Ravninske krivulje s pitagorejskim hodografom

Jan Fekonja, Anže Marinko IŠRM2. FMF

Predmet: Geometrijsko podprto računalniško oblikovanje

I. Uvod

hodograf parametrične krivulje r(t) v \mathbb{R}^n je odvod krivulje same r'(t) podan kot parametrična krivulja. Polinomska krivulja r(t) v \mathbb{R}^n je krivulja s Pitagorejskim hodografom (PH), če vsota kvadratov vseh n polinomov na koordinatnih komponentah hodografa krivulje sovpada s kvadratom nekega polinoma $\sigma(t)$. Oglejmo si ravninske krivulje s PH.

II. RAVNINSKE KRIVULJE S PITAGOREJSKIM HODOGRAFOM

Ključna lastnost, ki razlikuje ravninsko krivuljo s PH r(t)=(x(t),y(t)) od "navadne"polinomske krivulje je privzeta vključitev Pitagorejskega pogoja v svoj hodograf, in sicer komponente $r\prime(t)=(x\prime(t),y\prime(t))$ morajo zadoščati pogoju

$$x\prime^2(t) + y\prime^2(t) = \sigma^2(t)$$

za nek polinom $\sigma(t)$. To lastnost je dosežena z upoštevanjem sledeče karakterizacije Pitagorejskih trojic polinomov.

Izrek 1. Pitagorejski pogoj

$$a^{2}(t) + b^{2}(t) = c^{2}(t) \tag{1}$$

izpolnjujejo polinomi a(t), b(t), c(t) natanko tedaj, ko jih lahko izrazimo z drugimi polinomi u(t), v(t), w(t) v obliki

$$a(t) = [u^{2}(t) - v^{2}(t)]w(t),$$

$$b(t) = 2u(t)v(t)w(t),$$

$$c(t) = [u^{2}(t) + v^{2}(t)]w(t),$$
(2)

kjer imata u(t) in v(t) paroma različne ničle.

Dokaz. Očitno je pogoj (2) zadosten za (1). Potrebnost pogoja pa je dokazana v [1] na strani 382. □

Opomba 1. Rešitve, kjer je w(t) konstantna, imenujejo primitivne Pitagorejske trojice.

Tedaj je ravninska krivulja s PH r(t) = (x(t), y(t)) definirana z zamenjavo treh polinomov u(t), v(t), w(t) v izrazih

$$x'(t) = [u^2(t) - v^2(t)]w(t)$$
 (3)
 $y'(t) = 2u(t)v(t)w(t)$

in z integriranjem.

Vsak nekonstantni skupni faktor u(t) in v(t) lahko absorbiramo v w(t). Poleg tega moramo dopustiti določene izbire za w(t), u(t), v(t), ki dajejo "degenerirane"krivulje s PH:

1) če je w(t)=0 ali u(t)=v(t)=0, je dobljeni hodograf $x\prime(t)=y\prime(t)=0$ in definira eno točko namesto zveznega loka,

2) če so w(t), u(t), v(t) vse konstante (z w in vsaj eno od u, v neničelno) dobimo enakomerno parametrizirano premico, trivialno krivuljo s PH,

1

- 3) če sta u(t) in v(t) konstanti, kjer je vsaj ena različna od nič in w(t) ni konstanta, je dobljen lok spet linearen, vendar njegova parametrična hitrost ni konstantna (v splošnem),
- 4) prav tako nastanejo nekonstantno parametrizirani linearni loki (vzporedni z osjo x), če je $w(t) \neq 0$ in je eden od u(t) in v(t) nič.

V nadaljevanju bomo obravnavali le primere, kjer so w(t), u(t), v(t) vse neničelne, in u(t), v(t) nista obe konstanti.

Opomba 2. Če je w polinom stopnje λ in je μ večja izmed stopenj polinomov u in v, je krivulja s PH dobljena z integracijo hodografa (3) stopnje $n = \lambda + 2\mu + 1$.

III. BÉZIERJEVE KONTROLNE TOČKE KRIVULJ S PH

Osredotočimo se predvsem na primitivne Pitagorejske hodografe (u in v brez skupne ničle, w(t)=1). Taki hodografi definirajo regularne krivulje s PH, ki zadoščajo $r\prime(t)\neq 0$ za vse t. Točka na parametrični krivulji, kjer je $r\prime(t)=0$, je neregularna točka - običajno je to konica ali nenaden obrat tangente. Uporaba nekonstantnega polinoma w(t) naredi konice (kar je nezaželena lastnost) na ustrezni krivulji s PH, če ima w(t) realne ničle znotraj domene parametra krivulje. Krivulje s PH definirane z integracijo (3) primitivnih hodografov so lihe stopnje, $n=2\mu+1$.

Najenostavnejše netrivialne krivulje s PH dobljene z w(t)=1 in linearnima Bernsteinovima polinomoma:

$$u(t) = u_0 B_0^1(t) + u_1 B_1^1(t),$$

$$v(t) = v_0 B_0^1(t) + v_1 B_1^1(t),$$

ki zadoščajo $u_0v_1-u_1v_0\neq 0$ in $(u_1-u_0)^2+(v_1-v_0)^2\neq 0$, tako da imata u(t),v(t) različne ničle in nista obe konstanti, nam dajo hodograf

$$\begin{aligned} x\prime(t) &= & (u_0^2 - v_0^2)B_0^2(t) + \\ & & (u_0u_1 - v_0v_1)B_1^2(t) + (u_1^2 - v_1^2)B_2^2(t), \\ y\prime(t) &= & 2u_0v_0B_0^2(t) + (u_0v_1 + u_1v_0)B_1^2(t) + 2u_1v_1B_2^2(t). \end{aligned}$$

Z integracijo tega hodografa dobimo kubično krivuljo s PH z Bézierjevimi kontrolnimi točkami oblike

$$\begin{array}{rcl} \mathbf{p}_1 & = & \mathbf{p}_0 + \frac{1}{3}(u_0^2 - v_0^2, 2u_0v_0), \\ \\ \mathbf{p}_2 & = & \mathbf{p}_1 + \frac{1}{3}(u_0u_1 - v_0v_1, u_0v_1 + u_1v_0), \\ \\ \mathbf{p}_3 & = & \mathbf{p}_2 + \frac{1}{3}(u_1^2 - v_1^2, 2u_1v_1), \end{array}$$

kjer je kontrolna točka \mathbf{p}_0 definirana z integracijsko konstanto prosto izbrana.

Krivulje pete stopnje s PH pa lahko definiramo s kvadratičnimi polinomi:

$$u(t) = u_0 B_0^2(t) + u_1 B_1^2(t) + u_2 B_2^2(t),$$

$$v(t) = v_0 B_0^2(t) + v_1 B_1^2(t) + v_2 B_2^2(t),$$

in z integracijo dobimo Bézierjeve kontrolne točke oblike:

$$\begin{array}{rcl} \mathbf{p_1} & = & \mathbf{p_0} + \frac{1}{5}(u_0^2 - v_0^2, 2u_0v_0), \\ \\ \mathbf{p_2} & = & \mathbf{p_1} + \frac{1}{5}(u_0u_1 - v_0v_1, u_0v_1 + u_1v_0), \\ \\ \mathbf{p_3} & = & \mathbf{p_2} + \frac{2}{15}(u_1^2 - v_1^2, 2u_1v_1) + \\ & & \frac{1}{15}(u_0u_2 - v_0v_2, u_0v_2 + u_2v_0), \\ \\ \mathbf{p_4} & = & \mathbf{p_3} + \frac{1}{5}(u_1u_2 - v_1v_2, u_1v_2 + u_2v_1), \\ \\ \mathbf{p_5} & = & \mathbf{p_4} + \frac{1}{5}(u_2^2 - v_2^2, 2u_2v_2), \end{array}$$

kjer je \mathbf{p}_0 ponovno poljubna, velja pa

$$(u_2v_0 - u_0v_2)^2 \neq 4(u_0v_1 - u_1v_0)(u_1v_2 - u_2v_1).$$

(a) Primer, kjer je stopnja u 2, stopnja v pa 3.

(b) Ista krivulja kot levo z enkrat zvišano stopnjo u in

IV. PARAMETRIČNA HITROST IN DOLŽINA LOKA

Parametrična hitrost regularne krivulje s PH r(t)(x(t), y(t)) je podana s

$$\sigma(t) = |r'(t)| = \sqrt{x'^2(t) + y'^2(t)} = u^2(t) + v^2(t),$$

in je polinom v t. Če je r(t) (lihe) stopnje n, morata biti u(t) in v(t) stopinje $m=\frac{1}{2}(n-1)$ in je lahko zapisan v Bernsteinovi obliki kot

$$u(t) = \sum_{k=0}^{m} u_k B_k^m(t),$$

$$v(t) = \sum_{k=0}^{m} v_k B_k^m(t).$$

Torej je

$$\sigma(t) = \sum_{k=0}^{n-1} \sigma_k B_k^{n-1}(t),$$

kjer so koeficienti

$$\sigma_{k} = \sum_{j=max(0,k-m)}^{min(m,k)} \frac{\binom{m}{j}\binom{m}{k-j}}{\binom{n-1}{k}} (u_{j}u_{k-j} + v_{j}v_{k-j}),$$

$$k = 0, \dots, n-1.$$

Za kubične krivulje s PH je npr. $\sigma(t)$ kvadratna in ima Bernsteinove koeficiente

$$\sigma_0 = u_0^2 + v_0^2,
\sigma_1 = u_0 u_1 + v_0 v_1,
\sigma_2 = u_1^2 + v_1^2.$$

Za krivulje pete stopnje s PH pa je $\sigma(t)$ kvadratična z Bernsteinovimi koeficienti

$$\sigma_0 = u_0^2 + v_0^2,
\sigma_1 = u_0 u_1 + v_0 v_1,
\sigma_2 = \frac{2}{3} (u_1^2 + v_1^2) + \frac{1}{3} (u_0 u_2 + v_0 v_2),
\sigma_3 = u_1 u_2 + v_1 v_2,
\sigma_4 = u_2^2 + v_2^2.$$

Da bi integrirali $\sigma(t)$ in tako dobili dolžino loka s kot polinomsko funkcijo parametra,

$$s(t) = \int_0^t \sigma(\tau) d\tau,$$

uporabimo integracijsko pravilo za Bernsteinove bazne poli-

$$s(t) = \sum_{k=0}^{n} s_k \binom{n}{k} (1-t)^{n-k} t^k = \sum_{k=0}^{n} s_k B_k^n(t),$$

kjer je $s_0=0$ in $s_k=\frac{1}{n}\sum_{j=0}^{k-1}\sigma_j, k=1,\ldots,n.$ Torej je skupna dolžina loka S preprosto S=s(1)=1 $\frac{\sigma_0 + \sigma_1 + ... + \sigma_{n-1}}{\sigma_n}$. Za izračun dolžine loka izseka krivulje s PH za $t \in [a, b]$ pa vzamemo kar razliko s(b) - s(a).

Podobno je veliko preprosteje določiti vrednost parametra t_* , do katerega je dolžina loka (merjeno od t=0) enaka dani vrednosti s_* - t.j. rešiti enačbo $s(t_*) = s_*$ za t_* .

Običajno se r(t) prikaže z vrednotenjem vrednosti parametrov t_0,\ldots,t_N , ki ustreza enotnemu prirastku parametra $\Delta t=t_k-t_{k-1},k=1,\ldots,N$. Vendar pa s tem dobimo neenakomerno razmaknjene (po dolžini loka) točke $r(t_k)$ na krivulji, saj parametrična hitrost $\sigma(t)$ v splošnem ni konstantna.

Vseeno, če parametrična hitrost krivulje s PH ni konstantna, lahko s s(t) enostavno popravimo to težavo. Naj bodo t_0, \ldots, t_N vrednosti parametrov točk, ki so enakomerno razporejene z razmakom dolžine loka $\Delta s = S/N$, tako da

$$s(t_k) = k\Delta s, k = 1, \dots, N - 1,$$

kjer $t_0=0$ in $t_N=1$. Sedaj iz $\sigma(t)=ds/dt$ in $\sigma(t)$ pozitivno za vse t, ko polinoma u in v nimata nobene skupne ničle, sledi, da je s(t) monotono naraščajoča st in st tem za vsak t vrednost t pri t leži med t t1. Kot začetni približek vzamemo

$$t_k^{(0)} = t_{k-1} + \frac{\Delta s}{\sigma(t_{k-1})}$$

in izbolšujmo rezultat z uporabo Newton-Raphsonove iteracije

$$t_k^{(r)} = t_k^{(r-1)} - \frac{s(t_k^{(r-1)}) - k\Delta s}{\sigma(t_k^{(r-1)})}, r = 1, 2, \dots$$

Zadošča že kakšna iteracija, da dosežemo zadovoljivo natančnost.

V. LASTNOSTI ODVODA KRIVULJE

Ker je parametrična hitrost krivulje s PH r(t) definirane z integracijo polinom v t, imajo osnovne lastnosti njenih odvodov - enotski tangentni vektor, normala in ukrivljenost - racionalno odvisnost od parametra krivulje. Natančneje, definirani so v smislu polinomov u(t) in v(t), kjer

$$\mathbf{t} = \frac{\left(u^2 - v^2, 2uv\right)}{\sigma}, \quad \mathbf{n} = \frac{\left(2uv, v^2 - u^2\right)}{\sigma}, \quad \kappa = 2\frac{uv\prime - u\prime v}{\sigma^2}.$$

VI. RACIONALNI ODMIKI KRIVULJ S PH

Odmiki pri vsaki razdalji d od krivulje s PH $\boldsymbol{r}(t)$, definirani kot

$$r_d(t) = r(t) + d\mathbf{n}(t),$$

dovoljujejo natančno predstavitev v smislu racionalnih Bézierjevevih krivulj, ker je enotska normala $\mathbf{n}(t)$ racionalno odvisna od parametra krivulje t.

Naj bodo kontrolne točke krivulje s PH r(t) zapisane v homogenih koordinatah kot

$$\mathbf{P}_k = (W_k, X_k, Y_k) = (1, x_k, y_k), \qquad k = 0, \dots, n.$$

Definirajmo prve diference kot

$$\Delta \mathbf{P}_k = \mathbf{P}_{k+1} - \mathbf{P}_k = (0, \Delta x_k, \Delta y_k), \qquad k = 0, \dots, n-1$$

kjer je $\Delta x_k = x_{k+1} - x_k$, $\Delta y_k = y_{k+1} - y_k$. Naj bo $\Delta \mathbf{P}_k^{\perp} = (0, \Delta y_k, -\Delta x_k)$.

(a) $\Delta t = konst.$

(b) $\Delta s = konst.$

Slika 2: Enakomerno povečanje parametra krivulje s PH (levo) in dolžine loka (desno) - parametrizacija po nekaj iteracijah. Prikaz točk na krivulji.

Odmik za razdaljo d od krivulje s PH r(t) je definiran zgoraj z $r_d(t)$, kjer je normala $\mathbf{n}(t)$ na r(t) podana zgoraj. Odmik lahko izrazimo kot

$$r_d(t) = \left(\frac{X(t)}{W(t)}, \frac{Y(t)}{W(t)}\right),$$

kjer so W(t), X(t), Y(t) polinomi stopnje 2n-1, katerih koeficienti

$$\mathbf{O}_k = (W_k, X_k, Y_k), \quad k = 0, \dots, 2n - 1,$$

Slika 3: t = 0.2 in t = 0.7

določajo Bézierjeve kontrolne točke racionalne krivulje odmika.

Homogene koordinate za kontrolne točke odmika so lahko strnjeno izražene v smislu prvotne krivulje kot

$$\mathbf{O}_{k} = \sum_{j=max(0,k-n)}^{\min(n-1,k)} \frac{\binom{n-1}{j}\binom{n}{k-j}}{\binom{2n-1}{k}} (\sigma_{j}\mathbf{P}_{k-j} + dn\Delta\mathbf{P}_{j}^{\perp}),$$

$$k = 0, \dots, 2n - 1.$$

S tem dobimo za kubične krivulje s PH 6 kontrolnih točk racionalnih odmikov kot krivulj pete stopnje, za krivulje s PH pete stopnje pa dobimo 10 kontrolnih točk racionalnih odmikov kot krivulj devete stopnje.

Slika 4: Krivulja s PH (rdeča) in racionalni odmiki za $d = -0.6, -0.5, \dots, 0.5, 0.6$.

Opazimo, da so racionalni odmiki eksaktni za vsak d tudi v primeru špic in ko krivulja prečka samo sebe.

VII. KOMPLEKSNA PREDSTAVITEV

Kompleksna predstavitev \mathbb{R}^2 je še posebej dragocena v analizi ravninskih krivulj s PH, saj ponuja enostavno in eleganto karekterizacijo lastnosti pitagorejskih hodografov. Vse kaj lahko naredimo s kompleksno predstavitvijo bi načeloma lahko dosegli z uporabo samo realnih spremenljivk. Vendar zaradi uporabnih geometrijskih vpogledov, ki jih nudi, se močno zanašamo na kompleksno predstavitev ravninskih krivulj s PH.

VIII. KOMPLEKSNE KRIVULJE IN HODOGRAFI

Vpeljemo presikavo hodografske ravnine, to je ravnina, v kateri je odvod $r\prime(t)$ parametrične krivulje r(t). S to shemo uvedemo korespondenco ena na ena med množicamo regularnih krivulj s PH in regularnih "navadnih" polinomskih krivulj, ki nudi ogrudje za primerjavo in razlikovanje njunih lastnosti.

Imejmo polinomsko krivuljo v kompleksni ravnini, ki je v Bézierjevi obliki

$$r(t) = \sum_{k=0}^{n} p_k \binom{n}{k} (1-t)^{n-k} t^k, \ t \in [0,1], \tag{4}$$

kjer kompleksne vrednosti $p_k = x_k + iy_k$, k = 0, ..., n določajo kontrolne točke. Hodograf w(t) = r'(t) krivulje 4 izrazimo kot kompleksno Bézierjevo krivuljo stopnje n - 1,

$$w(t) = \sum_{k=0}^{n-1} w_k \binom{n-1}{k} (1-t)^{n-1-k} t^k, \ t \in [0,1], \quad (5)$$

s kontrolnimi točkami

$$w_k = n\Delta p_k = n(p_{k+1} - p_k), \ k = 0, ..., n - 1.$$
 (6)

Razlike $\Delta p_k = p_{k+1} - p_k$ določajo n usmerjenih "nog"kontrolnega poligona. Zaradi jasnosti obravnavamo krivulje in njene hodografe v dveh ločenih kompleksnih ravninah z = x + iy in w = u + iv.

IX. KORESPONDENCA ENA NA ENA

Uporabimo $\mathbb C$ za predstavitev $\mathbb R^2$. Naj bo Π množica vseh regularnih polinomskih krivulj in naj bo $\hat \Pi$ množica vseh regularnih krivulj s PH. Čeprav sta π in $\hat \Pi$ neskončni množici, saj obe vsebujeta krivulje poljubnih stopenj, je jasno, da velja $\hat \Pi \subset \Pi$, saj vsaka regularna krivulje s PH je tudi regularna polinomska krivulja, vendar obstajajo regularne polinomske krivulje, katerih hodografi niso Pitagorejski (na primer, parabola $r(t) = t + it^2$).

Preprost tristopenski postopek P, ki pretvori poljubno odvedljivo ravninsko krivuljo r(t) v novo krivuljo $\hat{r}(t)$:

- 1) odvedemo dano krivuljo r(t), da dobimo njen hodograf $w(t)=r^{\prime}(t);$
- 2) uporabimo preslikavo $w \to w^2$ mad ravninskim hodografom, da dobimo $\hat{w}(t) = w^2(t)$;
- 3) integriramo preslikan hodograf $\hat{w}(t)$, da dobimo novo krivuljo $\hat{r}(t) = \int \hat{w}(t)dt$.

V tem postopku predpostavimo $r(0) = \hat{r}(0) = 0$.

Izrek 2. P definira bijektivno preslikavo ali krespodenco ena na ena med množicamoa Π in $\hat{\Pi}$ ragularnih polinomskih krivulj in regularnih PH krivulj.

Tabela I: Ujemajoče se krivulje nižjih stopenj.

	polinomska krivulja $r(t)$	krivulja s PH $\hat{r}(t)$
n = 1	ravne črte	ravne črte
n=2	parabole	Tschirnhausove kubične krivulje
n = 3	regularne kubične krivulje	regularni kvintiki s PH
	•	
	•	•
•	•	•

Dokaz. Dokaz v [1] na straneh 409 in 410.

V splošnem velja, da z inverzno preslikavo $w \to \sqrt{w}$ ne dobimo polinomskega hodografa, kadar jo uporabimo na splošnem polinomskem hodografu. Pravzaprav dobimo polinomski hodograph samo kadar jo uporabimo na Pitagorejskem hodografu. Torej velja $P(\Pi) = \hat{\Pi}$ in $P^{-1}(\hat{\Pi}) = \Pi$.

Če sta regularna polinomska krivulja r(t) in regularna krivulja s PH $\hat{r}(t)$ med sebom povezani s preslikavama P in P^{-1} m potem lahko takšne pare izrazimo kot:

$$r(t) = \int_0^t u(\tau)d\tau + i \int_0^t v(\tau)d\tau,$$

$$\hat{r}(t) = \int_0^t (u^2(\tau) - v^2(\tau)d\tau) + i \int_0^t 2u(\tau)v(\tau)d\tau, \tag{7}$$

kjer sta u(t) in v(t) razmeroma preprosta polinoma in predpostavimo $r(0) = \hat{r}(0) = 0$.

Opomba 3. Množica $\hat{\Pi}$ regularnih krivulj s PH ima enako kardinalnost ali moč kot množica Π regularnih polinomskih krivulj.

Lema 1. Stonji n in \hat{n} pripadajočima krivuljama r(t) in $\hat{r}(t)$ sta povezani z $\hat{n} = 2n - 1$.

Dokaz. Pri postopku P najprej odvajamo krivuljo r(t) stopnje n in dobimo njen hodograf w(t) stopnje n-1. Nato kvadriramo w(t) in dobimo hodograf $\hat{w}(t)$ stopnje 2n-2. Na koncu integriramo $\hat{w}(t)$ in dobimo novo krivuljo $\hat{r}(t)$ stopnje 2n-1.

Očitno ne obstajajo regularne krivulje s PH, ki so sode stopnje. Ravne črte v Π ustrezajo (drugačnim) ravnim črtam v $\hat{\Pi}$, ampak P preslika regularne polinomske krivulje stopnje ≥ 2 v regularne krivulje s PH višje lihe stopnje (glej tabelo I).

Izrek 3. Kontrolne točke regularne krivulje s PH stopnje 2n-1 so podane kot n kompleksnih vrednosti $w_0,...,w_{n-1}$ z rekurzivno formulo

$$p_{k+1} = p_k + \frac{1}{2n-1} \sum_{j=\max(0,k-n+1)}^{\min(k,n-1)} \frac{\binom{n-1}{j}\binom{n-1}{k-j}}{\binom{2n-2}{k}} w_j w_{k-j}$$
(8)

za k = 0, 1, ..., 2n - 2, kjer je p_0 poljuben in $w_0, ..., w_{n-1}$ so takšni, da hodograf w(t) definiran v(4) ne pokvari originalnega.

Dokaz. Dokaz v [1] na strani 413.

X. ROTACIJSKE INVARIANCE HODOGRAFOV

Kompleksna predstavite ponuja preprost dokaz za rotacijsko invariantnost zadostne in potrebne oblike

$$x'(t) = u^{2}(t) - v^{2}(t),$$

$$y'(t) = 2u(t)v(t),$$

$$\sigma(t) = u^{2}(t) + v^{2}(t)$$
(9)

za primitivne ravninske pitagorejske hodografe r'(t) = (x'(t), y'(t)) zadošča

$$x'^{2}(t) + y'^{2}(t) = \sigma^{2}(t),$$
 (10)

kjer $D(u,v) = konstanta \Rightarrow gcd(x\prime,y\prime) = konstanta$. Ob rotaciji

$$\begin{bmatrix} \widetilde{x}\prime(t) \\ \widetilde{y}\prime(t) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\prime(t) \\ y\prime(t) \end{bmatrix} \tag{11}$$

po kotu θ , poskužamo izraziti rotacijski hodograf $\widetilde{r}\prime(t)=(\widetilde{x}\prime(t),\widetilde{y}\prime(t))$ v smislu dveh novih polinomov $\widetilde{u}(t),\widetilde{x}(v)$ kot

$$\widetilde{x}'(t) = \widetilde{u}^2(t) - \widetilde{v}^2(t), \ \widetilde{y}'(t) = 2\widetilde{u}(t)\widetilde{v}(t).$$
 (12)

Opazimo lahko, da je preoblikovan hodograf,

$$\widetilde{x}'(t) = \cos\theta [\widetilde{u}^2(t) - \widetilde{v}^2(t)] - \sin\theta 2u(t)v(t),$$

$$\widetilde{y}'(t) = \sin\theta [\widetilde{u}^2(t) - \widetilde{v}^2(t)] + \cos\theta 2u(t)v(t),$$
(13)

dobljen z vstavljanjem polinomov v (12)

$$\begin{split} \widetilde{u}(t) &= cos \frac{1}{2}\theta u(t) - sin \frac{1}{2}\theta v(t), \\ \widetilde{v}(t) &= sin \frac{1}{2}\theta u(t) + cos \frac{1}{2}\theta v(t). \end{split} \tag{14}$$

Z uporabo kompleksne predstavitve $r\prime(t)=w^2(t)$, kjer je w(t)=u(t)+iv(t), pri rotaciji dobimo $\widetilde{r}\prime(t)=exp(i\theta)w^2(t)=\widetilde{r}\prime(t)=\widetilde{w}^2(t)$, kjer je realni in imaginarni del $\widetilde{w}=exp(i\frac{1}{2}\theta)w(t)=\widetilde{u}(t)+i\widetilde{v}(t)$ definiran z (14).

XI. KAREKTERIZACIJA KRIVULJE PETE STOPNJE S PH

Kontrolne točke (8) za krivulje pete stopnje s PH so oblike

$$p_{1} = p_{0} + \frac{1}{5}w_{0}^{2},$$

$$p_{2} = p_{1} + \frac{1}{5}w_{0}w_{1},$$

$$p_{3} = p_{2} + \frac{1}{5}\frac{2w_{1}^{2} + w_{0}w_{2}}{3},$$

$$p_{4} = p_{3} + \frac{1}{5}w_{1}w_{2},$$

$$p_{5} = p_{4} + \frac{1}{5}w_{2}^{2}.$$
(15)

Z uporabo kompleksne oblike dobimo karakterizacijo za krivulje pete stopnje s PH v smislu geometrije kontrolnih poligonov. Ponovno zapišemo enačbe (15) v smislu $\Delta p_k=p_{k-1}-p_k$ kot

$$\Delta p_0 = \frac{w_0^2}{5}, \ \Delta p_1 = \frac{w_0 w_1}{5},$$

$$\Delta p_2 = \frac{2w_1^2 + w_0 w_2}{15},$$

$$\Delta p_3 = \frac{w_1 w_2}{5}, \ \Delta p_4 = \frac{w_2^2}{5}.$$
(16)

Za regularne krivulje velja $\Delta p_0 \neq 0$ in $\Delta p_4 \neq 0$.

Izrek 4. Naj bodo noge kontrolnega polinoma regularne krivulje pete stopnje definirane kot kompleksne vrednosti $\Delta p_0, ..., \Delta p_4$. Potem ima krivulja pitagorejski hodograf natanko tedaj, ko te vrednosti zadoščajo enačbi:

$$\Delta p_0(\Delta p_3)^2 = \Delta p_4(\Delta p_1)^2,\tag{17}$$

in se ujemajo z nasednjim sistemom umejitev:

$$3\Delta p_{0}\Delta p_{1}\Delta p_{2} - (\Delta p_{0})^{2}\Delta p_{3} - 2(\Delta p_{1})^{3} = 0,$$

$$3\Delta p_{4}\Delta p_{3}\Delta p_{2} - (\Delta p_{4})^{2}\Delta p_{1} - 2(\Delta p_{3})^{3} = 0,$$

$$3\Delta p_{0}\Delta p_{3}\Delta p_{2} - \Delta p_{4}\Delta p_{0}\Delta p_{1} - 2(\Delta p_{1})^{2}\Delta p_{3} = 0,$$

$$3\Delta p_{0}\Delta p_{3}\Delta p_{2} - \Delta p_{4}\Delta p_{0}\Delta p_{1} - 2(\Delta p_{1})^{2}\Delta p_{3} = 0,$$

$$3\Delta p_{4}\Delta p_{1}\Delta p_{2} - \Delta p_{0}\Delta p_{4}\Delta p_{3} - 2(\Delta p_{3})^{2}\Delta p_{1} = 0,$$

$$9\Delta p_{0}(\Delta p_{2})^{2} - 6(\Delta p_{1})^{2}\Delta p_{2} - 2\Delta p_{0}\Delta p_{1}\Delta p_{3} - (\Delta p_{0})^{2}\Delta p_{4} = 0,$$

$$9\Delta p_{4}(\Delta p_{2})^{2} - 6(\Delta p_{3})^{2}\Delta p_{2} - 2\Delta p_{4}\Delta p_{3}\Delta p_{1} - (\Delta p_{4})^{2}\Delta p_{3} = 0.$$
 (18)
$$p_{5} = p_{4} + \frac{1}{5}w_{0}^{2},$$

$$p_{2} = p_{1} + \frac{1}{1}(w_{0}^{2} + w_{0}w_{1}),$$

$$p_{3} = p_{2} + \frac{1}{30}(w_{0}^{2} + 4w_{0}w_{1} + w_{1}^{2}),$$

$$p_{4} = p_{3} + \frac{1}{10}(w_{0}w_{1} + w_{1}^{2}),$$

$$p_{5} = p_{4} + \frac{1}{5}w_{1}^{2}.$$
 (19)

Če sta oba Δp_1 in Δp_3 neničelna, potem enačba (17) in ena od prvih štirih enačb (18) predstavlja zadosten in potreben pogoj, da je krivulja pete stopnje krivulja s PH. Če $\Delta p_1 = \Delta p_3 = 0$, potem (17) in prve štiri enačbe iz (18) postanejo identitete in moramo vzeti eno izmed dveh zadnjih enačb iz (18) za pogoj.

XII. GEOMETRIJA KONTROLNEGA POLIGONA

A. Samo štiti različne kontrolne točke

Ta primer nastopi, ko vzamemo $w_1=0$ v (15), torej je $p_1=p_2$ in $p_3=p_4$. Potem je kontrolni poligon naslednje oblike:

$$\Delta p_0 = \frac{w_0^2}{5}, \ \Delta p_1 = 0,$$

$$\Delta p_2 = \pm \frac{w_0 w_2}{15}, \ \Delta p_3 = 0, \ \Delta p_4 = \frac{w_2^2}{5}.$$

Čeprev imamo samo štiri različne kontrolne točke, ta hodogaf definira pravo krivuljo pete stopnje s PH, in ne kubično krivuljo s PH zvišane stopnje. Še več, ta krivulja je regularna, če velja $w_0, w_2 \neq 0$.

B. Samo pet različnih kontrolnih točk

V tem primeri je vrednost od w_1 izbrana tako, da velja $2w_1^2 + w_0w_2 = 0$, in zato velja $p_2 = p_3$. Tako velja, da je $\Delta p_2 = 0$ in ostale noge kontrolnega pogolina lahko izrazimo s samo w_0 in w_2 :

$$\Delta p_0 = \frac{w_0^2}{5}, \ \Delta p_1 = \pm i \frac{w_0}{5} \sqrt{\frac{w_0 w_2}{2}},$$
$$\Delta p_3 = \pm i \frac{w_2}{5} \sqrt{\frac{w_0 w_2}{2}}, \ \Delta p_4 = \frac{w_2^2}{5}.$$

Za tako degenerirano obliko, sta pogoja (17) in (18) lahko reducirana na:

$$\Delta p_0(\Delta p_3)^2 = \Delta p_4(\Delta p_1)^2,$$

$$\Delta p_0 \Delta p_4 + 2\Delta p_1 \Delta p_3 = 0.$$

C. Krivulja s PH povišane stopnje

Stopnjo katerekoli krivulje s PH je mogoče dvigniti, ne da bi pri tem ogrozili pitagorejsko naravo njenega hodografa, saj višanje stopnje pomeni le redundantno predstavitev. Če postopek višanje stopnje nanesemo dvakrat na kontrolni poligon kubične krivulje s PH, potem ima krivulja pete stopnje s PH kontrolne točke:

Preverimo lahko, da so enačbe (19) oblike (15) le da so w_0, w_1, w_2 zamenjani z $w_0, \frac{1}{2}(w_0 + w_1), w_1$. Od tod sledi, da je vrednost w_1 v enačba (15) vedno povprečje vrednosti w_0 in w_2 .

LITERATURA

[1] R. T. Farouki: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, poglavje 17 in 19.