CS/ECE/ME 532

Unit 3 Practice Problems

- 1. In (a) (e), let the SVD of a matrix be given as $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^T$, with $\Sigma_{1,1} = \sigma_1$ denoting the first singular value.
 - a) σ_1 is the largest value of $||Ax||_2$ for any unit norm vector x. True False
 - **b)** σ_1 is the largest value of $||x^T A||_2$ for any unit norm vector x. True False
 - c) σ_1 is ℓ_2 norm of the vector \boldsymbol{x} that maximizes $||\boldsymbol{x}^T\boldsymbol{A}||_2$. True False
 - d) $\sigma_1 = ||A||_{op}$. True False
 - e) $\sigma_1^2 = \sum_{i,j} \mathbf{A}_{i,j}^2$. True False
- 2. You collect eight, four dimensional data points that you store as columns in a matrix X:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \dots \ \boldsymbol{x}_8 \end{bmatrix} \tag{1}$$

You cluster the 8 data points by running the k-means algorithm with k = 3, which produces cluster centers, t_1, t_2, t_3 :

$$T = [t_1 \ t_2 \ t_3] = \begin{bmatrix} 1 & 1 & -2 \\ -4 & -2 & 0 \\ 7 & -6 & 2 \\ 7 & -6 & 9 \end{bmatrix}$$
(2)

- a) The data points x_1, x_2, x_3 are assigned to cluster t_1 , while x_4 is assigned to t_2 , and the remaining data points are assigned to t_3 . Specify the cluster assignment matrix W, so that $X \approx TW^T$.
- **b)** What is the rank of TW^T ? Why?
- **3.** You are told that a 3-by-4 matrix $\boldsymbol{X} = \begin{bmatrix} 4 & . & . & . \\ . & -2 & . & . \\ . & . & . & 2 \end{bmatrix}$ has singular-value decomposition $\boldsymbol{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

sure to explain how you obtained your answer.

4. Your are given n data points in \mathbb{R}^7 , and you want to cluster them using k means, k=2, with initial clusters centers t_1 and t_2 . Write pseudo-code for the k means algorithm. Use matrix notation: i.e, approximate $X \approx T_i W_i^T$, where T_i is the matrix of cluster centers on iteration i, and W_i is the cluster assignment matrix.

5. The informative SVD. Consider a data matrix X, where the m rows correspond to different training examples and the n columns correspond to different features. Let y be an $m \times 1$ vector with the labels for each example. Suppose the full SVD of X is given by $X = U\Sigma V^{\mathsf{T}}$, where:

$$U = \frac{1}{7} \begin{bmatrix} 4 & 2 & 2 & -5 \\ 1 & 4 & 4 & 4 \\ 4 & -5 & 2 & 2 \\ 4 & 2 & -5 & 2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad V = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}$$

Answer the following questions.

- a) For a weight vector $\boldsymbol{w} \in \mathbb{R}^n$, the vector $\boldsymbol{X}\boldsymbol{w}$ is its prediction of the labels. Give a basis for the set of all such prediction vectors.
- b) If we restrict the weight vector to satisfy $\|\boldsymbol{w}\|_2 \leq 1$, what is the largest possible prediction $\boldsymbol{X}\boldsymbol{w}$ (as measured in terms of its 2-norm)?
- c) Are there weight vectors such that Xw = 0? If so, find a basis for the set of all such vectors.
- d) Write an expression for the pseudo-inverse X^{\dagger} satisfying $X^{\dagger}X = I$ (you may leave it in factored form)
- e) Suppose $y = \begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Compute the value of $\min_{w} \|Xw y\|_{2}^{2}$.