

بهنام خدا پروژه کوتاه آنالیز عددی پیشرفته محمدرضا غلامی

دانشگاه صنعتی امیرکبیر، دانشکده مهندسی مکانیک تیر ۱۴۰۲

چکیده

این پروژه برای الانیلی عددی

۱ شرح مسئله

معادله غیر خطی تیر اویلر-برنولی با مقطع یکنواخت، در حالت استاتیکی را بصورت زیر در نظر بگیرید:

$$EI\frac{\partial^4 w}{\partial x^4} - \frac{3}{2}EA\left(\frac{\partial w}{\partial x}\right)^2 \left(\frac{\partial^2 w}{\partial x^2}\right) = q(x) \tag{1}$$

که در آنE مدول الاستیسیته، I ممان اینرسی مقطع تیر، w(x) خیز تیر، w(x) بار گسترده، u مساحت مقطع و u طول تیر میباشد.

- 2m تیر مستطیلی به ابعاد 0.1m*0.2m*0.2m و طول تیر 0.1m*0.2m
 - E=70GPa ، جنس تير: آلومينيوم
 - $q(x) = 10^4 * a \left(\frac{x}{L}\right)^b N/m$ نیرو ها: •

از آن جایی که شماره دانشجویی من ۴۰۰۱۲۶۰۳۴ هست پس طبق فرض مسیله تکیه گاه های مسیله من یک سر گیر دار و یک سر تکیه گاه ساده در نظر گرفته می شود.

۲ روش حل:

\overline{BLMS} الگوريتم $oldsymbol{1}$ نسخه اوليه

```
1: C = \emptyset
2: I = \emptyset
3: L = \text{List of points in } P \text{ sorted from left to right}
4: while L is not empty do
      p = first element of L
       if d(p, I) > 2 then
6:
          Cover R(p) by 4 unit disks c_1, c_2, c_3, c_4
7:
          C = C \cup \{c_1, c_2, c_3, c_4\}
8:
          I = I \cup \{p\}
9:
       L = L - \{p\}
10:
11: return C
```

الگوریتم ۲ نسخه بهبود یافته BLMS با تکنیک جاروی صفحه

- 1: Initialize an empty event queue Q. Insert the points in ascending order of their x-coordinates into Q.
- 2: Initialize an empty BST status structure T.
- 3: Initialize an empty list C.
- 4: **while** Q is not empty **do**
- 5: Determine the next event point p in Q and delete it.
- 6: **if** p is an end-point **then**
- 7: Delete the start-point of the corresponding half-disk from T.
- 8: else
- 9: Find the 2 top and the 2 bottom neighbors of p in T.
- if The distance between p and all of these 4 neighbors is greater than 2 then
- 11: Calculate center points of the 4 unit disks which cover half-disk of point p and insert them into C.
- 12: Insert p into T.
- 13: Insert the end-point $q = (p_x + 2, p_y)$ into Q.
- 14: **return** *C*