ASSESSMENT - 1

NUMBER SYSTEMS - SOLUTIONS

1. How is 2's complement used in subtraction? If the answer is negative, how can you find its magnitude? (1)

Ans: A-B is the same as A+(2's complement of B). Hence using 2's complement method we can perform the subtraction of 2 numbers by simple addition. The MSB bit will indicate the sign. If it is 1 then the number is negative else it is positive.

2. Convert (FA27D)₁₆ to decimal, octal and binary representation (2)

Ans:

$$(FA27D)_{16} = (1024637)_{10}$$

 $(FA27D)_{16} = (1111\ 1010\ 0010\ 0111\ 1101)_2$
 $(FA27D)_{16} = (3721175)_8$

3. Convert (8620)₁₀ to BCD, Excess-3, Binary and 2421 (2)

Ans:

BCD = 1000 0110 0010 0000

Excess-3 = 1011 1001 0101 0011

Binary = 10000110101100

2421 = 1110 1100 0010 0000

4. Convert the decimal number 25.375 to its binary equivalent.

(1)

Ans: (11001.011)₂

- 5. Perform the indicated operations in binary: (2)
 - a. $(32)_8 + (73)_8$ Convert octal notation to binary notation and then perform addition operation

- b. $(175)_8 (114)_8$ Convert octal notation to binary notation and then perform subtraction operation
- c. $(7E)_{16}$ + $(AD)_{16}$ Convert hexadecimal notation to binary notation and then perform addition operation
- d. $(BC)_{16} (F4)_{16}$ Convert hexadecimal notation to binary notation and then perform subtraction operation

Ans:

a.
$$(32)_8 = (11010)_2$$

 $(73)_8 = (111011)_2$
 $(11010)_2 + (111011)_2 = (1010101)_2$

b.
$$(175)_8 = (11111101)_2$$

 $(114)_8 = (1001100)_2$
 $(1111101)_2 - (1001100)_2 = (0110001)_2$

c.
$$(7E)_{16} = (011111110)_2$$

 $(AD)_{16} = (10101101)_2$
 $(01111110)_2 + (10101101)_2 = (100101011)_2$

d.
$$(BC)_{16} = (10111100)_2$$

 $(F4)_{16} = (11110100)_2$
 $(10111100)_2 - (11110100)_2 = (000111000)_2$

- 6. Subtract using 1's and 2's complement method: (2)
 - a. $(10)_{10}$ from $(15)_{10}$
 - b. (57)₁₀ from (85)₁₀

Ans: a.
$$(15)_{10} = (1111)2$$

 $(10)_{10} = (1010)_2$

1's complement method

take 1's complement of $(1010)_2$ we get, $(0101)_2$

2's complement method

take 2's complement of $(1010)_2$ we get, $(0110)_2$

100101 discard the carry we get (00101)₂

b.
$$(57)_{10}$$
 from $(85)_{10}$
 $(85)_{10} = (1010101)_2$

$$(57)_{10} = (0111001)_2$$

1's complement method

take 1's complement of $(0111001)_2$ we get, $(1000110)_2$

2's complement method

take 2's complement of (0111001)₂ we get, (1000111)₂

01010101 11000111

100011100 discard the carry we get (00011100)₂

- 7. Obtain the 9's complement of the following decimal numbers:
 - (2)
 - a. $(459862)_{10}$
 - b. $(0147999)_{10}$

Ans:

- a. $(459862)_{10} = (540137)_{10}$
- b. $(0147999)_{10} = (9852000)_{10}$
- 8. Perform the following conversions: (3)
 - a. 5456 from octal to hexadecimal
 - b. 16038 from decimal to octal
 - c. F3B7 from hexadecimal to binary

Ans:

- a. (B2E)₁₆
- b. $(37246)_8$
- c. $(1111001110110111)_2$
- 9. Convert 34 from octal notation to binary notation and represent the result in 8 bits (2)

Ans:

$$(34)_8 = (11100)_2$$

8 bit representation: (00011100)₂

- 10. Convert the following gray codes to their binary representation:(2)
 - a. 101011
 - b. 011111010

Ans:

- a. 110001—>110010
- b. 010101100

- 11. Convert (12.345)₁₀ (3)
 - a. To binary
 - b. To Hexadecimal
 - c. To Octal representation

Ans:

- a. $(1100.01011000010100011111)_2$
- b. (C.585)₁₆
- c. $(14.2605)_8$
- 12. Perform binary subtraction of (2)
 - a. $(FA)_{16} (BC)_{16}$
 - b. $(A8F)_{16} (BE4)_{16}$

Ans:

- a. (00111110)₂
- b. (000101010101)₂
- 13. Represent the following in 2s complement method (2)
 - a. $(0.111011)_2$
 - b. (1010.1010)₂

Ans:

- a. 0.000101
- b. 0101.0110
- 14. Perform 2s complement subtraction (2)
 - a. $(2.45)_{10}$ $(8.65)_{10}$
 - b. $(3.985)_{10}$ $(10.234)_{10}$

Ans:

2's complement method

a.

take 2s complement of 8.65, we get 0111.010111 0010.011100 0111.010111

 $1001.110011 \longrightarrow (-6.203125)_{10}$

After 2s complement 0110.001101

b.

take 2s complement of 10.234 we get, 0101.11001 0011.11111

```
0101.11001
```

 $1001.11000 \longrightarrow (-6.25)_{10}$

After 2s complement 0110.01000

15. Perform $(456)_8$ - $(CD)_{16}$ and represent the result in 12-bit register (3)

Ans:
$$(456)_8 = (100101110)_2$$

 $(CD)_8 = (011001101)_2$

Take 2s complement of CD we get 100110011

100101110 100110011

1001100001 discard the carry we get 001100001 12 bit register will hold it as 000001100001

16. Display -104 in a signed 12 bit register and perform binary to gray code conversion (3)

Ans:

 $(104)_{10} = (000001101000)_2$

Its 2s complement will be (111110011000)₂

and its gray code equivalent will be: (100001010100)₂

- 17. Show the value of all bits of a register that hold the number equivalent to a decimal number 65 in: (4)
 - a. binary(represent it in a 8 bit register)
 - b. excess-3 (represent it in a 12 bit register)
 - c. 2421 code (represent it in a 12 bit register)
 - d. binary coded decimal (BCD).(represent it in a 10 bit register)

Ans:

- a. $(01000001)_2$
- b. (000010011000)₂
- c. $(000011001011)_2$

Or (000000001100101)2

d. $(0001100101)_2$

18. Consider the equation $(123)_5 = (x8)_{10}$ with x as unknown. What will be the value of x?(HINT: Convert both sides to radix 10) (2)

Ans:

$$(123)_5 = (x8)_{10}$$

 $1*5^2 + 2*5 + 3 = x*10 + 8$
 $25 + 10 + 3 = x*10 + 8$
 $38 - 8 = x*10$
 $x = 3$

