Recitation 5

CNN: Basics and Backprop

What is an image?

A visual representation

What is an image? : For a computer!

A visual representation. A Matrix I of dimensions (M,N) with I[i][j] = intensity(pixel(i,j))

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

What is an image?

$$I \rightarrow (3,M,N)$$

$$I[c][i][j] =$$

Each image is made up of a set of channels. Each channel comprises of several pixels

3 for a colored image, 2 for B&W.

Intensity at pixel(i,j) for channel c

The number of channels you encounter could even increase!

MLP

Vector to Vector

CNN

Feature map to Feature map

MLP Vs. CNN

Vector to Vector

Feature map to Feature map

Components of a CNN

- Filter/Kernel
- Stride
- Input Channel
- Output channels
- Padding
- Output size

Components of a CNN

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

W _{1,1}	W _{1,2}
W _{2,1}	W _{2,2}

B_{1,1}

_	_	_
Z _{1,1}	Z _{1,2}	Z _{1,3}
7	7	7
Z _{2,1}	Z _{2,2}	Z _{2,3}
7	7	7
Z _{3,1}	Z _{3,2}	Z _{3,3}

Input - A

Kernel - w

Bias - **B**

Output - \mathbf{z} $\mathbf{z} = (\mathbf{A} \otimes \mathbf{W}) + \mathbf{E}$

$$Z_{1,1} = (A_{1,1} * W_{1,1}) + (A_{1,2} * W_{1,2}) + (A_{2,1} * W_{2,1}) + (A_{2,2} * W_{2,2}) + B$$

$$Z_{1,2} = (A_{1,2} * W_{1,1}) + (A_{1,3} * W_{1,2}) + (A_{2,2} * W_{2,1}) + (A_{2,3} * W_{2,2}) + B$$

$$Z_{1,3} = (A_{1,3} * W_{1,1}) + (A_{1,4} * W_{1,2}) + (A_{2,3} * W_{2,1}) + (A_{2,4} * W_{2,2}) + B$$

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}		

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

W _{1,1}	W _{1,2}	
W _{2,1}	W _{2,2}	

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

_	

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

Output Size

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

Output Size

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

Output Width =
$$[(W_{in} - W_k + 2P) // (S)] + 1$$
Same goes for Height.

Output Size

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

```
Output Width = [(W_{in} - W_k + 2P) // (S)] + 1
```

P: Padding (here - 0) S: Stride (here - 1)

Stride

Taking bigger steps!

What we did before - The kernel "moves" one pixel (or element) at a time.

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

Start at the same place

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

$$Z_{1,1} = (A_{1,1} * W_{1,1}) + (A_{1,2} * W_{1,2}) + (A_{2,1} * W_{2,1}) + (A_{2,2} * W_{2,2}) + B$$

Move two elements to the right

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

$$Z_{1,2} = (A_{1,3} * W_{1,1}) + (A_{1,4} * W_{1,2}) + (A_{2,3} * W_{2,1}) + (A_{2,4} * W_{2,2}) + B$$

Move two elements down.

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Move two elements to the right.

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

Interpreting Stride > 1

Think about how it is related to Upsampling and Downsampling.

Will learn more in HW2

9	9	7
2	5	6
-7	9	-10

Stride 1 output

Drop intermediates

9	7
-7	-10

Stride 2 output

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}

W _{1,1}	W _{1,2}
W _{2,1}	W _{2,2}

Z _{1,1}	Z _{1,2}	Z _{1,3}
Z _{2,1}	Z _{2,2}	Z _{2,3}
Z _{3,1}	Z _{3,2}	Z _{3,3}

0	0	0	0	0	0
0	A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}	0
0	A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}	0
0	A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}	0
0	A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}	0
0	0	0	0	0	0

W _{1,1}	W _{1,2}
W _{2,1}	W _{2,2}

Z _{1,1}	Z _{1,2}	Z _{1,3}	Z _{1,4}
Z _{2,1}	Z _{2,2}	Z _{2,3}	Z _{2,4}
Z _{3,1}	Z _{3,2}	Z _{3,3}	Z _{3,4}
Z _{4,1}	Z _{4,2}	Z _{4,3}	Z _{4,4}

0	0	0	0	0	0
0	A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}	0
0	A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}	0
0	A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}	0
0	A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}	0
0	0	0	0	0	0

W _{1,1}	W _{1,2}
W _{2,1}	W _{2,2}

Z _{1,1}	Z _{1,2}	Z _{1,3}	Z _{1,4}
Z _{2,1}	Z _{2,2}	Z _{2,3}	Z _{2,4}
Z _{3,1}	Z _{3,2}	Z _{3,3}	Z _{3,4}
Z _{4,1}	Z _{4,2}	Z _{4,3}	Z _{4,4}

0	0	0	0	0	0
0	A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}	0
0	A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}	0
0	A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}	0
0	A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}	0
0	0	0	0	0	0

Z _{1,1}	Z _{1,2}	Z _{1,3}	Z _{1,4}
Z _{2,1}	Z _{2,2}	Z _{2,3}	Z _{2,4}
Z _{3,1}	Z _{3,2}	Z _{3,3}	Z _{3,4}
Z _{4,1}	Z _{4,2}	Z _{4,3}	Z _{4,4}

Multi-channel CNN

Multi-channel CNN

• Each kernel (or **filter**) has as many channels as the input does.

[kernel channels = Input channels]

- Channel c of the kernel convolves with channel c (corresponding) of the input.
- The number of output channels from the convolution = number of **filters**

2 Filters with 3-channel input

Pooling

- Usually follows convolutions
- Introduces Jitter Invariance
- Reduces feature-map size
- Max, Mean, Min
- Pooling preserves number of channels

Pooling

4	8	3	9
16	10	0	7
6	12	13	8
67	18	3	7

Pooling

4	8	3	9
16	10	0	7
6	12	13	8
67	18	3	7

$$\frac{\partial q}{\partial x} = 1 \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}$$

Using chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \star \frac{\partial g}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} * \frac{\partial q}{\partial x} = -4 * 1 = -4$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} * \frac{\partial q}{\partial y} = -4 * 1 = -4$$

$$\frac{\partial z}{\partial x}$$
 & $\frac{\partial z}{\partial y}$ are local gradients

 $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Input X

F 11	F ₁₂
F 21	F 22

Filter F

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

$$\frac{\partial 0}{\partial X}$$
 & $\frac{\partial 0}{\partial F}$ are local gradients

 $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Backpropagation: Finding Gradients for X and F

Step 1: Finding the local gradient - $\partial O/\partial F$

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial O_{11}}{\partial F_{11}} = X_{11}$$
 $\frac{\partial O_{11}}{\partial F_{12}} = X_{12}$ $\frac{\partial O_{11}}{\partial F_{21}} = X_{21}$ $\frac{\partial O_{11}}{\partial F_{22}} = X_{22}$

Similarly, we can find the local gradients for O_{12} , O_{21} and O_{22}

Step 2: Using the Chain rule

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} * \frac{\partial O}{\partial F}$$
Gradient to update Filter F
$$\begin{array}{c} \text{Local} \\ \text{From previous} \\ \text{layer} \end{array}$$

For every element of F

$$\frac{\partial L}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_k} * \frac{\partial O_k}{\partial F_i}$$

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{11}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{11}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{11}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{11}}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{12}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{12}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{12}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{12}}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{21}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{21}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{21}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{21}}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{22}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{22}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{22}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

Step 2: Using the Chain rule

For every element of F

$$\frac{\partial L}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_k} * \frac{\partial O_k}{\partial F_i}$$

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * X_{12} + \frac{\partial L}{\partial O_{12}} * X_{13} + \frac{\partial L}{\partial O_{21}} * X_{22} + \frac{\partial L}{\partial O_{22}} * X_{23}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

 $\partial L/\partial F$ is nothing but the convolution between Input X and Loss Gradient from the next layer $\partial L/\partial O$

where

Step 1: Finding the local gradient - $\partial O/\partial X$

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial O_{11}}{\partial X_{11}} = F_{11} \quad \frac{\partial O_{11}}{\partial X_{12}} = F_{12} \quad \frac{\partial O_{11}}{\partial X_{21}} = F_{21} \quad \frac{\partial O_{11}}{\partial X_{22}} = F_{22}$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

Step 2: Using the Chain rule

For every element of X_i

$$\frac{\partial L}{\partial X_{i}} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_{k}} * \frac{\partial O_{k}}{\partial X_{i}}$$

$$\frac{\partial L}{\partial X_{11}} = \frac{\partial L}{\partial O_{11}} * F_{11}$$

$$\frac{\partial L}{\partial X_{12}} = \frac{\partial L}{\partial O_{11}} * F_{12} + \frac{\partial L}{\partial O_{12}} * F_{11}$$

$$\frac{\partial L}{\partial X_{12}} = \frac{\partial L}{\partial O_{12}} * F_{12}$$

$$\frac{\partial L}{\partial X_{21}} = \frac{\partial L}{\partial Q_{11}} * F_{21} + \frac{\partial L}{\partial Q_{21}} * F_{11}$$

$$\frac{\partial L}{\partial X_{22}} = \frac{\partial L}{\partial O_{11}} * F_{22} + \frac{\partial L}{\partial O_{12}} * F_{21} + \frac{\partial L}{\partial O_{21}} * F_{12} + \frac{\partial L}{\partial O_{22}} * F_{11}$$

$$\frac{\partial L}{\partial X_{23}} = \frac{\partial L}{\partial O_{12}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{12}$$

$$\frac{\partial L}{\partial X_{31}} = \frac{\partial L}{\partial O_{21}} * F_{21}$$

$$\frac{\partial L}{\partial X_{32}} = \frac{\partial L}{\partial O_{21}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{21}$$

$$\frac{\partial L}{\partial X_{33}} = \frac{\partial L}{\partial O_{22}} * F_{22}$$

Backpropagation: $\partial L/\partial X$ as a 'Full Convolution'

Step 1: Rotate the Filter F by 180 degrees - flipping it first vertically and then horizontally

Backpropagation: $\partial L/\partial X$ as a 'Full Convolution'

Step 2: Full convolution between flipped filter F and $\partial L/\partial O$

Loss Gradient
$$\frac{\partial L}{\partial \theta}$$

Backpropagation: Conclusion

Backpropagation in a Convolutional Layer of a CNN

Finding the gradients:

$$\frac{\partial L}{\partial F}$$
 = Convolution (Input X, Loss gradient $\frac{\partial L}{\partial O}$)

$$\frac{\partial L}{\partial X} = \text{Full Convolution} \left(\begin{array}{c} 180^{\circ} \text{ rotated} \\ \text{Filter F} \end{array} \right) \cdot \text{Gradient } \frac{\partial L}{\partial 0} \right)$$