Лабораторна робота № 1

Побудова оцінок та довірчих інтервалів

Нехай ω_1 та ω_2 – це незалежні рівномірно розподілені на [0,1] випадкові величини (в.в.). Пара незалежних в.в. (ξ_1,ξ_2) , які мають стандартний нормальний розподіл (тобто N(0,1)), генерується за допомогою перетворення:

$$\xi_1 = \sqrt{-2\ln\omega_1}\sin(2\pi\omega_2), \qquad \xi_2 = \sqrt{-2\ln\omega_1}\cos(2\pi\omega_2)$$

(в.в. N(0,1) можна генерувати і за допомогою вбудованого в комп'ютер генератора). Позначимо $a = \mathbf{M} \, \boldsymbol{\xi}_i = 0, \ \sigma^2 = \mathbf{D} \, \boldsymbol{\xi}_i = 1$.

Нехай спостерігається вибірка $\overline{X}=(X_1,\ldots,X_n)$, де $X_i\sim N(0,1)$.

Завдання 1. Побудувати довірчий інтервал для:

- а) математичного сподівання a у припущенні, що спостерігаються в.в. X_i , які мають нормальний розподіл, але дисперсія σ^2 невідома;
- b) математичного сподівання a у припущенні, що спостерігаються в.в. X_i , розподіл яких невідомий.
- σ^2 $\{X_i\}$ c) дисперсії у припущенні, що спостерігаються в.в. , які мають нормальний розподіл.

Всі довірчі інтервали будуються із достовірністю $^{1-}$ y=0.99 для n $^{=100}$, n $^{=100000}$ та n $^{=1000000}$. В усіх цих випадках дослідити, чи потрапляють математичне сподівання та дисперсія у побудовані довірчі інтервали, а також оцінити, як змінюється довжина довірчого інтервалу при збільшенні n . Інакше кажучи, виводити на друк:

- кількість виконаних реалізацій;
- отриману оцінку;
- побудований довірчий інтервал;
- довжину довірчого інтервалу.

<u>Зауваження</u>. Формули для побудови оцінок та довірчих інтервалів див. лекцію З. Для випадку b) краще використовувати незміщену оцінку дисперсії.

Завдання 2: обчислення ймовірності трьома способами із дослідженням швидкості збіжності. Потрібно обчислити наступну ймовірність:

$$Q_m = \mathbf{P}\{\eta > \xi_1 + \dots + \xi_m\}$$

де m — це деяке натуральне число (параметр), а в.в. $^\eta$ та $^{\{\xi_i\}}$ є незалежними та мають наступні розподіли:

$$G(u) = \mathbf{P}\{\eta < u\} = \begin{cases} 1 - \frac{1}{1+u}, & u > 0, \\ 0, & u \le 0, \end{cases} \quad \mathbf{M} \eta = \int_{0}^{\infty} [1 - G(u)] du = \int_{0}^{\infty} \frac{1}{1+u} du = \infty$$

$$F(u) = \mathbf{P}\{\xi_{i} < u\} = \begin{cases} 1 - e^{-u}, & u > 0, \\ 0, & u \le 0, \end{cases} \quad \mathbf{M} \xi_{i} = 1, \quad \xi_{i} \sim Exp(1)$$

Позначимо:

$$A_m(u) = \mathbf{P}\{\xi_1 + \dots + \xi_m < u\} = 1 - \sum_{k=0}^{m-1} \frac{u^k}{k!} e^{-u} = \sum_{k=m}^{\infty} \frac{u^k}{k!} e^{-u}, \quad u \ge 0, \quad m \ge 1$$

Це розподіл Ерланга з параметрами m та 1. Відповідна щільність розподілу має вигляд:

$$a_m(u) = \frac{u^{m-1}}{(m-1)!} e^{-u}, \quad u \ge 0$$

Тоді

$$Q_m = \mathbf{P}\{\eta > \xi_1 + \dots + \xi_m\} = \int_0^\infty \frac{1}{1+u} \cdot \frac{u^{m-1}}{(m-1)!} e^{-u} du$$

Легко бачити, що цей інтеграл в явному вигляді не береться. Будемо обчислювати його методом Монте-Карло.

Зауваження 1. Нехай $\omega_1, \omega_2, \dots$ — послідовність незалежних рівномірно розподілених на відрізку [0,1] в.в. (послідовність псевдовипадкових чисел, яку отримуємо генератором випадкових чисел). Тоді

$$\eta = G^{-1}(\omega) = \frac{1}{\omega} - 1, \quad \xi_i = F^{-1}(1 - \omega_i) = -\ln \omega_i$$

(в.в. $^{1-\omega_{i}}$ та $^{\omega_{i}}$ мають однаковий розподіл).

Зауваження 2. Загальна схема обчислення ймовірності Q_m виглядає наступним чином. Нехай $\hat{q}_1, \hat{q}_2, \dots$ — незміщені оцінки ймовірності Q_m , які отримано тим чи іншим методом. Незміщена оцінки ймовірності Q_m та вибіркова дисперсія обчислюються за формулами:

$$\hat{Q}_{m}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} \hat{q}_{i}, \qquad \left[\hat{\sigma}_{m}^{(n)} \right]^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} \hat{q}_{i}^{2} - n \left[\hat{Q}_{m}^{(n)} \right]^{2} \right]$$

(n - кількість реалізацій).

Кількість реалізацій n^* алгоритму, які потрібно здійснити для обчислення ймовірності Q_m із заданою достовірністю 1- $\mathcal Y$ та відносною похибкою $\mathcal E$ обчислюється за формулою:

$$n^* = \min \left\{ n \ge n_0 : n \ge \frac{z_y^2 \left[\hat{\sigma}_m^{(n)} \right]^2}{\varepsilon^2 \left[\hat{Q}_m^{(n)} \right]^2} \right\},$$

де n_0 — початкова кількість реалізацій, яка потрібна для "стабілізації" дисперсії, а $z_{\mathcal{Y}}$ — це коефіцієнт, який знаходиться з рівняння $2\Phi(z)=1$ - \mathcal{Y} ($\Phi(z)$ — функція Лапласа). Для кожного з наведених нижче методів обчислення n_0 приймає своє значення.

В усіх наведених вище випадках обчислення вести із достовірністю 0.99 та відносною похибкою 1%, тобто $z_y=2.575$ і $\varepsilon=0.01$. Розглядаються три можливі значення параметра m: 1, 10, 100, 1000 та 10000. Потрібно виконати наступні завдання.

- **А.** При кожному m=1; 10; 100; 1000; 10000 обчислити точне значення ймовірності Q_m (для перевірки коректності алгоритмів моделювання).
- В. Стандартний метод Монте-Карло (метод 1):

$$Q_{\scriptscriptstyle m} = \mathbf{M} I(\eta > \xi_1 + \ldots + \xi_m)$$
, тобто $\hat{q}_i = I(\eta^{(i)} > \xi_1^{(i)} + \ldots + \xi_m^{(i)})$, де $I(\cdot)$ — індикаторна функція.

C. *Memo∂* 2:

$$\begin{split} Q_m &= \mathbf{P}\{\eta > \xi_1 + \ldots + \xi_m\} = \int\limits_0^\infty [1 - G(u)] \ a_m(u) \ du = \int\limits_0^\infty [1 - G(u)] \ dA_m(u) = \\ &= \mathbf{M}[1 - G(\xi_1 + \ldots + \xi_m)] = \mathbf{M} \frac{1}{1 + \xi_1 + \ldots + \xi_m} \end{split}$$

$$\hat{q}_i = \frac{1}{1 + \xi_1^{(i)} + \ldots + \xi_m^{(i)}}.$$

D. *Memod* 4 (випадок, коли m > 1):

$$Q_{m} = \mathbf{P}\{\eta > \xi_{1} + \dots + \xi_{m}\} = \int_{0}^{\infty} \frac{1}{1+u} \cdot \frac{u^{m-1}}{(m-1)!} e^{-u} du = \frac{1}{m-1} \int_{0}^{\infty} \frac{u}{1+u} \cdot \frac{u^{m-2}}{(m-2)!} e^{-u} du = \frac{1}{m-1} \int_{0}^{\infty} \frac{u}{1+u} \cdot \frac{u^{m-2}}{(m-2)!} e^{-u} du = \frac{1}{m-1} \int_{0}^{\infty} \frac{u}{1+u} \cdot \frac{u}{1+\xi_{1} + \dots + \xi_{m-1}} dA_{m-1}(u) = \frac{1}{m-1} \mathbf{M} \frac{\xi_{1} + \dots + \xi_{m-1}}{1+\xi_{1} + \dots + \xi_{m-1}},$$

тобто

Виводити на друк:

- оцінку;
- вибіркову дисперсію;
- довірчий інтервал;
- кількість виконаних реалізацій для побудови оцінки із достовірністю 0.99 та відносною похибкою 1%.