Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencoder

Resultados

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

23 de noviembre de 2010

Contenidos

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones Federico Benitez

- Introducción
 - Objetivos
- Métodos
 - Autoencoder
 - LVQ1
- Resultados

¿Qué es un Encoder?

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

ntroducción

Objetivos

Autoencoder

Regultados

¿Qué es un Encoder?

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Métodos

Autoencoder LVQ1

Resultado

Encoder

Para nuestra concepción es un *programa* o *algoritmo* que convierte de un formato o código a otro, por razones de velocidad, seguridad, espacio, etc.

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducció

Objetivos

Metodos

Autoencode LVQ1

Resultados

- Redes Neuronales
- LVQ1
- Clustering Difuso
- Clustering basado en hormigas

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducció

Objetivos

Metodos

LVQ1

Resultados

- Redes Neuronales
- LVQ1
- Clustering Difuso
- Clustering basado en hormigas

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencode

LVQ1

Resultados

- Redes Neuronales
- LVQ1
- Clustering Difuso
- Clustering basado en hormigas

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

N 4 4 4 - - 1 - 1

Autoencode

Resultados

- Redes Neuronales
- LVQ1
- Clustering Difuso
- Clustering basado en hormigas

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencoder

_

- Redes Neuronales
- LVQ1
- Clustering Difuso
- Clustering basado en hormigas

Autoencoder

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Metodos

Autoencoder

Resultados

¿Qué es?

Un autoencoder es una red neuronal usada para el aprendizaje de códigos, utilizados para crear una representación comprimida de datos.

Las particularidades de un autoencoder son:

Autoencoder

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Objetivos

Métodos

Autoencoder LVQ1

Resultado

¿Qué es?

Un autoencoder es una red neuronal usada para el aprendizaje de códigos, utilizados para crear una representación comprimida de datos.

Las particularidades de un autoencoder son:

- Arquitectura
 - Posee *al menos 3 capas*, donde alguna capa interna poseen menos neuronas que la primera
 - La primera y ultima capa tienen igual cantidad de neuronas e igual interpretación cada una

Autoencoder

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducciór Objetivos

Objetivos

Autoencoder

Resultado

¿Qué es?

Un autoencoder es una red neuronal usada para el aprendizaje de códigos, utilizados para crear una representación comprimida de datos.

Las particularidades de un autoencoder son:

- Arquitectura
 - Posee *al menos 3 capas*, donde alguna capa interna poseen menos neuronas que la primera
 - La primera y ultima capa tienen *igual cantidad de neuronas* e igual interpretación cada una
- Entrenamiento
 - La red se entrana para que la salida sea igual a la entrada

990

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencoder

Autoencode LVQ1

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Obietivos

Métodos

Autoencoder

Resultados

Componentes

La red se entrena completa, pero luego se parte en 2 componentes.

- Encoder
 - Es la primer parte de la red, donde se almacenan los pesos para codificar una entrada
- Decoder
 - Es la segunda parte de la red, donde se almacenan los pesos para decodificar los datos previamente codificados

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducciór Objetivos

Autoencoder

LVQ1

Resultado

Componentes

La red se entrena completa, pero luego se parte en 2 componentes.

- Encoder
 - Es la primer parte de la red, donde se almacenan los pesos para codificar una entrada
- Decoder
 - Es la segunda parte de la red, donde se almacenan los pesos para decodificar los datos previamente codificados

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducciór Objetivos

Mátadaa

Autoencoder

Resultado

Componentes

La red se entrena completa, pero luego se parte en 2 componentes.

- Encoder
 - Es la primer parte de la red, donde se almacenan los pesos para codificar una entrada
- Decoder

Es la segunda parte de la red, donde se almacenan los pesos para decodificar los datos previamente codificados

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencoder

Entrenamiento

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Mátodos

Autoencoder

Resultados

- Backpropagation
- Inteligencia Colectiva
 - Enjambre de Partículas
 - Algoritmo Genético

Implementación I

Se uso uso Backpropagation ya que tiene una mejor velocidad de convergencia.

Entrenamiento

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Objetivos

N 4 4 4 - -1 - -

Autoencoder

Resultad

Backpropagation

- Inteligencia Colectiva
 - Enjambre de Partículas
 - Algoritmo Genético

Implementación

Se uso uso Backpropagation ya que tiene una mejor velocidad de convergencia.

Implementación

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Objetivos

Autoencoder

LVQ1

Características propias:

- 3 Capas
- Entrenamiento por sub-secciones(cuadradas): 3x3, 4x4
- Radio de compresión en imagenes de $\frac{1}{10}$ y $\frac{1}{5}$

Learning Vector Quantization

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencode

Resultados

¿Qué es?

Un método de clasificación similar a SOM, teniendo como principal diferencia la ausencia de topología.

Elementos:

Learning Vector Quantization

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Objetivos

Métodos Autoencoder LVQ1

Resultados

¿Qué es?

Un método de clasificación similar a SOM, teniendo como principal diferencia la ausencia de topología.

Elementos:

 Code-Book
 Un conjunto de N vectores de datos inicializados con partes de los datos a aprender

Learning Vector Quantization

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción Objetivos

Métodos Autoencoder LVQ1

Resultados

¿Qué es?

Un método de clasificación similar a SOM, teniendo como principal diferencia la ausencia de topología.

Elementos:

- Code-Book
 Un conjunto de N vectores de datos inicializados con partes de los datos a aprender
- Entrenamiento
 No supervisado similar a SOM

Esquema

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducció

Mátadas

Autoencode

Entrenamiento

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico

Benitez Introducción

Objetivos

Autoencode

Resultados

Selección/Adaptación¹

$$c(n) = \operatorname{argmin}||x(n) - m_i(n)||$$

$$m_c(n+1) = m_c(n) + \alpha[x(n) - m_c(n)]$$

¹No se implemento inhibición

Red Neuronal: Pixels vs Segundos

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Métodos

LVQ: Pixels vs Segundos

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Métodos

Autoencoder LVQ1

JPG: Pixels vs Segundos

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Métodos

Autoencoder LVQ1

Compresión: Error vs Ratio de Compresión

Autoencoder y LVQ en compresión de imágenes

Emmanuel Rojas Fredini, Cristian Yones, Federico Benitez

Introducción

Objetivos

Autoencoder LVQ1

