Poisson Cluster Process: Bridging the Gap Between PPP and 3GPP HetNet Models

Harpreet S. Dhillon, Ph.D.

Joint work with Chiranjib Saha and Mehrnaz Afshang

Wireless @ Virginia Tech

Blacksburg, VA

HetNet: Different Components

HetNet with different BSs and coverage regions

PPP Model of HetNets

A Two-tier Baseline HetNet Model

- * BSs of different tiers (macro and small cells) and users are modeled as homogeneous Poisson point process (PPP) over \mathbb{R}^2 .
- * The statistics of SINR at the origin is computed.
- * Due to stationarity, this result is used to characterize coverage probability of a typical user of the network.

PPP Model: How far from actual HetNet?

A Simple Illustration of HetNet

PPP Model: How far from actual HetNet?

* Key components missing in the baseline PP model:

- * Non-uniformity in user distribution:
 - * Modeling all users as an independent PPP is not realistic.
 - * Fraction of users form spatial clusters (*Hotspots*), e.g. users in public places and residential areas.
- * Correlation between small cell BS (SBS) and user location:
 - * Operators deploy pico BSs at higher density at user hotspot.
 - * Users install their own femto BSs.
- * Inter and Intra BS-tier Dependence: *
 - * BS locations are not necessarily independent.
 - * Site planning for deploying BSs introduces correlation in BS locations.

^{*} N. Deng, W. Zhou, and M. Haenggi, "Heterogeneous cellular network models with dependence," IEEE JSAC, 2015.

3GPP Models: User Distribution

* 3GPP considers different configurations of SBSs and users in HetNet simulation model.

Users "uniform" across macro cells

Users "non-uniform" across macro cells

Users forming clusters within a disc

User Configurations in 3GPP HetNet Model

3GPP Model: SBS Distribution

How can PCP enhance HetNet Model?

* Poisson Cluster Process (PCP) is more appropriate abstraction for user and BS distributions considered by 3GPP.

Matern Cluster Process:
An example of PCP

Definition: Poisson Cluster Process (PCP)

A PCP is generated from a PPP Φ_p called the **Parent PPP**, by replacing each point \mathbf{z}_i by a finite offspring point process \mathcal{B}_i where each point is independently and identically distributed around origin.

$$\Phi = \bigcup_{\mathbf{z}_i \in \Phi_{\mathrm{D}}} \mathbf{z}_i + \mathcal{B}_i.$$

Definition: Matern Cluster Process

- $\#\mathcal{B}_i \sim \mathtt{Poisson}(\bar{m})$
- Each point in \mathcal{B}_i is uniformly distributed inside disc of radius r_d centered at origin.

PCP Based HetNet Models

* New HetNet models with combination of PPP and PCP have closer resemblance to 3GPP HetNet models.

Model 1: Users PPP,
BSs PPP (Baseline)

Model 2: Users PCP,
BSs PPP

Model 3: Users PCP, BSs PCP

Model 4: Users PPP, BSs PCP

Unified HetNet Model: PCP meets PPP

- * We consider K tier HetNet with two sets of BS PPs:
 - * K₁ BS tiers are modeled as independent PPPs.
 - * K₂ BS tiers are modeled as independent PCPs.
- * User Distribution:
 - * Users can be independent PPP.
 - * Users can be a PCP correlated with the BS distribution.
- * For this setup, we derive coverage probability.

Models 1-4 appear as special cases of this unified framework.

User Association: Max SIR and Max Power

- * Two types of cell association are considered.
 - * Max Power: Connect to the BS providing maximum average received power.
 - * Contact and Nearest distance distributions of PCP and PPP are the key components of analysis*.
 - * Max SIR: Connect to the BS providing maximum instantaneous SIR (assuming interference limited network).
 - * The analysis is well-known for the Baseline model **.
 - * We generalize this approach to enable coverage analysis for the proposed Unified Model.

^{**} H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, "Modeling and analysis of K-tier downlink heterogeneous cellular networks," IEEE Journal on Sel. Areas in Commun., 2012.

^{*} M. Afshang, C. Saha, and H. S. Dhillon, "Nearest-Neighbor and Contact Distance Distributions for Thomas Cluster Process", IEEE Wireless Commun. Letters, 2016.

Construction of 0th tier

- * If the users are PCP, the user PP is correlated with one BS PPP Φ_k .
- * Correlation can be handled by constructing the 0^{th} tier (Φ_0) .
 - * If users are clustered around Φ_k which is a PPP, Φ_0 is only the BS of Φ_k at cluster center (**z**) of the typical user.
 - * If users same parent PPP of Φ_k which is a PCP, Φ_0 is the set of BSs in Φ_k belonging to the same cluster center (**z**) of the typical user.

* Coverage probability, or equivalently CCDF of SIR, is:

$$P_{c} = \mathbb{P}(SIR \ge \beta) = \bigcup_{k \in \mathcal{K}} \mathbb{E} \left[\mathbf{1} \left(\bigcup_{\mathbf{x} \in \Phi_{k}} \frac{P_{k} h_{\mathbf{x}} \|\mathbf{x}\|^{-\alpha}}{\mathcal{I}(\Phi_{k} \setminus \{\mathbf{x}\}) + \sum_{j \in \mathcal{K} \setminus \{k\}} \mathcal{I}(\Phi_{j})} > \beta \right) \right]$$

where $\mathcal{I}(\Phi_i) = \sum_{y \in \Phi_i} P_i h_y \|y\|^{-\alpha}$ is the interference from all BSs in Φ_i .

* For $\beta>1$, $P_{\rm c}$ can be expressed as sum of probability that serving BS belongs to $\Phi_k(k\in\mathcal{K})$.

$$P_{c} = \sum_{k \in \mathcal{K}} P_{c(k)} = \sum_{k \in \mathcal{K}} \mathbb{E} \left[\mathbf{1} \left(\sum_{\mathbf{x} \in \Phi_{k}} \frac{P_{k} h_{\mathbf{x}} \|\mathbf{x}\|^{-\alpha}}{\mathcal{I}(\Phi_{k} \setminus \{\mathbf{x}\}) + \sum_{j \in \mathcal{K} \setminus \{k\}} \mathcal{I}(\Phi_{j})} > \beta \right) \right]$$

* By Rayleigh fading assumption

$$\sum_{k \in \mathcal{K}} \mathbb{E} \left[\sum_{\mathbf{x} \in \Phi_k} \exp \left(-\frac{\beta}{P_k} \left(\mathcal{I}(\Phi_k \setminus \{\mathbf{x}\}) \right) \exp \left(-\frac{\beta}{P_k} \left(\sum_{j \in \mathcal{K} \setminus \{k\}} \mathcal{I}(\Phi_j) \right) \|\mathbf{x}\|^{\alpha} \right) \right]$$

* Taking expectation with respect to fading

$$\sum_{k \in \mathcal{K}} \mathbb{E} \left[\sum_{\mathbf{x} \in \Phi_k} \prod_{\mathbf{y} \in \Phi_k \setminus \{\mathbf{x}\}} \frac{1}{1 + \frac{\beta}{P_k} \left(\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|} \right)^{-\alpha}} \right] \mathbb{E} \left[\prod_{j \in \mathcal{K} \setminus \{k\}} \exp \left(-\frac{\beta}{P_k} \left(\mathcal{I}(\Phi_j) \right) \|\mathbf{x}\|^{\alpha} \right) \right]$$

 $P_{\mathrm{c}(k)}$: Per-tier Coverage

$$P_{c(k)} = \mathbb{E}\left[\sum_{\mathbf{x} \in \Phi_k} \prod_{\mathbf{y} \in \Phi_k \setminus \{\mathbf{x}\}} \frac{1}{1 + \frac{\beta}{P_k} \left(\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|}\right)^{-\alpha}}\right] \prod_{j \in \mathcal{K} \setminus \{k\}} \mathbb{E}\left[\exp\left(-\frac{\beta}{P_k} \mathcal{I}(\Phi_j) \|\mathbf{x}\|^{\alpha}\right)\right]$$

This term belongs to a general family of functional over point processes called **sum-product functional**.

Can be expressed in terms of **probability generating** functional (PGFL) of Φ_i .

Sum-Product Functional

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Phi_k}\prod_{\mathbf{y}\in\Phi_k\setminus\{\mathbf{x}\}}\frac{1}{1+\frac{\beta}{P_k}\left(\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|}\right)^{-\alpha}}\right] \equiv \mathbb{E}\left[\sum_{\mathbf{x}\in\Psi}g(\mathbf{x})\prod_{\mathbf{y}\in\Psi\setminus\{\mathbf{x}\}}v(\mathbf{x},\mathbf{y})\right],$$

Definition

We define Sum-product functional of a point process Ψ can be defined as:

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Psi}g(\mathbf{x})\prod_{\mathbf{y}\in\Psi\setminus\{\mathbf{x}\}}^{=}v(\mathbf{x},\mathbf{y})\right],$$

where $g(\mathbf{x}): \mathbb{R}^2 \mapsto [0,1]$ and $v(\mathbf{x},\mathbf{y}): [\mathbb{R}^2 \times \mathbb{R}^2] \mapsto [0,1]$ are measurable.

- * There are more general versions of Sum-product functional *.
- * There will be different expressions of the sum-product functional depending on Φ_k $(k \in \mathcal{K})$.

^{*} U. Schilcher, S. Toumpis, M. Haenggi, A. Crismani, G. Brandner and C. Bettstetter, "Interference Functionals in Poisson Networks," in *IEEE Trans. Inf. Theory*, Jan. 2016.

Sum product functional

* We require sum-product functional of Φ_k when:

Case 1: Φ_k is PPP

Case 2: Φ_k is PCP

Campbell-Mecke Theorem can be applied to evaluate sum-product functional.

Case 3:

$$|\Phi_k = \Phi_0|$$

- * The third case occurs when the users are modeled as PCP having same parent PPP as that of some PCP distributed BS tier.
- * Has to be evaluated separately as Φ_0 is a **finite** PP.

Sum product functional: PPP

Lemma 1:

The sum product functional of Ψ when Ψ is a PPP can be expressed as follows:

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Psi}g(\mathbf{x})\prod_{\mathbf{y}\in\Psi\setminus\{\mathbf{x}\}}v(\mathbf{x},\mathbf{y})\right] = \int_{\mathbb{R}^2}g(\mathbf{x})G(v(\mathbf{x},\mathbf{y}))\Lambda(d\mathbf{x}),$$

where $\Lambda(\cdot)$ is the mean measure of Ψ , $G(\cdot)$ denotes the PGFL of Ψ .

H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, "Modeling and analysis of K-tier downlink heterogeneous cellular networks," IEEE JSAC, 2012.

Sum product functional: PCP

* In PCP, selecting a point from x implies selecting a tuple (x, z), where z is the cluster center of x.

Lemma 2:

The sum product functional of Ψ when Ψ is a PCP can be expressed as follows:

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Psi}g(\mathbf{x})\prod_{\mathbf{y}\in\Psi\setminus\{\mathbf{x}\}}v(\mathbf{x},\mathbf{y})\right] = \iint_{\mathbb{R}^2\times\mathbb{R}^2}g(\mathbf{x})\widetilde{G}(v(\mathbf{x},\mathbf{y})|\mathbf{z})\Lambda(d\mathbf{x},d\mathbf{z})$$

with

$$\Lambda(\mathrm{d}\mathbf{x},\mathrm{d}\mathbf{z}) = \lambda_{\mathrm{p}_k} \bar{m}_k(\mathbf{x} - \mathbf{z}) \mathrm{d}\mathbf{z} \, \mathrm{d}\mathbf{x}$$

 $G(\cdot)$ denotes PGFL of Ψ with respect to its reduced Palm distribution.

Sum product functional: A special Case

* Conditioning on the number of offspring points is the key to the analysis of sum product functional of **finite** PP Φ_0 , i.e., BSs in Φ_k belonging to the same cluster center of the typical user.

Lemma 3:

The sum product functional of Ψ when Ψ is a cluster of a randomly chosen point of Φ_k $(k \in \mathcal{K}_2)$ can be expressed as follows:

$$\mathbb{E}\left[\sum_{\mathbf{x}\in\Psi}g(\mathbf{x})\prod_{\mathbf{y}\in\Psi\setminus\{\mathbf{x}\}}v(\mathbf{x},\mathbf{y})\right]$$

$$=\sum_{n=1_{\mathbb{R}^2}}^{\infty}\int g(\mathbf{x})\left(\int_{\mathbb{R}^2}(v(\mathbf{x},\mathbf{y})f_k(\mathbf{y}-\mathbf{z})d\mathbf{y}\right)^{n-1}f_k(\mathbf{x}-\mathbf{z})d\mathbf{x} n^2 \frac{p_{k(n)}}{\bar{m}_k}$$

Results: Model 1 Vs. Model 2

SIR threshold, β

In Model 2, the coverage probability decreases as cluster radius increases and shifts towards that of Model 1.

Results: Models 1,3 and 4

SIR threshold, β

Increasing cluster radius has a conflicting effect on coverage probability of Model 3 and 4: coverage probability of Model 4 increases whereas that of Model 3 decreases.

Conclusive Remarks

- * We propose a unified framework for modeling K-tier HetNet.
- * Derived coverage probability for this model under max-SIR connectivity.
 - * Sum-product functionals for PCP and finite point processes were derived as key components of analysis.
- * Special cases of the Model closely resemble BS and user configurations in 3GPP simulations of HetNet.
- * Future Directions:
 - * Rate analysis
 - * Incorporation of shadowing and general channel models
 - * Extension to uplink
 - * Developing unified framework for Max-power association
 - * Modeling spatial separation of BSs *

^{*} M. Afshang and H. S. Dhillon, "Spatial modeling of device-to-device networks: Poisson cluster process meets Poisson hole process," in Proc., IEEE Asilomar, Nov. 2015,

Relevant Publications

- * M. Afshang, H. S. Dhillon, "Poisson Cluster Process Based Analysis of HetNets with Correlated User and Base Station Locations", submitted, Available online: arxiv.org/abs/1612.07285
- * C. Saha, M. Afshang, H. S. Dhillon, "Enriched K-Tier HetNet Model to Enable the Analysis of User-Centric Small Cell Deployments", IEEE Trans. on Wireless Commun., 2017.
- * M. Afshang, C. Saha, and H. S. Dhillon, "Nearest-Neighbor and Contact Distance Distributions for Thomas Cluster Process", IEEE Wireless Commun. Letters, 2016.
- * M. Afshang, H. S. Dhillon, and P. H. J. Chong, "Modeling and Analysis of Clustered Device-to-Device Networks" *IEEE Trans. on Wireless Commun.*, 2016.
- * M. Afshang, H. S. Dhillon, and P. H. J. Chong, "Fundamentals of Cluster-Centric Content Placement in Cache-Enabled Device-to-Device Networks" *IEEE Trans. on Commun.*, 2016.

Thank You for Your Attention

Harpreet S. Dhillon, Ph.D.
Wireless@VT, Bradley Department of ECE
Virginia Tech, Blacksburg, VA

http://www.dhillon.ece.vt.edu

$$= \sum_{k \in \mathcal{K}} \mathbb{E} \bigg[\mathbf{1} \bigg(\sum_{\mathbf{x} \in \Phi_k} \frac{P_k h_{\mathbf{x}} \|\mathbf{x}\|^{-\alpha}}{\mathcal{I}(\Phi_k \setminus \{\mathbf{x}\}) + \sum\limits_{j \in \mathcal{K} \setminus \{k\}} \mathcal{I}(\Phi_j)} > \beta \bigg) \bigg] \quad \text{By } \beta > 1 \text{ assumption}$$

$$\overline{\sum_{k \in \mathcal{K}} \mathbb{E} \left[\sum_{\mathbf{x} \in \Phi_k} \mathbb{P} \left(h_{\mathbf{x}} > \frac{\beta}{P_k} \left(\mathcal{I}(\Phi_k \setminus \{\mathbf{x}\}) + \sum_{j \in \mathcal{K} \setminus \{k\}} \mathcal{I}(\Phi_j) \right) \|\mathbf{x}\|^{\alpha} \right) \right]}$$

$$= \sum_{k \in \mathcal{K}} \mathbb{E} \left[\sum_{\mathbf{x} \in \Phi_k} \exp \left(-\frac{\beta}{P_k} (\mathcal{I}(\Phi_k \setminus \{\mathbf{x}\})) \right) \right]$$

$$\times \exp\left(-\frac{\beta}{P_k}\left(\sum_{j\in\mathcal{K}\setminus\{k\}}\mathcal{I}(\Phi_j)\right)\|\mathbf{x}\|^{\alpha}\right)\right]$$

By Rayleigh assumption

$$= \sum_{k \in \mathcal{K}} \mathbb{E} \left[\sum_{\mathbf{x} \in \Phi_k} \prod_{\mathbf{y} \in \Phi_k \setminus \{\mathbf{x}\}} \frac{1}{1 + \frac{\beta}{P_k} \left(\frac{\|\mathbf{x}\|}{\|\mathbf{y}\|} \right)^{-\alpha}} \right] \mathbb{E} \left[\prod_{j \in \mathcal{K} \setminus \{k\}} \exp \left(-\frac{\beta}{P_k} \left(\mathcal{I}(\Phi_j) \right) \|\mathbf{x}\|^{\alpha} \right) \right]$$

Sum product functional is the key to the derivation of coverage

Sum product functional: A special Case

* In order to model the correlation between user and BS, the sum product functional of the cluster within which user is located should be handled separately.

Lemma 3:

The sum product functional of Ψ when Ψ is a cluster of a randomly chosen point of Φ_k $(k \in \mathcal{K}_2)$ can be expressed as follows:

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \exp\left(-\bar{m}_k \left(\int_{\mathbb{R}^2} \left(1 - v(\mathbf{x}, \mathbf{y})\right) f_k(\mathbf{y} - \mathbf{z}) d\mathbf{y}\right)\right) \times \left(\bar{m}_k \int_{\mathbb{R}^2} v(\mathbf{x}, \mathbf{y}) f_k(\mathbf{y} - \mathbf{z}) d\mathbf{y} + 1\right) f_k(\mathbf{x} - \mathbf{z}) f_k(\mathbf{z}) d\mathbf{x} d\mathbf{z}.$$

