Finite Rings

Theorem. Let R be a finite ring with $1 \neq 0$, and let $a \in R$. Then exactly one of the following is true:

- (i). a = 0;
- (ii). a is a unit; or
- (iii). a is a zero divisor.

Examples. \mathbb{Z}_n and \mathbb{Z} .

Finite Rings: Proof

Proof. If a=0 then a is not a zero divisor, and it's also not a unit ($0=0\cdot 0^{-1}=1\neq 0$, contradiction).

So suppose $a \neq 0$.

Define $\phi \colon R \to R$ by $\phi(x) = ax$.

We first consider what happens when ϕ is surjective (onto).

If it's surjective, then there is a $b \in R$ such that $\phi(b) = 1$, so that ab = 1. Then b is a **right multiplicative inverse** of a.

Conversely if a has a right multiplicative inverse b (so that ab = 1), then ϕ is onto. This is because, for all $y \in R$, $\phi(by) = aby = 1y = y$.

Now consider injectivity. If ϕ is *not* injective, then there are $b, c \in R$ such that $b \neq c$ and $\phi(b) = \phi(c)$. Then ab = ac, so a(b-c) = 0. Since $b-c \neq 0$ and $a \neq 0$, a is a zero divisor. Specifically, a is a **left zero divisor**.

Conversely, if a is a left zero divisor, say ab = 0 with $b \neq 0$, then ϕ is not injective, because $\phi(b) = ab = 0 = a0 = \phi(0)$ with $b \neq 0$.

Now, since R is *finite*, we have:

a has a right multiplicative inverse $\iff \phi$ is surjective

 $\iff \phi \text{ is injective}$

 \iff a is not a left zero divisor.

Similarly, letting $\psi \colon R \to R$ be the map $\psi(x) = xa$, we have:

a has a left multiplicative inverse $\iff \psi$ is surjective

 $\iff \psi$ is injective

 \iff a is not a right zero divisor.

Also, if a has both a left inverse b and a right inverse c, then b=c because

$$b = b1 = bac = 1c = c$$
.

So (assuming $a \neq 0$),

a is a unit \iff a has both a left inverse and a right inverse

 \iff a is neither a left zero divisor nor a right zero divisor

 \iff a is not a zero divisor.

[Revisit \mathbb{Z}_n and \mathbb{Z} .]

Corollary. Every finite integral domain is a field.

Proof. It has no zero divisors, so every element is either 0 or a unit.

A Homomorphism $\gamma \colon \mathbb{Z} \to R$

Proposition. Let R be a ring with unity 1, and let $\gamma \colon \mathbb{Z} \to R$ be the unique group homomorphism from \mathbb{Z} to $\langle R, + \rangle$ for which $\gamma(1) = 1$. Then γ is a ring homomorphism.

Proof. First, we have $\gamma(n+m)=\gamma(n)+\gamma(m)$ for all $n,m\in\mathbb{Z}$ (by assumption). Now we show that

$$\gamma(nm) = \gamma(n)\gamma(m)$$

for all $n, m \in \mathbb{Z}$. If n = 0 then it's true because both sides are 0. If n > 0 then we have

$$\gamma(nm) = \gamma(m + \dots + m) = \gamma(m) + \dots + \gamma(m) = (1 + \dots + 1)\gamma(m)$$
$$= (\gamma(1) + \dots + \gamma(1))\gamma(m) = \gamma(1 + \dots + 1)\gamma(m) = \gamma(n)\gamma(m) .$$

(Here all expressions $+\cdots+$ mean repeated addition n times.) Finally, if n<0 then

$$\gamma(nm) = -\gamma(-nm) = -\gamma(-n)\gamma(m) = \gamma(n)\gamma(m)$$
.