Tentamen eem 076 Elektriska Kretsar och Fält, D1

Examinator: Ants R. Silberberg

21 maj 2012 kl. 08.30-12.30 , sal: M

Förfrågningar: Ants Silberberg, tel. 1808

Lösningar: Anslås tisdagen den 22 maj på institutionens anslags-

tavla, plan 5.

Resultat: Rapporteras in i Ladok

Granskning: Tisdag 5 juni kl. 11.00 - 12.00 , rum 3315.

Plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning: En korrekt och välmotiverad lösning med ett tydligt an-

givet svar ger full poäng.

Hjälpmedel

- $\bullet\,$ Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook

Betygsgränser (6 uppgifter om vardera 3 poäng).

Poäng	0-7.5	8-11	11.5 - 14.5	15-18
Betyg	U	3	4	5

Lycka till!

eem 076 2012-05-21

1. Betrakta likströmskretsen i figur 1 nedan. Beräkna spänningen U_x mellan noderna a och b.

$$R_1=2.0~\Omega$$

$$R_2=2.0~\Omega$$

$$R_3=4.0~\Omega$$

$$U_0=18~\mathrm{V}$$

$$I_0=3.0~\mathrm{A}$$

Figur 1: Likströmskrets.

2. Beräkna strömmen i(t) i kretsen i figur 2. Amplituden till strömmen $i_1(t)$ har uppmätts till 0.5 A och amplituden till strömmen $i_2(t)$ har uppmätts till 1.0 A. Spänningskällan u(t) levererar en sinusformad spänning med vinkelfrekvensen 1000 rad/s och fasvinkeln noll. Antag sinusformat stationärtillstånd.

Figur 2: Växelströmskrets.

eem 076 2012-05-21

3. En växelströmskrets har efter $j\omega$ -transformering ett utseende enligt figur 3. Ta fram Thevenins ekvivalenta tvåpol för kretsen med avseende på polerna a och b. Svaret kan anges på komplex form enligt $j\omega$ -metoden.

$$I_S = 2.0 \angle 0^o \text{ A}$$
 $R = 10 \Omega$ $Z = j10 \Omega$

Figur 3: Växelströmskrets.

4. Betrakta växelströmskretsen i figur 4. Beräkna den medeleffekt som upptas av resistansen R_1 samt av induktansen L. Antag sinusformat stationärtillstånd med $u_s(t) = 16\cos(2.0t - 40^\circ)$ V.

Figur 4: Växelströmskrets.

eem 076 2012-05-21

5. Studera förstärkarkretsen i figur 5. Beräkna ett uttryck för spänningsförstärkningen $\frac{u_o}{u_s}$. Antag ideala operationsförstärkare.

Figur 5: Operationsförstärkarkrets.

6. Två kulor med samma massa m och samma laddning q är upphängda i snören av längden l i en gemensam punkt. Se figur 6. Beräkna vinkelseparationen v mellan de två snörena på grund av att kulorna repellerar varandra. Beräkna ett numeriskt värde på vinkeln v om l=1.0 m, q=1.0 μ C och m=1.0 kg.

Figur 6: Kulor upphängda i snören.

Tentamen eem 076 Elektriska Kretsar och Fält, D1

Examinator: Ants R. Silberberg

24 aug 2012 kl. 08.30-12.30 , sal: M

Förfrågningar: Ants Silberberg, tel. 1808

Lösningar: Anslås måndagen den 27 aug. på institutionens

anslagstavla, plan 5.

Resultat: Rapporteras in i Ladok

Granskning: Onsdag 5 sept. kl. 12.00 - 13.00, rum 3311.

Plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning: En korrekt och välmotiverad lösning med ett tydligt an-

givet svar ger full poäng.

Hjälpmedel

- $\bullet\,$ Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook

Betygsgränser (6 uppgifter om vardera 3 poäng).

Poäng	0-7.5	8-11	11.5-14.5	15-18
Betyg	U	3	4	5

Lycka till!

eem076 2012-08-24

1. Betrakta likströmskretsen i figur 1 nedan. Kretsen innehåller en oberoende spänningskälla, en beroende strömkälla samt tre resistanser. Beräkna spänningen U_3 över resistansen R_3 .

$$R_1 = 3.0 \ \Omega$$
 $R_2 = 5.0 \ \Omega$ $R_3 = 3.0 \ \Omega$ $U = 10 \ V$

Figur 1: Likströmskrets.

- 2. En likströmskrets i form av en tvåpol visas i figur 2.
 - (a) Ta fram Thevenins ekvivalenta tvåpol för kretsen med avseende på polerna A och B.
 - (b) En resistans R_5 kopplas till tvåpolen mellan A och B. Beräkna spänningen U_{AB} mellan polerna A och B. (Ansätt polaritet med plus (+) vid polen A.)

$$R_1 = 200 \ \Omega$$
 $R_2 = 300 \ \Omega$ $R_3 = 60 \ \Omega$ $R_4 = 220 \ \Omega$ $R_5 = 100 \ \Omega$ $U = 120 \ V$

Figur 2: Tvåpol.

eem 076 2012-08-24

3. En växelströmskrets har ett utseende enligt figur 3. Beräkna spänningen $u_1(t)$ över resistansen R_1 . Antag sinusformat stationärtillstånd med den kända strömmen $i(t) = 165\cos(700t)$ mA.

$$R_1 = 180 \ \Omega$$
 $L = 215 \ \mathrm{mH}$

Figur 3: Växelströmskrets.

4. Betrakta växelströmskretsen i figur 4. Beräkna den medeleffekt som avges av spänningskällan. Antag sinusformat stationärtillstånd med $u_s(t)=25\cos(200t)$ V.

Figur 4: Växelströmskrets.

eem076 2012-08-24

5. Studera förstärkarkretsen i figur 5. Beräkna ett uttryck för hur utspänningen U_o beror på inspänningarna U_1 och U_2 . Antag att operationsförstärkaren arbetar i sitt linjära område (utgången ej bottnad) samt att den är ideal.

$$R_3 = 10 \text{ k}\Omega$$
 $R_1 = 2R_3$ $R_2 = 3R_1$ $R_4 = R_1$

Figur 5: Operationsförstärkarkrets.

6. Genom en rörformig, lång, rak cylindrisk ledare med innerradien a och ytterradien b går en likformigt fördelad ström I. En liten del av röret visas i figur 6. Ange det algebraiska uttrycket för hur B-fältets storlek beror av avståndet r från rörets centrum (symmetriaxeln) för de tre områdena r < a, a < r < b och r > b.

Figur 6: Del av en lång och rak cylindrisk ledare.

Notera: Laddningarna som bygger upp strömmen flyter i rörets väggar (a < r < b). Inte inuti röret eller utanför röret.

Tentamen eem 076 Elektriska Kretsar och Fält, D1

Examinator: Ants R. Silberberg

15 jan 2013 kl. 08.30-12.30 , sal: M

Förfrågningar: Ants Silberberg, tel. 1808

Lösningar: Anslås onsdagen den 16 jan. på institutionens anslags-

tavla, plan 5.

Resultat: Rapporteras in i Ladok

Granskning: Tisdag 29 jan. kl. 12.00 - 13.00, rum 3311.

Plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning: En korrekt och välmotiverad lösning med ett tydligt an-

givet svar ger full poäng.

Hjälpmedel

- $\bullet\,$ Typgodkänd miniräknare
- Beta Mathematics Handbook
- Physics Handbook

Betygsgränser (6 uppgifter om vardera 3 poäng).

Poäng	0-7.5	8-11	11.5 - 14.5	15-18
Betyg	U	3	4	5

Lycka till!

eem 076 2013-01-15

1. Likströmskretsen i figur 1 innehåller en oberoende spänningskälla, en beroende strömkälla samt tre resistanser. Beräkna spänningen U_{tot} över kretsens tre parallella grenar.

$$R_1 = 30 \ \Omega$$
 $R_2 = 20 \ \Omega$ $R_3 = 10 \ \Omega$ $U = 8.0 \ V$ $k = 2$

Figur 1: Likströmskrets.

2. En likströmskrets i form av en tvåpol visas i figur 2. Ta fram Thevenins ekvivalenta tvåpol för kretsen med avseende på polerna a och b.

Figur 2: Tvåpol.

eem 076 2013-01-15

3. En växelströmskrets har ett utseende enligt figur 3. Beräkna strömmen $i_s(t)$ som avges av spänningskällan. Antag sinusformat stationärtillstånd.

$$R_1=150~\Omega$$

$$L=2.0~\mathrm{H}$$

$$u_s(t)=20\cos(10t)~\mathrm{V}$$

$$R_2=10~\Omega$$

$$C=4.0~\mathrm{mF}$$

Figur 3: Växelströmskrets.

4. Betrakta växelströmskretsen i figur 4. Beräkna den medeleffekt som upptas av resistansen R_1 . Antag sinusformat stationärtillstånd med $u_s(t) = 12\cos(1000t + 60^\circ)$ V.

Figur 4: Växelströmskrets.

eem076 2013-01-15

5. En krets är uppbyggd runt två operationsförstärkare enligt figur 5. Beräkna spänningen u_o som den anges i figuren. Antag att operationsförstärkarna arbetar i sitt linjära område (utgången ej bottnad) samt att de är ideala.

$$R = 10 \text{ k}\Omega$$
 $R_1 = 1.0 \text{ k}\Omega$ $R_2 = 1.0 \text{ k}\Omega$ $u_1 = 3.0 \text{ V}$ $u_2 = 4.0 \text{ V}$

Figur 5: Operationsförstärkarkrets.

6. I en rak lång dubbelledare som består av två parallella enkelledare flyter strömmen i(t) i vardera enkelledaren. De båda strömriktningarna är motriktade. Det inbördes avståndet mellan enkelledarna är d, se figur 6. Dubbelledaren är omgiven av luft. Ledarna kan betraktas som infinitesimalt tunna.

$$d = 8.0 \text{ mm}$$
 $i(t) = 2.0\sin(100\pi t) \text{ A}$

- (a) Beräkna B fältet på avståndet y=1.0 m från dubbelledarens centrum i det plan som innehåller de båda ledarna.
- (b) Beräkna B fältet i centerpunkten som är markerad med en rund ring $[\circ]$.

Figur 6: Del av en lång och rak dubbelledare.