

密级状态: 绝密() 秘密() 内部() 公开(√)

PX3SE_Linux 分区表配置说明

(技术部,第二系统产品部)

文件状态:	当前版本:	V1.0
[√] 正在修改	作 者:	黄国椿
[]正式发布	完成日期:	2017-11-02
	审核:	王剑辉、邓训金
	完成日期:	2017-11-02

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd (版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	审核	备注
V1.0	黄国椿	2017-11-02	发布初版	王剑辉/邓训金	

目 录

前言	늘 	1
1	固件多分区方式的分区表	1
2	小容量 GPT 打包方式的分区表	2

前言

如《PX3SE_Linux 开发说明》所介绍,现在 PX3SE Linux 平台有比较丰富的存储方案,但是这些存储方案的固件分区的组织形式可以分成两大类:固件多分区方式和固件打包压缩方式。

1 固件多分区方式的分区表

大容量存储大多采用固件多分区的存储方式,以EMMC多分区为例,参照文档《PX3SE_Linux 开发说明》完成 sdk 的编译,在工程目录下会有固件的输出目录:

这些分立的固件在 flash 上的起始地址和大小区间都定义在工程目录下的 device/rockchip/px3-se/rockimg/parameter-emmc.txt 文件的 CMDLINE 中:

CMDLINE:console=ttyFIQ0 androidboot.selinux=disabled
androidboot.hardware=rk30board androidboot.console=ttyFIQ0
noinitrd root=/dev/mmcblk0p7 rootfstype=ext4 mtdparts=rk29xxnand:
0x00002000@0x00002000(uboot),0x00002000@0x00004000(misc),
0x00010000@0x00006000(recovery),0x00000800@0x00016000(baseparamer),
0x00007800@0x00016800(resource),0x0000C000@0x0001E000(kernel),-@0x00002A000(boot)

比如 kernel.img 存储信息在文件中的描述为: "0x0000C000@0x0001E000(kernel)",

其中 0x0001E000 表示 kernel.img 在 flash 上的起始地址, 0x0000C000 表示 kernel.img 在 flash 上的预留偏移量(比实际的 kernel.img 容量大)。这些数都是以块为单位(1block=512byte),所以换算成十进制后 kernel.img 在 flash 上具体的存储信息如下:

起始地址: (122880 x 512) / (1024 x 1024) = 60 Mb

预留偏移地址: (49152 x 512) / (1024 x1024) = 24Mb

所以在使用过程中,可以按如上组织形式添加新的分立固件分区,而且如果在使用 sdk 定制某个分区固件发现其实际容量超出 parameter-emmc.txt 中默认的大小,就需要适当调整该 固件的预留偏移地址和该固件后面其他分立固件的起始地址。

该 paramter 中除了分立固件的存储信息外,定义的 "root=/dev/mmcblkp7" 指定了根文件系统的挂载点。如果 flash 使用的是 slc nand,则这个地方要修改为 "root=/dev/rknand_boot"。定义的 "rootfstype=ext4" 描述了定制根文件系统是 ext4 格式,如果采用的是 sq uashfs 的压缩格式的话,这个地方需要修改为: "rootfstype=squashfs"。

2 小容量 GPT 打包方式的分区表

小容量存储大多采用固件打包压缩的存储方式,以 slc_nand 小容量为例,参照文档《PX3SE_Linux 开发说明》完成 sdk 的编译,在工程目录下会有固件的输出目录:

rockimg/Image-sfc/

Firmware.img

px3se usb boot V1.22.bin

其中 Firmware.img 是按工程目录 device/rockchip/px3-se/mini_fs/下的 setting_slc.i ni 文件组织分区打包的。

[System]

FwVersion=16.05.25

Nano=

BLANK_GAP=0

FILL BYTE=

[IDBlock]

Flaq=1

DDR_Bin=./px3seddr.bin

Loader_Bin=./px3seloader.bin

PartOffset=0x40
PartSize=0x380
[UserPart1]
Name=kernel
Type=0x4
Flag=1
File=./kernel.img
PartOffset=0x400
PartSize=0x4200
[UserPart2]
Name=rootfs
Type=0x8
Flag=1
File=./rootfs.img
File=./rootfs.img PartOffset=0x4600
PartOffset=0x4600
PartOffset=0x4600 PartSize=0x32000
PartOffset=0x4600 PartSize=0x32000 [UserPart3]
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata Type=0x80000000
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata Type=0x80000000 Flag=1
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata Type=0x80000000 Flag=1 File=./userdata.img
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata Type=0x80000000 Flag=1 File=./userdata.img PartOffset=0x36600
PartOffset=0x4600 PartSize=0x32000 [UserPart3] Name=userdata Type=0x80000000 Flag=1 File=./userdata.img PartOffset=0x36600 PartSize=0x5000

Flag=1

File=./recovery.img

PartOffset=0x3B600

PartSize=0x2000

setting_slc.ini 文件包含 System、IDBlock 和 UserPartX(X 表示数字, 如 1,2,3...) 三种结构类型。System 和 IDBlock 有且仅有一个,而 UserPartX 则可根据需求定制一个或多个。

字段说明如下:

FwVersion: 固件版本信息,遵照"年.月.日"格式。

PartOffset: 分区偏移,以 block 为单位(512 bytes)。

PartSize: 分区大小,以 block 为单位(512 bytes)。

Name: 分区名称。

同样,可以根据自己的定制添加新的 UserPart 并修改固件打包的起始地址和偏移量。