Листок 15

Тема 15 (4.2). Арифметика колец целых алгебраических чисел

Упражнения и задачи

- 1. Докажите, что $r \in \mathbb{Q}$ целое алгебраическое число $\iff r \in \mathbb{Z}$.
- 2. Пусть $\omega_1, \ldots, \omega_l$ целые алгебраические числа, $W = \{\sum_{i=1}^l r_i \omega_i : r_i \in \mathbb{Z}\}$. Докажите,
 - W конечно порождённый модуль над \mathbb{Z} ;
 - если для $\omega \in \mathbb{C}$ верно $\forall \gamma \in W \ \gamma \omega \in W$, то ω целое алгебраическое число;
 - множество целых алгебраических чисел является кольцом.
- 3. Докажите, что если α целое алгебраическое, то $\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$.
- 4. Пусть K/\mathbb{Q} числовое поле, \mathcal{D}_K кольцо целых. Докажите, что
 - $N_{K/\mathbb{O}}(\alpha), Tr_{K/\mathbb{O}}(\alpha) \in \mathbb{Z} \ \forall \alpha \in \mathcal{D}_K;$
 - ullet если $lpha_1,\ldots,lpha_n\in\mathcal{D}_K$ базис расширения, то $\Delta(lpha_1,\ldots,lpha_n)\in\mathbb{Z}.$
- 5. Пусть $I \subset \mathcal{D}_K$ идеал. Докажите, что если $\alpha_1, \ldots, \alpha_n \in I$ базис расширения K/\mathbb{Q} такой, что $\Delta(\alpha_1, \ldots, \alpha_n)$ минимален, то $I = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_n$.
- 6. Покажите, что 3, 7, $1+2\sqrt{-5}$, $1-2\sqrt{-5}$ являются простыми в $\mathbb{Z}[\sqrt{-5}]$ (т.о. $21=3\cdot 7=(1+2\sqrt{-5})(1-2\sqrt{-5})$ пример неоднозначного разложения на простые множители).
- 7. Докажите, что кольцо целых \mathcal{D}_K является нётеровым, и что всякий простой идеал $P \subset \mathcal{D}_K$ является максимальным.
- 8. Докажите, что $h_K = 1 \iff \mathcal{D}_K$ кольцо главных идеалов.
- 9. Докажите следующие свойства идеалов \mathcal{D}_{K} :
 - $AB = AC \implies B = C$;
 - $A \subset B \implies \exists C: A = BC$.
- 10. Докажите следующие свойства функции показателя:
 - $\nu_P(P) = 1$;
 - $P_1 \neq P_2 \implies \nu_{P_1}(P_2) = 0;$
 - $\nu_P(AB) = \nu_P(A)\nu_P(B)$.
- 11. Завершите доказательство теоремы об однозначности разложения идеалов кольца $\mathcal{D}_{K}.$
- 12. Пусть P простой идеал \mathcal{D}_K . Докажите, что \mathcal{D}_K/P является конечным полем.
- 13. Пусть R коммутативное кольцо с единицей, $A_1, \ldots, A_g \subset R$ идеалы такие, что $A = A_1 \cdot \cdots \cdot A_g$ и $\forall i \neq j \ A_i + A_j = R$. Докажите, что $R/A \cong R/A_1 \oplus \cdots \oplus R/A_g$.
- 14. Пусть $P,Q\subset \mathcal{D}_K$ простые идеалы. Докажите, что $\forall m,n\in\mathbb{Z}_+$ $P^m+Q^n=\mathcal{D}_K$.

Темы для самостоятельного изучения

• Теория Галуа для случая числовых полей, [Marc], Appendix B.