$\mathcal{L}(V_1W)$ is a weder space Commutativity: Let $T_n, T_L \in \mathcal{L}(V, W), w \in V$ $(T_1 + T_L)(w) = T_n v + T_L w$ $= T_L v + T_L w$ $= (T_L + T_L)(w)$

Associativity: Let $T_1, T_2, T_3 \in \mathcal{L}(V, w)$, $w \in V$. $(T_{1} + (T_{2} + T_{3}))(w) = T_{1}w + (T_{2}w + T_{3}w)$ $= (T_{1} + T_{2}w) + T_{3}w$ $= (T_{1} + T_{2}) + T_{3}w$

Additive identity:

Joef (V,W): On = 0 (Zero map)

(0,1)23TH NT= 0+ TO = TT+0 = TT+00= (W)

=) o additive identity of L(U,W)

Additive inverse:

Lt (-T) = -To YTEL(V,W)

 $(T_{\perp} - T)_{\alpha} = T_{\alpha} - T_{\alpha} = 0.$

=> (-T) additive inverse of L(U,w)

Multiplicative identity: Let $T \in \mathcal{L}(V,W)$, $w \in V$.

Distributive: Let $T_1, T_2 \in \mathcal{L}(v, w), w \in V$.
Let $a, \beta \in F$.

 $d(T_1 + T_2)(\omega)) = d(T_1 + T_2 \omega)$ $= dT_1 \omega + dT_2 \omega$ $= (dT_1)(\omega) + (dT_2)(\omega)$ $= (dT_1 + dT_2)(\omega)$

 $(\lambda + \beta)(T_1 \sigma) = \lambda T_1 \sigma + \beta T_1 \sigma$ $= (\lambda T_1 + \beta T_1)(\sigma)$