Computational Linguistics & Resources from Social Media

October 13th, 2022

Manuela Sanguinetti

Department of Mathematics and Computer Science, University of Cagliari

Overview

1. NLP & Social Media

2. Challenges & Issues in Resource Development

3. Guidelines for UGC Data

4. Hands-on Session

Overview

1. NLP & Social Media

2. Challenges & Issues in Resource Development

3. Guidelines for UGC Data

4. Hands-on Session

NLP & Social Media

Social platforms as spaces for discussion on a variety of topics:

Provide new opportunities for influencing public opinion and for different voices to be heard

Raise questions about the legality or veracity of the content being broadcast

- Natural Language Processing as a powerful means to identify/analyze all these aspects
- CHALLENGE: the treatment (on different levels and for different purposes) of the so-called **User-Generated Content** (UGC), i.e., any Web content that comes in the form of images, videos, social media posts, reviews, etc.

Examples

SENTIMENT

SENTIMENT

STANCE

(source)

EMOTION

SENTIMENT

ASPECT

(source)

STANCE

EMOTION

ABUSIVE LANGUAGE

SENTIMENT

ASPECT

STANCE

MIS/DISINFORMATION

(source)

EMOTION

SENTIMENT

ASPECT

STANCE

(source)

Resources for Italian

ABUSIVE LANGUAGE

HUMOR/IRONY/SARCASM

sentipolc@evalita 2014

ASPECT

SENTIMENT

•

sentipolc@evalita 2016

STANCE

sentipolc@evalita 2014

+
sentipolc@evalita 2016
+
ironita@evalita 2018

ABUSIVE LANGUAGE

HUMOR/IRONY/SARCASM

sentipolc@evalita 2014

ASPECT

SENTIMENT

••••

sentipolc@evalita 2016

STANCE

sentipolc@evalita 2014

+
sentipolc@evalita 2016
+
ironita@evalita 2018

ABUSIVE LANGUAGE

HUMOR/IRONY/SARCASM

sentipolc@evalita 2014

ASPECT

SENTIMENT

ABSITA

STANCE

(2018)

sentipolc@evalita 2016

sentipolc@evalita 2014

+
sentipolc@evalita 2016
+
ironita@evalita 2018

ABUSIVE LANGUAGE

HUMOR/IRONY/SARCASM

sentipolc@evalita 2014

ASPECT

SENTIMENT

sentipolc@evalita 2016

ABSITA

STANCE

(2018)

SardiStance

(2020)

haspeede2@evalita 2020

STEREOTYPES

ASPECT

SENTIMENT

STANCE

Universal Dependencies

п	Italian	8	858K	♂ < ®®		IE, Romance
Italian	treebanks					
-	VIT	279K	OF)	6	© 0 0 0 sv nc sa	***
-	ParTUT	55K	OF)	≮ ■W	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****
-	Valico	6K	OE	B		****
-	MarkIT	40K	OE	B	© <u>0</u>	****
-	PUD	23K	OE	■W	© 0 0	****
-	ISDT	298K	OFO	★ ■W	© 0 0 0 sv mc 34	****
-	TWITTIRO	29K	OF)	<i>y</i>		****
-	PoSTWITA	124K	OE	<i>w</i>	© O O	****

Universal Dependencies

п	Italian	8	858K	€ < © M ■	IE, Romance		
Italian	Italian treebanks						
-	VIT	279K	©Ē	6			
-	ParTUT	55K	(L)(E)	★ ■W			
-	Valico	6K	O(E)	B	© <u>♥ ◎</u> ★★★★★		
-	MarkIT	40K	(L)(E)	B			
-	PUD	23K	(L)(E)	■W			
-	ISDT	298K		★ ■W	@080		
-	TWITTIRO	29K	OE	20	Irony + syntax		
-	PoSTWITA	124K	OF)	<i>y</i>			

Universal Dependencies

	Italian	8	858K	Ø♦®®	IE, Romance				
Italian	Italian treebanks								
-	VIT	279K	Œ						
-	ParTUT	55K	(L)(F)	∢ ■W					
-	Valico	6K	(L)(F)		© ♥ ® × ★★★★				
-	MarkIT	40K	(L)(F)		© ① ***				
-	PUD	23K	(L)(F)	■W	© • • • • • • • • • • • • • • • • • • •				
-	ISDT	298K	(LEO	★ ■W					
-	TWITTIRO	29K	(L)(F)	<i>™</i>	@ 0 0	Partial overlap w/			
-	PoSTWITA	124K	©Ē	20		-			
						Twittiro			

Overview

1. NLP & Social Media

2. Challenges & Issues in Resource Development

3. Guidelines for UGC Data

4. Hands-on Session

Challenges & Issues in Resource Development

Subjectivity

- The usual annotation methodologies work well for traditionally relevant tasks in NLP, that typically rely on GOLD STANDARDS (i.e., "the **truth** against which compare future predictions on the same set of instances")
- Critical issues are surfacing when applying old techniques to the study of highly subjective phenomena such as irony and sarcasm, or abusive and offensive language

(from Basile, 2021)

STEREOTYPE

Senza biglietto: nigeriana prende a testate e pugni capotreno

SARCASM

"I profughi che non arrivano più da un anno e mezzo" La gente deve essere proprio cretina per votare Salvini allora!

HATE SPEECH

Milano, si difendono da immigrati: comune li multa a 15 mila euro.. guardate il – VIDEO Commenta la #Mussolini VERGOGNAAAAA

Issues and Recommendations

- •Low Inter-Annotator Agreement (usually seen as an upper bound of computer performance on the same task)
- •Failure in recognizing «gold» labels as real-world objects for which there may not be a single truth
- Aggregation and harmonization destroy any personal opinion that comes as a result of the different cultural and demographic background of the annotators

ONGOING DISCUSSION (see the Perspectivist Data Manifesto):

- •Create and distribute **non-aggregated** datasets
- Avoid evaluating models against aggregated gold standards

Biases

By "predictive bias," we refer to a situation in which a [predictive model] is used to predict a specific criterion for a particular population, and is found to give systematically different predictions for subgroups of this population who are in fact identical on that specific criterion

(from Shah et al, 2020)

Figure 1: The Predictive Bias Framework for NLP: Depiction of where bias may originate within a standard supervised NLP pipeline. Evidence of bias is seen in \hat{y} via outcome disparity and error disparity.

(from Shah et al, 2020)

Figure 1: The Predictive Bias Framework for NLP: Depiction of where bias may originate within a standard supervised NLP pipeline. Evidence of bias is seen in \hat{y} via outcome disparity and error disparity.

Figure 1: The Predictive Bias Framework for NLP: Depiction of where bias may originate within a standard supervised NLP pipeline. Evidence of bias is seen in \hat{y} via outcome disparity and error disparity.

Figure 1: The Predictive Bias Framework for NLP: Depiction of where bias may originate within a standard supervised NLP pipeline. Evidence of bias is seen in \hat{y} via outcome disparity and error disparity.

WHY?

- non-representative group of annotators
- lack of domain expertise
- preconceived notions and stereotypes held by the annotators

Figure 1: The Predictive Bias Framework for NLP: Depiction of where bias may originate within a standard supervised NLP pipeline. Evidence of bias is seen in \hat{y} via outcome disparity and error disparity.

EXAMPLE:

Disproportionate
 association between
 words describing
 queer identities and
 text labeled as "toxic"
 in a dataset for
 toxicity classification

Implications

ENVISAGED SCENARIO: Online for amay use NLP model for abusive language detection to censor undesirable language and promote civil discourse. Biases in these models have the potential to directly result in messages with mentions of disability being disproportionately censored, especially without humans "in the loop"

RESULT:

- •Negative impact on people with disabilities and their opportunity to participate equally in online fora
- •Readers and searchers of online fora might see fewer mentions of disability, exacerbating the already reduced visibility of disability in the public discourse

(from <u>Hutchinson et al. 2020</u>)

Recommendations

- Adopt possible countermeasures to mitigate biases (in both model and data).
 Among these:
 - Model induction from annotated data that take inter-annotator agreement into consideration (label bias)
 - Thorough documentation of the whole pipeline of dataset creation (see next slides)

Documentation

Increased need to get well-documented datasets (specially, bot not only, to minimize risks from biased data)

BUT

- Not often the case
- No standard guidelines

Datasheets for Datasets

Timnit Gebru ¹ Jamie Morgenstern ² Briana Vecchione ³ Jennifer Wortman Vaughan ¹ Hanna Wallach ¹ Hal Daumé III ¹⁴ Kate Crawford ¹⁵

Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science

Emily M. Bender
Department of Linguistics
University of Washington
ebender@uw.edu

Batya Friedman
The Information School
University of Washington
batya@uw.edu

Two well-known proposals

Recommendations

From Bender & Friedman, 2018:

- Curation rationale
- Language variety
- Speaker demographic
- Annotator(s) demographic
- Text characteristics
- Recording quality (for audio/video)
- Other
- Provenance appendix (for datasets built out of existing datasets)

Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science

Emily M. Bender
Department of Linguistics
University of Washington
ebender@uw.edu

Batya Friedman
The Information School
University of Washington
batya@uw.edu

Recommendations

From Bender & Friedman, 2018:

Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science

Emily M. Bender

Department of Linguistics

University of Washington

ebender@uw.edu

- Curation rationale PRIVACY? SELECTION BIAS?
- Language variety SELECTION BIAS?
- Speaker demographic SELECTION BIAS?
- Annotator(s) demographic LABEL BIAS?
- Text characteristics SELECTION BIAS?
- Recording quality (for audio/video)
- Other
- Provenance appendix (for datasets built out of existing datasets)

Batya Friedman

The Information School University of Washington batya@uw.edu

Privacy

- Due to the implications that the release of the data may have on the privacy of people, rules for their protection must be laid down
- These rules have been defined:
 - By the GDPR (within the EU context)
 - By the Terms of Service of the Web platforms

They provide legal bases for the collection-distribution-use of the data

Recommendations

Principle of data minimization (no more data than necessary) implemented through:

- Pseudonymization hide personal data (e.g., user handle)
- Encryption
 — use password/control data access

Trade-off between legal compliance and research activity (providing access to data and maintain the reproducibility of the experiments)

(from Rangel and Rosso, 2019)

Linguistic Treatment of UGC Data

UGC is **noisy**!

Recommendations

See next part of the talk...

Overview

1. NLP & Social Media

2. Challenges & Issues in Resource Development

3. Guidelines for UGC Data

4. Hands-on Session

Guidelines for UGC Data

UGC is **noisy**!

- Spelling mistakes & typos
- Colloquialisms/slang/internet jargon
- Abbreviations & spelling variations
- Pictograms
- Non-standard syntactic constructions & ungrammatical text
- Code-mixing
- Embedded metadata (hashtags, URLs, mentions, ...)

• ...

A (tentative) Taxonomy

chiiii?!??! (whooo?!??!)

k1 Mensch (no 1)

UGC Treebanks

• A large number of UGC treebanks developed in the last decade

Name	me Reference		Language
FSMB	SMB Seddah et al. (2012)		FR
Narabizi (NBZ)	Seddah et al. (2020)	Newspaper fora	DZ/FR
EWT	Silveira et al. (2014)	various	EN
LAS-DisFo (LDF)	Taulé et al. (2015)	discussion fora	ES
MoNoise (MNo)	Van Der Goot and van Noord (2018)	Twitter	EN
STB	Wang et al. (2017)	discussion fora	SgE
CWT	Wang et al. (2014)	Twitter, Sina Weibo	ZH
GUM	Zeldes (2017)	various	EN
HSE	n.a.	various	BE
OOD	n.a.	various	FI
TwittIrish (TwIr)	n.a. (Publication forthcoming)	Twitter	GA
Cadhan (Cdh)	n.a.	various	GV
Taiga	n.a.	various	RU
IU	n.a.	various	UK

Name	Reference	Source	Language
ATDT	Albogamy and Ramsay (2017)	Twitter	AR
Hi-En-CS	Bhat et al. (2018)	Twitter	HI/EN
TwitterAAE (TAAE)	Blodgett et al. (2018)	Twitter	AAE, MAE
TWITTIRÒ-UD (TWRO)	Cignarella et al. (2019)	Twitter	IT
DWT	Daiber and Van Der Goot (2016)	Twitter	EN
W2.0	Foster et al. (2011)	Twitter, sport fora	EN
Foreebank (Frb)	Kaljahi et al. (2015)	technical fora	EN, FR
Tweebank (Twb)	Kong et al. (2014)	Twitter	EN
Tweebank2 (Twb2)	Liu et al. (2018)	Twitter	EN
TDT	Luotolahti et al. (2015)	various	FI
xUGC	Martínez Alonso et al. (2016)	various	FR
Estonian Web Treebank (EtWT)	Martínez Alonso et al. (2016)	various	ET
ITU	Pamay et al. (2015)	n.a.	TR
WDC	Read et al. (2012b)	various	EN
tweeDe	Rehbein et al. (2019)	Twitter	DE
PoSTWITA-UD (Pst)	Sanguinetti et al. (2018)	Twitter	IT

• Most of them are UD-based, but still adopt different strategies

Name	Reference	Source	Language
FSMB	Seddah et al. (2012)	Twitter, Facebook discussions fora	FR
Narabizi (NBZ)	Seddah et al. (2020)	Newspaper fora	DZ/FR
EWT	Silveira et al. (2014)	various	EN
LAS-DisFo (LDF)	Taulé et al. (2015)	discussion fora	ES
MoNoise (MNo)	Van Der Goot and van Noord (2018)	Twitter	EN
STB	Wang et al. (2017)	discussion fora	SgE
CWT	Wang et al. (2014)	Twitter, Sina Weibo	ZH
GUM	Zeldes (2017)	various	EN
HSE	n.a.	various	BE
OOD	n.a.	various	FI
TwittIrish (TwIr)	n.a. (Publication forthcoming)	Twitter	GA
Cadhan (Cdh)	n.a.	various	GV
Taiga	n.a.	various	RU
IU	n.a.	various	UK

AR HI/EN AAE, MAE IT EN
AAE, MAE IT
MAE IT
EN
EN
EN, FR
EN
EN
FI
FR
ET
TR
EN
DE
IT

Towards a Unified Representation

• A UD-based annotation framework that recommends stategies and guidelines for each linguistic level taken into account in the Universal Dependencies:

LEVEL	STRATEGY
TOKEN	MERGED vs SPLIT
LEMMA	NORMALIZED vs AS-IS
UPOS – FEATS – DEPREL	INTEGRATED vs STANDALONE

General Principles

• Strike a balance between feasibility and consistency

LEVEL	STRATEGY
TOKEN	MERGED vs SPLIT
LEMMA	NORMALIZED vs AS-IS
UPOS –	INTEGRATED vs STANDALONE
FEATS -	
DEPREL	

LEVEL	STRATEGY
TOKEN	MERGED vs SPLIT
LEMMA	NORMALIZED vs AS-IS
UPOS -	INTEGRATED vs STANDALONE
FEATS -	
DEPREL	

 Normalize/resort to more standardized forms whenever possible

LEVEL	STRATEGY
TOKEN	MERGED vs SPLIT
LEMMA	NORMALIZED vs AS-IS
UPOS – FEATS – DEPREL	INTEGRATED vs STANDALONE

• Establish whether the token bears a semantic/syntactic role or not

Summary

	Merged	Split	Normalized	As-is	Integrated	Standalone
Spelling mistakes & typos						
Punctuation/Spelling variation						
Contractions/Abbreviations						
Neologisms/slang						
Pictograms						
Metadata (#, @, URLs)						
Code-mixing						

		Merged	Split	Normalized	As-is	Integrated	Standalone		
Spelling mistakes & typos									
Punctuation/Spelling variati		<u>!</u>	DIS	CLAIMER					
Contractions/Abbreviations	The fol								
Neologisms/slang	the mai	proposed in the UGC guidelines. It provides a generalization of the main guiding principles that motivated our proposal, and it							
Pictograms		out many -depth disc		cases that wo	ould hav	e required a			
Metadata (#, @, URLs)									
Code-mixing									

TOKEN

	Merged	Split	Normalized	As-is	Integrated	Standalone
Spelling mistakes & typos	(UD guidelines)					
Punctuation/Spelling variation		×				
Contractions/Abbreviations		8				
Neologisms/slang	(context- dependent)					
Pictograms		×				
Metadata (#, @, URLs)		×				
Code-mixing	(doesn't	apply)				

TOKEN LEMMA

	Merged	Split	Normalized	As-is	Integrated	Standalone
Spelling mistakes & typos	(UD guid	lelines)				
Punctuation/Spelling variation		×				
Contractions/Abbreviations		×				
Neologisms/slang	(conte depend			Ø		
Pictograms		8	(context-depe	ndent)		
Metadata (#, @, URLs)		×				
Code-mixing	(doesn't	apply)	(annotator-dep	endent)		

TOKEN LEMMA UPOS – FEATS – DEPRELS

	Merged	Split	Normalized	As-is	Integrated	Standalone
Spelling mistakes & typos	(UD guidelines)				(UD guidelines)	
Punctuation/Spelling variation		×			(UD gu	uidelines)
Contractions/Abbreviations		8				
Neologisms/slang	(context- dependent)				(UD guidelines)	
Pictograms		×	(context-depe	ndent)	(context-	dependent)
Metadata (#, @, URLs)		×			(context-	dependent)
Code-mixing	(doesn't apply)		(annotator-dependent)			

Contractions & Abbreviations

Embedded Metadata

'Niall is always impeccable'

Embedded Metadata

Pictograms

Code-mixing

UPOS

MISC

The complete guidelines, with other examples and summarizing tables, can be found in the paper

Treebanking User-Generated Content: A UD-Based Overview of Guidelines, Corpora and Unified Recommendations

also available in this repository

https://github.com/msang/seminarUniTo/

Questions?

Overview

1. NLP & Social Media

2. Challenges & Issues in Resource Development

3. Guidelines for UGC Data

4. Hands-on Session

Hands-on Session

1. Download and unzip the folder from the GitHub repository:

https://github.com/msang/seminarUniTo

Upload the folder to Google Drive and run the notebook with Colab

OR

Run the project in your local machine:

conda install jupyter

or

pip install jupyter

cd path_to_directory/
jupyter notebook

Install Jupyter via command line

Move to the directory of the project and run the notebook

3. Follow the instructions in the notebook

Part I - Select & Parse

- Pick a text sample of your choice among the ones available in this repository
- Parse your data through the <u>UDPipe web service</u>

Part II - Revise

- Save a copy of the UDPipe output file (processed.conllu) as revised.conllu
- Manually revise the parsed data in the revised.conllu file using a text editor, or with a GUI (e.g., Inception)
- When in doubt, feel free to consult the <u>UD main guidelines</u>, or the proposed guidelines for the treatment of UGC data (<u>here</u> and <u>here</u> the summarizing tables)
- ♀ For the sake of simplicity, save **both conllu files in the same directory** as this notebook
- Validate the file (to make sure it doesn't contain any formatting error)
- ⚠ Make sure that the language flag (--lang) of the script has the proper ISO code: English = en, French = fr, German = de, Italian = it,

Part III - Evaluate

• Evaluate the parser's performance on your data using standard metric's: