CS499 Homework 9 (First Draft)

Intersteller

Exercise 9.1

We define $f_1: N \to N$

$$f_1(0) = 0, f_1(1) = 1, \dots, f_1(n) = n.$$

We define $f_2:N\to N^2$ based on this graph:

	0	/	2	う	4	5	13.4
0	(0,0)	(0 -1)	(O, 2)	(0, 3)	(0,4)	(0,5)	v1)
1	(1,0)	(1/1)	(1/2)	(ルう)	(1/ 4)	(1,5)	111
2	(2)0)	(2/1)	(2,2)	(2,3)	(2,4)	(2,5)	174
3	(3.0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(1)
:	Ę	Ę	Ę	÷	E	7.	.,,

Figure 1:

$$f_2(0) = (0,0), f_2(1) = (0,1), f_2(2) = (1,0) \cdots$$

We define $f_3: N \to N^3$ based on this graph:

	0	/	2	3	4	5	11.1
£(0)=(0,0)	(0,0,0)	(0,0,1)	(0,0,2)	(0,0,3)	(0,0,4)	(0,0,5)	、 1)
£(1)=(0,1)	(0,10)	(1,1,0)	(2/1/2)	(6,1,0)	(0,1,4)	(3,1,5)	111
f=(2)=(1,0)	(1,0,0)	(101)	(پسوه دا)	(1,0/3)	(104)	(1.05)	171
f= (3)=(2,0)	(100,0)	(,0,1)	(2,0,2)	(بردرے)	(2,0,4)	(2,0,5)	111
:	į.	Ę	3	Ę	Ē	1.11	.,,

Figure 2:

$$f_2(0) = (0,0,0), f_2(1) = (0,0,1), f_2(2) = (0,1,0) \cdots$$

And so on, we can define f_k , $k \in N$. Now we can define a bijection $N \to N^*$ base on this graph:

	0	/	2	う	4	5	11.1
f,	f, (0)	f (1)	f(2)	fico	f,(4)	f,(5)	v1)
f_	f. (0)	f_(1)	f_(2)	f_(3,)	f.(4)	£(5)	111
- f3	f3(0)	f_(1)	f3(2)	f3(3)	f3(4)	f ₃ (5)	111
f ₄	f4(0)	f4(1)	£(2)	£()	£(4)	<i>f</i> ₄ (5)	(1)
:	;	Ę	3	"	1	2.	''1

Figure 3:

We have $0 \to f_1(0)$, $1 \to f_1(1)$, $2 \to f_2(0) \cdots$. This is a bijection $N \to N^*$.

Exercise 9.2

We can define a bijection from $\{0,1\}^N$ to N as follows.

Given $A = (a_1, a_2, \dots, a_n)$, $a_i \in \{0, 1\}$ for $1 \le i \le n$, let $f(A) = 2^n + a_1 2^{n-1} + a_2 2^{n-2} + \dots + a_n 2^0 - 1$. For every element A in $\{0, 1\}^N$, there is one f(A) in N. For every element $a \in N$, according to the binary code, ther is one $f^{-1}(a) \in \{0, 1\}^N$. So, f is a bijection from $\{0, 1\}^N$ to N. Therefore, $\{0, 1\}^N \cong N$.

Using the given fact that $N \times N \cong N$, it is clear that $\{0,1\}^N \cong \{0,1\}^N \times \{0,1\}^N$.

Using the given fact that $R \cong \{0,1\}^N$, it is clear that $R \cong R \times R$.

Exercies 9.3

Using the given fact that $R\cong\{0,1\}^N$ and the fact we proved in **9.2** that $\{0,1\}^N\cong N$, we only need to prove that $N\cong N^N$. N^N is actually $N^*-\{\in\}$. Using the method of Hilbert's Hotel, it is obvious that $N^N\cong N^*$. We have proved in **9.1** that $N\cong N^*$. Therefore, $R\cong R^N$.

Exercise 9.5

 $000\cdots,100\cdots,1100\cdots,11100\cdots$ According to this rule, the first n bits of the n_{th} sequence are 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite chain.

Exercise 9.6

 $100\cdots,0100\cdots,00100\cdots,000100\cdots$ According to this rule, the n_{th} bit of the n_{th} sequence is 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite antichain. **Exercise 9.8**

We can form a bijection f from $0, 1^N$ to set A, which is a subset of $0, 1^N$ as follow: Assume a string s is an element of $0, 1^N$ and t = f(s), the first k digit of s_1 (we call it s_k) determines the $(2^k + 1) - th$ to $2^{k+1} - th$ digits of t (we call them $t_{2^k + 1} tot_{2^{k+1}}$ as the following rule:

Consider the first k digits as a binary number a_k , then t_{2^k+1} to $t_{2^k+a_k}$ are 1 and the $t_{2^k+a_k+1}$ to t_{2^k+1} are 0. Specially, we define that the first 2 digits of t are always '00'.

Here is an example:

Obviously, f is a bijection and A is uncountable. Also, any two elements t_1, t_2 of A is comparable. Assume two elements s_1, s_2 is different and their first different digit is the k-th digit. The k-th

element of s_1 is 1. Then for any m such that $m \ge k$,the binary number of the first m digit of s_1 is greater than that of s_2 , which leads to the conclusion that the according string of t_1 is "greater" than t_2 . Thus A is the chain required.