Classification Metrics

1. Confusion Matrix

Actual / Predicted	Positive (1)	Negative (0)
Positive (1)	TP (True Positive)	FN (False Negative)
Negative (0)	FP (False Positive)	TN (True Negative)

Key terms:

- TP = Correctly predicted positive
- TN = Correctly predicted negative
- FP = Predicted positive but actually negative
- FN = Predicted negative but actually positive

2. Accuracy

Measures overall correctness of the model.

Formula:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Works well when classes are balanced.

3. Precision (Positive Predictive Value)

Out of all predicted positives, how many are truly positive?

Formula:

Precision = TP / (TP + FP)

High precision \rightarrow few false positives.

4. Recall (Sensitivity / True Positive Rate)

Out of all actual positives, how many did we correctly identify?

Formula:

Recall = TP / (TP + FN)

High recall \rightarrow few false negatives.

5. F1-Score

Harmonic mean of Precision and Recall.

Formula:

F1 = 2 × (Precision × Recall) / (Precision + Recall)

Balances precision and recall.

6. Specificity (True Negative Rate)

Out of all actual negatives, how many did we correctly predict?

Formula:

Specificity = TN / (TN + FP)

7. False Positive Rate (FPR)

Proportion of negatives incorrectly predicted as positive.

Formula:

FPR = FP / (FP + TN)

8. False Negative Rate (FNR)

Proportion of positives incorrectly predicted as negative.

Formula:

FNR = FN / (FN + TP)

9. ROC Curve (Receiver Operating Characteristic)

- Plots TPR (Recall) vs FPR at various thresholds.
- Shows trade-off between sensitivity and specificity.
- Ideal model curve → close to top-left corner.

10. AUC (Area Under the ROC Curve)

Measures model's ability to distinguish classes.

Range: 0 to 1

Closer to $1 \rightarrow$ better classifier.

 $0.5 \rightarrow \text{random guessing}$.

11. Precision–Recall (PR) Curve

Plots Precision vs Recall at different probability thresholds. Useful for **imbalanced data**.

12. Log Loss (Cross-Entropy Loss)

Used in probabilistic classifiers (e.g., Logistic Regression).

Formula:

$$Log Loss = -(1/N) \times \sum [y_i \times log(p_i) + (1 - y_i) \times log(1 - p_i)]$$

Lower log loss = better model.

13. Matthews Correlation Coefficient (MCC)

Balanced metric for binary or imbalanced data.

Formula:

```
MCC = (TP \times TN - FP \times FN) / \sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}
```

Range:

- $+1 \rightarrow perfect$
- $0 \rightarrow random$
- -1 → completely wrong

14. Cohen's Kappa

Measures agreement between predicted and actual labels, adjusted for chance.

Formula:

```
Kappa = (p_o - p_e) / (1 - p_e)
```

where

po = observed accuracy

pe = expected accuracy (by chance)

15. Balanced Accuracy

Average of Sensitivity and Specificity.

Formula:

Balanced Accuracy = (Sensitivity + Specificity) / 2

16. Hamming Loss

Fraction of incorrectly predicted labels (for multi-label classification).

Formula:

Hamming Loss = $(1/N) \times \Sigma xor(y_i, \hat{y}_i)$

Lower value \rightarrow better performance.

17. Jaccard Index (Intersection over Union)

Measures similarity between predicted and true sets.

Formula:

Jaccard = TP / (TP + FP + FN)

Used in multi-label and image segmentation tasks.

18. Macro, Micro, and Weighted Averages (for Multi-class)

Туре	Description	Formula	
Micro Average	Aggregates all classes before computing metric.	Compute global TP, FP, FN \rightarrow then Precision/Recall/F1.	
Macro Average	Simple mean of metrics for each class.	(Metric₁ + Metric₂ + + Metric□) / n	
Weighted Average	Weighted by number of samples per class.	Σ (w _i × Metric _i)	

19. Fβ-Score

Generalized F1-score; β controls importance of recall vs precision.

Formula:

 $F\beta = (1 + \beta^2) \times (Precision \times Recall) / ((\beta^2 \times Precision) + Recall)$

- $\beta > 1 \rightarrow$ focus on recall
- β < 1 \rightarrow focus on precision

20. Top-K Accuracy

Used in multi-class problems (e.g., deep learning).

Formula:

Top-K Accuracy = (Number of samples where true label ∈ Top K predictions) / (Total samples)