Effective Theory 1

1 Energy-based Model

Definition 1. [Energy-based Model]

Let \mathcal{M} a measure space, and $E: \mathbb{R}^m \to (\mathcal{M} \to \mathbb{R})$. Then define probabilitic model based on E as

$$p(x;\theta) = \frac{\exp(-E(x;\theta))}{\int_{\mathcal{M}} dx' \exp(-E(x';\theta))},$$

where $\theta \in \mathbb{R}^m$ and $x \in \mathcal{M}$.

We call this an energy-based model, where $E(\cdot;\theta)$ is called a energy function parameterized by θ .

Theorem 2. [Universality]

For any probability density $q: \mathcal{M} \to \mathbb{R}$ and for $\forall C \in \mathbb{R}$, define, for $\forall x \in \text{supp}(q)$,

$$E_q(x) := -\ln q(x) + C,$$

then, for $\forall x \in \text{supp}(q)$,

$$q(x) = \frac{\exp(-E_q(x))}{\int_{\text{supp}(q)} dx' \exp(-E_q(x'))}.$$

That is, for any probability density, there exists an energy function (up to constant) that can describe the probability density.

Theorem 3. [Activity Rule]

The local maximum of $p(\cdot; \theta)$ is the local minimum of $E(\cdot; \theta)$, and vice versa.

Theorem 4. [Learning Rule]

For any probability density $p_D: \mathcal{M} \to \mathbb{R}$, define Lagrangian $L(\theta; p_D) := -\int_{\mathcal{M}} dx \, p_D(x) \ln p(x; \theta)$. Then, the gradient of Lagrangian w.r.t. component θ^{α} is

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \int_{\mathcal{M}} dx \, p_D(x) \, \frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) - \int_{\mathcal{M}} dx \, p(x; \theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(x; \theta),$$

 $or\ in\ more\ compact\ format,$

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \mathbb{E}_{x \sim p_D} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right] - \mathbb{E}_{x \sim p(x; \theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right].$$

2 Effective Theory

Definition 5. *[Effective Energy]*

Suppose exists $(\mathcal{V}, \mathcal{H})$, s.t. $\mathcal{M} = \mathcal{V} \oplus \mathcal{H}$. Re-denote $E(x; \theta) \to E(v, h; \theta)$ and $p(x; \theta) \to p(v, h; \theta)$. Then, define effective energy $E_{\text{eff}}: \mathcal{V} \to \mathbb{R}$ as

$$E_{\text{eff}}(v;\theta) := -\ln \int_{\mathcal{H}} dh \exp(-E(v,h;\theta)).$$

Theorem 6. [Effective Theory]

Recall that $p(v;\theta) := \int_{\mathcal{H}} dh \, p(v,h;\theta)$. Then,

$$p(v; \theta) = \frac{\exp(-E_{\text{eff}}(v; \theta))}{\int_{\mathcal{V}} dv' \exp(-E_{\text{eff}}(v'; \theta))}.$$

Lemma 7. [Gradient of Effective Energy]

$$\frac{\partial E_{\text{eff}}}{\partial \theta^{\alpha}}(v,\theta) = \int_{\mathcal{H}} dh \, p(h|v;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta).$$

Theorem 8. [Learning Rule of Effective Theory]

2 Section 3

For any probability density $p_D: \mathcal{V} \to \mathbb{R}$, define Lagrangian $L(\theta; p_D) := -\int_{\mathcal{V}} dv \, p_D(v) \ln p(v; \theta)$. Then, the gradient of Lagrangian w.r.t. component θ^{α} is

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \int_{\mathcal{V}} dv \int_{\mathcal{H}} dh \, p_D(v) \, p(h|v;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta) - \int_{\mathcal{V}} dv \int_{\mathcal{H}} dh \, p(v,h;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta),$$

or in more compact format,

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \mathbb{E}_{v \sim p_D, h \sim p(h|v;\theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(v, h; \theta) \right] - \mathbb{E}_{v, h \sim p(v, h; \theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(v, h; \theta) \right].$$

3 Examples

Example 9. [Boltzmann Machine]

• Let $\mathcal{M} = \{0,1\}^n$, $W \in \mathbb{R}^{(n \times n)}$, $b \in \mathbb{R}^n$, $\theta := (W,b)$. Then a Boltzmann machine is defined by energy function

$$E(x;W,b) := -(1/2) \sum_{\alpha,\beta \neq \alpha} W_{\alpha\beta} x^\alpha x^\beta - \sum_\alpha b_\alpha x^\alpha.$$

• Direct calculation gives

$$p(x_{\alpha} = 1 | x_{\setminus \alpha}) = \sigma \left(\sum_{\beta \neq \alpha} W_{\alpha\beta} x^{\beta} + b_{\alpha} \right).$$

Example 10. [Restricted Boltzmann Machine]

• Let $\mathcal{V} = \{0,1\}^n$ and $\mathcal{H} = \{0,1\}^m$. Let $W \in \mathbb{R}^{(n \times m)}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$, $\theta := (W, b, c)$. Then a restricted Boltzmann machine is defined by energy function

$$E(v,h;W,b,c) := -(1/2) \sum_{\alpha,\,\beta \neq \alpha} W_{\alpha\beta} \, v^\alpha \, h^\beta - \sum_\alpha \, b_\alpha \, v^\alpha - \sum_\alpha \, c_\alpha \, h^\alpha.$$

• Direct calculation gives

$$E_{\text{eff}}(v; W, b, c) = -\sum_{\alpha} b_{\alpha} v^{\alpha} - \sum_{\beta} s_{+} \left(\sum_{\alpha} W_{\alpha\beta} v^{\alpha} + c_{\beta} \right),$$

where s_{+} represents soft-plus function.