Ch 12 Homework

1. The life expectancy for an individual born in the United States in cer

Year of Birth	Life Expectancy
1930	59.7
1940	62.9
1950	70.2
1965	69.7
1973	71.4
1982	74.5
1987	75
1992	75.7
2010	78.7

birth is independent variable life expectany is dependent variable

Correlation is: 0.96126116 Life expectancy increases

H0:there isn't a linear correlation between year of birth and life expectancy H1:there is a linear correlation between year of birth and life expectancy Pvalue<5% we rejected H0

conclusion: there is a linear correlation between year of birth and life expectancy

0.2275*1850-377.2431=43.6319

raiameter estimates.										
Parameter	Estimate	Std. Err.	Alternative	DF	T-Stat	P-value				
Intercept	-377.2431	48.570088	≠ 0	7	-7.766984	0.0001				
Slope	0.22747972	0.024654334	≠ 0	7	9.2267639	<0.0001				

Possible lurking variables: Medical advancements, nutrition These can significantly influence life expectancy

- a) Which variable should be the independent variable and which should be the dependent variable?
- b) Sketch a scatterplot. Do points form a straight line?
- c) Find the correlation coefficient r. What does it suggest about the slope? About the strength of the association?
- d) Test the claim that there is a linear correlation. Write an appropriate conclusion.
- e) Find the estimated life expectancy for an individual born in 1850.
- f) Find a lurking/confounding variable if possible. Explain why it may change the response variable.
- 2. The table below lists weight of a diamond and the price associated to that weight of 6 dimonds.

 weight is independent variable

3	0.4	0.5	0.5	1.0	0.7
0	1151	1343	1410	5669	2277

le should be the independent variable and which should be the dependent

terplot. Do points form a straight line? yes its straight

relation coefficient r. What does it suggest about the slope? About the strength of the association?r=0.96763687 Suggests that for each 1 carat increase, the price goes up by

- d) Test the claim that there is a linear correlation. Write an appropriate conclusion.
- e) Not included in the table below is a diamond with a weight of 1.50 carats. Find the best predicted price for this diamond. Is the result close to the current actual price?

H0:there isn't a linear correlation
H1:there is a linear correlation
Pvalue<5% we rejected H0
there is a linear correlation

7177.0213*1.50-2006.9787=8758,55 it might underestimate the true value

Parameter	Estimate	Std. Err.	Alternative	DF	T-Stat	P-value
Intercept	-2006.9787	571.80498	≠ 0	4	-3.5099008	0.0247
Slope	7177.0213	935.83557	≠ 0	4	7.6691051	0.0016

Priceis dependent variable

- a) Which variable should be the independent variable and which should be the dependent variable? hours is independent variable
- b) Sketch a scatterplot. Do points form a straight line? yes it's straight
- c) Find the correlation coefficient r. What does it suggest about the slope? About the strength of the association? r=0.81983638 for each 1 hours study will up 2.298 points H1:there is a linear correlation
- d) Test the claim that there is a linear correlation. Write an appropriate conclusion we rejected HO
- e) Find the score on the exam if a student studies for 16 hours before the examiner is a linear correlation
- f) Find a lurking/confounding variable if possible. Explain why it may change the response variable. 2.2985*16+19.1237=55.8997

The more time you spend studying, the more knowledge you can acquire you won't lost so many point on the part you studied a lot

4. The years of working and the associated annual income of college graduates.

Years of working	1	3	4	9	2	8	9	8	15	11
Annual income	45k	50k	57k	100k	120k	80k	130k	90k	175k	95k

where 1k=\$1,000 and 10k=\$10,000

- a) Which variable should be the independent variable and which should be the dependent variable? hours is independent variable
- b) Sketch a scatterplot. Do points form a straight line? yes it's straight
- c) Find the correlation coefficient r. What does it suggest about the slope? About the strength of the association?
- d) Test the claim that there is a linear correlation. Write an appropriate conclusion.
- e) Find the annual income of a college graduate who have been working for 5 years.
- f) Find a lurking/confounding variable if possible. Explain why it may change the response variable.

H0:there isn't a linear correlation H1:there is a linear correlation Pvalue<5% we rejected H0 there is a linear correlation 6642.0455*5+47705.682=80915.9095

Work performance become better

Parameter estimates:										
Parameter	Estimate	Std. Err.	Alternative	DF	T-Stat	P-value				
Intercept	47705.682	17832.775	≠ 0	8	2.6751688	0.0281				
Slope	6642.0455	2185.1528	≠ 0	8	3.0396252	0.0161				