General Physics II 制流和分压电路的研究

刘思昀 SLST 2022522011

Wednesday 20th March, 2024

1 制流电路

1.1 原理与步骤

图 1: 制流电路实验电路图

直流电源输入电压 E=1.5A 固定 β 值,调节电位器从而改变 K 值,记录电流表的示数 I

1.2 实验数据及数据处理

电位器旋至最大值时(该实验中取 g 刻度位置为电位器阻值最大值),此时电流表示数记为 I_{max} ,以此对于相同 β 值时的电流表示数进行归一化处理。

注: $\beta = 98.3824, K = 0.0217$ 时(图 2 中标红处),此处实验数据为异常值,根据此处代表的物理意义,在绘图时替换为 1.00000

$$\beta = \frac{R_L}{R_0}$$

$$K = \frac{R_{ac}}{R_0}$$

$$Y = \frac{I}{I_{max}}$$

Rac (kΩ)	R0 (Ω)	RL (Ω)	ß	K	电流表示数I (A)	电源电压E (V)	I max (A)	γ
0.115	5.2976	300	56.6294	0.0217	0.00483	1.5	0.00500	0.96600
0.54282	5.2976	300	56.6294	0.1025	0.00159	1.5	0.00500	0.31800
1.61738	5.2976	300	56.6294	0.3053	0.00077	1.5	0.00500	0.15400
2.5741	5.2976	300	56.6294	0.4859	0.00051	1.5	0.00500	0.10200
3.4763	5.2976	300	56.6294	0.6562	0.00039	1.5	0.00500	0.07800
4.3768	5.2976	300	56.6294	0.8262	0.00031	1.5	0.00500	0.06200
5.2976	5.2976	300	56.6294	1.0000	0.00029	1.5	0.00500	0.05800
0.115	5.2976	500	94.3824	0.0217	0.00680	1.5	0.00300	2.26667
0.54282	5.2976	500	94.3824	0.1025	0.00137	1.5	0.00300	0.45667
1.61738	5.2976	500	94.3824	0.3053	0.00070	1.5	0.00300	0.23333
2.5741	5.2976	500	94.3824	0.4859	0.00047	1.5	0.00300	0.15667
3.4763	5.2976	500	94.3824	0.6562	0.00036	1.5	0.00300	0.12000
4.3768	5.2976	500	94.3824	0.8262	0.00030	1.5	0.00300	0.10000
5.2976	5.2976	500	94.3824	1.0000	0.00026	1.5	0.00300	0.08667
0.115	5.2976	1000	188.7647	0.0217	0.00145	1.5	0.00150	0.96667
0.54282	5.2976	1000	188.7647	0.1025	0.00092	1.5	0.00150	0.61333
1.61738	5.2976	1000	188.7647	0.3053	0.00057	1.5	0.00150	0.38000
2.5741	5.2976	1000	188.7647	0.4859	0.00041	1.5	0.00150	0.27333
3.4763	5.2976	1000	188.7647	0.6562	0.00033	1.5	0.00150	0.22000
4.3768	5.2976	1000	188.7647	0.8262	0.00027	1.5	0.00150	0.18000
5.2976	5.2976	1000	188.7647	1.0000	0.00024	1.5	0.00150	0.16000
0.115	5.2976	2000	377.5294	0.0217	0.00073	1.5	0.00075	0.97333
0.54282	5.2976	2000	377.5294	0.1025	0.00057	1.5	0.00075	0.76000
1.61738	5.2976	2000	377.5294	0.3053	0.00041	1.5	0.00075	0.54667
2.5741	5.2976	2000	377.5294	0.4859	0.00032	1.5	0.00075	0.42667
3.4763	5.2976	2000	377.5294	0.6562	0.00027	1.5	0.00075	0.36000
4.3768	5.2976	2000	377.5294	0.8262	0.00023	1.5	0.00075	0.30667
5.2976	5.2976	2000	377.5294	1.0000	0.00021	1.5	0.00075	0.28000
0.115	5.2976	5000	943.8236	0.0217	0.00029	1.5	0.00030	0.96667
0.54282	5.2976	5000	943.8236	0.1025	0.00027	1.5	0.00030	0.90000
1.61738	5.2976	5000	943.8236	0.3053	0.00023	1.5	0.00030	0.76667
2.5741	5.2976	5000	943.8236	0.4859	0.00020	1.5	0.00030	0.66667
3.4763	5.2976	5000	943.8236	0.6562	0.00018	1.5	0.00030	0.60000
4.3768	5.2976	5000	943.8236	0.8262	0.00016	1.5	0.00030	0.53333
5.2976	5.2976	5000	943.8236	1.0000	0.00014	1.5	0.00030	0.46667
0.115	5.2976	10000	1887.6472	0.0217	0.00015	1.5	0.00015	1.00000
0.54282	5.2976	10000	1887.6472	0.1025	0.00014	1.5	0.00015	0.93333
1.61738	5.2976	10000	1887.6472	0.3053	0.00013	1.5	0.00015	0.86667
2.5741	5.2976	10000	1887.6472	0.4859	0.00012	1.5	0.00015	0.80000
3.4763	5.2976	10000	1887.6472	0.6562	0.00011	1.5	0.00015	0.73333
4.3768	5.2976	10000	1887.6472	0.8262	0.00010	1.5	0.00015	0.66667
5.2976	5.2976	10000	1887.6472	1.0000	0.00010	1.5	0.00015	0.66667

图 2: 制流电路实验数据

图 3: 制流电路不同 β 值下 Y-K 曲线

1.3 结论

由图线可知:

- β 越大, 电流调节范围越小
- $\beta \ge 1$ 时,调节的线性较好
- β 较小, 即 $R_0 \gg R_L$ 时, β 接近 0 时电流变化很大, 细调程度差
- 不论 R_0 大小如何,负载上通过的电流都不可能为 0

2 分压电路

2.1 原理与步骤

图 4: 分压电路实验电路图

直流电源输入电压 E=1.5A 固定 β 值,调节电位器从而改变 K 值,记录电压表的示数 I

2.2 实验数据及数据处理

电位器旋至最大值时(该实验中旋钮最大位置为电位器阻值最大值),以此对于相同 β 值时的 R_{ac} 阻值进行归一化处理。

$$\beta = \frac{R_L}{R_0}$$

$$K = \frac{R_{ac}}{R_0}$$

$$Y = \frac{U_L}{E}$$

Rac (kΩ)	R0 (Ω)	RL (Ω)	ß	K	电压表示数UL(V)	电源电压E (V)	Y
0.115	5.6750	300	52.8634	0.0203	0.000001	1.5	0.00000
0.54282	5.6750	300	52.8634	0.0957	0.059217	1.5	0.03948
1.61738	5.6750	300	52.8634	0.2850	0.087173	1.5	0.05812
2.5741	5.6750	300	52.8634	0.4536	0.117802	1.5	0.07853
3.4763	5.6750	300	52.8634	0.6126	0.168259	1.5	0.11217
4.3768	5.6750	300	52.8634	0.7712	0.27268	1.5	0.18179
5.6750	5.6750	300	52.8634	1.0000	1.49587	1.5	0.99725
0.115	5.6750	500	88.1057	0.0203	0.000002	1.5	0.00000
0.54282	5.6750	500	88.1057	0.0957	0.079088	1.5	0.05273
1.61738	5.6750	500	88.1057	0.2850	0.130917	1.5	0.08728
2.5741	5.6750	500	88.1057	0.4536	0.182395	1.5	0.12160
3.4763	5.6750	500	88.1057	0.6126	0.26827	1.5	0.17885
4.3768	5.6750	500	88.1057	0.7712	0.40198	1.5	0.26799
5.6750	5.6750	500	88.1057	1.0000	1.49584	1.5	0.99723
0.115	5.6750	1000	176.2115	0.0203	0.000001	1.5	0.00000
0.54282	5.6750	1000	176.2115	0.0957	0.100921	1.5	0.06728
1.61738	5.6750	1000	176.2115	0.2850	0.190521	1.5	0.12701
2.5741	5.6750	1000	176.2115	0.4536	0.27592	1.5	0.18395
3.4763	5.6750	1000	176.2115	0.6126	0.39233	1.5	0.26155
4.3768	5.6750	1000	176.2115	0.7712	0.58155	1.5	0.38770
5.6750	5.6750	1000	176.2115	1.0000	1.49550	1.5	0.99700
0.115	5.6750	2000	352.4229	0.0203	0.000002	1.5	0.00000
0.54282	5.6750	2000	352.4229	0.0957	0.131332	1.5	0.08755
1.61738	5.6750	2000	352.4229	0.2850	0.27570	1.5	0.18380
2.5741	5.6750	2000	352.4229	0.4536	0.39998	1.5	0.26665
3.4763	5.6750	2000	352.4229	0.6126	0.55770	1.5	0.37180
4.3768	5.6750	2000	352.4229	0.7712	0.78620	1.5	0.52413
5.6750	5.6750	2000	352.4229	1.0000	1.49556	1.5	0.99704
0.115	5.6750	5000	881.0573	0.0203	0.000002	1.5	0.00000
0.54282	5.6750	5000	881.0573	0.0957	0.146935	1.5	0.09796
1.61738	5.6750	5000	881.0573	0.2850	0.34741	1.5	0.23161
2.5741	5.6750	5000	881.0573	0.4536	0.53144	1.5	0.35429
3.4763	5.6750	5000	881.0573	0.6126	0.72331	1.5	0.48221
4.3768	5.6750	5000	881.0573	0.7712	0.96516	1.5	0.64344
5.6750	5.6750	5000	881.0573	1.0000	1.49558	1.5	0.99705
0.115	5.6750	10000	1762.1145	0.0203	0.000003	1.5	0.00000
0.54282	5.6750	10000	1762.1145	0.0957	0.163912	1.5	0.10927
1.61738	5.6750	10000	1762.1145	0.2850	0.38219	1.5	0.25479
2.5741	5.6750	10000	1762.1145	0.4536	0.60559	1.5	0.40373
3.4763	5.6750	10000	1762.1145	0.6126	0.80998	1.5	0.53999
4.3768	5.6750	10000	1762.1145	0.7712	1.06525	1.5	0.71017
5.6750	5.6750	10000	1762.1145	1.0000	1.49551	1.5	0.99701

图 5: 分压电路实验数据

图 6: 分压电路不同 β 值下 Y-K 曲线

2.3 结论

由图线可知:

- β 越大,调节越均匀
- β 越大,变阻器上消耗的电能越大

3 思考题

- 3.1 如图 1,现可变电阻的 B、C 端未接一根线能起到制流的作用,若在 B、C 端上接一根线也能起到制流的作用,则两种接线方式有什么不同?对实验的过程和结果会有什么影响?
- i. 电流仍然可以通过改变 A 到 B 的阻值来控制,但电流的控制范围会减小,因为总是有一部分电流通过 BC 导线。
- ii. 电流表将显示流过 R_L 和 BC 导线的总电流,但由于 BC 导线的低阻抗,这可能导致测量的电流大于仅通过可变电阻时的电流。
- *iii*. 由于 BC 并联路径的存在, AB 部分的可变电阻将不再是控制电流的唯一手段, 这可能使得对电流的精确控制变得更加困难。

3.2 制流电路与分压电路有何相同之处,又有何不同之处?

相同之处:

- i. 两者都利用了电阻的特性来实现电路中电流或电压的控制。
- ii. 都可以通过调节可变电阻的阻值来改变电路的工作状态。

不同之处:

- i. 制流电路主要用于控制流经电路的电流大小。在这种电路中,可变电阻与负载电阻串联,通过改变可变电阻的阻值来改变电路的总电阻,从而调节电流的大小。制流电路的电流范围从 I_{min} 到 I_{max} ,但不可能调节到零,只能使电流在一定范围内变化。
- ii. 分压电路则主要用于控制负载两端的电压大小。在这种电路中,可变电阻和负载电阻形成分压器,可变电阻的阻值改变将导致负载两端电压的变化。分压电路可以调节的电压范围为 0 到电源电压 E,即 U_L 的范围是 0 到 E。
- *iii*. 在制流电路中,负载电阻上的电流值取决于电源电压和电路的总阻值,而在分压电路中,负载电阻两端的电压取决于电源电压和电阻比率。
- *iv*. 制流电路适合需要稳定电流的场合,比如驱动 LED 或电动机。分压电路则适用于需要特定电压的场合,如给传感器提供参考电压。

3.3 分析制流电路或分压电路中的 Y - K(x) 关系有何作用?

在制流电路或分压电路中,Y 通常表示输出比例,而 K(x) 表示可变电阻器上电阻比例,即可变电阻器的阻值与其最大可能阻值的比例。

分析 Y - K(x) 关系的作用如下:

i. 通过这个关系,可以了解在调节可变电阻器的阻值时,输出的电流或电压将如何变化。

- *ii*. 有助于决定应使用何种电阻和电阻的最大、最小值,以便在特定的应用中得到期望的调节范围和精度。
- iii. 在某些应用中,希望调节过程具有良好的线性度,即阻值的增加或减少将导致电流或电压成比例地变化。Y-K(x) 图能显示出电路的线性度,帮助识别在哪个阻值范围内输出比例变化最为线性。
- iv. 在分压电路中,通过分析 Y K(x) 关系,可以评估变阻器上消耗的能量,并尽可能地减少功耗。
- v. 如果实际的 Y K(x) 曲线与预期的有偏差,这可能表明电路中存在元件损坏或连接错误等问题。因此,这个关系也可以用于故障诊断和故障分析。

3.4 如何运用分压原理,从 1.5 伏的电源电压中分出千分之一的结果? (写出实际可行的方案)

要从 1.5 伏的电源中分出千分之一的电压,即要得到 1.5 毫伏的电压,可以通过一个分压电路实现。分压电路通常由两个电阻串联组成,并从它们的连接点取电压。分出的电压与这两个电阻的比值成正比。为了得到千分之一的电压,电阻之间的比值应该是 999:1。

这里是一个具体的方案:

- 1. 选择电阻值, 这里选择 1Ω 和 999Ω
- 2. 将两个电阻串联连接后,连接到 1.5V 的电源上。
- 3. 从 1Ω 电阻的两端取电压,可以得到 1.5mV

4 分析与讨论

- 实验时需要时刻注意直流电源是否保持 1.5V 左右的电压输出,确保其没有突然调至 0,否则会对实验数据产生影响
- 实验开始前要对电位器的各个档位的阻值进行定标
- 调整电位器刻度时,尽可能从竖直上方观察,尽可能保证每次调节在同一个位置上
- 并联电路连接时可以一个回路一个回路连接, 不易出错