Algebraic Attacks: Theoretical Aspects

Aurélien Bœuf,¹ Léo Perrin¹

¹Inria, France

March 6, 2025

In this Presentation

Anemoi Crypto23 **Griffin** Crypto23 **ArionHash** arXiv

In this Presentation

Anemoi Crypto23

Full-round break of some instances

ArionHash arXiv

In this Presentation

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

In this Presentation

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

In this Presentation

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

How did this happen?

Outline

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- Combining an Root Finding with Other Techniques

Plan of this Section

- Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Algebraic Attack? What is that?

Design an attack

- Design an attack
- Write a (system of) equation(s)

- Design an attack
- Write a (system of) equation(s)
- 3 ???

- Design an attack
- Write a (system of) equation(s)
- 3 ????
- Deduce a preimage/CICO solution/master key...

- Design an attack
- Write a (system of) equation(s)
- 3 ???
- Deduce a preimage/CICO solution/master key...

The topic of this class: the "???" part!

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
 - A Simple Case: CICO against Feistel-MiMC
 - The Multi-Variate Case
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Let's Look at Feistel-MiMC

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
 - A Simple Case: CICO against Feistel-MiMC
 - The Multi-Variate Case
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Deriving a Multi-Variate System: CICO-2

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problen
- Introduction to Gröbner Bases
 - Very High Level View
 - Setting Up a Mathematical Machinery
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Root Finding: Simple Cases

Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_N]$. We want to solve:

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Root Finding: Simple Cases

$$\begin{cases} m_{1,1}x_1 + \cdots + m_{1,N}x_N + a_1 = 0 \\ m_{2,1}x_1 + \cdots + m_{2,N}x_N + a_2 = 0 \\ & \vdots \\ m_{k,1}x_1 + \cdots + m_{k,N}x_N + a_k = 0 \end{cases}$$

Polynomials of **degree 1**: Linear system \Rightarrow **Linear algebra**.

Root Finding: Simple Cases

$$\begin{cases} p_1(x_1) = 0 \\ p_2(x_1) = 0 \\ \vdots \\ p_k(x_1) = 0 \end{cases}$$

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin algorithm).

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

The set of all such linear combinations is the ideal generated by the $\{p_i\}_{i=1}^k$

We denote it $I(p_0, ..., p_{n-1})$.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ p_2(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

Several variables, high degree!

General Approach

If $p_i(x_1, \ldots, x_N) = 0$ for all i, then

$$\sum_{i} q_i(x_1,\ldots,x_N)p_i(x_1,\ldots,x_N) = 0,$$

for any set of polynomials $\{q_i\}_i$.

The set of all such linear combinations is the ideal generated by the $\{p_i\}_{i=1}^k$

We denote it $I(p_0, ..., p_{n-1})$.

Goal: somehow, find a polynomial $r(x_1) = 0$ in this ideal!

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problen
- Introduction to Gröbner Bases
 - Very High Level View
 - Setting Up a Mathematical Machinery
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

Over the integer

There is an ideal you all know: $n\mathbb{Z}=\{...,-3n,-2n,-n,0,n,2n,3n,...\}.$

Over the integer

There is an ideal you all know: $n\mathbb{Z} = \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$. Every $x \in \mathbb{Z}$ can be written as a + b, where $a \in n\mathbb{Z}$ and $b \in n\mathbb{Z}$

Over the integer

There is an ideal you all know: $n\mathbb{Z} = \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$. Every $x \in \mathbb{Z}$ can be written as a + b, where $a \in n\mathbb{Z}$ and $b \in \mathbb{Z}/n\mathbb{Z}$.

Over the integer

There is an ideal you all know: $n\mathbb{Z}=\{...,-3n,-2n,-n,0,n,2n,3n,...\}$. Every $x\in\mathbb{Z}$ can be written as a+b, where $a\in n\mathbb{Z}$ and $b\in\mathbb{Z}/n\mathbb{Z}$.

We want to simplify our lives and work in

$$\mathbb{F}[x_1, x_2, \ldots, x_N]/I(p_0, \ldots, p_{n-1})$$
.

A Problem with Euclidian Division

Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1$$
.

A Problem with Euclidian Division

Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1$$
.

E Euclidian division on **univariate polynomials** ($\mathbb{F}[X]$):

$$A = BQ + R$$
, $deg(R) < deg(B)$.

Division of $X^3 + X + 1$ by X:

$$X^3 + X + 1 = (X^2 + 1)X + 1.$$

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A = BQ + R$$
... condition on R ?

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A=BQ+R...$$
 condition on R ?
Division of x by $x+y$ in $\mathbb{F}[x,y]$:
$$x=0\cdot(x+y)+x$$
or
$$x=1\cdot(x+y)-y$$
?

The Problem with Multivariate

Euclidian division on multivariate polynomials:

$$A = BQ + R$$
... condition on R ?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x \iff x < y$$
or
 $x = 1 \cdot (x+y) - y \iff y < x$

Need to define a monomial ordering.

Division steps determined by leading monomials (LM).

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{lex} y <_{lex} z$$
, x^{1000} ? y

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , \ x^{1000} <_{\text{lex }} y , \ x^{6} yz ? y^{2} z$$

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , x^{1000} <_{\text{lex }} y , x^{6} yz <_{\text{lex }} y^{2}z .$$

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, y ? x^2

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, z^2 ? xyz

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 yz <_{\text{lex}} y^2 z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x$$
? yz^2

2 2 6

Monomial orderings

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z , x^{1000} <_{\text{lex }} y , x^{6} yz <_{\text{lex }} y^{2}z .$$

■ **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $y <_{\text{glex }} x^2$, $z^2 <_{\text{glex }} xyz$, $xy <_{\text{glex }} xz <_{\text{glex }} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x >_{\text{wglex }} yz^2$$
 because $\text{wt}(x) = 6$ and $\text{wt}(yz) = \text{wt}(y) + 2\text{wt}(z) = 5$.

In $\mathbb{F}[x, y, z]$:

LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex }} y <_{\text{lex }} z$$
, $x^{1000} <_{\text{lex }} y$, $x^6 yz <_{\text{lex }} y^2z$.

■ Graded LEX: Compare total degree first, then switch to lex if equality.

$$X <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

■ Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for $x <_{lex} y <_{lex} z$ and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$x >_{\text{wglex}} yz^2$$
 because $\text{wt}(x) = 6$ and $\text{wt}(yz) = \text{wt}(y) + 2\text{wt}(z) = 5$.

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1,\ldots,p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with lex ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with lex ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

$$y^{2}$$

$$\downarrow \qquad \text{red. by } y^{2} - 1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \text{red. by } y - x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The solution: Gröbner Bases.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

Definition

G is a Gröbner basis if and only if the reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

What is a Gröbner Basis?

Let $G = \{p_1, \dots, p_k\}$ and < a monomial ordering.

Definition

G is a *Gröbner basis* if and only if the reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

Useful Proposition

If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In
$$\mathbb{F}[x, y]$$
:

• $\{y^2 - 1, y - x\}$ is not a Gröbner basis for lex order with x < y (previous example).

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for lex order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for lex order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: LM $(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.
- However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and wt(y) = 1, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are coprime.

$$\begin{cases} p_1(x_1,\ldots,x_N) = 0 \\ \vdots \\ p_{k-1}(x_1,\ldots,x_N) = 0 \\ p_k(x_1,\ldots,x_N) = 0 \end{cases}$$

1. Define system

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases}$$
1. Define system
2. Find a GB (F4/F5)

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system

$$g_1(x_1,\ldots,x_N) = 0$$

$$\vdots$$

$$g_{\kappa-1}(x_1,\ldots,x_N) = 0$$

$$g_{\kappa}(x_1,\ldots,x_N) = 0$$

$$\begin{cases} g_1^*(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{N-1}^*(x_{N-1}, x_N) = 0 \\ g_N^*(x_N) = 0 \end{cases}$$

3. Change order to lex (FGLM)

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}^{*}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
3. Change order to lex (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons. For most AOPs, step 2 dominates, **but we can skip it**.

The Targets of the Day Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- 4 Combining an Root Finding with Other Techniques

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*, \dots, *, \underbrace{0, \dots, 0}_{c \text{ elements}}) = (*', \dots, *', \underbrace{0, \dots, 0}_{c \text{ elements}})$$

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*, \dots, *, \underbrace{0, \dots, 0}_{c \text{ elements}}) = (*', \dots, *', \underbrace{0, \dots, 0}_{c \text{ elements}})$$

Solving CICO of size c gives collisions to the hash function.

- ⇒ Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
- \Rightarrow We focus on c=1.

$$P(x,*,\ldots,*,0)=(*',\ldots,*',0).$$

Block Cipher

Figure: The ever-popular Block Cipher construction.

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).
- Many instances are defined: variable \mathbb{F}_p , number of branches, exponents for monomial permutations...

⇒ We attack some instance better than others.

The Targets of the Day

Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Griffin- π - Round Function (4 branches)

Griffin- π - Round Function (4 branches)

 $\cdot^{1/lpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/lpha}$.

Griffin- π - Model

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$.
 - \implies One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Griffin- π - Model

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0)=(\cdots||0)$.
 - \implies One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$
1. Define system
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$
2. Find a GB (F4/F5)
$$g_{1}(x_{1},...,x_{N}) = 0 \\ g_{2}^{*}(x_{1},...,x_{N}) = 0 \\ g_{3}(x_{1},...,x_{N}) = 0 \end{cases}$$

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

Generic System Solving

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} x_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

$$1. \text{ Define system} \qquad 2 \text{ and a GB (F4/F5)} \qquad 3. \text{ Change order to lex (FGLM)}$$

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Observation: x_1 has a lower degree than x_0 in the last equation.

- \implies In grevlex, the leading monomials are x_0^7 and x_1^3 .
- ⇒ It's a Gröbner basis! (coprime leading monomials)

Griffin- π - Model

- CICO problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$.

 ⇒ One variable \mathbf{x}_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha =$ 3, one round)

$$x_1^3 = ax_0 + b$$

 $x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$

Observation: x_1 has a lower degree than x_0 in the last equation.

- \implies In grevlex, the leading monomials are x_0^7 and x_1^3 .
- ⇒ It's a Gröbner basis! (coprime leading monomials)

For more rounds, grevlex doesn't work. We need weighted degree orders, with $wt(x_0) = 1$ and $wt(x_i) = 7^{i-1}$.

Arion- π - Round Function (4 branches)

Arion- π - Round Function (4 branches)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

Anemoi - Nonlinear layer (2 branches)

Anemoi - Nonlinear layer (2 branches)

 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

 $x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$

The Targets of the Day Using Weighted Orders The Case of Anemoi Solving the System given a Gröbner Basis

Anemoi - Model

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 \implies The first equation and p^* are a Gröbner basis for some weighted order.

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Saving the Freelunch

Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 \implies The first equation and p^* are a Gröbner basis for some weighted order.

This adds a few parasitic solutions (corresponding to $x_1 = 0$), but not many.

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
 - The Targets of the Day
 - Using Weighted Orders
 - The Case of Anemoi
 - Solving the System given a Gröbner Basis
- 4 Combining an Root Finding with Other Techniques

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D₁ is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.
- This is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)

FGLM in a Nutshell

- Given a zero-dimensional ideal I, a Gröbner basis G_1 for I some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- D_I is the degree of the ideal, a.k.a. the number of solutions of the system in the algebraic closure.
- This is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

Faster Change of Order Strategy

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial χ of the linear operation $P \mapsto \text{Red}_{<}(x \cdot P, G)$.
- $\chi(x) = 0$. Generically, this is **exactly** the univariate polynomial in x in the reduced GB of t in **lex** order.
- Issue: our systems do not verify an important property of the original paper.

The Targets of the Day
Using Weighted Orders
The Case of Anemoi
Solving the System given a Gröbner Basis

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight complexity estimate for this step.

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

- Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight complexity estimate for this step.
- The matrix is sparse. If leading monomials are $x_0^{d_0}, \ldots, x_N^{d_N}$:

$$T_0 = \underbrace{ \left(\begin{array}{c|cccc} 0 & 0 \cdots \cdots & 0 & * \\ \hline 1_{\cdots} & 0 \cdots & \cdots & 0 & * \\ \hline 0_{\cdots} & \cdots & \cdots & \vdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \vdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \vdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots &$$

Computing the Characteristic Polynomial

Step 2: Given *T*, compute det(XI - M).

 \implies *T* is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.

 \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.

 \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0\log(d_0)^2d_1^{\omega}\cdots d_N^{\omega})$.

Our Full Algorithm

- sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
- **2** matGen: Compute the multiplication matrix *T*. **Complexity hard to evaluate**.
- \blacksquare polyDet: Compute the characteristic polynomial χ of T.
 - $\implies \textbf{Longest step aside from } \texttt{matGen}.$
- **uniSol**: Find roots of χ with Berlekamp-Rabin in $\mathcal{O}(D_l \log(D_l) \log(pD_l))$.

Experimental Results

Figure: Complexity of Griffin (7 out of 10 rounds, α =3)

Complexity of Anemoi (7 out of 21 rounds, $\alpha=3$)

Experimental Results

Figure: Complexity of Griffin (7 out of 10 rounds, α =3)

Complexity of Anemoi (7 out of 21 rounds, $\alpha=$ 3)

- ⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
- \implies For Anemoi, matGen is the bottleneck.

Plan of this Section

- 1 Cryptanalysis as a Root-Finding Problem
- 2 Introduction to Gröbner Bases
- 3 Freelunch Systems for Free Gröbner Bases
- Combining an Root Finding with Other Techniques

Skipping Rounds

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_l with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

MatGen and PolyDet are already getting obsolete!

Improved Resultant Attack against Arithmetization-Oriented Primitives

https://eprint.iacr.org/2025/259 Augustin Bariant, Aurélien Boeuf, Pierre Briaud, Maël Hostettler, Morten Øygarden, Håvard Raddum

Conclusion

- A0 primitives should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_I with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds!

MatGen and PolyDet are already getting obsolete!

Improved Resultant Attack against Arithmetization-Oriented Primitives

https://eprint.iacr.org/2025/259 Augustin Bariant, Aurélien Boeuf, Pierre Briaud, Maël Hostettler, Morten Øygarden, Håvard Raddum

Thank you!

Griffin Trick

Arion Trick

