לוגיקה הרצאה 10

2019 ביולי

תחשיב היחסים

 $au=\langle R\ldots,F\ldots,C\ldots \rangle$ מילון: $M=\left\langle D^M,R^M\ldots,F^M\ldots,C^M\ldots \right\rangle$ מבנה עבור מילון: $term(\tau)\ \tau$ שמות עצם מעל מילון ישמות עדם מעל מילון ישמות עדי

- ע"ע במילון הוא ש"ע במילון במילון סימן פבוע בסיס: c כל משתנה x_i הוא ש"ע כל משתנה
- היא $F(t_1,\dots,t_k)$ האם מתקיים שגם t_1,\dots,t_k ש"ע א"ע במילון, ולכל במילון במילון פונקציה המקומית ש"ע ש"ע
 - הפירוש של ש"ע ניתן ע"י השמה.

 π בהינתן מילון τ ומבנה M עבור בהינתן מילון $s:\underbrace{Var}_{\{x_i|i\in\mathbb{N}\}} \to D^M$ פנקצייה:

בהינתן השמה s עבור מבנה M במילון במילון s נגדיר בהינתן בהינתן בהינתן $\overline{S}: term(\tau) o D^M$

- $\overline{s}(t)=s(t)$: שהוא משתנה, נגדיר: שהוא $t=x_i$ בסיס: עבור עבור עבור כישר c_i כאשר כישר $\overline{s}(c_I)=c_i^M$
 - $t_1, \dots t_k$ ש"ע בור ש"ע את סגור: נניח שהגדרנו את פונקציה א מקומית במילון. ונניח שF הוא סימן פונקציה א מקומית במילון.

$$\overline{s}(F(t_1,\ldots,t_k)) = F^M(\overline{s}(t_1),\ldots,\overline{s}(t_k))$$

דוגמה:

$$\tau = \langle F, (,), C \rangle$$

$$M=<\mathbb{N}, imes,0>$$
 .1
$$S(x_i)=i$$
 השמה גדיר השמה דוגמאות לש"ע:

$$\overline{S}(x_0) = 0
\overline{S}(x_1) = 1
\overline{S}(c) = C^M = 0
\overline{S}(F(x_0, c)) = F^M(\overline{S}(x_0), \overline{S}(c)) = 0 \cdot 0 = 0
\overline{S}(F(x_8, x_{100})) = F^M(\overline{S}(x_8), \overline{S}(x_{100})) = 8 \cdot 100 = 800
\overline{S}(F(F(x_0, c), x_1))$$

$$M=< P(\mathbb{N}), \bigcup, \emptyset >$$
 .2 $s=(x_i)=\{i\}$ השמה נגדיר השמה

דוגמאות לש"ע

$$\begin{split} \overline{S}(x_0) &= \{0\} \\ \overline{S}(c) &= C^M = \emptyset \\ \overline{S}(F(X_0, c)) &= F^M(\overline{S}(x_0), \overline{S}(c)) = \{0\} \cup \emptyset = \{0\} \end{split}$$

נוסחאות:

הגדרה: קבוצת הנוסחאות מעל מילון au. מוגדרת בצורה אינדוקטיבית:

- . הוא נוסחא. $\boxed{t1\!pprox\!t_2}$ שר מתקיים שר t_1,t_2 מתקיים שר פסים: (נוסחאות אטומיות) לכל שני שמות עצם t_1,\ldots,t_k מתקיים שר לכל סימן יחס t_1,\ldots,t_k מתקיים שר במילון ולכל t_1,\ldots,t_k היא נוסחא.
 - ש: מתקיים ש: בהינתן נוסחאות a, β מתקיים ש: $(\alpha \to \beta), (\alpha \lor \beta), (\alpha \land \beta), (\neg \alpha)$
 - בהינתן x_i משתנה α מתקיים ש־: במתים: בהינתן נוסחא $(\exists x_i, \alpha)$ ור $(\forall \underbrace{x_i}, \alpha)$ for each possible value

דוגמאות:

$$\tau = \langle R, F_1, F_2, C \rangle$$
 שימן פונקציה חד מקומית.
$$F_1$$
 סימן פונקציה דו־מקומית.
$$F_2$$
 סימן פונקציה דו־מקומית.
$$R$$
 סימן יחס דו־מקומי.
$$R(x_0, F_2(F_1(c), x_0)) \ , R(c, F_1(x_3)) \ , F_1(x_0) \approx F_2(c, x_7) \ , x_0 \approx x_1 \ , c \approx c$$

$$((c \approx c) \land R(c, F_1(x_3)) \rightarrow (x_0 \approx x_1)$$

$$\forall x_0 (x_0 \approx c)$$

$$\forall x_1 (x_0 \approx c)$$

$$\exists x_0 (x_0 \approx c)$$

$$\exists x_8 ((\forall x_0 (c \approx F_1(x_0)) \land (c \approx x_8))$$

הגדרת ערכי אמת

 $.\tau$ מעל α נוסחא τ מספקים מילט s^{-} ו השמה א והשמה השמה M והשמה הינתן בהינתן בהינתן מעל א א והשמר א ערך אמת 1 ומסמנים ל-Mאמת אמת ל-מער מתנים ל-

$$.(M,S) \vDash \alpha , (M,s)(\alpha) = 1$$

 $:\!\tau$ מעל מעל הנוסחאות קבוצת באינדוקציה באינדוקציה

 $M \vDash lpha$ נגדיר $lpha = t_1 pprox t_2$ פסים: • $(D^M = \overline{s}(t_1)) = \overline{s}(t_2) = \overline{s}(t_2)$ אם"ם אם"ם

$$\overline{s'}(c)=1$$
 , $\overline{s}(x_0)=0$

חזרה להגדרה עדיין בבסיס:

ע"ע $t_1, \ldots t_k$ מימן יחס k־מקומי בית מאטר $lpha = R(t_1, \ldots, t_k)$

 $(\overline{s}(t_1),\ldots,\overline{s}(t_k))\in R^M$ אם"ם $M\vDash lpha$ נגדיר:

חזרה לדוגמא:

 $a(1,1)\in R^M$ כלומר $1\leq 1$ כלומר $\overline{s}(x_0)=\overline{s}(c)=1$ כי $M\vDash \alpha: \alpha=R(x_0,c)$

 $M \vDash \beta$ אם"ם או $M \vDash \alpha$ אם"ם אם $M \vDash \alpha \land \beta$... לפי טבלת האמת של $M \vDash \alpha \rightarrow \beta$

 $d \in d^M$ איבר x_i ומשתנה ומשתנה בהינתן בהינתן בהינתן

נגדיר השמה מתוקנת:

$$s'(x_j) = \begin{cases} s' = s[x_i \leftarrow d] \\ d & i = j \\ s(x_j) & i \neq j \end{cases}$$

עכשיו, בהינתן \hat{lpha} שעבורו הגדרנו האם M,s מספקים אותה,

ובהינתן משתנה x_i נגדיר:

$$M \vDash \alpha$$
 מתקיים $d \in D^m$ אם"ם לכל $M \vDash \forall x_i \alpha$

 $M \vDash lpha$ בך שמתקיים $d \in D^M$ אם"ם קיים $M \vDash \exists x_i lpha$

בחזרה להגדרה:

:סגור

נגדיר: מספקים אותן, אורנו עבורן שהגדרנו שהגדרנו מספקים אותן, נגדיר: בהינתן נוסחאות lpha,eta שהגדרנו

$$M
ot = \alpha$$
 אם"ם $M \models \neg \alpha$

$$M \vDash eta$$
 או $M \vDash lpha$ אם"ם $M \vDash lpha \lor eta$

 $M
ot = \alpha$ אם"ם $M
ot = \alpha$ אם"ם $M
ot = \alpha$ אם $M
ot = \alpha$ עכשיו בהיתן α שעבורה הגדרנו האם $M
ot = \alpha$ מספקים אותה, ובהינתן משתנה $M
ot = \alpha$ נגדיר:

$$M \models \pi lpha$$
 מתקיים $d \in D^M$ אם"ם לכל $M \models orall x_i lpha$

עכשיו בהיתן
$$lpha$$
 שעבורה הגורנו האם a , a מטפקים אותו, ובה M $\models \atop s[x_i\leftarrow d]} lpha$ מתקיים a אם"ם לכל a אם"ם לכל a אם"ם לכל a אם"ם a אם"ם קיים a ל a כך שמתקיים a אם a אם a אם a קיים a

דוגמאות:

$$\alpha' = \forall x_{\emptyset_1}(x_0 \approx c)$$

$$d \in D^M \Rightarrow M \vDash \alpha$$

$$M \vDash x_1 pprox c, d \in D^M$$
לככל אלכל אלכל א $M \vDash \alpha$

$$s' = s[x_{\emptyset_1} \xleftarrow{\ \ } d]$$

$$s'=s[x_{\emptyset_1} \stackrel{s}{\leftarrow} d]$$
 $M \nvDash_s orall x_0$ (בדוגמא $\overline{s}(x_0)=\overline{s}(c) \Leftrightarrow$

$$.\overline{s}(x_0) = \overline{s}(c)$$