Neutron deep-penetration calculations & shielding design of proton therapy accelerators

7th Int. Workshop on Radiation Safety at Synchrotron Radiation Sources (RADSYNCH2013)

> Rong-Jiun Sheu Institute of Nuclear Engineering and Science National Tsing Hua University

New accelerators in Taiwan

- Taiwan Photon Source
 - NSRRC, Hsinchu
 - 3 GeV electron synchrotron
 - Installation 2013, commissioning 2014
- Proton therapy center
 - Chang Gung Memorial Hospital, Linkou
 - 235 MeV proton cyclotron
 - Commissioning 2013, clinical trial 2014
- Heavy ion therapy center
 - Veterans General Hospital, Taipei
 - 400 MeV/A carbon cyclotron
 - In planning

first stage: intranction coacade
high-energy proton
informediate stage: preequilibrium
second stage: evaporation and/or fission
fission
fission

- Key issues in shielding design
 - Neutrons produced from hadronic cascade or EM cascade with photonuclear interaction are dominant dose component
 - Neutron production and deep-penetration calculations
- Selected experiments on thick-target neutron yield
 - 256 MeV proton on iron (Meier et al., 1990)¹
 - 400 MeV/A carbon on copper (Nakamura et al., 2006)²
 - 2.04 GeV electron on copper (Lee et al., 2005)³

Benchmark calculations for double differential neutron yield

FLUKA v2011.2 & MCNPX v2.7.0

Comparisons of experimental results with calculations

Ranges of neutron source intensities

- For three accelerators of main concern
 - 235 MeV proton cyclotron
 - 400 MeV/A carbon cyclotron
 - 3.0 GeV electron synchrotron
 - Total number of neutrons produced per incident primary particle (n/p) calculated by FLUKA and MCNPX:

Beam	Target	FLUKA	MCNPX
235 MeV proton	Iron	0.70 ± 0.13%	0.79 ± 0.24%
400 MeV/A carbon	Copper	9.02 ± 0.14%	5.92 ± 0.24%
3.0 GeV electron	Copper	$0.63 \pm 0.36\%$	$0.51 \pm 0.21\%$

Neutron production from proton bombardment

- For various proton energies and target materials
 - LHS: total neutron yield
 - RHS: percentage of high-energy neutrons $(E_n > 20 \ MeV)$

- Neutron yield increases significantly as increasing proton energies, especially for high-Z targets.
- Low-Z targets cause harder neutron spectra, i.e. more forwardpeaked neutrons and anisotropy of dose distribution.

Parameters for shielding design

Point- source line-of-sight model

A simplified method ~

$$H(E_p, \theta, d/\lambda_\theta) = \frac{H_0(E_p, \theta)}{r^2} \exp \left[-\frac{d}{\lambda_\theta \cdot g(\alpha)} \right] + \dots$$

- Literature data (a wide range of variability)
- Radiation transport calculations (neutron deep penetration)
- Calculation model (Agosteo et al., 2007)
 - Primary beam: 200 MeV protons
 - Shielding material: concrete & iron
 - Use FLUKA & MCNPX to simulate the production and transport of all secondary radiation produced from proton bombardment
 - Depth dose distributions in shield
 - → Curve fitting → Source terms & attenuation lengths

- Concrete shielding
 - Consistent with reference: *NIM-B265*, *p.581*, *2007*

- Iron shielding
 - Inconsistent with reference: NIM-B266, p.3406, 2008

	First exponential		Second exponential	
	H ₁ [Sv m ² per proto	$n] \lambda_1 [g cm^{-2}]$	H ₂ [Sv m ² per protor	$\sqrt{\lambda_2}$ [g cm ⁻²]
0°~10°:	1.9573869e-014	231.26087	8.6791123e-014	156.39452
40°~50°:	7.0531340e-015	184.78711	1.4822132e-014	153.90741
80°~90°:	3.8826802e-015	158.39371	4.0535242e-015	154.48923
130°~140°:	3.0590892e-015	153.40506	2.6849795e-015	155.2448

Cl. S. Agosteo et al. NIMB-200 (2008) 5400-5410, Table 5&2								
		First exponential		Second exponential				
		H ₁ [Sv m ² per proton	$\lambda_1 [g cm^{-2}]$	H ₂ [Sv m ² per protor	λ_2 [g cm ⁻²]			
	0°~10°:	•	222.0±1.0	$(5.5\pm0.04)\times10^{-14}$				
	40°~50°:	$(4.0\pm0.02)\times10^{-15}$	170.1±0.4	$(1.7\pm0.01)\times10^{-14}$	124.5±0.1			
	80°~90°:	$(2.3\pm0.01)\times10^{-15}$	138.6±0.2	$(1.0\pm0.01)\times10^{-14}$	108.4±0.06			
	130°~140°:	$(1.6\pm0.01)\times10^{-15}$	133.4±0.2	$(7.5\pm0.03)\times10^{-15}$	104.4±0.03			
	40°~50°: 80°~90°:	$(9.7\pm0.07)\times10^{-15}$ $(4.0\pm0.02)\times10^{-15}$ $(2.3\pm0.01)\times10^{-15}$	222.0±1.0 170.1±0.4 138.6±0.2	$(5.5\pm0.04)\times10^{-14}$ $(1.7\pm0.01)\times10^{-14}$ $(1.0\pm0.01)\times10^{-14}$	140.8±0.2 124.5±0.1 108.4±0.0			

Neutron spectra at various depths in concrete and iron shield

- 90°~ 80°

 Concrete / Iron

 Black Hole
- Comparison: FLUKA & MCNPX
 - E_n<20MeV, multigroup vs. continuous cross sections

Orders of magnitude differences are possible for deep-penetration calculations!

- Effect of iron multigroup cross sections
 - Group structure: 72 or 260 groups
 - Self-shielding: infinitely dilute, partially and fully self-shielded

A shielding database for proton therapy accelerators

Point-source line-of-sight model

$$H(E_{p}, \theta, d/\lambda) = \frac{H_{1}(E_{p}, \theta)}{r^{2}} \exp(-\frac{d}{\lambda_{1}(E_{p}, \theta)}) + \frac{H_{2}(E_{p}, \theta)}{r^{2}} \exp(-\frac{d}{\lambda_{2}(E_{p}, \theta)})$$

- Source term & attenuation length: (H_1, λ_1) & (H_2, λ_2) Reasonable coverage of common beam/target/shielding/angle
 - Proton energies: 100, 150, 200, 250, 300 MeV
 - Target materials: iron, graphite, tissue
 - Shielding materials: concrete, iron, lead
 - Angles of neutron emission: 0°-10°, 40°-50°, 80°-90°, 130°-140°
- Monte Carlo simulations
 - MCNPX with continuous-energy cross sections
 - Generation of shielding parameters → Database
 - Case study and verification

Demo by two simple cases

250 MeV proton on Fe

- Single-layer shielding: 3m concrete
 - Overestimation is acceptable and usually preferable
- Double-layer shielding: 20cm iron + 1m concrete
 - Reasonably good agreement with the Monte Carlo results

180°-

80°-90°

Scoring

Shielding thickness

Shielding design & dose analysis

- Proton therapy treatment room
 - Direct Monte Carlo simulation

250 MeV proton on Fe, concrete shielding

■ Database $(H_1, \lambda_1), (H_2, \lambda_2)$ + Point-source light-of-sight model

Shielding design & dose analysis 250 MeV proton on Fe, concrete shielding

- Proton therapy treatment room
 - Direct Monte Carlo simulation
 - Energy spectra of neutrons and gamma rays on the surface of the 0° shielding wall and near the maze entrance, respectively

Radiation streaming

$$H_{1}(\delta_{1}) = \left[\frac{r_{0}}{\delta_{1} + r_{0}}\right]^{2} H_{0}(R) \quad \text{for } 1^{st} \text{ leg}$$

$$H_{i}(\delta_{i}) = \left\{\frac{e^{-\delta_{i}/a} + Ae^{-\delta_{i}/b} + Be^{-\delta_{i}/c}}{1 + A + B}\right\} H_{i-1}(\delta_{i-1}) \quad \text{for } i^{th} \text{ leg } (i > 1)$$

where $\delta_i = d_i / \sqrt{A}$ and the fitting parameters are :

$$r_0 = 1.4, \ a = 0.17, \ b = 1.17, \ c = 5.25, \ A = 0.21, \ B = 0.00147$$

250 MeV proton on Fe, concrete shielding

- Proton therapy treatment room
 - Direct Monte Carlo simulation
 - Database (H_0/r^2) + Cossairt's formula (FermiLab TM-1834, 2005)

Conclusions

- Neutrons are dominant dose component at proton and heavy ion accelerators, also for high-energy electron accelerators with thick shielding.
- Benchmark calculations were performed for neutron production by proton, heavy ion, and electron with energies of our interest and their agreement with experiments are generally satisfactory.
- Selection of proper multigroup cross sections is important to neutron deep-penetration calculations.
- This work provides a set of reliable shielding data with reasonable coverage of common target and shielding materials for 100-300 MeV proton accelerators.
- General characteristics and possible applications of this data set in cases of single- and double-layer shielding are presented.