Student Information

Name: Burak Metehan Tunçel

ID: 2468726

Answer 1

a)

$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

with

$$V_1 = \{S_1, a, b\}$$

$$\Sigma_1 = \{a, b\}$$

$$R_{1} = \begin{cases} S_{1} \to S_{1}bS_{1}bS_{1}aS_{1}, \\ S_{1} \to S_{1}bS_{1}aS_{1}bS_{1}, \\ S_{1} \to S_{1}aS_{1}bS_{1}bS_{1}, \\ S_{1} \to e \end{cases}$$

b)

$$G_2 = (V_2, \Sigma_2, R_2, S_2)$$

with

$$V_2 = \{S_2, a, b\}$$

$$\Sigma_2 = \{a, b\}$$

$$R_2 = \begin{cases} S_2 \to aS_2b, \\ S_2 \to aaS_2b, \\ S_2 \to e \end{cases}$$

c)

Let

$$M_1 = (\{p, q\}, \Sigma_1, V_1, \Delta, p, \{q\})$$

where, Δ contains the following transitions

$$\Delta = \begin{cases} ((p,e,e),(q,S_1)),\\ ((q,e,S_1),(q,S_1bS_1bS_1aS_1)),\\ ((q,e,S_1),(q,S_1bS_1aS_1bS_1)),\\ ((q,e,S_1),(q,S_1aS_1bS_1bS_1)),\\ ((q,e,S_1),(q,e)),\\ ((q,a,a),(q,e)),\\ ((q,b,b),(q,e)), \end{cases}$$

PDA that accepts the L_1 :

 $e \quad S_1/S_1bS_1bS_1aS_1,$

 $e \ S_1/S_1bS_1aS_1bS_1,$

 $e S_1/S_1aS_1bS_1bS_1$,

 $a \ a/e,$

a = a/c

b b/e,

d)

Let S be a new symbol and let $G_3 = (V_3, \Sigma_3, R_3, S)$ where

•
$$V_3 = V_1 \cup V_2 \cup \{S\} = \{S_1, S_2, S, a, b\}$$

$$\bullet \ \Sigma_3 = \Sigma_1 \cup \Sigma_2 = \{a, b\}$$

$$\bullet \ R_3 = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\} = \left\{ \begin{aligned} S \to S_1, & S \to S_2, \\ S_1 \to S_1 b S_1 b S_1 a S_1, & S_1 \to S_1 b S_1 a S_1 b S_1, \\ S_1 \to S_1 a S_1 b S_1 b S_1, & S_1 \to e, \\ S_2 \to a S_2 b, & S_2 \to a a S_2 b, \\ S_2 \to e \end{aligned} \right\}$$

The only rules involving S are $S \to S_1$ and $S \to S_2$, so $S \Rightarrow_G^* w$ if and only if either $S_1 \Rightarrow_{G_1}^* w$ or $S_2 \Rightarrow_{G_2}^* w$. Also, since G_1 and G_2 have disjoint sets of nonterminals, the last disjunction is equivalent to saying that $w \in L(G_1) \cup L(G_2)$.

Answer 2

 \mathbf{a}

One way to show G_1 i ambiguous is showing that there are more than 1 derivations or parse tree for string w such that $w \in L(G_1)$. For example, there are more than 1 derivations for w = 00111:

$$S \Rightarrow AS \Rightarrow 0A1S \Rightarrow 0A11S \Rightarrow 00111S \Rightarrow 00111$$

 $S \Rightarrow AS \Rightarrow A1S \Rightarrow 0A11S \Rightarrow 00111S \Rightarrow 00111$

Therefore, G_1 is ambiguous.

b)

The following grammer is unambiguous grammar for $L(G_1)$:

$$G_1' = \{V', \Sigma, R', S\}$$

where

•
$$V' = \{0, 1, S, A, B\}$$

•
$$\Sigma = \{0, 1\}$$

•
$$R' = \begin{cases} S \to AS \mid e, \\ A \to 0A1 \mid 0B1, \\ B \to B1 \mid e \end{cases}$$

 $\mathbf{c})$

The left-most derivation:

$$S \Rightarrow AS \Rightarrow 0A1S \Rightarrow 00B11S \Rightarrow 00B111S \Rightarrow 00111$$

The left-most derivation parse tree:

