Dataset: SuperMarket

Description: The growth of supermarkets in most populated cities are increasing and market competitions are also high. The dataset is one of the historical sales of a supermarket company which has been recorded in 3 different branches for 3 months. Predictive data analytics methods are easy to apply with this dataset.

Attribute information:

Invoice id: Computer generated sales slip invoice identification number

Branch: Branch of supercenter (3 branches are available identified by A, B and C).

City: Location of supercenters

<u>Customer type</u>: Type of customers, recorded by Members for customers using member card and Normal for without

member card.

Gender: Gender type of costume

Product line: General item categorization groups - Electronic accessories, Fashion accessories, Food and

beverages, Health and beauty, Home and lifestyle, Sports and travel

Unit price: Price of each product in \$

Quantity: Number of products purchased by customer

<u>Tax</u>: 5% tax fee for customer buying <u>Total</u>: Total price including tax

<u>Date</u>: Date of purchase (Record available from January 2019 to March 2019)

<u>Time</u>: Purchase time (10am to 9pm)

Payment: Payment used by customer for purchase (3 methods are available – Cash, Credit card and Ewallet)

COGS: Cost of goods sold

Gross margin percentage: Gross margin percentage

Gross income: Gross income

Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10)

Preprocessing:

convert catogorical to numerical, before converting it'll check if is non numerical

```
def convertCatNum(dataset):
    le = preprocessing.LabelEncoder()
    notCol = df._get_numeric_data().columns
    for col in df.columns:
        if col not in notCol:
            dataset[col]=le.fit_transform(dataset[col])
    return dataset
```

remove null values and replace that with median values

```
[ ] def remNull(dataset):
    imputer = SimpleImputer(missing_values=np.nan,strategy="median")
    imputer.fit(dataset.iloc[:,[4,5,6,10,13]])
    dataset.iloc[:,[4,5,6,10,13]]=imputer.transform(dataset.iloc[:,[4,5,6,10,13]])
    print("Checking null value:\n")
    print(dataset.isnull().sum())
    print("\n\n")
    return dataset
```

normalise and split the dataset into train and test

parameters: dataset, features in array

return: x_train, x_test, y_train, y_test

remember select the feature

```
def splitter(dataset, colsx, colsy):
    # X=dataset.iloc[:,2:].values
    # y=dataset.iloc[:,1].values
    X = dataset[[*colsx]].values
    y = dataset[[*colsy]].values
    SD=StandardScaler()
    X=SD.fit_transform(X)
    #y=np.column_stack(SD.fit_transform(y))
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.2,random_state=0)
    return X_train, X_test, y_train, y_test
[] # df = convertCatNum(df.copy(), 'Gender')
# df = convertCatNum(df.copy(), 'Branch')
# df = convertCatNum(df.copy(), 'City')
# df = convertCatNum(df.copy(), 'Customer type')
```

Visualizing:

15. PIE CHART

Using pie chart we are able to visualise the percentage of Customer who are Member and Normal customers

```
ds['Customer type'].value_counts().plot(kind="pie", autopct="%.2f")
plt.show()
```


Using pie chart we are able to visualise the percentage of Gender who are Male and Female customers

Using pie chart we are able to visualise the percentage of Product line

```
ds['Product line'].value_counts().plot(kind="pie", autopct="%.3f")
plt.show()

Food and beverages

Fashion accessories

17.400
17.800

Fashion accessories

Health and beauty

Home and lifestyle
```

[]
[] ds['City'].value_counts().plot(kind="pie", autopct="%.3f")
 plt.show()

14. Scatter plot

[] # to check whether there is a correlation between Total cost and Rating

```
#plt.figure(figsize=(10,10))
plt.scatter(x='Total',y='Rating',data=ds)
plt.xlabel('Total')
plt.ylabel('Rating')
plt.show()
```


7. Histplot

<matplotlib.axes._subplots.AxesSubplot at 0x7f93e3da0ad0>

To visualize the number of customers who use credit card, cash, ewallet

```
Payment = list(ds['Payment'].value_counts().keys())
values = list(ds['Payment'].value_counts())

fig = plt.figure(figsize = (10, 5))

plt.barh(Payment, values, color ='orange')

for index, value in enumerate(values):
    plt.text(value, index,str(value))

plt.xlabel("Payment")
plt.ylabel("Count")
plt.title("Customer's payment method")
plt.show()
```


<matplotlib.axes._subplots.AxesSubplot at 0x7f93e3d148d0>

from the above visualisation we can conclude that the more number of cutomer rate around 6 to 7

from the above visualisation we can say that there is a correlation between Tax and total, cogs, gross income

Algorithm used: **K Nearest Neighbor** Distance Formula used: **MinKowski**

Inference: Accuracy was increasing with increase in K value till K=4. Accuracy was highest when K=4.

Distance Formula used: Manhattan

Inference: Accuracy was decreasing with increase in K value. Accuracy was highest when K=2.

Distance Formula used: Euclidean

Inference: Accuracy was decreasing with increase in K value. Accuracy was highest when K=4.

0	confusionMatr	ix(6, 'minko	wski')		
₽		precision	recall	f1-score	support
	0.0	0.53	0.55	0.54	217
	1.0	0.44	0.41	0.42	183
	accuracy			0.49	400
	macro avg	0.48	0.48	0.48	400
	weighted avg	0.49	0.49	0.49	400
	[[120 07]				
	[[120 97] [108 75]]				
	[108 75]]				

Accuracy score:

0.4875
/usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.
 return self._fit(X, y)

/ [60] confusionMatrix(5, 'minkowski') precision recall f1-score support 0.0 0.53 0.41 0.46 217 1.0 0.45 0.57 0.50 183 accuracy 0.48 400 macro avg 0.49 0.49 0.48 400 0.48 0.48 400 weighted avg 0.49

[[88 129] [79 104]]

Accuracy score:

0.48
/usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classificat
 return self._fit(X, y)

The Score of euclidean with k value of 2 is:

	precision	recall	f1-score	support
0.0	0.54	0.68	0.60	217
1.0	0.45	0.32	0.37	183
accuracy			0.51	400
macro avg	0.50	0.50	0.49	400
weighted avg	0.50	0.51	0.50	400
[[147 70]				
[125 58]]				

Accuracy score:

0.5125

..

Ploting of the kMeans

.....

Algorithm used: Naive byes

```
def naiv():
 # instantiate the model
 gnb = GaussianNB()
 numRows = trans formed min max.shape[0]
 trainSize = round(numRows * 0.6)
 # divide train and test dataset
 train = trans formed min max.iloc[:trainSize, : ]
 test = trans formed min max.iloc[trainSize : , :]
                                                                                                                   Loading...
 x_cols = ["City", "Branch", "Gender" , "Product line", "Unit price", "Quantity", "Tax 5%", "Total", "Payment", 'cogs', 'gross income', 'Rating']
 y col = ["Customer type"]
   # fit the model
 gnb.fit(train[x_cols], train[y_col])
 y_pred = gnb.predict(test[x_cols])
 print(y_pred)
 print('\n\nModel accuracy score: {0:0.4f}\n\n'. format(accuracy_score(test[y_col], y_pred)))
```

```
[70] naiv()
    [1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0.
     1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1.
     1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.
     1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0.
     1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1.
     1. 0. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1.
     0. 1. 0. 1. 0. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 1. 0. 0. 1.
     0. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1.
     0. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 0. 1. 0. 0. 1. 1. 1.
     1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.
     1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0.
     1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0.
     1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1.
     0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 1.
     1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.
     0. 1. 1. 0. 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 1. 0.]
    Model accuracy score: 0.4825
    /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993:
      y = column_or_ld(y, warn=True)
```

Hierarchical Clustering

```
dendro = shc.dendrogram(shc.linkage(x, method="ward"))
  mtp.title("Dendrogrma Plot")
  mtp.ylabel("Euclidean Distances")

mtp.show()
```


training the hierarchical model on dataset

```
[ ] from sklearn.cluster import AgglomerativeClustering
```

```
#visulaizing the clusters
    def clusters(col1, col2):
      x = df.iloc[:, [col1, col2]].values
      hc= AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
      y pred= hc.fit predict(x)
      #y pred
      mtp.scatter(x[y_pred == 0, 0], x[y_pred == 0, 1], s = 100, c = 'blue', label = 'Cluster 1')
      mtp.scatter(x[y pred == 1, 0], x[y pred == 1, 1], s = 100, c = 'green', label = 'Cluster 2')
      mtp.scatter(x[y pred== 2, 0], x[y pred == 2, 1], s = 100, c = 'red', label = 'Cluster 3')
      mtp.scatter(x[y_pred == 3, 0], x[y_pred == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
      mtp.scatter(x[y \text{ pred } == 4, 0], x[y \text{ pred } == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
      mtp.title('clusters of '+df.columns[col1]+' and '+df.columns[col2])
      mtp.xlabel(df.columns[col1])
      mtp.ylabel(df.columns[col2])
      mtp.legend()
      mtp.show()
```


Decision Tree

```
def decision(ds, y_val):
  y = ds[y_val].values
  ds.drop(y_val, axis=1, inplace=True)
  #print(ds.head())
  x = ds.iloc[:].values
  # Splitting the dataset into training and test set.
  x\_train, \ x\_test, \ y\_train, \ y\_test= \ train\_test\_split(x, \ y, \ test\_size= \ \theta.25, \ random\_state=\theta)
  classifier = DecisionTreeClassifier(criterion='entropy', random_state=0)
  classifier.fit(x_train, y_train)
  # pre-pruning
  param_grid = {
    "max_depth": [3,5,10,15,20,None],
    "min_samples_split": [2,5,7,10],
    "min samples leaf": [1,2,5]
  grid_cv = GridSearchCV(classifier, param_grid, scoring="roc_auc", n_jobs=-1, cv=3).fit(x_train, y_train)
  y_pred = classifier.predict(x_test)
  print("\nAccuracy score:\t"+str(accuracy_score(y_test,y_pred)*100))
  print('Model accuracy score with criterion entropy index: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
  print("\n\n")
  plt.figure(figsize=(12,8))
  f = plt.figure()
  f.set_figwidth(100)
  f.set_figheight(100)
  tree.plot_tree(classifier.fit(x_train, y_train))
```

decision(preProcess(df.copy()), 'Gender')

<Figure size 864x576 with 0 Axes>

Linear Regression:

```
#model.fit(x, y)
lin(df.copy(), 'V')

[69.42840455 53.12830849 51.96908514 ... 42.06936609 41.33498564
63.49589119]

Mean Squared error: 37.33487054761878
```


SVM:

```
def plot_svc_decision_function(model, ax= None, plot_support=True):
  if ax is None:
    ax = plt.gca()
  xlim = ax.get_xlim()
  ylim = ax.get_ylim()
  x = np.linspace(xlim[0], xlim[1], 30)
  y = np.linspace(ylim[0], ylim[1], 30)
  Y, X = np.meshgrid(y, x)
  xy = np.vstack([X.ravel(), Y.ravel()]).T
  P = model.decision_function(xy).reshape(X.shape)
  ax.contour(X, Y, P, colors="k", levels = [-1, 0, 1], alpha = .5, linestyles=['--','-', '--'])
  if plot_support:
    ax.scatter(model.support vectors [:,0],
    model.support vectors [:,1],
    s=300, linewidth=1, facecolors='none');
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
plt.scatter(x[:,0], x[:,1], c=y, s=50, cmap='autumn')
```



```
def plot_svc_decision_function_(model, ax= None, plot_support=True):
 if ax is None:
   ax = plt.gca()
 xlim = ax.get_xlim()
 ylim = ax.get_ylim()
 x = np.linspace(xlim[0], xlim[1], 30)
  y = np.linspace(ylim[0], ylim[1], 30)
 Y, X = np.meshgrid(y, x)
 xy = np.vstack([X.ravel(), Y.ravel()]).T
 P = model.decision_function(xy).reshape(X.shape)
 ax.contour(X, Y, P, colors="k", levels = [-1, 0, 1], alpha = .5, linestyles=['--','-', '--'])
 if plot_support:
   ax.scatter(model.support_vectors_[:,0],
   model.support_vectors_[:,1],
   s=300, linewidth=1, facecolors='none');
   ax.set_xlim(xlim)
   ax.set_ylim(ylim)
```

```
x = df[['Product line', 'Branch']].values
y = df[['Gender']].values
plt.scatter(x[:,\theta], x[:,1], c=y, s=5\theta, cmap='autumr
plot_svc_decision_function(clf)
print(x)
[[3 0]
 [0 2]
 [4 0]
 [2 0]
 [4 0]
 [1 0]]
2.00
1.75
1.50
1.25
 1.00
 0.75
 0.50
 0.25
 0.00
```

MLP

<matplotlib.axes._subplots.AxesSubplot at 0x7f656191c790>


```
activationList = ["relu", "identity", "logistic", "tanh"]
    for i in range(0,4):
     clf = MLPClassifier(activation = activationList[i]);
     clf.fit(x train, y train);
     tempscore = clf.score(x train, y train)
     print("Activation function -",activationList[i],"- Accuracy : ",tempscore)
/usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilayer perceptron
     y = column or ld(y, warn=True)
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilayer perceptron
     ConvergenceWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilayer perceptron
     y = column or ld(y, warn=True)
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilayer perceptron
     y = column or ld(y, warn=True)
    Activation function - relu - Accuracy : 0.6125
   Activation function - identity - Accuracy : 0.55125
   Activation function - logistic - Accuracy: 0.54625
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron
     y = column_or_ld(y, warn=True)
    Activation function - tanh - Accuracy: 0.54875
```

Inference: We can see that the Activation function: relu has more Accuracy Score compared to others

```
y_pred = clf.predict(testX_scaled)
print('Accuracy: {:.2f}'.format(accuracy_score(y_test, y_pred))
```

Accuracy: 0.51

```
#Get the confusion matrix
cf_matrix = confusion_matrix(y_test, y_pred)
print(cf_matrix)
```

[[43 57] [41 59]]

sns.heatmap(cf_matrix, annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f656188dcd0>

ploting the TP and FP of x_train and y_train

```
mlp = MLPClassifier()
mlp.fit(x_train,y_train)
y_pred_proba = mlp.predict_proba(x_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba, pos_label=θ)
plt.plot(fpr,tpr ,color="navy")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multi y = column_or_ld(y, warn=True) /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multi ConvergenceWarning,

ploting the TP and FP of x_test and y_test

```
mlp = MLPClassifier()
mlp.fit(x_test,y_test)
y_pred_proba = mlp.predict_proba(x_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba, pos_label=θ)
plt.plot(fpr,tpr ,color="navy")
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multi
y = column_or_ld(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multi
ConvergenceWarning,


```
print(classification_report(y_test, y_pred))
                  precision
                               recall fl-score
                                                   support
                       0.70
             \Theta \cdot \Theta
                                 0.65
                                           0.67
                                                       100
             1.0
                       0.67
                                 0.72
                                           0.70
                                                       100
                                                       200
        accuracy
                                            0.69
       macro avg
                       0.69
                                 0.69
                                            0.68
                                                       200
                       0.69
                                 0.69
                                           0.68
                                                       200
    weighted avg
[ ] activationList = ["relu", "identity", "logistic", "tanh"]
    for i in range(0,4):
      clf = MLPClassifier(activation = activationList[i], hidden_layer_s:
      clf.fit(x train, y train);
      tempscore = clf.score(x_train, y_train)
      print("Activation function -",activationList[i],"- Accuracy : ",ter
_ /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multil
      y = column or ld(y, warn=True)
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multil
      ConvergenceWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multil
      y = column or ld(y, warn=True)
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multil
      y = column or ld(y, warn=True)
    Activation function - relu - Accuracy : 0.5125
    Activation function - identity - Accuracy : 0.53875
    Activation function - logistic - Accuracy : 0.51
    Activation function - tanh - Accuracy : 0.525
    /usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multil
      y = column or ld(y, warn=True)
activationList = ["relu", "identity", "logistic", "tanh"]
for i in range(0,4):
  clf = MLPClassifier(activation = activationList[i], hidden layer sizes
  clf.fit(x train, y train);
  tempscore = clf.score(x train, y train)
  print("Activation function -",activationList[i],"- Accuracy : ",tempso
/usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilay&
  y = column or ld(y, warn=True)
Activation function - relu - Accuracy : 0.52875
Activation function - identity - Accuracy : 0.54625
/usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilay&
  y = column or ld(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilays
  y = column or ld(y, warn=True)
Activation function - logistic - Accuracy : 0.52
Activation function - tanh - Accuracy : 0.53875
/usr/local/lib/python3.7/dist-packages/sklearn/neural network/ multilaye
  y = column or ld(y, warn=True)
```

y pred = mlp.predict(testX scaled)

