STEP OF MACHINE LEARNING

- 1. PREPROCESSING + EDA + FEATURE SELECTION
- 2. EXTRACT INPUT AND OUTPUT COLUMNS
- 3. TRAIN TEST SPLIT
- 4. TRAIN THE MODEL
- 5. EVALUATE THE MODEL/MODEL SELECTION
- 6. DEPLOY THE MODEL

#IMPORTING THE NECESSARY LIBRARIES import numpy as np import pandas as pd

#Reading the data

data = pd.read_csv('/content/placement.csv')
data

	Unnamed: 0	cgpa	iq	placement
0	0	6.8	123	1
1	1	5.9	106	0
2	2	5.3	121	0
3	3	7.4	132	1
4	4	5.8	142	0
95	95	4.3	200	0
96	96	4.4	42	0
97	97	6.7	182	1
98	98	6.3	103	1
99	99	6.2	113	1

100 rows × 4 columns

data.head()

	Unnamed:	0	cgpa	iq	placement	0
0		0	6.8	123	1	
1		1	5.9	106	0	
2		2	5.3	121	0	
3		3	7.4	132	1	
4		4	5.8	142	0	

data.tail()

	Unnamed: 0	cgpa	iq	placement	1
95	95	4.3	200	0	
96	96	4.4	42	0	
97	97	6.7	182	1	
98	98	6.3	103	1	
99	99	6.2	113	1	

data.shape

(100, 4)

data.shape[0]

100

#removing missing values data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 4 columns):
# Column Non-Null Count Dtype
------
0 Unnamed: 0 100 non-null int64
1 cgpa 100 non-null float64
2 iq 100 non-null int64
3 placement 100 non-null int64
dtypes: float64(1), int64(3)
memory usage: 3.2 KB
```

here as you can see there are no null values. so no data preprocessing required

data.head()

	Unnamed:	0	cgpa	iq	placement	1
0		0	6.8	123	1	
1		1	5.9	106	0	
2		2	5.3	121	0	
3		3	7.4	132	1	
4		4	5.8	142	0	

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 4 columns):
# Column Non-Null Count Dtype
---
               -----
0 Unnamed: 0 100 non-null
                             int64
              100 non-null
                             float64
1 cgpa
2 iq
                             int64
               100 non-null
3 placement 100 non-null
                             int64
dtypes: float64(1), int64(3)
memory usage: 3.2 KB
```

```
data = data.iloc[:,1:]
data
```

cgpa iq placement 🎢

import matplotlib.pyplot as plt

plt.scatter(data['cgpa'],data['iq'],c = data['placement'])
#xaxis = cgpa , y axis = iq # colored the placement coloumnn

^{*}Using LOGISTIC REGRESSION NAMED LOGISTIC REGRESSION. *

#LOGISTIC REGRESSION BECAUSE THIS IS CLASSIFICATION PROBLEM

Independent Variable = Input = cgpa & iq dependent variable = output = Placement

X

	cgpa	iq	1
0	6.8	123	
1	5.9	106	
2	5.3	121	
3	7.4	132	
4	5.8	142	
95	4.3	200	
96	4.4	42	
97	6.7	182	
98	6.3	103	
99	6.2	113	
100	rows ×	2 colui	mns

У

```
0 1
1 0
2 0
3 1
4 0
```

#train test split first
then scale the values

from sklearn.model_selection import train_test_split
#train_test_split(inpdependant variable , dependent variable, give t
x_train,x_test, y_train, y_test = train_test_split(x,y,test_size = 0

x_train

	cgpa	iq	1			
54	6.4	141				
79	6.5	90				
78	6.1	81				
40	4.9	134				
61	7.3	137				
84	5.7	169				
35	6.8	90				
75	4.8	169				
15	5.1	176				
87	5.7	132				
90 rows × 2 columns						

x_test

	cgpa	iq	1
25	5.0	91	
24	4.7	121	
77	7.3	50	
90	7.3	86	
72	7.3	116	
44	7.5	61	
33	6.0	149	
89	4.9	151	
46	5.3	114	
81	5.4	107	

y_train

```
54 1
79 1
78 0
40 0
61 1
...
84 0
35 1
75 0
15 0
87 1
```

Name: placement, Length: 90, dtype: int64

```
y_test
    89
    46
    81
    Name: placement, dtype: int64
#scaling all values betweeen o and 1
#it is not necessary but you should do it
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x train
    array([[ 0.36580376, 0.38287711],
            0.45336317, -0.89245377],
            0.10312553, -1.11751216],
           [-0.94758739, 0.2078317],
            1.15383845, 0.28285116],
            0.45336317, -2.21779762],
           [ 0.89116022, -1.54262245],
            0.54092258, -0.14225913],
           [-0.86002798, -1.56762894],
           [ 2.20455136, -0.14225913],
           [-0.68490916, 2.45841561],
           [ 0.01556612, -0.04223318],
           [-2.34853795, 1.4331496],
            0.27824435, 0.05779277],
            0.10312553, -0.56736942],
           [-0.1595527 , 1.00803931],
[ 0.54092258, 0.30785765],
           [-0.59734975, -0.11725264],
            0.7160414 , 0.38287711],
           [ 0.97871963, -1.94272626],
[ 0.62848199, 1.40814312],
           [-0.77246857, -1.49260948],
           [-1.12270621, -0.96747323],
           [ 0.27824435, 0.03278628],
            0.36580376, -0.24228508],
           [-0.94758739, -1.61764191],
            1.85431373, 1.00803931],
           [-0.50979034, 0.33286414],
           [ 1.41651668, 0.05779277],
           [-1.12270621, -1.84270031],
           [ 0.89116022, -0.34231103], [ 0.80360081, -0.74241484],
           [-0.24711211, 0.43289009],
           [-0.50979034, 0.23283819],
           [-1.0351468 , 0.38287711],
           [ 0.97871963, 0.63294199],
            1.41651668, -0.91746025]
           [-1.73562208, -1.26755108],
           [-1.47294385, 1.8582599],
           [-1.0351468 , 0.93301985],
```

[-0.77246857, 0.05779277],
[-0.1595527, 0.4078836],
[0.45336317, 0.10780575],
[-0.68490916, -0.39232401],
[0.89116022, 1.2330977],
[1.32895727, 0.10780575],
[-0.50979034, -0.29229806],
[-1.73562208, -0.64238889],
[0.80360081, 0.33286414],
[-0.94758739, 0.73296794],
[-0.07199329, -0.49234996],
[0.89116022, 1.83325341],
[0.19068494, -0.31730455],

```
[-0.24711211, 0.35787063],
        x_test = scaler.fit_transform(x_test)
x test
   array([[-0.97591834, -0.42941754],
        [-1.2495403 , 0.51782704],
        [ 1.12185005, -1.72398513],
        [ 1.12185005, -0.58729164],
        [ 1.12185005, 0.35995294],
        [ 1.3042647 , -1.37666212],
        [-0.06384512, 1.40192198],
[-1.06712566, 1.46507162],
        [-0.70229637, 0.2968033],
[-0.61108905, 0.07577957]])
*TRAIN THE CLASSIFIER *
                                                                                              from sklearn.linear_model import LogisticRegression
                                                                                             clf = LogisticRegression()
                                                                                             clf.fit(x train, y train)
   LogisticRegression()
y_pred = clf.predict(x_test)
y_pred
   array([0, 0, 1, 1, 1, 1, 0, 0, 0, 0])
y_test
   77
   90
   72
   44
   33
   89
   Name: placement, dtype: int64
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)
   1.0
from mlxtend.plotting import plot_decision_regions
plot decision regions(x train, y train.values, clf = clf, legend=2)
```

/usr/local/lib/python3.8/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max()) <matplotlib.axes._subplots.AxesSubplot at 0x7f9f1456efd0>

Colob maid menderate Connol contracts

✓ 0s completed at 12:04 PM