Fusion: Rank-Based

COMP3009J: Information Retrieval

Dr. David Lillis (david.lillis@ucd.ie)

UCD School of Computer Science Beijing Dublin International College

Rank-Based Fusion: Interleaving

- Interleaving is perhaps the simplest fusion algorithm of all*
- ☐ Here, we take one document from the top of each input set in a "round robin" fashion and add it to the fused result set.
 - The document chosen is the highest-ranked document that is not yet included in the fused result set.
- The effectiveness of this technique is, however, poor.
- There is an assumption that every result set is of equal quality, which can have the result that the better result sets are diluted by being merged with non-relevant documents from poorer systems.

^{*} Voorhees, E. M., Gupta, N. K., & Johnson-Laird, B. (1994). The Collection Fusion Problem. In Proceedings of the Third Text REtrieval Conference (TREC-3) (pp. 95–104)

Rank-Based: Interleaving (Example)

System A
d ₁₉
d ₅
d ₁₂
d ₄
d ₁₄
d ₁₅
d ₁
d ₉
d ₁₀
d ₁₁

Fused	

System B
d ₅
d ₁₄
d ₂₀
d ₇
d ₁
d ₁₁
d ₁₈
d_3
d ₁₀
d ₁₂

Rank-Based: Interleaving (Example)

Rank-Based: Borda-Fuse

- Borda-Fuse is based on an election system for when a few voters(input systems) vote for many candidates (documents).
 - Each voter ranks a set of c candidates in order of preference.
 - For each voter, the top-ranked candidate is given c points, the second ranked is given c-1 points, etc.
 - If a candidate is not ranked by a voter, the voter's remaining points are divided evenly among unranked candidates.

^{*} Aslam, J. A., & Montague, M. (2001). Models for metasearch. In SIGIR '01: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 276–284). New York, NY, USA.

Rank-Based: Borda Fuse

System A	Points
d ₁₉	14
d_5	13
d ₁₂	12
d ₄	11
d ₁₄	10
d ₁₅	9
d ₁	8
d ₉	7
d ₁₀	6
d ₁₁	5

System B	Points
d_5	14
d ₁₄	13
d ₂₀	12
d ₇	11
d ₁	10
d ₁₁	9
d ₁₈	8
d_3	7

- 14 unique documents: c= 14
- System A gives 2.5 points to any documents it didn't choose: (4+3+2+1)/4.
- System B gives 3.5 points to documents it didn't choose: (6+5+4+3+2+1)/6

Rank-Based: Borda Fuse

System A	Points
d ₁₉	14
d_5	13
d ₁₂	12
d₄	11
d ₁₄	10
d ₁₅	9
d ₁	8
d ₉	7
d ₁₀	6
d ₁₁	5

System B	Points
d_5	14
d ₁₄	13
d ₂₀	12
d ₇	11
d ₁	10
d ₁₁	9
d ₁₈	8
d_3	7

Fused	Points (A)	Points (B)	Points (Borda)
d_5	13	14	27
d ₁₄	10	13	23
d ₁	8	10	18
d ₁₉	14	3.5	17.5
d ₁₂	12	3.5	15.5
d ₄	11	3.5	14.5
d ₂₀	2.5	12	14.5
d ₁₁	5	9	14
d ₇	2.5	11	13.5
d ₁₅	9	3.5	12.5
d ₁₈	2.5	8	10.5
d ₉	7	3.5	10.5
d ₁₀	6	3.5	9.5
d_3	2.5	7	9.5

Reciprocal Rank Fusion

- Reciprocal Rank Fusion is a simple rank-based method that has been shown to be effective in practice*.
- □ Given a set of documents D to be ranked, and a set of results R, the score for each document is calculated as follows:
 - \blacksquare $RRFscore(d \in D) = \sum_{r \in R} \frac{1}{k+r(d)}$
 - where r(d) is the rank of document d in result set r, and k=60 (set by experiment)

^{*} Cormack, G. V., Clarke, C. L. A., Büttcher, S. (2009). Reciprocal Rank Fusion outperforms Condorcet and Individual Rank Learning Models. In *Proceedings of the 32nd international ACM SIGIR Conference on Research and Development in Information Retrieval* (pp. 758-759)

Other Rank-Based Techniques

- A variation on interleaving is to use historical data to estimate which input system(s) tends to perform better.
- A weighted version of interleaving is then used so that more documents are taken from the better systems. *
- Another election-based approach from the same authors as Borda-Fuse is the Condorcet-Fuse** algorithm. A weighted version of Borda-Fuse is also proposed, where the points from each input system are multipled by some weight.

^{*} Voorhees et al. (1994)

^{**} Montague, M., & Aslam, J. A. (2002). Condorcet fusion for improved retrieval. In CIKM '02: Proceedings of the eleventh international conference on Information and knowledge management (pp. 538–548). New York, NY, USA.