By definition $p_f = |K_{\lambda}|, q_f = |K_{\mu}|$. Since the equation

$$\sum_{i=1}^{m} \lambda_i + \sum_{j=1}^{m} \mu_j = C\nu$$

holds, by definition of K_{λ} and K_{μ} we have

$$(p_f + q_f)\frac{C}{m} = \sum_{i \in K_\lambda} \lambda_i + \sum_{j \in K_\nu} \mu_j \le \sum_{i=1}^m \lambda_i + \sum_{j=1}^m \mu_j = C\nu,$$

which implies that

$$p_f + q_f \le m\nu$$
.

(2) Let $I_{\lambda>0}$ and $I_{\mu>0}$ be the sets of indices

$$I_{\lambda>0} = \{i \in \{1, \dots, m\} \mid \lambda_i > 0\}$$

$$I_{\mu>0} = \{i \in \{1, \dots, m\} \mid \mu_i > 0\}.$$

By definition $p_m = |I_{\lambda>0}|, q_m = |I_{\mu>0}|$. We have

$$\sum_{i=1}^{m} \lambda_i + \sum_{j=1}^{m} \mu_j = \sum_{i \in I_{\lambda > 0}} \lambda_i + \sum_{j \in I_{\mu > 0}} \mu_j = C\nu.$$

Since $\lambda_i \leq C/m$ and $\mu_j \leq C/m$, we obtain

$$C\nu \le (p_m + q_m)\frac{C}{m},$$

that is, $p_m + q_m \ge m\nu$.

(3) follows immediately from (1).

Proposition 56.7 yields the following bounds on ν :

$$\frac{p_f + q_f}{m} \le \nu \le \frac{p_m + q_m}{m}.$$

Again, the smaller ν is, the wider the ϵ -slab is, and the larger ν is, the narrower the ϵ -slab is.

Remark: It can be shown that for any optimal solution with $w \neq 0$ and $\epsilon > 0$, if the inequalities $(p_f + q_f)/m < \nu < 1$ hold, then some point x_i is a support vector. The proof is essentially Case 1b in the proof of Proposition 56.4. We leave the details as an exercise.