Gebäudevisualisierung mit Point clouds CS561 Verteilte Systeme

Daniel Federau, Lukas Songajlo

5. November 2013

Übersicht

- Point clouds
- Hybrid Images

Was ist eine Point cloud?

- repräsentiert 3-dimensionale, reale Objekte
- jeder Punkt ist Teil der Oberfläche eines Meshs

Was ist eine Point cloud? (formal)

- Menge von diskreten Punkten: $P = \{\rho_1, \rho_2, ..., \rho_i, ..., \rho_n\}$
- ρ_i ist ein Feature-Vektor: $\rho_i = \{x_i, y_i, z_i, r_i, g_i, b_i, temperature_i...\}$

Motivation

- Visualisierung gescannter Objekte am Computer
- Modellierung der Point cloud in 3D Modells
 - ⇒ Oberflächenrekonstruktion
- Anwendung: Unfallvermeidung, Gebäudeplanung einer Stadt

Terrain Detection

"Building Rome in a Day"

- Video Rom
- Projekt der Universität Washington
- Rekonstruktion von Rom aus zahlreichen Bildern
- Download der Bilder von flickr.com
 - → Point Cloud durch Feature-Matching
- 21h Berechnungszeit mit ca 500 CPU-Kerne

"Altstadt von Dubrovnik"

- Video Dubrovnik
- 4,619 Bilder + 3,485,717 Punkte
- 5h Feature-Matching
- 17h Visualisierung

Wie rechnet man mit unorganisierten Punkten?

Problem: Redundante Daten

Lösung: jedes ρ_i erhält ein weiteres feature *entropy*

- Punkte mit wenig Informationsgehalt werden gelöscht
- entropy abhängig von: Distanzen zueinander, Änderung der Normalen, Farbe

Wie rechnet man mit unorganisierten Punkten?

<u>Probleme:</u> sehr große # Punkte + Messungenauigkeiten

Lösung: downsampling der Punkte mit Gruppierungsmethoden

Interpolation der Nachbarpunkte

Was ist ein Hybrid Image?

Was ist ein Hybrid Image?

- Verbindung von realen und virtuellen Elementen in einem Bild
- statischer Einsatz von Augmented Reality

Zielsetzung

- Visualisierung von zukünftigen Bauprojekten in einer realen Umgebung
- betrachten des Gebäude aus jedem Blickwinkel
- Präsentation für potentielle Kunden, Anwohner und Projektbeteiligte

1. Umwelt als dreidimensionale Repräsentation mit **Point Cloud**

3. Rendering eines 3D-Modells des zukünftigen Gebäudes

1. Arbeitsschritt: Point cloud erstellen

- Benötigt eine Reihe von Bildern der gleichen Umgebung aus unterschiedlichen Perspektiven
- Für jedes Bild B_i wird ein Feature -Set F_i mit $f_1, ..., f_n$ feature Vektoren erstellt
 - $\rightarrow \mathsf{SIFT}\text{-}\mathsf{Algorithmus}$
- Features aus verschiedenen Bildern werden verglichen
- Suchen von Punkten, die in mehreren Bildern vorkommen
 - \rightarrow Repräsentation durch die Point cloud

Scale-invariant feature transform (SIFT)

- wurde 1999 von David Lowe entwickelt
- Features sind invariant gegen Skalierung, Rotation, Beleuchtung, Blickwinkel
- es werden nur lokale Informationen betrachtet
- ein Feature wird durch einen Vektor mit 128 Einträgen dargestellt

1. Arbeitsschritt: Feature Extraktion

1. Arbeitsschritt: Matching von Feature Sets in verschiedenen Bildern

- "k-nearest neighbour search"
- Es werden der nächste und der zweitnächste Nachbar gesucht (k = 2):
 - ist der Abstand der beiden Nachbarn zu klein wird es nicht als match verzeichnet
 - überschreitet der Abstand einen gewissen Schwellwert, werden die zwei Features als *match* gewertet

2. Arbeitsschritt: Matching mit vorhandener Point cloud

- Erstellen eines SIFT-Feature-Set des Input Bildes
- Matching der Features mit der Point cloud
- Durch die Transformation der Point cloud erhält man Perspektive und Aufnahmeort des Bildes

3. Arbeitsschritt: Rendering des 3D-Modells

- Zeitpunkt der Aufnahme des Bildes bestimmt den Ort der Lichtquelle (Stand der Sonne)
- Objekte miteinbeziehen, die Sicht blockieren
- Point cloud liefert Informationen über Perspektive
- richtige Ausrichtung des 3D-Modells

Hochschule für Kunst, Design und Populäre Musik

University of Arts and Applied Sciences

Quellen

- Approximierung von point clouds in 3D Meshes: http://geom.ibds.kit.edu/papers/point_clouds.pdf
- \bullet alternative Einsatzmöglichkeiten + allg. Informationen zum Thema Point clouds:

```
http://ais.informatik.uni-freiburg.de/teaching/ws10/robotics2/pdfs/rob2-12-ros-pcl.pdf
```

SIFT:

```
http://www.aishack.in/2010/05/
sift-scale-invariant-feature-transform/
```

- SIFT-Algorithmus (Bild): http://ispl.korea.ac.kr/Research/datafusion/ navigation.html
- Building Rome in one day: http://grail.cs.washington.edu/rome/index.html
- Workflow Gebäudevisualisierung:
 Remembering in the Metaverse, Florian Müller

The End

Danke für die Aufmerksamkeit. offene Fragen?