A New Angle on Jet Substructure

Jesse Thaler

Kavli IPMU — January 13, 2017

Jet Substructure

Boosting the Search for New Phenomena

[Thursday & Today]

Pushing the Boundaries of Quantum Field Theory

[Next Monday & Tuesday]

Last Time

Jets from the Standard Model

++ = plus gluonic radiation

Last Time

W/Z Tagging in 2016

Soft Drop

[Larkoski, Marzani, Soyez, JDT, 2014; see also Dasgupta, Fregoso, Marzani, Salam, 2013]

Trimming

[Krohn, JDT, Wang, 2009]

N-subjettiness

before grooming, after decorrelation

[JDT, Van Tilburg, 2010, 2011; Dolen, Harris, Marzani, Rappoccio, Tran, 2016] D_2

after grooming

[Larkoski, Moult, Neill, 2014; based on Larkoski, Salam, JDT, 2013]

W/Z Tagging in 2016

Can we understand these choices from first principles QCD?

Can we construct improved algorithms for 2017?

Soft Drop

[Larkoski, Marzani, Soyez, JDT, 2014; see also Dasgupta, Fregoso, Marzani, Salam, 2013]

Trimming

[Krohn, JDT, Wang, 2009]

N-subjettiness

before grooming, after decorrelation

[JDT, Van Tilburg, 2010, 2011; Dolen, Harris, Marzani, Rappoccio, Tran, 2016] D_2

after grooming

[Larkoski, Moult, Neill, 2014; based on Larkoski, Salam, JDT, 2013]

W/Z Tagging in 2016

Can we understand these choices from first principles QCD?

Can we construct improved algorithms for 2017?

Yes! Key realization:
Discrimination different
before/after grooming

Yes!
Systematic basis for jet substructure observables

Punchline: W/Z Tagging in 2017?

Stable & Performant

$$N_2 = \frac{\sum_{i < j < k} p_{Ti} \, p_{Tj} \, p_{Tk} \min \left\{ (R_{ij} R_{jk})^2, (R_{jk} R_{ki})^2, (R_{ki} R_{ij})^2 \right\}}{I}$$

 $\left(\sum_{i < j} p_{Ti} p_{Tj} R_{ij}^2\right)^2 / \sum_{i} p_{Ti}$

[Moult, Necib, JDT, 2016]

Grooming From First Principles

[More details on Monday]

Trimming from First Principles?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

Trimming from First Principles?

[Krohn, JDT, Wang, 0912.1342; diagram from ATLAS, 1306.4945]

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Original Jet

Calculating Groomed Mass?

Simulated LHC Data

[Larkoski, Marzani, Soyez, JDT, 2014]

Calculating Groomed Mass?

Simulated LHC Data

First-principles QCD (MLL)

[Larkoski, Marzani, Soyez, JDT, 2014]

Both grooming strategies give good signal isolation

Scorecard

quark jets (Pythia 6 MC)

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop

Soft drop with $\beta = 0$ = mMDT with $\mu = 1$

Trimming

Both have primary kink at

$$m \simeq p_T R \sqrt{z_{\rm cut}}$$

*Trimming has secondary kink at

$$m \simeq p_T R_{\rm sub} \sqrt{z_{\rm cut}}$$

(Pruning also has similar behavior)

Axes or Axes-Free?

Discrimination with Axes

$$z_i \equiv rac{p_{Ti}}{\sum_j p_{Tj}} \quad heta_{ij} \equiv \Delta R_{ij}$$

N-subjettiness

$$\frac{\tau_2}{\tau_1} = \frac{\sum_{k} z_k \min\{\theta_{k1}, \theta_{k2}\}^{\beta}}{\sum_{k} z_k \theta_{k1}^{\beta}}$$

Requires a definition of subjet axes (i.e. minimizing over all axes possibilities)

Discrimination without Axes

$$z_i \equiv \frac{p_{Ti}}{\sum_j p_{Tj}} \quad \theta_{ij} \equiv \Delta R_{ij}$$

Energy Correlation Functions

$$D_2 = \frac{e_3}{(e_2)^3} = \frac{\sum\limits_{i < j < k} z_i z_j z_k \left(\theta_{ij} \theta_{jk} \theta_{ki}\right)^\beta}{\left(\sum\limits_{i < j} z_i z_j \theta_{ij}^\beta\right)^3} = \frac{\sum\limits_{i < j < k} z_i z_j z_k \left(\theta_{ij} \theta_{jk} \theta_{ki}\right)^\beta}{\left(\sum\limits_{i < j} z_i z_j \theta_{ij}^\beta\right)^3}$$

Axes-free probe for substructure; not immediately obvious how it works

[Larkoski, Salam, JDT, 1305.0007; Larkoski, Moult, Neill, 1409.6298, 1507.03018; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646]

N-subjettiness

Energy Correlator: D₂

Can we understand this behavior from first principles?

N-subjettiness Behavior

Parametric separation between 1 and 2 prong jets

N-subjettiness Behavior with Grooming

Parametric separation between 1 and 2 prong jets even after removing soft peripheral radiation

Scorecard

Soft Drop

Trimming

/*

N-subjettiness

before grooming

(also works after grooming)

D₂ after grooming

Not just good discrimination, but stability to choice of cuts

The Power of Power Counting

Textbook QCD

At leading log order:

$$C_{q} = 4/3$$

$$C_{g} = 3$$

See end of talk for quark/gluon tagging

$$\mathrm{d}P_{i o ig}\simeq rac{2lpha_s}{\pi}C_irac{\mathrm{d} heta}{ heta}rac{\mathrm{d}z}{z}$$

Collinear Soft singularity singularity

Power Counting Modes

Power Counting D2: Background

$$D_2 = \frac{e_3}{(e_2)^3} = \frac{\sum\limits_{i < j < k} z_i z_j z_k \left(\theta_{ij} \theta_{jk} \theta_{ki}\right)^\beta}{\left(\sum\limits_{i < j} z_i z_j \theta_{ij}^\beta\right)^3} = \frac{\left(\sum\limits_{i < j} z_i z_j \theta_{ij}^\beta\right)^3}{\left(\sum\limits_{i < j} z_i z_j \theta_{ij}^\beta\right)^3}$$
Setting $\beta = 1$

Power Counting D₂: Background

$$D_2 = \frac{e_3}{(e_2)^3} = \frac{\sum_{i < j < k} z_i z_j z_k \left(\theta_{ij} \theta_{jk} \theta_{ki}\right)^\beta}{\left(\sum_{i < j} z_i z_j \theta_{ij}^\beta\right)^3} = \frac{\left(\sum_{i < j} z_i z_j \theta_{ij}^\beta\right)^3}{\left(\sum_{i < j} z_i z_j \theta_{ij}^\beta\right)^3}$$
Setting $\beta = 1$

Power Counting D₂: Background

Background after Grooming

After grooming, D₂ background distribution is parametrically stable

Signal/Background Separation

Scorecard

CMS

ATLAS "R2D2" Tagger

N-subjettiness

before grooming

(also works after grooming)

Trimming

D₂ after grooming

*unstable before grooming

Theoretically sound W/Z tagging strategies for the LHC

Systematic Catalog of Axes-Free Observables

Punchline: W/Z Tagging in 2017?

Stable & Performant

[Moult, Necib, JDT, 2016]

Back to Basics: What is a Measurement?

Stress-Energy Flow Operator:

Also charge flow operators, but not IRC safe

[Sveshnikov, Tkachov, hep-ph/9512370; see also Mateu, Stewart, JDT, 1209.3781]

Back to Basics: What is a Measurement?

Energy Correlators:
Decomposition for *any*IRC safe observable

$$F_N(\{p_i\}) = \sum_{i_1, i_2} \sum_{i_2, \dots, i_N} E_{i_1} E_{i_2} \dots E_{i_N} f_N(\hat{p}_{i_1}, \hat{p}_{i_2}, \dots, \hat{p}_{i_N})$$

All N-tuples

N Energies

Angular Weighting (symmetric, vanishes for θ ij \rightarrow 0)

Completely general, but useful for jets?

I-point Correlator

The most basic jet observable:
$$p_T^{
m jet} \simeq \sum_i p_{Ti}$$

Using dimensionless quantities

$$z_i \equiv \frac{p_{Ti}}{\sum_j p_{Tj}} \qquad \theta_{ij} \equiv \Delta R_{ij}$$

I-point:
$$e_1 = \sum_{i} z_i = 1$$

2-point Correlators

2-point:
$$e_2^{(eta)} = \sum_{i < j} z_i z_j heta_{ij}^eta$$

Similar information to jet mass

[see also Berger, Kucs, Sterman, hep-ph/0303051; Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 1401.2158; Larkoski, JDT, Waalewijn, 1408.3122; Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

3-point Correlators

$${}_{1}e_{3}^{(\beta)} = \sum_{i < j < k} z_{i}z_{j}z_{k} \min\{\theta_{ij}, \theta_{jk}, \theta_{ki}\}^{\beta}$$

3-point:
$$_2e_3^{(\beta)} = \sum_{i < j < k} z_i z_j z_k \min\{\theta_{ij}\theta_{jk}, \theta_{jk}\theta_{ki}, \theta_{ki}\theta_{ij}\}^{\beta}$$

$$_{3}e_{3}^{(\beta)} = \sum_{i < j < k} z_{i}z_{j}z_{k}(\theta_{ij}\theta_{jk}\theta_{ki})^{\beta}$$

 $\begin{array}{c} used \\ for \ D_2 \end{array}$

Probe of hierarchical jet substructure

N-point Correlators

$$_{v}e_{n}^{(\beta)} = \sum_{\text{all } n\text{-tuples}} (n \text{ energies}) (v \text{ smallest angles})^{\beta}$$

Systematic jet dissection

$$n = 2, 3, 4, ...$$
 $v = 1, 2, 3, ..., n \text{ choose } 2$

$$\beta = ..., 0.5, 1, 2, ...$$
collinear soft dominated

New Discriminants

New Boosted W/Z Discriminants

$$M_2 = \frac{{}_1e_3}{{}_1e_2}$$

$$N_2 = \frac{2e_3}{(1e_2)^2}$$

Rule of thumb: boost invariance along jet axis

$$z_i \to z_i \quad \theta_{ij} \to \gamma^{-1}\theta_{ij}$$

(i.e. same angular scaling in numerator and denominator)

Lesson: Signal robust to grooming, but background can change when soft modes removed

W/Z Tagging before Grooming

$$M_2 = \frac{{}_1e_3}{{}_1e_2}$$

$$N_2 = \frac{2e_3}{(1e_2)^2}$$

(B overlaps S)

W/Z Tagging after Grooming

$$M_2 = \frac{{}_1e_3}{{}_1e_2}$$

$$N_2 = \frac{2e_3}{(1e_2)^2}$$

Performance Follows Power Counting

After Grooming 10^{0} 10^{-1} $D_{2}^{(2)}$ $D_{2}^{(2)}$

(Note, groomed mass gives x3-5 better background rejection by itself)

Boosted Top Discrimination

Axes vs. axes-free?

After grooming, identical power counting, similar performance

[Moult, Necib, JDT, 1609.07483]

The Next Frontier

Quark/Gluon Tagging for New Physics

Signals ⇒ quark-enriched

Backgrounds ⇒ gluon-enriched

Promising performance in SUSY searches...

Quark/Gluon Tagging for New Physics

Signals ⇒ quark-enriched

Backgrounds ⇒ gluon-enriched

Promising performance in SUSY searches...

...but considerable theoretical uncertainties

Key Task for Jet Substructure

 $e^+e^- \rightarrow quarks (C_F = 4/3)$

Well-constrained by LEP measurements

VS.

 $e^+e^- \rightarrow gluons (C_A = 3)$

Needs more input from experiment (and theory)

[Soyez, JDT, Freytsis, Gras, Kar, Lönnblad, Plätzer, Siodmok, Skands, Soper, 1605.04692]

Higher-Point Quark/Gluon Discriminants

[Moult, Necib, JDT, 1609.07483]

Jet Substructure

Boosting the Search for New Phenomena

[Thursday & Today]

Pushing the Boundaries of Quantum Field Theory

[Next Monday & Tuesday]

