

Chao Xue¹, Junchi Yan², Rong Yan¹, Stephen M. Chu¹, Yonggang Hu³, Yonghua Lin¹
¹IBM Research – China, ³IBM Systems

²Department of CSE and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University

3 IBM Corporation

IBM Research China

Outline

- Introduction of AutoML
- Transferable AutoML by Model Sharing over Grouped Dataset

AutoML algorithms--from Random search, Bayesian Optimization to

Evolution, Reinforcement Learning and Continuous space optimization

s = 2

s=1

s = 0 $n_i \quad r_i$

$$egin{array}{lcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba}. \end{array}$$

$$\mu_n(\mathbf{x}) = \mu_0(\mathbf{x}) + \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{m})$$

$$\sigma_n^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}),$$

Bayesia<mark>n</mark> Optimization

Adaptive Random Search (Hyperband)

Reinforcement Learning

Temporal Difference: Q-learning

Policy Gradients

Continuous Space

Evolution

Example: Neural Network Encoding

Conv, kernel size: 3, output channel 32

Dilated conv, kernel size: 5, output channel 64

Kernel size: 3, stride 3, max pooling

Output size: 512

NEUNETS: AN AUTOMATED SYNTHESIS ENGINE FOR NEURAL NETWORK DESIGN, Atin Sood, Benjamin Elder, Benjamin Herta and Chao Xue, etc., arXiv:1901.06261v1, 2019

Model representation:

Components: 2

FC numbers: 2

Conv stacks: [3, 2]

Conv type: [conv, dilated, dilated, conv, dilated, conv]

Conv kernel size: [3,5,5,3,5,3]

Conv output size: [32,64,64,32,64,32]

Pooling kernel size: [3,3] Pooling stride size: [3,3] Pooling type: [max, max]

FC size: [512, 512]

Example: Neural Network Encoding

Conv, kernel size: 3, output channel 32

Dilated conv, kernel size: 5, output channel 64

Kernel size: 3, stride 3, max pooling

Output size: 512

Model representation:

Components: 2

FC numbers: 0

Conv stacks: [4, 3]

Skip pattern: [1-11-011, 1-11]

Conv type: [conv, dilated, dilated, conv, dilated, conv, conv]

Conv kernel size: [3,5,5,3,5,3,3]

Conv output size: [32,64,64,32,64,32,32]

Pooling kernel size: [3,3,3] Pooling stride size: [3,3,3] Pooling type: [max, max] NEUNETS: AN AUTOMATED SYNTHESIS ENGINE FOR NEURAL NETWORK DESIGN, Atin Sood, Benjamin Elder, Benjamin Herta and Chao Xue, etc., arXiv:1901.06261v1, 2019

Neural Network Encoding

HIERARCHICAL REPRESENTATIONS FOR EFFICIENT ARCHITECTURE SEARCH, Hanxiao Liu, ICLR 2018

High efficient AutoML – Three approaches

Meta-learning:

We introduce a meta learning method to express a dataset d in a dataset feature space Ω_d . To prove this representation can work well for AutoML, we consider the AutoML problem first. The basic idea for AutoML is to identify the model m from a given dataset d:

$$m^* = \operatorname*{arg\,max}_{m} p(m|d) \tag{1}$$

It is reasonable to share m^* among the datasets that above posterior distributions conditioned on are closely approximated. To compare the posterior distributions over models between two different datasets, $p(m|d_1)$ and $p(m|d_2)$, we use Kullback-Leibler (KL) divergence:

$$KL (p(m|d_1)||p(m|d_2))$$

$$= \int p(m|d_1) \ln \left\{ \frac{p(m|d_1)}{p(m|d_2)} \right\} dm$$

$$\approx \sum_{b_i} \frac{p(b_i)p(d_1|b_i)}{\sum_{b_j} p(b_j)p(d_1|b_j)} \ln \left(\frac{p(d_1|b_i)}{p(d_2|b_i)} \frac{\sum_{b_j} p(b_j)p(d_2|b_j)}{\sum_{b_j} p(b_j)p(d_1|b_j)} \right)$$
(2)

Transfer Architecture:

Markov process and hypothesis test mechanism for dataset clustering. These two components can handle Type II error and Type I error for dataset grouping (incorrectly accepting grouping and incorrectly rejecting grouping), respectively.

(d) FASHION-MNIST

Table 2: Total search time (in days, including the overhead of running benchmark models), total classification relative errors (TRE) and benchmark overhead on 7 dataset: in model search from scratch setting.

Techniques combination	Total search time	TRE	Overhead
Hyperband [22]	10.40	0	0
Warmstart [24] + Hyperband	6.23	0.412	0
Meta-learning [26] + Hyperband	3.85	0.118	0
Tr-AutoML(Random) + Hyperband	2.96	1.653	0
Tr-AutoML(Kmeans) + Hyperband	5.44	0.059	0.2
Tr-AutoML(Seq. Kmeans [13]) + Hyperband	4.48	0.061	0.2
Tr-AutoML(MH) + Hyperband	3.17	0.062	0.2
MetaQNN [3]	16.29	0	0
Warmstart [24] + MetaQNN	7.19	0.276	0
Meta-learning [26] + MetaQNN	5.46	0.075	0
Tr-AutoML(Random) + MetaQNN	4.68	1.149	0
Tr-AutoML(Kmeans) + MetaQNN	7.87	0.036	0.2
Tr-AutoML(Seq. Kmeans [13]) + MetaQNN	6.32	0.041	0.2
Tr-AutoML(MH) + MetaQNN	4.85	0.039	0.2
ENAS [31]	12.22	0	0
Warmstart [24] + ENAS	5.10	0.132	0
Meta-learning [26] + ENAS	4.82	0.044	0
Tr-AutoML(Random) + ENAS	4.02	0.471	0
Tr-AutoML(Kmeans) + ENAS	6.17	0.017	0.2
Tr-AutoML(Seq. Kmeans [13]) + ENAS	5.04	0.019	0.2
Tr-AutoML(MH) + ENAS	4.22	0.019	0.2

Table 4: Searching time (in days) and total classification relative errors on four datasets: in model search from predefined model setting.

Algorithm	Time	TRE
MetaQNN	8	0
Tr-AutoML(Random) + MetaQNN	2.8	1.78
Tr-AutoML(Kmeans) + MetaQNN	4.5	0.069
Tr-AutoML(MH) + MetaQNN	3.0	0.074

Table 5: Search time (in days, including overhead). Test accuracy: in transfer from basic cells setting.

Target dataset	Techniques	Search time	Accuracy
FASHION-MNIST	Hyperband [22]	1.67	0.942
	Meta-learning [26]	0.001	0.939
	Tr-AutoML(Random)	0	0.936
	Tr-AutoML(MH)	0.013	0.939
STL10	ENAS [31]	1.08	0.734
	Meta-learning [26]	0.001	0.680
	Tr-AutoML(Random)	0	0.692
	Tr-AutoML(MH)	0.017	0.725
ImageNet	NASNet-A [43]	1800	0.740
	Meta-learning [26]	2.56	0.717
	Tr-AutoML(Random)	2.54	0.712
	Tr-AutoML(MH)	2.81	0.734

Thank you for listening