$$\exists C: z(t) = 1 + e^{it}, t \in [0, 2\pi]$$

• For the numerator:
$$|e^z| = |e^{Re(z)} + iIm(z)| = |e^{Re(z)} \cdot e^{iIm(z)}|$$

since $|e^{i\Theta}| = 1$

=)
$$|e^{z}| = |e^{Re(z)}|$$

From (1) we know $Re(z) = 1 + \cos t \le 2$ (and ≥ 0)
=) $|e^{z}| \le e^{2}$

$$\Rightarrow M = \left| \frac{e^2}{1+z} \right| = \frac{|e^2|}{|1+z|} \le \frac{e^2}{1} = e^2$$

"C is a circle => $L = 2\pi$

=) From MI estimate we can say that
$$\left| \oint_{|z-1|} \frac{e^z}{z+1} dz \right| \leq 2\pi e^2$$

$$Q_2. \qquad \downarrow (o_{11}) \qquad \qquad \downarrow \qquad \qquad$$

$$r_i = [o_i i]$$
 $r_i : z_i(t) = t$ $t \in [o_i i]$
 $\Rightarrow z_i(t) = 1$

$$r_3 = [i_10]$$
 $r_3 = i(1-t) = z_3(t)$ $t \in [0,1]$

$$\Rightarrow \int_{Y} z \, dz = \int_{Y_{1}} f(z_{1}(t)) \cdot \dot{z}_{1}(t) d + \int_{Y_{2}} f(z_{2}(t)) \cdot \dot{z}_{2}(t) d + \int_{Y_{3}} f(z_{3}(t)) \cdot \dot{z}_{3}(t) d + \int_{Y_{3}} f(z_{3}(t)) d + \int_{Y_{3}} f(z_{3}(t) d + \int_{Y_{3}} f(z_{3}(t)) d + \int_{Y_{3}} f(z_{3}(t)) d + \int_{Y_{3}$$

$$= \int_{0}^{1} t dt + \int_{0}^{1} (1-t+it)(-1+i)dt + \int_{0}^{1} i(1-t)(-i)dt$$

$$= \frac{1}{2} + (-1+i) \left[t - \frac{t^2}{2} + i \frac{t^2}{2} \right]_0^1 + \left[t - \frac{t^2}{2} \right]_0^1$$

$$=\frac{1}{2}+(-1+i)\frac{(1+i)}{2}+\frac{1}{2}=1\overline{\bullet}(\frac{1+1}{2})=0$$

$$\Rightarrow \frac{1}{2}(t) = 1.6^{t}$$

$$\Rightarrow \int_{Y} Z^{m} dz = \int_{0}^{2\pi} (e^{it})^{m} \cdot ie^{it} dt = \int_{0}^{2\pi} e^{it(1-m)} dt$$

$$= \frac{1}{i(1-m)} e^{it(1-m)} \Big|_{0}^{2\pi} = \frac{1}{1-m} (e^{i2\pi(1-m)} - 1)$$

· for
$$m=1$$
, $\int_{r} z^{m} dz = i \int_{0}^{2\pi} dt = 2\pi i$

Similarly, since
$$\sinh z = -i\sin(iz)$$

A $\sin(iz) = 0$ when $z = -i\pi k \Rightarrow z\cos \omega$ of $\sinh z = i\pi k$, where $k: k \in \mathbb{Z}$

Periods of $\cosh z : \lambda \pi mi$ where $m \in \mathbb{Z}$
 $\sinh z : \lambda \pi mi$ where $m \in \mathbb{Z}$
 $\therefore \cosh(z + \lambda \pi mi) = \cos(iz - \lambda \pi m)$ $\lambda = \lambda \pi k$, $k \in \mathbb{Z}$ is the period of $\sinh z = -i\sin(iz - \lambda \pi m)$ $\lambda = \lambda \pi k$, $\lambda \in \mathbb{Z}$ is the period of $\sinh z = -i\sin(iz - \lambda \pi m)$ $\lambda = \lambda \pi k$, $\lambda \in \mathbb{Z}$ is the period of $\sinh z = -i\sin(iz - \lambda \pi m)$ $\lambda = \lambda \pi k$, $\lambda \in \mathbb{Z}$ is the period of $\sinh z = -i\sin(iz - \lambda \pi m)$

cos(iz) = 0 when $iz = \frac{\pi}{2} + k\pi \Rightarrow z = -i(\frac{\pi}{2} + k\pi)$ where $k \in \mathbb{Z}$

=> zeros of coshz = in/2+ilm, where LEZ

Q6. We know coshz = cos(iz)

Q7.
$$ii = e^{i\log i} = e^{i(\log |i| + i \log (i) + i \log k)} = e^{i(i\pi |2 + i \log k)}$$

 $= e^{-(\pi |a + 2\pi k)}$ where $k \in \mathbb{Z}$

where
$$K \in \mathbb{Z}$$

iii = $(ii)^i$ = $e^{i\log(ii)}$ = $e^{i[\log(e^{-(\pi|a+a\pi k)})]}$ = $e^{i[\log[e^{-(\pi|a+a\pi k)}]+iA\pi m]}$

= $e^{i[\log[e^{-(\pi|a+a\pi k)}]+iA\pi m]}$ = $e^{-a\pi m}$ = $e^{-i(\pi|a+a\pi k)}$ =

$$= e^{i\left[-(\pi/2 + 2\pi k) + O + id\pi m\right]} = e^{-2\pi m} e^{-i(\pi/2 + 2\pi k)} = -ie^{2\pi m}$$
where $m \in \mathbb{Z}$

But i-1 = 1/1 = -i

Qq. Let
$$\arctan(z) = \omega$$
 for some $\omega \in \mathbb{C}$
 $\Rightarrow z = \tan(\omega) = \frac{\sin \omega}{\cos \omega} = \frac{1/2i(e^{i\omega} - e^{-i\omega})}{1/2(e^{i\omega} + e^{-i\omega})}$

=)
$$z = \frac{1(e^{i\omega} - e^{i\omega})}{1(e^{i\omega} + e^{-i\omega})}$$
 =) $iz(e^{i\omega} + e^{-i\omega}) = e^{i\omega} - e^{-i\omega}$

$$e^{i\omega} = \pm \sqrt{-4(iz-1)(iz+1)} = \pm \sqrt{\frac{iz+1}{1-iz}}$$

Taking In on both sides we get

$$i\omega = \ln \left(\frac{1+iz}{1-iz} \right) = \omega = \frac{1}{2i} \ln \left(\frac{1+iz}{1-iz} \right) = \arctan(z)$$

z-blane

entire plane

w-plane

$$C) \longleftrightarrow y=e$$

