

Department of Mechanical, Industrial, and Mechatronics Engineering

Please select your current program below:

✓ -Mechanical Engineering

✓ Industrial Engineering

✓ Mechatronics Engineering

Course Number	MEC 322	
Course Title	Manufacturing Fundamentals	
Semester/Year	Winter/2025	
Instructor	Dr. Krishnan Venkatakrishnan	
Section Number	10	

Group Report

Report Title	Group Report
Group	1
Lab Performed	N/A
Submission Date	April 4, 2025
Due Date	Apr 4, 2025

Student Name	Student ID (xxxx1234)	Signature*
Rokeith Uthayaseelan	0185	R.U
Grace Jeremy	6751	G.J
Alishba Aamir	35964	A.A.
Valentina Salazar Correa	3953	VSC
Mehrad Kandifard	2435	M.K
Ibraheem Bukhari	3349	I.H.B
Daniel Wu	3171	D.W

(Note: Remove the first 4 digits from your student ID)

*By signing above you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: http://www.ryerson.ca/senate/policies/pol60.pdf.

Table of Contents

1. Abstract	3
3. Introduction	4
3. CAD Designs	6
ASSEMBLY 1: CLAW	6
Figure 1.0: Claw Assemblage	6
ASSEMBLY 2: BASE	7
Figure 2.0: Arm Assemblage	7
ASSEMBLY 3: ARM	8
Figure 3. Base Assemblage	8
COMPLETE BILL OF MATERIALS	9
4. References	10
5. Appendices	11
Figure 4. Bottom Claw Spacer	11
Figure 5. BottomClaw	12
Figure 6. Top Claw Link	13
Figure 7. Top Claw	14
Figure 8. Gear big.	15
Figure 9. Gear small	16
Figure 10. Four Bar Linkage Two	17
Figure 11. Four Bar Linkage To Clam	18
Figure 12. Four Bar Linkage One	19
Figure 13. Four Bar Linkage Handle	20
Figure 14. Crank	21
Figure 15. Claw Linkage	22
Figure 16. Bottom Claw Link	23
Figure 17. Base	24
Figure 18. Arm to base	25
Figure 19. Arm to base Block	26

1. Abstract

This project involves creating a mechanism that will grab styrofoam, metal, and plastic balls of 3/4" diameter and place them in their corresponding boxes. The materials given include a 24" string, two rubber bands, 12 nuts, 12 bolts, and a 10 x 8 in acrylic sheet. There are several constraints such as no simple levers, hands can not pass the red line, the base must fit in dowel pins and a four-bar linkage must be used. The goal is to create a mechanism that is the most efficient in picking up the most balls and placing them in the boxes in the 1-minute time frame.

This project allows the group to engineer a mechanism, including calculations, design, prototypes, and simulations. Throughout the process, several drawings were made and a morphological chart was used to choose the final design. The design was created in SOLIDWORKS, the parts were cut out and the system was assembled and used in a trial run. Following the trial run the final modifications were made for the most efficient design. Using a four-bar linkage arm, hair clip-like claw, and gears in the base allowed for the most efficient system to be created.

3. Introduction

This project effectively demonstrates and models a rudimentary feature in engineering systems, equipment sorting, and delivery implementation. This assignment allows for the combination of theoretical fundamentals with real-world applications, allowing one to fully grasp key engineering concepts.

The mechanism created should be able to pick up a Ø $\frac{3}{4}$ inch of styrofoam, plastic, or metal ball from a large plastic tray and deposit it into a 2 cm hole in its respective container, all placed at varying lengths on the board. The acrylic design must be fitted onto two wooden dowels of Ø 0.250 ± 0.001 ". The rest of the materials allowed include 2 rubber bands, a string, and a paperclip. Working with strict material constraints, the design's goal was to ensure simplicity and functional efficiency. Allowing that the mechanism would perform reliably while making most of the limited components available.

To successfully pick up, maneuver, and deposit any of the desired balls, several fundamental principles of physics and engineering must be put to use. Namely, density, weight, tension, and a four-bar linkage mechanism. Density and weight are critical properties to keep in mind when sorting through the balls and picking them up. Metal balls have a higher density than plastic and styrofoam. This indirectly affects the amount of force needed to pick up the ball since $density(\rho) = m/V$. Hence, the higher the density, the higher the mass, which directly affects the amount of force needed as F = ma. [3] To implement a working claw mechanism, a rubber band was used to ensure the claw was closed. When the operator pulled on the string, the tension force opened the claw. Hooke's Law of the rubber band and the moment of the part directly affects the amount of tension force needed to open the claw. [4] To execute the back-and-forth motion of the claw, a four-bar linkage system was incorporated into the design, which in essence is four rigid rods connected by pin joints. Using the input angle alpha (α) , the entire system is propelled forward, resulting in output angle beta (β) . [2]. This allows for full range of movement in the z-plane.

Another major factor to consider when designing the mechanical system is the relationship between length of the arm and the system's tipping point. The furthest box the balls can go into is around 14" away from the dowels. It is important to consider how the system will act once the arm is fully extended while holding the ball. If the weight of the claw and arm are too heavy then the moment about the dowels will not be zero, causing the entire mechanism to

tip forward. However, if the arm was made shorter to conserve materials and reduce weight then it will not be sufficient to reach the furthest box. Since the only major material used in the mechanism is acrylic, a simple design in both the arm and the claw are necessary to avoid tipping.

3. CAD Designs

Note that the tolerance on all parts is 0.01in and on all holes is 0.02;

ASSEMBLY 1: CLAW

Figure 1.0: Claw Assemblage

ASSEMBLY 2: BASE

Figure 2.0: Arm Assemblage

ASSEMBLY 3: ARM

Figure 3.0: Base Assemblage

COMPLETE BILL OF MATERIALS

ITEM No.	PART No.	DESCRIPTION	QTY:			
ASSEMBLY 1: CLAW						
1	BottomClawLink	Claw Link	1			
2	V2BottomClaw	Bottom Jaw	2			
3	TopClaw	Top Jaw	1			
4	V2BottomClawSpace r	Spacer	2			
5	BracketOne	Claw Bracket	1			
6	TopClawLink	Claw Link	1			
ASSEMBLY 2: BASE						
1	Base	Base	1			
2	Gear	Small gear	1			
3	Arm gear	Large gear	1			
ASSEMBLY 3: ARM						
1	skinny base	Arm to Base	2			
2	skinny part 2	Four Bar Linkage: One	1			
3	skinny part 3	Handle	1			
4	skinny part 4	Four Bar Linkage: Two	1			
5	skinny part 5	Four Bar Linkage: Three	1			
ADDITIONAL PARTS USED FOR FULL ASSEMBLY						
1	String	Operate claw	1			
2	Rubber band	Hold claw together	1			
3	Nut and Bolt	Misc.	11 each			
4	Paperclip	Holds handle	1			

4. References

- [1] K. Venkatakrishnan, "MEC322 Project Outline 2025," TEAM PROJECT
- [2] M. West, "Four-Bar Linkages," *dynref.engr.illinois.edu*, 2015. https://dynref.engr.illinois.edu/aml.html
- [3] R. C. Hibbeler and Kai Beng Yap, Dynamics. Singapore Pearson, 2013.
- [4]F. P. Beer, *Vector mechanics for engineers statics and dynamics*. Boston Mcgraw-Hill Higher Education, 2010.

5. Appendices

Figure 4. Bottom Claw Spacer

Figure 5. BottomClaw

Figure 6. Top Claw Link

Figure 7. Top Claw

Figure 8. Gear big

Figure 9. Gear small

Figure 10. Four Bar Linkage Two

Figure 11. Four Bar Linkage To Clam

Figure 12. Four Bar Linkage One

Figure 13. Four Bar Linkage Handle

Figure 14. Crank

Figure 15. Claw Linkage

Figure 16. Bottom Claw Link

Figure 17. Base

Figure 18. Arm to base

Figure 19. Arm to base Block

26

My great ugly bs