SINCRONA

Machine Learning para el Modelamiento y Gestión de Sistemas Complejos

Sesión 9:

Redes Neuronales (Deep Learning)

José Carlos Machicao

Los tipos de modelos para machine learning

Riesgos de la Experimentación en Modelamiento

Sobreajuste (Over-fitting) • un modelo es demasiado complejo y tiene demasiados parámetros, lo que hace que se ajuste muy bien a los datos de entrenamiento pero tenga un rendimiento deficiente en datos nuevos e invisibles.

Infraajuste (Under-fitting) • un modelo es demasiado simple y no puede capturar los patrones subyacentes en los datos, lo que lleva a un rendimiento deficiente tanto en los conjuntos de entrenamiento como de prueba.

Sesgo

• si los datos utilizados para entrenar el modelo no son representativos de la población del mundo real, lo que lleva a predicciones que son sistemáticamente incorrectas para ciertos grupos.

Consideraciones éticas

- los modelos de aprendizaje automático pueden perpetuar y amplificar los sesgos existentes en los datos
- genera preocupaciones éticas sobre su uso en ciertos contextos
- tomar medidas para mitigarlos en el diseño experimental

Machine Learning

Los datos reales se usan como base. Un algoritmo es entrenado vinculando las variables de entrada (predictores) para que coincidan con las variables de salida (resultados).

COTAC RESULTADOS REALES **PREDICTORES** REALES ALGORITMO EN **ENTRENAMIENTO**

Estos resultado podrían no ser exactamente iguales a los reales, pero utilizan un razonamiento artificial.

RESULTADOS PREDICHOS

MODELO ENTRENADO

La capacidad predictiva se muestra por la coincidencia entre los resultados reales de los datos nuevos y la

RESULTADOS REALES NUEVOS

El algoritmo entrenado puede predecir resultados para predictores nuevos.

4 I Machine Learnning

Transición de uso Tensorflow PyTorch

Variables Importantes

X_{original} Y_{original}

X_{dummies} Y_{binario}

X_{normal} y_{normal}

 Denotan diferentes momentos del modelamiento (data preparada y limpia, data normalizada, data convertida en tensores, y tensores cargados en GPU

X_{tensor} Y_{tenso}

Estructura de Entrenamiento / Modelamiento Red Neuronal

 Clasificación automática de frutas en función de las características de las hojas del árbol de la fruta correspondiente

Arquitectura de Código en Python

¡Muchas gracias!

