14.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 2月10日

出願番号

特願2004-033886

Application Number: [ST. 10/C]:

[JP2004-033886]

出 願 人
Applicant(s):

松下電器産業株式会社

特許,Commis

特許庁長官 Commissioner, Japan Patent Office 2005年 1月28日

i) (")

【書類名】 特許願 【整理番号】 2054061007 【提出日】 平成16年 2月10日 【あて先】 特許庁長官 殿 【国際特許分類】 G02B 7/00 H02P 8/00 H02N 2/00 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 本庄 謙一 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 澁野 剛治 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 林 孝行 【発明者】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】 【氏名】 村山 正人 【特許出願人】 【識別番号】 000005821 松下電器產業株式会社 【氏名又は名称】 【代理人】 【識別番号】 110000040 特許業務法人池内・佐藤アンドパートナーズ 【氏名又は名称】 【代表者】 池内 寛幸 06-6135-6051 【電話番号】 【手数料の表示】 【予納台帳番号】 139757 21,000円 【納付金額】 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 図面 1 【物件名】

【物件名】

【包括委任状番号】

要約書 1 0108331

. . 1

【請求項1】

被写体を結像する焦点調整用レンズを含む撮像レンズと、

前記撮像レンズによる被写体光を撮像する撮像デバイスと、

レンズ鏡筒に対して前記撮像レンズを光軸方向に移動させる駆動手段を含み、周期性のある駆動信号を出力して前記駆動手段により前記撮像レンズの位置を制御するレンズ位置制御手段と、

前記撮像レンズの位置に応じて出力値が変化する位置検出センサと、

前記位置検出センサの出力値が第1の閾値に到達したときの前記駆動信号の位相を前記 撮像レンズの基準位置として求めるレンズ位置演算手段と、

前記基準位置を記憶する基準位置記憶手段とを備えており、

前記レンズ位置演算手段は、

前記基準位置記憶手段から読み出した前記基準位置と同じ位相の位置を判定位置とし、 前記駆動手段を駆動する駆動信号に同期したタイミングでかつ前記判定位置で前記位置 検出センサの出力値を検出し、

前記判定位置における前記位置検出センサの出力値が前記第1の閾値とは異なる値の第2の閾値に到達しているかどうかを判定して、前記基準位置を再び求めることを特徴とするレンズ駆動装置。

【請求項2】

前記基準位置を求める際の前記駆動手段を駆動する駆動信号の1周期の時間はTであり、前記基準位置を再び求める際の前記駆動手段を駆動する駆動信号は、1周期の時間がT/N(Nは2以上の整数)となる1/N周期駆動信号である請求項1に記載のレンズ駆動装置。

【請求項3】

前記第2の閾値は、前記基準位置と前記駆動信号の1周期分だけ離れた位置との間における前記位置検出センサの出力値の範囲内の値である請求項1に記載のレンズ駆動装置。

【請求項4】

前記第2の閾値は、前記基準位置より前記駆動信号の1/2周期分だけ離れた位置における前記位置検出センサの出力値である請求項1に記載のレンズ駆動装置。

【請求項5】

前記レンズ位置演算手段は、前記判定位置を停止位置とし、前記レンズ位置制御手段は、前記レンズ駆動装置の電源を切る前に、前記停止位置に前記撮像レンズを移動する請求項1に記載のレンズ駆動装置。

【請求項6】

前記レンズ位置演算手段は、前記再び求めた基準位置に対応する判定位置より1つ先行 した判定位置を停止位置とし、前記レンズ位置制御手段は、前記レンズ駆動装置の電源を 切る前に、前記停止位置に前記撮像レンズを移動する請求項1に記載のレンズ駆動装置。

【請求項7】

前記レンズ鏡筒の傾斜角度を検出する角度センサをさらに備えており、前記レンズ位置 演算手段は、前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報に基づいて、 基準角度からの変位に相当する補正距離を求め、

前記レンズ位置演算手段は、

前記判定位置に前記補正距離を加算又は減算した位置を新たな判定位置とし、

前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とする請求項1に記載のレンズ駆動装置。

【請求項8】

前記レンズ鏡筒の傾斜角度を検出する角度センサをさらに備えており、前記レンズ位置制御手段は、前記基準位置の情報と前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報とに基づく補正位置情報に基づいて、前記撮像レンズの位置を制御する請求項1に記載のレンズ駆動装置。

前記レンズ位置演算手段は、前記レンズ鏡筒を上向きにした状態において前記位置検出センサの出力値が前記第1の閾値に到達したときの駆動信号の位相を撮像レンズの上端位置として求め、前記レンズ鏡筒を下向きにした状態において前記位置検出センサの出力値が閾値に到達したときの駆動信号の位相を撮像レンズの下端位置として求め、前記上端位置と前記下端位置とに基づいて前記基準位置を演算する請求項1に記載のレンズ駆動装置

【請求項10】

前記レンズ位置演算手段は、前記上端位置と前記下端位置との中間位置を前記基準位置として演算する請求項9に記載のレンズ駆動装置。

【請求項11】

レンズ位置演算手段は、レンズ鏡筒を上向き又は下向きにした状態において前記位置検 出センサの出力値が前記第1の閾値に到達したときの駆動信号の位相を撮像レンズの上端 又は下端位置として求め、前記上端又は下端位置より所定距離だけ加算又は減算して前記 基準位置を演算する請求項1に記載のレンズ駆動装置。

【請求項12】

前記レンズ鏡筒の温度を検出する温度センサをさらに備えており、前記レンズ位置演算 手段は、前記温度センサから出力される前記レンズ鏡筒の温度情報に基づいて基準温度か らの変位に相当する補正距離を求め、

前記レンズ位置演算手段は、

前記判定位置に前記補正距離を加算又は減算した位置を新たな判定位置とし、

前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とする請求項1に記載のレンズ駆動装置。

【請求項13】

レンズ鏡筒の温度を検出する温度センサをさらに備えており、前記レンズ位置制御手段は、前記基準位置情報と前記温度センサから出力される前記レンズ鏡筒の温度情報とに基づく補正位置情報に基づいて、前記撮像レンズの位置を制御する請求項1に記載のレンズ駆動装置。

【請求項14】

前記レンズ鏡筒の傾斜角度を検出する角度センサと、前記レンズ鏡筒の温度を検出する 温度センサとをさらに備えており、

前記レンズ位置演算手段は、

前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報に基いて基準角度からの 変位に相当する角度補正距離を求め、前記温度センサから出力される前記レンズ鏡筒の温 度情報に基づいて基準温度からの変位に相当する温度補正距離を求め、

前記判定位置に前記角度補正距離と前記温度補正距離との合計距離を加算又は減算した 位置を新たな判定位置とし、

前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とする請求項1に記載のレンズ駆動装置。

【発明の名称】レンズ駆動装置

【技術分野】

[0001]

本発明は、スチルカメラ及びビデオムービーなどの撮像装置におけるレンズの位置制御を行うためのレンズ駆動装置に関する。

【背景技術】

[0002]

近年、ディジタルスチルカメラやディジタルビデオムービーに代表されるディジタル撮像装置の高画質化やコンパクト化に伴い、電荷結合素子などの撮像素子の画素数増加や画素の狭ピッチ化が進んでいる。このような背景の下、レンズ位置制御においてはより一層の高精度化が求められている。

[0003]

従来、レンズユニットに取り付けられた遮蔽部材とフォトセンサを用いて、レンズユニットをモータにより駆動し、遮蔽部材がフォトセンサを横切った際のフォトセンサの出力レベルを監視しながら、レンズユニットの原点位置を検出する方法が提案されている。

[0004]

従来のレンズ駆動装置について以下に説明する。図19は、従来のレンズ駆動装置の一例の概略図及びブロック図である。図19において、20はレンズ鏡筒、21はレンズ鏡筒 20に固定された第1群レンズ(以下、「固定レンズ」という。)、である。22は第2群レンズ(以下、「ズームレンズ」という。)であり、ズームリング25をレンズ鏡筒20の外周に沿って回転させることにより、光軸方向に移動し、ズーム倍率を調整することができる。23は第3群レンズ(以下、「フォーカスレンズ」という。)であり、モータ28の回転によってねじが切られたリードスクリューに沿って光軸方向に移動し、フォーカスを調整することができる。

[0005]

図19の例では、モータ28は、フォーカスモータ駆動部33から出力されるモータコイルの駆動信号(励磁信号)の位相に応じて回転するステッピングモータを示す。24は撮像素子であり、固定レンズ21、ズームレンズ22、及びフォーカスレンズ23を透過して撮像された被写体の画像を電気信号に変換する。26は遮蔽部材であり、フォーカスレンズ23の枠に固定されている。遮蔽部材26は、図19の点線で示すように、フォーカスレンズ23の撮像素子24の方向への移動によりフォトセンサ27を遮蔽し、この遮蔽によりフォーカスレンズ23の原点位置の検出を行う。

[0006]

34は、ズームリング25の回転位置を検出するズームリング位置検出部である。位置 検出部34による位置検出は、ズームリング25の回転に応じて発生するパルスやズーム レンズ22の光軸方向への移動距離に応じて抵抗値が変化するリニアポジションセンサ (図示せず)などを使用する。32は信号処理部であり、撮像素子24から出力される電気 信号に基づいて、画像データやフォーカス調整を行うためのコントラスト情報を生成する

[0007]

31はシステムコントロール部である。システムコントロール部31は、フォーカスモータ制御部30にフォーカスレンズ23の駆動指令を出力して信号処理部32で処理された画像をもとにフォーカス調整をユーザーが行ったり、信号処理部32のコントラスト情報に基づいてコントラストが最大になるようにフォーカスレンズ23の駆動指令を出力してフォーカス自動調整(オートフォーカス機能)を行ったりする。

[0008]

以上のように構成された従来のレンズ駆動装置について、図19を参照しながらその動作を以下に説明する。本体の電源投入時にシステムコントロール部31からフォーカスモータ制御部30に、フォーカスレンズ23を撮像素子24側へ駆動させるように指令を出

[0009]

フォーカスレンズ23が図19の点線で示す位置に到達する辺りで遮蔽部材26によってフォトセンサ27が遮蔽され、フォトセンサ27の出力信号レベルが変化する。この出力信号レベルがある閾値を超えたときに(又は回路の構成によっては閾値を下回ったときに)、フォーカスモータ制御部30であらかじめ有しているカウンタをリセットして、フォーカスレンズ4の絶対位置の検出を行う。これと同時に、フォーカス調整のためのフォーカスレンズ23の位置情報をシステムコントロール部31に出力する。

[0010]

このように検出したフォーカスレンズ23の絶対位置とズームレンズ22との位置関係を制御することで、ズーミング動作を行った場合においても合焦状態を維持しながら、フォーカスレンズ23の位置制御を行ったり、オートフォーカス機能の引き込み速度を高速化したり、フォーカスレンズ4の絶対位置情報から被写体までの距離を予測したりする用途が考えられる。

【特許文献1】特開平6-174999公報

【発明の開示】

【発明が解決しようとする課題】

[0011]

しかしながら、従来のレンズ駆動装置においては、レンズユニットに取り付けられた遮 蔽部材とフォトセンサの位置関係はレンズユニットの駆動方向のガタ、使用環境温度・湿 度変化による機構・電気特性ばらつきなどの誤差によって絶対位置が検出動作毎に異なり 、前記の用途を実現する上で十分な性能を得ることが困難であった。

[0012]

また、遮蔽部材がフォトセンサを横切るときの遮蔽部材の移動量に対して出力レベルの ばらつき感度が異なる 2 つのフォトセンサを用いて、ばらつき感度が大きい方のフォトセンサの出力をスタート信号にし、ばらつき感度が小さい方のフォトセンサの出力から原点 位置を検出する方法も提案されている。この方法によれば、絶対位置の検出精度を向上に は有利であるが、コンパクト化やコスト面では不利になる。

[0013]

本発明は、前記のような従来の問題を解決するものであり、コンパクト化を損なうことなく、レンズユニットの機構・電気特性等のばらつきによる原点位置の検出誤差の発生を防止するレンズ駆動装置を提供することを目的とする。

【課題を解決するための手段】

[0014]

前記目的を達成するために、本発明のレンズ駆動装置は、被写体を結像する焦点調整用 レンズを含む撮像レンズと、前記撮像レンズによる被写体光を撮像する撮像デバイスと、 レンズ鏡筒に対して前記撮像レンズを光軸方向に移動させる駆動手段を含み、周期性のあ る駆動信号を出力して前記駆動手段により前記撮像レンズの位置を制御するレンズ位置制 御手段と、前記撮像レンズの位置に応じて出力値が変化する位置検出センサと、前記位置 検出センサの出力値が第1の閾値に到達したときの前記駆動信号の位相を前記撮像レンズ の基準位置として求めるレンズ位置演算手段と、前記基準位置を記憶する基準位置記憶手 段とを備えており、

前記レンズ位置演算手段は、前記基準位置記憶手段から読み出した前記基準位置と同じ位相の位置を判定位置とし、前記駆動手段を駆動する駆動信号に同期したタイミングでかつ前記判定位置で前記位置検出センサの出力値を検出し、前記判定位置における前記位置検出センサの出力値が前記第1の閾値とは異なる値の第2の閾値に到達しているかどうかを判定して、前記基準位置を再び求めることを特徴とする。

【発明の効果】

[0015]

本発明によれば、コンパクト化を損なうことなく、レンズユニットの機構・電気特性等のばらつきによる原点位置の検出誤差の発生を防止することができる。

【発明を実施するための最良の形態】

[0016]

本発明は、通常使用時における判定の基準とする位置検出センサの出力値の閾値を、工程調整時における閾値とは異なる値にすることにより、基準位置を検出するので、レンズユニットの機構・電気特性等のばらつきによる原点位置の検出誤差の発生を防止することができる。

[0017]

前記本発明においては、前記基準位置を求める際の前記駆動手段を駆動する駆動信号の 1周期の時間はTであり、前記基準位置を再び求める際の前記駆動手段を駆動する駆動信 号は、1周期の時間がT/N(Nは2以上の整数)となる1/N周期駆動信号であること が好ましい。この構成によれば、通常使用時の原点検出動作を工程調整時のN倍の速度に することができる。

[0018]

また、前記第2の閾値は、前記基準位置と前記駆動信号の1周期分だけ離れた位置との間における前記位置検出センサの出力値の範囲内の値であることが好ましい。また、前記第2の閾値は、前記基準位置より前記駆動信号の1/2周期分だけ離れた位置における前記位置検出センサの出力値であることが好ましい。これらの構成によれば、位置検出センサの出力値が第2の閾値を含む判定位置間の区間が必ず存在するので、原点の再現が確実になる。

[0019]

また、前記レンズ位置演算手段は、前記判定位置を停止位置とし、前記レンズ位置制御手段は、前記レンズ駆動装置の電源を切る前に、前記停止位置に前記撮像レンズを移動するであることが好ましい。この構成によれば、判定の回数を減らすことができ、原点の再現時間が速くなる。

[0020]

また、前記レンズ位置演算手段は、前記再び求めた基準位置に対応する判定位置より1つ先行した判定位置を停止位置とし、前記レンズ位置制御手段は、前記レンズ駆動装置の電源を切る前に、前記停止位置に前記撮像レンズを移動することが好ましい。この構成によれば、最初の1回分の判定だけで、確実な原点検出が可能になる。

[0021]

また、前記レンズ鏡筒の傾斜角度を検出する角度センサをさらに備えており、前記レンズ位置演算手段は、前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報に基づいて、基準角度からの変位に相当する補正距離を求め、前記レンズ位置演算手段は、前記判定位置に前記補正距離を加算又は減算した位置を新たな判定位置とし、前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とすることが好ましい。この構成によれば、通常使用時と工程調整時とで、レンズ鏡筒の傾斜角度が異なり、フォトセンサ出力レベルの変化位置が変動する場合においても、原点検出のばらつきを防止することができる。

[0022]

また、前記レンズ鏡筒の傾斜角度を検出する角度センサをさらに備えており、前記レンズ位置制御手段は、前記基準位置の情報と前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報とに基づく補正位置情報に基づいて、前記撮像レンズの位置を制御することが好ましい。

[0023]

また、前記レンズ位置演算手段は、前記レンズ鏡筒を上向きにした状態において前記位 置検出センサの出力値が前記第1の閾値に到達したときの駆動信号の位相を撮像レンズの 上端位置として求め、前記レンズ鏡筒を下向きにした状態において前記位置検出センサの 出力値が前記第1の閾値に到達したときの駆動信号の位相を撮像レンズの下端位置として 求め、前記上端位置と前記下端位置とに基づいて前記基準位置を演算することが好ましい 。この構成によれば、通常使用時と工程調整時とで、レンズ鏡筒の向きが異なる場合にお いても、原点検出のばらつきを防止することができる。

[0024]

また、前記レンズ位置演算手段は、前記上端位置と前記下端位置との中間位置を前記基準位置として演算することが好ましい。

[0025]

また、レンズ位置演算手段は、レンズ鏡筒を上向き又は下向きにした状態において前記位置検出センサの出力値が前記第1の閾値に到達したときの駆動信号の位相を撮像レンズの上端又は下端位置として求め、前記上端又は下端位置より所定距離だけ加算又は減算して前記基準位置を演算することが好ましい。この構成によれば、通常使用時と工程調整時とで、レンズ鏡筒の向きが異なる場合においても、原点検出のばらつきを防止することができる。この構成は、姿勢差による原点検出のばらつきがスペックで規定された撮像装置に適している

また、前記レンズ鏡筒の温度を検出する温度センサをさらに備えており、前記レンズ位置演算手段は、前記温度センサから出力される前記レンズ鏡筒の温度情報に基づいて基準温度からの変位に相当する補正距離を求め、前記レンズ位置演算手段は、前記判定位置に前記補正距離を加算又は減算した位置を新たな判定位置とし、前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とすることが好ましい。この構成によれば、通常使用時と工程調整時とで、レンズ鏡筒の温度が異なり、フォトセンサ出力レベルの変化位置が変動する場合においても、原点検出のばらつきを防止することができる。

[0026]

また、レンズ鏡筒の温度を検出する温度センサをさらに備えており、前記レンズ位置制御手段は、前記基準位置情報と前記温度センサから出力される前記レンズ鏡筒の温度情報とに基づく補正位置情報に基づいて、前記撮像レンズの位置を制御することが好ましい。

[0027]

また、前記レンズ鏡筒の傾斜角度を検出する角度センサと、前記レンズ鏡筒の温度を検出する温度センサとをさらに備えており、前記レンズ位置演算手段は、

前記角度センサから出力される前記レンズ鏡筒の傾斜角度情報に基いて基準角度からの変位に相当する角度補正距離を求め、前記温度センサから出力される前記レンズ鏡筒の温度情報に基づいて基準温度からの変位に相当する温度補正距離を求め、前記判定位置に前記角度補正距離と前記温度補正距離との合計距離を加算又は減算した位置を新たな判定位置とし、前記位置検出センサの出力値を検出し前記判定をする位置を、前記新たな判定位置とすることが好ましい。この構成によれば、通常使用時と工程調整時とで、レンズ鏡筒の傾斜角度及び温度が異なり、フォトセンサ出力レベルの変化位置が変動する場合においても、原点検出のばらつきを防止することができる。

[0028]

以下、本発明の一実施の形態について、図面を参照しながら説明する。

[0029]

(実施の形態1)

図1は、本発明の実施の形態1に係るレンズ駆動装置の概略図及びプロック図である。図1において、1はレンズ鏡筒、2はレンズ鏡筒1に固定された固定レンズ、3はズームレンズである、ズームレンズ3は、ズームリング6をレンズ鏡筒1の外周に沿って回転させることにより、光軸方向に移動し、ズーム倍率を調整するレンズである。4は、フォーカスレンズである。フォーカスレンズ4は、駆動手段であるモータ9の回転によって、ねじが切られたリードスクリューに沿って光軸方向に移動し、フォーカスを調整するレンズである。

[0030]

[0031]

10はズームリング6の回転位置を検出するズームリング位置検出部である。位置検出にはズームリング6の回転に応じて発生するパルスやズームレンズ3の光軸方向への移動距離に応じて抵抗値が変化するリニアポジションセンサなどを使用する。12は撮像素子5から出力される電気信号に基づいて画像データやフォーカス調整を行うためのコントラスト情報を生成する信号処理部である。

[0032]

13はレンズ位置演算手段であるシステムコントロール部であり、フォーカスモータ制御部15にフォーカスレンズ4の駆動指令を出力して信号処理部12で処理された画像をもとにフォーカス調整をユーザーが行ったり、信号処理部12のコントラスト情報に基づいてコントラストが最大になるようにフォーカスレンズ4の駆動指令を出力してフォーカス自動調整(オートフォーカス機能)を行ったりする。

[0033]

図2は、図1に示したフォーカスモータ制御部15の詳細ブロック図である。図2において、フォーカスモータ制御部15は、励磁位置カウンタ151とトラッキング位置演算部152と絶対位置カウンタ153とで構成されている。励磁位置カウンタ151は、トラッキング位置制御部152から出力されるフォーカス移動方向及び移動ステップ情報に基づいて、モータ9の駆動信号の位相を制御するための励磁位置カウンタのカウントアップ又はカウントダウンを行う。

[0034]

トラッキング位置制御部152は、ズームリング位置検出部10から出力されるズーム位置情報と絶対位置カウンタ153から出力されるフォーカス位置情報とに基づいて、システムコントロール部13からの指令情報によってフォーカスレンズ4の位置制御を行うためのフォーカス移動方向及び移動ステップ情報を出力する。

[0035]

前記の構成では、フォーカスレンズ4の位置は、モータ9の回転で制御される。また、モータ9の回転は、フォーカスモータ制御部15からの信号を受けたフォーカスモータ駆動部11からの駆動信号で制御される。すなわち、モータ9、フォーカスモータ駆動部11及びフォーカスモータ制御部15でレンズ位置制御手段を形成している。

[0036]

システムコントロール部13は、フォーカスレンズ4が撮像素子5の方向へ駆動され、 遮蔽部材7によってフォトセンサ8が遮蔽されることでフォトセンサの信号レベルが変化 し所定の条件で閾値を超えたとき(又は回路の構成によっては閾値を下回ったとき)に、 絶対位置カウンタ153をリセットする処理を行う。

[0037]

また、システムコントロール部13には、フォトセンサ8から出力される信号をアナログーディジタル変換するAD変換器を備えており、システムコントロール部13ではフォトセンサ8の信号レベルをディジタル値として処理を行う。例えば3Vの入力Dレンジの8ビットAD変換器を使用する。この場合、フォトセンサの出力レベルが0Vから3Vまで変化する場合には、この出力レベルをディジタル値として0から255までの値で表すことができる。

[0038]

絶対位置カウンタ153は、励磁位置カウンタ151のカウンタ値と同期して動作する 出証特2005-3004052

[0039]

以上のように構成されたレンズ駆動装置について、図3を参照しながらその動作を以下に説明する。図3は、実施の形態1に係る工程調整時の原点検出動作説明図である。図3に表示した「励磁位置」は、駆動信号の位相に対応しており、モータ9にフォーカスモータ駆動部11から出力されるモータコイルの駆動信号の1周期360度を8分割して励磁位置カウンタ151の3ビットのカウンタ値として表現している。ここでは、フォーカスレンズ4が撮像素子5側へ移動するにつれて、励磁位置が1ずつ減算していく様子を示している。

[0040]

「A相電流」及び「B相電流」は、モータ9にフォーカスモータ駆動部11から出力されるモータコイルの電流波形で、モータ9がA相とB相の2相コイルを有している例を示している。A相電流及びB相電流は互いに電気角(電流波形の1周期を360度とした場合)で90度位相が異なるようにしており、A相とB相のモータコイルに電流を印加することでモータ9を回転させる。ここでは、A相電流がB相電流に対して90度位相が進んでいる条件で、フォーカスレンズ4が撮像素子5側へ移動するようにしている。

[0041]

「絶対位置カウンタ」は、絶対位置カウンタ153のカウンタ値を表しており、励磁位置に同期して動作する。励磁位置が1ずつ減算していく場合には、絶対位置カウンタも同様に1ずつ減算していく。ただし、絶対位置カウンタは、フォーカスレンズ4の移動範囲において同じ値が存在しないようにビット幅を設定する。

[0042]

「フォトセンサ出力レベル」は、フォーカスレンズ4が撮像素子5の方向へ移動し、遮蔽部材7によってフォトセンサ8が遮蔽されることで出力レベルが変化していく様子を示している。モータ9の励磁位置が1ステップ変化する毎に、フォトセンサ出力レベルが例えば0.2 V変化するとする。この場合、システムコントロール部13では内蔵のAD変換器によりディジタル値が17変化したとして認識される。

[0043]

後に説明するように、システムコントロール部13は、フォトセンサ出力レベルが閾値を超えているかの判定を行うことになる。例えば、第1の閾値をAD変換後のディジタル値で195 (AD変換入力部では約2.3V)、第2の閾値をディジタル値で127 (AD変換入力部では約1.5V)とすることができる。第2の閾値は、第1の閾値に対してモータ9の励磁位置が4ステップ変化したときの値、すなわちモータ9が励磁周期(電気角360度)の半分の周期(電気角180度)分だけ回転したときのフォトセンサ出力レベルの値としている。

[0044]

次に、図3、4を参照しながら工程調整におけるフォーカスレンズ4の原点検出動作について、具体的に説明する。図4は、本発明の実施の形態1に係る原点検出動作フローチャートであり、システムコントロール部13にプログラミングされている動作フローを示す。電源投入時に「原点検出調整スタート」から処理を行う。

[0045]

ステップ101において、原点検出方向(撮像素子5方向)へフォーカスモータである モータ9を1ステップずつ移動させる。この場合、励磁位置カウンタ151は、1ずつ減 算されることになる。より具体的には、システムコントロール部13からの指令により、 トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。 フォーカスモータ駆動部11では、このダウンカウントに従って、撮像素子5の方向へモ ータ9を回転させることによってフォーカスレンズ4を移動させる。

[0046]

ステップ102において、フォトセンサ出力レベルが第1の閾値を超えているかどうかを判定する。超えていない場合には、ステップ101に戻って、モータ9に次の1ステップ動作をさせる。超えている場合にはステップ103に進み、超えた時点の励磁位置をPに代入する。図3では、励磁位置「0」において、第1の閾値を超えているので、励磁位置「0」をPに代入する。

[0047]

ステップ104では、Pを不揮発性メモリ14にPoとして記憶させる。ステップ105では、絶対位置カウンタをリセットする。図3において「0」で示した位置がリセットされた位置となる。

[0048]

次に、図5、6を参照しながら、通常使用時におけるフォーカスレンズ4の原点検出動作について以下に説明する。図5は実施の形態1に係る通常使用時の原点検出動作説明図である。図6は、実施の形態1に係る通常使用時の原点検出動作フローチャートであり、システムコントロール部13にプログラミングされている動作フローを示す。なお、図5に表示した励磁位置、A相電流、B相電流、絶対位置カウンタ及びフォトセンサ出力レベルについては、図3における説明と同様であるので、重複部分の説明は省略する。

[0049]

図6において、電源投入時に「原点検出スタート」から処理を行う。ステップ201において、不揮発性メモリ14からPoを読み出す。ステップ202において、PdにPoを代入する。前記の工程調整時におけるフォーカスレンズ4の原点検出動作において不揮発性メモリ14に記憶された値は「0」である。したがって、この例ではPd=0となる

[0050]

ステップ204において、原点検出方向(撮像素子5方向)へモータ9を1ステップずつ移動させる(励磁位置カウンタを1ずつ減算させる)。より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11ではこのダウンカウントに従って、撮像素子5の方向へモータ9を回転させることによってフォーカスレンズ4を移動させる。

[0051]

ステップ205において、現在の励磁位置がPd(ここの例ではPd=0)と同じかどうかを判定する。同じでなければ、ステップ204に戻って、モータ9に次の1ステップ動作をさせる。同じであれば、次のステップ206に進む。図5の例では、判定(n-2)、判定(n-1)、判定(n)で指示した位置が、励磁位置がPd(Pd=0)と同じになっている。ステップ206では、これらの各位置においてフォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。

[0052]

まず、判定(n-2)の位置で、フォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。図5の例では第2の閾値を超えていないので、ステップ204に戻って、モータ9に次の1ステップ動作をさせる。1ステップ動作を繰り返し、判定(n-1)の位置になると、再びフォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。図5の例では第2の閾値を超えていないので、ステップ204に戻って、フォーカスモータに次の1ステップ動作をさせる。1ステップ動作を繰り返し、判定(n)の箇所になると、再びフォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。図5の例では第2の閾値を超えている。この場合、ステップ207に進み、絶対位置カウンタ153を0にプリセットを行う(図5に示すように絶対位置カウンタの○で囲った数値)。

[0053]

ここで、図5におけるP2で表されるフォトセンサ出力レベルは工程調整時と同じ使用環境温度・湿度による機構・電気特性の条件でのレベル変化を表している。しかしながら、電源投入を繰り返し行うことのある通常使用時においては、P1やP3で表したように、モータ9の各励磁位置において、フォトセンサ出力レベルがP2から変化した位置にばらつきを生じる。これは、そのときのレンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性ばらつきなどの誤差によるものである。

[0054]

本実施の形態では、前記のように、通常使用時の原点検出動作は図5に示す判定(n-2)、判定(n-1)、判定(n)においてフォトセンサ出力レベルが第2の閾値を超えたかどうかの判定を行うようにしている。この場合の閾値は、工程調整時における第1の閾値ではなく、第2の閾値である。

[0055]

仮に、閾値を第1の閾値としたとすると、フォトセンサ出力レベルが工程調整時と同じレベル変化(図5のP2)であれば、原点位置を正確に再現することができる。しかしながら、前記のように、レベル変化にばらつきが生じると(図5のP1、P3)、検出した原点位置にもばらつきが生じることになる。

[0056]

本実施の形態では、前記のように第2の閾値は、工程調整時の第1の閾値に対してモータ9の励磁位置が励磁半周期(電気角180度)だけ手前の位置におけるフォトセンサ出力レベルの値である。このため、図5に示したように、フォトセンサ出力レベルがP1やP3にばらついたとしても、判定位置nでは第2の閾値を超えていると判定されることには変わりない。同様に、判定位置n-1、n-2では、第2の閾値を超えていないと判定されることには変わりない。

[0057]

このことにより、P 1 からP 3 の範囲でばらつきを生じた場合でも、プリセットした絶対位置カウンタが「0」のときにはモータ 9 の励磁位置が必ず「0」となり、工程調整時における原点位置を正確に再現することが可能となる。すなわち、ある判定位置におけるフォトセンサ出力レベルが第 2 の閾値を越えておらず、次の判定位置のフォトセンサ出力レベルが第 2 の閾値を越えていることを検出できれば、原点位置を正確に検出することができる。

[0058]

ただし、レンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性ばらつきなどの誤差の幅は励磁位置1周期の範囲に抑える必要がある。

[0059]

図7は、ズーム位置とフォーカス位置との関係を示すグラフである。L1は固定レンズ前面から被写体までの距離を例えば2mとしたときに、合焦状態を維持した状態でズーミング動作を行うことができるズーム位置とフォーカス位置との関係を示している。L2は固定レンズ前面から被写体までの距離を例えば1mとしたときに、合焦状態を維持した状態でズーミング動作を行うことができるズーム位置とフォーカス位置との関係を示している。

[0060]

横軸のズーム位置のTは望遠側を示し、Wは広角側を示す。フォーカスの原点検出ずれがない理想の状態で、固定レンズ前面から被写体までの距離を1mとすると、T側でフォーカス位置が定まった場合に(図のA点)、W側にズーム位置を移動したときにはL2のグラフに沿って合焦状態を維持しながらズーミング動作を行うことができる。

[0061]

しかしながら、固定レンズ前面から被写体までの距離を2mとしてT側でフォーカス位置が定まった場合に、原点検出位置ずれ ΔX の影響で理想の状態における固定レンズ前面から被写体までの距離1mのT側の点(図のA点)に仮に一致したとき、W側にズーム位置を移動したときにはL1に対して ΔX だけフォーカス位置がずれたL10のグラフに従

ってズーミング動作を行ってしまう。このため、W側ではフォーカス位置ずれを生じてし まう。本発明においては、このようなことはなくフォーカスレンズユニットの駆動方向の ガタ、使用環境温度・湿度変化による機構・電気特性ばらつきなどの誤差の影響を受けな い原点検出動作を実現することができるので、フォーカスレンズユニットの絶対位置の精 度は格段に向上させることができ、特に合焦状態を維持しながらズーミング動作をおこな うシステムにおいて本発明は有効である。

[0062]

なお、本実施の形態では第1の閾値と第2の閾値との差は、モータ励磁周期の半周期に 相当する差として説明したが、この差はこれに限らず、フォトセンサ出力レベルのばらつ きの影響を受けない範囲内で設定すればよい。

[0063]

例えば、第2の閾値は、原点位置に対応する励磁位置と、この励磁位置からモータ励磁 周期の1周期分だけ離れた励磁位置との間におけるフォトセンサ出力レベルの範囲内の値 で設定することができる。

[0064]

また、第2の閾値は工程調整前にあらかじめ設定した値としてもよいが、工程調整の際 に設定するようにしてもよい。例えば、工程調整時の原点検出動作においてシステムコン トロール部13でモータ9の1ステップ動作毎のフォトセンサ出力レベルを記憶させてお き、第1の閾値にフォトセンサ出力レベルが到達したときに4ステップ前のフォトセンサ 出力レベルを第2の閾値とするように不揮発性メモリ14に記憶させておいてもよい。こ れにより、フォトセンサの特性ばらつきを補正し、正確な閾値を求めることができる。

[0065]

(実施の形態2)

本発明の実施の形態2について以下に説明する。実施の形態1において説明した図1、 図2に示した構成、図3、図4を用いて説明した工程調整時の原点検出動作は、実施の形 態2においても同様である。

[0066]

図8、9を参照しながら、実施の形態2における通常使用時のフォーカスレンズ4の原 点検出動作について説明する。図8は、実施の形態2に係る通常使用時の原点検出動作説 明図である。なお、図8に表示した励磁位置、A相電流、B相電流、絶対位置カウンタ及 びフォトセンサ出力レベルについては、図3における説明と同様であるので、重複部分の 説明は省略する。

[0067]

実施の形態2では、実施の形態1とは異なり、フォーカスレンズ4が撮像素子5側へ移 動するにつれて、励磁位置が2ずつ減算していく。このため、励磁位置に同期して動作す る絶対位置カウンタ153のカウンタ値も2ずつ減算していく。ただし、絶対位置カウン タは、フォーカスレンズ4の移動範囲において同じ値が存在しないようにビット幅を設定 する。

[0068]

実施の形態1においては、駆動信号1周期の時間が、図3、5に示したように、工程調 整時、通常使用時のいずれにおいても時間Tであるが、実施の形態2では、通常使用時に おける駆動信号1周期の時間は、図8に示したようにT/2である。このことにより、実 施の形態2では、通常使用時の原点検出動作を実施の形態1に比べて2倍の速度で行うこ とができる。

[0069]

図9は、実施の形態2に係る通常使用時の原点検出動作フローチャートであり、システ ムコントロール部13にプログラミングされている動作フローを示す。電源投入時に「原 点検出スタート|から処理を行う。ステップ301において、不揮発性メモリ14からP oを読み出す。ステップ302において、PdにPoを代入する。実施の形態2において も、不揮発性メモリ14に記憶された値は、実施の形態1と同じ「0」の例で説明する。

[0070]

ステップ 3 0 4 において、原点検出方向(撮像素子 5 方向)へモータ 9 8 2 ステップ ずつ移動させる(励磁位置カウンタ 8 2 ずつ減算させる)。ただし、先に求めた 9 1 では 1 1 2 では 1 3 4 では 1 4 5 5 では 1 5 6 では 1 1 5 を含むように励磁位置を設定する。

[0071]

より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11では、このダウンカウントに従ってフォーカスレンズ4を撮像素子5の方向へモータ9を回転させることによって移動させる。

[0072]

ステップ305において、現在の励磁位置がPd(ここの例ではPd=0)と同じかどうかを判定する。同じでなければ、ステップ304に戻って、モータ9に次の2ステップ動作をさせる。同じであれば、次のステップ306の判定に進む。

[0073]

判定位置は、図8に示す判定(n-3)、判定(n-2)、判定(n-1)、判定(n)で表される位置であり、ステップ306においてフォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。超えていない場合にはステップ304に戻って、モータ9に次の2ステップ動作をさせる。超えている場合にはステップ307に進み、超えた時点で絶対位置カウンタ153を0にプリセットを行う(図8に示すように絶対位置カウンタの〇で囲った数値)。

[0074]

これらのステップ304から307までの間の動作は、前記実施の形態1において、図6を用いて説明したステップ204から207までの間の動作と同様である。また、フォトセンサ出力レベルが、P1からP3の範囲でばらつきを生じた場合でも、工程調整時における原点位置を確実に再現できることについても、実施の形態1と同様である。このことに加えて、実施の形態2においては、通常使用時の原点検出動作を実施の形態1に比べて2倍の速度で行うことができる。

[0075]

なお。レンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性 ばらつきなどの誤差の幅は励磁位置 1 周期の範囲に抑える必要があることは、実施の形態 1 と同様である。

[0076]

(実施の形態3)

本発明の実施の形態3について以下に説明する。実施の形態1において説明した図1、図2に示した構成、図3、図4を用いて説明した工程調整時の原点検出動作は、実施の形態3においても同様である。

[0077]

図10、11を参照しながら、実施の形態3における通常使用時のフォーカスレンズ4の原点検出動作について以下に説明する。図10は、実施の形態3に係る通常使用時の原点検出動作説明図である。なお、図10に表示した励磁位置、A相電流、B相電流、絶対位置カウンタ及びフォトセンサ出力レベルについては、図3における説明と同様であるので、重複部分の説明は省略する。

[0078]

図11は、実施の形態3に係る電源OFF処理のフローチャートであり、システムコントロール部13にプログラミングされている動作フローを示している。本図は、スチルカメラやビデオムービーなどの撮像装置本体の電源が、本体スイッチ(図示せず)によりOFFにされたときに、電源OFFへの移行処理を行う例を示している。

[0079]

システムコントロール部13は、電源OFFされた場合に「電源OFF処理スタート」

から処理を行う。ステップ401において、原点検出方向(撮像素子5方向)へモータ9を2ステップずつ移動させる(励磁位置カウンタを2ずつ減算させる)。ただし、実施の形態2において説明したPd(ここではPd=0)を含むように励磁位置を設定する。より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11ではこのダウンカウントに従ってフォーカスレンズ4を撮像素子5の方向へモータ9を回転させることによって移動させる。

[0080]

ステップ402において、絶対位置カウンタ153のカウンタ値が励磁位置1周期と一致しないときはステップ401に戻って、フォーカスモータに次の2ステップ動作をさせる。一致したときはステップ403に処理を進め、本体の電源をOFFにする。ここでは、(励磁位置1周期) = 8であるので、(絶対位置カウンタ値)= 8のときに、本体の電源がOFFされる(図10参照)。

[0081]

次に、本体スイッチにより電源がONされたときの動作については、実施の形態2において図9を用いて説明したように、電源投入時に「原点検出スタート」からフローチャートに従って処理が行われる。途中の説明は重複するので省略するが、図9のステップ306において、フォトセンサ出力レベルが第2の閾値を超えているかどうかが判定され、絶対位置カウンタ153のカウンタ値が「0」にプリセットされる(図10に示すように絶対位置カウンタの〇で囲った数値)。

[0082]

図10に示すように、電源OFF移行処理において原点位置の直前(フォトセンサ出力レベルが閾値を超える直前)でフォーカスモータを停止させている。このため、実施の形態3では電源投入時の原点検出におけるフォトセンサ出力レベルの判定が最初の1回で済む。より具体的には、絶対位置カウンタのカウンタ値が「0」となる位置は原点位置であるので、カウンタ値が励磁位置1周期と一致している停止位置は、最終判定位置(原点位置)より一つ先行した側の判定位置である。すなわち、本実施の形態では、電源OFF移行処理でモータ9を停止させる位置は、次に電源をONしたときにフォトセンサ出力レベルの最終判定を行う位置の1つ前の判定位置であることに特徴がある。

[0083]

このように電源OFF移行処理を行うことで、レンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性ばらつきなどの誤差が次に電源をONするまでの間に生じている場合においても、最初の1回分のフォトセンサ出力レベルの判定だけで、確実な原点検出ができることになる。

[0084]

なお、レンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性 ばらつきなどの誤差の幅は励磁位置 1 周期の範囲に抑える必要があることは、実施の形態 1、2 と同様である。

[0085]

(実施の形態4)

本発明の実施の形態4について以下に説明する。実施の形態1において説明した図1、図2に示した構成は、実施の形態3においても同様である。図12、13を参照しながら実施の形態4における工程調整時のフォーカスレンズ4の原点検出動作について以下に説明する。

[0086]

図12は、実施の形態4に係る工程調整時の原点検出動作説明図である。図12に表示した励磁位置、A相電流、B相電流、絶対位置カウンタ及びフォトセンサ出力レベルについては、実施の形態1の図3における説明と同様であるので、重複部分の説明は省略する。また、フォーカスレンズ4が撮像素子5側へ移動するにつれて、励磁位置が1ずつ減算していくことについても、実施の形態1と同様である。

[0087]

図13は、実施の形態4に係る工程調整時の原点検出動作フローチャートであり、システムコントロール部13にプログラミングされている動作フローを示す。電源投入時に「原点調整スタート」から処理を行う。ステップ501において、例えば工程調整メニューの液晶画面表示(図示せず)で「本体上向き」を表示させる。撮像装置のレンズ2を上向きにして次のステップ502に進む。

[0088]

ステップ502においては、原点検出方向(撮像素子5方向)へモータ9を1ステップずつ移動させる(励磁位置カウンタを1ずつ減算させる)。より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11ではこのダウンカウントに従って、フォーカスレンズ4を撮像素子5の方向へモータ9を回転させることによって移動させる。

[0089]

ステップ503において、フォトセンサ出力レベルが第1の閾値を超えているかどうかを判定する。超えていない場合にはステップ502に戻って、モータ9に次の1ステップ動作をさせる。超えている場合にはステップ504に進み、超えた時点の励磁位置をPuに代入する。ここでは、励磁位置「2」をPuに代入する。

[0090]

次にステップ505において、例えば工程調整メニューの液晶画面表示(図示せず)で「本体下向き」を表示させる。撮像装置のレンズ2を下向きにして次のステップ506に 進む。ステップ506においては、原点検出方向(撮像素子5方向)へモータ9を1ステップずつ移動させる(励磁位置カウンタを1ずつ減算させる)。

[0091]

図12において「上向き状態」から「下向き状態」へ姿勢を変えたときにフォトセンサ 出力レベルに段差を生じるのは、フォーカスレンズ4が自重とガタ(例えばモータ9のリードスクリューとフォーカスレンズ4を移動させるためのラックとのガタ)によって撮像素子5から遠ざかる方向に移動するためである。

[0092]

ステップ507において、フォトセンサ出力レベルが第1の閾値を超えているかどうかを判定する。超えていない場合にはステップ506に戻って、モータ9に次の1ステップ動作をさせる。超えている場合にはステップ508に進み、超えた時点の励磁位置をPdに代入する。

[0093]

ここでは、励磁位置「6」をPdに代入する。ステップ509では、PdとPuの大小を判定する。ここではPu=2、Pd=6であるので、次のステップ509aに進む。ステップ509aにおいて、Pd=Pd-(励磁位置1周期)が演算され、(励磁位置1周期)=8によりPd=-2が求められる。このPdの値を用いて、ステップ510の計算式によりPを求めると、P=INT((2-2)/2)=0となる。なお、INTは、小数点以下を切り捨てるという意味である。この場合、ステップ511において、P<0ではないので、次のステップ512に進み、P=0が不揮発性メモリにPoとして記憶される。

[0094]

ステップ513では、絶対位置カウンタ153のカウンタ値が-INT((Pu-Pd)/2)にプリセットされる。-INT((Pu-Pd)/2)の値は、-INT((2+2)/2)=-2である。この演算により、下向き時の原点位置と、上向き時と下向き時との中間の原点位置との間で、励磁位置がどれだけ離れているかを算出できる。図12に示すように、下向き時の原点位置の絶対位置カウンタの数値を算出値の-2(〇で囲った数値)にすれば、上向き時と下向き時との中間の原点位置(励磁位置「0」)の絶対位置カウンタ153のカウンタ値は「0」になる。

[0095]

なお、ステップ511においてP<0の場合は、該当する励磁位置の数値はないが、ステップ511aの演算により、ステップ510のPに相当する励磁位置を求めることができる。

[0096]

また、前記の例では、ステップ 509 において Pd>Pu の例で説明したが、 $Pd\leq Pu$ であればステップ 510 に直接進めばよい。 $Pd\leq Pu$ の場合は、ステップ 509a により Pd の値を補正しなくても、ステップ 510 の演算により、 Pu と Pd の中間位置を求めることができる。

[0097]

このように、実施の形態4では不揮発性メモリ14に記憶される原点位置は上向き状態と下向き状態で各々検出された原点位置の中間位置となり、実施の形態1で説明したように姿勢差を考慮しない原点調整では、調整時に例えば上向きの姿勢差を生じ、かつ通常使用時に下向きの姿勢差を生じていた場合に比べて、実施の形態4においては姿勢差によるレンズ位置誤差を1/2に改善することが可能になる。

[0098]

また、実施の形態4においては、まず上向き状態で原点検出を行い、次に下向き状態で 原点検出を行う例を説明したが、ガタを考慮した場合に上向き状態の方が下向き状態に比 べて原点位置から遠ざかるのであれば、まず下向き状態で原点検出を行い、次に上向き状態で原点検出を行うようにすればよい。

[0099]

また、姿勢差による原点検出位置のばらつきがスペックで規定された撮像装置においては、上向き状態か下向き状態のどちらか一方で原点検出を行い、検出した位置からスペックの半分ずらした位置を原点とすることで同様の効果が得られる。

[0100]

また、本実施の形態は、レンズ鏡筒の姿勢差により、原点検出位置にばらつきのあることを前提とした例であるが、レンズ鏡筒の姿勢差による原点検出位置のばらつきがない程度にレンズ鏡筒の精度が確保されていれば、前記実施の形態1-3の構成でもよい。

[0101]

(実施の形態5)

本発明の実施の形態5について以下に説明する。図14は、実施の形態5に係るレンズ 駆動装置の概略図及びブロック図である。図14において、図1と同一構成のものは、同 一番号を付して、その詳細な説明は省略する。図14に示したレンズ駆動装置は、図1の レンズ駆動装置にさらに温度センサ16、及び角度センサ17を備えたものである。

[0102]

温度センサ16は、レンズ鏡筒1内又は撮像装置本体(図示せず)内に設置され、温度を検出するセンサであり、サーミスタなどが使用される。角度センサ17は、レンズ鏡筒1内又は撮像装置本体(図示せず)内に設置され、レンズ鏡筒又は撮像装置本体の傾きを検出するセンサである。

[0103]

図15は、角度センサ17の角度検出の一例を示している。図15の例は、レンズ鏡筒 1又は撮像装置本体が水平の場合に角度センサ17からの出力電圧を0とし、姿勢角度に 応じて出力電圧が変化するというものである。

[0104]

なお、角度センサ17は、レンズ鏡筒1又は撮像装置本体の傾きが上向き、下向き、水平の3ポジションを検出する傾斜センサであってもよい。また、本実施の形態におけるフォーカスモータ制御部15は、前記実施の形態1の図2に示した構成と同様である。

[0105]

図16、17を参照しながら、実施の形態5における通常使用時のフォーカスレンズ4 の原点検出動作について以下に説明する。図16は、実施の形態5に係る通常使用時の原

[0106]

図16に表示した励磁位置、A相電流、B相電流、絶対位置カウンタ及びフォトセンサ出力レベルについては、実施の形態1の図3における説明と同様であるので、重複部分の説明は省略する。また、フォーカスレンズ4が撮像素子5側へ移動するにつれて、励磁位置が2ずつ減算していくことは、実施の形態2の図8の例と同様である。

[0 1 0 7]

図17は、実施の形態5に係る通常使用時の原点検出動作フローチャートであり、システムコントロール部13にプログラミングされている動作フローを示す。電源投入時に「原点検出スタート」から処理が行われる。ステップ601において、不揮発性メモリ14からPoを読み出す。ステップ602aにおいて、Pd=Poとする。工程調整時におけるフォーカスレンズ4の原点検出動作において、不揮発性メモリ14に記憶されたPoの値は、実施の形態1と同様に「0」とする。したがって、Pd=0となる。

[0108]

ステップ602bにおいて、温度センサ16及び角度センサ17からの出力情報に基づいて、Pdに補正値ΔPdを加算する。レンズ鏡筒1のレンズ2を上向きにした場合では、フォーカスレンズ4が自重とガタ(例えばモータ9のリードスクリューとフォーカスレンズ4を移動させるためのラックとのガタ)によって、水平置きに比べて撮像素子5に近づく方向に移動する。さらに、常温に比べて高温の場合でかつ遮蔽部材7がレンズ鏡筒1及びモータ9に対して熱膨張係数が大きい場合には、遮蔽部材7がフォトセンサ8に近づく方向になる。

[0109]

このため、図16(a)のフォトセンサ出力レベルのP4に示すように、常温時でかつ水平置きした場合のフォトセンサ出力レベルP2に比べて、原点検出時にフォトセンサ出力レベルが変化するタイミングが早くなる。ここでは、常温からの温度上昇によって生じる誤差をモータ9の励磁位置で1ステップ、また撮像装置の水平置きから上向きにした場合に生じる誤差をモータ9の励磁位置で1ステップとして計2ステップ分の誤差を生じた例を示している。

[0110]

したがって、 $\triangle Pd=2$ となるので、ステップ602bではPd2=2が演算される。ステップ603において、Pd2が負かどうかを判定し、Pd2が0又は正の場合は、そのまま次のステップ604に進む。Pd2が負の場合は、ステップ603aにおいて、Pd20場合は、ステップ603aにおいて、Pd20場合は、ステップ603aを経る理由は、実施の形態4で、図13のステップ511aを経る理由と同様である。

[0111]

ステップ604において、原点検出方向(撮像素子5方向)へモータ9を2ステップずつ移動させる(励磁位置カウンタを2ずつ減算させる)。ただし、先に求めたPd2(ここではPd2=2)を含むように励磁位置を設定する。より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11ではこのダウンカウントに従って、フォーカスレンズ4を撮像素子5の方向へモータ9を回転させることによって移動させる。

[0112]

ステップ605において、現在の励磁位置がPd2(ここの例ではPd2=2)と同じかどうかを判定する。同じでなければ、ステップ602bに戻って、モータ9に次の2ステップ動作をさせる。同じであれば、次のステップ606に進む。

[0113]

Pd2=2となる位置は、図16(a)に示す判定 (n-2)、判定 (n-1)、判定 (n) で表される位置である。これらの各判定位置は、励磁位置が2となる位置であるので、補正値加算前の励磁位置0の位置より2ステップ分先行した位置(撮像素子5から遠ざかった位置)である。このため、これらの各判定位置における判定は、励磁位置が0の位置において、常温時でかつ水平置きした場合のフォトセンサ出力レベルP2を検出しているのと実質的に同じになる。

[0114]

ステップ606では、前記判定位置において、フォトセンサ出力レベルが第2の閾値を超えているかどうかを判定する。超えていない場合には、ステップ602bに戻って、フォーカスモータに次の2ステップ動作をさせる。超えている場合にはステップ607に進み、超えた時点で絶対位置カウンタ153をΔPdにプリセットを行う。ここでは、ΔPd=2により「2」にプリセットされる(図16(a)に示すように絶対位置カウンタの○で囲った数値)。

[0115]

なお、実施の形態2の図9における説明では、ステップ305又はステップ306において、条件を満たさない場合に、ステップ304に戻る例を示したが、実施の形態5においてはステップ602bに戻る例を示している。実施の形態5では、原点検出動作中に温度変化や姿勢差が変化した場合に、フォトセンサ出力レベルが閾値を超えているかどうかの判定位置を逐次変えるためである。

[0116]

次に、図16(b)、図17を参照しながら、レンズ鏡筒1のレンズ2を下向きにし、かつ常温に比べて低温の場合について説明する。レンズ鏡筒1のレンズ2を下向きにした場合では、フォーカスレンズ4が自重とガタ(例えばモータ9のリードスクリューとフォーカスレンズ4を移動させるためのラックとのガタ)によって、水平置きに比べて撮像素子5から遠ざかる方向に移動する。さらに、常温に比べて低温の場合でかつ遮蔽部材7がレンズ鏡筒1及びモータ9に対して熱膨張係数が大きい場合には、遮蔽部材7がフォトセンサ8から遠ざかる方向になる。

[0117]

このため、図16(b)のフォトセンサ出力レベルのP5に示すように、常温時でかつ水平置きした場合のフォトセンサ出力レベルP2に比べて、原点検出時にフォトセンサ出力レベルが変化するタイミングが遅くなる。ここでは、常温からの温度低下によって生じる誤差をモータ9の励磁位置で1ステップ、また撮像装置の水平置きから下向きにした場合に生じる誤差をモータ9の励磁位置で1ステップとして計2ステップ分誤差を生じた例を示している。

[0118]

したがって、 $\Delta P d = -2$ となるので、ステップ 602b では Pd2 = -2 が演算される。ステップ 603 において、Pd2 が負かどうかを判定し、負の場合には、ステップ 603 a において、Pd2 = Pd2 + (励磁位置 1 周期) を演算して次に進み、正又は 0 の場合にはそのまま次に進む。ここでは Pd2 は、-2+8=6 となる。

[0119]

ステップ604において、原点検出方向(撮像素子5方向)へモータ9を2ステップずつ移動させる(励磁位置カウンタを2ずつ減算させる)。ただし、先に求めたPd2(ここではPd2=6)を含むように励磁位置を設定する。より具体的には、システムコントロール部13からの指令により、トラッキング位置制御部152を通じて励磁位置カウンタ151をダウンカウントする。フォーカスモータ駆動部11ではこのダウンカウントに従って、フォーカスレンズ4を撮像素子5の方向へモータ9を回転させることによって移動させる。

[0120]

ステップ605において、現在の励磁位置がPd2(ここではPd2=6)と同じかど うかを判定する。同じでなければ、ステップ602bに戻って、フォーカスモータに次の 2ステップ動作をさせる。同じであれば、次のステップ606に進む。P d 2 = 6 となる位置は、図 1 6 (b) に示す判定 (n-3)、判定 (n-2)、判定 (n-1) で表される位置である。これらの各判定位置は、励磁位置が 6 となる位置であるので、補正値加算前の励磁位置 0 の位置より 2 ステップ分遅れた位置(撮像素子 5 に近づいた位置)である。このため、これらの各判定位置における判定は、励磁位置が 0 の位置において、常温時でかつ水平置きした場合のフォトセンサ出力レベル P 2 を検出しているのと実質的に同じになる。

[0121]

ステップ606では、前記判定位置において、フォトセンサ出力レベルが閾値を超えているかどうかを判定する。超えていない場合には、ステップ602bに戻って、フォーカスモータに次の2ステップ動作をさせる。超えている場合にはステップ607に進み、超えた時点で絶対位置カウンタ153をΔPdにプリセットを行う。

[0122]

ここでは、△Pd=-2により「-2」にプリセットされる(図16(b)に示すように絶対位置カウンタの○で囲った数値)。なお、実施の形態2の図9における説明では、ステップ305又はステップ306において条件を満たさない場合に、ステップ304に戻る例を示したが、実施の形態5においてはステップ602bに戻る例を示している。これは、原点検出動作中に温度変化や姿勢差が変化した場合に、フォトセンサ出力レベルが閾値を超えているかどうかの判定位置を逐次変えるためである。

[0123]

図16における「P2」で表されるフォトセンサ出力レベルは工程調整時と同じ使用環境温度・湿度による機構・電気特性の条件でのレベル変化を表しているが、電源投入を繰り返し行うことがある通常使用時においては「P4」や「P5」で表すようにそのときのレンズユニット駆動方向のガタ、使用環境温度変化による機構・電気特性ばらつきなどの誤差でモータ9の励磁位置に対してレベル変化する位置にばらつきを生じる。

[0124]

しかしながら、実施の形態 5 では、通常使用時の原点検出動作は図 16 に示す各判定位置においてフォトセンサ出力レベルが閾値を超えたかどうかの判定を行うようにしているので、「P4」から「P5」の範囲でばらつきを生じた場合でも絶対値カウンタ 153 のカウンタ値は「0」のときには必ずモータ 9 の励磁位置が「0」となり、実施の形態 1 で説明した工程調整時における原点位置を再現することが可能となる。

[0125]

なお、ここでは温度センサと角度センサを用いる例を示したが、湿度センサを用いてレンズ鏡筒やレンズなどの吸湿係数の違いで生じる誤差を改善することで、さらに精度を向上させることができる。さらに、実施の形態1で説明した通常動作時の原点検出動作を実施例5においては2倍の速度で行うことができる。

[0126]

また、レンズユニット駆動方向のガタ、使用環境温度・湿度変化による機構・電気特性 ばらつきなどの誤差が温度センサ及び角度センサなどを用いて検出できる場合には励磁位 置1周期の範囲をこの誤差が超えた場合にでも補正が可能である。

[0127]

図18は、実施の形態5に係るズーム位置とフォーカス位置との関係を示すグラフである。L1は固定レンズ前面から被写体までの距離を例えば2mとしたときに合焦状態を維持した状態でズーミング動作を行うことができるズーム位置とフォーカス位置との関係を示すグラフである。

[0 1 2 8]

横軸のズーム位置の「T」は望遠側を示し、「W」は広角側を示す。フォーカスの原点 検出ずれがない理想の状態で固定レンズ前面から被写体までの距離を2mとすると、「T 」側でフォーカス位置が定まった場合に、「W」側にズーム位置を移動したときにはL1 のグラフに沿って合焦状態を維持しながらズーミング動作を行うことができる。

[0129]

図14における温度センサ16及び角度センサ17を用いてレンズユニット駆動方向のガタ、使用環境温度変化による機構・電気特性ばらつきなどの誤差が検出できるので、原点位置検出後については、図18に示す原点補正量ΔXを考慮してフォーカス位置を補正する。

[0130]

ここでは、「T」側でのフォーカス位置が常温及び水平置き状態では原点からX0の位置にあるのに対して、高温及び下向き状態で補正する例を示している。高温ではレンズ鏡筒1の熱膨張により各レンズ間隔が設計値より広がり、その分フォーカスレンズ4を撮像素子5側へ移動させる必要がある。また、下向き状態ではフォーカスレンズ4が自重とガタによって水平置きに比べて撮像素子5から遠ざかる方向に移動する。

[0131]

したがって、高温及び下向き状態でのトータルのフォーカスレンズ 4 の位置補正量を Δ Xとして、 X 0 - Δ X を求めてフォーカスレンズ 4 の原点からの位置を補正することによって、 T] 側から T 側に掛けて合焦状態を維持しながらズーミング動作を行うことができる。

[0132]

なお、実施の形態5では、工程調整時と通常使用時とで、レンズ鏡筒の角度や温度が異なる場合を配慮した例を説明したが、必ずしもこれらの構成が最適なものとは限らない。例えば、レンズ鏡筒等の構造自体で、角度や温度変化によるフォトセンサ出力レベルの変動を抑えている場合は、実施の形態1-3の構成が適している。

[0133]

また、実施の形態5では、角度センサと温度センサの双方を備えた例で説明したが、いずれか一方のセンサを備えた構成でもよい。例えば、温度変化によるフォトセンサ出力レベルの変化位置の変動が特別問題とならない場合は、角度センサによる補正のみとしてもよい。

[0134]

また、実施の形態 5 では、図 1 7 のステップ 6 0 2 b において、 Δ P d を加算する例を示したが、 Δ P d を減算してもよい。

[0135]

また、前記実施の形態 2、3、5では、通常使用時の原点検出動作において工程調整時の2倍の速度でレンズユニットを駆動する例を示したが、これに限るものではなく、4倍の速度又はそれ以上での動作も可能である。すなわち、工程調整時の駆動信号1周期の時間がTの場合において、通常使用時の駆動信号1周期の時間を時間T/N(Nは2以上の整数)にし、1/N周期駆動信号を出力するようにしてもよい。

[0136]

また、実施の形態3、5においては、工程調整時及び通常使用時の駆動信号1周期の時間を同じにしてもよい。

[0137]

また、モータの駆動信号の周期を8分割にした励磁位置を用いて説明したが、求められる精度に応じて4分割や16分割などに設定するなど、分割する数には依存しない。

[0138]

また、前記各実施の形態では、駆動手段としてステッピングモータの例で説明したが、 モータの励磁信号に周期性を有するモータであればよく、例えばリニアモータなどでもよい。

【産業上の利用可能性】

[0139]

本発明のレンズ駆動装置は、コンパクト化を損なうことなく、レンズユニットの機構・電気特性等のばらつきによる原点位置の検出誤差の発生を防止することができるので、スチルカメラやビデオムービーなどのレンズ駆動装置として有用である。

ページ: 18/E

【図面の簡単な説明】

[0140]

- 【図1】本発明の実施の形態1に係るレンズ駆動装置の概略図及びブロック図。
- 【図2】本発明の実施の形態1に係るフォーカスモータ制御部の詳細ブロック図。
- 【図3】本発明の実施の形態1に係る工程調整時の原点検出動作説明図。
- 【図4】本発明の実施の形態1に係る工程調整時の原点検出動作フローチャート。
- 【図5】本発明の実施の形態1に係る通常使用時の原点検出動作説明図。
- 【図6】本発明の実施の形態1に係る通常使用時の原点検出動作フローチャート。
- 【図7】本発明の実施の形態1に係るズーム位置とフォーカス位置との関係を示すグラフ。
- 【図8】本発明の実施の形態2に係る通常使用時の原点検出動作説明図。
- 【図9】本発明の実施の形態2に係る通常使用時の原点検出動作フローチャート。
- 【図10】本発明の実施の形態3に係る通常使用時の原点検出動作説明図。
- 【図11】本発明の実施の形態3に係る電源OFF処理のフローチャート。
- 【図12】本発明の実施の形態4に係る工程調整時の原点検出動作説明図。
- 【図13】本発明の実施の形態4に係る工程調整時の原点検出動作フローチャート
- 【図14】本発明の実施の形態5に係るレンズ駆動装置のブロック図。
- 【図15】本発明の実施の形態5に係る角度検出センサの動作説明図。
- 【図16】本発明の実施の形態5に係る通常使用時の原点検出動作説明図。
- 【図17】本発明の実施の形態5に係る通常使用時の原点検出動作フローチャート。
- 【図18】本発明の実施の形態 5 に係るズーム位置とフォーカス位置との関係を示す グラフ
- 【図19】従来のレンズ駆動装置の一例の概略図及びブロック図。

【符号の説明】

[0141]

- 1 レンズ鏡筒
- 2 第1群レンズ (固定レンズ)
- 3 第2群レンズ (ズームレンズ)
- 4 第3群レンズ (フォーカスレンズ)
- 5 撮像素子
- 6 ズームリング
- 7 フォトセンサ遮蔽部材
- 8 フォトセンサ
- 9 フォーカスモータ
- 10 ズームリング位置検出部
- 11 フォーカスモータ駆動部
- 12 信号処理部
- 13 システムコントロール部
- 14 不揮発性メモリ
- 15 フォーカスモータ制御部

【図6】

【図7】

【図9】

【図10】

【図11】

【図12】

【図15】

【図16】

【図17】

【図18】

【図19】

【書類名】要約書 【要約】

【課題】 コンパクト化を損なうことなく、レンズユニットの機構・電気特性等のばら つきによる原点位置の検出誤差の発生を防止することができるレンズ駆動装置を提供する

【解決手段】 位置検出センサ8の出力値が第1の閾値に到達したときの駆動手段9の駆動信号の位相を撮像レンズの基準位置として求めるレンズ位置演算手段13を備えており、レンズ位置演算手段13は、基準位置記憶手段13から読み出した基準位置と同じ位相の位置を判定位置とし、駆動信号に同期したタイミングでかつ前記判定位置で位置検出センサ13の出力値を検出し、判定位置における位置検出センサ13の出力値が第1の閾値とは異なる値の第2の閾値に到達しているかどうかを判定して、前記基準位置を再び求める。

【選択図】 図1

特願2004-033886

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由] 住 所

新規登録

住 所氏 名

大阪府門真市大字門真1006番地

松下電器産業株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018395

International filing date: 09 December 2004 (09.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-033886

Filing date: 10 February 2004 (10.02.2004)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

