Simulation von Protuberanzen und Erstellen von prozeduralen Kugeloberflächen in Unity

Florian Hansen Hochschule Flensburg Germany

ZUSAMMENFASSUNG

test

1 EINLEITUNG

Häufig steht man als 3D-Programmierer vor dem Problem, die in der Natur vorkommenden Phänomene effizient und in Echtzeit darzustellen zu wollen, um diese dann anschließend in andere Projekte wie Videospiele einzubinden. Aber auch bei Filmen sollte darauf geachtet werden, dass die Zeit für das Rendern nicht ausartet. Am interessantesten erscheint in diesem Zusammenhand die Nutzung von Echtzeitsimulationen, um natürliche Prozesse näher untersuchen zu können, die nicht so häufig vorkommen.

Im Grunde existieren zwei Lösungsansätze für das Problem, rechenintensive Echtzeitsimulationen durchzuführen. Zum einen kann man fiktive Effekte definieren, die durch iteratives Ausprobieren ähnliche Ergebnisse wie das reale Vorbild erzielen. Diese Ergebnisse sind dann jedoch rein fiktiv und haben selten etwas mit der Realität zu tun. Zum anderen kann man versuchen, physikalische Prozesse abzubilden, um so möglichst nah an der Realität zu bleiben. Diese wissenschaftliche Arbeit soll sich diesem Problem anhand der uns bekannten Sonne widmen. Hierbei wird sich auf die äußerliche Erscheinung der Sonne und besonders ihrer Protuberanzen (umgangssprachlich Sonnenstürme) bezogen. Es soll also eine Verbindung zwischen echten, beobachtbaren Phänomenen bzw. physikalischen Eigenschaften der Sonne und Computersimulationen umgesetzt werden.

2 GRUNDLAGEN

3 BERECHNUNG EINER KUGEL

Damit später eine Textur für die Sonne erstellt werden kann, muss zuerst eine Oberfläche generiert werden, die diese Textur aufnehmen kann. Hierfür existieren verschiedenste Möglichkeiten. Im Falle der Sonne betrachten wir das Modell einer Kugel, die später manipuliert werden soll, um visuelle Effekte auf ihr abzubilden. Beim Betrachten der folgenden Algorithmen zur Erzeugung von Kugeloberflächen wird klar, dass nicht alle Methoden für dieses Vorhaben geeignet sind. Aus diesem Grund werden die einzelnen Verfahren näher erläutert und anschließend abgewogen, welcher Algorithmus zur Erzeugung einer Sonnenoberfläche verwendet werden sollte.

3.1 Längengrad-Breitengrad-Gitter

Die einfachste Möglichkeit, eine Kugeloberfläche zu erzeugen, ist die Verwendung von Segmentlinien. Im Grunde unterteilt man die gesamte Kugel in Schichten, deren Umfang schließlich die Oberfläche der Kugel darstellen. Die Mesh-Punkte (*Vertices*) dieser Schichten, welche als einfache Kreise wahrgenommen werden können,

werden mithilfe von Längen- und Breitengradinformationen erstellt. Das Resultat ist eine Kugeloberfläche mit erkennbaren Polen an der Ober- und Unterseite der Oberfläche. Diese entstehen dadurch, dass auch am Rand der Kugel die gleiche Anzahl an Kanten vorhanden ist, wie am Äquator. Diese Schichten sind dementsprechend lediglich herunterskaliert und in einem immer kürzer werdenden Abstand aufeinander geschichtet und Erzeugen eine Überabtastung am oberen und unteren Rand der Kugel [1].

Die Überabtastung an den Polen bzw. die Unterabtastung am Äquator bringt viele Probleme mit sich. Vor allem, wenn die Oberfläche animiert werden soll, erscheint die Animation als sehr unregelmäßig. Hierauf wird jedoch in einem späteren Abschnitt eingegangen, wenn die hier vorgestellten Methoden miteinander verglichen werden.

3.2 Fibonacci-Gitter

Um das Problem der Inhomogenität von Längengrad-Breitengrad-Gittern zu lösen, können Fibonacci-Gitter verwendet werden. Hierbei werden die Punkte des Gitters entlang einer Spirale, die sogenannte Fibonacci-Spirale, angeordnet. Wichtig bei der Konstruktion sind die $Golden-Ratio\ \Phi$ und der $Golden-Angle\ \alpha\ [1,2]$.

$$\Phi = \frac{1 + \sqrt{5}}{2} \qquad \alpha = 2\pi \left(2 - \Phi\right)$$

Besonders einfach lässt sich bei diesem Algorithmus die Anzahl an Oberflächenpunkte kontrollieren. Das folgende Beispiel behandelt das Erstellen von N Punkten, die gleichmäßig verteilt auf der Oberfläche einer Kugel liegen. Zuerst werden die Längenund Breitengrade der einzelnen Punkte berechnet.

$$lat_i = arcsin\left(\frac{2i}{N+1} - 1\right) \qquad lon_i = \alpha \cdot i$$

Anschließend können die räumlichen Koordinaten als Positionsvektor $\vec{p} \in \mathbb{R}^3$ wie folgt berechnet werden.

$$\vec{p} = \begin{pmatrix} \cos(lon)\cos(lat) \\ \sin(lon)\sin(lat) \\ \sin(lat) \end{pmatrix}$$

Wie man sieht, ist die Erzeugung von homogen verteilten Oberflächenpunkten einer Kugel mithilfe von Fibonacci-Gittern ziemlich schnell implementiert. Nachteil dieser Lösung ist, dass lediglich die Punkte bzw. Vertices eines Meshes erzeugt werden. Um Flächen darstellen zu können, muss nachträglich eine Triangulation stattfinden.

3.3 Ikosaeder

Genau wie das Fibonacci-Gitter erzeugt ein Ikosaeder gleichmäßig verteilte Punkte auf der Oberfläche einer Kugel. Das Verfahren ist

Tabelle 1: Vergleich zwischen Anzahl der Unterteilungsiterationen N und den erzeugten neuen Flächen bzw. Vertices

N	Anzahl Vertices	Anzahl Dreiecke
1	12	60
2	42	240
3	162	960
4	642	3840
5	2562	15360

trotzdem komplett unterschiedlich. Anstatt die Vertices des Meshes zu berechnen und anschließend diese miteinander in Dreiecke zu verbinden, wird eine initiale Geometry erzeugt, dessen Flächen wiederum in weitere Flächen unterteilt wird. Dieses Vorgehen wird beliebige Male wiederholt, um eine immer glattere Oberfläche zu erzeugen. Das Problem bei diesem Algorithmus ist, dass durch die Unterteilung der Flächen in weitere, kleinere Flächen auf den ersten Blick nicht abgeschätzt werden kann, wie viele Vertices genau berechnet werden müssen. Tabelle 1 zeigt den Anstieg der benötigten Punkte, die durch N wiederholten Unterteilungsschritten berechnet werden müssen. Anhand der Anzahl an Dreiecken fällt ein exponentielles Wachstum auf, weshalb eine Erhöhung der Unterteilungsiterationen mit Bedacht durchgeführt werden sollte. Eine kleine Veränderung von N hat große Auswirkung auf die benötigte Rechenleistung für das Kugelmesh.

- 3.4 Entwicklung eines Skripts
- 4 SONNENOBERFLÄCHE
- 4.1 Generierung des Meshes
- 4.2 Fractal Brownian Motion
- 4.3 Cellular Noise
- 4.4 Entwicklung eines Shaders
- 5 PROTUBERANZEN
- 5.1 Wie Sonnenstürme entstehen
- 5.2 Magnetische Felder am Beispiel eines Dipols
- 5.3 Erstellung eines Vektorenfelds
- 5.4 Aufbau eines Partikelsystems
- 6 FAZIT UND AUSBLICK

LITERATUR

- Á. González. Measurement of areas on a sphere using fibonacci and latitude– longitude lattices. Mathematical Geosciences, 42(1):49, Nov 2009.
- [2] R. Marques, C. Bouville, M. Ribardière, L. P. Santos, and K. Bouatouch. Spherical fibonacci point sets for illumination integrals. *Computer Graphics Forum*, 32(8):134– 143, 2013