§ 2-4 金属配合物的配位场理论

金属离子或原子与它周围 n 个离子或分子形成的化合物 称金属配合物(记为: ML_n)

例如 [Fe(H₂O)₆]³⁺

价键理论(VB)

认为配合物的中央离子(或原子)和配位体之间的化学键可分为电价配键和共价配键两种。

在电价配合物中,带正电的中心离子和带负电或具有偶极矩的配位体之间是靠静电引力结合成键,呈高自旋状态。

在共价配合物中,配位体的孤对电子和中心离子空的杂化价轨道形成共价配键,呈低自旋状态。

价键理论说明了高自旋配合物和低自旋配合物产生的原因,对配合物的磁性和几何构型也都给予了一定的说明。但作为一个定性的理论,价键理论有很大的局限性。

晶体场(CFT)

1929年, H. Bethe 用量子力学结合群论初步建立了晶体场方法。

1923年, van Vleck 在Bethe的工作基础上,提出过渡金属配合物的化学键理论,较好地解释金属配合物的磁性和稳定性。

分子轨道法(MO)

将配合物视为一个大的分子,用MO法处理。因包含金属 d 轨道, MO成分较为复杂。在MO法中,对称性匹配原则是关键因素。

1950年代以后,人们吸收上述理论的优点,发展了配位场理论。

一、晶体场理论

1、基本思想

金属配合物的成键类似于离子晶体中正负离子的作用。

- (i) 金属与配体的作用为静电作用,配体视为点电荷。
- (i i) 配体的作用是建立一个负电荷势场(晶体场),在晶体场的微扰下,金属的 d 轨道发生能级分裂。
- (i i i) 金属的电子从低到高填充分裂后的 d 轨道,使总能量下降,产生附加成键效应。分裂后总能量的下降称晶体场稳定化能(CFSE)。

2、正八面体场中d轨道分裂晶体场理论处理(O_b场)

(i) 中心离子的电子Hamiltonian(只考虑d电子)

$$\hat{H}_d = \sum_n \hat{h}(n)$$

采用单电子理论框架(不考虑电子-电子作用项)

$$\hat{h}(n) = -\frac{1}{2}\nabla_n^2 - \frac{Z_e}{r_n} + (-1)\hat{V}(\vec{r}_n)$$

$$=\hat{h}_0 - \hat{V}(\vec{r}_n)$$

 \hat{h}_0 为自由离子中 d 电子的 哈密顿算符

 $\hat{V}(\vec{r}_n)$ 为配体的静电场,它有 $\mathbf{O_h}$ 对称性。

设配体带电为 -q,配体-金属原子距离为 a 。在点电荷模型下,利用经典静电学结果,可得:

$$\hat{V} = -\frac{6q}{a} - \frac{35q}{4a^5} (x^4 + y^4 + z^4 - \frac{3}{5}r^4)$$

$$\begin{array}{c|c}
L_3 & L_4 \\
\hline
L_5 & L_2 \\
\hline
L_1 & L_6
\end{array}$$

$$\hat{V} = -\frac{6q}{a} + \hat{V}o_h$$

前者为各向同性部分,后者为各向异性部分。

容易验证算符 \hat{V}_{Oh} 在 O_h 的对称操作作用下不变。

球坐标系下:

$$x^{4} + y^{4} + z^{4} - \frac{3}{5}r^{4} = r^{4}[(\sin\theta\cos\phi)^{4} + (\sin\theta\sin\phi)^{4} + (\cos\theta)^{4} - \frac{3}{5}]$$

单电子薛定谔方程:

$$(\hat{h}_0 + \hat{h}')\psi_i = \varepsilon_i \psi_i$$

$$\hat{h}' = -\hat{V} = \frac{6q}{a} + \hat{V}o_h$$

用微扰法近似求解单电子薛定谔方程。

电子总波函数:

$$\Psi_d = |\psi_1 \dots \psi_n\rangle$$

电子总能量:

$$E_d = \sum_i \varepsilon_i$$

由此可了解配合物的各种性质(稳定性,光谱,磁性...)

(ii) d轨道分裂模式:由场的对称性决定。

对于正八面体场,5个d轨道 按 O_h 群的不可约表示分类(查特征标表或相关表)

中心力场	O_h 的不可约表示
d_{xy}	
d_{yz}	t_{2g}
d_{zx}	
$d_{x^2-y^2}$	ρ
d_{z^2}	e_{g}

可见原来简并的 d 轨道分裂为两组: eg 和 t2g。

0,	E 8C, 6C, 6C, 3C	$_{2}(=C_{4}^{2})$ i 6S, 8S, 3 σ_{1} 6 σ_{2}	A WAY	
A1,	1 1 1 1 1	1 1 1 1 1		$x^2 + y^2 + z^2$
A2,	1 1 -1 -1	1 1 -1 1 1 -1		(0-1 -1 -1 -1 -1)
E_{ϵ} $T_{1\epsilon}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(R_{\bullet},R_{\bullet},R_{\bullet})$	$(2z^2-x^2-y^2,x^2-y^2)$
T_{2s}		-1 3 -1 0 -1 1		(xz, yz, xy)
A1.	1 1 1 1	1 -1 -1 -1 -1 -1		
A_2 , E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
T_{1}		$\begin{bmatrix} 2 & 2 & 0 & 1 & 2 & 0 \\ -1 & -3 & -1 & 0 & 1 & 1 \end{bmatrix}$	(x,y,z)	$z=a_{ij}\left(2\pi i/3\right)$
T_{2s}	3 0 1 -1 -	-1 -3 1 0 1 -1		

两组能级的高低(直观观察)

 $eg(d_{x2-y2})$: 电子云与带负电荷的配体迎头相撞,库仑排斥大,能量高。

 t_{2g} (d_{xy}) : 电子云避开带负电荷的配体,库 仑排斥小,能量低。

(iii)能级分裂的微扰计算

$$\hat{h}_0 \psi_i^{(0)} = \varepsilon_i^{(0)} \psi_i^{(0)}$$
 $\varepsilon_i = \varepsilon_i^{(0)} + \Delta \varepsilon_i$

$$\mathcal{E}_i = \mathcal{E}_i^{(0)} + \Delta \mathcal{E}_i$$

一级微扰修正:

$$\left|\Delta \varepsilon_{i} = \Delta \varepsilon_{i}^{(1)} = \langle \psi_{i}^{(0)} \middle| \hat{h}' \middle| \psi_{i}^{(0)} \rangle \right| \qquad \hat{h}' = -\hat{V} = \frac{6q}{q} + \hat{V}o_{h}$$

$$\hat{h}' = -\hat{V} = \frac{6q}{a} + \hat{V}o_h$$

零级波函数:

$$\psi_i^{(0)} = \psi_{nlm} = N_{nl} R_{nl}(r, \theta) Y_{lm}(\theta, \varphi)$$

特别有,

$$nd_{x^2-y^2} = \sqrt{\frac{15}{16\pi}} R_{n2}(r) \sin^2 \theta \cos 2\varphi$$

$$nd_{xy} = \sqrt{\frac{15}{16\pi}} R_{n2}(r) \sin^2 \theta \sin 2\varphi$$

$$\psi_{2d_{x2}} = \frac{1}{81(6\pi)^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} (3\cos^2\theta - 1)$$

$$\psi_{2d_{x2}} \approx \frac{2^{1/2}}{81\pi^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} \sin\theta \cos\theta \cos\phi$$

$$\psi_{2d_{x2}} = \frac{2^{1/2}}{81\pi^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} \sin\theta \cos\theta \sin\phi$$

$$\psi_{2d_{x2}} = \frac{1}{81(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} \sin\theta \cos\theta \sin\phi$$

$$\psi_{2d_{x2}} = \frac{1}{81(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} \sin^2\theta \cos2\phi$$

$$\psi_{2d_{x2}} = \frac{1}{81(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{7/2} r^2 e^{-Z_{7/2a}} \sin^2\theta \sin2\phi$$

一级微扰修正:

$$\Delta \varepsilon_{e_g} = \left\langle nd_{x^2 - y^2} \left| \hat{h}' \right| nd_{x^2 - y^2} \right\rangle$$

$$= \left\langle nd_{x^2 - y^2} \left| \frac{6q}{a} + \hat{V}_{O_h} \right| nd_{x^2 - y^2} \right\rangle$$

$$= \frac{6q}{a} + \int_0^\infty \int_0^{2\pi} \int_0^\pi (nd_{x^2 - y^2})^2 \hat{V}_{O_h} r^2 \sin\theta d\theta d\phi dr$$

$$\hat{h}' = -\hat{V} = \frac{6q}{a} + \hat{V}o_h$$

得:

$$\Delta \varepsilon_{e_g} = \frac{6q}{a} + 6Dq = \frac{6q}{a} + \frac{3}{5}\Delta$$

其中Dq 为与q, a 有关的参数,

$$Dq = \frac{35q}{4a^5} \cdot \frac{2}{105} \int_0^\infty [R_{n2}(r)]^2 r^6 dr = \frac{1}{10} \Delta$$

同理:

$$\Delta \varepsilon_{t_{2g}} = \left\langle nd_{xy} \left| \hat{h}' \right| nd_{xy} \right\rangle = \frac{6q}{a} - 4Dq = \frac{6q}{a} - \frac{2}{5}\Delta$$

$$\Delta \varepsilon_{t_{2g}} = \frac{6q}{a} - 4Dq = \frac{6q}{a} - \frac{2}{5}\Delta$$

结果

自由离子 各向同性部分 各向异性部分

3、T_d和 D_{4h}场中 d 轨道的分裂

能级分裂的定性分析:

- (i) 用群论知识了解 d 轨道分裂为几组。
- (ii) 根据金属 d 电子与配体的负电荷的库仑排斥, 直观定性 判断各组能级的高低次序。

	$\mathrm{T}_{\mathtt{d}}$	$\bigcirc_{\mathbf{h}}$	$\mathbb{D}_{4\mathrm{h}}$
$d_{x^2-y^2}$	હ	es	b_{Ig}
d_{z^2}	E	$e_{\mathcal{E}}$	a_{Ig}
d_{w}	t_2	t_{2g}	b_{2g}
d_{yz}	t_2	t_{2g}	e_g
d_{xz}	t_2	t_{2g}	e_{g}

T_{\star}	E	8C,	3 <i>C</i>	. 6S.	600	1	Irus-		and the supplemental states are supplemental states are supplemental states and the supplemental states are supplemental states ar
A_1	i	1,	1	-1	1_		A. B. R	K	$x^2 + y^2 + z^2$
A_{2}	1	_1	1	-1	-1	-1	-	-	
E	2	-1	2	.0	0 1	ri.			$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1}	3	0	-1	1(10	-1 ₈₀ ;	(R.	R,R,R		
T_2	3	0	-1	-1	1	(x,	y,z)		(xy,xz,yz)

A_{1} , A_{2} , A_{2} , A_{2} , A_{3} , A_{4} , A_{5} , A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$B_{2,i} \begin{vmatrix} 1 - 1 & 1 & -1 & 1 & 1 - 1 & 1 & 1 \end{vmatrix}$ xy
I
$E_{z} = \begin{bmatrix} 2 & 0 - 2 & 0 & 0 & 2 & 0 - 2 & 0 & 0 \end{bmatrix} (R_{z}, R_{z}) (xz, yz)$
A_{1} , $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
A_2 . 1 1 1 -1 -1-1-1 1 1 z
B_{1} , $\begin{bmatrix} 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -$
$B_{2s} \begin{bmatrix} 1 - 1 & 1 - 1 & 1 - 1 & 1 - 1 \\ 1 - 1 & 1 - 1 & 1 - 1 & 1 - 1 \end{bmatrix}$
$E_{\bullet} \begin{bmatrix} 2 & 0 - 2 & 0 & 0 - 2 & 0 & 2 & 0 & 0 \\ x, y \end{bmatrix}$

	T_{d}	$\bigcirc_{\mathbf{h}}$	D_{4h}
$d_{x^2-y^2}$	€	$e_{\it g}$	b_{Ig}
d_{z}	e	e_{g}	a_{Ig}
d_{p}	t_2	t_{2g}	b_{2g}
d_{yz}	t_2	t_{2g}	e_g
d_{xz}	t_2	t_{2g}	e_g

d 轨道能级的晶体场分裂(单位: Dq)

配位数	几何构型	d_{x2-y2}	d_{z2}	d_{xy}	d_{yz}	d_{zx}
2	直线型	-6.28	10.28	-6.28	1.14	1.14
3	三角形	5.46	-3.21	5.46	-3.86	-3.86
4	正四面体	-2.67	-2.67	1.78	1.78	1.78
4	正方形	12.28	-4.28	2.28	-5.14	-5.14
6	正八面体	6.00	6.00	-4.00	-4.00	-4.00

$$Dq = \frac{35q}{4a^5} \cdot \frac{2}{105} \int_0^\infty [R_{n2}(r)]^2 r^6 dr = \frac{1}{10} \Delta$$

二、CFT与配合物的性质

1、正八面体配合物中d电子组态

配合物的性质, 可由 d 电子组态解释。

*能级分裂间隔 Δ $(10D_q)$ ——与配体和中间原子的种类都有关。

*电子成对能 P —— 只与中心原子的种类有关。

(交换作用: 自旋平行的两个电子存在交换作用, 使总能量降低)

 $\Delta > P$ 强场 先填满 t_{2g} 轨道、然后填充 e_g 轨道

Δ<P 弱场 自旋尽可能平行

例:
$$[Fe(H_2O)_6]^{2+}$$
, d⁶

$$\Delta$$
 (10400 cm⁻¹) < P (15000 cm⁻¹)

弱场,电子组态为:
$$(t_{2g})^4(e_g)^2$$

未配对电子: 4,
$$S = 4 \times (1/2) = 2$$
 HS

例: [Fe(CN)₆]⁴⁻

$$\Delta$$
 (33000cm⁻¹) >P (15000cm⁻¹)

组态:
$$(t_{2g})^6$$

$$S = 0$$
 —— LS (抗磁性分子)

2、磁性(自旋磁矩)

若未配对电子为 n,则总自旋量子数为: S = n/2

总自旋角动量:

$$\left| \vec{S} \right| = \sqrt{s(s+1)}\hbar = \frac{\hbar}{2}\sqrt{n(n+2)}$$

自旋磁矩:

$$|\vec{\mu}_m| = 2\mu_B \sqrt{s(s+1)} = \mu_B \sqrt{n(n+2)}$$

其中:

$$\mu_B = \frac{e\hbar}{2m_e c} \qquad (Bohr磁子)$$

摩尔顺磁磁化率:

$$\chi_p = \frac{N_0 \mu^2_m}{3kT}$$
 单位: (cm³/mol)

某些正八面体络合物的自旋状态

d^n	中心离子	P (cm-1)	配体	Δ(cm-1)	自旋态/ 理论	自旋态/ 实验
$3d^4$	Cr ²⁺	23500	6H ₂ O	13900	高	高
$3d^4$	<i>Mn</i> ³⁺	28000	6H ₂ O	21000	高	高
$3d^5$	<i>Mn</i> ²⁺	25500	6H ₂ O	7800	高	高
$3d^5$	<i>Fe</i> ³⁺	30000	6H ₂ O	13700	高	高
$3d^6$	Fe^{2+}	15000	6H ₂ O	10400	高	高
$3d^6$	Fe^{2+}	15000	6CN-	33000	低	低
$3d^6$	Co ³⁺	21000	6F-	13000	高	高
$3d^6$	Co ³⁺	21000	6NH ₃	23000	低	低
$3d^7$	Co ²⁺	22500	6H ₂ O	9300	高	高

- 3、影响∆的因素(经验规律)
 - (i) 不同配体(光谱化学序列)

CO, CN⁻, NO₂⁻ >NH₃>H₂O>OH⁻>F⁻>SCF⁻, Cl⁻>Br⁻>I⁻

强场(LS) 中 弱场(HS)

- (ii) 金属离子价态: 相同配体,同一金属元素,金属离子 高价态的分裂能大。
- (iii) 周期性: $\Delta_{4d} > \Delta_{3d}$ 第二系列,第三系列过渡元素,多数生成强场LS配合物 。
- (iv) 四面体配合物大多是弱场高自旋的。 点电荷模型下: O_h : $\Delta=10D_q$ T_d : $\Delta=(-40/9)D_q$

4、晶体场稳定化能(CFSE)

CFSE = 未分裂d电子总能量-分裂后d电子总能量

*需要考虑的因素:分裂能 Δ ,电子成对能P,d电子数。

例: d⁶组态

HS:

CFSE =
$$(0+P)-[-4D_q \times 4 + 6D_q \times 2 + P] = 4D_q$$

LS:

CFSE =
$$(0+P)-[-4D_q \times 6 + 3P] = 24D_q - 2P$$

过渡金属二价离子六水合物的水合热

从*Ca*到*Zn*核电荷逐步增加, *3d*电子 壳层逐步缩小,水分子和中心离子 的距离逐步缩短,故水化作用应逐 步加强,水化热应随 *d* 电子数的增 加而上升。

但实验曲线是一条双峰曲线。反映了CFSE的变化。

	d^0	d^{l}	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}
CFSE (Dq)	0	4	8	12	6	0	4	8	12	6	0

离子晶体的晶格能也有类似的变化规律。

5、构型畸变(Jahn-Teller效应)

John-Teller定理:对于非线性分子,若其基电子态是轨道简并的,则分子不可能保持稳定,必然发生畸变,使简并消除。

即:在这种情况下,分子不可能保持较高的对称性,必然发生畸变,使对称性降低,轨道简并消除。

例: $Cu(NH_3)_6^{2+}$, $Cu(H_2O)_6^{2+}$

 d^9 : $(t_{2g})^6(e_g)^3$

将发生结构畸变。

$$dx^{2}-y^{2} \qquad dz^{2}$$

$$+ \qquad + \qquad e_{g}$$

$$+ \qquad \downarrow \qquad \downarrow \qquad t_{2g}$$

$(d_{x2-y2})^2(d_{z2})^1$ 压扁八面体:

$(d_{x2-y2})^1(d_{z2})^2$ 拉长八面体:

实验: 拉长八面体居多

有机分子和团簇的 John-Teller效应

一维周期结构的 Perierls 畸变

等间距一维周期结构不能保持稳定,将发生畸变。

SSH孤子理论(Su-Schrieffer-Heeger)