Zadame 1. Jednoznacine predstatiene haidej niericaj linty neugristý xpostaci $x = 5 \cdot \text{M} \cdot \text{B}^{c}$, gdie s = sgn x, $m \in [\frac{1}{8}, 1)$, $c \in \mathbb{Z}$, $B \in \{2,3,4,...\}$.

w postaci znormatizovanej.

Kardy linds moina puedstanic jaho SMB:

(1) Show 5 to male, to moving go poiningé, wtedy x=mBc (2 dolitadnoscig do |X|).

(2) Dright term many $x = mB^c \Rightarrow m = \frac{x}{B^c}$, wise dla link is systemic B-linbourge (dusploy), tosphony, consularly etc.) moreour presumpé je o c miejsé is levo, a vartosé e dobterly tale, aby $m \in \left[\frac{1}{B}, 1\right] - w$ tym celus precinele presurary tale, aby pred nim by 0, a za nim hicha is systemic lichonym diestonym pren B.

Styd haida liaba vacynish X ma prudstrurienie u tym systeme.

Jednomacrosi representagi X:

(1) Palitadany, ic isting duit wine representage sinb jedry linty.

Znale jest study wige go pomijary:

 $x = Sm_1 B^{c_1} = Sm_2 B^{c_2} = Sm_1 B^{c_1} = m_2 B^{c_2} = \frac{m_1}{m_2} = B^{c_2-c_1}$

(2) Rospatung prypadlii (dopromeding do sprecenosa)^{M2} $c_1 = c_2 - D \text{ Wedy } B^0 = 1 = \frac{M_1}{M_2} = M_1 = M_2$

 $c_1 > c_2 - D$ whily $B^{C_2-C_1} \in B^{-1} \Rightarrow \frac{m_1}{m_2} \le \frac{1}{8} \stackrel{f}{=} > m_1 \le \frac{m_2}{B}$, jednale $m_1, m_2 \in \left[\frac{1}{B}, 1\right]$, right godyby m_1 by io and dobugan values, io, to musically valued io $m_2 \ge 1$.

 $C_1 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_1 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_1 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_1 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_1 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_2 < C_2$ — $C_1 < C_2$ — $C_2 < C_2$ —

Zadanie 2. Usrystuz limby zmiemoponycyjne postuci:
$$x = \pm \left(0.1e_{-2}e_{-3}e_{-4}\right)_2 \cdot 2^{\pm c}$$
; $e_{i,j} \in \{0,1\}$

24 liaby dodature i tyle Sam liub vjembych, wyc Igemre many 48 talerch liub. Najminejsza/najmyksin vantosé co do moduly:

min
$$(|x|) = 0.01000_z = 0.25$$

max $(|x|) = 1.1110_z = 1.875$
Styd many, ie $X \in [1.875, 1.875]$

Styd many, ie XE [1.875, 1.875], a merlomiar da XE [-0.25,0,25].

Zadame 3. Wyharai, ie
$$\frac{|rd(x)-x|}{|x|} \le 2^{-t}$$
 dla $x = sm 2^c$.

Informage:
$$s = sgn(x)$$
, $c \in \mathbb{Z}$, $m \in \left[\frac{1}{2}, 1\right)$, $rd(x) = sm_t^r 2^c$, $m_t^r \in \left[\frac{1}{2}, 1\right)$,

$$|m-m_t^r| \leq \frac{1}{2} \cdot 2^{-t}$$

Dowsd:

Dowsd:
$$\frac{1rd(x)-x1}{|x|} = \frac{|sm_{\xi}^{2}2^{c}-sm_{\xi}^{2}|}{|sm_{\xi}^{2}|} = \frac{|(s2^{c})(m_{\xi}^{r}-m)|}{|s2^{c}|m|} = \frac{|m_{\xi}^{r}-m|}{|m|} \leq$$

$$\leq \frac{\frac{1}{2} \cdot 2^{-t}}{m} = \frac{2^{-t}}{2m} \leq 2^{-t}$$

malisymatinjeng utamel, a show $M \in \left[\frac{1}{2}, 1\right]$, to $2m \ge 1$, a dla haidego m sightnego od $\frac{1}{2}$ utamel maleje

Zadame 4. IEEE 754 - Standard representacji binavnej i openyi na tiobach imiemsprecishotych

32 bity (64)

bit znalin

1 - ujemna 8 bitoù cedy, tur ughtadulle 2,

23 bity mantzsy 2 pomingian

0 - dodatnia 2alieo nyhradnihosu [-127, 128],

min i max nyhradniho ma

viacrenz specjalne

M

(cyli dla 1.1100... mantza

bydni miała postrei 1100...)

Dohtadnosi ~ 7-8 migisc diverithych, zahres od dicto ±1.18.10⁻³⁸ do oboto ±3.4.10³⁸ Szcregsline psypadhi:

wyhitaduik jest 6. +0 - wsystlve toity 50 zerami usung -127 . -0 - bit znahn ustrikiony, terrte jest zenni w hodrie z noddridem lub zero w hodre linby male (noedomiar) - mantjsa wina od zera binarnym . + M - ustaviare wsystlir bity myhtaduike (128

. ± 00 - ustaniare usnystur bity nyhtadnike (128 v hodre z Nadminiem lub 255 w hodre binanym), mentysu wina reco, more sig pojahić jaho nymh dzielenia pres 0.

· NaN - Not a Number, myhtadník jar vyžej, može sig pojausi jako vynik pierkiastlovania tirky ujemný

Zadanie 5. X, by - Linby masynore, pohazaí, že algorytim obliczający d:= $\sqrt{x^2+y^2}$ posturi: $u:= x^*x$, $u:= u+y^*y$, d:= sqrt(u) more pohodowań zjacisto nadmiam.

Nied Xft $\in 2^{32}$, weing $x = y = 2^{30}$. When $\sqrt{x^2 + y^2} = \sqrt{(2^{30})^2 + (2^{30})^2} = \sqrt{2^{60} + 2^{60}} = \sqrt{2^{60}(1+1)} = 2^{30}\sqrt{2}! \in Xft$, judial $2^{60} \notin Xft$. Aby

tam upobice, prelintation wise (dla X > y, w vante potneby swapijemy):

 $\int x^{2} + y^{2} = \int x^{2} \left(1 + \frac{y^{2}}{x^{2}}\right)^{2} = |x| \cdot \sqrt{1 + \left(\frac{y}{x}\right)^{2}}$ $\text{Show } x \ge y,$ $\text{to } \sqrt{1 + \left(\frac{y}{x}\right)^{2}} \le 2,$ $\text{wige } \sqrt{2} \cdot \max\left(|x|/|y|\right) \in X_{fl}.$

Dingosé euliderona: $||x_n|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ Wige optymalizajemy w następujący sposob (radiadając $X_i \ge X_{i+1}$):

 $= |x_1| \cdot \sqrt{n} = \max(x_1, x_2, ..., x_n) \cdot \sqrt{n}$

Zandanie 6. Popramenne $f(x) = 4038 \cdot \frac{\sqrt{x^{11}+1}-1}{x^{11}}$, aby miesuic sig u predziale double'a.

$$f(x) = 4038 \frac{\sqrt{x^{11} + 1} - 1}{x^{11}} = 4038 \frac{(\sqrt{x^{11} + 1} - 1)(\sqrt{x^{11} + 1} + 1)}{x^{11}(\sqrt{x^{11} + 1} + 1)} = 4038 \cdot \frac{x^{11} + 1 - 1}{x^{11}(\sqrt{x^{11} + 1} + 1)} = 4038 \cdot \frac{1}{x^{11}(\sqrt{x^{11} + 1} + 1)} = 4038 \cdot \frac{1}{x^{11}(\sqrt{x^{11$$

 $(?) = -\frac{1}{21} + \frac{x^2}{91} - \frac{x^9}{111} + \dots$