

Eine gebräuchliche Möglichkeit, den Temperaturmessbereich eines Temperatursensor auf einen bestimmten Spannungsbereich anzupassen, ist die Verwendung einer Brückenschaltung. Die Brücke wird so abgeglichen, dass beim unteren Messbereichsende (-25°C) $U_a = 0V$ beträgt und beim oberen Messbereichsende (100°C) $U_a = 5V$ ist. Mittels eines Subtrahierverstärkers wird die Brückenspannung U_{ab} ermittelt und anschließend verstärkt.

Sensorschaltung:

Öffnen Sie die Schaltung in MultisimLive: https://kurzlinks.de/k2ep

Arbeitsauftrag 1: Simulation

1.	Stel	len	Sie	R_4 s	so ein	, dass	die	Brücl	ke t	oei -	·25°	'C a	bgeg	licl	nen	ist	

 $R_4 =$

2. Mit R_{q2} wird die Verstärkung V_{U2} so eingestellt, dass U_a bei 100°C genau 5V beträgt.

 $R_{\alpha 2} =$

3. Messen Sie die Brückenspannung U_{ab} und die Ausgangsspannung U_a bei den angegebenen Widerstands-, bzw. Temperaturwerten.

T in °C	R_T in Ω	U _{ab} in mV	U _a in V
-25	90,375		
0	100		
85,7	133		
100	138,5		

Sensorschaltungen mit OPV

Datum: 19.11.2024

1_3_2_PT100_Sensor_mit_Brueckenschaltung_Versuch.docx

Brückenschaltung mit Subtrahierverstärker

1.3.2.2

Arbeitsauftrag 2: Realversuch

Bauen Sie die Schaltung auf 2 Steckbrettern auf (2 Gruppen). Den PT100-Widerstand simulieren Sie durch einen Festwiderstand. Im Bauteilesatz ist ein 100Ω und ein 33Ω Widerstand enthalten. Damit können 2 Temperaturen simuliert werde: $100\Omega \Rightarrow 0^{\circ}\text{C}$, $133\Omega \Rightarrow 85,7^{\circ}\text{C}$

4. Bauen Sie $R_T = 100\Omega$ (0°C) in die Schaltung ein. Gleichen Sie das Poti R4 so ab, dass sich U_{ab} wie in der Tabelle (Afg. 3) ergibt.

Tipp: Um leichter einstellen zu können, verwenden Sie für R4 die nebenstehende Schaltung aus 1k-Poti und 220Ω Festwiderstand.

- 5. Gleichen Sie ebenso R_{q2} ab, bis U_{ab} dem Wert in der Tabelle entspricht. **Tipp**: Sie können R_{q2} auch um einen Festwiderstand 33Ω oder 100Ω in Reihe ergänzen, falls das 1k-Poti nicht ausreichend ist.
- 6. Testen Sie Ihre Einstellung mit dem 133Ω Widerstand.
- 7. Grundsätzlich ergibt sich der dargestellte Spannungsverlauf:

$$U_a = 1V + \frac{5V}{125K} \cdot T$$

Stellen Sie die Geradengleichung so um, dass sie mit Ausgangsspannung Ua die Temperatur berechnen können.

$$T =$$

8. Schließen Sie nun einen PT100-Widerstand an und ermitteln Sie die aktuelle Raumtemperatur.

Dokumentieren Sie Ihre Ergebnisse im Versuchsprotokoll.