DIFFERENTIATION

1. DEFINITION

(a) Let us consider a function y = f(x) defined in a certain interval. It has a definite value for each value of the independent variable x in this interval.

Now, the ratio of the increment of the function to the increment in the independent variable,

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Now, as $\Delta x \to 0$, $\Delta y \to 0$ and $\frac{\Delta y}{\Delta x} \to$ finite quantity, then

derivative f(x) exists and is denoted by y' or f'(x) or $\frac{dy}{dx}$

Thus,
$$f'(x) = \lim_{x \to 0} \left(\frac{\Delta y}{\Delta x} \right) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(if it exits)

for the limit to exist.

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{f(x-h)-f(x)}{-h}$$

(Right Hand derivative) (Left Hand derivative)

(b) The derivative of a given function f at a point x = a of its domain is defined as:

$$\underset{h\to 0}{\text{Limit}} \frac{f(a+h)-f(a)}{h}, \text{ provided the limit exists \& is}$$

denoted by f'(a).

Note that alternatively, we can define

$$f'(a) = \text{Limit}_{x \to a} \frac{f(x) - f(a)}{x - a}$$
, provided the limit exists.

This method is called first principle of finding the derivative of f(x).

2. DERIVATIVE OF STANDARD FUNCTION

(i)
$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}; x \in \mathbb{R}, n \in \mathbb{R}, x > 0$$

(ii)
$$\frac{d}{dx}(e^x) = e^x$$

(iii)
$$\frac{d}{dx}(a^x) = a^x \cdot \ln a (a > 0)$$

(iv)
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

(v)
$$\frac{d}{dx} (\log_a |x|) = \frac{1}{x} \log_a e$$

(vi)
$$\frac{d}{dx}(\sin x) = \cos x$$

(vii)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(viii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(ix)
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

(x)
$$\frac{d}{dx}(\csc x) = -\csc x \cdot \cot x$$

(xi)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

(xii)
$$\frac{d}{dx}$$
 (constant) = 0

(xiii)
$$\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}, -1 < x < 1$$

(xiv)
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}, -1 < x < 1$$

(xv)
$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2}, \quad x \in \mathbb{R}$$

(xvi)
$$\frac{d}{dx} \left(\cot^{-1} x \right) = \frac{-1}{1+x^2}, \quad x \in \mathbb{R}$$

(xvii)
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}, \quad |x| > 1$$

(xviii)
$$\frac{d}{dx}$$
 (cosec⁻¹x) = $\frac{-1}{|x|\sqrt{x^2-1}}$, $|x| > 1$

(xix) Results:

If the inverse functions f & g are defined by y = f(x) & x = g(y). Then g(f(x)) = x.

$$\Rightarrow$$
 g'(f(x)). f'(x)=1.

This result can also be written as, if $\frac{dy}{dx}$ exists & $\frac{dy}{dx} \neq 0$, then

$$\frac{dx}{dy} = 1/\left(\frac{dy}{dx}\right) \text{ or } \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \text{ or } \frac{dy}{dx} = 1/\left(\frac{dx}{dy}\right) \left\lceil \frac{dx}{dy} \neq 0 \right\rceil$$

3. THEOREMS ON DERIVATIVES

If u and v are derivable functions of x, then,

- (i) Term by term differentiation : $\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$
- (ii) Multiplication by a constant $\frac{d}{dx}(K u) = K \frac{du}{dx}$, where K is any constant
- (iii) "Product Rule" $\frac{d}{dx}(u.v) = u\frac{dv}{dx} + v\frac{du}{dx}$ known as
- (a) If u_1 , u_2 , u_3 , u_4 , ..., u_n are the functions of x, then

$$\frac{d}{dx}(u_1.u_2.u_3.u_4....u_n)$$

$$= \! \left(\frac{du_1}{dx} \right) \! \left(u_2 \; u_3 \; u_4 \; ... \, u_n \, \right) \! + \! \left(\frac{du_2}{dx} \right) \! \left(u_1 \; u_3 \; u_4 \; ... \, u_n \, \right)$$

$$+ \left(\frac{du_3}{dx}\right) \left(u_1 \ u_2 \ u_4 \ ... \ u_n\right) + \left(\frac{du_4}{dx}\right) \left(u_1 \ u_2 \ u_3 \ u_5 \ ... \ u_n\right)$$

$$+ ... + \left(\frac{du_n}{dx}\right) (u_1 \ u_2 \ u_3 ... u_{n-1})$$

(iv) "Quotient Rule"
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \left(\frac{du}{dx} \right) - u \left(\frac{dv}{dx} \right)}{v^2}$$
 where $v \neq 0$

known as

(b) Chain Rule: If y = f(u), u = g(w), w = h(x)

then
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dw} \cdot \frac{dw}{dx}$$

or
$$\frac{dy}{dx} = f'(u) \cdot g'(u) \cdot h'(x)$$

In general if y = f(u) then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$

4. METHODS OF DIFFERENTIATION

4.1 Derivative by using Trigonometrical Substitution

Using trigonometrical transformations before differentiation shorten the work considerably. Some important results are given below:

(i)
$$\sin 2x = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$$

(ii)
$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

(iii)
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}, \tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

- (iv) $\sin 3x = 3 \sin x 4 \sin^3 x$
- (v) $\cos 3x = 4 \cos^3 x 3 \cos x$

(vi)
$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$

(vii)
$$\tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x}$$

DIFFERENTIATION

(viii)
$$\tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$$

(ix)
$$\sqrt{1 \pm \sin x} = \cos \frac{x}{2} \pm \sin \frac{x}{2}$$

(x)
$$\tan^{-1} x \pm \tan^{-1} y = \tan^{-1} \left(\frac{x \pm y}{1 \mp xy} \right)$$

(xi)
$$\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} \left\{ x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2} \right\}$$

(xii)
$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left\{ xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2} \right\}$$

(xiii)
$$\sin^{-1} x + \cos^{-1} x = \tan^{-1} x + \cot^{-1} x = \sec^{-1} x + \csc^{-1} x = \pi/2$$

(xiv)
$$\sin^{-1}x = \csc^{-1}(1/x)$$
; $\cos^{-1}x = \sec^{-1}(1/x)$; $\tan^{-1}x = \cot^{-1}(1/x)$

Some standard substitutions:

Expressions Substitutions

$$\sqrt{(a^2 - x^2)}$$
 $x = a \sin \theta$ or $a \cos \theta$

$$\sqrt{(a^2 + x^2)}$$
 $x = a \tan \theta$ or $a \cot \theta$

$$\sqrt{(x^2 - a^2)}$$
 $x = a \sec \theta \text{ or a cosec } \theta$

$$\sqrt{\left(\frac{a+x}{a-x}\right)}$$
 or $\sqrt{\left(\frac{a-x}{a+x}\right)}$ $x = a \cos \theta$ or $a \cos 2\theta$

$$\sqrt{(a-x)(x-b)}$$
 or $x = a \cos^2 \theta + b \sin^2 \theta$

$$\sqrt{\left(\frac{a-x}{x-b}\right)}$$
 or $\sqrt{\left(\frac{x-}{a-x}\right)}$

$$\sqrt{(x-a)(x-b)}$$
 or $x = a \sec^2 \theta - b \tan^2 \theta$

$$\sqrt{\left(\frac{x-a}{x-b}\right)}$$
 or $\sqrt{\left(\frac{x-b}{x-a}\right)}$

$$\sqrt{\left(2ax - x^2\right)} \quad x = a\left(1 - \cos\theta\right)$$

4.2 Logarithmic Differentiation

To find the derivative of:

If
$$y = \{f_1(x)\}^{f_2(x)}$$
 or $y = f_1(x) \cdot f_2(x) \cdot f_3(x) \dots$

or
$$y = \frac{f_1(x).f_2(x).f_3(x)...}{g_1(x).g_2(x).g_3(x)...}$$

then it is convenient to take the logarithm of the function first and then differentiate. This is called derivative of the logarithmic function.

Important Notes (Alternate methods)

1. If
$$y = \{f(x)\}^{g(x)} = e^{g(x)\ln f(x)}$$
 ((variable) variable) $\{\because x = e^{\ln x}\}$

$$\therefore \frac{dy}{dx} = e^{g(x)\ln f(x)} \cdot \left\{ g(x) \cdot \frac{d}{dx} \ln f(x) + \ln f(x) \cdot \frac{d}{dx} g(x) \right\}$$

$$= \left\{ f(x) \right\}^{g(x)} \cdot \left\{ g(x) \cdot \frac{f'(x)}{f(x)} + \ln f(x) \cdot g'(x) \right\}$$

2. If
$$y = \{f(x)\}^{g(x)}$$

 $\therefore \frac{dy}{dx} = Derivative of y treating f(x) as constant + Derivative of y treating g(x) as constant$

$$= \{f(x)\}^{g(x)} . \ln f(x) . \frac{d}{dx} g(x) + g(x) \{f(x)\}^{g(x)-1} . \frac{d}{dx} f(x)$$

$$= \{f(x)\}^{g(x)} . \ln f(x).g'(x) + g(x).\{f(x)\}^{g(x)-1}.f'(x)$$

4.3 Implict Differentiation: $\phi(x, y) = 0$

- (i) In order to find dy/dx in the case of implicit function, we differentiate each term w.r.t. x, regarding y as a function of x & then collect terms in dy/dx together on one side to finally find dy/dx.
- (ii) In answers of dy/dx in the case of implicit function, both x & y are present.

Alternate Method: If f(x, y) = 0

then
$$\frac{dy}{dx} = -\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} = -\frac{\text{diff. of f w.r.t. x treating y as constant}}{\text{diff. of f w.r.t. y treating x as constant}}$$

4.4 Parametric Differentiation

If y = f(t) & x = g(t) where t is a Parameter, then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
...(1)

1.
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

2.
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \cdot \frac{dt}{dx} \left(\because \frac{dy}{dx} \text{ in terms of } t \right)$$

$$= \frac{d}{dt} \left(\frac{f'(t)}{g'(t)} \right) \cdot \frac{1}{f'(t)} \quad \{From(1)\}$$

$$= \frac{f''(t)g'(t) - g''(t)f'(t)}{\{f'(t)\}}$$

4.5 Derivative of a Function w.r.t. another Function

Let
$$y = f(x)$$
; $z = g(x)$ then $\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$

4.6 Derivative of Infinite Series

If taking out one or more than one terms from an infinite series, it remains unchanged. Such that

(A) If
$$y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$$

then
$$y = \sqrt{f(x) + y} \implies (y^2 - y) = f(x)$$

Differentiating both sides w.r.t. x, we get $(2y-1) \frac{dy}{dx} = f'(x)$

(B) If
$$y = \{f(x)\}^{\{f(x)\}}^{\{f(x)\}}$$
 then $y = \{f(x)\}^y \Rightarrow y = e^{y \ln f(x)}$

Differentiating both sides w.r.t. x, we get

$$\frac{dy}{dx} = \frac{y\{f(x)\}^{y-1}.f'(x)}{1 - \{f(x)\}^{y}.l \cdot n \cdot f(x)} = \frac{y^{2}f'(x)}{f(x)\{1 - y \cdot l \cdot n \cdot f(x)\}}$$

5. DERIVATIVE OF ORDER TWO & THREE

Let a function y = f(x) be defined on an open interval (a, b). It's derivative, if it exists on (a, b), is a certain function f'(x) [or (dy/dx) or y'] & is called the first derivative of y w.r.t. x. If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second derivative of y w.r.t. x & is denoted by f''(x) or (d^2y/dx^2) or y''.

Similarly, the 3rd order derivative of y w.r.t. x, if it exists, is

defined by
$$\frac{d^3y}{dx} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$$
 it is also denoted by $f''(x)$ or y''' .

Some Standard Results:

$$(i) \qquad \frac{d^n}{dx^n} \Big(ax+b\Big)^m = \frac{m!}{\big(m-n\big)!}.a^n \ . \big(ax+b\big)^{m-n} \ , \ m \geq n.$$

(ii)
$$\frac{d^n}{dx^n} x^n = n!$$

(iii)
$$\frac{d^n}{dx^n} \left(e^{mx} \right) = m^n \cdot e^{mx}, m \in R$$

(iv)
$$\frac{d^n}{dx^n} \left(\sin \left(ax + b \right) \right) = a^n \sin \left(ax + b + \frac{n\pi}{2} \right), n \in \mathbb{N}$$

(v)
$$\frac{d^n}{dx^n} (\cos(ax+b)) = a^n \cos(ax+b+\frac{n\pi}{2}), n \in \mathbb{N}$$

$$(vi) \quad \frac{d^n}{dx^n} \Big\{ e^{ax} \sin \big(bx + c\big) \Big\} = r^n \cdot e^{ax} \cdot \sin \big(bx + c + n \phi\big), \, n \in N$$

where
$$r = \sqrt{(a^2 + b^2)}$$
, $\phi = \tan^{-1}(b/a)$.

$$(vii) \ \frac{d^n}{dx^n} \Big\{ e^{ax} . \cos \big(bx + c \big) \Big\} = r^n . e^{ax} . \cos \big(bx + c + n \, \phi \big), \, n \in \mathbb{N}$$

where
$$r = \sqrt{(a^2 + b^2)}$$
, $\phi = \tan^{-1}(b/a)$.

6. DIFFERENTIATION OF DETERMINANTS

If
$$F(X) = \begin{vmatrix} f(x) & g(x) & h(x) \\ \ell(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$$
,

where f, g, h, ℓ , m, n, u, v, w are differentiable function of x then

$$F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ \ell(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ \ell'(x) & m'(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$$

$$+ \begin{vmatrix} f(x) & g(x) & h(x) \\ \ell(x) & m(x) & n(x) \\ u'(x) & v'(x) & w'(x) \end{vmatrix}$$

7. L' HOSPITAL'S RULE

If f(x) & g(x) are functions of x such that:

(i)
$$\lim_{x\to a} f(x) = 0 = \lim_{x\to a} g(x) \text{ or } \lim_{x\to a} f(x) = \infty = \lim_{x\to a} g(x) \text{ and }$$

- (ii) Both f(x) & g(x) are continuous at x = a and
- (iii) Both f(x) & g(x) are differentiable at x = a and
- (iv) Both f'(x) & g'(x) are continuous at x = a, Then

$$\underset{x \to a}{\operatorname{Limit}} \frac{f(x)}{g(x)} = \underset{x \to a}{\operatorname{Limit}} \frac{f'(x)}{g'(x)} = \underset{x \to a}{\operatorname{Limit}} \frac{f''(x)}{g''(x)} \text{ \& so on till}$$

indeterminant form vanishes.

8. ANALYSIS & GRAPHS OF SOME USEFUL FUNCTION

(i)
$$y = \sin^{-1}(\sin x)$$
 $x \in \mathbb{R} \; ; \; y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

ii)
$$y = \cos^{-1}(\cos x)$$
 $x \in R ; y \in [0, \pi]$

$$(iii) \quad y = tan^{-1} (tan x) \qquad \qquad x \in R - \left\{ x : x = \left(2n+1\right) \frac{\pi}{2}, n \in Z \right\}; \ y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

