TEXT MINING STATISTICAL MODELING OF TEXTUAL DATA LECTURE 3

Måns Magnusson, Mattias Villani

Division of Statistics
Dept. of Computer and Information Science
Linköping University

OVERVIEW

DISTRIBUTIONAL SEMANTICS

TOPIC MODELS

The linear algebra view of a topic models

INFERENCE IN THE LDA MODEL

EVALUATION

PRACTICAL DECISIONS

Section 1

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS RECAP

► The distributional semantics hypothesis

```
"a word is characterized by the company it keeps"
Firth (1957)
```

Word meaning comes from textual context

```
"cold"
"It's cold outside."
"I'm having a cold"
```

- ▶ Different contexts (sentence, word windows, documents)
- ▶ Different context size different properties
 - Short distance context, syntagmatic similarities
 - Long distance context, topical similarities

TOPIC MODELS

Section 2

TOPIC MODELS

TOPIC MODELS

- Problem: Identifying underlying themes in documents
- Models for unsupervised learning, but more recently also for supervised learning.
- Probabilistic generative unsupervised model.
- ► The most common topic model is Latent Dirichlet Allocation (LDA).
- ▶ Very popular model in applications and research. > 20000 Google scholar citations in \sim 15 years.
- ▶ Many extensions in recent years: n-grams LDA, supervised LDA, nonparametric LDA, relational topics, correlated topics, dynamically time-varying topics...

LDA: MIXTURE OF UNIGRAMS

- ► The basic topic models are extensions of the bag-of-words (unigram) model.
- ► Mixture of unigrams:
 - 1. Draw a topic indicator z_d for the dth document from a topic distribution $\theta = (\theta_1, ..., \theta_K)$.
 - 2. Conditional on the drawn topic z_d draw words w_d from a word distribution for that topic.

► Topic models are mixed-membership models: each document can belong to several topics simultaneously. MAGNUSSON, VILLANI (STIMA, LIU)

CONNECTION TO DOCUMENT CLUSTERING

▶ In the Multinomial mixture model a document belongs to a cluster

$$p(\mathbf{w}|s) = \prod_{j=1}^{n} p(\mathbf{w}_{j}|s_{j})$$

where $p(\mathbf{w}_j|s_j) \sim MN(\theta_{s_i}, n_j)$

 In Latent Dirichlet Allocation (LDA) all tokens belongs to its own cluster

$$p(\mathbf{w}|\mathbf{z},\Theta,\Phi) = \prod_{i=1}^{D} \prod_{j=1}^{N_i} p(w_j|z_j,\phi_k) p(z_j,\theta_d)$$

where $p(w_i|z_i) \sim \textit{Categorical}(\phi_{z_i})$ and $p(z_i|\theta_d) \sim \textit{Categorical}(\theta_d)$

GENERATING A CORPUS FROM A TOPIC MODEL*

- Assume that we have:
 - ► A fixed vocabulary V
 - D documents
 - ► N_d words in each document
 - K topics
- 1. For each topic (k = 1, ..., K):
 - 1.1 Draw a distribution over the words $\phi_k \sim Dir(\beta)$
- 2. For each document (d = 1, ..., D):
 - 2.1 Draw a vector of topic proportions $\theta_d \sim Dir(\alpha)$
 - **2.2** For each word (n = 1, ..., N):
 - 2.2.1 Draw a topic assignment $z_{d,n} \sim Multinomial(\theta_d)$
 - 2.2.2 Draw a word $w_{d,n} \sim Multinomial(\beta_{z_{d,n}})$

Example of \mathbf{z} , Θ and Φ

	\mathbf{w}_1		shore						
	z_1	1	1	1					
	\mathbf{w}_2	Zlatan	boat	shore	money	bank			
	\mathbf{z}_2	2	1	1	3	3			
	w ₃	money	bank	soccer	money				
	z ₃	3	3	2	3				
				soccer			money		
$\Phi =$	Topic 1	0.35	0.35	0.05	0.05	0.15	0.05		
$\Psi =$	Topic 2	0.025	0.025	0.45	0.45	0.025			
	Topic 3	0.025	0.025	0.025	0.025	0.45	0.45		
	Topic 1 Topic 2 Topic 3								
	0	doc 1	0.96	0.0	2 0.	02			
	⊌ =	doc 2	0.3	0.0 0.2	2 0	.5			
		doc 3	0.05	0.3	5 0	.6			

EXAMPLE OF TOPIC MODEL

EXAMPLE - SIMULATION FROM TWO TOPICS

MAGNUSSON, VILLANI (STIMA, LIU)

Topic	Word distr.	probability	dna	gene	data	distribution
1	eta_1	0.5	0.1	0.0	0.2	0.2
2	β_2	0.0	0.5	0.4	0.1	0.0
Doc 1		$\theta_1 = (0.2, 0.8)$				
		Word 1:	Topic=2	Word='gene'		
		Word 2:	Topic=2	Word='gene'		
		Word 3:	Topic=1	Word='data'		
Doc 2		$\theta_2 = (0.9, 0.1)$				
		Word 1:	Topic=1	Word='probability'		
		Word 2:	Topic=1	Word='data'		
		Word 3:	Topic=1	Word='probability'		
Doc 3		$\theta_2 = (0.5, 0.5)$				

TEXT MINING

12 / 38

Subsection 1

THE LINEAR ALGEBRA VIEW OF A TOPIC MODELS

CO-OCCURANCE MATRIX

A friend in need is a friend indeed. She is my friend indeed.

	а	friend	in	indeed	is	my	need	she
Doc 1	2	2	1	1	1	0	1	0
Doc 2	0	1	0	1	1	1	0	1

CO-OCCURANCE MATRIX II

A friend in need is a friend indeed. She is my friend indeed.

Context window (of one step)

	а	friend	in	indeed	is	my	need	she
а	2	2	0	0	1	0	0	0
friend	2	3	1	2	0	1	0	0
in	0	1	1	0	0	0	1	0
indeed	0	2	0	2	0	0	0	0
is	1	0	0	0	2	1	1	1
my	0	1	0	0	1	1	0	0
need	0	0	1	0	1	0	1	0
she	0	0	0	0	1	0	0	1

TOPIC MODELS - THE LINEAR ALGEBRA VIEW

- ▶ Reduce co-occurance matrix to a **lower dimension**
 - ► The linear algebra view

FIGUR: Matrix decomposition (taken from talk by David Blei at NIPS 2013)

- ► A kind of probabilistic Non-Negative Matrix factorization
- ▶ n_{dv} often very large how to do this efficiently (and without creating n_{dv})
- ightharpoonup Can be done with SVD ightharpoonup Latent Semantic Analysis

INFERENCE IN THE LDA MODEL

Section 3

INFERENCE IN THE LDA MODEL

LEARNING/INFERENCE IN TOPIC MODELS

- ▶ What do we know?
 - ► The words in the documents: w
- ► What do we not know?
 - ▶ Topic proportions for each document: θ_d
 - ► Topic assignments for each word in each document: **z**
 - Word distributions for each topic: ϕ_k
- ▶ Do the Bayes dance: Posterior distribution

$$p(\Theta, z, \Phi|w)$$

- ▶ The posterior is mathematically untractable. **Solutions**:
 - Gibbs sampling (MCMC) [Correct, but can be slow]
 - Variational Bayes EM [Crude approximation of the posterior distribution, but typically rather accurate about posterior mode (MAP)]

GIBBS SAMPLER FOR LDA I

Bayes theorem

$$p(B|A) = \frac{p(A|B) \cdot p(B)}{p(B)}$$

For the topic model

$$\begin{array}{lcl} \rho(\mathbf{z},\Theta,\Phi|\mathbf{w}) & = & \frac{\rho(\mathbf{z},\Theta,\Phi|\mathbf{w}) \cdot \rho(\mathbf{z},\Theta,\Phi)}{\rho(\mathbf{w})} \\ & \propto & \rho(\mathbf{z},\Theta,\Phi|\mathbf{w}) \cdot \rho(\mathbf{z},\Theta,\Phi) \end{array}$$

GIBBS SAMPLER FOR LDA II

The basic Gibbs sampler:

$$p(z = k | \Phi, \Theta) \propto \phi_{v,k} \theta_{k,d}$$
$$\theta_d | \mathbf{z} \sim Dir(\mathbf{n}^{(d)} + \alpha)$$
$$\phi_k | \mathbf{z} \sim Dir(\mathbf{n}^{(v)} + \beta)$$

where \mathbf{n}_d is the number of tokens by topic in document d and \mathbf{n}_v is the number of tokens by topic for word type \mathbf{z} .

GIBBS SAMPLER FOR LDA III

Integrating out (collapsing) Θ and Φ (Griffiths and Steyvers (2004)):

$$p(\mathbf{z}|\mathbf{w}) = \int \int p(\mathbf{z}, \Theta, \Phi|\mathbf{w}) \cdot p(\mathbf{z}, \Theta, \Phi) d\Phi d\Theta$$

will result in the following gibbs sampler

$$p(z_{i} = k | w_{i}, \mathbf{z}_{\neg i}) \propto \underbrace{\frac{n_{k}^{(v)} + \beta}{n_{k}^{(v)} + V\beta}}_{type-topic} \cdot \underbrace{(n_{k}^{(d)} + \alpha)}_{topic-doc} \cdot \underbrace{(\Theta)}_{topic-doc}$$

where $n^{(v)}$ and $n^{(d)}$ are count matrices of size $D \times K$ and $K \times V$.

EXAMPLE OF $n^{(v)}$ AND $n^{(d)}$

$$n^{(d)} = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 3 \end{array} \right]$$

COLLAPSED GIBBS SAMPLER FOR LDA

```
# Initialization
Sample all topic indicators randomly
Calculate n^(w) and n^(d)
# Gibbs sampler
for each gibbs iteration do
    for each token w i do
         remove z_i from n^(v) and n^(d)
         for each k in 1 to K do
              prob_k[k] = \frac{n_k^{(v)} + \beta}{n_k^{(w)} + V\beta} \cdot (n_k^{(d)} + \alpha)
         end for
         z_i <- draw multinomial(prob_k)</pre>
          add z_i to n^(v) and n^(d)
    end for
end for
return n^{(w)}, n^{(d)}
```

(NAIVE) COLLAPSED GIBBS SAMPLER ALGORITHM II

 \blacktriangleright Estimation of Φ and Θ

$$\hat{\phi}_{k,v} = \frac{n_k^{(v)} + \beta}{n_k^{(v)} + V\beta}$$

$$\hat{\theta}_{d,k} = \frac{n_d^{(d)} + \alpha}{n_d^{(d)} + K\alpha}$$

- ▶ Sort $\hat{\phi}_{k,v}$ by largest values.
- ▶ Computational complexity is O(K) for each token
- ► Slow for larger corpuses... as you will see...

Section 4

EVALUATION

EVALUATION OF TOPIC MODELS

- Convergence:
 - ▶ Log marginal posterior $p(\mathbf{w}|\mathbf{z}^{(n)})$
- ► Evaluating and comparing models:
 - ► Held-out marginal likelihood (Wallach et al. (2009b))

$$\hat{\rho(\mathbf{w})} = \sum_{\mathbf{z}} p(\mathbf{w}|\mathbf{z})$$

- NPMI, topic distributions (junk topics)
- ► Topic coherence

$$C(t, V^{(t)}) = \sum_{m=2}^{M} \sum_{l=1}^{m-1} \log \frac{D(v_m^{(t)}, v_l^{(t)}) + 1}{D(v_l^{(t)})}$$

EVALUATION OF TOPIC MODELS

Table 1: Example topics (good/general, good/research, chained/research) with different coherence scores (numbers closer to zero indicate higher coherence). The chained topic combines words related to aging (indicated in plain text) and words describing blood and blood-related diseases (bold). The only connection is the common word human.

- -167.1 students, program, summer, biomedical, training, experience, undergraduate, career, minority, student, careers, underrepresented, medical_students, week, science
- -252.1 neurons, neuronal, brain, axon, neuron, guidance, nervous_system, cns, axons, neural, axonal, cortical, survival, disorders, motor
- -357.2 aging, lifespan, globin, age_related, longevity, human, age, erythroid, sickle_cell, beta_globin, hb, senescence, adult, older, lcr

FIGUR: Example of topic coherence. (Mimno et. al. 2011)

Section 5

PRACTICAL DECISIONS

HYPER PARAMETERS

- \blacktriangleright α and β defines sparsity in Θ and Φ respectively
- ► Can be learned from data with hyperparameter optimization (Wallach et al., 2009a)
- ▶ Common values are $\alpha=0.1$ and $\beta=0.01$ or 1/K remeber the Dirichlet prior
- ► K think of it as resolution or the corpus

DEFINING TOKENS

- ▶ What is a token?
- "Moderata samlingspartiet"
- ► Recommendation: Start without combining collocations add collocations later on that is of importance (anecdotal)

STOP WORDS

- ► Common words with less (?) thematic/semantic meaning
- ▶ Big part of corpus ($\sim 50\%$)
- ► Recommendation: Remove a small set of very common words (Xanda Shoefield and Mimno, 2017)

RARE WORDS

- ► Thematic words (will mainly be affected by the context (documents))
- Large part of Φ
- ▶ Recommendation: Remove very rare words...

STEMMING AND LOWERCASING

- ► Reduce the vocabulary
- ightharpoonup Stemming: Reduce each token to its (word) stem "running" ightarrow "run"
- Recommendation: Do not stem, unless really small corpora (Schofield and Mimno, 2016)
- ▶ Recommendation: Reduce to lower case (anecdotal)

"JUNK" TOPICS

- ► Some topics just capture language structure AlSumait et al. (2009)
- ▶ Some topics combine two topics with a few common words.
- ► Often called junk topics
- ► Recommendation: Ignore these topics (anecdotal)

DOCUMENT SEGMENTATION

► Segment documents to smaller pieces

MASTER THESIS PROPOSAL - POLYLINGUAL TOPIC MODEL

- ► Storytel master thesis project:
 - Match books.
 - Combine with character names (Named Entity Recognition).
- ▶ Polyalingual topic model for multiple languages Mimno et al. (2009)

MASTER THESIS PROPOSAL - POLYLINGUAL TOPIC MODEL

- 1. For each topic (k = 1, ..., K):
 - 1.1 For each language (l = 1, ..., L)
 - 1.1.1 Draw a distribution over the words $\phi_{k,l} \sim Dir(\beta)$
- 2. For each document (d = 1, ..., D):
 - 2.1 Draw a vector of topic proportions $\theta_d \sim Dir(\alpha)$
 - 2.2 For each language (l = 1, ..., L):
 - **2.2.1** For each word $(n_l = 1, ..., N_L)$:
 - 2.2.2 Draw a topic assignment $z_{d,n} \sim Multinomial(\theta_d)$
 - 2.2.3 Draw a word $w_{d,l,n} \sim Multinomial(\phi_{z_{d,n},l})$

REFERENCES

- AlSumait, L., Barbará, D., Gentle, J., Domeniconi, C., 2009. Topic significance ranking of Ida generative models. Machine Learning and Knowledge Discovery in Databases, 67–82.
- Firth, J., 1957. A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis, 1–32.
- Griffiths, T., Steyvers, M., 2004. Finding scientific topics. . . . academy of Sciences of the United
 - URL http://www.pnas.org/content/101/suppl.1/5228.short
- Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., McCallum, A., 2009. Polylingual topic models. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2-Volume 2. Association for Computational Linguistics, pp. 880–889.
- Schofield, A., Mimno, D., 2016. Comparing apples to apple: The effects of stemmers on topic models. Transactions of the Association for Computational Linguistics 4, 287–300.
- Wallach, H. M., Mimno, D. M., McCallum, A., 2009a. Rethinking Ida: Why