It's not hard to analyze the running time of this program: each invocation of the inner loop, over i, takes O(n) time, and this inner loop is invoked O(n) times total, so the overall running time is $O(n^2)$.

The trouble is, for the large values of n they're working with, the program takes several minutes to run. On the other hand, their experimental setup is optimized so that they can throw down n particles, perform the measurements, and be ready to handle n more particles within a few seconds. So they'd really like it if there were a way to compute all the forces F_i much more quickly, so as to keep up with the rate of the experiment.

Help them out by designing an algorithm that computes all the forces F_i in $O(n \log n)$ time.

5. *Hidden surface removal* is a problem in computer graphics that scarcely needs an introduction: when Woody is standing in front of Buzz, you should be able to see Woody but not Buzz; when Buzz is standing in front of Woody, . . . well, you get the idea.

The magic of hidden surface removal is that you can often compute things faster than your intuition suggests. Here's a clean geometric example to illustrate a basic speed-up that can be achieved. You are given n nonvertical lines in the plane, labeled L_1,\ldots,L_n , with the i^{th} line specified by the equation $y=a_ix+b_i$. We will make the assumption that no three of the lines all meet at a single point. We say line L_i is uppermost at a given x-coordinate x_0 if its y-coordinate at x_0 is greater than the y-coordinates of all the other lines at x_0 : $a_ix_0+b_i>a_jx_0+b_j$ for all $j\neq i$. We say line L_i is visible if there is some x-coordinate at which it is uppermost—intuitively, some portion of it can be seen if you look down from " $y=\infty$."

Give an algorithm that takes n lines as input and in $O(n \log n)$ time returns all of the ones that are visible. Figure 5.10 gives an example.

6. Consider an n-node complete binary tree T, where $n = 2^d - 1$ for some d. Each node v of T is labeled with a real number x_v . You may assume that the real numbers labeling the nodes are all distinct. A node v of T is a *local minimum* if the label x_v is less than the label x_w for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T, but the labeling is only specified in the following *implicit* way: for each node v, you can determine the value x_v by *probing* the node v. Show how to find a local minimum of T using only $O(\log n)$ *probes* to the nodes of T.

7. Suppose now that you're given an $n \times n$ grid graph G. (An $n \times n$ grid graph is just the adjacency graph of an $n \times n$ chessboard. To be completely precise, it is a graph whose node set is the set of all ordered pairs of