CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 08: Scheduling

Rahmat M. Samik-Ibrahim

University of Indonesia

http://rms46.vlsm.org/2/207.html Always check for the latest revision!

REV138 14-May-2018

Operating Systems 2018-1 (Room 3114 Tue/Thu) Class: A (10:00-12:00) | B (13:00-15:00) | C (16:00-18:00)

Week	Schedule	Торіс	OSC9	
Week 00	06 Feb - 12 Feb 2018	Overview 1	Ch. 1, 16	
Week 01	13 Feb - 19 Feb 2018	Overview 2 & Scripting	Ch. 1, 2	
Week 02	20 Feb - 26 Feb 2018	Protection, Security, Privacy,	Ch. 14, 15	
		& C-language		
Week 03	27 Feb - 05 Mar 2018	I/O, BIOS, Loader, & Systemd	Ch. 13	
Week 04	06 Mar - 12 Mar 2018	Addressing, Shared Lib, & Pointer	Ch. 8	
Week 05	13 Mar - 19 Mar 2018	Virtual Memory	Ch. 9	
Reserved	20 Mar - 24 Mar 2018			
Mid-Term	03 Apr 2018	13:00 - 15:30 (UTS)		
Week 06	05 Apr - 11 Apr 2018	Concurency: Processes & Threads	Ch. 3, 4	
Week 07	12 Apr - 18 Apr 2018	Synchronization	Ch. 5, 7	
Week 08	19 Apr - 25 Apr 2018	Scheduling	Ch. 6	
Week 09	26 Apr - 07 May 2018	File System & Persistent Storage	Ch. 10, 11, 12	
Reserved	08 May - 14 May 2018			
Week 10	15 May - 21 May 2018	Network Sockets Programming		
		& I/O Programming		
Reserved	22 May - 22 May 2018			
Final	31 May 2018	13:00 - 15:00 (UAS)		
Deadline	07 Jun 2018 16:00	Extra assignment deadline		

The Check List (Operating Systems)
□ Starting Point: http://rms46.vlsm.org/2/207.html □ Text Book: any recent/decent OS book but map it to OSC9.
☐ Create public project "os181" on your github.com account.
\square Create file "README.md" and add an extra line every week. For e.g. 1 :
ZCZC Sistem Operasi 2018 Awal (1)
ZCZC W01 Have tried demo for week 01.
ZCZC W02 Week 02 is done.
ZCZC W03 Week 03 is done.
☐ Encode your QRC with image size of approximately 250x250 pixels:
"OS181 CLASS ID GITHUB-ACCOUNT SSO-ACCOUNT SIAK-Full-Name"
Special for Week 00: Mail your embedded QRC to: os181@vlsm.org
with Subject: [W00] CLASS ID SIAK-NAME.
☐ Write your Memo (with QRC) every week .
☐ Using your SSO account, login to badak.cs.ui.ac.id via
kawung.cs.ui.ac.id.
☐ Check folder badak:///extra/Week00/
☐ Every week, copy the weekly demo files to your own home directory.
Eg. for Week00:
cp -r /extra/Week00/W00-demos/ W00-demos/

 $^{^{1}}$ Week 00 line is optional. The following "ZCZC WXX" weekly tags are mandatory.

Agenda

- Start
- 2 Agenda
- Scheduling
- 4 CPU Burst: How Long (When)?
- 5 MultiProcessor Schedulling
- 6 The Two State Model
- The End

Week 08: Scheduling

- Reference: (OSC9-ch06 demo-w08)
- Scheduling
 - Basic Concepts
 - WARNING: It's just a BURST
 - IO Burst
 - CPU Burst
 - CPU Burst vs. Freq (See next slide)
 - Criteria: Utilization, throughput, {turnaround, waiting, response} time.
 - (Burst) Algorithm
 - FCFS, SJF, RR, Priority, Multilevel Queue.
 - Preemptive / Non-preemptive (Cooperative) Scheduling
 - I/O Bound / CPU Bound Processes
- Thread Scheduling
 - User-level \rightarrow Process-Contention Scope (PCS): many to many/one.
 - $\bullet \ \, \mathsf{Kernel\text{-}level} \to \mathsf{System\text{-}Contention} \ \, \mathsf{Scope} \ (\mathsf{SCS}) \text{: one to one}.$
- Standard Linux Scheduling
 - Completely Fair Scheduler (CFS).
 - Real Time Scheduling.

CPU Burst: How Long (When)?

©2013 Silberschatz, Galvin and Gagne Operating System Concepts - 9th Edition

MultiProcessor Schedulling

- Asymmetric Multiprocessing vs. Symmetric Multiprocessing (SMP).
- Processor Affinity: soft vs. hard.
- NUMA: Non-Uniform Memory Access.
- Load Balancing
- Multicore Processors
- Real Time Schedulling: Soft vs. Hard.
- Big O Notation
 - O(1)
 - O(log N)
 - O(N)

The Two State Model

- CPU State I/O State CPU State . . .
 - n: processes in memory.
 - p: I/O time fraction.
 - p^n : probability n processes waiting for I/O.
 - $1 p^n$: CPU utilization of n processes.
 - $\left[\frac{(1-p^n)}{n}\right]$: CPU utilization of ONE processes.
- Example: $p = 60\% \Rightarrow$ CPU Utilization Per Process: $\left\lfloor \frac{1 (60\%)^n}{n} \right\rfloor$

CPU Utilization	Multiprogramming (%)					
N	1	2	3	4	5	
Per Process	40	32	26	21	18	

For 5 concurrent processes:
 If total time is 100 seconds; for each processs, the CPU time will be 18 seconds.

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.