Zkouška OPT 23.6.2021

Každý příklad pište na samostatnou stránku a ofotte do samostatného souboru, jehož jméno (bez přípony) je číslo příkladu. Každý příklad musí mít nejen odpověď, ale i postup. Odpověď bez postupu se nepočítá.

- 1. Nechť **A** je čtvercová matice rozměru 4×4 a **A** = **QR** je její plný QR rozklad. Navíc předpokládáme, že $r_{ii} \neq 0$ pro i = 1, 2, 3 a $r_{44} = 0$. Nechť d je norma prvního sloupce matice **A**.
 - (a) (2b) Je možné z těchto údajů zjistit absolutní hodnotu prvku r_{11} ? Pokud ano, jak?
 - (b) (3b) Dá se pomocí řádků nebo sloupců matice \mathbf{Q} vyjádřit null \mathbf{A}^{\top} a rng \mathbf{A} ? Pokud ano, jak?
 - (c) (3b) Nechť $\mathbf{x} \in \mathbb{R}^4$ je daný vektor. Zapište jeho ortogonální projekci na rng \mathbf{A} pomocí údajů matice \mathbf{Q} .
 - (d) (2b) Zapište matici $\mathbf{A}^{\top}\mathbf{A}$ jen pomocí údajů z matice \mathbf{R} .
- 2. Uvažujme následující soustavu rovnic:

$$\sin x = 0$$
$$\cos x + y = 0.$$

- (a) (2b) Najděte všechna řešení této soustavy.
- (b) (3b) Napište jednu iteraci Newtonovy metody. Výraz upravte tak, aby neobsahoval inverzi matice.
- (c) (3b) Najděte body, které nejsou řešením soustavy, a ze kterých Newtonova metoda selže po jedné iteraci. Zdůvodněte.
- (d) (2b) Napište alespoň jeden bod, který není řešením soustavy, a z kterého Newtonova metoda konverguje do řešení po jedné iteraci. Zdůvodněte.
- 3. Minimalizujeme funkci $f(x_1, x_2) = 3x_1 + 4x_2$ za podmínek $x_1 2x_2 \le 4, -4x_1 + 2x_2 \le 8$ a $x_1, x_2 \ge 0$.
 - (a) (3b) Nalezněte všechny extremální body množiny přípustných řešení.
 - (b) (2b) Řešte uvedenou úlohu.
 - (c) (3b) Formulujte duální program a ten vyřešte.
 - (d) (1b) Modifikujte účelovou funkci tak, aby měl problém nekonečně mnoho řešení, ale nebyla to všechna přípustná řešení.
 - (e) (1b) Modifikujte účelovou funkci tak, aby byl problém neomezený.
- 4. Řešte následující úlohy.
 - (a) (2b) Je zobrazení f(x, y, z) = (2x y + 3z + 1, y z) afinní? Pokud ano, dokažte, že ho lze psát ve tvaru $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ pro nějakou matici \mathbf{A} a vektor \mathbf{b} .
 - (b) (2b) Určete všechny argumenty maxima funkce $g(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$, kde $\mathbf{A} = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$.
 - (c) (2b) Najděte předpis funkce $f: \mathbb{R} \to \mathbb{R}$, která má minimum právě ve dvou bodech a v nich neexistuje derivace.
 - (d) (4b) Nechť \mathbf{A} je ortogonální matice a $\mathbf{B} = \mathbf{A}\mathbf{A}^{\top} 2\mathbf{x}\mathbf{x}^{\top}$, kde \mathbf{x} je obecný vektor s jednotkovou normou. Je \mathbf{B} ortogonální matice? Zdůvodněte.
- 5. Máme rotační kužel o známé výšce v a známém poloměru podstavy r. Do kužele je vložen (rotační) válec, jehož podstava leží na podstavě rotačního kuželu. Tento válec je plně obsažen v rotačním kuželi.
 - (a) (3b) Zformulujte optimalizační úlohu nalezení rozměrů válce tak, aby byly splněny výše uvedené podmínky, a aby byl objem válce byl maximalizován.
 - (b) (5b) Úlohu vyřešte.
 - (c) (2b) Napište, jak by vypadal optimalizační problém, v němž by se kromě válce měly najít i optimální rozměry rotačního kužele, který má jednotkový objem (objem rotačního kužele je $\frac{1}{3}\pi r^2v$). Zdůrazněte, co jsou optimalizační proměnné. Napište, jak byste problém řešili (samotné řešení počítat nemusíte).