

Elektronika

Auditorne vježbe 10

TRANZISTORI

- Bipolarni tranzistor
 - Ustrojstvo, struje i osnovni parametri
 - Earlyjev efekt
 - Ebers-Mollov model
- Unipolarni tranzistor
 - Spojni unipolarni tranzistor (JFET)
 - Unipolarni tranzistor s izoliranim vratima (MOSFET)

Unipolarni tranzistor

- Tranzistor s efektom polja Field Effect Transistor
- Unipolarni u radu tranzistora sudjeluju ili elektroni ili šupljine.
- Elektrode:
 - Uvod (Source)
 - Odvod (Drain)
 - Vrata upravljačka elektroda (Gate)
- Dio tranzistora kroz koji teče struja kanal:
 - n-kanalni
 - p-kanalni

Unipolarni tranzistori

- Podjela s obzirom na tehnološku izvedbu:
 - Spojni unipolarni tranzistori Junction FET
 - Unipolarni tranzistori s izoliranim vratima:
 - Insulated Gate FET
 - Metal-Oxide-Semiconductor FET
- Zajedničko svojstvo FET-ova: velik ulazni otpor

Spojni unipolarni tranzistor - JFET

b)

b)

p-kanalni JFET

- a) Struktura JFET-a
- b) El. simbol

n-kanalni JFET

- a) Struktura JFET-a
- b) El. simbol

Potpuno otvoreni kanal

• $U_{DS}=0 i U_{GS}=0$

• Vodljivost:
$$G_0 = \frac{1}{R_0} = \frac{q \cdot \mu_n \cdot N_D \cdot 2a \cdot w}{L} = \sigma \cdot \frac{2a \cdot w}{L}$$

Širina kanala

• U_{DS}=0, U_{GS}≠0

• Širina barijere:

$$a - b = \sqrt{\frac{2 \cdot \varepsilon \cdot \left(U_k - U_{GS}\right)}{q \cdot N_D}}$$

Napon dodira

Napon pri kojem je širina kanala nula: b = 0.

$$a^{2} = \frac{2 \cdot \varepsilon \cdot (U_{k} - U_{GS0})}{q \cdot N_{D}} \qquad \qquad \qquad \qquad \qquad U_{GS0} = U_{k} - \frac{a^{2} \cdot q \cdot N_{D}}{2 \cdot \varepsilon}$$

$$b = a \cdot \left(1 - \sqrt{\frac{U_k - U_{GS}}{U_k - U_{GS0}}}\right)$$

n-kanalni JFET

$$a^{2} = \frac{2 \cdot \varepsilon \cdot (U_{k} + U_{GS0})}{q \cdot N_{A}} \qquad \qquad \qquad \qquad \qquad U_{GS0} = \frac{a^{2} \cdot q \cdot N_{A}}{2 \cdot \varepsilon} - U_{k}$$

$$b = a \cdot \left(1 - \sqrt{\frac{U_k + U_{GS}}{U_k + U_{GS0}}}\right)$$

p-kanalni JFET

Izlazne karakteristike JFET-a

- Dva područja rada:
 - Triodno područje
 - Područje zasićenja

Dinamički parametri JFET-a (n-kanalni)

Parametar	Podru č je	Izraz
Strmina	Triodno	$g_{m} = G_{0} \cdot \frac{\sqrt{U_{k} - U_{GS} + U_{DS}} - \sqrt{U_{k} - U_{GS}}}{\sqrt{U_{k} - U_{GS0}}}$
	Zasićenje	$g_{m} = G_{0} \cdot \left(1 - \frac{\sqrt{U_{k} - U_{GS}}}{\sqrt{U_{k} - U_{GS0}}}\right)$
Izlazna dinamička vodljivost	Triodno	$g_{d} = G_{0} \cdot \left(1 - \sqrt{\frac{U_{k} - U_{GS} + U_{DS}}{U_{k} - U_{GS 0}}}\right)$
	Zasićenje	$g_d = I_D \cdot (1 + \lambda \cdot U_{DS})$
Faktor pojačanja		$\mu = \frac{g_m}{g_d}$

Dinamički parametri JFET-a (p-kanalni)

Parametar	Podru č je	Izraz
Strmina	Triodno	$g_{m} = G_{0} \cdot \frac{\sqrt{U_{k} + U_{GS} - U_{DS}} - \sqrt{U_{k} + U_{GS}}}{\sqrt{U_{k} + U_{GS0}}}$
	Zasićenje	$g_m = G_0 \cdot \left(1 - \frac{\sqrt{U_k + U_{GS}}}{\sqrt{U_k + U_{GS0}}}\right)$
Izlazna dinamička vodljivost	Triodno	$g_{d} = G_{0} \cdot \left(1 - \sqrt{\frac{U_{k} + U_{GS} - U_{DS}}{U_{k} + U_{GS0}}}\right)$
	Zasićenje	$g_d = I_D \cdot (1 + \lambda \cdot U_{DS})$
Faktor pojačanja		$\mu = \frac{g_m}{g_d}$

Zadatak 24.

- Za silicijski n-kanalni FET zadani su podaci: N_A=10¹⁷ cm⁻³, N_D=10¹⁵ cm⁻³, a=3 µm, L/w=1, T=300 K. Odrediti:
- a) Vodljivost potpuno otvorenog kanala;
- b) Poluširinu b i vodljivost pri naponu U_{GS}=1/2 U_{GS0}.

Zadatak 25.

 Zadane su izlazne karakteristike silicijskog n-kanalnog FET-a. Treba odrediti sve dinamičke parametre u točkama A i B, ako je poznato: N_A=1,2·10¹⁷ cm⁻³, N_D=2·10¹⁵ cm⁻³, a=2 μm, λ=0,01 V⁻¹, T=300 K.

Zadatak 26.

• Za silicijski p-kanalni FET zadani su podaci: $N_A=10^{16}$ cm⁻³, $N_D=5\cdot 10^{17}$ cm⁻³, a=1 μ m, w/L=10, T=300 K. Odrediti struju odvoda I_D i strminu pri naponu $U_{DS}=-6$ V i naponima $U_{GS}=0$ V, i $U_{GS}=2$ V.