CSC 591, HW: Bayesian Parameter Estimation

Student Id: 200261202 Mkhan8@ncsu.edu

Solution 1:

We know that σ^2 is known and μ is unknown. We know that the sample are drawn from $N(\mu, \sigma^2)$. We also know that $\mu \sim N(\mu_0, \sigma_0^2)$.

1. The posterior distribution of μ is given by:

$$p(\mu|x) \propto \left(\prod p(x_i \mid \mu, \sigma^2) * p(\mu) \right)$$

$$\propto \left(\exp\left\{ -\frac{1}{2\sigma^2} \sum (x_i - \mu)^2 \right\} \right) \left(\exp\left\{ -\frac{1}{2\sigma^2} \sum (\mu - \mu_0)^2 \right\} \right)$$

$$\propto \left(\exp\left\{ -\frac{1}{2} \left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2} \right) \mu^2 + 2\mu \left(\frac{\sigma_0^2 \sum x_i + \mu_0 \sigma^2}{2\sigma^2 \sigma_0^2} \right) \right\} \right)$$

$$\propto \left(\exp\left\{ -\frac{1}{2} \left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2} \right) \left[\mu^2 - 2\mu \left(\frac{\sigma_0^2 \sum x_i + \mu_0 \sigma^2}{\sigma^2 + n\sigma_0^2} \right) \right] \right\} \right)$$

2. We know that the posterior distribution for gaussian is $p(\mu|x)$. And from above calculation we know that

$$p(\mu|x) \propto \left(\exp\left\{-\frac{1}{2}\left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2\sigma^2}\right)\left[\mu^2 - 2\mu\left(\frac{\sigma_0^2\sum x_i + \mu_0\sigma^2}{\sigma^2 + n\sigma_0^2}\right)\right]\right\}\right)$$
$$p(\mu|x) \propto \left(\exp\left\{-\frac{1}{2}\left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2\sigma^2}\right)\left[\mu - \left(\frac{\sigma_0^2\sum x_i + \mu_0\sigma^2}{\sigma^2 + n\sigma_0^2}\right)\right]^2\right\}\right)$$

$$p(\mu|x) \sim N\left(\left(\frac{\sigma_0^2 \sum x_i + \mu_0 \sigma^2}{\sigma^2 + n\sigma_0^2}\right), \left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2}\right)^{-1}\right)$$
$$p(\mu|x) \sim N(\mu_n, \sigma_n^2)$$

3. From above question we know,

$$\sigma_n^2 = \left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2}\right)^{-1}$$

$$\frac{1}{\sigma_n^2} = \left(\frac{n\sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2}\right)$$

$$\mu_n = \left(\frac{\sigma_0^2 \sum x_i + \mu_0 \sigma^2}{\sigma^2 + n\sigma_0^2}\right)$$

$$\sum x_i = n\overline{x}$$

$$\mu_n = \left(\frac{\sigma_0^2 n\overline{x} + \mu_0 \sigma^2}{\sigma^2 + n\sigma_0^2}\right)$$

$$\mu_n = \left(\frac{\sigma_0^2 n\overline{x} + \mu_0 \sigma^2}{\sigma^2 + n\sigma_0^2}\right)$$

Or we can write the same as

$$\mu_n = \left(\left(\frac{\sigma_0^2 n}{\sigma^2 + n\sigma_0^2} \right) * \overline{x} + \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \right) * \mu_0 \right)$$

4: from the above equation we can say that the weight average of prior mean $\mu_0 = \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2}\right)$ and the weighted average of sample mean $\overline{x} = \left(\frac{\sigma_0^2 n}{\sigma^2 + n\sigma_0^2}\right)$

5. we can also write the weights as:

weighted average for
$$\mu_0 = \left(\frac{1}{1 + \frac{n\sigma_0^2}{\sigma^2}}\right)$$

weighted average for
$$\overline{x} = \left(\frac{1}{\frac{\sigma^2}{n\sigma_0^2} + 1}\right)$$

Therefor we can say that the weights are inversely proportional to their variances.

Summing up the weights from question 4:

$$\left(\frac{\sigma_0^2 n}{\sigma^2 + n\sigma_0^2}\right) + \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2}\right) = \frac{(\sigma^2 + n\sigma_0^2)}{(\sigma^2 + n\sigma_0^2)} = 1$$

7.

From question 5 equation we can notice that as the value of n increases $n \to \infty$, the value of $\frac{n\sigma_0^2}{\sigma^2} \to \infty$ and $\frac{1}{\frac{\sigma^2}{n\sigma_0^2}+1} \to 0$, and the value of $\mu_0 \to 0$ and $\overline{x} \to 1$ and vice versa.

Therefore, we can say that value of each weight ranges between 0 and 1.

8. we know from question 3 that:

$$\mu_n = \left(\left(\frac{\sigma_0^2 n}{\sigma^2 + n\sigma_0^2} \right) * \overline{x} + \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \right) * \mu_0 \right)$$

Also, we know that the value of $\left(\frac{\sigma_0^2 n}{\sigma^2 + n\sigma_0^2}\right)$ and $\left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2}\right)$ lies between [0,1]. Therefore, we can say that μ_n will also lie between [0,1]

9. If σ^2 is known, then for the new instance x^{new} . The posterior predictive is given by:

$$p(x^{new}|X) = \int p(x^{new}|\mu)p(\mu|X) d\mu$$

$$= \int N(x^{new}|\mu, \sigma^2) N(\mu|\mu_n, \sigma_n^2) d\mu$$

$$= N(x^{new}|\mu_n, \sigma_n^2 + \sigma^2)$$

An alternative proof to this is mentioned in reference: https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf The proof says that:

$$x^{new} = (x^{new} - \mu) + \mu$$

$$\rightarrow x^{new} - \mu \sim N(0, \sigma^2)$$
and $\mu \sim N(\mu_n, \sigma_n^2)$

If
$$X,Y$$
 are independent, we know $E[X+Y]=E[X]+E[Y]$ and $Var[X+Y]=Var[X]+Var[Y]$.
$$E[x^{new}]=E[(x^{new}-\mu)+\mu]=E[(x^{new}-\mu)]+E[\mu]=0+\mu_n=\mu_n$$

$$Var[x^{new}]=Var[(x^{new}-\mu)+\mu]=Var[(x^{new}-\mu)]+Var[\mu]=\sigma^2+\sigma_n^2$$

$$\to x^{new}\sim N(\mu_n,\sigma^2+\sigma_n^2)$$

10.

Given: $p(x) \sim N(6,1.5^2)$ and $p(\mu) \sim N(4,0.8^2)$

We know: $p(\mu|x) \sim N(\mu_n, \sigma_n^2)$

Where

$$\mu_n = \left(\frac{\sigma_0^2 n \overline{x}}{\sigma^2 + n \sigma_0^2} + \frac{\mu_0 \sigma^2}{\sigma^2 + n \sigma_0^2}\right) = \left(\frac{0.8^2 * 20 * 6 + 4 * 1.5^2}{1.5^2 + 20 * 0.8^2}\right) = \frac{85.8}{15.5} = 5.701$$

$$\sigma_n^2 = \left(\frac{n \sigma_0^2 + \sigma^2}{\sigma_0^2 \sigma^2}\right)^{-1} = \left(\frac{15.5}{1.44}\right)^{-1} = 0.092 = 0.3^2$$

$$p(\mu|x) \sim N(5.7,0.092)$$

R Code to plot:

```
x <- seq(-10, 10, by = .1)
y <- dnorm(x, mean = 6, sd = 1.5)
y2 <- dnorm(x, mean = 4, sd = 0.8)
y3 <- dnorm(x, mean = 5.7, sd = 0.3)
plot(0,0,xlim = c(0,10),ylim = c(0,1))
lines(x,y,col='red')
lines(x,y2,col='blue')
lines(x,y3,col='green')</pre>
```

