Colorização de Imagens com Deep Learning

Defesa do Trabalho de Conclusão de Curso I

Giovana de Lucca Orientadora: Elloá B. Guedes

{gol.eng, elloa.uea}@gmail.com

Escola Superior de Tecnologia Universidade do Estado do Amazonas Manaus – Amazonas – Brasil

21 de junho de 2018

Agenda

- Introdução
- Objetivos
- Justificativa
- Metodologia
- Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- Referências

Agenda - Seção 1

- Introdução
- Objetivos
- Justificativa
- Metodologia
- 5 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- 10 Referências

Aprendizado de Máquina

- As técnicas de Aprendizado de Máquina têm sido aplicadas com sucesso em um grande número de problemas reais em diversos domínios
- Características: natureza inferencial e a boa capacidade de generalização dos métodos e técnicas desta área
- Algoritmos capazes de aprender padrões por meio de exemplos, baseado-se em dados previamente disponíveis

Aprendizado de Máquina

- As técnicas de Aprendizado de Máquina têm sido aplicadas com sucesso em um grande número de problemas reais em diversos domínios
- Características: natureza inferencial e a boa capacidade de generalização dos métodos e técnicas desta área
- Algoritmos capazes de aprender padrões por meio de exemplos, baseado-se em dados previamente disponíveis

Visão Computacional

- A Visão Computacional é uma área que procura desenvolver métodos capazes de replicar nos computadores as capacidades da visão humana.
- Procedimentos de extração de características de imagens envolviam um grande esforço devido ao processamento
- Análises de especialistas eram utilizadas para descobrir as regras necessárias para o reconhecimento e extração de certos padrões

Visão Computacional

- A Visão Computacional é uma área que procura desenvolver métodos capazes de replicar nos computadores as capacidades da visão humana.
- Procedimentos de extração de características de imagens envolviam um grande esforço devido ao processamento
- Análises de especialistas eram utilizadas para descobrir as regras necessárias para o reconhecimento e extração de certos padrões

Deep Learning

- Algoritmos capazes de lidar com a demanda de cálculos matemáticos complexos automatizados
- Necessidade de ferramentas e algoritmos mais sofisticados
 - Complexidade de problemas computacionais
 - Grande volume de dados constantemente gerados
- Ténicas de Deep Learning: conjunto de camadas de redes neurais artificias
 - Simplicidade da construção das redes
 - Escalabilidade
 - Transferência de conhecimento

Deep Learning

- Algoritmos capazes de lidar com a demanda de cálculos matemáticos complexos automatizados
- Necessidade de ferramentas e algoritmos mais sofisticados
 - Complexidade de problemas computacionais
 - Grande volume de dados constantemente gerados
- Ténicas de Deep Learning: conjunto de camadas de redes neurais artificias
 - Simplicidade da construção das redes
 - Escalabilidade
 - Transferência de conhecimento

Agenda - Seção 2

- Introdução
- Objetivos
- 3 Justificativa
- 4 Metodologia
- 6 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- 9 Considerações Parciais
- 10 Referências

Objetivos

Objetivo Geral

Explorar estratégias para colorização artificial de imagens utilizando técnicas de Deep Learning

Objetivos Específicos

- Consolidar uma base de dados representativa de imagens coloridas para treinamento das redes;
- Descrever o problema da colorização artificial de imagens segundo uma tarefa de Aprendizado de Máquina;
- Explorar a utilização das arquiteturas canônicas de redes neurais convolucionais mediante Transfer Learning aplicadas ao problema considerado;
- Propor, treinar e testar diferentes redes neurais convolucionais baseadas nas arquiteturas canônicas elencadas;
- Analisar os resultados obtidos de maneira quantitativa e qualitativa.

Objetivos

Objetivo Geral

Explorar estratégias para colorização artificial de imagens utilizando técnicas de Deep Learning

Objetivos Específicos

- Consolidar uma base de dados representativa de imagens coloridas para treinamento das redes;
- Descrever o problema da colorização artificial de imagens segundo uma tarefa de Aprendizado de Máquina;
- Explorar a utilização das arquiteturas canônicas de redes neurais convolucionais mediante Transfer Learning aplicadas ao problema considerado;
- Propor, treinar e testar diferentes redes neurais convolucionais baseadas nas arquiteturas canônicas elencadas;
- Analisar os resultados obtidos de maneira quantitativa e qualitativa.

Agenda - Seção 3

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- 10 Referências

- Influência da coloração na interpretação das imagens:
 - Valor histórico e artístico de arquivos antigos
 - Imagens de câmeras de segurança com baixa resolução
- Colorizações ajustadas para restauração de algum tipo de perturbação visual
- Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
- Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

- Influência da coloração na interpretação das imagens:
 - Valor histórico e artístico de arquivos antigos
 - Imagens de câmeras de segurança com baixa resolução
- Colorizações ajustadas para restauração de algum tipo de perturbação visual
- Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
- Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

- Influência da coloração na interpretação das imagens:
 - Valor histórico e artístico de arquivos antigos
 - Imagens de câmeras de segurança com baixa resolução
- Colorizações ajustadas para restauração de algum tipo de perturbação visual
- Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
- Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

- Influência da coloração na interpretação das imagens:
 - Valor histórico e artístico de arquivos antigos
 - Imagens de câmeras de segurança com baixa resolução
- Colorizações ajustadas para restauração de algum tipo de perturbação visual
- Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
- Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

Agenda - Seção 4

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- 6 Cronograma
- 6 Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- Referências

Metodologia

A condução das atividades obedece à metodologia a seguir, composta dos seguintes passos:

- Estudo dos conceitos relacionados à Aprendizado de Máquina, Deep Learning e as principais arquiteturas de redes neurais convolucionais;
- Estudo do ferramental tecnológico para elaboração e execução de projetos de *Deep Learning*, incluindo Python, Keras, Sci-kit Learn, Google Cloud Platform, dentre outros;
- Elaborar uma base de dados representativa de imagens coloridas e em escalas de cinza para fins de aprendizado dos padrões de coloração pelas redes neurais convolucionais;
- 4. Elencar um conjunto de arquiteturas canônicas das redes neurais convolucionais aplicáveis ao problema em questão;

Metodologia

- Propor modificações nas redes neurais identificadas no passo anterior mediante *Transfer Learning*;
- 6. Treinar as redes modificadas com os exemplos da base de dados;
- 7. Testar as redes e coletar métricas de desempenho;
- Analisar os resultados obtidos identificando as redes mais adequadas ao cenário considerado;
- 9. Escrita da proposta do Trabalho de Conclusão de Curso;
- 10. Defesa da proposta do Trabalho de Conclusão de Curso;
- 11. Escrita do Trabalho de Conclusão de Curso;
- 12. Defesa do Trabalho de Conclusão de Curso.

Agenda - Seção 5

- Introdução
- Objetivos
- Justificativa
- Metodologia
- Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- 10 Referências

Cronograma

						201	2018					
	02	03	04	05	06	07	80	09	10	11	12	
Estudo dos conceitos teóricos re- lacionados à <i>Machine Learning</i>	x	x	X	x								
Estudo do ferramental tecnoló- gico para elaboração do projeto	х	x	х	х								
Consolidação da base de dados			х	х								
Especificação das arquiteturas canônicas de redes neurais con- volucionais			х									
Aplicação das técnidas de <i>Trans-</i> fer Learning nas redes neurais convolucionais identificadas				х								
Treinamento das redes neurais convolucionais com os exemplos da base de dados				х	х	X	х					
Testes das redes e comparação de métricas de desempenho					x	x	x	х				
Análise dos resultados obtidos									Х	Х	Х	
Escrita da proposta do trabalho	Х	Х	Х	Х	Х							
Defesa da proposta do trabalho					Х							
Escrita do trabalho final						х	х	Х	Х	х	Х	
Defesa do trabalho final											Х	

Agenda - Seção 6

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- 6 Cronograma
- 6 Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- 9 Considerações Parciais
- 10 Referências

- Redes feedfoward com muitas camadas ocultas
- Cada camada possui uma funcionalidade básica específica e produz um mapa de características
- Realização de operações de convolução
 - Extração de características por meio de um filtro
 - Parâmetros: extensão espacial, stride, zero-padding, etc
- Camada pooling responsável por produzir um mapa de características condensado
- Camadas completamente conectadas baseadas nos conceitos de uma rede Multilayer Perceptron

- Redes feedfoward com muitas camadas ocultas
- Cada camada possui uma funcionalidade básica específica e produz um mapa de características
- Realização de operações de convolução
 - Extração de características por meio de um filtro
 - Parâmetros: extensão espacial, stride, zero-padding, etc
- Camada pooling responsável por produzir um mapa de características condensado
- Camadas completamente conectadas baseadas nos conceitos de uma rede Multilayer Perceptron

- Redes feedfoward com muitas camadas ocultas
- Cada camada possui uma funcionalidade básica específica e produz um mapa de características
- Realização de operações de convolução
 - Extração de características por meio de um filtro
 - Parâmetros: extensão espacial, stride, zero-padding, etc
- Camada pooling responsável por produzir um mapa de características condensado
- Camadas completamente conectadas baseadas nos conceitos de uma rede Multilayer Perceptron

- Redes feedfoward com muitas camadas ocultas
- Cada camada possui uma funcionalidade básica específica e produz um mapa de características
- Realização de operações de convolução
 - Extração de características por meio de um filtro
 - Parâmetros: extensão espacial, stride, zero-padding, etc
- Camada pooling responsável por produzir um mapa de características condensado
- Camadas completamente conectadas baseadas nos conceitos de uma rede Multilayer Perceptron

Figura 1: Arquitetura LeNet.

- Desafio anual desenvolvido pelo projeto ImageNet
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Têm promovido algumas arquiteturas de CNNs bem sucedidas em determinados problemas
- ISLVRC 2014
 - 2º lugar: VGGNet pequenos filtros
 - 1º lugar: GoogLeNet Inception Module
- Vencedora do ILSVRC 2015: ResNet blocos residuais

- Desafio anual desenvolvido pelo projeto ImageNet
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Têm promovido algumas arquiteturas de CNNs bem sucedidas em determinados problemas
- ISLVRC 2014
 - 2º lugar: VGGNet pequenos filtros
 - 1º lugar: GoogLeNet Inception Module
- Vencedora do ILSVRC 2015: ResNet blocos residuais

- Desafio anual desenvolvido pelo projeto ImageNet
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Têm promovido algumas arquiteturas de CNNs bem sucedidas em determinados problemas
- ISLVRC 2014
 - 2º lugar: VGGNet pequenos filtros
 - 1º lugar: GoogLeNet Inception Module
- Vencedora do ILSVRC 2015: ResNet blocos residuais

Figura 2: Arquitetura VGGNet.

Transfer Learning

- Permite utilizar uma rede pré-treinada e adaptá-la a um novo conjunto de dados
- Modelos treinados com um conjunto genérico de dados conseguem capturar características universais
- Treinamentos com conjuntos de dados bastante conhecidos
 - ImageNet
 - Places50
- Modificação na camada de saída para obter o aprendizado desejado

Transfer Learning

- Permite utilizar uma rede pré-treinada e adaptá-la a um novo conjunto de dados
- Modelos treinados com um conjunto genérico de dados conseguem capturar características universais
- Treinamentos com conjuntos de dados bastante conhecidos
 - ImageNet
 - Places50
- Modificação na camada de saída para obter o aprendizado desejado

Transfer Learning

- Permite utilizar uma rede pré-treinada e adaptá-la a um novo conjunto de dados
- Modelos treinados com um conjunto genérico de dados conseguem capturar características universais
- Treinamentos com conjuntos de dados bastante conhecidos
 - ImageNet
 - Places50
- Modificação na camada de saída para obter o aprendizado desejado

Agenda - Seção 7

- Introdução
- Objetivos
- Justificativa
- Metodologia
- 6 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Onsiderações Parciais
- 10 Referências

Processo de Aprendizagem de Máquina

- Problema abordado como uma tarefa de regressão
- Processo de Aprendizagem de Máquina:

Processo de Aprendizagem de Máquina

- Espaço de cores CIELab
 - Canal L indica luminosidade responsável pela ilustração
 - Canais a e b eixos de cromaticidade responsáveis pela coloração

Processo de Aprendizagem de Máquina

- Treinamentos sucessivos para ajuste de pesos
- Arquiteturas VGGNet e ResNet
- Diferentes parâmetros e hiperparâmetros
- Método holdout de validação cruzada
 - 70% dos dados para treinamento
 - 30% dos dados para testes

Métrica de Desempenho

• Métrica Erro Quadrático Médio (MSE), definido como:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- y_i é o valor real esperado para o exemplo i
- \hat{y}_i é o valor previsto pelo modelo para o exemplo i
- n é o número de amostras presentes no conjunto de dados

Dados Experimentais

- Conjunto de validação da categoria Fine-grained classification do ILSVRC 2012
- Quantidade total: 50 mil imagens
- Imagens coletadas do Flickr e outras plataformas similares
- Quantidade de imagens favorável para o treinamento em questão
- Variedade de classes representativa ao cenário de colorização

Dados Experimentais

- Conjunto de validação da categoria Fine-grained classification do ILSVRC 2012
- Quantidade total: 50 mil imagens
- Imagens coletadas do Flickr e outras plataformas similares
- Quantidade de imagens favorável para o treinamento em questão
- Variedade de classes representativa ao cenário de colorização

Dados Experimentais

Figura 3: Visão geral do conjunto de dados.

- Procedimento necessário para estruturação da base de dados sem que haja sobrecarga computacional
- Redimensionamento das imagens
 - Tamanhos iguais de altura e largura
 - Dimensão de 128 × 128 pixels
- Selecionar imagens do espaço de cores RGB
 - Eliminar imagens com outros espaços de cores
 - Eliminar imagens em tons de cinza
- Aproximadamente 900 imagens foram descartadas
- Imagens convertidas para o espaço de cores CIELab

- Procedimento necessário para estruturação da base de dados sem que haja sobrecarga computacional
- Redimensionamento das imagens
 - Tamanhos iguais de altura e largura
 - Dimensão de 128 × 128 pixels
- Selecionar imagens do espaço de cores RGB
 - Eliminar imagens com outros espacos de cores
 - Eliminar imagens em tons de cinza
- Aproximadamente 900 imagens foram descartadas
- Imagens convertidas para o espaço de cores CIELab

- Procedimento necessário para estruturação da base de dados sem que haja sobrecarga computacional
- Redimensionamento das imagens
 - Tamanhos iguais de altura e largura
 - Dimensão de 128 × 128 pixels
- Selecionar imagens do espaço de cores RGB
 - Eliminar imagens com outros espaços de cores
 - Eliminar imagens em tons de cinza
- Aproximadamente 900 imagens foram descartadas
- Imagens convertidas para o espaço de cores CIELab

- Procedimento necessário para estruturação da base de dados sem que haja sobrecarga computacional
- Redimensionamento das imagens
 - Tamanhos iguais de altura e largura
 - Dimensão de 128 × 128 pixels
- Selecionar imagens do espaço de cores RGB
 - Eliminar imagens com outros espaços de cores
 - Eliminar imagens em tons de cinza
- Aproximadamente 900 imagens foram descartadas
- Imagens convertidas para o espaço de cores CIELab

Modelos e Parâmetros Considerados

- Abordagem transfer leraning
- Utilização do framework Keras
 - Arquiteturas canônicas disponíveis
 - Pré-treinamento com base de dados do ImageNet
- Utilização das redes VGGNet16 e ResNet50
- Últimas camadas substituídas por camadas completamente conectadas adaptadas ao problema
- Eventuais re-treinos para ajustes
- 100 épocas
- Demais parâmetros preservados

Modelos e Parâmetros Considerados

- Abordagem transfer leraning
- Utilização do framework Keras
 - Arquiteturas canônicas disponíveis
 - Pré-treinamento com base de dados do ImageNet
- Utilização das redes VGGNet16 e ResNet50
- Últimas camadas substituídas por camadas completamente conectadas adaptadas ao problema
- Eventuais re-treinos para ajustes
- 100 épocas
- Demais parâmetros preservados

Agenda - Seção 8

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- 6 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- 9 Considerações Parciais
- 10 Referências

Resultados Parciais

- Atividades propostas executadas conforme o cronograma
 - Estudos das tecnologias e conceitos teóricos
 - Consolidação da base de dados
 - Especificação das arquiteturas para transfer learning
- Treinamento de um modelo para fins de teste
 - 1% da base de dados: 500 exemplos
 - Método holdout de validação cruzada 70/30
 - 3 épocas e taxa de aprendizado de 10⁻⁴
 - Outros parâmetros preservados
 - Métrica MSE igual 261, 175
 - 6 minutos de tempo de execução

Resultados Parciais

- Atividades propostas executadas conforme o cronograma
 - Estudos das tecnologias e conceitos teóricos
 - Consolidação da base de dados
 - Especificação das arquiteturas para transfer learning
- Treinamento de um modelo para fins de teste
 - 1% da base de dados: 500 exemplos
 - Método holdout de validação cruzada 70/30
 - 3 épocas e taxa de aprendizado de 10^{-4}
 - Outros parâmetros preservados
 - Métrica MSE igual 261, 175
 - 6 minutos de tempo de execução

Agenda - Seção 9

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- 6 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Considerações Parciais
- Referências

Considerações Parciais

- Colorização de imagens utilizando modelos de redes neurais convolucionais e técnicas de Deep Learning
- Imagens no espaço de cores CIELab
 - Canal L como entrada das redes
 - Canais a e b como saída das redes
- Rede VGGNet com 1% da base de dados e MSE de 261,175
- Continuidade: treinamentos de outros modelos
 - Base de dados completa
 - Arquiteturas VGGNet e ResNet
 - 100 épocas
 - Métrica MSE

Considerações Parciais

- Colorização de imagens utilizando modelos de redes neurais convolucionais e técnicas de Deep Learning
- Imagens no espaço de cores CIELab
 - Canal L como entrada das redes
 - Canais a e b como saída das redes
- Rede VGGNet com 1% da base de dados e MSE de 261,175
- Continuidade: treinamentos de outros modelos
 - Base de dados completa
 - Arquiteturas VGGNet e ResNet
 - 100 épocas
 - Métrica MSE

Considerações Parciais

- Colorização de imagens utilizando modelos de redes neurais convolucionais e técnicas de Deep Learning
- Imagens no espaço de cores CIELab
 - Canal L como entrada das redes.
 - Canais a e b como saída das redes
- Rede VGGNet com 1% da base de dados e MSE de 261,175
- Continuidade: treinamentos de outros modelos
 - Base de dados completa
 - Arquiteturas VGGNet e ResNet
 - 100 épocas
 - Métrica MSE

Cronograma Parcial

		2018									
	02	03	04	05	06	07	80	09	10	11	12
Estudo dos conceitos teóricos re- lacionados à <i>Machine Learning</i>	x	x	x	x							
Estudo do ferramental tecnológico para elaboração do projeto	X	x	X	x							
Consolidação da base de dados			x	x							
Especificação das arquiteturas canônicas de redes neurais convolucionais			x								
Aplicação das técnidas de <i>Trans-</i> fer Learning nas redes neurais convolucionais identificadas				x							
Treinamento das redes neurais convolucionais com os exemplos da base de dados				x	х	х	x				
Testes das redes e comparação de métricas de desempenho					x	х	х	x			
Análise dos resultados obtidos									х	х	Х
Escrita da proposta do trabalho	x	Х	Х	Х	Х						
Defesa da proposta do trabalho					Х						
Escrita do trabalho final						Х	х	Х	Х	х	Х
Defesa do trabalho final											Х

Agenda - Seção 10

- Introdução
- Objetivos
- Justificativa
- 4 Metodologia
- 6 Cronograma
- Fundamentação Teórica
- Solução Proposta
- Resultados Parciais
- Onsiderações Parciais
- Referências

Referências

- ZHANG, R.; ISOLA, P.; EFROS, A. A. Colorful image colorization. In: ECCV. Bekerley, California: Cornell University Library, 2016.
- CHOLLET, F. Deep Learning with Python. 1. ed. Shelter Island, New York: Manning, 2017.
- KHAN, S. et al. A Guide to Convolutional Neural Networks for Computer Vision.
 1 ed. Australia: Morgan and Claypool, 2018. v. 1. (Synthesis Lectures on Computer Vision, v. 1).
- RUSSAKOVSKY, O. et al. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), v. 115, n. 3, p. 211-252, 2015.

Colorização de Imagens com Deep Learning

Defesa do Trabalho de Conclusão de Curso I

Giovana de Lucca Orientadora: Elloá B. Guedes

{gol.eng, elloa.uea}@gmail.com

Escola Superior de Tecnologia Universidade do Estado do Amazonas Manaus – Amazonas – Brasil

21 de junho de 2018

