m231 - quiz #1

Prove or give a counter example:

1) interior of 2 is always in 2 of interior.

FALSE. Here is a counterexample:

Let X=B. Then $\partial B=R$ and $int(\partial B)=R$. Meanwhile int $B=\emptyset$ because $\forall q\in B$, $\forall r>0$, there are irrational #5 in B(r,q). Therefore $B(r,q) \not\subset D$ so that no q is an interior pt of B. Thus $\partial (int B)=\emptyset$.

2) 2 of interior is always in interior of 2 FALSE. Here is a counterexample:

Let X=(a,b). Then intX=X and $\partial(intX)=\{a,b\}$. Meanwhile $\partial X=\{a,b\}$ and int $(\partial B)=\emptyset$. Obviously, $\{a,b\} \neq \emptyset$.