AΘHNA 25. 6. 2021

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ "Συστήματα Μικροϋπολογιστών"

(ΘΕΜΑ 3° – ΣΥΝΟΛΟ 2 Μονάδες)

Έναρξη 13:40' - ΔΙΑΡΚΕΙΑ 30' + 10' Παράδοση: 14:20'

	_																				
4	റ		T 🕜	N	ΝТ	•	Т	T	ויי	П			N	T	J	N.	∕ T	C):		
ч	u	м	1	, ''	vi	\rightarrow		г	,		3	Z	١,٦	1	ľ	IV	•		J:		

ΘΕΜΑ 30: (2 ΜΟΝΑΔΕΣ): Σε ένα προσωπικό υπολογιστή, να γραφεί πρόγραμμα σε Assembly μΕ 80x86 που να δέχεται από το πληκτρολόγιο τέσσερις (4) δεκαδικούς αριθμούς (D_3 , D_2 , D_1 , D_0 με τη σειρά αυτή) για να αποτελέσουν δυο μονοψήφιους και ένα διψήφιο δεκαδικό αριθμό και να κάνει τον εξής υπολογισμό: $P = (D_3 + D_2) \times (D_1 \times 10 + D_0)$. Το πρόγραμμα τυπώνει στην οθόνη τα μηνύματα εισόδου και τους εισαγόμενους αριθμούς. Όταν συμπληρωθούν 4 έγκυροι δεκαδικοί αριθμοί να αναμένει τον χαρακτήρα 'H' και μετά να τυπώνει το αποτέλεσμα σε δεκαεξαδική μορφή 3 ψηφίων αν είναι <500Hex, αλλιώς το μήνυμα overf, αυστηρά όπως φαίνεται παρακάτω:

GIVE 1ST NUMBER = 9 GIVE 2ND NUMBER = 7 GIVE 3ND NUMBER = 58 RESULT = 3AO ή RESULT = overf

Να θεωρήσετε δεδομένες τις μακροεντολές (σελ. 361-2, 373) του βιβλίου και μπορείτε να κάνετε χρήση των ρουτινών DEC_ΚΕΥΒ και PRINT_HEX χωρίς να συμπεριλάβετε τον κώδικά τους. Για την διευκόλυνσή σας, δίνονται οι πρώτες εντολές που αποτελούν τον 'σκελετό' του ζητούμενου προγράμματος.

ΑΠΑΝΤΗΣΗ

INCLUDE MACROS DATA_SEG **SEGMENT** MSG1 DB OAH, ODH, 'GIVE 1ST NUMBER= \$' DB OAH, ODH, 'GIVE 2ND NUMBER= \$' MSG2 DB OAH, ODH, 'GIVE 3ND NUMBER= \$' MSG3 DB OAH, ODH, 'RESULT = \$' MSG4 DB 0AH,0DH, 'overf\$' MSG5 **ENDS** DATA SEG CODE_SEG **SEGMENT** ASSUME CS:CODE_SEG, DS:DATA_SEG MAIN PROC FAR MOV AX, DATA_SEG MOV DS, AX ADDR1: PRINT_STR MSG1 CALL DEC_KEYB PRINT AL MOV BL, AL; SAVE FIRST DIG PRINT STR MSG2 CALL DEC KEYB PRINT AL ADD BL; D3 + D2MOV BL, AL; D3 + D2 to BL PRINT_STR MSG3 CALL DEC_KEYB PRINT AL MOV CH,AL CALL DEC_KEYB

```
PRINT AL
       MOV CL, AL; NOW CX HAS CH FISRT PART CL SECOND PART
Await:
       MOV AL,00H
       MOV AH.8
       INT 21H
       PRINT AL
       CMP AL,48H; or CMP AL,'H'
       JE CALC
       JMP Await
CALC:
       MOV DL,10; allios kanoume MOV DL, 0AH
       MOV AL, CH
       MUL DL
       ADD CL ; AL HAS 10*D1 + D0
       MOV CH,00H
       MOV CL, AL; CL has 10*D1 + D0 or in hex 0A*D1 + D0
       MOV AH,00H
       MOV AL,BL
       MUL CX; MULTIPLY AX = (D3 + D2) with CX (D1*10 + D0)
       CMP AH, 05H
       JNB overflow_handle if AH \geq 5 possible overflow (05 00 is 500 overflow)
CONTINUE:
       PRINT_STR MSG4
       PRINT AH
       PRINT AL
       RET
OVERFLOW_HANDLE:
       PRINT_STR MSG5
       RET
```