Franges d'égale inclinaison, lame à faces parallèles

Étude de la figure d'interférence

Intensité des faisceaux réfléchis et transmis par la lame

Supposons l'angle d'incidence faible, dans se cas, si n désigne l'indice optique de la lame, les coefficients de réflexion R et de transmission T du dioptre air/verre sont :

$$R = \left(\frac{n-1}{n+1}\right)^2 \qquad T = \frac{4n}{(n+1)^2}$$

Si n=1,5 on obtient: R=0,04 et T=0,96 . Donc

- $I_{R1} = I_0 R = 0.04 I_0$
- $I_{R2} = I_0 T^2 R = 0.037 I_0$
- $I_{R3} = I_0 T^2 R^3 = 0,000061 I_0$
- $I_{T1} = I_0 T^2 = 0.92 I_0$
- $I_{T2} = I_0 T^2 R^2 = 0,0015 I_0$
- $I_{T3} = I_0 T^2 R^4 = 0,0000024 I_0$

Les **faisceaux transmis** par la lame ont des intensités extrêmement **différentes**, ils peuvent interférer, mais le **contraste** est si **faible** qu'aucune figure d'interférence n'est observable.

En revanche, I_{R1} et I_{R2} sont **presque identiques**, l'**interférence** est donc parfaitement **visible**. L'intensité I_{R3} est plus de 1000 fois inférieure aux deux précédents et ne joue aucun rôle.

Différence de marche optique

• La différence de marche optique δ entre le faisceau 1 et 2 est :

$$\delta = n(AB + BC) - AD$$

- $AD = AC \sin i$ $AC = 2e \tan r$
 - $\sin i = n \sin r \quad \text{donc} \quad AD = 2ne \frac{\sin^2 r}{\cos r}$
- $AB = BC = \frac{e}{\cos r}$ et donc

$$\delta = 2ne \cos r$$

Inversion du champ électrique lors d'une réflexion

On doit également prendre en compte que tout réflexion sur un milieu d'indice plus élevé s'accompagne d'une inversion du champ électrique : c'est le cas du faisceau 1. Le faisceau 2 n'est pas inversé. On a donc dans ce cas :

$$\delta = 2ne\cos r + \frac{\lambda}{2}$$

Si les deux faisceaux 1 et 2 sont en phase (les deux sont inversés, par exemple) alors :

$$\delta = 2ne \cos r$$

Application: traitement antireflet

La face d'entrée de la lentille est recouverte par un film très fin d'indice optique n, par exemple du fluorure de magnésium MgF₂.

L'indice optique n et l'épaisseur e de ce film sont choisis de sorte que l'interférence entre les deux rayons réfléchis 1 et 2 soit destructive, il n'y aura alors aucun reflet.

Choix de l'indice optique du film

Pour que les faisceaux 1 et 2 interfèrent efficacement, leurs intensités lumineuses respectives doivent être très proches.

Dans les conditions de Gauss, sous incidence normale, les coefficients de réflexion et de transmission sont :

$$R_{air/film} = \left(\frac{n-1}{n+1}\right)^{2} \qquad \qquad R_{film/verre} = \left(\frac{N-n}{N+n}\right)^{2} \qquad \qquad T_{air/film} = 1 \quad \text{(film transparent)}$$

Les intensités sont :

$$I_1 = I_0 R_{air/film} = I_0 \left(\frac{n-1}{n+1}\right)^2 \qquad \text{et} \qquad I_1 = I_2 T_{air/film} R_{film/verre} T_{air/film} = I_0 \left(\frac{N-n}{N+n}\right)^2$$

L'égalité des intensités se traduit par :

$$\frac{n-1}{n+1} = \frac{N-n}{N+n} \qquad \text{soit} \qquad \frac{n-1}{n+1} = \frac{N-n}{N+n} \qquad \text{et donc} \qquad \boxed{n = \sqrt{N}}$$

Choix de l'épaisseur du film

Sous incidence normale (i=r=0), l'interférence entre 1 et 2 est destructive si $\delta = \lambda \left(k + \frac{1}{2}\right)$

Dans le cas présent 1 < n < N, donc 1 et 2 subissent tous deux une réflexion sur un milieu d'indice plus élevé, il n'y a donc pas de décalage $\frac{\lambda}{2}$ supplémentaire à prendre en compte. Donc

$$\delta = 2ne \cos r = \lambda \left(k + \frac{1}{2} \right)$$
 avec $r = 0$, donc $\delta = 2ne = \lambda \left(k + \frac{1}{2} \right)$

L'épaisseur e doit donc vérifier l'égalité suivante :

$$e = \frac{\lambda}{2n} \left(k + \frac{1}{2} \right)$$

Afin de minimiser les défauts, on a intérêt à choisir la plus petite valeur de e , c'est à dire la valeur correspondant à k=0 : $e=\frac{\lambda}{4n}$.

Exercices

Ex 1 : Intensités des faisceaux réfléchi et transmis

Une lame en verre d'indice $n_V=1,56$ et d'épaisseur $e=5\,\text{mm}$ est éclairée par une source de lumière étendue monochromatique, de longueur d'onde dans le vide $\lambda=580\,\text{nm}$. L'angle d'incidence est supposé très faible. Dans ces conditions, le coefficient de réflexion en amplitude sur le dioptre (n/n') a pour expression : $r=\frac{n-n'}{n+n'}$.

1. Calculer les valeurs des coefficients de réflexion r et de transmission t en amplitude du dioptre (air/verre).

2. Interférence entre les deux faisceaux réfléchis

- a) Calculer le rapport $\frac{E_{R1}}{E_{R2}}$ entre les amplitudes des deux faisceaux réfléchis.
- b) Exprimer le contraste C_R de la figure d'interférence obtenue par réflexion en fonction du rapport $\frac{E_{R1}}{E_{R2}}$, puis calculer sa valeur. À quelle condition le contraste est-il maximum ?

3. Interférence entre les deux faisceaux transmis

Calculer la valeur du contraste C_T de la figure d'interférence entre les faisceaux transmis T_1 et T_2 . Conclusion ?

Ex 2: Lame fine

Une lame en verre d'indice n=1,7 et d'épaisseur $e=2\,mm$, est éclairée par une source étendue monochromatique de longueur d'onde $\lambda=630\,nm$. On note R_1 et R_2 les deux premiers faisceaux réfléchis par la lame. Le faisceau incident forme un angle i avec la droite normale à la surface de la lame. La figure d'interférence est projetée sur un écran par une lentille convergente de distance focale image f'=500 mm .

- 1. Exprimer la différence de chemin optique entre les faisceaux R_1 et R_2 .
- 2. Où doit-on placer l'écran par rapport à la lentille ? (justifier)
- 3. En utilisant un développement limité, donner une expression simplifiée de la différence de marche δ en fonction de l'angle d'incidence i .
- 4. Quelle relation doit vérifier δ pour que l'interférence soit constructive ?
- 5. Calculer la valeur p0 de l'ordre d'interférence au centre de la figure. En déduire le rayon r_{max} du plus petit anneau lumineux projeté sur l'écran.

Ex 3: Irisation sur une tache d'huile

Un phénomène d'irisation est observable sur une tache d'huile à la surface de l'eau. La tache d'huile est assimilable à une lame à faces parallèles d'épaisseur e et d'indice optique $n_{huile} = 1,39$. L'indice de l'eau vaut $n_{eau} = 1,30$.

On observe deux franges circulaires lumineuses bleues (λ =450 nm) successives sous les angles i_1 =31° et i_2 =63°.

- 1. Quelle relation lie n, e, lambda et l'angle de réfraction r dans l'huile pour obtenir une interférence constructive ?
- 2. Calculer l'épaisseur de la tache d'huile.

Ex 4: Traitement antireflet - extrait sujet 2003

Une lunette astronomique est composée de trois lentilles taillées dans un verre d'indice n_V =1,52 . Le coefficient de réflexion en intensité R d'un dioptre éclairé en incidence quasi normale et séparant deux milieux d'indices respectifs n_1 et n_2 est donné par :

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2 .$$

1. Calculer le coefficient de transmission de la lunette.

Afin d'améliorer le coefficient de transmission de la lunette, chaque dioptre des lentilles composant la lunette a été traité antireflet par le dépôt d'une couche de cryolithe d'indice $n_0=1,35$.

- 2. Rappeler brièvement, en vous aidant d'un schéma, le principe physique du traitement antireflet.
- 3. Quel devrait être l'indice théorique du matériau idéal à déposer ? (aucune démonstration n'est demandée).
- 4. Le dépôt est réalisé pour les radiations de longueur d'onde $\lambda = 560\,\text{nm}$. Établir et justifier l'expression de l'épaisseur minimale de cryolithe à déposer. Calculer cette épaisseur.