Competição 1 - Predição de Cobertura de um Plano de Saúde

Profa. NADIA FELIX FELIPE DA

SILVA

Discentes: Matheus Andrade Dutra e Mariana Inácia Xavier Borges

1. madutra@discente.ufg.br

2. mariana_borges@discente.ufg.br

Material elaborado em parceria com os professores NADIA FELIX FELIPE DA SILVA **2022**

Sumário

INSTITUTO DE INFORMÁTICA

- 1. <u>Descrição do Problema</u>
- 2. <u>Descrição do Conjunto de Dados</u>
 - Pré-processamentos utilizados
 - o <u>Código de pré-processamento</u>
- 3. Algoritmos utilizados
- 4. Resultados

Descrição do problema

Devido ao alto número de requisições em uma operadora de plano de saúde, encaminhadas para o setor administrativo e visando diminuir os gastos com a análise de dados, é necessário que se implemente um código capaz de fazer essa análise sem que um auditor precise investigar a fundo caso a caso.

Descrição do problema

INSTITUTO DE INFORMÁTICA

Dados fornecidos:

- O conjunto de dados de treinamento fornecido contém 227.122 dados e 32 variáveis
- rótulo "aprovar ou negar"
- ID do usuário
- 30 variáveis fornecidas:
 - o 15 variáveis ou 50% delas não possuem Campos nulos.
 - Tempo de doença e sua unidade (dias, semanas, meses).
 - Tipo de doença 99% dos campos estão vazios.
 - Tipo de consulta contém 95% dos campos não usados.
 - o O tipo de saída também era completamente nulo.

Pré-processamentos utilizados

INSTITUTO DE INFORMÁTICA

- Preenchimento dos campos nulos.
- StandardZation
- LabelEncoder
- OneHotEncoder

INSTITUTO DE INFORMÁTICA

Código 1: Pré-processamento

```
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
import numpy as np
def standardScalerFunc(data):
  ss = StandardScaler()
  sstransformed = ss.fit transform(data)
  return ss, pd.DataFrame(sstransformed)
def labelEncoderFunc(data):
 ss = LabelEncoder()
  sstransformed = ss.fit transform(data)
  return ss, pd.DataFrame(sstransformed)
def oneHotEncoderFunc(data):
 ohe = OneHotEncoder(sparse=False, handle unknown='ignore')
  ohetransformed = ohe.fit transform(data)
  return ohe, pd.DataFrame (ohetransformed)
```


Algoritmos utilizados

INSTITUTO DE

- Linguagem: Python 3.10;
- Bibliotecas:
 - o numpy,
 - o pandas,
 - o OS,
 - sklearn.preprocessing importado:
 - StandardScaler,
 - LabelEncoder,
 - OneHotEncoder.
- Foi utilizado o algoritmo RandomForestClassifier, afinal por ter uma coleção de dados para apontar uma decisão, este algoritmo seria o mais preparado para a tarefa de classificar a acurácia da cobertura do plano de saúde.
- A biblioteca fornecida pelo SKLearn foi muito útil, pois nos permitiu compartilhar a implementação da função train-test-split, baseada em dados de treinamento e teste. Os parâmetros que foram usados nesta função foram:
 - Tamanho do teste = 0,3, 30% para teste, 70% para treinamento,
 - Aleatório = Verdadeiro, assim tentando melhorar a distribuição de aleatoriedade nos dados.

Resultados

Resultados

Os resultados obtidos no teste foram de média satisfação, sendo que a acurácia obtida foi de 0.7147826086956521 ou 71\%, resultando no melhor resultado obtido no treino de 71\%. É necessário avaliar novamente algumas variáveis utilizadas para que se possa obter uma melhor exatidão.

	precision	recall	f1-score	support
Autorizado	0.74	0.90	0.81	30832
Negado	0.60	0.33	0.42	14593
accuracy		1	0.71	45425
macro avg	0.67	0.61	0.62	45425
weighted avg	0.69	0.71	0.69	45425

Table 1: Tabela de classificação

Obrigado!

Dúvidas ou sugestões:

madutra@discente.ufg.br ou mariana_borges@discente.ufg.br

