METHOD OF KNEADING POLYDIORGANOSILOXANE GUM AND ETHYLENE VINYLLACETAL COPOLYMER

Publication number: JP55103913

(corresponding to J156-12018)

Publication date:

1980-08-08

Inventor:

DONARUDO MAIKURU BAATOSU

Applicant:

DOW CORNING

Classification:

- international:

C08L23/08; C08L83/04; H01B3/44; H01B3/46:

C08L23/00; C08L83/00; H01B3/44; H01B3/46; (IPC1-

7): B29B1/04

- european:

C08L23/08; C08L83/04; H01B3/44G; H01B3/46

Application number: JP19800005890 19800123 Priority number(s): US19790007870 19790131 Also published as:

US4252915 (A1) GB2041957 (A)

FR2447950 (A1)

DE2949000 (A1)

BE881431 (A)

Report a data error here

Abstract not available for JP55103913

Abstract of corresponding document: US4252915

A processable, stable, homogeneous blend is obtained by mechanically mixing a polydiorganosiloxane gum containing 0.2 to less than 1.5 mol percent silicon atoms having vinyl or allyl groups with an ethylene vinylacetate copolymer containing 8 to 35 weight percent copolymerized vinylacetate. The polymers are mixed at a shear rate greater than 10 sec-1, at a temperature between 170 DEG C. and 235 DEG C. and for a period of time sufficient to obtain at least 10 weight percent of the total blend of material which is insoluble in refluxing xylene.

Data supplied from the esp@cenet database - Worldwide

(9日本国特許庁(JP)

① 特許出願公告

繰 許 翻 (B2)

昭56—1201

(5) Int.Cl.3

識別記号

庁内整理番号

24公告 昭和56年(1981) 1月12日

1/04 B 29 B 1/10 B 29 H

7112-4F 7179 - 4F

発明の数 1

(全7頁)

Øポリジオルガノシロキサンガムとエチレン酢酸 ピニルコポリマーとの混練方法

②特

昭55-5890

22)出

願 昭55(1980)1月23日

公

開 昭55-103913

鐵昭55(1980) 8月8日

優先権主張 301979年1月31日30米国(US) **3)7870**

79発明者 ドナルド・マイクル・パートス アメリカ合衆国ミシガン州ミツド ランド・アダムス・ドライブ 308

创出 願 人 ダウ・コーニング・コーポレーシ

アメリカ合衆国ミシガン州ミツド 15 ランド(番地なし)

個代 理 人 弁理士 浅村皓

外4名

の特許請求の範囲

キサンガムと100重量部のエチレン酢酸ビニル コポリマーとを、170℃乃至235℃の温度に 於て、10秒一」より大きい剪断速度に於て、か つ還流キシレン中で不容である物質が混練物合計 の少くとも10重量%となるのに十分な時間の間、25 を示している。ポストピッチらは米国特許第 機械的に混合し、その後、加工可能な安定均質混 練物を回収することから成る、ポリジオルガノシ ロキサンガムとエチレン酢酸ピニルコポリマーを 混練する方法であつて;エチレン酢酸ピニルコポ リマーは8乃至35重量%の共重合した酢酸ビニ 30合機で104下に於て4分間、ガム質弾性固体ま ルを含有し、そしてポリジオルガノシロキサンガ ムが 0.0 2 0インチより大きいウイリアムス可塑 **度をもつトルエン可溶ゴムであり、珪素原子1個** あたりの有機基の比が約2であつてその際それら 有機基がメチル基、フエニル基、ビニル基、及び 35 ニルポリシロキサン及びピス(アラールキル)パ アリル基から選ばれ、0.2モル%から1.5モル% 以下までの珪素原子はビニル基またはアリル基を

もち、かつ有機基の50%より多くないものがフ エニル基である、上記混練方法。

2

発明の詳細な説明

本発明はエチレン酢酸ビニルコポリマーとポリ 5 ジオルガノシロキサンガムとを混練する方法並び に生成される熱可塑混練物に関するものである。 ポリジオルガノシロキサンとポリエチレンとを 混練して性質の新しい組合せを達成することによ つて多くの有用な材料が得られている。ポリマー 10 は一般的には相溶性がないので、安定で有用な混 練物を得ることがしばしば困難である。従つて、 プロツク共重合あるいはグラフト共重合のような 技法がポリマー類を一つの有用状態に一緒に保持 するのに必要である。

サツフォードは米国特許第2888419号に 於て、そしてプレコピオらは米国特許第 2888424号に於て、ポリエチレン、充填剤、 及びガム質弾性固体の高粘性塊であるオルガノボ リシロキサンは、135℃までの温度で均密に混 1 10万至175重量部のポリジオルガノシロ 20 練でき安定で改善された老化特性をもつ押出性が より良好な組成物を提供することを示している。 彼らは、充填剤がこれら二つのポリマーに対する 混練助剤として働き、結果として、充填剤なしで は得ることが困難である均質生成物を生ずること 2930083号に於て、ゲル化または交差結合

したポリエチレンの改善された加工性は、ゲル化 したポリエチレンと髙粘性塊であるオルガノポリ シロキサンとを混合してミルまたはバンパリー混 で混合することによつて得ることができることを 示している。

サツフォードは米国特許第3227777号に 於て、エチレンープロピレンコポリマーをアルケ ーオキサイドと一緒に加硫することを示している。 サツフォードはエチレンとプロピレンのコポリマ

ーをアルケニルポリシロキサン及びパーオキサイ ドと混練し、その後、生成混合物を100℃乃至 175℃で加硫している。良好な熱抵抗性、電気 的性質はエチレン-プロピレンコポリマーの硬化 状態に基因する。

スキーンズらは米国特許第3798185号に 於て、昇温された熔融温度に於て相溶性がありか つ少くとも 0.5 × 1 0 ⁻¹⁰ cc · cm/cn砂cm Hg で 一定の酸素透過性をもつある種の熱可塑性プラス させることを示している。この均一熔融物を混練 物として押出し、改良されたガス透過性をもつ膜 が生成する。スキーンズらはさらに、有用な熱可 塑性プラスチツクスはエチレン酢酸ビニルコポリ 1のようなポリーアルフアーオレフインが好まし いことを示している。スキーンズらはまた、使用 されるポリジオルガノシロキサン液は全く粘度の 高いものであつてもいが周辺温度に於て低粘度を もつシロキサンが好ましいことを示している。

英国特許第1294986号では、25℃で 100センチストークスより大きくない粘度をも つシリコーン液体をエチレンまたはエチレン酢酸 ピニルのようなエチレンコポリマーの中に混合し いる。このようなポリマーヘシリコーンガムを添 加することは混合特性に対して悪影響があること が示されている。

フアレンダーらは米国特許第3865897号 与える、ある種のポリオレフインと高粘度シリコ ーンガムとの混合方法を示している。彼らは、ポ リエチレンまたは10重量%までの酢酸ビニルを 含むエチレン酢酸ピニルとピニル基またはアリル 基をもつ 1.5 乃至17モル%のシロキサン単位を 35 エニル基、ビニル基及びアリル基から選ばれ、 含むポリジオルガノシロキサンガムとを剪断と温 度のある条件の下で機械的に混合するときに、一 つのグラフトコポリマーが形成され、これが改良 された混練物を提供することを示している。ファ びアリル基を含なポリジオルガノシロキサンガム を用いると、劣つた生成物、たとえば加工処理後 でも分離する傾向のある貧弱な混練物が生ずるこ とも示している。ファレンダーらが示す混練物は

多くの利点と有用な性質を保有しているが、ポリ ジオルガノシロキサンガム中に高ピニル含有が必 要とされるために、これら混練物の商業的利用は あまりすすんでいない。シロキサンのアルキルビ 5 ニルシロキサン単位はジアルキルシロキサンより 入手がより困難でありかつより高価である。この ことはフアレンダーらの混練物の商業的使用を比 較的少ない領域へ制限している。

ビニルまたはアリルの含量の少ないポリジオル チックスの中にポリジオルガノシロキサンを混入 10 ガノシロキサンガムとエチレン酢酸ビニルコポリ マーとの改良混合物を得る方法を提供することが 本発明の目的の一つである。本発明のもう一つの 目的はビニルまたはアリルの含量の少ないポリジ オルガノ シロキサンガムとエチレン酢酸ピニルコ マーを含むがしかしポリー4ーメチルペンテンー 15 ポリマーとを機械的に混合してグラフトコポリマ ーを含む改良混練物を得る方法を提供することで ある。これらの目的及びその他の目的は本発明の 詳細記述から明らかになるであろう。

本発明はポリジオルガノシロキサンガムとエチ 20 レン酢酸ピニルコポリマーとを混練する方法に関 するものであり、その方法は10乃至175重量 部のポリジオルガノシロキサンと100重量部の エチレン酢酸ピニルコポリマーとを170℃乃至 235℃の温度に於て10秒一」より大きい剪断 て混合物のイオン化抵抗を改善することを示して 25 速度でかつキシレン選流中で不容である物質が混 練物全体の少くとも10重量%となるのに十分な時 間の間、機械的に混合し、そしてその後、加工処 理ができ安定である均質混練物を回収することか ら成り:このエチレン酢酸ピニルコポリマーは8 に於て、この悪い混合特性を克服し改良混合物を 30 乃至 3 5 重量%の共重合された酢酸ビニルを含み、 ポリジオルガノシロキサンガムは 0.0 2 0インチ より大きいウイリアムス可塑度をもつトルエン可 溶のガムであり、珪素原子1個あたりの有機基の 比が約2.0であつてその際有機基はメチル基、フ 0.2 モル%から 1.5 モル℃以下までの珪素原子が ビニル基またはアリル基をもちかつ有機基の50 %より多くないものがフエニル基である。

本発明はまたこの方法から得られる組成物に関 レンダーらはさらに、前述の限度外のビニル基及 40 するものであり、これらの組成物は熱可塑性プラ スチックスを加工するのに慣用的に用いられる方 法によつて加工処理が可能であり、電線及びケー ブルの絶縁に対して有用ならしめる電気的性質を もち、そして、他の熱可塑性プラスチツクスと相

5

溶性があり従つてその熱可塑性プラスチツクスの 性質を変成するための添加剤として使用すること ができる。

本発明での使用に適するエチレン酢酸ピニルコ 性であつて従つて成型物、押出物、引抜物、など のような材料加工に於て有用である。適切なエチ レン酢酸ピニルコポリマーはコポリマーの全重量 を基準として約8乃至35重量%の共重合された 単位を含むエチレン酢酸ピニルコポリマーはピニ ルまたはアリルの含有量が少ないポリジオルガノ シロキサンと劣悪な混練物を提供する。このよう な混練物は抗張力がより低く粘着性で組織がチー ズ質であつて加工を困難とする。一般的に、操作 15 ガンガムを用いることが好ましい。 を容易にするために、15乃至30重量%の酢酸 ビニル単位を含むエチレン酢酸ビニルコポリマー が好ましい。

本発明に適するポリジオルガノシロキサンガム はゥイリアムス可塑度が 0.0 2 0インチより大き 20 プラスチツクスへの添加剤として使用すべきとき いトルエン可溶ゴムである。これらのガムは本質 的にはジオルガノシロキサン単位から成り、従つ て珪素原子1個あたりの有機基の比が約2.0であ る。他のシロキサン単位が少量で存在してもよく、 例えば端末封鎖用に使用するトリオルガノシロキ 25 ノシロキサンガムとの安定混練物はある特定条件 サン単位;ポリジオルガノシロキサンガム中に時 時見出されるがしかしそのガムが不溶とならない よう十分に少ない量で存在する、少量のモノオル ガノシロキサン単位及びSiO2単位;である。こ ニル基、及びアリル基から選ばれ、これらはジメ チルシロキサン単位、メチルフエニルシロキサン 単位、ジフエニルシロキサン単位、メチルピニル ンロキサン単位、メチルアリルシロキサン単位、 オルガノシロキサン単位として存在する。存在す る他のシロキサン単位はジオルガノシロキサン単 位と同じ有機単位を含む。ポリジオルガノシロキ サン分子はトリオルガノ シロキサン単位またはヒ ドロキシル基で以て端末封鎖されることが好まし 40 安定混練物を生成するのに適した温度領域は いが、しかし、これら高分子量分子上の端末基の 数は全ガム組成物について顕著な量を示すもので ないので、他の端末封鎖基もそれらの効果が顕著 でないという理由で、本発明の領域から外れるこ

6

となく存在し得る。

本発明にとつて適当なポリジオルガノシロキサ ンガムはビニルまたはアリルの含量が低く、珪素 原子の0.2モル%から1.5モル%以下までがビニ ポリマーは周辺温度に於て固体でありかつ熱可塑 5 ル基またはアリル基好ましくはビニル基を有する。 上述限度以下のビニルまたはアリルの含有をもつ ゴムからつくつた混練物は劣悪で、貧弱な強度を 保有し、粘着性で加工困難である傾向がある。混 練物は上述の限度以上の含有量のビニルまたはア 酢酸ビニル単位を含む。上記限度外の酢酸ビニル 10 リルをもつガムからつくつてよいが、このような 混練物は高ピニル含量ガムまたは高アリル含量ガ ムの入手性が制約されているので経済的でない。 経済的には珪素原子の0.2乃至1.0モル%がビニ ル基またはアリル基をもつポリジオルガノシロキ

> 本発明の方法に於ては、10乃至170重量部 のポリジオルガノシロキサンガムを100重量部 のエチレン酢酸ピニルコポリマーと混合する。本 発明の方法によつてつくる混練物を他の熱 可塑性 には、100乃至160重量部のポリシオルガノ シロキサンガムを100重量部のエチレン酢酸ビ ニルコポリマーと混合することが好ましい。

上記で定義したポリオレフインとポリジオルガ 下でそれらを機械的に混合することによつてつく ることができる。安定混練物とは、混練物が均質 であり、周辺温度に於てそれぞれの層へ分離する ことがなく、そして一方の物質が他方を物質から れらのガムの有機基はメチル基、フエニル基、ビ 30 しみ出ることがなく、そして混練物がしみ出しあ るいは分離を伴なうことなく合理的温度範囲にわ たつて使用できる、という意味である。

これらの安定混練物をつくることができる条件 は機械的混合が10秒一 より大きい剪断速度を 及びフエニルピニルシロキサン単位、のようなジ 35 もつような条件である。この剪断速度はポリオレ フインとポリジオルガノシロキサンガムの混合中 におこる剪断作用が存在するということ以外は、 臨界的でない。

> 混合を実施する温度は臨界的であり、本発明の 1700乃至2350である。定義したポリオレ フインとポリジオルガノシロキサンガムとの臨界 的領域以下の温度に於ける機械的混合は安定混練 物を与えずグラフト化は明らかにおこらない。臨

界領域より上の温度に於ける機械的混合は、変色 と物理的性質の激しい悪化とによつて観察される ポリオレフインの著しい劣化をひきおこす。

ポリ ジオルガノシロキサンガムとエチレン酢酸 ピニルコポリマーの機械的混合が剪断下でかつ適 5 当な温度に於て続けられるときには、混合中の粘 度はもとの粘度をこえて上昇し最大粘度を通過す る。この最大粘度は混合をとめる好ましい点であ るが、しかし、還流キシレン中で不溶である物質 が全混練物の少くとも10重量%となるのに少く 10 塑性プラスチックスへ添加することができる。 とも十分な時間の間混練を続けた混練物は、適切 で安定な有用混練物である。この最大粘度上昇を 得るのに必要な時間あるいは還流キシレン中で不 溶である物質が全混練物の少くとも10重量%で あるのに必要な時間は、混合装置の各々の種類、 15 ラフトコポリマーであると信じられる不溶性物質 混合器の各々の寸法、各々の混合器の幾何的構造、 及び特定領域内の温度、とともに変動する。多く の種類の混合装置についてその時間は約2乃至 15分で変動する。装置とエチレン酢酸ビニルコ ポリマーとポリジオルガノシロキサンガムの特定 20 在がビニルまたはアリルの含量の低いポリジオル 組合せについて、少くとも一回の実験がなされる べきで、その中で混合中の粘度変化は最適混合時 間を決めるために観察される。

任意の適当な粘度測定及び測定方法を使用する ことができる。粘度測定方法のあるものは一つの 25 と考えるべきではない。同様に、以下の実施例は 混合器については他の混合器よりもより適切であ るので、最良の粘度測定技法が特定の装置設計に 対して用いられるべきである。その唯一の要請事 項は、粘度が混合条件で測定されること、すなわ ある。

また、最適の混合時間は、各種の時間の間混合 された物質について、遺流キシレン中で不溶であ る混練物質全体の重量%を測定することによつて 測定されてよい。最適なのは不溶性物質が最大% 35 シロキサン単位、0.5 7 モル%のメチルビニルシ となる時間である。

本発明に対して適当な混合器の具体的な型はそ れらが剪断作用を提供するかぎり臨界的ではない。 従つて、ミル、パンパリーミキサー、プラベンダ ープラスチーコーダー $^{f Q}$ 、混練押出器、などを使 40 てつくつた。使用したエチレン酢酸ビニルコポリ 用できる。

この方法の混練物は安定で均質な混練物であつ て、乾燥状で非粘着性のペレットへ容易に成形さ れ、このペレツトは慣用的加工技術によつて容易

に処理できる。これらの混合物は電線及びケープ ル用の適当な絶縁物であるよう良好な電気的性質 をもつている。これらの混合物はガス透過性が要 求される医療用途のような応用に使用できる。ガ ス透過性は組成の変動によつて変り得る。本発明 の混練物は混練されていないポリジオルガノシロ キサンより他の熱可塑性プラスチツクスと相溶性 があり、その電気的性質、可撓性、ガス透過性、 あるいはその他の性質を変成するために他の熱可

本発明の混練物は有機パーオキサイド、紫外線 照射、ガンマ線照射あるいは硫黄によるような慣 用的手段によつて交差結合できる。

本発明の混練物は機械的混合中に形成されるグ を含有する。これらのグラフトコポリマーは本混 練物の改善された安定性と均質性を提供すると考 えられる。より特定的には、エチレン酢酸ビニル コポリマー中の酢酸ビニル単位の上述の水準の存 ガノシロキサンガムとグラフトコポリマーを形成 するのを助けるものと思われる。この理論は本発 明を当業熟練者が理解するのを助けるために提示 されているものであるが、本発明を制約するもの 説明の目的のみで提示されているもので、本発明 を制約するものと考えるべきではない。

実施例 1

本実施例は各種の量の共重合酢酸ビニルを含む ち、剪断下でかつ温度下に於て測定されることで 30 いくつかのエチレン酢酸ビニルコポリマーからつ くつた混練物を比較するものである。

> 混練物は、珪素原子1個あたり0.68モル%の ピニル基をもち、約0.06インチのウイリアムス 可塑度をもち、かつ、9932モル%のジメチル ロキサン単位及び 0.11 モル%の ジメチルピニル シロキサン単位を含むトルエン可溶ポリジオルガ ノシロキサンガムの26.48を、エチレン酢酸ビ ニルコポリマーの17.68と混合することによつ マーは(1)4重量%の共重合酢酸ビニルを含みダウ ケミカル社から販売されているダウポリエチレン 樹脂130、(2)9重量%の共重合酢酸ピニルを含 みかつUSIケミカルズから販売されているウル

トラセン®UE635、(3)18重量%の共重合酢 ※つくつた。混練物の性質をとれらの試験用シート 酸ビニルを含みかつUSIケミカルズから販売さ れているウルトラセンRUE633、(4)28重量 %の共重合酢酸ピニルを含みかつUSIケミカル ズから販売されているウルトラセン®UE634、5 した。終局の抗張力と伸びをASTM-D-並びに、(5)45重量%の共重合酢酸ビニルを含み かつUSIケミカルズから販売されているEY-903、であつた。これらの混練物は190℃に 於て、プラベンダープラスチーコーダー®中で 63回転/分のローラーブレード型ヘッドを用い 10性を保有していると判断される。粘着性で組織が て混合することによつてつくつた。各混練物は混 合トルクの最大値によつて示される。最大粘度増 加が得られるまで混合される。

試験用シートを¼インチの厚さのシートに

10

について測定し、第1表に示している。ウイリア ムス可塑度を 4.28の試料について室温で3分間、 ASTM-D-926-67の方法によつて測定 638の方法に従つて測定した。ショアーA硬度 はASTM2240の方法に従つて測定した。混 練物はそれが乾燥状でありかつ非粘着性ペレツト の形態で得ることができたときには、良好な加工 チーズ状である混練物は貧弱な加工性をもつもの と考えられた。還流キシレン中で不裕である物質 の混練物全体の重量%であるゲル含有量は還流キ シレン中で20時間混練物を抽出することによつ

170℃で10分間プレス成型することによつて※15て測定した。

表

エチレン酢 酸ピニル	共重合した 酢酸ピニル (重量%)	混合時間 (分)	終局抗張力 (Pa×10 ⁻⁶)	終局伸び率 (%)	硬 度	加工性	ゲル含量 (%) ———
1 *	4	9	0.17	1 0	1 0	不 良	6. 2
2	9	1 3	2. 2 1	9 0	6 3	良	3 9
3	1 8	1 2	1.5 0	9 0	4 5	良	2 9
4	2 8	6	2.7 2	5 5 0	4 2	良	3 9
5 *	4 5	8	0.83	9 0	1 6	不 良	

* 比較目的のために提示。

実施例 2

本実施例は各種の量のビニル基をもついくつか のポリジオルガノシロキサンガムからつくつた混 練物を比較する。

ビニル28%)と約0.06インチのウイリアムス 可塑度をもつトルエン可溶ポリ ジオルガノシロキ サンガムとを用いて実施例1と同様に調製した。 ゴム(1)は実施例 1 で用いたのと同じであつた。ゴ ム(2)は珪素原子1個あたり0.25 モル%のビニル 40

基を含み、99.75モル%のジメチルシロキサン 単位、0.1 4モル%のメチルピニルシロキサン単 位、及び0.11モル%のジメチルビニルシロキサ ン単位から構成されていた。ゴム(3)は珪素原子1 これらの混練物はウレセン \Re UE 6 3 4 (酢酸 35 個あたり 0.1 2モル%のビニル基を含み、99.88モル%のジメチルシロキサン単位及び 0.12モル %のシメチルピニルシロキサン単位から構成され ていた。プレスシートを調製し実施例1と同様に 試験した。結果を第2表に示す。

11

12

第 2 袠

ポリジオルガ ノシロキサン ガム	ビニル基 (モル%)	混合時間 (分)	終局抗張力 (Pa×1 0 ⁻⁶)	終局伸び率 (%)	硬 度	加工性	ゲル含有量 (%)
1	0. 6 8	6	2.7 2	5 5 0	4 2	良	3 9
2	0. 2 5	1 2	1.97	475	4 5	良	1 7
3 *	0.12	1 1	0.17	5 0	1 1	不 良	0

比較目的のために提示

実施例 3

恐UE 6 3 3 (酢酸ピニル1 8%)と248のシリ

三つの混練物を調製し実施例2と同様に調製し コーンガムを用いた。結果は第3表に示す。 試験をしたが、ただし16分のウルトラセン® 母15

第 3 表

ポリジオルガ ノシロキサン ガム	ピニル基 (モル%)	終局抗張力 (Pa×10 ⁻⁶)	終局仲び率 (%)	加工性
1	0. 6 8	4.74	4 3 0	良
2	0. 2 5	1.5 7	160	良
3 *	0.12	1.40	1 0	

比較目的のために提示。

実施例 4

三つの混練物を実施例3と同様に調製及び試験 30 本実施例は最適時間以上で混合することによる をしたが、ただし208のポリジオルガノシロキ サンと208のエチレン酢酸ビニルコポリマーを 混合した。混練物を加工性について検査し、第4 表に結果を示す。

第 表

ポリジオルガノシロキサンガム	ピニル基 モル%	加工性
. 1	0.68	良
2	0. 2 5	良
3 *	0.12	不 良

比較の目的で提示。

実施例 5

適当な混練物の調製を解説するものである。

実施例1に記載したウルトラセン®UE634 (酢酸ピニル28%)とポリジオルガノシロキサ ンガムを用いて混練物を調製した。混練物を実施 35 例1と同様に調製したが、ただし、混練物はこの 成分と条件との組合せに対して実施例1で示す最 適の6分間の代りに1分間だけ混合した。得られ た混練物は良好な加工性と13.6%のゲル含量を もつていた。

40 実施例 6

本実施例は混練押出器での混練物の連続的調製 法を示している。

混練物は36ポンド/時の実施例1に記載のシ ロキサンゴム(1)と24ポンド/時のウルトラセ

13

ン®UE 6 3 3をセンチネルE-7 0 ツインスク リユー押出器へ供給することによつて調製した。 との押出器の第一帯域は177乃至179℃に維 持し、第二帯域は207℃に、第三帯域は204 持した。混練物はペレットして得られ、これは冷

却すると乾燥状で非粘着性である。試験用シート を

・インチの厚さのシートに175℃で5分間プ レス成型することによつてつくつた。混練物の性 質を実施例1と同様に測定し、終局抗張力は でに、そしてダイ温度は207乃至210℃に維 5 0.83×10⁶ Pa、終局伸び率は160%、硬度 は30、ゲル含量は20%であつた。

14