ANALYSE COMPARATIVE DES PERFORMANCES DE TRANSMISSION

1. LENZ - Performances de transmission

Architecture de communication:

- XpressNet: technologie RS 485 qui par ses qualités offre une liaison haute gamme puisqu'il autorise davantage de possibilités non seulement en distance mais aussi en capacité à intégrer un nombre important de périphériques <u>Coffret centrale Z21 avec routeur /</u> télécommande | Roco 10834 | Jura Modélisme
- RailCom: signal de retour permet notamment de signaler quel train roule actuellement sur telle section (canton), mais permet aussi de donner la vitesse réelle d'une locomotive <u>Digital Command Control</u>— Wikipédia

Temps de transmission estimé:

- Logiciel → Centrale : 10-50ms (RS485/USB)
- Centrale → Rails DCC : 5-15ms (traitement interne)
- Rails → Décodeur : Immédiat (signal continu)
- Total: 15-65ms

Dégradation avec locomotives multiples :

- Peu de dégradation : RS485 haute qualité
- Limite: jusqu'à 31 appareils sur XpressNet <u>Lenz 20200 Centrale</u>
 <u>Digital plus LZV200 incl. amplificateur de puissance Lokschuppen</u>
 Berlinski
- Répétition DCC : Commandes répétées automatiquement

2. Z21 - Performances de transmission

Architecture de communication:

- WiFi: une quinzaine d'appareils mobiles pouvant exploiter en même temps la Z21 <u>Centrale DCC Z21 — équipeTonTrain.com</u>
- **Ethernet** : Le port LAN est utilisé pour réaliser ces opérations au niveau du PC Maurienne-trains
- Bus CAN: Le bus CAN est le plus rapide et le plus fiable des bus DCC <u>Centrale DCC Z21 — équipeTonTrain.com</u>

Temps de transmission estimé :

- Smartphone → WiFi → Z21 : 20-100ms (variable WiFi)
- PC → Ethernet → Z21 : 5-20ms (plus stable)
- **Z21** → **Rails DCC** : 5-10ms
- Total WiFi: 25-110ms
- Total Ethernet : 10-30ms

Dégradation avec utilisateurs multiples :

- WiFi: Dégradation notable avec 10+ appareils
- Latence variable: 50-200ms selon encombrement WiFi
- Ethernet stable : Pas de dégradation significative

3. LOCODUINO BOX - Performances de transmission

Architecture de communication:

- WiFi ESP32 : Communication directe
- Bus CAN: Entre modules satellites
- CommandStation-EX: solutions DCC faciles à utiliser, abordables
 DCC-EX Team and Products EX-CommandStation (DCC-EX Team and Products/EX-CommandStation) Command Station DCCWiki

Temps de transmission estimé:

- App → WiFi → ESP32 : 15-80ms (ESP32 optimisé)
- ESP32 → Traitement : 2-5ms (microcontrôleur rapide)
- **ESP32** → **Rails DCC** : 2-5ms
- Total: 19-90ms

Dégradation avec charge :

- ESP32 efficace : Meilleure gestion que routeurs classiques
- Bus CAN: Très fiable pour satellites
- Limite : Dépend de la programmation

PROBLÈMES DE TRANSMISSION DCC SUR FEEDER

1. Nature du signal DCC

Principe physique:

- Signal carré: ±15V commutant à 8-10 kHz
- Données + Puissance : Le signal codé envoyé sur la voie donne des ordres aux équipements tout en fournissant la puissance <u>Digital</u> <u>Command Control — Wikipédia</u>
- Répétition: La norme DCC recommande donc de répéter les commandes autant que possible, en laissant toutefois un petit délai de 5 milli-secondes entre commandes destinées à un même décodeur Commande d'un réseau en DCC avec un module ARDUINO.

2. Problèmes de transmission par les rails

Mauvais contacts:

- On sait tous que les mauvais contacts sont légion et une partie des commandes sont perdues <u>Commande d'un réseau en DCC avec un</u> module ARDUINO.
- Conséquence : Perte de paquets DCC
- Solution : Répétition automatique

Longueur des feeders:

- Résistance électrique : Chute de tension
- Inductance : Déformation du signal carré
- Capacité parasites : Atténuation haute fréquence

3. Impact sur les locomotives multiples

Partage de bande passante DCC:

- 1 locomotive : Commande toutes les 20-50ms
- 10 locomotives : Commande toutes les 200-500ms par loco
- 20+ locomotives : Réponse dégradée, saccades possibles

Solution par secteurs:

• Boosters multiples : Division du réseau

• Feeders courts : <100m maximum recommandé

• Qualité contacts : Maintenance critique

COMPARAISON PERFORMANCES RÉELLES SCÉNARIO 1 : 5 locomotives, pilotage smartphone

Système	Temps total	Stabilité	Remarques
Lenz	40-80ms		Le plus stable
Z21	50-120ms	***	Variable WiFi
LocoduinoBox	30-100ms	***	Optimisable

SCÉNARIO 2:15 locomotives, logiciel PC

Système	Temps total	Stabilité	Remarques
Lenz	60-120ms	***	Excellent
Z21	40-80ms	***	Via Ethernet
LocoduinoBox	50-150ms	***	Dépend config

SCÉNARIO 3: 6 utilisateurs simultanés

Système	Temps total	Stabilité	Remarques
Lenz	80-200ms	***	Limite matérielle
Z21	100-300ms	***	Congestion WiFi
LocoduinoBox	60-250ms	***	Très variable

FACTEURS DE DÉGRADATION

1. Réseau électrique (tous systèmes)

• Longueur feeders: +10-50ms selon distance

• Qualité contacts : Perte paquets 5-20%

• Nombre boosters : Amélioration significative

2. Réseau informatique

• WiFi surchargé : x2 à x5 latence

• Distance WiFi: +20-100ms

• Qualité routeur : Facteur critique

3. Charge système

• 10+ locomotives: +50% latence

Multiples utilisateurs : +100-300% latence
 Logiciel complexe : +20-50ms traitement

RECOMMANDATIONS PAR USAGE

Performance critique (temps réel) :

- 1. **LENZ** avec connexion filaire RS485
- 2. **Z21** avec Ethernet (pas WiFi)
- 3. LocoduinoBox optimisé

Usage familial/ludique:

1. **Z21** (ergonomie compense latence)

- 2. LocoduinoBox (excellent rapport qualité/prix)
- 3. **LENZ** (plus technique)

Réseau complexe (20+ trains) :

- 1. **LENZ** (architecture robuste)
- 2. **Z21** avec boosters multiples
- 3. **LocoduinoBox** (si expertise technique)

La latence réelle dépend énormément de l'installation physique (qualité feeders, contacts) autant que du système choisi!