

FINITE ELEMENTS SOLUTION OF THE FIBER-MATRIX INTERFACE CRACK: EFFECTS OF MESH REFINEMENT AND DOMAIN SIZE

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science. Luleå University of Technology. Luleå. Sweden

DocMASE Summer School, Sarrebrücken (DE) - Nancy (FR), September 11 - 15, 2017

Outline

Characterization of Fracture in FRPC Laminates

The Fiber-Matrix Interface Problem in Fiber Reinforced Polymer Laminates

Effects of Mesh Refinement & Domain Size

Conclusions & Outlook

CHARACTERIZATION OF FRACTURE IN FRPC

Damage Onset and Propagation in FRPC Laminates

(b) By Prof. Dr. E. K. Gamstedt, KTH, SE.

A visual definition of intralaminar transverse cracking.

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna² DocMASE Summer S Sarrebrücken (DE) ← Nancy (🖽) September 11 - 15, 2017

Characterization of the Fracture Process

→ Energy Release Rate

$$G_m = G_m(p_1, \dots, p_i, \dots, p_n)$$
 where $G = \frac{\partial W}{\partial A} - \left(\frac{\partial U}{\partial A} + \frac{\partial E_k}{\partial A}\right)$

→ Stress Intensity Factor

$$K_m = K_m(p_1, \dots, p_i, \dots, p_n)$$
 where $\sigma_m \sim K_m \frac{\alpha}{(x-a)^{\beta}}$ $\alpha, \beta > 0$

→ J-Integral

$$J = J\left(p_{1}, \ldots, p_{i}, \ldots, p_{n}\right) \quad \text{where} \quad J = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}} \left(W\left(\Gamma\right) n_{i} - n_{j} \sigma_{jk} \frac{\partial u_{k}\left(\Gamma, x_{i}\right)}{\partial x_{i}}\right) d\Gamma$$

→ Crack Opening & Shear Displacement

$$COD = COD(p_1, \dots, p_i, \dots, p_n)$$
 and $CSD = CSD(p_1, \dots, p_i, \dots, p_n)$

 $p_i \in \{\text{geometry}, \text{materials}, \text{boundary conditions}, \text{loading mode}, \text{scale}\}\$ $m \in \{I, II, III, I/III, I/III\}$

Evaluation of Fracture Parameters

- → Analytical
 - √ Closed form
 - Every material scale can be studied
- Available only for particular configurations
- → Experimental
 - √ Complex geometries can be studied
 - Not every material scale is accessible
- Numerical
 - √ Complex geometries can be studied
 - √ Every material can be studied
 - Discretization
 - X Finite domains

Numerical Estimation of Energy Release Rates

→ Virtual Crack Closure Technique (VCCT) → J-Integral

$$G_{I} = \frac{Z_{C} \Delta w_{C}}{2B \Delta a}$$
 $G_{II} = \frac{X_{C} \Delta u_{C}}{2B \Delta a}$

$$J_{i}=\lim_{\varepsilon\rightarrow0}\int_{\Gamma_{\varepsilon}}\left(W\left(\Gamma\right)n_{i}-n_{j}\sigma_{jk}\frac{\partial u_{k}\left(\Gamma,x_{i}\right)}{\partial x_{i}}\right)d\Gamma$$

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna² DocMASE Summer School, Sarrebrücken (DE) ← Nancy∢(ER) ← September 11 - 15, 2017

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions From macro to micro The Fiber-Matrix Interface Crack Problem FEM Model of the Fiber-Matrix Interface Crack

THE FIBER-MATRIX INTERFACE PROBLEM IN FRPC

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size From macro to micro The Fiber-Matrix Interface Crack Problem FEM Model of the Fiber-Matrix Interface Crack

From macro to micro

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions From macro to micro The Fiber-Matrix Interface Crack Problem FEM Model of the Fiber-Matrix Interface Crack

The Fiber-Matrix Interface Crack Problem

	Analytical	Numerical
Method	Analytical (complex) functions	FEM
Domain Type	Continuous Infinite	Discrete Finite
Natural variable	Stress (stress function)	Displacement field
Conjugate variable	Displacement	Stress
Dirichlet BC	Stress	Displacement
Loading process	Force-controlled	Displacement-
		controlled

DocMASE Summer School, Sarrebrücken (DE) ← Nancy (任用) ← . September 11 - 15, 2017

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions From macro to micro The Fiber-Matrix Interface Crack Problem FEM Model of the Fiber-Matrix Interface Crack

FEM Model of the Fiber-Matrix Interface Crack

- 2D space
- Linear elastic materials
- Displacement-controlled
- Dirichlet-type BC
- → LEFM
- Contact interaction
- Bi-linear quadrilateral elements

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions Domain size effect on G₀ Mesh refinement effect on mode ratio

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions Domain size effect on G_0 Mesh refinement effect on mode ratio

$$G_0$$
 for $Vf_f=0.001$, $\frac{L}{R_f}\sim 28$, $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-v^2}\varepsilon$.

Characterization of Fracture in FRPC The Fiber-Matrix Interface Problem in FRPC Mesh & Domain Size Conclusions Domain size effect on G_0 Mesh refinement effect on mode ratio

$$G_0$$
 for $Vf_f=0.000079$, $rac{L}{R_f}\sim 100$, $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-v^2}\varepsilon$.

Characterization of Fracture in FRPC Mesh & Domain Size Conclusions The Fiber-Matrix Interface Domain size effect on G_0 Mesh refinement effect on mode ratio

$$G_l$$
, VCCT, $Vf_f = 0.000079$, $\frac{L}{R_f} \sim 100$

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Characterization of Fracture in FRPC Mesh & Domain Size Conclusions Domain size effect on G_0 Mesh refinement effect on mode ratio

$$G_{II}$$
, VCCT, $Vf_f = 0.000079$, $\frac{L}{R_t} \sim 100$

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Characterization of Fracture in FRPC Mesh & Domain Size Conclusions Domain size effect on G_0 Mesh refinement effect on mode ratio

$$G_{TOT}$$
, VCCT, $Vf_f = 0.000079$, $\frac{L}{R_f} \sim 100$

Fading from red to blue for decreasing size of elements at the interface, VCCT from FEM results; in black BEM results.

Conclusions

Conclusions & Outlook

Conclusions

- → Domain size is a fundamental parameter in determining the RVE behaviour between finite and efffectively infinite size
- → Mesh refinement affects directly mode ratio, increasing mode I with respect to mode II

Outlook

- → Analyze the dependence on δ for $\frac{L}{R_f} = 200, 300, ...$
- \rightarrow Analyze the dependence on $\frac{L}{R_{\ell}}$ for constant δ
- → Study finite size effects

