International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN(P): 2249-6955; ISSN(E): 2249-8060

Vol. 4, Issue 4, Aug 2014, 47-54

© TJPRC Pvt. Ltd.

THE EXPONENTIAL SUM $C_{P,S}(r,n)$

M. GANESHWAR RAO

Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Andhra Pradesh, India

ABSTRACT

In this paper we introduce an exponential sum $C_{P,S}(r,n)$ as a generalization of Ramanujan's sum C(r,n) and study some of its properties which give the well known result on C(r,n) as particular case.

KEYWORDS: Analytic Number Theory, Arithmetical Function

1. INTRODUCTION

A real or complex valued function f defined on N is called an arithmetic function. We denote the class of all arithmetic function by A.

For any integer n > 1, let S_n be a nonempty set of positive divisors of n. For $f, g \in A$ their S-convolution, $f(\overline{S}, g)$, is defined by

$$(f \ \overline{S} \ g)(n) = \sum_{d \in S_{-}} f(d)g\left(\frac{n}{d}\right),$$

Where the sum is over all elements d of S_n .

Observe that if $S_n = D_n$ (the set of all positive divisors of n) then $(f \, \overline{D} g)(n) = (f * g)(n)$, where * is the classical Dirichlet convolution. Also if $S_n = U_n$ {the set of all unitary divisors of n (recall d is a unitary divisor of n if $d \mid n$ and $\gcd \left(d, \frac{n}{d} \right) = 1$)} we have $(f \, \overline{U} g)(n) = (f \circ g)(n)$, where \circ is the unitary convolution studied by Eckford Cohen[3].

Introducing S-convolutions, Narkiewicz [6] has obtained a set of necessary and sufficient conditions on the set S_n , so that the following hold:

- $(A, +, \overline{S})$ is a commutative ring with unity (in which \mathcal{E} given by $\mathcal{E}(n) = 1$ or 0 according as n = 1 or n > 1 is the unity);
- $f \overline{S} g$ is multiplicative whenever f and g are;
- The arithmetic function u(n)=1 for all n has inverse $\mu_s \in A$ relative to \overline{S} (that is, $u \, \overline{S} \, \mu_s = \varepsilon$) and

48 M. Ganeshwar Rao

 $\mu_s(n) = 0$ or -1 when n is a prime power. μ_s is called the S-analogue of the Mobius function μ .

Such a S-convolution is called a *regular convolution*. Note that both Dirichlet convolution and unitary convolution are regular.

A non empty set P of positive integers is called a *direct factor set* if for n_1 , n_2 with $\gcd(n_1, n_2) = 1$ we have $n_1 n_2 \in P \Leftrightarrow n_1 \in P$ and $n_2 \in P$. A pair P and Q of direct factor sets is said to form a *conjugate pair* if every positive integer n can be written uniquely as n = ab, where $a \in P$ and $b \in Q$. For such a pair note that $P \cap Q = \{1\}$. As examples of conjugate pairs of direct factor sets we have (i) $P = \{1\}$, Q = N (set of all natural numbers) and (ii) $P = \{1\}$ set of all k-free integers (that is, the integers not divisible by the k^{th} power of any prime) and $Q = \{1\}$ the set of all k^{th} power of positive integers.

For any integer n > 1, S_n denotes a set of positive divisors of n. The elements of a complete residue system (mod n) such that $(a,n)_S \in P$ where $(a,n)_S$ denotes the greatest divisor of a in S_n , is called a (P,S)-reduced residue system (mod n) or simply a (P,S)- system (mod n). A (P,S)- system (mod n) from the numbers 1,2,3,...,n will be called a minimal (P,S)- system (mod n).

In case $S_n = D_n$, the set of all positive divisors of n, we note that a (P, S)-system (modn) is the P-reduced residue system (modn) defined by Eckford Cohen[2].

The number of elements in a (P,S)-system (modn) is denoted by $\varphi_{P,S}(n)$ and it is called the (P,S)-totient function. Further it may be observed that in the case $P=\{1\}$ the totient $\varphi_{P,S}(n)$ reduces to $\varphi_S(n)$, the S-analogue of the Euler totient function discussed by P. J. McCarthy[5 and others.

P.J. McCarthy[5] has defined the S-analogue of the Ramanujan sum by

$$C_S(r,n) = \sum_{(a,n)_S=1} e^{2\pi i a/n}$$

Where the sum is over the $\varphi_S(n)$ integers a with $1 \le a \le n$ and $(a,n)_S = 1$. Among the several properties of the sum $C_S(r,n)$ the following has been obtained by P. J. Mc Carthy[4]

$$C_{S}(r,n) = \frac{\varphi_{S}(n)\mu_{S}(m)}{\varphi_{S}(m)}$$

Where $m = \frac{n}{(r,n)_c}$ and S is a regular arithmetic convolution.

Definition: The exponential sum $C_{P,S}(r,n)$ is defined by

The Exponential Sum $C_{P,S}(r,n)$

49

•
$$C_{P,S}(r,n) = \sum_{(x,n)_S \in P} e(x^r,n)$$

Where $e(a, n) = e^{2\pi i a/n}$ and the summation is over the integers x in a (P, S)-system (mod n).

Note that

•
$$C_{PD}(r,n) = C_{P}(r,n)$$

Where $C_p(r,n)$ is the exponential sum introduced by Eckford Cohen[2].

Also
$$C_{P,S}(r,n)$$
 reduces to the S-analogue $C_{S}(r,n)$ if $P=\{1\}$

It has been noted that by Eckford Cohen [2] that in the case $P = \{1\}$ the sum $C_P(r,n)$ reduces to the well known Ramanujan trigonometric sum C(r,n).

2. PROPERTIES OF $C_{P,S}(r,n)$

In this section using the methods of Eckford Cohen [2] we obtain several properties of $C_{P,S}(r,n)$ To do this we need the following result proved by V. Siva Rama Prasad and M. Ganeshwar Rao ([7] Equation 3.2).

2.1 Lemma

If P and Q form a conjugate pair of direct factor sets and S_n is a set of regular divisors of n then

$$\mu_{P,S}(n) = \sum_{d \in S_n \cap P} \mu_S\left(\frac{n}{d}\right)$$

Where μ_S is the S-analogue of μ

Also they have established a generalized inversion formula given below ([7], Theorem 4.1)

Let P, Q be a conjugate pair of direct factor sets and S_n be a set of regular divisors of n Then for $f, g \in A$

$$g(n) = \sum_{d \in S_n \cap Q} f\left(\frac{n}{d}\right) \Leftrightarrow f(n) = \sum_{d \in S_n} g(d) \mu_{P,S}\left(\frac{n}{d}\right).$$

Now we prove

2.4 Theorem

$$C_{P,S}(r,n) = \sum_{\substack{d \in S_n \\ d \mid r}} d\mu_{P,S} \left(\frac{n}{d}\right)$$

Proof: Let
$$\eta_S(r,n) = C_{N,S}(r,n)$$
,

50 M. Ganeshwar Rao

Where N is the set of all natural numbers. Then by definition

$$2.5 \eta_{S}(r,n) = \sum_{(x,n)_{S} \in N} e(xr,n)$$

Where the sum ranges over all integers x in a (N, S)-system (mod n).

But a (N,S)-system (mod n) is a complete residue system (mod n) and therefore the sum on the right of the statement of the theorem is over a complete residue system (mod n) and therefore we have

$$\mathbf{2.6}\,\eta_{S}(r,n) = \begin{cases} n & \text{if } n \mid r \\ 0 & \text{if } n \mid r \end{cases}$$

In view of Lemma 2.1 and (2.5)

$$\eta_{S}(r,n) = \sum_{d \in S_{n} \cap Q\left(x,\frac{n}{d}\right)_{S} \in P} e(dxr,n)$$

$$= \sum_{d \in S_n \cap Q} C_{P,S} \left(r, \frac{n}{d} \right)$$

Now

$$C_{P,S}(r,n) = \sum_{d \in S_{-}} \eta_{S}(r,d) \mu_{P,S}\left(\frac{n}{d}\right)$$

$$= \sum_{\substack{d \in S_n \\ d \mid r}} d\mu_{P,S} \left(\frac{n}{d}\right), \text{ proving the theorem.}$$

2.7. Corollary

- If $r \equiv 0 \pmod{n}$ then $C_{P,S}(r,n) = \varphi_{P,S}(n)$
- If (r,n)=1 then $C_{P.S}(r,n)=\mu_{P.S}(n)$

Proof: (i) If $r \equiv 0 \pmod{n}$ then every $d \in S_n$ is such that $d \mid r$ so that in this case Theorem 2.4 gives

$$C_{P,S}(r,n) = \sum_{\substack{d \in S_n \\ d \mid r}} d\mu_{P,S}\left(\frac{n}{d}\right)$$

$$= \sum_{d \in S_n} d\mu_{P,S} \left(\frac{n}{d}\right)$$

$$=\varphi_{P,S}(n)$$

• If (r,n)=1 then only $d \in S_n$ with $d \mid r$ is given by d=1. So that the only term on the right of the identity in Theorem 2.4 is $1 \cdot \mu_{P,S} \left(\frac{n}{1} \right) = \mu_{P,S} \left(n \right)$.

Hence $C_{P,S}(r,n) = \mu_{P,S}(n)$ in the case (r,n) = 1.

2.8 Remark

Corollary 2.7 shows that both $\varphi_{P,S}(n)$ and $\mu_{P,S}(n)$ are particular cases of the exponential sum $C_{P,S}(r,n)$,

It has been proved by Narkiewcz [6] that

2.9 A S-convolution is regular if and only if the sets S_n have the following property. $S_{mn} = S_m S_n = \{ab : a \in S_m, b \in S_n\} \text{ whenever } \gcd(r,n) = 1.$

Also to prove the next theorem we need the following proved in [7]

2.10 P is a direct factor set and S_n is a set of regular divisor of n then $\mu_{P,S}$ is multiplicative.

2.11 Theorem

The function $C_{P,S}(r,n)$ is multiplicative in n.

Proof: Suppose gcd(m,n)=1 then by Theorem 2.4, (2.9) and (2.10)

$$C_{P,S}(r,mn) = \sum_{d \in S_{mn}} d\mu_{P,S}\left(\frac{mn}{d}\right)$$

$$= \sum_{\substack{d_1 \in S_m \\ d_2 \in S_n \\ d_1 \mid r \\ d_2 \mid r \\ d_n \mid r \\ d_n \mid d_n \mid r}} d_1 d_2 \mu_{P,S} \left(\frac{mn}{d_1 d_2}\right)$$

$$= \sum_{\substack{d_1 \in S_m \\ d_2 \in S_n \\ d_1 \mid r \\ (d_1, d_2) = 1}} d_1 d_2 \mu_{P, S} \left(\frac{m}{d_1}\right) \mu_{P, S} \left(\frac{n}{d_2}\right)$$

$$= \left(\sum_{\substack{d_1 \in S_m \\ d_1 \mid r}} d_1 \mu_{P,S} \left(\frac{m}{d_1}\right)\right) \left(\sum_{\substack{d_2 \in S_n \\ d_2 \mid r}} d_2 \mu_{P,S} \left(\frac{n}{d_2}\right)\right)$$

=
$$C_{P,S}(r,m) \cdot C_{P,S}(r,n)$$
, proving the Theorem 2.11

Now Theorem 2.4, corollary 2.7 (i) and Theorem 2.4 give

52 M. Ganeshwar Rao

$${}_{2.12}\varphi_{P,S}(n) = \sum_{d \in Sn} d\mu_{P,S}\left(\frac{n}{d}\right)$$

And

2.13 $\varphi_{P,S}(n)$ is multiplicative function.

2.14. Theorem

$$C_{P,S}(r,n) = \frac{\varphi_{P,S}(n)\mu_{P,S}(m)}{\varphi_{P,S}(m)}$$

where
$$m = \frac{n}{(r,n)_S}$$

Proof

Suppose $a = (r, n)_s$ then a is the greatest divisor of r which is in S_n and therefore we can write n = a.m where (a, m) = 1. Now by Theorem 2.4 we get

$$C_{P,S}(r,n) = \sum_{d \in S_a} d\mu_{P,S}\left(\frac{n}{d}\right)$$

$$= \sum_{\substack{d\delta=a\\d\in S_a}} d\mu_{P,S} \left(\frac{am}{d}\right)$$

$$= \sum_{\substack{d\delta=a\\d\in S_-}} d\mu_{P,S}(\delta m)$$

Since (a,m)=1 and $d\delta=a$ we get $(\delta,m)=1$ so that by Lemma 2.1 and (2.12) we get

2.15
$$C_{P,S}(r,n) = \sum_{\substack{d\delta = a \\ d \in S_n}} d\mu_{P,S}(\delta) \mu_{P,S}(m)$$

$$= \mu_{P,S}(m) \sum_{d \in S_a} d\mu_{P,S} \left(\frac{a}{d}\right)$$

$$=\mu_{\scriptscriptstyle P,S}(m)\varphi_{\scriptscriptstyle P,S}(a)$$

Now $n = a \cdot m$ where (a, m) = 1 gives

• $\varphi_{P,S}(n) = \varphi_{P,S}(a) \varphi_{P,S}(m)$, by (2.13)

From (2.16) and (2.15) the Theorem follows.

The Exponential Sum $C_{PS}(r,n)$

53

2.16. Corollary

If \overline{S} is a regular convolution then

$$C_S(r,n) = \frac{\varphi_S(n)\mu_S(m)}{\varphi_S(m)}$$
, where $m = \frac{n}{(r,n)_S}$

Proof: If $P = \{1\}$ in the Theorem 2.15 we get the corollary, in view of (1.3).

2.17 Remark

P.J. McCarthy [5] has proved the Corollary 2.16. It may be noted that Suryanarayana [8] has established the formula given in Corollary 2.16 in the case $\overline{S} = \overline{U}$, the unitary convolution, while the result in the case $\overline{S} = \overline{D}$ the Dirichlet convolution is well known.

I thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

REFERENCES

- Apostol, T.M., Introduction to Analytic Number Theory, Springer International student Edition, Narosa Publishing House, New Delhi, 1998
- 2. Cohen, Eckford. A class of residue system (mod n) and related arithmetical function I, A Generalization of Mobius invesion, pacific J.Math., 9(1959), 13-23.
- 3. Cohen, Eckford, Arithmetical function associated with unitary divisors of an integer, Math. Zeit., 74(1960), 66-80
- 4. Ganeshwar Rao, M. on the (P,S) residue system modulo n International Journal of Mathematics and Computer Application Research Vol.4 Issue 2, April, 2014, 69-74
- 5. McCarthy, P.J., Regular arithmetic convolutions, Portugaliae Math., 27(1968), 1-13.
- 6. Narkiewicz, W. On a class of arithmetical convolutions, Colloq. Math., 10(1963), 81-94.
- 7. Siva Rama Prasad, V. and M. Ganeshwar Rao, *A generalized Mobius inversion*, Indian J. Pure appl. Math., 25(12): 1229-1232, December 1994
- 8. Suryanarayana, D. A property of unitary analogue of Ramanujan's sum. Elem. Math., 25/5 (1970), 114.