第2章 关系数据库

计科2201zzy友情分享 😇 😋

关系数据结构

• 关系模型建立在集合代数的基础上。以下给出关系数据结构的形式化定义。

关系

- 域: 域是一组具有相同数据类型的值的集合。
- 关系: $D_1 \times D_2 \times \dots D_n$ 的子集叫做在域 D_1, D_2, \dots, D_n 上的关系,表示为 $R(D_1, D_2, \dots, D_n)$
- 候选码: 若关系中的某一属性组能唯一地标识一个元组(这样的属性组称为超码),而 其子集不能,则称该属性组为候选码。
 - 主码: 若一个关系中有多个候选码,则选定其中一个为主码。
 - 候选码的诸属性称为主属性。不包含在任何候选码中的属性称为非主属性或非码属性。

关系模式

- 关系模式是对关系的描述,是型;关系是值。
 - 关系模式是静态的、稳定的。
 - 关系是关系模式在某一时刻的状态或内容,是动态的、随时间变化的。
- 关系模式可形式化地表示为: R(U, D, DOM, F); 可以简记为 $R(A_1, A_2, \ldots, A_n)$
 - R: 关系名
 - A_1, A_2, \ldots, A_n : 属性名

关系数据库

- 关系数据库也有型和值的区分
 - 型:关系数据库模式,包含若干个关系模式
 - 值:这些关系模式在某一时刻对应的关系的集合

关系操作

- 増删改查
- 特点:集合操作方式——操作的对象和结果都是集合

关系数据语言

关系代数语言:

- 用对关系的运算来表达查询要求
- 关系演算语言:用谓词来表达查询要求
- 具有双重特点的语言: SQL
 - SQL (结构化查询语言),集查询、数据定义语言、数据操纵语言和数据控制语言 (DCL)于一体的关系数据语言。

关系的完整性

- 关系模型的完整性规则是对关系的某种约束条件。包括实体完整性、参照完整性和用户 定义的完整性
- 实体完整性和参照完整性是关系模型必须满足的完整性约束条件,被称作是关系的两个 不变性

实体完整性

- 若属性A是基本关系R的主属性,则属性A不能取空值。
 - 详细说明

参照完整性

外码的概念

- 现有关系R和S, F是关系R的一个或一组属性, 但不是它的码。
 - 如果F和S的主码 K_S 相对应,则称F是R的外码。
 - 称基本关系R为参照关系;基本关系S为被参照关系或目标关系。谁的主码被用,谁就是被参照的。
 - 关系R和S不一定是不同的关系。如学生表 学生(学号,姓名,性别,班长) 中的一个属性 "ta的班长" (填对应学生学号)。

关系代数

- 关系代数用对关系的运算来表达查询。
- 关系代数运算的三个要素

• 运算对象&运算结果: 都是关系

• 运算符: 见下表

集合运算符	含义	关系运算符	含义
U	并	σ	选择
_	差	П	投影
Λ	交	\bowtie	连接
×	笛卡尔积	÷	除

传统的集合运算

- 二目运算,包括并、差、交、笛卡尔积四种。
- **记号引入**: 设关系 R 和关系 S 具有相同的目 n (即具有n个属性),且相应的属性取自同一个域。t 是元组变量,表示任意一个元组。以下是对四种运算的形式化阐述。
 - #: $R \cup S = \{t | t \in R \lor t \in S\}$
 - $\not\equiv$: $R S = \{t | t \in R \land t \notin S\}$
 - \mathfrak{Z} : $R \cap S = \{t | t \in R \land t \in S\}$
 - 笛卡尔积: $R \times S = \{t_r t_s | t_r \in R \land t_s \in S\}$
 - $t_r t_s$ 称为元组的连接。它是一个 n+n 列的元组。

专门的关系运算

- 专门的关系运算包括选择、投影、连接、除运算等。
- **记号引入**: 设关系模式为 $R(A_1, A_2, ..., A_n)$, 它的一个关系设为R. $t \in R$ 表示 $t \not\in R$ 的一个元组。 $t[A_i]$ 则表示元组 t 中相应于属性 A_i 的一个分量。

选择

- 在关系 R 中选择满足给定条件的诸元组。即选取符合条件的行。
- 记作: $\sigma_F(R) = \{t | t \in R \land F(t)$ 为真 $\}$
 - 其中 F 表示选择条件,是一个逻辑表达式。用比较运算符和逻辑运算符进行连接。
- 以StudentCourse数据库为例
 - 查询信息系全体学生: $\sigma_{Sdept='IS'}(Student)$
 - 查询年龄小于20岁的学生: $\sigma_{Sage<20}(Student)$

投影

- 关系R上的投影:指从 R 中选择出若干属性列组成新的关系。投影操作是从列的角度进行的运算。
- 记作: $\Pi_A(R) = \{t[A] | t \in R\}$
 - 其中 A 为 R 中的属性列。
- 同样以SC数据库为例
 - 查询学生的姓名与所在系: $\Pi_{Sname,Sdept}(Student)$

连接

- 连接也称为 θ 连接, 指从两个关系的笛卡儿积中选取属性间满足一定条件的元组。
- 记作: $R igotimes_{AB} S = \{ t_r \widehat{t}_s | t_r \in R \land t_s \in S \land t_r[A] heta t_s[B] \}$
 - 其中 θ 是比较运算符。连接运算从 $R \times S$ 中选取<mark>对应属性列满足这一比较关系的</mark>元 组。
- 等值连接: θ 为 "=" 的连接运算称为等值连接。

- 自然连接:一种特殊的等值连接。
 - 要求两关系中比较的分量同名,并在结果中去掉重复的属性列。(同时从行和列的角度进行的运算)。
 - 此时 AθB 可以省略
- 外连接: 把悬浮元组也保留在结果关系中的自然连接。其他属性上填入空值。
 - 悬浮元组:一个关系中的有些元组,在另一关系中并不存在公共属性相等的元组。

除运算

- 设关系 R 除以关系 S 的结果为关系 T,则:
 - T 包含所有在 R 但不在 S 中的属性及其值
 - T 的元组与 S 的元组的所有组合都在 R 中
- **记号引入**: 给定关系 R(X,Y) 和 S(Y,Z), 其中X,Y,Z 为属性组。
- R 和 S 的除运算得到一个新的关系 P(X), P 是 R 中满足下列条件的元组在 X 属性列上的投影:
 - 元组在 X 上分量值 x 的象集 Y_x 包含 S 在 Y 上投影的集合。
- 记作: $R \div S = \{t_r[X] | t_r \in R \land \Pi_Y(S) \in Y_x\}$
 - 其中 Y_x 是 x 在 R 中的象集, $x = t_r[x]$.
- 形象化理解by zzy:
 - 找到R关系和S关系的共有属性列。取出R中的所有元组,每个元组都按照列纵向掰成A和B两个元组,其中A元组只包含共有列,B元组包含其它的列。则A元组就是B的象集中的一个元素。
 - 上述的所有的A元组,有哪些也包含在S关系中?记下它们。
 - 如果有一个B元组,它对应的所有A元组都在S里面,那么它就是结果元组之一。