

Intro to Computer Science and Software Engineering

Gates and Circuits

Dr Yubei Lin
yupilin@scut.edu.cn
School of Software Engineering

A electronic computer is a tool that can carry out the computation we have discussed.

the processor unit or chip

Binary (base 2)

One bit addition

Arithmetic operations

- Addition
- Subtraction
- Multiplication
- division

carry sum

A electronic computer is a tool that can carry out the computation we have discussed.

• the processor unit or chip

Binary (base 2)

One bit addition

		0
+		1
	0	1

Arithmetic operations

- Addition
- Subtraction
- Multiplication
- division

Д			1
В	+		0
		0	1

ca	rry	su	m

		1
+		1
	1	0

carry sum

How addition of Binary system can be implemented by electronic units?

A electronic computer is a tool that can carry out all the computation we have discussed.

the processor unit

Binary (base 2)

Boolean algebra

Arithmetic operations

- Addition
- Subtraction
- Multiplication
- division

Operations:

NOT

AND

OR

XOR

NAND

NOR

A electronic computer is a tool that can carry out all the computation we have discussed.

the processor unit

Binary (base 2)

Boolean algebra

Arithmetic operations

- Addition
- Subtraction
- Multiplication
- division

Operations:

NOT

AND

OR

XOR

NAND

NOR

How addition of Binary system can be implemented by Boolean Algebra?

"A + B" expression, A and B are variables

A + B

A and B are decimal integers in [0,9] +: addition

A B

A and B can be true (1) or false (0)

• : AND

Algebra

A + B

A and B are binaries in [0,1]

+: addition

Boolean algebra

Three different, but equally powerful ways

- Boolean expressions
- Logic diagrams (Gates and Circuits)
- Truth tables

Gates

NOT

Boolean Expression Logic Diagram Symbol

$$X = A'$$

Truth Table

Α	Х
0	1
1	0

AND

Boolean Expression Logic Diagram Symbol

$$X = A \cdot B$$

Truth Table

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

Gates

OR

Boolean Expression Logic

Logic Diagram Symbol

Truth Table

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

XOR

Boolean Expression

Logic Diagram Symbol

X	=	Α	⊕В	

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

Gates

NAND

Boolean Expression Logic Diagram Symbol

X	_	(A	•	R)	•

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table

NOR

Boolean Expression Logic Diagram Symbol

$$X = (A + B)'$$

Truth Table

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Boolean expression

sum =
$$A \oplus B$$

Carry = A ● B

Logical diagram

Truth table

		sum	carry
А	В	$A \oplus B$	A ● B
0	0		
0	1		
1	0		
1	1		

Binary (base 2)

One bits addition

		0
+		0
	0	0

		0	
+		1	
	0	1	

		1
+		0
	0	1

carry s	u	n
---------	---	---

		1
+		1
	1	0

carry sum

Truth table

		sum	carry
А	В	$A \oplus B$	A ● B
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Binary (base 2)

One bits addition

		0
+		0
	0	0

		0	A
+		1	В
	0	1	

		1
+		0
	0	1

carry sum

carry sum

sum =
$$A \oplus B$$

Half Adder (two gates)

Full Adder (five gates)

Truth Table

A	В	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A circuit is a combination of integrated gates.

- More gates for two-bit addition
- Chips (Integrated Circuits) use many gates
 - Very-Large-Scale Integration (VLSI): more than 100, 000

How about a circuit can add two 64-bit binary numbers?

64-bit chip

A electronic computer is a tool that can carry out all the computation we have discussed.

the processor unit

Binary (base 2)

Boolean algebra

Gates and Circuits

using transistors

Arithmetic operations

- Addition
- Subtraction
- Multiplication
- division

Operations:

NOT

AND

OR

XOR

NAND

NOR

A electronic computer is a tool that can carry out all the computation we have discussed.

the processor unit

Binary (base 2)

Boolean algebra

Gates and Circuits using transistors

How Boolean Algebra can be implemented by electronic units?

Constructing gates using transistors

High voltage

0 voltage

- A transistor has three terminals
 - A source
 - A base (input)
 - An emitter, typically connected to a ground wire

Base	Output
High	Low
1	0
Low	High
0	1

It is made of semiconductor material, usually silicon.

Constructing gates using transistors

Integrated Circuits (IC)

CPU chips

Abbreviation	Name	Number of Gates
SSI	Small-Scale Integration	1 to 10
MSI	Medium-Scale Integration	10 to 100
LSI	Large-Scale Integration	100 to 100,000
VLSI	Very-Large-Scale Integration	more than 100,000

More about transistors

https://baike.baidu.com/item/%E6%99%B6%E4%B D%93%E7%AE%A1/569042?fr=aladdin#13

https://www.bilibili.com/video/av65427291/

https://v.qq.com/x/page/r0360x2dgys.html