

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT DEPARTAMENTO DE FÍSICA – DFIS MECÂNICA ESTATÍSTICA – OMEE001

Aluno(a): Rodrigo Nascimento[†]

Professor(a): Dr. Bruno Duarte da Silva Moreira Capítulo(s) Ref.: I/II/III/IV

Nota de Aula: 001 Data: 25/08/2022 Fase: LEF102-08U

NOTAS DE MECÂNICA ESTATÍSTICA

Semestre: 02/2022

Sumário

1	MÓDULO – I	2
1.1	Introdução aos Métodos Estatísticos	2
1.1.1	Probabilidade	2
1.1.1.1	Operações	2
1.1.1.2	Propriedades	3
	REFERÊNCIAS	4

 $^{^{\}dagger} \quad https://github.com/physikices/udesc-cct-latex$

1 Módulo – I

Resumo: Lista desenvolvida com base no livro: *Introdução à Física Estatística* do autor SALINAS.

Palavras chave: Introdução aos métodos estatísticos; Descrição estatística de sistemas físicos; Termodinâmica; Ensemble microcanônico.

1.1 Introdução aos Métodos Estatísticos

Revisão de Probabilidade e Estatística.

1.1.1 Probabilidade

Definição 1.1.1 (Espaço Amostral Ω). Conjunto de todosos resultados possíveis de um experimento/fenômeno aleatório.

Exemplo 1.1.1. Altura dos alunos da turma (A): $\Omega_A = \{x \in \mathbb{R} | 1,40 \text{ m} \le x \le 2,10 \text{ m} \}.$

Definição 1.1.2 (Evento). Qualquer subconjunto do Espaço Amostral, é chamdo de evento.

Exemplo 1.1.2. B é o conjunto de números primo de um dado de seis lados $B = \{1, 2, 3, 5\}$.

1.1.1.1 Operações

- União \cup A união entre dois eventos A e B, é um novo evento denotado por $A \cup B$, formado pelos elementos pertencentes a ambos os conjuntos.
- Intersecção \cap A intersecção entre dois eventos A e B, é um novo evento denotado por $A \cap B$, formado pelos elementos pertencentes simultâneamente a A e a B.
- Complementar A^C Todos os elementos do espaço amostral, que não pertencem ao evento A.
- Dois eventos A e B, são ditos mutuamente exclusivos ou disjuntos se $A \cap B = \emptyset$
- Dois eventos A e B, são ditos **complementares** se $A \cup B = \Omega$

Definição 1.1.3 (Clássica). Suponha que um evento A possa ocorrer de k maneiras distintas num total de n maneiras possíveis e igualmente prováveis. Então a probabilidade de ocorrência do evento A é k/n, definida como a **frequência relativa** do evento A.

Definição 1.1.4 (Moderna axiomática). Uma função P(A) é denominada *probabilidade* de ocorrência do evento A, se satisfaz as seguintes condições:

- i) $0 \le P(A) \le 1, \forall A \subset \Omega;$
- ii) $P(\Omega) = 1$;
- iii) $P(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n P(A_j)$, quando os elementos A_j são disjuntos.

1.1.1.2 Propriedades

Probabilidade de ocorrência do evento A ou B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{1.1}$$

Probabilidade Condicional: Para dois eventos A e B, com P(B) > 0, a probabilidade de A ocorrer dado que o evento B já ocorreu é dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{1.2}$$

Exemplo 1.1.3. No lançamento aleatório de um dado de seis lados $\Omega = \{1, 2, 3, 4, 5, 6\}$, tem-se os seguintes eventos:

- A: face superior é um número par $A = \{2, 4, 6\}$;
- B: face superior é um número primo $B = \{1, 2, 3, 5\}$;
- C: face superior é um múltiplo de três $C = \{3, 6\}$.

Determine:

a) $P(A \cup B)$

$$P(A) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

$$P(B) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{2}{3}$$

$$P(A \cap B) = \frac{1}{6}$$

$$P(A \cup B) = \frac{1}{2} + \frac{2}{3} - \frac{1}{6} = 1 \quad \Box$$

Referências

SALINAS, S. R. A. **Introdução à Física Estatística**. [S.l.]: EDUSP, 2005. (Grad. Texts Contemp. Phys.). ISSN 0938-037X. ISBN 9788531403866. Citado na página 2.