Yelp Predicting Useful Votes of Reviews

Sinem Yekbun Polat 18/12/2017

Overview

- Problem Definition
- Dataset Overview
- Exploratory Visualization
- The ML Algorithms & Evaluation
- Conclusions

Are reviews important?

- → Limited budget
- → Best experiences
- → Ask friends, ask others
- → Limited time to read all reviews

Is it worth to pay my money?

Are reviews important?

- → Limited budget
- → Best experiences
- → Ask friends, ask others
- → Limited time to read all reviews

Is it worth to pay my money?

Dataset Overview

Reviews

- Review date
- Text
- User
- Votes
- Business

Checkin

- Checkin per hour
- Checkin per day of the week

<u>User</u>

- Votes taken by user
- Total review count
- Overall stars of reviews

MODEL

<u>Business</u>

- Business names
- Total review count
- Business star

Extra Features from Datasets

Distribution of Useful Votes

- Useful votes are distributed between 0 and 80.
- Most of them are between 0 and 10.
- There is a huge accumulation in number of 0 useful reviews.

Text-related Features

Old reviews vs Useful votes

Review length vs Useful votes

Non-stop words vs Useful votes

User-related Features

Users' average useful votes per reviews

Users' average cool votes per reviews

Business-related Features

Business-related features such as:

- total review count,
- popularity,
- average stars

don't have huge effects on useful votes counts.

Algorithms

	Decision Tree Classifier	Random Forest Classifier			
Accuracy Score	0.63	0.66			
	After optimizing modeling parameters (GridSearchCV)				
Accuracy Score	0.69	0.66			
Precision	0.69	0.66			
Recall	0.69 0.66				
F-1 Score	0.68	0.66			

Confusion Matrices

Decision Tree

	0	1	2	3	4	5
0	7696	4726	4			
1	3635	12471	240	3		
2	6	726	469	2		
3		20	51	17		
4		2	1			
5		1	1			

Random Forest

_	<u>Kundom Forest</u>						
		0	1	2	3	4	5
	0	8235	4183	8			
	1	4922	11223	204			
	2	21	732	446	4		
	3	1	19	63	5		
	4		2	1			
	5		2				

$$0 = [0]$$

 $1 = (0, 5]$

$$2 = (5, 15]$$

 $3 = (15, 30]$

$$4 = (30, 50]$$

 $5 = (50, 100]$

Most Important Features

Decision Tree

1	useful_per_review_u	0.524248	
2	cool_per_review_u	0.209570	
3	review_date	0.121847	
4	review_user_std_dev	0.051389	
5	count_non_stop	0.036831	
6	review_count_user	0.016238	
7	stars_review	0.014313	
8	text_length	0.010739	
9	review_count_business	0.006591	
10	funny_per_review_u	0.002356	

Random Forest

1	useful_per_review_u	0.108358	
2	cool_per_review_u	0.080562	
3	funny_per_review_u	0.072615	
4	review_user_std_dev	0.071686	
5	review_date	0.071396	
6	text_length	0.061717	
7	count_non_stop	0.059481	
8	review_count_user	0.052696	
9	stars_user	0.047257	
10	review_count_business	0.046735	

Conclusions

- Whenever a new review is written by a user having history, we can estimate how many 'useful' votes will be given to this review with a 0.69 accuracy score.
- Keep your users that love your product, and have usage history.
- Do improvements to encourage users to write more reviews. (no matter if it's useful or not)
- And write more 'useful' reviews.

Further Improvements:

- More data can be gathered.
- With help of NLP methods, different aspects of a review can be examined. (Which words are used to describe place, quality, food etc.)