ON THE EFFECT OF PROJECTION ON RANK ATTACKS IN MULTIVARIATE CRYPTOGRAPHY

Morten Øygarden, Daniel Smith-Tone and Javier Verbel

July 2021

Introduction

The Big- $Field\ Schemes$ form a class of multivariate signature and encryption schemes. The most prominent example is the HFEv- signature scheme, which GeMSS is based on.

In late 2020, Tao, Petzoldt and Ding proposed a new rank attack, which breaks the current parameters of HFEv- (and GeMSS).

There are other combinations of central maps and modifiers among the Big–Field Schemes. How does this new attack affect them?

In particular, we will focus on pHFEv- and PFLASH.

Multivariate Signature Schemes

- **Public Key:** system of n quadratic polynomial equations in $\mathbb{F}_q[x_1,\ldots,x_n]$.
- **Signing**: For a document (d_1, \ldots, d_n) , solve the system

$$p_1(x_1, \dots, x_n) = d_1$$

$$\dots$$

$$p_d(x_1, \dots, x_n) = d_n$$

to recover a valid signature (c_1, \ldots, c_n) .

• Verification: evaluate the polynomials $p_1(x_1, \ldots, x_n), \ldots, p_n(x_1, \ldots, x_n)$ on the signature (c_1, \ldots, c_n) and verify that it equals (d_1, \ldots, d_n) .

The HFE- Signature Scheme

Let $\mathbf{S} \in \mathbb{F}_q^{n \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

The HFE- Signature Scheme

Let $\mathbf{S} \in \mathbb{F}_q^{n \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

$$\mathbb{F}_{q^n} \xrightarrow{f(X)} \mathbb{F}_{q^n}$$

$$\phi \qquad \qquad \phi \qquad \qquad \phi^{-1}$$

$$\mathbb{F}_q^n \xrightarrow{\mathbf{F}_q^n} \mathbb{F}_q^n \xrightarrow{\mathbf{T}} \mathbb{F}_q^{(n-a)}$$

$$\overline{p_1, \dots, p_{n-a}} \in \overline{\mathbb{F}}_q[x_1, x_2, \dots, x_n]$$

$$f(X) = f_{hfe}(X) = \sum_{\substack{i,j \in \mathbb{N} \\ q^i + q^j \le D}} \alpha_{i,j} X^{q^i + q^j} + \sum_{\substack{i \in \mathbb{N} \\ q^i \le D}} \beta_i X^{q^i} + \gamma,$$

where $\alpha_{i,j}, \beta_i, \gamma \in \mathbb{F}_{q^n}[X]$. D is (relatively) small for signing to be efficient.

The MinRank Problem

MinRank Problem

For a target rank r, and k matrices $M_i \in \mathbb{F}_q^{m \times n}$, find a nontrivial set of constants $(u_0 \dots, u_{k-1}) \in \mathbb{F}_q^k$ such that

$$\operatorname{Rank}\left(\sum_{i=0}^{k-1} k_i M_i\right) \le r.$$

The problem is NP–complete in general, but can be solved in practice for small r.

Solving a certain instance of the MinRank problem is typically the hardest step in a rank attack.

Polynomials and Matrices

Any (homogeneous) quadratic polynomial can be written using a symmetric matrix.

If $\operatorname{Char}(\mathbb{F}_q) > 2$, then this is the $(n \times n)$ matrix \mathbf{P}_i such that

$$p_i(x_1,\ldots,x_n) = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \mathbf{P}_i \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Polynomials and Matrices

Any (homogeneous) quadratic polynomial can be written using a symmetric matrix.

If $\operatorname{Char}(\mathbb{F}_q) > 2$, then this is the $(n \times n)$ matrix \mathbf{P}_i such that

$$p_i(x_1,\ldots,x_n) = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \mathbf{P}_i \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}.$$

Over the ring $\mathbb{F}_{q^n}[X]$, we use:

$$f^{q^i}(X) = \begin{bmatrix} X & X^q & \dots & X^{q^{n-1}} \end{bmatrix} \mathbf{F}^{*i} \begin{bmatrix} X \\ \vdots \\ X^{q^{n-1}} \end{bmatrix}.$$

Bettale–Faugère–Perret (2013)

There is an invertible matrix $\mathbf{M} \in \mathbb{F}_{q^n}^{n \times n}$, such that the public key can be written as:

$$(\mathbf{P}_1|\cdots|\mathbf{P}_{n-a}) = \left(\mathbf{SMF}^{*0}(\mathbf{SM})^\top|\cdots|\mathbf{SMF}^{*(n-1)}(\mathbf{SM})^\top\right)\left(\mathbf{M}^{-1}\mathbf{T}\otimes\mathbf{I}_n\right).$$

Bettale–Faugère–Perret (2013)

There is an invertible matrix $\mathbf{M} \in \mathbb{F}_{q^n}^{n \times n}$, such that the public key can be written as:

$$(\mathbf{P}_1|\cdots|\mathbf{P}_{n-a}) = \left(\mathbf{SMF}^{*0}(\mathbf{SM})^\top|\cdots|\mathbf{SMF}^{*(n-1)}(\mathbf{SM})^\top\right)\left(\mathbf{M}^{-1}\mathbf{T}\otimes\mathbf{I}_n\right).$$

Tao–Petzoldt–Ding suggest to solve a MinRank problem for the indeterminate vector $\mathbf{u} = (u_0, \dots, u_{n-1})$ in:

$$\mathbf{u}\mathbf{P}^* := egin{bmatrix} \mathbf{u}\mathbf{P}_1 \ dots \ \mathbf{u}\mathbf{P}_{n-a} \end{bmatrix} \in \mathbb{F}_{q^n}^{(n-a) imes n}$$

Bettale–Faugère–Perret (2013)

There is an invertible matrix $\mathbf{M} \in \mathbb{F}_{q^n}^{n \times n}$, such that the public key can be written as:

$$(\mathbf{P}_1|\cdots|\mathbf{P}_{n-a}) = \left(\mathbf{SMF}^{*0}(\mathbf{SM})^\top|\cdots|\mathbf{SMF}^{*(n-1)}(\mathbf{SM})^\top\right)\left(\mathbf{M}^{-1}\mathbf{T}\otimes\mathbf{I}_n\right).$$

Tao–Petzoldt–Ding suggest to solve a MinRank problem for the indeterminate vector $\mathbf{u}=(u_0,\ldots,u_{n-1})$ in:

$$\mathbf{uP}^* := egin{bmatrix} \mathbf{uP}_1 \ dots \ \mathbf{uP}_{n-a} \end{bmatrix} \in \mathbb{F}_{q^n}^{(n-a) imes n}$$

To see why this works, let $\mathbf{v} = (1, 0, \dots, 0)$, and inspect:

$$\mathbf{v}\mathbf{F}^* := egin{bmatrix} \mathbf{v}\mathbf{F}^{*0} \ dots \ \mathbf{v}\mathbf{F}^{*n-1} \end{bmatrix}$$

Sketch of \mathbf{F}^{*0} $(d = \lceil log_q D \rceil)$

Three Superimposed \mathbf{F}^{*i} Matrices

Attack Against HFE-

At most $d = \log_q D$ of the \mathbf{F}^{*i} matrices have a nonzero first row.

 \Rightarrow There is a nonzero vector $\mathbf{u} \in \mathbb{F}_{q^n}^n$ such that

$$\mathbf{u}\mathbf{P}^* := egin{bmatrix} \mathbf{u}\mathbf{P}_1 \ dots \ \mathbf{u}\mathbf{P}_{n-a} \end{bmatrix} \in \mathbb{F}_{q^n}^{(n-a) imes n}$$

has rank at most d. \mathbf{u} can be found by solving a MinRank problem.

This observation relies on the input matrix, S, being invertible. What happens if this is not the case?

Let $\mathbf{S} \in \mathbb{F}_q^{(n-p) \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

Let $\mathbf{S} \in \mathbb{F}_q^{(n-p) \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

$$\mathbb{F}_{q^n} \xrightarrow{f(X)} \mathbb{F}_{q^n}$$

$$\phi \qquad \qquad \phi \qquad \qquad \phi^{-1}$$

$$\mathbb{F}_q^{(n-p)} \xrightarrow{\mathbf{S}} \mathbb{F}_q^n \xrightarrow{\mathbf{F}_q} \mathbb{F}_q^n \xrightarrow{\mathbf{T}} \mathbb{F}_q^{(n-a)}$$

$$\overline{p_1, \dots, p_{n-a}} \in \overline{\mathbb{F}}_q[\overline{x_1, x_2, \dots, x_{n-p}}]$$

$$\mathbf{pHFE-:}\ f(X) = f_{hfe}(X) = \sum_{\substack{i,j \in \mathbb{N} \\ q^i + q^j \leq D}} \alpha_{i,j} X^{q^i + q^j} + \sum_{\substack{i \in \mathbb{N} \\ q^i \leq D}} \beta_i X^{q^i} + \gamma$$

Let $\mathbf{S} \in \mathbb{F}_q^{(n-p) \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

$$\mathbb{F}_{q^n} \xrightarrow{f(X)} \mathbb{F}_{q^n}$$

$$\phi \qquad \qquad \phi \qquad \qquad \phi^{-1}$$

$$\mathbb{F}_q^{(n-p)} \xrightarrow{\mathbf{S}} \mathbb{F}_q^n \xrightarrow{\mathbb{F}_q^n} \mathbb{F}_q^n \xrightarrow{\mathbf{T}} \mathbb{F}_q^{(n-a)}$$

$$\overline{p_1, \dots, p_{n-a}} \in \overline{\mathbb{F}_q[x_1, x_2, \dots, x_{n-p}]}$$

$$\mathbf{pHFE-:}\ f(X) = f_{hfe}(X) = \sum_{\substack{i,j \in \mathbb{N} \\ q^i + q^j \leq D}} \alpha_{i,j} X^{q^i + q^j} + \sum_{\substack{i \in \mathbb{N} \\ q^i \leq D}} \beta_i X^{q^i} + \gamma$$

PFLASH:
$$f(X) = f_{C^*}(X) = X^{q^{\theta}+1}$$

Let $\mathbf{S} \in \mathbb{F}_q^{(n-p) \times n}$ and $\mathbf{T} \in \mathbb{F}_q^{n \times (n-a)}$ be secret matrices of maximal rank. $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ an isomorphism.

$$\mathbb{F}_{q^n} \xrightarrow{f(X)} \mathbb{F}_{q^n}$$

$$\phi \qquad \qquad \phi \qquad \qquad \phi^{-1}$$

$$\mathbb{F}_q^{(n-p)} \xrightarrow{\mathbf{S}} \mathbb{F}_q^n \xrightarrow{\mathbf{F}_q^n} \mathbb{F}_q^n \xrightarrow{\mathbf{T}} \mathbb{F}_q^{(n-a)}$$

$$\stackrel{\mathbb{F}_q^n}{\longrightarrow} \overline{p_1, \dots, p_{n-a}} \in \overline{\mathbb{F}}_q[\overline{x_1, x_2, \dots, x_{n-p}}]$$

$$\mathbf{pHFE-:}\ f(X) = f_{hfe}(X) = \sum_{\substack{i,j \in \mathbb{N} \\ q^i + q^j \leq D}} \alpha_{i,j} X^{q^i + q^j} + \sum_{\substack{i \in \mathbb{N} \\ q^i \leq D}} \beta_i X^{q^i} + \gamma$$

PFLASH:
$$f(X) = f_{C^*}(X) = X^{q^{\theta}+1}$$

For signature schemes, projection typically adds a factor q^p to signing time.

Sketch: Bounding the Degree for pHFE-

Lemma

A linear map $S: \mathbb{F}_q^n \to \mathbb{F}_q^n$, where $|\mathrm{Ker}(S)| = q^p$, can be written as

$$S = \phi^{-1} \circ \pi \circ \phi \circ S',$$

where S' is an invertible linear map, and $\pi \in \mathbb{F}_{q^n}[X]$ a q-linear polynomial of degree q^p .

Sketch: Bounding the Degree for pHFE-

Lemma

A linear map $S: \mathbb{F}_q^n \to \mathbb{F}_q^n$, where $|\mathrm{Ker}(S)| = q^p$, can be written as

$$S = \phi^{-1} \circ \pi \circ \phi \circ S',$$

where S' is an invertible linear map, and $\pi \in \mathbb{F}_{q^n}[X]$ a q-linear polynomial of degree q^p .

The public key can then be written as:

$$T\circ\phi^{-1}\circ f\circ\phi\circ S=T\circ\phi^{-1}\circ {\color{red} f}\circ \pi\circ\phi\circ S'.$$

How does the "new" central map $f \circ \pi$ behave?

$p = 0, d \times d$ -Block. $p > 0, (d + p) \times (d + p)$ -Block

Sketch: Bounding the Degree for pHFE-

Proposition

Let $(\mathbf{P}_1, \dots, \mathbf{P}_{n-a})$ be the public key of an instance of pHFEv-. Then there is a nonzero tuple $\mathbf{u} \in \mathbb{F}_{a^n}^{n-p}$ such that \mathbf{uP}^* has rank at most p+d.

Sketch: Bounding the Degree for pHFE-

Proposition

Let $(\mathbf{P}_1, \dots, \mathbf{P}_{n-a})$ be the public key of an instance of pHFEv-. Then there is a nonzero tuple $\mathbf{u} \in \mathbb{F}_{q^n}^{n-p}$ such that $\mathbf{u}\mathbf{P}^*$ has rank at most p+d.

We can use a similar line of argument for the C^* central map (PFLASH), but the resulting bound will not be tight.

Sketch for p = 1

Consider a vector of weight 2: $\mathbf{v} = (1, 0, \dots, 0, 1, 0, \dots, 0)$, and multiply it with the matrices:

Sketch for p = 1

Consider a vector of weight 2: $\mathbf{v} = (1, 0, \dots, 0, 1, 0, \dots, 0)$, and multiply it with the matrices:

The resulting matrix $\mathbf{vF}_{C^*}^*$ will have weight 4.

Small Example: n = 7, $\theta = 2$, p = 1

We choose the vector $\mathbf{v} = (1, 0, 1, 0, 0, 0, 0)$. The first matrix of the central map is:

Small Example: n = 7, $\theta = 2$, p = 1

We choose the vector $\mathbf{v} = (1, 0, 1, 0, 0, 0, 0)$. The first matrix of the central map is:

The matrix constructed from the various vector–matrix products will be

Step I: Construct vectors of weight 1 + p that minimizes the rank (depends on θ).

Step I: Construct vectors of weight 1 + p that minimizes the rank (depends on θ).

Step II: Show that this vector lies in the image of SM.

Proposition

Let $(\mathbf{P}_1, \dots, \mathbf{P}_{n-a})$ be the public key of an instance of PFLASH. Then there is a nonzero tuple $\mathbf{u} \in \mathbb{F}_{q^n}^{n-p}$ such that \mathbf{uP}^* has rank at most 2+p.

Proposition

Let $(\mathbf{P}_1, \dots, \mathbf{P}_{n-a})$ be the public key of an instance of PFLASH. Then there is a nonzero tuple $\mathbf{u} \in \mathbb{F}_{q^n}^{n-p}$ such that \mathbf{uP}^* has rank at most 2+p.

We also discuss the number solutions \mathbf{u} for the MinRank problem, and identify weak choices of θ . See the paper for more details.

Experiments: pHFE- (Top) and PFLASH (Bottom)

q	n	a	р	D	Upper Bound	Rank of uP*
2	13	0	1	5	4	3, 4
2	13	0	2	5	5	4, 5
2	13	0	3	5	6	5
2	15	0	4	5	7	6
2	13	0	0	9	4	3, 4
2	13	4	1	9	5	4, 5
2	13	4	2	9	6	5, 6
2	17	6	1	9	5	4, 5
2	13	4	0	17	5	4, 5
2	13	4	1	17	6	5, 6
2	13	0	2	17	7	6

q	n	a	р	θ	Upper Bound	Rank of uP*
2	21	0	1	13	3	2, 3
2	21	0	2	13	4	3, 4
4	31	0	1	7	3	2
4	13	0	3	5	5	4, 5
4	25	8	0	11	2	1, 2
4	25	8	1	11	3	2, 3
4	17	5	3	7	5	4, 5
2	15	1	4	7	6	5, 6
2	15	0	5	7	7	6
4	14	4	4	5	6	5

Effects on variants of HFE

For the new rank attack, including a projection p is comparable to increasing the HFE–degree to q^pD .

Effects on variants of HFE

For the new rank attack, including a projection p is comparable to increasing the HFE–degree to q^pD .

In terms of signing time, projection is more efficient. Over \mathbb{F}_2 , it is faster by a factor

$$\frac{(p+\log_2 D)^2\log_2(p+\log_2 D)}{\log_2(D)^2\log_2\log_2 D}$$

Effects on variants of HFE

For the new rank attack, including a projection p is comparable to increasing the HFE–degree to q^pD .

In terms of signing time, projection is more efficient. Over \mathbb{F}_2 , it is faster by a factor

$$\frac{(p + \log_2 D)^2 \log_2(p + \log_2 D)}{\log_2(D)^2 \log_2 \log_2 D}$$

Scheme	${p_1}^{ m a}$	p_2^{b}
GeMSS128	2	0
RedGeMSS128	6	4
GeMSS256	14	10
RedGeMSS256	18	14

 $^{^{\}rm a}$ Using $\omega=2.37$

^bUsing $\omega = 2.81$

Effects on variants of C^* (PFLASH)

The suggested projection used in PFLASH (p=1) is not sufficient to achieve security.

More work needed to find good parameters for PFLASH.

Conclusions

• The new rank attack by Tao, Petzoldt and Ding can also be used against PFLASH.

 Adding (or increasing the size of the) projection can be used to counter this attack.

• Projection increases the singing time for signature schemes (often cheap for encryption schemes).