Maël Auzias

ENSIBS - UBS

September 2015

Figure: teaching.auzias.net

Course details

Objectives

- ► How do *computers* communicate?
- ► What are the mechanisms under an HTTP request or a telegram message?
- ► Networks are all around us, better study them!

2/107

1/107

Networking 101

Course details

Evaluation

- Project
- ► Final exam (1 hour)
- ► All equal weighting

Material

► Slides available at teaching.auzias.net (github too)

Presentation Outline

Introduction

Networking 101 Introduction

3 / 107

Definitions and presentation

- ▶ Network: an interconnected group or system
- ► Internet: world wide interconnected system of networks RFC791 (September 1981)
- ▶ **IP:** Internet **Protocol** provides the functions necessary to deliver a package of bits from a source to a destination over a network
- ► (world wide) Web: network consisting of a collection of Internet websites using HTTP

5 / 107

6 / 107

Networking 101 └─ Introduction

Definitions and presentation

- ▶ Router: network hardware providing routing services
- ► Routing: algorithm processed to decide where to forward a packet
- ► Forwarding: action of moving a packet from one NIC to another
- ▶ NIC: Network Interface Card
- ► Switch (hub): network hardware connecting systems using packet switching
- ► Packet switching: forward-like method regardless of the content (destination-based)
- ▶ **NAT:** Network Address Translation, router modifying IP address into another IP address (PAT).

Definitions and presentation

- ▶ **HTTP:** Hypertext Transfer **Protocol**, application-level protocol for distributed, collaborative, hypermedia information systems draft HTTP2 (July 2014)
- ► FTP: File Transfer Protocol promotes sharing of files, encourages the use of remote computers RFC959 (October 1985)
- ► RFC: Request For Comments (Internet Draft (ID), RFC, Internet Standard)

Networking 101

Definitions and presentation

- ► Node (network): any entity that can send packets to/receive packets from a network through a NIC
- ▶ Client: computer able to send requests to a server
- ▶ Request: application message destined for a server (order)
- ▶ Server: computer able to respond to a client's requests
- ▶ Response: application message destined for a client (result)
- ► Fat client: application where most functions are processed by the client itself
- ► Thin client: application where most functions are carried out on a central server

7/107 8/107

Network classification

► BAN: Body Area Network

▶ PAN: Personal Area Network

► (W)LAN: (Wireless) Local Area Network (home, office, school or airport)

▶ MAN: Metropolitan Area Network, can cover a whole city

▶ WAN: Wide Area Network cover a broad area (Internet)

9 / 107

Networking 101

Topologies

- ► Point-to-point: two entities directly connected to each other (tunnel).
- ▶ Ring: data go around the ring, unidirectional way network.
- ▶ **Mesh:** all nodes cooperate in the distribution of data in the network¹.
- ► **Star:** all messages go through the same central node, reducing network failure.
- ▶ Fully connected: all nodes are connected to all other nodes.
- ▶ Line: bidirectional link between two nodes. Node can only send packet going through its neighbors.
- ▶ **Bus:** all nodes are connected to the same media. Only one can send a packet at a time, which all others then receive.
- ▶ Tree: hierarchical topology, such as a binary tree.

Topologies

Figure: upload.wikimedia.org

10 / 107

Networking 101

Bonus

Figure: Disconnected MANET illustration

11 / 107 12 / 107

¹Hong Kong protesters used a mesh network to organize (2014)

Bonus

Figure: Store-carry-and-forward

Bonus

Figure: Store-carry-and-forward

13 / 107

14 / 107

Networking 101

Bonus

Figure: Store-carry-and-forward

Networking 101

Bonus

Figure: Store-carry-and-forward

${\sf HTTP\ request/response\ example}$

Enter getbootstrap.com in your browser

17 / 107 18 / 107

Networking 101

HTTP request/response example

Enter getbootstrap.com in your browser

Source	Destination	Protocol	Length Info
192.168.0.48			
208.67.222.222	192.168.0.48	DNS	108 Standard query response 0x4797 A 192.30.252.154 A 192.30.252.15

Figure: DNS request/response

Source	Destination	Protocol	Length Info
127.0.0.1			74 36159 > http [SYN] Seq=0 Win=43690 Len=0 MSS=65495 SACK_PERM=1 TSval=12
127.0.0.13	127.0.0.1	TCP	74 http > 36159 [SYN, ACK] Seq=0 Ack=1 Win=43690 Len=0 MSS=65495 SACK_PERM
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=1 Ack=1 Win=43776 Len=0 TSval=122257 TSecr=12225
127.0.0.1	127.0.0.13	HTTP	356 GET /index.html HTTP/1.1
127.0.0.13	127.0.0.1	TCP	66 http > 36159 [ACK] Seq=1 Ack=291 Win=44800 Len=0 TSval=122259 TSecr=122
127.0.0.13	127.0.0.1	HTTP	354 HTTP/1.1 200 OK (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seq=291 Ack=289 Win=44800 Len=0 TSval=122259 TSecr=1
127.0.0.1	127.0.0.13	HTTP	357 GET /favicon.ico HTTP/1.1
127.0.0.13	127.0.0.1	HTTP	565 HTTP/1.1 404 Not Found (text/html)
127.0.0.1	127.0.0.13	TCP	66 36159 > http [ACK] Seg=582 Ack=788 Win=45952 Len=0 TSval=122269 TSecr=1

Figure: HTTP request/response

HTTP request/response example

Enter getbootstrap.com in your browser

Figure: DNS request/response

To read

Networking 101

Introduction

https://github.com/alex/what-happens-when

- ► DNS lookup
- ► ARP process
- Opening of a socket
- ► TLS handshake
- ► HTTP protocol
- ► HTTP Server Request Handle

19 / 107 20 / 107

Networking 101 └─ Introduction

How do messages reach their destination?

Figure: acenk90.files.wordpress.com

21 / 107

Networking 101 Lintroduction

Models overview (OSI and TCP/IP)

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Figure: OSI model

More like this...

Figure: wikimedia.org

22 / 107

Networking 101

Nth layer communicate with Nth layer..

23/107 24/107

.. thanks to 3-th layers

25 / 107

27 / 107

Figure: layers and routing

Networking 101 Introduction

Encapsulation

Figure: Encapsulation

One single protocol, one single layer

26 / 107

Figure: protocols and layers

Networking 101 Introduction

Reading

Reading list:

- ▶ "Computer Networks" by A Tanenbaum, Andrew S., G ISBN 013162959X
- http://nmap.org/book/toc.html
- http://blog.nodenexus.com/2014/11/28/a-shark-on-thenetwork/
- ▶ and many many other resources on the Internet freely available²! If you can read it, knowledge is reachable³!

²An Introduction to Computer Networks (21: Security) by Peter L Dordal

³such as this example of Wireshark using or what-happens-when

ntroduction

Whatching

Watching list:

- ▶ DEF CON 22 Hacking Conference Presentation By Christopher Soghoian - Blinding The Surveillance State ⁴
- any other defcon
- ▶ Mr Robot, that's a good serie!

⁴media.defcon.org

29 / 107

Networking 101 — Physical

Aims

- ► Interface data link layer,
- ► (De)Encode,
- ► Transmit: 1 after 0 (after 0 or 1, after 0... or 1)

Networking 101 — Physical

Presentation Outline

Introduction

Physical

Data Link

Network

Transport

30 / 107

Networking 101

Hardware medium

- ► IEEE 802.3 (a.k.a. Ethernet): <100Gbit/s
- ► IEEE 802.11 (a.k.a. Wi-Fi): <50 Mbit/s (802.11ad goes up to 6.75 Gbit/s)
- ▶ IEEE 802.15.1 (a.k.a. Bluetooth): <1 Mbit/s
- ► IEEE 802.15.4 (a.k.a. ZigBee): <250 kbit/s
- ► IEEE 802.16 (a.k.a. Wi-Max): <40 Mbit/s
- ▶ IEEE 1394 (a.k.a. Firewire): <3200 Mbit/s
- ▶ USB, serial port such as RS-232...

31/107 32/107

Hardware medium: IEEE 802.3 (Ethernet)

Figure: RJ45 connector

Hardware medium: IEEE 802.15.1 (Bluetooth)

Figure: Bluetooth card

33 / 107 34 / 107

Networking 101

Hardware medium: IEEE 802.15.4 (ZigBee)

Figure: ZigBee card

Networking 101 Physical

Hardware medium: IEEE 802.16 (Wi-Max)

Figure: Wi-Max antenna

Hardware medium: IEEE 1394 (Firewire)

Figure: Firewire connector

37 / 107

Networking 101

Encoding: Multi-Level Transmit

Figure: Multi-Level Transmit

Encoding

- ► MLT3 (Multi-Level Transmit): state changes for 1s over 3 levels, stays in the same state for 0s
- ► AMI (Alternate Mark Inversion): state 0 for 0s, state +/-1 for 1s
- ► Manchester: voltage transition (rising/falling edge mean 1/0)
- ▶ BMC (Biphase Mark Code): change its state for 1s, stay on the same state for 0s
- ▶ and so on...

38 / 107

Networking 101

Encoding: Alternate Mark Inversion

Figure: Alternate Mark Inversion

Encoding: Manchester

Figure: Manchester

Encoding: Biphase Mark Code

Figure: Biphase Mark Code

42 / 107

Networking 101

Transmitting

Figure: Amplitude and phase modulation

Networking 101 └─Physical

41 / 107

Error detection

- ► Repetition (hum...)
- ► Parity (XOR)
- Checksum
- ▶ CRC (Cyclic redundancy check): with a polynomial divison
- Hash
- ▶ and so on...

43 / 107 44 / 107

Error correcting

- ► Repetition (again)
- Hamming
- ► MDPC (Multidimensional parity-check code)

45 / 107

Networking 101

Presentation Outline

Introduction

Physica

Data Link

Network

Transport

Correction: MDPC

Raw data to send: 0x01 02 03 04

 0x01
 0x02
 0x03

 0x03
 0x04
 0x07

 0x04
 0x06

Figure: Data received with MDPC

Data sent (with MDPC): 0x01 02 03 03 04 07 04 06

46 / 107

Networking 101 └─ Data Link

Aims

- ► Interface network layer,
- ▶ Delivery to unique(?) hardware addresses,
- ► Framing,
- ▶ Data transfer

Networking 101 Data Link

Layer composition (of its two sublayers)

- 1. Logical Link Control (LLC):
 - ▶ end to end flow control
 - end to end error control
 - (transmitting/receiving) protocols, over MAC sublayer, multiplexing
- 2. Media Access Control (MAC):
 - physical (hardware) addressing
 - collision detection and retransmission
 - data packet scheduling (and queuing)
 - QoS
 - VLAN

49 / 107

Networking 101

Layer 2 Ethernet packet

MAC dest. (6)	MAC src. (6)	VLAN tag* (4)	Ethertype (2)
Payload (4	42-1500)	Frame check s	sequence (4)

Figure: Layer 2 Ethernet packet

optional, Content (size in bytes)

Ethertype 0x	Protocol
0800	IPv4
0806	ARP
0842	Wake-on-LAN
86dd	IPv6

Figure: Data received with MDPC

Carrier Sense Multiple Access with Collision Avoidance

Figure: CSMA CA

50 / 107

Networking 101 └─ Data Link

ARP example

0000	ff	ff	ff	ff	ff	ff	fa	ba	00	ab	ab	af	80	06	00	01
0010	80	00	06	04	00	01	fa	ba	00	ab	ab	af	ac	11	22	37
0020	00	00	00	00	00	00	ac	11	00	f9	00	00	00	00	00	00
0030	00	00	00	00	00	00	00	00	00	00	00	00				

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

51/107 52/107

ARP example

0000	ff	ff	ff	ff	ff	ff	fa	ba	00	ab	ab	af	80	06	00	01
0010	80	00	06	04	00	01	fa	ba	00	ab	ab	af	ac	11	22	37
0020	00	00	00	00	00	00	ac	11	00	f9	00	00	00	00	00	00
0030	00	00	00	00	00	00	00	00	00	00	00	00				

Figure: ARP request

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

53 / 107

Networking 101

ARP example

```
        0000
        fa
        ba
        00
        ab
        ab
        af
        be
        be
        00
        00
        eb
        08
        06
        00
        01

        0010
        08
        00
        06
        04
        00
        01
        be
        be
        00
        00
        eb
        ac
        11
        00
        f9

        0020
        fa
        ba
        00
        ab
        ab
        af
        ac
        11
        22
        37
        00
        00
        00
        00
        00

        0030
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
```

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

ARP example

 0000
 fa
 ba
 00
 ab
 ab
 af
 be
 be
 00
 00
 eb
 eb
 08
 06
 00
 01

 0010
 08
 00
 06
 04
 00
 01
 be
 be
 00
 00
 eb
 ab
 ac
 11
 00
 f9

 0020
 fa
 ba
 00
 ab
 ab
 af
 ac
 11
 22
 37
 00
 00
 00
 00
 00

 0030
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Figure: ARP reply

MAC address destination MAC address source Ethertype Hardware type Protocol type OpCode (1 request, 2 reply) IP address source IP address destination

54 / 107

Networking 101

Presentation Outline

Introductio

Physical

Data Link

Network

Transport

55 / 107 56 / 107

Aims

- ► Interface transport layer,
- ► Host addressing,
- ► End-to-end packet transmission (data link? Connectionless? Switch? Router?),
- ► Routing, load balancing

57 / 107

58 / 107

Networking 101

IP addressing fundamentals

Concepts

- ▶ IP addressing fundamentals,
- ► Classfull IP addressing,
- ▶ Subnet and VLSM (Variable length subnet masks),
- ► CIDR (Classless inter-domain routing),
- Routing,
- ► IPv6.

Networking 101

IP addressing fundamentals

Masks

- ► Separates network and host bits,
- ► MSB are **always** ones and then zeros! 255.254.255.0 is not possible,
- ▶ Indicates how many bits are used for the network part:
 - ► A 8-bit mask leaves 24 bits for the hosts.
 - ► A 16-bit mask leaves 16 bits for the hosts.
 - ► A 24-bit mask leaves 8 bits for the hosts,
 - ► A N-bit mask leaves 32-N bits for the hosts.
- ► Two different masks (differences seen further on):
 - Network mask,
 - Subnet mask.

59/107 60/107

└ Network

IP addressing fundamentals

IP address 32 bits (4x4 bytes) Networks part Host part Figure: IP address parts and mask

61 / 107 62 / 107

Networking 101 └ Network

IP addressing fundamentals

Is that an address?

- ► Network address,
- Hosts,
- ► Broadcast address.

Within the same network

- ► All addresses have the same network bits,
- ► Network address has zeros for host bits: x.x.x.0*,
- ► All hosts have different host bits: x.x.x.[0-1]*,
- ▶ Broadcast address has ones for host bits: x.x.x.1*.

IP addressing fundamentals

IP addressing fundamentals

Mask /24	255	255	255	0
254 hosts	11111111	11111111	11111111	00000000
Network address	192	168	1	0
Network address	11000000	10101000	0000001	00000000
First host	192	168	1	1
FIRST HOST	11000000	10101000	0000001	0000001
Last host	192	168	1	254
Last nost	11000000	10101000	0000001	11111110
Droadcast address	192	168	1	255
Broadcast address	11000000	10101000	00000001	11111111

Figure: IP address example 1

IP addressing fundamentals

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
FIRST HOST	10101100	01000000	00000000	0000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
Dioaucast address	10101100	01000000	11111111	11111111

Figure: IP address example 2

65 / 107

107

Networking 101

IP addressing fundamentals

Public addresses

- ► Most IP addresses
- ► Registered ISP and large organizations inherit blocks of public addresses from IANA⁵
- ▶ Usage of unregistered public addresses is forbidden.

Private addresses

- ▶ Privates addresses are A, B and C classes (not all, see after)
- ► No registration needed
- ▶ Not routed across the Internet
- ▶ Proxy, NAT and private addresses solved IPv4 shortage.

⁵Internet Assigned Numbers Authority

IP addressing fundamentals

Formula: how many hosts with an N-bit mask?

 $2^{32-N}-2$, the -2 moves out network and broadcast addresses which are not hosts.

▶ 24-bit mask: $2^{32-24} - 2 = 2^8 - 2 = 254$ hosts

▶ 16-bit mask: $2^{32-16} - 2 = 2^{16} - 2 = 65.534$ hosts

▶ 8-bit mask: $2^{32-8} - 2 = 2^{24} - 2 = 16.777.214$ hosts

66 / 107

Networking 101

Classful IP Addressing

Class	А	В	С
First octet	1 - 126	128 - 191	192 - 223
First octet 0b	0*	10*	110*
Network mask	255.0.0.0	255.255.0.0	255.255.255.0
NELWOIK IIIask	/8	/16	/24
IP addresses range	1.0.0.0	128.0.0.0	192.0.0.0
ir addresses range	126.0.0.0	191.255.0.0	223.255.255.0
Private range	10.0.0.0	176.16.0.0	192.168.0.0
r rivate range	10.255.255.255	176.31.255.255	192.168.255.0
Number of hosts	16.777.214	65.534	254

Figure: Three main classes

Classful IP Addressing

Class D

► First octet: 224 - 239

► First octet pattern: 1110*

► These IP addresses are multicast addresses.

Class E

► Everything left

► Experimental class.

69 / 107

Networking 101

Classful IP Addressing

- ▶ Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

Means to limit the number of nodes on a network (regardless of the class) and, thus, improve the manageability, are needed. Three means for it:

- Subnet,
- VLSM (Variable Length Subnet Mask),
- ▶ CIDR (Classless Inter-Domain Routing).

Classful IP Addressing

Reserved addresses

- ▶ 0.0.0.0 used in routing (seen further)
- ► 127.0.0.0/8: loopback addresses (127.0.0.1 127.255.255.254).

70 / 107

Networking 101

Subnet and VLSM

- ► Class A (16 m-addresses) and B (65 k-adresses) are too large!
- ► Class C (254 addresses) is manageable. A and B are not, and then not fully utilized... That's a waste of IP addresses!

71/107 72/107

Subnet and VLSM

Mask /16	255	255	0	0
65.534 hosts	11111111	11111111	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First host	172	64	0	1
FIRST HOST	10101100	01000000	00000000	0000001
Last host	172	64	255	254
Last 110st	10101100	01000000	11111111	11111110
Broadcast address	172	64	255	255
Droaucast address	10101100	01000000	11111111	11111111

Figure: IP address example 2

73 / 107

Networking 101

Subnet and VLSM

Mask /10	255	192	0	0
4.194.302 hosts	11111111	11000000	00000000	00000000
Network address	172	64	0	0
Network address	10101100	01000000	00000000	00000000
First boot	172	64	0	1
First host	10101100	01000000	00000000	0000001
l agt bagt	172	127	255	254
Last host	10101100	01111111	11111111	11111110
Droadcast address	172	127	255	255
Broadcast address	10101100	01111111	11111111	11111111

Figure: IP address example 4

Subnet and VLSM

Mask /12	255	240	0	0
1.048.574 hosts	11111111	11110000	00000000	00000000
Network address	172	64	0	0
ivetwork address	10101100	01000000	00000000	00000000
Circt boot	172	64	0	1
First host	10101100	01000000	00000000	00000001
Last host	172	79	255	254
Last 110st	10101100	01001111	11111111	11111110
Broadcast address	172	79	255	255
Dioducast address	10101100	01001111	11111111	11111111

Figure: IP address example 3

74 / 107

Networking 101

Subnet and VLSM

Mask /31	255	255	255	254
0 host	11111111	11111111	11111111	11111110
Network address	172	64	0	254
	10101100	01000000	00000000	11111110
First host	172	64	0	?
	10101100	01000000	00000000	1111111?
Last host	172	64	255	?
Last 110st	10101100	01000000	00000000	1111111?
Broadcast address	172	64	255	255
Divaucast address	10101100	01000000	00000000	1111111 <mark>1</mark>

Figure: IP address example 5

Subnet and VLSM

Mask /30	255	255	255	252
2 hosts	11111111	11111111	11111111	11111100
Network address	172	64	0	25 2
	10101100	01000000	00000000	111111100
First host	172	64	0	253
	10101100	01000000	00000000	111111101
Last host	172	64	255	254
	10101100	01000000	00000000	111111110
Broadcast address	172	64	255	255
	10101100	01000000	00000000	1111111111

Figure: IP address example 6

77 / 107

Networking 101 ∟ Network

CIDR

Classless Inter-domain Routing?

► Wait! What is routing?

	Netmask	CIDR	hosts
255.255.255.255	11111111.111111111.111111111.11111111	/32	Unusable
255.255.255.254	11111111.111111111.111111111.11111110	/31	Unusable
255.255.255.252	11111111.111111111.11111111.11111100	/30	2
255.255.255.248	11111111.111111111.11111111.11111000	/29	6
255.255.255.240	11111111.111111111.11111111.11110000	/28	14
255.255.255.224	11111111.111111111.11111111.11100000	/27	30
255.255.255.192	11111111.111111111.11111111.11000000	/26	62
255.255.255.128	11111111.111111111.11111111.10000000	/25	126
255.255.255.0	11111111.11111111.111111111.00000000	/24	254
255.255.254.0	11111111.111111111.11111110.00000000	/23	510
255.255.252.0	11111111.111111111.11111100.00000000	/22	1.022
255.255.248.0	11111111.11111111.11111000.00000000	/21	2.046
255.255.240.0	11111111.11111111.11110000.00000000	/20	4.094
255.255.224.0	11111111.11111111.11100000.00000000	/19	8.190
255.255.192.0	11111111.11111111.11000000.00000000	/18	16.382
255.255.128.0	11111111.111111111.10000000.00000000	/17	32.766
255.255.0.0	11111111.111111111.00000000.00000000	/16	65.534
255.254.0.0	11111111.111111110.00000000.00000000	/15	131.070
255.252.0.0	11111111.111111100.00000000.00000000	/14	262.142
255.248.0.0	11111111.11111000.00000000.00000000	/13	524.286
255.240.0.0	11111111.11110000.00000000.00000000	/12	1.048.574
255.224.0.0	11111111.11100000.00000000.00000000	/11	2.097.152
255.192.0.0	11111111.11000000.00000000.00000000	/10	4.194.302
255.128.0.0	11111111.10000000.00000000.00000000	/9	8.388.606
255.0.0.0	11111111.00000000.00000000.00000000	/8	16.777.214
254.0.0.0	11111110.00000000.00000000.00000000	/7	33.554.430
252.0.0.0	11111100.00000000.00000000.00000000	/6	67.108.862
248.0.0.0	11111000.00000000.00000000.00000000	/5	134.217.726
240.0.0.0	11110000.00000000.00000000.00000000	/4	268.435.454
224.0.0.0	11100000.00000000.00000000.00000000	/3	536.870.910
192.0.0.0	11000000.00000000.00000000.00000000	/2	1.073.741.822
128.0.0.0	10000000.00000000.00000000.00000000	/1	2.147.483.646
0.0.0.0	00000000.00000000.00000000.00000000	/0	IP space

Figure: Subnet mask cheat sheet

Networking 101

Routing Principles

Algorithms are processed to decide where to forward a packet

Any router must

- know where any packet should be directed
- ▶ send directly the packets to the destination if the router and the destination are on the same (sub)network

Any node

- on any network can communicate directly with all the nodes within the same network
- ▶ can connect to any node using its gateway
- needs to be aware of its gateway to communicate with nodes on other networks

78 / 107

Routing Principles

Route

- Destination
- ► Gateway (next hop)
- Masks
- Metric
- ► Interface

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 0 eth0
```

Figure: Routing table

81 / 107

Networking 101

Routing Principles

Example

what would the routing table of this router look like?

Routing Principles

```
>sudo route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
```

Figure: Routing table

0.0.0.0 ?

- ► Default destination
- Default (sub)network(s)
- ► Default route
- ▶ Default gateway

82 / 107

Networking 101 Network

Routing Principles

Static or dynamic?

We will see this later

83 / 107 84 / 107

└ Network

CIDR

Combine 2+ networks' into one bigger to ease routing.

Classless Inter-domain Routing?

- ► Can a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (10.0.0.0/8, S0) be shorten?
- ► Can a routing table having both (192.168.0.0/24, E0), (192.168.1.0/24, E0), (192.168.8.0/24, E0), (10.0.0.0/8, S0) be shorten?
- ► Can a routing table having both (192.168.0.0/24, E0), (192.168.4.0/24, E0), (192.168.1.0/24, E1), (10.0.0.0/8, S0) be shorten?

85 / 107

Networking 101 └ Network

Routing Protocol

RIP_{v1}

- ► Classful routing
- ▶ Periodic updates (30 sec) ..
- ▶ ..by broadcasting (!)
- ▶ Metric is hop-count (max = 15, infinite = 16)
- ► Timer (180 sec) to tag route as invalid (metric = 16)
- ▶ no subnet, no VLSM, no CIDR, no router authentication

Networking 101 └ Network

Routing Protocol

▶ RIP: Routing Information Protocol

► OSPF: Open Shortest Path First

► EIGRP: Enhanced Interior Gateway Routing Protocol

86 / 107

Networking 101 └ Network

Routing Protocol

RIP v2

- Classless routing
- ► Multicast (224.0.0.9)
- ► VLSM support
- ► Route summarization
- "Authentication" (MD5)

RIPng is the next RIP version for support of IPv6

Routing Protocol

- 1. Router coming online broadcasts Request message
- 2. RIP Routers send **broadcasts** Response messages with their routing table
- 3. When Update timers (from other routers) expire, its routing table⁶ is sent again
- 4. When Invalid timer expires, the metric of the route is set to 16 (unreachable)
- 5. When Flush timer expires, the 16-metric routes are removed from the routing table
- 6. When a new router (or new metric) is sent, a Hold-down timer is started to stabilize the network.

89 / 107

Networking 101 ∟ Network

Routing Protocol

EIGRP

- ► Enhanced IGRP (to support classless routing)
- ▶ IPv4 and IPv6
- VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra
- ► Metric = f(bandwidth, load, delay, reliability)
- ► Authentication support

Routing Protocol

OSPF

- Classless
- ▶ IPv4 and IPv6
- ► VSLM
- ► CIDR
- ▶ Build a topology of the network
- Dijkstra
- Metric = f(hop-count, bandwidth, link reliability)
- Subdivided into area (a 32-bit number)
- Multicast
- Authentication support (update only from trusted routers)

90 / 107

Networking 101

IPv6 - Aims

- ► Support billions of hosts (even with inefficient IP addressing)
- ► Reduce routing table size
- ▶ Simplified protocol to allow routers to process packets faster
- ▶ Better security
- ▶ Better real-time QoS
- ▶ Better multicast diffusion (scope)
- ▶ Able to move without changing IP address
- ► Give the protocol the ability to evolve
- ► Give the protocol the ability to coexist with newer version

91 / 107 92 / 107

⁶not always the whole table

IPv4 vs IPv6

- ▶ not compatible
- ▶ IPv4 address: 4 octets, IPv6: 16 octets $(2^{128} = 3 \times 10^{138})$
- ▶ Packet Header, IPv6: 7 fields, IPv4:13 (faster to process)
- ► IP options: some required options are now optional (faster to process)
- Notation:
 - ▶ 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - ▶ 8000::0123:4567:89AB:CDEF
 - **:**192.168.2.3
- Unicast address format:

bits	48 (or more)	16 (or fewer)	64
field	routing prefix	subnet id	interface identifier

Figure: Unicast IPv6 address format

93 / 107

95 / 107

Networking 101

IPv6 - Header

- ▶ **Version (4 bits)**: 0b0110
- ► Traffic class (8 bits): 6-MSB for differentiated services⁷, 2-LSB for ECN⁸
- ▶ Flow label (20 bits): routers are supposed to use the same path for the same flow (thus, destination do not need to re-order packets)
- ▶ Payload length (16 bits): packet length minus its header length

IPv4 vs IPv6

Figure: IPv4 and IPv6 headers (www.cisco.com)

94 / 107

Networking 101

IPv6 - Header

- ▶ Next header (8 bits): specifies the transport layer protocol, also indicates (if any) extension header that follows.
- ► Hop limit (8 bits): Hop count (discussion was to use a duration instead, but router implementations would be much more complex)

Optional IPv6 headers offer the possibility to

- specify the route of the datagram
- ▶ include authentication data
- ▶ include fragmentation parameters
- ▶ and so on...

⁷multimedia or http

⁸Explicit Congestion Notification (RFC 3168)

Networking 101 ∟ Network

IPv6 - Anecdotes

- ► IPv6 address length could have been 8 bytes, or 20 bytes, or even variable
- ► Hop count max value (255) is considered, by some, not enough
- ▶ Removing IPv4 checksum is as safe as removing brakes from a car
- ► Different national laws on encryption disallow a real secure transport layer

97 / 107

Networking 101 └─ Transport

Presentation Outline

Introduction

Physical

Data Link

Network

Transport

IPv6 - Adoption

Figure: IPv6 adoption (among Google users)⁹

▶ **2014** Belgium: 28%, USA and Germany: 11%

▶ **2015** Belgium: 36%, USA: 21% and Germany: 18%

 $^9 https://www.google.com/intl/en/ipv6/statistics.html \\$

98 / 107

Networking 101 ___ Transport

Aims

- ► Interface session layer,
- ▶ Reliable end-to-end communication,
- ▶ Order and reassemble received packets (if needed),
- ► Flow control,
- ► Congestion avoidance (if supported by protocol),
- Multiplexing

99 / 107 100 / 107

Application identification

Socket address

- ▶ Node identification is made by IP address,
- ▶ Application identification is made by node identification..
- ▶ .. and a port. Number between 0 and 65535. (1-1024: root privilege)
 - ▶ ip.ad.dr.ess:port

101 / 107

Networking 101 └─ Transport

TCP header

Figure: nmap.org: TCP header

Port Protocol 21 FTP 22 SSH 23 Telnet 25 SMTP 80 **HTTP** 443 HTTPS 465 **SMTPS** 631 IPP 1194 OpenVPN 3128, 8080 Web Proxy 9418 git Skype 23399

Figure: Default port for well known protocol

102 / 107

Networking 101

UDP header

Figure: nmap.org: UDP header

Networking	101
LTranspor	+

Socket Primitives (TCP)

Order	Primitive	Meaning
1	SOCKET	Creates a new communication endpoint
2	BIND	Links local IP address to the socket
3	LISTEN	Signs up for incoming connections
4	ACCEPT	Blocking call till a connection attempt occurs
-	CONNECT	Tries to connect to another communication endpoint
_	SEND	Sends data through the established connection
-	RECEIVE	Receives data through the established connection
last	CLOSE	Releases the connection

Figure: TCP primitives

A socket does not have an IP address until it is bound, just an allocation in the transport entity. A server must listen before any client can connect.

105 / 107

Networking 101

_ Transport

I hope you liked it and learnt something new!

Figure: teaching.auzias.net

107 / 107

Networking 101

What are these ?

- ▶ Frame: Physical layer representation
- ▶ Datagram: UDP¹⁰ or IP packet (IP datagram, UDP datagram)
- ▶ **Segment**: TCP data unit
- ▶ **PDU**: Protocol Data Unit, generic term.
- ► Fragment: Any data unit fragmented

¹⁰User **Datagram** Protocol