Trečias laboratorinis darbas

Arnas Vaicekauskas

2024 m. rugsėjo 29 d.

1 Analitinis sprendimas

Turime antros eilės tiesinę nehomogeninę lygtį su pradinėmis sąlygomis x(0) = 0, x'(0) = 1.

$$x'' + 9x = 4\sin(t) - \cos(4t) \tag{1}$$

Pirmiausia spręsime homogeninį atvejį norint gauti bendrąjį sprendinį:

$$x'' + 9x = 0 \tag{2}$$

Lygtis (2) turi pastovius koeficientus, todėl galime formuoti charakteringąjį polinomą

$$\lambda^2 + 9 = 0 \implies \lambda = \pm 3i$$

Šiuo atveju bendrasis sprendinys $x_B(t)$ turės formą

$$x_B(t) = C_1 e^{3it} + C_2 e^{-3it} (3)$$

Nehomogeninę lygtį (1) spręsime konstantų variavimo metodu, todėl:

$$x(t) = C_1(t)e^{3it} + C_2(t)e^{-3it} (4)$$

Pagal variavimo metodą, darome prielaidą, kad

$$C_1'e^{3it} + C_2'e^{-3it} = 0 (5)$$

Prieš įstatant varijuotą bendrąjį sprendinį (4) apskaičiuosime x'' ir x'' + 9x:

$$x'' = (C_1'e^{3it} + 3iC_1e^{3it} + C_2'e^{-3it} - 3iC_2e^{-3it})'$$

$$= (\underbrace{C_1'e^{3it} + C_2'e^{-3it}}_{0} + 3iC_1e^{3it} - 3iC_2e^{-3it})'$$

$$= (3iC_1e^{3it} - 3iC_2e^{-3it})'$$

$$= 3iC_1'e^{3it} - 9C_1e^{3it} - 3iC_2'e^{-3it} - 9C_2e^{-3it}$$

tada

$$x'' + 9x = 3iC_1'e^{3it} - 9C_1e^{3it} - 3iC_2'e^{-3it} - 9C_2e^{-3it} + 9C_1e^{3it} + 9C_2e^{-3it}$$
$$= 3iC_1'e^{3it} - 3iC_2'e^{-3it}$$

Taigi, dabar sprendžiame lygtį

$$3iC_1'e^{3it} - 3iC_2'e^{-3it} = 4\sin(t) - \cos(4t)$$

Naudodami tapatybes $\sin(t) = \frac{e^{it} - e^{-it}}{2i}$, $\cos(t) = \frac{e^{it} + e^{-it}}{2}$ galime pertvarkyti lygtį:

$$3iC_1'e^{3it} - 3iC_2'e^{-3it} = 2ie^{it} - 2ie^{-it} + \frac{1}{2}e^{4it} + \frac{1}{2}e^{-4it}$$
(6)

Iš prielaidos (5) galime išsireikšti $C_2' = -C_1'e^{6it}$ ir įsistatyti į (6)

$$3iC_{1}'e^{3it} + 3iC_{1}'e^{6it}e^{-3it} = 2ie^{it} - 2ie^{-it} + \frac{1}{2}e^{4it} + \frac{1}{2}e^{-4it}$$

$$6iC_{1}'e^{3it} = 2ie^{it} - 2ie^{-it} + \frac{1}{2}e^{4it} + \frac{1}{2}e^{-4it}$$

$$C_{1}' = \frac{e^{-3it}}{6i} \left(2ie^{it} - 2ie^{-it} + \frac{1}{2}e^{4it} + \frac{1}{2}e^{-4it} \right)$$

$$C_{1}' = \frac{e^{-2it}}{3} - \frac{e^{-4it}}{3} + \frac{e^{it}}{12i} + \frac{e^{-7it}}{12i}$$

$$C_{1} = \int \left(\frac{e^{-2it}}{3} - \frac{e^{-4it}}{3} + \frac{e^{it}}{12i} + \frac{e^{-7it}}{12i} \right) dt$$

$$C_{1} = \frac{1}{-2i} \frac{e^{-2it}}{3} - \frac{1}{-4i} \frac{e^{-4it}}{3} + \frac{1}{i} \frac{e^{it}}{12i} + \frac{1}{-7i} \frac{e^{-7it}}{12i} + \tilde{C}_{1}$$

$$C_{1}(t) = -\frac{e^{-2it}}{6i} + \frac{e^{-4it}}{12i} - \frac{e^{it}}{12} + \frac{e^{-7it}}{84} + \tilde{C}_{1}$$

$$(8)$$

Į lygtį $C_2' = -C_1' e^{6it}$ įstate (7) gauname C_2' :

$$C'_{2} = -e^{6it}C'_{1}$$

$$C'_{2} = -e^{6it}\left(\frac{e^{-2it}}{3} - \frac{e^{-4it}}{3} + \frac{e^{it}}{12i} + \frac{e^{-7it}}{12i}\right)$$

$$C'_{2} = -\frac{e^{4it}}{3} + \frac{e^{2it}}{3} - \frac{e^{7it}}{12i} - \frac{e^{-it}}{12i}$$

$$C_{2} = \int \left(-\frac{e^{4it}}{3} + \frac{e^{2it}}{3} - \frac{e^{7it}}{12i} - \frac{e^{-it}}{12i}\right) dt$$

$$C_{2} = -\frac{1}{4i}\frac{e^{4it}}{3} + \frac{1}{2i}\frac{e^{2it}}{3} - \frac{1}{7i}\frac{e^{7it}}{12i} - \frac{1}{-i}\frac{e^{-it}}{12i} + \tilde{C}_{2}$$

$$C_{2} = -\frac{e^{4it}}{12i} + \frac{e^{2it}}{6i} + \frac{e^{7it}}{84} - \frac{e^{-it}}{12} + \tilde{C}_{2}$$

$$(10)$$

Nehomogeninės lygties sprendinys tada bus:

$$x(t) = \left(-\frac{e^{-2it}}{6i} + \frac{e^{-4it}}{12i} - \frac{e^{it}}{12} + \frac{e^{-7it}}{84} + \tilde{C}_1\right) e^{3it} + \left(-\frac{e^{4it}}{12i} + \frac{e^{2it}}{6i} + \frac{e^{7it}}{84} - \frac{e^{-it}}{12} + \tilde{C}_2\right) e^{-3it}$$

$$x(t) = -\frac{e^{it}}{6i} + \frac{e^{-it}}{12i} - \frac{e^{4it}}{12} + \frac{e^{-4it}}{84} + \tilde{C}_1 e^{3it} - \frac{e^{it}}{12i} + \frac{e^{-it}}{6i} + \frac{e^{4it}}{84} - \frac{e^{-4it}}{12} + \tilde{C}_2 e^{-3it}$$

$$x(t) = -\frac{1}{2} \frac{e^{it} - e^{-it}}{2i} - \frac{1}{7} \frac{e^{4it} + e^{-4it}}{2} + \tilde{C}_1 \frac{e^{3it} - e^{-3it}}{2i} + \tilde{C}_2 \frac{e^{3it} + e^{-3it}}{2}$$

$$x(t) = -\frac{\sin(t)}{2} - \frac{\cos(4t)}{7} + \tilde{C}_1 \sin(3t) + \tilde{C}_2 \cos(3t)$$

Randame koši sprendinį:

$$x(0) = 0$$

$$-\frac{\cos(0)}{7} + \tilde{C}_2 = 0$$

$$\tilde{C}_2 = \frac{1}{7}$$

$$x'(0) = 1$$

$$\left(-\frac{\sin(t)}{2} - \frac{\cos(4t)}{7} + \tilde{C}_1 \sin(3t) + \frac{1}{7}\cos(3t)\right)'\Big|_{x=0} = 1$$

$$-\frac{\cos(t)}{2} + 4\frac{\sin(4t)}{7} + 3\tilde{C}_1 \cos(3t) - \frac{3}{7}\sin(3t) = 1$$

$$-\frac{\cos(0)}{2} + 4\frac{\sin(0)}{7} + 3\tilde{C}_1 \cos(0) - \frac{3}{7}\sin(0) = 1$$

$$-1 + 3\tilde{C}_1 = 1$$

$$\tilde{C}_1 = \frac{2}{3}$$

Koši sprendinys:

$$x(t) = -\frac{\sin(t)}{2} - \frac{\cos(4t)}{7} + \frac{2\sin(3t)}{3} + \frac{\cos(3t)}{7}$$
(11)

2 Palyginimas su programos sprendiniu

Programa rasti lygties (1) sprendiniui buvo rašyta su python programavimo kalba bei sympy paketu. Kodas randantis Koši sprendinį:

Programos rastas sprendinys:

$$x(t) = \frac{\sin(t)}{2} + \frac{\sin(3t)}{6} - \frac{\cos(3t)}{7} + \frac{\cos(4t)}{7}$$