CRYPTO HEDGE FUND MVP

Structure

1. Hedge Fund Model:

Vision and components

2. Risk management

Main concepts and metrics

3. Portfolio management

Main concepts and metrics

4. System Architecture

Architecture example

Hedge Fund Model

AI Role

Optimization in decision making, calculate and graduate market risk metric: forecasting models and trading agents

Model	Pros	Cons	Possible Role
SMA	Easy to implement and interpretate Captures medium/long-term trends	Lags behind price (slow reaction to regime shifts)	Serves as a baseline strategy and benchmark; useful for long-term trend detection
ARIMA	Captures autocorrelation and mean- reversion patterns	Struggles with non-linear dynamics and regime shifts	Used to model short-term statistical dependencies in returns
GARCH	Captures volatility clustering (common in crypto)	Focused only on variance , not mean returns	Incorporated into the risk management module : volatility forecasts to reduce leverage or scale down positions
Logistic Regression	Simple, fast, and interpretable classification model	Linear decision boundary Sensitive to feature scaling and correlation	Serves as a baseline ML classifier for directional forecasts; useful for interpretability
Boosting	Handles non-linearities and feature interactions	Risk of overfitting without careful tuning	Provides the core predictive agent for signal generation;
Aggregation (Ensemble / Voting / Weighted)	Diversifies across models → reduces overfitting	Requires monitoring of model correlations and weights	Acts as the meta-agent in architecture: combines outputs from different models into one unified trading signal, balancing simplicity with robustness.

Risk management

Role of Risk Management in a Hedge Fund

Capital Preservation: protects the fund

against catastrophic losses.

Stability: ensures smoother equity curves,

less volatility in returns.

Position Sizing: adjusts exposure according to market risk levels.

Regime Adaptation: reduces leverage or exits during high-volatility or illiquid

periods.

Investor Confidence: provides transparency and discipline for stakeholders.

Core Metrics:

Volatility

Drawdowns

VaR

Sharp Ratio

Risk management

AI Role

AI-driven agents monitor volatility, liquidity, and tail risks in real time, dynamically adjusting exposure, enforcing stop signals, and protecting capital during turbulent periods.

Volatility Estimation:

Historical volatility

GARCH models for conditional variance

ML-based forecasting

Liquidity Estimation:

Bid-ask spread and Amihud liquidity ratioOrder book depth analysis (volume at top levels).Slippage simulation based on order size vs. market depth.

Portfolio management

Popular **theories** of portfolio management:

- Modern Portfolio Theory (Markowitz)
- Risk Parity
- Black-Litterman
- Factor Models

Optimal portfolio:

Balanced return, volatility, drawdown and liquidity constraints.

Avoid over-concentration by accounting for **correlations** between assets.

Evaluated using risk-adjusted performance metrics.

Hedge Fund Model

Example of pipeline:

Final report and monitoring

Portfolio management

Make optimization or rebalancing

Risk management

Calculate some portfolio metrics

Contains:
Baseline
ML model
Aggregation

STRATEGY

Geterating signals and get aggregation

Preproc module

Check data quality and data drift

Collecting data

Api connections, safe data in base

Key Takeaways:

- The AI-based hedge fund model combines **classical theory** with **ML** for adaptive, real-time decision-making.
- Risk management is central to portfolio stability, with AI agents dynamically adjusting for volatility and liquidity.
- **Portfolio management** leverages theories to optimize risk-adjusted returns.

Next Steps:

- *Expand* the library of signals using strong, complementary models
- *Enhance* the aggregation process and define clear risk-adjusted performance ranges
- Fast Scalability
- *Incorporate bot* for live monitoring and manual adjustments.
- Set monitoring system