```
In [1]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
from yellowbrick.classifier import ConfusionMatrix
```

In [2]:

```
dataset = pd.read_csv("letter-recognition.csv", sep = ",")
```

In [3]:

```
names = ['Class',
          'x-box',
         'y-box',
          'width',
         'high',
         'onpix',
          'x-bar',
          'y-bar',
         'x2bar',
         'y2bar',
          'xybar',
          'x2ybr',
         'xy2br',
          'x-ege',
          'xegvy',
          'y-ege'
          'yegvx']
```

In [4]:

```
X = dataset.iloc[:, 1 : 17]
Y = dataset.select_dtypes(include = [object])
```

In [5]:

X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size = 0.20, random_state = 10

In [6]:

```
scaler = StandardScaler()
scaler.fit(X_train)
```

Out[6]:

StandardScaler()

In [7]:

```
X_train = scaler.transform(X_train)
X_validation = scaler.transform(X_validation)
```

In [8]:

```
mlp = MLPClassifier(hidden_layer_sizes = (250, 300), max_iter = 1000000, activation = 'logistic')
```

In [9]:

```
cm = ConfusionMatrix(mlp, classes="A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z".split(','))
```

```
In [10]:
```

```
cm.fit(X_train, Y_train.values.ravel())
```

```
Out[10]:
```


In [11]:

```
cm.score(X_validation, Y_validation)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for exampl e using ravel().

return f(**kwargs)

Out[11]:

0.967

In [12]:

```
predictions = cm.predict(X_validation)
```

In [13]:

```
print("Accuracy: ", accuracy_score(Y_validation, predictions))
```

Accuracy: 0.967

print(confusion_matrix(Y_validation, predictions))

[[1	45 0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0
[137	0	0	0	1	0	0] 1	0	0	0	0	0	0	0	0	0	1
	0	0	0	3	0	0	0	<u>0</u>]	·	Ū	ŭ		ŭ		Ū			_
[0	0	151	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0
-	0	0	0	0	0	0	0	0]	_	_		_	0	_	_	_	_	•
[0 1	0 0	0 0	157 0	0 0	1 0	0 0	1 0]	0	0	1	0	0	0	0	0	0	0
[0	2	0	0	160	0	3	9	0	0	0	1	1	0	0	1	0	0
-	0	0	0	0	0	0	0	2]										
[0	0	0	0	0	140	0	0	0	0	0	0	0	0	0	0	0	0
Г	1 0	0 2	0 0	0 0	0 2	0	0 160	0] 0	0	0	0	0	1	0	2	0	0	0
L	0	0	0	1	0	0	0	0 0]	O	U	U	U	_	U		U	U	Ð
[0	0	0	3	0	0	2		0	0	2	0	0	3	0	0	1	1
	0	0	0	1	0	0	0	0]										
[0	0	1	0	0	0	0	0 1	55	6	0	0	0	0	0	0	0	0
[2 0	0 0	0 0	0 0	0 0	0 1	0 0	0] 0	1	145	0	0	0	1	0	0	0	0
L	0	0	0	0	0	0	0	0]	_	147	U	U	Ü	_	O	U	U	O
[0	0	0	0	0	0	0	1	0	0	129	0	0	0	0	0	0	0
_	0	0	0	0	0	0	0	0]										
[0	0	0	0	0	0	1	0	0	0	0	141	0	1	0	0	0	0
Г	0	0 0	0 0	0 0	0 0	1 0	0 0	0] 0	0	0	0	а	146	0	1	0	0	0
	0	0	0	0	1	0	0	0]	·	Ū	ŭ				_			Ū
[0	0	0	1	0	0	0	1	0	0	0	0	0	142	0	0	0	0
-	0	0	0	0	0	0	0	0]	_	•	_	•	_	_		•	•	•
[0	0 1	0 0	0 0	0 2	0 0	0 0	0 0]	0	0	0	0	0	2	140	0	0	0
[0	0	0	0	0	6	0	0	0	0	0	1	0	0	0	153	3	0
	0	0	0	0	0	0	0	0]										
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	159	0
г	0	0 2	0 1	0	0	0	0	0] 2	0	0	3	1	0	1	0	0	1	155
[0	0	0	0 0	0 0	0 0	0 0	2 0]	0	О	3	1	0	1	0	0	1	155
[0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	35	0	0	0	0	0	0	0]										
[0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
Г	0 1	161 0	0 1	0 0	0 0	0 0	0 0	0] 2	0	1	0	0	1	1	0	0	0	0
L	0	0	175	0	0	0	0	0]	Ü	_	U	U	_	_	O	U	U	O
[0	3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
_	0	0	0		0	0	1	0]										
[0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
[0	0 0	1 1	0	132 0	0 0	0 0	0] 0	0	0	3	0	0	0	0	0	1	0
L	0	0	0	0	0	153	1	0]	Ü	Ū	,	Ū	O	Ū	Ū	Ū	-	Ū
[1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	1	2	1	2	0	0	157	0]	_	-	_	-	_	-	-	-		_
[0	0	0	0	1	0	0	0 15211	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	О	152]]										

In [15]:

```
print(classification_report(Y_validation, predictions, digits=5))
```

```
precision
                          recall f1-score
                                             support
               0.98639
                         0.97973
                                   0.98305
                                                 148
          Α
          В
               0.93836
                         0.95804
                                   0.94810
                                                 143
               0.97419
                         0.98052
                                   0.97735
                                                 154
          C
                                   0.96914
          D
               0.96319
                         0.97516
                                                 161
          Ε
               0.98160
                         0.94118
                                   0.96096
                                                 170
                         0.99291
                                   0.96220
                                                 141
               0.93333
          G
               0.95238
                         0.95238
                                   0.95238
                                                 168
          Н
               0.94667
                         0.91613
                                   0.93115
                                                 155
          Ι
               0.98726
                         0.94512
                                   0.96573
                                                 164
               0.94771
                         0.97973
                                   0.96346
                                                 148
          Κ
               0.91489
                         0.99231
                                   0.95203
                                                 130
               0.96575
                         0.97917
                                   0.97241
                                                 144
          Μ
               0.97987
                         0.98649
                                   0.98316
                                                 148
               0.94040
                         0.98611
                                   0.96271
                                                 144
          0
               0.95890
                         0.96552
                                   0.96220
                                                 145
          Ρ
               0.98710
                         0.93865
                                   0.96226
                                                 163
               0.96364
                         0.99375
                                   0.97846
                                                 160
          R
               0.97484
                         0.93373
                                   0.95385
                                                 166
          S
               0.96429
                         0.99265
                                   0.97826
                                                 136
          Т
               0.98171
                         0.97576
                                   0.97872
                                                 165
          U
               0.98870
                         0.96154
                                   0.97493
                                                 182
          ٧
               0.95425
                         0.95425
                                   0.95425
                                                 153
          W
               0.97778
                         0.97778
                                   0.97778
                                                 135
               0.99351
                         0.96226
                                   0.97764
                                                 159
          Х
                                   0.96914
               0.98742
                         0.95152
                                                 165
          Ζ
               0.98701
                         0.99346
                                   0.99023
                                                 153
   accuracy
                                   0.96700
                                                4000
  macro avg
               0.96658
                         0.96792
                                   0.96698
                                                4000
weighted avg
               0.96750
                         0.96700
                                   0.96699
                                                4000
```

In [16]:

```
cm.poof()
```

<Figure size 576x396 with 0 Axes>

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x19f614d4b20>

In []: