WEB APLIKACIJE I KLASTERI

POJAM KLASTERA

• Grupa međusobno povezanih računara koji funkcionišu tako da se mogu posmatrati kao jedan sistem koji pruža neki servis

UPOTREBA KLASTERA

- Sredstvo za unapređenje performansi
- Sredstvo za unapređenje pouzdanosti
- Jeftinije rešenje u odnosu na jedan računar ekvivalentnih mogućnosti

POJAM KLASTERA

POVEZIVANJE ČVOROVA U KLASTERU

- Najčešće u lokalnoj mreži
- Može i distribuirano
- Dodavanjem novih čvorova u klister povećavaju se i dostupnost i skalabilnost

KLASTER VISOKE DOSTUPNOSTI (HIGH-AVAILABILITY, FAILOVER)

- Redudantni hardver, veća pouzdanost
- Minimum dva računara
- Eliminiše SPoF (single point of failure)

SERVICE LEVEL AGREEMENT (SLA)

- Termin koji koriste pružaoci usluga (service providers)
- Dogovor između pružaoca servisa i klijenta koji formalno definiše nivo dostupnosti servisa (uptime)
- Obično se izražava u procentima do 100% (što više devetki to bolje)
- Amazon¹, Google² i Microsoft³ definisali su u svojim SLA 99,9% i više dostupnost servisa

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

VRSTE KLASTERA

CIFRE OD ZNAČAJA ZA DOSTUPNOST SERVISA

Dostupnost %	Nedostupnost po danu	Nedostupnost po godini
99%	14,4 minuta	3,65 dana
99,9%	1,44 minuta	8,77 sati
99,99%	8,64 sekunde	52,6 minuta
99,999%	864 milisekunde	5,26 minuta
99,9999%	86,4 milisekunde	31,56 sekundi

LOAD BALANCING

- Raspodela opterećenja na više čvorova
- Različiti algoritmi raspodele¹

KLASTERI VISOKIH PERFORMANSI

- Namenjeni za specifične poslove masovne paralelne obrade podataka
- Različiti načini za sprezanje čvorova:
 - Tightly coupled
 - Loosely coupled
 - Grid computing¹

KLASTER WEB SERVERA

SERVERSKI RAČUNARI NA KOJIMA RADI WEB SERVER (NPR. TOMCAT)

NEMA REPLIKACIJE

- Sticky sessions režim rada
- Zahtev jednog klijenta uvek se upućuje na isti server u klasteru
- Jednostavno, ali nema failover

SVE SESIJE NA SVIM SERVERIMA (TOMCAT¹)

- Ima balansiranje, ima failover
- Replikacija sesija veliki saobraćaj, nije za velike klastere ili velike sesije

SESIJA SE REPLICIRA SAMO NA POSEBAN ČVOR (TERRACOTA, IBM)

- Sesija je slabo vezana za čvor
- Load balancer radi sticky sessions dok je sve u redu
- SPoF?

SESIJA SE REPLICIRA NA JOŠ JEDAN SERVER (JBOSS, WEBLOGIC)

- Svaka sesija je na dva servera (primarni i backup)
- Dodavanje novih servera ne povećava saobraćaj

S

SESIJA SE ČUVA U BAZI PODATAKA (SUN)

- Web serveri su stateless
- Potencijalno veliki saobraćaj prema bazi podataka

KLASTER BAZE PODATAKA

SPECIFICAN ZA KONKRETAN SUBP

- Shared-nothing arhitektura
 - Podaci na disku (ili u memoriji) se ne dele između čvorova u klasteru
 - Svaki zahtev obrađuje jedan čvor (CPU/memorija/disk)
- Shared-everything (shared-disk) arhitektura
 - Podaci na disku (ili u memoriji) se dele između čvorova u klasteru

KLASTER BAZE PODATAKA

♦ KLASTER POMOĆU JDBC DRAJVERA − C-JDBC

• Cross-database – može povezivati različite SUBP u jedan klaster

REFERENCE

- SLAJDOVI PO UZORU NA https://github.com/mbranko/isa19/blob/master/09-arch/clustering.pdf
- GOOGLE CLOUD. ARCHITECTURES FOR HIGH AVAILABILITY OF MYSQL CLUSTERS ON COMPUTE ENGINE https://cloud.google.com/architecture/architectures-high-availability-mysql-clusters-compute-engine
- C-JDBC USER'S GUIDE. https://c-jdbc.ow2.org/current/doc/userGuide/html/index.html
- STONEBRAKER M. THE CASE FOR SHARED NOTHING https://static.aminer.org/pdf/PDF/000/255/770/the_case_for_shared_nothing.pdf
- DEWITT D. ET AL. HOW TO BUILD A HIGH-PERFORMANCE DATA WAREHOUSE http://db.csail.mit.edu/madden/high_perf.pdf
- SCALEDB. SHARED-DISK VS. SHARED-NOTHING COMPARING ARCHITECTURES FOR CLUSTERED DATABASES
 https://web.archive.org/web/20150323110547/http://www.scaledb.com/pdfs/WP_SDvSN.pdf
- GHOMI E. J. ET AL. LOAD/BALANCING ALGORITHMS IN CLOUD COMPUTING: A SURVEY https://fardapaper.ir/mohavaha/uploads/2018/07/Fardapaper-Load-balancing-algorithms-in-cloud-computing-A-survey.pdf

KOJA SU VAŠA PITANJA?