Tulajdonnév-felismerés német nyelven

Általánosan a feladatról

- A feladatnak két fő része van:
 - megtalálni a tulajdonnevet a szövegben (ami az esetek többségében egy token egy sorban formában van)
 - ennek besorolása az előre meghatározott kategóriákba (Person, Location, Organization, Other)
- Szükség van egy minél nagyobb kézzel betaggelt szövegre, amelyen később tudunk tanítani és tesztelni
- A modern megközelítések neurális hálóval dolgoznak

Kihívások

- Egymásba ágyazott tulajdonnevek megtalálása, amennyiben az annotáció erre lehetőséget ad egyáltalán
- Megfelelő korpusz megtalálása:
 - elég nagy méret
 - a területünkhöz illő téma
 - nincs tele hibákkal a címkézés
- Az emberi beszéd struktúráit megtanítani a gépnek (jelentés, mondatfelépítés)
- Mik is pontosan a tulajdonnevek (England englander)

GermEval2014

- A tanítás és a tesztelés a 2014-es GermEval NER Shared task adaton történt, ami részben a német wikipédiáról származik, és több mint 590000 tokent tartalmaz
- A német wikipédiáról és különböző híroldalakról lescrapelt szöveg

1 Aufgrund 0 0

2 seiner 0 0

3 Initiative O O

4 fand 0 0

5 2001/2002 O O

6 in 0 0

7 Stuttgart B-LOC O

8,00

9 Braunschweig B-LOC O

Stanford NER modell

- Elérhető számos nyelven, legjobb eredmények angolul, de jelentős eredmények német, spanyol és kínai nyelven is
- Conditional Random Field (CRF) egy általános implementálása tulajdonképpen (CRFClassifier-nek is nevezik a modellt)
- Számos feature extractor is tartozik hozzá, amelyek tetszés szerint állíthatók a tanításhoz
- Letöltés után egyszerű parancsokkal lehet szöveget tokenizálni, taggelni és tanítani
- Demo: http://corenlp.run/

Conditional Random Fields

- Egyfajta irányítatlan valószínűségi gráfmodell
- Olyan osztályozó ami figyelembe veszi egy adott elem környezetét is a jóslatnál
- NLP-ben a Linear Chain CRF-ek használatosak, így van ez a használt modellnél is

$$Y_1$$
 Y_2 Y_3 Y_4 Y_5

Ez valójában egy Hidden Markov Modelnek felel meg

HMM

- A HMM természetesen rendelkezik a prediktív modellezésben igen hasznos Markov tulajdonsággal
- ▶ Definíció szerint adott két diszkrét sztochasztikus folyamat, X_n és Y_n (n>=1), ekkor az (X_n, Y_n) pár Hidden Markov Model, ha:
 - X_n Markov-folyamat és nem közvetlenül megfigyelhető (innen ered a név)
 - $\mathbf{P}\left(Y_n \in A \mid X_1 = x_1, \dots, X_n = x_n\right) = \mathbf{P}\left(Y_n \in A \mid X_n = x_n\right)$
- minden n>=1, x_1, ..., x_n-re és egy tetszőleges mérhető A halmazra
- Tehát fontos még, hogy Y_n viselkedése függ az X_n-től
- Ezt kihasználva szeretnénk a feltételes valószínűségeket maximalizálni a paraméterek optimalizálásával

Feature extractorok

- A tanítóadatból előre definiált függvények segítségével featureöket gyárt, amiken majd később lehet optimalizálni
- A modell felépítésének köszönhetően ezeket egyszerűen lehet ki-, bekapcsolni, illetve a paramétereiket állítani egy fájlban
- Néhány egyszerűbb példa:
 - useWord: maga a szó is egy feature lesz
 - useNGrams: ha True, akkor használ betű n-gramokat
 - useMidNGrams: használjon-e olyan karakter n-gramokat, ami nem tartalmazza a szó első és utolsó betűjét sem
- De itt kell megadni azt is például milyen formában van a tanítófájl (1. oszlop a token, 2. az osztály)

Distributional Similarity Classes

- Megadható egy a szavak hasonlóságát szemléltető fájl is a modellnek
- Ebben minden szóhoz egy osztályt rendelünk, a nagyon hasonlóak értelemszerűen egy osztályba kerülnek, és minél különbözőbbek, annál távolabbiba
- Az alapértelmezett fájl nem volt elérhető
- Saját ún. DistSim Lexikont kellett készíteni, mivel a kívánt formában nagyon nehéz találni előre elkészítettet

Wordembedding

- Itt jönnek képbe a szóvektorok, amelyekről ismert, hogy a szavakat elhelyezik egy n-dimenziós térben és így szintén mérhető a hasonlóságuk
- Ilyet már nem olyan nehéz találni, a fastText 2 millió szavas, előre betanított szóvektorai jó kiindulási alapot biztosítottak
- Ezek azonban 300 dimenziós vektorok, így a memóriával óvatosan kellett bánni
- Ezen felül a 2 millió szó is kicsit túlzásnak tűnhet a ~470 ezres tanítóadaton
- Kísérleteztünk dimenziócsökkentéssel a vektorokon Uniform Manifold Approximation and Projectionnel (UMAP), de végül az tűnt gazdaságosabbnak, ha a 2 millió szónak hagyjuk el a többségét
- Az optimálishoz legközelebbinek a y szó felhasználása bizonyult a 300 dimenziós vektorokkal, ezen végeztünk k-közép klaszterezést k=70-nel
- Az így kapott klaszterek képezik a kívánt Lexikont

UMAP

- Az algoritmus 3 feltevésen alapszik:
 - Az adat egyenletes eloszlású a Riemann-felületen;
 - A Riemann-metrika lokálisan konstans (vagy legalább lehet közelíteni);
 - A felület lokálisan összefüggő;
- Igy modellezhető az adat fuzzy topológikus struktúrával, és megtalálható egy kisebb dimenziós vetítés, ami leginkább hasonlít ehhez a struktúrához
- Könnyen használható python csomag, kifejezetten ajánlott klaszterezés előtti előfeldolgozási lépésként nagy dimenzió esetén
- Négy fő paraméter: szomszédok száma (globális/lokális), minimális távolság, komponensek száma, metrika
- Sajnos végül nem tudtuk kihasználni, ugyanis értelmes tokenszám mellett 300 vektorról a redukció túl sok memóriát használt

Gazette feature

- Működése röviden: egy csak tulajdonneveket tartalmazó fájlt olvas be, a hozzájuk tartozó címkével együtt
- Akkor jön létre a feature, ha tiszta egyezés van a tanítás során
- A kezdeti modell hibáit vizsgálva adódott az ötlet (egész gyakori volt, hogy egy-két szavas helyneveket nem ismert fel)
- Egyáltalán nem szerepel eredetileg, de egy megírt extractor
- Ismét saját adatot kellett konstruálni

Gazette feature

- Webscraping segítségével sikerült a helynevekre egy jó adatot generálni
- Sikerült javulást is elérni vele, még ha nem is hatalmasat

Quasi-Newton optimizer

- A neurális háló paramétereinek optimalizálásért felel
- Nemlineáris programozásban használatos algoritmus, amikor a teljes Newton módszerek túl sok erőforrást igényelnének
- Kétszeresen differenciálható függvények minimumát találja meg, kevesebb számítással
- Menete:
 - 1. Kiválasztunk egy x_0 kezdőpontot
 - 2. Approximáljuk a Hesse-mátrix inverzét, ezzel kapjuk meg, melyik irányban keressük az optimumot (egy állítható paraméter segítségével megadható mennyire legyen pontos, vigyázva a memóriával)
 - 3. A $x^{k+1} = x^k [H^{-1}]_k * grad(x^k)$ képlettel frissítjük x-et
 - 4. Ellenőrizzük a konvergenciát
 - 5. Ha nem vagyunk elégedettek, vissza a 2. pontra

Kiértékelés

- True Positive, False Positive, False Negative jóslatok számontartásával történik
- A mértékek pedig az ebből számítható Precision, Recall és F-mérték
- Az eredeti adatnak csak az elsődleges címkéit használtuk fel, azokon is átalakításokat kellett végezni, hogy megkapjuk végül a 9 kívánt osztályt (O, B-PER, I-PER, stb.)
- Ezeken való kiértékelés után az eredmények a kezdeti modellen:

Entity	P	R	F1	TP	FP	FN
LOC	0.8407	0.7390	0.7866	776	147	274
ORG	0.7316	0.6237	0.6734	368	135	222
OTH	0.6734	0.4422	0.5339	134	65	169
PER	0.8200	0.7291	0.7719	533	117	198
Totals	0.7960	0.6773	0.7319	1811	464	863

Eredmények

A német helyneveket tartalmazó fájlból generált gazette feature-ökkel:

```
Entity P
                                             FΝ
  LOC 0.8486 0.7476 0.7949
                                             265
                             785
                                     140
  ORG 0.7241 0.6271 0.6721
                             370
                                     141
                                            220
  OTH 0.6734 0.4422 0.5339
                                     65
                             134
                                            169
  PER 0.8193 0.7319 0.7731 535
                                            196
                                     118
Totals 0.7972 0.6821 0.7352
                             1824
                                     464
                                            850
```

- Szóvektorral kiegészítve:
 - ▶ 125000 szó, 30 dimenzió kivágva a 300ból, ez még lecsökkentve 5 dimenzióba és dimenziócsökkentés nélkül:

Entity	P	R	F1	TP	FP	FN
LOC	0.8471	0.7705	0.8070	809	146	241
ORG	0.7162	0.6203	0.6649	366	145	224
OTH	0.7173	0.4521	0.5547	137	54	166
PER	0.8306	0.7715	0.8000	564	115	167
Totals	0.8031	0.7016	0.7489	1876	460	798
Entity	Р	R	F1	TP	FP	FN
Entity LOC	P 0.8402	R 0.7610	F1 0.7986	TP 799	FP 152	FN 251
	•		_			
LOC	0.8402	0.7610	0.7986	799	152	251
LOC ORG	0.8402 0.7054	0.7610 0.6169	0.7986 0.6582	799 364	152 152	251 226

Eredmények

125000 sor, 300 dimenziós vektorokkal futtatott k-középből kapott hasonlósági osztályokkal:

Entity	P	R	F1	TP	FP	FN
LOC	0.8509	0.7829	0.8155	822	144	228
ORG	0.7431	0.6373	0.6861	376	130	214
OTH	0.7143	0.4620	0.5611	140	56	163
PER	0.8447	0.8112	0.8276	593	109	138
Totals	0.8148	0.7221	0.7657	1931	439	743

- Tehát az F-mértéken több, mint 3 százados javulás
- A GermEval versenyen elért legjobb eredmény 0.7908 (igaz ez valószínűleg saját modell és a teszthalmazon lett kiértékelve)

Források

- Stanford NER modell
 - https://nlp.stanford.edu/software/CRF-NER.shtml
 - https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.html
- CRF
 - https://en.wikipedia.org/wiki/Conditional_random_field
 - https://dms.sztaki.hu/sites/dms.sztaki.hu/files/file/2013/crf_slide.pdf
- Quasi-Newton
 - https://optimization.mccormick.northwestern.edu/index.php/Quasi-Newton_methods
- ► HMM
 - https://pdfs.semanticscholar.org/9528/4b31f27b9b8901fdc18554603610ebbc2752.pdf
 - https://en.wikipedia.org/wiki/Hidden_Markov_model
- UMAP
 - https://umap-learn.readthedocs.io/en/latest/
- German cities
 - https://www.mygermancity.com/german-cities