Software Engineering

Modelle im Entwicklungsprozess

Prof. Dr. Bodo Kraft

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Agenda und Quellen

Modelle im Entwicklungsprozess

Grundlagen der Modellierung

Quellen

Vorlesung von Prof. Westfechtel Uni Beireuth

Lernziele

Modelle im Entwicklungsprozess

Sie können erklären, wozu Modelle im Entwicklungsprozess dienen

Sie kennen die **Grundidee einer durchgängigen objektorientierten Modellierung**

Der Begriff "Programmieren im Großen"

Motivation und Einordnung

Charakterisierung

 We argue that structuring a large collection of modules to form a "system" is an essentially different intellectual activity from that of constructing the individual modules.

[DeRemer 1976]

Definition

Alle Aktivitäten <u>oberhalb der Realisierung einzelner</u>
 <u>Module</u>, insbesondere die Definition und Modifikation der Gesamtstruktur (Gesamtarchitektur) eines Softwaresystems entsprechend der Anforderungsspezifikation

[Nagl 1990]

Abgeleitete strukturelle Eigenschaften Klassendiagramme im strukturellen Entwurfsmodell

Abgeleitete strukturelle Eigenschaften werden berechnet und nicht zugewiesen

Sie durch einen Schrägstrich / gekennzeichnet

Formale Spezifikation mit OCL (Object Constraint Language) möglich

Schritt 5: Spezifikation von Operationen

Vom Analysemodell zum Entwurfsmodell

Modell: Definition und Eigenschaften

Grundlagen der Modellierung

Definition

- dell: Definition und Eigenschaften
 undlagen der Modellierung

 finition

 Ein Modell ist eine Abstraktion eines Systems, die benutzt wird, um ein existierendes System zu beschreiben oder um ein **existierendes System zu beschreiben** oder ein neu zu erstellendes System zu spezifizieren.
- Ein Modell wird so konstruiert, dass es anstelle des Originals für den jeweils gegebenen Zweck verwendet werden kann

Eigenschaften [Stachowiak 1973]

- Abbildung: Das Modell stellt ein Abbild des zu untersuchenden Systems dar
- Reduktion: Das Modell abstrahiert von irrelevanten Eigenschaften und erleichtert damit die Untersuchung des **Systems**
- **Pragmatik:** Das Modell ist für den jeweiligen Zweck geeignet

Modell: Beispiele in anderen Domänen

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Wozu brauchen wir Modelle?

Zweck	Erläuterung			
Verstehen	Das Modell erleichtert mir durch geeignete Abstraktionen das Verständnis des Systems			
Kommunikation	Das Modell wird dazu verwendet, anderen Personen das zugrunde liegende System zu erläutern			
Analyse	Mit Hilfe des Modells werden Eigenschaften des Systems untersucht			
Simulation	Das Modell wird benutzt, um das Verhalten des Systems zu simulieren und dadurch Erkenntnisse über das tatsächliche Verhalten zu gewinnen			
Spezifikation	Das Modell dient als Vorschrift für ein noch zu erstellendes System			
Generierung	Aus dem Modell wird zu erstellende System automatisch erzeugt			

:H AACHEN JNIVERSITY OF APPLIED SCIENCES

Präskriptive und deskriptive Modellierung Grundlagen der Modellierung

Bei **präskriptiver Modellierung** dient das Modell als **Spezifikation** für die Realisierung

Bei **deskriptiver Modellierung** wird das Modell als **Sicht** auf ein bereits existierendes System konstruiert

Strukturelles Modell und Verhaltensmodells

Objektorientierte Modellierung (idealisiert)

Modellieren im Entwicklungsprozess

Wozu verwenden wir welche Modelle?

Art	Erläuterung	Struktur/ Verhalten		Lebenszyklus			Ausführ- bar
		S	V	RE	E	ı	
Klassen- diagramm	Eigenschaften von und Beziehungen zwischen Klassen	х		х	х		
Objekt- diagramm	Eigenschaften von und Beziehungen zwischen Objekten	х		х	х	х	
Paket- diagramm	Statische Grobstruktur von Modellen	х		х	х		
Anwendungs- falldiagramm	Beschreibung eines Anwendungsfalls bei der Systemnutzung		х	х			
Aktivitäts- diagramm	Graphisches Programm aus Aktionen und Kontrollstrukturen		х	х	х	х	х
Zustands- diagramm	Beschreibung von Objektzuständen, Aktionen und Übergängen		х	х	х		х
Sequenz- diagramm	Sequenzen von Interaktionen zwischen Objekten		х	х	х	х	х
Kommunikations- diagramm	Mit Aktionen angereichertes Objektdiagramm		х	х	х	х	х

Literatur

Grundlagen der Modellierung

- [Hitz 2005] M. Hitz, G. Kappel, E. Kapsammer, W. Retzischegger: UML@Work. Objektorientierte Modellierung mit UML 2, dpunkt Verlag (2005) Lehrbuch zu UML, das leider seit 2005 nicht mehr aktualisiert wurde
- [Oesterreich 2009] B. Oesterreich, S. Bremer: Analyse und Design mit UML 2.3 Objektorientierte Softwareentwicklung, Oldenbourg Verlag (2009)

 Aktuelles Lehrbuch zur UML
- [Rumbaugh 2004] J. Rumbaugh, I. Jacobsen, G. Booch: *The Unified Modeling Language Reference Manual*, 2nd Edition, Addison-Wesley (2006)

 Nachschlagewerk zur UML von den Autoren der UML

[Stachowiak 1973]

Herbert Stachowiak: Allgemeine Modelltheorie, Springer-Verlag, Heidelberg (1973) Wissenschaftstheoretisches Buch über Modelle, nicht informatik-spezifisch

[Störrle 2005]

Harald Störrle: UML 2 erfolgreich einsetzen, Addison-Wesley (2005) Aktuelles Lehrbuch zur UML

[Stahl 2007]

Tom Stahl, Markus Völter, Sven Efftinge, Arno Haase: Modellgetriebene Softwareentwicklung - Techniken, Engineering, Management, 2. Auflage, dpunkt Verlag (2007)

<u>Deutsches Lehrbuch über modellgetriebene Softwareentwicklung</u>