2.13) Find the electric field a distance s from an infinitely long straight wire that carries a uniform line charge λ . Compare Eq. 2.9.

For this problem, the setup is rotationally symmetric about the wire, so we will use Gauss's Law with a cylindrical Gaussian surface of radius s.

Gauss's law tells us that

$$\oint \vec{E} \cdot d\vec{a} = \frac{Q_{\text{enc}}}{\epsilon_0} = \frac{\lambda \ell}{\epsilon_0}$$

It is observed that contribution to the flux through the ends of the cylinder is zero, so only obtain a radial component, pointing normal to the curved surface of the cylinder.

$$E(2\pi s\ell) = \frac{\lambda\ell}{\epsilon_0}$$

$$\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s} \hat{s} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda}{s} \hat{s}$$

Notice that this is the same as Eq. 2.9, since the z axis in that example is not uniquely defined since we could rotate about the wire and end up with an equivalent physical setup.

2.17) An infinite plane slab, of thickness 2d, carries a uniform volume charge density ρ . Find the electric field, as a function of y, where y = 0 at the center. Plot E versus y, calling E positive when it points in the +y direction and negative when it points in the -y direction.

In the figure below, we see the slab set up. Note that it extends infinitely in the x and z directions. For this problem, we can set up a Gaussian surface, which is a cylinder with a height 2y. Note that there are two cases: |y| < d or $|y| \ge d$ shown in the left and right figures.

Since there is rotational symmetry in the xz-plane, the only component of the electric field is in the y direction. From Gauss's law, we have

$$\oint \vec{E} \cdot d\vec{a} = 2A|E| = \frac{Q_{\text{enc}}}{\epsilon_0} = \frac{A}{\epsilon_0} \int \rho(y) \, dy$$

$$\Rightarrow |E| = \frac{1}{2\epsilon_0} \int \rho(y) \, dy$$

Note that ρ is constant inside the slab and $\rho=0$ outside the slab, so the integral over y gives

$$|E| = \frac{\rho}{\epsilon_0} \begin{cases} y, & |y| < d \\ d, & |y| \ge d \end{cases}$$

Notice that the electric field linearly increases as a function of y and is constant outside of the slab, pointing away from the xz-plane. A plot of this is shown below.

$$\begin{array}{c|c}
E \\
\hline
\rho d/\epsilon_0 + \\
-d & d \\
\hline
-\rho d/\epsilon_0
\end{array}$$