# Chapitre 1 : Étude de suites

## Suites définies par une relation de récurrence

Soit f une fonction définie sur un intervalle I à valeurs réelles. On s'intéresse aux suites définies par la **relation de** récurrence

$$\begin{cases} u_0 \in \mathbf{I} \\ u_{n+1} = f(u_n) \end{cases}$$

Dans les sujets de concours, l'étude est toujours guidée et suit à peu près toujours le même plan :

- 1. Étudier la fonction f (faire son tableau de variation).
- 2. Vérifier que la suite est bien définie.
  - → Cela signifie vérifier que tous les termes de la suite peuvent être calculés ou, plus précisément que pour tout  $n \in \mathbb{N}$ ,  $u_n$  appartient bien à l'ensemble de définition de f.

| - 1     |   |
|---------|---|
| Exemple | 1 |

La suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $u_0 = -\frac{1}{2}$  et  $u_{n+1} = 1 + \frac{1}{u_n}$ est-elle bien définie?

 $\hookrightarrow$  En général, pour montrer que  $(u_n)_{n\in\mathbb{N}}$  est bien définie, on procède par récurrence.

#### Remarque 1

- (a) Si J est un intervalle inclus dans l'ensemble de définition de f tel que  $f(J) \subset J$  et  $u_0 \in J$  alors on montre par récurrence que  $\forall n \in \mathbb{N}$ ,  $u_n \in J$ . Un tel intervalle est appelé un intervalle **stable par** f.
- (b) En général dans les concours, l'intervalle stable vous est donné et on vous demande de vérifier que tous les termes de la suites sont dedans (par récurrence).

#### Exemple 2

Soit  $(u_n)_{n\in\mathbb{N}}$  la suite définie par  $u_0 = 1$  et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}.$$

(a) Montrons par récurrence la propriété suivante : « pour tout  $n \in \mathbb{N}$ ,  $u_n$  est bien défini et  $u_n > 0$  ».

| (b)                             | Dans l'hérédité, on a utilisé le fait que si $u_n > 0$ alors                                                                                                                                                                                                                                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
| Test 1 (Voir la                 |                                                                                                                                                                                                                                                                                                       |
| Soit $(u_n)_{n \in \mathbb{R}}$ | $_{\in \mathbb{N}}$ la suite définie par $u_0=rac{1}{2}$ et                                                                                                                                                                                                                                          |
|                                 | $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 - u_n}.$                                                                                                                                                                                                                                          |
| (a)                             | Montrer que la fonction $f$ définie sur $[0,1]$ par :                                                                                                                                                                                                                                                 |
|                                 | $\forall x \in [0,1], \ f(x) = \frac{x}{2-x}$                                                                                                                                                                                                                                                         |
|                                 | est strictement croissante.                                                                                                                                                                                                                                                                           |
| - 1                             | En déduire que, $\forall n \in \mathbb{N}$ , $u_n$ est bien défini et $0 < u_n < 1$ .<br>Que peut-on dire de l'intervalle $]0,1[$ ?                                                                                                                                                                   |
|                                 | Que peut-on une de l'intervane 30, 1[:                                                                                                                                                                                                                                                                |
|                                 | notonie de $(u_n)_{n\in\mathbb{N}}$                                                                                                                                                                                                                                                                   |
| valle stab                      | $1$ : si $f$ est croissante sur un intervalle $J$ qui contient tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ (un interple contenant $u_0$ par exemple), on montre par récurrence que $(u_n)_{n\in\mathbb{N}}$ est monotone : si $u_0 < u_1$ roissante et si $u_1 < u_0$ elle est décroissante. |
| Exemple 3                       |                                                                                                                                                                                                                                                                                                       |
| Soit $(u_n)_{n\in$              | $_{\mathbb{N}}$ la suite définie par $u_0=\frac{1}{2}$ et                                                                                                                                                                                                                                             |
|                                 | $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 - u_n}.$                                                                                                                                                                                                                                          |
| On note f                       | la fonction définie sur [0,1] par :                                                                                                                                                                                                                                                                   |
|                                 | $\forall x \in [0,1], \ f(x) = \frac{x}{2-x}.$                                                                                                                                                                                                                                                        |
|                                 | test 1, $f$ est strictement croissante et pour tout $n \in \mathbb{N}$ , $u_n$ est défini et $u_n \in ]0,1[$ . que $(u_n)_{n \in \mathbb{N}}$ est décroissante.                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                                                                                                                                                                                                                                       |

3.

#### Remarque 2

Quand f est décroissante, la suie  $(u_n)_{n\in\mathbb{N}}$  n'est pas monotone en général! Cependant on peut montrer que les suites  $(u_{2n})_{n\in\mathbb{N}}$  et  $(u_{2n+1})_{n\in\mathbb{N}}$  sont monotones de sens de variation contraires (Hors-programme).

 $\hookrightarrow$  *Méthode 2*: étudier le signe de  $g: x \mapsto f(x) - x$  permet de trouver la monotonie de  $(u_n)_{n \in \mathbb{N}}$  car  $u_{n+1} - u_n = f(u_n) - u_n$ .

### **Exemple 4**

| On reprend l'exe | mple précédent.                              |    |
|------------------|----------------------------------------------|----|
| (a) Mont         | rer que $\forall x \in ]0,1[, f(x) - x < 0]$ | ١. |

(a) Monder que va ejo, rij, y (a) a v (a)

(b) En déduire que la suite  $(u_n)_{n\in\mathbb{N}}$  est décroissante.

### 4. Étudier la convergence

**Définition 1** (Point fixe d'une application)

Soit  $f: E \to E$  une application d'un ensemble E dans lui-même et soit  $\ell \in E$ . On dit que  $\ell$  est **un point** fixe de f si  $f(\ell) = \ell$ .

#### Théorème 1

Soit f une fonction définie sur un intervalle I, à valeurs réelles et considérons une suite  $(u_n)_{n\in\mathbb{N}}$  définie par la relation de récurrence

$$\begin{cases} u_0 \in I \\ u_{n+1} = f(u_n) \end{cases}.$$

Si  $(u_n)_{n\in\mathbb{N}}$  converge vers un réel  $\ell\in I$  et si f est continue en  $\ell$  alors  $\ell$  est un point fixe de f. En particulier, si f est continue sur I et que  $(u_n)_{n\in\mathbb{N}}$  converge vers un réel  $\ell\in I$ ,  $\ell$  est nécessairement un point fixe de f.

- $\hookrightarrow$  Si f est continue, pour déterminer les éventuelles limites (finies), on cherche donc les points fixes de f soit en résolvant l'équation f(x) = x par une méthode directe, soit en étudiant la fonction  $x \mapsto f(x) x$  (on pourra penser à utiliser le théorème des valeurs intermédiaires ou de la bijection).
- → À ce stade on ne sait toujours pas si la suite converge.
- → Si on sait que la suite est monotone et majorée/minorée, on peut utiliser le théorème de convergence monotone pour justifier l'existence de la limite. Si f possède plusieurs points fixes, il faut alors identifier lequel est la limite.
- $\hookrightarrow$  Dans certains cas, on peut montrer que  $(u_n)_{n\in\mathbb{N}}$  diverge en montrant que f n'a pas de point fixe ou qu'il est impossible que la suite convergence vers les éventuels points fixes identifiés .

3

#### Exemple 5

On reprend toujours le même exemple.

(a) Déterminer les points fixes de f.

(b) Montrer que  $(u_n)_{n\in\mathbb{N}}$  converge et identifier sa limite.



5. Étudier la convergence à l'aide de l'inégalité des accroissements finis : on peut parfois obtenir la convergence de  $(u_n)_{n\in\mathbb{N}}$  à l'aide de l'inégalité des accroissements finis :

**Théorème 2** (Inégalité des accroissements finis v2)

Soient a < b deux réels et f une fonction continue sur I = [a, b] et dérivable sur a, b. Supposons qu'il existe un réel a, b,  $a \in A$ ,  $a \in A$ ,

$$\forall (x, y) \in I^2 \quad |f(x) - f(y)| \le k|x - y|.$$

 $\hookrightarrow$  Si f vérifie les hypothèses de ce théorème sur un intervalle J contenant tous les termes de la suite et que  $\ell \in J$  est un point fixe de f alors :

$$|u_{n+1} - \ell| = |f(u_n) - f(\ell)| \le k|u_n - \ell|.$$

On montre alors par récurrence que

$$\forall n \in \mathbb{N}, |u_n - \ell| \leq k^n |u_0 - \ell|.$$

Si |k| < 1, on en déduit par le théorème d'encadrement que  $(u_n)_{n \in \mathbb{N}}$  converge vers  $\ell$ .

#### Test 2 (Voir la solution.)

Soit *f* la fonction définie sur  $[-1, +\infty[$  par :  $\forall x \in [-1, +\infty[$   $f(x) = \sqrt{x+1}.$ 

- (a) Déterminer les points fixes de f. Montrer que f possède un unique point fixe dans [0,2] que l'on notera  $\ell$ .
- (b) Justifier que f est dérivable sur  $]-1,+\infty[$  et que  $\forall x \in [0,2], |f'(x)| \leq \frac{1}{2}$ .
- (c) Soit  $(u_n)_{n\in\mathbb{N}}$  la suite définie par la relation de récurrence

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

- i. Montrer que  $\forall n \in \mathbb{N}$ ,  $u_n$  est bien défini et  $u_n \in [0,2]$ .
- ii. Montrer que  $\forall n \in \mathbb{N}$ ,  $|u_{n+1} \ell| \leq \frac{1}{2} |u_n \ell|$ .



- i. Écrire une fonction Scilab d'en-tête function u = suite(n) qui, prenant en argument un entier n, renvoie
  - ii. Écrire un programme Scilab prenant en argument un réel epsilon et renvoyant une valeur approchée de  $\ell$  à epsilon près.

## Suites définies implicitement

Cette partie n'est pas officiellement au programme mais les suites définies implicitement font souvent l'objet d'un exercice dans les écrits de concours.

Une suite  $(u_n)_{n\in\mathbb{N}}$  est dite **définie implicitement** lorsque son terme général n'est pas donné sous forme explicite mais comme solution d'une équation. Dans les énoncés, on rencontre en général deux types de suites définies implicitement.

- 1. « Soit f une fonction définie sur un intervalle I à valeurs dans  $\mathbb{R}$ . Montrer que  $\forall n \in \mathbb{N}$ , l'équation f(x) = n admet une unique solution  $u_n$ .»
  - $\bullet$  En général, f est strictement monotone (éventuellement en restriction à un sous-intervalle). Pour justifier l'existence de  $(u_n)_{n\in\mathbb{N}}$  on étudie les variations de f et on utilise le théorème de la bijection.
  - Dans ce cas, la bijection réciproque  $f^{-1}$  de f (éventuellement en restriction à un sous-intervalle) est monotone de même sens de monotonie que f. Cela permet d'étudier les variations de  $(u_n)_{n\in\mathbb{N}}$  car

$$\forall n \in \mathbb{N} \quad u_{n+1} = f^{-1}(n+1) \quad \text{et} \quad u_n = f^{-1}(n).$$

• Pour déterminer la limite lorsqu'elle existe on passe à la limite dans l'égalité  $u = f^{-1}(n)$  ou f(u) = n

### E

| la fonction définie sur $\mathbb{R}_+^*$ p |                                   |                           |                   |                         |
|--------------------------------------------|-----------------------------------|---------------------------|-------------------|-------------------------|
|                                            | $\forall x \in \mathbb{R}_+^*$    | $f(x) = x + \ln(x).$      |                   |                         |
| (a) Dresser le tableau de v                | ariations de f en p               | orécisant les limite en 0 | et en $+\infty$ . |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
| (b) Montrer que pour tout                  | t n c N. Páquation :              | f(r) – n nossáda una u    | nique colution d  | ano l'on notore u       |
| (b) Montiel que pour tout                  | $n \in \mathbb{N}$ , i equation j | (x) = n possede une un    | nque solution (   | que i on notera $u_n$ . |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |
|                                            |                                   |                           |                   |                         |

(c) Montrer que  $(u_n)_{n\in\mathbb{N}}$  est croissante.

|    | (d)        | Déterminer, si elle existe, la limite de $(u_n)_{n\in\mathbb{N}}$ .                                                                                                                                        |
|----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
| Re | marque 3   |                                                                                                                                                                                                            |
|    | Dans des s | situations où la suite est définie par une équation du type $f(x) = n^2$ , $f(x) = \frac{1}{n}$ ,, pas de panique, la este la même! Voir le TD.                                                            |
|    |            | rvalle et $(f_n)_{n\in\mathbb{N}}$ une famille de fonctions toutes définies sur I à valeurs dans $\mathbb{R}$ . Montrer que $\forall$ $n\in\mathbb{N}$ , $\alpha$ = 0 admet une unique solution $\alpha$ . |
|    |            | al, les fonctions $f_n$ sont strictement monotones (éventuellement en restriction à un sous-intervalle). ifier l'existence de $(u_n)_{n\in\mathbb{N}}$ on utilise le théorème de la bijection.             |
|    |            | dier la monotonie de $(u_n)_{n\in\mathbb{N}}$ , on compare $f_n(u_{n+1})$ et $f_n(u_n)=0$ (c'est-à-dire qu'on étudie le $f_n(u_{n+1})$ ) et on utilise la stricte monotonie de $f_n$ .                     |
|    |            | aussi utiliser les variations des fonctions $f_n$ pour majorée ou minorée la suite. Par exemple, si $a$ el tel que $f_n(a) \ge 0 = f(u_n)$ et si $f_n$ est strictement croissante alors $a \ge u_n$ .      |
|    |            | parfois en déduire la convergence de $(u_n)_{n\in\mathbb{N}}$ par un théorème d'encadrement, de convergence le ou en passant à la limite dans l'égalité $f_n(u_n)=0$ .                                     |
| Ex | emple 7    |                                                                                                                                                                                                            |
|    |            | $n\geqslant 1$ , on définit la fonction $f_n$ sur $\mathbb{R}$ par $\forall x\in \mathbb{R}$ $f_n(x)=x^5+nx-1$ .                                                                                           |
|    | (a)        | Pour tout $n \ge 1$ , étudier les variations de $f_n$ .                                                                                                                                                    |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |
|    |            |                                                                                                                                                                                                            |

(b) Montrer que pour tout  $n \ge 1$ , il existe une unique solution à l'équation  $f_n(x) = 0$ . On notera cette solution  $u_n$ .

| (c)  | Montre que pour tout $n \ge 1$ , on a $0 \le u_n \le \frac{1}{n}$ .                                      |
|------|----------------------------------------------------------------------------------------------------------|
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
| ( I) |                                                                                                          |
| (a)  | En déduire que $(u_n)_{n\geqslant 1}$ converge et préciser sa limite.                                    |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
| (e)  | Étudier le signe de $f_n(u_{n+1})$ et en déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |
|      |                                                                                                          |

# 3 Objectifs

- 1. Savoir montrer que les termes d'une suite définie par récurrence sont bien définis, appartiennent à un intervalle donné.
- 2. Savoir exploiter la croissance de f ou le signe de  $x \mapsto f(x) x$  pour étudier la monotonie d'une suite définie par récurrence.
- 3. Connaître la définition d'un point fixe et le théorème 1.
- 4. Savoir déterminer les points fixes d'une fonction f en résolvant l'équation f(x) = x ou en étudiant  $x \mapsto f(x) x$  (étude de signe, utilisation du théorème de la bijection . . .)
- 5. Savoir étudier la convergence d'une suite définie par récurrence (à l'aide du théorème de convergence monotone, en utilisant les points fixes ou en utilisant l'inégalité des accroissements finis par exemple)
- 6. Savoir justifier l'existence d'une suite définie implicitement avec le théorème de la bijection.
- 7. Savoir exploiter les variations de(s) fonction(s) pour étudier une suite définie implicitement (monotonie, majorant, minorant, éventuellement la limite).