Az informatika logikai alapjai 7. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

(Aszalós László diasora alapján)

Tartalom

- Klasszikus elsőrendű nyelv
- Szintaxis, kis szemantikai kitérővel
- Szabad és kötött változók

1

Klasszikus elsőrendű nyelv - definíció

Klasszikus elsőrendű nyelven az $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ rendezett ötöst értjük, ahol

- LC = $\{\neg, \supset, \land, \lor, \equiv, =, \forall, \exists, (,)\}$ (a nyelv logikai konstansainak halmaza).
- Var = {x_n|n = 0, 1, 2, ...} a nyelv változóinak megszámlálhatóan végtelen halmaza.
- Con = $\widetilde{\mathbb{U}}(\mathcal{F}(n))$ $\mathbb{P}(n)$ a nyelv nemlogikai konstansainak legfeljebb megszámlálhatóan végtelen halmaza.
 - \circ $\mathcal{F}(0)$ a névparaméterek (névkonstansok),
 - \circ $oldsymbol{\mathcal{F}}$ (n) az n argumentumú (n = 1, 2, \ldots) függvényjelek (műveleti jelek),
 - **P**(0) az állításparaméterek (állításkonstansok),
 - • (n) az n argumentumú (n = 1, 2, . . .) predikátumparaméterek (predikátumkonstansok)
 halmaza.

Klasszikus elsőrendű nyelv - definíció

Klasszikus elsőrendű nyelven az L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉 rendezett ötöst értjük, ahol

- LC = $\{\neg, \supset, \land, \lor, \equiv, =, \lor, \exists, (,)\}$ (a nyelv logikai konstansainak halmaza).
- Var = {x_n|n = 0, 1, 2, ...} a nyelv változóinak megszámlálhatóan végtelen halmaza.
- Con = Ün=0 (F(n)UP(n)) a nyelv nemlogikai konstansainak legfeljebb megszámlálhatóan végtelen halmaza.
 - ∘ **F**(0) a névparaméterek (névkonstansok),
 - ∘ **F**(n) az n argumentumú (n = 1, 2, . . .) függvényjelek (műveleti jelek),
 - P(0) az állításparaméterek (állításkonstansok),
 - **P**(n) az n argumentumú (n = 1, 2, . . .) predikátumparaméterek (predikátumkonstansok) halmaza.

```
4lső-edű uglv, V.M. 2.0.2/e

F(0) = \{ Peter, en \}

F(1) = \{ e'desangia (-) \}
```

Pébrédesanja édesa ain mutationsa. édsanja (bébr) édsanja (én)

unretain ak (édesagie (Rébs)), édsagie (Én)

Megjegyzés – Con

A névparaméterek, függvényjelek, állításparaméterek, predikátumparaméterek csak elnevezések. Azt, hogy pontosan mely konkrét konstanst, függvényt, állítást és tulajdonságot/relációt jelölik, majd csak az interpretáció megadásakor derül ki.

Klasszikus elsőrendű nyelv - definíció folytatása

- Az LC, Var, 𝓕(n), 𝕊(n) halmazok (n = 0, 1, 2, . . .) páronként diszjunktak.
- A nyelv terminusainak a halmazát, azaz a Term halmazt az alábbi induktív definíció adja meg:
 - o VarU**F**(0)⊆Term
 - Ha f∈ F(n), (n=1, 2, ...), és t₁, t₂, ..., tn∈Term, akkor f(t₁,t₂, ..., tn)∈Term.
- A nyelv formuláinak a halmazát, azaz a Form halmazt az alábbi induktív definíció adja meg:
 - o **(P**(0)⊆Form
 - Ha t₁, t₂∈Term, akkor (t₁=t₂)∈Form
 - Ha P∈**咿**(n), (n=1, 2, . . .), és t₁, t₂, ..., tո∈Term, akkor P(t₁,t₂, ..., tո)∈Form.
 - Ha A∈Form, akkor ¬A∈Form.
 - Ha A, B∈Form, akkor (A⊃B), (A∧B), (A∨B), (A≡B)∈Form.
 - Ha x∈Var, A∈Form, akkor ∀xA, ∃xA∈Form.

Elsőnedű yelv, V.M. 2.D.2/e

F(0) = { Péter, én }

F(1) = { édesanyja (-) }

P(0) = { lovasir }

P(1) = { pins (-) }

P(2) = { muratorsar (-, -) }

Péter édesanja édesa ám muratorsa.

édsanja (kék) édsanja (én)

unretain ak (édsayje (Réles)), édsayje (én)

Terminesor: « « never "

- né vrous ten sor

- vévbő' luet répré pisgréger

Klasszikus elsőrendű nyelv - definíció folytatása

- Az LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ halmazok (n = 0, 1, 2, . . .) páronként diszjunktak.
- A nyelv terminusainak a halmazát, azaz a Term halmazt az alábbi induktív
 - definíció adja meg: ○ Var∪**牙**(0)⊆Term
 - ∘ Ha f∈ \mathbf{F} (n), (n=1, 2, ...), és t₁, t₂, ..., t_n∈Term, akkor f(t₁,t₂, ..., t_n)∈Term.
- A nyelv formuláinak a halmazát, azaz a Form halmazt az alábbi induktív definíció adja meg:
 - ∘ **P**(0)⊆Form
 - Ha t₁, t₂∈Term, akkor (t₁=t₂)∈Form
 - Ha P∈ \mathbf{P} (n), (n=1, 2, ...), és t_1 , t_2 , ..., t_n ∈Term, akkor P(t_1 , t_2 , ..., t_n)∈Form.
 - Ha AEForm, akkor ¬AEForm.

 Ha A REFERENCE AND (AND) (AND) (APP) (APP) (APP)
 - Ha A, B∈Form, akkor (A⊃B), (A∧B), (A∨B), (A≡B)∈Form.
 - Ha x∈Var, A∈Form, akkor ∀xA, ∃xA∈Form.

Elsőnedű yelv, V.M. 2.D.2/e

F(0) = { Péter, én }

F(1) = { édesanyjes (-) }

P(0) = { lavacit }

P(1) = { pines (-) }

P(2) = { muntaséisat (-,-) }

Péter édesanja édesa ám mutateisa.

édsanja (ké ks) édsanja (én)

unretain ak (édesagie (Réles)), édsagie (én)

Termines : « « vevet "

-né vrous ten sor

- vé vhé l' veret ré pré présgréger

Klasszikus elsőrendű nyelv - definíció folytatása

- Az LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ halmazok (n = 0, 1, 2, . . .) páronként diszjunktak.
- A nyelv terminusainak a halmazát, azaz a Term halmazt az alábbi induktív definíció adja meg:
 ○ VarU\$\mathbb{F}(0)\subseteq Term
- Ha f∈ 𝓕(n), (n=1, 2, ...), és t₁, t₂, ..., tո∈Term, akkor f(t₁,t₂, ..., tո)∈Term
 A nyelv formuláinak a halmazát, azaz a Form halmazt az alábbi induktív definíció adja meg:
 - ∘ **P**(0)⊆Form
 - Ha t₁, t₂∈Term, akkor (t₁=t₂)∈Form
 - Ha P∈ \mathbf{P} (n), (n=1, 2, ...), és $t_1, t_2, ..., t_n$ ∈Term, akkor P($t_1, t_2, ..., t_n$)∈Form.
 - Ha A∈Form, akkor ¬A∈Form.
 - Ha A, B∈Form, akkor (A⊃B), (A∧B), (A∨B), (A≡B)∈Form.
 - Ha x∈Var, A∈Form, akkor ∀xA, ∃xA∈Form.

Elsőredű uglv, V.M. 2. D. 2/e Klasszikus elsőrendű nyelv - definíció folytatása F(0) = { Peter, en } F(1) = { é'desangia (-) } • Az LC, Var, **F**(n), **P**(n) halmazok (n = 0, 1, 2, . . .) páronként diszjunktak. A nyelv terminusainak a halmazát, azaz a Term halmazt az alábbi induktív P(0) = 5 lierarity definíció adja meg: VarU**F**(0)⊆Term P(1) = { pins (-) } Ha f∈F(n), (n=1, 2, ...), és t₁, t₂, ..., tₙ∈Term, akkor f(t₁,t₂, ..., tₙ)∈Term. P(z) = 5 mm rationar (-, -) 9 A nyelv formuláinak a halmazát, azaz a Form halmazt az alábbi induktív definíció adja meg: ∘ **(P**(0)⊆Form Pe'er é desarja é desa ain mitateirsa. Ha t₁, t₂∈Term, akkor (t₁=t₂)∈Form \circ Ha PE $\boldsymbol{\theta}$ (n) (n=1, 2, ...) és t₁, t₂, t_nETerm, akkor P(t₁, t₂,, t_n)EForm. édsanja (bé b) édsanja (én) Ha A∈Form, akkor ¬A∈Form. Ha A, BeForm, akkor (A \supset B), (A \land B), (A \lor B), (A \ni B)eForm. unrefars ak (édsage (Rébs)), édsage (én) Ha x∈Var, A∈Form, akkor ∀xA, ∃xA∈Form. Formlår & " a'lli'fæ'a' " - an expense seguint specialis meditaitum - a eddizitet lori ai össer byplerbel - a'lli Les Youslans & Combina Cheljing, és - availain argumentum psedicatur-felde, metstille serministes here les tille - er eddizionete wantailhatjive: · Hax willard (x & Var) of A famla, arler 4x A $-3 \times A$ is famila

•

Megjegyzés

A terminusok/termek elneveznek egy objektumot, így például számok esetén term lesz a 0, x, x+2, vagy a sin(x).

A formulák pedig állítanak valamit ezekről a termekről: P(x), f(x,g(x))=0 vagy x+2≥y.

Természetesen, az hogy melyek ezek a megnevezett objektumok, illetve hogy igazak az előbbi állítások, csak az interpretáció ismeretében eldönthető. Amíg nem tudjuk, hogy mit jelöl a P (páros, vagy esetleg prím), és nem tudjuk, hogy mennyi az x, nem lehet megmondani, hogy érvényes erre a x-re a P tulajdonság, vagy sem.

Szemantikai kitérő - Előzetes, részletesen később

Az elsőrendű logika szemantikája az alábbi komponensekből épül fel:

```
Interpretăció Értékelés Elsőrendű szemantikai szabályok Alaptételek

Definíció

Az \langle U, \varrho \rangle párt az L^{(1)} = \langle LC, Var, Con, Term, Form \rangle elsőrendű nyelv egy interpretációjának nevezzük, ha 1. U \neq \emptyset, azaz U neműres halmaz;

2. Dom(\varrho) = Con, azaz a \varrho a Con halmazon értelmezett függvény, amelyre teljesülnek a következők:

a. Ha a \in \mathcal{F}(0), akkor \varrho(a) \in U;

b. Ha f \in \mathcal{F}(n) (n \neq 0), akkor \varrho(f) az U^{(n)} halmazon értelmezett az U halmazba képező függvény (\varrho(f):U^{(n)} \to U);

c. Ha p \in \mathcal{P}(0), akkor \varrho(p) \in \{0, 1\};
```

d. Ha
$$P \in \mathcal{P}(n)$$
 $(n \neq 0)$, akkor $\varrho(P) \subseteq U^{(n)}$ -- az univerzum objektum n-esei, melyekre P teljesül $|P(\alpha_1 | \alpha_2 | \dots | \alpha_n)|_{\mathcal{S}} = 1$, $|P(\alpha_1 | \alpha_2 | \dots | \alpha_n)|_{\mathcal{S}} = 1$, $|P(\alpha_1 | \alpha_2 | \dots | \alpha_n)|_{\mathcal{S}} = 1$

Szemantikai kitérő - Előzetes, részletesen később

Az elsőrendű logika szemantikája az alábbi komponer $|\forall x P(x)|_8 = 1$, ha 3 reint P oz uni nersun össe elenere Illjöil ("mider") (J× P(x) | g=1, le 3 nomit P an un'uerun legalable eersi'r elluere telgsiil (4 leterit") Interpretació Ertékelés Elsőrendű szemanti

Definició

Az (U.e) párt az L(1) = (LC.Var.Con.Term.Form) elsőrendű nyelv egy interpretációjának nevezzük, ha

- U ≠ Ø , azaz U nemūres halmaz;
- Dom(ρ) = Con, azaz a ρ a Con halmazon értelmezett függvény, amelyre teljesülnek a következők:
 - a. Ha $a \in \mathcal{F}(0)$, akkor $\varrho(a) \in U$:
 - b. Ha $f \in \mathcal{F}(n)$ $(n \neq 0)$, akkor $\varrho(f)$ az $U^{(n)}$ halmazon értelmezett az U halmazba képező függvény $(\varrho(f):U^{(n)} \to U)$;
 - c. Ha p ∈ P(0), akkor q(p) ∈ {0, 1};
 - d. Ha $P \in \mathcal{P}(n)$ $(n \neq 0)$, akkor $\varrho(P) \subseteq U^{(n)}$ -- az univerzum objektum n-esei, melyekre P teljesül

$$|P(a_1,a_2,...a_n)|_{g} = 1$$
, $|a_1,a_2,...a_n| \in g(P)$

Definició

Az (U, ϱ) párt az $L^{(1)} = (LC, Var, Con, Term, Form)$ elsőrendű nyelv egy interpretációjának nevezzük, ha U ≠ Ø , azaz U nemūres halmaz;

Dom(ρ) = Con, azaz a ρ a Con halmazon értelmezett függvény, amelyre teljesülnek a következők:

a. Ha $a \in \mathcal{F}(0)$, akkor $\varrho(a) \in U$;

b. Ha $f \in \mathcal{F}(n)$ $(n \neq 0)$, akkor $\varrho(f)$ az $U^{(n)}$ halmazon értelmezett az U halmazba képező függvény $(\varrho(f):U^{(n)} \to U)$;

c. Ha $p \in \mathcal{P}(0)$, akkor $\varrho(p) \in \{0,1\}$;

d. Ha $P \in \mathcal{P}(n)$ $(n \neq 0)$, akkor $\varrho(P) \subseteq U^{(n)}$ -- az univerzum objektum n-esei, melyekre P teljesül -regyen o argumentama predica 3 (Péter)= 3 (én)= 3 (pli-véni)=

11 = a varos levoil

F(0) = 5 pelar, en poli-usui, Meniulin y 7(1) = & idesaupa(-) 4

P(1)= 9 taul (-), dolgosi'(-) 4 f(2)= { nume torsa (-1-) }

Definició

Az (U.e) párt az L(1) = (LC, Var, Con, Term, Form) elsőrendű nyelv egy interpretációjának nevezzük, ha

- U ≠ Ø , azaz U nemūres halmaz;
- Dom(ρ) = Con, azaz a ρ a Con halmazon értelmezett függvény, amelyre teljesülnek a következők:
 - a. Ha $a \in \mathcal{F}(0)$, akkor $\varrho(a) \in U$; b. Ha $f \in \mathcal{F}(n)$ $(n \neq 0)$, akkor $\varrho(f)$ az $U^{(n)}$ halmazon értelmezett az U halmazba képező függvény $(\varrho(f):U^{(n)} \to U)$;
 - c. Ha $p \in \mathcal{P}(0)$, akkor $\varrho(p) \in \{0,1\}$;
- d. Ha $P \in \mathcal{P}(n)$ $(n \neq 0)$, akkor $\varrho(P) \subseteq U^{(n)}$ -- az univerzum objektum n-esei, melyekre P teljesül 3(Péter)= 3(én)= 3(pli-véin)=
- U= a varos laro (F(0) = 5 pelar, en (juli- usui, Heriuliui } S(Man-ien) = 7(1) = & desauja (-) 4
- 3 (édosajou) = f, alrel f (1) = P(1)= 9 taul (-), dolgosi (-) 4 £ (60) = B(2)= { nume tarsa (-1-) }

3 (faul) = { ()

 $|\forall x \text{ funl } (x)|_{g} = 0$ $|\exists x \text{ funl } (x)|_{Q} = 1$

Definició

Az (U, ϱ) párt az $L^{(1)} = (LC, Var, Con, Term, Form)$ elsőrendű nyelv egy interpretációjának nevezzük, ha

U ≠ Ø , azaz U nemūres halmaz;

Dom(ρ) = Con, azaz a ρ a Con halmazon értelmezett függvény, amelyre teljesülnek a következők:

a. Ha $a \in \mathcal{F}(0)$, akkor $\varrho(a) \in U$;

b. Ha $f \in \mathcal{F}(n)$ $(n \neq 0)$, akkor $\varrho(f)$ az $U^{(n)}$ halmazon értelmezett az U halmazba képező függvény $(\varrho(f):U^{(n)} \to U)$;

c. Ha $p \in \mathcal{P}(0)$, akkor $\varrho(p) \in \{0,1\}$;

d. Ha $P \in \mathcal{P}(n)$ $(n \neq 0)$, akkor $\varrho(P) \subseteq U^{(n)}$ -- az univerzum objektum n-esei, melyekre P teljesül 3(Péter)= 3(in)= 3(pli-uéin)=

U= a varos laro (

F(0) = & pelar, en (poli- usui, Meniul'ui }

A(1) = & idesauja(-) 4 P(1)= 9 taul (-), dolgosi (-) 4

B(2)= { nume torsa (-1-) }

Jx (taunh (x) n dolgsnih (x))
7 mugratairsa (Pekr, lin)

Tartalom

- Klasszikus elsőrendű nyelv
- Szintaxis, kis szemantikai kitérővel, folytatás
- Szabad és kötött változók

1

Elsőrendű atomi formula

Definíció. Ha $L^{(1)}$ egy elsőrendű nyelv (azaz $L^{(1)}$ = $\langle LC, Var, Con, Term, Form \rangle$), akkor az elsőrendű atomi formulák halmazát (jelölés: AtForm) az alábbi induktív definíció adja meg:

- **P**(0)⊆AtForm
- Ha t₁, t₂∈Term, akkor (t₁=t₂)∈AtForm
- Ha $P \in \mathbf{P}(n)$, (n = 1, 2, ...), és $t_1, t_2, ..., t_n \in Term$, akkor $P(t_1, t_2, ..., t_n) \in AtForm$.

Megjegyzés. Az elsőrendű jelzőt, ha félreértést nem okoz, akkor gyakran elhagyjuk, s csak atomi formulákról vagy prímformulákról beszélünk.

AtForm halmaz elemeit elsőrendű atomi formuláknak vagy elsőrendű prímformuláknak nevezzük.

$$P(1) = \{ ps(-), pj(-) \}$$
 $P(2) = \{ > (-, -) \}$

Elsőrendű atomi formula

Definíció. Ha L⁽¹⁾ egy elsőrendű nyelv (azaz L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉), akkor az elsőrendű atomi formulák halmazát (jelölés: AtForm) az alábbi induktív definíció adja meg:

- **(P**(0)⊆AtForm
- Ha t₁, t₂∈Term, akkor (t₁=t₂)∈AtForm
- Ha $P \in \mathbf{P}(n)$, (n = 1, 2, ...), és $t_1, t_2, ..., t_n \in Term$, akkor $P(t_1, t_2, ..., t_n) \in AtForm$.

Megjegyzés. Az elsőrendű jelzőt, ha félreértést nem okoz, akkor gyakran elhagyjuk, s csak atomi formulákról vagy prímformulákról beszélünk.

AtForm halmaz elemeit elsőrendű atomi formuláknak vagy elsőrendű prímformuláknak nevezzük.

```
F(0) = { Peter, en }
F(1) = { é'desangs (-) 4
P(0) = 5 lievarit 9
P(1) = { pins (-) }
P(2) = 5 min (atorsat (-1-) 9
```

Elsőredű uglv, V.M. 2. D. 2/e

Peler é desayja é desa ain motataina. édsanja (bé b) édsanja (én)

unretain ak (édesagie (Réles)), édsag à (én)

Elsőrendű atomi formula

Definíció. Ha L⁽¹⁾ egy elsőrendű nyelv (azaz L⁽¹⁾= \langle LC, Var, Con, Term, Form\rangle), akkor az elsőrendű atomi formulák halmazát (jelölés: AtForm) az alábbi induktív definíció adja meg:

- **P**(0)⊆AtForm
- Ha t₁, t₂∈Term, akkor (t₁=t₂)∈AtForm
- Ha $P \in \mathbf{P}(n)$, (n = 1, 2, ...), és $t_1, t_2, ..., t_n \in Term$, akkor $P(t_1, t_2, ..., t_n) \in AtForm$.

elhagyjuk, s csak atomi formulákról vagy prímformulákról beszélünk.

Megjegyzés. Az elsőrendű jelzőt, ha félreértést nem okoz, akkor gyakran

AtForm halmaz elemeit elsőrendű atomi formuláknak vagy elsőrendű prímformuláknak nevezzük.

Közvetlen részformula definíciója elsőrendű nyelvben

Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy tetszőleges elsőrendű nyelv.

- Ha A elsőrendű atomi formula, akkor nincs közvetlen részformulája;
- ¬A egyetlen közvetlen részfomulája A;
- Az (A⊃B), (A∧B), (A∨B), (A≡B) formulák közvetlen részformulái az A és a B formulák.
- ∀xA egyetlen közvetlen részformulája A;
- ∃xA egyetlen közvetlen részformulája A.

10) 28mula, 40 mella sorganda 1, (P(x) 1 P(y)) b) Q(f(x), g(y|x), y) c) 4x = y = 2 Q(x|y|2) d, (7x Q(x|y|x) > 7(P(g(x|y)) 1 +2 P(2)))

```
Közvetlen részformula definíciója elsőrendű nyelvben
```

Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy tetszőleges elsőrendű nyelv.

- Ha A elsőrendű atomi formula, akkor nincs közvetlen részformulája;
- ¬A egyetlen közvetlen részfomulája A;
- Az (A⊃B), (A∧B), (A∨B), (A≡B) formulák közvetlen részformulái az A és a B formulák.
- ∀xA egyetlen közvetlen részformulája A;
 ∃xA egyetlen közvetlen részformulája A.

Mi lehet az elsőrendű nyelv, ahol ezek formulák?

1

Részformula definíciója – közvetlen részformula segítségével

Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy tetszőleges elsőrendű nyelv, A∈Form pedig a nyelv tetszőleges formulája. Egy A formula részformuláinak halmaza az a legszűkebb halmaz [jelölés: RF(A)], amelyre teljesül, hogy

- A∈RF(A), (azaz az A formula részformulája önmagának);
- ha B∈RF(A) és C közvetlen részformulája B-nek, akkor C∈RF(A) (azaz, ha egy B formula részformulája A-nak, akkor B összes közvetlen részformulája is részformulája A-nak).

1

Részformula definíciója – közvetlen részformula nélkül

Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy tetszőleges elsőrendű nyelv, A∈Form pedig a nyelv tetszőleges formulája. Az A formula részformuláinak halmaza az a legszűkebb halmaz [jelölés: RF(A)], amelyre teljesül, hogy

- A∈RF(A), azaz az A formula részformulája önmagának;
- ha ¬B∈RF(A), akkor B∈RF(A);
- ha (B⊃C)∈RF(A), akkor B, C∈RF(A);
- ha (B∧C)∈RF(A), akkor B, C∈RF(A);
- ha (B∨C)∈RF(A), akkor B, C∈RF(A);
- ha (B≡C)∈RF(A), akkor B, C∈RF(A);
- ha ∀xB∈RF(A), akkor B∈RF(A);
- ha ∃xB∈RF(A), akkor B∈RF(A).

```
Røjsfamila, të ruella vorfamla
(x1417) SEFFEXT
1) (7x Q(x,y,x) > 7 (P(g(x,y)) 1 42 P(2)))
```

Részformula definíciója – elsőrendű nyelvben Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉egy tetszőleges elsőrendű nyelv,

A∈Form pedig a nyelv tetszőleges formulája. Az A formula részformuláinak halmaza az a legszűkebb halmaz [jelölés: RF(A)], amelyre teljesül, hogy

- A∈RF(A), azaz az A formula részformulája önmagának;
 ha ¬B∈RF(A), akkor B∈RF(A);
 - ha (B⊃C)∈RF(A), akkor B, C∈RF(A);
 - ha (B∧C)∈RF(A), akkor B, C∈RF(A);
 - ha (BvC)∈RF(A), akkor B, C∈RF(A);
 - ha (B≡C)∈RF(A), akkor B, C∈RF(A);
 - ha ∀xB∈RF(A), akkor B∈RF(A);
 - ha ∃xB∈RF(A), akkor B∈RF(A).

Zárójel-elhagyási konvenciók

Az elsőrendű logikában alkalmazott zárójel-elhagyási konvenciók a nulladrendű logikában alkalmazott zárójel-elhagyási konvenciók kibővítése a következő szabályokkal:

- a kvantorok erősebbek bármely állításlogikai műveletnél,
- az univerzális és az egzisztenciális kvantor egyenrangú (azaz erősségben egyik sem előzi meg a másikat).

•

Szerkezeti fa (egyszerűbben szoktuk rajzolni)

Legyen L⁽¹⁾= ⟨LC, Var, Con, Term, Form⟩ egy tetszőleges elsőrendű nyelv, A∈Form pedig a nyelv tetszőleges formulája. Az A formula szerkezeti fáján egy olyan véges rendezett fát értünk,

- amelynek csúcsai formulák,
- gyökere az A formula,
- ¬B alakú csúcsának egyetlen gyermeke a B formula,
- (B⊃C), (B∧C), (B∨C), (B≡C) alakú csúcsainak két gyermekét a B, illetve a C formulák alkotják,
- ∀xB alakú csúcsának egyetlen gyermeke a B formula,
- ∃xB alakú csúcsának egyetlen gyermeke a B formula,
- levelei prímformulák (atomi formulák).

Yx (n3x P(fox)) V Qury) (73xP(fin)~Q(xij)) 73xP((xx)) H) +) 9xE P(4(x))

Tartalom

- Klasszikus elsőrendű nyelv
- Szintaxis, kis szemantikai kitérővel
- Szabad és kötött változók

Szabad változók halmaza

Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉egy elsőrendű nyelv, és A∈Form egy formula. Az **A formula szabad változóinak** FreeVar(A)-val jelölt halmazát az alábbi induktív definíció adja meg:

- Ha A atomi formula (azaz A ∈ AtForm), akkor a FreeVar(A) halmaz elemei az
 A formulában előforduló változók.
- Ha az A formula ¬B alakú, akkor FreeVar(A)=FreeVar(B).
- Ha az A formula (B⊃C), (B∧C), (B∨C) vagy (B≡C) alakú, akkor
 FreeVar(A)=FreeVar(B)UFreeVar(C).
- Ha az A formula ∀xB vagy ∃xB alakú, akkor FreeVar(A)=FreeVar(B)\{x}.

```
Røjsfamila, Görnella virjanla
V.M. 1.P.7 a, b) c/d
() (P(x) 1 P(y))
b) Q(f(x), g(x1x), 7)
6) Hx Jy 72 Q(x1412)
A) (7x Q(x,y,x) > 7 (P(g(x,y)) 1 42 P(2)))
Stated voi blorde

1 A ruente de prioritaisa ? (lató 6 2)
```

disa lugged a puti peldi that?

Szabad változók halmaza

Ozabau vallozok Halillaza

formula. Az A formula szabad változóinak FreeVar(A)-val jelölt halmazát az alábbi induktív definíció adja meg:

■ Ha A atomi formula (azaz A ∈ AtForm), akkor a FreeVar(A) halmaz elemei az

Legyen L⁽¹⁾= ⟨LC, Var, Con, Term, Form⟩ egy elsőrendű nyelv, és A∈Form egy

- A formulában előforduló változók. ■ Ha az A formula ¬B alakú, akkor FreeVar(A)=FreeVar(B).
- Ha az A formula ¬B alakú, akkor FreeVar(A)=FreeVar(B).
- Ha az A formula (B⊃C), (B∧C), (B∨C) vagy (B≡C) alakú, akkor FreeVar(A)=FreeVar(B)UFreeVar(C).
 - Ha az A formula ∀xB vagy ∃xB alakú, akkor FreeVar(A)=FreeVar(B)\{x}.

•

Kötött változók halmaza

Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉egy elsőrendű nyelv, és A∈Form egy formula. Az **A formula kötött változóinak** BoundVar(A)-val jelölt halmazát az alábbi induktív definíció adja meg:

- Ha A atomi formula (azaz A ∈ AtForm), akkor a BoundVar(A)=Ø.
- ◆ Ha az A formula ¬B alakú, akkor BoundVar(A)=BoundVar(B).
- Ha az A formula (B⊃C), (B∧C), (B∨C) vagy (B≡C) alakú, akkor BoundVar(A)=BoundVar(B)UBoundVar(C).
- Ha az A formula ∀xB vagy ∃xB S alakú, akkor BoundVar(A)=BoundVar(B)U{x}.

Røjsfamila, Görhella virfamla V.M. 1.P.7 a,b)c/d () (P(x) 1 P(y)) b) Q(f(x), g(x1x), 7) 6 Hx J y Fz Q(x1412) A) (7x Q(x,y,x) > 7 (P(g(x,y)) 1 42 P(2))) Sraled voiltore ?

1 A rueste or prioritoisa ? (leaté rize) disa lugged a put pelda vial? Ké té H válterér · Uggara a valtare lebet maled es P(X) A ZX R(X)

Kötött változók halmaza

Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉egy elsőrendű nyelv, és A∈Form egy formula. Az A formula kötött változóinak BoundVar(A)-val jelölt halmazát az alábbi induktív definíció adia meg:

- Ha A atomi formula (azaz A ∈ AtForm), akkor a BoundVar(A)=∅.
- Ha az A formula ¬B alakú, akkor BoundVar(A)=BoundVar(B).
 Ha az A formula (B⊃C), (B∧C), (B∨C) vagy (B≡C) alakú, akkor
 - BoundVar(A)=BoundVar(B)UBoundVar(C).

 Ha az A formula ∀xB vagy ∃xB S alakú, akkor

BoundVar(A)=BoundVar(B)U{x}.

Változó előfordulások

Definíció. Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy elsőrendű nyelv, A∈Form egy formula és x∈Var egy változó.

Az x változó valamely A-beli előfordulását szabadnak nevezzük, ha a tekintett előfordulás nem esik az A formula valamely ∀xB vagy ∃xB alakú részformulájába.

Az x változó valamely A-beli előfordulását kötöttnek nevezzük, ha a tekintett előfordulás nem szabad előfordulás.

New a feliat en isolder, wan can valle rated uan cotoH, braven a Grahed előferdulás nas ColoH előfadule · Nèvride mag an 1.8.7/d-t an eleve lapon Røjelamila, Görnella ogfanla V.M. 1.P.7 a, b, c, d (p(x)1P(y)) b) Q(f(x), g(x)x), y) 6) Hx J y Fz Q(x1y12) A, (7x Q(x,y,x)) > 7 (P(g(x,y)) 1 +2 P(2)))

Változó előfordulások

Definíció. Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉 egy elsőrendű nyelv, A∈Form egy formula és x∈Var egy változó.

Az x változó valamely A-beli <mark>előfordulását szabadnak</mark> nevezzük, ha a tekintett előfordulás nem esik az A formula valamely ∀xB vagy ∃xB alakú részformulájába.

Az x változó valamely A-beli előfordulását kötöttnek nevezzük, ha a tekintett előfordulás nem szabad előfordulás.

1

Nyílt és zárt formula

Definíció. Legyen L⁽¹⁾= ⟨ LC, Var, Con, Term, Form⟩ egy elsőrendű nyelv, és A∈Form egy formula. Ha FreeVar(A)≠Ø, akkor az A formulát nyílt formulának nevezzük. Ha az A formula nem nyílt, akkor zárt formulának nevezzük.

Megjegyzés.

- A nyílt formulákat nyitott formuláknak is szokták nevezni.
- Ha A nyílt formula, akkor legalább egy változó legalább egy helyen szabadon fordul elő benne.
- Ha A zárt formula, akkor FreeVar(A)=Ø.
- Ha A zárt formula, akkor egyetlen változó sem fordul elő benne szabadon, minden változó minden előfordulása kötött.

New or fellet an interer, war can called ralied uan coto H, breven a Grahed előferdulán nag Glőtt előfadule · Nèvride mas an 1.8.7/d-t an elora lapon high rant James · A ele re poldar tound welfir wilger? Rojefamila, Görbella orfamla V.M. 1.P.7 a,b,c,d (p(x)1P(y)) b) Q(f(x), g(x)x), y) 6 Hy 3 4 72 Q(V1412)

A) (7x Q(x,y,x) > 7 (P(g(x,y)) 1 42 P(2)))

Nyílt és zárt formula

Definíció. Legyen L⁽¹⁾= 〈 LC, Var, Con, Term, Form〉 egy elsőrendű nyelv, és A∈Form egy formula. Ha FreeVar(A)≠Ø, akkor az A formulát nyílt formulának nevezzük. Ha az A formula nem nyílt, akkor zárt formulának nevezzük.

Megjegyzés.

- A nyílt formulákat nyitott formuláknak is szokták nevezni.
 Ha A nyílt formula, akkor legalább egy változó legalább egy helyen szabadon
- fordul elő benne.
- Ha A zárt formula, akkor FreeVar(A)=Ø.
- Ha A zárt formula, akkor egyetlen változó sem fordul elő benne szabadon, minden változó minden előfordulása kötött.

• Egy atomi formulában minden változó-előfordulás szabad.

3.P.2. Szabály. Egy változó-előfordulás kötöttségének meghatározása:

- Az A △ B formulában egy változó-előfordulás kötött, ha ez az előfordulás vagy A-ban van és már A-ban kötött, vagy B-ben van és már B-ben kötött.
 - lás már A-ban kötött.

 A QxA formulában x minden előfordulása kötött. Ha x egy előfordulása A-ban még szabad volt, akkor ezt az előfordulást a QxA

formulában a Q kvantor köti. Egy az x-től különböző változó vala-

A ¬A formulában egy változó-előfordulás kötött, ha ez az előfordu-

mely előfordulása QxA-ban kötött, ha már A-ban is kötött volt.

3.P.3. Megjegyzés. Egy változót a formula paraméterének nevezünk, ha van a formulában szabad előfordulása. Egy A formula paramétereinek a halmazára Par(A)-val hivatkozunk.

Tartalom

- Klasszikus elsőrendű nyelv
- Szintaxis, kis szemantikai kitérővel
- Szabad és kötött változók

Xxxx Ide kéne beírni a xénás példát a félév elejéről