| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

## MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

| Standard V2.                                                          | Mark:      |                   |                                                 |                                                   |   |                                                   |                                                  |
|-----------------------------------------------------------------------|------------|-------------------|-------------------------------------------------|---------------------------------------------------|---|---------------------------------------------------|--------------------------------------------------|
| Determine if $\begin{bmatrix} 0 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ below | ongs to th | e span of the set | $\left\{\begin{array}{c} \\ \end{array}\right.$ | $\begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}$ | , | $\begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix}$ | $\left. \begin{array}{c} \\ \end{array} \right.$ |

Solution: Since

$$RREF \left( \begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & -1 \\ -1 & 4 & 6 \\ 5 & 3 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

does not contain a contradiction,  $\begin{bmatrix} 0\\-1\\6\\-7 \end{bmatrix}$  is a linear combination of the three vectors.

Standard S1.

Mark:

Determine if the set of vectors  $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$  is linearly dependent or linearly independent

Solution:

RREF 
$$\left( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

Let 
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Find a basis of  $W$ .

Solution:

$$RREF \left( \begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then 
$$\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$$
 is a basis for  $W$ .

## Standard S4.

Mark

Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$ . Compute the dimension of W.

Solution: Let  $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$ , and compute  $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$ . Since there are two pivot columns, dim W = 2.

## Additional Notes/Marks