Laboratorio di Fisica 1 R8: Misura di $|\vec{g}|$ mediante rotolamento puro

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone 19/03/2024 - 9/04/2024

Sommario

Il gruppo di lavoro ha misurato indirettamente il modulo del campo gravitazionale locale (g) studiando il moto di rotolamento di un corpo rigido.

0 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Sistema a contatti elettrici con contatore di impulsi	1 μs	99 999 999 µs	1 μs
Metro a nastro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Bilancia di precisione	$0.01\mathrm{g}$	$4200.00{\rm g}$	$0.01\mathrm{g}$
Cellulare come goniometro	0.1°	45.0°	0.1°

Altro	Descrizione/Note		
Piano inclinato	Costituito da guide che permettono al campione di cadere da un contatto elettrico all'altro con un moto di rotolamento puro.		
Campione	Corpo rigido con simmetria assiale, assimilabile a una combinazione di cilindri e tronchi di cono coassiali.		
Cuscinetto	Posto a coprire il secondo contatto elettrico, attutisce l'impatto del campione contro di esso.		
Brugola e Lucidi	Utili per cambiare, rispettivamente, la distanza tra i contatti e l'angolo di inclinazione delle guide.		

1 Esperienza e procedimento di misura

- 1. Misuriamo la massa del campione con la bilancia di precisione e, con il calibro ventesimale, tutti i diametri e le altezze necessarie al calcolo del suo momento d'inerzia.
- 2. Fissiamo la distanza L tra i due contatti elettrici e l'angolo θ di inclinazione delle guide rispetto a un piano normale a \vec{g} . Allora, acceso e impostato adeguatamente il contatore di impulsi, misuriamo 50 volte il tempo di caduta del campione $t_{L,\theta}$.
- 3. Ripetiamo il punto precedente per svariate combinazioni di L e θ .

2 Analisi dei dati raccolti e conclusioni

Essendo il momento d'inerzia additivo, abbiamo calcolato $I_{\rm CM}$ sommando i singoli momenti d'inerzia rispetto al comune asse di simmetria dei cilindri e dei tronchi di cono che compongono il campione, dove la massa di ciascuno di essi è stata facilmente calcolata assumendo la densità del campione uniforme. Di seguito riportiamo tali misure:

#	Forma	h (mm)	$d_{1,2} \; ({\rm mm})$	$I (10^{-6} \text{ kg m}^2)$
1	Cilindro	30.45 ± 0.05	49.90 ± 0.05	154.6 ± 1.8
2	Tronco di cono	5.95 ± 0.10	$49.90 \pm 0.05 29.40 \pm 0.05$	13.7 ± 0.5
3	Cilindro	9.20 ± 0.10	25.85 ± 0.05	3.36 ± 0.08
4	Cilindro	10.80 ± 0.05	18.65 ± 0.05	1.07 ± 0.02
5	5 Tronco di cono	4.25 ± 0.05	34.55 ± 0.05	11.8 ± 0.4
5			49.90 ± 0.05	
6	Cilindro	52.95 ± 0.05	49.90 ± 0.05	269 ± 3
7 Tron	Tronco	4.25 ± 0.05	49.90 ± 0.05	12.6 ± 0.4
'	di cono	4.20 ± 0.00	36.35 ± 0.05	
8	Cilindro	10.80 ± 0.05	18.75 ± 0.05	1.09 ± 0.02
9	Cilindro	9.25 ± 0.10	25.90 ± 0.05	3.41 ± 0.08
10	Tronco di cono	5.95 ± 0.10	29.10 ± 0.05	13.5 ± 0.5
			49.90 ± 0.05	
11	Cilindro	30.40 ± 0.05	49.90 ± 0.05	154.4 ± 1.8

• Massa totale: $M = (2214.57 \pm 0.01) \text{ g}$

• Volume totale: $V = (2.654 \pm 0.017) \cdot 10^{-4} \text{ m}^3$

• Densità media: $\rho = (8.34 \pm 0.05) \cdot 10^{-3} \text{ kg/m}^3$

Fissato un sistema di riferimento cartesiano ortogonale solidale al piano inclinato, con origine nel punto di partenza del campione, asse x parallelo alle guide e asse y entrante nel piano inclinato, possiamo scrivere la legge del moto del centro di massa e le equazioni cardinali della dinamica del corpo rigido:

$$x(t) = \frac{1}{2}a_{\text{CM}}t^2$$

$$\begin{cases} Mg\sin\theta - F_s = Ma_{\text{CM}} \\ Mg\cos\theta - F_n = 0 \\ RMg\sin\theta = \left(I_{\text{CM}} + MR^2\right)\alpha \end{cases}$$

dove R è il raggio di contatto, F_s è la forza di attrito statico tra il campione e le guide, mentre F_n è la reazione vincolare delle guide, normale al piano. Per poter descrivere il moto del campione come di rotolamento puro, dobbiamo assicurarci che $F_s \leq \mu_s F_n$, con μ_s il coefficiente di attrito statico tra il corpo rigido e le guide. Se questa condizione è verificata, possiamo utilizzare la relazione:

$$\alpha = \frac{a_{\rm CM}}{R}$$

Risolvendo il sistema lineare e la disequazione di cui sopra si ottiene:

$$\begin{cases} a_{\rm CM} = \frac{MR^2}{I_{\rm CM} + MR^2} g \sin \theta \\ F_n = Mg \cos \theta \\ F_s = \frac{I}{I + MR^2} Mg \sin \theta \\ 0 \le \alpha \le \arctan \left(\mu_s \left(\frac{MR^2}{I_{\rm CM}} + 1 \right) \right) \end{cases}$$

Ricordando ora che $L = x(\bar{t}_{L,\theta}) + D + S$, dove D è il diametro più esterno del campione e S è lo spessore del cuscinetto, possiamo ricavare:

$$\frac{2(L-D-S)}{\sin\theta} \left(\frac{I_{\rm CM}}{MR^2} + 1\right) = g\bar{t}_{L,\theta}^2$$

Possiamo pertanto determinare il modulo di \vec{g} mediante una regressione lineare pesata:

In rosso la retta di regressione, in rosa la sua regione di incertezza. Nel grafico principale, le barre di errore lungo l'ascissa, date le loro dimensioni, non sono visibili.