言い換えラティスを用いた テキスト生成の性能改善

○西原大貴(阪大) 梶原智之(愛媛大) 荒瀬由紀(阪大) 藤田篤(NICT)

背景: NLPでグラフを使う手法

グラフは、単純な系列では表せない情報を表現できる

例:係り受け解析

「私は本に栞を挟んだ」 「私は栞を本に挟んだ」

グラフは多くのNLP分野で利用されている

- 機械翻訳 [1,2]
- 文書要約 [3,4]
- 対話における感情認識 [5]
- 抽象的意味表現 [6,7]
- [1] Li et al. Graph-Based Translation Via Graph Segmentation. ACL-2016.
- [2] Bastings et al. Graph Convolutional Encoders for Syntaxaware Neural Machine Translation. EMNLP-2017.
- [3] Wang et al. Heterogeneous Graph Neural Networks for Extractive Document Summarization. ACL-2020.
- [4] Li et al. Leveraging Graph to Improve Abstractive MultiDocument Summarization. ACL-2020.
- [5] Ishiwatari et al. Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations. EMNLP-2020.
- [6] Zhu et al. Modeling Graph Structure in Transformer for Better AMR-to-Text Generation. EMNLP-2019.
- [7] Yao et al. Heterogeneous Graph Transformer for Graph-to-Sequence Learning. ACL-2020.

背景:ラティス(1)

入力系列の曖昧性を1つのグラフで表すにはラティス

例:単語分割の曖昧性(単語の分割位置の違い)[8,9]

私	は	大阪大学		を	受験し	ます	0
私	は	大阪	大学	を	受験し	ます	0

単純な単語系列

ラティスは、曖昧性を残したまま表現できる

^[8] Su et al. Lattice-Based Recurrent Neural Network Encoders for Neural Machine Translation. AAAI-2017.

背景: ラティス(2)

音声認識の曖昧性 [8,9]

音声認識時の複数候補をラティスとして入力

既存の問題と提案の着眼点

既存手法の問題点

- 単語の分割位置を変えるだけでは、文字は変わらず、表層的な情報は増えない
- 音声認識の曖昧性は、タスクが限定

提案手法の着眼点

Google翻訳の例

入力テキスト	出力テキスト				
私は大阪大学を受けます。	I will attend Osaka University.				
私は大阪大学を受験します。	I will take the Osaka University exam.				

入力テキストの中の個々の表現は一意ではないが、 上手く語彙選択できれば、翻訳品質が改善できる

提案:語彙選択の曖昧性に着目

言い換えラティスの構築

入力テキストのパスを作る
私→は→大阪大学→を→受け→ます→。

2. 言い換え辞書を用いて、言い換えを追加していく

3. エッジの重みは、2-gram言語モデルスコア

※各ノードの出力エッジの重みの合計は1に正規化

提案手法の概要図 (再掲)

Lattice2Seq (Sperber et al.) [9]

- 入力文を単語ベクトルの系列に変換
- 位置ベクトル(何番目の単語か)を連結
- Attention で単語間の関係を計算
 - · Lattie2Seqでは繋がりのない単語間のエッジ(緑)を消す

実験

タスクとデータセット

- 翻訳(英→日) : 田中コーパス¹)(50K)
- スタイル変換(カジュアル→フォーマル)

: GYAFC E&M (53K)

: GYAFC F&R (52K)

言い換え辞書 PPDB [10] (S-size, スコア5.3以上)

2-gram言語モデル KenLM + CC100

評価指標 BLEU

翻訳器 Lattice2Seq [9]

翻訳器の設定

- 実装:JoeyNMT²⁾
- 符号化器・復号化器: Transformer (4層4ヘッド)
- 埋込層・隠れ層:512次元、ドロップアウト率0.2
- 埋込層は、符号化器と復合化器で重みを共有
- 最適化:Adam
- バッチサイズ:4096トークン
- early-stopping: 32 checkpoints (perplexity)
- スケジューラ: plateau
 - 初期の学習率 2e-4
 - 8回改善しなくなる毎に減衰率0.7を乗ずる

比較手法・実験結果

ベースライン:言い換えなしの一般的な翻訳器

マルチソース:言い換えるがラティスなし

● 提案手法:言い換えラティス

BI FU	英日翻訳	スタイル変換		
	光口鼢扒	E&M	F&R	
ベースライン:一般的な翻訳器	37.89	64.27	69.46	
マルチソース:ラティスなし	37.88	63.18	71.98	
提案手法:言い換えラティス	40.01	67.30	73.36	

分析:PPDBスコア閾値とBLEU

PPDBスコアの閾値を変化させた際のBLEU (dev)

閾値が小さいと低品質な言い換えを含んでしまい、 大きいと有用な言い換えを使用できない

分析:頑健性

入力の表現を変化させた時に、出力が変化しない割合

結果、頑健性を大幅に高めた

まとめ

語彙選択の曖昧性に着目し、言い換えラティスを構築

結果、翻訳品質(BLEU)や頑健性を大幅に高めた