Conference 5

Milne's Method

Time Stepping Techniques for an IVP

1. Milne's Method

Use the quadratic interpolant to y'(t) = f(t, y(t)) at t_n, t_{n-1}, t_{n-2} to obtain the formula (for $n \ge 3$)

$$y_{n+1} = y_{n-3} + \frac{4h}{3} (2y'_n - y'_{n-1} + 2y'_{n-2}) + \mathcal{O}(h^5)$$
.

Time Stepping Techniques for an IVP

The ODE $y' = 2y/t + t^2e^t$ on $1 \le t \le 2$ with y(1) = 0 has a solution $y(t) = t^2(e^t - e)$. Approximate the solution to this ODE with h = 0.2 using:

- (a) Taylor's method of order two
- (b) Runge-Kutta order 2
- (c) Implicit Euler method

Create a plot (or plots) that include each of the approximations at each mesh point and the exact solution at each mesh point. Comment on: (1) error for each approximation, (2) computation time for each method, (3) sensitivity to time steps. In the third part, continue to increase and decrease time step h to understand conditional stability of explicit methods and unconditional stability of the Implicit (forward) Euler method.

		Total Erro	r (sum(exac	t-approx))	Elapsed Time (seconds)			
		Taylor	Runge	Implicit	Taylor	Runge	Implicit	
	step	Method	Kutta	Euler	Method	Kutta	Euler	
L	<u>size</u> h	Order 2	Order 2	Method	Order 2	Order 2	Method	
	0.05	0.415094	0.325391	13.73329	0.000074	0.000059	0.000053	
	0.1	0.841109	0.655126	15.77001	0.000056	0.000044	0.000039	
	0.2	1.720148	1.323737	20.84934	0.000043	0.000037	0.000032	
	0.5	4.492491	3.365712	52.28256	0.000044	0.000031	0.000027	

Table 1: Error and Computation Time using different step size and methods.

		Approx	. Value at	t = 1.4		Error at t = 1.4		
	step <u>size h</u>	Taylor Method Order 2	Runge Kutta Order 2	Implicit Euler Method	real value	Taylor Method Order 2	Runge <u>Kutta</u> Order 2	Implicit Euler Method
	0.05	2.6099	2.6119	2.9404	2.62036	0.01046	0.00846	0.32004
	0.1	2.581	2.5888	3.3084	2.62036	0.03936	0.03156	0.68804
	0.2	2.4805	2.5096	4.2335	2.62036	0.13986	0.11076	1.61314

Table 2: Approximated Values at t = 1.4 and corresponding errors.