UNIVERSIDADE REGIONAL DE BLUMENAU

DEPARTAMENTO DE SISTEMAS E COMPUTAÇÃO

ARQUITETURA DE COMPUTADORES PARTE 1

Prof. Everson Pedro Burg

1. SISTEMAS DE NUMERAÇÃO

- ➤ Sistemas de numeração → A técnica para representar e trabalhar com números é chamada de sistema numérico.
- Diversos sistemas de numeração foram criados durante a história das civilizações

Sumério

' ₹	"∢₹	21 ≪ ₹	31 ₹ €€₹ ₹	₹ ₹	³¹
2	12 4 Y Y	²² ⋘ ₹ ₹	³² ←← ↑ ↑	⁴² ₹ ₹ ₹	52 ▼ ▼ ▼
3 7 77	13 ₹ ₹ ₹₹	23 44 PYY	₩	43 TWY	
4 454	14 ◀ ❤️	24 **	³⁴ ₩	**************************************	**************************************
* **	15 ∢ ₩	25 ← ▼	35 ₹ ₹₹	45 **	*************************************
· ***	16 ∢₩	26 ← ₩	³6 ₹ ₹₹	* €₩	**************************************
7 ***	¹⁷ ∢ ₩	²⁷	37 *** \\\	47 4 7	⁵⁷ ₹ ₩
* ************************************	¹8 ∢ ₩	²⁸ ≪ ₩	**************************************	⁴⁸ ₹ ₩	**************************************
⁹ ****	1"∢₩	²⁹	³ ³ ≪₩	⁴⁹ €₩	**************************************
10	20 €€	30 ₩	40	50	60 🔻

Egípcio

Símbolo Egípcio	Descrição do símbolo	O número na nossa notação	
	bastão	1	
n	calcanhar	10	
9 1	rolo de corda	100	
X	flor de lótus	1000	
17	dedo a apontar	10000	
OX	peixe	100000	
1 33	homem	1000000	

1. SISTEMAS DE NUMERAÇÃO

- > O sistema de numeração decimal é um dos sistemas de numeração mais comuns
- Dutros sistemas de numeração populares incluem sistema de numeração binário, sistema de numeração octal, sistema de numeração hexadecimal, etc
- Tais sistemas foram/são bastante comum na área da computação

1.1 SISTEMAS DE NUMERAÇÃO DECIMAL

- ➤ Sistema Numérico Decimal → O sistema numérico decimal é um sistema numérico de base 10 com 10 dígitos de 0 a 9
- Qualquer quantidade numérica pode ser representada usando esses 10 dígitos
- > O sistema de numeração decimal também é um sistema de valores posicionais, ou seja, o valor dos dígitos dependerá de sua posição

Exemplo: 126, 367 e 694. O número 6, presente nestes 3 números, possui valores diferentes

- 126 **→** 6 unidades ou 6 x 1;
- 367 **→** 6 dezenas ou 6 x 10
- 694 **\(\rightarrow\)** 6 centenas ou 6 x 100

1.1 SISTEMAS DE NUMERAÇÃO DECIMAL

• O peso de cada posição pode ser representado da seguinte forma

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
--

Exemplo: $5269 = 5 \times 10^3 + 2 \times 10^2 + 6 \times 10^1 + 9 \times 10^0$

• Caso de números depois da vírgula

10-1	10-2	10-3	10-4	10 -5	10 ⁻⁶	•••
------	------	------	------	--------------	-------------------------	-----

• Exemplo: $12,584 = 1 \times 10^1 + 2 \times 10^0 + 5 \times 10^{-1} + 8 \times 10^{-2} + 4 \times 10^{-3}$ Décimo Centésimo Milésimo

1.1 SISTEMAS DE NUMERAÇÃO DECIMAL

- Nos sistemas digitais, as instruções são dadas por meio de sinais elétricos e utilizar o sistema decimal, não seria fácil de implementar. Assim, outros sistemas numéricos que são mais fáceis de implementar digitalmente foram desenvolvidos
- Em computadores digitais, a maneira mais fácil de variar as instruções através de sinais elétricos é o sistema de dois estados ligado e desligado. *On* é representado como 1 e *off* como 0
- O sistema numérico que possui apenas esses dois dígitos (0 e
 1) é chamado de sistema numérico binário

- ➤ Sistema Binário → O sistema binário, ou base 2, é um sistema de numeração posicional em que todas as quantidades se representam com base em dois números, isto é, 0 e 1
- Em geral, em sistemas digitais, o sinal de tensão é utilizado para definir o estado, isto é, com tensão (Vcc) nível lógico 1, sem tensão (0 V) nível lógico 0
- ➤ Cada dígito binário também é chamado de bit → Exemplo, o número 1011 possui 4 bits, já o número 01100111 possui 8 bits
- Em qualquer número binário, o dígito mais à direita é chamado de bit menos significativo (LSB) e o dígito mais à esquerda é chamado de bit mais significativo (MSB) 10010010

> O sistema numérico binário também é um sistema de valores posicionais, onde cada dígito tem um valor expresso em potências de 2

|--|

Exemplo:
$$1001 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

E o equivalente decimal deste número é a soma do produto de cada dígito com seu valor posicional

$$1001 = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$
$$1001 = 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1$$
$$1001_{2} = 8 + 0 + 0 + 1 = 9_{10}$$

Número de bits x Combinações

Bits	Combinações	Binários	
1	$2^1 = 2$	0 e 1	
2	$2^2 = 4$	00, 01, 10, 11	
3	$2^3 = 8$	000, 001, 010, 011, 100, 101, 110, 111	
4	$2^4 = 16$	0000 a 1111	
5	$2^5 = 32$	00000 a 11111	
6	$2^6 = 64$	000000 a 111111	
7	$2^7 = 128$	0000000 a 1111111	
8	$2^8 = 256$	00000000 a 1111111	
9	$2^9 = 512$	000000000 a 11111111	
10	$2^{10} = 1024$	000000000 a 11111111	

Quanto maior o número de bits, maior a quantidade de informação que pode ser armazenada

Ex: Profundidade de cor em TVs digitais

➤ Unidades binárias → As unidades binárias visam simplificar a notação de números binários. Por exemplo, a memória do computador é medida em termos de quantos bits ela pode armazenar

1 bit (b)	bit que é a menor unidade de informação que pode ser armazenada ou transmitida	
1 byte (B)	8 bits	
1 Kilobyte (KB)	1024 bytes	
1 Megabyte (MB)	1024 KB	
1 Gigabyte (GB)	1024 MB	
1 Terabyte (TB)	1024 GB	
1 Petabyte (PB)	1024 TB	
1 Exabyte (EB)	1024 PB	
:	:	

Ex: Se cada letra do computador é armazenada a 8 bits, ou seja, 1 byte, a palavra ARTE utiliza 32 bits ou 4 bytes

Qual a capacidade máxima de memória de um sistema operacional de 32 bits?

1.3 SISTEMAS DE NUMERAÇÃO OCTAL

- ➤ Sistema Octal → O sistema octal, ou base 8, é um sistema de numeração posicional no qual usa 8 símbolos para sua representação, isto é, 0, 1, 2, 3, 4, 5, 6 e 7
- Também é um sistema posicional e durante algum tempo, o sistema octal foi bastante utilizado em computadores como uma alternativa de compactação de números binários

• • •	8 ⁵	84	8 ³	8 ²	81	80
-------	-----------------------	----	-----------------------	----------------	----	----

Exemplo:
$$721_8 = 7 \times 8^2 + 2 \times 8^1 + 1 \times 8^0$$

 $721_8 = 7 \times 64 + 2 \times 8 + 1 \times 1$
 $721_8 = 448 + 16 + 1$
 $721_8 = 465_{10}$

1.4 SISTEMAS DE NUMERAÇÃO HEXADECIMAL

- ➤ Sistema Hexadecimal → O sistema hexadecimal, ou base 16, é um sistema de numeração posicional no qual usa 16 símbolos para sua representação e são utilizados como opção de compactação de notação binária
- ➤ O símbolos são os numerais 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 e as letras A, B, C, D, E, F representam os números 10, 11, 12, 13, 14, 15 respectivamente

16 ⁵ 16 ⁴ 16 ³ 16 ² 16 ¹ 16 ⁰

Exemplo:

$$12FC_{16} = 1 \times 16^{3} + 2 \times 16^{2} + 15 \times 16^{1} + 12 \times 16^{0}$$
$$12FC_{16} = 4860_{10}$$

Binário	Octal	Hexadecimal
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	10	8
1001	11	9
1010	12	А
1011	13	В
1100	14	С
1101	15	D
1110	16	E
1111	17	F
	0 1 10 11 100 11 100 101 111 1000 1001 1010 1011 1100 1101 1110	0 0 1 1 10 2 11 3 100 4 101 5 110 6 111 7 1000 10 1001 11 1010 12 1011 13 1100 14 1101 15 1110 16

Pode-se representar um número em qualquer base bem como converter um número em uma base para outra

- **>** Binário ↔ Decimal
- a) Binário → Decimal → Soma do produto de cada dígito com seu valor posicional

Exemplo:

$$10010001_2 = 1 \times 2^7 + 1 \times 2^4 + 1 \times 2^0 = 145_{10}$$

Qual o número 110101 em decimal?

b) Decimal → Binário → Dividir sucessivamente o número decimal por 2 até que o quociente seja 0.

Ex: Qual o valor de 145 (base 10) em binário?

Divisão	Resultado	Resto	
145/2	72	1	★ LSB
72/2	36	0	
36/2	18	0	
18/2	9	0	Lê-se de baixo
9/2	4	1	para cima
4/2	2	0	
2/2	1	0	
		1	MSB

 $145_{10} = 10010001_2$

- **▶** Decimal ↔ Octal
- a) Octal → Decimal → Soma do produto de cada dígito com seu valor posicional

Exemplo:

$$731_8 = 7 \times 8^2 + 3 \times 8^1 + 1 \times 8^0 = 473_{10}$$

b) Decimal → Octal → Dividir sucessivamente o número decimal por 8 até que o quociente seja 0

Ex: Qual o valor de 473 (base 10) em octal (base 8)?

Divisão	Resultado	Resto
473/8	59	1
59/8	7	3
7/8	0	7

Lê-se de baixo para cima

$$473_{10} = 731_{8}$$

- **▶** Decimal ↔ Hexadecimal
- a) Hexadecimal → Decimal → Soma do produto de cada dígito com seu valor posicional

Exemplo:

$$5F3B_{16} = 5 \times 16^3 + 15 \times 16^2 + 3 \times 16^1 + 11 \times 16^0 = 24379_{10}$$

b) Decimal → Hexadecimal → Dividir sucessivamente o número decimal por 16 até que o quociente seja 0

Ex: Qual o valor de 24379 (base 10) em hexadecimal (base 16)?

Divisão	Resultado	Resto	
24379/16	1523	11 (B)	
1523/16	95	3	L
95/16	5	15 (F)	pa
5/16	0	5	_

Lê-se de baixo para cima

$$24379_{10} = 5F3B_{16}$$

- **>** Binário ↔ Octal
- a) Binário → Octal → Para converter binário em octal siga os passos a seguir:
 - 1) A partir do bit menos significativo, faça grupos de três bits. Se precisar, acrescente zeros para completar o grupo;
 - 2) Converta cada grupo em seu número octal equivalente

Exemplo: Qual o valor de 10110011 em octal?

$$010\ 110\ 011$$

$$\longleftrightarrow\longleftrightarrow\longleftrightarrow\longleftrightarrow$$

$$\frac{\downarrow}{2}\ \frac{\downarrow}{6}\ \frac{\downarrow}{3}$$

$$10110011_{2} = 263_{8}$$

b) Octal → Binário → Para converter um número octal em binário, cada dígito octal é convertido em seu equivalente binário de 3 bits

Exemplo: Qual o valor de 263 (base 8) em binário?

$$2 = 010$$
 $263_8 \rightarrow 6 = 110$
 $3 = 011$

Agrupando os valores tem-se

$$263_8 = 10110011_2$$

- **>** Binário ↔ Hexadecimal
- a) Binário → Hexadecimal → Para converter binário em hexadecimal siga os passos a seguir:
 - 1) A partir do bit menos significativo, faça grupos de quatro bits. Se precisar, acrescente zeros para completar o grupo;
 - 2) Converta cada grupo em seu número hexadecimal equivalente

Exemplo: Qual o valor de 110001001110 em hexadecimal?

b) Hexadecimal → Binário → Para converter um número hexadecimal em binário, cada dígito hexadecimal é convertido em seu equivalente binário de 4 bits

Exemplo: Qual o valor de C4E (base 16) em binário?

$$C = 1100$$

 $C4E_{16} \rightarrow 4 = 0100$
 $E = 1110$

Agrupando os valores tem-se

$$C4E_{16} = 110001001110_2$$

- ➤ Tabela ASCII → Código criado na década de 60 por Robert W. Bemer para unificar a representação de caracteres alfanuméricos em computadores
- ASCII significa "American Standard Code for Information Interchange" ou "Código Padrão Americano para o Intercâmbio de Informação"
- Sua função é padronizar a forma como os computadores representam letras, números, acentos, sinais diversos e alguns códigos de controle
- Vai do número 0 até 127, sendo que os 32 primeiros e o último são considerados de controle, os demais representam "caracteres imprimíveis"
- Alguns caracteres caíram em desuso, como o Line Feed que fazia a impressora avançar o papel

ASCII Table

				- Table 1	Carleinar		175.005.00	15	CONTRACTOR OF										
Dec	H	Oct	Cha	f	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Cl	nr
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	a#64;	9	96	60	140	& # 96;	2
1	1	001	SOH	(start of heading)				6#33;		65	41	101	A	A	97	61	141	a#97;	a
2	2	002	STX	(start of text)	34	22	042	"	**	66	42	102	B	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	C	C				c	C
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D				d	
5	5	005	ENQ	(enquiry)	37	25	045	6#37;	*	69	45	105	%#69 ;	E	101	65	145	6#101;	e
6	6	006	ACK	(acknowledge)	38	26	046	&	6.	70	46	106	F	F	102	66	146	6#102;	f
7	7	007	BEL	(bell)	39	27	047	'	E.	71	47	107	a#71;	G	103	67	147	a#103;	g
8	8	010	BS	(backspace)	40	28	050	((72	48	110	6#72;	H	104	68	150	a#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051))	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	4A	112	6#74;	J	106	6A	152	j	j
11	В	013	VT	(vertical tab)	43	2B	053	6#43;	+	75	4B	113	6#75;	K	107	6B	153	k	k
12	C	014	FF	(NP form feed, new page)	44	20	054	,	,	76	4C	114	L	L	108	6C	154	l	1
13	D	015	CR	(carriage return)		2D	055	-	- 1	77	4D	115	M	M	109	6D	155	m	m
14	E	016	50	(shift out)	46	2E	056	.		78	4E	116	a#78;	N	110	6E	156	a#110;	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	1	79	4F	117	O	0	111	6F	157	o	0
16	10	020	DLE	(data link escape)	48	30	060	0	0	80	50	120	P	P	112	70	160	a#112;	p
17	11	021	DCI	(device control 1)	49	31	061	6#49;	1	81	51	121	Q	Q	113	71	161	6#113;	q
18	12	022	DC2	(device control 2)	50	32	062	2	2	82	52	122	R	R	114	72	162	r	r
				(device control 3)	51	33	063	3	3	83	53	123	S	S	115	73	163	s	3
20	14	024	DC4	(device control 4)	52	34	064	4	4	84	54	124	4#84;	T	116	74	164	t	t
21	15	025	NAK	(negative acknowledge)	53	35	065	5	5	85	55	125	a#85;	U	117	75	165	6#117;	u
22	16	026	SYN	(synchronous idle)	54	36	066	6	6	86	56	126	4#86;	V	118	76	166	v	v
23	17	027	ETB	(end of trans. block)	55	37	067	7	7	87	57	127	W	W	119	77	167	6#119;	W
24	18	030	CAN	(cancel)	56	38	070	8	8	88	58	130	4#88;	X	120	78	170	a#120;	×
25	19	031	EM	(end of medium)	57	39	071	9	9	89	59	131	4#89;	Y	121	79	171	6#121;	Y
26	1A	032	SUB	(substitute)	58	ЗА	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27	18	033	ESC	(escape)	59	3B	073	6#59;	;	91	5B	133	[[{	
		034		(file separator)	60	30	074	<	<	92	5C	134	\	1					
29	1D	035	GS	(group separator)	61	3D	075	a#61;	=	93	5D	135]]	125	7D	175	}	}
30	1E	036	RS	(record separator)	62	3E	076	>	>	94	5E	136	^	٨	126	7E	176	~	~
31	1F	037	US	(unit separator)	63	3F	077	?	?	95	5F	137	_		127	7F	177		DEL
				[3))				5					upTable:	
															"				

- ➤ Tabela UNICODE → Como o código ASCII possui apenas 128 códigos, na década de 90 grandes empresas da área de informática se uniram para ampliar a quantidade de códigos, incluindo caracteres específicos de diversos idiomas
- ➤ A tabela completa possui 32 bits, ou seja, 4 bytes (4 caracteres hexadecimal 0000 a FFFF) e inclui a Tabela ASCII nos seus primeiros 127 caracteres (0000 a 007F)
- Possui três formatos padrões UTF-8, UTF-16 e UTF-32 visando otimizar o tamanho do código entre 1 e 4 bytes.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2D3	0	\bigcirc	\oplus	X	X	X	<u>:</u>	\wedge	\vee	E	П	0 0	Н	\boxtimes	• •	K
2D4	Θ	\boxtimes		\times	丁	X	::			\mathbb{M}	I	X	#	H		
2D5	#	i	7	0 0	0	0	Y	:	::	\odot	Ø	69	+	X	€9	+
2D6	Δ		>	\mathbb{X}	_	\mathbb{X}										П
2D7																

	090	091	092	093	094	095	096	097
0	ে	ऐ	ठ	र	ी	3,5	₹.	0
	0900	0910	0920	0930	0940	0950	0960	0970
1	ै	ऑ	ड	र	ु	់	ॡ	•
	0901	0911	0921	0931	0941	0951	0961	0971
2	ं	ऒ	ह ह	ल	C 0942	<u></u>	ි 0962	ॲ
	0902	0912	0922	0932	0942	0952	0962	0972
3	ः	ओ	ण	<u>ळ</u>	ૃ	े	<u>و</u> 9963	अ
	0903	0913	0923	0933	0943	0953	0963	0973
4	ऄ	औ	त	$\dot{\underline{\infty}}$	် 0944	Ó	1	आ
	0904	0914	0924	0934	0944	0954	0964	0974

- ➤ Operações números binários → de forma análoga aos números decimais, pode-se fazer operações matemáticas como somar, subtrair, multiplicar, dividir, etc diretamente com números binários
- a) Soma de números binários

Regras:

$$0+0=0$$
 $0+1=1$
 $1+1=0$ (Carrega 1 para o dígito de ordem superior)
 $1+1+1=1$ (Carrega 1 para o dígito de ordem superior)
$$0101 0011 0011 +0010 +0110 1001$$

b) Subtração de números binários

Regras:

$$0-0=0 \\ 0-1=1 \ \ \text{(Pega 1 "emprestado" do dígito de ordem superior, o que equivale a 2)} \\ 1-0=1 \\ 1-1=0$$

$$\begin{array}{ccc}
0111 & 0110 \\
-0011 & -0011 \\
\hline
0100 & 0011
\end{array}$$

- b) Subtração de números binários
- Uma opção é usar complemento de 2 do numero binário (negativo do número), para isto, faço do complemento de um (negar o número) e somar 1

■
$$A - B = A + (-B)$$

$$\begin{array}{c}
0111 \\
-0011 \\
?
\end{array}$$
Complemento de 2 de $0011 = 1100 + 0001 = 1101$

$$\begin{array}{c}
0111 \\
+1101 \\
\hline
0100
\end{array}$$

- ➤ Operações números hexadecimais → de forma análoga aos números decimais e binários, pode-se fazer operações matemáticas como somar, subtrair, multiplicar, dividir, etc diretamente com números hexadecimais
- a) Soma de números hexadecimais => Somar os elementos e caso "estoure" a contagem, carregar 1 para a próxima coluna

$$5C12 + 27A4 \\ 83B6$$

b) Subtração de números hexadecimais => Subtrair os elementos e caso "falte", pegar carregar 1 para a próxima coluna (o que equivale a 16)