Project 4 Analysis

By: Abhinav Tirath

A. Q5 Analysis

Metrics	Pen Data	Car Data		
Accuracy	0.9021154	0.8328532		
Standard Deviation	0.006915931	0.007208124		
Max Accuracy	0.908233	0.84555		

Figure 1. Table that displays the accuracy, standard deviation, and maximum accuracy for the default parameters with the pen and car data.

Here, we see that both the average accuracy and maximum accuracy of the pen data are greater than those of the car data. This is likely because the training set for the pen data was much larger and allowed the neural network to learn the mapping of the input to output much better. The tradeoff, however, was that the neural network spent much longer on the pen data than the car data. Moreover, we observe that the standard deviation is very low for both datasets. This signifies that the local minima that our neural networks found are quite similar in performance to one another.

B. Q6 Analysis

a. Pen Data

Nodes in Hidden Layer

Metrics	0	5	10	15	20	25	30	35	40
		0.846140	0.8874	0.8967	0.9065	0.9110	0.9020	0.8996	0.8951
Accuracy	0	652	21384	40995	1801	92053	58319	56947	4008
Standard		0.006164	0.0101	0.0055	0.0049	0.0214	0.0027	0.0073	0.0065
Deviation	0	36	17646	79816	01781	55684	69327	6877	62496
Max		0.853916	0.9025	0.9019	0.9139	0.9522	0.9065	0.9056	0.9022
Accuracy	0	524	15723	43968	50829	58433	1801	60377	29846

Figure 2. Table that displays the accuracy, standard deviation, and maximum accuracy for the by varying the number of nodes in the hidden layer for the pen data.

 $Figure\ 3.\ Displays\ the\ accuracy\ vs.\ the\ number\ of\ nodes\ in\ the\ hidden\ layer\ for\ the\ pen\ data.$

b. Car Data

Nodes in Hidden Layer

Metrics	0	5	10	15	20	25	30	35	40
	0.703	0.8577	0.8477	0.8558	0.8435	0.8455	0.8439	0.8507	0.8345
Accuracy	53403	22513	74869	90052	86387	49738	79058	8534	54974
Standard		0.0114	0.0159	0.0118	0.0119	0.0159	0.0068	0.0098	0.0140
Deviation	0	75109	58928	12057	7483	77167	08799	7331	20518
Max	0.703	0.8769	0.8789	0.8717	0.8612	0.8638	0.8520	0.8671	0.8520
Accuracy	53403	63351	26702	27749	56545	74346	94241	46597	94241

Figure 4. Table that displays the accuracy, standard deviation, and maximum accuracy for the by varying the number of nodes in the hidden layer for the car data.

Figure 5. Displays the accuracy vs. the number of nodes in the hidden layer for the car data.

One thing that we notice immediately is that the average accuracy is 0 with 0 hidden nodes for the pen data. Clearly, without any hidden nodes, the neural network is unable to map the inputs to the large amount of outputs (10) well. However, since the car data has only binary output, the neural network with 0 hidden nodes for the car data performs much better. We also note that the standard deviation for both datasets with 0 hidden nodes is 0, signifying there is no

variation in output when you have 0 hidden nodes. Furthermore, from Figures 3 and 5, we see that the pen data converges with just 10 hidden nodes, and the pen data does the same with just 5 hidden nodes. After these points, the accuracy does not drastically increase, but the training time does.