

Continuous Assessment Question Paper

GMRIT/IA/F-5 REV: 03

U.G.	CSE			Degree	Bachelor of Technology		
Academic Year	2021 – 2022	Sem.	6	Test	2	Date of Exam	/05/2022
Course Code	19CS603	Cours Title			Software Engineering		
SCHEME							

PART A (5 X 2= 10 Marks) (Answer all the questions)

No.	Questions (1 to 5)	
1	Data design is the first design activity, which results in less complex, modular and efficient	
	program structure.	
2	Class diagram.	
	 Object diagram. 	
	Component diagram.	
	 Deployment diagram. 	
3	> Top down approach	
	Bottom Up approach	
4	They are applied in research, development, production, process control, quality control,	
	testing, management, etc.	
5	 Product metrics – Describes the characteristics of the product such as size, complexity, design features, performance, and quality level. Process metrics – These characteristics can be used to improve the development and maintenance activities of the software. Project metrics – This metrics describe the project characteristics and execution. Examples include the number of software developers, the staffing pattern over the life cycle of the software, cost, schedule, and productivity Reliability Performance Usability Correctness Maintainability Integrity Security 	

PART B (3 X 10= 30 Marks) Answer ALL questions

No	Questions (6 to 11)	Marks
6	"Coupling" describes the relationships between modules, and "cohesion" describes the relationships within them. A reduction in interconnectedness between modules (or classes) is therefore achieved via a reduction in coupling. On the other hand, well-designed modules (or classes) should have some purpose; all the elements should be associated with a single task. This means that in a good design, the elements within a module (or class) should have internal cohesion.	10

	 ✓ Unit test can be done within a single module ✓ Cohesion of a single module/component is the degree to which its responsibilities form a meaningful unit; higher cohesion is better. ✓ Someone had vague reference to decomposability here. Clarification? ✓ How about: 'Cohesion is inversely proportional to the number of responsibilities a module/component has.' ✓ Coupling between modules/components is their degree of mutual interdependence; lower coupling is better. size: number of connections between routines intimacy: the directness of the connection between routines visibility: the prominence of the connection between routines 	
	flexibility: the ease of changing the connections between routines	
	 ✓ A first-order principle of software architecture is to increase cohesion and reduce coupling. ✓ so having coupling in program is not correct ✓ reduce coupling in your program it will favour Unit testing 	
7	 It is also known as Behavioral Testing, is a software testing method in which the internal structure/design/implementation of the item being tested is not known to the tester. These tests can be functional or non-functional, though usually functional. Black Box Testing Techniques Equivalence Partitioning: It is a software test design technique that involves dividing input values into valid and invalid partitions and selecting representative values from each partition as test data. Boundary Value Analysis: It is a software test design technique that involves the determination of boundaries for input values and selecting values that are at the boundaries and just inside/ outside of the boundaries as test data. Cause-Effect Graphing: It is a software test design technique that involves identifying the cases (input conditions) and effects (output conditions), producing a Cause-Effect Graph, and generating test cases accordingly. 	10
8	 A software project can be concerned with a large variety of risks. In order to be adept to systematically identify the significant risks which might affect a software project, it is essential to classify risks into different classes. The project manager can then check which risks from each class are relevant to the project. There are three main classifications of risks which can affect a software project: Project risks Technical risks 	10

	Business risks		
	Strategies for Risk mitigation		
	Following are the steps to manage risks effectively in an organization:		
	 Risk Identification Risk Quantification 		
	Risk QuantificationRisk Response		
	• Risk Monitoring and Control		
	✓ Data-centered architecture		
	✓ Data-flow architecture		
	✓ Call and return architectures		
,	✓ Layered architectures		
✓	✓ Model-View-Controller(MVC)		
	✓ Repository Architecture		
	✓ client–server architecture		
	✓ Pipe and Filter		
10	1: validate member Record 1: validate member 2: get issue detail 3: get member type 6: add fine and member details 7: fine baid 8: update book status 9: update member record Write All the Notations of Sequence Diagram.	10	
11	 Black box testing technique Black Box Testing Technique Boundary Value Analysis (BVA) Equivalence Class Partitioning Apply any of above two Black box Testing Techniques.	10	