

(51) Internationale Patentklassifikation ⁶ : C01B 15/029		A1	(11) Internationale Veröffentlichungsnummer: WO 98/16463 (43) Internationales Veröffentlichungsdatum: 23. April 1998 (23.04.98)
<p>(21) Internationales Aktenzeichen: PCT/EP97/05659</p> <p>(22) Internationales Anmeldedatum: 15. Oktober 1997 (15.10.97)</p> <p>(30) Prioritätsdaten: 196 42 770.3 16. Oktober 1996 (16.10.96) DE</p> <p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).</p> <p>(72) Erfinder; und</p> <p>(75) Erfinder/Anmelder (<i>nur für US</i>): FISCHER, Martin [DE/DE]; Elbinger Weg 1, D-67071 Ludwigshafen (DE). KAIBEL, Gerd [DE/DE]; Robert-Bosch-Strasse 4, D-68623 Lampertheim (DE). STAMMER, Achim [DE/DE]; Buttstädtler Strasse 6, D-67251 Freinsheim (DE). FLICK, Clemens [DE/DE]; Am Bildstöckel 16, D-76863 Herxheim (DE). QUAISER, Stefan [DE/DE]; Chenover Strasse 11, D-67117 Limburgerhof (DE). HARDER, Wolfgang [DE/DE]; Bergwaldstrasse 16, D-69469 Weinheim (DE). MASSONNE, Clemens [DE/DE]; Beethovenstrasse 1, D-67368 Westheim (DE).</p> <p>(74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Sternwartstrasse 4, D-81679 München (DE).</p>		<p>(81) Bestimmungsstaaten: AL, AM, AU, AZ, BG, BR, BY, CA, CN, CZ, GE, HU, IL, JP, KG, KR, KZ, LT, LV, MD, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i></p>	
<p>(54) Title: PROCESS FOR THE MANUFACTURE OF HYDROGEN PEROXIDE</p> <p>(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON WASSERSTOFFPEROXID</p> <p>(57) Abstract</p> <p>The present invention relates to a process for the manufacture of hydrogen peroxide solutions with a hydrogen peroxide content of at least 2.5 wt % by continual reaction of hydrogen and oxygen in an aqueous or alcoholic reaction medium on catalyst shaped bodies containing palladium.</p> <p>(57) Zusammenfassung</p> <p>Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasserstoffperoxid-Lösungen mit einem Wasserstoffperoxidgehalt von wenigstens 2,5 Gew.-% durch kontinuierliche Umsetzung von Wasserstoff und Sauerstoff in einem wässrigen und/oder alkoholischen Reaktionsmedium an Palladium enthaltenden Katalysatorformkörpern.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AI	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Canada	IT	Italien	NB	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Verfahren zur Herstellung von Wasserstoffperoxid

Beschreibung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasserstoffperoxid-Lösungen mit einem Wasserstoffperoxid-Gehalt von wenigstens 2,5 Gew%, durch Umsetzung von Wasserstoff und Sauerstoff nach einem kontinuierlichen Verfahren an Katalysatoren, die als aktive Komponente Palladium enthalten.

Übliche industrielle Verfahren für die Herstellung von Wasserstoffperoxid sind die Elektrolyse saurer Ammoniumsulfatlösungen, die Oxidation von Isopropylalkohol oder das Anthrachinonverfahren. Die direkte Synthese von Wasserstoffperoxid aus den Elementen an Übergangsmetallkatalysatoren ist bekannt, hat jedoch bislang keine kommerzielle Verwendung gefunden.

20 Dies ist auf mehrere Gründe zurückzuführen. So bilden Wasserstoff und Sauerstoff explosive Gasgemische, wenn der Gehalt an Wasserstoff in der Gasmischung oberhalb 5 Vol.% liegt. Andererseits ist die Bildungsgeschwindigkeit von Wasserstoffperoxid bei Verwendung von Wasserstoff/Sauerstoff-Mischungen außerhalb des explosiven

25 Bereichs in der Regel zu gering, um vernünftige Raum-Zeit-Ausbeuten zu gewährleisten. Zudem kann ein zu hoher Gehalt an Sauerstoff im Reaktionsgas den oxidativen Abbau der Katalysatoren beschleunigen.

30 Ein weiteres Problem stellt die Selektivität der Reaktion dar. So steht die Bildungsreaktion des Wasserstoffperoxids in Konkurrenz zur Bildung von Wasser. Zudem katalysieren die für die Bildung von Wasserstoffperoxid aus den Elementen geeigneten Katalysatoren auch die Abbaureaktion des Wasserstoffperoxids in Gegenwart von

35 überschüssigem Wasserstoff entsprechend folgender Reaktionsgleichung: $H_2O_2 + H_2 \rightarrow 2H_2O$. Dieses Selektivitätsproblem kann dadurch gelöst werden, daß man nach kontinuierlichen Verfahren mit hohen Durchflußgeschwindigkeiten arbeitet. Dies hat jedoch zur Folge, daß bei niedriger Reaktionsgeschwindigkeit die im Austrag erhaltenen Wasserstoffperoxid-Konzentrationen für eine wirtschaftliche Nutzung dieses Verfahrens zu gering werden. Außerdem treten bei zu hohen Fließgeschwindigkeiten Abrasionsprobleme am Katalysator auf, was zu verkürzten Standzeiten und damit ebenfalls zu wirtschaftlichen Nachteilen dieses Verfahrens führt.

40

45

Die US-4,009,252 offenbart für die Bildung von Wasserstoffperoxid aus Wasserstoff und Sauerstoff an palladiumhaltigen Katalysatoren ein optimales Verhältnis von O₂ zu H₂ im Bereich von 1,5:1 bis 20:1, also im Explosivbereich. Die Umsetzung erfolgt nach dem

5 Batchverfahren, die erreichten Raum-Zeit-Ausbeuten sind nicht zu-
friedenstellend.

Die WO 92/04277 beschreibt die Umsetzung von Wasserstoff mit Sau-
erstoff in einem mit wässriger Katalysatorsuspension gefüllten

10 Rohrreaktor. Die verwendeten Gasgemische liegen vorzugsweise im Explosionsbereich. Durch eine hohe Strömungsgeschwindigkeit des Reaktionsmediums (> 1m/sec) wird gewährleistet, daß das Reaktionsgas in Form kleiner Blasen vollständig im Reaktionsmedium dispergiert ist, so daß ein explosionsartiges Abreagieren des Re-
15 aktionsgases nicht möglich ist. Die nach einmaligem Durchlauf der Reaktionszone erhaltenen Wasserstoffperoxidkonzentrationen liegen unterhalb 1 Gew%. Höhere Ausbeuten können nur durch mehrmaliges Durchlaufen der Reaktionszone erreicht werden. Als problematisch erweist sich, daß der Katalysator in Form einer Suspension ver-
20 wendet wird. Dies erfordert aufwendige Filtrations- und Rückführungsmaßnahmen, wobei Katalysatorverluste unvermeidbar sind. Reaktionsrohre, die für den erforderlichen Reaktionsdruck geeignet sind - in den Beispielen werden Druckwerte oberhalb 80 bar offen-
bart - sind vergleichsweise teuer. Das genannte Verfahren ist da-
25 her als sehr teuer einzustufen. Ein ähnliches Verfahren mit ver-
besserter Verwirbelung der Wasserstoff- und Sauerstoffströme ist in der WO 96/05138 beschrieben.

30 Die US-A 5,500,202 und die EP-A 579 109 beschreiben ein kontinuierliches Verfahren zur Herstellung von Wasserstoffperoxid durch Umsetzung von H₂/O₂-Gasmischungen an einem stationären, pulverförmigen Katalysator (Teilchengrößen im Bereich von 10 µm bis 250 µm) in einem Rieselbett-Reaktor. Um das Explosionsrisiko bei dem in
35 einem Rieselbettreaktor üblicherweise großen Gasvolumen zu ver-
ringern, wird dem Reaktionsgas Stickstoff als Inertgas zugeführt. Dies verursacht jedoch zusätzliche Kosten. Die auf diesem Wege erhaltenen wässrigen Wasserstoffperoxid-Lösungen weisen lediglich Konzentrationen im Bereich von 3 bis 5 Gew% auf. Der Umsatz bezogen auf Wasserstoff liegt lediglich im Bereich von 25 - 35%. Über
40 die Lebensdauer des Katalysators werden keine Angaben gemacht. Wegen der starken Wärmeentwicklung werden Reaktoren mit einem maximalen Innendurchmesser von 30 mm empfohlen. Für eine industrielle Nutzung müßten daher mehrere 1000 dieser Rohrreaktoren installiert werden, was hohe Investitionskosten mit sich bringt.
45

Die US-A 4,336,238 und US-A 4,336,239 beschreiben die Umsetzung von Wasserstoff und Sauerstoff zu Wasserstoffperoxid an palladiumhaltigen Katalysatoren in organischen Lösungsmitteln oder Lösungsmittelgemischen, die gegebenenfalls auch Wasser enthalten.

5 Durch das beschriebene Verfahren kann der Anteil an Wasserstoff im Reaktionsgas gesenkt werden, jedoch sind die erhaltenen Wasserstoffperoxidkonzentrationen von maximal 2,4 Gew% bei Verwendung von Reaktionsgasmischungen, die weniger als 5 Vol% Wasserstoff enthalten, für eine wirtschaftliche Anwendung zu gering.

10 Die Verwendung organischer Lösungsmittel wirkt sich vorteilhaft auf die Katalysatorlebensdauer aus. Nach 285 Stunden Betriebsdauer ist die Katalysatoraktivität allerdings auf 69% des ursprünglichen Wertes gesunken, was für eine industrielle Anwendung immer noch zu gering ist. Die US-A 4,389,390 beschreibt ein ähnliches Verfahren, wobei der Katalysator, der sich vom Träger gelöst hat, durch Aktivkohlefilter zurückgewonnen wird. Ein weiterer Vorteil dieses Verfahrens ist darin zu sehen, daß durch Entfernung des Katalysators aus dem Reaktionsmedium die Neigung des Wasserstoffperoxids zur Zersetzung verringert wird. Jedoch werden 15 im kontinuierlichen Betrieb keine Wasserstoffperoxidlösungen mit einem Gehalt oberhalb 2,1 Gew% erhalten.

20

Hinsichtlich des Problems der Katalysatoraktivierung bei der Herstellung von Wasserstoffperoxid aus den Elementen finden sich 25 in der Literatur verschiedene Lösungsvorschläge. So beschreiben die US-A 5,352,645 und die WO 92/04976 spezielle feste Träger aus sprühgetrocknetem, kolloidalen Kieselgel. Die Verwendung superazider Oxide als Trägermaterialien wird in der US 5,236,692 sowie in der EP-A 437 836 vorgeschlagen. Hierdurch kann der übliche 30 Säureanteil des Reaktionsmediums vermieden werden. Die EP-A 627 381 lehrt die Verwendung von Niob-, Tantal-, Molybdän- oder Wolframoxiden als Trägermaterialien, die sich durch hohe Säurefestigkeit auszeichnen. Die US-A 5,292,496 beschreibt die Verwendung von Cer-haltigen Trägermaterialien, um so die Verwendung von 35 Halogen als Stabilisator im Reaktionsmedium zu vermeiden. Die Herstellung des Wasserstoffperoxids erfolgt in den genannten Schriften jedoch immer nach Batch- oder halbkontinuierlichen Verfahren, die für eine industrielle Nutzung wenig geeignet sind. Zudem lassen die kurzen Reaktionszeiten keine Aussage über die 40 Lebensdauer der Katalysatoren zu.

Die Verwendung von Katalysatormonolithen, die als aktive Komponente Palladium enthalten, wird von Kosak in "Catalysis of Organic Reactions (Scaros und Prunier, Hrsg.), Marcel Dekker Inc., 45 New York 1995, S. 115ff, für die Herstellung von Wasserstoffperoxid aus den Elementen beschrieben. Die Umsetzung erfolgt diskontinuierlich in einem wässrigen Reaktionsmedium bei einem ver-

gleichsweise hohen Druck von 144 bar und einem molaren Verhältnis von $O_2:H_2 = 4,7$, also im Explosionsbereich.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren für die Herstellung von Wasserstoffperoxid aus Wasserstoff und Sauerstoff bereitzustellen, das es auch bei Verwendung von Wasserstoff/Sauerstoff-Mischungen außerhalb des Explosiv-Bereiches ($O_2:H_2 > 20:1$) erlaubt, Wasserstoffperoxid-Lösungen mit einem Gehalt oberhalb 2,5 Gew% herzustellen. Die verwendeten Katalysatoren sollen hohe Standzeiten aufweisen.

Diese Aufgabe konnte gelöst werden durch ein kontinuierliches Verfahren, das die Umsetzung von Wasserstoff und Sauerstoff in Wasser und/oder C_1-C_3 -Alkanolen als Reaktionsmedium an Katalysatorformkörpern, die als aktive Komponente Palladium enthalten, umfaßt.

Die vorliegende Erfindung betrifft somit ein Verfahren zur Herstellung von Wasserstoffperoxid-Lösungen mit einem Wasserstoffperoxid-Gehalt von wenigstens 2,5 Gew%, durch kontinuierliche Umsetzung von Wasserstoff und Sauerstoff an Katalysatoren, die als aktive Komponente Palladium enthalten, das dadurch gekennzeichnet ist, daß die Umsetzung in Wasser und/oder C_1-C_3 -Alkanolen als Reaktionsmedium an Katalysatorformkörpern erfolgt.

Unter Katalysatorformkörpern sind Katalysatoren zu verstehen, bei denen die katalytisch aktive Komponente sich auf der Oberfläche speziell geformter Träger befindet. Derartige Träger können übliche Füllkörper, wie Raschig-Ringe, Sattelkörper, Pall®-Ringe, Drahtspiralen oder Maschendrahtringe sein, die aus unterschiedlichen Materialien, die sich für eine Beschichtung mit der aktiven Komponente eignen (siehe auch Römpf-Chemie-Lexikon, 9. Aufl., S. 1453f.) aufgebaut sind. Die mit der katalytisch aktiven Komponente versehenen Füllkörper werden als lose Schüttung in den Reaktor gegeben. Bevorzugte Formkörper weisen Kanäle mit hydraulischen Radien (Definition siehe VDI-Wärmeatlas, Abschnitt LE1) im Bereich von 1 bis 10 mm auf.

Bevorzugt werden Katalysatorformkörper, die in Form geordneter Packungen in den Reaktor eingebaut werden und die aufgrund einer Vielzahl von Durchströmungskanälen eine große Oberfläche, bezogen auf ihr Volumen, aufweisen. Derartige Formkörper werden im folgenden als Katalysatormonolithen bezeichnet. Geeignete Reaktoren sind beispielsweise in den EP-A 068 862, EP-A 201 614 und der EP-A 448 884 beschrieben.

Die Katalysatormonolithe bzw. die monolithischen Träger sind in der Regel aus Geweben, Gestricken, Folien, Streckmetallen und/ oder Blechen aufgebaut. Monolithische Träger können auch, wie in der US-A 4,364,888 und der US-A 4,333,896 beschrieben, durch

5 Extrusion hergestellt werden. Als monolithische Träger sind auch Formkörper geeignet, die aus offenzelligen Schäumen aufgebaut sind. Diese Schäume können beispielsweise aus Keramik, Melaminharzen oder Polyurethan bestehen.

10 Bevorzugt werden Katalysatormonolithe, die aus Geweben aufgebaut sind, da diese im Reaktor vom flüssigen Reaktionsmedium besonders gut durchströmt werden und somit hohe Umsatzgeschwindigkeiten ermöglichen.

15 Geeignete Gewebe sind beispielsweise aus Fasern oxidischer Materialien, wie Al_2O_3 und/oder SiO_2 , oder aus Kunststofffasern, wie z.B. Polyamid-, Polyester-, Polyvinylchlorid-, Polyethylen-, Polypropylen-, Polytetrafluorethylenfasern oder Kohlefasern aufgebaut. Bevorzugt werden gewebeförmige Katalysatorträger, die aus 20 webbaren Metalldrähten, beispielsweise aus Eisen, Federstahl, Hastelloy, Monel, Silber, Chromstahl, Chromnickelstahl oder Titan, aufgebaut sind. Ganz besonders bevorzugt werden gewebeförmige Katalysatorträger, die aus webbaren Drähten hochlegierter Edelstähle oder Metalle, die sich durch Ausbildung einer Passivierungsschicht vor weiterer Korrosion schützen, aufgebaut sind, beispielsweise Cr-Stähle, CrNi-Stähle, CrNiTi-Stähle und CrNiMo-Stähle oder hitzebeständige Stähle mit den Werkstoffnummern 1.4016, 1.4767, 1.4401, 2.4610, 1.4765, 1.4847, 1.4301, 1.4742.

30 Aus den genannten Drähten und Fasern lassen sich Gewebe unterschiedlicher Webart herstellen, wie glatte Gewebe, Köpergewebe, Tressengewebe, Fünfschaft-Atlas-Gewebe und andere Spezialbindungsgewebe. Bevorzugt werden diese Gewebe zu mehrlagigen Gewebeverbänden zusammengefasst. Geeignete gewebeförmige, monolithische 35 Katalysatorträger sind in der EP-A 498 435 beschrieben.

Besonders geeignete Katalysatormonolithe sind aus mehreren Lagen gewellter, geknickter und/oder glatter Gewebe aufgebaut, die so angeordnet sind, daß benachbarte Lagen mehr oder weniger abgeschlossene Kanäle bilden. Der hydraulische Durchmesser der Kanäle 40 liegt vorzugsweise im Bereich von 1 bis 10 mm, insbesondere von 1,5 bis 3 mm (gemäß Definition in VDI-Wärmeatlas, Abschnitt LE1). Diese Kanäle können gerade oder gebogen sein. Bevorzugt werden 45 mehrlagige Gewebe, in denen sich glatte und gewellte bzw. geknickte Gewebe abwechseln. Monolithe, in denen die Gewebe teilweise oder vollständig durch Bleche, Gestricke oder Streckmetalle

ersetzt sind, können ebenfalls verwendet werden. Derartige Monolithen werden bevorzugt so in den Reaktor eingebaut, daß die Kanäle gegen die Durchströmungsrichtung des Reaktionsmediums geneigt sind. Die Gewebelagen selber werden vorzugsweise parallel 5 zur Strömungsrichtung im Reaktor eingebaut. Sind mehrere dieser Baueinheiten nacheinander geschaltet, erfolgt ihr Einbau vorzugsweise so, daß die Durchströmungskanäle gegen die Strömungsrichtung alternierend in entgegengesetzte Richtungen geneigt sind. Die Baueinheiten werden vorzugsweise so eingebaut, daß die Gewebe 10 belagen zweier aufeinanderfolgender Baueinheiten einen Winkel von vorzugsweise etwa 90° zueinander einnehmen. Wickelmodule aus gewellten oder geknickten und gegebenenfalls auch ebenen Gewebelagen sind ebenfalls geeignet.

15 Die Beschichtung der Katalysatorträger mit der katalytisch aktiven Komponente erfolgt nach den für sie üblichen Methoden (s.u.). Bei monolithischen Trägern, die aus Geweben, Folien, Blechen, Gestricken oder Streckmetallen aufgebaut sind, erfolgt die Beschichtung in der Regel vor der Weiterverarbeitung zum Katalysatormonolithen. Sie kann jedoch auch am vorgeformten Träger erfolgen. Sollen die Gewebe in Einsatzrahmen gespannt und gegebenenfalls anschliessend zu Katalysatorzellen zusammengefügt werden, empfiehlt es sich, die Beschichtung der Gewebe im nichtverarbeiteten Zustand vorzunehmen.

25

Die katalytisch aktive Komponente kann neben Palladium als Hauptbestandteil weitere Metalle, vorzugsweise Edelmetalle und insbesondere Platin, Rhodium, Iridium, Kupfer, Silber und/oder Gold als Promotoren enthalten. Das Verhältnis Palladium/Promotormetall 30 liegt vorzugsweise im Bereich von 100:1 bis 1:10 und insbesondere im Bereich von 10:1 bis 1:1. Das Palladium sowie die gegebenenfalls anwesenden Promotormetalle machen in der Regel 5×10^{-4} bis bis 1 Gew% und insbesondere 10^{-3} bis 0,15 Gew% bezogen auf die gesamte Katalysatormasse (Träger + aktive Komponente) aus.

35

Bei Katalysatorträgern mit poröser Oberfläche, wie sie beispielsweise Katalysatorträger mit Oberflächen aus aktivem Aluminiumoxid oder SiO_2 aufweisen, wird die aktive Komponente in der Regel durch einen Imprägnierung- oder Tränkungsschritt, dem in der Regel ein 40 Trocknungs- und Aktivierungsschritt folgt, aufgebracht. Derartige Techniken sind beispielsweise in der DE-A 22 56 195 oder in der DE-A 23 17 560 beschrieben, auf die hier in vollem Umfang Bezug genommen wird. Ebenfalls geeignet sind Katalysatoren, bei denen auf einem Metallträger eine aktive Aluminiumoxidschicht und an- 45 schließend ein Überzug aus Palladium aufgebracht wird. Die Oxidschicht wird durch Tauchen des Trägers in eine Dispersion aus aktivem Aluminiumoxid und anschließender Temperung bei erhöhter

Temperatur hergestellt. Auf diese Oxidschicht wird anschließend durch Tränken mit einer Palladiumsalzlösung das Edelmetall aufgebracht und dieses nach Trocknung durch Reduktion mit Wasserstoff bei 500°C aktiviert. Dieses Verfahren ist in der EP-A 075 124 offensichtlich, auf die hier ebenfalls in vollem Umfang Bezug genommen wird. Die DE-A 41 13 525 beschreibt ein Verfahren zur Beschichtung von Oberflächen in komplexen geometrischen Gebilden mit Edelmetallen, indem man in einem ersten Schritt die Gebilde mit einer Lösung, die Komplexe der Metalle mit organischen Liganden enthält, benetzt und anschließend diese Komplexe durch UV-Bestrahlung zerstört. Auf diese Weise lassen sich Netze, Fliese, Fasern, Körper mit wabenförmiger, schwammartiger oder poröser Struktur, unabhängig von der chemischen Beschaffenheit der Oberfläche, mit stabilen Edelmetallbeschichtungen versehen. Auch dieses Beschichtungsverfahren ist für die Herstellung der erfundungsgemäßen Katalysatormonolith geeignet. Erfundungsgemäß geeignete Beschichtungen lassen sich auf die in der EP-A 374 099 beschriebene Weise durch Tränken des Katalysatorträgers mit geeigneten Palladium(0)komplexen und anschließende Thermolyse dieser Komplexe erhalten. Reetz et al. (Angew. Chem. 1995, 107, 2956-2958) beschreibt die Beschichtung von SiO_2 - oder Al_2O_3 -Oberflächen mit präformierten Palladiumclustern. Auf diese Weise werden auch bei porösen Oberflächen sehr dünne Schichten der aktiven Komponente (Eggshell-Katalysatoren), erhalten. Auch auf diese Weise sind erfundungsgemäß geeignete Katalysatormonolith herstellbar. Das Aufbringen von Metallen auf thermisch stabile Katalysatorträger kann auch nach dem Verfahren des Flammenspritzens erfolgen (s. P. Fauchais et al. in Pure and Appl. Chem., Vol. 66, 1994, 1247-1258). Das Aufbringen der katalytisch aktiven Komponente kann auch durch Aufdampfen von Metallen auf den Katalysatorträger im Vakuum erfolgen. Als Vakuumverdampfungstechniken kommen insbesondere die thermische Verdampfung, die Flash-Verdampfung, die Kathodenerstäubung sowie Sputtern in Frage. Die thermische Verdampfung kann durch direkte oder indirekte elektrische Heizung erfolgen. Vorzugsweise benutzt man die Elektronenstrahlverdampfung für diese Methode. Die erfundungsgemäßen, gewebeförmigen Katalysatorträger können nach diesen Verfahren kontinuierlich oder diskontinuierlich beschichtet werden. Wegen weiterer Details wird auf die EP-A 198 435 verwiesen. Das in der DE-A 41 21 418 beschriebene Verfahren zum Aufbringen von Pd- oder Pt-Legierungen auf Metalloberflächen ist für die Herstellung der erfundungsgemäßen Katalysatoren ebenfalls geeignet.

Vorzugsweise werden Palladium sowie gegebenenfalls die Promotoren durch elektrolytische, insbesondere durch elektrochemische Abscheidung aus entsprechenden Metallsalz-Lösungen auf den Katalysatorträger aufgebracht. Als Reduktionsmittel eignen sich insbe-

sondere Hydrazin, Zitronensäure, Ethanol, Salze der hypophospho-
rigen Säure, z.B. NaH_2PO_2 , Formaldehyd, Ameisensäure, Boranate wie
Natriumborhydrid, oder stabilisierte Boranlösungen wie z.B. Kom-
plexe des Borans mit Diethylether, Diethylamin oder Diethylamin
5 (s. auch A. Laus in Mater. Sci. Eng. A 146 (1991) 33,49; s. auch
Dechema-Tagungsbericht XXIX. Jahrestreffen deutscher Katalytiker,
Friedrichroda, März 1996, S. 66).

Hierbei empfiehlt es sich, den Katalysatorträger vorzubehandeln,
10 um die Haftung der aktiven Komponente auf der Trägeroberfläche zu
verbessern. Hierzu zählen beispielsweise die Entfernung von Fet-
ten oder ähnlichen Substanzen, die die gewünschte Oberflächenhaf-
tung behindern, beispielsweise durch Spülen mit organischen Lö-
sungsmitteln wie Ether, Aceton oder Halogenkohlenwasserstoffen,
15 oder das Glühen. Oxidschichten auf metallischen Trägern können
auch durch Behandlung mit Mineralsäuren, z.B. Salzsäure oder
Schwefelsäure, entfernt werden. Durch das hierbei erzielte "Auf-
rauhen" der metallischen Oberfläche wird die Zementierung der Ak-
tivkomponente, insbesondere bei elektrolytischer oder elektroche-
20 mischer Abscheidung, verbessert.

Die durch die beschriebenen Verfahren erhaltenen Katalysatorsy-
steme aus Träger und Aktivkomponente/Promotoren können anschlie-
ßend durch thermische Behandlung bei Temperaturen von 200 bis
25 900°C, vorzugsweise 400 bis 700°C, formiert werden. Diese thermi-
sche Nachbehandlung kann sowohl in oxidierender, inerter oder
auch reduzierender Atmosphäre ablaufen. Besonders bei polymetal-
lischen Systemen wird eine Formierung in reduzierender Atmosphäre
bevorzugt, da hierbei leichter Legierungen ausgebildet werden.
30

Die fertigen Katalysatorsysteme werden dann im Reaktionsraum fi-
xiert eingebaut (s.o.). Besonders bevorzugt werden Rohrreaktoren,
in denen zylindrisch aufgebaute Katalysatoreinheiten eingepaßt
35 sind, da sich hier eine gleichmäßige Strömung ausbilden kann, was
eine besonders gute Reaktionsführung erlaubt.

Die Durchführung der Reaktion erfolgt in der Regel bei geflutetem
Reaktor. Als Reaktionsmedium dient Wasser und/oder $\text{C}_1\text{-C}_3$ -Alkanole,
40 vorzugsweise Wasser und/oder Methanol. Wenn als Reaktionsmedium
Wasser verwendet wird, kann diesem bis zu 20 Gew.-% des Alkohols,
vorzugsweise Methanol, zugesetzt werden. Wird ein alkoholisches
Reaktionsmedium eingesetzt, kann dieses zu 40 Gew.-%, vorzugsweise
bis zu 20 Gew.% und besonders bevorzugt bis zu 5 Gew.% Wasser ent-
45 halten. Ganz besonders bevorzugt wird Wasser als alleiniges Reak-
tionsmedium verwendet. Zur Stabilisierung des Wasserstoffperoxids
gegen Zersetzung werden dem Reaktionsmedium Säuren, deren pK_a -

Wert vorzugsweise kleiner als der der Essigsäure ist, insbesondere Mineralsäuren wie Schwefelsäure, Phosphorsäure oder Salzsäure, zugesetzt. Die Säurekonzentration beträgt in der Regel wenigstens 10^{-4} Mol/Liter, vorzugsweise 10^{-3} bis 10^{-1} Mol/Liter. Weiterhin werden in der Regel noch Spuren von Bromid oder Chlorid in Konzentrationen von 1 bis 1000 ppm, vorzugsweise 5 bis 300 ppm zugesetzt. Es können aber auch andere Stabilisatoren, wie z.B. Formaldehyd verwendet werden.

10 Das Reaktionsgas, das neben Wasserstoff und Sauerstoff auch noch inerte Gase wie Stickstoff oder Edelgase enthalten kann, weist in der Regel $O_2:H_2$ -Verhältnisse im Bereich von 2:1 bis 1000:1 auf. Bevorzugt werden Molverhältnisse im Bereich von 5:1 bis 100:1 und besonders bevorzugt im Bereich von 20:1 bis 50:1. Der im Reaktionsgas verwendete Sauerstoff kann auch in Form von Luft dem Reaktionsgas zugemischt werden.

15

In einer bevorzugten Ausführungsform wird das Reaktionsgas im Kreis geführt. In diesem Fall liegt das Molverhältnis im Frischgasgemisch in der Nähe der Stöchiometrie, vorzugsweise im Bereich von 1,5:1 bis 0,5:1. Das Molverhältnis $O_2:H_2$ im Kreisgas sollte im Bereich von 5:1 bis 1000:1, vorzugsweise im Bereich von 20:1 bis 100:1 liegen. Die Reaktion kann bei Normaldruck als auch bei Überdrucken bis zu 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck 10 bis 100 bar, insbesondere 10 bis 80 bar. Die Reaktionstemperatur kann im Bereich von 0 bis 60°C liegen, vorzugsweise wird im Bereich von 20 bis 50°C gearbeitet. Vorzugsweise werden die Partialdrücke der Reaktionsgase in der Reaktionsgasbeschaffung im Reaktor als auch im Kreisgas so gewählt, daß unter Reaktionsbedingungen die Wasserstoffkonzentration sich unterhalb der unteren Explosionsgrenze befindet.

Reaktionsgas und Reaktionsmedium können im Gleichstrom oder im Gegenstrom zueinander, vorzugsweise im Gleichstrom geführt werden, wobei die flüssige Phase die kontinuierliche und das Reaktionsgas die diskontinuierliche Phase bildet. Bei dem bevorzugten vertikalen Reaktoraufbau (stehender Reaktor) werden Reaktionsgas und Reaktionsmedium vorzugsweise im Gleichstrom von unten nach oben durch den Reaktor geführt. Hierbei kann Wasserstoff über ein oder mehrere Zwischeneinspeisungen stromabwärts vom Einspeisungspunkt des Sauerstoffs oder der Luft dem Reaktor zugeführt werden. Die Leerrohrgeschwindigkeit von Reaktionsgas und Reaktionsmedium liegt im Bereich von 50 bis 1000 m/h, vorzugsweise im Bereich von 150 bis 300 m/h.

45

Durch das beschriebene Verfahren lassen sich Wasserstoffperoxidlösungen mit Wasserstoffgehalten oberhalb 2,5 Gew%, vorzugsweise im Bereich von 5 bis 25 Gew% herstellen. Die Konzentration kann durch Einstellung der Stoffströme in der gewünschten Weise voral-
5 wählt werden. Die Selektivität der Wasserstoffperoxidbildung liegt dabei stets oberhalb 65%, vorzugsweise $\geq 75\%$. Langzeituntersuchungen haben gezeigt, daß auch nach mehr als 40 Tagen Betriebsdauer keine oder nur eine geringfügige Abnahme der Katalysatoraktivität und Selektivität zu verzeichnen ist.

10

Figur 1 zeigt beispielhaft ein Reaktorsystem mit dem stehend angeordneten Reaktor 1, in dem mehrere durch Zwischeneinspeisungen 2 von Wasserstoff getrennte Schichten 3 von gewebeförmig aufgebauten Katalysatormonolithen montiert sind. Über die Pumpe 4 wird
15 Methanol und/oder Wasser zugeführt. Über die Anschlußleitung 5 wird Sauerstoff zugefahren und mit einem Gas-Flüssig-Verteiler, z.B. einer Mischdüse 6, in der Kreisflüssigkeit 7 blasenförmig verteilt. In der gleichen Mischdüse 6 - gegebenenfalls kann auch eine separate Mischdüse verwendet werden - wird ein Teilstrom 8
20 des Wasserstoffs zugefahren. Weitere Teilmengen 2 an Wasserstoff werden mengengeregelt über Verteilereinrichtungen 9 an den Zwischeneinspeisungsstellen 10 zwischen den Katalysatorschichten 3 zugefahren. Am oberen Ende des Reaktors wird der zweiphasige Reaktoraustrag 11 entnommen und in einem Trenngefäß 12 getrennt.
25 Die Gasphase wird über einen Verdichter 13 - oder bei geringer Bauhöhe des Reaktors bevorzugt direkt - über die Mischdüse 6 am unteren Ende des Reaktors wieder zugegeben. Ein Teilstrom 14 des Gases wird zur Begrenzung der Anreicherung von Inertbestandteilen über eine Druckhaltung 15 in die Abgasleitung 16 geführt. Die
30 Flüssigkeit wird über einen Wärmetauscher 17 mit Kühlwasser gekühlt und über die Pumpe 18 wieder am unteren Ende des Reaktors zugefahren. Zusätzlich ist es auch möglich, Zwischenentnahmen 19 des zweiphasigen Reaktorinhalts längs des Reaktors vorzusehen, eine Phasentrennung 20 durchzuführen und beide Phasen - die Flüssigphase gekühlt - wieder an einer tieferen Stelle 21 des Reaktors zuzufahren. Das flüssige Reaktionsprodukt 22 wird als Teilstrom 23 dem Phasenscheider 12 am oberen Ende des Reaktors entnommen.

Die vorliegende Erfindung wird durch die folgenden Beispiele er-
40 läutert, ohne sie jedoch einzuschränken.

I. Herstellung von Katalysatorformlingen mit Katalysatorträgern aus V4A-Gewebe.

45

Ein gewelltes und ein glattes Netz aus V4A-Stahl (1.4571, Maschenweite 180 μm , Drahtdurchmesser 146 μm) wurde aufeinander gelegt und zu einem zylinderförmigen Monolith mit einer Höhe von 5

11

cm und einem Durchmesser von ebenfalls 5 cm gerollt. Die Enden der Netze wurden durch Schweißpunkte fixiert. Der Netzebenenabstand der glatten Netze betrug wenigstens 1 mm.

5 Der monolithische Träger wurde sukzessive mit Aceton und destilliertem Wasser behandelt und anschließend getrocknet. Danach wurde der Monolith mit einer Lösung aus 25 Gew% konzentrierter Salzsäure und 75 Gew% destilliertem Wasser 30 Minuten bei 60°C behandelt und mit destilliertem Wasser abgespült. Der so behandelte
10 Monolith wurde in 150 ml destilliertem Wasser vorgelegt. Nach Zugebung von 10 Tropfen konzentrierter HNO_3 und 36 ml einer 1 gew%igen wässrigen Lösung von hypophosphoriger Säure wurden 20 ml einer Palladiumnitratlösung mit einer Palladiumkonzentration von 1 Gew% zugegeben. Hiernach wurde zuerst 17 Minuten auf 60°C und dann eine
15 Stunde auf 80°C erwärmt. Anschließend ließ man abkühlen, wusch den Katalysatormonolith mit destilliertem Wasser und trocknete ihn 16 Stunden bei 120°C.

20 II. Herstellung von Wasserstoffperoxid

Als Reaktionsgefäß dient ein 270 ml Autoklav mit Rührer, Thermostatisierung und Druckhaltung von 50 bar. In diesen Autoklaven wurde der in I hergestellte Katalysatormonolith um die Rührerachse zentriert eingebaut, so daß er durch den Rührer gleichmäßig
25 mit Flüssigkeit und Gas versorgt wird. Im Reaktorboden befinden sich Zuleitungen für Sauerstoff, Wasserstoff und das Reaktionsmedium. Im Reaktordeckel befindet sich eine Ableitung, aus der das Produkt/Gasmisch kontinuierlich entnommen wird. Nach Abzug der
30 Volumina für alle Einbauten stand ein effektives Reaktionsvolumen von 208 ml zur Verfügung.

Beispiel 1

35 Das Reaktionsmedium bestand aus Methanol, dem 0,4 Gew% Schwefelsäure, 0,1 Gew% Phosphorsäure und 6 ppm Bromid (in Form von Natriumbromid) zugesetzt worden sind. Mit dem Reaktionsmedium wurde der Reaktor geflutet. Anschließend leitete man einen Strom von 72,8 g/h Reaktionsmedium, 48,6 l/h Sauerstoff und 5,5 l/h Wasserstoff (Gase bezogen auf Normalbedingungen) durch den Reaktor. Am Reaktordeckel wurde das Produkt/Gasmisch kontinuierlich entnommen.
40

Der Umsatz bezogen auf Wasserstoff betrug 76% (gemäß Bestimmung des Wasserstoffgehaltes im Abgas) bei einer Selektivität von 82%. Die Konzentration der so hergestellten methanolischen Wasser-

stoffperoxid-Lösung lag bei 7 Gew% (Titration mit KMnO₄ 0,1 N).

Beispiel 2

5 Die Herstellung von H₂O₂ wurde unter vergleichbaren Bedingungen wie in Beispiel 1 1000 Stunden betrieben. Insgesamt wurden 2,9 kg Wasserstoffperoxid als methanolische Lösung mit einer Konzentration von 4 Gew.-% erhalten.

10 Beispiel 3

Analog I wurde ein Katalysatormonolith aus V4A-Netz mit einer Palladiumbeschichtung hergestellt. Dieser Formling wurde anschließend bei 70°C und 50 bar mit Wasserstoff hydriert, mit methanolischer H₂O₂-Lösung bei 20°C behandelt und mit Stickstoff getrocknet. Der Katalysatorformling wurde anschließend in den Autoklaven aus II eingebaut. Die Reaktion wurde analog Beispiel 1 durchgeführt: Das Reaktionsmedium wurde mit einer Geschwindigkeit von 214,5 g/h, Sauerstoff mit 145,8 l/h und Wasserstoff mit 16,2 20 l/h bei 42,2°C durch den Reaktor geführt. Der Umsatz bezogen auf H₂ betrug 84%, bei einer Selektivität von 75%. Die Konzentration der hergestellten methanolischen Wasserstoffperoxid-Lösung lag bei 7 Gew%.

25 Beispiel 4

Es wurde der gleiche Katalysator wie in Beispiel 3 verwendet. Die Reaktionsparameter waren wie folgt: 214,5 g/h Reaktionsmedium 30 145,8 L/h Sauerstoff, 6,1 l Wasserstoff, T = 52°C. Der Umsatz bezogen auf H₂ betrug 90% bei einer Selektivität von 68%. Die Konzentration der so hergestellten Wasserstoffperoxid-Lösung lag bei 2,7 Gew%.

35 Beispiel 5

Es wurde der gleiche Katalysator wie in Beispiel 3 verwendet. Das Reaktionsmedium bestand aus Wasser, dem 0,4 Gew.-% Schwefelsäure, 0,1 Gew.-% Phosphorsäure und 6 ppm Bromid (in Form von Natriumbromid) zugesetzt wurden. Die Reaktionsparameter waren wie folgt: 40 268,0 g/h Reaktionsmedium, 291,6 L/h Sauerstoff, 32,4 L/h Wasserstoff, T = 42°C. Der Umsatz, bezogen auf Wasserstoff, wurde durch eine Wasserstoffbestimmung des Abgases erhalten und betrug 43% bei einer Selektivität von 70 %. Die Konzentration der so hergestellten Wasserstoffperoxid-Lösung lag bei 5,6 Gew.-%.

Patentansprüche

- 5 1. Verfahren zur Herstellung von Wasserstoffperoxid-Lösungen mit einem Wasserstoffperoxid-Gehalt von wenigstens 2,5 Gew%, durch kontinuierliche Umsetzung von Wasserstoff und Sauerstoff an Katalysatoren, die als aktive Komponente Palladium enthalten, dadurch gekennzeichnet, daß die Umsetzung in Wasser und/oder C₁-C₃-Alkanolen als Reaktionsmedium an Katalysatorformkörpern erfolgt.
- 10 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem Formkörper um geordnete Katalysatorpackungen (Monolithen) handelt.
- 15 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Katalysatorformkörper aus Geweben aufgebaut sind.
- 20 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Gewebe aus Metall besteht.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die aktive Komponente neben Palladium weitere Edelmetalle als Promotoren enthält.
- 25 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Molverhältnis von Palladium zu Promotormetall im Bereich von 100:1 bis 1:10 liegt.
- 30 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Promotoren ausgewählt sind unter Platin, Rhodium, Iridium, Kupfer, Silber und Gold.
- 35 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den Sauerstoff in Form von Luft verwendet.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Molverhältnis O₂:H₂ im Abgas oberhalb 40 20:1 liegt.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Reaktionsgas im Kreis geführt wird.

14

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Molverhältnis O₂:H₂ im Kreisgas im Bereich von 20:1 bis 50:1 liegt.
- 5 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umsetzung bei Temperaturen im Bereich von 0°C bis 80°C erfolgt.
- 10 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umsetzung bei Drücken im Bereich von 10 bis 100 bar durchgeführt wird.
- 15 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Reaktionsmedium um Wasser, Methanol oder um Methanol/Wasser-Mischungen handelt.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Reaktionsmedium Säuren mit einem pK_a-Wert unterhalb dem der Essigsäure zugesetzt werden.

20**25****30****35****40****45**

1 / 1

Figur 1

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 97/05659

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C01B15/029

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SCAROS ET AL (EDS): "Catalysis of organic reactions" 1995, MARCEL DEKKER INC, NEW YORK XP002056449 cited in the application see page 115 - page 124 ---	1
A	WO 93 14025 A (CHUANG, KARL ET AL) 22 July 1993 see page 6, line 22 - page 7, line 3; claim 1 ---	1
A	WO 92 15520 A (INTEROX INT SA) 17 September 1992 see page 2, line 27 - page 5, line 10 ---	1 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

2

Date of the actual completion of the international search 23 February 1998	Date of mailing of the international search report 04.03.98
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer Clement, J-P

INTERNATIONAL SEARCH REPORT

Internatinal Application No	
PCT/EP 97/05659	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 92 15521 A (INTEROX INT SA) 17 September 1992 see page 8, line 18 - line 26; claim 1 ---	1
A	EP 0 627 381 A (SHOWA DENKO KK) 7 December 1994 cited in the application see claim 1 ---	1
A	EP 0 049 806 A (AIR PROD & CHEM) 21 April 1982 see claim 1 & US 4 336 238 A cited in the application ---	1
A	EP 0 537 836 A (INTEROX INT SA) 21 April 1993 see page 2, line 30 - page 3, line 51 -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/EP 97/05659

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9314025 A	22-07-93	US 5338531 A		16-08-94
		AU 3342393 A		03-08-93
		BR 9305762 A		28-01-97
		CA 2128430 A		22-07-93
		CZ 9401737 A		16-08-95
		EP 0623095 A		09-11-94
		FI 943377 A		15-07-94
		HU 69291 A		28-09-95
		JP 7503447 T		13-04-95
		NO 942714 A		20-07-94
		NZ 246548 A		26-09-95
		SK 88294 A		05-01-95
<hr style="border-top: 1px dashed black;"/>				
WO 9215520 A	17-09-92	BE 1004650 A		05-01-93
		CA 2105568 A		06-09-92
		DE 69200624 D		08-12-94
		DE 69200624 T		08-06-95
		EP 0574438 A		22-12-93
		JP 6510513 T		24-11-94
		US 5447706 A		05-09-95
<hr style="border-top: 1px dashed black;"/>				
WO 9215521 A	17-09-92	DE 4127918 A		10-09-92
		AT 125237 T		15-08-95
		CA 2105588 A		06-09-92
		DE 59202966 D		24-08-95
		EP 0574443 A		22-12-93
		ES 2076027 T		16-10-95
		JP 6510514 T		24-11-94
		US 5505921 A		09-04-96
<hr style="border-top: 1px dashed black;"/>				
EP 0627381 A	07-12-94	AU 5434294 A		22-06-94
		BR 9305759 A		28-01-97
		CA 2128319 A		09-06-94
		CN 1087600 A		08-06-94
		DE 69309448 D		07-05-97
		DE 69309448 T		07-08-97
		WO 9412428 A		09-06-94
		US 5496532 A		05-03-96
<hr style="border-top: 1px dashed black;"/>				
EP 0049806 A	21-04-82	US 4335092 A		15-06-82

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 97/05659

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0049806 A		CA 1147530 A JP 1259033 C JP 57092506 A JP 59034642 B US 4336239 A	07-06-83 12-04-85 09-06-82 23-08-84 22-06-82
EP 0537836 A	21-04-93	BE 1005443 A DE 69202432 D DE 69202432 T JP 5213607 A	27-07-93 14-06-95 07-03-96 24-08-93

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 97/05659

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 C01B15/029

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchiertes Mindestprüfobjekt (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C01B

Recherchierte aber nicht zum Mindestprüfobjekt gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	SCAROS ET AL (EDS): "Catalysis of organic reactions" 1995, MARCEL DEKKER INC, NEW YORK XP002056449 in der Anmeldung erwähnt siehe Seite 115 - Seite 124 ---	1
A	WO 93 14025 A (CHUANG, KARL ET AL) 22.Juli 1993 siehe Seite 6, Zeile 22 - Seite 7, Zeile 3; Anspruch 1 ---	1
A	WO 92 15520 A (INTEROX INT SA) 17.September 1992 siehe Seite 2, Zeile 27 - Seite 5, Zeile 10 ---	1
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipielle oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

2

Datum des Abschlusses der internationalen Recherche

23. Februar 1998

Abschiedsdatum des internationalen Recherchenberichts

04.03.98

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Clement, J-P

INTERNATIONALER RECHERCHENBERICHT

Int. Aktenzeichen
PCT/EP 97/05659

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 92 15521 A (INTEROX INT SA) 17.September 1992 siehe Seite 8, Zeile 18 - Zeile 26; Anspruch 1 ---	1
A	EP 0 627 381 A (SHOWA DENKO KK) 7.Dezember 1994 in der Anmeldung erwähnt siehe Anspruch 1 ---	1
A	EP 0 049 806 A (AIR PROD & CHEM) 21.April 1982 siehe Anspruch 1 & US 4 336 238 A in der Anmeldung erwähnt ---	1
A	EP 0 537 836 A (INTEROX INT SA) 21.April 1993 siehe Seite 2, Zeile 30 - Seite 3, Zeile 51 -----	1
2		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 97/05659

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9314025 A	22-07-93	US 5338531 A AU 3342393 A BR 9305762 A CA 2128430 A CZ 9401737 A EP 0623095 A FI 943377 A HU 69291 A JP 7503447 T NO 942714 A NZ 246548 A SK 88294 A	16-08-94 03-08-93 28-01-97 22-07-93 16-08-95 09-11-94 15-07-94 28-09-95 13-04-95 20-07-94 26-09-95 05-01-95
WO 9215520 A	17-09-92	BE 1004650 A CA 2105568 A DE 69200624 D DE 69200624 T EP 0574438 A JP 6510513 T US 5447706 A	05-01-93 06-09-92 08-12-94 08-06-95 22-12-93 24-11-94 05-09-95
WO 9215521 A	17-09-92	DE 4127918 A AT 125237 T CA 2105588 A DE 59202966 D EP 0574443 A ES 2076027 T JP 6510514 T US 5505921 A	10-09-92 15-08-95 06-09-92 24-08-95 22-12-93 16-10-95 24-11-94 09-04-96
EP 0627381 A	07-12-94	AU 5434294 A BR 9305759 A CA 2128319 A CN 1087600 A DE 69309448 D DE 69309448 T WO 9412428 A US 5496532 A	22-06-94 28-01-97 09-06-94 08-06-94 07-05-97 07-08-97 09-06-94 05-03-96
EP 0049806 A	21-04-82	US 4335092 A	15-06-82

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 97/05659

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0049806 A		CA 1147530 A JP 1259033 C JP 57092506 A JP 59034642 B US 4336239 A	07-06-83 12-04-85 09-06-82 23-08-84 22-06-82
EP 0537836 A	21-04-93	BE 1005443 A DE 69202432 D DE 69202432 T JP 5213607 A	27-07-93 14-06-95 07-03-96 24-08-93