

视频推理服务 使AI应用更高效

爱奇艺视频推理服务实践

01 简介

02 现有方案

03 优化方案

04 总结

令 介 介 1

简介

- 周海维
- 爱奇艺深度学习云架构师 (2017-2020)
- 爱奇艺国际部广告平台架构师
- 分享爱奇艺视频推理的工程经验和优化方法
- 重点介绍视频变化服务的工程优化方法
- 不涉及具体算法, 任务治理

视频质量增强。

SDR2HDR

视频推理服务类型

	视频特征提取	视频变化
输入	视频	视频
输出	数值 (概率, 坐标)	视频
尺寸	缩小	保持或变大
帧率	只留关键帧/采样	保持或增大
计算量	大 可运行在CPU/GPU	巨大 一般运行在GPU
算法	CNN, RCNN	CNN,传统CV 主观性较强
用途	分类,物体识别	图像增强,高帧率,画 面修复

视频变化服务流程

N有方案 PART 2

从 图片推理 演进到 视频推理

2020 北京

单机CPU/GPU比例限制

ffmpeg

- 1080p RGB 5.93MB
- Pageable Mem <-> GPU 3GB/s
- Pinned Mem <-> GPU 6GB/s
- · 不支持batching

已有方案的缺点

GPU常用优化手段

M化方案 CHAPT 3

All in GPU

Python脚本支持

```
def setup(config):
      # setup model here
      pass
   def warmup( ):
      # warmup model
      pass
   def configure(stream config):
      # configure per stream
11
      pass
12
    def process(data, profiling=False):
13
      # batching process frames
14
      pass
```

```
import numpy as np
   import cupy as cp
   from PIL import Image
   setup('{"model":"/data/haiwei/resnet v2 fp32 savedmodel NCHW/"}')
   warmup()
   configure('{"user-param" : "test"}')
   im = Image.open('test.jpg')
12
13
   data = {
        'height' : im.height,
14
        'width' : im.width,
15
        'format' : 'RGB',
16
        'data': [ cp.asarray(np.array(im)).data.ptr for i in range(16)]
17
18
19
   process(data)
```

Python脚本支持

高帧率变换服务

备用帧

生成帧

- 解码时按比例添加备用帧
- 编码时保留原始帧和生成 帧, 跳过备用帧

短视频分类服务

模型效果偏差问题

现象

• 少数推理结果差异较 大

原因

- 图像伸缩算法不一致
- 色彩空间转换取整误 差

方案

• 使用同一套预处理操作,重新训练模型

优化效果

资源利用率

PART 4

应用经验

2020 北京

• 使用Python脚 本加速模型迭代 部署过程

验证过程

扩大验证范围

效果稳定后,进 行简单优化 • 对耗时操作进行 专项操作优化

大范围生产

总结

集成的优化措施

- •视频推理过程集中在GPU上完成,减少CPU/GPU数据搬运开销
- •使用任务流水线方式,并行CPU/GPU操作
- •减少重复优化

集成Python引擎

- •满足灵活算法需求
- •降低使用门槛

统一的开发测试环境

- 算法工程师专注于算法处理逻辑
- •平台工程师专注于性能优化

MULTIMEDIA BRIDGE TO A WORLD OF VISION

Thank you

