Lab number: 4

Lab title: Normal incidence of TEM wave onto layered media

Date lab was performed: 18.05.2020

Names of lab group members: Krzysztof Rudnicki

Theoretical introduction:

We are going to investigate on the transmission of TEM wave which goes through the layered media and finding some practical applications. Laboratory consists of two parts:

Firstly we will concentrate on the transmission through a dielectric slab surrounded with the air. This will help us understand the phenomenon of non reflecting full-wave slab and familiarize with the half-wavelength transformer.

Secondly we will work on more complex scenario where there are three different dielectrics and we will try to make a design of the matched quarter-wave transformer.

a = 8,5

Cases:

$$\varepsilon_{\rm r} = 8.5, f_1 = 6.86 \, {\rm GHz}$$

1) Dielectric slab in the air. Diel medium is a lossless non-magnetic dielectric. We need to find in each case:

SWR₁, λ_1 in the first region SWR₂, λ_2 in the second region SWR₃, λ_3 in the third region

For

$$f_1$$
, 0,5 f_1 , 0,9 f_2

2) $\varepsilon_{\rm r}=8.5, {\rm f_1}=2.93~{\rm GHz}$ Dielectric slab between the air and another dielectric. Diel medium is a lossless non-magnetic dielectric. We need to find: ${\rm SWR_1}, \lambda_1$ in the first region ${\rm SWR_2}, \lambda_2$ in the second region ${\rm SWR_3}, \lambda_3$ in the third region

1)
$$f_1 = \frac{c}{\sqrt{\varepsilon_2 \times d}} = 6.86 \text{ GHz}$$

Where c – light speed, ε_2 is equal to a and d is slab length.

$$SWR_1 \approx 1, \lambda_1 = 43 \text{ mm}$$

$$SWR_2 \approx 2.8, \lambda_2 = 30 \ mm$$

$$SWR_3 \approx 1, \lambda_3 = 43,5 \text{ mm}$$

$$0.5 \times f_1 = 3.43 \text{ GHz}$$

$$SWR_1 \approx 1, \lambda_1 = 88 \text{ mm}$$

$$SWR_2 \approx 2.9, \lambda_2 = 28 \, mm$$

$$SWR_3 \approx 1, \lambda_3 = 88 \text{ mm}$$

$$0.9 \times f_1 = 6.18 \, \text{GHz}$$

$$SWR_1 \approx 3.9, \lambda_1 = 48 \text{ mm}$$

$$SWR_2 \approx 2.8, \lambda_2 = 18 \, mm$$

$$SWR_3 \approx 1$$
, $\lambda_3 = 48 \text{ mm}$

How do the envelopes look like at each frequency? See screens above

Describe your understanding of a half-wave transformer: When we use it for EM wave, it is transparent.

How does it transform the impedance of the third medium? Half-wave transformer does not transform the third medium at all.

2)
$$f_1 = \frac{c}{4 \times \sqrt{\varepsilon_2} \times d} = 6,86 \text{ GHz},$$

$$\varepsilon_{\text{diel 1}} = \sqrt{a} = 2,91 \text{ and } \varepsilon_{\text{diel 2}} = 8,5$$

$$SWR_1 \approx 1, \lambda_1 = 102 \text{ mm}$$

$$SWR_2 \approx 1,7, \lambda_2 = 56 \, mm$$

$$SWR_3 \approx 1, \lambda_3 = 34 \text{ mm}$$

How do the envelopes look like in the intermediate slab? They look like sinus wave, as shown in the picture above.

Describe your understanding of a quarter-wave transformer. What it does is inverting the impedance.

How does it transform the impedance of the third medium? First impedance is equal to 3 times the impedance of the third medium.

Answer the following questions:

a) What is the impedance condition for the quarter-wave transformer?

$$Z_2 = \sqrt{Z_1 \times Z_3}$$

b) Propose the possible applications of a half-wave transformer:

We can use it either for signal demodulation circuit. Circuits which are going to generate pulses or battery charger circuit for low power.