Quadrotor Bynamies

 $\begin{bmatrix} \dot{y} \\ \dot{z} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 \\ \uparrow \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ m \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ m \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ m \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ m \\ 0 \end{bmatrix}$

Equilibrium $\hat{x} = f(x) + g(x) u$ $\hat{x} = f(x) + g($

Linearization $x = \overline{x} + \delta x$ $x(k) = \overline{y} + \delta x(k)$ $x' + \delta x' = f(\overline{x} + \delta x) + g(\overline{x} + \delta x)$ $= f(\overline{x} + \delta x) + g(\overline{x} + \delta x) \cdot u.$ $= f(\overline{x} + \delta x) + g(\overline{x} + \delta x) \cdot u.$ $+ g(\overline{x}) \delta u.$ + h. o.t. $\delta x' = (\overline{x}) + \delta(\overline{x}) \cdot u.$ $+ f(\overline{x}) \cdot x' \cdot d.$ $\delta x' = (\overline{x}) + \delta(\overline{x}) \cdot u.$ $+ f(\overline{x}) \cdot x' \cdot d.$ $\delta x' = (\overline{x}) + \delta(\overline{x}) \cdot u.$

F. J. C.

 $\dot{x} = f(x) + g(x)u$. \ddot{x} is an equil part $\dot{y} = \ddot{y}$. Such that f(x) + g(x)u = 0

. /

an trutay: $= \overline{X}_{4} = \overline{X}_{5} - \overline{X}_{6}$ $= \overline{X}_{4} = \overline{X}_{5} - \overline{X}_{6}$ $= \overline{X}_{4} = \overline{X}_{5} - \overline{X}_{6}$ (y, 2, of