ETSITS 125 221 V3.3.0 (2000-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS); Physical channels and mapping of transport channels onto physical channels (TDD) (3G TS 25.221 version 3.3.0 Release 1999)

Reference
RTS/TSGR-0125221UR2

Keywords

UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key.

Contents

Forew	ord	5
1	Scope	<i>6</i>
2	References	<i>6</i>
3	Abbreviations	<i>6</i>
4	Transport channels	7
4.1	Dedicated transport channels	
4.2	Common transport channels	
4.2.1	BCH - Broadcast Channel	
4.2.2	FACH – Forward Access Channel	
4.2.3	PCH – Paging Channel	
4.2.4	RACH – Random Access Channel	
4.2.5	USCH – Uplink Shared Channel	
4.2.6	DSCH – Downlink Shared Channel	
5	Physical channels	8
5.1	Frame structure	<u>9</u>
5.2	Dedicated physical channel (DPCH)	9
5.2.1	Spreading	10
5.2.1.1	Spreading for Downlink Physical Channels	10
5.2.1.2	Spreading for Uplink Physical Channels	10
5.2.2	Burst Types	
5.2.2.1		
5.2.2.2		
5.2.2.3		
5.2.2.3		
5.2.2.3	- T	
5.2.3	Training sequences for spread bursts	
5.2.3.1		
5.2.4	Beamforming	
5.3	Common physical channels	
5.3.1	Primary common control physical channel (P-CCPCH)	
5.3.1.1		
5.3.1.2	71	
5.3.1.3		
5.3.2	Secondary common control physical channel (S-CCPCH)	
5.3.2.1		
5.3.2.2	71	
5.3.2.3		
5.3.3	The physical random access channel (PRACH)	
5.3.3.1	1 0	
5.3.3.2		
5.3.3.3 5.3.3.4		
5.3.3.5 5.3.3.5		
5.3.4 5.3.4	The synchronisation channel (SCH)	
5.3.5	Physical Uplink Shared Channel (PUSCH)	
5.3.6	Physical Downlink Shared Channel (PDSCH)	
5.3.7	The Page Indicator Channel (PICH)	
5.4	Transmit Diversity for DL Physical Channels	
5.5	Beacon function of physical channels.	
5.5.1	Location of physical channels with beacon function	
5.5.2	Physical characteristics of the beacon function	
5.6	Midamble Allocation for Physical Channels	
5.6.1	Midamble Allocation for DL Physical Channels	
5.6.1.1	·	26

5.6.1.1.1	l Common Midamble	26
5.6.1.1.2	2 UE specific Midamble	
5.6.1.2	Midamble Allocation by default	27
5.6.2	Midamble Allocation for UL Physical Channels	27
6 N	Mapping of transport channels to physical channels	27
6.1	Dedicated Transport Channels	
6.2	Common Transport Channels	28
6.2.1	The Broadcast Channel (BCH)	28
6.2.2	The Paging Channel (PCH)	28
6.2.2.1	PCH/PICH Association	28
6.2.3	The Forward Channel (FACH)	29
6.2.4	The Random Access Channel (RACH)	29
6.2.5	The Uplink Shared Channel (USCH)	29
6.2.6	The Downlink Shared Channel (DSCH)	29
Annex	A (normative): Basic Midamble Codes	30
A.1 E		
	Basic Midamble Codes for Burst Type 1 and PRACH Burst Type	30
	Basic Midamble Codes for Burst Type 1 and PRACH Burst Type Basic Midamble Codes for Burst Type 2	
A.2 E		35
A.2 E	Basic Midamble Codes for Burst Type 2	35
A.2 E A.3 A	Basic Midamble Codes for Burst Type 2 Association between Midambles and Channelisation Codes	35
A.2 E A.3 A A.3.1	Association between Midambles and Channelisation Codes	
A.2 E A.3 A A.3.1 A.3.2	Association between Midambles and Channelisation Codes Association for Burst Type 1 and K=16 Midambles Association for Burst Type 1 and K=8 Midambles	
A.2 E A.3 A A.3.1 A.3.2 A.3.3	Association between Midambles and Channelisation Codes Association for Burst Type 1 and K=16 Midambles Association for Burst Type 1 and K=8 Midambles Association for Burst Type 1 and K=4 Midambles	
A.2 E A.3 A A.3.1 A.3.2 A.3.3 A.3.4 A.3.5	Association between Midambles and Channelisation Codes Association for Burst Type 1 and K=16 Midambles Association for Burst Type 1 and K=8 Midambles Association for Burst Type 1 and K=4 Midambles Association for Burst Type 2 and K=6 Midambles	
A.2 E A.3 A A.3.1 A.3.2 A.3.3 A.3.4 A.3.5	Association between Midambles and Channelisation Codes. Association for Burst Type 1 and K=16 Midambles. Association for Burst Type 1 and K=8 Midambles. Association for Burst Type 1 and K=4 Midambles. Association for Burst Type 2 and K=6 Midambles. Association for Burst Type 2 and K=6 Midambles. Association for Burst Type 2 and K=3 Midambles.	

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document describes the characteristics of the physicals channels and the mapping of the transport channels to physical channels in the TDD mode of UTRA.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.

[1]	3G TS 25.201: "Physical layer - general description".
[2]	3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
[3]	3G TS 25.212: "Multiplexing and channel coding (FDD)".
[4]	3G TS 25.213: "Spreading and modulation (FDD)".
[5]	3G TS 25.214: "Physical layer procedures (FDD)".
[6]	3G TS 25.215: "Physical layer – Measurements (FDD)".
[7]	3G TS 25.222: "Multiplexing and channel coding (TDD)".
[8]	3G TS 25.223: "Spreading and modulation (TDD)".
[9]	3G TS 25.224: "Physical layer procedures (TDD)".
[10]	3G TS 25.225: "Physical layer – Measurements (TDD)".
[11]	3G TS 25.301: "Radio Interface Protocol Architecture".
[12]	3G TS 25.302: "Services Provided by the Physical Layer".
[13]	3G TS 25.401: "UTRAN Overall Description".
[14]	3G TS 25.402: "Synchronisation in UTRAN, Stage 2".
[15]	3G TS 25.304: " UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CDMA	Code Division Multiple Access
DPCH	Dedicated Physical Channel
DSCH	Downlink Shared Channel
FACH	Forward Access Channel

FDD Frequency Division Duplex FEC Forward Error Correction

GP Guard Period

GSM Global System for Mobile Communication

NRT Non-Real Time

OVSF Orthogonal Variable Spreading Factor

P-CCPCH Primary CCPCH PCH Paging Channel

PDSCH Physical Downlink Shared Channel

PDU Protocol Data Unit
PICH Page Indicator Channel

PRACH Physical Random Access Channel
PUSCH Physical Uplink Shared Channel
RACH Random Access Channel

RLC Radio Link Control
RF Radio Frame
RT Real Time

S-CCPCH Secondary CCPCH
SCH Synchronisation Channel
SFN Cell System Frame Number

TCH Traffic Channel
TDD Time Division Duplex
TDMA Time Division Multiple Access

USCH Uplink Shared Channel

4 Transport channels

Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups:

- Dedicated Channels, using inherent addressing of UE
- Common Channels, using explicit addressing of UE if addressing is needed

General concepts about transport channels are described in 3GPP RAN TS 25.302 (L2 specification).

4.1 Dedicated transport channels

The Dedicated Channel (DCH) is an up- or downlink transport channel that is used to carry user or control information between the UTRAN and a UE.

4.2 Common transport channels

There are six types of transport channels: BCH, FACH, PCH, RACH, USCH, DSCH

4.2.1 BCH - Broadcast Channel

The Broadcast Channel (BCH) is a downlink transport channel that is used to broadcast system- and cell-specific information.

4.2.2 FACH – Forward Access Channel

The Forward Access Channel (FACH) is a downlink transport channel that is used to carry control information to a mobile station when the system knows the location cell of the mobile station. The FACH may also carry short user packets.

4.2.3 PCH – Paging Channel

The Paging Channel (PCH) is a downlink transport channel that is used to carry control information to a mobile station when the system does not know the location cell of the mobile station.

4.2.4 RACH – Random Access Channel

The Random Access Channel (RACH) is an up link transport channel that is used to carry control information from mobile station. The RACH may also carry short user packets.

4.2.5 USCH – Uplink Shared Channel

The uplink shared channel (USCH) is an uplink transport channel shared by several UEs carrying dedicated control or traffic data.

4.2.6 DSCH – Downlink Shared Channel

The downlink shared channel (DSCH) is a downlink transport channel shared by several UEs carrying dedicated control or traffic data.

5 Physical channels

All physical channels take three-layer structure with respect to timeslots, radio frames and system frame numbering (SFN), see [14]. Depending on the resource allocation, the configuration of radio frames or timeslots becomes different. All physical channels need guard symbols in every timeslot. The time slots are used in the sense of a TDMA component to separate different user signals in the time and the code domain. The physical channel signal format is presented in figure 1.

A physical channel in TDD is a burst, which is transmitted in a particular timeslot within allocated Radio Frames. The allocation can be continuous, i.e. the time slot in every frame is allocated to the physical channel or discontinuous, i.e. the time slot in a subset of all frames is allocated only. A burst is the combination of a data part, a midamble and a guard period. The duration of a burst is one time slot. Several bursts can be transmitted at the same time from one transmitter. In this case, the data part must use different OVSF channelisation codes, but the same scrambling code. The midamble part has to use the same basic midamble code, but can use different midambles.

Figure 1: Physical channel signal format

The data part of the burst is spread with a combination of channelisation code and scrambling code. The channelisation code is a OVSF code, that can have a spreading factor of 1, 2, 4, 8, or 16. The data rate of the physical channel is depending on the used spreading factor of the used OVSF code.

The midamble part of the burst can contain two different types of midambles: a short one of length 256 chips, or a long one of 512 chips. The data rate of the physical channel is depending on the used midamble length.

So a physical channel is defined by frequency, timeslot, channelisation code, burst type and Radio Frame allocation The scrambling code and the basic midamble code are broadcast and may be constant within a cell. When a physical channel is established, a start frame is given. The physical channels can either be of infinite duration, or a duration for the allocation can be defined.

5.1 Frame structure

The TDMA frame has a duration of 10 ms and is subdivided into 15 time slots (TS) of $2560*T_c$ duration each. A time slot corresponds to 2560 chips. The physical content of the time slots are the bursts of corresponding length as described in subclause 5.2.2.

Each 10 ms frame consists of 15 time slots, each allocated to either the uplink or the downlink (figure 2). With such a flexibility, the TDD mode can be adapted to different environments and deployment scenarios. In any configuration at least one time slot has to be allocated for the downlink and at least one time slot has to be allocated for the uplink.

Figure 2: The TDD frame structure

Examples for multiple and single switching point configurations as well as for symmetric and asymmetric UL/DL allocations are given in figure 3.

Multiple-switching-point configuration (symmetric DL/UL allocation)

Multiple-switching-point configuration (asymmetric DL/UL allocation)

Single-switching-point configuration (symmetric DL/UL allocation)

Single-switching-point configuration (asymmetric DL/UL allocation)

Figure 3: TDD frame structure examples

5.2 Dedicated physical channel (DPCH)

The DCH as described in subclause 4.1.1 is mapped onto the dedicated physical channel.

5.2.1 Spreading

Spreading is applied to the data part of the physical channels and consists of two operations. The first is the channelisation operation, which transforms every data symbol into a number of chips, thus increasing the bandwidth of the signal. The number of chips per data symbol is called the Spreading Factor (SF). The second operation is the scrambling operation, where a scrambling code is applied to the spread signal. Details on channelisation and scrambling operation can be found in [8].

5.2.1.1 Spreading for Downlink Physical Channels

Downlink physical channels shall use SF = 16. Multiple parallel physical channels can be used to support higher data rates. These parallel physical channels shall be transmitted using different channelisation codes, see [8]. These codes with SF = 16 are generated as described in [8].

Operation with a single code with spreading factor 1 is possible for the downlink physical channels.

5.2.1.2 Spreading for Uplink Physical Channels

The range of spreading factor that may be used for uplink physical channels shall range from 16 down to 1.

For multicode transmission a UE shall use a maximum of two physical channels per timeslot simultaneously. These two parallel physical channels shall be transmitted using different channelisation codes, see [8].

5.2.2 Burst Types

Two types of bursts for dedicated physical channels are defined: The burst type 1 and the burst type 2. Both consist of two data symbol fields, a midamble and a guard period. The bursts type 1 has a longer midamble of 512 chips than the burst type 2 with a midamble of 256 chips. Sample sets of midambles are given in subclause 5.2.3.1.

Because of the longer midamble, the burst type 1 is suited for the uplink, where up to 16 different channel impulse responses can be estimated. The burst type 2 can be used for the downlink and, if the bursts within a time slot are allocated to less than four users, also for the uplink.

Thus the burst type 1 can be used for

- uplink, independent of the number of active users in one time slot;
- downlink, independent of the number of active users in one time slot.

The burst type 2 can be used for

- uplink, if the bursts within a time slot are allocated to less than four users;
- downlink, independent of the number of active users in one time slot.

The data fields of the burst type 1 are 976 chips long, whereas the data fields length of the burst type 2 are 1104 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 below. The guard period for the burst type 1 and type 2 is 96 chip periods long.

The burst type 1 and type 2 are shown in Figure 4 and Figure 5. The contents of the burst fields are described in table 2 and table 3.

Table 1: number of symbols per data field in bursts 1 and 2

Spreading factor (Q)	Number of symbols (N) per data field in Burst 1	Number of symbols (N) per data field in Burst 2
1	976	1104
2	488	552
4	244	276
8	122	138
16	61	69

Table 2: The contents of the burst type 1 fields

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-975	976	cf table 1	Data symbols
976-1487	512	-	Midamble
1488-2463	976	cf table 1	Data symbols
2464-2559	96	-	Guard period

Data symbols 976 chips	Midamble 512 chips	Data symbols 976 chips	GP 96 CP
4	2560*T _c		

Figure 4: Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods

Table 3: The contents of the burst type 2 fields

Chip number (CN)	Chip number (CN) Length of field in chips		Contents of field
0-1103	1104	cf table 1	Data symbols
1104-1359	256	-	Midamble
1360-2463	1104	cf table 1	Data symbols
2464-2559	96	-	Guard period

Data symbols 1104 chips	Midamble 256 chips	Data symbols 1104 chips	GP 96 CP
4	2560*T _c		

Figure 5: Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods

The two different bursts defined here are well-suited for the different applications mentioned above. It may be possible to further optimise the burst structure for specific applications, for instance for unlicensed operation.

5.2.2.1 Transmission of TFCI

Both burst types 1 and 2 provide the possibility for transmission of TFCI both in up- and downlink.

The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied. Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. If a time slot contains the TFCI, then it is always transmitted using the first allocated channelisation code in the timeslot, according to the order in the higher layer allocation message.

The transmission of TFCI is done in the data parts of the respective physical channel, this means TFCI and data bits are subject to the same spreading procedure as depicted in [8]. Hence the midamble structure and length is not changed. The TFCI information is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 6 shows the position of the TFCI in a traffic burst in downlink. Figure 7 shows the position of the TFCI in a traffic burst in uplink.

Figure 6: Position of TFCI information in the traffic burst in case of downlink

Figure 7: Position of TFCI information in the traffic burst in case of uplink

Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the Figure 8 and Figure 9 below. Combinations of the two schemes shown are also applicable. It should be noted that the SF can vary for the DPCHs not carrying TFCI information.

Figure 8: Example of TFCI transmission with physical channels multiplexed in code domain

Figure 9: Example of TFCI transmission with physical channels multiplexed in time domain

5.2.2.2 Transmission of TPC

Both burst types 1 and 2 for dedicated channels provide the possibility for transmission of TPC in uplink.

The transmission of TPC is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 10 shows the position of the TPC in a traffic burst.

For every user the TPC information shall be transmitted at least once per transmitted frame. If TFCI is applied for a CCTrCH, TPC shall be transmitted with the same channelization codes and in the same timeslots as TFCI. If no TFCI is applied for a CCTrCH, TPC shall be transmitted using the first allocated channelisation code and the first allocated timeslot, according to the order in the higher layer allocation message. The TPC is spread with the same spreading factor (SF) and spreading code as the data parts of the respective physical channel.

Figure 10: Position of TPC information in the traffic burst

5.2.2.3 Timeslot formats

5.2.2.3.1 Downlink timeslot formats

The downlink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits, as depicted in the table 4a.

Table 4a: Time slot formats for the Downlink

Slot Format #	Spreading Factor	Midamble length (chips)	N _{TFCI} (bits)	Bits/slot	N _{Data/Slot} (bits)	N _{data/data} field (bits)
0	16	512	0	244	244	122
1	16	512	4	244	240	120
2	16	512	8	244	236	118
3	16	512	16	244	228	114
4	16	512	32	244	212	106
5	16	256	0	276	276	138
6	16	256	4	276	272	136
7	16	256	8	276	268	134
8	8 16 256		16	276	260	130
9	16	256	32	276	244	122
10	1	512	0	3904	3904	1952
11	1	512	4	3904	3900	1950
12	1	512	8	3904	3896	1948
13	1	512	16	3904	3888	1944
14	1	512	32	3904	3872	1936
15	1	256	0	4416	4416	2208
16	1	256	4	4416	4412	2206
17	1	256	8	4416	4408	2204
18	1	256	16	4416	4400	2200
19	1	256	32	4416	4384	2192

5.2.2.3.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits. Due to TPC, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 4b.

Table 4b: Timeslot formats for the Uplink

Slot	Spreadin	Midambl	N _{TFCI}	N _{TPC}	Bits/sl	N _{Data/Slo}	N _{data/data}	N _{data/data}
Format #	g Factor	e length (chips)	(bits)	(bits)	ot	t (bits)	field(1) (bits)	field(2) (bits)
0	16	512	0	0	244	244	122	122
5	16	512	0	2	244	242	122	120
6	16	512	4	2	244	238	120	118
7	16	512	8	2	244	234	118	116
8	16	512	16	2	244	226	114	112
9	16	512	32	2	244	210	106	104
10	16	256	0	0	276	276	138	138
15	16	256	0	2	276	274	138	136
16	16	256	4	2	276	270	136	134
17	16	256	8	2	276	266	134	132
18	16	256	16	2	276	258	130	128
19	16	256	32	2	276	242	122	120
20	8	512	0	0	488	488	244	244
25	8	512	0	2	488	486	244	242
26	8	512	4	2	488	482	242	240
27	8	512	8	2	488	478	240	238
28	8	512	16	2	488	470	236	234
29	8	512	32	2	488	454	228	226
30	8	256	0	0	552	552	276	276
35	8	256	0	2	552	550	276	274
36	8	256	4	2	552	546	274	272
37	8	256	8	2	552	542	272	270
38	8	256	16	2	552	534	268	266
39	8	256	32	2	552	518	260	258
40	4	512	0	0	976	976	488	488
45	4	512	0	2	976	974	488	486
46	4	512	4	2	976	970	486	484
47	4	512	8	2	976	966	484	482
48	4	512	16	2	976	958	480	478
49	4	512	32	2	976	942	472	470
50	4	256	0	0	1104	1104	552	552
55	4	256	0	2	1104	1102	552	550
56	4	256	4	2	1104	1098	550	548
57	4	256	8	2	1104	1094	548	546
58	4	256	16	2	1104	1086	544	542
59	4	256	32	2	1104	1070	536	534
60	2	512	0	0	1952	1952	976	976
65	2	512	0	2	1952	1950	976	974
66	2	512	4	2	1952	1946	974	972
67	2	512	8	2	1952	1942	972	970
68	2	512	16	2	1952	1934	968	966
69	2	512	32	2	1952	1918	960	958
70	2	256	0	0	2208	2208	1104	1104
75	2	256	0	2	2208	2206	1104	1102
76	2	256	4	2	2208	2202	1102	1100
77	2	256	8	2	2208	2198	1100	1098
78	2	256	16	2	2208	2190	1096	1094
79	2	256	32	2	2208	2174	1088	1086

Slot Format #	Spreadin g Factor	Midambl e length (chips)	N _{TFCI} (bits)	N _{TPC} (bits)	Bits/sl ot	N _{Data/Slo} t (bits)	N _{data/data} field(1) (bits)	N _{data/data} field(2) (bits)
80	1	512	0	0	3904	3904	1952	1952
85	1	512	0	2	3904	3902	1952	1950
86	1	512	4	2	3904	3898	1950	1948
87	1	512	8	2	3904	3894	1948	1946
88	1	512	16	2	3904	3886	1944	1942
89	1	512	32	2	3904	3870	1936	1934
90	1	256	0	0	4416	4416	2208	2208
95	1	256	0	2	4416	4414	2208	2206
96	1	256	4	2	4416	4410	2206	2204
97	1	256	8	2	4416	4406	2204	2202
98	1	256	16	2	4416	4398	2200	2198
99	1	256	32	2	4416	4282	2192	2190

5.2.3 Training sequences for spread bursts

In this subclause, the training sequences for usage as midambles in burst type 1 and burst type 2 (see subclause 5.2.2) are defined. The training sequences, i.e. midambles, of different users active in the same cell and same time slot are cyclically shifted versions of one single basic midamble code. The applicable basic midamble codes are given in Annex A.1 and A.2. As different basic midamble codes are required for different burst formats, the Annex A.1 shows the basic midamble codes \mathbf{m}_{PL} for burst type 1 and Annex and A.2 shows \mathbf{m}_{PS} for burst type 2. It should be noted that the different burst types must not be mixed in the same timeslot of one cell.

The basic midamble codes in Annex A.1 and A.2 are listed in hexadecimal notation. The binary form of the basic midamble code shall be derived according to table 5 below.

Table 5: Mapping of 4 binary elements m_i on a single hexadecimal digit

4 binary elements $m_i^{}$	Mapped on hexadecimal digit
-1 -1 -1	0
-1 -1 -1 1	1
-1 -1 1 –1	2
-1 -1 1 1	3
-1 1-1-1	4
-1 1-1 1	5
-1 1 1 –1	6
-1 1 1 1	7
1 -1 -1 –1	8
1 -1 -1 1	9
1 -1 1 –1	Α
1 -1 1 1	В
1 1 -1 -1	С
1 1 -1 1	D
1 1 1 –1	E
1 1 1 1	F

For each particular basic midamble code, its binary representation can be written as a vector \mathbf{m}_p :

$$\mathbf{m}_{p} = (m_{1}, m_{2}, \dots, m_{p}) \tag{1}$$

According to Annex A.1, the size of this vector \mathbf{m}_P is P=456 for burst type 1. Annex A.2 is setting P=192 for burst type 2. As QPSK modulation is used, the training sequences are transformed into a complex form, denoted as the complex vector \mathbf{m}_P :

$$\mathbf{m}_{P} = (m_1, m_2, ..., m_P) \tag{2}$$

The elements \underline{m}_i of $\underline{\mathbf{m}}_{\mathrm{P}}$ are derived from elements m_i of \mathbf{m}_{P} using equation (3):

$$\underline{m}_i = (\mathbf{j})^i \cdot m_i \text{ for all } i = 1, \dots, P$$
 (3)

Hence, the elements \underline{m}_i of the complex basic midamble code are alternating real and imaginary.

To derive the required training sequences, this vector $\mathbf{\underline{m}}_{P}$ is periodically extended to the size:

$$i_{\text{max}} = L_m + (K'-1)W + P/K$$
 (4)

Notes on equation (4):

- K', W and P taken from Annex A.1 or A.2 according to burst type and thus to length of midamble $L_{\rm m}$
- K=2K'
- Lx denotes the largest integer smaller or equal to x

So we obtain a new vector \mathbf{m} containing the periodic basic midamble sequence:

$$\underline{\mathbf{m}} = \left(\underline{m}_1, \underline{m}_2, \dots, \underline{m}_{i_{\text{max}}}\right) = \left(\underline{m}_1, \underline{m}_2, \dots, \underline{m}_{L_m + (K'-1)W + |P/K|}\right)$$
(5)

The first P elements of this vector \mathbf{m} are the same ones as in vector $\mathbf{m}_{\rm p}$, the following elements repeat the beginning:

$$\underline{m}_i = \underline{m}_{i-P} \text{ for the subset } i = (P+1), \dots, i_{\text{max}}$$
 (6)

Using this periodic basic midamble sequence $\underline{\boldsymbol{m}}$ for each user k a midamble $\underline{\boldsymbol{m}}^{(k)}$ of length L_m is derived, which can be written as a user specific vector:

$$\underline{\mathbf{m}}^{(k)} = \left(\underline{m}_1^{(k)}, \underline{m}_2^{(k)}, \dots, \underline{m}_{L_m}^{(k)}\right) \tag{7}$$

The L_m midamble elements $\underline{m}_i^{(k)}$ are generated for each midamble of the first K' users (k = 1,...,K') based on:

$$\underline{m}_{i}^{(k)} = \underline{m}_{i+(K'-k)W} \text{ with } i = 1,...,L_{m} \text{ and } k = 1,...,K'$$
 (8)

The elements of midambles for the second K' users (k = (K'+1),...,K = (K'+1),...,2K') are generated based on a slight modification of this formula introducing intermediate shifts:

$$\underline{m}_{i}^{(k)} = \underline{m}_{i+(K-k)W+|P/K|} \text{ with } i = 1,...,L_{m} \text{ and } k = K'+1,...,K$$
 (9)

Whether intermediate shifts are allowed in a cell is broadcast on the BCH.

The midamble sequences derived according to equations (7) to (9) have complex values and are not subject to channelisation or scrambling process, i.e. the elements $\underline{m}_{i}^{(k)}$ represent complex chips for usage in the pulse shaping process at modulation.

The term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)}$; k=1,...,K, based on a single basic midamble code \mathbf{m}_{p} according to (1).

5.2.3.1 Midamble Transmit Power

If in the downlink all users in one time slot have a common midamble, the transmit power of this common midamble is such that there is no power offset between the data part and the midamble part of the transmit signal within the time slot.

In the case of user specific midambles, the transmit power of the user specific midamble is such that there is no power offset between the data parts and the midamble part for this user within one slot.

5.2.4 Beamforming

When DL beamforming is used, at least that user to which beamforming is applied and which has a dedicated channel shall get one individual midamble according to subclause 5.2.3, even in DL.

5.3 Common physical channels

5.3.1 Primary common control physical channel (P-CCPCH)

The BCH as described in subclause 4.1.2 is mapped onto the Primary Common Control Physical Channel (P-CCPCH). The position (time slot / code) of the P-CCPCH is known from the Physical Synchronisation Channel (PSCH), see subclause 5.3.4.

5.3.1.1 P-CCPCH Spreading

The P-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in subclause 5.2.1.1. The P-CCPCH always uses channelisation code $c_{O=16}^{(k=1)}$.

5.3.1.2 P-CCPCH Burst Types

The burst type 1 as described in subclause 5.2.2 is used for the P-CCPCH. No TFCI is applied for the P-CCPCH.

5.3.1.3 P-CCPCH Training sequences

The training sequences, i.e. midambles, as described in subclause 5.2.3 are used for the P-CCPCH. For those timeslots in which the P-CCPCH is transmitted, the midambles m⁽¹⁾, m⁽²⁾, m⁽⁹⁾ and m⁽¹⁰⁾ are reserved for P-CCPCH in order to support Block STTD antenna diversity and the beacon function, see 5. 4 and 5.5. The use of midambles depends on whether Block STTD is applied to the P-CCPCH:

- If no antenna diversity is applied to P-CCPCH, m⁽¹⁾ is used and m⁽²⁾ is left unused;
- If Block STTD antenna diversity is applied to P-CCPCH, $m^{(1)}$ is used for the first antenna and $m^{(2)}$ is used for the diversity antenna.

The midambles m⁽⁹⁾ and m⁽¹⁰⁾ are always left unused in the P-CCPCH time slots.

5.3.2 Secondary common control physical channel (S-CCPCH)

PCH and FACH as described in subclause 4.1.2 are mapped onto one or more secondary common control physical channels (S-CCPCH). In this way the capacity of PCH and FACH can be adapted to the different requirements.

5.3.2.1 S-CCPCH Spreading

The S-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in subclause 5.2.1.1.

5.3.2.2 S-CCPCH Burst Types

The burst types 1 or 2 as described in subclause 5.2.2 are used for the S-CCPCHs. TFCI may be applied for S-CCPCHs.

5.3.2.3 S-CCPCH Training sequences

The training sequences, i.e. midambles, as described in subclause 5.2.3 are used for the S-CCPCH.

5.3.3 The physical random access channel (PRACH)

The RACH as described in subclause 4.1.2 is mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH can be flexibly scaled depending on the operators need.

This description of the physical properties of the PRACH also applies to bursts carrying other signaling or user traffic if they are scheduled on a time slot which is (partly) allocated to the RACH.

5.3.3.1 PRACH Spreading

The uplink PRACH uses either spreading factor SF=16 or SF=8 as described in subclause 5.2.1.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH).

5.3.3.2 PRACH Burst Types

The mobile stations send the uplink access bursts randomly in the PRACH. The PRACH burst consists of two data symbol fields, a midamble and a guard period. The second data symbol field is shorter than the first symbol data field by 96 chips in order to provide additional guard time at the end of the PRACH time slot.

The precise number of collision groups depends on the spreading codes (i.e. the selected RACH configuration. The access burst is depicted in figure 11, the contents of the access burst fields are listed in table 6 and table 7.

Figure 11: PRACH burst, GP denotes the guard period

Table 6: number of symbols per data field in PRACH burst

Spreading factor (Q)	Number of symbols in data field 1	Number of symbols in data field 2
8	122	110
16	61	55

Table 7: The contents of the PRACH burst field

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-975	976	cf table 1	Data symbols
976-1487	512	-	Midamble
1488-2367	880	cf table 1	Data symbols
2368-2559	192	-	Guard period

5.3.3.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes used for PRACH bursts are the same as for burst type 1 and are shown in Annex A. The necessary time shifts are obtained by choosing either *all* k=1,2,3...,K' (for cells with small radius) or *uneven* $k=1,3,5,...\leq K'$ (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets.

For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code m_2 is the time inverted version of Basic Midamble Code m_1 .

In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators.

5.3.3.4 RACH timeslot formats

For the RACH the timeslot format is only spreading factor dependent. Burst type 1 midamble is always used. The two data fields contain a different number of bits.

Slot **Spreading** Midamble Bits/slot $N_{\text{data/data}}$ N_{Data/Slot} N_{data/data} field(2) (bits) Format # **Factor** length (chips) (bits) field(1) (bits) 512 232 232 122 16 110 464 8 512 464 244 220

Table 4c: Timeslot formats for the RACH

5.3.3.5 Association between Training Sequences and Channelisation Codes

For the PRACH there exists a fixed association between the training sequence and the channelisation code. The generic rule to define this association is based on the order of the channelisation codes $\mathbf{c}_{Q}^{(k)}$ given by k and the order of the midambles $\mathbf{m}_{j}^{(k)}$ given by k, firstly, and j, secondly, with the constraint that the midamble for a spreading factor Q is the same as in the upper branch for the spreading factor 2Q. The index j=1 or 2 indicates whether the original Basic Midamble Sequence (j=1) or the time-inverted Basic Midamble Sequence is used (j=2).

- For the case that all *k* are allowed and only one periodic basic code m₁ is available for the RACH, the association depicted in figure 12 is straightforward.
- For the case that only odd *k* are allowed the principle of the association is shown in figure 13. This association is applied for one and two basic periodic codes.

Figure 12: Association of Midambles to Channelisation Codes in the OVSF tree for all k

Figure 13: Association of Midambles to Channelisation Codes in the OVSF tree for odd k

5.3.4 The synchronisation channel (SCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. In order not to limit the uplink/downlink asymmetry the SCH is mapped on one or two downlink slots per frame only.

There are two cases of SCH and P-CCPCH allocation as follows:

- Case 1) SCH and P-CCPCH allocated in TS#k, k=0....14
- Case 2) SCH allocated in two TS: TS#k and TS#k+8, k=0...6; P-CCPCH allocated in TS#k.

The position of SCH (value of k) in frame can change on a long term basis in any case.

Due to this SCH scheme, the position of P-CCPCH is known from the SCH.

Figure 14 is an example for transmission of SCH, k=0, of Case 2.

Figure 14: Scheme for Synchronisation channel SCH consisting of one primary sequence C_p and N=3 parallel secondary sequences in slot k and k+8

(example for k=0 in Case 2)

As depicted in figure 14, the SCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in [8] clause 7 'Synchronisation codes'.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning SCH can arise. The time offset t_{offset} enables the system to overcome the capture effect.

The time offset t_{offset} is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'table 6 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{offset} ' in [8]. Note that the cell parameter will change from frame to frame, cf. 'Table 7 Alignment of cell parameter cycling and system frame number' in [8], but the cell will belong to only one code group and thus have one time offset t_{offset} . The exact value for t_{offset} , regarding column 'Associated t_{offset} ' in table 6 in [8] is given by:

$$t_{offset,n} = n \cdot T_c \left[\frac{2560 - 96 - 256}{31} \right]$$

= $n \cdot 71T_c$; $n = 0,...,31$

Please note that [x] denotes the largest integer number less or equal to x and that T_c denotes the chip duration.

5.3.5 Physical Uplink Shared Channel (PUSCH)

For Physical Uplink Shared Channel (PUSCH) the burst structure of DPCH as described in subclause 5.2 shall be used. User specific physical layer parameters like power control, timing advance or directive antenna settings are derived from the associated channel (FACH or DCH). PUSCH provides the possibility for transmission of TFCI in uplink.

5.3.6 Physical Downlink Shared Channel (PDSCH)

For Physical Downlink Shared Channel (PDSCH) the burst structure of DPCH as described in subclause 5.2 shall be used. User specific physical layer parameters like power control or directive antenna settings are derived from the associated channel (FACH or DCH). PDSCH provides the possibility for transmission of TFCI in downlink.

To indicate to the UE that there is data to decode on the DSCH, three signalling methods are available:

- 1) using the TFCI field of the associated channel or PDSCH;
- 2) using on the DSCH user specific midamble derived from the set of midambles used for that cell;
- 3) using higher layer signalling.

When the midamble based method is used, the UE shall decode the PDSCH if the PDSCH was transmitted with the midamble assigned to the UE by UTRAN, see 5.5.1.1.2. For this method no other physical channels may use the same time slot as the PDSCH and only one UE may share the PDSCH time slot at the same time.

5.3.7 The Page Indicator Channel (PICH)

The Page Indicator Channel (PICH) is a physical channel used to carry the Page Indicators (PI). The PICH is always transmitted at the same reference power level as the P-CCPCH.

Figure 15 depicts the structure of a PICH burst and the numbering of the bits within the burst. The same burst type is used for the PICH in every cell. N_{PIB} bits in a normal burst of type 1 or 2 are used to carry the PI, where N_{PIB} depends on the burst type: N_{PIB} =240 for burst type 1 and N_{PIB} =272 for burst type 2. The bits b_{NPIB} ,..., b_{NPIB+3} adjacent to the midamble are reserved for possible future use. They shall be set to 0 and transmitted with the same power as the PI carrying bits.

Figure 15: Transmission and Numbering of PI carrying Bits in a PICH burst

 N_{PI} page indicators of length L_{PI} =4, L_{PI} =8 or L_{PI} =16 bits are transmitted in one time slot. The number of page indicators N_{PI} per time slot is given by the number L_{PI} of bits for the page indicators and the burst type. In table 8 this number is shown for the different possibilities of burst types and PI lengths.

Table 8: Number N_{Pl} of PI per time slot for the different burst types and PI lengths L_{Pl}

	L _{PI} =4	L _{PI} =8	L _{PI} =16
Burst Type 1	N _{PI} =60	N _{PI} =30	N _{PI} =15
Burst Type 2	N _{PI} =68	N _{PI} =34	N _{PI} =17

As shown in figure 16, the Page Indicators of N_{PICH} consecutive frames form a PICH block, N_{PICH} is configured by higher layers. Thus, $N=N_{PICH}*N_{PI}$ Page Indicators are transmitted in each PICH block.

Figure 16: Structure of a PICH block

The PI calculated by higher layers for use for a certain UE, see [15], is mapped to the Page Indicator PI_p in the nth frame of one PICH block, where p is given by

 $p = PI \bmod N_{PI}$ and n is given by $n = PI \ div \ N_{PI}.$

The Page Indicator PI_p in one time slot is mapped to the bits $\{b_{Lpi^*p},...,b_{Lpi^*p+Lpi-1},b_{NPIB/2+Lpi^*p},...,b_{NPIB/2+Lpi^*p+Lpi-1}\}$ within this time slot.

5.4 Transmit Diversity for DL Physical Channels

Table 9 summarizes the different transmit diversity schemes for different downlink physical channel types that are described in [9].

Table 9: Application of Tx diversity schemes on downlink physical channel types "X" – can be applied, "–" – must not be applied

Physical channel type	Open loop TxDiversity		Closed loop TxDiversity
	TSTD	Block STTD	
P-CCPCH	1	X	_
SCH	Χ	_	_
DPCH	_	_	X

5.5 Beacon function of physical channels

For the purpose of measurements, a beacon function shall be provided by particular physical channels.

5.5.1 Location of physical channels with beacon function

The location of the physical channels with beacon function is determined by the SCH and depends on the SCH allocation case, see 5.3.4:

- Case 1) All physical channels that are allocated to channelisation code $c_{Q=16}^{(k=1)}$ and in TS#k, k=0....14 shall provide the beacon function.
- Case 2) All physical channels that are allocated to channelisation code $c_{Q=16}^{(k=1)}$ and in TS#k and TS#k+8, k=0...6, shall provide the beacon function.

Note that by this definition the P-CCPCH always provides the beacon function.

5.5.2 Physical characteristics of the beacon function

The physical channels providing the beacon function:

- are transmitted with reference power;

- are transmitted without beamforming;
- use burst type 1;
- use midamble $m^{(1)}$ and $m^{(2)}$ exclusively in this time slot; and
- midambles $m^{(9)}$ and $m^{(10)}$ are always left unused in this time slot, if 16 midambles are allowed in that cell.

The reference power corresponds to the sum of the power allocated to both midambles $m^{(1)}$ and $m^{(2)}$. Two possibilities exist:

- If no Block STTD antenna diversity is applied to P-CCPCH, all the reference power of any physical channel providing the beacon function is allocated to m⁽¹⁾.
- If Block STTD antenna diversity is applied to P-CCPCH, for any physical channel providing the beacon function midambles m⁽¹⁾ and m⁽²⁾ are each allocated half of the reference power. Midamble m⁽¹⁾ is used for the first antenna and m⁽²⁾ is used for the diversity antenna. Block STTD encoding is used for the data in P-CCPCH, see [9]; for all other physical channels identical data sequences are transmitted on both antennas.

5.6 Midamble Allocation for Physical Channels

In general, midambles are part of the physical channel configuration which is performed by higher layers.

Optionally, if no midamble is allocated by higher layers, a default midamble allocation shall be used. This default midamble allocation is given by a fixed association between midambles and channelisation codes, see clause A.3, and shall be applied individually to all channelisation codes within one time slot. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles.

5.6.1 Midamble Allocation for DL Physical Channels

Physical channels providing the beacon function shall always use the reserved midambles, see 5.4. For all other DL physical channels the midamble allocation is signalled or given by default.

5.6.1.1 Midamble Allocation by signalling

Either a common or a UE specific midamble shall be signalled to the UE as a part of the physical channel configuration. Common or UE specific midambles may be applied only if the conditions in subclauses 5.6.1.1.1 and subclause 5.6.1.1.2 hold respectively. If the midamble is not signalled as a part of the physical channel configuration, midamble allocation by default shall be used.

5.6.1.1.1 Common Midamble

A common midamble may be assigned to all physical channels in one time slot, if:

- a single UE uses all physical channels in one time slot (as in the case of high rate service);

or

- multiple UEs use the physical channels in one time slot; and
- no beamforming is applied to any of these DL physical channels; and
- no closed loop TxDiversity is applied to any of these DL physical channels; and
- midambles are not used for PDSCH physical layer signalling.

5.6.1.1.2 UE specific Midamble

An individual midamble may be assigned to each of the UEs in one time slot, if:

- multiple UEs use the physical channels in one time slot; and
- beamforming is applied to all of these DL physical channels; and

no closed loop TxDiversity is applied to any of these DL physical channels;

or

- PDSCH physical layer signalling based on the midamble is used.

5.6.1.2 Midamble Allocation by default

If no midamble is allocated by signalling, the UE shall derive the midamble from the associated channelisation code and shall use an individual midamble for each channelisation code. For each association between midambles and channelisation codes in annex A.3, there is one primary channelisation code associated to each midamble. A set of secondary channelisation codes is associated to each primary channelisation code. All the secondary channelisation codes within a set use the same midamble as the primary channelisation code to which they are associated.

Higher layers shall allocate the channelisation codes in a particular order. Primary channelisation codes shall be allocated prior to associated secondary channelisation codes. If midambles are reserved for the beacon function, all primary and secondary channelisation codes that are associated with the reserved midambles shall not be used.

Primary and its associated secondary channelisation codes shall not be allocated to different UE's.

In the case that secondary channelisation codes are used, secondary channelisation codes of one set shall be allocated in ascending order, with respect to their numbering.

5.6.2 Midamble Allocation for UL Physical Channels

If the midamble is part of the physical channel configuration, an individual midamble shall be assigned to all UE's in one time slot.

If no midamble is allocated by higher layers, the UE shall derive the midamble from the assigned channelisation code as for DL physical channels. If the UE changes the SF according to the data rate, it shall always vary the channelisation code along the lower branch of the OVSF tree.

6 Mapping of transport channels to physical channels

This clause describes the way in which transport channels are mapped onto physical resources, see figure 17.

Transport Channels DCH	Physical Channels Dedicated Physical Channel (DPCH)
BCH	Primary Common Control Physical Channel (P-CCPCH)
FACH————————————————————————————————————	Secondary Common Control Physical Channel (S-CCPCH)
RACH — ORACH*	Physical Random Access Channel (PRACH)
USCH —	Physical Uplink Shared Channel (PUSCH)
DSCH —	Physical Downlink Shared Channel (PDSCH)
	Page Indicator Channel (PICH)
	Synchronisation Channel (SCH)

Figure 17: Transport channel to physical channel mapping

6.1 Dedicated Transport Channels

A dedicated transport channel is mapped onto one or more physical channels. An interleaving period is associated with each allocation. The frame is subdivided into slots that are available for uplink and downlink information transfer. The mapping of transport blocks on physical channels is described in TS 25.222 ("multiplexing and channel coding").

Figure 18: Mapping of PDU onto the physical bearer

For NRT packet data services, shared channels (USCH and DSCH) can be used to allow efficient allocations for a short period of time.

6.2 Common Transport Channels

6.2.1 The Broadcast Channel (BCH)

The BCH is mapped onto the P-CCPCH. The secondary SCH indicates in which timeslot a mobile can find the P-CCPCH containing BCH. If the broadcast information requires more resources than provided by the P-CCPCH, the BCH in P-CCPCH will comprise a pointer to additional S-CCPCH resources for FACH in which this additional broadcast information shall be sent.

6.2.2 The Paging Channel (PCH)

The PCH is mapped onto one or several S-CCPCHs so that capacity can be matched to requirements. The location of the PCH is indicated on the BCH. It is always transmitted at a reference power level.

To allow an efficient DRX, the PCH is divided into PCH blocks, each of which comprising N_{PCH} paging sub-channels. N_{PCH} is configured by higher layers. Each paging sub-channel is mapped onto 2 consecutive PCH frames within one PCH block. Layer 3 information to a particular UE is transmitted only in the paging sub-channel, that is assigned to the UE by higher layers, see [15]. The assignment of UEs to paging sub-channels is independent of the assignment of UEs to page indicators.

6.2.2.1 PCH/PICH Association

As depicted in figure 19, a paging block consists of one PICH block and one PCH block. If a Page Indicator in a certain PICH block is set to '1' it is an indication that UEs associated with this Page Indicator shall read their corresponding paging sub-channel within the same paging block. The value $N_{GAP}>0$ of frames between the end of the PICH block and the beginning of the PCH block is configured by higher layers.

Figure 19: Paging Sub-Channels and Association of PICH and PCH blocks

6.2.3 The Forward Channel (FACH)

The FACH is mapped onto one or several S-CCPCHs. The location of the FACH is indicated on the BCH and both, capacity and location can be changed, if required. FACH may or may not be power controlled.

6.2.4 The Random Access Channel (RACH)

The RACH has intraslot interleaving only and is mapped onto PRACH. The same slot may be used for PRACH by more than one cell. Multiple transmissions using different spreading codes may be received in parallel. More than one slot per frame may be administered for the PRACH. The location of slots allocated to PRACH is broadcast on the BCH. The PRACH uses open loop power control. The details of the employed open loop power control algorithm may be different from the corresponding algorithm on other channels.

6.2.5 The Uplink Shared Channel (USCH)

The uplink shared channel is mapped on one or several PUSCH, see subclause 5.5.

6.2.6 The Downlink Shared Channel (DSCH)

The downlink shared channel is mapped on one or several PDSCH, see subclause 5.6.

Annex A (normative): Basic Midamble Codes

A.1 Basic Midamble Codes for Burst Type 1 and PRACH Burst Type

In the case of burst type 1 (see subclause 5.2.2) or in the case of PRACH burst the midamble has a length of Lm=512, which is corresponding to:

K'=8; W=57; P=456.

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table A-1)

- for all k=1,2,...,K; K=2K' or
- for k=1,2,...,K', only, or
- for odd $k=1,3,5,..., \le K'$, only.

Depending on the cell size midambles for PRACH are generated from the Basic Midamble Codes (see table A-1)

- for k=1,2,...,K' or
- for odd $k=1,3,5,..., \le K'$, only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS 25.223.

Table A-1: Basic Midamble Codes $\,m_{_{\rm P}}\,$ according to equation (5) from subclause 5.2.3 for case of burst type 1

Code ID	Basic Midamble Codes m _{PL} of length <i>P</i> =456
m _{PL0}	8DF65B01E4650910A4BF89992E48F43860B07FE55FA0028E454EDCD1F0A09A6F029668F55427 253FB8A71E5EF2EF360E539C489584413C6DC4
m _{PL1}	4C63F9BC3FD7B655D5401653BE75E1018DC26D271AADA1CF13FD348386759506270F2F953E9 3A44468E0A76605EAE8526225903B1201077602
m _{PL2}	8522611FFCAEB55A5F07D966036C852E7B15B893B3ABA9672C327380283D168564B8E1200F0E 2205AF1BB23A58679899785CFA2A6C131CFDC4
m _{PL3}	F58107E6B777C221999BDE9340E192DC6C31AB8AE85E70AA9BBEB39727435412A5A27C0EF7 3AB453ED0D28E5B032B94306EC1304736C91E922
M _{PL4}	89670985013DFD2223164B68A63BD58C7867E97316742D3ABD6CBDA4FC4E08C0B0CBE44451 575C72F887507956BD1F27C466681800B4B016EE
m _{PL5}	FCDEF63500D6745CDB962594AF171740241E982E9210FC238C4DD85541F08C1A010F7B3161A 7F4DF19BAD916FD308AB1CED2A32538C184E92C
m _{PL6}	DB04CE77A5BA7C0E09B6D3551072B11A7A43B6A355C1D6FDCF725D587874999895748DD098 32ABC35CEC3008338249612E6FE5005E13B03103
M _{PL7}	D2F61A622D0BA9E448CD29587D398EF8CDC3B6582B6CDD50E9E20BF5FE2B3258041E14D608 21DC6725132C22D787CD5D497780D4241E3B420D
m _{PL8}	7318524E62D806FA149ECC5435058A2B74111524B84727FE9A7923B4A1F0D8FCD89208F34BE E5CADEB90130F9954BB30605A98C11045FF173D
m _{PL9}	8E832B4FA1A11E0BF318E84F54725C8052E0D099EF0AF54BC342BEE44976C9F38DE701623C7 BF6474DF90D2E2222A4915C8080E7CD3EC84DAC
m _{PL10}	CFA5BAC90780876C417933C43103B55699A8AD51164E590AF9DA6AF0C18804E1F74862F00CE 7ECC899C85B6ABB0CAD5E50836AD7A39878FE2F
m _{PL11}	AD539094A19858A75458F1B98E286A4F7DC3A117083D04724CBE83F34102817C5531329CDB43 7FFF712241B644BDF0C1FEC8598A63C2F21BD7
m _{PL12}	BEB8483139529BDE23E42DA6AB8170DD0BFBB30CE28A4502FAF3C8EDA219B9A6D5B849D9C 9E4451F74E2408EA046061201E0C1D69CF48F3A94
m _{PL13}	C482462CA7846266060D21688BA00B72E1EC84A3D5B7194C8DA39E21A3CE12BF512C8AAB6A 7079F73C0D3E4F40AC555A4BCC453F1DFE3F6C82
m _{PL14}	9663373935FD5C213AC58C0670206683D579D2526C05B0A81030DDF61A221D8A68EAD8D6F7A A0D662C07C6DCD0115A54D39F03F7122B0675AC
m _{PL15}	387397AE5CD3F2B3912C26B8F87CE82CEFEC55507DB08FB0C4CF2FD6858896201ACA726428 1D0298440DD3481E5E9DDB24C16F30EB7A22948A
m _{PL16}	AFE9266843C892571B6230D808788C63B9065EA3BDFF687B92B8734A8D7099559FEA22C94165 76D0C087EB4503E87E356471B330182A24A3E6
M _{PL17}	6E6C550A4CB74010F6C3E0328651DF421C456D9A5E8AE9D3946C10189D72B579184552EE3E7 99970969C870FE8A37B6C4BA890992103486DC0
m _{PL18}	D803CA71B6F99CFB3105D40F4695D61EB0B62E803F79302EE3D2A6BF12EA70D304B181E8B3 8B3B74F5022B67EB8109808C62532688C563D4BE
m _{PL19}	E599ED48D01772055DBE9D343A4EA5EABE643DA38F06904FC7523B08C4101F021B199AF759A
m _{PL20}	9F30AC4162CE5D185953705F3D45F026F38E9B5721AEFE07370214D526A2C4B344B508B57BF B2492320C05903C79CBEE08C6E7F218B57E14D6
M _{PL21}	B5971060DA84685B4D042ED0189FAF13C961B2EF61CC164E363B22AAB14AC8AF607906C1C6 E04F2054C687AA6741A9E70639857DA02B6FFFFA
m _{PL22}	97135FC2226C4B4A5CBA5FCA3732763B87455F73A1148006F3DF214BD4C936D061E04045160
m _{PL23}	E2CE33B9CD09D08FDE2A37F4E998322B4401D27 4D256D57C861B9791151A78D5299C56D116B6178B2A2D04BB95FB76540AF28341DC6EC4E7E D3BF9E508478D9C8F44914805DA82429E1CF320E
m _{PL24}	858EF5C84CE32D18D9ABA110EEA7474CF0CD70254D2928C3F4DFF6BB3A518587CADA190290
m _{PL25}	78AC90A8336C8178203BE3289E601F07D089CB64 920A8796A511650AEF32F93DD3C39C624E07AE03CE8C96139973F54DCB9803C5164ADB502D
m _{PL26}	4FF561564D607037FCD172921F1982B102C3312C 485C5DAE76B360A9C56E20B8422EA3E6ACF07CB093B5587CB0E6A5498A4714081EA98DBCD
M _{PL27}	B0482B26E0D097C03444473D233BEF3C8E440DEBF 565A9D54EA789892B024F97E728E8EE112411942C48BD0C5BC8AA457D8DC9941F0F7424B386
m _{PL28}	43FFE6521CD306FBC56FE10F1428D4C245B5606 5AEF2C0C2C378179A1AC36242E6B3EDB72C42D3624437674F8D51260C0898C201837CBA14E9
m _{PL29}	E23D1EF6451C4ACF27AB031F457A8A1BFD148AE 87D8FE685417822A23D925307E6C11081ADAC4702BCCD9BE448E78984D109B50DEF5B7C58B
	C71EA1F0A6826BA8AD1978843E7697F3E416AADA

	Basic Midamble Codes m _{PL} of length <i>P</i> =456
m _{PL30}	84802B72AF27B5BE724D1FB629E0E627BDB0D9061292562F98350C1D0C9D4B9D8E2BF71123C 82EBB161003AE9829E07244D78F19926F8847A2
M _{PL31}	8CCB5128238BCB088E30972D62792AEF02B9BBDDCAD68C9916C00BF91CBE788B0F03851FA AF88605534FD73436C259D270B1013CB14226F658
m _{PL32}	62F4E6FAC2BF1979CE6854AA2D33534BFB2F946519101A6589131C3640707D40E67ED804AF8 736AD213CAF5935741900061967E8285C27E34C
m _{PL33}	4095E5B4EEAFCDF68A34B267EEA28D8444FA533900F41499E260D2E65C256A52E1DD5861F52 27C98E00687D107233F51A1167BCF72FB184654
m _{PL34}	5630E9A79FCAD303404D9E5A802299162657AAC734761C6E90DA8BCE4F61A763E0BB48D3FE B3F78468C828ABA4828DAD06E0F904CFD40421DC
M _{PL35}	CD12B24C0BCA8AAC1FCBF0500A3BC684A180E863D888F2506B48C68ECF17F76CB285991FB
m _{PL36}	A18EB6397211FAD002F482D57A258CD45DE3FF1A6 AFCF2A50877286CD3405442730C45514F082D9EC296B367C0F64F04C4E0007DCA9E50BEED5
M _{PL37}	C102126E319ACBC64F1729272F2F72C9397029FE 18F89EE8589D20882A72A44DCCDF0050F0A3D88DBA6531614973D26905FDF41E3F779FF0648
m _{PL38}	E8AF1540928511BCF4C25D9C64AF34AC31B8965 F890D550F33F032ECDA3A51FED427D634F64EB29AF1332A23CD961258E4BAED040E7B33691
m _{PL39}	8E250EC272A12816B9EBFFA1E0AE401185F08C10 ACE5DD61506047E80FB7D41BD3992DF4D7F18EB46CC145C0E9105428C2F8F299141F5D6669
m _{PL40}	1904A7DC2513A3B83994ACB1292246B32818FE9D 150680FF900C9B46E1E24D54BE2238CB950A934E5CCDE9BC3939EB51CB0AE202B7D339EEC
M _{PL41}	2018B33A0AB9B63DA5D512D64FB58C0E51A1C82C2 51A579EED2663A002D32D10A0753173612F4D5BA167D1807C61F25C4D42C063682E8E9DD019 F79D446A046EB3F75E50FEB228DC52F08E694B6
m _{PL42}	CDC644FE4C0C6897604F9D14D714123BF16FFF0E49F35F674908CA60653702FE27BCCA2A470 98453AF8661055C8C549EB6A951A8396AD4B94D
m _{PL43}	750A10366C595373C5001CA3E4239764B1409D602CF6052B39BC6A3255A15FE06C782C4C5F8 47026A7E79838A2933A61C77BB6CBF5915B2DA5
M _{PL44}	B7490686D78E409082C4C48FE18D4C35429C20AADF96076B92FC4E85490664753DB0891A0B2 7FD849BB7FCA99E3B38F22F8C662852C0D35AA6
M _{PL45}	D86E1B575B47D23DA811806A54C231281F03317830E7BD305D3CAA7D6382A5233104CFD54D2 2DF9F34535E5B390D9040CF1375FEA44CEC29E2
m _{PL46}	828655960C026EC67B683480992AC2ED2C43ABC606F5220C2945F373470BE7ED5BCCF7C1AA 0986BBCCC84F11F1658AA568FAA0A60C5F0B5BFA
M _{PL47}	D76230E02C8533653AAB99B288AA2ADE25A1C1BF28516C04239240EAF1EFC0B98974B51F886 861D8A1E9F5D62CFFEC309F071A9716B325101B
m _{PL48}	EA207662865B8A07D69648964DED818EE474A90B94473408871880E63EF0596B9FCFEC3C06B 86EA6AD2B06C91672EFB33C70241A5450B59B8A
m _{PL49}	9CB5459549909835FAB22F0D99298C120ACF479F814CCE749079D40688F28101037762F125C7 76DA9C5FA1FCE0E76E452F8185354FDCDE94E2
m _{PL50}	227506304AEC1D6F93569B51FDC3405A0F38194F65BE17163A3CB9827A35AECEA757D020FE2 49377ECD561428A38FEED004EC859C272563185
M _{PL51}	96B9AEC9938910F0E533422A3977519B05CD4AD3909BC15A7502D48D49C124FA192A8E57027 CFEB11DF542010603CE5C9FDF8E626D4FBF8CF4
m _{PL52}	A6AAD06E095A9BE0BD9F8A2ED40C3CBDBAE91C700CBB778C8696CC06F3A675C16BDB2918 E5F2111005A8727206DC6A9684E05655185C398EEB
M _{PL53}	CD168D384A78DA172991AD333EE2A9880905AFE59E2A2A4AC4414C40F82874F98A3CBE7B44 F4C7F4710B35FD88AFC0399FAEB070EB9CA4D30A
M _{PL54}	22016CA87AD1549174A8699DD65599697871091457E83E0912E7E77A06531C209394D283D18A 38662B73681DD9C5BF330FED978BDA7D487CA8
M _{PL55}	B9401B0843AA6F7827A13BD66C922287E8886C31EB5B90B82B472CCD6DA3D8D4FBF78B8F84 96DFA8252B06429D5DD17142F1C908ACCD70EA0C
M _{PL56}	E42B9EFDC5D09AC27B3C7DA28D02493A70521223B9D7A76A9D13E9C171017964D16A70C08E AD02C3DC948889C23E365AFCF01BF20B89B0BF5C
M _{PL57}	9DA0180168DB915E9F3597B59312198E1B5CC00D743C2ECB0DBAADA3E35A2465ED1EAA9D7 4734D49A313CE4DFF020D0760E3153DC485603943
M _{PL58}	B6C966619ECB98191D719C187C07BD503425650CAA3A2D1F2DF5212B1441D7A0C1D36A4C9C 2550240AD17CA43BB3943DFFFBF1E283D81299CC
M _{PL59}	DB0E8C41F08A03D477C1AA548799274C4BF3EB68F2636166FDC8D4B1E7132539930297E228B A232BB5C279FA5ECA3AC10E24361AF050A453B8
m _{PL60}	89BCE2DE2974EEBA833CF32F224C85A2891484478527DB48FA6ECEA84C5E288CC3914CB54A DA0476278750187F68FBEA41017E1E58DF1A5A3D
M _{PL61}	70A457D1314A278625443EEB52520815EC92CEF17417B97440DCB531BC1CE83212F63270418 D0FBDE71F6DB9E0EA88772E1E4535B6633E4425

Code ID	Basic Midamble Codes m _{PL} of length <i>P</i> =456
m _{PL62}	C388460AD54B36C4452CF0433BD347100ACCC24C79C535AD3E1F23FE0425E93A044C553BFA 116E09AA4BB32F13CFA76FBA1BC17520F45EFD44
m _{PL63}	0BAFCADCDF9AA2846681782CD3B90CA036A863C78EE1507620BC394D0C6804B4C97A15BC9 C0D7B79E6892EA1BFF1A0DD9573A9213AB140D0D2
m _{PL64}	833B0226789A62882FCD27A30885E67872B1A1C2FA484AD498011599DD57E8E2A07A560B4716 7AA5F60EF47177DBB1632D5387A2896348640B
m _{PL65}	8F52820323ABA5E6C6B465821B621600B980E59F53A599DA5646BA103214336836CF17E3386C E4FB2BC5F25CCB30CF7F500546828EC8786B8E
m _{PL66}	E2E9A29C3C8207B9A4508FD2F667A159F068EEE8D00686F46EA904C3692C1D79DFF1B32E510 3720D47B4B58AC35384A26087027E141B3126A8
m _{PL67}	70E7C39FD2D3AE1DCE341699A544D801A8688A6EE47C5CB3630022147DDC06241FC5337A34 8A462B2472DEC5E104DD520ADA5114DB065D4B0D
M _{PL68}	9E3483CAB164BD053C4971D4D87494CC689033D589EF80E5453376E4A8DCC02183B98C36B0 FF7DDC0AD07FCE8B4D5164371BD03A2110AD1247
M _{PL69}	04DA1C649B0608938DAADD3FE920A4F681690C54505429DBDCDCF10067AB5714BCDDFE1F2 8692710F794765781C1D233344E119BEE8A8416DC
m _{PL70}	7A18D6D30BDF44410714C3DCA27D8F9EA8A542D87122205640B98313C91AD9A0B993A5A7BC 3E035F93B88BBE6D4204BC82A9FA8D4C1A7618CF
M _{PL71}	EB9525E10265A48733C8E0E77E459310112A71DCA680F68AC044B64BC0A31D02EEA0F7ACAA AB7F1E574E94FEA2D1301CB14B03263DA8122B76
m _{PL72}	E706C6ED2D6F89153835079BE0C6D45310845EF2F9F6C6AE91B7419810508BA501C0148BF09 955BAD90D6391BA8EBA5CEFBD23221CC75143D7
M _{PL73}	DF071A10AC4120CD1431590BEDCFF9483CA7047B19590D035D309240BDB4264E9A3A2761402 EC97FD8BC51B4AF32E37FBC47162A2357D18751
M _{PL74}	F0F952B2238139F46D8254D1A2C1C22A16BA71EC0C0C900ED1442452D7F44C798BC65FF4067 1B88074BA0B74C6510996EEAC495C5B49C37DEB
M _{PL75}	1C86BD82EDA81FD65418D3837B5552A853791456D93B06C62C650D86CFBEC269AFFD772763 064062C03751B9428C6DA2E60383025F9E404B70
M _{PL76}	B390978DD2552C88AABA7838489A6F5A8E9C41E95FFA2215819BF8A5BFE39C8A706CC658E5 49E966611B843A1468406C41C09D1560BEDA4F1B
M _{PL77}	1A69EC9D053C7E84BAE7A48CCC71857D0C6B06D1065E3EA4633B133AA022B8104F6EE7C69B 6184B746C8822958B0A16686F27C8A0E3B4EFEAD
M _{PL78}	C95B2070816DC97C6D8DD2583263E73F9AAAFD13F0548D2EBD835824418F11E54111005FB71 3AB234BE412347358281C7DE331EDD21B8BEA52
M _{PL79}	56D6408399F23C2ED85EE0F68111D69A91A3AD9A732AC57CA08F86CC28B3CF4E4B02EBBA0 BCE5CAE5BACC4D52004070797C04093A84BB18DBA
m _{PL80}	E662E7043867BE250764DA0596D34A582A619B408B505E6211DD6286E93A37F95B1EA680C0C 5F3E777E3F71E8D75495D59043217FC0E222E16
m _{PL81}	27D5E681C222297AD478A079EF12F1A98F744B66335303322EF8880B931FEBF8322F4302944E 80BED468A0A516D410B183D863795992DA7DDB
m _{PL82}	5100336C05F9E5BF35201906C1C588858E0DAF56130DF5554B9AB21CA15311A90290624CD63 E03F5EDA49DB7A0C32AB5F1CA427A2D5635FDA5
m _{PL83}	C696DC993BFAEA9A61B781B9C5C3F5CFAA4C8339D8B03A9B0387883D0482A41AC78D652242 5959846E561D26A30FF79A205C801A85889736B2
m _{PL84}	D562297561AFF42D3168296C1153E4E39BE7B2EB0348BC704625AA08391235075EE0DE0A79A B03222FEDB27218C56F96EAC2F91CC8FCE64B12
m _{PL85}	DD0B6768FC01CC0A551F8ACC36907129623E975AB8B3FF58037F1859E2FA8C62C2D9D1E850 6916029A2C3F8CAD9A26AE2CC652F48800859F5C
m _{PL86}	923920696EB3AB413786C41854822282BB83F6900D33A232D470BE198BBF086067B72613300C 593B74251E2F079857ADBBCD86583A9DCAA6DC
M _{PL87}	B8EF30C797D8D2C4EF11244F137D806E556A436626D0115A621C92C34D166A68BCEDFA0040 DA8FD6F987B1CD5C2AA1C1B045E64475F0F8DABD
m _{PL88}	E1887001D414405ED6419E9EE1D1D346D924ED57ADF04B31B7948099976B2D1501A60DFFB287AD44C8783DF0C1EA5AA5D273D1389C8EA22DCC
m _{PL89}	8C2E379A58AA96748141CA84C35987905F984A49D3AD9BFF7807AC244C16C1DF74343C2E1F2 5514F5A0954CFBB3C92E25EF783136844998AC5
m _{PL90}	78F8A99E0A54E27F51C0726FE7A11EB26B1E29FE65F55AC8AC58011465900B958488A90F6DF 614A58431DC8B6C6B9A6F032EE0E0B1306EC4B4
m _{PL91}	88F7A31B7B20E0F05CA26E729B4F8A1933962D7BD7BE3E1EB130B28C794C0B4D01CADE0900 6FF97E80117509733F3A9DC225413A0AE08CA662
m _{PL92}	BE4DFCEAC18905AC8D5DA27A794F88A4D3058D2EFA3B075A819DEAE688EAF8940A653ED71 04E7B403D490F0A9030264E1F12B8922C75775E61
m _{PL93}	5BA4B79FC4550234D8922963BF3537485E3C8745A5DB90D3E2E454B30FF61112F508155B7C2B 3C4C628AF846240C2021ACDE547E5A41F666B8

Code ID	Basic Midamble Codes m _{PL} of length <i>P</i> =456
m _{PL94}	00556D35649F7610AB24A43C4F16D6AC0571FD126F11880C5CD72100D730E4E4D6BB73C33F8
. 20 .	37FAF1072743B249ADA2E09598B1EB23F1180A7
m _{PL95}	7A0CC9F21BD69CF3023E944545C2176EF0D4F450B765C28359FB8A32137D043D0E5713E67B3
m _{PL96}	F61320985D2C6106605081F87D2296321468A2F DA669880995B0671201172BABFF141D5854A245E211879EF3038A7C84170DADBD368455F2465
111PL96	3161E7886E15B253F93E3A3C568EFB17CDEB1A
m _{PL97}	4E294E53D1661C1F6F748302A7723DA951C00FDB8BEBBF67A68710BA0F1A255DFB1627059D4
	1A23D3961726DE6FEB10E5D209CC4505B209812
m _{PL98}	73385DF701414E144768A67EF72924B1653479E962FB1554B7E54BC5284D9B3E41C0C133F878 972230721918AA425501B920B204FECE0C7F8A
m _{PL99}	F4492160805F258CE592DF4D1200566F81D173458D78EA3ABED79A14AF88170DB1D4A9A5931 D2B80C58C27FE17D806E3E6A66CDAAD09F118D4
m _{PL100}	44D562D9012D8B07B8F44596467C11A163982BB7EAEAC184078B6B8CE46B5D7E17C39CEF57
m=	6A025491183017FA09931D070B307B86524B03FF FCAEEFCC49A13B4FFA12C0CC6A2B90CF4F57D78B1E98294B04675C2F0991661FDC61A452A2
m _{PL101}	47F8C29E0284AA21026F368307375AA2C3F1E12C
m _{PL102}	C486DF0510DCAD5AB86E178A686D398E11A0ECFAC5A326C10129257E5456B22FB8E147E919
	0D9929A5DFFE44715FA47D62F04CFC9B1C201414
m _{PL103}	C10AF383DC708E257E15A8AB337BCE684A2F4AC7A22DC2C25C277F8E8D0858E79317CDDD9 AA2EA6CBE604D24AC0945026103E7B4126FD361A4
m _{PL104}	A5C60A181148D9A931B2DDDB9D169648BA54F366B4EFAE88F6861909EE0F07C037EE349D0E
	C59A823286E366CA3943589EEA7F828C3728085F
m _{PL105}	96136AEBD5E28462B0421DF292BA899FFA660D80EA01620D2C7490E5347127884AA3C3D1FF4 4BCEEF6C29EC589CDEF200C5742C5964F8B2B52
m _{PL106}	40F63C04ACAD986255D1E16B769A6D4C11A1D075E804BDC0AC61923E9A67F5D741775632807
	2455F6E22B1C64E06F367D1B0808295C2D90E22
M _{PL107}	F4B82D413578C4888C5F002CF6D0E03778134A860436551FD57537E4CED334B3C9CEBACE615 238271717AA762448B86FA53D2074BCE35658A7
m _{PL108}	BCCC92D72C920E685530591FC351743D1E23DE044BF81D32650406113E23ECC757FDE4E386
	B6E2E7195EE4969717A7BD0812AC312B33A54308
m _{PL109}	6ED59DE0D44370A861CE2B42CF5E578E764A682AB5777905EE027D7160490EDC6C28989B238
	05AA697FCD215CB401BC5E4D430624C01B16192
m _{PL110}	DE80C0E273B92CC3C5034F7A20DB3914643C430B425C8B9249EAF73ACE8C3BCF17957242CF
m _{PL111}	534D87A67D4DC0252275262E737F4095450CFA14 9505C4FEF2A397D5059F4729D013292A8321FFFA929ACB0A210D0A13E13061227C44A68FBD8
IIIPLIII	CE6B66CE3D783363CD039AB35EE52603E09B758
m _{PL112}	E8BE90D7F954B14D8002A4CAC20765ABEED80634498C836D79B0F9338DBC17B28F05CF4E79
	136779E1C55AA30B6215F890882887B3B53C23E2
m _{PL113}	9F4B622C1358AE5468DC31E4B2CA320E5E20458C1DE5405BF4F9AD7D45A5BCAA39EC0626FF FC698C16A009CCCB7A18A64E85E70BA71731BA24
M _{PL114}	B91B2624843CF48299AFC2B1442570B41F28F578530D1E322E0B54282372131C71ACB924E707
	68A243EEC3200E7A5EBFA77111D9FB07FEA8AE
M _{PL115}	965F42DDA3A4650FE2F5103932B68F166FA424B9F0F7045311D962C2A9F66B9BC6C66FB480F
	9800354E0C54A72251071422CF1DFC44F94C00C 08ADCE48699FC30FA0788073BDAADB9177BBB4C1CED41F93085218364B8BAD8488561EF0FE
m _{PL116}	1B0DDAA403C602494CB35697D62AA0A2B93A64CF
m _{PL117}	9A313BED80B1220D77C8ADA4B2E0B3D284A5120A94B741380923C78D3AD32BC3E71EC6EEA
	520E9D447D8727697598BB987F17506F482003ABD
m _{PL118}	24C9AD4C14EFEC002A3473FCAB04E492F2E269161A2960BA8AF09FD710B444A40C4E8B1384
m _{PL119}	18E62301E91FBA97AFDC58759A76D00F676736C7 6514C7733711CE4942CD2123AB37186EB7FECB7E78ABB28744864942FCF4C0F810054AF55B1
IIIPLI19	042EB53064F0857C61D85B2CF0D2DC5826AF22F
m _{PL120}	B2C80CDC83E48C36BC6FDAB8661208EAD392F3A0571BE41DFAD765E744932ADEA50061E66
	C05498A5381B2A1F1B446587089DC4E4A2DF03D82
m _{PL121}	639368BA75CC709A3D9F28EDA237E32C2017A9BF1E382045B9426AEE0A4049DCB4E1D7EBE4 647B855212824557497CFA039885A3BA42F98F63
m _{PL122}	6A70DDC17D0C8024B1C853F0C1948561EF32510151BE0C63BCA9171F20217891D1021EE7258
	6CAFF557F8973336913A94A2A699B8740B054B8
m _{PL123}	2E32E3A35CCD001172CE310B63B4E406126045A0FA3795BE3E3D9B56F72405FC94FD8994681
	8BAECD24A61BABBBE2D23052AB01EF73CA0CF4A
M _{PL124}	829395C35205A480AC1351C25E234BF52D384A3DE1C5138A650A6F82F739757D812D9C38231 AB9FD81AA0648B11F6F6113F9312C57624FC746
m _{PL125}	D98FFE19C0AAAAB0571A9075ECDFD3E7373F5255DC669116A8C6913F0123E598F930934C5F6
[123	A601C37C529C371A0C391B59AC5A9E286D04011

Code ID	Basic Midamble Codes m _{PL} of length P=456
m _{PL126}	C1A108192BCE96C2430A63C189BB33856BE6B8B524703FCB205DAEF37EF544CD43CA09B618
	1B417398083FF2F781BA4AE89A5CA291DB928D71
m _{PL127}	42568DF9F61849BF9E7DEE750604BE2E0BC16CC464B1CDE15015E01D6498E9F3E6D6950E58
	24651F212BA0057CE9529B9CCAB88D8136B8545E

A.2 Basic Midamble Codes for Burst Type 2

In the case of burst type 2 (see subclause 5.2.2) the midamble has a length of Lm=256, which is corresponding to:

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table A-2)

- for all k=1,2,...,K; K=2K' or
- for k=1,2,...,K', only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS 25.223.

Table A-2: Basic Midamble Codes $\,m_{_{\rm P}}\,$ according to equation (5) from subclause 6.2.3 for case of burst type 2

m _{PS1} 9E m _{PS2} AI m _{PS3} BG m _{PS4} 8S m _{PS5} 46 m _{PS6} AG	D253744435A24EF0ECC21F43AA5B8144FBDB348C746080C D7174187201B5CE0136B7A6D85D39A9DD8D4B00E23835E4 E90B477C294E55D28467476C6011029CDE29B7325DF0683 C8A44125F823E51E568641EC12A6C68EAFDFA2350E3233C 98B7317B830D207C9BC7B521D5715680824DC08347B2943 66C7482C8827655BC13F479C7C1417290679A9841297C4A C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E E69F62E23035083E6094B89493D33E06FDB6532D473A280
M _{PS2} AI M _{PS3} B0 M _{PS4} 89 M _{PS5} 46 M _{PS6} A0	E90B477C294E55D28467476C6011029CDE29B7325DF0683 C8A44125F823E51E568641EC12A6C68EAFDFA2350E3233C 98B7317B830D207C9BC7B521D5715680824DC08347B2943 66C7482C8827655BC13F479C7C1417290679A9841297C4A C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS3} B0 m _{PS4} 89 m _{PS5} 46 m _{PS6} A0	C8A44125F823E51E568641EC12A6C68EAFDFA2350E3233C 98B7317B830D207C9BC7B521D5715680824DC08347B2943 66C7482C8827655BC13F479C7C1417290679A9841297C4A C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS4} 89 m _{PS5} 46 m _{PS6} A0	98B7317B830D207C9BC7B521D5715680824DC08347B2943 66C7482C8827655BC13F479C7C1417290679A9841297C4A C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS5} 46	66C7482C8827655BC13F479C7C1417290679A9841297C4A C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS6} A0	C0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
	A92106325B15A8C15FC3764724CE67A5056D50A77F9360E
m _{PS7} 0A	E69F62E23035083E6094B89493D33E06FDB6532D473A280
m _{PS8} Al	
m _{PS9} B4	485D4E3614C9C373EA1365FA6FA890E9844084EBA90EB0C
m _{PS10} 66	6182885E2D28360D2FEAB842C65304FFC956CE8DC8A90C7
m _{PS11} Co	C30A9B0A742FCC1E9A408415368391F1299AEA3CB6509FE
m _{PS12} 67	73928915886947F464FDDAAD29A07D182328EBC5839089A
m _{PS13} 44	418861C14D62B46EE6D70D4BF05A3ED801A01BD6CDC5235
m _{PS14} D	AD62DC88F52F2D140062C2330BE6540E6F86192322AFB04
m _{PS15} A2	2122BAF24529CEA9855FB43CE40923E7CA7B30D92E40702
m _{PS16} 60	C44AB41E11F54B0929DF65673BD231F92A380132D9F1712
m _{PS17} 1[DC2742E756CDA6421340D0087DD087A615E4B8688CB2F75
m _{PS18} 2E	E0105328B56E9E07D9B5A62F38B08AF8D8C2817B54F3302
m _{PS19} 88	8315EC30A94CA4EDB2C77079D9BD810A2E280B50DABB213
m _{PS20} 44	40E0093D28CB2B2B0A95D18CEB4AB934C33FA45C1CFC7B0
m _{PS21} Co	C9BF85D41A96A6EC314F9611D5E1C0672556C8850801BB4
m _{PS22} 1.4	ABEA04C99BC26972715F01957C0B6B959CC71CD88120817
m _{PS23} E0	C5A33DA0BA4470442C5CB324A8E47B0A9F7968FC8108EE8
m _{PS24} F8	82086290271DB446B5B1DC15D9BE96414B19B3D5E0F540C
m _{PS25} 11	1A1A790D6958FD3A9157DF1E05D1378248CA201EBCC7592
m _{PS26} A	A8564882231907BCE78092DC6C9DD4F5A0E4A34AFCFB809
m _{PS27} 91	12EE2238212F87BC7CDA7F30441ED184A6AA954EC4D20C8
m _{PS28} 2[D200D8B8891B804673E380A1AF5AB875986E29D37D3FDC9
m _{PS29} 75	5E086B6C818423491BF9D6365C52FD1C5E42A576E268170
m _{PS30} 50	0ADBF27DA2A3701470186B699118E16DDB0D10F705607B1
m _{PS31} 65	56C0692B4E22023590A906D2A74DFD471C883A7B1E0B3A2
m _{PS32} C2	21FDACD09A3CDCE74C4794010A3E45769B142505C56A0E6
m _{PS33} CI	D9392A87C2D4D7CE5801CDDA8A76339B6F900F008B290E2
m _{PS34} 95	56426FEFD8B8D52073E87984E10C4D255064E1372C04A24
m _{PS35} C ₄	4F4D6DF1B754AD6063FD10C331C1428ABB27B0700134B94
m _{PS36} B6	65548082B34E9FAF43F33C4070F79099758CFD41B491A11
m _{PS37} C8	8317EA111A82B04E78B88B864B1EF5D711BBEB4A0527036
m _{PS38} 8F	FB7AD1188E8D1A5219845013672560FD38904E70537403B
m _{PS39} B ²	41A324E0D80AA0598A8D391C1D7FFC82B4A075218E98EC3
m _{PS40} 49	9A6350A62E208B011E86528B9A481A0E76D723F6675FF82

Code ID	Basic Midamble Codes m _{PS} of length <i>P</i> =192				
m _{PS41}	C344C8C23C42A7B7442E6022E95AE4B08A4BFA786F35F911				
m _{PS42}	28F430CF67D69C9DF60E25656413BC5F932A022DB1406C44				
m _{PS43}	2FA5D70CF0FED4213F32116051450391C2A627D9B670C428				
m _{PS44}	959537D988FDD4F1360B4E84701AE5409229C30EDF8BC404				
m _{PS45}	CDD2E0450F9EC12F81391AD4633CB29F315B4A0A890A9A22				
m _{PS46}	158776A20B4B82C563EC08F086830EA66DBD2DCCB4DF6026				
m _{PS47}	431FCACBE48208975950342709D11F19AD5FB047F3B440C9				
m _{PS48}	86B141AC571BA6B42653B12FF04D4F0E6C81F3EB608660A2				
m _{PS49}	86D297ABD34E8510F6CDB0EA617F1F1051C8799117B02211				
m _{PS50}	80B2D9530B34E781311D95CFA3857F277CC07014D324AF5A				
m _{PS51}	2B607B93FD8B45601C1E574E14CFC6912C22AEC1045ADC49				
m _{PS52}	D234C5C45E105A837E6DD74BC4E534523A20317BA0625A29				
m _{PS53}	768CCDB3E2A7A2B863128382590946B25472BE2BFFC40641				
m _{PS54}	3DA38212E0A987EE1F665D4E13C2AA4446E00A76C948A073				
m _{PS55}	09173135E4A2CFC8F2678750AB5257110906F013587BDE82				
m _{PS56}	522E070B266F35E99C1F3C42D2017F8E415550492B72F086				
m _{PS57}	D63E4BD805262A3DEF05C7D86C422E5048921E5531784132				
m _{PS58}	564AF806E28131611E5F884229265D446A50E1E488EAFBBA				
m _{PS59}	A2603E009D3D30147727B750C35C62299AF754D3E4A54E1C				
m _{PS60}	938504B02599D33E28246E4271C375AE81A3BBE8D3F8A920				
m _{PS61}	461516B2CAC6FC42A4B707CC6073BBE573C014892C811776				
m _{PS62}	29186DE4CCAAB2CD0100BB19EA595879D63F0F0CFA881AA5				
m _{PS63}	A064B449CB784A91B803369CDC5EF61A670AAAC044BA3E68				
m _{PS64}	8719C454D88FF5149DB943CB6CADA01D0B9664B357A18203				
m _{PS65}	A27EC68720F00A714AA2C45A7EF232286984D7B193F5C916				
m _{PS66}	AC8361676AB424E48F0789082B0CD2EFB8D2E627D041DD66				
m _{PS67}	ABA1BEB0064733A0620906BF2B29C95883F069D7E4C35D39				
m _{PS68}	9E22EEDED47D92CA1D0B7530EC6062287BD83A04874AE00C				
m _{PS69}	0BADEF288B20F5686C5DE3A71219AC2172054326BE831696				
m _{PS70}	953801EB2AF58C2F80E49A6CC46085CB554243E3B3BBEC8C				
m _{PS71}	333A504C51C8FAC5025994565C3F600F154F64FAEF4EA484				
m _{PS72}	A6583E19647662005474153A6F8DD88A473853E94B720CE7				
m _{PS73}	90ACAF707D18AF34F5848C58166830AF620ACDC1B2DFDDA8				
m _{PS74}	39C5C598A374EA82F3F83378258248DAD3808812DD0E74BB				
m _{PS75}	F79525DE694629346D73F6256CC0F140F82603197AAA1844				
m _{PS76}	B8C2A8F139097699A693022E78588D4058DB0A65FF52F813				
m _{PS77}	449B50C2A52996FA5A828A907F30F9F460EE3D99930DF890				
m _{PS78}	62CEC9574D30184BCB4F94EECF0CC23D2D2A8D0003F0AA33				
m _{PS79}	B56D258889703F76A0738EE3A7D355994159A4851833E198				
m _{PS80}	65894AA54C0F6C9A206521C9FC379A8AAF6E621C03CF849C				
m _{PS81}	2D47F3414E30CC02C6835D95C9BA204488F0FFCB4852677D				
m _{PS82}	12BE4DD8B906B584010F8A330AB67B278E8642FA33D51B68				
m _{PS83}	BC928A90A4B10906CAEE638BF768E08542F48F1676006DF0				

Code ID	Basic Midamble Codes m _{PS} of length <i>P</i> =192
m _{PS84}	30C544E437C8ADA143566CD1BC4E9E7BA84139A08505C2F4
m _{PS85}	84FD5B05506192B753FBA2C719B584E0EDA01814999867D2
m _{PS86}	191F14DD00034E03AB5BB4342F1138B2CD33784E60CFD75A
m _{PS87}	B8ACE7990B6A98A80A61162C4D2D5F88F24E8F7DE4207590
m _{PS88}	EC1DBE72E8EED0C61054FC2695422AC0AD2D888265B21AB0
m _{PS89}	9A1B4CA467AB7E082AF4278E44D177EA78424508C23E8B08
m _{PS90}	999EE541C608164AC975214F3A37A677FC2CA03E2C2A4B20
m _{PS91}	1BDCC20265031432917A2EB828FB356A22DF9CB609C0F8F3
m _{PS92}	EB4A81859C93338B8A1B87C02C815AE09D765F6F2249B958
m _{PS93}	E6A5D1629F4CF09A1F280DE0C480D4C73B26ADE321A50AEE
m _{PS94}	BAAB7286DD24C80B15A7958039B904F1CA83C310C8C7AFF2
m _{PS95}	12220F72619E983717C68FFE1C4148F2354B7B1955B65620
m _{PS96}	A198706E24FAA08BD09EE392414816038E667BB34307D6B2
m _{PS97}	30B3493B4C035881A7A722E4546527AAE787FA2C0893AC46
m _{PS98}	5A7318126522843DCB7F00A2D9F9BA8F88963E4152BC923C
m _{PS99}	844844B0CACAB702C332CE2692B4166F4B0C63E62BF151BF
m _{PS100}	B8297389526410313692F861DC60DA86A23607F7DDE24755
m _{PS101}	6C1144CF8BC01538D655D29ED62DE6E74A3180EC905BF1E0
m _{PS102}	E9DB3221FACFC5C88691A7013EF09672A130D52C3413AAE2
m _{PS103}	2FD0508615EC4CD4BF18ADD46D777078869130C8921A4F0E
m _{PS104}	40911B4E0525AC874228F6EF642E59154730CB187C7E417A
m _{PS105}	2034C6A027D4D850F5184AA64C3153231F4651B616BBFCF9
m _{PS106}	57833235451525A1DFA213FCE0B419B6494BC7B99F488410
m _{PS107}	6DC3D57F2E39158D036825F8804810D77CA1ECA610ECD894
m _{PS108}	F5C50DE43AA7B731CAB7683524021701F97650499A7070E4
m _{PS109}	F2184D2699785442E09FA22CC2D60A5A13FFF22AE660A470
m _{PS110}	EF0029DE0D79207205458CF4D7328E81A93518D93C9A74BD
m _{PS111}	9D6D8992482FB885AA5E878C3BA2045538B09886C23CDC2D
m _{PS112}	C0A5AB67D1CEA126F6476C75443F0A11CBE749412EF03104
m _{PS113}	1853A5C20CDF968C5A180D8EB5E72BF15517D06680D98412
m _{PS114}	8CEA1223227ADF37D0DAAB320906E1C79029F480D25181A7
m _{PS115}	5561038E96A658EF3EC665612FF92B064065D1ACC1F54812
m _{PS116}	C55A6263F08D664A1E53584560DFF5E611640D8281D9A843
m _{PS117}	4386A8EA59124D043F29056A4598735A4FC7BC11119B90C1
m _{PS118}	D6571B20668BED50BD7C80388C162632BCB069AA67C7FC22
m _{PS119}	4F9F09ABBC1391EC2CCA5359FB52250E533BF04324154106
m _{PS120}	662659F42188C9453F6E6DF00C579627045DA1461A3A0EA5
m _{PS121}	8DCC9274C0C2A9BA6096BF27FACA542CD01CA8653D60A80F
m _{PS122}	5C1210A1E50E505F6B73C90156C9D9F19AE2310BBD820DF0
m _{PS123}	B1E0A7CE26202E223D4FC06D5C9BBA4E5F6D98204D2D5286
m _{PS124}	DB506776958E34552F7E60E4B400D836153218F918E22FA6
m _{PS125}	ECAA60300439B2360B2AC3C43FB6241ACDE5055B295FA71C
m _{PS126}	BF1E6D9AA9CA4AC092BE60500C77D0DC7A6A236520F86722

Code ID	Basic Midamble Codes m _{PS} of length <i>P</i> =192
m _{PS127}	051C5FA122845A30B4EC306B38016B45667C7754F92F13A0

A.3 Association between Midambles and Channelisation Codes

The following mapping schemes apply for the association between midambles and channelisation codes if no midamble is allocated by higher layers. Secondary channelisation codes are marked with a (*). These associations apply both for UL and DL.

A.3.1 Association for Burst Type 1 and K=16 Midambles

Figure A-1: Association of Midambles to Spreading Codes for Burst Type 1 and K=16

A.3.2 Association for Burst Type 1 and K=8 Midambles

Figure A-2: Association of Midambles to Spreading Codes for Burst Type 1 and K=8

A.3.3 Association for Burst Type 1 and K=4 Midambles

Figure A-3: Association of Midambles to Spreading Codes for Burst Type 1 and K=4

A.3.4 Association for Burst Type 2 and K=6 Midambles

Figure A-4: Association of Midambles to Spreading Codes for Burst Type 2 and K=6

A.3.5 Association for Burst Type 2 and K=3 Midambles

Figure A-5: Association of Midambles to Spreading Codes for Burst Type 2 and K=3

Note that the association for burst type 2 can be derived from the association for burst type 1, using the following table:

Ī	Burst Type 1	m(1)	m(2)	m(3)	m(4)	m(5)	m(6)	m(7)	m(8)
	Burst Type 2	m(1)	m(5)	m(3)	m(6)	m(2)	m(4)	-	-

Annex B (Informative): CCPCH Multiframe Structure

In the following figures B.1 to B.3 some examples for Multiframe Structures on Primary and Secondary CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channels. Additional S-CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with long midambles (Burst format 1). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame #'), i.e. the transport channels in CCPCHs have an interleaving time of 20msec.

The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from BCH.

Figure B.2: Example for a multiframe structure for CCPCHs that is repeated every 72th frame, n=1...7

Figure B.3: Example for a multiframe structure for CCPCHs that is repeated every 72th frame

Annex C (informative): Change history

	Change history						
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New
14/01/00	RAN_05	RP-99591	-		Approved at TSG RAN #5 and placed under Change Control		3.0.0
14/01/00	RAN_06	RP-99691	001	02	Primary and Secondary CCPCH in TDD		3.1.0
14/01/00	RAN_06	RP-99691	002	02	emoval of Superframe for TDD		3.1.0
14/01/00	RAN_06	RP-99691	006	-	Corrections to TS25.221	3.0.0	3.1.0
14/01/00	RAN_06	RP-99691	007	1	Clarifications for Spreading in UTRA TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99691	800	-	Transmission of TFCI bits for TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99691	009	-	Midamble Allocation in UTRA TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99690	010	-	Introduction of the timeslot formats to the TDD specifications	3.0.0	3.1.0
14/01/00	-	-	-		Change history was added by the editor	3.1.0	3.1.1
31/03/00	RAN_07	RP-000067	003	2	Cycling of cell parameters	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	011	-	Correction of Midamble Definition for TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	012	-	Introduction of the timeslot formats for RACH to the TDD	3.1.1	3.2.0
					specifications		
31/03/00	RAN_07	RP-000067	013	-	Paging Indicator Channel reference power	3.1.1	3.2.0
31/03/00		RP-000067		1	Removal of Synchronisation Case 3 in TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	015	1	Signal Point Constellation	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	016	-	Association between Midambles and Channelisation Codes	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	017	-	Removal of ODMA from the TDD specifications	3.1.1	3.2.0
26/06/00	RAN_08	RP-000271	018	1	Removal of the reference to ODMA	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	019	-	Editorial changes in transport channels section	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	020	1	TPC transmission for TDD	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	021	-	Editorial modification of 25.221	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	023	-	Clarifications on TxDiversity for UTRA TDD	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	024	-	Clarifications on PCH and PICH in UTRA TDD	3.2.0	3.3.0

History

Document history					
V3.1.1	January 2000	Publication			
V3.2.0	March 2000	Publication			
V3.3.0	June 2000	Publication			