# Processamento e Otimização de Consultas

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

## Motivação

- Consulta
  - pode ter sua resposta computada por uma variedade de métodos (geralmente)
- Usuário (programador)
  - sugere uma estratégia para achar a resposta, independentemente de ser a estratégia mais eficiente
- SGBD
  - responsável por transformar a consulta realizada pelo usuário em uma consulta equivalente mais eficiente

#### Processamento de Consultas

#### Característica

- melhoria da estratégia para processamento de uma consulta
- não apresenta uma estratégia ótima
- porém apresenta uma estratégia eficiente
- Modelo relacional
  - facilita a otimização da consulta
  - permite que uma consulta seja expressa inteiramente em uma linguagem de consulta relacional (i.e., SQL) sem o uso de uma linguagem hospedeira

#### Processamento de Consultas

- Técnica utilizada para processar, otimizar e executar consultas de alto nível
- Objetivo:
  - produzir uma estratégia de consulta para recuperar o resultadó da mesma

plano para: executar a consulta acessar os dados armazenar resultados intermediários



#### Detalhamento

- Análises (léxica, sintática, semântica)
  - verificam a sintaxe da consulta
  - verificam se os nomes das relações da consulta são os mesmos nomes presentes no BD
  - substituem referências ao nome de uma visão por expressões da álgebra, a fim de computar essa visão

#### Detalhamento

- Forma intermediária de consulta
  - utiliza estrutura de dados de árvore ou grafo (árvore de consulta ou grafo de consulta)
- Módulo de otimização de consulta
  - produz um plano de estratégia de execução
    - indica qual o plano de execução
    - gera o código da consulta para executar tal plano

#### Detalhamento

- Processador do BD de tempo de execução
  - executa o código da consulta (compilado ou interpretado)
  - produz o resultado da consulta

#### **Fases**

- Fase 0
  - nível de SQL
  - consiste em transformar a consulta expressa em SQL em uma árvore de consulta expressa em álgebra relacional

#### **Fases**

- Fase 1
  - nível de álgebra relacional
  - consiste em aplicar heurísticas para converter uma árvore de consulta em uma árvore de consulta equivalente
  - consiste em encontrar uma expressão que seja equivalente à expressão dada, mas que seja mais eficiente na sua execução

#### **Fases**

- Fase 2
  - consiste na seleção de uma estratégia detalhada para o processamento da consulta
    - como a consulta será executada
    - quais índices serão escolhidos
    - qual a ordem de processamento das tuplas

## Árvore de Consulta (Fase 0)

- Estrutura de árvore que corresponde a uma expressão da álgebra relacional
- Representação
  - nós folhas
    - relações de entrada para a consulta
  - nós internos
    - operações da álgebra relacional
- Indica uma ordem específica das operações durante a execução de uma consulta

## Árvore de Consulta

- Execução
  - efetuar uma operação do nó interno sempre que os seus operandos estiverem disponíveis
  - substituir o nó interno pela relação que resulta da execução da operação
  - final da execução:
    - o nó raiz é executado
    - a relação resultado para a consulta é produzida

## Exemplo

Dado o seguinte comando SQL

```
SELECT E.último_nome
FROM empregado E, trabalha T, projeto P
WHERE P.nome_projeto = "arquivo X"
AND P.nro_projeto = T.nro_projeto
AND E.nro_empregado = T.nro_empregado
```

Construa a árvore de consulta canônica

## Árvore de Consulta Canônica

árvore de consulta 1

π<sub>E.último nome</sub> OP.nome\_projeto="arquivo X" ^ P.nro\_projeto=T.nro\_projeto ^ E.nro\_empregado=T.nro\_empregado X X

# Conversão da Árvore de Consulta (Fase 1)

- Observações
  - o produto cartesiano das relações empregado, trabalha e projeto produz uma grande relação, a qual provavelmente precisará ser armazenada em disco
  - acesso a disco
    - para ler as relações empregado, trabalha e projeto
    - para ler e escrever resultados intermediários
  - objetivo
    - reduzir o tamanho dos resultados intermediários





árvore de consulta 3

#### Heurística:

diminuir os tamanhos das relações a serem utilizadas no produto cartesiano

árvore de consulta 4



#### Heurística:

substituir operações de produto cartesiano seguidas pelos respectivos critérios de seleção por operações de junção



## Observação

- Diversos atributos de um esquema podem ser geralmente eliminados
- Atributos que n\u00e3o podem ser eliminados
  - aqueles que aparecem no resultado de uma consulta
  - aqueles que são necessários para processar operações subsequentes

#### Heurísticas Básicas

- Aplicar primeiro as operações que reduzem o tamanho dos resultados intermediários
  - operações de seleção
    - reduzem o número de tuplas
  - operações de projeção
    - reduzem o número de atributos
- Aplicar primeiro as operações de seleção e de junção mais restritivas
  - reordenar os nós folha da árvore de consulta
  - evitar a operação de produto cartesiano
  - ajustar o restante da árvore de forma apropriada

## Custo de Consultas (Fase 2)

- Estratégia a ser escolhida depende
  - do tamanho de cada relação
  - da distribuição de valores dentro de colunas
  - custo
- Objetivo
  - estimar o tamanho do resultado (número de tuplas a serem retornadas) e o custo da consulta

# Otimização de Consultas baseada no Custo

- Características
  - utiliza técnicas de otimização tradicionais que percorrem o espaço solução para um problema
  - identifica uma solução que minimiza uma determinada função custo
  - depende de estatísticas armazenadas pelo SGBD sobre as relações e sobre os índices

## Componentes da Função Custo

- Custo de acesso à memória secundária
  - custo para buscar, ler e escrever blocos de dados que residem em disco
- Custo de armazenamento
  - custo para armazenar quaisquer arquivos intermediários gerados pela estratégia de execução da consulta
- Custo de computação
  - custo para a realização de operações em memória principal (i.e., buffers)

## Componentes da Função Custo

- Custo do uso da memória
  - custo relacionado ao número de buffers de memória principal necessários durante a execução da consulta
- Custo de comunicação
  - custo de transmitir uma consulta e os seus resultados do site do banco de dados até o site ou terminar na qual a consulta foi originada

## Componentes da Função Custo

| Característica  | Ênfase                                           |
|-----------------|--------------------------------------------------|
| BD volumosos    | minimizar o custo de acesso à memória secundária |
| BD pequenos     | minimizar o custo de computação                  |
| BD distribuídos | minimizar também o custo de comunicação          |

#### Problema NP-Completo

 a grande maioria das funções custo enfoca apenas um único fator: custo de acessos à memória secundária (i.e., disco)

#### Estatísticas

- Para cada relação
  - r: número de registros
  - b: número de blocos que contêm os registros
  - R: tamanho de um registro em bytes
  - bfr: número de registros que cabe em um bloco
  - d: número de valores distintos para um atributo
  - sl: fração de registros que satisfazem à condição de igualdade no atributo

#### Estatísticas

- Para cada relação
  - s: número médio de registros que satisfazem à condição de igualdade no atributo
    - se o atributo é chave primária

```
então s = 1
senão s = (r/d) // d valores distintos distribuídos
// uniformemente
```

s: cardinalidade de seleção de um atributo

#### Estatísticas

- Para cada índice
  - f: fan-out médio dos nós internos para índices
     estruturados em árvore
  - x: número de níveis
    - para uma árvore balanceada: x = [log<sub>f</sub> d]
    - ◆ para um índice hash: x = 1
  - b<sub>11</sub>: número de blocos no nível de folha

#### Estatísticas Armazenadas

#### Atualização

- não é realizada a cada atualização do item de dado em questão
- geralmente é realizada somente em baixas cargas

#### Consequências

- as estatísticas podem não ser completamente precisas
- o otimizador pode não escolher a melhor estratégia para a otimização da consulta

#### Estruturas de Acesso

- Têm importância significativa na escolha de uma estratégia de processamento de consulta
- Exemplo: operação de seleção
  - pesquisa sequencial
  - pesquisa binária
  - função hash
  - árvore B<sup>+</sup>

indices sobre atributos-chave *e* 

índices sobre atributos não-chave

#### Estruturas de Acesso

- Exemplo: operação de junção
  - junção de laço aninhado
  - junção de laço aninhado em blocos
  - junção de laço aninhado indexado
  - merge-join
  - hash-join

A geração de expressões é apenas parte do processo de otimização de consultas. Cada operação na expressão pode ser implementada com diferentes algoritmos. Uma estratégia de consulta define exatamente que algoritmo é utilizado para cada operação e como a execução das operações é coordenada.

## Exemplo



## Materialização versus Pipelining

- Materialização
  - o resultado de uma operação é armazenado em disco como uma relação temporária
  - a relação temporária
     é lida do disco para
     ser utilizada como
     entrada para a
     próxima operação

- Pipelining
  - combina diversos
     algoritmos que
     correspondem às
     operações individuais
  - utiliza como entrada de uma operação as tuplas que foram geradas pela operação anterior

## Materialização versus Pipelining

#### Pipelining

- combina diversos algoritmos que correspondem a operações individuais
- utiliza como entrada de uma operação as tuplas que foram geradas pela operação anterior