Формальные доказательства

- Формальные доказательства большой раздел математической логики
- * Формальное доказательство это конечная последовательность синтаксически корректных формул, составленная по правилам, определяемым системой доказательств
- Система доказательств состоит из
 - правил вывода (получения новых формул из имеющихся в доказательстве)
 - аксиом (формул, которые можно включать в доказательство без ограничений)
- ullet Цель формального доказательства из набора формул-условий получить требуемую формулу-заключение

Пример:

- ullet формулы слова над алфавитом $\{S,(,)\}$
- аксиома слово S
- ullet правила вывода: любой символ S в формуле можно заменить на SS, (S) или ()
- вывод формулы (()()) из пустого набора условий:
 - *S* (*S*)
 - (55)
 - $(()\dot{s})$
 - (()())
- \star формула над $\{(,)\}$ выводится из пустого набора условий
- \leftrightarrow она является правильной расстановкой скобок
- Такие системы доказательств называются формальными грамматиками

Доказательство теорем

- Как выглядит теорема?
 - ullet даны условия F_1,\ldots,F_k и гипотеза G
 - доказать, что из условий следует гипотеза
 - \star т.е. что формула $(F_1 \wedge F_2 \wedge \cdots \wedge F_k) o G$ тавтология
 - \star если формула X o Y тавтология, то формула Y называется следствием X
- ullet Простейший случай: F_1,\ldots,F_k,G булевы формулы
 - ⋆ могут быть более сложные формулы (с предикатами, кванторами и т. д.)
 - * даже для булевых формул проверка «в лоб» очень трудоемка: таблицу значений формулы из m литералов и n переменных можно вычислить за время $\Theta(m \cdot 2^n)$
- Доказательство от противного:
 - ullet доказать, что $\overline{(F_1 \wedge F_2 \wedge \cdots \wedge F_k) o G}$ противоречие
 - \bullet эквивалентная формула: $F_1 \wedge F_2 \wedge \cdots \wedge F_k \wedge \bar{G}$
 - \star если каждую из формул $F_1,\ldots,F_k,ar{G}$ заменить на эквивалентную КНФ, общая формула станет КНФ
- Задача: дана КНФ, является ли она противоречием?
- \star Наблюдение: Y следствие $X \Leftrightarrow X$ эквивалентна $X \land Y$
- \star Следствие: 0 следствие $X \Leftrightarrow X$ противоречие
- Стратегия доказательства: получить 0 как следствие исходной формулы
- Метод резолюций система доказательств, реализующая эту стратегию

Дискретная математика

Задача SAT

- ⋆ Метод резолюций один из способов решения задачи SAT
 - от satisfiability (выполнимость)
- ullet SAT: дана КНФ $F=igwedge_{i=1}^\ell C_i$, определить, выполнима ли она
 - если *F* выполнима, обычно нужно предъявить пример
 - т.е. булев вектор $ec{b}$ такой, что $F_{|ec{b}}=1$
 - если F противоречие, иногда нужно предъявить доказательство
- SAT трудная задача
 - NP-полная
- SAT самая важная NP-полная задача
 - для нее существуют эффективные с практической точки зрения решатели (SAT-solvers)
- Очень часто оптимальный способ решения других трудных задач состоит в том, чтобы перекодировать задачу в задачу SAT и скормить решателю
 - так решают
 - ⋆ задачи планирования
 - \star задачи верификации железа и софта
 - \star комбинаторные задачи вроде раскраски и гамильтонова цикла

Задача о гамильтоновом пути в форме SAT

- HAMILTONIAN PATH: дан граф G=(V,E), определить, есть ли в нем гамильтонов путь
 - при ответе «да» предъявить пример такого пути
- Опишем преобразование HAMILTONIAN PATH в SAT:
 - переменные: x_{ij} , $i,j \in V = \{1,\ldots,n\}$
 - ullet семантика: $x_{ij}=1\Leftrightarrow j-i$ -я вершина в гамильтоновом пути
- Клозы разбиваются на 5 групп:
 - $oldsymbol{0}$ $x_{1j} \lor \ldots \lor x_{nj}$ для всех $j=1,\ldots,n$
 - вершина ј есть в гамильтоновом пути
 - ② $ar{x}_{ij} ee ar{x}_{kj}$ для всех $i,k,j=1,\ldots,n$, i
 eq k
 - вершина j не входит в гамильтонов путь дважды
 - $\mathbf{3}$ $x_{i1} \lor \ldots \lor x_{in}$ для всех $i=1,\ldots,n$
 - на і-ом месте в гамильтоновом пути стоит какая-то вершина
 - $oldsymbol{\Phi}$ $ar{x}_{ij} ee ar{x}_{ik}$ для всех $i,k,j=1,\ldots,n,j
 eq k$
 - на *i*-ом месте в гамильтоновом пути есть только одна вершина
 - lacktriangledown $ar{x}_{ij} ee ar{x}_{(i+1)k}$ для всех $i=1,\ldots,n-1,\; k,j=1,\ldots,n,\; (j,k)
 otin E$
 - соседние вершины в гамильтоновом пути должны быть соединены ребром
- если формула выполнима, переменные, равные 1, задают гамильтонов путь

Еще немного про SAT

- ★ SAT остается вычислительно трудной даже при ограничении, что задана константа $k\geqslant 3$ и каждый клоз содержит не более k литералов (задача k-SAT)
- \star Общепринятая в настоящее время гипотеза экспоненциального времени утверждает существование констант $s_k>0$ для любого $k\geqslant 3$ таких, что ни один алгоритм не может решить задачу $k ext{-SAT}$ за время, меньшее $2^{s_k\ell}$
 - \star фразу «не может решить» следует понимать так: для любого алгоритма найдется бесконечная серия «трудных» КНФ с разным числом клозов ℓ , на проверку выполнимости которых алгоритм затратит время $\Omega(2^{s_k\ell})$
- ★ Особенность SAT: трудные примеры встречаются редко
 - ullet важную роль играет отношение числа клозов ℓ к числу переменных n
 - если клозов мало, обычно есть много выполняющих наборов и такой набор можно быстро найти
 - если клозов много, обычно формула невыполнима и противоречие находится быстро
 - на границе попадаются трудные формулы (либо выполнимые с очень малым числом выполняющих наборов, либо невыполнимые, но такие, что некоторые наборы выполняют почти все клозы)

Лемма о следствии

Лемма

Для любых булевых формул X,Y,Z формула $Y\vee Z$ — следствие формулы $(X\vee Y)\wedge (\bar{X}\vee Z).$

Доказательство:

- ullet пусть $F_{|ec{b}}$ обозначает результат подстановки набора значений $ec{b}$ в формулу F
- ullet пусть $ec{b}$ произвольный набор, такой что $((X \lor Y) \land (ar{X} \lor Z))_{|ec{b}} = 1$
- $\Rightarrow (X \vee Y)_{|\vec{b}} = 1, (\bar{X} \vee Z)_{|\vec{b}} = 1$
 - ullet если $X_{|ec{b}}=1$, то $ar{X}_{|ec{b}}=0 \Rightarrow Z_{|ec{b}}=1$
 - ullet если $X_{|\vec{b}}^{|\vec{b}} = 0$, то $Y_{|\vec{b}}^{|\vec{b}} = 1$
- $\Rightarrow (Y \vee Z)_{|\vec{b}|} = 1$
- \Rightarrow $((X \lor Y) \land (\bar{X} \lor Z)) \rightarrow (Y \lor Z)$ тавтология

Метод резолюций

Метод резолюций:

- формулы, которыми оперирует метод это клозы (элементарные дизъюнкции)
- клоз рассматривается как множество литералов
 - порядок литералов не важен, повторяющиеся литералы стираются
- единственное правило вывода правило резолюций:
 - ullet если есть клозы вида $x \lor C$ и $\bar{x} \lor D$ (x переменная), дописать клоз $C \lor D$
 - \star клоз, содержащий пару литералов $\{y,ar{y}\}$, не дописывается
 - ullet если C и D пустые множества литералов, дописывается пустой клоз \Box
- аксиом нет
- условия все клозы КНФ, поданной на вход метода
- цель получить пустой клоз

Распространение переменной

- ullet Пусть КНФ состоит из клозов C_1,\ldots,C_ℓ и зависит от переменных x_1,\ldots,x_n
 - можно считать, что КНФ F задана двуми массивами:
 - L[1..2n]: в L[i] хранится список номеров клозов, в которые входит литерал x_i (при $i \leq n$) либо литерал \bar{x}_{i-n} (при i > n)
 - $C[1..\ell]$: в C[i] хранится список номеров литералов, которые входят в клоз C_i (номер i>n означает литерал \bar{x}_{i-n})
 - при переводе КНФ в такую форму можно сразу отбросить клозы, содержащие два противоположных литерала одновременно
- ullet Распространение переменной (unit propagation) процедура упрощения КНФ
 - \star Если в F есть клоз, состоящий из единственного литерала $(x_i$ либо $\bar{x_i})$, то набор (b_1,\ldots,b_n) выполняет F только при условии, что b_i выполняет данный клоз
 - \Rightarrow значение b_i определено однозначно
 - ullet пусть литерал равен x_i , т.е. $b_i=1$; случай $b_i=0$ аналогичен
 - \Rightarrow можно присвоить значение b_i и упростить формулу:
 - ♣ клозы, содержащие x_i, выполнены их можно удалить
 - 🌲 из клозов, содержащих $ar{x_i}$, можно удалить этот литерал (он равен 0)
 - если получился пустой клоз, то F невыполнима
 - \star можно создать очередь одноэлементных клозов
 - очередь пополняется при выполнении пункта (♠)
 - \star распространение переменной выполняется в цикле, пока очередь непуста
- * KH Φ F $\xrightarrow{\text{распространение переменной}}$ KH Φ UP(F)
 - UP(F) = 1, если удалены все клозы
 - UP(F) = 0, если встретился пустой клоз
 - UP(F) выполнима $\Leftrightarrow F$ выполнима
- \star Распространение переменной выполняется за время O(число литералов в F)

Распространение переменной (2)

Пример:

$$F = (a \lor d) \land (c \lor d \lor \bar{a}) \land (\bar{b} \lor \bar{c} \lor \bar{d}) \land (\bar{a}) \land (a \lor b \lor \bar{c})$$

- ullet в очереди единственный клоз $ar{a}$, достаем его
- \clubsuit удаляем клозы \bar{a} и $c \lor d \lor \bar{a}$
- \spadesuit удаляем a из клозов $a \lor b \lor \bar{c}$ и $a \lor d$ (новый клоз d добавляем в очередь)
- ullet текущий список клозов: $d, ar{b} \lor ar{c} \lor ar{d}, b \lor ar{c}$
- достаем клоз d из очереди
- 🌲 удаляем клоз d
- \spadesuit удаляем \bar{d} из клоза $\bar{b} \lor \bar{c} \lor \bar{d}$
- очередь пуста, получаем $UP(F) = (b \lor \bar{c}) \land (\bar{b} \lor \bar{c})$
- \star UP(F) можно выполнить, положив c=0
- \Rightarrow набор a=0, c=0, d=1 выполняет F (при любом b)
- Дополнение к распространению переменной: правило чистой переменной
 - ⋆ если в результате удаления клоза (♣) у литерала не осталось вхождений в формулу, то переменной этого литерала присваивается значение, превращающее этот литерал в 0
 - это позволяет выполнить все клозы, содержащие противоположный литерал, и тем самым упростить текущую КНФ
 - * когда в примере получено $UP(F) = (b \lor \bar{c}) \land (\bar{b} \lor \bar{c})$, литерал c не имеет вхождений, и присвоение c = 0 позволяет выполнить оба оставшихся клоза
- \star В дальнейшем под UP(F) мы понимаем формулу, полученную из F применением обоих правил

Теорема о полноте

Теорема о полноте метода резолюций

КНФ $F = C_1 \wedge \cdots \wedge C_k$ является противоречием \Leftrightarrow существует доказательство методом резолюций с условиями C_1, \ldots, C_k и заключением \square .

Доказательство достаточности:

- рассмотрим доказательство методом резолюций с заключением 🗆
- каждая формула является либо условием, либо получено по правилу резолюций из каких-то предыдущих формул
 - а значит, является следствием конъюнкции этих формул согласно лемме
- отношение «быть следствием» транзитивно
- ullet любая формула вида $C_{i_1} \wedge \cdots \wedge C_{i_i}$ является следствием F
- ⇒ любая формула в доказательстве является следствием F
- \star пустой клоз является следствием формулы $x \wedge ar{x}$, а значит, задает константу 0
- \Rightarrow 0 следствие $F \Rightarrow F$ противоречие

Комментарий:

- * мы доказали корректность метода: если существует доказательство, содержащее пустой клоз, то заданная КНФ действительно является противоречием
- * обратная импликация доказывает полноту метода: если КНФ противоречие, то это можно доказать методом резолюций

Доказательство необходимости

- ullet Проведем индукцию по числу n переменных в F
- База индукции: n = 1
 - F противоречие \Rightarrow F содержит клозы x и \bar{x}
 - \Rightarrow по правилу резолюций из x и $ar{x}$ выводится пустой клоз
- Шаг индукции:
 - пусть $F = F(x_1, \ldots, x_n), S = \{C_1, \ldots, C_k\}$
 - ullet считаем, что клоз не может содержать одновременно x_i и $ar{x}_i$
 - если такой клоз есть, он задает константу 1 и может быть удален из F
 - \bullet построим два множества клозов, S^+ и S^- :
 - $S^+ = \{ C \in S \mid B \mid C \mid C \mid C \mid (C \lor x_n) \in S \}$
 - $S^- = \{C \in S \mid B C \text{ нет переменной } x_n\} \cup \{C \mid (C \lor \bar{x}_n) \in S\}$
 - \star докажем, что КНФ $F^+ = \bigwedge_{C \in S^+} C$ является противоречием:
 - ullet пусть существует набор значений b_1,\dots,b_{n-1} такой, что $F^+_{|b_1,\dots,b_{n-1}|}=1$
 - рассмотрим значения всех клозов из множества S на наборе $b_1, \ldots, b_{n-1}, 0$:
 - ullet если клоз C не содержит переменную \mathbf{x}_n , то $C_{|b_1,\dots,b_{n-1},\mathbf{0}}=C_{|b_1,\dots,b_{n-1}}=1$
 - ullet если клоз имеет вид $C \vee x_n$, то $(C \vee x_n)_{|b_1,\dots,b_{n-1},\mathbf{0}} = C_{|b_1,\dots,b_{n-1}} = 1$
 - ullet клоз вида $C ee ar{x_n}$ превращается в 1 за счет значения $b_n = 0$
 - $\Rightarrow F_{|b_1,...,b_{n-1},0} = 1$, что невозможно, так как F противоречие
 - \star аналогично, $F^- = \bigwedge_{C \in S^-} C$ является противоречием
 - ullet к гипотетическому набору, выполняющему F^- , надо добавить $b_n=1$
 - \star по предположению индукции, из каждого из множеств S^+ , S^- можно вывести пустой клоз

Шаг индукции — окончание

- ullet Рассмотрим вывод пустого клоза из множества S^+
 - ullet если в выводе участвовали только клозы из S, то из S выводим пустой клоз
 - \bullet пусть в выводе участвовал хотя бы один клоз $C \in S^+ \setminus S$; тогда $(C \vee x_n) \in S$
 - \Rightarrow построим вывод из S, заменив в выводе из S^+ каждый клоз из $S^+ \setminus S$ на соответствующий клоз из S
 - \Rightarrow во всех следствиях из таких клозов добавится литерал x_n
 - \Rightarrow из S выводится клоз x_n
- \star аналогично, из вывода пустого клоза из S^- получим вывод клоза $ar{x}_n$ из S
 - \Rightarrow из клозов x_n и \bar{x}_n получим пустой клоз

Комментарий:

- ★ искать доказательства методом резолюций может компьютер
 - существуют различные стратегии оптимизации поиска вывода
- на более общем варианте метода резолюций (для формул логики первого порядка) основан язык Пролог
- \star Если формула F не является противоречием, то метод резолюций заканчивает работу, когда не может вывести больше ни одного нового клоза
 - по построенным клозам можно восстановить набор значений, выполняющий F

Процедура DPLL

- Процедура DPLL это алгоритм оптимизированного перебора, решающий задачу SAT
 - основан на статьях Дэвиса-Патнема (1960) и Дэвиса-Логманна-Лавлэнда (1962)
- ullet Пусть $\mathit{DPLL}(F)$ булево значение, возвращаемое алгоритмом на входе F
- ⋆ Рекурсивная запись процедуры DPLL:
 - выбрать переменную х
 - вернуть $DPLL(F) = DPLL(UP(F \land x)) \lor DPLL(UP(F \land \bar{x}))$
- Комментарии:
 - \star формулы F и $(F \wedge x) \vee (F \wedge \bar{x})$ эквивалентны
 - * алгоритм представляет вычисление деревом:
 - с каждым узлом связана «остаточная» формула, которую нужно выполнить;
 - некоторой переменной х остаточной формулы присваивается значение 1, формула упрощается распространением переменной и присваивается дочернему узлу
 - если формулу не удалось выполнить, вычисление возвращается в родительский узел и выполняется присвоение x=0
 - \star клоз \times $(ar{x})$ добавляется не к формуле, а сразу в очередь, чтобы запустить распространение переменной
- ullet Скорость работы перебора зависит от эвристики выбора переменной x_i
 - пример эвристики: выбирается переменная с максимальным числом вхождений в клозы минимальной длины
 - цель увеличить ресурс использования распространения переменной
- Используется много других оптимизаций для сокращения перебора
- ⋆ DPLL до сих пор лежит в основе многих SAT-решателей

Пример доказательства методом резолюций

Вася всегда приходит на совещание, если босс его позвал. Если босс хочет видеть Васю, он зовет его на совещание. Если босс не хочет видеть Васю и не зовет его на совещание, то Васю скоро уволят. Вася не пришел на совещание. Докажите, что его скоро уволят.

- Запишем теорему, которую надо доказать:
 - $\star \ \left((\mathsf{invite} \to \mathsf{attend}) \land (\mathsf{see} \to \mathsf{invite}) \land ((\overline{\mathsf{see}} \land \overline{\mathsf{invite}}) \to \mathsf{fire}) \land (\overline{\mathsf{attend}}) \right) \to \mathsf{fire}$
- Отрицание теоремы:
 - $\star \ (\textit{invite} \rightarrow \textit{attend}) \land (\textit{see} \rightarrow \textit{invite}) \land ((\overline{\textit{see}} \land \overline{\textit{invite}}) \rightarrow \textit{fire}) \land (\overline{\textit{attend}}) \land \overline{\textit{fire}}$
- КНФ отрицания теоремы и множество клозов:
 - $\star \ (\overline{\mathsf{invite}} \lor \mathsf{attend}) \land (\overline{\mathsf{see}} \lor \mathsf{invite}) \land (\mathsf{see} \lor \mathsf{invite} \lor \mathsf{fire}) \land (\overline{\mathsf{attend}}) \land (\overline{\mathsf{fire}})$
 - $S = \{\overline{\textit{invite}} \lor \textit{attend}, \ \overline{\textit{see}} \lor \textit{invite}, \ \textit{see} \lor \textit{invite} \lor \textit{fire}, \ \overline{\textit{attend}}, \ \overline{\textit{fire}}\}$

Доказательство:

- 1. see ∨ invite ∨ fire условие
- 2. *fire* условие
- 3. see ∨ invite по правилу резолюций из 1,2
- 4. *see* ∨ *invite* условие
- 5. invite по правилу резолюций из 3,4; invite ∨ invite = invite
- 6. $\overline{invite} \lor attend$ условие
- 7. attend по правилу резолюций из 5,6
- 8. attend условие
- 9. По правилу резолюций из 7,8 жалко Васю.

Хорновская выполнимость

- Существуют частные случаи задачи SAT, для которых существуют полиномиальные (и даже линейные) алгоритмы
- КНФ называется хорновской, если каждый клоз содержит не более одной переменной без отрицания
 - Пример: $F = (\bar{a} \lor b \lor \bar{c}) \land (\bar{b} \lor \bar{d}) \land (a) \land (\bar{a} \lor d)$
- ⋆ Задача SAT с хорновской КНФ также называется хорновской (HornSAT)

Теорема

Задача HornSAT может быть решена за время $\mathit{O}(\mathit{m})$, где $\mathit{m}-$ число литералов в формуле.

- Доказательство:
 - пусть *F* хорновская КНФ
 - ullet применим распространение переменной и вычислим UP(F)
 - как уже обсуждалось, это требует времени O(m)
 - если $UP(F) \in \{0,1\}$ мы уже получили ответ
 - иначе каждый клоз содержит хотя бы два литерала
 - \Rightarrow каждый клоз содержит литерал вида $ar{x}$
 - ⇒ присвоим всем оставшимся переменным нули
 - \Rightarrow UP(F) выполнима $\Rightarrow F$ выполнима
- * Тем же способом решается SAT для двойственных хорновских КНФ, в которых каждый клоз содержит не более одного литерала с отрицанием

Хорновская выполнимость (2)

Пример 1:

$$F = (a \lor \bar{b} \lor \bar{c}) \land (\bar{b} \lor \bar{c} \lor d) \land (\bar{d} \lor \bar{c}) \land (c) \land (\bar{d} \lor e) \land (\bar{a} \lor \bar{c} \lor d \lor \bar{e})$$

- распространяем c: $a \lor \bar{b}, \bar{b} \lor d, \bar{d}, \bar{d} \lor e, \bar{a} \lor d \lor \bar{e}$
- распространяем $\bar{d}: a \vee \bar{b}, \bar{b}, \bar{a} \vee \bar{e}$
- ullet распространяем $ar{b}$: $ar{a} \lor ar{e}$
- присваиваем нули оставшимся переменным: a=e=0
- \Rightarrow набор a = 0, b = 0, c = 1, d = 0, e = 0 выполняет F

Пример 2:

$$F = (a \lor \bar{b} \lor \bar{c}) \land (b \lor \bar{c} \lor \bar{d}) \land (d \lor \bar{c}) \land (c) \land (\bar{d} \lor e) \land (\bar{a} \lor \bar{c} \lor \bar{d} \lor \bar{e})$$

- ullet распространяем c: $a \lor ar{b}, b \lor ar{d}, d, ar{d} \lor e, ar{a} \lor ar{d} \lor ar{e}$
- распространяем $d: a \vee \bar{b}, b, e, \bar{a} \vee \bar{e}$
- распространяем $b: a, e, \bar{a} \vee \bar{e}$
- распространяем е: а, ā
- распространяем а:
- ⇒ F невыполнима

2-выполнимость

- КНФ, в которой каждый клоз состоит из двух литералов, называется 2-КНФ
- \star Задача SAT с 2-КНФ называется 2-выполнимость (2-SAT)
- igstar Формула $\emph{l}_1 \lor \emph{l}_2$, где \emph{l}_1 и \emph{l}_2 литералы, эквивалентна $ar{\emph{l}}_1
 ightarrow \emph{l}_2
 ightarrow \emph{l}_2
 ightarrow \emph{l}_1$
 - Пусть дана 2-КНФ F; построим по ней орграф G(F) (граф импликаций):
 - вершины литералы из F
 - ullet каждому клозу $l_1ee l_2$ сопоставлены ребра $(ar l_1,l_2)$ и $(ar l_2,l_1)$
 - Эквивалентная формулировка 2-SAT на языке графа импликаций:
 - \star существует ли раскраска ϕ графа импликаций в цвета $\{0,1\}$ такая, что
 - (i) $\phi(I)
 eq \phi(ar{I})$ для любой вершины I и
 - (ii) $\phi(l_2)\geqslant \phi(l_1)$ для любого ребра (l_1,l_2) ?
 - ullet ϕ с указанными свойствами будем называть булевой раскраской
 - \diamond по транзитивности, если l_2 достижима из l_1 , то $\phi(l_2)\geqslant\phi(l_1)$

Пример:
$$F = (x \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z) \land (\bar{z} \lor y)$$

граф импликаций G(F):

2-выполнимость (2)

Лемма

Существует булева раскраска орграфа $G(F) \Leftrightarrow$ не существует переменной x, для которой вершины x и \bar{x} взаимно достижимы в G(F).

- Доказательство необходимости:
 - существование такой переменной x влечет $\phi(x) = \phi(\bar{x})$ согласно (\diamond) , что нарушает первое условие для булевой раскраски
- Доказательство достаточности:
 - ullet разобьем G(F) на компоненты сильной связности
 - отношение достижимости компонент отношение порядка, дополним его до линейного порядка ≤
 - т.е. выполним топологическую сортировку компонент
 - по условию, вершины x и \bar{x} лежат в разных компонентах для любой переменной x
 - \Rightarrow положим $\phi(x) = 1$ $(\phi(x) = 0)$, если $\mathsf{comp}(x) > \mathsf{comp}(\bar{x})$ $(\mathsf{comp}(x) < \mathsf{comp}(\bar{x}))$
 - все вершины любой компоненты имеют один цвет
 - $\Rightarrow \phi(x) \neq \phi(\bar{x})$ для всех x, условие (i) выполнено
 - пусть существует ребро (I_1,I_2) такое, что $\phi(I_1)=1,\phi(I_2)=0$
 - \Rightarrow существует ребро $(\overline{l}_2, \overline{l}_1), \phi(\overline{l}_2) = 1, \phi(\overline{l}_1) = 0$
 - \Rightarrow comp $(l_1) < \text{comp}(l_2)$ u comp $(\overline{l_2}) < \text{comp}(\overline{l_1})$
 - из нашего определения ϕ следует $\mathsf{comp}(\bar{l_1}) < \mathsf{comp}(l_1)$ и $\mathsf{comp}(l_2) < \mathsf{comp}(\bar{l_2})$
 - **⇒** противоречие с тем, что **<** − порядок
 - $\Rightarrow \phi(I_2) \geqslant \phi(I_1)$ для любого ребра (I_1,I_2) , условие (ii) выполнено

2-выполнимость (3)

Примеры:

 $F = (x \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{z} \lor y)$ выполнима: $F' = F \land (x \lor \bar{y})$ невыполнима:

B графе G(F) две компоненты, красные вершины красим в 0, синие — в 1

 B графе $\mathsf{G}(\mathsf{F}')$ единственная компонента, ее нельзя раскрасить

Теорема

Задача 2-SAT может быть решена за время $O(\ell)$, где ℓ — число клозов в формуле.

- Доказательство:
 - построим по формуле F граф G(F), в нем 2ℓ ребер
 - найдем компоненты сильной связности и отсортируем их топологически
 - ⋆ например, и алгоритм Косараю, и алгоритм Тарьяна ищут компоненты за линейное от числа ребер время и выдают их в топологически отсортированном виде
 - \bullet если comp $(x)={\sf comp}(\bar{x})$ для какой-нибудь вершины x, возвращаем 0
 - ullet иначе выполняем булеву раскраску G(F) и возвращаем полученные значения
 - ullet все шаги требуют времени $O(\ell)$