918383372887771
Out[163]:
          Raizal_SAI_Dict = {"Raizal_SAI_proporcion": 0.01}
In [164...
          Raizal SAI Dict
          {'Raizal_SAI_proporcion': 0.01}
Out[164]:
          print([Antioquia_Dict1, Amazonas_Dict1, Arauca_Dict1, Atlantico_Dict1, Bogota_Dict1, E
In [165...
                                                      Caldas_Dict1, Caqueta_Dict1, Casanare_Dict1,
                                                      Choco_Dict1, Cordoba_Dict1, Guainia_Dict1, @
                                                      Meta_Dict1, Narino_Dict1, NorteSantander_Dic
                                                      Santander_Dict1, Sucre_Dict1, Tolima_Dict1,
```

```
[{'AntioquiaOI': 46.386}, {'AmazonasOI': 56.53}, {'AraucaOI': 55.43}, {'AtlanticoOI': 56.29}, {'BogotaOI': 34.04}, {'BolivarOI': 66.46}, {'BoyacaOI': 61.63}, {'CaldasOI': 45.8}, {'CaquetaOI': 67.76}, {'CasanareOI': 54.79}, {'CaucaOI': 68.53}, {'CesarOI': 63.64}, {'CundinamarcaOI': 45.4}, {'ChocoOI': 67.9}, {'CordobaOI': 68.9}, {'GuainiaOI': 67.31}, {'GuaviareOI': 57.96}, {'HuilaOI': 68.72}, {'GuajiraOI': 76.74}, {'MagdalenaOI': 70.89}, {'MetaOI': 55.63}, {'NarinoOI': 79.11}, {'NorteSantanderOI': 70.9}, {'PutumayoOI': 44.86}, {'QuindioOI': 50.14}, {'RisaraldaOI': 80.49}, {'SanAndresOI': 40.99}, {'SantanderOI': 54.04}, {'SucreOI': 74.52}, {'TolimaOI': 60.24}, {'ValleOI': 48.9}, {'VaupesOI': 37.06}, {'VichadaOI': 53.92}]
```

In [166...

[{'Antioquia_proporcion': 6.49}, {'Amazonas_proporcion': 0.035}, {'Arauca_proporcion': 0.07}, {'Atlantico_proporcion': 3.16}, {'Bogota_proporcion': 5.9}, {'Bolivar_proporcion': 2.8}, {'Boyaca_proporcion': 1.53}, {'Caldas_proporcion': 0.9}, {'Caqueta_proporcion': 0.49}, {'Casanare_proporcion': 0.19}, {'Cauca_proporcion': 2.0}, {'Cesar_proporcion': 1.39}, {'Cundinamarca_proporcion': 3.08}, {'Choco_proporcion': 0.45}, {'Cordoba_proporcion': 2.38}, {'Guainia_proporcion': 0.02}, {'Guaviare_proporcion': 0.05}, {'Huila_proporcion': 1.4}, {'Guajira_proporcion': 1.3}, {'Magdalena_proporcion': 1.9}, {'Meta_proporcion': 1.22}, {'Narino_proporcion': 3.22}, {'NorteSanntander_proporcion': 2.17}, {'Putumayo_proporcion': 0.03}, {'Quindio_proporcion': 0.52}, {'Risaral da_proporcion': 0.85}, {'SanAndres_proporcion': 0.03}, {'Santander_proporcion': 2.4}, {'Sucre_proporcion': 1.32}, {'Tolima_proporcion': 1.43}, {'Valle_proporcion': 4.4}, {'Vaupes_proporcion': 0.007}, {'Vichada_proporcion': 0.01}]

In [167... Dptos_informalidad = {'Antioquia': 46.386, 'Amazonas': 56.53, 'Arauca': 55.43, 'Atlant

In [168... Informalidad_Departamentos = pd.DataFrame(list(Dptos_informalidad.items()), columns=['
Informalidad_Departamentos

$\cap \cup +$	[168]	
Out	TOO	

	Departamento	%informalidad
0	Antioquia	46.386
1	Amazonas	56.530
2	Arauca	55.430
3	Atlantico	56.290
4	Bogota	34.040
5	Bolivar	66.460
6	Boyaca	61.630
7	Caldas	45.800
8	Caqueta	67.760
9	Casanare	54.790
10	Cauca	68.530
11	Cesar	63.640
12	Cundinamarca	45.400
13	Choco	67.900
14	Cordoba	68.900
15	Guainia	67.310
16	Guaviare	57.960
17	Huila	68.720
18	Guajira	76.740
19	Magdalena	70.890
20	Meta	55.630
21	Narino	79.110
22	NorteSantander	70.900
23	Putumayo	44.860
24	Quindio	50.140
25	Risaralda	80.490
26	SanAndres	40.990
27	Santander	54.040
28	Sucre	74.520
29	Tolima	60.240
30	Valle	48.900
31	Vaupes	37.060
32	Vichada	53.920

```
In [169... Dptos_proporciones = {'Antioquia': 6.49, 'Amazonas': 0.035, 'Arauca': 0.07, 'Atlantico'
In [170... Proporciones_Departamentos = pd.DataFrame(list(Dptos_proporciones.items()), columns=['Proporciones_Departamentos]
```

•			
Out[170]:		Departamento	proporcion_informalidad_nacional
	0	Antioquia	6.490
	1	Amazonas	0.035
	2	Arauca	0.070
	3	Atlantico	3.160
	4	Bogota	5.900
	5	Bolivar	2.800
	6	Boyaca	1.530
	7	Caldas	0.900
	8	Caqueta	0.490
	9	Casanare	0.190
	10	Cauca	2.000
	11	Cesar	1.390
	12	Cundinamarca	3.080
	13	Choco	0.450
	14	Cordoba	2.380
	15	Guainia	0.020
	16	Guaviare	0.050
	17	Huila	1.400
	18	Guajira	1.300
	19	Magdalena	1.900
	20	Meta	1.220
	21	Narino	3.220
	22	NorteSantander	2.170
	23	Putumayo	0.030
	24	Quindio	0.520
	25	Risaralda	0.850
	26	SanAndres	0.030
	27	Santander	2.480
	28	Sucre	1.320
	29	Tolima	1.430
	30	Valle	4.460
	31	Vaupes	0.007
	32	Vichada	0.010

In [171... Departamentos = pd.merge(Informalidad_Departamentos, Proporciones_Departamentos, on=["[Departamentos.to_csv("Departamentos.csv")]
 Departamentos

Out[171]:		Departamento	%informalidad	proporcion_informalidad_nacional
	0	Antioquia	46.386	6.490
	1	Amazonas	56.530	0.035
	2	Arauca	55.430	0.070
	3	Atlantico	56.290	3.160
	4	Bogota	34.040	5.900
	5	Bolivar	66.460	2.800
	6	Boyaca	61.630	1.530
	7	Caldas	45.800	0.900
	8	Caqueta	67.760	0.490
	9	Casanare	54.790	0.190
	10	Cauca	68.530	2.000
	11	Cesar	63.640	1.390
	12	Cundinamarca	45.400	3.080
	13	Choco	67.900	0.450
	14	Cordoba	68.900	2.380
	15	Guainia	67.310	0.020
	16	Guaviare	57.960	0.050
	17	Huila	68.720	1.400
	18	Guajira	76.740	1.300
	19	Magdalena	70.890	1.900
	20	Meta	55.630	1.220
	21	Narino	79.110	3.220
	22	NorteSantander	70.900	2.170
	23	Putumayo	44.860	0.030
	24	Quindio	50.140	0.520
	25	Risaralda	80.490	0.850
	26	SanAndres	40.990	0.030
	27	Santander	54.040	2.480
	28	Sucre	74.520	1.320
	29	Tolima	60.240	1.430
	30	Valle	48.900	4.460
	31	Vaupes	37.060	0.007
	32	Vichada	53.920	0.010

```
Informalidad_Sexo = {'Mujer': 48.98, 'Hombre': 56.57}
In [172...
           Informalidad_proporcion = {'Mujer': 19.99, "Hombre": 33.4}
           Informalidad_Sexo = pd.DataFrame(list(Informalidad_Sexo.items()), columns=["Sexo","%Ir
In [173...
           Informalidad Sexo
Out[173]:
                Sexo %Informalidad
                              48.98
           0
               Mujer
                              56.57
           1 Hombre
           Informalidad_proporcion = pd.DataFrame(list(Informalidad_proporcion.items()), columns=
In [174...
           Informalidad_proporcion
Out[174]:
                Sexo Proporcion
                           19.99
           0
               Mujer
                           33.40
           1 Hombre
           Sexo = pd.merge(Informalidad_Sexo,Informalidad_proporcion, on=["Sexo"])
In [175...
           Sexo.to_csv("Sexo.csv")
           Sexo
                      %Informalidad Proporcion
Out[175]:
                Sexo
               Mujer
                              48.98
                                         19.99
              Hombre
                              56.57
                                         33.40
           Informalidad_Etnias = {"Afros_Mulatos": 61.97, "Indigena": 73.87, 'Ninguno': 51.95}
In [176...
           Informalidad_Etnias = pd.DataFrame(list(Informalidad_Etnias.items()), columns=["Etnia"
           Informalidad_Etnias.to_csv("Etnias.csv")
           Informalidad Etnias
                    Etnia %informalidad
Out[176]:
           O Afros_Mulatos
                                  61.97
           1
                  Indigena
                                   73.87
           2
                                  51.95
                  Ninguno
           GEIH_2022["NivelEducativo"]=GEIH_2022["NivelEducativo"].replace(["Ninguno", "Preescola
In [177...
                                                                                ["Ninguno", "Secunda
           Ninguno = GEIH_2022["NivelEducativo"] == "Ninguno"
In [178...
           Ninguno = GEIH_2022[Ninguno]
           Ponderacion_Ninguno = Ninguno["Ponderacion"].sum()
In [179...
           Expansion_Ninguno = Ninguno["FactorExpansion"].sum()
           NingunoOI = (Ponderacion_Ninguno/ Expansion_Ninguno) * 100
           Ninguno0I
```

```
79.85645168395871
Out[179]:
           Secundaria menos= GEIH 2022["NivelEducativo"] == "Secundaria≤"
In [180...
           Secundaria_menos = GEIH_2022[Secundaria_menos]
           Ponderacion_Secundaria_menos = Secundaria_menos["Ponderacion"].sum()
In [181...
           Expansion_Secundaria_menos = Secundaria_menos["FactorExpansion"].sum()
           Secundaria menosOI = (Ponderacion Secundaria menos/ Expansion Secundaria menos) * 100
           Secundaria menosOI
           73.3179252854153
Out[181]:
           Bachillerato= GEIH_2022["NivelEducativo"] == "Bachillerato"
In [182...
           Bachillerato = GEIH_2022[Bachillerato]
In [183...
           Ponderacion_Bachillerato = Bachillerato["Ponderacion"].sum()
           Expansion_Bachillerato = Bachillerato["FactorExpansion"].sum()
           BachilleratoOI = (Ponderacion_Bachillerato/ Expansion_Bachillerato) * 100
           BachilleratoOI
           55.244577292549565
Out[183]:
           Superior = GEIH 2022["NivelEducativo"] == "Superior"
In [184...
           Superior = GEIH_2022[Superior]
           Ponderacion_Superior= Superior["Ponderacion"].sum()
In [185...
           Expansion_Superior = Superior["FactorExpansion"].sum()
           SuperiorOI = (Ponderacion_Superior/ Expansion_Superior) * 100
           SuperiorOI
           30.71889909869147
Out[185]:
In [186...
           SuperiorT = GEIH 2022["NivelEducativo"] == "SuperiorT"
           SuperiorT = GEIH_2022[SuperiorT]
           Ponderacion_SuperiorT= SuperiorT["Ponderacion"].sum()
In [187...
           Expansion_SuperiorT = SuperiorT["FactorExpansion"].sum()
           SuperiorTOI = (Ponderacion_SuperiorT/ Expansion_SuperiorT) * 100
           SuperiorTOI
           37.08281166136646
Out[187]:
           Superior2 = GEIH 2022["NivelEducativo"] == "Superior+"
In [188...
           Superior2 = GEIH_2022[Superior2]
           Ponderacion_Superior2= Superior2["Ponderacion"].sum()
In [189...
           Expansion_Superior2 = Superior2["FactorExpansion"].sum()
           Superior20I = (Ponderacion Superior2/ Expansion Superior2) * 100
           Superior20I
           13.732699514916652
Out[189]:
           NivelesEducativos = {"Ninguno":79.85, "Secundaria≤": 73.31, "Bachillerato":55.24, "Sur
In [190...
```

Out[

In [191... Informalidad_NivelEducacion = pd.DataFrame(list(NivelesEducativos.items()), columns=['
Informalidad_NivelEducacion.to_csv("NivelesEducativos.csv")
Informalidad_NivelEducacion

Out[191]:		Nivel	%Informalidad
	0	Ninguno	79.85
	1	Secundaria≤	73.31
	2	Bachillerato	55.24
	3	SuperiorT	37.08
	4	Superior	30.70
	5	Superior+	13.73

In [192...
enero_personas = pd.read_csv("Enero/Características generales, seguridad social en sal
enero_ocupados = pd.read_csv("Enero/Ocupados.csv", sep=",", encoding = "latin-1", usec
enero = pd.merge(enero_personas,enero_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCIA_F
enero

192]:		DIRECTORIO	SECUENCIA_P	ORDEN	DPTO	P6500	P3051
	0	5000000	1	1	8	768000.0	NaN
	1	5000001	1	1	8	NaN	NaN
	2	5000001	1	2	8	NaN	NaN
	3	5000001	1	3	8	NaN	NaN
	4	5000002	1	1	8	360000.0	NaN
	•••			•••			•••
	31814	5032617	1	1	91	200000.0	NaN
	31815	5032618	1	1	91	600000.0	NaN
	31816	5032619	1	2	91	1000000.0	NaN
	31817	5032620	1	1	91	2300000.0	NaN
	31818	5032620	1	2	91	2200000.0	NaN

 $31819 \text{ rows} \times 6 \text{ columns}$

febrero_personas = pd.read_csv("Febrero/Características generales, seguridad social er
febrero_ocupados = pd.read_csv("Febrero/Ocupados.csv", sep=";", encoding = "latin-1",
febrero = pd.merge(febrero_personas,febrero_ocupados, on=["DIRECTORIO", "ORDEN","SECUE
febrero

Out[193]:		DIRECTORIO	SECUENCIA_P	ORDEN	DPTO	P6500	P3051
	0	5032621	1	1	19	NaN	NaN
	1	5032621	1	2	19	1200000.0	NaN
	2	5032622	1	1	19	NaN	3600000.0
	3	5032627	1	1	19	NaN	2400000.0
	4	5032628	1	2	19	2180000.0	NaN
	•••						
	32974	5063808	1	1	76	NaN	NaN
	32975	5063809	1	1	66	NaN	NaN
	32976	5063810	1	2	63	1000000.0	NaN
	32977	5063810	1	3	63	800000.0	NaN
	32978	5063810	1	4	63	2000000.0	NaN

32979 rows × 6 columns

In [194	<pre>marzo_personas = pd.read_csv("Marzo/Características generales, seguridad social en sal marzo_ocupados = pd.read_csv("Marzo/Ocupados.csv", sep=";", encoding = "latin-1", usec marzo = pd.merge(marzo_personas,marzo_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCIA_F</pre>
In [195	abril_personas = pd.read_csv("Abril/Características generales, seguridad social en sal abril_ocupados = pd.read_csv("Abril/Ocupados.csv", sep=";", encoding = "latin-1", usec abril = pd.merge(abril_personas,abril_ocupados, on=["DIRECTORIO", "ORDEN", "SECUENCIA_F
In [196	<pre>mayo_personas = pd.read_csv("Mayo/Características generales, seguridad social en salud mayo_ocupados = pd.read_csv("Mayo/Ocupados.csv", sep=";", encoding = "latin-1", usecol mayo = pd.merge(mayo_personas,mayo_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCIA_P"])</pre>
In [197	<pre>junio_personas = pd.read_csv("Junio/Características generales, seguridad social en sal junio_ocupados = pd.read_csv("Junio/Ocupados.csv", sep=";", encoding = "latin-1", usec junio = pd.merge(junio_personas,junio_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCIA_F</pre>
In [198	<pre>julio_personas = pd.read_csv("Julio/Características generales, seguridad social en sal julio_ocupados = pd.read_csv("Julio/Ocupados.csv", sep=";", encoding = "latin-1", usec julio = pd.merge(julio_personas,julio_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCIA_F</pre>
In [199	<pre>agosto_personas = pd.read_csv("Agosto/Características generales, seguridad social en s agosto_ocupados = pd.read_csv("Agosto/Ocupados.csv", sep=";", encoding = "latin-1", us agosto = pd.merge(agosto_personas,agosto_ocupados, on=["DIRECTORIO", "ORDEN","SECUENCI</pre>
In [200	<pre>septiembre_personas = pd.read_csv("Septiembre/Características generales, seguridad soc septiembre_ocupados = pd.read_csv("Septiembre/Ocupados.csv", sep=";", encoding = "lati septiembre = pd.merge(septiembre_personas, septiembre_ocupados, on=["DIRECTORIO", "ORDE</pre>
In [201	octubre_personas = pd.read_csv("Octubre/Características generales, seguridad social er octubre_ocupados = pd.read_csv("Octubre/Ocupados.csv", sep=";", encoding = "latin-1", octubre = pd.merge(octubre_personas,octubre_ocupados, on=["DIRECTORIO", "ORDEN","SECUE

```
In [202...
           noviembre personas = pd.read csv("Noviembre/Características generales, seguridad socia
           noviembre_ocupados = pd.read_csv("Noviembre/Ocupados.csv", sep=";", encoding = "latin-
           noviembre = pd.merge(noviembre_personas,noviembre_ocupados, on=["DIRECTORIO", "ORDEN",
           diciembre_personas = pd.read_csv("Diciembre/Características generales, seguridad socia
In [203...
           diciembre ocupados = pd.read_csv("Diciembre/Ocupados.csv", sep=";", encoding = "latin-
           diciembre = pd.merge(diciembre_personas, diciembre_ocupados, on=["DIRECTORIO", "ORDEN",
           GEIH2022_ingreso = pd.concat([enero,febrero,marzo,abril, mayo, junio, julio, agosto, s
In [204...
           GEIH2022 ingreso= GEIH2022 ingreso.fillna(0)
In [205...
           ceros = GEIH_2022[GEIH_2022["Salario"] == 0.0].index
           GEIH_2022.drop(ceros, inplace=True)
           GEIH_2022.to_csv("SalarioMedio.csv")
In [206...
           AraucaSalario = Arauca["Salario"].mean()
           AraucaSalario
           633877.0978441128
Out[206]:
           AmazonasSalario = Amazonas["Salario"].mean()
In [207...
           AmazonasSalario
           617707.3541666666
Out[207]:
           AntioquiaSalario = Antioquia["Salario"].mean()
In [208...
           AntioquiaSalario
           1203229.33237544
Out[208]:
In [209...
           AtlanticoSalario = Atlantico["Salario"].mean()
           AtlanticoSalario
           732442.4489531743
Out[209]:
           BogotaSalario = Bogota["Salario"].mean()
In [210...
           BogotaSalario
           1720549.6882770192
Out[210]:
In [211...
           BolivarSalario = Bolivar["Salario"].mean()
           BolivarSalario
          554065.0003359838
Out[211]:
In [212...
           BoyacaSalario = Boyaca["Salario"].mean()
           BoyacaSalario
           1133030.9251118926
Out[212]:
In [213...
           CaldasSalario = Caldas["Salario"].mean()
           CaldasSalario
           1104061.364039409
Out[213]:
```

```
In [214...
           CaquetaSalario = Caqueta["Salario"].mean()
           CaquetaSalario
           795871.9770142754
Out[214]:
In [215...
           CasanareSalario = Casanare["Salario"].mean()
           CasanareSalario
           1221574.5320537428
Out[215]:
In [216...
           CaucaSalario = Cauca["Salario"].mean()
           CaucaSalario
           994267.742861316
Out[216]:
           CesarSalario = Cesar["Salario"].mean()
In [217...
           CesarSalario
           640610.1699346405
Out[217]:
           ChocoSalario = Choco["Salario"].mean()
In [218...
           ChocoSalario
           851723.2008396798
Out[218]:
In [219...
           CordobaSalario = Cordoba["Salario"].mean()
           CordobaSalario
           683984.5622045915
Out[219]:
In [220...
           CundinamarcaSalario = Cundinamarca["Salario"].mean()
           CundinamarcaSalario
           866788.837367419
Out[220]:
           GuainiaSalario = Guainia["Salario"].mean()
In [221...
           GuainiaSalario
           708864.5466188524
Out[221]:
In [222...
           GuaviareSalario = Guaviare["Salario"].mean()
           GuaviareSalario
           928895.6039370078
Out[222]:
In [223...
           HuilaSalario = Huila["Salario"].mean()
           HuilaSalario
           809459.4146000155
Out[223]:
           GuajiraSalario = Guajira["Salario"].mean()
In [224...
           GuajiraSalario
           589259.5788213486
Out[224]:
```

```
In [225...
           MagdalenaSalario = Magdalena["Salario"].mean()
           MagdalenaSalario
           566829.9244483784
Out[225]:
           MetaSalario = Meta["Salario"].mean()
In [226...
           MetaSalario
           977752.4235704415
Out[226]:
In [227...
           NarinoSalario = Narino["Salario"].mean()
           NarinoSalario
           767985.1958308388
Out[227]:
           NorteSSalario = NorteSantander["Salario"].mean()
In [228...
           NorteSSalario
           561033.3804897525
Out[228]:
           PutumayoSalario = Putumayo["Salario"].mean()
In [229...
           PutumayoSalario
           467234.4602425876
Out[229]:
In [230...
           GuaviareSalario = Guaviare["Salario"].mean()
           GuaviareSalario
           928895.6039370078
Out[230]:
In [231...
           HuilaSalario = Huila["Salario"].mean()
           HuilaSalario
           809459.4146000155
Out[231]:
           GuajiraSalario = Guajira["Salario"].mean()
In [232...
           GuajiraSalario
           589259.5788213486
Out[232]:
In [233...
           MagdalenaSalario = Magdalena["Salario"].mean()
           MagdalenaSalario
           566829.9244483784
Out[233]:
In [234...
           MetaSalario = Meta["Salario"].mean()
           MetaSalario
           977752.4235704415
Out[234]:
           NarinoSalario = Narino["Salario"].mean()
In [235...
           NarinoSalario
           767985.1958308388
Out[235]:
```

```
In [236...
           NorteSSalario = NorteSantander["Salario"].mean()
           NorteSSalario
           561033.3804897525
Out[236]:
In [237...
           PutumayoSalario = Putumayo["Salario"].mean()
           PutumayoSalario
           467234.4602425876
Out[237]:
In [238...
           GuaviareSalario = Guaviare["Salario"].mean()
           GuaviareSalario
           928895.6039370078
Out[238]:
           HuilaSalario = Huila["Salario"].mean()
In [239...
           HuilaSalario
           809459.4146000155
Out[239]:
           GuajiraSalario = Guajira["Salario"].mean()
In [240...
           GuajiraSalario
           589259.5788213486
Out[240]:
In [241...
           MagdalenaSalario = Magdalena["Salario"].mean()
           MagdalenaSalario
           566829.9244483784
Out[241]:
In [242...
           MetaSalario = Meta["Salario"].mean()
           MetaSalario
           977752.4235704415
Out[242]:
           NarinoSalario = Narino["Salario"].mean()
In [243...
           NarinoSalario
           767985.1958308388
Out[243]:
In [244...
           NorteSSalario = NorteSantander["Salario"].mean()
           NorteSSalario
           561033.3804897525
Out[244]:
In [245...
           PutumayoSalario = Putumayo["Salario"].mean()
           PutumayoSalario
           467234.4602425876
Out[245]:
           NorteSSalario = NorteSantander["Salario"].mean()
In [246...
           NorteSSalario
           561033.3804897525
Out[246]:
```

```
PutumayoSalario = Putumayo["Salario"].mean()
In [247...
           PutumayoSalario
           467234.4602425876
Out[247]:
           RisaraldaSalario = Risaralda["Salario"].mean()
In [248...
           RisaraldaSalario
           1093172.5531060959
Out[248]:
           SAISalario = SanAndres["Salario"].mean()
In [249...
           SAISalario
           1096731.8397580192
Out[249]:
           SantanderSalario = Santander["Salario"].mean()
In [250...
           SantanderSalario
           964342.9661658199
Out[250]:
           SucreSalario = Sucre["Salario"].mean()
In [251...
           SucreSalario
           546925.7494062564
Out[251]:
In [252...
           TolimaSalario = Tolima["Salario"].mean()
           TolimaSalario
           853075.6514701915
Out[252]:
In [253...
           ValleSalario = Valle["Salario"].mean()
           ValleSalario
           1001836.6507301646
Out[253]:
           Vaupesalario = Vaupes["Salario"].mean()
In [254...
           Vaupesalario
           1534246.379705401
Out[254]:
           VichadaSalario = Vichada["Salario"].mean()
In [255...
           VichadaSalario
           1048821.2568690097
Out[255]:
In [256...
           SM_Dptos= {"Arauca":633877,
           "Amazonas" : 617707,
           "Antioquia": 1203229,
           "Atlantico": 732442,
           "Bogota": 1720549,
           "Bolivar":554065,
               "Boyaca":1133030,
           "Caldas":1104061,
               "Caqueta": 795871,
                   "Casanare":1221574,
```

```
"Cauca":994267,
"Cesar": 640610,
"Choco":851723,
"Cordoba": 683984,
"Cundinamarca":866788,
"Guainia":708864,
"Guaviare":928895,
"Huila":809459,
"Guajira":589259,
"Magdalena": 566829,
"Meta": 977752,
"Narino": 767985,
"NorteSantander": 561033,
"Putumayo":467234,
"Quindio":964620,
"Risaralda":1093172,
"SanAndres":1096731,
"Santander": 964342,
"Tolima":853075,
"Valle":1001836,
"Vaupes":1534246,
"Vichada":1048821,}
```

```
In [257... SM_dptos = pd.DataFrame(list(SM_Dptos.items()), columns=["Departamento","SalarioMedio"
SM_dptos.to_csv("SMdptos.csv")
SM_dptos.sort_values(by=["SalarioMedio"])
```

Out[257]:

	Departamento	SalarioMedio
23	Putumayo	467234
5	Bolivar	554065
22	NorteSantander	561033
19	Magdalena	566829
18	Guajira	589259
1	Amazonas	617707
0	Arauca	633877
11	Cesar	640610
13	Cordoba	683984
15	Guainia	708864
3	Atlantico	732442
21	Narino	767985
8	Caqueta	795871
17	Huila	809459
12	Choco	851723
28	Tolima	853075
14	Cundinamarca	866788
16	Guaviare	928895
27	Santander	964342
24	Quindio	964620
20	Meta	977752
10	Cauca	994267
29	Valle	1001836
31	Vichada	1048821
25	Risaralda	1093172
26	SanAndres	1096731
7	Caldas	1104061
6	Воуаса	1133030
2	Antioquia	1203229
9	Casanare	1221574
30	Vaupes	1534246
4	Bogota	1720549

In [258... Informalidad_Departamentos.sort_values(by=["%informalidad"], ascending=False, inplace=Informalidad_Departamentos.to_csv("inforsort.csv")

PROCESAMIENTO BASES OCDE

```
In [259...
          Informalidad OCDE = pd.read csv("Informalidad 2021.csv")
          Informalidad_OCDE.columns
          Index(['LOCATION', 'Country', 'SUBJECT', 'Subject', 'FREQUENCY', 'Frequency',
Out[259]:
                  'TIME', 'Time', 'Unit Code', 'Unit', 'PowerCode Code', 'PowerCode',
                  'Reference Period Code', 'Reference Period', 'Value', 'Flag Codes',
                  'Flags'],
                 dtype='object')
          Informalidad_OCDE= Informalidad_OCDE.drop(columns=['LOCATION', 'SUBJECT', 'Subject',
In [260...
                  'TIME', 'Time', 'Unit Code', 'Unit', 'PowerCode Code', 'PowerCode',
                  'Reference Period Code', 'Reference Period', 'Flag Codes',
                  'Flags'])
          Informalidad_OCDE Informalidad_OCDE.rename(columns={"Value":"%informalidad"})
In [261...
          Informalidad_OCDE
```

Out[261]:

	Country	%informalidad
0	Australia	9.562654
1	Austria	11.910980
2	Belgium	14.140240
3	Canada	7.633201
4	Czechia	15.936410
5	Denmark	8.839274
6	Finland	14.572440
7	France	12.606570
8	Germany	8.931904
9	Greece	31.824720
10	Hungary	12.507940
11	Ireland	14.063140
12	Italy	21.831650
13	Japan	9.832524
14	Korea	23.906210
15	Luxembourg	10.225700
16	Mexico	31.826360
17	Netherlands	15.772440
18	New Zealand	19.857520
19	Norway	4.713736
20	Poland	19.726530
21	Portugal	15.484280
22	Spain	15.843730
23	Sweden	10.595570
24	Switzerland	15.300250
25	United States	6.595855
26	Brazil	33.252250
27	Chile	24.820500
28	Israel	12.447800
29	Slovenia	14.005970
30	Colombia	53.067870
31	Euro area (19 countries)	14.252470
32	Latvia	12.981970
33	Lithuania	11.628460

	Country	%informalidad
34	Costa Rica	27.440160
35	European Union – 27 countries (from 01/02/2020)	14.515310

In [262... Informalidad_OCDE.drop([26,31,35], axis=0, inplace=True)
Informalidad_OCDE

localhost:8888/nbconvert/html/OneDrive/Documentos/PROYECTO MCPP INFORMALIDAD/EDA GEIH 2022 y OCDE 2021.ipynb?download=false

Out[262]:

	Country	%informalidad
0	Australia	9.562654
1	Austria	11.910980
2	Belgium	14.140240
3	Canada	7.633201
4	Czechia	15.936410
5	Denmark	8.839274
6	Finland	14.572440
7	France	12.606570
8	Germany	8.931904
9	Greece	31.824720
10	Hungary	12.507940
11	Ireland	14.063140
12	Italy	21.831650
13	Japan	9.832524
14	Korea	23.906210
15	Luxembourg	10.225700
16	Mexico	31.826360
17	Netherlands	15.772440
18	New Zealand	19.857520
19	Norway	4.713736
20	Poland	19.726530
21	Portugal	15.484280
22	Spain	15.843730
23	Sweden	10.595570
24	Switzerland	15.300250
25	United States	6.595855
27	Chile	24.820500
28	Israel	12.447800
29	Slovenia	14.005970
30	Colombia	53.067870
32	Latvia	12.981970
33	Lithuania	11.628460
34	Costa Rica	27.440160

```
In [263... Impoempresas_OCDE = pd.read_csv("Corporate_tax.csv", sep= ",")
    SalarioMedio_OCDE = pd.read_csv("Wage_median.csv", sep= ",")
    SalarioMinimo_OCDE = pd.read_csv("RMW.csv", sep= ",")
    PPA = pd.read_csv("PPA_OCDE.csv", sep= ",")

In [264... SalarioMedio_OCDE
```

Out[264]:

	COUNTRY	Country	SERIES	Series	TIME	Time	Unit Code	Unit	PowerCode Code	PowerCode
0	AUS	Australia	MEDIAN	Median	2021	2021	РС	Percentage	0	Units
1	BEL	Belgium	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
2	CAN	Canada	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
3	CZE	Czechia	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
4	FRA	France	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
5	GRC	Greece	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
6	HUN	Hungary	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
7	IRL	Ireland	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
8	JPN	Japan	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
9	KOR	Korea	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
10	LUX	Luxembourg	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
11	MEX	Mexico	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
12	NLD	Netherlands	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
13	NZL	New Zealand	MEDIAN	Median	2021	2021	РС	Percentage	0	Units
14	POL	Poland	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
15	PRT	Portugal	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
16	SVK	Slovak Republic	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
17	ESP	Spain	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
18	TUR	Türkiye	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
19	GBR	United Kingdom	MEDIAN	Median	2021	2021	РС	Percentage	0	Units
20	USA	United States	MEDIAN	Median	2021	2021	РС	Percentage	0	Units
21	SVN	Slovenia	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
22	EST	Estonia	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
23	LTU	Lithuania	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
24	ROU	Romania	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
25	LVA	Latvia	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
26	ISR	Israel	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
27	CHL	Chile	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
28	DEU	Germany	MEDIAN	Median	2021	2021	PC	Percentage	0	Units
29	COL	Colombia	MEDIAN	Median	2021	2021	PC	Percentage	0	Units

```
Unit
                                                                      PowerCode
   COUNTRY
                                  Series TIME Time
                                                                                 PowerCode
                 Country
                          SERIES
                                                     Code
                                                                           Code
                                                                              0
30
         CRI
               Costa Rica MEDIAN Median 2021
                                               2021
                                                       PC Percentage
                                                                                      Units
```

Out[266]:		Country	%SM
	20	United States	29.1
	1	Belgium	40.1
	25	Latvia	42.3
	22	Estonia	42.6
	3	Czechia	43.2
	8	Japan	44.9
	6	Hungary	45.5
	31	Croatia	46.1
	7	Ireland	46.2
	12	Netherlands	46.3
	23	Lithuania	46.7
	17	Spain	48.5
	2	Canada	48.9
	28	Germany	49.5
	5	Greece	49.8
	0	Australia	51.5
	16	Slovak Republic	52.4
	26	Israel	53.0
	10	Luxembourg	54.9
	24	Romania	54.9
	14	Poland	55.1
	11	Mexico	56.7
	19	United Kingdom	57.0
	21	Slovenia	60.4
	4	France	61.0
	9	Korea	61.4
	15	Portugal	66.3
	13	New Zealand	67.6
	18	Türkiye	70.4
	27	Chile	72.0
	30	Costa Rica	88.3
	29	Colombia	90.9

In [267... Impoempresas_OCDE

Out[267]:

	cou	Country	CORP_TAX	Corporate income tax rate	YEA	Year	Unit Code	Unit	PowerCode Code	PowerCode	R
0	AUS	Australia	CIT_RATE	Corporate income tax rate	2000	2000	PC	Percentage	0	Units	
1	AUS	Australia	CIT_RATE	Corporate income tax rate	2001	2001	PC	Percentage	0	Units	
2	AUS	Australia	CIT_RATE	Corporate income tax rate	2002	2002	PC	Percentage	0	Units	
3	AUS	Australia	CIT_RATE	Corporate income tax rate	2003	2003	РС	Percentage	0	Units	
4	AUS	Australia	CIT_RATE	Corporate income tax rate	2004	2004	PC	Percentage	0	Units	
•••											
907	CRI	Costa Rica	CIT_RATE	Corporate income tax rate	2019	2019	PC	Percentage	0	Units	
908	CRI	Costa Rica	CIT_RATE	Corporate income tax rate	2020	2020	PC	Percentage	0	Units	
909	CRI	Costa Rica	CIT_RATE	Corporate income tax rate	2021	2021	PC	Percentage	0	Units	
910	CRI	Costa Rica	CIT_RATE	Corporate income tax rate	2022	2022	PC	Percentage	0	Units	
911	CRI	Costa Rica	CIT_RATE	Corporate income tax rate	2023	2023	PC	Percentage	0	Units	

912 rows × 15 columns

Out[270]:

	Country	%tax
21	Australia	30.0000
45	Austria	25.0000
69	Belgium	25.0000
93	Canada	15.0000
117	Czechia	19.0000
141	Denmark	22.0000
165	Finland	20.0000
189	France	28.4075
213	Germany	15.8250
237	Greece	22.0000
261	Hungary	9.0000
285	Iceland	20.0000
309	Ireland	12.5000
333	Italy	24.0000
357	Japan	23.2000
381	Korea	25.0000
405	Luxembourg	18.1900
429	Mexico	30.0000
453	Netherlands	25.0000
477	New Zealand	28.0000
501	Norway	22.0000
525	Poland	19.0000
549	Portugal	30.0000
573	Slovak Republic	21.0000
597	Spain	25.0000
621	Sweden	20.6000
645	Switzerland	8.5000
669	Türkiye	25.0000
693	United Kingdom	19.0000
717	United States	21.0000
741	Chile	27.0000
765	Estonia	20.0000
789	Israel	23.0000
813	Latvia	20.0000

	Country	%tax
837	Slovenia	19.0000
861	Lithuania	15.0000
885	Colombia	31.0000
909	Costa Rica	30.0000

In []:
In [271... Impoempresas_OCDE=Impoempresas_OCDE.round(1)
Impoempresas_OCDE

Out[271]:

21 45	Australia	%tax 30.0
45		30.0
	Austria	25.0
69	Belgium	25.0
93	Canada	15.0
117	Czechia	19.0
141	Denmark	22.0
165	Finland	20.0
189	France	28.4
213	Germany	15.8
237	Greece	22.0
261	Hungary	9.0
285	Iceland	20.0
309	Ireland	12.5
333	Italy	24.0
357	Japan	23.2
381	Korea	25.0
405	Luxembourg	18.2
429	Mexico	30.0
453	Netherlands	25.0
477	New Zealand	28.0
501	Norway	22.0
525	Poland	19.0
549	Portugal	30.0
573	Slovak Republic	21.0
597	Spain	25.0
621	Sweden	20.6
645	Switzerland	8.5
669	Türkiye	25.0
693	United Kingdom	19.0
717	United States	21.0
741	Chile	27.0
765	Estonia	20.0
789	Israel	23.0

813

20.0

Latvia

	Country	%tax
837	Slovenia	19.0
861	Lithuania	15.0
885	Colombia	31.0
909	Costa Rica	30.0

Out[274]:

	Country	SM
7	Mexico	3384.0
28	Colombia	8708.0
19	Chile	8847.0
29	Costa Rica	11692.0
27	Latvia	11825.0
11	Hungary	12258.0
4	Estonia	12404.0
21	Slovak Republic	12874.0
24	Czechia	13701.0
20	Türkiye	14901.0
2	Portugal	15658.0
16	Greece	15895.0
9	Israel	16149.0
3	United States	16287.0
26	Lithuania	16505.0
12	Japan	17559.0
8	Poland	18702.0
17	Slovenia	20715.0
23	Spain	20933.0
0	Ireland	21905.0
5	Canada	23680.0
18	Korea	23739.0
15	United Kingdom	25120.0
6	France	25137.0
10	Belgium	26278.0
25	Germany	26341.0
13	Australia	27605.0
14	New Zealand	27716.0
1	Luxembourg	28963.0
22	Netherlands	28989.0

```
In [275...
OCDE= pd.merge(Informalidad_OCDE, Impoempresas_OCDE, on=["Country"], how= "left")
OCDE= pd.merge(OCDE, SM_OCDE, on=["Country"], how= "left")
OCDE= pd.merge(OCDE, SM, on=["Country"], how= "left")
OCDE=OCDE.fillna(0)
OCDE.to_csv("BaseOCDE.csv")
```

OCDE

#Ni islandia ni Turquia tienen tasa informalidad de 2021 registrada en OCDE

Out[275]:

32

				EDA G	EIH 2022
	Country	%informalidad	%tax	%SM	SM
0	Australia	9.562654	30.0	51.5	27605.0
1	Austria	11.910980	25.0	0.0	0.0
2	Belgium	14.140240	25.0	40.1	26278.0
3	Canada	7.633201	15.0	48.9	23680.0
4	Czechia	15.936410	19.0	43.2	13701.0
5	Denmark	8.839274	22.0	0.0	0.0
6	Finland	14.572440	20.0	0.0	0.0
7	France	12.606570	28.4	61.0	25137.0
8	Germany	8.931904	15.8	49.5	26341.0
9	Greece	31.824720	22.0	49.8	15895.0
10	Hungary	12.507940	9.0	45.5	12258.0
11	Ireland	14.063140	12.5	46.2	21905.0
12	Italy	21.831650	24.0	0.0	0.0
13	Japan	9.832524	23.2	44.9	17559.0
14	Korea	23.906210	25.0	61.4	23739.0
15	Luxembourg	10.225700	18.2	54.9	28963.0
16	Mexico	31.826360	30.0	56.7	3384.0
17	Netherlands	15.772440	25.0	46.3	28989.0
18	New Zealand	19.857520	28.0	67.6	27716.0
19	Norway	4.713736	22.0	0.0	0.0
20	Poland	19.726530	19.0	55.1	18702.0
21	Portugal	15.484280	30.0	66.3	15658.0
22	Spain	15.843730	25.0	48.5	20933.0
23	Sweden	10.595570	20.6	0.0	0.0
24	Switzerland	15.300250	8.5	0.0	0.0
25	United States	6.595855	21.0	29.1	16287.0
26	Chile	24.820500	27.0	72.0	8847.0
27	Israel	12.447800	23.0	53.0	16149.0
28	Slovenia	14.005970	19.0	60.4	20715.0
29	Colombia	53.067870	31.0	90.9	8708.0
30	Latvia	12.981970	20.0	42.3	11825.0
31	Lithuania	11.628460	15.0	46.7	16505.0
22	Costo Dico	27.440160	20.0	00.2	11602.0

Costa Rica 27.440160 30.0 88.3 11692.0

```
In [276...
           Historico_imporenta = pd.read_csv("Corporate_tax.csv", sep=",")
          Historico_imporenta = Historico_imporenta[Historico_imporenta["Country"]== "Colombia"]
In [277...
           Historico_imporenta.columns
           Index(['COU', 'Country', 'CORP_TAX', 'Corporate income tax rate', 'YEA',
Out[277]:
                  'Year', 'Unit Code', 'Unit', 'PowerCode Code', 'PowerCode',
                  'Reference Period Code', 'Reference Period', 'Value', 'Flag Codes',
                  'Flags'],
                 dtype='object')
           Historico_imporenta = Historico_imporenta.drop(columns=["Country", 'CORP_TAX', 'Corpor
In [278...
                   'Unit Code', 'Unit', 'PowerCode Code', 'PowerCode',
                  'Reference Period Code', 'Reference Period', 'Flag Codes',
                  'Flags', "COU"])
           Historico imporenta= Historico imporenta.rename(columns={"Value":"%tax"})
          Salarios=[1000000,
In [279...
           908526,
           877803,
           828116 ,
           781242,
           737717 ,
           689455,
           644350 ,
           616000 ,
           589500 ,
           566700 ,
           535600 ,
           515000 ,
           496900 ,
           461500 ,
           433700 ,
           408000 ,
           381500 ,
           358000 ,
           332000 ,
           309000 ,
           286000 ,
           260100 ]
           Periodos = [x \text{ for } x \text{ in } range(2000, 2023)]
In [280...
           Periodos = Periodos[::-1]
           print(Periodos)
           [2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009,
           2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000]
           Historicos SM = pd.DataFrame({"Year":Periodos,
In [281...
                                                "SM":Salarios})
           Historicos_SM= Historicos_SM.astype(int)
           Historicos_SM
```

Out[281]:		Year	SM
	0	2022	1000000
	1	2021	908526
	2	2020	877803
	3	2019	828116
	4	2018	781242
	5	2017	737717
	6	2016	689455
	7	2015	644350
	8	2014	616000
	9	2013	589500
	10	2012	566700
	11	2011	535600
	12	2010	515000
	13	2009	496900
	14	2008	461500
	15	2007	433700
	16	2006	408000
	17	2005	381500
	18	2004	358000
	19	2003	332000
	20	2002	309000
	21	2001	286000
	22	2000	260100

```
In [282... Historicos_Colombia = pd.merge(Historicos_SM,Historico_imporenta, on=["Year"])
Historicos_Colombia.to_csv("SM_Imporenta.csv")
Historicos_Colombia
```

Out[282]:		Year	SM	%tax
	0	2022	1000000	35.00
	1	2021	908526	31.00
	2	2020	877803	32.00
	3	2019	828116	33.00
	4	2018	781242	37.00
	5	2017	737717	40.00
	6	2016	689455	40.00
	7	2015	644350	39.00
	8	2014	616000	34.00
	9	2013	589500	34.00
	10	2012	566700	33.00
	11	2011	535600	33.00
	12	2010	515000	33.00
	13	2009	496900	33.00
	14	2008	461500	33.00
	15	2007	433700	34.00
	16	2006	408000	38.50
	17	2005	381500	38.50
	18	2004	358000	38.50
	19	2003	332000	36.75
	20	2002	309000	35.00
	21	2001	286000	35.00
	22	2000	260100	35.00

```
In [283... Historico_Informalidad = pd.read_csv("HistInformalidad.csv",sep=",")
Historico_Informalidad
```

Out[283]:		LOCATION	INDICATOR	SUBJECT	MEASURE	FREQUENCY	TIME	Value	Flag Codes
	0	COL	SELFEMP	TOT	PC_EMP	А	2007	47.30726	NaN
	1	COL	SELFEMP	TOT	PC_EMP	А	2008	52.05827	NaN
	2	COL	SELFEMP	TOT	PC_EMP	А	2009	54.37944	NaN
	3	COL	SELFEMP	TOT	PC_EMP	А	2010	55.44683	NaN
	4	COL	SELFEMP	TOT	PC_EMP	А	2011	56.02482	NaN
	5	COL	SELFEMP	TOT	PC_EMP	А	2012	55.27148	NaN
	6	COL	SELFEMP	TOT	PC_EMP	А	2013	54.33998	NaN
	7	COL	SELFEMP	TOT	PC_EMP	А	2014	53.49324	NaN
	8	COL	SELFEMP	TOT	PC_EMP	А	2015	53.01191	NaN
	9	COL	SELFEMP	TOT	PC_EMP	А	2016	52.88547	NaN
	10	COL	SELFEMP	TOT	PC_EMP	А	2017	52.76831	NaN
	11	COL	SELFEMP	TOT	PC_EMP	А	2018	52.59024	NaN
	12	COL	SELFEMP	TOT	PC_EMP	А	2019	49.95089	NaN
	13	COL	SELFEMP	TOT	PC_EMP	А	2020	50.63253	NaN
	14	COL	SELFEMP	ТОТ	PC_EMP	А	2021	53.06787	NaN
[284	Historico_Informalidad.columns								
ıt[284]:	<pre>Index(['LOCATION', 'INDICATOR', 'SUBJECT', 'MEASURE', 'FREQUENCY', 'TIME',</pre>								
1 [285	<pre>Historico_Informalidad.drop(columns=['LOCATION', 'INDICATOR', 'SUBJECT', 'MEASURE' Historico_Informalidad.rename(columns={"TIME":"Year", "Value":"%Informalidad"}, ir Historico_Informalidad</pre>								

Out[285]:		Year	%Informalidad
	0	2007	47.30726
	1	2008	52.05827
	2	2009	54.37944
	3	2010	55.44683
	4	2011	56.02482
	5	2012	55.27148
	6	2013	54.33998
	7	2014	53.49324
	8	2015	53.01191
	9	2016	52.88547
	10	2017	52.76831
	11	2018	52.59024
	12	2019	49.95089
	13	2020	50.63253
	14	2021	53.06787

In [286...

Historicos_Colombia = pd.merge(Historicos_Colombia, Historicos_Informalidad, on=["Year"]
Historicos_Colombia

- /					
Out[286]:		Year	SM	%tax	%Informalidad
	0	2021	908526	31.0	53.06787
	1	2020	877803	32.0	50.63253
	2	2019	828116	33.0	49.95089
	3	2018	781242	37.0	52.59024
	4	2017	737717	40.0	52.76831
	5	2016	689455	40.0	52.88547
	6	2015	644350	39.0	53.01191
	7	2014	616000	34.0	53.49324
	8	2013	589500	34.0	54.33998
	9	2012	566700	33.0	55.27148
	10	2011	535600	33.0	56.02482
	11	2010	515000	33.0	55.44683
	12	2009	496900	33.0	54.37944
	13	2008	461500	33.0	52.05827

14 2007 433700 34.0

In []:

47.30726