ECN 6578A, Économétrie des marchés financiers, Hiver 2022

Cours 5

William McCausland

2023-02-05

Plan

- 1. La fonction de vraisemblance : exemples bernoullien, poissonien
- 2. Maximisation de vraisemblance : exemples simples
- 3. Maximum de vraisemblance : propriétés (un peu de théorie)
- 4. Le modèle EGARCH
- 5. Estimation des modèles GARCH, quelques résultats

Éléments de l'analyse maximum de vraisemblance

- Quantités pertinentes :
 - \triangleright θ , un vecteur de paramètres inconnus,
 - $y = (y_1, \dots, y_T)$, un vecteur aléatoire des variables observables,
 - y°, le vecteur observé.
- ► Fonctions pertinentes :
 - $ightharpoonup f(y|\theta)$, la densité conditionnelle des données (modèle),
 - \triangleright $\mathcal{L}(\theta; y) = f(y|\theta)$, la vraisemblance,
 - $\mathcal{L}(\theta; y^{\circ}) = f(y^{\circ}|\theta)$, la vraisemblance réalisée.

Le modèle Bernoulli

Supposons que les y_i sont iid Bernoulli avec probabilité $\theta \in [0,1]$:

$$f(y_i| heta) = egin{cases} heta & y_i = 1 \ (1- heta) & y_i = 0 \ = heta^{y_i} (1- heta)^{1-y_i} \end{cases}$$

• On observe $y = (y_1, \dots, y_n)$; la fonction de masse de probabilité est

$$f(y|\theta) = \prod_{i=1}^n f(y_i|\theta) = \prod_{i=1}^n \theta^{y_i} (1-\theta)^{1-y_i} = \theta^{n_1} (1-\theta)^{n_0},$$

οù

- $n_1 = \sum_{i=1}^n y_i$ est le nombre de fois qu'on observe 1, et
- $n_0 = n \sum_{i=1}^{n} y_i$ est le nombre de fois qu'on observe 0.

Deux intérpretations de la même expression

- Deux façons de dénoter la même expression :
 - Fonction de masse de probabilité $f(y|\theta) = \theta^{n_1}(1-\theta)^{n_0}$.
 - Fonction de vraisemblance $\mathcal{L}(\theta; y) = \theta^{n_1} (1 \theta)^{n_0}$.
- ▶ $f(y|\theta)$ donne, pour θ fixe, les probabilités relatives de plusieurs séquences (y_1, \ldots, y_n) .
- \triangleright $\mathcal{L}(\theta; y)$ donne, pour y fixe (le vecteur des données observées) une note (ou évaluation) à chaque valeur θ pour la qualité de sa prévision des données observées.
- ▶ Soit $L(\theta; y) = \log \mathcal{L}(\theta; y)$, la log-vraisemblance.

La vraisemblance Bernoulli pour $n_0 = 200$, $n_1 = 230$

```
n_0 = 200; n_1 = 230; theta = seq(0, 1, by=0.001)
L = theta^n_1 * (1-theta)^n_0
plot(theta, L, type='l')
```


theta

La log vraisemblance Bernoulli pour $n_0 = 200$, $n_1 = 230$

```
logL = n_1 * log(theta) + n_0 * log(1-theta)
plot(theta, logL, type='l', ylim=c(-400, max(logL)))
```


Le modèle poissonien

- Supposez que les y_i sont iid Poisson avec moyenne $\theta > 0$.
- La fonction de masse de probabilité de *y_i* est

$$f(y_i|\theta)=e^{-\theta}\frac{\theta^{y_i}}{y_i!}.$$

• On observe le vecteur aléatoire $y = (y_1, \dots, y_n)$; la fonction de masse de probabilité de y est

$$f(y|\theta) = \prod_{i=1}^{n} f(y_i|\theta) = \prod_{i=1}^{n} e^{-\theta} \frac{\theta^{y_i}}{y_i!} = \left[\prod_{i=1}^{n} \frac{1}{y_i!} \right] e^{-n\theta} \theta^{\sum_{i=1}^{n} y_i}.$$

Pour simplifier un facteur qui importe peu,

$$c \equiv \left| \prod_{i=1}^n \frac{1}{y_i!} \right|.$$

Vraisemblance poissonienne pour n = 60, $\sum_{i=1}^{n} y_i = 230$

```
n = 60; somme_y = 230; theta = seq(0, 10, by=0.001)
cal_L = exp(-n*theta) * theta^somme_y
plot(theta, cal_L, type='l')
```


Log vraisemblance poissonienne, n = 60, $\sum_{i=1}^{n} y_i = 230$

```
L = -n*theta + somme_y*log(theta)
plot(theta, L, type='l', ylim=c(-200, max(L)))
```


La fonction de vraisemblance pour une séries chronologique

La vraisemblance en général pour un modèle qui donne la densité $f(r_1, \ldots, r_T, \theta)$.

$$\mathcal{L}(\theta; r) = f(r_1|\theta)f(r_2|r_1, \theta)\cdots f(r_T|r_1, \ldots, r_{T-1}, \theta)$$

- ► Chaque densité $f(r_t|r_1,...,r_{t-1},\theta)$ est un genre de prévision conditionnelle de r_t sachant $r_1,...,r_{t-1}$ et θ .
- ► La log vraisemblance est

$$L(\theta; r) = \sum_{t=1}^{T} \log f(r_t|r_1, \ldots, r_{t-1}, \theta).$$

- Pourquoi la log-vraisemblance et non juste la vraisemblance?
 - Pas de dépassement ou soupassement numérique (overflow/underflow)
 - Plus facile à maximiser (la dérivée d'une somme est la somme des dérivées, la log-vraisemblance est plus souvent concave)

Exemple : évaluation de la log vraisemblance GARCH(1,1)

- ► Rappel : $L(\theta; r) = \sum_{t=1}^{T} f(r_t | r_1, ..., r_{t-1}, \theta)$.
- ▶ Juste avant l'itération t, la valeur σ_t^2 est disponible.
- ▶ À l'itération t,
- 1. On calcule le terme $\log f(r_t|r_1,\ldots,r_{t-1},\theta)$ de la log vraisemblance. Dans le cas gaussien,

$$\log f(r_t|r_1,\ldots,r_{t-1},\theta) = -\frac{1}{2}(\log 2\pi + \log \sigma_t^2) - \frac{1}{2}r_t^2/\sigma_t^2.$$

et plus en général,

$$\log f(r_t|r_1,\ldots,r_{t-1},\theta) = -\log \sigma_t + \log f_{\epsilon}(r_t/\sigma_t|\theta),$$

- où $f_{\epsilon}(\epsilon|\theta)$ et la densité des ϵ_t .
- 2. On calcule la valeur σ_{t+1}^2 :

$$\sigma_{t+1}^2 = \alpha_0 + \alpha_1 r_t^2 + \beta_1 \sigma_t^2.$$

Maximum de la vraisemblance Bernoulli

- ▶ Vraisemblance : $\mathcal{L}(\theta; y) = \theta^{n_1} (1 \theta)^{n_0}$.
- ▶ Log vraisemblance : $L(\theta; y) = n_1 \log(\theta) + n_0 \log(1 \theta)$
- Deux dérivées de la log vraisemblance :

$$\frac{\partial L(\theta; y)}{\partial \theta} = \frac{n_1}{\theta} - \frac{n_0}{1 - \theta}$$

$$\frac{\partial^2 L(\theta; y)}{\partial \theta^2} = -\frac{n_1}{\theta^2} - \frac{n_0}{(1-\theta)^2} < 0.$$

► La valeur qui maximise la vraisemblance et la log-vraisemblance est

$$\hat{\theta} = \frac{n_1}{n_0 + n_1} = \frac{n_1}{n}$$
.

Maximum de la vraisemblance poissonienne

- Vraisemblance : $\mathcal{L}(\theta; y) = ce^{-n\theta} \theta^{\sum_{i=1}^{n} y_i}$.
- ▶ Log vraisemblance : $L(\theta; y) = \log c n\theta + (\sum_{i=1}^{n} y_i) \log \theta$.
- Deux dérivées de la log vraisemblance :

$$\frac{\partial L(\theta; y)}{\partial \theta} = -n + \frac{\sum_{i=1}^{n} y_i}{\theta}$$

$$\frac{\partial^2 L(\theta; y)}{\partial \theta^2} = -\frac{\sum_{i=1}^n y_i}{\theta^2} < 0.$$

La valeur $\hat{\theta}$ (souvent vue comme une variable aléatoire) qui maximise la vraisemblance et la log-vraisemblance est

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Pour n = 60 et $\sum_{i=1}^{n} y_i = 230$, $\hat{\theta} = \frac{23}{6} \approx 3.833$.

Maximum de vraisemblance : conditions de régularité

- Définitions :
 - θ est le vecteur des paramètres ; Θ , l'ensemble de toutes les valeurs possibles de θ .
 - r est le vecteur (aléatoire) des données.
- ► Conditions informelles de regularité :
 - 1. Le modèle est correct pour une valeur $\theta = \theta_0 \in \Theta$.
 - 2. La vraie valeur θ_0 est dans l'intérieur de Θ .
 - 3. Identification:

$$\theta \neq \theta_0 \Rightarrow f(\cdot|\theta) \neq f(\cdot|\theta_0).$$

- 4. $L(\theta; r) \equiv \log f(r|\theta)$ a toujours un maximum global unique.
- 5. Le gradient de $L(\theta; r)$ est toujours borné.
- 6. La matrice $\mathcal{I}(\theta)$ suivante (matrice d'information de Fisher) est définie positive:

$$\mathcal{I}(\theta) = E_{r|\theta} \left[\frac{\partial L(\theta; r)}{\partial \theta^{\top}} \frac{\partial L(\theta; r)}{\partial \theta} \right].$$

Maximum de vraisemblance : résultats

Résultats : (Soit $\hat{\theta} \equiv \arg \max_{\theta} L(\theta; r)$, qui existe et est unique.)

- 1. $\hat{\theta} \rightarrow_{p} \theta_{0}$ (loi de grands nombres)
- 2. $\sqrt{n}(\hat{\theta} \theta_0) \rightarrow_d N(0, \mathcal{I}(\theta_0)^{-1})$ (théorème central limite)
- 3. $E_{r|\theta} \left[\frac{\partial L(\theta;r)}{\partial \theta} \right] = 0$, alors $\mathcal{I}(\theta) = \operatorname{Var}_{r|\theta} \left[\frac{\partial L(\theta;r)}{\partial \theta} \right]$.
- 4. $\mathcal{I}(\theta) = E_{r|\theta} \left[-\frac{\partial^2 L(\theta;r)}{\partial \theta \partial \theta^{\top}} \right]$.

Problèmes restants :

- 1. Il faut trouver $\hat{\theta}$.
- 2. La variance asymptotique $\mathcal{I}(\theta_0)^{-1}$ dépend de θ_0 , qui est inconnu.
- 3. L'espérance dans l'expression de $\mathcal{I}(\theta)$ est difficile à évaluer analytiquement.

Exemple Bernoulli

- ▶ Un cas rare où les calculs analytiques sont faisables.
- La moyenne du score :

$$E_{y|\theta}\left[\frac{\partial L}{\partial \theta}\right] = E_{y|\theta}\left[\frac{n_1}{\theta} - \frac{n_0}{(1-\theta)}\right] = \frac{n\theta}{\theta} - \frac{n(1-\theta)}{(1-\theta)} = 0$$

La matrice d'information de Fisher :

$$\mathcal{I}(\theta) = E_{y|\theta} \left[-\frac{\partial^2 L}{\partial \theta^2} \right] = E_{y|\theta} \left[\frac{n_1}{\theta^2} + \frac{n_0}{(1-\theta)^2} \right]$$
$$= \frac{n\theta}{\theta^2} + \frac{n(1-\theta)}{(1-\theta)^2} = \frac{n}{\theta(1-\theta)}.$$

La variance de $\hat{\theta}$ (exacte, pas asymptotique) :

$$\operatorname{Var}[\hat{\theta}] = \operatorname{Var}\left[\frac{n_1}{n}\right] = \frac{1}{n^2} n \operatorname{Var}[y_i] = \frac{1}{n} (\theta - \theta^2) = \frac{\theta(1 - \theta)}{n}.$$

Exemple poissonien

- ▶ Un autre cas rare où les calculs analytiques sont faisables.
- ▶ La matrice d'information de Fisher : $(E[y_i] = \theta, Var[y_i] = \theta)$

$$\mathcal{I}(\theta) = E_{y|\theta} \left[-\frac{\partial^2 L}{\partial \theta^2} \right] = E_{y|\theta} \left[\frac{\sum_{i=1}^n y_i}{\theta^2} \right] = \frac{n\theta}{\theta^2} = \frac{n}{\theta}.$$

La variance de $\hat{\theta}$ (exacte, pas asymptotique) :

$$\operatorname{Var}[\hat{\theta}] = \operatorname{Var}\left[\frac{\sum_{i=1}^{n} y_i}{n}\right] = \frac{1}{n^2} n \operatorname{Var}[y_i] = \frac{\theta}{n}.$$

Pour n = 60 et $\sum_{i=1}^{n} y_i = 230$, $Var[\hat{\theta}]$ est de $(0.2528)^2$ pour $\theta = \hat{\theta} \approx 3.833$, $(0.2236)^2$ pour $\theta = 3$ et $(0.2739)^2$ pour $\theta = 4.5$.

Comment trouver $\hat{\theta}$ I

► Gradient (score) et hessienne de la log-vraisemblance :

$$s(\theta) \equiv \frac{\partial L(\theta; r)}{\partial \theta^{\top}}, \quad H(\theta) \equiv \frac{\partial^2 L(\theta; r)}{\partial \theta \partial \theta^{\top}}.$$

- lacktriangle On utilise un processus séquentiel pour trouver $\hat{ heta}$: $heta_1, heta_2, \ldots,$
- **Expansion** quadratique de Taylor autour de θ_k :

$$\tilde{L}(\theta;r) = L(\theta_k;r) + s(\theta_k)^{\top}(\theta - \theta_k) + \frac{1}{2}(\theta - \theta_k)^{\top}H(\theta_k)(\theta - \theta_k).$$

▶ Le gradient $\tilde{s}(\theta)$ de $\tilde{L}(\theta; r)$:

$$\tilde{s}(\theta) = s(\theta_k) + H(\theta_k)(\theta - \theta_k)$$

La condition $\tilde{s}(\theta_{k+1}) = 0$ définit la mise à jour θ_{k+1} de la méthode Newton :

$$\theta_{k+1} = \theta_k - H(\theta_k)^{-1} s(\theta_k).$$

Comment trouver $\hat{\theta}$ II

- Problème de non-convergence si la forme de la log vraisemblance est loin de quadratique et négative définie.
- Une recherche linéaire est plus robuste : choisir une valeur scalaire λ_k et calculer

$$\theta_{k+1} = \theta_k - \lambda_k H(\theta_k)^{-1} s(\theta_k).$$

- 1. Calculez $s(\theta_k)$, $H(\theta_k)$.
- 2. Trouvez une bonne valeur de λ_k (recherche linéaire)
- ▶ Des fois, on utilise souvent, au lieu de $H(\theta)$, une approximation

$$\hat{H}(\theta) = -\sum_{t=1}^{T} \frac{\partial \log f(r_t|r_1,\ldots,r_{t-1},\theta)}{\partial \theta^{\top}} \frac{\partial \log f(r_t|r_1,\ldots,r_{t-1},\theta)}{\partial \theta}.$$

► Une loi de grands nombres donne

$$\hat{H}(\theta_0) \rightarrow_{p} E[s(\theta_0)s(\theta_0)^{\top}] = \mathcal{I}(\theta_0) = -E[H(\theta_0)].$$

Approximation de $\mathcal{I}(\theta_0)$

- ▶ Rappelons que $\mathcal{I}(\theta_0)^{-1}$ est la variance asymptotique de l'estimateur MV.
- ▶ Cependant, θ_0 et $\mathcal{I}(\theta_0)$ sont inconnus.
- ▶ On utilise $-H(\hat{\theta})$ où $-\hat{H}(\hat{\theta})$ au lieu de $\mathcal{I}(\theta_0)$, qui est inconnu.
- ► Heureusement, on a
 - Convergence de $\hat{\theta}$ à θ_0 .
 - Convergence de $-\hat{H}(\theta_0)$ ou $-H(\hat{\theta}_0)$ à $\mathcal{I}(\hat{\theta}_0) = E[-H(\theta_0)]$.
 - ► Ensemble : convergence de $-H(\hat{\theta})$ ou $-H(\hat{\theta})$ à $\mathcal{I}(\theta_0)$.

Le modèle EGARCH

Le modèle EGARCH(1,1):

$$\begin{split} \mathbf{a}_t &= \sigma_t \epsilon_t \quad \ln \sigma_t^2 = \alpha \ln \sigma_{t-1}^2 + (1-\alpha)\alpha_0 + g(\epsilon_t) \quad \epsilon_t \sim \mathrm{iid}(\mathbf{0},\mathbf{1}), \\ \mathrm{où} \ g(\epsilon) &= \theta \epsilon + \gamma [|\epsilon| - E[|\epsilon|]]. \end{split}$$

Notes:

- ► $E[\epsilon_t] = 0$, $E[|\epsilon_t| E[|\epsilon_t|]] = 0$, $E[g(\epsilon_t)] = 0$.
- ▶ Par exemple, si $\epsilon_t \sim N(0,1)$, $E[|\epsilon_t|] = \sqrt{2/\pi}$
- ▶ In σ_t^2 est un processus AR(1), puisque $g(\epsilon_t)$ est un bruit blanc.
- Pour θ < 0, il y a un effet de levier.
- Pas besoin de contraintes sur les coefficients pour assurer la positivité de la volatilité, grace à la spécification logarithmique.

La fonction $g(\epsilon)$ de l'équation (3.31) (un exemple)

```
eps = seq(-3, 3, by=0.01)
theta = -0.0795; gamma = 0.2647
g = theta * eps + gamma * (abs(eps) - sqrt(2/pi))
plot(eps, g, type='l'); abline(h=0, lty=2)
```


Ajustement de plusieurs modèles GARCH (code)

```
library(fGarch)
# Séries IBM journalière, log rendements 1962-97
r = scan('d-ibmln.txt')
# GARCH(1, 1) gaussien
gn = garchFit(~garch(1,1), cond.dist='norm', data=r)
# mu t : ARMA(1, 0), sigma t : GARCH(1, 1) gaussien
agn = garchFit(~arma(1,0)+garch(1,1), cond.dist='norm', da
# GARCH(1, 1) t de Student
gt = garchFit(~garch(1,1), cond.dist='std', data=r)
```

Données IBM journalière, r_t

plot(gn, which=1)

$\mathsf{GARCH}(1,1)$ gaussien, $\hat{\sigma}_t$

plot(gn, which=2)

GARCH(1,1) gaussien, $\hat{\epsilon}_t$

plot(gn, which=9)

Standardized Residuals

 $ACF(r_t^2)$

 $acf(r^2)$

GARCH(1,1) gaussien, ACF($\hat{\epsilon}_t^2$)

ACF of Squared Standardized Residuals

$\mathsf{GARCH}(1,1)$ gaussien, graphique Q-Q pour $\hat{\epsilon}_t$

plot(gn, which=13)

GARCH(1,1) gaussien, sommaire des résultats

- Le modèle capture bien l'autodépendence de volatilité.
- Le modèle capture mal l'asymétrie et surtout l'aplatissement conditionnel.

$\mathsf{GARCH}(1,1)\ t$ de Student, $\hat{\epsilon}_t$

plot(gt, which=9)

Standardized Residuals

$\mathsf{GARCH}(1,1)\ t$ de Student, graphique Q-Q pour $\hat{\epsilon}_t$

plot(gt, which=13)

GARCH(1,1) t de Student, sommaire des résultats

- ► Le modèle capture mieux l'aplatissement conditionnel que le modèle GARCH(1,1) gaussien,
- mais pas parfaitement :
 - le modèle ne capture pas bien les (mettons) 10 valeurs les plus extrêmes (sur \approx 9000)
 - il y a plus de valeurs extrêmes que prévu par le modèle (mauvaise spécification de l'évolution de la variance conditionnelle σ_t ou de la loi conditionnelle ou des deux?)
- ▶ Une asymétrie : les valeurs extrêmes négatives sont particulièrement extrêmes.

Cours 6, la semaine prochaine

Plan préliminaire

- 1. Un modèle de volatilité stochastique
- 2. Inférence bayésienne : un peu de théorie
- 3. Inférence bayésienne : un peu de computation