```
# pca.r
         James p401
d1=USArrests
dim(d1)
                  #[1]50 4
head(d1)
# a) Compare eigenvalues & variances
summary(d1)
#
      Murder
                     Assault
                                    UrbanPop
                                                     Rape
                       : 45.0
  Min.
         : 0.800
                 Min.
                              Min.
                                     :32.00
                                            Min.
                                                  : 7.30
  1st Qu.: 4.075
                1st Qu.:109.0
                             1st Qu.:54.50
                                          1st Qu.:15.07
  Median: 7.250
                 Median:159.0
                               Median :66.00
                                             Median :20.10
  Mean
        : 7.788
                  Mean
                         :170.8
                                 Mean
                                        :65.54
                                                Mean
                                                       :21.23
  3rd Qu.:11.250
                 3rd Qu.:249.0
                              3rd Qu.:77.75
                                            3rd Qu.:26.18
  Max.
         :17.400
                  Max.
                        :337.0
                                Max.
                                       :91.00
                                              Max.
                                                     :46.00
# covariance matrix
var(d1)
#
              Murder
                      Assault
                               UrbanPop
                                            Rape
           18.970465 291.0624
# Murder
                               4.386204 22.99141
# Assault 291.062367 6945.1657 312.275102 519.26906
# UrbanPop
           4.386204 312.2751 209.518776 55.76808
# Rape
           22.991412 519.2691 55.768082 87.72916
apply(d1,2,var)
     Murder
               Assault
                       UrbanPop
                                     Rape
   18.97047 6945.16571 209.51878
                                 87.72916
apply(d1,2,sd)
    Murder
             Assault UrbanPop
                                  Rape
 4.355510 83.337661 14.474763 9.366385
eigen(var(d1))
#$values
#[1] 7011.114851 201.992366
                           42.112651
                                       6.164246
# $vectors
             [,1]
                       [,2]
                                 [,3]
                                           [,4]
#[3,]-0.04633575-0.97685748-0.20054629 0.05816914
#[4,]-0.07515550-0.20071807 0.97408059-0.07232502
```

```
sum(eigen(var(d1))$values) #[1] 7261.384
sum(diag(var(d1)))
                      #[1] 7261.384
# sum of eigenvalues = sum variances
# means and variances very differents, need to standardize
# b) Find principal components (scaled data)
m1=prcomp(d1, scale=T)
names(m1)
# [1] "sdev"
             "rotation" "center"
                              "scale"
                                      "x"
# mean and sd of d1 (by default prcomp assumes center=T)
m1$center
  Murder Assault UrbanPop
                           Rape
   7.788 170.760
                  65.540
                          21.232
m1$scale
   Murder
           Assault UrbanPop
                               Rape
# 4.355510 83.337661 14.474763 9.366385
# PC loading (eigen) vectors in the rotation matrix
m1$rotation
                PC1
                          PC2
                                    PC3
                                               PC4
# Murder
         # Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
# Rape
         # sqrt(eigenvalues)
m1$sdev
# 1.5748783 0.9948694 0.5971291 0.4164494
# score vectors
d2 = m1$x
apply(d2,2,sd)
       PC1
                PC2
                         PC3
                                  PC4
# 1.5748783 0.9948694 0.5971291 0.4164494
# eigen() function
```

```
cova=var(scale(d1))
             Murder
                     Assault
                            UrbanPop
                                         Rape
# Murder
         1.00000000 0.8018733 0.06957262 0.5635788
# Assault 0.80187331 1.0000000 0.25887170 0.6652412
# UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412
# Rape
         0.56357883 0.6652412 0.41134124 1.0000000
m2 = eigen(cova)
#$values
#[1] 2.4802416 0.9897652 0.3565632 0.1734301
#$vectors
#
         [,1]
                 [,2]
                          [,3]
                                   [,4]
# covariance matrix of transformed data
var(d2)
#
              PC1
                          PC2
                                      PC3
                                                  PC4
# PC1 2.480242e+00 6.706371e-17 4.573978e-17 -3.198568e-16
# PC2 6.706371e-17 9.897652e-01 -9.581526e-17 -1.516830e-16
# PC3 4.573978e-17 -9.581526e-17 3.565632e-01 5.281033e-17
# PC4 -3.198568e-16 -1.516830e-16 5.281033e-17 1.734301e-01
# Big lambda diagonal matrix (eigenvalues in diagonal)
# eigenvalues in main diagonal
sum(diag(var(d2)))
# covariances (off diagonal) all equal to 0 (PCs uncorrelated)
# PC1 with largest variance across states
# Use eigenvectors to define the PC variables.
m1$rotation
               PC1
                         PC2
                                   PC3
                                             PC4
         # Murder
# Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
```

#-----

```
# Rape
       # PC1 = 0.536 Murder + 0.58Assault + 0.28 UrbanPop + 0.543 Rape
# A weighted average of crime rates (almost exclude UrbanPop)
# PC2 = 0.4 Murder - 0.87 UrbanPop
# Weighted average of Urban Pop and Murder
# transformed variables in the principal components space.
# eigenvectors span a new p-dimensional space
# score vectors are the transformed observations in this new space
d2 = m1\dot{S}x
head(d2)
             PC1
                      PC2
                              PC3
                                        PC4
# Alabama
         -0.9756604 1.1220012 -0.43980366 0.154696581
# Alaska
        -1.9305379 1.0624269 2.01950027 -0.434175454
# Arizona
        # Arkansas
         0.1399989 1.1085423 0.11342217 -0.180973554
# Colorado
        tail(m1$x)
                PC1
                        PC2
                                 PC3
                                         PC4
# Vermont
           2.7732561 1.3881944 0.83280797 -0.1434337
          0.0953667  0.1977278  0.01159482  0.2092464
# Virginia
           # Washington
# West Virginia 2.0873931 1.4105263 0.10372163 0.1305831
# Wisconsin
          # Wyoming
           # Variance of the PCs are the eigenvalues
apply(d2,2,var)
     PC1
             PC2
                    PC3
                            PC4
# 2.4802416 0.9897652 0.3565632 0.1734301
# proportion of variance explained (PVE) by each PC
```

variance of PCs aux=m1\$sdev^2 # 2.4802416 0.9897652 0.3565632 0.1734301

sum(aux) # 4 pve=aux/sum(aux) # [1] 0.62006039 0.24744129 0.08914080 0.04335752

m2\$values/4
[1] 0.62006039 0.24744129 0.08914080 0.04335752
each eigenvalue divided by 4

cumsum(pve) # [1] 0.6200604 0.8675017 0.9566425 1.0000000 # 87% variability in the dataset explained by PC1 & PC2

plots
plot(pve, xlab="PC", ylab="% of Variance Explained", ylim=c(0,1),type='l')
grid()

plot(cumsum(pve), xlab="PC", ylab="Cumulative % of Variance Explained", ylim=c(0,1),type='l') grid()

biplots

biplot(m1, scale=0)
biplot(m1, scale=0,cex=0.6)
grid()

mirror image
m1\$rotation=-m1\$rotation
m1\$x=-m1\$x
biplot(m1, scale=0,cex=0.6)
grid()

axis found in 1st two cols of rotation matrix

```
rot=m1$rotation
```

PC1 PC2 PC3 PC4
Murder 0.5358995 -0.4181809 0.3412327 -0.64922780
Assault 0.5831836 -0.1879856 0.2681484 0.74340748
UrbanPop 0.2781909 0.8728062 0.3780158 -0.13387773
Rape 0.5434321 0.1673186 -0.8177779 -0.08902432

Murder axis slope1=rot[1,2]/rot[1,1] slope1 # -0.7803345 abline(0,slope1)

interpret the PCs

states are the observations

states with large values in PC1 have high crime rates

(PC1 weights -col1- in rotation are 0.5359, 0.5831, 0.5434)

California, Nevada, Florida vs North Dakota, Vermont

states with large values in PC2 have high urban areas

(PC2 largest weight -col2- in rotation is 0.8728)

California vs Mississippi

original vs transformed values

d3=data.frame(d1,d2)

head(d3)

#	Murder	Assault Url	oanPop Rape	PC1	PC	2 P	C3	PC4
# Alabama	13.2	236	58 21.2 -0.97	56604 1.	1220012	-0.43980366	0.154696581	L
# Alaska	10.0	263	48 44.5 -1.930	5379 1.0	624269	2.01950027	-0.434175454	
# Arizona	8.1	294	80 31.0 -1.745	4429 -0.73	84595 ().05423025 -0	0.826264240	
# Arkansas	8.8	190	50 19.5 0.13	99989 1.	1085423	0.11342217	7 -0.180973554	ļ
# California	9.0	276	91 40 6 -2 4986	128 -1 5274	4267 0 '	59254100 -0 3	338559240	

7.9	204	78 38.7 -1.499340	7 -0.9776297	1.08400162	0.001450164	1
Murder	Assault Ur	banPop Rape	PC1	PC2	PC3	PC4
2.2	48	32 11.2 2.773	32561 1.388	1944 0.83280	797 -0.143433	37
8.5	156	63 20.7 0.09536	667 0.19772	78 0.0115948	2 0.2092464	4
4.0	145	73 26.2 0.214	7234 -0.96037	39 0.618590	67 -0.2186282	2
5.7	81	39 9.3 2.08739	31 1.41052	63 0.1037216	3 0.130583	1
2.6	53	66 10.8 2.0588	3120 -0.60512	51 -0.13746933	0.1822534	
6.8	161	60 15.6 0.62	31006 0.317	7866 -0.238240	049 -0.164976	59
	Murder 2.2 8.5 4.0 5.7 2.6	Murder Assault Url 2.2 48 8.5 156 4.0 145 5.7 81 2.6 53	Murder Assault UrbanPop Rape 2.2 48 32 11.2 2.773 8.5 156 63 20.7 0.09536 4.0 145 73 26.2 0.214 5.7 81 39 9.3 2.08739 2.6 53 66 10.8 2.0588	Murder Assault UrbanPop Rape PC1 2.2 48 32 11.2 2.7732561 1.3882 8.5 156 63 20.7 0.0953667 0.197722 4.0 145 73 26.2 0.2147234 -0.96037 5.7 81 39 9.3 2.0873931 1.410520 2.6 53 66 10.8 2.0588120 -0.60512	Murder Assault UrbanPop Rape PC1 PC2 2.2 48 32 11.2 2.7732561 1.3881944 0.83280 8.5 156 63 20.7 0.0953667 0.1977278 0.0115948 4.0 145 73 26.2 0.2147234 -0.9603739 0.6185906 5.7 81 39 9.3 2.0873931 1.4105263 0.1037216 2.6 53 66 10.8 2.0588120 -0.6051251 -0.13746933	Murder Assault UrbanPop Rape PC1 PC2 PC3 2.2 48 32 11.2 2.7732561 1.3881944 0.83280797 -0.143433 8.5 156 63 20.7 0.0953667 0.1977278 0.01159482 0.2092464 4.0 145 73 26.2 0.2147234 -0.9603739 0.61859067 -0.2186282 5.7 81 39 9.3 2.0873931 1.4105263 0.10372163 0.130583 2.6 53 66 10.8 2.0588120 -0.6051251 -0.13746933 0.1822534