Statistical Learning Project 2021

HEART FAILURE CLINICAL RECORDS

Chiara Bigarella Silvia Poletti Johanna Weiss

Clinical Features

	Age (years)	Anaemia	Creatinine Phosphokinase (mcg/L)	Diabetes	Ejection Fraction (percentage)	High Blood Pressure
1	75	0	582	0	20	1
2	55	0	7861	0	38	0
[]						

	Platelets (platelets/mL)	Serum Creatinine (mg/dL)	Serum Sodium (mEq/L)	Sex	Smoking	Time (days)	Death Event
1	265000	1.90	130	1	0	4	1
2	263358	1.10	136	1	0	6	1
[]							

<u>Death Event</u>: whether the patient died or not before the

end of the planned follow-up period.

<u>Death Event</u>: whether the patient died or not before the

end of the planned follow-up period.

<u>Time</u>: the actual follow-up period.

	Time (days)	Death Event
1	4	1
2	6	1
3	7	1
4	7	1
297	278	0
298	280	0
299	285	0

• Correlation between Death Event and Time: - 0.53

	Time (days)	Death Event	
1	4	1	
2	6	1	
3	7	1	
4	7	1	
297	278	0	
298	280	0	
299	285	0	

- Correlation between Death Event and Time: 0.53
- Dead patients' average follow-up: 71 days
- Survived patients' average follow-up: 158 days
- Proportion of dead patients in less than 90 days: 71.9%
- Proportion of dead patients in more than 90 days: 28.1%

•••

- Proportion of females that smoke: 0.04
- Proportion of males that smoke: 0.47

- Proportion of females having anaemia: 0.50
- Proportion of males having anaemia: 0.40

Blood Pressure

Proportion of females having high pressure:

40-50	50-58	58-64	64-70	> 70
0.42	0.36	0.35	0.43	0.58

Proportion of males having high pressure:

40-50	50-58	58-64	64-70	> 70
0.26	0.24	0.31	0.37	0.40

•••

Low Ejection Fraction

Low Ejection Fraction

Low Serum Sodium

Proportion of patients with high Serum Creatinine that died:

Females	Males
0.44	0.48

Proportion of patients with normal or low Serum Creatinine that died:

Females	Males
0.06	0.21

Old Age

Low Ejection Fraction

Low Serum Sodium

High Serum Creatinine

> 1.0 for females

> 1.2 for males

Proportion of patients having Diabetes that died:

Females	Males
0.36	0.29

Old Age

Low Ejection Fraction

Low Serum Sodium

High Serum Creatinine

Diabetes in females

•••

Death Event = 1

Death Event = 0

Variable level (eg. serum creatinine)

• removing the data point (10) does not change the regression line

Variable level (eg. serum creatinine)

• removing the data point (132) changes the regression line

Full model

	Age (years)	Anaemia	Creatinine Phosphokinase (mcg/L)	Diabetes	Ejection Fraction (percentage)	High Blood Pressure
187	50 🔻	0	582	0	50	0
196	77 🛉	1	418	0	45 🔻	0
218	58	1	145	0	25 🔻 🔻	0

	Platelets (platelets/mL)	Serum Creatinine (mg/dL)	Serum Sodium (mEq/L)	Sex	Smoking	Time (days)	Death Event
178	153000	0.6	134	0	0	172	1
196	223000	1.8	145	1	0	180	1
218	219000	1.2	137	1	1	170	1

1. Best Subset Selection

- performance measure: BIC
- selected 4 variables: age, ejection_fraction, serum_creatinine, and time
- accuracy
 - default threshold: 77.61%
 - optimized threshold: 73.13%
 - \rightarrow improved sensitivity and specificity.

2. Ridge Regression

- grid search for finding best value for λ
- uses all 12 variables
- test accuracy:
 - o default threshold: 76.12% 🔻
 - > optimized threshold: 77.61% 🛕

3. Lasso Regression

- uses the 7 variables: age,
 creatinine_phosphokinase, ejection_fraction,
 serum_creatinine, serum_sodium, sex, time
- test accuracy:
 - o default threshold: 76.12% ★
 - optimized threshold: 77.61% –

Model	Test Accuracy	Sensitivity (train set)	Specificity (train set)
Best Subset Selection (BIC)	73.13%	86.96%	78.52%
Ridge	77.61%	76.81%	92.02%
Lasso	77.61%	75.36%	93.25%

 \rightarrow age, ejection fraction, serum creatinine, and time

Do the models coefficients reflect the correlation between clinical features and death?

•••

Do the models coefficients reflect the correlation between clinical features and death?

Variable of BIC model	Coefficient	
Age	0.065	
Ejection Fraction	-0.095	
Serum Creatinine	0.487	
Time	-0.022	

Do the models coefficients reflect the correlation between clinical features and death?

Variable of BIC model	Coefficient	
Age	0.065	
Ejection Fraction	-0.095	
Serum Creatinine	0.487	
Time	-0.022	

Ejection Fraction Serum Creatinine

9

Death Ev

Age

Ejection Fraction

Serum Creatinine

Time

Death Event

•••

Data is not linearly separable

- Small dataset: 299 observations
- Unbalanced data

Males: 65%

Females: 35 %

Males: 65%

Females: 35 %

Smokers: 32%

Non smokers: 68%

Males: 65%

Females: 35 %

M

Smokers: 32%

Non smokers: 68%

Dead: 32%

Alive: 68%

	Training Accuracy	Test Accuracy (default threshold)	Test Accuracy (best threshold)
BIC	85 %	78 %	73 %
AIC	88 %	75 %	76 %
Ridge	87 %	73 %	78 %
Lasso	87 %	76 %	78 %
LDA	85 %	78 %	75 %
QDA	83 %	75 %	76 %
KNN	-	81 %	-

•••

- 1. False Positives (type I error) vs False Negatives (type II error)
- 2. Impossible to remove all the errors
- 3. In our case False Negatives are worse than False Positives

- 1. False Positives (type I error) vs False Negatives (type II error)
- 2. Impossible to remove all the errors
- 3. In our case False Negatives are worse than False Positives

OUR GOAL:

Minimize the False Negatives

ROC Curve Analysis

- True Positive Rate (Sensitivity)vs False Positive Rate
- best threshold selection

	False Negative Rate	False Positive Rate	TP Rate (Sensitivity)	Positive Predicted Value	Negative Predicted Value
BIC	0.08	0.05	0.20	0.66	0.79
AIC	0.10	0.03	0.18	0.74	0.77
Ridge	0.09	0.03	0.19	0.75	0.79
Lasso	0.10	0.02	0.18	0.77	0.78
LDA	0.07	0.05	0.21	0.67	0.81
QDA	0.08	0.04	0.20	0.70	0.80
KNN	0.10	0.01	0.18	0.85	0.79

Conclusions

- → Old Age, Low Ejection Fraction, Low Serum Sodium, High Serum Creatinine and Diabetes in women increment the risk of dying after a heart attack
- → Selected variables: age, ejection_fraction, serum_creatinine, and time
- → KNN is the best model
- → We cannot make predictions