```
#To implement HAC using any inbuild and external data set.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Mall_Customers_dataset.csv')
dataset
           CustomerID Genre Age Annual Income (k$) Spending Score (1-100)
       0
                    1 Male
                                19
                                                     15
                                                                             39
       1
                    2
                                21
                                                     15
                                                                             81
                         Male
                                                                              6
       2
                    3 Female
                                20
                                                     16
       3
                    4 Female
                                                     16
                                                                             77
                                                     17
       4
                    5 Female
                                31
                                                                             40
      195
                  196 Female
                                35
                                                    120
                                                                             79
      196
                  197 Female
                                45
                                                    126
                                                                             28
      197
                  198
                         Male
                                32
                                                    126
                                                                             74
      198
                  199
                                                    137
                                                                              18
                         Male
                                32
                  200
                                30
                                                    137
                                                                             83
      199
                         Male
     200 rows × 5 columns
X = dataset.iloc[:, [3, 4]].values
Χ
     array([[ 15, 39],
            [ 15, 81],
            [ 16,
                   6],
              16, 77],
            [ 17, 40],
            [ 17, 76],
            [ 18, 6],
[ 18, 94],
            [ 19, 3],
[ 19, 72],
                   3],
            [ 19, 14],
            [ 19, 99],
[ 20, 15],
              20, 77],
              20, 13],
              20, 79],
              21,
                   35],
            [ 21, 66],
            [ 23, 29],
            [ 23, 98],
              24, 35],
              24, 73],
              25,
            [ 25, 73],
            [ 28, 14],
              28, 82],
              28, 32],
            [ 28, 61],
            [ 29, 31],
[ 29, 87],
              30,
                   4],
              30, 73],
            [ 33, 4],
[ 33, 92],
            [ 33, 14],
              33, 81],
              34,
                   17],
            [ 34, 73],
```

37, 26], [37, 75], 35],

92],

[38, [38,

```
39,
 39,
       61],
 39,
       28],
 39,
       65],
 40,
       55],
 40,
       47],
 40,
       42],
 40,
       42],
 42,
       521
 42,
       60],
 43,
       54],
 43,
       60],
 43,
       45],
[ 43,
       41],
 44,
       50],
```

```
import scipy.cluster.hierarchy as sch
dendro = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
```



```
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 6, affinity = 'euclidean', linkage = 'ward')
y_hc = hc.fit_predict(X)
```

```
print(y_hc)
```

```
 \begin{bmatrix} 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4
```

```
plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(X[y_hc == 5, 0], X[y_hc == 5, 1], s = 100, c = 'yellow', label = 'Cluster 6')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


Colab paid products - Cancel contracts here

• x