

Mathematics: Specialist Formula sheet Units 3A and 3B

Vectors

$$|(a,b)| = \sqrt{a^2 + b^2}$$
 $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = a_1 b_1 + a_2 b_2$$

Vector equation of a line in the plane:

one point and the slope: $\mathbf{r} = \mathbf{r}_1 + \lambda \mathbf{l}$

two points: $\mathbf{r} = \mathbf{r}_1 + \lambda (\mathbf{r}_2 - \mathbf{r}_1)$

Vector form of the equation of a circle in the plane: $|\mathbf{r} - \mathbf{d}| = \rho$

Trigonometry

In any triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 Area = $\frac{1}{2}ab\sin C$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

In a circle of radius r, for an arc subtending angle θ (radians) at the centre:

Length of arc =
$$r\theta$$
 Area of sector = $\frac{1}{2}r^2\theta$ Area of segment = $\frac{1}{2}r^2(\theta - \sin\theta)$

$$\sin (\theta \pm \phi) = \sin \theta \cos \phi \pm \cos \theta \sin \phi$$
 $\sin 2\theta = 2\sin \theta \cos \theta$

$$\cos (\theta \pm \phi) = \cos \theta \cos \phi \mp \sin \theta \sin \phi \qquad \cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

$$\tan (\theta \pm \phi) = \frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi} \qquad \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

Exponentials and logarithms

For a,b>0 and m,n real,

$$a^{m} a^{n} = a^{m+n}$$
 $a^{m} b^{m} = (ab)^{m}$ $(a^{m})^{n} = a^{mn}$

$$a^{-m} = \frac{1}{a^m}$$
 $\frac{a^m}{a^n} = a^{m-n}$ $a^0 = 1$

For m an integer and n a positive integer: $a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$

For
$$a, y > 0$$
, $x = \log_a y \iff y = a^x$

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1$$

$$\log_a cd = \log_a c + \log_a d \qquad \qquad \log_a (c^b) = b \log_a c$$

Functions

Differentiation

If
$$f(x) = y$$
, then $f'(x) = \frac{dy}{dx}$

If
$$f(x) = x^n$$
, then $f'(x) = nx^{n-1}$

If
$$f(x) = e^x$$
, then $f'(x) = e^x$

If
$$f(x) = \ln x$$
, then $f'(x) = \frac{1}{x}$

	Function notation		Leibniz Notation	
	У	y'	у	y'
Product rule	f(x) g(x)	f'(x) g(x) + f(x) g'(x)	uv	$\frac{du}{dx}v + u\frac{dv}{dx}$
Quotient rule	$\frac{f(x)}{g(x)}$	$\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$	$\frac{u}{v}$	$\frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$
Chain rule	f(g(x))	f'(g(x)) g'(x)	y = f(u) and $u = g(x)$	$\frac{dy}{du} \times \frac{du}{dx}$

Integration

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq -1 \qquad \qquad \int e^x dx = e^x + c \qquad \qquad \int \frac{1}{x} dx = \ln x + c$$

$$\int e^x dx = e^x + a$$

$$\int \frac{1}{x} \, dx = \ln x + c$$

Fundamental Theorem of Calculus:
$$\frac{d}{dx} \int_a^x f(t) dt = f(x)$$
 and $\int_a^b f'(x) dx = f(b) - f(a)$

Piece-wise defined functions

Absolute value function:

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Sign function:

$$sgn(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

Greatest integer function:

int (x) = greatest integer $\leq x$ for all x

Measurement

Trapezium: Area = $\frac{1}{2}(a+b) \times$ height, where a and b are the lengths of the parallel sides

Volume = Area of base \times height Prism:

Total surface area = $2\pi r h + 2\pi r^2$ Cylinder:

Volume = $\pi r^2 \times h$

Volume = $\frac{1}{2}$ × area of base × height Pyramid:

Total surface area = $\pi r s + \pi r^2$, s is the slant height Cone:

Volume = $\frac{1}{3} \times \pi r^2 \times h$

Total surface area = $4\pi r^2$ Sphere:

Volume = $\frac{4}{3}\pi r^3$

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.