Photogrammetry & Robotics Lab

Introduction to Model Predictive Control

Lasse Peters

Autonomous Driving Scenario

Autonomous Driving Scenario

Autonomous Driving Scenario

Introduction: The Control Task

Given

- Reference plan -
- State estimate

Find

• Which control inputs achieve the plan?

Reminder: Reactive Control

Typically, decomposition of the problem, e.g.

 Longitudinal control via PID

Lateral control via Stanley

$$\delta = \psi + \tan^{-1} \left(\frac{k \, e_{cte}}{v} \right)$$

Limitations of Reactive Control

- Non-trivial for more complex systems
- Control gains must be tuned manually
- Separation into longitudinal and lateral controllers ignores coupling
- No handling of constraints such as obstacles
- Ignores future decisions

Optimal Control: How to <u>best</u> control the system?

Optimal Control: Model

- Model of the system dynamics:
 - Predicts the evolution of the state for a given sequence of inputs.

$$x_{t+1} = f(x_t, u_t)$$

Control Inputs

Dynamics

State trajectory

Model Example: Discrete 2D Bicycle

$$x_{t+1} = \begin{cases} p_{x,t+1} &= p_{x,t} + \Delta t \ v_t \cos \psi_t \\ p_{y,t+1} &= p_{y,t} + \Delta t \ v_t \sin \psi_t \\ \psi_{t+1} &= \psi_t + \Delta t \ v/L \tan \delta \\ v_{t+1} &= v_t + \Delta t \ a_t \\ \delta_{t+1} &= \delta_t + \Delta t \ \omega_t \end{cases}$$

where
$$u_t = [a_t, \omega_t]^{\top}$$

Optimal Control: Objective

Objective

Assigns a cost to the trajectory

$$J(x_{1:T}, u_{1:T}) = \sum_{t \in [T]} g_t(x_t, u_t),$$
where $x_{1:T} := (x_1, \dots, x_T), u_{1:T} := (u_1, \dots, u_T)$

Example: deviation from a reference

$$g_t(x_t, u_t) = e_t^{\mathsf{T}} Q_t e_t + u_t^{\mathsf{T}} R_t u_t$$

Optimal Control: Constraints

Constraints

Encode the domains of allowed states $x_t \in \mathcal{X}_t$ and inputs $u_t \in \mathcal{U}_t$.

$$\mathcal{X}_t = \{ x \mid p_x^2 + p_y^2 \ge r^2 \}$$

$$\mathcal{U}_t = \{ u \mid a_{\min} \le a \le a_{\max} \}$$

Control as Optimization Problem

- In summary
 - minimizes the cost of a ...
 - dynamically feasible trajectory that ...
 - does not violate the constraints.

$$\min_{x_{1:T}, u_{1:T}} J(x_{1:T}, u_{1:T})$$
subject to
$$x_{t+1} = f(x_t, u_t), \quad \forall t \in [T-1]$$

$$u_t \in \mathcal{U}_t, \quad \forall t \in [T]$$

$$x_t \in \mathcal{X}_t, \quad \forall t \in [T]$$

$$x_1 = x_{\text{init}}$$

Solving the Optimization Problem

- Typically, no closed-form solution
- Tools for numerical solution:
 - CasADi (C++, Python, Matlab)
 - JuMP.jl (Julia)

```
x,y (y-x^2)^2 subject to x^2+y^2=1 x+y\geq 1,
```

```
opti = casadi.Opti()
x, y = opti.variable(), opti.variable()
opti.minimize( (y-x**2)**2 )
opti.subject_to( x**2+y**2==1 )
opti.subject_to( x+y>=1 )
opti.solver('ipopt')
sol = opti.solve()
```

Open-Loop Control: Model Errors

- The prediction model will always be wrong to some extend
- Model errors accumulate over time and result in diverging predictions

Open-Loop Control: Horizon

Long task-horizons make the problem intractable

Model Predictive Control (MPC)

- Receding horizon control
 - Start from the current state
 - Find controls for a limited preview into the future
 - Apply only the first input, then re-plan

MPC: Schematic View

■ Plan at t = 0s Reference Prediction

MPC: Schematic View

■ Plan at t = 1s Reference Prediction

MPC: Schematic View

Plan at t = 2s Reference Prediction **Advantages** Accounts for errors Reduced problem size

MPC: Algorithm

```
Algorithm 1: Model Predictive Control (MPC)

Input: Objective J, Dynamics model f, horizon T, initial guess \hat{u}_{1:T}.

1 u_{1:T} \leftarrow \hat{u}_{1:T};

2 while task not completed do

3 | x_{init} \leftarrow GetCurrentState();

// Solver is warm-started with the previous solution.

4 | u_{1:T} \leftarrow SolveOptimizationProblem(J, f, x_{init}, T, u_{1:T});

5 | u \leftarrow First(u_{1:T});

6 | ApplyInput(u);
```

MPC: Toy Example

MPC Design

Design Parameters

- Prediction model
- Cost function
- Prediction horizon
- Terminal constraints
- ...

MPC Design: Prediction Model

- Trade-off in choice of model family:
 Model accuracy vs. complexity
- Data-driven approach
 - Collect data of the real system behavior

$$\mathcal{D} := \{ (x'_d, x_d, u_d) \mid x'_d = f(x_d, u_d), d \in [N_d] \}$$

 Optimize the parameters of the model to match the behavior of the real system

$$\min_{\theta} \mathcal{L}(\theta; \mathcal{D}) = \min_{\theta} \sum_{d \in [N_{d}]} \|x'_{d} - f(x_{d}, u_{d}; \theta)\|_{2}^{2}$$

MPC Design: Cost Function

- Cost function induces optimal behavior
 - Penalize deviation from reference

Maximizing progress inside track bounds

MPC Design: Prediction Horizon

- Short prediction horizon
 - Pro: Reduced computation
 - Con: Myopic behavior
 - Inefficient
 - potentially unsafe

MPC Design: Prediction Horizon

- Short prediction horizon
 - Pro: Reduced computation
 - Con: Myopic behavior
 - Inefficient
 - potentially unsafe

MPC Design: Terminal Constraint

- Additional constraints at the end of the prediction horizon can ensure recursive feasibility.
 - Example: Zero-velocity constraint in a static environment.

Pros and Cons of MPC

Pros

- Explicitly handles constraints
- Preview accounts for future decisions
- Systematic procedure to derive controllers even for complex systems

Cons

 Higher computational complexity and memory requirements than reactive controllers

Example: Learning MPC

Learning Model Predictive Controller full-size vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Courtesy: Ugo Rosolia

Example: Whole Body MPC

Limitation: Interaction

- MPC only models other agents indirectly via the dynamics
 - Other agents treated as dynamic obstacles with constant velocity

- Challenge: Other agents also plan!
 - **⇒Decisions are coupled!**

Outlook: Dynamic Games

- Ingredients of a dynamic game
 - Joint dynamics

$$x_{t+1} = f_t(x_t, u_t^1, \dots, u_t^N)$$

Individual costs

$$J^{i}(x_{1:T}, u_{1:T}^{i}, u_{1:T}^{\neg i}) = \sum_{t \in [T]} g_{t}^{i}(x_{t}, u_{t}^{1}, \dots, u_{t}^{N})$$

where
$$u_{1:T}^{\neg i} := (u_{1:T}^j)_{j \in [N] \setminus \{i\}}$$

- Solution: Nash Equilibrium
 - No player can unilaterally improve

$$\forall i \in [N] : J^i(x_{1:T}^*, u_{1:T}^*) \le J^i(x_{1:T}, u_{1:T}^i, u_{1:T}^{i*})$$

Dynamic Game Example: Tag

- 2D point-mass dynamics
- Objectives
 - P1:Minimize distance to P2
 - P2: Maximize distance to P1

Courtesy: Forrest Laine

Dynamic Game Example: Racing

Courtesy: IfA - ETH Zürich, Alexander Liniger 35

Summary

- Limitations of reactive control
- Control as optimization problem
- Model-Predictive Control (MPC) via receding-horizon optimization
- MPC design parameters
- Limitations of MPC in the presence of other agents

Resources

- "Predictive Control for Linear and Hybrid Systems" by Borrelli et al. Link: http://www.mpc.berkeley.edu/mpc-course-material
- "Numerical Optimization" by Nocedal & Wright
- YouTube channel of Steve Brunton

Thank you for your attention