Data Cleaning

Missing Data

```
In [1]: %matplotlib inline
   import pandas as pd
   import numpy as np
   import scipy as sp
   import scipy.stats as stats
   import math

import matplotlib.pyplot as plt # Required for plotting
   np.random.seed(33)
```

Out[2]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	NaN
3	2	NaN	645
4	2	two	113
5	3	three	942
6	1	one	NaN
7	1	two	539
8	1	one	NaN
9	2	three	814
10	4	one	NaN

Pandas Provides two functions to check if a cell is null -- is_null() / notnull()

Note they are inverses of each other

In [3]: pd.isnull(incomplete_df)

Out[3]:

		id	type	amount
(0	False	False	False
	1	False	False	False
:	2	False	False	True
;	3	False	True	False
•	4	False	False	False
ļ	5	False	False	False
(6	False	False	True
	7	False	False	False
3	8	False	False	True
9	9	False	False	False
	10	False	False	True

In [4]: incomplete_df.notnull()

Out[4]:

		id	type	amount
0		True	True	True
1		True	True	True
2		True	True	False
3		True	False	True
4		True	True	True
5		True	True	True
6		True	True	False
7		True	True	True
8		True	True	False
9		True	True	True
10)	True	True	False

They work on all pandas objects DataFrames and Series

```
In [5]: pd.isnull(incomplete_df['amount'])
Out[5]: 0
               False
         1
               False
         2
                True
         3
               False
         4
               False
         5
               False
                True
         6
         7
               False
         8
                True
         9
               False
         10
                True
         Name: amount, dtype: bool
In [6]: incomplete_df['amount'].notnull()
Out[6]: 0
                True
         1
                True
         2
               False
         3
                True
                True
         4
         5
                True
               False
         6
                True
         8
               False
                True
               False
         10
         Name: amount, dtype: bool
```

Operations with missing data

From the Pandas Documentation

- -When summing data, NA (missing) values will be treated as zero
- -If the data are all NA, the result will be NA
- -Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays

```
In [7]: print(incomplete_df['id'].mean())
    print(incomplete_df['amount'].mean())
2.0
618.0
```

```
In [8]: | incomplete_df['amount'].cumsum()
Out[8]: 0
                 345
         1
               1273
         2
                NaN
               1918
         3
         4
               2031
         5
               2973
         6
                NaN
         7
                3512
                NaN
         9
                4326
         10
                NaN
         Name: amount, dtype: float64
```

Dealing with Missing Data

Drop it

In [9]: incomplete_df

Out[9]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	NaN
3	2	NaN	645
4	2	two	113
5	3	three	942
6	1	one	NaN
7	1	two	539
8	1	one	NaN
9	2	three	814
10	4	one	NaN

Rows with any missing data

In [10]: incomplete_df.dropna(axis=0)

Out[10]:

	id	type	amount
0	1	one	345
1	2	one	928
4	2	two	113
5	3	three	942
7	1	two	539
9	2	three	814

Columns with any missing data

In [11]: incomplete_df.dropna(axis=1)

Out[11]: id

	id
0	1
1	2
2	3
3	2
4	2
5	3
6	1
7	1
8	1
9	2
10	4

You can set a threshold for how many missing values is okay, however the sytax is odd, it's how many non-missing values you have. We can fix it with a little trick on the dataframe size

In [12]: incomplete_df.dropna(axis=1,thresh=incomplete_df.shape[0]-1)

Out[12]:

	id	type
0	1	one
1	2	one
2	3	two
3	2	NaN
4	2	two
5	3	three
6	1	one
7	1	two
8	1	one
9	2	three
10	4	one

Pandas checks all columns, if we want to check only a single column we need to use our own function

In [13]: incomplete_df[incomplete_df['amount'].notnull()==True]

Out[13]:

	id	type	amount
0	1	one	345
1	2	one	928
3	2	NaN	645
4	2	two	113
5	3	three	942
7	1	two	539
9	2	three	814

Filling Missing Data

Filling with Global Constant

In [14]: incomplete_df.fillna(0)

Out[14]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	0
3	2	0	645
4	2	two	113
5	3	three	942
6	1	one	0
7	1	two	539
8	1	one	0
9	2	three	814
10	4	one	0

Filling with Column Statistics

In [15]: incomplete_df.fillna(incomplete_df.mean())

Out[15]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	618
3	2	NaN	645
4	2	two	113
5	3	three	942
6	1	one	618
7	1	two	539
8	1	one	618
9	2	three	814
10	4	one	618

Any guesses why the Type column didn't fill?

In [16]: #Be careful the fill can be with anything! incomplete_df.fillna('MISSING')

Out[16]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	MISSING
3	2	MISSING	645
4	2	two	113
5	3	three	942
6	1	one	MISSING
7	1	two	539
8	1	one	MISSING
9	2	three	814
10	4	one	MISSING

You can also fill for specific columns

In [17]: incomplete_df[['amount']].fillna(0)

Out[17]:

	amount
0	345
1	928
2	0
3	645
4	113
5	942
6	0
7	539
8	0
9	814
10	0

A little smarter, lets use the ID of the instance to fill it

NOTE! There is still a Missing Value as ID 4 only has 1 amount, which is missing, but it's a start

In [18]: incomplete_df

Out[18]:

	id	type	amount
0	1	one	345
1	2	one	928
2	3	two	NaN
3	2	NaN	645
4	2	two	113
5	3	three	942
6	1	one	NaN
7	1	two	539
8	1	one	NaN
9	2	three	814
10	4	one	NaN

```
incomplete_df["amount"].fillna(incomplete_df.groupby("id")["amount"].mean())
In [19]:
Out[19]:
         0
                345
          1
                928
          2
                625
                645
          3
          4
                113
                942
          5
          6
                NaN
                539
          7
                NaN
                814
          10
                NaN
         Name: amount, dtype: float64
In [20]:
          incomplete_df.groupby("id")["amount"].mean()
Out[20]: id
               442
          1
          2
               625
               942
               NaN
          Name: amount, dtype: float64
```

Lets try some interpolation

Not quite regression filling (as it focuses on fitting the specific column, not the relation between columns, but along those lines

In [21]: incomplete_df.interpolate()

Out[21]:

	id	type	amount
0	1	one	345.0
1	2	one	928.0
2	3	two	786.5
3	2	NaN	645.0
4	2	two	113.0
5	3	three	942.0
6	1	one	740.5
7	1	two	539.0
8	1	one	676.5
9	2	three	814.0
10	4	one	814.0

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe8b2043c90>

Binning

```
data = [0,4,12,16,16,18,24,26,28]
In [23]:
          data = pd.DataFrame(data)
          plt.hist(data[0],3)
Out[23]: (array([ 2., 4., 3.]),
                             , 9.33333333, 18.66666667, 28.
          array([ 0.
                                                                          ]),
          <a list of 3 Patch objects>)
          4.0
           3.5
          3.0
           2.5
           2.0
          1.5
          1.0
          0.5
          0.0
                           10
                                   15
                                           20
                                                  25
          data = [0,4,12,16,16,18,24,26,28]
In [24]:
          num bins = 3.0
          w = (28-0)/num_bins
          bin_ranges = []
          current_val = np.min(data)
          for i in xrange(0,int(num bins)):
              bin_ranges.append((current_val,np.ceil(current_val+w)))
              current_val= np.ceil(current_val+w)
          data = pd.DataFrame(data)
```

Out[24]: [(0, 10.0), (10.0, 20.0), (20.0, 30.0)]

bin_ranges

Out[25]:

	0
0	0
1	0
2	1
3	1
4	1
5	1
6	2
7	2
8	2

```
In [26]: data = [0,4,12,16,16,18,24,26,28]

w = np.ceil(len(data)/3.0)

data = pd.DataFrame(data)
bin_ranges = []
current_val = 0
bin_val = 0
for i in data.iterrows():
    i[1][0]=bin_val
    current_val+=1
    if(current_val==w):
        bin_val+=1
        current_val=0

pd.concat([data,pd.DataFrame([0,4,12,16,16,18,24,26,28])],axis=1)
```

Out[26]:

		0	0
()	0	0
1		0	4
2	2	0	12
3	3	1	16
4	Ļ	1	16
Ę	5	1	18
6	6	2	24
7	7	2	26
8	3	2	28

Outlier Detection

Statistical Methods

```
In [27]: df=pd.DataFrame(np.random.normal(size=2000))
    df.head()
```

Out[27]:

	0
0	-0.318854
1	-1.602981
2	-1.535218
3	-0.570401
4	-0.216728

In [28]: df[np.abs(df[0]-df[0].mean())<=(3*df[0].std())] #keep only the ones that are w
 ithin +3 to -3 standard deviations</pre>

Out[28]:

	0
0	-0.318854
1	-1.602981
2	-1.535218
3	-0.570401
4	-0.216728
5	0.254874
6	-0.149450
7	2.010783
8	-0.096784
9	0.422202
10	-0.225462
11	-0.637943
12	-0.016286
13	1.044217
14	-1.084880
15	-2.205925
16	-0.951219
17	0.832973
18	-1.000208
19	0.343463
20	1.546030
21	0.690081
22	-2.045853
23	0.334467
24	-0.641459
25	-0.222497
26	-1.230374
27	0.205848
28	0.821371
29	-0.493780
1970	0.232214

	0
1971	0.481052
1972	1.664419
1973	0.183759
1974	-1.483533
1975	-0.693506
1976	1.084030
1977	-2.452230
1978	-2.363002
1979	-0.562729
1980	1.003262
1981	0.931674
1982	1.482026
1983	-0.939460
1984	0.678064
1985	0.402213
1986	1.212572
1987	0.443469
1988	1.006570
1989	1.388796
1990	1.086052
1991	-1.209619
1992	-0.271168
1993	-0.653474
1994	-0.162643
1995	-0.144757
1996	1.403689
1997	0.528832
1998	-1.144815
1999	0.878984

1996 rows × 1 columns

```
In [29]: q75, q25 = np.percentile(df[0], [75 ,25])
    iqr = q75 - q25
    1.5*iqr
```

Out[29]: 1.9751158056331399

Merging Data

Merging multiple data sources can easily cause missing data!

The Full tutorial on merging data can be found here https://pandas.pydata.org/pandas-docs/stable/merging.html)
https://pandas.pydata.org/pandas-docs/stable/merging.html)

In [31]: pd.concat([df1,df2],axis=1)

Out[31]:

	Α	В	С	D	Α	В	С	D
0	A0	В0	C0	D0	NaN	NaN	NaN	NaN
1	A1	B1	C1	D1	NaN	NaN	NaN	NaN
2	A2	B2	C2	D2	NaN	NaN	NaN	NaN
3	A3	ВЗ	C3	D3	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	A4	B4	C4	D4
5	NaN	NaN	NaN	NaN	A5	B5	C5	D5
6	NaN	NaN	NaN	NaN	A6	В6	C6	D6
7	NaN	NaN	NaN	NaN	A7	В7	C7	D7

In [32]: pd.concat([df1, df3], axis=1, join='inner')

Out[32]:

	Α	В	С	D	В	D	F
2	A2	B2	C2	D2	B2	D2	F2
3	А3	ВЗ	С3	D3	ВЗ	D3	F3

In [33]: | pd.concat([df1, df3], axis=1, join_axes=[df1.index])

Out[33]:

	Α	В	С	D	В	D	F
0	Α0	В0	СО	D0	NaN	NaN	NaN
1	A1	B1	C1	D1	NaN	NaN	NaN
2	A2	B2	C2	D2	B2	D2	F2
3	А3	В3	СЗ	D3	В3	D3	F3

In [34]: data = (pd.DataFrame([(6, 20, 3), (5, 10, 3), (4, 5, 2), (3, 5, 2), (2, 5,
4)]))
data

Out[34]:

	0	1	2
0	6	20	3
1	5	10	3
2	4	5	2
3	3	5	2
4	2	5	4

In [35]: data[~data.duplicated()]

Out[35]:

	0	1	2
0	6	20	3
1	5	10	3
2	4	5	2
3	3	5	2
4	2	5	4

```
In [36]: data[~data.duplicated([2])]
Out[36]:
            0
                  2
          0 6 20
                  3
            4
              5
                  2
            2
              5
                  4
In [37]: data[~data.duplicated([1,2])]
Out[37]:
            0
                  2
          0 6 20 3
            5
              10 3
          2
              5
            4
                  2
```

Chi-Squared Analysis

2 5

Covariance

```
data = (pd.DataFrame([(6, 20), (5, 10), (4, 14), (3, 5), (2, 5)]))
          data
Out[39]:
            0
              1
            6
              20
            5
               10
          2
            4
               14
          3
            3
              5
            2
              5
```

```
In [40]: np.cov(data,rowvar=False,bias=True)[0][1]
```

Out[40]: 7.0