Homework Set No. 9

ECE 642 Dr. Bijan Jabbari

Problems 5.22,5.26,5.27,5.29&5.30 from M.Schwartz's book

Problem 1.

Consider the packet-switched network shown in figure below. Terminals 1,2 and 3 generate Poisson traffic at the rate of $\gamma_1 = 1/2$, $\gamma_2 = 1$ and $\gamma_3 = 3/2$ packets/sec respectively as shown. All packets are $1/\mu = 1/6$ sec long, on the average, exponentially distributed. All are destined for node 4, as shown. All line capacities are $\mu = 6$ packets/sec as shown.

- \bullet Find the average time-delay T from node 1 to node 4 if the packets go directly through node 2.
- Repeat a. if the packets follow the path 1-2-3-4.
- Packets are now routed randomly through the network, from node 1 to node 4, with the following routing probabilities: $q_{13} = 1/3$, $q_{23} = 3/4$, $q_{34} = 1$. Find the average network-wide delay in this case.

Problem 2.

Consider the VC shown in figure below. A sliding window mechanism is used to control this VC. Use Buzen's algorithm to find the time-delay throughput characteristic for $\lambda \gg 2\mu$. Take N=1,2,3,4,5,6. Compare with the plot of delay vs throughput in case of a sliding window model. $(M=3,\ldots\infty)$. Do the results agree with what you expect?

Problem 3.

Use Buzens algorithm to find the Nortons equivalent of an M-hop virtual circuit. Find u(n) for various values of n and M and show that it is given by the expression $u(n) = n\mu/(n+M-1)$. Show as a check that the average number of packets in each queue is n/M.

Problem 4.

Refer to the Figs.5-41 and 5-42.

- Let N=1. Show that $P_B=\rho$ and $\gamma/\mu=\rho(1-\rho)$. Sketch γ/μ as a function of ρ
- Let N=5. Sketch γ/μ versus ρ and compare with the curve in Fig.5-42
- For any N, show that for $\rho' = 1$, $\rho = N/(N+1)$, $\gamma/\mu = (N/(N+1))^2$. Show that for $\rho' \to \infty$, $\rho \to 1$, $1 P_B \to 1/\rho \to 0$ and $\gamma/\mu \to (1 P_B) \to 0$. Show that for $\rho \ll 1$, $\gamma/\mu = \rho$. Can you use these values to sketch γ/μ versus ρ for any N? Compare with parts a and b above as well with the curve N = 8 in Fig.5-42.

Problem 5.

Refer to the section on input-buffer limiting. Take $N=2,\ N_I=1,$ write and use simple computer program to solve for P_{B_T} and P_{B_I} interactively. Use this to find the average throughput $\gamma_1=\lambda_1(1-P_{B_I})$ as a function of load λ_I for serveral values of λ_I . Take n=2, compare with the results of the previous problem. One possible procedure: Initialize with $P_{B_T}=P_{B_I}=0$. Keep repeating until, at iteration $K+1,\ \sqrt{(P_{B_T}^{K+1}-P_{B_T}^K)^2+(P_{B_T}^{K+1}-P_{B_I}^K)^2}<\epsilon$ (a stopping constant). You can try any other initial values and stopping threshold.