FIG.1

FIG.3 EXAMPLE OF GAS-SUPPLY TIMING CHART

FIG.5 EXAMPLE OF GAS-SUPPLY TIMING CHART

5/12

FIG.8

Cat-CVD STEP COVERAGE BY SiH₄/NH₃/H₂

	NH ₃ FLOW RATE [sccm] (SiH_/NH ₃ /H ₂ =[7/10/(VARIABLE)]sccm, 10Pa)				
	0	10	15	30	
300°C					
100°C				TANA	

FIG.9 COMPARISON BETWEEN ADDITIVE GASES OF COVERAGE

SiH₄/NH₃/H₂

SiH₄/NH₃/N₂

Appln No.: New Application Atty. Docket No.: 101136-00131

FIG. 10
IN-SITU POST TREATMENT PRESSURE DEPENDENCY

Atty. Docket No.: 101136-00131

FIG. 12 GAS ATMOSPHERE DEPENDENCY AT COMPOSITE POST TREATMENT TOTAL SIN THICKNESS: 500 Å

ELECTRIC FIELD (MV/cm)

FIG. 13 UNIT-FILM THICKNESS DEPENDENCY OF LAYERED CAT-SIN FILM

 $\pmb{FIG.14} \ \ \text{composition ratio of sin film by nh_3 restrained sih_4/nh_3/h_2}$

Applin No.: New Application Atty. Docket No.: 101136-00131

9/12

 $FIG.15 \hspace{0.2cm} \hbox{composition ratio of sin films by NH$_3$ restrained SiH$_4/N$H$_3/H$_2}$

FIG. 16

GAS IRRADIATION SEQUENCE DEPENDENCY AT in-situ POST TREATMENT

LEST AVAILABLE COP.

10/12

FIG.17

HYDROGEN CONTENT IN Cat-Sin FILM

	Si-H (cm ⁻³)	N-H (cm ⁻³)	TOTAL-H (cm ⁻³)
SINGLE LAYER Cat-SiN	3×10^{21}	4 × 10 ²¹	7 × 10 ²¹
LAMINATED Cat-SIN BY POST TREATMENT IN EVERY UNIT LAYER	2 × 10 ²¹	5 × 10 ²⁰	2 × 10 ²¹
PECVD-SiN	6 × 10 ²¹	1 × 10 ²²	2 × 10 ²²

500 Å-THICKNESS Cat-SiN (100°C)

FIG. 18 COMPARISON OF HYDROGEN CONTENT OF EACH Cat-Sin FILM

SUPPLY	LY GAS (sccm)		THIN FILM CTRUCTURE	Si-H	N-H	TOTAL-H
SiH₄	NH₃	H ₂	THIN FILM STRUCTURE	(cm ⁻³)	(cm ⁻³)	(cm ⁻³)
7	100	_	CINCLE LAVED	2.4×10^{21}	3.6×10^{21}	6 × 10 ²¹
1	10	10	SINGLE LAYER	1.1 × 10 ²²	2.3×10^{21}	1.3 × 10 ²²
↑	100	_	POST TREATMENT IN	1.1×10^{21}	5.7×10^{21}	6.8×10^{21}
<u> </u>	10	10	EVERY UNIT LAYER	9.2 × 10 ²⁰	1.3×10^{21}	2.2×10^{21}

Appln No.: New Application Atty. Docket No.: 101136-00131

11/12

FIG. 19

	CONVENTIONAL METHOD	METHOD OF PRESENT INVENTION
SiH4(sccm)	7	7
NH3(sccm)	10	10
H2(sccm)	10	10
PRESSURE (Pa)	10	10
CATALYST BODY (°C)	1700	1700
FILM THICKNESS OF ONE-TIME FILM FORMATION (nm)	50	1
NUMBER OF REPETITIONS (TIMES)	1	50
ONE SURFACE TREATING STEP	NONE	H2
OTHER SURFACE TREATING STEP	NONE	NHз

FIG.20

	CONVENTIONAL METHOD	METHOD OF PRESENT INVENTION
SiH4(sccm)	7	7
NH3(sccm)	10	10
H2(sccm)	10	10
PRESSURE (Pa)	10	10
CATALYST BODY (°C)	1700	1700
FILM THICKNESS OF ONE-TIME FILM FORMATION	100	1
NUMBER OF REPETITIONS (TIMES)	1	100
ONE SURFACE TREATING STEP	NONE	H2
OTHER SURFACE TREATING STEP	NONE	NНз

12/12

FIG.21

	CONVENTIONAL METHOD	METHOD OF PRESENT INVENTION
SIDE COVERAGE (%)	70	72
BOTTOM COVERAGE (%)	87	90
I-V WITHSTAND VOLTAGE PROPERTIES (MV/cm)	0.1	4.8

FIG.22

	CONVENTIONAL METHOD	METHOD OF PRESENT INVENTION
SiH4(sccm)	7	7
NH3(sccm)	100	10
H2(sccm)	0	10
PRESSURE (Pa)	10	10
CATALYST BODY (°C)	1700	1700
FILM THICKNESS OF ONE-TIME FILM FORMATION (nm)	100	. 1
NUMBER OF REPETITIONS (TIMES)	1	100
ONE SURFACE TREATING STEP	NONE	H ₂
OTHER SURFACE TREATING STEP	NONE	NH3

FIG.23

	CONVENTIONAL METHOD	METHOD OF PRESENT INVENTION
IN-PLANE UNIFORMITY (±%)	10	4
ETCHING RATE (nm/min)	6	2