

Sentence Encoder-Based Clustering Method for Modeling Students' Learning Programming Behavior

Mubina Kamberovic^{1,2}, Amina Mevic¹, Senka Krivic¹

¹ Faculty of Electrical Engineering, University of Sarajevo ² Olivebh, Sarajevo

3 out of 10 students' compilations end with failure

Research Questions

- **RQ1.** Could compiler errors help us predict performance and future errors?
- **RQ2.** Could prior clustering of students enhance the predictions?
- RQ 3. When can meaningful student clusters be identified early enough to improve predictions?

State of the Art

Both performance and errors prediction

In a programming environment

Performance Prediction

- Based on compiler errors (Rodrigo et al. 2009)
- K-Means clustering prior to training distinct classifiers improved predictions (Al-Tameemi et al. 2024)

Clustering

- Based on behavioral patterns from question-based learning environments (Mirzaei et al. 2019)
- K-Means on the sentenceencoded dataset in banking and e-commerce domains (Tissera et al. 2024)

Dataset

Logged data for 444 students from the C9 programming environment

Baseline Predictions

Clustering before Prediction

Clustering on Sentence-Encoded Dataset

Sentence Encoding

Paragraph Generation

Raw dataset

For the summed dataset:
Student made the 'error 0' 78
times, the 'error 1' 37 times, the
'error 2' 17 times, the 'error 3'
29 times, the 'error 4' 19 times,
the 'error 5' 19 times...

For the weekly dataset:
Student made 'error 0' 5 times,
'error 3' 5 times, 'error 5' 2
times, 'error 6' 1 time, 'error 7' 3
times, 'error 13' 5 times in this
week. In previous weeks,
student made 201 errors.

paraphrasemultilingualmpnet-base-v2 (Reimers and Gurevych, 2019)

768-dimensional vector

[-1.06682412e-01, -

2.10228980e-01,...]

RQ1. Could compiler errors help us predict performance and future errors?

Definitely!

Best points prediction Best future errors prediction

Sum of all errors

After 5 weeks

RMSE:0.191, MAE:0.16

RMSE:**0.098**, MAE:**0.055**

Model: XGBoost

Model: XGBoost

Errors Importance for **Points** Prediction

undeclared (first use in this function)

expected;

implicit declaration of function

Errors Importance for Errors Prediction

undeclared (first use in this function)

expected;

3 5 8 11

weeks

RQ2. Could prior clustering of students enhance the predictions?

Points prediction accuracy based on weekly errors

Clustering method	Prediction method	3 weeks (RMSE)	3 weeks (MAE)	5 weeks (RMSE)	5 weeks (MAE)	8 weeks (RMSE)	8 weeks (MAE)	11 weeks (RMSE)	11 weeks (MAE)
Points Prediction									
No clustering	XGBoost	0.252	0.223	0.250	0.211	0.224	0.185	0.200	0.156
	LR	0.727	0.360	>1	>1	>1	>1	>1	>1
	Elastic Net	0.248	0.221	0.248	0.22	0.242	0.213	0.231	0.202
K-Means	XGBoost	0.239	0.201	0.250	0.223	0.186	0.163	0.178	0.145
	LR	0.281	0.238	>1	>1	0.661	0.408	>1	>1
	Elastic Net	0.227	0.197	0.253	0.228	0.208	0.188	0.214	0.187
	XGBoost	0.240	0.204	0.202	0.181	0.254	0.206	0.210	0.178
SE K-Means	LR	>1	>1	0.228	0.199	>1	>1	>1	>1
	Elastic Net	0.239	0.202	0.210	0.189	0.247	0.219	0.217	0.195

Errors prediction accuracy based on weekly errors

Clustering method	Prediction method	3 weeks (RMSE)	3 weeks (MAE)	5 weeks (RMSE)	5 weeks (MAE)	8 weeks (RMSE)	8 weeks (MAE)	11 weeks (RMSE)	11 weeks (MAE)
Errors Prediction									
No clustering	XGBoost	0.100	0.058	0.098	0.055	0.100	0.056	0.099	0.056
	Soft Impute	0.116	0.044	0.113	0.045	0.108	0.049	0.106	0.051
K-Means	XGBoost	0.104	0.068	0.108	0.067	0.105	0.066	0.118	0.071
	Soft Impute	0.130	0.054	0.128	0.058	0.117	0.056	0.130	0.066
SE K-Means	XGBoost	0.079	0.047	0.071	0.041	0.092	0.051	0.086	0.050
	Soft Impute	0.102	0.037	0.091	0.034	0.105	0.044	0.079	0.035

RQ3. When can meaningful student clusters be identified early enough to improve predictions?

Cluster Analysis

Weeks	Clustering method		Size	Average errors	Average points
11	SE K-Means	Cluster 1	72	67.681	27.453
		Cluster 2	372	267.417	41.665
	K-Means	Cluster 1	334	155.398	38.462
		Cluster 2	110	476.809	42.088
5	SE K-Means	Cluster 1	52	49.154	36.504
		Cluster 2	392	259.684	39.739
	K-Means	Cluster 1	108	450.787	41.904
		Cluster 2	336	165.676	38.543
3	SE K-Means	Cluster 1	358	271.117	39.871
		Cluster 2	86	84.791	37.233
	K-Means	Cluster 1	64	396.953	35.350
		Cluster 2	380	207.755	40.036

Conclusion

Compiler errors are good performance indicators

The most frequent errors are not necessarily the most important ones

Clustering the sentence encoded dataset enhances predictions, identifying a group of students with high and low total error count

Mubina Kamberovic

Thank you for your attention!

Contact: mkamberovi1 @etf.unsa.ba Contact:
amevic
@etf.unsa.ba

Contact: senka.krivic @etf.unsa.ba

Presentation slides will be available at:

