CANS2D モデルパッケージ md_jetprop

ジェット伝播

2006. 1. 9.

1 はじめに

このモデルパッケージは、2 次元平面内 (軸対称 rz 面内) でのジェット伝播を解くためのものである。基本的には、Norman et al. (1982) の計算に倣っている。

2 仮定と基礎方程式

流体は非粘性・圧縮性流体とする。計算領域は 2 次元円柱座標(rz 平面)で $\partial/\partial\phi=0$ 、 $V_\phi=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_r 、 V_z についての 2 次元 Euler 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial r}(\rho V_r) + \frac{\partial}{\partial z}(\rho V_z) = -\frac{1}{r}(\rho V_r) \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_r) + \frac{\partial}{\partial r}\left(\rho V_r^2 + p\right) + \frac{\partial}{\partial z}\left(\rho V_r V_z\right) = -\frac{1}{r}(\rho V_r^2) \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_z) + \frac{\partial}{\partial r}(\rho V_r V_z) + \frac{\partial}{\partial z}(\rho V_z^2 + p) = -\frac{1}{r}(\rho V_r V_z)$$
(3)

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 \right) + \frac{\partial}{\partial r} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_r \right)
+ \frac{\partial}{\partial z} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_z \right) = -\frac{1}{r} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_r \right)$$
(4)

である。ここで、 $V^2=V_r^2+V_z^2$ 、 γ は比熱比。なお計算コード上では r は x 座標で、z は z 座標で表現されている。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ R_0 、 $C_{\rm S0}$ 、 $R_0/C_{\rm S0}$ 。ここで、 R_0 は、(境界から注入される)ジェットの半径、 $C_{\rm S0}$ は初期一様状態の音速。密度は初期一様状態の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位	
r, z	R_0	
V_r, V_z	$C_{ m S0}$	
t	$R_0/C_{\rm S0}$	
ho	$ ho_0$	
p	$ ho_0 C_{\mathrm{S}0}^2$	

表 1: 変数と規格化単位。 ho_0 、 $C_{
m S0}$ は初期一様状態の値。

4 パラメータ・初期条件・計算条件・境界条件

 $0 < r < R_{
m bnd}$ 、 $0 < z < Z_{
m bnd}$ の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。

$$\rho = 1$$

$$p = (1/\gamma)$$

$$V_r = V_z = 0$$

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 r 方向 $R_{ m bnd}$	7.5	_	model
境界の位置 z 方向 $Z_{ m bnd}$	30	_	model
比熱比 γ	5/3	gm	model
注入ジェットの密度 $ ho_j$	0.1	ro1	bnd
注入ジェットの圧力 p_j	$1/\gamma$	pr1	bnd
注入ジェットの速度 $V_z \ V_{zj}$	19	vz1	bnd
注入ジェットの速度 $V_r \ V_{rj}$	0	vx1	bnd

表 2: おもなパラメータ

境界条件は、以下の通り。サブルーチン bnd で設定。z=0 で、 注入ジェットの箇所(後述)以外は対称境界条件。すなわち V_z は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_r は「絶対値・符号が等しく鏡面配置」。 $z=Z_{\rm bnd}$ で、自由境界条件。すなわち、すべての物理量の z 方向微分がゼロ。r=0 で、 対称境界条件。すなわち V_r は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_z は「絶対値・符号が等しく鏡面配置」。 $r=R_{\rm bnd}$ で、自由境界条件。すなわち、すべての物理量の r 方向微分がゼロ。

ジェットは境界から注入される。r<1、z=0 の範囲で、毎ステップ次の値に固定する。サブルーチン bnd で設定。各値は表 2 を参照。

$$\rho = \rho_j$$

$$p = p_j$$

$$V_r = V_{rj}$$

$$V_z = V_{zj}$$

計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 r 方向	103	ix	main
グリッド数 z 方向	102	jx	main
マージン	4	margin	main
終了時刻	6	tend	main
出力時間間隔	1	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献

Norman, M. L., Smarr, L., Winkler, K.-H. A., Smith, M. D., 1982, A & Ap, 113, 285-302.