COMBINING LATENT TOPICS WITH DOCUMENT ATTRIBUTES IN TEXT ANALYSIS

Nelson Auner Advisors: Prof. Matt Taddy & Prof. Stephen Stigler

University of Chicago

May 13, 2014

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- 3 Application
 - Congressional Speech Data
 - Restaurant Review Data
- Extensions

• A document is a collection of words or phrases.

- A document is a collection of words or phrases.
- Our datasets are collections of documents

- A document is a collection of words or phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

- A document is a collection of words or phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

Document	Content
1	Some computation and formula proving, a lot of R code
2	Problems, computation using R
3	Some computations and writing R code
4	Proofs, problems, and programming work

 If order doesn't matter, then we can treat each document as a "bag of words".

- If order doesn't matter, then we can treat each document as a "bag of words".
- ullet The number of words can be modeled \sim multinomial

- If order doesn't matter, then we can treat each document as a "bag of words".
- ullet The number of words can be modeled \sim multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

- If order doesn't matter, then we can treat each document as a "bag of words".
- ullet The number of words can be modeled \sim multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

 We would like to add structure to the model for inference or prediction

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

Grade	Content
A+	Some computation and formula proving, a lot of R code
В	Problems, computation using R
В	Some computations and writing R code
C+	Proofs, problems, and programming work

• *n* documents with metadata that takes *m* discrete values:

- *n* documents with metadata that takes *m* discrete values:
- Normally, n>>m

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- $\bullet \ \Rightarrow$ Collapse observations by outcome variables.

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- ⇒ Collapse observations by outcome variables.
- Model as m observations, instead of n

- n documents with metadata that takes m discrete values:
- Normally, n >> m
- ullet \Rightarrow Collapse observations by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
С	0	0	0	1	0	0	0	1	0	1	1

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- \Rightarrow Collapse observations by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
C	0	0	0	1	0	0	0	1	0	1	1

Reality: There are thousands of course reviews

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet,

Gears

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

• A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming

A topic is a distribution of words.

In a topic model, documents are made of a mixtures of topics.

Running Topic Stride, Pacing,

Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

- A book about triathalon training $\sim \theta_1$ Running + θ_2 Biking + θ_3 Swimming
- Problem: We can no longer collapse observations, must use all n observations

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Approach

- Restrict each document to only one topic ⇒ "cluster"
- Can collapse observations over unique (metadata, cluster) combination
- $\bullet \ x_i \sim MN(q_{ij}, m_{ij}); \quad q_{ij} = \frac{\exp(\alpha_j + y_i \phi_j + u_i \Gamma_{kj})}{\sum_{l=1}^p \exp(\alpha_l + y_i \phi_l + u_i \Gamma_{kl})}$

1 Initialize cluster membership u_i for i = 1, ..., n

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **③** For each document i, determine new cluster u_i membership as $argmax_{k=1,..,K}[\ell(u_i|\alpha,\phi,\Gamma)]$

- **1** Initialize cluster membership u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **3** For each document i, determine new cluster u_i membership as $argmax_{k=1,...K} [\ell(u_i|\alpha,\phi,\Gamma)]$
- **①** Check if current cluster assignment is different from previous cluster assignment , $(\mathbf{u}^{(t)} = \mathbf{u}^{(t-1)})$. If so, return to step 2. If not, end algorithm.

We test three different approaches:

We test three different approaches:

Randomly assign each observation to a cluster

We test three different approaches:

- Randomly assign each observation to a cluster
- Group documents by k-means, then assign clusters

We test three different approaches:

- Randomly assign each observation to a cluster
- Group documents by k-means, then assign clusters
- Regress metadata on text, then group residual's by k-means to clusters

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- 3 Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

Congressional Speech and Restaurant Reviews

- We apply the algorithm to two datasets:
 - Congressional Speech records (Moskowitz and Shapiro, 2010)
 - A corpus of restaurant reviews called we8there.

Congressional Speech and Restaurant Reviews

- We apply the algorithm to two datasets:
 - Congressional Speech records (Moskowitz and Shapiro, 2010)
 - A corpus of restaurant reviews called we8there.
- Questions:
 - Can this simple model capture the variation explained by a topic model?
 - How does choice of cluster initialization affect the fit?

An Example Cluster

	term	loading
1	nation.oil.food	20.09
2	united.nation.oil	12.09
3	liberty.pursuit.happiness	8.11
4	life.liberty.pursuit	8.11
5	minority.women.owned	6.73
6	universal.health	6.67
7	white.care.act	6.64
8	ryan.white.care	6.6
9	universal.health.care	5.99
10	growth.job.creation	5.39
11	drilling.arctic.national	5.3
12	tax.relief.package	5.29
13	judge.john.robert	5.26
14	fre.enterprise	5.07
15	arctic.refuge	4.93

Comparison with the Topic Model

Good news: We are able to recover similar topics with our model:

Table: Comparison of top word loadings on a stem-cell topic

	Cluster Membership	Topic Model (LDA)*	
umbilic.cord.blood		pluripotent.stem.cel	
	cord.blood.stem	national.ad.campaign	
	blood.stem.cel	cel.stem.cel	
	adult.stem.cel	stem.cel.line	

^{*}Results reported in Taddy (2012)

Incorporating metadata: Congressional Speech

Example Topic from Restaurant Review

term	loading
deep dish	7.76
italian beef	7.07
pizza like	6.85
style food	6.69
au jus	6.33
cut fri	6.16
just ok	6.01
great pizza	5.96
south side	5.94
pizza great	5.82
just over	5.75
took seat	5.72
golden brown	5.61
behind counter	5.58
got littl	5.52
	deep dish italian beef pizza like style food au jus cut fri just ok great pizza south side pizza great just over took seat golden brown behind counter

Incorporating metadata: Restaurant Review

Evaluating Cluster Initialization

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

Text as Data Cluster Model Application Extensions

Relationship Between Clusters and Metadata

- Relationship Between Clusters and Metadata
- Peature Allocations: Allow an obervation to be a member of multiple clusters

- Relationship Between Clusters and Metadata
- Peature Allocations: Allow an obervation to be a member of multiple clusters
- Prediction and Cross Validation

Imma Let you Finish, but the Dirichlet was the greatest prior of all time!

Imma Let you Finish, but the Dirichlet was the greatest prior of all time!

Results

Results

	term	loading
1	yeezus	5.48
2	constel	3.79
3	homm	3.79
4	preach	3.79
5	bound	3.6
6	thoma	3.38
7	thirti	3.32
8	rocka	3.31
9	rowland	3.25
10	jamaican	3.23
11	blocka	3.22
12	movement	3.22
13	unlik	3.08
14	vknow	3.08 📲

Thank You

Thank You

