1. Introduction

Outre son intérêt théorique, le problème dual possède de très intéressantes applications économiques.

2. Forme canonique d'un Programme linéaire de Maximisation

Tous les programmes linéaires de Maximisation peuvent s'écrire sous cette forme :

$$\begin{aligned} \textit{MaxZ} &= c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ & \begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \dots & \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n \leq b_n \\ x_i \geq 0 \ , \ \forall j = [1, \dots n] \ , \ b_i \ \text{est de signe queconque} \ \forall i = [1, \dots m] \end{aligned}$$

On désigne cette représentation sous le terme de forme canonique d'un programme linéaire de maximisation.

Par définition, la forme canonique d'un programme linéaire de maximisation est un programme linéaire consistant à maximiser une fonction économique dans un domaine défini par des contraintes sous forme d'inéquations de type inférieures ou égales (\leq).

Exemple:

$$\begin{aligned} \mathit{MaxZ} &= 35x_1 + 45x_2 + 42x_3 \\ \mathit{Sujet} \ \grave{a} : \begin{cases} x_1 + 5x_2 + 2x_3 \leq 24 \\ 3x_1 + 6x_2 - x_3 = 12 \\ -2x_1 - x_2 + 7x_3 \geq 27 \end{cases} \\ \mathit{Sachant} : \ 3x_1 + 6x_2 - x_3 = 12 \Leftrightarrow \begin{cases} 3x_1 + 6x_2 - x_3 \leq 12 \\ 3x_1 + 6x_2 - x_3 \geq 12 \end{cases} \\ 3x_1 + 6x_2 - x_3 \geq 12 \end{cases} \end{aligned}$$

Nous obtenons:

$$MaxZ = 35x_1 + 45x_2 + 42x_3$$

$$x_1 + 5x_2 + 2x_3 \le 24$$

$$3x_1 + 6x_2 - x_3 \le 12$$

$$3x_1 + 6x_2 - x_3 \ge 12$$

$$-2x_1 - x_2 + 7x_3 \ge 27$$

$$x_j \ge 0; j = [1,2,3]$$

Il faut multilier les contraints de forme ≥ par (-1) ce qui donne :

$$MaxZ = 35x_1 + 45x_2 + 42x_3$$

$$\begin{cases} x_1 + 5x_2 + 2x_3 \le 24 \\ 3x_1 + 6x_2 - x_3 \le 12 \end{cases}$$
Sujet à:
$$\begin{cases} (3x_1 + 6x_2 - x_3 \ge 12)x(-1) \\ (-2x_1 - x_2 + 7x_3 \ge 27)x(-1) \\ x_j \ge 0; j = [1,2,3] \end{cases}$$

Donc la forme canonique est :

$$MaxZ = 35x_1 + 45x_2 + 42x_3$$

$$\begin{cases} x_1 + 5x_2 + 2x_3 \le 24 \\ 3x_1 + 6x_2 - x_3 \le 12 \\ -3x_1 - 6x_2 + x_3 \le -12 \\ 2x_1 + x_2 - 7x_3 \le -27 \\ x_j \ge 0; j - [1,2,3] \end{cases}$$

3. Programme Dual d'un programme linéaire de maximisation

On désigne alors sous le terme de *forme duale*, du programme précédant, le problème suivant :

$$MinZ_{d} = b_{1}y_{1} + b_{2}y_{2} + \dots + b_{n}y_{n}$$

$$\begin{cases}
a_{11}y_{1} + a_{21}y_{2} + \dots + a_{n1}y_{n} \ge c_{1} \\
a_{12}y_{1} + a_{22}y_{2} + \dots + a_{n2}y_{n} \ge c_{2} \\
\dots \\
a_{1n}y_{1} + a_{2n}y_{2} + \dots + a_{nn}y_{n} \ge c_{n} \\
y_{i} \ge 0, \forall i = [1, ..m]
\end{cases}$$

Par définition, le programme dual d'un programme linéaire de **maximisation** est un programme linéaire consistant à **minimiser** une fonction économique dans un domaine défini par des contraintes sous forme d'inéquations de type **supérieures ou égales** (\geq).

4. Forme canonique d'un Programme linéaire de Minimisation

Tous les programmes linéaires de Minimisation peuvent s'écrire sous cette forme :

$$MinZ = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \ge b_n \\ x_j \ge 0 , \forall j = [1, \dots n] \end{cases}$$

On désigne cette représentation sous le terme de forme canonique d'un programme linéaire de minimisation.

Par définition, la forme canonique d'un programme linéaire de minimisation est un programme linéaire consistant à minimiser une fonction économique dans un domaine défini par des contraintes sous forme d'inéquations de type inférieures ou égales \geq

5. Programme Dual d'un programme linéaire de minimisation

On désigne alors sous le terme de *forme duale*, du programme précédant, le problème suivant :

$$MaxZ_{d} = b_{1}y_{1} + b_{2}y_{2} + \dots + b_{n}y_{n}$$

$$\begin{cases}
a_{11}y_{1} + a_{21}y_{2} + \dots + a_{n1}y_{n} \leq c_{1} \\
a_{12}y_{1} + a_{22}y_{2} + \dots + a_{n2}y_{n} \leq c_{2} \\
\dots \\
a_{1n}y_{1} + a_{2n}y_{2} + \dots + a_{nn}y_{n} \leq c_{n} \\
y_{i} \geq 0, \forall i = [1, ..m]
\end{cases}$$

Par définition, le programme dual d'un programme linéaire de minimisation est un programme linéaire consistant à maximiser une fonction économique dans un domaine défini par des contraintes sous forme d'inéquations de type inferieures ou égales (\leq).

6. Remarques

Il faut remarquer que:

- 1) Le nombre de variables duales est égal au nombre de contraintes du programme primal
- 2) Le nombre de contraintes du programme dual est égal au nombre de variables du programme primal
- 3) Les coefficients de **Zd** sont les seconds membres des contraintes du primal.
- 4) Les seconds membres des contraintes du dual sont les coefficients de Zp
- 5) Pour, les premiers membres des contraintes, les lignes du dual sont formées par les colonnes du primal.

5. Exemple

Programme original:

$$MaxZ = 0.75x_1 + 1.6x_2 + 2.4x_3 + 1.5x_4$$

$$tel que\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 \le 320\\ 3x_3 - x_4 = 0\\ x_1 - 2x_2 \ge 20\\ x_j \ge 0 \ pour \ j = 1,4 \end{cases}$$

Programme primal:

$$MaxZ_{p} = 0.75x_{1} + 1.6x_{2} + 2.4x_{3} + 1.5x_{4}$$

$$\begin{cases} x_{1} + 2x_{2} + 3x_{3} + x_{4} \leq 320 \\ 3x_{3} - x_{4} \leq 0 \\ -3x_{3} + x_{4} \leq 0 \\ -x_{1} + 2x_{2} \leq -20 \\ x_{j} \geq 0 \quad pour \quad j \quad 1,4 \end{cases}$$

Programme dual:

Dénotons la variable duale associé à la 1_{iere} contrainte par y_1 Dénotons la variable duale associé à la 2_{ieme} contrainte par y_2 Dénotons la variable duale associé à la 3_{ieme} contrainte par y_3 Dénotons la variable duale associé à la 4_{ieme} contrainte par y_4

$$MinZd = 320y_1 + 0y_2 + 0y_3 - 20y_4$$

$$MinZd = 320y_1 - 20y_4$$

$$\begin{cases} y_1 + 0y_2 + 0y_3 - y_4 \ge 0.75 \\ 2y_1 + 0y_2 + 0y_3 + y_4 \ge 1.6 \\ 3y_1 + 3y_2 - 3y_3 + 0y_4 \ge 2.4 \\ y_1 - y_2 + y_3 + 0y_4 \ge 1.5 \\ y_i \ge 0 \ pour \ i \quad 1,4 \end{cases}$$

$$tel \ que \begin{cases} y_1 - y_4 \ge 0.75 \\ 2y_1 + y_4 \ge 1.6 \\ 3y_1 + 3y_2 - 3y_3 \ge 2.4 \\ y_1 - y_2 + y_3 \ge 1.5 \\ y_i \ge 0 \ pour \ i \quad 1,4 \end{cases}$$

7. Propriétés du programme dual

Soit un programme primal à n variables originales $(x_1, x_2, \dots x_j, \dots x_n)$ et m contraintes,

Et un programme dual correspondant, à m variables originales et n contraintes.

$$(y_1, y_2, \dots y_i, \dots y_m)$$

Dénotons par x_{n+i} (i=1,m) les variables d'écart dans le primal

Et par y_{m+j} (j=1,n) les variables d'excédent dans le dual.

- a) S'il existe une solution finie au programme primal
 - 1) Cette relation est vraie pour toute solution des programmes primal et dual :

$$Z_p \le Z_d$$
 et à l'optimum $Z_p = Z_d$

2) La solution optimale du programme dual est :

$$y_i = Z_{n+i} - C_{n+i} \quad \forall i = 1, m$$
 $(Z_n = i - C_{n+i} \text{ des v.d'écarts})$
 $y_{m-j} = Z_j - C_j \quad \forall j = 1, n$ $(Z_j - C \text{ des v.originales})$

- b) En liaison avec le programme primal,
 - 1) La variable originale y_i , associé à la i^{lème} contrainte du primal, indique l'accroissement marginal de la fonction économique du primal correspondant à un accroissement marginal du second membre de la ième contrainte du primal
 - 2) La variable d'excédent y_{m+j} indique la diminution marginale de la fonction économique du primal si l'on oblige à rendre positive la variable originale x_j du primal.
- c) Si dans le modèle original,
 - 1) La ième contrainte, est une inéquation de forme (\leq), à l'optimum, la valeur de la variable duale y_i est égale au coefficient $Z_j C_j$ de la variable d'écart utilisée dans cette contrainte.
 - 2) La ième contrainte, est une équation (=), à l'optimum, la valeur de la variable duale y_i est égale au coefficient $Z_j C_j$ $(où C_j = 0 \ et \ non \ a M)$ de la variable artificielle utilisée dans cette contrainte.
 - 3) La ième contrainte, est une inéquation de forme (\geq), à l'optimum, la valeur de la variable duale y_i est égale au coefficient $Z_j C_j$ de la variable d'excédent utilisée dans cette contrainte.