

PREÇO DOS CARROS VENDIDOS NA ÍNDIA

Lucas Beltrame, Malcolm dos Reis e Tiago Mattos Instituto de Matemática, Estatística e Computação Científica - Unicamp - Inferência Bayesiana

1236193@unicamp.br, m187642@unicamp.br e t236314@unicamp.br

Introdução

O comércio de automóveis movimenta bilhões de dólares anualmente, e por isso é de interesse saber quanto cada carro deve custar a depender de seus atributos. Nesse caminho, será feito um modelo de regressão linear múltipla para tentar descrever o comportamento do preço dos carros utilizando técnicas estatísticas.

Materiais e métodos

Dados

Os dados são de um site de venda de veículos na Índia e estão dispostos como mostrado na Tabela 1

	Tabela 1: Banco de dados										
	Variável	Descrição	Formato								
	name	Modelo do carro	caractere								
	year	Ano de lançamento do carro	numérico								
	selling_price	Preço de venda do carro	numérico								
	km_driven	Quilômetros rodados	numérico								
	fuel	Tipo de combustível	categórico								
	seller_type transmission	Tipo de vendedor	categórico								
	transmission	Tipo de câmbio do carro	categórico								
_	owner	Quantidade de donos anteriores	categórico								

Análise Exploratória

Para fim da implementação de um método bayesiano aplicamos a função logaritmica no preço de venda para que assumissimos uma distribuição Normal da nossa variável resposta.

Figura 1: Histograma do log do preço de venda

O modelo será definido da seguinte forma:

 $log(selling_price) = \beta_0 + \beta_1 Year_i + \beta_2 KmRodados_1 + \beta_3 Transmiss\~ao_manual_i + \epsilon_i$

Amostrador de Gibbs

Para estimação dos betas iremos utilizar o método MCMC chamado "gibbs sampling" o qual utiliza uma cadeia de Markov para criar amostras de uma distribuição passada. Foi aplicada a função logarítmica no preço de venda para que fosse assumido uma distribuição normal com média desconhecida e precisão desconhecida para o preço de venda. Assim ficamos com:

$$log(y_i)|\mu,\tau \sim N(\mu,\tau)$$

para as distribuições conjugadas temos:

$$\mu \sim N(\mu_0, \tau_0)$$
 $\tau \sim Gamma(a, b)$

Onde as distribuições posterioris dos parâmetros são:

$$\mu | \tau, y \sim N(\frac{n\bar{y}\tau + \mu_0\tau_0}{n\tau + \tau_0}, n\tau + \tau_0)$$
 $\tau | \mu, y \sim Gamma(a + \frac{n}{2}, b + \frac{1}{2}\sum_{i}(y_i - \mu)^2)$

Com isso, sendo definidos as distribuições a priori dos coeficientes, esse amostrador de Gibbs parte dessa priori e a cada iteração da cadeia de Markov, vai se criando uma distribuição posteriori.

Implementação no R

Primeiro, obteve-se a matriz de design dos dados, fazendo com que a variável categórica *Transmissão* se expandisse para uma variável dummy (assumindo valores de 0 e 1). Em seguida, foram realizadas duas amostragens de Gibbs utilizando a função *MCMCregress* do pacote *MCMCpack*. Essas amostragens utilizam a distribuição a priori dos coeficientes para alcançar, por meio de iterações de uma cadeia de Markov, a distribuição a posteriori. Foram feitas duas amostragens com 100 mil iterações cada, iniciando com parâmetros diferentes distribuições nos betas para permitir que as cadeias comecem de pontos distintos, facilitando a verificação da convergência das cadeias de Markov posteriormente. Definiram-se dois vetores de médias diferentes para os coeficientes e a mesma matriz de covariância para ambas as amostragens, sendo as distribuições prioris de cada coeficiente da primeira cadeia dado por:

$$B_{01} \sim N(\mu_1, 0.0001), B_{11} \sim N(\mu_1, 0.01), B_{21} \sim N(\mu_1, 0.01), B_{31} \sim N(\mu_1, 0.01)$$

E da segunda cadeia por:

$$B_{02} \sim N(\mu_2, 0.0001), B_{12} \sim N(\mu_2, 0.01), B_{22} \sim N(\mu_2, 0.01), B_{32} \sim N(\mu_2, 0.01)$$

Sendo as médias definidas:

$$\mu_1 = -40, \mu_2 = 40$$

Após obter os coeficientes de cada iteração, realizou-se um burn-in de metade das iterações (50 mil) e aplicou-se um espaçamento de 100 iterações. Desse modo, utilizando a função *gelman.diag* do pacote *coda*, foi possível observar o diagnóstico de convergência de Gelman-Rubin (\hat{R}), que indica se as duas cadeias para cada beta convergiram entre si (no caso de convergir, é desejável que esse \hat{R} seja próximo de 1).

Resultados

Através das duas cadeias produzidas com 100 mil iterações, foi possível atingir a convergência das cadeias de markov, tendo para cada coeficiente o diagnóstico de convergência estimado:

$$\hat{R}_0 = 1, \hat{R}_1 = 1, \hat{R}_2 = 1, \hat{R}_3 = 1, \hat{R}_s = 0.999$$

Com esses \hat{R} podemos afirmar que para todos os coeficientes, as duas cadeias de Markov convergiram. Dessa forma, como esperado, as cadeias após o burn-in e o espaçamento trouxeram as distribuições posterioris dos coeficientes, sendo possível serem observadas através da Figura 2 e através das estatísticas sumarizadas na Tabela 2.

Figura 2: Gráfico das densidades dos coeficientes

	2.5%	25%	50 %	75%	97.5%	Média
Intercepto	-272.559	-267.445	-264.673	-261.574	<i>-</i> 256.043	-264.510
Ano	0.131	0.134	0.136	0.137	0.139	0.135
Transmissão Manual	-0.953	-0.918	-0.900	-0.880	-0.845	-0.899
Km Rodado	$1,107 \cdot 10^{-6}$	$1,363 \cdot 10^{-6}$	$1,483 \cdot 10^{-6}$	$1,616 \cdot 10^{-6}$	$1.85 \cdot 10^{-6}$	$1,487 \cdot 10^{-6}$
Sigma	0.277	0.285	0.289	0.293	0.301	0.289

Tabela 2: Intervalos quantílicos das distribuições e médias obtidas na cadeia Pode-se observar que todos os coeficientes convergiram para uma distribuição aproximadamente Gaussiana.

Utilizando as médias apresentadas, podemos definir o modelo obtido da seguinte forma:

 $log(Preco) = -264.510 + 0.135 \cdot Ano + 1,487 \cdot 10^{-6} \cdot KmRodados - 0.899 \cdot Transmissao Manual$

Diagnóstico do modelo

Sendo possível, com o modelo definido, fazer uma análise dos resíduos, utilizando a Figura 3 pode-se conjecturar que os resíduos não apresentam associação linear e são homocedásticos (variância constante). Além disso, através da sua densidade, pode-se sugerir que os resíduos seguem uma distribuição bimodal com as duas modas muito próximas de zero.

Figura 3: Diagrama de pontos e densidade dos resíduos

Sabendo, através dos diagnósticos de convergência de Gelman e Rubin, que as duas cadeias de Markov de cada coeficiente convergiram para a mesma distribuição e que, pela análise dos resíduos, estes são independentes, homocedásticos e sua distribuição é próxima de uma $N(0,\sigma^2)$, temos um modelo que explica muito bem a variabilidade do logaritmo do preço dos carros vendidos na Índia.

Desse modo, sabendo, também que nenhum coeficiente possui uma distribuição o qual o zero está dentro do intervalo de confiAssim, podemos, através do modelo, apontar que a cada aumento de 1 ano do ano de fabricação do carro (quanto maior o ano do carro, mais novo ele é), aumenta-se 0.1374 dólares no logarítmo do preço. Além disso, se o carro tiver transmissão manual, o logarítmo do preço cai 0.8997 dólares, ou seja, se o carro for automático, ele é mais caro. E por último, a cada 1 km a mais que o carro rodou, o logaritmo do seu preço será 1.4876 · 10⁻⁶ dólares maior.

Considerações finais

Utilizando uma abordagem bayesiana para inferir os betas dados nossas observações, conseguimos através de um método computacional conhecido como "Amostrador de Gibbs" chegar às distribuições desses betas e analisamos a estabilidade do método partindo de pontos distintos em cadeias diferentes que levaram à uma mesma distribuição após um *burn-in* e espaçamento para diminuir a correlação de amostras subsequentes. Vale ressaltar que diferentemente do método frequentista, temos aqui um intervalo de credibilidade para cada beta que é calculado a partir de sua distribuição *a posteriori*. Com esses resultados em mão é feito o diagnóstico do modelo observando o comportamento dos resíduos e se eles seguem as premissas impostas.

Referências

- MCMCregress: Markov Chain Monte Carlo for Gaussian Linear Regression https://www.rdocumentation.org/packages/MCMCpack/versions/1.7-0/topics/MCMCregress
- Notas de Aula : Inferência Bayesiana 1s2024