EVALUASI TENGAH SEMESTER GASAL 2024/2025 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Aljabar Linear

Hari, Tanggal : Kamis, 17 Oktober 2024 Waktu / Sifat : 100 menit / Tertutup

Kelas, Dosen : A. Prof. Dr. Subiono, M.Sc.

B. Dr. Dian Winda Setyawati, S.Si., M.Si.

C. Soleha, S.Si., M.Si.

D. Muhammad Syifaul Mufid, S.Si., M.Si., D.Phil.

Q. Dr.mont. Kistosil Fahim, S.Si., M.Si.

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

Kerjakan 4 dari 5 soal berikut:

- 1. Diberikan bilangan asli n dan ruang vektor $\mathbb{P}_n(\mathbb{R}) = \{a_0 + a_1 x + \dots + a_n x^n \mid a_0, a_1, \dots, a_n \in \mathbb{R}\}$ atas lapangan \mathbb{R} . Apakah himpunan $S_k = \{p(x) \in \mathbb{P}_n(\mathbb{R}) \mid p(k) = 0\}$ untuk sebarang $k \in \mathbb{R}$ merupakan ruang bagian dari $\mathbb{P}_n(\mathbb{R})$? Jelaskan jawaban anda.
- 2. Diberikan $H = \{v_1, v_2\} \subseteq \mathbb{R}^3$ dengan $v_1 = [2 -1 \ 1]^T$ dan $v_2 = [0 \ 2 \ 0]^T$.
 - (a) Tunjukkan bahwa v_1 dan v_2 bebas linier.
 - (b) Jelaskan mengapa H tidak membangun \mathbb{R}^3 .
 - (c) Perluas H sehingga menjadi basis untuk \mathbb{R}^3 . Jelaskan!
- 3. Misal $X = \text{Span}\{x, x^3\}$ yang merupakan ruang bagian dari $P_4(\mathbb{R})$. Diketahui transformasi $T: P_3(\mathbb{R}) \to P_4(\mathbb{R})$ yang didefinisikan oleh

$$T(b_0 + b_1 x + b_2 x^2 + b_3 x^3) = b_0 x + \frac{b_1}{2} x^2 + \frac{b_2}{3} x^3 + \frac{b_3}{4} x^4$$
, untuk $b_0, b_1, b_2, b_3 \in \mathbb{R}$.

- (a) Tunjukkan bahwa T transformasi linier.
- (b) Tunjukkan bahwa $T^{\leftarrow}(X) := \{q(x) \in P_3(\mathbb{R}) : T(q(x)) \in X\}$ merupakan ruang bagian dari $P_3(\mathbb{R})$ dan dapatkan dimensinya.
- 4. Misal transformasi linier $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ yang didefinisikan

$$T(p(x)) = xp(x) + \frac{d(p(x))}{dx}$$
, untuk setiap $p(x) \in P_2(\mathbb{R})$.

Diberikan $B = \{1, 2+x, x+3x^2\}$ basis untuk $P_2(\mathbb{R})$ dan $B' = \{1, 2+x, 1+x^2, x^3\}$ basis untuk $P_3(\mathbb{R})$.

- (a) Tentukan matriks representasi dari T relatif terhadap basis B dan B'.
- (b) Dapatkan $[T(q(x))]_{B'}$ jika $[q(x)]_B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

- (c) Dari soal (b), dapatkan T(q(x)).
- 5. Diberikan matriks

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}.$$

- (a) Dapatkan semua nilai eigen dan vektor eigen matriks A.
- (b) Apakah matriks A bisa didiagonalkan? Jelaskan.

- 1. Misal k sebarang bilangan real yang tetap. Ambil sebarang $p(x), q(x) \in S_k$ dan $a, b \in \mathbb{R}$. Akan dibuktikan bahwa $h(x) = ap(x) + bq(x) \in S_k$. Perhatikan bahwa karena $p(x), q(x) \in S_k$ didapat bahwa $p(k), q(k) \in P_n(\mathbb{R})$ dan p(k) = q(k) = 0. Oleh karena itu, $ap(x) + bq(x) \in P_n(\mathbb{R})$ dan h(k) = ap(k) + bq(k) = a(0) + b(0) = 0. Hal ini menunjukkan bahwa $h(x) \in S_k$. Sehingga S_k merupakan ruang bagian dari $P_n(\mathbb{R})$.
- 2. (a) Misal α dan β adalah solusi dari persamaan

$$\alpha \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh

$$2\alpha = 0$$
$$-\alpha + 2\beta = 0$$
$$\alpha = 0.$$

Dari sistem persamaan di atas, didapat hanya satu solusi yaitu $\alpha = 0$ dan $\beta = 0$. Oleh karena itu v_1 dan v_2 bebas linier.

(b) Karena terdapat anggota dari \mathbb{R}^3 yang tidak bisa dituliskan sebagai kombinasi linier dari anggota-anggota H. Misalnya, $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ tidak bisa dituliskan sebagai kombinasi linier dari anggota-anggota H, yakni tidak ada solusi untuk persamaan:

$$\alpha \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Hal ini bisa dilihat dari sistem persamaan yang terbentuk yaitu

$$2\alpha = 1$$
$$-\alpha + 2\beta = 0$$
$$\alpha = 1.$$

Perhatikan persamaan pertama dan ketiga tidak konsisten. Sehingga bisa disimpulkan sistem persamaan tersebut tidak punya solusi.

- (c) Perhatikan bahwa dua vektor di H bebas linier. Amati pula bahwa \mathbb{R}^3 berdimensi tiga, sehingga hanya perlu menambahkan satu vektor v pada H agar H merupakan basis dari \mathbb{R}^3 . Di sini vektor v haruslah bukan kombinasi linier dari H. Dari jawaban (b), bisa dipilih $v = [1 \ 0 \ 0]^T \in \mathbb{R}^3$.
- 3. (a) Terlebih dahulu dibuktikan T transformasi linier. Misal $a_1, a_2 \in \mathbb{R}$ dan $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$, $q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3 \in P_3(\mathbb{R})$ dengan $p_i, q_i \in \mathbb{R}$ Untuk i = 0, 1, 2, 3. Didapatkan

$$T(\alpha_{1}p(x) + \alpha_{2}q(x)) = T(\alpha_{1}[p_{0} + p_{1}x + p_{2}x^{2} + p_{3}x^{3}] + \alpha_{2}[q_{0} + q_{1}x + q_{2}x^{2} + q_{3}x^{3}])$$

$$= T([\alpha_{1}p_{0} + \alpha_{2}q_{0}] + [\alpha_{1}p_{1} + \alpha_{2}q_{1}]x + [\alpha_{1}p_{2} + \alpha_{2}q_{2}]x^{2} + [\alpha_{1}p_{3} + \alpha_{2}q_{3}]x^{3})$$

$$= [\alpha_{1}p_{0} + \alpha_{2}q_{0}]x + \frac{\alpha_{1}p_{1} + \alpha_{2}q_{1}}{2}x^{2} + \frac{\alpha_{1}p_{2} + \alpha_{2}q_{2}}{3}x^{3} + \frac{\alpha_{1}p_{3} + \alpha_{2}q_{3}}{4}x^{4}$$

$$= \alpha_{1}\left[p_{0}x + \frac{p_{1}}{2}x^{2} + \frac{p_{2}}{3}x^{3} + \frac{p_{3}}{4}x^{4}\right] + \alpha_{2}\left[q_{0}x + \frac{q_{1}}{2}x^{2} + \frac{q_{2}}{3}x^{3} + \frac{q_{3}}{4}x^{4}\right]$$

$$= \alpha_{1}T(p) + \alpha_{2}T(q).$$

(b) Misal $\alpha_1, \alpha_2 \in \mathbb{R} \operatorname{dan} p(x), q(x) \in T^{-1}(X)$ yakni $p(x), q(x) \in P_3(\mathbb{R}) \operatorname{dan} T(p(x)), T(q(x)) \in X$.

Perhatikan bahwa $\alpha_1 p(x) + \alpha_2 q(x) \in P_3(\mathbb{R})$ dan karena T transformasi linier diperoleh $T(\alpha_1 p(x) + \alpha_2 q(x)) = \alpha_1 T(p(x)) + \alpha_2 T(q(x))$.

Dengan menggunakan fakta bahwa $T(p(x)), T(q(x)) \in X$ dan X ruang bagian dari $P_4(\mathbb{R})$, didapatkan $T(\alpha_1 p(x) + \alpha_2 q(x)) = \alpha_1 T(p(x)) + \alpha_2 T(q(x)) \in X$ yang artinya $\alpha_1 p(x) + \alpha_2 q(x) \in T^{-1}(X)$. Sekarang diuraikan bahwa

$$T^{-1}(X) = \{q(x) \in P_3(\mathbb{R}) : T(q(x)) \in X\}$$

$$= \{q_0 + q_1x + q_2x^2 + q_3x^3 : q_0, q_1, q_2, q_3 \in \mathbb{R}, T(q_0 + q_1x + q_2x^2 + q_3x^3) \in X\}$$

$$= \{q_0 + q_1x + q_2x^2 + q_3x^3 : q_0, q_1, q_2, q_3 \in \mathbb{R}, q_0x + \frac{q_1}{2}x^2 + \frac{q_2}{3}x^3 + \frac{q_3}{4}x^4 \in X\}$$

$$= \{q_0 + q_2x^2 : q_0, q_2 \in \mathbb{R}\}$$

$$= \operatorname{Span}\{1, x^2\}.$$

Karena 1 dan x^2 bebas linier, didapatkan dimensi dari $T^{-1}(X)$ adalah 2.

4. (a) • Langkah 1: Terapkan transformasi T pada elemen basis B. Perlu dihitung transformasi T untuk setiap elemen basis dari $P_2(\mathbb{R})$.

i.
$$p(x) = 1$$
:

$$T(1) = x \cdot 1 + \frac{d}{dx}(1) = x + 0 = x.$$

Jadi, T(1) = x.

ii. p(x) = 2 + x:

$$T(2+x) = x(2+x) + \frac{d}{dx}(2+x) = 2x + x^2 + 1 = 2x + x^2 + 1.$$

Jadi, $T(2+x) = x^2 + 2x + 1$.

iii. $p(x) = 3x^2$:

$$T(x+3x^2) = x(3x^2) + \frac{d}{dx}(3x^2) = x^3 + 3x^2 + (1+3x^2)' = 3x^3 + x^2 + 6x + 1?$$

(koreksi sesuai konteks: untuk $p(x) = 3x^2$, maka

$$T(3x^2) = x(3x^2) + \frac{d}{dx}(3x^2) = 3x^3 + 6x.$$

Jadi,
$$T(3x^2) = 3x^3 + 6x$$
.)

- Langkah 2: Ekspresikan hasil transformasi dalam basis B'. Sekarang diekspresikan hasil T(p(x)) dalam basis B'.
 - i. T(1) = x dalam basis B':

$$T(1) = 0 \cdot 1 + 1 \cdot (2+x) + 0 \cdot (1+x^2) + 0 \cdot x^3.$$

Didapatkan:

$$[T(1)]_{B'} = \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}.$$

2.
$$T(2+x) = x^2 + 2x + 1$$
 dalam basis B':

$$T(2+x) = -4 \cdot 1 + 2 \cdot (2+x) + 1 \cdot (1+x^2) + 0 \cdot x^3.$$

Diperoleh:

$$[T(2+x)]_{B'} = \begin{pmatrix} -4\\2\\1\\0 \end{pmatrix}.$$

3. $T(x+3x^2) = 3x^3 + x^2 + 6x + 1$ dalam basis B':

$$T(x+3x^2) = -12 \cdot 1 + 6 \cdot (2+x) + 1 \cdot (1+x^2) + 3 \cdot x^3.$$

Diperoleh:

$$[T(x+3x^2)]_{B'} = \begin{pmatrix} -12\\6\\1\\3 \end{pmatrix}.$$

• Maka matriks representasi dari T relatif terhadap B dan B' adalah:

$$[T]_{B \to B'} = \begin{pmatrix} -2 & -4 & -12 \\ 1 & 2 & 6 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

(b) Sudah didapat matriks representasi T. Sekarang, hitung $[T(q(x))]_{B'}$ dengan mengalikan matriks representasi dengan vektor $[q(x)]_B$:

$$[T(q(x))]_{B'} = [T]_{B \to B'} \begin{pmatrix} 1\\2\\3 \end{pmatrix}.$$

Hitung perkalian matriks:

$$[T(q(x))]_{B'} = \begin{pmatrix} -2 & -4 & -12 \\ 1 & 2 & 6 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \cdot 1 + (-4) \cdot 2 + (-12) \cdot 3 \\ 1 \cdot 1 + 2 \cdot 2 + 6 \cdot 3 \\ 0 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 \\ 0 \cdot 1 + 0 \cdot 2 + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} -46 \\ 23 \\ 5 \\ 9 \end{pmatrix}.$$

Jadi,
$$[T(q(x))]_{B'} = \begin{pmatrix} -46\\23\\5\\9 \end{pmatrix}$$
.

(c) Dari hasil

$$[T(q(x))]_{B'} = \begin{pmatrix} -46\\23\\5\\9 \end{pmatrix},$$

diketahui bahwa T(q(x)) adalah kombinasi linier dari elemen-elemen basis B':

$$T(q(x)) = -46 \cdot 1 + 23 \cdot (2+x) + 5 \cdot (1+x^2) + 9 \cdot x^3 = 9x^3 + 5x^2 + 23x + 5.$$

Jadi,

$$T(q(x)) = 9x^3 + 5x^2 + 23x + 5.$$

5. (a) Nilai eigen didapatkan dengan menyelesaikan persamaan

$$\det(A - \lambda I) = 0$$

dan diperoleh

$$(\lambda - 1)(\lambda - 2)^2 = 0. \tag{1}$$

Sehingga nilai eigen matriks A adalah $\lambda_1 = 1$ dan $\lambda_2 = 2$. Selanjutnya, dengan menyelesaikan persamaan $Av = \lambda v$ didapatkan vektor eigen dari matriks A terhadap nilai eigen $\lambda_1 = 1$:

$$\begin{pmatrix} -2\\1\\1 \end{pmatrix}$$

dan dengan menyelesaikan persamaan $Av = \lambda v$ didapatkan vektor eigen dari matriks A terhadap nilai eigen $\lambda_2 = 2$:

$$\begin{pmatrix} -1\\0\\1 \end{pmatrix} \quad \text{dan} \quad \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$$

(b) Dari hasil (a) didapatkan multiplikitas aljabar dari nilai eigen λ_1 dan λ_2 berturut-turut adalah 1 dan 2. Demikian juga, menghasilkan nilai yang sama untuk multiplikitas geometri. Sehingga matriks A bisa diagonalkan.