STAT 2011 Tutorial 3

Qian(Jessie) Jin March, 2023

Random Variable

• Definition:

Definition 3.1.1 (Random variable). A random variable X is a function, mapping each sample outcome s in some probability space S to a real number, i.e.

for
$$s \in S : X(s) = t_s = t \in \mathbb{R}$$
 or $X : S \mapsto \mathbb{R}$

Discrete random variables :

Definition 3.2.1. A function whose domain is a sample space S and whose values form a finite or countably infinite set of real numbers is called a discrete random variable. \Box

PDF and CDF

Probability mass function:

Definition 3.2.2 (Probability mass function). Let S be a finite or countably infinite sample space, X be a discrete random variable, and p be a real-valued function defined for each element of S satisfying. Define p(s) = P(X = s), then

a.
$$0 \le p(s)$$
 for each $s \in S$

$$b. \sum_{s \in S} p(s) = 1$$

The function $p(\cdot)$ is said to be a probability mass function. We define it also as $p_X(k) = P(\{s \in S : X(s) = k\}) = P(X = k)$.

Cumulative distribution function

Definition 3.2.3 (Cumulative distribution function). The cumulative distribution function (cdf) of X is defined as

$$F_X(t) = P(X \le t)$$

The cdf has many properties (proofs left as an exercise for now) such as

- $F_X(t)$ is monotone increasing with values between 0 and 1;
- $F_X(t)$ is continuous from right.

Expectation and Variance

Expectation

Definition 3.2.4 (Expected value of a discrete RV X). Let discrete RV X have probability mass function (pmf) $p_X(k)$. The expected value of X, denoted by E(X) (or sometimes μ or μ_X), is given by

$$E(X) = \sum_{all \ k} k \cdot p_X(k). \qquad \Box$$

Variance:

Definition 3.2.6. The variance of a RV X is the expected value of its squared deviation from $E(X) = \mu$ and is only defined when $E(X^2)$ is finite,

$$Var(X) = \sigma^2 = E[(X - \mu)^2]$$