

SPECIFICATION	Model No.	CRT-570
	Date	2007/6/ 25
Card Dianangan	Ver.	1.0
Card Dispenser	Page	1/26

CRT-570 (with RFID module) Issuing Machine

CREATOR (CHINA) TECH CO., LTD.

ADD: 2F, M-10 building Centre area Hi-tech industrial park Shenzhen China.

TEL:+86 755 26710727

FAX:+86 755 26710105

EMAIL:iris@china-creator.com

Http://www.china-creator.com

SPECIFICATION	Model No.	CRT-570
	Date	2007/6/ 25
CI D'	Ver.	1.0
Card Dispenser	Page	2/26

Contents

1. OVERVIEW3
2. GENERAL SPECIFICATION
3.FUNCTION4
4. RS232 COMMUNICATION PROTOCOL 4
5. ADJUST THE THICKNESS OF CARD DISPENSING14
6. MAINTENANCE AND CAUTIONS 15
7. WARRANTY
8. STRUCTURE AND DIMENSION DRAWAYG
9. Appendix: CRT-601 RFID MODULE COMMUNICATION PROTOCOL

SPECIFICATION	Model No.	CRT-570
	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	3/26

1. OVERVIEW

CRT-570 is card issuing machine, which not only can read/write the RFID card, but also can dispense card, meanwhile card can be captured when the user doesn't take the card or there is any error during operation.

SPECIFICATION
Card Dispenser

Model No.	CRT-570
Date	2007/6/ 25
Ver.	1.0
Page	4/26

(can be set to 1000pcs max)

Stacker adding fitting: Short: 60PCS;

Long: 170PCS Extra Long:285PCS

9) Card pre-empty detection 20~80pcs±2pcs

10) Environmental conditions Operation :-10 \sim 50 °C, $0 \sim$ 90 % RH

(without condensing)

Storage :-20 \sim 85 °C , 0 \sim 90 % RH

(without condensing)

3. Function:

1) Detection function

To detect the card empty, card pre-empty or being full of error card bin.

2) Doubled card dispensing prevention function

Mechanical design, one motor forward, the other motor backward operation, to fundamentally prevent 2 cards dispensing at the same time.

- 3) It can capture unlimited cards if you choose the function of "card capture channel
- 4) Easy card thickness adjusting device.

Patent technology, easy to adjust card thickness by revolving graduation of knob

5) Eyewinkers prevention function

Reflected optical sensing location card is not effected by dust or other eyewinkers. Professional designed shutter to guard against eyewinkers, eyewinkers cannot be inserted from the dispenser exit. Saving the maintain cost.

- 6) Sensor circuit integration and photoelectricity to ensure the machine's stability and maintain after sale.
- 7) Pre-dispense function accelerate the speed of dispensing, to keep dispense continuously.
- 8) Download on line support ISP download on line
- 9). Option for the speed of dispensing card

4. RS232 Communication (For dispenser)

4.1 RS232 Communication protocol

Baud rate (BPS) : Can be set by the host (Default: 9600 bps)

Communication type : Asynchronous communication

Transmit type : Half duplex

Bit details

Start bit : 1 bit
Data bit : 8 bits
Parity bit : None
Stop bit : 1 bit

SPECIFICATION	Model No.	CRT-570
	Date	2007/6/ 25
Card Dispenser	Ver.	1.0
	Page	5/26

4.2 Command structure

4.2.1 Send command

 $\langle STX \rangle$: 0 2 H, frame start

 $\langle ETX \rangle$: 0 3 H, frame stop

 $\langle BCC \rangle$: $\langle STX \rangle \oplus 0 \oplus 0 \oplus \langle ETX \rangle$, block parity

'O' : ASCLL of one bit

'X' : ASCLL of one bit, parameter of extending command(Possible to be without the basic

command)

4.2.2 RF Status checking return

 Model No.
 CRT-570

 Date
 2007/6/25

 Ver.
 1.0

 Page
 6/26

Card Dispenser

Definition of Flag Code

HEX	BIN		STATUS
800	1000 0000	0 0 0 0	Dispensing card
400	0100 0000	$0\ 0\ 0\ 0$	Capturing card
200	0010 0000	0000	Card Dispense error
100	0001 0000	0000	Card Capture error
080	0000 1000	0000	No Capture card
040	0000 0100	0000	Overlapping cards
020	0000 0010	0000	Jamming Card
010	0000 0001	$0\ 0\ 0\ 0$	Card pre-empty Status
008	0000 0000	1000	Card empty Status
004	0000 0000	0100	Disp-Sensor/Status
002	0000 0000	0 0 1	Capt-Sensor 2 Status
001	0000 0000	0001	Capt-Sensor Status

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	7/26

4.2.3 AP status checking return

<STX>: 0 2 (HEX), Frame start <ETX>: 0 3 (HEX), Frame end

<BCC>: <STX> \oplus 'S' \oplus 'F' \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus <ETX>, Block Check Code

Definition of Flag Code

HEX	BIN	STATUS
8000		Reserve
4000		(Reserve)
2000	0010 0000 0000 0000	Failure alarm (sensor invalid)
1000	0001 0000 0000 0000	Error card bin is full
0800	0000 1000 0000 0000	Card Is Dispensing
0400	0000 0100 0000 0000	Card Is Capturing
0200	0000 0010 0000 0000	Card Dispense error
0100	0000 0001 0000 2000	Card Capture error
0800	0000 0000 1000 0000	No capture
0040	0000 0000 0100 0000	Card overlapped
0020	0000 0000 0010 0000	Card jam
0010	0000 (0000) 0001 00000	Card pre-empty
8000	0000 0000) 0000 1000	Card empty-Sensor Status
0004	(6000, 0960, 0000, \$100	Disp-Sensor Status
0002	0000 0000 0000 0010	Capt-Sensor 2 Status
0001	0000 0000 0000 0001	Capt-Sensor 1 Status

4.3 Basic command code (Compatible with KDE-1500)

Command (ASCLL)	Content	Return message
D C	Dispense card to exit	<06H>
C P	Card capture	<06H>
RF	Status checking	Ref: RF status checking return
AP	High-class status checking	Ref: AP status checking return
RS	Reset	<06H>

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	8/26

4.4 Extend CRT Command

4.4. 1For dispenser parts

Command +Parameter	comment	Return
"FC"+ Position	Dispense card to the specified position	< 06H>
	Dispense card to the indicated position {0, 1, 2, 3, 4, 5,	
	6}, they are {0x30,0x34,0x33,	
	0x32,0x31,0x36,0x37}	
"CS"+ Position	Set up Baud rate.(0-5,	< 06H>
	indicate 1200BPS-38400BPS)。	
	Setting of card inserted from dispenser mouth:	
	Parameter	
"IN"+ Parameter	=0x30 Prohibit cards in	906H>
IN + Parameter	=0x31 Allow cards into orrowcard bin	\\ <u>\</u>
	=0x32 Allow cards into card read/write	\
	position (I.e. card stop location 2))
"SI"	Check the setting status of card inserted from the	SI +Parameter(similar to
51	dispenser mouth	RF command returned)

Note: (1) "4" is the position for card pre-dispense program will execute "pre-dispense" automatically (Except press "Reset" key stoke on the dispenser by hand); Execute "PC+4", no any reaction for this command, and this will cause unpredictable damage, so please don't use this command in a hurry.

(2) The operation of checking status for "SI" inserting card from dispenser mouth is similar to "RF" and "AP". The parameter of command returned with 1 byte is same as the "IN" parameter.

(3) "IN" is a operation command for ERPRON. The setting status will not be affected even if it is power on or reset, that means the last setting is still valid when power on. And it is defaulted that the card is captured to the error card bin when ex-work

4.4.2 Communication Command with RFID Module or other 3rd module

Command +	Return	Comment		
Parameter				
"SB"+PM	<06H>	Set the baud rate for CRT-570 with the 3 rd module		
		$(PM=\{0x30-0x35\}, \text{ they are } 1200BPS-38400BPS})$		
"SE"+DATAB	Returned data	Comments used to send the 3 rd party module		
	package			

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	9/26

4.4.2.1. Basic principle of CRT-570 with One series port

CRT-601 RFID R/W module modified as a driven parts of CRT-30 special module. (This CRT-530 special module with itself circuit and programe are different from CRT-530 standard version), which is composed a CRT-570, and communicate with PC or host. All the card movement controlled by CRT-530 special module, and R/W cards command with "data not dropped" method, CRT-530 module received the commands from host, then decode the package, and send to CRT-601 module. Then response commands from CRT-601 are sent to host. Under this controlling way, CRT-530 not only can control the CRT-601, also can control the 3rd party module with RS232 communication, which is convenient to extend the CRT-570 in most degree.

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D'	Ver.	1.0
Card Dispenser	Page	10/26

4.4.2.2 "SE" Command

Format of command sending:

STX 'S' 'E' SLEN RLEN TIMEOUT DATAB ETX	BCC
---	-----

Note:

[1]SLEN: it is the length of sending command package, It is 2 bytes. High byte is in front, low byte is behind, Not including RLEN & TIMEOUT, Only for DATAB length

[2] RLEN: It is the estimated biggest DATAC length in the returned package(actually, it would be less than the biggest length or equal to the biggest length), the length is 2 bytes, high byte is in front, low byte is behind.

[3]TIMEOUT: valid value 1-0XFF, each unit is 0.5s.

[4]DATAB Command package: the whole command package for the 3rd module

Retuned command package:

STX`	'S'	'Е'	"RLEN"	DATAC	ÉÁX	BCC
					11	

Note:

[1]"RLEN": Returned DATAC actual tength, the length is 2 bytes, high byte is in front, low byte is behind.

[2]DATAC: Data package returned by the 3rd module.

Attention: SE command execution procedule is different from the other command of CRT-570

"SE" command execution procedule chart:

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	11/26

Therefore, the complete commands of 3^{rd} part's execution course should be composed with 2 groups "SE'. Note: 3^{rd} party module means the RF ID module integrated by customer.

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI Di	Ver.	1.0
Card Dispenser	Page	12/26

4.5 Specification of photoelectricity sensor and card stop location

4.5.1 Definition of graph

Card Stop Location photoelectricity sensor preserved

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	13/26

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D:	Ver.	1.0
Card Dispenser	Page	14/26

4.6.2 Card capture (the procedure is similar to card dispensing)

Main controller : $\langle STX \rangle$ CP $\langle ETX \rangle$ $\langle BCC \rangle$

Card dispensing : Send ACK, responsible for card dispensing and modification of status of register

Controller "CP" ENQ Enquiry constantly

Dispenser ACK/NAK Card dispensing and modification of status register

4.6.3 Status require

Main controller : (STX) RF (ETX) (BCC)

Card dispenser : Send ACK, receive ENQ, then send STX St OQO (ETX)

Main controller "RF"

Card dispenser

ACK/NAK

Card dispenser sends code to host

5. ADJUST THE THICKNESS OF CARD DISPENSING

Card thickness can be adjusted by gyration of know, which makes it easier, simpler and more precise for card or ticket system.

5.1 Procedure of adjustment

The space between card dispensing wheels we set is 0.8 mm, the range of the thickness is 0.2 mm---2mm. Specific operation as follow: to adjust know clockwise while dispense thick card. The base is the red point on iron sheet the know pointed. The thickness increases 0.05 mm while adjust one scale, that means it could disperse 0.85 mm (+/-0.05 mm) standard card. The thickest card dispenser could dispense is 2.0 mm (+0.1 mm) analogously. To adjust the know anticlockwise while dispense thin card, the thinnest card dispenser could dispense is 0.2 mm (+0.1 mm).

5.2 Card thickness adjustment table

No.	Thickness(mm)	Recommend(scale)	Range (scale)	Remark
1	0.25	10Anticlockwise	8-12 Anticlockwise	
2	0.45	7Anticlockwise	6-10 Anticlockwise	
3	0.8	Red point	2 anticlockwise	

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
CI D'	Ver.	1.0
Card Dispenser	Page	15/26

			5 clockwise	
4	1.2	8 Clockwise	More than 8 clockwise	

Note: (1) Red point means to dispense 0.8mm card.

- (2) Green point means to dispense 0.45mm card
- (3) When dispense the card thicker than 0.4mm, Refer to the real adjustment.

Example: how to adjust the space to dispense 1.0mm card

- 1) To check whether red point scale 8 on the surface of knob pointed to red point 7. Adjust red point scale 8 to point7 if it is not. (adjust anticlockwise if the card thickness thicker than 0.8mm, and clockwise if the card thickness thinner than 0.8mm);
- 2) To adjust 2 scales clockwise, then scale 10 pointed to red point 7;
- 3) Install cards to test if the operation finishes.
- 4) In case of abnormal operation, generally, knob just can be adjusted by took but not by hand.

6. MAINTENANCE AND CAUTIONS

6.1 Maintenance

After using for some time or dispensing amount of cards, the dispenser will be serious wearing because of every part is running, so we need to do some maintenance to the machine. The steps as follows:

- 1) Check the parts of the dispenser. If they become flexible or abnormal, reinforce them.
- 2) Check the straps of drive wheels. If they become flexible, regulate the position of the elasticity wheel.
- 3) Use cleaning card or soft cloth with alcohol to clean the dispenser wheel in the bottom of the hopper and the drive wheel.
- 4) Use soft cloth with alcohol to clean the dirty cards and replace the distortion cards
- 5) Check the graduation of knob to see whether they are corresponding.

6.2 Cautions for safe use

1) Ensure the power connected with card dispenser is off while repairing the whole machine.

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Caral Diamana	Ver.	1.0
Card Dispenser	Page	16/26

- 2) Notice the cathode and anode of the machine power while power on for the first time.
- 3) Notice the Specification of JUMP when using for the first time, because improper JUMP will cause work off or unpredictable status.
- 4) If you do not use insulation power, external power must not be connected to insulation power, otherwise, PCB will be broken.
- 5) Prohibit to inset or pull out the receptacle of the port. Otherwise, the circuit of the controller may be spoiled.
- 6) Ensure the dispenser out of smear. The smear will affect the capability of the dispenser.
- 7) On the back of dispenser side board, there is a red soft manual "Reset" keystoke. When error or abnormal situation occurs on spot, then engineer can press this keystoke for reset. It is not used in general situation.
- 8) Red soft "RESET" keystoke function is looked as card coordinating and card return to pre-dispense or capture position when error occurs. Once use "RESET", Pre-dispense will be invalid, until use "DC" and "FC".
- 9) "RESET" has overtime protection function, when the keystoke is pressed for a long time, then motor will stop automatically to protect itself.

6.3 Caution for program

- 1) "4" is pre-dispense position, FC command without has the function of this position.
- 2) In order to improve the communication speed of the program, condition inspection will just be execute one time when "RESET"; User can "Reset" to check if the condition is correct. (Reset by three ways: press "RESET" on PCB of dispenser bottom, press red soft "RESET" on back of dispenser side board, or by power on/off
- 3) Under RS232 mode sending enquiry command will cause program enter communication interruption processing, which will affect card dispensing and other execution, the time alternation for next enquiry command should be over 200ms.

7. WARRANTY

- 1) One year guarantee free of charge. Counting from the day that users receive the goods.
- 2) User sends the goods to us for repairing.
- 3) Provide after-sale service after exceeding guarantee period. We will take some material fee if need to replace fittings. And we will take some upkeep in the follows situations although it is in guarantee period:
- a) Damage and trouble caused artificially;
- b) Damage and trouble caused by non-professional operation;
- c) Damage and trouble caused by instability of user's power supply;
- d) Damage and trouble caused by force majeure, such as earthquake, natural weather etc.

SPECIFICATION	Model No.	CRT-570	
SPECIFICATION	Date	2007/6/ 25	
CI D:	Ver.	1.0	
Card Dispenser	Раде	17/26	

8. Dimension drawing

CDECIEICATION	Model
SPECIFICATION	Da
Card Dispansar	Ve

Model No.	CRT-570
Date	2007/6/ 25
Ver.	1.0
Page	18/26

9. Appendix: RFID Module CRT-601 communication protocol

1. Communication format

Baud rate (BPS) : Can be set by the host (Default: 9600 bps)

Communication type : Asynchronous communication

Transmit type : Half duplex

Bit details

Start bit : 1 bit
Data bit : 8 bits
Parity bit : None
Stop bit : 1 bit

 Start bit	D0	D1	D2	D3	D4	D5	D6	D7	Stop sbit	
										_

2. Communication Control Method

The module, as a driven part, start working after receiving command from host

3. Command Character

STX (0X02)	Start character of data package
ETX (0X03)	End character of data package
ENQ (0X05)	Sending require command (host -> unit)
ACK (0X06)	Positive answer
NAK (0X15)	Negative answer
EOT (0X04)	Cancel communication

4. Communication command Structure Data package format of command and returned information)

BCC calculating with XOR, BCC=STX ^ Command Package ^ ETX (^ is XOR operator)

E.g. Reset command

0x0	2 0x00	0x02	0x30	0x30	0x03	BCC
-----	--------	------	------	------	------	-----

 $BCC = 0x02 ^0x00 ^0x02 ^0x30 ^0x30 ^0x30 ^0x03$

5. Control Command Structure

A C K N A K E N Q Е О

T

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Card Diagram	Ver.	1.0
Card Dispenser	Page	19/26

6. Communication Process Descriptions

6.1 Normal communication process (command operation)

A Command operation

Host sends command, Reader receives and checks if BCC is correct. Host sends ENO after return ACK, Reader will execute the relevant operation and return relevant operation information to host according the command.

Host send EOT, Reader end current command status and return EOT, then waiting for Host command.

6.2 Abnormal communication process

When card reader receives a communication package with BCC error, NAK will be responsed to Host, which means receiving the communication package with BCC error. Host need to check if it is right when sending communication package with BCC . ACK will be responsed to Host when card reader receive a communication package with right BCC.

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Caral Diamana	Ver.	1.0
Card Dispenser	Page	20/26

7. Communication Operation

7.1 Send command data package format

STX	Length of	Comman	Command	Data package	ETX	BCC
(0x02)	communicati	d byte CM	parameter	(n byte)	(0x03)	(1 byte)
	on package	(1 byte)	PM			
	(2 byte)		(1 byte)			

a. n byte: range of n: Max=264 byte. Min=0 byte

b. Communication package in 2 bytes transmit, former one is high byte, behind one is low byte.

7.2 Returned data package format

7.2.1 Normal return

STX	Length of	Command	Command Data package	> ETX	BCC				
(0x02)	communication	byte	parameter (n.byte))	(0x03)	(1 byte)				
	package	(1 byte))	() byte)						
	(2 byte)								
Calculation range of communication package BCC calculation range (XOR)									
			\searrow						

a. n byte: range of n: Max=264 byte Min=0 byte

b. Returned command byte and command parameter is the operated command byte and command parameter transmit from Host to Reader

7.2.2 Abnormal return

STX	Length of communication	'N'(0X4E)	Command	Error byte E	ETX	BCC			
(0x02)	package	(1 byte)	byte CM	(1 byte)	(0x03)	(1			
	(2 byte)		(1 byte)			byte)			
	Calculation range of communication package BCC calculation range (XOR)								

CDECIEIC ATION	Model No
SPECIFICATION	Date
CI D:	Ver.
Card Dispenser	Dage

Model No.	CRT-570
Date	2007/6/ 25
Ver.	1.0
Page	21/26

Meaning of error byte:

Error byte E	Description
0x00	Command byte error
0x01	Command parameter error
0x02	Command cannot be executed
0x04	Command data package error

Note: abnormal returned data package shows an abnormal response when host send the communication package including command byte, command parameter, and RFID module.

Error byte E=0X00, means command byte of communication package send by host is undefined, and it is an illegal command.

Error byte E=0X01, means command parameter of communication package and by host is undefined, and it is an illegal command.

Error byte E=0X02, means communication package send by host is not supported, and cannot be executed.

Error byte E=0X04, means communication package send by host is not compliant with the requirement of communication protocol, and the format is error

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Card Diananaan	Ver.	1.0
Card Dispenser	Page	22/26

8. CRT-6XX V1 communication protocol of R/W card

8. 1. Mifare 1 Card Operation Command

8.1.1 Seek RF card

HOST sends:

0x02	0x00	0x02	0x35	0x30	0x03	BCC
------	------	------	------	------	------	-----

READER returns:

0x02	0x00 0x03	0x35	0x30	Operation status byte P	0x03	BCC
------	-----------	------	------	-------------------------	------	-----

P= 'Y' (0X59) seek card successfully

P= 'N' (0X4E) fail to seek card

8.1.2 Capture S/N of Mifare 1 card

HOST send:

0x02 0x00 0x02 0x35 0x31 0x03 BC

READER return:

|--|

P= 'Y' (0X59) capture card S/N successfully and return the card S/N;

P= 'N' (0X4E) fail to capture card S/N and return empty S/N (0X00, 0X00, 0X00)

4byte card S/N is transmitted with hex. E.g.. 6B272AE"

E.g.: uploaded communication package: 0x02 0x00 0x06 0x35 0x31 0xC6 0xB2 0x72 0xAE 0x03 BCC

8.1.3 Check Password of Sector

8.1.3.1 Parity Key_A:

HOST send:

	0x02	0x00	0x09	9535	0x32	Sector 1	Jo.	6 byte hex passy	ord 0x03	bcc	
F	READE	R return	1:		,						
Ī	0x02	0x00	0x04	0x35	0x32	Sector 1	16.	Operation stat	us byte P	0x03	bcc

1 1 1 1 1 1 1

Operation status byte

P= 'Y' (X59) password parity successfully

P = '0'(0)(30) fail to seek RF card

P=3(0X33) password error

8.1.3.2 Parity Key_B:

HOST send:

0x02	0x00	0x09	0x35	0x39	Sector No.	6 byte hex password	0x03	bcc

READER return:

(0x02	0x00	0x04	0x35	0x39	Sector No.	Operation status byte P	0x03	bcc

Operation status byte P= 'Y' (0X59) password parity successfully

P= '0' (0X30) no RF card in

P= '3' (0X33) password error

SPECIFICATION

 Model No.
 CRT-570

 Date
 2007/6/25

 Ver.
 1.0

 Page
 23/26

Card Dispenser

Block No. = $0x00\sim0x0F$ (For S50, there are 4 blocks for each sector they are $0x00\ 0x01\ 0x02\ 0x03$.)

If need to read/write or other operation, It should be required to verify sector password successfully

8.1.4 Read data on sector

HOST send:

0x02	0x00	0x04	0x35	0x33	Sector No.	Block No.	0x03	BCC

When the card is S50. Sector No.=0x00~0x0F (there are 16 sectors for S50), block No.= 0x00 0x01 0x02 0x03

Reader reads data successfully and returns:

P='Y'(0x59)

0x02	0x00	0x15	0x35	0x33	Sector No.	Block No.	Operation status byte P	16 byte hex data	0x03	BCC
07102	07100	OMID	0/133	0/133	Beetor 110.	Diock 110.	operation status by te i	10 by to non data	0/103	DCC

Read sector block data successfully and upload 16 byte data

Reader fails to read sector block data and returns:

0x02	0x00	0x05	0x35	0x33	Sector No.	Block No.	Operation status byte	P	1×03	BCC

Operation status byte

P= '0' (0X30) cannot seek RF card

P= '1' (0X31) operated sector No. is wrong (not the sector by password checked

P= '2' (0X32) S/N of operated card error

P= '3' (0X33) password error

P= '4' (0X34) data read error

Note: Sector No. = $0x00 \sim 0x28$ (For S50, the sector No. is $0x00 \sim 0x0F$)

Block No. = $0x00\sim0x0F$ (For S50, there are 4 blocks for each sector, they are 0x00~0x01~0x02~0x03.)

8.1.5 Write data on sector

HOST send:

0x02 0x00 0x14 0x35 0x34 Block No.	16 byte hex data	0x03 BCC
------------------------------------	------------------	----------

Reader writes data successfully and returns:

	0x02	0x00	0x15	0x3	0x34	Sector No.	Block No.	operation status byte P	16 byte hex data	0x03	BCC
--	------	------	------	-----	------	------------	-----------	-------------------------	------------------	------	-----

operation status byte: P = V(0x59)

Write sector block data successfully and upload 16 byte data that is written

Reader fails to write sector block data and returns:

0x02	0x00	0x05	0x35	0x33	Sector No.	Block No.	operation status byte P	0x03	BCC
------	------	------	------	------	------------	-----------	-------------------------	------	-----

operation status byte

P= '0' (0X30) cannot seek RF card

P= '1' (0X31) operated sector No. is wrong (not the sector by password checked)

P= '2' (0X32) S/N of operated card error

P= '3' (0X33) password error

P= '4' (0X34) block data written error

Note: Sector No. = $0x00 \sim 0x28$ (For S50, the sector No. is $0x00 \sim 0x0F$)

Block No. = $0x00 \sim 0x0F$ (For S50,there are 4 blocks for each sector, they are 0x00 0x01 0x02 0x03)

CDECIEICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Cand Diamana	Ver.	1.0
Card Dispenser	Page	24/26

8.1.6 Modify password: This operation can modify password of KEYA only, and change KEYB password to: "0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF"; at the same time modify the storage area to: "0xFF, 0x07, 0x80, 0x69". (Default when ex-work)

HOST Send:

0x02	0x00	0x09	0x35	0x35	Sector	6 byte hex password	0x03	bcc
					No.			

Sector No.= $0x00\sim0x28$ (For S50, Sector No. is $0x00\sim0x0F$, for S70 Sector No. is $0x00\sim0x28$)

READER Return:

0×02	0200	0×04	0v25	0v25	Sector No	operation status byteP	0×03	bee
0.02	UXUU	0.004	0.00.00	UXSS	Sector Ind.	operation status byter	0.003	DCC

operation status byte

P= 'Y' (0X59) password changed successfully

P= '0' (0X30) cannot seek RF card

P='1'(0X31) operated sector No. is wrong (not the sector by password checked)

P= '2' (0X32) S/N of operated card error

P= '3' (0X33) password error

To change operation password of sector (KeyA or KeyB) and the storage area completely, write block 3 data of each sector after checking password successfully.

The format as below (see details in PHILIPS MI sard specification)::

0	1	2	3	4	6		6 7	8	9	10,	11	12	13	14	15
6 by	6 byte KeyA password						Abyte stora	ige are	the second	& byt	te Key	B pass	word		

8.1.7 Increment value Operation

HOST send:

0x02	0x00 0x08	0x35 0x37	Sector No. Block No.	4 byte hex data	0x03	BCC	
------	-----------	-----------	----------------------	-----------------	------	-----	--

4 byte hex data is the increased value of appointed sector block (low byte in front, high byte behind). The value cannot be 0; otherwise operating will be failure.

Eg. The sector 5 block 0 need to increase to 0x10, the 4 byte hex data are: "0x10, 0x00, 0x00, 0x00"

READER Return:

0x02	0x00	0x05	0x35	0x37	Sector No.	Block No.	operation status byteP	0x03	BCC
------	------	------	------	------	------------	-----------	------------------------	------	-----

operation status byte

P= '0 '(0X30) cannot seek RF card

P= '1' (0X31) operated sector No. is wrong (not the sector by password checked)

P= '2' (0X32) S/N of operated card error

P= '3' (0X33) password error

P= '4' (0X34) format of block data error (not written in a value format)

P= '5' (0X35) increment over load

P= 'Y' (0X59) operation successful

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Cond Dianoncon	Ver.	1.0
Card Dispenser	Page	25/26

Sector No. = $0x00 \sim 0x28$ (For S50, Sector No. is $0x00 \sim 0x0F$,

Block No. = $0x00 \sim 0x0E$ (For S50, Block No. is 0x00 0x01 0x02,

The last block of each sector cannot be done increment value operation

8.1.8 Decrement value operation

HOST Send:

0x02 0x00 0x08 0x35 0x38 Sector No. Block No. 4 byte hex data 0x03	BCC
--	-----

⁴ byte hex data is the decreased value of appointed sector block (low byte in front, high byte behind). The value cannot be 0; otherwise, operating will be failure.

READER Return:								
0x02	0x00	0x05	0x35	0x38	Sector No.	Block No.	operation status byteP 0x03 BCC	
	operati	ion stat	us byte	;				
	P= '0	'(0X30	0)	can	not seek RF	card		
	P= '1'	(0X31))	oper	ated sector	No. is wron	(not the sector by password checked)	
	P= '2' (0X32) S/N of operated card error							
	P= '3'	(0X33))	pass	word error			
		P=	4'(02	X34)	forma	at of block	data error (not written in a value format))	
P= '5' (0X35) Secrement over load								
P= 'Y' (0X59) operation success								
Sector No.= $0x00 \sim 0x28$ (For S50, Sector No. is $0x00 \sim 0x0R$)								
Block No. = 0x00 ~0x0E (For \$50, Block No. is 0x00 0x01 0x02)								
The last block of each sector cannot be done decrement value operation								

8.1.9 Value initialize. Executed by write block data command, writing 16 byte data according to MIFARE value

format. The format as below 0 2 9 1 3 8 10 11 12 13 14 /Value Value Value Adr /Adr Adr /Adr

Value: the initializing 4 byte value, low byte of the value in front, high byte behind

/Value: value opposite the initializing 4 byte value

Adr: the block address of the initializing value:

Adr= Sector No. X 4 + Block No. (S50: 0-15sector)

/Adr: value opposite of the initializing block address

The last block of each sector cannot be done the initial value operation.

Eg. The sector 5 block 0 initial value is 10, the 16 byte data write to sector block are:

"0x0A, 0x00, 0x00, 0x00, 0xF0, 0xFF, 0xFF, 0xFF, 0x0A, 0x00, 0x00, 0x00, 0x14, 0xEB, 0x14, 0xEB" For S70, the sector 39 block 0 initial value is 10, the 16 byte data write to sector block are :

SPECIFICATION	Model No.	CRT-570
SPECIFICATION	Date	2007/6/ 25
Caral Diamana	Ver.	1.0
Card Dispenser	Page	26/26

8.1.10 Read value

Executed with reading sector block data command, for the 16 byte data format, it should be in MIFARE card value data format. If yes, read the value, if not, reading error alert (error data format).

NOTE: when processing a value operation, the third block of each sector in Sector 0-15 For S50, are storage for KEYA, control byte, KEYB, which cannot save a value data And notice the address range of the sector when initializing value, increment, decrement, read value.

8.1.11 Control Buzzer

