Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

SISTEMAS DE NUMERAÇÃO • DECIMAL - SÍMBOLOS 0,1 .. 9 - 1842 ⇒ 1x10³ + 8x10² + 4x10¹ + 2x10⁰ • OCTAL - SÍMBOLOS 0..7 - 1634 ⇒ 1x8³ + 6x8² + 3x8¹ + 4x8⁰ • HEXADECIMAL - SÍMBOLOS 0.. 9,A,B,C,D,E,F - 5F1A0 ⇒ 5x16⁴ + 15x16³ + 1x16² + 10x16¹ + 0x16⁰ • BINÁRIO - SÍMBOLOS 0,1 - 10110 ⇒ 1x2⁴ + 0x2³ + 1x2² + 1x2¹ + 0x2⁰

Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

COMPLEMENTO PARA 2

Complemento para 2

- Usa o bit mais significativo para representar o sinal (tal como anteriormente)
- Os restantes bits são calculados de acordo com o algoritmo apresentado
- Vantagens
 - →Permite ver rapidamente se um número é positivo ou negativo
 - →Não existem números repetidos (com 2 representações)
 - →O número -1 está imediatamente antes do 0
 - →As operações se doma e subtracção podem ser feitas usando os
- Algoritmos para a conversão positivo/negativo em complemento p/2
 - →Subtrair o número positivo ao número 1000.... (2N)
 - Começar do lado direito, e deixar na mesma todos os dígitos até ao primeiro 1 (inclusive). Complementar todos os dígitos a partir desse ponto.

CÓDIGOS BINÁRIOS - Alfanuméricos Para representação de caracteres Códiao ASCII →American Standard Code for Information Interchange →Define caracteres normais, símbolos, e caracteres de controlo. →Extensões para 8 bits para caracteres especiais – Código ebcdic (usado apenas na IBM) – Unicode (16 bits, extensão do ASCII que inclui caracteres orientais) 64 @ 80 P 655 A 81 Q 666 B 82 S 667 C 83 S 68 D 84 T 70 F 86 V 70 F 86 V 71 G 87 W 72 H 88 X 73 I 89 Y 74 J 90 C 75 K 91 [76 L 92 V 77 M 93] 78 N 94 A 16 17 18 19 20 21 22 BEL 23 BS 24 25 LF 26 CR 29 SO 30 32 32 DC2 34 " DC3 35 # DC4 36 \$ 37 % 38 & 39 . 40 (41) 42 * ESC 43 + 44 . 45 -46 . 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 63 79 O 95

CÓDIGOS BINÁRIOS - numéricos

• Para representação de números, sem ser em binário natural

- Para simplificar as convenções binário / decimal
 - BCD Bingry coded decimal (natural, ou 8421)
 - →Usam-se 4 dígitos binários para cada dígito decimal
 - →Perdem-se 6 posições em cada 16
 - Aiken (ou 2421)
 - →Os bits têm peso 2421
 - →Os números desperdicados são os "do meio"
 - ightarrowPermite destinguir facilmente os números maiores que 5
 - →É autocomplementar
 - Excesso 3 (não ponderado)
 - ightarrowUsa os 10 números "do meio" 3 a 13
 - →É autocomplementar
- 7421 Minimiza o consumo

					Sistemas Lógic
Dec.	BCD	AIKEN	EXC.3	7421	0
0	0000	0000	0011	0000	Gray
1	0001	0001	0100	0001	
2	0010	0010	0101	0010	0000
3	0011	0011	0110	0011	0001
4	0100	0100	0111	0100	0011
5	0101	1011	1000	0101	0010
6	0110	1100	1001	0110	
7	0111	1101	1010	1000	0110
В	1000	1110	1011	1001	0111
9	1001	1111	1100	1010	0101
Cóc					
- Po	ode resol →Conve	minimiz ver probl ersores fís go cíclico	lemas de icos	•	rórios nas mudanças

ERROS

- O que é um erro
 - É um 1 passar a 0, ou vice-versa
- Erros de transmissão
- Degradação do meio magnético
- Soluções
 - Mandar informar redundante para confirmação
 - Utilização de BITS DE PARIDADE
 - →1 bit permite detectar se houve um número impar de erros
 - →Paridade Par, Ímpar, Mark, e Space
 - →Paridade byte a byte, e paridade vertical
 - Utilização de códigos correctores
 - →Códigos de Hamming 5/3
 - Utilização de checksums

Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

Álgebra DE BOOLE

U = Conjunto finito

• Definição FORMAL

a.1=a

UTILIDADE EM SISTEMAS LÓGICOS

- Consideramos U = {0,1}
 - o conjunto U é apenas os 2 valores binários
 - podemos implementar facilmente este tipo sistemas com: lâmpadas, relés, transístores, actuadores mecânicos e hidráulicos, etc.
- Operação adição
 - Corresponde ao OU lógico
- Operação de multiplicação
 - Corresponde ao E lógico

+ = "OR" (operação OU)

 $U = \left\{ 0, 1 \right\}$

- Operação complemento
 - É a simples negação

, = "AND" (operação E)

Complemento = "NOT" (operação NEGAÇÃO)

TEOREMAS

- Vão ser as ferramentas para toda a manipulação de dados que vamos fazer...
- PRINCÍPIO DA DUALIDADE
 - Se uma dada proposição é verdadeira, então, substituindo os E com OU e os 1 com 0 , obtenho também uma proposição verdadeira
- 1 ELEMENTO ABSORVENTE
 - A . 0 = 0

A + 1 = 1

- 2 ELEMENTO NEUTRO
 - A.1 = A A + 0 = A
- 3 IDEMPOTÊNCIA - A . A = A A + A = A

TEOREMAS

- 4 COMPLEMENTARIDADE
 - $-A.\overline{A}=0$

- 5 INVOLUÇÃO
 - $-A = \overline{A}$
- 6 COMUTATIVIDADE
 - A . B = B . A

A + B = B + A

- 7 ASSOCIATIVIDADE
 - A.B.C=(A.B)C=A.(B.C) - A + B + C = (A + B) + C = A + (B + C)
- 8 LEIS DE MORGAN

 $\overline{A \cdot B} = \overline{A} + \overline{B}$

 $\overline{A+B} = \overline{A} \cdot \overline{B}$

TEOREMAS

- 9 DISTRIBUTIVIDADE
 - A.(B+C)=A.B+A.C
 - A + B C = (A + B).(A + C)
- 10 ABSORÇÃO
- A + A B = A

A(A+B)=A

- - $-AB+A\overline{B}=A$

 $(A + B) \cdot (A + \overline{B}) = A$

- 12 -
 - $-A+\overline{A}B=A+B$

 $A \cdot (\overline{A} + B) = A \cdot B$

- 13 TEOREMA DO TERMO INCLUÍDO
 - AB+AC+BC=AB+AC
 - (A+B)(A+C)(B+C)=(A+B)(A+C)

DEMONSTRAÇÕES

S = A B

0

- USANDO TABELAS DE VERDADE
 - Demonstra-se para TODOS os casos possíveis.
 - Tabela de verdade das funções AND e OR

Α	В	S = A B	Α	В
0	0	0	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	1	1

Dep.Armas e Electrónica- Escola Naval

Dep.Armas e Electrónica- Escola Naval

Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

CARACTERÍSTICAS **GATE NOT** • FUNÇÃO DE TRANSFERÊNCIA A transição de 0 lógico para 1 lógico não é Gate ideal Exemplo: gate NOT • TEMPO DE PROPAGAÇÃO – Uma gate leva um certo tempo até que as saídas reflictam o estado das entradas O tempo de propagação quando as saídas têm que passar de 0 para 1 é normalmente diferente de 1 para 0. Gate real DISSIPAÇÃO – As gates consomem corrente que provoca aquecimento O aquecimento é normalmente proporcional à velocidade de processamento

Dep.Armas e Electrónica- Escola Naval

FORMAS CANÓNICAS

Sistemas Lógicos

- Como identificar as linhas da tabela de verdade?
 - Cada linha corresponde a um produto de todas as variáveis

MINTERMOS

- Produtos que englobam todas as variáveis independentes
- Correspondem às linhas da tabela de verdade, se esta for escrita de modo a que as variáveis formem o código binário
- São numeradas, atribuindo 0 às variáveis negadas, e 1 às afirmadas

MAXTERMOS

- Somatórios que englobam todas as variáveis independentes
- Podem-se obter a partir dos mintermos, e vice-versa
- M_i=m₂ⁿ₋₁

FORMAS CANÓNICAS

istemas Lógico

• 1º. FORMA CANÓNICA

- Soma de mintermos
- Exemplo: função XOR
 - \rightarrow XOR(A,B) = A.!B+!A.B = m_1+m_2 = Σ (1,2)
- Problemas
 - ightarrowQual a tabela de verdade da função de 3 variáveis Σ (0,5,7) ?
 - ightarrowQual a 1ª forma canónica da função OR de 3 variáveis

• 2ª. FORMA CANÓNICA

- Produto de maxtermos
- Exemplo: função XOR
 - \rightarrow XOR(A,B) = (!A+!B).(A+B) = M₀. M₃ = Π (0,3)
- Problemas
 - ightarrowQual a tabela de verdade da função de 3 variáveis Π (0,5,7) ?
 - ightarrowQual a 2^{a} forma canónica da função OR de 3 variáveis

RESOLUÇÃO DE PROBLEMAS

Sistemas Lógic

1) OBTENÇÃO DE UMA FUNÇÃO QUE RESOLVA O PROBLEMA POSTO

- Métodos analíticos
- Especificar o problema numa tabela de verdade
 - →Obter os mintermos

2) SIMPLIFICAR A EXPRESSÃO

- Métodos analíticos
- Mapas de Karnaugh

3) IMPLEMENTAR O CIRCUITO

- Escolher os integrados que implementam as gates
 - →Pode ser necessário alterar a função obtida em 2 para minimizr o número de integrados usado
- Desenhar o logigrama (com pinout) do circuito

Exemplo

- Passo 1 para o problema dos vigias do navio:
 - Método analítico: L= a.b.!c.!d + a.!b.!c.!d + !a.b.!c.d +
 - Tabela de verdade:

Mintermos:

0,1,2,3,4,6,8,12

 $A(a,b,c,d) = \Sigma (0,1,2,3,4,6,8,12)$

A(a,b,c,d) = !a.!b.!c.!d + !a....

MAPAS DE KARNAUGH

istemas Lógic

- Um mapa de karnaugh é um modo de escrever a tabela de verdade
- Cada quadrícula tem apenas 1 bit diferente dos vizinhos (distância de Hamming=1)

MAPAS DE KARNAUGH

istemas Lógico

- Método gráfico, baseado nos diagramas de Venn, que permite detectar adjacências
 - 1) Escrever o mapa usando código reflectido, de modo a que 2 quadrículas contíguas diferem em apenas 1 byte.
 - 2) Cada quadrado corresponde a uma linha da tabela de verdade => corresponde a um mintermo da expressão se for 1
 - 3) Como na tabela 2 quadrados contíguos diferem apenas numa das variáveis, podemos escrevê-los como Πχ_iy e Πχ_i!y
 - 4) Se dois quadrados contíguos forem 1, podemos representá-los como $\Pi x_j y + \Pi x_i l y = \Pi x_i \{ l y + y \} = \Pi x_i$, de onde se conclui que podemos ignorar a variável que troca de valor

• REGRA

- $-\,$ 1) Formar quadrados ou rectângulos com 2^m quadrículas
- 2) Pôr na expressão só as variáveis que se mantêm constantes

Dep.Armas e Electrónica- Escola Naval V.1.6 V.Lobo 2003

