1 Abstract Measure Theory

Let *S* be a set. Capital letters A, B, $C \cdots \subset S$ denote *subsets*. Lowercase letters $s \in S$ denote *elements*. Calligraphic leters A, B, C, \cdots , F, \cdots , C denote *collections of subsets*.

Definition 1.1. S is a *field* (or *algebra*) if S is closed under Boolean operations. i.e. if $A, B \in S$, then:

- (a) $A \cup B \in \mathcal{S}$
- (b) $A \cap B \in \mathcal{S}$
- (c) $A \setminus B \in \mathcal{S}$

Also $S \neq \emptyset$.

There are 16 total possible Boolean operations, each a disjoint union of sets from $\{A \setminus B, A \cap B, B \setminus A, S \setminus (A \cup B)\}$ hence isomorphic to a binary string of length 4.

Example 1.2.
$$\mathcal{F} = \{\emptyset, \mathcal{S}\}$$
 is a field. $\mathcal{F} = \{\emptyset, A, A^c, \mathcal{S}\}.$

Exercise 1.3. Show that to show S is a field, it suffices to check $\forall A, B \in S$, A^c , $A \cup B \in S$.

Lemma 1.4. Let S_1 , S_2 be fields. Then $S_1 \cap S_2$ is a field (Not true for $S_1 \cup S_2$). More generally, if $(S_{\theta})_{\theta \in \Theta}$ is any collection of fields on S, $\cap_{\theta \in \Theta} S_{\theta}$ is a field.

Definition 1.5. Let \mathcal{A} be any collection of subsets of \mathcal{S} . Then

$$\mathcal{F}(\mathcal{A}) := \bigcap_{\substack{\mathcal{F} \text{ a field} \\ \mathcal{F} \supset \mathcal{A}}} \mathcal{F} \tag{1.1}$$

is a field, called the *field generated by* A.

Exercise 1.6. (HW 1) Show that $\mathcal{F}(A)$ is the collection of subsets that can be obtained from sets in A via a finite number of Boolean operations.

Example 1.7. $S = \mathbb{R}$, \mathcal{A} collection of $(-\infty, x]$ for $x \in \mathbb{R}$. $\mathcal{F}(\mathcal{A}) =$ union of disjoint half-open intervals

Example 1.8. $S = [0,1]^2$. $A = \text{rectangles } (x_1, x_2] \times (y_1, y_2]$

Definition 1.9. S is a σ -field (σ -algebra) if:

- (a) S is a field
- (b) S is closed under *countable* unions and intersections

Exercise 1.10. Suffices to show closed under increasing unions i.e. $A_i \in \mathcal{S}$, $A_1 \subset A_2 \subset \cdots$, then $\bigcup_i A_i \in \mathcal{S}$.

Definition 1.11. Let $A \subset 2^S$, then

$$\sigma(\mathcal{A}) := \bigcap_{\substack{\mathcal{G} \text{ σ-field} \\ \mathcal{G} \supset \mathcal{A}}} \mathcal{G}$$
 (1.2)

is a σ -fied, called the σ -field generated by A.

Definition 1.12. A *measurable space* is (S, S) where S is a set, S a σ -field on S.

If *S* is a topological space and \mathcal{G} the collection of open sets, then $\sigma(\mathcal{G})$ is called the *Borel* σ -field on *S*.

Example 1.13. On \mathbb{R}^d , the Borel σ -field is the same as the σ -field generated by the d-dimensional cubes $\prod_{i=1}^d (x_i, y_i)$.