Contents

USCSP301 - USCS303: Operating System (OS) Prac	tical — 02 2
Practical Date: 24 – 07 – 2021	2
Alogrithm:	3
Step 1 : Input the number of processes required to be process.	
Step 2 : Using enhanced bubble sort technique, sort that according to burst time in a ready queue	
Step 3 : Calculate the Finish Time, Turn Around Tim in turn help to calculate Average Waiting Time and A CPU to schedule given set of process using SJF	Average Turn Around Time required by
Implementation:-	13
Input:	
Output	
Sample Output – 01	
Sample Output – 02	
Sample Output-03	20
Sample Output-04	

USCSP301 - USCS303: Operating System (OS) Practical – 02

Practical Date: 24 - 07 - 2021

Practical Aim: Non-Preemtive CPU Schedualing algorithm where each process with the smallest burst time is executed time.

CPU scheduling algorithm are used for scheduling different process present in the ready queue with available resource in an optimal way so that each and every process get execute by CPU

Scheduling algorithm are broadly classified into two main type namely preemptive and non-preemptive .

FIRST COME FIRST OUT(FCFS) is also know as FIRST IN FIRST OUT (FIFO) SCHEDUAL algorithm is the and simplest CPU .

A process scheduling different process to be assigned to the CPU based on particular scheduling algorithm .there are six popular process scheduling algorithm which we are going to discuss in this chapter FIRST COME FIRST OUT(FCFS) scheduling

Alogrithm:-

Step 1: Input the number of processes required to be scheduled using SJF, burst time for each process.

Step 2: Using enhanced bubble sort technique, sort the all given processes in ascending order according to burst time in a ready queue.

Step 3: Calculate the Finish Time, Turn Around Time and Waiting Time for each process which in turn help to calculate Average Waiting Time and Average Turn Around Time required by CPU to schedule given set of process using SJF.

Step 3.1: for i = 0, Finish Time To = Arrival Time To + Burst Time T₀

Step 3.2: for $i \ge 1$, Finish Time $T_1 = Burst Time T_1 + Finish Time <math>T_{i-1}$

Step 3.3: for i = 0, Turn Around Time T_0 Finish Time T_0 - Arrival Time T_0

Step 3.4: for $i \ge 1$, Turn Around Time $T_1 = Finish$ Time $T_1 - Arrival$ Time T

Step 3.5: for i = 0, Waiting Time To Turn Around Time T_0 - Burst Time T_0

Step 3.6: for $i \ge 1$, Waiting Time $T_1 = Turn$ Around Time $T_1 - Burst$ Time T_{i-1}

Step 4: Process with less arrival time comes first and gets scheduled first by the CPU.

Step 5: Calculate the Average Waiting Time and Average Turn Around Time.

Step 6: Stop

Solved Example:

Example 1: Consider the following example contain five processes .

Process Id	Burst Time
P0	6
P1	3
P2	8
P3	3
P4	4

Step 1: Processes get execute according to their lowest burst time first.

Process Id	Burst Time
P0	6
P1	3
P2	8
P3	3
P4	4

Step 2: Following shows the scheduling and execution of processes

Step 2.1: At start P1 shortest execution time which is 0-3 second.

System time	0
Processes scheduling finish time	P1
Finish time	0+3=3
Wating time	3-3=0
Turn Around time	3-0=3

Step 2.2: next shortest execution time is for process P3 for duration 3-6 second.

System time	6
Processes scheduling finish time	P1,p3
Finish time	3+3=6
Wating time	6-3=3
Turn Around time	6-0=6

Step 2.3: Next job with shortest execution time is P4 for a duration 6-10 second.

System time	10
Processes scheduling finish time	P1,p3'p4
Finish time	6+4=10
Wating time	10-4=6
Turn Around time	10-0=10

Step 2.4: Next job with shortest execution time is p0 for duration of 10-16 second.

System time	10	
Processes scheduling finish time	P1,p3,p3,p4,p0	
Finish time	10+6=16	
Wating time	16-6=10	
Turn Around time	16-0=16	

Step 2.5: Similarly next job with shortest execution time is P2 for duration of 16-24 second.

P1,p3,p3,p4,p0,p2

Finish time	16+8=24
Wating time	24-8=16
Turn Around time	24-0=24

Step 3: Calculate average wating time and average turn around time.

Step 4: After scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish Time (Prev.Finish Time + Burst Time)	Turn Around Time (Finish Time- Arrival Time)	Waiting Time (Turn Around Time-Burst Time)
P1	3	0	0+3=3	3-0=3	3-3=0
P3	3	0	3+3=6	6-0=6	6-3=3
P4	4	0	6+4=10	10-0=10	10-4=6
P0	6	0	10+6=16	16-0=16	16-6=10
P2	8	0	16+8=24	24-0=24	24-8=16
Average		619		11.8000000	7.000000

Gnatt chart:

P0	Pi	P2	P3	P4	
0	3	6	10	16	24

Example 2: Consider the following example containing five processes arrive at same time.

Processes ID	Burst Time	
P0	2	
P1	1	
P2	6	

Solution:

Process id	Burst time	Arrival time	Finish Time (Prev.Finish Time + Burst Time)	Turn Around Time (Finish Time- Arrival Time)	Waiting Time (Turn Around Time-Burst Time)
P1	1	0	1	1	1
P0	2	0	3	3	3
P2	6	0	9	9	9
Average	28			4.33333	1.33333

PO	P1	P2	
0	1	3	9

Example 3: Consider the following example contain five processes arrive at same time.

Process ID	Burst time
P0	25
P1	15
P2	10
P3	25
P4	10
P5	25

Solution:

Process id	Burst time	Arrival time	Finish Time (Prev.Finish Time + Burst Time)	Turn Around Time (Finish Time- Arrival Time	Waiting Time (Turn Around Time-Burst Time)
P2	10	0	10	10	0
P4	10	0	20	20	10
P1	15	0	35	35	20
PO	25	0	60	60	35
P3	25	0	85	85	60
P5	25	0	110	110	85
Average				53.3333	35.000000

P2	P4	P1	P0	Р3	P5	
0	10	20	35	60	85	110

Example 4: Consider the following example contain five processes arrive at same time.

Process Id	Burst Time
P0	7
P1	3
P2	2
P3	10
P4	8

Step 4: After scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish Time (Prev.Finish Time + Burst Time)	Turn Around Time (Finish Time- Arrival Time	Waiting Time (Turn Around Time-Burst Time)
P2	2	0	2	2	0
P1	3	0	5	5	2
P0	7	0	12	12	5

P4	8	0	20	20	12
P3	10	0	30	30	20
Average				13.80000	7.800000

P2	P1	P0	P4	P3		
0	2	5	12	20	30	

12

Implementation:-

```
//Name: Yash Patil
//Batch:B2
//PRN: 2020016400809191
//Date:24/7/2021
//Prac-02: SJF(with no preemption)Algorithm
import java.util.Scanner;
public class P2_SJF_YP
int burstTime[];
int arrivalTime[]={0};
String[] processId;
int numberOfProcess;
void getProcessData(Scanner input){
System.out.println("enter the number of process for Scheduling:");
int inputNumberOfProcess=input.nextInt();
numberOfProcess=inputNumberOfProcess;
burstTime=new int[numberOfProcess];
arrivalTime=new int[numberOfProcess];
processId=new String[numberOfProcess];
String st="p";
for(int i=0;i < numberOfProcess;i++){</pre>
processId[i]=st.concat(Integer.toString(i));
System.out.print("enter the burst time for process-"+(i)+":");
burstTime[i]=input.nextInt();
```

```
}
void sortAccordingBurstTime(int[] at,int[] bt,String[] pid){
boolean swapped;
int temp;
String stemp;
for (int i=0;i<numberOfProcess;i++){</pre>
swapped=false;
for (int j = 0; j < numberOfProcess-i-1; j++){
if(bt[j]>bt[j+1]){
temp=bt[j];
bt[j]=bt[j+1];
bt[j+1]=temp;
temp=at[j];
at[j]=at[j+1];
at[j+1]=temp;
stemp=pid[j];
pid[j]=pid[j+1];
pid[j+1]=stemp;
swapped=true;
}
if(swapped==false){
break;
void shortestJobFirstNPAlgorithm(){
int finishTime[]=new int[numberOfProcess];
int bt[]=burstTime.clone();
```

```
int at[]=arrivalTime.clone();
String pid[]=processId.clone();
int waitingTime[]=new int[numberOfProcess];
int turnAroundTime[]=new int[numberOfProcess];
sortAccordingBurstTime(at,bt,pid);
finishTime[0]=at[0]+bt[0];
turnAroundTime[0]=finishTime[0]-at[0];
waitingTime[0]=turnAroundTime[0]-bt[0];
for(int i=1;i<numberOfProcess;i++){</pre>
finishTime[i]=bt[i]+finishTime[i-1];
turnAroundTime[i]=finishTime[i]-at[i];
waitingTime[i]=turnAroundTime[i]-bt[i];
}
float sum=0;
for(int n:waitingTime){
sum+=n;
float averageWaitingTime=sum/numberOfProcess;
sum=0;
for(int n:turnAroundTime){
sum+=n;
float averageTurnAroundTime=sum/numberOfProcess;
System.out.println("SJF (with no preemption) Scheduling Algorithm:");
System.out.format("%20s%20s%20s%20s%20s%20s\n","ProcessId","BurstTime"
,"ArrivalTime","FinishTime","TurnAroundTime","WatingTime");
for(int i=0;i<numberOfProcess;i++){</pre>
System.out.format("%20s%20d%20d%20d%20d%20d\n",pid[i],bt[i],at[i]
,finishTime[i],turnAroundTime[i],waitingTime[i]);
```

```
System.out.format("%80s%20f%20f\n",
"Average",averageTurnAroundTime,averageWaitingTime);
}
public static void main(String[] args){
Scanner input=new Scanner(System.in);
P2_SJF_YP obj=new P2_SJF_YP();
obj.getProcessData(input);
obj.shortestJobFirstNPAlgorithm();
}
}
```

Input:-

```
Microsoft Windows [Version 10.0.19042.1165]
(c) Microsoft Corporation. All rights reserved.

C:\Users\yashp>cd C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>set path="C:\Program Files\Java\jdk-16.0.2\bin"

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>javac P2_SJF_YP.java

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>java P2_SJF_YP.java

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>java P2_SJF_YP

enter the number of process for Scheduling:

5
enter the burst time for process-0:3
enter the burst time for process-2:4
enter the burst time for process-2:4
enter the burst time for process-3:6
enter the burst time for process-3:6
enter the burst time for process-3:6
enter the burst time for process-4:8
```

Output.

Sample Output - 01

```
Microsoft Windows [Version 10.0.19042.1165]
(c) Microsoft Corporation. All rights reserved.

C:\Users\yashp>cd C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>set path="C:\Program Files\Java\jdk-16.0.2\bin"

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>javac P2_SJF_YP.java

C:\Yash Patil\OS\Java files\USCS3P01_USCS303_OS_B2\Pratical 02 23-07-2021\Q2_ReaderWriter_YP>java P2_SJF_YP
enter the number of process for Scheduling:

5
enter the burst time for process-0:3
enter the burst time for process-1:3
enter the burst time for process-2:4
enter the burst time for process-3:6
enter the burst time for process-3:6
enter the burst time for process-3:6
enter the burst time for process-4:8

SJF (with no preemption) Scheduling Algorithm:

ProcessId BurstTime ArrivalTime FinishTime TurnAroundTime WatingTime

ArrivalTime FinishTime TurnAroundTime WatingTime

ProcessId BurstTime ArrivalTime FinishTime TurnAroundTime WatingTime TurnAroundTime WatingT
```

Sample Output - 02

Sample Output-03

Sample Output-04

