MATH1081 Discrete Mathematics UNSW 2019T1

MATH1081 Discrete Mathematics UNSW 2019T1

Welcome!

MATH1081 Discrete Mathematics UNSW 2019T1

Formalities

Me: Thomas Britz

Email: britz@unsw.edu.au

Please email me if you have any questions or comments!

My office: Room RC-5111, Red Centre Building; just drop by!

Check Moodle for course material, information and the Help Forum.

Join the Facebook group to easily find and share information.

MATH1081 Discrete Mathematics UNSW 2019T1

Overview

TOPIC 1: SETS, FUNCTIONS AND SEQUENCES

Topic 2: Integers, Modular Arithmetic and Relations

Topic 3: Logic and Proofs

TOPIC 4: ENUMERATION AND PROBABILITY

TOPIC 5: GRAPHS

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - \in "belongs to" or "is an element of"
 - \notin "does not belong to" or "is not an element of"

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of''
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - \notin "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

Example. Some commonly-used sets in our number system:

 \mathbb{N} - the set of natural numbers $0, 1, 2, 3, \ldots$

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of''
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- \mathbb{N} the set of natural numbers $0, 1, 2, 3, \ldots$
- \mathbb{Z} the set of integers (whole numbers) ..., -3, -2, -1, 0, 1, 2, 3, ...

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of''
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- \mathbb{N} the set of natural numbers $0, 1, 2, 3, \dots$
- \mathbb{Z} the set of integers (whole numbers) ..., -3, -2, -1, 0, 1, 2, 3, ...
- \mathbb{Q} the set of rational numbers (fractions) ..., $-1, 0, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \frac{2}{3}, \dots$

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
 - ← ''does not belong to'' or ''is not an element of''
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- \mathbb{N} the set of natural numbers $0, 1, 2, 3, \dots$
- \mathbb{Z} the set of integers (whole numbers) ..., -3, -2, -1, 0, 1, 2, 3, ...
- \mathbb{Q} the set of rational numbers (fractions) ..., $-1, 0, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \frac{2}{3}, \dots$
- \mathbb{R} the set of real numbers, which includes all rational numbers as well as irrational numbers such as π , e, and $\sqrt{2}$

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- \mathbb{N} the set of natural numbers $0, 1, 2, 3, \dots$
- \mathbb{Z} the set of integers (whole numbers) ..., -3, -2, -1, 0, 1, 2, 3, ...
- \mathbb{Q} the set of rational numbers (fractions) ..., $-1, 0, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \frac{2}{3}, \dots$
- \mathbb{R} the set of real numbers, which includes all rational numbers as well as irrational numbers such as π , e, and $\sqrt{2}$
- the set of complex numbers, which includes all real numbers as well as numbers like $\sqrt{-1}$.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of'
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of''
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}$$
.

The elements of S are a, b, and c. Thus |S| = 3.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of'
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c. Thus |S| = 3.

We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c. Thus |S| = 3.

We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid -2 \le x \le 1\}$$

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c. Thus |S| = 3.

We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid -2 \le x \le 1\}$$

(or $S = \{x \in \mathbb{Z} : -2 \le x \le 1\}$).

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c. Thus |S| = 3.

We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid -2 \le x \le 1\}$$

(or $S = \{x \in \mathbb{Z} : -2 \le x \le 1\}$).

The elements of S are -2, -1, 0,and 1.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

$$S = \{a, b, c\}.$$

The elements of S are a, b, and c. Thus |S| = 3.

We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid -2 \le x \le 1\}$$

(or $S = \{x \in \mathbb{Z} : -2 \le x \le 1\}$).

The elements of S are -2, -1, 0, and 1. Thus |S| = 4.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - \in "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of'
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

 $S = \{a, b, c\}.$

The elements of S are a, b, and c. Thus |S| = 3. We can write $a \in S$, $b \in S$, $c \in S$, and $d \notin S$, for instance.

Example. We can specify a set by some property that all elements must have:

$$S = \{x \in \mathbb{Z} \mid -2 \le x \le 1\}$$

(or $S = \{x \in \mathbb{Z} : -2 \le x \le 1\}$).

The elements of S are -2, -1, 0, and 1. Thus |S| = 4.

We can write $-2 \in S$, $-1 \in S$, $0 \in S$, $1 \in S$, and $2 \notin S$, for instance.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
 - \notin "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

The elements of A are a and $\{a\}$ (a and a set containing a).

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← "does not belong to" or "is not an element of"
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

The elements of A are a and $\{a\}$ (a and a set containing a). We can write $a \in A$ and $\{a\} \in A$.

- A set is a well-defined collection of distinct objects.
- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
 - ← ''does not belong to'' or ''is not an element of'
- ullet The *cardinality* of a set S, denoted by |S|, is the number of elements in S.

The elements of A are a and $\{a\}$ (a and a set containing a).

We can write $a \in A$ and $\{a\} \in A$.

|A| = 2.

- ullet Two sets S and T are equal, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.

- ullet Two sets S and T are equal, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- ullet The *empty set*, denoted by \emptyset , is a set which has no elements.

- ullet Two sets S and T are *equal*, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

- ullet Two sets S and T are *equal*, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

- ullet Two sets S and T are equal, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

- ullet Two sets S and T are *equal*, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

Exercise. What is the difference between the sets \emptyset , $\{\emptyset\}$, and $\{\emptyset, \{\emptyset\}\}$? \emptyset is the empty set which does not contain anything.

- ullet Two sets S and T are *equal*, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

- \emptyset is the empty set which does not contain anything.
- $\{\emptyset\}$ is a set containing just one element, namely, the empty set \emptyset .

- ullet Two sets S and T are *equal*, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

- \emptyset is the empty set which does not contain anything.
- $\{\emptyset\}$ is a set containing just one element, namely, the empty set \emptyset .
- $\{\emptyset, \{\emptyset\}\}\$ is a set containing two elements, namely, \emptyset and $\{\emptyset\}$.

- ullet Two sets S and T are equal, denoted by S=T, if
 - (i) every element of S is also an element of T, and
 - (ii) every element of T is also an element of S.
 - i.e., when they have precisely the same elements.
- \blacksquare The *empty set*, denoted by \varnothing , is a set which has no elements.

$$A = \{2, 3, 4, 5\},$$
 $C = \{2, 2, 3, 3, 4, 5\},$ $B = \{5, 4, 3, 2\},$ $D = \{x \in \mathbb{N} \mid 2 \le x \le 5\}.$

They are all equal.

- \emptyset is the empty set which does not contain anything.
- $\{\emptyset\}$ is a set containing just one element, namely, the empty set \emptyset .
- $\{\emptyset, \{\emptyset\}\}\$ is a set containing two elements, namely, \emptyset and $\{\emptyset\}$.
- We can write $\emptyset \in \{\emptyset\}, \emptyset \in \{\emptyset, \{\emptyset\}\}, \{\emptyset\} \in \{\emptyset, \{\emptyset\}\}\}.$

A subset of a set is a part of the set.

 \subseteq - "is a subset of"

 $\not\subseteq$ - "is not a subset of"

A subset of a set is a part of the set.

 \subseteq - "is a subset of"

 \subseteq - "is not a subset of"

Example. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$,

A subset of a set is a part of the set.

 \subseteq - "is a subset of"

 \subseteq - "is not a subset of"

A subset of a set is a part of the set.

 \subseteq - "is a subset of"

ullet A set S is a *subset* of a set T if each element of S is also an element of T.

 $\star S = T$ if and only if $S \subseteq T$ and $T \subseteq S$.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
 - $\star S = T$ if and only if $S \subseteq T$ and $T \subseteq S$.
 - A set S is a proper subset of a set T if S is a subset of T and $S \neq T$.
 - $\star \varnothing$ is a proper subset of any non-empty set.
 - * Any non-empty set is an improper subset of itself.

Example.
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}, \quad \{\frac{1}{2}, \pi\} \nsubseteq \mathbb{N}$$

$$\{\frac{1}{2},\pi\}\nsubseteq\mathbb{N}$$

- A subset of a set is a part of the set.
 - "is a subset of"
 - ∠ "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
 - $\star S = T$ if and only if $S \subseteq T$ and $T \subseteq S$.
 - A set S is a proper subset of a set T if S is a subset of T and $S \neq T$.
 - $\star \varnothing$ is a proper subset of any non-empty set.
 - * Any non-empty set is an improper subset of itself.
- ullet The power set P(S) of a set S is the set of all subsets of S.
 - \star For any set S, we have $\varnothing \subseteq S$ and $S \subseteq S$.
 - \star For any set S, we have $\varnothing \in P(S)$ and $S \in P(S)$.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"

 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
 - $\star S = T$ if and only if $S \subseteq T$ and $T \subseteq S$.
 - A set S is a proper subset of a set T if S is a subset of T and $S \neq T$.
 - $\star \varnothing$ is a proper subset of any non-empty set.
 - * Any non-empty set is an improper subset of itself.
- ullet The power set P(S) of a set S is the set of all subsets of S.
 - \star For any set S, we have $\varnothing \subseteq S$ and $S \subseteq S$.
 - \star For any set S, we have $\varnothing \in P(S)$ and $S \in P(S)$.
- The number of subsets of S is $|P(S)| = 2^{|S|}$. (Why?)

- A subset of a set is a part of the set.
 - "is a subset of"
 - ∠ "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"

 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$.

S has 8 subsets.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - ∠ "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$.

S has 8 subsets. We can write $\varnothing \subseteq S$, $\{b\} \subseteq S$, $\{a,c\} \subseteq S$, $\{a,b,c\} \subseteq S$, etc.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - ∠ "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

S has 8 subsets. We can write $\varnothing \subseteq S$, $\{b\} \subseteq S$, $\{a,c\} \subseteq S$, $\{a,b,c\} \subseteq S$, etc. The power set of S is

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\} .$$

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - ∠ "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$.

S has 8 subsets. We can write $\varnothing \subseteq S$, $\{b\} \subseteq S$, $\{a,c\} \subseteq S$, $\{a,b,c\} \subseteq S$, etc. The power set of S is

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\} .$$

and $|P(S)| = 2^3 = 8$.

- A subset of a set is a part of the set.
 - \subseteq "is a subset of"
 - "is not a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

$$\emptyset$$
, $\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$.

S has 8 subsets. We can write $\varnothing \subseteq S$, $\{b\} \subseteq S$, $\{a,c\} \subseteq S$, $\{a,b,c\} \subseteq S$, etc. The power set of S is

$$P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\} .$$

and $|P(S)| = 2^3 = 8$.

We can write $\emptyset \in P(S)$, $\{b\} \in P(S)$, $\{a,c\} \in P(S)$, $\{a,b,c\} \in P(S)$, etc.

- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
- A subset of a set is a part of the set.
 - "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

What are the subsets of A? Find P(A) and |P(A)|.

- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
- A subset of a set is a part of the set.
 - "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

What are the subsets of A? Find P(A) and |P(A)|.

Elements: $0, 1, \text{ and } \{0, 1\}.$

- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
- A subset of a set is a part of the set.
 - "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

What are the subsets of A? Find P(A) and |P(A)|.

Elements: $0, 1, \text{ and } \{0, 1\}.$

Subsets: \emptyset , $\{0\}$, $\{1\}$, $\{\{0,1\}\}$, $\{0,1\}$, $\{0,\{0,1\}\}\}$, $\{1,\{0,1\}\}\}$, $\{0,1,\{0,1\}\}\}$.

- An element of a set is any object in the set.
 - ← 'belongs to' or 'is an element of'
- A subset of a set is a part of the set.
 - "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

What are the subsets of A? Find P(A) and |P(A)|.

Elements: $0, 1, \text{ and } \{0, 1\}.$

Subsets: \emptyset , $\{0\}$, $\{1\}$, $\{\{0,1\}\}$, $\{0,1\}$, $\{0,\{0,1\}\}\}$, $\{1,\{0,1\}\}\}$, $\{0,1,\{0,1\}\}\}$.

 $P(A) = \{\emptyset, \{0\}, \{1\}, \{\{0,1\}\}\}, \{0,1\}, \{0,\{0,1\}\}\}, \{1,\{0,1\}\}\}, \{0,1,\{0,1\}\}\}.$

- An element of a set is any object in the set.
 - ← "belongs to" or "is an element of"
- A subset of a set is a part of the set.
 - "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.
- The number of subsets of S is $|P(S)| = 2^{|S|}$.

What are the subsets of A? Find P(A) and |P(A)|.

Elements: $0, 1, \text{ and } \{0, 1\}.$

Subsets: \emptyset , $\{0\}$, $\{1\}$, $\{\{0,1\}\}\}$, $\{0,1\}$, $\{0,\{0,1\}\}\}$, $\{1,\{0,1\}\}\}$, $\{0,1,\{0,1\}\}\}$.

 $P(A) = \{\emptyset, \{0\}, \{1\}, \{\{0,1\}\}\}, \{0,1\}, \{0,\{0,1\}\}\}, \{1,\{0,1\}\}\}, \{0,1,\{0,1\}\}\}.$

 $|P(A)| = 2^3 = 8.$

- ullet "is an element of"
- ⊆ "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\varnothing \in A$
- $2. \quad \varnothing \subseteq A$
- $3. \quad \varnothing \in P(A)$
- $4. \varnothing \subseteq P(A)$
- $5. \quad 0 \in A$

- $6. \quad 0 \subseteq A$
- 7. $\{0,1\} \in A$
- 8. $\{0,1\} \in P(A)$
- 9. $\{\{0,1\}\}\in A$
- 10. $\{\{0,1\}\}\subseteq A$

- - "is an element of"
- ⊆ "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false

6. $0 \subseteq A$

$$2. \quad \varnothing \subseteq A$$

7. $\{0,1\} \in A$

$$3. \quad \varnothing \in P(A)$$

8. $\{0,1\} \in P(A)$

$$4. \varnothing \subseteq P(A)$$

9. $\{\{0,1\}\}\in A$

5.
$$0 \in A$$

10. $\{\{0,1\}\}\subseteq A$

- \bullet "is an element of"
- C "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false $6. 0 \subseteq A$

$$2. \varnothing \subseteq A$$

2. $\varnothing \subseteq A$ true 7. $\{0,1\} \in A$

$$3. \quad \varnothing \in P(A)$$

8. $\{0,1\} \in P(A)$

$$4. \varnothing \subseteq P(A)$$

9. $\{\{0,1\}\}\in A$

5.
$$0 \in A$$

10. $\{\{0,1\}\}\subseteq A$

- \bullet "is an element of"
- C "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false $6. 0 \subseteq A$

$$2. \quad \varnothing \subseteq A$$

2. $\varnothing \subseteq A$ true 7. $\{0,1\} \in A$

$$3. \quad \varnothing \in P(A)$$

3. $\varnothing \in P(A)$ true 8. $\{0,1\} \in P(A)$

$$4. \varnothing \subseteq P(A)$$

9. $\{\{0,1\}\}\in A$

5.
$$0 \in A$$

10. $\{\{0,1\}\}\subseteq A$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false 6. $0 \subseteq A$

2.
$$\varnothing \subseteq A$$
 true 7. $\{0,1\} \in A$

3.
$$\varnothing \in P(A)$$
 true 8. $\{0,1\} \in P(A)$

4.
$$\varnothing \subseteq P(A)$$
 true 9. $\{\{0,1\}\}\} \in A$

5.
$$0 \in A$$
 10. $\{\{0, 1\}\}\} \subseteq A$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false $6. 0 \subseteq A$

2.
$$\varnothing \subseteq A$$
 true 7. $\{0,1\} \in A$

3.
$$\varnothing \in P(A)$$
 true 8. $\{0,1\} \in P(A)$

4.
$$\varnothing \subseteq P(A)$$
 true 9. $\{\{0,1\}\}\} \in A$

5.
$$0 \in A$$
 true 10. $\{\{0, 1\}\} \subseteq A$

- ullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
false6. $0 \subseteq A$ false2. $\emptyset \subseteq A$ true7. $\{0,1\} \in A$ 3. $\emptyset \in P(A)$ true8. $\{0,1\} \in P(A)$ 4. $\emptyset \subseteq P(A)$ true9. $\{\{0,1\}\} \in A$

5. $0 \in A$ true 10. $\{\{0, 1\}\} \subseteq A$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
 false
 6. $0 \subseteq A$
 false

 2. $\emptyset \subseteq A$
 true
 7. $\{0,1\} \in A$
 true

 3. $\emptyset \in P(A)$
 true
 8. $\{0,1\} \in P(A)$

 4. $\emptyset \subseteq P(A)$
 true
 9. $\{\{0,1\}\} \in A$

 5. $0 \in A$
 true
 10. $\{\{0,1\}\} \subseteq A$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\varnothing \in A$$
 false 6. $0 \subseteq A$ false 2. $\varnothing \subseteq A$ true 7. $\{0,1\} \in A$ true 3. $\varnothing \in P(A)$ true 8. $\{0,1\} \in P(A)$ true 4. $\varnothing \subseteq P(A)$ true 9. $\{\{0,1\}\} \in A$ 5. $0 \in A$ true 10. $\{\{0,1\}\}\} \subseteq A$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in A$$
false6. $0 \subseteq A$ false2. $\emptyset \subseteq A$ true7. $\{0,1\} \in A$ true3. $\emptyset \in P(A)$ true8. $\{0,1\} \in P(A)$ true4. $\emptyset \subseteq P(A)$ true9. $\{\{0,1\}\} \in A$ false5. $0 \in A$ true10. $\{\{0,1\}\} \subseteq A$

- "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.	$\varnothing \in A$	false	6.	$0 \subseteq A$	false
2.	$\varnothing\subseteq A$	true	7.	$\{0,1\} \in A$	true
3.	$\varnothing \in P(A)$	true	8.	$\{0,1\} \in P(A)$	true
4.	$\varnothing \subseteq P(A)$	true	9.	$\{\{0,1\}\}\in A$	false
5.	$0 \in A$	true	10.	$\{\{0,1\}\} \subseteq A$	true

- ullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\varnothing \in B$
- $2. \quad \varnothing \subseteq B$
- $3. \{\emptyset\} \in B$
- $4. \quad \{\varnothing\} \subseteq P(B)$
- 5. $\{0\} \in P(B)$

- 6. $\{\{0\}\}\subseteq P(B)$
- 7. $1 \in B$
- 8. $\{1\} \subseteq B$
- 9. $\{1\} \in P(B)$
- 10. $\{\{1\}\}\subseteq P(B)$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\varnothing \in B$$

true 6.
$$\{\{0\}\}\subseteq P(B)$$

$$2. \quad \varnothing \subseteq B$$

7.
$$1 \in B$$

$$3. \{\emptyset\} \in B$$

8.
$$\{1\} \subseteq B$$

$$4. \quad \{\varnothing\} \subseteq P(B)$$

9.
$$\{1\} \in P(B)$$

5.
$$\{0\} \in P(B)$$

10. $\{\{1\}\}\subseteq P(B)$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\varnothing \in B$$

1.
$$\varnothing \in B$$
 true 6. $\{\{0\}\}\subseteq P(B)$

$$2. \quad \varnothing \subseteq B$$

2. $\varnothing \subseteq B$ true 7. $1 \in B$

$$3. \{\emptyset\} \in B$$

8. $\{1\} \subseteq B$

$$4. \quad \{\varnothing\} \subseteq P(B)$$

9. $\{1\} \in P(B)$

5.
$$\{0\} \in P(B)$$

10. $\{\{1\}\}\subseteq P(B)$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

$$1. \quad \varnothing \in B$$

1.
$$\varnothing \in B$$
 true 6. $\{\{0\}\}\subseteq P(B)$

$$2. \quad \varnothing \subseteq B$$

2. $\varnothing \subseteq B$ true 7. $1 \in B$

$$3. \quad \{\varnothing\} \in B$$

3.
$$\{\emptyset\} \in B$$
 false 8. $\{1\} \subseteq B$

4.
$$\{\varnothing\} \subseteq P(B)$$
 9. $\{1\} \in P(B)$

5.
$$\{0\} \in P(B)$$

10. $\{\{1\}\}\subseteq P(B)$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\varnothing \in B$ true 6. $\{\{0\}\}\subseteq P(B)$
- 2. $\varnothing \subseteq B$ true 7. $1 \in B$
- 3. $\{\emptyset\} \in B$ false 8. $\{1\} \subseteq B$
- 4. $\{\varnothing\} \subseteq P(B)$ true 9. $\{1\} \in P(B)$
- 5. $\{0\} \in P(B)$ 10. $\{\{1\}\} \subseteq P(B)$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\varnothing \in B$ true 6. $\{\{0\}\}\subseteq P(B)$
- 2. $\varnothing \subseteq B$ true 7. $1 \in B$
- 3. $\{\emptyset\} \in B$ false 8. $\{1\} \subseteq B$
- 4. $\{\varnothing\} \subseteq P(B)$ true 9. $\{1\} \in P(B)$
- 5. $\{0\} \in P(B)$ true 10. $\{\{1\}\}\subseteq P(B)$

- \bullet "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\emptyset \in B$ true 6. $\{\{0\}\}\subseteq P(B)$ true
- 2. $\varnothing \subseteq B$ true 7. $1 \in B$
- 3. $\{\emptyset\} \in B$ false 8. $\{1\} \subseteq B$
- 4. $\{\varnothing\} \subseteq P(B)$ true 9. $\{1\} \in P(B)$
- 5. $\{0\} \in P(B)$ true 10. $\{\{1\}\}\subseteq P(B)$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

- 1. $\emptyset \in B$ true 6. $\{\{0\}\}\subseteq P(B)$ true
- 2. $\varnothing \subseteq B$ true 7. $1 \in B$ false
- 3. $\{\emptyset\} \in B$ false 8. $\{1\} \subseteq B$
- 4. $\{\varnothing\} \subseteq P(B)$ true 9. $\{1\} \in P(B)$
- 5. $\{0\} \in P(B)$ true 10. $\{\{1\}\}\subseteq P(B)$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.
$$\emptyset \in B$$
true6. $\{\{0\}\}\} \subseteq P(B)$ true2. $\emptyset \subseteq B$ true7. $1 \in B$ false3. $\{\emptyset\} \in B$ false8. $\{1\} \subseteq B$ false4. $\{\emptyset\} \subseteq P(B)$ true9. $\{1\} \in P(B)$

5. $\{0\} \in P(B)$ true 10. $\{\{1\}\}\subseteq P(B)$

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- lacksquare The power set P(S) of a set S is the set of all subsets of S.

1.	$\varnothing \in B$	true	6.	$\{\{0\}\} \subseteq P(B)$	true
2.	$\varnothing\subseteq B$	true	7.	$1 \in B$	false
3.	$\{\varnothing\}\in B$	false	8.	$\{1\} \subseteq B$	false
4.	$\{\varnothing\}\subseteq P(B)$	true	9.	$\{1\} \in P(B)$	false
5.	$\{0\} \in P(B)$	true	10.	$\{\{1\}\}\subseteq P(B)$	

- - "is an element of"
- "is a subset of"
 - ullet A set S is a *subset* of a set T if each element of S is also an element of T.
- ullet The power set P(S) of a set S is the set of all subsets of S.

1.	$\varnothing \in B$	true	$6. \{\{0\}\}$	$rac{}{} \subseteq P(B)$	true
----	---------------------	------	----------------	--------------------------	------

- 2. $\varnothing \subseteq B$ true 7. $1 \in B$ false
- 3. $\{\emptyset\} \in B$ false 8. $\{1\} \subseteq B$ false
- 4. $\{\varnothing\} \subseteq P(B)$ true 9. $\{1\} \in P(B)$ false
- 5. $\{0\} \in P(B)$ true 10. $\{\{1\}\}\subseteq P(B)$ false