1. (30 pts) (a) Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{cc} 1 & 1 \\ -\frac{1}{6} & \frac{1}{6} \end{array} \right].$$

- (b) Suppose the solution to $u_{k+1}=Au_k$ after 100 steps is $u_{100}=\begin{bmatrix}1\\0\end{bmatrix}$. What was the starting vector u_0 ? (Same matrix A.)
- (c) If B is any other 2 by 2 matrix, explain clearly why AB and BA have the same eigenvalues.
- 2. (30 pts) Suppose that A is a positive definite matrix:

$$A = \left[\begin{array}{ccc} 1 & b & 0 \\ b & 4 & 2 \\ 0 & 2 & 4 \end{array} \right]$$

- (a) What are the possible values of b?
- (b) How do you know that the matrix $A^2 + I$ is positive definite for *every* b?
- (c) Complete this sentence correctly for a general matrix ${\cal M}$, possibly rectangular:

The matrix $\boldsymbol{M}^T\boldsymbol{M}$ is symmetric positive definite unless

3. (32 pts) (a) P is the projection matrix onto the line through a=(1,2,2):

$$P = \frac{aa^T}{a^Ta} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}.$$

What are its eigenvalues? Describe all of the corresponding eigenvectors.

(b) Circle *True or False*: There is a matrix S so that $S^{-1}PS$ is a diagonal matrix (and thus P is diagonalized).

(c) Solve the differential equation $\frac{du}{dt} = Pu$ to find u(t) starting from

$$u(0) = \left[\begin{array}{c} 2\\4\\4 \end{array} \right].$$

- (d) For the difference equation $u_{k+1}=Pu_k$ starting from $u_0=(1,0,0)$, what is the vector u_{100} ?
- 4. (8 pts) Give an example of a linear transformation from four-dimensional space \mathbb{R}^4 to two-dimensional space \mathbb{R}^2 .