TRIGONOMETRY **Chapter 17**

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS @ SACO OUVEROS **DE ÁNGULOS EN POSICIÓN NORMAL**

MOTIVATING STRATEGY

EVOLUCIÓN DE LOS SIGNOS MATEMÁTICOS

Estamos en el siglo XV y poco a poco se van imponiendo abreviaturas para indicar algunas operaciones matemáticas. Por ejemplo, los italianos utilizaban una p y una m para indicar la suma y la resta (plus y minus, en latín). Sin embargo, acabó imponiéndose la abreviatura alemana + y Estos signos se utilizaban originariamente para indicar exceso y defecto en la medida de las mercancías en los almacenes.

01

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS EN LOS CUADRANTES

Los signos de las razones trigonométricas dependen de los signos de la abscisa (x) y la ordenada (y), ya que el radio vector (r) siempre será positivo.

$$\operatorname{sen}\alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+)$$

$$\cos\alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$$

$$\triangleright$$
 Si $\alpha \in IIIC$

180° < α < 270°

$$\tan\alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

$$\triangleright$$
 Si $\alpha \in IVC$

$$270^{\circ} < \alpha < 360^{\circ}$$

$$\csc\alpha = \frac{\mathbf{r}}{\mathbf{y}} = \frac{(+)}{(-)} = (-)$$

Esquema práctico de los signos de las razones trigonométricas en los cuadrantes

Ejemplos:

$$sen 54^{\circ} = (+)$$

$$\tan 150^{\circ} = (-)$$

$$\cos 230^{\circ} = (-$$

Del gráfico, determine el signo de tan β y sen θ .

$$\beta \in IIIC$$

$$tan\beta = (+)$$

$$\theta \in IVC$$

$$sen\theta = (-)$$

Del gráfico, determine el signo de $E = \frac{sen\theta.tan\alpha}{cos\beta}$

Resolución:

$$\alpha \in IC$$
 $\beta \in IIC$ $\theta \in IVC$

$$E = \frac{\frac{IVC}{sen\theta. tan\alpha}}{\frac{cos\beta}{IIC}}$$

$$E = \frac{(-)(+)}{(-)}$$

$$E = \frac{(-)}{(-)}$$

$$: E = (+)$$

Del gráfico, determine el signo de:

$$A = sen\theta . tan\beta y B = \frac{sec\alpha}{tan\theta}$$

Resolución:

$$\theta \in IIC$$

$$\alpha \in IIIC$$

$$\beta \in IVC$$

$$A = sen\theta. tan\beta$$

$$A = (+)(-$$

IIC IVC

$$B = \frac{\sec \alpha}{\tan \theta} \implies B = \frac{(-\frac{1}{2})^{2}}{(-\frac{1}{2})^{2}}$$

IIC

$$: B = (+)$$

Si $\alpha \in IIIC$ y $\theta \in IVC$, determine el signo de:

$$A = \frac{\operatorname{sen}\alpha}{\tan\theta}$$

$$B = \cos^2 \alpha . \sec^3 \theta$$

Resolución:

Del dato:

$$\alpha \in IIIC$$

 $\theta \in IVC$

$$A = \frac{\sec \alpha}{\tan \theta} \implies A = \frac{(-)}{(-)}$$

$$\therefore A = (+)$$

$$B = \cos^2 \alpha . \sec^3 \theta$$
 \Rightarrow $B = (-)^2 . (+)^3$
 $B = (+)(+)$

$$: B = (+)$$

Determine el signo en cada caso:

$$A = \tan 48^{\circ} \cdot \sin 125^{\circ}$$

$$B = \frac{\sec 140^{\circ} \cdot \cot 20^{\circ}}{\sec 200^{\circ}}$$

Resolución:

$$A = \tan 48^{\circ} \cdot \sin 125^{\circ} \qquad A = (+)(+$$

$$: A = (+)$$

$$: B = (+)$$

$$B = \frac{(-)}{(-)}$$

Al copiar de la pizarra la expresión $\tan^4 150^\circ$. $\sec^3 290^\circ$, un estudiante cometió un error y escribió $\cot^5 200^\circ$. $\sec^3 310^\circ$. Indique los signos que se obtienen Al multiplicar y dividir lo que estaba escrito en la pizarra y lo que copio el alumno.

- Si 120° < α < 160° , determine el valor de verdad de las siguientes proposiciones:
- a) El signo de $tan^2\alpha$. $sec^6\alpha$ es negativo
- b) El signo de $cot\left(\frac{\alpha}{4}\right)$ es positivo.
- c) El signo de $sen\alpha cos\alpha$ es negativo.

a)
$$\tan^2 \alpha . \sec^6 \alpha$$
IIC IIC
$$(-)^2. (-)^6$$

(+)(+)(+)

F

$$\frac{120^{\circ} < \alpha < 160^{\circ}}{4} < \frac{\alpha}{4} < 40^{\circ}$$
 $\frac{\alpha}{4} < 40^{\circ}$

Por lo tanto:

$$\cot\left(\frac{\alpha}{4}\right) \Longrightarrow (+)$$

Sen
$$\alpha - \cos \alpha$$

IIC IIC

 $(+) - (-)$

(+)

F

∴ FVF