3D Reconstruction of Cameras and Structure

- Chapter 10 (continue ...) -

April 22, 2010

Pravin Kumar Rana
SIP, School of Electrical Engineering,
KTH –Royal Institute of Technology, Stockholm

Based on Marc Pollefeys' presentations (www.cs.unc.edu/~marc/mvg/slides.html)

Content

- Chapter 10 continue ...
 - Stratified scene reconstruction
 - Direct scene reconstruction

Stratified Scene Reconstruction

- Begin with a Projective reconstruction
- Refine it to an Affine reconstruction
 - Reconstructed scene is than an affine Projective transformation of the actual scene
- Then refine it to a metric reconstruction
 - Reconstructed scene is then a scaled version of actual scene
- Need further information either about the scene, the motion, or the camera calibration

From Projective to Affine Reconstruction

- The essence of affine reconstruction is to locate the plane at infinity
- We have determined a projective reconstruction of a scene:(P,P',{X_i})
- Find a projective transformation that maps

$$\pi = (A, B, C, D)^{\mathsf{T}} \mapsto \pi_{\infty} = (0,0,0,1)^{\mathsf{T}}$$
$$\mathsf{H}^{\mathsf{-T}}\pi = (0,0,0,1)^{\mathsf{T}}$$

- Such a transformation is $H = \begin{bmatrix} I \mid 0 \\ \pi^T \end{bmatrix}$
- H is applied to all points and the two cameras
- Can be sufficient depending on application, e.g.,
 - Computation of the mid-point
 - Computation of the centroid of a set of points

Translational Motion

Case: Suppose the motion of the cameras is a pure translation with no rotation and no change in the internal parameters

- Points at infinity are fixed for a pure translation and will map to the same points in two images related by translation
- Given a projective reconstruction, reconstruct a point X_i lie on the plane of infinity by corresponding match $x_i \leftrightarrow x_i$
- **3 points needed** → uniquely define plane at infinity
- Fundamental matrix:

$$F = [e]_{\times} = [e']_{\times}$$

Choose the two cameras as:

$$P = [I | 0]$$

$$P' = [I \mid e']$$

Scene Constraints

Parallel lines

- Parallel lines intersect at infinity
- Reconstruction of corresponding vanishing point yields point on $\pi_{_{\infty}}$
- 3 sets of parallel lines allow to uniquely determine plane at infinity
 Remark: Obtaining vanishing point in one image can be sufficient

Distance ratios on a line

Known distance ratio along a line allow to determine point at infinity

Infinity Homography

Image to image mapping via plane at infinity

$$x' = H_{\infty}x$$

• For given two cameras $P = [M \mid m]$ and $P' = [M' \mid m']$, let a point $X = (\widetilde{X}^T, 0)^T$ on the plan at infinity

$$\stackrel{\mathsf{y}}{\Rightarrow} x = M\widetilde{X} \text{ and } x' = M'\widetilde{X} \Longrightarrow x' = M'M^{\text{-}1}x \text{ for } \pi_{\scriptscriptstyle \infty}$$

$$\Rightarrow$$
 H _{∞} = M'M⁻¹

Unchanged under affine transformations:

$$P = [M \mid m] \begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix} = [MA \mid Ma + m]$$

$$H_{\infty} = M'AA^{-1}M^{-1}$$

Cameras of affine reconstruction:

$$P = [I | 0] \quad P' = [H_{\infty} | e']$$

 $\mathbf{x}_{\infty} = \mathbf{M}\widetilde{\mathbf{X}}$ $\mathbf{x}_{\infty} = \mathbf{M}\mathbf{X}$

• H_{∞} computed from correspondences of 3 vanishing points or correspondences of a vanishing lines and vanishing point together with F

One of the Cameras is Affine

- The principal plane of an affine camera is at infinity
- For affine reconstruction
 - It is sufficient to find the principal plane of the camera supposed to be affine and map it to the plane $(0,0,0,1)^T$.
- Compute **H** that maps third row of **P** to $(0,0,0,1)^T$ and apply to cameras and reconstruction
- Example: e.g. if P=[I|0], swap 3rd and 4th column, i.e., to obtain

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

From Affine to Metric Reconstruction

- The essence of metric reconstruction is to identify absolute conic in the plane at infinity
- Transform so that $\Omega_{\infty}: X^2 + Y^2 + Z^2 = 0$, on π_{∞}
- Then projective transformation relating original and reconstruction is a similarity transformation
- In practice, find image of $\Omega_{\scriptscriptstyle \infty}$
- Image $\omega_{\scriptscriptstyle \infty}$ back-projects to cone that intersects $\pi_{\scriptscriptstyle \infty}$ in $\Omega_{\scriptscriptstyle \infty}$

note that image is independent of particular reconstruction

From Affine to Metric Reconstruction

- Given $P = [M \mid m]$ and image of absolute conic ω
- Possible transformation from affine to metric is

$$H = \begin{bmatrix} A^{-1} & 0 \\ 0 & 1 \end{bmatrix} \qquad AA^{T} = (M^{T}\omega M)^{-1}$$
(Cholesky Factorization)

Proof:
$$P_{M} = PH^{-1} = [MA \mid m]$$

$$\omega^{*} = M_{M}M_{M}^{T} = MAA^{T}M^{T}$$

$$M^{-1}\omega^{-1}M^{-T} = AA^{T}$$

$$\Omega^{*} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$$

Constraints from Scene Orthogonality

Pairs of vanishing points arising from orthogonal scene line place constraints on the absolute conic:

$$\mathbf{v}_1^{\mathsf{T}} \boldsymbol{\omega} \mathbf{v}_2 = 0$$

• A vanishing point and a vanishing line arising from a direction and plane which are orthogonal place constraints on the absolute conic:

Constraints from Known Internal Parameters

• If the calibration matrix of a camera is equal to K, the image of the absolute conic is

$$\omega = K^{-T}K^{-1}$$

K used to constrain or determine the elements of ω

Constraints from Same Camera for All Images

- Cameras P and P' have the same calibration matrix
 - ⇒ the image of the absolute conic is the same in both images e.g. moving cameras
- Given sufficient images there is in general only one conic that projects to the same image in all images, i.e. Ω_{∞}
- Image of the absolute conic lies on the plane at infinity may be transferred from one view to the other by the infinite homography

$$\omega' = H_{\infty}^{-T} \omega H_{\infty}^{-1}$$

where ω and ω ' are images of Ω_{∞} in the two views

Direct Metric Reconstruction using Image of the Absolute Conic

Approach I

- Image of absolute conic is known in each image
- Compute K from image of the absolute conic using

$$\omega = K^{-T}K^{-1} \Rightarrow K$$

Reconstruct the scene using essential matrix

Approach II

- Compute projective reconstruction
- Back-project image of the absolute conic from both images to obtain cone
- Intersection defines Ω_{∞} and its support plane at infinity

Example of Metric Reconstruction

Original

Metric Reconstruction

Direct Scene Reconstruction

Ground control points

- Points with know 3D locations in a Euclidean world frame.
- Its 3D location $\{X_i\}$ in the projective reconstruction computed from their image correspondences $x_i \leftrightarrow x_i'$.

Direct Scene Reconstruction using Ground Truth

• Use control points X_{Ei} with know coordinates to go from projective to metric

$$\mathbf{X}_{Ei} = \mathbf{H}\mathbf{X}_{i}$$
$$\mathbf{X}_{i} = \mathbf{P}\mathbf{H}^{-1}\mathbf{X}_{Ei}$$

- How many points?
 - Each point correspondence provides 3 linearly independent equations on the elements of H, and since H has 15 DOF, a linear solution is obtained provided n > 4 and no four of the control points are coplanar.

<u>Objective</u>: Given two uncalibrated images compute a metric reconstruction $(P_M, P'_M, \{X_{Mi}\})$ of the cameras and scene structure.

Algorithm:

- (i) Compute a projective reconstruction (P,P',{X_i}):
 - (a) Compute F from point correspondences $x_i \leftrightarrow x'_i$ between the images.
 - (b) Compute the camera matrices P,P' from F.
 - (c) Triangulate X_i from point correspondence $x_i \leftrightarrow x'_i$
- (ii) Rectify the projective reconstruction to metric:
 - **Direct method**: Compute H from control points $X_{Ei} = HX_i$

$$P_{M} = PH^{-1}, P'_{M} = P'H^{-1}, X_{Mi} = HX_{i}$$

- Stratified method:
- (a) Affine reconstruction: Compute plane at infinity

$$\mathbf{H} = \begin{bmatrix} \mathbf{I} \mid \mathbf{0} \\ \mathbf{\pi}^{\mathsf{T}}_{\infty} \end{bmatrix}$$

(b) Metric reconstruction: Compute the image of the absolute conic and the upgrade the affine to metric reconstruction with the

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \qquad \mathbf{A}\mathbf{A}^{\mathrm{T}} = (\mathbf{M}^{\mathrm{T}}\boldsymbol{\omega}\mathbf{M})^{-1}$$