CS 3510 — Algorithms, Fall 2022

Lecture 1: Welcome & Big-O

January 11, 2022

Lecturer: Frederic Faulkner Scribe: Aditya Diwakar

Welcome to CS3510! Lecture began by reviewing the syllabus, please read this syllabus and become familiar with the class structure.

1 Big O

Why do we care about Big O? It's hard to talk about performance because runtime (by seconds) varies by computer by computer. Time based performance is affected by a variety of things: code efficiency, hardware, background tasks, etc. We only care about one item: *code efficiency*.

We want to ignore multiplicative (hardware performance) and additive (i.e. loading time) constants. Hence, we introduce Big-O. We say the following:

$$f(n)$$
 is $O(g(n))$ if $\exists c, k : f(n) \le c \cdot g(n)$ when $n > k$ (for large enough inputs).

Another way to say this is that if f(n) = O(g(n)), then we can say that the growth of f(n) is bounded above by g(n).

The "O" can be thought of equivelantly as \leq . When we say f(n) is O(g(n)), this is somewhat related to $f(n) \leq g(n)$. We are comparing the rates of growth (rather than the functions directly). We also have:

$$\Omega$$
: $f(n)$ is $\Omega(g(n))$ if $g(n)$ is $O(f(n))$ (reverse)
 Θ : $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ AND $g(n)$ is $O(f(n))$ (both ways)

1.1 Examples

- 1. n is $O(n^2)$ (n^2 grows faster than n)
- 2. n^2 is $\Omega(n)$ (n grows slower than n^2)
- 3. n is $\Theta(3n + 27001)$ (ignoring constants, these grow at the same rate)

Proving (3) using the definition from above:

$$\frac{n}{3n + 27001} < 1 \qquad n \ge 0 \tag{1}$$

and the reverse direction...

$$\frac{3n + 27001}{n} = \frac{3n}{n} + \frac{27001}{n} = 3 + \underbrace{\frac{27001}{n}}_{\leq 27001 \text{ when } n \geq 1} \leq 3 + 27001 = 27004 \quad (2)$$

Hence, using equation (1), we have shown that n is O(3n + 27001) using (2), 3n + 27001 is O(n), hence n is $\Theta(3n + 27001)$.

1.2 Important Notes of Big O

- 1. Ignore multiplicative constants
- 2. n^a dominates n^b if a > b: n^2 is $O(n^4)$ and n^4 is NOT $O(n^2)$ so we can focus on what contributes to growth the most, simplifying polynomials.
- 3. Exponentials dominate any polynomial, for example:

$$2^{0.5n}$$
 is $\Omega(n^{16,000} + n^{10,000,000})$
 a^n is dominated by b^n for $a < b$

4. Any polynomial dominates any log

For practice, let us compare 2^n vs 2^{n+1} by using a ratio method:

$$\frac{2^n}{2^{n+1}} = \frac{1}{2}$$
 and $\frac{2^{n+1}}{2^n} = 2$

hence 2^n is $O\left(2^{n+1}\right)$ and 2^{n+1} is $O\left(2^n\right)$ meaning 2^{n+1} is $\Theta(2^n)$.

1.3 More Examples

1. What is the relationship between n and $3^{\log_5 n}$?

Using logarithm rules, notice that $3 = 5^{\log_5 3}$ so we can rewrite $3^{\log_5 n}$:

$$3^{\log_5 n} = \left(5^{\log_5 3}\right)^{\log_5 n} = 5^{(\log_5 3 \cdot \log_5 n)} = \left(5^{(\log_5 n)}\right)^{\log_5 3} = \boxed{n^{\log_5 3}}$$

and since 3 < 5, then $\log_5 3 < 1$, meaning n dominates $3^{\log_5 n}$.

- 2. What is the relationship between \sqrt{n} and $\log^2 n$?

 Recall that $\sqrt{n} = n^{0.5}$ meaning $n^{0.5}$ is polynomial and using rule (4), we know that this dominates any logarithm hence $\log^2 n$ is $O(\sqrt{n})$
- 3. What is the relationship between 2^n and $2^{n/2}$?

$$2^{n/2} = 2^{0.5n} = (2^{0.5})^n = (\sqrt{2})^n$$

This means that $2^{n/2}$ has a smaller base, and therefore is $O(2^n)$.