Uma Demonstração Alternativa para Representação de Preferências sobre Menus com Contingências Imprecisas

João Vítor Rego Costa Orientador: Prof. Dr. Gil Riella

31 de março de 2015

Axiomas da Preferência l

Seja B um conjunto finito de alternativas e $\Delta(B)$ o conjunto das medidas de probabilidade sobre B. $\mathbb X$ é a coleção de subconjuntos fechados de $\Delta(B)$, os menus, e \succeq denotará a preferência sobre $\mathbb X$.

Order \succsim é completa e transitiva

Continuity $\forall x \in \mathbb{X}, \{y \in \mathbb{X} : y \succsim x\}$ e $\{y \in \mathbb{X} : x \succsim y\}$ são fechados

Monotonicity Para quaisquer $x, x' \in \mathbb{X}$ com $x \supseteq x'$, temos $x \succsim x'$ Indifference to Randomization (IR) $x \sim co(x)$ Nondegeneracy Existem menus $x, x' \in \mathbb{X}$ tais que $x \succ x'$ Preference Convexity $x \succsim x' \Rightarrow \lambda x + (1 - \lambda)x' \succsim x'$.

Axiomas da Preferência II

Para qualquer estado, $\{b_*\}$ e $\Delta(B)$ proporcionam o menor e maior payoffs, respectivamente.

Seja, então, o menu certo
$$x_p := p\Delta(B) + (1-p)\{b_*\}$$

Certainty Independence Para $\lambda \in (0,1)$ e x_p , temos

$$x \succsim x' \Leftrightarrow \lambda x + (1 - \lambda)x_p \succsim \lambda x' + (1 - \lambda)x_p$$

Axiomas da Preferência II

Para qualquer estado, $\{b_*\}$ e $\Delta(B)$ proporcionam o menor e maior payoffs, respectivamente.

Seja, então, o menu certo $x_p := p\Delta(B) + (1-p)\{b_*\}$

Certainty Independence Para $\lambda \in (0,1)$ e x_p , temos

$$x \succsim x' \Leftrightarrow \lambda x + (1-\lambda)x_p \succsim \lambda x' + (1-\lambda)x_p$$

Finiteness Para todo x, existe um menu finito $x^f \subseteq x$ tal que, para todo $\lambda \in (0,1]$ e qualquer menu x', $\lambda x + (1-\lambda)x' \sim \lambda x^f + (1-\lambda)x'$.

Worst Para a pior alternativa b_* , temos $\lambda (x \cup \{b_*\}) + (1 - \lambda)y \sim \lambda x + (1 - \lambda)y$ para quaisquer menus $x, y \in \mathbb{X}$ e $\lambda \in (0, 1)$.

Resultado principal

Teorema 1

A preferência \succsim sobre o espaço de menus $\mathbb X$ satisfaz os axiomas mencionados acima se, e somente se, existe um conjunto finito de utilidades $N\subseteq\{u\in\mathbb R_+^B:u(b_*)=0$ e $\max_B u(b)=1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que

$$x \succsim y \iff \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} \mathbb{E}_{\beta}(u) \ge \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in y} \mathbb{E}_{\beta}(u)$$

para quaisquer $x,y\in\mathbb{X}$ e $\mathbb{E}_{eta}(u)$ a utilidade esperada vNM da loteria eta.

Duas abordagens

Nosso trabalho propõe uma demonstração alternativa àquela encontrada em Epstein et al. (2007).

EMS Como a preferência satisfaz Certainty Independence, (i) começa-se obtendo uma representação para os menus certos para, em seguida, (ii) estendê-la a todo o espaco de menus.

Duas abordagens

Nosso trabalho propõe uma demonstração alternativa àquela encontrada em Epstein et al. (2007).

- EMS Como a preferência satisfaz Certainty Independence, (i) começa-se obtendo uma representação para os menus certos para, em seguida, (ii) estendê-la a todo o espaço de menus.
- Alternativa (i) Definimos \succsim^* como o maior subconjunto de \succsim que satisfaz independência; (ii) apesar de \succsim^* ser incompleta, podemos...

Representação para preferências incompletas

... utilizar o resultado abaixo;

Teorema 2 (Kochov (2007))

Uma preordem $\succcurlyeq\subseteq\mathbb{X}\times\mathbb{X}$ satisfaz Continuity, Nondegeneracy, Independence e Monotonicity se, e somente se, existe um conjunto S, uma função utilidade dependente de estado $U:\Delta(B)\times S\to R$ e um conjunto fechado e convexo $\mathcal M$ de medidas de probabilidade sobre S tais que

(i) $x \succcurlyeq y$ se, e somente se,

$$\int_{\mathcal{S}} \max_{\beta \in x} U(\beta, s) d\mu \geq \int_{\mathcal{S}} \max_{\beta \in y} U(\beta, s) d\mu \quad \forall \mu \in \mathcal{M};$$

(ii) cada $U(\cdot, s)$ é uma função utilidade esperada, i.e.

$$U(\beta, s) = \sum_{b \in B} \beta(b)U(b, s).$$

Representação para preferências incompletas

(iii) adaptamos o Teorema 2 ao caso de ≿*, provando a finitude do espaço de estados e normalizando as utilidades;

Lema 1

Existe um conjunto finito de funções

 $N\subseteq\{u\in\mathbb{R}_+^B:u(b_*)=0\ \mathrm{e}\ \max_Bu(b)=1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que, para todo $x,y\in\mathbb{X}$:

$$x \succsim^* y \Leftrightarrow \sum_{u \in N} \pi(u) \max_{\beta \in x} \mathbb{E}_{\beta}(u) \ge \sum_{u \in N} \pi(u) \max_{\beta \in y} \mathbb{E}_{\beta}(u) \quad \forall \pi \in \Pi$$

Negative Certainty Independence (NCI)

(iv) demonstramos que a relação original satisfaz NCI. Por fim, basta obter o formato min-max do Teorema 1.

Lema 2

A relação \succeq satisfaz Negative Certainty Independence (NCI), i.e. se $x \succeq x_p$, então $\lambda x + (1-\lambda)y \succeq \lambda x_p + (1-\lambda)y$ para todo $\lambda \in (0,1)$ e $y \in \mathbb{X}$.

Aplicações

Propomos duas aplicações da técnica que utilizamos para obter resultados do mundo de *atos* adaptados para o caso de menus:

Preferências Variacionais (MMR) Adaptaríamos a axiomatização Bewley-variacional de Faro (2015) para o caso de menus e, em seguida, aplicaríamos a demonstração de Brotherhood (2014) para obter a representação variacional de Maccheroni et al. (2006).

Racionalidade Objetiva e Subjetiva (GMMS) Adicionando dois axiomas, Consistency e Default to Certainty, às primitivas do modelo de Gilboa et al. (2010), podemos obter uma versão do resultado principal dos autores para o caso de menus.

Aplicações II

Um terceira aplicação possível se refere à prova de que os agentes são *bayesian updaters* de suas crenças quando recebem um sinal a respeito do espaço de estados da natureza (Riella (2013)).

Aplicações II

Um terceira aplicação possível se refere à prova de que os agentes são *bayesian updaters* de suas crenças quando recebem um sinal a respeito do espaço de estados da natureza (Riella (2013)).

Definição: Positive Additive Expected Utility (PAEU)

Dizemos que uma relação $\succcurlyeq\subseteq\mathbb{X}\times\mathbb{X}$ é PAEU se existe um conjunto $N\subseteq\{u\in\mathbb{R}_+^B:u(b_*)=0\ \text{e max}_Bu(b)=1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que:

1. $x \succcurlyeq y \Leftrightarrow$

$$\min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} \mathbb{E}_{\beta}(u) \ge \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in y} \mathbb{E}_{\beta}(u)$$

2. $\bigcup_{\pi \in \Pi} supp(\pi) = N$ e, para u e u' distintas, podemos afirmar que não são uma transformação positiva afim uma da outra.

Aplicações II

Agora, considere duas preferências PAEU, \geq e \geq *. Como fizemos anteriormente, identifique o maior subconjunto dessas relações que satisfazem independência, \geq_r e \geq_r^* , que são incompletas. Impondo o axioma de *Flexibility Consistency* de Moura and Riella (2013)...

Flexibility Consistency

Para quaisquer menus $x,y\in\mathbb{X},\ x\succcurlyeq_r^* y$ e não $x\succcurlyeq_r y$ ou $y\succcurlyeq_r^* x$ e não $y\succcurlyeq_r x$ implicam que existe um menu z tal que $x\cup y\cup z\sim_r^* x\cup z$, mas $x\cup y\cup z\sim_r x\cup z$.

...obtemos que as seguintes afirmações são equivalentes

1. Sejam N e N^* os espaços de estados subjetivos de \succcurlyeq_r e \succcurlyeq_r^* , respectivamente. Para quaisquer menus x e y com

$$\max_{\beta \in x} \mathbb{E}_{\beta}(u) = \max_{\beta \in y} \mathbb{E}_{\beta}(u) \ \forall u \in N \setminus N^*,$$

$$x \succcurlyeq_r y \Leftrightarrow y \succcurlyeq_r^* x$$
.

2. Para toda representação (N,Π) de \succcurlyeq_r , existe $M\subseteq N$ tal que (M,Π_M) representa \succcurlyeq_r^* , onde Π_M é o conjunto de *priors* $\pi\in\Pi$ com $\pi(M)>0$ atualizadas pela regra de Bayes.

- Brotherhood, L. M. M. (2014). Uma Demonstração Alternativa para a Representação de Preferências Variacionais. Ph. D. thesis, University of Brasília.
- Epstein, L. G., M. Marinacci, and K. Seo (2007). Coarse contingencies and ambiguity. *Theoretical Economics* 2, 355–394.
- Faro, J. H. (2015). Variational Bewley Preferences. Journal of Economic Theory 157, 699–729.
- Gilboa, I., F. Maccheroni, M. Marinacci, and D. Schmeidler (2010). Objective and Subjective Rationality in a Multiple Prior Model. *Econometrica* 78(2), 755–770.
- Kochov, A. S. (2007). Subjective States without the Completeness Axiom.
- Maccheroni, F., M. Marinacci, and A. Rustichini (2006). Ambiguity aversion, robustness, and the variational representation of preferences. *Econometrica* 74 (6), 1447–1498.
- Moura, F. S. D. and G. Riella (2013). Preference for Flexibility and Dynamic Consistency with Incomplete Preferences.
- Riella, G. (2013, November). Preference for Flexibility and Dynamic Consistency. Journal of Economic Theory 148(6), 2467–2482.

