Universidade de Aveiro Teste 2 de Cálculo I - Agrupamento 2

23 de janeiro de 2023 Duração total: 2 horas

Nome:	N° Mec.:			
Classificação Questões: 1	2			

(Questão 1 + Questão 2 no verso)

1. (40 pts) Considere a função definida em [-1, 2] por

$$f(x) = \begin{cases} \frac{\operatorname{sen}(x)}{x} & \text{se } x \in [-1, 2] \setminus \{0\} \\ 1 & \text{se } x = 0. \end{cases}$$

- (a) Determine, justificando, uma função F definida em [-1,2] tal que F'(x)=f(x).
- (b) SejaHa função definida em $\left[\frac{\sqrt{2}}{2},1\right[$ por

$$H(x) = \int_{\frac{\pi}{4}}^{\arccos(x)} \frac{\sin(t)}{t} dt.$$

Determine, justificando, a derivada da função H.

(c) Mostre que:

$$sen(2) \left(1 - \frac{\pi}{4}\right) \le \int_{\frac{\pi}{2}}^{2} \frac{sen(x)}{x} dx \le \frac{4}{\pi} - 1.$$

2. (35 pts) Considere a função g definida em $\mathbb R$ por

$$g(x) = \begin{cases} \sin x \cos^2 x & \text{se} \quad x < 0 \\ \frac{\sqrt{x}}{2} & \text{se} \quad x \ge 0 \end{cases}.$$

- (a) Justifique que a função g é integrável em qualquer intervalo $[a,b]\subset \mathbb{R}$ com b>a.
- (b) Calcule a área da região do plano delimitada pelo gráfico de g, pelo eixo Ox e pelas retas de equação $x=-\frac{\pi}{2}$ e x=2.

Universidade de Aveiro Teste 2 de Cálculo I - Agrupamento 2

23 de janeiro de 2023 Duração total: 2 horas

Nome:	I	N° Mec.:
Classificação Questões: 3	4	

(Questão 3 + Questão 4 no verso)

- 3. (45 pts) Seja $f:[p,+\infty[\to\mathbb{R} \text{ uma função positiva, decrescente, integrável em } [p,t], <math>\forall t\in[p,+\infty[$, tal que $f(n)=a_n$ para todo o $n\geq p$ $(n\in\mathbb{N})$.
 - (a) O que diz o Critério do Integral em relação à série $\sum_{n=p}^{+\infty} a_n$ e ao integral impróprio $\int_p^{+\infty} f(x)dx$?
 - (b) Estude a natureza do integral impróprio $\int_2^{+\infty} \frac{1}{x \ln x} dx$ e, em caso de convergência, indique o seu valor.
 - (c) Determine, utilizando o Critério do Integral, a natureza da série $\sum_{n=2}^{+\infty} \frac{1}{n \ln(n)}$.
 - (d) Enuncie o Critério de Leibniz e aplique-o ao estudo da natureza da série alternada

$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n \ln(n)}.$$

Em caso de convergência, indique, justificando, se a convergência é simples ou absoluta.

- 4. (40 pts) Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica.
 - (a) Defina série convergente.
 - (b) Mostre que a série $\sum_{n=1}^{+\infty}(e^{-n}-e^{-n-2})$ é convergente e indique a sua soma.
 - (c) Determine a natureza das seguintes séries, indicando, em caso de convergência, se a convergência é simples ou absoluta:

i.
$$\sum_{n=1}^{+\infty} \arcsin\left(1 - \frac{1}{n}\right);$$

ii.
$$\sum_{n=1}^{+\infty} \frac{\cos n}{n!}.$$

Universidade de Aveiro Teste 2 de Cálculo I - Agrupamento 2

23 de janeiro de 2023 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	
· /	guintes, assinale a opção correta. Tazendo as condições $h(1) = -2$, $h'(1) = 2$, $h''(1) = 3$, é uma função contínua em \mathbb{R} . Então,
(A) $\int_{1}^{2} h''(u) du = 10$	
(B) $\int_{1}^{2} h''(u) du = -3$	
(D) $\int_{1}^{2} h''(u) du = 3$	
- -	al que $\int_{0}^{x} f(t) dt = xe^{2x} - \int_{0}^{x} e^{-t} f(t) dt$, então
(A) $f(x) = \frac{2xe^{3x}}{e^x + 1}$	
(B) $f(x) = \frac{e^{3x}(2x+1)}{e^x+1}$	
(C) $f(x) = \frac{2xe^{2x}}{e^x + 1}$	
(D) $f(x) = \frac{e^{2x}(2x+1)}{e^x+1}$	
(c) Sabendo que $\sum_{n=1}^{+\infty} a_n = 1$ e $\sum_{n=1}^{+\infty} b_n = -1$	-1 e ainda que $a_1 = 2$ e $b_1 = -3$, podemos afirmar que
(A) $\sum_{n=2}^{+\infty} (a_n - b_n) = -3. \dots$	
n=2	
n=2	
(D) $\sum_{n=2}^{+\infty} (a_n - b_n) = 3. \dots$	
	essão das somas parciais da série $\sum_{n=1}^{+\infty} a_n$ é $S_n = \sqrt{n}$,
podemos afirmar que	n-1
(A) $a_n = \frac{1}{\sqrt{n} - \sqrt{n-1}}$	
(B) $a_n = \sqrt{n+1} - \sqrt{n}$	
(C) $a_n = \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n} + \sqrt{n-1}}$	
(D) $a_n = \frac{1}{2\sqrt{n}}$	

Fórmulas trigonométricas
$$\sec u = \frac{1}{\cos u}; \ \csc u = \frac{1}{\sin u}; \ \cot u = \frac{\cos u}{\sin u}; \ 1 + \operatorname{tg}^2 u = \sec^2 u; \ 1 + \cot^2 u = \csc^2 u$$

$$\sin^2 u = \frac{1 - \cos(2u)}{2}; \ \cos^2 u = \frac{1 + \cos(2u)}{2}; \ \cos^2(\operatorname{arcsen} u) = 1 - u^2 = \sin^2(\operatorname{arccos} u)$$

$$\cos(u + v) = \cos u \cos v - \operatorname{sen} u \operatorname{sen} v; \ \operatorname{sen}(u + v) = \operatorname{sen} u \cos v + \operatorname{sen} v \cos u$$

$$\operatorname{sen} u \operatorname{sen} v = \frac{\cos(u - v) - \cos(u + v)}{2}; \ \cos u \cos v = \frac{\cos(u - v) + \cos(u + v)}{2};$$

$$\operatorname{sen} u \cos v = \frac{\sin(u - v) + \sin(u + v)}{2}$$

Funções hiperbólicas

$$\operatorname{senh}(u) = \frac{e^{\hat{u}} - e^{-u}}{2}; \cosh(u) = \frac{e^{u} + e^{-u}}{2}; \cosh^{2}(u) - \sinh^{2}(u) = 1$$

Progressão aritmética de razão r

Termo geral: $u_n = u_1 + (n-1)r$; Soma dos n primeiros termos: $S_n = \frac{u_1 + u_n}{2}n$

Progressão geométrica de razão $r \neq 1$

Termo geral: $u_n = u_1 r^{n-1}$; Soma dos n primeiros termos: $S_n = u_1 \frac{1 - r^n}{1 - r}$

Formulário de Derivadas						
Função	Derivada	Função	Derivada	Função	Derivada	
$Ku \ (K \in \mathbb{R})$	K u'	$\ln u $	$\frac{u'}{u}$	u^r	$r u^{r-1} u'$	
$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$	e^u	$u'e^u$	$\operatorname{sen} u$	$u'\cos u$	
$a^u(a>0 e a \neq 1)$	$a^u \ln a u'$	$\cos u$	$-u' \operatorname{sen} u$	$\operatorname{tg} u$	$u'\sec^2 u$	
$\cot g u$	$-u'\csc^2 u$	$\sec u$	$\sec u \operatorname{tg} u u'$	$\csc u$	$-\operatorname{cosec} u \operatorname{cotg} u u'$	
rcsen u	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$	$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	
$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$	$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$	

Primitivas:

Intivas:
$$\int u' \sec u = \ln|\sec u + \operatorname{tg} u| \quad \text{e} \quad \int u' \csc u = -\ln|\csc u + \cot u|$$
$$\int \frac{1}{(x^2 + a)^n} dx = \frac{1}{a} \left(\frac{x}{2(n-1)(x^2 + a)^{n-1}} + \frac{2n-3}{2n-1} \int \frac{1}{(x^2 + a)^{n-1}} dx \right), \ a \neq 0, \ n \neq 1.$$