

Figure 40.3: The graph of $f(x,y) = x^2 - 3y^3$. Note that (0,0) not a local extremum despite the fact that df(0,0) = 0.

Theorem 40.6. Let E be a normed vector space, let $J: \Omega \to \mathbb{R}$ be a function with Ω some open subset of E, and assume that J is differentiable in Ω and that dJ(u) = 0 at some point $u \in \Omega$. The following properties hold:

(1) If $D^2J(u)$ exists and if there is some number $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and

$$D^2 J(u)(w, w) \ge \alpha \|w\|^2$$
 for all $w \in E$,

then J has a strict local minimum at u.

(2) If $D^2J(v)$ exists for all $v \in \Omega$ and if there is a ball $B \subseteq \Omega$ centered at u such that

$$D^2 J(v)(w, w) \ge 0$$
 for all $v \in B$ and all $w \in E$,

then J has a local minimum at u.

Proof. (1) Using the formula of Taylor–Young, for every vector w small enough, we can write

$$J(u+w) - J(u) = \frac{1}{2} D^2 J(u)(w, w) + ||w||^2 \epsilon(w)$$
$$\geq \left(\frac{1}{2} \alpha + \epsilon(w)\right) ||w||^2$$

with $\lim_{w\to 0} \epsilon(w) = 0$. Consequently if we pick r > 0 small enough that $|\epsilon(w)| < \alpha/2$ for all w with ||w|| < r, then J(u+w) > J(u) for all $u+w \in B$, where B is the open ball of center u and radius r. This proves that J has a local strict minimum at u.