Package 'semptools'

November 9, 2024				
Title Customizing Structural Equation Modelling Plots				
Version 0.3.1				
Description Most function focus on specific ways to customize a graph. They use a 'qgraph' output as the first argument, and return a modified 'qgraph' object. This allows the functions to be chained by a pipe operator.				
<pre>URL https://sfcheung.github.io/semptools/</pre>				
BugReports https://github.com/sfcheung/semptools/issues				
Depends R (>= 3.6.0)				
License GPL-3				
Encoding UTF-8				
LazyData true				
Imports lavaan, rlang, semPlot				
Suggests testthat (>= 2.1.0), knitr, rmarkdown, magrittr				
RoxygenNote 7.3.2				
VignetteBuilder knitr				
NeedsCompilation no				
Author Shu Fai Cheung [aut, cre] (https://orcid.org/0000-0002-9871-9448), Mark Hok Chio Lai [aut] (https://orcid.org/0000-0002-9196-7406)				
Maintainer Shu Fai Cheung <shufai.cheung@gmail.com></shufai.cheung@gmail.com>				
Repository CRAN				
Date/Publication 2024-11-09 07:40:02 UTC				
Contents				
add_object				

2 add_object

Index		40
T., J.,		
	to_list_of_lists	
	set_sem_layout	34
	set_node_attribute	33
	set_edge_label_position	31
	set_edge_color	30
	set_edge_attribute	28
	set_curve	27
	set_cfa_layout	25
	sem_example	24
	sem_2nd_order_example	23
	rotate_resid	22
	rescale_layout	20
	pa_example_3covs	20
	pa_example	19
	mark_sig	17
	mark_se	
	layout_matrix	
	lavaan_indicator_order	
	keep_drop_nodes	
	is_dv_residvar	
	change_node_label	9
	cta_example	- 8

add_object

Add a Fit Object to a 'qgraph' Object

Description

Add a fit object (e.g., 'lavaan' output) to the a 'qgraph' object as an attribute.

Usage

```
add_object(semPaths_plot, object)
```

Arguments

object

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths(), or a similar qgraph::qgraph

object modified by other semptools functions.

Should be the object, such as the output of lavaan::sem() or lavaan::cfa(), used by semPlot::semPaths() to generate semPaths_plot. Note that this function will not check whether the object is appropriate because there is no

way to do so reliably.

add_rsq 3

Details

It adds an object to a qgraph::qgraph object as the attribute "semptools_fit_object", to be retrieved by other functions that need to access the original output used in semPlot::semPaths() to create a diagram.

Value

The original qgraph::qgraph object set to semPaths_plot, with the attribute "semptools_fit_object" set to object.

See Also

```
semPlot::semPaths()
```

Examples

```
library(lavaan)
library(semPlot)
mod <-
  'f1 = x01 + x02 + x03 + x06
   f2 = x04 + x05 + x06 + x07
   f3 = x08 + x09 + x10 + x03
   f4 = x11 + x12 + x13 + x14
fit <- lavaan::cfa(mod, cfa_example)</pre>
p <- semPaths(fit,</pre>
              whatLabels = "est",
              sizeMan = 3.25,
              node.width = 1,
              edge.label.cex = .75,
              mar = c(10, 5, 10, 5),
              DoNotPlot = TRUE)
p <- add_object(p, fit)</pre>
attr(p, "semptools_fit_object")
```

add_rsq

Add R-Squares to Endogenous Variables

Description

Replace the residual variances of exogenous variables by their R-squares in a qgraph::qgraph object.

Usage

```
add_rsq(semPaths_plot, object, digits = 2L, rsq_string = "R2=", ests = NULL)
```

4 add_rsq

Arguments

A qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions.

Object The object used by semPaths to generate the plot. Use the same argument name used in semPaths to make the meaning of this argument obvious. Currently only object of class lavaan is supported.

digits Integer indicating number of decimal places for the R-squares. Default is 2L.

rsq_string The string before the R-squares. Default is "R2=".

A data.frame from the parameterEstimates function, or from other function with these columns:? 1hs, op, rhs, and est. The rows with op equal to r2 are used to find the R-squares. Only used when object is not specified.

Details

Modify a qgraph::qgraph object generated by semPaths by setting the labels of the residuals of endogenous variables to their R-squares.

Require either the original object used in the semPaths call, or a data frame with the R-square for each endogenous variable.

Currently supports only plots based on lavaan output.

Value

If the input is a qgraph::qgraph object, the function returns a qgraph based on the original one, with R-squares added. If the input is a list of qgraph objects, the function returns a list of the same length.

```
mod_pa <-
  'x1 ~~ x2
  x3 \sim x1 + x2
  x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[ , c("lhs", "op", "rhs";
                                        "est", "pvalue", "se")]
m <- matrix(c("x1", NA, NA,
               NA, "x3", "x4",
             "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels = "est",</pre>
                         style = "ram",
                          nCharNodes = 0, nCharEdges = 0,
                          layout = m)
p_pa2 <- add_rsq(p_pa, fit_pa)</pre>
plot(p_pa2)
mod_cfa <-
 'f1 = x01 + x02 + x03
  f2 = x04 + x05 + x06 + x07
  f3 = x08 + x09 + x10
```

auto_factor_point_to 5

```
f4 = x11 + x12 + x13 + x14
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)</pre>
lavaan::parameterEstimates(fit_cfa)[ , c("lhs", "op", "rhs",
                                           "est", "pvalue", "se")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels = "est",</pre>
                           style = "ram",
                           nCharNodes = 0, nCharEdges = 0)
# Place standard errors on a new line
p_cfa2 <- add_rsq(p_cfa, fit_cfa)</pre>
plot(p_cfa2)
mod_sem <-
'f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
 f3 \sim f1 + f2
 f4 \sim f1 + f3
# Can be used with mark_se() and mark_sig()
fit_sem <- lavaan::sem(mod_sem, sem_example)</pre>
lavaan::parameterEstimates(fit_sem)[ , c("lhs", "op", "rhs",
                                          "est", "pvalue", "se")]
p_sem <- semPlot::semPaths(fit_sem, whatLabels = "est",</pre>
                           style = "ram",
                           nCharNodes = 0, nCharEdges = 0)
# Mark significance, and then add standard errors
p_sem2 <- mark_sig(p_sem, fit_sem)</pre>
p_sem3 \leftarrow mark_se(p_sem2, fit_sem, sep = "\n")
p_sem4 <- add_rsq(p_sem3, fit_sem)</pre>
plot(p_sem4)
```

auto_factor_point_to Create a Matrix for 'factor_point_to'

Description

Use a named vector or named arguments to create a matrix of the directions of indicators of factors.

Usage

```
auto_factor_point_to(factor_layout, ...)
```

Arguments

factor_layout Argument description.

6 auto_indicator_order

Additional arguments. If the first argument is not named, then it should be a named vector of directions, names being the names of the factors, and directions can be one of these values: "up", "down", "left", "right". Other arguments are ignored. If the arguments are named, then the names of the arguments are the names of the factors, and the argument values are the direction for the factors.

Details

A helper function to make it easier to create the matrix used by set_sem_layout() to indicate where the indicators of each factor should be positioned.

It works in two modes. If the first argument is a named vector, such as c(f1 = "up", f2 = "down"), then this vector will be used to create the direction matrix.

If the arguments are named, such as $auto_factor_point_to(factor_layout, f1 = "up", f2 = "down", then the names are treated as the factor names, and the values of the arguments are treated as the directions.$

The matrix created can then be used for the argument factor_point_to in set_sem_layout().

Value

A character matrix of the same dimension as factor_layout. The cells of factor names are replaced by the directions to place their indicators.

See Also

```
set_sem_layout()
```

Examples

Description

Determine the order of indicators and match indicators and factors based on a plot from a 'qgraph' object.

auto_indicator_order 7

Usage

```
auto_indicator_order(semPaths_plot, add_isolated_manifest = FALSE)
```

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths(), or a similar qgraph::qgraph object modified by other semptools functions.

add_isolated_manifest

Logical. Whether observed variables that are not indicators will be included in the output as "factors", each with one indicator (the observed variable).

Details

It inspects a qgraph::qgraph object and find variables that are the indicators of latent factors.

The output can be used in the argument indicator_order of set_cfa_layout() and set_sem_layout(). It can also be modified, such as reordered, as necessary.

If the generated order is used, there is no need to call this function manually because set_cfa_layout() and set_sem_layout() will automatically call this function, if indicator_order is not set.

It assumes that observed variables are represented by squares (shape set to "square") and latent variables represented by circles or ovals (shape set to "circle").

An observed variable is considered as an indicator if there is an arrow pointing to it from a latent variable.

If an indicator loaded on more than one latent variable, it will only be matched to one of them, determined by the order of appearance in the internal storage.

It uses node names, not node labels, in generating the output.

Value

A named character vector. The values are the indicators identified. The names are the latent factors the indicators loaded on.

See Also

```
set_sem_layout() and set_cfa_layout().
```

```
library(lavaan)
library(semPlot)

mod <-
   'f1 =~ x01 + x02 + x03 + x06
   f2 =~ x04 + x05 + x06 + x07
   f3 =~ x08 + x09 + x10 + x03
   f4 =~ x11 + x12 + x13 + x14
   '

fit <- lavaan::cfa(mod, cfa_example)
p <- semPaths(fit,</pre>
```

8 cfa_example

cfa_example

Sample dataset pa_example

Description

A sample dataset for fitting a confirmatory factor analysis model.

Usage

```
cfa_example
```

Format

An object of class data. frame with 200 rows and 14 columns.

Details

Fourteen variables (x01 to x14), 200 cases.

Sample model to fit (in lavaan::model.syntax notation)

```
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
```

change_node_label 9

change_node_label

Change node labels

Description

Change the labels of selected nodes.

Usage

```
change_node_label(
  semPaths_plot,
  label_list = NULL,
  label.cex,
  label.scale,
  label.prop,
  label.norm
)
```

Arguments

label.prop

label.norm

semPaths_plot	A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions.
label_list	A list of named lists. Each named list should have two named values: node and to. The first part, node, is a character denoting the label to be changed. It should be as appeared in the qgraph. The second part, to, is the new label. Expression can be used in to. A named vector can also be used, with the names being the nodes to be changed, and the values the new labels.
label.cex	Identical to the same argument in semPlot::semPaths(). A number tha control the size of labels in the nodes. It has no default. If not set, then this option in the semPaths_plot will not be changed.
label.scale	Identical to the same argument in semPlot::semPaths. A logical value that determine whether labels wil be scaled (resized) to the nodes they attach to. It has no

Identical to the same argument in semPlot::semPaths. A numeric vector of length equal to the number of nodes. If label.scale is TRUE, this number is the proportion of the width of a node that its label will be scaled (resized) to. It has no default. If not set, then this option in the semPaths_plot will not be changed.

default. If not set, then this option in the semPaths_plot will not be changed.

Identical to the same argument in semPlot::semPaths. It must be a string. All labels as wide as or narrower than this string will have the same font size, while all labels wider than this string will be rescaled to have the same width as this string. It has no default. If not set, then this option in the semPaths_plot will not be changed.

is_dv_residvar

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and change the labels of selected nodes

Value

A qgraph::qgraph based on the original one, with node attributes of selected nodes modified.

Examples

```
library(semPlot)
library(lavaan)
mod_pa <-
 'x1 ~~ x2
  x3 ~ x1 + x2
  x4 \sim x1 + x3
fit_pa <- sem(mod_pa, pa_example)</pre>
parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA, NA, NA, NA, "x3", "x4",
              "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPaths(fit_pa, whatLabels="est",</pre>
            style = "ram",
            nCharNodes = 0, nCharEdges = 0,
            layout = m)
my_label_list <- list(list(node = "x3", to = "mediator"),</pre>
                       list(node = "x4", to = expression(gamma)))
p_pa2 <- change_node_label(p_pa, my_label_list)</pre>
plot(p_pa2)
```

is_dv_residvar

Identify dependent Variable residual variance

Description

Check which parameters in a lavaan output are the residual variance of a dependent variable.

Usage

```
is_dv_residvar(lavaan_out)
```

Arguments

lavaan_out A lavaan::lavaan object.

keep_drop_nodes 11

Details

Check which parameters in a lavaan output are the variance of a dependent variable. Indicators of a latent variable will be excluded.

Value

A boolean vector with length equal to the number of rows in the lavaan output.

Examples

```
mod <-
 'x1 ~~ x2
 x3 \sim x1 + x2
 x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod, pa_example)</pre>
is_dv_residvar(fit_pa)
mod <-
 f1 = x01 + x02 + x03
  f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
fit_cfa <- lavaan::cfa(mod, cfa_example)</pre>
is_dv_residvar(fit_cfa)
mod <-
 'f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
  f3 = x08 + x09 + x10
  f4 = x11 + x12 + x13 + x14
  f3 \sim f1 + f2
  f4 \sim f1 + f3
fit_sem <- lavaan::sem(mod, sem_example)</pre>
is_dv_residvar(fit_sem)
```

keep_drop_nodes

Keep or drop nodes

Description

Keep or drop nodes from an semPlotModel object.

Usage

```
drop_nodes(object, nodes)
keep_nodes(object, nodes)
```

Arguments

12

```
object An an semPlot::semPlotModel generated by semPlot::semPlotModel().

nodes A character vector of the nodes to be kept or removed.
```

Details

These functions can be used to edit the nodes in an semPlot::semPlotModel generated by semPlot::semPlotModel(). The edited object can then be passed to semPlot::semPaths() to generate a path diagram.

Use keep_nodes() to specify the nodes to be kept. All other nodes will be removed.

Use drop_nodes() to specify the nodes to be dropped. All other nodes will be kept.

Value

An object of the class semPlot::semPlotModel.

Examples

```
mod_pa <-
  'x1 ~~ x2
   x3 \sim x1 + x2
   x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
m <- matrix(c("x1", NA, NA,</pre>
             NA, "x3", "x4",
             "x2", NA, NA), byrow = TRUE, 3, 3)
pm_pa <- semPlot::semPlotModel(fit_pa)</pre>
semPlot::semPaths(pm_pa, whatLabels = "est",
                  style = "ram",
                  nCharNodes = 0, nCharEdges = 0,
                  layout = m)
pm_pa2 <- drop_nodes(pm_pa, c("x3"))</pre>
semPlot::semPaths(pm_pa2, whatLabels = "est",
                  style = "ram",
                  nCharNodes = 0, nCharEdges = 0,
                  layout = m)
pm_pa3 <- keep_nodes(pm_pa, c("x1", "x3", "x4"))</pre>
semPlot::semPaths(pm_pa3, whatLabels = "est",
                  style = "ram",
                  nCharNodes = 0, nCharEdges = 0,
                  layout = m)
```

lavaan_indicator_order

Determine the Order of Indicators Using a 'lavaan' Model Syntax

Description

Determine the order of indicators and match indicators and factors based on a 'lavaan' model syntax.

lavaan_indicator_order

Usage

```
lavaan_indicator_order(model_syntax)
```

Arguments

model_syntax A string that should be a model specified in lavaan model syntax. Only the factor structure (operator =~) in the model will be used.

Details

It generates a named vector for the argument indicator_order of set_cfa_layout() and set_sem_layout() using a lavaan model syntax.

13

A variable is considered an indicator if it is on the right-hand side of the operator =~.

If an indicator loaded on more than one latent variable, it will only be matched to one of them, determined by the order of appearance in the internal storage.

Value

A named character vector. The values are the indicators in the model syntax. The names are the latent factors the indicators loaded on.

See Also

```
set_sem_layout() and set_cfa_layout().
```

Examples

mod <-

```
'f1 =~ x01 + x02 + x03 + x06
f4 =~ x11 + x12 + x13 + x14
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10 + x03

lavaan_indicator_order(mod)

mod <-
  'f1 =~ x01 + x02 + x03 + x06
f3 =~ x08 + x09 + x10 + x03
f2 =~ x04 + x05 + x06 + x07
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f3
  '

lavaan_indicator_order(mod)
```

14 layout_matrix

layout_matrix

Create the layout matrix for semPaths

Description

Create the layout matrix from a list of coordinates for semPaths.

Usage

```
layout_matrix(...)
```

Arguments

. . .

Each node in the matrix is specified by this form: name = c(x, y). The name is the node label, and the vector is the position of the node. The first element is the x position, and the second element is the y position, measured from the top left corner. The size of the grid is determined automatically. For a grid of n rows and m columns, the top left cell is specified by c(1, 1), and the bottom right cell is specified by c(n, m).

Details

The layout argument in semPlot::semPaths() accepts a matrix with node labels as the elements, and NA for empty cells. This function allows user to create the matrix using a list of coordinates for the node labels.

Value

A layout matrix for the layout argument of semPlot::semPaths().

mark_se 15

mark_se

Add Standard Error Estimates to Parameter Estimates (Edge Labels)

Description

Add standard error estimates, in parentheses, to parameter estimates (edge labels) in a qgraph::qgraph object.

Usage

```
mark_se(
    semPaths_plot,
    object,
    sep = " ",
    digits = 2L,
    ests = NULL,
    std_type = FALSE
)
```

Arguments

semPaths_plot	A qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions.
object	The object used by semPaths to generate the plot. Use the same argument name used in semPaths to make the meaning of this argument obvious. Currently only object of class lavaan is supported.
sep	A character string to separate the coefficient and the standard error (in parentheses). Default to " " (one space). Use "\n" to enforce a line break.
digits	Integer indicating number of decimal places for the appended standard errors. Default is 2L.
ests	A data.frame from the parameterEstimates function, or from other function with these columns:? 1hs, op, rhs, and se. Only used when object is not specified.
std_type	If standardized solution is used in the plot, set this either to the type of standardization (e.g., "std.all") or to TRUE. It will be passed to lavaan::standardizedSolution() to compute the standard errors for the standardized solution. Used only if standard errors are not supplied directly through ests.

Details

Modify a qgraph::qgraph object generated by semPaths (currently in parentheses) to the labels. Require either the original object used in the semPaths call, or a data frame with the standard error for each parameter. The latter option is for standard errors not computed by lavaan but by other functions.

Currently supports only plots based on lavaan output.

This function is a variant of, and can be combined with, the mark_sig function.

16 mark_se

Value

If the input is a qgraph::qgraph object, the function returns a qgraph based on the original one, with standard error estimates appended. If the input is a list of qgraph objects, the function returns a list of the same length.

```
mod_pa <-
  'x1 ~~ x2
   x3 \sim x1 + x2
  x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[ , c("lhs", "op", "rhs",
                                         "est", "pvalue", "se")]
m \leftarrow matrix(c("x1", NA, NA,
               NA, "x3", "x4",
              "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels = "est",</pre>
                          style = "ram",
                          nCharNodes = 0, nCharEdges = 0,
                          layout = m)
p_pa2 <- mark_se(p_pa, fit_pa)</pre>
plot(p_pa2)
mod_cfa <-
 f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)</pre>
lavaan::parameterEstimates(fit_cfa)[ , c("lhs", "op", "rhs",
                                          "est", "pvalue", "se")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels = "est",</pre>
                           style = "ram",
                           nCharNodes = 0, nCharEdges = 0)
# Place standard errors on a new line
p_cfa2 \leftarrow mark_se(p_cfa, fit_cfa, sep = "\n")
plot(p_cfa2)
mod_sem <-
'f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
 f3 \sim f1 + f2
 f4 \sim f1 + f3
fit_sem <- lavaan::sem(mod_sem, sem_example)</pre>
lavaan::parameterEstimates(fit_sem)[ , c("lhs", "op", "rhs",
                                          "est", "pvalue", "se")]
```

mark_sig 17

mark_sig

Mark Parameter Estimates (Edge Labels) Based on p-Value

Description

Mark parameter estimates (edge labels) based on p-value.

Usage

```
mark_sig(
   semPaths_plot,
   object,
   alphas = c('*' = 0.05, '**' = 0.01, '***' = 0.001),
   ests = NULL,
   std_type = FALSE
)
```

Arguments

object

semPaths_plot A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions.

The object used by semPaths to generate the plot. Use the same argument name used in semPaths to make the meaning of this argument obvious. Currently only

object of class lavaan is supported.

alphas A named numeric vector. Each element is the cutoff (level of significance), and

the name of it is the symbol to be used if p-value is less than this cutoff. The

default is c("" = .05, "" = .01, "" = .001).

ests A data.frame from the parameterEstimates function, or from other function

with these columns:? 1hs, op, rhs, and pvalue. Only used when object is not

specified.

std_type If standardized solution is used in the plot, set this either to the type of standard-

ization (e.g., "std.all") or to TRUE. It will be passed to lavaan::standardizedSolution()

to compute the p-values for the standardized solution. Used only if p-values are

not supplied directly through ests.

18 mark_sig

Details

Modify a qgraph::qgraph object generated by semPaths and add marks (currently asterisk, "*") to the labels based on their p-values. Require either the original object used in the semPaths call, or a data frame with the p-values for each parameter. The latter option is for p-values not computed by lavaan but by other functions.

Currently supports only plots based on lavaan output.

Value

A qgraph::qgraph based on the original one, with marks appended to edge labels based on their p-values.

```
mod_pa <-
 'x1 ~~ x2
 x3 \sim x1 + x2
 x4 ~ x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m \leftarrow matrix(c("x1", NA, NA,
               NA, "x3", "x4",
             "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",</pre>
           style = "ram",
           nCharNodes = 0, nCharEdges = 0,
           layout = m)
p_pa2 <- mark_sig(p_pa, fit_pa)</pre>
plot(p_pa2)
mod_cfa <-
 f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)</pre>
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs", "est", "pvalue")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels="est",</pre>
           style = "ram",
           nCharNodes = 0, nCharEdges = 0)
p_cfa2 <- mark_sig(p_cfa, fit_cfa)</pre>
plot(p_cfa2)
mod_sem <-
 f1 = x01 + x02 + x03
  f2 = x04 + x05 + x06 + x07
  f3 = x08 + x09 + x10
  f4 = x11 + x12 + x13 + x14
  f3 \sim f1 + f2
```

pa_example 19

pa_example

Sample dataset pa_example

Description

A sample dataset for fitting a path analysis model.

Usage

pa_example

Format

An object of class data. frame with 100 rows and 4 columns.

Details

Four variables (x1 to x4), 100 cases.

Sample model to fit (in lavaan::model.syntax notation)

```
mod <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
```

20 rescale_layout

pa_example_3covs

Sample dataset pa_example_3covs

Description

A sample dataset for fitting a path analysis model, with three control variables.

Usage

```
pa_example_3covs
```

Format

An object of class data. frame with 100 rows and 7 columns.

Details

Four variables (x1 to x4), and three control variables (cov1, cov2, cov3), 100 cases.

Sample model to fit (in lavaan::model.syntax notation)

```
mod <-

x3 ~ x1 + x2 + cov1 +cov2 + cov3

x4 ~ x1 + x3 + cov1 +cov2 + cov3
```

rescale_layout

Rescale the Layout

Description

Rescale the layout of a qgraph object, such as the output of semptools functions that modify the output of semPlot::semPaths().

Usage

```
rescale_layout(semPaths_plot, x_min = -1, x_max = 1, y_min = -1, y_max = 1)
```

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths(), or a similar qgraph object modified by other semptools functions.

```
x_min, x_max, y_min, y_max
```

The ranges of x-coordinates and y-coordinates after rescaling. Default is -1 for x_min and y_min, and 1 for x_max and y_max. Change them to enlarge or shrink the plot.

rescale_layout 21

Details

The plot generated by some functions, such as set_sem_layout(), may have the area underused for some model. This function rescale the layout matrix, just like what the rescale argument of semPlot::semPaths() does.

Value

A qgraph::qgraph based on the original one, with the layout matrix rescaled.

```
library(lavaan)
library(semPlot)
mod <-
      f1 = x01 + x02 + x03
        f3 = x08 + x09 + x10
        f4 = x11 + x12 + x13 + x14
        f3 \sim f1 + x04
         f4 \sim f3 + x05'
fit_sem <- sem(mod, sem_example)</pre>
p <- semPaths(fit_sem, whatLabels="est",</pre>
                                          sizeMan = 5,
                                          nCharNodes = 0,
                                          nCharEdges = 0,
                                          edge.width = 0.8,
                                          node.width = 0.7,
                                          edge.label.cex = 0.6,
                                          mar = c(10, 10, 10, 10),
                                          DoNotPlot = TRUE)
plot(p)
 indicator_order <- c("x04", "x05", "x01", "x02", "x03"
                                                                  "x11", "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c("x04", "x05", "f1", "f1", "f1", "f4", 
factor_layout <- matrix(c( "f1", "f3", "f4",</pre>
                                                                                "x04", "x05", NA), byrow = TRUE, 2, 3)
 factor_point_to <- matrix(c("left", "up", "right",</pre>
                                                                                                                                              NA), byrow = TRUE, 2, 3)
                                                                                                NA, NA,
p2 <- set_sem_layout(p,</pre>
                                                             indicator_order = indicator_order,
                                                             indicator_factor = indicator_factor,
                                                             factor_layout = factor_layout,
                                                             factor_point_to = factor_point_to)
# The original plot with too much unused area
plot(p2)
rect(-1, -1, 1, 1)
rect(-1.5, -1.5, 1.5, 1.5)
# Expand the plot
p3 <- p2
p3 <- rescale_layout(p3)
```

22 rotate_resid

```
plot(p3)
rect(-1, -1, 1, 1)
rect(-1.5, -1.5, 1.5, 1.5)
```

rotate_resid

Rotate the residuals of selected nodes

Description

Rotate the residuals of selected nodes.

Usage

```
rotate_resid(semPaths_plot, rotate_resid_list = NULL)
```

Arguments

semPaths_plot

A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions.

rotate_resid_list

A named vector or a list of named list. For a named vector, the name of an element is the node for which its residual is to be rotated, and the value is the degree to rotate. The 12 o'clock position is zero degree. Positive degree denotes clockwise rotation, and negative degree denotes anticlockwise rotation. For example, c(x3 = 45, x4 = -45) means rotating the residual of x3 45 degrees clockwise, and rotating the residual of x4 45 degrees anticlockwise. For a list of named lists, each named list should have two named values: node and rotate. The position of the residual of node will be placed at rotate, in degree. For example, list(list(node = "x3", rotate = 45), list(node = "x4", rotate = -45)) is equivalent to c(x3 = 45, x4 = -45).

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and rotate the residuals of selected nodes. Currently only supports "ram" and similar styles of semPlot::semPaths.

Value

A qgraph::qgraph object based on the original one, with loopRotation attributes of selected nodes modified.

Examples

```
mod_pa <-
 'x1 ~~ x2
 x3 \sim x1 + x2
 x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA,</pre>
                            NA,
               NA, "x3", "x4",
              "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",</pre>
           style = "ram",
           nCharNodes = 0, nCharEdges = 0,
           layout = m)
my\_rotate\_resid\_vector \leftarrow c(x3 = 45, x4 = -45)
p_pa2v <- rotate_resid(p_pa, my_rotate_resid_vector)</pre>
plot(p_pa2v)
my_rotate_resid_list <- list(list(node = "x3", rotate = 45),</pre>
                          list(node = "x4", rotate = -45))
p_pa2l <- rotate_resid(p_pa, my_rotate_resid_list)</pre>
plot(p_pa21)
```

sem_2nd_order_example Sample dataset sem_2nd_order_example

Description

A sample dataset for fitting a latent variable model with two 2nd-order factors.

Usage

```
sem_2nd_order_example
```

Format

An object of class data. frame with 500 rows and 21 columns.

Details

```
Twenty one variables (x01 to x21), 500 cases.
```

Sample model to fit (in lavaan::model.syntax notation)

24 sem_example

```
mod <-

'f1 =~ x01 + x02 + x03

f2 =~ x04 + x05 + x06 + x07

f3 =~ x08 + x09 + x10

f4 =~ x11 + x12 + x13 + x14

f5 =~ x15 + x16 + x17 + x18

f6 =~ x19 + x20 + x21

f21 =~ 1*f1 + f3 + f4

f22 =~ 1*f2 + f5 + f6

f22 ~ f21
```

sem_example

Sample dataset sem_example

Description

A sample dataset for fitting a latent variable model.

Usage

```
sem_example
```

Format

An object of class data. frame with 200 rows and 14 columns.

Details

Fourteen variables (x01 to x14), 100 cases.

Sample model to fit (in lavaan::model.syntax notation)

```
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
```

set_cfa_layout 25

set_cfa_layout

Configure the layout of factors of a CFA graph by semPaths

Description

Configure the layout of factors and adjust other aspects of a CFA graph by semPaths.

Usage

```
set_cfa_layout(
   semPaths_plot,
   indicator_order = NULL,
   indicator_factor = NULL,
   fcov_curve = 0.4,
   loading_position = 0.5,
   point_to = "down"
)
```

Arguments

semPaths_plot

A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions.

indicator_order

A string vector of the indicators. The order of the names is the order of the indicators in the graph, when they are drawn on the bottom of the graph. The indicators should be grouped by the factors on which they load on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be either c("x1", "x2", "x4", "x3", "x5", "x6") or c("x3", "x5", "x6", "x1", "x2", "x4"). Indicators within a group can be ordered in any way. If it is a named vector, its names will be used for the argument indicator_factor. If it is NULL (default), auto_indicator_order() will be called to determine the indicator order automatically.

indicator_factor

A string vector of the same length of the indicator order, storing the name of the factor for which each of the indicator in indicator_factor loads on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is c("x3", "x5", "x6", "x1", "x2", "x4"), then indicator_factor should be c("f2", "f2", "f1", "f1", "f1"). If NULL (default) and indicator_order is a named vector (supplied by users or generated by auto_indicator_order()), then it will be set to the names of indicator_order.

fcov_curve A number used to set the curvature of the inter-factor covariances. Default is .4. loading_position

The positions of all factor loadings. Default is .5, on the middle of the arrows. Larger the number, closer the loadings to the indicators. Smaller the number, closer the loadings to the factors.

point_to

Can be "down", "left", "up", or "right". Specify the direction that the factors "point" to the indicators. Default is "down".

26 set_cfa_layout

Details

Modify a qgraph::qgraph object generated by semPaths based on a confirmatory factor analysis model.

Value

A qgraph::qgraph based on the original one, with various aspects of the model modified.

```
library(lavaan)
library(semPlot)
mod <-
 f1 = x01 + x02 + x03
 f2 = x04 + x05 + x06 + x07
 f3 = x08 + x09 + x10
 f4 = x11 + x12 + x13 + x14
fit_cfa <- lavaan::sem(mod, cfa_example)</pre>
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_cfa, whatLabels="est",</pre>
       sizeMan = 2.5,
       nCharNodes = 0, nCharEdges = 0,
       edge.width = 0.8, node.width = 0.7,
       edge.label.cex = 0.6,
       style = "ram",
       mar = c(10, 10, 10, 10)
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03", "x11",
                       "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c( "f2",  "f2",  "f2",  "f2",  "f1",  "f1",  "f1",  "f4",  "f4",  "f4",  "f4",  "f3",  "f3",  "f3")
p2 <- set_cfa_layout(p, indicator_order,</pre>
                           indicator_factor,
                           fcov_curve = 1.5,
                           loading_position = .8)
plot(p2)
# Use a named vector for indicator_order
indicator_order2 <- c(f2 = "x04", f2 = "x05", f2 = "x06", f2 = "x07",
                      f1 = "x01", f1 = "x02", f1 = "x03",
                      f4 = "x11", f4 = "x12", f4 = "x13", f4 = "x14",
                      f3 = "x08", f3 = "x09", f3 = "x10")
p2 <- set_cfa_layout(p,</pre>
                     indicator_order = indicator_order2,
                     fcov\_curve = 1.5,
                     loading_position = .8)
plot(p2)
# Use automatically generated indicator_order and indicator_factor
p2 <- set_cfa_layout(p,</pre>
                     fcov\_curve = 1.5,
                     loading_position = .8)
```

set_curve 27

```
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,</pre>
                           indicator_factor,
                           fcov_curve = 1.5,
                           loading_position = .8,
                           point_to = "left")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,</pre>
                           indicator_factor,
                           fcov_curve = 1.5,
                           loading_position = .8,
                           point_to = "up")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,</pre>
                           indicator_factor,
                           fcov_curve = 1.5,
                           loading_position = .8,
                           point_to = "right")
plot(p2)
```

set_curve

Bend or Straighten Selected edges

Description

Set the curve attributes of selected edges.

Usage

```
set_curve(semPaths_plot, curve_list = NULL)
```

Arguments

semPaths_plot

A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions.

curve_list

A named vector or a list of named list. For a named vector, the name of an element should be the path as specified by lavaan::model.syntax or as appeared in lavaan::parameterEstimates(). For example, to change the curve attribute of the path regressing y on x, the name should be "y ~ x". To change the curve attribute of the covariance between x1 and x2, the name should be "x1 ~~ x2". For example, c("y ~ x1" = -3, "x1 ~~ x2" = 2) change the curve attributes of the path from x1 to y and the covariance between x1 and x2 to -3 and 2, respectively. The order of the two nodes may matter for covariances. Therefore, if the curve of a covariance is not changed, try switching the order of the two nodes. For a list of named lists, each named list should have three named values: from, to, and new_curve. The curve attribute of the edge from from to to will be set to new_curve.

28 set_edge_attribute

Details

Modified a qgraph::qgraph object generated by semPlot::semPaths and change the curve attributes of selected edges.

Value

A qgraph::qgraph based on the original one, with curve attributes for selected edges changed.

Examples

```
mod_pa <-
 'x1 ~~ x2
 x3 ~ x1 + x2
 x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",</pre>
           style = "ram",
           nCharNodes = 0, nCharEdges = 0,
           layout = m)
my\_curve\_vector <- c("x2 \sim~ x1" = -1,
                    x4 \sim x1'' = 1
p_pa2v <- set_curve(p_pa, my_curve_vector)</pre>
plot(p_pa2v)
my_curve_list <- list(list(from = "x1", to = "x2", new_curve = -1),</pre>
                    list(from = "x1", to = "x4", new_curve = 1))
p_pa2l <- set_curve(p_pa, my_curve_list)</pre>
plot(p_pa21)
```

set_edge_attribute

Set the Attributes of Selected Edges

Description

Set arbitrary attributes of selected edges.

Usage

```
set_edge_attribute(semPaths_plot, values = NULL, attribute_name = NULL)
```

set_edge_attribute 29

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph

object modified by other semptools functions.

values A named vector or a list of named list. See the Details section on how to set this

argument.

attribute_name The name of the attribute to be changed.

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and change the selected attributes of selected edges.

This function is designed to be a general one that changes the attributes named by the user. The user needs to make sure that the attribute actually exists, and the values are valid for the named attribute.

Setting the value of values:

This argument can be set in two ways.

For a named vector, the name of an element should be the path as specified by lavaan::model.syntax or as appeared in lavaan::parameterEstimates().

For example, if the attributes to be changed are the colors of selected edges, to change the color of the path regressing y on x, the name should be "y ~ x". To change the color of the covariance between x1 and x2, the name should be "x1 ~~ x2". Therefore, c("y ~ x1" = "red", "x1 ~~ x2" = "blue") changes the colors of the path from x1 to y and the covariance between x1 and x2 to "red" and "blue", respectively.

The order of the two nodes *may* matter for covariances. Therefore, if the attribute of a covariance is not changed, try switching the order of the two nodes.

For a list of named lists, each named list should have three named values: from, to, and new_value. The attribute of the edge from from to to will be set to new_value.

The second approach is no longer recommended, though kept for backward compatibility.

Value

A qgraph::qgraph based on the original one, with the selected attributes of selected edges changed.

set_edge_color

set_edge_color

Set the Colors of Selected Edges

Description

Set the colors of selected edges.

Usage

```
set_edge_color(semPaths_plot, color_list = NULL)
```

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions.

color_list A named vector or a list of named list. See the Details section on how to set this

argument.

Details

Modified a qgraph::qgraph object generated by semPlot::semPaths and change the colors of selected edges.

Setting the value of color_list:

This argument can be set in two ways.

For a named vector, the name of an element should be the path as specified by lavaan::model.syntax or as appeared in lavaan::parameterEstimates().

For example, to change the color of the path regressing y on x, the name should be " $y \sim x$ ". To change the color of the covariance between x1 and x2, the name should be " $x1 \sim x2$ ". Therefore,

 $c("y \sim x1" = "red", "x1 \sim x2" = "blue")$ changes the colors of the path from x1 to y and the covariance between x1 and x2 to "red" and "blue", respectively.

The order of the two nodes *may* matter for covariances. Therefore, if the attribute of a covariance is not changed, try switching the order of the two nodes.

For a list of named lists, each named list should have three named values: from, to, and new_color. The attribute of the edge from from to to will be set to new_color.

The second approach is no longer recommended, though kept for backward compatibility.

Value

A qgraph::qgraph based on the original one, with colors for selected edges changed.

Examples

```
mod_pa <-
  'x1 ~~ x2
  x3 ~ x1 + x2
  x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA,</pre>
                            NA.
                NA, "x3", "x4",
               "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",</pre>
            style = "ram",
            nCharNodes = 0, nCharEdges = 0,
            lavout = m)
my\_color\_vector <- c("x2 \sim~ x1" = "red",
                      x4 \sim x1'' = blue''
p_pa2v <- set_edge_color(p_pa, my_color_vector)</pre>
plot(p_pa2v)
my_color_list <- list(list(from = "x1", to = "x2", new_color = "red"),</pre>
                      list(from = "x1", to = "x4", new_color = "blue"))
p_pa2l <- set_edge_color(p_pa, my_color_list)</pre>
plot(p_pa21)
```

```
set_edge_label_position
```

Set the positions of edge labels of selected edges

Description

Set the positions of edge labels of selected edges.

Usage

```
set_edge_label_position(semPaths_plot, position_list = NULL)
```

Arguments

semPaths_plot

A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions.

position_list

A named vector or a list of named lists. For a named vector, the name of an element should be the path as specified by lavaan::model.syntax or as appeared in lavaan::parameterEstimates(). For example, to change position of the edge label of the path regressing y on x, the name should be "y ~ x". The value is the position. The mid-point of the edge is 0.5. The closer the value to 1, the closer the label to the left-hand-side node (y in this example). The closer the value to 0, the close the label to the right-hand-side node (x in this example). For example, c("y ~ x1" = .2, "y ~ x2" = .7) moves the path coefficient from x1 to y closer to x, and the path coefficient from x2 to y closer to y. For a list of named lists, each named list should have three named values: from, to, and new_position. The edge label position of the edge from from to to will be set to new_position. For example, list(list(from = "x1", to = "y", new_position = .2), list(from = "x2", to = "y", new_position = .7)) is equivalent to the named vector above.

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and change the edge label positions of selected edges.

Value

A qgraph::qgraph based on the original one, with edge label positions for selected edges changed.

set_node_attribute 33

set_node_attribute

Set the Attributes of Selected Nodes

Description

Set arbitrary attributes of selected nodes

Usage

```
set_node_attribute(semPaths_plot, values = NULL, attribute_name = NULL)
```

Arguments

semPaths_plot A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph

object modified by other semptools functions.

values A named vector or a list of named list. See the Details section on how to set this

argument.

attribute_name The name of the attribute to be changed.

Details

Modify a qgraph::qgraph object generated by semPlot::semPaths and change the selected attributes of selected nodes.

This function is designed to be a general one that changes the attributes named by the user. The user needs to make sure that the attribute actually exists, and the values are valid for the named attribute.

Setting the value of values:

This argument can be set in two ways.

For a named vector, the name of an element should be the nodes for which their attributes are to be changed. The names need to the *displayed names* if plotted, which may be different from the names in mode.

For example, if the attributes to be changed are the colors of selected nodes, to change the color of x is to be changed, the name should be "x". Therefore, c("y" = "red", "x" = "red") changes the colors of the nodes y and x to "red" and "blue", respectively.

For a list of named lists, each named list should have two named values: node and new_value. The attribute of node will be set to new_value.

The second approach is no longer recommended, though kept for backward compatibility.

Value

A qgraph::qgraph based on the original one, with the selected attributes of selected nodes changed.

Examples

```
mod_pa <-
  'x1 ~~ x2
   x3 \sim x1 + x2
   x4 \sim x1 + x3
fit_pa <- lavaan::sem(mod_pa, pa_example)</pre>
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA,</pre>
                            NA,
                 NA, "x3", "x4",
               "x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",</pre>
            style = "ram",
            nCharNodes = 0, nCharEdges = 0,
            layout = m)
my_color_vector <- c(x3 = "red", x4 = "blue")</pre>
p_pa2v <- set_node_attribute(p_pa, my_color_vector, attribute_name = "color")</pre>
plot(p_pa2v)
my_color_list <- list(list(node = "x3", new_value = "green"),</pre>
                       list(node = "x4", new_value = "red"))
p_pa2l <- set_node_attribute(p_pa, my_color_list, attribute_name = "color")</pre>
plot(p_pa21)
```

set_sem_layout

Configure the layout of factors of an SEM graph by semPlot::semPaths

Description

Configure the layout of factors and adjust other aspects of an SEM graph by semPlot::semPaths.

Usage

```
set_sem_layout(
   semPaths_plot,
   indicator_order = NULL,
   indicator_factor = NULL,
   factor_layout = NULL,
   factor_point_to = NULL,
   indicator_push = NULL,
   indicator_spread = NULL,
```

```
loading_position = 0.5
)
```

Arguments

semPaths_plot

A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions.

indicator_order

A string vector of the indicators. The order of the names is the order of the indicators in the graph, when they are drawn on the bottom of the graph. The indicators should be grouped by the factors on which they load on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be either c("x1", "x2", "x4", "x3", "x5", "x6") or c("x3", "x5", "x6", "x1", "x2", "x4"). Indicators within a group can be ordered in any way. If it is a named vector, its names will be used for the argument indicator_factor. If it is NULL (default), auto_indicator_order() will be called to determine the indicator order automatically.

indicator_factor

A string vector of the same length of the indicator order, storing the name of the factor for which each of the indicator in indicator_factor loads on. For example, if x1, x2, x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is c("x3", "x5", "x6", "x1", "x2", "x4"), then indicator_factor should be c("f2", "f2", "f1", "f1", "f1"). If NULL (default) and indicator_order is a named vector (supplied by users or generated by auto_indicator_order()), then it will be set to the names of indicator_order.

factor_layout

A matrix of arbitrary size. This matrix will serve as a grid for users to specify where each latent factor should be placed approximately on the graph. Each cell should contain NA or the name of a latent factor. The locations of all latent factors must be explicitly specified by this matrix.

factor_point_to

Can be a named character vector with names being the names of factors, or a matrix of the same size as factor_layout. If it is a matrix, this matrix specifies where the indicators of each factor are positioned. Each cell should contain NA or one of these strings: "down", "left", "up", or "right". This is the direction that the corresponding latent factor (specified in factor_layout) points to its indicators. If it is a named character vector, the the values must be the directions, and the names the the factors. This vector will be converted internally by auto_factor_point_to() to create the matrix of direction.

indicator_push

(Optional) This argument is used to adjust the positions of the indicators of selected latent factors. It can be named vector or a list of named lists. For a named vector, The name is the factor of which the indicators will be "pushed", and the value is how "hard" the push is: the multiplier to the distance from the factor to the indicators. If this value is 1, then there is no change. If this value is greater than 1, then the indicators are pushed away from the latent factor. If this value is less than 1, then the indicators are pulled toward the latent factor. For example, to push the indicators of f3 away from f3, and pull the indicators of f4 toward f4, the argument can be set to c(f3 = 1.5, f4 = .5). For a list of named list, each named list has two named elements: node, the name of a latent factor,

and push, how the positions of its indicators will be adjusted. For example, to have the same effect as the vector above, the list is list(list(node = "f3", push = 1.5), list(node = "f4", push = .5)).

indicator_spread

(Optional) This argument is used to adjust the distance between indicators of selected latent factors. It can be a named vector or a list of named lists. For a named vector, the name is the factor of which the indicators will be spread out. The value is the multiplier to the distance between neighboring indicators. If this value is equal to 1, there is no change. Larger than one, the indicators will be "spread" away from each other. Less than one, the indicators will be placed closer to each others. For example, to spread the indicators of f1 and f4 farther away from each other, this argument can be set to c(f1 = 2, f4 = 1.5), with the indicators of f1 being spread out more than those of f4. For a list of named list, each named list has two named elements: node, the name of a latent factor, and spread, how the distance between indicators will be adjusted. For example, to have the same effect as the vector above, the argument can be set to list(list(node = "f1", spread = 2), list(node = "f4", spread = 1.5)).

loading_position

(Optional) Default is .5. This is used adjust the position of the loadings. If this is one single number, it will be used to set the positions of all loadings. If it is .5, the loadings are placed on the center of the arrows. Larger the number, closer the loadings to the indicators. Smaller the number, closer to the latent factors. This argument also accepts a named vector or a list of named lists, allowing users to specify the positions of loadings for each factor separately. For a named vector, in each element, the name is the factor whose loadings will be moved. The value is the positions of its loadings. The default is .50. We only need to specify the positions for factors to be changed from .50 to other values. For example, move the loadings of f2 closer to the indicators and those of f4 close to the f4, this argument can be set to c(f2 = .7, f4 = .3). For a list of named list, each named list should have two named elements: node, the name of the latent factor, and position, the positions of all loadings of this factors. To have the same effect as the vector above, this list can be used: list(list(node = "f2", position = .7), list(node = "f4", position = .3)).

Details

Modify a qgraph::qgraph object generated by semPaths based on an SEM model with latent factors. Since version 0.2.9.5, this function natively supports observed exogenous variable. If a variable is listed in both indicator_order and indicator_factor, as if it is both a factor and an indicator, this function will assume that it is an observed exogenous variable. It will be positioned as a factor according to factor_layout, but no indicators will be drawn.

For versions older than 0.2.9.5, an observed exogenous variable needs to be specified as an one-indicator factor in the model specification for this function to work.

Value

A qgraph::qgraph based on the original one, with various aspects of the model modified.

```
library(lavaan)
library(semPlot)
mod <-
 'f1 = x01 + x02 + x03
  f2 = x04 + x05 + x06 + x07
  f3 = x08 + x09 + x10
  f4 = x11 + x12 + x13 + x14
  f3 \sim f1 + f2
 f4 ~ f1 + f3
fit_sem <- lavaan::sem(mod, sem_example)</pre>
lavaan::parameterEstimates(fit_sem)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_sem, whatLabels="est",</pre>
       sizeMan = 5,
       nCharNodes = 0, nCharEdges = 0,
       edge.width = 0.8, node.width = 0.7,
       edge.label.cex = 0.6,
       style = "ram",
       mar = c(10, 10, 10, 10)
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03",
                     "x11", "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c( "f2", "f2", "f2", "f2", "f1", "f1", "f1",
                     "f4", "f4", "f4", "f4", "f3", "f3", "f3")
factor_layout <- matrix(c("f1", NA, NA,
                           NA, "f3", "f4",
                         "f2", NA, NA), byrow = TRUE, 3, 3)
factor_point_to <- matrix(c("left",</pre>
                                       NA,
                                NA, "down", "down",
                            "left",
                                                NA), byrow = TRUE, 3, 3)
                                        NA,
indicator_push <- c(f3 = 2, f4 = 1.5)
indicator_spread <- c(f1 = 2, f2 = 2)
loading_position <- c(f1 = .5, f2 = .8, f3 = .8)
# Pipe operator can be used if desired
p2 <- set_sem_layout(p,</pre>
                      indicator_order = indicator_order,
                      indicator_factor = indicator_factor,
                      factor_layout = factor_layout,
                      factor_point_to = factor_point_to,
                      indicator_push = indicator_push,
                      indicator_spread = indicator_spread,
                      loading_position = loading_position)
p2 \leftarrow set\_curve(p2, c("f2 \sim f1" = -1,
                      "f4 ~ f1" = 1.5))
p2 <- mark_sig(p2, fit_sem)</pre>
p2 \leftarrow mark_se(p2, fit_sem, sep = "\n")
plot(p2)
# Use a named vector for indicator_order
indicator_order2 <- c(f2 = "x04", f2 = "x05", f2 = "x06", f2 = "x07",
                      f1 = "x01", f1 = "x02", f1 = "x03",
                      f4 = "x11", f4 = "x12", f4 = "x13", f4 = "x14",
```

38 to_list_of_lists

```
f3 = x08, f3 = x09, f3 = x10
p2 <- set_sem_layout(p,</pre>
                       indicator_order = indicator_order2,
                       factor_layout = factor_layout,
                       factor_point_to = factor_point_to,
                       indicator_push = indicator_push,
                       indicator_spread = indicator_spread,
                       loading_position = loading_position)
plot(p2)
# Use automatically generated indicator_order and indicator_factor
p2 <- set_sem_layout(p,</pre>
                       factor_layout = factor_layout,
                       factor_point_to = factor_point_to,
                       indicator_push = indicator_push,
                       indicator_spread = indicator_spread,
                       loading_position = loading_position)
plot(p2)
# Use named character vector for factor_point_to
directions <- c(f1 = "left",
               f2 = "left",
               f3 = "down",
               f4 = "down")
p2v2 <- set_sem_layout(p,</pre>
                       indicator_order = indicator_order,
                       indicator_factor = indicator_factor,
                       factor_layout = factor_layout,
                       factor_point_to = directions,
                       indicator_push = indicator_push,
                       indicator_spread = indicator_spread,
                       loading_position = loading_position)
p2v2 \leftarrow set_curve(p2v2, c("f2 \sim f1" = -1,
                          "f4 \sim f1" = 1.5))
p2v2 <- mark_sig(p2v2, fit_sem)</pre>
p2v2 \leftarrow mark_se(p2v2, fit_sem, sep = "\n")
plot(p2v2)
#Lists of named list which are equivalent to the vectors above:
#indicator_push <- list(list(node = "f3", push = 2),</pre>
                         list(node = "f4", push = 1.5))
#indicator_spread <- list(list(node = "f1", spread =</pre>
                           list(node = "f2", spread = 2))
#loading_position <- list(list(node = "f1", position = .5),</pre>
#
                           list(node = "f2", position = .8),
#
                           list(node = "f3", position = .8))
```

to_list_of_lists 39

Description

Convert a named vector to a list of lists, to be used by various functions in semptools.

Usage

```
to_list_of_lists(input, name1 = NULL, name2 = NULL, name3 = NULL)
```

Arguments

input	A named vector	
name1	The name for the first element in the list-in-list. Default is NULL.	
name2	The name for the second element in the list-in-list. Defaultis NULL.	
name3	The name for the third element in the list-in-list. Default is NULL. If this argument is not NULL, the names of the vector elements will be split using lavaa syntax (by calling lavaan::lavParseModelString()), and the right-hand sid (rhs) and left-hand side (lhs) of each element will be assigned to name1 an name2, respectively.	

Details

This function is not to be used by users, but to be used internally by other functions of semptools.

Value

A list of lists.

```
x <- c("x1 ~~ x2" = -1, "x4 ~ x1" = 1)
to_list_of_lists(x, name1 = "from", name2 = "to", name3 = "new_curve")
#list(list(from = "x1", to = "x2", new_curve = -1),
# list(from = "x1", to = "x4", new_curve = 1))

y <- c(x1 = 0, x2 = 180, x3 = 140, x4 = 140)
to_list_of_lists(y, name1 = "node", name2 = "rotate")
#list(list(node = "x1", rotate = 0),
# list(node = "x2", rotate = 180),
# list(node = "x3", rotate = 140),
# list(node = "x4", rotate = 140))</pre>
```

Index

* datasets	pa_example, 19	
cfa_example, 8	pa_example_3covs, 20	
pa_example, 19	parameterEstimates, 4, 15, 17	
pa_example_3covs, 20		
sem_2nd_order_example, 23	qgraph::qgraph, 2-4, 7, 9, 10, 15-18, 20-22	
sem_example, 24	25–36	
add_object, 2	rescale_layout, 20	
add_rsq, 3	rotate_resid, 22	
auto_factor_point_to, 5		
auto_factor_point_to(), 35	sem_2nd_order_example, 23	
auto_indicator_order, 6	sem_example, 24	
auto_indicator_order(), 25, 35	semPaths, <i>4</i> , <i>15</i>	
(y, 2 0, 00	semPlot::semPaths, 9, 10, 22, 27-30, 32-34	
cfa_example, 8	semPlot::semPaths(), 2, 3, 7, 9, 12, 14, 20,	
change_node_label, 9	21	
G =	<pre>semPlot::semPlotModel, 12</pre>	
drop_nodes (keep_drop_nodes), 11	<pre>semPlot::semPlotModel(), 12</pre>	
drop_nodes(), 12	semptools, 2, 4, 7, 9, 15, 17, 20, 22, 25, 27,	
	29, 30, 32, 33, 35, 39	
is_dv_residvar, 10	set_cfa_layout, 25	
	set_cfa_layout(), 7, 13	
keep_drop_nodes, 11	set_curve, 27	
keep_nodes (keep_drop_nodes), 11	set_edge_attribute, 28	
keep_nodes(), 12	set_edge_color, 30	
	<pre>set_edge_label_position, 31</pre>	
lavaan, 4, 15	set_node_attribute, 33	
lavaan::cfa(), 2	set_sem_layout, 34	
lavaan::lavaan, 10	set_sem_layout(), 6, 7, 13, 21	
lavaan::lavParseModelString(), 39	, , , ,	
lavaan::model.syntax, 8, 19, 20, 23, 24, 27, 29, 30, 32	to_list_of_lists, 38	
<pre>lavaan::parameterEstimates(), 27, 29, 30,</pre>		
<pre>lavaan::sem(), 2</pre>		
<pre>lavaan::standardizedSolution(), 15, 17</pre>		
lavaan_indicator_order, 12		
layout_matrix, 14		
mark_se, 15		
mark_sig, <i>15</i> , 17		