Nome teorema	Ipotesi	Tesi	Dimostrazione
Estremo superiore (S)	Sia A C R non vuoto e superiormente limitato	$S = \sup A \{ S \ge a \ V \ a \in A \in V $ $\varepsilon > 0 \ \exists \ a \in A : a > S - \varepsilon \}$	S è un maggiorante di a quindi S ≥ a V a ∈A
Estremo inferiore (I)	Sia A C R non vuoto e inferiormente limitato	I =inf A { I ≤ a V a∈A e V ε> 0 ∃ a∈A: a < S-ε }	S è un minorante di a quindi S ≤ a V a ∈A
Formula di De Moivre	Sia r≥0 e δ ∈ [0; 2π)	$Z = \delta [\cos \vartheta + i*sen \vartheta]$	
Proprietà di separazione degli intorni	Siano r1,r2 ∈R esteso punti della retta reale estesa, con r1 ≠ r2	Allora ∃ un intorno U1 e U2 intorno di r2 tale che U1 ∩ U2 = 0	
Punto di accumulazione	Sia A C R non vuoto e $r \in R$ esteso, e V intorno U di r l'insieme A \cap U \ { r } è NON VUOTO	r è punto di accumulazione per A	
Punto isolato	Sia r ∈ A non è di accumulazione per A	r si dice punto isolato	
Limite (definizione)	Sia $X_0 \in R$ punto di accumulazione per Dom(f), A C R e f una funzione reale a variabili reali, se V $\epsilon > 0 \exists \delta > 0$ t.c $0 < X-X_0 < \delta \rightarrow f(x) - L < \epsilon$	L si dice limite di f(x) per x che tende a Xo	
Unicità del limite	Sia f una funzione reale a variabili reali e f ha limite per x→Xo	Il valore del limite è UNIVOCAMENTE determinato L1 = L2	Siano L1, L2 \in R esteso e supponiamo per assurdo che valga L1 \neq L2 allora grazie alla <u>proprietà di separazione degli intorni</u> esistono V1 e V2 intorni di L1 e L2 t.c. V1 \cap V2 non sia vuoto. Per la definizione di limite \exists due intorni U1 e U2 di Xo t.c. $x \in U1\cap Dom(f), X \neq Xo \rightarrow f(x) \in V1$ e $x \in U2\cap Dom(f), X \neq Xo \rightarrow f(x) \in V2$ grazie alla proprietà degli intorni \exists un intorno U C U1 \cap U2. Allora se si ha contemporaneamente $f(x) \in V1$ e $f(x) \in V2$ e ciò è assurdo essendo $V1\cap V2=0$
Esistenza del limite destro e sinistro e del limite stesso	Sia f una funzione reale a var reali con Xo∈R punto di accomulazione sia destreo che sinistro per A nel Dom(f)	$\lim_{x \to xo-} f(x) = \lim_{x \to xo+} f(x) = L$ Se e solo se $\lim_{x \to x0} f(x) = L$	Fissato un intorno V di L bisogna trovare $\delta>0$ t.c. $x\in]Xo-\delta,Xo+\delta[\bigcap Dom(f)]$ con $X\neq Xo$ alora $f(x)\in V$. poiché f ha limite destro = L in Xo, per la definizione di limite destro $\exists \delta 1>0$ t.c. $x\in]Xo,XO+\delta 1[$ allora $f(x)\in V$. poiche f ha limite sinistro = L in Xo, per la definizione di limite sinistro $\exists \delta 2>0$ t.c. se $x\in]Xo-\delta 2,Xo[$ allora $f(x)\in V$. preso $\delta=\min\{\delta 1,\delta 2\}$ se $x\in]Xo-\delta,Xo+\delta[\bigcap Dom(f),X\neq Xo]$ si ha $Xo< x< Xo+\delta \le x+\delta 1$ $x\in Dom(f)$ allora $f(x)\in V$ $Xo-\delta 2\le Xo-\delta < X< Xo$, $x\in Dom(f)$ allora $f(x)\in V$ c.v.d.

Permanenza del segno (proprietà di separazione) (esistenza del limite destro e sinistro)	Sia f una funzione reale a variabili reali, $Xo \in R$ esteso punto di accumulazione e $\lim_{x \to Xo} f(x) = L > 0$	La funzione ha lo stesso segno di L	Supponiamo che L > 0 per la proprietà di separazione \exists un intorno U di L che non contiene 0: se LeR basta prendere U=]L/2,3/2L[Se L=+ ∞ allora scegli U=]1,+ ∞ [, grazie all'esistenza del limite destro e sinistro f(x) \in U definitivamente per X \rightarrow Xo con le nostre scelte: se L \in R si ha f(x)>L/2 definitivamente per X \rightarrow Xo se L=+ ∞ allora f(x)>1 definitivamente per X \rightarrow Xo c.v.d
Dei due carabinieri (proprietà degli intorni)	Siano f,g,h funzioni reali definite in uno stesso insieme XCR che abbia $Xo \in R$ esteso come punto di accumulazione. Supponiamo che: $f(x) \le g(x) \le h(x)$ definitivamente $X \to Xo$ e che f e h abbiano limite I per $X \to Xo$ che Ξ il Lim per $X \to Xo$	Allora anche la funzione g ha limite L per X→Xo	V intorno di V di L devo trovare un intorno U di Xo t.c. $g(x) \in V \times U \cap X \times X = X = X = X = X = X = X = X = X =$
Limite fondamentale (sen x)/x		Dal teorema dei due carabinieri discende che $\lim_{x\to 0} f(x)$ =1	Si può provare che per $0 < x < \pi/2$ si ha: sen $x < x < tg x = senx/cosx$, moltiplicare per cosx e dividere per sen x , cos $x < senx/x < 1$ poiché le funzioni coinvolte sono pari, tale relazione rimane valida anche per $-\pi/2$ $< x < 0$. Se dimostro che il limite di cos x per $x \rightarrow 0$ è =1 posso concludere che è vera.
Limiti di funzioni monotone	Sia f funzione reale di variabile reale, Xo p. di accumulazione SINISTRO per Dom(f), se f è monotona in]-∞,Xo[\exists il limite sinistro di f in Xo e valgono: $\lim_{x \to Xo-} f(x) = supf(x)$ se f è monotona crescente mentre $\lim_{x \to Xo-} f(x) = inff(x)$ se f è monotona decrescente	Dimostriamo il caso f monotona crescente, con Xo p.acc. SINISTRO, S=sup f(x) x єdom f . se S \in R V ϵ >0 \exists X < Xo , Xo ϵ dom f t.c. S- ϵ < f(X) \leq S, Posto Δ =Xo-X, S maggiorante ϵ]Xo- Δ ;Xo[\rightarrow S- ϵ < f(X) \leq f(X) \leq S e quindi f(x)-S < ϵ . Se S=+ ϵ V M>0 \equiv X <xo <="" <math="" f(x)="" m="" t.c.="">\leq f(X) grazie a Δ=Xo-X V M>0 \equiv Δ>0 t.c. Xo-Δ< X < Xo</xo>
Limiti e operazioni (somma,prodotto)	Siano f e g funzioni reali a variabile reale Xo∈R esteso p. di accumulazione supponiamo che f e g ammettano limite finito rispettivamente Lf e Lg per x→Xo	$\lim_{x \to Xo} f(x) \pm g(x) = Lf \pm Lg (A)$ $\lim_{x \to Xo} f(x) * g(x) = Lf \star Lg (B)$	(A) V ϵ > 0 ∃ 2 intorni di Xo Uf e Ug t.c. X∈Uf \cap dom f, x≠Xo \rightarrow f(x)-Lf < ϵ /2 , X∈Ug \cap dom f, x≠Xo \rightarrow f(x)-Lg < ϵ /2 , U C Uf e Ug f(x)+g(x) - (Lf+Lg) ≤ f(x)-Lf + g(x)-Lg < ϵ /2 + ϵ /2 = ϵ (B) V x∈dom vale: f(x)*g(x) - Lf*Lg = [f(x)*g(x) - f(x)*Lg] + [f(x)*Lg - Lg*Lf] ≤ f(x) g(x) - Lg + Lg f(x)-Lf
Il numero di Nepero	La successione $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ ed è crescente e limitata	Quindi per il th. Di limite di successione ha limite finito	

Il simbolo "o" piccolo	Date due funzioni reali a variabile reale Xo∈R esteso p. di accumulazione nel Dom(f,g) con g(x)≠0 definitivamente per x→Xo	Si dice che f è o piccolo di g per x \rightarrow Xo e si scrive f(x)=o(g(x)) se vale $\lim_{x\to Xo} \frac{f(x)}{g(x)} = 0$	
Principio di sostituzione degli infinitesimi e degli infiniti	Siano f,f1,g,g1 funzioni reali definite nell'insieme xCR con Xo p. accumulazione, t.c. $g(x)\neq 0$ definititvamente per $x\rightarrow Xo$ e $f = f1+o(f1)$ e $g=g1+o(g1)$ per $x\rightarrow Xo$	Allora: $\lim_{x \to Xo} \frac{f(x)}{g(x)} = \lim_{x \to Xo} \frac{f^{1}(x)}{g^{1}(x)}$ Difficile semplice	$= \lim_{x \to Xo} \frac{f(x)}{g(x)} = \frac{f1 + o(f1(x))}{g1 + o(g1(x))} = \frac{f1(x) \left[1 + \frac{o(f1(x))}{f1(x)}\right]}{g1(x) \left[1 + \frac{o(g1(x))}{g1(x)}\right]}$ $= \lim_{x \to Xo} \left(\frac{f1(x)}{g1(x)} * \frac{1}{1}\right) \text{ c.v.d.}$
Limite di successione	Se V intorno V di L \exists M \in R t.c. V n $>$ M $\lim_{x\to +\infty} an = L$,	Allora {an} ∈ V e si dice che una successione {an} n∈N ha limite L	
Caratterizzazione del limite di successioni monotone	Sia (an)n una successione reale monotona	Allora $\exists \lim_{n \to +\infty} (an)$, in particolare: se è crescente: $\lim_{n \to +\infty} an = \sup(an)$ Se è decrescente $\lim_{n \to +\infty} an = \inf(an)$	
Teorema "ponte"	Sia f funzione a variabile reale e Xo∈R esteso p. di accumuazione nel Dom(f)	Allora f ha limite $L \in \mathbb{R}$ esteso per $x \to Xo \Leftrightarrow V$ succ $\{an\} n \in \mathbb{N}$ a valori nel Dom $\{f\} \setminus \{Xo\}$ e con limite Xo si ha: $\lim_{n \to +\infty} f(an) = \mathbb{L}$	Dim per assurdo: $\lim_{x\to Xo} f(x) \neq L \exists$ un intorno V di L t.c. V $\delta > 0 \exists x \in]Xo - \delta, Xo + \delta[\setminus \{Xo\} \text{ t.c. } f(x) \in V. \text{ scelgo } \delta = 1/n \exists$ $Xn \in]Xo - 1/n, Xo + 1/n[\text{ t.c. } f(x) \in V \text{ ma } \lim_{n\to +\infty} xn = Xo \to Xn - Xo < 1 \setminus n, f(x) \in V$ V $n \in \mathbb{N}$ il che nega il $\lim_{n\to +\infty} f(xn) = L$ e quindi nega l'ipotesi
Bolzano-Weierstrass (th dei due carabinieri)		Ogni successione a valori in un intervallo [a,b] chiuso e limitato ammette l' esistenza di una sottosuccessione avente limite in [a,b]	∃ intervallo lo = [ao,bo] C R, ao,bo∈R t.c. divido a metà lo, co = $\frac{ao,bo}{2}$ →[ao,co] e [co,bo] sia K(1) il primo indice t.c. Xk(1)∈[ao,bo] a0 ≤ a1 ≤ K(1) ≤ b1 ≤ bo. Ne creo un altro l1 = [a1,b1], trovo c1 = $\frac{a2+b2}{2}$ e scelgo K(2) > K(1) t.c. a2 ≤ Xk(2) ≤ b2 quindi 2 successioni [a0,b0], [a2,b2] an crescente →limite La ≤ b, bn decrescente →limite Lb ≥ a, affermo che La = Lb, Lb - La = Lb -bn+bn -an+an -La ≤ Lb-bn + bn-an + an-La ≤ $\frac{3}{3}$ € → Lb-La < ε V ε>0 (Lb=La) lim bn = La=Lb quindi per il th dei due carabinieri an ≤ xn ≤ bn → lim Xn = Lb = La
Somma parziale	Data una successione {an}n∈N di numeri reali	L'elemento Sn somme parziale corrisponde = $\sum_{k=0}^{n} ak$	

Serie convergente	Se la successione delle <u>relative somme</u> <u>parziali</u> Sn è convergente ad un numero reale L ∈ R	La serie di termine generale an si dice convergente	
Serie divergente	Se la successione delle <u>relative somme</u> <u>parziali</u> Sn diverge a $\pm \infty$	La serie di termine generale an si dice divergente a $\pm \infty$	
Serie indeterminata	Se la successione delle <u>relative somme</u> <u>parziali</u> non ammette limite	La serie di termine generale an si dice indeterminata	
Convergenza assoluta e semplice di una serie (criterio di cauchy)	Sia $\{an\}k \in \mathbb{N}$ t.c. $\sum_{k=0}^{\infty} ak$ converga assolutamente	Allora la serie converge anche seplicemente e vale $ \sum_{k=0}^{\infty}ak \leq \sum_{k=0}^{\infty} ak $	ak converge, quindi per il criterio di cauchy con $\varepsilon > 0$ 3 N > 0 t.c. V n>N e V p \geq 1 vale $\sum_{k=n+1}^{n+p} ak$ $\leq \sum_{k=n+1}^{n+p} ak < \varepsilon \rightarrow$ la serie soddisfa il criterio di cauchy dunque converge. c. di cauchy: condizione necessaria e sufficiente affinchè una serie converga è che sie V $\varepsilon > 0$ 3 N ϵ R t.c. n,m > N \rightarrow an-am $< \varepsilon$
Criterio del confronto	Siano $\{an\}\ k\in \mathbb{N}$ e $\{bn\}\ k\in \mathbb{N}$ successioni tali che $0 \le ak \le bk$ definitivamente per $k \to +\infty$	Allora se $\sum_{k=0}^{\infty}bk \text{ converge anche } \sum_{k=0}^{\infty}ak$ converge $\sum_{k=0}^{\infty}ak \text{ diverge anche } \sum_{k=0}^{\infty}bk$ diverge	Per ipotesi \exists ko t.c. \forall k \geq ko si ha $0 \leq$ ak \leq bk. Inoltre essendo a termini definitivamente positivi le due serie di termine generale ak e bk o convergono o divergono a $+\infty$ dalla relazione $\sum_{k=0}^n ak \leq \sum_{k=0}^n bk$ \forall n \geq ko. Si deduce che $\sum_{k=0}^\infty bk$ converge le somme parziali $\sum_{k=0}^n ak$ sono superiormente limitate \Rightarrow anche $\sum_{k=0}^\infty ak$ converge. Se $\sum_{k=0}^\infty ak$ diverge, le somme parziali $\sum_{k=0}^n bk$ non sono superiormente limitate quindi \Rightarrow $\sum_{k=0}^\infty bk$ diverge.
Criterio asintotico del confronto (criterio del confronto)	Siano{ak}k \in N e {bk}k \in N successioni definitivamente positive e t.c.: $\lim_{k\to+\infty}\frac{ak}{bk}=L\in$ R esteso	Allora: se L∈R e L≠0 ak converge ⇔bk converge (1) se L=0 bk converge →ak converge (2) se L=+∞ e bk diverge →ak diverge (3)	(1) sia $\varepsilon > 0$ t.c. L- $\varepsilon > 0 \rightarrow$ per ipotesi L- $\varepsilon \le \frac{ak}{bk} \le L + \varepsilon$ e quindi (L- ε)bk \le ak \le (L+ ε)bk se bk converge anche la serie a termini generali (L+ ε)bk converge e per il criterio del confronto anche ak converge. (2) se L=0 la 2° diseguaglianza è ancora verificata e quindi la tesi segue ancora il criterio del confronto (3) se L=+ ∞ definitivamente si ha $\frac{ak}{bk} \ge 1$ cioè ak \ge bk e se bn diverge \rightarrow ak diverge.
Criterio del rapporto	Sia {ak}keN successione a termini positivi.	Se \exists r < 1 t.c. $\frac{ak+1}{ak} \le$ r definit. per k \rightarrow + ∞ allora la serie $\sum_{k=0}^{\infty} ak$ converge. (1) Se $\frac{ak+1}{ak} \ge$ r definitiv. per k \rightarrow + ∞ allora la serie $\sum_{k=0}^{\infty} ak$ diverge. (2)	(1) Per ipotesi \exists ko t.c. $\frac{ak+1}{ak} \le r \lor k \ge ko$. Quindi: $ak = \frac{ak}{ak-1} * \frac{ak-1}{ako} \frac{ako+1}{ako} * ako \le ako*r^{(k+ko)}$ sostituisci h = k-ko si ha: $\sum_{k=ko}^{\infty} ako * r^{(k-ko)} = ako \sum_{h=0}^{\infty} r^h$ converge essendo multipla di una serie geometrica di ragione <1. In definitiva la serie converge perché maggiorata dal termine generale di una serie convergente. (2) in questo caso, per $k \ge ko$ si ha $ak+1 \ge ak$, perciò $\{ak\}k \in N$ è una successione crescente e positiva, dunque non infinitesima e deve divergere.

Criterio asintotico del rapporto (criterio del rapporto) Criterio della radice	Sia $\{ak\}k \in \mathbb{N}$ successione a termini positivi e t.c. $\lim_{k \to +\infty} \frac{ak+1}{ak} = \mathbb{L}$ Sia $\{ak\}k \in \mathbb{N}$ successione a termini non negativi.	se L< 1 la serie ak CONVERGE (1) se L>1 la serie ak DIVERGE (2) se L=1 non si può dire nulla sulla convergenza della serie (3) Allora se \exists r<1 t.c. $\sqrt[k]{ak}$ < r definit. per k \rightarrow + ∞ la serie $\sum_{k=0}^{\infty} ak$ converge.	(1) posto $\varepsilon > 0$ t.c. $r=L+\varepsilon < 1$ definitivamente si ha che $\frac{ak+1}{ak} \le L+\varepsilon = r$, quindi per il criterio del rapporto converge. (2) posto $\varepsilon > 0$ t.c. $L-\varepsilon > 1$ definitivamente si ha $\frac{ak+1}{ak} \ge L-\varepsilon > 1$ quindi per il c del rapporto diverge (3) esempio $\lim_{n \to +\infty} \frac{n}{n+1} = 1 = \lim_{n \to +\infty} \frac{n^2}{(1+n)^2} = 1$ ma $1/n$ diverge, mentre $1/n^2$ converge. (1) per ipotesi \exists ko t.c. $\sqrt[k]{ak} \le r$, cioè ak $\le r^k$, V k \ge ko. La serie $\sum_{k=0}^{\infty} ak$ ha quindi termine generale definitivamente maggiorato dal termine di
		(1) Se $\sqrt[k]{ak} \ge 1$ definit. per $k \to +\infty$ la serie $\sum_{k=0}^{\infty} ak$ diverge. (2)	una serie geometrica di ragione $r < 1$, che è dunque convergente. (2) in questo caso per $k \ge k$ o si ha $\sqrt[k]{ak} \ge 1$ da cui ak ≥ 1 , perciò $\{ak\}k \in \mathbb{N}$ non può essere infinitesima, siccome la serie non converge ed essendo a termini positivi diverge.
Criterio asintotico della radice (criterio della radice)	Sia {ak}k \in N successione a termini non negativi e t.c. $\lim_{k\to+\infty}\sqrt{(ak)}=$ L	Se L<1 la serie ak converge (1) Se L>1 la serie ak diverge (2) Se L=1 non si può dire nulla sulla convergenza della serie (3)	(1) posto $\varepsilon > 0$ t.c. L+ $\varepsilon < 1$ definitivamente si ha $\sqrt[k]{ak} \le L + \varepsilon = r < 1$ per il criterio della radice la serie converge. (2) posto $\varepsilon > 0$ t.c. L- $\varepsilon > 1$ definitivamente si ha $\sqrt[k]{ak} \ge L - \varepsilon > 1$ per il criterio della radice diverge (3) esempio $\lim_{n \to +\infty} \sqrt[n]{an} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1$ diverge, mentre $\lim_{n \to +\infty} \sqrt[n]{bn} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$ converge
Criterio di Leibniz	Sia {ak}k∈N successione a termini non negativi, decrescente e INFINITESIMA e a segni alterni	Allora la serie $\sum_{k=0}^{\infty} (-1)^k * ak$ CONVERGE	
Teorema di weierstrass (th di bolzano – weierstrass)	Sia f una funzione reale definita in un intervallo [a,b] chiusa e limitata e quindi continua	Allora f è limitata e ha massimo e minimo in [a,b] t.c. f(xm)=min f(x) (1), f(xM)=maxf(x) (2)	(2) posto V = {f(x); x \in [a,b]}, S=sup V \rightarrow ∃ (xn)n \in N \in V V n t.c. $\lim_{n\to+\infty} (xn) = S$. se S \in R V \in >0 ∃ x \in V t.c. S- \in < x \leq S es: \in =1/n, n \in N V n \in N ∃ x t.c. S-1/n < xn \leq S. se S=+ ∞ V n ∃ xn t.c. xn>n $\Leftrightarrow \lim_{n\to+\infty} xn = +\infty = S$ verifichiamo che ∃ (xn)CV . limy n = S xn \in V = {f(x); x \in [a,b]} cioè xn = f(yn) \rightarrow un'altra sottosuccessione! C [a,b], per B-W: ∃ sottossuccessione (xk) di (xn) t.c. ∃ $\lim_{k\to+\infty} xk = x = \lim_{k\to+\infty} yk = S = x$ \rightarrow xè MAX
Teorema di Bolzano o degli zeri	Data una funzione f reale a varibili realie continua in [a,b], definita in un intervallo [a,b] chiuso e limitato e che essa assumi agli estremi dell'intervallo valori di segno opposto	Allora f ammette almeno uno 0 in [a,b], cioè Ξ almeno un punto in cui f(Xo) = 0	

Teorema dei valori intermedi (th di bolzano)	F una funzione reale a variabili reali e continua sull'intervallo [a,b], detti il massimo e il minimo valore di f nell'intervallo [a,b]	Allora f assume tutti i valori compresi tra il suo massimo e il suo minimo	Dati y1,y2 \in f(I) dimostriamo V y \in]y1,y2[\exists p \in I t.c. f(p)=y. Siano x1,x2 \in I t.c. f(x1)=y1 e f(x2)=y2 e supponiamo che x1 < x2. Considerando la funzione g(x)=f(x)-y essa è continua perché differenza tra f e y continue e t.c. g(x1)=g(x1)-y<0 e g(x2)=f(x2)-y>0. Per il th. Di bolzano \exists p \in]x1,x2[C I t.c. g(p)=0. Ma allora f(p)=y e la dimostrazione è conclusa.
Derivata	Sia f una funzione reale a variabili reali definita in un intervallo I e Xo∈I	Se esiste il limite $\lim_{h\to 0} \frac{f(Xo+h)-f(Xo)}{h}$ e si dice deriva o derivata prima di f.	
Legame tra derivabilità e derivabilità da destra e da sinistra	Sia f una funzione reale a varibili reali definita nell'intervallo]a,b[Se è derivabile in Xo∈]a,b[⇔in Xo è derivabile da destra e da sinistra e f'-(Xo)=f'+(Xo). I tal caso f'(Xo) coincide con il valore assunto dalla derivata destra e sinistra	Considerata la funzione f(x){1 se x≤0, $\frac{sen x}{x}$ se x>0} e studiamo la D in Xo=0. Si osservi che la f è continua in 0. f'_(0)=0. L'esistenza delle derivata destra: $\lim_{x\to 0+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0+} \frac{sen x-x}{x^2} = \lim_{x\to 0+} \frac{-x^3/_6+o(x^3)}{x^2} = 0$ e quindi anche f'+(0)=0 da cui la derivabilità di f in 0, con f'(0) = 0.
Derivata di funzioni composte	Siano f e g funzioni reali a variabili reali, con f o g definita in un intervallo I di R. sia Xo∈I e che f sia derivabile in Xo e g defivabile in Xo.	Allora g o f è erivabile in Xo e vale: D(g o f)(Xo)=g'(f(Xo))*f'(Xo)	Sia y:dom g \rightarrow R definita da y(y) { $\frac{g(y)-g(f(xo))}{y-f(xo)}$ se y \neq f(xo), g'(f(xn)) se y=f(xo) } essendo g derivabile in f(xo), y risulta continua in f(xo) inoltre f(x) \rightarrow f(xo) per x \rightarrow xo aalora con yo=f(xo) tengo $\lim_{x\to Xo} y(f(x)) = \lim_{x\to Xo} y(y) = g'(f(xo)) \text{ deduco che:}$ $\lim_{x\to Xo} \frac{g(f(x))-g(f(Xo))}{x-Xo} = \lim_{x\to Xo} y(f(x)) * \frac{f(x)-f(Xo)}{x-Xo} = g'(f(Xo))*f'(Xo) \text{ c.v.d.}$
Teorema di Fermat (th. Della perman. del segno) (th. derivabilità destra e sinistra)	Sia f:]a,b[→R, derivabile in Xo∈]a,b[e t.c. abbia in Xo punto di massimo o di minimo relativo	Allora f'(Xo)=0 (es con il punto di massimo)	Dalle ipotesi segue che $\exists \delta > 0$ t.c $f(x) \le f(Xo)$ per $ x-Xo < \delta$, allora $\frac{f(x)-f(Xo)}{x-Xo} \ge 0$ V Xo- $\delta < x < Xo$ e dunque per il th. della permanenza del segno $f'(Xo) = \lim_{x \to Xo} \frac{f(x)-f(Xo)}{x-Xo} \ge 0$, mentre $\frac{f(x)-f(Xo)}{x-Xo} \le 0$ V Xo $< x < Xo + \delta$ e dunque per il th. d.p.s. $f'_+(Xo) = \lim_{x \to Xo} \frac{f(x)-f(Xo)}{x-Xo} \le 0$ poiché f è derivabile in Xo volte $ f'(Xo) = f'_+(Xo)$ che per il th. della derivabilità da destra e da sinistra non può che essere $f'(Xo) = 0$.
Teorema di Rolle (th. di weierstrass) (th. di fermat)	Siano $a,b \in R$ e f:] $a,b[\rightarrow R$ funzione continua in [a,b] e derivabile in] a,b [con f(a)=f(b)	Allora ∃ un punto p∈]a,b[t.c. f'(p)=0 contiene almeno un punto stazionario	Poniamo f non costante e continua in [a,b] per weierstrass ha un MAX e MIN in [a,b] Xm≠XM. Inoltre almeno 1 tra MAX e MIN è interno all'intervallo [a,b]. allora essendo f derivabile in]a,b[per il th. di fermat ci assicura che almeno 1 tra Xm e XM è punto stazionario per f.
Teorema di Lagrange o del valore intermedio (th. di rolle)	Siano a, b ∈R e f:[a,b] → R funzione continua in [a,b] e derivabile in]a,b[Allora \exists un punto $p \in]a,b[$ t.c. $\frac{f(b)-f(a)}{b-a}=f'(p)=\alpha$	Presa h:[a,b] \rightarrow R definita da h(x)=[f(b)-f(a)](x-a)-[f(x)-f(a)](b-a) è continua su [a,b] e derivabile in]a,b[soddisfa h(a)=h(b)=0 per il th. do rolle \exists p \in]a,b[t.c. h'(p)=0.

Teorema di Cauchy (th. di Rolle)	Siano a,b∈R e f,g:[a,b] →R finzioni continue in [a,b] e derivabili]a,b[Allora \exists un punto $p \in]a,b[$ t.c. $g(p)[f(b)-f(a)]=f'(p)[g(b)-g(a)]$	Presa h:[a,b] \rightarrow R h(x) = [f(b)-f(a)] * [g(x)-g(a)] - [f(x)-f(a)] * [g(b)-g(a)] continua su [a,b], derivabile in]a,b[e soddisfa h(a)=h(b)=0 per Rolle \exists p \in]a,b[t.c. h'(p)=0. Da questo segue g(p)*[f(b)-f(a)] = f'(p)*[g(b)-g(a)]
Legame tra monotonia e derivata prima (th. di lagrange)	Siano A intervallo di R e f:A→R funzione derivabile	Allora f è monotona crescente ⇔f'(x) ≥0 Vx∈A F è monotona decrescente ⇔f'(x)≤0 Vx∈A	$f'(x)\ge 0$ V x∈A f monotona crescente. Siano x1,x2∈A , x1 <x2 <math="" che="" dimostro="" e="">f(x2)\ge f(x1). Applico il th. di lagrange a f in [x1,x2] e ottengo che ∃ p∈]x1,x2[t.c $\frac{f(x2)-f(x1)}{x2-x1}$= $f'(p)$ da cui $f(x2)\ge f(x1)$ come si voleva $f'(p)\ge 0$.</x2>
Legame tra punti di flesso e derivata 2°	Sia f:]a,b[→R funzione continua e derivabile una volta in]a,b[e due volte in Xo∈]a,b[Se Xo è putno di flesso per f allora f''(Xo) = 0.	\exists δ>0 t.c. fè convessa in]Xo-δ,Xo] e concava in [Xo,Xo+δ[allora fè crescente in]Xo-δ,Xo] e decrescente in [Xo,Xo+δ[. Allora $\frac{f'(x)-f'(Xo)}{x-Xo} \ge 0$ V Xo-δ < x < Xo, $\frac{f'(x)-f'(Xo)}{x-Xo} \le 0$ V Xo < x < Xo+δ siccome f'(x) è derivabile in Xo \rightarrow valgono contemporaneamente: f''(Xo)= $\lim_{x\to Xo-}\frac{f'(x)-f'(Xo)}{x-Xo} \ge 0$, f''(Xo)= $\lim_{x\to Xo+}\frac{f'(x)-f'(Xo)}{x-Xo} \le 0$ e quindi f''(Xo) = 0 c.v.d.
Formula di Taylor con il resto di Peano	Sia f una funzione reale definita in un intervallo I dove Xo∈I e sia derivabie n-1 volte in I e con derivata n-esima in Xo	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n,x_0}(x)$ dove $\lim_{x \to x_0} \frac{R_{n,x_0}(x)}{(x - x_0)^n} = 0 \qquad (1.1)$	
Integrale	Data una funzione limitata $f[a,b] \rightarrow R$ e se V IER t.c. V ϵ >03 δ >0 t.c.V partizione puntata (P, ξ) con P < δ si ha S(f,P, ξ)-1 < ϵ	Il limite I viene chiamato integrale definito di f in [a,b] e si indica con i siboli: $\int_a^b f(x) dx$	
Funzione integrabile	Data f:[a,b]→R funzione limitata	f è integrabile secondo Cauchy- Riemann in [a,b] $V \in > 0 \exists \delta > 0 \text{ t.c. } V \text{ coppia di partizioni}$ puntate di [a,b] con $ P' , P'' < \delta \text{ si}$ ha: $ S(f,P',\xi')-S(f,P'',\xi'') < \epsilon$	
Teorema sulla disuguaglianza integrale con valore assoluto	Sia f:[a,b] →R una funzione integrabile in [a,b]	Allora: $\left \int_{a}^{b} f(x) dx \right \leq \int_{a}^{b} f(x) dx$	

Teorema della media (th. della monotonia) (th. dei valori intermedi)	Siano a <b detti="" e="" f:[a,b]→r="" integrabili,="" m="sup[a,b]f</th"><th>Allora si ha che: $m \le \frac{1}{b-a} * \int_a^b f(x) dx \le M \text{ , il valore tra}$ m e M viene chiamato media integrale o valor medio di f in [a,b]</th><th>Grazie al th. dei valori intermedi e applicando il th. della monotonia si ottiene dunque: $m^*(b-a) = \int_a^b m \ dx \le \int_a^b f(x) dx \le \int_a^b M \ dx = M^*(b-a)$ e dividendo per (b-a) si ottiene la disequazione di partenza.</th>	Allora si ha che: $m \le \frac{1}{b-a} * \int_a^b f(x) dx \le M \text{ , il valore tra}$ m e M viene chiamato media integrale o valor medio di f in [a,b]	Grazie al th. dei valori intermedi e applicando il th. della monotonia si ottiene dunque: $m^*(b-a) = \int_a^b m \ dx \le \int_a^b f(x) dx \le \int_a^b M \ dx = M^*(b-a)$ e dividendo per (b-a) si ottiene la disequazione di partenza.
Teorema precedente	Sia f:[a,b]→R, f continua e P e Q due primitive di f	Allora \exists k \in R t.c. P(x)-Q(x) = k V x \in [a,b]	$D(P-Q)(x) = DP(x) - DQ(x) = f(x) - f(x) = 0$ ma siccome P - Q è definite in un intervallo \rightarrow P-Q = k costante
Teorema fondamentale del calcolo integrale versione 7.8 Criterio del confronto	Sia f: $[a,b] \rightarrow R$ una funzione integrabile e che F sia una qualsiasi primitiva di f in $[a,b]$ Siano f,g: $]a,b[\rightarrow R$ con $a \in R$ esteso funzioni integrabili in ogni sottointervallo $[c,b]C[a,b]$ e t.c. $0 \le f(x) \le g(x) \ V \ x \in]a,b[$	Allora vale: $\int_a^b f(x) dx = F(b) - F(a) \text{ detta formula}$ fondamentale del calcolo integrale Allora: se g ha int. Improprio convergente in $]a,b[$, anche f ha int. Improprio convergente in $]a,b[$ se f ha int. Improprio divergente in $]a,b[$, anche g ha int. Improprio divergente in $]a,b[$, anche g ha int. Improprio divergente in $]a,b[$	Se f è una primitiva ed è continua \Rightarrow g(x) = $\int_a^x f(t)dt$ t.c. G'(x) = f(x) V x. Per il th. precedente \exists k \in R t.c. F(x) = $\int_a^x f(t)dt + k$ quindi: $\int_a^b f(t)dx = G(b) - G(a) = F(b) + k - F(a) - k = F(b) - F(a)$ c.v.d. Gli integrali impropri di f e g convergono oppure divergono per ipotesi e per la monotonia dell'integrale definito se c \in]a,b[allora: $0 \le \int_c^b f(x)dx \le \int_c^b g(x)dx$, passando al limite c \Rightarrow a+ $0 \le \int_a^b f(x) dx \le \int_a^b f(x) dx$ se dunque g converge anche f converge al contrario se f diverge anche g diverge.
Criterio dell'integrale per le serie	Siano ko∈N e f:[ko,+∞[→R funzione decrescente NON negativa	Allora: $\sum_{k=ko}^{\infty} f(k)$ converge $\Leftrightarrow \int_{ko}^{+\infty} f(x) dx$ converge	