

Deep Learning: Feed Forward Neural Network

Course Instructor:

Dr. Bam Bahadur Sinha
Assistant Professor
Computer Science & Engineering
National Institute of Technology
Sikkim

Complex Functions

$$w=w+\eta rac{\partial L}{\partial w}$$

The Roadmap ahead

Real inputs

Binary Classification, Multi-class Classification, Regression

Non-linear

Task specific loss functions

Gradient Descent with Backpropagation

Accuracy, RMSE

Data & Task

Data: MNIST Images

3 Ŧ

28x28 Images

255	183	95	8	93	196	253
254	154	37		28	172	254
252	221	r			***	***
***	-11				***	***
***			•		***	
***				***	198	253
252	250	187	178	195	253	253

1	0.72	0.37	0.03	0.36	0.77	0.99
1	0.60	0.14		141	0.67	1
0.99	0.87	r			***	***
***	***				***	***
***					***	
***					0.78	0.99
0.99	0.98	0.73	0.69	0.76	0.99	0.99

How can we represent MNIST images as a Vector?

Data and Task

Data: MNIST Images

How can we represent MNIST images as a Vector?

Data and Task

Data: MNIST Images Task: MCC

x28 Images		Class Label	Class Labels - One hot Representation
0	$[\ 1.00, 0.72, 0.37\dots, 0.76, 0.99, 0.99\]$	0	$[\ 1,0,0,0,0,0,0,0,0,0]$
1	$[\ 1.00, 0.85, 0.73\ldots, 0.68, 1.00, 1.00\]$	1	$\left[\begin{array}{c} 0,1,0,0,0,0,0,0,0,0 \end{array}\right]$
2	$[\ 1.00, 0.76, 0.64\ldots, 0.86, 0.99, 1.00\]$	2	$\left[\begin{array}{c} 0,0,1,0,0,0,0,0,0,0 \end{array}\right]$
3	$[\ 0.99, 0.82, 0.26 \ldots, 0.53, 0.87, 1.00 \]$	3	$[\ 0,0,0,1,0,0,0,0,0,0 \]$
4	$\left[\begin{array}{c}0.73, 0.81, 0.87\ldots, 0.76, 0.79, 0.67\end{array}\right]$	4	$[\ 0,0,0,0,1,0,0,0,0,0 \]$
5	$[\ 1.00, 1.00, 0.96 \ldots, 0.88, 0.79, 0.99\]$	5	$\left[\begin{array}{c} 0,0,0,0,0,1,0,0,0,0 \end{array}\right]$
6	$[\ 0.84, 0.72, 0.31 \ldots, 0.26, 0.51, 0.99 \]$	6	$[\ 0,0,0,0,0,0,1,0,0,0 \]$
Ŧ	$\left[\begin{array}{c}0.33, 0.52, 0.47\ldots, 0.76, 0.95, 1.00\end{array}\right]$	7	$[\ 0,0,0,0,0,0,0,1,0,0 \]$
8	$[\ 0.85, 0.72, 0.97 \ldots, 0.86, 0.94, 0.99 \]$	8	[0,0,0,0,0,0,0,1,0]
9	$\left[\begin{array}{c}0.84, 0.92, 0.28\ldots, 0.76, 1.0, 0.99\end{array}\right]$	9	[0,0,0,0,0,0,0,0,0,1]

How can we represent MNIST images as a Vector?

Data: Indian Liver Patient Records Task: Binary Classification

Indian Liver Patient Records * - whether person needs to be diagnosed or not ?

Age	Albumin	T_Bilirubin		D
65	3.3	0.7		0
62	3.2	10.9		0
20	4	1.1] ··· [1
84	3.2	0.7		1
:	:	:	:	:

Boston Housing* - Predict Housing Values in Suburbs of Boston

Data: Boston Housing

Task: Regression

Crime	Avg No of rooms	Age
0.00632	6.575	65.2
0.02731	6.421	78.9
0.3237	6.998	45.8
0.6905	7.147	54.2

24 21.6
21.6
21.0
33.4
36.2

$$\hat{y}=\hat{f}(x_1,x_2,....,x_N)$$

 $\hat{D} = \hat{f}(Crime, Avg~no~of~rooms, Age,)$

Model: How to build complex functions using Deep Neural Network?

$$\hat{y}=f(x_1,x_2)$$

$$\hat{y} = rac{1}{1 + e^{-(w_1 * x_1 + w_2 * x_2 + b)}}$$

Model: How to build complex functions using Deep Neural Network?

w11=-2,w12=1.0,w13=-1.5,w14=1.5,w21=1,w22=-1,b1,b2=0

w11=0,w12=0.0,w13=2.0,w14=-2.0,w21=1,w22=-1,b1,b2=0

w11=2,w12=-1.0,w13=2.0,w14=-2.0,w21=1,w22=-1,b1,b2=0

Model

Model

- The pre-activation at layer 'i' is given by $a_i(x) = W_i h_{i-1}(x) + b_i$
- ullet The activation at layer 'i' is given by $h_i(x)=g(a_i(x))$ where 'g' is called as the activation function
- ullet The activation at output layer 'L' is given by $f(x)=h_L=\,O(a_L)$ where 'O' is called as the output activation function

$$W_1 = egin{bmatrix} w_{1\,1\,1} & w_{1\,1\,2} & \ldots & w_{1\,1\,99} & w_{1\,1\,100} \ w_{1\,2\,1} & w_{1\,2\,2} & \ldots & w_{1\,2\,99} & w_{1\,2\,100} \ \ldots & \ldots & \ldots & \ldots & \ldots \ w_{1\,10\,1} & w_{1\,10\,2} & \ldots & \ldots & \ldots \ w_{1\,10\,99} & w_{1\,10\,100} \end{bmatrix} \hspace{0.5cm} X = egin{bmatrix} x_1 \ x_2 \ \ldots \ x_{100} \end{bmatrix}$$

$$a_{1\,1} = w_{1\,1\,1} * x_1 + w_{1\,1\,2} * x_2 + w_{1\,1\,3} * x_3 + + w_{1\,1\,100} * x_{100} + b_{11} \ a_{1\,2} = w_{1\,2\,1} * x_1 + w_{1\,2\,2} * x_2 + w_{1\,2\,3} * x_3 + + w_{1\,2\,100} * x_{100} + b_{12} \ \vdots \ a_{1\,10} = w_{1\,10\,1} * x_1 + w_{1\,10\,2} * x_2 + w_{1\,10\,3} * x_3 + + w_{1\,10\,100} * x_{100} + b_{1,10}$$

$$a_1 = W_1 * x + b$$

$$h_1=g(a_1)$$

$$\hat{y} = f(x) = O(W_3 g(W_2 g(W_1 x + b_1) + b_2) + b_3)$$

How do we decide the output layer?

Output Activation function is chosen depending on the task at hand $(can \ be \ a \ softmax, \ linear)$

Output Activation function is chosen depending on the task at hand (can be a softmax, linear)

True Output:

$$\hat{y} = \{ 1, 0, 0, 0 \}$$

Predicted Output:

$$\hat{y} = \{ 0.64, 0.03, 0.26, 0.07 \}$$

What kind of output activation function should we use?

$$W_3 = egin{bmatrix} w_{3\,1\,1} & w_{3\,1\,2} & \ldots & \ldots & w_{3\,1\,10} \ w_{3\,2\,1} & w_{3\,2\,2} & \ldots & \ldots & w_{3\,2\,10} \ w_{3\,3\,1} & w_{3\,3\,2} & \ldots & \ldots & w_{3\,3\,10} \ w_{3\,4\,1} & w_{3\,4\,2} & \ldots & \ldots & w_{3\,4\,10} \end{bmatrix} \hspace{1cm} h_2 = egin{bmatrix} h_{2\,1} \ h_{2\,2} \ \ldots \ h_{2\,10} \end{bmatrix}$$

$$a_{3\,1} = w_{3\,1\,1} * h_{2\,1} + w_{3\,1\,2} * h_{2\,2} + w_{3\,1\,3} * h_{2\,3} + \dots + w_{3\,1\,10} * h_{2\,10} + b_{31}$$
 $a_{3\,2} = w_{3\,2\,1} * h_{2\,1} + w_{3\,2\,2} * h_{2\,2} + w_{3\,2\,3} * h_{2\,3} + \dots + w_{3\,2\,10} * h_{2\,10} + b_{32}$
 $a_{3\,3} = w_{3\,3\,1} * h_{2\,1} + w_{3\,3\,2} * h_{2\,2} + w_{3\,3\,3} * h_{2\,3} + \dots + w_{3\,3\,10} * h_{2\,10} + b_{33}$
 $a_{3\,4} = w_{3\,4\,1} * h_{2\,1} + w_{3\,4\,2} * h_{2\,2} + w_{3\,4\,3} * h_{2\,3} + \dots + w_{3\,4\,10} * h_{2\,10} + b_{34}$

$$a_3 = W_3 * h_2 + b_3$$

$$\hat{y}_1 = O(a_{31}) \qquad \hat{y}_2 = O(a_{32}) \qquad \hat{y}_3 = O(a_{33}) \qquad \hat{y}_4 = O(a_{34})$$

$$Say \ a_3 = [3 \ 4 \ 10 \ 3]$$

Output Activation Function has to be chosen such that output is probability

$$\hat{y}_1 \Rightarrow \frac{3}{(3+4+10+3)} = 0.15$$

$$\hat{y}_2 = rac{4}{(3+4+10+3)} = 0.20$$

$$\hat{y}_3 = rac{10}{(3+4+10+3)} = 0.50$$

$$\hat{y}_4 = rac{3}{(3+4+10+3)} = 0.15$$

Say for other input $a_3 = [7 -2 \ 4 \ 1]$

$$\hat{y}_1 \Rightarrow \frac{7}{(7+(-2)+4+1)} = 0.70$$
 $\hat{y}_2 = \frac{-2}{(7+(-2)+4+1)} = -0.20$
 $\hat{y}_3 = \frac{4}{(7+(-2)+4+1)} = 0.40$
 $\hat{y}_4 = \frac{1}{(7+(-2)+4+1)} = 0.10$

$$h = [h_1 \ h_2 \ h_3 \ h_4]$$

$$softmax(h) = [softmax(h_1) \ softmax(h_2) \ softmax(h_3) \ softmax(h_4)]$$

$$softmax(h) = egin{bmatrix} rac{e^{h_1}}{4} & rac{e^{h_2}}{4} & rac{e^{h_3}}{4} & rac{e^{h_4}}{4} \ \sum_{j=1}^4 e^{h_j} & \sum_{j=1}^4 e^{h_j} & \sum_{j=1}^4 e^{h_j} & rac{e^{h_4}}{4} \end{bmatrix}$$

 $softmax(h_i) \ is \ the \ i^{th} \ element$ $of \ softmax \ output$

$$a_1=W_1*x$$
 + b1 $h_1=g(a_1)$

$$a_2 = W_2 * h_1 + b_2$$
 $h_2 = g(a_2)$

$$a_3 = W_3 * h_2 + b_3$$
 $\hat{y} = softmax(a_3)$

x_1	x_2
-	-
-	-
-	-

x_1	x_2	x_3
-	-	-
-	-	-
-	-	-

x_1	x_2	x_3	$oxed{x_4}$
-	-	1	-
-	-	-	-
-	-	-	-

How would you deal with extreme nonlinearity?

How would you deal with extreme nonlinearity?

