Started on	Monday, 4 March 2024, 5:16 AM
State	Finished
Completed on	Tuesday, 5 March 2024, 10:22 PM
Time taken	1 day 17 hours
Grade	10.00 out of 10.00 (100 %)

Question ${\bf 1}$

Correct

Mark 1.00 out of 1.00

The dual problem for the SVM can be formulated as

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$
subject to $\lambda_i \leq 0$

$$\max \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$
subject to $\lambda_i \leq 0$

$$\sum_{i=1}^{2M} \lambda_i y_i \geq 0$$

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$

$$\text{subject to } \lambda_i \ge 0$$

$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

$$\max \sum_{i=1}^{2M} \lambda_i + \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$
 subject to $\lambda_i = 0$
$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

Your answer is correct.

The correct answer is:
$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$
 subject to $\lambda_i \geq 0$
$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

How to calculate constant b in the SVM?

- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) 1 = 0$
- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) = 0$
- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) + 1 = 0$
- For any point for which $\lambda_i \neq 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) 1 = 0$

Your answer is correct.

The correct answer is:

For any point for which $\lambda_i \neq 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) - 1 = 0$

The kernel SVM problem can be defined as

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$$
subject to $\lambda_i \ge 0$

$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_j$$
subject to $\lambda_i \ge 0$

$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

$$\max \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$$
subject to $\lambda_i \ge 0$

$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$$
subject to $\lambda_i \leq 0$

$$\sum_{i=1}^{2M} \lambda_i y_i \geq 0$$

Your answer is correct.

The correct answer is:

The correct answer is:
$$\max \sum_{i=1}^{2M} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{2M} \lambda_i \lambda_j y_i y_j K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j)$$
 subject to $\lambda_i \geq 0$
$$\sum_{i=1}^{2M} \lambda_i y_i = 0$$

Question ${f 4}$

Correct

Mark 1.00 out of 1.00

The kernel $K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j) = (\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j)^2$ can be written as $\phi^T(\bar{\mathbf{x}}_i)\phi(\bar{\mathbf{x}}_j)$, where $\phi(\bar{\mathbf{x}}_j)$ is defined as

- $\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{i}$
- $\overline{\mathbf{x}}_{i} \odot \overline{\mathbf{x}}_{i}$
- $\overline{\mathbf{x}}_{i} \otimes \overline{\mathbf{x}}_{i}$
- $(\bar{\mathbf{x}}_{j}^{T} + \bar{\mathbf{x}}_{j})^{T} (\bar{\mathbf{x}}_{i}^{T} + \bar{\mathbf{x}}_{j})$

Your answer is correct.

The correct answer is:

$$\bar{\mathbf{x}}_i \otimes \bar{\mathbf{x}}_i$$

Question **5**

Correct

Mark 1.00 out of 1.00

The Gaussian kernel is defined as

$$\exp\left(\frac{\|\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\|^2}{2\sigma^2}\right)$$

$$\exp\left(-\frac{\left\|\bar{\mathbf{x}}_{i}-\bar{\mathbf{x}}_{j}\right\|^{2}}{2\sigma^{2}}\right)$$

$$\exp\left(-\frac{\|\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\|}{2\sigma^2}\right)$$

$$\|\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\| \exp\left(-\frac{\|\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\|}{2\sigma^2}\right)$$

Your answer is correct.

The correct answer is:

$$\exp\left(-\frac{\left\|\bar{\mathbf{x}}_{i}-\bar{\mathbf{x}}_{j}\right\|^{2}}{2\sigma^{2}}\right)$$

Question ${\bf 6}$

Correct

Mark 1.00 out of 1.00

Consider the graphical model shown

The joint PDF $p(x_1, x_2, x_3, x_4, x_5, x_6)$ for this can be simplified as

- $p(x_1) \times p(x_2) \times p(x_3) \times p(x_4|x_1, x_2, x_3) \times p(x_5|x_1, x_3) \times p(x_6|x_4) \times p(x_7|x_4, x_5)$
- $p(x_1) \times p(x_1|x_2) \times p(x_1|x_3) \times p(x_4|x_1,x_2,x_3) \times p(x_5|x_1,x_3) \times p(x_6|x_4) \times p(x_7|x_4,x_5)$
- $p(x_1) \times p(x_1|x_2) \times p(x_1, x_2|x_3) \times p(x_1, x_2, x_3|x_4) \times p(x_1, x_2, x_3, x_4|x_5) \times p(x_1, x_2, x_3, x_4, x_5|x_6) \times p(x_1, x_2, x_3, x_4, x_5, x_6|x_7)$

Your answer is correct.

The correct answer is:

 $p(x_1) \times p(x_2) \times p(x_3) \times p(x_4|x_1,x_2,x_3) \times p(x_5|x_1,\,x_3) \times p(x_6|x_4) \times p(x_7|x_4,x_5)$

Question **7**

Correct

Mark 1.00 out of 1.00

The joint PDF p(D,I,G,L,S) for the model below can be evaluated as

- $\bigcirc p(D) \times p(I) \times p(G|D,I) \times p(L|G) \times p(S|I)$
- $\bigcirc \quad p(D) \times p(I|D) \times p(D,I|G) \times p(G|L) \times p(I|S)$
- $\bigcirc \quad p(D) \times p(I) \times p(G) \times p(S) \times p(L)$

Your answer is correct.

The correct answer is:

 $p(D) \times p(I) \times p(G|D,I) \times p(L|G) \times p(S|I)$

Question **8**Correct

Mark 1.00 out of 1.00

Consider the model below

 $p(d^0, i^1, g^1, s^1, l^1)$ can be evaluated as approximately

- 0.27
- 0.05
- 0.12
- 0.45

Your answer is correct.

The correct answer is:

0.12

Question ${\bf 9}$

Correct

Mark 1.00 out of 1.00

Consider the model

The quantity $p(l^1 | i^0, d^0)$ is an example of

- Evidential Reasoning
- Intercausal Reasoning
- Not possible to evaluate
- Causal reasoning

Your answer is correct.

The correct answer is: Causal reasoning

Question 10	
Correct	
Mark 1.00 out of 1.00	
The quantity $p(i^1 g^2, d^1)$ is an example of	
Evidential Reasoning	
Intercausal Reasoning	✓
Not possible to evaluate	
Causal reasoning	
Your answer is correct.	
The correct answer is:	
Intercausal Reasoning	