SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

Answer 1 (25 points)

- (a) (5 pts) See the relevant slides
- (b) (3 pts) It is not a DFA since, for example, there are no transitions at state 3.

(c) (12 pts) Equivalent DFA **B** is given below.

	2	2,3	N	1	4
2			1	0	0
2,3			1	0	0
N				0	0
1					
4					

Minimal state machine C is given below using 2=2,3 and 1=4

(d) (5 pts) Take any sequence in {0,1}* and replace each '1' in it by '1.1'

Answer 2 (25 points)

Consider the CFG, G = (V, T, R, S) where

 $V = \{A, B, S\}$, $T = \{a,b\}$ and R is given by the following productions:

 $S \rightarrow AB$

 $A \rightarrow aaAb \mid e$

 $B \rightarrow bbBa | a$

(a) (7 pts)
$$L_G = \{a^{2n} b^{n+2k} a^{k+1}; n, k \ge 0\}$$

(b) (8 pts) (i) n=2 and k=0 implies $u_1 = a^4b^2a \in L_G$; (ii) n must be 2 and k must be 1 which yields the string $a^4b^4a^2$.

The parse trees for \mathbf{u}_1 and \mathbf{u}_2 are given below

(c) (10 pts) $P = (\{q_0, q, f\}, \{a,b\}, \{a,b,Z_0\}, \delta, q_0, Z_0, \{f\})$ and δ is given by :

$$(q_{\theta}, e, Z_{\theta}) \rightarrow (q_{\theta}, SZ_{\theta})$$

$$(q_{\theta}, a, a) \rightarrow (q_{\theta}, e)$$

$$(q_{\theta}, b, b) \rightarrow (q_{\theta}, e)$$

$$(q_{\theta}, e, S) \rightarrow (q_{\theta}, AB)$$

$$(q_{\theta}, e, A) \rightarrow \{(q_{\theta}, aaAb), (q_{\theta}, e)\}$$

$$(q_{\theta}, e, B) \rightarrow \{(q_{\theta}, bbBa), (q_{\theta}, a)\}$$

$$(q_{\theta}\,,\,e,\,Z_{\theta}) \rightarrow (f,\,Z_{\theta})$$

Answer 3 (25 points)

(a) (15 pts) L_I is not a *CFL* which we prove using the pumping lemma. Hence assume N > 0 as the pumping lemma integer and choose $z = a^N b^N c^N \in L_I$ and |z| = 3N > N as required by the **PL**. By the **PL**, z = uvwxy, where $|vwx| \le N$ and |vx| > 0. Hence since $z = uvwxy = a^N b^N c^N$ it follows that:

Case 1: $vwx = a^m \text{ or } vwx = b^m \text{ or } vwx = c^m \text{ where } m \leq N$; OR

Case 2: $vwx = a^i b^j or vwx = b^i c^j$ where $i+j \le N$

According to PL we must have $uwy \in L_1$ and if Case 1 holds:

$$uwy = a^{N-p} b^N c^N$$
 or $= a^N b^{N-p} c^N$ or $a^N b^N c^{N-p}$ where $p = |vx| > 0$, so that

 $uwv \neq a^m b^{m+k} c^m$ contradicting the **PL**. If however **Case 2** holds then

$$uwy = a^{N-i} b^{N-j} c^N$$
 or $a^N b^{N-i} c^{N-j}$ where $0 < i+j \le N$ so that again

 $uwy \neq a^m b^{m+k} c^m$ for any value of $m,k \geq 0$ which again contradicts the **PL**.

On the other hand $L_2 = \{a^n b^k c^n : n, k \ge 0\}$ is a CFL generated by the CFG

 $G=(\{S,X\},\{a,b,c\},R,S)$ where R is given by

$$S \rightarrow aSc \mid X; X \rightarrow bX \mid e$$

This can be converted to a CNF grammar $G' = (\{S,X,Y,A,B,C\},\{a,b,c\},R',S')$ with R' as below:

$$S \rightarrow YC \mid BX \mid b ; Y \rightarrow AS ; X \rightarrow BX \mid b ; A \rightarrow a ; B \rightarrow b ; C \rightarrow c$$

(b) (10 pts) For the right linear grammar with the productions

$$S \rightarrow 0A \mid 1B ; A \rightarrow 0B \mid 1A \mid e ; B \rightarrow 1S \mid 1$$

the NFA X that accepts L_G and the DFA X' are given below. The table below shows Y=X' is already a minimal state DFA.

	S	В	N	A	S,f
S		1	1	0	0
В			1	0	0
N				0	0
A					0
$S_{r}f$					

Answer 4 (25 points)

- (a) (10 pts) See the relevant slide.
- **(b)** (7 pts)

Label TM	Condition	Next TM
M > A = R	$\sigma = 0$	#.R _# .L.B
	σ=#	hyES
	$\sigma=1$	h_{NO}
В	σ=1	#. L _# . A
	<i>σ≠1</i>	h_{NO}

(c) (8 pts)

Label TM	Condition	Next TM
M > A = R	$\sigma = 0$	#.R#.L.B
	σ=#	h _{YES}
	$\sigma=1$	h_{NO}
В	σ=1	#.L.C
	<i>σ≠1</i>	h _{NO}
С	σ=1	#. L#. A
	<i>σ≠1</i>	h _{NO}