CSC791/495

Dr. Blair D. Sullivan

September 22, 2017

Reminders

- 1) Week-5 homework now due Tuesday 9/26 (at grans)
- 2) Proof Review exercise due 9/29 don't wait too long to start. (esp. 791 students! Correcting proofs is hard).
- (3) Opportunity Identification Project posted
 - -report due 10/6
 - posters 10/13
 - -new slack channel #opportunity ID
- (4) Exemplars posted in # problem-solution for Weeks 2, 3, 4

Treewidth, revisited

H = Km,n, a complete bipartite graph on V= AUB with lAl=m, IBl=n.

O BUSV37

· Give a tree decomposition of H

wichth = min (M,n) (1) Dick smaller side, say B

 $+W(k_{m,n}) \leq \min(m,n)$

@ make a bag w/B+ one vertex of A (vi)

(3) drop Vi, pick up V2

repeat until A is covered

· Prove your decomposition has minimum width

tw(Kmin) > min (min). Cops & Robbers: min(min) => if robber wins,

tw > min (min) -1

What's the strategy for the robber to win? always able to run to a node on small side w/o a cop remain on big side (if all cops go to small side)

· Why must every decomposition have either a bag containing A or one containing B? Suppose no bag contains A (WLOG). Consider a bag containing a vertex of A, V. v is adjacent to every node in B. Then some bag has foote by. =>? Try to formalize this proof by contradiction!

Thinking of Trees

Defin a k-tree is a graph G where either ① G=KKHI or ② FVEG, deg(V)=K, G/V a K-tree.

Defin partial K-trees are subgraphs of K-trees.

Thm G has tw = K (=> G is a partial k-tree.

• This observation can be used to form a tree decomposition by unraveling the recursion (vertices of deg < k which are removed). It is important that k-trees are chordal (triangulated) for this algorithm & so one must "fill-in" (triangulate) as you go to calculate correct bags.

make all higher-indexed neighbors adjacent

[I made a mess of this in class-my apalogies!]

tion

* DHKM DEIM

Nich

EIJM

EFJ

one called an elimination
late ordering.

A Separate Topic?

Defn $S \subseteq V$ is a <u>vertex separator</u> if G/S has at least two connected components. S is a <u>balanced</u> separator if every component has $\frac{2}{3} |V(G)|$ vertices.

Trees: have balanced separators of size 1! Furthermore, we can do this repeatedly until no separators left (edges/isolates).

=> Recursive Decomposition:

How does treewidth come into the picture?

- 1 Graphs of tw k have balanced separators of size & K
- 2) tree decompositions are recursive separator decompositions.

 Then Xi separates jdescofi , Ai= UXj , Bi= AinDi. Then Xi separates jdescofi , arcofi G[Di]\{(u,v)|u,v \in Bi}.

In-Class Exercise

Let G be a graph and $(T=(I,F), \{Xi\})$ a tree decomposition of width $\leq k$. Prove that if there are at least k+1 vertex-disjoint paths between vertices x and y, some bag contains both x and y.

My Approach.

First, prove that XinXj is a vertex separator for any edge ij of T (a TD).

- . Use this to argue that if $x \not\in y$ don't co-occur in a bag, they live on opposite sides of $a(\not\in k)$ -separator
- · Observe that KHI disjoint paths can't be routed through such a separator.

Could it get any nicer?

<u>Definition</u> A (rooted) tree decomposition is <u>nice</u> if every node xi is of one of the following types:

- (1) root /leaf 1xi1 = 0
- 2) introduce: one child Xj: Xi=XjU{v} V \(Xj
- 3) forget: one child Xj: Xi= Xj\{v\} V\in Xj
- (4) join: two children Xj, Xk: Xi= Xj= Xk

Thm G has $tw \le K \Rightarrow G$ has a <u>nice</u> TD of width $\le K$ and O(kn) nodes.

MWIS parameterized by treewidth

Problem Given a graph G of treewidth = k and a nice tree decomposition (T, {Xi}) of G (of width k), find the max. weighted independent set in G under weight function w: V(G) -> Inon-negative reals }.

need to remember $M[x, S] = \max \text{ weight of an indep.}$ set in T_X with $I \cap X_i = S$. tree below x (Di)

how big is this table?

I indep. seb. leaf: trivial M[i, ø] = 0

introduce: $O^{+\vee}M[i,S] = \begin{cases} m[j,S] & \forall \notin S \\ m[j,S] \end{cases}$ $\forall \in S, indep.$

could v have a nbr in Ti?
No b/c Xi is a separator.

forget: M[i,S] = max [j,S] + ma max (m[j,S], m[j,SU{v}])

join: (1) m[j,S] + m[j,S] - w(S)

how can an indépendent set behave? If I; CC; independent => IIU IZ U I3 is indep.

off I, is indep. in C, US -> what sets in Cz can I safely merge it with? olf nothing is adj to a member of 5 that's in I, → (InS) UIz is indep. that's all we need

time (2 K. 17)

3-coloring: an exercise

Thm 3-coloring has a 3th two(1) in algorithm.

Sketch We'll solve this by DP over a nice TD. What should we store in the table?

How can we update at each type of node? leaf:

introduce:

forget:

join:

o How long does it take?

Problems

1) Show OCT is FPT parameterized by treewidth.

2) Show SAT is FPT parameterized by the treewidth of (a) its primal graph or (b) its incidence graph.

Defn φ a CNF formula. The <u>primal graph</u> $G_P(\varphi) = (V_P, E_P)$ with $V_P = \{variables\}$ and $E_P = \{(x,y) \mid x,y \text{ co-occur in a clause of } \varphi\}$. The <u>incidence graph</u> $G_i(\varphi) = (V_i, E_i)$ is the bipartite graph with $V_i = \{variables\} \cup \{clauses\}$ and $E_i = \{(x,C) \mid x \text{ is a variable occurring in clause } C\}$.

Courcelle's Theorem (bonus material)

EMSO: extended monadic second order logic (on graphs)

- . logical connectives 1, V, →, T, =, ≠
- · quantifiers \, \, \, \, \, \, \, over vertex/edge variables
- · predicate adj(u,v): vertices u,v are adjacent
- · predicate inc(e,v): edge e is incident to vertex v
- · E, = for vertex/edge sets

Example: $\exists C \subseteq V \ \forall v \in C \ \exists u_{1}, u_{2} \in C(u_{1} \neq u_{2} \land adj(u_{1}, v)) \land adj(u_{2}, v))$

Thm If a graph property can be expressed in EMSO with formula p, there is an FPT algorithm for the property parameterized by treewicht.

WARNING: the constarits involved are (very) unfriendly.