

1) Question de théorie

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
athématiques 2	C, D	Durée de l'épreuve : 3h05 Date de l'épreuve : 29 mai 2020

Numéro du candidat	:

5 points

Instructions

- L'élève répond à toutes les questions de la partie obligatoire.
- L'élève répond à exactement 4 questions de la partie au choix. Il indique obligatoirement ses choix en marquant d'une croix les cases appropriées ci-dessous.

Seules les réponses correspondant aux questions choisies par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie obligatoire (20 points)

2) Question 1: Étude de fonction 15 points Partie au choix (40 points) ☐ Question 2 : Comportement asymptotique et position relative 10 points ☐ Question 3 : Équations et inéquations exponentielles et logarithmiques 10 points ☐ Question 4 : Limites et dérivation logarithmique 10 points ☐ Question 5 : Équation exponentielle et tangente à une courbe 10 points ☐ Question 6 : Intégrales définies et indéfinies 10 points ☐ Question 7 : Primitives et intégrales indéfinies 10 points ☐ Question 8 : Calcul d'aires et de volumes 10 points

Partie Obligatoire (20 points)

Question théorique (3+2=5 points)

Démontrer les propriétés suivantes :

a) Si a est un réel strictement positif distinct de 1, alors pour tout réel x on a :

$$(a^x)' = a^x \cdot \ln(a)$$

b) Pour tous réels x et y strictement positifs, on a :

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

Question 1

$$(0,5+3,5+2+3+3+3=15 \text{ points})$$

Soit la fonction f définie par $f(x) = \frac{6 + 5x + x^2}{e^{x+1}}$

- a) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- b) Calculer les limites aux bornes du domaine et étudier l'existence d'asymptotes éventuelles.
- c) Étudier la position du graphe de f par rapport à ses asymptotes horizontales ou obliques éventuelles.
- d) Démontrer que f' peut s'écrire sous la forme $f'(x) = -\frac{1+3x+x^2}{e^{x+1}}$.

Tracer le tableau des variations et examiner l'existence d'extrema.

- e) Calculer la dérivée seconde, étudier la concavité de \mathcal{C}_f et l'existence de points d'inflexion.
- f) Tracer le graphe de f dans un repère orthonormé d'unité 1cm.

Partie au choix (40 points)

Question 2

(4+2+4=10 points)

Soit la fonction f définie par $f(x) = \frac{1}{2}x + 2 - \ln\left(\frac{x}{x+1}\right)$.

- a) Déterminer le domaine de définition et étudier le comportement asymptotique de f en $+\infty$ et en $-\infty$.
- b) Étudier la position du graphe de f par rapport à ses asymptotes horizontales ou obliques éventuelles.
- c) Déterminer une équation de la tangente à la courbe de f au point d'abscisse 2.

Question 3

(4+6=10 points)

Résoudre dans \mathbb{R} l'équation et l'inéquation suivantes :

- a) $3^{x+1} 10 \cdot 3^{2-x} = 3$
- b) $\log_3 x \log_{27} (2x 1) \ge 0$

Question 4

((4+4)+2=10 points)

- a) Calculer les limites suivantes :
 - i. $\lim_{x \to -\infty} \left(\frac{2x-1}{2x+3} \right)^{x+1}$
 - ii. $\lim_{x\to 0^+} \frac{\ln(\cos(x))}{x^2}$
- b) Déterminer le domaine de dérivabilité et la dérivée de la fonction définie par $f(x) = 2^{\left(\frac{x}{x+2}\right)}$.

Question 5

(3+7=10 points)

a) Résoudre dans $\mathbb R$ l'équation suivante :

$$\frac{e^{1-x}}{e^{x+1}} = 1 + \frac{1}{e^x}$$

b) Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^{1-x}}{e^{x+1}}$.

Déterminer l'équation réduite de la tangente qui passe par le point A(1;0).

Question 6

(3+2+5=10 points)

Calculer les intégrales suivantes :

$$A = \int \frac{1+x}{2x^2 + 1} dx$$

$$B = \int_{0}^{2} \frac{x+2}{\sqrt{x^2 + 4x + 8}} dx$$

$$C = \int_{0}^{\frac{\pi}{4}} \sin(2x) \cdot e^{-x+1} dx$$

Question 7

(5+5=10 points)

On considère la fonction f définie sur $\mathbb{R}^* \setminus \{1\}$ par $f(x) = 1 + \frac{-x^2 + 3x + 1}{x^3 - 2x^2 + x}$.

a) Déterminer les réels a, b et c tels que pour tout $x \in \mathbb{R}^* \setminus \{1\}$ on a :

$$f(x) = 1 + \frac{a}{x} + \frac{b}{x-1} + \frac{c}{(x-1)^2}$$

b) Déterminer la primitive F de f telle que $F(-1) = -2\ln(2)$ sur un intervalle I à préciser.

Question 8

(3+(3+4)=10 points)

a) On considère la fonction f définie par

$$f(x) = x \cdot \ln\left(\frac{x}{2}\right).$$

Calculer l'aire de la partie du plan délimitée par la courbe de f, l'axe des abscisses et les droites d'équations x=1 et x=2.

b) On considère les fonctions f définie par

$$f(x) = -x^3 + 3x^2$$
 et g définie par $g(x) = -x + 3$.

- i. Déterminer les points d'intersection et étudier la position relative de \mathcal{C}_f avec \mathcal{C}_g .
- ii. Calculer le volume $\mathcal V$ du solide engendré par la rotation autour de l'axe des abscisses de la surface délimitée par $\mathcal C_f$ et $\mathcal C_g$.