

Precalculus Formulas

krista king

Conversion between cartesian and polar coordinates

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$y = r\sin\theta \qquad \qquad x^2 + y^2 = r^2$$

Eccentricity

Let F be a fixed point (called the focus) and l be a fixed line (called the directrix) in a plane. Let e be a fixed positive number (called the eccentricity). The set of all points P in the plane such that

$$e = \frac{|PF|}{|Pl|}$$

(that is, the ratio of the distance from F to the distance from I is the constant *e*) is a conic section. The conic is

$$e = 1$$

Polar equation of the conic section

The polar equation of the conic section is

$$r = \frac{ed}{1 \pm e \cos \theta}$$

or
$$r = \frac{ed}{1 \pm e \sin \theta}$$

Analytic geometry of the parabola

	Equation	Vertex	Axis	Focus	Directrix
Parabolas with vertex	at the origin				
Opens up	$x^2 = 4py$	(0,0)	x = 0	(0,p)	y = -p
Opens down	$x^2 = -4py$	(0,0)	x = 0	(0, -p)	y = p
Opens right	$y^2 = 4px$	(0,0)	y = 0	(p,0)	x = -p
Opens left	$y^2 = -4px$	(0,0)	y = 0	(-p,0)	x = p
Shifted parabolas with	n vertex off the origin				
Opens up	$(x-h)^2 = 4p(y-k)$	(h, k)	x = h	(h, k+p)	y = k - p

Opens down	$(x-h)^2 = -4p(y-k)$	(h, k)	x = h	(h, k-p)	y = k + p

Opens right
$$(y - k)^2 = 4p(x - h)$$
 (h, k) $y = k$ $(h + p, k)$ $x = h - p$

Opens left
$$(y - k)^2 = -4p(x - h)$$
 (h, k) $y = k$ $(h - p, k)$ $x = h + p$

shifted parabola (up)

shifted parabola (down)

parabola (right)

shifted parabola (right)

parabola (left)

shifted parabola (left)

Analytic geometry of the ellipse

Center at	the c	riain ((0.0)
Correor at			$\langle 0,0\rangle$

Center off the origin at (h, k)

Tall

Wide

Tall

Wide

$$a \ge b > 0$$
 $a \ge b > 0$ $a \ge b > 0$

$$a \ge b > 0$$

$$a \ge b > 0$$

Equation

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$$

$$\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1 \qquad \frac{x^2}{a^2} + \frac{y^2}{h^2} = 1 \qquad \frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1 \qquad \frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{h^2} = 1$$

Vertices

$$(0, \pm a)$$

$$(\pm a, 0)$$

$$(h, k \pm a)$$

$$(h \pm a, k)$$

$$(\pm b, 0)$$

$$(0, \pm b)$$

$$(h \pm b, k)$$

$$(h, k \pm b)$$

Axes

Major:
$$x = 0$$
 Major: $y = 0$

Major:
$$y = 0$$

Major:
$$x = h$$

Major:
$$y = k$$

Minor:
$$y = 0$$

Minor:
$$y = 0$$
 Minor: $x = 0$

Minor:
$$y = k$$

Minor:
$$x = h$$

Foci

$$(0, \pm c)$$
 with $(\pm c, 0)$ with

$$(\pm c,0)$$
 with

$$(h, k \pm c)$$
 with

$$(h \pm c, k)$$
 with

$$c^2 = a^2 - b^2$$

$$c^2 = a^2 - b^2$$

$$c^2 = a^2 - b^2$$
 $c^2 = a^2 - b^2$ $c^2 = a^2 - b^2$

$$c^2 = a^2 - b^2$$

$$y = \pm \frac{a^2}{c}$$

$$x = \pm \frac{a^2}{c}$$

Directrices
$$y = \pm \frac{a^2}{c}$$
 $x = \pm \frac{a^2}{c}$ $y = k \pm \frac{a^2}{c}$

$$x = h \pm \frac{a^2}{c}$$

ellipse (tall)

shifted ellipse (tall)

ellipse (wide)

shifted ellipse (wide)

Analytic geometry of the hyperbola

Center at the origin (0,0)

Center off the origin at (h, k)

Up/down

Left/right

Up/down

Left/right

Equation

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 - \frac{x^2}{a^2} - \frac{x^2}{b^2}$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \qquad \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Vertices

$$(0, \pm a)$$

$$(\pm a, 0)$$

$$(h, k \pm a)$$

$$(h \pm a, k)$$

Axes

Major:
$$x = 0$$
 Major: $y = 0$

Major:
$$y = 0$$

Major:
$$x = h$$

Major:
$$y = k$$

Minor: y = 0 Minor: x = 0

Minor:
$$x = 0$$

Minor:
$$y = k$$

Minor:
$$x = h$$

Foci

$$(0, \pm c)$$
 with

$$(\pm c,0)$$
 with

$$(0, \pm c)$$
 with $(\pm c, 0)$ with $(h, k \pm c)$ with

$$(h \pm c, k)$$
 with

$$c^2 = a^2 + b^2$$
 $c^2 = a^2 + b^2$ $c^2 = a^2 + b^2$

$$c^2 = a^2 + b^2$$

$$c^2 = a^2 + b^2$$

$$c^2 = a^2 + b^2$$

$$y = \pm \frac{a}{2}$$

$$x = \pm \frac{a}{2}$$

Directrices
$$y = \pm \frac{a}{2}$$
 $x = \pm \frac{a}{2}$ $y = k \pm \frac{a}{2}$

$$x = h \pm \frac{a}{2}$$

Asymptotes $y = \pm \frac{a}{b}x$ $y = \pm \frac{b}{a}x$ $y - k = \pm \frac{a}{b}(x - h)$ $y - k = \pm \frac{b}{a}(x - h)$

$$y = \pm \frac{b}{a}x$$

$$y - k = \pm \frac{a}{b}(x - h)$$

$$y - k = \pm \frac{b}{a}(x - h)$$

hyperbola (up-down)

shifted hyperbola (up-down)

hyperbola (right-left)

shifted hyperbola (right-left)

