MODULE 7

LIMITING DISTRIBUTIONS

LECTURES 37-42

Topics

- 7.1 CONVERGENCE IN DISTRIBUTION AND PROBABILITY
 - 7.1.1 Poisson Approximation to Binomial Distribution
- 7.2 THE WEAK LAW OF LARGE NUMBERS (WLLN)
 AND THE CENTRAL LIMIT THEOREM (CLT)
 - 7.2.1 Random walk
 - 7.2.2 Justification of Relative Frequency Method of Assigning Probabilities
- 7.3 SOME PRESERVATION RESULTS
 - 7.3.1 Normal Approximation to the Student-t Distribution
- 7.4 THE DELTA-METHOD

MODULE 7

LIMITING DISTRIBUTIONS

LECTURE 37

Topics

7.1 CONVERGENCE IN DISTRIBUTION AND PROBABILITY

Let $\underline{T}=(T_1,\ldots,T_n)$ be a random vector having a probability density function/probability mass function (p.d.f./p.m.f.) $f_{\underline{T}}(\cdot)$ and let $h:\mathbb{R}^n\to\mathbb{R}$ be a Borel function. Suppose that the distribution of random variable $X_n=h(\underline{T})$ is desired. Very often it is not possible to derive the expression for distribution (i.e., p.d.f. or p.m.f.) of $X_n=h(\underline{T})$. To make this point clear let T_1,\ldots,T_n be a random sample from Be(a,b) distribution, where a and b are

positive real constants, and suppose that the distribution (i.e., the distribution function or a p.d.f.) of the sample mean $\bar{T}_n = \frac{1}{n} \sum_{i=1}^n T_i$ is desired. The form of the p.d.f. (or distribution function) of \bar{T}_n is so complicated (it involves multiple integrals which cannot be expressed in a closed form) that hardly anybody would be interested in using it. Therefore, it will be helpful if we can approximate the distribution of \bar{T}_n by a distribution which is mathematically tractable. In this module we will develop a theory which will help us in approximating distributions of a sequence $\{X_n\}_{n\geq 1}$ of random variables for large values of n (say, as $n \to \infty$). Such approximations are quite useful in statistical inference problems.

CONVERGENCE IN DISTRIBUTION AND **7.1 PROBABILITY**

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with corresponding sequence of distribution functions (d.f.s) as $\{F_n\}_{n\geq 1}$. Suppose that an approximation to the distribution of X_n (i.e., of F_n) is desired, for large values of n (say, as $n \to \infty$). It may be tempting to approximate $F_n(\cdot)$ by $F(x) = \lim_{n \to \infty} F_n(x)$, $x \in \mathbb{R}$. However, as the following examples illustrate, $F(x) = \lim_{n \to \infty} F_n(x)$, $x \in \mathbb{R}$, may not be a d.f..

Example 7.1

Let $\{X_n\}_{n\geq 1}$ be sequence of random variables with $P(\{X_n=n\})=1$, n=1(i) 1, 2, Then the d.f. of X_n is given by $F_n(x) = \begin{cases} 0, & \text{if } x < n \\ 1, & \text{if } x \ge n \end{cases}, \qquad n = 1, 2,$

$$F_n(x) = \begin{cases} 0, & \text{if } x < n \\ 1, & \text{if } x \ge n \end{cases}, \quad n = 1, 2,$$

We have $F(x) \stackrel{\text{def}}{=} \lim_{n \to \infty} F_n(x) = 0$, $\forall x \in \mathbb{R}$. Clearly F is not a d.f..

Let $X_n \sim U(-n, n)$, n = 1, 2, Then the d.f. of X_n is (ii)

$$F_n(x) = \begin{cases} 0, & \text{if } x < -n \\ \frac{x+n}{2n}, & \text{if } -n \le x < n, & n = 1, 2, \\ 1, & \text{if } x \ge n \end{cases}$$

Clearly $F(x) \stackrel{\text{def}}{=} \lim_{n \to \infty} F_n(x) = \frac{1}{2}$, $\forall x \in \mathbb{R}$ and $F(\cdot)$ is not a d.f.

The above examples illustrate that a sequence $\{F_n\}_{n\geq 1}$ of d.f.s on \mathbb{R} may converge, at all points, but the limiting function $F(x) = \lim_{n \to \infty} F_n(x)$, $x \in \mathbb{R}$, may not be a d.f..

The following example illustrates that if a sequence $\{F_n\}_{n\geq 1}$ of d.f.s converges at every point then it may be too restrictive to require that $\{F_n\}_{n\geq 1}$ converges to a d.f. F at all points (i.e., to require that $\lim_{n\to\infty} F_n(x) = F(x), \forall x \in \mathbb{R}$, for some d.f. F).

Example 7.2

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with $P\left(\left\{X_n=\frac{1}{n}\right\}\right)=1,\ n=1,2,...$ Then the d.f. of X_n is

$$F_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n} \\ 1, & \text{if } x \ge \frac{1}{n} \end{cases} \quad n = 1, 2, \dots$$

Clearly,

$$F(x) \stackrel{\text{def}}{=} \lim_{n \to \infty} F_n(x) = \begin{cases} 0, & \text{if } x \le 0 \\ 1, & \text{if } x > 0 \end{cases}$$

is not a d.f. (it is not right continuous at x = 0). However, F can be converted into a distribution function

$$F^*(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

by changing its value at the point 0 (the point of discontinuity of F). Since $P\left(\left\{X_n = \frac{1}{n}\right\}\right) = 1, n = 1, 2, ..., \text{ and } \lim_{n \to \infty} \frac{1}{n} = 0$, a natural approximation of F_n seems to be the distribution function of a random variable X that is degenerate at 0 (i.e., $P(\left\{X = 0\right\}) = 1$). Note that F^* is the d.f. of random variables X that is degenerate at 0. The above discussion suggests that it is too restrictive to require

$$\lim_{n\to\infty} F_n(x) = F^*(x), \forall x\in\mathbb{R},$$

and that exceptions may be permitted at the points of discontinuities of F^* .

Definition 1.1

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables and let F_n be the d.f. of X_n , n=1,2,...

- (i) Let X be a random variable with d.f. F. The sequence $\{X_n\}_{n\geq 1}$ is said to *converge* in distribution to X, as $n \to \infty$ (written as $X_n \overset{d}{\to} X$, as $n \to \infty$) if $\lim_{n \to \infty} F_n(x) = F(x), \forall x \in C_F$, where C_F is the set of continuity points of F. The d.f. F (or the corresponding p.d.f/p.m.f.) is called the *limiting distribution* of X_n , as $n \to \infty$.
- (ii) Let $c \in \mathbb{R}$. The sequence $\{X_n\}_{n \geq 1}$ is said to converge in probability to c, as $n \to \infty$ (written as $X_n \xrightarrow{p} c$, as $n \to \infty$) if $X_n \xrightarrow{d} X$, as $n \to \infty$, where X is a random variable that is degenerate at c.

Remark 1.1

- (i) Suppose that $X_n \stackrel{d}{\to} X$, as $n \to \infty$. Since the set $D_F = C_F^c = \mathbb{R} C_F$ of discontinuity points of limiting d.f. F is at most countable we have $\lim_{n \to \infty} F_n(x) = F(x)$ everywhere except, possibly, at a countable number of points.
- (ii) Note that the distribution function of a random variable degenerate at point $c \in \mathbb{R}$ is given by

$$F(x) = \begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x \ge c \end{cases}$$

Thus we have

$$X_n \stackrel{p}{\to} c$$
, as $n \to \infty \Leftrightarrow \lim_{n \to \infty} F_n(x) = \begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x \ge c \end{cases}$

- (iii) Suppose that $X_n \xrightarrow{d} X$, as $n \to \infty$. If the random variable X is of continuous type (i. e., $C_F = \mathbb{R}$) then $\lim_{n \to \infty} F_n(x) = F(x)$, $\forall x \in \mathbb{R}$.
- (iv) Note that, for a real constant c, $X_n \stackrel{p}{\to} c$ if, and only if, $X_n c \stackrel{p}{\to} 0$, as $n \to \infty$.

Example 1.3

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that $P(\{X_n=0\})=\frac{1}{n}=1-P\left(\left\{X_n=\frac{1}{n}\right\}\right), n=1,2,...$ Show that $X_n\stackrel{p}{\to} 0$, as $n\to\infty$.

Solution. Let F be the d.f. of a random variable degenerate at 0, i.e.,

$$F(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}.$$

Since F is continuous everywhere except at point 0 (i, e., $C_F = \mathbb{R} - \{0\}$), we need to show that $\lim_{n\to\infty} F_n(x) = F(x)$, $\forall x \in \mathbb{R} - \{0\}$, where $F_n(\cdot)$ is the d.f. of X_n , n = 1, 2, ...

We have

$$F_n(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{1}{n}, & \text{if } 0 \le x < \frac{1}{n}, \\ 1, & \text{if } x \ge \frac{1}{n} \end{cases} \qquad n = 1, 2, \dots$$

$$\xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } x \le 0 \\ 1, & \text{if } x > 0 \end{cases}.$$

Clearly
$$\lim_{n\to\infty} F_n(x) = F(x), \forall x \in \mathbb{R} - \{0\}.$$

Example 1.4

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed (i.i.d.) $U(0, \theta)$ random variables, where $\theta > 0$. Let $X_{n:n} = \max\{X_1, ..., X_n\}$ and let $Y_n = n(\theta - X_{n:n})$, n = 1, 2, ...

- (i) Show that $X_{n:n} \xrightarrow{p} \theta$, as $n \to \infty$;
- (ii) Find the limiting distribution of $\{Y_n\}_{n\geq 1}$.

Solution.

(i) Let H_n be the d.f. of $X_{n:n}$, n = 1, 2, ..., and let

$$H(x) = \begin{cases} 0, & \text{if } x < \theta \\ 1, & \text{if } x \ge \theta \end{cases}$$

be the d.f. of random variable degenerate at θ . We need to show that $\lim_{n\to\infty} H_n(x) = H(x), \ \forall x\in\mathbb{R}-\{\theta\}.$

We have, for $x \in \mathbb{R}$,

$$H_n(x) = P(\{X_{n:n} \le x\})$$

$$= P(\{\max\{X_1, ..., X_n\} \le x\})$$

$$= P(\{X_i \le x, i = 1, ..., n\})$$

$$= \prod_{i=1}^n P(\{X_i \le x\}) \qquad \text{(since } X_i \text{s are independent)}$$

$$= [F(x)]^n, n = 1, 2, ..., \qquad \text{(since } X_i \text{s are identically distributed),}$$

where

$$F(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{x}{\theta}, & \text{if } 0 \le x < \theta \\ 1, & \text{if } x \ge \theta \end{cases}$$

is the common distribution function of $X_1, X_2, ...$

Thus

$$H_n(x) = \begin{cases} 0, & \text{if } x < 0 \\ \left(\frac{x}{\theta}\right)^n, & \text{if } 0 \le x < \theta \\ 1, & \text{if } x \ge \theta \end{cases}$$

$$\xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } x < \theta \\ 1, & \text{if } x \ge \theta \end{cases}$$

$$= H(x), \forall x \in \mathbb{R}.$$

(ii) For $y \in \mathbb{R}$, we have

$$F_{Y_n}(y) = P(\lbrace Y_n \leq y \rbrace)$$

$$= P\left(\lbrace X_{n:n} \geq \theta - \frac{y}{n} \rbrace\right)$$

$$= 1 - H_n\left(\theta - \frac{y}{n}\right) - \left(\text{since } H_n \text{ is continuous}\right)$$

$$= \begin{cases} 0, & \text{if } y \leq 0 \\ 1 - \left(1 - \frac{y}{n\theta}\right)^n, & \text{if } 0 < y \leq n\theta, \ n = 1, 2, ... \\ 1, & \text{if } y > n\theta \end{cases}$$

$$\xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } y \leq 0 \\ 1 - e^{-\frac{y}{\theta}}, & \text{if } y > 0 \end{cases}$$

$$= G(y), \text{ say.}$$

Note that $G(\cdot)$ is the d.f. of $\text{Exp}(\theta)$ random variable. Thus $Y_n \stackrel{d}{\to} Y \sim \text{Exp}(\theta)$, as $n \to \infty$.

In the above example we saw that $X_{n:n} \stackrel{p}{\to} \theta$, as $n \to \infty$, and $n(\theta - X_{n:n}) \stackrel{d}{\to} Y \sim \operatorname{Exp}(\theta)$, as $n \to \infty$, i.e., the limiting distribution of $X_{n:n}$ is degenerate (at θ) and, to get a non-degenerate limiting distribution, we needed normalized version $Y_n = n(\theta - X_{n:n})$ of $X_{n:n}, n = 1, 2, \ldots$ This phenomenon is observed quite commonly. Generally, we will have a sequence $\{X_n\}_{n\geq 1}$ of random variables, such that $X_n \stackrel{p}{\to} c$, as $n \to \infty$ for some real constant c (i.e., the limiting distribution of X_n is degenerate at c). In order to get a non-degenerate limiting distribution a normalized version $Z_n = n^r(X_n - c)$ (or $Z_n = n^r(c - X_n)$), r > 0, of X_n , $n = 1, 2, \ldots$ is considered. Typically there is a choice of r > 0 such that the limiting distribution of Z_n is non-degenerate.