MP-1 TUTORIAL-7

1. Demonstrate the Initial Basic Solution in Transportation problem using NW method in Linear Programming (U-V method).

Transportation cost =

U-V method

5 19	2) 30	50	10	7-
70	6) 30	3) 40	60	٦
40	8	生 70	14 20	18
5	8	7	14	

step: 1 m= no.0f origins = 3

n = no.0f destinations = 4

m+n-1=6 => No.0f allocations = 6

And the allocations are in independent positions: The problem is non-degenerate

$$u_3 + v_3 = 70$$
 $u_3 = 30$

3 C+Vy = 20

5 19	2	30	(40)	50	(10)	10	O
(11)	6]	30	3)	40	(70)	60	0
(-9)40	(-51)	8	त्र	70	14	૧૦	, 30

Vj 19 30

40 -10

· cell evaluation.

51

70

If an the cens are non-negative then the

. - 75

solution is optimal.

Here cell evaluation -9, -12 are negative so sol is not optimal

= Entering cell (3,2)

5/19	30	500	10
70	301-	3) 40°	60
40	0 8 cm 6	70 40	14) 20

Form a loop starting from (2,1)

5)19	2) 3D	(10)	(32)
(1)	2) 30	7 40	(18) 60
(43)	4) 8	(62) 70	14) 20

(1,4) cell evaluation 13 -32 Here

i-e negative

: Entering cell (1,4)

. 11

Form a loop starting from the cell (1,4)

2-0 =0

5)19	3 D	50	10	41 = 0
70	30	2)	60	u, = 32
40	6) 8	70	12) 20	U3 = 10
Vi= 19	V2= -2	N3= 8	V4:10] ,

$$(1,4)$$
 $u_1+v_4=10$ $v_4=10$

$$(2,2)$$
 $U_1 + V_2 = 30$ $U_2 = 32$

$$(3,4)$$
 $u_3 + v_4 = 20$ $u_3 = 10$

$$(3,2)$$
 $V_3 + V_2 = 8$ $V_{\nu} = -2$

$$(2,3)$$
 $U_1 + V_3 = 40$ $V_3 = 8$ $V_3 = 8$

519	30	50	10
(19) 70	30	³ 40	⁽¹⁸⁾ 60
(11) 40	6) 8	(51) 70	12) 20

Now all the cell evaluations are non-negative

Transportation cost