Lecture 15

Comment: Draw two colored cubes on n=3 bits, one for D_0 and one for D_1 . Do the first step below using the examples.

1. Measure the second register (i.e., last n qubits), suppose outcome is f(z) for some $z \in \{0,1\}^n$.

If $f \in D_0$, then the state of the first register collapses to $|z\rangle$.

If $f \in D_1$ and the period of f is s, then the state of the first register collapses to

$$\frac{1}{\sqrt{2}}\left(|z\rangle + |z \oplus s\rangle\right). \tag{82}$$

2. Apply $H^{\otimes n}$ to the first register and measure all n qubits.

If $f \in D_1$:

$$\frac{1}{\sqrt{2^{n+1}}} \sum_{y \in \{0,1\}^n} \left((-1)^{z \cdot y} + (-1)^{(z \oplus s) \cdot y} \right) |y\rangle = \frac{1}{\sqrt{2^{n-1}}} \sum_{\substack{y \in \{0,1\}^n \\ y \in s \to 0}} (-1)^{z \cdot y} |y\rangle, \tag{83}$$

the output y is uniformly random subject to $y \cdot s = 0$ (dot product mod 2).

If $f \in D_0$:

$$\frac{1}{\sqrt{2^n}}(-1)^{y\cdot z}|y\rangle\tag{84}$$

the output y is uniformly random without constraints.

3. Repeat these steps K = O(n) (the precise setting of K depends on the desired success probability, see later) times and collect the ys into the rows of a $K \times n$ matrix $A \in \{0,1\}_2^{K \times n}$. Output D_0 if A has rank n and D_1 if A has rank less than n, where the rank is defined over \mathbb{F}_2 . (Note that the rank of A is at most n.)

Comment: rank of a zero-one matrix A over \mathbb{F}_2 is the dimension of the span of the rows of A over \mathbb{F}_2 , which may be different from the rank of A over \mathbb{R} : for example, the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ has rank 2 over \mathbb{F}_2 but rank 3 over \mathbb{R} . But almost

all other standard facts in linear algebra still hold over \mathbb{F}_2 , for example, row-rank=column-rank, the rank-nullity theorem, full-rank implies invertible, etc.

Query complexity is K = O(n) since each repeat uses only 1 query.

For correctness, first note that if $f \in D_1$ then A must have rank less than n since the rows of A are all orthogonal to s. Alternatively, note that As = 0 and $s \neq 0$ so n(A) > 0, so the rank-nullity theorem, i.e., $\operatorname{rk}(A) + n(A) = n$, implies $\operatorname{rk}(A) < n$. Therefore, it suffices to lower bound the probability that the rank of A is equal to n as a function of K, which is done by the following lemma.

Lemma 2. Let $K \in \mathbb{N}$. Suppose $y_1, \ldots, y_K \leftarrow \mathbb{F}_2^n$. Then

$$\Pr[\text{rk}(A) = n] \ge 1 - 2^{n-K}.$$
 (85)

Based on [StackExchange post].

Proof. Since the y_i s are chosen uniformly from \mathbb{F}_2^n , A is a uniformly random matrix in $\mathbb{F}_2^{K \times n}$. In the following, the probability is over $A \leftarrow \mathbb{F}_2^{K \times n}$.

$$\Pr[\ker(A) \neq \{0\}] = \Pr[\exists x \in \mathbb{F}_2^n \setminus \{0\}, Ax = 0] \qquad \text{definition}$$

$$\leq \sum_{x \in \mathbb{F}_2^n \setminus \{0\}} \Pr[Ax = 0] \qquad \text{union bound}$$

$$= (2^n - 1) \frac{1}{2^K} \qquad x \neq 0 \implies Ax \text{ is uniformly random in } \mathbb{F}_2^K$$

$$\leq \frac{2^n}{2^K}.$$

Therefore, $\Pr[\operatorname{rk}(A) = n] = \Pr[\ker(A) = \{0\}] \ge 1 - 2^{n-K}$, where the first equality follows from the rank-nullity theorem. \square

Comment: proof of implication: assume wlog that $x_1 = 1$ so Ax is the first column of A plus another length-K vector: it does not matter what the other vector is, the sum will be uniformly random in \mathbb{F}_2^K .

Therefore, by choosing K = n + 100, say, the probability that the rank of A is equal to n is at least $1 - 2^{n-K} \ge 1 - 2^{-100}$, which is very close to 1.