School of Mathematics and Statistics MAST20009 Vector Calculus, Semester 1 2020 Assignment 3 and Cover Sheet

Student Name	Student Number
Tutor's Name	$Tutorial\ Day/Time$

Submit your assignment via the MAST20009 website before 11am on Monday 11th May.

- This assignment is worth 5% of your final MAST20009 mark.
- Assignments must be neatly handwritten in blue or black pen on A4 paper. Diagrams can be drawn in pencil.
- Full working must be shown in your solutions.
- Marks will be deducted for incomplete working, insufficient justification of steps, incorrect mathematical notation and for messy presentation of solutions.
 - 1. Let M be that part of the disk $x^2 + y^2 \le 4$ in the x-y plane for $x \le 0$ and $y \le 0$.
 - (a) Sketch M, clearly labelling any intercepts.
 - (b) Evaluate the double integral

$$\iint_{M} (x^{2} + y^{2})^{3/2} dxdy.$$

- 2. Let D be the region in the first quadrant of the x-y plane that is bounded by the hyperbolas $x^2 y^2 = 1$, $x^2 y^2 = 4$ and the ellipses $\frac{x^2}{4} + y^2 = 1$, $\frac{x^2}{4} + y^2 = 4$.
 - (a) Sketch D, clearly labelling any intercepts and points of intersection.
 - (b) Evaluate the double integral

$$\iint_D \frac{x^3 y}{y^2 - x^2} \, dx dy$$

by making the substitutions $u = x^2 - y^2$ and $v = \frac{x^2}{4} + y^2$.

- 3. Let B be the solid region bounded by the hemisphere $z=-\sqrt{2-x^2-y^2}$ and the x-y plane for $x\geq 0,\,y\geq 0$ and $z\leq 0.$
 - (a) Sketch B, clearly labelling any intercepts.
 - (b) Calculate the total mass of B if the mass per unit volume is

$$\mu(x, y, z) = \frac{x^4}{1 + (x^2 + y^2 + z^2)^{7/2}} \text{ g/cm}^3.$$

- 4. Let R be the solid region enclosed by the cone $z = 4 \sqrt{x^2 + y^2}$ and the paraboloid $z = \frac{1}{9}(x^2 + y^2)$.
 - (a) Sketch R, clearly labelling any intercepts and points of intersection.
 - (b) Calculate the moment of inertia of R about the z-axis if the mass per unit volume is

$$\mu(x, y, z) = y + z.$$