25.04.2022. 21:37 Запачи - Codeforces

Machine Learning 2022-ITMO

А. Перекрёстная проверка

1 секунда €, 256 мегабайт

Разбейте множество из N объектов, каждый из которых принадлежит к одному из M классов, на K частей. Каждый объект должен попасть ровно в одну часть так, чтобы размеры частей, а также распределение классов по этим частям было сбалансировано. Формально, пусть cnt(x,c) — число объектов с классом c попавших в часть x, тогда должно выполняться $\forall x,y,c: |cnt(x,c)-cnt(y,c)| \leq 1$ и $\forall x,y: |\sum_c cnt(x,c)-\sum_c cnt(y,c)| \leq 1$.

Входные данные

Первая строка: три целых числа N, M, K ($1 \le N \le 10^5$, $1 \le M$, $K \le N$) — число объектов, классов и частей.

Вторая строка: N целых чисел C_i $(1 \le C_i \le M)$ — класс i-го объекта.

Выходные данные

Выведите K строк. Каждая строка x начинается с целого числа S — размера части x. Далее идут S целых чисел — номера объектов попавших в часть x. Объекты нумеруются с единицы.

ВХОДНЫЕ ДАННЫЕ 10 4 3 1 2 3 4 1 2 3 1 2 1 ВЫХОДНЫЕ ДАННЫЕ 4 1 4 9 10 3 2 3 5 3 6 7 8

В первой части содержится четыре объекта, два из них первого класса, один второго и один четвёртого. Во второй и третьей части по три объекта первых трёх классов.

В. F-мера

1 секунда €, 256 мегабайт

В результате эксперимента по классификации на K классов была получена матрица неточностей (Confusion matrix) CM, где CM[c,t] — число объектов класса c, которые были классифицированы как t. Посчитайте по данной матрице неточностей средневзвешенную по классам микро, макро и обычную F-меру.

Входные данные

Первая строка содержит целое число K — число классов ($1 \le K \le 20$). Далее идёт K строк — описание матрицы неточностей. Каждая строка c содержит K целых чисел — c-я строка матрицы неточностей. $\forall c,t:0 \le CM[c,t] \le 100$ и $\exists c,t:CM[c,t] \ge 1$.

Выходные данные

Выведите три вещественных числа с плавающей точкой — взвешенно усреднённую по классам микро, макро и обычную F-меру. Абсолютная погрешность ответа не должна превышать 10^{-6} .

входные да	ные	
2 0 1 1 3		
выходные д	анные	
0.705882353		

входные данные 3 3 1 1 3 1 1 1 3 1 выходные данные 0.333333333 0.326860841 0.316666667

В первом примере классы распределены как 1:4. Точность (precision), полнота (recall) и F-мера первого класса равны 0, а второго 0.75. При этом средняя точность, полнота и F-мера равны 0.6

С. Непараметрическая регрессия

2 секунды €, 256 мегабайт

Реализуйте алгоритм непараметрической регрессии, который бы поддерживал различные функции расстояний, ядер и окон. Описание ядер можно найти здесь:

https://en.wikipedia.org/w/index.php?oldid=911077090. Обратите внимание, что определение Прямоугольного ядра в данной задаче отличается.

Входные данные

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \le N \le 100, \, 1 \le M \le 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ ($-100 \le d_{i,j} \le 100$) — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ ($-100 \le d_{q,j} \le 100$) — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, gaussian, cosine, logistic, sigmoid.

Третья — название типа используемого окна: *fixed* — окно фиксированной ширины, *variable* — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h ($1 \leq h \leq 100$) — радиус окна фиксированной ширины, либо целое число K ($1 \leq K < N$) — число соседей учитываемое для окна переменной ширины.

Выходные данные

Выведите одно вещественное число с плавающей точкой — результат запроса. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

```
ВХОДНЫЕ ДАННЫЕ

3 2
0 2 1
1 1 0
2 0 1
0 0
euclidean
uniform
fixed
2

ВЫХОДНЫЕ ДАННЫЕ
0.0000000000
```

```
входные данные

3 2
0 2 1
1 1 0
2 0 1
0 0
euclidean
gaussian
variable
2

Выходные данные
0.6090086848
```

В случае неопределённости, когда в окно не попало ни одного объекта, требуется вывести значение по умолчанию для задачи регрессии — среднее значение целевой переменной по всем объектам из обучающей выборки.

D. Линейная регрессия

2.0 с €, 256 мегабайт

Найдите градиент функции ошибки $SMAPE(Y_i, \hat{Y_i}) = \frac{|Y_i - \hat{Y_i}|}{|Y_i| + |\hat{Y}_i|}$ для каждого объекта из набора данных. Гарантируется, что $|Y_i| + |\hat{Y}_i| > 0.$

Входные данные

Первая строка содержит два целых числа N $(1 \le N \le 10^4)$ — число объектов в наборе данных, и M $(1 \le M \le \min(N, 1000))$ — число признаков у объектов исключая зависимую переменную.

Следующие N строк содержат описание объектов. i-я из этих строк содержит описание i-го объекта, M+1 целых чисел. Первые M из этих чисел: $X_{i,j}$ ($|X_{i,j}| \leq 10^9$) — признаки i-го объекта, а последнее Y_i ($|Y_i| \leq 10^9$) — значение его зависимой переменной.

Последняя строка содержит M+1 целых числа A_j ($\left|A_j\right| \leq 10^9$) — коэффициенты прямой из уравнения

$$Y = A_0 \cdot X_0 + A_1 \cdot X_1 + \dots + A_{M-1} \cdot X_{M-1} + A_M$$

Выходные данные

Выведите N строк из M+1 вещественных чисел. i-я из этих строк должна содержать градиент функции ошибки для i-го объекта.

```
ВХОДНЫЕ ДАННЫЕ

2 1
2015 2045
2016 2076
31 -60420

ВЫХОДНЫЕ ДАННЫЕ

0.0 0.0
0.0 0.0
```

```
ВХОДНЫЕ ДАННЫЕ

4 1
1 0
1 2
2 2
2 4
1 1

ВЫХОДНЫЕ ДАННЫЕ

0.0 0.0
0.0 0.0
0.32 0.16
-0.32653061224489793 -0.16326530612244897
```

Е. Наивный байесовский классификатор

1 секунда[©], 256 мегабайт

Реализуйте наивный байесовский классификатор.

Залачи - Codeforces

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Для оценки вероятности встречи слов в каждом классе используется модель Бернулли с аддитивным сглаживанием (сглаживание Лапласа) $p(x) = \frac{count(x) + \alpha}{\sum_{y \in Q} count(y) + \alpha \cdot |Q|}$, где x — рассматриваемое событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Входные данные

В первой строке содержится целое положительное число K ($1 \le K \le 10)$ — число классов.

Во второй строке содержится K целых положительных чисел λ_C ($1 \leq \lambda_C \leq 10$) — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α ($1 \le \alpha \le 10$) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N ($1 \le N \le 200$) — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщение. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщении. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M ($1 \le M \le 200$) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \le L_j \le 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L_j слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборках меньше чем $2 \cdot 10^6$.

Выходные данные

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки. Допустимая абсолютная и относительная погрешность 10^{-4} .

Каждый j-й результат мягкой классификации должен содержать K чисел p_C — вероятности того, что j-е сообщение относится к классу C .

```
входные данные
3
1 1 1
1
4
 2 ant emu
 3 dog fish dog
3 3 bird emu ant
1 3 ant dog bird
2 emu emu
 emu dog fish dog fish
5 fish emu ant cat cat
2 emu cat
1 cat
выходные данные
0.4869739479 0.1710086840 0.3420173681
0.1741935484 0.7340501792 0.0917562724
0.4869739479 0.1710086840 0.3420173681
0.4869739479 0.1710086840 0.3420173681
0.4869739479 0.3420173681 0.1710086840
```

В примере условные вероятности выглядят следующим образом:

$p(w_x c_y)$	ant	bird	dog	emu	fish
c_1	3/4	1/2	1/2	1/2	1/4
c_2	1/3	1/3	2/3	1/3	2/3
c_3	2/3	2/3	1/3	2/3	1/3

Слово cat не рассматривается, так как оно ни разу не встретилось в обучающей выборке.

Для первого запроса X:

для первого запроса
$$X$$
:
$$p(c_1) \cdot p(X|c_1) = \frac{2}{4} \cdot \left(1 - \frac{3}{4}\right) \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{2}\right) \cdot \left(\frac{1}{2}\right) \cdot \left(1 - \frac{1}{4}\right)$$
 и
$$p(c_1|X) = \frac{\frac{3}{256}}{\frac{3}{256+\frac{1}{243}+\frac{2}{243}}}$$

F. Дерево принятия решений

1.5 секунд €, 256 мегабайт

Постройте дерево принятия решений.

Входные данные

Первая строка содержит три целых положительных числа M (1 < M < 100) — число признаков у объектов (исключая класс), K (1 < K < 20) — число классов и H (1 < H < 10) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N ($1 \le N \le 4000$) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \le 10^9$) — признаки i-го объекта, последнее число C_i $(1 \le Ci \le K)$ — его класс.

Выходные данные

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S ($1 \le S \le 2^{11}$) — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В v-й из этих строк выведите описание υ -й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v ($1 \le f_v \le M$) — индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v — константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v ($v < l_v, r_v \le S$) — индекс вершины дерева в которую следует перейти, если выполняется условие $A[f_v] < b_v$, и индекс вершины дерева в которую следует перейти, если условие не
- Если v-я вершина лист, выведите через пробел: заглавную латинскую букву 'С' и целое положительное число D_v ($1 \le D_v \le K$) — класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score = 100 \cdot rac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, J- F_1 -мера решения эталона с запасом pprox 1%, $B-F_1$ -мера наивного решения с запасом $\approx 2\%$.

Тогда
$$Verdict = \begin{cases} Ok & Score \ge 100 \\ PartiallyCorrect & 0 \le Score \le 100 \\ WrongAnswer & Score < 0 \end{cases}$$

```
входные данные
2 4 2
1 2 1
2 1 1
3 1 2
4 2 2
выходные данные
```

G. Логическое выражение 1 секунда^{**⊙**}, 256 мегабайт

Постройте искусственную нейронную сеть, вычисляющую логическую функцию f, заданную таблицей истинности.

Входные данные

7 Q 1 2.5 2 5 Q 2 2.5 3 4 C 1 C 4 Q 2 2.5 6 7 C 2 C 3

Первая строка содержит целое число M ($1 \le M \le 10$) — число аргументов f . Следующие 2^M строк содержат значения f в таблице истинности (0 — ложь, 1 — истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

M = 1	M = 2	M = 3
f(0)	f(0, 0)	f(0, 0, 0)
f(1)	f(1, 0)	f(1, 0, 0)
	f(0, 1)	f(0, 1, 0)
	f(1, 1)	f(1, 1, 0)
		f(0, 0, 1)
		f(1, 0, 1)
		f(0, 1, 1)
		f(1, 1, 1)

Выходные данные

В первой строке выведите целое положительное число D ($1 \le D \le 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \le n_i \le 512$ и $n_D = 1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0 = M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на і-м слое. Каждый искусственный нейрон описывается строкой состоящей из n_{i-1} вещественных чисел с плавающей точкой w_i и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_j \cdot x_j + b$. Предполагается, что после каждого вычисления линейной зависимости к её результату применяется функция ступенчатой

активации $a(Y) = \left\{ egin{array}{ll} 1 & Y > 0 \\ 0 & Y < 0 \end{array} \right.$. Обратите внимание, что в нуле

данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

входные	данные
2	
Θ	
1	
Θ	
1	

```
выходные данные
2 1
1.0 -1.0 -0.5
1.0 1.0 -1.5
1 1 -0.5
```

входные данные 0 1 1 0 выходные данные 2 2 1 1.0 -1.0 -0.5 -1.0 1.0 -0.5 1 1 -0.5

Во втором примере в результате получается следующая сеть:

Н. Матричная функция

1 секунда 2, 256 мегабайт

Вычислите матричную функцию и её производную по заданному графу вычислений.

Входные данные

В первой строке содержится три целых положительных числа N, $M, K (1 \le M, K \le N \le 50)$ — число вершин в графе вычислений, число входных параметров (вершин) и число выходных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- var r c $(1 \le r, c \le 25)$ входной параметр функции, матрица состоящая из r строк и c столбцов.
- $tnh \ x \ (1 \le x < i)$ матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы полученной из x-й вершины графа вычислений.
- rlu α^{-1} x ($1 \le \alpha^{-1} \le 100, 1 \le x < i$) матрица из значений функции параметрического линейного выпрямителя с параметром α вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α^{-1} целое число. Производная в нуле равна единице.
- **mul** $a \ b \ (1 \le a, b < i)$ произведение матриц полученных из a-й b-й вершины графа вычислений соответственно.
- **sum** $len u_1 u_2 ... u_{len} (1 \le len \le 10, \forall_{1 \le j \le len} : 1 \le u_j < i)$ сумма матриц полученных из вершин $u_1, u_2, \ldots, u_{len}$ графа
- had $len\ u_1\ u_2\ ...\ u_{len}\ (1\leq len\leq 10,\ \forall_{1\leq j\leq len}\ \colon 1\leq u_j< i)$ произведение Адамара (покомпонентное) матриц полученных из вершин u_1,u_2,\ldots,u_{len} графа вычислений.

Гарантируется, что первые M вершин и только они имеют тип ${\bf var}.$ Последние K вершин считаются выходными. Гарантируется, что размеры матриц аргументов для каждой вершины согласованны.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений в порядке возрастания их индексов.

Залачи - Codeforces

Затем следует описание K матриц — производных функции по соответствующим выходным вершинам в порядке возрастания их индексов. Обратите внимание, что производные вычислены только из некоторых скрытых вершин. Если какая-та выходная вершина зависит от другой выходной вершины, то соответствующую производную нужно досчитать.

Каждая строка, каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10.

Выходные данные

Выведите K матриц — значение параметров соответствующих выходных вершин графа вычисления в порядке возрастания их индексов. Затем выведите M матриц производных функции по соответствующим входным вершинам в порядке возрастания их индексов. Допустимая абсолютная и относительная погрешность 10^{-4}

```
входные данные
6 3 1
var 3 2
var 1 2
mul 1 2
sum 2 4 3
rlu 10 5
-2 3 5
4 2
-2 0
2 1
4 - 2
-1 1
```

выходные данные

```
0.0 -0.1
-3.8 2.0 -1.9
2.0 -0.2
-3.0 0.3
-5.0 0.5
-1 0 0 1
```

В примере вычисляется функция

В примере вычисляется функция
$$ReLU_{\alpha=0.1} \left(\begin{pmatrix} -2 & 3 & 5 \end{pmatrix} \times \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 4 & -2 \end{pmatrix} \right)$$
, а $\begin{pmatrix} -1 & 1 \end{pmatrix}$

производная по её выходу.

І. Свёрточная сеть

1 секунда €, 256 мегабайт

Посчитайте значение выхода свёрточной сети и пересчитайте её производную.

Входные данные

В первой строке содержится описание входа свёрточной сети, трёхмерной матрицы. Высота этой матрицы совпадает с её шириной. Первое число N_0 ($1 \le N_0 \le 40$) — высота и ширина входной трёхмерной матрицы, второе число D_0 ($1 \le D_0 \le 10$) — её глубина. Следующие $D_0 imes N_0 imes N_0$ чисел — описание трёхмерной матрицы, значения её ячеек выписанных в порядке: глубина, высота, ширина.

Следующая строка содержит одно число L (1 $\leq L \leq$ 10) — число слоёв (преобразований) в сети.

Следующие L строк содержат описания соответствующих преобразований:

- relu α^{-1} $(1 \le \alpha^{-1} \le 100)$ функции параметрического линейного выпрямителя с параметром α .
- **pool** S ($1 \le S \le 5$) операция субдискретизации (подвыборки) по высоте и ширине размера $S \times S$ с шагом S. В качестве свёртки используется операция максимума. Производная для максимума вычисляется как: $\frac{\partial \max}{\partial x_i}(x)=1$ если $x_i=\max(x),$ иначе 0.

- bias B_1, B_2, \ldots, B_D ($|B_i| \le 10$) операция сдвига, прибавляющая к каждой ячейке матрицы на глубине i значение B_i, D глубина матрицы до и после преобразования.
- cnvm H K S P $A_{1,1,1,1}$, $A_{1,1,1,2}$, ..., $A_{H,D,K,K}$ $(1 \le H \le 10)$, $1 \le K \le 5$, $1 \le S \le K$, $0 \le P < K$, $|A_i| \le 10$) свёртка с ядром A размера $H \times D \times K \times K$ с шагом S с зеркальным заполнением рамки размера P, где D глубина матрицы до преобразования. H глубина матрицы после преобразования. Значения ячеек A выписаны в порядке: глубина полученной матрицы, глубина исходной матрицы, высота ядра, ширина ядра.
- спув Н К S Р А_{1,1,1,1}, А_{1,1,1,2}, ..., А_{H,D,K,K} свёртка с расширением границы. Аналогична предыдущей.
- спис H K S P $A_{1,1,1,1}, A_{1,1,1,2}, \ldots, A_{H,D,K,K}$ свёртка с заполнением с циклическим сдвигом. Аналогична предыдущей.

Гарантируется, что размеры всех многомерных матриц согласованы с соответствующими гипер-параметрами преобразований.

В последней строке записана производная по выходу сети.

Все числа во входных данных целые.

Выходные данные

Выведите значение выходной трёхмерной матрицы.

Далее выведите производную по входу сети.

Затем для каждого слоя сдвига и свёртки в возрастающем порядке номера слоя выведите производную по его параметрам.

Выходные матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-4} .

ВХОДНЫЕ ДАННЫЕ 4 1 4 3 2 1 3 2 1 0 2 1 0 1 1 0 1 2 4 cnvm 1 3 3 1 0 -1 0 -1 0 -1 0 -1 0 bias 4 relu 8 pool 2 1 ВЫХОДНЫЕ ДАННЫЕ 0.0 0.0 0.0 -2.0 0.0 0.0 0.0 0.0 -2.0 -2.0 0.0 0.0 -2.0 0.0 -2.0 -2.0 0.0 2.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0 3.0

Пример заполнения угла рамки для свёрточного слоя:

cnvm	18	17	16	15	16	17	18	19	cnve	0	0	0	0	1	2	3	4	cnvc	12	13	14	10	11	12	13	1.
		12												1	-							15				
	8	7	6	5	6	7	8	9		0	0	0	0	1	2	3	4		22	23	24	20	21	22	23	2
	3	2	1	0	1	2	3	4		0	0	0	0	1	2	3	4		2	3	4	0	1	2	3	Г
	8	7	6	5	6	7	8	9		5	5	5	5	6	7	8	9		7	8	9	5	6	7	8	
	13	12	11	10	11	12	13	14		10	10	10	10	11	12	13	14		12	13	14	10	11	12	13	1
	18	17	16	15	16	17	18	19		15	15	15	15	16	17	18	19		17	18	19	15	16	17	18	1
	23	22	21	20	21	22	23	24		20	20	20	20	21	22	23	24		22	23	24	20	21	22	23	2

J. LSTM сеть

1 секунда €, 256 мегабайт

Дана сеть LSTM для обработки последовательностей.

```
Каждый блок этой сети вычисляет результат по формулам: f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f), \, i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i) \,, o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o), c_t = f_t \circ c_{t-1} + i_t \circ tanh(W_c x_t + U_c h_{t-1} + b_c) \text{ и } h_t = o_t \circ c_t, \, \text{где } x_t — вход t-го блока, h_t и c_t — векторы краткосрочной и долгосрочной памяти, o_t — выход t-го блока, а \circ — произведение Адамара.
```

Входные данные

В первой строке находится число N ($1 \le N \le 20$) — размер векторов LSTM.

Залачи - Codeforces

Далее перечислены соответствующие матрицы и вектора $W_f,\,U_f,\,B_f,\,W_i,\,U_i,\,B_i,\,W_o,\,U_o,\,B_o,\,W_c,\,U_c,\,B_c.$

Затем следует число M ($1 \le M \le 20$) — число элементов последовательности обрабатываемой LSTM сетью.

Далее следуют два вектора h_0 и c_0 , а также M векторов x_t .

Затем следует вектора производных сети по выходным векторам h_M и c_M , а также M векторов производных по выходам o_t в обратном порядке o_M, o_{M-1}, \dots, o_1 .

Все вектора записаны N числами разделёнными пробелами на отдельной строке, а матрицы N векторами размера N. Все элементы векторов и матриц целые числа по модулю не превосходящие 10.

Выходные данные

0.27102651105684017

0.13551325552842008 0.13551325552842008

0.159905268234481 0.0799526341172405

0.0799526341172405 1.8924865599381104E-4

9.462432799690552E-5

9.462432799690552E-5
-0.10011198258925587

-0.050055991294627934

-0.050055991294627934

Сперва выведите M векторов выходов сети o_t .

Далее выведите два последних вектора памяти h_{M} и c_{M} .

Затем выведите M векторов производных сети по входам x_t в обратном порядке.

Далее выведите два вектора производных сети по h_0 и c_0 .

После выведите производные по соответствующим матрицам и векторам параметров LSTM: $W_f,\,U_f,\,B_f,\,W_i,\,U_i,\,B_i,\,W_o,\,U_o,\,B_o,\,W_c,\,U_c,\,B_c.$

Выходные вектора и матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-6} .

```
входные данные
1
- 3
2
1
1
- 2
- 2
- 3
- 1
- 2
- 2
- 1
1
1
- 3
2
1
-1
выходные данные
1.233945759863131E-4
-2.875857041962763E-5
-0.23306186831759548
-0.37692699674663843
0.21113860108361812
-0.047420021082055105
```

К. Коэффициент корреляции Пирсона

1 секунда⁹, 256 мегабайт

Посчитайте корреляцию Пирсона двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — корреляцию Пирсона двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

В	кодные	данные		
5				
1	4			
2	5			
3	1			
4	2			
5	3			
ВЬ	ыходные	. данные		
- 0	. 5000000	90		

L. Коэффициент ранговой корреляции Спирмена

1 секунда €, 256 мегабайт

Посчитайте ранговую корреляцию Спирмена двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \le N \le 10^5)$ — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность $10^{-6}\,$.

В	ходные данные
5	
1	16
2	25
3	1
4	4
5	9
В	ыходные данные
- (9.50000000

М. Расстояния

1 секунда⁰, 256 мегабайт

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние = $\sum_{i,j:y_i=y_j} |x_i-x_j|$
- Межклассовое расстояние = $\sum_{i,j:y_i \neq y_j} |x_i x_j|$

Входные данные

Первая строка содержит одно целое положительное число K ($1 \leq K \leq 10^5)$ — максимальное число различных значений Y второго признака.

Залачи - Codeforces

Следующая строка содержит одно целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x и y ($|x| \le 10^7, 1 \le y \le K$) — значения первого и второго признака описываемого объекта.

Выходные данные

В первой строке выведите одно целое число — внутриклассовое расстояние.

Во второй строке выведите одно целое число — межклассовое расстояние.

N. Условная дисперсия

1 секунда €, 256 мегабайт

Вычислите критерий связи двух признаков категориального X и числового Y на основе математического ожидания условной дисперсии D(Y|X). Вероятности для X оцениваются обыкновенным частотным методом.

Входные данные

Первая строка содержит одно целое положительное число K ($1 \leq K \leq 10^5$) — максимальное число различных значений признака X.

Следующая строка содержит целое положительное число N ($1 \leq N \leq 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K$, $|y| \le 10^9$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной дисперсии. Допустимая абсолютная и относительная погрешность 10^{-6} .

О. Хи-квадрат

1 секунда €, 256 мегабайт

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

Входные данные

Первая строка содержит два целых положительных числа K_1 и K_2 ($1 \le K_1, K_2 \le 10^5$) — максимальное число различных значений первого и второго признака.

Задачи - Codeforces

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x_1 и x_2 ($1 \le x_1 \le K_1$, $1 \le x_2 \le K_2$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

входные данные	
2 3 5 1 2 2 1 1 1 2 2 1 1 3	
выходные данные	
0.833333333	

В примере реальное число наблюдений наблюдений выглядит как $egin{array}{ccc} 1 & 2 & 3 \end{array}$

1 1 1 1, а ожидаемое число наблюдений

2 1 1 0 1 2 3

1 1.2 1.2 0.6 · **2** 0.8 0.8 0.4

Р. Условная энтропия

1 секунда €, 256 мегабайт

Вычислите критерий связи двух категориальных признаков X и Y на основе математического ожидания условной энтропии H(Y|X). Вероятности оцениваются обыкновенным частотным методом. При расчётах используйте натуральный логарифм ln(x), либо логарифм идентичный натуральному $\log_{\rho}(x)$.

Входные данные

Первая строка содержит два целых положительных числа K_x и K_y ($1 \le K_x, K_y \le 10^5)$ — максимальное число различных значений признаков X и Y.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K_x$, $1 \le y \le K_y$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной энтропии. Допустимая абсолютная и относительная погрешность 10^{-6} .

входные Д	цанные		
2 3			
5			
1 2			
2 1			
1 1			
2 2			
1 3			
выходные	данные		
0.936426245	4248438		

<u>Codeforces</u> (c) Copyright 2010-2022 Михаил Мирзаянов Соревнования по программированию 2.0