WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(81) Designated States: AU, BR, CA, CN, CZ, EE, HU, IL, JP,

GB, GR, IE, IT, LU, MC, NL, PT, SE).

KR, LT, LV, MX, NO, NZ, PL, RO, SG, SI, SK, UA, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 99/01454

C07D 471/04, 473/00, A61K 31/505, 31/535 // (C07D 471/04, 235:00, 221:00)

(43) International Publication Date:

14 January 1999 (14.01.99)

(21) International Application Number:

PCT

PCT/US98/13913

(22) International Filing Date:

2 July 1998 (02.07.98)

(30) Priority Data:

60/051,628 60/080,665 3 July 1997 (03.07.97)

3 April 1998 (03.04.98)

Published With international search report.

(71) Applicant: DU PONT PHARMACEUTICALS COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors: WILDE, Richard, G.; 205 Roseman Court, Newark, DE 19711 (US). BAKTHAVATCHALAM, Rajagopal; 125 Berry Drive, Wilmington, DE 19808 (US). BECK, James, P.; 983 Tamara Drive, Smyrna, DE 19977 (US). ARVANI-TIS, Argyrios, G.; 101 Willow Glen Drive, Kennett Square, PA 19348 (US).

(74) Agent: O'BRIEN, Maureen; Du Pont Pharmaceuticals Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(54) Title: IMIDAZOPYRIMIDINES AND IMIDAZOPYRIDINES FOR THE TREATMENT OF NEUROLOGICAL DISORDERS

(57) Abstract

Corticotropin releasing factor (CRF) antagonists of formula (I) and their use in treating psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in mammals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

L	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

IMIDAZOPYRIMIDINES AND IMIDAZOPYRIDINES FOR THE TREATMENT.

OF NEUROLOGICAL DISORDERS

5

FIELD OF THE INVENTION

The present invention relates to novel compounds, compositions, and methods for the treatment of psychiatric disorders and neurological diseases, including major depression, anxiety-related disorders, post-traumatic 10 stress disorder, supranuclear palsy and feeding disorders, as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress. 15 In particular, the present invention relates to novel imidazopyrimidines and imidazopyridines, pharmaceutical compositions containing such compounds and their use in treating psychiatric disorders, neurological diseases, immunological, cardiovascular or heart-related diseases and 20 colonic hypersensitivity associated with psychopathological disturbance and stress.

BACKGROUND OF THE INVENTION

Corticotropin releasing factor (herein referred to as CRF), a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) -derived peptide secretion from the anterior pituitary gland [J. Rivier et al., Proc. Nat. Acad. Sci. (USA) 80:4851 (1983); W. Vale et al., Science 213:1394 (1981)]. In addition to its endocrine role at the pituitary gland, immunohistochemical 30 localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al., Rec. Prog. Horm. Res. 39:245 (1983); G.F. Koob, Persp. Behav. Med. 2:39 (1985); E.B. De Souza et al., J. Neurosci. 5:3189 (1985)]. There is also evidence that CRF

plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, *Physiological Reviews* 69:1 (1989); J.E. Morley, *Life Sci.* 41:527 (1987)].

5

Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp. Practice 23:59 (1988)].

15 In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebral spinal fluid (CSF) of drug-free individuals [C.B. Nemeroff et al., Science 226:1342 (1984); C.M. Banki et 20 al., Am. J. Psychiatry 144:873 (1987); R.D. France et al., Biol. Psychiatry 28:86 (1988); M. Arato et al., Biol Psychiatry 25:355 (1989)]. Furthermore, the density of CRF receptors is significantly decreased in the frontal cortex of suicide victims, consistent with a hypersecretion of CRF 25 [C.B. Nemeroff et al., Arch. Gen. Psychiatry 45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. administered) observed in depressed patients [P.W. Gold et al., Am J. Psychiatry 141:619 (1984); F. Holsboer et al., 30 Psychoneuroendocrinology 9:147 (1984); P.W. Gold et al., New Eng. J. Med. 314:1129 (1986)]. Preclinical studies in rats and non-human primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the symptoms seen in human depression [R.M. Sapolsky,

35 Arch. Gen. Psychiatry 46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants can alter CRF levels and thus modulate the numbers of CRF receptors in

brain [Grigoriadis et al., Neuropsychopharmacology 2:53 (1989)].

It has also been postulated that CRF has a role in the etiology of anxiety-related disorders. CRF produces anxiogenic effects in animals and interactions between benzodiazepine / non-benzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al., Life Sci. 31:363 (1982); C.W. Berridge and A.J. Dunn Regul. Peptides 16:83 (1986)].

Preliminary studies using the putative CRF receptor antagonist a-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces "anxiolytic-like" effects that are qualitatively similar to the benzodiazepines [C.W. Berridge and A.J. Dunn

15 Horm. Behav. 21:393 (1987), Brain Research Reviews 15:71 (1990)].

Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF and benzodiazepine anxiolytics, providing further evidence for 20 the involvement of CRF in these disorders. Chlordiazepoxide attenuates the "anxiogenic" effects of CRF in both the conflict test [K.T. Britton et al., Psychopharmacology 86:170 (1985); K.T. Britton et al., Psychopharmacology 94:306 (1988)] and in the acoustic startle test [N.R. Swerdlow et al., Psychopharmacology 88:147 (1986)] in rats. 25 The benzodiazepine receptor antagonist (Ro15-1788), which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dosedependent manner while the benzodiazepine inverse agonist 30 (FG7142) enhanced the actions of CRF [K.T. Britton et al., Psychopharmacology 94:306 (1988)].

It has been further postulated that CRF has a role in immunological, cardiovascular or heart-related diseases such as hypertension, tachycardia and congestive heart

35 failure, stroke, osteoporosis, premature birth, psychosocial dwarfism, stress-induced fever, ulcer, diarrhea, post-operative ileus and colonic hypersensitivity associated with psychopathological disturbance and stress.

 \mathbb{N}

The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the

5 suppression of the CRF hypersecretion that is observed in these disorders. Of particular interest is that preliminary studies examining the effects of a CRF receptor antagonist (a - h elical CRF9-41) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces

10 "anxiolytic-like" effects qualitatively similar to the benzodiazepines [for review see G.F. Koob and K.T. Britton, In: Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds., CRC Press p221 (1990)].

DuPont Merck PCT application US94/11050 describes corticotropin releasing factor antagonist compounds of the formula:

15

and their use to treat psychiatric disorders and neurological diseases. Included in the description are fused pyridines and pyrimidines of the formula:

25 where: V is CR^{1a} or N; Z is CR^2 or N; A is CR^30 or N; and D is CR^{28} or N.

PCT/US98/13913 WO 99/01454

Other compounds reported to have activity as corticotropin releasing factors are disclosed in WO 95/33750, WO 95/34563 and WO 95/33727.

5

10

SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides novel compounds which bind to corticotropin releasing factor receptors, thereby altering the anxiogenic effects of CRF secretion. The compounds of the present invention are useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear 15 palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in mammals.

20 According to another aspect, the present invention provides novel compounds of formula (I) (described below) which are useful as antagonists of the corticotropin releasing factor. The compounds of the present invention exhibit activity as corticotropin releasing factor antagonists and appear to suppress CRF hypersecretion. 25 present invention also includes pharmaceutical compositions containing such compounds of formula (I), and methods of using such compounds for the suppression of CRF hypersecretion, and/or for the treatment of anxiogenic 30 disorders.

According to yet another aspect, the present invention provides novel compounds, pharmaceutical compositions and methods which may be used in the treatment of affective disorder, anxiety, depression, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal disease, anorexia nervosa or other feeding disorder, drug or alcohol

withdrawal symptoms, drug addiction, inflammatory disorder, fertility problems, disorders, the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, or a disorder selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic, phobias, obsessive-compulsive disorder; posttraumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress-induced headache; cancer, human 15 immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic colon, diarrhea, and post operative ilius and colonic 20 hypersensitivity associated by psychopathological disturbances or stress; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiarrhetic hormone (ADH); obesity; 25 infertility; head traumas; spinal cord trauma; ischemic neuronal damage (e.g., cerebral ischemia such as cerebral hippocampal ischemia); excitotoxic neuronal damage; epilepsy; cardiovascular and hear related disorders including hypertension, tachycardia and congestive heart 30 failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g., stress induced fevers, porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, and dysfunctions induced by 35 confinement in chickens, sheering stress in sheep or humananimal interaction related stress in dogs); muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic

٠,٠

lateral sclerosis; chemical dependencies and addictions (e.g., dependencies on alcohol, cocaine, heroin, benzodiazepines, or other drugs); drug and alcohol withdrawal symptoms; osteoporosis; psychosocial dwarfism and hypoglycemia in mammals.

According to a still further aspect of the invention, the compounds provided by this invention (and especially labelled compounds of this invention) are also useful as standards and reagents in determining the ability of a potential pharmaceutical to bind to the CRF receptor.

DETAILED DESCRIPTION OF INVENTION

15

[1] Thus, in a first embodiment, the present invention provides a novel compound of formula I:

$$R^{2}-X \longrightarrow N \longrightarrow B \qquad R^{3}$$

20

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

(I)

A is N or $C-R^7$;

25

B is N or C-R8;

provided that at least one of the groups A and B is N;

30 D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

ζ,

n is 0, 1 or 2;

R¹ is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

10 group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};

20

25

 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-4} alkoxy- C_{1-4} alkyl, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R1 is other than:

- 30 (a) a cyclohexyl- $(CH_2)_2$ group;
 - (b) a 3-cyclopropyl-3-methoxypropyl group;
 - (c) an unsubstituted-(alkoxy)methyl group; and,
 - (d) a 1-hydroxyalkyl group;
- 35 also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, SH, $-S(0)_nR^{18}$, $-COR^{17}$, $-OC(0)_R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$;

R1b is heteroaryl and is selected from the group pyridyl, 10 pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, 15 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, 20 each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH,

30

5

R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},

 $-NR^{15a}CO_2R^{14b},\ -NR^{13a}R^{16a},\ \mbox{and}\ \ -CONR^{13a}R^{16a}$ and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group $R^{13a},\ CO_2R^{14b},\ COR^{14b}$ and SO_2R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl, $-(CH_2)_{1-4}$ -heteroaryl, or $-(CH_2)_{1-4}$ -heterocycle, wherein the aryl, heteroaryl, or heterocycle group is substituted or unsubstituted;

5

10

- R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;
- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF₃ and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;
- provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;
- R⁹ and R¹⁰ are independently selected at each occurrence 35 from the group H, C₁₋₄ alkyl, C₃₋₆ cycloalkyl-C₁₋₄ alkyl and C₃₋₈ cycloalkyl;

 R^{13} is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;

5

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- 20 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl-C₁₋₆ alkyl; 5 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n-C_{1-4}$ alkyl, and $R^{17b}R^{19b}N-C_{2-4}$ alkyl; 10 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl; 15 alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ; 20 alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N4 in 1-piperazinyl is substituted with 0-1 substituents 25 selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴; R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6}

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, methylenedioxy, C_{1-4} alkoxy- C_{1-4} alkoxy, $-OR^{17}$, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, $-NO_2$,

cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

30

SH, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl;

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, 10 quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl; pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 15 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected 20 at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents 25 selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO_2R^{14a} ; and,

provided that when D is imidazole or triazole, R^1 is other than unsubstituted C_{1-6} linear or branched alkyl or C_{3-6} cycloalkyl.

[2] In a preferred embodiment, the present invention provides a novel compound of formula Ia:

$$R^{2}-X \xrightarrow{N} N \xrightarrow{N} R^{3}$$
(Ia).

5 [2a] In a more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

10 n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

- 15 R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;
- 30 provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;
 - ${\bf R^{1a}}$ is aryl and is selected from the group phenyl and indanyl, each ${\bf R^{1a}}$ being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each

1,5

occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(0)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

- 5 R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

R² is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

25

- R^3 and R^8 are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH_2 , C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

15

20

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 10 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- 25 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

Ć,

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl,
- - at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and
- each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .
- 35 [2b] In an even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, S and a bond;

 R^1 is substituted C_{1-6} alkyl;

5 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;

10

15

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

20

- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen

atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , CO_2CH_3 and SO_2CH_3 ;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

10

R³ and R⁸ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents

independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

20

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl,

- 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
- 2,3-dihydrobenzothienyl-S-oxide,
- 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
- OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃,

35 $COCH_3$ and SO_2CH_3 .

[2c] In a still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

 R^1 is substituted C_1 ;

5

- R¹ is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclopentyl, cyclopentyl, CH₃-cyclopentyl;

15

20

35

- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
 - provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

⟨,

 R^3 and R^8 are independently selected at each occurrence from the group H and CH_3 ;

aryl is phenyl substituted with 2-4 substituents

independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

-C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

10

15

- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.
- 20 [2d] In a further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
 - R^1 is substituted (cyclopropyl)- C_1 alkyl or (cyclobutyl)- C_1 alkyl;

25

- R¹ is substituted with 0-1 -CN;
- R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b},

 CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
 CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

 F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

٠,٠

R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃.

10

5

[2e] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)-C₁ alkyl

substituted with 1 substituent independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃,

CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

20

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH_3 , CH_2CH_3 , Cl, F, and CF_3 ;
- 25 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, OCH₃, Cl, F, and CF₃.

30

- [2f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- 35 R¹ is selected from the group (cyclopropyl)CH-CH₃, (cyclopropyl)CH-CH₂CH₃, (cyclopropyl)CH-CH₂CCH₃, (cyclopropyl)CH-CH₂CH₂CH₃, (cyclopropyl)CH-CH₂CH₂CCH₃, (cyclopropyl)₂CH, phenyl(cyclopropyl)CH,

furanyl(cyclopropyl)CH, thienyl(cyclopropyl)CH,
 isoxazolyl(cyclopropyl)CH, (CH3 furanyl)(cyclopropyl)CH, (cyclobutyl)CH-CH3,
 (cyclobutyl)CH-CH2CH3, (cyclobutyl)CH-CH2OCH3,
 (cyclobutyl)CH-CH2CH2CH3, (cyclobutyl)CH-CH2CH2OCH3,
 (cyclobutyl)2CH, phenyl(cyclobutyl)CH,
 furanyl(cyclobutyl)CH, thienyl(cyclobutyl)CH,
 isoxazolyl(cyclobutyl)CH, and (CH3 furanyl)(cyclobutyl)CH;

10

- [2g] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

20

- [2h] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

30

[2i] In another preferred embodiment, the present invention provides a novel compound of formula Ia, wherein the compound is selected from the group:

4.

35 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-ethyl-3H-imidazo[4,5-b]pyridine;

```
3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-
5 (methylsulfanyl)-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl)-2-ethyl-3H-imidazo[4,5-b]pyridine;
10 7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-
    cyclopropylpropyl) -2- (methylsulfanyl) -3H-imidazo[4,5-
15 b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-[2-methyl-4-
    (trifluoromethyl) phenyl] -3H-imidazo[4,5-b] pyridine;
20 7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
25
    3-(1-cyclopropylpropyl)-2-ethyl-7-(4-methoxy-2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-methoxy-7-(4-methoxy-2,5-
30
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
```

```
7-(2-chloro-5-fluoro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-
    2-ethyl-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-fluoro-4-methoxyphenyl)-3-(1-cyclopropylpropyl)-2-
   methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-3-(1-cyclopropylpropyl)-
    2-ethyl-3H-imidazo[4,5-b]pyridine;
10
   7-(2-chloro-fluoro-4-methylphenyl)-3-(1-cyclopropylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-(2,4,5-trimethylphenyl)-3H-
    imidazo[4,5-b]pyridine;
15
    3-(1-cyclopropylpropyl)-2-methoxy-7-(2,4,5-trimethylphenyl)-
    3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-ethyl-7-(2,5,6-trimethyl-3-
20
   pyridinyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-2-methoxy-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
25
   3-(1-cyclopropylpropyl)-7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
    3-(1-cyclopropylpropyl)-7-(2,6-dimethyl-3-pyridinyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
30
    3-(1-cyclopropylpropyl)-7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-(1-ethylpropyl)-3H-
35
    imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-3-(1-ethylpropyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
```

```
7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-(1-
    ethylpropyl)-3H-imidazo[4,5-b]pyridine;
5 7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-ethylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-(1-
    ethylpropyl)-3H-imidazo[4,5-b]pyridine;
10
    7-[2-chloro-4-(methylsulfonyl)phenyl]-3-(1-ethylpropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    2-ethyl-3-(1-ethylpropyl)-7-(4-methoxy-2,5-dimethylphenyl)-3H-
15
    imidazo[4,5-b]pyridine;
    3-(1-ethylpropy1)-2-methoxy-7-(4-methoxy-2,5-dimethylpheny1)-
    3H-imidazo[4,5-b]pyridine;
20
    7-(2-chloro-4-methoxyphenyl)-2-ethyl-3-(1-ethylpropyl)-3H-
    imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-ethylpropyl)-2-methoxy-3H-
    imidazo(4,5-b)pyridine;
25
    2-ethyl-3-(1-ethylpropyl)-7-[4-methoxy-2-
    (trifluoromethyl) phenyl] -3H-imidazo[4,5-b] pyridine;
    3-(1-ethylpropyl)-2-methoxy-7-[4-methoxy-2-
30
   (trifluoromethyl) phenyl] -3H-imidazo[4,5-b] pyridine;
    7-(2,6-dimethoxy-3-pyridiny1)-2-ethyl-3-(1-ethylpropy1)-3H-
    imidazo[4,5-b]pyridine;
    7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-(1-ethylpropyl)-3H-
    imidazo[4,5-b]pyridine;
```

Ń.

```
2-ethyl-3-(1-ethylpropyl)-7-(2,5,6-trimethyl-3-pyridinyl)-3H-
    imidazo[4,5-b]pyridine;
    2-ethyl-3-(1-ethylpropyl)-7-(5-fluoro-4-methoxy-2-
5 methylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethylpropyl)-7-(5-fluoro-4-methoxy-2-methylphenyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
10
    3-chloro-4-[2-ethyl-3-(1-ethylpropyl)-3H-imidazo[4,5-
    b]pyridin-7-yl]benzonitrile;
    3-chloro-4-[3-(1-ethylpropyl)-2-methoxy-3H-imidazo[4,5-
    b]pyridin-7-yl]benzonitrile;
15
    1-{3-chloro-4-[2-ethyl-3-(1-ethylpropyl)-3H-imidazo[4,5-
    b]pyridin-7-yl]phenyl}-1-ethanone;
    1-{3-chloro-4-[3-(1-ethylpropyl)-2-methoxy-3H-imidazo[4,5-
20
    b]pyridin-7-yl]phenyl}-1-ethanone;
    3-(dicyclopropylmethyl)-2-ethyl-7-(5-fluoro-4-methoxy-2-
    methylphenyl)-3H-imidazo[4,5-b]pyridine;
25
    3-(dicyclopropylmethyl)-7-(5-fluoro-4-methoxy-2-methylphenyl)-
    2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(dicyclopropylmethyl)-2-ethyl-
    3H-imidazo[4,5-b]pyridine;
30
    7-(2-chloro-4-methoxyphenyl)-3-(dicyclopropylmethyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-3-(dicyclopropylmethyl)-2-ethyl-3H-
35 imidazo[4,5-b]pyridine;
                                                                    Ġ
    7-(2,4-dichlorophenyl)-3-(dicyclopropylmethyl)-2-methoxy-3H-
    imidazo[4,5-b]pyridine;
```

```
7-[2-chloro-4-(trifluoromethyl)phenyl]-3-
    (dicyclopropylmethyl)-2-ethyl-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-
    (dicyclopropylmethyl) -2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-(1-ethyl-3-methoxypropyl)-3H-
    imidazo[4,5-b]pyridine;
10
    7-(2,4-dichlorophenyl)-3-(1-ethyl-3-methoxypropyl)-2-methoxy-
    3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-(1-ethyl-3-
15
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-3-(1-ethyl-3-
    methoxypropy1)-2-methoxy-3H-imidazo[4,5-b]pyridine;
20
    7-(2-chloro-4-methoxyphenyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-4-methoxyphenyl)-3-(1-ethyl-3-methoxypropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
25
    7-(2-chloro-5-fluoro-4-methoxyphenyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropy1)-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methoxyphenyl)-3-(1-ethyl-3-
30 methoxypropy1)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    2-\text{ethyl-}3-(1-\text{ethyl-}3-\text{methoxypropyl})-7-(4-\text{methoxy-}2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
35
    3-(1-\text{ethyl}-3-\text{methoxypropyl})-2-\text{methoxy}-7-(4-\text{methoxy}-2,5-
    dimethylphenyl)-3H-imidazo[4,5-b]pyridine;
```

```
2-ethyl-3-(1-ethyl-3-methoxypropyl)-7-(5-fluoro-4-methoxy-2-
    methylphenyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethyl-3-methoxypropyl)-7-(5-fluoro-4-methoxy-2-
    methylphenyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
10
    7-(2-chloro-5-fluoro-4-methylphenyl)-3-(1-ethyl-3-
    methoxypropy1)-2-methoxy-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine;
15
    7-[2-chloro-4-(methylsulfonyl)phenyl]-3-(1-ethyl-3-
    methoxypropyl)-2-methoxy-3H-imidazo[4,5-b]pyridine;
     1-\{3-\text{chloro-}4-[2-\text{ethyl-}3-(1-\text{ethyl-}3-\text{methoxypropyl})-3H-
20
     imidazo[4,5-b]pyridin-7-yl]phenyl}-1-ethanone;
     1-\{3-\text{chloro}-4-[3-(1-\text{ethy}1-3-\text{methoxypropy}1)-2-\text{methoxy}-3H-
     imidazo[4,5-b]pyridin-7-y1]phenyl}-1-ethanone;
25
    1-\{5-[2-\text{ethyl}-3-(1-\text{ethyl}-3-\text{methoxypropyl})-3\text{H-imidazo}\{4,5-
     b]pyridin-7-yl]-6-methyl-2-pyridinyl}-1-ethanone;
     1-\{5-[3-(1-\text{ethy}1-3-\text{methoxypropy}1)-2-\text{methoxy}-3H-\text{imidazo}[4,5-
     b]pyridin-7-yl]-6-methyl-2-pyridinyl}-1-ethanone;
30
     2-\text{ethyl-}3-(1-\text{ethyl-}3-\text{methoxypropyl})-7-(6-\text{methoxy-}2-\text{methyl-}3-
     pyridinyl)-3H-imidazo[4,5-b]pyridine;
     3-(1-\text{ethyl}-3-\text{methoxypropyl})-2-\text{methoxy}-7-(6-\text{methoxy}-2-\text{methyl}-3-
35 pyridinyl)-3H-imidazo[4,5-b]pyridine;
     7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-3-(1-ethyl-3-
     methoxypropyl)-3H-imidazo[4,5-b]pyridine;
```

```
7-(2,6-dimethoxy-3-pyridiny1)-3-(1-ethyl-3-methoxypropy1)-2-
   methoxy-3H-imidazo[4,5-b]pyridine;
5 7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-(1-ethyl-3-
    methoxypropyl)-3H-imidazo[4,5-b]pyridine:
    7-(2,6-dimethyl-3-pyridinyl)-3-(1-ethyl-3-methoxypropyl)-2-
    methoxy-3H-imidazo[4,5-b]pyridine;
10
    2-ethyl-3-(1-ethyl-3-methoxypropyl)-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
    3-(1-ethyl-3-methoxypropyl)-2-methoxy-7-(2,5,6-trimethyl-3-
15 pyridinyl)-3H-imidazo[4,5-b]pyridine;
    7-(2,4-dichlorophenyl)-2-ethyl-3-[1-(methoxymethyl)propyl]-3H-
    imidazo[4,5-b]pyridine;
20 7-(2,4-dichlorophenyl)-2-methoxy-3-[1-(methoxymethyl)propyl]-
    3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-3-[1-
    (methoxymethy1)propy1]-3H-imidazo[4,5-b]pyridine;
25
    7-[2-chloro-4-(trifluoromethyl)phenyl]-2-methoxy-3-[1-
    (methoxymethyl) propyl] -3H-imidazo[4,5-b] pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-2-ethyl-3-[1-
30
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2-chloro-5-fluoro-4-methylphenyl)-2-methoxy-3-[1-
    (methoxymethyl) propyl] -3H-imidazo[4,5-b] pyridine;
    2-ethyl-7-(4-methoxy-2,5-dimethylphenyl)-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
```

5.5

```
2-methoxy-7-(4-methoxy-2,5-dimethylphenyl)-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    2-ethyl-7-(5-fluoro-4-methoxy-2-methylphenyl)-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(5-fluoro-4-methoxy-2-methylphenyl)-2-methoxy-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
10
    2-\text{ethyl}-3-[1-(\text{methoxymethyl})\text{propyl}]-7-(6-\text{methoxy}-2-\text{methyl}-3-
    pyridinyl)-3H-imidazo(4,5-b)pyridine;
    2-methoxy-3-[1-(methoxymethyl)propyl]-7-(6-methoxy-2-methyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
15
    7-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethoxy-3-pyridinyl)-2-methoxy-3-[1-
20
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    7-(2,6-dimethyl-3-pyridinyl)-2-ethyl-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
25
    7-(2,6-dimethyl-3-pyridinyl)-2-methoxy-3-[1-
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
    2-\text{ethyl-3-[1-(methoxymethyl)propyl]-7-(2,5,6-trimethyl-3-}
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
30
    2-methoxy-3-[1-(methoxymethyl)propyl]-7-(2,5,6-trimethyl-3-
    pyridinyl)-3H-imidazo[4,5-b]pyridine;
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-3-[1-
35
    (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine; and
    7-[2-chloro-4-(methylsulfonyl)phenyl]-2-methoxy-3-[1-
     (methoxymethyl)propyl]-3H-imidazo[4,5-b]pyridine;
```

or a pharmaceutically acceptable salt form thereof.

[2j] In another more preferred embodiment, the presentinvention provides a novel compound of formula Ia, wherein:

 R^1 is C_{3-8} cycloalkyl;

10 group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b}; and,

20

- R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$.
- [2k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

30

25

X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

35 R¹ is selected from the group cyclopropyl, cyclobutyl, and cyclopentyl;

₹.

 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{4-8} cycloalkyl, wherein one carbon atom in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2R^{14b}$ -:

5

35

- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and -NR^{13a}R^{16a};
- R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- 20 R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

٠.,

R9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

- R3 and R8 are independently selected at each occurrence from 5 the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH_2 , C_{1-4} alkylamino, and (C_{1-4}) alkyl)₂-amino;
- R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, 10 $aryl(C_{1-2} alkyl)$ -, and heteroaryl($C_{1-2} alkyl$)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} 15 alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, $aryl(C_{1-2} alkyl)$ -, and heteroaryl($C_{1-2} alkyl$)-;
 - R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- 25 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl-C₁₋₂ alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-30 C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and 35 dimethylamino;

20

 $\langle i \rangle$

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

25

15

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

- benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl,
 - 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 - 2,3-dihydrobenzothienyl-S-oxide,
 - 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
- benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected

.

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, CO_2 R^{14a} and SO_2 R^{14a}.

10 [21] In another still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

X is selected from the group O, S and a bond;

15 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

20

25

- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_3 , $-OR^{13a}$, -OH, $-OCH_3$, $-OCH_2CH_3$, $-CH_2OCH_3$, and $-NR^{13a}R^{16a}$;
- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- 35 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each

heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, cyclopropyl, OCH_3 , OCH_2CH_3 , $OCH(CH_3)_2$, $OCH_2CH_2CH_3$, OCF_3 , Br, Cl, F, CF_3 , -CN, SCH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(O)NH_2$, $-C(O)NHCH_3$, and $-C(O)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 ;

10

20

5

 ${\rm R}^2$ is selected from the group ${\rm CH_3}$, ${\rm CH_2CH_3}$, ${\rm CH(CH_3)_2}$, and ${\rm CH_2CH_2CH_3}$;

R³ and R⁸ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from 25 the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being 30 substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, 35 $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3, COCH₃ and SO₂CH₃.

[2m] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

5

10

15

- R^1 is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, $-(CH_2)_3CH_3$, $-CH=CH_2$, $-CH=CH(CH_3)$, -CH=CH, $-CH=C(CH_3)$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, $-CH_3CH_3$, $-CH_3$, -CH
- Rla is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
 - ${\tt R}^2$ is selected from the group CH3, CH2CH3, and CH(CH3)2;

- \mathbb{R}^3 and \mathbb{R}^8 are independently selected at each occurrence from the group H and CH_3 ;
- aryl is phenyl substituted with 2-4 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

[2n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

15

 R^1 is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , CH_3 , CH_2CH_3 , CH_3 , CH

20

Rla is phenyl substituted with 0-2 substituents
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,
 -CN, and SCH₃.

25

- [20] In a still further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, Cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₃, OC

35

[2p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

5

30

35

- [2q] In another more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
 - R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} alkoxy- C_{1-4} alkyl;

R¹ is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;

R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that \mathbb{R}^1 is other than a cyclohexyl-(CH₂)₂- group;

 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, SH, $-S(O)_{1}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$,

 $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$:

R1b is heteroaryl and is selected from the group pyridyl, 5 pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, 10 indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms 15 with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and 20 -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; and,

25 R^{1c} is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
30 haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized.

₹.

[2r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

5 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

- R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;
 - R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₆ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;
- 25 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the

group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, CF₃, -CN, $-OR^{17}$, $-S(O)_mR^{18}$, $-COR^{17}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

- R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 15 R³ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- 20 R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁴ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
 - R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

35

5

10

 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl;

- 5 R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

20

- R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 5 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, 10 benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, 15 $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

20

[2s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

25 X is selected from the group O, S and a bond;

 R^1 is C_{1-6} alkyl;

 R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;

R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, F, CF₃, -OR^{13a}, -NR^{13a}R^{16a}, -CH₂OCH₃, -CH₂CH₂OCH₃, and C₃₋₆ cycloalkyl

which is substituted with 0-1 CH_3 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that \mathbb{R}^1 is other than a cyclohexyl-(CH₂)₂- group;

5

- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each
 heteroaryl being substituted on 0-3 carbon atoms with
 a substituent independently selected at each
 occurrence from the group CH3, CH2CH3, CH(CH3)2,
 CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2,
 OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2
 and each heteroaryl being substituted on any nitrogen
 atom with 0-1 substituents selected from the group
 CH3, CO2CH3, COCH3 and SO2CH3;
 - R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- 30 R³ and R⁸ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;
- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

PCT/US98/13913 WO 99/01454

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 5 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the 10 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH_3 , OCH_2CH_3 , $OCH(CH_3)_2$, $OCH_2CH_2CH_3$, OCF_3 , Br, C1, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with

[2t] In another further preferred embodiment, the present 20 invention provides a novel compound of formula Ia, wherein:

0-1 substituents selected from the group CH3, CO2CH3,

 R^1 is (cyclopropyl) C_1 alkyl or (cyclobutyl) C_1 alkyl;

COCH₃ and SO₂CH₃.

R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group Rla, Rlb, 25 CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, $-(CH_2)_3CH_3$, $-CH=CH_2$, - $\mathtt{CH=CH}\left(\mathtt{CH}_{3}\right),\ \mathtt{-CH=\!CH},\ \mathtt{-CH=\!C}\left(\mathtt{CH}_{3}\right),\ \mathtt{-CH}_{2}\mathtt{OCH}_{3},\ \mathtt{-CH}_{2}\mathtt{CH}_{2}\mathtt{OCH}_{3},$ F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃cyclobutyl, cyclopentyl, CH3-cyclopentyl;

30

15

R^{la} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

35

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,

pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

- 10 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;
 - R^3 and R^8 are independently selected at each occurrence from the group H and CH_3 ;
- 15 aryl is phenyl substituted with 2-4 substituents
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

30

5

- [2u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:
- R^1 is $(cyclopropyl)C_1$ alkyl or $(cyclobutyl)C_1$ alkyl;

35

 R^1 is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_3

CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

- Rla is phenyl substituted with 0-2 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,

 -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 and pyrazolyl, each heteroaryl being substituted on
 0-3 carbon atoms with a substituent independently
 selected at each occurrence from the group CH₃, CH₂CH₃,
 CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,

 CF₃, -CN, and SCH₃.
 - [2v] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

20

25

35

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

[2w] In another further preferred embodiment, the present invention provides a novel compound of formula Ia, wherein:

- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
 - [3] In another preferred embodiment, the present invention provides a novel compound of formula Ib:

Ç

$$R^{2}-X-X$$

$$N$$

$$D$$

$$R^{3}$$

$$N$$

$$D$$

$$R^{3}$$

$$N$$

$$D$$

$$R^{4}$$

5

[3a] In another more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

10

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

15

20

 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2R^{14b}$ -;

R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

30

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl,

Br, Cl, F, C₁₋₄ haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷,
-NR¹⁷aR¹⁹a, and -CONR¹⁷aR¹⁹a;

- R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
- 20 provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;
- R² is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;
- R³ and R⁷ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

\$4

 R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

- 5 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 10 R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, 15 C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

20

- R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀

 cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;

alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

10

15

5

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl,

indolyl, pyrrolyl, oxazolyl, benzofuranyl,
benzothienyl, benzothiazolyl, benzoxazolyl,
isoxazolyl, tetrazolyl, indazolyl,
2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
2,3-dihydrobenzothienyl-S-oxide,

25 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆

30 cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, $-S(O)_mR^{18}$, -COR¹⁷, $-CO_2R^{17}$, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, $-N(COR^{17})_2$, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

-53-

Ŋ.

[3b] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, S and a bond;

5

35

 R^1 is substituted C_{1-6} alkyl;

- R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂R^{13a}, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
 - R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,

OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(0)NH₂, -C(0)NHCH₃, and -C(0)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

10 $\rm R^2$ is selected from the group $\rm CH_3$, $\rm CH_2CH_3$, $\rm CH(CH_3)_2$, and

CH₂CH₂CH₃;

 $COCH_3$ and SO_2CH_3 .

5

20

R³ and R⁷ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 25 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being 30 substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each 35 heteroaryl being substituted on any nitrogen atom with

0-1 substituents selected from the group CH3, CO2CH3,

[3c] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

 R^1 is substituted C_1 ;

R¹ is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;

10

15

20

5

- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclopentyl, cyclopentyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- 25 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
- 35 provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

٧.

 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;

 ${\bf R}^3$ and ${\bf R}^7$ are independently selected at each occurrence from the group H and ${\bf CH}_3$;

5

10

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

20

- [3d] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- 25 R¹ is substituted (cyclopropyl)-C₁ alkyl or (cyclobutyl)-C₁ alkyl;
 - R¹ is substituted with 0-1 -CN;
- 30 R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), Br, Cl, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

35

 R^1 is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_3CH_3 , CH_3 , $CH_$

CH=CH(CH₃), -CH≡CH, -CH≡C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

- Rlb is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 and pyrazolyl, each heteroaryl being substituted on
 0-3 carbon atoms with a substituent independently
 selected at each occurrence from the group CH₃, CH₂CH₃,
 CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,

 CF₃, -CN, and SCH₃.
 - [3e] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)-C₁ alkyl substituted with 1 substituent independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, Cl, F, and CF₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH3, OCH3, Cl, F, and CF3.
- [3f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
 - R¹ is selected from the group (cyclopropyl)CH-CH₃, (cyclopropyl)CH-CH₂CCH₃, (cyclopropyl)CH-CH₂OCH₃,

[3g] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

20

- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, DCH₃, D
- [3h] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [3i] In another preferred embodiment, the present invention provides a novel compound of formula Ib, wherein the compound is selected from the group:
 - 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-ethyl-1H-imidazo[4,5-c]pyridine;

```
1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-methoxy-1H-
   imidazo[4,5-c]pyridine;
   1-(1-cyclopropylpropyl)-2-ethyl-4-[2-methyl-4-
    (trifluoromethyl)phenyl]-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
    cyclopropylpropyl)-2-ethyl-1H-imidazo[4,5-c]pyridine;
10
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
    cyclopropylpropyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-
15 cyclopropylpropyl)-2-(methylsulfanyl)-1H-imidazo[4,5-
    c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
20
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-ethyl-4-(4-methoxy-2,5-
25 dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-methoxy-4-(4-methoxy-2,5-
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
30
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
35
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-
    2-ethyl-1H-imidazo[4,5-c]pyridine;
```

```
4-(2-chloro-fluoro-4-methoxyphenyl)-1-(1-cyclopropylpropyl)-2-
   methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-1-(1-cyclopropylpropyl)-
   2-ethyl-1H-imidazo[4,5-c]pyridine;
    2.4-(2-chloro-fluoro-4-methylphenyl)-1-(1-cyclopropylpropyl)-
    2-methoxy-1H-imidazo[4,5-c]pyridine;
10
   1-(1-cyclopropylpropyl)-2-methoxy-4-(2,4,5-trimethylphenyl)-
    1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-2-ethyl-4-(2,4,5-trimethylphenyl)-1H-
    imidazo[4,5-c]pyridine;
15
    1-(1-cyclopropylpropyl)-2-ethyl-4-(2,5,6-trimethyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine
    1-(1-cyclopropylpropyl)-2-methoxy-4-(2,5,6-trimethyl-3-
20
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
25
    1-(1-cyclopropylpropyl)-4-(2,6-dimethyl-3-pyridinyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
    1-(1-cyclopropylpropyl)-4-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
30
    4-(2,4-dichlorophenyl)-2-ethyl-1-(1-ethylpropyl)-1H-
    imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(1-ethylpropyl)-2-methoxy-1H-
35
    imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-ethylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
```

```
4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-(1-
    ethylpropyl)-1H-imidazo[4,5-c]pyridine;
5 4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-(1-
    ethylpropyl)-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-1-(1-ethylpropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
10
    2-\text{ethyl-1-}(1-\text{ethylpropyl})-4-(4-\text{methoxy-2,5-dimethylphenyl})-1H-
    imidazo[4,5-c]pyridine;
    1-(1-ethylpropy1)-2-methoxy-4-(4-methoxy-2,5-dimethylpheny1)-
15
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-2-ethyl-1-(1-ethylpropyl)-1H-
    imidazo[4,5-c]pyridine;
20 4-(2-chloro-4-methoxyphenyl)-1-(1-ethylpropyl)-2-methoxy-1H-
    imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethylpropyl)-4-[4-methoxy-2-
    (trifluoromethyl)phenyl]-1H-imidazo[4,5-c]pyridine;
25
    1-(1-ethylpropyl)-2-methoxy-4-[4-methoxy-2-
    (trifluoromethyl) phenyl] -1H-imidazo[4,5-c] pyridine;
    1-(1-ethylpropy1)-4-(5-fluoro-4-methoxy-2-methylpheny1)-2-
30 methoxy-1H-imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethylpropyl)-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
35 3-chloro-4-[1-(1-ethylpropyl)-2-methoxy-1H-imidazo[4,5-
    c]pyridin-4-yl]benzonitrile;
```

ς.

```
3-chloro-4-[2-ethyl-1-(1-ethylpropyl)-1H-imidazo[4,5-
    c]pyridin-4-yl]benzonitrile;
    1-{3-chloro-4-[2-ethyl-1-(1-ethylpropyl)-1H-imidazo[4,5-
5 c)pyridin-4-yl]phenyl}-1-ethanone;
    1-{3-chloro-4-[1-(1-ethylpropyl)-2-methoxy-1H-imidazo[4,5-
    c]pyridin-4-yl]phenyl}-1-ethanone;
10 1-(dicyclopropylmethy1)-2-ethy1-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
    1-(dicyclopropylmethy1)-4-(5-fluoro-4-methoxy-2-methy1pheny1)-
    2-methoxy-1H-imidazo[4,5-c]pyridine;
15
    4-(2-chloro-4-methoxyphenyl)-1-(dicyclopropylmethyl)-2-ethyl-
    1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(dicyclopropylmethyl)-2-
20
    methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(dicyclopropylmethyl)-2-ethyl-1H-
    imidazo[4,5-c]pyridine;
25
    4-(2,4-dichlorophenyl)-1-(dicyclopropylmethyl)-2-methoxy-1H-
    imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-
    (dicyclopropylmethyl) -2-ethyl-1H-imidazo[4,5-c]pyridine;
30
    4-[2-chloro-4-(trifluoromethyl)phenyl]-1-
    (dicyclopropylmethyl) -2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-1-(1-ethyl-3-methoxypropyl)-2-methoxy-
35
   1H-imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-2-ethyl-1-(1-ethyl-3-methoxypropyl)-1H-
    imidazo[4,5-c]pyridine;
```

```
4-[2-chloro-4-(trifluoromethyl)phenyl]-1-(1-ethyl-3-
   methoxypropyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
5 4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-4-methoxyphenyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
10
    4-(2-chloro-4-methoxyphenyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-1-(1-ethyl-3-
    methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
15
    4-(2-chloro-5-fluoro-4-methoxyphenyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
20
    1-(1-ethyl-3-methoxypropyl)-2-methoxy-4-(4-methoxy-2,5-
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
    2-\text{ethyl-1-(1-ethyl-3-methoxypropyl)-4-(4-methoxy-2,5-
    dimethylphenyl)-1H-imidazo[4,5-c]pyridine;
25
    2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(5-fluoro-4-methoxy-2-
    methylphenyl)-1H-imidazo[4,5-c]pyridine;
    1-(1-ethyl-3-methoxypropyl)-4-(5-fluoro-4-methoxy-2-
30
    methylphenyl)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-1-(1-ethyl-3-
    methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
35
    4-(2-chloro-5-fluoro-4-methylphenl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
```

```
4-[2-chloro-4-(methylsulfonyl)phenyl]-1-(1-ethyl-3-
    methoxypropy1)-2-methoxy-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-(1-ethyl-3-
5 methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    1-\{3-\text{chloro-}4-[1-(1-\text{ethyl-}3-\text{methoxypropyl})-2-\text{methoxy-}1H-
    imidazo[4,5-c]pyridin-4-yl]phenyl}-1-ethanone;
10 1-{3-chloro-4-[2-ethyl-1-(1-ethyl-3-methoxypropyl)-1H-
    imidazo[4,5-c]pyridin-4-yl]phenyl}-1-ethanone;
    1-{5-[1-(1-ethyl-3-methoxypropyl)-2-methoxy-1H-imidazo[4,5-
    c]pyridin-4-yl]-6-methyl-2-pyridinyl}-1-ethanone;
15
    1-\{5-\{2-\text{ethyl}-1-(1-\text{ethyl}-3-\text{methoxypropyl})-1\text{H-imidazo}\}\}
    c]pyridin-4-yl]-6-methyl-2-pyridinyl}-1-ethanone;
    1-(1-ethyl-3-methoxypropyl)-2-methoxy-4-(6-methoxy-2-methyl-3-
20 pyridinyl)-1H-imidazo[4,5-c]pyridine;
    2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(6-methoxy-2-methyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
25 4-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-1-(1-ethyl-3-
    methoxypropyl)-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridinyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
30
    4-(2,6-dimethyl-3-pyridinyl)-1-(1-ethyl-3-methoxypropyl)-2-
    methoxy-1H-imidazo[4,5-c]pyridine;
     4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-1-(1-ethyl-3-
35
   methoxypropyl)-1H-imidazo[4,5-c]pyridine;
     2-ethyl-1-(1-ethyl-3-methoxypropyl)-4-(2,5,6-trimethyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
```

```
1-(1-\text{ethyl}-3-\text{methoxypropyl})-2-\text{methoxy}-4-(2,5,6-\text{trimethyl}-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
5 4-(2,4-dichlorophenyl)-2-ethyl-1-[1-(methoxymethyl)propyl]-1H-
    imidazo[4,5-c]pyridine;
    4-(2,4-dichlorophenyl)-2-methoxy-1-[1-(methoxymethyl)propyl]-
    1H-imidazo[4,5-c]pyridine;
10
    4-[2-chloro-4-(trifluoromethyl)phenyl]-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(trifluoromethyl)phenyl]-2-methoxy-1-[1-
15
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2-chloro-5-fluoro-4-methylphenyl)-2-methoxy-1-[1-
20
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    2-methoxy-4-(4-methoxy-2,5-dimethylphenyl)-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
25
    2-ethyl-4-(4-methoxy-2,5-dimethylphenyl)-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    2-ethyl-4-(5-fluoro-4-methoxy-2-methylphenyl)-1-[1-
30
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
     4-(5-fluoro-4-methoxy-2-methylphenyl)-2-methoxy-1-(1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
35
     2-methoxy-1-[1-(methoxymethyl)propyl]-4-(6-methoxy-2-methyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
```

```
2-\text{ethyl-1-[1-(methoxymethyl)propyl]-4-(6-methoxy-2-methyl-3-
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridinyl)-2-ethyl-1-[1-
5
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethoxy-3-pyridiny1)-2-methoxy-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
10
    4-(2,6-dimethyl-3-pyridinyl)-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    4-(2,6-dimethyl-3-pyridinyl)-2-methoxy-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
15
    2-\text{ethyl-1-}[1-(\text{methoxymethyl})\text{propyl}]-4-(2,5,6-\text{trimethyl-3-}
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    2-methoxy-1-[1-(methoxymethyl)propyl]-4-(2,5,6-trimethyl-3-
20
    pyridinyl)-1H-imidazo[4,5-c]pyridine;
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-ethyl-1-[1-
    (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine; and
25
    4-[2-chloro-4-(methylsulfonyl)phenyl]-2-methoxy-1-[1-
     (methoxymethyl)propyl]-1H-imidazo[4,5-c]pyridine;
    or a pharmaceutically acceptable salt form thereof.
30
     [3j] In another more preferred embodiment, the present
    invention provides a novel compound of formula Ib, wherein:
    R^1 is C_{3-8} cycloalkyl;
35
```

group -CN, $-S(0)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$,

R¹ is substituted with 0-1 substituents selected from the

-N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b},

Š.

-CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b}; and,

10 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13}aR^{16}a$.

15

- [3k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- 20 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

- R¹ is selected from the group cyclopropyl, cyclobutyl, and cyclopentyl;
- R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, and C_{4-8} cycloalkyl, wherein one carbon atom in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$;

 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O) $_{n}R^{18}$, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO2R^{14b}, COR^{14b} and SO2R^{14b};

20

5

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

25

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R³ and R⁷ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

<′

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

15

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 10 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- 25 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken 35 together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
- heteroaryl is independently selected at each occurence from
 the group pyridyl, pyrimidinyl, triazinyl, furanyl,
 quinolinyl, isoquinolinyl, thienyl, thiazolyl,
 indolyl, pyrrolyl, oxazolyl, benzofuranyl,
 benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, tetrazolyl, indazolyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
 benzoxazolin-2-on-yl, benzodioxolanyl and
- benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and
- each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .
- 35 [31] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, S and a bond;

5

35

 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂R^{13a}, and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF₃, -OR^{13a}, -OH, -OCH₃, -OCH₂CH₃, -CH₂OCH₃, CH₂CH₂OCH₃, and -NR^{13a}R^{16a};
- Rla is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

Ν.

R³ and R⁷ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

aryl is phenyl substituted with 2-4 substituents 5 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$; and,

10

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

2,3-dihydrobenzothienyl-S-oxide,

15 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

20 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃.

25

[3m] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

30

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group Rla, Rlb, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, $-(CH_2)_3CH_3$, $-CH=CH_2$, - $CH=CH(CH_3)$, -CH=CH, $-CH=C(CH_3)$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, F, and CF3;

35

Rla is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and

0-2 substituents independently selected at each occurrence from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, Br, Cl, F, CF_3 , -CN, and SCH_3 ;

5 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

15

R² is selected from the group CH₃, CH₂CH₃, and CH(CH₃)₂;

 R^3 and R^7 are independently selected at each occurrence from the group H and CH_3 ;

20

25

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

35

[3n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH₂OCH₃, -CH₂CCH₂OCH₃, F, and CF₃; and,

5

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃.
- [30] In another still further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, DCF₃, Br, Cl, F, and CF₃.
- [3p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [3q] In another more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} alkoxy- C_{1-4} alkyl;

- 5 R^1 is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
- 10 R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

- 20 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R1b is heteroaryl and is selected from the group pyridyl,

 pyrimidinyl, triazinyl, furanyl, quinolinyl,
 isoquinolinyl, thienyl, imidazolyl, thiazolyl,
 indolyl, pyrrolyl, oxazolyl, benzofuranyl,
 benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
 indazolyl, 2,3-dihydrobenzofuranyl,
 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b}; and,

saturated heterocyclyl and is a saturated or partially saturated heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized.

25

[3r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

30 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl;

 R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

5

10

 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, $-NR^{13}aR^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_RR¹⁸, -COR¹⁷,

-NR17aR19a, and -CONR17aR19a;

20

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

 R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;

- R³ and R⁷ are independently selected at each occurrence from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R¹³ is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄

 15 alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, and C₃₋₆ cycloalkyl-C₁₋₆ alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- 25 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

25

15

- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
- benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, tetrazolyl, indazolyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
- benzoxazolin-2-on-yl, benzodioxolanyl and
 benzodioxane, each heteroaryl being substituted 1-4
 carbon atoms with a substituent independently selected

2,3-dihydrobenzothienyl-S-dioxide, indolinyl,

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, COR^{14a} and SO_2 R^{14a}.

10 [3s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

X is selected from the group O, S and a bond;

15 R^1 is C_{1-6} alkyl;

 R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-4} cycloalkyl is replaced by a group selected from the group -0-, -S(O)_n-, and -NR^{13a}-;

20

25

 $\rm R^1$ is also substituted with 0-2 substituents independently selected at each occurrence from the group $\rm R^{1a}$, $\rm R^{1b}$, $\rm C_{1-6}$ alkyl, $\rm C_{2-8}$ alkenyl, $\rm C_{2-8}$ alkynyl, F, CF3, -OR^{13a}, -NR^{13a}R^{16a}, -CH2OCH3, -CH2CH2OCH3, and C3-6 cycloalkyl which is substituted with 0-1 CH3 and in which 0-1 carbons of C4-8 cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl- $(CH_2)_2$ - group;

30 R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃), OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃), CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

Α,

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2, OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, -NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2 and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3, COCH3 and SO2CH3;

- R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
 - R³ and R⁷ are independently selected at each occurrence from the group H, CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;
- 20 aryl is phenyl substituted with 2-4 substituents
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl,

 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

 2,3-dihydrobenzothienyl-S-oxide,

 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each

heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 .

5

[3t] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

R¹ is (cyclopropy1)C₁ alkyl or (cyclobuty1)C₁ alkyl;

10

15

- R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclopentyl, CH₃-cyclopentyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- 25 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
- 35 R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;
 - R³ and R⁷ are independently selected at each occurrence from the group H and CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

5

20

heteroaryl is pyridyl substituted on 2-4 carbon atoms with

a substituent independently selected at each
occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂,
CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂,
OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃,
-NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and
-C(O)N(CH₃)₂.

[3u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)C₁ alkyl;

- R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-2 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,

 -CN, and SCH₃;
- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃,

1.

 $CH(CH_3)_2$, $CH_2CH_2CH_3$, OCH_3 , OCH_2CH_3 , OCF_3 , Br, C1, F, CF_3 , -CN, and SCH_3 .

- 5 [3v] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

[3w] In another further preferred embodiment, the present invention provides a novel compound of formula Ib, wherein:

- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.
- [4] In another preferred embodiment, the present invention 25 provides a novel compound of formula Ic:

30

20

[4a] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

 R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(0)_n R^{14b}$, $-COR^{13a}$, $-CO_2 R^{13a}$, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(0)_n$ -, $-NR^{13a}$ -, $-NCO_2 R^{14b}$ -, $-NCOR^{14b}$ - and $-NSO_2 R^{14b}$ -;

R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, CF₃, CF₂CF₃, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

 R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O) $_n$ R¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

30

35

10

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN,

 $-OR^{17}$, $-S(O)_mR^{18}$, $-COR^{17}$, $-NR^{17}aR^{19}a$, and $-CONR^{17}aR^{19}a$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

5

- provided that R^1 is other than a -(CH_2)₁₋₄-aryl or -(CH_2)₁₋₄-heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;
- 10 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;
- 15 R³ is selected from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
 - R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

25

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- 35 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

 R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

- 5 R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, and C₃₋₆

 cycloalkyl-C₁₋₆ alkyl;
 - R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;

20

25

- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

٠,,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 5 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and 10 benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(0)R^{18}$, $-NR^{15}COR^{17}$, 15 $-N(COR^{17})_2$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO₂R^{14a}.

20

- [4b] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 25 X is selected from the group O, S and a bond;
 - R^1 is substituted C_{1-6} alkyl;
- R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -N R^{13a} -;
- 35 R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃,

Š.

-OR^{13a}, -NR^{13a}R^{16a}, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

5

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

Rla is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

15

20

25

R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;

 R^2 is selected from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

35

 ${
m R}^3$ is selected from the group H, ${
m CH}_3$, ${
m CH}_2{
m CH}_3$, ${
m CH}({
m CH}_3)_2$, and ${
m CH}_2{
m CH}_2{
m CH}_3$;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl,

- 2,3-dihydrobenzofurany1, 2,3-dihydrobenzothieny1,
 2,3-dihydrobenzothieny1-S-oxide,
 2,3-dihydrobenzothieny1-S-dioxide, indoliny1, and
 benzoxazolin-2-on-y1, each heteroary1 being
 substituted on 2-4 carbon atoms with a substituent
 independently selected at each occurrence from the
 group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropy1,
 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,
 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,
 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each
- heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 .
- 25 [4c] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is substituted C_1 ;

- 30 R¹ is substituted with 0-1 substituents selected from the group -CN, -CO₂CH₃, and -CO₂CH₂CH₃;
- R¹ is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b},

 CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
 CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

 F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃-cyclobutyl, cyclopentyl, CH₃-cyclopentyl;

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

- R1b is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;
- provided that R^1 is other than a $-(CH_2)_{1-4}$ -aryl or $-(CH_2)_{1-4}$ -heteroaryl wherein the aryl or heteroaryl group is substituted or unsubstituted;
 - R^2 is selected from the group CH_3 , CH_2CH_3 , and $CH(CH_3)_2$;
- 25 R^3 is selected from the group H and CH₃;

5

- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃,

₹,

 $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(O)NH_2$, $-C(O)NHCH_3$, and $-C(O)N(CH_3)_2$.

- 5 [4d] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is substituted (cyclopropyl)- C_1 alkyl or (cyclobutyl) C_1 alkyl;

- R¹ is substituted with 0-1 -CN;
- R¹ is also substituted with 0-1 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;
- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- 25 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, and pyrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃.
- [4e] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R^1 is $(cyclopropy1)C_1$ alkyl or $(cyclobuty1)-C_1$ alkyl substituted with 1 substituent independently selected

at each occurrence from the group R^{1a} , R^{1b} , CH_3 , CH_2CH_3 , CH_2CH_3 , $-(CH_2)_3CH_3$, $-CH=CH_2$, $-CH=CH(CH_3)$, -CH=CH, $-CH=C(CH_3)$, $-CH_2OCH_3$, $-CH_3OCH_3$,

5

- R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the group CH_3 , CH_2CH_3 , Cl, F, and CF_3 ;
- 10 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, and isoxazolyl, each heteroaryl being substituted on 0-2 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, OCH₃, Cl, F, and CF₃.

15

- [4f] In an even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- isoxazolyl(cyclopropyl)CH, (CH₃furanyl)(cyclopropyl)CH, (cyclobutyl)CH-CH₃,
 (cyclobutyl)CH-CH₂CH₃, (cyclobutyl)CH-CH₂OCH₃,
 (cyclobutyl)CH-CH₂CH₂CH₃, (cyclobutyl)CH-CH₂CH₂OCH₃,
 (cyclobutyl)₂CH, phenyl(cyclobutyl)CH,
- furanyl(cyclobutyl)CH, thienyl(cyclobutyl)CH, isoxazolyl(cyclobutyl)CH, and (CH₃-furanyl)(cyclobutyl)CH;
- 35 [4g] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

Ġ

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

5

- [4h] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

- [4i] In another preferred embodiment, the present invention provides a novel compound of formula Ic, wherein the compound is selected from the group:
- 20
 6-(2,4-bis(trifluoromethyl)phenyl-9-(dicyclopropylmethyl)-8ethyl-9H-purine;
- 6-(2-chloro-4-cyanophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H25 purine;
 - 6-(2-chloro-4-methoxy-5-chloropheny1)-9-(dicyclopropylmethy1)-8-ethyl-9H-purine;
- 30 6-(2-chloro-4-methoxy-5-methylphenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-purine;
 - 6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(2-hexyl)-9H-purine;
- 35 6-(2-chloro-4-methoxypheny1)-8-ethyl-9-(2-pentyl)-9H-purine;
 - 6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(3-heptyl)-9H-purine;

```
6-(2-chloro-4-methoxypheny1)-8-ethy1-9-(3-hexy1)-9H-purine;
    6-(2-chloro-4-methoxyphenyl)-8-ethyl-9-(4-heptyl)-9H-purine;
5 6-(2-chloro-4-methoxyphenyl)-9-(1-cyclopropylbutyl)-8-ethyl-
    9H-purine;
    6-(2-chloro-4-methoxyphenyl)-9-(1-cyclopropylpropyl)-8-ethyl-
    9H-purine;
10
    6-(2-chloro-4-methoxyphenyl)-9-(dicyclopropylmethyl)-8-ethyl-
    9H-purine;
    6-(2-chloro-4-methoxyphenyl)-9-(dicyclopropylmethyl)-8-
15
   methoxy-9H-purine;
    6-(2-chloro-4-methyl-5-fluorophenyl)-9-(dicyclopropylmethyl)-
    8-ethyl-9H-purine:
20 6-(2-chloro-4-methylphenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    6-(2-chloro-4-methylphenyl)-8-ethyl-9-(4-heptyl)-9H-purine;
    6-(2-chloro-4-methylphenyl)-9-(1-cyclopropylbutyl)-8-ethyl-9H-
25 purine;
    6-(2-chloro-4-methylphenyl)-9-(dicyclopropylmethyl)-8-ethyl-
    9H-purine;
30
    6-(2-chloro-4-trifluoromethoxyphenyl)-8-ethyl-9-(2-pentyl)-9H-
    purine;
    6-(2-chloro-4-trifluoromethoxyphenyl)-8-ethyl-9-(3-hexyl)-9H-
    purine;
35
    6-(2-chloro-4-trifluoromethoxyphenyl)-9-(1-cyclopropylbutyl)- 🚿
    8-ethyl-9H-purine;
```

```
6-(2-chloro-4-trifluoromethoxyphenyl)-9-(1-cyclopropylpropyl)-
    8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethoxyphenyl)-9-(dicyclopropylmethyl)-
5 8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-hexyn-3-yl)-
    9H-purine;
10 6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-pentyn-3-
    yl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-pentyn-4-
    y1) - 9H-purine;
15
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(1-phenyl-2-
    butynyl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-heptyn-4-
20 yl)-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-hexyn-4-yl)-
    9H-purine;
25
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(2-pentyl)-9H-
    purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-(4-heptyl)-9H-
    purine;
30
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-[(2-furanyl)-
    cyclopropylmethyl]-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-8-ethyl-9-[1-(2-
35 furanyl)propyl]-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclobutylethyl)-8-
    ethyl-9H-purine;
```

```
6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropyl-2-
   butynyl)-8-ethyl-9H-purine;
5 6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropyl-2-
   propenyl)-8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropylbutyl)-8-
    ethyl-9H-purine;
10
    6-(2-chloro-4-trifluoromethylphenyl)-9-(1-cyclopropylpropyl)-
    8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(dicyclopropylmethyl)-
15 8-ethyl-9H-purine;
    6-(2-chloro-4-trifluoromethylphenyl)-9-(dicyclopropylmethyl)-
    8-methoxy-9H-purine;
20 6-(2-chloro-4-trifluoromethylphenyl)-9-[1-cyclopropyl-1-(2-
    thienyl)methyl]-8-ethyl-9H-purine;
    9-(1-cyclobutylethyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
25
    9-[1-cyclopropyl-(3-methylisoxazol-5-yl)methyl]-6-(2,4-
    dichlorophenyl)-8-ethyl-9H-purine;
    9-(1-cyclopropy1-2-butyny1)-6-(2,4-dichloropheny1)-8-ethy1-9H-
30 purine;
    9-(1-cyclopropyl-2-butynyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
    9-(1-cyclopropyl-2-propenyl)-6-(2,4-dichloro-6-methylphenyl)-
    8-ethyl-9H-purine;
```

```
9-(1-cyclopropyl-2-propenyl)-6-(2,4-dichlorophenyl)-8-ethyl-
    9H-purine;
    9-(1-cyclopropy1-2-propyny1)-8-ethyl-6-(2-trifluoromethyl-4-
5 methoxypheny1)-9H-purine;
    9(1-cyclopropyl-4'-fluorobenzyl)-6-(2,4-dichlorophenyl)-8-
    ethyl-9H-purine;
10 9-(1-cyclopropylbenzyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
    9-(1-cyclopropylbenzyl)-8-ethyl-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
15
    9-(1-cyclopropylbutyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
    purine;
    9-(1-\text{cyclopropylbuty1})-8-\text{ethyl}-6-(2,4,6-\text{trimethylphenyl})-9H-
20
    purine;
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-methyl-4,5-
    dimethoxyphenyl)-9H-purine;
   9-(1-cyclopropylbuty1)-8-ethyl-6-(2-methyl-4-chloropheny1)-9H-
    purine;
    9-(1-cyclopropylbuty1)-8-ethy1-6-(2-methy1-4-methoxypheny1)-
    9H-purine;
30
    9-(1-cyclopropylbutyl)-8-ethyl-6-(2-trifluoromethyl-4-
    chlorophenyl)-9H-purine;
     9-(1-cyclopropylbutyl)-8-ethyl-6-(2-trifluoromethyl-4-
35
    methoxyphenyl)-9H-purine;
     9-(1-cyclopropylethyl)-6-(2,4-dichlorophenyl)-8-ethyl-9H-
     purine;
```

٠,٠

```
9-(1-cyclopropylethyl)-8-ethyl-6-(2-trifluoromethyl-4-
   chlorophenyl)-9H-purine;
5 9-(1-cyclopropylpentyl)-8-ethyl-6-(2-methyl-4-methoxyphenyl)-
    9H-purine;
    9-(1-cyclopropylpropyl)-6-(2,4-dichloro-6-methylphenyl)-8-
    ethyl-9H-purine;
10
    9-(1-\text{cyclopropylpropyl})-6-(2,4-\text{dichlorophenyl})-8-\text{ethyl}-9H-
    purine;
    9-(1-cyclopropylpropyl)-8-ethyl-6-(2,4,6-trimethylphenyl)-9H-
15
   purine;
    9-(1-cyclopropylpropyl)-8-ethyl-6-(2-trifluoromethyl-4-
    chlorophenyl)-9H-purine;
20 6-(2,4-dichloro-5-fluorophenyl)-9-(dicyclopropylmethyl)-8-
    ethyl-9H-purine;
    6-(2,4-dichloro-6-methylphenyl)-8-ethyl-9-(2-penten-3-yl)-9H-
    purine;
25
     6-(2,4-dichloro-6-methylphenyl)-9-(dicyclopropylmethyl)-8-
    ethyl-9H-purine;
     6-(2,4-dichlorophenyl)-8-ethyl-9-(1-hexyn-3-yl)-9H-purine;
30
     6-(2,4-dichlorophenyl)-8-ethyl-9-(1-methoxycarbonylpropyl)-9H-
     purine;
     6-(2,4-dichloropheny1)-8-ethy1-9-(1-pheny1-2-butyny1)-9H-
35 purine;
     6-(2,4-dichlorophenyl)-8-ethyl-9-(2-heptyn-4-yl)-9H-purine;
```

```
6-(2,4-dichlorophenyl)-8-ethyl-9-(2-hexyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-hexyn-4-yl)-9H-purine;
5
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-penten-3-yl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-(3-heptyl)-9H-purine;
10
    6-(2,4-\text{dichlorophenyl})-8-\text{ethyl}-9-(3-\text{hexyl})-9H-\text{purine};
    6-(2,4-dichlorophenyl)-8-ethyl-9-(3-pentyl)-9H-purine;
15 6-(2,4-\text{dichlorophenyl})-8-\text{ethyl}-9-(4-\text{heptyl})-9H-purine;
    6-(2,4-dichlorophenyl)-8-ethyl-9-[1-(2-
    methylcyclopropyl)ethyl]-9H-purine;
20 6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-
    purine;
     6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-ethyl-9H-
    purine;
25
     6-(2,4-dichlorophenyl)-9-(dicyclopropylmethyl)-8-methoxy-9H-
    purine;
     6-(2,4-dichlorophenyl)-9-(diphenylmethyl)-8-ethyl-9H-purine;
30
     9-(dicyclopropylmethyl)-6-(2,4-dimethylphenyl)-8-ethyl-9H-
     purine;
     9-(dicyclopropylmethyl)-6-(2,4-dimethylphenyl)-8-ethyl-9H-
35
   purine;
     9-(dicyclopropylmethyl)-6-(2,6-dimethoxypyridin-3-yl)-8-
     methoxy-9H-purine;
```

K.

```
9-(dicyclopropylmethyl)-8-ethyl-6-(2,4,5-trichlorophenyl)-9H-
    purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methoxy-4-
    trifluoromethylphenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4,5-
    dimethoxyphenyl)-9H-purine;
10
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-chlorophenyl)-
    9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-
15
   dimethylaminophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxy-5-
    chlorophenyl)-9H-purine;
20 9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxy-5-
    fluorophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-chloro-4-methoxy-5-
    fluorophenyl) -9H-purine;
25
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-4-methoxyphenyl)-
    9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
30 chlorophenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
    9-(dicyclopropylmethyl)-8-ethyl-6-(2-trifluoromethyl-4-
    propyloxyphenyl)-9H-purine;
    6-(2,6-dimethoxypyridin-3-y1)-8-ethyl-9-(2-pentyl)-9H-purine;
```

```
6-(2,4-dimethylphenyl)-8-ethyl-9-(2-pentyl)-9H-purine;
    8-\text{ethyl-6-}(2-\text{methyl-4},5-\text{dimethoxyphenyl})-9-(2-\text{pentyl})-9H-
    purine;
    8-\text{ethyl-6-}(2-\text{methyl-4},5-\text{dimethoxyphenyl})-9-(3-\text{pentyl})-9H-
    purine;
10 8-ethyl-9-(1-hexen-3-yl)-6-(2-methyl-4,5-dimethoxyphenyl)-9H-
    purine;
     8-ethyl-9-(1-hexen-3-yl)-6-(2-trifluoromethyl-4-
    methoxyphenyl)-9H-purine;
15
     8-\text{ethyl-9-}(2-\text{hexyl})-6-(2-\text{trifluoromethyl-4-methoxyphenyl})-9H
    purine;
     8-ethyl-9-(2-pentyl)-6-(2-trifluoromethyl-4-methoxyphenyl)-9H-
20
   purine;
     8-\text{ethyl-9-}(3-\text{hexyl})-6-(2-\text{methyl-4-methoxyphenyl})-9H-purine;
     8-\text{ethyl}-9-(3-\text{hexyl})-6-(2-\text{trifluoromethyl}-4-\text{methoxyphenyl})-9H
25 purine;
     8-ethyl-9-(3-pentyl)-6-(2-trifluoromethyl-4-chlorophenyl)-9H-
     purine;
     8-ethyl-9-(4-heptyl)-6-(2-methyl-4-chlorophenyl)-9H-purine;
     8-ethyl-9-(4-heptyl)-6-(2-methyl-4-methoxyphenyl)-9H-purine;
     8-ethyl-9-(4-heptyl)-6-(2-trifluoromethyl-4-chlorophenyl)-9H-
35
     purine;
     8-ethyl-9-(4-heptyl)-6-(2-trifluoromethyl-4 methoxyphenyl)-
           9H-purine; and
```

```
9-(dicyclopropylmethyl)-8-ethyl-6-(2-methyl-6-methoxy-3-pyridyl)-9H-purine;
```

- 5 or a pharmaceutically acceptable salt form thereof.
 - [4j] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

 R^1 is C_{3-8} cycloalkyl;

- R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-NR^{15a}COR^{15a}$, $-NR^{15a}COR^{15a}$
- 20 -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; and,
- 25 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-9} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$.

30

10

- [4k] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- 35 X is selected from the group O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

- 5 R^1 is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, and C₄₋₈ cycloalkyl, wherein one carbon atom in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
 - R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and $-NR^{13a}R^{16a}$;

15

20

- R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(0) $_{n}R^{18}$, -COR¹⁷, -NR¹⁷aR¹⁹a, and -CONR¹⁷aR¹⁹a;
- pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₄ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, CF₃, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
 - R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents

selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
 - R^3 is selected from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
- 10 $R^{13} \text{ is selected from the group } C_{1-4} \text{ alkyl}, \ C_{1-2} \text{ haloalkyl}, \\ C_{1-2} \text{ alkoxy-} C_{1-2} \text{ alkyl}, \ C_{3-6} \text{ cycloalkyl-} C_{1-2} \text{ alkyl}, \\ \text{aryl} (C_{1-2} \text{ alkyl}) -, \text{ and heteroaryl} (C_{1-2} \text{ alkyl}) -;$
- 15 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 20 R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

ς.

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 5 R^{17} , R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,

25

15

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

- benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, tetrazolyl, indazolyl,
 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,
 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
- benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 1-4 carbon atoms with a substituent independently selected

Š.

at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(0)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(0)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2 R^{14a}, COR^{14a} and SO_2 R^{14a}.

10 [41] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, S and a bond;

15 R^1 is substituted with 0-1 substituents selected from the group -CN, -CO₂ R^{13a} , and C₄₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-:

20

25

30

- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_3 , $-OR^{13a}$, -OH, $-OCH_3$, $-OCH_2CH_3$, $-CH_2OCH_3$, and $-NR^{13a}R^{16a}$;
- R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃,
 - -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;
- 35 R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each

Ç,

heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $CH_2CH_2CH_3$, Cyclopropyl, OCH_3 , OCH_2CH_3 , $OCH(CH_3)_2$, $OCH_2CH_2CH_3$, OCF_3 , Br, Cl, F, CF_3 , -CN, SCH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, $-C(O)NH_2$, $-C(O)NHCH_3$, and $-C(O)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 ;

10

20

5

 ${\rm R}^2$ is selected from the group CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;

 R^3 is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

heteroaryl is independently selected at each occurence from 25 the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being 30 substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH3, CH2CH3, CH(CH3)2, CH2CH2CH3, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF_3 , -CN, SCH_3 , SO_2CH_3 , $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, 35 $-C(0)NH_2$, $-C(0)NHCH_3$, and $-C(0)N(CH_3)_2$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH3, CO2CH3,

COCH₃ and SO₂CH₃.

[4m] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

5

10

15

R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃;

R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃;

R² is selected from the group CH₃, CH₂CH₃, and CH(CH₃)₂;
30
R³ is selected from the group H and CH₃;

aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

Κ,

heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.

10

5

- [4n] In another even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- R¹ is substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a}, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH₂OCH₃, -CH₂CH₂OCH₃, F, and CF₃; and,
- R^{1a} is phenyl substituted with 0-2 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃,

 -CN, and SCH₃.
- 25 [40] In another still further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH₂CH₃, OCH₃, DCH₃, DCH₃, OCH₃, O
- 35 [4p] In another still further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

5

10

- [4q] In another more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} alkoxy- C_{1-4} alkyl;
- 15 R^1 is substituted with a C_{3-8} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl group is replaced by a group selected from the group -0-, -S(0)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-;
- 20 R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

30 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, 5 indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 10 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each 15 occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(O)_{m}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from 20 the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; and,

saturated heterocyclyl and is a saturated or partially saturated heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a}, -OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized.

35

[4r] In another even more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, $S(O)_n$ and a bond;

5

n is 0, 1 or 2;

 R^1 is selected from the group C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-8} cycloalkyl;

10

 R^1 is substituted with a C_{3-6} cycloalkyl group, wherein 0-1 carbon atoms in the C_{4-6} cycloalkyl group is replaced by a group selected from the group -O-, -S(O)_n-, and -NR^{13a}-;

15

20

- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, CF₃, CF_2CF_3 , $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;
- R^{1a} is aryl and is selected from the group phenyl and indanyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -S(O)_nR¹⁸, -COR¹⁷, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

30

35

R1b is heteroaryl and is selected from the group pyridyl, pyrimidinyl, furanyl, thienyl, imidazolyl, thiazolyl, pyrrolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the

4

group C_{1-4} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, CF₃, -CN,

 $-OR^{17}$, $-S(O)_mR^{18}$, $-COR^{17}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

5

 R^2 is selected from the group C_{1-4} alkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-1 substituents selected from the group -CN, OH, Cl, F, and C_{1-4} alkoxy;

10

20

25

- R^9 is independently selected at each occurrence from the group H, C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R³ is selected from the group H, Br, Cl, F, -CN, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-4} alkoxy, NH₂, C_{1-4} alkylamino, and $(C_{1-4}$ alkyl)₂-amino;
 - R^{13} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;
 - R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{14} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl- C_{1-2} alkyl, aryl(C_{1-2} alkyl)-, and heteroaryl(C_{1-2} alkyl)-;

30

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-2} haloalkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-2} alkyl;

, **S** ,

R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

5

20

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁷, R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀

 cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
 - alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is phenyl substituted with 1-4 substituents independently selected at each occurrence from the group C_{1-4} alkyl, C_{3-6} cycloalkyl, $-OR^{17}$, Br, Cl, F, C_{1-4} haloalkyl, -CN, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-NR^{15}COR^{17}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,

benzothienyl, benzothiazolyl, benzoxazolyl,
isoxazolyl, tetrazolyl, indazolyl,
2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,
2,3-dihydrobenzothienyl-S-oxide,
5 2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
benzoxazolin-2-on-yl, benzodioxolanyl and
benzodioxane, each heteroaryl being substituted 1-4
carbon atoms with a substituent independently selected
at each occurrence from the group C₁₋₆ alkyl, C₃₋₆
cycloalkyl, Br, Cl, F, C₁₋₄ haloalkyl, -CN, -OR¹⁷,

10 cycloalkyl, Br, Cl, F, C_{1-4} haloalkyl, -CN, -OR¹⁷, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

[4s] In another still more preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

X is selected from the group O, S and a bond;

 R^1 is C_{1-6} alkyl;

20

35

- 25 R^1 is substituted with a C_{3-6} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-4} cycloalkyl is replaced by a group selected from the group -0-, -S(0)_n-, and -NR^{13a}-;
- R^1 is also substituted with 0-2 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, F, CF_3 , $-OR^{13a}$, $-NR^{13}aR^{16a}$, $-CH_2OCH_3$, $-CH_2CH_2OCH_3$, and C_{3-6} cycloalkyl which is substituted with 0-1 CH₃ and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -0-;

provided that R^1 is other than a cyclohexyl-(CH₂)₂- group;

΄,

R^{1a} is aryl and is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, and OCF₃, and 0-3 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, Br, Cl, F, CF₃, -CN, SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂;

- R1b is heteroaryl and is selected from the group furanyl,
 thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
 pyrazolyl, triazolyl, tetrazolyl, and indazolyl, each
 heteroaryl being substituted on 0-3 carbon atoms with
 a substituent independently selected at each
 occurrence from the group CH3, CH2CH3, CH(CH3)2,
 CH2CH2CH3, cyclopropyl, OCH3, OCH2CH3, OCH(CH3)2,
 OCH2CH2CH3, OCF3, Br, Cl, F, CF3, -CN, SCH3, -NH2, NHCH3, -N(CH3)2, -C(O)NH2, -C(O)NHCH3, and -C(O)N(CH3)2
 and each heteroaryl being substituted on any nitrogen
 atom with 0-1 substituents selected from the group
 CH3, CO2CH3, COCH3 and SO2CH3;
 - $\rm R^2$ is selected from the group CH₃, CH₂CH₃, CH(CH₃)₂, and CH₂CH₂CH₃;
- 25 R^3 is selected from the group H, CH_3 , CH_2CH_3 , $CH(CH_3)_2$, and $CH_2CH_2CH_3$;
- aryl is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, indolyl, benzothienyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide,

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, and benzoxazolin-2-on-yl, each heteroaryl being substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH₃, CO₂CH₃, COCH₃ and SO₂CH₃.

[4t] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

 R^1 is (cyclopropyl) C_1 alkyl or (cyclobutyl) C_1 alkyl;

R¹ is substituted with 1-2 substituents independently

selected at each occurrence from the group R^{1a}, R^{1b},

CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂,
CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃,

F, CF₃, cyclopropyl, CH₃-cyclopropyl, cyclobutyl, CH₃
cyclobutyl, cyclopentyl, CH₃-cyclopentyl;

25

30

35

5

10

- R^{1a} is phenyl substituted with 0-1 substituents selected from OCH₃, OCH₂CH₃, and OCF₃, and 0-2 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;
- R^{1b} is heteroaryl and is selected from the group furanyl, thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, pyrazolyl, triazolyl, and tetrazolyl, each heteroaryl being substituted on 0-3 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, and SCH₃ and each

Ç

heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group CH_3 , CO_2CH_3 , $COCH_3$ and SO_2CH_3 ;

- 5 R² is selected from the group CH₃, CH₂CH₃, and CH(CH₃)₂;
 - R3 is selected from the group H and CH3;
- aryl is phenyl substituted with 2-4 substituents

 independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl,

 OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F,

 CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂,

 -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂; and,

15

20

- heteroaryl is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, CF₃, -CN, SCH₃, SO₂CH₃, -NH₂, -NHCH₃, -N(CH₃)₂, -C(O)NH₂, -C(O)NHCH₃, and -C(O)N(CH₃)₂.
- 25 [4u] In another even further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
 - R¹ is (cyclopropyl)C₁ alkyl or (cyclobutyl)C₁ alkyl;
- 30 R¹ is substituted with 1-2 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, -(CH₂)₃CH₃, -CH=CH₂, -CH=CH(CH₃), -CH=CH, -CH=C(CH₃), -CH₂OCH₃, -CH₂CH₂OCH₃, F, CF₃, cyclopropyl, and CH₃-cyclopropyl;

35

R^{1a} is phenyl substituted with 0-2 substituents independently selected at each occurrence from the

 \mathcal{L}_{1}

group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, Br, Cl, F, CF₃, -CN, and SCH₃;

R^{1b} is heteroaryl and is selected from the group furanyl,
thienyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl,
and pyrazolyl, each heteroaryl being substituted on
0-3 carbon atoms with a substituent independently
selected at each occurrence from the group CH₃, CH₂CH₃,
CH(CH₃)₂, CH₂CH₂CH₃, OCH₃, OCH₂CH₃, OCF₃, Br, Cl, F,

CF₃, -CN, and SCH₃.

[4v] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:

15

D is phenyl substituted with 2-4 substituents independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

20

- [4w] In another further preferred embodiment, the present invention provides a novel compound of formula Ic, wherein:
- D is pyridyl substituted on 2-4 carbon atoms with a substituent independently selected at each occurrence from the group CH₃, CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₃, cyclopropyl, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH₂CH₃, OCF₃, Br, Cl, F, and CF₃.

30

35

[5] In a third embodiment, the present invention provides a novel pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I):

€.

$$R^{2}-X \longrightarrow N \longrightarrow D$$

$$(I)$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

5

A is N or $C-R^7$;

B is N or $C-R^8$;

10 provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

15 X is selected from the group CH-R 9 , N-R 10 , O, S(O) $_n$ and a bond;

n is 0, 1 or 2;

- 20 R¹ is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;
- 25 R¹ is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents

selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} :

 R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;

provided that R1 is other than:

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- (c) a 1-hydroxyalkyl group;

also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

- 20 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(0)_nR¹⁸, -COR¹⁷, -OC(0)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};
- R1b is heteroaryl and is selected from the group pyridyl,

 pyrimidinyl, triazinyl, furanyl, quinolinyl,
 isoquinolinyl, thienyl, imidazolyl, thiazolyl,
 indolyl, pyrrolyl, oxazolyl, benzofuranyl,
 benzothienyl, benzothiazolyl, benzoxazolyl,
 isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
 indazolyl, 2,3-dihydrobenzofuranyl,
 2,3-dihydrobenzothienyl,
 2,3-dihydrobenzothienyl-S-oxide,

S

2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(0)_mR¹⁸, -COR¹⁷, -OC(0)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a}, CO_2 R^{14b}, COR^{14b} and SO_2 R^{14b};

saturated heteroaryl, each heterocyclyl being
substituted on 0-4 carbon atoms with a substituent
independently selected at each occurrence from the
group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a},
-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},
-NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each
heterocyclyl being substituted on any nitrogen atom
with 0-1 substituents selected from the group R^{13a},
CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom
is optionally monooxidized or dioxidized;

25

5

10

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

30

- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF_3 and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-4} alkoxy, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, amino, C_{1-4}

Ç,

alkylamino, $(C_{1-4} \text{ alkyl})_2$ amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C_{1-7} alkyl, C_{3-8} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} alkylthio, C_{1-4} alkyl sulfinyl, C_{1-4} alkylsulfonyl, C_{1-6} alkylamino and $(C_{1-4} \text{ alkyl})_2$ amino;

provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

10

5

- R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 15 R^{13} is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 20 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 25 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4}

1

haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

- R^{14b} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl,

 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, and C₃₋₆
 cycloalkyl-C₁₋₆ alkyl;
- R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

15

35

- 20 R¹⁷ is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 25 R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
 - alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl,

1

1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

- 5 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, 25 thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 30 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} 35 cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_{m}R^{18}$, $-COR^{17}$, $-CO_{2}R^{17}$, $-OC(O)R^{18}$,

 $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$,

-NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and SO_2R^{14a} .

5

10

15

20

[6] In a second embodiment, the present invention provides a novel method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, posttraumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals, comprising: administering to the mammal a therapeutically effective amount of a compound of formula (I):

25

$$R^{2}-X \longrightarrow N \longrightarrow D$$

$$R^{2} \longrightarrow N$$

$$D$$

$$R^{3}$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

30

A is N or $C-R^7$;

B is N or C-R8;

4.

provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

5

X is selected from the group CH-R 9 , N-R 10 , O, S(O) $_n$ and a bond;

n is 0, 1 or 2;

10

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

15

- R¹ is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group selected from the group -O-, -S(O)_n-, -NR^{13a}-, -NCO₂R^{14b}-, -NCOR^{14b}- and -NSO₂R^{14b}-, and wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a}, CO₂R^{14b}, COR^{14b} and SO₂R^{14b};
- R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

35

provided that R1 is other than:

(a) a 3-cyclopropyl-3-methoxypropyl group;

(b) an unsubstituted-(alkoxy)methyl group; and,

- (c) a 1-hydroxyalkyl group;
- also provided that when R¹ alkyl substituted with OH, then 5 the carbon adjacent to the ring N is other than CH2;
- R^{la} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each Rla being substituted with 0-5 substituents independently selected at each 10 occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(O)_{D}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and -CONR^{17a}R^{19a};

15

- R1b is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl,
- 20 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl,
 - 2,3-dihydrobenzothienyl,
 - 2,3-dihydrobenzothienyl-S-oxide,
- 25 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, 30 Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH,
- $-S(O)_{m}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_{2}$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on
- any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

Ç,

R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C1-6 alkyl, C3-6 cycloalkyl, Br, Cl, F, I, C1-4 haloalkyl, -CN, nitro, -OR13a, SH, -S(O)nR14b, -COR13a, -OC(O)R14b, -NR15aCOR13a, -N(COR13a)2, -NR15aCONR13aR16a, -NR15aCO2R14b, -NR13aR16a, and -CONR13aR16a and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R13a, CO2R14b, COR14b and SO2R14b and wherein any sulfur atom is optionally monooxidized or dioxidized;

R² is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, 15 C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

alternatively R^2 , in the case where X is a bond, is selected 20 from the group -CN, CF_3 and C_2F_5 ;

R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;

provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;

35

Ç,

 R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;

- 5 R¹³ is selected from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)-;
- 10 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 15 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl,

 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆

 cycloalkyl-C₁₋₆ alkyl and benzyl, each benzyl being

 substituted on the aryl moiety with 0-1 substituents

 selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄

 haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and

 dimethylamino;
 - R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
 - R^{15} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, phenyl and benzyl, each phenyl or benzyl

35

Ċ

being substituted on the aryl moiety with 0-3 groups chosen from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

5

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 10 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 15 R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
- 20 alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

25

- alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

35

30

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl

being substituted with 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, methylenedioxy, C_{1-4} alkoxy- C_{1-4} alkoxy, $-OR^{17}$, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, $-NO_2$, SH, $-S(O)_nR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl; and,

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, 15 thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 20 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} 25 cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and 30

In another preferred embodiment, R^1 is other than a cyclohexyl-(CH₂)_{1, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group.}

35

 SO_2R^{14a} .

< :-

In another preferred embodiment, R^1 is other than an aryl- $(CH_2)_1$, 2, 3, 4, 5, 6, 7, 8, 9, or 10^- group, wherein the aryl group is substituted or unsubstituted.

- 5 In another preferred embodiment, R¹ is other than a heteroaryl-(CH₂)₁, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group, wherein the heteroaryl group is substituted or unsubstituted.
- In another preferred embodiment, R¹ is other than a heterocyclyl-(CH₂)_{1, 2, 3, 4, 5, 6, 7, 8, 9, or 10- group, wherein the heterocyclyl group is substituted or unsubstituted.}
- In another preferred embodiment, when D is imidazole or triazole, R^1 is other than unsubstituted C_1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 linear or branched alkyl or C_3 , 4, 5, 6, 7, or 8 cycloalkyl.
- 20 In another preferred embodiment, R^{1a} is not substituted with OR^{17} .

asymmetric centers or planes. Unless otherwise indicated, all chiral (enantiomeric and diastereomeric) and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds, and all such stable isomers are contemplated in the present invention. The compounds may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All chiral, (enantiomeric and diastereomeric) and racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

The term "alkyl" includes both branched and straightchain alkyl having the specified number of carbon atoms. "Alkenyl" includes hydrocarbon chains of either a straight or branched configuration and one or more unsaturated 5 carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Alkynyl" includes hydrocarbon chains of either a straight or branched configuration and one or more triple carboncarbon bonds which may occur in any stable point along the 10 chain, such as ethynyl, propynyl and the like. "Haloalkyl" is intended to include both branched and straight-chain alkyl having the specified number of carbon atoms, substituted with 1 or more halogen; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached 15 through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-, bi- or polycyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and so forth. "Halo" or "halogen" includes fluoro, chloro, bromo, and iodo.

The term "substituted", as used herein, means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

20

25

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound" or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

The term "pharmaceutically acceptable salts" includes

acid or base salts of the compounds of formulas (I) and

(II). Examples of pharmaceutically acceptable salts

include, but are not limited to, mineral or organic acid

salts of basic residues such as amines; alkali or organic

⟨.,

salts of acidic residues such as carboxylic acids; and the

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug of formula (I) or (II) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of formula (I) and (II) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include 20 compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formulas (I) and (II); and the like.

The term "therapeutically effective amount" of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety, depression, immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a host.

35

30

25

10

15

Synthesis

Ċ

Compounds of formula (I) can be prepared by the following synthetic routes and schemes. Where a detailed description is not provided, it is assumed that those skilled in the art of organic synthesis will readily understand the meaning.

Synthesis of compounds of formula (I) may be prepared by the reaction shown in Scheme 1.

Scheme 1

$$R^2 - X \longrightarrow R^3$$
 $R^2 - X \longrightarrow R^3$
 $R^2 - X \longrightarrow R^3$
 $R^3 - R^3 \longrightarrow R^2 - X \longrightarrow R^3$
 $R^3 - R^3 \longrightarrow R^3$

A compound of formula (II) can be alkylated on the imidazole nitrogen atom with an appropriate reagent. Typical conditions for this transformation include treatment of compound (II) with a base, such as sodium hydride, potassium tert-butoxide, sodium hexamethyldisilazide, etc., followed by a reagent J-R¹, where J represents a halide (chloride, bromide or iodide) or psuedohalide (tosylate, mesylate, triflate, etc.), at an appropriate temperature (0 °C or room temperature, with warming if necessary) in a solvent such as tetrahydrofuran, dimethylformamide or dimethylsulfoxide. Alternatively, this reaction may be performed using the Mitsunobu conditions (Mitsunobu, Synthesis 1981, pp. 1-28). The compound (II) is treated with an alcohol compound R¹OH, along with a phosphine (triphenyl, tributyl, etc.) and a phosphine-activating reagent

Compounds of Formula (II) may be prepared according to the route shown in Scheme 2.

such as diethyl azodicarboxylate.

Scheme 2

10

20

25

A compound of Formula (III) may be coupled to an aromatic compound of Formula (IV), with elimination of the elements of M-K. For compound (III), K represents a halide, psuedohalide (such as mesylate, tosylate or triflate), or thiomethyl, and P represents a protecting group (if the conditions of the reaction warrant protection of the imidazole N-H; otherwise, P can be H). Suitable P groups may include benzyl, 4methoxybenzyl, methoxymethyl, trimethylsilylethoxymethyl, 10 tert-butoxycarbonyl or benzyloxycarbonyl. For compound (IV), M represents groups such as lithium, bromomagnesium, chlorozinc, (dihydroxy)boron, (dialkoxy)boron, trialkylstannyl and the like. The coupling reaction may be performed in the presence of an appropriate catalyst, such as 15 tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium dichloride, [1,3bis (diphenylphosphino) propane] nickel dichloride, etc. Two particularly useful methods involve the coupling of chloroheterocycles with in-situ-prepared arylzinc reagents 20 according to the method of Negishi et al. (J. Org. Chem. 1977, 42, 1821), and the coupling with arylboronic esters according to the method of Suzuki et al. (Chem. Letters 1989, 1405). Appropriate solvents for reactions of this type usually include tetrahydrofuran, diethyl ether, dimethylformamide, or 25 dimethylsulfoxide. Typical temperatures range from ambient up to the boiling point of the solvent. Once coupled, the P group may be removed to afford compound (II). Conditions for the removal of the protecting groups are well known to those

familiar to the art of organic synthesis; e.g. hydrogenation

to remove benzyl or benzyloxycarbonyl, a fluoride source (such as tetrabutylammonium fluoride) to remove silylethoxymethyl, an acid source (such as trifluoroacetic acid) to remove tertbutoxycarbonyl or 4-methoxybenzyl, etc.

Compounds of formula (III) can be prepared according to the plan shown in Scheme 3.

A diamine compound of formula (V) (in this case, P is a group such as benzyl, which can be introduced already attached to the nitrogen atom; otherwise, P could represent H initially, and another protecting group being introduced in a later step) is used in a cyclocondensation reaction to make the imidazole ring. The conditions used will, of course, depend on the X group chosen, and may include the intermediacy of the compound (VI). A review of imidazole-forming reactions may be found in Comprehensive Heterocyclic Chemistry (Pergamon Press, 1984) vol. 5, pp. 457-498.

Preparation of compounds of formula (V) wherein both A

20 and B are nitrogen atoms may proceed according to the route of
Scheme 4.

Scheme 4

5

Ç

$$\begin{array}{c|c}
 & P \\
 & N \\$$

A compound of formula (VII) may be available from commercial sources, particularly for K = chloride. Compounds bearing psuedohalide K groups may be available from the corresponding 5 dihydroxy compounds by treatment with an appropriate activating reagent, such as an organosulfonic anhydride or sulfonyl chloride. Compound (VII) may be converted to (V) by either (i) monoalkylation with a compound P-NH2, followed by reduction of the nitro group; (ii) reduction of the nitro 10 group, to give an amine compound of formula (VIII), followed by monoalkylation with a compound P-NH,; or (iii) use of a source of ammonia (ammonia gas, ammonium hydroxide, etc.) in either route, followed by protection of the amine group with the group P. Pyrimidine chemistry of this type is well represented in the literature, and is reviewed in 15 Comprehensive Heterocyclic Chemistry, vol. 6. Alkylation of chloropyrimidines with amine compounds can be accomplished under either acidic (e.g. HCl or acetic) or basic (trialkylamines, potassium tert-butoxide, etc.) conditions. 20 Nitro groups in compounds of this type can be reduced to amino groups using one of any number of conditions, including catalytic hydrogenation, tin dichloride, sodium dithionite, zinc metal, iron powder, etc.

Preparation of compounds of formula (V) wherein either A or B represent nitrogen atoms is shown in Scheme 5.

۲:

Scheme 5

$$R^7$$
 R^3
 R^3
 R^7
 R^3
 R^3

An hydroxypyridone compound of formula (IX) can be nitrated to give compound (X) employing conditions such as concentrated or fuming nitric acid, optionally in the presence of concentrated sulfuric or acetic acid. The hydroxypyridone can be selectively monoactivated with a K group to give a compound of formula (XI); one method to do this involves treatment of the dicyclohexylamine salt of compound (X) with phosphorus oxychloride to give (XI) wherein K = Cl. Alternatively, both the hydroxy and pyridone groups in compound (X) can be activated at the same time, using stronger conditions such as phosphorus oxychloride and heat, or excess toluenesulfonic anhydride, to give compound (XII). Compound (XI) may be converted to the protected amine compound (XIII) using the same general route discussed above for the pyrimidines.

10

15

20

Selective monoalkylation using compound (XII) is also possible, but will probably give mixtures of regioisomeric products (XIV) and (XV). The nitro groups in these compounds can then be reduced as discussed above, to give compounds for formula (V) wherein either A or B is nitrogen.

An alternative approach to the method involving introduction of the R¹ group at the initial step is shown in Scheme 6.

This is particularly useful in the cases where R¹ represents

a group where alkylation of compound (II) is impractical (e.g. a very bulky R¹ group), but can also be used in a general manner. Here, compounds of formula (XVI) or (XVII)

15 (either amino- or nitro-pyridines or pyrimidines) are alkylated with an amine reagent R¹-NH₂, under either acidic or basic conditions as described above. Nitro compound (XVIII) can be converted to amine compound (XIX) by nitro reduction reactions described earlier. Compound (XIX) can be cyclized to imidazole compound (XX). As above, this reaction will depend upon the choice of X group. For example, for X = CHR³, one can use an orthoester reagent

such as $R^2CH(R^9)C(OR)_1$, with heating in neat solution or

high-boiling solvents, and the optional presence of an acid

10

25 catalyst (such as hydrochloric or sulfuric acid) (see

Montgomery and Temple, J. Org. Chem. 1960, 25, 395). For X = NR¹⁰, the cyclization is performed using reagents such as an guanidine reagent of the structure R2R10N-C(=NH)NH, or a urea-derived reagent of the structure R²R¹⁰N-C(=NH)D, where D represents a group like OCH₃, SCH₃ or SO_2CH_3 . For X = O, the ring is formed using a reagent of the structure (R2O) C (with acetic acid catalysis), provided one has access to the reagent with the R^2 group of choice (see Brown and Lynn, J. Chem. Soc. Perkin Trans. I 1974, 349). Alternatively, 10 the diamine (XIX) is treated with phosgene, followed by Oalkylation to introduce the R2 group (such as a reagent like R^2 -I or R^2 -Br). A similar route can be used for X = S, which would use thiophosgene or some similar reagent, followed by S-alkylation with the R² group. The sulfur atom in this 15 compound (and sulfide groups throughout the molecule in general) can be oxidized to either the sulfoxide or sulfone if desired by treatment with an appropriate oxidizing agent such as potassium permanganate, potassium peroxomonosulfate or m-chloroperbenzoic acid. Finally, compound (XX) can be 20 used in an aryl coupling reaction as described above to replace the K group with the desired aryl group in compound (I).

Methods of synthesis of compounds R^1 -OH, R^1 -J and R^1 -NH₂ are related, in that the alcohol can be used in the synthesis of the other two compounds, as is shown in Scheme 7.

For example, the hydroxy group may be converted to the following J groups, using the indicated reagents (this route is not limited to these J groups): methanesulfonate, using methanesulfonyl chloride or anhydride and an appropriate base; toluenesulfonate, using toluenesulfonyl chloride or anhydride and an appropriate base; iodide; using iodine / triphenylphosphine; bromide, using phosphorus tribromide or

35

carbon tetrabromide / triphenylphosphine; or trifluoromethanesulfonate, using trifluoromethane-sulfonic anhydride and an appropriate base. Both compounds R^1 -OH and R^1 -J are used in the methods portrayed in Scheme 1. Conversion of R^1 -J to R^1 -N₃ requires the use of an azide source, such as sodium azide, and a solvent such as dimethylsulfoxide or dimethylformamide, or water and a phase-transfer catalyst (such as tetrabutylammonium hydrogen sulfate). Reduction of the azide compound R^1 -N₃ to R^1 -NH₂ may be accomplished using reagents such as sodium borohydride or triphenylphosphine, or hydrogen gas and a catalyst (such as palladium on carbon). The amine R^1 -NH₂ may then be employed in the methods portrayed in Scheme 6.

In the cases where the compound R^1 -OH could be represented by a structure of formula (XXI) (Scheme 8), wherein R^{1a} and R^{1b} represents substructures which, taken together with the carbinol methine group, comprise the entire group R^1 , this compound may be prepared by addition to a carbonyl compound.

20

25

30

15

This route is particularly useful in the case where R^{1a} or R^{1b} represents a cycloalkyl group, such as cyclopropyl. An organometallic reagent (where M' represents a metallic group, such as Li, CuCN, CuI, MgCl, MgBr, MgI, ZnCl, CrCl, etc.) can be allowed to react with an aldehyde reagent to prepare the alcohol compound of formula (XXI). Alternatively, a ketone of formula (XXII) may be treated with a reducing agent, such as sodium borohydride, lithium aluminum hydride, etc., which will

also generate the alcohol of formula (XXI). Standard methods of ketone synthesis may be used where appropriate in the preparation of compounds for formula (XXII), which will be familiar to those skilled in the art of organic synthesis.

An homologous approach may also be employed in the synthesis of alcohols R¹-OH, involving the ring-opening reaction of cyclic ether compounds with organometallic reagents (Scheme 9).

Here, an organometallic reagent R1a-M" is used, where M" represents metals such as Mg, Zn or Cu. Especially useful is 15 the method described in Huynh, et al., Tetrahedron Letters 1979, (17), pp. 1503-1506, where organomagnesium reagents are allowed to react with cyclic ethers with catalysis provided by copper (I) iodide. Use of an epoxide compound of formula (XXIII) in this manner would result in synthesis of an alcohol compound of formula (XXIV), and use of an oxetane compound of formula (XXV) would generate an alcohol of formula (XXVI). Both compounds (XXIV) and (XXVI) are variants of R^1 -OH.

Synthesis of compound R1-NH, with formula (XXVII) is portrayed in Scheme 10.

Scheme 10

20

25

5

Š.

A simple reductive amination of ketone (XXII) will produce

amine (XXVII). This reaction may be performed using anhydrous
ammonia in the presence of hydrogen and a catalyst.

Alternatively, addition of an organometallic reagent to a
nitrile compound gives and imine, which may be treated in situ
with a reducing agent (such as sodium cyanoborohydride) to

give amine (XXVII). Finally, a compound of formula (XXVIII),
wherein Q is an optionally-substituted oxygen atom (i.e. an
oxime) or nitrogen atom (i.e. a hydrazone), may be allowed to
react with an organometallic reagent R^{1b}-M'''. Here, metallic
groups M''' such as MgBr, CuCl or CeCl₂ have been used in

additions to oximes or hydrazones. The intermediate addition
products of formula (XXIX) may be subjected to reductive
cleavage (using conditions such as sodium/liquid ammonia or
catalytic hydrogenation), which will afford amines (XXVII).

Amino acids, either naturally-occurring or synthetic, are potential sources of useful starting materials for the synthesis of the compounds of this invention. Scheme 11 shows some possible applications of this approach.

Scheme 11

$$R^{1a}$$
 CO_2H R^{1a} CO_2H R^{1a} OH NH_2 $NH-Prot$ $NH-Prot$ $(XXXII)$ $(XXXIII)$ R^{1a} R^{1b} R^{1b} R^{1a} R^{1b} R^{1a} R^{1b} R^{1a} R^{1b} R^{1a} R^{1a} R^{1b} R^{1a} R^{1a} R^{1b} R^{1a} R^{1a} R^{1b} R^{1a} R^{1

Protected amino acids of formula (XXXI) are prepared from the parent compounds of formula (XXX); useful protecting groups ("Prot") include tert-butoxycarbonyl, benzyloxycarbonyl and triphenylmethyl. Standard texts in peptide chemistry describe this protection. The carboxylic acid group may be reduced using reagents such as lithium borohydride, which gives 10 alcohol (XXXII). The hydroxy group may be converted to a leaving group "J" as described before. The compound of formula (XXXIII) may be treated with appropriate reagents to produce a wide variety of functional groups included in the scope of this invention (compound (XXXIV)); displacement of J with 15 cyanide (sodium cyanide in warm dimethylformamide may be used here) gives a nitrile, displacement of J with a mercaptan (in the presence of a base, such as potassium carbonate) gives a disulfide, displacement of J with a secondary amine gives a tertiary amine, etc.

20

25

30

The compounds of Formula (I) with unsaturated R¹ groups can be a further source of compounds covered under this invention. Unsaturated (double and triple) bonds can take part in cycloaddition chemistry with appropriate reagents (Scheme 12). Cycloaddition of an alkyne compound of Formula XXXVI with 1,3-dienes to give six-membered ring compounds like that of Formula XXXVII (commonly known as the Diels-Alder reaction), and cycloaddition with 3-atom dipolar reagents to give heterocyclic compounds of Formula XXXVIII, are familiar to those skilled in the art of organic synthesis. One specific

example of this approach is the synthesis of an isoxazole compounds of Formula XXXIX from the alkyne XXXVI and a nitrile oxide reagent.

The synthetic procedure in Scheme 13 shown below may be used to prepare 4,5-c imidazopyridines.

15

20

5

10 Nitration of 2,4-dihydroxypyridine (XXXX) with HNO3 as described earlier (Koagel et al. Recl. Trav. Chim. Pays-Bas. 29, 38, 67, 1948) gave the corresponding 3-nitropyridone (XXXXI) which was treated with an organic amine base, such as cycloheptyl amine to give selectively the corresponding 4chloropyridone (XXXXIII). This in turn was reacted with a 15 primary amine RNH2, where R is a group described earlier in an aprotic or protic solvent, such as CH3CN, DMSO, DMF, or an alkyl alcohol in the presence of an organic or inorganic base, such as a trialkylamine, K2CO3, Na2CO3 etc, and in temperature 20 range of 20-200 °C to give the 4-amino adduct (XXXXIII). Pyridone (XXXXIII) was converted to the 2-chloropyridine (XXXXIV) by treatment with POCl₃, and (XXXXIV) was coupled with an arylboronic acid ArB(OH), under palladium catalysis to

give (XXXXV). Nitropyridine (XXXXV) was reduced to the corresponding aminopyridine by use of Na₂S₂O₄ or a Fe, Sn or SnCl₂ and converted to the imidazo[4,5-c]pyridine in refluxing propionic acid. The same transformation can be affected by the use of a nitrile, an imidate, thioimidate or trialkylorthopropionate.

The synthetic procedure in Scheme 14 shown below may be used to prepare 4,5-b imidazopyridines.

15 Scheme 14

20

Reaction of 4-chloropyridone (XXXXII) with an aryl halide, such as benzyl bromide in benzene and in the presence of Ag_2CO_3 as described in Scheme 13 (Smith A. M.; et al. J. Med. Chem. 36, 8, 1993) and at temperature ranges of 30-80 °C 5 afforded the corresponding 2-benzyloxypyridine (XXXXVII). This was coupled with an arylboronic acid, ArB(OH), under palladium-catalyzed conditions to give (XXXXIX). The benzyloxy group can be removed by treatment with a strong acid, such as trifluoroacetic, triflic, sulfuric, HCl, etc. to give pyridone (L). This was converted to the 2-halopyridine with the action 10 of POX, PX, or the corresponding triflate, tosylate or mesylate, which was displaced with a primary amine RNH, to give (LI). The nitro group was reduced under conditions described in scheme 13 and the aminopyridine was cyclized to 15 the imidazolo[4,5-b]pyridine (LII) under conditions described in scheme 13.

The following examples are provided to describe the invention in further detail. These examples, which set forth the best mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention.

20

35

The methods discussed below in the preparation of 825 ethyl-9-(1-ethylpentyl)-6-(2,4,6-trimethylphenyl)purine
(Table 1, Example 2, Structure A) and 9-butyl-8-ethyl-6(2,4,6-trimethylphenyl)purine (Table 1, Example 27,
Structure A) may be used to prepare all of the examples of
Structure A contained in Table 1, Table 1A and Table 1B,
30 with minor procedural modifications where necessary and use
of reagents of the appropriate structure.

The methods discussed below in the preparation of 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-2-ethyl-3H-imidazo[4,5-b]pyridine (Table 1, Example 38, Structure B) and 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-ethyl-1H-imidazo[4,5-c]pyridine (Table 1, Example 38, Structure C) may be used to prepare many of the examples of

Structures B and C contained in Table 1, Table 1A, Table 1B and Table 1C, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

5

Example 2

Preparation of 8-Ethyl-9-(1-ethylpentyl)-6-(2,4,6-trimethylphenyl)purine

Part A. A solution of 5-amino-4,6-dichloropyrimidine (10.0 g, 10 61.0 mmol) and triethylamine (12.8 mL, 91.5 mmol) in ethanol (100 mL) was treated with benzylamine (7.30 mL, 67.1 mmol), and heated to 50 °C overnight. The resulting mixture was cooled, and the resulting crystalline solid was collected by filtration. The solid was triturated with hexane, refiltered 15 and dried under vacuum. A second crop was collected from the mother liquor and purified like the first crop to afford in total 12.67 g (48.8 mmol, 80%) of 5-amino-6-benzylamino-4chloropyrimidine. TLC R_r 0.10 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.62 (1H, s), 7.13-6.97 (5H, m), 6.6120 (1H, br t, J = 5 Hz), 4.43 (2H, d, J = 5.5 Hz), 4.24 (2H, brs). MS (NH_3-CI) : m/e 238 (4), 237 (33), 236 (15), 235 (100).

Part B. A solution of the diamine from Part A (10.45 g, 44.5 mmol) and 3 drops concentrated hydrochloric acid in triethyl orthopropionate (70 mL) was heated to 100 °C for 1 hour, then cooled, poured into water (200 mL) and extracted with ethyl acetate (2 x 200 mL). The extracts were washed in sequence with brine (100 mL), then combined, dried over anhydrous sodium sulfate, filtered and evaporated. The residue was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the product, N-(6-benzylamino-4-chloropyrimidin-5-yl)-O-ethyl-propionimidate (12.82 g, 40.2 mmol, 90%) as a crystalline solid, m.p. 85-86 °C. TLC R_F 0.25 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.19 (1H, s), 7.35-7.29 (5H, m), 5.21 (1H, br t, J = 5 Hz), 4.70 (2H, d, J = 5.9 Hz), 4.29 (2H, br), 2.15 (2H, br q, J = 7.3

Hz), 1.35 (3H, t, J = 7.0 Hz), 1.06 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 322 (6), 321 (34), 320 (20), 319 (100).

Part C. A solution of the imidate compound prepared in Part B 5 above (10.66 g, 33.4 mmol) and p-toluenesulfonic acid monohydrate (100 mg) in diphenyl ether (10 mL) was heated to 170 °C for 2 hours. The resulting mixture was cooled and poured into 50 mL water. This was extracted with ethyl acetate $(2 \times 50 \text{ mL})$, and the extracts were washed in sequence with brine (50 mL), combined, dried over anhydrous sodium sulfate, filtered and evaporated. The residual material was separated by column chromatography (silica gel, hexane to remove diphenyl ether, then 30:70 ethyl acetate-hexane) to afford the product, 9-benzyl-6-chloro-8-ethylpurine, as an oil (8.16 gi 29.9 mmol, 89%). TLC R_r 0.20 (30:70 ethyl acetate-hexane). ¹H 15 NMR (300 MHz, CDCl₃): d 8.72 (1H, s), 7.37-7.29 (3H, m), 7.19-7.14 (2H, m), 5.46 (2H, s), 2.89 (2H, q, J = 7.7 Hz), 1.38(3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 276 (6), 275 (36), 274 (20), 273 (100).

20

Part D. A solution of zinc chloride (5.32 g, 39.1 mmol) in anhydrous, freshly-distilled tetrahydrofuran (50 mL) was treated at ambient temperature with a solution of mesitylmagnesium bromide (39.1 mL, 1.0 M, 39.1 mmol) in diethyl ether. After 45 minutes, a separate flask containing a 25 solution of bis(triphenylphosphine)-palladium dichloride (0.92 g, 1.3 mmol) in tetrahydrofuran (30 mL) was treated with a solution of diisobutylaluminum hydride (2.6 mL, 1.0 M, 2.6 mmol) in hexane. This mixture was allowed to stir for 15 minutes, then treated with the mesitylzinc chloride solution 30 dropwise by cannula. Then, the chloropurine compound in 10 mL tetrahydrofuran solution was added by syringe, and the mixture was allowed to stir for 12 hours at ambient temperature. It was poured into water (150 mL), and acidified with dropwise addition of 1 N aqueous hydrochloric acid until the mixture is 35 homogeneous. This is extracted with ethyl acetate (2 \times 150 mL), and the extracts were washed in sequence with saturated brine solution (100 mL), combined, dried over anhydrous sodium

sulfate, filtered and evaporated. The residue was separated by
column chromatography (silica gel, 30:70 ethyl acetate-hexane)
to afford the product, 9-benzyl-8-ethyl-6-(2,4,6trimethylphenyl)purine (6.68 g, 18.7 mmol, 72%), as an offwhite waxy solid, m.p. 121-122 °C. ¹H NMR (300 MHz, CDCl₃): d
9.00 (1H, s), 7.38-7.31 (3H, m), 7.23-7.21 (2H, m), 6.96 (2H,
s), 5.50 (2H, s), 2.84 (2H, q, J = 7.6 Hz), 2.33 (3H, s), 2.06
(6H, s), 1.26 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 359 (3),
358 (26), 357 (100).

10

Part E. A solution of the benzyl compound from Part D above (5.33 g, 14.95 mmol) in trifluoroacetic acid (320 mL) partitioned into four Parr bottles, and each was treated with 0.8 g 20% palladium hydroxide on carbon. The bottles were each subjected to hydrogenation (50 psi) in shaker apparati for 18 hours. The atmospheres were purged with nitrogen, and the solutions were combined, filtered through celite and evaporated. The residual material was separated by column chromatography (silica gel, 50:50 ethyl acetate-hexane) to 20 afford the product, 8-ethyl-6-(2,4,6-trimethylphenyl)purine (3.75 g, 14.1 mmol, 94%), as a white crystalline solid, m.p. 215-217 °C. TLC R_p 0.17 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 12.35 (1H, br s), 9.03 (1H, s), 6.96 (2H, s), 3.05 (2H, q, J = 7.7 Hz), 2.32 (3H, s), 2.05 (6H, s), 1.5025 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 269 (2), 268 (19), 267 (100).

Part F. A solution of the purine compound from Part E above (200 mg, 0.75 mmol), 3-heptanol (0.13 mL, 0.90 mmol) and triphenylphosphine (0.24 g, 0.90 mmol) in freshly-distilled tetrahydrofuran (5 mL) was cooled to 0 °C, and treated with diethyl azodicarboxylate (0.14 mL, 0.90 mmol) dropwise by syringe. The mixture was allowed to stir for 12 hours, then evaporated. The residual material was separated by column chromatography (silica gel, 15:85 ethyl acetate-hexane) to afford the title product as a white solid (0.152 g, 0.42 mmol, 56%), m.p. 99-100 °C. TLC R_F 0.17 (10:90 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.91 (1H, s), 6.95 (2H, s),

4.22 (1H, br), 2.92 (2H, q, J = 7.7 Hz), 2.41 (2H, br), 2.32 (3H, s), 2.10-1.98 (2H, m), 2.05 (3H, s), 2.04 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 1.34-1.23 (4H, m), 0.84 (3H, t, J = 7.1 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 367 (3), 366 (27), 365 (100).

Example 27

Preparation of 9-Butyl-8-ethyl-6-(2,4,6-trimethylphenyl)purine

10 A solution of 8-ethyl-6-(2,4,6-trimethylphenyl)purine (200 mg, 0.75 mmol) in anhydrous dimethylfomamide (5 mL) was cooled to 0 °C, and treated with sodium hydride dispersion in mineral oil (72 mg 50% w/w, 1.50 mmol). After 1 hour, bromobutane (0.10 mL, 0.90 mmol) was added by syringe, and the mixture was 15 allowed to stir for 12 hours. It was poured into ethyl acetate (120 mL), and was washed with water (3 \times 120 mL) and brine (100 mL). The aqueous layers were back-extracted in sequence with ethyl acetate (120 mL), and the extracts were combined, dried over anhydrous sodium sulfate, filtered and evaporated. 20 The residue was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the title product as a viscous oil (64.2 mg, 0.20 mmol, 27%). TLC $R_{\rm p}$ 0.20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.96 (1H, s), 6.95 (2H, s), 4.25 (2H, t, J = 7.5 Hz), 2.93 (2H, q, J = 7.725 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.91-1.86 (2H, m), 1.50-1.38 (2H, m), 1.39 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 325 (3), 324 (23), 323 (100).

Example 35

Preparation of 6-(2,4-Dichlorophenyl)-8-ethyl-9-(1-ethylpentyl)purine

A solution of 2,4-dichlorobenzeneboronic acid (572 mg, 3.00 mmol) and ethylene glycol (205 mg, 3.30 mmol) in benzene (20 mL) was heated to reflux with azeotropic removal of water for a period of 8 h. The resulting solution was cooled, and treated with 6-chloro-8-ethyl-9-(1-ethylpentyl)purine (see Example 2, Part C above; 562 mg, 2.00 mmol), thallium

carbonate (1.03 g, 2.20 mmol) and tetrakis(triphenylphosphine)palladium (116 mg, 0.10 mmol). The resulting mixture was heated to reflux with stirring for 12 h, then cooled, filtered through celite and evaporated. The resulting residue was separated by column chromatography (silica gel, 10:90 ethyl acetate-hexane) to afford the title compound as a viscous oil (530 mg, 1.35 mmol, 68%). TLC R_F 0.31 (20:80 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.94 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 4.27 (1H, br), 2.95 (2H, q, J = 7.3 Hz, 2.41 (2H, br), 2.11-1.98 (2H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84(3H, t, J = 7.7 Hz), 0.82 (3H, t, J = 7.7 Hz). MS (NH₃-CI):m/e calc'd for $C_{20}H_{25}N_1Cl_2$: 391.1456, found 391.1458; 395 (11), 394 (14), 393 (71), 392 (29), 391 (100). 15

Example 38

Preparation of 3-(1-cyclopropylpropyl)-7-(2,4-dichlorophenyl)-20 2-ethyl-3H-imidazo[4,5-b]pyridine

Part A. 2,4-Dihydroxypyridine (15.0 g, 135 mmol) was heated in HNO₃ (85 mL) at 80 °C for 15-20 min at which time it went into solution. The temperature was maintained for 5 min and after cooling it was poured into ice/water (~200 mL). The precipitated solid was collected and dried (19.0 g, 90% yield). ¹H NMR(300 MHz, dmso d6): 12.3-12.5 (1H, brs), 11.75-11.95 (1H, brs), 7.41 (1H, d J = 7.3 Hz), 5.99 (1H, d J = 7.3 Hz).

30

Part B. 4-Hydroxy-3-nitropyridone (8.0 g, 51.25 mmol) and cycloheptyl amine (6.8 mL, 53.4 mmol) were heated at reflux in methanol (100 mL) for 15 min. The solvent was stripped off and the residual solid was washed with 1:1 EWtOAc/hexanes and dried under vacuum. The cycloheptyl amine salt was stirred in POCl₃ (60 mL) for 40 h and poured into ice/water (~600 mL). The precipitated producd was collected and dried under vacuum

(7.0 g, 78% yield). H NMR(300 MHz, dmso d6): 12.8-13.05 (1H, brs), 7.73 (1h, d J = 7.0 Hz), 6.50 (1H, d J = 7.0 Hz).

Part C. 4-Chloro-3-nitro-pyridone (0.5 g, 2.86 mmol) Ag₂CO₃

(0.83 g, 3 mmol) and benzyl bromide (0.36 mL, 3 mmol) were stirred in dry benzene (20 mL) at 60 °C for 5 h. The reaction mixture was filtered and stripped in vacuo. The residue was chromatographed on silica gel (10% EtOAc/hexanes eluent) to give the product (0.6 g, 79%). ¹H NMR(300 MHz, CDCl₃): 8.15 (1 H, d J = 4.0 Hz), 7.30-7.42 (5 H, m), 7.04 (1H, d J = 4.0 Hz), 5.50 (2H, s).

Part D. 2-Benzyloxy-4-chloro-3-nitropyridine (0.5 g, 1.9 mmol), 2,4-dichlorophenylboronic acid (0.363 g, 1.9 mmol)

Pd(PPh₃)₂Cl₂ (76 mg, 0.11 mmol) and Ba(OH)₂.8H₂O (0.6 g, 1.9 mmol) were heated at reflux in 1,2-dimethoxyethane (6 mL), and water (6 mL) for 5 h. The mixture was partitioned between EtOAc (100 mL) and water (30 mL) and the EtOAc was washed with water, brine, dried and stripped in vacuo. The residue was chromatographed on silica gel (10% EtOAc/hexanes eluent) to give the product (370 mg, 52% yield). ¹H NMR(300 MHz, CDCl₃): 8.31 (1H, d J = 5.1 Hz), 7.51 (1H, d J = 2.2 Hz), 7.30-7.43 (6 H, m), 7.20 (1H, d J = 8.0 Hz), 6.91 (1H, d J = 5.1 Hz), 5.56 (2h, s).

25

Part E. 2-Benzyloxy-4-(2,4-dichlorophenyl)-3-nitropyridine (1.65 g, 4.39 mmol) was stirred in CF_3CO_2H (5 mL) at 25 °C for 4 h. The CF_3CO_2H was stripped in vacuo and the residue was washed with 20% EtOAc/hexanes and used in the next reaction. ¹H NMR(300 MHz, CDCl₃): 7.62 (1H, d J = 7.0 Hz), 7.53 (1H, d J = 2.2 Hz), 7.34 (1H, dd J = 7.0, 2.2 Hz), 7.22 (1H, d J = 8.1 Hz), 6.33 (1H, d J = 7.0 Hz).

Part F. 4-(2,4-dichlorophenyl)-3-nitropyridone (4.39 mmol) was heated at reflux in POCl₃ (5 mL) for 5 h. After cooling it was poured into ice/water (~60 mL) and extracted with EtOAc (2x100 mL). The EtOAc was washed with with satNaHCO₃, brine, dried and stripped in vacuo. Used in the next reaction without

further purification. ^{1}H NMR(300 MHz, CDCl₃):8.60 (1H, d J = 5.2 Hz), 7.54 (1H, d, J = 2.2 Hz), 7.36 (1H, dd J = 8.1, 2.2 Hz), 7.20 (1H, d J = 8.1 Hz).

- Part G. 2-Chloro-4-(2,4-dichlorophenyl)-3-nitropyridine (0.5 g, 1.65 mmol) 1-cyclopropylpropylamine hydrochloride (461 mg, 3.4 mmol) and diisopropyl ethylamine (1.26 mL, 0.72 mmol) were heated at reflux in CH₃CN (10 mL) for 64 h. The mixture was partitioned between EtOAc (70 mL) and water (40 mL). The
- aqueous layer was extracted with EtOAc (50 mL) and the combined EtOAc exctracts washed with brine, dried and stripped in vacuo. The residue was chromatographed on silica gel (10% EtOAc/hexanes eluent) to give the product (310 mg, 51% yield).

 1 NMR(300 MHz, CDCl₃): 8.29 (1H, d J = 4.7 Hz), 7.76 (1H, brd
- 15 J = 8.0 Hz), 7.46 (1H, d J = 2.2 Hz), 7.32 (1H, dd J = 8.5, 2.2 Hz), 7.15 (1H, d J = 8.5 Hz), 3.72-3.85 (1H, m), 1.70-1.80 (2H, m), 0.90-1.08 (4H, m), 0.30-0.66 (4H, m).
- Part H. 2-(1-cyclopropyl)propylamino-4-(2,4-dichlorophenyl)-320 nitropyridine (310 mg, 0.85 mmol) was dissolved in dioxane (8 mL) and water (8 mL) containing concNH₄OH (0.3 mL) was added, followed by Na₂S₂O₄ (1.1 g, 6.86 mmol). The reaction was stirred at 25 °C for 4 h and extracted with EtOAc (100 mL). The EtOAc was washed with brine, dried and stripped in vacuo.
- 25 The residue was chromatographed on silica gel (25% EtOAc/hexanes and ~1% conc NH₄OH eluent) to give the product (150 mg, 53% yield). 1 H NMR(300 MHz, CDCl₃): 7.73 (1H, d J = 5.5 Hz), 7.53 (1H, d J = 1.8 Hz), 7.35 (1H, dd J = 8.1, 1.8 Hz), 7.24 (1H, d J = 8.1 Hz), 6.35 (1H, d J = 5.5 Hz), 4.3
- 30 (1H, brs), 3.5 (1H, brs), 3.42-3.55 (1H, m), 3.04 (2H, brs), 1.70-1.81 (2H, m), 0.88-1.08 (4H, m), 0.3-0.6 (4H, m).
 - Part I. 3-amino-2-(1-cyclopropyl)propylamino-4-(2,4-dichlorophenyl)-pyridine (140 mg, 0.42 mmol) was heated at reflux in propionic acid (5 mL) for 23 h. Then the mixture was diluted with water (50 mL), neutralized with solid NaHCO3 and basified with 50%NaOH. Then it was extracted with EtOAc (80 mL) and the EtOAc was dried and stripped in vacuo. The

residue was chromatographed on silica gel (10% and 20%EtOAc/hexanes eluant) to give the product, which was crystallized from hexanes (70 mg, 45% yield) mp 118-119 °C. 1 H NMR(300 MHz, CDCl₃): 8.31 (1H, d J = 4.7 Hz), 7.62 (1H, d J = 7.2 Hz), 7.55 (1H, d J = 1.8 Hz), 7.37 (1H, dd J = 7.2, 1.8 Hz), 7.23 (1H, d J = 4.7 Hz), 3.50-3.70 (1H, brs), 2.87-2.96 (2H, q), 2.36-2.56(1H, m), 2.18-2.35 (1H, m), 1.90-2.05 (1H, m), 1.38 (3H, t), 0.86 (3H, t), 0.75-0.84 (1H, m), 0.40-0.54 (1H, m), 0.15-0.25 (1H, m).

10

Example 38A

Preparation of 1-(1-cyclopropylpropyl)-4-(2,4-dichlorophenyl)-2-ethyl-1H-imidazo[4,5-c]pyridine

Part A. A mixture of 4-chloro-3-nitro-2-pyridone (2.0 g, 11.4 mmol), 1-cyclopropylpropyl amine hydrochloride (1.5 g, 11.4 mmol) and N, N-diisopropylethylamine (4.8 ml, 27.4 mmol) in CH₂CN (50 ml) were stirred at 25 oC for 16 h and at reflux for 20 4h. After cooling it was stripped in vacuo, and the residue was partitioned between EtOAc (100 mL) and H2O (50 mL). The insolubles were separated, washed with H_2O and EtOAc and vacuum dried 1.51 g. The filtrate layers were separated and the aqueous layer was extracted with EtOAc (2x50 mL). Combined extracts were washed with brine, dried over MgSO4, filtered and concd. in vacuo. The residue was washed with EtOAc (2x) and vacuum dried, to give 0.69 g, yellow solid. Combined wt. of 4-(1-cyclopropylpropyl)amino-3-nitro-2pyridone 2.20 g, 81% yield. H NMR(300 MHz, dmso d6): 11.19 (1H, br), 8.94 (1H, dJ = 8.8 Hz), 7.33 (1H, tJ = 6.9 Hz), 6.03 (1H, d J = 7.7 Hz), 3.18-3.24 (1H, m), 1.60-1.74 (2H, m), 1.03-1.11(1H, m), 0.91 (3H, t), 0.40-0.60 (1H, m), 0.20-0.39 (1H, m).

35

Part B. 4-(1-Cyclopropyl)propylamino-3-nitro-2-pyridone (2.20 g, 9.27 mmol) was stirring in POCl₃ (15 mL) at 25 °C for 16 h. Then it was poured into ice/water (220 mL) and stirred until all the POCl₃ had reacted. The mixture was neutralized

with solid NaHCO₃, filtered and extracted with EtOAc (3x60 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and stripped in vacuo. The crude oil was chromatographed on silica gel (100 g.) and eluted with a gradient from 10-20% EtOAc/hexane to afford 1.91 g 2-chloro-4-(1-cyclopropylpropyl)amino-3-nitropyridine, 81% yield. ¹H NMR(300 MHz, CDCl₃): 7.96 (1H, d J = 6.3 Hz), 6.58 (1H, d J = 6.3 Hz), 6.52 (1H, brd J = 5.5 Hz), 2.90-3.00 (1H, m), 1.61-1.82 (2H, m), 1.01 (3H, t J = 7.7 Hz), 0.90-1.02 (1H, m), 0.51-0.70 (2H, m), 0.21-0.34 (2H, m).

- Part C. In a dried flask, under N₂, a mixture of 2-chloro-4-(1-cyclopropyl)propylamino-3-nitropyridine (730 mg, 2.85 mmol), 2,4-dichlorophenylboronic acid (544 mg, 2.85 mmol), dichlorobis(triphenylphosphine) palladium (III) (114 mg, 0.17 mmol) and barium hydroxide octahydrate (899 mg, 2.85 mmol) was heated at reflux in dimethoxyethane (8.6 mL) and H_2O (8.6 mL) for 1.5 h. After cooling it was partitioned between EtOAc (100 mL) and water (20 mL) and filtered through celite. The aqueous 20 layer was extracted with EtOAc (2x50 mL). The combined organics were washed with brine, dried over MgSO₄, filtered and stripped in vacuo. The residue was chromatographed on silica gel (40 gm), and eluted with 30% EtOAc/hexane to afford a yellow oil, 1.00 g, 90% yield. H NMR(300 MHz, CDCl₃): 8.24 25 (1H, dJ = 6.2 Hz), 7.87 (1H, brd J = 7.3 Hz), 7.43 (1H, s),7.34 (2H, s), 6.71 (1H, d J = 6.2 Hz), 3.00-3.10 (1H, m), 1.70-1.85 (2H, m), 0.95-1.15 (4H, m), 0.50-0.71 (2H, m), 0.25-0.40 (2H, m).
- 30 Part D. The product from Part C (0.94 g, 2.57 mmol), by dissolving in dioxane (26 ml), H₂O (26 ml) and conc. NH₄OH (1.0 ml) while adding Na₂S₂O₄ and stirring at room temperature for 2 hrs. Added CH₂Cl₂ and extracted. Extracted the aqueous layer with CH₂Cl₂ (2x). Combined the organics and washed with brine, dried over MgSO₄, filtered and concd. in vacuo to give a yellow solid, 1.01 g. It was carried over to the next reaction without purification.

Part E. The amine from Part D (1.01 g, 3.00 mmol) was cyclized by refluxing with propionic acid (27 ml, 365.45 mmol) for 8 hrs. Allowed to cool to RT. then basified with 1M NaOH and 50% NaOH. Extracted with EtOAc (2x60 mL) and CH2Cl2(60 mL). Combined the organics and washed with H2O, brine, dried over MgSO₄, filtered and concd. in vacuo. The crude oil was chromatographed on silica gel (40 g.) and eluted with 30% EtOAc/hexane to obtain a pale yellow solid (triturated from hexane), 520 mg, 46% yield. ¹H NMR(300 MHz, CDCl₃): 8.43 (1H, d 10 J = 5.8 Hz), 7.63 (1H, d J = 8.1 Hz), 7.55 (1H, d J = 1.8 Hz), 7.46 (1H, d J = 5.8 Hz), 7.36 (1H, dd J = 8.1, 1.8 Hz), 3.40-3.50 (1H, m), 2.80-2.90 (2H, q J = 7.7 Hz), 2.10-2.30 (2H, m), 1.50-1.64 (1H, m), 1.37 (3H, t J = 7.3 Hz), 0.87 (3H, t J = 7.3 Hz), 0.81-0.91 (1H, m), 0.48-0.58 (2H, m), 0.18-0.26 (1H, 15 m). Elemental analysis calcd for C₂₀H₂₁N₃Cl₂: C, 64.18; H, 5.665; N, 11.23; found: C, 64.37; H, 5.66; N, 11.15.

20 Example 831

Preparation of 6-(2-Chloro-4-methoxyphenyl)-9-dicyclopropylmethyl-8-ethylpurine

Part A. A solution of dicyclopropyl ketone (50 g) in absolute

25 methanol (150 mL) in an autoclave vessel was charged with W4

Raney nickel (12 g, washed free of water and in methanol
slurry) and then anhydrous ammonia (17 g). The mixture was
subjected to 120 atm of hydrogen at 150-160 °C for 5 hours,
then cooled and excess gasses purged. The resulting slurry was

30 filtered through celite, and the filtrate was distilled to
about one-third the original volume (atmospheric pressure,
Vigreaux column). The pot solution was cooled to 0 °C, diluted
with 3 volumes diethyl ether, and treated with 4 N
hydrochloric acid solution in anhydrous dioxane until

35 precipitate formation ceased. The solid product
(dicyclopropylmethylamine hydrochloride) was collected by
filtration, washed with excess diethyl ether, and dried under
vacuum (45.22 g, 306 mmol, 67%). H NMR (300 MHz, methanol-d₄):

d 1.94 (1H, t, J = 9.3 Hz), 1.11-0.99 (2H, m), 0.75-0.59 (4H, m), 0.48-0.37 (4H, m). MS (NH₃-DCI): m/e 114 (5), 113 (100).

Part B. A solution of 5-amino-4,6-dichloropyrimidine (5.00 g. 30.5 mmol) and diisopropylethylamine (12.0 mL, 68.9 mmol) in ethanol (100 mL) was treated with the amine from Part A (3.81 g, 25.8 mmol), and heated to reflux for 72 h. The resulting mixture was cooled and poured into water (300 mL), which was extracted with ethyl acetate (2 x 300 mL). The extracts were washed with brine, combined, dried over sodium sulfate, filtered and evaporated. The residual oil was separated by column chromatography (30:70 ethyl acetate-hexane), and the desired product, 5-amino-4-chloro-6dicyclopropylmethylaminopyrimidine, was triturated with warm ether-hexane, collected by filtration, and dried under vacuum (3.15 g, 13.2 mmol, 43%). m.p. 137-138 °C. TLC R_p 0.17 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 8.01 (1H, s), 4.95 (1H, br d, J = 7.3 Hz), 3.45 (1H, q, J = 7.0 Hz), 3.37 (2H, br s), 1.06-0.94 (2H, m), 0.59-0.32 (8H, m). MS (NH₂-CI): 20 m/e 243 (1), 242 (5), 241 (36), 240 (16), 239 (100).

Part C. A solution of the diamine from Part B (1.80 g, 7.54 mmol) and 1 drop concentrated hydrochloric acid in triethyl orthopropionate (12 mL) was heated to 100 °C for 6 hours. The excess orthoester was removed by distillation (partial vacuum, short-path), and the pot residue solidified to give the product, N-(4-chloro-6-dicyclopropylmethylaminopyrimidin-5-yl)-O-ethyl-propionimidate. ¹H NMR (300 MHz, CDCl₃): d 8.08 (1H, s), 4.84 (1H, br d, J = 8.0 Hz), 4.35 (2H, br), 3.45 (1H, q, J = 7.7 Hz), 2.14 (2H, q, J = 7.3 Hz), 1.41 (3H, t, J = 7.1 Hz), 1.08 (3H, t, J = 7.7 Hz), 1.03-0.93 (2H, m), 0.58-0.27 (8H, m). MS (NH₃-CI): m/e 327 (1), 326 (7), 325 (36), 324 (21), 323 (100).

35 Part D. A solution of the imidate compound prepared in Part C above and p-toluenesulfonic acid monohydrate (50 mg) in diphenyl ether (10 mL) was heated to 170 °C for 2 hours. The resulting mixture was cooled and separated by column

chromatography (silica gel, hexane to remove diphenyl ether, then 30:70 ethyl acetate-hexane) to afford the product, 6-chloro-9-dicyclopropylmethyl-8-ethylpurine, as an solid (1.42 g, 5.13 mmol, 68% for both steps C and D). m.p. 99-100 $^{\circ}$ C. TLC R_F 0.26 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): d 8.63 (1H, s), 2.99 (2H, br), 1.92 (1H, br), 1.50 (3H, t, J = 7.3 Hz), 0.87-0.78 (2H, m), 0.50-0.39 (4H, m), 0.20-0.10 (4H, m). MS (NH₃-CI): m/e 280 (6), 279 (36), 278 (19), 277 (100).

- 10 Part E. A solution of 4-amino-3-chlorophenol hydrochloride (18.6 g, 103 mmol) and sodium acetate (18.6 g, 227 mmol) in glacial acetic acid (200 mL) was heated to gentle reflux for 12 hours, then cooled and poured into 4 volumes water. This was neutralized with portionwise addition of sodium
- bicarbonate, and the resulting mixture was extracted with ethyl acetate (2 \times 500 mL). The extracts were washed with brine, combined, dried over magnesium sulfate, filtered and evaporated. The resulting solid was triturated with warm ether; filtration and vacuum drying gave 4-acetamido-3-
- 20 chlorophenol (16.1 g, 86.7 mmol, 84%). m.p. 128-129 °C. TLC R_F 0.14 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, 4:1 CDCl₃•CD₃OD): d 7.66 (1H, d, J = 8.8 Hz), 6.88 (1H, d, J = 1.7 Hz), 6.74 (1H, dd, J = 8.8, 1.7 Hz), 2.19 (3H, s). MS (H₂O-GC/MS): m/e 186 (100).

25

- Part F. A solution of the phenol of Part E (14.6 g, 78.8 mmol), methyl iodide (10.0 mL, 160 mmol), and sodium carbonate (10.0 g, 94.3 mmol) in acetonitrile (200 mL) was heated to reflux for 48 hours, the cooled and poured into water (800 mL). This was extracted with ethyl acetate (2 x 800 mL), and the extracts were washed with brine, combined, dried over magnesium sulfate, filtered and evaporated. The resulting solid was recrystallized from ether-ethyl acetate to afford pure product, 2-chloro-4-methoxyacetanilide (13.2 g, 66.3 mmol, 84%), m. p. 118-119 °C (ether-ethyl acetate). TLC R_F
 - 0.30 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): d 8.15 (1H, d, J = 9.2 Hz), 7.39 (1H, br s), 6.92 (1H, d, J = 3.0 Hz), 6.82 (1H, dd, J = 9.2, 3.0 Hz), 3.78 (3H, s), 2.22

(3H, s). MS (NH₃-CI): m/e 219 (19), 217 (60), 202 (40), 201 (14), 200 (100).

Part G. A solution of the amide from Part F (10.1 g, 50.7 mmol) and sodium hydroxide (10 mL, 5 N, 50 mmol) in 95% ethanol (200 mL) was heated to 50 °C for 24 hours. Then, an additional 5 mL sodium hydroxide solution was added, and the mixture was heated to full reflux for an additional 48 hours. The solution was cooled and evaporated, and the residual material was partitioned between ether and water. The aqueous phase was extracted a second time with ether, and the extracts were washed with brine, combined, dried over sodium sulfate, filtered and evaporated. The resulting product, 2-chloro-4-methoxyaniline, was purified by elution through a short column of silica gel with 30:70 ethyl acetate-hexane, and the eluant was evaporated (7.98 g, 100%).

Part H. A solution of the aniline from Part G (7.98 g, 50 mmol) in conc. HCl (25 mL) was cooled to -5 °C, and treated 20 dropwise with a concentrated aqueous solution of sodium nitrite (3.80 g, 55.1 mmol). After 30 minutes, the mixture was charged with 15 mL cyclohexane and 15 mL dichloromethane, then treated dropwise with a concentrated aqueous solution of potassium iodide (16.6 g, 100 mmol). This mixture was allowed to stir for 4 hours, then was extracted with dichloromethane $(2 \times 100 \text{ mL})$. The extracts were washed in sequence with 1 N aqueous sodium bisulfite (100 mL) and brine (60 mL), then combined, dried over magnesium sulfate, filtered and evaporated to afford sufficiently pure product, 3-chloro-4iodoanisole (7.00 g, 26.1 mmol, 52%). TLC R, 0.39 (5:95 ethyl 30 acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): d 7.69 (1H, d, J = 8.8 Hz), 7.03 (1H, d, J = 3.0 Hz), 6.57 (1H, dd, J = 8.8, 3.0)Hz), 3.78 (3H, s). MS (H_2O-GC/MS): m/e 269 (100).

Part I. A solution of the iodide compound from Part H (7.00 g, 26.1 mmol) in anhydrous tetrahydrofuran (50 mL) was cooled to -90 °C, and treated with a hexane solution of n-butyllithium (16.5 mL, 1.6 M, 26.4 mmol). After 15 minutes, the solution

was treated with triisopropylborate (6.10 mL, 26.4 mmol) and was allowed to warm to ambient temperature over 6 hours. The resulting mixture was treated with 6 N aqueous HCl (5 mL) and water (5 mL), which was stirred for 1 hour, then poured into 5 water (100 mL) and extracted with ethyl acetate (2 x 100 mL). The extracts were washed in sequence with 1 N aqueous sodium bisulfite and brine (80 mL each), combined, dried over sodium sulfate, filtered and evaporated. The residual solid was triturated with 1:1 ether-hexane, collected by filtration and dried under vacuum to afford pure product, 2-chloro-4-methoxybenzeneboronic acid (3.05 g, 16.4 mmol, 63%). m.p. 191-195 °C.

Part J. A solution of the chloride from Part D (770 mg, 2.78 15 mmol), the boronic acid from Part I (770 mg, 4.13 mmol), 2 N aqueous sodium carbonate solution (4 mL, 8 mmol) and triphenylphosphine (164 mg, 0.625 mmol) in DME (20 mL) was degassed by repeated cycles of brief vacuum pumping followed by nitrogen purging. To this was added palladium (II) acetate (35 mg, 0.156 mmol), and the mixture was degassed again and 20 then heated to reflux for 14 hours. It was cooled, and poured into water (100 mL). This mixture was extracted with ethyl acetate (2 x 100 mL), and the extracts were washed in sequence with brine (60 mL), combined, dried over sodium sulfate, filtered and evaporated. The residual material was separated by column chromatography (silica gel, 15:85 ethyl acetatehexane) to afford the title product as a solid. This was recrystallized to purity from hexane (791 mg, 2.07 mmol, 74%). m.p. 139-140 $^{\circ}$ C (hexane). TLC R_p 0.18 (30:70 ethyl acetatehexane). 1H NMR (300 MHz, CDCl₁): d 8.93 (1H, s), 7.74 (1H, d, J = 8.4, Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 4.20 (1H, v br), 3.87 (3H, s), 2.97 (2H, v br), 2.00 (2H, v br), 1.44 (3H, br t, J = 7 Hz), 0.89-0.79 (2H, m), 0.62-0.52 (2H, m), 0.51-0.40 (2H, m), 0.26-0.16 (2H, m). MS (NH,-CI): m/e 387 (1), 386 (9), 385 (41), 384 (30), 383 (100).35 Analysis calc'd for C₂₁H₂₂ClN₄O: C, 65.87; H, 6.05; N, 14.63; found: C, 65.77; H, 6.03; N, 14.57.

In Table 1, Table 1A and Table 1B, melting point data correspond to compounds of Structure A unless otherwise indicated.

5

TABLE 1

10

Ex.	R²	х	R³	R ⁴	R ^s	R ¹¹	R [€]	R ¹⁴	R16	°C •
1	CH3	CH2	н	CH,	CH3	н	СН	C ₂ H ₅	C₃H₅	128-129
2	СН	CH2	н	CH,	СН	н	CH,	C ₂ H ₅	C,H,	99-100
3	СН,	CH2	н	CH ₃	CH ₃	н	CH,	C ₂ H ₅	сн,осн,	oil
4	СН,	CH,	н	CH ₃	CH3	н	CH ₃	C ₂ H ₅	C ₆ H ₅	-
5	СН,	CH,	н	CH,	CH ₃	н	СН,	C ₂ H ₅	c-C ₃ H ₅	143-145
6	сн,	CH ₂	н	CH3	CH,	н	CH ₃	C ₃ H ₅	C4H23	-
7	сн	CH2	н	CH ₃	CH,	Н	CH3	C ₂ H ₅	С,Н,	68-71
8	CH,	CH2	н	CH3	CH,	Н	CH ₃	C_2H_5	(CH ₂) ₂ OCH ₃	oil
9	CH3	CH ₂	н	СН,	СН	Н	CH,	C ₂ H ₅	(CH ₂) ₂ OH	196-197
10	CH3 ·	CH2	н	сн,	СН,	Н	СН	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	oil
11	CH3	CH ₂	н	CH3	CH,	Н	CH,	C ₂ H ₅	(CH ₂) ₂ -(Q2) b	oil
12	CH3	CH ₂	н .	CH,	СН,	Н	CH3	C ₂ H ₅	CH2N(CH3)3	-
13	CH,	CH2	н	CH,	CH,	н	СН	C-C,H,	C4H	120-121
14	СН	CH ₂	н	CH,	CH,	Н	CH.	C-C,H,	(CH ₂) 20H	209-210
15	СН	CH2	н	сн,	СН	н	CH3	C-C ₃ H ₅	н	140-150
16	CH3	CH2	н	СН	CH3	Н	CH,	C-C3H3	c-C ₃ H ₅	186-187
17	СН	CH ₂	н	СН	СН,	н	сн,	н	C ₆ H ₅	121-122

WO 99	/01454								PCT/US98	/13913
18	СН,	CH ₂	н	CH,	СН	н	СН,	н	3 - (CH ₃ O) -C ₆ H ₄	oil
19	CH,	CH2	н	сн,	СН	Н	CH,	н	2-Br-C ₆ H ₄	84-85
20	CH,	.CH ₂	Н	CH,	сн	н	CH3	Н	4-CH ₃ -C ₆ H ₄	48-50
21	CH,	CH2	н	CH3	CH,	н	сн,	Н	4-C ₆ H ₅ -C ₆ H ₄	-
22	CH,	CH2	н	CH3	СН,	н	сн,	Н	$2 - (C_4H_9) - C_4H_8$	
23	CH,	CH ₂	Н	CH ₃	CH3	н	. СН ₃	н	$3 - (C_4H_9) - C_5H_{10}$	•
24	CH,	CH	Н	CH3	CH ₃	н	сн,	н	(CH ₂) 20CH ₃	-
25	CH,	CH2	н	CH,	CH3	н	CH,	н	сн,осн,	-
26	СН	CH2	н	CH ₃	CH,	Н	CH3	н	C ₂ H ₅	120-123
27	СН	CH2	Н	CH3	CH3	н	CH3	н	C,H,	oil .
28	CH,	CH2	н	CH,	CH ₃	н	CH,	. Н	C ₄ H ₉	oil
29	CH,	CH2	н	CH3	CH ₃	Н	CH,	CH2OCH3	CH2OCH3	-
30	CH,	CH ₂	н	CH ₃	CH ₃	Н	CH,	C ₂ H ₅	OC ₂ H ₅	91-93
31	CH,	CH2	Н	CH,	CH ₃	Н	CH3	н	(CH2)3CH	120-121
32	CH,	CH ₂	Н	CH ₃	сн	Н	CH3	н	O(CH ₂) ₂ -OCH ₃	- -
33	CH,	CH2	Н	СН	сн	Н	CH,	CH2OCH3	C ₆ H ₅	· -
34	CH3	CH ₂	Н	Cl	Cl	н	н	C ₂ H ₅	C₃H₅	oil
35	CH,	CH ₂	Н	Cl	Cl	н	Н	C ₂ H ₅	C ₄ H,	oil
36	CH ₃	CH2	н	Cl	Cl	н	Н	C ₂ H ₅	CH2OCH3	=-
37	CH,	CH2	Н	Cl	Cl	Н	н	C ₂ H ₅	C ₆ H ₅	-
38	CH,	CH ₂	н	cl	Cl	Н	н	C ₂ H ₅	c-C ₃ H ₅	oil
										(A)
										118-119
										(B)
										125-126
										(C)
39	CH,	CH ₂	H	Cl	Cl	н	Н	C ₂ H ₅	C ₆ H ₁₃	_
40	CH,	CH,	н	Cl	Cl	Н	Н	C2H2	C3H4	oil
41	СН	CH,	Н	Cl	Cl	н	Н	C3H	(CH ₂),OCH,	-
42	CH,	CH ₂	н	Cl	C1	н	Н	C ₂ H ₅	CH ₂ CN	-
43	CH,	CH2	Н	Cl	Cl	Н	н	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
44	CH,	CH3	Н	Cl	Cl	Н	н	C ₂ H ₅	(CH ₃) ₃ -(Q2) °	-
45	CH,	CH	Н	Cl	Cl	Н	н	C2H2	CHN(CH),	-
46	CH,	CH,	Н	Cl	C1	Н	н	C-C ₃ H ₅	C.H.	.
47	CH,	CH ₂	H	Cl	Cl	н	н	C~C ₃ H ₅	сносн	-
48	CH,	CH2	Н	C1	Cl	H	н	C-C3H3	C_6H_4	oil
49	CH,	CH ₂	Н	Cl	Cl	Н	Н	C-C3H5	C-C3H3	156-157
50	CH,	CH,	Н	Cl	Cl	Н	Н	Н	C ₆ H ₅	oil 📏
51	CH,	CH ₂	Н	Cl	Cl	н	Н	н	3-(CH ₃ O)-C ₆ H ₄	oil
52-	СН	CH	н	Cl	Cl	н	н	н	2-Br-C ₆ H ₄	-

53	сн,	CH ₂	Н	cl	Cl	н	н	н	4-CH ₃ -C ₆ H ₄	114-115
54	сн	CH2	Н	Cl	Cl	н	н	Н	4-C ₆ H ₅ -C ₆ H ₄	oil
55	CH,	CH2	н	Cl	Cl	Н	н	Н	$2-(C_4H_9)-C_4H_8$	-
56	СН	CH ₂	н .	C1	Cl	н	н	Н	3-(C ₄ H ₉)-C ₅ H ₁₀	-
57	CH,	CH ₂	Н	Cl	Cl	н	Н	Н	(CH ₂) 20CH ₃	-
58	CH,	CH2	н	Cl	cl	Н	н .	Н	сн,осн,	-
59	CH3	CH ₂	н	cl	.cı	н	н	Н	C³H²	-
60	сн,	CH2	н	. c l	cl	н	н	н	C ₃ H ₇	-
61	CH,	CH2	Н	Cl	cı	Н	Н	Н	C ₄ H ₄	-
62	СН	CH2	н	Cl	cl	н	Н	сн,осн,	сносн	• •
63	СН,	CH2	н	cı	Cl	H	н	C ₂ H ₅	OC ₂ H _s	•
64	CH,	CH2	Н	Cl	Cl	н	н	н	OC ₂ H ₅	-
65	CH,	CH2	н	Cl	Cl	Н	Н	н	O(CH ₂) ₂ -OCH ₃	-
66	CH,	CH2	н	Cl	Cl	н	Н	CH2OCH3	C ₆ H ₅	-
67	CH,	CH2	н	CH ₃	осн	н	сн,	C ₂ H ₅	C₂H₅	<u> </u>
68	CH,	CH2	н	CH3	осн	н	СН	C_2H_s	C,H,	oil
69	CH,	CH2	н	CH ₃	OCH,	н	СН	C ₂ H ₅	CH2OCH3	-
70	CH,	CH ₂	н	CH ₃	OCH,	н	CH,	C ₂ H ₅	C₅H₅	-
71	CH3	CH ₂	н	CH ₃	OCH,	н	СН	C ₂ H ₅	c-C ₃ H ₄	-
72	CH3	CH ₂	н	CH ₃	OCH3	Н	СН	C ₂ H ₅	C ₆ H ₁₃	-
73	СН	CH ₂	н	СН,	OCH	н	сн,	C ₂ H ₅	C ₃ H ₇	-
74	CH,	CH ₂	н	CH3	осн,	н	CH,	C ₂ H ₅	(CH²) 30CH3	-
75	CH,	CH2	H	CH3	OCH,	н	CH,	C ₂ H ₅	CH ₂ CN	-
76	сн,	CH ₂	Н	CH3	OCH,	Н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
77	СН	CH2	н	CH,	OCH,	н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q2) e	-
78	CH,	CH2	Н	CH,	OCH ₃	Н	CH,	C ₂ H ₅	CH2N(CH3) 2	-
79	CH,	CH2	Н	CH,	OCH,	Н	CH,	c-C3H3	C ₄ H ₉	-
80	СН	CH,	н	CH,	OCH,	Н	CH3	C-C3H5	сносн	-,
81	CH,	CH ₂	н	CH,	OCH,	н	CH,	C-C ₃ H ₅	C ₆ H ₅	-
82	CH,	CH2	н	CH,	осн,	Н	CH,	C-C ₃ H ₅	c-C ₃ H ₅	167-169
83	CH3	CH2	н	CH3	OCH,	Н	CH,	н	C ₆ H ₅	134-135
84	CH,	CH2	н	CH,	осн,	H	CH,	н	3-(CH ₃ O)-C ₆ H ₄	-
85	СН	CH2	Н	CH ₃	осн,	Н	CH,	н	2-Br-C ₆ H ₄	-
86	СН	CH ₂	н	CH ₃	осн	н	СН	н	4-CH ₃ -C ₆ H ₄	. -
87	СН	CH2	н	CH,	OCH,	н	CH,	н	4-C6H3-C6H4	-
88	СН	CH ₂	H	CH3	осн,	Н	CH3	н	$2-(C_4H_9)-C_4H_9$	-
89	СН	CH3	н .	CH3	OCH,	Н	CH,	н	$3 - (C_e H_9) - C_5 H_{19}$	- .
90	СН,	CH2	Н	CH3	осн	н	СН	н	(CH ₂) 3OCH3	- 5
91	CH,	CH2	н	CH3	осн	н	сн,	н	сн,осн,	-
92	СН	СН	н	СН,	осн	Н	CH,	Н	C₂H₅	-

WO 99/	01454								PCT/US98/	13913
93	CH ₃	CH²	н	СН	осн,	н	СН	н	C,H,	_
94	CH	CH ₂	н	CH ₃	осн,	н	CH,	н	C ₄ H ₉	_
95	CH,	CH ₂	н	CH,	осн	н	СН	сносн	СНОСН	_
96	CH	CH,	н	CH,	осн	н	СН	C ₂ H ₅	orgong oc ₂ H _s	_
97	CH,	CH ₂	н	CH,	осн	н	CH ₃	H	OC ₂ H ₅	_
98	CH,	CH ₂	н	CH ₃	осн,	н	CH ₃	н	O(CH ₂) ₂ -OCH ₃	_
99	CH,	CH ₂	н	CH ₃	OCH,	н	CH,	сн,осн,	C ₆ H ₅	_
100	CH,	CH ₂	н	CH ₃	CH	н	CH,	н	СН	138-140
101	н	CH,	н	CH,	CH,	н	CH,	 C₂H₅	C ₂ H ₄	198-199
102	н	CH ₂	H	CH ₃	CH ₃	н	CH,	C ₂ H ₅	C _a H _a	147-148
102	н	CH ₂	н	CH ₃	CH ₃	н	CH,	C ₂ H ₅	сн,осн,	140-142
103	н	CH ₂	н	CH ₃	CH ₃	н	CH,	C ₂ H ₃	C,H,	-
104	н	CH ₂	н	CH ₃	CH ₃	н	CH,	C ₂ H ₅	C-C ₃ H ₅	_
106	н	CH ₂	н	CH,	СН	н	CH,	C ₂ H ₅	C ₆ H ₁₃	_
107	н	CH ₂	н	CH ₃	СН	н	CH,	C ₂ H ₅	С,Н,	÷ =
108	н	CH,	н	CH,	СН	н	CH ₃	C ₂ H ₅	(CH ₂) 20CH ₃	; -
109	н	CH ₂	н	CH,	СН	н	CH,	C ₂ H ₅	CH ₂ CN	-
110	н	CH,	н	CH,	CH,	н	CH ₃	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
111	н	CH ₂	н	CH ₃	CH,	н	CH,	C ₃ H ₃	(CH ₂) ₂ -(Q2) ^c	
112	н	CH ₂	н	CH,	CH,	н	CH,	C ₂ H ₅	CH ₂ N(CH ₂),	-
113	н	CH,	н	CH,	CH,	н	CH,	c-C ₃ H ₃	C.H.	-
114	н	CH,	н	CH,	CH,	Н	CH.	c-C,H,	сносн	-
115	н	CH,	н	CH,	CH,	н	CH,	c-C ₃ H ₃	C,H,	_
116	н	CH ₂	н	CH,	CH,	н	CH,	c-C ₃ H ₅	C-C ₃ H ₅	_
117	н	CH ₂	н	CH,	СН	н	CH,	н	C ₆ H ₅	-
118	н	СН	н	CH,	CH,	н	СН	н	3~(CH ₃ O)-C ₆ H ₄	_
119	н	CH ₂	н	CH ₃	CH,	н	СН	н	2-Br-C,H	-
120	н	CH,	н	CH,	CH,	Н	СН	н	4-CH ₃ -C ₄ H ₄	-
121	н	CH ₂	н	CH,	CH,	н	СН	. н	4-C,H,-C,H	_
122	н	CH ₂	н	CH,	CH,	н	СН	н	3-C,H,	oil
123	н	CH ₂	н	CH,	СН	н	СН	н	2-(C ₂ H ₅)-C ₆ H ₁₂	oil
124	н	CH ₂	н	CH,	CH,	н	CH,	н	(CH ₂) 20CH,	-
125	н	CH ₂	н	CH,	СН	н	СН	н	сносн	-
126	н	CH,	н	CH,	СН	н	СН	Н	C ₂ H ₅	-
127	н	CH ₂	н	CH,	CH,	Н	CH,	н	С,Н,	-
128	н	CH2	н	СН,	СН	н	СН	н	C ₄ H ₉	-
129	н	CH,	н	CH,	CH,	н	сн,	сн,осн,	сӊосӊ	-
130	н	CH2	Н	CH,	CH,	Н	СН	C₂H₅	OC ₂ H ₅	- K
131	н	CH ₂	н	сн,	СН	н	СН	н	OC3H2	-
									0.4511.1.0511	

CH, H CH, H O(CH₂)₂-OCH₃ -

132

CH,

CH,

WO 99/0	1454								PCT/US98/1	3913
133	н	CH2	н	CH3	CH,	н	СН,	сн,осн,	C ₆ H ₅	-
134	Н	CH₂	н	cl	Cl	Н	н	C ₂ H ₅	C ₂ H ₅	-
135	н	CH2	н	C1	cl	Н	Н	C ₂ H ₅	C ₄ H,	-
136	н	CH ₂	н	Cl	cı	н	н	C ₂ H ₅	сносн	-
137	н	CH ₂	н	Cl	Cl	н	н	C ₃ H ₅	C ₆ H ₅	-
138	Н	CH3	н	Cl	Cl	Н	н	C,H,	c-C,H,	-
139	н	CH ₂	н	Cl ·	Cl	H	н	C ₂ H ₅	C ₄ H ₁₃	-
140	н	CH3	н	Cl	Cl	н	н	C,H,	С,н,	-
141	н	CH3	н	Cl	Cl	Н	Н	C ₂ H ₅	(CH ₂) 20CH ₃	-
142	н	CH2	Н	Cl	Cl	Н	н	C,H,	CH,CN	-
143	н	CH2	н	cl	cl	Н	н ·	C,H,	(CH ₂) ₂ -(Q1) b	· -
144	н	CH ₂	н	Cl	Cl	Н	н	C₂H₅	(CH ₂) ₂ -(Q2) °	-
145	Н	CH2	Н	cl	cl	н	н	C ₂ H ₅	CH2N(CH3);	-
146	н	CH2	н	cl	cı	Н	Н	C-C3H3	C ₄ H ₉	-
147	н	CH2	Н	cl	cı	н	н	C-C3H3	сносн,	
148	н	CH2	Н	Cl	Cl	Н	н	c-C ₃ H ₅	C ₆ H ₅	· -
149	н	CH2	н	Cl	cı	н	н	c-C3H3	c-C ₃ H ₅	-
150	н	CH3	Н	Cl	Cl	Н	Н	н	C ₆ H ₅	· -
151	н	CH2	Н	Cl	Cl	Н	Н	н	3-(CH ₃ O)-C ₆ H ₄	-
152	Н	CH2	H	Cl	cı	н	н	Н	2-Br-C ₆ H ₄	-
153	Н	CH2	Н	Cl	Cl	Н	Н	Н	4-CH ₃ -C ₆ H ₄	-
154	Н	CH2	н	Cl	Cl	Н	Н	Н	4-C ₆ H ₅ -C ₆ H ₄	-
155	Н	CH2	н	Cl	Cl	Н	Н	Н	2-(C,H,)-C,H,	-
156	н	CH ₂	н	Cl	Cl	Н	H.	н	$3 - (C_4H_9) - C_5H_{10}$	-
157	H	CH3	Н	Cl	C1	Н	Н	н	(CH ₂) ₂ OCH ₃	-
158	Н	CH3	Н	Cl	Cl	Н	Н	Н	CH2OCH3	-
159	Н	CH2	Н	Cl	Cl	Н	H	н	C ₂ H ₅	-
160	H	CH ³	Н	Cl	Cl	Н	н	Н	C3H,	-
161	н	CH2	Н	Cl	Cl	Н	н	Н	C ₄ H ₉	-
162	Н	CH ₂	Н	Cl	Cl	н	H	СН2ОСН3	сн,осн,	-
163	Н	CH3	H	Cl	Cl	H	Н	C ₂ H ₅	OC ₂ H ₅	-
164	н	CH ₂	Н	Cl	Cl	Н	н	Н	OC3H2	-
165	Н	CH2	Н	Cl	C1	Н	н	Н	O(CH ₂) ₂ -OCH ₃	-
166	Н	CH2	H	Cl	Cl	н	Н	сносн	C ₆ H ₅	-
167	Н	CH2	Н	CH,	OCH,	Н	CH,	C ₂ H ₅	C ₂ H ₅	-
168	Н	CH2	Н	CH3	OCH ₃	Н	CH ₃	C,H,	C ₄ H ₉	-
169	Н	CH2	н	CH,	OCH3	н	CH ₃	C ₂ H ₅	сн,осн,	-
170	Н	CH2	Н	CH,	OCH,	н	CH,	C ₂ H ₅	C ₆ H ₅	- •
171	н	CH2	Н	CH,	OCH,	Н	CH,	C ₂ H ₅	c-C ₃ H ₅	-
172	Н	CH	н	CH3	OCH,	н	CH,	C ₂ H ₅	C ₆ H ₁₃	-

wo	99/01	454								PCT/US98/	13913
17	3	н	CH ₂	н	СН,	осн,	н	СН	C,H,	С,Н,	-
17	4	н	CH2	Н	CH,	OCH,	н	CH3	C ₃ H ₅	(CH ₂) ₂ OCH ₃	-
17	5	н	СН	н	CH,	осн,	н	CH,	C ₂ H ₅	CH,CN	-
17	6	н	CH2	н	CH,	OCH ₃	н	сн,	C₂H₅	(CH ₂) ₂ -(Q1) b	-
17	7	н	CH2	н	CH3	OCH,	н	СН3	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	. -
17	8	н	CH2	н	CH ₃	осн,	н	CH ₃	C_2H_5	CH2N(CH3) 2	-
17	9	H _.	CH ₂	Н	CH3	осн,	н	CH3	c-C ₃ H ₅	C ₄ H ₅	-
18	10	Н	CH2	Н	CH3	OCH ₃	н	CH ₃	c-C,H,	сн,осн,	-
18	11	Н	CH2	н	СН,	осн,	Н	CH,	C-C3H5	C ₆ H ₅	-
18	12	Н	CH3	Н	CH,	OCH,	Н	СН,	C-C ₃ H ₅	C-C ₃ H ₅	-
16	3	Н	CH2	Н	CH,	осн,	Н	CH,	н	C ₆ H ₅	· -
18	34	Н	CH2	н	CH3	осн,	Н	CH₃·	Н	3-(CH ₃ O)-C ₆ H ₄	-
18	5	н	CH ₂	н	CH,	OCH ₃	н	сн,	Н	2-Br-C ₆ H ₄	-
18	36	н	CH2	н	CH ₃	OCH3	н	CH,	Н	4-CH ₃ -C ₆ H ₄	-
18	37	н	CH ³	н	CH,	OCH,	Н	CH,	Н	4-C ₆ H ₅ -C ₆ H ₄	·
18	88	Н	CH ₂	Н	CH ₃	OCH,	н	CH,	Н	$2-(C_4H_9)-C_4H_9$	•
18	39	н	CH ₂	Н	СН,	OCH ₃	Н	CH3	н	$3 - (C_4H_9) - C_5H_{10}$	-
19	90	н	CH ₂	Н	CH3	OCH,	Н	CH,	Н	(CH ₂) ₂ OCH ₃	-
19	91	Н	CH2	Н	CH,	OCH,	Н	CH,	н	CH2OCH3	-
19	92	Н -	CH ₂	Н	CH,	OCH,	Н	CH3	Н	C ₂ H ₅	-
. 19	93	Н	CH2	Н	CH,	осн,	Н	CH,	Н	C ₃ H ₇	-
19	94	н	CH2	Н	сн,	OCH,	Н	CH,	Н	C_4H_9	-
19	95	Н	CH2	н	CH,	OCH ₃	Н	CH3	CH3OCH3	сносн	-
1	96	Н	CH ³	Н	CH,	OCH3	н	CH,	C ₂ H ₅	OC ₂ H ₅	-
1	97	Н	CH ₂	Н	CH,	OCH,	Н	CH,	Н	OC₃H₅	-
1	98	H	CH ³	Н	CH3	OCH,	Н	CH,	н	O (CH ₂) 2-OCH ³	-
1	99	Н	CH2	Н	CH3	осн	Н	CH,	сносн	C ₆ H ₅	-
2	00	CH3	CH2	Н	CH3	сн,	Н	CH.	СН	C ₂ H ₅	98-100
2	01	CH,	0	Н	CH,	CH,	Н	CH,	C ₂ H ₅	C ₂ H ₅	-
	02	CH,	0	Н	CH,	CH,	н	CH,	C₂H₅	C ₄ H ₅	oil
2	03	CH3	0	Н	CH ₃	CH,	Н	CH,	C₂H₅	сн,осн,	-
	04	CH,	0	Н	CH,	CH,	Н	CH,	C ² H ²	C ₆ H ₅	-
	05	CH,	0	н	CH,	CH,	н	CH,	C,H,	C-C ₃ H ₅	-
	06	CH3	0	Н	CH,	CH,	Н	CH,	C ₂ H ₅	C4H13	-
	07	СН	0	Н	CH ₃	CH,	Н	CH3	C2H2	C3H4	•
	80	CH,	0	Н	CH ₃	СН	H	CH,	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
	09	CH3	0	Н	CH3	CH,	Н	CH ₃	C ₂ H ₅	CH,CN	- .
	10	CH,	0	Н	CH ₃	CH,	Н	CH,	C3H2	(CH ₂) ₂ -(Q1) b	- 、
	11	CH,	0	Н	CH,	CH,	Н	СН	C3H2	(CH ₂) ₂ -(Q2) °	-
2	12	CH,	0	Н	CH3	CH,	Н	СН	C³H²	CH ₃ N(CH ₃) ₃	•

WO 99/	01454								PCT/US98/	13913
213	СН	0	н	сн,	СН	н	СН	c-C ₃ H ₅	C ₄ H ₄	-
214	CH ₃	0	н	СН	CH,	н	CH,	c-C,H,	сн,осн,	-
215	CH,	0	н	CH,	СН	н	CH ₃	c-C,H,	C ₆ H ₅	-
216	CH,	0	н	CH,	сн,	н	CH,	c-C,H,	c-C,H,	-
217	CH3	٠	Н	CH3	СН	н	СН,	н	C ₆ H ₅	-
218	CH3	0	н	CH3	CH3	Н	CH3	н	3-(CH ₃ O)-C ₆ H ₄	-
219	CH3	0	Н	CH3	СН	н	сн,	н	2-Br-C ₆ H ₄	-
220	сн	0	Н	CH,	CH,	Н	CH3	н	4-CH ₃ -C ₆ H ₄	-
221	CH,	0	H	CH,	CH,	н	CH3	н	4-C ₆ H ₅ -C ₆ H ₄	-
222	CH3	0	Н	CH,	CH,	н	CH,	н	$2-(C_4H_9)-C_4H_9$	-
223	CH3	0	Н	CH ₃	CH ₃	н	CH ₃	н	$3 - (C_4H_9) - C_5H_{10}$	
224	сн,	0	н	CH3	СН	Н	CH3	н	(CH ₂) ₂ OCH ₃	~
225	CH,	0	н	CH,	сн,	Н	CH3	н	сн,осн,	-
226	CH ₃	0	н	CH ₃	CH3	Н	CH3	Н	C₂H₅	-
227	CH,	0	Н	CH,	CH,	Н	CH.	н	C ₃ H ₇	: - .
228	CH,	0	Н	CH,	CH,	Н	CH,	Н	C ₄ H ₉	-
229	CH ₃	0	Н	CH,	CH3	Н	CH ₃	CH3OCH3	сносн	-
230	CH,	0	Н	CH,	, CH ³	Н	CH3	C ₂ H ₅	OC3H2	-
231	CH ₃	0	Н	CH3	CH ₃	Н	CH ₃	С,Н,	OC ₂ H _s	-
232	CH,	0	Н	CH3	CH3	H	CH,	Н	O(CH ₂) ₂ -OCH ₃	-
233	CH3	0	Н	CH3	CH,	H	CH,	сносн	C ₆ H ₅	-
234	CH,	0	Н	Cl	Cl	Н	Н	C ₂ H ₅	C₃H₅	-
235	СН	0	H	Cl	Cl	н	Н	C ₂ H ₅	C₄H,	-
236	сн,	0	Н	Cl	Cl	Н	Н	C ₂ H ₅	сн,осн,	-
237	CH,	0	Н	Cl	Cl	H	Н	C ₂ H ₅	C,H,	-
238.	CH,	0	н	Cl	Cl	Н	Н	C3H2	c-C₃H₅	-
239	CH,	0	Н	Cl	C1	Н	Н	C3H2	C ₆ H ₂₃	-
240	СН	0	Н	Cl	Cl	H	Н	C3H3	C3H7	-
241	CH3	0	Н	Cl	Cl	Н	Н	C ₂ H ₅	(CH ₂) 2OCH ₃	-
242	CH,	0	Н	Cl	C1	Н	H	C ₂ H ₅	CH ₂ CN	-
243	CH,	0	Н	C1	Cl	Н	н	C₂H₅	(CH ₂) ₂ -(Q1) b	-
244	CH,	0	Н	C1	Cl	Н	н	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
245	CH ₃	0	Н	C1	C1	Н	н	C ₂ H ₅	CH ₂ N(CH ₃) ₂	-
246	CH,	0	Н	Cl	C1	Н	Н	c-C ₃ H ₅	C ₄ H ₉	-
247	СН	0	Н	C1	C1	Н	H	c-C ₃ H ₅	СНОСН	-
248	CH,	0	н	C1	C1	н	н	с-С ₃ Н ₃	C ₆ H ₅	-
249	CH,	0	Н	Cl	Cl	H	H	с-С ₃ Н ₃	c-C ₃ H ₅	132-134
250	CH,	0	Н	Cl	C1	H	н	н	C ₆ H ₅	- `.
251	CH,	0	н	C1	C1	н	н	н	3-(CH ₃ O)-C ₆ H ₄	-
252	сң	0	Н	Cl	Cl	Н	Н	Н	2-Br-C ₆ H ₄	-

WO 99/	01454								PCT/US98/1	3913
253	СН	0	н	cl	C1	н	Н	н	4-CH ₃ -C ₆ H ₄	-
254	СН	0	н	Cl	cl	н	н	н	4-C ₆ H ₅ -C ₆ H ₄	-
255	CH,	0	н	Cl	cı	н	н	н	2-(C,H,)-C,H,	-
256	СН	0	н	Cl	cı	н	н	н	3-(C,H,)-C,H,	-
257	CH,	O	н	cl	cl	н	н	н	(CH ₂) 20CH ₃	-
258	CH ₃	0	Н	cl	c1	н	н	Н	сн,осн,	-
259	СН	0	н	Cl	c1	н	н	н	C ₂ H ₅	-
260	CH,	0	н	Cl	Cl	н	н	н	С,Н,	-
261	CH,	0	н	Cl	Cl	н	Н	. Н	C ₄ H ₉	~
262	СН,	0	н	Cl	Cl	н	Н	сносн	сн,осн,	-
263	CH3	0	н	Cl	Cl	н	Н	C₂H₅	OC ₂ H ₅	· _
264	CH3	0	н	Cl	cl	Н	Н	н	OC ₂ H ₅	-
265	CH3	0	н	Cl	cı	Н	Н	Н	O(CH ₂) ₂ -OCH ₃	-
266	CH3	0	н	Cl	Cl	Н	Н	сн,осн,	C ₆ H ₅	-
267	СН	0	н	CH3	осн,	н	CH,	C ₂ H ₅	C ₂ H ₅	
268	СН	0	н	CH3	OCH,	Н	CH ₃	C₂H₅	C ₄ H,	· -
269	СН	0	н	CH3	OCH ₃	Н	CH ₃	·C ₂ H ₅	CH,OCH,	-
270	CH ₃	0	н	CH ₃	OCH ₃	н	CH ₃	C ₂ H ₅	C ₆ H ₅	-
271	CH3	0	н	CH3	осн,	н	CH,	C ₂ H ₅	c-C ₃ H ₅	-
272	CH3	0	н	CH ₃	OCH ₃	н	CH,	C ₂ H ₅	C ₆ H ₂₃	-
273	СН	0	н	CH,	OCH,	н	CH,	C ₂ H ₅	C,H,	-
274	сн	0	Н	CH3	OCH,	Н	CH,	C ₂ H ₅	(CH ₂) 2OCH ₂	-
275	сн	0	н	CH3	OCH3	Н	CH ₃	C ₂ H ₅	CH ₂ CN	-
276	CH3	0	н	CH3	OCH3	Н	CH,	C ₂ H ₅	(CH ₂) _a -(Q1) b	-
277	CH3	0	Н	CH3	OCH,	Н	CH3	C,H,	(CH ₂) ₂ -(Q2) °	-
278	CH,	0	Н	CH3	OCH,	Н	CH3	C2H2	CH2N(CH3);	-
279	CH3	0	Н	сн	och,	H	CH,	c-C,H,	C4H,	-
280	CH3	0	Н	CH3	OCH,	Н	CH3	C-C ₃ H ₅	сн,осн,	-
281	CH,	0	Н	сн,	OCH,	Н	CH,	C-C3H2	C ₆ H ₅	
282	CH3	0	Н	CH,	осн,	н	CH,	c-C ₃ H ₅	c-C ₃ H ₃	
283	CH3	0	Н	CH,	OCH ₃	н	CH,	н	C ₆ H ₅	-
284	CH,	0	H	CH,	OCH,	Н	CH,	н	3-(CH ₅ O)-C ₆ H ₄	-
285	CH,	0	Н	CH3	OCH ₃	Н	CH,	Н	2-Br-C,H	-
286	CH,	0	Н	CH,	OCH,	Н	CH,	. Н	4-CH ₃ -C ₆ H ₄	-
287	СН₃	0	Н	CH3	OCH3	Н	CH3	Н	4-C,H,-C,H,	-
288	•	0	Н	CH,	OCH,	Н	CH,	н	2-(C ₄ H ₉)-C ₄ H ₈	-
289	_	0	Н	CH3	OCH3	Н	CH ₃	Н	$3 - (C_4H_9) - C_5H_{10}$	-
290	•	0	Н	CH,	OCH,	н	СН	Н	(CH ₂) ₂ OCH ₃	- 〈
291	•	0	Н	CH3	OCH,	н	CH _{3.}	Н	CH,OCH,	-
292	CH,	0	Н	CH,	OCH,	Н	CH,	Н	C ₂ H ₅	+

WO 99/	01454							•	PCT/US98/	13913
293	сн,	0	н	СН,	осн,	н	сн,	н	C,H,	-
294	CH,	0	Н	CH,	осн,	н	СН	н	C ₄ H ₉	-
295	сн	0	н	CH,	OCH,	н	СН	сносн	сносн	-
296	CH,	0	Н	CH,	OCH,	н	сн	C ₂ H ₅	OC,H,	-
297	CH,	.0	н	CH,	OCH,	н	CH,	н	OC₂H₅	-
298	СН,	0	Н	CH ₃	OCH3	н	CH,	н	O(CH ₂) ₂ -OCH ₃	•
299	CH3	0	н	CH3	OCH,	н	, CH ₃	CH2OCH3	C ₆ H ₅	-
300	CH3	CH ₂	CH ₃	Н	Cl	н	н	c-C ₃ H ₅	c-C ₃ H ₅	106-109
301	CH,	s	н	CH,	сн,	н	CH3	C_2H_s	C ₂ H ₅	-
302	CH3	s	H	CH3	CH,	н	сн,	C ₂ H ₅	C ₄ H ₉	-
303	CH,	s	H,	CH3	CH,	н	СН	C ₂ H ₅	сн,осн,	· -
304	CH,	s	н	CH,	CH,	H	СН	C ₂ H ₅	C ₆ H ₅	-
· 305	CH,	s	н	CH,	CH3	н	CH3	C ₂ H ₅	c-C ₃ H ₅	-
306	CH ₃	s	н	CH,	СН	н	CH3	C ₂ H ₅	C ₆ H ₂₃	-
307	CH3	s	Н	CH,	CH,	н	CH,	C2H2	C,H,	÷ * .
308	CH3	s	Н	CH ₃	CH,	Ĥ	CH,	C2H2	(CH ₂) 30CH ³	· -
309	CH,	s	н	CH3	СН	н	CH ₃	C ₂ H ₅	CH,CN	-
310	CH,	S	Н	CH,	CH3	н	CH3	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	• -
311	CH,	s	н	CH3	СН	н	CH3	C3H	(CH ₂) ₂ -(Q2) °	-
312	CH,	s	н	CH,	CH3	н	СН	C ₂ H ₅	$CH_2N(CH_3)_2$	-
313	CH,	s	H	CH,	СН	Н	CH3	c-C ₃ H ₅	C ₄ H ₉	-
314	CH,	s	н	CH,	CH,	H	СН	C-C3H3	сносн	-
315	CH,	s	н	CH,	CH,	н	СН	C-C3H5	C ₆ H ₅	
316	CH3	s	H	CH,	CH3	Н	CH,	c-C ₃ H ₅	c-C,H,	-
317	CH,	s	Н	CH3	сн	Н	CH3	н	C ₆ H ₅	-
318	CH,	S	H .	CH,	CH,	Н	CH3	н	3-(CH ₃ O)-C ₆ H ₄	· -
319	СН	S	H	CH3	сн	Н	CH,	Н	2-Br-C ₆ H ₄	· -
320	СН	S	Н	CH,	сн,	н	CH,	Н	4-CH ₃ -C ₆ H ₄	-
321	СН	s	Н	CH,	CH,	н	CH3	Н	4-C ₆ H ₅ -C ₆ H ₆	-
322	CH,	S	Н	CH ₃	CH3	Н	CH,	Н	2-(C,H,)-C,H,	•
323	СН	s	Н	CH ₃	CH,	Н	CH,	H _.	$3 - (C_4H_5) - C_5H_{10}$	
324	CH3	S	Н	CH,	СН	Н	CH3	H	(CH ₂) 20CH ₃	-
325	CH,	S	H	CH,	CH,	H	CH,	Н	сносн	-
326	сн	S	Н	CH ₃	CH,	• н	CH,	н	C3H2	
327	CH,	S	Н	CH,	CH,	Н	СН	Н	С,Н,	-
328	CH,	S	Н	CH3	CH ₃	Н	CH3	', H	C4H,	•
. 329	СН	S	Н	CH,	CH,	H	CH,	сносн	сносн	-
330	CH3	s	Н	CH,	CH,	н	CH,	C ₂ H ₅	OC3H4	- `;
331	сӊ	S	Н	CH,	CH,	H	СН	Н	oc,h,	-
332	СН	S	н	CH,	СН	Н	CH3	H	0(CH ₂) ₂ -OCH ₃	-

WO 99/	01454								PCT/US98/	13913
333	СН	s	н	CH,	сн,	н	СН,	сн,осн,	C ₆ H ₅	-
334	CH3	s	н	c1	C1	Н	н	C ₂ H ₅	C₂H₅	-
335	СН	s	н	cl	Cl	н	Н	C ₂ H ₅	C ₄ H,	-
336	CH,	s .	н	Cl	Cl	н	н	C ₂ H ₅	сносн	-
337	СН	·s	н	Cl	Cl	н	н	C ₂ H ₅	C ₆ H ₅	. -
338	CH,	s	Н	Cl	Cl	Н	н	C,H,	C-C3H5	-
339	CH,	s	н	ci	Cl	н	н	C,H,	C ₄ H ₂₃	-
340	СН	s	н	Cl	Cl	н	н	C2H3	C ₃ H ₇	-
341	СН	s	н	Cl	Cl	н	н	C2H2	(CH ₂) 2OCH ₃	-
342	СН	s	н	cl	Cl	Н	Н	C ₂ H ₅	снуси	-
343	сн,	s	Н	cl	Cl	Н	Н	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
344	сн,	s	Н	cl	Cl	Н	н	C ₂ H ₅	(CH ₂) ₂ -(Q2) °	-
345	CH,	s	Н	Cl	C1	н	Н	C ₂ H ₅	CH ₂ N(CH ₃),	-
346	СН,	s	н	cl	Cl	н	н	C-C ₃ H ₅	C4H	-
347	CH3	s	Н	Cl	Cl	н	Н	c-C ₃ H ₅	сн,осн,	i •
348	CH,	s	Н	Cl	Cl	н	н	c-C ₃ H ₅	C_6H_5	· -
349	CH,	s	Н	Cl	Cl	Н	н	C-C ₃ H ₅	c-C ₃ H ₅	-
350	CH,	s	н	Cl	Cl	Н	н	H .	C ₆ H ₅	
351	CH,	s	н	Cl	Cl	Н	Н	н	3-(CH ₃ O)-C ₆ H ₄	-
352	сн,	s	н	Cl	Cl	H	Н	н	2-Br-C ₆ H ₄	-
353	CH,	s	н	Cl	Cl	Н	н	Н	4-CH ₃ -C ₆ H ₄	-
354	CH,	S	н	Cl	Cl	н	Н	н	4-C ₆ H ₅ -C ₆ H ₄	-
355	CH,	s	н	cl	Cl	Н	Н	Н	2-(C ₄ H ₉)-C ₄ H ₉	-
356	CH3	s	Н	Cl	Cl	Н	н.	н	$3-(C_4H_9)-C_5H_{20}$	-
357	CH,	s	H	Cl	cı	Н	H	н	(CH ₂) ₂ OCH ₃	-
358	CH,	S	H	Cl	Cl	Н	Н	н	сносн	-
359	CH,	s	Н	Cl	Cl	н	н	н	C ₂ H ₅	-
360	CH3	s	н	Cl	Cl	Н	Н	Н	С,Н,	-
361	СН	s	н	Cl	Cl	Н	Н	н	C ₄ H ₉	-
362	CH,	s	н	Cl	Cl	Н	Н	сн,осн,	CH2OCH3	-
363	CH,	S	н	Cl	Cl	Н	H .	C3H2	OC ₂ H ₅	-
364	CH,	s	Н	CJ	Cl	Н	Н	н	OC ₂ H ₅	-
365	CH,	s	Н	Cl	Cl	Н	Н	н	O(CH ₂) ₂ -OCH ₃	-
366	СН	S	H	cl	Cl	Н	Н	сносн	C ₄ H ₅	-
367	CH3	s	н	CH ₃	OCH,	Н	CH,	C ₂ H ₅	C ₂ H ₅	-
368	CH,	s	Н	CH ₃	OCH,	Н	СН	C3H4	C ₄ H ₉	-
369	CH ₃	s	H	CH3	OCH,	н	CH ₃	C3H4	сн,осн,	•
370	CH3	s	н	CH,	OCH,	н	CH3	C3H2	C ₆ H ₅	-
371	CH3	S	Н	CH,	OCH,	н	СН	C ₂ H ₅	c-C ₃ H ₅	-
372	СН	S	н	CH,	OCH,	Н	CH,	C ₂ H ₅	C ₆ H ₃₃	-

WO 99/0	1454								PCT/US98/	13913
373	СН,	s	н	CH,	осн,	н	СН,	C³H²	C3H7	-
374	CH,	s	н	сн,	OCH,	н	CH3	C ₂ H ₅	(CH ₂) 20CH3	-
375	СН	s	н	сн,	осн,	н	CH ₃	C ₂ H ₅	CH ₂ CN	-
376	сн	s	н	СН,	осн,	н	сн	C ₂ H ₅	(CH ₂) ₂ -(Q1) b	-
377	CH,	·s	н	СН,	œн,	н	сн,	C2H2	(CH ₂) ₂ -(Q2) °	-
378	CH,	s	н	CH,	OCH,	н	СН	C ₂ H ₅	CH,N(CH,),	-
379	CH3	s	н	CH,	осн	н	СН	c-C,H,	C,H,	-
380	CH,	s	н	CH,	OCH,	н	CH,	c-C ₃ H ₅	сн,осн,	-
381	CH,	s	Н	CH3	осн	н	CH3	C-C ₃ H ₅	C ₆ H ₅	-
382	CH,	s	н	CH3	осн,	н	СН	c-C ₃ H ₅	C-C ₃ H ₅	-
383	CH,	s	н	СН,	осн,	н	СН	н	C ₆ H ₅	· -
384	CH3	s	н	CH3	осн,	Н	CH3	н	3-(CH ₃ O)-C ₆ H ₄	-
385	CH,	s	н	CH3	осн,	Н	CH,	н	2-Br-C ₆ H ₆	-
386	CH3	S	н	CH3	OCH ₃	н	CH,	н	4-CH ₃ -C ₆ H ₄	-
387	CH,	s	н	CH ₃	осн,	Н	CH,	н .	4-C ₆ H ₅ -C ₆ H ₄	<u>-</u>
388	СН	S	Н	CH,	осн,	Н	CH,	н	$2 - (C_4H_9) - C_4H_8$	•
389	CH3	s	н	CH,	OCH,	н	CH3	н	$3 - (C_4H_9) - C_5H_{10}$	-
390	CH3	s	Н	CH3	OCH3	н	CH ₃	Н	(CH ₂) ₂ OCH ₃	-
391	CH3	s	н	CH,	OCH ₃	н	CH ₃	н	сн,осн,	-
392	CH3	s	Н	CH ₃	OCH3	н	CH,	н	C₃H₅	-
393	CH3	s	н	CH3	осн	н	CH ₃	н	C ₃ H ₇	-
394	CH3	s	н	CH3	OCH,	Н	CH3	Н	C.H.	-
395	CH,	s	Н	CH3	OCH,	н	CH,	CH2OCH3	сн,осн,	-
396	сн,	s	н	CH,	OCH,	н	CH,	C ₂ H ₅	OC2H2	-
397	сн	S	Н	CH3	OCH,	н	сн,	н	OC2H	-
398	CH3	s	Н	CH,	OCH,	Н	CH3	н	O(CH ₂) ₂ -OCH ₃	-
399	CH3	s	Н	CH,	OCH,	Н	CH,	сносн	C ₆ H ₅	-
400	сн	CH2	Н	Cl	Cl	Н	CH3	C3H7	c-C ₃ H ₅	153-156
401	CH,	CH2	CH,	CH3	CH,	Н	CH,	C ₂ H ₅	C ₂ H _s	-
402	CH3	CH ³	CH3	CH3	CH,	Н	CH3	C-C3H5	C ₄ H ₉	107-108
403	СН	CH3	CH3	CH,	CH,	Н	CH,	C-C3H3	c-C ₃ H ₅	187-188
404	CH,	СН	CH3	CH3	СН	Н	CH,	H	C ₄ H ₉	oil
405	CH,	CH	CH,	CH,	СН	Н	CH,	C3H	C4H,	98-99
406	CH,	CH2	CH,	CH3	CH3	н	CH,	Н	C ₆ H ₅	149-150
407	CH,	CH3	CH,	CH,	CH,	Н	CH,	C ₃ H ₅	(CH ₂) ₂ OCH ₃	-
408	CH ₃	CH ₃	CH3	CH,	CH ₃	н	CH,	Н	(CH ₂) ₂ OCH ₃	-
409	CH3	CH2	CH3	CH,	CH,	Н	CH3.	CH ₂ OCH,	CH2OCH3	-
410	CH,	CH ₂	CH,	CH,	CH,	Н	CH,	C ₂ H ₅	сңосң	- 🔾
411	CH,	CH ₂	Н	CH,	Cl	н	Н	C3H3	C³H²	-
412	CH,	CH2	Н	CH,	Cl	н	Н	c-C ₃ H ₅	C,H,	-

WO 99/	01454								PCT/US98	/13913
413	СН	CH ₂	н	СН,	cl	н	Н	c-C ₃ H ₅	c-C ₃ H ₅	139-140
414	CH,	CH ₂	н	СН	Cl	н	н	сн,	C3H2	oil
										(A,C)
415	СН	CH,	н	CH,	Cl	н	Н	C ₂ H ₅	C.H,	oil
416	CH,	CH ₂	н	сн,	Cl	Н	н	н	C ₆ H ₅	· -
417	CH ₃	CH2	н	СН,	Cl	Н	Н	C ₂ H ₅	(CH ₂) 2OCH3	-
418	CH,	CH2	н	CH ₃	cl	Н	н	н	(CH ₂) 2OCH3	-
419	CH ₃	CH3	Н	CH ₃	C1	H	н	CH2OCH2	сн,осн,	-
420	CH3	CH ³	н	CH ₃	Cl	н	Н	C ₂ H ₅	сн2осн2	-
421	CH3	CH2	Н	cl	сн	н	н	C ₂ H ₅	C₃H₅	-
422	CH3	CH2	Н	cl	сн,	н	н	c-C ₃ H ₅	C4H,	• -
423	CH ₃	CH2	н	Cl	CH3	н	н	c-C ₃ H ₅	C-C3H3	177-178
424	CH ₃	CH2	н	Cl	CH,	н	н	CH,	C,H,	oil
425	СН	CH ₂	н	Cl	CH,	Н	Н	C2H2	C ₄ H ₉	-
426	CH,	CH2	Н	cı	сн,	Н	Н	Н	C ₆ H ₅	: -
427	CH3	CH2	н	C1	сн,	H	Н	C ₂ H ₅	(CH²) 3OCH²	
428	CH,	CH ₂	н	Cl	CH ₃	H	Н	н	(CH ₂) ² OCH ²	-
429	CH3	CH ³	Н	Cl	CH,	H	Н	CH3OCH3	CH2OCH,	· •
430	CH3	CH ³	Н	Cl	CH,	н	Н	C ₂ H ₅	сн,осн,	-
431	CH3	CH2	Н	Cl	Cl	н	OCH,	C3H,	c-C,H,	141-144
432	CH3	CH2	н	CH,	CH,	н	OCH,	C3H2	C,H,	108-110
433	CH,	CH3	Н	Cl	Cl	Н	CH,	c-C,H,	c-C ₃ H ₅	194-195
434	CH ₃	CH2	Н	CH,	CH,	Н	СН₃	C ₂ H ₅	C-C3H3CH2	oil
435	CH,	CH3	Н	CH,	CH,	Н	CH,	C ₂ H ₅	CH2OH	155-157
436	CH ₃	CH ₂	Н	CH3	OCH3	Н	H	C ₂ H ₅	c-C ₃ H ₅ CH ₂	oil
437	CH,	CH2	Н	CH3	OCH,	н	Н	CH,	C ₃ H ₇	oil
438	CH,	CH3	н	CH,	осн,	H	н	Н	4- (CH ₃ O) -C ₆ H ₄	oil
439	CH,	CH2	Н	CH3	och,	Н	. н	C2H	C-C3H3	oil
440	CH3	CH ₂	H	CH3	OCH,	Н	Н	CH3	C,H,1	oil
441	CH ₃	CH2	н	Cl	NMe ₂	H	Н	C3H	C ₂ H ₅	-
442	CH3	CH3	H	Cl	NMe ₂	Н	Н	c-C,H,	C4H,	· •
443	CH,	CH2	н	Cl	NMe,	Н	H	C-C3H3	C-C3H3	-
444	сн	CH2	Н	Cl	NMe,	Н	Н	Н	С,Н,	-
445	CH,	CH ³	H	Cl	NMe,	Н	Н	C2H3	C ₄ H ₉	-
446	CH3	CH2	Н	Cl	NMe ₂	Н	Н	Н	C ₆ H ₅	
447	CH,	CH ₂	Н	Cl	NMe,	Н	Н	C ₂ H ₅	(CH ₂) 3OCH3	-
448	CH,	CH ³	Н	Cl	NMe,	Н	H.	Н	(CH ₂) 2OCH ₃	
449	CH ₃	CH ²	H	Cl	NMe ₂	н	Н	CH2OCH3	CH ₂ OCH ₃	- C3
450	CH,	CH2	Н	Cl	NMe,	н	Н	C3H2	сносн	-
451	СН	CH2	Н	CH3	NMe ₂	н	Н	C ₂ H ₃	C,H,	-

WO 99	/01454								PCT/US98	/13913
452	CH,	CH ₂	н	CH,	NMe ₂	н	н	c-C,H,	C4H	-
453	СН3	CH ₂	н	CH,	NMe,	Н	н	C~C ₃ H ₅	c-C,H,	-
454	сн,	CH2	н	CH3	NMe ₂	Н	н	н	С,Н,	-
455	СН	CH2	Н	CH3	NMe,	Н	н	C,H,	C₄H,	-
456	СН	CH ₂	H	CH,	NMe,	Н	н	н	C _e H _s	<u>-</u>
457	CH,	CH2	н	CH3	NMe,	Н	н	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
458	CH,	CH2	н	CH3	NMe,	н	H	н	(CH ₂) 2OCH ₃	-
459	CH,	CH2	H	CH3	NMe,	н	н	сн,осн,	CH,OCH,	-
460	СН	CH2	н	CH,	NMe,	Н	н	C ₂ H ₅	сносн	-
461	СН	CH2	NMe,	CH,	CH,	Н	СН,	C ₂ H ₅	C ₂ H ₅	-
462	CH,	CH2	NMe,	CH,	CH,	Н	CH,	C-C ₃ H ₅	C ₄ H ₅	-
463	CH,	CH ₂	NMe,	CH3	CH3	н	CH3	C-C ₃ H ₅	C-C ₃ H ₅	-
464	CH,	CH2	NMe ₂	CH,	CH,	н	CH,	н	C3H7	-
465	СН	CH2	NMe,	CH,	CH,	н	CH,	C ₂ H ₅	C_4H_9	-
466	CH,	CH ₂	NMe,	CH3	CH3	Н	CH,	н	C ₆ H ₅	<u>i</u> -
467	CH3	CH	NMe,	CH3	CH3	н	CH,	C ₂ H ₅	(CH ³) ³ OCH ³	· -
468	CH,	CH₂	NMe,	CH ₃	CH,	н	CH,	н	(CH ₂) 20CH ₃	-
469	CH3	CH3	NMe,	сн,	CH,	Н	CH,	сн,осн,	сн,осн,	<u>.</u>
470	CH3	CH2	NMe ₂	CH ₃	CH,	Н	CH,	C ₂ H ₅	сн,осн,	· <u>-</u>
471	C ₂ H ₅	CH2	Н	СН	CH3	Н	CH,	C3H2	C ₂ H ₅	-
472	C2H2	CH3	Н	сн,	сн	Н	CH,	c-C3H3	C.H.	-
473	C_2H_5	CH ³	Н	CH3	сн	Н	CH,	c-C ₃ H ₅	c-C ₃ H ₅	-
474	C ₂ H ₅	CH ₃	н	CH3	сн,	Н	CH,	н	C ₃ H ₇	-
475	C,H,	CH ₂	Н	сн,	CH ₃	Н	CH,	C ₂ H ₅	C₄H,	92-95
476	C,H,	CH ₂	H	CH3	CH3	н	CH,	Н	C₅H₅	-
477	C ₂ H ₅	CH ₂	H	сн,	CH ₃	Н	CH,	C ₂ H ₅	(CH ₂) ₂ OCH ₃	•
478	C ₂ H ₅	CH2	Н	CH,	CH ₃	н	CH,	Н	(CH ₂) ₂ OCH ₃	-
479	C ₂ H ₅	CH2	Н	CH3	CH,	H	CH,	сносн	сносн	-
480	C,H,	CH2	Н	CH,	сн,	н	СН	C ₂ H ₅	сщосц	-
481	CH,	CHCH,	Н	CH ₃	СН	н	CH,	C₃H₅	C₂H₅	-
482	CH3	CHCH,	Н	CH3	CH,	Н	CH,	c-C,H,	C₄H ₉	-
483	CH,	CHCH,	Н	CH ₃	CH,	Н	CH,	c-C ₃ H ₅	c-C,H,	-
484	CH3	CHCH,	Н	CH,	CH,	Н	СН	н	С,Н,	-
485	CH,	CHCH	Н	CH,	CH3	Н	СН	C,H,	C₄H,	-
486	CH3	CHCH,	Н	CH,	CH3	Н	CH,	Н	C ₆ H ₅	-
487	CH,	CHCH,	Н	CH,	CH3	Н	СН	C ₃ H ₅	(CH ₂) 3OCH3	-
488	CH3	CHCH,	Н	CH3	CH,	Н	CH3	н	(CH ₂) 20CH ₃	-
489	CH3	СНСН	Н	CH,	CH3	Н	CH,	сн,осн,	CH,OCH,	- 4
490	сн	снсн	Н	СН	CH,	Н	CH,	C ₂ H ₅	сносн	-
491	CH,	CH2	Н	CH,	CH,	Н	Н	C ₂ H ₅	C ₂ H ₅	96-97

v	VO 99/0)1454								PCT/US98	/13913
	492	CH,	CH ₂	н	СН,	CH ₃	н	н	c-C,H,	C₄H₅	-
	493	СН	CH2	н	СН,	СН,	н	н.	c-C ₃ H ₃	c-C ₃ H ₅	149-150
	494	СН	CH2	н	CH,	CH,	н	н	н	C,H,	99-100
•	495	СН	CH2	н	CH,	CH,	н	н	C ₃ H ₅	C.H.	_
	496	СН	CH ₂	н	CH,	CH,	н	н	н	C ₆ H ₅	
	497	CH,	CH2	н	CH3	CH ₃	Н	н	C ₂ H ₅	(CH ₂) ₂ OCH ₃	-
	498	СН,	CH ₂	н	CH ₃	CH ₃	н	н	н	(CH ⁵) ³ OCH ³	-
•	499	СН	CH ₂	н	СН,	CH,	н	н	CH ₂ OCH ₃	CH2OCH3	-
	500	сн,	CH3	Н	CH3	CH,	н	н	C ₂ H ₅	сносн	-
	501	CH,	CH ₂	н	CH,	CH ₃	н	CH,	CH3	С,Н,	-
	502	CH ₃	CH2	н	CH,	CH3	Н	CH3	CH3	C_4H_9	oil
	503	CH3	CH3	н	CH,	CH ₃	н	CH,	CH,	C,H,,	oil
	504	СН	CH3	Н	CH,	сн,	н	CH ₃	C ₂ H ₅	2-C ₄ H,	109-110
	505	СН	CH ³	н	CH ₃	CH,	Н	CH3	C ₂ H ₅	CH2OC3H2	-
	506	СН	CH3	н .	Cl	Cl	Н	н	CH,	C3H4	oil
								•			(A,B,C)
	507	CH ₃	CH	н	Cl	Cl	н	Н	CH ₃	C,H,	oil
	508	СН₃	CH2	н	Cl	Cl	Н	Н	CH ₃	C5H11	-
	509	CH,	CH2	н	Cl	Cl	Н	н	C ₂ H ₅	2-C ₄ H ₉	-
	510	CH,	CH3	н	Cl	Cl	Н	Н	C ₂ H ₅	CH2OC3H2	-
	511	CH3	CH ₂	Н	Cl	CF,	Н	Н	C ₂ H ₅	c-C,H,	oil
											(A)
											78-80
											(B)
											116-117
					-1				- 0.11	- 67	(C)
	512	. CH,	CH,	н 	Cl	CF,	н	н	c-C ₃ H ₃	c-C,H,	145-146 oil
	513	CH ₃	CH ₂	н	C1	CF,	н н	H H	C,H,	C₄H₅ C₂H₅	oil
	514	CH ₃ .	CH ₂	H	cı cı	CF,	н	н	C₃H₅ C₃H₅	CH2OC2H2	-
	515 516	СН _а	CH,	H H	осн	CF, Cl	н	c1	C₃H₅ C₃H₅	C-C ₃ H ₄	_
	517	СЩ	CH ₂	н	осн	C1	н	cı.	C-C ₃ H ₅	C-C ₃ H ₃	183-184
	518	CH ₃	CH	н	осн	c1	н	Cl	C ₂ H ₃	C,H,	109-110
	519	СН	CH,	н	осн	Cl	н	C1	C ² H ₃	(CH ₂) ₂ OCH ₃	-
	520	СН	CH ₂	н	осн	C1	н	C1	C ₂ H ₅	CH ₂ OC ₂ H ₃	_
	521	CH,	CH	н	CH,	СН	н	СН	C ₂ H ₂	C,H,	115-120
	522	СН	0	н	CH ₂	CH ₃	н	СН	С,Н,	C ₃ H ₇	-
	523	СН	СН	н	cl	Cl	н	н	С, Н,	C ₃ H,	99-101
	524	СН	СН	н	СН	осн	н	н	C ₃ H ₇	C ₃ H,	oil
	525	СН	CH ₂	н	осн,	CH,	н	СН	Сън	С,Н,	109-111
		3	- 7			7	-	•	• •	• •	

WO 99/0	1454								PCT/US98	/13913
526	СН,	CH ₂	н	CH,	Cl	н	н	С, н,	C3H,	oil
527	CH,	CH2	н	CH,	СН	CH,	н	C ₃ H ₇	С,Н,	-
528	CH,	CH2	н	Cl	CF,	н	н	C,H,	C3H,	oil
529	СН	CH2	н	Cl	CF ₃	н	Cl	C,H,	С,Н,	-
530	CH3	CH2	н	OCH,	Cl	н	Cl	C,H,	C ₃ H,	129-131
531	CH,	CH2	Н	CH,	СН3	н	СН	СН	(CH,),CHCH,	77-85
532	CH,	0	н	СН	сн,	н	сн,	СН,	(CH ₂) ₂ CHCH ₂	-
533	CH3	CH2	н	Cl	Cl	Н	н	сн,	(CH ₃) ₂ CHCH ₂	-
534	СН	CH2	н	CH,	осн,	н	н	сӊ	(CH ₃) 3CHCH ₃	
535	СН	CH2	н	OCH,	СН	H	CH,	CH,	(CH ₂) 2CHCH2	-
536	СН,	CH2	Н	CH,	Cl	н	Н	CH,	(CH ₃) ₂ CHCH ₂	• -
537	сн,	CH ₂	н	CH,	СН	CH3	н .	CH,	(CH ₃) 2CHCH2	-
538	сн₃	CH ₂	Н	Cl	CF,	н	н	C ₂ H ₅	(CH ₃) ₂ CH	oil
539	CH3	CH2	н	cl	CF,	H '	cl	CH3	(CH ₃) 2CHCH ₂	-
540	СН	CH2	Н	OCH,	· cl	Н	Cl	CH,	(CH ₂) 2CHCH ₂	÷ = .
541	СН	CH2	н	CH ₃	CH ₃	Н	CH3	сн₃	C-C3H5	118-127
542	СН	0	н	CH,	CH3	Н	CH,	CH,	c-C ₃ H ₅	-
543	CH ₃	CH2	н	cı	cl	н	н	CH3	c-C ₃ H ₅	oil
544	СН₃	CH ₂	н	CH ₃	OCH,	н	н	CH ₃	c-C ₃ H ₅	oil
545	CH,	CH ₂	Н	OCH,	сн,	н	СН,	сн,	c-C ₃ H ₅	-
546	CH,	CH2	н	CH3	Cl	Н	н	CH,	c-C ₃ H _s	-
547	CH,	CH2	н	CH,	CH3	CH,	Н	СН	c-C ₃ H ₅	
548	CH ₃	CH3	н	Cl	CF,	н	Н	СН	C-C ₃ H ₅	oil
549	CH3	CH ₂	н	Cl	CF,	н	cı.	CH3	C-C3H3	-
550	CH,	CH2	н	OCH ₃	Cl	Н	Cl	СН	C-C ₃ H ₅	-
551	CH3	CH ₂	Н	сн,	CH3	н	CH ₃	CH ₃	CH,	oil
552	CH,	0	н	CH3	CH,	Н	СН	сн,	СН	-
553	сн	CH,	Н	cl	cl	H	н	CH,	СН,	-
554	. CH ₃	CH2	Н	CH,	OCH,	н	H	CH ₃	сн,	-
555	CH3	CH2	Н	OCH,	CH,	Н	сн,	CH,	СН,	-
556	CH3	CH3	н	CH,	Cl	н	Н	CH,	СН,	- ,
557	CH,	CH2	Н	CH3	CH,	CH,	H	CH ₃	СН	-
558	СН	CH2	Н	Cl	CF,	Н.	Н	сн,	C4H	oil
559	СН	CH,	н	C1	CF,	Н	Cl	CH,	CH3	-
560	CH3	CH ₂	н	OCH,	Cl	Н	C1	CH,	CH ₃	-
561	CH,	CH ₂	Н	CH3	CH,	н	сн	C ₂ H ₅	C ₅ H ₁₁	102-103
562	сн,	0	Н	CH,	CH3	Н	сн,	C ₂ H ₄	C5H11	-
563	CH,	CH ₂	Н	cl	c1	н	Н	C ₂ H ₅	C5H13	- 🔾
564	CH,	CH ₂	Н	CH,	осн	н	H	C3H	C.H.	oil
565	CH3	CH ₂	н	осн	CH3	. н	СН	C ₂ H ₅	C ₅ H ₁₁	-

WO 99	/01454								PCT/US98/	13913
566	СН,	CH ₂	н	CH,	c1	н	н	C2H2	C _s H ₁₃	-
567	CH,	CH ₃	н	CH ₃	CH ₃	CH,	Н	C ₂ H ₅	C,H,,	-
568	CH,	CH	Н	Cl	CF,	н	Н	C2H2	C ₅ H ₁₁	-
569	CH,	CH ₂	°н	Cl	CF3	н	C1	C ₂ H ₅	CsHii	-
570	CH,	CH,	Н	осн,	Cl	Н	Cl	C ₂ H ₅	C,H,,	
571	CH ₃	CH ₂	Н	CH3	СН,	н	CH3	C2H2	C2H2O(CH2)3	oil
572	CH ₃	0	н	CH,	сн,	н	CH ₃	C ₂ H ₅	C2H2O(CH2)3	-
573	CH,	CH2	Н	Cl	Cl	н	н	C ₂ H ₅	C3H2O(CH3)3	-
574	CH,	CH2	Н	CH,	осн,	Н	н	C2H2	C3H2O(CH3)3	-
575	CH3	CH	Н	OCH,	СН	н	CH3	C ₂ H ₅	C3H2O(CH2)3	-
576	СН,	CH2	н	CH3	Cl	н	н	C ₂ H ₅	C3H2O(CH3)3	•
577	СН	CH2	н	CH,	CH3	CH ₃	Н	C ₂ H ₅	C3H2O(CH3)3	-
578	CH3	CH2	н	Cl	CF3	н	н	C ₂ H ₅	C2H2O(CH3)3	-
579	CH ₃	CH2	н	Cl	CF3	н	Cl	C ₂ H ₅	C2H2O(CH2)2	-
580	CH,	CH2	н	OCH,	C1	Н	Cl.	C ₃ H ₅	C ₂ H ₅ O(CH ₂) ₂	·
581	CH,	CH2	н	CH3	CH,	н	CH,	C ₃ H ₅	C2H2OCH2	oil
582	CH,	0	н	CH ₃	CH,	н	СН	C ₂ H ₅	C2H3OCH2	-
583	CH,	CH,	н	Cl	Cl	Н	Н	C ₂ H ₅	C ₂ H ₅ OCH ₂	-
584	CH3	CH2	Н	CH3	осн,	Н	H	C ₂ H ₅	C2H4OCH3	-
585	CH3	CH2	Н	OCH3	СН	H	CH,	C ₂ H ₅	C3H4OCH3	-
586	CH,	CH2	н	CH,	Cl	H	н	C_2H_5	C2H2OCH2	-
587	CH3	CH2	н	CH,	сн,	CH3	н	C ₂ H ₅	C2H2OCH2	-
588	CH,	CH3	н	Cl	CF,	Н	н	C ₂ H ₅	C2H2OCH3	-
589	CH3	CH3	н	Cl	CF3	Н	Cl	C ₃ H ₅	C2H4OCH2	-
590	CH3	CH ₂	Н	OCH3	Cl	Н	Cl	C ₂ H ₅	C2H2OCH2	-
591	CH,	CH2	н	CH3	CH ₃	Н	CH3	H	c-C,H,CH(OMe)	oil
							·		(CH ₂) ₂	
592	CH,	0	· H	CH,	СН	Н	CH,	Н	c-C ₃ H ₃ CH(OMe)	-
									(CH ₂) ₂	
593	CH,	CH2	H	Cl	Cl	Н	Н	Н	c-C,H,CH(OMe)	-
									(CH ₂) ₂	
594	СН	CH ₂	Н	CH3	OCH,	Н	Н	Н	c-C ₃ H ₃ CH(OMe)	-
									(CH ₂) ₂	
.595	CH3	CH2	Н	OCH,	CH,	Н	CH,	Н	c-C ₃ H ₃ CH(OMe)	-
									(CH ₂) ₂	
596	CH3	CH	Н	CH3	Cl	Н	Н	Н	c-C,H,CH(OMe)	-
									(CH ₂) ₂	,
597	CH,	CH2	Н	CH,	CH,	CH,	Н	н	c-C,H,CH(OMe)	- \
									(CH ₂) ₂	
598	CH3	CH2	Н	Cl	CF,	Н	н	Н	c-C,H,CH(OMe)	-

									(CH ₂),	
599	CH3	CH3	Н	Cl	CF,	н	Cl	н	c-C ₃ H ₅ CH(OMe)	-
									(CH ₂) ₂	
600	CH,	CH2	н	OCH,	Cl	Н	Cl	н	c-C3H3CH(OMe)	-
		•		,					(CH ₂) ₂	
601	CH,	CH2	CH,	Cl	Cl	н	н	C ₂ H ₅	C ₂ H ₅	-
602	СН,	CH2	CH3	Cl	Cl	н	н	C-C ₃ H ₅	C4H	-
603	СН	CH3	CH3	Cl	Cl	н	Н.	C-C ₃ H ₅	c-C3H3	155-156
604	СН	CH,	СН	Cl	Cl	н	H	н	C_4H_9	-
605	СН	CH2	СН	Cl	Cl	н	н	C ₂ H ₅	C_4H_9	-
606	CH3	CH2	CH,	Cl	cl	Н	н	н	C_6H_5	• -
607	CH,	CH ₂	CH3	Cl	cl	н	Н	C ₂ H ₅	(CH ₂) 2OCH3	-
608	CH3	CH ₂	CH3	Cl	cl	н	Н	CH,	C ₄ H ₉	-
609	CH,	CH2	CH ₃	C1	Cl	Н	Н	C_3H_7	C3H4	-
610	СН	CH ₂	CH3	Cl	Cl	Н	Н	C ₂ H ₅	C ₃ H ₇	÷, = .
611	сн,	CH ₂	CH3	OCH,	CH,	н	CH,	C ₂ H ₅	C ₂ H ₅	· -
612	CH3	CH ₂	CH ₃	OCH,	CH,	н	CH,	c-C,H,	C ₄ H ₅	-
613	CH,	CH2	CH,	OCH,	CH,	н	CH,	c-C ₃ H ₅	c-C ₃ H ₅	-
614	СН	CH2	CH ₃	OCH ₃	CH,	н	CH,	н	C4H,	-
615	CH,	CH2	CH ₃	OCH,	CH,	н	CH ₃	C ₂ H ₅	C.H.	-
616	СН	CH2	CH,	och,	CH,	Н	сн,	н	C ₆ H ₅	-
617	сн	CH ₂	CH,	OCH,	CH,	Н	сн	C3H2	(CH ₂) 20CH ₃	-
618	CH3	CH2	CH,	OCH,	сн	Н	сн,	CH,	C ₄ H,	-
619	CH,	CH ₂	CH,	OCH,	CH3	Н	СН	C3H4	C3H,	-
620	CH,	CH ₂	CH,	OCH,	сн	н	СН	C3H2	С,Н,	-
621	CH3	CH2	СН	CH ₃	осн,	н	н	C ₂ H ₅	C ₂ H ₅	-
622	CH3	CH3	CH,	CH ₃	осн,	Н	H	c-C ₃ H ₅	C ₄ H ₉	-
623	CH,	CH2	СН	CH3	och,	Н	н	c-C3H5	c-C ₃ H ₅	-
624	CH,	CH3	CH,	CH,	OCH ₃	н	Н	н	C ₄ H,	-
625	СН	CH2	CH,	CH,	OCH,	H	н	C ₂ H ₅	C₄H,	-
626	СН3	CH2	CH,	CH3	OCH,	Н	Н	н	C ₆ H ₅	-
627	CH ₃	CH2	CH ₃	CH3	OCH,	н	Н	C ₂ H ₅	(CH ₂) 2OCH3	-
628	СН	CH2	CH ₃	CH ₃	OCH ₃	н	н	CH,	C_4H_9	-
629	CH,	CH2	CH3	CH3	OCH,	Н	Н	C3H2	C3H,	-
630	СН	CH2	СН	CH3	OCH,	Н	H	C ₃ H ₅	C₃H,	-
631	CH,	CH3	СН	CH,	Cl	н	н	C ₂ H ₅	C ₃ H ₅	-
632	СН	CH2	CH3	CH,	Cl	Н	Н	c-C ₃ H ₅	C₄H,	-
633	СН	CH3	СН	CH3	Cl	н	н	c-C ₃ H ₅	c-C ₃ H ₅	- <u>Ş</u>
634	CH ₃	CH2	СН	CH,	C1	н	н	н	C4H	-
635	СН	CH	СН	CH,	cl	н	н	C ₂ H ₅	C,H,	-

WO 99/	01454								PCT/US98	13913
636	сн,	CH ₂	CH,	CH,	cl	н	н	н	C,H,	-
637	CH	CH2	CH,	CH3	Cl	Н	н	C3H3	(CH ₂) 20CH,	-
638	CH,	CH2	CH,	CH,	Cl	Н	Н	CH,	C.H.	~
639	CH,	CH2	CH3	сн,	Cl	н	н	C3H,	C,H,	- '
640	CH ₃	CH ₂	CH,	CH,	Cl	н	н	C,H,	C3H2	
641	CH,	CH2	СН,	Cl	CF,	н	н	C₃H₅	C³H²	-
642	CH3	CH2	CH3	Cl	CF,	н	н	c-C ₃ H ₅	C.H.	-
643	CH,	CH2	CH3	Cl	CF,	н	н	c-C ₃ H ₅	c-C ₃ H ₅	-
644	CH,	CH2	CH,	cl	CF3	н	н	н	C4H	-
645	CH,	CH2	CH3	Cl	CF,	н	Н	C ₂ H ₅	C₄H₅	-
646	сн,	CH2	CH ₃	cl	CF,	Н	н	н	C ₆ H ₅	• -
647	сн,	CH2	CH3	Cl	CF,	н	н	C ₂ H ₅	(CH ₂) 2OCH ₃	-
648	CH,	CH ₂	CH ₃	Cl	CF3	Н	Н	CH ₃	C4H	-
649	CH ₃	CH2	CH ₃	Cl	CF,	H	Н	C ₃ H ₇	C ₃ H ₇	-
650	СН	CH2	CH,	Cl	CF,	н	H	C ₂ H ₅	C3H4	- : -
651	СН	CH2	сн,	Cl	CF,	Н	Cl	C ₂ H ₅	C ₂ H ₅	-
652	CH,	CH ₂	CH3	Cl	CF,	н	Cl	C-C ₃ H ₅	C.H.	-
653	CH,	CH2	CH3	Cl	CF,	н	Cl	c-C,H,	c-C ₃ H ₅	-
654	CH3	CH2	CH ₃	Cl	CF3	н	Cl	н	C_4H_9	
655	CH3	CH ₂	CH3	Cl	CF3	Н	Cl	C ₂ H ₅	C_4H_9	-
656	CH,	CH2	CH,	Cl	CF,	Н	Cl	Н	C ₆ H ₅	-
657	CH3	CH2	CH3	Cl	CF,	Н	Cl	C ₂ H ₅	(CH ²) ³ OCH ³	-
658	CH,	CH ₂	CH3	Cl	CF,	Н	Cl	CH ₃	C.H.	-
659	CH,	CH	CH3	Cl	CF,	Н	Cl	C ₃ H ₇	C ₃ H,	-
660	CH,	CH ₂	CH,	Cl	CF,	Н	Cl	C ₃ H ₅	C3H4	-
661	CH,	CH ³	CH,	OCH,	Cl	Н	Cl	C ₂ H ₅	C₂H₅	-
662	CH,	CH2	CH,	OCH,	cl	Н	Cl	C-C3H5	C₄H,	-
663	СН	CH,	CH,	OCH,	Cl	Н	Cl	c-C3H2	c-C,H,	-
664	CH,	CH	CH,	OCH,	Cl	Н	cl	Н	C₄H,	-
665	CH ₃	CH2	СН	OCH,	C1	Н	Cl	C ₂ H ₅	C₄H,	. -
666	CH,	CH2	CH,	OCH ₃	C1	Н	C1	н	C ₆ H ₅	-
667	CH,	CH ₂	CH,	OCH,	C1	Н	Cl	C3H3	(CH ₂) ₃ OCH ₃	-
668	CH,	CH	CH,	OCH,	Cl	н	c1	CH,	C ₄ H ₉	-
669	СН	CH	СН	осн	C1	Н	Cl	С,Н,	C ₃ H ₂	-
670	CH,	CH	CH,	осн	C1	н	c1 	C₃H₅	C ₃ H ₇	-
671	CH ₃	CH ²	CH,	CH,	СН	н	н	C₂H₅	C₂H₅	-
672	CH,	CH ²	CH,	CH,	CH,	н.	н	c-C,H,	C ₄ H ₅	-
673	CH,	CH ₂	CH,	CH,	CH,	н	н	c-C,H,	c-C ₃ H ₅	-
674	CH,	CH2	.CH ₃	CH,	CH,	, н	н	н	C,H,	-
675	CH,	CH2	CH	CH,	CH,	Н	Н	C ₂ H ₅	C ₄ H ₉	-

WO 99/0	01454								PCT/US98	8/13913
676	СН,	CH ₂	CH,	сн,	CH,	н	н	Н	C ₆ H ₅	-
677	CH,	CH ₃	СН,	CH,	СН₃	н	Н	C ₂ H ₃	(CH ₂) 2OCH ₃	-
678	CH,	СН	CH,	сн,	СН	н	н	СН	C ₄ H ₉	-
679	CH,	CH2	сн	сн,	сн,	н	н	С,н,	С,Н,	-
680	CH3	CH ₂	СН,	CH,	сн,	н	н	C ₂ H ₅	C,H,	-
681	СН	CH3	н	СН,	OCH ₃	н	н	C ₂ H ₅	C ₄ H ₉	-
682	CH,	CH2	н	OCH ₃	СН	н	CH3	C ₂ H ₅	C.H.	107-109
683	CH3	CH ³	н	cl	CF,	Н	Cl	C ₂ H ₅	C ₄ H ₅	-
684	CH,	CH2	Н	CH ₃	CH,	CH3	н	C,H,	C ₄ H ₉	-
685	СН	CH3	н	CH3	OCH3	н	H.	C-C3H3	c-C ₃ H ₅	101-103
686	CH,	CH ₂	н	осн,	CH,	Н	CH,	C-C3H3	C-C3H3	187-188
687	CH,	CH3	н	Cl	CF,	н	Cl	C-C ₃ H ₅	C-C ₃ H ₅	-
688	CH3	CH2	н	CH3	CH ₃	CH ₃	н	c-C ₃ H ₅	C-C3H5	119-121
689	CH,	CH2	н	CH,	OCH ₃	н	н	н	C ₄ H ₅	108-109
690	CH,	CH ₂	Н	осн	CH,	н	CH,	н	C ₆ H ₅	oil
691	CH,	CH2	н	Cl	CF ₃	н	Cl	н	C ₄ H ₅	· -
692	CH3	CH2	Н	CH,	CH ₃	СН,	H	Н	C ₆ H ₅	oil
693	СН,	CH ₂	Н	CH ₃	OCH3	Н	н	C-C3H5	C₄H,	oil
694	CH,	CH2	н	OCH3	CH3	Н	CH ₃	C-C,H,	C₄H,	-
695	CH,	CH ₂	Н	Cl	CF,	н	Cl	C-C3H3	C₄H,	-
696	СН	CH2	Н	CH,	СН	СН	н	C-C3H3	C4H	-
697	CH,	CH2	Н	CH ₃	OCH,	Н	Н	CH ₃	C4H	oil
698	CH ₃	CH2	Н	OCH3	CH3	н	CH ₃	CH3	C ₄ H ₉	-
699	CH,	CH ₂	Н	Cl	CF3	н	Cl	CH3	C.H.	-
700	CH,	CH ₂	Н	CH ₃	CH3	CH3	H .	сн	C ₄ H ₉	-
701	CH,	0	H	CH3	OCH,	Н	Н	C ₂ H ₅	C ₄ H ₉	-
702	CH,	0	Н	OCH,	CH,	Н	СН	C ₂ H ₅	C.H.	-
703	CH,	0	Н	Cl	CF,	Н	Cl	C3H2	C4H,	-
704	CH3	0	Н	CH,	CH ₃	CH ₃	н	C ₂ H ₅	C ₄ H ₉	-
705	CH,	0	Н	CH,	OCH,	Н	Н	c-C3H	C-C3H5	•
706	CH,	0	Н	OCH,	CH,	Н	СН	c-C ₃ H,		-
707	CH,	0	Н	Cl	CF,	Н	Cl .	C-C3H3	C-C ₃ H ₅	-
708	сн	0	Н	CH,	CH,	CH ₃	н	c-C ₃ H ₅		-
709	CH,	0	н	CH,	осн	Н	Н	Н	C ₆ H ₅	-
710	CH,	0	Н	OCH3	CH,	н	CH,	Н	C.H.	-
711	СН	0	Н	Cl	CF,	н	Cl	Н	C,H,	-
712	сн,	0	Н	сн,	CH,	CH,	Н	Н	C ₆ H ₅	•
713	CH,	0	Н	сн,	och,	Н	Н	c-C ₃ H ₅	C ₄ H ₉	- \
714	СН	0	н	осн	CH,	Н	CH,	c-C ₃ H ₅	C ₄ H ₉	-
715	CH,	0	Н	Cl	CF,	Н	C1	c-C ₃ H ₅	C*H*	-

WO 99/	01454								PCT/US98	3/13913
716	сн,	0	н	СН,	сн,	СН	н	c-C ₃ H ₃	C_4H_9	-
717	CH,	0	н	CH,	OCH,	Н	н	СН	C,H,	-
718	СН,	0	н	осн,	сн	н	CH,	СН	C,H,	
719	СН	0	н	Cl	CF,	н	C1	СН	C,H,	_
720	CH ₃	· 0	Н	CH ₃	CH,	CH,	н	СН	C,H,	-
721	СН	CH ₂	Н	CH ₃	СН,	н	СН	C ₂ H ₅	CH(CH ₃) ₂	146-147
722	СН	CH2	Н	cl	C1	н	н	C ₂ H ₅	CH(CH ₃) ₂	
723	сн,	CH2	н	cı	сн,	н	н	C ₂ H ₅	CH(CH ₃) ₂	-
724	CH,	CH ₂	Н	Cl	осн,	Н	н	C ₂ H ₅	CH(CH ₃) ₂	oil
725	CH3	CH ₂	Н	CH,	осн,	Н	н	C2H2	CH(CH ₃);	oil
726	CH3	CH2	Н	cl	CF,	Н	Н	C2H2	CH(CH ₃) ₂	-
727	CH3	CH2	Н	CF,	Cl	н	Н	C ₂ H ₅	CH(CH ₃) ₂	oil
728	CH,	CH2	н	CH,	cı	Н	н	C ₂ H ₅	CH(CH);	-
729	CH,	CH₂	н	CF,	CF3	Н	н	C ₂ H ₅	CH(CH);	-
730	СН	CH₂	н	Cl	CN	н	н	C ₂ H ₅	CH(CH ₃) ₂	: -
731	CH3	CH2	Н	Cl	Cl	F	н	C ₂ H ₅	CH(CH ₃) ₂	· -
732	CH ₃	CH2	н	Cl	Cl	Cl	н	C ₂ H ₅	CH(CH ₃),	-
733	CH ₃	CH3	н	CH3	осн,	F	Н	C ₂ H ₅	CH(CH ₃) ₂	-
734	CH3	CH2	Н	CH,	OCH,	Cl	н	C ₂ H ₅	CH(CH);	-
735	CH,	CH2	Н	Cl	CH ₃	F	н	C ₂ H ₅	CH(CH ₃) ₂	-
736	СН	CH2	Н	Cl	CF3	Cl	Н	C ₂ H ₅	CH(CH3)3	-
737	CH3	CH2	Н	Cl	CF,	F	Н	C ₂ H ₅	CH(CH ₃) ₂	-
738	CH3	CH2	Н	Cl	OCH3	C1	Н	C ₂ H ₅	CH(CH ₃) ₂	-
739	CH,	CH ₂	н	Cl	осн,	F	н	C ₂ H ₅	CH(CH ₃);	-
740	CH,	CH2	н	Cl	OCH ₃	CH,	Н	C ₂ H ₅	CH(CH ₃) ₃	-
741	CH,	CH2	Н	CH,	осн,	CH3	н	C ₂ H ₅	CH(CH ₃);	-
742	CH,	CH2	н	Cl	Н	Cl	н .	C₃H₅	CH(CH ₂) ₂	-
743	CH,	CH,	Н	Cl	Cl	OCH,	Н	C ₃ H ₅	CH(CH)3	-
744	CH,	CH2	н	Cl	CH,	осн	Н	C ₂ H ₅	CH(CH ₂),	-
745	CH,	CH2	H	CH,	Cl	осн	н	C ₂ H ₅	CH(CH ₃) ₃	-
746	CH,	CH,	н	CH,	CH,	OCH,	н	C ₂ H ₃	CH(CH²)3	-
747	CH,	CH,	н	CH,	CH,	Н	CH,	С,Н,	c-C ₃ H ₅	140-143
748	CH,	CH	Н	Cl	C1	н .	Н	С,Н,	C-C3H	107-108
										(A) 79-82
		•								
749	Cn	CH ₂	Ţ.r	C)	en.	U		Ch	a_C u	(C)
750	СН _а		H H	cl cl	CH,	H H	Н	C,H,	c-C ₃ H ₅	106-108 oil S
750	СН	сн, сн,	н	CH ₃	осн, осн,	H H	H H	C'H'	c-C ₃ H ₅ c-C ₃ H ₅	oil oil
752	СН	CH ₂	н	Cl.	•		н	C,H,		108-109
1.2	Cn ₃	CH2	n	CI	CF,	Н	п	C3H,	c-C ₃ H ₃	109-103

WO 99/0)1454								PCT/US9	8/13913
753	СН	СН2	н	CF,	Cl	Н	н .	С,н,	c-C ₃ H ₅	oil (A) 95-97
										(C)
754	СН₃	CH2	Н	CH3	Cl	Н	Н	C³H²	C-C ₃ H ₅	87-88
755	CH3	CH2	H	CF,	CF,	Н	Н	C ₃ H ₇	c-C ₃ H _s	-
756	сн	CH2	Н	Cl	CN	н	Н	С,Н,	C-C3H3	-
757	CH3	CH	Н	Cl	Cl	F	Н	С,Н,	C-C ₃ H ₅	-
758	сн	CH2	Н	Cl	Cl	Cl	Н	С,Н,	C-C ₃ H ₅	-
759	CH	СН	H	CH3	осн,	F	Н	C,H,	C-C3H3	
760	CH,	CH ₂	Н	CH ₃	OCH,	Cl	Н	С,Н,	C-C ₃ H ₅	-
761	CH3	CH ₂	Н	Cl	CH3	F	Н	C,H,	c-C,H,	-
762	CH,	CH2	н	Cl	CF,	Cl	Н	C,H,	c-C,H,	-
763	CH,	CH2	н	C1	CF,	F	Н	C3H,	c-C ₃ H ₄	-
764	· CH ₃	CH,	H	Cl	осн,	Cl	H .	С,н,	c-C ₃ H ₃	: -
765	СН	CH2	Н	Cl	осн,	F	H	Сън	c-C ₃ H ₅	-
766	CH,	CH ³	. Н	Cl	OCH,	CH,	Н	С,Н,	c-C ₃ H ₅	-
767	CH ₃	CH ₂	H	CH3	OCH ₃	CH ₃	Н	С,н,	c-C ₃ H ₅	oil
768	CH ₃	CH ₂	Н	Cl	Н	Cl	н	C ₃ H ₂	c-C,H,	-
769	CH3	CH ₂	Н	Cl	cj	OCH3	Н	C ₃ H ₇	c-C ₃ H ₅	-
770	CH3	CH ³	н	Cl	CH3	OCH ₂	Н	C3H,	C-C ₃ H ₅	-
771	CH3	CH ³	Н	CH,	Cl	OCH,	н	СЪН	C-C3H2	
772	CH ₃	CH2	Н	CH,	CH3	OCH,	Н	C_3H_7	C-C3H5	-
773	CH3	CH2	H	CH,	CH3	Н	CH3	CH,	CHCI	109-110
.774	CH ₃	CH2	Н	Cl	Cl	H	Н	C ₃ H ₅	C3H4	-
775	CH3	CH2	н	Cl	CH,	Н	Н	C ₂ H ₅	C3H2	-
776	CH,	CH2	Н	Cl	осн,	Н	Н	C ₂ H ₅	C ₃ H,	oil
777	CH,	CH2	н	CH,	OCH,	Н	Н	C ₂ H ₅	C3H,	oil
778	CH,	CH3	н .	Cl	CF,	Н	Н	C ₂ H ₅	C ₃ H ₇	oil
779	CH,	CH2	Н	CF,	Cl	Н	н	C ₂ H ₅	. C ₃ H ₇	oil
780	CH,	CH2	Н	CH3	Cl	Н	Н	C,H,	C ₃ H ₇	÷ .
781	CH,	CH ₂	Н	CF,	CF,	Н	Н.	C ₂ H ₅	C ₃ H ₇	-
782	CH3	CH3	н	Cl	CIN	Н	Н	C ₂ H ₅	C,H,	-
783	CH,	CH2	н	Cl	C1	F	н	C ₂ H ₅	C3H	='
784	CH3	CH2	Н	Cl	Cl	Cl	Н	C3H2	С,Н,	-
785	CH,	CH2	Н	СН,	осн	F	н	C ₂ H ₅	C ₃ H ₇	-
786	СН	CH3	Н	СН3	осн	Cl	Н	C ₂ H ₅	С,н,	-
787	CH3	CH3	н	Cl	CH3	F	н	C ₂ H ₅	C3H2	- 🤄
788	CH,	CH3	Н	cl	CF,	Cl	н	C ₂ H ₅	C ₃ H ₇	
789	сн,	· CH2	н	Cl	CF,	F	Н	C3H2	С, Н,	-

WO 99/	01454								PCT/US98	3/13913
790	СН3	CH ³	н	Cl	OCH3	cı	н	C2H2	C,H,	-
791	CH3	CH2	н	Cl	осн,	F	н	C ₂ H ₅	C ₃ H ₇	-
792	CH3	CH2	Н	Cl	осн	СН	н	C ₂ H ₅	C,H,	-
793	CH3	CH2	Н	CH,	осн	CH,	Н	C ₂ H ₅	C,H,	oil
794	CH,	CH ₂	Н	Cl	н	Cl	н	C ₂ H ₅	C,H,	. -
795	CH3	CH ₃	н	Cl	Cl	OCH,	н	C ₂ H ₅	C,H,	-
796	CH3	CH3	Н	Cl	CH3	OCH ₃	Н	C ₂ H ₅	C,H,	-
797	CH,	CH2	Н	CH ₃	Cl	OCH3	н	C ₂ H ₅	C,H,	-
798	CH,	CH ₂	н	CH,	CH2	OCH,	Н	C ₂ H ₅	C3H2	-
799	CH,	CH2	н	CH ₃	CH,	CH,	н	C ₂ H ₅	С,Н,	oil
800	CH,	CH ₂	Н	CF,	Cl	Н	Н	Н	4-CH3O-C6H4	138-139
801	CH3	CH2	Н	CF3	Cl	Н	н	C-C3H5	C-C ₃ H ₅	138-139
802	CH3	CH ³	Н	CF,	Cl	Н	Н.	C ₂ H ₅	C-C ₃ H ₅	oil
										(A)
										122-125
										(C)
803	CH ₃	CH₂	Н	CF,	Cl	H	Н	CH,	c-C ₃ H ₅	oil
804	CH,	CH ₂	H	CF,	Cl	Н	Н	CH3	C,H,	oil
805	CH,	CH2	Н	CF,	Cl	Н	Н	СН	C4H	oil
806	CH,	CH ₂	Н	CF,	Cl	н	Н	CH,	C5H11	-
807	CH,	CH ₂	Н	CF,	Cl	Н	Н	C₂H₅	C ₄ H ₉	oil
808	CH,	CH2	Н	CF,	Cl	Н	Н	C₃H,	C3H2	oil
809	CH,	CH2	н	CF,	Cl	Н	н	C₂H₅	C³H²	oil
810	СН,	CH2	Н	Cl	CN	Н	н	н	4-CH,0-C,H,	-
811	CH,	CH ₂	н	Cl.	CN	Н	н	C-C ₃ H ₅	C-C ₃ H ₅	180-182
812	CH,	CH ₂	н	Cl	CN	Н	Н	C ₂ H ₅	c-C ₃ H ₅	-
813	CH3	CH,	H	C1	CN	Н	H	СН	C-C ₃ H ₅	-
814	CH,	CH,	н	C1	CN	Н	н	сн,	С,н,	-
815	CH,	CH ₂	н	Cl	CIN	н 	н.	CH,	С.Н.	-
816	CH,	CH ²	H	C1	CD1	н	н	CH,	C ₅ H ₂₃	-
817 818	CH,	CH ₂	н	Cl	CN	H	H	C₃H₅	C₄H₄	-
819	СН,	CH ₂	н н	cl cl	CN CN	н н	н н	C,H,	C,H,	• · · · · · · · · · · · · · · · · · · ·
820	CH,	CH ₃	н	CF ₃		н	н	C₂H₅ H	С ₂ Н ₄ 4-СН ₅ 0-С ₄ Н ₄	<u>-</u>
821	•	-			CF,					140 150
822	CH,	CH ₂	н н	CF,	CF,	Н	Н	c-C ₃ H ₃	c-C ₃ H ₅	149-150
823	CH,	CH ₂	н	CF,	CF,	H H	н н	C₂H₅	c-C ₃ H ₃	-
824	СН ₃	CH ₂	н	CF,	CF,	н	n H	сн, сн,	c-C,H,	oil 📏
825	сл _э Сн _э	CH ₂	н	CF,	CF,	н	н	CH,	C,H, C,H,	O11 \(\cdot_{\cdot}\)
826	сн,	CH ₃	н	-	-	н		•		-
020	Cr3	CH	п	CF,	CF,	n	Н	СН	C5H11	-

WO 99/0	1454								PCT/US98	13913
827	СН	CH2	н	CF,	CF3	н	н	C₂H₅	C_aH_a	-
828	СН	CH2	н	CF,	CF,	Н	н	C,H,	C3H4	-
829	сн	CH2	н	CF,	CF,	Н	Н	C ₂ H ₅	C2H2	-
830	сн,	CH2	н	Cl	осн,	н	н	Н	4-CH3O-C6H4	58-60
831	сн,	CH ₂	н	Cl	осн,	н	н	C-C ₃ H ₅	C-C ₃ H ₅	139-140
832	CH3	CH ₂	Н	C1	осн,	н	н	C ₂ H ₅	c-C ₃ H ₅	oil
833	СН	CH2	н	Cl	осн,	H	н	н	c-C ₃ H ₅	oil
834	CH,	CH2	н	cl	OCH,	н	н	CH,	C3H4	oil
835	CH,	CH2	н	Cl	осн,	Н	н	CH,	C ₄ H ₉	cil
836	СН	CH2	н	Cl	осн	Н	н	CH,	C,H,,	oil
837	СН	CH ₂	н	Cl	OCH ₃	н	н	C3H2	C ₄ H ₉	oil
838	CH3	CH2	н	Cl	OCH,	н	Н	C3H7	C ₃ H ₇	oil
839	СН,	CH2	н	cl	осн,	Н	н	C,H,	C ₂ H ₅	oil
840	СН	CH2	н	Cl	cı	F	н	н	4-CH ₃ O-C ₆ H ₄	-
841	СН	CH2	н	cl	Cl	F	Н	c-C,H,	C-C3H3	148-149
842	СН	CH2	н	cl	Cl	F	н	C ₂ H ₅	C-C3H3	-
843	СН	CH2	Н	Cl	Cl	F	н	СН	c-C ₃ H ₅	-
844	СН	CH2	Н	Cl	Cl	F	Н	CH,	C3H4	-
845	CH3	CH2	н	cl	Cl	F	Н	CH,	C ₄ H ₉	-
846	CH3	CH2	н	Cl	Cl	F	Н.	CH,	C,H,1	-
847	CH,	CH2	н	C1	Cl	F	Н	C ₂ H ₅	C4H	-
848	СН	CH2	н	Cl	Cl	F	Н	С,Н,	C³H²	-
849	CH,	CH3	н	Cl	Cl	F	н	C ₂ H ₅	C ₂ H ₅	-
850	СН	CH2	н	cl	Cl	Cl	н	н	4-CH ₃ O-C ₆ H ₄	-
851	СН	CH ₂	Н	Cl	Cl	Cl	Н	C-C ₃ H ₅	C-C ₃ H _s	-
852	СН	CH ₂	Н	Cl	Cl	Cl.	н	C ₂ H ₅	c-C ₃ H ₅	-
853	CH,	CH2	Н	Cl	Cl	Cl	Н	CH ₃	C-C3H2	-
854	CH,	CH2	H	Cl	Cl	Cl	Н	CH,	C3H	-
855	CH3	CH2	H	Cl	Cl	Cl	Н	CH,	C4H,	-
856	СН	CH2	H	Cl	Cl	Cl	Н	CH,	C ₅ H ₁₁	-
857	СН	CH2	н	Cl	Cl	Cl	Н	C ₂ H ₅	C ₄ H ₉	-
858	CH,	CH ₂	Н	Cl	Cl	C1	Н	С,Н,	C3H	-
859	сн	CH2	Н	Cl	Cl	Cl	Н	C ₂ H ₅	C ₂ H _s	-
860	сн	CH,	Н	CH,	осн	F	н	H	4-CH ₃ O-C ₆ H ₄	-
861	CH3	CH2	Н	CH,	OCH,	F	Н	c-C ₃ H ₃	c-C ₃ H ₃	128-129
862	СН,	CH	Н	CH3	OCH ₃	F	Н -	C_2H_s	c-C ₃ H ₅	-
863	CH3	CH2	Н	CH3	OCH,	F	Н	CH ₃	C-C ₃ H ₅	
864	CH3	CH2	Н	CH ₃	OCH,	F	Н	CH ₃	C ₃ H ₇	- 4
865	СН	CH2	Н	CH3	осн	F	Н	CH,	C ₄ H ₉	-
866	CH,	CH ³	Н	CH,	och,	F	Н	CH,	C,H,	-

wo	99/01	454								. PCT/US98	/13913
8	67	CH,	CH ₂	н	сн,	OCH ₃	F	н	C ₂ H ₅	C ₄ H ₉	-
8	68	СН₃	CH2	н	сн,	осн,	F	н	C3H4	C3H2	- .
8	69	СН	CH ₂	н	сн,	OCH,	F	н	C ₂ H ₅	C3H3	-
8.	70	СН,	CH ₂	н	CH,	OCH,	Cl	н	н	4-сңо-с,ң	oil
8	71	CH ₃	CH ₂	н	сн,	OCH,	cl	н	c-C,H,	c-C ₃ H ₅	179-181
8	72	СН	CH3	н	сн,	OCH,	Cl	н	C ₂ H ₅	c-C ₃ H ₅	-
8	73	СН,	CH ₂	н	сн,	OCH,	C1	н	CH,	c-C,H,	-
. 8	74	СН	CH ₂	н	CH ₃	OCH ₃	C1	н	CH ₃	C ₃ H ₇	-
8	75	СН	CH2	н	CH ₃	осн,	Cl	н	CH,	C_4H_9	-
8	76	СН	CH,	н	сн,	OCH,	Cl	Н	CH,	C,H,,	-
8	77	СН,	CH2	Н	CH,	OCH,	Cl	н	C₂H₅	C₄H,	· _
8	78 .	CH ₃	CH ₂	н	CH,	OCH ₃	Cl	н .	C,H,	C3H2	=
8	179	CH3	CH2	н	CH,	OCH,	Cl	н	C ₂ H ₅	C ₂ H ₅	-
8	180	CH,	CH2	н	Cl	СН,	F	Н	н	4-CH ₃ O-C ₆ H ₄	-
8	81	CH,	CH2	н	Cl	СН,	F	Н	c-C,H,	C-C3H3	130-131
8	882	CH ₃	CH2	н	Cl	CH3	F	Н	C ₂ H ₅	c-C3H3	· -
8	883	CH3	CH2	Н	Cl	CH,	F	Н	CH3	C-C3H3	-
8	884	CH3	CH2	Н	Cl	CH3	F	н	CH,	C3H,	-
8	385	СН	CH ₂	н	Cl	CH,	F	н	CH ₃	C ₄ H ₅	-
8	886	CH ₃	CH2	н	Cl	CH3	F	Н	CH3	C,H,,	-
8	387	CH3	CH2	Н	Cl	CH,	F	н	C ₂ H ₅	C₄H,	· -
8	888	CH,	CH2	Н	Cl	CH3	F	Н	C3H7	C3H2	-
8	889	CH3	CH ³	Н	Cl	CH3	F	Н	C2H2	C ₂ H ₅	-
ξ	890	CH,	CH2	Н	cl	CF,	Cl	н	н	4-CH,O-C,H,	-
8	891	сн,	CH ₂	Н	Cl	CF,	Cl	Н	C-C3H3	c-C ₃ H ₅	-
8	892	CH,	CH ₂	Н	Cl	CF,	Cl	Н	C ₂ H ₅	c-C ₃ H ₅	-
8	893	CH,	CH ₂	Н	Cl	CF,	Cl	н	CH,	C-C3H3	-
8	894	CH,	CH2	Н	Cl	CF,	Cl	н	CH,	C,H,	-
8	895	CH3	CH2	н	Cl	CF ₃	Cl	Н	CH3	C ₄ H ₉	-
8	896	CH3	CH ³	н	Cl	CF,	Cl	Н	CH,	C,H,1	-
	897	CH3	CH ₂	н	Cl	CF,	C1	Н	C ₂ H ₅	C ₄ H ₉	-
1	898	CH3	CH ²	Н	Cl	CF ₃	Cl	Н	C3H4	C3H,	-
1	899	CH3	CH ³	Н	Cl	CF ₃	Cl	Н	C,₃H₅	C2H2	-
	900	СН	CH2	Н	CH,	осн	Н	Н	Н	C ₄ H,	oil
	901	CH,	CH ³	Н	CH,	OCH,	Н	Н	C ₂ H ₅	C ₃ H ₅	69-73
	902	CH,	CH ₂	Н	Cl	CH,	Н	Н	C3H,	С,Н,	oil
	903	CH,	CH ₂	Н	Cl	CF,	F	Н	н	4-CH ₃ O-C ₆ H ₄	-
	904	CH,	CH ³	Н	Cl	CF,	F	Н	C-C ₃ H ₅	c-C ₃ H ₅	- 😋
	905	сн,	CH2	н	Cl	CF,	F	Н	C ₂ H ₅	c-C,H,	-
•	906	CH,	CH3	Н	Cl	CF,	F	Н	СН	c-C ₃ H ₅	-

WO 99/	01454								PCT/US98	/13913
907	CH,	СН	н	cı	CF,	F	н	сн,	C,H,	-
908	CH,	CH2	Н	Cl	CF,	F	н	CH,	C4H	-
909	сн,	CH2	Н	C1	CF,	F	н	СН	C,H,	-
910	CH,	CH ₂	Н	Cl	CF,	F	н	C ₂ H ₅	C.H.	-
911	CH,	CH ₂	Н	cl	CF ₃	F	н	С,н,	C,H,	-
912	сн,	CH ₂	н	Cl	CF,	F	н	C ₂ H ₅	C3H2	-
913	CH,	CH2	н	C1	осн,	Cl	н	н	4-сң _{о-с,} н,	-
914	СН	CH2	н	Cl	осн,	Cl	н	c-C,H,	c-C ₃ H ₅	oil
915	CH,	CH ₂	н	Cl	OCH,	Cl	н	C3H2	c-C ₃ H ₅	-
916	CH,	CH2	н	Cl	OCH,	Cl	н	СН	c-C ₃ H ₅	-
917	сн,	CH2	Н	Cl	осн,	Cl	н	CH,	C,H,	· -
918	CH,	CH ₂	н	Cl	осн,	Cl	н	CH,	C ₄ H,	-
919	сн,	CH ₂	н	Cl	осн	Cl	н	СН	C ₅ H ₁₁	-
920	CH ₃	CH2	н	Cl	осн,	Cl	н	C ₂ H ₅	C.H.	-
921	сн,	СН	н	cl	осн	Cl	н	C,H,	C3H,	: -
922	CH,	CH2	н	Cl	осн	Cl	н	C2H2	C ₂ H ₅	-
923	сн,	CH3	н	cl	осн,	F	н	н	4-CH ₃ O-C ₆ H ₄	-
924	CH,	CH3	н	cl	осн,	F	н	C-C,H,	C-C ₃ H ₅	•
925	CH,	CH3	Н	cı	осн,	F	н	C ₂ H ₅	C-C3H5	-
926	CH,	CH2	Н	Cl	осн,	F	н -	CH ₃	C-C ₃ H ₅	-
927	CH,	CH ₂	н	Cl	OCH,	F	Н	CH,	C,H,	-
928	СН	CH2	н	Cl	осн,	F	н	СН	C4H	-
929	CH,	CH2	н	Cl	OCH ₃	F	H	CH3	C5H11	-
930	CH,	CH2	н	Cl	OCH ₃	F	н.	C ₂ H ₅	C⁴H²	-
931	CH3	CH3	н	Cl	OCH ₃	F	н	C ₃ H ₇	C3H2	-
932	CH3	CH ₂	н	Cl	осн,	F	н	C ₂ H ₅	C2H2	-
933	CH,	CH ₂	Н	Cl	осн	CH,	Н	н	4-CH ₃ O-C ₆ H ₄	-
934	CH,	CH3	н	Cl	осн,	CH3	н	c-C ₃ H ₅	c-C ₃ H ₅	150-151
935	CH,	CH3	н	cl	осн,	CH,	н	C ₂ H ₅	c-C ₃ H ₅	-
936	CH,	CH2	H	Cl	осн,	CH,	н	CH ₃	C-C ₃ H ₅	-
937	CH,	CH2	Н	Cl	осн,	CH,	н	CH3	C ₃ H ₇	-
938	CH,	CH2	н	Cl	осн,	CH,	н	CH ₃	C₄H,	-
939	CH,	CH,	Н	Cl	OCH,	сн,	H	CH,	C_5H_{11}	-
940	CH,	CH3	н	Cl	OCH,	CH,	Н	C ₂ H ₅	C4H	-
941	СН,	CH2	Н	Cl	OCH,	CH,	Н	C,H,	C3H3	-
942	CH,	CH2	н	Cl	OCH3	CH,	Н	C ₂ H ₅	C ₂ H ₅	-
943	CH,	CH ₂	Н	CH,	och,	CH,	Н	н	4-CH ₃ O-C ₆ H ₄	-
944	CH,	CH3	Н	CH,	OCH,	CH3	Н	c-C,H,	c-C ₃ H ₄	148-151 🔇
945	CH3	CH2	н	CH,	OCH3	CH,	н	C ₂ H ₅	c-C ₃ H ₅	oil
946	CH3	СН	н	CH3	осн	CH,	Н	CH,	C-C ₃ H ₅	-

WO 99/	01454								PCT/US98	/13913
947	сн,	CH2	н	CH,	осн,	сн,	Н	СН	C,H,	oil
948	CH,	CH2	н	CH,	OCH,	СН	Н	CH,	C ₄ H ₉	-
949	CH,	CH2	н	CH ₃	осн,	СН,	Н	CH,	C _s H ₁₃	.
950	СН	CH2	Н	CH,	осн,	CH,	Н	C'H'	C ₄ H ₉	-
951	CH,	CH₂	н	CH,	осн,	CH,	Н	C,H,	C3H2	oil
952	CH,	CH3	н	СН,	осн	CH,	н	C ₂ H ₃	C ₂ H ₅	oil
953	CH,	CH2	н	Cl	Н	Cl	н	н	4-CH3O-C6H4	-
954	CH,	CH2	н	Cl	Н	Cl	H	c-C ₃ H ₅	c-C ₃ H ₅	151-153
955	CH,	CH2	Н	Cl	н	Cl	н	C3H2	c-C ₃ H ₅	-
956	СН	CH2	н	Cl	н	C1	н	СН	c-C ₃ H ₅	-
957	СН,	CH ₂	н	Cl	н	cl	н	CH ₃	С,н,	• -
958	CH,	CH ₂	н	Cl	н	cl	н	СН₃	C_4H_9	-
959	CH,	CH ₂	н	C1	н	cl	н	CH,	C ₅ H ₁₁	-
960	CH3	CH2	н	C1	Н	cl	н	C ₂ H ₅	C.H.	-
961	CH3	CH2	н	Cl	н	Cl	н	C3H7	C3H4	- -
962	CH3	CH2	н	cı į	н	Cl	н	C ₂ H ₅	C ₂ H ₅	-
963	CH,	CH2	н	Cl	Cl	OCH,	н	н	4-CH ₃ O-C ₆ H ₄	-
964	СН	CH2	н	Cl	Cl	OCH,	Н	c-C,H,	c-C ₃ H ₅	-
965	CH3	CH2	н	Cl	Cl	och,	Н	C ₂ H ₅	c-C ₃ H ₅	-
966	CH3	CH ₂	н	Cl	Cl	OCH3	Н	СН	c-C ₃ H ₅	-
967	CH,	CH2	н	Cl	Cl	осн	Н	CH,	C3H,	-
968	CH3	CH2	Н	Cl	Cl	och,	Н	CH,	C⁴H³	-
969	CH3	CH2	Н	Cl	Cl	OCH,	н	CH ₃	C5H11	-
970	CH3	CH ₂	Н	Cl	Cl	осн,	Н	C₂H₅	C4H9	-
971	CH,	CH2	Н	Cl	Cl	OCH,	Н	C3H,	C3H2	-
972	СН,	CH ₂	Н	Cl	Cl	OCH,	Н	C₂H₅	C3H2	- ,
973	CH,	CH,	Н	cl	сн	OCH,	Η.	н	4-CH ₃ O-C ₆ H ₄	
974	CH,	CH2	Н	cl	CH3	OCH,	Н	c-C ₃ H ₅	c-C3H3	-
975	CH,	CH2	Н	Cl	CH,	OCH ₃	н	C ₂ H ₅	c-C3H2	-
976	CH,	CH ₂	н	Cl	CH,	och,	Н	CH ₃	C-C ₃ H ₅	-
977	CH,	CH,	н	Cl	CH,	OCH,	Н	CH,	C3H7	-
978	CH,	CH ₂	н	Cl	CH3	OCH ₃	Н	CH,	C ₄ H ₉	-
979	СН	CH	н	Cl	сн,	OCH,	Н	СН	C ₅ H ₁₁	-
980	CH3	CH	Н	Cl	СН	OCH,	Н	C ₂ H ₅	C ₄ H ₉	-
981	CH3	CH ₂	Н	Cl	CH,	OCH,	H	C3H,	C ₃ H ₇	-
982	CH,	CH2	Н	C1	CH,	осн,	Н	C ₂ H ₅	C ₂ H ₅	-
983	CH3	CH2	н	CH,	Cl	OCH3	Н	Н	4-сңо-с,ң	<u>-</u>
984	CH,	CH	Н	CH3	Cl	осн	Н	c-C ₃ H ₅	c-C3H3	- 🛠
985	сн	CH,	Н	CH,	Cl	осн	Н	C ₂ H ₅	C-C3H5	-
986	сн	CH,	н	CH,	Cl	осн	Н	СН	c-C,H,	-

WO 99/	01454								PCT/US98	/13913
987	CH3	CH3	н	CH ₃	cı	осн,	н	СН	C,H,	-
988	CH3	CH3	Н	CH,	Cl	OCH,	н	CH,	C_4H_9	-
989	СН	CH ²	н	CH,	Cl	OCH,	н	СН	C,H,,	-
990	CH,	CH2	н	CH,	Cl	OCH,	н	C₂H₅	C.H.	-
991	СН	CH ₂	н	СН,	Cl	осн,	н	С,Н,	C,H,	
992	CH ₃	CH³	Н	CH,	Cl	OCH3	н	C ₂ H ₅	C₂H₅	-
993	СН	CH2	н	CH,	CH2	OCH,	н	н	4-CH ₃ O-C ₆ H ₄	-
994	CH,	CH2	н	СН,	сн	OCH,	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
995	CH3	CH ²	Н	CH ₃	сн	осн,	н	C₃H₅	c-C,H,	-
996	CH ₃	CH2	н	СН,	СН	осн,	н	сн,	c-C ₃ H ₅	. -
997	CH ₃	CH ₂	н	CH ₃	CH3	OCH,	н	СН,	С,Н,	· -
998	СН,	CH2	н	CH ₃	CH,	осн,	Н	СН3	C,H,	-
999	СН3	CH ₂	н	СН3	CH ₃	OCH,	н	СН	C ₅ H ₁₁	-
1000	сн,	CH ₂	н	CH3	CH,	OCH3	н	C ₂ H ₅	C ₄ H,	-
1001	сн,	CH ₂	н	CH3	СН	OCH,	н	C,H,	C,H,	÷, = .
1002	CH3	CH ₂	н	CH3	CH,	OCH,	Н	C ₂ H ₅	C2H2	
1003	CH3	CH2	Н	CH,	осн,	OCH,	н	н	4-сңо-с,ң	oil
1004	CH,	CH ₂	н	CH3	осн,	OCH,	н	C-C ₃ H ₅	c-C,H,	138-140
1005	CH3	CH ₂	н	CH3	OCH,	OCH ₃	Н	C ₂ H ₅	C-C3H5	-
1006	CH,	CH2	Н	CH3	OCH,	OCH,	н -	CH,	C-C ₃ H ₅	-
1007	CH3	CH2	Н	CH3	OCH,	OCH,	н	CH,	C,H,	
1008	CH,	.CH ₂	н	сн,	осн,	OCH,	Н	CH ₃	C ₄ H ₉	
1009	CH ₃	CH3	н	CH3	осн,	OCH ₃	Н	CH3	C,H,1	<u>-</u> :
1010	CH,	CH ₂	н	CH,	OCH ₃	OCH ₃	н	C ₂ H ₅	C ₄ H ₉	- .
1011	. CH ₃	CH2	Н	CH3	OCH ₃	OCH,	н	C ₃ H ₇	C3H4	· -
1012	CH,	CH ³	н	CH ₃	OCH ₃	OCH,	Н	C ₂ H ₃	C ₂ H ₅	oil
1013	CH3	CH2	H	Cl	осн,	OCH,	н	Н	4-CH,O-C,H	-
1014	CH,	CH2	н	cı	осн	OCH,	Н	C-C ₃ H ₅	c-C,H,	-
1015	CH,	СН	н	Cl	OCH,	OCH,	н	C ₂ H ₅	C-C ₃ H ₅	-
1016	CH,	CH2	H	C1	OCH ₃	OCH,	Н	CH ₃	C-C ₃ H ₅	-
1017	сн	CH	Н	Cl	осн	OCH,	н	CH,	C ₃ H ₇	- .
1018	CH,	CH	н	Cl	OCH2	OCH,	Н	CH3	C4H,	-
1019	CH3	CH	н	Cl	осн	och,	Н	CH,	C ₅ H ₁₁	-
1020	сн,	CH2	Н	Cl	осн	OCH,	н	C ₂ H ₅	C4H9	-
1021	CH3	CH2	н	Cl	OCH ₃	OCH,	Н	C,H,	C3H2	-
1022	CH,	CH ₂	H .	Cl	осн	OCH ₃	Н.	C ₂ H ₅	C ₂ H ₅	-
1023	CH,	CH2	н	Cl	OCF,	Н	Н	Н	4-сңо-с,ң	oil
1024	CH3	CH,	н.	Cl	OCF,	Н	н	C-C3H5	c-C ₃ H ₅	119-120
1025	CH,	CH ₃	Н	Cl	OCF,	Н	н	C ₂ H ₅	C-C3H3	103-104
1026	CH,	CH2	н	Cl	ocf,	Н	Н	СН	c-C ₃ H ₃	-

WO 99/	01454								PCT/US98	8/13913
1027	CH,	CH3	н	Cl	OCF,	н	н	СН	С,Н,	oil
1028	СН	CH3	н	Cl	ocf,	н	н	СН,	C ₄ H,	oil
1029	сн,	CH2	н	Cl	ocf,	Н	н	сн₃	C,H,,	-
1030	СН	CH3	н	cl	OCF,	Н	н	C ₂ H ₅	C₄H,	-
1031	CH3	CH,	Н	Cl	∞r,	н	н	C³H²	C,H,	. •
1032	СН	CH3	н	Cl	OCF,	Н	н	C ₂ H ₅	C ₂ H ₅	oil
1033	СН	CH2	Н	Cl	SCF,	н	Н.	н	4-CH,O-C,H,	-
1034	CH3	CH2	Н	Cl	SCF,	Н	н	c-C,H,	c-C ₃ H ₅	-
1035	СН	CH2	н	Cl	SCF,	н	н	C ₂ H ₅	c-C,H,	-
1036	CH,	CH2	Н	Cl	SCF,	н	Н	CH,	c-C,H,	-
1037	СН	CH2	н	Cl	SCF,	н	Н	CH ₃	C3H2	· -
1038	СН₃	CH2	Н	Cl	SCF,	н	Н	CH3	C.H.	-
1039	СН₃	CH ₂	H	Cl	SCF,	н	Н	СН₃	C,H,	-
1040	CH3	CH2	н	Cl	SCF,	н	Н	C ₂ H ₅	C4H,	-
1041	CH,	CH2	н	C1	SCF,	н	н	C_3H_7	C3H,	: -
1042	CH,	CH2	Н	cl	SCF,	Н	н	C ₂ H ₅	C₂H₅	-
1044	CH3	CH2	Н	Cl	CF3	Н	н	н	4-CH ₃ O-C ₆ H ₄	105-107
1045	CH,	CH,	н	CF,	Q3	н	Н	c-C,H,	c-C,H,	168-169
1046	CH3	CH2	н	Cl	Q3	Н	Н	c-C,H,	c-C ₃ H ₅	130-132
1047	CH3	CH2	н	CF,	SCH ₃	н	Н	C-C3H3	c-C ₃ H ₅	-
1048	CH,	CH2	н	Cl	SCH,	Н	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
1049	CH,	СН	Н	CF,	COCH	н	н	c-C,H,	C-C3H3	-
1050	CH,	CH ₂	н	Cl	COCH,	Н	н -	c-C ₃ H ₅	C-C3H3	-
1051	сн,	CH ₃	Н	CF,	CHCH2	Н	Н	c-C ₃ H ₅	C-C3H3	-
1052	CH,	CH2	Н	Cl	CHCH ₂	Н	Н	c-C ₃ H ₅	C-C3H5	-
1053	сн,	CH2	Н	cl	CH,	Н	н	н	4-CH3O-C6H4	113-115
1054	сн,	CH2	н	OCH,	OCH,	Н	Н	Н	4-CH3O-C6H4	-
1055	СН	CH2	н	OCH,	OCH,	Н	Н	C-C3H5	c-C ₃ H _s	128-130
1056	CH,	CH2	H	OCH,	OCH,	н	н	C ₂ H ₅	c-C ₃ H ₅	-
1057	СН	CH ₂	Н	OCH ₃	OCH,	Н	Н	CH3	C-C3H5	-
1058	СН	CH2	Н	OCH3	OCH,	Н	Н	CH3	C3H,	-
1059	СН	CH2	Н	OCH ₃	OCH,	Н	Н	СН	C ₄ H ₉	-
1060	сн,	CH2	Н	OCH,	OCH,	Н	H	CH ₃	C,H,,	-
1061	сн	CH,	Н	OCH,	осн,	н	Н	C,H,	C ₄ H ₉	-
1062	CH,	CH3	Н	OCH,	OCH,	Н	н	C,H,	C3H,	-
1063	CH,	CH2	Н	OCH ₃	OCH,	Н	Н	C ₂ H ₅	C ₂ H ₅	-
1064	CH,	CH ₂	Н	OCH,	CF3	Н	Н	н	4-сң-о-с,ң	-
1065	CH3	CH ₂	Н	OCH,	CF3	Н	н	c-C ₃ H ₅	c-C ₃ H ₅	158-159 🔇
1066	сн	CH3	Н	осн	CP,	Н	H '	C ₂ H ₅	c-C ₃ H ₅	-
1067	CH,	CH,	Н	осн,	CF,	н	Н	СН,	c-C,H,	-

WO 00/	01 45 4								PCT/US98	2/12012
WO 99/	01454								PC1/0398	9/13913
1068	CH,	CH ₂	Н	осн,	CF,	Н	Н	CH3	C3H,	-
1069	CH3	CH3	Н	OCH3	CF,	Н	Н	CH3	C ₄ H ₉	-
1070	сн	CH ³	Н	OCH,	CF,	Н	Н	CH3	C ₅ H ₁₁	-
1071	сн	CH ₂	Н	OCH,	CF,	Н	H .	C ₂ H ₅	C ₄ H ₉	-
1072	CH,	CH ₂	Н	OCH,	CF,	Н	н	C ₃ H ₂	C3H4	-
1073	CH,	CH2	н	OCH,	CF,	Н	Н	C ₂ H ₅	C ₂ H ₅	-
1074	CH3	CH2	Н	CF,	OCH ₃	н	H	Н	4-CH ₃ O-C ₆ H ₄	oil
1075	CH,	CH3	н	CF,	OCH,	Н	H	c-C,H,	c-C ₃ H ₅	129-130
1076	CH3	CH2	н	CF,	OCH,	Н	Н	C ₂ H ₅	C-C3H3	119-122
1077	CH3	CH2	н	CF ₃	OCH,	Н	Н	CH ₃	C-C ₃ H ₅	-
1078	CH3	CH ₂	Н	CF,	OCH,	Н	н	CH ₃	С,Н,	cil
1079	CH3	CH₂	Н	CF,	OCH,	Н	н	СН	C₄H,	cil
1080	CH,	CH ³	Н	CF,	OCH,	Н	н	CH3	C,H,,	-
1081	CH,	CH2	Н	CF,	OCH,	Н	н	C ₂ H ₅	C.H.	-
1082	CH,	CH2	Н	CF,	OCH,	Н	Н	С,Н,	C,H,	pil
1083	СН	CH ₂	Н	CF ₃	OCH,	Н	н	C2H2	C ₂ H ₅	77-78
1084	СН	CH3	Н	OCH3	Cl	OCH ₃	н	н	4-CH ₃ O-C ₆ H ₄	-
1085	CH3	CH3	Н	OCH,	Cl	och,	Н	c-C3H4	c-C ₃ H ₅	-
1086	CH,	CH2	Н	OCH3	Cl	OCH,	Н	C₃H₅	c-C ₃ H ₅	-
1087	CH3	CH2	Н	OCH,	Cl	OCH3	Н	CH3	C-C3H5	-
1088	сн	CH2	н	OCH,	Cl	OCH,	Н	CH,	C3H4	-
1089	CH,	CH2	Н	OCH,	Cl	OCH,	н	CH,	C ₄ H ₄	-
1090	CH,	CH2	Н	OCH3	Cl	OCH,	Н	CH,	C5H11	-
1091	CH,	CH2	Н	осн,	Cl	OCH,	Н	C ₂ H ₅	C ₄ H ₉	•
1092	CH3	CH3	Н	OCH,	Cl	OCH,	Н	C ₃ H ₇	С,н,	-
1093	CH3	CH2	н	OCH,	Cl	OCH,	Н	C ₂ H ₅	C₃H₅	
1094	СН	CH	н	och,	CH,	осн	Н	н	4-CH3O-C6H6	-
1095	CH,	CH3	Н	OCH,	CH,	OCH,	н	c-C ₃ H ₅	C-C3H5	-
1096	CH3	CH2	н	OCH ₃	CH3	OCH ₃	н	C ₂ H ₅	c-C ₃ H ₅	-
1097	CH3	CH3	н	OCH,	СН,	осн	н	CH,	C-C ₃ H ₅	-
1098	CH3	CH2	н	OCH,	CH,	OCH ₃	н	CH3	C,H,	-
1099	CH3	CH3	н	OCH,	CH,	och,	н	CH,	C ₄ H ₉	-
1100	CH3	CH,	н	OCH,	CH,	осн	н	CH,	C,H,,	-
1101	СН	CH2	н	осн,	CH,	осн,	н	C_2H_3	C ₄ H ₉	-
1102	CH3	CH3	н	OCH,	CH,	осн,	Н	C ₃ H ₇	C3H,	-
1103	CH,	CH2	н	OCH,	CH ₃	осн,	Н.	C ₂ H ₅	C ₂ H ₅	•
1104	СН,	CH2	н	OCH3	CF,	осн,	Н	н	4-CH,0-C,H	-
1105	СН,	CH2	н	OCH3	CF3	осн,	Н	C-C ₃ H ₅	C-C ₃ H ₃	- 4
1106	сн,	CH2	н	OCH,	CF,	OCH ₃	н	C ₂ H ₅	c-C ₃ H ₅	-
1107	СН	CH2	н	осн,	CF,	осн,	н	сң	c-C,H,	-

WO 99/	01454								PCT/US98	/13913
1108	CH ₃	CH2	н	OCH ₃	CF,	осн,	Н	CH,	C3H,	• .
1109	CH,	CH2	н	OCH,	CF,	осн	н	СН	C ₄ H ₅	-
1110	CH,	CH ₂	Н	осн,	CF,	осн,	Н	СН	C,H,	-
1111	CH,	CH2	Н	OCH,	CF,	осн,	н	C ₂ H ₅	C,H,	-
1112	CH,	CH ₂	Н	OCH ₃	CF,	OCH,	н	C3H2	C,H,	
1113	CH,	CH2	Н	OCH ₃	CF,	OCH ₃	н	C ₂ H ₅	C ₂ H ₅	-
1114	CH3	CH2	н	OCH,	CN	OCH,	н	н	4-CH ₃ O-C ₆ H ₄	-
1115	CH ₃	CH ₂	H	OCH,	CN	OCH3	Н	C-C3H5	c-C ₃ H ₅	-
1116	CH3	CH ³	н	OCH,	CN	осн	н	C ₂ H ₅	c-C,H,	-
1117	CH3	CH2	Н	OCH,	CN	OCH,	н.	CH,	C-C ₃ H ₅	-
1118	CH3	CH2	н	OCH3	CN	OCH3	Н	CH3	C ₃ H ₇	-
1119	CH,	CH2	Н	OCH,	CN	OCH3	Н	CH,	C.H.	-
1120	CH,	CH2	Н	OCH,	CN	OCH ₃	H.	CH ₃	C5H12	-
1121	CH3	CH2	Н	OCH,	CN	OCH ₃	Н	C ₂ H ₅	C₄H,	-
1122	CH,	CH ₂	н	och,	CJ/	осн	H	C3H,	С,Н,	-
1123	CH,	CH ₂	Н	OCH,	CN	OCH,	H	C ₂ H ₅	C₃H₅	-
1124	CH3	CH2	Н	OCH,	OCH,	OCH,	Н	Н	4-CH ₃ O-C ₆ H ₄	-
1125	CH3	CH2	Н	OCH3	OCH3	OCH,	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
1126	CH3	CH ₂	Н	OCH3	OCH,	OCH3	Н	C ₂ H ₅	c-C ₃ H ₅	-
1127	CH3	CH ₂	Н	OCH,	OCH,	OCH,	Н	CH,	c-C,H,	-
1128	CH3	CH,	Н	осн	och,	OCH,	Н	CH,	С,Н,	-
1129	CH3	CH ₂	H	OCH,	OCH,	осн	Н	CH,	C4H,	-
1130	сн	CH2	Н	OCH3	OCH,	OCH,	Н	CH ₃	C ₅ H ₁₁	-
1131	CH,	CH2	Н	OCH3	OCH,	осн,	Н.	C ₃ H ₅	C4H9	-
1132	CH,	CH2	н.	осн	OCH,	OCH,	H	С,н,	С,Н,	
1133	СН	CH2	н	OCH3	OCH,	OCH,	Н	C ₂ H ₅	C ₂ H ₅	_
1134	СН	CH2	Н	CH3	СН	Н	CH,	C ₂ H ₅	снозосн	110-111
1135	CH,	CH,	Н	CH,	СН	Н	CH,	C ₂ H ₅	сн, се,	134-135
1136	CH,	CH ₂	н	CH,	CH,	Н	CH,	C ₂ H ₃	CH ₂ C1	140-141
1137	CH,	CH ₂	н	CH ₃	CH,	Н	CH,	C2H3	CH_CN	142-147
1138	CH,	CH2	н	Cl	Cl	н 	н	C ₂ H ₅	сн,оѕо,сн,	-
1139	CH,	CH ₂	н	Cl	Cl	н	н 	C ₂ H ₃	CH,SCH,	-
1140	CH,	CH2	н	Cl	Cl	н	н	C ₂ H ₃	сцсі	-
1141	CH,	CH ²	н	Cl	Cl	н 	н	C ₂ H ₃	CH ₂ CN	-
1142	CH,	CH ₂	н	C1	CF,	н	н	C ₂ H ₄	CH,OSO,CH,	-
1143	CH,	CH ₂	н	Cl	CF,	H	н	C ₂ H ₄	CH,SCH,	-
1144 1145	CH,	CH	Н	Cl	CF,	H	н	C ₂ H ₄	CH ₂ C1	<u>-</u>
1145	СН ₃	CH ₂	Н	cl cl	CF,	Н	H	C ³ H²	CH OSO CH	- <i>\</i> ,
	CH,	•	Н		OCH,	H	Н	C'H'.	CH ₂ OSO ₂ CH ₃	_
1147	CH2	CH	Н	Cl	OCH,	н	Н	C ₂ H ₅	сң СС	-

WO 99/	01454								PCT/US9	8/13913
1148	СН,	CH3	Н	Cl	осн,	н	н	C₂H₅	CH,Cl	-
1149	сн,	CH2	н	Cl	осн	н	н	C ₂ H ₅	CH ₂ CN	-
1150	CH3	CH	н	CF,	осн	н	н	C3H4	c-C ₃ H ₅	oil
1151	сн,	CH,	н	Cl	CF,	н	н	CH,	С,Н,	97-98
1152	CH3	CH2	н	CH,	осн,	сн,	н	C ₆ H ₅	c-C,H,	-
1153	СН,	CH2	н	Cl	CF,	н	н	C ₄ H ₅	C-C3H3	oil
1154	СН	CH2	.H	Cl	осн	н	н	C ₆ H ₅	C-C3H3	-
1155	СН,	CH2	н	Cl	OCF,	Н	н	C ₆ H ₅	C-C3H5	oil
1156	CH,	CH2	н	Cl	СН	н	н	C ₄ H ₅	c-C ₃ H ₅	119-120
1157	CH,	CH	Н	CF,	осн,	н	н	C ₆ H ₅	c-C,H,	oil
1158	СН	CH2	H	Cl	Cl	н	CH,	C ₆ H ₅	c-C ₃ H ₅	oil
1159	CH3	CH2	н	CH ₃	осн,	Cl	н	C ₆ H ₅	c-C3H3	-
1160	СН,	CH2	н	CH,	осн,	F	Н	C ₆ H ₅	c-C ₃ H ₅	-
1161	сн,	CH2	Н	Cl	Cl	н	Н	4-F-C ₆ H ₄	c-C,H,	oil
1162	сн	CH2	н	СН,	осн,	CH3	н	4-F-C ₅ H ₄	c-C ₃ H ₅	. -
1163	сн	СН	н	Cl	CF,	Н	н	4-F-C ₆ H ₄	c-C,H,	oil
1164	CH3	CH ₂	н	Cl	OCH ₃	н	н	4-F-C ₆ H ₄	c-C ₃ H ₅	-
1165	СН	CH,	н	Cl	OCF,	н	н.	4-F-C ₆ H ₄	C-C ₃ H ₅	-
1166	CH3	CH2	н	Cl	CH,	Н	н	4-F-C ₆ H ₄	C-C ₃ H ₅	-
1167	CH,	CH2	Н	CF,	осн,	н	н	4-F-C ₆ H ₄	C-C,H,	-
1168	СН	CH3	н	Cl	Cl	Н	CH,	4-F-C ₆ H ₄	c-C,H,	-
1169	CH,	CH2	Н	CH,	осн,	Cl	н	4-F-C ₆ H ₄	c-C,H,	-
1170	СН,	CH2	Н	CH3	OCH,	F	н	4-F-C ₆ H ₄	C-C,H,	-
1171	CH,	CH2	Н	Cl	cı	Н	Н	CH,	c-C,H,	109-110
1172	CH,	CH2	Н	CH,	осн,	CH,	н	CH,	c-C ₄ H,	-
1173	CH3	CH3	Н	Cl	CF3	H	н	CH ₃	c-C,H,	136-137
1174	сн	CH2	H	Cl	осн	Н	н	CH,	c-C ₄ H,	-
1175	сн,	CH2	Н	Cl	OCF,	Н	Н	CH,	c-C,H,	-
1176	CH,	CH2	Н	C1	CH,	н	Н	CH3	C-C4H7	-
1177	CH,	CH2	Н	CF,	осн,	Н	Н	CH,	C-C4H,	-
1178	сн,	CH2	Н	cl	cı	Н	CH,	CH ₃	C-C4H,	-
1179	CH,	СН	н	CH3	OCH3	C1	Н	CH,	C-C4H,	-
1180	CH,	CH,	H	CH,	OCH3	F	Н	CH,	C-C4H,	-
1181	сн	CH ₂	H	Cl	Cl	н	н	C2H2	C-C4H7	-
1182	CH3	CH2	н	CH3	OCH,	CH ₃	н	C ₂ H ₅	C-C4H7	-
1183	CH3	CH2	н	Cl	CF3	H	Н	C ₂ H ₅	C-C4H,	-
1184	CH,	CH2	Н	Cl	OCH ₃	н	н	C ₂ H ₅	c-C ₄ H,	-
1185	CH ₃	CH2	Н	Cl	OCF,	Н	Н	C3H2	C-C4H7	= <
1186	СН	CH2	н	Cl	CH,	Н	Н	C3H2	c-C ₄ H,	-
1187	сӊ	CH2	Н	CF,	och,	Н	н	C_2H_s	c-C,H,	-

WO 99/0	1454								PCT/US98/	13913
1188	CH,	CH2	Н	Cl	Cl	Н	СН	C ₂ H ₄	c-C ₄ H ₇	-
1189	CH3	CH2	Н	СН,	OCH,	Cl	н	C ₂ H ₄	c-C₄H,	-
1190	сн	CH2	Н	CH,	OCH,	F	н	C ₂ H ₅	c-C ₄ H,	-
1191	сн	CH ₂	н	cl	C1	н	н	С,Н,	c-C ₄ H,	-
1192	сн,	CH ₂	Н	СН,	OCH,	CH ₃	н	C ₃ H ₇	C-C4H,	. -
1193	сн,	CH2	н	cl	CF,	н	н	С,Н,	C-C ₄ H ₇	-
1194	CH,	CH2	н	Cl	осн,	н	н	С,Н,	C-C4H2	-
1195	сн	CH2	н	cl	OCF,	н	н	C3H4	C-C4H	-
1196	сн	CH2	Н	Cl	СН	н	H.	C,H,	C-C4H7	-
1197	СН	CH2	Н	CF,	осн	н	н	C3H,	C-C4H,	-
1198	CH,	CH2	н	Cl	Cl	н	СН	C ₃ H ₇	C-C4H	· -
1199	СН,	CH2	Н	CH3	осн,	Cl	н	C ₃ H ₇	C-C4H2	-
1200	СН,	CH2	Н	CH,	осн,	F	н	C ₃ H ₇	C-C4H7	-
1201	СН,	CH2	Н	Cl	cl	н	н	C-C ₄ H,	c-C ₄ H,	-
1202	СН,	CH,	н	CH,	осн	СН	н	c-C ₄ H,	c-C ₄ H,	: -
1203	CH3	CH,	н	cl	CF ₃	Н	Н	c-C ₄ H,	c-C ₄ H ₇	· -
1204	CH,	CH2	н	Cl	осн,	Н	H	c-C ₄ H,	C-C4H7	-
1205	СН₃	CH2	н	cl	OCF,	н	Н	C-C.H.	C-C ₄ H,	-
1206	CH,	CH ₂	Н	cl	CH ₃	н	Н	c-C ₄ H,	C-C4H7	-
1207	СН3	CH2	Н	CF ₃	OCH,	Н	н	C-C.H,	C-C4H7	-
1208	СН	CH2	н	Cl	Cl	Н	сн,	c-C ₄ H,	C-C ₄ H,	-
1209	СН	CH2	н	CH,	осн,	Cl	н	c-C ₄ H,	C-C ₄ H ₇	-
1210	CH3	CH2	Н	CH,	OCH ₃	F	н	C-C ₄ H ₇	C-C4H,	-
1211	СН,	s	н	SCH	Cl	Н	Cl	C ₂ H ₅	С,Н,	63-65
1212	CH,	CH2	н	OCH3	Cl	н	н	c-C ₃ H ₅	c-C ₃ H ₅	152-154
1213	CH ₃	CH ₂	н	OCH,	Cl	. Н	н	C ₂ H ₅	c-C ₃ H ₅	-
1214	CH3	CH,	н	OCH,	Cl	Н	Н	C ₃ H ₇	c-C3H5	-
1215	CH,	CH2	Н	OCH,	Cl	Н	Н	CH,	c-C ₄ H ₇	-
1216	CH,	CH2	Н	OCH,	C1	н	Н	CH ₃	С,н,	-
1217	CH,	CH2	Н	OCH,	C1	н	Н	C ₂ H ₅	С,Н,	-
1218	CH,	CH3	Н	OCH ₃	CJ.	Н	Н	C ₂ H ₅	C³H²	•
1219	CH,	CH2	Н	OCH,	Cl	Н	Н	C3H4	C3H,	-
1220	CH,	CH2	Н	осн	Cl	Н	Н	CH,	C₄H,	-
1221	CH3	CH2	H	осн,	Cl	Н	Н	н	4-CH ₃ O-C ₆ H ₄	-
1222	сн,	СН	Н	OCH ₃	CH,	н	Н	C-C3H3	c-C ₃ H ₅	oil
1223	CH,	CH ₂	Н	OCH,	CH,	н	Н	C3H3	C-C ₃ H ₅	-
1224	СН	CH2	Н	OCH,	CH ₃	Н	Н	C3H4	c-C ₃ H ₅	-
1225	CH3	CH2	Н	осн,	CH ₃	н	Н	CH,	C-C4H7	- N
1226	CH3	CH3	Н	OCH,	СН	Н	Н	CH,	C,H,	-
1227	СН	CH,	н	осн,	СН	Н	н.	C3H2	C,H,	-

	WO 99/0	1454								PCT/US98	13913
	. 1228	СН	СН	н	осн,	сн,	H	н	C ₂ H ₅	C ₂ H ₅	-
	1229	СН	CH ₂	н	OCH,	CH,	Н	н	C ₃ H ₇	С,Н,	_
	1230	СН	CH,	Н	осн	СН	н	н	СН	C,H,	_
	1231	СН	CH2	н	OCH,	CH ₃	н .	. н	н	4-CH ₃ O-C ₆ H ₄	•
	1232	СН	CH ₂	н	осн,	осн,	н	F	c-C,H,	C-C ₃ H ₅	176-178
	1233	СН	CH ₂	Н	OCH,	осн,	н	F	C ₂ H ₅	c-C ₃ H ₅	
	1234	СН	CH ₂	н	OCH,	осн	н	F	C ₃ H ₃	C-C ₃ H ₅	- .
•	1235	СН,	CH ₂	н	OCH,	осн	н	F	СН	c-C ₄ H,	-
	1236	сн,	CH ₂	н	OCH,	осн,	н	P .	СН	С,Н,	-
	1237	СН	CH2	Н	OCH,	осн	н	F	C ₂ H ₅	С,Н,	-
	1238	сн,	CH2	н	OCH ₃	OCH3	н	F	C ₂ H ₅	C₂H₅	٠ -
	1239	CH3	CH3	Н	OCH,	OCH,	н	F	C ₃ H ₇	C,H,	-
	1240	CH,	CH ₂	Н	OCH ³	OCH3	Н	F	СН,	C ₄ H ₉	-
	1241	CH,	CH2	н	OCH,	OCH,	н	F	H ·	4-CH,0-C,H,	-
	1242	CH,	CH2	Н	CF,	F	Н	Н	c-C3H3	c-C,H,	<u> </u>
	1243	СН	CH	н	CF,	F	Н	н	C ₂ H ₅	C-C,H,	• • •
	1244	CH3	CH ₂	н	. CF3	F	н	Н	C ₃ H ₇	C-C3H5	115-118
	1245	CH3	CH ₂	Н	CF ₃	F	Н	H	CH ₃	c-C _e H,	-
	1246	СН	CH2	Н	CF ₃	F	Н	Н	CH,	С, Н,	-
	1247	СН	CH2	. Н	CF3	F	H	Н	C2H2	С,Н,	-
	1248	СН	CH2	Н	CF3	F	н	Н	C,H,	C₃H₅	-
	1249	сн	CH	Н	CF3	F	Н	Н	С,Н,	C3H,	-
	1250	CH,	CH ₂	Н	CF,	F	H	H	CH,	C ₄ H ₉	-
	1251	СН	CH2	Н	CF,	F	Н	H .	н	4-CH ₃ O-C ₆ H ₄	57-70
	1252	CH,	CH2	Н	CF,	F	H	Н	BnOCH ₂	Bnoch ₂	oil
	1253	CH,	CH2	Н	CF,	F	Н	Н	CH3	C ₆ H ₅	119-120
•	1254	CH,	CH2	Н	CF,	F	Н	.H	C ₆ H ₅	C ₆ H ₅	135-139
	1255	CH,	CH	Н	Cl	OCF,	н	Н	C ₃ H ₇	c-C ₃ H ₅	oil
	1256	CH,	CH2	H	Cl	OCF ₃	н	н	C ₂ H ₅	C3H4	oil
	1257	CH,	CH ₂	H	Cl	CF,	н	Н	н	СН₂=СН-СН=СН	83-85
	1258	CH,	CH3	H	CF,	OBn	н.	н	C-C ₃ H ₅	C-C3H3	163-165
	1259	СН	CH2	Н	CF,	OH	н	н	C-C3H	c-C ₃ H ₅	245-246
	1260	сн,	CH ₂	H .	CF,	oc,H,	н	н	c-C ₃ H ₃	C-C3H3	127-128
	1261	сн	CH	Н	CF,	oc,H,	Н	н	C ₂ H ₅	c-C ₃ H ₅	-
	1262	CH,	CH ₂	Н	CF,	ос,н,	Н	н	C3H,	C−C₃H₅	-
	1263	CH,	CH ₂	H	CF,	OC,H,	н	н	СН	C-C ₄ H ₇	-
	1264	CH,	CH ₂	H	CF,	oc,h,	н	Н	СН	С,н,	-
	1265	CH,	CH ₂	н	CF,	ос,н,	н	н 	C ₂ H ₅	С,Н,	<u>-</u> \
	1266	CH,	CH ³	н	CF,	∞,н,	н	н 	C³H²	C3H2	-
	1267	CH,	CH,	н	CF,	ос,н,	Н	н.	С,Н,	С,Н,	-

WO 99/0	01454								PCT/US98	3/13913
1268	СН,	CH ₂	н	CF,	ос,н,	н	н	СН	C ₄ H,	-
1269	CH,	CH2	Н	CF,	oc,H,	Н	н	н	4-CH3O-C4H4	-
1284	CH,	CH,	Н	CH,	OH	F	н	c-C ₃ H ₅	c-C ₃ H ₅	-
1285	сн	CH2	Н	CH,	OH	F	н	C ₂ H ₅	c-C ₃ H ₅	-
1286	СН	CH ₂	н	СН,	ОН	F	н	C,H,	c-C ₃ H ₅	. -
1287	CH,	CH ³	Н	CH,	ОН	F	н	сн,	C-C4H,	-
1288	CH,	CH2	н	сн,	OH	F	н	сн	C3H7	-
1289	CH3	CH ₂	Н	CH,	ОН	F	н	C,H,	C,H,	-
1290	CH,	CH2	н	сн,	OH	F	н	C2H2	C ₂ H ₅	-
1291	CH,	CH ₂	н	CH,	OH	F	н	C ₃ H ₇	C,H,	-
1292	CH3	CH2	H	CH3	OH	F	Н	CH3	C ₄ H ₉	· -
1293	CH ₃	CH2	Н	CH,	OH	F	H,	н	4-CH ₃ O-C ₆ H ₄	-
1294	CH3	CH2	H	CH3	OCH ₃	OCH ₃	н	CH,	СН	101-102
1295	CH ₃	CH2	Н	CH,	OCH ₃	OCH,	Н	CH,	C₂H₅	oil
1296	сӊ	CH2	Н	Cl	Cl	Н	Н	C ₂ H ₅	4-CH ₃ 0-C ₆ H ₄	oil
1297	CH3	CH	H	Cl	Cl	Н	CH3	C ₂ H ₅	C₃H₅	133-135
1298	CH3	CH ₂	Н	Cl	Cl	Н	CH,	C3H2	C ₃ H ₇	123-125
1299	CH3	CH ₂	Н	Cl	Cl	Н	CH,	C ₃ H ₇	C ₃ H ₇	125-127
1300	CH3	CH ₂	Н	Cl	Cl	Н	CH3	C ₂ H ₅	C-C3H2	157-159
1301	СН,	0	H	CH3	OCH3	CH,	Н	c-C ₃ H ₅	C-C ₃ H ₅	-
1302	СН	0	н	Cl	CF,	н	Н	c-C ₃ H ₅	c-C ₃ H ₅	149-150
1303	сн,	0	H	Cl	осн	Н	Н	c-C,H,	c-C,H,	124-125
1304	CH,	0	Н	Cl	OCF,	Н	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
1305	CH,	0	н	Cl	CH3	Н	Н	c-C,H,	c-C ₃ H ₅	-
1306	CH,	0	Н	CF,	осн,	Н	Н	c-C ₃ H ₅	c-C ₃ H ₅	-
1307	CH,	0	Н	Cl	cl	Н	CH,	c-C ₃ H ₅	C-C3H2	-
1308	CH,	0	H	CH,	осн	Cl	н	c-C,H,	c-C ₃ H,	-
1309	сн	0	Н	CH,	осн	F	н.	c-C,H,	c-C ₃ H ₅	-
1310	CH,	0	H	CH,	OCH,	CH ₃	H	CH ₃	С,н,	-
1311	CH,	0	Н	Cl	CF ₃	н	н	CH,	С,н,	-
1312	CH,	0	Н	C1	OCH,	Н	H	CH,	C ₃ H ₇	-
1313	CH,	0	н	C1	OCF,	н 	н	CH,	С,Н,	-
1314	CH,	0	н	Cl	CH ₃	н	н	CH,	С,Н,	-
1315	CH ₃	0	н	CF,	осн	H	Н	CH,	C,H,	-
1316	CH,	0	Н	Cl CV	C1	Н	CH,	CH,	C,H,	<u>-</u>
1317	CH,	0	н	CH,	OCH,	C1	н	CH,	C,H,	-
1318 1319	CH,	0	H H	CH,	осн	F	Н	CH,	C,H,	oil (
1319	CH,	СН ₂	H H	C1	cı cı	н н	н н	C⁴H²	C⁴H²	oil `.
1321	CH,	_	H H	c1			н	C*H*	2-CH -C H	oil .
1341	CH ₃	CH2	п	CI	Cl	Н	п	c-C,H,	2-сн,-с,н,	

WO 99/0	1454								PCT/US98/1	3913
1322	CH,	CH ₂	н	Cl	Cl	Н	н	C ₄ H ₉	СН (СН2ОН) 2	oil
1323	CH,	CH2	н	Cl	Cl	Н	н	C,H,	CO,C,H,	oil
1324	CH,	CH2	н	Cl	Cl	Н	н	C ₆ H ₅	со,н	oil
1325	сн	CH2	н	Cl	cl	н	н	C ₆ H ₅	снон	oil
1326	CH,	CH2	н	CH,	осн,	Cl	н	н	2-C1-C ₆ H ₄	oil
1327	СН₃	CH	н	CH,	осн,	Cl	н	н	3-C1-C ₆ H ₄	oil
1328	СН,	CH2	н	CH,	OCH,	Cl	Н	н	4-Cl-C ₆ H ₆	oil
1329	сн,	CH2	н.	CH,	OCH ₃	Cl	н	н	3-CH ₂ O-C ₆ H ₄	oil
1330	CH,	CH,	н	CH,	OCH,	Cl	н	Н	3-CN-C ₆ H ₄	oil
1331	СН	CH ₂	н	CH3	осн,	Cl	Н	Н	4-CN-C _s H _e	oil
1332	СН,	СН	Н	CH,	OCH ₃	Cl	Н	Н	4-BnO-C ₆ H ₆	oil
1333	СН	CH ³	Н	CH3	осн,	Cl	н.	н	2,5-(CH ₃ O)-	oil
									C ₆ H ₃	
1334	СН,	CH3	н	CH,	OCH,	Cl	н	н	2-CH ₃ O-C ₆ H ₄	oil
1335	CH,	CH ²	Н	Cl	cl	н	Н	CIN:	c-C ₃ H ₅	oil
1336	сн,	CH2	Н	Cl	Cl	н	н	СН	CH ₂ OC ₂ H ₅	96-97
1337	CH,	CH2	Н	Cl	cl	н	Н	Н	CH (OH) CH ₂ OC ₆ H ₅	oil
1338	CH3	CH2	Н	Cl	Cl	н	н	Н	CH (OH) CH2C6H3	oil
1339	CH,	CH2	Н	Cl	Cl	н	Н	н	сн (он) с,н,	oil
1340	CH,	CH2	н	Cl	Cl	Н	Н	CH(CH ₃) ₂	C(0)-1-	154-155
									morpholinyl	
1341	CH,	CH2	H	Cl	Cl	H	Н	C2H2	CO3CH3	oil
1342	CH3	CH2	Н	Cl	Cl	H	Н	CH3	CO2CH2	oil
1343	CH,	CH2	Н	Cl	Cl	Н	Н	CH,	CN	oil
1344	CH3	CH2	Н	Cl	Cl	Н	Н	CH3	COCH	oil
1345	CH3	CH2	Н	Cl	Cl	Н	H	Н	2-C1-C ₄ H ₄	149-152
1346	сң	CH ₂	Н	Cl	Cl	Н	н	Н	3-C1-C ₄ H ₄	oil
1347	CH,	CH ₂	Н	C1	Cl	н	Н -	н	4-F-C ₆ H _e	148-149
1348	CH,	CH2	H	Cl	Cl	Н	Н	Н	$4-CN-C_6H_6$	199-200
1349	CH3	CH ₃	Н	Cl	Cl	Н	Н	Н	4-Cl-C ₆ H ₆	183-184
1350	СН	CH2	Н	C1	Cl	Н	Н	C-C ₃ H ₅	c-C,H,	-
1351	СН	CH2	н	CH ₃	OCH,	CH3	Н	C-C ₃ H ₅	c-C ₄ H,	-
1352	СН	CH	H	Cl	CF,	Н	Н	c-C ₃ H ₅	C-C,H,	-
1353	СН	CH ₂	Н	Cl	och,	Н	Н	c-C,H,	c-C ₄ H,	-
1354	СН	CH ₂	Н	C1	OCF,	Н	Н	c-C ₃ H ₅	c-C ₄ H,	
1355	-	CH2	н	Cl	CH,	н	Н	c-C ₃ H ₃	c-C ₄ H,	-
1356	_	CH2	Н	CF,	OCH,	н	Н	C-C3H3	C-C ₄ H ₇	- ,
1357	_	CH3	Н	Cl	Cl	Н	CH,	c-C ₃ H ₃	C-C4H2	- 🤇
1358	-	CH,	Н	CH,	OCH,	Cl	H	C-C ₃ H ₅	c-C ₄ H,	-
1359	CH,	CH ³	Н	CH,	осн,	P	Н	c-C ₃ H ₃	c-C ₄ H,	-

WO 99/0	1454								PCT/US98/1	3913
1360	СН	CH2	н	Cl	OCH ₃	F	н	C-C ₃ H ₅	c-C ₃ H ₅	-
1361	СН	CH2	н	Cl	осн,	F	н	C ₂ H ₅	C-C ₃ H ₅	-
1362	СН	CH,	н	Cl	осн,	F	н	C,H,	C-C ₃ H ₅	-
1363	CH,	CH2	н	Cl	осн,	F	н	СН,	c-C ₄ H,	
1364	CH3	CH ₂	н	Cl	осн,	F	н	СН	C ₃ H ₇	-
1365	СН,	CH3	Н	Cl	осн,	F	н	C ₂ H ₅	C,H,	-
1366	СН	CH2	н	Cl	осн,	F	Н.	C2H2	C₃H₅	-
1367	CH,	CH2	н	Cl	OCH ₃	F	н	C3H4	C,H,	-
1368	CH,	CH2	н	Cl	осн,	F	н	СН	C,H,	-
1369	CH,	CH2	Н	Cl	осн,	F	н	Н	4-CH ₃ O-C ₆ H ₄	
1370	CH3	CH3	Н	CF3	OCH,	Н	н	C ₂ H ₅	C ₃ H ₇	oil
1371	CH,	CH ₂	н	Cl	cl	н	н	СН	2-CH ₃ -c-C ₃ H ₄	oil
1372	CH3	CH2	н	CH3	OCH,	СН	н.	CH,	2-CH ₃ -c-C ₃ H ₄	-
1373	сн,	CH ₂	н	cl	CF,	н	н	CH,	2-CH ₃ -c-C ₃ H ₄	-
1374	CH3	CH2	н	Cl	, OCH,	Н	Н	CH,	2-CH ₃ -c-C ₃ H ₄	• •
1375	СН	CH ₂	Н	Cl	OCF,	н	н	CH,	2-CH ₃ -c-C ₃ H ₄	· -
1376	CH,	CH2	н	C1	CH,	Н	н	сн,	2-CH ₃ -c-C ₃ H ₄	-
1377	CH3	CH ₂	н	CF,	осн,	н	н	сн,	2-CH ₃ -c-C ₃ H ₄	-
1378	CH3	CH3	н	Cl	Cl	н	CH3	СН₃	2-CH ₃ -c-C ₃ H ₄	-
1379	CH,	CH2	н	CH,	OCH ₃	Cl	н	СН,	2-CH ₃ -c-C ₃ H ₄	-
1380	CH,	0	н	Cl	Cl	Н	н	СН	2-CH ₃ -C-C ₃ H ₄	-
1381	сн,	CH ₂	н	Cl	C1	Н	H	CH,	2-C ₆ H ₅ -c-C ₃ H ₆	-
1382	СН	CH2	Н	CH,	OCH,	CH,	н.	CH2	2-C ₆ H ₅ -c-C ₃ H ₆	-
1383	CH3	CH2	Н	Cl	CF,	н	н	CH,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1384	CH,	CH2	Н	cı	OCH,	н	Н	CH,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1385	CH,	CH3	н	Cl	OCF,	Н	Н	CH,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1386	CH3	CH2	Н	cı	сн	Н	Н	CH3	2-C ₆ H ₅ -c-C ₃ H ₄	-
1387	сн	CH2	Н	CF,	осн,	н	н	CH,	2-C ₆ H ₅ -c-C ₃ H ₄	-
1388	CH3	CH2	н	Cl	Cl	н	СН	CH ₃ .	2-C ₆ H ₅ -c-C ₃ H ₄	-
1389	CH,	CH2	Н	CH,	OCH,	Cl	Н	CH,	2-C ₆ H ₅ -c-C ₅ H ₄	-
1390	CH,	0	н	Cl	Cl	н	Н	CH,	2-C ₄ H ₅ -c-C ₃ H ₄	-
1391	CH,	CH ₂	н	C1	c1	н	н	СН,	2-(2- pyridyl)- c-C ₃ H ₄	-
1392	CH3	CH ₂	н	СН,	OCH,	СН	н	СН,	2-(2- pyridyl)- c-C,H,	-
1393	CH,	CH	н	Cl	CF,	н	н	СН	2-(2- pyridy1)- c-C,H ₄	-
1394	сн	CH2	н	Cl	OCH,	н	н .	СН	2-(2- pyridyl)-	-

WO 99/01454								PCT/US98/13913		
1395	СН3	CH ₂	н	cl	OCF,	н	Н	CH3	2-(2- pyridyl)- c-C ₃ H ₄	-
1396	CH,	CH₂	Н	Cl	СН	Н	Н	сң	2-(2- pyridyl)- c-C ₃ H ₄	-
1397	СН3	CH ₂	н	CF,	OCH3	н	н	CH3	2-(2- pyridyl)- c-C,H,	· -
1398	сн,	CH2	н	cı	C1	Н	сң	сң	2-(2- pyridyl)- c-C,H,	-
1399	сн,	CH ₂	н	CH,	OCH ₃	Cl	H	СН	2-(2- pyridyl)- c-C ₃ H ₄	-
1400	СН,	0	н	cl	C1	н	н	сн,	2-(2- pyridyl)- c-C,H,	-

Key:

20

25

- (a) Where the compound is indicated as an "oil", data is provided below:

 Example 3 spectral data: TLC R, 0.27 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 5 CDCl₃): δ 8.90 (1H, s), 6.95 (2H, s), 4.45 (1H, br), 4.27-4.17 (2H, m), 3.85 (1H, dd, J = 9.5, 4.8 Hz), 3.27 (3H, s), 2.94 (2H, q, J = 7.5 Hz), 2.56-2.46 (1H, m), 2.32 (3H, s), 2.06 (3H, s), 2.03 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 0.85 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 355 (3), 354 (25), 353 (100). Analysis calc'd for $C_{21}H_{22}N_4O \cdot 1.5H_2O$: C, 66.46; H, 8.23; N, 14.76; found: C, 67.00; H, 8.10; N, 14.38.
- 10 Example 8 spectral data: TLC R, 0.34 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.46 (1H, br), 3.41-3.33 (1H, m), 3.22 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 2.93-2.85 (1H, m), 2.84-2.69 (2H, m), 2.51 (1H, br), 2.32 (3H, s), 2.30-2.20 (1H, m), 2.04 (6H, s), 1.37 (3H, t, J = 7.7 Hz), 0.84 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{20}N_4O$: 366.2420, found 366.2400; 369 (3), 368 (27), 367 (100).
 - Example 10 spectral data: TLC R, 0.13 (ethyl acetate). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 8.10 (1H, s), 7.96 (1H, s), 6.96 (2H, s), 4.39 (1H, br), 4.24-4.14 (1H, m), 4.12-4.00 (1H, m), 3.20 (1H, br), 2.80 (2H, q, J = 7.0 Hz), 2.78-2.68 (1H, m), 2.42 (1H, br), 2.33 (3H, s), 2.13-2.04 (1H, m), 2.06 (3H, s), 2.03 (3H, s), 1.33 (3H, t, J = 7.5 Hz), 0.80 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{20}N_{2}$: 404.2563, found 404.2556; 406 (4), 405 (28), 404 (100).
 - Example 11 spectral data: TLC R, 0.60 (ethyl acetate). 1 H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 8.51 (1H, s), 6.96 (2H, s), 4.78-4.68 (1H, m), 4.57-4.47 (1H, m), 4.32-4.22 (1H, m), 3.43 (1H, br), 2.81 (2H, q, J = 6.9 Hz), 2.78 (1H, br), 2.43 (1H, br), 2.33 (3H, s), 2.10-2.00 (1H, m), 2.07 (3H, s), 2.03 (3H, s), 1.32 (3H, t, J = 7.0 Hz), 0.78

(3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{29}N_{0}$: 405.2515, found 405.2509; 407 (4), 406 (27), 405 (100).

Example 18 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.00 (1H, s), 7.26 (1H, obscurred), 6.96 (2H, s), 6.86-6.76 (3H, m), 5.46

- 5 (2H, s), 3.76 (3H, s), 2.85 (2H, q, J = 7.7 Hz), 2.33 (3H, s), 2.06 (6H, s), 1.28 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 389 (4), 388 (28), 387 (100). Analysis calc'd for $C_{24}H_{26}N_4$ 0: C, 74.58; H, 6.78; N, 14.50; found: C, 74.36; H, 6.73; N, 13.83. Example 27 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 6.95 (2H, s), 4.25 (2H, t, J = 7.5 Hz), 2.93 (2H, q, J = 7.7
- 10 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.91-1.86 (2H, m), 1.50-1.38 (2H, m), 1.39 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.5 Hz). MS (NH₂-CI): m/e 325 (3), 324 (23), 323 (100). Example 28 spectral data: TLC R₇ 0.28 (30:70 ethyl acetate-hexame). ¹H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 6.95 (2H, s), 4.24 (2H, t, J = 7.9 Hz), 2.93 (2H, q, J = 7.6 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.90 (2H, m), 1.44-1.36 (7H, m), 0.93 (3H, t, J = 7.6 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.90 (2H, m), 1.44-1.36 (7H, m), 0.93 (3H, t, J = 7.6 Hz)
- 7.1 Hz). MS (NH₃-CI): m/e 339 (3), 338 (25), 337 (100). Analysis calc'd for $C_{21}H_{22}N_4$: C, 74.96; H, 8.40; N, 16.65; found: C, 74.24; H, 8.22; N, 16.25. Example 34 spectral data: MS (ESI): m/e 365 (M+2), 363 (M+H', 100%). Example 35 spectral data: TLC R, 0.31 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41
- 20 (1H, dd, J = 8.4, 1.8 Hz), 4.27 (1H, br), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.11-1.98 (2H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84 (3H, t, J = 7.7 Hz), 0.82 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{23}N_4Cl_2$: 391.1456, found 391.1458; 395 (11), 394 (14), 393 (71), 392 (29), 391 (100).
- Example 38 spectral data: MS (NH₃-CI): m/e 375 (M+H², 100%).

 Example 40 spectral data: MS (NH₃-CI): m/e 377 (M+H², 100%).

 Example 48 spectral data: MS (NH₃-CI): m/e 423 (M+H², 100%).

 Example 50 spectral data: TLC R₂ 0.27 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.70 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.41
- 30 (1H, dd, J = 8.0, 1.8 Hz), 7.36-7.30 (2H, m), 7.24-7.19 (3H, m), 5.50 (2H, s), 2.87 (2H, q, J = 7.5 Hz), 1.31 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc d for $C_{20}H_{16}N_4Cl_2$: 382.0752, found 382.0746; 388 (3), 387 (12), 386 (16), 385 (66), 384 (26), 383 (100).

Example 51 spectral data: MS (NH,-CI): m/e 413 (M+H, 100%).

Example 54 spectral data: MS (NH₃-CI): m/e 459 (M+H², 100%). Example 68 spectral data: TLC R₂ 0.28 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 6.69 (2H, s), 4.30-4.19 (1H, m), 3.82 (3H, s), 2.92 (2H, q, J = 7.6 Hz), 2.41 (1H, br), 2.08 (3H, s), 2.07 (3H, s), 2.06 (1H, br), 1.38 (3H, t, J = 7.6 Hz), 1.36-1.22 (4H, m), 1.10-0.98 (1H, m), 0.96-0.87 (1H, m), 0.84 (3H, t,

J = 7.0 Hz), 0.81 (3H, t, J = 6.7 Hz). MS (NH₃-CI): m/e 383 (4), 382 (27), 381 (100).

Example 122 spectral data: TLC R, 0.10 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.57 (1H, s), 6.94 (2H, s), 4.14 (2H, d, J = 7.7 Hz), 3.48 (1H, q, J = 7.0 Hz), 2.63 (3H, s), 2.31 (3H, s), 2.01 (6H, s), 1.43-1.19 (8H, m), 0.94 (3H, t, J = 7.3 Hz), 0.84 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e 367 (3), 366 (25), 365 (100).

Example 123 spectral data: TLC R, 0.24 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 6.94 (2H, s), 4.25 (2H, t, J = 8.1 Hz), 3.48 (1H, q, J

- 10 = 7.1 Hz), 2.63 (3H, s), 2.31 (3H, s), 2.01 (6H, s), 1.81 (2H, m), 1.47-1.19 (8H, m), 0.91 (6H, m). MS (NH₃-CI): m/e 381 (4), 380 (27), 379 (100). Analysis calc'd for C₂₄H₂₄N₄: C, 76.15; H, 9.05; N, 14.80; found: C, 76.29; H, 9.09; N, 14.75.

 Example 202 spectral data: TLC RE 0.20 (10:90 ethyl acetate-becape). 1H NMR (300)
 - Example 202 spectral data: TLC RF 0.20 (10:90 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl3): d 8.82 (1H, s), 6.96 (2H, s), 4.46-4.38 (1H, m), 4.13 (3H, s), 2.34
- 15 (3H, s), 2.28-2.11 (2H, m), 2.07 (6H, s), 1.95-1.81 (2H, m), 1.38-1.17 (3H, m), 1.14-0.99 (1H, m), 0.83 (3H, t, J = 7.7 Hz), 0.80 (3H, t, J = 7.7 Hz). MS (NH3-CI): m/e calc'd for $C_{22}H_{20}N_4O$: 366.2420, found 366.2408; 369 (4), 368 (26), 367 (100). Example 404 spectral data: TLC R, 0.20 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 6.93 (2H, s), 4.20 (2H, t, J = 7.7 Hz), 2.90 (2H, q, J = 7.6 Hz),
- 20 2.83 (3H, s), 2.30 (3H, s), 2.03 (6H, s), 1.88 (2H, m), 1.42-1.34 (7H, m), 0.93 (3H, t, J = 6 Hz). MS (NH₃-CI): m/e 353 (3), 352 (27), 351 (100).
 - Example 414 spectral data: TLC R, 0.36 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.66 (1H, d, J = 8.1 Hz), 7.32-7.26 (2H, m), 4.54 (1H, m), 2.95 (2H, q, J = 7.4 Hz), 2.43 (3H, s), 2.39 (1H, m), 2.03 (1H, m), 1.74 (3H, d, J = 7.0
- 25 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.31 (1H, m), 1.16 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{24}N_4Cl$: 343.1690, found 343.1704; 346 (7), 345 (34), 344 (23), 343 (100).
 - Example 415 spectral data: TLC R, 0.25 (10:90 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.71 (1H, d, J = 8.1 Hz), 7.34-7.30 (2H, m), 4.30-4.20 (1H, m),
- 30 2.94 (2H, q, J = 7.5 Hz), 2.50-2.35 (2H, m), 2.44 (3H, s), 2.08-1.95 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.29 (3H, m), 1.08-0.98 (1H, m), 0.84 (3H, t, J = 7.0 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 374 (7), 373 (33), 372 (25), 371 (100). Analysis calc'd for $C_{21}H_{27}CIN_4$: C, 68.00; H, 7.35; N, 15.10; found: C, 68.25; H, 7.30; N, 14.85.
 - Example 424 spectral data: TLC R, 0.28 (5:95 ethyl acetate-dichloromethane). H NMR (300
- 35 MHz, CDCl₃): δ 8.95 (1H, s), 7.60 (1H, d, J = 7.7 Hz), 7.37 (1H, d, J = 0.8 Hz), 7.21 (1H, dd, J = 7.7, 0.8 Hz), 4.58-4.50 (1H, m), 2.96 (2H, dq, J = 7.5, 2.0 Hz), 2.46-2.33 (1H, m), 2.40 (3H, s), 2.08-1.96 (1H, m), 1.74 (3H, d, J = 6.6 Hz), 1.40 (3H, t, J = 7.5 Hz), 1.39-1.22 (1H, m), 1.20-1.08 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI):

m/e calc'd for $C_{19}H_{24}ClN_4$: 343.1690, found 343.1697; 346 (8), 345 (38), 344 (25), 343 (100).

Example 434 spectral data: TLC R, 0.78 (50:50 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 6.95 (2H, s), 2.97 (2H, J = 7.3 Hz), 2.60-2.50 (1H, m), 2.41-

- 5 2.33 (1H, m), 2.32 (3H, s), 2.20-2.10 (1H, m), 2.05 (3H, s), 2.02 (3H, s), 1.85-1.80 (1H, m), 1.39 (3H, t, J = 7.5 Hz), 0.85 (3H, t, J = 7.5 Hz), 0.50-0.35 (2H, m), 0.25-0.15 (1H, m), 0.10-0.00 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{22}H_{20}N_4$: 362.2470, found 362.2458; 365 (4), 364 (27), 363 (100).
 - Example 436 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 10 CDCl₃): δ 8.88 (1H, s), 7.77 (1H, d, J = 9.2 Hz), 6.87 (2H, m), 4.40-4.25 (1H, m), 3.86 (3H, s), 2.99 (2H, q, J = 7.5 Hz), 2.60-2.35 (2H, m), 2.47 (3H, s), 2.15-2.00 (1H, m), 1.80-1.70 (1H, m), 1.45 (3H, t, J = 7.5 Hz), 0.84 (3H, t, J = 7.5 Hz), 0.50-0.35 (2H, m), 0.30-0.20 (1H, m), 0.10-0.00 (1H, m), -0.85 -0.95 (1H, m).
 - Example 437 spectral data: TLC R_{τ} 0.25 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz,
- 15 CDCl₃): δ 8.90 (1H, s), 7.73 (1H, d, J = 9.2 Hz), 6.89-6.86 (2H, m), 4.58-4.51 (1H, m), 3.86 (3H, s), 2.95 (2H, dq, J = 7.6, 1.8 Hz), 2.47 (3H, s), 2.45-2.34 (1H, m), 2.07-1.97 (1H, m), 1.73 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.6 Hz), 1.40-1.27 (1H, m), 1.20-1.07 (1H, m), 0.92 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{27}N_4O$: 339.2185, found 339.2187; 341 (3), 340 (22), 339 (100). Analysis calc'd for $C_{20}H_{28}N_4O$: C,
- 25 calc'd for $C_{22}H_{24}N_4O_2$: C, 71.11; H, 6.24; N, 14.42; found: C, 71.14; H, 5.97; N, 14.03. Example 439 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.77 (1H, d, J = 3.1 Hz), 6.89 (2H, m), 3.86 (3H, s), 3.53 (1H, m), 2.91 (2H, q, J = 7.5 Hz), 2.49 (3H, s), 2.28 (1H, m), 2.21 (1H, m), 1.43 (3H, t, J = 7.3 Hz), 0.86 (3H, t, J = 7.3 Hz), 0.78 (2H, m), 0.46 (2H, m), 0.20 (1H, m).
- 30 Example 440 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.73 (1H, d, J = 9.1 Hz), 6.90-6.86 (2H, m), 4.60-4.40 (1H, m), 3.86 (3H, s), 2.95 (2H, dq, J = 7.7, 2.2 Hz), 2.47 (3H, s), 2.44-2.36 (1H, m), 2.05-1.98 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.5 Hz), 1.40-1.20 (5H, m), 1.13-1.05 (1H, m), 0.830 (3H, t, J = 6.6 Hz).
- 35 Example 502 spectral data: TLC R, 0.63 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 6.95 (2H, s), 4.60-4.47 (1H, m), 2.93 (2H, q, J = 7.7 Hz), 2.43-2.33 (1H, m), 2.32 (3H, s), 2.16-2.06 (1H, m), 2.05 (3H, s), 2.03 (3H, s), 1.76 (3H, d, J = 7.0 Hz), 1.36 (3H, t, J = 7.7 Hz), 1.36-1.20 (4H, m), 0.86 (3H, t, J = 7.2

Hz). MS (NH₂-CI): m/e calc'd for $C_{22}H_{20}N_4$: 350.2470, found 350.2480; 353 (3), 352 (28), 351 (100).

Example 503 spectral data: ¹H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 6.94 (2H, s), 4.58-4.48 (1H, m), 2.93 (2H, q, J = 7.3 Hz), 2.32 (3H, s), 2.05 (3H, s), 2.02 (3H, s), 1.76 (3H, d, J = 6.6 Hz), 1.36 (3H, t, J = 7.3 Hz), 1.34-1.05 (8H, m), 0.88 (3H, t, J = 7 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{32}N_4$: 365.2705, found 365.2685; 367 (3), 366 (27), 365 (100).

Example 506 spectral data: TLC R, 0.28 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.67 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 1.8 Hz), 7.42-7.37

10 (1H, m), 4.56 (1H, hextet, J = 7.1 Hz), 2.99 (2H, q, J = 7.5 Hz), 2.43-2.33 (1H, m), 2.09-1.97 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.07 (2H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 367 (12), 366 (14), 365 (67), 364 (24), 363 (100).

Example 507 spectral data: MS (NH₃-CI): m/e 377 (M+H^{*}, 100%).

- Example 511 spectral data: TLC R, 0.51 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.87 (1H, d, J = 8.1 Hz), 7.83 (1H, d, J = 1.1 Hz), 7.68 (1H, dd, J = 8.1, 1.1 Hz), 3.60-3.51 (1H, m), 2.94 (2H, q, J = 7.5 Hz), 2.53-2.39 (1H, m), 2.36-2.20 (1H, m), 1.96 (1H, br), 1.42 (3H, t, J = 7.5 Hz), 0.88 (3H, t, J = 7.3 Hz), 0.88-0.78 (1H, m), 0.52-0.44 (2H, m), 0.24-0.16 (1H, m). MS (NH₂-CI): m/e 412 (7), 411
 (33), 410 (23), 409 (100).
 - Example 513 spectral data: TLC R, 0.62 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.7 Hz), 7.68 (1H, dd, J = 8.0, 0.7 Hz), 4.21 (1H, br), 2.96 (2H, q, J = 7.5 Hz), 2.42 (2H, br), 2.12-1.97 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.40-1.20 (4H, m), 0.85 (3H, t, J = 7.3 Hz), 0.83
- 25 (3H, t, J = 7.6 Hz). MS (NH₃-CI): m/e 428 (8), 427 (38), 426 (29), 425 (100).

 Example 514 spectral data: TLC R₇ 0.51 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.86 (1H, d, J = 8.1 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.1, 0.8 Hz), 4.20 (1H, br), 2.97 (2H, q, J = 7.7 Hz), 2.54-2.39 (2H, m), 2.15-2.01 (2H, m), 1.43 (3H, t, J = 7.7 Hz), 0.84 (6H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 400 (7), 399 (37), 398 (26), 397 (100).
 - Example 524 spectral data: TLC R, 0.50 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.76 (1H, d, J = 9.1 Hz), 6.90-6.87 (2H, m), 4.35 (1H, v hr), 3.86 (3H, s), 2.93 (2H, q, J = 7.6 Hz), 2.48 (3H, s), 2.39 (2H, hr), 2.00-1.90 (2H, m), 1.43 (3H, t, J = 7.6 Hz), 1.38-1.22 (2H, m), 1.18-1.02 (2H, m), 0.90 (6H, t, J = 7.3
- 35 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{31}N_4O$: 367.2498, found 367.2506; 369 (3), 368 (25), 367 (100).

Example 526 spectral data: TLC R, 0.28 (10:90 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.69 (1H, d, J = 8.1 Hz), 7.34-7.30 (2H, m), 4.40-4.35 (1H, m), 2.93 (2H, q, J = 7.4 Hz), 2.44 (3H, s), 2.38 (2H, m), 1.96 (2H, m), 1.43 (3H, t, J =

PCT/US98/13913 WO 99/01454

7.5 Hz), 1.35-1.22 (2H, m), 1.15-1.05 (2H, m), 0.90 (6H, t, J = 7.1 Hz). MS (NH₂-CI): m/e 374 (8), 373 (35), 372 (25), 371 (100). Analysis calc'd for $C_{1}H_{2}N_{4}Cl$: C, 68.00; H, 7.35; N, 15.10; found: C, 67.89; H, 7.38; N, 14.94.

Example 528 spectral data: TLC R, 0.65 (30:70 ethyl acetate-hexane). H NMR (300 MHz,

- CDCl₂): δ : 8.97 (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 1.1 Hz), 7.67 (1H, dd, J = 8.0, 1.1 Hz), 4.38 (1H, br), 2.95 (2H, q, J = 7.5 Hz), 2.39 (2H, br), 2.04-1.92 (2H, br), 1.42 (3H, t, J = 7.5 Hz), 1.40-1.21 (3H, m), 1.19-1.03 (1H, m), 0.91 (6H, t, t)J = 7.3 Hz). MS (NH₃-CI): m/e 428 (8), 427 (37), 426 (27), 425 (100).
 - Example 538 spectral data: TLC R, 0.56 (30:70 ethyl acetate-hexane). HNMR (300 MHz,
- CDCl₁): δ 8.96 (1H, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.0, 0.8 Hz), 3.77 (1H, br), 2.95 (2H, q, J = 7.5 Hz), 2.61 (1H, br), 2.08 (1H, br), 1.45 (3H, t, J = 7.5 Hz), 1.36-1.25 (1H, m), 1.17 (3H, d, J = 6.6 Hz), 0.71 (3H, t, J = 7.3 Hz), 0.69 (3H, d, J = 7.0 Hz). MS (NH₂-CI): m/e 414 (7), 413 (33), 412 (24), 411 (100).
- 15 Example 534 spectral data: MS (ESI): m/e 363 (M+2), 361 (M, 100 %). Example 544 spectral data: TLC R, 0.63 (50:50 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_3$): δ 8.90 (1H, s), 7.74 (1H, d, J = 9.1 Hz), 6.89-6.86 (2H, m), 3.86 (3H, s), 3.79-3.73 (1H, m), 2.93 (3H, dq, J = 7.7, 2.6 Hz), 2.49 (3H, s), 2.03-1.99 (1H, m), 1.81 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.3 Hz), 0.84-0.74 (2H, m), 0.53-0.41 (2H, 20 m), 0.28-0.21 (1H, m).
 - Example 548 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84 (1H, d, J = 7.7 Hz), 7.82 (1H, d, J = 0.9 Hz), 7.68 (1H, dd, J = 7.7, 0.9 Hz), 3.83-3.70 (1H, m), 3.00-2.90 (2H, m), 2.09-1.98 (1H, m), 1.83 (3H, d, J = 7.0 Hz), 1.40 (3H, t, J = 7.3 Hz), 0.88-0.78 (1H, m), 0.57-0.41 (2H, m),
- 25 0.30-0.20 (1H, m). MS (NH₂-CI): m/e 398 (6), 397 (31), 396 (22), 395 (100). Example 551 spectral data: TLC R, 0.56 (50:50 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_3$): δ 8.93 (1H, s), 6.94 (2H, s), 4.75 (1H, heptet, J = 7.0 Hz), 2.95 (2H, q, J = 7.0 Hz) 7.7 Hz), 2.32 (3H, s), 2.04 (6H, s), 1.80 (6H, d, J = 7.0 Hz), 1.36 (3H, t, J = 7.7Hz). MS (NH3-CI): m/e 311 (4), 310 (34), 309 (100); Analysis calc'd for C₁₉H₂₄N₄ • 0.5H₂O:
- C, 71.89; H, 7.94; N, 17.65; found: C, 71.59; H, 7.83; N, 17.41. Example 558 spectral data: TLC R, 0.53 (30:70 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_1$): δ 8.98 (1H, s), 7.86-7.81 (2H, m), 7.67 (1H, dd, J = 8.4, 1.1 Hz), 4.60-4.48 (1H, m), 3.01-2.93 (2H, m), 2.49-2.35 (1H, m), 2.13-2.00 (1H, m), 1.76 (3H, d, J = 7.0)Hz), 1.41 (3H, t, J = 7.5 Hz), 1.40-1.20 (4H, m), 0.87 (3H, t, J = 7.3 Hz). MS (NH₂-35

CI): m/e 414 (8), 413 (38), 412 (27), 411 (100).

Example 564 spectral data: TLC R, 0.34 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₁): δ 8.89 (1H, s), 7.77 (1H, d, J = 9.2 Hz), 6.89 (2H, m), 4.30-4.20 (1H, m), 3.86 (3H, s), 2.93 (2H, q, J = 7.5 Hz), 2.48 (3H, s), 2.45-2.35 (2H, m), 2.10-1.95 (2H, m),

1.44 (3H, t, J = 7.5 Hz), 1.40-1.20 (3H, m), 1.10-0.95 (1H, m), 0.84 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz).

Example 571 spectral data: TLC R, 0.40 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.51 (1H, br), 3.44-3.24 (4H, m), 2.96 (2H, q, J = 7.3 Hz), 2.95-2.87 (1H, m), 2.85-2.75 (1H, m), 2.59-2.49 (1H, m), 2.32 (3H, s), 2.27-2.18 (1H, m), 2.04 (3H, s), 2.04 (3H, s), 1.38 (3H, t, J = 7.7 Hz), 1.12 (3H, t, J = 7.0 Hz), 0.84 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc d for $C_{21}H_{21}N_{4}O$: 380.2576, found

380.2554; 383 (4), 382 (28), 381 (100).

Example 581 spectral data: TLC R, 0.33 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz,

- 10 CDCl₃): δ 8.89 (1H, s), 6.95 (2H, s), 4.49-4.39 (1H, m), 4.23-4.13 (1H, m), 3.91 (1H, dd, J = 9.9, 4.8 Hz), 3.48 (1H, dq, J = 9.1, 7.0 Hz), 3.30 (1H, dq, J = 9.1, 7.0 Hz), 2.95 (2H, q, J = 7.7 Hz), 2.60-2.47 (1H, m), 2.32 (3H, s), 2.15-2.01 (1H, m), 2.04 (3H, s), 2.03 (3H, s), 1.37 (3H, t, J = 7.5 Hz), 1.00 (3H, t, J = 7.0 Hz), 0.86 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{31}N_4O$: 367.2498, found 367.2497; 369 (4), 368 (27), 367 (100).
 - Example 591 spectral data: TLC R, 0.42 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 6.95 (2H, s), 3.76 (1H, br), 3.47-3.40 (1H, m), 3.21 (3H, s), 2.99-2.90 (1H, m), 2.88 (2H, q, J = 7.3 Hz), 2.76 (1H, br), 2.51-2.41 (1H, m), 2.32 (3H, s), 2.09 (1H, br), 2.08 (3H, s), 2.04 (3H, s), 1.35 (3H, t, J = 7.3 Hz), 0.84-0.76 (1H, m), 0.56-0.44 (2H, m), 0.30-0.21 (1H, m), MS (NH-CI): m/e calc'd for CaH-NAC:
- 20 (1H, m), 0.56-0.44 (2H, m), 0.30-0.21 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{23}H_{31}N_4O$: 379.2498, found 379.2514; 381 (4), 380 (27), 379 (100).

Example 690 spectral data: TLC R, 0.12 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): d 9.01 (1H, s), 7.38-7.22 (5H, m), 6.75 (1H, s), 6.69 (1H, s), 5.48 (2H, s), 3.70 (3H, s), 2.84 (2H, q, J = 7.7 Hz), 2.37 (3H, s), 2.05 (3H, s), 1.26 (3H, t, J = 7.7 Hz). MS (NH₂-CI): m/e 375 (4), 374 (28), 373 (100).

Example 692 spectral data: TLC R, 0.32 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.48 (1H, s), 7.37-7.18 (5H, m), 7.11 (1H, s), 5.49 (2H, s), 2.84 (2H, q, J = 7.3 Hz), 2.38 (3H, s), 2.29 (6H, s), 1.31 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{24}N_4$: 356.2001, found 356.1978; 359 (4), 358 (28), 357 (100).

30

Example 693 spectral data: TLC R, 0.22 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.78 (1H, d, J = 9.5 Hz), 6.90-6.87 (2H, m), 3.86 (3H, s), 3.62 (1H, br), 2.91 (2H, q, J = 7.5 Hz), 2.50 (3H, s), 2.40 (1H, br), 2.26-2.13 (1H, m), 1.92 (1H, br), 1.58 (1H, br), 1.43 (3H, t, J = 7.5 Hz), 1.35-1.25 (1H, m), 1.13-1.03 (1H, m), 0.95-0.75 (2H, m), 0.85 (3H, t, J = 7.1 Hz), 0.54-0.42 (2H, m), 0.22-0.17 (1H,

35 (1H, m), 0.95-0.75 (2H, m), 0.85 (3H, t, J = 7.1 Hz), 0.54-0.42 (2H, m), 0.22-0.17 (1H m). MS (NH₃-CI): m/e 381 (4), 380 (25), 379 (100). Example 697 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz,

CDCl₃): δ 8.89 (1H, s), 7.74 (1H, d, J = 9.5 Hz), 6.90-6.86 (2H, m), 4.58-4.45 (1H, m), 2.95 (2H, dq, J = 7.7, 2.2 Hz), 2.48 (3H, s), 2.45-2.35 (1H, m), 2.09-1.99 (1H, m),

PCT/US98/13913 WO 99/01454

1.74 (3H, d, J = 7.0 Hz), 1.42 (3H, t, J = 7.5 Hz), 1.37-1.23 (3H, m), 1.11-1.03 (1H, m), 0.86 (3H, t, J = 7.0 Hz).

Example 724 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.75 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,

- dd, J = 8.4, 2.6 Hz), 3.87 (3H, s), 3.76 (1H, br), 2.94 (2H, q, J = 7.3 Hz), 2.61 (1H, br), 2.09 (1H, br), 1.45 (3H, t, J = 7.3 Hz), 1.36-1.26 (1H, m), 1.15 (3H, d, J = 6.6Hz), 0.71 (3H, t, J = 7.3 Hz), 0.68 (3H, d, J = 6.6 Hz). MS (NH₃-CI): m/e 377 (1), 376 (8), 375 (38), 374 (25), 373 (100).
- Example 725 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.88 (1H, s), 7.80 (1H, d, J = 9.2 Hz), 6.89 (2H, m), 3.86 (3H, s), 3.75 (1H, m), 2.92 (2H, q, J = 7.4 Hz), 2.60 (1H, m), 2.48 (3H, s), 2.05 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.16 (3H, d, J = 7.0 Hz), 0.70 (3H, t, J = 7.3 Hz), 0.67 (3H, d, J = 6.6 Hz).
- Example 727 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). H NMR (300 MHz, 15 cDCl₃): δ 8.90 (1H, s), 7.84 (1H, d, J = 2.2 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 2.2 Hz), 3.76 (1H, br), 2.93 (1H, q, J = 7.3 Hz), 2.60 (1H, br), 2.08 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 1.37-1.27 (1H, m), 1.16 (3H, d, J = 7.0 Hz), 0.69 (3H, t, J = 7.3 Hz), 0.67 (3H, d, J = 7.0 Hz). MS (NH₂-CI): m/e 414 (7), 413 (33), 412 (27), 411 (100).
- Example 750 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_{3}$): δ 8.94 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 3.87 (3H, s), 3.63 (1H, v br), 2.92 (2H, q, J = 7.3 Hz), 2.38 (1H, br), 2.22-2.10 (1H, m), 1.94 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 1.41-1.29 (1H, br)m), 1.23-1.08 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.89-0.79 (1H, m), 0.51-0.41 (2H, m),
- 25 0.25-0.15 (1H, m). MS (NH₂-CI): m/e 388 (8), 387 (34), 386 (25), 385 (100). Example 751 spectral data: TLC R_{γ} 0.36 (40:60 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_3$: δ 8.89 (1H, s), 7.77 (1H, d, J = 9.1 Hz), 6.90 (2H, m), 3.86 (3H, s), 3.62 (1H, m), 2.84 (2H, q, J = 7.5 Hz), 2.49 (3H, s), 2.40 (1H, m), 2.19 (1H, m), 1.90 (1H, m), 1.43 (3H, t, J = 7.5 Hz), 1.38 (1H, m), 1.19 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.80
- (1H, m), 0.49 (2H, m), 0.21 (1H, m). Example 753 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_1$): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.5 Hz), 7.65 (1H, dd, J = 8.5, 1.8 Hz), 3.65 (1H, br), 2.92 (1H, q, J = 7.5 Hz), 2.38 (1H, br), 2.25-2.14 (1H, m), 1.94 (1H, br), 1.43-1.26 (1H, m), 1.40 (3H, t, J = 7.5 Hz), 1.21-1.06 (1H, m),
- 35 0.92 (3H, t, J = 7.3 Hz), 0.91-0.79 (1H, m), 0.52-0.44 (2H, m), 0.22-0.16 (1H, m). MS (NH₂-CI): m/e 426 (9), 425 (42), 424 (31), 423 (100).

Example 767 spectral data: MS (NH₃-CI): m/e 379 (M+H², 100%).

30

Example 776 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_3$: δ 8.93 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,

dd, J = 8.4, 2.6 Hz), 4.28 (1H, br), 3.87 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.10-1.93 (2H, m), 1.43 (3H, t, J = 7.3 Hz), 1.40-1.23 (1H, m), 1.18-1.03 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.82 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{24}ClN_4O$: 373.1795, found 373.1815; 376 (8), 375 (35), 374 (24), 373 (100).

- 5 Example 777 spectral data: TLC R, 0.46 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.76 (1H, d, J = 9.0 Hz), 6.90-6.87 (2H, m), 4.29 (1H, br), 3.86 (3H, s), 2.94 (2H, q, J = 7.4 Hz), 2.48 (3H, s), 2.40 (2H, br), 2.10-1.92 (2H, m), 1.44 (3H, t, J = 7.4 Hz), 1.37-1.22 (1H, m), 1.18-1.02 (1H, m), 0.90 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc d for C₂₁H₂₉N₄O: 353.2341, found 353.2328; 355 (3), 354 (23), 353 (100).
- Example 778 spectral data: TLC R, 0.58 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.83 (1H, d, J = 0.8 Hz), 7.68 (1H, dd, J = 8.0, 0.8 Hz), 4.30 (1H, br), 2.96 (2H, q, J = 7.5 Hz), 2.41 (2H, br), 2.11-1.95 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 1.42-1.22 (2H, m), 0.92 (3H, t, J = 7.3 Hz), 0.83
- 15 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 414 (8), 413 (39), 412 (28), 411 (100). Example 779 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.72 (1H, d, J = 8.0 Hz), 7.65 (1H, dd, J = 8.0, 1.8 Hz), 4.31 (1H, br), 2.94 (1H, q, J = 7.5 Hz), 2.40 (2H, br), 2.10-1.93 (2H, m), 1.40 (3H, t, J = 7.5 Hz), 1.37-1.21 (1H, m), 1.19-1.02 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz), MS (NH-CI): m/e 414 (9), 413 (43), 412 (31), 411
- 20 = 7.3 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₂-CI): m/e 414 (9), 413 (43), 412 (31), 411 (100).
 - Example 793 spectral data: MS (NH₃-CI): m/e 367 (M+H², 100%).
 - Example 799 spectral data: TLC R, 0.61 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.47 (1H, s), 7.10 (1H, s), 4.28 (1H, br), 2.93 (2H, q, J = 7.3
- 25 Hz), 2.41 (1H, br), 2.36 (3H, s), 2.28 (6H, s), 2.07-1.91 (3H, m), 1.42 (3H, t, J = 7.3 Hz), 1.35-1.21 (1H, m), 1.19-1.03 (1H, m), 0.90 (3H, t, J = 7.2 Hz), 0.81 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{30}N_4$: 350.2470, found 350.2476; 353 (3), 352 (24), 351 (100).
- Example 802 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, 30 cDCl₃): 8 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 1.8 Hz), 3.53 (1H, br), 2.91 (1H, q, J = 7.4 Hz), 2.52-2.35 (1H, m), 2.34-2.20 (1H, m), 1.95 (1H, br), 1.40 (3H, t, J = 7.4 Hz), 0.89-0.79 (1H, m), 0.87 (3H, t, J = 7.3 Hz), 0.55-0.42 (2H, m), 0.25-0.15 (1H, m). MS (NH₃-CI): m/e 412 (8), 411 (41), 410 (29), 409 (100).
- Example 803 spectral data: TLC R, 0.33 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.85 (1H, d, J = 2.2 Hz), 7.71 (1H, d, J = 8.4 Hz), 7.64 (1H, dd, J = 8.4, 2.2 Hz), 3.77 (1H, dq, J = 9.9, 7.0 Hz), 2.93 (1H, dq, J = 7.5, 2.0 Hz), 2.09-1.98 (1H, m), 1.82 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 0.86-0.78 (1H,

m), 0.59-0.50 (1H, m), 0.49-0.40 (1H, m), 0.29-0.20 (1H, m). MS (NH₃-CI): m/e 399 (2), 398 (8), 397 (39), 396 (24), 395 (100).

Example 804 spectral data: TLC R, 0.31 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.71-7.62 (2H, m), 4.55 (1H, m), 2.95

5 (2H, q, J = 7.5 Hz), 2.43-2.32 (1H, m), 2.10-1.98 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.27 (1H, m), 1.19-1.09 (1H, m), 0.93 (3H, t, J = 7.1 Hz). MS (NH₃-CI): m/e 400 (7), 399 (32), 398 (22), 397 (100). Analysis calc'd for $C_{19}H_{20}ClF_3N_4$: C, 57.51; H, 5.08; N, 14.12; found: C, 57.55; H, 5.06; N, 13.95.

Example 805 spectral data: TLC R, 0.41 (30:70 ethyl acetate-hexane). H NMR (300 MHz,

- 10 CDCl₃): δ 8.92 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.70 (1H, d, J = 8.0 Hz), 7.64 (1H, dd, J = 8.0, 1.8 Hz), 4.58-4.49 (1H, m), 2.95 (1H, q, J = 7.5 Hz), 2.45-2.33 (1H, m), 2.11-2.00 (1H, m), 1.75 (3H, d, J = 6.6 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.21 (4H, m), 0.86 (3H, t, J = 7.0 Hz). MS (NH₂-CI): m/e 414 (8), 413 (40), 412 (29), 411 (100). Example 807 spectral data: TLC R, 0.49 (30:70 ethyl acetate-hexane). HNMR (300 MHz,
- 15 CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.73 (1H, d, J = 8.4 Hz), 7.65 (1H, dd, J = 8.4, 1.8 Hz), 4.38-4.19 (1H, m), 2.94 (1H, q, J = 7.5 Hz), 2.40 (2H, br), 2.10-1.98 (2H, m), 1.41 (3H, t, J = 7.5 Hz), 1.38-1.20 (3H, m), 1.09-0.99 (1H, m), 0.84 (3H, t, J = 7.0 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 428 (7), 427 (32), 426 (25), 425 (100).
- 20 Example 808 spectral data: TLC R, 0.51 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.84 (1H, d, J = 1.8 Hz), 7.72 (1H, d, J = 8.4 Hz), 7.64 (1H, dd, J = 8.4, 1.8 Hz), 4.37 (1H, br), 2.93 (1H, q, J = 7.5 Hz), 2.38 (2H, br), 2.02-1.90 (2H, m), 1.40 (3H, t, J = 7.5 Hz), 1.38-1.20 (2H, m), 1.18-1.01 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₂-CI): m/e 428 (8), 427 (39), 426 (30), 425 (100).
- 25 Example 809 spectral data: TLC R, 0.40 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.84 (1H, d, J = 2.2 Hz), 7.72 (1H, d, J = 8.1 Hz), 7.65 (1H, dd, J = 8.1, 2.2 Hz), 4.20 (1H, br), 2.94 (1H, q, J = 7.5 Hz), 2.51-2.38 (2H, m), 2.13-2.00 (2H, m), 1.41 (3H, t, J = 7.5 Hz), 0.82 (6H, t, J = 7.5 Hz). MS (NH₂-CI): m/e 400 (7), 399 (36), 398 (25), 397 (100).
- Example 824 spectral data: TLC R, 0.27 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 8.10 (1H, s), 7.94 (1H, d, J = 8.8 Hz), 7.87 (1H, d, J = 8.1 Hz), 4.56 (1H, m), 2.96 (2H, q, J = 7.5 Hz), 2.40 (1H, m), 2.10-2.00 (1H, m), 1.76 (3H, d, J = 7.0 Hz), 1.39 (3H, t, J = 7.5 Hz), 1.33-1.10 (2H, m), 0.93 (3H, t, J = 7.1 Hz). 19 F NMR (300 MHz, CDCl₃): δ -58.2, -63.4. MS (NH₂-CI): m/e 433 (3), 432 (24), 431 (100).
- 25 Example 832 spectral data: TLC R, 0.34 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.73 (1H, d, J = 8.5 Hz), 7.10 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.5, 2.6 Hz), 3.87 (3H, s), 3.55 (1H, br), 2.92 (2H, q, J = 7.3 Hz), 2.53-2.35 (1H, m), 2.31-2.18 (1H, m), 1.96 (1H, br), 1.42 (3H, t, J = 7.3 Hz), 0.87 (3H, t, J =

7.5 Hz), 0.87-0.79 (1H, m), 0.53-0.43 (2H, m), 0.25-0.15 (1H, m). MS (NH₃-CI): m/e 374 (8), 373 (34), 372 (24), 371 (100).

Example 833 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.10 (1H, d, J = 2.5 Hz), 6.96 (1H,

- 5 dd, J = 8.4, 2.5 Hz), 4.16 (2H, d, J = 7.0 Hz), 3.87 (3H, s), 3.01 (2H, q, J = 7.3 Hz), 1.46 (3H, t, J = 7.3 Hz), 1.37-1.27 (1H, m), 0.66-0.52 (4H, m). MS (NH₃-CI): m/e 346 (6), 345 (32), 344 (23), 343 (100).
 - Example 834 spectral data: TLC R, 0.18 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 1 Hz), 6.96 (1H, dd,
- - Example 835 spectral data: TLC R, 0.39 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.5 Hz), 6.95 (1H, dd, J = 8.4, 2.5 Hz), 4.53-4.47 (1H, m), 3.87 (3H, s), 3.01-2.92 (2H, m), 2.48-2.35 (1H, m), 2.11-1.99 (1H, m), 1.74 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.38-
- 20 1.22 (3H, m), 1.14-1.00 (1H, m), 0.86 (3H, t, J = 7.1 Hz). MS (NH₂-CI): m/e 376 (7), 375 (33), 374 (23), 373 (100).
 - Example 836 spectral data: TLC R, 0.42 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.79 (1H, d, J = 8.8 Hz), 7.09 (1H, d, J = 2.5 Hz), 6.95 (1H, dd, J = 8.8, 2.5 Hz), 4.55-4.47 (1H, m), 3.87 (3H, s), 3.01-2.92 (2H, m), 2.48-2.35
- 25 (1H, m), 2.10-1.97 (1H, m), 1.74 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.20 (5H, m), 1.18-1.02 (1H, m), 0.84 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{22}\text{ClN}_4\text{O}$: 387.1952, found 387.1944; 391 (1), 390 (8), 389 (35), 388 (25), 387 (100). Example 837 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₂): δ 8.93 (1H, s), 7.73 (1H, d, J = 8.8 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H,
- 30 dd, J = 8.8, 2.6 Hz), 4.25 (1H, br), 3.87 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 2.41 (2H, br), 2.10-2.00 (2H, m), 1.43 (3H, t, J = 7.3 Hz), 1.37-1.20 (3H, m), 1.12-0.98 (1H, m), 0.84 (3H, t, J = 7.3 Hz), 0.82 (3H, t, J = 7.4 Hz). MS (NH₂-CI): m/e 390 (8), 389 (34), 388 (25), 387 (100).
- Example 838 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.09 (1H, d, J = 2.2 Hz), 6.96 (1H, dd, J = 8.5, 2.2 Hz), 4.36 (1H, v br), 3.87 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 2.39 (2H, br), 2.02-1.90 (2H, m), 1.42 (3H, t, J = 7.3 Hz), 1.39-1.21 (2H, m), 1.18-1.03 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₂-CI): m/e calc'd for $C_nH_{20}ClN_4O$: 387.1952, found 387.1958; 391 (1), 390 (8), 389 (34), 388 (26), 387 (100).

Example 839 spectral data: TLC R, 0.36 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.73 (1H, d, J = 8.5 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.5, 2.6 Hz), 4.19 (1H, br s), 3.87 (3H, s), 2.96 (2H, q, J = 7.5 Hz), 2.52-2.38 (2H, m), 2.13-1.99 (2H, m), 1.43 (3H, t, J = 7.5 Hz), 0.83 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for C_{19} H₂₄ClN₄O: 359.1639, found 359.1632; 362 (7), 361 (34), 360 (23), 359 (100).

Example 870 spectral data: MS (NH_3-CI) : m/e 423 (M+H', 100%).

Example 900 spectral data: TLC R, 0.38 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.75 (1H, d, J = 9.2 Hz), 6.90-6.86 (2H, m), 4.23 (2H, t, J =

10 7.7 Hz), 3.86 (3H, s), 2.95 (2H, q, J = 7.7 Hz), 2.48 (3H, s), 1.93-1.83 (2H, m), 1.45 (3H, t, J = 7.6 Hz), 1.43-1.36 (4H, m), 0.92 (3H, t, J = 7.0 Hz).

Example 902 spectral data: TLC R, 0.28 (5:95 ethyl acetate-dichloromethane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.63 (1H, d, J = 8.1 Hz), 7.37 (1H, d, J = 1.0 Hz), 7.21 (1H, dd, J = 8.1, 1.0 Hz), 4.38 (1H, br), 2.94 (2H, q, J = 7.5 Hz), 2.41 (3H, s), 2.40

15 (2H, br), 2.00-1.90 (2H, m), 1.42 (3H, t, J = 7.5 Hz), 1.35-1.22 (2H, m), 1.17-1.03 (2H, m), 0.90 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{22}ClN_4$: 371.2002, found 371.1993; 374 (8), 373 (34), 372 (25), 371 (100).

Example 944 spectral data: MS (NH,-CI): m/e 377 (M+H*, 100%).

Example 945 spectral data: MS (NH $_3$ -CI): m/e 365 (M+H, 100%).

20 Example 947 spectral data: MS (NH₃-CI): m/e 353 (M+H, 100%).

Example 951 spectral data: MS (NH,-CI): m/e 381 (M+H, 100%).

Example 952 spectral data: MS (NH₃-CI): m/e 353 (M+H², 100%).

Example 1003 spectral data: TLC R, 0.10 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.43 (1H, s), 7.19 (2H, d, J = 8.8 Hz), 6.86 (2H, d, J = 8.8

- 25 Hz), 6.84 (1H, s), 5.42 (2H, s), 3.94 (3H, s), 3.91 (3H, s), 3.78 (3H, s), 2.86 (2H, q, J = 7.7 Hz), 2.45 (3H, s), 1.35 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e 421 (4), 420 (27), 419 (100). Analysis calculated for $C_{24}H_{24}N_4O_3$: C, 68.88; H, 6.26; N, 13.39; found: C, 68.53; H, 6.30; N, 12.96.
 - Example 1012 spectral data: m.p. 147-148 °C. TLC R, 0.18 (30:70 ethyl acetate-hexane).
- 30 ¹H NMR (300 MHz, CDCl₃): δ 8.88 (1H, s), 7.60 (1H, s), 6.77 (1H, s), 4.61 (2H, t, J = 8.6 Hz), 3.44 (1H, v br), 3.24 (2H, t, J = 8.6 Hz), 2.94 (2H, br), 2.44 (3H, s), 2.03 (2H, v br), 1.45 (3H, br t, J = 6 Hz), 0.89-0.79 (2H, m), 0.58 (2H, br), 0.50-0.40 (2H, m), 0.27-0.17 (2H, m). MS (NH₂-CI): m/e 377 (4), 376 (27), 375 (100). Analysis calc'd for C₂₃H₂₆N₄O: C, 73.77; H, 7.01; N, 14.96; found: C, 73.69; H, 7.08; N, 14.40.
- Example 1023 spectral data: TLC R, 0.22 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.04 (1H, s), 7.78 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 1.1 Hz), 7.30 (1H, dd, J = 8.4, 1.1 Hz), 7.20 (2H, d, J = 8.5 Hz), 6.87 (2H, d, J = 8.5 Hz), 5.44 (2H, s), 3.79 (3H, s), 2.90 (2H, q, J = 7.5 Hz), 1.32 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 467 (1), 466 (8), 465 (35), 464 (27), 463 (100).

Example 1027 spectral data: TLC R_s 0.41 (25:75 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.76 (1H, d, J = 8.4 Hz), 7.45-7.44 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.61-4.51 (1H, m), 2.98 (2H, dq, J = 7.5, 1.6 Hz), 2.48-2.35 (1H, m), 2.10-1.98 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.35-1.22 (2H, m), 0.93

- 5 (3H, t, J = 7.2 Hz). MS (NH₂-CI): m/e calculated for $C_{19}H_{21}ClF_3N_4O$: 413.1349, found 413.1344; 416 (8), 415 (35), 414 (24), 413 (100).
 - Example 1028 spectral data: TLC R, 0.45 (25:75 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.77 (1H, d, J = 8.4 Hz), 7.44 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.57-4.49 (1H, m), 2.97 (2H, dq, J = 7.7, 1.7 Hz), 2.47-2.36 (1H, m), 2.12-2.02
- 10 (1H, m), 1.75 (3H, d, J = 7.0 Hz), 1.41 (3H, t, J = 7.7 Hz), 1.33-1.21 (4H, m), 0.86 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calculated for $C_{20}H_{23}C1F_3N_4O$: 427.1509, found 427.1507; 430 (8), 429 (35), 428 (25), 427 (100).
 - Example 1032 spectral data: TLC R, 0.44 (25:75 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.45-7.44 (1H, m), 7.30 (1H, dm, J =
- 15 8 Hz), 4.23-4.17 (1H, m), 2.97 (2H, q, J = 7.6 Hz), 2.54-2.39 (2H, m), 2.14-2.00 (2H, m), 1.43 (3H, t, J = 7.6 Hz), 0.84 (6H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calculated for $C_{19}H_{21}C1F_3N_4O$: 413.1368, found 413.1373; 416 (8), 415 (34), 414 (24), 413 (100). Example 1150 spectral data: TLC R, 0.23 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.73 (1H, d, J = 8.8 Hz), 7.36 (1H, d, J = 2.6 Hz), 7.17 (1H,
- 20 dd, J = 8.8, 2.6 Hz), 3.92 (3H, s), 3.70-3.55 (1H, m), 2.91 (2H, q, J = 7.4 Hz), 2.45-2.35 (1H, m), 2.25-2.15 (1H, m), 2.00-1.90 (1H, m), 1.40 (3H, t, J = 7.4 Hz), 1.40-1.30 (1H, m), 1.20-1.10 (1H, m), 0.91 (3H, t, J = 7.2 Hz), 0.87-0.77 (1H, m), 0.54-0.44 (2H, m), 0.25-0.15 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{22}H_{26}F_3N_4O$: 419.2057, found 419.2058; 421 (3), 420 (25), 419 (100).
- Example 1153 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.00 (1H, s), 7.89 (1H, d, J = 8.0 Hz), 7.84 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 7.40-7.30 (5H, m), 5.14 (1H, d, J = 10.2 Hz), 2.82 (1H, dq, J = 15.5, 7.7 Hz), 2.68 (1H, dq, J = 15.5, 7.7 Hz), 2.15 (1H, br), 1.23 (3H, t, J = 7.7 Hz), 1.13-1.03 (1H, m), 0.78-0.62 (2H, m), 0.53-0.43 (1H, m). MS (NH₂-CI): m/e calculated for
- 30 $C_{24}H_{21}ClF_3N_4$: 457.1407, found 457.1389; 460 (9), 459 (35), 458 (29), 457 (100). Example 1155 spectral data: TLC R, 0.46 (25:75 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.83 (1H, d, J = 8.4 Hz), 7.46-7.27 (7H, m), 5.13 (1H, d, J = 10.7 Hz), 2.88-2.62 (2H, m), 2.15 (1H, br), 1.26 (3H, t, J = 7.5 Hz), 1.12-1.02 (1H, m), 0.78-0.62 (2H, m), 0.54-0.44 (1H, m). MS (NH₃-CI): m/e calculated for $C_{24}H_{21}ClF_3N_4O$: 473.1361, found 473.1365; 476 (9), 475 (36), 474 (29), 473 (100).
- Example 1157 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.77 (1H, d, J = 8.8 Hz), 7.40-7.30 (6H, m), 7.19 (1H, dd, J = 1 8.8, 2.2 Hz), 5.13 (1H, d, J = 10.6 Hz), 3.92 (3H, s), 2.79 (1H, dq, J = 15, 7.7 Hz), 2.64 (1H, dq, J = 15, 7.7 Hz), 2.12 (1H, br), 1.21 (3H, t, J = 7.7 Hz), 1.10-1.00 (1H,

m), 0.77-0.62 (2H, m), 0.55-0.45 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{25}H_{24}F_{3}N_{4}O$: 453.1902, found 453.1903; 455 (4), 454 (28), 453 (100).

Example 1158 spectral data: TLC R, 0.16 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.46-7.25 (7H, m), 5.12 (1H, br d, J = 9 Hz), 2.85-2.62 (2H,

- 5 m), 2.14 (1H, br), 2.13 (3H, d, J = 0.7 Hz), 1.18 (3H, dq, J = 7.7, 4.1 Hz), 0.75-0.35 (4H, m). MS (NH₃-CI): m/e calc'd for $C_{24}H_{23}Cl_2N_4$: 437.1300, found 437.1294; 440 (19), 439 (67), 438 (32), 437 (100).
 - Example 1161 spectral data: MS (NH,-CI): m/e 441 (M+H', 100%).
 - Example 1163 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
- 10 CDCl₃): δ 9.00 (1H, s), 7.89 (1H, d, J = 8.4 Hz), 7.84 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.38 (2H, d, J = 9 Hz), 7.05 (2H, d, J = 9 Hz), 5.08 (1H, d, J = 10.2 Hz), 2.82 (1H, dq, J = 15.5, 7.7 Hz), 2.68 (1H, dq, J = 15.5, 7.7 Hz), 2.14 (1H, m), 1.25 (3H, t, J = 7.7 Hz), 1.10-1.01 (1H, m), 0.74-0.62 (2H, m), 0.51-0.41 (1H, m). MS (NH₃-CI): m/e calculated for $C_{24}H_{20}ClF_4N_4$: 475.1313, found 475.1307; 479 (1), 478 (9), 477 (35), 476 (30), 475 (100).
 - Example 1222 spectral data: MS (NH,-CI): m/e 363 (M+H', 100%).
 - Example 1252 spectral data: TLC R, 0.24 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.72 (1H, s), 7.87 (1H, dd, J = 8.8, 5.5 Hz), 7.46 (1H, dd, J = 8.8, 2.5 Hz), 7.35-7.26 (1H, m), 7.24-7.18 (6H, m), 7.08-7.01 (4H, m), 4.89-4.79 (1H, m), 4.49 (2H,

CDCl₃): δ 8.96 (1H, s), 7.80 (1H, d, J = 8.4 Hz), 7.45-7.43 (1H, m), 7.31-7.27 (1H, dm,

- 20 d, J = 12.1 Hz), 4.37 (2H, d, J = 12.1 Hz), 4.27 (2H, t, J = 9.3 Hz), 4.01 (2H, dd, J = 9.9, 5.2 Hz), 2.98 (2H, q, J = 7.7 Hz), 1.39 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{31}H_{29}F_4N_4O_2$: 565.2227, found 565.2226; 567 (7), 566 (36), 565 (100). Example 1255 spectral data: TLC R, 0.50 (25:75 ethyl acetate-hexane). ¹H NMR (300 MHz,
- 25 J = 8 Hz), 3.80-3.73 (1H, m), 2.93 (2H, q, J = 7.3 Hz), 2.40 (1H, br), 2.25-2.14 (1H, m), 1.95 (1H, br), 1.42 (3H, t, J = 7.5 Hz), 1.35-1.10 (2H, m), 0.92 (3H, t, J = 7.3 Hz), 0.91-0.80 (1H, m), 0.53-0.44 (2H, m), 0.24-0.14 (1H, m). MS (NH₃-CI): m/e calculated for $C_{21}H_{13}ClF_3N_4O$: 439.1519, found 439.1524; 442 (8), 441 (34), 440 (26), 439 (100).
- 30 Example 1256 spectral data: TLC R, 0.48 (25:75 ethyl acetate-hexane). 1 H NNR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.79 (1H, d, J = 8.4 Hz), 7.45-7.43 (1H, m), 7.27 (1H, dm, J = 8 Hz), 4.35-4.25 (1H, m), 2.96 (2H, q, J = 7.4 Hz), 2.42 (2H, br), 2.12-1.93 (2H, m), 1.43 (3H, t, J = 7.4 Hz), 1.37-1.22 (2H, m), 0.91 (3H, t, J = 7.2 Hz), 0.83 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calculated for $C_{20}H_{23}ClF_3N_4O$: 427.1514, found 427.1515; 430 (8), 429 (34), 428 (25), 427 (100).
- Example 1295 spectral data: TLC R, 0.37 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.38 (1H, s), 6.83 (1H, s), 4.46 (1H, m, J = 7.3 Hz), 3.94 (3H, 4 S), 3.91 (3H, s), 2.96 (2H, q, J = 7.6 Hz), 2.49-2.39 (1H, m), 2.43 (3H, s), 2.12-2.02 (1H, m), 1.75 (3H, d, J = 6.5 Hz), 1.44 (3H, t, J = 7.5 Hz), 0.86 (3H, t, J = 7.5 Hz).

```
MS (NH,-CI): m/e calc'd for C,H,NO: 355.2134, found 355.2139; 357 (3), 356 (23), 355
     (100).
     Example 1296 spectral data: TLC R, 0.37 (30:70 ethyl acetate-hexane). H NMR (300 MHz,
     CDCl_3): \delta 9.00 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 2.2 Hz), 7.39 (1H,
     dd, J = 8.4, 2.2 Hz), 7.27 (2H, d, J = 8.4 Hz), 6.89 (2H, d, J = 8.4 Hz), 5.56 (1H, dd,
     J = 9.7, 7.4 \text{ Hz}, 3.79 (3H, s), 2.92-2.75 (3H, m), 2.65-2.55 (1H, m), 1.31 (3H, t, J =
     7.5 Hz), 0.92 (3H, t, J = 6.6 \text{ Hz}). MS (NH<sub>2</sub>-CI): \pi/e calc'd for C_{21}H_{22}Cl_{1}N_{2}O: 441.1249,
      found 441.1247; 445 (12), 444 (18), 443 (67), 442 (30), 441 (100).
      Example 1319 spectral data: MS (NH,-CI): m/e 459 (M+H, 100%).
10
     Example 1320 spectral data: ^{1}H NMR (300 MHz, CDCl<sub>2</sub>): \delta 8.99 (s, 1H), 7.68 (d, 1H, J =
      8.4 Hz), 7.58 (d, 1H, J = 1.9 Hz), 7.42-7.3 (m, 6H), 6.04 (q, 1H), 2.82, (m, 2H), 2.16
      (d, 3H, J = 7.4 Hz), 1.27^{3}(t, 3H, J = 7.3, 7.7 Hz).
      Example 1321 7906-5 spectral data: ^{1}H NMR (300 MHz, CDCl<sub>1</sub>): \delta 9.02 (s, 1H), 7.98 (d,
      1H), 7.71 (d, 1H), 7.57 (d, 1H), 7.42-7.26 (m, 3H), 7.15 (m, 1H), 5.38 (d, 1H), 2.65
15
      (m, 1H), 2.4 (m, 1H), 1.85 (m, 1H), 1.82 (s, 3H), 0.97 (t, 3H), 0.8 (m, 2H), 0.6 (m,
      2H).
      Example 1322 spectral data: MS (NH,-CI): m/e 437 (M+H', 100%).
      Example 1323 spectral data: MS (NH,-CI): m/e 455 (M+H', 100%).
      Example 1324 spectral data: MS (ESI): m/e 425 (M+H'), 381 (M +H' -CO2, 100%).
20
      Example 1325 spectral data: MS (NH,-CI): m/e 413 (M+H', 100%).
      Example 1326 spectral data: MS (NH,-CI): m/e 427 (M+H', 100%).
      Example 1327 spectral data: MS (NH<sub>2</sub>-CI): m/e 427 (M+H<sup>2</sup>, 100%).
      Example 1328 spectral data: MS (NH,-CI): m/e 427 (M+H*, 100%).
      Example 1329 spectral data: MS (NH<sub>3</sub>-CI): m/e 423 (M+H, 100%).
      Example 1330 spectral data: MS (NH,-CI): m/e 418 (M+H', 100%).
      Example 1331 spectral data: MS (NH,-CI): m/e 418 (M+H, 100%).
      Example 1332 spectral data: MS (NH,-CI): m/e 499 (M+H, 100%).
      Example 1333 spectral data: MS (NH,-CI): m/e 453 (M+H*, 100%).
      Example 1334 spectral data: MS (NH_-CI): m/e 423 (M+H', 100%).
30
      Example 1335 spectral data: MS (NH,-CI): m/e 372 (M+H', 100%).
      Example 1337 spectral data: MS (NH,-CI): m/e 443 (M+H', 100%).
      Example 1338 spectral data: MS (NH,-CI): m/e 427 (M+H, 100%).
      Example 1339 spectral data: MS (NH,-CI): m/e 379 (M+H*, 100%).
      Example 1341 spectral data: MS (NH,-CI): m/e 393 (M+H, 100%).
35
      Example 1342 spectral data: MS (NH,-CI): m/e 378 (M+H, 100%).
      Example 1343 spectral data: MS (NH,-CI): m/e 346 (M+H', 100%).
       Example 1344 spectral data: MS (NH,-CI): m/e 363 (M+H', 100%).
       Example 1346 spectral data: MS (NH,-CI): m/e 416 (M+H', 100%).
```

Example 1370 spectral data: TLC R, 0.23 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.89 (1H, s), 7.72 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.5 Hz), 7.17 (1H, dd, J = 8.4, 2.5 Hz), 4.27 (1H, br), 3.91 (3H, s), 2.93 (2H, q, J = 7.7 Hz), 2.40 (2H, br), 2.10-1.95 (2H, m), 1.41 (3H, t, J = 7.7 Hz), 1.39-1.27 (1H, m), 1.20-1.07 (1H, m), 0.91 (3H, t, J = 7.3 Hz), 0.81 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{26}F_{3}N_{4}O$: 407.2058, found 407.2052; 409 (3), 408 (24), 407 (100).

Example 1371 spectral data: MS (ESI): m/e 377 (M+2), 375 (MT, 100 %).

- (b) Q1 = 2-tetrazolyl
- (c) Q2 = 1,2,4-triazol-2-yl

10

TABLE 1A

Ex. mp, \mathbb{R}^2 R^{12} R^{11} R1a R1b R3 R4 R6 Х °C • No. 1043 oil CH₃ CH₂ CH₃ CH₃ CH₃ C₃H₇ CH₃ Н

20 Key:

15

(a) Where the compound is indicated as an "oil", data is provided below:

Example 1043 spectral data: TLC R, 0.40 (30:70 ethyl acetate-hexane). 1 H 25 NMR (300 MHz, CDCl₃): d 8.91 (1H, s), 7.43 (1H, s), 7.10 (1H, s), 4.60-4.50 (1H, m), 2.94 (2H, dq, J = 7.5, 2.0 Hz), 2.45-2.35 (1H, m), 2.35 (3H, s), 2.28 (6H, s), 2.07-1.97 (1H, m), 1.73 (3H, d, J = 6.9 Hz), 1.41 (3H, t, J = 7.5 Hz), 1.40-1.27 (1H, m), 1.20-1.07 (1H, m), 0.92 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{29}N_4$: 337.2392, found

337.2396; 339 (3), 338 (23), 337 (100). Analysis calc'd for $C_{21}H_{28}N_4\colon$ C, 74.96; H, 8.40; N, 16.65; found: C, 74.28; H, 8.02; N, 16.37.

5 TABLE 1B

10

Ex.	R²	x	R ⁴	R ⁵	R1a	R1b	°C •
1270	CH3	CH ₂	CF ₃	O(CH ₂) ₂ - OH	C-C ₃ H ₅	C-C ₃ H ₅	-
1271	CH ₃	CH2	CF3	OCH ₂ CO ₂ - C ₂ H ₅	C-C ₃ H ₅	C-C ₃ H ₅	-
1272	CH ₃	CH2	CF ₃	$OCH_2CO-N(CH_3)_2$	C-C ₃ H ₅	C-C ₃ H ₅	-
1273	CH ₃	CH ₂	CF ₃	O(CH ₂) ₂ - NMe ₃ *Cl ⁻	C-C ₃ H ₅	C-C ₃ H ₅	-
1274	CH ₃	CH ₂	CF ₃	OCH ₂ CH- (OH)C ₂ H ₅	C-C ₃ H ₅	C-C ₃ H ₅	-
1275	CH ₃	CH ₂	OCH ₂ OCH ₃	CH ₃	CH ₃	C ₃ H ₇	77-79
1276	CH3	CH ₂	ОН	CH ₃	CH ₃	C ₃ H ₇	-
1277	CH ₃	CH ₂	OC ₂ H ₅	CH ₃	CH ₃	C ₃ H ₇	-
1278	CH ₃	CH ₂	OC ₃ H ₇	CH ₃	CH ₃	C_3H_7	· -
1279	CH ₃	CH ₂	O(CH ₂) ₂ - OH	CH3	СН3	C ₃ H ₇	-
1280	СН3	CH ₂	OCH ₂ CO ₂ - C ₂ H ₅	CH ₃	CH ₃	C ₃ H ₇	-
1281	CH3	CH ₂	OCH ₂ CO- N(CH ₃) ₂	СН3	СН3	С3Н7	-
1282	CH3	CH₂	O(CH ₂) ₂ - NMe ₃ *Cl	CH ₃	CH3	С3Н7	-

Ġ

PCT/US98/13913

WO 99/01454

1283 CH₃ CH₂ OCH₂CH- CH₃ CH₃ C₃H₇ - (OH) C₂H₅

5 TABLE 1C

$$R^{1a}$$
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}
 R^{1b}
 R^{1a}

Ex.	х	R ⁴	R ⁵	R ¹¹	R ^{1a}	R ^{1b}	mp, °C
1501	CH ₂	Cl	CF ₃	Н	C ₃ H ₇	осн,	76-78
1502	CH ₂	Cl	CF ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1503	CH ₂	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1504	CH ₂	Cl	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1505	CH ₂	CF3	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1506	CH ₂	Cl	SO ₂ CH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1507	CH ₂	cı	COCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1508	CH ₂	СН3	OCH3	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1509	CH ₂	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1510	CH ₂	CH ₃	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1511	CH2	CH ₃	CH ₃	СН,	C ₂ H ₅	C₂H₄OCH₃	-
1512	CH ₂	Cl	CF ₃	Н	C-C3H5	C ₂ H ₄ OCH ₃	-
1513	CH2	Cl	Cl	н	C-C3H5	C ₂ H ₄ OCH ₃	-
1514	CH ₂	Cl	OCH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1515	CH ₂	CF3	OCH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1516	CH ₂	Cl	SO ₂ CH ₃	н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1517	CH ₂	Cl	COCH ₃	н	C-C ₃ H ₅	C2H4OCH3	-
1518	CH ₂	CH ₃	OCH ₃	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1519	CH ₂	Cl	CH ₃	F	C-C ₃ H ₅	C₂H₄OCH₃	_

1520	CH ₂	CH ₃	OCH ₃	F	C-C3H5	C ₂ H ₄ OCH ₃	-
1521	CH ₂	CH ₃	CH ₃	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1522	CH ₂	Cl	CF ₃	Н	C ₂ H ₅	CH₂OCH₃	oil
1523	CH ₂ .	Cl	Cl	н	C ₂ H ₅	CH₂OCH₃	-
1524	CH ₂	Cl	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1525	CH ₂	CF ₃	OCH ₃	Н	C ₂ H ₅	CH2OCH3	-
1526	CH ₂	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1527	CH ₂	Cl	COCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1528	CH2	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	CH₂OCH₃	-
1529	CH ₂	Cl	CH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	
1530	CH ₂	CH ₃	OCH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1531	CH ₂	CH ₃	CH ₃	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1532	CH ₂	Cl	CF ₃	Н	c-C ₃ H ₅	CH ₂ OCH ₃	-
1533	CH ₂	Cl	Cl	Н	C-C3H5	CH ₂ OCH ₃	-
1534	CH ₂	Cl	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1535	CH ₂	CF ₃	OCH ₃	Н	C-C ₃ H ₅	CH₂OCH₃	-
1536	CH ₂	Cl	SO ₂ CH ₃	H	C-C ₃ H ₅	CH ₂ OCH ₃	-
1537	CH ₂	Cl	COCH ₃	H	C-C ₃ H ₅	CH ₂ OCH ₃	-
1538	CH ₂	CH ₃	OCH ₃	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	-
1539	CH ₂	Cl	CH ₃	F	C-C ₃ H ₅	CH ₂ OCH ₃	
1540	CH ₂	CH ₃	OCH ₃	F	C-C ₃ H ₅	CH2OCH3	
1541	CH ₂	CH ₃	CH ₃	CH3	C-C ₃ H ₅	CH ₂ OCH ₃	-
1542	0	Cl	CF ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1543	0	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1544	0	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	· -
1545	0	CF ₃	OCH ₃	Н	C ₂ H ₅	C₂H₄OCH₃	-
1546	0	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C₂H₄OCH₃	-
1547	0	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1548	0	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1549	0	Cl	CH3	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1550	0	CH ₃	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1551	0	CH ₃	CH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	
1552	0	Cl	CF ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1553	0	Cl	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1554	0	Cl	OCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1555	0	CF ₃	OCH3	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1556	0	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	C2H4OCH3	-

WO 99/01454		PCT/US98/13913

1557	0	Cl	сосн3	Н	C-C3H5	C ₂ H ₄ OCH ₃	-
1558	0	CH ₃	OCH ₃	CH ₃	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1559	0	Cl	CH ₃	F	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1560	Ο.	CH ₃	OCH ₃	F	C-C3H5	C ₂ H ₄ OCH ₃	-
1561	0	CH ₃	CH ₃	CH3	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1562	0.	Cl	CF ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	oil
1563	0	cı	OCH3	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1564	0	CF ₃	OCH3	Н	C ₂ H ₅	CH ₂ OCH ₃	- .
1565	O.	cı	SO ₂ CH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1566	0	Cl	сосн,	Н	C ₂ H ₅	СН2ОСН3	- ·
1567	0	CH ₃	OCH3	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1568	0	Cl	СН3	F	C ₂ H ₅	СН₂ОСН3	<u>-</u> ·
1569	0	CH ₃	OCH ₃	F	C ₂ H ₅	CH₂OCH₃	-
1570	0	CH ₃	CH ₃	CH ₃	C ₂ H ₅	CH₂OCH₃	-
1571	0	C1	CF ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1572	0	Cl	Cl	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1573	0	Cl	OCH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1574	0	CF ₃	OCH ₃	Н	C-Ç₃H₅	CH₂OCH₃	-
1575	0	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	CH₂OCH₃	-
1576	0	Cl	COCH3	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1577	0	CH ₃	OCH ₃	CH3	C-C ₃ H ₅	CH₂OCH₃	-
1578	0	C1	сн,	F	c-C ₃ H ₅	CH ₂ OCH ₃	
1579	0	CH ₃	осн3	F	c-C ₃ H ₅	CH ₂ OCH ₃	
1580	0	СН3	СН₃	CH3	C-C ₃ H ₅	CH ₂ OCH ₃	-

TABLE 1D

5

$$R^{1a}$$
 R^{1b}
 $CH_3 - X$
 N
 N
 R^{11}
 R^5

1602	Ex. No.	х	R ⁴	R ⁵	R ¹¹	R ^{1a}	R ^{1b}	πp, °C
1603 CH ₃ C1 OCH ₃ H C ₂ H ₃ C ₃ H ₄ OCH ₃ - 1604 CH ₃ CF ₃ OCH ₃ H C ₂ H ₃ C ₂ H ₄ OCH ₃ - 1605 CH ₃ C1 SO ₂ CH ₃ H C ₂ H ₃ C ₂ H ₄ OCH ₃ - 1606 CH ₂ C1 COCH ₃ H C ₂ H ₃ C ₂ H ₄ OCH ₃ - 1607 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₃ C ₂ H ₄ OCH ₃ - 1608 CH ₂ C1 CH ₃ F C ₂ H ₃ C ₂ H ₄ OCH ₃ - 1609 CH ₂ CH ₃ CH ₃ CH ₃ C ₂ H ₄ C ₄ - 1609 CH ₂ CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1609 CH ₂ CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1609 CH ₂ CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1600 C			CH ₃	Cl	н	C ₂ H ₅	C-C ₃ H ₅	109-111
1604 CH2 CF3 OCH3 H C2H3 C2H4OCH3 - 1605 CH2 C1 SO2CH3 H C2H3 C2H4OCH3 - 1606 CH2 C1 COCH3 H C2H3 C2H4OCH3 - 1607 CH2 CH3 OCH3 CH3 C2H5 C3H4OCH3 - 1608 CH2 C1 CH3 F C2H5 C3H4OCH3 - 1609 CH2 CH3 OCH3 F C2H3 C3H4OCH3 - 1610 CH2 CH3 CH3 CH3 C2H4 C3H4OCH3 - 1611 CH2 C1 CF3 CH3 C2H4 C3H4OCH3 - 1611 CH2 C1 CCH3 CH3 C2H4 C3H4OCH3 - 1611 CH2 C1 CCH3 CH4 C2H4OCH3 - 1611 CH2 C1 CCH3 H C-C3H5 C3H	1602	CH₂	Cl	Cl	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1605 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1606 CH ₂ C1 COCH ₃ H C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1607 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1608 CH ₂ C1 CH ₃ F C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1609 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1610 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1611 CH ₂ C1 CF ₃ H C ₂ C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1612 CH ₂ C1 C1 H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1613 CH ₂ C1 OCH ₃ H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1614 CH ₂ C1 SO ₂ CH ₃ H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1615 CH ₂ C1 SO ₂ CH ₃ H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1616 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1617 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1618 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1619 CH ₂ CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1620 CH ₂ CH ₃ OCH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1621 CH ₂ C1 CH ₃ CH ₃ CH ₃ C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1622 CH ₂ C1 C1 CH ₃ F C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1623 CH ₂ C1 C1 CH ₃ H C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1624 CH ₂ C1 C1 H C ₃ CH ₃ C-C ₃ H ₅ C ₃ H ₄ OCH ₃ - 1625 CH ₂ C1 C1 CH ₃ H C ₃ H ₅ CH ₃ OCH ₃ - 1626 CH ₂ C1 C1 CH ₃ H C ₃ H ₅ CH ₃ OCH ₃ - 1627 CH ₂ C1 C1 C1 H C ₃ H ₅ CH ₃ OCH ₃ - 1628 CH ₂ C1 C1 COCH ₃ H C ₃ H ₅ CH ₃ OCH ₃ - 1626 CH ₂ C1 C1 COCH ₃ H C ₃ H ₅ CH ₃ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ H C ₃ H ₅ CH ₃ OCH ₃ - 1628 CH ₂ C1 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ - 1629 CH ₃ CH ₃ CCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ - 1629 CH ₃ CH ₃ CH ₃ CCH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ - 1629 CH ₃ OCH ₃ - 1629 CH ₃ OCH ₃ - 1629 CH ₃ OCH ₃ - 1629 CH ₃ C	1603	CH ₂	Cl	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1606	1604	CH₂	CF3	OCH ₃	н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1607 CH2 CH3 OCH3 CH3 C2H5 C2H4OCH3 - 1608 CH2 C1 CH3 F C2H5 C2H4OCH3 - 1609 CH2 CH3 OCH3 F C2H5 C2H4OCH3 - 1610 CH2 CH3 CH3 CH3 C2H5 C2H4OCH3 - 1611 CH2 C1 CF3 H C-C3H5 C2H4OCH3 - 1612 CH2 C1 C1 H C-C3H5 C2H4OCH3 - 1613 CH2 C1 OCH3 H C-C3H5 C2H4OCH3 - 1613 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1614 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H <	1605	CH ₂	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1608 CH2 C1 CH3 F C2H5 C2H4OCH3 - 1609 CH2 CH3 OCH3 F C2H5 C2H4OCH3 - 1610 CH2 CH3 CH3 CH3 C2H5 C2H4OCH3 - 1611 CH2 C1 CF3 H C-C3H5 C2H4OCH3 - 1612 CH2 C1 C1 H C-C3H5 C2H4OCH3 - 1613 CH2 C1 OCH3 H C-C3H5 C2H4OCH3 - 1614 CH2 C7 OCH3 H C-C3H5 C2H4OCH3 - 1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 <td< td=""><td>1606</td><td>CH₂</td><td>Cl</td><td>COCH₃</td><td>Н</td><td>C₂H₅</td><td>C₂H₄OCH₃</td><td>~</td></td<>	1606	CH ₂	Cl	COCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	~
1609 CH2 CH3 OCH3 F C2H3 C3H4OCH3 - 1610 CH2 CH3 CH3 CH3 C2H5 C3H4OCH3 - 1611 CH2 C1 CF3 H C-C3H5 C3H4OCH3 - 1612 CH2 C1 C1 H C-C3H5 C2H4OCH3 - 1613 CH2 C1 OCH3 H C-C3H5 C3H4OCH3 - 1614 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F	1607	CH ₂	CH ₃	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1610	1608	CH ₂	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1611 CH ₂ C1 CF ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1612 CH ₂ C1 C1 H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1613 CH ₂ C1 OCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1614 CH ₂ CF ₃ OCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1615 CH ₂ C1 SO ₂ CH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1616 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1617 CH ₂ CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1618 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1619 CH ₂ CH ₃ OCH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1620 CH ₂ CH ₃ OCH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1621 CH ₂ C1 CF ₃ H C ₂ H ₅ C ₂ H ₄ OCH ₃ - 1622 CH ₂ C1 C1 H C ₄ C ₃ CC ₄ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1609	CH ₂	CH3	OCH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1612 CH2 C1 C1 H C-C3H3 C2H4OCH3 - 1613 CH2 C1 OCH3 H C-C3H3 C2H4OCH3 - 1614 CH2 CF3 OCH3 H C-C3H5 C2H4OCH3 - 1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3	1610	CH ₂	CH ₃	CH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1613 CH2 C1 OCH3 H C-C3H5 C2H4OCH3 - 1614 CH2 CF3 OCH3 H C-C3H5 C2H4OCH3 - 1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1622 CH2 C1 CF3 H C2H5 CH2OCH3 - 1623 CH2 C1 CH3 H	1611	CH ₂	Cl	CF ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1614 CH ₂ CF ₃ OCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1615 CH ₂ C1 SO ₂ CH ₅ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1616 CH ₂ C1 COCH ₃ H C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1617 CH ₂ CH ₃ OCH ₃ CH ₃ C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1618 CH ₂ C1 CH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1619 CH ₂ CH ₃ OCH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1620 CH ₂ CH ₃ OCH ₃ F C-C ₃ H ₅ C ₂ H ₄ OCH ₃ - 1621 CH ₂ C1 CF ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1622 CH ₂ C1 C1 H C ₂ H ₅ CH ₂ OCH ₃ - 1623 CH ₂ C1 OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1624 CH ₂ CF ₅ OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1625 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ -	1612	CH ₂	Cl	Cl	Н	$C-C_3H_5$	C ₂ H ₄ OCH ₃	-
1615 CH2 C1 SO2CH3 H C-C3H5 C2H4OCH3 - 1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 - 1622 CH2 C1 CT1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CT3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2	1613	CH ₂	Cl	OCH ₃	н	C-C3H5	C ₂ H ₄ OCH ₃	-
1616 CH2 C1 COCH3 H C-C3H5 C2H4OCH3 - 1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 - 1622 CH2 C1 CT3 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CF3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1626 CH2 C1 COCH3 CH3 C2H5	1614	CH2	CF3	OCH ₃	Н	$C-C_3H_5$	C ₂ H ₄ OCH ₃	-
1617 CH2 CH3 OCH3 CH3 C-C3H5 C2H4OCH3 - 1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 - 1622 CH2 C1 C1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CF3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 COCH3 H C2H5 CH2OCH3 - 1626 CH2 C1 COCH3 CH3 C2H5<	1615	CH ₂	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	C2H4OCH3	-
1618 CH2 C1 CH3 F C-C3H5 C2H4OCH3 - 1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 - 1622 CH2 C1 C1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CF3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1626 CH2 C1 COCH3 H C2H5 CH2OCH3 - 1627 CH2 CH3 OCH3 CH3 C2H5 CH2OCH3 - 1628 CH2 C1 CH3 F C2H5	1616	CH₂	Cl	COCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1619 CH2 CH3 OCH3 F C-C3H5 C2H4OCH3 - 1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 - 1622 CH2 C1 C1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1626 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1627 CH2 CH3 OCH3 CH3 C2H5 CH2OCH3 - 1628 CH2 C1 CH3 F C2H5 CH2OCH3 - 1629 CH2 CH3 CH3 CH3 CH3	1617	CH ₂	CH ₃	OCH3	CH3	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1620 CH2 CH3 CH3 CH3 C-C3H5 C2H4OCH3 - 1621 CH2 C1 CF3 H C2H5 CH2OCH3 oil 1622 CH2 C1 C1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CF3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1626 CH2 C1 COCH3 H C2H5 CH2OCH3 - 1627 CH2 CH3 OCH3 CH3 C2H5 CH2OCH3 - 1628 CH2 C1 CH3 F C2H5 CH2OCH3 - 1629 CH2 CH3 OCH3 F C2H5 CH2OCH3 - 1630 CH2 CH3 CH3 CH3 C2H5	1618	CH ₂	Cl	CH ₃	F	C-C3H5	C ₂ H ₄ OCH ₃	-
1621 CH2 C1 CF3 H C2H5 CH2OCH3 oil 1622 CH2 C1 C1 H C2H5 CH2OCH3 - 1623 CH2 C1 OCH3 H C2H5 CH2OCH3 - 1624 CH2 CF3 OCH3 H C2H5 CH2OCH3 - 1625 CH2 C1 SO2CH3 H C2H5 CH2OCH3 - 1626 CH2 C1 COCH3 H C2H5 CH2OCH3 - 1627 CH2 CH3 OCH3 CH3 C2H5 CH2OCH3 - 1628 CH2 C1 CH3 F C2H5 CH2OCH3 - 1629 CH2 CH3 OCH3 F C2H5 CH2OCH3 - 1630 CH2 CH3 CH3 CH3 CH2 CH2OCH3 - 1631 CH2 C1 CF3 H C-C3H5 <td< td=""><td>1619</td><td>CH₂</td><td>CH₃</td><td>OCH₃</td><td>F</td><td>C-C₃H₅</td><td>C₂H₄OCH₃</td><td>-</td></td<>	1619	CH ₂	CH ₃	OCH ₃	F	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1622 CH ₂ C1 C1 H C ₂ H ₅ CH ₂ OCH ₃ - 1623 CH ₂ C1 OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1624 CH ₂ CF ₃ OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1625 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ C ₃ C ₄ CH ₂ OCH ₃ - 1631 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ -	1620	CH ₂	CH ₃	CH3	CH3	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1623 CH ₂ C1 OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1624 CH ₂ CF ₃ OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1625 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ -	1621	CH ₂	Cl	CF ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	oil
1624 CH ₂ CF ₃ OCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1625 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1622	CH ₂	Cl	Cl	H	C ₂ H ₅	CH ₂ OCH ₃	-
1625 CH ₂ C1 SO ₂ CH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1623	CH ₂	Cl	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	- ,
1626 CH ₂ C1 COCH ₃ H C ₂ H ₅ CH ₂ OCH ₃ - 1627 CH ₂ CH ₃ OCH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1628 CH ₂ C1 CH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ C1 CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ C1 C1 H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ C1 OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1624	CH ₂	CF3	OCH ₃	H	C ₂ H ₅	CH ₂ OCH ₃	-
1627 CH2 CH3 OCH3 CH3 C2H5 CH2OCH3 - 1628 CH2 C1 CH3 F C2H5 CH2OCH3 - 1629 CH2 CH3 OCH3 F C2H5 CH2OCH3 - 1630 CH2 CH3 CH3 CH3 C2H5 CH2OCH3 - 1631 CH2 C1 CF3 H C-C3H5 CH2OCH3 - 1632 CH2 C1 C1 H C-C3H5 CH2OCH3 - 1633 CH2 C1 OCH3 H C-C3H5 CH2OCH3 -	1625	CH ₂	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	-
1628 CH2 C1 CH3 F C2H5 CH2OCH3 - 1629 CH2 CH3 OCH3 F C2H5 CH2OCH3 - 1630 CH2 CH3 CH3 CH3 C2H5 CH2OCH3 - 1631 CH2 C1 CF3 H C-C3H5 CH2OCH3 - 1632 CH2 C1 C1 H C-C3H5 CH2OCH3 - 1633 CH2 C1 OCH3 H C-C3H5 CH2OCH3 -	1626	CH ₂	Cl	COCH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	-
1629 CH ₂ CH ₃ OCH ₃ F C ₂ H ₅ CH ₂ OCH ₃ - 1630 CH ₂ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ Cl CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ Cl Cl H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ Cl OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1627	CH ₂	CH3	OCH ₃	CH ₃	C ₂ H ₅	CH ₂ OCH ₃	-
1630 CH ₂ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₂ OCH ₃ - 1631 CH ₂ Cl CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ Cl Cl H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ Cl OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1628	CH ₂	Cl	CH ₃	F	C_2H_5	CH ₂ OCH ₃	· •
1631 CH ₂ Cl CF ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ - 1632 CH ₂ Cl Cl H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ Cl OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1629	CH₂	СН3	OCH ₃	F	C ₂ H ₅	CH ₂ OCH ₃	-
1632 CH ₂ Cl Cl H C-C ₃ H ₅ CH ₂ OCH ₃ - 1633 CH ₂ Cl OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1630	CH ₂	CH ₃	CH ₃	CH3	C ₂ H ₅	CH ₂ OCH ₃	-
1633 CH ₂ Cl OCH ₃ H C-C ₃ H ₅ CH ₂ OCH ₃ -	1631	CH ₂	Cl	CF ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
	1632	CH₂	cı	Cl	н	C-C ₃ H ₅	CH ₂ OCH ₃	-
	1633	CH₂	Cl	OCH ₃	H	C-C3H5	CH ₂ OCH ₃	-
1634 CH_2 CF_3 OCH_3 H $e^{-C_3H_5}$ CH_2OCH_3 -	1634	CH ₂	CF ₃	OCH3	н	C-C ₃ H ₅	CH ₂ OCH ₃	-

WO 99/01454	PCT/US98/13913

•							
1635	CH ₂	Cl	SO ₂ CH ₃	Н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1636	CH ₂	Cl	COCH ₃	н	C-C ₃ H ₅	CH ₂ OCH ₃	-
1637	CH ₂	CH ₃	OCH3	CH ₃	C-C ₃ H ₅	CH ₂ OCH ₃	-
1638	CH ₂ .	Cl	СН3	F	C-C ₃ H ₅	CH2OCH3	-
1639	CH ₂	CH ₃	OCH ₃	F	C-C ₃ H ₅	CH₂OCH₃	-
1640	CH ₂	CH ₃	CH3	CH ₃	c-C ₃ H ₅	CH ₂ OCH ₃	-
1641	0	Cl	CF ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	oil
1642	0	Cl	Cl	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1643	0	Cl	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1644	0	CF ₃	OCH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	- ·
1645	0	Cl	SO ₂ CH ₃	Н	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1646	0	Cl	COCH3	Н	C ₂ H ₅	C₂H₄OCH₃	-
1647	0	CH3	OCH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1648	0	Cl	CH ₃	F	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1649	0	CH ₃	OCH ₃	F	C_2H_5	C ₂ H ₄ OCH ₃	-
1650	0	CH₃	CH ₃	CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃	-
1651	0	Cl	CF ₃	н	$C-C_3H_5$	C ₂ H ₄ OCH ₃	-
1652	0	Cl	Cl	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1653	0	Cl	OCH ₃	Н	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1654	0	CF3	OCH ₃	H	C-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1655	0	Cl	SO ₂ CH ₃	н	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1656	0	Cl	COCH ₃	Н	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1657	0	CH ₃	OCH ₃	CH ₃	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	-
1658	0	<u>C1</u>	CH ₃	F	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1659	0	СН	осн,	F	c-C ₃ H ₅	C ₂ H ₄ OCH ₃	
1660	0	CH ₃	CH ₃	CH ₃	c-C ₃ H ₅	C2H4OCH3	
1661	0	<u>C1</u>	CF ₃	н	C ₂ H ₅	CH ₂ OCH ₃	oil
1662	0	c1	OCH ₃	Н	C ₂ H ₅	CH ₂ OCH ₃	
1663		CF,	OCH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	
1664	0	<u>C1</u>	SO ₂ CH ₃	н	C ₂ H ₅	CH ₂ OCH ₃	
1665	0	<u>c1</u>	сосн,	н	C ₂ H ₅	CH ₂ OCH ₃	
1666	0	CH ₃	OCH ₃	СН,	C ₂ H ₅	CH ₂ OCH ₃	
1667	0	<u>c1</u>	СН3	F	C ₂ H ₅	CH ₂ OCH ₃	
1668	0	СН,	осн,	F	C ₂ H ₅	СН ₂ ОСН ₃	
1669	0	СН,	СН3	сн,	C ₂ H ₅	CH ₂ OCH ₃	
1670	0	Cl	CF,	н	c-C ₃ H ₅	CH ₂ OCH ₃	

1671	0	<u>C1</u>	<u>c1</u>	Н	C-C ₃ H ₅	CH ₂ OCH ₃	
1672	0	C1	осн,	н	C-C ₃ H ₅	СН₂ОСН₃	
1673	0	CF3	OCH ₃	Н	c-C ₃ H ₅	CH ₂ OCH ₃	· -
1674	0 .	C1	SO ₂ CH ₃	н	c-C ₃ H ₅	СН₂ОСН₃	
1675	0	cı	COCH3	н	c-C ₃ H ₅	СН₂ОСН₃	
1676	0	СН,	осн,	сн,	c-C ₃ H ₅	СН2ОСН3	-
1677	0	C1	CH ₃	F	c-C ₃ H ₅	CH ₂ OCH ₃	
1678	0	CH ₃	осн,	F	c-C ₃ H ₅	CH ₂ OCH ₃	-
1679	0	CH ₃	СН,	СН3	c-C ₃ H ₅	CH₂OCH₃	

The methods discussed below in the preparation of 1-5 benzyl-6-methyl-4-(2,4,6-trimethylphenyl)imidazo[4,5-c]pyridine (Example 2001, Table 2, Structure A) may be used to prepare all of the examples of Structure A contained in Table 2, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

10

15

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 2, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

Example 2001

Preparation of 1-benzyl-6-methyl-4-(2,4,6-trimethylphenyl)imidazo[4,5-c]pyridine

20

Part A. A solution of 4-chloro-6-methyl-3-nitropyridone (5.0 g, 26.5 mmol) in acetonitrile (93 mL) was treated with benzylamine (2.89 mL, 26.5 mmol) and diisopropylethylamine (5.54 mL, 31.8 mmol). The mixture was heated to reflux for 4 hrs., then cooled to ambient temperature and allowed to stir for 12 hrs. The mixture was partitioned between dichloromethane and water (200 mL each), and the aqueous layer was extracted with dichloromethane (200 mL). The

extracts were washed in sequence with water (200 mL) and combined, and the resulting precipitate was collected by filtration. The filtrate was dried over sodium sulfate, refiltered and evaporated to afford a second crop of crystalline product, 4-benzylamino-6-methyl-3-nitropyridone (6.74 g total, 26.0 mmol, 98%). m.p. 246-247 °C. TLC R_F 0.35 (10:90 isopropanol-ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 10.48 (1H, br s), 9.69 (1H, br s), 7.41-7.26 (5H, m), 5.66 (1H, s), 4.57 (2H, d, J = 5.5 Hz), 2.26 (3H, s). MS (NH₃-CI): m/e 261 (10), 260 (70), 226 (100).

Part B. A solution of the pyridone from Part A (6.72 g, 25.9 mmol) in phosphorus oxychloride (52 mL, 25.5 mmol) was stirred at ambient temperature for 3 d. The reaction mixture was poured into a mixture of ice (150 g) and dichloromethane (200 mL). After the ice had melted, 100 mL more dichloromethane was added, and the pH of the mixture was adjusted to 7 with solid NaHCO3. The mixture was separated, and the aqueous phase was extracted with dichloromethane. The extracts were combined, dried over 20 sodium sulfate, filtered and evaporated to afford the product (4-benzylamino-2-chloro-6-methyl-3-nitropyridine) as a bright yellow crystalline solid (6.45 g, 23.2 mmol, 90%). TLC R_r 0.76 (ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 25 7.43-7.26 (5H, m), 7.04 (1H, br), 6.47 (1H, s), 4.48 (2H, d, J = 5.5 Hz), 2.40 (3H, s). MS (NH₃-CI): m/e 281 (5), 280 (35), 279 (17), 278 (100).

Part C. A solution of the nitro compound from Part B above (6.42 g, 23.1 mmol) in methanol (162 mL) was treated with iron powder (13.61 g) and glacial acetic acid (13.6 mL). The resulting mixture was heated to reflux for 2 h, then cooled, filtered through celite (with methanol washing) and evaporated. The residual material was taken up in dichloromethane (231 mL) and 1 N aq. HCl (162 mL), and adjusted to neutral pH by addition of solid NaHCO₃. This mixture was filtered through celite and separated, and the aqueous phase was extracted with dichloromethane. The

extracts were combined, dried over Na_2SO_4 , filtered and evaporated to afford the product, 3-amino-4-benzylamino-2-chloro-6-methylpyridine, as a solid (5.59 g, 22.6 mmol, 98%). m.p. 177-178 °C. TLC R_F 0.60 (ethyl acetate). ¹H NMR (300 MHz, CDCl₃): d 7.41-7.32 (5H, m), 6.33 (1H, s), 4.54 (1H, br), 4.36 (2H, d, J = 5.1 Hz), 3.30 (2H, br s), 2.35 (3H, s). MS (NH₃-CI): m/e 251 (6), 250 (37), 249 (19), 248 (100).

- Part D. A suspension of the diamine from Part C above (2.15 10 g, 8.68 mmol) in triethyl orthopropionate (5 mL) was treated with conc. HCl (3 drops), and heated to reflux for 1 h, then cooled and the excess orthoester removed by vacuum distillation. The pot residue was taken up in ethyl acetate (120 mL), which was washed with water and brine (100 mL each). The aqueous phases were back-extracted in sequence with ethyl acetate, and the extracts were combined, dried over Na2SO4, filtered and evaporated to afford N-(4-benzylamino-2-chloro-6-methylpyridin-3yl)propionamide O-ethyl imidate (2.62 g, 91%). TLC $R_{\rm F}$ 0.40 20 (30:70 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 7.39-7.29 (5H, m), 6.29 (1H, s), 4.64 (1H, br t, J = 5.8 Hz), 4.37 (2H, d, J = 5.8 Hz), 4.25 (2H, br), 2.35 (3H, s), 2.18-2.11 (2H, m), 1.36 (3H, t, J = 7.0 Hz), 1.06 (3H, t, J= 7.7 Hz). MS (NH₃-CI): m/e 335 (7), 334 (34), 333 (22), 332 25 (100).
- Part E. A solution of the compound from Part D (2.62 g, 7.90 mmol) in phenyl ether (10 mL) was heated to 170 °C for 6 h, then cooled and poured into ethyl acetate (150 mL). This was washed with water and brine (100 mL each), then dried over Na₂SO₄, filtered and evaporated. The residual liquid was separated by column chromatography (hexane, then ethyl acetate) to afford the product, 1-benzyl-4-chloro-2-ethyl-6-methylimidazo[4,5-c]pyridine, as an oil (2.16 g, 96 %). m.p. 140-141 °C. TLC R_F 0.06 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.36-7.32 (3H, m), 7.02-6.98 (2H, m), 6.93 (1H, s), 5.31 (2H, s), 2.89 (2H, q, J =

7.3 Hz), 2.58 (3H, s), 1.39 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 289 (6), 288 (35), 287 (20), 286 (100).

Part F. A solution of zinc chloride (538 mg) in 5 tetrahydrofuran (7 mL) was treated with a tetrahydrofuran solution of 2-mesitylmagnesium bromide (3.95 mL, 1.0 M), and stirred for 1 h. In another flask, a solution of bis(triphenylphosphine)palladium chloride (93 mg, 0.132 mmol) in tetrahydrofuran (5 mL) was treated with a hexane solution of diisobutylaluminum hydride (0.263 mL, 1.0 M), and this 10 solution was stirred for 20 min. The arylzinc solution was then delivered by cannula to the flask containing the palladium catalyst, which was followed by the chloride prepared in Part E. The mixture was heated to reflux for 12 h, then cooled, and poured into water (100 mL). This was 15 extracted with ethyl acetate (2 x 150 mL), and the extracts were washed with brine, combined, dried over Na2SO4, filtered and evaporated. The residual material was separated by column chromatography (1:1 ethyl acetate-hexane) to afford the title product as a solid, recrystallized to purity from ether (187 20 mg, 29%). m.p. 177-180 °C (ether). TLC $R_{\rm F}$ 0.27 (50:50 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.38-7.32 (3H, m), 7.10-7.05 (2H, m), 6.96 (1H, s), 6.93 (2H, s), 5.32 (2H, s), 2.84 (2H, q, J = 7.3 Hz), 2.64 (3H, s), 2.30 (3H, s), 2.02(6H, s), 1.26 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e 372 (4), 25 371 (29), 370 (100). Analysis calc'd for $C_{25}H_{27}N_3$: C, 81.26; H, 7.38; N, 11.37; found: C, 80.70; H, 7.26; N, 11.20.

30

TABLE 2

Ex. No.	x	R ⁴	R ⁵	R ¹¹	R ⁶	R¹	πp, °C :
2001	CH ₂	Cl	Cl	Н	н	C-C4H7	-
2002	CH ₂	Cl	Cl	Н	Н	C-C ₅ H ₉	111-112
2003	CH ₂	Cl	Cl	H	Н	C-C6H11	oil
2004	CH ₂	Cl	C1	Н	H	C-C7H13	128-130
2005	CH ₂	Cl	C1	Н	Н	C-C _B H ₁₅	_
2006	CH ₂	Cl	C1	Н	H	2-CH ₃ -c-C ₅ H ₈	oil
2007	CH ₂	Cl	Cl	н	H	3-CH ₃ -C-C ₅ H ₈	-
2008	CH ₂	Cl	Cl	H	н	2-OCH ₃ -c-C ₅ H ₈	-
2009	CH ₂	Cl	C1	H	н	$2,5-(CH_3)_2-c-C_5H_7$	<u>-</u>
2010	CH ₂	Cl	C1	H	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
2011	CH ₂	Cl	Cl	H	Н	9-fluorenyl	oil
2012	CH ₂	Cl	Cl	H	н	1-tetrahydronaphthyl	oil
2013	CH ₂	Cl	Cl	н	н	1-indanyl	oil
2014	CH ₂	Cl	Cl	Н	н	4-chromanyl	oil
2015	CH₂	Cl	Cl	H	Н	$2-oxo-c-C_5H_7$	166-168
2016	CH ₂	Cl	Cl	Н	н	5-dibenzosuberyl	-
2017	CH ₂	Cl	Cl	H	H	5-dibenzosuberenyl	-
2018	CH ₂	Cl	CF3	Н	Н	C-C4H7	-
2019	CH ₂	Cl	CF ₃	Н	Н	c-C ₅ H ₉	146-147
2020	CH ₂	C1	CF3	H	H	C-C6H11	oil
2021	CH ₂	Cl	CP ₃	Н	Н	· c-C ₇ H ₁₃	129-130
2022	CH ₂	· Cl	CP ₃	н	Н	C-C ₈ H ₁₅	-
2023	CH ₂	Cl	CF3	Н	Н	2-CH ₃ -C-C ₅ H ₈	98-99

WO 99/01454	PCT/US98/13913

2024	CH2	Cl	CF ₃	Н	Н	$3-CH_3-C-C_5H_8$	-
2025	CH ₂	Cl	CF ₃	н	Н	2-OCH3-C-C5H8	-
2026	CH ₂	Cl	CF3	Н	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
2027	CH ₂	Cl	CF ₃	Н	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	_
2028	CH ₂	Cl	CF ₃	Н	Н	9-fluorenyl	· -
2029	CH ₂	Cl	CF ₃	Н	Н	1-tetrahydronaphthyl	-
2030	CH ₂	Cl	CF ₃	Н	Н	1-indanyl	-
2031	CH ₂	Cl	CF ₃	Н	H	4-chromanyl	<u>-</u>
2032	CH ₂	Cl	CF ₃	н	н	2-oxo-c-C ₅ H ₇	-
2033	CH ₂	Cl	CF,	н	H	5-dibenzosuberyl	-
2034	CH ₂	C1	CF ₃	н	Н	5-dibenzosuberenyl	-
2035	CH ₂	C1	OCH ₃	Н	H	C-C ₄ H ₇	-
2036	CH ₂	Cl	OCH ₃	Н	H	C-C ₅ H ₉	-
2037	CH ₂	Cl	OCH ₃	Н	н	C-C ₆ H ₁₁	-
2038	CH ₂	Cl	OCH ₃	H	Н	C-C7H13	-
2039	CH ₂	Cl	OCH ₃	н	н	C-C ₈ H ₁₅	-
2040	CH ₂	Cl	OCH ₃	Н	Н	$2-CH_3-C-C_5H_0$	- ·
2041	CH ₂	Cl	OCH ₃	H	H	3-CH ₃ -C-C ₅ H ₈	-
2042	CH ₂	Cl	OCH ₃	Н	Н	$2-OCH_3-C-C_5H_8$	-
2043	CH ₂	Cl	OCH ₃	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
2044	CH ₂	Cl	OCH ₃	Н	Н	$2-(CH_3)_2CH-5-CH_3-c-C_6H_9$	-
2045	CH ₂	Cl	осн,	Н	н	9-fluorenyl	-
2046	CH ₂	Cl	OCH ₃	Н	Н	1-tetrahydronaphthyl	-
2047	CH ₂	Cl	OCH ₃	Н	Н	1-indanyl	-
2048	CH ₂	C1	OCH ₃	Н	Н	4-chromanyl	-
2049	CH ₂	Cl	OCH ₃	Н	H	2-0x0-c-C ₅ H ₇	-
2050	CH ₂	Cl	OCH ₃	H	Н	5-dibenzosuberyl	-
2051	CH ₂	Cl	OCH ₃	H	Н	5-dibenzosuberenyl	-
2052	CH ₂	Cl	OCF ₃	H	Н	C-C4H7	-
2053	CH ₂	Cl	OCF ₃	Н	Н	C-C ₅ H ₉	oil
2054	CH ₂	Cl	OCF ₃	H	H	C-C ₆ H ₁₁	-
2055	CH ₂	Cl	OCF ₃	н	Н	C-C,H13	-
2056	CH ₂	Cl	OCF ₃	H	H	C-C ₈ H ₁₅	-
2057	CH ₂	Cl	OCF ₃	Н	н	$2-CH_3-C-C_5H_8$	-
2058	CH ₂	Cl	OCF,	Н	Н	$3-CH_3-C-C_5H_8$	-
2059	CH ₂	Cl	OCF ₃	Н	н	$2-OCH_3-c-C_5H_8$	-
2060	CH ₂	Cl	OCF3	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
2061	CH ₂	Cl	OCF3	Н	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-

WO 99/01454	PCT/US98/13913
WU 99/01454	1 C1/C3/0/15/15

2062	CH ₂	Cl	OCF ₃	Н	Н	9-fluorenyl	-
2063	CH ₂	Cl	OCF ₃	Н	Н	1-tetrahydronaphthyl	-
2064	CH ₂	Cl	OCF ₃	Н	н	1-indanyl	-
2065	CH ₂	Cl	OCF ₃	Н	н	4-chromanyl	-
2066	CH ₂	Cl	OCF ₃	Н	н	2-0x0-c-C,H,	· -
2067	CH ₂	Cl	OCF ₃	н	Н	5-dibenzosuberyl	-
2068	CH ₂	cl	OCF,	Н	Н	5-dibenzosuberenyl	-
2069	CH₂	Cl	CH3	Н	н	C-C ₄ H ₇	-
2070	CH₂	Cl	CH ₃	Н	Н	C-C ₅ H ₉	-
2071	CH ₂	Cl	CH ₃	н	Н	C-C ₆ H ₁₁	.
2072	CH₂	Cl	CH ₃	н	Н	C-C7H13	-
2073	CH ₂	Cl	CH ₃	н	н	C-C ₀ H ₁₅	-
2074	CH ₂	Cl	CH ₃	н	Н	2-CH ₃ -c-C ₅ H ₈	-
2075	CH ₂	C1	CH ₃	Н	Н	$3-CH_3-C-C_5H_8$	-
2076	CH ₂	Cl	CH ₃	Н	Н	$2-OCH_3-c-C_5H_8$	-
2077	CH ₂	Cl	CH ₃	Н	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
2078	CH ₂	Cl	CH ₃	Н	Н	$2-(CH_3)_2CH-5-CH_3-c-C_6H_9$	-
2079	CH ₂	Cl	CH ₃	H	Н	9-fluorenyl	-
2080	CH ₂	Cl	CH3	H	Н	1-tetrahydronaphthyl	-
2081	CH ₂	Cl	CH ₃	Н	H	1-indanyl	-
2082	CH ₂	Cl	CH ₃	н	H	4-chromanyl	-
2083	CH ₂	Cl	CH3	H	Н	$2-oxo-c-C_5H_7$	-
2084	CH ₂	Cl	CH3	н	H	5-dibenzosuberyl	-
2085	CH ₂	Cl	CH3	Н	Н	5-dibenzosuberenyl	-
2086	CH ₂	CF3	cl	Н	H	C-C4H7	-
2087	CH ₂	CF ₃	C1	Н	. Н	C-C ₅ H ₉	143-145
2088	CH ₂	CF ₃	Cl	Н	Н	C-C6H11	-
2089	CH ₂	CF3	Cl	Н	Н	C-C7H13	~
2090	CH ₂	CF ₃	Cl	Н	Н	C-C ₈ H ₁₅	-
2091	CH ₂	CF ₃	Cl	Н	Н	$2-CH_3-C-C_5H_8$	-
2092	CH ₂	CF ₃	Cl	Н	Н	$3-CH_3-C-C_5H_8$	_
2093	CH ₂	CF ₃	Cl	Н	Н	$2-OCH_3-C-C_5H_8$	
2094	CH ₂	CF ₃	Cl	Н	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
2095	CH ₂	CF3	Cl	Н	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
2096	CH ₂	CF ₃	Cl	н	Н	9-fluorenyl	-
2097	CH ₂	CF ₃	Cl	Н	H	1-tetrahydronaphthyl	_ <
2098	CH ₂	CF3	Cl	Н	Н	1-indanyl	-
2099	CH ₂	CF ₃	C1	Н	H	4-chromanyl	-

WO 99/01454						PCT/U	598/13913
2100	CH ₂	CF ₃	Cl	Н	Н	2-0x0-c-C5H7	-
2101	CH ₂	CF,	Cl	Н	Н	5-dibenzosuberyl	-
2102	CH ₂	CF ₃	Cl	Н	Н	5-dibenzosuberenyl	-
2103	CH ₂	CF ₃	осн3	н	Н	C-C4H7	-
2104	CH ₂	CF3	OCH3	Н	Н	c-C5H9	103-106
2105	CH ₂	CF ₃	OCH ₃	Н	Н	C-C6H11	-
2106	CH ₂	CF ₃	OCH ₃	н	Н	C-C,H13	. –
2107	CH ₂	CF ₃	осн,	н	H	C-CaH ₁₅	-
2108	CH ₂	CF ₃	осн,	н	н	2-CH ₃ -c-C ₅ H ₈	-
2109	CH ₂	CF ₃	OCH ₃	Н	Н	$3-CH_3-C-C_5H_8$	-
2110	CH ₂	CF ₃	OCH ₃	н	Н	2-OCH ₃ -c-C ₅ H ₈	-
2111	CH ₂	CF ₃	осн3	Н	н	$2,5-(CH_3)_2-c-C_5H_7$	-
2112	CH ₂	CF ₃	OCH ₃	Н	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-
2113	CH ₂	CF ₃	OCH3	Н	н	9-fluorenyl	-
2114	CH ₂	CF3	OCH ₃	. н	Н	1-tetrahydronaphthyl	-
2115	CH ₂	CF3	OCH,	Н	Н	1-indanyl	-
2116	CH ₂	CF ₃	OCH3	Н	Н	4-chromanyl	-
2117	CH ₂	CF ₃	OCH ₃	Н	Н	$2-oxo-c-C_5H_7$	-
2118	CH ₂	CF3	OCH ₃	Н	н	5-dibenzosuberyl	-
2119	CH ₂	CF3	OCH ₃	н	Н	5-dibenzosuberenyl	-
2120	CH ₂	CF3	F	Н	Н	C-C4H7	- '
2121	CH ₂	CF3	F	Н	Н	C-C ₅ H ₉	-
2122	CH ₂	CF ₃	F	н	Н	C-C6H11	-
2123	CH ₂	CF ₃	F	Н	Н	C-C ₇ H ₁₃	119-122
2124	CH ₂	CF ₃	F	Н	H	C-C ₈ H ₁₅	-
2125	CH ₂	CF,	F	Н	Н	2-CH ₃ -C-C ₅ H ₈	-
2126	CH ₂	CF3	F	Н	H	$3 - CH_3 - C - C_5H_8$	-
2127	CH ₂	CF3	F	H	Н	$2-OCH_3-C-C_5H_8$	-
2128	CH ₂	CF3	F	Н	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
2129	CH ₂	CF3	F	Н	Н	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	155-156
2130	CH ₂	CF ₃	F	Н	Н	9-fluorenyl	184-185
2131	CH ₂	CF,	F	Н	Н	1-tetrahydronaphthyl	-
2132	CH ₂	CF,	F	H	Н	1-indanyl	-
2133	CH ₂	CF ₃	F	Н	Н	4-chromanyl	-
2134	CH ₂	CF ₃	F	Н	Н	2-oxo-c-C ₅ H ₇	-
2135	CH ₂	CF3	F	Н	H-	5-dibenzosuberyl	- <
2136	CH ₂	CF ₃	F	Н	Н	5-dibenzosuberenyl	-
2137	CH ₂	CH ₃	OCH ₃	CH3	Н	C-C4H7	-

2138	CH ₂	CH3	OCH ₃	CH ₃	Н	C-C ₅ H ₉	-	
2139	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C-C6H11	-	
2140	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C-C,H13	-	
2141	CH ₂	CH ₃	OCH ₃	CH ₃	н	C-C8H15	-	
2142	CH ₂	CH ₃	OCH ₃	CH3	Н	$2-CH_3-C-C_5H_0$	-	
2143	CH ₂	CH ₃	OCH ₃	СН3	н	$3-CH_3-C-C_5H_8$	-	
2144	CH ₂	CH ₃	осн,	CH3	H	2-OCH ₃ -c-C ₅ H ₈		
2145	CH ₂	CH ₃	OCH ₃	СН,	Н	$2,5-(CH_3)_2-C-C_5H_7$	-	
2146	CH ₂	CH ₃	OCH3	CH3	н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-	
2147	CH ₂	CH ₃	OCH ₃	CH ₃	Н	9-fluorenyl	- .	
2148	CH ₂	CH3	OCH3	CH ₃	н	1-tetrahydronaphthyl	+	
2149	CH ₂	CH ₃	OCH ₃	CH3	Н	1-indanyl	-	
2150	CH ₂	CH ₃	OCH ₃	CH ₃	Н	4-chromanyl	-	
2151	CH ₂	CH3	OCH ₃	CH3	н	2-0x0-c-C ₅ H ₇	-	
2152	CH ₂	CH3	OCH ₃	CH ₃	н	5-dibenzosuberyl	-	
2153	CH ₂	СН,	OCH ₃	CH ₃	Н	5-dibenzosuberenyl	-	
2154	CH ₂	CH ₃	OCH ₃	Cl	н	C-C4H7	-	
2155	CH ₂	CH ₃	OCH ₃	Cl	н	C-C5H9	115-116	
2156	CH ₂	CH ₃	OCH ₃	Cl	н	C-C6H11	-	
2157	CH ₂	CH ₃	OCH ₃	Cl	н	C-C7H13	-	
2158	CH ₂	CH ₃	OCH ₃	C1	Н	C-C ₈ H ₁₅	~	
2159	CH ₂	CH ₃	OCH ₃	Cl	Н	$2-CH_3-c-C_5H_8$	_	
2160	CH ₂	CH ₃	OCH ₃	Cl	Н	$3-CH_3-C-C_5H_8$	-	
2161	CH ₂	CH ₃	OCH ₃	Cl	Н	2-OCH ₃ -c-C ₅ H ₈	-	
2162	CH₂	CH ₃	OCH ₃	Cl	Н	$2,5-(CH_3)_2-c-C_5H_7$	-	
2163	CH ₂	CH ₃	OCH ₃	Cl	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-	
2164	CH ₂	CH ₃	OCH ₃	Cl	Н	9-fluorenyl	-	
2165	CH ₂	CH ₃	OCH ₃	Cl	н	1-tetrahydronaphthyl	-	
2166	CH ₂	CH ₃	OCH ₃	Cl	Н	1-indanyl	-	
2167	CH ₂	CH ₃	OCH ₃	Cl	н	4-chromanyl	-	
2168	CH ₂	CH ₃	OCH ₃	Cl	Н	$2-oxo-c-C_5H_7$	-	
2169	CH ₂	CH ₃	OCH ₃	Cl	н	5-dibenzosuberyl	-	
2170	CH ₂	CH ₃	OCH ₃	Cl	н	5-dibenzosuberenyl	-	
2171	CH ₂	CH ₃	OCH ₃	F	н	C-C4H7	-	
2172	CH ₂	CH ₃	OCH ₃	F	H	C-C ₅ H ₉	-	
2173	CH ₂	CH ₃	OCH ₃	F	н	C-C ₆ H ₁₁	-	•
2174	CH2	CH ₃	OCH ₃	F	н	C-C,H13	-	
2175	CH ₂	CH ₃	OCH ₃	F	H	C-C ₈ H ₁₅	-	

WO 99/01454	PCT/US98/13913
WU 99/01434	101.0030.1031

CH ₂	CH,	OCH,	F	Н	2-CH3-C-C5H8	_
		OCH ₃	F	н	•	_
CH ₂	CH ₃	OCH ₃	F	Н	2-0CH ₃ -C-C ₅ H ₈	-
CH ₂	CH ₃	OCH,	F	Н	$2,5-(CH_3)_2-c-C_5H_7$	-
CH ₂	CH ₃	OCH ₃	F	н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-
CH ₂	СН,	OCH ₃	F	Н	9-fluorenyl	-
CH₂	CH ₃	OCH ₃	F	н	1-tetrahydronaphthyl	-
CH ₂	CH ₃	OCH ₃	F	Н	1-indanyl	-
CH ₂	CH ₃	OCH ₃	F	н	4-chromanyl	-
CH ₂	CH ₃	OCH ₃	F	н	$2-oxo-c-C_5H_7$	-
CH ₂	CH ₃	OCH ₃	F	н	5-dibenzosuberyl	-
CH ₂	CH ₃	OCH ₃	F	Н	5-dibenzosuberenyl	-
CH ₂	CH3	CH3	Н	CH ₃	C-C ₄ H ₇	-
CH ₂	CH3	СН3	Н	CH ₃	C-C ₅ H ₉	-
CH ₂	CH ₃	CH ₃	Н	CH ₃	C-C6H11	-
CH ₂	CH ₃	CH3	Н	CH ₃	C-C7H13	-
CH ₂	CH ₃	CH ₃	н	CH3	C-C ₈ H ₁₅	
CH ₂	CH ₃	CH ₃	Н	CH3	$2-CH_3-C-C_5H_8$	-
CH ₂	CH ₃	CH ₃	Н	CH ₃	$3-CH_{3}-C-C_{5}H_{8}$	-
CH ₂	CH ₃	CH ₃	Н	CH3	$2-OCH_3-C-C_5H_8$	-
CH ₂	CH ₃	CH ₃	Н	CH3	$2,5-(CH_3)_2-c-C_5H_7$	-
CH ₂	СН3	CH ₃	Н	CH ₃	$2-(CH_3)_2CH-5-CH_3-C-C_6H_9$	-
CH ₂	CH3	CH ₃	Н	CH3	9-fluorenyl	-
CH ₂	CH ₃	CH ₃	Н	CH ₃	1-tetrahydronaphthyl	-
CH ₂	CH ₃	CH ₃	Н	CH ₃	1-indanyl	-
CH ₂	CH ₃	CH ₃	Н	CH ₃	4-chromanyl	-
CH2	CH ₃	CH3	Н	CH ₃	2-0x0-C-C ₅ H ₇	-
CH ₂	CH ₃	CH ₃	H	CH ₃	5-dibenzosuberyl	_
CH ₂	CH ₃	CH ₃	H	CH ₃	5-dibenzosuberenyl	-
CH ₂	Cl	Cl	Н	CH ₃	C-C ₄ H ₇	-
CH ₂	Cl	Cl	H	CH3	C-C ₅ H ₉	-
CH ₂	Cl	Cl	Н	CH ₃	C-C ₆ H ₁₂	-
CH ₂	Cl	Cl	H	CH ₃	C-C7H13	-
CH ₂	Cl	Cl	Н	CH ₃	C-C ₈ H ₁₅	-
CH ₂	Cl	Cl	Н	CH3	$2-CH_3-C-C_5H_8$	-
CH ₂	Cl	Cl	Н	CH3	$3-CH_3-C-C_5H_0$	_
CH ₂	Cl	Cl	Н	CH ₃	$2-OCH_3-C-C_5H_8$	-
CH ₂	Cl	Cl	Н	CH3	$2,5-(CH_3)_2-c-C_5H_7$	-
	CH ₂	CH ₂ CH ₃ CH ₃ CH ₄	CH2 CH3 OCH3 CH2 CH3 CH3 CH2 CH3 CH3	CH2 CH3 OCH3 F CH2 CH3 CH3 H CH2 CH3 CH3 CH3 CH3 H CH2 CH3 CH3 CH3 CH3 CH3 H CH2 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH CH2 CH3 CH3 CH3 CH3 CH3 CH3 CH C	CH2 CH3 OCH3 F H CH2 CH3 CH3 H CH3 CH2 CH3	CH ₂ CH ₃ OCH ₃ F H 2-OCH ₃ -C-C ₃ H ₆ CH ₂ CH ₃ OCH ₃ F H 2-OCH ₃ -C-C ₅ H ₆ CH ₂ CH ₃ OCH ₃ F H 2-OCH ₃ -C-C ₅ H ₆ CH ₂ CH ₃ OCH ₃ F H 2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉ CH ₂ CH ₃ OCH ₃ F H 2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉ CH ₂ CH ₃ OCH ₃ F H 9-fluorenyl CH ₂ CH ₃ OCH ₃ F H 1-tetrahydronaphthyl CH ₂ CH ₃ OCH ₃ F H 1-indanyl CH ₃ CH ₃ OCH ₃ F H 1-indanyl CH ₄ CH ₃ OCH ₃ F H 2-oxo-C-C ₅ H ₇ CH ₂ CH ₃ OCH ₃ F H 2-oxo-C-C ₅ H ₇ CH ₂ CH ₃ OCH ₃ F H 5-dibenzosuberyl CH ₃ CH ₃ OCH ₃ F H 5-dibenzosuberyl CH ₄ CH ₃ OCH ₃ F H 5-dibenzosuberyl CH ₂ CH ₃ OCH ₃ F H 5-dibenzosuberyl CH ₄ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₇ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₇ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₇ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₁ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₁ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₁ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₈ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ CH ₃ H CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ CH ₃ C-C ₄ H ₉ CH ₂ CH ₃ CH ₃ CH ₃ C-C ₄ H ₉ CH ₂

WO 99/01454	PCT/US98/13913

2214	CH ₂	Cl	Cl	н	CH ₃	2-(CH ₃) ₂ CH-5-CH ₃ -C-C ₆ H ₉	-
2215	CH ₂	Cl	Cl	н	СН3	9-fluorenyl	-
2216	CH ₂	Cl	Cl	Н	CH ₃	1-tetrahydronaphthyl	oil
2217	CH ₂	C1.	Cl	Н	CH ₃	1-indanyl	-
2218	CH₂	Cl	Cl	Н	СН₃	4-chromanyl	-
2219	CH ₂	Cl	Cl	н	CH ₃	2-oxo-c-C ₅ H ₇	-
2220	CH ₂	Cl	Cl	н	CH ₃	5-dibenzosuberyl	-
2221	CH ₂	cı	Cl	н	CH ₃	5-dibenzosuberenyl	
2222	CH ₂	CH ₃	OCH ₃	OCH ₃	н	C-C4H7	-
2223	CH ₂	CH3	OCH ₃	OCH ₃	н	c-C,H,	oi.1
2224	CH ₂	СН3	OCH ₃	OCH ₃	Н	c-C ₆ H ₁₁	-
2225	CH ₂	CH3	OCH ₃	OCH ₃	н	C-C7H13	-
2226	CH ₂	СН3	OCH ₃	OCH ₃	Н	C-C ₈ H ₁₅	-
2227	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	2-CH3-C-C5H8	oil
2228	CH ₂	CH3	OCH ₃	OCH ₃	Н	3-CH ₃ -C-C ₅ H ₈	-
2229	CH ₂	CH ₃	OCH ₃	OCH ₃	н	2-OCH ₃ -C-C ₅ H ₈	· -
2230	CH ₂	CH3	OCH ₃	OCH3	Н	$2,5-(CH_3)_2-C-C_5H_7$	-
2231	CH ₂	CH ₃	OCH3	OCH3	Н	2-(CH ₃) ₂ CH-5-CH ₃ -c-C ₆ H ₉	-
2232	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	9-fluorenyl	-
2233	CH ₂	CH ₃	OCH3	OCH ₃	H	1-tetrahydronaphthyl	-
2234	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	1-indanyl	-
2235	CH ₂	CH ₃	OCH ₃	OCH ₃	н	4-chromanyl	· -
2236	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	2-oxo-c-C ₅ H ₇	-
2237	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	5-dibenzosuberyl	-
2238-	CH ₂	CH ₃	OCH ₃	OCH ₃	н	5-dibenzosuberenyl	~
2239	0	Cl	Cl	Н	Н	C-C ₅ H ₉	-
2240	. 0	Cl	CF ₃	Н	н	C-C ₅ H ₉	-
2241	0	Cl	OCH ₃	Н	Н	C-C ₅ H ₉	-
2242	0	Cl	OCF ₃	Н	Н	C-C ₅ H ₉	
2243	0	Cl	CH ₃	Н	н	C-C ₅ H ₉	-
2244	Ō	CF ₃	Cl	Н	н	C-C ₅ H ₉	-
2245	0	CF ₃	OCH ₃	Н	Н	C-C ₅ H ₉	
2246	0	CH ₃	OCH ₃	CH3	н	C-C ₅ H ₉	-
2247	0	CH ₃	OCH ₃	Cl	н	C-C ₅ H ₉	-
2248	0	CH ₃	OCH ₃	F	н	c-C _s H ₉	-
2249	0	CH ₃	CH ₃	Н	CH ₃	C-C ₅ H ₉	-
2250	0	C1	cı	Н	CH3	c-C ₅ H ₉	-

Key:

20

(31), 423 (100).

a) Where the compound is listed as an "oil", spectral data is as follows:

Example 2003 spectral data: MS (NH₃-CI): m/e 374 (M+H⁺, 100%).

- 5 Example 2006 spectral data: TLC R, 0.20 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.57 (1H, d, J = 1.8 Hz), 7.40 (1H, dd, J = 8.1, 1.8 Hz), 4.83 (1H, q, J = 8.0 Hz), 3.20-3.04 (1H, m), 2.98 (2H, q, J = 7.3 Hz), 2.50-2.38 (1H, m), 2.30-2.15 (2H, m), 2.03-1.93 (2H, m), 1.75-1.60 (1H, m), 1.42 (3H, t, J
- 10 = 7.3 Hz), 0.68 (3H, d, J = 6.9 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{21}Cl_2N_4$: 375.1143, found 375.1149; 380 (2), 379 (12), 378 (15), 377 (66), 376 (27), 375 (100).

Example 2011 spectral data: MS (NH₃-CI): m/e 457 (M+H⁺, 100%).

Example 2012 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). H

- NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.47-7.40 (2H, m), 7.24-7.18 (1H, m), 6.56 (1H, d, J = 7.7 Hz), 6.18-6.10 (1H, m), 4.82-4.76 (1H, m), 3.15-2.30 (5H, m), 2.10-1.77 (3H, m), 1.27 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{21}Cl_2N_4$: 423.1143, found 423.1142; 427 (13), 426 (18), 425 (67), 424
 - Example 2013 spectral data: TLC R, 0.28 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.68 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.46-7.38 (2H, m), 7.22-7.15 (1H, m), 6.91 (1H, d, J = 7.7 Hz), 6.42 (1H, br t, J = 7 Hz), 5.30-5.22 (1H, m), 3.43-3.33 (1H,
- 25 m), 3.20-3.03 (1H, m), 2.89-2.76 (2H, m), 2.56-2.43 (1H, m), 2.01-1.90 (1H, m), 1.31 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{19}Cl_2N_4$: 409.0987, found 409.0987; 413 (12), 412 (17), 411 (67), 410 (29), 409 (100).
- Example 2014 spectral data: TLC R, 0.38 (30:70 ethyl acetate-hexane). 1 H 30 NMR (300 MHz, CDCl₃): δ 8.95 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 2.2 Hz), 7.42 (1H, dd, J = 8.4, 2.2 Hz), 7.26-7.19 (1H, m), 6.98-6.90 (1H, m), 6.58 (1H, d, J = 7.7 Hz), 6.30-6.22 (1H, m), 4.60-4.53 (1H, m), 4.43-4.33 (1H, m), 4.20 (1H, br), 2.82-2.72 (1H, m), 2.69-2.58 (1H, m), 2.46-2.36 (1H, m), 2.18-2.08 (1H, m), 1.29 (3H, t, J = 7.5 Hz).
- 35 MS (NH₃-CI): m/e calc'd for $C_{22}H_{19}Cl_2N_4O$: 425.0936, found 425.0926; 429 (12), 428 (17), 427 (67), 426 (30), 425 (100). Example 2020 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.81 (2H, d, J = 8.4 Hz), 7.67 (1H,

dd, J = 8.0, 0.7 Hz), 4.26 (1H, m), 3.00 (2H, q, J = 7.6 Hz), 2.75-2.66 (2H, m), 2.06-1.90 (4H, m), 1.50-1.36 (4H, m), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 412 (7), 411 (34), 410 (25), 409 (100).

Example 2053 spectral data: TLC R, 0.36 (25:75 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.73 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 1.1 Hz), 7.28 (1H, dd, J = 8.4, 1.1 hz), 4.79 (1H, pentet, J =8.4 Hz), 3.01 (2H, q, J = 7.7 Hz), 2.62-2.50 (2H, m), 2.23-2.07 (2H, m), 1.89-1.77 (2H, m), 1.66-1.49 (2H, m), 1.41 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calculated for $C_{19}H_{19}ClF_3N_4O$: 411.1205, found 411.1208; 414 (7), 10

Example 2216 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.94 (1H, s), 7.48-7.02 (5H, m), 6.53 (1H, dd, J = 7.7, 1.5 Hz), 6.18-6.10 (1H, m), 3.16-2.20 (5H, m), 2.13 (3H, d, J = 4.8 Hz), 2.06-1.70 (3H, m), 1.23 (3H, dt, J = 7.4, 4.4 Hz). MS (NH₃-CI):

413 (34), 412 (24), 411 (100).

15 m/e calc'd for $C_{24}H_{23}Cl_2N_4$: 437.1300, found 437.1299; 439 (67), 437 (100). Example 2223 spectral data: TLC R, 0.36 (50:50 ethyl acetate-hexane). 1H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.33 (1H, s), 6.83 (1H, s), 4.78 (1H, pentet, J = 8.5 Hz), 3.94 (3H, s), 3.90 (3H, s), 2.98 (2H, q, J =7.6 Hz), 2.58-2.48 (2H, m), 2.42 (3H, s), 2.19-2.07 (2H, m), 1.84-1.56

(4H, m), 1.43 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{27}N_4O_2$: 20 367.2134, found 367.2120; 369 (3), 368 (24), 367 (100). Example 2227 spectral data: TLC R, 0.45 (50:50 ethyl acetate-hexane). 1H

NMR (300 MHz, CDCl₃): δ 8.90 (1H, s), 7.37 (1H, s), 6.83 (1H, s), 4.85 (1H, q, J = 8.4 Hz), 3.94 (3H, s), 3.91 (3H, s), 3.19-3.11 (1H, m), 2.96(2H, dq, J = 7.9, 1.5 Hz), 2.41 (3H, s), 2.24-2.16 (2H, m), 2.04-1.94(2H, m), 1.71-1.62 (2H, m), 1.44 (3H, t, J = 7.4 Hz), 0.69 (3H, d, J =

6.9 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{29}N_4O_2$: 381.2290, found 381.2294; 383 (4), 382 (25), 381 (100).

30

25

The methods discussed below in the preparation of 3benzyl-5-methyl-7-(2,4,6-trimethylphenyl)-imidazo[4,5b)pyridine (Example 3001, Table 3) may be used to prepare all of the examples of Structure A contained in Table 3, 35 with minor procedural modifications where necessary and use of reagents of the appropriate structure.

3

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 3, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

Example 3001

Preparation of 3-benzyl-5-methyl-7-(2,4,6-trimethylphenyl)imidazo[4,5-b]pyridine

10

Part A. A solution of 2,4,6-trimethylbenzeneboronic acid in benzene (0.5 M) is treated with excess *n*-butanol, and the solution is heated to reflux under a Dean-Stark still head to azeotropically remove water. Solvent is removed by evaporation, and the resulting dibutyl 2,4,6-trimethylbenzeneboronate is used directly in Part B.

Part B. The method of Snieckus et al. (Fu, J. M.; Zhao, B. 20 P.; Sharp, M. J.; Snieckus, V. Can. J. Chem. 1994, 72, 227-236) may be employed here. Thus, a solution of 4-chloro-6-methyl-3-nitro-2-pyridone in dimethylformamide (0.1 M) is treated with the boronate from Part A (1.2 eq), tribasic potassium phosphate (2.4 eq), and [1,1'-

bis(diphenylphosphino)-ferrocene)dichloropalladium (0.1 eq). The mixture is stirred at ambient temperature for 30 hrs., then poured into 4 volumes ethyl acetate. This is washed with 3 equal volumes of water, then brine. The extract is dried over Na₂SO₄, filtered and evaporated.

30 Chromatographic separation affords pure 6-methyl-3-nitro-4-(2,4,6-trimethylphenyl)-2-pyridone.

Part C. The pyridone from Part B is suspended in 6 eq phosphorus oxychloride, and stirred with mild heating until the compound dissolves. The mixture is cooled, and poured over ice. After melting, the mixture is extracted twice with dichloromethane, and the extracts are combined, dried over Na₂SO₄, filtered and evaporated. The product, 2-chloro-

ζ;

6-methyl-3-nitro-4-(2,4,6-trimethylphenyl)pyridine, is purified by either chromatography or recrystallization.

Part D. The chloride from Part C is dissolved in ethanol,
and treated with benzylamine (1.2 eq.). The mixture is
heated to reflux until the starting material is consumed as
determined by thin-layer chromatography. The mixture is
evaporated, and the residual material is partitioned
between water and ethyl acetate. The organic layer is
separated, washed with brine, dried over Na₂SO₄, filtered
and evaporated. The product, 2-benzylamino-6-methyl-3nitro-4-(2,4,6-trimethylphenyl)pyridine, is purified by
either chromatography or recrystallization.

15 Part E. The nitro compound from Part D is dissolved in 1:1 aqueous dioxane, and treated with conc. aq. ammonium hydroxide solution. To this is added solid sodium dithionite in several portions over 2 h. The mixture is allowed to stir for an additional 4 h, then partitioned 20 between water and ethyl acetate. The organic layer is separated, washed with brine, dried over Na₂SO₄, filtered and evaporated. The product, 3-amino-2-benzylamino-6-methyl-4-(2,4,6-trimethylphenyl)pyridine, is purified by either chromatography or recrystallization.

25

Part F. A suspension of the diamine from Part E above in triethyl orthopropionate is treated with conc. HCl, and heated to reflux for 1 h, then cooled and the excess orthoester removed by vacuum distillation. The pot residue contains sufficiently pure N-[2-benzylamino-4-(2,4,6-trimethylphenyl)-6-methylpyridin-3-yl]propionamide O-ethyl imidate.

Part G. A solution of the compound from Part F in phenyl ether is treated with a catalytic amount of ptoluenesulfonic acid and heated to 170 °C for 6 h, then cooled. The residual liquid is separated by column

ζ.

chromatography (hexane, then ethyl acetate) to afford the title product.

5 TABLE 3

Ex. No.	Х	R ⁴	R ⁵	R ¹¹	R ⁶	R ¹	mp, ℃°	-
3001	CH₂	Cl	Cl	Н	Н	$C (=0) OC_2H_5$	-	
3002	CH ₂	C1	Cl	Н	н	$C (=0) OC_3H_7$	90-91	
3003	CH ₂	Cl	Cl	н	н	$C (=0) OC_4H_9$	57-59	
3004	CH ₂	Cl	Cl	Н	Н	C(=0)OCH(CH ₃) ₂	80-81	
3005	CH ₂	Cl	Cl	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	60-62	
3006	CH ₂	Cl	Cl	н	Н	$C(=O)N(CH_3)_2$	-	
3007	CH ₂	Cl	Cl	н	Н	$C (=0) N (C_2H_5)_2$	120-123	
3008	CH ₂	Cl	Cl	н	Н	$C(=0)N[CH(CH_3)_2]_2$	147-149	
3009	CH₂	Cl	Cl	н	Н	C(=0)(1-morpholinyl)	158-159	
3010	CH ₂	Cl	Cl	Н	Н	SO ₂ C ₆ H ₅	132-133	
3011	CH ₂	Cl	Cl	Н	н	$SO_2(4-CH_3-C_6H_4)$	154-155	
3012	CH ₂	Cl	Cl	Н	Н	SO ₂ (4-OCH ₃ -C ₆ H ₄)	156-158	
3013	CH ₂	Cl	Cl	н	Н	SO ₂ -(2-thienyl)	176-178	
3014	CH ₂	Cl	Cl	н	Н	SO ₂ CH ₂ C ₆ H ₅	127-129	
3015	CH ₂	Cl	Cl	н	Н	SO ₂ C ₃ H ₇	100-101	
3016	CH ₂	cı	Cl	н	Н	SO₂C₄H,	79-80	
3017	CH ₂	Cl	Cl	н	Н	$C(=0) - (2-C1-C_6H_4)$	110-113	,
3018	CH ₂	Cl	CF ₃	н	Н	$C (=0) OC_3H_5$	-	₹;
3019	CH ₂	Cl	CF3	н	Н	$C (=0) OC_3H_7$	-	

3020	CH ₂	Cl	CF ₃	Н	Н	$C (=0) OC_4H_9$	-
3021	CH ₂	Cl	CF3	Н	Н	$C(=0)OCH(CH_3)_2$	-
3022	CH ₂	Cl	CF ₃	H	Н	$C(=O)OCH_2CH(CH_3)_2$	-
3023	CH ₂	Cl	CF ₃	н	Н	$C(=0)N(CH_3)_2$	-
3024	CH ₂	Cl	CF ₃	H .	Н	$C(=0)N(C_2H_5)_2$	-
3025	CH ₂	Cl	CF ₃	H	Н	C(=0)N[CH(CH3)2]2	-
3026	CH ₂	Cl	CF ₃	Н	Н	C(=0)(1-morpholinyl)	-
3027	CH ₂	Cl	CF ₃	Н	Н	SO ₂ C ₆ H ₅	-
3028	CH ₂	Cl	CF ₃	Н	Н	$SO_2(4-CH_3-C_6H_4)$	· -
3029	CH ₂	Cl	CF ₃	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3030	CH ₂	Cl	CF ₃	H .	H	SO_2 -(2-thienyl)	-
3031	CH ₂	Cl	CF3	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3032	CH ₂	Cl	CF ₃	Н	Н	SO ₂ C ₃ H ₇	-
3033	CH₂	Cl	CF ₃	H	Н	SO ₂ C ₄ H ₉	-
3034	CH ₂	Cl	CF ₃	Н	н	$C(=0) - (2-C1-C_6H_4)$	-
3035	CH ₂	Cl	OCH ₃	Н	Н	$C (=0) OC_2H_5$	-
3036	CH ₂	Cl	OCH ₃	Н	Н	$C (=0) OC_3H_7$	-
3037	CH ₂	Cl	OCH ₃	Н	Н	$C (=0) OC_4H_9$	
3038	CH ₂	Cl	OCH ₃	Н	Н	$C(=0)OCH(CH_3)_2$	-
3039	CH ₂	Cl	OCH3	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-
3040	CH₂	Cl	OCH ₃	Н	Н	$C(=0)N(CH_3)_2$	-
3041	CH₂	Cl	OCH ₃	Н	н	$C(=0)N(C_2H_5)_2$	-
3042	CH ₂	Cl	OCH ₃	н	н	C(=0)N[CH(CH3)2]2	-
3043	CH ₂	Cl	OCH ₃	H	Н	C(=0)(1-morpholinyl)	-
3044	CH ₂	Cl	OCH ₃	Ĥ	н	SO ₂ C ₆ H ₅	-
3045	CH ₂	Cl	OCH3	н	Н	$SO_2(4-CH_3-C_6H_4)$	-
3046	CH ₂	Cl	OCH ₃	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3047	CH ₂	Cl	OCH ₃	Н	Н	SO_2 -(2-thienyl)	-
3048	CH ₂	Cl	OCH ₃	Н	H-	SO ₂ CH ₂ C ₆ H ₅	-
3049	CH ₂	Cl	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3050	CH ₂	Cl	OCH ₃	Н	Н	SO₂C₄H,	-
3051	CH ₂	Cl	OCH ₃	Н	н	$C(=0) - (2-C1-C_6H_4)$	
3052	CH ₂	Cl	OCF ₃	Н	Н	C (=0) OC2H5	-
3053	CH ₂	Cl	OCF ₃	н	Н	C (=0) OC3H7	-
3054	CH ₂	Cl	OCF3	н	Н	$C (=0) OC_4H_9$	
3055	CH ₂	Cl	OCF ₃	Н	Н	C(=0)OCH(CH ₃) ₂	-
3056	CH ₂	Cl	OCF ₃	Н	н	$C(=0)OCH_2CH(CH_3)_2$	-
3057	CH ₂	Cl	OCF ₃	н	н	$C(=0)N(CH_3)_2$	•

WO 99/01454	PCT/US98/13913
-------------	----------------

3058	CH ₂	Cl	OCF ₃	Н	Н	$C(=O)N(C_2H_5)_2$	-
3059	CH ₂	Cl	OCF ₃	н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3060	CH ₂	Cl	OCF ₃	Н	Н	C(=0)(1-morpholinyl)	-
3061	CH3	Cl	OCF ₃	Н	Н	SO ₂ C ₆ H ₅	-
3062	CH ₂	Cl	OCF ₃	н	Н	$SO_2(4-CH_3-C_6H_4)$	÷
3063	CH ₂	C1	OCF ₃	Н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3064	CH ₂	Cl	OCF3	Н	Н	SO ₂ -(2-thienyl)	-
3065	CH ₂	cl	OCF ₃	н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3066	CH ₂	Cl	OCF ₃	н	Н	SO ₂ C ₃ H ₇	-
3067	CH ₂	Cl	OCF3	Н	н	SO ₂ C ₄ H ₉	-
3068	СН₂	C1	OCF ₃	н	н	$C(=0) - (2-C1-C_6H_4)$	-
3069	CH ₂	Cl	CH ₃	Н	Н	$C (=0) OC_2H_5$	-
3070	CH ₂	Cl	CH ₃	Н	Н	$C (=0) OC_3H_7$	-
3071	CH ₂	C1	CH ₃	H	н	$C (=0) OC_4H_9$	-
3072	CH ₂	Cl	CH ₃	H	H	$C(=0)OCH(CH_3)_2$	-
3073	CH ₂	Cl	CH ₃	Н	н	$C(=0)OCH_2CH(CH_3)_2$	-
3074	CH ₂	Cl	СН3	Н	Н	$C(=0)N(CH_3)_2$	-
3075	CH ₂	Cl	CH ₃	Н	Н	$C(=0)N(C_2H_5)_2$	-
3076	CH ₂	Cl.	СН3	Н	н	$C(=0)N[CH(CH_3)_2]_2$	-
3077	CH ₂	C1	СН3	H	Н	C(=0)(1-morpholinyl)	_
3078	CH ₂	Cl	CH ₃	н	Н	SO₂C ₆ H ₅	-
3079	CH ₂	cı	CH ₃	H	н	$SO_2(4-CH_3-C_6H_4)$	-
3080	CH ₂	Cl	CH ₃	Н	Н	SO ₂ (4-OCH ₃ -C ₆ H ₄)	-
3081	CH ₂	Cl	CH ₃	H	н	SO ₂ -(2-thienyl)	-
3082	CH ₂	Cl	CH ₃	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3083	CH ₂	cı	CH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3084	CH ₂	Cl	CH ₃	Н	н	SO ₂ C₄H,	-
3085	CH ₂	Cl	CH3	H	Н	$C(=0) - (2-C1-C_6H_4)$	-
3086	CH ₂	CF ₃	Cl	Н	Н	$C (=0) OC_2H_5$	-
3087	CH ₂	CF ₃	Cl	H	н	$C (=0) OC_3H_7$	_
3088	CH ₂	CF ₃	Cl	Н	Н	$C(=0)OC_4H_9$	-
3089	CH ₂	CF ₃	Cl	Н	Н	C(=0)OCH(CH ₃) ₂	-
3090	CH ₂	CF ₃	C1	Н	н	$C(=0)OCH_2CH(CH_3)_2$	-
3091	CH ₂	CF ₃	Cl	Н	Н	$C(=0)N(CH_3)_2$	-
3092	CH ₂	CF ₃	Cl	Н	Н	$C(=0)N(C_2H_5)_2$	-
3093	CH ₂	CF3	Cl	Н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3094	CH ₂	CF ₃	C1	Н	н	C(=0)(1-morpholinyl)	-
3095	CH ₂	CF ₃	Cl	Н	н	SO ₂ C ₆ H ₅	_

Ų.

3096	CH ₂	CF ₃	Cl	н	Н	$SO_2(4-CH_3-C_6H_4)$	-
3097	CH ₂	CF ₃	Cl	н	Н	SO ₂ (4-OCH ₃ -C ₆ H ₄)	-
3098	CH ₂	CF ₃	Cl	н	Н	SO ₂ -(2-thienyl)	-
3099	CH ₂	CF ₃	C1	Н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3100	CH ₂	CF ₃	C1	H	Н	SO ₂ C ₃ H ₇	-
3101	CH ₂	CF ₃	Cl	Н	Н	SO ₂ C ₄ H ₉	_
3102	CH2	CF3	cı	н	Н	$C(=0) - (2-C1-C_6H_4)$	-
3103	CH2	CF ₃	OCH ₃	н	н	$C (=0) OC_2H_5$	-
3104	CH ₂	CF3	OCH ₃	н	Н	$C (=0) OC_3H_7$	-
3105	CH2	CF ₃	OCH ₃	н	Н	$C (=0) OC_4H_9$	
3106	CH ₂	CF ₃	OCH ₃	Н	H	$C(=0)OCH(CH_3)_2$	-
3107	CH₂	CF3	OCH ₃	Н	Н	C(=0)OCH2CH(CH3)2	-
3108	CH ₂	CF ₃	OCH ₃	н	Н	$C(=O)N(CH_3)_2$	-
3109	CH ₂	CF ₃	OCH ₃	Н	Н	$C(=0)N(C_2H_5)_2$	-
3110	CH ₂	CF ₃	OCH ₃	Н	Н	C(=0)N[CH(CH3)2]2	-
3111	CH ₂	CF ₃	OCH ₃	Н	н	C(=O)(1-morpholinyl)	-
3112	CH ₂	CF ₃	OCH ₃	н	Н	SO ₂ C ₆ H ₅	-
3113	CH ₂	CF ₃	OCH ₃	Н	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)	-
3114	CH ₂	CF ₃	OCH ₃	н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3115	CH ₂	CF ₃	OCH ₃	Н	Н	SO ₂ -(2-thienyl)	-
3116	CH ₂	CF ₃	OCH ₃	н	Н	SO ₂ CH ₂ C ₆ H ₅	-
3117	CH ₂	CF ₃	OCH ₃	Н	Н	SO ₂ C ₃ H,	-
3118	CH ₂	CF ₃	OCH ₃	Н	Н	SO ₂ C ₄ H ₉	-
3119	CH ₂	CF3	OCH3	Н	Н	$C(=0) - (2-C1-C_6H_4)$	- .
3120	CH ₂	CF ₃	F	Н	Н	$C (=0) OC_2H_5$	-
3121	CH ₂	CF ₃	F	Н	Н	$C (=0) OC_3H_7$	-
3122	CH ₂	CF ₃	F	H	Н	$C (=0) OC_4H_9$	-
3123	CH ₂	CF ₃	F	Н	H	$C(=0)OCH(CH_3)_2$	-
3124	CH ₂	CF ₃	F	Н	Н	$C(=0)OCH_2CH(CH_3)_2$	-
3125	CH ₂	CF ₃	F	н	Н	$C(=0)N(CH_3)_2$	-
3126	CH ₂	CF ₃	F	Н	Н	$C (=0) N (C_2H_5)_2$	-
3127	CH ₂	CF ₃	F	н	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3128	CH ₂	CF3	F	н	H	C(=O)(1-morpholinyl)	-
3129	CH ₂	CF ₃	F	н	Н	SO ₂ C ₆ H ₅	-
3130	CH ₂	CF3	F	н	Н	$SO_2(4-CH_3-C_6H_4)$	-
3131	CH ₂	CF ₃	F	н	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3132	CH ₂	CF ₃	F	Н	н	SO ₂ -(2-thienyl)	-
3133	CH₂	CF3	F	Н	н	SO ₂ CH ₂ C ₆ H ₅	-

N.

	WO 99/014	54			PCT/US98/13913	
2424 00 00 00 00 00 00			 _	 		

3134	CH ₂	CF ₃	F	Н	Н	SO ₂ C ₃ H ₇	-
3135	CH ₂	CF3	F	Н	Н	SO ₂ C ₄ H ₉	-
3136	CH ₂	CF ₃	F	H	Н	$C(=0) - (2-C1-C_6H_4)$	-
3137	CH₂	CH ₃	OCH ₃	CH ₃	н	$C (=0) OC_2H_5$	-
3138	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C (=0) OC_3H_7$	-
3139	CH ₂	CH3	OCH ₃	CH ₃	Н	$C (=0) OC_4H_9$	-
3140	CH ₂	CH ₃	OCH ₃	CH3	H	$C(=0)OCH(CH_3)_2$	-
3141	CH ₂	CH3	OCH ₃	CH ₃	Н	C(=0)OCH2CH(CH3)2	-
3142	CH ₂	CH ₃	OCH ₃	CH ₃	H	$C(=0)N(CH_3)_2$	-
3143	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$C(=0)N(C_2H_5)_2$	-
3144	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C(=0)N[CH(CH ₃) ₂] ₂	-
3145	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C(=O)(1-morpholinyl)	-
3146	CH₂	СН₃	OCH ₃	CH ₃	Н	SO ₂ C ₆ H ₅	-
3147	CH ₂	СН₃	OCH ₃	CH ₃	Н	$SO_2(4-CH_3-C_6H_4)$	-
3148	CH ₂	CH ₃	OCH ₃	CH ₃	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3149	CH ₂	CH ₃	OCH ₃	CH ₃	Н	SO ₂ -(2-thienyl)	-
3150	CH ₂	CH ₃	OCH ₃	CH ₃	н	SO ₂ CH ₂ C ₆ H ₅	-
3151	CH ₂	CH3	OCH ₃	CH ₃	н	SO ₂ C ₃ H ₇	-
3152	CH ₂	CH ₃	OCH ₃	CH ₃	Н	SO ₂ C ₄ H ₉	-
3153	CH ₂	CH3	OCH ₃	CH ₃	Н	$C(=0)-(2-C1-C_6H_4)$	-
3154	CH ₂	CH ₃	OCH ₃	Cl	Н	$C (=0) OC_2H_5$	-
3155	CH ₂	CH3	OCH ₃	Cl	Н	$C (=0) OC_3H_7$	-
3156	CH ₂	CH3	OCH3	C1	Н	$C(=0)OC_4H_9$	-
3157	CH ₂	CH3	OCH3	Cl	Н	$C(=0)OCH(CH_3)_2$	-
3158	CH ₂	CH ₃	OCH ₃	C1	Н	C(=0)OCH2CH(CH3)2	-
3159	CH ₂	CH3	OCH ₃	Cl	Н	$C(=0)N(CH_3)_2$	-
3160	CH ₂	CH ₃	OCH ₃	Cl	Н	$C (=0) N (C_2H_5)_2$	-
3161	CH ₂	CH ₃	OCH ₃	Cl	Н	C(=0)N(CH(CH3)2)2	-
3162	CH2	СН₃	OCH3	Cl	Н	C(=0)(1-morpholinyl)	-
3163	CH2	CH3	OCH ₃	Cl	Н	SO ₂ C ₆ H ₅	-
3164	CH ₂	CH3	OCH ₃	Cl	Н	$SO_2(4-CH_3-C_6H_4)$	-
3165	CH ₂	CH3	OCH ₃	Cl	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3166	CH ₂	CH ₃	OCH3	Cl	Н	SO_2 -(2-thienyl)	-
3167	CH ₂	CH ₃	OCH ₃	Cl	• н	SO ₂ CH ₂ C ₆ H ₅	-
3168	CH ₂	CH3	OCH ₃	Cl	Н	SO ₂ C ₃ H ₇	-
3169	CH ₂	CH3	OCH ₃	Cl	Н	SO ₂ C ₄ H ₉	-
3170	CH ₂	CH ₃	OCH ₃	Cl	Н	$C(=0) - (2-C1-C_6H_4)$	-
3171	CH ₂	CH ₃	OCH ₃	F	H	$C (=0) OC_2H_5$	-

3172	CH ₂	CH ₃	OCH3	F	Н	$C (=0) OC_3H_7$	-
3173	CH ₂	CH ₃	OCH ₃	F	Н	$C (=0) OC_4H_9$	-
3174	CH ₂	CH ₃	OCH3	F	н	$C(=0)OCH(CH_3)_2$	-
3175	CH ₂	CH3	OCH3	F	Н	C(=0)OCH2CH(CH3)2	-
3176	CH ₂	CH ₃	OCH ₃	F	Н	$C(=0)N(CH_3)_2$	-
3177	CH ₂	CH ₃	OCH3	F	Н	$C(=0)N(C_2H_5)_2$	-
3178	CH ₂	CH ₃	OCH3	F	Н	$C(=0)N[CH(CH_3)_2]_2$	-
3179	CH ₂	CH3	OCH3	F	н	C(=0)(1-morpholinyl)	-
3180	CH ₂	CH3	OCH ₃	F	Н	SO ₂ C ₆ H ₅	-
3181	CH ₂	CH3	OCH3	F	Н	$SO_2(4-CH_3-C_6H_4)$	-
3182	CH ₂	CH ₃	OCH ₃	F	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3183	CH ₂	CH3	OCH3	F	Н	SO ₂ -(2-thienyl)	-
3184	CH ₂	CH3	OCH ₃	F	H	SO ₂ CH ₂ C ₆ H ₅	-
3185	CH ₂	CH ₃	OCH ₃	F	Н	SO ₂ C ₃ H ₇	-
3186	CH ₂	CH3	OCH ₃	F	Н	SO ₂ C ₄ H ₉	-
3187	CH ₂	CH ₃	OCH ₃	F	H	$C(=0) - (2-C1-C_6H_4)$	-
3188	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C (=0) OC_2H_5$	-
3189	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C (=0) OC_3H_7$	-
3190	CH ₂	CH ₃	CH ₃	H	CH ₃	$C (=O) OC_4H_9$	-
3191	CH ₂	CH ₃	CH ₃	H	CH ₃	$C(=0)OCH(CH_3)_2$	-
3192	CH ₂	CH ₃	CH ₃	H	CH ₃	C(=0)OCH2CH(CH3)2	-
3193	CH ₂	CH ₃	CH ₃	Н	CH ₃	$C(=0)N(CH_3)_2$	-
3194	CH ₂	CH ₃	CH3	Н	CH ₃	$C(=0)N(C_2H_5)_2$	-
3195	CH ₂	CH ₃	CH ₃	Н	CH ₃	C(=0)N[CH(CH3)2]2	-
3196	CH ₂	CH3	CH ₃	Н	CH ₃	C(=0)(1-morpholinyl)	-
3197	CH ₂	CH ₃	CH ₃	Н	CH ₃	SO ₂ C ₆ H ₅	-
3198	CH ₂	CH3	CH3	H	CH ₃	$SO_2(4-CH_3-C_6H_4)$	-
3199	CH ₂	CH3	CH ₃	H	CH3	SO ₂ (4-OCH ₃ -C ₆ H ₄)	-
3200	CH ₂	CH ₃	СН₃	Н	CH3	SO ₂ -(2-thienyl)	-
3201	CH2	CH ₃	CH3	н	CH3	SO ₂ CH ₂ C ₆ H ₅	-
3202	CH ₂	CH3	CH3	Н	СН3	SO ₂ C ₃ H ₇	-
3203	CH ₂	CH3	CH3	н	CH3	SO ₂ C ₄ H ₉	-
3204	CH ₂	CH ₃	CH3	Н	CH ₃	$C(=0) - (2-C1-C_6H_4)$	-
3205	CH ₂	Cl	Cl	н	CH ₃	$C (=0) OC_2H_5$	-
3206	CH ₂	Cl	Cl	Н	CH3	$C (=0) OC_3H_7$	-
3207	CH ₂	Cl	Cl	н	CH3	$C (=0) OC_4H_9$	-
3208	CH ₂	Cl	Cl	Н	CH ₃	$C(=0)OCH(CH_3)_2$	-
3209	CH ₂	Cl	Cl	Н	CH ₃	C(=0)OCH2CH(CH3)2	-

Ġ

3210	CH ₂	Cl	Cl	Н	CH ₃	$C(=0)N(CH_3)_2$	-
3211	CH ₂	Cl	Cl	Н	CH ₃	$C (=0) N (C_2H_5)_2$	-
3212	CH ₂	Cl	Cl	Н	CH ₃	C(=0)N[CH(CH3)2]2	-
3213	CH ³	C1	Cl	н	CH3	C(=0)(1-morpholinyl)	-
3214	CH ₂	Cl	Cl	Н	CH3	SO ₂ C ₆ H ₅	÷
3215	CH ₂	Cl	Cl	Н	CH ₃	$SO_2(4-CH_3-C_6H_4)$	-
3216	CH ₂	Cl	Cl	н	CH ₃	$SO_2(4-OCH_3-C_6H_4)$	-
3217	CH ₂	Cl	Cl	н	CH ₃	SO ₂ -(2-thienyl)	-
3218	CH ₂	Cl	Cl	Н	CH ₃	SO ₂ CH ₂ C ₆ H ₅	-
3219	CH ₂	Cl	Cl	Н	CH3	SO ₂ C ₃ H ₇	•
3220	CH ₂	Cl	Cl	Н	CH3	SO ₂ C ₄ H ₉	-
3221	CH ₂	Cl	Cl	Ĥ	CH ₃	$C(=0) - (2-C1-C_6H_4)$	-
3222	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	$C (=0) OC_2H_5$	-
3223	CH ₂	CH3	OCH ₃	OCH ₃	H	$C (=0) OC_3H_7$	-
3224	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	$C (=0) OC_4H_9$	-
3225	CH ₂	CH ₃	OCH ₃	OCH ₃	н	C(=0)OCH(CH ₃) ₂	-
3226	CH ₂	CH3	OCH ₃	OCH ₃	н	$C(=0)OCH_2CH(CH_3)_2$	-
3227	CH ₂	CH3	OCH ₃	OCH ₃	Н	$C(=0)N(CH_3)_2$	-
3228	CH ₂	CH3	OCH ₃	OCH ₃	н	$C(=0)N(C_2H_5)_2$	-
3229	CH ₂	CH ₃	OCH ₃	OCH ₃	H	$C(=0)N[CH(CH_3)_2]_2$	-
3230	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	C(=0)(1-morpholinyl)	-
3231	CH ₂	CH3	OCH ₃	OCH ₃	Н	SO ₂ C ₆ H ₅	-
3232	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	$SO_2(4-CH_3-C_6H_4)$	-
3233	CH₂	CH ₃	OCH ₃	OCH ₃	Н	$SO_2(4-OCH_3-C_6H_4)$	-
3234	CH₂	СН3	OCH ₃	OCH ₃	Н	SO_2 -(2-thienyl)	-
3235	CH ₂	CH ₃	OCH3	OCH3	Н	SO ₂ CH ₂ C ₆ H ₅	-
3236	CH ₂	CH3	OCH ₃	OCH ₃	Н	SO ₂ C ₃ H ₇	-
3237	CH ₂	CH ₃	OCH ₃	OCH ₃	Н	SO₂C₄H,	-
3238	CH ₂	CH3	OCH ₃	OCH ₃	Н	$C(=0) - (2-C1-C_6H_4)$	-
3239	0	Cl	Cl	Н	н	SO ₂ C ₃ H ₇	-
3240	0	Cl	CF ₃	Н	Н	SO ₂ C ₃ H ₇	
3241	0	Cl	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3242	0	Cl	OCF ₃	Н	Н	SO ₂ C ₃ H ₇	-
3243	0	Cl	CH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3244	0	CF3	Cl	Н	н	SO ₂ C ₃ H ₇	-
3245	0	CF ₃	OCH ₃	Н	Н	SO ₂ C ₃ H ₇	-
3246	0	CH ₃	OCH3	СН3	Н	SO ₂ C ₃ H ₇	-
3247	0	CH ₃	OCH ₃	Cl	Н	SO ₂ C ₃ H ₇	-

WO 99/0145	54					:	PCT/US98/13913
3248	0	CH ₃	OCH ₃	F	Н	SO ₂ C ₃ H ₇	-
3249	0	CH3	CH ₃	Н	CH ₃	SO ₂ C ₃ H ₇	-
3250	. 0	Cl	Cl	Н	CH ₃	SO ₂ C ₃ H ₇	-
3251	CH ₂	Cl	C1	н	Н	$C(=0) - (3-C1-C_6H_4)$	115-118

The methods used in the preparation of the compounds of

Structure A of Table 1 may be used for the compounds of

Structure A of Table 4. For example, replacing variouslysubstituted pyridine- and pyrimidineboronic acids for
benzeneboronic acids in the palladium-catalyzed aryl crosscoupling method (see Examples 35 or 831) will afford the

desired 6-pyridyl- or 6-pyrimidylpurine compounds.

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 4, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

TABLE 4

5

Ex. No.	х	R ⁴	Z	R ⁵	Y	R ⁶	R1ª	R ^{1b}	m.p.,
4001	CH ₂	CH ₃	СН	N(CH ₃) ₂	N	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4002	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	Н	CH ₃	C-C ₃ H ₅	-
4003	CH ₂	CH3	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C-C ₃ H ₅	-
4004	CH ₂	СН₃	CH	$N(CH_3)_2$	N	Н	C_3H_7	C-C ₃ H ₅	-
4005	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	н	C ₄ H ₉	C-C ₃ H ₅	-
4006	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	Н	CH ₃	C ₃ H ₇	-
4007	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₃ H ₇	-
4008	CH ₂	CH ₃	CH	$N(CH_3)_2$	N	Н	C_3H_7	C ₃ H ₇	-
4009	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C_4H_9	-
4010	CH ₂	CH ₃	СН	$N(CH_3)_2$	N	H	н	4-CH ₃ O-C ₆ H ₄	-
4011	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C-C3H5	C-C ₃ H ₅	-
4012	0	CH ₃	СН	N(CH ₃) ₂	N	H	CH ₃	C-C ₃ H ₅	_
4013	0 .	CH3	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C-C3H5	-
4014	0	СН₃	CH	$N(CH_3)_2$	N	Н	C ₃ H ₇	C-C ₃ H ₅	-
4015	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₄ H ₉	C-C ₃ H ₅	-
4016	O	CH ₃	СН	N(CH ₃) ₂	N	Н	CH ₃	C ₃ H ₇	-
4017	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₃ H ₇	-
4018	0	CH3	СН	$N(CH_3)_2$	N	н	C ₃ H ₇	C ₃ H ₇	-
4019	0	CH ₃	СН	$N(CH_3)_2$	N	Н	C ₂ H ₅	C ₄ H ₉	-
4020	0	CH ₃	СН	$N(CH_3)_2$	N	Н	н	4-CH ₃ O-C ₆ H ₄	-
4021	CH ₂	CH ₃	СН	CH ₃	N	CH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4022	CH ₂	СН3	CH	CH ₃	N	CH ₃	CH ₃	C-C ₃ H ₅	-

	N. CTT (1000 (12012)
WO 99/01454	PCT/US98/13913

4023	CH ₂	CH3	СН	CH ₃	N	CH3	C ₂ H ₅	C-C ₃ H ₅	-
4024	CH ₂	CH ₃	CH	CH ₃	N	CH ₃	C_3H_7	c-C ₃ H ₅	-
4025	CH ₂	CH ₃	СН	CH ₃	N	CH3	C ₄ H ₉	c-C ₃ H ₅	-
4026	CH ²	CH ₃	СН	CH ₃	N	CH3	CH ₃	C ₃ H ₇	•
4027	CH ₂	CH ₃	СН	CH ₃	N	CH3	C ₂ H ₅	C ₃ H ₇	-
4028	CH ₂	СН3	СН	CH ₃	N	CH ₃	C_3H_7	C ₃ H ₇	-
4029	CH ₂	СН3	CH	CH ₃	N	CH ₃	C ₂ H ₅	C ₄ H ₉	-
4030	CH ₂	CH3	СН	CH3	N	CH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
4031	0	CH ₃	СН	CH ₃	N	CH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4032	0	CH ₃	СН	CH ₃	N	CH ₃	CH3	C-C ₃ H ₅	, -
4033	0	CH3	СН	CH ₃	N	CH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4034	0	CH ₃	СН	CH ₃	N	CH ₃	C_3H_7	C-C ₃ H ₅	-
4035	0	CH ₃	СН	CH ₃	N	CH3	C₄H,	C-C ₃ H ₅	-
4036	0	CH ₃	СН	CH ₃	N	CH3	CH ₃	C_3H_7	-,-
4037	0	CH ₃	CH	CH ₃	N	CH3	C ₂ H ₅	C_3H_7	-
4038	0	CH3	СН	CH3	N	CH ₃	C_3H_7	C_3H_7	-
4039	0	CH3	CH	CH ₃	N	CH ₃	C ₂ H ₅	C ₄ H ₉	-
4040	0	CH3	СН	CH ₃	N	CH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
4041	CH ₂	CH ₃	СН	SCH ₃	N	H	C-C3H5	C-C ₃ H ₅	-
4042	CH ₂	CH ₃	СН	SCH ₃	N	н	CH3	C-C ₃ H ₅	-
4043	CH ₂	CH ₃	СН	SCH ₃	N	H	C ₂ H ₅	C-C ₃ H ₅	-
4044	CH ₂	CH ₃	CH	SCH ₃	N	. H	C ₃ H ₇	C-C ₃ H ₅	-
4045	CH2	CH ₃	CH	SCH ₃	N	Н	C ₄ H ₉	C-C ₃ H ₅	-
4046	CH ₂	CH ₃	CH	SCH ₃	N	Н	CH3	C ₃ H ₇	-
4047	CH ₂	CH3	СН	SCH ₃	N	Н	C ₂ H ₅	C ₃ H ₇	-
4048	CH ₂	CH ₃	CH	SCH ₃	N	Н	C ₃ H ₇	C ₃ H ₇	-
4049	CH ₂	CH ₃	СН	SCH ₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4050	CH ₂	CH3	СН	SCH ₃	N	Н	н	4-CH ₃ O-C ₆ H ₄	-
4051	0	CH ₃	CH	SCH ₃	N	Н	C-C₃H₅	c-C ₃ H ₅	-
4052	0	CH ₃	CH	SCH ₃	N	Н	CH ₃	C-C ₃ H ₅	-
4053	Ō	CH ₃	СН	SCH ₃	N	Н	C ₂ H ₅		-
4054	0	CH ₃	СН	SCH ₃	N	Н	C ₃ H ₇	C-C ₃ H ₅	-
4055	0	CH ₃	CH	SCH ₃	N	Н	C₄H ₉	C-C ₃ H ₅	-
4056	. 0	CH ₃	СН	SCH ₃	N	Н	CH3	C ₃ H ₇	=
4057	0	CH ₃	CH	SCH ₃	N	Н	C ₂ H ₅	C₃H7	-
4058	0	CH ₃	CH	SCH ₃	N	Н	C ₃ H ₇	C ₃ H ₇	-
4059	0	CH ₃	СН	SCH ₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4060	0	CH ₃	СН	SCH ₃	N	Н	Н	4-CH ₃ O-C ₆ H ₄	-

WO 99/014	54							PCT/US98/1	3913
4061	CH ₂	SCH ₃	N	СН3	N	SCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4062	CH₂	SCH ₃	N	CH ₃	N	SCH ₃	СН3	C-C ₃ H ₅	-
4063	CH₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4064	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C3H,	C-C ₃ H ₅	-
4065	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₄ H ₉	C-C ₃ H ₅	_
4066	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	CH ₃	C ₃ H ₇	-
4067	CH₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C ₃ H ₇	-
4068	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₃ H ₇	C ₃ H ₇	-
4069	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C ₄ H ₉	-
4070	CH ₂	SCH ₃	N	CH ₃	N	SCH ₃	Н	4-CH ₃ O-C ₆ H ₄	. -
4071	0	SCH ₃	N.	CH ₃	N	SCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4072	0	SCH ₃	N	CH ₃	N	SCH ₃	CH ₃	C-C ₃ H ₅	-
4073	0	SCH ₃	N	CH ₃	· N	SCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
4074	0	SCH ₃	N	СН₃	N	SCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
4075	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
4076	0	SCH ₃	N	CH3	N	SCH ₃	CH3	C ₃ H ₇	
4077	0	SCH ₃	N	CH3	N	SCH ₃	C ₂ H ₅	C ₃ H ₇	-
4078	0	SCH ₃	N	CH3	N	SCH ₃	C ₃ H ₇	C_3H_7	-
4079	0	SCH ₃	N	CH ₃	N	SCH ₃	C ₂ H ₅	C ₄ H ₉	-
4080	0	SCH ₃	N	CH ₃	N	SCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
4081	CH₂	CH3	N	CH ₃	N	CH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
4082	CH ₂	CH ₃	N	CH ₃	N	CH ₃	CH₃	C-C ₃ H ₅	-
4083	CH₂	CH ₃	N	CH ₃	N	CH3	C ₂ H ₅	C-C ₃ H ₅	-
4084	CH ₂	CH ₃	N	CH ₃	N	CH3	C ₃ H ₇	C-C ₃ H ₅	-
4085	CH ₂	CH ₃	N	CH ₃	N	CH3	C ₄ H ₉	C-C ₃ H ₅	-
4086	CH ₂	CH ₃	N	CH₃	N	CH ₃	CH ₃	C ₃ H ₇	-
4087	CH ₂	CH3	N	CH ₃	N	CH3	C ₂ H ₅	C ₃ H ₇	-
4088	CH ₂	CH3	N .	CH ₃	N	CH3	C ₃ H ₇	C_3H_7	-
4089	CH ₂	СН3	N	CH ₃	N	CH3	C ₂ H ₅	C₄H ₉	-
4090	CH2	CH3	N	CH ₃	N	CH ₃	. Н	4-CH ₃ O-C ₆ H ₄	-
4091	0	CH3	N	CH ₃	N	СН,	C-C ₃ H ₅	C-C ₃ H ₅	-

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH3

N

N

N

N

N

N

N

CH₃

 C_2H_5

 C_3H_7

 C_4H_9

 CH_3

 C_2H_5

 C_3H_7

 $C-C_3H_5$

C-C₃H₅

C-C₃H₅

C-C₃H₅

C₃H₇

 C_3H_7

 C_3H_7

9

4092

4093

4094

4095

4096

4097

4098

CH3

CH3

CH₃

CH₃

CH₃

CH₃

CH₃

0

0

0

0

0

0

0

N

N

N

N

N

N

N

CH₃

CH₃

CH₃

CH₃

CH₃

CH3

CH₃

WO 99/01454	4							PCT/US98/	13913
4099	0	CH ₃	N	CH ₃	N	СН3	C ₂ H ₅	C ₄ H ₉	_
4100	0	CH ₃	N	СН3	N	СН3	н	4-CH ₃ O-C ₆ H ₄	-
4101	CH ₂	СН3	СН	CH ₃	N	н	c-C ₃ H ₅	C-C ₃ H ₅	_
4102	CH ₂	CH ₃	СН	СН3	N	Н	СН,	C-C ₃ H ₅	-
4103	CH ₂	СН₃	СН	СН3	N	Н	C ₂ H ₅	C-C3H5	
4104	CH ₂	CH ₃	СН	СН3	N	Н	C ₃ H ₇	C-C3H5	-
4105	CH ₂	CH ₃	СН	СН₃	N	Н	C ₄ H ₉	C-C ₃ H ₅	-
4106	CH ₂	CH ₃	СН	СН3	N	Н	CH3	C ₃ H ₇	-
4107	CH ₂	СН3	СН	СН3	N	Н	C ₂ H ₅	C ₃ H ₇	-
4108	CH ₂	CH ₃	СН	СН₃	N	н	C ₃ H ₇	C ₃ H ₇	-
4109	CH ₂	CH ₃	СН	СН₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4110	CH ₂	CH ₃	СН	CH ₃	N	Н	н	4-CH ₃ O-C ₆ H ₄	-
4111	0	CH ₃	СН	CH ₃	N	н	C-C ₃ H ₅	C-C ₃ H ₅	-
4112	0	CH ₃	СН	CH ₃	N	Н	CH ₃	C-C ₃ H ₅	-
4113	0	CH ₃	СН	CH ₃	N	H	C ₂ H ₅	C-C ₃ H ₅	-
4114	0	CH ₃	СН	CH ₃	N	Н	C_3H_7	C-C ₃ H ₅	-
4115	0	CH ₃	СН	CH ₃	N	Н	C ₄ H ₉	C-C ₃ H ₅	-
4116	0	CH ₃	СН	CH ₃	N	н	CH ₃	C ₃ H ₇	
4117	0	CH ₃	СН	CH ₃	N	Н	C ₂ H ₅	C ₃ H ₇	-
4118	0	CH3	СН	CH ₃	N	Н	C_3H_7	C ₃ H ₇	-
4119	0	CH3	CH	CH ₃	N	Н	C ₂ H ₅	C ₄ H ₉	-
4120	0	CH ₃	СН	CH ₃	N	Н	Н	$4-CH_3O-C_6H_4$	-
4121	CH ₂	CH3	N	$N(CH_3)_2$	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4122	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	CH ₃	C-C ₃ H ₅	-
4123	CH ₂	CH3	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4124	CH ₂	CH ₃	N	$N(CH_3)_2$	CH	Н	C_3H_7	C-C ₃ H ₅	-
4125	CH ₂	CH3	N	N(CH ₃) ₂	СН	H	C ₄ H ₉	C-C ₃ H ₅	-
4126	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	CH3	C ₃ H ₇	-
4127	CH ₂	CH3	N	$N(CH_3)_2$	CH	Н	C ₂ H ₅	C ₃ H ₇	-
4128	CH ₂	CH3	N	$N(CH_3)_2$	СН	Н	C ₃ H ₇	C ₃ H ₇	-
4129	CH ₂	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C ₄ H ₉	-
4130	CH ₂	CH ₃	N	$N(CH_3)_2$	CH	Н	Н	$4-CH_3O-C_6H_4$	-
4131	0	CH3	N	$N(CH_3)_2$	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4132	0	CH ₃	N	$N(CH_3)_2$	CH	Н	CH ₃	C-C ₃ H ₅	-
4133	0	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C-C3H5	-
4134	0	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₃ H ₇	C-C ₃ H ₅	- <;
4135	0	CH ₃	N	$N(CH_3)_2$	СН	Н	C ₄ H ₉	C-C ₃ H ₅	-
4136	0	CH3	N	N(CH ₃) ₂	СН	н	CH3	C ₃ H ₇	=

WO 99/014	54							PCT/US98	3/13913
4137	0	СН3	N	N(CH ₃) ₂	СН	Н	C₂H₅	C ₃ H ₇	-
4138	0	СН3	N	N(CH ₃) ₂	СН	Н	C ₃ H ₇	C_3H_7	· _
4139	0	CH ₃	N	N(CH ₃) ₂	СН	н	C ₂ H ₅	C₄H,	_
4140	0	CH ₃	N	N(CH ₃) ₂	СН	н	н	4-CH ₃ O-C ₆ H ₄	-
4141	CH ₂	CH ₃	N	СН3	СН	н	c-C ₃ H ₅	C-C ₃ H ₅	-
4142	CH ₂	CH ₃	N	CH ₃	СН	н	СН3	C-C ₃ H ₅	-
4143	CH ₂	CH ₃	N	CH ₃	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4144	CH ₂	CH ₃	N	СН3	СН	н	C ₃ H ₇	$C-C_3H_5$	-
4145	CH ₂	CH ₃	N	CH3	СН	Н	C ₄ H ₉	C-C ₃ H ₅	-
4146	CH ₂	CH ₃	N	CH ₃	СН	Н	CH ₃	C ₃ H ₇	. -
4147	CH ₂	CH3	N	CH3	СН	Н	C ₂ H ₅	C ₃ H ₇	-
4148	CH ₂	CH3	N	CH ₃	СН	Н	C_3H_7	C ₃ H ₇	-
4149	CH ₂	CH ₃	N	CH ₃	СН	Н	C ₂ H ₅	C ₄ H ₉	-
4150	CH ₂	CH ₃	N	CH ₃	СН	Н	н	4-CH ₃ O-C ₆ H ₄	
4151	0	CH ₃	N	CH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	
4152	0	CH ₃	N	СН3	СН	Н	CH3	C-C ₃ H ₅	-
4153	0	CH ₃	N	CH₃	СН	н	C ₂ H ₅	c-C ₃ H ₅	-
4154	0 ,	СН3	N	CH ₃	СН	н	C ₃ H ₇	C-C3H5	-
4155	0	CH ₃	N	CH3	СН	Н	C ₄ H ₉	c-C ₃ H ₅	-
4156	0	CH₃	N	CH ₃	СН	Н	CH ₃	C ₃ H ₇	-
4157	0	CH3	N	CH ₃	СН	H.	C ₂ H ₅	C ₃ H ₇	-
4158	0	CH ₃	N	CH ₃	СН	H	C ₃ H ₇	C ₃ H ₇	-
4159	0	CH ₃	N	CH3	СН	н	C ₂ H ₅	C ₄ H ₉	-
4160	0	CH ₃	N	CH ₃	СН	Н	Н	4-CH ₃ O-C ₆ H ₄	-
4161	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	120-121
4162	CH ₂	OCH ₃	N	OCH ₃	СН	Н	CH ₃	C-C ₃ H ₅	-
4163	CH ₂	OCH ₃	N	OCH3	CH	Н	C ₂ H ₅	C-C ₃ H ₅	-
4164	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C_3H_7	C-C₃H;	-
4165	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C_4H_9	C-C ₃ H ₅	-
4166	CH ³	OCH ₃	N	OCH3	СН	Н	CH3	C ₃ H ₇	oil
4167	CH ₂	OCH ₃	. N	OCH ₃	CH	H	C ₂ H ₅	C ₃ H ₇	-
4168	CH ₂	OCH ₃	N	OCH ₃	CH	Н	C ₃ H ₇	C ₃ H ₇	_
4169	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	C ₄ H ₉	-
4170	CH ₂	OCH ₃	N	OCH ₃	CH	Н	Н	4-CH ₃ O-C ₆ H ₄	-
4171	0	OCH3	N	OCH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	oil
4172	0	OCH3	N	OCH3	СН	H	CH3	C-C ₃ H ₅	- \
4173	0	OCH ₃	N	OCH ₃	CH	Ĥ	C ₂ H ₅	C-C ₃ H ₅	-
4174	0	OCH ₃	N	OCH ₃	CH	Н	C_3H_7	C-C3H5	-

WO 99/014	54							PCT/US98	/13913
4175	0	осн,	N	OCH3	СН	Н	C ₄ H ₉	C-C3H5	-
4176	0	OCH ₃	N	OCH ₃	СН	Н	СН3	C ₃ H ₇	-
4177	0	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	C ₃ H ₇	-
4178	0	осн3	N	OCH ₃	СН	Н	C ₃ H ₇	C ₃ H ₇	-
4179	0	OCH ₃	N	OCH ₃	СН	н	C ₂ H ₅	C₄H,	-
4180	0	OCH ₃	N	OCH ₃	СН	Н	Н	4-CH ₃ O-C ₆ H ₄	- .
4181	CH ₂	OCH ₃	N	N(CH ₃) ₂	CH .	Н	c-C ₃ H ₅	C-C3H5	-
4182	CH2	OCH ₃	N	$N(CH_3)_2$	СН	H	CH ₃	C-C ₃ H ₅	-
4183	CH ₂	осн,	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4184	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C_3H_7	C-C ₃ H ₅	
4185	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C₄H,	C-C ₃ H ₅	
4186	CH ₂	OCH ₃	N	$N(CH_3)_2$	CH	н	CH ₃	C ₃ H ₇	-
4187	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	H	C ₂ H ₅	C ₃ H ₇	-
4188	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	н	C_3H_7	C ₃ H ₇	<u>.</u> -
4189	CH ₂	OCH ₃	N	$N(CH_3)_2$	СН	Н	C_2H_5	C ₄ H ₉	· -
4190	CH ₂	OCH ₃	N	$N(CH_3)_2$	·CH	Н	Н	$4 - CH_3O - C_6H_4$. -
4191	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C-C3H5	C-C ₃ H ₅	-
4192	0	OCH ₃	N	N(CH ₃) ₂	СН	Н	СН₃	C-C ₃ H ₅	-
4193	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4194	0	OCH ₃	N	$N(CH_3)_2$	CH	Н	C ₃ H ₇	C-C ₃ H ₅	-
4195	. 0	OCH ₃	N	$N(CH_3)_2$	CH	Н	C₄H ₉	C-C ₃ H ₅	-
4196	0	OCH ₃	N	$N(CH_3)_2$	СН	H	CH3	C_3H_7	-
4197	0	OCH ₃	N	$N(CH_3)_2$	СН	H	C ₂ H ₅	C ₃ H ₇	-
4198	0	OCH3	N	$N(CH_3)_2$	СН	H	C ₃ H ₇	C ₃ H ₇	-
4199	0	OCH ₃	N	$N(CH_3)_2$	СН	Н	C ₂ H ₅	C₄H ₉	
4200	0	OCH ₃	Ŋ	$N(CH_3)_2$	CH	H	Н .	$4-CH_3O-C_6H_4$	-
4201	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	
4202	CH ₂	$N(CH_3)_2$	N	OCH ₃	CH	Ĥ	CH ₃	C-C ₃ H ₅	- '
4203	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	Н	C ₂ H ₅	C-C ₃ H ₅	-
4204	CH ₂	$N(CH_3)_2$	N	OCH ₃	CH	Н	C ₃ H ₇	C-C ₃ H ₅	-
4205	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	H	C₄H,	C-C ₃ H ₅	-
4206	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	Н	CH ₃	C ₃ H ₇	-
4207	CH ₂	$N(CH_3)_2$	N	OCH ₃	СН	Н	C ₂ H ₅	C ₃ H ₇	-
4208	CH ₂	N(CH ₃) ₂	N	OCH ₃	СН	Н	C ₃ H ₇	C ₃ H ₇	-
4209	CH ₂	N(CH3)3	N	OCH ₃	СН	н	C ₂ H ₅	C ₄ H ₉	-
4210	CH ₂	N (CH3) 2	N	OCH ₃	СН	Н	Н	4-CH ₃ O-C ₆ H ₄	-
4211	0	N(CH ₃) ₂	N	OCH ₃	СН	Н	C-C ₃ H ₅	C-C ₃ H ₅	-
4212	0	N(CH ₃) ₂	N	OCH3	CH	Н	CH ₃	c-C ₃ H ₅	-

WO 99/0145	4							PCT/US98/	13913
4213	0	$N(CH_3)_2$	N	OCH ₃	СН	н	C ₂ H ₅	C-C ₃ H ₅	-
4214	0	$N(CH_3)_2$	N	OCH ₃	СН	Н	C ₃ H ₇	C-C ₃ H ₅	-
4215	0	$N(CH_3)_2$	N	OCH3	СН	Н	C₄H ₉	C-C ₃ H ₅	-
4216	0	$N(CH_3)_2$	N	OCH ₃	СН	Н	СН3	C ₃ H ₇	-
4217	0	$N(CH_3)_2$	N	OCH3	СН	Н	C ₂ H ₅	C ₃ H ₇	-
4218	0	$N(CH_3)_2$	N	OCH ₃	СН	н	C ₃ H ₇	C ₃ H ₇	-
4219	0	$N(CH_3)_2$	N	OCH ₃	СН	Н	C ₂ H ₅	C ₄ H ₉	-
4220	0	$N(CH_3)_2$	N	OCH ₃	СН	H	н	4-CH ₃ O-C ₆ H ₄	-
4221	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	2-furanyl	-
4222	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C_3H_7	2-furanyl	
4223	CH ₂	OCH ₃	N	OCH ₃	СН	Н	C ₂ H ₅	b	-
4224	CH ₂	OCH ₃	И	OCH ₃	СН	Н	C ₃ H ₇	ь	-
4225	CH₂	OCH ₃	N	OCH ₃	СН	Н	C ₆ H ₅	b	-
4226	CH ₂	OCH ₃	N	OCH ₃	СН	H	C-C ₃ H ₅	b	.=
4227	CH ₂	OCH ₃	N	OCH ₃	CH	Н	CH ₃	CH=CHCH ₃	-
4228	CH ₂	OCH3	N	OCH ₃	СН	Н	C_3H_7	CH=CH ₂	-
4229	CH ₂	OCH ₃	N	OCH ₃	СН	Н	CH ₃	C ₆ H ₅	-
4230	CH ₂	OCH3	N	OCH ₃	CH	Н	CH ₃	C-C ₄ H ₇	-

Key:

a) Where the compound is indicated as an "oil", spectral data is provided below:

Example 4166 elemental analysis: calc. for $C_{19}H_{25}N_5O_2$ C 64.20, H 7.10, N 19.70; observed C 64.13, H 6.67, N 19.30.

Example 4171 elemental analysis: calc. for $C_{20}H_{23}N_5O_3$ C 62.98, H 6.09, N 18.36; observed C 62.80, H 6.10, N 18.19.

10 b) C=C-CH₃

The methods used in the preparation of the compounds of Table 1 may be employed in the synthesis of those compounds of Structure A in Table 5 and Table 5A. The methods employed to make the analogues bearing a benzofuran group are illustrated in the following examples.

ζ.

The methods of Schemes 13 and 14 may be used to 20 prepare many of the examples of Structure B and Structure C

contained in Table 5 and Table 5A, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

5

Example 5001

Preparation of 9-Dicyclopropylmethyl-8-ethyl-6-(6-methyl-2,3-dihydrobenzofuran-5-yl)purine

Part A. Sodium hydride dispersion in mineral oil (5.05 g, 50% 10 w/w, 105 mmol) was washed with hexane and dried under vacuum. DMF (100 mL) was added, the slurry was cooled to 0 $^{\circ}$ C, and treated with a solution of m-cresol (10 mL, 95.6 mmol) in DMF (20 mL). The resulting mixture was allowed to stir for 1 h, 15 then was treated with chloromethyl methyl ether (8.00 mL, 105 mmol) by syringe. The mixture was stirred overnight, then poured into ethyl acetate (200 mL). This was washed with water $(3 \times 200 \text{ mL})$ and brine (100 mL), and the aqueous phases were back-extracted in sequence with ethyl acetate. The extracts 20 were combined, dried over magnesium sulfate, filtered and evaporated. The oily product was purified by elution through a plug of silica gel with 10:90 ethyl acetate-hexane. Evaporation then afforded the pure product, 3-(methoxymethoxy) toluene, as an oil (13.93 g, 91.5 mmol, 96%). TLC $R_{\rm F}$ 0.46 (10:90 ethyl acetate-hexane). ¹H NMR (300 MHz, $CDCl_3$): d 7.17 (1H, t, J = 7.7 Hz), 6.86-6.81 (3H, m), 5.17 (2H, s), 3.48 (3H, s), 2.33 (3H, s). MS (H_2O-GC/MS) : m/e 153 (60), 121 (100).

30

Part B. A solution of 3-(methoxymethoxy)toluene (5.00 g, 32.9 mmol) and TMEDA (5.30 mL, 35.1 mmol) in THF (50 mL) was cooled to 0 °C, and treated with a hexane solution of n-butyllithium (22.0 mL, 1.6 M, 35.2 mmol). After 4 hours, the solution was cooled to -78 °C, and treated dropwise with ethylene oxide (2.00 mL, 40 mmol, condensed from a lecture bottle through a cold-finger into a graduated dropping funnel). The mixture was allowed to stir and warm to ambient temperature overnight,

then was poured into satd. aq. ammonium chloride solution (120 mL). This was extracted with ethyl acetate (2 x 120 mL), and the extracts were washed in sequence with brine, combined, dried over magnesium sulfate, filtered and evaporated. The residual oil was separated by column chromatography (10:90 ethyl acetate-hexane) to afford the desired product, 2-[2-(methoxymethoxy)-4-methylphenyl]ethanol, as a viscous liquid (2.25 g, 11.5 mmol, 35%), along with 2.50 g recovered starting material. The ¹H NMR spectrum showed regioselectivity in 10 excess of 10:1. TLC R_p 0.09 (10:90 ethyl acetate-hexane). H NMR (300 MHz, CDCl₃): d 7.06 (1H, d, J = 7.7 Hz), 6.92 (1H, br s), 6.78 (1H, br d, J = 7.7 Hz), 5.20 (2H, s), 3.83 (2H, q, J = 6.4 Hz), 3.49 (3H, s), 2.89 (2H, t, J = 6.6 Hz), 2.32 (3H, s), 1.61 (1H, t, J = 5.9 Hz). MS (NH,-DCI): m/e 214 (76), 212 (100), 197 (9), 182 (30), 165 (38). 15

Part C. A solution of the MOM compound from Part B (1.84 g, 9.38 mmol) was dissolved in 1:1 THF-isopropanol (20 mL), and treated with HCl in dioxane (2.5 mL, 4 N, 10.0 mmol). The reaction was stirred at ambient temperature overnight. Aqueous workup gave sufficiently pure product, 2-(2-hydroxy-4-methylphenyl)ethanol.

Part D. A solution of the diol from Part C (ca. 9 mmol) and triphenylphosphine (2.83 g, 10.8 mmol) in THF (20 mL) was cooled to 0 °C, and treated with diethyl azodicarboxylate (1.70 mL, 10.8 mmol) by syringe. The solution was stirred overnight, then evaporated, and the residue separated by a flash column to afford the product, 6-methyl-2,3-dihydrobenzofuran (780 mg, 5.81 mmol, 65%). TLC R_p 0.29 (2:98 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.07 (1H, d, J = 7.4 Hz), 6.66 (1H, d, J = 7.4 Hz), 6.62 (1H, s), 4.54 (2H, t, J = 8.6 Hz), 3.16 (2H, t, J = 8.6 Hz), 2.30 (3H, s). MS (D₂O-GC/MS): m/e 135 (100).

35

Part E. A solution of the above compound (780 mg) and N-bromosuccinimide (1.24 g, 6.97 mmol) in dichloroethane (10 mL) was heated to reflux overnight, then cooled, filtered and

evaporated. Column chromatography (hexane, then 2:98 ethyl acetate-hexane) gave first 5-bromo-6-methylbenzofuran (270 mg, 1.27 mmol, 22%), then 5-bromo-6-methyl-2,3-dihydrobenzofuran (923 mg, 4.33 mol, 75%), both as solids. For the dihydro product: TLC R_F 0.35 (2:98 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 7.31 (1H, s), 6.68 (1H, s), 4.56 (2H, t, J = 8.8 Hz), 3.17 (2H, t, J = 8.8 Hz), 2.33 (3H, s). MS (H₂O-GC/MS): m/e 215 (76), 213 (100).

10 Part F. A solution of the bromide from Part E (923 mg, 4.33 mmol) in tetrahydrofuran (20 mL) was cooled to -78 °C, and treated with a hexane solution of n-butyllithium (3.0 mL, 1.6 M, 4.8 mmol). After 1 hour, the reaction mixture was treated with triisopropylborate (1.00 mL, 4.33 mmol) and allowed to come to ambient temperature over 6 hrs. Then, 1 mL of 6 N aq. HCl and 3 mL water were added, and the resulting mixture was allowed to stir for 1 hr. It was poured into water (100 mL), and extracted with ethyl acetate (2 x 100 mL). The extracts were washed with brine (60 mL), combined, dried over sodium sulfate, filtered and evaporated to afford a solid, which was purified by trituration with hexane to give 6-methyl-2,3-dihydrobenzofuran-5-boronic acid (718 mg, 4.03 mmol, 93%).

Part G. A mixture of the boronic acid from Part F (298 mg, 1.67 mmol), 6-chloro-9-dicyclopropylmethyl-8-ethylpurine (309 mg, 1.12 mmol), 2 N aqueous sodium carbonate solution (1.7 mL, 3.4 mmol) and triphenylphosphine (61 mg, 0.233 mmol) in DME (20 mL) was degassed by repeated cycles of brief vacuum pumping followed by nitrogen purging. To this was added 30 palladium (II) acetate (13 mg, 0.058 mmol), and the mixture was degassed again and then heated to reflux for 14 hours. It was cooled, and poured into water (100 mL). This mixture was extracted with ethyl acetate (2 \times 100 mL), and the extracts were washed in sequence with brine (60 mL), combined, dried over sodium sulfate, filtered and evaporated. The residual 35 material was separated by column chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford the title product as a solid. This was recrystallized to purity from ether (253 mg,

0.77 mmol, 69%). m.p. 147-148 °C. TLC R_F 0.18 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.88 (1H, s), 7.60 (1H, s), 6.77 (1H, s), 4.61 (2H, t, J = 8.6 Hz), 3.44 (1H, v br), 3.24 (2H, t, J = 8.6 Hz), 2.94 (2H, br), 2.44 (3H, s), 2.03 (2H, v br), 1.45 (3H, br t, J = 6 Hz), 0.89-0.79 (2H, m), 0.58 (2H, br), 0.50-0.40 (2H, m), 0.27-0.17 (2H, m). MS (NH₃-CI): m/e 377 (4), 376 (27), 375 (100). Analysis calc'd for $C_{23}H_{26}N_4O$: C, 73.77; H, 7.01; N, 14.96; found: C, 73.69; H, 7.08; N, 14.40.

10

15

30

Examples 5201, 5231 and 5232

Preparation of 9-dicyclopropylmethyl-8-ethyl-6-(6-methylbenzofuran-5-yl)purine, 6-(2-bromo-6-methylbenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine and 6-(7-bromo-6-methyl-2,3-dihydrobenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine

A solution of the compound of Example 5001 (250 mg, 0.668 mmol) and N-bromosuccinimide (119 mg, 0.669 mmol) in 1,2
20 dichloroethane (10 mL) was heated to reflux for 12 hours, then cooled and evaporated. The resulting mixture was taken up in ether, filtered and evaporated, and the residual material was separated by flash chromatography (silica gel, 20:80 ethyl acetate-hexane) to afford, in order, the following three products:

- 6-(2-Bromo-6-methylbenzofuran-5-yl)-9-dicyclopropylmethyl-8-ethylpurine: m.p. 177-178 °C. TLC R_F 0.23 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.92 (1H, s), 7.85 (1H, s), 7.42 (1H, s), 6.74 (1H, s), 4.15 (1H, v br), 2.97 (2H, v br), 2.54 (3H, s), 2.00 (2H, v br), 1.44 (3H, br t, J = 7 Hz), 0.90-0.80 (2H, m), 0.63-0.53 (2H, m), 0.50-0.40 (2H, m), 0.26-0.16 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{23}H_{24}BrN_4O$: 451.1133, found 451.1132; 455 (3), 454 (25), 453 (99), 452 (31), 451 (100).
- 35 9-Dicyclopropylmethyl-8-ethyl-6-(6-methylbenzofuran-5-yl)purine: m.p. 139-141 °C. TLC R_F 0.16 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): d 8.92 (1H, s), 7.95 (1H, s), 7.60 (1H, d, J = 2.2 Hz), 7.48 (1H, d, J = 0.7 Hz), 6.78 (1H,

15

20

TABLE 5

Ex. R1a R1b Х \mathbb{R}^3 R^4 b m.p., No. °C 5001 CH₂ CH₃ CH₂ 0 C-C3H5 C-C3H5 147-148 Н CH₂ 5002 CH₂ Н 4-(CH3O)-C6H4 Н CH, CH₂ 0 CH₂ 5003 CH₂ C-C₃H₅ Н CH₃ CH₂ CH₂ 0 CH₃ 5004 CH2 Н CH₃ CH2 C-C3H5 CH₂ 0 C₂H₅ 5005 CH₂ H. CH₃ CH₂ CH2 0 C_3H_7 C-C₃H₅

WO 99/01	454				-			PCT/US9	8/13913
5006	CH ₂	Н	СН3	CH ₂	CH ₂	0	C₄H,	C-C ₃ H ₅	-
5007	CH ₂	н	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5008	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5009	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-
5010	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	СН3	C ₃ H ₇	-
5011	CH ₂	Н	CH ₃	0	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	168-169
5012	CH ₂	н	CH ₃	0	CH ₂	0	н	$4 - (CH_3O) - C_6H_4$	- ·
5013	CH₂	н	CH ₃	0	CH ₂	0	CH ₃	C-C ₃ H ₅	-
5014	CH ₂	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5015	CH ₂	Н	CH ₃	0	CH ₂	0	C ₃ H ₇	C-C3H5	, -
5016	CH ₂	н	CH ₃	0	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
5017	CH ₂	Н	СН3	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5018	CH ₂	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5019	CH ₂	н	CH ₃	0	CH ₂	0	C_3H_7	C ₃ H ₇	7:
5020	CH ₂	н	CH ₃	0	CH ₂	0	CH ₃	C ₃ H ₇	<u>-</u>
5021	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C-C ₃ H ₅	C-C ₃ H ₅	-
5022	CH ₂	н	CH ₃	0	CH ₂	CH ₂	Н	4-(CH ₃ O)-C ₆ H ₄	-
5023	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	CH ₃	C-C ₃ H ₅	-
5024	CH ₂	Н	CH3	0	CH ₂	CH₂	C ₂ H ₅	c-C ₃ H ₅	-
5025	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C_3H_7	C-C ₃ H ₅	-
5026	CH ₂	Н	CH ₃	0	CH ₂	CH₂	C_4H_9	C-C ₃ H ₅	-
5027	CH ₂	H	CH ₃	0	CH ₂	CH ₂	C ₂ H ₅	C ₃ H ₇	-
5028	CH ₂	Н	CH3	0	CH ₂	CH ₂	C ₂ H ₅	C₄H,	-
5029	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	C ₃ H ₇	C ₃ H ₇	-
5030	CH ₂	Н	CH ₃	0	CH ₂	CH ₂	CH ₃	C ₃ H ₇	-
5031	CH ₂	H	CH ₃	CH ₂	0	CH ₂	C-C ₃ H ₅	C-C ₃ H ₅	-
5032	CH ₂	н	CH ₃	CH ₂	0	CH ₂	Н	$4 - (CH_3O) - C_6H_4$	-
5033	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	CH ₃	C-C ₃ H ₅	~
5034	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	C ₂ H ₅	C-C ₃ H ₅	-
5035	CH ₂	Н	CH3	CH ₂	0	CH ₂	C_3H_7	C-C ₃ H ₅	-
5036	CH ₂	H	СН₃	CH ₂	0	CH ₂	C ₄ H ₉	C-C ₃ H ₅	-
5037	CH ₂	Н	СН₃	CH ₂	0	CH ₂	C ₂ H ₅	C ₃ H ₇	-
5038	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	C ₂ H ₅	C ₄ H ₉	-
5039	CH ₂	Н	CH3	CH ₂	0	CH ₂	C ₃ H ₇	C ₃ H ₇	~
5040	CH ₂	Н	CH ₃	CH ₂	0	CH ₂	CH3	C ₃ H ₇	-
5041	CH ₂	Н	Cl	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	- \
5042	CH ₂	Н	Cl	CH ₂	CH ₂	0	н	$4 - (CH_3O) - C_6H_4$	-

5043 CH₂ H Cl CH₂ CH₂ O CH₃ c-C₃H₅ -

WO 99/0	1454							PCT/US9	8/13913	
5044	CH ₂	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	c-C ₃ H ₅	-	
5045	CH ₂	Н	Cl	CH ₂	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-	
5046	CH ₂	Н	Cl	CH ₂	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-	
5047	CH ₂	Н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C_3H_7	-	
5048	CH ₂	Н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	· -	
5049	CH ₂	Н	Cl	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-	
5050	CH ₂	Н	Cl	CH ₂	CH ₂	0	CH ₃	C_3H_7	-	
5051	CH ₂	Н	Cl	0	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-	
5052	CH ₂	Н	Cl	0	CH ₂	0	Н	4-(CH ₃ O)-C ₆ H ₄	-	
5053	CH ₂	Н	Cl	0	CH ₂	0	CH ₃	C-C ₃ H ₅	-	
5054	CH ₂	Н	Cl	0	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	
5055	CH ₂	Н	Cl	0	CH ₂	0	C_3H_7	C-C ₃ H ₅	-	
5056	CH ₂	Н	Cl	0	CH ₂	0	C_4H_9	C-C ₃ H ₅	~	
5057	CH ₂	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-	
5058	CH ₂	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	<u>-</u> `	
5059	CH ₂	Н	Cl	0	CH ₂	0	C ₃ H ₇	C ₃ H ₇	-	
5060	CH ₂	Н	Cl	0	CH ₂	0	CH ₃	C ₃ H ₇	-	
5061	0	Н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-	
5062	0	Н	CH3	CH ₂	CH ₂	0	Н	$4 - (CH_3O) - C_6H_4$	-	
5063	0	Н	CH3	CH ₂	CH ₂	0	CH ₃	C-C ₃ H ₅	-	
5064	0	Н	CH3	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	
5065	0	Н	CH3	CH ₂	CH ₂	0	C_3H_7	C-C ₃ H ₅	-	
5066	0	Н	CH ₃	CH ₂	CH ₂	0	C₄H,	$C-C_3H_5$	-	
5067	Ö	Н	CH3	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-	
5068	0	Н	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-	
5069	0	Н	CH ₃	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-	
5070	0	Н	CH3	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	-	
5071	0	Н	СН₃	0	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-	
5072	0	Н	CH3	0	CH ₂	0	. Н	$4-(CH_3O)-C_6H_4$	-	
5073	0	Н	CH ₃	0	CH ₂	0	СН₃	C-C ₃ H ₅	-	
5074	0	Н	CH3	0	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-	
5075	0	Н	CH3	0	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-	
5076	0	Н	CH ₃	0	CH ₂	0	C₄H,	C-C ₃ H ₅	-	
5077	0	H	CH3	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-	
5078	0	Н	CH ₃	0	CH ₂	0	C ₂ H ₅	C₄H ₉	-	
5079	0	Н	CH ₃	0	CH ₂	0	C_3H_7	C ₃ H ₇	- <	
5080	0	Н	CH3	0	CH ₂	0	CH3	C ₃ H ₇	-	

0 c-C₃H₅ c-C₃H₅

CH₂

5081

Н

Cl

CH₂

WO 99/01	454							PCT/US98	/13913
5082	0	Н	Cl	CH ₂	CH ₂	0	н	4-(CH ₃ O)-C ₆ H ₄	-
5083	0	Н	Cl	CH ₂	CH ₂	0	CH ₃	C-C ₃ H ₅	-
5084	0	Н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5085	0	Н	Cl	CH ₂	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5086	0	Н	Cl	CH ₂	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	· -
5087	0	Н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	_
5088	0	н	Cl	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5089	0	Н	Cl	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-
5090	0	Н	Cl	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	-
5091	0	Н	·C1	0	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	,-
5092	0	Н	Cl	0	CH ₂	0	Н	$4-(CH_3O)-C_6H_4$	-
5093	0	н	Cl	0	CH ₂	0	CH ₃	c-C ₃ H ₅	-
5094	0	н	Cl	0	CH ₂	O	C_2H_5	c-C ₃ H ₅	-
5095	0	Н	Cl	. 0	CH ₂	0	C_3H_7	c-C ₃ H ₅	-
5096	0	Н	Cl	0	CH ₂	0	C_4H_9	c-C ₃ H ₅	_;
5097	0	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5098	0	Н	Cl	0	CH ₂	0	C ₂ H ₅	C ₄ H ₉	· -
5099	0	Н	Cl	0	CH ₂	0	C_3H_7	C ₃ H ₇	-
5100	0	Н	Cl	0	CH ₂	0	CH ₃	C ₃ H ₇	-
5101	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5102	CH ₂	CH ₃	ĊH³	CH ₂	CH ₂	0	Н	$4-(CH_3O)-C_6H_4$	-
5103	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	CH ₃	C-C ₃ H ₅	-
5104	CH ₂	CH ₃	CH3	CH ₂	CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5105	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5106	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C ₄ H ₉	C-C ₃ H ₅	-
5107	CH ₂	CH ₃	CH3	CH ₂	CH ₂	0	C ₂ H ₅	C ₃ H ₇	-
5108	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5109	CH ₃	CH ₃	CH3	CH ₂	CH ₂	0	C_3H_7	C ₃ H ₇	-
5110	CH ₂	CH3	CH3	CH ₂	CH ₂	0	CH ₃	C ₃ H ₇	- .
5111	CH ₂	Н	Cl	0	C=0	NH	$C-C_3H_5$	C-C ₃ H ₅	-
5112	CH ₂	H	Cl	0	C=0	NH	Н	$4 - (CH_3O) - C_6H_4$	-
5113	CH ₂	Н	Cl	0	C=0	NH	CH ₃	C-C ₃ H ₅	-
5114	CH ₂	H	Cl	· O	C=0	NH	C ₂ H ₅	C-C ₃ H ₅	-
5115	CH ₂	Н	Cl	0	C=0	NH	C ₃ H ₇	C-C ₃ H ₅	-
5116	CH ₂	Н	C1	0	C=0	NH	C ₄ H ₉	C-C ₃ H ₅	-
5117	CH ₂	Н	Cl	0	C=0	NH	C ₂ H ₅	C₃H₁	-
5118	CH ₂	Н	C1	0	C=0	NH	C ₂ H ₅	C ₄ H ₉	-

 C_3H_7

 C_3H_7

O C=O NH

5119 CH₂ H Cl

WO 99/0	1454							PCT/US98	3/13913
5120	CH ₂	н	Cl	0	C=0	NH	CH ₃	C ₃ H ₇	_
5121	CH ₂	н	Cl	0	C=0	NCH ₃	c-C ₃ H ₅	C-C ₃ H ₅	-
5122	CH ₂	Н	cı	0	C=0	NCH ₃	Н	4 - (CH ₃ O) -C ₆ H ₄	-
5123	CH ₂	Н	C1	0	C=0	NCH ₃	CH ₃	C-C ₃ H ₅	-
5124	CH ₂	Н	Cl	0	C=O	NCH ₃	C ₂ H ₅	C-C ₃ H ₅	· -
5125	CH₂	н	Cl	0	C=0	NCH ₃	C ₃ H ₇	C-C ₃ H ₅	-
5126	CH ₂	Н	Cl	0	C=O	NCH ₃	C₄H,	c-C ₃ H ₅	-
5127	CH ₂	н	Cl	0	C=0	NCH ₃	C ₂ H ₅	C ₃ H ₇	-
5128	CH ₂	н	Cl	0	C=0	NCH ₃	C ₂ H ₅	C₄H,	-
5129	CH ₂	Н	Cl	0	C=0	NCH ₃	C ₃ H ₇	C ₃ H ₇	7
5130	CH ₂	н	Cl	0	C=0	NCH ₃	CH ₃	C ₃ H ₇	-
5131	CH ₂	Н	Cl	0	CCH ₃	N	C-C ₃ H ₅	C-C ₃ H ₅	-
5132	CH ₂	н	Cl	0	CCH ₃	N	н	$4-(CH_3O)-C_6H_4$	-
5133	CH ₂	Н	Cl	0	CCH3	N	CH ₃	c-C ₃ H ₅	- • •
5134	CH ₂	Н	C1	0	CCH3	N	C ₂ H ₅	C-C ₃ H ₅	<u>-</u> :
5135	CH ₂	Н	Cl	0	CCH3	N	C ₃ H ₇	C-C ₃ H ₅	-
5136	CH ₂	Н	Cl	0	CCH ₃	N	C_4H_9	C-C ₃ H ₅	-
5137	CH ₂	Н	Cl	0	CCH3	N	C ₂ H ₅	C ₃ H ₇	-
5138	CH ₂	Н	Cl	0	CCH ₃	N	C ₂ H ₅	C ₄ H ₉	-
5139	CH ₂	Н	Cl	0	CCH ₃	N	C_3H_7	C ₃ H ₇	-
5140	CH ₂	Н	Cl	0	CCH ₃	N	CH ₃	C ₃ H ₇	-
5141	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C-C ₃ H ₅	C-C ₃ H ₅	-
5142	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	Н	$4-(CH_3O)-C_6H_4$	-
5143	CH ₂	Н	Cl	0	C=O	NC ₂ H ₅	CH ₃	C-C ₃ H ₅	-
5144	CH₂	Н	Cl	0	C=0	NC ₂ H ₅	C ₂ H ₅	$C-C_3H_5$	-
5145	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C₃H ₇	C-C ₃ H ₅	-
5146	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C ₄ H ₉	C-C3H5	-
5147	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C ₂ H ₅	C ₃ H ₇	-
5148	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	C ₂ H ₅	C₄H,	-
5149	CH ₂	н	Cl	0	C=0	NC ₂ H ₅	C ₃ H ₇	C ₃ H ₇	_
5150	CH ₂	Н	Cl	0	C=0	NC ₂ H ₅	CH ₃	C ₃ H ₇	-
5151	CH ₂	Н	C1	0	C=0	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5152	CH ₂	Н	Cl	0	C=0	0	Н	$4-(CH_3O)-C_6H_4$	-
5153	CH ₂	Н	C1	0	C=0	0	CH ₃	C-C ₃ H ₅	-
5154	CH ₂	Н	Cl	0	C=0	0	C ₂ H ₅	C-C ₃ H ₅	-
5155	CH ₂	Н	Cl	0	C=0	0	C ₃ H ₇	C-C ₃ H ₅	-
5156	CH ₂	Н	Cl	0	C=0	0	C_4H_9	C-C ₃ H ₅	-

C₂H₅

C₃H₇

5157 CH₂ H Cl O C=O O

ζį.

WO 99/0	1454							PCT/US98	1/13913
5158	CH ₂	н	Cl	0	C=0	0	C ₂ H ₅	C ₄ H ₉	-
5159	CH ₂	Н	Cl	0	C=0	0	C ₃ H ₇	C ₃ H ₇	-
5160	CH ₂	Н	Cl	0	C=0	0	СН₃	C ₃ H ₇	-
5161	CH ₂	Н	Cl	0	CH₂CH₂	0	C-C3H5	C-C ₃ H ₅	<u>-</u>
5162	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	Н	4-(CH ₃ O)-C ₆ H ₄	-
5163	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	СН₃	C-C3H5	-
5164	CH2	Н	Cl	0	CH₂CH₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5165	CH ₂	Н	Cl	0	CH₂CH₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5166	CH ₂	Н	Cl	0	CH₂CH₂	0	C₄H ₉	C-C3H5	-
5167	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	C ₂ H ₅	C ₃ H ₇	. =
5168	CH ₂	Н	Cl	0	CH ₂ CH ₂	0	C ₂ H ₅	C ₄ H ₉	-
5169	CH ₂	H	Cl	0	CH ₂ CH ₂	0	C ₃ H ₇	C ₃ H ₇	-
5170	CH ₂	Н	Cl	0	CH2CH3	0	CH ₃	C3H7	-
5171	CH ₂	Н	CH ₃	0	C=O	0	C-C ₃ H ₅	C-C ₃ H ₅	.
5172	CH₂	Н	CH ₃	0	C=O	0	н	$4 - (CH_3O) - C_6H_4$	<u>-</u> '
5173	CH ₂	Н	CH ₃	0	C=O	0	CH3	C-C ₃ H ₅	-
5174	CH ₂	Н	CH ₃	0	C=0	0	C ₂ H ₅	C-C ₃ H ₅	-
5175	CH ₂	Н	CH ₃	0	C=0	0	C ₃ H ₇	c-C ₃ H ₅	-
5176	CH ₂	Н	CH ₃	0	C=O	0	C ₄ H ₉	C-C₃H₅	-
5177	CH ₂	Н	CH3	0	C=0	0	C ₂ H ₅	C ₃ H ₇	-
5178	CH ₂	Н	CH3	0	C=0	0	C ₂ H ₅	C ₄ H ₉	. =
5179	CH ₂	Н	CH3	0	C=0	0	C ₃ H ₇	C ₃ H ₇	-
5180	CH ₂	Н	CH3	0	C=0	0	CH ₃	C ₃ H ₇	-
5181	CH₂	Н	CH3	0	CH ₂ CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5182	CH ₂	Н	CH ₃	0	CH ₂ CH ₂	0	Н	4-(CH ₃ O)-C ₆ H ₄	-
5183	CH ₂	Н	CH ₃	0	CH ₂ CH ₂	0	CH3	C-C ₃ H ₅	-
5184	CH ₂	н	CH ₃	0	CH ₂ CH ₂	0	C ₂ H ₅	C-C ₃ H ₅	-
5185	CH₂	н	CH ₃	0	CH ₂ CH ₂	0	C ₃ H ₇	C-C ₃ H ₅	-
5186	CH ₂	н	CH ₃	0	CH₂CH₂	0	C₄H ₉	C-C ₃ H ₅	-
5187	CH ³	н	CH ₃	0	CH ₂ CH ₂	0	C₂H₅	C ₃ H ₇	-
5188	CH ₂	н	CH ₃	0	CH ₂ CH ₂	0	C₂H₅	C ₄ H ₉	-
5189	CH ₂	н	CH ₃	0	CH₂CH₂	0	C ₃ H ₇	C ₃ H ₇	
5190	CH ₂	н	CH ₃	0	CH₂CH₂	0	CH ₃	C ₃ H ₇	-
5191	CH₂	н	C1	0	CH₂CH₂	NCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
5192	CH ₂	н	C1	0	CH ₂ CH ₂	NCH ₃	Н	4- (CH ₃ O) -C ₆ H ₄	-
5193	CH ₂	н	C1	0	CH ₂ CH ₂	NCH ₃	CH ₃	C-C ₃ H ₅	- <:
5194	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₂ H ₅	C-C ₃ H ₅	-

 C_3H_7

C-C₃H₅

O CH₂CH₂ NCH₃

5195 CH₂

Cl

Н

WO 99/0 1	1454							PCT/US9	8/13913
5196	CH ₂	н	Cl	0	CH ₂ CH ₂	NCH ₃	C₄H,	c-C ₃ H ₅	-
5197	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₂ H ₅	C₃H,	-
5198	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C ₂ H ₅	C ₄ H ₉	-
5199	CH ₂	Н	Cl	0	CH ₂ CH ₂	NCH ₃	C_3H_7	C ₃ H ₇	-
5200	CH ₂	н	Cl	0	CH ₂ CH ₂	NCH ₃	CH ₃	C ₃ H ₇	
5201	CH ₂	н	CH ₃	СН	СН	0	C-C ₃ H ₅	C-C ₃ H ₅	139-141
5202	CH ₂	Н	CH ₃	СН	СН	0	Н	4-(CH ₃ O)-C ₆ H ₄	-
5203	CH ₂	н	CH ₃	CH	СН	0	CH ₃	C-C3H5	<u> </u>
5204	CH ₂	Н	CH ₃	СН	СН	0	C ₂ H ₅	C-C ₃ H ₅	-
5205	CH ₂	Н	CH ₃	СН	СН	0	C ₃ H ₇	c-C ₃ H ₅	
5206	CH ₂	Н	CH ₃	СН	СН	0	C ₄ H ₉	c-C ₃ H ₅	-
5207	CH ₂	н	CH ₃	СН	СН	0	C ₂ H ₅	C ₃ H ₇	-
5208	CH ₂	Н	CH ₃	СН	CH	0	C ₂ H ₅	C ₄ H ₉	
5209	CH ₂	Н	CH3	СН	СН	0	C_3H_7	C ₃ H ₇	-
5210	CH ₂	Н	CH ₃	СН	СН	0	CH ₃	C ₃ H ₇	<u>-</u>
5211	CH ₂	Н	C1	СН	СН	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5212	CH ₂	Н	Cl	СН	СН	0	Н	$4-(CH_3O)-C_6H_4$	- .
5213	CH ₂	Н	Cl	СН	СН	0	CH ₃	C-C ₃ H ₅	~
5214	CH ₂	н	C1	СН	СН	0	C_2H_5	C-C ₃ H ₅	
5215	CH ₂	Н	C1	CH	СН	0	C ₃ H ₇	C-C ₃ H ₅	-
5216	CH ₂	Н	C1	СН	СН	0	C ₄ H ₉	C-C ₃ H ₅	
5217	CH ₂	н	Cl	СН	СН	0	C ₂ H ₅	C ₃ H ₇	· -
5218	CH ₂	Н	Cl	СН	СН	0	C ₂ H ₅	C₄H ₉	-
5219	CH ₂	H	Cl	СН	CH	0	C_3H_7	C ₃ H ₇	-
5220	CH ₂	Н	· c1	СН	CH	0	CH ₃	C ₃ H ₇	-
5221	CH ₂	н	CH ₃	СН	СНСН	CH	C-C ₃ H ₅	c-C ₃ H ₅	
5222	CH ₂	н	CH ₃	СН	СНСН	СН	Н	$4 - (CH_3O) - C_6H_4$	-
5223	CH ₂	н	CH ₃	СН	СНСН	СН	CH ₃	c-C ₃ H ₅	-
5224	CH ₂	н	CH ₃	CH	СНСН	СН	C ₂ H ₅	c-C ₃ H ₅	-
5225	CH ₂	Н	CH ₃	СН	СНСН	СН	C ₃ H ₇ ·	c-C ₃ H ₅	-
5226	CH ₂	Н	CH ₃	СН	СНСН	СН	C_4H_9	C-C ₃ H ₅	-
5227	CH ₂	Н	CH ₃	СН	СНСН	СН	C ₂ H ₅	C ₃ H ₇	-
5228	CH_2	Н	CH ₃	СН	СНСН	СН	C ₂ H ₅	C ₄ H ₉	-
5229	CH ₂	Н	CH3	СН	СНСН	СН	C_3H_7	C ₃ H ₇	- ·
5230	CH ₂	Н	CH3	СН	СНСН	СН	СН3	C ₃ H ₇	-
5231	CH ₂	Н	CH3	СН	CBr	0	C-C ₃ H ₅	C-C ₃ H ₅	177-178 🛇
5232	CH ₂	н	СН,	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C ₃ H ₅	179-180
5233	CH ₂	н	CH3	СН	ССН3	0	C-C3H5	C-C ₃ H ₅	-

WO 99/0	01454					•	PC1/US	0598/139/13	
5234	CH ₂	Н	CH ₃	CH ₂	CH ₂	0	C-C ₃ H ₅	C-C3H5	-
5235	CH ₂	н	CH ₃	СН	CSCH ₃	0	C-C ₃ H ₅	C-C ₃ H ₅	-
5236	CH ₂	Н	СН₃	CH ₂	CH ₂	0	C-C3H5	C-C ₃ H ₅	-

5 TABLE 5A

R1a
$$\stackrel{\text{R1b}}{\longrightarrow}$$
 R1a $\stackrel{\text{R1b}}{\longrightarrow}$ R1a $\stackrel{\text{R1b}}{\longrightarrow}$ R1a $\stackrel{\text{R1b}}{\longrightarrow}$ CH3 $\stackrel{\text{R1c}}{\longrightarrow}$ CH3 $\stackrel{\text{CH3}}{\longrightarrow}$ CH3 $\stackrel{\text{CH3$

10

Ex. No.	х	R12	a	b	С	R ^{1a}	R1b	m.p., °C
5232	CH ₂	Br	CH ₂	CH ₂	0	C-C3H5	C-C ₃ H ₅	179-180
5234	CH ₂	CN	CH ₂	CH ₂	0	C-C3H5	C-C ₃ H ₅	-
5236	CH ₂	SCH ₃	CH ₂	CH ₂	0	C-C3H5	C-C ₃ H ₅	-

The methods used in the preparation of the compounds of Table 1 may be used for the compounds of Structure A of Table 6. For example, replacing variously-substituted pentaatomic heteroaryl boronic acids for benzeneboronic acids in the palladium-catalyzed aryl cross-coupling method (see Examples 35 or 831) will afford the desired 6-heteroarylpurine compounds.

The methods of Schemes 13 and 14 may be used to prepare many of the examples of Structure B and Structure C contained in Table 6, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

TABLE 6

10

Ex. No.	Х	R³	a	b	С	đ	R1a	R1b	m.p.
									°C °
6001	CH ₂	Н	ССН₃	N	0	ССН3	C-C ₃ H ₅	c-C ₃ H ₅	oil
6002	CH ₂	Н	ссн,	N	0	CCH ₃	CH ₃	C-C ₃ H ₅	-
6003	CH ₂	Н	ССН3	N	0	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6004	CH ₂	Н	CCH3	N	0	CCH3	C ₃ H ₇	C-C ₃ H ₅	-
6005	CH ₂	н	CCH ₃	N	0	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6006	CH ₂	Н	ссн,	N	0	CCH3	СН3	C ₃ H ₇	-
6007	CH ₂	Н	CCH ₃	N	0	CCH3	C ₂ H ₅	C ₃ H ₇	-
6008	CH ₂	Н	CCH3	N	0	CCH3	C ₃ H ₇	C ₃ H ₇	-
6009	CH ₂	Н	ссн,	N	0	CCH3	C ₂ H ₅	C_4H_9	-
6010	CH ₂	Н	ссн,	N	0	CCH3	н	4-CH ₃ O-C ₆ H ₄	-
6011	. 0	Н	ССН3	N	0	CCH3	c-C ₃ H ₅	C-C ₃ H ₅	-
6012	0	Н	CCH3	N	0	CCH3	СН3	C-C ₃ H ₅	-
6013	0	Н	CCH3	N	0	ССН3	C ₂ H ₅	c-C ₃ H ₅	-

6014	0	н	CCH ₃	N	0	CCH ₃	C_3H_7	C-C3H5	-
6015	0	Н	CCH ₃	N	0	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6016	0	Н	CCH ₃	N	0	CCH ₃	CH ₃	C ₃ H ₇	-
6017	0	H	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6018	0	Н	CCH₃	N	0	CCH ₃	C_3H_7	C ₃ H ₇	-
6019	0	Н	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6020	0	H	CCH ₃	N	0	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6021	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	c-C ₃ H ₅	C-C3H5	-
6022	CH ₂	CH ₃	CCH ₃	N	0	CCH3	CH ₃	C-C ₃ H ₅	-
6023	CH ₂	CH ₃	CCH ₃	N	0	CCH3	C ₂ H ₅	C-C3H5	-
6024	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C_3H_7	c-C ₃ H ₅	-
6025	CH ₂	CH ₃	CCH ₃	N	0	CCH3	C ₄ H ₉	C-C ₃ H ₅	-
6026	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	CH ₃	C ₃ H ₇	-
6027	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6028	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C_3H_7	C ₃ H ₇	-
6029	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6030	CH ₂	CH ₃	CCH ₃	N	0	CCH ₃	H	$4 - CH_3O - C_6H_4$	-
6031	CH ₂	н	CCH ₃	N	NCH ₃	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6032	CH ₂	Н	CCH ₃	N	NCH ₃	CCH3	CH ₃	C-C ₃ H ₅	-
6033	CH ₂	Н	CCH ₃	N	NCH ₃	CCH3	C ₂ H ₅	C-C3H5	-
6034	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6035	CH ₂	H	CCH3	N .	NCH ₃	CCH3	C ₄ H ₉	C-C ₃ H ₅	-
6036	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	CH ₃	C ₃ H ₇	-
6037	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C₃H₁	-
6038	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C ₃ H ₇	-
6039	CH ₂	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6040	CH3	Н	CCH ₃	N	NCH ₃	CCH ₃	Н	$4 - CH_3O - C_6H_4$	-
6041	0	Н	CCH ₃	N	NCH,	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6042	0	Н	CCH ₃	N	NCH ₃	CCH ₃	CH ₃	C-C ₃ H ₅	-
6043	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6044	0	H	CCH ₃	N	NCH ₃	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6045	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C_4H_9	C-C ₃ H ₅	-
6046	0	H	CCH3	N	NCH ₃	CCH ₃	CH ₃	C ₃ H ₇	-
6047	0	Н	CCH3	N	NCH ₃	CCH3	C ₂ H ₅	C ₃ H ₇	-
6048	0	Н	CCH ₃	N	NCH ₃	CCH ₃	C ₃ H ₇	C_3H_7	-
6049	0	н	CCH3	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6050	0	н	ССН3	N	NCH ₃	CCH3	Н	4-CH ₃ O-C ₆ H ₄	-
6051	CH ₂	CH ₃	CCH ₃	N	NCH3	CCH3	c-C ₃ H ₅	C-C ₃ H ₅	-

6052	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH ₃	CH3	C-C ₃ H ₅	-
6053	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6054	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH3	C_3H_7	C-C ₃ H ₅	-
6055	CH2	CH ₃	CCH3	N	NCH ₃	CCH ₃	C ₄ H ₉	C-C₃H₅	-
6056	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH3	CH3	C ₃ H ₇	-
6057	CH ₂	CH ₃	CCH ₃	N	NCH ₃	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6058	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH ₃	C ₃ H ₇	C_3H_7	-
6059	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH3	C ₂ H ₅	C ₄ H ₉	-
6060	CH ₂	CH ₃	CCH3	N	NCH ₃	CCH ₃	Н	4-CH ₃ O-C ₆ H ₄	-
6061	CH ₂	Н	CCH3	N	NC ₂ H ₅	ссн,	C-C ₃ H ₅	$C-C_3H_5$	-
6062	CH ₂	Н	CCH3	N	NC ₂ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6063	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6064	CH ₂	H	CCH3	N	NC_2H_5	CCH3	C ₃ H ₇	C-C ₃ H ₅	-
6065	CH ₂	Н	CCH ₃	N	NC_2H_5	CCH3	. C ₄ H ₉	C-C ₃ H ₅	-
6066	CH ₂	Н	CCH ₃	N	NC_2H_5	CCH ₃	CH ₃	C_3H_7	-
6067	CH ₂	Н	CCH3	N	NC_2H_5	CCH ₃	C ₂ H ₅	C_3H_7	-
6068	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C_3H_7	C ₃ H ₇	-
6069	CH ₂	Н	CCH3	N	NC ₂ H ₅	CCH3	C_2H_5	C₄H ₉	-
6070	CH ₂	Н	CCH ₃	N	NC ₂ H ₅	CCH3	Н	4-CH ₃ O-C ₆ H ₄	-
6071	0	Н	CCH3	N	NC ₂ H ₅	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6072	0	Н	CCH ₃	N	NC ₂ H ₅	CCH3	CH ₃	C-C ₃ H ₅	-
6073	0	Н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6074	0	Н	CCH3	N	NC ₂ H ₅	CCH3	C ₃ H ₇	C-C ₃ H ₅	-
6075	0	Н	CCH3	N	NC ₂ H ₅	CCH3	C₄H ₉	C-C3H5	-
6076	0	H	CCH ₃	N	NC ₂ H ₅	CCH3	CH ₃	C ₃ H ₇	-
6077	0	Н	CCH3	N	NC ₂ H ₅	CCH3	C ₂ H ₅	C ₃ H ₇	-
6078	0	н	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₃ H ₇	C ₃ H ₇	-
6079	0	н	CCH3	N	NC ₂ H ₅	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6080	0	Н	CCH3	N	NC ₂ H ₅	CCH ₃	· H	4-CH ₃ O-C ₆ H ₄	-
6081	CH ₂	CH ₃	CCH3	N	NC ₂ H ₅	CCH ₃	C-C3H5	C-C3H5	-
6082	CH ₂	CH ₃	CCH3	N	NC ₂ H ₅	CCH ₃	CH3	C-C ₃ H ₅	-
6083	CH ₂	СН₃	CCH3	N	NC ₂ H ₅	CCH ₃	C_2H_5	C-C ₃ H ₅	-
6084	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6085	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6086	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	CCH ₃	CH3	C ₃ H ₇	-
6087	CH ₂	CH ₃	CCH3	N	NC ₂ H ₅	CCH₃	C ₂ H ₅	C_3H_7	, -
6088	CH ₂	CH ₃	CCH ₃	N	NC ₂ H ₅	ссн,	C ₃ H ₇	C ₃ H ₇	-
6089	CH ₂	CH3	CCH3	N	NC ₂ H ₅	CCH3	C ₂ H ₅	C ₄ H ₉	-

6090	CH ₂	СН3	ССН3	N	NC ₂ H ₅	CCH ₃	н	4-CH ₃ O-C ₆ H ₄	-
6091	CH ₂	Н	CCH₃	N	ссн,	NCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6092	CH₂	н	CCH ₃	N	ССН3	NCH ₃	CH ₃	C-C3H5	-
6093	CH ₂	н	CCH ₃	N	CCH ₃	NCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6094	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C_3H_7	c-C ₃ H ₅	-
6095	CH ₂	Н	CCH3	N	ССН3	NCH3	C ₄ H ₉	C-C ₃ H ₅	-
6096	CH ₂	Н	CCH3	N	CCH ₃	NCH ₃	CH,	C ₃ H ₇	-
6097	CH2	H	CCH3	N	CCH ₃	NCH ₃	C ₂ H ₅	C ₃ H ₇	-
6098	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C_3H_7	C ₃ H ₇	-
6099	CH ₂	Н	CCH ₃	N	CCH ₃	NCH ₃	C ₂ H ₅	C ₄ H ₉	-
6100	CH ₂	Н	CCH ₃	N	CCH3	NCH ₃	н -	4-CH ₃ O-C ₆ H ₄	-
6101	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C-C ₃ H ₅	C-C3H5	-
6102	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C-C3H5	-
6103	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6104	CH ₂	Н	CCH3	N	NC ₆ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6105	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₄ H ₉	C-C3H5	-
6106	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH3	CH ₃	C_3H_7	-
6107	CH ₂	н	CCH ₃	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₃ H ₇	-
6108	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH3	C ₃ H ₇	C ₃ H ₇	-
6109	CH ₂	н	CCH ₃	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C₄H,	-
6110	CH ₂	Н	CCH ₃	N	NC ₆ H ₅	CCH3	н	4-CH ₃ O-C ₆ H ₄	-
6111	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C-C ₃ H ₅	C-C ₃ H ₅	-
6112	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C-C ₃ H ₅	-
6113	0	Н	CCH3	N	NC_6H_5	CCH ₃	C ₂ H ₅	C-C ₃ H ₅	-
6114	0	н	CCH3	N	NC ₆ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6115	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C₄H ₉	C-C ₃ H ₅	-
6116	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C ₃ H ₇	-
6117	0	Н	CCH3	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C ₃ H ₇	-
6118	0	Н	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₃ H ₇	C ₃ H ₇	-
6119	0	Н	CCH3	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₄ H ₉	-
6120	. 0	· H	CCH ₃	N	NC ₆ H ₅	CCH3	н	4-CH ₃ O-C ₆ H ₄	-
6121	CH ₂	CH3	CCH3	N	NC ₆ H ₅	CCH ₃	c-C ₃ H ₅	C-C ₃ H ₅	-
6122	CH ₂	CH ₃	CCH3	N	NC ₆ H ₅	CCH3	CH ₃	C-C ₃ H ₅	-
6123	CH ₂	CH3	CCH3	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C-C ₃ H ₅	-
6124	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH ₃	C_3H_7	C-C ₃ H ₅	-
6125	CH ₂	CH3	CCH3	N	NC ₆ H ₅	CCH ₃	C ₄ H ₉	C-C ₃ H ₅	-
6126	CH ₂	CH3	CCH ₃	N	NC ₆ H ₅	CCH ₃	CH ₃	C ₃ H ₇	-
6127	СН	СН3	CCH3	N	NC ₆ H ₅	CCH3	C ₂ H ₅	C ₃ H ₇	-

6128	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH ₃	C_3H_7	C ₃ H ₇	-
6129	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH ₃	C ₂ H ₅	C ₄ H ₉	-
6130	CH ₂	CH ₃	CCH ₃	N	NC ₆ H ₅	CCH ₃	Н	$4 - CH_3O - C_6H_4$	-

Key:

a) Where the compound is indicated as an "oil", spectral data is provided as follows:

5 Example 6001 spectral data: MS (NH₃-CI): m/e 338 (M+H*, 100%).

The methods used in the preparation of the compounds of Table 1 may be used for preparation of many of the compounds of Structure A of Table 7. The preparation of those compounds derived from cycloaddition of compounds with alkynyl-bearing R¹ groups is illustrated by the following examples.

The methods of Schemes 13 and 14 may be used to

15 prepare many of the examples of Structure B and Structure C contained in Table 7, with minor procedural modifications where necessary and use of reagents of the appropriate structure.

20

10

Example 7409

Preparation of 9-11-cyclopropyl-1-(3-methyl-isoxazol-5-yl)methyll-6-(2,4-dichlorophenyl)-8-ethyl-9H-purine

To a stirring solution of the compound of Example 7241 (90 mg, 0.24 mmol; prepared in a manner similar to that of Example 2 using 6-(2,4-dichlorophenyl)-8-ethyl-9H-purine and 3-cyclopropyl-1-propyn-3-ol) in methylene chloride (2 mL) were added chloroacetaldoxime (25 mg, 0.27 mmol) and triethylamine (0.038 mL, 0.27 mmol). (The chloroacetaldoxime used was previously prepared by reacting equimolar amounts of acetaldoxime and N-chlorosuccinimide in DMF, then extracting the product into diethyl ether and washing with water.) The cycloaddition reaction was monitored by TLC and additional

amounts of chloroacetaldoxime and triethylamine were added

until all the starting material was consumed. The reaction mixture was purified by adding directly to a column packed with silica gel and eluting using a gradient of 100% hexane to 25% ethyl acetate in hexane. 72 mg of a white foam was collected. MS (NH₃-CI) 428 (M+H⁺). HRMS: m/e = 428.1037 (M+H⁺, C₂₁H₂₀Cl₂N₃O). Purity by reverse phase HPLC >97%.

Examples 7396 and 7398

Preparation of 6-(2.4-dichlorophenyl)-9-[1-(3-ethoxycarbonyl-isoxazol-5-yl)butyll-8-ethyl-9H-purine and 9-[1-(4-cyano-3-ethoxycarbonyl-isoxazol-5-yl)butyll-6-(2.4-dichlorophenyl)-8-ethyl-9H-purine

A solution of the compound of Example 7259 (120 mg, 0.321 mmol; prepared prepared in a manner similar to that of Example 2 using 6-(2,4-dichlorophenyl)-8-ethyl-9H-purine and 1-hexyn-3-ol), ethyl chlorooximidoacetate (146 mg, 0.963 mmol) and diisopropylethylamine (170 μ L, 0.976 mmol) in toluene (2 mL) was heated to reflux for 20 hours, then cooled and diluted with 20 mL ethyl acetate. This was washed with water (2 \times 20 20 mL) and satd. ag. brine (20 mL), and the aqueous phases were back-extracted in sequence with ethyl acetate (20 mL). The organic extracts were combined, dried over anhydrous sodium sulfate, filtered and evaporated. The residual material was separated by column chromatography (silica gel, 1:4 ethyl acetate-hexane) to afford, in order, unreacted starting 25 material (about 50 mg), then the compound of Example 7396 (58.7 mg, 0.120 mmol, 37%), and finally the compound of Example 7398 (23.8 mg, 0.046 mmol, 14%), the latter two compounds being amorphous solids. Example 7396 spectral data: 30 TLC R, 0.27 (20:80 ethyl acetate-hexane). H NMR (300 MHz, $CDCl_3$): δ 8.96 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.1, 1.8 Hz), 6.86 (1H, s), 5.83 (1H, dd, J = 9.9, 6.2 Hz), 4.43 (2H, q, J = 7.3 Hz), 2.98 (2H, q, J = 7.7 Hz), 2.91-2.78 (1H, m), 2.63-2.49 (1H, m),1.42 (3H, t, J = 7.7 Hz), 1.40 (3H, t, J = 7.3 Hz), 1.39-1.19 (2H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for C,H,Cl,NO: 488.1256, found 488.1252; 493 (3), 492 (13), 491

(18), 490 (68), 489 (28), 488 (100). Example 7398 spectral data: TLC R_F 0.11 (20:80 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.72 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.42 (1H, dd, J = 8.1, 1.8 Hz), 5.40 (1H, dd, J = 10.4, 5.0 Hz), 4.42 (2H, q, J = 7.4 Hz), 3.00-2.90 (2H, m), 2.66-2.52 (1H, m), 2.51-2.38 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.41 (3H, t, J = 7.3 Hz), 1.40-1.10 (2H, m), 0.98 (3H, t, J = 7.2 Hz). MS (NH₃-CI): m/e calc'd for $C_{24}H_{25}Cl_2N_6O_4$: 531.1315, found 531.1315; 531 (100).

10

15

TABLE 7

R11 R^{1a} G ° m.p., R^4 R⁵ R6 L Ex. No. X °C 7001 bond G1 CH₂ CH₃ CH₃ Н CH₃ CH₃ 7002 CH₂ CH₃ CH₃ C₂H₅ bond G1 Н CH₃ 7003 CH₂ CH₃ CH₃ C_3H_7 bond G1 Н CH₃ 7004 CH₂ CH₃ CH₃ Н CH₃ C-C₃H₅ bond G1 7005 CH₂ CH₃ CH₃ Н CH₃ CH₃ bond G2 7006 CH₂ CH₃ CH₃ C₂H₅ bond G2 Н CH₃ 7007 CH₂ CH₃ CH₃ Н CH₃ C₃H₇ bond G2 7008 CH₂ CH₃ CH₃ CH₃ C-C₃H₅ bond G2 Н 7009 CH₂ CH₃ CH₃ Н CH₃ CH₃ G3 bond 7010 CH2 CH₃ CH₃ Н CH₃ C₂H₅ bond G3 7011 CH₂ bond CH₃ CH₃ Н CH₃ C₃H₇ G3

ζ,

WO 99/01454	4							P	CT/US98/13913
7012	CH₂	CH3	CH3	н	CH3	C-C ₃ H ₅	bond	G3	-
7013	CH ₂	CH ₃	CH3	Н	CH ₃	CH ₃	CH ₂	G4	-

7012	CH2	CII3	CII3		Ç113	C C3115	Dona	65	
7013	CH ₂	CH ₃	CH ₃	Н	CH ₃	CH ₃	CH ₂	G4	-
7014	CH ₂	CH ₃	CH ₃	Н	CH ₃	C ₂ H ₅	CH ₂	G4	-
7015	CH ₂	CH ₃	CH3	Н	CH ₃	C_3H_7	CH ₂	G4	-
7016	CH ₂	CH3	CH ₃	Н	CH ₃	C-C3H5	CH₂	G4	-
7017	CH ₂	CH3	CH3	Н	CH3	CH,	CH ₂	G5	-
7018	CH ₂	CH ₃	CH ₃	Н	CH ₃	C ₂ H ₅	CH ₂	G5	-
7019	CH ₂	CH3	CH3	Н	CH3	C ₃ H ₇	CH ₂	G5	-
7020	CH ₂	CH3	CH ₃	Н	CH3	C-C ₃ H ₅	CH ₂	G5	-
7021	CH ₂	CH ₃	CH ₃	Н	CH3	CH ₃	bond	G6	-
7022	CH ₂	CH3	CH ₃	Н	CH ₃	C ₂ H ₅	bond	G6	-
7023	CH ₂	CH ₃	CH3	Н	CH3	C_3H_7	bond	G6	-
7024	CH ₂	CH3	CH3	Н	CH3	C-C ₃ H ₅	bond	G6	-
7025	CH ₂	CH3	CH3	Н	CH ₃	CH ₂ =CH	bond	G7	-
7026	CH ₂	CH ₃	CH3	Н	CH ₃	CH ₃	bond	G8	-
7027	CH ₂	CH ₃	CH ₃	Н	CH ₃	C ₂ H ₅	CH ₂	G1	-
7028	CH ₂	CH3	CH ₃	Н	CH ₃	C_3H_7	CH2	G1	-
7029	CH ₂	CH3	CH3	Н	CH ₃	C ₂ H ₅	CH ₂	G2	-
7030	CH ₂	CH3	CH ₃	Н	CH3	C ₃ H ₇	CH ₂	G2	-
7031	CH ₂	Cl	Cl	Н	Н	CH₃	bond	G1	-
7032	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	bond	G1	-
7033	CH2	Cl	Cl	Н	Н	C ₃ H ₇	bond	G1	-
7034	CH ₂	Cl	Cl	Н	Н	c-C ₃ H ₅	bond	G1	-
7035	CH ₂	Cl	Cl	Н	Н	CH ₃	bond	G2	-
7036	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	bond	G2	-
7037	CH ₂	Cl	Cl	Н	Н	C_3H_7	bond	G2	-
7038	CH ₂	Cl	Cl	Н	H	C-C ₃ H ₅	bond	G2	-
7039	CH ₂	Cl	C1	Н	Н	CH3	bond	G3	-
7040	CH ₂	Cl	Cl	Н	H	C ₂ H ₅	bond	G3	-
7041	CH ₂	Cl	Cl	Н	H	C ₃ H ₇	bond	G3	-
7042	CH ₂	C1	Cl	Н	Н	C-C ₃ H ₅	bond	G3	-
7043	CH ₂	C1	Cl	Н	H	CH3	CH ₂	G4	-
7044	CH3	Cl	Cl	Н	H	C ₂ H ₅	CH ₂	G4	-
7045	CH ₂	Cl	Cl	Н	Н	C_3H_7	CH ₂	G4	-
7046	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	CH₂	G4	-
7047	CH ₂	Cl	Cl	Н	Н	CH ₃	CH ₂	G5	-
7048	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	CH ₂	G5	-
7049	CH ₂	Cl	Cl	Н	Н	С3Н,	CH ₂	G5	-

PCT/US98/13913

7050	CH ₂	Cl	Cl	Н	н	$C-C_3H_5$	CH ₂	G5	-
7051	CH ₂	Cl	Cl	Н	Н	CH3	bond	G6	-
7052	CH2	·Cl	Cl	Н	Н	C ₂ H ₅	bond	G6	-
7053	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	bond	G6	-
7054	CH ₂	Cl	Cl	Н	Н	c-C ₃ H ₅	bond	G6	-
7055	CH ₂	Cl	Cl	Н	Н	CH ₂ =CH	bond	G7	-
7056	CH ₂	Cl	Cl	Н	Н	CH ₃	bond	G8	-
7057	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	CH ₂	G1	-
7058	CH ₂	Cl	Cl	Н	H	C ₃ H ₇	CH ₂	G1	-
7059	CH ₂	Cl	Cl	Н	Н	C ₂ H ₅	CH ₂	G2	-
7060	CH ₂	Cl	Cl	Н	Н	C_3H_7	CH ₂	G2	-
7061	CH ₂	CH ₃	OCH ₃	н	Н	CH ₃	bond	G1	-
7062	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G1	-
7063	CH ₂	CH ₃	OCH ₃	Н	H	C_3H_7	bond	G1	-
7064	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7065	CH ₂	CH ₃	OCH ₃	Н	Н	CH ₃	bond	G2	-
7066	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G2	-
7067	CH ₂	CH ₃	OCH ₃	Н	Н	C ₃ H ₇	bond	G2	-
7068	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G2	-
7069	CH ₂	CH3	OCH ₃	Н	Н	CH ₃	bond	G3	-
7070	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G3	-
7071	CH ₂	CH ₃	OCH ₃	Н	Н	C_3H_7	bond	G3	-
7072	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G3	-
7073	CH ₂	CH ₃	OCH ₃	H	Н	CH3	CH ₂	G4	-
7074	CH ₂	CH3	OCH3	Н	Н	C ₂ H ₅	CH ₂	G4	-
7075	CH ₂	CH ₃	OCH ₃	Н	Н	C_3H_7	CH ₂	G4	-
7076	CH ₂	CH ₃	OCH ₃	Н	Н	C-C ₃ H ₅	CH ₂	G4	-
7077	CH ₂	CH ₃	OCH ₃	Н	Н	CH ₃	CH ₂	G5	-
7078	CH ₂	CH ₃	OCH3	Н	Н	C ₂ H ₅	CH ₂	G5	-
7079	CH2	CH3	OCH3	Н	Н	C ₃ H ₇	· CH ₂	G5	-
7080	CH ₂	CH3	OCH3	Н	Н	C-C ₃ H ₅	CH ₂	G5	-
7081	CH ₂	CH3	OCH3	H	Н	СНэ	bond	G6	-
7082	CH ₂	CH ₃	OCH ₃	Н	H	C ₂ H ₅	bond	G6	-
7083	CH ₂	CH ₃	OCH3	Н	H	C_3H_7	bond	G6	-
7084	CH ₂	CH3	OCH ₃	H	Н	C-C ₃ H ₅	bond	G6	-
7085	CH ₂	CH3	OCH3	Н	Н	CH ₂ =CH	bond	G7	-
7086	CH ₂	CH ₃	OCH ₃	Н	Н	CH ₃	bond	G8	oil
7087	CH ₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G1	-

N

7088	CH ₂	CH ₃	OCH ₃	Н	Н	C ₃ H ₇	CH ₂	G1	-
7089	CH₂	CH ₃	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G2	-
7090	CH₂	CH ₃	OCH ₃	Н	Н	C ₃ H ₇	CH ₂	G2	-
70 9 1	CH ₂	Cl	OCH ₃	н	Н	CH ₃	bond	G1	-
7092	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	bond	G1	-
7093	CH ₂	Cl	OCH ₃	Н	н	C_3H_7	bond	G1	-
7094	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7095	CH ₂	Cl	OCH ₃	Н	Н	CH3	bond	G2	-
7096	CH ₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	bond	G2	-
7097	CH ₂	Cl	OCH ₃	н	Н	C_3H_7	bond	G2	-
7098	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G2	-
7099	CH ₂	Cl	OCH3	Н	Н	CH ₃	bond	G3	-
7100	CH₂	Cl	OCH ₃	Н	Н	C ₂ H ₅	bond	G3	-
7101	CH ₂	Cl	OCH ₃	Н	н	C_3H_7	bond	G3	-
7102	CH ₂	Cl	OCH ₃	Н	н	c-C ₃ H ₅	bond	G3	-
7103	CH ₂	Cl	OCH ₃	Н.	Н	CH ₃	CH ₂	G4	-
7104	CH ₂	Cl	OCH ₃	н	Н	C₂H₅	CH ₂	G4	-
7105	CH2	Cl	OCH ₃	Н	Н	C ₃ H ₇	CH ₂	G4	-
7106	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅	CH ₂	G4	-
7107	CH2	Cl	OCH ₃	Н	Н	CH ₃	CH ₂	G5	-
7108	CH2	Cl	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G5	-
7109	CH ₂	Cl	OCH3	Н	Н	C_3H_7	CH ₂	G5	-
7110	CH ₂	Cl	OCH ₃	Н	Н	$C-C_3H_5$	CH ₂	G5	-
7111	CH ₂	Cl	OCH ₃	Н	Н	CH ₃	bond	G6	-
7112	CH ₂	Cl	OCH ₃	Н	H	C ₂ H ₅	bond	G6	-
7113	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	bond	G6	-
7114	CH ₂	Cl	OCH ₃	Н	н	$C-C_3H_5$	bond	G6	-
7115	CH ₂	Cl	OCH ₃	H	Н	CH2=CH	bond	G7	-
7116	CH ₂	Cl	OCH3	H	Н	CH3	bond	G8	oil
7117	CH ₂	Cl	OCH3	Н	Н	C ₂ H ₅	CH ₂	G1	-
7118	CH2	Cl	OCH ₃	Н	Н	C_3H_7	CH ₂	. G1	-
7119	CH ₂	C1	OCH ₃	Н	Н	C ₂ H ₅	CH ₂	G2	-
7120	CH ₂	Cl	OCH ₃	Н	Н	C_3H_7	CH ₂	G2	-
7121	CH ₂	Cl	CF ₃	Н	Н	CH ₃	bond	G1	-
7122	CH2	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G1	-
7123	CH ₂	Cl	CF ₃	н	Н	C_3H_7	bond	G1	-
7124	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7125	CH ₂	Cl	CF ₃	Н	Н	CH ₃	bond	G2	-

 $\langle \cdot \rangle$

WO 99/01454	PCT/US98/13913

7126	CH ₂	.C1	CF ₃	Н	н	C ₂ H ₅	bond	G2	-
7127	CH ₂	Cl	CF ₃	н	H	C ₃ H ₇	bond	G2	-
7128	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G2	-
7129	CH ₂	Ċl	CF ₃	H	Н	CH ₃	bond	G3	-
7130	CH ₂	Cl	CF ₃	н	н	C ₂ H ₅	bond	G3	-
7131	CH ₂	C1	CF ₃	Н	н	C_3H_7	bond	G3	-
7132	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G3	-
7133	CH3	Cl	CF ₃	н	Н	CH3	CH ₃	Ģ4	-
7134	CH ₂	Cl	CF ₃	H	Ĥ	C ₂ H ₅	CH ₂	G4	-,
7135	CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	CH ₂	G4	-
7136	CH ₂	Cl ;	CF ₃	Н	Н	C-C ₃ H ₅	CH ₂	G4	-
7137	CH ₂	Cl	CF ₃	Н	Н	CH ₃	CH ₂	G5	-
7138	CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	CH ₂	G5	-
7139	CH ₂	C1	CF3	Н	Н	C_3H_7	CH ₂	G5	-
7140	CH2	Cl	CF ₃	Н	н	C-C ₃ H ₅	CH ₂	G5 .	-
7141	CH ₂	Cl	CF ₃	Н	Н	CH3	bond	G6	-
7142	CH ₂	C1	CF,	Н	Н	C ₂ H ₅	bond	G6	-
7143	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	bond	G6	-
7144	CH ₂	C1	CF ₃	Н	Н	C-C ₃ H ₅	bond	G6	-
7145	CH ₂	Cl	CF ₃	H	н	CH ₂ =CH	bond	G7	-
7146	CH ₂	Cl	CF ₃	H	H	CH ₃	bond	G8	oil
7147	CH ₂	Cl	CF ₃	Н	н	C ₂ H ₅	CH ₂	G1	
7148	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	CH ₂	G1	-
7149	CH ₂	C1	CF ₃	Н	Н	C_2H_5	CH ₂	G2	-
7150	CH₂	Cl	CF ₃	Н	Н	C ₃ H ₇	CH ₂	G2	
7151	CH₂	CF ₃	Cl	H	Н	CH ₃	bond	G1	· -
7152	CH ₂	CF ₃	Cl	Н	н	C ₂ H ₅	bond	G1	-
7153	CH ₂	CF3	Cl	Н	Н	C ₃ H ₇	bond	G1	-
7154	CH ₂	CF3	Cl	Н	·H	C-C ₃ H ₅	bond	G1	-
7155	CH3	CF,	Cl	Н	Н	CH ₃	bond	G2	: -
7156	CH ₂	CF ₃	Cl	Н	Н	C ₂ H ₅	bond	G2	· -
7157	CH ₂	CF ₃	Cl	Н	Н	C ₃ H ₇	bond	G2	-
7158	CH ₂	CF ₃	C1	Н	Н	$C-C_3H_5$	bond	G2	-
7159	CH ₂	CF ₃	Cl	Н	Н	CH3	bond	G3	-
7160	CH2	CF3	Cl	H	H	C ₂ H ₅	bond	G3	-
7161	CH ₂	CF ₃	Cl	Н	Н	C_3H_7	bond	G3	-
7162	CH ₂	CF ₃	Cl	Н	Н	C-C ₃ H ₅	bond	G3	-
7163	CH ₂	CF ₃	C1	Н	Н	CH;	CH ₂	G4	-

7164	CH ₂	CF ₃	Cl	Н	Н	C ₂ H ₅	CH ₂	G4	-
7165	CH ₂	CF ₃	Cl	н	Н	C ₃ H ₇	CH ₂	G4	-
7166	CH ₂	CF3	Cl	Н	н	C-C ₃ H ₅	CH ₂	G4	- ·
7167	CH ₂	CF3.	Cl	Н	н	CH3	CH ₂	G5	-
7168	CH ₂	CF ₃	Cl	Н	H	C ₂ H ₅	CH ₂	G5	-
7169	CH ₂	CF3	Cl	H	Н	C ₃ H ₇	CH2	G5	-
7170	CH ₂	CF ₃	Cl	н	H	C-C ₃ H ₅	CH ₂	G5	-
7171	CH2	CF ₃	Cl	н	н	CH ₃	bond	G6	-
7172	CH ₂	CF ₃	Cl	н	Н	C ₂ H ₅	bond	G6	-
7173	CH ₂	CF,	Cl	Н	Н	C_3H_7	bond	G6	-
7174	CH ₂	CF ₃	Cl	Н	Н	C-C ₃ H ₅	bond	G6	-
7175	CH ₂	CF3	Cl	н	Н	CH ₂ =CH	bond	G7	-
7176	CH ₂	CF ₃	Cl	Н	Н	CH ₃	bond	G8	-
7177	CH ₂	CF ₃	Cl	H	Н	C ₂ H ₅	CH ₂	G1	-
7178	CH ₂	CF ₃	Cl	Н	Н	C_3H_7	CH ₂	G1	-
7179	CH ₂	CF3	Cl	Н	Н	C ₂ H ₅	CH ₂	G2	-
7180	CH ₂	CF3	Cl	Н	Н	C_3H_7	CH ₂	G2	_
7181	CH ₂	CH ₃	OCH3	CH3	Н	CH ₃	bond	G1	-
7182	CH ₂	CH ₃	OCH ₃	CH ₃	H	C_2H_5	bond	G1	-
7183	CH ₂	CH3	OCH ₃	CH3	Н	C_3H_7	bond	G1	-
7184	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C-C ₃ H ₅	bond	G1	-
7185	CH ₂	CH ₃	OCH3	CH ₃	Н	CH ₃	bond	G2	-
7186	CH2	CH ₃	OCH3	CH3	Н	C ₂ H ₅	bond	G2	-
7187	CH ₂	CH ₃	OCH ₃	CH3	Н	C_3H_7	bond	G2	-
7188	CH ₂	CH ₃	OCH ₃	CH3	Н	C-C ₃ H ₅	bond	G2	-
7189	CH ₂	CH ₃	OCH3	CH ₃	Н	CH ₃	bond	G3	-
7190	CH ₂	CH ₃	OCH ₃	CH3	Н	C ₂ H ₅	bond	G3	-
7191	CH ₂	CH3	OCH3	CH3	Н	C ₃ H ₇	bond	G3	-
7192	CH ₂	CH ₃	OCH ₃	CH3	Н	C-C ₃ H ₅	bond	G3	~
7193	CH ₂	CH3	OCH ₃	CH ₃	Н	CH3	CH ₂	G4	-
7194	CH ₂	CH3	OCH3	CH3	H	C ₂ H ₅	CH ₂	G4	-
7195	CH ₂	CH3	OCH3	CH ₃	Н	C_3H_7	CH ₂	G4	-
7196	CH ₂	CH3	OCH3	CH3	Н	C-C ₃ H ₅	CH₂	G4	-
7197	CH ₂	CH3	OCH3	CH ₃	Н	CH ₃	CH₂	G5	-
7198	CH ₂	CH3	OCH ₃	CH ₃	Н	C ₂ H ₅	CH ₂	G5	-
7199	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C_3H_7	CH ₂	G5	-
7200	CH ₂	CH3	OCH ₃	CH ₃	Н	C-C₃H₅	CH ₂	G5	-
7201	CH ₂	CH3	OCH ₃	CH ₃	Н	CH ₃	bond	G6	-

Ó

CH ₂	СН,	OCH ₃	СН ₃	Н	C ₂ H ₅	bond	G6	-
CH ₂	CH3	OCH ₃	CH ₃	Н	C ₃ H ₇	bond	G6	-
CH2	CH ₃	OCH ₃	CH ₃	Н	c-C ₃ H ₅	bond	G6	-
CH ₂	CH3	OCH ₃	CH ₃	Н	CH ₂ =CH	bond	G7	-
CH ₂	CH3	OCH3	CH ₃	Н	CH ₃	bond	G8	-
CH ₂	CH3	OCH ₃	CH ₃	Н	C ₂ H ₅	CH ₂	G1	-
CH ₂	CH ₃	OCH3	CH ₃	Н	C ₃ H ₇	CH ₂	G1	-
CH ₂	CH3	OCH3	CH3	н	C ₂ H ₅	CH ₂	G2	-
CH ₂	CH ₃	OCH ₃	CH3	Н	C_3H_7	CH ₂	G2	-
0	C1	CF3	Н	H	C ₂ H ₅	CH ₂	G1	-
0	Cl	CF ₃	H	Н	C_3H_7	CH ₂	G1	-
. 0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G2	-
0	Cl	CF ₃	Н	Н	C ₃ H ₇	bond	G2	-
0	C1	CF ₃	Н	Н	C ₂ H ₅	CH ₂	G4	-
CH ₂	Cl	CF ₃	Н	Н	C_2H_5	CH ₂	G1	-
CH ₂	Cl	CF ₃	Н	Н	C ₃ H ₇	CH ₂	G1	-
CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G2	-
CH ₂	Cl	CF3	Н	Н	C ₃ H ₇	bond	G2	-
CH ₂	Cl	CF3	Н	Н	C ₂ H ₅	CH ₂	G4	-
0	CF3	Cl	H	н	C ₂ H ₅	CH ₂	G1	-
0	CF3	Cl	Н	Н	C ₃ H ₇	CH ₂	G1	-
0	CF3	Cl	Н	Н	C ₂ H ₅	bond	G2	-
0	CF ₃	Cl	н	н	C ₃ H ₇	bond	G2	-
0	CF3	Cl	Н	Н	C ₂ H ₅	CH ₂	G4	-
CH ₂	CF ₃	Cl	Н	Н	C ₂ H ₅	CH ₂	G1	-
CH ₂	CF ₃	Cl	Н	Н	C_3H_7	CH ₂	G1	_
CH ₂	CF ₃	C1	H	Н	C ₂ H ₅	bond	G2	-
CH ₂	CF3	Cl	Н	Н	C_3H_7	bond	G2	-
_	_		Н			-		-
_	_	_				-		oil
_			Н					-
			Н					-
CH ₂		-	Н					oil
		-		Н				-
CH ₂		-						-
CH ₂		-			•			-
CH ₂	•	_						-
CH ₂	Cl	Cl	Н	CH ₃	C-C ₃ H ₅	bond	G9	-
	CH ₂ O O O CH ₂	CH2 CH3 O C1 O C1 O C1 O C1 CH2 C1	CH2 CH3 OCH3 O C1 CF3 O C1 CF3 O C1 CF3 CH2 C1 CF3 CH3 C1 C1 CH4 CF3 C1 CH2 CF3 C1 CH2 CF3 C1 CH2 CF3 C1 CH2 CF3 C1	CH2 CH3 OCH3 CH3 O C1 CF3 H O C1 CF3 H O C1 CF3 H CH2 CF3 C1 H	CH2 CH3 OCH3 CH3 H O C1 CF3 H H O C1 CF3 H H O C1 CF3 H H CH2 C1 H H CH2 C1 H H CH2 CF3 C1 H H CH2 C1 CF3 H CH2 CH2 CH3 CH3 CH3 CH3 H CH2 CH2 CH3 CH3 CH3 CH3 CH3 H CH2 CH2 CH3 CH3 CH3 CH3 CH3 H CH2 CH3	CH2 CH3 OCH3 CH3 H C3H7 CH2 CH3 OCH3 CH3 H C-C3H5 CH2 CH3 OCH3 CH3 H CH2=CH CH2 CH3 OCH3 CH3 H CH3 CH2 CH3 OCH3 CH3 H C2H5 CH2 CH3 OCH3 CH3 H C3H7 O C1 CF3 H H C3H7 O C1 CF3 H H C2H3 O C1 CF3 H H C2H3 CH2 C1 CF3 H H C2H3 CH2 C1 CF3 H H C3H7 CH2	CH2 CH3 OCH3 CH3 H C_3H_1 bond CH2 CH3 OCH3 CH3 H C-C_3H_5 bond CH2 CH3 OCH3 CH3 H CH2=CH bond CH2 CH3 OCH3 CH3 H CH3 CH2 CH2 CH3 OCH3 CH3 H C_3H3 CH2 CH3 CH3 OCH3 CH3 H C_3H3 CH2 CH2 CH3 OCH3 CH3 H C_3H3 CH2 CH2 CH3 OCH3 CH3 H C_3H3 CH2 CH2 CH3 OCH3 CH3 H C3H3 CH2 CH3 CH3 H H C3H3 CH2 O C1 CF3 H H C3H3 CH2 O C1 CF3 H H C2H3 DODd CH2 C1 CF3	CH2 CH3 CCH3 CH3 H C3H3 Bond G6 CH2 CH3 CCH3 CH3 H C-C3H3 bond G6 CH2 CH3 OCH3 CH3 H CH2=CH3 bond G8 CH2 CH3 OCH3 CH3 H C4H3 CH2 G1 CH2 CH3 OCH3 CH3 H C3H3 CH2 G1 CH2 CH3 OCH3 CH3 H C3H5 CH2 G2 CH2 CH3 CH4 H C3H5 CH2 G1

 $S_{\frac{1}{2}}$

7240	CH ₂	CF,	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G9	-
7241	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G10	oil
7242	0	Cl	C1	Н	Н	C-C ₃ H ₅	bond	G10	-
7243	CH ₂	Cl	CF3	Н	Н	c-C₃H₅	bond	G10	oil
7244	0	Cl	CF ₃	Н	Н	C-C ₃ H ₅		G10	-
7245	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅		G10	-
7246	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G10	-
7247	CH ₂	CH ₃	OCH ₃	Cl	Н	C-C ₃ H ₅	bond	G10	-
7248	CH ₂	Cl	Cl	H	CH ₃	C-C ₃ H ₅	bond	G10	-
7249	CH ₂	CF,	OCH ₃	Н	Н	C-C ₃ H ₅	bond	G10	oil
7250	CH ₂	C1	Cl	Н	Н	C ₂ H ₅	bond	G10	oil
7251	0	Cl	Cl	Н	Н	C₂H₅	bond	G10	-
7252	CH ₂	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G10	98-99
7253	0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G10	-
7254	CH ₂	Cl	OCH ₃	Н	• Н	C ₂ H ₅	bond	G10	-
7255	CH ₂	Cl	OCF ₃	Н	Н	C ₂ H ₅	bond	G10	~
7256	CH ₂	CH3	OCH ₃	Cl	Н	C ₂ H ₅	bond	G10	-
7257	CH ₂	C1	Cl	Н	CH ₃	C ₂ H ₅	bond	G10	- ·
7258	CH ₂	CF3	OCH ₃	Н	H	C ₂ H ₅	bond	G10	-
7259	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	bond	G10	oil
7260	0	Cl	Cl	Н	Н	C ₃ H ₇	bond	G10	-
7261	CH ₂	Cl	CF ₃	Н	Н	C₃H₁	bond	G10	oil
7262	0	Cl	CF_3	Н	Н	C_3H_7	bond	G10	-
7263	CH ₂	Cl	OCH ₃	Н	H	C ₃ H ₇	bond	G10	-
7264	CH ₂	Cl	OCF ₃	Н	Н	C_3H_7	bond	G10	-
7265	CH ₂	CH ₃	OCH ₃	Cl	Н	C_3H_7	bond	G10	-
7266	CH ₂	Cl	Cl	Н	CH,	C_3H_7	bond	G10	oil
7267	CH ₂	CF ₃	OCH ₃	Н	Н	C_3H_7	bond	G10	-
7268	CH ₂	C1	Cl	Н	Н	C5H11	bond	G10	oil
7269	0	Cl	Cl	Н	н .	C5H11	bond	G10	-
7270	CH ₂	Cl	CF ₃	Н	H	C5H11	bond	G10	oi1
7271	0	C1	CF ₃	Н	Н	C5H11	bond	G10	-
7272	CH ₂	Cl	OCH ₃	H	Н	C5H11	bond	G10	-
7273	CH ₂	Cl	OCF ₃	Н	Н	C5H11	bond	G10	
7274	CH ₂	СНэ	OCH ₃	Cl	Н	C5H11	bond	G10	-
7275	CH ₂	Cl	C1	Н	СН3	C5H11	bond	G10	-
7276	CH ₂	CF3	OCH3	Н	Н	C5H11	bond	G10	-
7277	CH ₂	Cl	Cl	Н	Н	СН3	CH ₂	G10	-

PCT/US98/13913 WO 99/01454 7278 0 Cl Cl Н Н CH₃ CH₂ G10 -G10 7279 CH₂ C1CF₃ Н Н CH3 CH₂ oil 0 clН CH₃ CH₂ G10 7280 CF₃ Н Cl ĊH₂ G10 7281 CH₂ OCH₃ Н Н CH₃ 7282 CH, Cl OCF, Н Н CH₃ CH₂ G10 7283 OCH₃ Н CH₃ CH₂ G10 CH₂ CH₃ Cl 7284 Cl Cl CH₃ CH₂ G10 CH₂ Н CH₃ 7285 CH₃ CH₂ G10 CH₂ CF₃ OCH₃ Н Н Cl Cl C-C₃H₅ bond G11 oil 7286 CH2 Н Н 7287 0 Cl Cl Н Н C-C₃H₅ bond G11 _ 7288 Cl CF₃ Н Н $C-C_3H_5$ bond G11 oil CH₂ 7289 0 Cl CF₃ Н Н C-C₃H₅ bond G11 7290 CH₂ Cl OCH₃ Н Н C-C3H5 bond G11 G11 7291 CH₂ Cl OCF₃ Н Н C-C3H5 bond G11 7292 CH₂ CH₃ OCH₃ Cl Н C-C₃H₅ bond 7293 Cl Cl C-C₃H₅ bond G11 CH, Н CH₃ CF3 bond G11 7294 CH₂ OCH₃ Н Н C-C₃H₅ G11 Cl C_2H_5 bond oil 7295 CH₂ Cl Н Н _ C1 Cl C₂H₅ bond G11 7296 0 Н Н G11 C₂H₅ oil 7297 Cl CF₃ Н bond CH₂ Н G11 7298 0 C1 CF: Н Н C₂H₅ bond _ 7299 Cl OCH, Н Н C₂H₅ bond G11 CH2 Cl Н C_2H_5 bond G11 7300 CH₂ OCF₃ Н G11 OCH₃ Cl Н C₂H₅ bond 7301 CH₂ CH₃ Cl Cl Н C₂H₅ bond G11 7302 CH₂ CH₃ G11 Н 7303 CH, CF, OCH₃ Н C₂H₅ bond G11 7304 CH2 CÌ Cl Н Н C_3H_7 bond 88-89 Cl bond G11 -7305 0 Cl Н Н C₃H₇ G11 oil 7306 Cl CF₃ Н C_3H_7 bond CH₂ Н G11 _ 7307 0 Cl CF₃ Н Н C₃H₇ bond G11 7308 CH₂ C1 OCH₃ Н Н C_3H_7 bond G11 7309 Cl CH₂ OCF₃ Н Н C₃H₇ bond 7310 CH₂ CH₃ OCH₃ Cl Н C₃H₇ bond G11 _

CH₃

Н

Н

Н

Н

 C_3H_7

 C_3H_7

C₆H₅

C₆H₅

C₆H₅

bond

bond

bond

bond

bond

G11 G11

G11

G11

156-157

G11 150-151

Šį

7311

7312

7313

7314

7315

CH₂

CH₂

CH₂

0

CH₂

C1

CF₃

Cl

Cl

C1

Cl

OCH₃

Cl

Cl

CF3

Н

Н

Н

Н

Н

WO 99/01454	PCT/US98/13913

7316	0	Cl	CF ₃	Н	н	C ₆ H ₅	bond	G11	-
7317	CH ₂	Cl	OCH ₃	Н	Н	C ₆ H ₅	bond	G11	-
7318	CH ₂	Cl	OCF ₃	Н	Н	C6H2	bond	G11	-
7319	CH ₂	CH3	OCH ₃	Cl	н	C ₆ H ₅	bond	G11	-
7320	CH ₂	Cl	Cl	н	CH3	C ₆ H ₅	bond	G11	
7321	CH ₂	CF3	OCH ₃	Н	н	C ₆ H ₅	bond	G11	-
7322	CH ₂	Cl	Cl	н	Н	C ₂ H ₅	bond	G12	-
7323	0	Cl	Cl	н	Н	C ₂ H ₅	bond	G12	-
7324	CH2	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G12	oil
7325	0	Cl	CF ₃	H	Н	C_2H_5	bond	G12	-
7326	CH ₂	Cl	OCH ₃	Н	. Н	C ₂ H ₅	bond	G12	-
7327	CH ₂	Cl	OCF ₃	H	Н	C ₂ H ₅	bond	G12	-
7328	CH ₂	CH3	OCH ₃	Cl	Н	C ₂ H ₅	bond	G12	-
7329	CH ₂	Cl	Cl	Н	CH ₃	C ₂ H ₅	bond	G12	-
7330	CH ₂	CF ₃	OCH ₃	Н	Н	C ₂ H ₅	bond	G12	-
7331	CH ₂	Cl	Cl	Н	Н	C ₃ H ₇	bond	G12	-
7332	0	Cl	Cl	H	H	C ₃ H ₇	bond	G12	-
7333	CH ₂	Cl	CF ₃	Н	Н	C_3H_7	bond	G12	-
7334	0	Cl	CF ₃	Н	н	C ₃ H ₇	bond	G12	-
7335	CH ₂	Cl	OCH ₃	Н	Н	C ₃ H ₇	bond	G12	-
7336	CH ₂	Cl	OCF ₃	H	Н	C ₃ H ₇	bond	G12	-
7337	CH ₂	CH3	OCH ₃	Cl	Н	C ₃ H ₇	bond	G12	_
7338	CH ₂	Cl	C1	Н	CH ₃	C ₃ H ₇	bond	G12	-
7339	CH ₂	CF ₃	OCH3	Н	Н	C₃H ₇	bond	G12	-
7340	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G12	. -
7341	0	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G12	-
7342	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond		128-130
7343	0	Cl	CF ₃	Н	Н	C-C ₃ H ₅			-
7344	CH ₂	Cl	OCH ₃	Н	Н	C-C ₃ H ₅		G12	-
7345	CH ₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅			-
7346	CH ₂	CH ₃	OCH3	Cl	Н	C-C ₃ H ₅			-
7347	CH ₂	Cl	Cl	H	CH ₃			G12	-
7348	CH ₂	CF ₃	OCH ₃	Н	Н	C-C ₃ H ₅		G12	-
7349	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅		G13	oil
7350	CH ₃	C1	C1		H	C-C ₃ H ₅		G13	-
7351	CH₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅		G7	oil
7352	CH ₂	Cl	Cl	H	Н	C-C ₃ H ₅		G7	oil
7353	CH ₂	Cl	CF ₃	Н	Н	CH ₃	bond	G7	-

WO 99/01454	PCT/US98/13913
WU 99/01454	1 C 1 (03)0/13/13

7354	CH ₂	cı	Cl	Н	Н	CH ₃	bond	G7	-
7355	CH ₂	CH ₃	OCH3	CH ₃	Н	CH ₃	bond	G7	oil
7356	CH ₂	CH3	OCH ₃	сн,	Н	C_3H_7	bond	G7	oil
7357	CH ₂	CF ₃	OCH ₃	Н	Н	C_3H_7	bond	G7	oil
7358	CH ₂	CH ₃	OCH ₃	CH ₃	Н	C ₄ H ₉	bond	G7 .	oil
7359	CH ₂	Cl	Cl	Н	СĤ ₃	C-C ₃ H ₅	bond	G7	156-158
7360	CH ₂	CF ₃	OCH ₃	Ħ	Н	CH ₃	bond	G8	oil
7361	CH ₂	CH ₃	OCH ₃	OCH ₃	н	C ₂ H ₅	bond	G10	oil
7362	0	Cl	Cl	Н	Н	CH ₃	bond	G1	-
7363	0	Cl	CF3	Н	Н	CH ₃	bond	G1	-
7364	CH ₂	Cl	OCF ₃	Н	Н	CH ₃	bond	G1	-
7365	CH ₂	СН₃	OCH ₃	Cl	н	CH ₃	bond	G1	-
7366	CH ₂	Ç1	Cl	Н	CH ₃	CH3	bond	G1	-
7367	CH ₂	CF ₃	OCH ₃	Н	Н	CH ₃	bond	G1	-
7368	CH ₂	CH ₃	OCH ₃	F	Н	CH ₃	bond	G1	-
7369	0	Cl	C1	Н	Н	C ₂ H ₅	bond	G1	-
7370	0	Cl	CF ₃	Н	Н	C ₂ H ₅	bond	G1	-
7371	CH ₂	Cl	OCF ₃	н	н	C ₂ H ₅	bond	G1	-
7372	CH ₂	CH ₃	OCH ₃	Cl	H	C ₂ H ₅	bond	G1	-
7373	CH ₂	Cl	Cl	Н	CH ₃	C ₂ H ₅	bond	G1	
7374	CH ₂	CF ₃	OCH ₃	н	Н	C ₂ H ₅	bond	G1	-
7375	CH ₂	CH ₃	OCH ₃	F	н	C ₂ H ₅	bond	G1	-
7376	0	Cl	Cl	. н	Н	C_3H_7	bond	G1	-
7377	0	C1	CF ₃	·H	Н	C_3H_7	bond	G1	-
7378	CH ₂	Cl	OCF ₃	Н	н	C ₃ H ₇	bond	G1	-
7379	CH ₂	CH ₃	OCH ₃	C1	Н	C_3H_7	bond	G1	-
7380	CH ₂	Cl	cı	н	CH ₃	C_3H_7	bond	G1	-
7381	CH ₂	CF ₃	OCH ₃	• н	Н	C_3H_7	bond	G1	-
7382	CH3	CH ₃	OCH3	F	Н	C ₃ H ₇	bond	G1	-
7383	0	C1	Cl	Н	H	C-C ₃ H ₅	bond	G1	-
7384	0	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7385	CH₂	Cl	OCF ₃	Н	Н	C-C ₃ H ₅	bond	G1	-
7386	CH2	CH ₃	OCH3	Cl	Н	C-C3H5	bond	· G1	-
7387	CH ₂	Cl	C1	Н	CH ₃	C-C3H5	bond	G1	-
7388	CH ₂	CF3	OCH ₃	Н	Н	C-C3H5	bond	G1	- '
7389	CH ₂	CH ₃	OCH ₃	F	н	C-C ₃ H ₅	bond	G1	-
7390	CH ₂	Cl	CF,	Н	Н	C-C ₃ H ₅	bond	G14	oil
7391	CH ₂	Cl	Cl	Н.	Н	C-C ₃ H ₅	bond	G14	-

7391	CH ₂	Cl	CF ₃	Н	Н	$C-C_3H_5$	bond	G15	oil
7392	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G15	-
7393	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G16	139-140
7394	CH2	Cl	C1	Н	H	C-C ₃ H ₅	bond	G16	-
7395	CH ₂	C1	CF ₃	Н	Н	C-C ₃ H ₅	bond	G17	-
7396	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G17	oil
7397	CH ₂	C1	CF ₃	Н	н	C-C ₃ H ₅	bond	G18	-
7398	CH ₂	Cl	Cl	Н	н	C-C ₃ H ₅	bond	G18	oil
7399	CH ₂	Cl	C1	Н	CH3	CH3	bond	G8	oil
7400	CH ₂	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G19	
7401	CH2	Cl	Cl	н	Н	C-C ₃ H ₅	bond	G19	oil
7402	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G20	oil
7403	CH2	Cl	CF ₃	Н	Н	C-C ₃ H ₅	bond	G20	-
7404	CH ₂	Cl	Cl	Н	Н	C_4H_9	bond	G1	oil
7405	CH ₂	Cl	Cl	Н	н	C ₆ H ₅	C=0	C ₆ H	oil
								5	
7406	CH ₂	Cl	Cl	Н	H	C ₆ H ₅	C=O	G21	oil
7407	CH ₂	Cl	C1	Н	Н	C ₆ H ₅	C=0	G22	oil
7408	CH ₂	C1	Cl	Н	Н	4-F- C ₆ H ₄ CH ₂	C=0	CH ₃	oil
7409	CH ₂	Cl	Cl	Н	Н	C-C ₃ H ₅	bond	G23	oil

Key:

(a) G groups:

$$G1 = \begin{cases} \bigcirc O \\ G2 = \begin{cases} \bigcirc O \\ G3 = \begin{cases} \bigcirc O \\ O \end{cases} \end{cases}$$

$$G4 = \begin{cases} \bigcirc O \\ \bigcirc O \\ O \end{cases}$$

$$G5 = \begin{cases} \bigcirc O \\ \bigcirc O \\ O \end{cases}$$

$$G6 = \begin{cases} \bigcirc O \\ \bigcirc O \\ O \end{cases}$$

$$G7 = CH = CH_2$$

$$G8 = E - CH = CH - CH_3$$

****}

G11=
$$C = CCH_3$$

G12=

 H_3C

G14=

 S

G16=

 $CO_2C_2H_5$

G19=

 H_3C

G20=

 $CO_2C_2H_5$

G20=

 $CO_2C_2H_5$

G21=

 $CO_2C_2H_5$
 $CO_2C_2H_5$
 $CO_2C_2H_5$

- (b) Where a compound is indicated as an foil, spectral data is provided as follows:
- 5 Example 7056 spectral data: MS (ESI): m/e 363 (M+2), 361 (M⁷, 100%). Example 7086 spectral data: TLC R, 0.25 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.72 (1H, d, J = 9.2 Hz), 6.90-6.84 (2H, m), 6.08 (1H, ddq, J = 15.4 Hz, 6.6H, 1.4 Hz), 5.67 (1H, dqd, J = 15.4 Hz, 6.5H, 1.5 Hz), 5.24 (1H, br pentet, J = 7.0 Hz), 3.85 (3H, s), 2.96 (2H, dq, J = 7.5, 1.1 Hz), 2.47 (3H, s), 1.81 (3H, d, J = 7.0 Hz),

10 2.96 (2H, dq, J = 7.5, 1.1 Hz), 2.47 (3H, s), 1.81 (3H, d, J = 7.0 Hz) 1.73 (3H, dt, J = 6.2, 1.3 Hz), 1.41 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 339 (3), 338 (23), 337 (100).

NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.09 (1H, d, J = 2.6 Hz), 6.96 (1H, dd, J = 8.4, 2.6 Hz), 6.09 (1H, ddq, J = 15.4 Hz, 6.6H, 1.8 Hz), 5.67 (1H, dqd, J = 15.4 Hz, 6.5H, 1.4 Hz), 5.23 (1H, br pentet, J = 6.8 Hz), 3.87 (3H, s), 2.98 (2H, q, J = 7.5 Hz), 1.82 (3H, d, J = 7.0 Hz), 1.73 (3H, dt, J = 6.6, 1.3 Hz), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 360 (7), 359 (33), 358 (23), 357 (100).

Example 7116 spectral data: TLC R, 0.15 (30:70 ethyl acetate-hexane). 1H

Example 7145 spectral data: m.p. 78-79 °C. TLC R, 0.52 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.86-7.81 (2H, m), 7.68 (1H, d, J = 8.0 Hz), 6.38 (2H, ddd, J = 17.2 Hz, 10.6H, 5.8 Hz), 5.90-5.83 (1H, m), 5.40 (2H, dd, J = 10.6, 1.3 Hz), 5.29 (2H, dt, J = 17.2, 0.9 Hz), 2.97 (2H, q, J = 7.6 Hz), 1.41 (3H, t, J = 7.6 Hz). MS (NH₃-CI): m/e 396 (8), 395 (36), 394 (25), 393 (100). Analysis calculated for $C_{19}H_{16}ClF_3N_4$: C, 58.10; H, 4.12; N, 14.26; found: C, 58.14; H, 4.28; N, 13.74.

Example 7146 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84-7.79 (2H, m), 7.67 (1H, dd, J = 8.5, 1.1 Hz), 6.10 (1H, ddq, J = 15.4 Hz, 6.8H, 1.8 Hz), 5.70 (1H, dqd, J = 15.4 Hz, 6.5H, 1.1 Hz), 5.24 (1H, pentet, J = 7.0 Hz), 2.99 (2H, q, J = 7.5 Hz), 1.83 (3H, d, J = 7.0 Hz), 1.74 (3H, dt, J = 6.6, 1.3 Hz), 1.40 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 398 (7), 397 (36).

15 396 (25), 395 (100).

Example 7231 spectral data: m.p. 78-88 °C. TLC R, 0.55 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): Major isomer: δ 8.90 (1H, s), 6.95 (2H, s), 4.68-3.05 (6H, m), 3.02-2.92 (2H, m), 2.70-2.55 (2H, m), 2.32 (3H, s), 2.20-2.00 (2H, m), 2.05 (3H, s), 1.96 (3H, s), 1.70-1.45

- 20 (4H, m), 1.39 (3H, t, J = 7.7 Hz), 0.93 (3H, t, J = 7.3 Hz); Minor isomer: δ 8.89 (1H, s), 6.95 (2H, s), 4.68-3.05 (6H, m), 3.02-2.92 (2H, m), 2.70-2.55 (2H, m), 2.32 (3H, s), 2.20-2.00 (2H, m), 2.06 (3H, s), 2.01 (3H, s), 1.70-1.45 (4H, m), 1.38 (3H, t, J = 7.7 Hz), 0.90 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{25}H_{35}N_4O_2$: 423.2760, found
- 25 423.2748; 425 (5), 424 (29), 423 (100). Analysis calc'd for $C_{25}H_{34}N_4O_2 \cdot H_2O$: C, 68.15; H, 8.24; N, 12.72; found: C, 67.80; H, 7.89; N, 12.24. Example 7234 spectral data: TLC R, 0.46 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.68 (1H, d, J = 8.0 Hz), 6.50 (1H, d, J = 3.0 Hz), 5.99 (1H, d, J =
- 30 3.0 Hz), 5.10 (1H, d, J = 10.6 Hz), 2.99-2.79 (2H, m), 2.20 (3H, s), 2.10-2.00 (1H, m), 1.30 (3H, t, J = 7.5 Hz), 1.00-0.90 (1H, m), 0.71-0.59 (2H, m), 0.56-0.46 (1H, m). MS (NH₃-CI): m/e 463 (35), 461 (100). Example 7241 spectral data: MS (NH₃-CI): m/e 371 (M+H*, 100%).

Example 7243 spectral data: TLC R, 0.43 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.85 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 5.24 (1H, dd, J = 8.4, 2.5 Hz), 3.28 (1H, dq, J = 15.5, 7.5 Hz), 3.14 (1H, dq, J = 15.5, 7.5 Hz), 2.56 (1H, d, J = 2.5 Hz), 1.78-1.67 (1H, m), 1.48 (3H, t, J = 7.5 Hz), 0.92-0.81 (2H, m),

0.66-0.49 (2H, m). MS (NH₃-CI): m/e calculated for $C_{20}H_{17}ClF_3N_4$: 405.1094, found 405.1098; 408 (8), 407 (34), 406 (25), 405 (100).

Example 7249 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 8.93 (1H, s), 7.72 (1H, d, J = 8.5 Hz), 7.37 (1H,

- 5 d, J = 2.5 Hz), 7.18 (1H, dd, J = 8.5, 2.5 Hz), 5.23 (1H, dd, J = 8.1, 2.6 Hz), 3.92 (3H, s), 3.31-3.04 (2H, m), 2.54 (1H, d, J = 2.6 Hz), 1.76-1.64 (1H, m), 1.47 (3H, t, J = 7.5 Hz), 0.90-0.80 (2H, m), 0.64-0.52 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{21}H_{20}F_3N_4O$: 401.1603, found 401.1602; 403 (6), 402 (24), 401 (100).
- Example 7250 spectral data: TLC R, 0.17 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.5, 1.8 Hz), 5.53 (1H, dt, J = 8.0, 2.6 Hz), 3.20 (1H, dq, J = 15.8, 7.5 Hz), 3.05 (1H, dq, J = 15.8, 7.5 Hz), 2.55 (1H, d, J = 2.6 Hz), 2.42-2.29 (1H, m), 2.28-2.15 (1H, m),
- 15 1.46 (3H, t, J = 7.5 Hz), 1.04 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{10}H_{17}Cl_2N_4$: 359.0830, found 359.0835; 364 (2), 363 (12), 362 (14), 361 (67), 360 (24), 359 (100).

Example 7259 spectral data: TLC R, 0.22 (20:80 ethyl acetate-hexane). ^{1}H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H,

- 20 d, J = 1.8 Hz), 7.40 (1H, dd, J = 8.1, 1.8 Hz), 5.63 (1H, dt, J = 7.9, 2.5 Hz), 3.20 (1H, dq, J = 15.7, 7.7 Hz), 3.05 (1H, dq, J = 15.7, 7.7 Hz), 2.54 (1H, d, J = 2.5 Hz), 2.37-2.24 (1H, m), 2.19-2.06 (1H, m), 1.60-1.45 (1H, m), 1.46 (3H, t, J = 7.7 Hz), 1.39-1.25 (1H, m), 0.99 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$: 373.0987,
- 25 found 373.0984; 378 (3), 377 (12), 376 (15), 375 (66), 374 (26), 373 (100).

Example 7261 spectral data: TLC R, 0.52 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.84 (2H, m), 7.68 (1H, dd, J = 7.3, 0.7 Hz), 5.65 (1H, dt, J = 8.1, 2.6 Hz), 3.24-3.02 (2H, m), 2.55

- 30 (1H, d, J = 2.6 Hz), 2.33-2.25 (1H, m), 2.20-2.12 (1H, m), 1.46 (3H, t, J = 7.5 Hz), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}C1F_3N_4$: 407.1250, found 407.1243; 410 (8), 409 (36), 408 (25), 407 (100).
- Example 7266 spectral data: TLC R, 0.19 (20:80 ethyl acetate-hexane). 1 H 35 NMR (300 MHz, CDCl₃): δ 9.01 (1H, d, J = 1.5 Hz), 7.38 (1H, d, J = 1.8 Hz), 7.24 (1H, d, J = 1.8 Hz), 5.70-5.58 (1H, m), 3.24-3.00 (2H, m), 2.55 (1H, d, J = 2.5 Hz), 2.40-2.25 (1H, m), 2.20-2.05 (1H, m), 2.10 (3H, d, J = 1.8 Hz), 1.62-1.47 (1H, m), 1.43 (3H, t, J = 7.5 Hz), 1.42-

1.27 (1H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{21}Cl_2N_4$: 387.1143, found 387.1144; 392 (3), 391 (12), 390 (16), 389 (66), 388 (27), 387 (100).

- Example 7268 spectral data: TLC R, 0.29 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.67 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 2.2 Hz), 7.41 (1H, dd, J = 8.5, 2.2 Hz), 5.60 (1H, dt, J = 7.9, 2.6 Hz), 3.19 (1H, dq, J = 15.3, 7.3 Hz), 3.05 (1H, dq, J = 15.3, 7.3 Hz), 2.54 (1H, d, J = 2.6 Hz), 2.38-2.23 (1H, m), 2.20-2.05 (1H, m), 1.58-1.44 (1H, m), 1.46 (3H, t, J = 7.3 Hz), 1.40-1.23 (5H, m), 0.87
- 10 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{23}Cl_2N_4$: 401.1300, found 401.1300; 406 (3), 405 (13), 404 (17), 403 (69), 402 (28), 401 (100).

Example 7270 spectral data: TLC R, 0.60 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.03 (1H, s), 7.84 (2H, m), 7.68 (1H, dd, J =

- 9.1, 0.7 Hz), 5.62 (1H, dt, J = 8.1, 2.6 Hz), 3.24-3.02 (2H, m), 2.55 (1H, d, J = 2.6 Hz), 2.34-2.27 (1H, m), 2.19-2.13 (1H, m), 1.46 (3H, t, J = 7.3 Hz), 1.40-1.25 (6H, m), 0.88 (3H, t, J = 7.0 Hz). MS (NH₃-CI): m/e calc'd for $C_{22}H_{23}C1F_3N_4$: 435.1563, found 435.1566; 438 (9), 437 (36), 436 (27), 435 (100).
- 20 Example 7279 spectral data: TLC R, 0.31 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.84 (2H, m), 7.68 (1H, d, J = 7.7 Hz), 4.74-4.67 (1H, m), 3.45-3.36 (1H, m), 3.03 (2H, q, J = 7.7 Hz), 3.00-2.93 (1H, m), 1.93 (1H, t, J = 2.7 Hz), 1.86 (3H, d, J = 7.0 Hz), 1.43 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 396 (7), 395 (34), 394 (24),

25

393 (100).

Example 7286 spectral data: TLC R, 0.29 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.97 (1H, s), 7.68 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 5.19 (1H, dq, J = 8.4, 2.6 Hz), 3.26 (1H, dq, J = 15.7, 7.3 Hz), 3.14 (1H, dq, J = 15.7, 7.3

30 Hz), 1.88 (3H, d, J = 2.6 Hz), 1.70-1.60 (1H, m), 1.47 (3H, t, J = 7.3 Hz), 0.89-0.78 (2H, m), 0.60-0.43 (2H, m). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}Cl_2N_4$: 385.0986, found 385.0992; 390 (3), 389 (12), 388 (15), 387 (66), 386 (26), 385 (100).

Example 7288 spectral data: MS (NH₃-CI): m/e 419 (M+H⁺, 100%).

35 Example 7295 spectral data: TLC R, 0.19 (20:80 ethyl acetate-hexane). ¹H

NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.67 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 2.2 Hz), 7.40 (1H, dd, J = 8.4, 2.2 Hz), 5.49 (1H, tq, J = 7.7, 2.2 Hz), 3.19 (1H, dq, J = 15.3, 7.7 Hz), 3.05 (1H, dq, J = 15.3, 7.7

Hz), 2.26 (1H, dq, J = 21.3, 7.7 Hz), 2.13 (1H, dq, J = 21.3, 7.7 Hz), 1.87 (3H, d, J = 2.2 Hz), 1.45 (3H, t, J = 7.7 Hz), 1.01 (3H, t, J = 7.7 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$: 373.0987, found 373.0987; 378 (3), 377 (13), 376 (15), 375 (68), 374 (25), 373 (100).

- Example 7297 spectral data: TLC R, 0.48 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 9.01 (1H, s), 7.83 (2H, m), 7.67 (1H, dd, J = 7.4, 0.8 Hz), 5.51 (1H, dt, J = 8.1, 2.2 Hz), 3.25-3.03 (2H, m), 2.35-2.13 (2H, m), 1.88 (3H, d, J = 2.2 Hz), 1.45 (3H, t, J = 7.5 Hz), 1.01 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{19}ClF_{3}N_{4}$: 407.1250,
- found 407.1267; 410 (8), 409 (35), 408 (25), 407 (100). Example 7306 spectral data: MS (NH₃-CI): m/e 421 (M+H⁺, 100%). Example 7324 spectral data: TLC R_F 0.38 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.84 (1H, d, J = 8.4 Hz), 7.83 (1H, d, J = 1.8 Hz), 7.68 (1H, dd, J = 8.4, 1.8 Hz), 7.36 (1H, d, J = 3 Hz),
- 15 6.51 (1H, d, J = 5 Hz), 6.39 (1H, dd, J = 5, 3 Hz), 5.78 (1H, dd, J = 9, 7 Hz), 3.00-2.85 (2H, m), 2.75-2.52 (2H, m), 1.37 (3H, t, J = 7.5 Hz), 0.98 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e 439 (1), 438 (8), 437 (34), 436 (26), 435 (100).
- Example 7349 spectral data: TLC R, 0.20 (30:70 ethyl acetate-hexane). 1 H 20 NMR (300 MHz, CDCl₃): δ 9.00 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 5.01 (1H, d, J = 10.6 Hz), 2.93 (1H, dq, J = 15.9, 7.5 Hz), 2.75 (1H, dq, J = 15.9, 7.5 Hz), 2.58 (3H, s), 2.04-1.94 (1H, m), 1.93 (3H, s), 1.33 (3H, t, J = 7.5 Hz), 1.32-1.22 (1H, m), 1.00-0.87 (1H, m), 0.74-0.60 (3H, m). MS (NH₃-CI): m/e calculated for
- 25 $C_{23}H_{22}C1F_3N_5O$: 476.1465, found 476.1469; 478 (35), 476 (100). Example 7351 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). ¹H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.88-7.82 (2H, m), 7.68 (1H, d, J = 8.0 Hz), 6.35 (1H, ddd, J = 17.2 Hz, 10.6H, 5.1 Hz), 5.33 (1H, br d, J = 10.6 Hz), 5.26 (1H, br d, J = 17.2 Hz), 4.43-4.37 (1H, m), 3.02-2.90
- 30 (2H, m), 1.99-1.89 (1H, m), 1.41 (3H, t, J = 7.5 Hz), 0.94-0.84 (1H, m), 0.62-0.52 (2H, m), 0.40-0.30 (1H, m). MS (NH₃-CI): m/e 411 (1), 410 (7), 409 (34), 408 (25), 407 (100).

Example 7352 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.69 (1H, d, J = 8.4 Hz), 7.58 (1H,

35 d, J = 2.2 Hz), 7.41 (1H, dd, J = 8.8, 2.2 Hz), 6.33 (1H, ddd, J = 17.2, 10.6, 5.2 Hz), 5.35-5.20 (2H, m), 4.42-4.35 (1H, m), 3.03-2.88 (2H, m), 2.00-1.89 (1H, m), 1.40 (3H, t, J = 7.6 Hz), 0.92-0.82 (1H, m), 0.62-0.52 (2H, m), 0.40-0.30 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{19}H_{19}Cl_2N_4$:

373.1000, found 373.0995; 378 (3), 377 (12), 376 (15), 375 (66), 374 (26), 373 (100).

Example 7355 spectral data: MS (NH₃-CI): m/e 337 (M+H⁺, 100%). Example 7356 spectral data: MS (NH₃-CI): m/e 365 (M+H⁺, 100%).

- 5 Example 7357 spectral data: TLC R, 0.19 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.6 Hz), 7.19 (1H, dd, J = 8.4, 2.6 Hz), 6.42 (1H, ddd, J = 16.9, 10.3, 6.6 Hz), 5.27 (1H, d, J = 10.2 Hz), 5.14 (1H, d, J = 17.3 Hz), 5.08-4.99 (1H, m), 3.91 (3H, s), 2.99-2.90 (2H, m), 2.42-2.29 (1H, m),
- 10 2.27-2.15 (1H, m), 1.39 (3H, t, J = 7.5 Hz), 1.38-1.10 (2H, m), 0.95 (3H, t, J = 7.1 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{24}F_3N_4O$: 405.1915, found 405.1923; 407 (5), 406 (24), 405 (100). Analysis calc'd for $C_{21}H_{23}F_3N_4O$: C, 62.37; H, 5.73; N, 13.85; found: C, 62.42; H, 5.73; N, 13.48.
- Example 7358 spectral data: MS (NH₃-CI): m/e 379 (M+H⁺, 100%). Example 7360 spectral data: TLC R, 0.13 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.91 (1H, s), 7.68 (1H, d, J = 8.8 Hz), 7.35 (1H, d, J = 2.6 Hz), 7.16 (1H, dd, J = 8.8, 2.6 Hz), 6.15-6.05 (1H, m), 5.73-5.63 (1H, m), 5.28-5.18 (1H, m), 3.91 (3H, s), 2.96 (2H, q, J = 7.4 Hz),
- 20 1.82 (3H, d, J = 7.3 Hz), 1.74 (3H, dt, J = 6.6, 1.3 Hz), 1.39 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{20}H_{22}F_3N_4O$: 391.1733, found 391.1736; 393 (3), 392 (23), 391 (100).

Example 7361 spectral data: TLC R, 0.43 (50:50 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.42 (1H, s), 6.84 (1H, s), 5.55

- 25 (1H, dt, J = 5.5, 2.2 Hz), 3.94 (3H, s), 3.92 (3H, s), 3.49-2.98 (2H, m), 2.54 (1H, d, J = 2.6 Hz), 2.45 (3H, s), 2.35-2.16 (2H, m), 1.48 (3H, t, J = 7.5 Hz), 1.03 (3H, t, J = 7.5 Hz). MS (NH₃-CI): m/e calc'd for $C_{21}H_{25}N_4O_2$: 365.1978, found 365.1966; 367 (6), 366 (24), 365 (100).
- Example 7390 spectral data: TLC R, 0.45 (30:70 ethyl acetate-hexane). 1 H 30 NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H, s), 7.69 (1H, d, J = 8.0 Hz), 7.30-7.22 (1H, m), 7.07-7.01 (1H, m), 6.99-6.92 (1H, m), 5.25 (1H, d, J = 10.2 Hz), 2.97-2.78 (2H, m), 2.23 (1H, br), 1.32 (3H, t, J = 7.3 Hz), 1.10-1.00 (1H, m), 0.81-0.71 (1H, m), 0.64-0.54 (1H, m), 0.50-0.40 (1H, m). MS (NH₃-CI): m/e calc'd for
- 35 $C_{22}H_{19}ClF_3N_4S$: 463.0971, found 463.0960; 467 (3), 466 (10), 465 (99), 464 (28), 463 (100).

Example 7392 spectral data: TLC R, 0.44 (30:70 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1h, s), 7.88 (1H, d, J = 8.0 Hz), 7.83 (1H,

s), 7.68 (1H, d, J = 8.0 Hz), 7.30 (1H, br d, J = 4.8 Hz), 7.18 (1H, br d, J = 4.8 Hz), 6.92 (1H, m), 5.12 (1H, d, J = 9.9 Hz), 2.92-2.67 (2H, m), 2.13 (1H, br), 1.28 (3H, t, J = 7.5 Hz), 1.08-0.99 (1H, m), 0.79-0.69 (1H, m), 0.55-0.45 (2H, m). MS (NH₃-CI): m/e calculated for

5 $C_{22}H_{19}C1F_3N_4S$: 463.0971, found 463.0953; 467 (3), 466 (10), 465 (39), 464 (29), 463 (100).

Example 7396 spectral data: TLC R, 0.27 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.96 (1H, s), 7.67 (1H, d, J = 8.1 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.1, 1.8 Hz), 6.86 (1H, s), 5.83 (1H,

- 10 dd, J = 9.9, 6.2 Hz), 4.43 (2H, q, J = 7.3 Hz), 2.98 (2H, q, J = 7.7 Hz), 2.91-2.78 (1H, m), 2.63-2.49 (1H, m), 1.42 (3H, t, J = 7.7 Hz), 1.40 (3H, t, J = 7.3 Hz), 1.39-1.19 (2H, m), 1.00 (3H, t, J = 7.3 Hz). MS (NH₃-CI): m/e calc'd for $C_{23}H_{24}Cl_2N_5O_3$: 488.1256, found 488.1252; 493 (3), 492 (13), 491 (18), 490 (68), 489 (28), 488 (100).
- Example 7398 spectral data: TLC R, 0.11 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.99 (1H, s), 7.72 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.42 (1H, dd, J = 8.1, 1.8 Hz), 5.40 (1H, dd, J = 10.4, 5.0 Hz), 4.42 (2H, q, J = 7.4 Hz), 3.00-2.90 (2H, m), 2.66-2.52 (1H, m), 2.51-2.38 (1H, m), 1.46 (3H, t, J = 7.4 Hz), 1.41 (3H, t, J = 7.3 Hz),
- 20 1.40-1.10 (2H, m), 0.98 (3H, t, J = 7.2 Hz). MS (NH₃-CI): m/e calc'd for $C_{24}H_{25}Cl_2N_6O_4$: 531.1315, found 531.1315; 531 (100).

Example 7399 spectral data: TLC R, 0.13 (20:80 ethyl acetate-hexane). 1 H NMR (300 MHz, CDCl₃): δ 8.98 (1H, s), 7.38 (1H, d, J = 1.8 Hz), 7.23 (1H, d, J = 1.8 Hz), 6.15-6.06 (1H, m), 5.76-5.63 (1H, m), 5.26-5.20 (1H, m),

- 25 2.96 (2H, q, J = 7.4 Hz), 2.10 (3H, s), 1.83 (3H, d, J = 7.0 Hz), 1.74 (3H, d, J = 6.6 Hz), 1.37 (3H, t, J = 7.4 Hz). MS (NH₃-CI): m/e calc'd for $C_{19}H_{21}Cl_2N_4$: 375.1117, found 375.1123; 380 (2), 379 (12), 378 (15), 377 (66), 376 (26), 375 (100).
 - Example 7401 spectral data: TLC R, 0.20 (ethyl acetate). ^{1}H NMR (300 MHz,
- 30 CDCl₃): δ 8.99 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 1.8 Hz), 7.41 (1H, dd, J = 8.4, 1.8 Hz), 7.11 (1H, d, J = 1.1 Hz), 6.87 (1H, d, J = 1.1 Hz), 5.41 (1H, d, J = 10.3 Hz), 3.34 (3H, s), 3.08 (1H, dq, J = 15.8, 7.7 Hz), 2.89 (1H, dq, J = 15.8, 7.7 Hz), 2.39-2.25 (1H, m), 1.14 (3H, t, J = 7.7 Hz), 1.07-0.97 (1H, m), 0.70-0.58 (2H, m), 0.52-
- 35 0.42 (1H, m). MS (NH₃-CI): m/e calc'd for $C_{21}H_{21}Cl_2N_6$: 427.1205, found 427.1196; 429 (66), 427 (100).

Example 7402 spectral data: MS (NH₃-CI): m/e 424 (M+H⁺, 100%). Example 7404 spectral data: MS (NH₃-CI): m/e 419 (M+H⁺, 100%).

Ç.

```
Example 7405 spectral data: MS (NH<sub>3</sub>-CI): m/e 487 (M+H*, 100%).

Example 7406 spectral data: MS (NH<sub>3</sub>-CI): m/e 501 (M+H*, 100%).

Example 7407 spectral data: MS (NH<sub>3</sub>-CI): m/e 517 (M+H*, 100%).

Example 7408 spectral data: MS (NH<sub>3</sub>-CI): m/e 457 (M+H*, 100%).

5 Example 7409 spectral data: MS (NH<sub>3</sub>-CI): m/e 429 (M+H*, 100%).
```

Utility

10

CRF-R1 Receptor Binding Assay for the Evaluation of Biological Activity

The following is a description of the isolation of cell

membranes containing cloned human CRF-R1 receptors for use in
the standard binding assay as well as a description of the
assay itself.

Messenger RNA was isolated from human hippocampus. mRNA was reverse transcribed using oligo (dt) 12-18 and the 20 coding region was amplified by PCR from start to stop codons The resulting PCR fragment was cloned into the EcoRV site of pGEMV, from whence the insert was reclaimed using XhoI + XbaI and cloned into the XhoI + XbaI sites of vector pm3ar (which contains a CMV promoter, the SV40 't' splice and early poly A signals, an Epstein-Barr viral origin of replication, and a hygromycin selectable marker). The resulting expression vector, called phchCRFR was transfected in 293EBNA cells and cells retaining the episome were selected in the presence of 400 mM hygromycin. Cells surviving 4 weeks of selection in 30 hygromycin were pooled, adapted to growth in suspension and used to generate membranes for the binding assay described below. Individual aliquots containing approximately 1 x 108 of the suspended cells were then centrifuged to form a pellet and frozen.

For the binding assay a frozen pellet described above containing 293EBNA cells transfected with hCRFR1 receptors is homogenized in 10 mL of ice cold tissue buffer (50 mM HEPES buffer pH 7.0, containing 10 mM MgCl₂, 2 mM EGTA, 1 mg/L

PCT/US98/13913 WO 99/01454

aprotinin, 1 mg/mL leupeptin and 1 mg/mL pepstatin). The homogenate is centrifuged at 40,000 x g for 12 min and the resulting pellet rehomogenized in 10 mL of tissue buffer. After another centrifugation at 40,000 x g for 12 min, the 5 pellet is resuspended to a protein concentration of 360 mg/mL to be used in the assay.

Binding assays are performed in 96 well plates; each well having a 300 mL capacity. To each well is added 50 mL of test drug dilutions (final concentration of drugs range from 10⁻¹⁰ 10 to 10^{-5} M), 100 mL of 125 I-ovine-CRF (125 I-o-CRF) (final concentration 150 pM) and 150 mL of the cell homogenate described above. Plates are then allowed to incubate at room temperature for 2 hours before filtering the incubate over GF/F filters (presoaked with 0.3% polyethyleneimine) using an appropriate cell harvester. Filters are rinsed 2 times with ice cold assay buffer before removing individual filters and assessing them for radioactivity on a gamma counter.

Curves of the inhibition of 125 I-o-CRF binding to cell membranes at various dilutions of test drug are analyzed by 20 the iterative curve fitting program LIGAND [P.J. Munson and D. Rodbard, Anal. Biochem. 107:220 (1980), which provides K, values for inhibition which are then used to assess biological activity.

Alternatively, tissues and cells which naturally express 25 CRF receptors can be employed in binding assays analogous to those described above.

A compound is considered to be active if it has a K, value of less than about 10000 nM for the inhibition of CRF.

30

15

Inhibition of CRF-Stimulated Adenvlate Cyclase Activity

Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G. Battaglia et al. Synapse 1:572 (1987). Briefly, assays are carried out at 37 °C for 10 min in 200 mL of buffer containing 100 mM Tris-HCl (pH 7.4 at 37 °C), 10 mM MgCl,, 0.4 mM EGTA, 0.1% BSA, 1 mM isobutylmethylxanthine (IBMX), 250 units/mL phosphocreatine kinase, 5 mM creatine phosphate, 100 mM

ζ,

PCT/US98/13913 WO 99/01454

quanosine 5'-triphosphate, 100 nM oCRF, antagonist peptides (concentration range 10^{-9} to 10^{-6} M) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein). Reactions are initiated by the addition of 1 mM ATP/32P]ATP 5 (approximately 2-4 mCi/tube) and terminated by the addition of 100 mL of 50 mM Tris-HCL, 45 mM ATP and 2% sodium dodecyl sulfate. In order to monitor the recovery of cAMP, 1 mL of [3H]cAMP (approximately 40,000 dpm) is added to each tube prior to separation. The separation of [32P]cAMP from 10 [32P] ATP is performed by sequential elution over Dowex and alumina columns.

In vivo Biological Assav

15

25

30

The in vivo activity of the compounds of the present invention can be assessed using any one of the biological assays available and accepted within the art. Illustrative of these tests include the Acoustic Startle Assay, the Stair Climbing Test, and the Chronic Administration Assay. These and other models useful for the testing of compounds 20 of the present invention have been outlined in C.W. Berridge and A.J. Dunn Brain Research Reviews 15:71 (1990). Compounds may be tested in any species of rodent or small mammal.

Compounds of this invention have utility in the treatment of inbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.

Compounds of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or in combination of therapeutic agents. They can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the

1

chosen route of administration and standard pharmaceutical practice.

The dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the particular agent, and its mode and route of administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect. For use in the treatment of said diseases or conditions, the compounds of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.

10

15

Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions, the active ingredient will ordinarily be present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.

The active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups,

25 and/or suspensions. The compounds of this invention can also be administered parenterally in sterile liquid dose formulations.

Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time.

35 Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.

Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance.

In general, water, pharmaceutically acceptable oils, saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol, are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, butter substances. Antioxidizing agents, such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents. Also used are citric acid and its salts, and EDTA. In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in *Remington's Pharmaceutical Sciences*, A. Osol, a standard reference in the field.

Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

25 <u>Capsules</u>

A large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate.

30

35

20

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried.

Ġ,

Tablets

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 mg active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg lactose. Appropriate coatings may be applied to increase palatability or delayed adsorption.

The compounds of this invention may also be used as reagents or standards in the biochemical study of neurological function, dysfunction, and disease.

Although the present invention has been described and exemplified in terms of certain preferred embodiments, other embodiments will be apparent to those skilled in the art. The invention is, therefore, not limited to the particular embodiments described and exemplified, but is capable of modification or variation without departing from the spirit of the invention, the full scope of which is delineated by the appended claims.

WHAT IS CLAIMED IS:

1. A compound of formula (I)

$$R^{2}-X \xrightarrow{N} D \xrightarrow{A} B R^{3}$$

5

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

10 A is N or $C-R^7$;

B is N or C-R8;

provided that at least one of the groups A and B is N;

15

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a 20 bond;

n is 0, 1 or 2;

R1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

 R^1 is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO₂R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C₃₋₈ cycloalkyl, wherein 0-1 carbon atoms in the C₄₋₈ cycloalkyl is replaced by a group

Ç,

selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCO_2R^{14b}$ - and $-NSO_2R^{14b}$ -, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

- R^1 is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a} , R^{1b} , R^{1c} , C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, Br, Cl, F, I, C_{1-4} haloalkyl, $-OR^{13a}$, $-NR^{13a}R^{16a}$, C_{1-4} alkoxy- C_{1-4} alkyl, and C_{3-8} cycloalkyl which is substituted with 0-1 R^9 and in which 0-1 carbons of C_{4-8} cycloalkyl is replaced by -O-;
- 15 provided that R¹ is other than:
 - (a) a cyclohexyl-(CH₂)₂- group;
 - (b) a 3-cyclopropy1-3-methoxypropy1 group;
 - (c) an unsubstituted-(alkoxy)methyl group; and,
 - (d) a 1-hydroxyalkyl group;

20

5

- also provided that when R^1 alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH_2 ;
- R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with 0-1 -OR¹⁷ and 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

₹.

isoxazolyl, pyrazolyl, triazolyl, tetrazolyl,
indazolyl, 2,3-dihydrobenzofuranyl,

- 2,3-dihydrobenzothienyl,
- 2,3-dihydrobenzothienyl-S-oxide,
- 5 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl,
- Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(0)_mR^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15a}CONR^{17a}R^{19a}$, $-NR^{15a}CO_2R^{18}$, $-NR^{17a}R^{19a}$, and $-CONR^{17a}R^{19a}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;
- R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C1-6 alkyl, C3-6 cycloalkyl, Br, C1, F, I, C1-4 haloalkyl, -CN, nitro, -OR13a, SH, -S(O)nR14b, -COR13a, -OC(O)R14b, -NR15aCOR13a, -N(COR13a)2, -NR15aCONR13aR16a, -NR15aCO2R14b, -NR13aR16a, and -CONR13aR16a and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R13a,
- 30 provided that R^1 is other than a -(CH_2)₁₋₄-aryl, -(CH_2)₁₋₄-heteroaryl, or -(CH_2)₁₋₄-heterocycle, wherein the aryl, heteroaryl, or heterocycle group is substituted or unsubstituted;

is optionally monooxidized or dioxidized;

 CO_2R^{14b} , COR^{14b} and SO_2R^{14b} and wherein any sulfur atom

35 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with

0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF₃ and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄

 alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄

 alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;
 - provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;
 - R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;

20

- 25 R¹³ is selected from the group H, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)-;
- 30 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 35 R^{14} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, aryl, aryl(C_{1-4} alkyl)-, heteroaryl and heteroaryl(C_{1-4} alkyl)- and benzyl, each

benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy C_{1-4} haloalkoxy, and dimethylamino;

5

10

- R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

25

- R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 30 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 35 R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;

ς.

alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;

R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;

aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl;

30

35

5

heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

Ç.

2,3-dihydrobenzothienyl-S-oxide,
2,3-dihydrobenzothienyl-S-dioxide, indolinyl,
benzoxazolin-2-on-yl, benzodioxolanyl and
benzodioxane, each heteroaryl being substituted 0-4

5 carbon atoms with a substituent independently selected
at each occurrence from the group C₁₋₆ alkyl, C₃₋₆
cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro,
-OR¹⁷, SH, -S(O)_mR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸,
-NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸,

10 -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being
substituted on any nitrogen atom with 0-1 substituents
selected from the group R¹⁵, CO₂R^{14a}, COR^{14a} and
SO₂R^{14a}; and,

- provided that when D is imidazole or triazole, R^1 is other than unsubstituted C_{1-6} linear or branched alkyl or C_{3-6} cycloalkyl.
- 20 2. A compound according to Claim 1, wherein the compound is of formula Ia:

$$R^2-X$$
 N
 N
 R^3
 R^8
(Ia).

25

3. A compound according to Claim 1, wherein the compound is of formula Ib:

$$R^{2}-X-X$$

$$N$$

$$D$$

$$R^{3}$$

Ċį.

30

(Ib).

4. A compound according to Claim 1, wherein the compound is of formula Ic:

10

5

5. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I):

15

$$R^{2}-X \longrightarrow N \longrightarrow A \longrightarrow R^{3}$$

$$N \longrightarrow D$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

20

A is N or $C-R^7$;

B is N or C-R8;

- 25 provided that at least one of the groups A and B is N;
 - D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

Š.

X is selected from the group $CH-R^9$, $N-R^{10}$, O, $S(O)_n$ and a bond;

n is 0, 1 or 2;

5

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

10

15

- R^1 is substituted with 0-1 substituents selected from the group -CN, $-S(O)_nR^{14b}$, $-COR^{13a}$, $-CO_2R^{13a}$, $-NR^{15a}COR^{13a}$, $-N(COR^{13a})_2$, $-NR^{15a}CONR^{13a}R^{16a}$, $-NR^{15a}CO_2R^{14b}$, $-CONR^{13a}R^{16a}$, 1-morpholinyl, 1-piperidinyl, 1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group -O-, $-S(O)_n$ -, $-NR^{13a}$ -, $-NCO_2R^{14b}$ -, $-NCOR^{14b}$ and $-NSO_2R^{14b}$ -, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents
- 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;
- R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₄ alkoxy-C₁₋₄ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

30

provided that R¹ is other than:

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- (c) a 1-hydroxyalkyl group;

35

also provided that when R¹ alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH₂;

ζ,

PCT/US98/13913 WO 99/01454

R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each Rla being substituted with 0-5 substituents independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(O)_{n}R^{18}$, $-COR^{17}$, $-OC(O)R^{18}$, $-NR^{15a}COR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and -CONR^{17a}R^{19a};

10

35

5

R^{1b} is heteroaryl and is selected from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, 15 benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 20 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each

occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, 25 Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, -NR15aCONR17aR19a, -NR15aCO2R18, -NR17aR19a, and -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ; 30

R1c is heterocyclyl and is a saturated or partially saturated heteroaryl, each heterocyclyl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{13a}$, SH, $-S(O)_nR^{14b}$, $-COR^{13a}$,

-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each heterocyclyl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{13a}, CO_2R^{14b} , COR^{14b} and SO_2R^{14b} and wherein any sulfur atom is optionally monooxidized or dioxidized;

5

10

- R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;
- alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF₃ and C_2F_5 ;
- R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;
 - provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;
- 30 R^9 and R^{10} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- R¹³ is selected from the group H, C₁₋₄ alkyl, C₁₋₄ haloalkyl,

 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆

 cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-,

 heteroaryl and heteroaryl(C₁₋₄ alkyl)-;

 \mathcal{K}_{1}

 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

5

10

35

- R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14a} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
- R^{14b} is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl,

 C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, and C₃₋₆

 cycloalkyl-C₁₋₆ alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;
 - R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;

5

10

- R^{18} and R^{19} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, and C_{1-4} haloalkyl;
- alternatively, in an NR¹⁷R¹⁹ moiety, R¹⁷ and R¹⁹ taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- alternatively, in an NR^{17b}R^{19b} moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in 1-piperazinyl is substituted with 0-1 substituents selected from the group R¹³, CO₂R¹⁴, COR¹⁴ and SO₂R¹⁴;
- R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from

Ç,

the group C_{1-3} alkyl, C_{1-3} alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF_3 , C_2F_5 , OCF_3 , SO_2Me and acetyl; and,

heteroaryl is independently selected at each occurence from 5 the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 10 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-on-yl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted 0-4 carbon atoms with a substituent independently selected 15 at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and each heteroaryl being 20 substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

A method of treating affective disorder, anxiety, 25 depression, headache, irritable bowel syndrome, posttraumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, 30 inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, 35 stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including

but not limited to disorders induced or facilitated by CRF, in mammals, comprising: administering to the mammal a therapeutically effective amount of a compound of formula (I):

5

$$R^{2}-X \xrightarrow{N \atop N} A \xrightarrow{A \atop N} B$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

A is N or $C-R^7$;

B is N or C-R8;

15

provided that at least one of the groups A and B is N;

D is an aryl or heteroaryl group attached through an unsaturated carbon atom;

20

X is selected from the group CH-R 9 , N-R 10 , O, S(O) $_n$ and a bond;

n is 0, 1 or 2;

25

 R^1 is selected from the group C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, $-SO_2-C_{1-10}$ alkyl, $-SO_2-R^{1a}$, and $-SO_2-R^{1b}$;

30

 $\rm R^1$ is substituted with 0-1 substituents selected from the group -CN, -S(O)_nR^{14b}, -COR^{13a}, -CO_2R^{13a}, -NR^{15a}COR^{13a}, -N(COR^{13a})_2, -NR^{15a}CONR^{13a}R^{16a}, -NR^{15a}CO_2R^{14b}, -CONR^{13a}R^{16a}, 1-morpholinyl, 1-piperidinyl,

1-piperazinyl, and C_{3-8} cycloalkyl, wherein 0-1 carbon atoms in the C_{4-8} cycloalkyl is replaced by a group selected from the group $-O_-$, $-S(O)_n_-$, $-NR^{13a}_-$, $-NCO_2R^{14b}_-$, $-NCOR^{14b}_-$ and $-NSO_2R^{14b}_-$, and wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

R¹ is also substituted with 0-3 substituents independently selected at each occurrence from the group R^{1a}, R^{1b}, R^{1c}, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -OR^{13a}, -NR^{13a}R^{16a}, C₁₋₄ alkoxy-C₁₋₄ alkyl, and C₃₋₈ cycloalkyl which is substituted with 0-1 R⁹ and in which 0-1 carbons of C₄₋₈ cycloalkyl is replaced by -O-;

provided that R¹ is other than:

5

- (a) a 3-cyclopropyl-3-methoxypropyl group;
- (b) an unsubstituted-(alkoxy)methyl group; and,
- 20 (c) a 1-hydroxyalkyl group;

also provided that when R^1 alkyl substituted with OH, then the carbon adjacent to the ring N is other than CH_2 ;

25 R^{1a} is aryl and is selected from the group phenyl, naphthyl, indanyl and indenyl, each R^{1a} being substituted with G-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, nitro, -OR¹⁷, SH, -S(O)_nR¹⁸, -COR¹⁷, -OC(O)R¹⁸, -NR^{15a}COR¹⁷, -N(COR¹⁷)₂, -NR^{15a}CONR^{17a}R^{19a}, -NR^{15a}CO₂R¹⁸, -NR^{17a}R^{19a}, and -CONR^{17a}R^{19a};

R^{1b} is heteroaryl and is selected from the group pyridyl,

pyrimidinyl, triazinyl, furanyl, quinolinyl,
isoquinolinyl, thienyl, imidazolyl, thiazolyl,
indolyl, pyrrolyl, oxazolyl, benzofuranyl,

benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazoly1, 2,3-dihydrobenzofurany1, 2,3-dihydrobenzothienyl, 2,3-dihydrobenzothienyl-S-oxide, 5 2,3-dihydrobenzothienyl-S-dioxide, indolinyl, benzoxazolin-2-onyl, benzodioxolanyl and benzodioxane, each heteroaryl being substituted on 0-4 carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, 10 Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, -OR¹⁷, SH, $-S(0)_{m}R^{18}$, $-COR^{17}$, $-OC(0)R^{18}$, $-NR^{15}aCOR^{17}$, $-N(COR^{17})_{2}$, $-NR^{15a}CONR^{17a}R^{19a},\ -NR^{15a}CO_{2}R^{18},\ -NR^{17a}R^{19a},\ and$ -CONR^{17a}R^{19a} and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from 15 the group R^{15a} , CO_2R^{14b} , COR^{14b} and SO_2R^{14b} ;

saturated heteroaryl, each heterocyclyl being
substituted on 0-4 carbon atoms with a substituent
independently selected at each occurrence from the
group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Br, Cl, F, I, C₁₋₄
haloalkyl, -CN, nitro, -OR^{13a}, SH, -S(O)_nR^{14b}, -COR^{13a},
-OC(O)R^{14b}, -NR^{15a}COR^{13a}, -N(COR^{13a})₂, -NR^{15a}CONR^{13a}R^{16a},
-NR^{15a}CO₂R^{14b}, -NR^{13a}R^{16a}, and -CONR^{13a}R^{16a} and each
heterocyclyl being substituted on any nitrogen atom
with 0-1 substituents selected from the group R^{13a},
CO₂R^{14b}, COR^{14b} and SO₂R^{14b} and wherein any sulfur atom
is optionally monooxidized or dioxidized;

 R^2 is selected from the group C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{2-4} alkenyl, and C_{2-4} alkynyl and is substituted with 0-3 substituents selected from the group -CN, hydroxy, halo and C_{1-4} alkoxy;

30

35

alternatively R^2 , in the case where X is a bond, is selected from the group -CN, CF₃ and C_2F_5 ;

Ó

R³, R⁷ and R⁸ are independently selected at each occurrence from the group H, Br, Cl, F, I, -CN, C₁₋₄ alkyl, C₃₋₈ cycloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, amino, C₁₋₄ alkylamino, (C₁₋₄ alkyl)₂amino and phenyl, each phenyl is substituted with 0-3 groups selected from the group C₁₋₇ alkyl, C₃₋₈ cycloalkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ alkyl sulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₆ alkylamino and (C₁₋₄ alkyl)₂amino;

- provided that when R^1 is unsubstituted C_{1-10} alkyl, then R^3 is other than substituted or unsubstituted phenyl;
- R⁹ and R¹⁰ are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl and C_{3-8} cycloalkyl;
- 20 R¹³ is selected from the group H, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)-;
- 25 R^{13a} and R^{16a} are independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- 30 R¹⁴ is selected from the group C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, aryl, aryl(C₁₋₄ alkyl)-, heteroaryl and heteroaryl(C₁₋₄ alkyl)- and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy C₁₋₄ haloalkoxy, and dimethylamino;

Ġ

 R^{14a} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and benzyl, each benzyl being substituted on the aryl moiety with 0-1 substituents selected from the group C_{1-4} alkyl, Br, Cl, F, I, C_{1-4} haloalkyl, nitro, C_{1-4} alkoxy, C_{1-4} haloalkoxy, and dimethylamino;

5

- R^{14b} is selected from the group C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{3-6} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;
- R¹⁵ is independently selected at each occurrence from the group H, C₁₋₄ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, phenyl and benzyl, each phenyl or benzyl being substituted on the aryl moiety with 0-3 groups chosen from the group C₁₋₄ alkyl, Br, Cl, F, I, C₁₋₄ haloalkyl, nitro, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, and dimethylamino;

 R^{15a} is independently selected at each occurrence from the group H, C_{1-4} alkyl, C_{3-7} cycloalkyl, and C_{3-6} cycloalkyl- C_{1-6} alkyl;

- 25 R^{17} is selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl, C_{1-2} alkoxy- C_{1-2} alkyl, C_{1-4} haloalkyl, $R^{14}S(0)_n$ - C_{1-4} alkyl, and $R^{17b}R^{19b}N$ - C_{2-4} alkyl;
- 30 R¹⁸ and R¹⁹ are independently selected at each occurrence from the group H, C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₃₋₆ cycloalkyl-C₁₋₆ alkyl, C₁₋₂ alkoxy-C₁₋₂ alkyl, and C₁₋₄ haloalkyl;
- 35 alternatively, in an $NR^{17}R^{19}$ moiety, R^{17} and R^{19} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N₄ in

1

1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;

- alternatively, in an $NR^{17b}R^{19b}$ moiety, R^{17b} and R^{19b} taken together form 1-pyrrolidinyl, 1-morpholinyl, 1-piperidinyl or 1-piperazinyl, wherein N_4 in 1-piperazinyl is substituted with 0-1 substituents selected from the group R^{13} , CO_2R^{14} , COR^{14} and SO_2R^{14} ;
- 10 R^{17a} and R^{19a} are independently selected at each occurrence from the group H, C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-6} cycloalkyl- C_{1-6} alkyl and C_{1-4} haloalkyl;
- aryl is independently selected at each occurrence from the group phenyl, naphthyl, indanyl and indenyl, each aryl being substituted with 0-5 substituents independently selected at each occurrence from the group C₁₋₆ alkyl, C₃₋₆ cycloalkyl, methylenedioxy, C₁₋₄ alkoxy-C₁₋₄ alkoxy, -OR¹⁷, Br, Cl, F, I, C₁₋₄ haloalkyl, -CN, -NO₂, SH, -S(O)_nR¹⁸, -COR¹⁷, -CO₂R¹⁷, -OC(O)R¹⁸, -NR¹⁵COR¹⁷, -N(COR¹⁷)₂, -NR¹⁵CONR¹⁷R¹⁹, -NR¹⁵CO₂R¹⁸, -NR¹⁷R¹⁹, and -CONR¹⁷R¹⁹ and up to 1 phenyl, each phenyl substituent being substituted with 0-4 substituents selected from the group C₁₋₃ alkyl, C₁₋₃ alkoxy, Br, Cl, F, I, -CN, dimethylamino, CF₃, C₂F₅, OCF₃, SO₂Me and acetyl; and,
- heteroaryl is independently selected at each occurence from the group pyridyl, pyrimidinyl, triazinyl, furanyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, benzoxazolyl, isoxazolyl, triazolyl, tetrazolyl, indazolyl, 2,3-dihydrobenzofuranyl, 2,3-dihydrobenzothienyl-S-oxide, 2,3-dihydrobenzothienyl-S-oxide, indolinyl,

benzoxazolin-2-on-yl, benzodioxolanyl and

benzodioxane, each heteroaryl being substituted 0-4

Ġ

carbon atoms with a substituent independently selected at each occurrence from the group C_{1-6} alkyl, C_{3-6} cycloalkyl, Br, Cl, F, I, C_{1-4} haloalkyl, -CN, nitro, $-OR^{17}$, SH, $-S(O)_mR^{18}$, $-COR^{17}$, $-CO_2R^{17}$, $-OC(O)R^{18}$, $-NR^{15}COR^{17}$, $-N(COR^{17})_2$, $-NR^{15}CONR^{17}R^{19}$, $-NR^{15}CO_2R^{18}$, $-NR^{17}R^{19}$, and $-CONR^{17}R^{19}$ and each heteroaryl being substituted on any nitrogen atom with 0-1 substituents selected from the group R^{15} , CO_2R^{14a} , COR^{14a} and SO_2R^{14a} .

10

5

15

20

Inter inal Application No

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D471/04 C07D473/00 A61K31/505 A61K31/535 //(CO7D471/04,235:00,221:00) According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7D A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-6 EP 0 773 023 A (PFIZER INC.) 14 May 1997 see claims 1-6 WO 95 10506 A (THE DU PONT MERCK Α PHARMACEUTICAL COMPANY) 20 April 1995 cited in the application see claims 1-6 WO 95 34563 A (PFIZER INC.) Α 21 December 1995 cited in the application see claims WO 95 33750 A (PFIZER INC.) 1-6 Α 14 December 1995 cited in the application see claims -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 20 October 1998 30/10/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Chouly, J

3

Inte. anal Application No PCT/US 98/13913

Category -	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
P , A	EP 0 812 831 A (PFIZER INC.) 17 December 1997 see claims	1-6		
P,A	WO 98 08847 A (PFIZER INC.) 5 March 1998 see claims	1-6		
	·			

i. national application No.

PCT/US 98/13913

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 6 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 6 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
 Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Intel anal Application No
PCT/US 98/13913

Patent document cited in search report			Publication date		atent family nember(s)	Publication date
EP	773023	A	14-05-1997	CA	2189830 A	09-05-1997
				JP	9132528 A	20-05-1997
WO	9510506	Α	20-04-1995	AU	692484 B	11-06-1998
				AU	8012294 A	04-05-1995
				₿R	9407799 A	06-05-1997
				CA	2174080 A	20-04-1995
				CN	1142817 A	12-02-1997
				CZ	9601014 A	13-11-1996
				EP	0723533 A	31-07-1996
				FI	961599 A	07-06-1996
				HR	940664 A	31-12-1996
				HU	74464 A	30-12-1996
				JP	9504520 T	06-05-1997
				NO	961425 A	12-06-1996
				NZ	274978 A	27-04-1998
				PL	313973 A	05-08-1996
				SK	47096 A	01-10-1996
				ZA	9407921 A	11-04-1996
WO	9534563	Α	21-12-1995	AU	687196 B	19-02-1998
				AU	2350595 A	05-01-1996
				BR	9502707 A	04-06-1996
				CA	2192820 A	21-12-1995
				CN	1150803 A	28-05-1997
•				CZ	9603670 A	15-10-1997
				EP	0765327 A	02-04-1997 13-12-1996
				FI	965022 A 75776 A	28-05-1997
				HU JP	75776 A 9507855 T	12-08-1997
				NO	965378 A	13-12-1996
				PL	317705 A	28-04-1997
WO	9533750	Α	14-12-1995	AU	692548 B	11-06-1998
				AU	2453095 A	04-01-1990
				BR	9502708 A	30-04-199
				CA	2192354 A	14-12-199
				CN	1150428 A	21-05-199
				EP	0764166 A	26-03-199 05-12-199
				FI	964894 A	02-17-133

...ormation on patent family members

Intern nai Application No
PCT/US 98/13913

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 9533750	A		HR HU JP NO NZ PL	950321 75774 9507249 965237 285442 320631	A T A A	28-02-1998 28-05-1997 22-07-1997 06-02-1997 27-05-1998 13-10-1997
EP 812831	Α	17-12-1997	CA JP	2207348 10072449		11-12-1997 17-03-1998
WO 9808847	Α	05-03-1998	AU	3456197	A	19-03-1998

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

PADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.