Дифференциальные уравнения.

Чепелин Вячеслав

Содержание

1 Лекция 1.	2
1.1 Основные определения	.2
1.2 Уравнение в дифференциалах	.2
2 Лекция 2.	4
2.1 Геом. смысл дифференциальных уравнений	.4
2.2 Уравнение в полных дифференциалах	.4
3 Лекция 3.	6
3.1 Интегрирующий множитель	.6
3.2 Линейное уравнение	.6
3.3 Уравнение с разделяющимися переменными	.7
3.4 Линейное уравнение первого порядка	.7
4 Лекция 4.	8
4.1 Замена переменных дифференциальном уравнения	8.
4.2 Однородное уравнение	
4.3 Уравнение Бернулли	.9
5 Лекция 5.	11
5.1 Уравнение высшего порядка	1.1
5.2 Методы понижения порядка	1.1
5.3 Нормальная система	
6 Лекция 6.	14
6.1 Вспомогательные (Помогите) следствия	1.4
7 Информация о курсе.	19

1 Лекция 1.

1.1 Основные определения.

<u>def:</u> Пусть $f:G\subset\mathbb{R}^2\to\mathbb{R},$ нормальное уравнение :

$$y' = f(x, y)$$

<u>def:</u> <u>Область определения</u> нормального уравнения — область определения его правой части. Обозначение dom = G.

Примеры уравнений и соответствующих областей определения:

- 1. $y' = x\sqrt{y}, G = \mathbb{R} \times [0, +\infty)$
- 2. $y' = y, G = \mathbb{R}^2$
- 3. $y' = -\frac{1}{x^2}, G = \{(x, y) \in \mathbb{R} | x \neq 0\}$

<u>def:</u> Функция $\varphi: E \to \mathbb{R}$ - **решение** уравнения, если $E = \langle a, b \rangle$:

$$\varphi'(x) \equiv f(x, \varphi(x))$$

<u>Соглашение:</u> На протяжении курса, будем считать, что \forall предиката P(x), который не определен при $x = x_0$, считаем, что $P(x_0) = 0$ - то есть ложно.

Замечание: Данное зам. помогает не требовать от φ дифференцируемости на всем E.

Следствие: Учитывая соглашение любое решение уравнение — дифференцируемая функция.

Следствие: Если f - непр. функция, то любое решение нормального уравнения непрерывно дифференцируемо.

Замечание: В нормальном уравнении символы x, y и y' - три различные независимые переменные. Пока не произведена подстановка функции, буква y никак не связана с x, а y' не олицетворяет производную.

<u>def:</u> Интегральная кривая уравнения — график его решения.

<u>def:</u> <u>Общее решение</u> уравнения — множество всех его решений.

<u>def:</u> <u>Общим интегралом</u> уравнения будем называть соотношение вида:

$$\Phi(x,y,C) = 0$$

которое неявно задает некоторые уравнения при некоторых значениях вещественного параметра C.

Замечание: Общий интеграл не всегда описывает все решения уравнения.

1.2 Уравнение в дифференциалах.

<u>def:</u> Пусть $P,Q:G\subset\mathbb{R}^2\to\mathbb{R},$ уравнение в дифференциалах:

$$P(x,y)dx + Q(x,y)dy = 0$$

<u>Замечание:</u> Переменные x, y входят равноправно, поэтому его решением называется не только функция $y = \varphi(x)$, но и $x = \psi(y)$

 $\underline{\mathbf{def:}}$ Точка $(x_0,y_0)\in G$ называется $\underline{\mathbf{ocofoй}}$ точкой уравнения, если $P(x_0,y_0)=Q(x_0,y_0)=0$

 $\underline{\mathbf{def:}}$ Пусть $T=\langle a,b\rangle$, вектор-функции $(u,v)\in\mathbb{C}^1(T\to\mathbb{R}^2)$ — $\underline{\mathbf{параметрическиe}}$ решение уравнения, если:

- 1. $(u'(t), v'(t)) \neq (0, 0)$ для всех $t \in T$
- 2. $P(u(t), v(t))u'(t) + Q(u(t), v(t))v'(t) \equiv 0$ на T

<u>def:</u> <u>Интегральной кривой</u> уравнения называют годограф (множество значений) ее параметрического уравнения.

Утверждение: (Связь между обычными и параметрическими решениями).

Пусть $P, Q \in C(G)$, множество G не содержит особых точек уравнения, тогда:

- 1. Если $y = \varphi(x)$ решение уравнения на E, то $r(t) = (t, \varphi(t))$ параметрическое решение уравнения на E.
- 2. Если r = (u, v) параметрическое решение уравнения на T, то для любого $t_0 \in T$, найдется окрестность $U(t_0)$, такая что функции u(t) и v(t) при $t \in U(t_0) \cap T$ параметрически задают решение уравнения.

<u>**def:**</u> Два дифференциальных уравнения **эквивалентны** (или **равносильны**) на множестве G, если они имеют одинаковое семейство интегральных кривых на множестве G.

Теорема. Пусть $f \in C(G \subset \mathbb{R}^2 \to \mathbb{R})$. Тогда уравнение:

$$y' = f(x, y)$$

эквивалентно на множестве G уравнению:

$$dy = f(x, y)dx$$

2 Лекция 2.

2.1 Геом. смысл дифференциальных уравнений

<u>def:</u> Если каждой точке (x, y) области определения функции f сопоставить вектор, направленный под углом $\arctan f(x, y)$, то получится **поле направлений** f(x, y).

Рассмотрим один способ построить приближение к интегральной кривой. Взяв некоторую точку (x_0, y_0) в качестве начальной, будем двигаться по направлению поля в точке (x_0, y_0) до точки с абсциссой $x_1 = x_0 + h$, ординату которой обозначим через y_1 . Сделаем то же самое, что много много раз и получим **ломаную Эйлера**.

<u>def:</u> Изоклиной I_k уравнения называют множество уровня функции f:

$$I_k = \{(x, y) \in dom f | f(x, y) = k\}$$

TODO: метод изоклин

2.2 Уравнение в полных дифференциалах.

<u>def:</u> Уравнение

$$P(x,y)dx + Q(x,y)dy = 0$$

называют уравнением в полных дифференциалах в области G, если для него существует потенциал, то есть такая дифференцируемая функция u, что для всех $x, y \in G$:

$$du = P(x, y)dx + Q(x, y)dy$$

Теорема (общее решение УПД)

Пусть $G \subset \mathbb{R}^2$ — область, функция $u: G \to \mathbb{R}$ дифференцируема, $u'_x = P, u'_y = Q$. Тогда функция $y = \varphi(x)$ - решение уравнения УПД на промежутке E, если и только если она дифференцируема на E и при некотором $C \in \mathbb{R}$ неявно задана уравнением:

$$u(x,y) = C$$

Доказательство:

Достаточность. Дифференцируя равенство $u(x,\varphi(x))=C$ по переменной $x\in E$, находим:

$$u'_x(x,\varphi(x)) + u'_y(x,\varphi(x))\varphi'_x \equiv 0$$

Так как $u_x' = P, u_y' = Q,$ то определению функция φ является решением

Необходимость. На промежутке E верно тождество

$$P(x, \varphi(x)) + Q(x, \varphi(x))\varphi'(x) \equiv 0$$

Левая часть этого равенства совпадает с производной функции u по переменной x.

Q.E.D.

def: Уравнение

$$P(x)dx + Q(y)dy = 0$$

называют уравнение с разделенными переменными.

Следствие (общее решение УРП):

Пусть $P \in C(a,b), Q \in C(c,d)$. Тогда функция $y = \varphi(x)$ — решение уравнения на промежутке E, если и только если она дифференцируема на E и при некотором $C \in \mathbb{R}$ и при некотором $C \in \mathbb{R}$ неявно задана уравнением:

$$\int P(x)dx + \int Q(y)dy = C$$

Доказательство: подставим и проверим.

Утверждение (необходимое условие УПД).

Пусть потенциал $u \in C^2(G)$. Тогда:

$$P_y' = Q_x'$$

Теорема (признак УПД)

Пусть $G \subset \mathbb{R}^2$ — односвязная область $P,Q \in C^1(G), P'_y = Q'_x, (x_0,y_0) \in G$. Тогда уравнение в полных дифференциалах в области в G с потенциалом:

$$u(\overline{x}, \overline{y}) = \int_{\gamma(\overline{x}, \overline{y})} P(x, y) dx + Q(x, y) dy = 0$$

3 Лекция 3.

3.1 Интегрирующий множитель.

<u>def:</u> Функция $u: G \to \mathbb{R}$ называются <u>интегрирующим множителем</u> уравнения P(x,y)dx + Q(x,y)dy = 0 в области G, если $\mu(x,y) \neq 0$ для любой точки $(x,y) \in G$ и уравнение

$$\mu(x,y)P(x,y)dx + \mu(x,y)Q(x,y)dy = 0$$

является уравнением в полных дифференциалах.

Замечание: мы хотим получить УПД и чтобы его получить, мы хотим, чтобы $P'_y = Q'_x$, для этого добавляем множитель μ .

def: Пусть $p_2(x) \neq 0$ при $x \in (a, b), q_1(y) \neq 0$ при $y \in (c, d)$. Тогда функция

$$\mu(x,y) = \frac{1}{p_2(x)q_1(y)}$$

является интегрирующем множителем для уравнения:

$$p_1(x)q_1(y)dx + p_2(x)q_2(y)dy = 0$$

Такое уравнение называются уравнением с разделяющимися переменными.

Условие для интегрирующего множества: Пусть $P, Q \in C^1(G)$. Определим условия для интегрирующего множителя из $\mathbb{C}^1(G)$. Необходимо:

$$\mu'_{y}P - \mu'_{x}Q = (Q'_{x} - P'_{y})\mu$$

3.2 Линейное уравнение.

def: Дифференциальное уравнение:

$$y' = p(x)y + q(x)$$

называется линейным уравнением первого порядка.

<u>**def:**</u> Линейное уравнение называется <u>**однородным**</u>, если q=0, иначе уравнение называется **неоднородным**.

Приведение линейного уравнения 1 порядка к УПД:

$$y' = p(x)y + q(x)$$

Заменим y' на $\frac{dy}{dx}$:

$$(py+q)dx - dy = 0$$

Условие $P_y' = Q_x'$ здесь не выполнено. Посмотрим на условие для интегрирующего множества. Оно принимает вид:

$$\mu_y'(pu+q) + \mu_x' = -p\mu$$

Попробуем найти интегрирующий множитель, зависящий только от переменной x. В этом случае получим:

$$\mu' = -p\mu$$

Одно из его решений:

$$\mu = e^{-\int p}$$

Откуда мы можем решать его, как уравнение в дифференциалах

3.3 Уравнение с разделяющимися переменными.

$$p_1(x)q_1(y)dx + p_2(x)q_2(y)dy = 0$$

Проблема в том, что умножая на интегрирующий множитель $\frac{1}{q_1(y)p_2(x)}$ возможно лишь в области, где знаменатель не обращается в ноль. Случай $q_1(y)=0$ и $p_2(x)=0$ требуют особого рассмотрения.

Разбив всю область поиска интегральных кривых на необходимое количество частей, нужно рассмотреть исходное уравнение на каждой части отдельно. На каждой такой подобласти его можно разделить на $q_1(y)p_2(x)$ не опасаясь.

Остается изучить поведение найденных интегральных кривых вблизи границы и мы победим.

3.4 Линейное уравнение первого порядка

Теорема (общее решение ЛУ 1-го порядка)

Пусть $E = \langle a, b \rangle, p, q \in C(E), \mu = e^{-\int p}$. Тогда общее решение имеет вид:

$$y = \frac{C + \int q\mu}{\mu}, C \in \mathbb{R}$$

Доказательство:

После приведения к УПД, получаем:

$$u'e^{-\int p} - pue^{-\int p} = ae^{-\int p}$$

Левая часть - производная y и $e^{-\int p}$. Получаем:

$$(ye^{-\int p})' = qe^{-\int p}$$

Следовательно:

$$ye^{-\int p} = C + \int qe^{-\int p}$$

Q.E.D.

Следствие (Общее решение ЛОУ первого порядка):

Пусть $E = \langle a, b \rangle, p \in C(E)$. Тогда уравнение

$$y' = p(x)y$$

имеет вид:

$$y = Ce^{\int p}, C \in \mathbb{R}, x \in E$$

Метод Лагранжа.

- 1. Решим вспомогательное уравнение y' = p(x)y
- 2. Заменим в решении C на C(x)
- 3. Подставим полученное φ в исходное уравнение и найдем C(x)
- 4. Победа!

4 Лекция 4.

4.1 Замена переменных дифференциальном уравнения.

$$x = p(u, v), y = q(u, v)$$

Цель такой замены — упростить и свести к известному виду.

Дифференциалы прежних переменных преобразуются по формулам:

$$dx = p'_u du + p'_v dv \quad dy = q'_u du + q'_v dv$$

Теорема (замена переменных в ДУ)

Пусть G - область в $\mathbb{R}^2_{x,y}$. $\Phi:G\subset\mathbb{R}^2_{x,y}\to\mathbb{R}^2_{u,v}$ — диффеоморфизм, $F:G\to\mathbb{R}^2$.

$$H = (F \circ \Phi^{-1})(\Phi^{-1})'$$

Тогда отображение Φ устанавливает взаимно-однозначное соответствие между интегральными кривыми уравнений:

$$F(r)dr = 0, r \in G$$

$$H(s)ds = 0, s \in \Phi(G)$$

Замечание: Это имеет такой смысл: у вас есть диффеоморфизм между двумя областями — ваша функция замены переменных из $\Phi: x,y \to u,v$ мы берем обратную и производную и выигрываем

4.2 Однородное уравнение

<u>**def:**</u> Функция F(x.y) называется **однородной функцией** степени α , если при всех допустимых t, x, y верно равенство:

$$F(tx, ty) = t^{\alpha} F(x, y)$$

 $\underline{\mathbf{def:}}$ Пусть P,Q — однородные функции одинаковой степени. Тогда уравнение вида:

$$P(x,y)dx + Q(x,y)dy = 0$$

называется однородным уравнением.

Давайте сведем однородно уравнение к уравнением с разделяющимися переменными.

1. Сделаем замену x = u, y = uv

Замечание: поскольку переменные u и x совпадают, то переменную u обычно не вводят, а полагают:

$$y = xv$$

При этом dy = vdx + xdv

2. Подставим замену и получим:

$$P(x,xv)dx + Q(x,xv)(vdx + xdv) = 0$$

$$x^{\alpha}P(1,v)dx + x^{\alpha}Q(1,v)(vdx + xdv) = 0$$

$$(P(1, v) + Q(1, v)v)dx + Q(1, v)xdv = 0$$

Уравнения, сводящиеся к однородному

Уравнения в нормальной форме:

$$y' = f\left(\frac{y}{x}\right)$$

сводится к однородному при переходе к дифференциалам.

Более общее уравнение

$$y' = f\left(\frac{a_1x + b_1y + c}{a_2x + b_2y + c_2}\right)$$

сводится к однородному, если сдвинуть систему координат в точку пересечения прямых $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$. То есть если сделать замену:

$$x = x_0 + u, \quad y = y_0 + v$$

Геом. свойство однородного уравнения — гомотетия относительно начала координат любую интегральную кривую однородного уравнения переводит в другую его интегральную кривую.

4.3 Уравнение Бернулли

<u>def:</u> Уравнением Бернулли называют уравнение вида:

$$y' = p(x)y = +q(x)y^{\alpha}$$

где $a \notin \{0,1\}, a \in \mathbb{R}$

Давайте научимся его решать:

Возьмем $z = y^{1-\alpha}$

Тогда $z' = (1 - \alpha)y^{-\alpha}y'$, откуда

$$y^{-\alpha}y' = \frac{z'}{1-\alpha}$$

Поделим левую часть исходного уравнения на y^{α} , подставляя $z=y^{1-\alpha}$, а также умножая обе части на $(1-\alpha)$ получим:

$$z' = (1 - \alpha)p(x)z + (1 - \alpha)q(x)$$

Таким образом замена $z=y^{1-\alpha}$ сводит уравнение Бернулли к линейному, а его мы уже умеем решать

Уравнение Риккати

<u>def:</u> Уравнением Риккати называют уравнение вида:

$$y' = p(x)y^2 + q(x)y + r(x)$$

Чтобы такое решить, надо решить правое уравнение относительное y и сделать подстановку $y=z+\varphi$. Так оно сведется к уравнению Бернулли и победится.

Теорема (Луивилль)

Уравнение

$$y' = y^2 + x^{\alpha}$$

интегрируется в квадратурах, если и только если $\alpha/(2\alpha+4) \in \mathbb{Z}$ или $\alpha=-2$

5 Лекция 5.

5.1 Уравнение высшего порядка.

<u>def:</u> Дифференциальным уравнением n-го порядка называют уравнение вида

$$F(x, y, y', \dots, y^{(n)}) = 0$$

 $\underline{\mathbf{def:}}$ Функция $\varphi:E o\mathbb{R}$ - решение уравнения, если $E=\langle a,b\rangle$ и

$$F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \equiv 0$$
 на E .

<u>def:</u> Каноничным уравнением будем называть уравнение

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)},$$

разрешенное относительно старшей производной.

<u>def:</u> Задачей Коши для канонического уравнения называют задачу нахождения его решения, удовлетворяющего начальным условиям:

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$

Замечание: в данном случае стоит воспринимать $y_0^{(i)}$ как значение, а не как производную от числа.

5.2 Методы понижения порядка

1. **Уравнения вида** $y^{(n)} = f(x)$

 X_{M} X_{M} , что же делать? Возьмем n раз интеграл - победили.

2. Уравнение без искомой функции: Пусть у нас есть уравнение:

$$F(x, y'^{(k)}, \dots y^{(n)}) = 0$$

Тогда стоит сделать замену $z(x) = y^{(k)}$

3. Уравнение без независимой переменной

Пусть у нас есть уравнение:

$$F(y, y', y'', \dots y^{(n)}) = 0$$

Сделаем подстановку:

$$y'(x) = z(y(x))$$

4. Уравнение, однородное относительно искомой функции и ее производных

Пусть при любом допустимом значении t:

$$F(x, ty, ty', \dots, ty^{(n)}) = t^m F(x, y, y', \dots, y^{(n)})$$

Тогда порядок уравнения понижается при помощи замену $z=rac{y'}{y}$

5. Уравнение в точных производных

Если наша функция это производная какой-то другой по переменной x, то есть:

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = \frac{d}{dx} \Phi(x, y(x), \dots, y^{(n-1)}(x))$$

то мы можем понизить порядок на 1 вниз решая:

$$\Phi(x, y(x), \dots, y^{(n-1)}(x)) = C$$

5.3 Нормальная система

<u>def:</u> Нормальной системой дифференциальных уравнений порядка n называется система вида

$$\begin{cases} r_1' = f_1(t, r_1, \dots, r_n) \\ \dots \\ r_n' = f_n(t, r_1, \dots, r_n) \end{cases}$$

Если положить

$$r = \begin{pmatrix} r_1 \\ \dots \\ r_n \end{pmatrix}, f(t,r) = \begin{pmatrix} f_1(t,r) \\ \dots \\ f_n(t,r) \end{pmatrix},$$

то система компактно в виде одного п-мерного уравнения

$$r' = f(t, r).$$

<u>def:</u> Вектор-функция $\varphi: E \to \mathbb{R}^n$ - **решение системы**, если $E = \langle a,b \rangle$ и $\varphi'(t) \equiv f(t,\varphi(t))$ на E.

<u>def:</u> **Интегральной кривой** системы называют график, соответствующий ее решению (что не удивительно)

В отличие от одномерного случая, интегральная кривая - это график вектор-функции, расположенный в (n+1)-мерном пространстве.

def: Задачей Коши называется аналогичная уравнению высшему порядку конструкция

def: Зададим отображение Λ_n формулой:

$$\Lambda_n \varphi = (\varphi, \varphi', \dots, \varphi^{(n-1)})^T$$

Индекс n будет иногда опускаться.

Лемма. (о системе равносильной уравнению)

Отображение Λ_n - биекция между решениями уравнения

$$y^{(n)} = f(t, y, \dots, y^{(n-1)})$$

и решениями системы:

$$r' = \begin{vmatrix} r_2 \\ r_3 \\ \dots \\ r_n \\ f(t,r) \end{vmatrix}$$

Замечание: Это лемма очевидна из того, что мы просто сопоставляем каждой производной отдельную функцию и пишем уравнение для этой производной по типу $(y')' = y'' \Leftrightarrow r_1' = r_2$

def: Такую систему будем называть системой равносильной уравнению.

6 Лекция 6.

6.1 Вспомогательные (Помогите) следствия

Замечание: Через r_i обозначаем компоненты вектора $r \in \mathbb{R}^n$. Векторы из \mathbb{R}^n нумеруются верхними индексами. Через A_i обозначаем строки, A^j - столбцы, A^j_i - компоненты матрицы A.

 $\underline{\mathbf{def:}}$ Пусть $r \in \mathbb{R}^n$. Тогда $|r| := \max_{i \in [1:n]} |r_i|$.

<u>**def:**</u> Пусть $A \in \operatorname{Mat}_{n \times m}(\mathbb{R})$. Тогда $|A| := \max_{i \in [1:n], j \in [1:m]} |A_i^j|$.

Лемма.

Пусть $f \in C([a,b] \to \mathbb{R}^n)$. Тогда

$$\left| \int_{a}^{b} f(\tau) d\tau \right| \leq \int_{a}^{b} |f(\tau)| d\tau.$$

Доказательство.

Принимая во внимание определение нормы, имеем:

$$\left| \int_{a}^{b} f(\tau) d\tau \right| = \max_{i} \left| \int_{a}^{b} f_{i}(\tau) d\tau \right| \leq \max_{i} \int_{a}^{b} |f_{i}(\tau)| d\tau \leq \max_{i} \int_{a}^{b} \max_{j} |f_{j}(\tau)| d\tau = \max_{i} \int_{a}^{b} |f(\tau)| d\tau = \lim_{i} \int_{a}^{b} |f(\tau)| d\tau = \lim_{i} \int_{a}^{b} |f(\tau)| d\tau.$$

$$Q.E.D.$$

Лемма.

Пусть $A \in \mathrm{Mat}_{m \times n}(\mathbb{R}), B \in \mathrm{Mat}_{n \times l}(\mathbb{R})$. Тогда

$$|AB| \le n|A||B|.$$

Доказательство.

Пусть AB = C. Тогда

$$|C_i^j| = \left| \sum_{k=1}^n A_i^k B_k^j \right| \le \sum_{k=1}^n \left| A_i^k B_k^j \right| \le \sum_{k=1}^n |A| |B| = n|A| |B|.$$

Q.E.D.

<u>def:</u> Функция $f:G\subset\mathbb{R}^m\to\mathbb{R}^n$ удовлетворяет <u>условию Липшица</u> на множестве G, если найдется $L\in\mathbb{R}$ (константа Липшица), такое что для любых точек $x^1,x^2\in G$ выполнено

$$|f(x^2) - f(x^1)| \le L|x^2 - x^1|.$$

Обозначение: $f \in \text{Lip } G$.

 $\underline{\mathbf{def:}}$ Функция $f:G\subset\mathbb{R}^m\to\mathbb{R}^n$ удовлетворяет условию Липшица локально на множестве G, если для любой точки $x\in G$ можно указать её окрестность U(x), такую что $f\in\mathrm{Lip}(U(x)\cap G)$. Обозначение: $f\in\mathrm{Lip}_{\mathrm{loc}}G$.

Пример. Если $f \in C^1[a,b]$, то $f \in \text{Lip}[a,b]$. Обратное неверно.

<u>def:</u> Функция $f: G \subset \mathbb{R}^{n+1}_{t,r} \to \mathbb{R}^n$ удовлетворяет <u>условию Липшица по r</u> (равномерно по t) на множестве G, если найдётся $L \in \mathbb{R}$, такое что для любых точек $(t, r^1), (t, r^2) \in G$ справедливо неравенство

$$|f(t, r^2) - f(t, r^1)| \le L|r^2 - r^1|.$$

Обозначение: $f \in \text{Lip}_r G$.

 $\underline{\operatorname{def:}}$ Функция $f:G\subset\mathbb{R}^{n+1}_t o\mathbb{R}^n$ удовлетворяет $\underline{\operatorname{условию}}$ Липшица по r локально на множестве G, если для любой точки $x\in G$ можно указать её окрестность U(x), такую что $f\in\operatorname{Lip}_r(U(x)\cap G)$. Обозначение: $f\in\operatorname{Lip}_{r,\operatorname{loc}}G$.

Лемма (достаточное условие локальной липшицевости).

Пусть $G \subset \mathbb{R}^{n+1}_{t,r}$ - область, $f \in C(G \to \mathbb{R}^n)$, $f'_r \in \operatorname{Mat}_n(C(G))$. Тогда $f \in \operatorname{Lip}_{r,\operatorname{loc}}G$.

Доказательство.

Возьмём произвольную точку из области G и построим открытый шар $B \subset G$ с центром в этой точке. Пусть $(t,r^1), (t,r^2) \in B$. В силу выпуклости шара B будет $(t,r^1+s(r^2-r^1)) \in B$ при $s \in [0,1]$. Положим

$$g(s) = f(t, r^1 + s(r^2 - r^1)).$$

Тогда

$$f(t,r^2) - f(t,r^1) = g(1) - g(0) = \int_0^1 g'(s)ds = \int_0^1 f'_r \cdot r'_s ds = \int_0^1 f'_r (t,r^1 + s(r^2 - r^1)) \cdot (r^2 - r^1) ds.$$

Принимая во внимание леммы, получаем

$$|f(t,r^2) - f(t,r^1)| \le \int_0^1 n|f'_r(t,r^1 + s(r^2 - r^1))| |r^2 - r^1| ds \le n \sup_{x \in \bar{B}} |f'_r(x)| \cdot |r^2 - r^1|.$$

Следовательно, $f \in \mathrm{Lip}_r B$. По определению будет $f \in \mathrm{Lip}_{r,\mathrm{loc}} G$.

Q.E.D.

Лемма (достаточное условие глобальной липшицевости).

Пусть область $G \subset \mathbb{R}^{n+1}_{t,r}$, $f \in C(G \to \mathbb{R}^n) \cap \text{Lip}_{r,\text{loc}}$, компакт $K \subset G$. Тогда $f \in \text{Lip}_r K$.

Доказательство.

Докажем методом от противного. Пусть $f \notin \operatorname{Lip}_r K$. Тогда для любого $N \in \mathbb{N}$ найдётся пара точек $(t_N, r^N), (t_N, \tilde{r}^N) \in K$, для которых верно неравенство

$$|f(t_N, r^N) - f(t_N, \tilde{r}^N)| > N|r^N - \tilde{r}^N|.$$

Поскольку K - компакт, то из последовательности $\{(t_N, r^N)\}$ можно выбрать подпоследовательность с номерами $\{N_k\}$, сходящуюся к некоторой точке $(t, r) \in K$. Затем из последовательности $\{(t_{N_k}, \tilde{r}_{N_k})\}$ выберем подпоследовательность с номерами $\{N_{k_l}\}$, сходящуюся к (t, \tilde{r}) . Пусть $\nu = \{N_{k_l} | l \in \mathbb{N}\}$.

Возможны два случая: $r = \tilde{r}$ и $r \neq \tilde{r}$. Рассмотрим сначала первый.

По условию $f \in \mathrm{Lip}_{r,\mathrm{loc}}G$, значит, найдётся окрестность U точки (t,r), в которой $f \in \mathrm{Lip}_rU$, то есть существует постоянная L, для которой

$$|f(\tau, \rho) - f(\tau, \tilde{\rho})| \le L|\rho - \tilde{\rho}|$$

при любых $(\tau, \rho), (\tau, \tilde{\rho}) \in U$. Выберем номер $N \in \nu$ так, чтобы N > L и $(t_N, r^N), (t_N, \tilde{r}^N) \in U$, и положим $\tau = t_N, \, \rho = r^N, \, \tilde{\rho} = \tilde{r}^N$. Тогда из неравенства следует

$$|f(\tau, \rho) - f(\tau, \tilde{\rho})| > N|\rho - \tilde{\rho}| \ge L|\rho - \tilde{\rho}|,$$

что противоречит предыдущему неравенству.

Пусть теперь $r \neq \tilde{r}$. В неравенстве перейдём к пределу при $\nu \ni N \to \infty$. В силу непрерывности функции f получаем

$$|f(t,r) - f(t,\tilde{r})| \ge \infty,$$

что неверно.

Q.E.D.

 $\underline{\mathbf{def:}}$ Пусть $f:G\subset\mathbb{R}^{n+1}\to\mathbb{R}^n$. Функция $\varphi:E\to\mathbb{R}^n$ - решение на E интегрального уравнения

$$r(t) = r^0 + \int_{t_0}^t f(\tau, r(\tau)) d\tau,$$

если $E=\langle a,b\rangle$ и $\varphi(t)\equiv r^0+\int_{t_0}^t f(\tau,\varphi(\tau))d\tau$ на E, где интеграл понимается в смысле Римана.

Лемма (о равносильном интегральном уравнении).

Пусть $E = \langle a, b \rangle, \, t_0 \in E, \, G$ - область в $\mathbb{R}^{n+1}, \, (t_0, r^0) \in G, \, f \in C(G \to \mathbb{R}^n)$. Тогда φ - решение на E задачи Коши

$$r' = f(t, r), \quad r(t_0) = r^0$$

если и только если φ - решение на E уравнения

$$r(t) = r^0 + \int_{t_0}^t f(\tau, r(\tau)) d\tau$$

Доказательство:

Пусть φ - решение на E. Интегрируя равенство $\varphi'(\tau) = f(\tau, \varphi(\tau))$ от t_0 до $t \in E$, обе части которого - непрерывные функции, имеем

$$\varphi(t) - \varphi(t_0) = \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau.$$

Поскольку $\varphi(t_0)=r^0,$ то функция φ - решение уравнения по определению.

Докажем обратное. Пусть φ - решение (3) на E. Тогда из равенства

$$\varphi(t) = r^0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau(4)$$

следует, что $\varphi \in C(E)$. Отсюда и из (4) вытекает дифференцируемость φ . Дифференцируя (4) по t, получаем: $\varphi'(t) \equiv f(t,\varphi(t))$. Кроме того, имеем $\varphi(t_0) = r^0$. Таким образом, φ - решение задачи по определению.

Q.E.D.

Лемма (о гладкой стыковке решений).

Пусть область $G \subset \mathbb{R}^{n+1}_{t,r}$, $f \in C(G \to \mathbb{R}^n)$, $(t_0, r^0) \in G$, уравнение r' = f(t, r) имеет решения: φ_- на (a, t_0) , φ_+ на (t_0, b) . Кроме того, $\varphi_-(t_0-) = \varphi_+(t_0+) = r^0$. Тогда функция

$$\varphi(t) = \begin{cases} \varphi_{-}(t), & \text{если } t \in (a, t_0), \\ r^0, & \text{если } t = t_0, \\ \varphi_{+}(t), & \text{если } t \in (t_0, b) \end{cases}$$

является решением того же уравнения на (a, b).

Доказательство.

Пусть $t, t_{-} \in (a, t_{0})$. По прошлой лемме

$$\varphi_{-}(t) = \varphi_{-}(t_{-}) + \int_{t_{-}}^{t} f(\tau, \varphi_{-}(\tau)) d\tau.$$

Переходя в этом равенстве к пределу при $t_- \to t_0$ и замечая, что $\varphi_- = \varphi$ для точек из отрезка $\overline{t,t_-}$, получаем

$$\varphi(t) = r^0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau. (5)$$

Поступая аналогично для точек $t, t_+ \in (t_0, b)$, при $t_+ \to t_0$ приходим к равенству (5).

Таким образом, равенство (5) выполнено для всех $t \in (a, b)$. Остаётся применить прошлую лемму.

Q.E.D.

Лемма (Гронуолл).

Пусть $D = \langle a, b \rangle$, $\varphi \in C(D)$, $t_0 \in D$, $\lambda, \mu \geq 0$, при любом $t \in D$ верно двойное неравенство

$$0 \le \varphi(t) \le \lambda + \left| \mu \int_{t_0}^t \varphi(\tau) d\tau \right|.$$

Тогда для любого $t \in D$

$$\varphi(t) \le \lambda e^{\mu|t-t_0|}$$
.

Доказательство:

Рассмотрим случай $t \ge t_0$ (при $t < t_0$ доказательство аналогично). Предположим, что $\lambda > 0$, и определим функцию

$$v(t) = \lambda + \mu \int_{t_0}^t \varphi(\tau) d\tau.$$

Имеем v(t) > 0, $v'(t) = \mu \varphi(t) \le \mu v(t)$. Отсюда

$$\frac{v'(t)}{v(t)} \le \mu.$$

Интегрируя это неравенство по отрезку $[t_0, t]$, получаем

$$v(t) \le v(t_0)e^{\mu(t-t_0)}.$$

Следовательно,

$$\varphi(t) \le v(t) \le v(t_0)e^{\mu(t-t_0)} = \lambda e^{\mu(t-t_0)}.$$

Если же $\lambda = 0$, то при любом $\varepsilon > 0$ верно

$$\varphi(t) \le \mu \int_{t_0}^t \varphi(\tau) d\tau \le \varepsilon + \mu \int_{t_0}^t \varphi(\tau) d\tau.$$

По уже доказанному имеем

$$\varphi(t) \le \varepsilon e^{\mu(t-t_0)}$$
.

Переходя здесь к пределу при $\varepsilon \to 0$, получаем $\varphi(t) \le 0$. Значит, лемма верна и при $\lambda = 0$.

Q.E.D.

7 Информация о курсе.

Поток — у2024.

Группы М3138-М3139.

Преподаватель — Бабушкин Максим Владимирович.

