University of Birmingham

Computer Science Year 2 Faisal IMH Alrajhi

Year 2 Study Guide

Contents

1	Graphics	1
	1.1 Surface Geometry	1
	1.1.1 Definitions	1
	1.1.2 Examples	1
	1.1.3 Further Sources	1
	1.2 Transforms	2
	1.3 Lighting	3
	1.4 Projection	4
	1.5 Texture Mapping	5
	1.6 Past Exam Practice	6
2	Computational Vision	7
3	Models of Computation	8
4	Introductory Databases	9
5	Computer Systems & Architecture	10
6	C/C++	11
7	Mathematical Techniques for Computer Science	12
8	Introduction to Computer Security	13
9	Professional Computing	14
10	Functional Programming	15

Chapter 1

Graphics

1.1 Surface Geometry

This section covers the basics introduced in how to represent shapes in a computer.

1.1.1 Definitions

- Vertex: A point with three numbers representing its XYZ position in a plane
- Edge: An edge is the difference between two vertices; the segment connecting them
- Surface: A closed set of edges representing a face of a 3D object
- Polygon: A shape in space usually representing by a set of surfaces (other methods listed below)
- Polygon Table:

Figure 1.1: Coordinate system assumed throughout module

When speaking about shapes, we will always assume to be using a right-handed coordinate system. It is named "right-hand" due to the position of the thumb when taking your right hand, placing it on the positive x-axis, the positive z direction will be the direction of the thumb. Right hand just means the thumb is pointed outwards/towards the viewer, so positive z-axis will be towards the viewer.

1.1.2 Examples

asdads

1.1.3 Further Sources

1.2 Transforms

1.3 Lighting

1.4 Projection

1.5 Texture Mapping

1.6 Past Exam Practice

Chapter 2 Computational Vision

Chapter 3 Models of Computation

Chapter 4 Introductory Databases

Chapter 5 Computer Systems & Architecture

Chapter 7

Mathematical Techniques for Computer Science

Chapter 8

Introduction to Computer Security

Chapter 9 Professional Computing

Chapter 10 Functional Programming