CATEGORIAS

SCHCS

Notas baseadas nos primeiros capítulos do livro *Basic Category Theory* por Tom Leinster (*Cambridge studies in advanced mathematics*, vol. 143, CUP, 2014).

1. Definições básicas

Uma categoria C consiste de

- (1) objetos A, B, C;
- (2) para cada par de objetos A e B, uma coleção H(A,B) de morfismos (mapas, setas, flechas, etc) $A \to B$.

Outra notação para os morfismos: Hom(A, B), C(A, B), $H_C(A, B)$, $\text{Hom}_C(A, B)$. Para objetos A, B, C temos uma função

$$H(A, B) \times H(B, C) \to H(A, C), \quad (f, g) \mapsto g \circ f.$$

Esta função chama-se composição. Para cada objeto A temos $1_A \in H(A, A)$ tal que

$$1_B \circ h = h, \ h \circ 1_A = h, \ (f \circ g) \circ h = f \circ (g \circ h)$$

para todo $h \in H(A,B), g \in H(B,C)$ e $f \in H(C,D)$. Se $f \in H(A,B)$. então A é o domínio de f e B é o codomínio.

Exemplo 1. As seguintes são os exemplos mais comuns de categorias:

- (1) **Set**: Os objetos são conjuntos, os mapas são mapas entre conjuntos.
- (2) Grp: Os objetos são grupos, e os mapas são homomorfismos entre grupos.
- (3) **AbGrp**: Os objestos são grupos abelianos e os morfismos são homomorfismos.
- (4) Ring: Os objetos são anéis (com 1), e os mapas são homomorfismos entre anéis.
- (5) **CRing**: Os objetos são anéis comutativos (com 1), e os mapas são homomorfismos entre anéis comutativos.
- (6) k-Vect: Os objetos são espaços vetoriais sobre um corpo k e os objetos são aplicações k-lineares.
- (7) R-Mod: Os objetos são R-módulos (à esquerda) e os mapas são R-homomorfismos.
- (8) Top: Os objetos são espaços topológicos e os mapas são funções contínuas.

Um mapa $f \in H(A, B)$ é dito isomorfismo, se existir $g \in H(B, A)$ tal que $fg = 1_B$ e $gf = 1_A$.

Exemplo 2. Outros exemplos,

- (1) \emptyset com nenhum objeto e nenhuma flecha;
- (2) $\{A\}$ com um objeto e uma flecha 1_A ;

2 SCHCS

- (3) $A \to B$ com dois objetos e três flechas 1_A , 1_B , $A \to B$.
- (4) Um monoide M pode ser visto como uma categoria com um objeto A e uma flecha associada com cada elemento de M. A identidade de M corresponde a 1_A e a associatividade do monoide corresponde à associatividade da composição.
- (5) Um grupo G pode ser visto como uma categoria com um objeto A e uma flecha associada com cada elemento de G. Neste caso, toda flecha da categoria é um isomorfismo.
- (6) Se P é um conjunto parcialmente ordenado, então P pode ser visto como uma categoria. Os objetos da categoria são os elementos de P e, para $\alpha, \beta \in P$, temos uma flecha $\varphi_{\alpha,\beta}: \alpha \to \beta$ na categoria se e somente se $\alpha \leq \beta$. Neste caso, $H(\alpha,\beta) = \{\varphi_{\alpha,\beta}\}.$
- 1.1. Categoria oposta ou dual. Seja C uma categoria. Definimos o dual ou oposta C' de C. Os objetos de C' são os mesmos que os objetos de C, 1_A em C' é o mesmo que em C, e $H_{C'}(A,B) = H_C(B,A)$.

2. Functores

Sejam C e D categorias. Um functor $F: C \to D$ associa

- (1) cada objeto $A \in C$ com um objeto $F(A) \in D$;
- (2) cada mapa $f \in H(A,B)$ com um mapa $F(f) \in H(F(A),F(B))$ tal que

$$F(1_A) = 1_{F(A)}$$
 e $F(fg) = F(f)F(g)$.

Exemplo 3. Functores de esquecimento: Considere o seguinte functor $\mathbf{Grp} \to \mathbf{Set}$. Associamos com cada grupo G o seu conjunto G e $F(\alpha) = \alpha$ para cada $\alpha \in H_{\mathbf{Grp}}(G, H)$. Pode-se definir functores de esquecimento similarmente

- (1) $\mathbf{Ring} \to \mathbf{Set}$;
- (2) $\operatorname{\mathbf{Ring}} \to \operatorname{\mathbf{Grp}}$;
- (3) R-mod \rightarrow AbGrp;
- (4) $\mathbf{Ab} \to \mathbf{Grp}$.

Exemplo 4. Functores livres: Considere por exemplo o functor $\mathbf{Set} \to \mathbf{Grp}$ levando cada conjunto X ao grupo F(X) livre gerado por X. Um morfimso $\alpha: X \to Y$ induz um único homomorfismo $\bar{\alpha}: F(X) \to F(Y)$. Pode-se definir functores similares

- (1) Set $\rightarrow k$ -Vect;
- (2) Set $\rightarrow R\text{-Mod}$;
- (3) Set \rightarrow CRing;
- (4) **Set** $\rightarrow k$ -**CAlg** (a categoria de k-álgebras comutativas onde k é um corpo).

Um functor contravariante entre C e D é um functor $C \to D'$.

Exemplo 5. Top $\to \mathbb{R}$ -**CAlg**: Seja X um espaço topológico. Definimos o functor F como $X \mapsto C(X,\mathbb{R})$ onde $C(X,\mathbb{R})$ é o anel das funções contínuas de X para \mathbb{R} . Se $f: X \to Y$

CATEGORIAS 3

em **Top**, então $F(f): F(Y) \to F(X)$ com $F(f)(\psi) = \psi \circ f$. Às vezes, escrevemos que $F(f) = -\circ f$.

Exemplo 6. O espectro $\mathbf{CRing} \to \mathbf{Top}$: $R \mapsto \mathrm{Spec}(R)$ onde

$$\operatorname{Spec}(R) = \{ P \subset R \mid P \text{ \'e um ideal primo} \}.$$

Definimos uma topologia (chamada de Topologia de Zariski) em Spec(R) com a regra que

$$V(I) = \{ P \in \operatorname{Spec}(R) \mid I \subseteq P \}$$

são os fechados para $I \subseteq R$ ideais. Se $f: R \to S$, então $\operatorname{Spec}(f): \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ está definido como $\operatorname{Spec}(f)(Q) = \varphi^{-1}(Q)$ para cada $Q \in \operatorname{Spec}(S)$. É um exercício fácil mostrar que isso é bem definido, pois a pré-imagem homomorfica de um ideal primo é primo.

Um functor $F: C \to D$ é dito fiel (repetivamente, pleno, full em inglés) se todos os mapas $H(A, B) \to H(F(A), F(B))$ são injetivos (respetivamente, sobrejetivos).

Uma subcategoria D de C contém objetos de C e $H_D(A, B) \subseteq H_C(A, B)$. Subcategoria é plena se $H_D(A, B) = H_C(A, B)$. Por exemplo, **AbGrp** é uma subcategoria plena de **Grp**.

3. Transformação natural

Sejam C e D categorias e $F,G:C\to D$ functores. Uma transformação natural α entre F e G é composta por uma família de morfismos $\alpha_A:F(A)\to G(A)$ para todo objeto A em C tal que para todo mapa $f:A\to B$ o diagrama

(1)
$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_{A} \downarrow \qquad \qquad \downarrow^{\alpha_{B}}$$

$$G(A) \xrightarrow{G(f)} G(B)$$

comuta.

Exemplo 7. Seja C uma categoria discreta sobre um conjunto X. Então C não tem flechas, exceto 1_x para todo $x \in X$. Seja D uma categoria qualquer. Então functores $F, G: C \to D$ escolhem objetos F(x) e G(x) para cada $x \in X$. Uma transformação natural α é uma coleção de mapas $\alpha_x: F(x) \to G(x)$.

Exemplo 8. Seja $n \ge 1$ fixo, e considere $F, G : \mathbf{CRing} \to \mathbf{Grp}$ onde $F(R) = GL_n(R)$, $G(R) = R^*$. É fácil ver que estas correspodências são functoriais; ou seja, estendem-se para morfismos. O mapa $\det_R : GL_n(R) \to R^*$ é uma transformação natural.

Transformações naturais podem ser compostas. Se $F, G, H: C \to D$ functores, $\alpha: F \to G, \beta: G \to H$ são transformações naturais, então a composição $\beta\alpha$ é transformação natural $F \to H$. A identidade $1_{F(A)}: F(A) \to F(A)$ é natural $F \to F$. Assim

4 SCHCS

se C e D são categorias, então a categoria dos funtores [C,D] tem os functores entre C e D como os objetos e as transformações naturais como os morfismos.

Isomorphismo natural entre F e G é uma transformação natural α tal que

$$\alpha_A: F(A) \to G(A)$$

é um isomorfismo para cada objeto A na categoria C.

Exercício 9. Isomorphismo natural é um isomorfismo na categoria dos functores. Neste caso os functores F e G são naturalmente isomorfos.

Dados dois functores $F,G:C\to D$. Dizemos que F(A) e G(A) são naturalmente isomorfos se F e G são naturalmente isomorfos.

Exemplo 10 (O duplo dual). Sejam V e W k-espaços vetoriais. Lembremos que $V^* = \operatorname{Hom}(V, k)$ e, por extensão, $V^{**} = \operatorname{Hom}(V^*, k)$. A correspondência $(-)^*$ é functorial contravariante; de fato, se $\alpha: V \to W$, definimos $\alpha^*: W^* \to V^*$ como $\alpha^* = - \circ \alpha$ e $\alpha^{**}: V^{**} \to W^{**}$ como $\alpha^{**} = - \circ \alpha^*$. Ou seja,

$$\alpha^{**}(\beta)(\psi) = (\beta \circ \alpha^*)(\psi) = \beta(\psi \circ \alpha)$$

para $\beta \in V^{**}$ e $\psi \in W^*$. Temos que $\varphi^V : v \mapsto \varphi^V_v$ é um mapa de $V \to V^{**}$ onde $\varphi^V_v(\chi) = \chi(v)$ para $v \in V$ e $\chi \in V^*$. Afirmamos que a coleção de mapas φ^V define uma transformação natural entre os functores $1, (-)^{**} : k\text{-Vect} \to k\text{-Vect}$. Escrevendo o diagrama (1) para esta situação, precisa-se provar que $\alpha^{**}(\varphi^V_v) = \varphi^W_{\alpha(v)}$ para todo $\alpha : V \to W$ em k-Vect. Mas isso segue dos fatos que

$$\alpha^{**}(\varphi_v^V)(\psi) = \varphi_v^V(\psi \circ \alpha) = \psi(\alpha(v))$$

e

$$\varphi_{\alpha(v)}^W(\psi) = \psi(\alpha(v)).$$

Então temos que os φ^V determinam uma transformação natural. Note que se dim V é finita, então $\varphi^V:V\to V^{**}$ é um isomorfismo e neste caso temos um isomorfismo entre os functores 1 e $(-)^{**}$ na categoria k-FinVect de k-espaços de dimensão finita.

4. Functores adjuntos

Sejam C e D categorias e assuma que temos functores

$$F: C \to D$$
 e $G: D \to C$.

Dizemos que (F,G) é um par adjunto ou F é adjunto à esquerda de G, ou G é adjunto à direita de F se para cada par de objetos $A \in C$ e $B \in D$ existe uma bijeção

$$\varrho_{A,B}: H_D(F(A),B) \to H_C(A,G(B))$$

natural no sentido explicado nos itens (1)–(2) em baixo. Para simplificar a notação, se $g \in H_D(F(A), B)$ e $f \in H_C(A, G(B))$ então denotamos a suas imagens por esta bijeção como \bar{g} e \bar{f} , respetivamente.

A palavra "natural" no parágrafo anterior tem o seguinte significado.

CATEGORIAS 5

(1) Seja $A \in C$, $B, B' \in D$ objetos e sejam $g : F(A) \to B$ e $q : B \to B'$. Então $\overline{F(A) \xrightarrow{g} B \xrightarrow{q} B'} = A \xrightarrow{\bar{g}} G(B) \xrightarrow{G(q)} G(B').$

(2) Seja $A, A' \in C$, $B \in D$ objetos e sejam $p : A' \to A$ e $f : A \to G(B)$. Então $\overline{A' \xrightarrow{p} A \xrightarrow{f} G(B)} = F(A') \xrightarrow{F(p)} F(A) \xrightarrow{\bar{f}} B.$

As condições (1) e (2) podem ser expressas com a comutatividade dos seguintes diagramas:

$$H_{D}(F(A), B) \xrightarrow{q \circ -} H_{D}(F(A), B') \qquad H_{C}(A, G(B)) \xrightarrow{-\circ p} H_{C}(A', G(B))$$

$$\downarrow^{\varrho_{A,B}} \downarrow \qquad \qquad \downarrow^{\varrho_{A,B'}} \qquad e \qquad \stackrel{\varrho_{A,B}}{} \uparrow \qquad \qquad \uparrow^{\varrho_{A',B}}$$

$$H_{C}(A, G(B)) \xrightarrow{G(q) \circ -} H_{C}(A, G(B')) \qquad H_{D}(F(A), B) \xrightarrow{-\circ F(p)} H_{C}(F(A'), B).$$

Exemplo 11. Considere os functores $F: \mathbf{Set} \to k\text{-Vect} \in G: k\text{-Vect} \to \mathbf{Set}$ onde, para um conjunto X, F(X) = k[X] é o espaço vetorial de combinações lineares formais de elementos de X com coeficientes em k (o k-espaço com base X) e para um k-espaço vetorial V, G(V) = V (ou seja, G é um functor de esquecimento). Note que F e G podem ser definidos para morfismos na maneira óbvia. Assuma que X é um conjunto, V é um k-espaço. A bijeção natural na definição do adjunto pode ser definida como

$$\varrho_{X,V}: H_{k\text{-}\mathbf{Vect}}(k[X], V) \to H_{\mathbf{Set}}(X, G(V)) = H_{\mathbf{Set}}(X, V):
g \mapsto \bar{g} = g|_{X}
\bar{f} \longleftrightarrow f$$

onde $\bar{f}: k[X] \to V$ é o mapa induzido por $f: X \to V$. Sejam $g: k[X] \to V$ e $q: V \to V'$ em k-Vect, e $f: X \to V$ e $p: X' \to X$ em **Set**. Traçando os dois diagramas antes do exemplo obtemos as seguintes imagens:

$$g \xrightarrow{q \circ -} q \circ g \qquad f \xrightarrow{-\circ p} f \circ p = (\bar{f} \circ F(p))|_{X}$$

$$\chi_{X,V} \downarrow \qquad \qquad \downarrow \chi_{X,V'} \qquad e \xrightarrow{\chi_{X,V}} \qquad \uparrow \chi_{X',V}$$

$$g|_{X} \xrightarrow{G(q) \circ -} (q \circ g)|_{X} = q \circ (g|_{X}) \qquad \bar{f} \xrightarrow{-\circ F(p)} \qquad \bar{f} \circ F(p)$$

Temos que (F, G) é um par adjunto.

Exemplo 12. Considere os functores $F: \mathbf{Grp} \to \mathbf{AbGrp} \in G: \mathbf{AbGrp} \to \mathbf{Grp}$ onde F(X) = X/X' (X' sendo o subgrupo derivado) e G(A) = A (ou seja, G é um functor de esquecimento). O quociente X/X' é chamado de *abelianização* de X. Note que a correspodência $X \mapsto X/X'$ é functorial, pois se $\alpha: X \to Y$ é um morfismo, então α induz um morfismo $\alpha_{ab}: X/X' \to Y/Y'$. Note que temos a projeção natural $\pi_X: X \to X/X'$ para cada grupo X. Dado X em \mathbf{Grp} e A em \mathbf{AbGrp} temos que a bijeção $\mathrm{Hom}_{\mathbf{AbGrp}}(X/X', A) \to \mathrm{Hom}_{\mathbf{Grp}}(X, A)$ pode ser dada por

$$g \mapsto g \circ \pi_X \quad e \quad f \mapsto f_{ab}.$$

6 SCHCS

É fácil verificar que (F, G) é um par adjunto.

Exemplo 13. Considere um anel comutativo R com 1 e seja N um R-módulo. Considere os functores $-\otimes N$ e $\operatorname{Hom}(N,-)$ na categoria R-Mod. Note que as duas destas correspondências são functoriais, pois se $\alpha: M_1 \to M_2$, então

$$\alpha \otimes N : M_1 \otimes N \to M_2 \otimes N, \quad m \otimes n \mapsto \alpha(m) \otimes n$$

е

$$\operatorname{Hom}(N,\alpha):\operatorname{Hom}(N,M_1)\to\operatorname{Hom}(N,M_2)\quad \varphi\mapsto\alpha\circ\varphi.$$

Se M e P são R-módulos, então existe uma bijeção natural entre $\operatorname{Hom}(M\otimes N,P)$ e $\operatorname{Hom}(M,\operatorname{Hom}(N,P))$ dada por

$$f \mapsto \psi_f$$
 onde $\psi_f(m)(n) = f(m \otimes n)$

е

$$\varphi \mapsto f_{\varphi}$$
 onde $f_{\varphi}(m \otimes n) = \varphi(m)(n)$.

É fácil verificar que os dois mapas são inversos e satisfazem a definição de par adjunto.

O seguinte teorema mostra o poder de pares adjuntos de functores. O teorema é verdadeira em em contexto mais geral, nomeadamente em categorias abelianas.

Teorema 14. Sejam R e S anéis comutativos com identidade e considere um par (F,G) adjunto de functores $F: R\text{-}\mathbf{Mod} \to S\text{-}\mathbf{Mod}$ e $G: S\text{-}\mathbf{Mod} \to R\text{-}\mathbf{Mod}$. Então F é exato à direita e G é exato à esquerda. Em particular, se $\alpha: M_1 \to M_2$ em $R\text{-}\mathbf{Mod}$ é sobrejetivo, então $F(\alpha)$ também é sobrejetivo, e se $\beta: N_1 \to N_1$ em $S\text{-}\mathbf{Mod}$ é injetivo então $G(\beta)$ também é injetivo.

Corolário 14.1. O functor $-\otimes N$ definido no Exemplo 13 é exato à direita e $\operatorname{Hom}(N,-)$ é exato à esquerda. Ou seja, se $\alpha: M_1 \to M_1$ é sobrejetivo e $\beta: M_1 \to M_2$ é injetivo, então $\alpha \otimes N: M_1 \otimes N \to M_2 \otimes N$ é sobrejetivo e $\operatorname{Hom}(N,\beta): \operatorname{Hom}(N,M_1) \to \operatorname{Hom}(N,M_2)$ é injetivo.

Assuma que (F,G) é um par de functores adjuntos para as categorias C e D. As composições FG e GF são functores de $D \to D$ e $C \to C$, respetivamente. Seja A um objeto de C. Então $1_{F(A)}: F(A) \to F(A)$ corresonde a um morfismo $\eta_A = \overline{1_{F(A)}}: A \to GF(A)$. Similarmente, se B é um objeto em D, então $\varepsilon_B = \overline{1_{G(B)}}: FG(B) \to B$.

Exemplo 15. Considere a construção no Exemplo 11. Seja X um conjunto e considere $1_{k[X]}: k[X] \to k[X]$. O morfismo $\eta_X: X \to k[X]$ é a inclusão de X em k[X]. Agora seja V um espaço vetorial e considere $1_V: V \to V$. O mapa correspondente $\varepsilon_V: k[V] \to V$ leva uma k-combinação linear formal com elementos de V ao seu valor em V.

Lema 16. As funções η_A e ε_B definem transformações naturais $\eta: 1_C \to GF$ e $\varepsilon: FG \to 1_D$.

Os mapas η e ε são chamados de *unidade* e *counidade* da adjunção.