(19)日本国特許庁 (JP)

al - 1

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平11-514810

(43)公表日 平成11年(1999)12月14日

(51) Int.CL* 武別記号 FI H04N 1/387 H04N 1/387 GOGT 3/40 5/262 H04N 5/262 G06F 15/66 355C

> 來前未 农杭查客 于伽森在荫水 有 (全 70 取)

(21)出願番号 特質平9-517699 (86) (22)出類日 平成8年(1996)10月22日 (85) 盘訳文提出日 平成10年(1998) 5月8日 (86) 国際出版番号 PCT/CA96/00703 (87) 国際公問番号 WO97/17801 (87) 国際公開日 平成9年(1997)5月15日 (31) 優先相主張番号 08/555, 289 (32) 優先日 1995年11月8日 (33) 優先権主要国 米国 (US)

(71)出駅人 ジェネシス マイクロチップ インコーボ レイテッド カナダ国 エル3アール 8ジー5 オン タリオ州 マーカム タウン センター プールヴァード 200 スイート 400 (72)発明者 グレッゲイン、ランス

カナダ国 エル4エル 7エイチ8 オン タリオ州 ウッドブリッジ ウオパーン ドライヴ 32

(74)代理人 弁理士 若林 忠 (外4名)

及柱頁に続く

(54) 【発明の名称】 ビデオ原始データ補間のための方法と装置

(57)【要約】

入力原始データの2つの走査線間に位置する標本抽出さ れた目標画案を生成する方法は、少なくとも異なる2方 向に、前配生成される標本抽出された目標画案を囲む区 域内の原始データの異なる走査線の画素を比較する段階 (50、52、54)を含む。この比較に基づいて結而 方向が選択され(58)、標本抽出された目標画案を通 る線分上の中間画案を演算するために、決定された補間 方向で原始データの選択された画案の間の補間が実行さ れる(60、62)。標本抽出された目標回案を生成す るために中間画案どうし間の補間が実行される (6 4)。この方法を実施するための装置も開示されてい

【特許請求の範囲】

1. 標本抽出された目標画素を入力原始データから生成するための方法であって、該方法には以下の段階,

すなわち

- (i) 少なくとも異なる2方向に生成される標本抽出された目標画素を囲む区域内の前記原始データの異なる走査線の画素を比較する段階と、
- (i i) 段階(i)の比較に基づいて補間方向を選択する段階と、
- (iii) 段階(ii)で決定された補間方向で、前記原始データの異なる走 査線の選択画素どうしの間に補間し、そして前記標本抽出された目標画素を通る 線分上の中間画素を計算する段階と、
- (i v) 前記標本抽出された目標画素を生成するために中間画素の間に補間する段階とから成る入力原始データから標本抽出された目標画素を生成するための方法。
- 2. 前記線分が前記原始データの走査線に平行である請求の範囲第1項記載の 方法。
- 3. 段階 (i) において、前記原始データの様々な走査線の画素は、少なくと も異なる 3 方向において比較される請求の範囲第 2 項記載の方法。
- 4. 段階(i)において、前記原始データの異なる走査線の画素は異なる3方向だけで比較され、前記異なる3方向には垂直方向と、そして該垂直方向に対してある角度を形成する逆向きの2方向とが含まれ、前記角度は0<角度<90°の範囲にあって、前記標本抽出された目標画素の向かい合った両側に位置する前記斜め方向の各々において前記原始データの画素は比較される請求の範囲第3項記載の方法。
- 5. 段階(i)の比較の間、比較された画素どうし間の差の値が生成され、該差の値は補間方向を選択するために段階(ii)において用いられる請求の範囲第4項記載の方法。
- 6. 段階 (i i) に先立って、前記3方向における比較から生じる差の値はその間の差がしきい値内にあるかどうかを決定するために互いに比較され、どの差

もしきい値の範囲内に含まれていないときは、最小差の値に関連する補間方向が 選択され、少なくとも2つの差の値どうし間の差がしきい値の範囲内にあれば、 段階(2)における前記補間方向の選択は影響を与えられる請求の範囲第5項記 載の方法。

- 7. 3方向全てにおける比較から生じた差の値どうし間の差が前記しきい値の 範囲内にあるときは垂直補間方向が段階 (i i) において選択される請求の範囲 第6項記載の方法。
- 8. 垂直方向とそして斜め方向の一方のみにおける比較から生じた差の値どう し間の差が前記しきい値の範囲内にあるとき、当該斜め補間方向が段階 (i i) において選択される請求の範囲第7項記載の方法。
- 9. 斜め2方向における比較から生じた差の値どうし間の差がしきい値の範囲内にあるとき、原始データの異なる走査線の追加画素が対向する斜め両方向において比較され、前記標本抽出された目標画素の対向する両側に位置する前記斜め方向の各々において前記原始データの画素が比較され、前記比較の結果として生成された差の値が段階(ii)において前記補間方向の選択に影響を与えるために比較される請求の範囲第8項記載の方法。
- 10. 前記追加画素の比較により生じた差の値どうし間の差がしきい値の範囲内にあるにとき、垂直補間方向が段階 (ii)において選択される請求の範囲第9項記載の方法。
- 11. 段階(i)の間、原始データの異なる画素は前記標本抽出された目標画素に最も近い画素を決定するために検査され、そして前記標本抽出された目標画素を囲む長方形の区域の角を形成する原始データの2本の走査線上の継続画素によって前記区域が確定され、前記斜め方向は前記垂直方向に対して45°の角度を成しかつ前記長方形の区域の対角線を構成する請求の範囲第4項記載の方法。
- 12. 段階(i)の比較の間、比較対象の画素どうし間の差の値が生成され、 該差の値が補間方向を選択するために段階(ii)において使用される請求の範 囲第11項記載の方法。
 - 13. 段階(ii)に先立って、前記3方向における比較から生じる差の値は

その間の差がしきい値内にあるかどうかを決定するために互いに比較され、どの差もしきい値の範囲内に含まれていないときは、最小差の値に関連する補間方向が選択され、少なくとも2つの差の値どうし間の差がしきい値の範囲内にあれば、段階(2)における前記補間方向の選択は影響を与えられる請求の範囲第12項記載の方法。

- 14.3 補間方向全てにおける比較から生じた差の値どうし間の差が前記しきい値の範囲内にあるときは垂直補間方向が段階(ii)において選択される請求の範囲第13項記載の方法。
- 15. 垂直方向とそして斜め方向の一方のみにおける比較から生じた差の値どうし間の差が前記しきい値の範囲内にあるとき、当該斜め補間方向が段階 (1i) において選択される請求の範囲第14項記載の方法。
- 16. 斜め2方向における比較から生じた差の値どうし間の差がしきい値の範囲内にあるとき、原始データの異なる走査線の追加画素が対向する斜め両方向において比較され、前記標本抽出された目標画素の対向する両側に位置する前記斜め方向の各々において前記原始データの画素が比較され、前記比較の結果として生成された差の値が段階(ii)において前記補間方向の選択に影響を与えるために比較される請求の範囲第15項記載の方法。
- 17. 前記追加画素の比較により生じた差の値どうし間の差がしきい値の範囲内にあるにとき、垂直補間方向が段階 (i i) において選択される請求の範囲第16項記載の方法。
- 18. 段階(i)において、前記原始データの異なる走査線の画素は-7-方向で 比較される請求の範囲第3項記載の方法。
- 19. 段階(i)において、前記原始データの画素は異なる7方向のみにおいて比較され、前記異なる7方向には垂直方向と、そして上記垂直方向に対してある角度を成す2セットの対向する斜め方向とが含まれ、前記角度は0°<角度<90°の範囲内にあって、対向する斜め方向の各セットは3つの斜め方向を含み、各方向は前記垂直方向に対してそれぞれ異なる角度を成し、原始データの画素は斜め方向の各セットにおいて比較され、前記標本抽出された目標画素の対向する両側に位置する請求の範囲第18項記載の方法。

- 20. 各セットにおける斜め方向の1つは垂直方向に対して26.6°の角度を形成し、各セットにおけるもう1つの斜め方向は前記垂直方向に対して63.4°の角度を成し、そして各セットにおける更にもう1つの斜め方向は前記垂直方向に対して45°の角度を成す請求の範囲第19項記載の方法。
- 21. 段階(i)の比較の間、比較された画素とうし間の差の値が生成され、 該差の値は補間方向を選択するために段階(ii)において用いられる請求の範 囲第20項記載の方法。
- 22. 各セットの前記斜め方向における比較の間に生成された差の値は合計され実用の差の値になり、該実用の差の値と、前記垂直方向に関連する差の値とは、それらの間の差がしきい値の範囲内にあるかどうか決定するために比較され、前記しきい値内の差の値に関連する補間方向によって1セットの可能な補間方向が生じ、該セットにおける補間方向は、境界を越す方向で画素どうし間を補間する補間方向を除去するために先ず検査され、残りの補間方向は前記補間方向を選択するために更に段階(ii)において比較される請求の範囲第21項記載の方法。
- 23. 境界を越す補間方向が除去された後、段階 (i i) においてもし前記セット内で1つの斜め補間方向しか残っていないならば、その補間方向が選択され、もし対向している斜め補間方向が前記セットに残っていれば、その時前記垂直補間が選択され、そして同じ方向において1つ以上の斜め補間方向が当該セットに存在していれば、その時45°の斜め補間方向が選択される請求の範囲第22項記載の方法。
- 24. 段階(i i i) において前記原始データの4本の異なる走査線に関して選択された画素どうし間の補間が、5つの中間画素を生じさせるため選択された補間方向で行われる請求の範囲第23項記載の方法。
- 25. 入力原始データから標本抽出された目標画素を生成するための装置であって、いて、該装置は以下の手段、

すなわち、

標本抽出された目標画素を囲む区域内の前記原始データの異なる走査線の画素 を少なくとも異なる2方向で比較する比較手段と、 前記比較手段に応答して補間方向を選択するための選択手段と、

標本抽出された目標画素を通る線分上の中間画素を計算するために、前記選択手段によって選択された補間方向に前記原始データの異なる走査線の選択された画素どうしの間に補間し、かつ前記目標画素を生成するために前記中間画素どうしの間に補間するための標本抽出手段とからなる、入力原始データから標本抽出された目標画素を生成するための装置。

- 26. 前記標本抽出手段は前記原始データの走査線に平行な線分上の画素を演算する請求の範囲第25項記載の装置。
- 27. 前記比較手段が少なくとも3つの異なる方向で前記原始データの異なる 走査線の画素を比較する請求の範囲第26項記載の装置。
- 28. 垂直方向と、そして該垂直方向に対してある角度すなわち0°<角度<90°の範囲内の角度をなす対向する両斜め方向とで、前記比較手段が前記原始データの異なる走査線の画素を比較する請求の範囲第27項記載の装置。
- 29. 前記比較手段は前記3つの比較の各々のための差の値を生成し、そして前記選択手段は互いに差の値を比較しその差がしきい値の範囲内であるかどうかを決定し、前記選択手段はどの差もしきい値の範囲内でない時には最小の差の値に関連する補間方向を選択する請求の範囲第29項記載の装置。
- 30.全ての差の値どうし間の差が前記しきい値の範囲内にあるとき、前記選択手段は垂直補間方向を選択する請求の範囲第29項記載の装置。
- 31. 垂直方向と、斜め方向の一方のみにおける差の値どうし間の差とが前記 しきい値の範囲内にあるとき、選択手段は前記斜め補間を選択する請求の範囲第 30項記載の装置。
- 32. 斜め2方向における差の値どうし間の差が前記しきい値の範囲内にあるとき、原始データの異なる走査線の追加画素が対向する斜め両方向において比較手段によって比較され、これらの比較の結果として生成された差の値は前記選択手段によって比較され、前記追加画素の比較の結果として選択手段により生成された差の値どうし間の差がしきい値の範囲内にあるとき、垂直補間方向が前記選択手段によって選択される請求の範囲第31項記載の装置。
 - 33. 前記標本抽出された目標画素に最も近い画素を決定し、かつ前記標本抽

出された目標画素を囲む長方形区域の角を形成する前記原始データの2本の走査 線上の維続画素とを決定する決定手段を更に含み、前記比較手段は該決定手段に 応答しそして前記長方形区域を確定する画素相互間の比較を行う請求の範囲第2 9項記載の装置。

- 34. 前記比較手段は少なくとも7つの異なる方向で前記原始データの異なる 走査線の画素どうしを比較する請求の範囲第25項記載の装置。
- 35. 前記比較手段は7つの異なる方向において前記原始データの異なる走査線の画素どうしを比較し、前記7つの異なる方向には垂直方向と、そして前記垂直方向に対してある角度を成す2セットの対向する斜め方向とが含まれ、対向する斜め方向の各セットは3つの斜め方向を含み、各前記3つの斜め方向は前記垂直方向に対してそれぞれある異なる角度を成し、3つの斜め方向の各セットにおいて比較された画素は前記前記標本抽出された目標画素の対向する両側に位置する請求の範囲第34項記載の装置。
- 36. 前記比較手段は前記垂直方向に対してそれぞれ26.6°、45°および63.4°の角度を成す斜め方向で画素を比較する請求の範囲第35項記載の装置。
- 37. 前記標本抽出手段には前記中間画素を演算するための方向性補間回路と 前記標本抽出された目標画素を演算するための第2の補間回路とが含まれている 請求の範囲第37項記載の装置。
 - 38. 前記一次補間回路は1対の加算器と1個の乗算器とを含む請求の範囲第 _37項記載の装置。
 - 39. 前記比較手段は複数の減算器を含み、各減算器は前記斜め方向の1つと 対応している請求の範囲第35項記載の装置。
 - 40. 前記標本抽出手段には前記中間画素を演算するための1対の一次補間回路と、前記標本抽出された目標画素を演算するための第3の一次補間回路とが含まれている請求の範囲第37項記載の装置。
 - 4 1. 前記方向性補間回路には複数の多相フィルタが含まれ、該多相フィルタ の各々は記憶装置から係数を受信する請求の範囲第4 0 項記載の装置。
 - 4 2. 前記第2の補間回路には第2の記憶装置から係数を受信する多相フィル

タが含まれている請求の範囲第40項記載の装置。

- 43. 前記比較手段は前記7つの比較の各々ために差の値を生成し、各セットの前記斜め方向に対する差の値は合計され実用の差の値になる請求の範囲第36項記載の装置。
- 44. 実用の差の値と、互いにとって垂直方向に関連する差の値との間の差が しきい値の範囲内にあるかどうか決定するために、前記選択手段は前記2つの差 の値を比較し、前記選択手段はどの差もしきい値の範囲内に含まれていないとき は、最小差の値に関連する1セットの可能な補間方向を選択し、該セットにおけ る補間方向は、境界を越す方向で画素どうし間を補間する補間方向を除去するた めに先ず検査される請求の範囲第43項記載の装置。
- 45.対向する両斜め補間方向が可能な補間方向のセットに残っているときには、前記選択手段は垂直補間方向を選択する請求の範囲第44項記載の装置。
- 46.1つの斜め補間方向のみが、可能な補間方向のセットに残っているときには、前記選択手段は当該斜め補間方向を選択する請求の範囲第45項記載の装置。

【発明の詳細な説明】

ビデオ原始データ補間のための方法と装置 技術分野

本発明はデータ補間、特に標本抽出された目標画素を入力原始データから生成するための方法とこの方法を実行するための装置に関する。

背景技術

ビデオ画像はデジタルデータの二次元配列として表すことができ、この配列における各データ点はデジタル化されたビデオ画像の1画素を表す。各画素に割り当てられた値は、このビデオ画像が再生されるとき、その輝度および/または色彩を決定する。ビデオ画像技術では、ビデオ画像に任意の倍率を掛けて拡大画像を作ることが望まれることがしばしばある。1つのデジタルデータ配列によって表されている初期画像から拡大画像を作るとき、拡大画像の画素を「満たす」ように初期画像データ配列の継続している走査線およ画素の間に標本抽出された画素を生成させるために、初期デジタルデータ配列の画素の間に補間することが必要である。こうした拡大ビデオ画像を作るための従来技術は、既にいくつかある。

従来技術では、拡大対象のデジタル化ビデオ画像の垂直および水平次元を個別的に補間するデカルト直交方式を使用するのが共通の方法である。しかし、この技術では、拡大画像に通常「ステアステッピング」と呼ばれる階段状のぎざぎざの縁が生じるのが、普通である。この補間法の改良によってステアステッピングを減少させることはできるが、これは元々この技術に内在しているものなので、完全に除去することはできない。

方向性補間方式によってステアステッピング問題を解決しようという考えがある。方向性補間は画像の幾何学的構造を認識する。方向性補間を用いて、縁に沿った補間を行えば縁を越えた補間にも改善をもたらすことが判明している。方向性補間には局所的な画像構造の解析と、そしてこの画像構造に基づく補間の実施とが含まれる。

ドゥーガル他に与えられた米国特許第5,019,903号には、超標本抽出 されたデジタル信号の複数走査線間に方向性をもって補間するための装置が開示 されている。この装置は垂直に標本抽出された走査線を方向性をもって補間する時に利用するため、勾配ベクトルを計算する。この操作によって、当該装置は走査線ダブリング非飛び越し走査の用途に最も適したものになる。

山下他に与えられた米国特許第5,347,599号には、適応補間法と相関 探知を用いた装置とが開示されている。この装置は、所望の標本抽出方向を選択 するために、原始データの画素走査線に関する計算を行う。しかしこの装置も、 ドゥーガル他の装置と同様に、走査線ダブリング非飛び越し走査の用途に最も適 している。

ドゥーガル他および山下他は、標本抽出された画素を生成するための代替の方向性補間法を開示しているが、その設計は、単に固定整数の垂直再サイジング処理係数を支持するだけのようである。したがって、垂直次元においても水平次元においても任意の分数再サイジング処理係数を支持する改良された補間法および装置が必要である。

よって、本発明の目的は、標本抽出された目標画素を入力原始データから生成するための新しい方法と装置とを供することである。

発明の開示

本発明は任意の分数再サイジング処理係数に方向性補間を行う。先ず、原始データにおける低周波数の縁に応じて、補間方向が選択される。次ぎに中間画素を 生成するために方向性補間が行われる。これらの中間画素はそれから、所望の標本抽出された目標画素を生成するために、できれば非直交状態で補間される。

詳述すれば、本発明の1側面によると、以下の段階、すなわち

- (i) 少なくとも異なる 2 方向に生成される標本抽出された目標画素を囲む区域内の上記原始アータの異なる走査線の画素を比較する段階と、
- (ii) 段階(i)の比較に基づいて補間方向を選択する段階と、
- (i i i i) 段階 (i i) で決定された補間方向で、上記原始データの異なる走 査線の選択画素の間に補間し、そして上記標本抽出された目標画素を通る線分上 の中間画素を計算する段階と、
- (i v) 上記標本抽出された目標画素を生成するために中間画素の間に補間する段階

とから成る標本抽出された目標画素を入力原始データから生成するための方法が 供される。

この好ましい実施例では、上記線分は原始データの走査線に平行である。このように線分を水平に限定することによって、中間画素と標本抽出された目標画素との計算を簡単にすることができる。

1つの可能な実施例において、原始データの様々な走査線の画素は、垂直方向とそしてこの垂直方向に対して0°<角度<90°の範囲内の角度を成す逆向きの斜め方向とを含む、異なる3方向において比較される。段階(i)の比較の間、この比較された画素どうし間の差の値が生成され、この差の値は段階(ii)における補間方向を選択するために用いられる。

この実施例においては、段階 (i i) に先立って、3方向における比較から生じる差の値は、こうした差があるしきい値内にあるかどうかを決定するために、互いに比較される。どの差もしきい値内に含まれていないときは、最小差の値に相当する方向が補間方向として選択される。3方向全てにおける比較から生じた差の値どうし間の差がしきい値内にあるときは、補間方向として垂直方向が選択される。垂直方向とそして斜め方向の一方のみにおける比較から生じた差の値どうし間の差が、しきい値内にあるとき、当該の斜め方向が補間方向として選択される。斜め2方向における比較から生じた差の値どうし間の差が、しきい値の範囲内にあるとき、原始データの異なる走査線の追加画素が対向する斜め両方向において比較される。これらの比較の結果として生成された差の値が互いに比較される。上記追加画素の比較により生じた差の値どうし間の差がしきい値内にあるにとき、垂直補間方向が補間方向として選択される。

もう1つの実施例においては、線分は原始データの走査線と平行であるが、この場合原始データの異なる走査線の画素は、段階(i)において7方向で比較される。これらの方向には、垂直方向と、0°<角度<90°の範囲内にある、垂直方向とは異なる様々な角度を形成する3対の逆向きの斜め方向とが含まれる。 段階(i)の比較された画素どうし間の差の値が計算される。

この実施例において、当該セットの左への差の値のセットが考慮され、そして 右へのセットもまた検査される。可能な斜めの各補間方向のための3つの差の値 が合計され、そしてその間の差がしきい値内にあるかどうかを決定するために比較される。いずれの差も原始画像において低周波数の禄を示すほど十分小さくないときには、垂直方向が補間方向として選択される。いずれの差もしきい値内にないときには、最も小さい差の値に相当する斜めの方向が補間方向として選択される。「右向きの」斜め方向と「左向きの」斜め方向に相当する差の値がしきい値内にあるとき、この場合でもまた垂直方向が補間方向として選択される。その他の場合は、これらの斜め方向の一つが補間方向として選択される。

本発明のさらにもう一つの側面によれば、以下の手段、すなわち 少なくとも異なる2方向に生成された標本抽出された目標画素を囲む区域内の上 記原始データの異なる走査線の両素を比較する比較手段と、

上記比較手段に応答して補間方向を選択するための選択手段と、そして 標本抽出された目標画素を通る線分上の中間画素を計算するために、上記選択手 段によって選択された補間方向に上記原始データの異なる走査線の選択された画 素どうしの間に補間するための標本抽出手段であって、かつ上記目標画素を生成 するために中間画素どうしの間に補間するための標本抽出手段とを含む、

入力原始データから標本抽出された目標画素を生成するための装置が供される。

ステアステッピングを減少させて大きな倍率の画像を作りだすことを可能にするために、上記標本抽出された目標画素を生成させられることに本発明の利点があり、特に大きな倍率の場合に利点は大きい。

図面の簡単な説明

本発明の幾つかの実施例が、添付の図面を参照しながら以下に、より詳細に説明される。

図1は、ビデオ画像原始データの継続する3本の走査線の画像と、生成される ために標本抽出された目標画素の位置と、そしてこの標本抽出された目標画素を 生成するために用いられる原始データの画素を囲む区域とを示した線図である。

図 2 は、標本抽出された目標画素を生成するときに用いられる補間方向の決定 のために、原始データの画素どうし間において行われる比較を示す線図である。

図3は、斜めの2方向における比較が同様な値を生じるとき、原始データの画素とうし間で行われる追加比較を示す線図である。

図4は、標本抽出された目標画素を生成するために用いられる垂直標本抽出技術を示す線図である。

図5は、標本抽出された目標画素を生成するために用いられるマイナス勾配の 斜め標本抽出技術を示す線図である。

図6は、標本抽出された目標画素を生成するために用いられるプラス勾配の斜め標本抽出技術を示す線図である。

図7aおよび7bは、原始データから標本抽出された目標画素を生成するときの第1の方法で実施される各段階を示す流れ図である。

図8は、入力原始データから標本抽出された目標画素を生成するための装置を 示すプロック線図である。 図9は、図8に示されている装置の一部をなす遅延 回路の略図である。

- 図10は、図8に示されている装置の一部をなす決定回路の略図である。
- 図11は、図8に示されている装置の一部をなす 8 計算機の略図である。
- 図12は、図8に示されている装置の一部をなす斜標本抽出器の略図である。
- 図13は、第2の実施例のための補間方向を決定するのに際して実施される原 始画素どうし間の比較を表す線図である。
 - 図14は、境界交差状況を示す線図である。
- 図15は、標本抽出された目標画素を生成するために用いられる垂直標本抽出 技術を示す線図である。
- 図16は、標本抽出された目標画素を生成するために用いられるプラス45° 勾配の斜め標本抽出技術を示す線図である。
- 図17は、標本抽出された目標画素を生成するために用いられるマイナス45 。 勾配の斜め標本抽出技術を示す線図である。
- 図18は、26.6°勾配の斜め標本抽出技術に用いられる原始画素を示す線 図である。
- 図19は、標本抽出された目標画素を生成するために用いられるプラス26. 6°勾配の斜め標本抽出技術を示す線図である。
- 図20は、標本抽出された目標画素を生成するために用いられるマイナス26 .6°勾配の斜め標本抽出技術を示す線図である。

図21は、標本抽出された目標画素を生成するために用いられるプラス63. 4°勾配の斜め標本抽出技術を示す線図である。

図22は、標本抽出された目標画索を生成するために用いられるマイナス63 4°勾配の斜め標本抽出技術を示す線図である。

図23aおよび23bは、原始データから標本抽出された目標画素を生成する ときの第2の方法で実施される各段階を示す流れ図である。

図24は、入力原始データから標本抽出された目標画素を生成するための第2 の装置を示すプロック線図である。

図25は、図24に図示されている装置の一部を形成する遅延回路の略図である。

図26は、図24に図示されている装置の一部を形成する決定回路の略図である。

図27は、図24に図示されている装置の一部を形成するβ計算機の略図であ り、そして

図28は、図24に図示されている装置の一部を形成する斜め標本抽出器の略 図である。

本発明を実施するための最良の方法

拡大ビデオ画像を作るため入力ビデオ画像のデジタル原始データを標本抽出するとき、デジタル原始データの走査線および画素どうし間に標本抽出された目標画素を生成する必要がある。再サイジング処理係数および再サイジング処理方向(すなわち、垂直および/または水平方向)によって、生成される標本抽出された目標画素の位置と同様にその数も決定される。

ステアステッピングを減少させそして高解像度の拡大ビデオ画像を作るためには、生成される様々な標本抽出された目標画素に関する幾つかの数値を正確に計算する必要がある。このようにして、標本抽出された目標画素の値を生成するために用いられる標本抽出補間方向が、この目的を達成するために選択されなければならない。標本抽出された目標画素に関する正確な数値をもたらす標本抽出補間方向の選択に失敗すると、顕著なステアステッピングのある拡大画像が生成されることになろう。

本発明の方法および装置は、幾つかの方向に生成される標本抽出された目標画素を囲む区域におけるデジタル原始データの画像の値の差を計算することによって、標本抽出された目標画素を生成する。こうして計算された差の値は次に、補間方向を選択するために検査される。それから、生成対象の標本抽出された目標画素を通る線分上の中間画素を生成するために、決定された補間方向でデジタル原始データの選択された画素どうしの間の補間が実施される。線分が原始データに平行に一すなわち、水平に一なるように限定されると、中間画素の計算が簡単になる。標本抽出された目標画素を生成するために、中間画素どうし間の補間が次に実施される。

入力原始データから標本抽出された目標画素を生成する本発明の方法の1実施 例が図1から7bまでを特に参照しながら以下に説明される。

標本抽出された目標画素wが生成されるとき、デジタル原始データにおいて標本抽出された目標画素に最も近い画素が決定され、そして補間法における基準画素 Paとして用いられる。その間に標本抽出された目標画素が位置する原始データの2本の継続走査線もまた決定される。基準画素と、この基準画素 Paと同じ原始データ走査線上の隣接画素と、そして標本抽出された目標画素を囲む長方形の区域Rを形成する原始データの他の走査線上の2つの画素とが決定される(図7aのプロック50参照)。区域Rの境界を画定する4つの原始データは主として、以下に説明されるように、補間方向を決定するために用いられる。区域Rは、4つの象限の1つ、すなわち基準画素 Paの周囲を囲む左上、右上、左下または右下の各象限の1つに相当する。

図1はデジタル原始データの小さな線分を示す。原始画素はそれぞれ基準画素 $P_R = U_{00}$ に関連して符号を付されている。原始データの第1の走査線は5つの 画素 U_{-1-2} から U_{-12} までによって表され、原始データの第2の走査線は画素 U_{0-2} から U_{02} までによって、原始データの第3の走査線は画素 U_{1-2} から U_{12} までによって、原始データの第3の走査線は画素 U_{1-2} から U_{12} までによって表される。明らかに、画素 U_{00} は標本抽出された目標画素 W に最も近い 画素であり、そして指定基準画素 P_R である。この実施例では、標本抽出された目標画素 W は区域 R の左上象限にある第1と第2の走査線の間に位置している。 画素 U_{-1-1} 、 U_{-10} 、 U_{0-1} そして U_{00} は、標本抽出された目標画素 W の周囲

を囲む区域Rを画定する画素であり、また補間方向の決定にも用いられる。以下の一覧表は、基準画素を囲む4つの象限における区域Rを画定する原始データ画素を示すものである。

<u> </u>	区域R内の画素
左上	U00, U0-1, U1-1, U-10
右上	U., U., U-11, U-10
左下	U00,U0-1,U1-1,U10
右下	U00, U01, U11, U10

区域Rの4つの画素が一旦決定されると、3つの補間方向に対応して計算がなされる(プロック52参照)。図1の実施例では、区域Rは、画素 U_{-1-1} 、 U_{-1} 。、 U_{0-1} および U_{00} によって画定され、そして以下の計算がなされる。すなわち

計算	関連の補間方向.		•
拇出[∩ [∞] -∩ ⁻¹⁻¹]	斜め45 、線左上向き	$O_{\mathbf{L}}$	(1)
抽出[U0.1-U.10]	斜め45: 線右上向き	O_R	(2)
抽出[U _o -U _{.id}]	垂	v	(3)

図2では、画素U-1-1、U-10、U0-1およびU00によってなされた3つの計算に関連する補間方向OL、ORおよびVを表示している。同様な計算が他の3象限にも適用される。

最小の差の値を生じる計算は通常、原始データの周囲画素の値に最も近い値を 有する標本抽出された目標画素wを生じるであろうと思われる補間方向に関連し ている。しかし、補間方向がこれらの計算の結果に基づいて選択される前に、計 算された差の値は、これらの差が、互いのしきい値内にあるかどうかを決定する

ために、互いに比較される(プロック54と56参照)。

計算された差の値の1つが明らかに他の2つの値より小さい場合、計算された 最小値に関連する補間方向が選択される(ブロック58)。もし計算された3つ の差の値が全てしきい値内にあるならば、垂直補間方向Vが選択される(ブロック66および68)。 もし垂直補間方向Vに関連する計算された差の値と、斜め方向OLまたはORの一方のみと関連する計算された差の値とが、互いのしきい値内にあれば、斜めの補間方向が選択される(ブロック70と72)。

2つの斜め補間方向OLおよびOxに関連する計算された差の値が互いのしきい値内にはいる場合、決定が正しくなければ拡大画像に斜め方向の線に顕著な不連続性が生じる恐れがあるので、正しい補間方向を選択することが重要である。この選択プロセスを支援するために、原始データの同一走査線から追加画素を用いた計算が実施される(プロック 7 4)。図3は図1および2の実施例のための斯様な追加計算を示している。すなわち、

<u> </u>	関連の補間方向		
抽 出[U _∞ -U ₋₁₁]	斜め45。右上向き	O1 _{AR}	(4)
抽出[U。₁-U.ュ.]	斜め45°左上向き	Olal	• •

追加計算されたこれらの差の値は次に、互いのしきい値の範囲内にあるかどうかを決定するために、比較される(プロック 7 6)。もしこれらの差の値の1つが明らかに他方の値より小さければ、計算された差の値に関連する斜め補間方向 OLまたはORが選択される(プロック 5 8)。しかし、2 つのこれら追加計算された差の値が互いのしきい値内にあるならば、原始データの同一走査線からの追加画素を用いる以下の追加計算が実施される(プロック 7 8)。

計算	, 関連の補間方向		
抽出[U ₀₋₂ -U ₋₁₋₁]	斜め45°右上向き	O2 _{AR}	(6)
抽出[U ₀₁ -U ₋₁₀]	斜め45°左上向き	O2 _{AL}	(7)

同様に、追加計算されたこれらの差の値は、これらの値が互いのしきい値内にあるかどうかを決定するために、比較される(ブロック80)。もしこれらの差の値の1つが明らかに他方の値より小さければ、計算された差の値に関連する斜め補間方向OLまたはORが選択される(ブロック58)。しかし、2つのこれら追加計算された差の値が互いのしきい値内にあるならば、もし正しくない斜め補

間方向が選択されていたならば、生じる恐れがあり得る解像度の問題を避けるためにデフォールト値として垂直補間方向Vが選択される(プロック82)。

補間方向が一旦決定されると、補間方向に基づいて選択された原始データ画索が決定され(ブロック60)、そして中間画素 v を生成する目的で選択された原始データ画素どうし間に補間するために、上記補間方向が利用される(ブロック62)。中間画素は次に、標本抽出された目標画素 w を生成するために、水平方向に補間される(ブロック64)。

標本抽出された目標画素wを生成できる前に、この標本抽出された目標画素wの位置を決定しなければならない。標本抽出された目標画素wは垂直および水平の両方向において基準画素 P x からのその距離によって定義される。これらの距離は記号 α x および α x によって表される。この場合、

$$-0.5<_{\alpha}, <0.5; \neq t$$

 $-0.5<_{\alpha} <0.5;$

 α_y は下方に向かってプラスであり、 α_x は右に向かってプラスである。 α_y および α_x の符号は以下のような象限に関連している。すなわち、

象限_	$\alpha_{\mathbf{x}}$	α_{y}
左上	$\alpha_{x} < 0$	$\alpha_y < 0$
右上	α _x ≥0	$\alpha_y < 0$
左下	α _x <0	α _γ <u>≥</u> 0
-右-下	α, ≥0	α <u>,</u> ≥0

αxおよびαxの値が知られると、その値によって決定された補間方向で選択された原始データ画素とうしの間に補間が実施される。その結果生じる中間画素 v は、標本抽出された目標画素 w を通過する水平線分上に配置される。本発明のこの実施例では一次標本抽出が説明されているが、より高次の補間も利用することができる。

図4には、右下象限に位置する標本抽出された目標画素wが示されている。この場合、αxもαyも共にプラスである。区域Rは画素Uοο、Uο1、U1οおよびU
11によって画定され、そして画素Uοοは基準画素Paを画定する。中間画素 vo、

(19)

v₁およびv₂も示されており、そして垂直方向に一次標本抽出を用いて計算されている。この場合、中間画素 v₀、 v₁および v₂は以下の数式、すなわち

$$V_{0} = (1 - \alpha_{y}) U_{0-1} + \alpha_{y} U_{1-1}$$

$$V_{1} = (1 - \alpha_{y}) U_{00} + \alpha_{y} U_{10}$$

$$V_{2} = (1 - \alpha_{y}) U_{01} + \alpha_{y} U_{11}$$
(8)
$$(9)$$

を用いて計算される。

3つの標本抽出された中間画素が計算された後に、標本抽出された目標画素の値を決定するために、この標本抽出された目標画素wの向かい合った両側における2つの中間画素の間で補間が直交して水平に実施される。したがって、標本抽出された目標画素vを計算できる前に、2つの中間画素のうちどれを選択するかを決定することが重要である。中間画素を選択するために、記号 β は、中央の中間画素v1から標本抽出された目標画素v2での水平距離として、定義される。

記号 β は右に向かってプラスである。水平補間では、 $\beta=\alpha$ である。 β の符号は、どの 2 つの中間画素が目標画素 w を囲んでいるかを決定する。図 4 の実施例では、 $\beta \ge 0$ であるので、補間は v_1 と v_2 との間で行われる。標本抽出された目標画素 w の値は以下の数式、すなわち

$$w=(1-\alpha_x)v_1+\alpha_xv_2$$

を用いて計算される。

他の象限、すなわち a, と ax との場合においては、基準画素 Px を囲む原始データの異なる幾つかの画素を用いて同様な方法で、中間画素 v と標本抽出された 目標画素 w とが計算される。

斜め左上の補間画素のいが選択されるとき、中間画素vo、viおよびviは、マイナス勾配の斜線に沿って選択された原始データ画素間で一次補間を行うことによって、計算される。一次補間を行うとき、重要なパラメータは補間された画素端末点間の距離の比である。原始データの走査線と、そして中間画素によって画定された水平な線分とは平行であるので、中間画素は垂直な標本抽出と同様に、axによって定義される得る。

図5には、これもまたプラスである avおよび axを有する右下象限に位置して

いる標本抽出された目標画素wの場合が示されている。区域Rは画素Uoo、Uoi、UioおよびUiiによって画定され、そして画素Uooは基準画素 Piを確定する。中間画素 vo、viおよび viもまた図示されており、そして斜め左上補間を用いて計算されている。中間画素 vo、viおよび viは以下の数式を用いて計算される。すなわち、

$$v_0 = (1 - \alpha_y) U_{0-1} + \alpha_y$$
 (12)

$$V_{1} = (1 - \alpha_{y}) U_{00} + \alpha_{y} U_{11}$$
 (13)

$$v_{2} = (1 - \alpha_{y}) U_{01} + \alpha_{z} U_{12}$$
 (14)

3つの標本抽出された中間画素が計算された後に、標本抽出された目標画素の値を決定するために、この標本抽出された目標画素wの向かい合った両側における2つの中間画素の間で補間が直交せずに水平に実施される。図5の実施例では、標本抽出は 4.5° の斜線にそって実施されるので、中間画素 v_1 から基準画素 U_0 。までの水平距離は、垂直距離すなわち α_v と同じである。したがって、標本抽出された目標画素wから中間画素 v_1 までの距離 β は、 $\alpha_x - \alpha_v$ い等しくなる。実際に、斜め左上標本抽出におけるこの β のための数式は、全ての象限に有効である。補間は中間画素 v_1 と v_0 との間であることを意味するこの場合は、 β はマイナスである。よって、標本抽出された目標画素wの値は以下の数式により計算される。

$$W = (1 - (-\beta))v_1 + (-\beta)v_0$$

他の象限では、基準画素PTを囲む原始データの様々な選択画素を用いて同様で、中間画素 v と標本抽出された目標画素 w とが計算される。

斜め右上の補間画素Oxが選択されるとき、中間画素 vo、viおよびviは、図5を参照しながら上記に説明されている方法と同様な方法で、プラス勾配の斜線に沿って配置されている選択原始データ画素間で一次補間を行うことによって、計算される。

図6には、画素Uoo、Uo1、U1oおよびU11によって画定さている区域Rに位置している標本抽出された目標画素wが示されており、そして画素Uooは基準画素Pxを画定する。中間画素vo、v1およびv2もまた図示されており、そして斜

め右上補間を用いて計算されている。中間画素 vo、v1およびv1は以下の数式を用いて計算される。すなわち、

$$V_0 = (1 - \alpha_y) U_{0-1} + \alpha_y U_{1-2}$$
 (16)

$$V_{1} = (1 - \alpha_{y}) U_{00} + \alpha_{y} U_{1-1}$$
 (17)

$$V_{2} = (1 - \alpha_{y}) U_{01} + \alpha_{y10}$$
 (18)

3つの標本抽出された中間画素が計算された後に、標本抽出された目標画素の値を決定するために、この標本抽出された目標画素wの向かい合った阿側における2つの中間画素の間で補間が直交せずに水平に実施される。斜め右上標本抽出では、 $\beta=\alpha_x+\alpha_y$ であることが示され得る。図6の実施例では、 β はマイナスであって、これは、補間が中間画素 v_1 と v_2 との間であることを意味する。標本抽出された目標画素wの値は以下の数式により計算される。

$$W = (1-\beta)V_1 + \beta V_2$$

他の象限では、基準画素 Paを囲む原始データの様々な選択画素を用いて同様に、中間画素 v と標本抽出された目標画素 w とが計算される。

上述の方法は、可能性のある4つの象限のそれぞれの場合を明らかにするために、原始データの3本の走査線へのアクセスを示している。しかし、一旦標本抽出された目標画素wが明確になると、補間を実施し、そして標本抽出された目標画素wを生成するために必要なのは2本の原始データ走査線のみであることに、留意して欲しい。

一ここで図8を説明すると、上述の方法を実施するための原始データ補間装置が これには表示されており、そして一般的に参照番号100で示されている。この 装置100は、入力デジタル原始データD:nの流れを受信し、そして標本抽出さ れた目標画素wを生成するために原始データの選択画素間に補間する。

この装置100は原始データの流れを受信する遅延回路102を有している。 遅延回路は、所望の標本抽出された目標画素wを生成するのに必要な要求原始データ画素を抽出し、そして斜め標本抽出器106へと同様に決定回路104へにも、要求原始データ画素を送信する。決定回路104は、もし必要ならば、原始データ画素に関して数式1から3までそして4から7までの計算を行い、そして 所望の補間方向を決定するために計算された様々な数値をしきい値と比較する。 決定回路 1 0 4 の補間方向出力は斜め標本抽出器 1 0 6 と β 計算機 1 0 8 とに送 られる。β 計算機 1 0 8 の出力は、所望の標本抽出された目標画素 w を生成する ために入力データを利用する斜め標本抽出器 1 0 6 に適用される。

図9には、より詳細に遅延回路102が示されている。図に示されているように、遅延回路は、所望の標本抽出された目標画素wを生成するために必要な入力デジタル原始データの流れを受信する入力回線112を有する。この入力回線は分岐しており、その一方の分岐線114は、直列に接続されている3つの遅延素子120、122および124に直接続いている。他方の分岐線はラインストア126に続いている。このラインストアの出力は、直列に接続されている3つの遅延素子128、130および132に続いている。各分岐線におけるラインストアおよび遅延素子によって、遅延回路102は同時に、入力原始データの2本の継続走査線から4つの画素を出力させることができる。αxもαyも共にプラスである右下象限における補間の場合では、抽出された8つの画素は、図示されているように、画素Uo-1、Uoo、Uoo、Uoo、Uio、UiiおよびUiiに対応する

央定回路104は、図10に最も詳細に示されており、そして4本の入力回線を有しており、その各々は遅延回路102によって選択された画素出力を受信する。入力は2つ組になって減算器140、146および150になされる。減算器の出力は、遅延素子142、144、148、152および154を介して、選択論理回路156に送られそして数式1から3までの様々な計算結果の数値を示す。遅延素子は、数式4から7までの計算に対応する様々な計算結果の数値をを供するために、必要である。特に減算器140の出力は、Onの「将来」の値である01nmに対応する。この値はOnを供するために遅延素子142に送られ、次に02nmを供するために遅延素子144に送られる。同様に、減算器150の出力は、O2nmに対応し、OLを供するために遅延素子152に送られ、次に01nmを供するために遅延素子154に送られる。待ち時間を「平均化」するために、遅延素子148と減算器146の出力を遅らせる必要がある。この値はV

に相当する。これらの数値は全て選択論理回路156に送られる。

しきい値と同様に axおよび axの定数を受信する選択論理回路 156は、いづれかの2つ、または3つ全ての計算された数値がしきい値内にあるかどうかを決定するために、計算された差の値を比較する。明らに計算された差のある1つの値が最も小さい場合、または垂直補間方向に関連する計算された差の値と、そ

して1つの斜め補間方向のみに関連している、計算された差の値とが共にしきい値内にある場合、または計算された3つの差の値が全てしきい値内にある場合、選択論理回路156は斜め標本抽出器106へと同様に、 β 計算機108にも選択補間方向を出力する。2つの斜め方向に関連する計算された差の値がしきい値内にある場合、 β 計算機108および斜め標本抽出器106へ、いずれの補間方向を出力するかを決定するために、値01 $_{AR}$ 01 $_{AL}$ 、そして場合によっては02 $_{AR}$ と02 $_{AL}$ が用いられる。

図10に示されている原始画素は、右下象限における補間に用いられる原始画 素に対応する。これらの原始画素は差の「将来」の値を表す。

 β 計算機108は図11に最もよく示されており、そして選択論理回路156による補間方向出力と同様に α 、および $-\alpha$ 、の定数を受信するマルチプレクサ160を含む。マルチプレクサの出力は加算器162に供給され、この加算器162の出力は β 計算機1080 β 定数出力を構成する。

図12は最もよく斜め標本抽出器106を図示しているが、この斜め標本抽出器は、原則としてより高次元の補間を用いることができるとはいえ、3つの一次補間106a、106bおよび106cを含む。各一次補間回路には2つの加算器と1つのマルチプレクサが含まれている。2つの一次補間は方向性補間に、そして1つの一次補間は水平補間のために利用される。斜め標本抽出器にはまた、4つのマルチプレクサ165から168までが含まれており、そしてこれらのマルチプレクサはβ定数の符号を受信し、そして4つのマルチプレクサ170から176までの各々は選択論理回路156から補間方向を受信する。マルチプレクサ165および166はマルチプレクサ170に出力を供給し、そしてマルチプ

レクサ167および168はマルチプレクサ172に出力を供給する。マルチプレクサ165から168までとそしてマルチプレクサ174から176までへの原始画素の入力は、右下象限を補間するための場合を図示している。マルチプレクサ170および172は一次補間回路106aへの出力を供給する。一次補間回路106aには、マルチプレクサ180へ入力を供給するマルチプレクサ170および172から入力を受信する加算器178が含まれている。αν定数を受

信するマルチプレクサ180は、もう1つの加算器182に入力を供給し、この 加算器もまたマルチプレクサ172から入力を受信する。

同様に、マルチプレクサ174および176は一次補間回路106bに出力を供給する。一次補間回路106bには、乗算器186に入力を供給するマルチプレクサ174および176から入力を受信する加算器184が含まれている。 α y 定数を受信する乗算器186はもう1つの加算器188に入力を供給し、そしてこの加算器もまたマルチプレクサ176から入力を受信する。

2つの一次補間回路106aおよび106bの出力はそれぞれ一次補間回路106cに供給される。一次補間回路106cには、乗算器192に入力を供給する加算器182および188から入力を受信する加算器190が含まれている。乗算器192はβ計算機108からβ定数を受信しそして加算器194に入力を供給する。加算器194もまた加算器188の出力を受信しそしてその出力として標本抽出された目標画素wの値を生成する。

入力画素とそして、マルチプレクサ174および176のシフトとは、加算器188の出力が中間画素 v1 (すなわち、基準画素 P1に最も近接している中間画素)を表すように、制御される。中間走査線線分上の標本抽出された目標画素 wの位置によって加算器 182の出力が中間画素 v0かまたは中間画素 v2のいずれかを表すように、入力画素とそして、マルチプレクサ165から168までと170および172とは制御される。図12において、マルチプレクサ170から176までへの指示子 v、O1およびO1の入力は、それぞれ垂直と、斜め右および斜め左の各方向に補間するために用いられる原始画素に関したものである。

加算器190および194と、そして乗算器192によって構成される一次補

間回路106cは、中間画素間の非直交水平補間を表す計算を実施する。

以下の表は、中間画素 v を生成するために、 α_x および α_y の全ての値に対して 斜め標本抽出器 1 0 6 によって実行された方向性補間を説明したものである。

補間方向	α,	中間画祭 V ₀ , V ₁ , V ₂	β
垂直	α,≥0	$A^{2} = \Pi^{00} + (\Pi^{11} - \Pi^{01}) \Pi^{\lambda}$ $A^{1} = \Pi^{00} + (\Pi^{10} - \Pi^{00}) \Pi^{\lambda}$ $A^{0} = \Pi^{00} + (\Pi^{11} - \Pi^{01}) \Pi^{\lambda}$	β -α,
	α,⊲0	ν ₂ ωπ ^{0.1} +(π ^{-1.1} -π ^{0.1})(-α ²) ν ₁ ωπ ^{0.1} +(π ^{-1.2} -π ^{0.1})(-α ²) ν ₀ -π ^{0.1} +(π ^{-1.4} -π ^{0.1})(-α ²)	
斜め左上	α _γ ≥0	₹2=101+(n15-n01)α² 40-n01+(n11-n00)α² 40-n01+(n15-n01)α²	p=α-α,
	a,<0	$V_0 = U_{0,1} + (U_{-1,2} - U_{0,1})(-\alpha_y)$ $V_1 = U_{0,2} + (U_{-1,1} - U_{0,0})(-\alpha_y)$ $V_0 = U_{0,1} + (U_{-1,2} - U_{0,1})(-\alpha_y)$	
斜め右上	α,≥0	$\Delta^{3} = \Omega^{0.1} + (\Omega^{10} - \Omega^{0.1}) \alpha^{\lambda}$ $\Delta^{1} = \Omega^{0.1} + (\Omega^{1.1} - \Omega^{0.0}) \alpha^{\lambda}$ $\Delta^{0} = \Omega^{0.1} + (\Omega^{1.2} - \Omega^{0.1}) \alpha^{\lambda}$	β=α,+α,
	α,<0	$V_0 = u_{0.1} + (u_{.10} - u_{0.1})(-a_p)$ $V_1 = u_{00} + (u_{.11} - u_{00})(-a_p)$ $V_2 = u_{01} + (u_{.12} - u_{01})(-a_p)$	

当該技術に熟達している専門家なら評価するであろうように、中間画素 v と β 値が一旦判明すれば、以下の数式の1つを利用して水平補間により標本抽出された目標画素wを生成することができる。

$$-_{W}=v_{1}+(v_{2}-v_{1})\beta; -\beta \geq 0$$

$$W=v_{1}+(v_{0}-v_{1})(-\beta); \beta < 0$$
(20)

ここで図13~28を参照しながら、7つの可能な補間方向とそして4点補間 回路とを用いて標本抽出された目標画素を生成するための方法のもう1つの実施 例が以下に説明される。

前述の実施例と同様に、標本抽出された目標画素wに最も近接している原始画素を決定するために、入力原始アータが検査され、そしてこの原始画素は基準画

素Pĸとして用いられる。標本抽出された目標画素より上にある2本の原始走査

線からの原始画素と、そして標本抽出された目標画素より下にある2本の原始走 査線とが決定され(図23aのブロック210)、そして標本抽出された目標画 素を生成するときに選択される補間方向を決定するために、これらの原始走査線 の選択画素が比較される。6つの可能な斜め方向に対し差の値を計算するために 、原始画素が用いられる(ブロック212)。これらの計算は補間象限に応じて 変化するが、それは以下の表に示されている。

左上	右上	左下·	石下	関連の補間プ	方向	•
abs[U _{s.r} U _{.rc}]	abs[U _{be} U _{et}]	abs[U ₀₀ -U ₁₋₁]	sps[folding]	45° line up-right	O _{ux}	(1)
abs[UerU-1]	zbs[UhrU,a]	abs[U _{e-1} -U ₁₄]	abs[U _{ee} -U _{1,2}]	45° line up-left	Ou	(2)
204(U+LU-1)	abs[UwU.13]	abs[U _{oc} U _{ic}]	abs[Un-Un]	26.6° line up-right-right	Ouzz	(3)
255[U ₀₅ U ₋₁₋₃]	abs[UorU+1]	abs[UerUn]	abs[U _{or} U _{i2}]	26.6° line up-left-left	Onr	(4)
1p2[U' L D '9]	Bbs[UorU-zi]	abs[U _{oo} -U _{2-i}]	ಾಚ್ಮ೧ ¹¹ -೧¹¶	63.4° line up-up-right	O _{UCE}	(5)
sbs[U ₀₀ -U ₃₋₁]	Ebs[U ₁₁ -U ₋₈₂]	ಪು:[೮ೣೣೣ೮ೄ]	abs[U,,-U,]	63.4° line up-up-left	Ove	(5)
				vertical	V_	m

左上象限に関して、補間方向OLR、Oul、OLRR、Oull、Oull、Oullをして Vが図13に示されている。示されている垂直方向Vに関しては、いかなる差の 値も計算されない。

計算によって、各斜め補間方向に関連する1セットの差の値が出される。当該 基準画素の右側にある差の値のセットが考慮され、そして当該基準画素の左側に ある差の値のセットもまた用いられる。各斜め補間方向に関して3セットの差の 値が合計され、差の値の1 [実用] セットが作られる。

この実用セットの差の値は、しきい値内の最小の差の値を決定するために、互いに比較される(プロック 2 1 4 と 2 1 6)。もしこの最小の差が低周波数の緑を示すほど十分に小さければ、これらは 1 セットの可能な補間方向を生じさせる

この可能な補間方向は、「境界交差」状況が発生するかどうかを調べるために

検査される(ブロック218と220)。図14はこうした状況を示している。 この図では、画素UooとU-1-2とを結ぶ白い線を表す左左上方向が考慮されてい るが、しかし画素Uo-1とU-1-1とを結ぶダークグレーの「境界」もある。左左上方向を選択することは境界を交差することになるので、この左左上方向は考慮することはできない。こうした状況は差B1とB2を検査することによって検出される。

次ぎに、これら可能な補間方向が検査され、そして1つの補間方向が選択される(プロック222)。プロック222は図23bに詳細に示されている。もし斜め補間方向が1つだけ可能ならば、その方向が選択される(プロック230と232)。もし低周波数数の縁が検出されなければ、垂直補間方向がデフォールトとして選択される(プロック238と240)。左方と右方の斜め補間方向が可能ならば、その時は垂直方向が再びデフォールトとして選ばれる(プロック248と250)。

他に、右方または左方の斜め補間方向のいずれかのみが考慮される。もし「極度」方向(26.6° または 63.4° の勾配)の1つのみと、 45° の斜め方向とが可能であれば、その極度方向が選択される(ブロック 252 と 254)。他の場合では、極度値の両方が可能でありそして「中間」方向(45° の勾配)が選択される(ブロック 256)。

補問方向が一旦選択されれば、方向性補間に必要な画素を決定しなければならない(プロック224)。次ぎに原始データが、中間画素を生成するために、直接補間される(プロック226)。最後に、所望の標本抽出された目標画素wを生成するために、中間画素が水平に補間される(プロック228)。

標本抽出された目標画素wの位置は、xおよびy方向の双方において基準画素 Pxからのその距離によって定義される。これらの距離は記号 axおよび ayによって表され、この場合、

αχは右に向かってプラス、そしてαγは下方に向かってマイナス

この実施例では、4点「フィルタ」補間回路が用いられる。補間対象の標本抽出された目標画素wは、4つの原始画素So, S1, S2およびS1と、そしてS1

からの所望画素の距離を表すパラメータ α との関数として以下の数式で計算される。すなわち

$$w=f(S_0,S_1,S_2,S_3,\alpha)$$

この関数は、パラメータαの指標があるロムから読み出された係数を有する 4 タップフィルタであってもよい。

図15は、垂直補間方向 Vが選択される場合を示している。目標画素 wは、 a xと a y とが共にマイナスである「左上」象限に位置している。値 v 。によって表される中間水平線分は、以下のような垂直 4 点補間によって決定される。すなわち

$$V_{0} = f(U_{1-2}, U_{0-2}, U_{-1-2}, U_{-2-2}, -\alpha_{y})$$

$$V_{1} = f(U_{1-1}, U_{0-1}, U_{-1-1}, U_{-2-1}, -\alpha_{y})$$

$$V_{2} = f(U_{10}, U_{00}, U_{-10}, U_{-20}, -\alpha_{y})$$

$$V_{3} = f(U_{11}, U_{01}, U_{-11}, U_{-21}, -\alpha_{y})$$

$$V_{4} = f(U_{12}, U_{02}, U_{-12}, U_{-22}, -\alpha_{y})$$

$$W=f(V_3, V_2, V_1, V_0, -\beta)$$

基準画素 Pxの周囲の他の象限でも、標本抽出された目標画素 wは同様に計算することができる。

斜め右上方向Ourが選択されているとき、中間画素がプラス勾配 45° の斜線にそって補間される。図16は右上の場合を示している。目標画素wは、 α_x はプラス、そして α_y はマイナスで右上象限に位置している。指定斜線にそって4点補間を用いると、以下のようになる。すなわち

$$V_0 = f(U_{1-3}, U_{0-2}, U_{-1-1}, U_{-20}, -\alpha_y)$$

$$V_1 = f(U_{1-2}, U_{0-1}, U_{-10}, U_{-21}, -\alpha_y)$$

$$V_2 = f(U_{1-1}, U_{00}, U_{-11}, U_{-22}, -\alpha_y)$$

$$V_3 = f(U_{10}, U_{01}, U_{-12}, U_{-23}, -\alpha_y)$$

$$V_4 = f(U_{11}, U_{02}, U_{-13}, U_{-24}, -\alpha_y)$$

5つの中間画素が非直交で計算された後に、標本抽出された目標画素wを決定するために、水平補間がなされる。補間は 45° の角度なので、基準画素 P_k から中間画素 v_2 までの水平距離は、単純に垂直距離、すなわち $-a_y$ に等しい。したがって、 β は単純に a_x+a_y である。この場合では、 β はプラスなので、標本抽出された目標画素は以下の式で表される。すなわち

$$W=f(V_1, V_2, V_3, V_4, \beta)$$

他の象限でも、標本抽出された目標画素を決定するのに同様な方法を用いることができる。図16はまた各象限のためのβの計算も示している。その結果は下記の表Aに要約されている。

斜め左上方向 Ουι の補間は右上方向のものと非常によく似ている。中間画素がマイナス勾配 45°の斜線にそって補間される。図17では、標本抽出された目標画素 w は、αx もαy も共にブラスで、右下象限に位置している。斜線にそって4点補間を用いると、以下のようになる。すなわち

$$V_{0} = f(U_{-1-3}, U_{0-2}, U_{1-1}, U_{20}, \alpha_{y})$$

$$V_{1} = f(U_{-1-2}, U_{0-1}, U_{10}, U_{21}, \alpha_{y})$$

$$V_{2} = f(U_{-1-1}, U_{00}, U_{11}, U_{22}, \alpha_{y})$$

$$V_{3} = f(U_{-10}, U_{01}, U_{12}, U_{23}, \alpha_{y})$$

$$V_{4} = f(U_{-11}, U_{02}, U_{13}, U_{24}, \alpha_{y})$$

標本抽出された目標画素は中間画素に関する非直交の水平補間を実施することによって計算される。これもまた、補間は 4.5° の斜線にそっているので、中間画素への水平距離は垂直距離に等しい。右下象限では、 $\beta=\alpha_x-\alpha_y$ である。 β はプラスで、標本抽出された目標画素は以下の式で表される。すなわち

$$W=f(V_1, V_2, V_3, V_4, \beta)$$

更にまた、 β が象限ごとに変化する他の象限においても同様な方法が適用される。図17には他の象限の β の計算も示されており、その結果は表Aに記載されている。

斜め右右上(Ourr)または左左上(Oull)の補間方向が選択されているとき、補間は勾配26.6°の斜線にそっている。4点補間のために用いられる原始画素/斜線は、図18において右右上と左左上の両方向のために示されている。

図19には、 α xはマイナスでそして α yはプラスの左下象限における標本抽出された目標画素wのための右右上Ourxの補間に用いられる幾つかの画素が示されている。プラス勾配の26.6°の斜線にそって、以下の式で表される4点補間が用いられている。すなわち、

$$V_{0}=f(U_{-10}, U_{0-2}, U_{1-4}, U_{2-6}, \alpha_{y})$$

$$V_{1}=f(U_{-11}, U_{0-1}, U_{1-3}, U_{2-5}, \alpha_{y})$$

$$V_{2}=f(U_{-12}, U_{00}, U_{1-2}, U_{2-4}, \alpha_{y})$$

$$V_{3}=f(U_{-13}, U_{01}, U_{1-1}, U_{2-3}, \alpha_{y})$$

$$V_{4}=f(U_{-14}, U_{02}, U_{10}, U_{2-2}, \alpha_{y})$$

標本抽出された目標画素は水平補間により計算される。補間は 26.6° 勾配の斜線にそっているので、中間画素への水平距離は垂直距離の2倍である。左下象限では、 $\beta=2\alpha_y-(-\alpha_x)=\alpha_x+2\alpha_y$ である。 β はプラスで、標本抽出された目標画素は以下の式で表される。

$$w=f(v_1, v_2, v_3, v_4, \beta)$$

他の象限でも同様である。図19には、表Aに要約されているように、他の象限のβの計算が示されている。

左左上方向 Oυιι が補間のために選択されているとき、26.6°のマイナス 勾配の斜線によって中間画素は補間される。用いられている原始画素の幾つかが、 αx も αy も共にマイナスである左上象限については、図 20 に示されている。 4 点補間を利用すると、以下のような式になる

$$V_0 = f(U_{10}, U_{0-2}, U_{-1-4}, U_{-2-6}, -\alpha_y)$$

 $V_1 = f(U_{11}, U_{0-1}, U_{-1-3}, U_{-2-5}, -\alpha_y)$

$$v_2 = f(U_{12}, U_{00}, U_{-1-2}, U_{-2-4}, -\alpha_y)$$

 $v_3 = f(U_{13}, U_{01}, U_{-1-1}, U_{-2-3}, -\alpha_y)$
 $v_4 = f(U_{14}, U_{02}, U_{-10}, U_{-2-2}, -\alpha_y)$

再び、補間は 26.6° 勾配の斜線にそって実施されるので、中間画素への水平距離は垂直距離の2倍に等しい。左上象限では、 $\beta=-2\alpha_v-(-\alpha_x)=\alpha_x-2\alpha_v$ である。 β はプラスで、標本抽出された目標画素は以下の式、すなわち $\mathbf{w}=\mathbf{f}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4,\mathbf{s}_3)$

によって表されている。変化する eta を有する他の象限にも同様な方法が適用される。図 2 0 は他の象限のための eta の計算を示している。その結果は表 A に要約されている。

斜め右上上(Ouux)または左上上(Ouux)の補間方向が選択されているとき、方向性補間は前述の場合におけるよりも多くの原始走査線を越えた補間を必要とする。あまりにも多くの原始走査線を必要としないように、右上上と左上上の方向に対する方向性補間として、一次補間が用いられる。

図21には、右上上Ouuxの補間方向のために必要な補間が図示されている。 標本抽出された目標画素wは αx も αy も共にプラスの右下象限にある。補間はプラス勾配 63.4° の斜線にそっている。これらの偏り斜線には2つのタイプ

があり、それはつまり、それぞれ線U1-1U-10およびU00U2-1によって表されるような「内側」と「外側」の斜線である。外側斜線のための一次標本抽出パラメータは、中間画素から原始画素までの垂直距離によって与えられる。補間は原始走査線を飛び越すので、一次標本抽出パラメータは半分、すなわちαy/2である。内側斜線においても同様に、バラメータは、(1-αy)/2である。一次補間を用いて、中間画素は以下のように計算される。すなわち

$$v_{0} = (1-0.5(1-\alpha_{y}))U_{1-1} + 0.5(1-\alpha_{y})U_{-10}$$

$$v_{1} = (1-0.5\alpha_{y})U_{00} + 0.5\alpha_{y}U_{2-1}$$

$$v_{2} = (1-0.5(1-\alpha_{y}))U_{10} + 0.5(1-\alpha_{y})U_{-11}$$

$$v_{3} = (1-0.5\alpha_{y})U_{01} + 0.5\alpha_{y}U_{20}$$

$$v_{4} = (1-0.5(1-\alpha_{y}))U_{11} + 0.5(1-\alpha_{y})U_{-12}$$

標本抽出された目標画素は、非直交水平補間により計算される。やはり 4 点補間が水平に用いられる。補間は $6.3.4^\circ$ の斜線にそっているので、中間画素への水平距離は垂直距離の半分である。更に、中間画素どうし間の間隔は前述の補間方向のための間隔の半分であるので、 β は中央の中間画素から目標画素までの距離の 2 倍である。右下象限では、 $0.5=\alpha_x-0.5$ $\beta+0.5$ α_y であるので、 $\beta=-1+2$ $\alpha_x+\alpha_y$ である。 β はマイナスで、標本抽出された目標画素は以下の式によって表される。すなわち

$$w=f(v_1,v_2,v_1,v_0,-\beta)$$

他の象限に対しても同様に、図21は表Aに要約されているような他の象限のための β の計算を示している。

図22に示されている斜め左上上Oυνι 補間方向においては、標本抽出された 目標画素wは α xはプラス、 α yはマイナスの右上象限にある。補間はマイナス勾 配の63.4° 斜線にそっている。内側斜線のための一次標本抽出パラメータは $(1+\alpha$ Y) /2であり、そして外側斜線のためのパラメータは $-\alpha$ y/2である。ここでもまた、一次補間を用いて、中間画素は以下のように計算される。

すなわち

$$V_{0} = (1 - 0.5(1 + \alpha_{y}))U_{-1-1} + 0.5(1 + \alpha_{y})U_{10}$$

$$V_{1} = (1 - 0.5(-\alpha_{y}))U_{00} + 0.5(-\alpha_{y})U_{-2-1}$$

$$V_{2} = (1 - 0.5(1 + \alpha_{y}))U_{-10} + 0.5(1 + \alpha_{y})U_{11}$$

$$V_{3} = (1 - 0.5(-\alpha_{y}))U_{01} + 0.5(-\alpha_{y})U_{-20}$$

$$V_{4} = (1 - 0.5(1 + \alpha_{y}))U_{-11} + 0.5(1 + \alpha_{y})U_{12}$$

4点補間が中間画素に実行されている。また再び、中間画素への水平距離は垂直距離の半分であり、そして β は中央の中間画素から目標画素までの距離の2倍である。標本抽出された目標画素wが右上象限にある場合では、 $\beta=2$ [$\alpha x+(-0.5\alpha_y)-1$] = $-1+2\alpha_x-\alpha_y$ である。 β はプラスなので、標本抽出された目標画素は以下の式によって表される。すなわち

$$_{\text{W}}$$
=f(v_1 , v_2 , v_3 , v_4 $_{\beta}$)

他の象限に対しても同様な方法が適用される。図22は表Aに要約されている

ような他の象限のためのβの計算を示している。

図24は上述の方法を実行するための基本原始データの補間装置300を示している。図示されているように、装置300は第1の実施例に用いられていた装置と同じである。現在説明されている第2の実施例にも同じプロック線図が適用される。原始データ D_{1n} は遅延回路302を介して送られ、この回路は補間に必要な原始画素を抽出する。これらの原始画素は、補間方向を選択するために決定回路304によって利用される。選択された補間方向は、 β の値を決定するために β 計算機に送られる。原始画素、補間方向そして β は全て、標本抽出された目標画素wを生成するように方向性補間を行うために斜め標本抽出器306に送られる。

図 2 5 は、より詳細に当該実施例の遅延回路 3 0 2 を図示している。この回路には、継続原始走査線と 4 8 個の遅延素子 3 2 0 ~ 3 4 2 、 3 4 6 ~ 3 6 8 、 3 7 2 ~ 3 9 4 、 3 9 8 ~ 4 2 0 とにアクセスを許す 3 個のラインストア 3 4 4 、

370および396が含まれており、一方これらの遅延素子は4本の原始走査線の各々において13個の隣接する原始画素にアクセスを許す。遅延回路は補間のために必要な13×4個の原始マトリックスから抽出する。上部象限における補間の時は、抽出される画素は標識を付された原始画素に対応する。

決定回路304はより詳細に図26に図示されている。入力原始画素は、6個の減算器446、452、458、464、470および476に供給される。各減算器は6つの可能な斜め方向の1つに対応する差の値を計算する。各差の値のための2つずつの遅延素子448、450、454、456、460、462、466、472、478および480は各方向のための3つの連続している差の値にアクセスを許す。これらの差の値は選択手段482に送られ、この手段は可能な斜め補間4方向の1つか、または垂直補間方向のいずれかを選択する。標識を付けられた原始画素は左上象限内の補間に対応する。

図27に示されているβ計算機には、3個の入力加算器508が含まれる。この加算器の入力は3台のマルチプレクサ502、504および506の出力である。マルチプレクサ502の出力は、選択された補間方向と標本抽出された目標

画素の象限とを取るデコーダ500の出力に応じて0.1または-1である。マルチプレクサ504は、選択された補間方向に応じて α_x または $2\alpha_x$ を出力する。最後にマルチプレクサ506がこれもまた、補間方向に応じて α_y 、 $-\alpha_y$ 、 $2\alpha_x$ または $-2\alpha_y$ のいずれかを出力する。加算器508の出力は β である。

斜め標本抽出器 3 0 6 は図 2 8 に最も良く図示されている。それは 3 つの主要部品、すなわち入力デコーダ 5 3 2、方向性補間回路 3 0 6 a および水平補間回路 3 0 6 b から成る。標本抽出された目標画素が位置している象限と補間方向にしたがって、入力原始画素は入力デコーダ 5 3 2 で解読される。要求されている原始画素は方向性補間回路 3 0 6 a に送られ、この回路は 4 つの中間画素を生成するために 4 点補間を実行する。この 4 点補間は、 4 個の 4 タップフィルタ 5 3 4、 5 3 6、 5 3 8 および 5 4 0 によって実施され、その係数はアドレス | α、 | を付されているロム 5 3 0 から供給される。 4 つの中間画素は、標本抽出された目標画素 w を計算するために 4 点水平補間回路 3 0 6 b に送られる。水平補間

回路306bは、βのアドレスを付されているロム542と4タップフィルタ544とから成る。

下記表Aは、7つの補間方向の各々の対して中間画素を生成するために実施される方向性補間の概要を示している。この表にはまた、様々な方向と象限とに対する β を計算するための式も含まれている。

(35)

表A

補間方向	象限	中間画条	β
垂直 V	左上 α,√0, α,√0	$ \begin{aligned} v_4 &= f(U_{1:2}, U_{0:2}, U_{-1:2}, U_{-2:2}, -\alpha_y) \\ v_1 &= f(U_{1:1}, U_{0:1}, U_{-1:1}, U_{-1:1}, -\alpha_y) \\ v_2 &= f(U_{10}, U_{00}, U_{-10}, U_{-20}, -\alpha_y) \\ v_3 &= f(U_{11}, U_{01}, U_{-11}, U_{-21}, -\alpha_y) \\ v_4 &= f(U_{12}, U_{02}, U_{-12}, U_{-22}, -\alpha_y) \end{aligned} $	α ₁
	右上 α _x ≥0, α _y <0	$ \begin{aligned} v_0 &= f(U_{1:2}, U_{0:2}, U_{1:2}, U_{2:2}, -\alpha_y) \\ v_1 &= f(U_{1:1}, U_{0:1}, U_{1:1}, U_{2:1}, -\alpha_y) \\ v_2 &= f(U_{10}, U_{00}, U_{10}, U_{20}, -\alpha_y) \\ v_3 &= f(U_{11}, U_{01}, U_{41}, U_{21}, -\alpha_y) \\ v_4 &= f(U_{12}, U_{02}, U_{42}, U_{32}, -\alpha_y) \end{aligned} $	œ,
	左下 a _x <0, a,≥0	$\begin{aligned} v_0 &= f(U_{-1,2}, U_{0,2}, U_{1,2}, U_{2,2}, \alpha_y) \\ v_1 &= f(U_{-1,1}, U_{0,1}, U_{1,1}, U_{2,1}, \alpha_y) \\ v_2 &= f(U_{-10}, U_{00}, U_{10}, U_{20}, \alpha_y) \\ v_3 &= f(U_{-11}, U_{01}, U_{11}, U_{21}, \alpha_y) \\ v_4 &= f(U_{-12}, U_{02}, U_{12}, U_{22}, \alpha_y) \end{aligned}$	α _π
	右下 α _x 20, α _y 20	$\begin{aligned} v_0 &= f(U_{-1.7}, U_{0.2}, U_{1.7}, U_{2.2}, \alpha_y) \\ v_1 &= f(U_{-1.1}, U_{0.1}, U_{1.1}, U_{2.1}, \alpha_y) \\ v_2 &= f(U_{-10}, U_{00}, U_{10}, U_{20}, \alpha_y) \\ v_3 &= f(U_{-11}, U_{01}, U_{11}, U_{21}, \alpha_y) \\ v_4 &= f(U_{-12}, U_{02}, U_{12}, U_{22}, \alpha_y) \end{aligned}$	

右上	左上	v = (01 H H H -)	
[مر<0, م,<0	$ \begin{vmatrix} v_0 = f(U_{1-4}, U_{0,3}, U_{-1,2}, U_{-2-1}, -\alpha_y) \\ v_1 = f(U_{1-3}, U_{0,2}, U_{-1-1}, U_{-20}, -\alpha_y) \end{vmatrix} $	1+α,+α,
Our	7 3, 4, 5	$V_2 = f(U_{1:2}, U_{0:1}, U_{-10}, U_{-21}, -\alpha_2)$	}
		$V_3 = f(U_{1-1}, U_{\infty}, U_{-11}, U_{-22}, -\alpha_y)$	
		$v_4 = f(U_{10}, U_{01}, U_{-12}, U_{-23}, -\alpha_y)$	α,+α,
	右上	$v_0 = f(U_{1-3}, U_{0-2}, U_{-1-1}, U_{-20}, -\alpha_y)$	
	α _x ≥0, α _y <0	$v_1 = f(U_{1-2}, U_{0-1}, U_{-10}, U_{-21}, -\alpha_y)$,
		$v_2 = f(U_{1-1}, U_{\infty}, U_{-11}, U_{-22}, -\alpha_y)$	
	•	$V_3 = f(U_{10}, U_{01}, U_{.12}, U_{.21}, -\alpha_y)$	ar+ar
		$V_4 = f(U_{11}, U_{02}, U_{.13}, U_{.24}, -\alpha_y)$	
	左下	$v_0 = f(U_{-1.1}, U_{6.2}, U_{1.3}, U_{2.4}, \alpha_v)$	
	$\alpha_x < 0, \alpha_y \ge 0$	$V_1 = f(U_{-10}, U_{0.1}, U_{1.2}, U_{2.3}, \alpha_1)$	
	İ	$v_2 = f(U_{-11}, U_{00}, U_{1-1}, U_{2-2}, \alpha_y)$	1+a,+a,
ł		$V_3 = f(U_{-12}, U_{01}, U_{10}, U_{2-1}, \alpha_y)$	• 7
· j	I	$V_4 = f(U_{-13}, U_{02}, U_{11}, U_{20}, \alpha_y)$	ĺ
	右下	$v_0 = f(U_{-10}, U_{0.1}, U_{1.2}, U_{2.3}, \alpha_1)$	
1	$\alpha_{x} \ge 0, \alpha_{y} \ge 0$	$V_1 = f(U_{-11}, U_{00}, U_{1-1}, U_{2-2}, \alpha_y)$	ļ
İ	1	$V_2 = f(U_{-12}, U_{01}, U_{10}, U_{2-1}, \alpha_y)$	l
\$	}	$V_3 = f(U_{13}, U_{02}, U_{11}, U_{20}, \alpha_v)$	}
j	}	$V_4 = f(U_{-14}, U_{03}, U_{12}, U_{21}, \alpha_5)$	1

			
左上	左上	$v_0 = f(U_{1-1}, U_{0-2}, U_{-1-3}, U_{-2-4}, -\alpha_1)$	α,-α,
İ	$\alpha_x < 0, \alpha_y < 0$	$V_{i} = f(U_{10}, U_{0.1}, U_{.1.2}, U_{.2.3}, -\alpha_{v})$	1 .
OuL		$V_2 = f(U_{11}, U_{00}, U_{.1-1}, U_{.2-2}, -\alpha_y)$	j
Ì	1	$V_3 = f(U_{12}, U_{01}, U_{10}, U_{21}, -\alpha)$	i
	Į.	$V_4 = f(U_{13}, U_{02}, U_{.11}, U_{.20}, -\alpha_1)$	1
1			-l+α _g -
!	右上	$V_0 = f(U_{10}, U_{0.1}, U_{.1.2}, U_{.2.3}, -\alpha_{\gamma})$	α _y
•	$\alpha_{x} \ge 0, \alpha_{y} < 0$	$V_1 = f(U_{11}, U_{00}, U_{-1}, U_{-2}, -\alpha_y)$	
		$v_2 = f(U_{12}, U_{01}, U_{-10}, U_{-2-1}, -\alpha_y)$	1
		$V_{j} = f(U_{13}, U_{02}, U_{-11}, U_{-20}, -\alpha_{j})$	l i
		$v_4 = f(U_{16}, U_{03}, U_{.12}, U_{.21}, -\alpha_y)$	1+α,-α,
		,	{
	左下	$v_0 = f(U_{.1.4}, U_{0.3}, U_{1.2}, U_{2.1}, \alpha_y)$	
	a _x <0, α,≥0	$v_1 = f(U_{-1-3}, U_{0-2}, U_{1-1}, U_{20}, \alpha_y)$	
	1 * ' '	$V_2 = f(U_{-1,2}, U_{0,1}, U_{10}, U_{21}, \alpha_1)$	α,-α,
		$v_3 = f(U_{3-1}, U_{\infty}, U_{11}, U_{22}, \alpha_3)$	* * *
		$V_4 = f(U_{-10}, U_{01}, U_{12}, U_{23}, \alpha_y)$	
		1 7 10 00 11 - 12 - 21 - y)	1
	右下	$v_0 = f(U_{-1.3}, U_{0.2}, U_{1.1}, U_{20}, \alpha_y)$	
	a _x ≥0, a _y ≥0	$v_1 = f(U_{3,2}, U_{0,1}, U_{10}, U_{21}, \alpha_y)$	
	-xy	$v_2 = f(U_{4-1}, U_{\infty}, U_{11}, U_{22}, \alpha_y)$	
		$v_3 = f(U_{-10}, U_{01}, U_{12}, U_{23}, \alpha_s)$	
,		$v_4 = f(U_{-11}, U_{02}, U_{13}, U_{24}, \alpha_y)$	1
;		4 2 (117 - 117 - 247 - y)	

右右上 O _{URR}	左上 α₂<0, α,<0	$ \begin{aligned} \mathbf{v}_0 &= f(\mathbf{U}_{1.5}, \mathbf{U}_{0.3}, \mathbf{U}_{.1.1}, \mathbf{U}_{.21}, -\alpha_y) \\ \mathbf{v}_1 &= f(\mathbf{U}_{1.4}, \mathbf{U}_{0.2}, \mathbf{U}_{.10}, \mathbf{U}_{.22}, -\alpha_y) \\ \mathbf{v}_2 &= f(\mathbf{U}_{1.3}, \mathbf{U}_{0.1}, \mathbf{U}_{.11}, \mathbf{U}_{.23}, -\alpha_y) \\ \mathbf{v}_3 &= f(\mathbf{U}_{1.2}, \mathbf{U}_{00}, \mathbf{U}_{.12}, \mathbf{U}_{.24}, -\alpha_y) \\ \mathbf{v}_4 &= f(\mathbf{U}_{1.1}, \mathbf{U}_{01}, \mathbf{U}_{.13}, \mathbf{U}_{.25}, -\alpha_y) \end{aligned} $	1+a _x +2 a _y
	右上 α ₂ ≥0, α _y <0	$\begin{aligned} v_0 &= f(U_{1:4}, U_{0:2}, U_{-10}, U_{-2:3}, -\alpha_y) \\ v_1 &= f(U_{1:3}, U_{0:3}, U_{-1:1}, U_{-2:3}, -\alpha_y) \\ v_2 &= f(U_{1:2}, U_{00}, U_{-1:2}, U_{-2:4}, -\alpha_y) \\ v_3 &= f(U_{1:1}, U_{0:1}, U_{-1:3}, U_{-2:5}, -\alpha_y) \\ v_4 &= f(U_{1:0}, U_{0:2}, U_{-1:4}, U_{-2:6}, -\alpha_y) \end{aligned}$	α ₄ +2α ₇ α ₄ +2α ₇
	左下 a,<0, a,≥0	$v_0 = f(U_{.10}, U_{0.2}, U_{1.4}, U_{2.6}, \alpha_y)$ $v_1 = f(U_{.11}, U_{0.1}, U_{1.3}, U_{2.5}, \alpha_y)$ $v_2 = f(U_{.12}, U_{00}, U_{1.2}, U_{2.4}, \alpha_y)$ $v_3 = f(U_{.13}, U_{01}, U_{1.1}, U_{2.3}, \alpha_y)$ $v_4 = f(U_{.14}, U_{02}, U_{16}, U_{2.2}, \alpha_y)$	1+α _χ +2 α,
	· 右下 α,≥0, α,≥0	$v_0 = f(U_{-11}, U_{0-1}, U_{1-3}, U_{2.5}, \alpha_y)$ $v_1 = f(U_{-12}, U_{00}, U_{1-2}, U_{2.4}, \alpha_y)$ $v_2 = f(U_{-13}, U_{01}, U_{1-1}, U_{2.3}, \alpha_y)$ $v_3 = f(U_{-14}, U_{02}, U_{10}, U_{2.2}, \alpha_y)$ $v_4 = f(U_{-15}, U_{03}, U_{11}, U_{2.1}, \alpha_y)$	7

.

左左上 Ou	<u>tr t-</u> α,<0, α,<0	$ \begin{cases} v_0 = f(U_{10}, U_{0.2}, U_{4.4}, U_{.2.6}, -\alpha_{.}) \\ v_1 = f(U_{11}, U_{0.4}, U_{4.3}, U_{.2.5}, -\alpha_{.}) \\ v_2 = f(U_{12}, U_{00}, U_{.1.2}, U_{.2.4}, -\alpha_{.}) \\ v_3 = f(U_{13}, U_{01}, U_{.1.1}, U_{.2.3}, -\alpha_{.}) \end{cases} $	α,-2α,
	右上 - 在,≥0, α,<0	$v_4 = f(U_{14}, U_{02}, U_{10}, U_{2,2}, -\alpha_y)$ $v_0 = f(U_{11}, U_{0,1}, U_{1,1}, U_{2,2}, -\alpha_z)$	-1+α _x - 2α,
	a,20, a,~0	$ \begin{aligned} v_1 &= f(U_{12}, U_{00}, U_{-12}, U_{-24}, -\alpha_y) \\ v_2 &= f(U_{13}, U_{01}, U_{-13}, U_{-2-3}, -\alpha_y) \\ v_3 &= f(U_{14}, U_{02}, U_{-10}, U_{-22}, -\alpha_y) \\ v_4 &= f(U_{15}, U_{03}, U_{-11}, U_{-2-1}, -\alpha_y) \end{aligned} $	1+α _x -
	左下 a _× <0, a _{>} ≥0	$v_0 = f(U_{-1.5}, U_{0.3}, U_{1.1}, U_{21}, \alpha_{2})$ $v_1 = f(U_{-1.4}, U_{0.2}, U_{10}, U_{22}, \alpha_{2})$	2α,
		$v_{2} = f(U_{-1.3}, U_{0.1}, U_{11}, U_{22}, \alpha_{y})$ $v_{3} = f(U_{-1.2}, U_{00}, U_{12}, U_{24}, \alpha_{y})$ $v_{4} = f(U_{-1.1}, U_{01}, U_{13}, U_{25}, \alpha_{y})$	α,-2α,
	右下 a,20, a,20	$ v_0 = f(U_{-1.4}, U_{0.2}, U_{10}, U_{22}, \alpha_{\gamma}) $ $ v_1 = f(U_{-1.3}, U_{0.1}, U_{11}, U_{23}, \alpha_{\gamma}) $ $ v_2 = f(U_{-1.2}, U_{00}, U_{12}, U_{24}, \alpha_{\gamma}) $ $ v_3 = f(U_{-1.1}, U_{01}, U_{13}, U_{25}, \alpha_{\gamma}) $ $ v_4 = f(U_{-10}, U_{02}, U_{14}, U_{26}, \alpha_{\gamma}) $	

右上上 O _{UUR}	左上 a,<0, a,<0	$\begin{aligned} v_0 &= U_{\cdot 1 \cdot 1} + (U_{1 \cdot 2} - U_{\cdot 1 \cdot 1})(0.5 + 0.5\alpha_y) \\ v_1 &= U_{0 \cdot 1} + (U_{\cdot 20} - U_{0 \cdot 1})(-0.5\alpha_y) \\ v_2 &= U_{\cdot 10} + (U_{1 \cdot 1} - U_{\cdot 10})(0.5 + 0.5\alpha_y) \\ v_3 &= U_{00} + (U_{\cdot 21} - U_{00})(-0.5\alpha_y) \\ v_4 &= U_{\cdot 11} + (U_{10} - U_{\cdot 11})(0.5 + 0.5\alpha_y) \end{aligned}$	1+2α ₂ + α _y
	右上 a,20,a,<0	$\begin{aligned} v_0 &= U_{0.4} + (U_{.20} - U_{0.1})(-0.5\alpha_s) \\ v_1 &= U_{.10} + (U_{.11} - U_{.10})(0.5 + 0.5\alpha_s) \\ v_2 &= U_{00} + (U_{.21} - U_{00})(-0.5\alpha_s) \\ v_3 &= U_{.11} + (U_{10} - U_{.11})(0.5 + 0.5\alpha_s) \\ v_4 &= U_{01} + (U_{.22} - U_{01})(-0.5\alpha_s) \end{aligned}$	2α _x +α _y
	左下 . a,<0, a,≥0	$\begin{split} v_0 &= U_{0.1} + (U_{2.2} - U_{0.1})(0.5\alpha_y) \\ v_1 &= U_{1.1} + (U_{-10} - U_{1.1})(0.5 - 0.5\alpha_y) \\ v_2 &= U_{00} + (U_{2.1} - U_{00})(0.5\alpha_y) \\ v_3 &= U_{10} + (U_{-11} - U_{10})(0.5 - 0.5\alpha_y) \\ v_4 &= U_{01} + (U_{20} - U_{01})(0.5\alpha_y) \end{split}$	2α _x +α _y
	右下 ¤ _x ≥0, ¤ _y ≥0	$v_{e} = U_{1-1} + (U_{-10} - U_{1-1})(0.5 - 0.5\alpha_{y})$ $v_{1} = U_{\infty} + (U_{2-1} - U_{\infty})(0.5\alpha_{y})$ $v_{2} = U_{10} + (U_{-11} - U_{10})(0.5 - 0.5\alpha_{y})$ $v_{3} = U_{01} + (U_{20} - U_{01})(0.5\alpha_{y})$ $v_{4} = U_{11} + (U_{-12} - U_{11})(0.5 - 0.5\alpha_{y})$	- 1+2α _x + α _y

			
左上上 O _{vvi}	左上 a _x <0, a _r <0	$v_0 = U_{0-1} + (U_{-2-2} - U_{0-1})(-0.5\alpha_y)$ $v_1 = U_{-1-1} + (U_{10} - U_{2-1})(0.5+0.5\alpha_y)$ $v_2 = U_{00} + (U_{-2-1} - U_{00})(-0.5\alpha_y)$ $v_3 = U_{-10} + (U_{11} - U_{-10})(0.5+0.5\alpha_y)$ $v_4 = U_{01} + (U_{-20} - U_{01})(-0.5\alpha_y)$	2α _x -α _y
	右上 a,≥0, a,<0	$ \begin{aligned} \mathbf{v}_0 &= \mathbf{U}_{4-1} + (\mathbf{U}_{10} - \mathbf{U}_{14})(0.5 + 0.5\alpha_y) \\ \mathbf{v}_1 &= \mathbf{U}_{00} + (\mathbf{U}_{2\cdot 1} - \mathbf{U}_{00})(-0.5\alpha_y) \\ \mathbf{v}_2 &= \mathbf{U}_{-10} + (\mathbf{U}_{11} - \mathbf{U}_{-10})(0.5 + 0.5\alpha_y) \\ \mathbf{v}_3 &= \mathbf{U}_{01} + (\mathbf{U}_{-20} - \mathbf{U}_{01})(-0.5\alpha_y) \\ \mathbf{v}_4 &= \mathbf{U}_{-11} + (\mathbf{U}_{12} - \mathbf{U}_{-11})(0.5 + 0.5\alpha_y) \end{aligned} $	-1+2α _s - α _y
	左下 吸<0,或20	$\begin{aligned} \mathbf{v}_0 &= \mathbf{U}_{1\cdot 1} + (\mathbf{U}_{\cdot 1\cdot 2} - \mathbf{U}_{1\cdot 1})(0.5 - 0.5\alpha_y) \\ \mathbf{v}_1 &= \mathbf{U}_{0\cdot 1} + (\mathbf{U}_{20} - \mathbf{U}_{0\cdot 1})(0.5\alpha_y) \\ \mathbf{v}_2 &= \mathbf{U}_{10} + (\mathbf{U}_{-1\cdot 1} - \mathbf{U}_{1\cdot 2})(0.5 - 0.5\alpha_y) \\ \mathbf{v}_3 &= \mathbf{U}_{\infty} + (\mathbf{U}_{21} - \mathbf{U}_{\infty})(0.5\alpha_y) \\ \mathbf{v}_4 &= \mathbf{U}_{1\cdot 1} + (\mathbf{U}_{-10} - \mathbf{U}_{1\cdot 1})(0.5 - 0.5\alpha_y) \end{aligned}$	1+2α _x - α,
	右下 ɑ _x ≥0, ɑ _y ≥0	$\begin{aligned} v_0 &= U_{0.1} + (U_{20} - U_{0.1})(0.5\alpha_y) \\ v_1 &= U_{10} + (U_{-1-1} - U_{10})(0.5-0.5\alpha_y) \\ v_2 &= U_{00} + (U_{21} - U_{00})(0.5\alpha_y) \\ v_3 &= U_{1-1} + (U_{-10} - U_{1.1})(0.5-0.5\alpha_y) \\ v_4 &= U_{01} + (U_{22} - U_{01})(0.5\alpha_y) \end{aligned}$	2α _x -α _y

上述のように、中間画素が一旦生成されると、所望の標本抽出された目標画素 wを生成するために、4点水平補間がなされる。

$$w = f(v_1, v_2, v_3, v_4, \beta) \qquad \beta \ge 0$$

$$w = f(v_3, v_2, v_1, v_0, -\beta) \qquad \beta < 0$$

本方法と装置によって、標本抽出された目標画素wを生成することが可能になり、その結果、原始データの画像が拡大され再生されるとき、拡大画像の解像度-が高まりそしてステアステッピングが最小限に抑えられる。

当該技術に熟達している専門家には明らかなように、本発明には、添付の請求

の範囲によって定義されているその範囲から逸脱することなしに、様々な修正が 可能である。例えば、当文書には本発明の2つの実施例が記載されているが、他 の実施例も可能であること、そして各セットにおける斜め方向の数も任意に選択 できることは明らかであろう。 (42)

待表平11-514810

【図1】

【図2】

【図3】

特表平11-514810

(43)

(44)

特表平11-514810

【図5】

【図6】

(47)

特表平11-514810

FIG. 8

FIG. 9

(49)

[図10] 104 αx αx しきい値 U₁₁-140 142 OR 01_{AR} U₀₁-148 146 選択手段 方向 U11-02_{AL} 150 OL . OTAL 156 152 U₁₂-

FIG. 10

【図11】

[図12] 190 护 띩 L 80 1 L 200 L

(51)

【図13】

FIG. 13

【図14】

FIG. 14

(52)

【図15】

(54)

[図17] Žø 【図18】

) () (56)

【図19】 200 ე ე $\overset{\approx}{\sim}$ 50 ⊼® U.53 30

[図20]

[図21]

[図23]

(62)

[図25]

(64)

(65)

【図27】

FIG. 27

(66)

【国際調査報告】

	INTERNATIONAL SEARCH RI	EPORT	PCT/CA 96	ration No /00703
PC 6	FICATION OF SURIECT MATTER H04N5/262			
	hieramona Patest Classification (IPC) or to both national classification	Orl bes oc		
	nonnembade searched (classification system followed by classification s H34N G05T	ymbol tj		
Document	on scarchod either these assessment documentations to the cature that ends	gocuments are to	ciuded in the Suids H	michod
Electronic d	ata base constilled fluring the intersational search (varies of data base an	d, where practical	, search terras (seed)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			Reterent to claim No.
Cattory "	Cristics of document, with indication, where appropriate, of the releva	u bente.		
A	DE_A,44 97 101 (SIEMENS AG) 14 Sept 1995 see column 2, line 34 - line 46 see column 3, line 53 - line 62			1,25
A	see column 4, line 6 - column 5, li EP.A.0 550 231 (SALON TELEVISIOTEHO 7 July 1993 see page 2, line 26 - page 3, line	AS 0Y) 54		1-45
A	see page 4, line 32 - page 7, line EP.A.O 561 286 (THOMSON CONSUMER ELECTRONICS) 22 September 1993 see column 1, line 11 - line 53 see column 3, line 45 - column 4, l			1,25
	-/-			
				·
X F	ther documents are listed in the continuation of box C.	Paleos Good	y montest are lated	th ances.
"A" documents of the control of the	ment defining the general pump of the set which is not detroid to be of paracular adversace; of deciment by published on or after the interestioned of the set of the published on the set of the set of the set of the published on providing the published on the set of the published on or other special scanno (se specified) ment referring to on or other special scanno (se specified) ment referring to on or all distributions or set of the s	or privity date and to various invention document to com myoke as the document to com document to ecom document to ecom document as on wester, and con in the est.	and not in condict of and the principle or t disease relevance; the disease relevance; the relevance of the relevance of the disease relevance; the disease of the most on it	octiment is taken done indicated investors because step when the nore other sink dock- our to a person skilled
	section completion of the international search	Date of making	of the international a	
	29 January 1997	- 6. 02. 97	'	
Name and	moliting with res of the BIA European Patent Office, P.B. SNI February 2 ML - 2010 BM Filipsells Tel. (-21-17) 340-2014, Tr. 31 651 tpo st. Fax: (+21-70) 340-3016	A utocind offic	_	

(68)

INTERNATIONAL SEARCH REPORT

PCT/CA 96/09783

		PCT/CA 9	5/09783
	DOOD DOCUMENTS CONSIDERED TO BE RELEVANT		
alegory *	Citatum of document, web indicators, where appropriate, of the relevant passages		Relevant to claim No.
A	IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, vol. 39, no. 3, 1 August 1993, pages 234-240, XP000395285 SIMONETTI R ET AL: "A DEINTERLAVER FOR IQTV RECEIVERS AND MULTIMEDIA APPLICATIONS" see page 234, left-hand column, line 26 page 236, right-hand column, last line see figure 5		1-24
A	US.A.4 985 764 (SATO KOICHI) 15 January 1991 see column 2. line 17 - line 58 see column 3. line 58 - column 10, line 62		25
A	SIGNAL PROCESSING OF HOTV, 2. TURIN, AUG. 38 - SEPT. 1, 1989, no. WORKSHOP 3, 38 August 1989, CHIARIGLIONE L, pages 711-721, XPGCGZ15289 DOYLE T ET AL: "PROGRESSIVE SCAN CONVERSION USING EDGE INFORMATION"		
		·	
	·	_	

Form PCT/ISA/218 (confinention of second sheet) (July 1992)

(69)

INTERNATIONAL SEARCH REPORT Inter and Application No.

andorshados do paices family members

PCT/CA 96/08703

DE-A-4407101 14-09-95 FR-A- 2717027 08-09-95 GB-A- 2287154 05-09-95 US-A- 5579053 25-11-96 EP-A-0550231 07-07-93 NONE EP-A-0551286 22-09-93 CA-A- 2090595 21-09-93 US-A- 5481311 02-01-96	DE-A-4407101 14-09-95 FR-A- 2717027 08-09-95 05-09-95 05-09-95 05-09-95 05-09-95 05-A- 5579053 26-11-96 EP-A-0550231 07-07-93 NONE EP-A-0551286 22-09-93 05-09-95 02-09-93 02-09-95 02-09-93 02-01-96				PCT/CA	20/0000
CB-A- 2287154 05-89-95 US-A- 5579053 25-11-96 EP-A-0550231 07-07-93 NONE EP-A-0561286 22-09-93 CA-A- 2090696 21-09-93 US-A- 5481311 02-01-96	GB-A- 2287154 05-09-95 US-A- 5579053 25-11-96 EP-A-0550231 07-07-93 NONE EP-A-0551286 22-09-93 CA-A- 2090596 21-09-93 US-A- 5481311 02-01-96	Palent document cited in search report		Putent ment	family- xer(s)	Publication date
EP-A-0550231 07-07-93 NONE EP-A-0561286 22-09-93 CA-A- 2090696 21-09-93 US-A- 5481311 02-01-96	EP-A-0550231 07-07-93 NONE EP-A-0561286 22-09-93 CA-A- 2090696 21-09-93 US-A- 5481311 02-01-96	DE-A-4407101	14-09-95	GB-A-	2287154	05-89-95
US-A- 54B1311 02-01-96	US-A- 54B1311 02-01-96		67-9 7 -93	NONE		
		EP-A-0561286	22-89-93	US-A-	5481311	
		US-A-4985764	15-81-91			10-07-93

Form PCE/ISA/Did (parent family armet) (July 1992)

フロントページの続き

(81)指定国 EP(AT. BE, CH. DE, DK. ES. FI. FR. GB. GR. IE. IT. L U. MC, NL. PT, SE), OA(BF, BJ, CF . CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(KE, LS, MW, SD, S Z, UG). UA(AM, AZ, BY, KG, KZ, MD , RU, TJ, TM), AL, AM, AT, AU, AZ , BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, G E, HU, IL, IS, JP, KE, KG, KP, KR , KZ. LC. LK. LR. LS. LT. LU. LV. MD. MG. MK. MN. MW. MX. NO, NZ. P L. PT. RO. RU. SD. SE. SG. SI. SK , TJ, TM, TR, TT, UA, UG, US, UZ, VN

(72)発明者 ノウ、カルヴィン カナダ国 エル3ティー 3イー1 オン タリオ州 ソーンヒル ロイヤル オーチャード ブールヴァード 175

JP 1999-514810 A5 2004.10.14

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第3区分 【発行日】平成16年10月14日(2004.10.14)

【公表番号】特表平11-514810 【公表日】平成11年12月14日(1999.12.14) 【出願番号】特願平9-517699 【国際特許分類第7版】 H04N 1/387 G06T 3/40 H04N 5/262 【FI】 H04N 1/387

H 0 4 N 5/262 G 0 6 F 15/66 3 5 5 C

【手続補正書】 【提出日】平成15年10月22日(2003.10.22) 【手続補正1】 【補正対象書類名】特許請求の範囲 【補正対象項目名】特許請求の範囲 【補正方法】変更 【補正の内容】

手統補正魯

平成15年10月22日

特許庁長官 殿

- 1. 事件の表示 平成9年特許顯第517699号
- 2. 補正をする者 名称 (氏名) ジェネシス マイクロチップ インコーポレイテッド
- 3. 代 理 人 住所 東京都港区赤坂1丁目9番20号 第16 奥和ビル8階 氏名 弁理士(8832) 金田 锡之 電話(3585)1882
- 4. 特正対象書類名 請求の範囲
- 5. 補正対象項目名 請求の範囲
- 6. 補正の内容 請求の範囲を別紙の通り補正する

請求の範囲

1. 標本抽出された目標画素を入力原始データから生成す<u>る方</u>法であって、 少なくとも異なる2方向で、生成される<u>べき</u>標本抽出された目標画素を囲む区 域内における前記原始データの異な<u>る線</u>の画素を比較する段階と、

前記比較に基づいて補間方向を選択する段階と、

前記選択された補間方向で、前記原始データの異な<u>る線</u>の選択<u>された</u>画素<u>間で</u> 補間し、前記<u>生成されるべき</u>標本抽出された目標画素<u>の両側にあってかつ前記生</u> 成されるべき標本抽出された目標画素を通る線分上<u>にあ</u>る中間画素を計算する段 階と、

前記中間画素間で補間して前記標本抽出された目標画素を生成する段階と、を有する方法。

- 2. 前記線分が前記原始データの線に平行である請求項1に記載の方法。
- 3. <u>前記比較する段階に</u>おいて、前記原始データの<u>異なる</u>線の画業は、少なくとも異なる3方向において比較される<u></u>請求<u>項1または2に</u>記載の方法。
- 4. <u>前記比較する段階に</u>おいて、前記原始データの異な<u>る線</u>の画素は<u>、少</u>なくとも7方向で比較される、請求項1乃至3のいずれか1項に記載の方法。
- 5. <u>前記比較する</u>段階において、前記原始データの画素は異なる7方向のみにおいて比較され、前記異なる7方向には、垂直方向と、<u>前</u>記垂直方向に対してある角度を<u>なす2組の</u>対向する斜め方向とが含まれ、前記各角度は0°<角度<0°の範囲内にあって、対向する斜め方向の各組は3つの斜め方向を含み、各割め方向は前記垂直方向に対してそれぞれ異なる角度をなし、斜め方向の各セットにおいて比較される前記原始データの画素は、前記生成されるべき標本抽出された目標画素の向かい合った両側に位置する請求項3または4に記載の方法。
- 6. 前記比較する段階において、前記原始データの異なる線の画素は異なる3方向だけで比較され、前記異なる3方向には、垂直方向と、前記垂直方向に対してある角度をなす両側の斜め方向とが含まれ、前記各角度は0°<mm>(今角度<90°の範囲にあって、前記斜め方向の各々において比較される前記原始データの画素は、前記生成されるべき標本抽出された目標画素の向かい合った両側に位置する、請求項3に記載の方法。

7. <u>標本拍出された目標画素を入力原始データから</u>生成す<u>る装</u>置であって、 <u>少なくとも異なる2方向で、生成されるべき</u>標本抽出された目標画素を囲む区 域内における前記原始データの異な<u>る線</u>の画素<u>を比</u>較する比較<u>器</u>と、

前記比较器に応答して補間方向を選択する選択器と、

前記選択器によって選択された補間方向で、前記原始データの異な<u>る線</u>の選択された画<u>素間で</u>補間して、前配生成されるべき標本抽出された目標画素の両側に あってかつ前配生成されるべき標本抽出された画素を通る線分上にある中間画素 を計算し、前記目標画素を生成するために前記中間画素間で補間す<u>る標</u>本抽出器 と、

を有する装置。

- 8. 前記線分は前記原始データの線に平行である請求項7に記載の装置。
- 9. 前記比較豊が少なくとも3つの異なる方向で前記原始データの異な<u>る</u> 線の画素を比較する請求<u>項7または8に</u>記載の装置。
- 10. <u>前記比較器は、</u>垂直方向と、そして<u>前記</u>垂直方向に対してある角度をなす<u>両便の</u>斜め方向とで、前記原始データの異な<u>る線</u>の画素を比較し、前記各角度は0°<角度<90°の範囲内にある、請求項9に記载の装置。
- 11. 前記比較器は少なくとも7つの異なる方向で前記原始データの異なる線の画素どうしを比較する、請求項7乃至9のいずれか1項に記載の装置。
- 12. 原始データの線の間の補間画素の線を生成する補間装置であって、 前記原始データの線の低周波数エッジに対応する補間方向を選択する選択器と、 前記選択器に応答して、前記原始データの線の画素間の方向性補間を実行して 生成されるべき各補間画素に対する中間画素を計算する補間器と、

を有し、生成されるべき補間画素ごとに計算される中間画素は、前記生成されるべき補間画素の両側にあって前記生成されるべき補間画素を通る線分上に位置し、前記補間器は、生成されるべき各補間画素ごとに計算された中間画素間で補間を行い、これによって前記補間画素の線を生成する、補間装置。

13. 原始データの線の間で補間して前記原始データの線の間の補完画素の線を生成する方法であって、

原始データの前記線の低周波数エッジに対応する補間方向を選択する段階と、

前記選択に基づいて前記原始データの線の画素間の方向性補間を実行して、生成されるべき各補間画素に対する中間画素を計算する段階と、

生成されるべき各補間画索ごとに計算された中間画素間で補間を行い、これによって前記補間画索の線を生成する段階と、

を有し、生成されるべき補間画案ごとに計算される中間画素は、前記補間画素の両側にあって前記補間画素を通る線分上に位置する、方法。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.