

Table 6.1

		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	$\mu { m A/V^2}$
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	$\mathbf{V}^{1/2}$
	parameter			
λ	Channel length	0.1	0.2	V-1
	modulation parameter			
$2 \phi_F $	Surface potential at	0.9	0.8	V
	strong inversion			

 $K = \mu C_{OX}$

6.1 Calculate the differential transconductance g_{md} and the differential voltage gain A_v of an n-channel input differential amplifier shown in Figure 6.1, with the parameters shown in table 6.1. Consider $I_{ss}=100\mu A$ (the drain current of M5), and $W_1/L_1=W_2/L_2=W_3/L_3=W_4/L_4=1$. Assuming all the channel lengths are equal to $1\mu m$, and $V_{DD}=5V$. If $W_1/L_1=W_2/L_2=10W_3/L_3=10W_4/L_4=10$, repeat the calculation

Figure 6.1

Answer:

a)
$$\left(\frac{W}{L}\right)_{1} = \left(\frac{W}{L}\right)_{2} = \left(\frac{W}{L}\right)_{3} = \left(\frac{W}{L}\right)_{4} = 1$$

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_{n} \left(\frac{W}{L}\right)_{1} \frac{I_{SS}}{2}} = 115.8 \,\mu\,\text{S}$$

$$A_{v} = \frac{g_{m2}}{r_{dS2} + r_{dS4}} = \frac{2g_{m2}}{(\lambda_{2} + \lambda_{4})I_{SS}} = 7.72$$

b)
$$\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = 10 \left(\frac{W}{L}\right)_3 = 10 \left(\frac{W}{L}\right)_4 = 10$$

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_n \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 366.1 \,\mu\text{S}$$

$$A_v = \frac{g_{m2}}{r_{dS2} + r_{dS4}} = \frac{2g_{m2}}{(\lambda_2 + \lambda_4)I_{SS}} = 24.4$$

6.2 Calculate the maximum($V_{IC}(max)$) and the minimum input common-mode voltages ($V_{IC}(min)$), and the input common mode voltage range (ICMR) of an n-channel input differential amplifier shown in Figure 6.1, with the parameters shown in table 6.1. Assume all MOSFETs are in saturation, all the (W/L)_i are equal to $10\mu m/1\mu m$, $I_{SS}=10\mu A$, and $V_{DD}=5V$.

Answer:

The maximum input common-mode input is given by

$$V_{(IC)}(max) = V_{DD} + V_{T1} - V_{T3} - V_{GS3} = V_{DD} + V_{T1} - V_{T3} - \sqrt{\frac{I_{SS}}{K_P \left(\frac{W}{L}\right)_3}} = 4.76V$$

The minimum input common-mode input is given by

$$V_{(IC)}(min) = V_{SS} + V_{T1} + V_{GS3} + V_{GS5} = V_{SS} + V_{T1} + \sqrt{\frac{I_{SS}}{K_n \left(\frac{W}{L}\right)_3}} + \sqrt{\frac{2 \times I_{SS}}{K_n \left(\frac{W}{L}\right)_5}} = 0.91V$$

So, the input common-mode range becomes $ICMR = V_{(IC)}(max) - V_{(IC)}(min) = 3.85V$

6.3 Find the value of the unloaded differential-transconductance, g_{md} , and the unloaded differential-voltage gain, A_v , for the p-channel input differential amplifier of Figure 6.2 when $I_{SS}=10\mu A$ and $I_{SS}=1\mu A$. What is the slew rate of the differential amplifier if a 100 pF capacitor is attached to the output? Assuming $W_1/L_1=W_2/L_2=W_3/L_3=W_4/L_4=1$, and all the channel lengths are equal to $1\mu m$. Use the transistor parameters of Table 6.1.

Figure 6.2

Answer:

Given I_{SS}=10μA

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_p \left(\frac{W}{L}\right)_1 \frac{I_{ss}}{2}} = 22.36 \,\mu\,\text{S}$$

$$A_v = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_1 + \lambda_2)I_{ss}} = 14.9$$

Given I_{SS}=1µA

$$g_{md} = g_{m1} = g_{m2} = 7.07 \,\mu\,\text{S}$$

$$A_v = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_1 + \lambda_2)I_{ss}} = 47.13$$

Slew rate can be given as

$$SR = \frac{I_{ss}}{C_L}$$

For $I_{SS}=10\mu A$ and $C_L=100pF$

$$SR = \frac{I_{SS}}{C_L} = 0.1V/\mu s$$

For $I_{SS}=1\mu A$ and $C_L=100pF$

$$SR = \frac{I_{ss}}{C_L} = 0.01V/\mu s$$

6.4 In the circuit of Fig 6.3, assume that $I_{SS}=1$ mA, $V_{DD}=3$ V and W/L=50/0.5 for all the transistors. And $I_{D5}=I_{D6}=0.8(I_{SS}/2)$. Assuming $\lambda \neq 0$.

- (a) Determine the voltage gain.
- (b) Calculate V_b.
- (c) If I_{SS} requires a minimum voltage of 0.4V, what is the maximum differential output swing?

Figure 6.3

Answer:

a)
$$A_V \approx -\frac{g_{m1}}{g_{m3}} = -\sqrt{\frac{K_n I_{D1}}{K_p I_{D3}}} = -\sqrt{\frac{134 \times 0.5 I_{SS}}{50 \times 0.2 \frac{I_{SS}}{2}}} = -3.66$$

b)
$$I_{D5} = I_{D6} = 0.8 \frac{I_{SS}}{2} = 0.4 \text{ mA}, V_b = V_{DD} - V_{SG5} = V_{DD} - |V_{TH}| - \sqrt{\frac{2I_{D5}}{K_D \frac{W}{V}}} = 1.8 \text{ V}$$

c)
$$(V_{OUT1,2})max = min(V_b + |V_{TH,p}|, V_{DD} - |V_{TH,p}|) = min(1.8 + 0.8,3 - 0.8) = 2.2V$$

 $(V_{OUT1,2})min = max(V_{Imin} + V_{GS1}|_{I_D=0.6I_{SS}} - V_{TH,N}, V_{DD} - V_{SG3}|_{I_D=0.2I_{SS}})$

$$V_{GS1}|_{I_D=0.6I_{SS}} = V_{TH,N} + \sqrt{\frac{2 \times 0.6I_{SS}}{K_n \frac{W}{L}}} = 0.7 + 0.299 = 0.999V$$

$$V_{SG3}|_{I_D=0.2I_{SS}} = |V_{TH,p}| + \sqrt{\frac{2 \times 0.2I_{ss}}{K_p \frac{W}{L}}} = 0.8 + 0.28 = 1.08V$$

$$(V_{OUT1,2})min = max(0.4 + 0.999 - 0.7, 3 - 1.08) = 1.92V$$

 $V_{out,swing} = 2 \times (2.2 - 1.92) = 0.56V$

- 6.5 The circuit shown in Figure 6.4 called a folded-current mirror differential amplifier and is useful for low values of power supply. Assume that all W/L values of each transistor is 100. Using the parameters shown in table 6.1,
 - a) Find the maximum input common mode voltage, $V_{IC}(max)$ and the minimum input common mode voltage, $V_{IC}(min)$. Keep all transistors in saturation for this problem.
 - b) What is the input common mode voltage range, ICMR?
 - c) Find the small signal voltage gain, v_{out}/v_{in} , if $v_{in} = v_I v_2$.

Figure 6.4

Answer:

a)
$$v1(max) = V_{GS3} + 2 \times V_{TN} = 0.7 + \sqrt{\frac{2 \times 50}{134 \times 100}} + 0.7 = 1.486V$$

$$v1(min) = V_{SS} + V_{GS5} - V_{TN} + V_{GS1} = \sqrt{\frac{2 \times 100}{134 \times 100}} + \sqrt{\frac{2 \times 50}{134 \times 100}} + 0.7 = 0.908V$$

b)
$$V_{ICMR} = v1(max) - v1(min) = 1.486V - 0.908V = 0.578V$$

c)

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_N \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 1157.58 \,\mu \,S$$

$$r_{o4} = r_{o2} = \frac{2}{\lambda_n I_{SS}} = 0.2 M\Omega$$

$$r_{o7} = \frac{1}{\lambda_p I_{SS}} = 0.05 M\Omega$$

$$A_v = g_{m1} \times (r_{o2} / / r_{o4} / / r_{o7}) = 38.586$$

6.6 In the circuit of Fig 6.5, assume that $I_{SS} = 0.5$ mA, $V_{DD} = 3$ V, $(W/L)_{1,2} = 50/0.5$ and $(W/L)_{3,4} = 10/0.5$. I_{SS} current is provided by NMOS, and its W/L = 50/0.5. Assuming $\lambda \neq 0$.

- a) Calculate the range of input common mode voltage.
- b) If $V_{in,CM} = 1.5V$, draw a sketch of the small signal differential voltage gain of the circuit when V_{DD} changes from 0 to 3V.
- c) If the mismatch threshold voltage of M₁ and M₂ is 1mV, calculate CMRR.
- d) If the $W_3 = 10 \mu m$ and $W_4 = 11 \mu m$, calculate CMRR.

Figure 6.5

Answer:

a)
$$(Vin, cm)min = V_{GS1} + V_{odSS} = V_{TH1} + \sqrt{\frac{2I_{D1}}{K_n(\frac{W}{L})_1}} + \sqrt{\frac{2I_{SS}}{K_n(\frac{W}{L})_{SS}}} = 0.7V + 0.193V + 0.273V = 0.7V + 0.193V +$$

1.166V

$$(Vin,cm) max = V_{DD} - V_{od3} - V_{TH3} + V_{TH1} = V_{DD} - \sqrt{\frac{2I_{D3}}{K_p \left(\frac{W}{L}\right)_3}} - V_{TH3} + V_{TH1}$$

$$= 3V - 0.707V - 0.8V + 0.7V = 2.193V$$

$$ICMR = 2.193V - 1.166V = 1.027V$$

b) 三个标记点: 开启电压为 0.8V, 增益是-3.66, 饱和点电压是 2.307V

c) 由于 M1 和 M2 的阈值电压失配,因此有: $g_{m1} \neq g_{m2}, g_{m3} \neq g_{m4}$,所以计算 A_{cm-dm} 有:

$$\begin{split} i_{D1} &= g_{m1}(Vin,cm-Vp) \\ i_{D2} &= g_{m2}(Vin,cm-Vp) \\ Vout1 &= -\frac{i_{D1}}{g_{m3}} = -\frac{g_{m1}(Vin,cm-Vp)}{g_{m3}} \\ Vout2 &= -\frac{i_{D2}}{g_{m4}} = -\frac{g_{m2}(Vin,cm-Vp)}{g_{m4}} \\ &\frac{g_{m1}}{g_{m3}} = \sqrt{\frac{K_n\left(\frac{W}{L}\right)_{1,2}}{K_p\left(\frac{W}{L}\right)_{2,4}}} = \frac{g_{m2}}{g_{m4}} \end{split}$$

$$\therefore Vout1 = Vout2$$

$$\therefore Acm - dm = 0, CMRR = \infty$$

d)
$$Adm - dm = -g_m R_D$$

$$Acm - dm = \frac{g_m R_D}{1 + 2g_m R_{SS}} - \frac{g_m (R_D + \Delta R_D)}{1 + 2g_m R_{SS}} = -\frac{g_m \Delta R_D}{1 + 2g_m R_{SS}}$$

$$\therefore CMRR = \left| \frac{Adm - dm}{Acm - dm} \right| = \frac{1 + 2g_m R_{SS}}{\Delta R_D / R_D}$$

$$R_{D1} = \frac{1}{g_{m3}}, R_{D2} = \frac{1}{g_{m4}}$$

$$g_m = \sqrt{2K_n \left(\frac{W}{L}\right)_1 i_{D1}} = 2.588 m \Omega^{-1}, \lambda = 2 \times 0.1 = 0.2, R_{SS} = \frac{1}{\lambda I_{SS}} = 20 k \Omega$$

$$\therefore CMRR = 2270$$