example-bloch-sphere-animation

June 25, 2014

1 QuTiP example: Bloch sphere animation

J.R. Johansson and P.D. Nation For more information about QuTiP see http://qutip.org Animation with qutip and matplotlib: decaying qubit visualized in a Bloch sphere. (Animation with matplotlib does not work yet in python3) In [1]: %pylab inline Populating the interactive namespace from numpy and matplotlib In [2]: import matplotlib.animation as animation from mpl_toolkits.mplot3d import Axes3D In [3]: from qutip import * from qutip.ipynbtools import plot_animation In [4]: def qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist): # operators and the hamiltonian sx = sigmax(); sy = sigmay(); sz = sigmaz(); sm = sigmam() H = w * (cos(theta) * sz + sin(theta) * sx)# collapse operators c_op_list = [] $n_{th} = 0.5 \# temperature$ $rate = gamma1 * (n_th + 1)$ if rate > 0.0: c_op_list.append(sqrt(rate) * sm) $rate = gamma1 * n_th$ if rate > 0.0: c_op_list.append(sqrt(rate) * sm.dag()) rate = gamma2 if rate > 0.0: c_op_list.append(sqrt(rate) * sz) # evolve and calculate expectation values output = mesolve(H, psi0, tlist, c_op_list, [sx, sy, sz]) return output In [5]: w = 1.0 * 2 * pi # qubit angular frequency $\texttt{theta} = \texttt{0.2} * \texttt{pi} \qquad \textit{\# qubit angle from sigma_z axis (toward sigma_x axis)}$ # qubit relaxation rate gamma1 = 0.5gamma2 = 0.2# qubit dephasing rate # initial state a = 1.0psi0 = (a*basis(2,0) + (1-a)*basis(2,1))/(sqrt(a**2 + (1-a)**2))

tlist = linspace(0, 4, 150)

```
In [6]: result = qubit_integrate(w, theta, gamma1, gamma2, psi0, tlist)
In [7]: def plot_setup(result):
            fig = figure(figsize=(8,8))
            axes = Axes3D(fig, azim=-40,elev=30)
            return fig, axes
In [8]: sphere = None
        def plot_result(result, n, fig=None, axes=None):
            global sphere
            if fig is None or axes is None:
                fig, axes = plot_setup(result)
            if not sphere:
                sphere = Bloch(axes=axes)
                sphere.vector_color = ['r']
            sphere.clear()
            sphere.add_vectors([sin(theta),0,cos(theta)])
            sphere.add\_points([result.expect[0][:n+1], result.expect[1][:n+1], \\ \\ \\
                               result.expect[2][:n+1]], meth='1')
            sphere.make_sphere()
            return fig, axes
In [9]: plot_animation(plot_setup, plot_result, result)
Out[9]: <IPython.core.display.HTML at 0x7fd83786c410>
<matplotlib.figure.Figure at 0x7fd837881650>
1.1 Versions
In [10]: from qutip.ipynbtools import version_table
         version_table()
Out[10]: <IPython.core.display.HTML at 0x7fd83730fd90>
```