Corso di Algebra per Informatica

Lezione 13: Esercizi

- (1) È vero che l'insieme degli elementi cancellabili a sinistra è una parte chiusa di ogni gruppo abeliano?
- (2) $(\mathbb{Q}, +)$ è un gruppo ciclico?
- (3) (\mathbb{Z}, \cdot) è un gruppo?
- (4) Sia $a = \{w, x, y, z\}$ un insieme di quattro elementi, sia $f \in Sym(a)$ tale che f(a) = b, f(b) = c, f(c) = d e f(d) = a e sia $S = \{f^4, f, f^2, f^3\}$. Mostrare che (S, \circ) è un sottogruppo abeliano di $(Sym(a), \circ)$. Dimostrare che (S, \circ) è un gruppo abeliano.
- (5) Sia * un'operazione associativa su un insieme S. Allora $\sigma_{a*b} = \sigma_a \circ \sigma_b$ e $\delta_{a*b} = \delta_b \circ \delta_a$.
- (6) Dimostrare che l'insieme degli elementi cancellabili a sinistra è una parte chiusa di ogni monoide e che lo stesso vale per l'insieme degli elementi cancellabili a destra. (Suggerimento: usare l'Esercizio 5).
- (7) Scrivere le tavole di Cayley di $U(\mathbb{Z},\cdot)$, di $(P(P(\emptyset)), \Delta)$ e di $Sym(\{0,1\}, \circ)$ e confrontarle.
- (8) Scrivere le tavole di Cayley di $(P(\{0,1\}), \cap)$ e di $(P(\{0,1\}), \cup)$ e confrontarle.
- (9) Sia $S = \{u, x, y\}$ un insieme di tre elementi e sia * l'operazione in S definita dalla seguente

tavola di Cayley
$$\begin{array}{c|cccc} * & u & x & y \\ \hline u & u & x & y \\ x & x & u & x \\ y & y & y & u \end{array}$$

Determinare l'elemento neutro di (S, *), i simmetrici destri e sinistri e con queste sole informazioni dimostrare che la struttura non può essere un monoide.

(10) Sia $S = \{u, x, y\}$ un insieme di tre elementi e sia * l'operazione in S definita dalla seguente

Mostrare che (S,*) è un gruppo ciclico (abeliano) diverso da $(\mathbb{Z},+)$

(11) Sia $S = \{u, x, y, z\}$ un insieme di quattro elementi e sia * l'operazione in S definita dalla

Dimostrare che (S, *) è un gruppo abeliano non ciclico. ((S, *) viene detto "gruppo di Klein").

(12) Sia $S = \{u, x, y, z\}$ un insieme di quattro elementi e sia * l'operazione in S definita dalla

Dimostrare che (S, *) è un gruppo ciclico.