PGS logistic regression optimization

Razvan Sultana

CONTENTS

	per 142 SNPs set
1.1	Preparation
1.2	All participants
1.3	Males
1.4	Females
1.5	NN Males
1.6	NI Males
1.7	II Males
1.8	NN Females
1.9	NI Females
1.10	II Females

This project applies logistic regression (LR) to rank SNPs from several PGS datasets as predictors of Parkinson's disease. Click on each dataset link to explore the details.

• Cooper 142 SNPs set

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

COOPER 142 SNPS SET

1.1 Preparation

1.1.1 Import required packages.

```
import os, sys, warnings
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import GridSearchCV
from sklearn.exceptions import ConvergenceWarning
```

1.1.2 Read input matrix with genotypes

The matrix contains the genotypes from AMP-PD/MGRB dataset for 140 SNPs.

```
table = pd.read_csv("data/matrix.txt", sep="\t")
table
```

```
participant_id phenotype cohort gender inv_genotype \
   SY-NIH_INVAA791MKCET 1 STEADY-PD3 M NI
   SY-NIH_INVEP886EEYYL
                           1 STEADY-PD3
   SY-NIH INVFM717GWDX4
                           1 STEADY-PD3
                           1 STEADY-PD3 M
1 STEADY-PD3 M
3
   SY-NIH INVNN611MKKN9
                                           M
4
    SY-NIH_INVRB171EXGUK
                                                     TT
                                   MGRB M
MGRB F
                          0
3107
                BABQX
                                                     ΙI
                            0
3108
                BABRB
                                                      ΙI
                            0
                                           М
3109
                BABRE
                                   MGRB
                                                      NΙ
3110
                                   MGRB
                                                      ΝI
                ZAAAB
                                            Μ
3111
                AABUO
                                   MGRB
    rs2275579 rs144115304 rs115581042 rs79531911 rs138844738 ... \
                          0 0 ...
0
         0
           0
                                                    0 ...
                     0
                                0
                                         0
           0
                     0
                                0
                                         0
                                                    0 ...
                     0
                                0
                                          0
                                                    0 ...
3
                                1
                                                    0
```

						(continued from	previous page)
3107	0	0	0		0	0	
3108	0	0	0		0	0	
3109	0	0	0		0	0	
3110	0	0	0		0	0	
3111	0	0	0		0	0	
	rs10448130		rs34992950	rs7387252	rs2410595	rs41311559	\
0	2	2	1	2	1	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	1	0	1	1	0	0	
4	1	1	0	1	0	0	
• • •	• • •	• • •	• • •	• • •	• • •	• • •	
3107	1	0	0	0	0	0	
3108	0	0	0	0	0	0	
3109	1	0	0	0	0	0	
3110	2	1	1	1	0	0	
3111	1	0	0	0	0	0	
	rs148894916	rs112957100	rs14375612	2 rs14851	4732		
0	0	0		0	0		
1	0	0		0	0		
2	0	0		0	0		
3	0	0		0	0		
4	0	0		0	0		
3107	0	0		0	0		
3108	0	0		0	0		
3109	0	0		0	0		
3110	0	0		0	0		
3111	0	0		0	0		
[3112	rows x 145 (columns]					

1.1.3 Distribution of data

Distribution by phenotype

(0=Control, 1=Case)

```
table.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
0 1556
1 1556
Name: participant_id, dtype: int64
```

Distribution by gender/phenotype

```
table.groupby(['gender', 'phenotype'])['participant_id'].nunique()
```

```
gender phenotype
F 0 567
1 567
M 0 989
1 989
Name: participant_id, dtype: int64
```

Distribution by gender/phenotype/inv8 001 genotype

```
table.groupby(['gender', 'phenotype', 'inv_genotype'])['participant_id'].nunique()
```

```
gender phenotype inv_genotype
                 ΙI
       0
                                 195
                                 259
                 NΙ
                  NN
                                 113
                  ΙI
                                 175
                                 270
                 NΙ
                 NN
                                 122
       0
                  ΙI
                                 318
                  NΙ
                                 480
                  NN
                                 191
                  ΙI
                                296
                  NΙ
                                 477
                                 216
Name: participant_id, dtype: int64
```

1.2 All participants

1.2.1 Logistic regression model

```
phenotype
0 1556
1 1556
Name: participant_id, dtype: int64
```

1.2.2 Grid search for 3 hyperparameters

1.2.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index= m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.5551641873897212

Non-zero coefficients: 2

Best estimator: LogisticRegression(C=0.02, l1_ratio=1, max_iter=25, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

(continues on next page)
```

```
Scorer: make_scorer(roc_auc_score, needs_threshold=True)
Best params: {'C': 0.02, 'l1_ratio': 1, 'max_iter': 25}
Best score: 0.5492252417764205

SNP Coefficient
Index
1    rs11248057    0.055163
2    rs3806760    0.098122
```

1.3 Males

1.3.1 Logistic regression model

```
phenotype
0 989
1 989
Name: participant_id, dtype: int64
```

1.3.2 Grid search for 3 hyperparameters

1.3. Males 7

```
'max_iter': [75, 100, 150]},
scoring='roc_auc', verbose=False)
```

1.3.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
SNP Coefficient
Index
1
       rs7520918 -0.10687
     rs112270735 -0.077184
3
        rs444618 -0.054004
      rs13161496 -0.044109
4
                 -0.035941
5
       rs3733349
       rs3785891 -0.022054
6
7
        rs494312
                  -0.015573
8
       rs62190394
                  -0.008948
9
      rs12995314
                   -0.00536
10
      rs72838312
                  -0.004366
1 1
     rs142448570
                   -0.00037
     rs74609071 0.000361
12
                    0.0029
13
       rs4028634
14
      rs17016235
                    0.00292
```

```
(continued from previous page)
```

```
15
       rs1501467 0.006768
16
       rs7682766
                  0.007628
                0.010966
      rs6532190
17
18
       rs379066 0.015095
19
      rs2412116 0.015274
2.0
        rs5848 0.015471
21
       rs764324
                  0.01817
     rs11601088 0.019219
23
     rs10110312 0.028269
      rs4897753 0.029363
25
      rs6599389
                  0.03295
     rs11097213 0.036052
26
      rs3822023 0.041542
27
     rs79828056 0.046307
28
                0.051416
29
      rs1372420
30
     rs11264302
                  0.057684
31
     rs10831599 0.065901
32
     rs12434297 0.068324
33
      rs9985581 0.070506
34
      rs6842271 0.077488
35
     rs12935995 0.079672
     rs11248057 0.080207
      rs3806760 0.147021
```

1.4 Females

1.4.1 Logistic regression model

```
table1 = table[table.gender == "F"]
X = table1[table1.columns[5:]]
Y = table1['phenotype']
lr = LogisticRegression(random_state=42, solver='saga', n_jobs=-1, penalty='elasticnet
table1.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
     567
     567
Name: participant_id, dtype: int64
```

1.4.2 Grid search for 3 hyperparameters

```
# parameters = {'C': [0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 10, 20, 30],
                'max_iter': [10, 25, 50, 75, 100, 150, 200, 400, 800, 1600],
                '11_ratio': [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]}
parameters = \{'C': [0.005, 0.01],
               'max_iter': [25, 50, 75],
               'l1_ratio': [0.1, 0.2]}
                                                                            (continues on next page)
```

9 1.4. Females

1.4.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.56756840825036

Non-zero coefficients: 6

Best estimator: LogisticRegression(C=0.005, l1_ratio=0.1, max_iter=50, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)

Best params: {'C': 0.005, 'l1_ratio': 0.1, 'max_iter': 50}

Best score: 0.5115738908675196
```

```
SNP Coefficient
Index
1 rs6871718 -0.026889
```

```
2 rs1949362 -0.023602
3 rs6964 0.005616
4 rs11248057 0.005966
5 rs3850379 0.008878
6 rs3806760 0.016905
```

1.5 NN Males

1.5.1 Logistic regression model

```
table1 = table[(table.gender == "M") & (table.inv_genotype=="NN")]
X = table1[table1.columns[5:]]
Y = table1['phenotype']
lr = LogisticRegression(random_state=42, solver='saga', n_jobs=-1, penalty='elasticnet')
table1.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
0 191
1 216
Name: participant_id, dtype: int64
```

1.5.2 Grid search for 3 hyperparameters

1.5. NN Males 11

1.5.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best lr.coef [0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score: {max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.7224403723094822

Non-zero coefficients: 32

Best estimator: LogisticRegression(C=0.1, l1_ratio=0.6, max_iter=10, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)

Best params: {'C': 0.1, 'l1_ratio': 0.6, 'max_iter': 10}

Best score: 0.5580189109136477
```

```
SNP Coefficient
Index
       rs35776335 -0.213769
1
2
                   -0.193039
       rs13161496
3
       rs12499663
                   -0.150666
4
         rs444618
                   -0.124434
      rs112270735
5
                   -0.083023
6
     rs1269243287
                   -0.055458
7
       rs3912643 -0.048141
8
      rs11097297 -0.047875
9
       rs2128786 -0.03413
10
       rs3850379 -0.030484
       rs4331494 -0.014515
11
      rs11264302 -0.001455
       rs3850745 -0.001154
13
      rs35456861
                   -0.000152
14
        rs764324 -0.000024
15
      rs12543164
                   0.000034
16
      rs10448130
                   0.000146
17
      rs35933728
18
                   0.000247
19
       rs2412116 0.018849
20
      rs79828056 0.022762
21
       rs1949362 0.027434
22
       rs1501467 0.035676
```

```
23
      rs78197677
                    0.05128
                  0.073048
24
        rs1372420
        rs6842271
                   0.088079
26
      rs12434297
                  0.089281
       rs9985581
                   0.124415
2.8
       rs3822023 0.128854
2.9
      rs55805734 0.133538
30
       rs4897753 0.210087
          rs6964 0.215979
       rs3806760 0.233441
32
```

1.6 NI Males

1.6.1 Logistic regression model

```
phenotype
0 480
1 477
Name: participant_id, dtype: int64
```

1.6.2 Grid search for 3 hyperparameters

1.6. NI Males 13

1.6.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
SNP Coefficient
Index
1     rs7520918    -0.011899
2     rs9985581     0.016555
3     rs6842271     0.016555
4     rs3806760     0.027075
```

1.7 II Males

1.7.1 Logistic regression model

```
phenotype
0 318
1 296
Name: participant_id, dtype: int64
```

1.7.2 Grid search for 3 hyperparameters

1.7. II Males 15

1.7.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.6759093999660037

Non-zero coefficients: 18

Best estimator: LogisticRegression(C=0.01, l1_ratio=0.1, max_iter=75, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)

Best params: {'C': 0.01, 'l1_ratio': 0.1, 'max_iter': 75}

Best score: 0.6007288190582128
```

```
SNP Coefficient
Index
        rs34333 -0.092096
1
2
      rs3733349 -0.053093
      rs3785891 -0.013793
3
4
      rs8064765 -0.003056
5
     rs62075803 -0.002828
6
      rs4796663 -0.002828
7
      rs4028634 0.001729
      rs2410595 0.003947
8
       rs764324
                  0.00623
9
      rs4482120 0.009129
10
                0.037641
11
     rs112318363
     rs12935995
12
                  0.040157
13
     rs11097213
                  0.049525
      rs3806760 0.050662
14
1.5
     rs11248057 0.078256
                  0.08048
16
     rs11264302
17
         rs5848 0.085027
     rs12434297 0.085108
```

1.8 NN Females

1.8.1 Logistic regression model

```
table1 = table[(table.gender == "F") & (table.inv_genotype=="NN")]
X = table1[table1.columns[5:]]
Y = table1['phenotype']
lr = LogisticRegression(random_state=42, solver='saga', n_jobs=-1, penalty='elasticnet + ')
table1.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
0 113
1 122
Name: participant_id, dtype: int64
```

1.8.2 Grid search for 3 hyperparameters

1.8. NN Females

1.8.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best lr.coef [0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score: {max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.8581894675758015

Non-zero coefficients: 112

Best estimator: LogisticRegression(C=0.5, l1_ratio=0.6, max_iter=10, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)

Best params: {'C': 0.5, 'l1_ratio': 0.6, 'max_iter': 10}

Best score: 0.5679924242424242
```

```
SNP Coefficient
Index
        rs6871718 -0.426813
1
2
                   -0.426221
         rs999361
3
        rs7826007
                   -0.365302
4
        rs3733349
                   -0.346928
5
      rs78197677
                   -0.284285
6
       rs7535292
                    -0.26294
7
       rs4859611 -0.257429
8
       rs1949362 -0.254682
9
      rs11601088 -0.247447
10
       rs7515378 -0.221912
      rs12101192 -0.193561
11
        rs231454 -0.182738
       rs1859223 -0.170208
13
      rs79976845 -0.159289
14
       rs4495967 -0.150381
15
       rs4482120
16
                   -0.150381
       rs1501467
17
                   -0.140416
      rs79828056 -0.136308
18
19
       rs2433733 -0.12592
20
       rs1372420 -0.125209
21
      rs41311559 -0.114078
22
     rs140859835 -0.084564
```

			(continued from previous page)
23	rs11097297	-0.083788	
24	rs11097213	-0.076345	
25	rs3822023	-0.074309	
26	rs142448570	-0.073881	
27	rs10448130	-0.073017	
28	rs76848738	-0.061152	
29	rs11021711	-0.060124	
30	rs28691231	-0.049795	
31	rs1269243287	-0.049795	
32	rs34572188	-0.049509	
33	rs2412116	-0.043475	
34	rs375017	-0.03843	
35	rs7666159	-0.033879	
36	rs4416502	-0.030128	
37	rs9330264	-0.027804	
38	rs734073	-0.023279	
39	rs55805734	-0.021777	
40	rs8064765	-0.019273	
41	rs4796663	-0.015331	
42	rs62075803	-0.015331	
43	rs12510869	-0.009278	
44	rs3850379	-0.000811	
45	rs10515816	-0.000433	
46	rs3912643	-0.000415	
47	rs13188899	-0.00041	
48	rs4921799	-0.000409	
49	rs4897753	-0.000298	
50	rs6964	-0.000209	
51	rs3806760	-0.000191	
52	rs4028634	-0.000161	
53	rs11579790	-0.000147	
54	rs379066	-0.000132	
55	rs3850745	-0.000123	
56	rs4841589	-0.000072	
57	rs12499663	-0.000069	
58	rs74609071	0.000652	
59	rs35456861	0.001887	
60	rs9985581	0.009368	
61	rs6842271	0.009368	
62	rs34288580	0.009444	
63	rs148514732	0.012629	
64	rs7515370	0.020841	
65	rs5848	0.023656	
66	rs77312060	0.026649	
67	rs72838312	0.02777	
68	rs444618	0.029691	
69	rs12995314	0.031652	
70	rs62190394	0.031652	
71	rs10110312	0.033873	
72	rs12543164	0.035274	
73	rs2075583	0.035907	
74	rs6532190	0.039457	
75	rs17324625	0.051377	
76	rs7682766	0.058691	
77	rs143756122	0.060175	
78	rs148894916	0.060175	
			(continues
			(continues on next page)

1.8. NN Females

```
79
       rs11264302 0.060206
       rs71371995 0.061233
80
      rs12150561
                  0.063362
82
        rs494312 0.066012
83
     rs536718528 0.066406
84
      rs12935995 0.070272
8.5
       rs2410595 0.070705
86
       rs7104332 0.077242
87
       rs4331494 0.077355
       rs7734182 0.085825
      rs35933728 0.086571
89
      rs17016235 0.090649
90
         rs34333 0.112067
91
     rs201304809 0.120855
92
     rs12434297 0.130994
93
      rs11589479
                   0.132404
95
       rs9799610 0.162529
96
      rs72803476 0.163414
97
      rs35776335 0.173641
98
       rs2128786 0.189926
99
      rs72846765 0.194033
       rs6599389 0.196567
      rs73211813 0.203329
101
102
       rs7387252
                   0.20655
                   0.21257
103
       rs1800606
                 0.219757
104
        rs208024
                  0.254225
105
       rs9971953
                  0.254225
106
       rs9971789
107
       rs7520918
                   0.289942
108
     rs13161496 0.291558
109
      rs3785891 0.302039
110
        rs764324 0.306943
111
       rs4241591 0.308725
112
      rs11248057
                   0.32366
```

1.9 NI Females

1.9.1 Logistic regression model

```
table1 = table[(table.gender == "M") & (table.inv_genotype=="NI")]
X = table1[table1.columns[5:]]
Y = table1['phenotype']
lr = LogisticRegression(random_state=42, solver='saga', n_jobs=-1, penalty='elasticnet')
table1.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
0 480
1 477
Name: participant_id, dtype: int64
```

1.9.2 Grid search for 3 hyperparameters

1.9.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index= m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.5835888364779874

Non-zero coefficients: 4

Best estimator: LogisticRegression(C=0.005, l1_ratio=0.1, max_iter=25, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

(continues on next page)
```

1.9. NI Females

```
Scorer: make_scorer(roc_auc_score, needs_threshold=True)
Best params: {'C': 0.005, 'l1_ratio': 0.1, 'max_iter': 25}
Best score: 0.5212733636229314
```

```
SNP Coefficient

Index

1    rs7520918   -0.011899
2    rs9985581   0.016555
3    rs6842271   0.016555
4    rs3806760   0.027075
```

1.10 II Females

1.10.1 Logistic regression model

```
table1 = table[(table.gender == "F") & (table.inv_genotype=="II")]
X = table1[table1.columns[5:]]
Y = table1['phenotype']
lr = LogisticRegression(random_state=42, solver='saga', n_jobs=-1, penalty='elasticnet')
table1.groupby('phenotype')['participant_id'].nunique()
```

```
phenotype
0 195
1 175
Name: participant_id, dtype: int64
```

1.10.2 Grid search for 3 hyperparameters

1.10.3 Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data=data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max AUC score:{max_auc_score}\n')
print(f'Non-zero coefficients: {num_coef}\n')
print(f'Best estimator: {grid_lr.best_estimator_}')
print(f'Scorer: {grid_lr.scorer_}')
print(f'Best params: {grid_lr.best_params_}')
print(f'Best score: {grid_lr.best_score_}\n')
m = model_coefs[model_coefs['Coefficient'] != 0 ].sort_values(by='Coefficient')
m = m.reset_index(drop=True).assign(Index=range(len(m)))
m.Index = m.Index + 1
m.set_index('Index')
```

```
Max AUC score:0.8847765567765569

Non-zero coefficients: 131

Best estimator: LogisticRegression(C=10, l1_ratio=1, max_iter=3200, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)

Best params: {'C': 10, 'l1_ratio': 1, 'max_iter': 3200}

Best score: 0.5429274165806673
```

```
SNP Coefficient
Index
      rs138844738 -4.155261
1
       rs115879964 -4.155261
3
       rs536718528 -3.617586
4
       rs115448944 -3.150895
5
       rs71607338
                     -2.57904
6
       rs17324625
                    -2.427067
7
        rs2433733
                    -1.988805
8
        rs6842271
                    -1.715214
       rs62075803
9
                    -1.652955
1.0
        rs4796663 -1.652955
     rs112957100 -1.549041
11
12
       rs79976845 -1.439649
13
       rs74950708 -1.321806
```

(continues on next page)

1.10. II Females 23

			(continued from previous page)
14	rs11021711	-1.198849	
15	rs1065712	-1.095391	
16	rs444618	-1.090401	
17	rs13131187	-1.017069	
18	rs375017	-1.003348	
19	rs11248057	-0.968769	
20	rs494312	-0.932152	
21	rs3733349	-0.883251	
22	rs140859835	-0.836965	
23	rs7535292	-0.718728	
24	rs7515378	-0.699743	
25	rs734073	-0.657171	
26	rs76848738	-0.613196	
27	rs4482120	-0.610804	
28	rs6871718	-0.604013	
	rs112318363	-0.522652	
29	rs74609071	-0.505636	
30	rs12499663		
31	rs77312060	-0.467277	
32		-0.455806	
33	rs3744427	-0.437119	
34	rs12434297 rs11589479	-0.431097	
35		-0.430368	
36	rs7666159	-0.427637	
37	rs34333	-0.413831	
38	rs10110312	-0.399533	
39	rs4921799	-0.395144	
40	rs1372420	-0.388175	
41	rs10515816	-0.384538	
42	rs1736103	-0.381249	
43	rs73211813	-0.354654	
44	rs10448130	-0.33797	
45	rs764324	-0.313281	
46	rs4841589	-0.298304	
47	rs999361	-0.278567	
48	rs7387252	-0.254134	
49	rs72846765	-0.253638	
50	rs71371995	-0.187556	
51	rs34992950	-0.183292	
52	rs11579790	-0.141663	
53	rs9971953	-0.140982	
54	rs9971789	-0.140982	
55	rs7520918	-0.132976	
56	rs35933728	-0.128462	
57	rs13161496	-0.126504	
58	rs28691231	-0.113809	
59	rs4859611	-0.081506	
60	rs379066	-0.054031	
61	rs72803476	-0.048141	
62	rs7826007	-0.021814	
63	rs35456861	-0.01947	
64	rs148514732	-0.010154	
65	rs9330264	-0.008158	
66	rs72838312	-0.000916	
67	rs12543164	0.007514	
68	rs1501467	0.008177	
69	rs150107452	0.029482	
			(continues on next page)

123	1511/230/05	1.000011	
124	rs117230705	1.418262	
123	rs55805734	1.418262	
122 123	rs9985581 rs3850379	1.394087 1.404536	
121	rs41311559	1.289618	
120	rs142448570	1.167941	
119	rs3806760	1.103029	
118	rs5848	1.09313	
117	rs34288580	1.086857	
116	rs6599389	1.057432	
115	rs78197677	0.968978	
114	rs6836715	0.936025	
113	rs7734182	0.898797	
112	rs12150561	0.82272	
111	rs112270735	0.673886	
110	rs2412116	0.660505	
109	rs9799610	0.642287	
107	rs7515370	0.612322	
106	rs10831599	0.586162	
105 106	rs143756122 rs201304809	0.586162	
104	rs148894916 rs143756122	0.565314 0.565314	
103	rs11097297	0.514293	
102	rs4897753	0.501664	
101	rs231454	0.496512	
100	rs3822023	0.458818	
99	rs75214905	0.458369	
98	rs6964	0.445559	
97	rs13188899	0.430538	
96	rs208024	0.402916	
95	rs34572188	0.393827	
94	rs6532190	0.383153	
93	rs17016235	0.383153	
92	rs11264302	0.368833	
91	rs79828056	0.353429	
90	rs4495967	0.341328	
89	rs12101192	0.326314	
88	rs35776335	0.287265	
87	rs2410595	0.2445	
86	rs117979807	0.232891	
85	rs11097213	0.221927	
84	rs3850745	0.219926	
83	rs7104332	0.155063	
82	rs12935995 rs1859223	0.148705	
80	rs4331494 rs12935995	0.140858	
80	rs6532182 rs4331494	0.12645	
78 79	rs7682766 rs6532182	0.120521 0.12645	
77	rs1949362	0.110172	
76 77	rs62190394	0.108912	
75	rs12995314	0.108912	
74	rs3785891	0.091773	
73	rs2075583	0.066752	
72	rs2128786	0.051102	
71	rs1269243287	0.044491	
70	rs4241591	0.036761	
			(continued from previous page)

1.10. II Females 25

PGS logistic regression optimization

(continued from previous page)

126	rs74677851	1.919257
127	rs4028634	2.386557
128	rs11601088	2.926625
129	rs1800606	3.409027
130	rs8064765	5.881005
131	rs79531911	7.603942