B-Konvergenz

Vortragender: Frederik Schnack 14.12.2017

Dozent: Prof. Dr. Folkmar Bornemann

Wiederholung

Anmerkung. Darstellung einer Runge-Kutta Methode mit Butcher Schema $\frac{c \mid A}{\mid b^T}$.

$$k_{i} = f(t + c_{i}h, x + h\sum_{i=1}^{s} a_{ij}k_{j})$$

$$= g_{i}$$

$$\Leftrightarrow$$

$$\Psi^{t+h,t}x = x + h\sum_{i=1}^{s} b_{i}k_{i}$$

$$g_{i} = x + h\sum_{j=1}^{s} a_{ij}f(t + c_{i}h, g_{j})$$

$$\Leftrightarrow$$

$$\Psi^{t+h,t}x = x + h\sum_{i=1}^{s} b_{i}f(t + c_{i}h, g_{i})$$

Theorem (Butchter 1964). Vereinfachte Bedingungen für die Konstruktion von Impliziten Runge-Kutta Methoden der maximalen Ordnung p = 2s mit s Schritten.

$$B(p): \sum_{i=1}^{s} b_i c_i^{q-1} = \frac{1}{q}$$
 $q = 1, ..., p,$
$$C(\eta): \sum_{j=1}^{s} a_{ij} c_i^{q-1} = \frac{c_i^q}{q}$$
 $i = 1, ..., s, \ q = 1, ..., \eta,$
$$D(\zeta): \sum_{i=1}^{s} b_i c_i^{q-1} a_{ij} = \frac{b_j}{q} (1 - c_j^q)$$
 $j = 1, ..., s, \ q = 1, ..., \zeta.$

Falls $B(p), C(\eta), D(\zeta)$ erfüllt sind mit $p \leq 2\eta + 2$ und $p \leq \zeta + \eta + 1$, dann hat das Verfahren die Ordnung p.

1 Beispiel von Prothero & Robinson

$$y' = \lambda(y - \varphi(x)) + \varphi'(x), \quad y(x_0) = \varphi(x_0), \quad \text{Re } \lambda \le 0.$$
 (PR)

Bei der Anwendung von Impliziten Runge-Kutta Verfahren auf das Problem (PR) können wir hier den lokalen und globalen Fehler direkt berechnen.

Mit der exakten Lösung $\varphi(x_0 + h)$ von y_1 bzw. $\varphi(x_0 + c_i h)$ von g_i erhält man:

$$\varphi(x_0 + c_i h) = \varphi(x_0) + h \sum_{j=1}^s a_{ij} \varphi'(x_0 + c_j h) + \Delta_{i,h}(x_0)$$
$$\varphi(x_0 + h) = \varphi(x_0) + h \sum_{j=1}^s b_j \varphi'(x_0 + c_j h) + \Delta_{0,h}(x_0).$$

Aus der Taylorentwicklung folgt nun:

$$\Delta_{0,h}(x_0) = \mathcal{O}(h^{p+1}), \quad \Delta_{i,h}(x_0) = \mathcal{O}(h^{q+1}),$$

wobei p und q die größten Zahlen sind, sodass B(p) und C(q) erfüllt sind. Das Minimum der beiden wird Stage Order des Runge-Kutta Verfahrens genannt.

Hieraus lässt sich der lokale und globale Fehler herleiten. Betrachte dazu:

$$y_1 - \varphi(x_0 + h) = R(z)(y_0 - \varphi(x_0)) - zb^T(I - zA)^{-1}\Delta_h(x_0) - \Delta_{0,h}(x_0)$$
mit $z = \lambda h$, $R(z) = 1 + zb^T(I - zA)^{-1}\mathbb{1}$ und $\Delta_h(x) = (\Delta_{1,h}(x), ..., \Delta_{s,h}(x))^T$. Wobei zunächst die inneren Schritte $g_i - \varphi(x_0 + c_i h)$ berechnet und eingesetzt wurden.

Folglich definieren wir $\delta_h(x)$ als den **lokalen Fehler** durch:

$$\delta_h(x) = -zb^T (I - zA)^{-1} \Delta_h(x) - \Delta_{0,h}(x).$$

Rekursiv aus der obigen Rechnung erhalten wir den globalen Fehler als:

$$y_{n+1} - \varphi(x_{n+1}) = R(z)^{n+1} (y_0 - \varphi(x_0)) + \sum_{j=0}^{n} R(z)^{n-j} \delta_h(x_j).$$

Nun wollen wir die Früchte unserer Arbeit ernten und die Konvergenzen von verschiedenen Verfahren überprüfen. Man beachte dass λ hier eine direkte Messgröße der Steifigkeit des Problems darstellt. Wir sind in der Praxis nur an Schrittgrößen h interessiert die viel größer als $|\lambda|^{-1}$ sind. Deshalb betrachten wir den **Grenzwert** $h \to 0$ und $z = |\lambda|h \to \infty$.

Abbildung 1: Konvergenzplot für $\lambda = -10$.

Abbildung 2: Konvergenzplot für $\lambda = -10^7$.

Wir betrachten die Situation aus (PR) mit $\varphi(x) = 10 - (10 + 10)$ $(x)e^{-x}$ für $x_0 = 0$ und lösen das System für verschiedene λ zum Zeitpunkt T = 1 mit Verfahren der Ordnung 4. Wir erkennen dass für großes λ die bisherigen Vorhersagen für Ordnung und Stabilität nichtmehr halten. Wir suchen im Folgenden also ein von Steifheit invariantes Konzept für die Konvergenzanalyse von Impliziten Runge-Kutta Verfahren. Verfahren die sich im Grenzwert $|\lambda| \to \infty$ stabil verhalten und ein korrektes Ergebnis liefern nennt man **stif**ly accurate. Im Folgenden wollen wir nun das Konzept der B-Stabilität aufgreifen und ein verallgemeinerndes Konvergenzresultat herleiten.

Verfahren	klassische Ordnung	lokaler Fehler	globaler Fehler	stifly accurate
Gauss	2s	h^{s+1}	h^s	
Radau IA	2s-1	h^s	h^s	
Radau IIA	2s-1	$z^{-1}h^{s+1}$	$\begin{vmatrix} z^{-1}h^{s+1} \\ z^{-1}h^s \end{vmatrix}$	\checkmark
Lobatto IIIA	2s-2	$\begin{vmatrix} z & h \\ z^{-1}h^{s+1} \end{vmatrix}$	$z^{-1}h^s$	\checkmark
Lobatto IIIB	2s-2	zh^{s-1}	zh^{s-2}	
Lobatto IIIC	2s-2	$z^{-1}h^{s+1}$	$z^{-1}h^s$	\checkmark

Tabelle 1: Konvergenzresultate der Verfahren mit Stufenanzahl s für (PR).

2 Der Lokale Fehler

Definition 2.1 (Einseitige Lipschitz Bedingung). Für eine nicht lineare Differentialgleichung y' = f(x, y) sei folgende Ungleichung erfüllt:

$$\langle f(x,y) - f(x,z), y - z \rangle \le \nu ||y - z||^2,$$
 (2.1)

so nennt man ν die einseitige Lipschitz Konstante von f.

Anmerkung. Wir bezeichnen den lokalen Fehler weiterhin mit $\delta_h(x) = y_1 - y(x+h)$, wobei y_1 die numerische Lösung zum Anfangswert $y_0 = y(x_0)$ ist.

Definition 2.2. Für das Produkt $\langle u, v \rangle_D = u^T D v$, wobei $D = \text{diag}(d_1, ..., d_s)$ mit $d_i > 0$. Bezeichnen wir mit $\alpha_D(A^{-1})$ die größte Zahl α , sodass:

$$\langle u, A^{-1}u \rangle_D \ge \alpha \langle u, u \rangle_D$$
 für alle $u \in \mathbb{R}^s$.

Weiter setzen wir:

$$\alpha_0(A^{-1}) = \sup_{D > 0} \alpha_D(A^{-1}).$$

Anmerkung. Diese Definition spielt eine wichtige Rolle im Existenzbeweis für die Lösungen von Runge-Kutta Verfahren. Wir werden sie jedoch nur als eine Art Kenngröße für das Verfahren behandeln, sie ist berechenbar und kann somit als bekannt vorausgesetzt werden.

Proposition 2.3. Die Differentialgleichung erfülle (2.1). Desweiteren sei die Runge-Kutta Matrix A invertierbar, $\alpha_0(A^{-1}) \geq 0$ und das Verfahren habe stage order q. a) Falls $\alpha_0(A^{-1}) > 0$, dann:

$$\|\delta_h(x)\| \le Ch^{q+1} \max_{\xi \in [x,x+h]} \|y^{(q+1)}(\xi)\|$$
 für $h\nu \le \alpha < \alpha_0(A^{-1})$.

b) Falls $\alpha_D(A^{-1}) = 0$ für eine positive Diagonalmatrix D und $\nu < 0$, dann:

$$\|\delta_h(x)\| \le C \left(h + \frac{1}{|\nu|}\right) h^q \max_{\xi \in [x, x+h]} \|y^{(q+1)}(\xi)\|.$$

Anmerkung. Die Konstanten C hängen nur vom Verfahren ab. Die Abschätzung hängt somit nur mit von der Differenzierbarkeit des Problems ab und nicht von dessen Steifheit.

3 Fehler Fortpflanzung

Definition 3.1. (Butcher 1975) Man nennt ein Runge-Kutta Verfahren B-Stabil falls:

$$\langle f(x,y) - f(x,z), y - z \rangle \le 0$$
 impliziert für alle $h \ge 0$: $||y_1 - \hat{y}_1|| \le ||y_0 - \hat{y}_0||$.

Anmerkung. y_1, \hat{y}_1 sind die numerischen Lösungen von y' = f(x, y) nach einem Schritt zum Anfangswert y_0, \hat{y}_0 .

Definition 3.2. Man nennt ein Runge-Kutta Verfahren algebraisch stabil falls:

- i) $b_i \geq 0$ für $i \in \{1, ..., s\}$,
- ii) $M = (m_{ij}) = (b_i a_{ij} + b_j a_{ji} b_i b_j)_{i,j=1}^s$ ist positiv semidefinit.

Theorem 3.3 (Hundsdorfer & Spijker 1981). Algebraische Stabilität ist äquivalent zu B-Stabilität.

Proposition 3.4 (Dekker & Verwer 1984). Die Differentialgleichung erfülle (2.1). Das Runge-Kutta Verfahren sei algebraisch stabil mit invertierbarer Runge-Kutta Matrix A und $\alpha_0(A^{-1}) > 0$. Dann existiert eine Konstante C > 0 für eine beliebiges α mit $0 < \alpha < \alpha_0(A^{-1})$, sodass:

$$\|\hat{y}_1 - y_1\| \le (1 + Ch\nu)\|\hat{y}_0 - y_0\|$$
 für $0 \le h\nu \le \alpha$.

4 B-Konvergenz

Theorem 4.1. Betrachte ein algebraisch stabiles Runge-Kutta Verfahren mit invertierbarer Runge-Kutta Matrix A und stage order q. Das Problem erfülle (2.1).

a) Falls $0 < \alpha < \alpha_0(A^{-1})$ und $\nu > 0$ dann erfüllt der globale Fehler:

$$||y_n - y(x_n)|| \le h^q \frac{\left(e^{C_1\nu(x_n - x_0)} - 1\right)}{C_1\nu} C_2 \max_{x \in [x_0, x_n]} ||y^{(q+1)}(x)|| \quad \text{für } h\nu \le \alpha.$$

b) Falls $\alpha_0(A^{-1}) > 0$ und $\nu \leq 0$ dann:

$$||y_n - y(x_n)|| \le h^q(x_n - x_0)C_2 \max_{x \in [x_0, x_n]} ||y^{(q+1)}(x)||$$
 für alle $h > 0$.

c) Falls $\alpha_D(A^{-1}) = 0$ für eine positive Diagonalmatrix D und $\nu < 0$ dann:

$$||y_n - y(x_n)|| \le h^{q-1}C\left(h + \frac{1}{|\nu|}\right)(x_n - x_0) \max_{x \in [x_0, x_n]} ||y^{(q+1)}(x)||.$$

Anmerkung. Die Konstanten C, C_1, C_2 hängen nur von den Koeffizienten der Runge-Kutta Matrix ab. Falls die Schrittweite h variabel ist, so ist $h = \max h_i$ zu lesen.

Definition 4.2 (Frank, Schneid & Ueberhuber 1981). Ein Runge-Kutta Verfahren wird **B-Konvergent der Ordnung** r genannt falls für Probleme y' = f(x, y), die (2.1) erfüllen, folgende globale Fehlerabschätzung gilt:

$$||y_n - y(x_n)|| \le h^r \gamma(x_n - x_0, \nu) \max_{j=1,\dots,r} \max_{x \in [x_0, x_n]} ||y^{(j)}(x)||$$
 für $h\nu \le \alpha$,

Hierbei ist $h = \max h_i$ und γ eine nur vom Verfahren abhängige Funktion. Ebenso hängt α auch nur vom Verfahren ab.

Theorem 4.3. Die Gauss und Radau IIA Verfahren sind B-Konvergent der Ordnung s, wobei s die Schrittanzahl ist. Das Radau IA Verfahren ist B-Konvergent der Ordnung s-1. Das 2-Schritt Lobatto IIIC Verfahren ist B-Konvergent der Ordnung 1.

Verweise

[PR] A. Prothero, A. Robinson: On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations, 1974.

[HW-I] E. Hairer, S. P. Nørsett, G. Wanner: Solving Ordinary Differential Equations I - Nonstiff Problems, 2. Auflage, Springer, 2000.

[HW-II] E. Hairer, G. Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, 2. Auflage, Springer 2002.

[Code] Ein von mir erstelltes Mathematica Notebook zur Konvergenzanalyse und zur Durchführung einiger Taylorentwicklungen.

(https://github.com/FrederikSchnack/NumSeminarB-Convergence)