Text Mining and Language Analytics

Lecture 3

N-grams

Dr Stamos Katsigiannis 2023-24

Probabilistic Language Models

- Goal → Assign a probability to a sentence (sequence of words)
- But why?
 - Probabilistic classification models (e.g. Naïve Bayes)
 - Machine translation
 - e.g. P(the tall giraffe) > P(the high giraffe)
 - Spelling correction
 - e.g. I will be there in **twety** minutes
 - P(in twenty minutes) > P(in twety minutes)
 - Speech recognition
 - e.g. P(I saw a van) >> P(eyes awe Evan)

Probabilistic Language Modelling

• Goal \rightarrow Assign a probability to a sentence (sequence of words) $P(W) = P(w_1, w_2, w_3, w_4, ..., w_n)$

• Related task \rightarrow Probability of an upcoming word $P(w_n \mid w_1, w_2, ..., w_{n-1})$

• A model that computes P(W) or $P(w_n \mid w_1, w_2, ..., w_{n-1})$ is called a Language Model

Remember the chain rule

• From the definition of conditional probabilities:

$$P(B|A) = \frac{P(A,B)}{P(A)} \Rightarrow P(A,B) = P(A) \cdot P(B|A)$$

For more variables:

$$P(A,B,C,D) = P(A) \cdot P(B \mid A) \cdot P(C \mid A,B) \cdot P(D \mid A,B,C)$$

• Chain rule:

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1) \cdot P(x_2 \mid x_1) \cdot P(x_3 \mid x_1, x_2) \cdot ... \cdot P(x_n \mid x_1, ..., x_{n-1})$$

Computing P(W)

 How to compute the joint probability of the following sentence?

The old dog was very friendly

Apply the chain rule:

```
P(The old dog was friendly) =
```

P(The)·P(old | The)·P(dog | The old)

·P(was | The old dog)·P(friendly | The old dog was)

Computing the probability of upcoming words (I)

- How to compute the probability $P(w_n | w_1, w_2, ..., w_{n-1})$?
- Count the occurrences of sentence $(w_1, w_2, ..., w_{n-1}, w_n)$ in the corpus
- Count the occurrences of sentence $(w_1, w_2, ..., w_{n-1})$ in the corpus

Maximum Likelihood Estimation (MLE):

$$P(w_n|w_1, w_2, ..., w_{n-1}) = \frac{count(w_1, w_2, ..., w_{n-1}, w_n)}{count(w_1, w_2, ..., w_{n-1})}$$

Computing the probability of upcoming words (II)

- Compute P(but | The old dog was very friendly)
- Could we just count and divide?

```
P(but|The old dog was friendly) = \frac{count(The old dog was friendly but)}{count(The old dog was friendly)}
```

• NO!

- Too many possible sentences!
- We'll never have enough data to estimate these

The Markov assumption (I)

Let's make a simplification assumption:

P(but | The old dog is friendly) ≈ P(but | friendly)

• Or

P(but | The old dog is friendly) ≈ P(but | is friendly)

 In other words, assume that the probability of an upcoming word depends only on the previous or a few previous words

The Markov assumption (II)

Andrey A. Markov 1856-1922

- The Markov assumption
 - When predicting the future, the past doesn't matter, only the present
- Extending to sentences
 - When predicting the next word in a sequence, the previous words don't matter, only the current word
- Expanding a little...
 - When predicting the next word in a sequence, not all the previous words matter, only a few of them

The Markov assumption (III)

- Markov assumption: Limited history
- There is a $k \ge 0$ such that for all upcoming words w_n $P(w_n \mid w_1, w_2, ..., w_{n-1}) \approx P(w_n \mid w_{n-k}, ..., w_{n-1})$
- kth order Markov assumption:
 - $k=0 \to P(w_n | w_1, w_2, ..., w_{n-1}) \approx P(w_n)$
 - $k=1 \rightarrow P(W_n | W_1, W_2, ..., W_{n-1}) \approx P(W_n | W_{n-1})$
 - $k=2 \rightarrow P(W_n | W_1, W_2, ..., W_{n-1}) \approx P(W_n | W_{n-2}, W_{n-1})$
 - $k=K \rightarrow P(W_n \mid W_1, W_2, ..., W_{n-1}) \approx P(W_n \mid W_{n-K}, ..., W_{n-2}, W_{n-1})$

The Markov assumption (IV)

- The order of the Markov assumption is defined by the length of its history
 - 0th order: No previous words used
 - 1st order: One previous word used
 - kth order: k previous words used
- 0th order: $P(w_1, ..., w_n) \approx P(w_1) \prod_{i=1}^{n-1} P(w_{i+1}) \approx P(w_1) P(w_2) ... P(w_n)$
- 1st order: $P(w_1, ..., w_n) \approx P(w_1) \prod_{i=1}^{n-1} P(w_{i+1}|w_i)$
- 2nd order: $P(w_1, ..., w_n) \approx P(w_1)P(w_2|w_1) \prod_{i=2}^{n-1} P(w_{i+1}|w_{i-1}, w_i)$

N-grams

- Given a sequence of N-1 words, an N-gram model predicts the most probable word that might follow this sequence
- Probabilistic model trained on a corpus of text
 - Large corpus needed!
- k^{th} order Markov assumption \rightarrow (k+1)-gram
 - 1-gram: Unigram
 - 2-gram: Bigram
 - 3-gram: Trigram
 - ...

N-grams: Unigrams

• Unigrams (1-grams)
$$\rightarrow P(w_n) = \frac{\text{count}(w_n)}{\text{Total words}} = \frac{\text{count}(w_n)}{\sum_{i=1}^{V} \text{count}(w_i)}$$

- Consider the following text
 - I saw a red table, a red car, and a red box. Then, I bought a red table.
 - Vocabulary of size V=10: {I, saw, a, red, table, car, and, box, Then, bought}
 - Total words: 18

- Examples:
 - P(table|a red) \approx P(table) = $\frac{\text{count(table)}}{\text{Total words}} = \frac{2}{18} \approx 0.111$
 - $P(\text{red}|a) \approx P(\text{red}) = \frac{\text{count}(\text{red})}{\text{Total words}} = \frac{4}{18} \approx 0.222$

Count
2
1
4
4
2
1
1
1
1
1

SUM=18

N-grams: Bigrams (I)

- Bigrams (2-grams) can be modelled as a table containing all bigrams and their count
- What about the start and end of a sentence?
 - We can insert artificial terms <s> and </s> respectively

$$P(w_n|w_{n-1}) = \frac{count(w_{n-1}, w_n)}{count(w_{n-1})}$$

- Consider the following text
 - <s> I saw a red table, a red car, and a red box </s> <s> Then, I bought a red table </s>
 - Vocabulary of size V=12: {<s>, I, saw, a, red, table, car, and, box, </s>, Then, bought}
 - Total words: 22
 - Examples:

•
$$P(red|a) = \frac{count(a red)}{count(a)} = \frac{4}{4} = 1$$

•
$$P(box|table) = \frac{count(table box)}{count(table)} = \frac{0}{2} = 0$$

•
$$P(I| < s >) = \frac{\text{count}(< s > I)}{\text{count}(< s >)} = \frac{1}{2} = 0.5$$

*	•
Du	rham ersity

ыgram	Count
<\$>	1
<s> red</s>	0
saw a	1
a red	4
red table	2
table box	0
	•••

Unigram	Count
<5>	2
I	2
saw	Ī
а	4
red	4
table	2
•••	•••

N-grams: Trigrams

- Trigrams (3-grams) can be modelled as a table containing all trigrams and their count
 - Bigrams table also needed!
- Consider the previous text
- Example:

• P(table|a red) =
$$\frac{\text{count}(\text{a red table})}{\text{count}(\text{a red})} = \frac{2}{4} = 0.5$$

•
$$P(\text{red}|\text{saw a}) = \frac{\text{count}(\text{saw a red})}{\text{count}(\text{saw a})} = \frac{1}{1} = 1$$

Trigram	Count
<s> table box</s>	0
red I car	0
saw a red	1
a red table	2
red table a	1
table a red	1

Bigram	Count
<s> </s>	1
<s> red</s>	0
saw a	1
a red	4
red table	2
table box	0
	•••

$$P(w_n|w_{n-2},w_{n-1}) = \frac{count(w_{n-2},w_{n-1},w_n)}{count(w_{n-2},w_{n-1})}$$

N-grams: Unknown words

- What about words that don't exist in the training corpus?
- Closed vocabulary systems don't suffer from this issue
 - Test sets can only contain words from the system's vocabulary
- Open vocabulary systems → Out of vocabulary (OOV) words (unknown words) exist in test sets
 - Modelled by pseudo-word <UNK>

Approach 1

- Select a predefined vocabulary
- Convert any word from the training corpus to <UNK> if not in vocabulary
- Treat <UNK> as a regular word

Approach 2

- Convert to <UNK> any word with a count less than C (C=small number)
- Treat <UNK> as a regular word

Approach 3

- Select a vocabulary size V'
- Choose the V' most frequent words and replace the rest with <UNK>
- Treat <UNK> as a regular word

N-grams: Zero counts (I)

Consider a bigram model trained on the following text:

<s> Yesterday I drove to the supermarket </s> <s> It was Tesco </s>

- Problem: P(I drove to Tesco)=0
 - P(I| <s>)=0, P(Tesco | to)=0
 - Bigrams (<s>,I) and (to,Tesco) don't exist in corpus
- Zero-count N-grams are called unseen events
- But the sentence "I drove to Tesco" is valid!
- How do we estimate its probability?

University

N-grams: Zero counts (II)

The sparsity problem

- As N increases, the number of N-grams is greater
 - Vocabulary size $V \rightarrow V^N$ N-grams
- The chance that all 2-grams exist in a training corpus is small
- Smaller probability for 3-grams, 4-grams,
- Is more data the answer?
 - Any given corpus has a few very frequent words but many infrequent ones
 - Having a reasonably sized corpus is important, but there will always be zero-count N-grams
 - Smoothing can be applied → Eliminate zero counts

N-grams: Smoothing

- **Smoothing** → Increasing the probability of infrequent events while slightly reducing the probability of frequent events
- Laplace smoothing → Increase all counts by 1

• Unigrams:
$$P(w_n) = \frac{\text{count}(w_n) + 1}{\sum_{i=1}^{V} [\text{count}(w_i) + 1]} = \frac{\text{count}(w_n) + 1}{V + \sum_{i=1}^{V} \text{count}(w_i)}$$
, Bigrams: $P(w_n | w_{n-1}) = \frac{\text{count}(w_{n-1}, w_n) + 1}{\text{count}(w_{n-1}) + V}$

- N-grams: $P(w_n|w_1,...,w_{n-1}) = \frac{\text{count}(w_1,...,w_n)+1}{\text{count}(w_1,...,w_n)+1}$
- Add- λ method \rightarrow Increase all counts by $0 < \lambda \le 1$ Unigrams: $P(w_n) = \frac{\operatorname{count}(w_n) + \lambda}{\sum_{i=1}^{V} [\operatorname{count}(w_i) + \lambda]} = \frac{\operatorname{count}(w_n) + \lambda}{\lambda V + \sum_{i=1}^{V} \operatorname{count}(w_i)}$
 - N-grams: $P(w_n|w_1,...,w_{n-1}) = \frac{\text{count}(w_1,...,w_n) + \lambda}{\text{count}(w_1,...,w_n) + \lambda V}$

University

 More sophisticated methods exist (e.g. Good-Turing, Kneser-Nay) Durham

N-grams: Interpretation

- Consider a corpus of 1,000,000 total words
 - The word cat occurs 400 times

•
$$P(cat) = \frac{400}{1000000} = 0.0004$$

University

- Consider a text of 1,000,000 total words
- What is the probability that a random word selected from the text is cat?
 - The maximum likelihood estimation (MLE) of its probability is 0.0004
 - Is 0.0004 the best possible estimate? → NO
 - Maybe in this text the word cat is very rare or very common
- This probability means that it is most likely that the word cat will occur 400 times in a 1,000,000 word corpus

N-grams: Advantages & Disadvantages

Advantages

- Simple, easy, cheap
- Availability over the internet
- Useful in many applications
- Well defined (and understood) math

Disadvantages

- Language: They don't capture non-local word dependencies
- **Sparsity:** The majority of counts is zero
- Assumptions: Markov assumption might be too strong
- Data hungry: Extremely huge corpora required for large N

N-grams: Word autocomplete (I)

Consider that the following sentence is typed:

Let's go eat Italian

- How can N-grams be used to suggest the next word w_{next}?
 - Unigrams: Suggest w_{next} with the highest P(w_{next})
 - Bigrams: Suggest w_{next} with the highest $P(w_{next} | Italian)$
 - Trigrams: Suggest w_{next} with the highest $P(w_{next} | eat Italian)$
 - 4-grams: Suggest w_{next} with the highest $P(w_{next} | go eat Italian)$
 - •

 Multiple suggestions can be made, ranked by the N-grams' probability

N-grams: Word autocomplete (II)

Consider the following N-grams:

Unigram	Count
food	60
beaches	30
eat	20
I	100
pasta	80
Italian	50

Bigram	Count
l eat	30
Italian food	80
Italian language	60
Italian beaches	150
go eat	60
eat Italian	100

Trigram	Count
eat Italian pasta	120
eat Italian food	150
eat Italian bread	90
sunny Italian beaches	100
go eat Italian	120
go out of	300

- Predict the next word: Let's go eat Italian _____
 - Unigrams: Let's go eat Italian \(\sumsymbol{L} \)
 - Bigrams: Let's go eat Italian beaches
 - Trigrams: Let's go eat Italian food

Predictions can differ

N-grams: Training corpora matter!

Word predictions using N-grams depend on the corpora used for training the N-gram models!

N-gram availability

Various N-gram collections are available online

- Example:
 - Google English N-grams dataset
 - Corpus size > 1 trillion tokens
 - Up to 5-grams
 - https://ai.googleblog.com/200 6/08/all-our-n-gram-arebelong-to-you.html

The latest news from Google AI

All Our N-gram are Belong to You

Thursday, August 3, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

```
File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens: 1,024,908,267,229

Number of sentences: 95,119,665,584

Number of unigrams: 13,588,391

Number of bigrams: 314,843,401

Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470,663
```


Google Books N-gram viewer

Check the probabilities of various N-grams in Google books:

https://books.google.com/ngrams/

Bag of Words with N-grams

This is a sentence

This This is a sentence N=1: Unigrams: sentence This is This is N=2: a sentence Bigrams: is a a sentence

Trigrams:

Consider N-grams as tokens

Convert to numerical vectors

N=3:

This is a is a sentence

Questions?

