ALGORITHME DE DE PRIL

TDs Modélisation Charge Sinistre – 2019-2020 Romain Gauchon

1. Exercice 1:

Soit $S = \sum_{i=1}^{N} X_i$, ou N suit une loi de Poisson de paramètre $\lambda = 0, 53$, et ou les X_i sont iid et indépendants de N, avec S = 0 si N = 0.

De plus, on suppose que $\mathbb{P}(X_1=1456)=\mathbb{P}(X_1=2912)=0,5$. Dans quelle intervalle la probabilité $\mathbb{P}(S<1856)$ se trouve t'elle ?

2. Exercice 2 : Algorithme de De Pril

On considère un portefeuille d'assuré supposés indépendants. Le montant d'un sinistre a été discrétisé en choisissant une unité monétaire telle que le montant d'un sinistre soit égale à un nombre entier d'unité monétaire. Le portefeuille est constituée de "classes" homogènes d'assurés, indexées par i et j de telle sorte que $n_{i,j}$ soit le nombre de d'assurés

- Pour laquelle la probabilité d'avoir au moins un sinistre est $\theta_i < 1$
- Pour laquelle la distribution du montant total des sinistres (conditionnellement au fait d'avoir au moins un sinistre) est $p_1^{(i)}, ..., p_{m_i}^{(i)}$, ou $p_l^{(i)}$ est la probabilité que le montant total des sinistres d'un assuré de la classe i soit égal à l. m_i est donc le montant maximal de sinistres rencontré par un assuré de la classe (i,j). Chaque assuré est donc caractérisé par deux classes : la classe i caractérisant les montants de sinistre et la classe j modélisant plutôt la fréquence de sinistre. Nous noterons $X_{i,j,l}$ le coût du l-ième assuré de la classe i,j.

On note X la variable aléatoire égale au montant de sinistres de l'ensemble des assurés, et on pose $p_k = \mathbb{P}(X = k)$. Enfin, on note $m = \sum n_{i,j} m_i$.

(a) Combien vaut p_0 ?

Le but de l'exercice est de montrer que, pour tout n > 0, les p_n peuvent se calculer par la formule récursive suivante :

$$p_n = \frac{1}{n} \sum_{i,j} n_{i,j} v_{i,j}(n), \tag{1}$$

avec

$$v_{i,j}(n) = \frac{\theta_j}{1 - \theta_j} \sum_{l=1}^{\min(m_i, n)} p_l^{(i)} (l p_{n-l} - v_{i,j}(n-l)) 1_{n \in [1, m]}$$
(2)

- (b) Calculer G_X la fonction génératrice des probabilités de X. On notera $G_i(s) = \sum_{k=1}^{m_i} p_k^{(i)} s^k$. Que vaut $G_i^{(n)}(0)$?
- (c) Trouver $V_{i,j}(s)$ tel que $G_X'(s) = \sum n_{i,j} V_{i,j}(s)$. (on pourra passer par le logarithme).
- (d) En déduire que $p_k = \frac{1}{k} \sum_{i,j} n_{i,j} \frac{V_{i,j}^{(k-1)}(0)}{(k-1)!}$.
- (e) On pose $v_{i,j}(k) = \frac{V_{i,j}^{(k-1)}(0)}{(k-1)!}$.

Montrer que $V_{i,j}(s) = \frac{\theta_j}{1-\theta_j} [G'_i(s)G_X(s) - V_{i,j}(s)G_i(s)]$. Conclure.

(f) Calculer p_0 et p_1 si

	$\theta_1 = 1/4$	$\theta_2 = 1/2$	$\theta_3 = 3/4$
$p_1^{(1)} = 3/8, p_2^{(1)} = 3/8, p_3^{(1)} = 2/8$	2	2	1
$p_1^{(2)} = 4/8, p_2^{(2)} = 3/8, p_3^{(2)} = 1/8$	2	1	3
$p_1^{(3)} = 2/8, p_2^{(3)} = 2/8, p_3^{(3)} = 4/8$	2	1	2