

PRIYADARSHINI COLLEGE OF ENGINEERING, NAGPUR DEPARTMENT OF COMPUTER TECHNOLOGY ACADEMIC SESSION: 2022-23 (ODD SEMESTER)

ASSIGNMENT-1

Subject		Design and Analysis of Algorithms (BECT304T)	Semester		V - A and B
Subject Teacher	:	Prof. C. R. Pote Prof. P. U. Tembhare	Assignment No.	:	1
Unit	:	I, II and III	Date of Display	:	01-09-2022

Course Outcomes:

After completing the course, students will be able to:

CO1: Argue the correctness of algorithms using inductive proofs and Analyze worst-case running times of algorithms using asymptotic analysis.

CO2: Explain and apply Divide-and-Conquer and Greedy algorithmic design paradigms.

CO3: Explain and apply Dynamic-Programming algorithmic design paradigms.

Sr. No.	Que. No.	Questions							Mapping with CO	BT Level	
1	1.	What is an algalgorithm.	CO1	II							
2	2. a)	Solve the follo characteristic	of CO1	II							
	2. b)	Solve the follo Recursion Trea	CO1	II							
3	3.	Illustrate step A = Also find recu complexity.	CO2	III							
4	4.	Illustrate step A = Also find recur	CO2	II							
5	5.	What is min minimum cos algorithm usir		I							
6	6. Consider 5 Items along with their respective weights and values as follow									:: CO3	II
		Item	1	2	3	4	5	6	7		
		Value	10	5	15	7	6	18	3		
		Weig	nt 2	3	5	7	1	4	1		
	Capacity of Knapsack W= 15. Solve this fractional knapsack problem									g	
		Greedy strategy.									

Prof. C. R. Pote Subject Teachers Prof. P. U. Tembhare

Dr.(Mrs.) N. M. Thakare HOD, CT