Jure Žabkar

jure.zabkar@fri.uni-lj.si

Vsebina

- Ocenjevanje verjetnosti (m-ocena)
- Naivni Bayesov klasifikator
- Nomogrami
- Ocenjevanje učenja: CV, leave-one-out, train/test set
- Primeri praktičnih nalog

Strojno učenje

Atributna predstavitev podatkov

survived	status	age	sex	
no	third	adult	male	
no	crew	adult	male	
no	first	adult	male	
no	third	adult	male	
yes	crew	adult	male male	
yes	third	adult		
no	second	adult	male	
no	crew	adult	male	
no	first	adult	male	
no	first	adult	male	
yes	crew	adult	male	

Ocenjevanje verjetnosti

Točnost T = verjetnost pravilne klasifikacije.

Napaka = 1 - T

N ... število vseh primerov, n ... število uspešnih poskusov

- relativna frekvenca: p = n/N
- m-ocena: p = (n + pa*m)/(N+m)

ekspert zaupa v pa => velik m, sicer majhen m (tipično m=2)

- Laplace: p = (n+1)/(N+k)

- Verjetnosti klasifikator,
- Naivnost: v predpostavki, da so atributi med seboj pogojno neodvisni,
- Algoritem se v praksi pogosto izkaže kot dober,
- Priljubljen zaradi svoje preprostosti in hitrosti,
- Vizualizacija z nomogrami

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)},$$

kjer je:

- P(y|x) posteriorna verjetnost razreda y pri danih vrednostih atributa x,
- P(y) apriorna verjetnost razreda y,
- P(x|y) verjetje (angl. likelihood) oz. pogojna verjetnost x pri danem y in
- P(x) apriorna verjetnost vrednosti atributa.

V primeru več atributov:

$$P(y|x_1,\ldots,x_n) = \frac{P(y)P(x_1,\ldots,x_n|y)}{P(x_1,\ldots,x_n)}.$$

Imenovalec v zgornji formuli ni odvisen od razreda in ga za potrebe klasifikatorja zanemarimo, števec pa razpišemo z verižno uporabo pravila:

$$P(A \wedge B|C) = P(A|C) P(B|C \wedge A).$$

Pogojno verjetnost v števcu razpišemo takole:

$$P(x_{1},...,x_{n}|y) = P(x_{1}|y) P(x_{2},...,x_{n}|y \wedge x_{1})$$

$$= P(x_{1}|y) P(x_{2}|y \wedge x_{1}) P(x_{3},...,x_{n}|y \wedge x_{1} \wedge x_{2})$$

$$= P(x_{1}|y) P(x_{2}|y \wedge x_{1}) P(x_{3}|y \wedge x_{1} \wedge x_{2}) P(x_{4},...,x_{n}|y \wedge x_{1} \wedge x_{2})$$

$$= \vdots$$

$$= P(x_{1}|y) P(x_{2}|y \wedge x_{1}) ... P(x_{n}|y \wedge x_{1} \wedge ... \wedge x_{n-1})$$

Privzemimo, da je vsak atribut x_i pogojno neodvisen od x_j , za $i \neq j$, torej $P(x_i|y \land x_j) = P(x_i|y)$. Zdaj lahko poenostavimo zadnjo vrstico zgornje izpeljave:

$$P(x_1,...,x_n|y) = P(x_1|y) P(x_2|y)...P(x_n|y)$$

Verjetnost razreda pri danih vrednostih atributov je ob predpostavki pogojne neodvisnosti

$$P(y|x_1,...,x_n) = \frac{P(y) \prod_{i=1}^n P(x_i|y)}{P(x_1,...,x_n)}.$$

Algoritem nov primer klasificira v razred z največjo verjetnostjo:

$$\operatorname{argmax}_{y \in Y} P(y) \prod_{i=1}^{n} P(x_i|y),$$

kjer je Y množica vrednosti razreda y.

- Klasifikator: klasificiramo v razred, ki je najbolj verjeten
- Učenje: ocenimo verjetnosti P(y) in $P(x_i|y)$ za vse razrede y in atribute x_i
- Algoritem se v praksi pogosto izkaže kot dober, če so atributi med seboj dovolj pogojno neodvisni

Nomogrami

- Vizualizacija modela NB
- Prikazuje vpliv posameznih atributov na verjetnost ciljnega razreda
- Pomembnost atributa za ciljni razred

Vrste atributov

- Diskretni
 - \circ Nominalni, npr. (dež: da / ne), (spol: M / Ž)
 - Ordinalni, npr. (tlak: nizek / srednji / visok)
- Zvezni (numerični)
 - Poljubna številska vrednost

Obravnava zveznih atributov v klasifikaciji

Običajno naredimo diskretizacijo v dva ali več diskretnih intervalov.

Načini diskretizacije:

- Intervali z enako frekvenco primerov (equal frequency)
- Enako široki intervali (equal width)
- Intervali, ki maksimizirajo informacijski prispevek
- Ročno (domenski ekspert postavi meje intervalov)

Diskretizacija z maksimizacijo inf. prispevka

- Mesto vejitve je številka in možnosti za njeno vrednost je neskončno!
- Vejimo na sredini med dvema vrednostma
- n-1 možnosti (n je število učnih primerov); poskusimo vse!

9 da, 5 ne
Entropija pred vejitvijo:
$$-\frac{9}{14} \log_2\left(\frac{9}{14}\right) - \frac{5}{14} \log_2\left(\frac{5}{14}\right) = 0.94$$
 bit

temp. 24 25 28 29 30 31 32 35 40 41 43 45

golf da ne da da ne ne da ne da

Ocenjevanje učenja

- Učna / testna množica (train / test set)
- Prečno preverjanje (cross-validation)
- Izpusti enega (leave-one-out)

Prečno preverjanje (cross-validation)

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test