# MATH 601 (DUE 10/30)

### HIDENORI SHINOHARA

### Contents

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>2<br>2   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. Factoring Polynomials with coefficients in Finite Fields                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| <b>Exercise.</b> (Problem 1) Consider the Frobenius homomorphism, $F_p : \mathbb{F}_q \to \mathbb{F}_q$ . Show that this homomorphism is bijective. If $q = p$ , identify it with a familiar homomorphism.                                                                                                                                                                                                                                                                    | ıt            |
| Proof. Since $\mathbb{F}_q$ is finite, it suffices to show that $F_p$ is injective. $F_p(a) = F_p(b) \implies a^p + (-b)^p = 0 \implies a - b = 0$ if $p \ge 3$ . The case when $p = 2$ is similar. If $q = p$ , $\mathbb{F}_q \cong \mathbb{Z}/p\mathbb{Z}$ which is a cyclic additive group generated by 1. Since $F_p(1) = 1$ , $F_p$ must be the identity homomorphism.                                                                                                   | $\mathbb{Z},$ |
| <b>Exercise.</b> (Problem 2) Let $K$ be a field of characteristic $p$ . Which polynomials $f(x) \in K[x]$ satisfies $f'(x) = 0$ ?                                                                                                                                                                                                                                                                                                                                             | r]            |
| <i>Proof.</i> $f'(x) = \sum_{i=1}^{n} i a_i x^i = 0 \iff (\forall i, i \notin (p) \implies a_i = 0)$ since if $i \in (p)$ , $i a_i = \text{regardless of what } a_i \text{ is.}$                                                                                                                                                                                                                                                                                              | 0             |
| <b>Exercise.</b> (Problem 3) Suppose that $f(x) \in \mathbb{F}_q[x]$ satisfies $f'(x) = 0$ . Show that there exist $g(x) \in \mathbb{F}_q[x]$ with $g^p = f$ .                                                                                                                                                                                                                                                                                                                | ts            |
| <i>Proof.</i> By Problem 2, $f(x)$ with $f'(x) = 0$ can be always written as $\sum_{i=0}^{n} a_i x^{pi}$ . We will use induction on the degree of polynomials. The base case, $n = 0$ , is clear because $F_p$ bijective. If $f(x) = \sum_{i=0}^{n+1} a_i x^{pi}$ , $(F_p^{-1}(a_{n+1})x^{n+1} + g(x))^p = a_{n+1}x^{p(n+1)} + (\sum_{i=0}^n a_i x^{pi})$ when $g(x)$ is the $p$ th root of $\sum_{i=0}^n a_i x^{pi}$ , whose existence is given by the inductive hypothesis. | is            |
| <b>Exercise.</b> (Problem 4) Show that there are no inseparable irreducible polynomials, $f(x) = \mathbb{F}_q[x]$ .                                                                                                                                                                                                                                                                                                                                                           | $\in$         |
| <i>Proof.</i> If $f$ is inseparable, $gcd(f, f') \neq F^{\times}$ . If $f' = 0$ , then $f$ has a proper factor by Problem 3. Otherwise, $f$ has a factor of degree between 1 and $deg(f') = deg(f) - 1$ , so $f$ is no irreducible.                                                                                                                                                                                                                                           |               |
| <b>Exercise.</b> (Problem 5) Suppose that $f(x) \in \mathbb{F}_q[x]$ and $gcd(f, f') = f$ . How can you reduce the problem of factoring $f$ to a simpler problem?                                                                                                                                                                                                                                                                                                             | е             |
| <i>Proof.</i> If $f' \neq 0$ , $f \nmid f'$ because $\deg(f') < \deg(f)$ . Thus $\gcd(f, f') = f$ implies $f' = 0$ . B Problem 3, $f = g^p$ for some $g \in \mathbb{F}_q[x]$ , and thus it suffices to factor $g$ , whose degree is exactly $f(f) \neq 0$ .                                                                                                                                                                                                                   |               |

 $\deg(f)/p$ .

**Exercise.** (Problem 6) Let L be a field and  $f(x) = \prod_{i=1}^{n} (x - a_i)^{m_i} \in L[x]$ , where the  $a_i$ 's are pairwise distinct. Compute  $d(x) = \gcd(f(x), f'(x))$ .

Proof. Let p be the characteristic of the finite field L. Since L[x] is a UFD, every divisor of f(x) is associate to a product of  $(x - a_i)$ 's, and so is d(x). Let j be given. Then  $f' = m_j(x - a_j)^{m_j-1}g(x) + (x - a_j)^{m_j}g(x)'$  where  $g(x) = \prod_{i \neq j}(x - a_i^{m_i})$ . If  $p \mid m_j$ , then  $(x - a_j)^{m_j}$  divides both f and f'. If  $p \nmid m_j$ , then  $b_j = m_j - 1$  is the largest integer such that  $(x - a_j)^{b_j}$  divides both f and f'. Therefore,  $d(x) = \prod_{i=1}^n (x - a_i)^{m_i - c_i}$  where  $c_i = 0$  if  $p \mid m_i$  and  $c_i = 1$  otherwise.

#### 2. Modules

**Exercise.** (Problem 6) Take four  $4 \times 4$  matrices with integer entries and check if the abelian group presented by the matrix is cyclic.

Proof.

$$\begin{bmatrix} -166 & -74 & 254 & 347 \\ 140 & -93 & 246 & 425 \\ -196 & 57 & -363 & 202 \\ 325 & 257 & 314 & -389 \end{bmatrix} \rightarrow \begin{bmatrix} 18444530375 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 237 & -81 & 332 & -132 \\ 95 & 268 & 229 & 498 \\ 387 & 213 & 46 & 55 \\ 88 & -126 & -380 & -447 \end{bmatrix} \rightarrow \begin{bmatrix} 2610768268 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -275 & -22 & -207 & -276 \\ -469 & -342 & 240 & -101 \\ -41 & 455 & 51 & -151 \\ 267 & -450 & 98 & -40 \end{bmatrix} \rightarrow \begin{bmatrix} 33644517767 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 48 & 29 & 22 & -481 \\ 388 & -468 & -137 & -491 \\ 84 & -352 & 85 & -384 \\ -226 & -486 & 102 & -156 \end{bmatrix} = \begin{bmatrix} 13267264454 & 1 & 1 & 1 \end{bmatrix}$$

Each of the groups contains 4 generators, so none of them are cyclic.

#### 3. Galois Theory

**Exercise.** (Problem 1) Let  $F = \mathbb{Q}$ . Let  $L = \mathbb{Q}(\sqrt{7}, \sqrt{-11})$ . To what familiar group is  $\operatorname{Aut}(L/F)$  is isomorphic?

Proof.  $[K:\mathbb{Q}(\sqrt{7})] = [K:\mathbb{Q}(\sqrt{-11})] = 2$ . Since the characteristic of K is not 2, by the argument presented on P.3 of the Galous Theory handout,  $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{7}))$  and  $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{-11}))$  have 2 elements. For instance,  $\alpha = \sqrt{7}$  and the minimal monic polynomial is  $x^2 - 7$ . This gives D = 28 and two automorphisms in  $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{7}))$ , the identity map, and  $\sigma : \sqrt{D} \mapsto -\sqrt{D}$  as discussed in the handout. Similarly,  $\operatorname{Aut}(K/\mathbb{Q}(\sqrt{-11}))$  contains the identity map and  $\sigma : \sqrt{D} \mapsto -\sqrt{D}$  where D = -44.

## Finish this proof.

**Exercise.** (Problem 2) Let  $F \subset K$  be a field extension.

(1) Prove in at most two sentences that each  $\sigma \in \operatorname{Aut}(K/F)$  is an F-linear transformation of the F-vector space, K.

(2) Does the same condition hold in general for  $\sigma \in \text{Aut}(K)$ ? Prove or give a counterexample.

Proof.

- (1) For any  $a \in F$  and  $v, w \in K$ ,  $\sigma(av + w) = \sigma(a)\sigma(v) + \sigma(w) = a\sigma(v) + \sigma(w)$ , so  $\sigma$  is indeed an F-linear transformation.
- (2) Let  $F = \mathbb{Q}(\sqrt{7})$  and  $K = \mathbb{Q}(\sqrt{7}, \sqrt{-11})$ . Let  $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$  such that  $\sigma(\sqrt{7}) = -\sqrt{7}, \sigma(\sqrt{-11}) = -\sqrt{-11}$ . The existence of such an automorphism is shown in the solution to Problem 1. K is an F-vector space. However,  $\sigma(\sqrt{7} \cdot 1) = -\sqrt{7} \neq \sqrt{7} = \sqrt{7}(\sigma(1))$ , so  $\sigma$  is not an F-linear transformation.

**Exercise.** (Problem 3) Let  $\zeta = \exp(2\pi i/3) \in \mathbb{C}$ . Consider the following subfields of  $\mathbb{C}$ . Let  $F = \mathbb{Q}(\zeta)$ . For  $i \in \{0, 1, 2\}$ , let  $K_i = \mathbb{Q}(\zeta^{i}7^{1/3})$ . Let  $L = \mathbb{Q}(7^{1/3}, \zeta^{7^{1/3}}, \zeta^{2}7^{1/3})$ .

Proof.

- (1)  $[F:\mathbb{Q}] = 3$ .
- (2) Aut $(F/\mathbb{Q})$  consists of two maps, the identity map and another map that swaps  $\zeta$  and  $\zeta^2$ .
- (3)  $[K_i:\mathbb{Q}]=3$  for each i because  $\{1,\zeta^i7^{1/3},(\zeta^i7^{i/3})^2\}$  is a  $\mathbb{Q}$ -basis.
- (4) Finish the rest!