Logica dei predicati - Teoria di Herbrand Logica Matematica

Brunella Gerla

Università dell'Insubria, Varese brunella.gerla@uninsubria.it

Ricordiamo alcune definizioni sulle formule della logica dei predicati:

- Una formula è chiusa o una sentenza se non contiene variabili libere.
- Una formula è in forma di Skolem se è in forma normale prenessa (cioè tutti i quantificatori sono all'inizio) e non ci sono quantificatori esistenziali.
- Il procedimento di **Skolemizzazione** permette di ottenere una formula φ^{S} in forma di Skolem a partire da una formula φ in forma prenessa, "cancellando" i quantificatori esistenziali nel seguente modo:
 - se ∃x non è preceduto da ∀ allora si elimina ∃x e si sostituisce la variabile x con una nuova costante:
 - ▶ se $\exists x$ è preceduto da $\forall x_1 \cdots \forall x_n$ allora si elimina $\exists x$ e si sostituisce x con il termine $f(x_1, \dots, x_n)$, dove f è un nuovo simbolo di funzione.
- φ è soddisfacibile se e solo se φ^S è soddisfacibile.

Chiusura universale e esistenziale

Definizione

Data una formula φ con variabili libere $FV(\varphi) = \{x_1, \dots, x_n\}$, la **chiusura** universale di φ è la formula chiusa

$$U(\varphi) = \forall x_1 \cdots \forall x_n \varphi.$$

La **chiusura esistenziale** di φ è la formula chiusa

$$Ex(\varphi) = \exists x_1 \cdots \exists x_n \varphi$$
.

Lemma

 φ è valida se e solo se

 $U(\varphi)$ è valida.

 φ è soddisfacibile

se e solo se

 $Ex(\varphi)$ è soddisfacibile.

Data una formula φ , la formula $Ex^S(\varphi)$ è chiusa e in forma di Skolem e si ha:

$$\varphi$$
 è soddisfacibile se e solo se $Ex^{S}(\varphi)$ è soddisfacibile.

Quindi ogni formula è equisoddisfacibile con una formula chiusa in forma di Skolem.

Esempio

Sia $\varphi = \forall x P(x, y)$. La formula φ non è chiusa, la sua chiusura esistenziale è

$$Ex(\varphi) = \exists y \forall x P(x, y).$$

Controlliamo la soddisfacibilità . Sia $\mathcal{A}=(\mathbb{N},I)$ con $I(P)=\{(n,m)\mid n\geq m\}$. Per interpretare φ dobbiamo fissare una interpretazione delle variabili: se consideriamo e(y)=0 allora $(\mathcal{A},e)\vDash \varphi$.

Si ha $\mathcal{A} \models Ex(\varphi)$: infatti esiste un elemento del dominio (che è 0) tale che per ogni $m \in \mathbb{N}$ si ha $m \geq 0$.

Consideriamo ora $Ex^S(\varphi)$ e cioè $\forall x P(x,c)$. Anche questa formula è soddisfacibile, basta porre I(c) = 0.

Definizione

Un termine è ground (o chiuso) se non contiene variabili.

Una **istanza ground** di un termine $f(t_1, ..., t_n)$ è un termine ground che si ottiene sostituendo le variabili di $f(t_1, ..., t_n)$ con termini ground.

Esempio

t = f(x, g(c)) non è un termine ground.

è una istanza ground di t ottenuta sostituendo x con il termine ground f(c, g(c)).

A sua volta, f(c, g(c)) è una istanza ground di t.

Universo di Herbrand

Definizione

Sia φ una formula chiusa e in forma di Skolem. L' **universo** di Herbrand $H(\varphi)$ di φ è l'insieme dei termini ground costruibili a partire dai simboli di φ . Se φ non contiene costanti, se ne aggiunge una nuova e si costruiscono i termini ground a partire da questa.

Esempio

Sia
$$\varphi = \forall x \forall y (A(c,x) \rightarrow B(f(y)))$$
. Allora

$$H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$$

è un insieme infinito.

Sia
$$\varphi = \forall x (A(c) \rightarrow B(x))$$
. Allora $H(\varphi) = \{c\}$.

Si noti che se la formula non contiene simboli di funzioni, allora l'universo di Herbrand è finito, altrimenti è infinito.

Esempio

Se
$$\varphi = \forall x \forall y (A(f(x), g(x, y)) \rightarrow B(x, f(y)))$$
 allora

$$H(\varphi) = \{c, f(c), g(c, c), f(g(c, c)), g(c, f(c)), \ldots\}.$$

Definizione

Sia φ una formula chiusa e in forma di Skolem. Una struttura $\mathcal{A}=(D,I)$ è una **struttura di Herbrand** per φ se:

- $D = H(\varphi)$;
- I(c) = c per ogni costante $c \in H(\varphi)$;
- Se f è una funzione n-aria allora

$$I(f):(t_1,\ldots,t_n)\in D^n\to f(t_1,\ldots,t_n)\in D$$

Ci sono diverse strutture di Herbrand per una data formula, che variano su come interpretano i predicati. Comunque per definizione deve essere $I(P) \subseteq (H(\varphi))^n$ per ogni predicati n-ario P.

Sia $\varphi = \forall x (A(x) \to B(f(x)))$, e quindi $H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$. Consideriamo la struttura $A = (H(\varphi), I)$ il cui dominio è l'universo di Herbrand e

$$I(c) = c$$

$$I(f): t \in H(\varphi) \to f(t) \in H(\varphi).$$

Quindi ad esempio [f(f(c))] = f(f(c)).

I predicati A e B possono essere interpretati in diversi modi. Sia per esempio

$$I(A) = \{c, f(f(c))\},\$$

 $I(B) = \{f(c), f(f(f(c)))\}.$

Allora con questa interpretazione dei predicati, la struttura di Herbrand \mathcal{A} è un modello per la formula φ . Trovare una interpretazione di A e B che non soddisfa la formula φ .

Teorema (di Herbrand (1))

Sia φ una formula chiusa e in forma di Skolem. Allora φ è soddisfacibile se e solo se ha un modello di Herbrand (cioè una struttura di Herbrand che la soddisfa).

Dimostrazione.

Se supponiamo che φ abbia un modello di Herbrand, allora chiaramente è soddisfacibile. L'altra direzione invece è più difficile da dimostrare. Facciamo un esempio:

Sia
$$\varphi = \forall x (D(x) \to Q(f(x), g(x)))$$
 e si consideri la struttura $\mathcal{A} = (\mathbb{N}, I^{\mathcal{A}})$ tale che

$$I^{\mathcal{A}}(D) = \{ n \in \mathbb{N} \mid n \text{ è dispari} \}$$

 $I^{\mathcal{A}}(Q) = \{ (n, m) \in \mathbb{N}^2 \mid n = 2m \}.$

$$I^{\mathcal{A}}(f): n \in \mathbb{N} \to n+1 \in \mathbb{N}$$

 $I^{\mathcal{A}}(g): n \in \mathbb{N} \to \lfloor \frac{n+1}{2} \rfloor \in \mathbb{N}$

 $A \vDash \varphi$ perché per ogni numero n se n è dispari allora

$$n+1=2\lfloor\frac{n+1}{2}\rfloor$$

Quindi φ è soddisfacibile

Costruiamo una interpretazione di Herbrand che soddisfa φ . Sappiamo che deve essere

$$D = H(\varphi) = \{c, f(c), g(c), f(g(c)), f(f(c)), g(f(c)), f(f(f(c))), \ldots\}$$

$$I^{H}(f) = f; I^{H}(g) = g; I^{H}(c) = c.$$

Definiamo l'interpretazione dei predicati: poniamo

$$I^{H}(D) = \{ t \in H(\varphi) \mid [\![t]\!]^{\mathcal{A}} \in I^{\mathcal{A}}(D) \}$$

Quindi $t \in I^H(D)$ se $[t]^A$ è un numero dispari.

Analogamente,

$$I^{H}(Q) = \{(s,t) \in H^{2}(\varphi) \mid (\llbracket s \rrbracket^{\mathcal{A}}, \llbracket t \rrbracket^{\mathcal{A}}) \in I^{\mathcal{A}}(Q)\}$$

cioè $(s,t) \in I^H(Q)$ se $\llbracket s \rrbracket^A = 2 \llbracket t \rrbracket^A$.

12 / 30

La costante c è stata introdotta per costruire l'universo di Herbrand, ma non ha una interpretazione nella precedente struttura, quindi poniamo $I^{\mathcal{A}}(c) = 2$. Si ha quindi:

- $[c]^A = 2$ quindi $c \notin I^H(D)$;
- $[f(c)]^A = 2 + 1 = 3$ quindi $f(c) \in I^H(D)$;
- $[g(c)]^A = 1$ quindi $g(c) \in I^H(D)$;
- $[f(g(c))]^A = 1 + 1 = 2$ quindi $f(g(c)) \notin I^H(D)$;

e così via.

Per quanto riguarda il predicato Q si ha per esempio:

- $[c]^A = 2$ e $[f(c)]^A = 2 + 1 = 3$ quindi $(c, f(c)) \notin I^H(Q)$;
- $[g(c)]^{A} = 1$ e $[c]^{A} = 2$ quindi $(g(c), c) \in I^{H}(Q)$;

e così via.

Si ha quindi che $(H(\varphi), I^H) \models \varphi$: infatti se $t \in I^H(D)$ allora $[t]^A$ è dispari, quindi $[f(t)]^A$ è pari e

$$\llbracket f(t) \rrbracket^{\mathcal{A}} = 2 \lfloor \frac{\llbracket t \rrbracket^{\mathcal{A}} + 1}{2} \rfloor = 2 \llbracket g(t) \rrbracket^{\mathcal{A}}$$

e quindi $(f(t), g(t)) \in I^H(Q)$.

Vediamo un caso particolare: sappiamo che $f(c) \in I^H(Q)$ e ci chiediamo se

$$(f(f(c)),g(f(c))) \in I^H(Q).$$

Sappiamo che

$$[f(f(c))]^{A} = 4$$
 $[g(f(c))]^{A} = 2$

e $(4,2) \in I^{\mathcal{A}}(Q)$, quindi $(f(f(c)),g(f(c))) \in I^{H}(Q)$.

Dimostrazione.

Sia φ una formula in forma di Skolem, chiusa e soddisfacibile e sia $\mathcal{A}=(D,I^{\mathcal{A}})$ un suo modello.

Se φ non contiene costanti, allora consideriamo una nuova costante c, scegliamo arbitrariamente un elemento $d \in D$ e poniamo $I^{\mathcal{A}}(c) = d$.

Poniamo, per ogni predicato n-ario P presente nella formula φ :

$$I^{H}(P) = \{(t_1, \ldots, t_n) \in H^{n}(\varphi) \mid (\llbracket t_1 \rrbracket^{\mathcal{A}}, \ldots, \llbracket t_n \rrbracket^{\mathcal{A}}) \in I^{\mathcal{A}}(P)\}.$$

Dimostriamo che $(H(\varphi), I^H) \models \varphi$ per induzione strutturale: Caso base: φ è una formula atomica chiusa $\varphi = P(t_1, \ldots, t_n)$. Allora $(H(\varphi), I^H) \models \varphi$ per definizione. (si consideri l'esempio $\varphi = P(c, f(d))$ con il modello $2 \le 4 + 1$)

Dimostrazione.

- Sia $\varphi = \psi_1 \wedge \psi_2$. Poiché $\mathcal{A} \vDash \varphi$ allora sarà $\mathcal{A} \vDash \psi_1$ e $\mathcal{A} \vDash \psi_2$, quindi per ipotesi di induzione, $\mathcal{H} \vDash \psi_1$ e $\mathcal{H} \vDash \psi_2$ e quindi $\mathcal{H} \vDash \varphi$. Analogamente per gli altri casi proposizionali.
- Se $\varphi = \forall x \psi$ e $\mathcal{A} \vDash \varphi$ allora per ogni $d \in D$ si ha

$$v^{(\mathcal{A},e(d/x))}(\psi)=1$$
.

Però non possiamo applicare direttamente l'ipotesi di induzione perché ψ non è una formula chiusa.

Consideriamo

$$D^T = \{d \in D \mid d = \llbracket t \rrbracket^A \text{ per qualche } t \in H(\varphi)\} \subseteq D.$$

Dimostrazione.

In particolare si ha che per ogni $d \in D^T$ vale

$$v^{(\mathcal{A},e(d/x))}(\psi)=1,$$

ma se $d \in D^T$ allora sarà $d = \llbracket t
rbracket^{\mathcal{A}}$ quindi vale

$$v^{(\mathcal{A},e(\llbracket t\rrbracket^{\mathcal{A}}/x))}(\psi)=1,$$

per ogni $t \in H(\varphi)$.

Ma

$$v^{(\mathcal{A},e(\llbracket t \rrbracket^{\mathcal{A}}/x))}(\psi) = v^{\mathcal{A}}(\psi(t/x)) = 1$$
,

e inoltre $\psi(t/x)$ è una formula chiusa perché t è un termine ground. Quindi si può applicare l'ipotesi di induzione a $\psi(t/x)$ e si ottiene

$$v^H(\psi(t/x)) = 1$$
 per ogni $t \in H(\varphi)$ e quindi $v^H(\forall x \psi) = 1$

Esempio (1)

Vediamo se la formula $\varphi = \forall y \neg M(c, y)$ (chiusa e in forma di Skolem) è soddisfacibile.

Costruiamo un modello di Herbrand: $H(\varphi) = \{c\}$ quindi, poiché deve essere $I^H(M) \subseteq H^2(\varphi)$, si ha che

$$I^{H}(M) = \begin{cases} \emptyset \text{ oppure} \\ \{(c,c)\}. \end{cases}$$

Se $I^H(M) = \{(c,c)\}$ allora $v^H(\varphi) = 0$ perché non è vero che ogni elemento del dominio non è in relazione con c (c'è un solo elemento del dominio che è in relazione con c).

Se invece poniamo $I^H(M)=\emptyset$, allora M non è mai soddisfatto e quindi $v^H(\varphi)=1$. Quindi la formula φ ha un modello di Herbrand, quindi è soddisfacibile.

Esempio (2)

Sia adesso $\varphi = \forall y (\neg M(c, y) \land M(y, c))$. Per capire se è soddisfacibile, cerchiamo di costruire un modello di Herbrand.

 $H(\varphi) = \{c\}$ e anche in questo caso il predicato binario M si può interpretare o come la relazione vuota o come $\{(c,c)\}$. Il quantificatore agisce solo su c (che è l'unico elemento del dominio), quindi deve valere contemporaneamente M(c,c) e $\neg M(c,c)$.

Quindi φ non ha un modello di Herbrand e quindi non è soddisfacibile (non c'è bisogno di cercare altri modelli).

Esempio (3)

Proviamo adesso che l'ipotesi che la formula sia in forma di Skolem è fondamentale.

Sia

$$\varphi = \forall y M(c, y) \land \exists x \forall y \neg M(x, y)$$

(non è in forma di Skolem) e mostriamo che anche se non ha un modello di Herbrand è comunque una formula soddisfacibile.

Anche in questo caso $H(\varphi) = \{c\}$ e quindi per soddisfare $\forall y M(c, y)$ deve essere $I^H(M) = \{(c, c)\}$. Ma con questa interpretazione non si soddisfa $\exists x \forall y \neg M(x, y)$.

Ma la formula $\forall y M(c,y) \land \exists x \forall y \neg M(x,y)$ è soddisfacibile. Infatti si consideri $\mathcal{A} = (D, I^{\mathcal{A}})$ con

$$D = \{c, b\}$$
 $I^{\mathcal{A}}(c) = c$ $I^{\mathcal{A}}(M) = \{(c, c), (c, b)\}.$

Allora è vero che ogni elemento del dominio è in relazione con I(c) = c ed è anche vero che esiste un elemento del dominio (b) tale che ogni altro non è in relazione con questo.

Quindi φ è soddisfacibile anche se non ha un modello di Herbrand. Il teorema non vale perché la formula non è in forma di Skolem.

Provare a trasformare φ in forma di Skolem e a trovare un modello di Herbrand.

Definizione

Sia φ una formula chiusa e in forma di Skolem:

$$\varphi = \forall x_1 \cdots \forall x_n \psi$$

dove in ψ non compaiono quantificatori. Allora l' **espansione di Herbrand** di φ è l'insieme

$$E(\varphi) = \left\{ \psi \left[t_1, \dots, t_n \middle|_{X_1, \dots, X_n} \right] \mid t_1, \dots, t_n \in H(\varphi) \right\}.$$

Esempio

Sia $\varphi = \forall y (M(c, y) \land \neg M(d, y))$. Quindi

$$H(\varphi) = \{c, d\}$$

e

$$E(\varphi) = \{M(c,c) \land \neg M(d,c), M(c,d) \land \neg M(d,d)\}.$$

Sia
$$\varphi = \forall x \forall y (A(x, f(y)) \land B(y, f(x)))$$
. Allora

$$H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$$

е

$$E(\varphi) = \{A(c,f(c)) \land B(c,f(c)), A(c,f(f(c)) \land B(f(c),f(c)), A(f(c),f(c)) \land B(c,f(f(c))), \ldots\}.$$

Esempio

Sia
$$\varphi = \forall x (P(x) \land \neg P(f(x)))$$
, allora

$$H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$$

e

$$E(\varphi) = \{ P(c) \land \neg P(f(c)), P(f(c)) \land P(f(f(c)), \ldots \}.$$

L'espansione di Herbrand è formata solo da formule chiuse senza quantificatori: Se si assegna una variabile proposizionale ad ogni formula atomica, allora l'espansione di Herbrand si può vedere come insieme di formule proposizionali.

Esempio

Se
$$\varphi = \forall y (M(c, y) \land \neg M(d, y))$$
 allora

$$E(\varphi) = \{M(c,c) \land \neg M(d,c), M(c,d) \land \neg M(d,d)\}.$$

Ponendo $X_1=M(c,c)$, $X_2=M(d,c)$, $X_3=M(c,d)$ e $X_4=M(d,d)$ l'espansione di Herband diventa

$$E(\varphi) = \{X_1 \wedge \neg X_2, X_3 \wedge \neg X_4\}.$$

Questo insieme è soddisfacibile (nella logica proposizionale) ponendo $v(X_1)=1,\ v(X_2)=0,\ v(X_3)=1$ e $v(X_4)=0$.

Nota che l'interpretazione di Herbrand $(H(\varphi), I^H)$ tale che $I^H(M) = \{(c, c), (c, d)\}$ è un modello per φ .

Teorema (di Herbrand (2))

Sia φ una formula chiusa e in forma di Skolem. Allora φ è soddisfacibile se e solo se $E(\varphi)$ è soddisfacibile come insieme di formule proposizionali.

Dimostrazione.

Scriviamo $\varphi = \forall x_1 \forall x_2 \cdots \forall x_n \psi$. Sappiamo che φ è soddisfacibile se e solo se ha un modello di Herbrand.

Quindi $v^H(\varphi) = 1$ se e solo se per ogni $t_1, \ldots, t_n \in H(\varphi)$ si ha

$$v^{H,v} \binom{t_1,\ldots,t_{n/X_1,\ldots,X_n}}{t_1,\ldots,t_n} (\psi) = 1$$

se e solo se, per ogni $t_1,\ldots,t_n\in H(\varphi)$

$$v^H\left(\psi\left[t_1,\ldots,t_n/x_1,\ldots,x_n\right]\right)=1$$

se e solo se $v^H(\alpha) = 1$ per ogni $\alpha \in E(\varphi)$.

Sia $\varphi = \forall x (P(x) \land \neg P(f(x)))$. Calcolare $E(\varphi)$.

Come conseguenza del teorema di compattezza abbiamo:

Teorema

 φ è soddisfacibile se e solo se ogni sottoinsieme finito di $E(\varphi)$ è soddisfacibile.

Quindi φ soddisfacibile \leftrightarrow ogni sottoinsieme finito di $E(\varphi)$ è soddisfacibile.

Supponiamo che $E(\varphi) = \{\varphi_1, \varphi_2, \ldots\}$: per capire se φ soddisfacibile dobbiamo controllare

```
\{\varphi_1\},\
\{\varphi_1,\varphi_2\},\
\{\varphi_1,\varphi_2,\varphi_3\},\
```

Se uno di questi è insoddisfacibile allora possiamo concludere che la formula è insoddisfacibile, altrimenti dobbiamo continuare a controllare.

Capire se una formula è insoddisfacibile (o analogamente se una formula è valida) è un problema **semidecidibile**.

Ci sono però dei casi in cui la procedura termina in ogni caso:

Se $H(\varphi)$ è finito allora $E(\varphi)$ è finito e quindi si può decidere se è soddisfacibile o no in un numero finito di passi.

 $H(\varphi)$ è finito quando non ci sono funzioni: quindi per le formule che *in forma di Skolem* non hanno simboli di funzione, il problema della soddisfacibilità è decidibile.

Nota che per esempio la formula

$$\forall x \exists y M(x, y)$$

non rientra in questo caso...

Sia
$$\varphi = \forall x (P(x) \land \neg P(f(x)))$$
. Allora

$$H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$$

е

$$E(\varphi) = \{ P(c) \land \neg P(f(c)), P(f(c)) \land \neg P(f(f(c))), \ldots \}.$$

Scrivendo l'espansione come formule proposizionali si ha:

$$E(\varphi) = \{X_1 \land \neg X_2, X_2 \land \neg X_3, \ldots\}.$$

 $\{X_1 \land \neg X_2\}$ è soddisfacibile.

 $\{X_1 \land \neg X_2, X_2 \land \neg X_3\}$ non è soddisfacibile.

Quindi φ non è soddisfacibile.