Detailed proofs for Game Semantics

Kengo Hirata

June 10, 2020

Definition 1. An arena A is composed of the following four sets.

- A set M_A .
- A function $\lambda_A: M_A \to \{O, P\} \times \{Q, A\}$
- A relation \vdash_A over $M_A \cup \{\star\}$ satisfying the following;

(e1)
$$\star \vdash_A m \Rightarrow [\lambda_A(m) = OQ \land [n \vdash_A m \Leftrightarrow n = \star]]$$

(e2)
$$[m \vdash_A n \land \lambda_A^{QA} = A] \Rightarrow \lambda_A^{QA}(m) = Q$$

(e3)
$$[m \vdash_A \land m \neq \star] \Rightarrow \lambda_A^{OP}(m) \neq \lambda_A^{OP}(n)$$

Definition 2. A justified sequence in an arena A is a sequence $s = s_1 \dots s_n$ of M_A and a function $p: \{s_2, \dots, s_n\} \to \{s_1, \dots, s_n\}$ called a pointer with,

- if $s_i = p(s_j)$, $i < j \land s_i \vdash_A s_j$.
- \bullet $\star \vdash_A s_1$

Definition 3. For each justified sequence s, *player view* $\lceil s \rceil$ and *opponent view* $\lfloor s \rfloor$ are defined by induction as follows.

Definition 4. A justified sequence s is called *legal position* when the following conditions are satisfied.

$$\bullet \ \ s = s'mns'' \Rightarrow \lambda^{OP}(m) \neq \lambda^{OP}(n)$$

- $tm \sqsubset s$ (tm is a prefix of s) and $\lambda^{OP}(m) = P \Rightarrow$ the justifier of m occurs in $\lceil t \rceil$.
- $tm \sqsubset s$ and $\lambda^{OP}(m) = O \Rightarrow$ the justifier of m occurs in |t|.

Definition 5. A move m in legal position s is hereditary justified by move n if there is a chain of justification pointer leading from m ends at n. Define $s \upharpoonright_h n$ as the subsequence of s consisting of all moves hereditary justified by n. We also write $s \upharpoonright_h I$ for the subsequence consisting of all moves hereditary justified by any move n in I.

Definition 6. A game A is a tuple $\langle M_A, \lambda_A, \vdash_A, P_A \rangle$ with the following conditions.

- $\langle M_A, \lambda_A, \vdash_A \rangle$ is an arena.
- P_A is a nonempty prefix–closed set of legal positions in the arena satisfying if $s \in P_A$ and I is a set of initial moves of s then $s \upharpoonright_h I \in P_A$.

Define games $A \otimes B$, $A \multimap B$ and I as in [1].

$$M_{A\otimes B} = M_A + M_B.$$

$$\lambda_{A\otimes B} = [\lambda_A, \lambda_B].$$

$$\star \vdash_{A\otimes B} n \Leftrightarrow \star \vdash_A n \lor \star \vdash_B n.$$

$$m \vdash_{A\otimes B} n \Leftrightarrow m \vdash_A n \lor m \vdash_B n.$$

$$P_{A\otimes B} = \{s \in L_{A\otimes B} \mid s \upharpoonright A \in P_A \land s \upharpoonright B \in P_B\}$$

$$M_{A\multimap B} = M_A + M_B.$$

$$\lambda_{A\multimap B} = [\overline{\lambda_A}, \lambda_B].$$

$$\star \vdash_{A\multimap B} m \Leftrightarrow \star \vdash_B m.$$

$$m \vdash_{A\multimap B} n \Leftrightarrow m \vdash_A n \lor m \vdash_B n \lor$$

$$[\star \vdash_B m \land \star \vdash_A n] \qquad \text{for } m \neq \star.$$

$$P_{A\multimap B} = \{s \in L_{A\multimap B} \mid s \upharpoonright A \in P_A \land s \upharpoonright B \in P_B\}$$

$$I = \langle \emptyset, \emptyset, \emptyset, \{\varepsilon\} \rangle$$

Proposition 1. $A \otimes B$ is a game.

Proof. (i) $\langle M_{A\otimes B}, \lambda_{A\otimes B}, \vdash_{A\otimes B} \rangle$ is an arena.

$$\begin{array}{l} \star \vdash_{A \otimes B} \\ \Rightarrow \quad \star \vdash_{A} m \ \lor \ \star \vdash_{B} m \\ \Rightarrow \quad (\lambda_{A}(m) = OQ \ \land \ [n \vdash_{A} m \Leftrightarrow n = \star]) \lor (\lambda_{B}(m) = OQ \ \land \ [n \vdash_{B} m \Leftrightarrow n = \star]) \\ \Rightarrow \quad \lambda_{A \otimes B}(m) = OQ, \ \land [n \vdash_{A \otimes B} m \iff n \vdash_{A} m \lor n \vdash_{B} m \iff n = \star] \end{array}$$

$$\begin{split} m \vdash_{A \otimes B} n \; \wedge \; \lambda_{A \otimes B}^{QA} &= A \\ \Rightarrow \; & (m \vdash_{A} n \; \wedge \; \lambda_{A}^{QA} = A) \; \vee \; (m \vdash_{B} n \; \wedge \; \lambda_{B}^{QA} = A) \\ \Rightarrow \; & (\lambda_{A}^{QA}(m) = Q) \; \vee \; (\lambda_{B}^{QA}(m) = Q) \\ \iff \; & \lambda_{A \otimes B}^{QA}(m) = Q \end{split}$$

(e3)

$$\begin{split} m &\vdash_{A \otimes B} n, \ m \neq \star \\ \Rightarrow & (m \vdash_{A} n, \ m \neq \star) \ \lor \ (m \vdash_{B} n, \ m \neq \star) \\ \Rightarrow & \lambda_{A}^{OP}(m) \neq \lambda_{A}^{OP}(n) \ \lor \ \lambda_{B}^{OP}(m) \neq \lambda_{B}^{OP}(n) \\ \Rightarrow & \lambda_{A \otimes B}^{OP}(m) \neq \lambda_{A \otimes B}^{OP}(n) \end{split}$$

- (ii) The following shows that $P_{A\otimes B}$ is a nonempty refix-closed subset of L_A .
 - $\varepsilon \in P_{A \otimes B}$.
 - Assume $sm \in PA \otimes B$ and $m \in M_A$ without loss of generality.

$$sm \in P_{A \otimes B}, \ m \in M_A$$

$$\Rightarrow (s \upharpoonright A)m \in P_A, \ s \upharpoonright B \in P_B$$

$$\Rightarrow s \upharpoonright A \in P_A, \ s \upharpoonright B \in P_B$$

$$\Rightarrow s \in P_{A \otimes B}$$

(iii) Let $s \in P_{A \otimes B}$ and I is a set of initial moves of s. We suffices to prove $s \upharpoonright_h \in P_{A \otimes B}$ to complete the proof. Write $I = I_A + I_B$ where $I_A \subset M_A$, $I_B \subset M_B$. Since if m is hereditary justified by n, either $m, n \in M_A$ or $m, n \in M_B$ is satisfied,

$$\begin{aligned} (a \upharpoonright_h I) \upharpoonright A &= s \upharpoonright_h I_A \\ &= (s \upharpoonright A) \upharpoonright_h I_A. \end{aligned}$$

This is included in P_A since $s \upharpoonright A \in P_A$. In the same way, $(s \upharpoonright_h) \upharpoonright B \in P_B$, and we have $s \upharpoonright_h I \in P_{A \otimes B}$

Proposition 2. $A \multimap B$ is a game.

Proof. The proof is similar to that of $A \otimes B$.

Proposition 3. $I = \langle \emptyset, \emptyset, \emptyset, \{\varepsilon\} \rangle$ is a game.

Proof. $\langle \emptyset, \emptyset, \emptyset \rangle$ is an arena. $\{\varepsilon\}$ is non-empty prefix-closed. There are no initial moves.

Proposition 4. I is the tenser unit.

Proof. We have $M_{A\otimes I}=M_A$, $\lambda_{A\otimes I}=\lambda_A$, $\lambda_{A\otimes I}=\lambda_A$, $L_{A\otimes I}=L_A$. For all $s\in L_{A\otimes I}$, $s\upharpoonright A=s$ and $s\upharpoonright I=\varepsilon$. These concludes $A\otimes I=A$. (This tenser is symmetric.)

Definition 7. σ is called a *strategy* for a game A if σ is a set of even-length positions from P_A and

- (s1) $\varepsilon \in \sigma$.
- (s2) $sab \in \sigma \Rightarrow s \in \sigma$.
- (s3) sab, $sac \in \sigma \Rightarrow b = c$ and b,c are justified by the same move in sa.

Proposition 5. $id_A = \{ s \in P_{A_1 \multimap A_2}^{\text{even}} \mid \forall t \sqsubset^{\text{even}} s, \ t \upharpoonright A_1 = t \upharpoonright A_2 \} \text{ is a strategy for } A \multimap A.$

Proof. By the definition, id_A is a set of even-length positions in P_A . It suffices to show the following three.

- (s1) $\varepsilon \upharpoonright A_1 = \varepsilon \upharpoonright A_2$. So, $\varepsilon \in \mathrm{id}_A$.
- (s2) If $sab \in id_A$ and $t \sqsubseteq^{\text{even}} s$, $t \sqsubseteq^{\text{even}} sab$. Since $sab \in id_A$, $t \upharpoonright A_1 = t \upharpoonright A_2$. This shows $s \in id_A$.
- (s3)

$$sab \in id_A$$

$$\Rightarrow s, sab \in id_A$$

$$\Rightarrow s \upharpoonright A_1 = s \upharpoonright A_2, \ sab \upharpoonright A_1 = sab \upharpoonright A_2,$$

$$\Rightarrow ab \upharpoonright A_1 = ab \upharpoonright A_2.$$

In the each case of $a \in A_1$ and $a \in A_2$, a = b holds. By induction, ignoring whether the moves are in A_1 or A_2 , the element s of id_A is presented as

$$m_1m_1m_2m_2\dots m_km_k$$

Because $s \upharpoonright A_1 = s \upharpoonright A_2$, the two m_k points the same move m_i in the arena A.

Definition 8. Let A, B, C be games and σ be a strategy of $A \multimap B$ and τ be a strategy of $B \multimap C$. Define *interaction sequences* $\operatorname{int}(A, B, C)$ by setting $u \in \operatorname{int}(A, B, C)$ if and only if $u \in (M_A, M_B, M_C)^*$ and there are justification pointers from all moves except those initial in C.

We also define $\sigma || \tau$ as

$$\{u \in \operatorname{int}(A, B, C) \mid u \upharpoonright A, B \in \sigma, \ u \in B, C \in \tau\}$$

 $u \upharpoonright A, B$ is a subsequence of $u \in \operatorname{int}(A, B, C)$ with the pointers in u that are from M_A or M_B and to M_A or M_B .

For each $u \in \operatorname{int}(A, B, C)$, we have a sequence with some pointers $u \upharpoonright A, C$ by restricting the moves in A or C and taking out the pointers in u between the moves of A and B, and adding for each initial moves m in A a pointer to the initial move n in C; Since $u \upharpoonright A, B \in \sigma$, by the definition of the game $A \multimap B$, each initial move has a pointer to an initial move in B. And also an initial move in B has an pointer toward an initial move in C. Therefore there is a initial move in C which is pointed by the initial move in C which is also pointed by C.

We finally define σ ; τ by

$$\sigma; \tau = \{u \mid A, C \mid u \in \sigma | | \tau \}$$

Lemma 1. If $u \in \sigma || \tau, u \upharpoonright A, C$ is a justified sequence in the arena $A \multimap C$.

Proof. By the defition of $\sigma||\tau$, $(u \upharpoonright A, B) \upharpoonright A = u \upharpoonright A = (u \upharpoonright A, C) \upharpoonright A$ is a justified sequence in the arena A, and so is $(u \upharpoonright A, C) \upharpoonright C$ in C. What is left to be checked is about initial moves in A, but by the construction, there is a pointer from each initial move in A to an initial move in C.

Lemma 2. If $u \in \sigma || \tau, u \upharpoonright A, C$ is also a legal position.

Proof. Reading the alphabets of u one by one, the five games $A, B, C, A \multimap B, B \multimap C$ must proceed along the automaton below.

$$A,B,C,A\multimap B,B\multimap C$$

$$[O,O,O,O,O]$$
 P-move in C $\Big[O,O,P,O,P\Big]$ P-move in B $\Big[O,P,P,O]$ P-move in A $\Big[P,P,P,O,O]$

In this automaton, for example, the state [O,O,P,O,P] represents that, at this state, the Player play the next turn in C and $A \multimap C$, and the Opponent plays the next turn in A and B and $A \multimap B$. And this implys that no other state like [P,P,P,P,P] would appear since each restriction of u to five arenas gives a legal positions. Carefully watching this automaton, we observe that, as moves in $A \multimap C$, P-move and O-move appears alternatively. Therefore the first condition of legal position for $u \upharpoonright A, C$ is satisfied.

And the other two are shown in Lemma 2.10. in [3]

Proposition 6. σ ; τ is a strategy for a game $A \multimap C$.

Proof. At first we are going to prove that $\sigma; \tau$ is a set of even length positions included in $P_{A \to C}$, and then prove (s1) \sim (s3). In this proof, the automaton made in the former lemma is often cited.

1 The length of $u \upharpoonright A$, C is the sum of that of $u \upharpoonright A$ and $u \upharpoonright C$. We need to show that $u \upharpoonright A$ is even-length iff $u \upharpoonright C$ is even-length, but this follows since these two are equivalent to that $u \upharpoonright B$ is even-length because of the two condition $u \upharpoonright A, B \in \sigma$, $u \upharpoonright B, C \in \tau$.

Assume $s = u \upharpoonright A, C$ where $u \in \sigma || \tau$. Since $s \upharpoonright A = (u \upharpoonright A, C) \upharpoonright A = (u \upharpoonright A, B) \upharpoonright A$ and $u \upharpoonright A, B \in P_{A \multimap B}, s \upharpoonright A \in P_A$. In the same way, $s \upharpoonright C \in P_C$. By the previous lemma, s is a legal position in $A \multimap C$, and finally we have $s \in P_{A \multimap C}$.

- (s1) $\varepsilon \in \sigma || \tau$. Therefore $\varepsilon \in \sigma; \tau$.
- (s2) Assume $sab = u \upharpoonright A, C \in \sigma; \tau \ (u \in \sigma || \tau)$. There is $u' \sqsubseteq u$ such that $u \upharpoonright A, C = s$. Since s is even-length, after reading u', game $A \multimap C$ is in Opponent's turn, which corresponds to the top state or the bottom state in the automaton in the lemma. In those two states in the automaton, the game $A \multimap B, B \multimap C$ is in Opponent's turn. Therefore, $u' \upharpoonright A, B \sqsubseteq u \upharpoonright A, B \in \sigma$ and $u' \upharpoonright B, C \sqsubseteq u \upharpoonright B, C \in \tau$ are even-length, and this implies $u' \upharpoonright A, B \in \sigma$ and $u' \upharpoonright B, C \in \tau$. These concludes that $s = u' \upharpoonright A, C \in \sigma; \tau$.
- (s3) We prove the following statement first.

Assuming $u \in \sigma || \tau$, $a, m, n \in M_A + M_C$, $v, w \in M_B^*$ and $uavm, uawn \in \sigma || \tau$, it follows that uavm and uawn are identical as justified sequences.

Since $u \in \sigma || \tau$, after reading u, the automaton is in the top or bottom state. Let us assume the top case first, then a is a move in C. We have,

$$uavm \upharpoonright A, B = (u \upharpoonright A, B)v(m \upharpoonright A, B) \in \sigma$$

$$uawn \upharpoonright A, B = (u \upharpoonright A, B)w(n \upharpoonright A, B) \in \sigma.$$

$$uavm \upharpoonright B, C = (u \upharpoonright A, B)av(m \upharpoonright A, B) \in \tau$$

$$uawn \upharpoonright B, C = (u \upharpoonright A, B)aw(n \upharpoonright A, B) \in \tau.$$

Since $(u \upharpoonright A, B)av_1, (u \upharpoonright A, B)aw_1 \in \tau$, $v_1 = w_1$. And because $(u \upharpoonright A, B)v_1v_2, (u \upharpoonright A, B)w_1w_2 \in \sigma$, $v_2 = w_2$. By induction, we have vm = wn. The same proof can be done in the case a is a move in A.

By the induction, the statement shows that for each $s \in \sigma$; τ , there is a unique $u \in \sigma || \tau$ such that $s = u \upharpoonright A, C$.

Assume $sam, san \in \sigma; \tau$ and $uavm, uawn \in \sigma || \tau$ with $sam = uavm \upharpoonright A, C$ and $san = uawn \upharpoonright A, C$. By the statement above, uavm and uawn are identical, implying sam = san.

Definition 9. If $sab, ta \in L_A$, where sab is even-length and $\lceil sa \rceil = \lceil ta \rceil$, there is a unique legal position tab extending ta which satisfies $\lceil sab \rceil = \lceil tab \rceil$. Define this legal position as match(sab, ta).

A strategy $\sigma: A$ is called *innocent* if

$$sab \in \sigma \land t \in \sigma \land ta \in P_A \land \lceil ta \rceil = \lceil sa \rceil \Rightarrow \operatorname{match}(sab, ta) \in \sigma$$

This means that in an innocent strategy σ , the next move from sa is only determined by by the P-view $\lceil sa \rceil$.

A strategy σ is well-bracketed if every time P answers, it must be an answer for the to the most recent unanswered question in the view.

Proposition 7. id; $\sigma = \sigma = \sigma$; id.

Proof. Before prooving, we take a look at the structure of elements in $\mathrm{id}||\sigma\subset \mathrm{int}(A_1,A_2,B)$. Recalling Proposition.5, in the sequence $u\restriction A_1,A_2\in \mathrm{id}_A\subset P_{A_1\multimap A_2}$, P-move in A_1 is always followed just after by the same P-move in A_2 and O-move in A_2 is always followed just after by the same O-move in A_1 . Again by the automaton in Lemma.2, this occurs also in u. Therefore, $\mathrm{id}||\sigma\to\sigma$ with $u\mapsto u\restriction A,B$ has the inverse map f defined inductively by

$$\begin{split} f(\varepsilon) = & \varepsilon \\ f(ta) = & f(t)a^{(1)}a^{(2)} & a \in A, \lambda_A^{\mathrm{OP}} = P \\ f(ta) = & f(t)a^{(2)}a^{(1)} & a \in A, \lambda_A^{\mathrm{OP}} = O \\ f(tb) = & f(t)b & b \in B \end{split}$$

where each $a^{(1)}, a^{(2)}$ is the copy of $a \in A$ in A_1, A_2 . And this f is also easily shown to be the inverse map of $\mathrm{id}||\sigma \to \sigma$ with $u \mapsto u \upharpoonright A, C$. This shows $\mathrm{id}; \sigma = \sigma$. σ ; $\mathrm{id} = \sigma$ can be shown in the same way.

Proposition 8. $(\sigma; \tau); \gamma = \sigma; (\tau; \gamma).$

Proof. Let σ, τ, γ be a strategy for $A \multimap B, B \multimap C, C \multimap D$.

$$\Rightarrow \exists u \in (\sigma, \tau), \uparrow$$

$$\iff \exists u \in (\sigma, \tau) | | \gamma \text{ s.t. } s = u \upharpoonright A, D$$

$$\iff \exists u \in \text{int}(A, C, D) \text{ s.t. } \begin{cases} u \upharpoonright A, C \in \sigma; \tau \\ u \upharpoonright C, D \in \gamma \\ u \upharpoonright A, D = s \end{cases}$$

$$\iff \exists u \in \text{int}(A, C, D), \exists v \in \text{int}(A, B, C) \text{ s.t. } \begin{cases} v \upharpoonright A, B \in \sigma \\ v \upharpoonright B, C \in \tau \\ u \upharpoonright C, D \in \gamma \\ v \upharpoonright A, C = u \upharpoonright A, C \\ u \upharpoonright A, D = s \end{cases}$$

Define int(A, B, C, D) as the set of the sequences of $M_A + M_B + M_C + M_D$ with justified pointer except the initial move in D. We also define $u \upharpoonright A, B$,

 $u \upharpoonright A, C, u \upharpoonright A, D, \ldots$ for $u \in \operatorname{int}(A, B, C, D)$ by the same way as we did for $\operatorname{int}(A, B, C)$. We show that the condition above is satisfied if and only if

$$\exists u \in \operatorname{int}(A, B, C, D), \begin{cases} u \upharpoonright A, B \in \sigma \\ u \upharpoonright B, C \in \tau \\ u \upharpoonright C, D \in \gamma \\ u \upharpoonright A, D = s \end{cases}$$

If this equivalence is proved, it is clear that this is also equivalent to $s \in \sigma$; $(\tau; \gamma)$, and the proof will be completed.

The "if" part is clear. We have to show the "only if" part by considering insertion of $v \in \text{int}(A, B, C)$ into $u \in \text{int}(A, C, D)$. Now we have two sequences $v \in \text{int}(A, B, C)$, $u \in \text{int}(A, C, D)$, and each of them follows the automaton

$$C/P \uparrow \downarrow C/O \qquad D/P \uparrow \downarrow D/O$$

$$B/P \uparrow \downarrow B/O \qquad C/P \uparrow \downarrow C/O$$

$$A/P \uparrow \downarrow A/O \qquad A/P \uparrow \downarrow A/O$$

Since $v \upharpoonright A, C = u \upharpoonright A, C$, these two can be put together and make a new sequence which follows to the another automaton

$$D/P \cap D/O$$

$$C/P \cap C/O$$

$$B/P \cap B/O$$

$$A/P \cap A/O$$

and the new sequence obviously satisfies the condition we wanted.

Finnally we have the following corollary.

Corollary 1. \mathcal{G} is a category.

Definition 10. Given $\sigma: A \to B$ and $\tau: B \to D$, define $\sigma \otimes \tau: A \otimes C \to B \otimes D$ by

$$\sigma \otimes \tau = \{ s \in L_{A \otimes C \multimap B \otimes D} \mid s \upharpoonright A, B \in \sigma, \ s \upharpoonright C, D \in \tau \}.$$

Proposition 9. $\sigma \otimes \tau$ is a strategy for $A \otimes C \multimap B \otimes D$

Proof. We first check $\sigma \otimes \tau \subset^{\text{even}} P_{A \otimes C \multimap B \otimes D}$.

$$\begin{array}{ll} s \in \sigma \otimes \tau \\ \Rightarrow & s \upharpoonright A, B \in \sigma, \quad s \upharpoonright C, D \in \tau \\ \Rightarrow & |s \upharpoonright A, B| : \text{even}, \quad |s \upharpoonright C, D| : \text{even} \\ \Rightarrow & |s| = |s \upharpoonright A, B| + |s \upharpoonright C, D| : \text{even} \end{array}$$

By the definition, $s \in L_{A \otimes C \multimap B \otimes D}$. It suffices to show $s \upharpoonright A \otimes C \in P_{A \otimes C}$, $s \upharpoonright B \otimes D \in P_{B \otimes D}$. I DO NOT KNOW HOW TO SHOW $s \upharpoonright A \otimes B \in L_{A \otimes C}$, WHICH MIGHT BE IMMEDIATELY SHOWN FROM $s \in L_{A \otimes C \multimap B \otimes D}$. We have $s \upharpoonright A, B \in \sigma \subset P_{A \multimap B}$ and $s \upharpoonright A, B \in \sigma \subset P_{A \multimap B}$ which imply each restriction of s to the game A, B, C, D are valid positions.

We suffices to show that $\sigma \otimes \tau$ satisfies the three conditions for strategy.

- (s1) $\varepsilon \in \sigma \otimes \tau$.
- (s2) If $s \in \sigma \otimes \tau \subseteq$, we know that for each arena $A \multimap B, C \multimap D, A \otimes C, B \otimes D, A, B, C, D$, players of the moves in s alternates. Therefore, as Propositition.2, we obtain an automaton below.

So, if $sab \in \sigma \otimes \tau$, $a \in A + B \iff b \in A + B$. Therefore $sab \upharpoonright A, B \in \sigma \Rightarrow s \upharpoonright A, B \in \sigma$, and the same for C, D.

(s3) Immediate from that, if $sab \in \sigma \otimes \tau$, $a \in A + B \iff b \in A + B$.

Proposition 10. $-\otimes B$ is a functor.

Proof. NOT YET. NEED TO SHOW
$$(\sigma; \tau) \otimes (id; id) = (\sigma; id) \otimes (\tau; id)$$
.

Proposition 11. $-\otimes B$ has a right adjoint $-\otimes B \dashv B \multimap -$.

Proof. For each strategy σ for $A \otimes B \multimap C$, we define another strategy $\overline{\sigma}$ for $A \multimap B \multimap C$ and check that $\overline{\sigma}$ is the unique strategy that satisfies

$$(B \multimap C) \otimes B \xrightarrow{ev} C$$

$$\bar{\sigma} \otimes \mathrm{id}_B \uparrow \qquad \qquad \sigma$$

$$A \otimes B.$$

Definition 11. Define A&B and !A as in [1].

$$\begin{split} M_{A\&B} &= M_A + M_B. \\ \lambda_{A\&B} &= [\lambda_A, \lambda_B]. \\ \star \vdash_{A\&B} n \Leftrightarrow \star \vdash_A n \ \lor \ \star \vdash_B n. \\ m \vdash_{A\&B} n \Leftrightarrow m \vdash_A n \ \lor \ m \vdash_B n. \\ P_{A\&B} &= \{s \in L_{A\&B} \mid s \upharpoonright A \in P_A \ \land \ s \upharpoonright B = \varepsilon\} \\ & \cup \{s \in L_{A\&B} \mid s \upharpoonright A = \varepsilon \ \land \ s \upharpoonright B \in P_B\} \end{split}$$

$$M_{!A} = M_A.$$

$$\lambda_{!A} &= \lambda_A.$$

$$\vdash_{!A} &= \vdash_A.$$

$$P_{A\&B} &= \{s \in L_{!A} \mid \text{ for each initial move } m, s \upharpoonright m \in P_A\}$$

Proposition 12. A&B is a game.

Proof. It is clear that $\langle M_{A\&B}, \lambda_{A\&B}, \vdash_{A\&B} \rangle$ defines an arena. Since $\varepsilon \in P_{A\&B}$ and $sa \in P_{A\&B} \Rightarrow s \in P_{A\&B}$, $P_{A\&B}$ is a non-empty prefix-closed set of legal positions. $s \in P_{A\&B} \wedge I$: initial moves of $s \Rightarrow s \upharpoonright_h I \in P_{A\&B}$ is also clear. \square

Proposition 13. A&B is the product of A and B in G.

Proposition 14. !A is a game.

Proof. The arena !A is that of A. $\varepsilon \in P_{!A}$ is clear.

 $sa \in P_{!A}$ $\forall m : \text{initial move}, sa \upharpoonright_h \in P_A$ $\forall m : \text{initial move}, s \upharpoonright_h \in P_A$

Therefore, $P_{!A}$ is a non-empty prefix-closed set of legal positions.

To show that !A is a game, it suffices to show

$$s \in P_{!A} \land I$$
: initial moves of $s \Rightarrow s \upharpoonright_h I \in P_{!A}$

If $s \in P_{!A}$ and m is an initial move, $(s \upharpoonright_h I) \upharpoonright_h m = s \upharpoonright_h m \in P_A$. It is left to be shown that $s \upharpoonright_h I \in L_{!A} = L_A$. THIS IS A CONSEQUENCE OF LEMMA 2.6 IN [3].

Definition 12. A game A is called *well-opened* if for all $sm \in P_A$, m is not initial when $s \neq \varepsilon$.

For each $\sigma: A \to B$, define σ^{\dagger} by $\{s \in L_{A \to B} \mid \text{ for all initial } m, s \upharpoonright m \in \sigma\}$.

Proposition 15. If A and B are well-opened and σ is a map of $!A \to B$, σ^{\dagger} is a strategy for $!A \multimap !B$

Proof. We check that σ^{\dagger} is a set of even-length positions from $P_{!A \multimap !B}$ first. Let s be a sequence included in σ^{\dagger} . If I is the set consists of all initial moves in s, $|s| = |s|_h I| = \sum_{m \in I} |s|_h m|$, which is even. To show $\sigma^{\dagger} \subset P_{!A \multimap !B}$, take $s \in \sigma^{\dagger}$. We need to show

$$\begin{array}{lll} s \in P_{!A \multimap !B} \\ \iff & s \upharpoonright A \in P_{!A} & \land & s \upharpoonright B \in P_{!B} \\ \iff & s \upharpoonright A \in L_{!A} & \land & \forall m : \text{ initial move in } A, (s \upharpoonright A) \upharpoonright_h m \in P_A \\ & \land & s \upharpoonright B \in L_{!B} & \land & \forall m : \text{ initial move in } B, (s \upharpoonright B) \upharpoonright_h m \in P_B. \end{array}$$

We have $s \in L_{!A \multimap !B}$, $(s \upharpoonright_h m) \upharpoonright A \in P_{!A}$. BUT, I don't know how to prove $s \upharpoonright A \in L_{!A} = L_A$. Since $s \upharpoonright_h m$ is included in $\sigma \subset P_{!A \multimap B}$, $(s \upharpoonright A) \upharpoonright_h m = (s \upharpoonright m) \upharpoonright \in P_A$. The same consists for B.

We are left to prove the following.

- (s1) $\varepsilon \in \sigma^{\dagger}$.
- (s2) Take $sab \in \sigma^{\dagger}$. Havn't wrote yet.
- (s3)

Definition 13. Assume A, B, C be well-opened games. When σ and τ are strategies for each game $!A \multimap B, !B \multimap C$, define a strategy $\sigma \, ; \tau$ for the game $!A \multimap C$ by $\sigma \, ; \tau = \sigma^{\dagger} ; \tau$.

Proposition 16. For each well-opened game A, set der_A as

$$\operatorname{der}_A = \{ s \in P_{!A \multimap A} \mid \forall t \sqsubset^{\operatorname{even}} s, \quad t \upharpoonright !A = t \upharpoonright A \}.$$

Then, der_A is a strategy for $A \to A$ satisfying $\operatorname{der} \circ \sigma = \sigma = \sigma \circ \operatorname{der} \sigma$.

Proof. By the definition, $\operatorname{der}_A \subseteq^{\operatorname{even}} P_{!A \multimap A}$. (s1) ε is included in der_A . (s2) If $sab \in \operatorname{der}_A$, $\operatorname{clearly} s \in \operatorname{der}_A$. (s3) If $s, sab \in \operatorname{der}_A$, $s \upharpoonright !A = s \upharpoonright A$ and $s \upharpoonright !B = s \upharpoonright B$ are satisfied by the definition. This implies that a and b are the copies of the same move of A but one is a move of A and the other is that of !A. Therefore, der_A is a strategy.

By induction, a sequence s included in der_A has a form as

$$s = a_1 a_1 a_2 a_2 \dots a_k a_k.$$

To prove der $\, \circ \, \sigma = \sigma = \sigma \, \circ \, \text{der}, \text{ we show } \text{der}_A^\dagger = \text{id}_{!A} \text{ and } \sigma^\dagger; \text{der}_B = \sigma.$

(**Proof of** $\operatorname{der}_A^{\dagger} = \operatorname{id}_{!A}$) Assume $s \in \operatorname{id}_{!A} \cap \operatorname{der}_A^{\dagger}$ and $sa \in L_{!A_1 \multimap !A_2}$. It suffices to show that all the three below are equivalent.

$$(i)sab \in id_{!A}$$

 $(ii)sab \in der_A^{\dagger}$
 $(iii)saa = sab \in P_{!A_1 \multimap !A_2}$

(s has the form $a_1a_1a_2a_2...a_na_n$, and a points some a_i in s. We extend this justified sequence sa to saa by assuming that the latter a belongs to the defferent game from that of the former, and assuming that the latter a points the other a_i .)

 $(i) \iff (iii)$ We already know

$$sab \in id_{!A} \Rightarrow sab = saa.$$

Since s is in $id_{!A}$, s is an element of $P_{!A_1 \multimap !A_2}$ and for all even-length prefix t of s, $t \upharpoonright !A_1 = t \upharpoonright !A_2$. To show $saa \in id_{!A}$, we need to check

$$saa \in P_{!A_1 \multimap !A_2}$$

 $saa \upharpoonright !A_1 = saa \upharpoonright !A_2.$

The latter is trivial from our construction of saa, and therefore the first and the third conditions are equivalent.

 $(ii) \Leftarrow (iii)$ By the definition,

$$saa \in \operatorname{der}_A^{\dagger} \iff saa \in L_{!A_1 \multimap !A_2} \wedge \text{ for all initial } m, \ saa \upharpoonright_h m \in \operatorname{der}_A$$

 $saa \in L_{!A_1 \multimap !A_2}$ follows from (iii). Let m be an initial move in saa. Again by the definition,

$$\begin{array}{c} saa \upharpoonright_h \in \operatorname{der}_A \\ \Longleftrightarrow \ saa \upharpoonright_h m \in P_{!A_1 \multimap A_2} \ \land \ \forall t \sqsubseteq^{\operatorname{even}} saa \upharpoonright_h m, \ t \upharpoonright !A_1 = t \upharpoonright !A_2 \end{array}$$

Since $s \upharpoonright m$ is in der_A, $s \upharpoonright_h m$ is even-length. TODO: show both a are hereditary justified by the same initial move. And then $saa \upharpoonright_h m$ is proved to be even-length. Showing this also implies $(saa \upharpoonright_h m) \upharpoonright !A_1 = (saa \upharpoonright_h m) \upharpoonright A_2$.

 $(ii) \Rightarrow (iii)$ is easy.

(Proof of
$$\sigma^{\dagger}$$
; der = σ) TODO.

Proposition 17. $(\sigma \ \ \ \ \tau) \ \ \gamma = \sigma \ \ (\tau \ \ \gamma)$.

Proof. We just need to show

$$(\sigma^{\dagger};\tau)^{\dagger}=\sigma^{\dagger};\tau^{\dagger}.$$

See Lemma 2.24. in [3]

Corollary 2. C is a category.

Proposition 18. A&B is the product in C.

Lemma 3. $!(A\&B) = !A\otimes !B.$

Theorem 1. C is CCC.

References

- [1] Abramsky, S., & McCusker, G. (1999). Game semantics. In Computational logic (pp. 1-55). Springer, Berlin, Heidelberg.
- [2] Hyland, J. M. E., & Ong, C. H. (2000). On full abstraction for PCF: I, II, and III. Information and computation, 163(2).
- [3] McCusker, G. (2000). Games and full abstraction for FPC. Information and Computation, 160(1-2), 1-61.