Лабораторная работа № 1

ЛИНЕЙНЫЙ КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ МНОГОМЕРНОГО ВРЕМЕННОГО СИГНАЛА

В ходе первой лабораторной работы студент должен познакомиться с методами линейного регрессионного и корреляционной анализа многомерного временного сигнала, представляющего собой несколько выборок, составленных из данных, зафиксированных в одни и те же моменты времени.

Для выполнения лабораторной работы необходимо сначала разобрать и выполнить общую часть, состоящую в решении Примеров 1 и 2, а затем реализовать индивидуальное задание.

Пример 1

Результаты наблюдений за характеристиками канала представлены в табл.1. Таблица 1

№	Пропускная способность канала,	Соотношение сигнал/шум,	Остаточное затухание, дБ, на частоте, Гц		
пп	кбит/с	дБ	1020	1800	2400
	X_1	X_2	X_3	X_4	X_5
1	26,37	41,98	17,66	16,05	22,85
2	28,00	43,83	17,15	15,47	23,25
3	27,83	42,83	15,38	17,59	24,55
4	31,67	47,28	18,39	16,92	26,59
5	23,50	38,75	18,32	15,66	26,22
6	21,04	35,12	17,81	17,00	27,52
7	16,94	32,07	21,42	16,77	25,76
8	37,56	54,25	26,42	15,68	23,10
9	18,84	32,70	17,23	15,92	23,41
10	25,77	40,51	30,43	15,29	25,17
11	33,52	49,78	21,71	15,61	25,39
12	28,21	43,84	28,33	15,70	24,56
13	28,76	44,03	30,42	16,87	24,45
14	24,60	39,46	21,66	15,25	23,81
15	24,51	38,78	25,77	16,05	24,48

Необходимо определить наличие линейных корреляционных связей между пропускной способностью и остальными факторами. Предполагается, что

выборки по всем вариантам подчиняются нормальному закону. Проверку гипотезы о значимости оценок коэффициентов корреляции произвести с уровнем значимости α , равным 0,1.

Таблицы, которые необходимо заполнить при решении:

Оценка параметра распределения	Варианта				
	X_1	X_2	<i>X</i> ₃	X_4	X_5
μ 1					
μ 2					
σ					

No	Пропускная способность	Соотношение сигнал/шум,	Остаточное затухание, дБ на частоте, Гц			
пп	канала, кбит/с	дБ	1020	1800	2400	
	U_1	U_2	U_3	U_4	U_5	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

	X_2	X_3	X_4	X_5
ρ 1 <i>j</i>				
t				

Пример 2

Построить уравнение регрессии для пропускной способности канала по выборке, заданной в табл. 1.

Применительно к указанной выборке построение аналитической зависимости в основной своей части выполнено в рамках примера 1. Осталось лишь выбрать вид регрессии, представив графически зависимость X_1 от X_2 , найти коэффициенты регрессии, и вычислить $m_{\text{ош}}[x_k]$.

При решении необходимо заполнить таблицу:

	Пропускная	Соотношение	Значение функции,	Погрешность,
№	способность	сигнал/шум,	кбит/с	кбит/с
пп	канала, кбит/с	дБ		
	Y	X	ŷ	3
1	26,37	41,98		
2	28,00	43,83		
3	27,83	42,83		
4	31,67	47,28		
5	23,50	38,75		
6	21,04	35,12		
7	16,94	32,07		
8	37,56	54,25		
9	18,84	32,70		
10	25,77	40,51		
11	33,52	49,78		
12	28,21	43,84		
13	28,76	44,03		
14	24,60	39,46		
15	24,51	38,78		

Пример индивидуального задания

Выяснить коррелированность курсов акций компаний «Газпром», «Роснефть», ТНК. Определить, есть ли существенные связи при уровне значимости $\alpha = 0.1; 0.5$. Если существенные связи есть, построить уравнение регрессии, предварительно проанализировав графически вид функции регрессии, оценить $m_{\text{ош}}[x_k]$.

Варианты построения выборки (реализовать один)

- 1. В качестве выборок взять 15 значений курсов акций за последние 3 месяца (в одни и те же даты).
- 2. В качестве выборок взять 18 значений курсов акций за последние 6 месяцев (в одни и те же даты).
- 3. В качестве выборок взять 14 значений курсов акций за последние 2 недели (в одни и те же даты).
- 4. В качестве выборок взять 14 значений курсов акций за последние 7 дней (в одни и те же даты и время).
- 5. В качестве выборок взять 12 значений курсов акций за последние 24 часа (в одни и те же моменты времени).

В индивидуального качестве задания студент должен выборки значений самостоятельно составить mpex произвольно валют) и выбранных курсов акций (либо курсов провести корреляционный и регрессионный анализ, так, как описано в примерном варианте задания.