Jan Valentin Genero Camo

45328112Y

(1

a) $\alpha = 0^{1}4 = 0$ $X_{un} = 0^{1}4 |X_{u}| - 1$. Primero calculemos los puetos de equilibrio de la ecuación y demos su salución general:

x'' > 0 $x'' = -\frac{1}{1 - 0!4} = -\frac{1}{6} - 16 - 16 = 16$ x'' < 0 $x'' = -\frac{1}{1 + 0!4} = -\frac{1}{6} - 16 - 16 = 16$ x'' < 0 $x'' = -\frac{1}{6} - 16 - 16 = 16$ $x'' = -\frac{1}{6} - 16 - 16 = 16$ $x'' = -\frac{1}{6} - 16 - 16 = 16$ $x'' = -\frac{1}{6} - 16 - 16 = 16$ $x'' = -\frac{1}{6} - 16 - 16 = 16$

Liego el único putto de equilibrio es X=-0/7148.

Sol g: $X_k = (x_0 + \frac{5}{7}) 0'4^n - \frac{5}{7}$.

Claramente lim $X_{K} = -\frac{5}{7}$ independientemente de l'un valor inicial de xo y del valor absoluto.

Liego mestro piuto de equilibrio x+=-07143 es un atractor global. De esta manera la gráfica de (as solicios de mestro exección frente al xo tomado quedaría;

Gráfico Cob-veb.

Cano se puede observar para $X_0(A)$, $X_0(B)$, $X_0(C)$ to examinate us soluciones tiqueden at attactor $-\frac{\pi}{4}$ (nuestro putto fije)

Estadanos los puros de equilibrio:

$$X^* \ge 0$$
 $X^* = \times \cdot X^* - 1 \Rightarrow X^* = \frac{-1}{1-\alpha}$

$$x^* co$$
 $x' = -\alpha \cdot x^{\alpha} - 1 = 0$ $x' = \frac{-1}{1+\alpha}$

Venues si $\forall \alpha \in C_{0,+} \alpha_{0}$ (a easilion tiene des putos e^{ij} os'

· Cuando el denominador se ambe, solo habrá un purto de equilibrio:

Si
$$q = 1 = 0$$
 $\frac{-1}{1-1} = \frac{-1}{0} = 0$ Solo un puto figo: $\left(x^{\mu} = \frac{-1}{2}\right)$

$$=0$$
 $\frac{-1}{1-x} < 0 = 0$ No es solución.

Liego solo renditiones un puto de equilibrio:

$$X^* = \frac{-1}{1+\alpha}.$$

=0
$$\frac{-1}{1-\alpha}$$
 >0 =0 Si es soución.

$$=$$
 $\frac{-1}{1+\alpha}$ co \Rightarrow si es soución.

Cuego Tendra dos puños fijos:
$$|X_1' = \frac{-1}{1-\alpha}|$$

$$|X_2'' = \frac{-1}{1+\alpha}|$$

Exteriamos na fune ecración de diferencias: dividiendola en dos Trozos. $\begin{cases} Xu_{11} = 1.3 \times u - 1 \\ Xu_{11} = -1.3 \times u - 1 \end{cases}$ $\forall x' \neq 0 \quad x'' = -1.3 \cdot x'' - 1 \quad \Rightarrow 0 \quad x'' = \frac{-1}{1+1.3} = -0.43438$

$$\forall x^{*}>0 \quad X^{*} = 1^{'}3 \cdot x^{*} - 1 \implies X^{*} = \frac{-1}{1 - 1^{'}3} = 3.3$$

Luego pora q=1'3 $X_{n+1}=1'3|X_n|-1$ Tiene dos putos fijos.

Estabilidad:

Sieudo f(x) = 4'3|x|-1 = D $f \in C^1$. $\forall x \in \mathbb{R} \setminus \{0\}$ Estudiamos su derivada en dos trozos $f'(x) \forall x > 0$ \mathcal{I} $f'(x) \forall x \neq 0$.

$$f(x) = \begin{cases} -1/3x - 1 & \forall x > 0 \\ -1/3x - 1 & \forall x > 0 \end{cases}$$

Luego: $2'(-0'43478) = -1'3 = D^* |-1'3| > 1 = D \text{ inestable}$ $1'(3'3) = 1'3 = D^* |1'3| > 1 = D \text{ inestable}$

Aubos putos de equilibrio sou inestables.

d) Si
$$\alpha = 2$$
 =D $X_{un} = 2 \cdot |Xu| - 1$. $f \in X$ = $2 \cdot |X| - 1$
if $\alpha = 2$ =D $X_{un} = 2 \cdot |Xu| - 1$. $f \in X$ = $2 \cdot |X| - 1$
if $\alpha = 2$ =D $X_{un} = 2 \cdot |Xu| - 1$. $f \in X$ = $2 \cdot |X| - 1$
if $\alpha = 2$ = $2 \cdot |X| - 1$.

$$f(o'2) = 2 \cdot ((o'2))(-1 = o'u - 1 = -o'6)$$

$$f(-0.6) = 2 \cdot |-0.6| - 1 = 1.2 - 1 = 1.2$$

Estudianos sus puntos de equilibrio:

$$|x'>0 \quad x'=2 \cdot x'-1 \rightarrow x=1$$

 $|x'<0 \quad x'=-2x'-1 \rightarrow x=-\frac{1}{3}$

Estabilidad:

$$f(x) = \begin{cases} 2 \times -1 & \forall x > 0 \\ -2x - 1 & \forall x < 0 \end{cases} \Rightarrow f'(x) = \begin{cases} 2 & \forall x > 0 \\ -2 & \forall x < 0 \end{cases}$$

$$f(4)$$
 2 D (21) A D inestable

$$|f(4) \cdot f(-\frac{1}{3})| = |2 \cdot (-2)| = 4 > 4 = 0$$
 inestable.