Trig Final (Solution v13)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.9 radians. The radius is 38 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 72.2 meters.

Question 2

Consider angles $\frac{8\pi}{3}$ and $\frac{-13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{8\pi}{3}\right)$ and $\cos\left(\frac{-13\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(8\pi/3)$

$$\sin(8\pi/3) = \frac{\sqrt{3}}{2}$$

Find $cos(-13\pi/4)$

$$\cos(-13\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-45}{28}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$28^{2} + 45^{2} = C^{2}$$

$$C = \sqrt{28^{2} + 45^{2}}$$

$$C = 53$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-45}{53}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -6.22 meters, an amplitude of 7.31 meters, and a frequency of 2.59 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -7.31\cos(2\pi 2.59t) - 6.22$$

or

$$y = -7.31\cos(5.18\pi t) - 6.22$$

or

$$y = -7.31\cos(16.27t) - 6.22$$