Summarization and text generation

HSE 22.11.2021 Alena Fenogenova

Today

- Summarization
 - types
 - metrics
 - methods
- Paraphrasing
- Simplification

Summarization

Summarization is the task of condensing a piece of text to a shorter version, reducing the size of the initial text while at the same time preserving key informational elements and the meaning of content.

- data reduction
- important/key information
- the same meaning

Summarization. Application

- News
- Books/series/referats summaries
- Documents sum
- Media monitoring
- Video scripting
- Emails overload
- Financial research
- E-learning and class assignments
- in chatbots
- etc.

Summarization. Types

Extractive Summary: the network calculates the most important sentences from the article and gets them together to provide the most meaningful information from the article.

Abstractive Summary: The network creates new sentences to encapsulate maximum gist of the article and generates that as output.

The sentences in the summary may or may not be contained in the article.

Summarization. Types

Document summarization (extreme)

Many documents or huge texts into very short form.

Sentence Compression

Sentence: Floyd Mayweather is open to fighting Amir Khan in the future, despite snubbing the Bolton-born boxer in favour of a May bout with Argentine Marcos Maidana, according to promoters Golden Boy

Compression: Floyd Mayweather is open to fighting Amir Khan in the future.

Summarization. Types

Opinions summarization - lots of opinions need to sum in one join opinion.

Opinion summary should be:

- (1) centered on entities and aspects
- and sentiments about them
- (2) quantitative

<u>Contrastive summarization</u> (for some style) jointly generating summaries for two entities in order to highlight their differences.

(for example)

Summarization. Metrics

ROUGE-N: Overlap of N-grams

Recall:
$$\frac{|\operatorname{ngrams}(ref) \& \operatorname{ngrams}(hyp)|}{|\operatorname{ngrams}(ref)|}$$

Precision:
$$\frac{|\operatorname{ngrams}(ref) \& \operatorname{ngrams}(hyp)|}{|\operatorname{ngrams}(hyp)|}$$

F1:
$$2\frac{P*R}{R+P}$$

ROUGE-L: Longest Common Subsequence (LCS) based statistics. Longest common subsequence problem takes into account sentence level structure similarity naturally and identifies longest co-occurring in sequence n-grams automatically.

Better for abstractive! FLUENCY

Summarization. Metrics

<u>The Meteor</u> automatic evaluation metric scores machine translation and other generation tasks hypotheses by aligning them to one or more references.

Alignments are based on exact, stem, synonym, and paraphrase matches between words and phrases.

Weighted F-score
$$F = \frac{PR}{\alpha P + (1 - \alpha)R}$$

Penalty function for incorrect word order

Penalty =
$$\gamma(\frac{c}{m})^{\beta}$$
, where $0 \le \gamma \le 1$

$$Score = Fmean * (1 - Penalty)$$

Summarization	Metric	Paper	Code
Julillalization	ROUGE	ROUGE: A Package for Automatic Evaluation of Summaries	Link
Metrics	ROUGE-we	Better Summarization Evaluation with Word Embeddings for ROUGE	Link
https://github.com/Yal e-LILY/SummEval#evalu ation-toolkit Read: https://direct.mit.edu/t acl/article/doi/10.1162 /tacl_a_00373/100686/ SummEval-Re-evaluatin g-Summarization-Evalu ation	MoverScore	MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance	Link
	BertScore	BertScore: Evaluating Text Generation with BERT	Link
	Sentence Mover's Similarity	Sentence Mover's Similarity: Automatic Evaluation for Multi- Sentence Texts	Link
	SummaQA	Answers Unite! Unsupervised Metrics for Reinforced Summarization Models	Link
	BLANC	Fill in the BLANC: Human-free quality estimation of document summaries	Link
	SUPERT	SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization	Link
	METEOR	METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments	Link
	S^3	Learning to Score System Summaries for Better Content Selection Evaluation	Link
	Misc. statistics (extractiveness, novel n-grams, repetition, length)	Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies	Link

Summarization. Datasets

English:

- <u>CNN / Daily Mail</u> (single document, many extractive)
- X-Sum (single doc, short summaries)
- Newsroom
- MultiNews (multi documents)
- DUC 2004 Task 1
- Webis-TLDR-17 Corpus
- Gigaword
- BIGPATENT https://www.aclweb.org/anthology/P19-1212

Summarization. Datasets

Russian

- https://huggingface.co/datasets/csebuetnlp/xlsum
- https://huggingface.co/datasets/mlsum MLSUM (CNN/Daily)
- https://huggingface.co/datasets/IlyaGusev/gazeta Gazeta. Russian News
 https://github.com/IlyaGusev/gazeta
- https://huggingface.co/datasets/wiki_lingua

Extractive datasets. Lifehack:

- utilize abstractive sum datasets
- select sentences that have max ROUGE scores

Summarization. Extractive methods

Ussually framed as tagging problem.

- Given document D.
- Select K summaring (most important) fragments
- Concatenate K fragments in summary

Methods:

- LSA (Latent semantic analysis)
- Luhn Summarization algorithm (tf-idf)
- TextRank, LexRank
- ...
- As binary classification assign tags 0 or 1 to important sentences.
 Neural encoder => sentence semantic representation => sigmoid

$$PR(n_i) = \frac{1-d}{N} + d\sum_{n_j \in In(n_i)} \frac{PR(n_j)}{|Out(n_j)|}$$

Summarization. Abstractive methods

Abstract answer

=> Generation

Encoder-decoder architectures BertSum, BART, T5

Or just decoders GPT-2, GPT-3

Pros:

NEED DATA

- richer vocabulary
- abstract/rephrase
- conflict info/opinions

Summarization. Methods

Pretrained models / Fine-tuning BertSum (extractive)

BertSum assigns scores to each sentence that represents how much value that sentence adds to the overall document. So, [s1,s2,s3] is assigned [score1, score2, score3]. The sentences with the highest scores are then collected and rearranged to give the overall summary of the article.

- Based on a pre-trained encoder (Liu and Lapata, 2019)
- Use a pre-trained BERT encoder (Devlin et al., 2019)
- BertSum has a transformer encoder-decoder architecture
- The decoder is trained from scratch

Summarization. Pointer generation

Summarization. BART

Encoder + decoder

MBART (multilingual variant, Russian included)

Unsupervised denoising objective

Figure 2: Transformations for noising the input that we experiment with. These transformations can be con-

Pegasus by Google

Training objective:

Gap Sentence Generation (GSG) + MLM

Complete sentences are removed from a document (i.e. they are 'masked'), and the model is trained to predict these masked sentences.

Choosing the most important sentences from the document for masking works best. This is done by finding sentences that are the most similar to the complete document.

https://arxiv.org/abs/1912.08777

https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Pegasus by Google

Three strategies to select gap sentences (without replacement):

- 1) Random
- 2) Lead
- 3) Principal (selecting top-m scored sentences based on their importance, measured by the ROUGE-1 score between the sentence and the rest of the document).

Both GSG and MLM are applied simultaneously to this example as pre-training objectives. Originally there are three sentences. One sentence is masked with [MASK1] and used as target generation text (GSG). The other two sentences remain in the input, but some words are randomly masked by [MASK2] (MLM).

Pegasus by Google

Abstractive methods. More

GSum - general and extensible guided summarization framework that can effectively take external various types of guidance signals.

https://arxiv.org/pdf/2010.08014v1.pdf

Abstractive methods. More

ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just the next token.

https://arxiv.org/pdf/2001.0406 3v3.pdf

Abstractive methods. More

of course T5

mT5

see and use in huggingface

Abstractive methods. **Evaluation**

ROUGE-

47.21

ROUGE-

24.56

Model

PEGASUS

Cnn/Daily

al., 2020)

Model

GSum (Dou et

ProphetNet (Yan, Qi, Gong,

PEGASUS

2019)

(Zhang et al.,

Liu et al., 2020)

44.20

44.17

ROUGE-

45.94

21.17

ROUGE-

22.32

ROUGE-

42.48

41.30

(Zhang et al., 2019) BART (Lewis et 45.14 22.27 37.25 al., 2019) Xsum http://nlpprogress.com/english/summarization.html

ROUGE-

39.25

21.47

41.11 40.90

BART (Lewis et al., 2019)

44.16

21.28

Document summarization

https://openai.com/blog/summarizing-books/

COMPLETE SUMMARY — 136 WORDS

A LICE falls down a rabbit hole and grows to giant size after drinking a mysterious bottle. She decides to focus on growing back to her normal size and finding her way into the garden. She meets the Caterpillar who tells her that one side of a mushroom will make her grow taller, the other side shorter. She eats the mushroom and returns to her normal size. Alice attends a party with the Mad Hatter and the March Hare. The Queen arrives and orders the execution of the gardeners for making a mistake with the roses. Alice saves them by putting them in a flowerpot. The King and Queen of Hearts preside over a trial. The Queen gets angry and orders Alice to be sentenced to death. Alice wakes up to find her sister by her side.

Document summarization

Модель тренируется не один раз на заготовленном датасете по суммаризации, а итеративно улучшается с фидбеком от специальных тренированных людей. Фидбэк бывает двух видов: 1) человек пишет более правильное саммари 2) человек выбирает одно из двух саммари написанных моделью. В случае 1 понятно как улучшить модель — просто зафайнтюнить на дополнительных данных. Случай 2 — reinforcement learning.

Подход: Допустим у вас есть текст размера 10К токенов, а модель может читать только 2К. Разделим текст на 5 чанков по 2К и для каждого из них сгенерируем саммари допустим размера 500 токенов. Потом сконкатим их и получим текст длины 2.5К токенов. Всё ещё слишком длинно — разделим его на два куска и пусть каждый из них сгенерит саммари по 500 токенов. Сконкатим эти результаты, получим текст 1000 токенов. Теперь можно получить из него финальное саммари.

Подход очень простой и решает кучу проблем. Во-первых такую разметку просто делать. Вы не заставляете людей суммаризировать целые книги, а лишь просите из суммаризировать чанки по 2К токенов. Людям проще такое делать, машинам проще такое учить, плюс с одной книги получаете кучу разметки. В качестве инициализации для модели используют GPT-3.

По результатам:

- Некоторые саммари близки по качеству к человекам, но их около 5% ♣. В среднем скор человека ~6/7, а лучшей модели ~3.5/7
- Размер модели важен и 175млрд параметров дают огромный буст по сравнению с 6млрд.
- RL + NLP => его использование улучшает скор с 2.5 до 3.5

Text generation benchmarks

Texygen: A Benchmarking Platform for Text Generation Models

Paraphrasing

Paraphrasing is expressing the meaning of an input sequence in alternative ways while maintaining grammatical, syntactical correctness.

- 1) <u>Paraphrase identification</u> detecting if a pair of text inputs has the same meaning; classification task.
- 2) <u>Paraphrase generation</u> producing paraphrases allows for the creation of more varied and fluent text; generation task

Build a model that reads a sequence of words and generates a different sequence with the same meaning

Paraphrasing

Why paraphrasing?

- style transfer:
 - translation from rude to polite
 - translation from professional to simple language
- data augmentation: increasing the number of examples for training ML-models
- increasing the stability of ML-models: training models on a wide variety of examples, in different styles, with different sentiment, but the same meaning / intent of the user

Paraphrasing

Paraphraser datasets:

- Paraphraser plus http://paraphraser.ru/
- Mix data:
 https://github.com/RussianNLP/russian_paraphrasers/tree/master/dataset-
 et
- Tapaco rus part: https://huggingface.co/datasets/tapaco.
 - Tools for paraphrasing
- https://github.com/RussianNLP/russian paraphrasers

Text Simplification (sentence simplification) is the task of <u>reducing</u> the complexity of the vocabulary and sentence structure of text while <u>retaining</u> its <u>original meaning</u>, with the goal of improving readability and understanding.

Sentence complexity criteria include:

- the presence of complex grammatical structures
- participial and adverbial expressions, subordinate sentences,
- the presence of rare, and ambiguous words,
- etc

Original Sentence	Simplified Sentence
Owls are the order Strigiformes, comprising 200 bird of prey species.	An owl is a bird. There are about 200 kinds of owls.
Owls hunt mostly small mammals, insects, and other birds though some species specialize in hunting fish.	Owls' prey may be birds, large insects (such as crickets), small reptiles (such as lizards) or small mammals (such as mice, rats, and rabbits).

Datasets:

- based on Wikipedia WikiLarge, WikiSmall
 Simple English Wikipedia is an online encyclopedia aimed at English
 learners. Its articles are expected to contain fewer words and simpler
 grammar structures than those in their
 Main English Wikipedia counterpart. Much of the popularity of using
 Wikipedia for research in Simplification comes from publicly available
 sentence alignments between "equivalent" articles in Main and Simple
 English Wikipedia.
- Turk Corpus
- ASSET
- Newsela

Metrics:

SARI (Xu et al., 2016) is a *lexical simplicity* metric that measures "how good" are the words added, deleted and kept by a simplification model. The metric compares the model's output to *multiple simplification references* and the

original sentence.

$$SARI = \frac{1}{3}F_{\partial O}$$
бавление $+\frac{1}{3}F_{y\partial A}$ ление $+\frac{1}{3}F_{coxp}$ анение $+\frac{1}{3}F_{coxp}$ оре $\in \{\partial O$ бавление, удаление, сохранение $\}$
$$F_{ope}(n) = \frac{2 \times p_{ope}(n) \times r_{ope}(n)}{p_{ope}(n) + r_{ope}(n)}$$
 $F_{ope} = \frac{1}{k} \sum_{n=1,k} F_{ope}(n)$

Generation aproaches - bart, gpts

RuGPT XL:

Origin:

Аспирин — это лечение первой линии для лихорадки и симптомов суставной боли при остром ревматизме.

Generated: Аспирин обычно используется

для лечения лихорадки, боли в суставах и мышечных судорог.

Model	BLEU	SARI
MUSS (Martin et al., 2020)	78.17	42.53
ACCESS (Martin et al., 2019)	72.53	41.87
DMASS + DCSS (Zhao et al., 2018)		40.45

Origin: Боевые действия проходили на фоне разыгравшейся в тылу масштабной эпидемии чумы, унёсшей большое количество жизней.

Generated: В ходе боевых действий эпидемия

чумы унесла много жизней.