

مدرس: محمد معین مهدویان شاد سال تحصیلی ۵۱-۵۰

مقدمه

- آشنایی با انواع کد ترتیبی یا Sequential
 - آشنایی با محیط Process
 - IF •
 - WAIT •
 - FOR/LOOP
 - CASE •


```
architecture Behavioral of main vhdl is
begin
process (
begin
end process;
end Behavioral;
```

کد ترتیبی

ARCHITECTURE Key Word

Name of ARCHITECTURE

Name of **ENTITY**


```
architecture Behavioral of main vhdl is
begin
process (
begin
end process;
end Behavioral;
```

کد ترتیبی

Decleration Part

BEGIN Key Word

CONCURRENT Body

SEQUENTIAL Body

END Key Word

Name of ARCHITECTURE


```
architecture Behavioral of main vhdl is
begin
process (
begin
end process;
end Behavioral;
```

کد ترتیبی

PROCESS Key Word

Sensitivity List

Variables Decleration

BEGIN Key Word

SEQUENTIAL Code

END PROCESS Key Word

** در صورت استفاده از WAIT در بدنه کد ترتیبی، از لیست حساسیت استفاده نمی شود. **

Example: 2x1 Multiplexer with Enable

How to Write Sequential Code?!

- Combinatial Code
- IF Statements
- CASE Statements
- LOOP Statements
- WAIT Statements

IF Statements

```
[label:] IF condition THEN
            assignments;
        ELSIF condition THEN
            assignments;
        ELSE
            assignments;
        END IF [label];
```


CASE Statements

```
CASE identifier IS
        WHEN value1 =>
                 assignments;
        WHEN value2 =>
                 assignments;
END CASE;
```


Example: JK-Latch


```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity SR Latch is
       Port ( S, R, E : in STD LOGIC;
               Q, Q bar : buffer STD LOGIC);
end SR Latch;
architecture Behavioral of SR Latch is
begin
process(S, R, En)
begin
       Q_bar <= '1';
       Q <= '0';
       if En='1' then
               if (S='1' and r='0') then
                      Q <= '1';
                      Q bar <= '0';
               elsif (S='0' and r='1') then
                      Q <= '0';
```



```
process(S, R, En)
begin
       Q_bar <= '1';
       Q <= '0';
       if En='1' then
               if (S='1' and r='0') then
                       Q <= '1';
                       Q bar <= '0';
               elsif (S='0' and r='1') then
                       Q <= '0';
                       Q bar <= '1';
               elsif (S='1' and r='1') then
               Q <= Q_bar;
               Q_bar <= Q;</pre>
               end if;
       end if;
end process;
end Behavioral;
```


Parity_Detector

دستور کار آزمایش امروز؟

۱- واحد Parity Detector

طراحی و پیادهسازی واحد آشکارساز بیت پریتی، برای ورودی ۸ بیتی که دارای یایه ورودی فعالساز

- کدنویسی به صورت ترتیبی انجام شود.
 - شبیهسازی واحد انجام شود.

۲- حافظه ۱ کیلوبیتی

طراحی و پیادهسازی یک واحد حافظه RAM با ظرفیت ا کیلوبیت، دارای باس داده ۸ بیتی و باس آدرس موازی مجزا، حافظه دارای پایه فعالساز برای عملیات نوشتن است و به صورت آسنکرون کار میکند.

- کدنویسی به صورت ترتیبی انجام شود.
 - شبیهسازی واحد انجام شود.

آرایهها در زبان VHDL

MEM(0 to n)

-	7 downto 0
-	7 downto 0
-	7 downto 0
	7 downto 0
	•••
	7 downto 0

```
TYPE my_type IS ARRAY (specication) OF data_type;

Example:

TYPE RAM_64B IS ARRAY 0 to 63 OF UNSIGNED (7 downto 0);

signal my_RAM: RAM_64B := (OTHERS => '0'));
```

