5.25 among_interval

DESCRIPTION LINKS GRAPH AUTOMATON Origin Derived from among. Constraint among_interval(NVAR, VARIABLES, LOW, UP) Arguments : dvar NVAR : collection(var-dvar) VARIABLES LOW : int UP : int Restrictions $\mathtt{NVAR} \geq 0$ ${\tt NVAR} \leq |{\tt VARIABLES}|$ required(VARIABLES, var) ${\tt LOW} \leq {\tt UP}$ NVAR is the number of variables of the collection VARIABLES taking a value that is lo-**Purpose** cated within interval [LOW, UP]. **Example** $(3, \langle 4, 5, 8, 4, 1 \rangle, 3, 5)$ The among_interval constraint holds since we have 3 values, namely 4,5 and 4that are situated within interval [3, 5]. All solutions Figure 5.64 gives all solutions to the following non ground instance of the among_interval constraint: $V_1 \in [2,9]$, $V_2 \in [0,1]$, $V_3 \in [5,6]$, $V_4 \in [1,2]$, among_interval($\mathbf{3}, \langle V_1, V_2, V_3, V_4 \rangle, \mathbf{0}, \mathbf{2}$). ① $(3, \langle 2, 0, 5, 1 \rangle, 0, 2)$

 $\begin{array}{c} \textcircled{0} \ (\textbf{3}, \langle \textbf{2}, \textbf{0}, \textbf{5}, \textbf{1} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{2} \ (\textbf{3}, \langle \textbf{2}, \textbf{0}, \textbf{5}, \textbf{2} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{3} \ (\textbf{3}, \langle \textbf{2}, \textbf{0}, \textbf{6}, \textbf{1} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{4} \ (\textbf{3}, \langle \textbf{2}, \textbf{0}, \textbf{6}, \textbf{2} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{5} \ (\textbf{3}, \langle \textbf{2}, \textbf{1}, \textbf{5}, \textbf{1} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{6} \ (\textbf{3}, \langle \textbf{2}, \textbf{1}, \textbf{5}, \textbf{2} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{7} \ (\textbf{3}, \langle \textbf{2}, \textbf{1}, \textbf{6}, \textbf{1} \rangle, \textbf{0}, \textbf{2}) \\ \textcircled{8} \ (\textbf{3}, \langle \textbf{2}, \textbf{1}, \textbf{6}, \textbf{2} \rangle, \textbf{0}, \textbf{2}) \end{array}$

Figure 5.64: All solutions corresponding to the non ground example of the among_interval constraint of the **All solutions** slot, where the number of variables assigned a value in [LOW = 0, UP = 2] is equal to NVAR = 3

20030820 599

Typical

```
\begin{split} \text{NVAR} &> 0 \\ \text{NVAR} &< |\text{VARIABLES}| \\ |\text{VARIABLES}| &> 1 \\ \text{LOW} &< \text{UP} \\ \text{LOW} &\leq & \text{maxval}(\text{VARIABLES.var}) \\ \text{UP} &\geq & \text{minval}(\text{VARIABLES.var}) \end{split}
```

Symmetries

- Items of VARIABLES are permutable.
- An occurrence of a value of VARIABLES.var that belongs to [LOW, UP] (resp. does not belong to [LOW, UP]) can be replaced by any other value in [LOW, UP]) (resp. not in [LOW, UP]).

Arg. properties

- Functional dependency: NVAR determined by VARIABLES, LOW and UP.
- Contractible wrt. VARIABLES when NVAR = 0.
- Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
- Aggregate: NVAR(+), VARIABLES(union), LOW(id), UP(id).

Remark

By giving explicitly all values of the interval [LOW, UP] the among_interval constraint can be modelled with the among constraint. However when LOW - UP + 1 is a large quantity the among_interval constraint provides a more compact form.

See also

generalisation: among (variable in interval replaced by variable \in values).

Keywords

characteristic of a constraint: automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: interval, functional dependency.

 Arc input(s)
 VARIABLES

 Arc generator
 SELF → collection(variables)

 Arc arity
 1

 Arc constraint(s)
 • LOW ≤ variables.var

 • variables.var ≤ UP

 Graph property(ies)
 NARC= NVAR

Graph model

The arc constraint corresponds to a unary constraint. For this reason we employ the *SELF* arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.65 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the loops of the final graph are stressed in bold.

Figure 5.65: Initial and final graph of the among_interval constraint

20030820 601

Automaton

Figure 5.66 depicts the automaton associated with the among_interval constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR_i and S_i : $LOW \leq VAR_i \wedge VAR_i \leq UP \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection that take their value in [LOW, UP] and finally assigns this number to NVAR.

Figure 5.66: Automaton of the among_interval constraint

Figure 5.67: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the among_interval constraint: since all states variables Q_0, Q_1, \ldots, Q_n are fixed to the unique state s of the automaton, the transitions constraints share only the counter variable C and the constraint network is Berge-acyclic