Classes of Sets

Set Operations

> Union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

> Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

➤ Difference

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

> Subset

$$A \subset B \text{ if } x \in A \text{ implies } x \in B$$

De Morgan's Identities

$$\left[\bigcup_{i=1}^{\infty} A_i\right]^c = \bigcap_{i=1}^{\infty} A_i^c \text{ and } \left[\bigcap_{i=1}^{\infty} A_i\right]^c = \bigcup_{i=1}^{\infty} A_i^c$$

Distributive Law

$$A \cap \left(\bigcup_{i=1}^{\infty} B_i\right) = \bigcup_{i=1}^{\infty} (A \cap B_i)$$

$$A \cup \left(\bigcap_{i=1}^{\infty} B_i\right) = \bigcap_{i=1}^{\infty} \left(A \cup B_i\right)$$

Let Ω be a nonempty set. A class \mathcal{F} of subsets of Ω is called an algebra if

- $\Omega \in \mathcal{A}$,
- ii. $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$,
- *iii.* $A, B \in \mathcal{F}$ implies $A \cup B \in \mathcal{F}$.

A class \mathcal{F} of subsets of Ω is called a σ -algebra if \mathcal{F} is an algebra and $A_1, A_2, ... \in \mathcal{F}$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. The pair (Ω, \mathcal{F}) is called a measurable space. The elements of a σ -algebra \mathcal{F} are called measurable sets.

Let $A \subset \Omega$. Then $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ is a σ -algebra.

Let \mathcal{F} consists of the finite and cofinite (A being cofinite if A^c is finite) subsets of a set Ω . Then \mathcal{F} is an algebra. If Ω is finite then \mathcal{F} is also a σ -algebra. If Ω is infinite, however, then \mathcal{F} is not a σ -algebra.

Let \mathcal{F} consists of the countable and co-countable (A being co-countable if A^c is countable) subsets of a set Ω . Then \mathcal{F} is a σ -algebra.

Let \mathcal{C} be a class of subsets of Ω . Then $\sigma(\mathcal{C})$, the σ -algebra generated by \mathcal{C} , is the smallest σ -algebra \mathcal{F} on Ω such that $\mathcal{C} \subseteq \mathcal{F}$.

Theorem 1

The σ -algebra generated by \mathcal{C} is the intersection of all σ -algebras on Ω containing \mathcal{C} .

The Borel σ -algebra \mathcal{B} on \mathbb{R} is defined as the smallest σ -algebra containing the open sets in \mathbb{R} . An open set in \mathbb{R} is either empty or a disjoint union of a countable collection of open intervals. This σ -algebra is generated by the collection $\pi(\mathbb{R})$ defined by

$$\pi(\mathbb{R}) = \{(-\infty, x] : x \in \mathbb{R}\}.$$

The elements of \mathcal{B} are called Borel sets.

Let Ω be a nonempty set. A collection \mathcal{I} of subsets of Ω is called a π -system if whenever $A, B \in \mathcal{I}$ we have $A \cap B \in \mathcal{I}$. A collection \mathcal{D} of subsets of Ω is called a d-system if

- $\Omega \in \mathcal{D}$,
- ii. $A, B \in \mathcal{D}$ and $A \subseteq B$ implies $B \setminus A \in \mathcal{D}$,
- *iii.* $A_1, A_2, ... \in \mathcal{D}$ and $A_1 \subset A_2 \subset \cdots$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{D}$.

Theorem 2

A collection \mathcal{F} of subsets of Ω is a σ -algebra if and only if \mathcal{F} is both a π -system and a d-system.

Theorem 3

If \mathcal{I} is a π -system and \mathcal{D} is a d-system with $\mathcal{I} \subset \mathcal{D}$, then $\sigma(\mathcal{I}) \subset \mathcal{D}$.