Chapter3 运输规划(Transportation Problem)

本章主要内容:

- 运输规划问题的数学模型
- 表上作业法
- 运输问题的应用

例3.1 某公司从两个产地 A_1 、 A_2 将物品运往三个销地 B_1 , B_2 , B_3 ,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?

	B1	B2	В3	产量
A 1	6	4	6	200
A2	6	5	5	300
销量	150	150	200	

解:产销平衡问题:总产量=总销量=500

设 x_{ij} 为从产地 A_i 运往销地 B_i 的运输量,得到下列运输

量表:

	B1	B2	В3	产量
A1	X ₁₁	X ₁₂	X ₁₃	200
A2	X ₂₁	X ₂₂	X ₂₃	300
销量	150	150	200	

Min C =
$$6x_{11} + 4x_{12} + 6x_{13} + 6x_{21} + 5x_{22} + 5x_{23}$$

s.t. $x_{11} + x_{12} + x_{13} = 200$
 $x_{21} + x_{22} + x_{23} = 300$
 $x_{11} + x_{21} = 150$
 $x_{12} + x_{22} = 150$
 $x_{13} + x_{23} = 200$
 $x_{ii} \ge 0$ (i = 1, 2; j = 1, 2, 3)

运输问题的一般形式:产销平衡

 A_1 、 A_2 、…、 A_m 表示某物资的m个产地; B_1 、 B_2 、…、 B_n 表示某物质的n个销地; a_i 表示产地 A_i 的产量; b_j 表示销地 B_j 的销量; c_{ij} 表示把物资从产地 A_i 运往销地 B_j 的单位运价。设 x_{ij} 为从产地 A_i 运往销地 B_j 的运输量,得到下列一般运输量问题的模型:

$$\min \ z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
\begin{cases} \sum_{j=1}^{n} x_{ij} = a_{i} & i = 1, \dots, m \\ \\ \sum_{j=1}^{m} x_{ij} = b_{j} & j = 1, \dots, n \\ \\ x_{ij} \ge 0, & i = 1, \dots, m; j = 1, \dots, n \end{cases}$$

已知资料如下:

 c_{ij} 为 A_{ij} 到 B_{ij} 的单位运价

销地产地	B ₁	B ₂	 B _n	产量
A_1 A_2	c ₁₁	C ₁₂	 C _{1n}	a ₁ a ₂
 A _m	 C _{m1}	 C _{m2}	 C _{mn}	a _m
销量	b ₁	b ₂	 b _n	$\sum_{i=1}^{m} a_i = \sum_{j=i}^{n} b_j$

产销平衡

当产销平衡时, 其模型如下:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{ij} x_{ij} = a_i \\ \sum_{ij} x_{ij} = b_j \end{cases} \quad (\sum_{ij} a_i = \sum_{ij} b_i)$$

$$x_{ij} \ge 0$$

当产大于销时,其模型如下:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{ij} x_{ij} \leq a_{i} \\ \sum_{ij} x_{ij} = b_{j} \end{cases} (\sum_{ij} a_{i} > \sum_{ij} b_{j})$$

$$x_{ij} \geq 0$$

当产小于销时,其模型如下:

$$egin{aligned} \min Z &= \sum \sum c_{ij} x_{ij} \ \sum x_{ij} &= a_i \ \sum x_{ij} &\leq b_j \ (\sum a_i &< \sum b_j) \ x_{ij} &\geq 0 \end{aligned}$$
并假设: $a_{ij} \geq 0, b_j \geq 0, c_{ij} \geq 0$

特征:

1、平衡运输问题必有可行解,也必有最优解;

2、运输问题的基本可行解中应包括 m+n-1 个基变量。

运输问题约束条件的系数矩阵

平衡表、运价表合二为一:

销产	B_1	B_2	•••	B _n	产量
A_1	c_{11} x_{11}	c_{12} x_{12}	•••	c_{In} x_{In}	a_1
A_2	c_{21} x_{21}	c_{22} x_{22}	•••	c_{2n} x_{2n}	a_2
ł	:	:	ł	i	ł
A_m	C_m 1 X_{m1}	C_m 2 X_{m2}	•••	C _{mn}	a_m
销量	b_1	b_1	•••	b_n	

运输问题的求解思路

运输规划问题的性质

性质 1. 运输问题的 m+n 个约束只有 m+n-1个是独立的。

证明: 因为
$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij}$$
,

且任意 m+n-1个约束是独立的。

运输规划问题的性质

性质 2. 运输问题一定有可行解。

证明: 记
$$M = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$
,令 $x_{ij} = \frac{1}{M} a_i b_j$,则 $x_{ij} \ge 0$

$$\mathbb{E} \sum_{j=1}^{n} x_{ij} = \frac{1}{M} a_i \sum_{j=1}^{n} b_j = a_i , \quad i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = \frac{1}{M} b_j \sum_{i=1}^{m} a_i = b_j , \quad j = 1, 2, \dots, n .$$

由于目标值有下界零,性质2表明运输问题一定有最优解,用单纯形算法求解运输问题可以在下面的运输表格上实现。

运输规划问题的性质

产 销 地	1	• • •	j	•••	n	供应量
1	x_{11} c_{11}	• • •	x_{1j} c_{1j}	•••	x_{1n} c_{1n}	a_1
:	:		:		:	:
i	x_{i1} c_{i1}	• • •	x_{ij} c_{ij}	• • •	x_{in} c_{in}	a_i
•	:		:		•	:
m	x_{m1} c_{m1}	• • •	x_{mj}	•••	x_{mn} c_{mn}	a_{m}
需求量	\boldsymbol{b}_1	• • •	b_{j}	• • •	b_n	

二、表上作业法

计算步骤:

(1) 找出初始调运方案。即在(m×n)产销平衡表上给出 m+n-1个数字格。(最小元素法、西北角法或伏格尔法)

确定m+n-1个基变量

(2) 求检验数。(闭回路法或位势法) 判别是否达到最优解。如已是最优解,则停止计算,否则转到下一步。

空格

- (4) 重复(2)、(3),直到求得最优调运方案。

表上作业法是一种求解运输问题的特殊方法,其实质是单纯形法。

步骤	描述	方法
第一步	求初始基行可行解(初始调运方案)	最小元素法、 西北角法、 伏格尔法
第二步	求检验数并判断是否得到最优解当非基变量的检验数 σ_{ij} 全都非负(求min)时得到最优解,若存在检验数 σ_{ij} <0,说明还没有达到最优,转第三步。	闭回路法或位 势法
第三步	调整运量,即换基,选一个变量出基,对原运量进行调整得到新的基可行解, 转入第二步	

例3.2 某运输资料如下表所示:

单位 销地 运价	B_{1}	B_{2}	B_3	B_4	产量
A_1	3	11	3	10	7
A_2	1	9	2	8	4
A_3	7	4	10	5	9
销量	3	6	5	6	

问: 应如何调运可使总运输费用最小?

1、求初始方案: 最小元素法、西北角法、伏格尔法

方法1: 最小元素法

基本思想是就近供应,即从运价最小的地方开始供应(调运),然后次小,直到最后供完为止。

		\mathbf{B}_1	\mathbf{B}_2		\mathbf{B}_3		B ₄		产量
\mathbf{A}_1		3		11	4	3	3	10	- 7
$\mathbf{A_2}$	3	1		9	1	2		8	_ 4
$\mathbf{A_3}$		7	6	4		10	3	5	_ 9
销量		3		6		5		6	

总的运输费 = $(3 \times 1) + (6 \times 4) + (4 \times 3) + (1 \times 2) + (3 \times 10) + (3 \times 5) = 86$ 元

原则:优先安排单位运费最小的发点与收点之间的运输业务。例.用最小元素法求初始基本可行解

i j	1		2	3	ı	4	供应量	
1	10	15	6		20	11	15	0
2	12		7	15	9	10	25	10
3	5)	14		16	18	5	_0_
需求量	5	1	5	15	5	10		
'	0		0	0				

练习

(2) 西北角法(或左上角法)

原则:优先安排编号小的发点和收点之间的运输业务(运输表格上西北角)。

- (i) 确定西北角变量 $x_{11} = \min\{a_1, b_1\}$;
- (ii) 设 $a_1 = a_1 x_{11}$, $b_1 = b_1 x_{11}$, 若 $a_1 = 0$, 则 划去表格第 1 行,否则划去第 1 列;
- (iii) 对表格余下部分按以上 方法分配运量, 直到需 运输的物资分配完为止。

此法是纯粹的人为的规定,没有理论依据和实际背景,但它易操作,特别适合在计算机上编程计算,因而受欢迎。方法如下:

例3.3 某运输资料如下表所示:

在满足约束条件下尽可能的给最左上角的变量最大值.

所以,初始基可行解为: (8,8,4,8,14)目标函数值Z = 372

练习

最小元素法的缺点是:为了节省一处的费用,有时造成在其他处要多花几倍的运费。

一产地的产品假如不能按最小运费就近供应,就考虑次小运费,这就有一个差额。差额越大,说明不能按最小运费调运时,运费增加越多。

最小元素法:

8	10	3		10
2	5	1	15	20
	15		15	

另一种方法:

8		3	10	10
2	15	1	5	20
	15		15	

方法3: Vogel法

3-3=0

2-1=1

心区

耳

1)从运价表中分别计算出各行和石河河边. 5-4=1 费的差额,并填入该表的最右列和最下行。

	3-	1=7.	\mathbf{B}_3	B ₄	产量	·差(
\mathbf{A}_1	1	8-5=3	3	3-2	=1	0
A ₂		9	2	5	4	1
A_3	9-4=5	4	0	5	9	1
销量		6	5	6		
列差额	2	5	1	3		

2) 再从差值最大的行或列中找出最小运价确定供需关系和供需数量。当产地或销地中有一方数量供应完毕或得到满足时,划去运价表中对应的行或列。

重复1)和2),直到找出初始解为至。

	\mathbf{B}_{1}	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	产量	行差额
\mathbf{A}_{1}	3	11	3	10	7	0
$\mathbf{A_2}$	1	9	2	8	4	1
$\mathbf{A_3}$	7	<u> 4</u>	10	5	9	1
销量	3	6	5	6		
列差额	2	5	1	3		

	B ₁	\mathbf{B}_{2}	B_3	\mathbf{B}_4	产量	行差额
\mathbf{A}_1	3	11	3	10	7	0
$\mathbf{A_2}$	1	9	2	8	4	1
A_3	7	_ 4	10	3 5	0	
3		0			9	1
销量	3	6	5	6		
列差额	2		1	3		

	B ₁	\mathbf{B}_{2}	\mathbf{B}_3	\mathbf{B}_4	产量	行差额
\mathbf{A}_1	3	11	3	10	7	0
$\mathbf{A_2}$	3 1	9	2	8	4	1
A_3	7	4	10	3 5	9	
				<u> </u>		
销量	3	6	5	6		
列差额	1		1	2		

	В	1	\mathbf{B}_2		\mathbf{B}_3		\mathbf{B}_4	产量	行差额
\mathbf{A}_1		3		11	(3	2 10	7	7
$\mathbf{A_2}$	3	1		9		2	8	4	6
\mathbf{A}_3		7		4		10	3 5	9	
销量		3		6	:	5	6		
列差额						1	2		

列	行差额		4	1		,	7	,	7		
差 额	i j	-	1	2	2	3		4	ļ	供应量	
4	1		10		6		20		11	15	
2	2		12		7		9		20	25	
8	3	5	6		14		16		18	5	0
	需求量	,	5	15	5	15	5	10	0		
	' <u> </u>		0								I

列	行差额		1	7	7		
差 额	i j	1	2	3	4	供应量	
5	1	1	0 6	20	11	15	
2	2	1	2 7	15 9	20	25	10
2	3	5	6 14	16	18	5	0
	需求量	5	15	15	10		
		0		0			

列	行差额		8		7		
差 额	i j	1	2	3	4	供应量	
5	1	10	5 6	20	11	15	10
	2	12	10	15	20	25	0
4	3	5 6	14	16	18	5	0
	需求量	5	15	15	10		
		0	5	0			,

表上作业法--求初始基本可行解

例. 用伏格尔法求初始基本可行解

表上作业法--求初始基本可行解

伏格尔法求得的初始基本可行解

i j	1	2	3	4	供应量
1	10	5 6	20	10 11	15
2	12	10 7	15	20	25
3	5 6	14	16	0 18	5
需求量	5	15	15	10	

2、 最优解的判别(检验数的求法)

求检验数的方法有两种:

- ◈ 闭回路法
- ◆ 对偶变量法(位势法)

(1) 闭合回路法:

 σ_{ii} ≥0 (因为目标函数要求最小化)

表格中有调运量的地方为基变量,空格处为非基变量。 基变量的检验数 σ_{ii} = 0,非基变量的检验数 σ_{ii} \geqslant 0。

 σ_{ij} <0表示运费减少, σ_{ij} >0表示运费增加。

闭回路:从空格出发顺时针(或逆时针)画水平(或垂直)直线,遇到填有运量的方格可转90°,然后继续前进,直到到达出发的空格所形成的闭合回路。

调运方案的任意空格存在唯一闭回路。

注: 1. 每一空格有且仅有一条闭回路;

2. 如果某数字格有闭回路,则此解不是可行解。

分析:

$$z=z_0+\sigma_{11}x_{11}+\sigma_{12}x_{12}+\sigma_{21}x_{21}\cdots+\sigma_{mn}x_{mn}$$
 若令 $x_{11}=1,x_{12}=\cdots=x_{mn}=0$ 则 $\sigma_{11}=z-z_0$ —运费的增量

以最小元素法的初始解为例。假设产地 A_1 供应1个单位的物品给销地 B_1 。则解的变化和目标函数的变化如何。

销地 产地	E	B ₁		2	В	3	В	4	产量		
${f A}_1$		4		4		12		4		11	16
11]							6		10		
		2		10		3		9	10		
${f A_2}$	8				2				10		
A		8		5		11		6	22		
$\mathbf{A_3}$			14				8		<i>LL</i>		
销量	8		14		12		14		48		

销地 产地	B ₁		В	2	E	\mathbf{B}_3	В	4	产量
$\mathbf{A_1}$	4			12	10	4		11	16
		2		10	10	3	6	9	
$\mathbf{A_2}$	8								10
$\mathbf{A_3}$		8	4.4	5		11		6	22
tate ==	0		14				8		10
销量	8		8 14		1	2	1	4	48

要保证产销平衡,则

$$x_{11} \rightarrow x_{13} \rightarrow x_{23} \rightarrow x_{21}$$
 称为闭回路 $z - z_0 = 4 - 4 + 3 - 2 = 1, \therefore \sigma_{11} = 1$

销地 产地	\mathbf{B}_{1}			\mathbf{B}_{2}		3 ₃		$\mathbf{B_4}$	产量
${f A_1}$	1	4	2	12	10	4	→ 6	11	16
${f A_2}$	8	2	Î	10	2	3		9	10
${f A_3}$		8	14_	5		11	8	6	22
销量	8		14		12		14		48

$$\sigma_{12} = 12 - 11 + 6 - 5 = 2$$

销地 产地	B ₁		\mathbf{B}_2		F	3 ₃]	B_4	产量
$\mathbf{A_1}$	1	4	(2)	12	10	4	6	11	16
${f A_2}$	8	2	(1)-	10	2	3		9	10
$\mathbf{A_3}$		8	14_	5		11	8	6	22
销量	8	8		4	12		14		48

$$\sigma_{22} = 10 - 3 + 4 - 11 + 6 - 5 = 1$$

销地 产地	B ₁		\mathbf{B}_2	F	3 ₃	В	4	产量
${f A_1}$	1	4	12	1 0	4	→ 6	11	16
$\mathbf{A_2}$	8	2	10	2	3		9	10
$\mathbf{A_3}$	10	8	5		11	8	6	22
销量	8		14	1	12		4	48

$$\sigma_{31} = 8 - 2 + 3 - 4 + 11 - 6 = 10$$

销地 产地	\mathbf{B}_1		\mathbf{B}_2		F	3 ₃	F	3 ₄	产量
$\mathbf{A_1}$	1	4	2	12	10	4	→ 6	11	16
${f A_2}$	8	2	1	10	2	3		9	10
$\mathbf{A_3}$	10	8	14	5	12	11	8	6	22
销量	8		14		12		14		48

$$\sigma_{33} = 11 - 4 + 11 - 6 = 12$$

销地 产地	B ₁		В	B ₂		3	$\mathbf{B_4}$		产量
$\mathbf{A_1}$	1	4	2	12	10	4	~ 6	11	16
${f A_2}$	8	2	1	10	2	3	-(-1)	9	10
${f A_3}$	10	8	14	5	12	11	8	6	22
销量	8		14		12		14		48

$$\sigma_{24} = 9 - 3 + 4 - 11 = -1$$

检验数中有负数,说明原方案不是最优解。

练习

销地 产地	В	B1		2	В	3	В	4	产量
A 1		6		7		5		3	1.4
A1	14	14		<u>(5)</u>		(5)			14
4.2		8		4		2		7	27
A2	8		13		6		9		27
		5		9		10		6	
A3	11		-3		6		13		19
销量	22		13		12		13		

(2) 对偶变量法(位势法)

$$min \ z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$U_{i} \begin{cases} \sum_{j=1}^{n} x_{ij} = a_{i} & (i = 1, \dots, m) \\ \sum_{j=1}^{m} x_{ij} = b_{j} & (j = 1, \dots, n) \\ x_{ij} \ge 0 & (i = 1, \dots, m; j = 1, \dots, n) \end{cases}$$

设其对偶变量为:
$$Y = (u_1, u_2, ..., u_m, v_1, v_2, ..., v_n)$$

标准型运输问题的对偶问题模型为:

$$\max w = \sum_{i=1}^{m} a_i u_i + \sum_{j=i}^{n} b_j v_j$$
$$u_i + v_j \le c_{ij}$$
$$u_{i,v_j}$$
我约束(i=1,2,···,m;j=1,2,···,n)

则运输问题变量x_{ii}的检验数为:

$$\sigma_{ij} = c_{ij} - z_{ij} = c_{ij} - YP_{ij}$$

$$= c_{ij} - (u_1, u_2, ..., u_m, v_1, v_2, ..., v_n)P_{ij}$$

$$= c_{ij} - (u_i + v_j)$$

因为运输问题有一个约束是多余的,应删去,相应地,对偶问题中应删去一个变量,于是令该变量取值为 0,比如 $u_1 = 0$ 。

由于基变量的检验数为 0,得 m+n-1个方程:

 $\sigma_{ij} = c_{ij} - u_i - v_j = 0$ $(x_{ij}$ 是基变量), 由于 $u_1 = 0$,这 m + n - 1个方程有 m + n - 1个未知量, 因而可解出 u_i , v_j $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$,

进而可计算出非基变量的检验数,最优性准则要求所有检验数大于等于0。

用位势法对初始方案进行最优性检验的方法:

- 1)在给定初始解的表上增加一行和一列,在列中填入 \mathbf{u}_i ,在行中填入 \mathbf{v}_i 。
- 2) 令 $u_1 = 0$, 再按 c_{ij} -($u_i + v_j$)=0 (基变量的 c_{ij} 求出其余的 u_i 与 v_j 。
- 3) 由 $\sigma_{ij}=C_{ij}$ -(u_i+v_j),求出非基变量的检验数。

	B ₁	\mathbf{B}_2	B_3	B ₄	u _i
$\mathbf{A_1}$	3	11	4 3	3 10	\mathbf{u}_1
$\mathbf{A_2}$	3 1	9	1 2	8	u ₂
$\mathbf{A_3}$	7	6 4	10	3 5	\mathbf{u}_3
V _j	$\mathbf{v_1}$	v ₂	v ₃	$\mathbf{v_4}$	

注意: 基变量的检验数 $\sigma_{ij} = C_{ij} - (u_i + v_j) = 0$

		B ₁		B ₂		B ₃		\mathbf{B}_4		u _i	<u> </u>	
	\mathbf{A}_{1}		3		11	4	3	3	10	0	\$u ₁ =0	
	$\mathbf{A_2}$	3	1		9	1	2		8	-1	$\mathbf{u_2} + \mathbf{v_3} = 2$	
	\mathbf{A}_3		7	6	4		10	3	5	-5	$u_3 + v_4 = 5$	
	v _j	2		9		3	_	10	0			
u	$_{2}+v_{1}=1$		u ₃	$+v_2=4$,		u ₁ +v	₃ =3		$\mathbf{u_1} + \mathbf{v}_2$	₄ =10	
	$u_1 + v_1$	$_{3}=3$	3,	\boldsymbol{u}_1 -	+ v	₄ = 1	lO,	\boldsymbol{u}_2	+	$v_1 = 1$		
	$u_2 + v_3 = 2$, $u_3 + v_2 = 4$, $u_3 + v_4 = 5$											
	$u_1 = 0$											

$$\sigma_{12} = c_{12} - (u_1 + v_2) = 11 - (0 + 9) = 2$$

当存在非基变量的检验数 σ_{ij} $\sigma_{24}=c_{24}-(u_2+v_4)=8-(10-1)=-1$ 为最优方案,否则目标成本

表上作业法---解的改进迭代

3、解的改进

——闭合回路调整法(原理同单纯形法一样)

当在表中空格处出现<mark>负检验数</mark>时,表明未得最优解。若有两个或两个以上的负检验数时,一般选用其中最小的负检验数,以它对应的空格为调入格,即以它对应的非基变量为换入变量。做一闭合回路。

解的改进的具体步骤:

(1) 确定换入基的变量: 当存在非基变量的检验数 σ_{kl} <0 且 σ_{kl} =min $\{\sigma_{ij}\}$ 时,以 X_{kl} 为换入变量,找出它在运输表中的闭合回路。

接上例:
$$\min_{i,j} (\sigma_{ij} < 0) = \int_{pq} X_{pq} = X_{24}$$
 为换入变量

	B ₁		B ₂		\mathbf{B}_3	3		\mathbf{B}_4			u _i
$\mathbf{A_1}$	(1)	3	(2)	11	3	4	3	7	2	10	0
$\mathbf{A_2}$	3	1	(1)	9	4	' 4	2	(-1)	(1	8	-1
$\mathbf{A_3}$	(10)	7	6	4	(1)	2)	10	4	3	5	-5
V _j	2		9		3		10				

(2) 顶点编号: 以空格(A_k , B_l)(或进基变量 x_{ik}) 为第一个奇数顶点,沿闭回路的顺(或逆)时针方向前进,对闭回路上的顶点依次编号。

换出变量X₂₃

(2) 顶点编号: 以空格(A_k , B_l)(或进基变量 x_{ik}) 为第一个奇数顶点,沿闭回路的顺(或逆)时针方向前进,对闭回路上的顶点依次编号。

(3)确定换出基的变量:在该闭回路上,从所有偶数号格点的调运量中选出最小值 $\theta = \min x_{ij}$ 的顶点(格子),以该格子中的变量为换出变量。

$$\theta = \min\{x_{23}, x_{14}\} = \min\{1, 3\} = 1$$

- (4)确定新的运输方案: 以换出变量的运输量为调整量 θ ,将该闭回路上所有奇数号格的调运量加上调整量 θ ,所有偶数号格的调运量减去 θ ,其余的不变,这样就得到一个新的调运方案。该运输方案的总运费比原运输方案减少,改变量等于换出变量的检验数。
- (5)然后,再对得到的新解进行最优性检验,加不是最优解,就重复以上步骤继续进行调整,一直到得出最优解为止。

	B ₁		B ₂		B ₃		B ₄		u _i
\mathbf{A}_1		3		11	4 (+1)	3	3	10	0
$\mathbf{A_2}$	3	1		9	(-1)	2	(+	8	-1
$\mathbf{A_3}$		7	6	4	(-,	10	3	5	-5
$\mathbf{v_j}$	2	2		9		3		0	

	B ₁		B ₂		B ₃		\mathbf{B}_4		u _i
\mathbf{A}_1		3		11	5	3	2	10	0
$\mathbf{A_2}$	3	1		9		2	1	8	-2
$\mathbf{A_3}$		7	6	4		10	3	5	-5
V _j	3		9		3		10)	

重新求所有非基变量的检验数:

	B ₁		\mathbf{B}_2		\mathbf{B}_3		B ₄		u _i
$\mathbf{A_1}$	(0)	3	(2)	11	5	3	2	10	0
$\mathbf{A_2}$	3	1	(2)	9	(1)	2	1	8	-2
$\mathbf{A_3}$	(9)	7	6	4	12)	10	3	5	-5
v _j	3	3		9		3		10	

当所有非基变量的检验数均非负时,则当前调运方案即为最优方案,如表此时最小总运费:

$$Z = (1 \times 3) + (4 \times 6) + (3 \times 5) + (2 \times 10) + (1 \times 8) + (3 \times 5) = 85\pi$$

表上作业法的计算步骤:

求解下面的运输问题——求初始解

i	1			2	3		۷	1	供应量	u _i
1	5	10	10	6	12	20	- 8	11	15	0
2	1	12	5	7	15	9	5	20	25	1
3	-3	6	9	14	9	16	5	18	5	-1
需求量	5		15		15		10			
v_j	1	0	ı	6	8		19			

$$u_1 + v_1 = 10$$
, $u_1 + v_2 = 6$, $u_2 + v_2 = 7$
 $u_2 + v_3 = 9$, $u_2 + v_4 = 20$, $u_3 + v_4 = 18$
 $u_1 = 0$

 x_{14} 的检验数为负,且最小 ,故以 x_{14} 为进基变量

i j	1	2	3	4	
1	5 10	10 6	12	* 11 -8	
2	1	5 7	15	5 20	
3	-3	9 14	9	5 18	

 $\theta = 5$, x_{24} 为出基变量

i j	1	2	3	4	供应量	u _i
1	5 10	5 6	12	5 11	15	0
2	1	10 7	15	8	25	1
3	<u>*</u> 6	1	16	5 18	5	7
需求量	5	15	15	10		
v_{j}	10	6	8	11		

以 x_{31} 为进基变量 $\theta = 5$, x_{11} 为出基变量

i	1		2		3	3		4	供应量	ui
1	11	10	5	6	12	20	10 11		15	0
2	11	12		7		9		20	25	1
	12		10	4.4	15	1.0	8	10	23	•
3	5	6	1	14	1	16	0	18	5	7
需求量	5		15		15		10			
v_{j}	-1	-1		6		8		1		

已为最优解。

表上作业法计算中的问题:

- (1) 若运输问题的某一基可行解有多个非基变量的检验数为负,在继续迭代时,取它们中任一变量为换入变量均可使目标函数值得到改善,但通常取 σ_{ij} <0中最小者对应的变量为换入变量。
 - (2) 无穷多最优解

产销平衡的运输问题必定存最优解。如果非基变量的 σ_{ij} = 0,则该问题有无穷多最优解。

如上例: σ_{11} 的检验数是 0,经过调整,可得到另一个最优解。

如下例中 σ_{11} 检验数是0,经过调整,可得到另一个最优解。

	B ₁		B ₂		\mathbf{B}_3		B	4		u _i
$\mathbf{A_1}$	(+2) ((0)	3	(2)	11	5	3	(-2	²⁾	10	0
$\mathbf{A_2}$	(-2) 3	1	(2)	9	(1)	2	(+2	2)1	8	-2
$\mathbf{A_3}$	(9)	7	6	4	12)	10		3	5	-5
v _j	3	3		9		3		10		

如下例中 σ_{11} 检验数是0,经过调整,可得到另一个最优解。

	\mathbf{B}_1		$\mathbf{B_2}$		\mathbf{B}_3		$\mathbf{B_4}$		u _i
\mathbf{A}_{1}	2	3	(2)	11	5	3	(0)	10	0
${f A_2}$	1	1	(2)	9	(1)	2	3	8	-2
A_3		7	6	4		10	3	5	-5
$\mathbf{v_j}$	3		9			3		10	

(2) 退化解:

- ※ 表格中一般要有(m+n-1)个数字格。但有时在分配运量时则需要同时划去一行和一列,这时需要补一个0,以保证有(m+n-1)个数字格作为基变量。一般可在划去的行和列的任意空格处加一个0即可。
- ※ 利用进基变量的闭回路对解进行调整时,标有负号的最小运量(超过2个最小值)作为调整量θ,选择任意一个最小运量对应的基变量作为出基变量,并打上"×"以示作为非基变量。

表上作业法

例: 用最小元素法求初始可行解

销地 产地	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	产量
$\mathbf{A_1}$	X 3	× 11	1 4	6 4	7
$\mathbf{A_2}$	× 7	× 7	4 3	× 8	4
$\mathbf{A_3}$	3 1	6 2	× 10	0 6	9
销量	3	6	5 6		20

在 x_{12} 、 x_{22} 、 x_{33} 、 x_{34} 中任选一个变量作为基变量,例如选 x_{34}

一、产销不平衡的运输问题

当总产量与总销量不相等时,称为不平衡运输问题,这类运输问题在实际中常常碰到,它的求解方法是将不平衡问题 化为平衡问题再按平衡问题求解。

ullet 当产大于销时,即: $\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$

数学模型为:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
\begin{cases} \sum_{j=1}^{n} x_{ij} \le a_{i} & i = 1, 2, \dots, m \\ \sum_{j=1}^{m} x_{ij} = b_{j} & j = 1, 2, \dots, n \\ x_{ij} \ge 0, \quad i = 1, 2, \dots, m; j = 1, 2, \dots, n \end{cases}$$

由于总产量大于总销量,必有部分产地的产量不能全部运送 完,必须就地库存,即每个产地设一个仓库,假设该仓库为 一个虚拟销地 B_{n+1} , b_{n+1} 作为一个虚设销地 B_{n+1} 的销量(即库 存量)。各产地 A_i 到 B_{n+1} 的运价为零,即 $C_{i,n+1}=0$,(i=1, ..., m)。则平衡问题的数学模型为:

$$\mathbf{min} \ Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 具体求解时在运价表右 $\sum_{j=1}^{n+1} x_{ij} = a_i$ $i = 1, 2, \cdots, m$ 增加一列 B_n 运价为零,第 $\sum_{i=1}^{m} x_{ij} = b_j$ $j = 1, 2, \cdots, n+1$ $x_{ij} \geq 0, i = 1, 2, \cdots m$; $j = 1, 2, \cdots$

具体求解时,只 在运价表右端 增加一列 B_{m1} , 运价为零,销量

• 当销大于产时,即: $\sum_{i=1}^{m} a_i < \sum_{j=1}^{n} b_j$ 数学模型为:

$$egin{aligned} \min Z &= \sum_{i=1}^m \sum_{j=1}^n C_{ij} x_{ij} \ &\sum_{j=1}^n x_{ij} = a_i \quad i = 1, 2, \cdots, m \ &\sum_{i=1}^m x_{ij} \leq b_j \quad j = 1, 2, \cdots, n \ &x_{ij} \geq 0, i = 1, 2, \cdots, m; j = 1, 2, \cdots, \end{aligned}$$

由于总销量大于总产量,故一定有些需求地不完全满足,这时虚设一个产地Am+1,产量为:

$$\sum_{j=1}^n b_j - \sum_{i=1}^m a_i$$

销大于产化为平衡问题的数学模型为:

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
\begin{cases} \sum_{j=1}^{n} x_{ij} = a_{i} & i = 1, 2, \dots, m+1 \\ \sum_{j=1}^{m+1} x_{ij} = b_{j} & j = 1, 2, \dots, n \\ x_{ij} \ge 0, i = 1, 2, \dots, m+1; \quad j = 1, 2, \dots, n \end{cases}$$

具体计算时,在运价表的下方增加一行 A_{m+1} ,运价为零。产量为 a_{m+1} 即可。

例3.4 求下列表中极小化运输问题的最优解。

	\mathbf{B}_{1}	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	a_i
\mathbf{A}_{1}	5	9	2	3	60
$\mathbf{A_2}$		4	7	8	40
$\mathbf{A_3}$	3	6	4	2	30
$\mathbf{A_4}$	4	8	10	11	50
b_{j}	20	60	35	45	180 160

因为有:
$$\sum_{i=1}^{4} a_i = 180 > \sum_{j=1}^{4} b_j = 160$$

所以是一个产大于销的运输问题。表中 A_2 不可达 B_1 ,用一个很大的正数M表示运价 C_{21} 。虚设一个销量为 b_5 =180-160=20, C_{i5} =0,i=1,2,3,4,表的右边增添一列,得到新的运价表。

	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_{5}	a_i
$\mathbf{A_1}$	5	9	2	3	0	60
$\mathbf{A_2}$	M	4	7	8	0	40
$\mathbf{A_3}$	3	6	4	2	0	30
$\mathbf{A_4}$	4	8	10	11	0	50
b_{j}	20	60	35	45	20	180

用前面的方法求运输方案:

下表为计算结果。可看出:产地A₄还有20个单位没有运出。

	\mathbf{B}_{1}	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	B_5	$\mathbf{A_i}$
$\mathbf{A_1}$			35	25		60
$\mathbf{A_2}$		40				40
$\mathbf{A_3}$		10		20		30
$\mathbf{A_4}$	20	10			20	50
$\mathbf{B}_{\mathbf{j}}$	20	60	35	45	20	180

例3.5 某市有三个造纸厂 A_1 , A_2 , A_3 , 其纸的产量分别为8, 5和9个单位,有4个集中用户 B_1 , B_2 , B_3 , B_4 , 其需用量分别为4, 3, 5和6个单位。由各造纸厂到各用户的单位运价如表3—14所示,请确定总运费最少的调运方案。

销地 产地	B_1 B_2 B		$\mathbf{B_3}$	\mathbf{B}_4	产量
$\mathbf{A_1}$	3	12	3	4	8
$\mathbf{A_2}$	11	2	5	9	5
$\mathbf{A_3}$	6	7	1	5	9
销量	4	3	5	6	

解:由于总产量22大于总销量18,故本问题是个产销不平衡运输问题。增加一假想销地 B_5 ,用表上作业法求解。

销地 产地	B ₁	\mathbf{B}_2	\mathbf{B}_3	$\mathbf{B_4}$	B ₅ (贮存)	产量
$\mathbf{A_1}$	3	12	3	4	0	8
$\mathbf{A_2}$	11	2	5	9	0	5
$\mathbf{A_3}$	6	7	1	5	0	9
销量	4	3	5	6	4	

销地 产地	В	1	В	2	В	3	E	B ₄	B ₅ (见	ᆣ存)	产量
A		3		12		3		4		0	o
$\mathbf{A_1}$	4		18		6		3		4		8
A		11		2		5		9		0	5
$\mathbf{A_2}$	0		3		0		2		-8		5
A		6		7		1		5		0	0
$\mathbf{A_3}$	-2		9		5		4		-4		9
销量	۷	1	3	3	5	5		6	4		

二. 转运问题

产地生产的产品不一定直接运到销地,而是先运往几个产品集散地集中,再转运至各销地,这些产品集散地(转运点)可能是专门的转运站,也可能就是某几个产地或销地,这类运输问题称为转运问题。

以 A_1, A_2, \dots, A_m 表示产品的发点, B_1, B_2, \dots, B_n 表示产品的收点。

转运点将既是发点,也是收点,而纯粹的产地只是发点,纯粹的销地只是收点。

设 a_i 是 A_i 要发送的产品数量, b_j 是 B_j 要接收的产品数量,则

- A_i 是产地时, a_i = 本地产量 + 转运量, 否则, a_i = 转运量;
- B_j 是销地时, b_i = 本地销量 + 转运量, 否则, b_i = 转运量.
- 注:非转运点的转运量为零,各转运点的转运量是实际发生的转运量的一个上限,由各自的仓储设备、运输条件等决定。

由于转运量同时计算在 a_i 、 b_j 中,所以如果各产地的总产量等于各销地的总销量(即产销平衡),那么

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j ,$$

否则可参照不平衡运输问题处理。

关于运价,可假设同一个转运点间的运价为零。

计算结果中发生在同一个转运点之间的转运实际上不发生,转运量上限减去它之后就是实际的转运量。

例. 产地 A_1 , A_2 的产量皆为 15 吨,销地 B_1 , B_2 的销量也皆为 15 吨, A_1 , B_1 可作为转运点,转运量上限皆为 10 吨,另有转运点 T_1 ,转运量不能超过 20 吨。则运输表格为

收点 发点	A_1	T_1	B ₁	B 2	发量
A_1	0				25
A_2					15
T_1		0			20
<i>B</i> ₁			0		10
收量	10	20	25	15	

三、多品种物资运输问题

发点 E₁ 有某原材料一等品 200 单位、二等品 300 单位, E₂ 有该原材料一等品 100 单位、三等品 150 单位。

收点 F₁ 将该原材料供应三个消费部门:

部门 I 可将三种原材料互相代用,需求量为 150 单位;

部门 II 只用一等品,需求量为 50 单位;

部门 III 只用二或三等品,需求量为 50 单位。

收点 F₂ 将该原材料供应两个消费部门:

部门 i 使用一或二等品,需求量为 200 单位;

部门 ii 只用一等品,需求量为 300 单位。

单位运价:

	$\mathbf{F_1}$	F ₂
\mathbf{E}_1	5	7
$\mathbf{E_2}$	8	6

将 E₁ 拆为两个发点: A₁ 输出一等品 200 单位, A₂ 输出二等品 300 单位。

将 E₂ 也拆为两个发点: A₃ 输出一等品 100 单位, A₄ 输出三等品 150 单位。

类似地,将 F_1 拆为三个收点 B_1 、 B_2 、 B_3 ,分别对应三个消费部门;将 F_2 拆为两个收点 B_4 、 B_5 ,对应两个消费部门。

该问题的产销是不平衡的,如:一等品总产量 300 单位,而需求量至少 50 + 300 = 350 单位;二、三等品总产量 450 单位,而需求量至多 150 + 50 + 200 = 400 单位。

因此引入虚发点 A_5 和虚收点 B_6 ,它们与实际的发点、收点之间的运价很大(为 M),而它们之间的运价为零,这样,只有在实际的发点、收点之间的运输安排不了时才考虑与 A_5 、 B_6 间的运输。

由于事先不知道有多少运量安排不了,因此假设 A5 的输出量和 B6 的需求量足够大(该问题中 750 已足够)。

	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	
$\mathbf{A_1}$	5	5	\	7	7	M	200 一等品
A ₂	5	\	5	7	\	M	300 二等品
A ₃	8	8	\	6	6	M	100 一等品
A 4	8	\	8	\	\	M	150 三等品
A ₅	M	M	M	M	M	0	750
	150 无限制	50 一等品	50 二或三等品	200 一或二等品	300 一等品	750	