Scilab Textbook Companion for Electrical Machines 3rd Edition by S. K. Bhattacharya¹

Created by
Devavarapu Hemanth Kumar
B TECH
Electrical Engineering
NIT DURGAPUR
College Teacher
Dr. Sankar Narayan Mahato
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Machines 3rd Edition

Author: S. K. Bhattacharya

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 3

Year: 2009

ISBN: 9780070669215

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
2	Direct Current Machines	8
3	Transformers	36
4	Three Phase Induction Machines	65
5	Three Phase Synchronous Machines	96

List of Scilab Codes

Exa 2.4	Calculating average induced emf	8
Exa 2.5	Calculating useful flux per pole	9
Exa 2.6	Calculating emf generated on open circuit condition .	9
Exa 2.7	calculate induced emf	10
Exa 2.8	calculating the speed and percentage increase in flux .	11
Exa 2.9	Calculating electromagnetic torque	11
Exa 2.10	calculating the torque developed	12
Exa 2.11	calculating various parameters of dc motor	13
Exa 2.12	calculating various parameters of dc machine	14
Exa 2.13	calculating speed of machine	14
Exa 2.14	calculating speed ratio of generator and motor working conditios	15
Exa 2.15	calculating flux and area of pole shoe and no load terminal voltage	16
Exa 2.16	calculate approximate time of commutation	17
Exa 2.17	calculate resistance	18
Exa 2.18	calculating resistance required in series	19
Exa 2.19	calculating resistance required in series and also the speedwhen torque is halfed	20
Exa 2.20	calculating the speed of the motor	21
Exa 2.21	Calculate the fullyload speed of the motor	22
Exa 2.22	Calculate the value of resistance	22
Exa 2.23	Calculate the speed	23
Exa 2.24	Calculate the fullyload speed of the motor	24
Exa 2.25	Calculate the ampere turns for each commutating pole	25
Exa 2.26	Estimating the number of turns needed on each com-	9 <i>C</i>
Exa 2.27	mutating pole	26 27

Exa 2.29	Calculate the efficiency of machine when running as gen-
	erator and motor
Exa 2.30	Calculating the efficiency of the generator at full load
	and at half load
Exa 2.31	Calculate the efficiency of machine
Exa 2.32	Calculate the appox efficiency of each machine
Exa 2.33	Calculate the appox efficiency of each machine
Exa 2.34	Calculate the efficiences of the generator at full load .
Exa 3.1	calculating number of turns and primary and secondary
	currents and value of flux
Exa 3.2	calculating number of primary and secondary turns
Exa 3.3	calculating induced emf and maximium flux density .
Exa 3.4	calculating induced emf and maximium flux density .
Exa 3.5	Calculating the current and power factor of the primary
	circuit
Exa 3.6	Calculating the value of primary current
Exa 3.7	Calculating the magnetising current and core loss and
	flux
Exa 3.8	Calculating the current and power factor of the primary
	circuit
Exa 3.9	Calculating magnetising current and primary current
	and primary power factor
Exa 3.10	Calculating primary current and primary power factor
Exa 3.11	Calculating equivalent impedence referred to primary .
Exa 3.12	Calculating equivalent impedence referred to primary .
Exa 3.13	Calculate current and power input
Exa 3.14	Calculate current and power input
Exa 3.15	Calculate percentage regulation
Exa 3.16	Calculating secondary voltage and voltage regulation .
Exa 3.17	Calculating regulation
Exa 3.19	Calculating the efficiency and voltage regulation
Exa 3.20	Calculate voltsge to be applied
Exa 3.21	Calculate circuit constants and efficiency
Exa 3.22	Calculate efficiency
Exa 3.24	Calculate efficiency of transformer
Exa 3.25	Calculate efficiency of transformer
Exa 3.26	Calculate efficiency of transformer
Exa 3.27	Calculate efficiency of transformer

Exa 3.28	Calculate current in different parts of winding of auto-
Exa 3.29	transformer
Exa 3.30	· · · · · · · · · · · · · · · · · · ·
	Calculate efficiency of transformer
Exa 3.32	Calculate current in different parts of winding of auto-
Exa 4.1	transformer
£xa 4.1	to calculate synchronous speed and speed of rotro for
Exa 4.2	slip condition
Exa 4.2 Exa 4.3	to find out rotor running at higher slip
	calculating slip and number of poles
Exa 4.4	Calculate frequency of rotor induced emf
Exa 4.5	Calculating the speed of running motor and its slip
Exa 4.6	Calculating the speed of rotating magnetic field
Exa 4.7	Calculate rotor current and phase difference
Exa 4.8	Calculating the running speed and frequency of the ro-
E 4.0	Calculation the approximation and formula of the man
Exa 4.9	Calculating the running speed and frequency of the ro-
E 4 10	tor magnet current
Exa 4.10	Calculating the frequency of the rotor current
Exa 4.11	Calculating the rotor current
Exa 4.12	Calculate power developed and efficiency
Exa 4.13	Calculating the rotor loss and rotor speed
Exa 4.14	Calculating standstill rotor reactance
Exa 4.15	Calculating new full load speed
Exa 4.16	Calculating starting torque
Exa 4.18	Calculating external resistance
Exa 4.20	Calculating full load rotor loss and rotor input and out-
D 4.01	put torque
Exa 4.21	Calculating the slip and rotor copper loss and the output
T 0.00	horse power and efficiency
Exa 2.22	Calculate the value of resistance
Exa 4.22	Calculating the slip and rotor speed and mechanical
	power developed and rotor copper loss per phase and
D 4.05	resistance per phase
Exa 4.23	Calculating additional resistance required
Exa 4.24	Calculate speed of motor and maximium torque
Exa 4.25	Calculate starting current
Exa. 4.26	Calculate starting line current and starting torque

Exa 4.28	Calculate starting torque	86
Exa 4.29	Calculate full load speed	87
Exa 4.30	Calculate full load rotor loss and rotor input and output	
	torque	88
Exa 4.31	Calculate full load rotor loss and rotor input and output	
	torque	89
Exa 4.32	Calculate full load efficiency	90
Exa 4.33	Calculating the rotor current at slip 3 precent and when	
	the rotor develops maximum torque	91
Exa 4.34	Calculating the rotor current at slip 3 precent and when	
	the rotor develops maximum torque	92
Exa 4.35	Calculate the circuit elements	93
Exa 5.1	To calculate distribution factor	96
Exa 5.2	To calculate distribution factor	97
Exa 5.3	To calculate pitch factor	97
Exa 5.4	To calculate the rms value of induced EMF	98
Exa 5.5	Calculating useful flux per pole	99
Exa 5.6	To calculate the frequency and induced EMF	100
Exa 5.7	Finding the number of armature conductors	101
Exa 5.8	To calculate induced EMF per phase	102
Exa 5.9	To find the voltage regulation	103
Exa 5.10	To calculate voltage regulation	104
Exa 5.11	To calculate internal voltage drop	105
Exa 5.12	To calculate percentage change in terminal voltage	106
Exa 5.13	To calculate regulation on full load power factor loading	
	and lagging condition	107
Exa 5.14	To calculate terminal voltage for same excitation and	
	load current at certain power factor leading	108
Exa 5.15	to find the power factor of alternator B	109
Exa 5.16	To calculate armature curren and power factor	110
Exa. 5.17	To determine KVA rating and power facor	111

Chapter 2

Direct Current Machines

Scilab code Exa 2.4 Calculating average induced emf

```
1 // Calculating average induced emf
2 //Chapter 2
\frac{3}{2} //Example 2.4
4 //page 92
5 clear;
6 clc;
7 disp("example 2.4")
8 P=2
                //number of poles
9 Z = 400
                 //number of conducters
10 n=300
                 //speed in rpm
                  //voltage of generator
11 E=200
12 \quad A = 2
                  //number of parallel paths
13 N = 1200
                  //number of turns in each field coil
14 phi=(E*60*A)/(Z*n*P)
                            //flux at the end of 0.15 sec
15 t = 0.15
                                //time
16 printf("magnitude of flux at the end of 15 sec is %f
      wb", phi)
17 e=N*(phi/t)
18 printf("\ninduced emf in the field coil= %d volts",e
```

Scilab code Exa 2.5 Calculating useful flux per pole

```
1 // Calculating the current and power factor of the
      primary circuit
2 //Chapter 3
3 //Example 3.5
4 //page 206
5 clear;
6 clc;
7 disp("Example 3.5")
8 I2=300; ...............................//Secondary current
     in amperes
                                     //number of primary
9 N1 = 1200;
     turns
10 N2 = 300;
                                     //number of
      secondary turns
                                     //load current in
11 \quad I0 = 2.5;
      amperes
12 I1=(I2*N2)/N1;
13 phi0=acosd(0.2);
14 phi2=acosd(0.8);
15 I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
16 I1s=(I1*sind(phi2))+(I0*sind(phi0));
17 I=sqrt(I1c^2+I1s^2);
18 phi=atand(I1s/I1c)
19 printf("primary power factor=%fdegrees",cosd(phi));
```

Scilab code Exa 2.6 Calculating emf generated on open circuit condition

```
1 // Calculating emf generated onopen circuit condition
2 //Chapter 2
3 //Example 2.6
4 //page 93
5 clear;
6 clc;
7 disp("example 2.5")
                  //number of poles
8 P=8
                  //number of parallel paths in the
9 A=8
     armature
                  //number of conductors
10 Z=960
                 //speed in rpm
11 N = 400
12 phi=0.04 // flux per pole
13 E = (phi * Z * N * P) / (60 * A)
                          //emf generated onopen
      circuit condition
14 printf ("emf generated on open circuit condition, E=
     %d volts",E)
```

Scilab code Exa 2.7 calculate induced emf

```
1 //calculate induced emf
2 //Chapter 2
3 //Example 2.7
4 //page 97
5 clear;
6 clc;
7 disp("example 2.7")
8 disp("flux is constant")
9
10 E=180;.....//induced emf at 500rpm
11 N=500;.....//speed in rpm
12 K1=(E/N)
13 printf("K1=%f",K1)
```

```
14 E1=(K1*600) //induced emf at 600rpm 15 printf("\n induced emf at 600rpm is=\%d V",E1)
```

Scilab code Exa 2.8 calculating the speed and percentage increase in flux

```
1 //calculating the speed and percentage increase in
      flux
2 //Chapter 2
3 //Example 2.8
4 //page 97
5 clear;
6 clc;
7 disp("example 2.8")
8 disp("assuming constant flux")
9 E1 = 220;
                      //induced emf at N1 speed in volts
10 \text{ N1} = 750;
                     // speed
11 K1 = (E1/N1)
12 E2 = 250;
                     //induced emf at speed N2
13 N2 = E2/K1
14 printf ("speed at induced emf of 250V = %d rpm", N2)
15 disp("when induced emf is 250V and speed 700 rpm")
16 E3 = 250;
                       //induced emf at N3 speed
17 N3 = 700;
                       //speed
18 ratio=(E3*N1)/(E1*N3)
19 Pi=(ratio-1)*100
20 printf ("percentage increase in flux is %f percent",
      Pi)
```

Scilab code Exa 2.9 Calculating electromagnetic torque

```
1 // Calculating electromagnetic torque
2 //Chapter 2
3 //Example 2.9
4 //page 98
5 clear;
6 clc;
7 disp("example 2.9")
8 E = 200
              //emf induced
9 I=15
              //armature current
                   //speed in rpm
10 n = 1200
11 omega=(2*3.14*n)/60;
12 printf ("omega=\%f \n", omega)
13 T=(E*I)/omega;
14 printf("electromagnetic torque=%f Nm",T)
```

Scilab code Exa 2.10 calculating the torque developed

```
1 //calculating the torque developed
2 //Chapter 2
3 //Example 2.10
4 //page 98
5 clear;
6 clc;
7 disp("Example 2.10")
8 n = 10;
                      //number of turns in 1 coil
9 1 = 0.2;
10 d=0.2;
                    //diameter in metres
                       //uniform magnetic field density
11 B=1;
      in weber per m<sup>2</sup>
12 N = 1500;
                       //speed in rpm
                       //radius in metres
13 r=(d/2);
14 E=(B*1*((2*3.14*N)/60)*r*2*n);
15 printf ("total induced emf=%f V", E)
```

Scilab code Exa 2.11 calculating various parameters of dc motor

```
1 //calculating various parameters of dc motor
2 //Chapter 2
3 //Example 2.11
4 //page 99
5 clear;
6 clc;
7 disp("Example 2.11")
8 V = 230;
                      //armature voltage supply in volts
9 Ia=12;
                      //armature current in amperes
                       //armature resistance in ohms
10 Ra=0.8;
                         //speed in radian per second
11 N = 100;
12 E=(V-(Ia*Ra))
13 printf ("induced emf, E=%fV", E)
14 Te=(E*Ia)/N
15 printf("\nthe electromagnetic torque=%fNm", Te)
16 Pi=V*Ia
17 printf("\nelectrical input to the armature, Pinput=
     %dW",Pi)
18 Pd=Te*N
19 printf("\nmechanical developed=%fW",Pd)
20 \quad loss = (Ia^2*Ra)
21 printf("\narmature copper loss=%fW",loss)
```

Scilab code Exa 2.12 calculating various parameters of dc machine

```
1 //calculating various parameters of dc motor
2 //Chapter 2
3 //Example 2.11
4 //page 99
5 clear;
6 clc;
7 disp("Example 2.11")
8 V = 230;
                      //armature voltage supply in volts
                      //armature current in amperes
9 Ia=12;
                       //armature resistance in ohms
10 Ra=0.8;
11 N = 100;
                          //speed in radian per second
12 E=(V-(Ia*Ra))
13 printf ("induced emf, E=%fV", E)
14 Te=(E*Ia)/N
15 printf("\nthe electromagnetic torque=\%f\n", Te)
16 Pi=V*Ia
17 printf("\nelectrical input to the armature, Pinput=
     \% dW", Pi)
18 \text{ Pd=Te*N}
19 printf("\nmechanical developed=%fW",Pd)
20 \quad loss = (Ia^2*Ra)
21 printf("\narmature copper loss=%fW",loss)
```

Scilab code Exa 2.13 calculating speed of machine

```
1 //calculating speed of machine
```

```
2 //Chapter 2
3 //Example 2.13
4 //page 101
5 clear;
6 clc;
7 disp("Example 2.13")
8 disp("At generator condition")
9 P = 50000;
                         //power delivered in watts
                         //voltage in volts
10 V = 250;
11 Ra=0.02;
                         //armature resistance in ohms
                         //field resistance in ohms
12 Rf = 50;
13 If=V/Rf
                         //field current in amperes
                         //speed in generating condition
14 Ng=400;
      in rpm
15 printf ("field current, If=%dA", If)
                          //load current in amperes
17 printf("\nLoad current, If=%dA", I1)
18 Ia=If+I1
                          //armature current in amperes
19 printf("\nAramture current, If=%dA\n", Ia)
20 Eg=(V+(Ia*Ra))
21 disp("At motor condition")
22 Ia=(I1-If)
23 printf("Aramture current, If=%dA", Ia)
24 Em = (V - (Ia*Ra))
25 printf ("\nEm = \%fV", Em)
26 \text{ Nm} = (\text{Ng} * \text{Em}) / \text{Eg}
27 printf("\nSpeed of the motor=%drpm", Nm)
```

Scilab code Exa 2.14 calculating speed ratio of generator and motor working conditios

```
1 //calculating speed ratio of generator and motor working conditios
```

```
2 //Chapter 2
3 //Example 2.14
4 //page 101
5 clear;
6 clc;
7 disp("Example 2.14")
8 V = 250;
                           //voltage supply in volts
                           //armature resistance in ohms
9 \text{ Ra} = 0.12;
                            //field resistance in ohms
10 Rf = 100;
11 I1=80;
                           //load current in amperes
12 \text{ If=V/Rf}
13 printf("Field current, If=%f", If)
14 disp ("When machine is generating")
15 Ia=Il+If
16 Eg=(V+(Ia*Ra))
17 printf ("\nIa=\%fA", Ia)
18 printf ("\nEg=\%fV", Eg)
19 disp("When machine is motoring")
20 Ia=Il-If
21 Em = (V - (Ia*Ra))
22 printf("\nIa=\%fA",Ia)
23 printf("\nEg=\%fV", Em)
24 ratio=Eg/Em
25 printf("\nRatio of speeds=%f",ratio)
```

Scilab code Exa 2.15 calculating flux and area of pole shoe and no load terminal voltage

```
1 //calculating flux, area of pole shoe and no-load
terminal voltage
2 //Chapter 2
3 //Example 2.15
4 //page 102
```

```
5 clear;
6 clc;
7 disp("Example 2.15")
                      //voltage supply in volts
8 V = 550;
9 P = 16;
                      //number of poles
                        //speed in rpm
10 N = 150;
                        //number of armature conductors
11 Z = 2500;
12 A = 16;
13 Power=1500000;
                           //power in watt
                             //full-load copper loss
14 Cl=25000;
                            //flux density in the pole
15 B = 0.9;
16 Ia=Power/V
17 printf ("Full load current=%fA", Ia)
18 Ra=Cl/(Ia<sup>2</sup>)
19 printf("\nRa=\%fohms", Ra)
20 \quad E=V+(Ia*Ra)
21 printf("\nInduced emf=%fvolts",E)
22 phi=(E*60*A)/(Z*N*P)
23 printf("\nflux density=\%fWb/m^2",B)
24 printf(" \setminus nflux=\%fWb", phi)
25 \text{ area} = (phi/B)
26 printf("\n Area of pole shoe=\%fcm^2",(area*10000))
```

Scilab code Exa 2.16 calculate approximate time of commutation

```
1 // calculate approximate time of commmutation
2 // Chapter 2
3 // Example 2.16
4 // page 103
5 clear;
6 clc;
7 disp("Example 2.16")
8 Cd=0.76; // commutator diameter in metres
```

Scilab code Exa 2.17 calculate resistance

```
1 //calculate resistance
2 //Chapter
3 //Example 2.17
4 //page 123
5 clear;
6 clc;
7 disp("Example 2.17")
                        //supply voltage in volts
8 V = 240;
                        //speed in rpm
9 N = 800;
                         //armeture current in amperes
10 Ia=2;
                         //armature resistance in ohms
11 Ra=0.4;
12 Rf=160;
                         //field resistance in ohms
                         //line current in amperes
13 Il1=30;
                          //induced emf in volts
14 E=V-(Ia*Ra);
15 disp("At no-load")
16 printf("E=\%fV",E)
17 If=V/Rf;
                            //field current in amperes
18 printf("\nIf=\%fA", If)
19 K1 = E/(If*N);
20~\text{printf}\left(\text{"}\left\backslash nK1\text{=}\%\text{f"}\right.\text{,K1}\right)
21 disp("At a load of 30A")
```

Scilab code Exa 2.18 calculating resistance required in series

```
1 //calculating resistance required in series
2 //Chapter 2
3 //Example 2.18
4 //page 124
5 clear;
6 clc;
7 disp("Example 2.18")
                              //voltage supply in volts
8 V = 230;
                               //armature current in
9 Ia = 20;
      amperes
10 Ra=0.5;
                                //armature resistance in
     ohms
11 E=V-(Ia*Ra);
12 printf ("E=%dV", E)
13 disp("when extra resistance is added in the armature
       circuit, the speed is halved")
14 E2=E/2;
15 R = ((V-E2)/Ia) - Ra;
16 disp("The load torque is conatant")
17 printf("extra resistance in the armature circui, R=
      %fohms", R)
```

Scilab code Exa 2.19 calculating resistance required in series and also the speedwhen torque is halfed

```
1 //calculating resistance required in series and also
       the speedwhen torque is halfed
2 //Chapter 2
3 //Example 2.19
4 //page 125
5 clear;
6 clc;
7 disp("Example 2.19")
                               //voltage supply in volts
8 V = 250;
                               //armature current in
9 Ia=50;
      amperes
                                //armature resistance in
10 Ra=0.3;
      ohms
11 N = 1000;
12 \quad E=V-(Ia*Ra);
13 printf("E=%dV",E)
14 disp("when extra resistance is added in the armature
       circuit when the speed is 800rpm")
15 \text{ N2=800};
16 E2 = (E*N2)/N;
17 printf("\nE at 800rpm=%dV",E2)
18 R = ((V-E2)/Ia) - Ra;
```

Scilab code Exa 2.20 calculating the speed of the motor

```
1 //calculating the speed of the motor
2 //Chapter 2
3 //Example 2.20
4 //page 125
5 clear;
6 clc;
7 disp("Example 2.20")
                     //current in amperes al no-load
8 I1=5;
9 V = 250;
                     //voltage in volts
                       //field resistance in ohms
10 Rf = 250;
11 If 1 = V/Rf;
                         //field current in amperes
12 Ia1=Il-If1;
                            //armature current
13 Ra=0.2;
                                //armature resistance in
     ohms
14 disp("at a load current of 50A")
15 I12=50;
                            //load current in amperes
16 //armature reaction weakens by 3 percent
17 If2=0.97;
                                  //current in amperes
18 \quad Ia2=I12-If2;
19 N1 = 1000;
20 E1 = (V - (Ia1 * Ra));
21 E2=(V-(Ia2*Ra));
```

```
22 N2=(N1*E2)/(0.97*E1);
23 printf("N2=%frpm",N2)
```

Scilab code Exa 2.21 Calculate the fullyload speed of the motor

```
1 // Calculate the fully-load speed of the motor
2 //Chapter 2
3 //Example 2.21
4 //page 126
5 clear;
6 clc;
7 disp("Example 2.21")
8 P=4;.....//pole
9 V=500;.....//shunt motor in volts
10 Ia=60; ......//armature current in
    amperes
11 Ra=0.2; .....//armature
    resistance in ohms
12 E=V-(Ia*Ra)-2;
13 printf("voltage drop across each brush=%fV",E)
14 phi=0.03;.....//flux per
     pole in Wb
15 Z=720;.....//total
    armature current in volts
16 A = 2;
17 N = (E*60*A)/(phi*Z*P)
18 printf("\nfull load speed of the motor=%frpm", N)
```

Scilab code Exa 2.22 Calculate the value of resistance

```
1 //Calculate the value of resistance
2 //Chapter 2
3 //Example 2.22
4 //page 126
5 clear;
6 clc;
7 disp("Example 2.22")
8 V = 440;
                           //primary voltage in volts
9 Ia=50;
                           //armature current in amperes
                           //armature resistance in ohms
10 Ra=0.2;
                            //speed in rpm
11 N = 600;
12 E=V-(Ia*Ra);
                           //emf induced in volts
      before adding extra resistance
13 / E = K * phi * N = K1 * Ia * N
14 K1=E/(Ia*N);
15 //we have the relation T=Kt1*Ia^2, T1=Kt1*Ia1^2
16 //when torque is half, say torque be T1
17 / T1 = T/2. r = T/T1
18 r=2;
19 Ia1=sqrt(Ia^2/r);
20 printf("Ia1=\%fA", Ia1);
21 //extra resistance R is introduced in the circuit
22 N1=400;
23 E1 = (K1 * Ia1 * N1);
24 R = ((V-E1)/Ia1) - Ra;
25 printf("\nvalue of extra resistance added=%fohms",R)
```

Scilab code Exa 2.23 Calculate the speed

```
1 // Calculate the speed
2 // Chapter 2
3 // Example 2.23
4 // page 127
```

```
5 clear;
6 clc;
7 disp("Example 2.23")
                                    //voltage in volts
8 V = 200;
9 Ia = 20;
                                    //armature current in
      amperes
10 Ra=0.5;
                                     //armature resistance
       in ohms
11 Rse=0.2:
                                      //field winding
      resistance in ohms
12 E=V-(Ia*(Ra+Rse));
13 printf("In first case, E=%fV", E)
14 / E = k * phi * N
15 N = 1000;
                                     //speed in rpm
16 Kphi=E/N;
17 //a resistance R is connected in parallel with the
      series field which is called diverter
18 disp("when resistace R is added and new conditions")
                                   //total current flowing
20 //current is equally devided between series field
      and diverter
21 \text{ Ise} 2 = I/2;
22 //flux at 10A current is 20 percent of flux at 20A
      current
23 p = 0.70;
                            //percentage of flux
24 \text{ Kpih1=p*Kphi};
25 E1=(V-((Ia*Ra)+(Ise2*Rse)));
26 printf ("Induced emf=%fV", E1)
27 //new speed is N1
28 N1=E1/(p*Kphi)
29 printf ("\nN1=\%frpm", N1)
```

Scilab code Exa 2.24 Calculate the fullyload speed of the motor

```
1 // Calculate the fully-load speed of the motor
2 //Chapter 2
3 //Example 2.24
4 //page 128
5 clear;
6 clc;
7 disp("Example 2.24")
8 V=200;.....//motor runs in
  Ia=15;.....//current taken
    in amperes
10 Ra=1;.....//motor
    resistance in ohms
11 E1=V-(Ia*Ra);
12 printf("resistance when lohm=\%fV",E1)
13 R=5;.....//resistance
14 E2=V-(Ia*(Ra+R))
15 printf("\nResistance when 5ohms connected in series=
    %fV", E2)
16 N1=800; .....//speed of motor
    in rpm
17 N2=N1*(E2/E1);
18 printf("\nspeed at which motor will run when
    resistance is 50hms=%frpm", N2)
```

Scilab code Exa 2.25 Calculate the ampere turns for each commutating pole

```
1 // Calculate the ampere turns for each commutating
     pole
2 // Chapter 2
3 // Example 2.25
4 // page 135
```

Scilab code Exa 2.26 Estimating the number of turns needed on each commutating pole

```
11 Z=540; .....//Number of armature
      conductors
12 Zt=540/2;.....//Number
     armature winding turns
13 printf("\nNumber armature winding turns=\%f", Zt)
14 A=6;.....//the winding lap
15 Ap=Zt/A; ..............//Number of armature
      turns per parallel path
16 printf("\nNumber of armature turns per parallel path
     =\%f", Ap)
17 P=6;.....//pole
18 Np=((Ia*Ap)/P);
19 printf("\nNumber of armature ampere turns per pole=
     \%f\mbox{\ensuremath{\text{"}}} , Np)
20 lg=0.01;.....//inter pole
     air gap in meters
21 \text{ pi} = 3.14;
22 \text{ Mu} = (4*pi*10^-7)
23 Nipg=((Bag*lg)/Mu);.....//Air
24 printf("\nampere turns for the air gap=\%f", Nipg)
25 NipI=(Np+Nipg);.....//
     total interpole ampere
26 printf("\nTotal interpole ampere turns=%f", NipI)
27 Nip=(NipI/Ia);
28 printf("\nNumber of turns needed on each commutating
      pole = \%f", Nip)
```

Scilab code Exa 2.27 Calculating the efficiency of motor

```
1 // Calculating the efficiency of motor
2 // Chapter 2
3 // Example 2.27
```

```
4 //page 128
5 clear;
6 \text{ clc};
7 disp("Example 2.27")
8 N=960;.....//speed in rpm
9 F=23; .....//effictive load in
     kgf
10 r=45/2;.....//radius of
     the drum
11 printf("radius of the drum=%fcm",r)
12 pi=3.14;
13 OP = (2*pi*N*F*r*9.81)/(60*100);
14 printf("\noutput power=%fW",OP)
15 Vi=230; ......//motor input in volts
16 Ci=28; .....//input current in
     amperes
17 IP=(Vi*Ci);
18 printf(" \setminus ninput power = \%fW", IP)
19 Effi=(OP/IP)*100;
20 printf("\nEfficiency of the motor=%fpercent", Effi)
```

Scilab code Exa 2.29 Calculate the efficiency of machine when running as generator and motor

```
1 // Calculate the efficiency of machine when running
    as generator and motor
2 // Chapter 2
3 // Example 2.29
4 // page 145
5 clear;
6 clc;
7 disp("Example 2.29")
8 I=440;.....//input at no-load in
```

```
watt
9 V=220;.....//voltage in volts
10 Ic=I/V; ......//input current at no-
     load in amperes
11 i=1;.....//input current in amperes
12 A=2;.....//current in amperes
13 C=A-i; .........................//armature current at no-
     load in amperes
14 L=I-((((C)^2)*0.5)+(V*C));...............................//iron,
     friction and windage losses in watt
15 a=40; ......//motor current in amperes
16 OP = (V*a);
17 Ra=0.5;
18 Effi=(OP*100)/(OP+(((a+i)^2)*Ra)+(V*i)+L)
19 printf ("Efficiency as a generator when delivering 40
     A at 220V=%fpercent", Effi)
20 Eff=((OP-(((a-i)^2)*Ra)-(V*C)-L)/OP)*100;
21 printf("\nEfficiency as a motor when taking 40A from
      at 220V=%fpercent", Eff)
```

Scilab code Exa 2.30 Calculating the efficiency of the generator at full load and at half load

```
resistance in ohms
10 If=V/Rf;.....//current in
11 i=5;.....//current at no
    load in amperes
12 IP=V*i;.... .....//motor input at
    no load
 Ia=3;.....//aramture
     current in amperes
 Ra=0.5; .... // armature
     resistance in ohms
15 L=IP-(((Ia)^2)*Ra)-(V*If);.....//
    iron, friction and windage in losses in watt
16 printf("iron, friction and windage in losses=%fW",L)
17 At=50; ......
                                         ..//
     armature total current in amperes
                                         . . . //
18 A = At - 2; ......
    armature current in amperes
19 Ls = (((A)^2)*Ra) + (V*If) + L; ......
                                           //
    Losses
20 Eff = (((V*At)-Ls)/(V*At))*100;
21 printf("\nEfficiency of full load=%fpercent",Eff)
22 //flux is constant
                                      //induced
23 E1=V-(Ia*Ra);............
    emf in the armature at no load
24 E2=V-(A*Ra);......//induced
    emf in the armature at full load
25 // since N1/N2=E1/E2
26 percentload=(1-(E2/E1))*100;
27 printf("\nPercentage change in speed from no load to
     full load=%fpercent", percentload)
```

Scilab code Exa 2.31 Calculate the efficiency of machine

```
1 //Calculate the efficiency of machine
2 //Chapter 2
3 //Example 2.31
4 //page 148
5 clear;
6 clc;
7 disp("Example 2.31")
8 Ra=0.5;.....//armature resistance in
  Rf=750; ......//field circuit resistance in
10 V=500;.....//voltage in volts
11 If=V/Rf;.....//current in
    amperes
12 1=3;.....//line current in
13 i=2.33;.....//current in motor
    in amperes
14 I=0.67;......//current i amperes
15 L=(V*1)-(((i)^2)*Ra)-(V*I);..................
    //Iron, friction and windage losses
16 0=20;.....//generator
17 OP=(0*1000)/V;......//output current of
    the generator under loaded condition in amperes
18 Ia=I+OP; ......//output in amperes
19 Effi=(0*1000*100)/((0*1000)+(((Ia)^2)*Ra)+(V*I)+L);
20 printf("efficiency of the machine=%fpercent", Effi)
```

Scilab code Exa 2.32 Calculate the appox efficiency of each machine

```
1 // Calculate the appox. efficiency of each machine 2 // Chapter 2 _{\rm 3} // Example 2.32
```

```
4 //page 149
5 clear;
6 clc;
7 disp("Example 2.32")
8 Ig=25;.....//current of generator in
    amperes
  I=30; .....//current in motor in
    amperes
10 Il=I-Ig; ......//current in amperes
11 Ra=0.25;.....//resistance in ohms
  Gl=((Ig)^2)*Ra; \dots //loss in generator
    in watt
13
 14 T=G1+M; ......//total loss in watt
16 P=V*I1; ......//power supplied from mains in
17 L=P-T; .........................//iron, friction and windages
     losses in the two machines in ohms
 1=L/2;.....//iron, friction and
    windages losses in each machines in ohms
19 IP=I*V; ......//input
20 Eff=((IP-M-1)/IP)*100;
21 printf ("Efficiency of the motor=%fpercent", Eff)
22 OP=Ig*V; ......//output
23 Effi=((OP)/(OP+G1+1))*100;
24 printf("\nEfficiency of the generator=%fpercent",
    Effi)
```

Scilab code Exa 2.33 Calculate the appox efficiency of each machine

```
1 // Calculate the appox. efficiency of each machine
```

```
2  //Chapter 2
3  //Example 2.33
4  //page 150
5  clear;
6  clc;
7  disp("Example 2.33")
8  V=440;......//voltage in volts
9  P=200*1000;....//power in watt
10  Ig=P/V;....//rated current of each machine in amperes
11  //assume losses to be equal
12  I=90;.....//addition currnet supply
13  Effi=sqrt(Ig/(Ig+I))*100;
14  printf("approximate efficiency=%fpercent", Effi)
```

Scilab code Exa 2.34 Calculate the efficiences of the generator at full load

```
1 // Calculate the efficiences of the generator at full
     load
2 //Chapter 2
3 //Example 2.34
4 //page 150
5 clear;
6 clc;
7 disp("Example 2.34")
8 Ig=2000;.....//output
     current of generator in amperes
9 I=380;.....//Input current
     from supply mains in amperes
10 Effi=sqrt(Ig/(Ig+I))*100;.....//
     Efficiency of generator assuming equal
     efficiencies of the two machines
11 printf ("Efficiences of the generator at full load
```

```
assuming equal efficiencies=%fpercent", Effi)
12 S=22; ......//Shunt field
    current of generator
 G=Ig+S;.....//Armature current of
    generator in amperes
14 R=0.01;.....//Resistance
    of the armature circuit of each machine in ohms
15 Gc=((G)^2)*R;.....//copper loss
    in arrmature circuit of generator in W
 V=500;.....//Voltage in
    volts
field circuit of the generator in W
 T=Ig+I; .....//total current
    suuply in amperes
 Sf = 17; .....//
    shunt field current of motor in amperes
 A=T-Sf;.....//armature
    current in motor in amperes
armature circuit of motor in amperes
22 Lf=V*Sf;.....//loss in
    the shunt field circuit of motor in W
 Tin=V*I;.....//total input to motor
    and generator in W
 Ml=Tin-(Gc+L+Lc+Lf);.....//iron,
    friction and windage loss in both machines in W
25 Me=M1/2;.....//iron,
    friction and windage loss in each machine in W
26 p=1000; .....//power in kW
27 OP=(Ig*V)/p;.....//full load
    output of the generator
28 Eff=(p*100)/(p+((Gc+L+Me)/1000));
29 printf("\nEfficiency of the generator at full load=
    %fpercent", Eff)
```

Chapter 3

Transformers

Scilab code Exa 3.1 calculating number of turns and primary and secondary currents and value of flux

```
1 //calculating number of turns, primary and secondary
      currents and value of flux
2 //Chapter 3
3 //Example 3.1
4 //page 196
5 clear;
6 clc;
7 disp("Example 3.1")
8 \text{ kVA} = 500;
                              //rating
                               //primary voltage in volts
9 V1 = 11000;
                               //secondary voltage in
10 \quad V2 = 400;
      volts
                               //number of turns in
11 N2 = 100;
      secondary winding
12 	ext{ f=50};
                               //frequency in hertz
13 N1 = (V1 * N2) / V2;
                                //number of turns in
      primary winding
14 printf("number of turns in primary winding, N1=
      %dturns", N1)
15 I1=(kVA*1000)/V1;
```

Scilab code Exa 3.2 calculating number of primary and secondary turns

```
1 //calculating number of primary and secondary turns
2 //Chapter 3
3 //Example 3.2
4 //page 196
5 clear;
6 clc;
7 disp("Example 3.2")
                              //primary voltage in volts
8 V1 = 6600;
9 V2 = 230;
                               //secondary voltage in
      volts
10 f = 50;
                               //frequency in hertz
                                 //flux density in Wb/m^2
11 Bm=1.1;
                                 //area of the core in m<sup>2</sup>
12 A = (25*25*10^{-4});
13 phi = Bm * A
14 printf ("flux=\%fWb", phi)
15 E1 = V1;
16 \quad \text{E2=V2};
17 N1=E1/(4.44*f*phi);
18 N2=E2/(4.44*f*phi);
19 printf ("\nnumber of turns in primary winding, N1=
      %dturns", N1)
20 printf("\nnumber of turns in secondary winding, N2=
      %dturns", N2)
```

Scilab code Exa 3.3 calculating induced emf and maximium flux density

```
1 //calculating induced emf and maximium flux density
2 //Chapter 3
3 //Example 3.3
4 //page 197
5 clear;
6 clc;
7 disp("Example 3.3")
                            //primary voltage in volts
8 V1 = 230;
                              //frequency in hertz
9 f = 50;
                              //number of primary turns
10 N1=100;
11 N2 = 400;
                              //number of secondary turns
12 A = 250 * 10^{(-4)};
                               //cross section area of
      core in m<sup>2</sup>
13 disp ("since at no-load E2=V2")
14 E2 = (V1 * N2) / N1;
15 printf("induced secondary winding, E2=%dV", E2);
16 phi=E2/(4.44*f*N2);
17 Bm=phi/A;
18 printf("\nMaximium flux density in the core=%fWb/m^2
```

Scilab code Exa 3.4 calculating induced emf and maximium flux density

```
1 //calculating induced emf and maximium flux density
2 //Chapter 3
3 //Example 3.3
```

```
4 //page 197
5 clear;
6 clc;
7 disp("Example 3.3")
8 \text{ kVA} = 40;
                            //rating of the transformer
9 V1 = 2000;
                             //primary side voltage in
      volts
10 \quad V2 = 250;
                             //secondary side voltage in
      volts
11 R1=1.15;
                             //primary resistance in ohms
12 R2=0.0155;
                             //secondary resistance in
     ohms
13 R=R2+(((V2/V1)^2)*R1)
14 printf ("Total resistance of the transformer in terms
       of the secondary winding=%fohms", R)
15 I2=(kVA*1000)/V2;
16 printf("\nFull load secondary current=%dA", I2)
17 printf("\nTotal resistance load on full load=%fVolts
      ",(I2*R))
18 printf("\nTotal copper loss on full load=%fWatts",((
      I2)^2*R))
```

Scilab code Exa 3.5 Calculating the current and power factor of the primary circuit

```
8 I2=300; ........................//Secondary current
     in amperes
                                    //number of primary
9 N1 = 1200;
     turns
                                    //number of
10 N2 = 300;
     secondary turns
11 I0=2.5;
                                     //load current in
     amperes
12 I1=(I2*N2)/N1;
13 phi0=acosd(0.2);
14 phi2=acosd(0.8);
15 I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
16  I1s=(I1*sind(phi2))+(I0*sind(phi0));
17 I=sqrt(I1c^2+I1s^2);
18 phi=atand(I1s/I1c)
19 printf("primary power factor=%fdegrees",cosd(phi));
```

Scilab code Exa 3.6 Calculating the value of primary current

```
1 // Calculating the value of primary current
2 //Chapter 3
3 //Example 3.6
4 //page 207
5 clear;
6 clc;
7 disp("Example 3.6")
8 I0=1.5;
                            //no-load current
9 \text{ phi0=acosd}(0.2)
10 \quad I2 = 40;
                            //secondary current in
      amperes
11 phi2=acosd(0.8)
                             //ratio of primary and
12 r=3;
      secondary turns
```

Scilab code Exa 3.7 Calculating the magnetising current and core loss and flux

```
1 // Calculating the magnetising current, core loss and
     flux
2 //Chapter 3
3 //Example 3.7
4 / page 208
5 clear;
6 clc;
7 disp("Example 3.7")
8 V1 = 230;
                           //voltage in volts
9 f = 50;
                           //frequency of supply in
     hertz
10 N1=250;
                           //number of primary turns
11 I0=4.5;
                           //no-load current in amperes
12 phi0=acosd(0.25);
13 Im=I0*sind(phi0)
14 printf ("magnetising current, Im=%fA", Im);
15 Pc=V1*I0*cosd(phi0);
16 printf("\nCore loss=\%dW", Pc)
17 disp ("neglecting I^2R loss in primary winding at no-
      load")
18 E1=V1;
19 phi=E1/(4.44*f*N1);
20 printf("\nMaximium value of flux in the core=%fWb",
     phi)
```

Scilab code Exa 3.8 Calculating the current and power factor of the primary circuit

```
1 // Calculating the current and power factor of the
     primary circuit
2 //Chapter 3
3 //Example 3.8
4 //page 209
5 clear;
6 clc;
7 disp("Example 3.8")
8 I2=30; .....//Secondary current in
      amperes
                                 //load current in
9 I0=2;
     amperes
                                  //primary voltage in
10 V1 = 660;
     volts
                                  //secondary voltage
11 V2=220;
     in volts
12 I1=(I2*V2)/V1;
13 phi0=acosd(0.225);
14 phi2=acosd(0.9);
15 I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
16  I1s=(I1*sind(phi2))+(I0*sind(phi0));
17 I=sqrt(I1c^2+I1s^2);
18 phi=atand(I1s/I1c)
19 printf("I1=%fA",I)
20 printf("\nprimary power factor=%fdegrees",cosd(phi))
```

Scilab code Exa 3.9 Calculating magnetising current and primary current and primary power factor

```
1 // Calculating magnetising current, primary current
      and primary power factor
2 //Chapter 3
3 //Example 3.9
4 //page 210
5 clear;
6 clc;
7 disp("Example 3.9")
8 phi_m=7.5*10^(-3);
                                             //maximium
      flux
9 f = 50;
                                       //frequecy in hertz
10 N1=144;
                                       //number of primary
      turns
                                      //number of
11 N2 = 432;
      secondary turns
                                       //rating of
12 kVA = 0.24;
      transformer
13 E1 = (4.44*phi_m*f*N1)
14 V1 = E1;
15 printf ("V1=%dV", V1)
16 I0=(kVA*1000)/V1;
17 phi0=acosd(0.26);
18 Im=I0*sind(phi0);
19 printf("\nIm=\%fA", Im);
20 V2 = (E1 * N2) / N1
21 printf("\nV2=\%fV", V2)
22 disp("At a load of 1.2kVA and power factor of 0.8
      lagging")
23 \text{ kVA} = 1.2;
```

```
24 phi2=acosd(0.8);
25 I2=(kVA*1000)/V2;
26 I=(I2*N2)/N1;
27 I1c=(I*cosd(phi2))+(I0*cosd(phi0));
28 I1s=(I*sind(phi2))+(I0*sind(phi0));
29 I=sqrt(I1c^2+I1s^2);
30 printf("\nI1=%fA",I);
31 phi=acosd(((I*cosd(phi2))+(I0*cosd(phi0)))/I);
32 printf("\nprimary power factor=%flagging",cosd(phi))
```

Scilab code Exa 3.10 Calculating primary current and primary power factor

```
1 // Calculating primary current and primary power
      factor
2 //Chapter 3
3 //Example 3.10
4 //page 211
5 clear;
6 clc;
7 disp("Example 3.10")
                                   //primary voltage in
8 V1 = 6600;
      volts
                                   //secondary voltage in
9 V2 = 240;
      volts
10 kW1 = 10;
                                   //power
11 phi1=acosd(0.8);
12 I2=50;
                                    //current in amperes
13 kW3=5;
                                    //power
14 \text{ phi2=acosd}(0.7)
15 \text{ kVA=8};
                                    //rating
16 \text{ phi4}=acosd(0.6)
17 I1=(kW1*1000)/(cosd(phi1)*V2);
```

Scilab code Exa 3.11 Calculating equivalent impedence referred to primary

```
1 // Calculating equivalent impedence referred to
      primary
2 //Chapter 3
3 //Example 3.11
4 //page 212
5 clear;
6 clc;
7 disp("Example 3.11")
8 \text{ kVA} = 100;
                             //rating of the tronsfromer
                               //number of primary turns
9 N1 = 400;
                               //number of secondary
10 N2=80;
      turns
11 R1=0.3;
                                //primary resistance in
      ohms
                                  //secondary resistance
12 R2 = 0.01;
```

Scilab code Exa 3.12 Calculating equivalent impedence referred to primary

```
1 // Calculating equivalent impedence referred to
      primary
2 //Chapter 3
3 //Example 3.12
4 //page 216
5 clear;
7 disp("Example 3.11")
8 f = 50;
                          //frequency in hertz
9 r=6;
                         //turns ratio
                          //primary resistance in ohms
10 R1=0.90;
11 R2 = 0.03;
                          //secondary resistance in ohms
                          //primary reactance in ohms
12 X1 = 5;
                           //secondary reactance in ohms
13 \quad X2 = 0.13;
                            //full-load current
14 I2=200;
15 Re=(R1+(R2*r^2));
16 printf ("equivalent resistance reffered to primary, Re
     =\%fohms", Re);
```

Scilab code Exa 3.13 Calculate current and power input

```
1 // Calculate current and power input
2 //Chapter 3
3 //Example 3.13
4 //page 216
5 clear;
6 clc;
7 disp("Example 3.13")
8 R1=0.21;
                                 //primary resistance in
     ohms
9 X1 = 1;
                                  //primary reactance in
     ohms
10 R2=2.72*10^(-4);
                                 //secondary resistance
      in ohms
11 X2=1.3*10^{(-3)};
                                  //secondary reactanced
     in ohms
12 V1=6600;
                                   //primary voltage in
      volts
                                    //secondary voltage
13 V2 = 250;
```

```
in volts
                                      //turns ratio
14 r = V1/V2;
15 Re=R1+(r^2*R2);
16 printf ("Equivalent resistance referred to primary
      side = \%fohms", Re);
17 Xe=X1+(r^2*X2);
18 printf("\nEquivalent reactance referred to primary
      side=\%fohms", Xe);
19 Ze=sqrt(Re^2+Xe^2);
20 printf("\nequivalent impedance reffered to primary,
      Ze=\% fohms", Ze);
                                   //voltage in volts
21 V = 400;
22 I1=V/Ze;
23 printf("\nI1=\%f",I1);
24 printf("\nPower input=\%fW",(I1^2*Re));
```

Scilab code Exa 3.14 Calculate current and power input

```
1 // Calculate current and power input
2 //Chapter 3
3 //Example 3.14
4 //page 217
5 clear;
6 clc;
7 disp("Example 3.14")
                          //number of primary turns
8 \text{ N1} = 90;
9 N2 = 180;
                          //number of secondary turns
                           //primary resistance in ohms
10 R1 = 0.067;
11 R2=0.233;
                           //secondary resistance in
     ohms
12 printf("Primary winding resistance referred to
      secondary side=\%fohms", (R1*(N2/N1)^2))
13 printf("\nsecondary winding resistance referred to
```

```
primary side=%fohms",(R2*(N1/N2)^2))
14 printf("\nTotal resistance of the transformer
    refferred to primary side=%fohms",((R1*(N2/N1)^2)
    +(R2*(N2/N1)^2)))
```

Scilab code Exa 3.15 Calculate percentage regulation

```
1 // Calculate percentage regulation
2 //Chapter 3
3 //Example 3.15
4 //page 217
5 clear;
6 clc;
7 disp("Example 3.15")
                            //rating of the transformer
8 \text{ kVA} = 30;
                            //primary voltage in volts
9 V1 = 6000;
                            //secondary voltage in volts
10 \quad V2 = 230;
                           //primary resistance in ohms
11 R1=10;
                            //secondary resistance in
12 R2 = 0.016;
     ohms
                               //total reactance reffered
13 Xe = 23;
       to the primary
14 phi=acosd(0.8);
                                    //lagging
15 Re=(R1+((V1/V2)^2*R2))
16 printf ("equivalent resistance, Re=%fohms", Re)
17 I2dash=(kVA*1000)/V1;
18 V2dash=5847;
19 Reg=((I2dash*((Re*cosd(phi))+(Xe*sind(phi))))*100)/
      V2dash;
20 printf("\npercentage regulation=%fpercent", Reg)
```

Scilab code Exa 3.16 Calculating secondary voltage and voltage regulation

```
1 // Calculating secondary voltage and voltage
      regulation
2 //Chapter 3
3 //Example 3.16
4 //page 218
5 clear;
6 clc;
7 disp("Example 3.16")
8 \text{ kVA} = 10;
                             //rating of the transformer
9 V1 = 2000;
                              //primary voltage in volts
                             //secondary voltage in volts
10 \quad V2 = 400;
                             //primary voltage in ohms
11 R1=5.5;
12 R2 = 0.2;
                             //secondary voltage in ohms
                              //primary reactance in ohms
13 X1 = 12;
14 \quad X2 = 0.45;
                              //secondary reactance in
      ohms
15 // assuming (V1/V2) = (N1/N2)
16 Re=R2+(R1*(V2/V1)^2);
17 printf ("equivalent resistance referred to the
      secondary=%fohms", Re);
18 Xe = X2 + (X1 * (V2/V1)^2);
19 printf ("equivalent reactance referred to the
      secondary=\%fohms", Xe);
20 \text{ Ze=sqrt}(\text{Re}^2+\text{Xe}^2);
21 printf ("equivalent impedance referred to the
      secondary=%fohms", Ze);
22 phi=acosd(0.8);
23 V1=374.5;
24 printf("\nVoltage across the full load and 0.8 p.f
```

Scilab code Exa 3.17 Calculating regulation

```
1 // Calculating regulation
2 //Chapter 3
3 //Example 3.17
4 //page 219
5 clear;
6 clc;
7 disp("Example 3.17")
                            //rating of the transformer
8 \text{ kVA} = 80;
9 V1 = 2000;
                             //primary voltage in volts
                             //secondary voltage in volts
10 \quad V2 = 200;
                              //frequency in hertz
11 f = 50;
                              //impedence drop
12 Id=8;
                              //resistance drop
13 Rd=4;
14 phi=acosd(0.8)
15 I2Ze = (V2*Id)/100;
16 I2Re=(V2*Rd)/100;
17 I2Xe=sqrt(I2Ze^2-I2Re^2)
18 reg=((I2Re*cosd(phi))+(I2Xe*sind(phi)))*(100/V2)
19 printf("percentage regulation=%fpercent", reg)
20 pf=I2Xe/sqrt(I2Re^2+I2Xe^2)
21 printf("\nPower factor for zero regulation=%f(
      leading)",pf)
```

Scilab code Exa 3.19 Calculating the efficiency and voltage regulation

```
1 // Calculating the efficiency and voltage regulation
     //Chapter 3
2 //Example 3.19
3 //page 225
4 clear;
5 clc;
6 disp("Example 3.19")
7 kVA=50;
                                    //rating of the
      transformer
8 V1=3300:
                                     //open circuit
      primary voltage
                                    //copper loss from
  Culoss=540;
      short circuit test
10 \text{ coreloss} = 460;
                                    //core loss from open
       circuit test
                                    //short circuit
11 V1sc=124;
      primary voltage in volts
12 I1sc=15.4;
                                     //short circuit
      primary current in amperes
13 \text{ Psc} = 540
                                     //short circuit
      primary power in watts
14 phi=acosd(0.8)
15 effi=(kVA*1000*cosd(phi)*100)/((kVA*1000*cosd(phi))+
      Culoss+coreloss)
16 printf("From the open-circuit test, core-loss=\%dW",
      coreloss);
17 printf("\nFrom short circuit test, copper loss=%dW",
      Culoss);
18 printf("\nThe efficiency at full-load and 0.8
      lagging power factor=%f",effi);
```

```
19 Ze=V1sc/I1sc;
20 Re=Psc/I1sc^2;
21 Xe=sqrt(Ze^2-Re^2);
22 V2=3203;
23 phi2=acosd(0.8);
24 phie=acosd(Culoss/(V1sc*I1sc));
25 reg=(V1sc*cosd(phie-phi2)*100)/V1;
26 printf("\nVoltage regulation=%dpercent",reg)
```

Scilab code Exa 3.20 Calculate voltage to be applied

```
1 // Calculate voltsge to be applied // Chapter 3
2 //Example 3.20
3 / page 226
4 clear;
5 clc;
6 disp("Example 3.20")
7 \text{ kVA} = 100;
8 V1=6600;
                             //primary voltage in volts
                              //secondary voltage in
9 V2 = 330;
      volts
                              //frequency in hertz
10 f = 50;
                                     //short circuit
11 V1sc=100;
      primary voltage in volts
12 I1sc=10;
                                    //short circuit
      primary current in amperes
13 Psc = 436;
                                       //short circuit
      primary power in watts
14 Ze=V1sc/I1sc;
15 Re=Psc/I1sc^2;
16 phi=acosd(0.8);
17 Xe=sqrt (Ze^2-Re^2);
18 printf("\nTotal resistance=%fohms", Re);
```

Scilab code Exa 3.21 Calculate circuit constants and efficiency

```
1 // Calculate circuit constants and efficiency //
      Chapter 3
2 //Example 3.21
3 / page 227
4 clear;
5 clc;
6 disp("Example 3.21")
7 V2 = 500;
                            //secondary voltage in volts
                          //primary voltage in short
8 V1 = 250;
      circuit test in volts
9 I0=1;
                          //current in short circuit test
       in amperes
10 P = 80;
                          //core loss in watt
                             //power in short circuit
11 Psc = 100;
      test in watts
12 Vsc=20;
                             //short circuit voltage in
      volts
                             //short circuit current in
13 Isc=12;
      amperes
14 phi0=acosd(P/(V1*I0));
15 printf ("From open circuit test, \cos(\text{phi0}) = \%f", \cos(
      phi0));
16 \text{ Ic=I0*cosd(phi0)};
17 printf("\nLoss component of no-load current, Ic=%fA",
      Ic)
```

```
18 Im=sqrt(I0^2-Ic^2);
19 printf("\nMagnetising current, Im=%fA", Im);
20 Rm = V1/Ic;
21 Xm = V1/Im;
22 Re=Psc/(Isc^2);
23 Ze=Vsc/Isc;
24 Xe=sqrt (Ze^2-Re^2);
25 printf("\nnEquvalent resistance referred to
      secondary=\%fohms", Re);
26 printf("\nEquvalent reactance referred to secondary=
      \%fohms", Xe);
27 printf("\nEquvalent impedance referred to secondary=
      %fohms", Ze);
28 \text{ K=V2/V1};
                                          //turns ratio
29 printf("\n\nEquvalent resistance referred to primary
     =\%fohms",(Re/K^2));
30 printf("\nEquvalent reactance referred to primary=
      \%fohms",(Xe/K^2));
31 printf("\nEquvalent impedance referred to primary=
      %fohms",(Ze/K^2));
32 V = 500;
                                   //output in volts
                                   //output current in
33 I = 10;
      amperes
34 \text{ phi} = a\cos d(0.80);
35 effi=(V*I*cosd(phi)*100)/((V*I*cosd(phi))+P+((I)^2*
      Re));
36 printf("\nEffiency=%fpercent", effi);
```

Scilab code Exa 3.22 Calculate efficiency

```
1 // Calculate efficiency // Chapter 3
2 // Example 3.22
3 // page 231
```

```
4 clear;
5 clc;
6 disp("Example 3.22")
7 \text{ kVA} = 200;
                            //Rating of the transformer
8 Pin=3.4;
                            //power input to two
      transformer in watt
9 Pin2=5.2;
10 coreloss=Pin;
                            //core loss of two
     transformers
11 phi=acosd(0.8);
12 printf("\nCore loss of two transformer=%fkW",Pin)
13 printf("\nCore loss of each transformer=%fkW", (Pin
     /2))
14 printf("\nFull load copper loss of the two
      transformer=%fkW", Pin2)
15 printf("Therefore, full load copper loss of each
      transformer=\%fkW",(Pin2/2));
16 effi=(kVA*cosd(phi)*100)/((kVA*cosd(phi))+(Pin/2)+(
     Pin2/2))
17 printf("\nFull load efficiency at 0.8 p.f. lagging=
      %fpercent", effi);
```

Scilab code Exa 3.24 Calculate efficiency of transformer

```
rating
9 V2 = 240;
                                          //secondary
      voltage rating
10 \text{ pf} = 0.8
11 coreloss=2;
                                        //core loss in kilo
       watt from open circuit test
12 Culoss=2;
                                        //copper loss at
      secondary current of 175A
                                         //current in
13 I = 175;
      amperes
14 I2=(kVA*1000)/V2;
15 printf ("Full load secondary current, I2=%fA", I2);
16 effi=(kVA*pf*100)/((kVA*pf)+coreloss+(Culoss*(I2/I))
      ^2))
17 printf("\n Efficiency = \% fpercent", effi)
```

Scilab code Exa 3.25 Calculate efficiency of transformer

```
1 // Calculate efficiency of transformer // Chapter 3
2 //Example 3.25
3 //page 234
4 clear;
5 clc;
6 disp("Example 3.25")
7 kVA = 500;
                            //rating of the transformer
8 R1 = 0.4;
                            //resistance in primary
      winding inohms
9 R2 = 0.001;
                            //resistance in secondary
      winding in ohms
10 V1 = 6600;
                            //primary voltahe in volts
11 V2 = 400;
                            //secondary voltage in volts
                              //iron loss in kilowatt
12 ironloss=3;
                              //power factor lagging
13 pf=0.8;
```

Scilab code Exa 3.26 Calculate efficiency of transformer

```
1 // Calculate efficiency of transformer // Chapter 3
2 //Example 3.26
3 //page 234
4 clear;
5 clc;
6 disp("Example 3.26")
                                 //rating of the
7 \text{ kVA} = 400;
      transformer
8 ironloss=2;
                                //iron loss in kilowatt
                                //power factor
9 \text{ pf} = 0.8;
                                //load in kilowatt
10 kW = 240;
11 kVA1=kW/pf;
12 disp ("Efficiency is maximium when, core-loss=copper-
      loss")
13 coreloss=ironloss;
14 disp("Maximium efficiency occurs at 240kw, 0.8 power
      factor, i.e., at 300kVA load")
15 Cl300=coreloss;
16 C1400 = (C1300 * (kVA/kVA1)^2);
17 pf1=0.71;
                          //power factor for full load
18 effi=(kVA*pf1*100)/((kVA*pf1)+coreloss+C1400);
```

Scilab code Exa 3.27 Calculate efficiency of transformer

```
1 // Calculate efficiency of transformer // Chapter 3
2 //Example 3.27
3 //page 235
4 clear;
5 clc;
6 disp("Example 3.27")
7 kVA = 40:
                               //rating of the
     transformer
                                //core-loss in watts
8 coreloss=450;
                                //copper loss in watt
9 Culoss=800;
10 pf=0.8;
                                //power factor of the
11 FLeffi=(kVA*pf*100)/((kVA*pf)+((coreloss+Culoss)
     /1000));
12 printf("Full-load efficiency=%fpercent", FLeffi);
13 disp("For maximium efficiency, Core loss=copper loss
     ")
14 Culoss2=coreloss;
                                 //for maximium
      efficiency
15 n=sqrt(Culoss2/Culoss);
16 kVA2=n*kVA;
                                 //load for maximium
      efficiency
17 MAXeffi=(kVA2*pf*100)/((kVA2*pf)+((coreloss+Culoss2))
```

Scilab code Exa 3.28 Calculate current in different parts of winding of autotransformer

```
1 // Calculate efficiency of transformer // Chapter 3
2 //Example 3.29
3 //page 236
4 clear;
5 clc;
6 disp("Example 3.29")
                               //rating of the
7 kVA = 50;
     transformers
8 I1 = 250;
                               //primary current in
     amperes
9 Re=0.006;
                               //total resistance
      referred to the primary side
10 ironloss=200;
                                 //iron loss in watt
                                //copper loss in watt
11 Culoss=(I1^2*Re);
                                 //power factor lagging
12 pf=0.8;
13 printf("Full-load copper loss=%fW", Culoss);
14 TL1=((Culoss+ironloss)/1000);
15 printf("\nTotal loss on full load=%fkW", TL1);
16 TL2=((((Culoss*(1/2)^2))+ironloss)/1000)
17 printf("\nTotal loss on half load=%fkW", TL2);
18 effi1=(kVA*pf*100)/((kVA*pf)+TL1);
19 printf("\nEfficiency at full load, 0.8 power factor
      lagging=%f percent", effil)
20 effi2=((kVA/2)*pf*100)/(((kVA/2)*pf)+TL2);
21 printf("\nEfficiency at half load, 0.8 power factor
     lagging=%f percent", effi2)
```

Scilab code Exa 3.29 Calculate efficiency of transformer

```
1 // Calculate efficiency of transformer // Chapter 3
2 //Example 3.30
3 //page 237
4 clear;
5 clc;
6 disp("Example 3.30")
                                //rating of the
7 kVA = 10;
      transformers
                                //primary voltage in
8 V1 = 400;
      volts
9 V2 = 200;
                                //secondary voltage in
      volts
10 f = 50;
                                //frequency in hertz
11 MAXeffi=0.96;
                                //maximium efficiency
12 output1=(kVA*0.75);
                                //output at 75% of full
      load
13 input1=(output1/MAXeffi);
14 printf("\nInput at 75 percent of full load=%fkW",
      input1);
15 TL=input1-output1;
16 printf("\n\text{Total losses}=\%\text{fkW}",TL);
17 Pi=TL/2;
18 Pc=TL/2;
19 disp ("Maximiunm efficiency occurs at 3/4th of full
      load")
20 \text{ Pc=Pi/(3/4)^2};
21 printf("\nThus, total losses on full load=\%fW",((Pc+
      Pi)*1000));
22 pf=0.8;
                           //power factor lagging
23 effi=(kVA*pf*100)/((kVA*pf)+(Pc+Pi));
```

```
24 printf("\nEfficiency on full load. 0.8 power factor lagging=%fpercent",effi)
```

Scilab code Exa 3.30 Calculate efficiency of transformer

```
1 //Calculate voltage regulation of transformer //
      Chapter 3
2 //Example 3.31
3 //page 237
4 clear;
5 clc;
6 disp("Example 3.31")
                                 //rating of the
7 \text{ kVA} = 500;
     transformers
                                 //primary voltage in
8 V1=3300;
      volts
9 V2 = 500;
                                //secondary voltage in
      volts
10 f = 50;
                                //frequency in hertz
11 MAXeffi=0.97;
12 x = 0.75;
                                //fraction of full load
      for maximium efficiency
13 pf1=1;
14 output1=(kVA*x*pf1*1000);
15 printf("Output at maximium efficiency=%dwatts",
      output1);
16 losses=((1/MAXeffi)-1)*output1;
17 printf("\nThus, at maximium efficiency,\n lossses=
     \% fW",losses)
18 Culoss=losses/2;
19 printf("\nCopper losses at 75percent of full load=
     \% dW", Culoss);
20 CulossFL=Culoss/x^2;
```

Scilab code Exa 3.32 Calculate current in different parts of winding of autotransformer

```
1 // Calculate current in different parts of winding of
       autotransformer // Chapter 3
2 //Example 3.32
3 / page 240
4 clear;
5 clc;
6 disp("Example 3.32")
                               //primary voltage of auto
7 V1 = 230;
     -transformer
                               //secondary voltage of
8 V2 = 75:
     auto-transformer
9 r = (V1/V2);
                                //ratio of primary to
      secondary turns
10 I2=200;
                               //load current in amperes
11 I1=I2/r;
12 printf("Primary current, I1=%fA", I1);
13 printf("\nLoad current, I1=%fA", I2);
14 printf("\ncirrent flowing through the common portion
       of winding=\%fA",(I2-I1));
15 printf("\nEconomy in saving in copper in percentage=
      %fpercent",(100/r));
```

Chapter 4

Three Phase Induction Machines

Scilab code Exa 4.1 to calculate synchronous speed and speed of rotro for slip condition

```
1 // Calculating synchronous speed and speed of a rotor
2 //Chapter 4
3 //Example 4.1
4 //page 288
5 clear;
6 clc;
7 disp("example 4.1");
          //frequency
8 f = 50;
9 p=6; // number of poles
10 V=400; //voltage supply
        //percentage slip
11 S=4;
12 Ns=(120*f)/p; //synchronous speed
13 printf("Synchronous speed, Ns=%d \n", Ns);
14 Nr = (1 - (S/100)) * Ns;
15 printf("speed of rotor with slip 4 percent, Nr is %d
     rpm \ n, Nr);
```

Scilab code Exa 4.2 to find out rotor running at higher slip

```
1 //determining rotor running at high slip
2 //Chapter 4
3 //Example 4.2
4 //page 288
5 clear;
6 clc;
7 disp("example 4.2");
8 f=50; //frequency
9 V=400; //voltage supply
10
11 p=2;
12 printf("when P=2, Syhchronous speed, Ns=\%d \ n", ((120*
      f)/p));
13 p=4;
14 printf ("when P=2, Syhchronous speed, Ns=\%d \ n", ((120*
      f)/p));
15 p=6;
16 printf ("when P=2, Syhchronous speed, Ns=\%d \ n", ((120*
      f)/p));
17 p=8;
18 printf ("when P=2, Syhchronous speed, Ns=\%d \ n", ((120*
      f)/p));
19 disp("for Nr to be 1440, Ns will be 1500, thus p=4"
      )
20 \text{ Ns} = 1500; \text{Nr}1 = 1440;
21 S1 = ((Ns - Nr1) / Ns) * 100;
22 printf ("slip=%d\n",S1);
23 disp("for Nr to be 940, Ns will be 1000, thus p=6")
24 \text{ Ns} = 1000; \text{Nr}2 = 940;
25 S2=((Ns-Nr2)/Ns)*100;
```

```
26 printf("slip=%d\n",S2);
27 if S1>S2 then
28     disp("motor running at 1440 rpm is running at higher slip")
29 elseif S2>S1
30     disp("motor running at 940 rpm is running at higher slip")
```

Scilab code Exa 4.3 calculating slip and number of poles

```
1 // Calculating synchronous speed and speed of a rotor
2 //Chapter 4
3 //Example 4.3
4 //page 289
5 clear;
6 clc;
7 disp("example 4.3");
8 disp("induction motor is to be run at 1440 rpm")
           //poles of alternator
9 P = 10;
           //speed of alternator
10 N = 600;
11 f = (P*N)/120
                 //frequency
12 printf ("frequency=%d",f);
13 disp("when P=2");p=2
14 Ns=(120*f)/p; //synchronous speed
15 printf("Synchronous speed, Ns=%d \n", Ns);
16 disp("when P=4");p=4;
17 Ns=(120*f)/p; //synchronous speed
18 printf("Synchronous speed, Ns=%d \n", Ns);
19 //speed of rotor (1440) is less than synchronous
      speed 1500, therefore P=4
20 disp("speed of rotor (1440) is less than synchronous
      speed 1500, therefore P=4\n")
21 \text{ Ns} = 1500;
```

Scilab code Exa 4.4 Calculate frequency of rotor induced emf

```
1 // Calculate frequency of rotor induced emf
2 //Chapter 4
\frac{3}{2} //Example 4.4
4 //page 293
5 clear;
6 clc;
7 disp("Example 4.4")
8 \text{ Nr} = 1440;
                             //rotor speed in rpm
9 f = 50;
                              //frequency in hertz
10 //calculating Ns for values of P=2,4,6,8 etc
11 / by checking P=4
12 P=4;
                                    //Synchronous speed
13 Ns = (120*f)/P;
14 S=(Ns-Nr)/Ns;
                                   //slip
                                    //rotor frequency
15 Fr=S*f;
16 printf("Rotor frequency=%dHz",Fr)
```

Scilab code Exa 4.5 Calculating the speed of running motor and its slip

```
\frac{3}{2} //Example 4.5
4 //page 294
5 clear;
6 clc;
7 disp("Example 4.5")
8 f=50; ......//induction motor frequency
     in hertz
9 fr=1.5;.....//rotor frequency in hertz
10 S=fr/f;.....//slip
11 P=8;.....//pole
12 Ns = (120*f)/P;
13 printf("synchronous speed=%frpm", Ns)
14 Nr = Ns - (S*Ns);
15 printf("\nmotor running speed=%frpm", Nr)
16 \text{ S1=S*100};
17 printf("\nslip percent=%fpercent",S1)
```

Scilab code Exa 4.6 Calculating the speed of rotating magnetic field

```
1 // Calculate rotor current and phase difference
2 //Chapter 4
3 //Example 4.7
4 //page 297
5 clear;
6 clc;
7 disp("Example 4.7")
8 E20=100;
                        //induced emf in volts
                        //rotor resistance in ohms
9 R2 = 0.05;
10 \quad X20 = 0.1;
                        //rotor reactance in ohms
11 E20p=E20/sqrt(3);
12 disp("When S=0.04")
13 S = 0.04;
14 I2=(S*E20p)/sqrt(R2^2+(S*X20)^2)
```

```
15  printf("I2=%dA",I2);
16  phi2=acosd(R2/(sqrt(R2^2+(S*X20)^2)));
17  printf("\nPhase angle between rotor voltage and rotor current=%f degrees",phi2);
18  disp("When S=1")
19  S=1;
20  I2=(S*E20p)/sqrt(R2^2+(S*X20)^2)
21  printf("I2=%dA",I2);
22  phi2=acosd(R2/(sqrt(R2^2+(S*X20)^2)));
23  printf("\nPhase angle between rotor voltage and rotor current=%f degrees",phi2);
```

Scilab code Exa 4.7 Calculate rotor current and phase difference

```
1 // Calculate rotor current and phase difference
2 //Chapter 4
3 //Example 4.7
4 //page 297
5 clear;
6 clc;
7 disp("Example 4.7")
8 E20=100;
                        //induced emf in volts
                        //rotor resistance in ohms
9 R2 = 0.05;
10 \quad X20 = 0.1;
                        //rotor reactance in ohms
11 E20p=E20/sqrt(3);
12 disp("When S=0.04")
13 S = 0.04;
14 I2=(S*E20p)/sqrt(R2^2+(S*X20)^2)
15 printf("I2=%dA", I2);
16 phi2=acosd(R2/(sqrt(R2^2+(S*X20)^2)));
17 printf("\nPhase angle between rotor voltage and
      rotor current=%f degrees", phi2);
18 disp ("When S=1")
```

```
19 S=1;
20 I2=(S*E20p)/sqrt(R2^2+(S*X20)^2)
21 printf("I2=%dA", I2);
22 phi2=acosd(R2/(sqrt(R2^2+(S*X20)^2)));
23 printf("\nPhase angle between rotor voltage and rotor current=%f degrees",phi2);
```

Scilab code Exa 4.8 Calculating the running speed and frequency of the rotor magnet current

```
1 // Calculating the running speed and frequency of the
      rotor magnet current
2 //Chapter 4
3 //Example 4.8
4 //page 298
5 clear;
6 clc;
7 disp("Example 4.8")
8 f=50;.....//frequency of induction motor
9 P=4;.....//pole
10 Ns=(120*f)/P;
11 S=3;.....//slip percent
12 Nr = Ns - ((Ns * S) / 100)
13 fr=(S*f)/100;
14 printf ("synchronous speed=%frpm", Ns)
15 printf("\nspeed of running motor=%frpm", Nr)
16 printf("\nrotor frequency=%fHz",fr)
```

Scilab code Exa 4.9 Calculating the running speed and frequency of the rotor magnet current

```
1 //Calculating the running speed and frequency of the
     rotor magnet current
2 //Chapter 4
3 //Example 4.9
4 //page 299
5 clear;
6 clc;
7 disp("Example 4.9")
8 fr=2; ......//frequency of
     motor induced emf in hertz
9 f=50;.....//frequency of
    induction motor in hertz
10 S=(fr/f)*100;.....//slip percent
11 P=6;.....//pole
12 Ns = (120*f)/P;
13 Nr = Ns - ((Ns * S) / 100);
14 printf("percentage slip=%fpercent",S)
15 printf("\nrotor speed=%frpm", Nr)
```

Scilab code Exa 4.10 Calculating the frequency of the rotor current

```
1 // Calculating the frequency of the rotor current
2 // Chapter 4
3 // Example 4.10
4 // page 299
5 clear;
6 clc;
7 disp("Example 4.10")
8 P=12;......// pole
9 f=50;.....// frequency of induction
```

```
motor in hertz

10 Nr=485;.....//induction motor speed in rpm

11 Ns=(120*f)/P;
12 S=(Ns-Nr)/Nr;
13 fr=S*f;
14 printf("frequency of rotor current=%fHz",fr)
```

Scilab code Exa 4.11 Calculating the rotor current

```
1 //Calculating the rotor current
2 //Chapter 4
3 //Example 4.11
4 //page 299
5 clear;
6 clc;
7 disp("Example 4.11")
8 E20=100;.....//induced
    emf of induction motor at standstill in volts
 E20p=E20/sqrt(3);.....//induced
    emf per phase in volts
10 S=0.40; .....//slip
11 E2=S*E20p;.....//rotor
    induced emf at slip S in volts
12 printf("Rotor induced emf at a slip E2=%fV", E2);
13 R2=0.4; .....//resistance
     per phase in ohms
14 X20=2.25;.....//standstill
    resistance per phase i ohms
15 Z2=sqrt((R2)^2+(S*X20)^2);.....//
    rotor impedence at slip S in ohms
16 printf("\nRotor impedence at a slip S, Z2=%fohms", Z2
```

```
17 I=E2/Z2;
18 printf("\nrotor current=%fA",I)
```

Scilab code Exa 4.12 Calculate power developed and efficiency

```
1 // Calculate power developed and efficiency
2 //Chapter 4
3 //Example 4.12
4 //page 308
5 clear;
6 clc;
7 disp("Example 4.12")
8 S=0.03;
                           //slip
9 \text{ SI} = 50;
                          //stator input in kilowatts
10 SL=2;
                         //stator loss in kilowatts
                         //rotor input in kilowatts
11 RI=SI-SL;
12 RIL=S*RI;
                           //rotor I^2R loss
13 //rotor core loss can be neglected at 3percent slip
14 PDR=RI-RIL;
                           //power developed by the
     rotor
15 printf("Power developed by the rotor=%fkW", PDR);
16 FWL=1:
                          //friction and windage loss in
       kilowatt
17 OP = PDR - FWL;
                           //output power
18 printf("\nOutput power=%fkW", OP);
19 effi=(OP*100)/SI;
20 printf("\nEfficiency of the motor=%f percent", effi)
```

Scilab code Exa 4.13 Calculating the rotor loss and rotor speed

```
1 // Calculating the rotor loss and rotor speed
2 //Chapter 4
3 //Example 4.13
4 //page 309
5 clear;
6 clc;
7 disp("Example 4.13")
8 f=50;.....//frequency of induction
      motor in hertz
9 \text{ hp} = 20;
                               //horse power
                               //Three phase supply
10 ph = 3;
                             //number of poles
11 P=4;
12 losses=500;
                                 //friction and vintage
      losses
13 printf("Output of the motor=%fW", (hp*735.5))
14 Pd = (hp * 735.5) + losses;
                                       //power developed
      in watt
15 printf("\nPower developed by the rotor=%dW",Pd);
16 \text{ s} = 0.04;
                                 //slip
17 rotorloss=(s*Pd)/(1-s);
18 printf("\nRotor\ I^2R-loss=\%fW", rotorloss);
19 Ns = (120*f)/P;
20 printf("\nNs=\%drpm", Ns);
21 \text{ Nr} = \text{Ns} * (1-s);
22 printf("Nr=%drpm", Nr);
```

Scilab code Exa 4.14 Calculating standstill rotor reactance

```
1 // Calculating standstill rotor reactance
2 // Chapter 4
3 // Example 4.14
4 // page 310
5 clear;
```

```
6 clc;
7 disp("Example 4.14")
8 f=50; ......//frequency of induction
     motor in hertz
9 P=6;
                                //number of poles
10 ph = 3;
                             //Three phase supply
11 R2=0.1;
                               //rotor resistance in
     ohms
12 Ns = (120*f)/P;
13 printf("Syncronous speed, Ns=%drpm", Ns);
                               //rotor speed in rpm
14 Nr=940;
15 S = (Ns - Nr) / Ns;
16 printf("\nSlip, S=\%f",S);
17 printf("\nstandstill rotor reactance, X20=\%fohms", (R2
     /S));
```

Scilab code Exa 4.15 Calculating new full load speed

```
1 // Calculating new full load speed
2 //Chapter 4
3 //Example 4.15
4 / page 310
5 clear;
6 clc;
7 disp("Example 4.15")
8 f=50; ......//frequency of induction
     motor in hertz
9 P=4;
                               //number of poles
10 Nr=1440;
                               //rotor speed in rpm
                              //rotor resistance in
11 R2 = 0.1;
     ohms
12 \quad X20 = 0.6;
                               //rotor standstill
     resistance in ohms
```

Scilab code Exa 4.16 Calculating starting torque

```
1 // Calculating starting torque
2 //Chapter 4
3 //Example 4.16
4 //page 311
5 clear;
6 clc;
7 disp("Example 4.16")
                              //frequency in hertz
8 f = 50;
                             //number of poles
9 P = 4;
10 R2 = 0.04;
                                 //rotor resistance in
      ohms
11 Ns = (120*f)/P;
12 printf("Syncronous speed=%drpm", Ns);
13 Nr = 1200;
                             //rotor speed at maximium
      torque in rpm
14 S=(Ns-Nr)/Ns;
15 printf("\nSlip at maximium torque=%f",S);
16 \text{ X20=R2/S};
17 //starting torque is developed when S=1
18 / r = (Tst/Tm)
```

Scilab code Exa 4.18 Calculating external resistance

```
1 // Calculating external resistance
2 //Chapter 4
3 //Example 4.18
4 //page 313
5 clear;
6 clc;
7 disp("Example 4.18")
                             //number of poles
8 P = 4;
                             //frequency in hertz
9 f = 50;
10 ph=3;
                              //three phase supply
11 R2=0.25;
                               //rotor resistance in
     ohms
                                  //rotor speed in rpm
12 Nr=1440;
13 Ns = (120*f)/P;
14 S1=(Ns-Nr)/Ns;
15 printf ("S1=\%f", S1);
              //rotor speed when external is added
16 Nr2=1200;
17 S2=(Ns-Nr2)/Ns;
18 //torque remains constant, we get the relation R2'=R2
      *(S2/S1)
19 R2dash=R2*(S2/S1)
20 printf("\nExtra resistance to be connected in the
     motor circuit = \% fohms", (R2dash-R2))
```

Scilab code Exa 4.20 Calculating full load rotor loss and rotor input and output torque

```
1 // Calculating full load rotor loss and rotor input
      and output torque
2 //Chapter 4
3 //Example 4.20
4 //page 311
5 clear;
6 clc;
7 disp("Example 4.20")
8 \text{ hp} = 20;
9 P = 4;
                                  //number of poles
10 f = 50;
11 S=0.03;
                                   //slip
                                  //motor shaft output
12 MSO=hp*735.5;
13 \quad losses=0.02*MSO
                                    //friction and windage
       loss in watts
                                        //power developed
14 Pd=MSO+losses;
      by the rotor in watts
                                  //rotor I^2*R loss
15 RCL=(S*Pd)/(1-S);
16 printf("rotor copper loss=%fW", RCL);
17 Ri=Pd+RCL
                                              //rotor iron
      loss is neglected
18 printf("\nRotor input=%fW", Ri);
19 Ns = (120*f)/P;
                                           //rotor speed
20 Nr=Ns*(1-S)*(1/60);
      in rps
                                              //outp[ut
21 \quad OT=MSO/(2*3.14*Nr);
      torque in Nm
22 printf("\noutput torque=%fNm",OT)
```

Scilab code Exa 4.21 Calculating the slip and rotor copper loss and the output horse power and efficiency

```
// Calculating the slip, rotor copper loss, the output
     horse power and efficiency
 //Chapter 4
3 //Example 4.21
4 //page 316
5 clear;
6 clc;
7 disp("Example 4.21")
8 f=50; .....//frequency of induction
    motor in hertz
9 P=6;.....//pole
10 Ns=(120*f)/P;
11 Nr=975; .....//induction motor
     running speed in rpm
12 S=(Ns-Nr)/Ns;
13 printf ("the slip=\%f",S)
14 Pin=40; ...........//power input to stator
 S1=1; .....//stator losses in kW
16 Rin=Pin-Sl;.....//output from stator in
    kW
17 Rc=S*Rin;
18 printf("\nrotor copper losses=%fkW",Rc)
19 1=2;.....//total losses in kW
20 p=Rin-Rc-l;.....//output power in kw
21 HP = (p*1000) / 735.5;
22 printf("\noutput horse output=%fHP", HP)
23 in=40;.....//input in kW
24 \text{ effi} = (p/in) * 100;
```

Scilab code Exa 2.22 Calculate the value of resistance

```
1 // Calculate the value of resistance
2 //Chapter 2
3 //Example 2.22
4 //page 126
5 clear;
6 clc;
7 disp("Example 2.22")
8 V = 440;
                           //primary voltage in volts
                           //armature current in amperes
9 Ia=50;
                            //armature resistance in ohms
10 Ra=0.2;
                             //speed in rpm
11 N = 600;
                            //emf induced in volts
12 E=V-(Ia*Ra);
      before adding extra resistance
13 / E = K * phi * N = K1 * Ia * N
14 K1=E/(Ia*N);
15 //we have the relation T=Kt1*Ia^2, T1=Kt1*Ia1^2
16 //when torque is half, say torque be T1
17 //T1=T/2. r=T/T1
18 r = 2;
19 Ia1=sqrt(Ia^2/r);
20 printf ("Ia1 = \%fA", Ia1);
21 //extra resistance R is introduced in the circuit
22 \text{ N1} = 400;
23 E1 = (K1 * Ia1 * N1);
24 R = ((V-E1)/Ia1)-Ra;
25 printf("\nvalue of extra resistance added=%fohms",R)
```

Scilab code Exa 4.22 Calculating the slip and rotor speed and mechanical power developed and rotor copper loss per phase and resistance per phase

```
1 // Calculating the slip, rotor speed, mechanical power
     developed, rotor copper loss per phase and
     resistance per phase
2 //Chapter 4
\frac{3}{2} //Example 4.22
4 //page 316
5 clear;
6 clc;
7 disp("Example 4.22")
8 f=50;.....//frequency of
    induction motor in hertz
9 P=6;.....//pole
10 Ns=(120*f)/P;
11 printf ("synchronous speed=%frpm", Ns)
12 fr=120/60;.....//rotor
     frequency
13 S=fr/f;
14 printf("\nthe slip=\%f",S)
15 Nr = Ns - (Ns * S);
16 printf("\nrotor speed=%frpm", Nr)
17 Rin=80;.....//rotor input in kW
18 Rc=S*Rin; ......//Rotor copper loss in
19 Ph=3;.....//number of
20 Rcp=(Rc/Ph)*1000;.....//loss per
     phase in watt
21 p=((Rin-Rc)*1000)/735.5;
22 printf("\nmechanical power developed=%fhp",p)
```

```
23 Ir=60;.....//rotor current in
    amperes
24 R2=Rcp/(Ir)^2;
25 printf("\nrotor resistance per phase at rotor
    current 60A=%fohms", R2)
```

Scilab code Exa 4.23 Calculating additional resistance required

```
1 // Calculating additional resistance required
2 //Chapter 4
3 //Example 4.23
4 //page 320
5 clear;
6 clc;
7 disp("Example 4.23")
8 // we know (Ts/Tm) = ((2*a)/(1+a^2))
9 //where a=(R2/X20)
10 //at starting contion since Tm=Ts
11 disp("At starting contion since Tm=Ts")
        //we obtain from the relations
12 a = 1
13 R2 = 0.05;
                                 //circuit resistance in
     ohms
14 \times 2 = 0.4;
                                //standstill reactance in
      ohms
15 r = (a * X2) - R2;
                                 //r is the extra that is
       added to the rotor circuit
16 printf("extra resistance added, r=%fohms",r)
```

Scilab code Exa 4.24 Calculate speed of motor and maximium torque

```
1 // Calculate speed of motor and maximium torque
2 //Chapter 4
\frac{3}{2} //Example 4.24
4 //page 321
5 clear;
6 clc;
7 disp("Example 4.24")
8 V = 400;
                            //supply voltage in volts
9 f = 50;
                               //frequency in hertz
10 P=6;
                            //number of poles
                             //three phase supply
11 ph=3;
12 R2 = 0.03;
                              //rotor resistance in ohms
13 X20=0.4;
                               //rptor reactance in ohms
14 Nr=960;
                             //full load speed in rpm
15 Ns = (120*f)/P;
16 printf("synchronous speed=%drpm", Ns)
17 S = (Ns - Nr) / Ns;
                               //corresponding slip
18 //maximium torque Tm occurs at S=(R2/X20)
19 //we get T_{k}/(2*X_{20})
20 a=R2/X20;
21 / r = Tm/T
22 r=(a^2+S^2)/(2*a*S);
23 Sm = (R2/X20);
24 printf("\nSlip at maximium torque, Sm=\%f", Sm);
25 //corresponding speed
26 \text{ Nr} 2 = \text{Ns} * (1 - \text{Sm});
27 printf("\nRotor speed at maximium torque=%drpm", Nr2)
```

Scilab code Exa 4.25 Calculate starting current

```
1 // Calculate starting current
2 // Chapter 4
3 // Example 4.25
```

```
4 //page 321
5 clear;
6 clc;
7 disp("Example 4.25")
8 V = 400;
                          //supply voltage in volts
9 f = 50;
                             //frequency in hertz
10 P=4;
                          //number of poles
                           //three phase supply
11 ph=3;
12 S = 0.04;
13 If=30;
                           //Full load current in
      amperes
14 Isc=6*If;
15 //let r be the ratio of starting torque nd full load
       torque, r=Ts/Tf
16 r=(Isc/If)^2*S;
17 //Tf=Tm is produced when voltage is Vm
18 Vm = sqrt(V^2/r);
19 printf("\nvoltage at maximium torque=%fvolts", Vm);
20 Is=6*If*(Vm/V);
21 printf("\nFull-load current at 333.3 volts is=%fA",
      Is)
```

Scilab code Exa 4.26 Calculate starting line current and starting torque

```
9 f = 50;
                              //frequency in hertz
                               //current taken when delta
10 \text{ Id} = 75;
      -connected in amperes
11 printf("current taken when delta-connected=%dA",Id);
12 Is=Id/3;
                                 //current taken when
      star-connected in amperes
13 printf("\ncurrent taken when star-connected=%dA", Is)
14 //Tfl be the full load torque
15 / r = Ts / Tfl
16 r=1.5;
17 //since voltage becomes (1/\operatorname{sqrt}(3)) when star
      connected
18 //torque is directly proportional to square of
      voltage
19 printf("\nStarting torque with winding star
      connected=%f times of Tfl",(r/3));
```

Scilab code Exa 4.28 Calculate starting torque

```
//Calculate starting torque
//Chapter 4
//Example 4.28
//page 333
clear;
clc;
disp("Example 4.28")
ph=3;
//rotor copper loss=slip*rotor input
//Tst= starting torque
//Tfl=torque at full load
//Ist/Ifl=r
r=6;
```

Scilab code Exa 4.29 Calculate full load speed

```
1 // Calculate full load speed
2 //Chapter 4
3 //Example 4.29
4 //page 334
5 clear;
6 clc;
7 disp("Example 4.29")
                               //voltage in volts
8 V = 400;
                               //frequency in hertz
9 f = 50;
                             //number of poles
10 P=4;
11 / r1 = (Ts/Tfl)
12 r1=1.6;
13 // r2 = (Tm/Tfl)
14 r2=2;
15 // r 3 = (Ts/Tm) = (2*a)/(1+a^2)
16 r3=0.8;
17 //on solving , we get a=0.04
18 a=0.04;
19 Sm=0.04; //slip at maximium torque
20 printf("Slip at maximium torque, Sm=%f", Sm)
21 \text{ Ns} = (120*f)/P;
                              //synchronous speed in rpm
```

```
22 Nr=Ns*(1-Sm) //rotor speed in rpm

23 //r2=(a^2+Sfl^2)/(2*a*Sfl)

24 Sfl=0.01;

25 Nr2=Ns*(1-Sfl);

26 printf("\nfull load speed, Nr=%drpm", Nr2)
```

 ${\bf Scilab}$ code ${\bf Exa}$ 4.30 Calculate full load rotor loss and rotor input and output torque

```
1 // Calculate full load rotor loss and rotor input and
       output torque
2 //Chapter 4
3 //Example 4.30
4 //page 345
5 clear;
6 clc;
7 disp("Example 4.30")
8 \text{ hp} = 20;
                               //power in horsepower
9 f = 50;
                              //frequency in hertz
                             //number of poles
10 P=4;
11 Ns = (120*f)/P;
                                   //synchronous speed
12 printf("Synchronous speed, Ns=%drpm", Ns);
13 S = 0.04;
                                         //slip
14 Nr = Ns * (1-S);
15 OP = hp * 735.5;
16 printf("\nOutput power=%fW", OP);
17 OT=OP/(2*3.14*(Nr/60));
18 printf("\nOutput torque=%fNm",OT);
19 FL=0.02*0P;
                         //Friction and windage loss
20 PD = OP + FL;
21 printf("\nPower developed by the rotor=%fW",PD);
22 //from relation, (rotor I^2R-loss=S*Rotor input) we
      get following relation
```

```
23 RL=(S*PD)/(1-S);

24 printf("\nRotor I^2R-loss=%fW", RL);

25 RI=RL/S;

26 printf("\nRotor input=%dW", RI)
```

Scilab code Exa 4.31 Calculate full load rotor loss and rotor input and output torque

```
1 // Calculate full load rotor loss and rotor input and
       output torque
2 //Chapter 4
3 //Example 4.31
4 //page 347
5 clear;
6 clc;
7 disp("Example 4.31")
8 P=4;
                        //number of poles
9 f = 50;
                         //frequency in hertz
10 V = 230;
                         //voltage in volts
                         //power in horsepower
11 hp=5;
12 \text{ Ib=15};
                          //current in block rotor test
     in amperes
13 output=hp*735.5;
                            //output in watts
14 //in block rotor test: power input=Full=load I^2R
      losses = 735W
15 FL1=735;
                                              //Full-load
      I^2R losses
16 printf("Full-load I^2R losses=%fW",FL1);
17 Re=FL1/(3*Ib^2);
                           //current in no load
18 Io=6.3;
      condition in amperes
19 lossNL=(3*(Io)^2*Re);
                             //I^2R loss at no-load
      condition
```

Scilab code Exa 4.32 Calculate full load efficiency

```
1 // Calculate full load efficiency
2 //Chapter 4
3 //Example 4.32
4 //page 347
5 clear;
6 clc;
7 disp("Example 4.32")
8 V1 = 415;
                      //voltage in volts
9 I1=50;
                          //line current in amperes
                           //resistrance of stator
10 R1 = 0.5;
     winding per phase in ohms
                         //power factor
11 pf=0.85;
12 S = 0.04;
13 IFL=(sqrt(3)*Vl*Il*pf) //input to the motor
     on full load
14 printf("Input to the motor on full load=%dW", IFL);
15 I1=I1/sqrt(3);
16 SLFL = (3*I1^2*R1)
                                //Stator I^2R loss on
      full load
17 printf("\nStator I^2R loss on full load=%dW", SLFL);
18 // given ratio of stator core loss friction and
     windahe loss be r = (r1:r2)
19 r1=3;
```

```
20 \text{ r}2=2;
21 \text{ TL} = 1500;
                           //total loss
                                           //stator core loss
22 SCL = (r1*TL)/(r1+r2);
                                           //Friction and
23 FWL = (r2*TL)/(r1+r2);
      windage loss
                                            //total stator
24 \text{ SL=SLFL+SCL};
      loss
                                             //Stator input
25 SI=IFL;
26 Pa=SI-SL;
                                                //power
      transferred through the air-gap=input to the
       rotor
27 RI = Pa
                                             //\operatorname{rotor} losses
28 RL=S*RI;
                                              //total rotor
29 TRL = FWL + RL;
      losses
30 \quad OP = RI - TRL;
                                                 //Output power
        at the shaft
31 effi=(OP*100)/SI;
32 printf("\nEfficiency=%f percent",effi)
```

Scilab code Exa 4.33 Calculating the rotor current at slip 3 precent and when the rotor develops maximum torque

```
9 E20p=E20/sqrt(3);......//induced
        emf per phase in volts
10 printf("induced emf per phase=%fV",E20p)
11 S=3/100;.....//slip
12 R2=0.2;....//resistance
        in ohms
13 X20=1;....//standstill
        resistance in ohms
14 I2=(S*E20p)/sqrt((R2)^2+(S*X20)^2)
15 printf("\nrotor current at slip 0.03 =%fA per phase"
        ,I2)
16 Sm=R2/X20;
17 I2m=(Sm*E20p)/sqrt((R2)^2+(Sm*X20)^2)
18 printf("\nrotor current when the rotor develops
        maximum torque=%fA per phase",I2m)
```

Scilab code Exa 4.34 Calculating the rotor current at slip 3 precent and when the rotor develops maximum torque

```
11 R2=0.2; ......//Rotor
     Resistance per phase
12 X20=1;.....//
     Standstill resistance in ohms
13 P=4;.....//pole
14 I=16;....//
15 S=(I*R2)/sqrt((E20)^2-(I*X20)^2);
16 Ns = (120*f)/P;
17 printf ("Synchronous speed=%frpm", Ns)
18 \text{ Nr} = \text{Ns} - (\text{Ns} * \text{S})
19 Sm = R2/X20;
20 \text{ Nr} = \text{Ns} - (\text{Ns} * \text{Sm})
21 I2=(Sm*E20p)/sqrt((R2)^2+(Sm*X20)^2)
22 printf("\nrotor current at maximum torque=%fAper
     Phase", I2)
23 Pi = (3*((I2)^2)*R2)/Sm;
24 printf("\nRotor input for the three phase=%fW",Pi)
```

Scilab code Exa 4.35 Calculate the circuit elements

```
1 // Calculate the circuit elements
2 //Chapter 4
3 //Example 4.35
4 //page 356
5 clear;
6 clc;
7 disp("Example 4.35")
8 R1dc=0.01;
                                   //DC resistance in
     ohms
9 V = 400;
                                   //voltage in volts
10 r=1.5;
                              //ratio of ac to dc
      resistance
11 R1=r*R1dc;
                                //AC resistance in ohms
```

```
12 //at no-load
13 Io = 20;
                                 //no-load current in
      amperes
14 SL = (3*Io^2*R1);
                             //I^2R loss in the stator
      phases in watts
15 FWL=300;
                                //Friction and windage loss
       in watts
16 TL=1200;
                                   //total losses=no-load
      power input in watts
17 CL=TL-(SL+FWL);
                                  //core loss in watt
18 CLp=CL/sqrt(3);
                                     //core loss per phase
19 Vp=V/sqrt(3);
                                     //voltage per phase
20 Rm = (Vp^3)/CL;
                                       //motor resistance
21 pf=CL/(Vp*Io);
22 phi0=acosd(pf);
23 Xm=Vp/(Io*sind(phi0));
                                               //motor
      reactance
24 //Under blocked rotor test
                                  //voltage in volts
25 \text{ Vb} = 100;
26 \, \text{Isc} = 45;
                                    //current in amperes
27 Vbp=100/sqrt(3);
                                  //voltage per phase in
      volts
28 P = 2750;
                                  //power supplied in watts
29 Ze=Vbp/Isc;
                                          //Motor impedance
      reffered to stator side in ohms
30 \text{ Re=P/(3*Isc^2)};
31 R2=Re-R1;
                                //rotor resistance referred
       to stator side
32 \text{ Xe=} \frac{\text{sqrt}}{\text{Ce}^2-\text{Re}^2};
33 // assuming X1=X2
34 \text{ X}2 = \text{Xe}/2
35 X1 = X2;
36 printf ("Thus the elements of the equivalent circuit
      are:");
37 printf("\nRm=%fohms", Rm);
38 printf("\nXm = \% fohms", Xm);
39 printf("\n\nR1=\%fohms",R1);
40 printf("\nrotor resistance referred to stator side,
```

```
R2=%fohms",R2);
41 printf("\nequivalent resistance referred to stator side, Re=%fohms",Re);
42
43 printf("\n\nX1=%fohms",X1);
44 printf("\nrotor reactance referred to stator side,X2 =%fohms",X2);
45 printf("\nequivalent reactance referred to stator side,Xe=%fohms",Xe);
```

Chapter 5

Three Phase Synchronous Machines

Scilab code Exa 5.1 To calculate distribution factor

```
1 //caption- for calculating distribution factor
2 //Chapter 5
3 // \text{example } 5.1
4 //page 424
5 clear;
6 clc;
7 disp("example 5.1");
8 printf("\n");
9 slots=18;
                   //nmber of poles
10 p=2;
                   //three phase winding
11 ph=3;
12 SA = (360/slots); //slot angle
13 m=slots/(p*ph); //m=nmber of slots per pole per
     phase
14 printf("number of slots per pole per phase,m=%d\n",m
15 printf("emfs of the oils of each phase will have a
     time-phase difference of %d degree mechanical \n
     ",SA);
```

```
16 k_d=sind((m*SA)/2)/(m*sind(SA/2));
17 printf("distribution factor=%f",k_d);
```

Scilab code Exa 5.2 To calculate distribution factor

```
1 //chapter 5
2 //example 5.2
3 / page 425
4 clear;
5 clc;
6 disp("example 5.2")
7 printf("\n");
8 slots=36; //number of slots
9 \text{ poles}=4;
                //number of poles
               //single layer three phase winding
10 ph=3;
11 SP=slots/ph; //number of slots per phase
12 printf("number of slots per phase= %d\n",SP);
13 m=SP/poles; //munber of slots per pole per phase
14 printf("number of slots per pole per phase, m=\%d\n", m
15 \text{ SA_m} = 360/\text{slots};
                           //slot angle mechanical
16 SA_e=(poles/2)*SA_m //slot angle electrical
17 printf("slot angle= %d degree electrical\n", SA_e)
18 k_d=sind((m*SA_e)/2)/(m*sind(SA_e/2));
19 printf ("distribution factor= %f", k_d)
```

Scilab code Exa 5.3 To calculate pitch factor

```
1 / chapter 5
```

```
2 //example 5.3
3 / page 426
4 clear;
5 clc;
6 disp("example 5.3");
7 printf("\n");
                 //number of slots
8 slots=48;
9 poles=4; //4-pole machine
                  //3-phase machine
10 ph=3;
11 SA=360/slots; //slot angle
12 printf ("total number of slots= %d\n", slots);
13 printf("slot angle= \%f degree mechanical\n",SA);
14 //coil span is 11 slot pitches
15 //12 slots subtend 180 \, \mathrm{degress}, short pitched by 1
      slot
16 Bta=1*180/12;
17 k_p = cosd(Bta/2);
18 printf("pitch factor=%f",k_p)
```

Scilab code Exa 5.4 To calculate the rms value of induced EMF

```
1 //chapter 5
2 //example 5.4
3 //page 426
4 clear;
5 clc;
6 disp("example 5.4");
7 printf("\n");
8 slots=72; //number of slots
9 P=8; //number of poles
10 ph=3; //3-phase machine
11 N=750; //speed of machine in rpm
12 //winding is made with 36 coils having 10 turns
```

```
//flux per pole
13 Fp=0.15;
14 fre=(P*N)/120;
               //nmber of coils per phase
15 NCp = 36/ph;
16 T = NCp * 10;
               //number of turns per phase
               //since full pitched pitch factor is 1
17 k_p=1;
18 printf("flux per pole=%fWb\n",Fp)
19 printf("number of turns per phase=%d\n",T);
20 printf("pitch factor=%f\n", k_p);
21 m=slots/(P*ph); //slots per pole per phase
22 SA_m=360/slots; //slot angle mechanical
23 SA_e = (P/2) * SA_m;
24 \text{ k_d=sind}((m*SA_e)/2)/(m*sind(SA_e/2));
25 printf("distribution factor=\%f\n",k_d);
26 E=4.44*Fp*fre*T*k_d*k_p;
27 printf("RMS vale of emf induced per phase=\%fV\n",E)
```

Scilab code Exa 5.5 Calculating useful flux per pole

```
1 / chapter 5
2 //example 5.5
3 / page 427
4 clear;
5 clc;
6 disp("example 5.5");
7 disp("E(line to line) = 440V");
             //line-to-line voltage
8 E_1 = 440;
9 E_p=E_1/(sqrt(3));
              //speed in rpm
10 N = 750;
               //frequency
11 fre=50;
12 P = (120 * fre) / N;
13 printf("P= \%d\n",P);
14 printf("E(per phase) = %dV \ n", E_p);
15 \text{ ph}=3;
              //3-phase machine
```

```
//number of slots per pole per phase
16 m = 2;
17 slots=m*P*ph;
                        //total number of stator slots
18 SA_m = 360/slots;
                        //slot angle mechanical
                        //slot angle electrical
19 SA_e = (P/2) * SA_m;
20 \text{ k_p=1};
                        //assuming full pitch
21 printf("slot angle= %d degree electrical\n", SA_e);
22 printf("pitch factor=%f\n",k_p);
23 k_d=sind((m*SA_e)/2)/(m*sind(SA_e/2));
24 printf ("distribution factor= \%f\n\n", k_d);
25 //2 slots per pole per phase
26 NSp=2*P;
                        //number of slots per phase
27 \text{ NTc}=4;
                        //number of turns per coil
28 T = 8 * NTc;
                        //number of turns per phase
29 Fp=E_p/(4.44*fre*T*k_d*k_p);
30 printf("flux per pole= %fWb\n", Fp);
```

Scilab code Exa 5.6 To calculate the frequency and induced EMF

```
1 / chapter 5
2 //example 5.6
3 / page 428
4 clear;
5 clc;
6 disp("example 5.6");
7 printf("\n");
8 slots=144; //number of slots
9 \text{ ph=3};
               //3-phase machine
               //number of poles
10 P = 16;
               //number of conducters per slot
11 Cp=10;
               //flux per pole
12 Fp = 0.03;
13 Ns=375; //synchronous speed
14 fre=(Ns*P)/120;
                      //frequency
15 printf ("frequency=%d\n\n", fre);
```

```
16 m=slots/(P*ph); //number of slots per pole per
     phase
17 printf("number of slots per pole per phase,m=
                                               %d\n"
     , m);
18 SA_m = 360/slots;
                     //slot angle mechanical
19 SA_e = (P/2) * SA_m;
                     //slot angle electrical
20 k_p=1
                     //no short pitching
21 printf("short pitch= \%d\n",k_p);
22 k_d=sind((m*SA_e)/2)/(m*sind(SA_e/2));
23 printf("distribution factor= \%f \ n", k_d);
24 T = (slots*10)/(2*ph);
25 printf("number of turns per phase, T = \%d n", T);
26 E=4.44*Fp*fre*T*k_d*k_p;
27 printf("RMS value of induced emf per phase, E= %fV\n
     ",E);
(3)*E));
```

Scilab code Exa 5.7 Finding the number of armsture conductors

```
1 //chapter 5
2 //example 5.7
3 / page 428
4 clear;
5 clc;
6 disp("example 5.7");
7 printf("\n");
8 slots=90; //number of slots
          //number of poles
9 P = 10;
10 ph=3;
             //3-phase machine
11 fre=50;
             //frequency
12 Fp=0.16;
             //flux per pole
13 E_1 = 11000;
             //line voltage
```

```
14 SA_m=360/slots; //machanical slot angle
15 SA_e=(P/2)*SA_m; //electrical slot angle
16 m=slots/(ph*P);
17 printf("slot angle=%d degree electrical\n",SA_e)
18 printf("number of slots per pole per phase,m=%d\n",m
);
19 k_p=1; //assuming full pitch
20 printf("pitch factor=%d\n",k_p);
21 k_d=sind((m*SA_e)/2)/(m*sind(SA_e/2));
22 printf("distribution factor=%f\n\n",k_d);
23 E_p=E_l/sqrt(3);
24 T=E_p/(4.44*Fp*fre*k_p*k_d);
25 printf("total number of armature conductors,Z= %d"
,(2*T));
```

Scilab code Exa 5.8 To calculate induced EMF per phase

```
1 //chapter 5
\frac{2}{\text{example }} 5.8
3 / page 429
4 clear;
5 clc;
6 disp("example 5.8");
7 disp("P=6 , f=50");
8 P = 6;
9 f = 50;
10 Sp=12;
                   //slots per pole
                  //conductors per slot
11 Cs=4;
12 Fp=1.5;
13 \text{ TS=Sp*P}
14 printf("total number of slots=%d\n", TS);
15 printf("total number of slots per phase= \%d\n", (TS
      /3));
```

```
16 printf("total number of conductors per phase= %d\n",
       ((TS*Cs)/3));
17 T = ((TS*Cs)/3)/2;
18 printf ("total number of turns per phase=%d\n",T)
19 m = (TS/(P*3));
20 printf("number of slots per pole per phase, m= %d\n",
     m);
                              //slot angle mechanical
21 \text{ SA}_m = 360/TS;
22 SA_e = (P/2) * SA_m;
23 k_d=sind((m*SA_e)/2)/(m*sind(SA_e/2));
24 printf("distribution factor=%f\n\n",k_d);
25 disp("coil pitch is 5/6 of full-pitch");
26 printf("\n");
27 bheta=180-(5/6)*180; //short pitch angle
28 printf ("short pitch angle= \%d degrees \n", bheta)
29 \text{ k_p=cosd(bheta/2)};
30 printf("pitch factor= \%f \n",k_p);
31 E=4.44*Fp*f*T*k_d*k_p;
32 printf("induced per phase= \%fV\n",E)
```

Scilab code Exa 5.9 To find the voltage regulation

```
12 //for star connected alternater, line current is
                                equal to phase current
13 I_a=I_1;
14 pf=0.8;
                                                                                                    //power factor
15 phi=acosd(pf);
16 R_a=0.3;
                                                                                                     //synchronous resistance
                                                                                                    //synchronous reactance
17 X_s = 4;
18 V_p=V_1/sqrt(3);
19 printf("phase voltage= \%fV\n", V_p)
20 E=sqrt((V_p*cosd(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*s
                               X_s)^2;
21 printf("induced emf= \%f V/Phase\n", E
22 PR = ((E-V_p)*100)/V_p;
23 printf("percentage regulation= %f percent\n",PR);
```

Scilab code Exa 5.10 To calculate voltage regulation

```
1 //chapter 5
2 //example 5.10
3 / page 440
4 disp("example 5.10")
5 clear;
6 clc;
7 V = 2000;
8 V_{oc} = 500;
                      //open circuit voltage
                      //short circuit current
9 I_sc=100;
10 I_a=100;
11 R_s=0.8;
                     //armature resistance
12 Z_s=V_oc/I_sc; //synchronous impedence
13 printf("Z_s = \%d \text{ ohm} n", Z_s);
14 X_s=sqrt(Z_s^2-R_s^2);
15 printf("X_s = \%f \text{ ohm} n", X_s);
16 pf=1;
```

```
17 phi=acosd(pf);
18 disp("At unity power factor");
19 printf("\n");
20 E=sqrt((V*cosd(phi)+I_a*R_s)^2+(V*sind(phi)+I_a*X_s)
      ^2);
21 printf("induced emf= \%fV\n",E);
22 R = ((E-V)*100)/V;
23 printf("regulation= %f percent\n",R);
24 clear pf;
25 pf=0.71;
26 phi=acosd(pf);
27 disp("At 0.71 lagging power factor");
28 printf("\n");
29 E=sqrt((V*cosd(phi)+I_a*R_s)^2+(V*sind(phi)+I_a*X_s)
      ^2);
30 printf("induced emf= \%fV\n",E);
31 R = ((E-V)*100)/V;
32 printf("regulation= \%fpercent\n",R);
33 clear pf;
34 pf=0.8;
35 phi=acosd(pf);
36 disp("At 0.8 leading power factor");
37 printf("\n");
38 E=sqrt((V*cosd(phi)+I_a*R_s)^2+(V*sind(phi)-I_a*X_s)
      ^2);
39 printf ("induced emf= \%fV\n",E);
40 R = ((E-V)*100)/V;
41 printf("regulation= %fpercent\n",R);
```

Scilab code Exa 5.11 To calculate internal voltage drop

```
1 //chapter 5
2 //example 5.11
```

Scilab code Exa 5.12 To calculate percentage change in terminal voltage

```
1 / chapter 5
    2 //example 5.12
    \frac{3}{\text{page }} 441
    4 clear;
    5 clc;
    6 disp("example 5.12");
    7 KVA = 2000;
    8 V = 6600;
                                                                                                      //rating
    9 V_p = 6600/sqrt(3);
10 I_a = (KVA * 1000) / (sqrt(3) * V);
11 R_a=0.4;
                                                                                              //armature resistance
12 \quad X_s = 4.5
                                                                                                     //synchronous reactance
13 pf=0.8;
14 phi=acosd(pf);
15 printf("\nV/phase = \%dV \n", V_p)
16 E=sqrt((V_p*cosd(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*sind(phi)+I_a*R_a)^2+(V_p*s
                                      X_s)^2
```

```
17 printf("E= %f V per phase\n",E);
18 R=((E-V_p)*100)/V_p;
19 printf("percentage change in terminal voltage= %f percent",R);
```

Scilab code Exa 5.13 To calculate regulation on full load power factor loading and lagging condition

```
1 / chapter 5
2 //example 5.13
3 / page 442
4 clear;
5 clc;
6 disp("example 5.13");
7 printf("\n");
8 \text{ KVA} = 1200;
                    //output power
9 printf("output power=%d\n", KVA)
10 V_1 = 3300;
                    //line voltage
11 R_a=0.25;
                   //armature resistance
12 I_l=(KVA*1000)/(sqrt(3)*V_l);
                                    //line current
13 //for star connected I_l=I_a
14 I_a=I_1;
15 V_p = V_1/sqrt(3);
16 printf("V per phase= \%dV \ n", V_p)
17 //field current of 40A produces short circuit
      current of 200A and open circuit emf 1100
18 \text{ v_l} = 1100;
19 i_s=200;
20 \text{ Z_s= v_1/(sqrt(3)*i_s)};
                              //synchronous impedence
21 printf("Synchronous impedance, Zs=\%f ohm\n", Z_s)
22 X_s = sqrt(Z_s^2 - R_a^2); //synchronous reactance
23 disp("(a) for 0.8 lagging power facor");
24 \text{ pf} = 0.8;
```

Scilab code Exa 5.14 To calculate terminal voltage for same excitation and load current at certain power factor leading

```
1 / \text{chapter } 5
2 //example 5.14
3 / page 443
4 clear;
5 clc;
6 disp("example 5.14");
7 disp("star connected alternator")
8 printf("\n");
9 \text{ KVA} = 1500;
                     //rating
                    //3-phase
10 ph=3;
11 V_l=6600;
                  //voltage
12 Ra=0.4
                   //armature resistance
13 Xs = 6;
                  //reactance
14 Ia=(KVA*1000)/(sqrt(3)*V_1);
```

Scilab code Exa 5.15 to find the power factor of alternator B

```
1 / \text{chapter } 5
2 //example 5.15
3 / page 450
4 clear;
5 clc;
6 disp("example 5.15");
              //load
7 L=8000;
8 \text{ La} = 5000;
9 \text{ pf} = 0.8;
10 phi=acosd(pf);
11 printf("\ntan phi= \%f\n",tand(phi));
12 disp("FOR ALTERNATOR A");
13 pf_a=0.9;
14 phi_a=acosd(pf_a);
15 printf("\ntan phi_a= \%f\n",tand(phi_a));
16 disp("reactive load=active load*tan phi");
17 disp("Active load = 8000kW");
18 printf("reactive load= \%d \text{ KVAr}\n",(8000*tand(phi_a)
```

```
));

19 disp("Active Load A=5000kW\n");

20 printf("Reactive load A= %dkVAr\n",(5000*tand(phi_a)));

21 printf("Active load of B= %dkW\n",L-La);

22 a=((8000*tand(phi))-(5000*tand(phi_a)))

23 printf("Reactive load of B= %dkVAr\n",a);

24 B=a/(L-La);

25 phi_b=atand(B);

26 printf("phi_b= %f\n",phi_b)

27 printf("Power Factor of B= %f",cosd(phi_b));
```

Scilab code Exa 5.16 To calculate armature curren and power factor

```
1 // chapter 5
2 //example 5.16
3 //page 451
4 clear;
5 clc;
6 disp("example 5.16")
7 V = 6600;
8 ph=3; //3-phase alternators
9 power=10000; //total load
10 disp("Two alternators in parallel connection");
11 pf=0.8;
                 //armature current
12 Ia=438;
13 Il=(power*1000)/(sqrt(3)*V*pf); //load current
14 printf("load current= \%fA \setminus n \setminus n", I1);
15 phi=acosd(pf);
16 Ac=(Il*cosd(phi));
17 Rc=(Il*sind(phi));
18 printf ("Active component of current= \%fA\n", Ac);
19 printf ("Reactive component of current= \%fA\n", Rc);
```

```
20 printf ("Current supplied by each alternator=\%fA\n",(
      I1/2));
21 printf ("Active component of current supplied by each
       alternator = \%fA \setminus n", (Ac/2));
22 printf ("Reactive component of current supplied by
      each alternator = \%fA \setminus n \setminus n, (Rc/2);
23 disp("Since steam supply is same, the active
      component remain the same ");
24 RIl=sqrt(Ia^2-(Ac/2)^2);
25 printf ("Reactive component of Il = \%dA \ ", RI1);
26 RI2 = (Rc - RI1);
27 printf ("reactive component of I2= \%fA\n", RI2);
28 I2=sqrt((Ac/2)^2+(RI2)^2);
29 printf(" I2= \%fA\n",I2);
30 phi_2=atand(RI2/(Ac/2));
31 printf("phi 2= \%f degrees\n",phi_2);
32 printf("cos phi 2 = \%f",cosd(phi_2));
```

Scilab code Exa 5.17 To determine KVA rating and power facor

```
1 //chapter 5
2 //example 5.17
3 //page 455
4 clear;
5 clc;
6 disp("example 5.17");
7 disp("power factor of existing load is 0.8 lagging");
8 pf=0.8; //power factor
9 phi=acosd(pf);
10 printf("phi= %d degree\n",phi);
11 L=800; //load
12 kVAr1=(L*tand(phi));
```

```
13 printf ("kVAr1= \%d \n", kVAr1);
14 disp("output for the synchronous motor is 200kW");
15 output = 200;
16 efficiency=0.9;
17 kW=(output/efficiency);
18 printf("Input to the synchronous motor= \%fkW\n", kW);
19 TL=(L+kW); // total load
20 printf ("Total load on the system= \% \text{fkW} \ n", TL);
21 disp("overall power factor of the load is to be
      raised to 0.92 lagging");
22 pf=0.92;
23 phi=acosd(pf);
24 \text{ kVAr2=(TL*tand(phi))}
25 printf("kVAr2=\%f\n",kVAr2);
26 kVAr=kVAr1-kVAr2;
27 printf("lagging kVAr of synchronous codenser= \%f\n",
      kVAr);
28 printf ("leading kVAr supplied by the motor= \%f \ n",
      kVAr);
29 phi=atand(kVAr/kW);
30 printf("phi= \%d degree\n\n",phi);
31 printf ("Power factor of the synchronos motor= %f
      leading \n", cosd(phi));
32 printf ("KVA rating of the synchronous motor= \%f", (kW
      /cosd(phi)));
```