Storage Systems

NPTEL Course Jan 2012

(Lecture 29)

K. Gopinath Indian Institute of Science

Why Secure Storage?

If storage has to be a bedrock, have to ensure that it is

Highly available

Resilient to failures

Resilient to DoS/DDoS Attacks

Protected from intruders

Prevent malicious tampering

Controlled access; avoid leakage of information

Prevent replay of stale information

To the extent feasible, use formally verified ("correct") storage protocols

No trapdoors either from a systems, protocol or cryptographic perspective: NFS root; X11 auth, ...

May need tamper-proof archival storage (legal&c reasons)

Security in Storage

- Security at FS, block, device levels
 - Also at std network security issues if storage is networked
- Standard security issues
 - Integrity
 - Secrecy
 - Availability (DoS attacks)
- New security issues:
 - Flash wear (DoS)
- Viruses often spread thru storage devices (floppy, USB, ...)
- Security for Metadata (small amounts) vs Data (large amounts)
 - Public Key encryption OK for metadata but not for data
 - Stream ciphers with symmetric encryption for data
- Aggregation attacks
 - When lots of data, new patterns or secrets can be deduced

Systems security

- Systems with basic access control since timesharing systems began ('60)
 - Multics, (Unix) *rwxrwxrwx*! at file level
 - MAC vs DAC
 - SELinux model
- Cryptography used widely but...
 - "If you think cryptography is the solution to your problem, you don't know what your problem is," Roger Needham
 - Key mgmt critical
- Complex world-wide information systems, netw/storage subsystems, etc require much more sophisticated models
 - anonymous users/services, delegation, trust mgmt, scalability
 - need to have an integrated model of all authentication/ authorization models: rwx, setuid, PAM, SELinux, cryptofs, X11 auth, NFS, ssh, httpd, IPSec, firewalls, iSCSI, ...
 - highly available access control: eg: clusters, SANs
- Info Flow Models
 - Need proof that info flow respects some security policies

CD/DVD/Blu Ray

- CD: no protection or ad hoc
- DVD: CSS (content scrambling system)
 - Every DVD player equipped with a small set of player keys (per DVD player manufacturer)
 - Every disk has a disk key data block organized as:
 - 5 bytes hash of decrypted disk key (H)
 - disk key encrypted with player key 1 (dk1), player key 2 (dk2)... player key 409 (dk409)
 - When presented with a new disc, a player will attempt to decrypt contents with set of keys it possesses
 - Suppose a player has a valid key for slot 100, it will calculate
 - Kd? = decrypt(dk100, Kp100)
 - To verify that Kd is correct, check following; otherwise, next player key
 - H == hash(Kd?)
 - Problem! By trying all 2^40 possible Kd, disk key can be deduced without knowing any valid player key.
 - To decrypt contents, an additional key tk (title key) decrypted with valid Kd (Kt)
 - Each sector of data files optionally encrypted by a key derived from Kt by XOR of specified bytes from the unencrypted first 128 bytes of the 2048 bytes sector
 - Uses a stream cipher (LFSR).
 - However, due to flaws, 2^40 checks reduced to 2^16=> 450MHz Pentium needs <1 min

AACS (Advanced Access Control System)

- Blu-Ray
- Fixed some of the problems of CCS but broken here also due to another attack
 - Inspite of many layers of encryption, keys needed to obtain unencrypted content stream that is available somewhere in memory for playback
 - Write a simple device driver to scan kernel memory for keys and check!
- Called "Trusted client" problem
- Need "trusted computing platform" that only lets validated sw to run (not, the dd above!)
- But PC is not such a platform
- With "Trusted Boot" PC. May be possible.
- However: "Against the average user, anything works. Against the skilled attacker, nothing works." B. Schneier

Access Control Models

DAC model

each subject decides how its objects interact with others security mgr keeps access control matrix checking safety problem: HRU undecidable

However, many decidable models exist: eg: Take grant model

Num of subjects and objects fixed but can have some dynamicity such as

conditional auth (based on state)

MAC model

security server decides how any object interacts

RBAC model

introduces roles

ABAC (attr based access control)

rights based on attributes

SELinux

- concepts and capabilities
 - mandatory access controls
 - mandatory integrity controls
 - role-based access control (RBAC)
 - type enforcement architecture
- For every every current user or process, SELinux assigns a 3 string context (role, user name, domain)
 - domain and type equiv
- Policy rules give explicit perms: eg. which domains user must possess to perform certain actions with given target (R/X/W)
- A policy consists of a mapping (labeling) file, a rule file, and an interface file that defines the domain transition
 - Domain transition on fork, execv with setuid programs
- Can confine a deamon to safe actions
- Very detailed; hence easy to get wrong
 - First try in permissive mode and tighten it but may make it too restrictive/break
- Not possible or difficult across different systems

Conclusions

- Security is a tough problem
- Many attack vectors; each requires careful analysis and mitigation
 - Nowadays, good crypto techniques widely avlbl
 - Hence, attackers do not try to break crypto!
- System wide analysis needed