Assessment Schedule – 2019

Mathematics and Statistics: Apply geometric reasoning in solving problems (91031)

Evidence

Q ONE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	$\angle AED = 58^{\circ} \ (\angle s \text{ in triangle add to } 180^{\circ})$ $x = \angle AGB = 58^{\circ} \ (\text{corr } \angle s, // \text{ lines } =)$ OR alternative method.	OR one step shown.	Correct angle found with at least one valid reason.	
(b)	EK = $2.8 \times \tan 46 = 2.8995$ Area of Triangle AHE = $\frac{1}{2} \times 4 \times 2.8995$ = 5.799 m^2	Calculation of EK (height of triangle AHE) OR consistent calculation	Area of Triangle AHE found.	
	(Units not required.) (Accept any rounded solution.)	of area of triangle using incorrect height.		
(c)	Showing that triangle P and triangle Q are similar to each other, by considering the AAA rule. Ratio of lengths of the triangles $= 3.6 / 1.44 = 2.5.$ Height of triangle P $= H = \sqrt{(6^2 - 1.8^2)} = 5.724 \text{ m}$ Height of triangle Q $= h = \frac{5.724}{2.5} = 2.289 \text{ m}$ Area of triangle P $= \frac{1}{2} \times 3.6 \times 5.724 = 10.303 \text{ m}^2.$ Area of triangle Q $= \frac{1}{2} \times 1.44 \times 2.289 = 1.648 \text{ m}^2$ Total sail area $= 10.303 + 1.648 = 11.95 \text{ m}^2$ So sails are not big enough for top speed. OR	Showing triangles are similar OR calculation of height, H, of triangle P OR calculation of ratio of lengths between the two triangles.	Calculation of area of either sail P or sail Q.	Calculation of total sail area AND conclusion that sails not of ideal size.
	Ratio of Area P : Area Q			
	Gives Area $P = 2.5^2 \times Area Q$.			

(d)	$SY = 448 \times \sin 36^{\circ} = 263.33 \text{ km}$	One correct l
	$GY = 448 \times \cos 36^{\circ} = 362.44 \text{ km}$	from:
	$MZ = 635 \times \sin 66^{\circ} = 580.10 \text{ km}$	SY, GY, MZ
	$SZ = 635 \times \cos 66^{\circ} = 258.28 \text{ km}$	
	MX = 258.28 + 263.33 = 521.61 km	
	GX = 580.10 - 362.44 km = 217.66 km	
	$\angle MGX = \tan^{-1} \left(\frac{521.61}{217.66} \right)$	
	= 67.3°	
	So required bearing = $270^{\circ} + 67.3^{\circ}$	
	= 337.3°	

correct length : One correct length from: GY, MZ, SZ. MX or GX.

Required bearing found.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	2 of r	3 of r	1 of t	2 of t

Q TWO	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)(i)	Use of Pythagoras to find $h = \sqrt{(8^2 - 4.9^2)} = 6.32 \text{m}$	Showing, with evidence of working, that $h = 6.32$ m.		
(ii)	Use of Pythagoras to find $MQ = \sqrt{11^2 - 6.32^2} = 9 \text{ m}$ So $g = PQ = MQ - MP = 9 - 4.9$ $= 4.1 \text{ m. (Units not required)}$	Finding length MQ OR finding length g, using incorrect h, from consistent calculations from (i).	Finding $g = 4.1$ m.	
(iii)	In triangle MPN, $\angle MPN = tan^{-1} \left(\frac{6.32}{4.9} \right)$ $= 52.2$ In triangle MPY, $MY = 4.9 \times sin 52.2 = 3.87 \text{ m.}$ $PY = 4.9 \times cos 52.2 = 3 \text{ m.}$ $Total length = 3.87 + 3 + 4.9$ $= 11.77 \text{ m (Units not required)}$ OR alternative method.	Calculation of ∠MPN	Finding length MY OR length PY	Finding perimeter.
(b)(i)	∠SAH = 90 (Angle between tangent and radius). ∠AGH = 90 (Angle in semicircle is a right angle) ∠GAH = 90 - p ∠GHA = 180 - 90 - (90 - p) = 180 - 90 - 90 + p = p ∠GBA = ∠GHA = p (Angles in the same segment are equal) So ∠SAG = ∠AHG = ∠GBA = p . As required. OR Use of Alternate Segment Theorem could be utilised e.g. ∠SAG = p = ∠AHG (alt seg thm) ∠GBA = ∠GHA = p (Angles in the same segment are equal) So ∠SAG = ∠AHG = p (Angles in the same segment are equal) So ∠SAG = ∠AHG = ∠GBA = p . As required. Note: "alt seg thm" may also be expressed more fully, as: the angle between a chord and a tangent is equal to an angle at the circumference that sits on the chord in the alternate segment.	Evidence of use of one circle theorem included in a calculation. e.g. Recognising that \angle GHA = \angle GBA, with reason. OR e.g. Recognising that \angle GAH = 90 - p OR two steps, having substituted a numerical value for p .	Proof completed but with imperfect reasoning. OR proof connecting ∠GAS and either ∠GHA or ∠GBA, with reasoning.	Three angles shown to all be equal to each other in a conclusive statement.

NCEA Level 1 Mathematics and Statistics (91031) 2019 — page 4 of 6

Q TWO	Evidence			Achievemen	t		Achievement with Merit	t		hievement Excellence	
_	$\angle VRU = \frac{(180 - 2)^2}{2}$ (\angle sum of isos to the sum of isos to	eriangle) sing the resultation or Alternatem). = $180 - 71 - 3$ raight line addrat (i) of question Theorem) are diagram, cent of the control of the con	18 = 71 1 to 1 to or	OR	rect angle	t			th at		
	(∠sum of isos tr ∠VRO = 71 − 5										
	So $q = \angle VRS = 90 - 19 = 71^{\circ}$										
	(rad & tangent property)										
NØ	N1	N2	A3		A4	N	15	M6	Е	7	E8
No respons no relevant evidence.		1 of u	2 of u		3 of u	2 of r		3 of r	1 of t		2 of t

Q THREE	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
(a)	∠EBM = 58° (alternate ∠s, // lines =) ∠EMB = 58° (base angles of isosceles triangle equal) ∠MEB = $180 - 58 - 58$ = 64° (angle sum of triangle = 180) OR Alternative method.	Correct angle OR one step shown.	Correct angle found with at least one valid reason.	
(b)	∠CML = 90° (angle between tangent and radius is 90). So triangle CML is a right-angled triangle ∠MLC = 36° (bisecting ∠MLN) LC = 28 / sin 36 = 47.64 mm. (Units not required)	Find length LC OR finding angles ∠CML and ∠MLC.	Finding length LC, including justification of the right-angled triangle CML.	
(c)	∠DEB = 90° (angle in a semicircle is a right- angle) ∠EAB = $180^{\circ} - x$ (opposite angles of a cyclic-quad add up to 180) ∠DBE = $180^{\circ} - 90 - x$ = $90 - x$ (angle sum of triangle BDE) ∠ABE = $\frac{180 - (180 - x)}{2}$ = $\frac{180 - 180 + x}{2} = \frac{x}{2}$ (base angles of an isosceles triangle are equal) ∠DBA = $90 - x + \frac{x}{2}$ = $90 - \frac{x}{2}$	One step shown involving calculation of an angle involving <i>x</i> i.e. Finding ∠DBE or ∠EAB OR two steps, having substituted a numerical value for <i>x</i> .	Finding two angles, involving calculations including x, with at least one valid reason.	Finding $\angle DBA$, in terms of x , with clear justification.
(d)	∠PNM = 135° (internal angle of a regular polygon). Let Z be the midpoint of NM. ∠CNM = 67.5° (symmetry) CZ = $r \times \sin 67.5$ ° (or $\cos 22.5$ °) = 0.9239 r NZ = $r \times \cos 67.5$ ° (or $\sin 22.5$ °) = 0.3827 r NM = 2 × 0.3827 r = 0.7654 r Area = $\frac{1}{2} \times 0.7654 r \times 0.9239 r$ = 0.3536 r^2 Total Area = 8 × 0.3536 r^2 = 2.8285 r^2	Finding ∠CNM = 67.5°, Or ∠NCZ = 22.5° with justification. Accept any rounding / truncation.	Finding an expression for the total area, having substituted a numerical value for r OR finding length CZ or length NZ, in terms of r , with clear working.	Finding an expression for the total area in terms of r , with clear working.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One point made incompletely.	1 of u	2 of u	3 of u	2 of r	3 of r	1 of t	2 of t

NCEA Level 1 Mathematics and Statistics (91031) 2019 — page 6 of 6

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 12	13 – 19	20 – 24