Aprendizaje automatizado

MODELOS GRÁFICOS PROBABILISTAS

Gibran Fuentes-Pineda Marzo-Abril 2023

Distribución conjunta completa

- Contiene toda la información necesaria para obtener cualquier probabilidad.
- · Por ejemplo

	Do = Sí		Do = No	
	De = Sí	De = No	De = Sí	De = No
Ca = Si	0.108	0.012	0.072	0.008
Ca = No	0.016	0.064	0.144	0.576

Ejemplo de AIMA (Russel y Norvig 2009)

Cálculo de probabilidades marginales

- Para obtener una probabilidad marginal a partir de las probabilidades conjuntas aplicamos la regla de la suma.
- · Por ejemplo

$$P(Ca = Si) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

	Do = Sí		Do = No	
	De = Sí	De = No	De = Sí	De = No
Ca = Sí	0.108	0.012	0.072	0.008
Ca = No	0.016	0.064	0.144	0.576

Ejemplo de AIMA (Russel y Norvig 2009)

Cálculo de probabilidades condicionales

- Para obtener una probabilidad condicional a partir de la distribución conjunta aplicamos la regla del producto.
- · Por ejemplo

$$P(Ca = Si|Do = Si) = \frac{P(Ca = Si, Do = Si)}{P(Do = Si)}$$
$$= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.2$$

	Do = Sí		Do = No	
	De = Sí	De = No	De = Sí	De = No
Ca = Sí	0.108	0.012	0.072	0.008
Ca = No	0.016	0.064	0.144	0.576

Número de parámetros para distribución conjunta

 ¿Cuántas probabilidades tenemos que calcular si agregamos la variable discreta Te con 10 posibles valores?

Número de parámetros para distribución conjunta

- ¿Cuántas probabilidades tenemos que calcular si agregamos la variable discreta Te con 10 posibles valores?
- Crecimiento exponencial: por ej. para n variables discretas de K valores sería Kⁿ

Número de parámetros para distribución conjunta

- ¿Cuántas probabilidades tenemos que calcular si agregamos la variable discreta Te con 10 posibles valores?
- Crecimiento exponencial: por ej. para n variables discretas de K valores sería Kⁿ
- Los modelos gráficos reducen la complejidad factorizando la distribución conjunta en distribuciones condicionales y aprovechando las relaciones de independencia

Modelos gráficos probabilistas

 Define una familia de distribuciones conjuntas de probabilidad sobre un conjunto de variables aleatorias

Grafo dirigido

Grafo no dirigido

Redes bayesianas

- Nodos representan variables aleatorias
- Aristas representan dependencias entre variables aleatorias
- · La red representa relaciones causa-efecto
- Aprovecha independencias para especificar de forma compacta la distribución conjunta completa
 - Las aristas corresponden a dependencias directas entre variables
 - La ausencia de aristas captura las independencias absolutas y condicionales

Representación, inferencia y aprendizaje

- Representación: especificación de variables aleatorias y sus dependencias e independencias
- Inferencia: consulta de probabilidades en la red dado el modelo y ciertas evidencias
- Aprendizaje: obtener la topología y/o los parámetros de las distribuciones de la red a partir de ejemplos

Representación

- Estructura del grafo: variables aleatorias y dependencias e independencias
- Distribución conjunta se expresa por la distribución condicional de cada nodo dados sus padres (factorización)

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d p(x_i|Padres(x_i))$$

Ejemplo: cáncer

Ejemplo de BAI (Korb y Nicholson 2010)

Ejemplo: cáncer

Ejemplo de BAI (Korb y Nicholson 2010)

Ejemplo: cáncer visto de otra manera

Ejemplo de BAI (Korb y Nicholson 2010)

Ejemplo: cáncer visto de otra manera

Ejemplo de BAI (Korb y Nicholson 2010)

Mapa I y mapa D

- Mapa-I: No hay dependencias directas en la distribución conjunta que no estén especificadas en el grafo explícitamente
- Mapa-D: Todas las aristas en el grafo corresponden a dependencias directas en la distribución conjunta
- Mapa perfecto: Modelo gráfico con mapa-I y mapa-D

Recordando la independencia condicional

· La variable aleatoria x es independiente de y dado z si

$$P(x,y|z) = P(x|z)P(y|z)$$

$$P(x|y,z) = P(x|z)$$

· La independencia condicional se denota con el símbolo ⊥

$$X \perp \!\!\!\perp y \mid Z$$

Independencia condicional: cadenas causales

Independencia condicional: cadenas causales

Independencia condicional: causas comúnes

Independencia condicional: causas comúnes

Dependencia condicional: efectos comúnes

Dependencia condicional: efectos comúnes

Caminos

 Secuencia de nodos entre un miembro de X y un miembro de Y tal que cada par de nodos adyacente está conectado por una arista sin importar la dirección

Caminos bloqueados

- Dado un conjunto de nodos Z, se dice que el camino está bloqueado si hay un nodo z para el cual se cumple al menos que
 - z está en Z y tiene una arista sobre el camino entra y la otra sale (cadena)

Caminos bloqueados

- Dado un conjunto de nodos Z, se dice que el camino está bloqueado si hay un nodo z para el cual se cumple al menos que
 - z está en Z y tiene una arista sobre el camino entra y la otra sale (cadena)
 - · z está en Z y ambas aristas salen (causa común)

Caminos bloqueados

- Dado un conjunto de nodos Z, se dice que el camino está bloqueado si hay un nodo z para el cual se cumple al menos que
 - z está en Z y tiene una arista sobre el camino entra y la otra sale (cadena)
 - · z está en Z y ambas aristas salen (causa común)
 - z ni sus descendientes está en Z y ambos caminos entran a z (efecto común)

Separación D: ejemplo

Tomada de PRML (Bishop 2009)

Tomada de PRML (Bishop 2009)

Cobija de Markov

• Conjunto de nodos Y que hacen un nodo x independiente de cualquier otro nodo z en el grafo: padres, hijos y otros padres de hijos

$$P(x|Y,z) = P(x|Y)$$

Tomada de PRML (Bishop 2009)

Inferencia en modelos gráficos

Exacta

- · Intratable para distribuciones y topologías generales
- Eficiente para algunas topologías (por ej. árboles, poliárboles, etc.)
- · Eliminación de variables, propagación de creencias, etc.

· Aproximada

- · Muestreo directo
- · Muestreo por rechazo
- · Pesado de verosimilitud
- · Montecarlo por cadenas de markov

· Diagnóstico

Predictiva

· Intercausal (justificación)

· Combinada

Tipos de evidencia

• Específica: la variable toma un valor particular (por ej. el paciente es fumador)

Tipos de evidencia

- Específica: la variable toma un valor particular (por ej. el paciente es fumador)
- Negativa: la variable puede tomar un subconjunto de valores, descartando los demás (por ej. la polución no es alta o la polución es baja o media)

Tipos de evidencia

- Específica: la variable toma un valor particular (por ej. el paciente es fumador)
- Negativa: la variable puede tomar un subconjunto de valores, descartando los demás (por ej. la polución no es alta o la polución es baja o media)
- Evidencia virtual: existe incertidumbre sobre el valor de la variable (por ej. 80 % seguro que los rayos X son positivos)

Árboles

- Grafo donde existe un camino único entre cualquier par de nodos
- · Para grafos dirigidos: cada nodo tiene un sólo padre

Tomada de PRML (Bishop 2009)

Poliárboles

 Grafos dirigidos con nodos con más de un padre pero tienen un camino único entre cualquier par de nodos

Conexiones únicas

Conexiones múltiples

