

CPU DESIGN

- The Datapath
- Single-Cycle Control
- Performance

Focus on the Subset:

addi, add/sub/and/or/slt, lw/sw, beq, j

Building the

Datapath

Generating the Control Signals

All signals depend on the instruction, i.e. on a total of 12 bits → complex.

Note that non-ALU signals depend only on the 6-bit op_code → simpler.

Hence, **split** the control into a main control unit that sees only the opcode, and an **auxiliary** one that sees the funtion code.

The two communicate via a new signal, ALUop

23

The Operation Signal

A 3-bit signal through which the auxiliary control unit tells the ALU to:

000 = and

001 = or

010 = add

110 = sub

111 = slt

25

The ALUop Signal

A 2-bit signal through which the main control unit tells the auxiliary to:

00 = add (no matter what the fun_code is)

01 = subtract (no matter what the fun_code is)

10 = R-Type (follow the fun_code

26

The Main Control Unit RegDst ALUsrc MemToReg RegWrite MemRead MemWrite Branch Jump ALUop-1 ALUop-0

The Single-Cycle Performance

Component Delays

RF=50, ALU=100, and MEM (both IM and DM)=200 ps.

Compute CPU Time to execute various instructions j, beq, add, sw, lw

Compute Max GHz for the CPU Clock

Answer: 1.66 GHz

Critique of S/Cycle

- +very simple
- -caters to the slowest
- -h/w redundancy

32