12 KONTEXTFREIE GRAMMATIKEN

12.1 REKURSIVE DEFINITION SYNTAKTISCHER STRUKTUREN

12.2 KONTEXTFREIE GRAMMATIKEN

Beispielgrammatiken

 Bitte auf den Unterschied zwischen dem einfachen Pfeil → bei Produktionen und dem Doppelpfeil ⇒ bei Ableitungsschritten achten (kann doch nicht so schwer sein, die Vorlesung ist doch so leicht ;=))

Beachte: Wenn $w_1 \to w_2$ gilt, dann auch $w_1 \Rightarrow w_2$, aber nicht unbedingt umgkehrt, wie man an der Grammatik $(\{X,Y\},\{a\},X\{X\to Y,Y\to a\})$ sieht:

- Es gilt z.B. $XY \Rightarrow Xa$, aber es gibt keine Produktion $XY \rightarrow Xa$
- arbeiten Sie ein bisschen mit $G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon \mid aX \mid bX\})$
 - Was kann man alles ableiten? ε , a, b, aa, ...
 - aha: alle Wörter überhaupt: $L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik *G* mit *L*(*G*) = {}?
 - suchen lassen ...
 - z. B. $(\{X\}, \{a, b\}, X, \{X \to X\})$.
 - wir haben sogar leere Produktionenmenge zugelassen: $(\{X\}, \{a, b\}, X, \{\})$ tuts auch.
 - allerdings: leere Alphabete haben wir verboten, also $(\{X\}, \{\}, X, P)$ geht *nicht*.
- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to XX \mid (X) \mid \epsilon\}$
 - man mache Beispielableitungen
 - * erste einfache wie $X \Rightarrow (X) \Rightarrow ((X)) \Rightarrow (((X))) \Rightarrow ((((X)))) \Rightarrow (((((X)))))$ oder
 - * $X \Rightarrow XX \Rightarrow XXX \Rightarrow XXXX \Rightarrow XXXXX$ und dann irgendwie weiter
 - Welche Wörter w sind ableitbar?
 - * anschaulich: ableitbar sind genau die "wohlgeformten Klammerausdrücke"
 - * jedenfalls gleich viele (und): $N_{(w)} = N_{(w)}$
 - * Das ist aber nur notwendig aber nicht hinreichend für Ableitbarkeit, denn) (ist z. B. nicht ableitbar.
 - * Man diskutiere die Adjektive "notwendig" und "hinreichend".
 - * zusätzliche Eigenschaften? erst mal raten/ nachdenken/ rumprobieren lassen
 - * aha: für jedes Präfix (es heißt das Präfix) v eines $w \in L(G)$ gilt: $N_{(v) \geq N_{(v)}}(v)$ Das kann man sich gerade noch klar machen; aber der Beweis, dass man damit eine notwendige und hinreichende Bedingung für Ableitbarkeit hat, also eine Charakterisierung der Klammerausdrücke, ist wohl zu schwierig; ich sehe jedenfalls auf Anhieb keine vernünftige Erklärung.
- Man arbeite mit $G = (\{X\}, \{(,)\}, X, \{X \to (X) X \mid \epsilon\}).$
 - siehe da: auch damit sind genau die wohlgeformten Klammerausdrücke ableitbar

- Man mache sich klar, warum ...
- Und dann auch Grammatiken konstruieren lassen, z. B. für die folgenden formalen Sprachen über dem Alphabet $T = \{a, b\}$.
 - die Menge aller Wörter über T, in denen irgendwo das Teilwort baa vorkommt, z. B. so: $(\{X,Y\}, T, X, P)$ mit $P = \{X \rightarrow YbaaY, Y \rightarrow aY|bY|\epsilon\}$
 - die Menge aller Wörter $w \in T^*$ mit der Eigenschaft, dass für alle Präfixe v von wgilt: $|N_{a}(v) - N_{b}(v)| \le 1$.
 - * Man überlege sich erst mal, welche Struktur Wörter der Länge 2, 4, ... haben: wenn ich das richtig sehe: {ab, ba}*
 - * Also leistet die Grammatik ($\{X,Y\},T,X,P$) mit $P = \{X \rightarrow abX|baX|a|b|\epsilon\}$ das Gewünschte.
- Achtung: bitte nicht aus Versehen mit Grammatiken bzw. formalen Sprachen vom Aufgabenblatt 5 rumspielen

Infixschreibweise von Relationen

- das kennt jeder von $x \le y$ etc.
- sicherstellen, dass das klar ist: xRy ist nichts anderes als $(x,y) \in R$

Unterschied \Rightarrow versus \Rightarrow^*

• bitte sicherstellen, dass der Unterschied zwischen ⇒, also "genau ein Schritt", und ⇒*, also "eine beliebige Anzahl Schritte" klar ist.

12.3 RELATIONEN (TEIL 2)

- Standard-Definitionen aus der Vorlesung
 - für $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$:

$$S \circ R = \{(x,z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x,y) \in R \land (y,z) \in S\}$$

$$- I_M = \{(x, x) \mid x \in M\}$$

- $I_M = \{(x, x) \mid x \in M\}$ $R^0 = I_M \text{ und } \forall i \in \mathbb{N}_0 : R^{i+1} = R \circ R^i$
- $R^* = \bigcup_{i=0}^{\infty} R^i$ reflexive und transitive Relationen:
 - Definitionen klar machen:
 - * Beispiel: Gleichheit von Zahlen
 - * Beispiel: ≤
 - * Beispiel: Reihenfolge der Wörter im Duden (o.ä.)
 - · Achtung: Wir haben Asiaten in der Vorlesung; langsam anfangen (oder wissen Sie, wie in Japan Wörter sortiert werden?) – Wenn man eine Relation hin malt: Elemente $x,y\in M$ als Punkte und einen Pfeil
 - von x nach y, falls xRy:
 - * Wie sieht das Bild aus, wenn die Relation reflexiv ist? Schlingen.
 - * Wie, wenn sie transitiv ist? (schwieriger zu beschreiben; nur Beispiele ansehen; Wenn man man einen Zyklus dabei hat: jeder mit jedem verbunden)
- z. B. in der Vorlesung offen gelassen:
 - Es sei R eine beliebige Relation und S eine Relation, die reflexiv und transitiv ist. Wenn $R \subseteq S$, dann ist sogar $R^* \subseteq S$.
 - Man beweise das, indem man durch vollständige Induktion zeigt: Für alle $i \in \mathbb{N}_0$: Wenn $R \subseteq S$, dann $R^i \subseteq S$.

12.4 EIN NACHTRAG ZU WÖRTERN

Schreibweise $N_x(w)$

• aus der Vorlesung: für alle Alphabete A und alle $x \in A$ Funktionen $N_x : A^* \to \mathbb{N}_0$, die wie folgt festgelegt sind:

$$N_{x}(\varepsilon) = 0$$

$$\forall y \in A : \forall w \in A^{*} : N_{x}(yw) = \begin{cases} 1 + N_{x}(w) & \text{falls } y = x \\ N_{x}(w) & \text{falls } y \neq x \end{cases}$$

 $N_x(w)$ gibt an, wie oft x in w vorkommt. Fragen, ob das klar ist.