The group G is isomorphic to the group labelled by [42, 3] in the Small Groups library. Ordinary character table of $G \cong C7 \times S3$:

	1a	2a	7a	3a	14a	7b	21a	14b	7c	21b	14c	7d	21c	14d	7e	21d	14e	7f	21e	14f	21f
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1
χ_3	1	-1	$E(7)^{6}$	1	$-E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$-E(7)^{5}$	$E(7)^{4}$	$E(7)^{5}$	$-E(7)^4$	$E(7)^{3}$	$E(7)^{4}$	$-E(7)^{3}$	$E(7)^{2}$	$E(7)^{3}$	$-E(7)^2$	E(7)	$E(7)^{2}$	-E(7)	E(7)
χ_4	1	-1	$E(7)^{5}$	1	$-E(7)^{5}$	$E(7)^{3}$	$E(7)^{5}$	$-E(7)^{3}$	E(7)	$E(7)^{3}$	-E(7)	$E(7)^{6}$	E(7)	$-E(7)^{6}$	$E(7)^4$	$E(7)^{6}$	$-E(7)^4$	$E(7)^{2}$	$E(7)^{4}$	$-E(7)^2$	$E(7)^2$
χ_5	1	-1	$E(7)^4$	1	$-E(7)^4$	E(7)	$E(7)^{4}$	-E(7)	$E(7)^{5}$	E(7)	$-E(7)^5$	$E(7)^{2}$	$E(7)^{5}$	$-E(7)^2$	$E(7)^{6}$	$E(7)^{2}$	$-E(7)^6$	$E(7)^{3}$	$E(7)^{6}$	$-E(7)^3$	$E(7)^3$
χ_6	1	-1	$E(7)^{3}$	1	$-E(7)^3$	$E(7)^{6}$	$E(7)^{3}$	$-E(7)^6$	$E(7)^2$	$E(7)^{6}$	$-E(7)^2$	$E(7)^{5}$	$E(7)^{2}$	$-E(7)^5$	E(7)	$E(7)^{5}$	-E(7)	$E(7)^4$	E(7)	$-E(7)^4$	$E(7)^4$
χ_7	1	-1	$E(7)^{2}$	1	$-E(7)^2$	$E(7)^4$	$E(7)^{2}$	$-E(7)^4$	$E(7)^{6}$	$E(7)^4$	$-E(7)^6$	E(7)	$E(7)^{6}$	-E(7)	$E(7)^{3}$	E(7)	$-E(7)^3$	$E(7)^{5}$	$E(7)^{3}$	$-E(7)^5$	$E(7)^5$
χ_8	1	-1	E(7)	1	-E(7)	$E(7)^2$	E(7)	$-E(7)^{2}$	$E(7)^{3}$	$E(7)^2$	$-E(7)^3$	$E(7)^4$	$E(7)^{3}$	$-E(7)^4$	$E(7)^{5}$	$E(7)^4$	$-E(7)^{5}$	$E(7)^{6}$	$E(7)^{5}$	$-E(7)^6$	$E(7)^6$
χ_9	1	1	$E(7)^{6}$	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{4}$	$E(7)^{3}$	$E(7)^4$	$E(7)^3$	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{2}$	E(7)	$E(7)^{2}$	E(7)	E(7)
χ_{10}	1	1	$E(7)^{5}$	1	$E(7)^{5}$	$E(7)^{3}$	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{3}$	E(7)	$E(7)^{6}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	$E(7)^4$	$E(7)^{2}$	$E(7)^{2}$
χ_{11}	1	1	$E(7)^{4}$	1	$E(7)^{4}$	E(7)	$E(7)^4$	E(7)	$E(7)^{5}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^3$
χ_{12}	1	1	$E(7)^{3}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{5}$	E(7)	$E(7)^4$	E(7)	$E(7)^4$	$E(7)^4$
χ_{13}	1	1	$E(7)^{2}$	1	$E(7)^{2}$	$E(7)^4$	$E(7)^{2}$	$E(7)^4$	$E(7)^{6}$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{6}$	E(7)	$E(7)^3$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(7)^{3}$	$E(7)^{5}$	$E(7)^5$
χ_{14}	1	1	E(7)	1	E(7)	$E(7)^{2}$	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^2$	$E(7)^{3}$	$E(7)^4$	$E(7)^{3}$	$E(7)^4$	$E(7)^{5}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^6$
χ_{15}	2	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	-1
χ_{16}	2	0	$2*E(7)^3$	-1	0	$2*E(7)^6$	$-E(7)^{3}$	0	$2*E(7)^2$	$-E(7)^6$	0	$2*E(7)^5$	$-E(7)^2$	0	2 * E(7)	$-E(7)^5$	0	$2*E(7)^4$	-E(7)	0	$-E(7)^4$
χ_{17}	2	0	$2*E(7)^2$	-1	0	$2*E(7)^4$	$-E(7)^2$	0	$2*E(7)^6$	$-E(7)^4$	0	2 * E(7)	$-E(7)^6$	0	$2*E(7)^3$	-E(7)	0	$2*E(7)^5$	$-E(7)^3$	0	$-E(7)^{5}$
χ_{18}	2	0	2*E(7)	-1	0	$2*E(7)^2$	-E(7)	0	$2*E(7)^3$	$-E(7)^2$	0	$2*E(7)^4$	$-E(7)^{3}$	0	$2*E(7)^5$	$-E(7)^4$	0	$2*E(7)^6$	$-E(7)^{5}$	0	$-E(7)^{6}$
χ_{19}	2	0	$2*E(7)^{6}$	-1	0	$2*E(7)^5$	$-E(7)^{6}$	0	$2*E(7)^4$	$-E(7)^{5}$	0	$2*E(7)^3$	$-E(7)^4$	0	$2*E(7)^2$	$-E(7)^{3}$	0	2 * E(7)	$-E(7)^{2}$	0	-E(7)
χ_{20}	2	0	$2*E(7)^5$	-1	0	$2*E(7)^3$	$-E(7)^{5}$	0	2 * E(7)	$-E(7)^{3}$	0	$2*E(7)^6$	-E(7)	0	$2*E(7)^4$	$-E(7)^{6}$	0	$2*E(7)^2$	$-E(7)^4$	0	$-E(7)^{2}$
χ_{21}	2	0	$2*E(7)^4$	-1	0	2*E(7)	$-E(7)^4$	0	$2*E(7)^5$	-E(7)	0	$2*E(7)^2$	$-E(7)^{5}$	0	$2*E(7)^6$	$-E(7)^{2}$	0	$2*E(7)^3$	$-E(7)^{6}$	0	$-E(7)^{3}$

Trivial source character table of $G \cong C7 \times S3$ at p = 7:

Trivial source character table of $G = Ct$ x 53 at $p = t$.						
Normalisers N_i		N_1			N_2	
p-subgroups of G up to conjugacy in G		P_1			$\overline{P_2}$	
Representatives $n_j \in N_i$	1 <i>a</i>	2a	3a	1a	2a - 3a	$\boldsymbol{\iota}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{19} + 0 \cdot $	7	7	7	0	0 0	\neg
		-7	7	0	0 0	.
	14	0	-7	0	0 0	
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	1	1	1	1	1 1	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $	1	-1	1	1 -	-1 1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	2	0	-1	2	0 -	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,3,7,13,19,25,31)(2,5,10,16,22,28,34)(4,8,14,20,26,32,37)(6,11,17,23,29,35,39)(9,15,21,27,33,38,41)(12,18,24,30,36,40,42)]) \cong C7$