18.06SC Unit 3 Exam

- 1 (34 pts.) (a) If a square matrix A has all n of its singular values equal to 1 in the SVD, what basic classes of matrices does A belong to? (Singular, symmetric, orthogonal, positive definite or semidefinite, diagonal)
 - (b) Suppose the (orthonormal) columns of H are eigenvectors of B:

$$H = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \qquad H^{-1} = H^{T}$$

The eigenvalues of B are $\lambda=0,1,2,3$. Write B as the product of 3 specific matrices. Write $C=(B+I)^{-1}$ as the product of 3 matrices.

(c) Using the list in question (a), which basic classes of matrices do B andC belong to? (Separate question for B and C)

2 (33 pts.) (a) Find three eigenvalues of A, and an eigenvector matrix S:

$$A = \begin{bmatrix} -1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

- (b) Explain why $A^{1001}=A$. Is $A^{1000}=I$? Find the three diagonal entries of e^{At} .
- (c) The matrix $A^{T}A$ (for the same A) is

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & 8 \\ -4 & 8 & 42 \end{bmatrix}.$$

How many eigenvalues of $A^{T}A$ are positive? zero? negative? (Don't compute them but explain your answer.) Does $A^{T}A$ have the same eigenvectors as A?

- **3 (33 pts.)** Suppose the n by n matrix A has n orthonormal eigenvectors q_1, \ldots, q_n and n positive eigenvalues $\lambda_1, \ldots, \lambda_n$. Thus $Aq_j = \lambda_j q_j$.
 - (a) What are the eigenvalues and eigenvectors of A^{-1} ? Prove that your answer is correct.
 - (b) Any vector b is a combination of the eigenvectors:

$$b = c_1 q_1 + c_2 q_2 + \dots + c_n q_n$$
.

What is a quick formula for c_1 using orthogonality of the q's?

(c) The solution to Ax = b is also a combination of the eigenvectors:

$$A^{-1}b = d_1q_1 + d_2q_2 + \dots + d_nq_n.$$

What is a quick formula for d_1 ? You can use the c's even if you didn't answer part (b).

18.06SC Unit 3 Exam Solutions

- 1 (34 pts.) (a) If a square matrix A has all n of its singular values equal to 1 in the SVD, what basic classes of matrices does A belong to? (Singular, symmetric, orthogonal, positive definite or semidefinite, diagonal)
 - (b) Suppose the (orthonormal) columns of H are eigenvectors of B:

$$H = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \qquad H^{-1} = H^{T}$$

The eigenvalues of B are $\lambda=0,1,2,3$. Write B as the product of 3 specific matrices. Write $C=(B+I)^{-1}$ as the product of 3 matrices.

(c) Using the list in question (a), which basic classes of matrices do B and C belong to? (Separate question for B and C)

Solution.

(a) If $\sigma = I$ then $A = UV^{T} = \text{product of orthogonal matrices} = \text{orthogonal matrix}$. 2nd proof: All $\sigma_i = 1$ implies $A^{T}A = I$. So A is orthogonal.

(A is never singular, and it won't always be symmetric — take $U = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and V = I, for example. This also shows it can't be diagonal, or positive definite or semidefinite.)

(b) $B = H\Lambda H^{-1}$ with $\Lambda = \begin{bmatrix} 0 & & \\ & 1 & \\ & & 2 \\ & & & 3 \end{bmatrix}$

$$(B+I)^{-1} = H(\Lambda+I)^{-1}H^{-1} \text{ with (same eigenvectors) } (\Lambda+I)^{-1} = \begin{bmatrix} 1 & & & \\ & 1/2 & & \\ & & 1/3 & \\ & & & 1/4 \end{bmatrix}$$

(c) B is singular, symmetric, positive semidefinite.

 ${\cal C}$ is symmetric positive definite.

2 (33 pts.) (a) Find three eigenvalues of A, and an eigenvector matrix S:

$$A = \begin{bmatrix} -1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

- (b) Explain why $A^{1001}=A$. Is $A^{1000}=I$? Find the three diagonal entries of e^{At} .
- (c) The matrix $A^{T}A$ (for the same A) is

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & 8 \\ -4 & 8 & 42 \end{bmatrix}.$$

How many eigenvalues of $A^{T}A$ are positive? zero? negative? (Don't compute them but explain your answer.) Does $A^{T}A$ have the same eigenvectors as A?

Solution.

(a) The eigenvalues are -1, 0, 1 since A is triangular.

$$\lambda = -1 \text{ has } x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \lambda = 0 \text{ has } x = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \quad \lambda = 1 \text{ has } x = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix}.$$

Those vectors x are the columns of S (upper triangular!).

(b) $A = {}^{\bullet}\Lambda S^{-1}$ and $A^{1001} = S\Lambda^{1001}S^{-1}$. Notice $\Lambda^{1001} = \Lambda$, $A^{1000} = /I$ (A is singular) $(0^{1000} = 0 \neq 1)$.

 e^{At} has e^{-1t} , $e^{0t} = 1$, e^t on its diagonal. Proof using series:

 $\sum_{0}^{\infty} (At)^n/n!$ has triangular matrices so the diagonal has $\sum_{i=0}^{\infty} (-t)^n/n! = e^{-t}$, $\sum_{i=0}^{\infty} 0^n/n! = e^{t}$.

Proof using $S\Lambda S^{-1}$:

$$e^{At} = Se^{\Lambda t}S^{-1} = \begin{bmatrix} 1 & \times & \times \\ 0 & 1 & \times \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} & \\ & 1 \\ & & e^{t} \end{bmatrix} \begin{bmatrix} 1 & \times & \times \\ 0 & 1 & \times \\ 0 & 0 & 1 \end{bmatrix}.$$

(c) $A^{\mathrm{T}}A$ has 2 positive eigenvalues (it has rank 2, its eigenvalues can never be negative).

One eigenvalue is zero because $A^{T}A$ is singular. And 3-2=1.

(Or: $A^{\mathrm{T}}A$ is symmetric, so the eigenvalues have the same signs as the pivots.

Do elimination: the pivots are 1, 0, and 42 - 16 = 26.)

- **3 (33 pts.)** Suppose the n by n matrix A has n orthonormal eigenvectors q_1, \ldots, q_n and n positive eigenvalues $\lambda_1, \ldots, \lambda_n$. Thus $Aq_j = \lambda_j q_j$.
 - (a) What are the eigenvalues and eigenvectors of A^{-1} ? Prove that your answer is correct.
 - (b) Any vector b is a combination of the eigenvectors:

$$b = c_1q_1 + c_2q_2 + \cdots + c_nq_n$$
.

What is a quick formula for c_1 using orthogonality of the q's?

(c) The solution to Ax = b is also a combination of the eigenvectors:

$$A^{-1}b = d_1q_1 + d_2q_2 + \dots + d_nq_n.$$

What is a quick formula for d_1 ? You can use the c's even if you didn't answer part (b).

Solution.

(a) A^{-1} has eigenvalues $\frac{1}{\lambda_j}$ with the same eigenvectors

$$Aq_j = \lambda_j q_j \longrightarrow q_j = \lambda_j A^{-1} q_j \longrightarrow A^{-1} q_j = \frac{1}{\lambda_j} q_j.$$

- (b) Multiply $b = c_1 q_1 + \dots + c_n q_n$ by q_1^T . Orthogonality gives $q_1^T b = c_1 q_1^T q_1$ so $c_1 = \frac{q_1^T b}{q_1^T q_1} = q_1^T b$.
- (c) Multiplying b by A^{-1} will multiply each q_i by $\frac{1}{\lambda_i}$ (part (a)). So c_i becomes

$$d_1 = \frac{c_1}{\lambda_1} \quad \left(= \frac{q_1^{\mathrm{T}}b}{\lambda_1 q_1^{\mathrm{T}}q_1} \text{ or } \frac{q_1^{\mathrm{T}}b}{\lambda_1} \right).$$