Nama : Yohanes Dimas Pratama

NIM : A11.2021.13254

Kelompok : 4207

UTS RLD Semester 2

1. Kelebihan dan kekurangan sistem digital:

Kelebihan:

- Sistem digital lebih mudah dalam menyimpan informasi.
- Sistem digital menawarkan biaya yang lebih rendah.
- Sistem digital menggunakan komponen yang lebih kecil.
- Sistem digital mempunyai ketelitian, fleksibilitas, dan efisiensi yang lebih baik.

Kekurangan:

- Sistem digital memiliki sistem dan pemrosesan yang lebih kompleks.
- Sistem digital membutuhkan bandwith yang besar.
- Membutuhkan biaya yang tidak sedikit untuk melakukan penggantian alat komunikasi.
- Kesalahan pada saat digitalisasi akan menyebabkan konsep informasi yang asli tidak dapat terpresentasikan dengan baik saat digitalisasi.

2. Konversi sistem bilangan:

Desimal	Oktal	Heksa	Biner
88,625	130,58	58,A ₁₆	1011000,101
333,8125 ₁₀	515,64 ₈	14D,D	101001101,1101

- a. Desimal 88,625₁₀ ke oktal, heksa & biner:
 - Desimal Ke Oktal

88:8 = 11 sisa 0 11:8 = 1 sisa 3 88₁₀ = 130 0,625 x 8 = 5 88,625₁₀ = 130,5₈

Desimal ke Heksa

88: 16 = 5 sisa 8 = 58 0,625 x 16 = 10 (A) 88,625₁₀ = 58,A₁₆

Desimal Ke Biner

88: 2 = 44 sisa 0 44: 2 = 22 sisa 0 22: 2 = 11 sisa 0 11: 2 = 5 sisa 1 5: 2 = 2 sisa 1 2: 2 = 1 sisa 0 = 101 1000

- b. Biner 101001101,11012 ke Desimal, Oktal, Heksa
 - ➢ Biner ke Desimal

$$(101001101,1101)_2 = (1 \times 2^8) + (0 \times 2^7) + (1 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4}) = 333.8125_{10}$$

➤ Biner ke oktal

Setiap 3 bilangan biner dikelompokkan dari kanan ke kiri lalu dicari bilangan oktalnya

Biner ke Heksa

Setiap 4 bilangan biner dikelompokkan dari kanan ke kiri lalu dicari bilangan oktalnya

3. Penyederhanaan persamaan

B. Y =
$$\overline{A'(B'+C)} + \overline{(B'C+A)}$$

$$=\overline{A'(\overline{B'+C)}} \overline{(\overline{B'C+A)}}$$

$$=(\overline{A'}+(\overline{\overline{B'}+C)})(B'C+A)$$

$$= (A+(B'+C)) (B'C+A)$$

$$= (A+B'+C) (B'C+A)$$

$$= AB'C + AA + B'B'C + AB' + B'CC + AC$$

$$= AB'C + A + B'C + AB' + B'C + AC$$

$$= AB'C + A + BC'$$

4. Tabel rangkaian logika

No	Α	В	С	D	Е	F	Υ
1	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0
3	0	0	1	0	0	0	0
4	0	0	1	1	0	1	1
5	0	1	0	0	0	0	0
6	0	1	0	1	0	0	0
7	0	1	1	0	0	0	0
8	0	1	1	1	0	1	1
9	1	0	0	0	0	0	0
10	1	0	0	1	0	0	0
11	1	0	1	0	0	0	0
12	1	0	1	1	0	1	1
13	1	1	0	0	1	0	1
14	1	1	0	1	1	0	1
15	1	1	1	0	1	0	1
16	1	1	1	1	1	1	1

5. Fungsi Boolean f(A, B, C) = A + BC dalam bentuk kanonik SOP dan POS

Α	В	С	В'С	A + B'C
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1

1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

Bentuk SOP (Minterm): $f(A, B, C) = \sum m (1, 4, 5, 6, 7)$

Bentuk POS (Maxterm): $f(A, B, C) = \pi m (0, 2, 3)$

6. Penyerderhanaan dari fungsi menggunakan K-Maps! $F = \overline{ABC} + \overline{ABC} + ABC$

<u> </u>		•		
	A'B'	A'B	AB	AB'
C'				
C'		\bigcirc 1	1	1
		•	∀	★
		В	C A	ЯΒ

$$F = AC + BC$$