

High Temperature Superconductors

Activities in Switzerland

Bertrand Dutoit, EPFL Applied Superconductivity Group, Email: bertrand.dutoit@epfl.ch

SWISS Plasma Center

- Work performed at PSI in Villigen by
 - R. Wesche, N. Bykovsky, K. Sedlak,
 - B. Stepanov, D. Uglietti, P. Bruzzone
- SULTAN and EDIPO test facilities:
 - high current, force flow conductor tests

	EDIPO	SULTAN
Maximum DC field	12.35 T	10.89 T
DC field length (±1%)	910 mm	425 mm
Sample size in test well	89 mm x 138 mm	92 mm x 142 mm
Maximum sample current	> 100 kA	> 100 kA
Temperature operating range	4.4 K – 60 K	4.4 K – 10 K
Available flux in transformer	2.97 Vs	1.65 Vs

SWISS Plasma Center

- 60 kA HTS cable was designed and manufactured at SPC
 - Features of conductors for Fusion Magnets
 - Peak field in the 10 T 2 20 T range.
 - Large bending radius (> 3 m) during winding.
 - Very large current (>40 kA) and large Cu cross section (500 to 900 mm2), thus low Je.
 - Moderate AC losses.
 - Cheap and easy industrial production (> 1 Km).
 - Large transverse loads (steel structures takes up all the Hoop stress).

SWISS Plasma Center

	Tot cross section (without jacket)	Tot. copper cross section	Void fraction	Operating current and field	T_{cs} at operating conditions	Operating current density (non Cu)
ITER TF (Nb ₃ Sn)	1250 mm ²	515 mm ²	32%	68 kA, 11.1 T	5.8 K to 7.0 K	280 A/mm ²
DEMO TF (Nb ₃ Sn)	1220 mm ²	675 mm ²	23%	82 kA, 13.4 T	about 6.5 K	300 A/mm ²
HTS prototype	1250 mm ²	760 mm ²	32%	50 kA, 12 T 30 kA, 12 T	8 K 21 K	500 A/mm ² 300 A/mm ²

- Recent talk @ SPC by Dr. M. Greenwald, PSFC-MIT, Boston, USA:
 - The high magnetic field path to practical fusion energy
- "The emergence of high-temperature superconductors (HTS) as an industrially mature product opens up a new path to practical fusion energy enabling more compact, less expensive fusion devices"
- https://phys.org/news/2015-11-breakthrough-superconducting-materials-pathfusion.html

The future at CERN

LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi HE-LHC 27 km, 20 T 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS FCC-hh 80 km, 20 T 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, 16 T 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons NbTi

Applied Superconductivity @ UNIGE, Prof. C. Senatore

- Sophisticated low temperature/ high field measurement techniques
 - High magnetic fields: 21 Tesla
 - Electromechanical properties under axial and transverse loads
 - Specific heat and thermal conductivity
 - Magnetic properties
- Top facilities for material synthesis
 - Pulsed Laser Deposition of thin films
 - Machines for metallurgy and powder-metallurgy
 - Various controlled atmosphere furnaces
 - All the equipment for the development of superconducting wires

UNIGE & Bruker, June 8th 2016

- 1st 25 T fully superconductive magnet in Europe
- 25 T with REBCO in a 21 T LTS outsert

MaNEP

- Materials with Novel Electronic Properties
 - http://www.manep.ch/
 - Fundamental understanding and control of the electronic properties of new materials
 - Effort to transfer its technology to industrial applications
 - SUMMER INTERNSHIPS
 - https://www.manep.ch/education/summer-internships/
- SWM 2016 http://www.manep.ch/swm16
 - July 2016, Les Diablerets
 - Applications was one topic of the conference

EPF Lausanne, GFO, Prof. Luc Thevenaz

- Specialist in Optical fibre sensing
- Project: Investigation of Distributed SensingTechniques Based on Fibre Optic Technology and Their Applicability to ITER for Leak Localisation
- Method: Coherent Rayleigh scattering
- Achievement: MilliKelvin resolution in cryogenic temperature distributed fibre
- sensing based on coherent Rayleigh scattering
- Range: 77 300 K

- Will be used for Quench detection (Prof. Justin Schwartz work on it in the US)
- Is developped within FASTGRID project

EPF Lausanne

Real time Heat Transfer Monitoring Between Quenched High-Temperature
Superconducting Coated Conductors and Liquid Nitrogen

• Background idea: Better stability in several applications, faster recovery in FCL can be achieved using optimized thermal insulation.

EPF Lausanne together with EP Montréal

- Goal: Almost isothermal V(I,B) measurements -> fast measurements
- 2G HTS coated conductors measured with microsecond range pulsed currents
- Unique: $0 1000 \text{ A in} < 3 \mu \text{s}$
- Up to 16 * 200A modules with local MCU
- Current sharing:

- Current density (and temperature) are NOT uniform in tape cross-section
- Analyzing experimental results with finite elements is required in order to understand the physics and get the correct parameters

Lausanne 1st Summer School June 2016

- Hands on
- Fantastic teachers from
 - CERN
 - Twente
 - KIT
 - Houston
 - Grenoble
- 32 students
- From 15 different countries
- A great success
- Next School In Lisboa PT July 2-6th 2018

See you in Geneva!

GENEVA 17 - 21 September 2017

Organisation Committee

Lucio Rossi, CERN | Conference Chair Luca Bottura, CERN | Conference Chair Amalia Ballarino, CERN | Industrial exhibition Pierluigi Bruzzone, EPFL/SPC | Program Chair Carmine Senatore, UNIGE/DQMP | Editor

