проекции прямой и плоскости.

Задание:

По заданным координатам точек построить проекции треугольника ABC и точки D.

- 1. Определить положения прямых, составляющих стороны треугольника ABC, относительно плоскостей проекций.
- 2. Из точки D провести прямую t, перпендикулярную к плоскости треугольника ABC.
- 3. Построить точку пересечения перпендикуляра t с плоскостью треугольника ABC.
- 4. Определить видимость перпендикуляра t относительно плоскости треугольника ABC.
- 5. Без преобразования чертежа определить расстояние от точки D до плоскости, заданной треугольником ABC.

Порядок выполнения задания.

По координатам точек, взятых из таблицы согласно варианту, необходимо построить проекции треугольника ABC и точки D.

Далее определяются положения прямых AB, AC и BC относительно плоскостей проекций. (Например, AB — прямая общего положения, нисходящая вправо.)

Для построения на эпюре прямой, перпендикулярной к плоскости, воспользуемся следующей теоремой: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция — к фронтальной проекции фронтали этой плоскости.

Строим горизонталь h и фронталь f плоскости $\Sigma(\Delta ABC)$ (рис. 2.1).

Рисунок 2.1-Построение проекций горизонтали и фронтали плоскости.

Из точки D проводим прямую t, перпендикулярную к плоскости треугольника ABC: $t \perp \Sigma(\Delta ABC)$, ecnu $(t_1 \perp h_1; t_2 \perp f_2)$ (рис.2.2).

Рисунок 2.2-Построение прямой, перпендикулярной к плоскости.

Для определения основания перпендикуляра, т.е. точки пересечения прямой с плоскостью, необходимо:

- через прямую t провести вспомогательную плоскость $\Theta\left(\Theta_{2}\right)$;
- определить линию пересечения заданной плоскости $\Sigma(\Delta ABC)$ и вспомогательной $\Theta: \Sigma \cap \Theta = (1,2);$
 - определить проекции точки пересечения прямых t и (1,2): $t \cap (1,2) = K$;
- определить видимость отрезка прямой DK относительно Δ ABC методом конкурирующих точек (рис.2.3).

Рисунок 2.3- Определение основания перпендикуляра

Длина отрезка прямой DK определяется методом прямоугольного треугольника (см. рис. 2.4): натуральная величина отрезка DK находится как гипотенуза прямоугольного треугольника, одним катетом которого является проекция этого отрезка на плоскость проекций Π_I - D_IK_I , а другим — разность удалений концов этого отрезка от плоскости Π_I .

Рисунок 2.4- Определение натуральной величины перпендикуляра

Контрольные вопросы.

- 1. Когда длина проекции отрезка равна самому отрезку?
- 2. Как могут быть взаимно расположены две прямые в пространстве?
- 3. Каков порядок определения натуральной величины отрезка методом прямоугольного треугольника?
- 4. Какими способами можно задать плоскость на чертеже?
- 5. В чем заключается алгоритм построения точки пересечения прямой линии с плоскостью?
- 6. Как определяется видимость на чертеже при пересечении прямой с плоскостью?
- 7. Как из точки, принадлежащей плоскости, восстановить перпендикуляр?
- 8. Каков признак параллельности прямой и плоскости, двух взаимно параллельных плоскостей?

Таблица 2.1. Исходные данные к заданию.

Bap	\boldsymbol{A}			В			<i>C</i>			D		
зад.	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
1	130	20	40	20	40	0	0	120	120	70	140	10
2	140	0	120	90	100	20	0	40	20	40	100	110
3	140	120	90	80	0	110	0	90	20	130	30	0
4	130	40	0	80	10	110	0	100	10	140	130	110
5	120	120	20	90	30	110	0	10	50	20	90	110
6	120	130	40	90	40	100	10	20	20	140	40	20
7	130	30	0	80	0	110	0	80	40	110	120	100
8	120	130	60	90	20	120	10	20	40	150	30	20
9	150	50	0	60	10	100	20	120	40	120	110	110
10	160	40	20	90	0	140	0	90	80	20	0	30
11	130	40	110	40	10	10	0	100	50	120	110	20
12	150	10	50	70	110	130	0	50	0	130	110	0
13	160	0	80	0	40	140	60	90	0	140	110	130
14	140	20	40	100	90	100	0	50	20	120	110	0
15	130	40	20	20	0	40	0	120	120	70	10	150
16	140	120	0	90	20	100	0	20	40	40	110	100
17	140	90	120	80	110	0	0	20	90	130	0	30
18	130	0	40	80	110	10	0	10	100	140	110	130
19	120	20	120	90	110	30	0	50	10	20	110	90
20	120	40	130	90	100	40	10	20	20	140	20	40
21	130	0	10	80	110	0	0	40	80	110	100	120
22	120	60	130	90	120	20	10	40	20	150	20	30
23	150	50	0	60	100	10	20	40	120	120	110	110
24	160	20	40	90	140	0	0	80	90	20	30	0
25	130	110	40	50	10	10	0	50	100	120	20	110
26	150	50	10	70	130	110	0	0	50	130	0	110
27	160	80	0	0	140	40	60	0	90	140	130	110
28	120	120	20	90	30	110	0	10	50	20	90	110
29	140	20	40	100	90	100	0	50	20	120	110	0
30	130	20	40	20	40	0	0	120	120	70	140	10

