GROUP 1 1

Assignment 1: Text Categorization

Parameter

 $n_{estimators}$

alpha

alpha

Group 1

Bangchao Xie (s3537145), Shupei Li (s3430863)

1 Methodology

1.1 Classifiers

We choose naïve bayes (NB), support vector machine (SVM), and random forest (RF) to categorize text. Tutorial in sklearn suggests that the multinomial variant of naïve bayes and a linear support vector machine are suitable for this task. Therefore, we use MultinomialNB and SGDClassifier APIs in sklearn. Random forest is an ensemble machine learning method based on multiple decision tree models. We use the RandomForestClassifier implementation in sklearn. Table 1 summarizes key hyperparameters in three classifiers. In experiments, hyperparameters are optimized with grid search.

Table 1. I aramotely in Times Classificity

Additive smoothing parameter.

The number of trees in the forest.

Constant that multiplies the regularization term.

Meaning

Table 1: Parameters in Three Classifiers

1.2 Features

Classifier

Naïve Bayes

Random Forest

Support Vector Machine

Counts, tf, and tf-idf are adopted as features. According to instructions in sklearn tutorial, counts feature is extracted by CountVectorizer API, while tf and tf-idf are generated by TfidfTransformer API. In task 4, we set hyperparameters in CountVectorizer to different values, as described in Table 2.

Table 2: Parameters in CountVectorizer

Task	Parameter	Values*
4.a	lowercase	True, False
4.b	$stop_words$	None, "english"
4.c	analyzer	"word", "char"
	$ngram_range$	(1, 1), (1, 2)
4.d	$\max_{\text{features}} **$	None, 115000

^{*} The first value is the default value in CountVectorizer.

2 Results

Precision, recall, and F1 are selected as metrics to evaluate the model performance.

 $^{^{**}}$ max_features is set to 0.9 quantile of corpus size.

GROUP 1 2

2.1 Task 1 to 3

Table 3 reports our experiment results in Task 1, 2, and 3.

Table 3: Results of Task 1 to 3

Classifier	Feature	Param.(clf)*	Precision	Recall	F1
NB	count	0.01	0.8082	0.7999	0.7852
	\mathbf{tf}	0.0001	0.8244	0.8204	0.8204
	$\operatorname{tf-idf}$	0.0001	0.8244	0.8204	0.8204
SVM	count	0.1	0.7841	0.7789	0.7772
	tf	0.0001	0.8102	0.7966	0.7961
	tf-idf	0.0001	0.8060	0.7995	0.7988
RF	count	200	0.7913	0.7696	0.7687
	tf	200	0.7788	0.7587	0.7565
	tf-idf	200	0.7862	0.7642	0.7626

^{*} Optimal hyperparameters in three classfiers. Refer to Table 1.

2.2 Task 4 and 5

Results of CountVectorizer with default values have already been shown in Table 3. Table 4 only presents the results after altering the parameters in CountVectorizer.

Table 4: Results of Task 4 and 5

Task	Classifier	Params.(t)*	Feature	Param.(clf)**	Precision	Recall	F1
4.a	NB	False	count	0.01	0.8136	0.8024	0.7881
			tf	0.0001	0.8255	0.8212	0.8213
			tf-idf	0.0001	0.8255	0.8212	0.8213
	SVM	False	count	0.1	0.7798	0.7726	0.7701
			tf	0.0001	0.8010	0.7958	0.7950
			tf-idf	0.0001	0.8044	0.7952	0.7941
	RF	False	count	200	0.7905	0.7681	0.7685
			tf	200	0.7769	0.7540	0.7535
			tf-idf	200	0.7748	0.7519	0.7509
4.b	NB	"english"	count	0.1	0.8139	0.8049	0.7900
			\mathbf{tf}	0.01	0.8405	0.8341	0.8348
			$\operatorname{tf-idf}$	0.01	0.8405	0.8341	0.8348
	SVM	"english"	count	0.1	0.8005	0.7921	0.7906
			tf	0.001	0.7950	0.7791	0.7760
			tf-idf	0.0001	0.8277	0.8214	0.8216
	RF	"english"	count	200	0.8039	0.7844	0.7836
			tf	200	0.8037	0.7831	0.7824
			tf-idf	200	0.8020	0.7857	0.7852
4.c	NB	"word", $(1, 2)$	count	0.01	0.8279	0.8123	0.8041

GROUP 1 3

Task	Classifier	Params.(t)*	Feature	Param.(clf)**	Precision	Recall	F1
		"word", $(1, 2)$	tf	0.0001	0.8328	0.8280	0.8284
		"word", $(1, 2)$	tf-idf	0.0001	0.8328	0.8280	0.8284
	SVM	"word", $(1, 2)$	count	0.1	0.8075	0.8040	0.8028
		"word", $(1, 2)$	tf	0.0001	0.8224	0.8158	0.8152
		"word", $(1, 2)$	tf-idf	0.0001	0.8233	0.8176	0.8171
	RF	"word", $(1, 2)$	count	200	0.8022	0.7770	0.7772
		"word", $(1, 2)$	tf	150	0.7850	0.7554	0.7564
		"word", $(1, 2)$	tf-idf	150	0.7882	0.7608	0.7622
	NB	"char", $(1, 1)$	count	0.1	0.1705	0.1638	0.1514
		"char", $(1, 1)$	tf	0.0001	0.2165	0.1481	0.1166
		"char", $(1, 1)$	tf-idf	0.0001	0.2165	0.1481	0.1166
	SVM	"char", $(1, 1)$	count	0.001	0.2535	0.1793	0.1413
		"char", $(1, 1)$	tf	0.0001	0.3173	0.2383	0.2043
		"char", $(1, 1)$	tf-idf	0.001	0.2783	0.2177	0.1744
	RF	"char", $(1, 1)$	count	150	0.2897	0.2943	0.2813
		"char", $(1, 1)$	tf	100	0.2997	0.3114	0.2942
		"char", $(1, 1)$	tf-idf	200	0.3262	0.3304	0.3119
4.d	NB	115000	count	0.01	0.8085	0.7989	0.7846
		115000	tf	0.0001	0.8242	0.8199	0.8201
		115000	tf-idf	0.0001	0.8242	0.8199	0.8201
	SVM	115000	count	0.1	0.7802	0.7770	0.7747
		115000	tf	0.0001	0.8081	0.8002	0.7995
		115000	tf-idf	0.0001	0.8074	0.7983	0.7973
	RF	115000	count	200	0.7971	0.7728	0.7719
		115000	tf	200	0.7834	0.7643	0.7619
		115000	tf-idf	200	0.7795	0.7585	0.7570

^{*} Hyperparameters in CountVectorizer. Refer to Table 2.

3 Discussion

According to results in Table 3 and Table 4, naïve bayes classifier with tf or tf-idf feature achieves the best performance on all metrics. Its performance can be improved further by setting stop_words parameter in CountVectorizer to "english". As stated in Table 4, the best precision, recall, and F1 are 0.8405, 0.8341, and 0.8348 respectively in our experiments.

^{**} Optimal hyperparameters in three classfiers. Refer to Table 1.