

SPRAWOZDANIE - LABORATORIUM NR 11

Odszumianie sygnału przy użyciu FFT - splot funkcji

Tomasz Gajda 31.05.2020

1 Wstęp teoretyczny

Zadanie z którym spotkaliśmy się na laboratorium dotyczyło poszukiwania odszumiania sygnału przy użyciu FFT (szybkiej transformacji Fouriera). Mamy splot funkcji f(t) i g(t). Sygnałem będzie f(t), natomiast g(t) będzie wagą. Ich splot traktujemy jako uśrednienie funckji f funkcją wagową g. Wykorzystamy to by wygładzić nasz zaszumiony sygnał. Do obliczenia splotu wykorzystamy właśnie FFT:

$$FFT \{f(t) * g(t)\} = FFT \{f\} \cdot FFT \{g\} = f(k) \cdot g(k) \tag{1}$$

$$f * g = FFT^{-1} \{ f(k) \cdot g(k) \}$$
 (2)

Naszym sygnałem będzie:

$$f(t) = f_0(t) + \Delta \tag{3}$$

gdzie:

$$f_0(t) = \sin(1 \cdot \omega t) + \sin(2 \cdot \omega t) + \sin(3 \cdot \omega t) \tag{4}$$

to sygnał, który jest **niezaburzony**, ω to pulsacja, T to okres, Δ jest pseudolosową liczbą znajdującą się w zakresie [-1/2, 1/2].

Naszą funkcją wagową będzie funkcja gaussowska:

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{t^2}{2\sigma^2}\right) \tag{5}$$

2 Zadanie do wykonania

2.1 Opis problemu

Naszym zadaniem, było stworzenie programu, który umożliwi narysowanie wykresu sygnału zaburzonego razem ze znormalizowanym splotem oraz wykresu sygnału niezaburzonego ze znormalizowanym splotem.

2.2 Przyjęte założenia

Założenia		
Symbol	Wielkość	Wartość
N	Całkowita liczba węzłówx	2^k
Т	Okres czasu x	1.0
k	Ilość kroków	8, 10, 12
\mathbf{t}_{max}	Maksymalny okres czasu rejestracji sygnału	3T
dt	Krok czasowy	t_{max}/N
σ	Odchylenie	T/20

2.3 Wyniki

Wyniki programu prezentują się w następujący sposób. Otrzymaliśmy w sumie 3 wykresy - po jednym wykresie dla każdego parametru k.

Rysunek 1: Wyniki odszumiania sygnału przy użyciu FFT, k=8

Rysunek 2: Wyniki odszumiania sygnału przy użyciu FFT, k=10

3 Wnioski

Metoda odszumiania funkcji przy użyciu szybkiej transformacji Fourier'a niestety nie dała nam do-kładnego odwzorowania naszej funkcji. Jednak wciąż kształty wykresów odszumionej funkcji dla każdej kolejnej wartości parametru k są coraz bardziej zbliżone do kształtu wykresu funkcji pierwotnej. Na wykresie pierwszym można zaobserwować, że dla parametru k = 8 odszumiona funkcja nie jest **gładka**, oznacza to, że nadal pozostały szczątkowe szumy i zostąły wzięte pod uwagę. Na następnym wykresie szumy można zauważyć tylko w okolicach ekstremów. Na ostatnim wykresie natomiast wygląda na to, że udało się nam w całości wyeliminować szumy. Możemy z tego wywnioskować więc, że im większa liczba węzłów, tj. im większy jest parametr k, tym lepsze odszumienie będzie cechować funkcję wynikową. Może to być zależne również od wybranej funkcji wagowej.