Scilab Textbook Companion for Fundamentals Of Heat And Mass Transfer by F. P. Incropera, D. P. Dewitt, T. L. Bergman And A. S. Lavine¹

Created by
Abhishek J Jain
B. Tech.
Chemical Engineering
Indian Institute of Technology (BHU), Varanasi
College Teacher
Dr. Prakash Kotecha
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Heat And Mass Transfer

Author: F. P. Incropera, D. P. Dewitt, T. L. Bergman And A. S. Lavine

Publisher: Wiley India Pvt. Ltd., New Delhi

Edition: 6

Year: 2010

ISBN: 9788126527649

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction	8
2	Introduction to Conduction	17
3	One Dimensional Steady State Conduction	22
4	Two Dimensional Steady State Conduction	37
5	Transient Conduction	43
6	Introduction to Convection	62
7	External Flow	69
8	Internal Flow	80
9	Free Convection	91
10	Boiling and Condensation	98
11	Heat Exchangers	104
12	Radiation Processes and Properties	115
13	Radiation Exchange between the Surface	130
14	Diffusion Mass Transfer	139

List of Scilab Codes

Exa 1.1	Heat Loss Through Wall	8
Exa 1.2	Surface Emissive Power and Irradiation	9
Exa 1.3	Theoretical Problem	10
Exa 1.4	Coolant Fluid Velocity	10
Exa 1.5	Theoretical Problem	11
Exa 1.6	Human Body Heat Loss	12
Exa 1.7	Cure Temperature	14
Exa 1.8	Theoretical Problem	16
Exa 2.1	Thermal Diffusivity	17
Exa 2.2	Non Uniform Temperature Distribution	19
Exa 2.3	Theoretical Problem	20
Exa 3.1	Human Heat Loss	22
Exa 3.2	Chip Operating Temperature	24
Exa 3.3	Carbon Nanotube	25
Exa 3.4	Conical Section	26
Exa 3.5	Critical Thickness	27
Exa 3.6	Spherical Composite	28
Exa 3.7	Composite Plane Wall	29
Exa 3.8	Theoretical Problem	30
Exa 3.9	Rod Fin Heat Transfer	30
Exa 3.10	Finned Cylinder Heat Transfer	32
Exa 3.11	Study of Fuel Cell Fan System	33
Exa 3.12	Heat Loss From Body and Temp at Inner Surface	35
Exa 4.1	Thermal Resistance of Eccentric Wire	37
Exa 4.2	Theoretical Problem	38
Exa 4.3	Temperature Distribution in Column and Heat Rate per	
	Unit Length	38
Exa 4.4	Temperature Field of Channel and Rate of Heat Transfer	40

Exa 5.1	Thermo Couple Junction	43
Exa 5.2	Steady State Temperature of Junction	44
Exa 5.3	Total Time Required for Two Step Process	46
Exa 5.4	Radial System with Convection	49
Exa 5.5	Two Step Cooling Process Of Sphere	50
Exa 5.6	Burial Depth	51
Exa 5.7	Spherical Tumor	52
Exa 5.8	Thermal Conductivity of Nanostructured Material	54
Exa 5.9	Temperature Distribution Using Finite Difference Method	55
Exa 5.10	Temperature Distribution Analytical and Explicit and	
	Implicit Finite Difference	57
Exa 6.1	Theroetical Problem	62
Exa 6.2	Napthalene Sublimation	62
Exa 6.3	Convection Mass Transfer Coefficient	63
Exa 6.4	Convection Mass Transfer coefficient of Plate	64
Exa 6.5	Heat Flux of Plate	65
Exa 6.6	Molar Flux over Plate	66
Exa 6.7	Evaporative Cooling	67
Exa 7.1	Cooling Rate per Unit Width of the Plate	69
Exa 7.2	Maximum Heater Power Requirement	70
Exa 7.3	Daily Water Loss	72
Exa 7.4	Convection Coefficient Using Zukauskas Relation	73
Exa 7.5	Convective Heat transfer to the Canister	75
Exa 7.6	Time required to Cool on Plastic Film	76
Exa 7.7	Air side Convection coefficient and Heat Rate for Stag-	
	gered Arrangement	77
Exa 8.1	Theoretical Problem	80
Exa 8.2	Length of Tube and Local Convection Coefficient at the	
	Outlet	80
Exa 8.3	Average Convection Coefficient of Stream	81
Exa 8.4	Solar Energy	82
Exa 8.5	Length of Blood Vessel Artery	83
Exa 8.6	Heat Loss from the Metal Duct over the Length	85
Exa 8.7	Micro Channel	86
Exa 8.8	Average mass trasnfer Convection Coefficient for the	
	Tube	89
Exa 9.1	Vertical Plate	91

Exa 9.2	Heat Transfer by Convection Between Screen and Room
	air
Exa 9.3	Heat Loss from Duct per Meter of Length 93
Exa 9.4	Heat Loss from Pipe per Meter of Length 94
Exa 9.5	Radiation Shield
Exa 10.1	Boiling Water Pan
Exa 10.2	Power Dissipation per unith Length for the Horizontal
	Cylinder
Exa 10.3	Heat Transfer and Condensation Rates 103
Exa 10.4	Condensation Rate per unit Length of Tubes 102
Exa 11.1	Tube Length to Achieve a Desired Hot Fluid Tempera-
	ture in a Counter Flow Tube Heat Exchanger 104
Exa 11.2	Exterior Dimensions of Counter Flow Plate Heat Ex-
	changer
Exa 11.3	Required Gas Side Surface Area in CrossFlow Finned
	Heat Exchanger
Exa 11.4	Heat Transfer Rate and Fluid Outlet Temperatures of
	Cross Flow Finned Heat Exchanger
Exa 11.5	Study of Shell n Tube Heat Exchanger
Exa 11.6	Finned Compact Heat Exchanger
Exa 12.1	Plate Surface Emission Study
Exa 12.2	Total Irradiation of Spectral Distribution 117
Exa 12.3	Blackbody Radiation
Exa 12.4	Blackbody Angular Radiation
Exa 12.5	Diffuse Emitter
Exa 12.6	Metallic Surface Irradiation
Exa 12.7	Study of Radiation on Opaque Surface
Exa 12.8	Total Emissivity of Cover Glass to Solar Radiation 124
Exa 12.9	Total Hemispherical Emissivity of Fire Brick Wall 128
Exa 12.10	Total Hemispherical Absorptivity and Emissivity of Metal-
	lic Sphere
Exa 12.11	Heat Removal Rate per Unit Area of Solar Collector . 127
Exa 13.1	Theoretical Problem
Exa 13.2	View Factor of Different Geometries
Exa 13.3	Net rate of Heat transfer to the absorber surface 133
Exa 13.4	Power Required to Maintain Prescribed Temperatures
	in Cylindrical Furnace
Exa 13.5	Concentric Tube Arrangement

Exa 13.6	Rate at which Heat must be Supplied per Unit Length	
	of Triangular Duct	35
Exa 13.7	Semi Circular Tube	36
Exa 14.1	Molar and Mass Fluxes of Hydrogen	39
Exa 14.2	Evaporation Rate Through a Single Pore	41
Exa 14.3	Polymer Sheet and Trough Geometry 1	42
Exa 14.4	Helium Gas Spherical Container	43
Exa 14.5	Hydrogen Plastic Diffusion	44
Exa 14.6	Bacteria BioFilm	45
Exa 14.7	Drug Medication	46

Chapter 1

Introduction

Scilab code Exa 1.1 Heat Loss Through Wall

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 5 ')//Example 1.1
4 // Find Wall Heat Loss - Problem of Pure Conduction
     Unidimensional Heat
6 L=.15; //[m] - Thickness of conducting wall
7 delT = 1400 - 1150; //[K] - Temperature Difference
     across the Wall
8 A=.5*1.2; //[m^2] - Cross sectional Area of wall = H
         // [W/m.k] - Thermal Conductivity of Wall
9 k=1.7;
     Material
10
11 //Using Fourier's Law eq 1.2
12 Q = k*delT/L; //[W/m^2] - Heat Flux
13
14 q = A*Q; //[W] - Rate of Heat Transfer
15
```

```
16 printf("\n \n Heat Loss through the Wall = %.2 f W', q );   
17 //END
```

Scilab code Exa 1.2 Surface Emissive Power and Irradiation

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 11 \langle n' \rangle // Example 1.2
4 // Find a) Emissive Power & Irradiation b) Total Heat
       Loss per unit length
          //[m] - Outside Diameter of Pipe
7 Ts = 200+273.15; //[K] - Surface Temperature of
     Steam
  Tsurr = 25+273.15; //[K] - Temperature outside the
      pipe
9 e=.8; // Emissivity of Surface
10 h=15;
            // [W/m<sup>2</sup>.k] - Thermal Convectivity from
      surface to air
                               // [W/m^2.K^4] - Stefan
11 stfncnstt=5.67*10^(-8);
     Boltzmann Constant
12 //Using Eq 1.5
13 E = e*stfncnstt*Ts^4;
                             //[W/m^2] - Emissive Power
                            //[W/m^2] - Irradiation
14 G = stfncnstt*Tsurr^4;
      falling on surface
15
16 printf("\n (a) Surface Emissive Power = \%.2 \text{ f W/m}^2",
     E);
17 printf("\n
                   Irradiation Falling on Surface = \%.2 f
      W/m^2", G);
18
19 //Using Eq 1.10 Total Rate of Heat Transfer Q = Q
```

Scilab code Exa 1.3 Theoretical Problem

Scilab code Exa 1.4 Coolant Fluid Velocity

```
7 Tsurr = 25+273.15; //[K] - Temperature of
      Surroundings
8 e=.88; // Emissivity of Surface
10 //As h = (10.9*V^{\circ}.8) [W/m^{\circ}2.k] - Thermal Convectivity
     from surface to air
11 stfncnstt=5.67*10^(-8); //[W/m^2.K^4] - Stefan
     Boltzmann Constant
12
13 A=2*.05*.05; // [m^2] Area for Heat transfer i.e.
       both surfaces
14
15 E = 11.25; //[W] Net heat to be removed by
      cooling air
16
17 Qrad = e*stfncnstt*A*(Ts^4-Tsurr^4);
18
19 //Using Eq 1.10 Total Rate of Heat Transfer Q = Q
     by convection + Q by radiation
20 Qconv = E - Qrad; //[W]
21
  //As \ Qconv = h*A*(Ts-Tsurr) \& h=10.9 \ Ws^{(.8)}/m^{(-.8)}
     K.V^{(1)}
23
24 V = [Qconv/(10.9*A*(Ts-Tsurr))]^(1/0.8);
26 printf ("\n Velocity of Cooling Air flowing= \%.2 f m
     /s",V);
27 //END
```

Scilab code Exa 1.5 Theoretical Problem

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
```

```
Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
    1.5   Page 23 \n') // Example 1.5
4  // Theoretical Problem
5
6  printf('\n The given example is theoretical and does not involve any numerical computation')
7
8  // End
```

Scilab code Exa 1.6 Human Body Heat Loss

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 26 ')// Example 1.6
4 // Find Skin Temperature & Heat loss rate
6 A=1.8; // [m<sup>2</sup>] Area for Heat transfer i.e. both
     surfaces
7 Ti = 35+273; //[K] - Inside Surface Temperature of
     Body
8 Tsurr = 297; //[K] - Temperature of surrounding
9 Tf = 297; //[K] - Temperature of Fluid Flow
10 e=.95; // Emissivity of Surface
11 L=.003; //[m] - Thickness of Skin
12 k=.3; // Effective Thermal Conductivity
         // [W/m^2.k] - Natural Thermal Convectivity
     from body to air
14 stfncnstt=5.67*10^(-8); //[W/m^2.K^4] - Stefan
     Boltzmann Constant
15
  //Using Eq 1.5
16
                       //[K] Body Temperature Assumed
17 Tsa=305;
18
```

```
19 i = -1;
20 \text{ while}(i==-1)
21
      hr = e*stfncnstt*(Tsa+Tsurr)*(Tsa^2+Tsurr^2);
          //[W/m<sup>2</sup>.K] - Radiative Heat transfer Coeff on
           assumption
22
      //U sing Eq 1.8 \& Eq 1.9 k(Ti-Ts)/L = h(Ts - Tf) +
23
           hr(Ts - Tsurr)
24 Ts = (k*Ti/L + (h+hr)*Tf)/(k/L + (h+hr));
25
      c = abs(Ts - Tsa);
      if (c <= 0.0001)</pre>
26
27
         i=1;
28
         break;
29
      end
30
      Tsa=Ts;
31 end
32
                                    // [W]
33 q = k*A*(Ti-Ts)/L;
34
35 printf("\n\n (I) In presence of Air")
36 printf("\n (a) Temperature of Skin = \%.2 \, \text{f K}", Ts);
37 printf("\n (b) Total Heat Loss = \%.2 \text{ f W}",q);
38
39 //When person is in Water
                 // [W/m<sup>2</sup>.k] - Thermal Convectivity from
40 h = 200;
      body to water
41 \text{ hr} = 0;
               // As Water is Opaque for Thermal
      Radiation
  Ts = (k*Ti/L + (h+hr)*Tf)/(k/L + (h+hr));
                                                    //[K]
      Body Temperature
43 q = k*A*(Ti-Ts)/L;
                                    // [W]
44 printf("\n\n (II) In presence of Water")
45 printf("\n (a) Temperature of Skin = \%.2 \, \text{f K}", Ts);
46 printf("\n (b) Total Heat Loss = \%.2 \text{ f W},q);
47
48 / END
```

Scilab code Exa 1.7 Cure Temperature

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 30 \n') // Example 1.7
4 // (a) Cure Temperature for h = 15 \text{ W/m}^2
\frac{5}{\sqrt{b}} Value of h for cure temp = 50 deg C
7 Tsurr = 30+273; //[K] - Temperature of surrounding
8 Tf = 20+273; //[K] - Temperature of Fluid Flow
9 e=.5; // Emissivity of Surface
10 a = .8; // Absorptivity of Surface
11 G = 2000; //[W/m^2] - Irradiation falling on
      surface
           //[W/m<sup>2</sup>.k] - Thermal Convectivity from
12 h=15;
      plate to air
13 stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan
     Boltzmann Constant
          //[K] Value initially assumed for trial-
14 T = 375;
      error approach
15 //Using Eq 1.3a & 1.7 and trial—and error approach
      of Newton Raphson
16 while (1>0)
17 f=((a*G)-(h*(T-Tf)+e*stfncnstt*(T^4 - Tsurr^4)));
18 fd=(-h*T-4*e*stfncnstt*T^3);
19 Tn=T-f/fd;
20 if(((a*G)-(h*(Tn-Tf)+e*stfncnstt*(Tn^4 - Tsurr^4)))
      <=.01)
21
       break;
22 end;
23 T = Tn;
24 end
```

```
25
26 printf("\n (a) Cure Temperature of Plate = \%i degC\n
      ",T-273);
27 //solution (b)
28 \text{ Treq} = 50 + 273;
29 function[T]=Tvalue(h)
        T = 240;
30
31
        while (1>0)
            f = ((a*G) - (h*(T-Tf) + e*stfncnstt*(T^4 - Tsurr))
32
                ^4)));
33
            fd=(-h*T-4*e*stfncnstt*T^3);
            Tn=T-f/fd;
34
35
            if (((a*G)-(h*(Tn-Tf)+e*stfncnstt*(Tn^4 -
               Tsurr^4))) <=.01)
36
                 break;
37
            end;
38
            T = Tn;
39
        end
        funcprot(0)
40
41 endfunction
42
43 h = [2:.5:100];
44 \text{ Tm} = [1:1:197];
45 for i=1:1:197;
46
        Tm(i) = Tvalue(h(i));
47 end
48
49 \text{ T=Treq};
50 hnew=((a*G)-(e*stfncnstt*(T^4 - Tsurr^4)))/(T-Tf);
51 clf()
52 xtitle ("Graph Temp vs Convection Coeff", "h (W/m<sup>2</sup>/K
      )", "T (degC)");
53 x = [0 hnew hnew];
54 y = [Treq - 273 Treq - 273 0];
55 plot(h, Tm-273, x, y);
56 legend("Plot", "h at T = 50 \text{ degC}");
57 printf("\n (b) Air flow must provide a convection of
       = %i W/m^2.K", hnew);
```

58 //END

Scilab code Exa 1.8 Theoretical Problem

Chapter 2

Introduction to Conduction

Scilab code Exa 2.1 Thermal Diffusivity

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 68 \langle n' \rangle / Example 2.1
4 // Find Value for Thermal Diffusivity
6 function a=alpha(p, Cp, k)
       a=k/(p*Cp); //[m^2/s]
       funcprot(0);
9 endfunction
10
11 //(a) Pure Aluminium at 300K
12 // From Appendix A, Table A.1
13
14 p = 2702; //[Kg/m^3] - Density Of Material
15 Cp = 903; //[J/kg.K] - Specific heat of Material
16 k = 237; //[W/m.k] - Thermal Conductivity of
      Material
17
18 printf("\n (a) Thermal Diffuisivity of Pure
```

```
Aluminium at 300K = \%.2e \text{ m}^2/\text{s}\text{n}, alpha(p, Cp, k)
      );
19
20 //(b) Pure Aluminium at 700K
21 // From Appendix A, Table A.1
22
23 p = 2702; //[Kg/m^3] - Density Of Material
24 Cp = 1090; //[J/kg.K] - Specific heat of Material
                //[W/m.k] - Thermal Conductivity of
25 k = 225;
      Material
26
27 printf("\n (b) Thermal Diffuisivity of Pure
      Aluminium at 700K = \%.2e \text{ m}^2/\text{s}\text{n}, alpha(p, Cp, k)
      );
28
29 //(c) Silicon Carbide at 1000K
30 // From Appendix A, Table A.2
31
32 p = 3160; //[Kg/m^3] - Density Of Material
33 Cp = 1195; //[J/kg.K] - Specific heat of Material
34 k = 87;
               //[W/m.k] - Thermal Conductivity of
      Material
35
36 printf("\n (c) Thermal Diffuisivity of Silicon
      Carbide at 1000K = \%.2e \text{ m}^2/\text{s}\text{n}, alpha(p, Cp, k))
37
38 //(d) Paraffin at 300K
39 // From Appendix A, Table A.3
40
41 p = 900; //[Kg/m^3] - Density Of Material
42 Cp = 2890; //[J/kg.K] - Specific heat of Material
               // [W/m.k] - Thermal Conductivity of
43 k = .24;
      Material
44
45 printf("\n (d) Thermal Diffuisivity of Paraffin at
      300K = \%.2e \text{ m}^2/\text{s}, alpha(p, Cp, k));
46 / END
```

Scilab code Exa 2.2 Non Uniform Temperature Distribution

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 75 \langle n' \rangle / Example 2.2
4 // Analyze a Situation of Non-Uniform Temperature
      Distribution
  //T(x) = a + bx + cx^2 T-degC & x-meter
7 a = 900;
               //[\deg C]
               //[degC/m]
8 b = -300;
9 c = -50;
               //[\deg C/m^2]
               // [W/m^2.K] - Unifrom heat Generation
11 q = 1000;
12 A = 10 ;
                //[m^2]
                          – Wall Area
13 // Properties of Wall
14 p = 1600;
               //[kg/m^3] - Density
15 k = 40;
                // [W/m] - Thermal Conductivity
               //[J/kg.K] - Specific Heat
16 \text{ Cp} = 4000;
                //[m] - Length of wall
17 L = 1;
18
19 //(i) Rate of Heat Transfer entering the wall and
     leaving the wall
20 // From Eqn 2.1
21 // qin = -kA(dT/dx) | x=0 = -kA(b)
22
23 \text{ qin} = -b*k*A;
24
25 // Similarly
26 // \text{qout} = -kA(dT/dx) | x=L = -kA(b+2cx) | x=L
27
28 \text{ qout} = - k*A*(b+2*c*L);
```

```
29
30 printf("\n (i) Rate of Heat Transfer entering the
      wall = \%i W \setminus n
                          And leaving the wall = \%i W \setminus n
      ", qin, qout);
31
32 //(ii) Rate of change Of Energy Storage in Wall E'st
33 // Applying Overall Energy Balance across the Wall
\frac{34}{E'} st = E' in + E'g + E' out = qin + q'AL - qout
35 Est = qin + q*A*L - qout;
36
37 printf("\n (ii) Rate of change Of Energy Storage in
      Wall = \%i W n", Est);
38
39 //(iii) Time rate of Temperature change at x=0,
      0.25 and .5m
40 // Using Eqn 2.19
41 // T'= dT/dt = (k/p*Cp)*d(dT/dx)/dx + q'/p*Cp
42 //As d(dT/dx)/dx = d(b + 2cx)/dx = 2c - Independent
      of x
43 T = (k/(p*Cp))*(2*c)+ q/(p*Cp);
44 printf("\n (iii) Time rate of Temperature change
      independent of x = \%f \deg C/s n, T);
45
46 / END
```

Scilab code Exa 2.3 Theoretical Problem

```
not involve any numerical computation')

7
8 //End
```

Chapter 3

One Dimensional Steady State Conduction

Scilab code Exa 3.1 Human Heat Loss

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 104 \n') //Example 3.1
4 // Find Skin Temperature & Aerogel Insulation
     Thickness
6 A=1.8; // [m<sup>2</sup>] Area for Heat transfer i.e. both
     surfaces
7 Ti = 35+273; //[K] - Inside Surface Temperature of
8 Tsurr = 10+273; //[K] - Temperature of surrounding
9 Tf = 283; //[K] - Temperature of Fluid Flow
10 e=.95; // Emissivity of Surface
11 Lst=.003; //[m] - Thickness of Skin
12 kst=.3; // [W/m.K] Effective Thermal Conductivity
     of Body
13 kins = .014; // [W/m.K] Effective Thermal
```

```
Conductivity of Aerogel Insulation
14 \text{ hr} = 5.9;
                  //[W/m<sup>2</sup>.k] - Natural Thermal
       Convectivity from body to air
15 stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan
      Boltzmann Constant
16 q = 100;
                         // [W] Given Heat rate
17
18 //Using Conduction Basic Eq 3.19
19 Rtot = (Ti-Tsurr)/q;
20 // Also
21 / \text{Rtot} = \text{Lst} / (\text{kst} * A) + \text{Lins} / (\text{kins} * A) + (\text{h} * A + \text{hr} * A)^{-1}
22 / \text{Rtot} = 1/\text{A}*(\text{Lst/kst} + \text{Lins/kins} + (1/(\text{h+hr})))
23
24 //Thus
25 //For Air,
             //[W/m<sup>2</sup>.k] - Natural Thermal Convectivity
      from body to air
27 Lins1 = kins * (A*Rtot - Lst/kst - 1/(h+hr));
28
29 //For Water,
               //[W/m^2.k] - Natural Thermal Convectivity
30 h = 200;
        from body to air
31 Lins2 = kins * (A*Rtot - Lst/kst - 1/(h+hr));
32
33 \text{ Tsa} = 305;
                           //[K]
                                   Body Temperature Assumed
34
35 //Temperature of Skin is same in both cases as Heat
      Rate is same
36 //q = (kst *A*(Ti-Ts))/Lst
37 \text{ Ts} = \text{Ti} - q*\text{Lst}/(\text{kst*A});
38
39 // Also from eqn of effective resistance Rtot F
40 printf("\n (I) In presence of Air, Insulation
       Thickness = \%.1 f \text{ mm}, Lins1*1000)
41
42 printf("\n (II) In presence of Water, Insulation
       Thickness = \%.1 \text{ f mm}, Lins2*1000);
43 printf("\n Temperature of Skin = \%.2 f degC", Ts
```

```
-273);
44 //END
```

Scilab code Exa 3.2 Chip Operating Temperature

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
      3.2
            Page 107 \n'); //Example 3.2
4 // Chip Operating Temperature
6 Tf = 25+273; //[K] - Temperature of Fluid Flow
8 L = .008;
           //[m] - Thickness of Aluminium
9 k=239; // [W/m.K] Effective Thermal Conductivity
     of Aluminium
10 Rc=.9*10^-4;
                   //[K.m^2/W]
                                  Maximum permeasible
     Resistane of Epoxy Joint
11 q=10^4; //[W/m^2] Heat dissipated by Chip
             //[W/m^2.k] - Thermal Convectivity from
12 h=100;
     chip to air
13
14 //Temperature of Chip
15 //q = (Tc-Tf)/(1/h) + (Tc-Tf)/(Rc+(L/k)+(1/h))
16
17 Tc = Tf + q*(h+1/(Rc+(L/k)+(1/h)))^-1;
18
19 printf("\n Temperature of Chip = \%.2 \, f \, \deg C", Tc
     -273);
20 printf("\n Chip will Work well below its maximum
      allowable Temperature ie 85 degC")
21 / END
```

Scilab code Exa 3.3 Carbon Nanotube

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 109 \n'); //Example 3.3
4 // Find Thermal conductivity of Carbon Nanotube
6 D = 14 * 10^-9;
                      // [m] Dia of Nanotube
7 s = 5*10^-6;
                      // [m] Distance between the
     islands
                    //[K] Temp of sensing island
  Ts = 308.4;
                     //[K] Temp of surrounding
9 Tsurr = 300;
10 q = 11.3*10^-6; //[W] Total Rate of Heat flow
11
12 //Dimension of platinum line
13 \text{ wpt} = 10^-6;
                 //[m]
14 tpt = 0.2*10^-6; //[m]
15 Lpt = 250*10^-6; // [m]
16 //Dimension of Silicon nitride line
                       // [m]
17 \text{ wsn} = 3*10^-6;
18 \text{ tsn} = 0.5*10^-6;
                      //[m]
19 Lsn = 250*10^-6; //[m]
20 //From Table A.1 Platinum Temp Assumed = 325K
21 kpt = 71.6; //[W/m.K]
22 //From Table A.2, Silicon Nitride Temp Assumed = 325
     K
23 ksn = 15.5; //[W/m.K]
24
                         //Cross sectional area of
25 Apt = wpt*tpt;
     platinum support beam
26 Asn = wsn*tsn-Apt; //Cross sectional area of
      Silicon Nitride support beam
```

```
27 Acn = \%pi*D^2/4; //Cross sectional Area of
     Carbon nanotube
28
29 Rtsupp = [kpt*Apt/Lpt + ksn*Asn/Lsn]^-1;
                                               // [K/W]
     Thermal Resistance of each support
30
31 qs = 2*(Ts-Tsurr)/Rtsupp; //[W] Heat loss through
      sensing island support
32 qh = q - qs; //[W] Heat loss through heating
     island support
33
34 Th = Tsurr + qh*Rtsupp/2; //[K] Temp of Heating
     island
35
36 //For portion Through Carbon Nanotube
37 //qs = (Th-Ts)/(s/(kcn*Acn));
38
39 kcn = qs*s/(Acn*(Th-Ts));
40
41 printf("\n\n Thermal Conductivity of Carbon nanotube
      = \%.2 f W/m.K", kcn);
42 / END
```

Scilab code Exa 3.4 Conical Section

```
//[K] Temperature of smaller end
9 T1 = 400;
10 T2 = 600;
                  //[K] Temperature of larger end
11 k = 3.46;
                // [W/m.K] From Table A.2, Pyroceram at
     Temp 285K
12
13 x = linspace(0.05, .25, 100);
14 T = (T1 + (T1-T2)*[(x^-1 - x1^-1)/(x1^-1 - x2^-1)]);
15 clf();
16 plot(x,T);
17 xtitle(" Temp vs distance x", "x (m)", "T (K)");
18
19 qx = \%pi*a^2*k*(T1-T2)/(4*[1/x1 - 1/x2]);
                 // [W]
20 printf("\n\ Heat Transfer rate = \%.2 f W",qx);
21 / END
```

Scilab code Exa 3.5 Critical Thickness

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 119 \n'); //Example 3.5
     3.5
4 // Critical Thickness
6 k = .055; //[W/m.K] From Table A.3, Cellular
     glass at Temp 285K
7 h = 5; //[W/m^2.K]
8 ri = 5*10^-3; //[m] radius of tube
             // [m] Critical Thickness of
10 rct = k/h;
     Insulation for maximum Heat loss or minimum
     resistance
11
12 x = linspace(0,.07,100);
```

```
13 ycond=(2.30*log10((x+ri)/ri)/(2*%pi*k));
14 yconv=(2*%pi*(x+ri)*h)^-1;
15 ytot=yconv+ycond;
16 clf();
17 plot(x,ycond,x,yconv,x,ytot);
18 xtitle("Resistance vs Radii", "r-ri (m)", "R (m.K/W)");
19 legend ("Rcond", "Rconv", "Rtotal");
20
21 printf("\n\n Critical Radius is = %.3 f m \n Heat transfer will increase with the addition of insulation up to a thickness of %.3 f m",rct,rct-ri);
22 //END
```

Scilab code Exa 3.6 Spherical Composite

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 122 \langle n' \rangle; //Example 3.6
4 // Heat conduction through Spherical Container
6 k = .0017; //[W/m.K] From Table A.3, Silica
     Powder at Temp 300K
               //[W/m^2.K]
7 h = 5;
8 \text{ r1} = 25*10^-2; //[m]
                               Radius of sphere
9 	 r2 = .275;
                       //[m]
                              Radius including
     Insulation thickness
10
11 //Liquid Nitrogen Properties
12 T = 77;
                 //[K] Temperature
13 rho = 804; //[kg/m^3] Density
14 hfg = 2*10^5; //[J/kg] latent heat of vaporisation
```

```
15
16 // Air Properties
                   //[K] Temperature
17 \text{ Tsurr} = 300;
18 h = 20
                   ; // [W/m^2.K] convection coefficient
19
20 Rcond = (1/r1-1/r2)/(4*\%pi*k);
                                          //\mathrm{Using} Eq. 3.36
21 Rconv = 1/(h*4*\%pi*r2^2);
22 q = (Tsurr-T)/(Rcond+Rconv);
23
24 printf("\n\n (a) Rate of Heat transfer to Liquid
      Nitrogen %.2 f W', q);
25
\frac{26}{\text{Using Energy Balance q - m*hfg}} = 0
27 \text{ m=q/hfg};
              //[kg/s] mass of nirtogen lost per
      second
28 \text{ mc} = \text{m/rho}*3600*24*10^3;
29 printf("\n\n (b) Mass rate of nitrogen boil off %.2 f
      Litres/day", mc);
30 / END
```

Scilab code Exa 3.7 Composite Plane Wall

```
// [W/m.K] Material A
10 \text{ ka} = 75;
               //[m] Thickness Material A
11 \text{ La} = .05;
12 qa = 1.5*10^6; //[W/m^3] Heat generation at wall A
13 qb = 0; //[W/m^3] Heat generation at wall B
14
15 T2 = Tsurr + qa*La/h;
16
17 Rcondb = Lb/kb;
18 Rconv = 1/h;
19 T1 = Tsurr +(Rcondb + Rconv)*(qa*La);
20 //From Eqn 3.43
21 	ext{ T0} = qa*La^2/(2*ka) + T1;
22
23 printf("\n (a) Inner Temperature of Composite To =
       %i degC \n (b) Outer Temperature of the
      Composite T2 = \%i \, \deg C", T0-273, T2-273);
24 //END
```

Scilab code Exa 3.8 Theoretical Problem

Scilab code Exa 3.9 Rod Fin Heat Transfer

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 145 \n'); //Example 3.9
4 // Heat conduction through Rod
6 \text{ kc} = 398;
                 // [W/m.K] From Table A.1, Copper at
     Temp 335K
                  // [W/m.K] From Table A.1, Aluminium at
  kal = 180;
      Temp 335K
                 // [W/m.K] From Table A.1, Stainless
8 \text{ kst} = 14;
      Steel at Temp 335K
9 h = 100;
                  // [W/m<sup>2</sup>.K] Heat Convection Coeff of
      Air
10 Tsurr = 25+273; //[K] Temperature of surrounding
      Air
11 D = 5*10^-3; //[m] Dia of rod
12 To = 100+273.15; //[K] Temp of opposite end of
      rod
13
14 //For infintely long fin m = h*P/(k*A)
15 mc = (4*h/(kc*D))^{.5};
16 \text{ mal} = (4*h/(kal*D))^{.5};
17 mst = (4*h/(kst*D))^{.5};
18 x = linspace(0, .300, 100);
19 Tc = Tsurr + (To - Tsurr) *2.73^(-mc*x) - 273;
20 Tal = Tsurr + (To - Tsurr)*2.73^(-mal*x) -273;
21 Tst = Tsurr + (To - Tsurr)*2.73^(-mst*x) -273;
22 clf();
23 plot(x,Tc,x,Tal,x,Tst);
24 xtitle("Temp vs Distance", "x (m)", "T (degC)");
25 legend ("Cu", "2024 Al", "316 \overline{\rm SS}");
26
27 // Using eqn 3.80
28 qfc = (h*\%pi*D*kc*\%pi/4*D^2)^.5*(To-Tsurr);
29 qfal = (h*\%pi*D*kal*\%pi/4*D^2)^.5*(To-Tsurr);
30 qfst = (h*\%pi*D*kst*\%pi/4*D^2)^.5*(To-Tsurr);
```

```
31
32 printf("\n (a) Heat rate \n
                                          For Copper = \%
                           For Aluminium = \%.2 \text{ f W } \setminus \text{n}
       .2 f W \setminus n
       For Stainless steel = \%.2 \, f \, W, qfc, qfal, qfst);
33
34 //Using eqn 3.76 for satisfactory approx
35 \text{ Linfc} = 2.65/\text{mc};
36 \text{ Linfal} = 2.65/\text{mal};
37 \text{ Linfst} = 2.65/\text{mst};
38
39 printf("\n\ (a) Rods may be assumed to be infinite
       Long if it is greater than equal to \n
        Copper = \%.2 f m \setminus n
                                   For Aluminium = \%.2 \text{ f m}
                     For Stainless steel = \%.2 \,\mathrm{f} m", Linfc,
       Linfal,Linfst);
40 / END
```

Scilab code Exa 3.10 Finned Cylinder Heat Transfer

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 156 \backslash n'); //Example 3.10
4 // Study of motorcycle finned cylinder
6 H = .15;
            //[m] height
7 k = 186;
              // [W/m.K] alumunium at 400K
               // [W/m^2.K] Heat convection coefficient
8 h = 50;
9 Tsurr = 300; //[K] Temperature of surrounding air
             //[K] Temp inside
10 \text{ To} = 500;
11
12 // Dimensions of Fin
13 N = 5;
14 t = .006; //[m] Thickness
```

```
//[m] Length
15 L = .020;
16 \text{ r2c} = .048;
                       //[m]
17 \text{ r1} = .025;
                          // |m|
18
19 Af = 2*\%pi*(r2c^2-r1^2);
20 At = N*Af + 2*\%pi*r1*(H-N*t);
21
22 //Using fig 3.19
23 \text{ nf} = .95;
24
25 qt = h*At*[1-N*Af*(1-nf)/At]*(To-Tsurr);
26 \text{ qwo} = h*(2*\%pi*r1*H)*(To-Tsurr);
27
28 printf("\n\n Heat Transfer Rate with the fins =%i W
       \n Heat Transfer Rate without the fins =\%i W \n
       Thus Increase in Heat transfer rate of %i W is
      observed with fins",qt,qwo,qt-qwo);
29 / END
```

Scilab code Exa 3.11 Study of Fuel Cell Fan System

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 158 \n'); //Example 3.11
      3.11
4 // Study of Fuel-cell fan system
6 \text{ Wc} = .05;
               //[m] width
               //[m] height
7 H = .026;
               //[m] thickness of cell
8 \text{ tc} = .006;
               //[m/sec] vel of cooling air
9 V = 9.4;
10 P = 9;
               // [W] Power generated
               //[W/(m^3/s)] Ratio of fan power
     consumption to vol flow rate
```

```
12 k = 200; //[W/m.K] alumunium
13 Tsurr = 25+273.15;
                           //[K] Temperature of
      surrounding air
14 \text{ Tc} = 56.4+273.15;
                           //[K] Temp of fuel cell
15 \text{ Rtcy} = 10^{-3};
                           //[K/W] Contact thermal
      resistance
16 \text{ tb} = .002;
                            //[m] thickness of base of heat
       sink
                      //[m] length of fuel cell
17 \text{ Lc} = .05;
18 //Dimensions of Fin
19 \text{ tf} = .001;
                   //[m] Thickness
                   //[m] Length
20 \text{ Lf} = .008;
21
22 Vf = V*[Wc*(H-tc)]; //[m^3/sec] Volumetric flow
      rate
23 Pnet = P - C*Vf;
24
25
26 P = 2*(Lc+tf);
27 \text{ Ac} = \text{Lc*tf};
28 N = 22;
29 a = (2*Wc - N*tf)/N;
30 h = 19.1;
                            ///[W/m^2.K]
31 q = 11.25;
32 \text{ m} = (h*P/(k*Ac))^{.5};
33 Rtf = (h*P*k*Ac)^(-.5) / tanh(m*Lf);
34 \text{ Rtc} = \text{Rtcy}/(2*\text{Lc*Wc});
35 Rtbase = tb/(2*k*Lc*Wc);
36 Rtb = 1/[h*(2*Wc-N*tf)*Lc];
37 \text{ Rtfn} = \text{Rtf/N};
38 Requiv = [Rtb^-1 + Rtfn^-1]^-1;
39 Rtot = Rtc + Rtbase + Requiv;
40
41 Tc2 = Tsurr +q*(Rtot);
42
43 printf("\n (a) Power consumed by fan is more than
      the generated power of fuel cell, and hence
      system cannot produce net power = \%.2 \text{ f W } \ln \text{ (b)}
```

```
Actual fuel cell Temp is close enough to %.1f degC for reducing the fan power consumption by half ie Pnet = %.1f W, we require 22 fins, 11 on top and 11 on bottom.", Pnet, Tc2-273, C*Vf/2);

44
45 //END
```

Scilab code Exa 3.12 Heat Loss From Body and Temp at Inner Surface

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 163 \n'); //Example 3.12
4 // Heat loss from body & temp at inner surface
                     // [W/m<sup>2</sup>.K] Heat convection
6 \text{ hair} = 2;
      coefficient air
                         //[W/m^2.K] Heat convection
  hwater = 200;
      coefficient water
  hr = 5.9;
                    // [W/m<sup>2</sup>.K] Heat radiation
      coefficient
                             Temperature of surrounding air
9 \text{ Tsurr} = 297;
                     //[K]
10 \text{ Tc} = 37+273;
                     //[K] Temp inside
11 e = .95;
12 A = 1.8 ;
                      //[m^2] area
13 //Prop of blood
                       //[s^-1] perfusion rate
14 w = .0005;
                      //[kg/m^3] blood density
15 \text{ pb} = 1000;
16 \text{ cb} = 3600;
                       //[J/kg] specific heat
17 // Dimensions & properties of muscle & skin/fat
18 \text{ Lm} = .03;
                     // [m]
19 \text{ Lsf} = .003 ;
                       // [m]
20 \text{ km} = .5 ;
                      // [W/m.K]
21 \text{ ksf} = .3;
                      // [W/m.K]
```

```
// [W/m<sup>3</sup>] Metabolic heat
22 q = 700;
      generation rate
23
24 Rtotair = (Lsf/ksf + 1/(hair + hr))/A;
25 Rtotwater = (Lsf/ksf + 1/(hwater))/A;
26
27 \text{ m} = (w*pb*cb/km)^{.5};
28 Theta = -q/(w*pb*cb);
29
30 Tiair = (Tsurr*sinh(m*Lm) + km*A*m*Rtotair*[Theta +
      (Tc + q/(w*pb*cb))*cosh(m*Lm)])/(sinh(m*Lm)+km*A*)
     m*Rtotair*cosh(m*Lm));
31 qair = (Tiair - Tsurr)/Rtotair;
32
33 Tiwater = (Tsurr*sinh(m*Lm) + km*A*m*Rtotwater*[
     Theta + (Tc + q/(w*pb*cb))*cosh(m*Lm)])/(sinh(m*
     Lm)+km*A*m*Rtotwater*cosh(m*Lm));
34 qwater = (Tiwater - Tsurr)/Rtotwater;
35
36 printf("\n For Air \n Temp excess Ti = %.1f degC
     and Heat loss rate =\%.1 f W \n\n For Water \n Temp
       excess Ti = %.1f degC and Heat loss rate = %.1f W
       ",Tiair-273,qair,Tiwater-273,qwater);
37 / END
```

Chapter 4

Two Dimensional Steady State Conduction

Scilab code Exa 4.1 Thermal Resistance of Eccentric Wire

Scilab code Exa 4.2 Theoretical Problem

Scilab code Exa 4.3 Temperature Distribution in Column and Heat Rate per Unit Length

```
4 // Temperature Distribution and Heat rate per unit
      length
5
6 \text{ Ts} = 500;
                      //[K] Temp of surface
7 \text{ Tsurr} = 300;
                      //[K] Temp of surrounding Air
8 h = 10;
                      // [W/m<sup>2</sup>.K] Heat Convection
      soefficient
9 //Support Column
10 \text{ delx} = .25;
                      // [m]
11 \text{ dely = } .25;
                      //[m]
                    // [W/m.K] From Table A.3, Fireclay
12 k = 1;
      Brick at T = 478K
13
14 //Applying Eqn 4.42 and 4.48
15 A = [-4 1 1 0 0 0 0 0;
        2 -4 0 1 0 0 0 0;
16
        1 0 -4 1 1 0 0 0;
17
        0 1 2 -4 0 1 0 0;
18
        0 0 1 0 -4 1 1 0;
19
20
        0 0 0 1 2 -4 0 1;
21
        0 0 0 0 2 0 -9 1;
22
        0 0 0 0 0 2 2 -9 ];
23
24 \ C = [-1000; -500; -500; 0; -500; 0; -2000; -1500];
25
26 T = inv(A)*C;
27
28 printf("\n Temp Distribution = ");
29 printf("\n %.2 f K ", T);
30
31 q = 2*h*[(delx/2)*(Ts-Tsurr)+delx*(T(7)-Tsurr)+delx
      *(T(8)-Tsurr)/2];
32 printf("\n\n Heat rate from column to the airstream
     \%.1 \text{ f W/m} ", q);
33 / END
```

Scilab code Exa 4.4 Temperature Field of Channel and Rate of Heat Transfer

```
1 clear:
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 230 \n'); //Example 4.4
4 // Temperature Field and Rate of Heat Transfer
6 // Operating Conditions
                         // [W/m<sup>2</sup>.K] Heat Convection
8 \text{ ho} = 1000;
      coefficient
9 \text{ hi} = 200;
                        //[W/m<sup>2</sup>.K] Heat Convection
      coefficient
10 \text{ Ti} = 400;
                     //[K] Temp of Air
11 Tg = 1700; //[K] Temp of Gas
12 h = 10 ;
                     // [W/m<sup>2</sup>.K] Heat Convection
      coefficient
13
14 A = 2*6*10^--6; //[m^2] Cross section of each
      Channel
                  //[m] Spacing between joints
15 x = .004 ;
                  // [m] Thickness
16 t = .006;
17 k = 25;
                   // [W/m.K] Thermal Conductivity of
      Blade
                       // [m]
18 \text{ delx} = .001 ;
19 \text{ dely} = .001 ;
                      // [m]
20
21 //Applying Eqn 4.42 and 4.48
22 A = [-(2+ho*delx/k) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
      0 0 0 0:
        1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0 0
23
```

```
0 0 0 0 0;
        0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0 0
24
           0 0 0 0 0;
        0 0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0 0
25
           0 0 0 0 0;
26
        0 0 0 1 -2*(2+ho*delx/k) 1 0 0 0 0 2 0 0 0 0
           0 0 0 0 0;
        0 0 0 0 1 -(2+ho*delx/k) 0 0 0 0 1 0 0 0 0
27
           0 0 0 0:
28
        1 0 0 0 0 0 -4 2 0 0 0 0 1 0 0 0 0 0 0 0;
29
        0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0 0 0;
        0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0 0;
30
31
        0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0 0;
32
        0 0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0 0 0;
        0 0 0 0 0 1 0 0 0 0 2 -4 0 0 0 0 1 0 0 0;
33
        0 0 0 0 0 0 1 0 0 0 0 0 -4 2 0 0 0 0 1 0 0;
34
        0 0 0 0 0 0 0 1 0 0 0 0 1 -4 1 0 0 0 0 1 0;
35
36
        0 0 0 0 0 0 0 0 2 0 0 0 0 2 -2*(3+hi*delx/k) 1
           0 0 0 0 1;
        0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -2*(2+hi*delx/k)
37
           1 0 0 0 0;
        0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 -2*(2+hi*delx/k
38
           ) 1 0 0 0;
39
        0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 -(2+hi*delx/k
           ) 0 0 0:
        0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -2 1 0;
40
41
        0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 -4 1;
        0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 -(2+hi*
42
           delx/k)];
43
44 C = [-ho*delx*Tg/k;
45
        -2*ho*delx*Tg/k;
46
        -2*ho*delx*Tg/k;
        -2*ho*delx*Tg/k;
47
        -2*ho*delx*Tg/k;
48
        -ho*delx*Tg/k;
49
50
        0;
        0;
51
```

```
52
        0;
53
        0;
        0;
54
55
        0;
56
        0;
57
        0;
        -2*hi*delx*Ti/k;
58
        -2*hi*delx*Ti/k;
59
        -2*hi*delx*Ti/k;
60
        -hi*delx*Ti/k;
61
62
        0;
63
        0;
        -hi*delx*Ti/k];
64
65
66 T = inv(A)*C;
67
68 printf("\n Temp Distribution = ");
69 printf("\n %.1 f K ", T);
70
71 q = 4*ho*[(delx/2)*(Tg-T(1))+delx*(Tg-T(2))+delx*(Tg
      -T(3))+ delx*(Tg-T(4))+delx*(Tg-T(5))+delx*(Tg-T(5))
      (6))/2];
72 printf("\n Heat rate Transfer %.1 f W/m ", q);
73 //END
```

Chapter 5

Transient Conduction

Scilab code Exa 5.1 Thermo Couple Junction

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
          Page 261 \n'); //Example 5.1
4 // Junction Diameter and Time Calculation to attain
     certain temp
6 //Operating Conditions
                   // [W/m<sup>2</sup>.K] Heat Convection
8 h = 400;
     coefficient
9 k = 20;
                 // [W/m.K] Thermal Conductivity of
     Blade
15
16 //From Eqn 5.7
```

```
17 D = 6*h*TimeConstt/(rho*c);
18 Lc = D/6;
19 Bi = h*Lc/k;
20
21 //From eqn 5.5 for time to reach
22 T = 199+273; //[K] Required temperature
23
24 t = rho*D*c*2.30*log10((Ti-Tsurr)/(T-Tsurr))/(h*6);
25
26 printf("\n\n Junction Diameter needed for a time constant of 1 s = %.2e m \n\n Time Required to reach 199degC in a gas stream = %.1f sec ", D, t);
27 //END
```

Scilab code Exa 5.2 Steady State Temperature of Junction

```
1 clear;
 2 clc;
 3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 265 \n'); //Example 5.2
4 // Steady State Temperature of junction
 5 // Time Required for thermocouple to reach a temp
      that is within 1 degc of its steady-state value
 7 // Operating Conditions
 9 h = 400;
                      // [W/m<sup>2</sup>.K] Heat Convection
      coefficient
                    // [W/m.K] Thermal Conductivity of
10 k = 20;
      Blade
J - .9; // [J/kg.K] Sp
// Absorptivity
// [kg/- ^-]
                    //[J/kg.K] Specific Heat
                    //[kg/m^3] Density
```

```
14 Ti = 25+273; //[K] Temp of Air
15 \text{ Tsurr} = 400+273;
                          //[K] Temp of duct wall
16 Tg = 200+273; //[K] Temp of Gas Stream
17 TimeConstt = 1; //[sec]
                              // [W/m<sup>2</sup>.K<sup>4</sup>] - Stefan
18 stfncnstt=5.67*10^(-8);
      Boltzmann Constant
19
20 //From Eqn 5.7
21 D = 6*h*TimeConstt/(rho*c);
22 \text{ As} = \%pi*D^2;
23 \ V = \%pi*D^3/6;
24
25 //Balancing Energy on thermocouple Junction
26 //Newton Raphson method for 4th order eqn
27 T = 500;
28 while (1>0)
29 f=(e*stfncnstt*(Tsurr^4-T^4)-(h*(T-Tg)));
30 fd=(-3*e*stfncnstt*T^3)-h;
31 Tn=T-f/fd;
32 if((e*stfncnstt*(Tsurr^4-Tn^4)-(h*(Tn-Tg)))<=.01)</pre>
33
        break;
34 \, \text{end};
35 \text{ T=Tn};
36 \text{ end}
37 printf("\n (a) Steady State Temperature of junction
      = \%.2 f \deg C n, T-273);
38
39 //Using Eqn 5.15 and Integrating the ODE
40 // Integration of the differential equation
41 // dT/dt = -A * [h * (T-Tg) + e * stefncnstt * (T^4 - Tsurr^4)]/(
      rho*V*c), T(0)=25+273, and finds the minimum
      time t such that T(t) = 217.7 + 273.15
42 deff("[Tdot] = f(t,T)", "Tdot = -As*[h*(T-Tg) + e*stfncnstt]
      *(T^4-Tsurr^4) / (rho*V*c)");
43 deff("[z]=g(t,T)","z=T-217.7-273");
44
45 \text{ T0} = 25 + 273; \text{ng} = 1;
46 [T,rd] = ode("roots", T0, 0, 217.7+273, f, ng, g);
```

```
47 printf("\n (b) Time Required for thermocouple to
    reach a temp that is within 1 degc of its steady-
    state value = %.2 f s\n",rd(1));
48
49 //END
```

Scilab code Exa 5.3 Total Time Required for Two Step Process

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 267 \n'); //Example 5.3
4 // Total Time t required for two step process
6 // Operating Conditions
                      // [W/m<sup>2</sup>.K] Heat Convection
8 \text{ ho} = 40;
      coefficient
                      // [W/m<sup>2</sup>.K] Heat Convection
9 \text{ hc} = 10;
     coefficient
10 k = 177;
                    // [W/m.K] Thermal Conductivity
11 e = .8;
                  // Absorptivity
12 L = 3*10^-3/2;
                  //[m] Metre
                        //[K] Temp of Aluminium
13 \text{ Ti} = 25+273;
14 Tsurro = 175+273; //[K] Temp of duct wall
      heating
15 \text{ Tsurrc} = 25+273;
                        //[K] Temp of duct wall
16 Tit = 37+273; //[K] Temp at cooling
17 Tc = 150+273; //[K] Temp critical
18
19 stfncnstt=5.67*10^(-8); // [W/m^2.K^4] - Stefan
      Boltzmann Constant
20 p = 2770;
                    //[kg/m<sup>3</sup>] density of aluminium
20 p = 2770;
21 c = 875;
                   //[J/kg.K] Specific Heat
```

```
22
23 //To assess the validity of the lumped capacitance
      approximation
24 Bih = ho*L/k;
25 Bic = hc*L/k;
26 printf("\n Lumped capacitance approximation is valid
       as Bih = \%f and Bic = \%f, Bih, Bic);
27
28 / Eqn 1.9
29 hro = e*stfncnstt*(Tc+Tsurro)*(Tc^2+Tsurro^2);
30 hrc = e*stfncnstt*(Tc+Tsurrc)*(Tc^2+Tsurrc^2);
31 printf("\n Since The values of hro = \%.1 f and hrc =
     %.1f are comparable to those of ho and hc,
      respectively radiation effects must be considered
      ", hro,hrc);
32
33 // Integration of the differential equation
34 // dy/dt = -1/(p*c*L)*[ho*(y-Tsurro)+e*stfncnstt*(y^4)]
     - Tsurro^4), y(0)=Ti, and finds the minimum
      time t such that y(t)=150 degC
35 deff("[ydot]=f1(t,y)","ydot=-1/(p*c*L)*[ho*(y-Tsurro
      +e*stfncnstt*(y^4 - Tsurro^4)]");
36 deff("[z]=g1(t,y)","z=y-150-273");
37 \text{ y0=Ti};
38 [y,tc]=ode("root",y0,0,150+273,f1,1,g1);
39 \text{ te} = \text{tc}(1) + 300;
40
41 //From equation 5.15 and solving the two step
      process using integration
42 function Tydot=f(t,T)
       Tydot = -1/(p*c*L)*[ho*(T-Tsurro)+e*stfncnstt*(T^4)]
           - Tsurro<sup>4</sup>];
       funcprot(0)
44
45 endfunction
46 Ty0=Ti;
47 \text{ t0=0}:
48 t=0:10:te;
49 Ty = ode("rk", Ty0, t0, t, f);
```

```
50
  // solution of integration of the differential
51
      equation
  // dy/dt = -1/(p*c*L)*[hc*(y-Tsurrc)+e*stfncnstt*(y^4)]
      - Tsurrc^4), y(rd(1))=Ty(43), and finds the
      minimum time t such that y(t)=37 degC=Tit
53 deff("[Tdot]=f2(t,T)","Tdot=-1/(p*c*L)*[hc*(T-Tsurrc)]
      +e*stfncnstt*(T^4 - Tsurrc^4)]");
54 for (tt=0:1:900)
        tq = ode(Ty(43), 0, tt, f2);
55
        if (tq-Tit <= 10^-2)</pre>
56
57
            break:
58
        end
59 end
60
61 function Ty2dot=f2(t,T)
        Ty2dot = -1/(p*c*L)*[hc*(T-Tsurrc)+e*stfncnstt*(T)]
62
           ^4 - Tsurrc^4)];
63
        funcprot(0)
64 endfunction
65 \text{ Ty20=Ty}(43);
66 \text{ t20=te};
67 t2=te:10:1200;
68 Ty2 = ode("rk", Ty20, t20, t2, f2);
69 clf();
70 plot(t, Ty-273, t2, Ty2-273, [tc(1) tc(1)], [0 Tc-273], [
      te te], [0 \text{ Ty}(43) - 273], [tt+te tt+te], [0 \text{ tq}-273]);
71 xtitle ('Plot of the Two-Step Process', 't (s)', 'T (
      degC)');
72 legend('Heating', 'Cooling', 'tc', 'te', 'tt');
73
74 printf('\n\n Total time for the two-step process is
      t = %i s with intermediate times of tc = %i s and
       te = \%i \text{ s.}', tt+te, tc(1), te);
75 / END
```

Scilab code Exa 5.4 Radial System with Convection

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 278 \n'); //Example 5.4
4 // Radial System with Convection
6 // Operating Conditions
                     // [W/m^2.K] Heat Convection
8 h = 500;
     coefficientat inner surface
                    // [W/m.K] Thermal Conductivity
9 k = 63.9;
                   //[kg/m^3] Density
10 \text{ rho} = 7832;
                      //[J/kg.K] Specific Heat
11 c = 434;
12 \text{ alpha} = 18.8*10^-6;
                                  //[m^2/s]
13 L = 40*10^-3; //[m] Metre
//[sec] time
16 t = 8*60 ;
                //[m] Diameter of pipe
17 D = 1 ;
18
19 // Using eqn 5.10 and 5.12
20 Bi = h*L/k;
21 Fo = alpha*t/L^2;
22
23 //From Table 5.1 at this Bi
24 \text{ C1} = 1.047;
25 \text{ eta} = 0.531;
26 theta0=C1*exp(-eta^2*Fo);
27 T = Tsurr+theta0*(Ti-Tsurr);
28
29 //Using eqn 5.40b
```

```
30 x = 1;
31 \text{ theta} = \text{theta0}*\cos(\text{eta});
32 Tl = Tsurr + (Ti-Tsurr)*theta;
33 q = h*[Tl - Tsurr];
34
35 //Using Eqn 5.44, 5.46 and Vol per unit length V =
      pi*D*L
36 \ Q = [1-(\sin(\cot \alpha)/\cot \alpha)*theta0]*rho*c*\%pi*D*L*(Ti-
      Tsurr);
37
38 printf("\n (a) After 8 min Biot number = \%.2 f and
      exterior pipe surface after 8 \text{ min} = \% i \text{ degC } \backslash n \backslash n
      (c) Heat Flux to the wall at 8 min = \%i W/m<sup>2</sup> \n\
      n (d) Energy transferred to pipe per unit length
      after 8 min = \%.2e J/m", Bi, Fo, T-273, q, Q);
39
40 / END
```

Scilab code Exa 5.5 Two Step Cooling Process Of Sphere

```
11 rho = 3000; //[kg/m^3] Density
                          //[J/kg.K] Specific Heat
12 c = 1000;
13 alpha = 6.66*10^-6;
                                      //[m^2/s]
                          //[K] Initial Temp
14 \text{ Tiw} = 335+273;
                           //[K] Initial Temp
15 Tia = 400+273;
                    //[K] Temp of surrounding
16 \text{ Tsurr} = 20+273;
                        //[K] Temp of center
17 T = 50+273;
                     //[m] radius of sphere
18 \text{ ro} = .005;
19
20 //Using eqn 5.10 and
21 \text{ Lc} = ro/3;
22 Bi = ha*Lc/k;
23 ta = rho*ro*c*2.30*(log10((Tia-Tsurr)/(Tiw-Tsurr)))
      /(3*ha);
24
25 //From Table 5.1 at this Bi
26 \text{ C1} = 1.367;
27 \text{ eta} = 1.8;
28 Fo = -1*2.30*log10((T-Tsurr)/((Tiw-Tsurr)*C1))/eta
      ^2;
29
30 \text{ tw} = \text{Fo*ro}^2/\text{alpha};
31
32 printf("\n (a) Time required to accomplish desired
      cooling in air ta = \%.1 f s n n (b) Time required
      to accomplish desired cooling in water bath tw =
      \%.2\,\mathrm{f} s",ta,tw);
33
34 //END
```

Scilab code Exa 5.6 Burial Depth

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
```

```
Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 288 \n'); //Example 5.6
4 // Burial Depth
5
  //Operating Conditions
8 k = .52;
                     // [W/m.K] Thermal Conductivity
                      //[kg/m^3] Density
9 \text{ rho} = 2050;
                         //[J/kg.K] Specific Heat
10 c = 1840;
                        //[K] Initial Temp
11 \text{ Ti} = 20+273;
12 Ts = -15+273; //[K] Temp of surrounding
13 T = 0+273;
                     //[K] Temp at depth xm after 60
     days
14 t = 60*24*3600;
                           //[sec] time perod
15
                                  //[m^2/s]
16 alpha = k/(rho*c);
17 //Using eqn 5.57
18 xm = erfinv((T-Ts)/(Ti-Ts))*2*(alpha*t)^.5;
19
20 printf("\n Depth at which after 60 days soil freeze
     = \%.2 \text{ f m}", xm);
21
22 / END
```

Scilab code Exa 5.7 Spherical Tumor

```
// [W/m.K] Thermal Conductivity
8 k = .5;
      Healthy Tissue
                          //[m] extinction coefficient
9 \text{ kappa} = .02*10^3;
10 p = .05;
                         // reflectivity of skin
11 D = .005;
                          //[m] Laser beam Dia
12 \text{ rho} = 989.1
                         //[kg/m^3] Density
                         //[J/kg.K] Specific Heat
13 c = 4180 ;
                         //[K] Temp of healthy tissue
14 \text{ Tb} = 37+273;
                         //[m] Dia of tissue
15 \text{ Dt} = .003;
16 d = .02
                         //[m] depth beneath the skin
                          //[K] Steady State Temperature
17 \text{ Ttss} = 55+273;
                         //[K] Body Temperature
18 \text{ Tb} = 37+273 ;
                         //[K] Tissue Temperature
19 \text{ Tt} = 52+273 ;
20 q = .170 ;
                         / / |W|
21
22 // Case 12 of Table 4.1
23 q = 2*\%pi*k*Dt*(Ttss-Tb);
24
25 //Energy Balancing
26 P = q*(D^2)*exp(kappa*d)/((1-p)*Dt^2);
27
28 // Using Eqn 5.14
29 t = rho*(\pi v)^3/6*c*(Tt-Tb)/q;
30
31 \text{ alpha=k/(rho*c)};
32 \text{ Fo} = 10.3;
33 //Using Eqn 5.68
34 	 t2 = Fo*Dt^2/(4*alpha);
35
36 printf ("\n (a) Heat transferred from the tumor to
      maintain its surface temperature at Ttss = 55
      degC is %.2 f W \n\n (b) Laser power needed to
      sustain the tumor surface temperature at Ttss =
      55 degC is \%.2 f W \n\n (c) Time for tumor to
      reach Tt = 52 degC when heat transfer to the
      surrounding tissue is neglected is \%.2f sec \n\n
      (d) Time for tumor to reach Tt = 52 \text{ degC} when
      Heat transfer to the surrounding tissue is
```

```
considered and teh thermal mass of tumor is
neglected is %.2f sec" ,q,P,t,t2);
37
38 //END
```

Scilab code Exa 5.8 Thermal Conductivity of Nanostructured Material

```
1 clear;
2 \text{ clc};
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 300 \n'); //Example 5.8
4 // Thermal Conductivity of Nanostructured material
  //Operating Conditions
8 k = 1.11 ;
                      // [W/m.K] Thermal Conductivity
                       //[kg/m^3] Density
9 \text{ rho} = 3100;
                       //[J/kg.K] Specific Heat
10 c = 820 ;
11 //Dimensions of Strip
12 \quad w = 100*10^-6;
                    //[m] Width
13 L = .0035;
                       //[m] Long
                      //[m] Thickness
14 d = 3000*10^-10;
15 delq = 3.5*10^-3; //[W] heating Rate
                     //[K] Temperature 1
16 \text{ delT1} = 1.37;
                     //[rad/s] Frequency 1
17 	 f1 = 2*\%pi ;
                  //[K] Temperature 2
18 \text{ delT2} = .71 ;
19 f2 = 200*\%pi;
                        //[rad/s] Frequency 2
20
21 A = [delT1 -delq/(L*%pi);
22
        delT2 -delq/(L*%pi)] ;
23
24 C= [delq*-2.30*log10(f1/2)/(2*L*%pi);
25
       delq*-2.30*log10(f2/2)/(2*L*%pi)];
26
```

Scilab code Exa 5.9 Temperature Distribution Using Finite Difference Method

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 305 \n'); //Example 5.9
4 // Temperature distribution 1.5s after a change in
      operating power
  //Operating Conditions
8 L = .01;
                            //[m] Metre
                            //[K] Temperature
9 \text{ Tsurr} = 250+273;
                             // [W/m<sup>2</sup>.K] Heat Convective
10 h = 1100;
      Coefficient
11 q1 = 10^7;
                             //[W/m<sup>3</sup>] Volumetric Rate
12 q2 = 2*10^7;
                               //[W/m<sup>3</sup>] Volumetric Rate
                             // [W/m.K] Conductivity
13 k = 30;
14 \ a = 5*10^-6;
                              //[m^2/s]
15
                        //Space increment for numerical
16 \text{ delx} = L/5;
      solution
17 Bi = h*delx/k;
                            //Biot
                                     Number
```

```
18 //By using stability criterion for Fourier Number
19 Fo = (2*(1+Bi))^-1;
20 //By definition
21 t = Fo*delx^2/a;
22 printf('\n As per stability criterion delt = \%.3 f s,
       hence setting stability limit as .3 s.',t)
23 // Using Finite time increment of .3s
24 \text{ delt} = 1*.3;
25 \text{ Fol} = a*delt/delx^2;
26 \times = [0 \text{ delx delx*2 delx*3 delx*4 delx*5}];
27
\frac{28}{\text{At p=0}} Using equation 3.46
29 for i = 1: length(x)
30 T(1,i) = q1*L^2/(2*k)*(1-x(i)^2/L^2)+Tsurr + q1*L/h
      -273 ;
31 end
32 //System of Equation in Finite Difference method
33 \text{ for } j = 2:6
       T(j,1) = Fo1*(2*T(j-1,2)+q2*delx^2/k) + (1 -2*Fo1)
34
          *T(j-1,1);
       T(j,2) = Fo1*(T(j-1,1)+T(j-1,3)+q2*delx^2/k) + (1
35
          -2*Fo1)*T(j-1,2);
       T(j,3) = Fo1*(T(j-1,2)+T(j-1,4)+q2*delx^2/k) + (1
36
          -2*Fo1)*T(j-1,3);
       T(j,4)=Fo1*(T(j-1,3)+T(j-1,5)+q2*delx^2/k) + (1
37
          -2*Fo1)*T(j-1,4);
38
       T(j,5)=Fo1*(T(j-1,4)+T(j-1,6)+q2*delx^2/k) + (1
          -2*Fo1)*T(j-1,5);
       T(j,6)=2*Fo1*(T(j-1,5)+Bi*(Tsurr-273)+q2*delx
39
          ^2/(2*k)) + (1 -2*Fo1-2*Bi*Fo1)*T(j-1,6);
40 end
41 //At p=infinity Using equation 3.46
42 \times = [0 \text{ delx delx*2 delx*3 delx*4 delx*5}];
43 for i = 1:length(x)
44 T(7,i) = q2*L^2/(2*k)*(1-x(i)^2/L^2)+Tsurr+q2*L/h
      -273:
45 end
46
```

```
47 \text{ for } j = 1:6
48 Tans(j,:) = [j-1 \ delt*(j-1) \ T(j,:)];
49 end
50
51 printf("\n\n Tabulated Nodal Temperatures \n\n
                                                         р
          t (s)
                  T0
                            T1
                                       T2
     T4
              T5 \ n");
52 format('v',6);
53 disp(Tans);
54 printf(" inf
                   inf %.1 f %.1 f
                                                        \%.1
                   \%.1 \, f", T(7,1), T(7,2), T(7,3), T(7,4), T
           %.1 f
      (7,5),T(7,6));
55
56 //END
```

Scilab code Exa 5.10 Temperature Distribution Analytical and Explicit and Implicit Finite Difference

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 311 \n'); //Example 5.10
      5.10
4 // Using Explicit Finite Difference method,
      determine temperatures at the surface and 150 mm
     from the surface after an elapsed time of 2 min
5 // Repeat the calculations using the Implicit Finite
      Difference Method
  // Determine the same temperatures analytically
8 //Operating Conditions
                              //[m] Metre
10 \text{ delx} = .075;
11 T = 20 + 273;
                   //[K] Temperature
12 q = 3*10^5;
                            // [W/m<sup>3</sup>] Volumetric Rate
```

```
13
14 //From Table A.1 copper 300 K
                         // [W/m.K] Conductivity
15 k = 401;
16 \ a = 117*10^-6;
                         //[m^2/s]
17
18 //By using stability criterion reducing further
      Fourier Number
19 Fo = (2)^{-1};
20 //By definition
21 \text{ delt = Fo*delx^2/a};
22 format('v',5);
23
24 //System of Equation for Explicit Finite difference
      Fo = 1/2
  Tv1(1,:) = [20 20 20 20 20];
                                                    //At p=0
       Initial Temperature t - 20 degC
  for i = 2:6
26
27
       Tv1(i,1) = 56.1 + Tv1(i-1,2);
       Tv1(i,2) = (Tv1(i-1,3) + Tv1(i-1,1))/2;
28
29
       Tv1(i,3) = (Tv1(i-1,4) + Tv1(i-1,2))/2;
       Tv1(i,4) = (Tv1(i-1,5) + Tv1(i-1,3))/2;
30
       Tv1(i,5) = Tv1(i-1,5);
31
32 end
33 for j=1:6
34
       T1(j,:)=[j-1 \text{ delt}*(j-1) \text{ Tv1}(j,:)];
35 end
36 printf("\n\n EXPLICIT FINITE-DIFFERENCE SOLUTION
      FOR Fo = 1/2 \ n
                                 t (s)
                                          T0
                                                  T1
                          р
      T2
              T3
                       T4\n");
37 disp(T1);
38 printf('\n Hence after 2 min, the surface and the
      desirde interior temperature T0 = \%.2 f \text{ degC} and
      T2 = \%.1 \text{ f degC}', T1(6,3), T1(6,5);
39
  //By using stability criterion reducing further
      Fourier Number
41 \text{ Fo} = (4)^{-1};
42 //By definition
```

```
43 \text{ delt} = \text{Fo*delx^2/a};
44 //System of Equation for Explicit Finite difference
      for Fo = 1/4
45 \text{ Tv2}(1,:) = [20]
                        20
                               20
                                      20
                                              20
                                                     20
                                                            20
          20
                 20];
                                    //At p=0 Initial
      Temperature t - 20 \text{ degC}
   for i = 2:11
46
        Tv2(i,1)=1/2*(q*delx/k + Tv2(i-1,2)) + Tv2(i
47
           -1,1)/2;
        Tv2(i,2) = (Tv2(i-1,1) + Tv2(i-1,3))/4 + Tv2(i-1,2)
48
        Tv2(i,3) = (Tv2(i-1,2) + Tv2(i-1,4))/4 + Tv2(i-1,3)
49
        Tv2(i,4) = (Tv2(i-1,3) + Tv2(i-1,5))/4 + Tv2(i-1,4)
50
        Tv2(i,5) = (Tv2(i-1,4) + Tv2(i-1,6))/4 + Tv2(i-1,5)
51
        Tv2(i,6) = (Tv2(i-1,5) + Tv2(i-1,7))/4 + Tv2(i-1,6)
52
        Tv2(i,7) = (Tv2(i-1,6) + Tv2(i-1,8))/4 + Tv2(i-1,7)
53
        Tv2(i,8) = (Tv2(i-1,7) + Tv2(i-1,9))/4 + Tv2(i-1,8)
54
        Tv2(i,9) = Tv2(i-1,9);
55
56 end
57 \text{ for } j=1:11
58
        T2(j,:)=[j-1 \text{ delt}*(j-1) \text{ Tv2}(j,:)];
59 end
60 printf("\n\n EXPLICIT FINITE-DIFFERENCE SOLUTION
      FOR Fo = 1/4 \ n
                                                      T1
                                   t (s)
                                             T0
                           р
      T2
               T3
                        T4
                                  T5
                                            T6
                                                     T7
                                                              T8
      \n")
61 disp(T2)
62 printf('\n Hence after 2 min, the surface and the
      desirde interior temperature T0 = \%.2 f \text{ degC} and
      T2 = \%.1 \text{ f degC}', T2(11,3), T2(11,5))
63
64
```

```
65 //(b) Implicit Finite Difference solution
66 \text{ Fo} = (4)^{-1};
67 //By definition
68 \text{ delt = Fo*delx^2/a};
69
70 	ext{ T3} = rand(6,11);
                                     //Random Initital
       Distribution
   function[Tm] = Tvalue(i)
72 function[f]=F(x)
        f(1) = 2*x(1) - x(2) - q*delx/k - T3(i,3);
73
        f(2) = -x(1) + 4 * x(2) - x(3) - 2 * T3(i, 4);
74
        f(3) = -x(2) + 4*x(3) - x(4) - 2*T3(i,5);
75
76
        f(4) = -x(3) + 4 * x(4) - x(5) - 2 * T3(i,6);
77
        f(5) = -x(4) + 4 * x(5) - x(6) - 2 * T3(i,7);
78
        f(6) = -x(5) + 4 * x(6) - x(7) - 2 * T3(i,8);
79
        f(7) = -x(6) + 4 * x(7) - x(8) - 2 * T3(i,9);
80
        f(8) = -x(7) + 4 * x(8) - x(9) - 2 * T3(i, 10);
        f(9) = -x(9) + T3(i,11);
81
82
        funcprot(0);
83 endfunction
84 \times = [30 \ 30 \ 30 \ 30 \ 30 \ 30 \ 30 \ 30];
   Tm = fsolve(x,F);
        funcprot(0)
86
87 endfunction
88
89 //At p=0 Initial Temperature t - 20 \text{ degC}
  T3(1,:) = [0 delt*0 20]
                                   20
                                          20
                                                 20
                                                         20
                                                                20
           20
                   20
                          20];
91 \text{ for } j=1:5
        T3(j+1,:)=[j delt*j Tvalue(j)];
92
93 end
94 printf("\n\n IMPLICIT FINITE-DIFFERENCE SOLUTION
      FOR Fo = 1/4 \ n
                                    t (s)
                                               T0
                                                        T1
                            р
                T3
                         T4
                                    T5
                                              T6
                                                       T7
                                                                T8
      T2
      n");
95 disp(T3);
96 printf('\n Hence after 2 min, the surface and the
       desirde interior temperature T0 = \%.2 f \text{ degC} and
```

```
T2 = \%.1 f \deg C', T3(6,3), T3(6,5));
97
98 t = 120;
                     //[seconds]
99 //(c) Approximating slab as semi-infinte medium
100 Tc = T -273 + 2*q*(a*t/\%pi)^{.5/k};
101
102 //At interior point x=0.15 m
                    //[metre]
103 \times = .15;
104 // Analytical Expression
105 Tc2 = T -273 + 2*q*(a*t/\%pi)^{.5/k*exp}(-x^{2}/(4*a*t))-
       q*x/k*[1-erf(.15/(2*sqrt(a*t)))];
106
107 printf('\n\n (c) Approximating slab as a semi
       infinte medium, Analytical epression yields \n At
        surface after 120 seconds = \%.1 f degC \setminus n At x
       =.15 m after 120 seconds = \%.1 f \deg C, Tc, Tc2);
108 //END
```

Chapter 6

Introduction to Convection

Scilab code Exa 6.1 Theroetical Problem

Scilab code Exa 6.2 Napthalene Sublimation

```
4 // Napthalene Sublimation rate per unit length
6 // Operating Conditions
8 h = .05;
                      // [W/m^2.K] Heat Convection
      coefficient
9 D = .02;
                      //[m] Diameter of cylinder
10 Cas = 5*10^-6; //[kmol/m<sup>3</sup>] Surface molar Conc
                      //[kmol/m<sup>3</sup>] Surrounding molar
11 Casurr = 0;
      Conc
                 //[Kg/kmol] Molecular weight
12 \text{ Ma} = 128;
13
14 //From Eqn 6.15
15 Na = h*(\%pi*D)*(Cas-Casurr);
16 \text{ na} = Ma*Na;
17
18 printf("\n Mass sublimation Rate is = \%.2e kg/s.m
     ", na);
19 //END
```

Scilab code Exa 6.3 Convection Mass Transfer Coefficient

```
10 pasurr = .02;
                             //[atm] Partial pressure at
      infinity
11 y0 = .003;
                          //[m] Tangent at y = 0
     intercepts y axis at 3 mm
12
13 //From Measured Vapor Pressure Distribution
14 delp = (0 - pas)/(y0 - 0);
                                         //[atm/m]
                                           //[m/s]
15 hmx = -Dab*delp/(pas - pasurr);
16
17 printf("\n\n Convection Mass Transfer coefficient at
       prescribed location = \%.4 \,\mathrm{f} m/s", hmx);
18 / END
```

Scilab code Exa 6.4 Convection Mass Transfer coefficient of Plate

```
1 clear;
2 \text{ clc};
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 362 \n'); //Example 6.4
      6.4
4 // Convection Mass Transfer coefficient
6 // Operating Conditions
7 v = 1;
                  //[m/s] Velocity of water
                   //[m] Plate length
8 L = 0.6;
                  //[K]
9 \text{ Tw1} = 300;
10 \text{ Tw2} = 350;
                   // [K]
11 / Coefficients [W/m^1.5 . K]
12 \text{ Clam1} = 395;
13 \text{ Cturb1} = 2330;
14 \text{ Clam2} = 477;
15 \text{ Cturb2} = 3600;
16
17 //Water Properties at T = 300K
18 p1 = 997; //[kg/m^3] Density
```

```
19 u1 = 855*10^-6; //[N.s/m<sup>2</sup>] Viscosity
20 //Water Properties at T = 350K
21 p2 = 974; //[kg/m^3] Density
22 u2 = 365*10^-6; //[N.s/m<sup>2</sup>] Viscosity
23
24
                          //Transititon Reynolds Number
25 \text{ Rec} = 5*10^5;
26 xc1 = Rec*u1/(p1*v); //[m] Transition length at 300K
27 xc2 = Rec*u2/(p2*v); //[m] Transition length at 350K
28
29 //Integrating eqn 6.14
30 //At 300 K
31 \text{ h1} = [Clam1*xc1^.5/.5 + Cturb1*(L^.8-xc1^.8)/.8]/L;
32
33 //At 350 K
34 h2 = [Clam2*xc2^.5/.5 + Cturb2*(L^.8-xc2^.8)/.8]/L;
35
36 printf("\n\n Average Convection Coefficient over the
       entire plate for the two temperatures at 300K =
      \%.2 \text{ f W/m}^2.\text{K} and at 350\text{K} = \%.2 \text{ f W/m}^2.\text{K}, h1,h2);
37 / END
```

Scilab code Exa 6.5 Heat Flux of Plate

```
10 Tsurr = 1150+273; //[K]
11 Ts = 800+273; //[K] Surface Temp
                     //[W/m<sup>2</sup>] Original heat flux
12 q = 95000;
13
14 // Case 1
15 Ts1 = 700+273; //[K] Surface Temp
16 q1 = q*(Tsurr-Ts1)/(Tsurr-Ts);
17
18 // Case 2
19 L2 = .08;
                         //[m] Length
19 L2 = .08; //[m] Length
20 q2 = q*L/L2; //[W/m^2] Heat flux
21
22
23 printf("\n\n (a) Heat Flux to blade when surface
      temp is reduced = \%i \text{ KW/m}^2 \setminus n (b) Heat flux to a
       larger turbine blade = \%.2 \text{ f KW/m}^2", q1/1000,q2
      /1000);
24 / END
```

Scilab code Exa 6.6 Molar Flux over Plate

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 379 \n'); //Example 6.6
4 // Water vapor conc and flux associated with the
     same location on larger surface of the same shape
6 // Operating Conditions
                   //[m/s] Velocity of air
7 v = 100;
                     //[K] Surrounding Air Temperature
8 \text{ Tsurr} = 20+273;
9 L1 = 1; //[m] solid length
10 Ts = 80+273; //[K] Surface Temp
11 qx = 10000;
                     //[W/m^2] heat flux at a point x
```

```
//[K] Temp in boundary layer
12 \text{ Txy} = 60+273;
      above the point
13
14 //Table A.4 Air Properties at T = 323K
15 v = 18.2*10^-6; //[m^2/s] Viscosity
                         // [W/m.K] Conductivity
16 k = 28*10^{-3};
                         //Prandttl Number
17 \text{ Pr} = 0.7;
18 //Table A.6 Saturated Water Vapor at T = 323K
19 pasat = 0.082; //[kg/m^3]
20 \text{ Ma} = 18;
                          //[kg/kmol] Molecular mass of
      water vapor
21 //Table A.8 Water Vapor-air at T = 323K
22 Dab = .26*10^-4; //[m^2/s]
23
24 //Case 1
25 Casurr = 0;
                              //[kmol/m^3] Molar conc of
26 Cas = pasat/Ma;
      saturated water vapor at surface
27 \text{ Caxy} = \text{Cas} + (\text{Casurr} - \text{Cas})*(\text{Txy} - \text{Ts})/(\text{Tsurr} - \text{Ts});
28
29 // Case 2
30 L2 = 2;
31 hm = L1/L2*Dab/k*qx/(Ts-Tsurr);
32 \text{ Na} = \text{hm} * (\text{Cas} - \text{Casurr});
33
34
35 printf("\n (a) Water vapor Concentration above the
      point = \%.4 \text{ f Kmol/m}^3 \setminus n (b) Molar flux to a
      larger surface = \%.2e \text{ Kmol/s.m}^2", Caxy, Na);
36 / END
```

Scilab code Exa 6.7 Evaporative Cooling

```
1 clear;
2 clc;
```

```
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 383 \n'); //Example 6.7
4 // Steady State Temperature of Beverage
6 // Operating Conditions
7 \text{ Tsurr} = 40+273;
                      //[K] Surrounding Air Temperature
8 // Volatile Wetting Agent A
9 \text{ hfg} = 100;
                   //[kJ/kg]
                     //[kg/kmol] Molecular mass
10 \text{ Ma} = 200;
11 pasat = 5000; //[N/m^2] Saturate pressure
12 \text{ Dab} = .2*10^-4;
                     //[m^2/s] Diffusion coefficient
13
14 //Table A.4 Air Properties at T = 300K
                             //[kg/m^3] Density
15 p = 1.16;
                             //[kJ/kg.K] Specific Heat
16 \text{ cp} = 1.007;
                             //[m^2/s]
17 alpha = 22.5*10^-6;
18 R = 8.314;
                             //[kJ/kmol] Universal Gas
      Constt
19
20 //Applying Eqn 6.65 and setting pasurr = 0
21 // Ts^2 - Tsurr*Ts + B = 0 , where the
      coefficient B is
22 B = Ma*hfg*pasat*10^-3/[R*p*cp*(alpha/Dab)^(2/3)];
23 Ts = [Tsurr + sqrt(Tsurr^2 - 4*B)]/2;
24
25 printf("\n Steady State Surface Temperature of
      Beverage = \%.1 f degC", Ts-273);
26 //END
```

Chapter 7

External Flow

Scilab code Exa 7.1 Cooling Rate per Unit Width of the Plate

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 415 \n'); //Example 7.1
4 // Cooling rate per Unit Width of the Plate
6 //Operating Conditions
7 v = 10;
                    //[m/s] Air velocity
v = 10;
8 p = 6000;
                      //[N/m^2] Air pressure
9 Tsurr = 300+273; //[K] Surrounding Air
     Temperature
10 L = .5;
                      //[m] Length of plate
11 Ts = 27+273;
                      //[K] Surface Temp
12
13 //Table A.4 Air Properties at T = 437K
                                             //[m^2/s]
14 \text{ uv} = 30.84*10^{-6}*(101325/6000);
     Kinematic Viscosity at P = 6000 \text{ N/m}^2
15 \text{ k} = 36.4*10^{-3};
                              // [W/m.K] Thermal
      COnductivity
16 \text{ Pr} = .687;
                              //Prandtl number
```

```
17
                       //Reynolds number
18 Re = v*L/uv;
19 printf ("\n Since Reynolds Number is %i, The flow is
      laminar over the entire plate", Re);
20
21 // Correlation 7.30
22 NuL = .664*Re^{.5*Pr^{.3334}}; //Nusselt Number over
      entire plate length
23 \text{ hL} = \text{NuL*k/L};
                                  // Average Convection
      Coefficient
24 //Required cooling rate per unit width of plate
25 q = hL*L*(Tsurr-Ts);
26
27 printf("\n\n Required cooling rate per unit width of
       plate = \%i W/m, q);
  //END
```

Scilab code Exa 7.2 Maximum Heater Power Requirement

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 417 \n'); //Example 7.2
4 // Maximum Heater Power Requirement
6 // Operating Conditions
7 v = 60;
                      //[m/s] Air velocity
8 \text{ Tsurr} = 25+273;
                      //[K] Surrounding Air Temperature
                    //[m] Width of plate
9 w = 1;
10 L = .05;
                     //[m] Length of stripper
                       //[K] Surface Temp
11 Ts = 230+273;
12
13 //Table A.4 Air Properties at T = 400K
14 \text{ uv} = 26.41*10^-6;
                      //[m<sup>2</sup>/s] Kinematic
```

```
Viscosity
15 k = .0338;
                                  // [W/m.K] Thermal
      COnductivity
16 \text{ Pr} = .690;
                                  //Prandtl number
17
18 Re = v*L/uv; //Reynolds number
19
20 Rexc = 5*10^5; //Transition Reyno
21 xc = uv*Rexc/v; //Transition Length
                            //Transition Reynolds Number
22 printf("\n Reynolds Number based on length L = .05m
      is \%i. \n And the transition occur at xc = \%.2 f m
        ie fifth plate", Re, xc);
23
24 //For first heater
\frac{25}{\sqrt{\text{Correlation}}} 7.30
26 \text{ Nu1} = .664*\text{Re}^{.5*\text{Pr}^{.3334}};
                                   // Nusselt Number
                                      // Average Convection
27 \text{ h1} = \text{Nu1*k/L};
      Coefficient
28 q1 = h1*(L*w)*(Ts-Tsurr); // Convective Heat
      exchange
29
30 //For first four heaters
31 \text{ Re4} = 4*\text{Re};
32 L4 = 4*L;
33 Nu4 = .664*Re4^{.5*Pr^{.3334}}; // Nusselt Number
34 \text{ h4} = \text{Nu4*k/L4};
                                       // Average Convection
       Coefficient
35
36 //For Fifth heater from Eqn 7.38
37 \text{ Re5} = 5*\text{Re};
38 A = 871;
39 L5 = 5*L;
40 Nu5 = (.037*Re5^{.8-A})*Pr^{.3334}; // Nusselt Number
                                       // Average Convection
41 h5 = Nu5*k/L5;
      Coefficient
42 	 q5 = (h5*L5-h4*L4)*w*(Ts-Tsurr);
44 //For Sixth heater from Eqn 7.38
```

Scilab code Exa 7.3 Daily Water Loss

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
           Page 417 \n'); //Example 7.2
      7.3
4 // Daily Water Loss
6 //Operating Conditions
7 v = 2;
                     //[m/s] Air velocity
                   //[K] Surrounding Air Temperature
8 \text{ Tsurr} = 25+273;
                      // Humidity
9 H = .5;
10 w = 6;
                     //[m] Width of pool
                     //[m] Length of pool
11 L1 = 12;
                   // [m] Deck Wide
12 e = 1.5;
13 Ts = 25+273;
                      //[K] Surface Temp of water
14
15 //Table A.4 Air Properties at T = 298K
16 \text{ uv} = 15.7*10^-6;
                            //[m^2/s] Kinematic
      Viscosity
17 //Table A.8 Water vapor-Air Properties at T = 298K
```

```
//[m<sup>2</sup>/s] Diffusion
18 \text{ Dab} = .26*10^-4;
      Coefficient
19 Sc = uv/Dab;
20 //Table A.6 Air Properties at T = 298K
21 \text{ rho} = .0226;
                                   //[kg/m^3]
22
23 L = L1 + e;
24 \text{ Re} = v*L/uv;
                          //Reynolds number
25
26 //Equation 7.41 yields
27 \text{ ShLe} = .037*Re^.8*Sc^.3334;
28 //Equation 7.44
                   //Turbulent Flow
29 p = 8;
30 ShL = (L/(L-e))*ShLe*[1-(e/L)^((p+1)/(p+2))]^(p/(p+1))
      +1));
31
32 \text{ hmL} = \text{ShL}*(\text{Dab/L});
33 n = hmL*(L1*w)*rho*(1-H);
34
35 printf("\n Reynolds Number is %.2e. Hence for
      turbulent Flow p = 8 in Equation 7.44.\n Daily
      Water Loss due to evaporation is %i kg/day", Re, n
      *86400);
36
37 / END
```

Scilab code Exa 7.4 Convection Coefficient Using Zukauskas Relation

```
5 // Convection Coefficient from an appropriate
      correlation
7 //Operating Conditions
8 v = 10;
                       //[m/s] Air velocity
9 \text{ Tsurr} = 26.2+273;
                      //[K] Surrounding Air
      Temperature
10 P = 46;
                       // [W] Power dissipation
                      //[m] Length of cylinder
11 L = .094;
                       //[m] Diameter of cylinder
12 D = .0127;
                           //[K] Surface Temp of water
13 \text{ Ts} = 128.4+273;
14 q = 46 - .15 * 46;
                           //[W] Actual power dissipation
       without the 15% loss
15
16 //Table A.4 Air Properties at T = 300K
                               //[m^2/s] Kinematic
17 \text{ uv} = 15.89*10^-6;
      Viscosity
18 k = 26.3*10^{-3};
                               // [W/m.K] Thermal
      conductivity
19 Pr = .707;
                               //Prandtl Number
20 //Table A.4 Air Properties at T = 401K
                                //Prandtl Number
21 \text{ Prs} = .690;
22
23 A = \%pi*D*L;
24 h = q/(A*(Ts-Tsurr));
25
26 \text{ Re} = v*D/uv;
                         //Reynolds number
27 //Using Zukauskas Relation, Equation 7.53
28 \ C = .26;
29 \text{ m} = .6;
30 n = .37;
31 Nu = C*Re^m*Pr^n*(Pr/Prs)^2.25;
32 \text{ havg} = \text{Nu*k/D};
33
34 printf("\n Convection Coefficient associated with
      operating conditions %i W/m^2.K. \n Reynolds
      Number is %i. Hence taking suitable corresponding
       data from Table 7.4.\n Convection Coefficient
```

```
from an appropriate Zukauskas correlation %i W/m ^2.K",h,Re,havg); 35 36 //END
```

Scilab code Exa 7.5 Convective Heat transfer to the Canister

```
1 clear;
2 \text{ clc};
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 431 \n'); //Example 7.5
4 // Convective Heat transfer to the canister and the
      additional heating needed
6 // Operating Conditions
7 v = 23;
                        //[m/s] Air velocity
8 Tsurr = 296;
                    //[K] Surrounding Air Temperature
9 L = .8;
                    //[m] Length of cylinder
10 \, \text{Di} = .1;
                     //[m] Diameter of cylinder
11 t = .005;
                   //[m] Thickness of cylinder
12
13 //Table A.4 Air Properties at T = 285K
14 \text{ uv} = 14.56*10^-6;
                               //[m^2/s] Kinematic
      Viscosity
15 k = 25.2*10^{-3};
                               //[W/m.K] Thermal
      conductivity
16 \text{ Pr} = .712;
                               //Prandtl Number
17 //Table A.1 AISI 316 Stainless steel Properties at T
       = 300 K
                                 // [W/m.K] Conductivity
18 \text{ kss} = 13.4;
19
20 \text{ pH2} = 1.01;
                       //[N]
21 Ti = -3550/(2.30*log10(pH2) - 12.9);
22 \text{ Eg} = -(1.35*10^-4)*(29.5*10^6);
```

Scilab code Exa 7.6 Time required to Cool on Plastic Film

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 434 \n'); //Example 7.6
4 // Time required to cool from Ti = 75 \text{ degC} to 35
      degC
5
6 //Operating Conditions
7 v = 10;
                        //[m/s] Air velocity
8 \text{ Tsurr} = 23+273;
                        //[K] Surrounding Air Temperature
9 D = .01;
                    //[m] Diameter of sphere
                        //[K] Initial temp
10 \text{ Ti} = 75+273;
11 \text{ Tt} = 35+273;
                         //[K] Temperature after time t
12 p = 1;
                          //[atm]
13
14 //Table A.1 Copper at T = 328K
15 \text{ rho} = 8933;
                      //[kg/m^3] Density
```

```
16 k = 399;
                       // [W/m.K] Conductivity
                       //[J/kg.K] specific
17 \text{ cp} = 388;
18 //Table A.4 Air Properties T = 296 \text{ K}
Viscosity
21 k = 25.1*10^-3;
                               // [W/m.K] Thermal
      conductivity
                               //Prandtl Number
22 \text{ Pr} = .708;
23 //Table A.4 Air Properties T = 328 \text{ K}
24 \text{ u2} = 197.8*10^-7;
                               //[N.s/m<sup>2</sup>] Viscosity
25
26 \text{ Re} = v*D/uv;
                   //Reynolds number
27 //Using Equation 7.56
28 \text{ Nu} = 2+(0.4*\text{Re}^{.5} + 0.06*\text{Re}^{.668})*\text{Pr}^{.4}*(u/u2)^{.25};
29 h = Nu*k/D;
30 //From equation 5.4 and 5.5
31 t = rho*cp*D*2.30*log10((Ti-Tsurr)/(Tt-Tsurr))/(6*h)
32
33 printf("\nTime required for cooling is %.1f sec",t);
34
35 / END
```

Scilab code Exa 7.7 Air side Convection coefficient and Heat Rate for Staggered Arrangement

```
7 // Operating Conditions
8 v = 6;
                        //[m/s] Air velocity
9 \text{ Tsurr} = 15+273;
                       //[K] Surrounding Air Temperature
10 D = .0164;
                         //[m] Diameter of tube
                         //[K] Temp of tube
11 Ts = 70+273;
12 //Staggered arrangement dimensions
13 \text{ St} = .0313;
                         // [m]
14 \text{ S1} = .0343;
                         // [m]
15
16 //Table A.4 Air Properties T = 288 K
                          //[kg/m^3] Density
17 \text{ rho} = 1.217;
                          //[J/kg.K] specific heat
18 \text{ cp} = 1007;
19 uv = 14.82*10^-6;
                                 //[m^2/s] Kinematic
      Viscosity
                                 //[W/m.K] Thermal
20 k = 25.3*10^{-3};
      conductivity
21 \text{ Pr} = .71;
                                //Prandtl Number
22 //Table A.4 Air Properties T = 343 K
                                  //Prandtl Number
23 \text{ Pr2} = .701;
24 //Table A.4 Air Properties T = 316 K
25 \text{ uv3} = 17.4*10^-6;
                                 //[m^2/s] Kinematic
      Viscosity
26 \text{ k3} = 27.4*10^{-3};
                                  // [W/m.K] Thermal
      conductivity
27 \text{ Pr3} = .705;
                                  //Prandtl Number
28
29 \text{ Sd} = [S1^2 + (St/2)^2]^.5;
30 Vmax = St*v/(St-D);
31
32 Re = Vmax*D/uv; //Reynolds number
33
34 \ C = .35*(St/S1)^{.2};
35 \text{ m} = .6;
36 C2 = .95;
37 N = 56;
38 \text{ Nt} = 8;
39 //Using Equation 7.64 & 7.65
40 Nu = C2*C*Re^m*Pr^.36*(Pr/Pr2)^.25;
```

```
41 h = Nu*k/D;
42
43 //From Eqnn 7.67
44 Tso = (Ts-Tsurr)*exp(-(%pi*D*N*h)/(rho*v*Nt*St*cp));
45 Tlm = ((Ts-Tsurr) - Tso)/(2.30*log10((Ts-Tsurr)/Tso)
46 q = N*(h*\%pi*D*Tlm);
47
48 \text{ Pt} = \text{St/D};
49 //From Fig 7.14
50 X = 1.04;
51 f = .35;
52 \text{ NL} = 7;
53 press = NL*X*(rho*Vmax^2/2)*f;
54
55 printf("\n Air side Convection coefficient h = \%.1 f
      W/m^2.k and Heat rate q = \%.1 f kW/m \n Pressure
      Drop = \%.2e \ bars, h,q/1000,press/100000);
56
57 //END
```

Chapter 8

Internal Flow

Scilab code Exa 8.1 Theoretical Problem

Scilab code Exa 8.2 Length of Tube and Local Convection Coefficient at the Outlet

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
```

```
Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 499 \n'); //Example 8.2
4 // Length of tube needed to achieve the desired
      outlet temperature
5 //Local convection coefficient at the outlet
7 //Operating Conditions
8 m = .1;
                         //[kg/s] mass flow rate of water
                        //[K] Inlet temp
9 \text{ Ti} = 20+273;
                        //[K] Outlet temperature
10 \text{ To} = 60+273;
                         //[m] Inner Diameter
11 \, \text{Di} = .02;
                        //[m] Outer Diameter
12 \text{ Do} = .04;
13 q = 10^6;
                        //[w/m<sup>3</sup>] Heat generation Rate
                        //[K] Inner Surface Temp
14 \text{ Tsi} = 70+273;
15 //Table A.4 Air Properties T = 313 \text{ K}
                          //[J/kg.K] specific heat
16 \text{ cp} = 4179;
17
18 L = 4*m*cp*(To-Ti)/(%pi*(Do^2-Di^2)*q);
19
20 //From Newtons Law of cooling, Equation 8.27, local
      heat convection coefficient is
21 h = q*(Do^2-Di^2)/(Di*4*(Tsi-To));
22
23 printf("\n Length of tube needed to achieve the
      desired outlet temperature = \%.1 \, \text{f m } \setminus \text{n Local}
      convection coefficient at the outlet = \%i W/m^2.K
      ",L,h);
24
25 //END
```

Scilab code Exa 8.3 Average Convection Coefficient of Stream

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
```

```
Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 503 \n'); //Example 8.3
4 // average convection coefficient
5
6 // Operating Conditions
7 m = .25;
                         //[kg/s] mass flow rate of water
8 \text{ Ti} = 15+273;
                       //[K] Inlet temp
9 \text{ To} = 57+273;
                        //[K] Outlet temperature
                       //[m] Diameter
10 D = .05;
11 L = 6;
                    //[m] Length of tube
12 \text{ Ts} = 100+273;
                        //[K] outer Surface Temp
13
14 //Table A.4 Air Properties T = 309 \text{ K}
                         //[J/kg.K] specific heat
15 \text{ cp} = 4178;
16
17 Tlm = ((Ts-To)-(Ts-Ti))/(2.30*log10((100-57))
      /(100-15)));
18
19 h = m*cp*(To-Ti)/(%pi*D*L*Tlm);
20
21 printf("\n Average Heat transfer Convection
      Coefficient = \%i \text{ W/m}^2.\text{K",h};
22
23 //END
```

Scilab code Exa 8.4 Solar Energy

```
7 // Operating Conditions
                          //[kg/s] mass flow rate of water
8 m = .01;
                         //[K] Inlet temp
9 \text{ Ti} = 20+273;
                        //[K] Outlet temperature
10 \text{ To} = 80+273;
11 D = .06;
                        // [m] Diameter
12 q = 2000;
                         //[W/m<sup>2</sup>] Heat flux to fluid
13
14 //Table A.4 Air Properties T = 323 \text{ K}
15 \text{ cp} = 4178;
                          //[J/kg.K] specific heat
16 //Table A.4 Air Properties T = 353 \text{ K}
                          // [W/m] Thermal Conductivity
17 k = .670;
18 u = 352*10^-6;
                         //[N.s/m<sup>2</sup>] Viscosity
                          //Prandtl Number
19 Pr = 2.2;
20 \text{ cp} = 4178;
                          //[J/kg.K] specific heat
21
22 L = m*cp*(To-Ti)/(%pi*D*q);
23
24 //Using equation 8.6
25 Re = m*4/(\%pi*D*u);
26 printf("\n (a) Length of tube for required heating =
       \%.2 \text{ f m/n/n} (b) As Reynolds Number is \%i. The flow
       is laminar.", L, Re);
27
                         // Nusselt Number
28 \text{ Nu} = 4.364;
29 h = Nu*k/D;
                         // [W/m^2.K] Heat convection
      Coefficient
30
                          //[K]
31 Ts = q/h+To;
32
33 printf("\n Surface Temperature at tube outlet = %i
      \deg C", Ts-273);
34
35 / END
```

Scilab code Exa 8.5 Length of Blood Vessel Artery

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
       8.5
              Page 509 \n'); //Example 8.5
4 // Length of Blood Vessel
6 // Operating Conditions
7 \text{ um1} = .13;
                              //[m/s] Blood stream
8 \text{ um2} = 3*10^{-3};
                                   //[m/s] Blood stream
                                    //[m/s] Blood stream
9 \text{ um3} = .7*10^-3;
10 D1 = .003;
                             //[m] Diameter
                                   //[m] Diameter
11 D2 = .02*10^-3;
12 D3 = .008*10^-3;
                                     //[m] Diameter
13 \text{ Tlm} = .05;
                          // [W/m.K] Conductivity
14 \text{ kf} = .5;
15 //Table A. Water Properties T = 310 \text{ K}
16 \text{ rho} = 993;
                          //[kg/m^3] density
                           //[J/kg.K] specific heat
17 \text{ cp} = 4178;
18 \ u = 695*10^-6;
                           //[N.s/m<sup>2</sup>] Viscosity
                            // [W/m.K] Conductivity
19 \text{ kb} = .628;
                            //Prandtl Number
20 \text{ Pr} = 4.62;
21 i = 1;
22 //Using equation 8.6
23
        Re1 = rho*um1*D1/u;
24
        Nu = 4;
25
        hb = Nu*kb/D1;
        hf = kf/D1;
26
        U1 = (1/hb + 1/hf)^{-1};
27
28
        L1 = -\text{rho}*\text{um}1*\text{D}1/\text{U}1*\text{cp}*2.303*\frac{\text{log}10}{\text{Tlm}}/4;
        xfdh1 = .05*Re1*D1;
29
30
        xfdr1 = xfdh1*Pr;
31
32
        Re2 = rho*um2*D2/u;
33
        Nu = 4;
34
        hb = Nu*kb/D2;
35
        hf = kf/D2;
        U2 = (1/hb + 1/hf)^{-1};
36
```

```
37
         L2 = -\text{rho}*\text{um}2*D2/U2*\text{cp}*2.303*\frac{\text{log}10}{\text{Tlm}}/4;
         xfdh2 = .05*Re2*D2;
38
         xfdr2 = xfdh2*Pr;
39
40
         Re3 = rho*um3*D3/u;
41
42
         Nu = 4;
43
         hb = Nu*kb/D3;
44
         hf = kf/D3;
         U3 = (1/hb + 1/hf)^-1;
45
         L3 = -\text{rho}*\text{um}3*\text{D}3/\text{U}3*\text{cp}*2.303*\frac{\text{log}10}{\text{Tlm}}/4;
46
         xfdh3 = .05*Re3*D3;
47
         xfdr3 = xfdh3*Pr;
48
49
50 printf("\n Vessel
                                       Re
                                                   U(W/m^2.K)
                                                                  L(
                            xfdr(m)\n Artery
                                                                  \%i
                xfdh (m)
       m)
                             %.1 f
                                                            \%.1 f \ n
               \%i
                                               %.2 f
                                               \%.1e
                                                         \%.1e
       Anteriole
                            \%.3 f
                                       \%i
       e \n Capillary
                                   %.3 f
                                              %i
                                                     \%.1e
           %.1e", Re1, U1, L1, xfdh1, xfdr1, Re2, U2, L2, xfdh2,
       xfdr2, Re3, U3, L3, xfdh3, xfdr3);
51
52 //END
```

Scilab code Exa 8.6 Heat Loss from the Metal Duct over the Length

```
//[K] Inlet temp
9 \text{ Ti} = 103+273;
10 \text{ To} = 77+273;
                          //[K] Outlet temperature
11 D = .15;
                         //[m] Diameter
12 L = 5;
                         //[m] length
13 \text{ ho} = 6;
                          //[W/m^2.K] Heat transfer
      convective coefficient
                       //[K] Temperature of surrounding
14 \text{ Tsurr} = 0+273;
15
16 //Table A.4 Air Properties T = 363 \text{ K}
17 \text{ cp} = 1010;
                           //[J/kg.K] specific heat
18 //Table A.4 Air Properties T = 350 \text{ K}
                           // [W/m] Thermal Conductivity
19 k = .030;
20 u = 20.82*10^-6;
                            //[N.s/m<sup>2</sup>] Viscosity
21 \text{ Pr} = .7;
                          //Prandtl Number
22
23 q = m*cp*(To-Ti);
24
25 \text{ Re} = m*4/(\%pi*D*u);
26 printf("\n As Reynolds Number is %i. The flow is
      Turbulent.", Re);
27
28 //Equation 8.6
29 n = 0.3;
30 \text{ Nu} = .023*Re^{.8*Pr^{.3}};
31 h = Nu*k/D;
32 q2 = (To-Tsurr)/[1/h + 1/ho];
33 \text{ Ts} = -q2/h+To;
34
35 printf("\n\n Heat Loss from the Duct over the Length
       L, q = \%i W \setminus n Heat flux and suface temperature
      at x=L is %.1f W/m<sup>2</sup> & %.1f degC respectively",q,
      q2, Ts-273);
36
37 / END
```

Scilab code Exa 8.7 Micro Channel

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 525 \n'); //Example 8.5
4 // Time needed to bring the reactants to within 1
      degC of processing temperature
5
6 // Operating Conditions
7 T1 = 125 + 273;
                    //[K] Chip Temperature 1
                    //[K] Chip Temperature 2
8 T2 = 25+273;
//[m] Diameter
10 D = .01;
                         //[m] length
11 L = .02;
12 \text{ delP} = 500*10^3;
                         //[N/m<sup>2</sup>] Pressure drop
13 // Dimensions
14 \ a = 40*10^-6;
15 b = 160*10^-6;
16 s = 40*10^-6;
17
18 //Table A.5 Ethylene Glycol Properties T = 288 \text{ K}
                              //[kg/m^3]
19 \text{ rho} = 1120.2;
                                             Density
20 \text{ cp} = 2359;
                              //[J/kg.K]
                                              Specific Heat
21 u = 2.82*10^-2;
                             //[N.s/m<sup>2</sup>] Viscosity
22 k = 247*10^{-3};
                             // [W/m.K] Thermal
      Conductivity
                             //Prandtl number
23 \text{ Pr} = 269;
24 //Table A.5 Ethylene Glycol Properties T = 338 K
25 \text{ rho2} = 1085;
                             //[kg/m^3]
                                            Density
                               //[J/kg.K]
26 \text{ cp2} = 2583;
                                               Specific
      Heat
27 u2 = .427*10^-2;
                              //[N.s/m^2] Viscosity
  k2 = 261*10^{-3};
                              // [W/m.K] Thermal
      Conductivity
                               //Prandtl number
29 \text{ Pr2} = 45.2;
30
```

```
31 P = 2*a+2*b;
                                      //Perimeter of
       microchannel
32 \text{ Dh} = 4*a*b/P;
                                       //Hydraulic Diameter
33
34 \text{ um2} = 2/73*Dh^2/u2*delP/L;
                                              //[[m/s] Equation
       8.22a
35 \text{ Re2} = \text{um2*Dh*rho2/u2};
                                       //Reynolds Number
                                  //[m] From Equation 8.3
36 \text{ xfdh2} = .05*Dh*Re2;
                                  //[m] From Equation 8.23
37 \text{ xfdr2} = \text{xfdh2*Pr2};
                                   //[kg/s]
38 \text{ m2} = \text{rho2*a*b*um2};
39 \text{ Nu2} = 4.44;
                                //Nusselt Number from Table
       8.1
40 \quad h2 = Nu2*k2/Dh;
                               //[W/m^2.K] Convection Coeff
41 \text{ Tc2} = 124+273;
                               //[K]
42 \text{ xc2} = \text{m2/P*cp2/h2*2.303*log10}((T1-Ti)/(T1-Tc2));
43 \text{ tc2} = \text{xc2/um2};
44
                                           //[[m/s] Equation
45 \text{ um} = 2/73*Dh^2/u*delP/L;
       8.22a
                                  //Reynolds Number
46 Re = um*Dh*rho/u;
47 \text{ xfdh} = .05*Dh*Re;
                                  //[m] From Equation 8.3
                                //[m] From Equation 8.23
48 \text{ xfdr} = \text{xfdh*Pr};
                                 //[kg/s]
49 \text{ m} = \text{rho2*a*b*um};
50 \text{ Nu} = 4.44;
                               //Nusselt Number from Table
       8.1
                            //[W/m^2.K] Convection Coeff
51 h = Nu*k/Dh;
                            //[K]
52 \text{ Tc} = 24+273;
53 \text{ xc} = \text{m/P*cp/h*2.303*log10}((T2-Ti)/(T2-Tc));
54 \text{ tc} = \text{xc/um};
55
                                                             %i
56 printf("\n Temp [degC]
                         %i\n\n Flow rate [m/s]
                              %.3 f
                                                   %.3 f\n
                                                  %.1 f
       Reynolds Number
                        %.1 f\n Hydrodynamic entrance Length
                                %.1e\n Thermal entrance
        [m]
               \%.1e
       Length [m]
                             \%.1e
                                              \%.1e\n Mass Flow
       rate [kg/s]
                                      \%.2e
                                                      \%.2e n
```

Scilab code Exa 8.8 Average mass trasnfer Convection Coefficient for the Tube

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 529 \langle n' \rangle; //Example 8.8
4 // Average mass trasnfer convection coefficient for
      the tube
5
6 // Operating Conditions
7 m = .0003;
                          //[kg/s] mass flow rate of
     water
8 T = 25+273;
               //[K] Temperature of surrounding and
     tube
9 D = .01;
                      // [m] Diameter
10 L = 1;
                      //[m] length
11
12 //Table A.4 Air Properties T = 298 K
13 \text{ uv} = 15.7*10^-6;
                                //[m^2/s] Kinematic
      Viscosity
                         //[N.s/m<sup>2</sup>] Viscosity
14 \ u = 18.36*10^-6;
15 //Table A.8 Ammonia—Air Properties T = 298 K
16 Dab = .28*10^-4; //[m^2/s] Diffusion coeff
17 \text{ Sc} = .56;
18
```

```
19 Re = m*4/(%pi*D*u);
20 printf("\n As Reynolds Number is %i. The flow is
        Laminar.",Re);
21
22 //Using Equation 8.57
23 Sh = 1.86*(Re*Sc*D/L)^.3334;
24 h = Sh*Dab/D;
25 printf("\n Average mass trasnfer convection
        coefficient for the tube %.3 f m/s",h);
26
27 //END
```

Chapter 9

Free Convection

Scilab code Exa 9.1 Vertical Plate

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
     Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
          Page 569 \langle n' \rangle; //Example 9.1
4 // Boundary Layer thickness at trailing edge.
6 // Operating Conditions
7 Ts = 70+273; //[K] Surface Temperature
8 Tsurr = 25+273; //[K] Surrounding Temperature
                    //[m/s] Velocity of free air
9 v1 = 0;
                    //[m/s] Velocity of free air
10 v2 = 5;
11 L = .25;
                     //[m] length
12
13 //Table A.4 Air Properties T = 320 \text{ K}
14 uv = 17.95*10^-6; //[m^2/s] Kinematic
     Viscosity
18
```

Scilab code Exa 9.2 Heat Transfer by Convection Between Screen and Room air

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 572 \n'); //Example 9.2
4 // Heat transfer by convection between screen and
      room air.
5
6 //Operating Conditions
7 \text{ Ts} = 232+273;
                     //[K] Surface Temperature
                     //[K] Surrounding Temperature
8 \text{ Tsurr} = 23+273;
                         // [m] length
9 L = .71;
10 \quad w = 1.02;
                         //[m] Width
11
12 //Table A.4 Air Properties T = 400 \text{ K}
13 k = 33.8*10^{-3}
                                ; // [W/m.K]
14 \text{ uv} = 26.4*10^-6
                              ; //[m^2/s] Kinematic
      Viscosity
```

```
; // [m^2/s]
15 \text{ al} = 38.3*10^-6
16 \text{ be } = 2.5*10^{-3}
                            f' = f' - 1
                            ;// Prandtl number
17 \text{ Pr} = .69
                            ;//[m^2/s] gravitational
18 g = 9.81
      constt
19
20 Ra = g*be*(Ts-Tsurr)/al*L^3/uv;
21 printf("\n As the Rayleigh Number is %.2e the free
       convection boundary layer is turbulent", Ra);
22 //From equation 9.23
23 Nu = [.825 + .387*Ra^{.16667}/[1+(.492/Pr)^{(9/16)}]
      ]^(8/27)]^2;
24 h = Nu*k/L;
25 q = h*L*w*(Ts-Tsurr);
26
27 printf("\n Heat transfer by convection between
      screen and room air is %i W',q);
28 / END
```

Scilab code Exa 9.3 Heat Loss from Duct per Meter of Length

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
            Page 577 \n'); //Example 9.3
      9.3
4 // Heat Loss from duct per meter of length
6 // Operating Conditions
7 Ts = 45+273; //[K] Surface Temperature
                  ;//[K] Surrounding Temperature
8 \text{ Tsurr} = 15+273
                      ;//[m] Height
9 H = .3
10 \quad w = .75
                      ; // [m] Width
11
12 //Table A.4 Air Properties T = 303 \text{ K}
```

```
13 k = 26.5*10^{-3}
                                  ; // [W/m.K]
14 \text{ uv} = 16.2*10^-6
                               ; //[m^2/s] Kinematic
      Viscosity
15 \text{ al} = 22.9*10^-6
                              ; //[m^2/s] alpha
                               ; // [K^{\hat{}} - 1] Tf^{\hat{}} - 1
16 \text{ be} = 3.3*10^-3
                               ;// Prandtl number
17 \text{ Pr} = .71
18 g = 9.81
                               ;//[m<sup>2</sup>/s] gravitational
      constt
19
20 Ra = g*be*(Ts-Tsurr)/al*H^3/uv; //Length = Height
21 //From equation 9.27
22 Nu = [.68 + .67*Ra^{.25}/[1+(.492/Pr)^{(9/16)}]^{(4/9)}];
23 //for Sides
24 \text{ hs} = \text{Nu*k/H};
25
                                               //Length
26 Ra2 = g*be*(Ts-Tsurr)/al*(w/2)^3/uv;
      = w/2
27 / \text{For top eq } 9.31
28 ht = [k/(w/2)]*.15*Ra2^.3334;
\frac{29}{\text{For bottom Eq } 9.32}
30 hb = [k/(w/2)]*.27*Ra2^.25;
31
32 q = (2*hs*H+ht*w+hb*w)*(Ts-Tsurr);
33
34 printf("\n Rate of heat loss per unit length of duct
        is \%i W/m",q);
35 / END
```

Scilab code Exa 9.4 Heat Loss from Pipe per Meter of Length

```
4 // Heat Loss from pipe per meter of length
5
6 // Operating Conditions
7 Ts = 165+273; //[K] Surface Temperature
                     //[K] Surrounding Temperature
8 \text{ Tsurr} = 23+273;
                        ;//[m] Diameter
9 D = .1
10 e = .85
                       ;// emissivity
11 stfncnstt=5.67*10^(-8) ; // [W/m^2.K^4] - Stefan
      Boltzmann Constant
12
13 //Table A.4 Air Properties T = 303 \text{ K}
14 k = 31.3*10^{-3}
                                 ; // [W/m.K] Conductivity
15 \text{ uv} = 22.8*10^-6
                               ; //[m^2/s] Kinematic
      Viscosity
16 \text{ al} = 32.8*10^-6
                            ; //[m^2/s] alpha
16 al = 32.8*10^{\circ}-6
17 be = 2.725*10^{\circ}-3
                                 f' = f' - 1 f' - 1
18 \text{ Pr} = .697
                              ;// Prandtl number
19 g = 9.81
                               ;//[m^2/s] gravitational
      constt
20
21 Ra = g*be*(Ts-Tsurr)/al*D^3/uv;
22 //From equation 9.34
23 Nu = [.60 + .387*Ra^{(1/6)}/[1+(.559/Pr)^{(9/16)}]
      ]^(8/27)]^2;
24 h = Nu*k/D;
25
26 \text{ qconv} = h*\%pi*D*(Ts-Tsurr);
27 \text{ grad} = e * \%pi * D * stfncnstt * (Ts^4 - Tsurr^4);
28
29 printf("\n Rate of heat loss per unit length of pipe
       is %i W/m",qconv+qrad);
30 / END
```

Scilab code Exa 9.5 Radiation Shield

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
      9.5
             Page 592 \n'); //Example 9.5
4 // Heat Loss from pipe per unit of length
5 // Heat Loss if air is filled with glass-fiber
      blanket insulation
7 // Operating Conditions
                    ;//[K] Shield Temperature
8 \text{ To} = 35+273
9 \text{ Ti} = 120+273
                    ;//[K] Tube Temperature
10 \, \text{Di} = .1
                        ;//[m] Diameter inner
11 \text{ Do} = .12
                         ;//m| Diameter outer
                         ;//[m] air gap insulation
12 L = .01
13
14 //Table A.4 Air Properties T = 350 \text{ K}
15 k = 30*10^{-3}
                              ; // [W/m.K] Conductivity
16 \text{ uv} = 20.92*10^-6
                               ; // [m^2/s] Kinematic
      Viscosity
17 \text{ al} = 29.9*10^-6
                             ; // [m^2/s] alpha
                                ; // [K^-1] Tf^-1
18 be = 2.85*10^{-3}
19 \text{ Pr} = .7
                            ;// Prandtl number
                              ;//[m^2/s] gravitational
20 g = 9.81
      constt
21 // Table A.3 Insulation glass fiber T=300K
22 \text{ kins} = .038
                                 ; // [W/m.K] Conductivity
23
24 Lc = 2*[2.303*log10(Do/Di)]^(4/3)/((Di/2)^-(3/5)+(Do
      /2) ^ - (3/5) ) ^ (5/3);
25 Ra = g*be*(Ti-To)/al*Lc^3/uv;
26 \text{ keff} = .386*k*(Pr/(.861+Pr))^2.25*Ra^2.25;
27 q = 2*\%pi*keff*(Ti-To)/(2.303*log10(Do/Di));
28
\frac{29}{\text{From equatiom }}9.58 and 3.27
30 \text{ qin} = q*kins/keff;
31
32 printf("\n Heat Loss from pipe per unit of length is
```

```
\% i \ W/m \setminus n \ Heat \ Loss \ if \ air \ is \ filled \ with \ glass-fiber \ blanket \ insulation \ \% i \ W/m",q,qin); 33 //END
```

Chapter 10

Boiling and Condensation

Scilab code Exa 10.1 Boiling Water Pan

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 632 \langle n' \rangle; //Example 10.1
4 // Power Required by electruc heater to cause
      boiling
5 // Rate of water evaporation due to boiling
6 // Critical Heat flux corresponding to the burnout
      point
8 //Operating Conditions
9 Ts = 118+273 ; //[K] Surface Temperature
10 Tsat = 100+273 ; //[K] Saturated Temperature
11 D = .3
                       ;//[m] Diameter of pan
12 g = 9.81
                       ;//[m<sup>2</sup>/s] gravitaional constant
13 //Table A.6 Saturated water Liquid Properties T =
      373 K
                             ; // [kg/m<sup>3</sup>] Density
14 \text{ rhol} = 957.9
15 \text{ cp} = 4.217*10^3
                                  ;//[J/kg] Specific Heat
16 \ u = 279*10^-6
                              ; // [N.s/m^2] Viscosity
```

```
;// Prandtl Number
17 \text{ Pr} = 1.76
                              ;//[J/kg] Specific Heat
18 \text{ hfg} = 2257*10^3
19 \text{ si} = 58.9*10^{-3}
                          ; // [N/m]
20 //Table A.6 Saturated water Vapor Properties T = 373
       K
21 \text{ rhov} = .5956
                              ; // [kg/m^3] Density
22
23 Te = Ts-Tsat;
24 //From Table 10.1
25 C = .0128;
26 n = 1;
27 q = u*hfg*[g*(rhol-rhov)/si]^.5*(cp*Te/(C*hfg*Pr^n))
28 \text{ qs} = q*\%pi*D^2/4;
29
30 m = qs/hfg;
31
32 \text{ qmax} = .149*\text{hfg*rhov*}[si*g*(rhol-rhov)/rhov^2]^.25;
33
34 printf("\n Boiling Heat transfer rate = \%.1 f kW \n
      Rate of water evaporation due to boiling = \%i kg/
      h \n Critical Heat flux corresponding to the
      burnout point = \%.2 \text{ f MW/m}^2, qs/1000, m*3600, qmax
      /10^6);
35 / END
```

Scilab code Exa 10.2 Power Dissipation per unith Length for the Horizontal Cylinder

```
cylinder, qs
5
6 // Operating Conditions
7 Ts = 255+273 ; //[K] Surface Temperature
8 Tsat = 100+273 ; //[K] Saturated Temperature
9 D = 6*10^{-3}
                               ;//[m] Diameter of pan
10 e = 1
                       ;// eimssivity
                                 ;// [W/m<sup>2</sup>.K<sup>4</sup>] - Stefan
11 stfncnstt=5.67*10^{-8}
      Boltzmann Constant
12 g = 9.81
                         ;//[m<sup>2</sup>/s] gravitaional constant
13 //Table A.6 Saturated water Liquid Properties T =
      373 K
14 \text{ rhol} = 957.9
                                ; // [kg/m^3] Density
15 hfg = 2257*10^3
                               ;//[J/kg] Specific Heat
16 //Table A.4 Water Vapor Properties T = 450 \text{ K}
17 \text{ rhov} = .4902
                               ; // [kg/m^3] Density
18 \text{ cpv} = 1.98*10^3
                                      ; // [J/kg.K] Specific
      Heat
19 \text{ kv} = 0.0299
                                   ; // [W/m.K] Conductivity
                                    ;//[N.s/m<sup>2</sup>] Viscosity
20 \text{ uv} = 15.25*10^-6
21
22 Te = Ts-Tsat;
23
24 \text{ hconv} = .62*[\text{kv}^3*\text{rhov}*(\text{rhol-rhov})*g*(\text{hfg}+.8*\text{cpv}*\text{Te})
      /(uv*D*Te)]^.25;
25 hrad = e*stfncnstt*(Ts^4-Tsat^4)/(Ts-Tsat);
26
27 //From eqn 10.9 h^{(4/3)} = hconv^{(4/3)} + hrad*h^{(1/3)}
28 // Newton Raphson
29 h = 250;
                    //Initial Assumption
30 while (1>0)
31 f = h^{(4/3)} - [hconv^{(4/3)} + hrad*h^{(1/3)}];
32 fd = (4/3)*h^(1/3) - [(1/3)*hrad*h^(-2/3)];
33 hn=h-f/fd;
34 \text{ if}((\ln^{4}/3) - [\ln \cos^{4}/3) + \ln 4 \ln^{1}/3)] <= .01)
35
        break;
36 end;
37 h = hn;
```

Scilab code Exa 10.3 Heat Transfer and Condensation Rates

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 648 \n'); //Example 10.3
4 // Heat Transfer and Condensation Rates
6 //Operating Conditions
7 \text{ Ts} = 50+273
                    ;//[K] Surface Temperature
                    ;//[K] Saturated Temperature
8 \text{ Tsat} = 100+273
9 D = .08
                        ;//[m] Diameter of pan
10 g = 9.81
                        ;//[m<sup>2</sup>/s] gravitaional constant
                           //[m] Length
11 L = 1
12 //Table A.6 Saturated Vapor Properties p = 1.0133
      bars
13 \text{ rhov} = .596
                              ; // [kg/m^3] Density
14 \text{ hfg} = 2257*10^3
                             ;//[J/kg] Specific Heat
15 //Table A.6 Saturated water Liquid Properties T =
      348 K
16 \text{ rhol} = 975
                            ; // [kg/m^3] Density
17 \text{ cpl} = 4193
                             ; //[J/kg.K] Specific Heat
                                 ;//[W/m.K] Conductivity
18 \text{ kl} = 0.668
                                 ; // [N.s/m<sup>2</sup>] Viscosity
19 \text{ ul} = 375*10^-6
20 \text{ uvl} = \text{ul/rhol};
                                 ; // [N.s.m/Kg] Kinematic
      viscosity
```

```
21 Ja = cpl*(Tsat-Ts)/hfg;
22 \text{ hfg2} = \text{hfg*(1+.68*Ja)};
23 //Equation 10.43
24 Re = [3.70*kl*L*(Tsat-Ts)/(ul*hfg2*(uvl^2/g)^.33334)
      +4.8]^.82;
25
\frac{26}{\text{From equation }} 10.41
27 hL = Re*ul*hfg2/(4*L*(Tsat-Ts));
28 q = hL*(\%pi*D*L)*(Tsat-Ts);
29
30 m = q/hfg;
31 // Using Equation 10.26
32 \text{ del} = [4*kl*ul*(Tsat-Ts)*L/(g*rhol*(rhol-rhov)*hfg2)
      ]^.25;
33
34
35 printf("\n Heat Transfer Rate = \%.1 \text{ f kW} and
      Condensation Rates= %.4 f kg/s \n And as del(L) %
      .3 f mm \ll (D/2) \% .2 f m use of vertical cylinder
      correlation is justified ",q/1000,m,del*1000,D/2);
36 / END
```

Scilab code Exa 10.4 Condensation Rate per unit Length of Tubes

```
;//[m^2/s] gravitaional constant
10 g = 9.81
11 N = 20
                             // No of tubes
12
13 //Table A.6 Saturated Vapor Properties p = 1.015 bar
14 \text{ rhov} = .098
                               ; // [kg/m^3] Density
15 \text{ hfg} = 2373*10^3
                               ;//[J/kg] Specific Heat
16 //Table A.6 Saturated water Liquid Properties Tf =
      312.5 K
17 \text{ rhol} = 992
                              ; // [kg/m^3] Density
                                ;//[J/kg.K] Specific Heat
18 \text{ cpl} = 4178
                                 ; // [W/m.K] Conductivity
19 \text{ kl} = 0.631
                                 ; //[N.s/m^2] Viscosity
20 \text{ ul} = 663*10^-6
21
22 \text{ Ja} = \text{cpl}*(\text{Tsat-Ts})/\text{hfg};
23 \text{ hfg2} = \text{hfg*(1+.68*Ja)};
24 // Equation 10.46
25 h = .729*[g*rhol*(rhol-rhov)*kl^3*hfg2/(N*ul*(Tsat-
      Ts)*D)]^.25;
26 // Equation 10.34
27 \text{ m1} = h*(\%pi*D)*(Tsat-Ts)/hfg2;
28
29 \quad m = N^2*m1;
30
31 printf("\n For the complete array of tubes, the
       condensation per unit length is \%.3 \, f \, kg/s.m, m);
32 //END
```

Chapter 11

Heat Exchangers

Scilab code Exa 11.1 Tube Length to Achieve a Desired Hot Fluid Temperature in a Counter Flow Tube Heat Exchanger

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 680 \n'); //Example 11.1
4 // Tube Length to achieve a desired hot fluid
      temperature
6 //Operating Conditions
                     ;//[K] Hot Fluid outlet Temperature
7 \text{ Tho} = 60+273
8 \text{ Thi} = 100+273
                     ; //[K] Hot Fluid intlet Temperature
9 Tci = 30+273
                     ;//[K] Cold Fluid intlet Temperature
                     ;//[kg/s] Hot Fluid flow rate
10 \text{ mh} = .1
                     ;//[kg/s] Cold Fluid flow rate
11 \text{ mc} = .2
                      ;//[m] Outer annulus
12 \text{ Do} = .045
13 \, \text{Di} = .025
                      ;//[m] Inner tube
14
15 //Table A.5 Engine Oil Properties T = 353 \text{ K}
                              ; // [J/kg.K] Specific Heat
16 \text{ cph} = 2131
17 \text{ kh} = .138
                              ; // [W/m.K] Conductivity
```

```
18 \text{ uh} = 3.25*10^-2
                                  ; //[N.s/m^2] Viscosity
19 //Table A.6 Saturated water Liquid Properties Tc =
      308 K
20 \text{ cpc} = 4178
                                ; // [J/kg.K] Specific Heat
21 \text{ kc} = 0.625
                                 ; // [W/m.K] Conductivity
                                 ; //[N.s/m^2] Viscosity
22 \text{ uc} = 725*10^-6
23 \text{ Pr} = 4.85
                                 ;//Prandtl Number
24
25 q = mh*cph*(Thi-Tho);
26
27 \text{ Tco} = q/(mc*cpc)+Tci;
28
29 \text{ T1} = \text{Thi-Tco};
30 \text{ T2} = \text{Tho-Tci};
31 Tlm = (T1-T2)/(2.30*log10(T1/T2));
32
33 //Through Tube
34 \text{ Ret} = 4*mc/(\%pi*Di*uc);
35 printf("\n Flow through Tube has Reynolds Number as
      %i. Thus the flow is Turbulent", Ret);
36 //Equation 8.60
37 \text{ Nut} = .023*Ret^.8*Pr^.4;
38 \text{ hi} = \text{Nut*kc/Di};
39
40 //Through Shell
41 Reo = 4*mh*(Do-Di)/(%pi*uh*(Do^2-Di^2));
42 printf("\n Flow through Tube has Reynolds Number as
      %i. Thus the flow is Laminar", Reo);
43 // Table 8.2
44 \text{ Nuo} = 5.63;
45 \text{ ho} = \text{Nuo*kh/(Do-Di)};
46
47 U = 1/[1/hi+1/ho];
48 L = q/(U*\%pi*Di*Tlm);
50 printf("\n Tube Length to achieve a desired hot
       fluid temperature is %.1 f m",L);
51 / END
```

Scilab code Exa 11.2 Exterior Dimensions of Counter Flow Plate Heat Exchanger

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 683 \n'); //Example 11.2
  // Exterior Dimensions of heat Exchanger
  // Pressure drops within the plate-type Heat
      exchanger with N=60 gaps
6
  //Operating Conditions
8 \text{ Tho} = 60+273
                      ;//[K] Hot Fluid outlet Temperature
                      ;//[K] Hot Fluid intlet Temperature
9 \text{ Thi} = 100+273
                      ;//[K] Cold Fluid intlet Temperature
10 \text{ Tci} = 30+273
11 \text{ mh} = .1
                      ;//[kg/s] Hot Fluid flow rate
                       ;//[kg/s] Cold Fluid flow rate
12 \text{ mc} = .2
                       ;//[m] Outer annulus
13 \, \text{Do} = .045
14 \, \text{Di} = .025
                       ;//[m] Inner tube
15
16 //Table A.5 Engine Oil Properties T = 353 \text{ K}
17 \text{ cph} = 2131
                                ;//[J/kg.K] Specific Heat
18 \text{ kh} = .138
                                ; // [W/m.K] Conductivity
19 uh = 3.25*10^-2
                                 ; //[N.s/m^2] Viscosity
20 \text{ rhoh} = 852.1
                                ; // [kg/m^3] Density
21 //Table A.6 Saturated water Liquid Properties Tc =
      308~\mathrm{K}
22 \text{ cpc} = 4178
                                ; // [J/kg.K] Specific Heat
                                  ; // [W/m.K] Conductivity
23 \text{ kc} = 0.625
                                  ; // [N.s/m<sup>2</sup>] Viscosity
24 \text{ uc} = 725*10^-6
25 \text{ Pr} = 4.85
                                 ;//Prandtl Number
26 \text{ rhoc} = 994
                                ; // [kg/m^3] Density
27
```

```
28 q = mh*cph*(Thi-Tho);
29
30 \text{ Tco} = q/(mc*cpc)+Tci;
31
32 \text{ T1} = \text{Thi-Tco};
33 T2 = Tho - Tci;
34 Tlm = (T1-T2)/(2.30*log10(T1/T2));
35
36 N = linspace(20,80,100);
37 L = q/Tlm*[1/(7.54*kc/2)+1/(7.54*kh/2)]*(N^2-N)^-1;
38 clf();
39 plot(N,L);
40 xtitle ("Size of Heat Xchanger vs Number of gaps", "
      Number of Gaps (N)", "L (m)");
41
42 N2 = 60;
43 L = q/((N2-1)*N2*Tlm)*[1/(7.54*kc/2)+1/(7.54*kh/2)];
44 a = L/N2;
                      ;//Hydraulic Diameter [m]
45 Dh = 2*a
46 //For water filled gaps
47 umc = mc/(rhoc*L^2/2);
48 Rec = rhoc*umc*Dh/uc;
49 //For oil filled gaps
50 umh = mh/(rhoh*L^2/2);
51 \text{ Reh} = \text{rhoh*umh*Dh/uh};
52 printf("\n Flow of the fluids has Reynolds Number as
       %.2f & %i. Thus the flow is Laminar for both",
      Reh, Rec);
53
54 //Equations 8.19 and 8.22a
55 \text{ delpc} = 64/\text{Rec*rhoc}/2*\text{umc}^2/\text{Dh*L}
                                                 ;//For water
56 \text{ delph} = 64/\text{Reh*rhoh}/2*\text{umh}^2/\text{Dh*L}
                                                  ;//For oil
57
\frac{58}{\text{For example }} 11.1
59 L1 = 65.9;
60 \text{ Dh1c} = .025;
61 \text{ Dh1h} = .02;
62 Ret = 4*mc/(\%pi*Di*uc);
```

```
63 f = (.790*2.30*log10(Ret)-1.64)^-2
                                                      ;//
       friction factor through tube Eqn 8.21
64 \text{ umc1} = 4*\text{mc/(rhoc*\%pi*Di^2)};
65 \text{ delpc1} = f*rhoc/2*umc1^2/Dh1c*L1;
66 Reo = 4*mh*(Do-Di)/(%pi*uh*(Do^2-Di^2));
67 umh1 = 4*mh/(rhoh*%pi*(Do^2-Di^2));
68 \text{ delph1} = 64/\text{Reo*rhoh}/2*\text{umh1}^2/\text{Dh1h*L1};
69
70 printf("\n Exterior Dimensions of heat Exchanger L =
       %.3f m \n Pressure drops within the plate-type
      Heat exchanger with N=60 gaps\n For water = \%.2 \,\mathrm{f}
                 For oil = \%.2 \text{ f N/m}^2 \text{ n Pressure drops}
      tube Heat exchanger of example 11.1\n For water =
       \%.1 \text{ f kN/m}^2
                          For oil = \%.1 \text{ f kN/m}^2", L, delpc,
      delph, delpc1/1000, delph1/1000);
71 / END
```

Scilab code Exa 11.3 Required Gas Side Surface Area in CrossFlow Finned Heat Exchanger

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 692 \n'); //Example 11.3
4 // Required gas side surface area
6 // Operating Conditions
7 \text{ Tho} = 100+273
                      ;//[K] Hot Fluid outlet Temperature
8 \text{ Thi} = 300+273
                      ; // [K] Hot Fluid intlet Temperature
9 \text{ Tci} = 35+273
                     ; // [K] Cold Fluid intlet Temperature
10 \text{ Tco} = 125+273
                     ; //[K] Cold Fluid outlet
      Temperature
11 \text{ mc} = 1
                     ;//[kg/s] Cold Fluid flow rate
12 Uh = 100
                     ; // [W/m<sup>2</sup>.K] Coefficient of heat
```

```
transfer
13 //Table A.5 Water Properties T = 353 \text{ K}
                                //[J/kg.K] Specific Heat
14 \text{ cph} = 1000
15 //Table A.6 Saturated water Liquid Properties Tc =
      308 K
16 \text{ cpc} = 4197
                                //[J/kg.K] Specific Heat
                    ;
17
18 \text{ Cc} = \text{mc*cpc};
19 //Equation 11.6b and 11.7b
20 Ch = Cc*(Tco-Tci)/(Thi-Tho);
21 // Equation 11.18
22 \text{ qmax} = \text{Ch}*(\text{Thi-Tci});
23 //Equation 11.7b
24 q = mc*cpc*(Tco-Tci);
25
26 e = q/qmax;
27 \text{ ratio} = Ch/Cc;
29 printf("\n As effectiveness is %.2f with Ratio Cmin/
      Cmax = \%.2f, It follows from figure 11.14 that
      NTU = 2.1", e, ratio);
30 \text{ NTU} = 2.1;
31 A = 2.1*Ch/Uh;
32
33 printf("\n Required gas side surface area = \%.1 f m^2
      ",A);
34 / END
```

Scilab code Exa 11.4 Heat Transfer Rate and Fluid Outlet Temperatures of Cross Flow Finned Heat Exchanger

```
Page 695 \n'); //Example 11.4
       11.4
4 // Heat Transfer Rate and Fluid Outlet Temperatures
6 // Operating Conditions
7 \text{ Thi} = 250+273
                        ; // [K] Hot Fluid intlet Temperature
8 \text{ Tci} = 35+273
                      ; // [K] Cold Fluid intlet Temperature
                      ;//[kg/s] Cold Fluid flow rate
9 \text{ mc} = 1
10 \text{ mh} = 1.5
                          //[kg/s] Hot Fluid flow rate
11 \text{ Uh} = 100
                       ; // [W/m<sup>2</sup>.K] Coefficient of heat
      transfer
                      ; //[m^2] Area
12 Ah = 40
13 //Table A.5 Water Properties T = 353 \text{ K}
14 \text{ cph} = 1000
                                 //[J/kg.K] Specific Heat
15 //Table A.6 Saturated water Liquid Properties Tc =
      308 K
16 \text{ cpc} = 4197
                                 //[J/kg.K] Specific Heat
                         ;
17
18 \text{ Cc} = \text{mc*cpc};
19 Ch = mh*cph;
20 \text{ Cmin} = \text{Ch};
21 \text{ Cmax} = \text{Cc};
22
23 \text{ NTU} = \text{Uh}*Ah/\text{Cmin};
24 ratio = Cmin/Cmax;
25
26 printf("\n As Ratio Cmin/Cmax = \%.2 f and Number of
       transfer units NTU = \%.2f, It follows from figure
        11.14 that e = .82", ratio, NTU);
27 e = 0.82;
28 qmax = Cmin*(Thi-Tci);
29 q = e*qmax;
30
31 // Equation 11.6b
32 \text{ Tco} = q/(mc*cpc) + Tci;
33 //Equation 11.7b
34 Tho = -q/(mh*cph) + Thi;
35 printf("\n Heat Transfer Rate = %.2e W \n Fluid
       Outlet Temperatures Hot Fluid (Tho) = \%.1 \text{ f degC}
```

```
Cold Fluid (Tco) = \%.1\,\mathrm{f} degC",q,Tho-273,Tco -273);
```

Scilab code Exa 11.5 Study of Shell n Tube Heat Exchanger

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 696 \n'); //Example 11.5
4 // Outlet Temperature of cooling Water
5 // Tube length per pass to achieve required heat
      transfer
7 // Operating Conditions
8 q = 2*10^9
                       ;//[W] Heat transfer Rate
9 \text{ ho} = 11000
                       ; // [W/m<sup>2</sup>.K] Coefficient of heat
      transfer for outer surface
10 Thi = 50+273
                     ; // [K] Hot Fluid Condensing
      Temperature
11 Tho = Thi
                 ;//[K] Hot Fluid Condensing Temperature
                    ;//[K] Cold Fluid intlet Temperature
12 \text{ Tci} = 20+273
                        //[kg/s] Cold Fluid flow rate
13 \text{ mc} = 3*10^4
14 \quad m = 1
                     ;//[kg/s] Cold Fluid flow rate per
      tube
15 D = .025
                     ;//[m] diameter of tube
16 //Table A.6 Saturated water Liquid Properties Tf =
      300 K
17 \text{ rho} = 997
                           //[kg/m^3] Density
18 \text{ cp} = 4179
                             //[J/kg.K] Specific Heat
                                // [W/m.K] Conductivity
19 k = 0.613
                                //[N.s/m<sup>2</sup>] Viscosity
20 u = 855*10^-6
21 \text{ Pr} = 5.83
                                // Prandtl number
22
```

```
23 //Equation 11.6b
24 \text{ Tco} = q/(mc*cp) + Tci;
25
26 \text{ Re} = 4*m/(\%pi*D*u);
27 printf("\n As the Reynolds number of tube fluid is
      %i. Hence the flow is turbulent. Hence using
      Diettus-Boetllor Equation 8.60", Re);
28 \text{ Nu} = .023*Re^{.8*Pr^{.4}};
29 hi = Nu*k/D;
30 U = 1/[1/ho + 1/hi];
                            ;//No of tubes
31 N = 30000
32 \text{ T1} = \text{Thi-Tco};
33 T2 = Tho - Tci;
34 \text{ Tlm} = (T1-T2)/(2.30*log10(T1/T2));
35 L2 = q/(U*N*2*\%pi*D*Tlm);
36
37
38 printf("\n Outlet Temperature of cooling Water = \%.1
      f degC\n Tube length per pass to achieve required
       heat transfer = \%.2 \, \text{f} m", Tco-273, L2);
39 / END
```

Scilab code Exa 11.6 Finned Compact Heat Exchanger

```
8 \text{ hi} = \text{hc};
                  ;//[K] Hot Fluid Temperature
9 \text{ Th} = 825
                  ;//[K] Cold Fluid intlet Temperature
10 \text{ Tci} = 290
                    ;//[K] Cold Fluid outlet Temperature
11 \text{ Tco} = 370
                        ;//[kg/s] Cold Fluid flow rate
12 \text{ mc} = 1
13 \text{ mh} = 1.25
                             ;//[kg/s] Hot Fluid flow rate
                             ; // [m<sup>2</sup>] Area of tubes
14 \text{ Ah} = .20
15 \, \text{Di} = .0138
                          ;//[m] diameter of tube
16 \text{ Do} = .0164
                          ;//[m] Diameter
17 //Table A.6 Saturated water Liquid Properties Tf =
       330 K
18 \text{ cpw} = 4184
                                   //[J/kg.K] Specific Heat
                           ;
19 //Table A.1 Aluminium Properties T = 300 \text{ K}
20 k = 237
                                  // [W/m.K] Conductivity
21 //Table A.4 Air Properties Tf = 700 \text{ K}
                                  //[J/kg.K] Specific Heat
22 \text{ cpa} = 1075
                                  //[N.s/m<sup>2</sup>] Viscosity
23 u = 33.88*10^-6
24 \text{ Pr} = .695
                                  // Prandtl number
25
26 // Geometric Considerations
27 \text{ si} = .449;
28 \text{ Dh} = 6.68*10^{-3}
                               ;//[m] hydraulic diameter
29 G = mh/si/Ah;
30 \text{ Re} = G*Dh/u;
31 //From Figure 11.16
32 \text{ jh} = .01;
33 hh = jh*G*cpa/Pr^{.66667};
34
35 AR = Di*2.303*log10(Do/Di)/(2*k*(.143));
36 //Figure 11.16
37 \text{ AcAh} = \text{Di/Do}*(1-.830);
\frac{38}{\text{From figure }} 3.19
39 \text{ nf} = .89;
40 noh = 1-(1-.89)*.83;
42 \ U = [1/(hc*AcAh) + AR + 1/(noh*hh)]^{-1};
43
44 \text{ Cc} = \text{mc*cpw};
```

```
45 q = Cc*(Tco-Tci);
46 Ch = mh*cpa;
47 \text{ qmax} = \text{Ch}*(\text{Th-Tci});
48 e = q/qmax;
49 \text{ ratio} = Ch/Cc;
50
51 printf("\n As effectiveness is %.2f with Ratio Cmin/
      Cmax = \%.2f, It follows from figure 11.14 that
      NTU = .65", e, ratio);
52 \text{ NTU} = .65;
53 A = NTU*Ch/U;
54 //From Fig 11.16
                           //[m^{-1}] gas side area per unit
55 al = 269;
       heat wxchanger volume
56 V = A/al;
57
58 printf("\n Gas-side overall heat transfer
      coefficient.r = %i W/m^2.K\n Heat exchanger
      Volume = \%.3 \text{ f m}^3, U, V);
59 //END;
```

Chapter 12

Radiation Processes and Properties

Scilab code Exa 12.1 Plate Surface Emission Study

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
      12.1
              Page 731 \n')// Example 12.1
5 // a) Intensity of emission in each of the three
      directions
6 // b) Solid angles subtended by the three surfaces
7 // c) Rate at which radiation is intercepted by the
      three surfaces
                     ;//[m<sup>2</sup>] Area of emitter
9 \text{ A1} = .001
10 \text{ In} = 7000
                     ; // [W/m<sup>2</sup>.Sr] Intensity of radiation
       in normal direction
11 \quad A2 = .001
                     ; //[m^2] Area of other intercepting
      plates
12 \text{ A3} = \text{A2}
                     ; // [m^2] Area of other intercepting
      plates
```

```
; //[m^2] Area of other intercepting
13 \quad A4 = A2
       plates
14 r = .5
                       ;//[m] Distance of each plate from
      emitter
15 theta1 = 60
                       ;//[deg] Angle between surface 1
       normal & direction of radiation to surface 2
                       ;//[deg] Angle between surface 2
16 \text{ theta2} = 30
       normal & direction of radiation to surface 1
                       ;//[deg] Angle between surface 1
17 \text{ theta3} = 45
       normal & direction of radiation to surface 4
18
19 //From equation 12.2
20 \text{ w31} = \text{A3/r^2};
21 \text{ w41} = \text{w31};
22 \text{ w21} = \text{A2} \cdot \cos(\text{theta2} \cdot 0.0174532925)/r^2;
23
24
\frac{25}{\text{From equation }} 12.6
26 \text{ q12} = \text{In}*A1*\cos(\text{theta}1*0.0174532925)*w21;
27 \text{ q13} = \text{In}*\text{A1}*\text{cos}(0)*\text{w31};
28 \text{ q14} = In*A1*cos(theta3*0.0174532925)*w41;
29
30 printf("\n (a) As Intensity of emitted radiation is
      independent of direction, for each of the three
       directions I = \%i W/m^2.sr \n\n (b) By the Three
       Surfaces\n
                              Solid angles subtended
                         Rate at which radiation is
                                     w4-1 = \%.2e sr
       intercepted \n
                                      q1-4 = \%.1e W \setminus n
                   w3-1 = \%.2e sr
                                      q1-3 = \%.1 e W n
                   w2-1 = \%.2e sr
                                      q1-2 = \%.1 e W ", In,
      w41,q14,w31,q13,w21,q12);
31 / END
```

Scilab code Exa 12.2 Total Irradiation of Spectral Distribution

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 734\n')// Example 12.2
4
5 // Total Irradiation
6 \quad x = [0 \quad 5 \quad 20 \quad 25];
7 y = [0 1000 1000 0];
8 clf();
9 plot2d(x,y,style=5,rect=[0,0,30,1100]);
10 xtitle ("Spectral Distribution", "wavelength (micro-m
      )", "G (W/m^2.micro-m)");
11
12 //By Equation 12.4
13 G = 1000*(5-0)/2+1000*(20-5)+1000*(25-20)/2;
14
15 printf("\n G = \%i W/m<sup>2</sup>",G);
16 / END
```

Scilab code Exa 12.3 Blackbody Radiation

```
6 // wavelengths below which and above which 10% of
      the radiation is concentrated
7 // Spectral emissive power and wavelength associated
       with maximum emission
8 // Irradiation on a small object inside the
      enclosure
9
                        ;//[K] temperature of surface
10 T = 2000
11 stfncnstt = 5.67*10^-8 ; //[W/m^2.K^4] Stefan -
      Boltzmann constant
                        // [W/m<sup>2</sup>]
12 E = stfncnstt*T^4;
14 //From Table 12.1
                           //[micro-m.K]
                    ;
15 \text{ constt1} = 2195
16 \text{ wl1} = \text{constt1/T};
17 //From Table 12.1
18 constt2 = 9382 ; //[micro-m.K]
19 w12 = constt2/T;
20
21 //From Weins Law, wlmax*T = consttmax = 2898 micro-m
      .Κ
                              ; //micro-m.K
22 \text{ consttmax} = 2898
23 \text{ wlmax} = \text{consttmax/T};
24 //from Table 12.1 at wlmax = 1.45 micro-m.K and T =
      2000 K
25 I = .722*10^-4*stfncnstt*T^5;
26 \text{ Eb} = \%pi*I;
27
                 //[W/m<sup>2</sup>] Irradiation of any small
28 \ G = E;
      object inside the enclosure is equal to emission
      from blackbody at enclosure temperature
29
30 printf("\n (a) Spectral Emissive Power of a small
      aperture on the enclosure = \%.2 e W/m^2. Sr for
      each of the three directions \n (b) Wavelength
      below which 10 percent of the radiation is
      concentrated = \%.1 f micro-m \n Wavelength
      above which 10 percent of the radiation is
```

```
concentrated = %.2f micro-m \n (c) Spectral
emissive power and wavelength associated with
maximum emission is %.2e micro-m and %.2e W/m^2.
micro-m respectively \n (d) Irradiation on a
small object inside the enclosure = %.2e W/m^2",E
,wll,wl2,Eb,wlmax,G);
31 //END
```

Scilab code Exa 12.4 Blackbody Angular Radiation

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 743 \n')// Example 12.4
5 // Rate of emission per unit area over all
      directions between 0 degC and 60 degC and over
      all wavelengths between wavelengths 2 and 4 micro
      -m
                         ;//[K] temperature of surface
7 T = 1500
8 \text{ stfncnstt} = 5.67*10^-8
                                  ; // [W/m<sup>2</sup>.K<sup>4</sup>] Stefan -
      Boltzmann constant
9
10 //From Equation 12.26 Black Body Radiation
                                //[W/m^2]
11 Eb = stfncnstt*T^4;
12
13 //From Table 12.1 as wl1*T = 2*1500 (micro-m.K)
14 \text{ FO2} = .273;
15 //From Table 12.1 as wl2*T = 4*1500 (micro-m.K)
16 \text{ FO4} = .738;
17
18 //From equation 12.10 and 12.11
19 i1 = integrate('2*\cos(x)*\sin(x)', 'x',0,%pi/3);
```

```
20 delE = i1*(F04-F02)*Eb;
21
22 printf("\n Rate of emission per unit area over all
         directions between 0 degC and 60 degC and over
         all wavelengths between wavelengths 2 micro-m and
         4 micro-m = %.1e W/m^2",delE);
23 //END
```

Scilab code Exa 12.5 Diffuse Emitter

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 748 \n')// Example 12.5
4
5 // Total hemispherical emissivity
6 // Total emissive Power
7 // Wavelength at which spectral emissive power will
      be maximum
9 T = 1600
                         ;//[K] temperature of surface
10 \text{ wll = } 2
                        ;//[micro-m] wavelength 1
                        ;//[micro-m] wavelength 2
11 \text{ wl2} = 5
12 stfncnstt = 5.67*10^-8;
                                 // [W/m<sup>2</sup>.K<sup>4</sup>] Stefan -
      Boltzmann constant
13 // From the given graph of emissivities
14 \text{ e1} = .4;
15 \text{ e2} = .8;
16 //From Equation 12.26 Black Body Radiation
17 Eb = stfncnstt*T^4;
                                 //[W/m^2]
18
19 //Solution (A)
20 //From Table 12.1 as wl1*T = 2*1600 (micro-m.K)
21 \text{ FO2} = .318;
```

```
\frac{1}{2} //From Table 12.1 as wl2*T = 5*1600 (micro-m.K)
23 \text{ F05} = .856;
24 //From Equation 12.36
25 e = e1*F02 + e2*[F05 - F02];
26
27 //Solution (B)
\frac{28}{\text{From equation }} 12.35
29 E = e*Eb;
30
31 //Solution (C)
32 //For maximum condition Using Weins Law
                                ; // [micro-m.K]
33 \quad consttmax = 2898
34 \text{ wlmax} = \text{consttmax/T};
35
\frac{36}{2} //equation 12.32 with Table 12.1
37 E1 = \%pi*e1*.722*10^-4*stfncnstt*T^5;
38
39 E2 = \%pi*e2*.706*10^-4*stfncnstt*T^5;
40
41 printf("\n (a) Total hemispherical emissivity = \%.3 f
       \n (b) Total emissive Power = \%i \text{ kW/m^2 } \n (c)
      Emissive Power at wavelength 2micro-m is greater
      than Emissive power at maximum wavelength \n
      i.e. \%.1 \text{ f kW/m}^2 > \%.1 \text{ f kW/m}^2 \setminus n
                                               Thus, Peak
      emission occurs at %i micro-m", e, E/1000, E2/1000,
      E1/1000, wl1);
42 / END
```

Scilab code Exa 12.6 Metallic Surface Irradiation

```
5 // Spectral , Normal emissivity en and spectral
      hemispherical emissivity e
6 // Spectral normal intensity In and Spectral
      emissive power
8 T = 2000
                         ; // [K] temperature of surface
                       ;//[micro-m] wavelength
9 \text{ wl} = 1
10 stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan -
      Boltzmann constant
11
12 // From the given graph of emissivities
13 \text{ e1} = .3;
14 \text{ e2} = .6;
15 //From Equation 12.26 Black Body Radiation
                                 //[W/m^2]
16 Eb = stfncnstt*T^4;
17
18 //Equation 12.34
19 i1 = integrate('e1*\cos(x)*\sin(x)', 'x',0,%pi/3);
20 i2 = integrate('e2*cos(x)*sin(x)', 'x', %pi/3,4*%pi/9)
21 e = 2*[i1+i2];
22
23 // From Table 12.1 at wl = 1 micro-m and T = 2000 K.
24
25 I = .493*10^-4 * stfncnstt*T^5
                                             ; // [W/m^2].
      micro-m. sr
26
27 \text{ In } = e1*I;
28
  //Using Equation 12.32 for wl = 1 micro-m and T =
      2000 K
30 E = e*\%pi*I;
31
32 printf('\n Spectral Normal emissivity en = \%.1f and
      spectral hemispherical emissivity e = \%.2 f \ n
      Spectral normal intensity In = \%.2 \,\mathrm{e} W/m<sup>2</sup>.micro-m
      .sr and Spectral emissive power = \%.1e W/m^2.
```

Scilab code Exa 12.7 Study of Radiation on Opaque Surface

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 759 \n')// Example 12.7
4
5 // Spectral distribution of reflectivity
6 // Total, hemispherical absorptivity
7 // Nature of surface temperature change
9 T = 500
                    ;//[K] temperature of surface
10 e = .8;
11 stfncnstt = 5.67*10^-8; // [W/m<sup>2</sup>.K<sup>4</sup>] Stefan-
      Boltzmann constant
12
13 x = [0 6 8 16];
14 y = [.8 .8 0 0];
15 clf();
16 plot2d(x,y,style=5,rect=[0,0,20,1]);
17
18
19 xtitle ("Spectral Distribution of reflectivity", "
      wavelength (micro-m)", "reflectivity");
20
21 //From equation 12.43 and 12.44
22 Gabs = \{.2*500/2*(6-2)+500*[.2*(8-6)+(1-.2)*(8-6)\}
      /2]+1*500*(12-8)+500*(16-12)/2}
                                                    ; // [w/
     m^2
23 G = \{500*(6-2)/2+500*(12-6)+500*(16-12)/2\}
                 ; //[w/m^2]
24 a = Gabs/G;
```

Scilab code Exa 12.8 Total Emissivity of Cover Glass to Solar Radiation

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
               Page 761 \n')// Example 12.8
      12.8
5 // Total emissivity of cover glass to solar
      radiation
7 T = 5800
                           ;//[K] temperature of surface
8 e = .8;
9 stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-
      Boltzmann constant
10
11 //From Table 12.1
12 / \text{For wl1} = .3 \text{ micro-m} \text{ and } T = 5800 \text{ K}, \text{ At wl1*T} =
      1740 micro-m.K
13 \text{ FOwll} = .0335;
14 / \text{For wl1} = .3 \text{ micro-m} \text{ and } T = 5800 \text{ K}, \text{ At wl2*T} =
      14500 micro-m.K
15 \text{ FOwl2} = .9664;
16
17 //Hence from equation 12.29
```

Scilab code Exa 12.9 Total Hemispherical Emissivity of Fire Brick Wall

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 766 \n')// Example 12.9
5 // Total hemispherical emissivity of fire brick wall
6 // Total emissive power of brick wall
7 // Absorptivity of the wall to irradiation from
      coals
                         ;//[K] temperature of brick
9 \text{ Ts} = 500
      surface
10 \text{ Tc} = 2000
                         ;//[K] Temperature of coal
      exposed
                                //[W/m^2.K^4] Stefan –
11 stfncnstt = 5.67*10^-8;
      Boltzmann constant
12 // From the given graph of emissivities
13 \text{ e1} = .1;
                //between wavelength 0 micro-m 1.5
     micro-m
14 \text{ e2} = .5;
                //between wavelength 1.5 micro-m 10
      micro-m
               //greater than wavelength 10 micro-m
15 \text{ e3} = .8;
16
17 //From Table 12.1
18 //For wl1 = 1.5 micro-m and T = 500 K, At wl1*T =
      750 micro-m.K
19 \text{ FOwll} = 0;
```

```
20 //For wl2 = 10 micro-m and T = 500 K, At wl2*T =
      5000 micro-m.K
21 \text{ FOwl2} = .634;
22 //From equation 12.36
23 e = e1*F0wl1 + e2*F0wl2 + e3*(1-F0wl1-F0wl2);
24
25 //Equation 12.26 and 12.35
26 E = e*stfncnstt*Ts^4;
27
28 //From Table 12.1
29 //For wl1 = 1.5 micro-m and T = 2000 K, At wl1*T =
      3000 micro-m.K
30 \text{ FOwllc} = 0.273;
31 //For wl2 = 10 micro-m and T = 2000 K, At wl2*T =
      20000 micro-m.K
32 \text{ FOwl2c} = .986;
33 ac = e1*F0wl1c + e2*[F0wl2c-F0wl1c] + e3*(1-F0wl2c);
34
35 printf('\n Total hemispherical emissivity of fire
      brick wall = \%.3 f \setminus n Total emissive power of
      brick wall = %i W/m^2.\n Absorptivity of the wall
       to irradiation from coals = \%.3 \,\mathrm{f}', e, E, ac);
```

Scilab code Exa 12.10 Total Hemispherical Absorptivity and Emissivity of Metallic Sphere

```
sphere has been in furnace a long time
8 \text{ Ts} = 300;
                        //[K] temperature of surface
                         //[K] Temperature of Furnace
9 \text{ Tf} = 1200;
10 stfncnstt = 5.67*10^-8;
                               // [W/m<sup>2</sup>.K<sup>4</sup>] Stefan -
     Boltzmann constant
11 // From the given graph of absorptivities
12 	 a1 = .8;
              //between wavelength 0 micro-m 5 micro-
13 \ a2 = .1;
            //greater than wavelength 5 micro-m
14
15 //From Table 12.1
16 //For wl1 = 5 micro-m and T = 1200 K, At wl1*T =
      6000 micro-m.K
17 \text{ FOwll} = 0.738;
18 //From equation 12.44
19 a = a1*F0wl1 + a2*(1-F0wl1);
20 //From Table 12.1
21 //For wl1 = 5 micro-m and T = 300 K, At wl1*T = 1500
       micro-m.K
22 \text{ FOwlls} = 0.014;
\frac{23}{\text{From equation }} 12.36
24 e = a1*F0wl1s + a2*(1-F0wl1s);
25
26 printf('\n For Initial Condition \n Total
      hemispherical absorptivity = \%.2 f
                                              Emissivity
      characteristics of the coating and the furnace
      temeprature remain fixed, there is no change in
      the value of absorptivity with increasing time.
     n Hence, After a sufficiently long time, Ts = Tf
     = %i K and emissivity equals absorptivity e = a =
      \%.2 f',a,e,Tf,a);
```

Scilab code Exa 12.11 Heat Removal Rate per Unit Area of Solar Collector

```
1 clear;
2 clc;
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
               Page 774 \n')// Example 12.11
      12.11
5 // Useful heat removal rate per unit area
6 // Efficiency of the collector
8 \text{ Ts} = 120+273;
                              //[K] temperature of surface
9 \text{ Gs} = 750;
                                // [W/m<sup>2</sup>] Solar
      irradiation
                               //[K] Temperature of Sky
10 \text{ Tsky} = -10+273;
11 Tsurr = 30+273;
                               //[K] Temperature os
      surrounding Air
12 e = .1
                              ;// emissivity
                              ;// Absorptivity of Surface
13 as = .95
14 asky = e
                              ;// Absorptivity of Sky
15 stfncnstt = 5.67*10^-8;
                              // [W/m<sup>2</sup>.K<sup>4</sup>] Stefan -
      Boltzmann constant
                                    ; // [W/m^2.K]
16 h = 0.22*(Ts - Tsurr)^3.334
      Convective Heat transfer Coeff
17 //From equation 12.67
18 Gsky = stfncnstt*Tsky^4;
                              // [W/m<sup>2</sup>]
      Irradiadtion from sky
19 qconv = h*(Ts-Tsurr);
                                  // [W/m<sup>2</sup>] Convective
      Heat transfer
20 E = e*stfncnstt*Ts<sup>4</sup>; //[W/m^2] Irradiadtion
      from Surface
21
22 //From energy Balance
23 q = as*Gs + asky*Gsky - qconv - E;
24
25 // Collector efficiency
26 \text{ eff} = q/Gs;
```

Chapter 13

Radiation Exchange between the Surface

Scilab code Exa 13.1 Theoretical Problem

Scilab code Exa 13.2 View Factor of Different Geometries

```
1 clear;
2 clc;
```

```
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 821 \n')// Example 13.2
5 // View Factors of known surface Geometries
7 // (1) Sphere within Cube
8 \text{ F12a} = 1
                                  ;//By Inspection
                          ; //By Reciprocity
9 	ext{ F21a} = (\%pi/6)*F12a
10
11 // (2) Partition within a Square Duct
                                  ;//By Inspection
12 \text{ F11b} = 0
13 //By Symmetry F12 = F13
                                 //By Summation Rule
14 \text{ F12b} = (1-\text{F11b})/2
                                   //By Reciprocity
15 \text{ F21b} = \text{sqrt}(2) * \text{F12b}
                         ;
16
17 // (3) Circular Tube
18 //From Table 13.2 or 13.5, with r3/L = 0.5 and L/r1
      = 2
19 \text{ F13c} = .172;
20 \text{ F11c} = 0;
                                   //By Inspection
21 F12c = 1 - F11c - F13c ; //By Summation Rule
22 \text{ F21c} = \text{F12c/4}
                                  ;//By Reciprocity
23
24 printf('\n Desired View Factors may be obtained from
       inspection, the reciprocity rule, the summation
      rule and/or use of charts \n (1) Sphere within
      Cube F21 = \%.3 f \ n \ (2) Partition within a Square
      Duct F21 = \%.3 f \setminus n (3) Circular Tube F21 = \%.3 f,
      F21a,F21b,F21c);
```

Scilab code Exa 13.3 Net rate of Heat transfer to the absorber surface

```
1 clear;
2 clc;
```

```
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
              Page 826 \n')// Example 13.3
5 // Net rate of Heat transfer to the absorber surface
7 L = 10
                   ;//[m] Collector length = Heater
      Length
8 T2 = 600
                  ;//[K] Temperature of curved surface
9 A2 = 15
                 ;//[m^2] Area of curved surface
                ;// emissivity of curved surface
10 \text{ e2} = .5
11 stfncnstt = 5.67*10^-8; //[W/m^2.K^4] Stefan-
      Boltzmann constant
                      ;//[K] Temperature of heater
12 T1 = 1000
13 \quad A1 = 10
                      ; //[m^2] area of heater
                      ;// emissivity of heater
14 \text{ e1} = .9
15 \ W = 1
                      ; // [m] Width of heater
16 \text{ H} = 1
                      ; // [m] Height
17 \quad T3 = 300
                      ;//[K] Temperature of surrounding
18 \text{ e3} = 1
                      ;// emissivity of surrounding
19
20 J3 = stfncnstt*T3^4;
                                   //|W/m^2|
21 //From Figure 13.4 or Table 13.2, with Y/L = 10 and
      X/L = 1
22 	ext{ F12} = .39;
23 	ext{ F13} = 1 - 	ext{F12};
                           //By Summation Rule
24 //For a hypothetical surface A2h
25 \quad A2h = L*W;
26 \text{ F2h3} = \text{F13};
                        //By Symmetry
27 	ext{ F23} = A2h/A2*F13;
                                //By reciprocity
28 \text{ Eb1} = \text{stfncnstt*T1}^4;
                               //[W/m^2]
                               // [W/m<sup>2</sup>]
29 Eb2 = stfncnstt*T2^4;
30 //Radiation network analysis at Node corresponding 1
31 //-10J1 + 0.39J2 = -510582
32 / .26 J1 - 1.67 J2 = -7536
33 //Solving above equations
34 \quad A = [-10 \quad .39;
35 .26 -1.67];
```

Scilab code Exa 13.4 Power Required to Maintain Prescribed Temperatures in Cylindrical Furnace

```
1 clear;
 2 clc;
 3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
       Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
               Page 830 \n')// Example 13.4
       13.4
 4
  // Power required to maintain prescribed
       temperatures
 6
 7 \quad T3 = 300 \qquad \qquad ; // [K] \quad Temperature \\ 8 \quad L = .15 \qquad \qquad ; // [m] \quad Furnace \quad Length 
                       ;//[K] Temperature of surrounding
 9 T2 = 1650 + 273
                    ;//[K] Temperature of bottom
       surface
10 T1 = 1350+273 ; //[K] Temperature of sides of
      furnace
11 D = .075
                          ;//[m] Diameter of furnace
12 stfncnstt = 5.670*10^-8;
                                          // [W/m^2.K^4] Stefan
        Boltzman Constant
13 A2 = \%pi*D^2/4 ;//[m] Area of bottom surface
14 A1 = \%pi*D*L ;//[m] Area of curved sides
15 //From Figure 13.5 or Table 13.2, with ri/L = .25
16 \text{ F23} = .056;
```

Scilab code Exa 13.5 Concentric Tube Arrangement

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 834 \n')/ Example 13.5
      13.5
5 // Heat gain by the fluid passing through the inner
      tube
6 // Percentage change in heat gain with radiation
      shield inserted midway between inner and outer
      tubes
8 T2 = 300
                  ;//[K] Temperature of inner surface
9 D2 = .05
                  ;//[m] Diameter of Inner Surface
10 \ e2 = .05
                  ;// emissivity of Inner Surface
                 ;//[K] Temperature of Outer Surface
11 \quad T1 = 77
12 D1 = .02
                       ;//[m] Diameter of Inner Surface
13 \text{ e1} = .02
                 ;// emissivity of Outer Surface
14 D3 = .035
                     ;//[m] Diameter of Shield
15 \text{ e3} = .02
                    ;// emissivity of Shield
16 \text{ stfncnstt} = 5.670*10^-8
                            ; // [W/m^2.K^4] Stefan
      Boltzman Constant
17
```

Scilab code Exa 13.6 Rate at which Heat must be Supplied per Unit Length of Triangular Duct

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 836 \n')// Example 13.6
      13.6
  // Rate at which heat must be supplied per unit
      length of duct
  // Temperature of the insulated surface
                 ;//[K] Temperature of Painted surface
8 T2 = 500
9 e2 = .4
                 ;// emissivity of Painted Surface
10 \text{ T1} = 1200
                   ;//[K] Temperature of Heated Surface
                   ; //[m] Width of Painted Surface
11 \ W = 1
                 ;// emissivity of Heated Surface
12 \text{ e1} = .8
13 \text{ er} = .8
                   ;// emissivity of Insulated Surface
14 \text{ stfncnstt} = 5.670*10^-8
                                  ; // [W/m^2.K^4] Stefan
```

Boltzman Constant

```
15
16 //By Symmetry Rule
17 \text{ F2R} = .5;
18 \text{ F12} = .5;
19 \text{ F1R} = .5;
20
21 //From Equation 13.20 Heat balance
22 q = stfncnstt*(T1^4-T2^4)/((1-e1)/e1*W+ 1/(W*F12)
      +[(1/W/F1R) + (1/W/F2R)]^{-1} + (1-e2)/e2*W); //[W
      /\mathrm{m}
23
24 // Surface Energy Balance 13.13
25 J1 = stfncnstt*T1^4 - (1-e1)*q/(e1*W)
                                                     ; // [W/m
      ^2] Surface 1
  J2 = stfncnstt*T2^4 - (1-e2)*(-q)/(e2*W)
                                                  ; // [W/m
      ^2| Surface 2
27 //From Equation 13.26 Heat balance
28 \text{ JR} = (J1+J2)/2;
29 TR = (JR/stfncnstt)^2.25;
30
31 printf('\n Rate at which heat must be supplied per
      unit length of duct = \%.2 \, f \, kW/m \setminus n Temperature of
       the insulated surface = \%i \text{ K',q/1000,TR};
```

Scilab code Exa 13.7 Semi Circular Tube

```
7
                    ;//[K] Temperature of Heated Surface
8 T1 = 1000
                  ;// emissivity of Heated Surface
9 \text{ e1} = .8
10 \text{ e2} = .8
                  ; // emissivity of Insulated Surface
11 r = .02
                   ;//[m] Radius of surface
12 \text{ Tm} = 400
                    ; // [K] Temperature of surrounding
      air
13 \, \text{m} = .01
                   ;//[kg/s] Flow rate of surrounding
      air
14 p = 101325 ; //[Pa] Pressure of surrounding air
15 \text{ stfncnstt} = 5.670*10^-8
                                      ; // [W/m^2.K^4] Stefan
       Boltzman Constant
16 //Table A.4 Air Properties at 1 atm, 400 K
                      ; // [W/m.K] conductivity
17 k = .0338
                      ; // [kg/s.m] Viscosity
18 \ u = 230*10^-7
                      ; //[J/kg] Specific heat
19 \text{ cp} = 1014
20 \text{ Pr} = .69
                      ;// Prandtl Number
21
22 // Hydraulic Diameter
                                  ; // [m]
23 Dh = 2*\%pi*r/(\%pi+2)
24 // Reynolds number
25 Re = m*Dh/(%pi*r^2/2)/u;
26 //View Factor
27 \text{ F12} = 1;
28
29 printf("\n As Reynolds Number is %i, Hence it is
      Turbulent flow inside a cylinder. Hence we will
      use Dittus-Boelter Equation", Re);
30
31 //From Dittus-Boelter Equation
32 \text{ Nu} = .023*\text{Re}^{.8*\text{Pr}^{.4}};
33 h = Nu*k/Dh;
                              //[W/m^2.K]
34
35 //From Equation 13.18 Heat Energy balance
36 // Newton Raphson
37 T2=600;
                    //Initial Assumption
38 while (1>0)
39 f = (stfncnstt*(T1^4 - T2^4)/((1-e1)/(e1*2*r)+1/(2*r*
```

```
F12)+(1-e2)/(e2*\%pi*r)) - h*\%pi*r*(T2-Tm));
40 fd=(4*stfncnstt*( - T2^3)/((1-e1)/(e1*2*r)+1/(2*r*
      F12)+(1-e2)/(e2*\%pi*r)) - h*\%pi*r*(T2));
41 T2n=T2-f/fd;
42 if (stfncnstt*(T1^4 - T2n^4)/((1-e1)/(e1*2*r)+1/(2*r*
      F12)+(1-e2)/(e2*\%pi*r)) - h*\%pi*r*(T2n-Tm)) <=.01
43
       break;
44 end;
45 \text{ T2=T2n};
46 \text{ end}
47
48 //From energy Balance
49 q = h*\%pi*r*(T2-Tm) + h*2*r*(T1-Tm)
                                                  ; // [W/m]
50
51 printf('\n Rate at which heat must be supplied per
      unit length of duct = \%.2 \, f \, W/m \, \& \, Temperature of
      the insulated surface = \%i K',q,T2);
```

Chapter 14

Diffusion Mass Transfer

Scilab code Exa 14.1 Molar and Mass Fluxes of Hydrogen

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 884 \n')// Example 14.1
5 // Molar and mass fluxes of hydrogen and the
      relative values of the mass and thermal
      diffusivities for the three cases
7 T = 293
                 ;//[K] Temperature
8 \text{ Ma} = 2
                 ; // [kg/kmol] Molecular Mass
9 //Table A.8 Hydrogen-Air Properties at 298 K
10 Dab1 = .41*10^-4;
                             //[m^2/s] diffusion
      coefficient
11 //Table A.8 Hydrogen-Water Properties at 298 K
12 \text{ Dab2} = .63*10^-8;
                             //[m^2/s] diffusion
      coefficient
13 //Table A.8 Hydrogen-iron Properties at 293 K
14 \text{ Dab3} = .26*10^-12;
                              //[m^2/s] diffusion
      coefficient
```

```
15 //Table A.4 Air properties at 293 K
16 	 a1 = 21.6*10^-6;
                               //[m^2/s] Thermal
      Diffusivity
17 //Table A.6 Water properties at 293 K
18 k = .603
                      ; // [W/m.K] conductivity
19 \text{ rho} = 998
                      ;//[kg/m<sup>3</sup>] Density
                      ;//[J/kg] specific Heat
20 \text{ cp} = 4182
21 //Table A.1 Iron Properties at 300 K
22 a3 = 23.1 * 10^-6; //[m^2/s]
23
24 // Equation 14.14
25 //Hydrogen-air Mixture
26 \text{ DabT1} = \text{Dab1}*(T/298)^1.5;
                                     // [m<sup>2</sup>/s] mass
      diffusivity
                                  //[kmol/s.m^2]
  J1 = -DabT1*1;
                                                     Total
      molar concentration
                                 //[kg/s.m^2] mass Flux of
  j1 = Ma*J1;
28
      Hydrogen
                                    // Lewis Number Equation
29 \text{ Le1} = a1/DabT1;
       6.50
30
31
  //Hydrogen-water Mixture
                                     // [m<sup>2</sup>/s] mass
32 \text{ DabT2} = \text{Dab2}*(T/298)^1.5;
      diffusivity
                                     ; // [m^2/s] thermal
33 \quad a2 = k/(rho*cp)
      diffusivity
34 \ J2 = -DabT2*1
                                 ; // [kmol/s.m^2]
                                                     Total
      molar concentration
  j2 = Ma*J2
                                ; // [kg/s.m^2] mass Flux of
      Hydrogen
36 \text{ Le2} = a2/DabT2
                                   ;// Lewis Number Equation
       6.50
37
38 //Hydrogen-iron Mixture
                                   // [m<sup>2</sup>/s] mass
39 DabT3 = Dab3*(T/298)^1.5;
      diffusivity
40 \ J3 = -DabT3*1;
                                   //[kmol/s.m^2]
                                                     Total
      molar concentration
```

```
//[kg/s.m^2] mass Flux of
41 j3 = Ma*J3;
      Hydrogen
42 Le3 = a3/DabT3
                                 ; // Lewis Number Equation
       6.50
43
44 printf('\n Species a (m^2/s) Dab (m^2/s)
            Le ja (kg/s.m^2) \n Air
                                                       %.1e
                          \%.2 \text{ f}
                                     %.1e \n Water
             %.1e
                        \%.1\,\mathrm{e}
                                      \%i
           %.1e
                                                    \%.1e \n
                   \%.1e
                                \%.1e
                                              \%.1\,\mathrm{e}
                                                     \%.1\,\mathrm{e}
       Iron
      ',a1,DabT1,Le1,j1,a2,DabT2,Le2,j2,a3,DabT3,Le3,j3
      );
```

Scilab code Exa 14.2 Evaporation Rate Through a Single Pore

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
      14.2
             Page 898 \n')// Example 14.2
5 // Evaporation rate through a single pore
7 T = 298
                     ; // [K] Temperature
8 D = 10*10^-6
                     ; // [m]
9 L = 100*10^-6;
                             // [m]
10 \text{ H} = .5
                     ; // Moist Air Humidity
11 p = 1.01325
                     ;//[bar]
12 //Table A.6 Saturated Water vapor Properties at 298
     K
13 \text{ psat} = .03165;
                              //[bar] saturated Pressure
14 //Table A.8 Water vapor-air Properties at 298 K
15 Dab = .26*10^-4; //[m<sup>2</sup>/s] diffusion
      coefficient
16
```

```
17 C = p/(8.314*10^-2*298) ; //Total
      Concentration
18 //From section 6.7.2, the mole fraction at x = 0 is
19 \text{ xa0} = \text{psat/p};
20 //the mole fraction at x = L is
21 \text{ xaL} = \text{H*psat/p};
22
23 //Evaporation rate per pore Using Equation 14.41
      with advection
24 N = (\%pi*D^2)*C*Dab/(4*L)*2.303*log10((1-xaL)/(1-xa0))
            ; // [kmol/s]
      ))
25
26 // Neglecting effects of molar averaged velocity
      Equation 14.32
27 //Species transfer rate per pore
28 Nh = (\%pi*D^2)*C*Dab/(4*L)*(xa0-xaL)
                                                    ; // [kmol
      /s
29
30 printf('\n Evaporation rate per pore Without
      advection effects %.2e kmol/s and With Advection
      effects \%.2e \text{ kmol/s',Nh,N}
31
32 clf();
33 \times = linspace(300,800,100);
34 \text{ y1} = N*x^1.5/298^1.5*10^15;
35 \text{ y2} = \text{Nh}*x^1.5/298^1.5*10^15;
36 plot(x,y1,x,y2);
37 xtitle ("Evaporation Temp vs Temp", "T (K)", "Na
      *10^15(kmol/s)");
38 legend ("Without Advection", "With Advection");
```

Scilab code Exa 14.3 Polymer Sheet and Trough Geometry

```
1 clear;
2 clc;
```

```
3 printf ('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
             Page 898 \n')// Example 14.3
4
  // Rate of water vapor molar diffusive ttansfer
      through the trough wall
6
7 D = .005
            ;//[m] Diameter
                           //[m] Length
8 L = 50*10^-6;
9 h = .003
                         ; // [m] Depth
10 Dab = 6*10^-14
                          ;//[m^2/s] Diffusion
     coefficient
11 \quad \text{Cas1} = 4.5*10^{-3}
                            ; // [kmol/m<sup>3</sup>] Molar
      concentrations of water vapor at outer surface
12 \text{ Cas2} = 0.5*10^{-3}
                             ; // [kmol/m<sup>3</sup>] Molar
      concentrations of water vapor at inner surface
13
14 //Transfer Rate through cylindrical wall Equation
      14.54
15 Na = Dab/L*(pi*D^2/4 + pi*D*h)*(Cas1-Cas2);
                                                        //[
      kmol/s]
16
17 printf('\n Rate of water vapor molar diffusive
      ttansfer through the trough wall %.2e kmol/s', Na)
18 //END
```

Scilab code Exa 14.4 Helium Gas Spherical Container

```
5 // The rate of change of the helium pressure dp/dt
7 D = .2
                       ;//[m] Diameter
8 L = 2*10^-3
                       ;//[m] Thickness
9 p = 4
                       ;//[bars] Helium Pressure
10 T = 20 + 273
                       ;//[K] Temperature
11 //Table A.8 helium-fused silica (293K) Page 952
12 \text{ Dab} = .4*10^-13
                           ; //[m^2/s] Diffusion
      coefficient
13 //Table A.10 helium-fused silica (293K)
14 S = .45*10^{-3}
                         ; // [kmol/m<sup>3</sup>.bar] Solubility
15
16 // By applying the species conservation Equation
      14.43 and 14.62
17 dpt = -6*(.08314)*T*(Dab)*S*p/(L*D);
19 printf('\n The rate of change of the helium pressure
      dp/dt \%.2e bar/s',dpt);
20 / END
```

Scilab code Exa 14.5 Hydrogen Plastic Diffusion

```
;//[m] thickness of bar
11 L = .0003
12 p1 = 3
                          ;//[bar] pressure on one side
                          ;//[bar] pressure on other
13 p2 = 1
     side
14 \text{ Ma} = 2
                          ; // [kg/mol] molecular mass of
     Hydrogen
15 //Surface molar concentrations of hydrogen from
      Equation 14.62
                ; //[kmol/m^3]
16 \text{ Ca1} = \text{Sab*p1}
17 Ca2 = Sab*p2 ; //[kmol/m^3]
18 //From equation 14.42 to 14.53 for obtaining mass
19 N = Dab/L*(Ca1-Ca2); //[kmol/s.m^2]
20 \quad n = Ma*N
                             //[kg/s.m^2] on Mass
     basis
21
22 printf('\n The Hydrogen mass diffusive flux n = \%.2e
      (kg/s.m^2)',n);
23 / END
```

Scilab code Exa 14.6 Bacteria BioFilm

Scilab code Exa 14.7 Drug Medication

```
1 clear;
2 clc;
3 printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n
      Incropera / Dewitt / Bergman / Lavine \n EXAMPLE
      14.7
             Page 913 \n')// Example 14.7
5 // Total dosage of medicine delivered to the patient
       over a one-week time period, sensivity of the
      dosage to the mass duffusivity of the patch and
      skin
7 \text{ Dap} = .1*10^-12
                            ; //[m^2/s] Diffusion
      coefficient of medication with patch
                            ; // [m^2/s] Diffusion
8 \text{ Das} = .2*10^-12
      coefficient of medication with skin
9 L = .05
                            ;//[m] patch Length
                            ; // [kg/m^3] Density of
10 \text{ rhop} = 100
      medication on patch
11 \text{ rho2} = 0
                            ; // [kg/m^3] Density of
      medication on skin
```

```
12 \text{ K} = .5
                           ;//Partition Coefficient
13 t = 3600*24*7
                            ; //[s] Treatment time
14
15 //Applying Conservation of species equation 14.47b
16 //By analogy to equation 5.62, 5.26 and 5.58
17 D = 2*rhop*L^2/(sqrt(%pi))*sqrt(Das*Dap*t)/(sqrt(Das
      )+sqrt(Dap)/K);
18
19 printf('\n Total dosage of medicine delivered to the
       patient over a one-week time period is %.1f mg',
      D*10^6);
20
21 //Senstivity of dosage to the patch and skin
22 clf();
23 //Subplot 1
24 \text{ Dap1} = .1*10^-12
                                   ; // [m^2/s]
25 \text{ Das1} = .1*10^-12
                                  ; // [m^2/s]
26 \text{ Das2} = .2*10^-12
                                  ; // [m^2/s]
27 \text{ Das3} = .4*10^-12
                                  ; // [m^2/s]
28 x = linspace(0,7,50);
29 y1 = 2*rhop*L^2/(sqrt(%pi))*sqrt(Das1*Dap1*3600*24*x
      )/(sqrt(Das1)+sqrt(Dap1)/K)*10^6;
30 y2 = 2*rhop*L^2/(sqrt(%pi))*sqrt(Das2*Dap1*3600*24*x
      )/(sqrt(Das2)+sqrt(Dap1)/K)*10^6;
31 \text{ y3} = 2*\text{rhop*L^2/(sqrt(\%pi))*sqrt(Das3*Dap1*3600*24*x}
      )/(sqrt(Das3)+sqrt(Dap1)/K)*10^6;
32 subplot(1,2,1);
33 plot(x,y1,x,y2,x,y3);
34 xtitle ("Dosage vs Time-period at Dap = .1*10^{-12} (m
      ^2/s)", "Day", "Dosage (mg)");
35 legend (".1*10^12", ".2*10^12", ".4*10^12");
36
37 //Subplot 2
38 \text{ Dap2} = .01*10^-12
                                    ; // [m^2/s]
39 yn1 = 2*rhop*L^2/(sqrt(%pi))*sqrt(Das1*Dap2*3600*24*
      x)/(sqrt(Das1)+sqrt(Dap2)/K)*10^6;
40 yn2 = 2*rhop*L^2/(sqrt(%pi))*sqrt(Das2*Dap2*3600*24*
      x)/(sqrt(Das2)+sqrt(Dap2)/K)*10^6;
```