Proposition: The Convex hull of a set S in the plane is defined to be the intersection of all convex sets that contains S. For the convex hull of a set of points it was indicated that the convex hull is the convex set with smallest perimeter. We want to show that these are equivalent definitions.

- (a) Prove that the intersection of two convex sets is agian convex.
- (b) Prove that the smallests perimeter polygon \mathcal{P} containing a set of points P is convex.
- (c) Prove that any convex set containing the set of points P contains the smallest perimeter polygon \mathcal{P} .

Proof. (a) is easy

- (b), suppose \mathcal{P} is the smallests preiter polygon containing a set of poitns P. Suppose for a contradiction it is not convex, then there rae two vertices p,q such that the line from p to q is not in P. But that means we can find a point on that line and add it to the polygon to get a even smaller perimeter, since the line is always shorter distance then the additino of the two sides from the triangle by the triangle inequality.
- (c) Let C be any convex set containing the points P. Let \mathcal{P} be the smallests perimeter polygon that conains P. We can take the intersection of C with \mathcal{P} and take the collectin of vertices of \mathcal{P} contained in C and the intersection points (there are a finite number of them since we are intersecting it with a polygon) and make a polygon that all of the points P7

(since both sets did). By minimality we must have \mathcal{P} is contained in C.

Problem 1.2

Proposition: problem 1.2 in book

Proof. Let P be a set of points. Let \mathcal{P} be a convex polygon that with vertices from P and contains all points of P. Let $\widetilde{\mathcal{P}}$ be the smallest premeter polygon that contains P. Therefore we have

$$\mathcal{P}\subseteq\widetilde{\mathcal{P}}$$
.

Now since $\widetilde{\mathcal{P}}$ is the smallest priemeter polygon that contains P which is also convex. Then it must contain \mathcal{P} as well since it is convex and all of its vertices are in \mathcal{P} . Hence they are the same. Then it is clear that it is the intersection of all convex sets that contain P since

$$\mathcal{P} \subseteq \cap C_{\alpha} \subseteq \widetilde{\mathcal{P}}.$$

