Training and Workshop on Python Programming and Numerical Methods

An Introduction to Numerical Linear Algebra and Differential Equations

RHUDAINA MOHAMMAD

Numerical Analysis & Scientific Computing Group Institute of Mathematics, UP Diliman rzmohammad@up.edu.ph

- BREAK - 15:00 - 15:30

LINEAR SPARSE SYSTEMS AND ITERATIVE METHODS

Linear Sparse Systems

- ▶ A linear system is said to be sparse if the matrix $A \in \mathbb{R}^{n \times n}$ has a number of nonzero entries of order of n (and not n^2).
 - For example, matrix

has 3n-2 nonzero entries. After the first step of LU decomposition, the matrix becomes dense with n(n-1)+1 nonzero entries.

However, reordering rows and columns of matrix

minimizes the number of nonzero entries in its decomposition.

Sparse Systems

Storage formats for sparse matrices can be divided into two groups:

- ▶ for efficient modification, such as coordinate (COO) format, which are typically used to contruct matrices
 - COO stores a list of (row, column, value) tuples.
- ▶ for efficient access and matrix operations, such as Compressed Sparse Row/Column (CSR/CSC) Format
 - It is similar to COO, but compresses the row/column indices, hence the name
 - CSR stores a sparse $m \times n$ matrix in row form using three 1D arrays: (1) matrix entries, (2) corresponding column indices, and (3) total number of nonzeros above each row

Solve a system of n linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_2 = y_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = y_n$$

Given a matrix $A=[a_{ij}]\in\mathbb{C}^{n\times n}$ and $y\in\mathbb{C}^n$, find $x\in\mathbb{C}^n$ such that

$$Ax = y$$

- ▶ take an initial guess $x_0 \in \mathbb{C}^n$
- lackbox construct a sequence of iterates $\{\mathbf x_k\}\subset\mathbb C^n$ such that

$$x_k \to x$$
, as $k \to \infty$

- ▶ Transform Ax = y into an equivalent fixed-point form.
- Decompose

$$A = D + A_L + A_U$$

into diagonal matrix $D = \operatorname{diag}(a_{11}, \dots, a_{nn})$ and proper lower and upper triangular matrices

$$A_{L} = \begin{bmatrix} 0 & & & & \\ a_{21} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix} \qquad A_{U} = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ & \ddots & \ddots & \vdots \\ & & \ddots & a_{n-1,n} \\ & & & 0 \end{bmatrix}$$

respectively.

▶ Jacobi Method (Simultaneous Displacements). Suppose D is nonsingular, then linear system Ax = y is transformed into an equivalent form

$$x = -D^{-1}(A_L + A_U)x + D^{-1}y$$

This is solved by successive approximations

$$x_{k+1} = -D^{-1}(A_L + A_U)x_k + D^{-1}y, \qquad k = 0, 1, \dots$$

with arbitrarily chosen initial x_0

Written in components,

$$x_{(k+1),i} = -\sum_{\substack{j=1\\j\neq i}}^{n} \frac{a_{ij}}{a_{ii}} x_{k,j} + \frac{y_i}{a_{ii}}, \qquad i = 1, \dots, n$$

▶ Gauss-Seidel Method (Successive Displacements). The linear system Ax = y is transformed into an equivalent form

$$x = -(D + A_L)^{-1}A_Ux + (D + A_L)^{-1}y,$$

which is solved by successive approximations

$$x_{k+1} = -(D + A_L)^{-1} A_U x_k + (D + A_L)^{-1} y, \qquad k = 0, 1, \dots$$

with arbitrarily chosen initial x_0

In actual computations, we solve linear system

$$(D + A_L)x_{k+1} = -A_Ux_k + y$$

Written in components,

$$x_{(k+1),i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{(k+1),j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{k,j} + \frac{y_i}{a_{ii}}, \qquad i = 1, \dots, n$$

Try this!

Write a code that implements Gauss-Seidel Method. Generate a "noisy" tridiagonal matrix A of your choice, and a random vector y. Use your code, to solve linear system Ax=y, and plot your solution.

- END OF DAY 2 -

THANK YOU SO MU-