ha De lea	ection — A is compulsory. All parts of this action are to be answered on this page and unded over to the Centre Superintendent. eleting/overwriting is not allowed. Do not use ad pencil.	SEC	2010		The majority	المان کی در این کارون کارو ال کے مانے دیے کے درست
1.	Which of the following pairs has same dimension?		ressure, ensity	Impulse, Momentum	Stress, Strain	O Momentum,
2.	The number of significant figures in 0.000125010 are:	¹ () 3		O 4	O 5	O 6
3.	Two forces of magnitudes F_1 and F_2 acting at right angle to each other have the resultant of the magnitude:	8 O -	$\frac{F_1 + F_2}{2}$	$\bigcap F_1^2 + F_2^2$	$\bigcirc \sqrt{F_1^2 + F_2^2}$	$\bigcirc \frac{F_1^2 + F_2^2}{2}$
4.	The distance covered by a body in time t starting from rest is:	. () a	tt ²	○ 2at²	$\bigcirc a^2t$	$\bigcirc \frac{1}{2}at^2$
5.	The horizontal range of projectile is same for the angles:	「 () 3	0° and 40°	○ 40° and 50°	O 60° and 70°	O 80° and 90
6.	A ball of mass 100g is thrown vertically upward at a speed of 25ms ⁻¹ . If no energy is lost, determine the height it would reach (Loss in K.E=Gain in P.E)	/ () 3	1.9m	1.28m	○ 63.78m	○ 321.5m
7.	The mass of a body is m , its speed is ν and K.E is E. When mass is doubled and its speed is reduced to half, then K.E will be:	_	DE .	$O(\frac{E}{2})$	945	04M
8.	The angular displacement of one radian is:	9	739	5230	67.3°	○ 77.3°
9.	The ratio of the linear velocities of the points at distances r and from the axis of rotation of a rigid body is:	اليا إ	.25	0.5	O 2	O 4
10.	Two rain drops have radii in the ratio 2:3. The ratio between their terminal velocities will be:		::3	○ 3:2	O 4:9	9:4
and the second						
1.	The length of a second pendulum is:	O 70)cm (→ 80 <i>cm</i>	○ 90cm) 100cm
.2.	When amplitude of a wave becomes double, its energy becomes:	<u> </u>	times ($\int \frac{1}{2}$ times	O 4 times	$\bigcirc \frac{1}{4}$ times
	According to Laplace correction, sound travels in air under the condition of:			Adiabatic	Isochoric	Isobaric
				process 586°C	O process	process
14.	The velocity of sound in air would become double to its velocity at 0°C at temperature:	<u> </u>	277			
	Fringe spacing =	Oly		DIDE L	$O\frac{\kappa}{DL}$	$O(\frac{L}{\lambda D})$
16.	According to first law of thermodynamics, Which one is cornects	O C,	$_{\nu}+C_{\nu}=R$ ($C_p = 1 + \frac{R}{C_v}$	$\bigcap R = \frac{C_{\nu}}{C_{p}}$	$\bigcirc C_p = R + C_v$
17.	A Carnot engine works between ice point and steam point. Its efficiency will be:	O 26	5.81% (53.36%	62.46%	71.23%
	Important formulae:					
	$\circ \qquad P = \frac{F}{A}$		٠	$g = 9.8 ms^{-2}$		
	$\circ Density = \frac{M}{V}$		٠	$R = \frac{vi^2 \sin(2\theta)}{g}$		
	\circ $\vec{P} = m\vec{v}$			$\%$ Efficiency = $\left(\frac{1}{2}\right)$	$\left(\frac{T_1-T_2}{T_1}\right)100\%$	
	$\circ \delta = \frac{F}{A}$, •	$S = r\theta$		
	$\circ \qquad \varepsilon = \frac{\Delta L}{L}$			$\omega = \frac{\theta}{t}$	V18.6	
	$\circ \vec{J} = \vec{F} \times \Delta t$		SIC	$K.E = \frac{1}{2}mv^2$		
	$v = v_0 + (0.6)$ $T = 2\pi \sqrt{\frac{I}{\alpha}}$	J)) []		$v_o = 332ms^{-1} \text{ at}$ $S = v_i t + \frac{1}{2}at^2$	0°C	
	n F - web			$3 = v_i t + \frac{\pi}{2} at$ $2\pi \ radians = 36$	0°	
			.*)	$V_{terminal} = \frac{2\rho gr^2}{9n}$		
	$\circ \qquad \frac{v_{t}}{v_{o}} = \sqrt{\frac{T}{T_{o}}}$		٠	terminal 9 η		