YAHOO!

OpenIOC

PRESENTED BY Sean Gillespie | August 19, 2014

Terminology

- Tactics, Techniques, and Procedures (TTPs)
- Intelligence Information about threat actor tools and TTPs
 - Tool usage
 - Domains
 - File attributes
- Evidence The data in your collection systems
- Indicator of Compromise (IOC) matching evidence to intelligence
- OpenIOC An XML format for storing Indicators of Compromise

Overview

- Low Value Use Cases
 - Storage and Transfer of Intelligence
 - List Matching Based Detection
- High Value Use Cases
 - Rapid Scoping of Compromises
 - Sharing and Deployment of Operational TTPs
- Required Tools and Concepts
- The Power of OpenIOC
- OpenIOC and You
- PylOCe
- Anatomy of OpenIOC
- Q&A

Storage and Transfer of Intelligence – Low Value

MD5 63d0...1bd7
Filename winavg.dll
Size 38468

Compile Time 01-06-2011T15:35:32Z

Exports ServiceMain

Sections .text .data .idata .rsrc Strings Failed to open sockit

MD5 a95c...d150 Filename winssh.dll Size 38468

Compile Time 01-06-2011T15:35:32Z

Exports ServiceMain

Sections .text .data .idata .rsrc Strings Failed to open sockit

MD5 323b...16f1 Filename winhlp.dll Size 38468

Compile Time 01-06-2011T15:35:32Z

Exports ServiceMain

Sections .text .data .idata .rsrc Strings Failed to open sockit OR

mir:FileItem/SizeInBytes is 38468

mir:FileItem/PEInfo/PETimeStamp is 01-06-2011T15:35:32Z

▼ AND

 $mir:FileItem/FileName\ matches\ \wedge win[a-z]{3}\.dll$

mir:FileItem/PEInfo/Exports/ExportedFunctions/string is ServiceMain

MD5 831f...22ed Filename winzip.dll Size 54862

Compile Time 05-24-2012T17:28:19Z

Exports ServiceMain

Sections .text .data .idata .rsrc

MD5 051b...f1ba Filename winrip.dll Size 24218

Compile Time 07-14-2009T09:12:47Z

Exports ServiceMain

Sections .text .data .pinfo .rdata

List Matching Based Detection – Low Value

List maintenance

- IOC quality
- IOC ages
- IOC duplication
- Results are difficult to correlate to original intelligence
- Wildly Inefficient
 - High false positive rate if IOCs aren't extremely specific
 - High false negative rate if IOCs aren't carefully crafted to detect variations
 - High true negative rate since most of what you are searching across does not match

Rapid Scoping of Compromises – High Value

- Rapidly target specific aspects of a known compromise
 - > Search for all executable files written to disk by 'Bob' in the last 30 days
 - Search for all instances of setup64.exe
 - Search for all registry entries containing \Oracle\
 - Search for MUICache/Prefetch evidence of setup.exe execution
- Large result sets mitigated by Incident Responders having contextual knowledge of the current threat
- Iterative process of refining IOCs and repeating searches

Sharing and Deployment of Operational TTPs – High Value

- Operational IOCs are meant to describe forensically interesting sources of data or unique behaviors and attributes of malicious activity
 - Persistence mechanisms
 - Suspicious file attributes
 - Suspicious process attributes
 - Execution history locations
 - Recently opened documents locations
 - Browser history locations
- Used for actively hunting interesting anomalies and rapidly processing forensic data
- Serve as quick and functional references for training and consistency

Examples

Common Anti-Virus Evasion Technique

Common Lateral Movement Technique

OR
mir:TaskItem/Name matches At[0-9]

Examples

Common Default Hash Dumping Export

▼ OR

mir:FileItem/PEInfo/Exports/ExportedFunctions/string is Gethash

Common Malware Misspelling

OR ▼ AND mir:ProcessItem/name matches ^s[vchosu0]t\.exe NOT mir:ProcessItem/path ends-with system32 NOT mir:ProcessItem/name is svchost.exe

Common Persistence Mechanism / Authentication Bypass Technique

▼ AND
mir:RegistryItem/ValueName contains Debugger
mir:RegistryItem/Path contains Image File Execution Options
NOT mir:RegistryItem/Text contains ntsd
NOT mir:RegistryItem/Text contains windbg

Required Tools and Concepts

- Editors Tools to create and edit OpenIOC files
 - > PylOCe
 - Mandiant IOCe
- Operational Systems Systems that gather data
 - Splunk, Snort, GRR, MIR, Volatility, Yara
- Parsers Tools to turn OpenIOC files into operational inputs
 - MIR -> XPATH
 - GRR -> Flow inputs
 - Splunk -> Search
 - > Snort -> Rules
 - Yara -> Sigs

The Power of OpenIOC

- OpenIOC allows for simple intuitive descriptions of complex patterns
 - > Indicator Logic AND, OR
 - > Term Conditions is, contains, matches, starts-with, ends-with, greater-than, less-than
 - > Term Modifiers negate, case-sensitive
- OpenIOC can be used for pivoting from known intelligence items
 - > File info
 - File as a process
 - Registry values containing the filename
 - Execution history containing the filename (Prefetch/MUICache/Bit9)
- Sharing TTP based OpenIOC files
 - Does not reveal confidential information
 - Does not aid attackers

The Power of OpenIOC

- OpenIOCs are meant to be parsed to create inputs for operational systems
- OpenIOC is best as a method for exchanging TTPs not intelligence
 - How to search for X with System Y not just what is X
 - There are better formats and methods for exchanging intelligence data
- Global terms vs Operational System specific terms
 - Translation is complex and makes it easy to lose intended effects
 - > Systems may have extreme variations in how they interpret and use terms

OpenIOC and You

Define your own terms

- Terms can be used to describe anything an operational system is aware of
 - Specific data points
 - · Flagged anomalies
- Create term names that make sense for your operational system

Define your own parameters

- > Parameters can modify criteria or describe actions for operational systems
- Create parameters that best reflect the capabilities of your operational system

Build your own parsers

It is up to you to decide what your system can do by combining custom terms and parameters

PylOCe Key Features

- Cross platform
- Keyboard driven
- Capable of working with OpenIOC 1.0 as well as 1.1
- IOC cloning for rapid duplication for testing
- Edit, import, and export of IndicatorTerm and Parameter lists to extend OpenIOCs for use with other operational systems
- Term Maps to group terms with roughly equivalent content to assist in translating for other operational systems


```
<parameters>
  <param id="5315f26b-4b28-4472-bb36-a398e2bbe6c2" ref-id="02b53389-3c51-4651-9449-962a468cb6b8"
    name="comment">
        <value type="string">pwdump</value>
        </param>
        </parameters>
  </OpenIOC>
```


Overview

- Low Value Use Cases
 - Storage and Transfer of Intelligence
 - List Matching Based Detection
- High Value Use Cases
 - Rapid Scoping of Compromises
 - Sharing and Deployment of Operational TTPs
- Required Tools and Concepts
- The Power of OpenIOC
- OpenIOC and You
- PylOCe
- Anatomy of OpenIOC
- Q&A

Q&A