C1 Set Theory

Robin Adams

August 10, 2022

1 Primitive Notions

Let there be sets.

Let there be a binary relation called *membership*, \in . When $x \in y$ holds, we say x is a *member* or *element* of y. We write $x \notin y$ iff x is not a member of y.

2 The Axioms

Axiom 1 (Extensionality). If two sets have exactly the same members, then they are equal.

As a consequence of this axiom, we may identify a set A with the class $\{x:x\in A\}$. The use of the symbols \in and = is consistent.

Definition 2. We say that a class **A** is a set iff there exists a set A such that $A = \mathbf{A}$. That is, the class $\{x : P(x)\}$ is a set iff

$$\exists A. \forall x (x \in A \leftrightarrow P(x))$$
.

Otherwise, A is a proper class.

Definition 3 (Subset). If A is a set and **B** is a class, we say A is a *subset* of **B** iff $A \subseteq \mathbf{B}$.

Axiom 4 (Empty Set). The empty class is a set, called the empty set.

Axiom 5 (Pairing). For any objects a and b, the class $\{a,b\}$ is a set, called a pair set.

Axiom 6 (Union). For any sets A and B, the class $A \cup B$ is a set.

Proposition Schema 7. For any objects a_1, \ldots, a_n , the class $\{a_1, \ldots, a_n\}$ is a set.

Proof: By repeated application of the Pairing and Union axioms. \square

Definition 8 (Power Set). For any set A, the *power set* of A, $\mathcal{P}A$, is the class of all subsets of A.

Axiom 9 (Power Set). For any set A, the class PA is a set.

Axiom 10 (Subset, Aussonderung). For any class **A** and set B, if $A \subseteq B$ then **A** is a set.

Proposition 11. For any set A and class \mathbf{B} , the intersection $A \cap \mathbf{B}$ is a set.

PROOF: By the Subset Axiom since it is a subclass of A. \square

Proposition 12. For any set A and class \mathbf{B} , the relative complement $A - \mathbf{B}$ is a set.

PROOF: By the Subset Axiom since it is a subclass of A. \square

Theorem 13. The universal class V is a proper class.

Proof:

- $\langle 1 \rangle 1$. Assume: **V** is a set.
- $\langle 1 \rangle 2$. Let: $R = \{x : x \notin x\}$
- $\langle 1 \rangle 3$. R is a set.

PROOF: By the Subset Axiom.

- $\langle 1 \rangle 4$. $R \in R$ if and only if $R \notin R$
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This is a contradiction.