1 The Pulse Programmer

1.1 Overview

1.2 Registers

The state machine has the following registers:

W Main work register

W1 auxilliary work register

PC code address

INDF indirect memory address

 $shutter_mask - mask for shutter values$

 $shutter_reg \quad shutter\ value\ buffer$

counter_reg counter gate buffer

1.3 Commands

NOP No operation

DDSFRQ channel, *variable* write frequency (32 most significant bits) from variable to DDS channel

DDSFRQFINE channel, *variable* write frequency (16 least significant bits) from variable to DDS channel

DDSAMP channel, *variable* write amplitude from variable to DDS channel

DDSPHS channel, variable write phase from variable to DDS channel

DDSCHN

SHUTTER

COUNT

COUNT1

COUNTBOTH

DELAY

LDWR variable load value from variable into W register

LDWR1

LDWI load value from the address pointed to by INDF into W register

STWR variable store value in W register into variable

STWR1

STWI store value from W registerinto address pointed to by INDF

LDINDF variable load the contents of variable into the INDF register

ANDW variable W = W & variable

ADDW variable W = W + variable

INC variable W = variable + 1

DEC variable W = variable - 1

CLRW W = 0

CLRW1 W1 = 0

CMP variable Set W to 0 if W = variable

CMP1

JMP label Jump to label

JMPZ *label* Jump to *label* if W = 0

JMPZ1 *label* Jump to *label* if W1 = 0

JMPNZ *label* Jump to *label* if W != 0

JMPNZ1 *label* Jump to *label* if W1 != 0

SHUTTERMASK variable Set internal register shutter_mask to variable

ASYNCSHUTTER variable Update internal shutter register, bits set in shutter_mask are updated with the bits from variable

COUTERMASK variable Set the internal register with gate signals for the 8 counters and timestampers. Bits 7:0 gate counters 7:0, bits 15:8 gate timestamping on channels 7:0.

TRIGGER variable Set internal trigger register

UPDATE variable Update shutters, counter gates, triggers and start the delay counter with the value in variable

WAIT wait until the delay counter expires

LDCOUNT counterchannel load the last counter value from counterchannel into W register

WRITEPIPE write the value in W into the pipe to the host computer

READPIPE read a value from the pipe from the host computer into the W register. If there is no new data in the pipe, the last value in the pipe is used.

LDTDCCOUNT load the value from the global tdc counter into W

CMPEQUAL variable compare W and variable and set the internal compare bit to true if W=variable

JMPCMP label Jump to label if the internal compare bit is set

JMPNCMP label Jump to label if the internal compare bit is not set

JMPPIPEAVAIL *label* Jump to label if the pipe from the host computer has data

JMPPIPEEMPTY *label* Jump to label if the pipe from the host computer is empty

READPIPEINDF Read the value from the pipe from the host computer in the INDF register

WRITEPIPEINDF Write the value from the INDF register into the pipe to the host comuter

STOP Stop execution