Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 6

Consigna

Probar los siguientes resultados:

- 1. A es abierto si y sólo si $A \cap \partial A = \emptyset$.
- 2. $\mathring{A} = \overline{A} \partial A$ es un conjunto abierto; más aún, es la unión de los subconjuntos abiertos contenidos en A.
- 3. A es cerrado si y sólo si $\partial A \subseteq A$ si y sólo si $A' \subseteq A$.
- 4. $\overline{A} = A \cup \partial A$ es un conjunto cerrado; más aún, es la intersección de todos los conjuntos cerrados que contienen a A.
- 5. A' es un conjunto cerrado.

Resolución

Parte 1

• A es abierto si y sólo si $A \cap \partial A = \emptyset$.

Directo (\rightarrow)

- (H) A es abierto
- (I) $A \cap \partial A = \emptyset$

Supongamos que $A \cap \partial A \neq \emptyset$, consideremos $p \in A \cap \partial A$, esto signfica que $p \in A$ y además $p \in \partial A$. Por lo tanto:

- $(p \in \partial A) : \forall \delta > 0 : B(p, \delta) \cap A \neq \emptyset \land B(p, \delta) \cap A^C \neq \emptyset$
- $(p \in A) : \exists \delta > 0 : B(p, \delta) \subset A \ (A \text{ es abierto})$

Por lo que esto es absurdo, pues $B(p,\delta)$ tiene que estar incluido en A y a la vez tener al menos un punto en A^C

Recíproco (\leftarrow)

- (H) $A \cap \partial A = \emptyset$
- (I) A es abierto

Supongamos que A no es abierto, es decir que existe $p \in A$ tal que A es frontera (pues no puede ser interior).

Esto es directamente absurdo pues por hipótesis $A \cap \partial A = \emptyset$

Parte 2

• $\mathring{A} = \overline{A} - \partial A$ es un conjunto abierto; más aún, es la unión de los subconjuntos abiertos contenidos en A.

Para probar esta parte, verificaremos las siguientes expresiones:

- $\mathring{A} \subseteq \overline{A} \partial A$ $\overline{A} \partial A \subseteq \mathring{A}$

Expresión #1

• $\mathring{A} \subseteq \overline{A} - \partial A$

Sea $p \in \mathring{A}$, queremos verificar que $p \in \overline{A} - \partial A$, es decir:

- $p \in \overline{A}$, y
- $p \notin \partial A$

Probemos ambas expresiones:

- $p \in \mathring{A} \to p \in A \to p \in A \cup \partial A \to p \in \overline{A}$
- $p \in \mathring{A} \to p \notin \partial A$ (definición de punto interior)

Expresión #2

• $\overline{A} - \partial A \subseteq \mathring{A}$

Sea $p \in \overline{A} - \partial A$, queremos verificar que $p \in \mathring{A}$ es decir:

• p es interior de A

Recordemos que como $p \in \overline{A} - \partial A$ se cumple que:

- $p \in \overline{A}$, y
- $p \notin \partial A$

Como $p \notin \partial A$, tenemos que existe algún $\delta_0 > 0$ tal que $B(p, \delta_0) \cap A^C = \emptyset$. Por lo tanto, necesariamente $B(p, \delta_0) \subset A$.

Concluimos que p es interior pues se cumple la definición para δ_0 .

Conclusión: $\overline{A} - \partial A$ es un conjunto abierto pues verificamos que es igual a \mathring{A}

Parte 3

• A es cerrado si y sólo si $\partial A \subseteq A$ si y sólo si $A' \subseteq A$.

Separamos las pruebas en:

• A es cerrado $\leftrightarrow \partial A \subseteq A$

• A es cerrado $\leftrightarrow A' \subseteq A$

Si probamos estas dos, habriamos probado todas las equivalencias.

Equivalencia #1

• A es cerrado $\leftrightarrow \partial A \subseteq A$

Directo (\rightarrow)

- (H) A es cerrado
- (I) $\partial A \subseteq A$

Supongamos que $\partial A \nsubseteq A$, es decir que existe $p \in \partial A$ tal que $p \notin A$. Esto significa que $p \in A^C$, por lo tanto esto contradice que A sea cerrado, pues A^C no es abierto (contiene un punto frontera)

Queda probado el directo por absurdo.

Recíproco (\leftarrow)

- (H) $\partial A \subseteq A$
- (I) A es cerrado

Suspongamos que A no es cerrado, es decir que A^C no es abierto. Esto significa que existe $p \in A^C$ tal que p es frontera. Pero esto no puede pasar pues $\forall p \in \partial A, p \in A$ por hipótesis.

Queda probado el recíproco por absurdo.

Equivalencia #2

• A es cerrado $\leftrightarrow A' \subseteq A$

Hecho en la clase 20 del teórico.

Conclusión: Las tres expresiones son equivalentes.