Lab1 - IE406

Sharvil Sheth - 201901201, Prabhav Shah - 201901216, Mohil Desai - 201901301, Dhaval Vaidya - 201901462, Vishvesh Patel - 201901464

Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from mpl_toolkits.mplot3d import Axes3D
import math
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression
```

```
Q1:
In [46]:
          #read data from the CSV
          data = pd.read_excel('Data for Lab 1.xlsx')
          data.head()
Out[46]:
                    У
         0 3504 18.0
         1 3693 15.0
         2 3436 18.0
         3 3433 16.0
         4 3449 17.0
In [47]:
          #store X and Y
          x = data['x']
          y = data['y']
In [48]:
          theta = np.linspace(-10,10,201)
          10fTheta = np.square(theta)
          #plot
          plt.plot(theta, 10fTheta)
          plt.xlabel('theta')
          plt.ylabel('L(theta)')
          plt.show()
```


Observations:

Here we observe that the curve of L(theta) is parabolic in nature. It attends the minimum value at L(theta) = 0 at theta = 0.

Q2:

```
In [49]:
          theta_1 = np.copy(theta)
          theta_2 = np.copy(theta)
          loftheta = np.zeros((201, 201))
          for i in range(201):
              for j in range(201):
                  loftheta[i][j] = ((theta_1[i]*theta_1[i]) + (theta_2[j]*theta_2[j])
          theta 1, theta 2 = np.meshgrid(theta 1, theta 2)
          #plot
          fig = plt.figure()
          ax = fig.add_subplot(111, projection='3d')
          ax.plot_surface(X = theta_1, Y = theta_2, Z = lOftheta)
          ax.set_xlabel('theta_1')
          ax.set_ylabel('theta_2')
          ax.set_zlabel('L(theta)')
          plt.show()
```


Here we get a contour plot of L(theta) for different values of theta_1 and theta_2. L(theta) attains its minimum value L(theta) = 0 at (theta_1,theta_2) = (0,0)

Q3a:

```
In [50]:
          x = np.array(data['x'])
          y = np.array(data['y'])
          ones = np.ones(len(x))
          ones = ones.reshape((94,1))
          x = x.reshape((94,1))
          x = np.append(ones, x,axis = 1)
          iterations = 50
          alpha = 0.0000001
          th_0 = 50
          th_1 = 0
          n = len(x)
          final theta 0 = []
          final theta 1 = []
          final_costs = []
          for i in range(iterations):
                  y_predicted = th_1 * x[:,1] + th_0 * x[:,0]
                  cost = sum((y-y\_predicted)**2)
                  delta_th_1 = -(2/n)*sum(x[:,1]*(y-y_predicted))
                  delta_th_0 = -(2/n)*sum(y-y_predicted)
                  th_1 = th_1 - alpha * delta_th_1
                  th_0 = th_0 - alpha * delta_th_0
                  final_theta_0.append(th_0)
                  final_theta_1.append(th_1)
                  final_costs.append(cost)
          final_theta_0 = np.array(final_theta_0)
          final_theta_1 = np.array(final_theta_1)
          final costs = np.array(final costs)
          #plot
          fig = plt.figure(figsize=(10, 10))
          ax = plt.axes(projection='3d')
          ax.plot3D(final_theta_0,final_theta_1, final_costs)
          ax.set_xlabel('theta_0')
          ax.set ylabel('theta 1')
          ax.set_zlabel('cost')
          plt.show()
```



```
In [51]:
    min_L_theta = min(final_costs) # minimum value value of L(theta)
    min_theta_0 = final_theta_0[np.argmin(final_costs)]
    min_theta_1 = final_theta_1[np.argmin(final_costs)]
    print(min_theta_0, min_theta_1, min_L_theta)
```

49.999996705417516 -0.008833886263553227 1576.7046182979047

Q3b:

```
In [52]:
    x_temp = x
    x_temp = x_temp.reshape((94,2))
    y = y.reshape((94,1))
    temp_x_t = x_temp.T.dot(x_temp)
    theta = np.linalg.pinv(temp_x_t).dot(x_temp.T).dot(y)
    print(theta)

[[ 4.92376299e+01]
    [-8.61193478e-03]]
```

Q4:

```
In [53]:
          y predicted = theta[0]*x[:,0] + theta[1]*x[:,1]
          y = y.reshape(len(y_predicted))
          L_{theta} = sum((y - y_predicted)**2)
          print(L theta)
          theta rand = np.array([55,-0.005])
          y_predicted = theta_rand[0]*x[:,0] + theta_rand[1]*x[:,1]
          y = y.reshape(len(y_predicted))
          L_theta_rand = sum((y - y_predicted)**2)
          print(L theta rand)
          1572.6503668922924
          27837.06390000001
         Q5:
In [54]:
          # Creating our dataset
          X = np.array([[1, 2], [2, 4], [3, 6], [4, 8]])
          Y = np.array([2,3,4,5])
          Y = Y.reshape((4,1))
         (a) using scikit-learn library
In [55]:
          #Creating model() instance and training our model on data (X,Y)
          model = linear_model.LinearRegression()
          model.fit(X,Y)
         LinearRegression()
Out[55]:
In [56]:
          model.score(X,Y)
Out[56]:
In [57]:
          model.coef
          array([[0.2, 0.4]])
Out[57]:
In [58]:
          model.intercept
         array([1.])
Out [58]:
         We get cofficients value [theta1,theta2] as [0.2,0.4] and intercept value as 1.
         In equation, y = 0.2x1 + 0.4x2 + 1
In [59]:
          #prediction with the help of trained model
          model.predict([[5,10], [6,12], [7,14]])
```

```
Out[59]: array([[6.], [7.], [8.]])
```

(b) Using normal equations

```
def normal_equation(X,y):
    x_tmp = X.T.dot(X)
    theta = np.linalg.inv(x_tmp).dot(X.T).dot(y)
    return theta

XX = np.c_[np.ones((4,1)), X]
    theta = normal_equation(XX, Y)
```

```
LinAlgError
                                          Traceback (most recent call last)
<ipython-input-60-ab9013afbd25> in <module>
      6 XX = np.c_[np.ones((4,1)), X]
---> 7 theta = normal equation(XX, Y)
<ipython-input-60-ab9013afbd25> in normal equation(X, y)
      1 def normal_equation(X,y):
            x tmp = X.T.dot(X)
---> 3
            theta = np.linalg.inv(x_tmp).dot(X.T).dot(y)
      4
            return theta
      5
~\Anaconda3\lib\site-packages\numpy\linalg\linalg.py in inv(a)
            signature = 'D->D' if isComplexType(t) else 'd->d'
    549
            extobj = get linalg error_extobj( raise linalgerror_singular)
    550
            ainv = umath linalg.inv(a, signature=signature, extobj=extobj)
--> 551
    552
            return wrap(ainv.astype(result t, copy=False))
    553
~\Anaconda3\lib\site-packages\numpy\linalg\linalg.py in raise linalgerror
singular(err, flag)
     95
     96 def _raise_linalgerror_singular(err, flag):
---> 97
           raise LinAlgError("Singular matrix")
     98
     99 def _raise_linalgerror_nonposdef(err, flag):
LinAlgError: Singular matrix
```

We got Singular Matrix Error because det(X'X) = 0. Even though, scikit learn can solve the model as it uses pseudo inverse instead of normal inverse. So, if we use pinv function instead of inv function, we can still get the correct results.

Q6a:

```
In [61]: dataset = pd.read_excel(r'Real estate valuation data set.xlsx')
    X = dataset.iloc[:,1:7]
    Y = dataset.iloc[:,7]
In [62]: X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/3)
```

Q6b:

The value of the regression cofficinets does not anyhow show the importance of each different features. So, it will be entirely wrong to assume that larger coefficients means more important features.

Q6c:

```
In [66]:
          min max = MinMaxScaler()
          X_normalised = min_max.fit_transform(X)
In [67]:
          X n train, X n test, Y n train, Y n test = train test split( X normalised,
          reg n = LinearRegression()
          reg n = reg n.fit(X n train, Y n train)
          Y n pred = reg n.predict(X n test)
In [68]:
          rms_norm = math.sqrt(mean_squared_error(Y_n_test, Y_n_pred))
          print(rms norm)
         8.743764087799743
In [69]:
          print(reg n.coef )
          print(reg n.score(X n test, Y n test))
         [ 4.97892873 -13.84082518 -28.00105628 12.17381156 20.80942729
           -0.459884261
         0.5417678968095057
```

Q6d:

Gaussian

```
In [70]:
    residual = Y_n_pred - Y_n_test
    residual.hist(bins=30,range = [-30,30])
```

Out[70]: <matplotlib.axes._subplots.AxesSubplot at 0x24349de02c8>

Q6e:

In [71]: dataset.corr()

Out[71]:

No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	longitu
1.000000	-0.048634	-0.032808	-0.013573	-0.012699	-0.010110	-0.0110
-0.048634	1.000000	0.017542	0.060880	0.009544	0.035016	-0.0410
-0.032808	0.017542	1.000000	0.025622	0.049593	0.054420	-0.0485
-0.013573	0.060880	0.025622	1.000000	-0.602519	-0.591067	-0.8063
-0.012699	0.009544	0.049593	-0.602519	1.000000	0.444143	0.4490
-0.010110	0.035016	0.054420	-0.591067	0.444143	1.000000	0.4129
-0.011059	-0.041065	-0.048520	-0.806317	0.449099	0.412924	1.0000
-0.028587	0.087529	-0.210567	-0.673613	0.571005	0.546307	0.5232
	1.000000 -0.048634 -0.032808 -0.013573 -0.012699 -0.010110 -0.011059	No transaction date 1.000000 -0.048634 -0.048634 1.000000 -0.032808 0.017542 -0.013573 0.060880 -0.012699 0.009544 -0.010110 0.035016 -0.011059 -0.041065	No transaction date X2 house age 1.000000 -0.048634 -0.032808 -0.048634 1.000000 0.017542 -0.032808 0.017542 1.000000 -0.013573 0.060880 0.025622 -0.012699 0.009544 0.049593 -0.010110 0.035016 0.054420 -0.011059 -0.041065 -0.048520	No transaction date X2 house age distance to the nearest MRT station 1.000000 -0.048634 -0.032808 -0.013573 -0.048634 1.000000 0.017542 0.060880 -0.032808 0.017542 1.000000 0.025622 -0.013573 0.060880 0.025622 1.000000 -0.012699 0.009544 0.049593 -0.602519 -0.011010 0.035016 0.054420 -0.591067 -0.011059 -0.041065 -0.048520 -0.806317	No transaction date X2 house age age distance to the nearest MRT station X4 number of convenience stores 1.0000000 -0.048634 -0.032808 -0.013573 -0.012699 -0.048634 1.000000 0.017542 0.060880 0.009544 -0.032808 0.017542 1.000000 0.025622 0.049593 -0.013573 0.060880 0.025622 1.000000 -0.602519 -0.012699 0.009544 0.049593 -0.602519 1.000000 -0.010100 0.035016 0.054420 -0.591067 0.444143 -0.011059 -0.041065 -0.048520 -0.806317 0.449099	No transaction date X2 house age distance to the nearest MRT station X4 number convenience stores X5 latitude 1.000000 -0.048634 -0.032808 -0.013573 -0.012699 -0.010110 -0.048634 1.000000 0.017542 0.060880 0.009544 0.035016 -0.032808 0.017542 1.000000 0.025622 0.049593 0.054420 -0.012699 0.009544 0.049593 -0.602519 1.000000 0.444143 -0.010110 0.035016 0.054420 -0.591067 0.444143 1.000000 -0.011059 -0.041065 -0.048520 -0.806317 0.449099 0.412924

```
In [72]:
          X_{\text{optimum}} = \text{dataset.iloc}[:,[3,4,5,6]]
          min_max = MinMaxScaler()
          X_opt_normalised = min_max.fit_transform(X_optimum)
In [73]:
          X_opt_train, X_opt_test, Y_opt_train, Y_opt_test = train_test_split( X_opt]
          reg_opt = LinearRegression()
          reg_opt = reg.fit(X_opt_train, Y_opt_train)
          Y_opt_pred = reg_opt.predict(X_opt_test)
In [74]:
          rms opt = math.sqrt(mean squared error(Y opt test, Y opt pred))
          print(rms_opt)
          9.000203768125342
In [75]:
          print(reg_opt.coef_)
          print(reg_opt.score(X_opt_test,Y_opt_test))
          [-29.39425081 \quad 11.30570064 \quad 20.71949247 \quad -0.59106937]
          0.5144954176958135
In [76]:
          residual = Y_opt_pred - Y_opt_test
          residual.hist(bins=30,range = [-30,30])
```

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0x2434ae34e88>

