Nom et prénom, lisibles :

43.2772)

+60/1/20+

Identifiant (de haut en bas) :

THLR Contrôle (35 questions), Septembre 2016

	Davoine 00 1 1 2 3 4 5 6 7 8 9
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	□0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
	Main Main
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ⑥ » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +60/1/xx+···+60/5/xx+.
	Q.2 La distance d'édition (avec les opérations lettre à lettre insertion, suppression, substitution) entre les mots chat et chien est de :
-1/2	
	Q.3 Pour $L_1 = \{a, b\}^*, L_2 = (\{a\}^* \{b\}^*)^*$:
0.40	⊄
2/2	$\square L_1 \subseteq L_2 \qquad \qquad \square L_1 \not\supseteq L_2 \qquad \qquad \square L_1 \supseteq L_2 \qquad \qquad \square \qquad L_1 = L_2$
	Q.4 Que vaut $\{a,b\} \cdot \{a,b\}$?
2/2	
	Q.5 Que vaut $Suff(\{ab,c\})$:
2/2	\square $\{a,b,c\}$ \square $\{b,\varepsilon\}$ \square \emptyset \blacksquare $\{ab,b,c,\varepsilon\}$ \square $\{b,c,\varepsilon\}$
	Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$
-1/2	
	Q.7 Pour toute expression rationnelle e , on a $e \cdot e \equiv e$.
2/2	□ vrai □ faux
0.10	Q.8 Pour toutes expressions rationnelles e, f , on a $(e + f)^* \equiv (e^* f^*)^*$.
2/2	vrai 🔲 faux
2/2	 Q.9 Un langage quelconque □ est toujours récursivement énumérable □ est toujours inclus (⊆) dans un langage rationnel □ est toujours récursif □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.10 L'expression Perl "([a-zA-Z] \\)+" engendre :
2/2	□ "eol" (eol est le caractère « retour à la ligne ») □ "\"" □ "" 📓 "\\\\"

- Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :
- 2/2
- ☐ 'DEADBEEF'
- (20+3)*3
- ·-+-1+-+-
- (0+1+2+3+4+5+7+8+9'

2/2

0/2

- Q.12 L'algorithme de Thompson permet
 - d'éliminer les transitions spontanées d'un automate
 - de construire un ε -NFA à partir d'une expression rationnelle de vérifier si un langage est rationnel
 - de vérifier si deux automates reconnaissent le même langage
- Q.13 &

L'état 3 est

- ☐ fini
- ☐ co-accessible
- ☐ Aucune de ces réponses n'est correcte.
- Q.14 Quel automate reconnaît le langage décrit par l'expression $((ba)^*b)^*$

Q.15

Quel est le résultat d'une élimination arrière des transitions spontanées?

0/2

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

-1/2

☐ Aucune de ces réponses n'est correcte.

Q.17 Le langage $\{ (\mathcal{P}^n \otimes \mathcal{P}^n | \forall n \in \mathbb{N}) \}$ est

Q.26 On peut tester si un automate nondéterministe reconnaît un langage non vide.

 $\Box L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1$ $\Box \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi}$

 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ aussi

 $\Box \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$

2/2

2/2

0/2	
	Q.27 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	accepte le mot videest déterministeaccepte un langage infinia des transitions spontanées
	Q.28 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?
2/2	□ 6 □ 7 □ Il n'existe pas. 🚪 4
	Q.29 Quel mot reconnait le produit de ces automates?
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	${f Q.30}$ Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
2/2	vrai en temps fini faux en temps fini vrai en temps constant faux en temps infini
	Q.31 a b c Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
-1/2	
2/2	Q.32 © Quels états peuvent être fusionnés sans changer le langage reconnu. 1 avec 2 0 avec 1 et avec 2 1 avec 3 2 avec 4 3 avec 4 Aucune de ces réponses n'est correcte.
	Q.33 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
2/2	${\cal P}$ ne vérifie pas le lemme de pompage $\qquad \qquad \square$ Il existe un NFA qui reconnaisse ${\cal P}$ $\qquad \square$ Il existe un ${\cal E}$ -NFA qui reconnaisse ${\cal P}$
	Q.34 b
0/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0 ?
	Q.35 Sur $\{a, b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} ?

2/2

2/2

Q.36 Sur $\{a,b\}$, quel est le complémentaire de \xrightarrow{b}

Fin de l'épreuve.

