Chapter 1

The Real and Complex Number Systems

solutions by Hikari

June 2021

- 1. If r+x is rational, than x=(r+x)-r is rational, a contradiction, so r+x is irrational. If rx is rational, than $x = (rx)\frac{1}{r}$ is rational, a contradiction, so rx is irrational.
- **2.** If there is a rational number $\frac{p}{q}$ (p,q are intergers and gcd(p,q)=1), whose square is 12. Then $p^2=12q^2$. 3|12, so $3|p^2$, 3|p. So $9|p^2$, $9|12q^2$, $3|4q^2$, 3|q. So 3|p and 3|q, contrary to gcd(p,q)=1.
- **3.** (a) $x \neq 0$, so $\frac{1}{x}$ exists. $y = y \cdot x \cdot \frac{1}{x} = z \cdot x \cdot \frac{1}{x} = z$ (b) Take z = 1 in (a).

 - (c) Take $z = \frac{1}{x}$ in (a). (d) $\frac{1}{x} \cdot x = 1$, so $x = \frac{1}{1}$ from (c).
- **4.** For an element x of E, $\alpha \le x$ and $x \le \beta$, so $\alpha \le \beta$.
- **5.** For every $x \in A$, $x \ge \inf A$, so $-x \le -\inf A$, so $-\inf A$ is an upper bound of -A. If $\gamma < -\inf A$, $-\gamma > \inf A$, so $-\gamma$ is not a lower bound of A, then there is a element $x < -\gamma$ in A. Then there is an element $-x > \gamma$ in -A, which means γ is not an upper bound of -A. So $-\inf A = \sup(-A)$, and $\inf A = -\sup(-A).$
- **6.*** (a) $((b^m)^{\frac{1}{n}})^{nq} = b^{mq} = b^{np} = ((b^p)^{\frac{1}{q}})^{nq} = k$. By Theorem 1.21, $k^{\frac{1}{nq}}$ is unique, so $(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$.
- (b) Let $r = \frac{m}{n}$, $s = \frac{p}{q}$. $(b^{r+s})^{nq} = (b^{\frac{mq+np}{nq}})^{nq} = b^{mq+np} = ((b^m)^{\frac{1}{n}}(b^p)^{\frac{1}{q}})^{nq} = (b^rb^s)^{nq}$. By Theorem 1.21, $b^{r+s} = b^rb^s$.
- (c) If t < r, then r t > 0, so $b^{r-t} > 1$, $b^r > b^t$. So $b^r \ge b^t$ for all $b^t \in B(r)$, so b^r is an upper bound of B(r). But $b^r \in B(r)$, so every $\gamma < b^r$ is not an upper bound of B(r), so $b^r = \sup B(r)$.
- (d) If $b^{x+y} < b^x b^y$, then $\frac{b^{x+y}}{b^y} < b^x$, and there is an rational $t \le x$ that $\frac{b^{x+y}}{b^y} < b^t$. Then $\frac{b^{x+y}}{b^t} < b^y$, and there is an rational $s \le y$ that $\frac{b^{x+y}}{b^t} < b^s$. So $b^{s+t} > b^{x+y}$, but $s+t \le x+y$, contradicting to the definition of b^{x+y} .

If $b^{x+y} > b^x b^y$, then there is a rational r < x + y that $b^r > b^x b^y$, which means $b^r > b^p b^q$ for all rational $p \le x$ and $q \le y$. Let ε be an positive real number such that $r < x + y - \varepsilon$. By Theorem 1.20(b), there are rational p and q such that $x - \frac{\varepsilon}{2} and <math>y - \frac{\varepsilon}{2} < q < y$. So $r < x + y - \varepsilon < p + q$, and $b^r < b^{p+q} = b^p b^q$, contradicting with $b^r > b^p b^q$.

Therefore, only $b^{x+y} = b^x b^y$ can be the case.

- 7. (a) $b^n 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1) > (b-1)(1+1+\dots+1) = (b-1)n$
 - (b) $b^{\frac{1}{n}} > 1$, so substitute b with $b^{\frac{1}{n}}$ in (a) we obtain (b).
 - (c) $b-1 \ge n(b^{\frac{1}{n}}-1) > \frac{b-1}{t-1}(b^{\frac{1}{n}}-1)$, so $(b^{\frac{1}{n}}-1) < (t-1)$ since b-1 > 0 and t-1 > 0. So $b^{\frac{1}{n}} < t$.
- (d) $b^w < y$, so $y \cdot b^{-w} > 1$. So from (c), $b^{\frac{1}{n}} < y \cdot b^{-w}$ when $n > \frac{b-1}{y \cdot b^{-w}-1}$. So $b^{w+\frac{1}{n}} < y$ for sufficiently
- (e) $b^w > y$, so $\frac{b^w}{y} > 1$. So from (c), $b^{\frac{1}{n}} < \frac{b^w}{y}$ when $n > \frac{b-1}{\frac{b^w}{y}-1}$. Since $b^{\frac{1}{n}}, y > 0$, $b^{w-\frac{1}{n}} > y$ for sufficiently large n.

(f) If $b^x < y$, from (d) $b^{x+\frac{1}{n}} < y$ for some n. Then $x + \frac{1}{n} \in A$, but $x + \frac{1}{n} > x$, contrary to the fact that x in an upper bound of A.

If $b^x > y$, form (e) $b^{x-\frac{1}{n}} > y$ for some n. So $b^{x-\frac{1}{n}} > b^w$, and $x - \frac{1}{n} > w$ for all w in A since b > 1. So $x - \frac{1}{n}$ is an upper bound of A, but $x - \frac{1}{n} < x$, contrary to $x = \sup A$. Therefore, only $b^x = y$ can be the case.

- (g) If x < x', let q be a rational that x < q < x' (Theorem 1.20(b)). By definition of real power in Exercise 6, $b^x < b^q \le b^{x'}$, so $b^x < b^{x'}$. Similarly, x > x' implies $b^x > b^{x'}$. Therefore, if $b^x = b^{x'}$, then x = x' and x is unique
- 8. If complex field is an ordered field, then 1 > 0 from proposition 1.18(d), -1 < 0 from proposition 1.18(a). But $-1 = i^2 > 0$ from proposition 1.18(d), a contradiction, so complex field cannot be an ordered field.
- **9.** When a < c, z < w. When a > c, z > w. When a = c and b < d, z < w. When a = c and b > d, z > w. When a = c and b = d, z = w. So definition 1.5(i) is satisfied.

If z < w and w < r (r = e + fi), then a < c or a = c, c < e or c = e. If a < c, then a < e, so z < r. If a = c and c < e, then a < e, so z < r. If a = c and c = e, then b < d and d < f, so b < f, so c < f. Therefore, for all cases z < r when z < w and w < r, satisfying definition 1.5(ii).

Assume that complex number under this definition has least-upper-bound property. Consider the set $S = \{xi | x \in \mathbb{R}\}$. 1 is greater than all the 0 + xi, so S is bound above. Let $a + bi = \sup S$, $a \ge 0$. If a > 0, then $\frac{a}{2} > 0$ is also an upper bound, a contradiction. So a = 0, but then (b+1)i > a+bi and $(b+1)i \in S$, a contradiction. Therefore, complex number under this definition cannot have least-upper-bound property.

- **10.** $z^2 = (a^2 b^2) + 2abi$, $a^2 b^2 = u$, $2ab = (|w|^2 u^2)^{\frac{1}{2}} = |v|$, so when $v \ge 0$, $z^2 = w$, when $v \le 0$, $\overline{z}^2 = u 2abi = u + vi = w$. When $w \ne 0$, either a or $b \ne 0$, and $z \ne -z$, so $\pm z^2 = w$ when $v \ge 0$ and
- 11. If z=0, then r=0 and w can be any complex number that |w|=1. w and r are not uniquely determined by z.

If $z \neq 0$, let z = a + bi. Let $r = \sqrt{a^2 + b^2}$ and $w = \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{a^2 + b^2}}i$. Then $|w| = \frac{a^2 + b^2}{a^2 + b^2} = 1$, and z = rw. If z = rw, then |z| = |r||w| = |r| = r, and $w = \frac{z}{r}$, so r and w are uniquely determined by z.

- 12. If $|z_1 + z_2 + \cdots + z_{n-1}| \le |z_1| + |z_2| + \cdots + |z_{n-1}|$, then by Theorem 1.33(e), $|z_1 + z_2 + \cdots + z_n| \le |z_n| + |z_n|$ $|z_1 + z_2 + \cdots + z_{n-1}| + |z_n| \le |z_1| + |z_2| + \cdots + |z_{n-1}| + |z_n|$. $|z_1| \le |z_1|$, so the proof completes by induction.
- **13.** $|x| = |x y + y| \le |x y| + |y|$, so $|x| |y| \le |x y|$; $|y| = |y x + x| \le |y x| + |x|$, so $|y| |x| \le |y x| = |x y|$. So $||x| |y|| \le |x y|$.
- **14.** $|1+z|^2 + |1-z|^2 = (1+z)(1+\bar{z}) + (1-z)(1-\bar{z}) = 1+z+\bar{z}+1+1-z-\bar{z}+1=4.$
- **15.** According to the proof of Theorem 1.35, when the equality holds, $\sum |Ba_j Cb_j|^2 = 0$, so $Ba_j Cb_j = 0$ $Cb_j = 0$ for all j, and $a_j = \frac{C}{B}b_j = kb_j$ where k is a constant independent of j. If $a_j = kb_j$ for all j, $C = \sum kb_j\bar{b}_j = kB$, and $Ba_j - Cb_j = Bkb_j - kBb_j = 0$, the equality holds. So $a_j = kb_j$ with k being a constant independent of j is a sufficient and necessary condition for the equality to hold.
- **16.** (a) If $\mathbf{z} = \frac{\mathbf{x} + \mathbf{y}}{2} + \mathbf{w}$, $\mathbf{w} \cdot (\mathbf{x} \mathbf{y}) = 0$, and $|\mathbf{w}| = \sqrt{r^2 \frac{d^2}{4}}$, then $|\mathbf{z} \mathbf{x}| = |-\frac{\mathbf{x} \mathbf{y}}{2} + \mathbf{w}| = |-\frac{\mathbf{x} \mathbf{y}}{2}|$ $\sqrt{|\mathbf{w}|^2 + |\frac{\mathbf{x} - \mathbf{y}}{2}|^2 - 2\mathbf{w} \cdot \frac{\mathbf{x} - \mathbf{y}}{2}} = \sqrt{r^2 - \frac{d^2}{4} + \frac{d^2}{4}} = r$, and similarly $|\mathbf{z} - \mathbf{y}| = r$. So we want to prove that there are infinitely many \mathbf{w} that satisfy $\mathbf{w} \cdot (\mathbf{x} - \mathbf{y}) = 0$ and $|\mathbf{w}| = \sqrt{r^2 - \frac{d^2}{4}}$. Let $\mathbf{x} - \mathbf{y} = \mathbf{u} \neq 0$, $\sqrt{r^2-\frac{d^2}{4}}=s>0$. Let u_i be the coordinate that $u_i\neq 0$, and choose other two coordinates u_i,u_k (they exist because the dimension $k \geq 3$). Let $w_i = au_j + bu_k$, $w_j = -au_i$, $w_k = -bu_i$, and all the other

coordinates = 0. Then $\mathbf{w} \cdot \mathbf{u} = 0$, and we want to prove that there are infinitely many a, b that satisfy $|\mathbf{w}| = s$. Substituting, we get

$$(au_j + bu_k)^2 + (-au_i)^2 + (-bu_i)^2 = s^2$$
$$(u_i^2 + u_k^2)b^2 + 2u_ju_ka \cdot b + a^2(u_i^2 + u_j^2) - s^2 = 0$$

To solve the quadratic equation for b, the discriminant $\Delta = 4u_j^2u_k^2a^2 - 4(u_i^2 + u_k^2)\left[a^2(u_i^2 + u_j^2) - k^2\right]$. When $a^2 < \frac{k^2}{u_i^2 + u_i^2}$, $\Delta > 0$, the solution of b exists, so there are infinitely many a and b satisfying $|\mathbf{w}| = s$.

So there are infinitely many \mathbf{w} satisfying $\mathbf{w} \cdot (\mathbf{x} - \mathbf{y}) = 0$ and $|\mathbf{w}| = \sqrt{r^2 - \frac{d^2}{4}}$, so there are infinitely many \mathbf{z} satisfying $|\mathbf{z} - \mathbf{x}| = r$ and $|\mathbf{z} - \mathbf{y}| = r$.

- (b) Let $\mathbf{z} = \frac{\mathbf{x} + \mathbf{y}}{2}$, then $|\mathbf{z} \mathbf{x}| = |\mathbf{z} \mathbf{y}| = |\frac{\mathbf{x} \mathbf{y}}{2}| = \frac{d}{2} = r$. If $\mathbf{z}' \neq \mathbf{z}$, then $|\mathbf{z}' \mathbf{z}| = \varepsilon > 0$, and $|\mathbf{z}' \mathbf{x}| \ge |\mathbf{z}' \mathbf{z}| + |\mathbf{z} \mathbf{x}| = \varepsilon + r > r$, so \mathbf{z}' cannot satisfy the condition, and \mathbf{z} is unique.
- (c) If such \mathbf{z} exists, then $2r = |\mathbf{x} \mathbf{z}| + |\mathbf{z} \mathbf{y}| \ge |\mathbf{x} \mathbf{y}| = d$, contradicting with 2r < d, so the \mathbf{z} cannot exist.
- 17. $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} \mathbf{y}|^2 = \sum (x_i + y_i)^2 + \sum (x_i y_i)^2 = 2\sum x_i^2 + 2\sum y_i^2 + \sum 2x_iy_i + \sum (-2)x_iy_i = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2$. It can be geometrically interpreted as the sum of squares of two diagonals of parallelograms being equal to the sum of squares of four sides of parallelograms.
- **18.** If $x_1 = x_2 = 0$, let $y_1 = y_2 = 1$, $y_k = 0$ for k > 2, then $\mathbf{y} \neq 0$ and $\mathbf{x} \cdot \mathbf{y} = 0$. If one of $x_1, x_2 \neq 0$, let $y_1 = x_2, y_2 = -x_1, y_k = 0$ for k > 2, then $\mathbf{y} \neq 0$ and $\mathbf{x} \cdot \mathbf{y} = 0$.

When k = 1, if $\mathbf{x} \neq 0$ and $\mathbf{y} \neq 0$, then $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 \neq 0$, so the \mathbf{y} satisfying the condition does not necessary exist.

19.

$$\sum (x_i - a_i)^2 = 4 \sum (x_i - b_i)^2$$

$$\sum 3x_i^2 - (8b_i - 2a_i)x_i + (4b_i^2 - a_i^2) = 0$$

$$\sum 3(x_i - \frac{4b_i - a_i}{3})^2 + (4b_i^2 - a_i^2) - \frac{(4b_i - a_i)^2}{3} = 0$$

$$\sum 3(x_i - \frac{4b_i - a_i}{3})^2 = \sum \frac{4a_i^2 - 8a_ib_i + 4b_i}{3}$$

$$\sum (x_i - \frac{4b_i - a_i}{3})^2 = \sum \frac{4}{9}(b_i - a_i)^2 = \sum (\frac{2}{3}(b_i - a_i))^2$$

So if $\mathbf{c} = \frac{4\mathbf{b} - \mathbf{a}}{3}$ and $r = \frac{2}{3}|\mathbf{b} - \mathbf{a}|$, then the two equations are sufficient and necessary conditions for each other.

20. The proof of least-upper-bound property and axioms (A1) to (A3) did not use property (III) and therefore still hold. Let 0^* be $\{x|x\in\mathbb{Q},x\leq 0\}$. For every $r\in\alpha$ and $s\in0^*$, $r+s\leq r$, hence $r+s\in\alpha$, so $\alpha+0^*\subset\alpha$. For every $r\in\alpha$, $r=r+0\in\alpha+0^*$, so $\alpha\subset\alpha+0^*$. So $\alpha+0^*=\alpha$, and (A4) holds. If (A5) holds, let $\alpha=\{x|x\in\mathbb{Q},x<1\}$, then there is an α' such that $\alpha+\alpha'=0^*$. So there are $r\in\alpha$ and $s\in\alpha'$ that r+s=0, and because r<1, s>-1. Let $s=-1+\varepsilon$, $\varepsilon>0$, and let $t=1-\frac{\varepsilon}{2}$, then $t\in\alpha$. $s+t\in\alpha'+\alpha=0^*$, so $s+t\leq0$, but $s+t=-1+\varepsilon+1-\frac{\varepsilon}{2}=\frac{\varepsilon}{2}>0$, a contradiction, so (A5) cannot hold.