第3章 习题1

1.有一条静态多功能流水线由 5 段组成,加法用 1、3、4、5 段,乘法用 1、2、5 段,第 3 段的时间为 $2\triangle t$,其余各段的时间均为 $\triangle t$,而且流水线的输出可以直接返回输入端或

暂存于相应的流水寄存器中。现要在该流水线上计算 $\prod_{i=1}^4 (A_i + B_i)$,画出其时空图,并计算其吞吐率、加速比和效率。

解:首先,应选择适合于流水线工作的算法。对于本题,应先计算 A_1+B_1 、 A_2+B_2 、 A_3+B_3 和 A_4+B_4 ; 再计算 (A_1+B_1) × (A_2+B_2) 和 (A_3+B_3) × (A_4+B_4) ; 然后求总的结果。 其次,画出完成该计算的时空图,如图所示,图中阴影部分表示该段在工作。

由图可见,它在 $18 \land \Delta t$ 时间中,给出了 $7 \land$ 结果。所以吞吐率为:

$$TP = \frac{7}{18\Delta t}$$

如果不用流水线,由于一次求积需 $3\Delta t$,一次求和需 $5\Delta t$,则产生上述 7 个结果共需 $(4\times5+3\times3)$ $\Delta t=29\Delta t$ 。所以加速比为:

$$S = \frac{29\Delta t}{18\Delta t} = 1.61$$

该流水线的效率可由阴影区的面积和5个段总时空区的面积的比值求得:

$$E = \frac{4 \times 5 + 3 \times 3}{5 \times 18} = 0.322$$

2.15 动态多功能流水线由6个功能段组成,如下图:

其中,S1、S4、S5、S6组成乘法流水线,S1、S2、S3、S6组成加法流水线,各个功能 段时间均为50ns,假设该流水线的输出结果可以直接返回输入端,而且设置有足够的缓冲

寄存器,若以最快的方式用该流水计算: $\sum_{i=1}^{5} x_i y_i z_i$

- (1) 画出时空图;
- (2) 计算实际的吞吐率、加速比和效率。
- 解:机器一共要做10次乘法,4次加法。

(1)

(2)

 $TP=14/(22 \times \triangle t)=14/(22 \times 50 \text{ns})=12.7(\text{\uparrow/us})$

加速比= (10×4+4×4) /22 =28/11≈2.55

效率= $(10\times4+4\times4)/(6\times22)=14/33\approx42.4\%$