ЛАБОРАТОРНА РОБОТА № 2

ОПТИМІЗАЦІЯ ЦІЛЬОВОЇ ФУНКЦІЇ СИСТЕМИ МЕТОДОМ ГРАДІ- ϵ нта

Мета заняття: ознайомитися з методом знаходження екстремуму цільової функції, що оснований на використанні її градієнта; дослідити процес рішення оптимізаційної задачі для цільової функції двох змінних $Q(x_1, x_2)$; одержати залежність обчислювальних витрат на пошук екстремуму від параметрів алгоритму пошуку; оцінити ефективність методу градієнта шляхом порівняння обчислювальних витрат на пошук рішення при використанні даного методу і методів з попередніх лабораторних робіт.

Хід роботи

Завдання №1

Знайдемо ектстремум цільової функції за заданими данними, а також зобразимо траєкторію його пошуку (перших 5 кроків):

№ варі анту	A_0	A_1	A_2	A ₃	A ₄	A ₅	Вид екстр емуму	mın	X ₁ max	X ₂ min	X ₂ max
5	0,5	1,0	2,2	0,5	0,3	1,3	min	1	2	0	1

Рисунок 1 – Аргументи цільової функції згідно варіанту

- 1. Task 1
- 2. Task 2
- 0. Exit

Enter task number:

Extremum -1.1272750708275612 -0.6306518395063243 -0.7609688227259845 Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766

Рисунок 2 – Координати екстремуму (мінімуму) цільової функції

	Держа				<i>Державний університет</i>	ержавний університет «Житомирська полі-					
					техніка».21.125.05.000 — Лр2						
Змн.	Арк.	№ докум.	Підпис	Дата							
Розр	0 б.	Гончаров М.В.				Літ. Арк. Аркушів		Аркушів			
Пере	евір.	Подчашинський Ю.О			Звіт з		1	3			
Керіє	зник										
Н. контр.					лабораторної роботи №2	² ФІКТ Гр. КБ-2(КБ-2(1)			
3as	каф										

Рисунок 3 — Екстремум (мінімум) цільової функції та траєкторія його пошуку (перші 5 кроків)

Завдання №2

Побудуємо залежність обчислювальних витрат (час та кількість обчислювань) від значення h (h= 0,2; 0,4; 0,6; 0,8; 1.0) та знайдемо оптимальне значення цієї константи:

```
1. Task 1
2. Task 2
0. Exit

Enter task number: 2
h : 0.2
Extremum -1.1272750708275612 -0.6306518395063243 -0.7609688227259845
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 138
h : 0.4
Extremum -1.1314091144695624 -0.6296759241847916 -0.7609946717842204
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 69
h : 0.6
Extremum -1.1340846480915943 -0.6301734670611792 -0.7610021105825742
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 45
h : 0.8
Extremum 4366568915478.2 -18824994776264.91 4.253143155403317e+26
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0009999275207519531
Number of calculations : 552
h : 1.0
Extremum -6084430994188.533 58289489470737.11 4.2507408595583696e+27
Approximate extremum -1.1450381679389312 -0.6259541984732825 -0.7610687022900766
Calculation time : 0.0
Number of calculations : 183
```

Рисунок 4 — Екстремуми цільової функції, час та кілкість обчислювань при різних значеннях h

		Гончаров О.О			
		Подчашинський Ю.О			,
Змн.	Арк.	№ докум.	Підпис	Дата	

Рисунок 5 – Залежність затрат на пошук від значення h

3 рис. 4-5 можемо зробити висновок, що оптимальним значенням коєфінієнта h, тобто тим, яке вимагає найменших затрат при обчисленні ϵ значення 0,6. Протилежним ньому ϵ значення 0,8.

Висновки: в ході виконання лабораторної роботи ми ознайомилися з методом знаходження екстремуму цільової функції, що оснований на використанні її градієнта; дослідили процес рішення оптимізаційної задачі для цільової функції двох змінних $Q(x_1, x_2)$; одержали залежність обчислювальних витрат на пошук екстремуму від параметрів алгоритму пошуку; оцінили ефективність методу градієнта шляхом порівняння обчислювальних витрат на пошук рішення при використанні даного методу і методів з попередніх лабораторних робіт.

		Гончаров О.О		
		Подчашинський Ю.О		
Змн.	Арк.	№ докум.	Підпис	Дата