

目录

第一章 E1 功能介绍	1
1.1 E1 系统框架介绍	1
1.2 E1 导航软件功能介绍	1
第二章 E1 导航系统主要参数详解	2
2.1 E1 底盘基础参数介绍及调试方法	2
测试一: 前进1 米	2
测试二: 原地转动 360 度	3
底盘参数调试方法	3
1. 情况一:走 1m 直线 和 360 度旋转参数调试情况	3
2. 情况二:提高/限制底盘移动速度	3
底盘关键数据观察	4
1. odom 一不带陀螺仪的里程计信息	4
2. odom_combined,imu,imu_angle 一陀螺仪和带陀螺仪的里程计信息	4
3. smoother_cmd_vel — 经过平缓处理的底盘速度	4
2.2 E1 底盘雷达安装及参数调试	5
E1 雷达安装情况	5
雷达具体参数介绍	5
雷达参数调试的方法	6
1. 情况一:设置雷达的扫描角度	6
2. 情况二: 雷达坐标系与底盘坐标系的 tf 转换关系设置	6
3. 情况三:雷达滤波安全范围设置 (仅在导航时使用)	7

雷力	<i>大关键数据观察</i>	8
2.3	E1 超声波的安装及参数介绍	8
超)	声波的位置安装(目前默认位置)	8
超声	声波参数介绍	9
超)	^声 波参数调试方法	10
超)	声波关键数据观察	10
2.4	建图与导航参数介绍及调试	11
建图	图与导航使用	13
建图	图与导航参数调节的情况	14
1.	情况一:修改障碍物膨胀系数,防止规划的路径贴近障碍物(沿边规划)	14
2.	情况二:限制机器人导航行走的速度	15
3.	情况三:限制机器人只能前进,不能后退	15
建	图与导航主要数据观察	15
2.5	谷歌 CARTOGRAPHER 算法建图	16
2.6	SICK 雷达建图与导航	17
Si	ick 雷达建图导航使用	18
2.7	深度摄像头导航避障	19
深点	度摄像头参数及校准	19
深点	度摄像头导航避障	19
大田山	±	20

第一章 E1 功能介绍

1.1 E1 系统框架介绍

1.2 E1 导航软件功能介绍

.1.4.1.	E. I.E. J. &D.	1. 61. 537. 549
功能	支持功能	功能说明
	Gmapping 算法建图	适合一般室内环境建图
建图功能	Cartographer 谷歌算法	(300平方米以内,若要大范
	建图	围建图,需要换成 sick 雷达)
	单雷达导航	增加安全性,有效避开
		矮的障碍物,防止压脚
	超声波导航避障	增加安全性,有效避开
		玻璃等透明障碍物
	融合陀螺仪	提高导航精度,减小累
导航功能		计误差
	单点导航,多点巡逻导	多种导航方式,提高场
	航	景适应性
	手机 App 通过(网络)	直接在手机上完成建
	wifi 启动底盘建图,并显示地	图,导航使用,提高适用性,
安卓手机 APP	图,保存地图,然后导航	降低使用门槛
	通过手机 app 查看底盘	

•/-	品	间が	1/2	父 天	见程	+

各种传感器状态和日志信息	
自动回充功能	增加智能性, 有效续航,
	方便长时间使用

第二章 E1 导航系统主要参数详解

2.1 E1 底盘基础参数介绍及调试方法

底盘基础参数主要是底盘的轮子直径,两轮子的间距,编码器值 以及底盘移动速度控制,具体如下:

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/config/my_dashgo_params_imu.yaml		
参数名	目前值	说明
wheel_diameter	0.162	轮子直径,固定
wheel_track	0.330	两个轮子的间距,直接测量得到大概值,然
		后再通过转 360 度试验进行细微调整,出厂时会
		把参数调好,直接使用即可。
encoder_resolution	610	轮子转动一圈编码器输出的脉冲数,固定
gear_reduction	0.975	校准系数,主要用于校准走 1m 直线

通过测试底盘走 1m 直线, 360 度转

测试一: 前进1米

远程进入导航模块,启动底盘驱动(带陀螺仪)

\$ ssh eaibot@192.168.31.200

\$ roslaunch dashgo_driver driver_imu.launch

然后远程进入导航模块另一个终端,启动移动脚本

\$ ssh eaibot@192.168.31.200

\$ rosrun dashgo_tools check_linear_imu.py

测试完后, ctl+c 结束两个终端的程序

测试二:原地转动360度

远程进入导航模块,启动底盘驱动(带陀螺仪)

\$ ssh eaibot@192.168.31.200

\$ roslaunch dashgo_driver driver_imu.launch

然后远程进入导航模块另一个终端, 启动转动脚本

\$ ssh eaibot@192.168.31.200

\$ rosrun dashgo_tools check_angular_imu.py

底盘参数调试方法

1. 情况一:走 1m 直线 和 360 度旋转参数调试情况

优先校准走 1m 直线,仅需修改 my_dashgo_params.yaml 文件中的 gear_reduction 参数, 其他参数基本给定,超过 1m 时,就改小,否则就改大,误差控制在 1%左右。

在已校准 1m 直线的前提下,校准 360 度旋转,仅需细微修改两个轮子间距 wheel_track,转超 360 度就改小,否则就改大,误差控制在 1%左右。

如果底盘走成了斜直线,一般都是底盘摆放时,两轮子不在同一水平线引起的。Eai 底盘在出厂时,都会测试确认底盘能正常走直线。

如果底盘走 S 型 (无法走直线), 先确认底盘是否电量充足, 若电量不足, 无法拉动电机 正常转动, 就会行走异常, 若充足但行走异常请找 eai 售后

2. 情况二:提高/限制底盘移动速度

启动 driver.launch 或 driver_imu.launch 来驱动底盘行走时,默认都是有平缓控制速度的功能,所以主要是修改 yocs_velocity_smoother.yaml 配置文件中的最大线速度 speed_lim_v 和最大角速度 speed_lim_w 来控制底盘行走的。

如果是在启动导航 navigation 时,此时底盘行走速度不单受平缓速度 yocs_velocity_smoother.yaml 的限制,还会受到局部路径规划 teb_local_planner_params.yaml 中的最大线速度限制,最终会取两者中最小的线速度。这点会在导航章节中详述

COPYRIGHT 2015-2017 EAI TEAM

如果是只用手机蓝牙来控制底盘时,速度是不受平缓控制的,所以会有急停(点头)和 急速前冲(抬头)的现象。

底盘关键数据观察

以使用三 一 键盘控制底盘行走为例,主要观察底盘的里程计信息,线速度,角速度信息。具体如下:

1. odom — 不带陀螺仪的里程计信息

.在启动 driver.launch 的情况下,在导航模块的另一个终端中输入指令

rostopic echo /odom

2. odom_combined, imu, imu_angle 一陀螺仪和带陀螺仪的里程计信息

在启动 driver_imu.launch 的情况下,会把/odom 的信息与陀螺仪/imu 的信息融合后得到新的里程计信息,并发出来给建图导航使用,在导航模块的另一个终端中分别输入指令

```
rostopic echo /robot_pose_ekf/odom_combined #查看带陀螺仪里程计信息
rostopic echo /imu
rostopic echo /imu_angle #查看陀螺仪角度变化信息
```

3. /smoother_cmd_vel — 经过平缓处理的底盘速度

在启动 driver.launch 或 driver_imu.launch 驱动底盘的情况下,底盘的最原始的速度信息是在/cmd_vel 中,经过平缓处理后,发布到新的主题/smoother_cmd_vel ,建图导航等默认都使用经过平缓处理后的速度,在导航模块的另一个终端中分别输入指令

rostopic echo /cmd_vel #底盘原始的速度信息
rostopic echo /smoother_cmd_vel #经过平缓处理后的速度,默认底盘驱动,建图,导航等都是用这里的线速度和角速度,然后在 dashgo_driver.py 中把线速度和角速度转换成点击的 pwd 值发给底盘从而控制底盘行走

2.2 E1 底盘雷达安装及参数调试

E1 雷达安装情况

E1 的 F4 雷达要正面安装,雷达底部的小缺口为正前方 0 度位置,正后方为 180 度位置,最大扫描角度为 360 度。雷达的具体参数,性能及单独使用请参照《雷达使用手册》

雷达具体参数介绍

参数文件路径: dashgo_ws/src/dashgo/ydlidar-1.2.0/launch/ ydlidar1_up.launch 1.3.1 为雷达驱动版本号,有可能变化, flash_lidar.launch 是雷达启动文件。 <node name="ydlidar_node" pkg="ydlidar" type="ydlidar_node" output="screen"> 雷达启动的节点名为 ydlidar_node <param name="port"</pre> type="string" value="/dev/port2"/> 雷达与导航模块连接的串口,为 port2 <param name="baudrate" type="int" value="115200"/> F4 雷达串口波特率,如果是 G4 雷达则为 230400, X4 雷达为 128000 <param name="angle min" type="double" value="-90" /> <param name="angle_max" type="double" value="90" /> 雷达扫描角度范围为-180~180度,雷达角度范围设置具体参照下面说明 <param name="range min" type="double" value="0.08" /> <param name="range max" type="double" value="8.0" /> 雷达扫描距离范围为 0.08~10 m <param name="ignore array" type="string" value="" /> 雷达剔除的扫描范围,即不取该范围的数据,它与上面的扫描角度参数结合,得到最 终雷达有效的扫描角度范围 <node pkg="tf" type="static_transform_publisher" name="base_link_to_laser4"</pre> args="0.2245 0.0 0.28 0.0 0.0 0.0 /base footprint /laser frame 40" /> 这是雷达与 E1 底盘的 tf 转换参数

参数文件路径: dashgo_ws/src/dashgo/ dashgo_tools/conf/ box_filter.yaml 其中 box_filter.yaml 表示雷达安全范围

max_x: 0.43 安全范围在 x 轴上离底盘重心最大距离max_y: 0.225 安全范围在 y 轴左边离底盘重心距离


```
max_z: 0.5 暂时无用
min_x: 0.23 安全范围在 x 轴上离底盘重心最小距离
min_y: -0.225 安全范围在 y 轴右边离底盘重心距离
min_z: 0.05 暂时无用
参数具体意义见下面情况三详解
```

雷达参数调试的方法

1. 情况一:设置雷达的扫描角度

设置雷达的扫描角度 并剔除在扫描范围特定角度的数据(如只取雷达前方 270 度数据或者剔除扫描范围内的柱子等物体),雷达的数据获取符合右手定则(与雷达的转动方向没直接关系),具体如下图所示

如果雷达只想扫描正前方 180 度,则需要把 ydlidar1_up.launch 的参数设置如下:

注意: 雷达的扫描角度不能小于 180 度, 否则会影响建图, 导航避障等功能

2. 情况二: 雷达坐标系与底盘坐标系的 tf 转换关系设置

该参数主要是在整套移动系统在建图导航前,进行雷达校准用到,单独雷达不需要用到此

参数

雷达正装,则 ydlidar1_up.launch 参数设置如下: (一般出厂时雷达参数都会设置好,可直接使用,但若移动,拆装后需要自己细微调整)

```
<node pkg="tf" type="static_transform_publisher" name="base_link_to_laser4"
args="0.2245 0.0 0.28 0.0 0.0 0.0 /base_footprint /laser_frame 40" />
```

- args 第一个参数 0.2245 表示雷达中心距离底盘重心的 x 轴距离
- args 第二个参数 0.0 表示雷达中心距离底盘重心的 y 轴距离
- args 第二个参数 0.28 表示雷达中心距离底盘重心的 z 轴距离,该参数为虚拟的,不能改,因为会影响到导航的 costmap,(因为 F4 雷达为 2 维雷达,z 轴参数对雷达数据没影响,所以可以使用虚拟)
- args 第四个参数表示将雷达绕 z 轴左右偏转程度, 为 yaw 偏航角
- args 第五个参数表示将雷达绕 y 轴前后翻滚程度, 为 pitch 俯仰角
- args 第六个参数表示将雷达绕 x 轴左右侧滚,为 roll 侧滚角,该参数一般为 0.0,目前只能设为 0.0,-3.14 和 3.14

3. 情况三:雷达滤波安全范围设置 (仅在导航时使用)

如下图所示,雷达滤波安全范围是指,在雷达前方,画一个安全区域,一旦雷达突然 发现前方有障碍物出现在安全区域内(例如底盘导航时,突然伸脚到底盘前面很近的地方), 此时底盘优先停下然后再重新规划路径绕开,它认为离突然出现的障碍物太近,再往前就 会撞到障碍物,这样可以有效防止底盘减速刹车不及时撞到障碍物的问题。

如图所示,红色部分为安全范围,它为矩形,根据 box_filter.yaml 参数,以底盘重心为原点,正常安全范围(红色部分) x 轴长度在 15cm 左右,y 轴宽度比底盘宽 2cm (左右两侧各宽 1cm),注意:该安全范围不能过大,否则会影响导航效果(例如通过狭窄的地方)

雷达关键数据观察

主要是观察/scan 雷达节点是否有数据,

rostopic echo /scan

2.3 E1 超声波的安装及参数介绍

目前 E1 系统最多只支持 5 个超声波,安装在 Arduino 控制板上(电机控制板),控制板会实时把超声波数据传给导航模块,然后和导航避障算法进行融合避障。

超声波的位置安装(目前默认位置)

E1 超声波默认的安装情况如下:

- 0号在正后方右侧,离中心坐标和偏角为(-0.1,-0.04),偏角为-3.14 弧度
- 1号在前方右侧, 离中心坐标和偏角为(0.24,-0.08), 偏角为-0.87 弧度
- 2号在正前方,离中心坐标和偏角为(0.24,0.0),偏角为0弧度

- 3号在前方左侧,离中心坐标和偏角为(0.24,0.08),偏角为0.87 弧度
- 4号正后方左侧,离中心坐标和偏角为(-0.1,0.04),偏角为3.14 弧度

超声波参数介绍

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/config/my_dashgo_params_imu.yaml 主要是超声波功能开关, 坐标位置及偏移角初始化

useSonar: True

超声波功能开关, True 表示打开, False 表示关闭

```
sonar0 offset yaw: -3.14 5个超声波的位置和偏移角初始化
sonar0 offset x: -0.1
sonar0_offset_y: -0.04
sonar1_offset_yaw: -0.87 #-50 du
sonar1_offset_x: 0.24
sonar1_offset_y: -0.08
sonar2 offset yaw: 0.0
sonar2_offset_x: 0.24
sonar2 offset y: 0.0
sonar3 offset yaw: 0.87 #50 du
sonar3 offset x: 0.24
sonar3_offset_y: 0.08
sonar4_offset_yaw: 3.14
sonar4 offset x: -0.1
sonar4_offset_y: 0.04
```

参数文件路径: dashgo_ws/src/dashgo/dashgo_driver/launch/driver_imu.launch

```
<node pkg="tf" type="static transform publisher" name="base link to sonar0"</pre>
args="-0.1 -0.04 0.15 -3.14 0.0 0.0 /base footprint /sonar0 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar1"</pre>
args="0.24 -0.08 0.15 -0.87 0.0 0.0 /base_footprint /sonar1 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar2"</pre>
args="0.24 0.0 0.15 0.0 0.0 0.0 /base_footprint /sonar2 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar3"</pre>
```



```
args="0.24 0.08 0.15 0.87 0.0 0.0 /base_footprint /sonar3 40" />
<node pkg="tf" type="static_transform_publisher" name="base_link_to_sonar4"
args="-0.10 0.04 0.15 3.14 0.0 0.0 /base_footprint /sonar4 40" />
```

这分别是超声波与底盘的坐标 tf 转换关系,同时会把相应位置显示到 rviz 上,如果 rviz 上看到超声波位置不对,请查看此参数是否正确。

超声波参数调试方法

步骤一:要使用超声波避障功能,必须先打开超声波功能开关

useSonar : True

超声波功能开关, True 表示打开, False 表示关闭

步骤 2:运行导航 launch,观察超声波数据变化,验证每一个超声波工作正常具体如下

在导航模块中运行导航 launch (以不带陀螺仪单点导航为例)

roslaunch dashgo_nav navigation_imu_2.launch

在导航模块另一个终端中,分别监听每一个超声波主题,如下与0号超声波为例

rostopic echo /sonar0

然后再 0 号超声波前面放一个障碍物并来回移动,观察 0 号超声波数据变化是否正常, 以此验证其他四个超声波是否都正常。

步骤 3: 在 rviz 中添加超声波的显示,并观察超声波看到障碍物时,是否会停止

保持运行导航 navigation.launch 程序,在电脑终端中运行 rviz 显示地图,add->by Topic 然后选择 sonar0 的 Range,点击 ok 就会把超声波的锥形范围显示在 rviz 中,最后 ctrl+s 保存 rviz 配置,类似地把其他超声波加入到 rviz 中,然后再把障碍物放到超声波前面(障碍物最好是玻璃等透明物体,只有雷达才可以看到),观察导航时是否避开它

超声波关键数据观察

主要是观察/sonar0~4 超声波节点是否有数据,

rostopic echo / sonar0 观察 0 号超声波数据, 默认情况只取 0.8m 以内的有效数据 rostopic echo / sonar1

rostopic echo / sonar2
rostopic echo / sonar3
rostopic echo / sonar4

2.4 建图与导航参数介绍及调试

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/launch/include/imu/ gmapping_base.launch Gmapping 扫图算法参数

<param name="maxUrange" value="8.0"/>
<param name="maxRange" value="8.0"/>

雷达最远扫描距离设置,正常 F4 能扫到 12m,由于越远激光数据点越少且不稳定, 因此只取 8m 内的数据

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/

teb_local_planner_params.yaml

Teb 局部路径规划配置

max_vel_x: 0.30

#机器人导航时最大线速度,与 1.2.4 章节中情况三控制底盘平缓行走的参数一起控制 底盘导航,最终取两者最小的线速度。

max_vel_x_backwards: 0.15 #机器人后退速度,不能改小

max_vel_theta: 0.40 #最大角速度 acc_lim_x: 0.20 #线加速度

acc_lim_theta: 0.25 #角加速度,不能过大,否则行走可能左右摆动

min_turning_radius: 0.0

footprint_model: # types: "point", "circular", "two_circles", "line", "polygon" vertices: [[-0.1313, -0.21], [-0.1313, 0.21], [0.2887, 0.21], [0.2887, -0.21]]

#底盘模型

GoalTolerance

xy_goal_tolerance: 0.2 #导航里目标点最大距离误差为 20cm yaw_goal_tolerance: 0.5 #最大角度误差为 0.5 *6=30 度

free_goal_vel: False

Obstacles

min_obstacle_dist: 0.24 #距离障碍物的最小距离

weight_kinematics_forward_drive: 60 #机器人前进的权重,增大时,机器人后退几率,后退距离都会减小,但不能过大,具体要根据实际情况调试。

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/ move_base_params.yaml

Move_base 算法参数

planner_frequency: 1.0 #路径规划频率

oscillation_timeout: 5.0 #超时时间为 5.0*2=10s

oscillation_distance: 0.2 #如果在 10s(超时时间)内,机器人没有行走超过 0.2m,则认为机器人在来回挪动(震荡),此时取消该次导航

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/config/imu/ costmap_common_params.yaml 代价地图 costmap 基础参数

```
footprint: [[-0.1313, -0.21], [-0.1313, 0.21], [0.2887, 0.21], [0.2887, -0.21]] #底盘的模型
obstacle_layer: #动态层 costmap
 enabled: true
 max_obstacle_height: 0.6 #costmap 的最大高度
 min_obstacle_height: 0.0
 obstacle_range: 2.0
                       #2m 内有障碍物就加入 costmap 中
 raytrace range: 5.0
 inflation_radius: 0.30 #障碍物膨胀系数
 combination method: 1
 #非常重要, 这里表明 costmap 是由传感器雷达 laser_scan_sensor, 超声波
 # sonar scan sensor数据组成,数据来源具体下面会介绍
 observation_sources: laser_scan_sensor sonar_scan_sensor
 track_unknown_space: true #是否往未知区域规划路径
 origin_z: 0.0 #costmap 高度从 0m 开始
 z_resolution: 0.1 #costmap 立体分成, 每一层为 0.1m
 z_voxels: 10 #costmap 立体一共分 10 层数据
 unknown threshold: 15
 mark_threshold: 0
 publish_voxel_map: true
 footprint_clearing_enabled: true #是否清楚底盘脚下的 costmap
 laser scan sensor: #表明是从/scan 主题中获取雷达数据构成 costmap
  data_type: LaserScan #雷达数据类型
  topic: /scan
                 #雷达数据主题
  marking: true
  clearing: true
  expected_update_rate: 0
  min_obstacle_height: 0.20 #雷达数据在 costmap 中的高度范围
  max obstacle height: 0.30
 laser scan sensor 2: #第二个雷达(底下), 预留双雷达功能使用
  data type: LaserScan
   topic: /scan_2
   marking: true
```



```
clearing: true
     expected_update_rate: 0
     min_obstacle_height: 0.01
     max_obstacle_height: 0.1
   sonar_scan_sensor: #超声波点云数据
     data_type: PointCloud2
     topic: /sonar_cloudpoint
    marking: true
     clearing: true
     min_obstacle_height: 0.11 #超声波点云数据在 costmap 中高度范围
     max_obstacle_height: 0.2
     observation_persistence: 0.0
  inflation_layer: #静态层 costmap
   enabled:
   10)
   inflation radius: 0.30 # 障碍物膨胀系数
  static layer:
   enabled:
                  true
   map_topic:
                  "/map"
  sonar_layer: #超声波数据
   enabled:
   clear_threshold: 0.2
   mark threshold:
   topics: ["/sonar0", "/sonar1", "/sonar2", "/sonar3", "/sonar4"]
   clear_on_max_reading: true
```

建图与导航使用

步骤 1: 在导航模块中,启动建图 launch

```
$ ssh <u>eaibot@192.168.31.200</u> #远程进导航模块
$ roslaunch dashgo_nav gmapping_imu.launch
```

步骤 2: 在电脑 ubuntu 系统中,启动 rviz 工具(注意该命令是在电脑上运行,而不是导航模块中,之后启动 rviz 的操作都是在电脑上,导航模块中没有安装 rviz 工具)

```
$ export ROS_MASTER_URI=http://192.168.31.200:11311
$ roslaunch dashgo_rviz view_navigation.launch
```


步骤 3: 手机 app wifi 控制底盘行走(注意此时不能用蓝牙控制,会导致控制冲突)

步骤 4: 建完地图后,保持建图程序运行,进行如下操作保存好地图

\$ ssh eaibot@192.168.31.200 #远程进入导航模块

\$ roscd dashgo_nav/maps #进入地图目录

\$ rosrun map_server map_saver -f eai_map_imu

#保存地图,名为 eai_map_imu,然后会在 maps 目录下生成 eai_map_imu.yaml 和 eai_map_imu.pgn 文件(即保存的地图为 pgn 格式),之后带陀螺仪导航时,默认会导入 名为 eai_map_imu 的地图,

地图保存好后,ctl+c 关闭建图程序

步骤 5: 在导航模块中,启动单点导航的 launch

```
$ ssh eaibot@192.168.31.200
$ roslaunch dashgo_nav navigation_imu.launch
```

步骤 6: 在电脑 ubuntu 系统中, 启动 rviz 工具

```
$ export ROS_MASTER_URI=http://192.168.31.200:11311
$ roslaunch dashgo_rviz view_navigation.launch
```

步骤 7: 设置机器人起点位置,然后设置单个目标位置,开始导航

建图与导航参数调节的情况

1. 情况一: 修改障碍物膨胀系数, 防止规划的路径贴近障碍物(沿边规划)

主要修改 costmap_common_params.yaml 文件中的 inflation_radius 参数,该文件中有两个这样的参数,必须同时该

```
inflation_radius: 0.30 #障碍物膨胀系数
obstacle cost drops off (default: 10)
inflation_radius: 0.30 # 障碍物膨胀系数
```


2. 情况二: 限制机器人导航行走的速度

主要修改局部路径规划 teb_local_planner_params.yaml 的参数,它与1.2.4章节情况三一平缓速度限制 一起控制底盘,要想限制机器人行走速度,需要同时修改两个配置文件,最终会取两者中最小的线速度和角速度

```
# Robot
max_vel_x: 0.3 #机器人导航时最大线速度,与1.2.4 章节中情况三控制底盘平缓行走的参数一起控制底盘导航,最终取两者最小的线速度。
max_vel_x_backwards: 0.15 #机器人后退速度
max_vel_theta: 0.5 #最大角速度
acc_lim_x: 0.15 #线加速度
acc_lim_theta: 0.25 #角加速度,不能过大,否则行走可能左右摆动
min_turning_radius: 0.0
```

3. 情况三: 限制机器人只能前进,不能后退

主要修改局部路径规划 teb_local_planner_params.yaml 中的机器人前进的权重参数,减小机器人后退几率和后退距离

```
weight_kinematics_forward_drive: 60
#机器人前进的权重,增大时,机器人后退几率,后退距离都会减小,但不能过大,否则导航起步时可能会停止不动,具体要根据实际情况调试。修改该参数还没能使底盘完全不会后退的情况(尤其是在转 180 度时有可能会稍微后退调整),后续会继续优化
```

建图与导航主要数据观察

在启动导航 launch 情况下(例如 roslaunch dashgo_nav navigation_imu.launch),然后 rostopic list 列出所有的主题,如下分析常用关键的主题信息作用:

```
eaibot@PathGoEl:~$ rostopic list

/Lencoder #左轮编码器值变化

/Lvel #左轮速度

/Rencoder #右轮编码器值

/Rvel #右轮速度

/amcl_pose #amcl 算法定位得到底盘所处的地图位置
```



```
#下发给机器人的线速度和角速度
  /cmd vel
  /emergencybt_status #急停开关状态主题,1——按下,0——未按下
               #陀螺仪信息
               #陀螺仪的角度变化
 /imu angle
               #导航时,默认的起点位置和方向
 /initialpose
           #显示在雷达滤波安全范围内是否有障碍物,>1 表示有障碍物,底盘线速度设为 0,否则不影
  /is passed
响导航
               #显示在第二个(下雷达)滤波安全范围内是否有障碍物,只用在双雷达导航
 /is passed 2
                #导航时,添加目标点是否成功状态反馈
  /joint states
  #全局规划的路径,需要在 rviz 上才能直观地看到
 /move_base/TebLocalPlannerROS/global_plan
  #局部规划的路径,需要在 rviz 上才能直观地看到
 /move base/cancel
                       #取消当前导航
 /move_base/current_goal #当前导航要去的目标点坐标
  /move base/goal #当前导航要去的目标点坐标
 /move_base/result
                      #导航结果反馈
                          #导航实时状态反馈
 /move_base/status
 /move_base_simple/goal #获取在 rviz 上点击设置的目标点坐标及方向
  /odom
                           #里程计信息
 /robot cmd vel
                           #机器人导航过程中的实时坐标及位姿信息
 /robot_pose
 /robot pose ekf/odom combined #融合陀螺仪后,新的里程计信息
                           #雷达数据
 /scan
                               #第二个雷达(下雷达)数据
 /scan 2
                           #经过平缓处理后, 发给底盘的速度信息
 /smoother cmd vel
 /sonar0
                               #0~4 号超声波的数据
 /sonar1
  /sonar2
 /sonar3
 /sonar4
 /sonar_cloudpoint
                           #0~4 号超声波的点云数据
                           #电量显示主题
  /voltage_value
```

2.5 谷歌 cartographer 算法建图

请参照官网 https://google-cartographer-ros.readthedocs.io/en/latest/ 安装及编译。

在确保底盘硬件连接正常,gmapping建图功能正常使用后(表明校准等操作都已做好),

步骤 1: 在导航模块中,运行谷歌算法 launch

```
roslaunch cartographer_ros demo_dashgo.launch
```


步骤 2: 在电脑中启动 rviz 观察建图情况

```
$ export ROS_MASTER_URI=http://192.168.31.200:11311
$ roslaunch dashgo_rviz view_navigation.launch
```

步骤 3: 手机控制底盘行走建图,谷歌算法建图,需要来回扫描,保存地图

远程进入导航模块,并进入地图目录,运行指令保存地图

```
$ ssh eaibot@192.168.31.200
$ roscd dashgo_nav/maps
$ rosrun map_server map_saver -f eai_map_imu 70
```

保存好地图后, ctl+c 把建图程序关闭

2.6 Sick 雷达建图与导航

Sick 雷达参数介绍

参数文件路径:/opt/ros/kinetic/share/sick_tim/launch/ sick_eai.launch

```
<param name="min_ang" type="double" value="-1.57" />
<param name="max_ang" type="double" value="1.57" />
```

雷达的扫描角度为-1.57~1.57 弧度(即-90~90 度)共 180 度,根据实际情况,最大只支持 270 度扫描角度

<param name="range_max" type="double" value="25.0" />
sick 雷达最大扫描距离

```
<param name="hostname" type="string" value="192.168.31.201" />
   <param name="port" type="string" value="2112" />
   <param name="timelimit" type="int" value="5" />
```

设置 sick 雷达通过网口把数据传给导航模块,并指定雷达 ip 为 192.168.31.200,与导航模块 ip 必须在同一个网段,sick 雷达的 ip 地址需要在 windows 下用 sick 官网软件设置,具体请参考 sick 官网资料

```
<node pkg="tf" type="static_transform_publisher" name="base_link_to_laser_sick"
args="0.2245 0.0 0.28 0.08 0.0 0.0 /base_footprint /sick_laser 40" />
```

设置 sick 雷达与底盘坐标系的 tf 转换关系,校准方法与 eai 雷达一样

参数文件路径: dashgo_ws/src/dashgo/dashgo_nav/launch/include/sick/imu/gmapping_base.launch

Sick 雷达的建图与导航参数


```
<param name="maxUrange" value="20.0"/>
<param name="maxRange" value="22.0"/>
```

Sick 雷达 gmapping 建图的扫描距离,不能都设置成 25.0

Sick 雷达建图导航使用

注意: 1.sick 雷达使用前, 必须进行 tf 坐标系校准 (方法与 F4 雷达校准一样)

2.默认 sick 雷达使用带陀螺仪建图与导航,根据情况可修改是否带陀螺仪

进入导航模块中,运行 sick 雷达建图 launch,该 launch 默认启动带陀螺仪建图

```
$ ssh eaibot@192.168.31.200
$roslaunch dashgo_nav sick_gmapping_imu.launch
```

打开另一个终端,在 ubuntu pc 中运行 rviz 观察地图

```
$ export ROS_MASTER_URI=http://192.168.31.200:11311
```

\$ roslaunch dashgo_rviz view_navigation.launch

手机控制底盘行走,建好地图后,保持以上程序正常运行,打开另外一个终端,远程进导航模块,把地图保存在导航模块的 dashgo_nav/maps 目录中,

```
$ ssh eaibot@192.168.31.200
$ roscd dashgo_nav/maps/
$ rosrun map_server map_saver -f eai_map_imu
```

地图保存好后,ctrl+c 退出建图程序,在导航模块中启动 sick 导航 launch

```
$roslaunch dashgo_nav sick_navigation_imu.launch
```

打开另一个终端,在 ubuntu pc 中运行 rviz 观察地图

```
$ export ROS_MASTER_URI=http://192.168.31.200:11311
```

\$ roslaunch dashgo_rviz view_navigation.launch

设置好起点位置,然后设置目标点开始导航.

COPYRIGHT 2015-2017 EAI TEAM

2.7 深度摄像头导航避障

深度摄像头参数及校准

目前 E1 支持奥比中光深度摄像头导航避障,具体参数调试如下:

```
参数文件路径: ~/package_ws/src/astra_ros/ros_astra_launch-master/launch
```

```
<node pkg="tf" type="static_transform_publisher" name="base_link_to_camera"
args="0.15 0.0 0.75 0.08 0.26 0.0 /base_footprint /camera_link 40" />
```

摄像头与底盘的 tf 转换关系

在导航模块中,启动单独摄像头的 launch:

```
roslaunch astra_launch astra.launch
```

然后在 rviz 中显示彩色点云,添加类型为 PointClound2 的 topic,参数 topic 设置为 /camera/depth_registered/points, color transformer 设置为 rgb8,根据 rviz 中现实的图像可 判断上述 tf 是否修改准确。

深度摄像头导航避障

在导航模块中,启动带有摄像头导航的 launch:

```
roslaunch dashgo_nav navigation_astra_imu_2.launch
```

在电脑 ubuntu 中运行 rviz,并添加 PointCloub2 选择为/camera/depth_registered/points

\$ export ROS_MASTER_URI=http://192.168.31.200:11311

\$ roslaunch dashgo_rviz view_navigation.launch

COPYRIGHT 2015-2017 EAI TEAM

如图所示,摄像头会把看到的障碍物设置成多层的 costmap, 并让机器人导航时, 避开这些障碍物。

修订历史

日期	内容
2018-4-20	初稿