Číselné soustavy

- Číselná soustava je způsob reprezentace čísel
- Dělení:
 - Poziční mají bázi (značená r, např. 10) která určuje počet použitelných číslic, číslice na první pozici má hodnotu r⁰, další r¹, pak r² atd.
 - O Nepoziční zastaralé, prakticky nepoužívané, například římské číslice

Příklady číselných soustav

- Dvojková využívaná v počítačích
- Desítková běžná
- Dvanáctková dřív se v ní počítal čas (12 hodin v noci a 12 ve dne), zbyl z ní název tucet
- Šestnáctková čísla 10_D až 15_D jsou vyjádřena písmeny A_H až F_H

Binární aritmetické operace

Sčítání

Binárně	Dekadick
110	6
+ 1 0 1	+ 5
4.0.4.4	
1011	1 1

Odčítání

Binárně	Dekadicky
1010	1 1
- 1 0 1	- 5
110	6

Násobení

Binárně 1 0 1 1 * 1 0 1	Dekadicky 1 1 * 5
1011 0000 1011	5 5
110111	

Převod mezi soustavami

Převod 82_D do dvojkové soustavy → 1010010_B (viz tabulka, čti zespoda)

/2	ZBYTEK
41	0
20	1
10	0
5	0
2	1
1	0
0	1
	41 20 10 5 2

1 Číselné soustavy, binární aritmetické operace, převody mezi soustavami (10, 2, 16), doplňkový a aditivní kód, zobrazení čísla bez a se znaménkem (8bit), přetečení

Tento postup funguje obdobně na všechny soustavy. Jediný rozdíl je, že budeme dělit základem a ne dvojkou, například u šestnáctkové soustavy budeme dělit 16. Pokud v tomto případě bude zbytek třeba 11, tak ho pouze přepíšeme na znak šestnáctkové soustavy "B".

Kódy

Přímý kód

První bit vyčleníme pro znaménko. Pokud tedy budeme mít číslo 00000001_B , dekadicky bude 1_D a číslo 10000001_B tudíž -1_D . Problém je, že tento způsob komplikuje algoritmy. Nejprve je vždy potřeby testovat znaménkový bit a podle něj sčítat či odečítat. V tomto kódu existují 2 nuly, kladná a záporná.

Doplňkový kód

Záporné číslo bitově znegujeme a zvětšíme o 1. Výhodou je jediná interpretace nuly.

-57_D -> 00111001_B (kladná binární hodnota) -> 11000110_B (bitová negace) -> 11000111_B (+1_B)

Aditivní kód

Neboli kód s posunutou nulou. Využití v paměti počítače, protože nejsou potřeba obvody pro testování čísla a lze s číslem normálně pracovat. Číslo k je posunutí.

 -32_D ; k = 127 -> -32 + k = 95_D -> 01011111_B

Přetečení

To je jev, kdy výsledek není možné interpretovat v daném číselném formátu. Pokud k přetečení dojde, nastaví se příslušný příznak přenosu.

- Přímý kód validní hodnoty: -127 až 127
- Doplňkový kód validní hodnoty: -128 až 127
- Aditivní kód validní hodnoty závisí na k; pokud je k = 127, pak: -127 až 128