\* The issue number is given in front of the page numbers.

# Author index of Volume 104\*

| Aliabadi, S.K., see Le Beau, G.J.<br>Allahdadi, F.A., see Luehr, C.P.<br>Axelsson, K.B., see Sheng, D.                                                                                                                            | (3) 397–422<br>(3) 357–362<br>(1) 19– 30 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Behr, M.A., L.P. Franca and T.E. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows                                                                                 | (1) 31- 48                               |
| Chang, S.H., see Yang, J.Y. Chou, CC., see Yen, J. Cividini, A., A. Quarteroni and E. Zampieri, Numerical solution of                                                                                                             | (3) 333–355<br>(3) 317–331               |
| linear elastic problems by spectral collocation methods<br>Colombi, P., see Elishakoff, I.                                                                                                                                        | (1) 49– 76<br>(2) 187–209                |
| Droux, JJ., An algorithm to optimally color a mesh                                                                                                                                                                                | (2) 249–260                              |
| Elishakoff, I. and P. Colombi, Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters                                                                   | (2) 187–209                              |
| <ul><li>Fish, J. and S. Markolefas, Adaptive s-method for linear elastostatics</li><li>Franca, L.P., see Behr, M.A.</li><li>Friedrich, O., A new method for generating inner points of triangulations in two dimensions</li></ul> | (1) 363–396<br>(1) 31– 48<br>(1) 77– 86  |
| Ghosh, S. and S.N. Mukhopadhyay, A material based finite element analysis of heterogeneous media involving Dirichlet tessellations                                                                                                | (2) 211–247                              |
| Hui, W.H., see Yang, J.Y.                                                                                                                                                                                                         | (3) 333–355                              |
| Kalra, M.S., see Singh, K.M.  Katori, H. and T. Nishimura, Non-conforming triangular finite element                                                                                                                               | (2) 147–172                              |
| <ul><li>Katori, H. and T. Nishimura, Non-conforming triangular finite element based on Mindlin plate theory</li><li>Knutsson, S., see Sheng, D.</li></ul>                                                                         | (2) 173–186<br>(1) 19– 30                |
| Lanchon (Ducauquis), H., see Taghite, M.<br>Le Beau, G.J., S.E. Ray, S.K. Aliabadi and T.E. Tezduyar, SUPG                                                                                                                        | (2) 261–290                              |
| finite element computation of compressible flows with the entropy<br>and conservation variables formulations                                                                                                                      | (3) 397–422                              |

| Lenard, J.G., see Malinowski, Z.                                                                                                                                                                                                                          | (1) 1- 17                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Luehr, C.P. and F.A. Allahdadi, Numerically well-conditioned expressions for isotropic tensor functions                                                                                                                                                   | (3) 357–362                |
| Malinowski, Z. and J.G. Lenard, Experimental substantiation of an elastoplastic finite element scheme for flat rolling Mansell, G., W. Merryfield, B. Shizgal and U. Weinert, A comparison of differential quadrature methods for the solution of partial | (1) 1- 17                  |
| differential equations                                                                                                                                                                                                                                    | (3) 295–316                |
| Markolefas, S., see Fish, J.                                                                                                                                                                                                                              | (1) 363–396                |
| Merryfield, W., see Mansell, G.  Mukhapadhyay, S.N., see Ghosh, S.                                                                                                                                                                                        | (3) 295–316<br>(2) 211–247 |
| Mukhopadhyay, S.N., see Ghosh, S.                                                                                                                                                                                                                         | (2) 211-247                |
| Nishimura, T., see Katori, H.                                                                                                                                                                                                                             | (2) 173–186                |
| Oden, J.T., see Tworzydlo, W.W.                                                                                                                                                                                                                           | (1) 87–143                 |
| Quarteroni, A., see Cividini, A.                                                                                                                                                                                                                          | (1) 49- 76                 |
| Ray, S.E., see Le Beau, G.J.                                                                                                                                                                                                                              | (3) 397–422                |
| Saint Jean Paulin, J., see Taghite, M. Sheng, D., K.B. Axelsson and S. Knutsson, Finite element analysis for                                                                                                                                              | (2) 261–290                |
| convective heat diffusion with phase change                                                                                                                                                                                                               | (1) 19- 30                 |
| Shizgal, B., see Mansell, G.                                                                                                                                                                                                                              | (3) 295–316                |
| Singh, K.M. and M.S. Kalra, Least squares finite element formulation in the time domain for the dual reciprocity boundary element                                                                                                                         |                            |
| method in heat conduction                                                                                                                                                                                                                                 | (2) 147–172                |
| Taghite, M., H. Lanchon (Ducauquis) and J. Saint Jean Paulin,<br>Determination of thermoelastic stresses in the plates which maintain                                                                                                                     |                            |
| the tube bundle of a heat exchanger                                                                                                                                                                                                                       | (2) 261–290                |
| Tezduyar, T.E., see Behr, M.A.                                                                                                                                                                                                                            | (1) 31– 48                 |
| Tezduyar, T.E., see Le Beau, G.J.                                                                                                                                                                                                                         | (3) 397 $-422$             |
| Tworzydlo, W.W. and J.T. Oden, Towards an automated environment in computational mechanics                                                                                                                                                                | (1) 87–143                 |
| Weinert, U., see Mansell, G.                                                                                                                                                                                                                              | (3) 295–316                |
| Yang, J.Y., S.H. Chang and W.H. Hui, A new Lagrangian method for steady supercritical shallow water flow computation Yen, J. and CC. Chou, Automatic generation and numerical                                                                             | (3) 333–355                |
| integration of differential-algebraic equations of multibody dynamics                                                                                                                                                                                     | (3) 317–331                |
| Zampieri, E., see Cividini, A.                                                                                                                                                                                                                            | (1) 49- 76                 |

# Subject index of Volume 104\*

### Boundary element methods

Least squares finite element formulation in the time domain for the dual reciprocity boundary element method in heat conduction,
K.M. Singh and M.S. Kalra (2) 147–172

#### Collocation method

Numerical solution of linear elastic problems by spectral collocation methods, A. Cividini, A. Quarteroni and E. Zampieri (1) 49–76

### Design of programs

Towards an automated environment in computational mechanics, W.W. Tworzydlo and J.T. Oden (1) 87–143

### **Dynamics**

Automatic generation and numerical integration of differential-algebraic equations of multibody dynamics, J. Yen and C.-C. Chou (3) 317–331

### Elasticity

Numerical solution of linear elastic problems by spectral collocation methods, A. Cividini, A. Quarteroni and E. Zampieri (1) 49–76

Non-conforming triangular finite element based on Mindlin plate theory,
H. Katori and T. Nishimura (2) 173–186

Determination of thermoelastic stresses in the plates which maintain the tube bundle of a heat exchanger, M. Taghite, H. Lanchon (Ducauquis) and J. Saint Jean Paulin (2) 261-290

Numerically well-conditioned expressions for isotropic tensor functions,
C.P. Luehr and F.A. Allahdadi

Adaptive s-method for linear elastostatics, J. Fish and S. Markolefas

(3) 357–362

(3) 363–396

#### Finite element and matrix methods

Finite element analysis for convective heat diffusion with phase change,
D. Sheng, K.B. Axelsson and S. Knutsson

(1) 19- 30

<sup>\*</sup> The issue number is given in front of the page numbers.

| Stabilized finite element methods for the velocity-pressure-stress                                                                      |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| formulation of incompressible flows, M.A. Behr, L.P. Franca and T.E. Tezduyar                                                           | (1) 31- 48                 |
| Numerical solution of linear elastic problems by spectral collocation                                                                   | (1) 51 10                  |
| methods, A. Cividini, A. Quarteroni and E. Zampieri                                                                                     | (1) 49- 76                 |
| Towards an automated environment in computational mechanics, W.W. Tworzydlo and J.T. Oden                                               | (1) 87–143                 |
| Least squares finite element formulation in the time domain for the                                                                     | (1) 0/ 1/0                 |
| dual reciprocity boundary element method in heat conduction,                                                                            | (2) 147 172                |
| K.M. Singh and M.S. Kalra<br>Non-conforming triangular finite element based on Mindlin plate theory,                                    | (2) 147–172                |
| H. Katori and T. Nishimura                                                                                                              | (2) 173–186                |
| A material based finite element analysis of heterogeneous media                                                                         | (2) 211 247                |
| involving Dirichlet tessellations, S. Ghosh and S.N. Mukhopadhyay Adaptive s-method for linear elastostatics, J. Fish and S. Markolefas | (2) 211–247<br>(3) 363–396 |
| SUPG finite element computation of compressible flows with the                                                                          | (0) 000 000                |
| entropy and conservation variables formulations, G.J. Le Beau,                                                                          | (2) 207 422                |
| S.E. Ray, S.K. Aliabadi and T.E. Tezduyar                                                                                               | (3) 397–422                |
| Fluid mechanics                                                                                                                         |                            |
| Tima mechanics                                                                                                                          |                            |
| Stabilized finite element methods for the velocity-pressure-stress                                                                      |                            |
| formulation of incompressible flows, M.A. Behr, L.P. Franca and T.E. Tezduyar                                                           | (1) 31- 48                 |
| A new Lagrangian method for steady supercritical shallow water flow                                                                     | . ,                        |
| computation, J.Y. Yang, S.H. Chang and W.H. Hui                                                                                         | (3) 333–355                |
| SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, G.J. Le Beau,           |                            |
| S.E. Ray, S.K. Aliabadi and T.E. Tezduyar                                                                                               | (3) 397–422                |
|                                                                                                                                         |                            |
| Heat and diffusion                                                                                                                      |                            |
| Finite element analysis for convective heat diffusion with phase change,                                                                |                            |
| D. Sheng, K.B. Axelsson and S. Knutsson                                                                                                 | (1) 19- 30                 |
| Least squares finite element formulation in the time domain for the                                                                     |                            |
| dual reciprocity boundary element method in heat conduction, K.M. Singh and M.S. Kalra                                                  | (2) 147–172                |
|                                                                                                                                         | (-) 117 172                |
| Incompressible and near incompressible media                                                                                            |                            |
| Stabilized finite element methods for the velocity-pressure-stress                                                                      |                            |
| formulation of incompressible flows, M.A. Behr, L.P. Franca and                                                                         | (4)                        |
| T.E. Tezduyar                                                                                                                           | (1) 31– 48                 |

#### Material physics

A material based finite element analysis of heterogeneous media involving Dirichlet tessellations, S. Ghosh and S.N. Mukhopadhyay (2) 211–247

### Miscellaneous topics

A new method for generating inner points of triangulations in two dimensions, O. Friedrich (1) 77-86

### Modern computer architecture

An algorithm to optimally color a mesh, J.-J. Droux (2) 249-260

#### Neural networks

Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters,

I. Elishakoff and P. Colombi

(2) 187-209

### Nonlinear dynamics of systems

Automatic generation and numerical integration of differential-algebraic equations of multibody dynamics, J. Yen and C.-C. Chou

(3) 317–331

### Nonlinear mechanics

Automatic generation and numerical integration of differential-algebraic equations of multibody dynamics, J. Yen and C.-C. Chou

Numerically well-conditioned expressions for isotropic tensor functions,

C.P. Luehr and F.A. Allahdadi

(3) 357–362

### Numerical solution procedures

- An algorithm to optimally color a mesh, J.-J. Droux

  A comparison of differential quadrature methods for the solution of partial differential equations, G. Mansell, W. Merryfield, B. Shizgal
- and U. Weinert

  A new Lagrangian method for steady supercritical shallow water flow computation, J.Y. Yang, S.H. Chang and W.H. Hui

  (3) 295–316

  (3) 295–316

  (3) 333–355

  (3) 333–355

  (3) 363–396

### Phase changes

Finite element analysis for convective heat diffusion with phase change,
D. Sheng, K.B. Axelsson and S. Knutsson (1) 19–30

### Problems in physics

Determination of thermoelastic stresses in the plates which maintain the tube bundle of a heat exchanger, M. Taghite, H. Lanchon (Ducauquis) and J. Saint Jean Paulin

(2) 261-290

### Shells and plates

Non-conforming triangular finite element based on Mindlin plate theory, H. Katori and T. Nishimura

(2) 173-186

### Solutions of ordinary and partial differential equations

A comparison of differential quadrature methods for the solution of partial differential equations, G. Mansell, W. Merryfield, B. Shizgal and U. Weinert

(3) 295-316

Automatic generation and numerical integration of differential-algebraic equations of multibody dynamics, J. Yen and C.-C. Chou

(3) 317-331

### Stochastic processes

Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters, I. Elishakoff and P. Colombi

(2) 187–209

### Structural mechanics

Non-conforming triangular finite element based on Mindlin plate theory, H. Katori and T. Nishimura

(2) 173 - 186

A material based finite element analysis of heterogeneous media involving Dirichlet tessellations, S. Ghosh and S.N. Mukhopadhyay

(2) 211-247

## Subsonic flow

SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, G.J. Le Beau, S.E. Ray, S.K. Aliabadi and T.E. Tezduyar

(3) 397-422

## Supersonic flow

SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, G.J. Le Beau, S.E. Ray, S.K. Aliabadi and T.E. Tezduyar

(3) 397 - 422

### Thermal effects and thermodynamics

Determination of thermoelastic stresses in the plates which maintain the tube bundle of a heat exchanger, M. Taghite, H. Lanchon (Ducauquis) and J. Saint Jean Paulin

(2) 261–290

### Transonic flow

SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, G.J. Le Beau, S.E. Ray, S.K. Aliabadi and T.E. Tezduyar

(3) 397 - 422

### Transport phenomena

A new Lagrangian method for steady supercritical shallow water flow computation, J.Y. Yang, S.H. Chang and W.H. Hui

(3) 333–355

### Viscoelastic and viscoplastic media

Experimental substantiation of an elastoplastic finite element scheme for flat rolling, Z. Malinowski and J.G. Lenard

(1) 1- 17

### Viscous flow

Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows, M.A. Behr, L.P. Franca and T.E. Tezduyar

(1) 31- 48

