R Assignment

Team 7

2023-06-11

R Markdown

5

6

7

8

9

NA

28

23

19

8

NA 14.3

NA 14.9

299 8.6

99 13.8

19 20.1

Including Plots

#code needed to prind output in console

```
# Load the airquality dataset
data(airquality)
# Print the structure of the dataset
str(airquality)
## 'data.frame':
                    153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
   $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind
           : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp
           : int 67 72 74 62 56 66 65 59 61 69 ...
   $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
             : int 1 2 3 4 5 6 7 8 9 10 ...
# List the variables in the dataset
variables <- names(airquality)</pre>
print(variables)
## [1] "Ozone"
                 "Solar.R" "Wind"
                                     "Temp"
                                                          "Day"
                                                "Month"
# Print the top 15 rows of the dataset
head(airquality, 15)
##
      Ozone Solar.R Wind Temp Month Day
## 1
         41
                190 7.4
                           67
                                  5
                                      1
                                      2
## 2
         36
                118 8.0
                           72
                                  5
## 3
         12
                149 12.6
                           74
                                  5
                                      3
                313 11.5
                           62
                                  5
## 4
         18
                                     4
```

5

5

5 7

5

5

8

56

66

65

59

61

```
194 8.6
## 10
        NA
                           69
                                 5 10
## 11
         7
               NA 6.9
                           74
                                  5 11
## 12
        16
               256 9.7
                           69
                                  5 12
## 13
                290 9.2
                                 5 13
        11
                           66
## 14
         14
                274 10.9
                           68
                                  5 14
## 15
        18
                65 13.2
                           58
                                 5 15
# Define a user-defined function using a variable from the dataset
customFunction <- function(temp) {</pre>
  if (temp > 80) {
   return("Hot")
 } else if (temp > 60) {
   return("Moderate")
 } else {
   return("Cool")
}
# Example usage of the user-defined function
temperature <- airquality$Temp[1] # Using the "Temp" variable from the dataset
result <- customFunction(temperature)</pre>
print(result)
## [1] "Moderate"
library(datasets)
data(airquality)
View(airquality)
# Load the datasets package
library(datasets)
# Load the airquality dataset
data(airquality)
# Filter rows with ozone level above 30
filtered_data <- airquality[airquality$0zone > 30, ]
# View the filtered dataset
head(filtered_data)
##
        Ozone Solar.R Wind Temp Month Day
## 1
          41
                 190 7.4
                             67
                                    5
                                        1
## 2
                                        2
          36
                  118 8.0
                             72
                                    5
## NA
          NA
                  NA
                      NA
                            NA
                                  NA NA
## NA.1
          NA
                  NA
                       NA
                            NA
                                   NA NA
## 17
          34
                 307 12.0
                             66
                                   5 17
                 92 12.0
## 24
          32
                             61
                                   5 24
View(airquality)
View(filtered_data)
# Load the datasets package
```

```
library(datasets)
# Load the airquality dataset
data(airquality)
# Select the dependent and independent variables
dependent_var <- airquality$0zone</pre>
independent_vars <- airquality[, c("Solar.R", "Wind", "Temp", "Month")]</pre>
# Create a new data frame by joining the variables
new_df <- cbind(dependent_var, independent_vars)</pre>
# View the new data frame
head(new_df)
##
     dependent_var Solar.R Wind Temp Month
## 1
               41
                     190 7.4
## 2
                36
                       118 8.0
                                  72
                                          5
## 3
                12
                       149 12.6
                                  74
                                          5
## 4
                18
                       313 11.5
                                  62
                                          5
## 5
                        NA 14.3
               NA
                                  56
                                         5
## 6
                28
                        NA 14.9 66
                                         5
View(independent_vars)
View(new_df)
View(new df)
View(independent_vars)
View(new_df)
# Load the datasets package
library(datasets)
# Print the dataset or any desired information
print(airquality)
```

```
##
      Ozone Solar.R Wind Temp Month Day
## 1
        41 190 7.4
                         67
                               5
                                   1
## 2
                                   2
         36
               118 8.0
                         72
                               5
## 3
                                  3
        12
               149 12.6
                        74
## 4
        18
               313 11.5
                        62
                               5
                                   4
## 5
        NA
               NA 14.3
                         56
                               5
                                   5
## 6
        28
               NA 14.9
                        66
                               5
                                  6
## 7
         23
               299 8.6
                        65
                                  7
## 8
               99 13.8
        19
                         59
                               5
                                   8
## 9
         8
               19 20.1
                               5
                                  9
## 10
               194 8.6
        NA
                        69
                               5 10
## 11
        7
               NA 6.9
                        74
                               5 11
## 12
        16
               256 9.7
                         69
                               5 12
## 13
               290 9.2
                               5 13
        11
                        66
## 14
                               5 14
        14
               274 10.9
                        68
## 15
        18
               65 13.2 58
                               5 15
## 16
        14
               334 11.5 64
                               5 16
```

##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	25	NA	66	16.6	57	5	25
##	26	NA	266	14.9	58	5	26
##	27	NA	NA	8.0	57	5	27
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	32	NA	286	8.6	78	6	1
##	33	NA	287	9.7	74	6	2
##	34	NA	242	16.1	67	6	3
##	35	NA	186	9.2	84	6	4
##	36	NA	220	8.6	85	6	5
##	37	NA	264	14.3	79	6	6
##	38	29	127	9.7	82	6	7
##	39	NA	273	6.9	87	6	8
##	40	71	291	13.8	90	6	9
##	41	39	323	11.5	87	6	10
##	42	NA	259	10.9	93	6	11
##	43	NA	250	9.2	92	6	12
##	44	23	148	8.0	82	6	13
##	45	NA	332	13.8	80	6	14
##	46	NA	322	11.5	79	6	15
##	47	21	191	14.9	77	6	16
##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	52	NA	150	6.3	77	6	21
##	53	NA	59	1.7	76	6	22
##	54	NA	91	4.6	76	6	23
##	55	NA	250	6.3	76	6	24
##	56	NA	135	8.0	75	6	25
##	57	NA	127	8.0	78	6	26
##	58	NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28
##	60	NA	31	14.9	77	6	29
##	61	NA	138	8.0	83	6	30
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	65	NA	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9

##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10	264	14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	75	NA	291	14.9	91	7	14
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95		77				3
		16 70		7.4	82	8	
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
##	101	110	207	8.0	90	8	9
##	102	NA	222	8.6	92	8	10
##	103	NA	137	11.5	86	8	11
##	104	44	192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65	157	9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##							
	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	115	NA	255	12.6	75	8	23
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	119	NA	153	5.7	88	8	27
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
	_					-	_

```
## 125
          78
                  197 5.1
                             92
                                         3
## 126
          73
                  183
                      2.8
                             93
                                     9
## 127
                                         4
          91
                  189
                      4.6
                             93
## 128
                  95 7.4
                                         5
          47
                             87
                                     9
## 129
          32
                  92 15.5
                                     9
                                         6
## 130
          20
                 252 10.9
                             80
                                     9
                                         7
## 131
          23
                 220 10.3
                                         8
                                         9
## 132
                 230 10.9
                             75
                                     9
          21
## 133
          24
                 259 9.7
                             73
                                     9
                                        10
## 134
          44
                 236 14.9
                                     9
                                       11
                             81
## 135
          21
                  259 15.5
                             76
                                       12
## 136
                 238 6.3
                             77
          28
                                     9
                                       13
## 137
                  24 10.9
                                       14
          9
                             71
                                     9
## 138
          13
                  112 11.5
                             71
                                     9
                                       15
## 139
          46
                 237 6.9
                             78
                                     9
                                       16
## 140
          18
                 224 13.8
                             67
                                     9
                                       17
## 141
          13
                  27 10.3
                             76
                                     9
                                       18
## 142
                 238 10.3
                                       19
          24
                             68
## 143
                 201 8.0
                             82
                                    9
                                       20
          16
## 144
                 238 12.6
          13
                             64
                                    9
                                       21
## 145
          23
                  14 9.2
                             71
                                     9
                                        22
## 146
          36
                 139 10.3
                             81
                                       23
## 147
                  49 10.3
                                       24
          7
                             69
                                     9
## 148
          14
                  20 16.6
                             63
                                     9
                                        25
## 149
                                       26
          30
                 193 6.9
                             70
                                    9
## 150
          NA
                  145 13.2
                             77
                                       27
## 151
          14
                  191 14.3
                             75
                                    9
                                       28
## 152
          18
                  131 8.0
                             76
                                     9
                                        29
## 153
                 223 11.5
                                        30
          20
                             68
clean_airquality <- na.omit(airquality)</pre>
# Remove missing values from the airquality dataset
clean_airquality <- na.omit(airquality)</pre>
# Identify duplicate rows
duplicated_rows <- duplicated(airquality)</pre>
# Print the duplicate rows
duplicate_data <- airquality[duplicated_rows, ]</pre>
print(duplicate_data)
## [1] Ozone
                                                 Day
               Solar.R Wind
                                Temp
                                         Month
## <0 rows> (or 0-length row.names)
# Remove duplicate rows
clean_airquality <- unique(airquality)</pre>
print(clean_airquality)
##
       Ozone Solar.R Wind Temp Month Day
## 1
                  190 7.4
                                     5
          41
                             67
                                         1
```

2

3

5

2

3

36

12

118 8.0

149 12.6

72

74

##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	10	NA	194	8.6	69	5	10
##	11	7	NA	6.9	74	5	11
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##			322 44			5	
	20	11		9.7	62		20
##	21	1	8	9.7	59 70	5	21
##	22	11	320	16.6	73	5	22
##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	25	NA	66	16.6	57	5	25
##	26	NA	266	14.9	58	5	26
##	27	NA	NA	8.0	57	5	27
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	32	NA	286	8.6	78	6	1
##	33	NA	287	9.7	74	6	2
##	34	NA	242	16.1	67	6	3
##	35	NA	186	9.2	84	6	4
##	36	NA	220	8.6	85	6	5
##	37	NA	264	14.3	79	6	6
##	38	29	127	9.7	82	6	7
##	39	NA	273	6.9	87	6	8
##	40	71	291	13.8	90	6	9
##		39		11.5	87	6	
	42		259		93	6	
	43	NA NA	259				11 12
				9.2	92	6	
	44	23		8.0	82	6	13
	45	NA		13.8	80	6	14
	46	NA	322		79	6	15
	47	21	191		77	6	16
	48	37	284		72	6	17
	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	52	NA	150	6.3	77	6	21
##	53	NA	59	1.7	76	6	22
##	54	NA	91	4.6	76	6	23
##	55	NA	250	6.3	76	6	24
##	56	NA	135	8.0	75	6	25
##		NA	127	8.0	78	6	26

##	58	NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28
##	60	NA	31	14.9	77	6	29
##	61	NA	138	8.0	83	6	30
##	62	135	269	4.1	84	7	1
##	63	49	248	9.2	85	7	2
##	64	32	236	9.2	81	7	3
##	65	NA	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##		97	267			7	
	69 70			6.3	92		8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10	264	14.3	73	7	12
##	74	27	175	14.9	81	7	13
##	75	NA	291	14.9	91	7	14
##	76	7	48	14.3	80	7	15
##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82		7			7	
		16		6.9	74		21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##		16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100		229		90	8	8
##	101	110	207	8.0	90	8	9
##	102	NA	222	8.6	92	8	10
##	103	NA	137	11.5	86	8	11
##	104		192	11.5	86	8	12
##	105		273		82	8	13
##	106			9.7	80	8	14
##	107		64	11.5	79	8	15
##	108		71		77	8	16
##	109		51	6.3	79	8	17
##	110			7.4	76	8	18
##	111	31	244	10.9	78	8	19

```
190 10.3
                                          20
## 112
          44
                               78
## 113
                  259 15.5
                               77
                                      8
                                          21
          21
## 114
                                          22
           9
                   36 14.3
                               72
## 115
                  255 12.6
                                          23
                               75
                                      8
          NA
## 116
          45
                  212
                        9.7
                               79
                                      8
                                          24
## 117
                  238
                       3.4
                                      8
                                          25
          168
                               81
## 118
                  215
                        8.0
                                      8
                                          26
          73
                               86
## 119
                        5.7
                                          27
          NA
                  153
                               88
                                      8
## 120
          76
                  203
                        9.7
                               97
                                      8
                                          28
## 121
                  225
                        2.3
                                          29
          118
                               94
                                      8
## 122
          84
                  237
                        6.3
                               96
                                      8
                                          30
## 123
           85
                  188
                        6.3
                               94
                                          31
                                      8
## 124
          96
                  167
                        6.9
                               91
                                      9
                                           1
                                           2
## 125
                  197
          78
                        5.1
                               92
## 126
          73
                  183
                        2.8
                               93
                                      9
                                           3
## 127
          91
                  189
                        4.6
                               93
                                           4
## 128
                   95
                       7.4
                               87
                                      9
                                           5
          47
## 129
                                           6
           32
                   92 15.5
                                           7
## 130
                  252 10.9
                               80
          20
                                      9
## 131
                  220 10.3
          23
                               78
                                      9
                                           8
## 132
          21
                  230 10.9
                               75
                                      9
                                           9
## 133
           24
                  259
                      9.7
                               73
                                          10
                  236 14.9
## 134
           44
                               81
                                      9
                                          11
## 135
          21
                  259 15.5
                               76
                                      9
                                          12
## 136
                  238 6.3
                                      9
                                          13
          28
                               77
## 137
           9
                   24 10.9
                               71
                                      9
                                          14
## 138
           13
                  112 11.5
                               71
                                      9
                                          15
## 139
                  237
                       6.9
                               78
                                      9
                                          16
          46
## 140
                                      9
                                          17
          18
                  224 13.8
                               67
## 141
                   27 10.3
                                          18
          13
                               76
                                      9
## 142
           24
                  238 10.3
                               68
                                      9
                                          19
## 143
          16
                  201 8.0
                               82
                                      9
                                          20
## 144
                  238 12.6
                                          21
           13
                               64
## 145
                   14 9.2
                                          22
           23
                               71
                                      9
                  139 10.3
## 146
           36
                                      9
                                          23
## 147
           7
                   49 10.3
                               69
                                      9
                                          24
## 148
          14
                   20 16.6
                               63
                                          25
## 149
          30
                  193 6.9
                               70
                                      9
                                          26
## 150
          NA
                  145 13.2
                               77
                                      9
                                          27
## 151
           14
                  191 14.3
                               75
                                      9
                                          28
## 152
           18
                  131 8.0
                               76
                                      9
                                          29
## 153
           20
                  223 11.5
                               68
                                      9
                                          30
```

Load the required package library(dplyr)

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
```

```
##
    intersect, setdiff, setequal, union
```

```
reordered_airquality <- airquality %>% arrange(desc(Ozone))
# Print the reordered dataset
print(reordered_airquality)
```

```
##
        Ozone Solar.R Wind Temp Month Day
## 1
          168
                   238
                         3.4
                                81
                                        8
                                           25
## 2
          135
                                        7
                   269
                         4.1
                                84
                                            1
                                            7
## 3
          122
                   255
                         4.0
                                89
                                        8
                   225
                         2.3
                                           29
## 4
          118
                                94
                                        8
## 5
                   223
                         5.7
                                79
                                        5
                                           30
          115
## 6
          110
                   207
                         8.0
                                90
                                        8
                                            9
## 7
          108
                   223
                         8.0
                                85
                                        7
                                           25
## 8
           97
                   267
                         6.3
                                92
                                        7
                                            8
## 9
                   272 5.7
                                        7
                                            9
           97
                                92
## 10
           96
                   167
                         6.9
                                91
                                        9
                                            1
                        4.6
## 11
           91
                   189
                                93
                                        9
                                            4
## 12
           89
                   229 10.3
                                90
                                        8
                                            8
## 13
           85
                   175
                        7.4
                                89
                                        7
                                           10
                   188
                                           31
## 14
           85
                        6.3
                                94
                                        8
## 15
           84
                   237
                         6.3
                                96
                                        8
                                           30
## 16
           82
                   213
                         7.4
                                        7
                                           28
                                88
## 17
           80
                   294
                         8.6
                                86
                                        7
                                           24
## 18
           79
                   187
                         5.1
                                87
                                        7
                                           19
## 19
           78
                         6.9
                    NA
                                86
                                        8
                                            4
                                            2
## 20
           78
                   197
                         5.1
                                92
                                        9
                                            7
## 21
                                        7
           77
                   276
                         5.1
                                88
## 22
           76
                   203
                         9.7
                                97
                                        8
                                           28
## 23
           73
                   215
                         8.0
                                86
                                        8
                                           26
## 24
           73
                   183
                         2.8
                                93
                                        9
                                            3
## 25
           71
                   291 13.8
                                90
                                        6
                                            9
## 26
                                            6
           66
                    NA
                         4.6
                                87
                                        8
## 27
           65
                   157
                         9.7
                                80
                                        8
                                           14
## 28
           64
                   175
                        4.6
                                83
                                        7
                                            5
## 29
                   253
                        7.4
                                83
                                        7
                                           30
           64
## 30
           63
                   220 11.5
                                85
                                        7
                                           20
## 31
                   285
                         6.3
                                        7
                                           18
           61
                                84
## 32
                        9.2
                                        7
           59
                   254
                                81
                                           31
## 33
           59
                    51
                        6.3
                                79
                                        8
                                           17
## 34
                    82 12.0
                                        7
                                           27
           52
                                86
## 35
                   275
                        7.4
                                        7
                                           29
           50
                                86
## 36
           49
                   248
                         9.2
                                85
                                        7
                                            2
## 37
           48
                   260
                         6.9
                                81
                                        7
                                           16
## 38
           47
                    95
                         7.4
                                87
                                        9
                                            5
## 39
                   237
                         6.9
                                78
                                        9
                                           16
           46
## 40
           45
                   252 14.9
                                81
                                        5
                                           29
## 41
           45
                   212 9.7
                                79
                                        8
                                           24
## 42
           44
                   192 11.5
                                86
                                        8
                                           12
## 43
                   190 10.3
                                78
                                        8
                                           20
           44
## 44
           44
                   236 14.9
                                81
                                        9
                                           11
## 45
                   190
                       7.4
           41
                                67
                                        5
                                            1
```

##	46	40	314	10.9	83	7	6
##	47	39	323	11.5	87	6	10
##	48	39	83	6.9	81	8	1
##	49	37	279	7.4	76	5	31
##	50	37	284	20.7	72	6	17
##	51	36	118	8.0	72	5	2
##	52	36	139	10.3	81	9	23
##	53	35	274	10.3	82	7	17
##	54	35	NA	7.4	85	8	5
##	55	34	307	12.0	66	5	17
##	56	32	92	12.0	61	5	24
##	57	32	236	9.2	81	7	3
##	58	32	92	15.5	84	9	6
##	59	31	244	10.9	78	8	19
##	60	30	322	11.5	68	5	19
##	61	30	193	6.9	70	9	26
##	62	29	127	9.7	82	6	7
##	63	28	NA	14.9	66	5	6
##	64	28	273	11.5	82	8	13
##	65	28	238	6.3	77	9	13
##	66	27	175	14.9	81	7	13
##	67	24	259	9.7	73	9	10
##	68	24	238	10.3	68	9	19
##	69	23	299	8.6	65	5	7
##	70	23	13	12.0	67	5	28
##	71	23	148	8.0	82	6	13
##	72	23	115	7.4	76	8	18
##	73	23	220	10.3	78	9	8
##	74	23	14	9.2	71	9	22
##	75	22	71	10.3	77	8	16
##	76	21	191	14.9	77	6	16
##	77	21	259	15.5	77	8	21
##	78		230	10.9	75	9	
		21					9
##	79	21	259	15.5	76	9	12
##	80	20	37	9.2	65	6	18
##	81	20	81	8.6	82	7	26
##	82	20	252	10.9	80	9	7
##	83	20	223	11.5	68	9	30
##	84	19	99	13.8	59	5	8
##	85	18	313	11.5	62	5	4
##	86	18	65	13.2	58	5	15
##	87	18	224	13.8	67	9	17
##	88	18	131	8.0	76	9	29
##	89	16	256	9.7	69	5	12
##	90	16	7	6.9	74	7	21
##	91	16	77	7.4	82	8	3
##	92	16	201	8.0	82	9	20
##	93	14	274	10.9	68	5	14
##	94	14	334	11.5	64	5	16
##	95	14	20	16.6	63	9	25
##	96	14	191	14.3	75	9	28
##	97	13	137	10.3	76	6	20
##	98	13	112	11.5	71	9	15
##	99	13	27		76	9	18

						_	
##	100	13	238	12.6	64	9	21
##	101	12	149	12.6	74	5	3
##	102	12	120	11.5	73	6	19
##	103	11	290	9.2	66	5	13
##	104	11	44	9.7	62	5	20
##	105	11	320	16.6	73	5	22
##	106	10	264	14.3	73	7	12
##	107	9	24	13.8	81	8	2
##	108	9	36	14.3	72	8	22
##	109	9	24	10.9	71	9	14
##	110	8	19	20.1	61	5	9
##	111	7	NA	6.9	74	5	11
##	112	7	48	14.3	80	7	15
##	113	7	49	10.3	69	9	24
##	114	6	78	18.4	57	5	18
##	115	4	25	9.7	61	5	23
##	116	1	8	9.7	59	5	21
##	117	NA	NA	14.3	56	5	5
##	118	NA	194	8.6	69	5	10
##	119	NA	66	16.6	57	5	25
##	120	NA	266	14.9	58	5	26
##	121	NA	NA	8.0	57	5	27
##	122	NA	286	8.6	78	6	1
##	123	NA	287	9.7	74	6	2
##	124	NA	242	16.1	67	6	3
##	125		186	9.2		6	4
		NA NA			84		
##	126	NA	220	8.6	85	6	5
##	127	NA	264	14.3	79	6	6
##	128	NA	273	6.9	87	6	8
##	129	NA	259	10.9	93	6	11
##	130	NA	250	9.2	92	6	12
##	131	NA	332	13.8	80	6	14
##	132	NA	322	11.5	79	6	15
##	133	NA	150	6.3	77	6	21
##	134	NA	59	1.7	76	6	22
##	135	NA	91	4.6	76	6	23
##	136	NA	250	6.3	76	6	24
	137	NA	135		75	6	25
##	138			8.0	78	6	
		NA					26
##	139	NA	47		73	6	27
	140	NA	98		80	6	28
##	141	NA	31		77	6	29
##	142	NA		8.0	83	6	30
##	143	NA	101	10.9	84	7	4
##	144	NA	139	8.6	82	7	11
##	145	NA	291	14.9	91	7	14
##	146	NA	258	9.7	81	7	22
##	147	NA	295		82	7	23
##	148	NA		8.6	92	8	10
##	149	NA	137		86	8	11
##	150	NA	64		79	8	15
##	151	NA NA	255		7 <i>9</i> 75	8	23
	152	NA		5.7	88	8	27
##	153	NA	145	13.2	77	9	27

## 2 36 118 8.0 72 5 2 3 ## 3 12 149 12.6 74 5 3 3 ## 4 18 313 11.5 62 5 4 3 ## 5 NA NA 14.3 56 5 5 2 ## 6 28 NA 14.9 66 5 6	335 360 370 310 380 325 395 305 345 370
## 2 36 118 8.0 72 5 2 3 ## 3 12 149 12.6 74 5 3 3 ## 4 18 313 11.5 62 5 4 3 ## 5 NA NA 14.3 56 5 5 2 ## 6 28 NA 14.9 66 5 6	360 370 310 380 330 325 395 305 345 370
## 3 12 149 12.6 74 5 3 3 ## 4 18 313 11.5 62 5 4 3 ## 5 NA NA 14.3 56 5 5 2 ## 6 28 NA 14.9 66 5 6 3	370 310 380 330 325 395 345 370
## 4 18 313 11.5 62 5 4 3 ## 5 NA NA 14.3 56 5 5 2 ## 6 28 NA 14.9 66 5 6	310 330 325 395 305 345 370
## 5 NA NA 14.3 56 5 5 2 ## 6 28 NA 14.9 66 5 6 3	280 330 325 295 305 345 370
## 6 28 NA 14.9 66 5 6 3	330 325 295 305 345 370 345
	325 295 305 345 370 345
	95 305 345 370 345
## 8	345 370 345
## 9 8 19 20.1 61 5 9 3	370 345
## 10 NA 194 8.6 69 5 10 3	45
## 11 7 NA 6.9 74 5 11 3	
## 12	
## 13	30
	340
	90
	320
	30
	85
	340
	310
	95
	65
	805
	805
	285
	90
	.85 .35
	:05
	:05 195
	80
	90
	370 370
	35
	20
	25
	95

##	38	29	127	9.7	82	6	7	410
##	39	NA	273	6.9	87	6	8	435
##	40	71	291	13.8	90	6	9	450
##	41	39	323	11.5	87	6	10	435
##	42	NA	259	10.9	93	6	11	465
##	43	NA	250	9.2	92	6	12	460
##	44	23	148	8.0	82	6	13	410
##	45	NA	332	13.8	80	6	14	400
##	46	NA	322	11.5	79	6	15	395
##	47	21	191	14.9	77	6	16	385
##	48	37	284	20.7	72	6	17	360
##	49	20	37	9.2	65	6	18	325
##	50	12	120	11.5	73	6	19	365
##	51	13	137	10.3	76	6	20	380
##	52	NA	150	6.3	77	6	21	385
##	53	NA	59	1.7	76	6	22	380
##	54	NA	91	4.6	76	6	23	380
##	55	NA	250	6.3	76	6	24	380
##	56	NA	135	8.0	75	6	25	375
##	57	NA	127	8.0	78	6	26	390
##	58	NA	47	10.3	73	6	27	365
##	59	NA	98	11.5	80	6	28	400
##	60	NA	31	14.9	77	6	29	385
##	61	NA	138	8.0	83	6	30	415
##	62	135	269	4.1	84	7	1	420
##	63	49	248	9.2	85	7	2	425
##	64	32	236	9.2	81	7	3	405
##	65	NA	101	10.9	84	7	4	420
##	66	64	175	4.6	83	7	5	415
##	67	40	314	10.9	83	7	6	415
##	68	77	276	5.1	88	7	7	440
##	69	97	267	6.3	92	7	8	460
##	70	97	272	5.7	92	7	9	460
##	71	85	175	7.4	89	7	10	445
##	72	NA	139	8.6	82	7	11	410
##	73	10	264	14.3	73	7	12	365
##	74	27	175	14.9	81	7	13	405
##	75	NA	291	14.9	91	7	14	455
##	76	7	48	14.3	80	7	15	400
##	77	48	260	6.9	81	7	16	405
##	78	35	274	10.3	82	7	17	410
##	79	61	285	6.3	84	7	18	420
##	80	79	187	5.1	87	7	19	435
##	81	63	220	11.5	85	7	20	425
##	82	16	7	6.9	74	7	21	370
##	83	NA	258	9.7	81	7	22	405
##	84	NA	295	11.5	82	7	23	410
##	85	80	294	8.6	86	7	24	430
##	86	108	223	8.0	85	7	25	425
##	87	20	81	8.6	82	7	26	410
##	88	52	82	12.0	86	7	27	430
##	89	82	213	7.4	88	7	28	440
##	90	50	275	7.4	86	7	29	430
##	91	64	253	7.4	83	7	30	415

##		59	254	9.2	81	7	31	405
##	93	39	83	6.9	81	8	1	405
##	94	9	24	13.8	81	8	2	405
##	95	16	77	7.4	82	8	3	410
##	96	78	NA	6.9	86	8	4	430
##	97	35	NA	7.4	85	8	5	425
##	98	66	NA	4.6	87	8	6	435
##	99	122	255	4.0	89	8	7	445
##	100	89	229	10.3	90	8	8	450
##	101	110	207	8.0	90	8	9	450
##	102	NA	222	8.6	92	8	10	460
##	103	NA	137	11.5	86	8	11	430
##	104	44	192	11.5	86	8	12	430
##	105	28	273	11.5	82	8	13	410
##	106	65	157	9.7	80	8	14	400
##	107	NA	64	11.5	79	8	15	395
##	108	22	71	10.3	77	8	16	385
##	109	59	51	6.3	79	8	17	395
##	110	23	115	7.4	76	8	18	380
##	111	31	244	10.9	78	8	19	390
##	112	44	190	10.3	78	8	20	390
##	113	21	259	15.5	77	8	21	385
##	114	9	36	14.3	72	8	22	360
##	115	NA	255	12.6	75	8	23	375
##	116	45	212	9.7	79	8	24	395
##	117	168	238	3.4	81	8	25	405
##	118	73	215	8.0	86	8	26	430
##	119	NA	153	5.7	88	8	27	440
##	120	76	203	9.7	97	8	28	485
##	121	118	225	2.3	94	8	29	470
##	122	84	237	6.3	96	8	30	480
##	123	85	188	6.3	94	8	31	470
##	124	96	167	6.9	91	9	1	455
##	125	78	197	5.1	92	9	2	460
##	126	73	183	2.8	93	9	3	465
##	127	91	189	4.6	93	9	4	465
##	128	47	95	7.4	87	9	5	435
##	129	32	92	15.5	84	9	6	420
##	130	20	252	10.9	80	9	7	400
##	131	23	220	10.3	78	9	8	390
##	132	21	230	10.9	75	9	9	375
##	133	24	259	9.7	73	9	10	365
##	134	44	236	14.9	81	9	11	405
##	135	21	259	15.5	76	9	12	380
##	136	28	238	6.3	77	9	13	385
##	137	9	24	10.9	71	9	14	355
##	138	13	112	11.5	71	9	15	355
##	139	46	237	6.9	78	9	16	390
##	140	18	224	13.8	67	9	17	335
##	141	13	27	10.3	76	9	18	380
##	142	24	238	10.3	68	9	19	340
##	143	16	201	8.0	82	9	20	410
##	144	13	238	12.6	64	9	21	320
##	145	23	14	9.2	71	9	22	355

```
## 146
          36
                 139
                          10.3
                                        81
                                               9 23
                                                             405
## 147
         7
                 49
                           10.3
                                        69
                                               9 24
                                                             345
## 148
                           16.6
         14
                 20
                                        63
                                               9 25
                                                             315
## 149
         30
                 193
                           6.9
                                        70
                                               9 26
                                                             350
## 150
                           13.2
                                        77
                                               9 27
                                                             385
         NA
                 145
## 151
                                               9 28
         14
                 191
                           14.3
                                        75
                                                             375
## 152
                                        76
                                               9 29
                                                             380
         18
                 131
                           8.0
## 153
          20
                 223
                          11.5
                                        68
                                               9 30
                                                             340
# Set a seed for reproducibility
set.seed(123)
# Create a training set using a random number generator
train_indices <- sample(1:nrow(airquality), size = 100, replace = FALSE)</pre>
training_set <- airquality[train_indices, ]</pre>
# Print the training set
print(training_set)
```

##		Ozone	Solar.R	Wind Level	Temperature	Month	Day	Temp_Double
##	14	14	274	10.9	68	5	14	340
##	50	12	120	11.5	73	6	19	365
##	118	73	215	8.0	86	8	26	430
##		NA	250	9.2	92	6	12	460
##	153	20	223	11.5	68	9	30	340
##	151	14	191	14.3	75	9	28	375
##	90	50	275	7.4	86	7	29	430
##	91	64	253	7.4	83	7	30	415
##	146	36	139	10.3	81	9	23	405
##	92	59	254	9.2	81	7	31	405
##	137	9	24	10.9	71	9	14	355
##	99	122	255	4.0	89	8	7	445
##	72	NA	139	8.6	82	7	11	410
##	26	NA	266	14.9	58	5	26	290
##	7	23	299	8.6	65	5	7	325
##	143	16	201	8.0	82	9	20	410
##	78	35	274	10.3	82	7	17	410
##	81	63	220	11.5	85	7	20	425
##	150	NA	145	13.2	77	9	27	385
##	103	NA	137	11.5	86	8	11	430
##	117	168	238	3.4	81	8	25	405
##	76	7	48	14.3	80	7	15	400
##	32	NA	286	8.6	78	6	1	390
##	109	59	51	6.3	79	8	17	395
##	139	46	237	6.9	78	9	16	390
##	9	8	19	20.1	61	5	9	305
##	41	39	323	11.5	87	6	10	435
##	74	27	175	14.9	81	7	13	405
##	23	4	25	9.7	61	5	23	305
##	27	NA	NA	8.0	57	5	27	285
##	60	NA	31	14.9	77	6	29	385
	53	NA	59	1.7	76	6	22	380
##	129	32	92	15.5	84	9	6	420
##	122	84	237	6.3	96	8	30	480

						_		
	124	96	167	6.9	91	9	1	455
##	96	78	NA	6.9	86	8	4	430
##	38	29	127	9.7	82	6	7	410
##	89	82	213	7.4	88	7	28	440
##	34	NA	242	16.1	67	6	3	335
##	93	39	83	6.9	81	8	1	405
	69	97	267	6.3	92	7	8	460
##	141	13	27	10.3	76	9	18	380
##	132	21	230	10.9	75	9	9	375
##	63	49	248	9.2	85	7	2	425
##	13	11	290	9.2	66	5	13	330
##	82	16	7	6.9	74	7	21	370
##	97	35	NA	7.4	85	8	5	425
##	145	23	14	9.2	71	9	22	355
##	25	NA	66	16.6	57	5	25	285
##	133	24	259	9.7	73	9	10	365
##	21	1	8	9.7	59	5	21	295
##	79	61	285	6.3	84	7	18	420
##	127	91	189	4.6	93	9	4	465
##	47	21	191	14.9	77	6	16	385
##	147	7	49	10.3	69	9	24	345
##	123	85	188	6.3	94	8	31	470
##	95	16	77	7.4	82	8	3	410
##	16	14	334	11.5	64	5	16	320
##	94	9	24	13.8	81	8	2	405
##	6	28	NA	14.9	66	5	6	330
##	112	44	190	10.3	78	8	20	390
##	86	108	223	8.0	85	7	25	425
##	144	13	238	12.6	64	9	21	320
##	39	NA	273	6.9	87	6	8	435
##	31	37	279	7.4	76	5	31	380
##	136	28	238	6.3	77	9	13	385
##	152	18	131	8.0	76	9	29	380
##	115	NA	255	12.6	75	8	23	375
##	4	18	313	11.5	62	5	4	310
##	130	20	252	10.9	80	9	7	400
##	113	21	259	15.5	77	8	21	385
	105	28	273	11.5	82	8	13	410
	52	NA	150	6.3	77	6	21	385
	22	11	320	16.6	73	5	22	365
	131	23	220	10.3	78	9	8	390
##	108	22	71	10.3	77	8	16	385
##	35	NA	186	9.2	84	6	4	420
##	40	71	291	13.8	90	6	9	450
##	30	115	223	5.7	79	5	30	395
##	12	16	256	9.7	69	5	12	345
##	116	45	212	9.7	79	8	24	395
##	75	NA	291	14.9	91	7	14	455
##	64	32	236	9.2	81	7	3	405
##	149	30	193	6.9	70	9	26	350
	67	40	314	10.9	83	7	6	415
	125	78	197	5.1	92	9	2	460
	37	NA	264	14.3	79	6	6	395
##		19	99	13.8	59	5	8	295
и п	J	10	00	10.0	00	J	J	200

```
## 51
           13
                    137
                                10.3
                                                76
                                                            20
                                                                         380
## 10
                    194
                                 8.6
                                                69
                                                         5
                                                            10
                                                                         345
           NA
## 87
           20
                     81
                                 8.6
                                                82
                                                         7
                                                            26
                                                                         410
                    259
                                10.9
## 42
                                                93
                                                            11
                                                                         465
           NA
                                                         6
## 44
           23
                    148
                                 8.0
                                                82
                                                         6
                                                            13
                                                                         410
## 106
                                 9.7
                                                80
                                                        8
                                                            14
                                                                         400
           65
                    157
## 71
                                 7.4
                                                89
           85
                    175
                                                            10
                                                                         445
## 80
                                                         7
           79
                    187
                                 5.1
                                                87
                                                            19
                                                                         435
## 126
           73
                    183
                                 2.8
                                                93
                                                         9
                                                             3
                                                                         465
## 20
                                                62
                                                         5
                                                            20
           11
                     44
                                 9.7
                                                                         310
## 46
           NA
                    322
                                11.5
                                                79
                                                         6
                                                            15
                                                                         395
## 17
           34
                    307
                                12.0
                                                66
                                                         5
                                                            17
                                                                         330
```

display airquality dataset statistics summary summary(airquality)

```
##
                                        Wind Level
        Ozone
                         Solar.R
                                                          Temperature
##
    Min. : 1.00
                      Min.
                            : 7.0
                                      Min.
                                              : 1.700
                                                        Min.
                                                                :56.00
##
    1st Qu.: 18.00
                      1st Qu.:115.8
                                      1st Qu.: 7.400
                                                        1st Qu.:72.00
    Median : 31.50
                      Median :205.0
                                      Median: 9.700
                                                        Median :79.00
##
   Mean
          : 42.13
                                                                :77.88
                      Mean
                             :185.9
                                      Mean
                                              : 9.958
                                                        Mean
    3rd Qu.: 63.25
                      3rd Qu.:258.8
                                      3rd Qu.:11.500
                                                        3rd Qu.:85.00
##
           :168.00
                                              :20.700
##
    Max.
                      Max.
                             :334.0
                                      Max.
                                                        Max.
                                                                :97.00
    NA's
##
           :37
                      NA's
                             :7
##
        Month
                          Day
                                     Temp_Double
##
    Min.
           :5.000
                            : 1.0
                                    Min.
                                            :280.0
                     Min.
##
    1st Qu.:6.000
                     1st Qu.: 8.0
                                    1st Qu.:360.0
    Median :7.000
                     Median:16.0
                                    Median :395.0
##
    Mean
           :6.993
                     Mean
                            :15.8
                                    Mean
                                            :389.4
##
    3rd Qu.:8.000
                     3rd Qu.:23.0
                                    3rd Qu.:425.0
##
    Max.
           :9.000
                     Max.
                            :31.0
                                    Max.
                                            :485.0
##
```

```
mean_value <- mean(airquality$0zone)

# Print summary of the airquality dataset
summary(airquality)</pre>
```

Calculate the mean

```
##
        Ozone
                         Solar.R
                                        Wind Level
                                                         Temperature
    Min.
          : 1.00
                            : 7.0
                                      Min.
                                             : 1.700
                                                        Min.
                                                               :56.00
                     Min.
    1st Qu.: 18.00
                                      1st Qu.: 7.400
                      1st Qu.:115.8
                                                        1st Qu.:72.00
##
##
    Median : 31.50
                      Median :205.0
                                      Median: 9.700
                                                        Median :79.00
##
    Mean
           : 42.13
                      Mean
                             :185.9
                                      Mean
                                             : 9.958
                                                        Mean
                                                               :77.88
##
    3rd Qu.: 63.25
                      3rd Qu.:258.8
                                                        3rd Qu.:85.00
                                      3rd Qu.:11.500
##
    Max.
           :168.00
                      Max.
                             :334.0
                                      Max.
                                             :20.700
                                                        Max.
                                                               :97.00
   NA's
           :37
                     NA's
##
                             :7
                          Day
##
        Month
                                     Temp_Double
##
    Min.
           :5.000
                    Min. : 1.0
                                    Min.
                                           :280.0
##
    1st Qu.:6.000
                    1st Qu.: 8.0
                                    1st Qu.:360.0
##
    Median :7.000
                    Median:16.0
                                    Median :395.0
    Mean
          :6.993
                    Mean :15.8
                                    Mean
                                           :389.4
                    3rd Qu.:23.0
##
    3rd Qu.:8.000
                                    3rd Qu.:425.0
```

```
## Max.
           :9.000 Max. :31.0 Max. :485.0
##
# Extract the "Ozone" variable from the airquality dataset
ozone <- airquality$0zone</pre>
# Calculate the mean
mean_value <- mean(ozone, na.rm = TRUE)</pre>
# Calculate the median
median_value <- median(ozone, na.rm = TRUE)</pre>
# Calculate the mode
mode_value <- as.numeric(names(which.max(table(ozone))))</pre>
# Calculate the range
range_value <- range(ozone, na.rm = TRUE)</pre>
# Print the mean, median, mode, and range for Ozone
cat("Mean:", mean_value, "\n")
## Mean: 42.12931
cat("Median:", median_value, "\n")
## Median: 31.5
cat("Mode:", mode_value, "\n")
## Mode: 23
cat("Range:", range_value[2] - range_value[1], "\n")
## Range: 167
options(repos = "https://cloud.r-project.org")
install.packages("ggpubr")
##
## The downloaded binary packages are in
   /var/folders/xf/bsjz_jjd1cxblf864fdysqmc0000gn/T//Rtmp1hee1U/downloaded_packages
library(ggplot2)
library(ggpubr)
#Plot a scatter plot for any 2 variables in your dataset
# Load the airquality dataset
data(airquality)
# Generate the scatter plot
```

```
ScatterPlot<-ggplot(data = airquality,aes(x = Temp,y = Wind,col = factor(Ozone)))+geom_point()
# Print the scatter plot
print(ScatterPlot)</pre>
```



```
# Plot a bar plot for any 2 variables in your dataset
## Barplot Version 1 Factor Ozone
BarplotV1<-ggplot(data = airquality,aes(x = Month,y=Day, fill = factor(Ozone)))+geom_bar(stat="identity"
## Barplot Version 1 Factor Wind
BarplotV2<-ggplot(data = airquality,aes(x = Month,y=Day, fill = factor(Wind)))+
    geom_bar(stat="identity",
    position=position_dodge())+theme_minimal()</pre>
```

BarplotV1

BarplotV2


```
# Find the correlation between any 2 variables by applying least square linear regression model
ScatterModel<-ggscatter(airquality, x = "Wind", y = "Temp",
   add = "reg.line", conf.int = TRUE, cor.coef = TRUE,
   cor.method = "pearson", xlab = "Wind", ylab = "Temperature")
y<-airquality[,"Temp"]
x<-airquality[,"Wind"]</pre>
```

```
xycorr<- cor(y,x, method="pearson")
head(xycorr)</pre>
```

[1] -0.4579879

${\tt ScatterModel}$

Link to the Github Repository https://github.com/Alisam9/Gp7