Computational Maths 2

Introduction to Numerical Optimization

Beniamin BOGOSEL

Universitatea Aurel Vlaicu Arad

Optimization in dimension 1

Genetic Algoritms

Beniamin BOGOSEL Computational Maths 2 2/15

Optimization in dimension 1

Genetic Algoritms

Beniamin Bogosel Computational Maths 2 3/15

Introduction

https://www.youtube.com/watch?v=gVEWaOtEASM

- Mimic evolutionary behavior
- Many processes are random, but the level of randomization is controlled.
- More efficient than random search or exhaustive algorithms
- Can find global minima compared to local minima for gradient based algorithms
- Can find minimizers even in discrete settings where we don't have continuity, linearity or other features that we can exploit

Beniamin BOGOSEL Computational Maths 2 4/15

Structure of Genetic Algorithms

- fitness function to optimize: analogue of objective function
- population of chromosomes: a set of variables that correspond to inputs for the objective function
- selection of which chromosomes will reproduce
- crossover to produce next generations of chromosomes
- random mutations for chromosomes in the new generation

Beniamin BOGOSEL Computational Maths 2 5/15

Fitness function

* This is the function to be minimized

Example:

$$\min_{x \in \mathbb{R}} x^2 + \sin(x).$$

The fitness function is: $f(x) = x^2 + \sin x$.

Beniamin BOGOSEL Computational Maths 2 6/15

Chromosomes

- \star Chromosomes represent the optimization variables.
- \star For example, if $x \in \mathbb{R}^n$, $x = (x_1, ..., x_n)$ then the chromosome is simply: $(x_1, ..., x_n)$
- * Alternatively: we can work in binary, convert variables and consider binary bits as "chromosomes"

 $x \mapsto 10011011101110100110101$

Beniamin BOGOSEL Computational Maths 2 7/15

Population, Selection

- \star a fixed number N of variables are kept in memory for a given **generation**
- \star each member of the population is a variable for which the **objective function** can be evaluated
- \star from each generation we may wish to keep only a number of individuals which give the best objective function to **create new individuals**

Some options

- ullet keep the best N_0 individuals, use them and possibly other individuals to create new ones
- Define a probability function which indicates how likely it is to use the current individual to create **new ones**

Beniamin BOGOSEL Computational Maths 2 8/15

Crossover operator

Question: starting from two individuals x, y how can we construct new ones?

- Simplest option: convex combinations $\alpha x + (1 \alpha)y$ where α is chosen randomly (drawback: we cannot explore the space outside the given population)
- More intricate options: binary crossover

$$x = 10101110101101110110101$$

 $y = 01010011011011101011011$

choose one or multiple **crossing points** and flip the bits between x, y alternatively at these crossing points

- Any other idea of passing information between x and y
- Sometimes, the structure of x and y needs to be preserved (e.g. Traveling Salesman problem; see projects list)

Beniamin BOGOSEL Computational Maths 2 9/15

Mutation operator

- * keeping best individuals and using crossover between them is not enough sometimes to explore all the space.
- \star introducing random mutations may help explore the space of admissible variables even further

Examples:

- add a random number to the current one (same for multiple variables)
- flip one or more bits in the binary representation

Beniamin BOGOSEL Computational Maths 2 10/15

Genetic algorithm pseudocode

- \star Initialize the population P_0 of size N, choose a number of **generations** (analogue of iterations)
- * For each iteration do:
 - Compute the fitness/objective function for each member of the population
 - Apply the Selection operator: decide which individuals to keep, which to
 use in the crossover
 - Keep best N₀ < N individuals; create new ones using crossover and mutation operators
 - Apply the **Crossover operator** for the selected individuals; for each new individual introduce a **Mutation** with a certain probability $p \in (0,1)$.
 - ullet Keep creating new individuals until we have a new population of size N
 - Go to the first step.

Beniamin BOGOSEL Computational Maths 2 11/15

Practical examples in 1D

$$f(x) = x^2$$
, $f(x) = 0.3|x| + \sin(x)$

- * Crossover1: convex hull, Mutation 1: add random number
- * Crossover2: switch bits in binary, Mutation 2: flip random bits in binary See Notebook!

Beniamin BOGOSEL Computational Maths 2 12/15

Traveling Salesman

Problem: Assume there is a traveling salesman which needs to visit n cities via the shortest route possible. He visits every city once then returns to the initial one.

- Cities may be labeled City1, City2, ..., City n
- We search for an optimal path between these cities
- Chromosomes, or optimization variables, are permutations of integers from 1 to n
- Iterating through all permutations cost n! which is huge.
- 10! = 3628800, $20! = 2432902008176640000 \sim 10^{18}$
- assume the cost for a path between c_i and c_j is $d(c_i, c_j)$, the distance between cities c_i, c_j

Beniamin BOGOSEL Computational Maths 2 13/15

Crossover for permutations?

* simple swapping: not ok

Parents	Normal	Offspring	
	Crossover	(faulty)	
35124	35 124	35532	
14532	14 532	14124	

* cycle crossover:

Parents	Offspring	Offspring	Offspring	Offspring
	(step 1)	(step 2)	(step 3)	(step 4)
415 3 26	4152 2 6	4 1 5 21 6	4 4 5 2 1 6	34 5 21 6
3 4 6 2 1 5	3463 1 5	3 4 6 32 5	3 1 6 3 2 5	41 6 32 5

- pick random starting position i
- swap cities in x, y on position i
- if x(i) is double then swap again on the position of its double
- repeat until there's no city which repeats

Beniamin Bogosel Computational Maths 2 14/15

How about mutations?

- * random transformation which preserves the permutation character
 - injective, surjective: bijective!
- \star pick two cities in the cycle x and swap them
- * the resulting chromosome is again a cycle.
- * can you imagine more complex mutations?

Beniamin BOGOSEL Computational Maths 2 15/15