Generative models for human activity recognition

ROY team: Ilya Zharikov, Roman Isachenko, Artem Bochkarev

Skolkovo Institute of Science and Technology Machine Learning course

March 20, 2017.

Project goal

Aim

Classification model for complex-structured objects.

Problem

Initial object has no appropriate feature description.

Applications:

- image processing;
- signal classification;
- topic modelling;
- time series analysis.

Related work

- Wang W. et al. Human activity recognition using smart phone embedded sensors // International Joint Conference on Neural Networks. 2014.
- Wwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. Activity recognition using cell phone accelerometers. // ACM SigKDD Explorations Newsletter. 12(2): 74-82. 2011.
- Kuznetsov M. P., and Ivkin N. P. Time series classification algorithm using combined feature description. // Journal of Machine Learning and Data Analysis. 2015.

Problem Statement

- ullet $s\in\mathcal{S}$ complex structured object
- $y \in Y$ class label

Task

Given: $\mathfrak{D} = \{(s_i, y_i)\}_{i=1}^m$ recover

$$y = f(s) \quad \forall s \in \mathcal{S}.$$

Approach

Suppose $f = g \circ h$, where

- $h(s): S \to H \in \mathbb{R}^n$, $\mathbf{h}_i = h(s_i)$;
- $g(\mathbf{h}, \theta)$ parametric map from H into Y (classification model).

Optimal parameters

- Choice of feature map h(s) by
 - prior (expert) knowledge;
 - minimizing error functional.
- 2 Classification for $\{(\mathbf{h}_i, y_i)\}_{i=1}^m$

$$\theta^* = \arg\min_{\theta} L(g, \theta, \mathfrak{D}).$$

E.g. $g(\mathbf{h}, \theta)$ - classification model, θ - model parameters, $L(g, \theta, \mathfrak{D})$ - classification error function.

Time series example

Expert functions

Prior knowledge about the objects could allow to choose the features.

Feature description

 $\mathbf{h}_i = h(s_i) \in \mathbb{R}^{40}$ — different statistics:

- average acceleration;
- standard deviation;
- mean absolute deviation;
- ...

Autoregressive model

Data generation hypothesis

Time series $s = (x_1, \dots, x_T)$ is generated by autoregressive model

$$\hat{x}_t = w_0 + \sum_{j=1}^n w_j x_{t-j}.$$

Feature description

$$h(s_i) = \mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \sum_{j=n+1}^{T} \|x_j - \hat{x}_j\|^2.$$

Singular Spectrum Analysis (SSA)

Trajectory matrix for time series $s = (x_1, \dots, x_T)$:

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_2 & x_3 & \dots & x_{n+1} \\ \dots & \dots & \dots & \dots \\ x_{T-n+1} & x_{T-n+2} & \dots & x_T \end{pmatrix}.$$

Feature description

$$h(s_i) = (\lambda_1, \ldots, \lambda_n),$$

where $\{\lambda_i\}_{i=1}^n$ are eigenvalues of the matrix $\mathbf{X}^T\mathbf{X}$, obtained by SVD decomposition

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V} \cdot \mathsf{diag}(\lambda_1, \dots, \lambda_n) \cdot \mathbf{V}^{\mathsf{T}}.$$

(?!) Splines

WISDM1

Activity	# objects		
Standing	229(5.3%)		
Walking	1917(44.4%)		
Upstairs	466(10.8%)		
Sitting	277(6.4%)		
Jogging	1075(24.9%)		
Downstairs	357(8.3%)		
Total	4321		

USC-HAD²

objects
1167(8.6%)
764(5.6%)
1874(13.8%)
1294(9.5%)
951(7%)
1860(13.7%)
763(5.6%)
1018(7.4%)
495(3.6%)
1305(9.6%)
1280(9.4%)
849(6.2%)
13620

 $^{^{1}\}mathsf{http:}//\mathsf{www.cis.fordham.edu/wisdm}/$

²http://sipi.usc.edu/HAD/

Experiment

- datasets: WISDM, USC-HAD;
- feature extraction methods: expert functions, autoregressive models, singular spectral analysis, splines;
- classification models: logistic regression, support vector machine, random forest;
- tuning parameters: cross-validation;
- quality measure: accuracy score.

Results

	Expert	AutoReg	SSA	Splines
Log-Reg	0.668	0.651	0.637	0.415
SVM	0.797	0.655	0.822	0.740
RF	0.871	0.703	0.840	0.736

Feature union

Conclusion

Done

- different approaches to classification of complex-structured objects were studied
- the results of experiments on human activities datasets outperform many previous methods

•

Future work

- new approaches to feature extraction (e.g. modified splines)
- implementing of structured learning methods