EPITA / InfoS3	Novembre 2021
NOM : Prénom :	Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (QCM sans points négatifs – 3 points)

Choisissez la bonne réponse :

- Q1. Le dopage permet d'augmenter la conductivité du semi-conducteur
 - a- VRAI

- b- FAUX
- **Q2.** Si on prend du silicium comme élément semi-conducteur et qu'on le dope avec un élément ayant un électron de valence de moins que le silicium, on a :
 - a- Un dopage N

c- Un dopage P

b- Aucun dopage

- d- Dopage NP
- Q3. Soit le circuit ci-contre, dans lequel on considère la diode idéale. Que vaut la tension V_{AK} aux bornes de la diode si E=10V, $R=100\Omega$.

c-
$$-10 V$$

Q4. Soit le circuit ci-contre.

Quel type de porte logique réalise ce montage ?

- a- OU
- c- NON ET
- b- ET
- d- NON OU

Soit le circuit suivant où $v(t) = V.\sqrt{2}.sin(\omega t)$. (Q5&Q6)

- **Q5.** Quelles sont les diodes passantes si v(t) est négative ?
 - a- D_1 et D_3
 - b- D_2 et D_4

- c- D_3 et D_4
- d- D_1 et D_2

- **Q6.** Choisir l'affirmation correcte :
 - a- $u(t) \le 0 \ \forall t$
 - b- $u(t) \ge 0 \ \forall t$

- c- u(t) = 0 si $v(t) \le 0$
- d- u(t) = 0 si $v(t) \ge 0$

Exercice 2. Diodes (5 points+1)

Pour les questions suivantes, vous utiliserez un <u>raisonnement</u> <u>par l'absurde</u>.

1. Soit le montage ci-contre. Montrer que la diode est passante.

On prendra $R_1=2k\Omega$, $R_2=R_3=1k\Omega$, $E_1=5V$ $E_2=20V$, et on supposera la diode idéale (modèle interrupteur)

BONUS: Déterminer alors le courant qui traverse la diode.

Exercice 3. Diodes (6 points)

Soit le circuit suivant.

On utilisera le modèle à seuil pour la diode (Modèle générateur de tension parfait) et on notera V_0 tension de seuil

tension de seuil.			
1. Déterminer le générateur de Thévenin vu par la di	ode.		

2. Déterminer la relation entre E , R , I et V_0 pour que la diode soit passante ?			

EPITA / InfoS3 Novembre 2021

Exercice 4. Diode Zéner (6 points)

On considère le schéma suivant. V est une tension pouvant prendre n'importe quelle valeur réelle. On veut tracer l'allure de la caractéristique de transfert c'est-à-dire U=f(V) en substituant la diode par son modèle réel. On notera V_0 la tension de seuil en direct, V_D , la résistance interne de la diode en direct, V_Z ($V_Z>0$) , la tension de seuil Zéner et V_Z , la résistance interne de la diode en inverse.

	Quelle est l'expression de U quand la diode Zéner est bloquée ? Pour quelles valeurs de V en dans ce cas ?
	Qualla act l'averaggian de II quand la diada 7ánar est passante en direct 3
<u>Z.</u>	Quelle est l'expression de U quand la diode Zéner est passante en direct ?
3.	Quelle est l'expression de ${\it U}$ quand la diode Zéner est passante en inverse ?

EPITA / InfoS3 Novembre 2021

4. Tracez l'allure de la caractéristique de transfert $U=f(V)$.			