

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving a single population mean or proportion
- Formulate a decision rule for testing a hypothesis
- Know how to use the test statistic, critical value, and p-value approaches to test the null hypothesis
- Know what Type I and Type II errors are
- Compute the probability of a Type II error

What is a Hypothesis?

A hypothesis is a claim (assumption) about a population parameter:

population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is p = .68

The Null Hypothesis, H₀

States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is at least three ($H_0: \mu \ge 3$)

 Is always about a population parameter, not about a sample statistic

$$H_0: \mu \geq 3$$

The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H_A

- Is the opposite of the null hypothesis
 - e.g.: The average number of TV sets in U.S. homes is less than 3 (H_A : μ < 3)
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be accepted
- Is generally the hypothesis that is believed (or needs to be supported) by the researcher

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

 H_0 : $\mu = 50$)

Population

Is $\bar{x}=20$ likely if $\mu = 50$?

If not likely,

REJECT Null Hypothesis

Suppose the sample mean age

is 20: $\bar{x} = 20$

A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc.

Reason for Rejecting H₀

Sampling Distribution of \bar{x}

If it is unlikely that we would get a sample mean of this value ...

... if in fact this were the population mean...

... then we reject the null hypothesis that $\mu = 50$.

Level of Significance, α

- Defines unlikely values of sample statistic if null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Level of significance = α

 H_0 : $\mu \ge 3$

 H_A : $\mu < 3$

Lower tail test

→ Represents critical value

Rejection region is shaded

$$H_0$$
: µ ≤ 3

$$H_{A}$$
: $\mu > 3$

Upper tail test

$$H_0$$
: $\mu = 3$

$$H_A$$
: $\mu \neq 3$

Two tailed test

Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

(continued)

- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

State of Nature

Decision H₀ False H₀ True Do Not Type II Error No error Reject $(1 - \alpha)$ (**B**) H_0 No Error Reject Type I Error H_0 (α) $(1-\beta)$

Key:
Outcome
(Probability)

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α) \uparrow , then Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
 - β when the difference between hypothesized parameter and its true value

- β when α
- β when σ
- $\beta \uparrow$ when $n \downarrow$

Critical Value Approach to Testing

- Convert sample statistic (e.g.: \(\frac{7}{X} \)) to test statistic (\(Z \) or \(t \) statistic)
- Determine the critical value(s) for a specified level of significance α from a table or computer
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Lower Tail Tests

The cutoff value,

 $-z_{\alpha}$ or x_{α} , is called a

critical value

 H_0 : μ ≥ 3

 H_A : $\mu < 3$

Upper Tail Tests

Two Tailed Tests

There are two cutoff values (critical values):

$$H_0$$
: $\mu = 3$
 H_A : $\mu \neq 3$

Critical Value Approach to Testing

Convert sample statistic (x) to a test statistic
 (Z or t statistic)

Calculating the Test Statistic

Hypothesis Tests for μ

σ Known

σ Unknown

The test statistic is:

$$z = \frac{\bar{x} - \mu}{\sigma}$$

$$\sqrt{n}$$

Calculating the Test Statistic

(continued)

The test statistic is:

$$t_{n-1} = \frac{\frac{-}{x - \mu}}{\frac{s}{\sqrt{n}}}$$

But is sometimes approximated using a z:

$$z = \frac{\bar{x} - \mu}{\sigma}$$

Working With Large Samples

Calculating the Test Statistic

- 1. Specify the population value of interest
- 2. Formulate the appropriate null and alternative hypotheses
- 3. Specify the desired level of significance
- 4. Determine the rejection region
- 5. Obtain sample evidence and compute the test statistic
- 6. Reach a decision and interpret the result

Test the claim that the true mean # of TV sets in US homes is at least 3.

(Assume $\sigma = 0.8$)

- 1. Specify the population value of interest
 - The mean number of TVs in US homes
- 2. Formulate the appropriate null and alternative hypotheses
 - H_0 : $\mu \ge 3$ H_A : $\mu < 3$ (This is a lower tail test)
- 3. Specify the desired level of significance
 - Suppose that $\alpha = .05$ is chosen for this test

(continued)

4. Determine the rejection region

This is a one-tailed test with $\alpha = .05$. Since σ is known, the cutoff value is a z value:

Reject H_0 if $z < z_{\alpha} = -1.645$; otherwise do not reject H_0

 5. Obtain sample evidence and compute the test statistic

Suppose a sample is taken with the following results: n = 100, $\bar{x} = 2.84$ ($\sigma = 0.8$ is assumed known)

Then the test statistic is:

$$z = \frac{\bar{x} - \mu}{\sigma} = \frac{2.84 - 3}{0.8} = \frac{-.16}{.08} = \frac{-2.0}{0.8}$$

(continued)

6. Reach a decision and interpret the result

Since z = -2.0 < -1.645, we <u>reject the null</u> <u>hypothesis</u> that the mean number of TVs in US homes is at least 3

(continued)

An alternate way of constructing rejection region:

we <u>reject the null</u>
https://www.null.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://www.number.com/https://

p-Value Approach to Testing

- Convert Sample Statistic (e.g. x) to Test
 Statistic (z or t statistic)
- Obtain the p-value from a table or computer
- Compare the p-value with α
 - If p-value $< \alpha$, reject H_0
 - If p-value $\geq \alpha$, do not reject H_0

p-Value Approach to Testing

(continued)

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-value example

Example: How likely is it to see a sample mean of 2.84 (or something further below the mean) if the true mean is μ = 3.0?

p-value example

(continued)

- Compare the p-value with α
 - If p-value $< \alpha$, reject H_0
 - If p-value $\geq \alpha$, do not reject H_0

Here: p-value = .0228 α = .05

Since .0228 < .05, we reject the null hypothesis

Example: Upper Tail z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

H_0 : μ ≤ 52	the average is not over \$52 per month
H_A : $\mu > 52$	the average is greater than \$52 per month
	(i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

(continued)

■ Suppose that α = .10 is chosen for this test

Review: Finding Critical Value - One Tail

Standard Normal Distribution Table (Portion)

1.3 .4147 .4162 .4177

Example: Test Statistic

(continued)

Obtain sample evidence and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\bar{x} = 53.1$ ($\sigma = 10$ was assumed known)

Then the test statistic is:

$$z = \frac{\bar{x} - \mu}{\sigma} = \frac{53.1 - 52}{10} = 0.88$$

Example: Decision

(continued)

Reach a decision and interpret the result:

Do not reject H_0 since $z = 0.88 \le 1.28$

i.e.: there is not sufficient evidence that the mean bill is over \$52

p - Value Solution

(continued)

Calculate the p-value and compare to α

$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

$$= P\left(z < \frac{53.1 - 52.0}{10/\sqrt{64}}\right)$$

$$= P(z \ge 0.88) = .5 - .3106$$

= .1894

Do not reject H_0 since p-value = .1894 > α = .10

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in $\bar{x} = 172.50 and

s = \$15.40. Test at the

 $\alpha = 0.05$ level.

(Assume the population distribution is normal)

 H_0 : $\mu = 168$

 H_{Δ} : $\mu \neq 168$

Example Solution: Two-Tail Test

$$H_0$$
: $\mu = 168$

 H_A : $\mu \neq 168$

$$\alpha = 0.05$$

- n = 25
- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24} = \pm 2.0639$$

$$t_{n-1} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168

Hypothesis Tests for Proportions

- Involves categorical values
- Two possible outcomes
 - "Success" (possesses a certain characteristic)
 - "Failure" (does not possesses that characteristic)
- Fraction or proportion of population in the "success" category is denoted by p

(continued)

 Sample proportion in the success category is denoted by p

$$\frac{1}{p} = \frac{x}{n} = \frac{number of successes in sample}{sample size}$$

 When both np and n(1-p) are at least 5, p can be approximated by a normal distribution with mean and standard deviation

$$\mu_{\overline{P}} = p$$

$$\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Hypothesis Tests for Proportions

The sampling ____ distribution of p is normal, so the test statistic is a z value:

$$z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Example: z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Check:

$$np = (500)(.08) = 40$$

$$n(1-p) = (500)(.92) = 460$$

Z Test for Proportion: Solution

$$H_0$$
: p = .08

 H_{Δ} : p \neq .08

$$\alpha = .05$$

$$n = 500, \overline{p} = .05$$

Test Statistic:

$$z = \frac{\bar{p} - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1-.08)}{500}}} = -2.47$$

Critical Values: ± 1.96

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

p - Value Solution

(continued)

Calculate the p-value and compare to α

(For a two sided test the p-value is always two sided)

Reject H_0 since p-value = .0136 < α = .05

Type II Error

 Type II error is the probability of failing to reject a false H₀

Suppose we fail to reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu = 50$

Type II Error

(continued)

Suppose we do not reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu = 50$

Type II Error

(continued)

Suppose we do not reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu = 50$

Calculating \(\beta \)

Suppose n = 64 , σ = 6 , and α = .05

$$\text{cutoff} = \sum_{\text{(for } H_0: \ \mu \geq 52)}^{-} = \mu - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 52 - 1.645 \frac{6}{\sqrt{64}} = 50.766$$

Calculating β

(continued)

Suppose n = 64 , σ = 6 , and α = .05

$$P(\bar{x} \ge 50.766 \mid \mu = 50) = P\left(z \ge \frac{50.766 - 50}{6/\sqrt{64}}\right) = P(z \ge 1.02) = .5 - .3461 = .1539$$

Using PHStat

Sample PHStat Output

Chapter Summary

- Addressed hypothesis testing methodology
- Performed z Test for the mean (σ known)
- Discussed p-value approach to hypothesis testing
- Performed one-tail and two-tail tests . . .

Chapter Summary

(continued)

- Performed t test for the mean (σ unknown)
- Performed z test for the proportion
- Discussed type II error and computed its probability