Laborator12 - Temă - Model 2

Petculescu Mihai-Silviu

Laborator12 - Temă - Model 2

Petculescu Mihai-Silviu

Exercițiul 1.0.1

Exercițiul 1.0.2

Exercițiul 1.0.3

Exercițiul 1.0.4

Exerciţiul 1.0.1

Se consideră formula

$$\alpha = (\neg(a \land \neg b) \lor (\neg a \to c)) \to (\neg(\neg a \lor b) \to (c \lor a))$$

și substituția

$$\sigma = \{(x ee
eg m) | lpha, (m \wedge n) | a, (q ee p) | m, a | q \}$$

Să se determine:

- secvenţa generativă formule (SGF) pentru formula α
- ullet tabelul de adevăr pentru formula lpha
- arborele de structură pentru formula α
- $\alpha\sigma$ rezultatul aplicării substituției σ pentru formula α și arborele de structură asociat lui $\alpha\sigma$

Rezolvare

SGF:

$$a,b,c,\neg a,\neg b,a \wedge \neg b,\neg (a \wedge \neg b),\neg a \rightarrow c, (\neg (a \wedge \neg b) \vee (\neg a \rightarrow c)),\neg a \vee b,\neg (\neg a \vee b),c \vee a, (\neg (\neg a \vee b) \rightarrow (c \vee a)), \\ (\neg (a \wedge \neg b) \vee (\neg a \rightarrow c)) \rightarrow (\neg (\neg a \vee b) \rightarrow (c \vee a)) = \alpha$$

Tabel de Adevăr:

a	b	c	$a \wedge \neg b$	eg a o c	$\lnot(a \land \lnot b) \lor (\lnot a \to c)$	$ eg a \lor b$	$c \lor a$	$\neg(\neg a \vee b) \to (c \vee a)$	α
Т	Т	Т	F	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	F	Т	Т	Т
Т	F	F	Т	Т	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	Т	F	Т	Т
F	F	Т	F	Т	Т	Т	Т	Т	Т
F	F	F	F	F	Т	Т	F	Т	Т

Arbore de Structură:

$$T(\alpha):~\swarrow\searrow~, \varphi(r)=\rightarrow, \beta=\neg(a\wedge\neg b)\vee(\neg a\rightarrow c), \gamma=\neg(\neg a\vee b)\rightarrow(c\vee a)$$

$$T(\beta)~T(\gamma)$$

$$T(eta): \swarrow\searrow, arphi(n_1)=ee, eta_1=\lnot(a\wedge\lnot b), eta_2=\lnot a
ightarrow c \ T(eta_1) \ T(eta_2)$$

$$T(eta_1): egin{array}{c} n_3 \ \downarrow \ , arphi(n_3) = \lnot, eta_3 = a \land \lnot b \ T(eta_3) \end{array}$$

$$T(eta_3): \swarrow\searrow, arphi(n_5)=\wedge, eta_4=a, eta_5=
ognames \ T(eta_4) \ T(eta_5)$$

$$T(eta_4) = n_6, arphi(n_6) = a$$

$$T(eta_5): egin{array}{c} n_7 \ \downarrow, arphi(n_7) = \lnot, eta_6 = b \ T(eta_6) \end{array}$$

$$T(eta_6)=n_8, arphi(n_8)=b$$

$$T(eta_2): \swarrow\searrow, arphi(n_4)=
ightarrow, eta_7=
eg a, eta_8=c \ T(eta_7) \ T(eta_8)$$

$$T(eta_8)=n_{10}, arphi(n_{10})=c$$

$$T(eta_7):egin{array}{c} n_9\ \downarrow\ , arphi(n_9)=\lnot, eta_9=a\ T(eta_9) \end{array}$$

$$T(eta_9)=n_{11}, arphi(n_{11})=a$$

$$T(\gamma): \ \swarrow \searrow \ , arphi(n_2) =
ightarrow, \gamma_1 = \lnot(\lnot a \lor b), \gamma_2 = c \lor a \ T(\gamma_1) \ T(\gamma_2)$$

$$T(\gamma_1): egin{array}{c} n_{12} \ dots & ec{\gamma}(n_{12}) = \neg, \gamma_3 = \neg a ee b \ T(\gamma_3) \end{array}$$

$$T(\gamma_3): \swarrow\searrow, arphi(n_{14})=ee, \gamma_4=
eg a, \gamma_5=b \ T(\gamma_4) \ T(\gamma_5)$$

$$T(\gamma_5)=n_{16}, arphi(n_{16})=b$$

$$T(\gamma_1):egin{array}{c} n_{15}\ \downarrow\ , arphi(n_{15}) = \lnot, \gamma_6 = a \ T(\gamma_6) \end{array}$$

$$T(\gamma_6)=n_{17}, \varphi(n_{17})=a$$

$$T(\gamma_2): \swarrow\searrow, arphi(n_{13})=ee, \gamma_7=c, \gamma_8=a \ T(\gamma_7) \ T(\gamma_8) \ T(\gamma_7)=n_{18}, arphi(n_{18})=a \ T(\gamma_8)=n_{19}, arphi(n_{19})=a$$

Final:

Exerciţiul 1.0.2

Se consideră formula $lpha = (\lnot(a \land \lnot b)) o (\lnot(a o b) o (\lnot b \lor a))$

a) Să se verifice validabilitatea formulei α prin aplicarea metodei arborilor semantici.

b) Să se determine rezultatul aplicării funcției de interpretare $I(\alpha)$ asupra formulei α .

$$egin{aligned} I(lpha) &=
eg I(a \wedge
eg b)
ightarrow I(
eg (a
ightarrow b)
ightarrow I(
eg a
ightarrow I(a)
ightarrow I(
eg a
ightarrow I(b))
ightarrow (
eg I(a) \wedge
eg I(b))
ightarrow (
eg I(a) \wedge
eg I(b))
ightarrow (
eg I(a)
ightarrow I(b))
ightarrow T
ightarrow$$

Exercițiul 1.0.3

a) Să se verifice dacă următorul secvent este demonstrabil:

$$S = \{(a \lor (b \to c)), (a \to \neg c)\} \Rightarrow \{\neg (d \lor \neg b) \to \neg c\}$$

Sistem:

$$S = \{a \lor (b \to c), a \to \neg c\} \Rightarrow \{\neg (d \lor \neg b) \to \neg c\}$$

$$G8: r1 = \{a \lor (b \to c), a \to \neg c, \neg (d \lor \neg b)\} \Rightarrow \{\neg c\}$$

$$G1: r2 = \{a \lor (b \to c), a \to \neg c\} \Rightarrow \{d \lor \neg b, \neg c\}$$

$$G7: r3 = \{a \lor (b \to c), a \to \neg c\} \Rightarrow \{d, \neg b, \neg c\}$$

$$G5: r4 = \{a \lor (b \to c), a \to \neg c, c, b\} \Rightarrow \{d\}$$

$$G4: r5 = \{a \lor (b \to c), \neg c, c, b\} \Rightarrow \{d\}$$

$$r6 = \{a \lor (b \to c), \neg c, c, b\} \Rightarrow \{d\}$$

$$r6 = \{a \lor (b \to c), c, b\} \Rightarrow \{d, c\} \text{ secvent axiom }$$

$$G3: r8 = \{a, c, b\} \Rightarrow \{a, d\} \text{ secvent axiom }$$

$$r9 = \{b \to c, c, b\} \Rightarrow \{a, d\}$$

$$G4: r10 = \{c, b\} \Rightarrow \{a, d\} \text{ secvent incheiat }$$

$$r11 = \{c, b\} \Rightarrow \{b, a, d\} \text{ secvent axiom }$$

$$S \text{ nu e tautologie}$$

Schema:

b) Să se calculeze mulțimile α_{λ}^+ , α_{λ}^- , α_{λ}^0 , $POS_{\lambda}(\alpha)$, $NEG_{\lambda}(\alpha)$, $REZ_{\lambda}(\alpha)$ unde $\lambda=\eta$, respectiv $\lambda=\neg\theta$, iar

$$S(\alpha) = \{ \neg \gamma \lor \beta \lor \neg \delta, \neg \beta \lor \eta \lor \neg \gamma, \neg \theta, \beta, \theta \lor \beta \lor \neg \eta, \delta \lor \beta \lor \neg \theta, \gamma \lor \eta \lor \neg \delta \}$$

Pentru $\lambda=\eta$

$$\begin{split} \alpha_{\lambda}^{+} &= \{ \neg \beta \lor \eta \lor \neg \gamma, \gamma \lor \eta \lor \neg \delta \} \\ \alpha_{\lambda}^{-} &= \{ \theta \lor \beta \lor \neg \eta \} \\ \alpha_{\lambda}^{0} &= \{ \neg \gamma \lor \beta \lor \neg \delta, \neg \theta, \beta, \delta \lor \beta \lor \neg \theta \} \\ POS_{\lambda}(\alpha) &= \{ \neg \gamma \lor \beta \lor \neg \delta, \neg \theta, \beta, \delta \lor \beta \lor \neg \theta, \neg \beta \lor \neg \gamma, \gamma \lor \neg \delta \} \\ NEG_{\lambda}(\alpha) &= \{ \neg \gamma \lor \beta \lor \neg \delta, \neg \theta, \beta, \delta \lor \beta \lor \neg \theta, \theta \lor \beta \} \\ REZ_{\lambda}(\alpha) &= \{ \neg \gamma \lor \beta \lor \neg \delta, \neg \theta, \beta, \delta \lor \beta \lor \neg \theta, \theta \lor \neg \gamma, \gamma \lor \neg \delta \lor \theta \lor \beta \} \end{split}$$

Pentru $\lambda = \neg \theta$

$$\begin{split} \alpha_{\lambda}^{+} &= \{ \neg \theta, \delta \vee \beta \vee \neg \theta \} \\ \alpha_{\lambda}^{-} &= \{ \theta \vee \beta \vee \neg \eta \} \\ \alpha_{\lambda}^{0} &= \{ \neg \gamma \vee \beta \vee \neg \delta, \neg \beta \vee \eta \vee \neg \gamma, \beta, \gamma \vee \eta \vee \neg \delta \} \\ POS_{\lambda}(\alpha) &= \{ \neg \gamma \vee \beta \vee \neg \delta, \neg \beta \vee \eta \vee \neg \gamma, \beta, \gamma \vee \eta \vee \neg \delta, \Box, \delta \vee \beta \} \\ NEG_{\lambda}(\alpha) &= \{ \neg \gamma \vee \beta \vee \neg \delta, \neg \beta \vee \eta \vee \neg \gamma, \beta, \gamma \vee \eta \vee \neg \delta, \beta \vee \neg \eta \} \\ REZ_{\lambda}(\alpha) &= \{ \neg \gamma \vee \beta \vee \neg \delta, \neg \beta \vee \eta \vee \neg \gamma, \beta, \gamma \vee \eta \vee \neg \delta, \Box \vee \beta \vee \neg \eta, \delta \vee \beta \vee \neg \eta \} \end{split}$$

Exercițiul 1.0.4

Să se determine forma normală conjunctivă (CNF) și să se aplice algoritmul Davis-Putnam pentru formula $\alpha=((\neg a\lor b)\leftrightarrow (d\to c))$

CNF:

$$\begin{split} ((\neg a \lor b) \to (d \to c)) \land ((d \to c) \to (\neg a \lor b)) \\ (\neg (\neg a \lor b) \lor (\neg d \lor c)) \land (\neg (\neg d \lor c) \lor (\neg a \lor b)) \\ ((a \land \neg b) \lor (\neg d \lor c)) \land ((d \land \neg c) \lor (\neg a \lor b)) \\ (a \lor \neg d \lor c) \land (\neg b \land \neg d \lor c) \land (d \lor \neg a \lor b) \land (\neg c \lor \neg a \lor b) \end{split}$$

Davis-Putnam:

$$Initializare: \gamma \leftarrow \{a \lor \neg d \lor c, \neg b \land \neg d \lor c, d \lor \neg a \lor b, \neg c \lor \neg a \lor b\}$$

$$sw \leftarrow false, T \leftarrow \emptyset$$

$$Iteratia\ 1: Nu\ exista\ literar\ pur\ sau\ clauza\ unitara$$

$$alegem\ \lambda = b\ literar$$

$$\gamma \leftarrow NEG_b(\gamma) = \{a \lor \neg d \lor c, \neg d \lor c\}$$

$$T \leftarrow POS_b(\gamma) = \{a \lor \neg d \lor c, d \lor \neg a, \neg c \lor \neg a\}$$

$$Iteratia\ 2: \lambda = c\ literar\ pur$$

$$\gamma \leftarrow NEG_c(\gamma) = \emptyset$$

$$Iteratia\ 3: \gamma = \emptyset, \gamma \leftarrow T = \{a \lor \neg d \lor c, d \lor \neg a, \neg c \lor \neg a\}$$

$$T = \emptyset$$

$$Iteratia\ 4: Nu\ exista\ literar\ pur\ sau\ clauza\ unitara$$

$$alegem\ \lambda = a\ literar$$

$$\gamma \leftarrow NEG_a(\gamma) = \{d, \neg c\}$$

$$T \leftarrow POS_a(\gamma) = \{\neg d \lor c\}$$

$$Iteratia\ 5: \lambda = d\ clauza\ unitara$$

$$\gamma \leftarrow NEG_d(\gamma) = \{\neg c\}$$

$$Iteratia\ 6: \lambda = \neg c\ clauza\ unitara$$

$$\gamma \leftarrow NEG_{\neg c}(\gamma) = \emptyset$$

$$Iteratia\ 7: \gamma = \emptyset, \gamma \leftarrow T = \{\neg d \lor c\}$$

$$T = \emptyset$$

$$Iteratia\ 8: \lambda = c\ literar\ pur$$

$$\gamma \leftarrow NEG_c(\gamma) = \emptyset$$

Iteratia $9: \gamma = \emptyset \Rightarrow write('validalibila'), sw \leftarrow true$