Bridging the Gap Between Microscale Modeling and Additive Manufacturing for TPS

Presenter: Federico Semeraro

AMA at Thermal Protection Materials Branch (ARC-TSM)

March 29th, 2022

Additively Manufactured Thermal Protection System (AMTPS) Workshop

Content

- Motivation
- Overview of PuMA
 - Functionalities
 - ➤ Open-source release
 - > Artificial generation
 - ➤ Micro-CT manipulation
- Effective properties for anisotropic porous media
 - > Fiber orientation
 - > Conductivity
 - > Elasticity
 - Permeability
 - Real-time micro-CT

Modeling TPS

Simulation of surface temperature for MSL heatshield

Overview of material properties computation

Part 1: Estimation of local orientation. Computational Materials Science (2020)

Computation of effective elasticity

Part 2: Computation of effective conductivity. Computational Materials Science (2021)

Computation of effective permeability

Porous Microstructure Analysis (PuMA) v3 release

Installation: conda install -c conda-forge puma

Open-source repository: https://github.com/nasa/puma

Documentation: https://puma-nasa.readthedocs.io

Video tutorials: PuMA YouTube channel

Artificial domain generation

Packed Sphere Beds

Periodic Foams

Triply Periodic Minimal Surface (TPMS)

Fiber Structures

Woven geometries

Micro-CT weaves: anisotropic at multiple scales

Weave segmentation and tow tracking

Orientation methods

Structure tensor

 $(I(x+v) - I(x))^2 \approx 0$

Artificial flux

Ray casting

Conductivity solver

$$\nabla \cdot \boldsymbol{q} = 0 \quad \text{where} \quad \boldsymbol{q} = -\boldsymbol{k} \nabla T = -\begin{bmatrix} k^{xx} & k^{xy} & k^{xz} \\ k^{xy} & k^{yy} & k^{yz} \\ k^{xz} & k^{yz} & k^{zz} \end{bmatrix} \begin{pmatrix} \partial T/\partial x \\ \partial T/\partial y \\ \partial T/\partial z \end{pmatrix}$$

Multi-Point Flux Approximation (MPFA-O)* local system (2D):

$$oldsymbol{q} = oldsymbol{E} oldsymbol{T}^N$$

$$\boxed{q_P^x} = k_P^{xx} \frac{T_{Pe}^B - T_P^N}{h/2} + k_P^{xy} \frac{T_{Pn}^B - T_P^N}{h/2}$$

Unknowns: Continuity of fluxes:

$$oldsymbol{T}^B = egin{pmatrix} T_{Pe}^B \ T_{Ne}^B \ T_{En}^B \end{pmatrix} egin{pmatrix} q_N^x = q_E^x \ q_N^x = q_{NE}^x \ q_P^y = q_N^y \ q_E^y = q_{NE}^y \ \end{pmatrix}$$

10

^{*}Ivar Aavatsmark. Multipoint flux approximation methods for quadrilateral grids. 9th International forum on reservoir simulation 2007, Abu Dhabi, pages 9–13.

Conductivity solver validation: ADEPT

Semeraro, F., Ferguson, J.C., Acin, M., Panerai, F. and Mansour, N.N., 2021. Anisotropic analysis of fibrous and woven materials part 2: Computation of effective conductivity. Computational Materials Science, 186, p.109956.

Single fiber conductivity estimation

Experimental value at room temperature:

$$\mathbfit{k}_{exp}^{12ply} = \begin{bmatrix} 2.184 & - & - \\ - & 1.980 & - \\ - & - & 0.394 \end{bmatrix}$$

Single fiber thermal conductivity

$$[k_{//}, k_{\perp}] = [9.7, 5.5] \frac{\text{W}}{\text{mK}}$$

$$\boldsymbol{k}_{num}^{12ply} = \begin{bmatrix} 2.310 & -0.414 & 0.000 \\ -0.524 & 2.030 & 0.071 \\ 0.007 & 0.050 & 0.504 \end{bmatrix}$$

Elasticity solver

$$\nabla \cdot \boldsymbol{\sigma} = 0$$
 where $\boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\varepsilon}$

Multi-Point Stress Approximation (MPSA-W)* local system (2D):

$$\sigma = E u^N$$

$$|\sigma_P| = C_P G_P - \langle C \tilde{Q} G \rangle_{IV}$$

$$egin{pmatrix} oldsymbol{S}_G \ oldsymbol{D}_G \end{pmatrix} oldsymbol{G} = egin{pmatrix} oldsymbol{0} \ oldsymbol{D}_u \end{pmatrix} oldsymbol{u}^N + egin{pmatrix} oldsymbol{F}_N \ oldsymbol{D}_d \end{pmatrix}$$

Unknowns:

$$oldsymbol{G} = egin{pmatrix} oldsymbol{G}_P \ oldsymbol{G}_N \ oldsymbol{G}_{NE} \end{pmatrix} oldsymbol{G}_P = egin{pmatrix} u_P^{xx} \ u_P^{yy} \ u_P^{yx} \ u_P^{yx} \end{pmatrix}$$

Continuity of Stresses and Displacements:

$$C^4 = \frac{2L_xL_y}{L_x + L_y} \sigma$$

$$\text{Multi-Point Stress Approximation (MPSA-W)* local system (2D):}$$

$$\sigma = E u^N$$

$$\sigma_P = C_P G_P - \langle C\tilde{Q}G \rangle_{IV}$$

$$\begin{pmatrix} S_G \\ D_G \end{pmatrix} G = \begin{pmatrix} 0 \\ D_u \end{pmatrix} u^N + \begin{pmatrix} F_N \\ D_d \end{pmatrix}$$

$$G = \begin{pmatrix} G_P \\ G_N \\ G_{NE} \end{pmatrix} G_{NE}$$

$$G_P = \begin{pmatrix} G_P \\ G_N \\ G_N \\ G_N \end{pmatrix} G_{NE}$$

$$G_P = \begin{pmatrix} G_P \\ G_R \\ G_N \\ G_N \\ G_N \end{pmatrix} G_R = \begin{pmatrix} G_R \\ G_R \\ G_R \\ G_N \\ G_N \end{pmatrix} G_R = \begin{pmatrix} G_R \\ G_R \\ G_R \\ G_R \\ G_N \\ G_N \end{pmatrix} G_R = \begin{pmatrix} G_R \\ G_R \\ G_R \\ G_R \\ G_R \\ G_N \\ G_N \end{pmatrix} G_R = \begin{pmatrix} G_R \\ G_R \\ G_R \\ G_R \\ G_R \\ G_R \\ G_R \end{pmatrix}$$

$$\sigma_R^{xx} = \sigma_R^{xx} \\ \sigma_R^{yx} = \sigma_R^{yx} \\ \sigma_R^{yy} = \sigma_R^{yy} \\ \sigma_R^{yy}$$

*Keilegavlen, E. and Nordbotten, J.M., 2017. Finite volume methods for elasticity with weak symmetry. Int. Journal for Numerical Methods in Engineering, 112(8), pp.939-962.

Elasticity solver validation: woven composite

Fraile Izquierdo, S., Semeraro, F., Acin, M., 2022. Multi-Scale Analysis of Effective Mechanical Properties of Porous 3D Woven Composite Materials. AIAA Scitech Forum

Permeability solver

• Governing equation for Stokes flow (valid for slow creeping regimes, $Re \approx 0$):

- Solved with FE scheme with Q1-Q1 discretization in velocity and pressure (plus pressure stabilization term)
- By imposing a unit body force f_i in the three Cartesian directions, we can homogenize the permeability as:

$$\begin{bmatrix} k^{xx} & k^{xy} & k^{xz} \\ k^{xy} & k^{yy} & k^{yz} \\ k^{xz} & k^{yz} & k^{zz} \end{bmatrix} = \frac{l^3}{|V|} \int^V u^i dV$$

Permeability validation: Fiberform

- Three 500³ samples with voxel size = 2.6μm
- Run on V100 (32GB) with matrix-free PCG
- Experimental values* obtained from Fiberform samples with porosity $\phi = 87\%$

Sample	Α	В	С	Exp*
K _{xx} (m ⁻² e-10)	0.910	0.884	0.845	1.100
K _{yy} (m ⁻² e-10)	0.918	0.879	1.046	1.100
K _{zz} (m ⁻² e-10)	0.529	0.533	0.619	0.557
Porosity ϕ (%)	89.8	90.4	90.9	87.0
Time (') (Avg its)	18.667 (1951)	13.383 (1355)	14.617 (1483)	-
DOFs (e6)	424.4	428.3	432.6	-

Lopes, P.C.F., Semeraro, F.

^{*}Panerai, F., White, J.D., Cochell, T.J., Schroeder, O.M., Mansour, N.N., Wright, M.J., Martin, A., 2016. Experimental measurements of the permeability of fibrous carbon at high-temperature. *International Journal of Heat and Mass Transfer*, 101, pp.267-273.

Time-dependent micro-CT of oxidizing Fiberform

Ringel, B., Semeraro, F., Panerai, F.

Discussion/questions

https://github.com/nasa/puma

Potential analysis that PuMA could provide:

- Voids/defects/interfaces identification from micro-CT
- Fiber orientation detection and statistics
- Fiber/void segmentation using ML method
- Effective thermo-mechanical properties
- Sensitivity analysis
- Artificial generation from GCODE commands

Tensile test samples from 3DP mission*

^{*}Prater, T., Bean, Q., Werkheiser, N. and Ledbetter, F., 2016, October. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing and Future Work. In AIAA Young Professionals Symposium (No. M16-5592).