Модель прикладной программы может быть представлена как ориентированный ациклический граф G=(V,E), |V|=n, |E|=m. Каждой вершине графа соответствует задание $\{p_i\}_{i=1}^n$, каждой дуге — передача данных между заданиями. Если $(p_i,p_j)\in E, 1\leq i,j\leq n$, то для выполнения задания p_j необходим результат выполнения задания p_i . При этом задание p_i далее будем называть потомком задания p_i .

Вычислительная среда состоит из одного процессора SP, который в каждый момент времени способен выполнять только одно задание, и уникального ресурса SR. Каждое задание выполняется на процессоре SP без прерываний. После выполнения задание p_i , $1 \le i \le n$, захватывает $r_{p_i} \ge 0$ ресурса SR для хранения результата. Далее происходит высвобождение ресурса, занимаемого такими заданиями p_j , $1 \le j \le n$, $(p_j, p_i) \in E$, для которых p_i является последним выполненным потомком.

Расписание HP сформировано, если для всех заданий из G определён порядок их выполнения на процессоре SP. Фактически HP представляет из себя перестановку заданий из G. Расписание HP корректно, если выполнены следующие ограничения $\{1-3\}$:

- 1) Каждое задание должно быть назначено на процессор *SP*.
- 2) Процессор SP в каждый момент времени выполняет не более одного задания.
- 3) Частичный порядок, заданный графом зависимостей G, сохранен в HP.

Далее будем говорить, что расписание допустимо $HP \in HP_{\{1-3\}}^*$, если оно удовлетворяет набору ограничений $\{1-3\}$.

Минимизируемой целевой функцией является максимальное по всему расписанию количество занятого в ВС ресурса.

Пусть задано расписание $HP \in HP_{\{1-3\}}^*$. Обозначим за f_{HP}^k , $1 \le k \le n$, количество занятого в ВС ресурса для k-ой позиции в расписании HP. Пусть A — множество заданий, расположенных в расписании HP на позициях $1, \dots, k$. Пусть $B \subset A$ — множество заданий, расположенных в расписании HP на позициях $1, \dots, k-1$, у каждого из которых все потомки расположены на позициях от 1 до k-1. Тогда f_{HP}^k вычисляется по следующей формуле:

$$f_{HP}^{k} = \sum_{p_{i} \in A} r_{p_{i}} - \sum_{p_{i} \in B} r_{p_{i}}$$
 (2.2.1)

Пусть известны значения $\{f_{HP}^k\}_{k=1}^n$ для расписания HP. Тогда значение целевой функции f_{HP} для такого расписания:

$$f_{HP} = max_{1 \le k \le n} f_{HP}^{k}$$
 (2.2.2)

Требуется для модели прикладной программы G найти такое расписание $HP_* \in HP_{\{1-3\}}^*$, для которого достигается минимальное значение целевой функции:

$$f_{HP_*} = min_{HP \in HP_{\{1-3\}}^*} f_{HP}$$
 (2.2.3)