

数据结构 Data Structures

Chapter 1 Introduction to Data Structures

Prof. Yitian Shao School of Computer Science and Technology

Instructor Information

Prof. Dr. Yitian Shao (Chinese: 邵奕天)

- School of Computer Science and Technology
- Research interests: haptic interfaces, robotic tactile sensing, and wearable technologies

Academic Background

- Junior professor (W1) of Electrical and Computer Engineering, TU Dresden, Germany (2022-2023)
- Postdoctoral Researcher, Max Planck Institute for Intelligent Systems, Stuttgart, Germany (2021-2022)
- Ph.D., Electrical and Computer Engineering, UC Santa Barbara, U.S. (2015-2020)

Email: shaoyitian@hit.edu.cn (I also teach High-level Language Programming)

Teaching Assistant

Lin Xu School of Computer Science and Technology

Grading Quiz and Lab submissions

Email: sjjg2025@gmail.com

Let's Get Connected!

- Course related discussion: QQ
 - Posting homework
 - Sharing course materials
 - Course related Q&A

 Step 1: Download and install QQ on your mobile/PC: <u>im.qq.com/index</u>

Step 2: Inside your QQ, scan the QR code above

Overview

- In *Data Structures*, we learn:
 - Basic abstract data types and their logical structures, storage structures and operations
 - Corresponding algorithms and typical applications
 - The storage and application of some advanced data structures
 - Common searching and sorting algorithms
- Course objectives:
 - Understand the relationship between the data structures and algorithms
 - Properly use data structures and algorithms
 - Analyze code in time complexity (and space complexity)
 - Design effective algorithms and data structures to solve practical problems

Expectations

- Attend lectures on time
- Complete all assignments on your own and submit on time
- Engage in class discussion
- Communicate with instructor if need help
- All lectures are given in English
- All assignments and exams must be completed in English

Academic Integrity

Quiz Lab Final Exam

- Do not look at other people's solution code
- Do not give your solution code to others, or post it elsewhere
- Report any inappropriate activity you see performed by others

All assignments are checked for similarity! Copied solutions suffer significant grade penalty!

Talk to the instructors/TA if you need help with the assignment (but do not wait until the quiz or exam day)

Grading

- 24 lectures from Week 1 to Week 13
 - Tuesday 2pm-3:45pm and Thursday 10:30am-12:15pm, T5-507
- Course assignments and exams
 - Exercises will not be graded! (Complete them if you want to prepare yourself for the quiz and final exam)
 - In-class quiz $\times 4 = 40\%$ points (Complete and Submit in class)
 - Lab report x 4 = 20% points (Complete and Submit in lab)
 - Final exam = 40% points

Late submission not accepted, no excuse!

Special cases

- Require a valid proof for late submission / Absenteeism
- Must inform the instructor before taking any actions
- Submit a valid proof no later than a week

Class Attendance

Class attendance is enforced and recorded every single class

Bring a laptop to the class if possible

 If you miss more than 8 lectures, you will be disqualified to attend the final exam

Class Attendance

- Class attendance is enforced by our university
- Technical issues Get help from H719 (Main building)
- Install WeChat or the Attendance Check APP

安卓 Android

Class Attendance Check!

- Technical issues Get help from H719 (Main building)
- Open WeChat or the Attendance Check APP
- Now, scan the QR code using WeChat or Attendance Check APP, ask for help if you encounter any problem.

Schedule

Tue	Wed	Thu
Week 1: Introduction (2/25)		Review of C++ Programming (2/27)
Week 2: Array and Matrix (3/4)		Basics of Algorithm (3/6)
Week 3: Linked Lists I (3/11)		Linked Lists II (3/13 Quiz Day!)
Week 4: Stacks and Queue I (3/18)	Lab 1	Stacks and Queue II (3/20)
Week 5: Strings I (3/25)		Strings II (3/27 Quiz Day!)
Week 6: Trees I (4/1)		Trees II (4/3)
Week 7: Trees III (4/8)	Lab 2	Trees IV (4/10)
Week 8: Trees V (4/15 Quiz Day!)		Graph I (4/17)
Week 9: Graph II (4/22)	Lab 3	Graph III (4/24)
Week 10: Searching Algorithms I (4/29)		(holiday)
Week 11: Searching Algorithms II (5/6)		Searching Algorithms III (5/8 Quiz Day!))
Week 12: Sorting Algorithms I (5/13)	Lab 4	Sorting Algorithms I (5/15)
Week 13: Sorting Algorithms I (5/20)		Final Exam (Date to be determined)

Textbook and Online Resources

Eric Roberts, *Programming Abstractions in C++*, Pearson. 2013. (Electronic version acceptable)

Online Course: Stanford CS106B

Copyright (C) Stanford Computer Science and Tyler Conklin, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

(The content of this course is developed based on it)

Other online references and materials

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms (3rd Edition), The MITPress. 2009.
- Robert Sedgewick, Kevin Wayne, Algorithms (4th Edition), Addison-Wesley Professional. 2011.
- leetcode.com

LeetCode for Homework and Self Practice

leetcode.com/problemset/algorithms/

• 3431 Problems – can cover all topics in this course (start from the easy ones!)

LeetCode: How to Use

Abstract Data Types (ADT)

What is Abstract Data Types (ADT)?

- Data structures can be assembled to form hierarchies. The atomic data types—such as int, char, double, and enumerated types—occupy the lowest level in the hierarchy.
- To represent more complex information, you combine the atomic types to form larger structures. These larger structures can then be assembled into even larger ones ...
- Collectively, these assemblages of information into more complex types are called data structures

What is Abstract Data Types (ADT)?

- A type defined in terms of its behavior rather than its representation is called an abstract data type, which is often abbreviated to ADT
- ADT are central to the object-oriented style of programming, which encourages thinking about data structures in a holistic way

Programming language for this course

- C++ (High-level Language Programming)
- Brief review of C++ syntax will be included in this course

Speed comparison of various programming languages

Method: calculating π through the Leibniz formula 100000000 times

Programming language: C++

- C++ is a programming language developed in 1983 by Bjarne Stroustrup
 - one of the world's **most widely used** languages today
 - built for systems programming with high speed/efficiency
 - built on older C language by adding object-oriented programming
 - continues to be **improved over time** (latest version: C++26)

Basic C++ programming skills you need

- Syntax
- Compile and execute
- Variable, expression, string, function, struct, class

Exercise 1.1

- Homework exercises assigned after each lecture will not be graded, however, you should complete them to get yourself prepared for quizzes and final exam!
- Learn how to use LeetCode
- Mark your first step on LeetCode, complete <u>LeetCode 58</u>
 58. Length of Last Word

