Acid-Base and Buffers Conceptual Questions

Concentration	pH of Acid	pH of Acid	pH of Acid	pH of Acid
(M)	1	2	3	4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

- 1) The table above shows the acids of, in no order, chlorous, hydrochloric, lactic, and propanoic acid.
- a) Which acid would have the smallest K_a?
- b) Which of the four acids listed is Hydrochloric Acid?
- c) In the dissociation of 1.0 M solution of acid 1, what species is the most concentrated at equilibrium?
- d) If equal volumes of the acids at a concentration of 1.00 M are titrated with a strong base, which will require the greatest volume of base to reach the equivalence point?
- 2) As the concentration of a weak acid increases, its percent dissociation (increases/decreases/stays the same) and the pH (increases/decreases/stays the same)
- 3) Which of the following ions will act as a weak base in water?

 A) ClO⁻
 B) Cl⁻
 C) NO₃
 D) OH⁻
- 4) Will the following salts form a solution that is acidic, basic, or pH-neutral?

FeCl₃ NaF CaBr₂ NH₄Br C₆H₅N₃NO₂

- 5) Rank by strength of acid: NaCl, NaHCO₃, NH₄Cl, NH₄ClO, NaOH, KOH
- 6) James adds some solid sodium acetate, NaC₂H₃O₂, to aqueous HC₂H₃O₂. What will happen to the pH?

HA and HB are both weak acids in water, and HA is a stronger acid than HB. Which of the following correctly ranks the strength of the bases starting with the strongest?

a.
$$A^- > B^- > H_2O > Cl^-$$

c.
$$B^- > A^- > Cl^- > H_2O$$

b.
$$B^- > A^- > H_2O > Cl^-$$

d.
$$A^- > B^- > Cl^- > H_2O$$

7) True or False:

BrO₃⁻ is a weaker base than BrO₄⁻

an aqueous solution of CH₃NH₃Cl is acidic

H₂O is a stronger acid than H₂S

an aqueous solution of Cu(ClO₄)₂ is basic

CH4 is a weaker acid than HF

an aqueous solution of (CH₃)₃NHNO₂ is acidic

- 8) Which is a stronger base? S²⁻ vs Se²⁻ and PO₄³⁻ vs AsO₄³⁻
- 9) Which of the anions below would be the strongest base?

 $C_7H_5O_2^-$ I NO₃ F Cl

10) Alex wants to create a buffer for NaF. Which will be the best choice for a buffer solution for this compound?

NaF HC1 $K(C_2H_3O_2)$ NH_3 NaOH

11) Given equal volumes of 0.10M HCl and another compound, which will produce a buffer solution?

- 12) James has a phosphate buffer (H₂PO₄⁻/HPO₄²⁻) and records a pH of 8.3. Which of the following will cause the pH of this buffer to increase?
- I. Adding a small amount of dilute hydrochloric acid, HCl
- II. Adding a small amount of dilute phosphoric acid, H₃PO₄
- III. Dissolving a small amount of disodium phosphate, Na₂HPO₄
- IV. Dissolving a small amount of monosodium phosphate, NaH₂PO₄
- V. Making it more concentrated by removing some water
- 13) James is having acid reflux, and so Parker suggests he ingests bleach to neutralize stomach acid. If concentrated chlorine bleach has a pH of 13, what is the ratio of concentration of hydronium ions of bleach to that of pure water at room temperature?
- 14) Phosphate, H_3PO_4 is present in cells. What is the predominant form of phosphate in cells if at a physiological pH of 7.0? $pKa_1=2.1$ $pKa_2=7.21$ $pKa_3=12.87$
- 15) Water goes through autoionization as shown below

$$2H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$

The temperature is raised, and a data table is listed below:

Temperature (C)	pK_{w}
0	14.9
10	14.5
20	14.2
30	13.8
40	13.5

- 1) Based on the information, which of the following statements must be true?
- a) The dissociation of water is an exothermic process
- b) The pH of pure water is 7.00 at any given temperature
- c) As the temperature increases the pH pf pure water increases
- d) As the temperature increases, the pH of pure water decreases

Acid-Base and Buffers Calculations

(some values may need to be looked up)

1) After an experiment, Marky finds the concentration of CO_{3}^{2} _(aq) to be 0.150M. Ka is 5.6 x 10^{-11}
Find the pH and pOH
2) A 25.00 mL sample of 0.320 M NaOH analyte was titrated with 0.750 M HI at 25 C.
a). Calculate the initial pH before any titrant was added.
b). Calculate the pH of the solution after 5.00 mL of the titrant was added.
3)Is a pH with a solution of 7.00 acidic, basic, or neutral for a neutral aqueous solution at 37 degrees C given that the K_w for water at this temperature if 2.4 x 10^{-14} ?
The Tay Tot water at this temperature in 2.1 / X To
A)Determine the pH of a solution that is 0.250 M in HCO
4)Determine the pH of a solution that is 0.250 M in HCO ₃ ⁻
5)Determine the pH of 0.20 M NaCHO ₂ solution
6)What is the pH of 2.5 M KI in solution?

7)What concentration of salt should be used to create a buffer with pH of 10.24 that uses $0.8M$ methylamine? CH_3NH_2
8) 80.0 mL of a buffer solution contains 0.169 M NH_3 and $0.183 \text{ M NH}_4\text{Cl.}$ If you add 10.0 mL of 0.100 M HCl , what will be the pH? $K_b = 1.81 \text{ x } 10^{-5}$. Assume additive volumes.
9) Blood is buffered by carbonic acid, H_2CO_3 (pKa = 6.1). Assuming that the volume of blood in an adult is 5 liters, what mass of HCl can be neutralized by the buffer before the system reaches a fatal pH of below 7.0?
10) What mass of ammonium chloride should be added to $2.55\ L$ of $0.155\ M$ NH $_3$ to obtain a buffer with pH of 9.55 ?
11)A 1.0 liter 1.0M buffer solution (pH = 4.7) using Jamesonnium acid (JH) is mixed with another Jamesonnium buffer solution (pH = 4.55) that is 0.50 liter and 0.5 M. What is the pH of this mixture after 1.0 liter of 0.1M HA strong acid is added? Ka of Jamesonnium is 1.58×10^{-5}