

Οπλισμένο Σκυρόδεμα Ι

Ενότητα 7: Διαστασιολόγηση υποστυλωμάτων

Γεώργιος Παναγόπουλος Τμήμα Πολιτικών Μηχανικών

Διαστασιολόγηση υποστυλωμάτων

Διαστασιολόγηση σε κάμψη με αξονικό φορτίο Διαγράμματα αλληλεπίδρασης Μονοαξονική και διαξονική κάμψη

Περιεχόμενα ενότητας

- 1. Εντατικά μεγέθη υποστυλωμάτων
- 2. Διαστασιολόγηση σε κάμψη με αξονικό φορτίο
- 3. Διαγράμματα αλληλεπίδρασης για μονοαξονική και διαξονική κάμψη
- 4. Διατάξεις του ΕC για τους στύλους
- 5. Τυπικές εικόνες όπλισης υποστυλωμάτων Ο/Σ

Υποστυλώματα από Ο/Σ

- Τα υποστυλώματα μαζί με τα τοιχώματα αποτελούν τα κατακόρυφα στοιχεία του σκελετού των κατασκευών από Ο/Σ
- Ιδιαίτερα κρίσιμα για τη στατική επάρκεια του συνόλου της κατασκευής
- Σοβαρές βλάβες μπορούν να οδηγήσουν σε μερική ή ολική κατάρρευση (ιδιαίτερα για σεισμικές διεγέρσεις)

Τυπικές διατομές υποστυλωμάτων

- 1) Τετραγωνικό υποστύλωμα
- 2 Ορθογωνικό υποστύλωμα
- 3) Γωνιακό υποστύλωμα μορφής Γ
- (4) Γωνιακό υποστύλωμα μορφής Τ

- 5 Κυκλικό υποστύλωμα
- 6 Υποστύλωμα κοίλης κυκλικής διατομής
- 7 Υποστύλωμα κοίλης ορθογωνικής διατομής

Εντατικά μεγέθη υποστυλωμάτων

- Τα υποστυλώματα κατά κανόνα ανήκουν σε πλαίσια σε μία ή δύο διευθύνσεις
- Ύπαρξη αξονικού φορτίου (πάντα)
- Για κατακόρυφα φορτία το Ν πάντα θλιπτικό
- Καμπτικές ροπές σε δύο διευθύνσεις

Κατασκευή με μικτό σύστημα

Εντατικά μεγέθη υποστυλωμάτων (1/5)

Εντατικά μεγέθη υποστυλωμάτων (2/5)

Εντατικά μεγέθη υποστυλωμάτων (3/5)

Πλαίσιο υπό σεισμική φόρτιση

Εντατικά μεγέθη υποστυλωμάτων (4/5)

Πλαίσιο υπό σεισμική φόρτιση

Εντατικά μεγέθη υποστυλωμάτων (5/5)

Εντατικά μεγέθη λόγω κατακόρυφων φορτίων

• Εσωτερικά υποστυλώματα

- Μεγάλες τιμές αξονικών δυνάμεων N_{sd}
- Μικρές τιμές (σχεδόν μηδενικές) των καμπτικών ροπων M_{sd}
- Μικρές τιμές (σχεδόν μηδενικές) των τεμνουσών V_{sd}

• Εξωτερικά υποστυλώματα

- Μεγάλες τιμές αξονικών δυνάμεων N_{sd}
- Υπολογίσιμου μεγέθους τιμές των καμπτικών ροπων M_{sd}
- Υπολογίσιμου μεγέθους τιμές των τεμνουσών V_{sd}

Εντατικά μεγέθη λόγω συνδυασμού κατακορύφων φορτίων και σεισμού (G+0.30Q±E)

- Μεγάλα N_{sd}, αλλά μικρότερα από ότι στα κατακόρυφα φορτία
- Μεγάλες διακυμάνσεις των N_{sd} ιδιαίτερα για τους εξωτερικούς στύλους. Είναι δυνατό να εμφανιστούν ακόμα και εφελκυστικές αξονικές δυνάμεις.
- Μεγάλες τιμές M_{sd} με εναλλασσόμενο πρόσημο
- Μεγάλες τιμές V_{sd} με εναλλασσόμενο πρόσημο
- Μεγάλες τιμές των ροπών στην κορυφή και τη βάση. Μηδενίζονται περίπου στη μέση του ύψους
- •Στην περίπτωση που υπάρχουν και τοιχώματα, ένα σημαντικό μερίδιο της σεισμικής δράσης παραλαμβάνεται από αυτά, οπότε οι τιμές των ροπών και των τεμνουσών

μειώνονται σημαντικά.

 V_{sd}

 M_{sd}

Διαγράμματα αλληλεπίδρασης (1/6)

- Ο οπλισμός στα υποστυλώματα τοποθετείται συμμετρικά (στις παρειές)
- Οι τιμές του μηχανικού ποσοστού ω_{tot} προκύπτουν από διαγράμματα αλληλεπίδρασης ροπής(ών) αξονικού φορτίου
- Στα υποστυλώματα χρησιμοποιούνται τα διαγράμματα αλληλεπίδρασης, ακόμα και αν η καταπόνηση δεν είναι προέχουσα θλίψη
- Διαφορετικά διαγράμματα για μονοαξονική ή διαξονική καταπόνηση
- Χρησιμοποιούνται οι ανηγμένες τιμές των Μ και Ν -> μ, ν
- Οι παραδοχές για τη θεώρηση της αστοχίας είναι ίδιες με αυτές της προέχουσας κάμψης (πχ. ε_c=3.5‰, ε_s=2% κτλ)

Διαγράμματα αλληλεπίδρασης (2/6)

Διαγράμματα αλληλεπίδρασης για μονοαξονική κάμψη

Διαγράμματα αλληλεπίδρασης (3/6)

Διαγράμματα αλληλεπίδρασης για μονοαξονική κάμψη

Διαγράμματα αλληλεπίδρασης (4/6)

Διαγράμματα αλληλεπίδρασης για μονοαξονική κάμψη

Διαγράμματα αλληλεπίδρασης (5/6)

Διαγράμματα αλληλεπίδρασης για διαξονική κάμψη

Διαγράμματα αλληλεπίδρασης (6/6)

Διαγράμματα αλληλεπίδρασης για διαξονική κάμψη

Σχήμα 4.5 Διάγραμμα αλληλεπίδρασης ορθογωνικής διατομής σύμφωνα με τον Ευρωκώδικα 2.

⁽¹⁾ Τσερτικίδου Δ. (2011) "Σχεδιασμός διαγραμμάτων αλληλεπίδρασης σύμφωνα με τον Ευρωκώδικα 2", Διπλωματική εργασία, Τμ. Πολ. Μηχ/κών, ΑΠΘ

Διατάξεις ΕC2 & ΕC8 για τα υποστυλώματα (1/3)

Γεωμετρικές διατάξεις

• Υποστύλωμα θεωρείται κατακόρυφο στοιχείο με λόγο διαστάσεων διατομής: $h_c/b_c \le 4.0$, όπου $h_c \ge b_c$

Γεωμετρικές διατάξεις υποστυλωμάτων ΚΠΜ, ΚΠΥ (ΕС8 – 5.4, 5.5)

- Διαστάσεις διατομής (EC8 5.4.1.2.2, 5.5.1.2.2):
 - Υποστυλώματα ΚΠΜ, ΚΠΥ με συντελεστή μεταθετότητας ορόφου ϑ >0.1: $b_c \ge I_{max}/10$
 - Υποστυλώματα ΚΠΥ: b_c ≥ 250mm
- Εμβαδόν διατομής (ΕC8 5.4.3.2.1, 5.5.3.2.1):
 - Υποστυλώματα ΚΠΜ : v_d = $N_{Ed}/(A_c \cdot f_{cd})$ ≤0.65
 - Υποστυλώματα ΚΠΥ : $v_d = N_{Fd}/(A_c \cdot f_{cd}) \le 0.55$
- Κρίσιμες περιοχές (ΕC8 5.4.3.2.2, 5.5.3.2.2)

$$I_{cr}$$
= I_{cl} εφόσον I_c/h_c <3

- Υποστυλώματα ΚΠΜ : I_{cr} =max(h_c , I_{cl} /6, 450mm)
- Υποστυλώματα ΚΠΥ : I_{cr}=max(1.5h_c, I_{cl}/6, 600mm)

Διατάξεις ΕC2 & ΕC8 για τα υποστυλώματα (2/3)

Διαμήκης οπλισμός

- Ελάχιστη διάμετρος ράβδων: $\mathcal{Q}_{min} \ge 8$ mm
- Συνολική διατομή διαμήκων ράβδων

$$A_{s,min} = 0.10 \cdot N_{Ed} / f_{vd} \ge 0.002 \cdot A_c$$

$$A_{s,max}$$
= 0.04· A_c (περιοχή υπερκάλυψης: $A_{s,max}$ =0.08· A_c)

• Διάταξη και ελάχιστο πλήθος ράβδων στη διατομή Πολυγωνικές: μία ράβδος ανά κορυφή

- Υποστυλώματα ΚΠΜ, ΚΠΥ:
 - Συνολικό ποσοστό διαμήκων ράβδων: $0.01 \le \rho_{l.tot} \le 0.04$
 - Σε συμμετρικές διατομές τοποθετείται συμμετρικός οπλισμός στις απέναντι πλευρές $(\rho_L = \rho_L')$
 - Στο ύψος του κόμβου απαιτείται μία τουλάχιστον ενδιάμεση ράβδος σε κάθε πλευρά του υποστυλώματος
- Υποστυλώματα ΚΠΥ:
 - Στον κατώτατο όροφο απαιτείται $\rho_{L,\pi\delta\delta\alpha} \ge \rho_{L,\kappa\epsilon\phi\alpha\lambda\eta\varsigma}$

Διατάξεις ΕC2 & ΕC8 για τα υποστυλώματα (3/3)

Εγκάρσιος οπλισμός

- Ελάχιστη διάμετρος συνδετήρων: $\mathcal{Q}_{w,min}$ = max(6mm, $\mathcal{Q}_{L,max}$ /4)
- Ελάχιστη διάμετρος ράβδων συγκολλητών πλεγμάτων: \mathcal{Q}_{min} = 5mm
- Απόσταση μεταξύ συνδετήρων: $s_{cl,tmax}$ = min(20 $\emptyset_{l,min}$, b_c , 400mm)
- Απαιτείται απόσταση 0.6·s_{cl.tmax} στις ακόλουθες περιοχές:
 - Στα άκρα (κεφαλή, πόδας) σε μήκος h_c
 - Στο μήκος υπερκάλυψης εφόσον $\emph{Ø}_{\textit{L,max}}>$ 14mm, όπου απαιτούνται τουλάχιστον 3 συνδετήρες
- Σε περιοχές εκτροπής των ράβδων με κλίση >(1:12) (π.χ. θέση μεταβολής της διατομής του υποστυλώματος), οι δυνάμεις εκτροπής πρέπει να λαμβάνονται υπόψη για τη διάταξη των συνδετήρων
- Ράβδοι σε γωνίες συγκρατούνται από εγκάρσιο οπλισμό
- Διαμήκεις ράβδοι της θλιβόμενης παρειάς δεν επιτρέπεται να απέχουν >150mm από συγκρατούμενη ράβδο

Τυπικές εικόνες όπλισης υποστυλωμάτων (1/4)

Τυπικές εικόνες όπλισης υποστυλωμάτων (2/4)

όπλιση με **16** ράβδους, 4Φ20+12Φ14

ισοδύναμη όπλιση με **8** ράβδους, 4Φ25+4Φ20

$$\rho_{min} = 0.01$$

$$\rho_{max}=0.04$$

$$\rho_{\text{min},\pi\alpha\rho} \approx 0.004$$

Τυπικές εικόνες όπλισης υποστυλωμάτων (3/4)

Τυπικές εικόνες όπλισης υποστυλωμάτων (4/4)

