SOLAR ENERGY GENERATION PREDICTION

By: JEFF ALEXANDER

CONTENTS OF THIS PRESENTATION

- Purpose of Investigation
- Data Collection
- Initial Findings
- Modeling
- Conclusions/ Recommendations
- Future Research
- Streamlit App

PURPOSE OF INVESTIGATION

BACKGROUND

Due to the variable nature of renewable energies, as well as the uncertainty and variability inherent in any electrical architecture, predicting the power generation from each site is very challenging.

Consequently, the integration of solar energy generation sites with larger electrical grids can be complicated. One way of easing this burden is accurately reporting and predicting power generation from these variable generation sites.

PROBLEM STATEMENT

Using the solar generation output of a specific solar farm site, along with the corresponding weather data, can a model predict the solar generation output of that specific site within 10% of max output?

Furthermore, can the same model architecture optimized for a specific site be used to predict the generation of another site or even an entire campus?

Data Collection

DATA COLLECTION

Two years of high-granularity solar energy generation data from 42 sites across five campuses at La Trobe University, Victoria, Australia.

<u>Includes</u>:

- Solar Generation Data reported at 15 minute intervals
- Weather data from Australian Bureau of Meteorology (BOM) using longitude and latitude of each campus
 - Includes Apparent Temp, Air Temp, Dew Point Temp, Relative Humidity, Wind Speed, Wind Direction

INITIAL FINDINGS

INITIAL FINDINGS

OI CAMPUS/SITE VARIABILITY

Campuses ranging from 1 to 27 Solar Generation Sites 02
DAILY
VARIABILITY

Weather and electrical architecture variability

03SERSONALITY

Seasonality present on daily and seasonal scales

04

CORRELATION

Auto- and partial autocorrelation reflects seasonality and variability

CAMPUS / SITE VARIABILITY

DAILY VARIABILITY

SEASONALITY

CORRELATION

CAMPUS 5

CAMPUS 3 - SITE 10

MODELING

MODELING

 \mathbf{n}

RMSE: 1.934

RMSE: 2.447

UI	UC	U3	PU	U 3
BASELINE	ARIMA	LAGGED LINEAR	UNIVARIATE	MULTIVARIATE
MAE: 1.141	MAE: 1.524	MAE: 0.260	MAE: 0.1871	MAE: 0.4346

RMSE: 0.629

 \mathbf{n}

UL

RMSE: 0.8450

RMSE: 0.5765

ARIMA (10, 0, 7)

LAGGED LINEAR

BEST MODEL APPLIED TO ALL (MIN/MAX SCALED)

Campus/Site	MAE Testing	RMSE Testing	Max Production
Campus 5	0.02992	0.09386	6.281
Campus 1	0.03372	0.08035	488.088
Campus 2	0.03548	0.09301	57.363
Campus 3	0.03617	0.09281	200.215
Campus 4	0.03916	0.12786	21.938
Site 6	0.028186	0.07417	28.734
Site 8	0.03348	0.0897	26.969
Site 10	0.03832	0.11368	7.75
Site 12	0.05323	0.15264	17.594

Campus I

Site 10

Campus/Site	Preds MAE	Preds RMSE
Campus 5	0.0571	0.0757
Campus 5 Subracted	0.0406	0.0601
Campus 1	0.0458	0.0651
Campus 1 Subtracted	0.0383	0.0601
Site 10	0.0468	0.0692
Site 10 Subtracted	0.0399	0.0653

CONCLUSIONS/ RECOMMENDATIONS

CONCLUSIONS

Based on the wide variety of analyses and modeling conducted, the best model <u>could</u> predict solar generation within 10% of max output.

Moreover, the same model architecture <u>can</u> be used to predict the generation of other sites and even entire campuses?

FUTURE RESEARCH

FUTURE RESEARCH

01

SUNLIGHT

Accurate Sunrise and Sunset Feature

05

CLOUD COVER

Weather Data
Specific to Cloud
Cover

03

ALL SITES/CAMPUSES

Employ different models to each site/campus and levels 04

ARCHITECTURE VARIABILITY

Maintenance schedules or electrical malfunction reports feature

FUNCTIONING APP

You can replace the image on the screen with your own work.

Just right-click on it and select "Replace image"

THANKS

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**