

Mathematik

Übungen zur Exponentialrechnung

BGW16

ANR

Aufgabe 1 (Verhalten im Unendlichen)

Sei $f(x) = \frac{1}{x} \cdot e^x$.

- (a) Geben Sie einen sinnvollen Definitions- und Wertebereich für f an.
- (b) Berechnen Sie von Hand die erste Ableitung von f.
- (c) Bestimmen Sie die Extrempunkte von f.
- (d) Geben Sie das Verhalten von f an den beiden Rändern des Definitionsbereiches an.

Aufgabe 2 (Kurvendiskussion)

Sei $f(t) = t \cdot e^{-0.5 \cdot t}$ mit $t \in \mathbb{R}_{\geq 0}$.

- (a) Bestimmen Sie Nullstellen sowie Extrem- und Wendepunkte von f(t).
- (b) Ermitteln Sie die Gleichung der Wendetangente w von f(t).
- (c) Berechnen Sie den Wert des uneigentlichen Integrals $\int_0^\infty f(t) dt$.
- (d) Bestimmen Sie $b \in \mathbb{R}$ so, dass $\int_0^b f(t) dt = 2$ gilt.

Aufgabe 3 (Funktionsschar I)

Sei $W_{p,q}(t) = p \cdot e^{-q \cdot t}$ mit $t, p, q \in \mathbb{R}_{\geq 0}$.

- (a) Geben Sie $W_{p;q}(0)$ an.
- (b) Beschreiben Sie den Verlauf des Graphen von $W_{p;q}$ für $t \to +\infty$.
- (c) Bestimmen Sie p und q so, dass $W_{p;q}(10) = 2$ und $W'_{p;q}(10) = -1$ gelten.
- (d) Berechnen Sie von Hand den Term von $W'_{p;q}(t)$.

Aufgabe 4 (Funktionsschar II)

Sei $f_{G;A}(t) = G - A \cdot e^{-t}$ mit $G, A \in \mathbb{R}_{>0}$ und $t \in \mathbb{R}_{\geq 0}$.

- (a) Geben Sie $f_{8;2}(1)$ und $f_{G;A}(0)$ an.
- (b) Jemand behauptet, dass für G > A der Wertebereich von $f_{G;A}(t)$ genau aus dem halboffenen Intervall [G A; G], besteht. Überprüfen Sie diese Behauptung hinsichtlich ihres Wahrheitsgehaltes. Hinweis: halboffen bedeutet hier, dass der Wert G A im Intervall liegt, der Wert G jedoch außerhalb. (Beachten Sie die Richtung der eckigen Klammern.)

Aufgabe 5 (Integrale)

Sei $f(x) = e^{-x} \cdot (-x^2 + 2x + 1)$.

- (a) Bestimmen Sie die Nullstellen von f(x).
- (b) Zeigen Sie, dass $F(x) = (x^2 1) \cdot e^{-x}$ eine Stammfunktion von f(x) ist.
- (c) Bestimmen Sie $t \in \mathbb{R}$ so, dass $\int_1^t f(x) dx = 3 \cdot e^{-2}$ gilt.

Mathematik

Übungen zur Exponentialrechnung

BGW16

ANR

Aufgabe 6 (Induktionsbeweise)

Sei $K(n) = 2^{n+1} - 1$ mit $D_K = \mathbb{N}$. Sei weiter für alle $n \in \mathbb{N}$ eine rekursive Folge $\langle u_n \rangle_{n \in \mathbb{N}}$ definiert vermöge $u_0 := 1$ und $u_{n+1} = 2 \cdot u_n + 1$.

- (a) Geben Sie zu den beiden Behauptungen jeweils begründet an, ob diese wahr oder falsch sind.
 - Die Funktion K schneidet die Ordinate im Punkt Y(1|3).
 - \bullet Die Funktion K hat keine Nullstellen.
- (b) Bestimmen Sie das kleinste derartige $m \in \mathbb{N}$, sodass $K(m) > 10^3$.
- (c) Zeigen Sie, dass K(n+1) > K(n) für alle $n \in \mathbb{N}$.
- (d) Geben Sie u_0, u_1 und u_2 an.
- (e) Zeigen Sie, dass $u_n = K(n)$ für alle $n \in \mathbb{N}$.

Aufgabe 7 (Summe von Exponentialfunktionen)

Sei $f(x) = e^x - e^{-x}$.

- (a) Bestimmen Sie die Nullstellen von f(x).
- (b) Zeigen Sie durch Nachrechnen, dass f''(x) = f(x).
- (c) Geben Sie die Gleichung der 17. Ableitung $f^{17}(x)$ an.

Aufgabe 8 (n-te Ableitung)

Sei $f(t) = e^{-\lambda t}$ mit $\lambda > 0$.

- A. Kreuzen Sie den korrekten Term der zweiten Ableitung f''(t) an.
 - (a) $t^2 \cdot e^{-\lambda t}$
 - (b) $-\lambda^2 \cdot e^{-\lambda t}$
 - (c) $\lambda \cdot e^{-t}$
 - (d) $\lambda^2 \cdot e^{-\lambda t}$
- B. Geben Sie den Term der n-ten Ableitung von f(t) an.

Aufgabe 9 (Kondensator)

Die Spannungskurve bei der Entladung eines Plattenkondensators werde beschrieben durch die Funktion $U(t) = U_0 \cdot e^{-\lambda t}$ mit $\lambda > 0$. Dabei gibt U die Spannung und t die vergangene Zeit in Millisekunden an.

- (a) Geben Sie U(0) an.
- (b) Bestimmen Sie den Wert des Parameters λ für $U_0=5V$ so, dass die Spannung nach einer Zehntelsekunde genau 1V beträgt.
- (c) Berechnen Sie, nach welcher Zeit t_H noch genau die Hälfte der Anfangsspannung anliegt.

Übungen zur Exponentialrechnung

BGW16

ANR

Lösungen

Aufgabe 1

- (a) $D_f = \mathbb{R} \setminus \{0\}, W_f = \mathbb{R}.$
- (b) Mit der Produkt- und Kettenregel ergibt sich $f'(x) = (\frac{1}{x} \cdot e^x)' = (\frac{1}{x})' \cdot e^x + (e^x)' \cdot \frac{1}{x} = -\frac{1}{x^2}e^x + \frac{1}{x}e^x = e^x(\frac{1}{x} \frac{1}{x^2}).$
- (c) Es gilt

$$f'(x) = 0$$

$$\Leftrightarrow e^{x}(\frac{1}{x} - \frac{1}{x^{2}}) = 0 \quad \text{Einsetzen}$$

$$\Leftrightarrow e^{x} = 0 \text{ oder } (\frac{x}{x} - \frac{1}{x^{2}}) = 0 \quad \text{Produkt spalten}$$

$$\Leftrightarrow \quad \frac{\text{falsch oder } (\frac{1}{x} - \frac{1}{x^{2}}) = 0 \quad e^{x} \text{ hat keine Nullstelle}}{x - 1 = 0 \quad \cdot x^{2}}$$

$$\Leftrightarrow \quad x = 1$$

Also Extrempunkt (Tiefpunkt) bei T(1|e).

(d) Es gilt $\lim_{x\to-\infty} f(x) = 0$ und $\lim_{x\to+\infty} f(x) = +\infty$.

Aufgabe 2

- (a) Nullstelle N(0|0), Extrempunkt (Hochpunkt) $E(2|\frac{2}{e})$, Wendepunkt (fallend) bei $W(4|\frac{4}{e^2})$.
- (b) Es gilt $f'(4) = -\frac{1}{e^2}$ (entspricht Steigung von w). Einsetzen des gefundenen Wendepunktes W aus Teil (a) ergibt $w(t) = -\frac{1}{e^2}t + \frac{8}{e^2}$.
- (c) Mit CAS berechne Integral[f(t),t,0,infinity]. Lösung ist 4.
- (d) Mit CAS berechne Löse[Integral[f(t),t,0,b]=2,b]. Es ergibt sich $b \approx 3.36$.

Aufgabe 3

- (a) $W_{p;q}(0) = p \cdot e^{q \cdot 0} = p \cdot 1 = p$.
- (b) Wir unterscheiden drei Fälle:
 - p=0. In diesem Fall gilt $W_{0;q}(t)=0$ für alle $t\in\mathbb{R}_{\geq 0}$. Der Graph liegt also direkt auf der Abszisse.
 - $q = 0, p \neq 0$. In diesem Fall vereinfacht sich die Funktion zu $W_{p;0} = p \cdot e^{0 \cdot t} = p \cdot 1 = p$. Der Graph verläuft also auf Höhe p parallel zur Abszisse.
 - $p \neq 0, q \neq 0$. In diesem Fall verläuft der Graph vom Punkt Y(0|p) stetig fallend und nähert sich asymptotisch der Abszisse.

Aufgabe 4

- (a) $f_{8;2}(1) = 8 2 \cdot e^{-1} = 8 \frac{2}{e} \approx 7.2642$. $f_{G;A}(0) = G A$.
- (b) Nach (a) gilt $f_{G;A}(0) = G A$. Weiter gilt $\lim_{t \to +\infty} f_{G;A}(t) = G$. Da $f'_{G;A}(t) > 0$ für alle $t \in \mathbb{R}_{\geq 0}$, steigt der Graph stetig an, sodass genau die Funktionswerte von G A (einschließlich) bis G (ausschließlich) angenommen werden. Die Behauptung ist also wahr.

Aufgabe 5

- (a) $(-x^2 + 2x + 1)e^{-x} = 0 \Leftrightarrow x = 1 \sqrt{2} \text{ oder } x = 1 + \sqrt{2}.$
- (b) Nachrechnen zeigt F'(x) = f(x).
- (c) Auflösen des Integrals liefert $t \approx 2.9191$.

Mathematik

Übungen zur Exponentialrechnung

BGW16

echnung ANR

Aufgabe 6

- (a) Die Aussage ist falsch. Der Ordinatenschnittpunkt liegt bei Y(0|1).
 - Die Aussage ist wahr. Nachrechnen liefert $2^{n+1} 1 = 0 \Leftrightarrow 2^{n+1} = 2^0 \Leftrightarrow n+1 = 0 \Leftrightarrow n = -1$. Aber $-1 \notin D_K$. Also gibt es keine Nullstellen.
- (b) Abschätzen zeigt $10^3 > (2^3)^3 = 2^9$ und $10^3 < (2^4)^3 = 2^{12}$. Der gesuchte Wert m muss also zwischen 8 und 11 liegen. Nachrechnen zeigt, dass bereits $K(9) = 1023 > 10^3$.
- (c) Es gilt $K(n+1) = 2^{n+2} 1 = 2 \cdot 2^{n+1} 1 > 2^{n+1} 1 = K(n)$ für alle $n \in \mathbb{N}$.
- (d) $u_0 = 1, u_1 = 3, u_2 = 7.$
- (e) Es gilt $u_0 = 1 = K(0)$. Es gelte nun $u_n = K(n)$ für ein $n \in \mathbb{N}$. Dann gilt:

$$\begin{array}{ll} u_{n+1} \\ = & 2 \cdot u_n + 1 \\ = & 2 \cdot K(n) + 1 \\ = & 2(2^{n+1} - 1) + 1 \\ = & 2^{n+2} - 2 + 1 \\ = & 2^{n+2} - 1 \\ = & K(n+1) \end{array} \qquad \begin{array}{ll} \text{Definition } u_{n+1} \\ \text{Induktions vor ausset zung} \\ \text{Definition } K(n) \\ \text{Aus multiplizier en} \end{array}$$

Aufgabe 7

- (a) $e^x e^{-x} = 0 \Leftrightarrow x = 0$.
- (b) Mit der Kettenregel ergeben sich $f'(x) = e^x + e^{-x}$ und $f''(x) = e^x e^{-x}$. Also f''(x) = f(x).
- (c) Es gilt mit Teil (b) $f^{17}(x) = (f^{16}(x))' = (f(x))' = f'(x) = e^x e^{-x}$.

Aufgabe 8

A. Antwort (d) ist richtig. (Überprüfung durch Nachrechnen mit Kettenregel.) B. Bei jedem Ableitungsschritt wird der Faktor $-\lambda$ vor den Exponentialterm gezogen. Der Exponentialterm selbst bleibt unverändert. Das Vorzeichen des Lambdaterms ändert in jedem Schritt das Vorzeichen. Insgesamt gilt also $f^n(t) = (-1)^n \cdot \lambda^n \cdot e^{-\lambda t}$.

Aufgabe 9

- (a) $U(0) = U_0$.
- (b) Mit CAS berechne Löse[1=5*exp^(-L*100), L]. Es ergibt sich $L\approx 0.0161$.
- (c) Mit CAS berechne Löse[1/2*U=U*exp^(-L*t), t]. Es ergibt sich $t = \frac{\ln 2}{\lambda}$.