Bios 660: Probability and Statistical Inference 1

Homework 2

Due: Tue. September 4, 2018 at the Beginning of Class

Special Note: when turning in homework, please **staple** the answers into **3 groups**: (a) Questions 1-4; (b) Questions 5-8; (c) Questions 9-11.

- 1. Let $\Omega = \mathbb{R}^2$ and A_n be the interior of the circle with center at $((-1)^n/n, 0)$ and radius 1. Find $\liminf_n A_n$ and $\limsup_n A_n$.
- 2. Let $\Omega = \mathbb{R}$ and show that $\mathcal{F} = \{A : A \text{ is countable or } A^c \text{ is countable } \}$ is a σ -field.
- 3. Prove that if \mathcal{X}_1 and \mathcal{X}_2 are σ -fields, then $\mathcal{X}_1 \cap \mathcal{X}_2$ is also a σ -field.
- 4. Show that if G is a collection of σ -fields, then $\bigcap_{\mathcal{X} \in G} \mathcal{X}$ is also a σ -field.
- 5. $\mathcal{X}_1 = \{\phi, A, A^c, \Omega\}$ and $\mathcal{X}_2 = \{\phi, B, B^c, \Omega\}$ are σ -fields, but $\mathcal{X}_1 \cup \mathcal{X}_2$ is not. Why?
- 6. Let $\{A_n\}$ be a sequence of decreasing sets. Prove that $P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} P(A_n)$.
- 7. Show that $P(E \cup F \cup G) = P(E) + P(F) + P(G) P(E \cap F) P(E \cap G) P(F \cap G) + P(E \cap F \cap G)$
- 8. Casella & Berger, 1.12
- 9. If P(E) = 0.9 and P(F) = 0.8, show that $P(E \cap F) \ge 0.7$. Then prove that in general, $P(E \cap F) \ge P(E) + P(F) 1$
- 10. Suppose E_1, E_2, \ldots, E_n are events in Ω . Use induction to prove

$$P(E_1 \cap E_2 \cap \dots \cap E_n) \ge P(E_1) + \dots + P(E_n) - (n-1)$$

This result is called Bonferroni's Inequality.

- 11. Among the digits 1, 2, 3, 4, and 5 first one digit is chosen, then a second selection is made among the remaining four digits. Assume that all twenty possible results have the same probability. Find the probability that an odd digit will be selected at:
 - (a) the first selection
 - (b) the second selection
 - (c) both times