### Monte-Carlo Path tracing



## Today

- Solving integrals (approximately)
  - What did ray-tracing do?
  - Analytic vs. Numeric
  - Monte Carlo method
- Solving the RE using Monte Carlo
- Variance reduction
  - Good Sampling patterns
  - Importance sampling



### Why is this hard to solve?

- It involves an integral with no analytic solution
- It is an integral equation, so the RHS contains the LHS in an integrand





### How ray-tracing solves the RE

- Many got suspicious about ray-tracing
- Example: Does metal have finite gloss?
  - Yes, cause otherwise I cant see highlight!
  - No, reflections are not blurry in steel balls!
- Contradiction!





### How ray-tracing solves the RE

- The integral is split into a sum of two:
  - A Dirac-paths, solved by binary recusing
  - A path connecting to a point light, can evaluate without recursion



## Solving integrals

- Analytic (accurate)
  - Given the function f, try to find F by symbolic manipulation
- Numeric (approximate)
  - Cubature
  - The Monte Carlo method
  - Both are approximate



### Classfication



### Analytic

Examples

$$-f(x) = x$$
,  $F(x) = \frac{1}{2}x^2$   
 $-f(x) = \sin(x)$ ,  $F(x) = -\cos(x)$ 

- Difficult for a function such as we have
  - Impossible, as: The input is not even analytic (what is f for a bunny in the sun?)
  - Difficult, as: Recursion
  - Also difficult: Spherical domain



### Some analytic things work



$$f(\mathbf{\omega}) = f(\theta, \varphi) = c \text{ if } 2 < \theta < 3 \text{ and } -1 < \varphi < 1$$
  
0 otherwise



### Forget about spheres for now

Integrand

 $f(\omega)$ 

Dark = low value Bright = high value



Domain  $\Omega$  (Here 2D rectangle)

Solution 
$$F = \int f(\omega)d\omega = 0.85$$









You should recall from high school analysis course.

















#### Cubature: A bit more formal

$$F(\mathbf{\omega})$$
 on  $\Omega = \int f(\mathbf{\omega}) = \sum f(\mathbf{\omega}_i) / N$ 

To find the integral F of a function f, decompose  $\Omega$  it into N as-small-as-possible cubes, evaluate f on each (sample) and average.

#### Is this it?

- Very simple method!
  - To get  $L(\mathbf{x}, \boldsymbol{\omega}_{0})$
  - Subdivide hemisphere  $\Omega$  above  $\mathbf{x}$  into N strata  $\mathbf{\omega}_i$
  - Evaluate integrand, i.e., send a ray

$$f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$$

- Triple product of light, svBRDF and geometric term
- Average
- Done!

### Problem: Course of dimensionality

- L appears on both sides
  - For  $L(\mathbf{y}, -\mathbf{\omega}_i)$  need to solve another integral
  - OK, lets go to y and also compute  $L(y, -\omega_i)$ 
    - For  $L(\mathbf{z}, -\mathbf{\omega}_i)$  need to solve another integral
    - OK, lets go to z and also compute  $L(z, -\omega_i)$ 
      - For  $L(\mathbf{z}_2, -\mathbf{\omega}_i)$  need to solve another integral
      - OK, lets go to  $\mathbf{z}_2$  and also compute  $L(\mathbf{z}_2, -\boldsymbol{\omega}_i)$ 
        - » For  $L(\mathbf{z}_3, -\boldsymbol{\omega}_i)$  need to solve another integral
        - » OK, lets go to  $\mathbf{z}_3$  and also compute  $L(\mathbf{z}_3, -\boldsymbol{\omega}_i)$ 
          - For  $L(\mathbf{z}_2, -\boldsymbol{\omega}_i)$  need to solve another integral
          - OK, lets go to  $\mathbf{z}_2$  and also compute  $L(\mathbf{z}_2, -\boldsymbol{\omega}_i)$



#### Recursion

- Recursion in CS is not evil
- Worked well in ray-tracing:



For depth *d* and reflection/refraction the number of rays is

 $2^d$ 

So three-bounce is  $2^3 = 8$  rays / pixel



#### Recursion

- Recursion in CS is not evil
- Impractical for the real RE
- Typical N is maybe 100 to 1000



For depth d and N strata the number of rays is

 $N^d$ 

So three-bounce is  $1000^3 = 1B \text{ rays / pixel}$ 



### Another way to imagine it



Every time we want any accurate value (ornge dot) at any bounce we need to resolve exponentially many others below it to proceed



## Alternative: Random samples

```
11 * 1.0 +

3 * 0.2 +

2 * 0.7

→

13.0 / 16 = 0.8125

~

0.85
```





## Alternative: Random samples

```
11 * 1.0 +

3 * 0.2 +

3 * 0.7

→

13.7 / 16 = 0.856

~

0.85
```





### What do we get from random?



For depth d and N samples the number of rays is

 $N \times d$ 

So three-bounce is  $3 \times 1000 = 3 \text{K rays / pixel}$ 



### Another way to imagine it



As we just need an approximate value, we can proceed with any point without looking at all ohers



#### Monte Carlo: A bit more formal

$$F(\mathbf{\omega}) \text{ on } \Omega = \int f(\mathbf{\omega}) = \sum f(\mathbf{\omega}_i) / N$$

To find the integral F of a function f, place as many samples N onto  $\Omega$ , evaluate f on each and average.

#### This is it

- Still very simple method!
  - To get  $L(\mathbf{x}, \boldsymbol{\omega}_{o})$
  - -N times
    - random directions  $\omega_{i,0}$  above  $\mathbf{x}, \omega_{i,1}$  above  $\mathbf{y},$  etc.
    - Evaluate integrand, i.e. send a ray

$$f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$$

- Triple product of light, svBRDF and geometric term
- Done!



## How to pick random directions?

- How to pick a random ray in 3D?
- normalize(vec3(frand(), frand()))?
- Clumps on axis and diagonals
- Bias in result!





### When to stop?

- Multiple options
- Popular:
  - After a fixed depth
  - When contribution falls below a threshold

















1000 Samples



- After N samples we get an image
- After 2N samples, we get an even better one
- This is called progressive
- Very useful for previews



#### Random has another reason

- Aliasing is the second reason for random
- Consider this integrand, not even recursive:





#### Random has another reasons

- Aliasing is the second reason for random
- Consider this integrand, not even recursive:





### Estimator/Variance/Bias

- We get a new value for every random seed
- We map these into an estimate
- This is the value of the integral
- If there is a deviation, we call it bias
- Around this exists a distribution of values
- This distribution has a variance



#### Variance of an estimator





#### Bias of an estimator





#### Desiderata variance

- Also it has no bias, i.e., the expected value is really the solution of the integrand
- OpenGL and CW1 ray-tracing: All biased
- A good estimator has a low variance
- Whenever we render, we will get a value close to the true value
- To this end, we do variance reduction

#### Variance reduction

- Next-event estimation
- Good sample patterns
  - Jittered
  - Quasi-Monte Carlo
  - Blue noise
- Importance Sampling



## Path tracing - High hopes



We hope for this ...



## Path tracing – High hopes



We hope for this ...



## Path tracing - Reality



But what we get is



## Path Tracing - reality



But what we get is



#### Next-event estimation



But what we get is



### Problem: Double-accounting



There are now **two ways** to hit the light. Simple solution: Simply only take emission from NEE.



#### Next event estimation

- Two simple changes
  - Add a random ray in the direction to the light
  - Remove adding in emission  $L_{
    m e}$  on all other paths
- Best for small light sources
- Result:
  - Will never miss direct light at any point
  - Still have all benefits of MC
- Glorified Whitted-style CW 1 ray-tracing



## **Endpoint choice**

Simple for flat area lights





## **Endpoint choice**

• Hard for e.g., spheres





### Uniform random can go bad







### The ideal sample pattern

- Two contradicting goals:
  - 1. Maybe not be regular
  - But always cover the domain uniformly, not only in the limit



### **Jittering**

- Back to the future:
  - Do cubature first
  - Then jitter every sample inside its cell
- Suffers from the curse of dimensionality
- Prevents aliasing
- Applicable if dimensionality is low
  - Example: Area light sampling



# Regular (recap)





### **Jittered**





### Multi-Jittered





#### Halton

- A way to place samples
  - Somewhat uniform
  - Without structure
  - In high dimensions
- A typical work-horse solution for rendering
- Defined on the unit hypercube



#### Radical inverse base n = 2





#### Radical inverse base n = 3





## Halton in 2, 3 i.e. $\pi(0)$ , $\pi(1)$





### Random vs. Halton





### Quasi-Monte Carlo sampling

- To get an n-dimensional Halton pattern
- Build the radical inverse in the co-prime basis  $\pi(0,..,n-1)$
- Build tuples in the order they occur in each sequence
- Improvement: Hammersley (reguar 1st dim.)
- De-correlation: Cranely patterson rotation



### Poisson disk / Blue noise

- Patterns with a maximal minimal distance between all points is called Poisson disk
- Another way is to see the spectrum of the distribution of distances: It is blue, i.e. no small minimal distances



### Poisson disk



Note: The smallest circle of all circles around each point is quite large



### Blue noise



Receptor distribution on the macaque retina prevents aliasing



### Importance sampling



Put more samples where the integrand is high, as here the errors have the largest effect.

### Importance sampling

- Placing the samples non-uniformly will introduce bias
- Fortunately, random uniform is just a special case of a more general estimator formulation we will see next
  - Before we took  $\mathbf{\omega}_i$  uniform, so  $p(\mathbf{\omega}_i) = 1 / |\Omega|$
  - Any other p will work as well
  - Ideall  $p \sim f$



### MC with importance sampling

$$F(\mathbf{\omega})$$
 on  $\Omega = \int f(\mathbf{\omega}) = 1/N \sum f(\mathbf{\omega}_i) / p(\mathbf{\omega}_i)$ 

To find the integral F of a function f, place as many samples N onto  $\Omega$  according to a distribution p, evaluate f and p on each and divide.

### What can be p?

- Recall the integrand is  $f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$
- We could sample for
  - Light: Hard, integral equation itself.
  - BRDF: Not so hard, done analytically
  - Geometric term: Even easier analytically
  - Products of all of the above: Even harder then any alone, but doable



## Exampe: IS for direct light





Same amount of rays ©U Virginia



### Recap

- Rendering is solving an integral equation
- Analytic and some numeric methods no-go
- Monte Carlo is the method of choice
- Suffers from noise (variance)
- Need to use variance reduction methods
  - Sample patterns
  - Importance sampling