Giới thiệu về Vi Điều Khiển

- 1. Vi điều khiển hay Vi xử lý là gì?
- 2. Các chức năng của vi điều khiển & tín hiệu vào/ra?
- 3. Thông số kỹ thuật của vi điều khiển? (+ điện áp nguồn, điện áp ngõ vào/ra các chân digital/analog)
- 4. Tập lệnh mã máy (instructions)?
- 5. Ngôn ngữ lập trình & Trình biên dịch (compiler)?
- 6. Nap chương trình (programmer)? (+ read, write, readprotection, write-protection)

Lập trình Arduino (hay bất kì VXL nào)

- 1. Cấu trúc chương trình: library, setup, loop, function, interrupt
- 2. Điều khiển giao tiếp Serial (+ escape sequence)
- 3. Điều khiển giao tiếp LCD
- 4. Điều khiển Digital I/O, External Interrupt
- 5. Điều khiển Timer, Input Capture, Output Compare, PWM
- 6. Điều khiển ADC
- 7. Điều khiển giao tiếp nối tiếp UART, SPI, I²C, CAN, LIN
- 8. Điều khiển DMA

Ghi chú:

- Sơ đồ chân VXL & pin layout của board
- Xung clock hệ thống, timer, ADC, giao tiếp nối tiếp
- Tên các thanh ghi, tên các bit, tên các hằng số
- Giản đồ thời gian thực hiện các chức năng của VXL
- Các lệnh set bit, clear bit
- Các mạch điện cơ bản
- Chương trình nền; Chương trình con; interrupt
- Cờ trạng thái → Hỏi vòng (polling)

Ngôn ngữ lập trình C/C++

- 1. Kiểu biến (cơ bản): boolean (flag), 8-bit, 16-bit, 32-bit, 64-bit
- 2. Kiểu biến (mở rộng): enum, struct, union
- 3. Toán tử số học: +, -, *, /, %, ++, --
- 4. Toán tử so sánh: ==, !=, >, <, >=, <=
- 5. Toán tử logic: && (AND), || (OR), ! (NOT)
- 6. Toán tử logic trên từng bit: & (AND), | (OR), ~ (NOT), ^ (XOR),
- << (left shift), >> (right shift)
- 7. Cấu trúc rẽ nhánh (điều kiện): if, switch
- 8. Cấu trúc lặp: for, while
- 9. Mång (array)
- 10. Con trở (pointer)

Ghi chú:

- Kí hiệu trong chương trình: //, /*...*/, {...}, ;, (...), #define, #include "...", #include <...>
- Qui định về cách đặt tên biến, constant, function
- Qui ước cách đặt tên biến, constant
- Ghi chú trong chương trình
- Ép kiểu: a = (kiểu biến của a) (biểu thức);
- Rẽ nhánh:
 - a = (biểu thức điều kiện)?(g.trị nếu ĐÚNG):(g.trị nếu SAI);
- Phép gán: =, +=, -=, *=, /=, &=, |=, ^=, <<=, >>=

☐ Qui tắc thiết kế: (1) Bố trí chung + (2) Giản đồ thời gian + (3) Lưu đồ giải thuật

VI XỬ LÝ – VI ĐIỀU KHIỂN

Tín hiệu ngõ vào dạng nhị phân (Digital input)

Phát hiện trạng thái

- Nút nhấn
- Công tắc vị trí, hành trình
- Công tắc áp suất, nhiệt độ

Tín hiệu ngõ vào dạng nhị phân (Digital input)

Phát hiện sự kiện

Ứng dụng trên động cơ, ô tô

- Đo tốc độ động cơ, bánh xe, trục hộp số
- Xác định thời điểm để điều khiển đánh lửa, phun nhiên liệu, phân phối khí

Tín hiệu ngõ vào dạng tương tự (Analog input)

VD: đo độ mở van bướm ga

Van bướm ga điều khiển điện tử

 \mathbf{N} : độ phân giải bit của ADC \mathbf{V}_{ref} : điện áp ngưỡng của ADC

Throttle Position Sensor

Throttle Valve Opening Angle (°)

Note:

The throttle valve opening angle detected by the sensor terminal VTA1 is expressed as a percentage.

Between 10% and 24%: Throttle valve fully closed

Between 64% and 96%: Throttle valve fully open

Approximately 16%: Fail-safe angle (6.0°)

- Đặc tuyến chuyển đổi của cảm biến được lưu trong EEPROM
- Cảm biến Vị TRÍ cần được thiết lập ("HỌC") thông số mỗi khi thay thế, tháo lắp

Tín hiệu ngõ ra dạng điều rộng xung (PWM output)

(Pulse Width Modulation)

- f cố định (x100, x1000 Hz)
- Duty cycle = $\frac{T_{On}}{T}$ · 100% (độ rộng xung)
- Dòng điện TB = 0-100% dòng điện liên tục
- Hiệu suất năng lượng cao hơn so với điều chỉnh bằng điện trở; điều khiển linh hoạt

Ứng dụng trên động cơ, ô tô

- · Điều chỉnh cường độ chiếu sáng
- · Điều chỉnh công suất gia nhiệt, sấy
- Điều khiển motor: quạt làm mát, vị trí van (bướm ga, EGR)
- Điều chỉnh áp suất/lưu lượng: nhiên liệu cao áp, hộp số tự động, trợ lực lái điện-thủy lực, chân không điều khiển tăng áp turbo

- Q₁ = ON & Q₄ = PWM → thay đổi momen, chiều thuận
- Q₃ = ON & Q₂ = PWM → thay đổi momen, chiều ngược
- 🔹 Không dùng PWM, phải dùng R để điều chỉnh → Nhiệt

Tín hiệu ngõ ra dạng điều rộng xung (PWM output)

(Pulse Width Modulation)

GIỚI THIỆU VỀ LẬP TRÌNH CHO VXL/VĐK

1 Cấu trúc chương trình

- Khai báo biến
- Thiết lập cấu hình phần cứng
- Chương trình chính → Vòng lặp vô tận
- Các chương trình con
- Các chương trình phục vụ ngắt
- 2 Tập lệnh (số học, logic, rẽ nhánh, lặp...)
- 3 Trình tự thiết kế chương trình
- 4 Các giải thuật cơ bản
 - Kỹ thuật hỏi vòng & ngắt → Cờ trạng thái
 - Xử lý công việc tuần tự, lặp lại theo chu kì
 - Xử lý đa nhiệm theo sự kiện (xử lý thời gian thực)
 - Đồng bộ dữ liệu trong xử lý thời gian thực
 - Finite State Machine
 - Giao tiếp với binary data frame

Các bước thiết kế một chương trình VXL

- 1. Vẽ sơ đồ bố trí chung → Inputs? Outputs?
- 2. Vẽ giản đồ thời gian các sự kiện & công việc cần thực thi
 - Các sự kiện có tính chu kì (VD: chu kì đọc ADC, chu kì điều khiển, chu kì giao tiếp)
 - Các sự kiện mang tính ngẫu nhiên (VD: thời điểm nhấn nút, vị trí ĐCT)
- 3. Vẽ lưu đồ giải thuật cho Chương trình Chính + các Chương trình Con + các Chương trình Xử lý Ngắt

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller Family
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16/32KBytes of In-System Self-Programmable Flash program memory
 - 256/512/512/1KBytes EEPROM
 - 512/1K/1K/2KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix[™] acquisition
 - Up to 64 sense channels
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

Atmega328P

- Real Time Counter with Separate Oscillator
- Six PWM Channels
- 8-channel 10-bit ADC in TQFP and QFN/MLF package
 - Temperature Measurement
- 6-channel 10-bit ADC in PDIP Package
 - Temperature Measurement

Atmega328P

- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V
- Temperature Range:
 - -40°C to 85°C
- Speed Grade:
 - 0 4MHz@1.8 5.5V, 0 10MHz@2.7 5.5.V, 0 20MHz @ 4.5 5.5V
- Power Consumption at 1MHz, 1.8V, 25°C
 - Active Mode: 0.2mA
 - Power-down Mode: 0.1µA
 - Power-save Mode: 0.75µA (Including 32kHz RTC)

Arduino UNO R3

Arduino UNO R3

Atmega32u4

Atmega32u4

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16MHz
 - On-Chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
 - 16/32KB of In-System Self-Programmable Flash
 - 1.25/2.5KB Internal SRAM
 - 512Bytes/1KB Internal EEPROM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/ 100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Parts using external XTAL clock are pre-programed with a default USB bootloader
 - Programming Lock for Software Security
- JTAG (IEEE[®] std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- USB 2.0 Full-speed/Low Speed Device Module with Interrupt on Transfer Completion
 - Complies fully with Universal Serial Bus Specification Rev 2.0
 - Supports data transfer rates up to 12Mbit/s and 1.5Mbit/s
 - Endpoint 0 for Control Transfers: up to 64-bytes
 - Six Programmable Endpoints with IN or Out Directions and with Bulk, Interrupt or Isochronous Transfers
 - Configurable Endpoints size up to 256 bytes in double bank mode
 - Fully independent 832 bytes USB DPRAM for endpoint memory allocation
 - Suspend/Resume Interrupts
 - CPU Reset possible on USB Bus Reset detection
 - 48MHz from PLL for Full-speed Bus Operation
 - USB Bus Connection/Disconnection on Microcontroller Request
 - Crystal-less operation for Low Speed mode
- · Peripheral Features
 - On-chip PLL for USB and High Speed Timer: 32 up to 96MHz operation
 - One 8-bit Timer/Counter with Separate Prescaler and Compare Mode

- Two 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
- One 10-bit High-Speed Timer/Counter with PLL (64MHz) and Compare Mode
- Four 8-bit PWM Channels
- Four PWM Channels with Programmable Resolution from 2 to 16 Bits
- Six PWM Channels for High Speed Operation, with Programmable Resolution from 2 to 11 Bits
- Output Compare Modulator
- 12-channels, 10-bit ADC (features Differential Channels with Programmable Gain)
- Programmable Serial USART with Hardware Flow Control
- Master/Slave SPI Serial Interface
- Byte Oriented 2-wire Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- On-chip Temperature Sensor
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal 8MHz Calibrated Oscillator
 - Internal clock prescaler and On-the-fly Clock Switching (Int RC / Ext Osc)
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - All I/O combine CMOS outputs and LVTTL inputs
 - 26 Programmable I/O Lines
 - 44-lead TQFP Package, 10x10mm
 - 44-lead QFN Package, 7x7mm
- Operating Voltages
 - 2.7 5.5V
- Operating temperature
 - Industrial (-40°C to +85°C)
- Maximum Frequency
 - 8MHz at 2.7V Industrial range
 - 16MHz at 4.5V Industrial range

Atmega32u4

Note: 1. See "Data Retention" on page 8 for details.

Arduino LEONARDO R3

