Logarithmes

- Etablir, pour tout $x \ge 0$, l'encadrement : $x \frac{1}{2}x^2 \le \ln(1+x) \le x$. Exercice 1
- a) Montrer que, pour tout x > -1: $\ln(1+x) \le x$. Exercice 2
 - b) En déduire que pour tout $n \in \mathbb{N}^*$: $\left[1 + \frac{1}{n}\right]^n \le e \le \left[1 \frac{1}{n}\right]^{-n}$.
- Montrer que pour tout a,b>0, on a $\frac{1}{2}(\ln a + \ln b) \le \ln \frac{a+b}{2}$. Exercice 3
- Soit $0 < a \le b$. On pose $f: x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$ définie sur \mathbb{R}^{+*} . Exercice 4

Etudier la monotonie de f et en déduire que $\ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \le \left(\ln 2\right)^2$.

Montrer que le nombre de chiffres dans l'écriture décimale d'un entier n > 0 est $E(\log_{10} n) + 1$. Exercice 5

Puissances et exponentielles

- **Exercice 6** Simplifier a^b pour $a = \exp x^2$ et $b = \frac{1}{x} \ln x^{1/x}$.
- Exercice 7 Parmi les relations suivantes, lesquelles sont exactes :

a)
$$(a^b)^c = a^{bc}$$

b)
$$a^{b}a^{c} = a^{bc}$$

c)
$$a^{2b} = (a^b)^2$$

d)
$$(ab)^c = a^{c/2}b^{c/2}$$

e)
$$(a^b)^c = a^{(b^c)}$$

f)
$$(a^b)^c = (a^c)^b$$
?

- Comparer $\lim_{x\to 0^+} x^{(x^x)}$ et $\lim_{x\to 0^+} (x^x)^{\frac{1}{x}}$. Exercice 8
- Exercice 9 Déterminer les limites suivantes :

a)
$$\lim_{x \to +\infty} x^{1/x}$$

b)
$$\lim_{x\to 0} x^{\sqrt{x}}$$

c)
$$\lim_{x\to 0^+} x^{1/x}$$
.

Exercice 10 Résoudre les équations suivantes :

a)
$$e^x + e^{1-x} = e+1$$

b)
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

b)
$$x^{\sqrt{x}} = (\sqrt{x})^x$$
 c) $2^{2x} - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$.

Exercice 11 Résoudre les systèmes suivants :

a)
$$\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

b)
$$\begin{cases} e^x e^{2y} = a \\ 2xy = 1 \end{cases}$$
.

Fonctions trigonométriques

Exercice 12 Etablir que pour tout $x \in \mathbb{R}^+$, on a $\sin x \le x$ et pour tout $x \in \mathbb{R}$, $\cos x \ge 1 - \frac{x^2}{2}$.

Exercice 13 Développer :

a) $\cos 3a$

b) tan(a+b+c).

Exercice 14 Calculant $\cos \frac{\pi}{8}$ en observant $2 \times \frac{\pi}{8} = \frac{\pi}{4}$.

Exercice 15 Simplifier $\frac{\cos p - \cos q}{\sin p + \sin q}$. En déduire la valeur de $\tan \frac{\pi}{24}$.

Exercice 16 Linéariser :

a) $\cos^2 x$

b) $\cos x \sin^2 x$

c) $\cos^2 x \sin^2 x$

d) $\cos a \cos b$

e) $\cos a \cos b \cos c$.

Exercice 17 Ecrire sous la forme $A\cos(x-\varphi)$ les expressions suivantes :

a) $\cos x + \sin x$

b) $\cos x - \sqrt{3} \sin x$.

Exercice 18 Pour $a,b \in \mathbb{R}$ tels que $b \neq 0$ $[2\pi]$, calculer simultanément $\sum_{k=0}^{n} \cos(a+kb)$ et $\sum_{k=0}^{n} \sin(a+kb)$.

Exercice 19 Soit $x \neq 0$ $[2\pi]$.

a) Montrer que $\sin x + \sin 2x + \dots + \sin nx = \frac{\sin \frac{(n+1)x}{2} \sin \frac{nx}{2}}{\sin \frac{x}{2}}$ en procédant par récurrence sur

 $n \in \mathbb{N}$.

b) En exploitant les nombres complexes.

Exercice 20 Résoudre les équations suivantes d'inconnues $x \in \mathbb{R}$.

- a) $\cos(2x \pi/3) = \sin(x + 3\pi/4)$ b) $\cos^4 x + \sin^4 x = 1$ c) $\sin x + \sin 3x = 0$

- d) $\sin x + \sin 2x + \sin 3x = 0$ e) $3\cos x \sqrt{3}\sin x = \sqrt{6}$ f) $2\sin x \cdot \cos x + \sqrt{3}\cos 2x = 0$.

Exercice 21 Résoudre l'équation $\tan x \tan 2x = 1$.

Fonctions trigonométriques inverses

Exercice 22 Simplifier les expressions suivantes :

a) $\cos(2\arccos x)$

b) $cos(2 \arcsin x)$

c) $\sin(2\arccos x)$

d) $cos(2 \arctan x)$

e) $\sin(2\arctan x)$

f) $tan(2 \arcsin x)$.

Exercice 23 Simplifier la fonction $x \mapsto \arccos(4x^3 - 3x)$ sur son intervalle de définition.

Exercice 24 Simplifier $\arcsin \frac{x}{\sqrt{1+x^2}}$.

Exercice 25 Montrer que la courbe représentative de la fonction arccos est symétrique par rapport au point de coordonnées $(0, \pi/2)$.

Exercice 26 Déterminer $\lim_{x\to 0+} \frac{\arccos(1-x)}{\sqrt{x}}$ à l'aide d'un changement de variable judicieux.

Exercice 27 Etudier les fonctions suivantes afin de les représenter :

a)
$$f: x \mapsto \arcsin(\sin x) + \arccos(\cos x)$$
,

b)
$$f: x \mapsto \arcsin(\sin x) + \frac{1}{2}\arccos(\cos 2x)$$
,

c)
$$f: x \mapsto \arccos\sqrt{\frac{1+\cos x}{2}}$$
,

d)
$$f: x \mapsto \arctan \sqrt{\frac{1-\cos x}{1+\cos x}}$$
.

Exercice 28 Simplifier:

a)
$$\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$$
,

b)
$$\arctan 2 + \arctan 3 + \arctan(2 + \sqrt{3})$$
,

c)
$$\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65}$$

Exercice 29 Résoudre les équations suivantes d'inconnue x réelle :

a)
$$\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$$
 b) $\arcsin \tan x = x$

b)
$$\arcsin \tan x = x$$

c)
$$\arccos x = \arcsin 2x$$

c)
$$\arcsin 2x$$
 d) $\arctan x + \arctan x\sqrt{3} = \frac{7\pi}{12}$.

e)
$$\arcsin \frac{2x}{1+x^2} = \arctan x$$

f)
$$\arcsin \frac{\tan x}{2} = x$$

Exercice 30 On appelle argument principal d'un complexe z non nul, l'unique $\theta \in]-\pi,\pi]$ tel que $z=|z|\mathrm{e}^{\mathrm{i}\theta}$.

Montrer que si
$$z \in \mathbb{C} \setminus \mathbb{R}^-$$
 alors $\theta = 2 \arctan \frac{y}{x + \sqrt{x^2 + y^2}}$ avec $x = \text{Re}(z)$ et $y = \text{Im}(z)$.

Exercice 31 Simplifier $\arctan a + \arctan b$ pour $a, b \ge 0$.

Exercice 32 Soit $p \in \mathbb{N}$. Calculer arctan(p+1) - arctan(p).

Etudier la limite de la suite (S_n) de terme général : $S_n = \sum_{n=0}^n \arctan \frac{1}{p^2 + p + 1}$.

Exercice 33 a) Calculer $\int_0^1 \frac{dt}{1 + t^2}$.

b) Etablir, pour tout
$$n \in \mathbb{N}$$
:
$$\int_0^1 \sum_{k=0}^n (-1)^k t^{2k} dt = \frac{\pi}{4} + \int_0^1 \frac{(-1)^n t^{2n+2}}{1+t^2} dt.$$

c) Justifier
$$0 \le \int_0^1 \frac{t^{2n+2}}{1+t^2} dt \le \int_0^1 t^{2n+2} dt = \frac{1}{2n+3}$$

d) En déduire
$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \xrightarrow{n\to\infty} \frac{\pi}{4}$$
.

Fonctions hyperboliques

Exercice 34 Etablic que pour tout $x \in \mathbb{R}^+$, on a sh $x \ge x$ et pour tout $x \in \mathbb{R}$, ch $x \ge 1 + \frac{x^2}{2}$.

Exercise 35 Soit
$$y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
. On pose $x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right)$.

Montrer que th $\frac{x}{2} = \tan\frac{y}{2}$, th $x = \sin y$ et ch $x = \frac{1}{\cos y}$.

Exercice 36 Pour $n \in \mathbb{N}$ et $a,b \in \mathbb{R}$, calculer $\sum_{k=0}^{n} \operatorname{ch}(a+kb)$ et $\sum_{k=0}^{n} \operatorname{sh}(a+kb)$.

 $\textit{Exercice 37} \quad \text{Pour } n \in \mathbb{N} \ \text{ et } x \in \mathbb{R} \text{ , simplifier } P_n(x) = \prod_{k=1}^n \text{ch} \left(\frac{x}{2^k} \right) \text{ en calculant } P_n(x) \text{sh} \left(\frac{x}{2^n} \right).$

$$\begin{aligned} \textit{Exercice 38} \quad \text{Pour } n \in \mathbb{N} \quad \text{et } x \in \mathbb{R}^{+*} \,, \, \text{observer } \operatorname{th}((n+1)x) - \operatorname{th}(nx) &= \frac{\operatorname{sh} x}{\operatorname{ch}(nx)\operatorname{ch}((n+1)x)} \,. \end{aligned} \\ \quad \text{Calculer } S_n(x) &= \sum_{k=0}^n \frac{1}{\operatorname{ch}(kx)\operatorname{ch}((k+1)x)} \,. \end{aligned}$$

Exercice 39 Soit a et α deux réels.

Résoudre le système d'inconnues x et y : $\begin{cases} \operatorname{ch} x + \operatorname{ch} y = 2a \operatorname{ch} \alpha \\ \operatorname{sh} x + \operatorname{sh} y = 2a \operatorname{sh} \alpha \end{cases}.$

Fonctions hyperboliques inverses

Exercice 40 Simplifier les expressions suivantes :

a) ch(argsh x)

b) th(argsh x)

c) $sh(2 \operatorname{argsh} x)$

d) sh(argch x)

e) $th(\operatorname{argch} x)$

f) ch(argth x).

Exercice 41 Simplifier:

a)
$$\operatorname{argch}(2x^2 - 1)$$

b)
$$\operatorname{argsh}(2x\sqrt{1+x^2})$$
.

Exercice 42 Etablir:
$$\forall x \in \mathbb{R}, |\arctan(\sinh x)| = \arccos\left(\frac{1}{\cosh x}\right)$$

Exercice 43 Résoudre l'équation $\operatorname{argsh} x + \operatorname{argch} x = 1$.

Exercice 44 Soit
$$G: \left| -\frac{\pi}{2}, \frac{\pi}{2} \right| \to \mathbb{R}$$
 définie par $G(t) = \operatorname{argsh}(\tan t)$.

Montrer que G est dérivable et que pour tout $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, $G'(t) = \operatorname{ch} G(t)$.

david Delaunay http://mpsiddl.free.fr