Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

L5b --- Example sequential test

Detection of Marine Sensor Biofouling

Antonio Baptista, Cynthia Archer, Haiming Zheng

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Conductivity Sensor Biofouling

CT1448, 9/28/01

Assignment Project Exam Help

https://eduassistpro.github.io/

CT1459, 9/30/02

Add WeChat edu_assist_pro

CT1449, 8/28/01

Conductivity Sensor Biofouling

CT1448, 9/28/01

Assignment Project Exam Help

https://eduassistpro.github.io/

CT1459, 9/30/02

Add WeChat edu_assist_pro

CT1449, 8/28/01

Biofouling Detection

- Detect onset of biofouling within several diurnal cycles
- Challenges
 - Variabilitys of forthing is ignet to ream Help
 - Very few e t (many days of lost condu https://eduassistpro.githuby.io/can't use clean/fouled discriminato edu_assist_pro
 - Distinguish natural variati nsor degradation

Detection Algorithm

Sequential likelihood ratio test

$$h(Now) = \sum_{\substack{n=Now-\tau \\ \mathbf{Assignment Project Exam Help}}}^{Now} \ln \frac{p(x_n \mid T_n, fouled)}{p(x_n \mid T_n, clean)} > \lambda$$

Now is current time

Now-τ is start of fouling https://eduassistpro.github.io/

 x_n is salinity at time n

 T_n is vector of local water the example at edu_assist_pro

 λ is detection threshold (set by specifying *false alarm rate*)

p(x/clean) is Gaussian with mean E[s|T] dependent on observed tidal variation of *local temperature* (i.e. predict salinity from temperature) and variance var(s|T)

p(x|fouled) is Gaussian with mean decreasing linearly (slope m).

Example of On-Line Detector Signals

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Impact and Further Development

- Initial detectors placed on-line in spring of 2001.
- Detectors eventually placed at all observing sites.
- Data Preservation
 - Prior to the steptoy the recipient from 1997 through the salinity sensors suffered a https://eduassistpro.gfthling.io/
 - Post-deplo
 2003), data Aost We Chair edu_assist per to 35%. This includes delays in respondi
 ent detection.
 - If all sensors were attended to immediately following a detected event, the data loss would have dropped to 17%.
 - DETECTORS CUT CORIE BIOFOULING-INDUCED DATA LOSS IN HALF

Impact and Further Development

- One false alarm due to precipitation; one unexplained false alarm.
 Assignment Project Exam Help
- Seasonal https://eduassistpro.gitAlb.io/ temperat ferent predictive And de la Canadedu_assist_escof year.
 - We developed mixture models for prediction that <u>automatically adjust</u> to current temperature profile conditions in the riverestuary-ocean system.

References

Leen, T.K.; Archer, C; Baptista, A. Parameterized Novelty Detector for Environmental Sensor Monitoring. *Advances in Neural Information Processing Systems 16*, Thrun, Saul, and Scholkopf (eds.), The Mit Press, 2004. Assignment Project Exam Help

Archer, C; Baptista, https://eduassistpro.githublindy sensors in the Columbia River Estuary. Water R earch, 39, 1060, Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro