Let $U \subseteq \mathbb{R}^m$ be open. to say X is a \mathbb{C}^k immersion from U into \mathbb{R}^n means X is \mathbb{C}^k from U into \mathbb{R}^n and for each $P \in U$, X'(P) has rank m.

eg « CK-regular curve Y: I → R"

Remark Let $\chi: U(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{R}^n$ be a \mathbb{C}^k immersion. Let $P \in U$. Then $\exists V \subseteq \mathbb{R}^m$ with $P \in V \subseteq U$ s.t. $X |_V$ is a homeomorphism from V into $X \subseteq V$.

Pf We'll use the inverse function theorem. Since Rank (K'(p)) = M, $Y_n \in M$.

Think of \mathbb{R}^m as $\S(u_1, ..., u_n) \in \mathbb{R}^n$: $U_{m_1} = U_{m_1 2} = ... = u_n = 0 \ \mathbb{R}^n$. Let $V_{1, ..., V_m}$ be in the columns of $\chi'(p)$. These are linearly independent since $\operatorname{Rank}(\chi'(p)) = M$.

We can thus choose $V_{m+1}, ..., V_n \in \mathbb{R}^n$ s.t. $\S(V_1, ..., V_n) = 0$ is a basis for \mathbb{R}^n .

So apply the inverse function theorem to obtain an open set $\tilde{V} \leq U \times \mathbb{R}^{n-m} \leq L$. $\tilde{\chi}|_{\tilde{V}}$ is a 1-1 mapping from \tilde{V} onto $\tilde{W} \subseteq \mathbb{R}^n$ whose inverse is C^k to $\tilde{\chi}|_{\tilde{V}}$ is a homeomorphism from \tilde{V} onto \tilde{W} let $V = \{c_{11, \dots, n-1} \in \tilde{V}: U_{mri} = U_{miz} = \dots = U_n = 0\} = \tilde{V} \cap \mathbb{R}^m$. Then V is open in \mathbb{R}^m , $P \in V \subseteq U$, and $\chi|_{V}$ is a homeomorphism from V onto $\chi \in V$.

Note: the proof also shows that $(X|V)^{-1}$ is C^{k} in the sense that $(X|V)^{-1}$ can be extended to a C^{k} map on an open subset of \mathbb{R}^{n} containing X[V].

Q 15 a one-to-one Ck immerción a homomorphism?

g (torus) Let O< a < b < 00.

Petine $E: \mathbb{R} \to \mathbb{R}^3$ by $\xi(u') = (\cos 2\pi u', \sin 2\pi u', o)$. Let $\gamma = (0,0,1)$. Define $\chi: \mathbb{R}^2 \to \mathbb{R}^3$ by $\chi(u', u^2) = f\xi(u') + \alpha \left[(\cos 2\pi u^2)\xi(u') + (\sin 2\pi u^2)\gamma\right]$ $\chi([0,1] \times [0,1]) \text{ is the torus we get by revolving } C \text{ aroms With all axis.}$ $(50 \text{ is } \chi(\mathbb{R}^2))$

X is an immersion from R2 into R3.

 $U' \longmapsto \chi(U', dU')$ is a one-to-one innersion from R into R². $\{\chi(U', \alpha U') : U' \in \mathbb{R}^3\}$ is dense in $\chi[\mathbb{R}^2]$ (the torus).

Det To say that x is a $\frac{1}{2}$ coordinate patch (or $\frac{1}{2}$ simple surface) in \mathbb{R}^3 nums that x maps some open subset of \mathbb{R}^2 into \mathbb{R}^2 and is a \mathbb{C}^4 -immersion. $\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4} + O$ at each point in \mathbb{R}^4 . Also it is a homeomorphism on its range.