Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 33 The Structure of Linear Operators.

Concepts & Notation

- (Sec. 5.3) permutation, $\det A$.
- (Sec. 6.2) characteristic value, characteristic vector, characteristic polynomial

Let A be an $n \times n$ matrix over a commutative ring. Let:

$$\det A = \sum_{\sigma \in S_n} [(sgn \ \sigma) \prod_{i=1}^n A_{i,\sigma(i)}]$$

$$= \sum_{\sigma \in S_n} (sgn \ \sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} \dots A_{n,\sigma(n)}.$$

Review

- 1. $\det I = 1$.
- 2. If A is a diagonal matrix then det $A = A_{11}A_{22}...A_{nn}$ (the product of the diagonal entries).
- 3. If A has a zero row then $\det A = 0$.
- 4. If A' is A with two rows switched then $\det A' = -\det A$.
- 5. If A has two rows which are the same then $\det A = 0$.
- 6. det is n-linear.
- 7. If A' is formed by adding a multiple of one row of matrix A to another then $\det A' = \det A$.
- 8. If A is row-reduced to (a diagonal matrix) R (using only the operation of adding a multiple of one row to another, and using k switches of pairs of rows) then $\det A = (-1)^k \det R$ (and $\det A$ is \pm the product of the diagonal entries of R).

9. (Claim:) If $A \in \mathbb{F}^{n \times n}$, then A is invertible iff det $A \neq 0$.

10. (Claim:) If $D, B \in \mathbb{F}^{n \times n}$ and D is diagonal then $\det DB = (\det D)(\det B)$.

11. (Claim:) If $A, B \in \mathbb{F}^{n \times n}$ then $\det AB = (\det A)(\det B)$.

The Structure of a Linear Operator

12. Suppose $A \in \mathbb{F}^{n \times n}$. There is a $n \times 1$ matrix α (not all-zero), and $c \in \mathbb{F}$ with $A\alpha = c\alpha$ iff $\det(A - cI) = 0$.

13. What is a characteristic value and a characteristic vector of a linear operator T from a vector space V over a field \mathbb{F} to itself?