RESPUESTAS TP 9

1) a)
$$f(x) = \ln^2(x)$$

$$(0,1)$$
 $(1,+\infty)$

Decrece Crece

b)
$$y = x^4 - 4x^2$$

$$\left(-\infty,-\sqrt{2}\right) \quad \left(-\sqrt{2},0\right) \qquad \left(0,\sqrt{2}\right) \qquad \left(\sqrt{2},+\infty\right)$$

$$(0, \sqrt{2})$$

Decrece Crece Decrece Crece

c)
$$f(x) = 3 \sin x$$

Se analiza en el intervalo $[0, 2\pi]$

$$[0,\pi/2)$$
 $(\pi/2,3\pi/2)$ $(3\pi/2,2\pi]$

Crece Decrece Crece

$$d) y = x\sqrt{4 - x^2}$$

$$[-2, -\sqrt{2}) \qquad \left(-\sqrt{2}, \sqrt{2}\right) \qquad (\sqrt{2}, 2]$$

Crece Decrece Decrece

2) a)
$$y = 3 + \sin x$$

b) $y = x^4 - 4x^2$

3) a) $Dom(f(x)) = \mathbb{R} - \{-2\}; \ f(-1) = 1; \ f(0) = 0; \ f(1) = 2; \ f(5) = -4; \ f'(x) < 0 \ en$ $(-2,-1), (-1,0) \ y \ en \ \cup \ (1,\infty); \ f'(x) > 0 \ en \ (-\infty,-2) \ y \ en \ (0,1); \ f'(0) = 0;$ $\lim_{x \to 1^+} f(x) = 3; \ \lim_{x \to -1^-} f(x) = 3$. En x=-1 y en x=1, la función presenta discontinuidad no evitable de tipo salto.

b)
$$Dom(f(x)) = \mathbb{R} - \{-4, 10\}; \ f(0) = 0; \ f(7) = -2; \ f(14) = -4; \ f'(x) < 0 \ en \ (4,7)y \ en \ (10,14); \ f'(x) > 0 \ en \ (-\infty, -4), (-4, 4), (7,10) \ y \ en \ (14, \infty); \ f'(7) = 0;$$

$$\lim_{x \to -4^+} f(x) = -4; \ \lim_{x \to -4^-} f(x) = 6; \ \lim_{x \to 10} f(x) = 0$$

4) Si $f'(x) = \frac{2x}{(x^2-1)^2}$ los intervalos de monotonía son (en caso de ninguna poner N);

A. Creciente: $(0,1) \cup (1,+\infty)$; Decreciente: $(-\infty,-1) \cup (-1,0)$

5) a)
$$Dom = R$$
 $Img = R$

b)
$$f' > 0$$
 en $(-\infty, 2)$ y en $(5, +\infty)$

$$f'(x) < 0$$
 en (2,5)

c) Extremos relativos: M(2,20)

$$m(5, -7)$$

d)
$$f'(x) = 0$$
 en $x = 2$ y en $x = 5$

e) No hay puntos donde $\exists f'(x)$

a)
$$Dom = R - \{-2, 2\}$$
 $Img = R - (-1, 1]$

b)
$$f' > 0$$
 en $(-\infty, -2)$ y en $(-2, 0)$

$$f'(x) < 0$$
 en $(0,2)$ y en $(2,+\infty)$

c) Extremos relativos: M(0, -3/4)

d)
$$f'(x) = 0$$
 en $x = 0$

e) No hay puntos donde $\nexists f'(x)$

a)
$$Dom = R - \{4\}$$
 $Img = [-4, +\infty)$

b)
$$f' > 0$$
 en $(-\infty, -4)$, en $(0, 2)$ y en $(2, 4)$

$$f'(x) < 0$$
 en $(-4,0)$ y en $(4,+\infty)$

c) Extremos relativos: M(-4,6)

$$m(0, -4)$$

d)
$$f'(x) = 0$$
 en $x = -4$ y en $x = 2$

e) $\nexists f'(x)$ en x = 0 (punto anguloso)

6. Optimización A

a) Sin tapa

Área mínima si: $r=4/\sqrt[3]{\pi}$

$$h = 4/\sqrt[3]{\pi}$$

b) Con tapa

Área mínima si: $r = \sqrt[3]{32/\pi}$

$$h = 32/(\pi^{\frac{2}{3}}.\sqrt[3]{4})$$

7. Optimización B

Se deben vender 10 unidades diariamente para que el beneficio sea máximo.

8. Optimización C

El camión debe ir a 60 km/h para que el costo por kilómetro sea mínimo.

9. Optimización D.

$$p(x) = 5,00 - 0,002x$$

$$C(x) = 3.00 + 1.10x$$

Ingreso: $I(x) = x \cdot p(x) = 5x - 0.002x^2$

Ingreso Marginal: I'(x) = 5 - 0.004x

Costo Marginal: C'(x) = 1,10

$$Utilidad: U(x) = I(x) - C(x) = 5x - 0.002x^2 - 3 - 1.10x = -0.002x^2 + 3.9x - 3$$

$$Utilidad Marginal: U'(x) = -0.004x + 3.9$$

La utilidad será máxima si el nivel de producción es de x = 975 unidades.

10. Optimización E.

Se utilizará la menos cantidad posible de tubería si la estación de bombeo se ubica según el siguiente esquema:

