Tianyue Zheng

Email: tianyue002@e.ntu.edu.sg Phone: (+65) 87561083

EDUCATION

Nanyang Technological University

Singapore

Ph.D. in Computer Science, cGPA:4.60, Advisor: Prof. Jun Luo

2019-Current

 Courses: Computational Intelligence, Deep Learning for Data Science, Digital Communication Systems, Convex Optimization, Image Analysis & Pattern Recognition

University of Toronto

Toronto, Canada

M.Eng. in Computer Engineering and Analytics, A+

2017-2019

 Courses: Computer Security, CUDA Programming, Algorithms and Data Structure, Cloud Computing, Data Science and Analytics, Machine Learning, Big Data Science

Harbin Institute of Technology

Harbin, China

B.Eng. in Telecommunication Engineering, Grade: 90.18 (Top 3%)

2013-2017

 Courses: Calculus, Linear Algebra, Probability Theory, Signals and Systems, Electronic Circuit, Embedded System, Computer Networks, Electromagnetics, Antenna Design, FPGA Design

EXPERIENCE

Nanyang Technological University

Singapore

Graduate Student Researcher at Computer Networks and Communication Lab (CNCL)

2019-Current

- Deep Learning for Wireless Networking and Sensing

University of Toronto

Toronto, Canada

Developer at Communications & Advanced Electronics Lab

Summer 2018

- Android App Development for Digital Signal Processing

Sungkyunkwan University

Suwon, South Korea

Undergraduate Researcher at Communication & Coding Theory Lab (CCL)

Summer 2016

- Coding and Decoding of Polar and LDPC Code

Publications 1 4 1

(* denotes co-first author.)

- 1. **Tianyue Zheng**, Zhe Chen, Shujie Zhang, Chao Cai, and Jun Luo, "MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar", in *Proc. of the 19th ACM SenSys*, 2021, pp. 1–14.
- 2. **Tianyue Zheng**, Zhe Chen, Jun Luo, Lin Ke, Chaoyang Zhao, and Yaowen Yang, "SiWa: See into Walls via Deep UWB Radar", in *Proc. of the 27th ACM MobiCom*, 2021, pp. 323–336, https://dl.acm.org/doi/10.1145/3447993.3483258.
- 3. Zhe Chen*, **Tianyue Zheng***, and Jun Luo, "Octopus: A Practical and Versatile Wideband MIMO Sensing Platform", in *Proc. of the 27th ACM MobiCom*, 2021, pp. 601–614, https://dl.acm.org/doi/pdf/10.1145/3447993.3483267.

- 4. Zhe Chen*, **Tianyue Zheng***, Chao Cai, and Jun Luo, "MoVi-Fi: Motion-robust Vital Signs Waveform Recovery via Deep Interpreted RF Sensing", in *Proc. of the 27th ACM MobiCom*, 2021, pp. 392–405, https://dl.acm.org/doi/pdf/10.1145/3447993.3483251.
- 5. Zhe Chen, Chao Cai, **Tianyue Zheng**, Jun Luo, Jie Xiong, and Xin Wang, "RF-Based Human Activity Recognition Using Signal Adapted Convolutional Neural Network", *IEEE Transactions on Mobile Computing*, pp. 1–1, 2021, https://ieeexplore.ieee.org/document/9408395.
- 6. Shuya Ding, Zhe Chen, **Tianyue Zheng**, and Jun Luo, "RF-Net: a Unified Meta-Learning Framework for RF-Enabled One-Shot Human Activity Recognition", in *Proc. of the 18th ACM SenSys*, pp. 517–530, https://dl.acm.org/doi/10.1145/3384419.3430735,2020.
- 7. **Tianyue Zheng**, Zhe Chen, Shuya Ding, and Jun Luo, "Enhancing RF Sensing with Deep Learning: A Layered Approach", *IEEE Communications Magazine*, vol. 59, no. 2, pp. 70–76, 2021, https://ieeexplore.ieee.org/document/9374635.
- 8. **Tianyue Zheng**, Zhe Chen, Chao Cai, Jun Luo, and Xu Zhang, "V²iFi: in-Vehicle Vital Sign Monitoring via Compact RF Sensing", in *Proc. of the 20th ACM UbiComp*, 2020,70:1–27, https://dl.acm.org/doi/abs/10.1145/3397321.

PROJECTS

Vital Sign Monitoring via Compact RF Sensing

- Implement IR-UWB/FMCW radar systems that monitor human vital signs, e.g., respiration, heartbeat, and interbeat interval (IBI).
- Perform theoretical analysis of human vital sign and working principles of commodity radar systems.
- Design novel signal processing algorithms, e.g., MS-VMD for decomposition of vital sign signals.
- Adapt state-of-the art deep learning algorithms, e.g., GAN and autoencoder, for vital sign waveform recovery and health issue diagnosis.
- Implement the algorithms on embedded device and assess the system in real-life road test.

RF-based Human Activity Recognition using Deep Learning

- Experiment with different sensing schemes (e.g., UWB, mmWave, Wi-Fi, and acoustic) that recognize everyday human activities and estimate human pose.
- Propose a layered framework: physical layer, backbone network layer, generalization layer, and application layer to facilitate researcher to make improvement proposals in the future.
- Adopt state-of-the-art deep learning techniques such as meta-learning and transfer learning to solve the problem
 of data scarcity and environment adaptation.

Professional Services

• Reviewer for IEEE Internet of Things Journal

2021

TEACHING

- Teaching Assistant at Nanyang Technological University

 Computer Networks (CE3005/CZ3006) and Introduction to Computational Thinking (CE/CZ1003)
- Teaching Assistant at University of Toronto

 Communication Systems (ECE316)

 Spring 2019

SKILLS

- Programming Languages: Python, Java, C/C++, Matlab
- Tools: PyTorch, Tensorflow, PySpark, Scikit-Learn, Pandas, Matplotlib, Seaborn, Git, Vim, Flask, Docker

SCHOLARSHIPS AND AWARDS

• Research Scholarship at Nanyang Technological University	2019-2023
• Second Prize in Innovation and Entrepreneurship Contest at Harbin Institute of Technology	Summer 2016
• Honorable Mention in Mathematical Contest in Modeling (MCM)	Summer 2015
• Scholarship for Outstanding Students at Harbin Institute of Technology	2013-2017