Ok, so but us focus (for a while!) on

MONOMIAL IDEALS

(following Miller-Shrmfels)

A monomial ideal I C [F[x]=F[x,...,xn]

If one generated by monomials:

I = < xa, ..., xan>

There is a unique mind. generating set. It is finite.

[Square-Free Monomial IDEALS] (Stanley-Reisner)

xa is squarfied if each 0; E { 0,1}

I is squarfied if its generators are

Ex. $I = \langle ad, ae, bcd, be, ce, de \rangle$ in IF[0,5,cd,e] let $\Delta_z = \{ supports of squaree monomial not in I \}$ Here $\Delta_z = \{ 1, 9, 6, qd, e, ab, ac, bc, bd, cd, abc \}$ are the faces of the simplicial complex

Def An abstract simplical complex on E-11

a collection F of subsets of E "faces/simplices" wh

(GEF) => FCF Say dim F= 1F1-1.

Mink: points, lines, throngles, tetrahodra, ..., simplice glud along their common face.

Thesem

There is a bijection

(simplicial complexes) \leftrightarrow (squartee monomial)
on tn1 (deals in IF[x,...xn])

Pf.

Glien Δ a simplicial complex let

In= (xi, "Xix | {i, ..., ik} & D>

Given an ideal I, let

 $\Delta(\mathbf{I}) = \{\{(i_1, \dots, (i_n) \mid X_{i_1} \dots X_{i_n} \notin \mathbf{I}\} \mid (a \text{ s.c.})\}$

These are dearly inverse of each other

Def ID = Stanley-Deirner ideal of D

R/ID = Stanley-Deirner ring of D

Let mt = (XiliET) for TC [n]. (prime ideal)

Pf. \subseteq Let $X_{\Gamma} = T_{i\in T} \times i$ be a gen. of LHS, $T \notin \Delta$. Sup $X_{\Gamma} \notin M^{[n]-\sigma} = \langle X_{\alpha_1} ..., X_{\alpha_k} \rangle$ $\sigma \in \Delta$ Then $\alpha_1 \notin T_1 ..., \alpha_k \notin T_1$, so $[n]-\sigma \subset [n]-r$ so $T \subseteq \sigma$ $\Rightarrow \langle =$

2: RHS is monomial.

A monomial $x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$ is in RHS iff

iff $\{i_1, \dots, i_k\}$ contains an elt of all interpolation = 1 of $\{i_1, \dots, i_k\} \notin \mathcal{T}$ for all $\sigma \in \Delta$.

Ex ¿ · e

 I_{Λ} : $\langle ad, ae, bcd, be, ce, de \rangle$ (min) non-fermion = $\langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, ge \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, ge \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, ge \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, ge \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, b, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, g, d \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a, g, e \rangle$ $= \langle d, e \rangle \cap \langle a, g, e \rangle \cap \langle a$

Note If IF is infinite, the following are in byection:

- o simplicial complexe on [n]
- O Squarher monomial deals in IF[X1...Xn]
- Unions of Coordinate subspaces in IF"
 (In ex, subspaces ou abo, cd, bd, e.)