機器學習概論 HW1 Report

Part1

Split the train and test data

USING PANDAS TO FINISH CSV FILES EDITING

```
1
      def read_and_split(filename):
          file = pd.read_csv(filename, header=None)
2
3
          file.columns = ['Label','Alcohol',' Malic acid','Ash',' Alcalinity of ash','Ma
4
5
          type1_filt = (file['Label'] == 1)
          type2_filt = (file['Label'] == 2)
6
7
          type3_filt = (file['Label'] == 3)
8
9
          type1 = file.loc[type1_filt]
          type2 = file.loc[type2_filt]
10
          type3 = file.loc[type3_filt]
11
12
13
          type1_test = type1.sample(n=18, frac=None ,random_state=200)
14
          type1_train = type1.drop(type1_test.index)
15
          type2_test = type2.sample(n=18, frac=None ,random_state=200)
16
          type2_train = type2.drop(type2_test.index)
17
          type3_test = type3.sample(n=18, frac=None ,random_state=200)
18
          type3_train = type3.drop(type3_test.index)
19
20
          training_set = pd.concat([type1_train, type2_train, type3_train])
21
          testing_set = pd.concat([type1_test, type2_test, type3_test])
22
          training_set.to_csv('training_set.csv')
24
          testing_set.to_csv('testing_set.csv')
25
26
          return training_set, testing_set
```

Part2

Seperate each feature into a group with Label

SPLIT INTO X AND Y

```
1 x_dataset = dataset[:, 1:] #features
2 y_dataset = dataset[:, 0] # Label
```

CLASSIFY INTO LABELS

```
for i in range(len(y_dataset)):
    if(y_dataset[i] == 1):
        type1.append(x_dataset[i])

elif(y_dataset[i] == 2):
        type2.append(x_dataset[i])

elif(y_dataset[i] == 3):
    type3.append(x_dataset[i])
```

FOR EACH FEATURE, IT HAS INDEX FOR ITS LABEL

```
type1_ft = np.zeros(shape=[13, len(type1)])
     type2_ft = np.zeros(shape=[13, len(type2)])
2
3
      type3_ft = np.zeros(shape=[13, len(type3)])
4
     for idx, ele in enumerate(x_{dataset[0:len(type1)]}):
5
         for i in range(13):
6
             type1_ft[i][idx] = x_dataset[idx][i]
7
     for idx, ele in enumerate(x_dataset[len(type1):len(type1)+len(type2)]):
8
         for i in range(13):
9
             type2_ft[i][idx] = x_dataset[len(type1)+idx][i]
10
     for idx, ele in enumerate(x_dataset[len(type1)+len(type2):len(y_dataset)]):
11
         for i in range(13):
             type3_ft[i][idx] = x_dataset[len(type1)+len(type2)+idx][i]
```

Calculate mean, standard and normal distribution

GET 13 FEATURES MEAN, STANDARD AND NORMAL DISTRIBUTION WITH NUMPY AND SYNIC.STATS

```
f(x) = \frac{\exp(-x^2/2)}{\sqrt{2-x}}
      for i in range(13):
2
          type1_mean.append(np.mean(type1[i]))
          type2_mean.append(np.mean(type2[i]))
          type3_mean.append(np.mean(type3[i]))
      for i in range(13):
1
2
          type1_std.append(np.std(type1[i]))
3
          type2_std.append(np.std(type2[i]))
          type3_std.append(np.std(type3[i]))
          for i in range(13):
1
2
               type1_norm.append(st.norm(type1_mean[i], type1_std[i]))
3
               {\tt type2\_norm.append(st.norm(type2\_mean[i],\ type2\_std[i]))}
               type3_norm.append(st.norm(type3_mean[i], type3_std[i]))
```

Prior

THE DISTRUBUTION OF LABELS WILL BE THE PRIOR DISTRIBUTION

```
prior[0] = len(type1) / len(y_dataset) #0.33
prior[1] = len(type2) / len(y_dataset) #0.42
prior[2] = len(type3) / len(y_dataset) #0.24
```

Likelihood

```
 \underset{\theta}{\operatorname{argmax}} \frac{1}{h} \int_{x_j}^{x_j + h} f(x \mid \theta) \, dx,   \text{$1 \mid \text{likelihood = sc.integrate.quad(dis[label][i].pdf, data[i+1], data[i+1]+delta)[0] $}
```

Posterior

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability

Predictor Prior Probability

Predictor Prior Probability

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

- post[label] = 1. * prior[label]
- post[label] = post[label]*likelihood

MAP

```
predict = np.argmax(post)

total+=1

if predict == (data[0] -1):

correct += 1

else:

pass

print('accuracy: ', correct/total)
```

Part3

Dimension 13 features into 2 & 3 features

Visualization

Part4

Discussion with different Prior

FIRST, I JUST TRY SERVERAL CASES TO OBSERVE THE DIFFERENCE WITH EACH OF THEM.

THE MORE LABELS APPROACHES TO 0, THE WORSE ACCURACY WILL BE.

IN THE OTHER HAND, BE MORE CLOSE TO THE TRAINING DISTRIBUTION OF 3 LABELS, ACCURACY WILL BE MORE HIGHER.

```
1
     \#acc = 0.96
2
3
         prior[0] = 0.05
         prior[1] = 0.05
4
         prior[2] = 0.9
5
6
7
         \#acc = 0.87
8
         prior[0] = 0.9
         10
         prior[2] = 0.00000000001
11
12
13
         \#acc = 0.57
14
15
         prior[0] = 0.000000000005
         prior[1] = 0.99999999999
16
17
         prior[2] = 0.000000000005
18
19
         \#acc = 0.33
20
21
         prior[0] = 0.0
22
         prior[1] = 0.1
23
         prior[2] = 0.0
24
```

Discover most important factors

THEN I CHECK CRITICAL ROLES IN 13 FEATURES, PROLINE & MAGNESIUM ARE 2 HIGHEST METRIC AFFECT RESULTS.

PROLINE, MAGNESIUM, AND ALCALINITY OF ASH ARE 3 HIGHEST METRIC

JUST USE THREE MOST IMPORTANT FEATURES TO CALCULATE MAP

ACCURACY = 0.81

```
1
      for i in range(3):
         if i == 0:
2
3
              # 13th feature
4
              i = 13-1
5
          elif i == 1:
6
              # 5th feature
              i = 5-1
8
          else:
9
              # 4th feature
10
          likelihood = sc.integrate.quad(dis[label][i].pdf, data[i+1], data[i+1]+delta )
          post[label] = post[label]*likelihood
```

WE STILL HAVE OVER 80% ACCURACY