Задача 1

Вычислить определитель произведения следующих матриц:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{bmatrix}.$$

Ответ:

$$|ABC| = 36$$
.

Задача 2

Доказать, что $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$.

Задача 3

Найти ранг, базисный минор, базисные строки и столбцы следующих матриц:

$$\mathbf{A}_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ \mathbf{A}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{A}_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \mathbf{A}_{4} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{A}_{5} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, \ \mathbf{A}_{6} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},$$

$$\mathbf{A}_{7} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}, \ \mathbf{A}_{8} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{A}_{9} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \ \mathbf{A}_{10} = \begin{bmatrix} 1 & -3 & 1 \\ -2 & 6 & -2 \\ 3 & -9 & 1 \end{bmatrix}.$$

Ответы:

$$r(\mathbf{A}_1) = 0$$
, $r(\mathbf{A}_2) = 2$, $r(\mathbf{A}_3) = 2$, $r(\mathbf{A}_4) = 1$, $r(\mathbf{A}_5) = 1$, $r(\mathbf{A}_6) = 2$, $r(\mathbf{A}_7) = 1$, $r(\mathbf{A}_8) = 2$, $r(\mathbf{A}_9) = 3$, $r(\mathbf{A}_{10}) = 2$.

Задача 4

Оценить ранг матрицы А, если известно, что:

- 1) матрица **A** является квадратной невырожденной матрицей размера $n \times n$;
- 2) матрица **A** является диагональной размера $n \times n$;
- 3) матрица $\bf A$ содержит подматрицу ранга r;
- 4) все миноры k -го порядка матрицы **A** равны нулю.

Ответы:

- 1) r(A) = n;
- 2) ранг матрицы А равен количеству ненулевых диагональных элементов;
- 3) $r(\mathbf{A}) \ge r$;
- 4) r(A) < k.

Задача 5

Оценить ранг матрицы $C = [A \mid B]$, состоящей из всех столбцов матриц A и B, привести примеры матриц, для которых оценка сверху имеет вид (не)равенства.

OTBET: $r(\mathbf{C}) \ge r(\mathbf{A})$, $r(\mathbf{C}) \ge r(\mathbf{B})$, $r(\mathbf{C}) \le r(\mathbf{A}) + r(\mathbf{B})$;

равенство:

пусть
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 и $\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$;

неравенство:

пусть
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 и $\mathbf{B} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

30.11.2017 23:05:41

Задача 6

Оценить ранг матрицы $\mathbf{B}_{m \times n}$, строки которой являются линейными комбинациями строк матрицы $\mathbf{A}_{m \times n}$, привести примеры матриц, для которых оценка имеет вид (не)равенства. Ответ: $r(\mathbf{B}) \le r(\mathbf{A})$;

равенство:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathbf{H} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix};$$

неравенство:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathbf{u} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

Залача 7

Доказать, что для матрицы $\mathbf{C} = \mathbf{A}\mathbf{B}$ имеет место оценка ранга $r(\mathbf{C}) \le \min\{r(\mathbf{A}), r(\mathbf{B})\}$, привести примеры матриц, для которых оценка имеет вид (не)равенства. Ответ:

равенство:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \mathbf{H} \ \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix};$$

неравенство:

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{H} \ \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Задача 8

Определить ранги следующих матриц:

$$\mathbf{A}_{1} = \begin{bmatrix} 3 & -6 & 3 & 9 \\ 1 & -2 & 1 & 3 \\ -3 & 7 & -3 & -7 \\ -1 & 5 & -1 & 3 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} -1 & 1 & 1 & 3 \\ -1 & 1 & 1 & 3 \\ 1 & 0 & -1 & -5 \\ 1 & -3 & -1 & 2 \end{bmatrix}, \quad \mathbf{A}_{3} = \begin{bmatrix} -1 & -3 & -1 & 2 \\ 2 & 1 & 1 & 3 \\ 2 & 7 & 2 & 0 \\ 8 & -4 & 3 & 8 \end{bmatrix}.$$

Ответы:

$$r(\mathbf{A}_1) = 2$$
, $r(\mathbf{A}_2) = 3$, $r(\mathbf{A}_3) = 4$.

30.11.2017 23:05:41 стр. 2 из 2