Physics Olympiad Notes

Yuan Chen Yang NUS High School

July 5, 2012

1	$\mathbf{Me}_{\mathbf{i}}$	asurement and Uncertainty	2	3	Special Relativity	4
	1.1	Uncertainty in Instruments	2		3.1 Postulates	4
	1.2	Significant Figures	2		3.2 Kinematics	4
	1.3	Propagation of error	2		3.2.1 Lorentz Transform	4
					3.2.2 Fundamental Effects	4
2	Me	chanics	2		3.2.3 Minkowski Diagrams	4
	2.1	Statics	2		3.3 Dynamics	4
	2.2	Kinematics	2		3.3.1 Momentum	4
		2.2.1 Polar Coordinates	2		3.3.2 Energy	5
	2.3	Dynamics	2		3.4 4-vectors	
		2.3.1 Friction	2			0 110
		2.3.2 Constraining Forces	2		5.4.1 Different 4-vectors	٠
		2.3.3 Fictitious Forces	2	4	Oscillations and Waves	5
	2.4	Conservation Laws	2	-1	4.1 Simple Harmonic Motion	E
	2.5	Energy	3			
		2.5.1 Energy Analysis	3		F	5
		2.5.2 Power	3		4.3 Driven Harmonic Motion	0
	2.6	Momentum	3		F	6
	2.7	Central Forces	3		4.5 Small Oscillations	C
		2.7.1 Gravity	3		4.6 Waves	6
	2.8	Uniform Circular Motion	3			
	2.9	Rotational Dynamics (Constant $\hat{\boldsymbol{L}}$)	3	5	Optics	6
		2.9.1 General Motion	4		5.1 Geometric Optics	6
		2.9.2 Torque	4		5.2 Polarization	6
		2.9.3 Angular Impulse	4		5.3 Physical Optics	6
		2.9.4 Parallel-axis Theorem	4		F 0 4 TO 11 C11.	6
		2.9.5 Perpendicular-axis Theorem	4		5.3.2 Single Slit:	6
		2.9.6 Moments of Inertia	4		5.3.3 Intensity in Diffraction Patterns	6

Measurement and Uncertainty

Uncertainty in Instru-1.1 ments

All instruments have uncertainty:

- 1. Analogue Instruments: Uncertainty is half the the smallest measurement unit
- 2. Digital Instruments: Uncertainty is the smallest significant figure
- 3. Human reaction time: ± 0.10 s

Significant Figures

- 1. Adding or subtracting: Follow term with least decimal place
- 2. Multiplying or Dividing: Follow term with least significant figure

Propagation of error

For any $f(a, \cdots)$ the general formula for Δf is:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial a} \Delta a\right)^2 + \cdots}$$

Some specific examples:

1.
$$f = a \pm b$$

$$\Delta f = \sqrt{(\Delta a)^2 + (\Delta b)^2}$$

2.
$$f = ab$$
 or $f = \frac{a}{b}$

$$\frac{\Delta f}{f} = \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2}$$

Mechanics

2.1**Statics**

When all objects are motionless (or have constant velocity),

$$\sum \boldsymbol{F}_{net} = 0$$
$$\sum \boldsymbol{\tau}_{net} = 0$$

Four basic forces to consider:

Tension Pulling force felt by a rope, string, etc. Every piece of rope feels a pulling force in both directions.

Friction Parallel to surface of contact, can be static or kinetic.

Normal Perpendicular to surface of contact, prevents object from falling through surface.

Gravity Force acting between two objects with mass. Always acts downwards for objects on surface of earth.

Kinematics 2.2

$$egin{align} oldsymbol{v} &= \lim_{\Delta t o 0} rac{\Delta oldsymbol{x}}{\Delta t} = rac{doldsymbol{x}}{dt} = \dot{oldsymbol{x}} \ oldsymbol{a} &= rac{doldsymbol{v}}{dt} = rac{d^2oldsymbol{x}}{dt^2} = \dot{oldsymbol{x}} = \ddot{oldsymbol{x}} \end{aligned}$$

2.2.1 Polar Coordinates

Differentiation of unit vectors:

$$\dot{\hat{m{r}}} = \dot{ heta}\hat{m{ heta}} \ \dot{\hat{m{ heta}}} = -\dot{ heta}\hat{m{r}}$$

Velocity and acceleration in polar form:

$$egin{aligned} oldsymbol{r} &= r \hat{oldsymbol{r}} \ oldsymbol{v} &= \dot{oldsymbol{r}} &= \dot{r} \hat{oldsymbol{r}} + r \dot{eta} \hat{oldsymbol{ heta}} \ oldsymbol{a} &= \dot{oldsymbol{v}} &= (\ddot{r} - \dot{eta}^2 r) \hat{oldsymbol{r}} + (r \ddot{eta} + 2 \dot{r} \dot{eta}) \hat{oldsymbol{ heta}} \end{aligned}$$

2.3 Dynamics

$$m{F} = mm{\ddot{x}}$$
 $m{F}_{action} = -m{F}_{reaction}$

Free body diagram techniques:

- 1. $\Sigma \mathbf{F}_{net} = 0$ for massless pulleys
- 2. Conservation of string

Solving differential equations in 1dimension:

1.
$$F = f(t)$$

3. F = f(v)

$$m \int_{v_0}^{v(t)} dv' = \int_{t_0}^{t} f(t')dt'$$
$$m \int_{x_0}^{x(t)} dx' = \int_{t_0}^{t} v(t')dt'$$

2.
$$F = f(x)$$

$$a = \frac{dv}{dt} = \frac{dv}{dt} \frac{dx}{dx} = v \frac{dv}{dx}$$

$$m \int_{v_0}^{v(x)} v' dv' = \int_{x_0}^x f(x') dx'$$

$$m \int_{v_0}^{v(t)} \frac{dv'}{f(v')} = \int_{t_0}^t dt'$$

2.3.1 **Friction**

Kinetic and static friction:

$$egin{aligned} oldsymbol{f_k} &= \mu_k oldsymbol{N} \ oldsymbol{f_s} &\leq \mu_s oldsymbol{N} \end{aligned}$$

Static friction does no work.

2.3.2 **Constraining Forces**

For any rigid body, there are 6 degrees of freedom (DF). There can be constraining forces (C) acting on the body.

- Statics: C + DF = 6
- Dynamics C + DF > 6

There are 3 assumptions made for a body moving without any constraint:

- 1. $f_{ij} \parallel r_{ij}$ 2. r_{ij} is constant for any 2 points in a rigid body
- 3. $\boldsymbol{f}_{12} + \boldsymbol{f}_{21} = 0$

2.3.3 Fictitious Forces

Force felt by an object in a noninertial frame. Let r to be the position vector of the object in the accelerated frame and R be the position vector of the accelerated frame, then the possible forces that acts on r are:

$$\frac{\delta^2 \mathbf{r}}{\delta t^2} = \frac{\mathbf{F}}{m} - \frac{d^2 \mathbf{R}}{dt^2} - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$$
$$-2\boldsymbol{\omega} \times \boldsymbol{v} - \frac{d\boldsymbol{\omega}}{dt} \mathbf{r}$$

- 1. Translational force: $-m\frac{d^2\mathbf{R}}{dt^2}$
- 2. Centrifugal force: $-m\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r})$
- 3. Coriolis force: $-2m\boldsymbol{\omega} \times \boldsymbol{v}$
- 4. Azimuthal force: $-m\frac{d\omega}{dt}r$

2.4 Conservation Laws

Energy $W_{NC} = 0$

Momentum $\Sigma \boldsymbol{F}_{net} = 0$

Angular Momentum $\Sigma \boldsymbol{\tau}_{net} = 0$

2.5 Energy

For a force in one dimension:

$$mv\frac{dv}{dx} = F(x)$$
$$\frac{1}{2}mv^2 = E + \int_{x_0}^x F(x')dx'$$

We can then define potential energy:

$$U(x) = -\int_{x_0}^x F(x')dx'$$

Work-Energy theorem:

$$W_{AB} = \int_{x_1}^{x_2} F(x') dx'$$
$$W_{\text{total}} = \Delta KE$$

Conservative forces are forces that only depend on *position*. For conservative forces:

$$\oint \mathbf{F} \cdot d\mathbf{l} = 0$$

$$\nabla \times \mathbf{F} = 0$$

$$\mathbf{F} = -\nabla U$$

$$W_C = -\Delta U$$

For non-conservative forces:

$$W_{NC} = \Delta(K+U) = \Delta E$$

Where E is defined as the mechanical energy of the system.

2.5.1 Energy Analysis

The Lagrangian method is based on the principle of stationary action.

$$\mathcal{L}(\dot{x}, x, t) = T - V$$
$$\frac{d}{dt}(\frac{\partial \mathcal{L}}{\partial \dot{x}}) - \frac{\partial \mathcal{L}}{\partial x} = 0$$

The Hamiltonian \mathcal{H} can be used for the conservation of energy:

$$\mathcal{H}(\dot{x}, x, t) = T + V$$
$$\dot{\mathcal{H}} = 0$$

Where T is the kinetic energy, and V is the potential energy of the system.

2.5.2 Power

Power is the rate of work done per unit time:

$$P = \frac{dW}{dt}$$

Mechanical power:

$$P = \frac{d}{dt} \oint \mathbf{F} \cdot d\mathbf{x} = \frac{d}{dt} \oint \mathbf{F} \cdot \frac{d\mathbf{x}}{dt} dt$$
$$= \mathbf{F} \cdot \mathbf{v}$$

2.6 Momentum

Momentum is defined as:

$$\boldsymbol{p}=m\boldsymbol{v}$$

When there is no net force on the system,

$$\sum \mathbf{F}_{net} = 0 \Rightarrow \frac{d\mathbf{p}}{dt} = 0$$
$$\Rightarrow \mathbf{p} \text{ is conserved}$$

Impulse is defined as:

$$\mathcal{I} = \int_{t_1}^{t_2} \mathbf{F}(t)dt = \int_{t_1}^{t_2} \frac{d\mathbf{p}}{dt}dt$$
$$\mathcal{I} = \mathbf{p}(t_2) - \mathbf{p}(t_1) = \Delta \mathbf{p}$$

For perfectly elastic collisions of two objects in 1-D, relative velocity is constant.

$$v_1 - v_2 = -(v_1' - v_2')$$

For other collisions in 1-D, we have the coefficient of restitution e:

$$e = -\frac{v_2' - v_1'}{v_2 - v_1} \qquad 0 \le e \le 1$$

2.7 Central Forces

For any particle subjected to a central force,

$$F(r) = mr\dot{\theta}^2 - m\ddot{r}$$
$$L = mr^2\dot{\theta}$$

Because angular momentum L is constant, we can look at central forces systems in 1-dimension.

$$V_{\text{eff}}(r) = \frac{L^2}{2mr^2} + V(r)$$
$$E = V_{\text{eff}} + \frac{1}{2}m\dot{r}^2$$

2.7.1 Gravity

For any two point masses of m_1 and m_2 in empty space, the gravitational force between them is:

$$oldsymbol{F} = rac{Gm_1m_2}{|oldsymbol{r}|^2}\hat{oldsymbol{r}}$$

Where r is the position vector of one mass respect to the other, and G is the gravitational constant.

$$F = mg$$

For a mass m at the Earth's surface, where $g = 9.81m/s^2$ pointing downwards.

2.8 Uniform Circular Motion

For a point mass moving in uniform circular motion, we define:

$$\omega = \frac{v}{r}$$

The centripetal acceleration a and the force required to keep the object in its circular path:

$$a = \frac{v^2}{r} = \omega^2 r$$
$$F = \frac{mv^2}{r} = m\omega^2 r$$

2.9 Rotational Dynamics (Constant \hat{L})

The angular momentum of a point mass is defined as:

$$L = r \times p$$

For a flat object lying on a 2-D plane rotating with angular speed ω :

$$m{L} = \int m{r} imes m{p} = \int r^2 \omega m{\hat{z}} dm$$

If we define the moment of intertia about the z-axis to be $I_z = \int (x^2 + y^2) dm$, we have:

$$\begin{split} L_z &= I_z \omega \\ T &= \int \frac{1}{2} m \mathbf{v}^2 = \int \frac{r^2 \omega^2}{2} dm \\ &= \frac{1}{2} I_z \omega^2 \end{split}$$

For the z-component of L and kinetic energy T.

2.9.1 General Motion

For an object with a moving center of mass, and rotating at ω about it,

$$m{L} = m{r}_{\mathrm{CM}} imes m{p}_{\mathrm{CM}} + I_{\mathrm{CM}} \omega \hat{m{z}}$$
 $T = rac{1}{2} m v_{\mathrm{CM}}^2 + rac{1}{2} I_{\mathrm{CM}} \omega^2$

2.9.2 Torque

Torque is defined as:

$$au = m{r} imes m{F}$$

Using an origin satisfying any of the following conditions to calculate L,

- 1. The origin is the center of mass
- 2. The origin is not accelerating
- 3. $(\mathbf{R} \mathbf{r_0})$ is parallel to $\mathbf{r_0}$, the position of the origin in a fixed coordinate system

$$\frac{d\mathbf{L}}{dt} = \sum \boldsymbol{\tau}_{\mathrm{ext}}$$

When there is no external torque, we have the conservation of angular momentum.

$$\tau_{\rm ext} = I\alpha$$

Where $\alpha = \frac{d\omega}{dt}$ is the angular acceleration.

2.9.3 Angular Impulse

Angular impulse is defined as:

$$\mathcal{I}_{ heta} = \int_{t_1}^{t_2} oldsymbol{ au}(t) dt = \Delta oldsymbol{L}$$

If we have a force F(t) applied at a constant distance R from the origin,

$$au(t) = \mathbf{R} \times \mathbf{F}(t)$$

$$\mathcal{I}_{\theta} = \mathbf{R} \times \mathcal{I}$$

$$\Delta \mathbf{L} = \mathbf{R} \times (\Delta \mathbf{p})$$

2.9.4 Parallel-axis Theorem

Let an object of mass M rotate about its center of mass with the same frequency ω as the center of mass rotates about the origin (with radius R):

$$L_z = (MR^2 + I_{\rm CM})\omega$$

Thus if the moment of inertia of an object is I_0 about a particular axis, its moment of inertia about a parallel axis separated by R is:

$$I = MR^2 + I_0$$

$\begin{array}{cc} \textbf{2.9.5} & \textbf{Perpendicular-axis} \\ & \textbf{Theorem} \end{array}$

For flat 2-D objects in the x-y plane, and orthogonal axes x, y and z:

$$I_z = I_x + I_y$$

2.9.6 Moments of Inertia

Center of mass for an object of mass M:

$$\boldsymbol{R}_{\mathrm{CM}} = \frac{\int \boldsymbol{r} dm}{M}$$

3 Special Relativity

3.1 Postulates

- 1. The speed of light has the same value in all inertial frames
- 2. Physical laws remain the same in all inertial frames

3.2 Kinematics

3.2.1 Lorentz Transform

$$x = \gamma(x' + \beta ct')$$

$$y = y'$$

$$z = z'$$

$$ct = \gamma(\beta x' + ct')$$

Where $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ and $\beta = \frac{v}{c}$.

3.2.2 Fundamental Effects Length contraction

$$l' = \frac{l}{\gamma}$$

Where l is the proper length.

Time dilation

$$t'=\gamma t$$

Where t is the proper time.

Loss of simultaneity

$$\Delta t = \frac{Lv}{c^2}$$

Two events separated by L and Δt in the rest frame will appear simultaneous to an observer moving at v.

Longitudinal velocity addition

$$v_x' = \frac{u+v}{1+uv/c^2}$$

Where u is the velocity of an object in the frame traveling at v respect to the lab frame, and v'_x is the x-velocity of the object viewed by the lab frame.

Transverse velocity addition

$$v_y' = \frac{u_y}{\gamma_v(1 + u_x v/c^2)}$$

Where u_y and u_x are velocity components of an object in the frame traveling at v respect to the lab frame, and v'_y is the y-velocity of the object viewed by the lab frame.

Longitudinal Doppler effect

$$f' = f\sqrt{\frac{1+\beta}{1-\beta}}$$

Where f' is the frequency observed of a moving source emitting at frequency f in its rest frame.

3.2.3 Minkowski Diagrams

Space-time diagrams with x and ct axes. Some properties are:

- 1. Light travels at 45° to horizontal.
- 2. x' and ct' axes of another moving frame are θ to the x and ct axes respectively, with

$$\tan(\theta) = \beta$$

3. Units on axes of the moving and stationary frames are related by:

$$\frac{x'}{x} = \frac{ct'}{ct} = \sqrt{\frac{1+\beta^2}{1-\beta^2}}$$

3.3 Dynamics

3.3.1 Momentum

$$oldsymbol{p} = \gamma_v m oldsymbol{v} = rac{m oldsymbol{v}}{\sqrt{1 - rac{v^2}{c^2}}}$$

3.3.2 Energy

$$E^2 = p^2 c^2 + m^2 c^4$$

For massive particles:

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

For massless particles(such as photons):

$$E = pc = \frac{hc}{\lambda}$$

3.4 4-vectors

A 4-vector $\vec{A} = (A_1, A_2, A_3, A_4)$ is a quantity that transforms as follows:

$$A'_{1} = \gamma(A_{1} + i\beta A_{4})$$

 $A'_{2} = A_{2}$
 $A'_{3} = A_{3}$
 $A'_{4} = \gamma(A_{4} - i\beta A_{1})$

The dot product of two 4-vectors is invariant under Lorentz transformations:

$$\vec{A} \cdot \vec{B} = \vec{A'} \cdot \vec{B'}$$

3.4.1 Different 4-vectors

4-position (dx, dy, dz, icdt)

4-vectors originate from the invariant interval ds.

$$\vec{ds}^2 = (dx, dy, dz, icdt)^2$$

= $dx^2 + dy^2 + dz^2 - c^2 dt^2$

4-velocity $\gamma_v(\boldsymbol{v},ic)$

To obtain other 4-vectors, we can multiply invariant quantities to the 4-position vector, such as proper time:

$$d\tau = \frac{dt}{\gamma}$$

$$\vec{v} = \frac{ds}{d\tau}$$

$$= \gamma_v \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}, ic \right)$$

$$= \gamma_v(\mathbf{v}, ic)$$

4-momentum $(\boldsymbol{p}, i\frac{E}{c})$

As mass is invariant,

$$\vec{p} = m\vec{v}$$

$$= (\gamma_v m \mathbf{v}, i\gamma_v m c)$$

$$= \left(\mathbf{p}, i\frac{E}{c}\right)$$

For photons in x-direction, the 4-momentum vector is:

$$\vec{p} = \left(\frac{h}{\lambda}, 0, 0, i\frac{h}{\lambda}\right)$$

4-wave $(k, i\frac{\omega}{c})$

For electromagnetic waves,

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{c}$$

$$p = \frac{h}{\lambda} = \hbar k$$

$$E = hf = \hbar \omega$$

$$\vec{p} = \hbar \left(k, i \frac{\omega}{c} \right)$$

$$\vec{k} = \frac{\vec{p}}{\hbar}$$

4-force $\gamma_v\left(\boldsymbol{f}, \frac{i}{c} \frac{dE}{dt}\right)$

$$ec{F} = rac{dec{p}}{d au} \ = \gamma_v \left(oldsymbol{f}, rac{d}{dt} \left(i rac{E}{c}
ight)
ight)$$

4 Oscillations and Waves

Most questions involve solving linear differential equations. For such equations, linear combinations of solutions will also be a solution.

4.1 Simple Harmonic Motion

We have a spring force, F = -kx.

$$\ddot{x} + \omega^2 x = 0$$
, where $\omega = \sqrt{\frac{k}{m}}$
 $x(t) = A\cos(\omega t + \phi)$

4.2 Damped Harmonic Motion

In addition to the spring force, we now have a drag force $F_f = -bv$, and the total force $F = -kx - b\dot{x}$.

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 x = 0$$

Where $2\gamma = b/m$ and $\omega^2 = k/m$. Let $\Omega = \sqrt{\gamma^2 - \omega^2}$.

$$x(t) = e^{-\gamma t} (Ae^{\Omega t} + Be^{-\Omega t})$$

Underdamping $(\Omega^2 < 0)$

$$x(t) = e^{-\gamma t} (Ae^{i\tilde{\omega}t} + Be^{-i\tilde{\omega}t})$$
$$= e^{-\gamma t} C\cos(\tilde{\omega}t + \phi)$$

Where $\tilde{\omega} = \sqrt{\omega^2 - \gamma^2}$. The system will oscillate with its amplitude decreasing over time. The frequency of oscillations will be smaller than in the undamped case.

Overdamping $(\Omega^2 > 0)$

$$x(t) = Ae^{-(\gamma - \Omega)t} + Be^{-(\gamma + \Omega)t}$$

The system will not oscillate, and the motion will go to zero for large t.

Critical damping $(\Omega^2 = 0)$

We have $\gamma = \omega$, and:

$$\ddot{x} + 2\gamma \dot{x} + \gamma^2 x = 0$$

In this special case, $x = te^{-\gamma t}$ is also a solution:

$$x(t) = e^{-\gamma t}(A + Bt)$$

Systems with critical damping go to zero the quickest.

4.3 Driven Harmonic Motion

We have to solve differential equations of this form:

$$\ddot{x} + 2\gamma \dot{x} + ax = \sum_{n=1}^{N} C_n e^{i\omega_n t}$$

We first find particular solutions for each n, by guessing solutions of the form $x_{p_n}(t) = Ae^{i\omega_n t}$:

$$-A\omega_n^2 + 2iA\gamma\omega_n + Aa = C_n$$
$$x_{p_n}(t) = \frac{C_n}{-\omega_n^2 + 2i\gamma\omega_n + a}e^{i\omega_n t}$$

Using the superposition principle, the final solution is a linear combination of the general solution and the particular solutions, with the combination constants determined by initial conditions.

4.4 Coupled Oscillators

Normal modes are states of a system where all parts are moving with the same frequency. General strategy to find normal modes:

- 1. Write down the n equations of motions corresponding to the n degrees of freedom the system has
- 2. Substitute $x_i = A_i e^{i\omega t}$ into the differential equations to get a system of linear equations in A_i , with $i = 1, 2, \dots, n$
- 3. Non-trivial solutions exist if and only if the determinant of the matrix is zero. Solve for ω , and subsequently find A_i

The motion of the system can then be decomposed into linear combinations of its normal modes.

4.5 Small Oscillations

For an object at a local minimum of a potential well, we can expand V(x) about the equilibrium point:

$$V(x) = V(x_0) + V'(x_0)(x - x_0) + \frac{1}{2!}V''(x_0)(x - x_0)^2 + \cdots$$

As $V(x_0)$ is an additive constant, and $V'(x_0) = 0$ by definition of equilibrium,

$$V(x) \approx \frac{1}{2}V''(x_0)(x - x_0)^2$$
$$F = -\frac{dV}{dx} = -V''(x_0)(x - x_0)$$
$$\omega = \sqrt{\frac{V''(x_0)}{m}}$$

4.6 Waves

5 Optics

5.1 Geometric Optics

Results from Fermat's principle of least time:

$$\theta_{incidence} = \theta_{reflection}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Sign convention:

- Light rays travel from left to right
- f is positive if surface makes rays more convergent

- Distances are measured from the surface (left is negative)
- s_o is negative for real objects
- s_i is positive for real images
- y above optical axis is positive

$$\frac{1}{f} = \frac{1}{s_i} + \frac{1}{s_o}$$
$$M = \frac{y_i}{y_o} = -\frac{s_i}{s_o}$$

For thin lenses and mirrors:

$$\frac{1}{f} = \frac{2}{R}$$

For composite thin lenses:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Lens formed by interface of two materials with different n:

$$\frac{n_2 - n_1}{R} = \frac{n_2}{s_i} + \frac{n_1}{s_o}$$

5.2 Polarization

For polarized light:

$$E = E_0 \cos \theta$$
$$I = I_0 \cos^2 \theta$$

For unpolarized light:

$$\langle I \rangle = I_0 \langle \cos^2 \theta \rangle = \frac{I_0}{2}$$

Brewster angle at which all reflected light at an interface is polarized:

$$\tan \theta_i = \frac{n_t}{n_i}$$

5.3 Physical Optics

Interference is the superposition of wave amplitudes when waves overlap.

5.3.1 Double Slit:

Occurs when slits are of negligible width, distance between slits comparable to wavelength, such that diffraction effects are insignificant. For bright fringes:

$$d\sin\theta = m\lambda$$
$$y_m = R\frac{m\lambda}{d} \qquad m \in \mathbb{Z}$$

For incident medium's refractive index n_i , reflection medium's refractive index n_r , if $n_i < n_r$, the reflected wave undergoes a $\frac{\pi}{2}$ phase shift.

5.3.2 Single Slit:

Occurs when size of slit is comparable to wavelength. Location of dark fringes when wavelets at distance $\frac{a}{2}$ destructively interfere:

$$\sin \theta = \frac{m\lambda}{d}$$

$$y_m = x \frac{m\lambda}{d} \qquad m \in \mathbb{Z}$$

5.3.3 Intensity in Diffraction Patterns

For double slit interference:

$$I = I_{\text{max}} \cos^2 \left(\frac{\pi d \sin \theta}{\lambda} \right)$$

For single slit diffraction:

$$I = I_{\text{max}} \left[\frac{\sin(\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda} \right]^2$$

Double slit including effects of diffraction:

$$I = I_{\text{max}} \cos^2 \left(\frac{\pi d \sin \theta}{\lambda} \right)$$
$$\cdot \left[\frac{\sin(\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda} \right]^2$$