机器学习 Machine Learning

——机器学习简介

徐萌

m.xu@szu.edu.cn

AI value creation by 2030

\$13 trillion

365种工作消失概率(前十名、后十名)

	职业种类 10-15年内被替	10-15年内被替代的可能性			
1	人工智能科学家	0.1%			
2	创业者	0.1%			
3	心理学家	0.1%			
4	宗教教职人员	0.1%			
5	酒店与住宿经理或业主	0.1%			
6	首席执行官	0.1%			
7	首席营销官	0.1%			
8	卫生服务与公共卫生管理或主管	0.1% 0.1%			
9	教育机构高级专家				
10	特殊教育教师	0.1%			
356	纸料和木料机操作工	96.5%			
357	装配工和常规程序操作工	96.7%			
358	财务类行政人员	96.9%			
359	银行或邮局职员	97.1%			
360	簿记员、票据管理员或工资结算员	97.3%			
361	流水线质检员	97.5%			
362	常规程序检查员和测试员	97.7%			
363	过秤员、评级员或分类员	97.9%			
364	打字员或相关键盘工作者	98.1%			
365	电话销售员/市场	98.3%			

(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories (artificial general intelligence)

Do anything a human can do

弱人工智能

强人工智能

人工智能(Artificial Intelligence, AI) 是一种以智能人类思维的类似方式使计算机、计算机控制的机器人或软件智能地思考的方法。

人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

人工智能是基于计算机科学,生物学,心理学,语言学,数学和工程学等学科的科学和技术。人工智能的主要推动力是开发与人类智能相关的计算机功能。

自动驾驶

Can do

stop

Cannot do

bike turn

人类的学习?

- 如何从完全"无知"到掌握知识?
 - 1. 婴儿的认知能力(声音、人脸、汽车...)
 - 2. 语言/颜色/形状等特征统计
 - 3. 重要的二个特点: 容错性,推广能力(举一反三)
- 有监督学习月亮
- **无监督学习** 新闻分组

人类学习vs机器学习?

・ 人类学习:

- 输入源可以是视觉、听觉、嗅觉、触觉、 味觉等等;
- 2. 人类可以根据日常所见、所听进行推理与归纳,比如过马路要等红绿灯、程序员秃顶的比较多。

・ 机器学习:

- 1. 输入数据必须是计算机可以处理的, e.g. 一系列数值;
- 2. 学习模式需要一些指导,比如标注数据、 人为设定loss或学习规则等

AI&ML&DL

- Tom Michael Mitchell, 1997
- 对于某给定的任务T,在合理的性能度量方案P 的前提下,某计算机程序可以自主学习任务T的 经验E;随着提供合适、优质、大量的经验E, 该程序对于任务T的性能逐步提高。
- 这里最重要的是机器学习的对象:
 - 1. 任务Task,T, 一个或者多个
 - 2. 经验Experience,E
 - 3. 性能Performance,P

即:随着任务的不断执行,经验的累积会带来计算机性能的提升。

机器学习是人工智能的一个分支。机器学习主要是研究如何使计算机从给定的数据中学习规律,即从观测数据(样本)中寻找规律,并利用学习到的规律(模型)对未知或无法观测的数据进行预测。

针对经验E (experience) 和一系列的任务 T (tasks)和一定表现的衡量 P,如果随之经验E的积累,针对定义好的任务T可以提高表现P,就说计算机具有学习能力。

最早的机器学习应用-垃圾邮件分辨

传统的计算机解决问题思路:

- -编写规则, 定义"垃圾邮件", 让计算机去执行
- -对于很多问题,规则很难定义
- -规则在不断变化

图像识别

人脸识别

30	32	22	12	10	10	12	33	35	30
12	11	12	234	170	176	13	15	12	12
234	222	220	230	200	222	230	234	56	78
190	220	186	112	110	110	112	180	30	32
49	250	250	250	4	2	254	200	44	6
55	250	250	250	3	1	250	245	25	3
189	195	199	150	110	110	182	190	199	55
200	202	218	222	203	200	200	208	215	222
219	215	220	220	222	214	215	210	220	220
220	220	220	220	221	220	221	220	220	222