Mapeamento MER ⇒ Modelo Relacional

Prof Eduardo Falcão

eduardo@dca.ufrn.br

Mapeamento MER ⇒ Modelo Relacional

Parte 1: entidades, atributos, chaves

- A maneira clássica de desenvolvimento de um banco de dados é por meio da construção de um modelo conceitual (que pode ser um modelo ER)
 - independente de SGBD
- Mapeamento:
 - projetar um esquema de banco de dados relacional (projeto lógico) tendo como base um projeto de esquema conceitual
- Artefato: modelo lógico
 - dependente de SGBD

Mapeamento MER ⇒ Modelo Relacional

Restrições

- Os SGBDs garantem uma série de restrições impostas aos dados, restrições estas descritas no modelo E-R.
 - Restrições de domínio
 - Restrições de chave
 - Restrições de integridade referencial

Algoritmo de Mapeamento

- Mapeamento de tipos de entidade regular
- 2. Mapeamento de tipos de entidade fraca
- Mapeamento dos tipos de relacionamento binários 1:1
- Mapeamento de tipos de relacionamento binário 1:N
- Mapeamento de tipos de relacionamento binário M:N
- 6. Mapeamento de atributos multivalorados
- 7. Mapeamento de tipos de relacionamento nário
- Opções para mapeamento da especialização ou generalização
- 9. Mapeamento de tipos de união (categorias)

Mapeamento de tipos de entidade forte (ou regular)

- Para cada tipo de entidade regular (forte) E no esquema ER, crie uma relação R que inclua todos os atributos simples de E
- Inclua apenas os atributos de componente simples de um atributo composto
- Escolha um dos atributos-chave de E como chave primária para R
 - Se a chave escolhida de E for composta, então o conjunto de atributos simples que a compõem juntos formarão a chave primária de R

Mapeamento de tipos de entidade forte (ou regular)

id p_nome sobrenome sexo dt_nasc endereço salário	<u>id</u>	p_nome	sobrenome	sexo	dt_nasc	endereço	salário
---	-----------	--------	-----------	------	---------	----------	---------

DEPARTAMENTO

número nome

PROJETO

<u>número</u>	nome	localização
---------------	------	-------------

|--|

DEPARTAMENTO

<u>número</u>	nome
---------------	------

PROJETO

<u>número</u>	nome	localização
---------------	------	-------------

<u>id</u>	p_nome	sobrenome	sexo	dt_nasc	endereço	salário
2131	Arnaldo	Silva	М	04/09/1980	Rua A, n 1	R\$ 6000
2132	Mariana	Oliveira	F	30/03/1990	Rua B, n 2	R\$ 8000
2133	Lavínia	Travassos	F	30/03/1976	Rua C, n 3	R\$ 14000

DEPARTAMENTO

<u>número</u>	nome
1	Computação
2	Mecatrônica
3	Elétrica

PROJETO

<u>número</u>	nome	localização
1	Segurança em IoT	Campina Grande
2	Robótica Educacional	Natal
3	Blockchain	João Pessoa

Mapeamento de atributos multivalorados

- Para cada atributo multivalorado A, crie uma relação R.
 - Essa relação R incluirá um atributo correspondente a A, mais o atributo da chave primária K — como uma chave estrangeira em R — da relação que representa o tipo de entidade ou tipo de relacionamento que tem A como atributo multivalorado.
 - A chave primária de R é a combinação de A e K.
 - Se o atributo multivalorado for composto, incluímos seus componentes simples

DEPARTAMENTO

<u>número</u>	nome
1	Computação
<u>2</u>	Mecatrônica
<u>3</u>	Elétrica

DPTO_LOCALIZAÇÕES

<u>d_num</u>	<u>localização</u>
1	Prédio A
1	Prédio B
2	Prédio A
3	Prédio A
3	Prédio C

Mapeamento de tipos de entidade fraca

- Para cada tipo de entidade fraca F no esquema ER com tipo de entidade proprietária E, crie uma relação R e inclua todos os atributos simples (ou componentes simples dos atributos compostos) de F como atributos de R.
- Além disso, inclua como atributos de chave estrangeira de R os atributos de chave primária da(s) relação(ões) que corresponde(m) aos tipos de entidade proprietária. Isso consegue mapear o tipo de relacionamento de identificação de F.

<u>id</u>	p_nome	sobrenome	sexo	dt_nasc	endereço	salário
2131	Arnaldo	Silva	М	04/09/1980	Rua A, n 1	R\$ 6000
2132	Mariana	Oliveira	F	30/03/1990	Rua B, n 2	R\$ 8000
2133	Lavínia	Travassos	F	30/03/1976	Rua C, n 3	R\$ 14000

DEPENDENTE

F id	nome	sexo	dt_nasc	parentesco
2131	Jéssica Maia	F	09/12/1999	filha
2131	Daniel Lopes	М	27/03/1995	filho
2132	Jéssica Maia	F	10/01/1985	esposa

Mapeamento MER ⇒ Relacional

Parte 2: relacionamentos e cardinalidades

Para cada tipo de relacionamento binário 1:1
 R no esquema ER, identifique as relações S
 e T que correspondem aos tipos de entidade
 participantes em R

- Para cada tipo de relacionamento binário 1:1
 R no esquema ER, identifique as relações S
 e T que correspondem aos tipos de entidade
 participantes em R
- Abordagens
 - a. chave estrangeira (mais comum)
 - b. relação unificada
 - c. referência cruzada ou relação de relacionamento

Abordagem da Chave Estrangeira

- Escolha uma das relações digamos, S e inclua como chave estrangeira em S a chave primária de T
- É melhor escolher um tipo de entidade com participação total em R no papel de S
- Inclua todos os atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:1 R como atributos de S

Abordagem da Chave Estrangeira

- Escolha uma das relações digamos, S e inclua como chave estrangeira em S a chave primária de T
- É melhor escolher um tipo de entidade com participação total em R no papel de S
- Inclua todos os atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:1 R como atributos de S

FUNCIONÁRIO

1

GERENCIA

1

DEPARTAMENTO

- Escolha uma das relações digamos, S e inclua como chave estrangeira em S a chave primária de T
- É melhor escolher um tipo de entidade com participação total em R no papel de S
- Inclua todos os atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:1 R como atributos de S

- 1. Escolha uma das relações digamos, S e inclua como chave estrangeira em S a chave primária de T
- 2. É melhor escolher um tipo de entidade com participação total em R no papel de S
- 3. Inclua todos os atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:1 R como atributos de S

Abordagem da Relação Unificada

- Um mapeamento alternativo de um tipo de relacionamento 1:1 é mesclar os dois tipos de entidade e o relacionamento em uma única relação
- Isso é possível quando ambas as participações são totais, pois indicaria que as duas tabelas terão exatamente o mesmo número de tuplas o tempo inteiro

- Um mapeamento alternativo de um tipo de relacionamento 1:1 é mesclar os dois tipos de entidade e o relacionamento em uma única relação
- Isso é possível quando ambas as participações são totais, pois indicaria que as duas tabelas terão exatamente o mesmo número de tuplas o tempo inteiro.

FUNCIONÁRIO_DEPARTAMENTO

<u>id</u>	p_nome	sobrenome	sexo	dt_nasc	endereço	salário	<u>número</u>	nome

Abordagem da relação de referência cruzada ou relacionamento

- A terceira opção é configurar uma terceira relação R para a finalidade de referência cruzada das chaves primárias das duas relações S e T
 - a. Essa técnica é aplicada para relacionamentos M:N binários
- A relação R é chamada de relação de relacionamento (ou tabela de pesquisa), porque cada tupla em R representa uma instância de relacionamento que relaciona uma tupla de S a uma tupla de T
- A relação R incluirá as chaves primárias de S e T como chaves estrangeiras para S e T
- A chave primária de R será uma das duas chaves estrangeiras, e a outra chave estrangeira será uma chave única de R
- A desvantagem é ter uma relação extra e exigir uma operação de junção extra ao combinar tuplas relacionadas das tabelas

- A terceira opção é configurar uma terceira relação R para a finalidade de referência cruzada das chaves primárias das duas relações S e T
- A relação R incluirá as chaves primárias de S e T como chaves estrangeiras para S e T

FK

• A chave primária de R será uma das duas chaves estrangeiras, e a outra chave estrangeira será uma chave única de R

Mapeamento de tipos de relacionamento binário 1:N (ou N:1)

PS: a abordagem da relação de referência cruzada também funciona para esse caso.

- Para cada tipo de relacionamento R binário regular 1:N, identifique a relação S que representa o tipo de entidade participante no lado N do tipo de relacionamento.
- Inclua como chave estrangeira em S a chave primária da relação T que representa o outro tipo de entidade participante em R; fazemos isso porque cada instância de entidade no lado N está relacionada a, no máximo, uma instância de entidade no lado 1 do tipo de relacionamento.
- Inclua quaisquer atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:N como atributos de S.

- Para cada tipo de relacionamento R binário regular 1:N, identifique a relação S que representa o tipo de entidade participante no lado N do tipo de relacionamento.
- Inclua como chave estrangeira em S a chave primária da relação T que representa o outro tipo de entidade participante em R; fazemos isso porque cada instância de entidade no lado N está relacionada a, no máximo, uma instância de entidade no lado 1 do tipo de relacionamento.
- Inclua quaisquer atributos simples (ou componentes simples dos atributos compostos) do tipo de relacionamento 1:N como atributos de S.

- Identifique a relação S que representa a entidade no lado
- Inclua como chave estrangeira em S a chave primária da relação T
- Inclua quaisquer atributos do relacionamento 1:N como atributos de S

- Identifique a relação S que representa a entidade no lado N do relacionamento.
- Inclua como chave estrangeira em S a chave primária da relação T
- Inclua quaisquer atributos do relacionamento 1:N como atributos de S

Mapeamento de tipos de relacionamento binário M:N

- Para cada tipo de relacionamento R binário M:N, crie uma nova relação S para representar R
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam os tipos de entidade participantes; sua combinação formará a chave primária de S
- Inclua também quaisquer atributos simples do tipo de relacionamento M:N (ou componentes simples dos atributos compostos) como atributos de S
- Observe que não podemos representar um tipo de relacionamento M:N por um único atributo de chave estrangeira em uma das relações participantes (como fizemos para os tipos de relacionamento 1:1 ou 1:N) devido à razão de cardinalidade M:N; temos de criar uma relação de relacionamento S separada

- Para cada tipo de relacionamento R binário M:N, crie uma nova relação S para representar R
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam os tipos de entidade participantes; sua combinação formará a chave primária de S
- Inclua também quaisquer atributos simples do tipo de relacionamento M:N como atributos de S

Mapeamento MER ⇒ Relacional

Parte 3: relacionamentos n-ários, especialização-generalização

Mapeamento de tipos de relacionamento n-ário

- Para cada relacionamento n-ário R, onde n >2, crie uma relação S para representar R.
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam as entidades participantes
- Inclua também quaisquer atributos do relacionamento n-ário como atributos de S.
- A chave primária de S normalmente é uma combinação de todas as chaves estrangeiras que referenciam as relações participantes. Porém, se as restrições de cardinalidade sobre qualquer entidade E participantes em R for 1, então a chave primária de S não deve incluir o atributo de chave estrangeira que referencia a relação E' correspondente a E

- Para cada relacionamento n-ário R, onde n > 2, crie uma relação S para representar R.
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam as entidades participantes
- Inclua também quaisquer atributos do relacionamento n-ário como atributos de S.
- A chave primária de S normalmente é uma combinação de todas as chaves estrangeiras que referenciam as relações
 participantes. Porém, se as restrições de cardinalidade sobre qualquer entidade E participantes em R for 1, então a chave
 primária de S não deve incluir o atributo de chave estrangeira que referencia a relação E' correspondente a E

- Para cada relacionamento n-ário R, onde n > 2, crie uma relação S para representar R.
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam as entidades participantes
- Inclua também quaisquer atributos do relacionamento n-ário como atributos de S.
- A chave primária de S normalmente é uma combinação de todas as chaves estrangeiras que referenciam as relações participantes. Porém, se as restrições de cardinalidade sobre qualquer entidade E participantes em R for 1, então a chave primária de S não deve incluir o atributo de chave estrangeira que referencia a relação E' correspondente a E

<u>f_número</u>	
1211	
1212	
1213	

PROJETO

p_número	
3211	
3212	
3213	

PEÇA

peça número	
2211	
2212	
2213	

<u>f_número</u>	<u>peça número</u>	<u>p_número</u>	qtde
1211	2211	3211	100
1211	2211	3212	145
1211	2212	3212	23
1212	2212	3212	58
1213	2213	3211	15

- Para cada relacionamento n-ário R, onde n > 2, crie uma relação S para representar R.
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam as entidades participantes
- Inclua também quaisquer atributos do relacionamento n-ário como atributos de S.
- A chave primária de S normalmente é uma combinação de todas as chaves estrangeiras que referenciam as relações
 participantes. Porém, se as restrições de cardinalidade sobre qualquer entidade E participantes em R for 1, então a chave
 primária de S não deve incluir o atributo de chave estrangeira que referencia a relação E' correspondente a E

- Para cada relacionamento n-ário R, onde n > 2, crie uma relação S para representar R.
- Inclua como atributos de chave estrangeira em S as chaves primárias das relações que representam as entidades participantes
- Inclua também quaisquer atributos do relacionamento n-ário como atributos de S.
- A chave primária de S normalmente é uma combinação de todas as chaves estrangeiras que referenciam as relações participantes. Porém, se as restrições de cardinalidade sobre qualquer entidade E participantes em R for 1, então a chave primária de S não deve incluir o atributo de chave estrangeira que referencia a relação E' correspondente a E

 f_número
 ...

 1211
 ...

 1212
 ...

 1213
 ...

PROJETO

p_número	
3211	
3212	
3213	

PEÇA

peça número ... 2211 ... 2212 ... 2213 ...

f_número	peça número	<u>p_número</u>	qtde
1211	2211	3211	100
1211	2211	3212	145
1211	2212	3212	23
1212	2212	3212	58
1213	2213	3211	15

<u>f_número</u>	
1211	
1212	
1213	

PROJETO

p_número	
3211	
3212	
3213	

Não podemos ter o mesmo projeto recebendo a mesma peça de fornecedores diferentes.

PEÇA

peça número	
2211	
2212	
2213	

f_número	peça número	<u>p_número</u>	qtde
1211	2211	3211	100
1211	2211	3212	145
1211	2212	3212	23
1212	2212	3212	58
1213	2213	3211	15

<u>f_número</u>	
1211	
1212	
1213	

PROJETO

p_número	
3211	
3212	
3213	

PEÇA

peça_número	
2211	
2212	
2213	

f_número	peça_número	p_número	qtde
1211	2211	3211	100
1211	2211	3212	145
1211	2212	3212	23
1213	2213	3211	15

Mapeamento da especialização ou generalização

- Converta cada especialização com m subclasses {S₁, S₂, ..., S□} e superclasse (generalizada) C, em que os atributos de C são {k, a₁, ..., a□} e k é a chave primária para os esquemas da relação usando uma das seguintes opções:
 - Múltiplas relações superclasse e subclasses
 - Múltiplas relações apenas relações de subclasse
 - o Relação única com um **único** atributo *tipo*
 - Relação única com vários atributos tipos

Múltiplas relações: superclasse e subclasses

- Crie uma relação L para C com atributos
 Atrs(L) = {k, a₁, ..., a□} e chave primária
 PK(L) = k
- Crie uma relação L_i para cada subclasse S_i,
 1 ≤ i ≤ m, com os atributos Atrs(L_i) = {k} ∪
 {atributos de S_i} e PK(L_i) = k
 - Essa opção funciona para qualquer especialização (total ou parcial, disjunta ou sobreposta)

Múltiplas relações: apenas relações de subclasse

- Crie uma relação L_i para cada subclasse S_i,
 1 ≤ i ≤ m, com os atributos Atrs(L_i) =
 {atributos de S_i} ∪ {k, a₁, ..., a□} e PK(L_i) = k
- Essa opção só funciona para uma especialização cujas subclasses são totais (cada entidade na superclasse deve pertencer a (pelo menos) uma das subclasses).
 - Isso só é recomendado se a especialização tiver a restrição de disjunção. Se a especialização for sobreposta, a mesma entidade pode ser duplicada em várias relações.

- Crie uma relação L_i para cada subclasse S_i, 1 ≤ i ≤ m, com os atributos Atrs(L_i) = {atributos de S_i} ∪ {k, a₁, ..., a□} e
 PK(L_i) = k
- Essa opção só funciona para uma especialização cujas subclasses são totais (cada entidade na superclasse deve pertencer a (pelo menos) uma das subclasses).
 - Isso só é recomendado se a especialização tiver a restrição de disjunção. Se a especialização for sobreposta, a mesma entidade pode ser duplicada em várias relações.

Relação única com um único atributo tipo

- Crie uma única relação L com atributos
 Atrs(L) = {k, a₁, ..., a□} U {atributos de S₁}
 U ... U {atributos de S□} U {t} e PK(L) = k
- O atributo t é chamado de atributo de tipo (ou discriminador), cujo valor indica a subclasse à qual cada tupla pertence, se houver alguma.
 - Essa opção funciona somente para uma especialização cujas subclasses são disjuntas, e tem o potencial para gerar muitos valores NULL se diversos atributos específicos existirem nas subclasses

Relação única com vários atributos tipos

- Crie um único esquema de relação L com atributos Atrs(L) = {k, a₁, ..., a□} U {atributos de S₁} U ... U {atributos de S□} U {t₁, t₂, ..., t□} e PK(L) = k
- Cada t_i, 1 ≤ i ≤ m, é um atributo de tipo booleano indicando se uma tupla pertence à subclasse S_i
 - Essa opção é usada para uma especialização cujas subclasses são sobrepostas (m as também funcionará para uma especialização disjunta).

A seguir:

Linguagem SQL