

Eletrônica Digital II

Aula J – Máquina de Estado com decisão

Prof. MSc. Bruno de Oliveira Monteiro

Para projetar uma máquina de estado com decisão, devemos:

Exemplo:

1° Passo:

Estado / (Qa)	Anterior	Variável (Y)	Estado (Qf)	Final
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1	1 0
1	0	-	0	0
1	1	-	1	0

2°Passo: Vamos montar a tabela de alimentação das entradas dos FF-JK, de acordo com a tabela do Qa e Qf dos estados:

Ça	Qf		K
O	0	0	*
O	1	1	*
1	O	*	1
1	1	*	O

Estado Anterio		Variável (Y)	Estad (Qf)	o Final	F	JK	FF-JK
Q1	00	Y	Q1	Q0	J1	K1	J0 K0
0	0	-	0	1	0	*	1 *
0	1	0 1	1	1 0	1 1	*	* 0 * 1
1	0	-	0	0	*	1	0 *
1	1	-	1	0	*	0	* 1

3°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterio	or (Qa)	Variável (Y)	Estad (Qf)	o Final		-JK	FF-JK
Q1	Q0	Y	Q1	Q0	J1	K1	J0 K0
0	0	-	0	1	0	*	1 *
0	1	0 1	1	1 0	1	*	* 0 * 1
1	0	-	0	0	*	1	0 *
1	1	-	1	0	*	0	* 1

4°Passo: Simular no Proteus

J1= Q0 K1= Q0'

J0= Q1' K0= Q1+Q0Q1'.Y

Estado Anterio (Qa)		Variável (Y)	Estado (Qf)	Final
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1 1	1 0
1	0	-	0	0
1	1	-	1	0

Exercício: Elabore o mesmo exercício:

a) Utilizando apenas FF-T;

Exercício a):

1° Passo:

Estado (Qa)	Anterior	Variável (Y)	Estado (Qf)	Final
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1	1 0
1	0	-	0	0
1	1	-	1	0

2°Passo: Vamos montar a tabela de alimentação das entradas dos FF-T, de acordo com a tabela do Qa e Qf dos estados;

Qa	Qf	T
0	O	0
O	1	1
1	O	1
1	1	O

Estado (Qa)	Anterior	Variável (Y)	Estado (Qf)	Final
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1	1 0
1	0	-	0	0
1	1	-	1	0

FF-T1	FF-T0
T1	T0
0	1
1 1	0 1
1	0
0	1

3°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterior (Qa)		Anterior	Variável (Y)	Estado (Qf)	Final
	Q1	Q0	Y	Q1	Q0
	0	0	-	0	1
	0	1	0 1	1	1 0
	1	0	-	0	0
	1	1	-	1	0

FF-T1			FF-T0
	T1		ТО
	0		1
	1 1		0 1
	1		0
	0		1

4°Passo: Montar o circuito no Proteus e Simular

Exercício: Elabore o mesmo exercício:

b) Utillizando apenas FF-D;

Exercício b):

1° Passo:

Estado Anterior (Qa)		Variável (Y)	Estado Final (Qf)	
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1	1 0
1	0	-	0	0
1	1	-	1	0

2°Passo: Vamos montar a tabela de alimentação das entradas dos FF-T, de acordo com a tabela do Qa e Qf dos estados;

Qa	Qf	D
O	O	O
O	1	1
1	O	O
1	1	1

Estado Anterior (Qa)		Variável (Y)	Estado Final (Qf)	
Q1	Q0	Y	Q1	Q0
0	0	-	0	1
0	1	0 1	1	1 0
1	0	-	0	0
1	1	-	1	0

FF-D1	FF-D0
D1	D0
0	1
1 1	1 0
0	0
1	0

3°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterior (Qa)		Anterior	Variável (Y)	Estado Final (Qf)	
	Q1	Q0	Y	Q1	Q0
	0	0	-	0	1
	0	1	0 1	1 1	1 0
	1	0	-	0	0
	1	1	-	1	0

FF-D1		FF-D0	
	D1	D0	
	0	1	
	1 1	1 0	
	0	0	
	1	0	

4°Passo: Montar o circuito no Proteus e simular

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro

