- Adédji, K.N, He, B., Pintér, Á, Togbé, A.: On the Diophantine pair {a, 3a}. J. Number Theory 227, 330–351 (2021)
- Adžaga, N.: On the size of Diophantine m-tuples in imaginary quadratic number rings. Bull. Math. Sci. 11(1), Paper No. 1950020 (2021)
- Adžaga, N., Dražić, G., Dujella, A., Pethő, A.: Asymptotics of D(q)-pairs and triples via L-functions of Dirichlet characters, preprint (2023) arXiv: 2304.01775
- Adžaga, N., Dujella, A., Kreso, D., Tadić, P.: Triples which are D(n)-sets for several n's. J. Number Theory 184, 330–341 (2018)
- Aguirre, J., Dujella, A., Jukić Bokun, M., Peral, J.C.: High rank elliptic curves with prescribed torsion group over quadratic fields. Period. Math. Hungar. 68, 222–230 (2014)
- Aguirre, J., Dujella, A., Peral, J.C.: On the rank of elliptic curves coming from rational Diophantine triples. Rocky Mountain J. Math. 42, 1759–1776 (2012)
- Aguirre, J., Lozano-Robledo, Á., Peral, J.C.: Elliptic curves of maximal rank. In: Proceedings of the Segundas Jornadas de Teoria de Numeros, pp. 1–28. Bibl. Rev. Mat. Iberoamericana, Madrid (2008)
- 8. Alaca, S., Williams, K.S.: Introductory Algebraic Number Theory. Cambridge University Press, Cambridge (2004)
- Aleksentsev, Y.M.: The Hilbert polynomial and linear forms in the logarithms of algebraic numbers. Izv. Math. 72, 1063–1110 (2008)
- 10. Alp, M., Irmak, N., Szalay, L.: Reduced diophantine quadruples with the binary recurrence $G_n = AG_{n-1} G_{n-2}$. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 23, 23–31 (2015)
- 11. Andreescu, T., Andrica, D.: Quadratic Diophantine Equations. Springer, New York (2015)
- 12. Arkin, J., Bergum, G.E.: More on the problem of Diophantus. In: Philippou, A.N., Horadam, A.F., Bergum, G.E. (eds.) Application of Fibonacci Numbers, Vol. **2**, pp. 177–181. Kluwer, Dordrecht (1988)
- 13. Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17, 333–339 (1979)
- Artin, M., Rodriguez-Villegas, F., Tate, J.: On the Jacobians of plane cubics. Adv. Math. 198 366–382 (2005)
- 15. Atkin, A.O.L., Morain, F.: Finding suitable curves for the elliptic curve method of factorization. Math. Comp. **60**, 399–405 (1993)
- 16. Baćić, Lj., Filipin, A.: On the extendibility of D(4)-pair $\{k-2, k+2\}$. J. Comb. Number Theory 5, 181–197 (2013)
- 17. Baker, A.: Rational approximations to $\sqrt[3]{2}$ and other algebraic numbers. Quart. J. Math. Oxford Ser. (2) **15**, 375–383 (1964)
- Baker, A.: Simultaneous rational approximations to certain algebraic numbers. Proc. Cambridge Philos. Soc. 63, 693–702 (1967)

 Baker, A.: Linear forms in the logarithms of algebraic numbers. IV. Mathematika 15, 204–216 (1968)

- 20. Baker, A.: The diophantine equation $y^2 = ax^3 + bx^2 + cx + d$. J. London Math. Soc. 43, 1–9 (1968)
- 21. Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1990)
- Baker, A.: A Concise Introduction to the Theory of Numbers. Cambridge University Press, Cambridge (1994)
- Baker, A.: A Comprehensive Course in Number Theory. Cambridge University Press, Cambridge (2012)
- 24. Baker, A., Davenport, H.: The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$. Quart. J. Math. Oxford Ser. (2) **20**, 129–137 (1969)
- Baker, A., Wüstholz, G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)
- Baker, A., Wüstholz, G.: Logarithmic Forms and Diophantine Geometry. Cambridge University Press, Cambridge (2008)
- 27. Barbeau, E.J.: Pell's Equation, Springer, New York (2003)
- 28. Bashmakova, I.G.: Diophantus of Alexandria. Arithmetica and the Book of Polygonal Numbers. Introduction and Comments. Nauka, Moscow (1974), (in Russian)
- 29. Becker, R., Murty, M.R.: Diophantine m-tuples with the property D(n). Glas. Mat. Ser. III **54**, 65–75 (2019)
- Bennett, M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)
- 31. Bérczes, A., Dujella, A., Hajdu, L., Luca, F.: On the size of sets whose elements have perfect power *n*-shifted products. Publ. Math. Debrecen **79**, 325–339 (2011)
- 32. Bérczes, A., Dujella, A., Hajdu, L., Tengely, S.: Finiteness results for *F*-Diophantine sets. Monatsh. Math. **180**, 469–484 (2016)
- Bérczes, A., Luca, F., Pink, I., Ziegler, V.: Finiteness results for Diophantine triples with repdigit values. Acta Arith. 172, 133–148 (2016)
- Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Lecture Notes in Comput. Sci. 4833, pp. 29–50. Springer, Berlin (2007)
- Bhargava, M., Shankar, A.: The average size of the 5-Selmer group of elliptic curves is 6, and the average rank is less than 1. preprint (2013) arXiv: 1312.7859
- 36. Bhattacharjee, S., Dixit, A.B., Saikia, D.: An effective bound on generalized Diophantine *m*-tuples. Bull. Aust. Math. Soc., to appear.
- Bilu, Yu.F., Hanrot, G.: Solving Thue equations of high degree. J. Number Theory 60, 373–392 (1996)
- 38. Birch, B.J.: Elliptic curves and modular functions. In: Symposia Mathematica, Vol. IV, pp. 27–32. Academic Press, London (1970)
- Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. I. J. Reine Angew. Math. 212, 7–25 (1963)
- Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)
- Bliznac Trebješanin, M., Filipin, A.: Nonexistence of D(4)-quintuples, J. Number Theory 194, 170–217 (2019)
- 42. Bober, J.W.: Conditionally bounding analytic ranks of elliptic curves. In: ANTS X Proceedings of the Tenth Algorithmic Number Theory Symposium, pp. 135–144. Mathematical Sciences Publishers, Berkeley (2013)
- 43. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. Cambridge University Press, Cambridge (2006)
- Bonciocat, N.C., Cipu, M., Mignotte, M.: There is no Diophantine D(−1)-quadruple. J. London Math. Soc. 105, 63–99 (2022)
- 45. Bosma, W., Cannon, J.J., Fieker, C., Steel, A.: Handbook of Magma functions, Edition 2.28 (2023).
- Bosman, J., Bruin, P., Dujella, A., Najman, F.: Ranks of elliptic curves with prescribed torsion over number fields. Int. Math. Res. Not. IMRN 2014, 2885–2923 (2014)

- 47. Brown, E.: Sets in which xy + k is always a square. Math. Comp. **45**, 613–620 (1985)
- Bugeaud, Y.: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics Vol. 28, European Mathematical Society, Zürich (2018)
- 49. Bugeaud, Y., Dujella, A.: On a problem of Diophantus for higher powers. Math. Proc. Cambridge Philos. Soc. 135, 1–10 (2003)
- 50. Bugeaud, Y., Dujella, A., Mignotte, M.: On the family of Diophantine triples $\{k-1, k+1, 16k^3-4k\}$. Glasgow Math. J. **49**, 333–344 (2007)
- Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163, 969– 1018 (2006)
- 52. Bundschuh, P.: Einführung in die Zahlentheorie. Springer-Verlag, Berlin (2008)
- Caporaso, L., Harris, J., Mazur, B.: Uniformity of rational points. J. Amer. Math. Soc. 10, 1–35 (1997)
- 54. Carmichael, R.D.: Diophantine Analysis. Dover, New York (1959)
- Cassels, J.W.S.: Arithmetic on curves of genus 1. III. The Tate-Šafarevič and Selmer groups. Proc. London Math. Soc. (3) 12, 259–296 (1962)
- 56. Cassels, J.W.S.: Lectures on Elliptic Curves. Cambridge University Press, Cambridge (1995)
- 57. Chahal, J.S.: Topics in Number Theory. Plenum Press, New York (1988)
- 58. Chakraborty, K., Gupta, S., Hoque, A.: Diophantine triples with the property D(n) for distinct n's. Mediterr. J. Math. 20, Article 31 (2023)
- Chakraborty, K., Gupta, S., Hoque, A.: On a conjecture of Franušić and Jadrijević: Counterexamples. Results Math. 78, Article 18 (2023)
- 60. Chebyshev, P.L., Sur les formes quadratiques. J. Math. Pures Appl. 16, 257–282 (1851)
- 61. Cipu, M.: Further remarks on Diophantine quintuples. Acta Arith. 168, 201–219 (2015)
- 62. Cipu, M., Dujella, A., Fujita, Y.: Extensions of a Diophantine triple by adjoining smaller elements. Mediterr. J. Math. 19, Article 187 (2022)
- 63. Cipu, M., Filipin, A., Fujita, Y.: Bounds for Diophantine quintuples II. Publ. Math. Debrecen **88**, 59–78 (2016)
- 64. Cipu, M., Fujita, Y.: Bounds for Diophantine quintuples. Glas. Mat. Ser. III 50, 25–34 (2015)
- 65. Cipu, M., Fujita, Y.: On the length of $D(\pm 1)$ -tuples in imaginary quadratic rings. Bull. Lond. Math. Soc. **56**, 274–287 (2024)
- Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)
- Cipu, M., Trudgian, T.: Searching for Diophantine quintuples. Acta Arith. 173, 365–382 (2016)
- Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin (1993)
- Cohen, H.: Number Theory. Volume I: Tools and Diophantine Equations. Springer, New York (2007)
- Cohn, J.H.E.: Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7, 24–28 (1965)
- Cohn, J.H.E.: The length of the period of the simple continued fraction of d^{1/2}. Pacific J. Math. 71, 21–32 (1977)
- 72. Connell, I.: Elliptic Curve Handbook. McGill University, Montreal (1999)
- Cremona, J.E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, Cambridge (1997)
- 74. Cremona, J.E.: Elliptic Curve Data (2020) http://johncremona.github.io/ecdata/
- 75. Christianidis, J., Oaks, J.: The Arithmetica of Diophantus. A Complete Translation and Commentary. Routledge, London, 2023.
- Davenport, H., Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 160–167 (1955)
- 77. David, S.: Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France (N.S.) **62**, 1–143 (1995)

 Denton, A.D.: A holiday brain teaser. The Sunday Times, 4th August 1957, 18th August 1957

- Deshpande, M.N.: One interesting family of diophantine triplets, Internat. J. Math. Ed. Sci. Tech. 33, 253–256 (2002)
- 80. Deshpande, M.N.: Wonderland of Families of Diophantine triples. Nagpur (2022)
- 81. Deshpande, M.N, Dujella, A.: An interesting property of a reccurence related to the Fibonacci sequence. Fibonacci Quart. 40, 157–160 (2002)
- Dickson, L.E.: History of the Theory of Numbers, Volume 2: Diophantine analysis. Chelsea, New York (1966)
- 83. Dixit, A.B., Kim, S., Murty, M.R.: Generalized Diophantine *m*-tuples. Proc. Amer. Math. Soc. **150**, 1455–1465 (2022)
- 84. Dörge, K.: Über die Seltenheit der reduziblen Polynome und der Normalgleichungen. Math. Ann. **95**, 247–256 (1926)
- Dražić, G.: Rational D(q)-quintuples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 116, Article 9 (2022)
- 86. Dražić, G., Kazalicki, M.: Rational D(q)-quadruples. Indag. Math. (N.S.) 33, 440–449 (2022)
- 87. Dujella, A.: Generalization of a problem of Diophantus. Acta Arith. 65, 15-27 (1993)
- Dujella, A.: Diophantine quadruples for squares of Fibonacci and Lucas numbers. Portugaliae Math. 52, 305–318 (1995)
- Dujella, A.: Generalized Fibonacci numbers and the problem of Diophantus. Fibonacci Quart.
 34, 164–175 (1996)
- Dujella, A.: Some polynomial formulas for Diophantine quadruples. Grazer Math. Ber. 328, 25–30 (1996)
- 91. Dujella, A.: On Diophantine quintuples. Acta Arith. 81, 69–79 (1997)
- 92. Dujella, A.: The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen **51**, 311–322 (1997)
- 93. Dujella, A.: Some estimates of the number of Diophantine quadruples. Publ. Math. Debrecen **53**, 177–189 (1998)
- Dujella, A.: A problem of Diophantus and Pell numbers. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds.) Application of Fibonacci Numbers, Vol. 7, pp. 61–68. Kluwer, Dordrecht (1998)
- 95. Dujella, A.: A problem of Diophantus and Dickson's conjecture. In: Győry, K., Pethő, A., Sós, V.T. (eds.) Number Theory, Diophantine, Computational and Algebraic Aspects, pp. 147–156. Walter de Gruyter, Berlin (1998)
- Dujella, A.: An extension of an old problem of Diophantus and Euler. Fibonacci Quart. 37, 312–314 (1999)
- 97. Dujella, A.: A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127, 1999–2005 (1999)
- 98. Dujella, A.: Diophantine triples and construction of high-rank elliptic curves over ℚ with three non-trivial 2-torsion points. Rocky Mountain J. Math. 30, 157–164 (2000)
- 99. Dujella, A.: A note on Diophantine quintuples. In: Halter-Koch, F., Tichy, R.F. (eds.) Algebraic Number Theory and Diophantine Analysis, pp. 123–127. Walter de Gruyter, Berlin (2000)
- 100. Dujella, A.: A parametric family of elliptic curves. Acta Arith. 94, 87–101 (2000)
- Dujella, A.: Irregular Diophantine m-tuples and elliptic curves of high rank. Proc. Japan Acad. Ser. A Math. Sci. 76, 66–67 (2000)
- Dujella, A.: Diophantine m-tuples and elliptic curves. J. Théor. Nombres Bordeaux 13, 111–124 (2001)
- 103. Dujella, A.: An absolute bound for the size of Diophantine *m*-tuples. J. Number Theory **89**, 126–150 (2001)
- Dujella, A.: An extension of an old problem of Diophantus and Euler. II. Fibonacci Quart. 40, 118–123 (2002)
- 105. Dujella, A.: On the size of Diophantine *m*-tuples. Math. Proc. Cambridge Philos. Soc. **132**, 23–33 (2002)

 Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)

- 107. Dujella, A.: Bounds for the size of sets with the property D(n). Glas. Mat. Ser. III 39, 199–205 (2004)
- Dujella, A.: Continued fractions and RSA with small secret exponent. Tatra Mt. Math. Publ. 29, 101–112 (2004)
- Dujella, A.: On Mordell-Weil groups of elliptic curves induced by Diophantine triples. Glas. Mat. Ser. III 42, 3–18 (2007)
- 110. Dujella, A.: Conjectures and results on the size and number of Diophantine tuples. In: Komatsu, T. (ed.) Diophantine Analysis and Related Fields (DARF 2007/2008), AIP Conf. Proc. **976**, pp. 58–61, Amer. Inst. Phys., Melville, (2008)
- 111. Dujella, A.: On the number of Diophantine *m*-tuples, Ramanujan J. **15**, 37–46 (2008)
- Dujella, A.: Rational Diophantine sextuples with mixed signs. Proc. Japan Acad. Ser. A Math. Sci. 85, 27–30 (2009)
- 113. Dujella, A.: What is ... a Diophantine *m*-tuple?. Notices Amer. Math. Soc. **63**, 772–774 (2016)
- 114. Dujella, A.: History of elliptic curves rank records (2020) https://web.math.pmf.unizg.hr/~duje/tors/rankhist.html
- 115. Dujella, A.: Number Theory. Školska knjiga, Zagreb (2021)
- 116. Dujella, A.: Diophantine *m*-tuples and elliptic curves. Course webpage (2022) https://web.math.pmf.unizg.hr/~duje/diophell.html
- 117. Dujella, A.: High rank elliptic curves with prescribed torsion (2022) https://web.math.pmf.unizg.hr/~duje/tors/tors.html
- 118. Dujella, A.: High rank elliptic curves with prescribed torsion over quadratic fields (2023) https://web.math.pmf.unizg.hr/~duje/tors/torsquad.html
- 119. Dujella, A.: Infinite families of elliptic curves with high rank and prescribed torsion (2023) https://web.math.pmf.unizg.hr/~duje/tors/generic.html
- 120. Dujella, A.: Diophantine *m*-tuples page (2023) https://web.math.pmf.unizg.hr/~duje/dtuples.html
- 121. Dujella, A., Gusić, I., Petričević, V., Tadić, P.: Strong Eulerian triples. Glas. Mat. Ser. III 53, 33–42 (2018)
- 122. Dujella, A., Filipin, A., Fuchs, C.: Effective solution of the D(-1)-quadruple conjecture. Acta Arith. 128, 319–338 (2007)
- Dujella, A., Fuchs, C.: Complete solution of the polynomial version of a problem of Diophantus. J. Number Theory 106, 326–344 (2004)
- Dujella, A., Fuchs, C.: Complete solution of a problem of Diophantus and Euler. J. London Math. Soc. 71, 33–52 (2005)
- Dujella, A., Fuchs, C.: On a problem of Diophantus for rationals. J. Number Theory 132, 2075–2083 (2012)
- Dujella, A., Fuchs, C., Luca, F.: A polynomial variant of a problem of Diophantus for pure powers. Int. J. Number Theory 4, 57–71 (2008)
- Dujella, A., Fuchs, C., Tichy, R.F.: Diophantine m-tuples for linear polynomials. Period. Math. Hungar. 45, 21–33 (2002)
- Dujella, A., Fuchs, C., Walsh, P.G.: Diophantine *m*-tuples for linear polynomials. II. Equal degrees, J. Number Theory 120, 213–228 (2006)
- 129. Dujella, A., Gusić, I., Lasić, L.: On quadratic twists of elliptic curves $y^2 = x(x-1)(x-\lambda)$. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. **18**, 27–34 (2014)
- Dujella, A., Jadrijević, B.: A family of quartic Thue inequalities. Acta Arith. 111, 61–76 (2004)
- Dujella, A., Jukić Bokun, M., Soldo, I.: On the torsion group of elliptic curves induced by Diophantine triples over quadratic fields. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 111, 1177–1185 (2017)
- 132. Dujella, A., Jurasić, A.: On the size of sets in a polynomial variant of a problem of Diophantus. Int. J. Number Theory **6**, 1449–1471 (2010)

Dujella, A., Jurasić, A.: Some Diophantine triples and quadruples for quadratic polynomials.
 J. Comb. Number Theory 3(2), 123–141 (2011)

- 134. Dujella, A., Kazalicki, M.: More on Diophantine sextuples. In: Elsholtz, C., Grabner, P. (eds.) Number Theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday, pp. 227–235. Springer, Cham (2017)
- Dujella, A., Kazalicki, M.: Diophantine m-tuples in finite fields and modular forms. Res. Number Theory 7, Article 3 (2021)
- Dujella, A., Kazalicki, M., Mikić, M., Szikszai, M.: There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN 2017(2), 490–508 (2017)
- 137. Dujella, A., Kazalicki, M., Peral, J.C.: Elliptic curves with torsion groups ℤ/8ℤ and ℤ/2ℤ × ℤ/6ℤ. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115, Article 169 (2021)
- Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples with square denominators. J. Number Theory 205, 340–346 (2019)
- Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples containing two regular quadruples and one regular quintuple. Acta Mathematica Spalatensia 1, 19–27 (2021)
- Dujella, A., Kazalicki, M., Petričević, V.: D(n)-quintuples with square elements. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115, Article 172 (2021)
- Dujella, A., Luca, F.: Diophantine *m*-tuples for primes. Int. Math. Res. Not. 47, 2913–2940 (2005)
- Dujella, A., Luca, F.: On a problem of Diophantus with polynomials. Rocky Mountain J. Math. 37, 131–157 (2007)
- 143. Dujella, A., Mikić, M.: On the torsion group of elliptic curves induced by D(4)-triples, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 22, 79–90 (2014)
- Dujella, A., Mikić, M.: Rank zero elliptic curves induced by rational Diophantine triples.
 Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 24, 29–37 (2020)
- 145. Dujella, A., Paganin, M., Sadek, M.: Strong rational Diophantine D(q)-triples. Indag. Math. (N.S.) 31, 505–511 (2020)
- 146. Dujella, A., Peral, J.C.: High rank elliptic curves with torsion ℤ/2ℤ × ℤ/4ℤ induced by Diophantine triples. LMS J. Comput. Math. 17, 282–288 (2014)
- 147. Dujella, A., Peral, J.C.: Elliptic curves with torsion group ℤ/8ℤ or ℤ/2ℤ × ℤ/6ℤ. In: Trends in Number Theory, Contemp. Math. **649**, 47–62 (2015)
- Dujella, A., Peral, J.C.: Elliptic curves induced by Diophantine triples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113, 791–806 (2019)
- Dujella, A., Peral, J.C.: High rank elliptic curves induced by rational Diophantine triples. Glas. Mat. Ser. III 55, 237–252 (2020)
- Dujella, A., Peral, J.C.: Construction of high rank elliptic curves. J. Geom. Anal. 31, 6698–6724 (2021)
- Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49, 291–306 (1998)
- 152. Dujella, A., Pethő, A.: Integer points on a family of elliptic curves. Publ. Math. Debrecen **56**, 321–335 (2000)
- 153. Dujella, A., Petričević, V.: Strong Diophantine triples. Experiment. Math. 17, 83–89 (2008)
- 154. Dujella, A., Petričević, V.: On the largest element in D(n)-quadruples. Indag. Math. (N.S.) 30, 1079–1086 (2019)
- 155. Dujella, A., Petričević, V.: Diophantine quadruples with the properties $D(n_1)$ and $D(n_2)$. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM **114**, Article 21 (2020)
- Dujella, A., Petričević, V.: Doubly regular Diophantine quadruples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114, Article 189 (2020)
- 157. Dujella, A., Saradha, N.: Diophantine *m*-tuples with elements in arithmetic progressions, Indag. Math. (N.S.) **25**, 131–136 (2014)
- Dujella, A., Soydan, G.: On elliptic curves induced by rational Diophantine quadruples. Proc. Japan Acad. Ser. A Math. Sci. 98, 1–6 (2022)
- Edwards, H.M.: A normal form for elliptic curves. Bull. Amer. Math. Soc. (N.S.) 44, 393–422 (2007)

- 160. Elkies, N.D.: \mathbb{Z}^{28} in $E(\mathbb{Q})$, etc. Number Theory Listserver (2006) https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;99f4e7cd.0605
- Elkies, N.D.: Three lectures on elliptic surfaces and curves of high rank. Lecture notes, Oberwolfach (2007) arXiv: 0709.2908
- 162. Elkies, N.D., Klagsbrun, Z.: New rank records for elliptic curves having rational torsion. In: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, pp. 233–250. Mathematical Sciences Publishers, Berkeley (2020)
- Elsholtz, C., Filipin, A., Fujita, Y.: On Diophantine quintuples and D(-1)-quadruples. Monatsh. Math. 175, 227–239 (2014)
- 164. Eroshkin, Y.G.: Personal communication (2008, 2009)
- 165. Fermigier, S.: Exemples de courbes elliptiques de grand rang sur ℚ(t) et sur ℚ possédant des points d'ordre 2. C. R. Acad. Sci. Paris Sér. I 332, 949–952 (1996)
- Filipin, A., Fujita, Y.: The number of Diophantine quintuples II. Publ. Math. Debrecen 82, 293–308 (2013)
- Filipin, A., Jurasić, A.: A polynomial variant of a problem of Diophantus and its consequences. Glas. Mat. Ser. III 54, 21–52 (2019)
- Filipin, A., Szalay, L.: Triangular Diophantine tuples from {1, 2}. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 27, 55–70 (2023)
- Fisher, T.: Higher descents on an elliptic curve with a rational 2-torsion point. Math. Comp. 86, 2493–2518 (2017)
- 170. Fisher, T.: A formula for the Jacobian of a genus one curve of arbitrary degree. Algebra Number Theory 12, 2123–2150 (2018)
- 171. Fisher, T.: On binary quartics and the Cassels-Tate pairing. Res. Number Theory 8, Paper No. 74 (2022)
- 172. Franušić, Z.: Diophantine quadruples in $\mathbb{Z}[\sqrt{4k+3}]$. Ramanujan J. 17, 77–88 (2008)
- 173. Franušić, Z.: A Diophantine problem in $\mathbb{Z}[(1+\sqrt{d})/2]$. Studia Sci. Math. Hungar. **46**, 103–112 (2009)
- 174. Franušić, Z.: Diophantine quadruples in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$. Miskolc Math. Notes **14**, 893–903 (2013)
- 175. Franušić, Z., Jadrijević, B.: D(n)-quadruples in the ring of integers of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, Math. Slovaca **69**, 1263-1278 (2019)
- 176. Franušić, Z., Soldo, I.: The problem of Diophantus for integers of $\mathbb{Q}(\sqrt{-3})$. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18, 15–25 (2014)
- Friedl, S.: An elementary proof of the group law for elliptic curves. Groups Complex. Cryptol.
 117–123 (2017)
- 178. Fuchs, C., Heintze, S.: A polynomial variant of Diophantine triples in linear recurrences. Period. Math. Hungar. **86**, 289–299 (2023)
- 179. Fuchs, C., Hutle, C., Luca, F.: Diophantine triples in linear recurrence sequences of Pisot type. Res. Number Theory 4, Paper No. 29 (2018)
- 180. Fuchs, C., Hutle, C., Luca, F., Szalay, L.: Diophantine triples and *k*-generalized Fibonacci sequences. Bull. Malays. Math. Sci. Soc. (2) **41**, 1449–1465 (2018)
- Fuchs, C., Luca, F., Szalay, L.: Diophantine triples with values in binary recurrences. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 579–608 (2008)
- 182. Fujita, Y.: The extensibility of D(-1)-triples $\{1, b, c\}$. Publ. Math. Debrecen **70**, 103–117 (2007)
- 183. Fujita, Y.: The extensibility of Diophantine pairs $\{k-1, k+1\}$. J. Number Theory 128, 322–353 (2008)
- Fujita, Y.: Any Diophantine quintuple contains a regular Diophantine quadruple. J. Number Theory 129, 1678–1697 (2009)
- 185. Fujita, Y.: The number of Diophantine quintuples. Glas. Mat. Ser. III 45, 15–29 (2010)
- Fujita, Y., Miyazaki, T.: The regularity of Diophantine quadruples. Trans. Amer. Math. Soc. 370, 3803–3831 (2018)
- 187. Gaál, I.: Diophantine Equations and Power Integral Bases. Theory and Algorithms. Birkhäuser, Boston (2019)

- 188. Gallagher, P.X.: A larger sieve. Acta Arith. 18, 77–81 (1971)
- Gardner, M.: Mathematical games. Scientific American 216 (1967), March 1967, p. 124;
 April 1967, p. 119.
- 190. Gardner, M.: Mathematical Magic Show. Alfred Knopf, New York (1977), pp. 210, 221-222
- Gebel, J., Pethő, A., Zimmer, H.G.: Computing integral points on elliptic curves. Acta Arith. 68, 171–192 (1994)
- 192. Gibbs, P.E.: Computer Bulletin 17, 16-16 (1978)
- Gibbs, P.E.: A generalised Stern-Brocot tree from regular Diophantine quadruples. preprint (1999) arXiv: math.NT/9903035.
- 194. Gibbs, P.E.: Some rational Diophantine sextuples. Glas. Mat. Ser. III 41, 195–203 (2006)
- Gibbs, P.E.: Regular rational Diophantine sextuples. preprint (2016) doi: 10.13140/RG.2.2.36449.51040
- Gibbs, P.E.: A survey of rational Diophantine sextuples of low height. preprint (2016) doi: 10.13140/RG.2.2.29253.65761
- Gouvêa, F., Mazur, B.: The square-free sieve and the rank of elliptic curves. J. Amer. Math. Soc. 4, 1–23 (1991)
- Gross, B.H., Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84 225–320 (1986)
- 199. Gupta, H., Singh, K.: On k-triad sequences. Internat. J. Math. Math. Sci. 5, 799–804 (1985)
- 200. Gupta, S.: D(-1) tuples in imaginary quadratic fields. Acta Math. Hungar. **164**, 556–569 (2021)
- Gusić, I., Tadić, P.: A remark on the injectivity of the specialization homomorphism. Glas. Mat. Ser. III 47, 265–275 (2012)
- Gusić, I., Tadić, P.: Injectivity of the specialization homomorphism of elliptic curves. J. Number Theory 148, 137–152 (2015)
- 203. Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (2004)
- 204. Gyarmati. K.: On a problem of Diophantus. Acta Arith. 97, 53–65 (2001)
- Gyarmati, K., Stewart, C.L.: On powers in shifted products. Glas. Mat. Ser. III 42, 273–279 (2007)
- Hajdu, L., Herendi, T.: Explicit bounds for the solutions of elliptic equations with rational coefficients. J. Symbolic Computation 25, 361–366 (1998)
- 207. Hammonds, T., Kim, S., Miller, S.J., Nigam, A., Onghai, K., Saikia, D., Sharma, L.M.: *k*-Diophantine *m*-tuples in finite fields. Int. J. Number Theory **19**, 891–912 (2023)
- Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag, New York (2004)
- He, B., Luca, F., Togbé, A.: Diophantine triples of Fibonacci numbers. Acta Arith. 175, 57–70 (2016)
- 210. He, B., Togbé, A.: On the D(-1)-triple $\{1, k^2+1, k^2+2k+2\}$ and its unique D(1)-extension. J. Number Theory **131**, 120–137 (2011)
- He, B., Togbé, A., Ziegler, V.: There is no Diophantine quintuple. Trans. Amer. Math. Soc. 371, 6665–6709 (2019)
- Heath, T.L.: Diophantus of Alexandria: A study in the history of Greek Algebra. Powell's Bookstore, Chicago; Martino Publishing, Mansfield Center (2003)
- 213. Heichelheim, P.: The study of positive integers (a, b) such that ab + 1 is a square. Fibonacci Ouart. 17, 269–274 (1979)
- Herrmann, E., Pethő, A., Zimmer, H.G.: On Fermat's quadruple equations. Abh. Math. Sem. Univ. Hamburg 69, 283–291 (1999)
- Hindry, M., Silverman, J.H.: Diophantine Geometry. An Introduction. Springer-Verlag, New York (2000)
- Hoggatt, V.E. Jr.: Fibonacci and Lucas Numbers. The Fibonacci Association, Santa Clara (1979)
- Hoggatt, V.E., Bergum, G.E.: A problem of Fermat and the Fibonacci sequence. Fibonacci Quart. 15, 323–330 (1977)
- 218. Horadam, A.F.: Generalization of a result of Morgado. Portugaliae Math. 44, 131-136 (1987)

- 219. Hungerford, T.W.: Algebra. Springer-Verlag, New York (1974)
- 220. Husemöller, D.: Elliptic Curves. Springer-Verlag, New York (2004)
- 221. Irmak, N., Szalay, L.: Diophantine triples and reduced quadruples with the Lucas sequence of recurrence $u_n = Au_{n-1} u_{n-2}$. Glas. Mat. Ser. III **49**, 303–312 (2014)
- Jacobson, M.J. Jr., Williams, H.C.: Modular arithmetic on elements of small norm in quadratic fields. Des. Codes and Cryptogr. 27, 93–110 (2002)
- 223. Jacobson, M.J. Jr., Williams, H.C.: Solving the Pell Equation. Springer, New York (2009)
- Jones, B.W.: A second variation on a problem of Diophantus and Davenport. Fibonacci Ouart. 16, 155–165 (1978)
- Jurasić, A.: Diophantine m-tuples for quadratic polynomials. Glas. Mat. Ser. III 46, 283–309 (2011)
- Kamienny, S.: Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109, 221–229 (1992)
- 227. Kanagasabapathy, P., Ponnudurai, T.: The simultaneous Diophantine equations $y^2 3x^2 = -2$ and $z^2 8x^2 = -7$. Quart. J. Math. Oxford Ser. (2) **26**, 275–278 (1975)
- 228. Kazalicki, M., Naskrecki, B. (with an appendix by Lasić, L.): Diophantine triples and K3 surfaces. J. Number Theory 236, 41–70 (2022)
- Kazalicki, M., Vlah, D.: Ranks of elliptic curves and deep neural networks. Res. Number Theory 9, Article 53 (2023)
- 230. Kedlaya, K.S.: When is (xy+1)(yz+1)(zx+1) a square? Math. Mag. 71, 61–63 (1998)
- 231. Kedlaya, K.S.: Solving constrained Pell equations. Math. Comp. 67, 833–842 (1998)
- Kenku, M.A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109, 125–149 (1988)
- 233. Khinchin, A.Ya.: Continued Fractions. Dover, New York (1997)
- 234. Kihara, S.: On an elliptic curve over $\mathbb{Q}(t)$ of rank ≥ 14 . Proc. Japan. Acad. Ser. A Math. Sci. 77, 50–51 (2001)
- 235. Kihel, A., Kihel, O.: On the intersection and the extendability of P_t sets. Far East J. Math. Sci. 3, 637–643 (2001)
- 236. Kim, S., Murty, M.R. (with an appendix by Sutherland, A.V.): From the Birch and Swinnerton-Dyer conjecture to Nagao's conjecture. Math. Comp. 92, 385–408 (2023)
- Kim, S., Yip, C.H., Yoo, S.: Diophantine tuples and multiplicative structure of shifted multiplicative subgroups. preprint (2023) arXiv: 2309.09124
- Klagsbrun, Z., Sherman, T., Weigandt, J.: The Elkies curve has rank 28 subject only to GRH. Math. Comp. 88, 837–846 (2019)
- 239. Knapp, A.W.: Elliptic Curves. Princeton University Press, Princeton (1992)
- Koblitz, N.: A Course in Number Theory and Cryptography. Springer-Verlag, New York (1994)
- 241. Kolyvagin, V.: Finiteness of $E(\mathbb{Q})$ and $CH(E,\mathbb{Q})$ for a class of Weil curves. Math. USSR-Izv. 32, 523–541 (1989)
- 242. Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)
- Kulesz, L.: Families of elliptic curves of high rank with nontrivial torsion group over Q. Acta Arith. 108, 339–356 (2003)
- Kwon, S.: Torsion subgroups of elliptic curves over quadratic extensions. J. Number Theory
 144–162 (1997)
- 245. Lang, S.: Algebra. Springer-Verlag, New York (2002)
- Laurent, M.: Linear forms in two logarithms and interpolation determinants II. Acta Arith. 133, 25–348 (2008)
- Laurent, M., Mignotte, M., Nesterenko, Y.: Formes linéaires en deux logarithmes et déterminants d'interpolation. J. Number Theory 55, 285–321 (1995)
- 248. Le, M., Srinivasan, A.: A note on Dujella's unicity conjecture. Glas. Mat. Ser. III **58**, 59–65 (2023)
- 249. Lecacheux, O.: Rang de courbes elliptiques sur Q avec un groupe de torsion isomorphe á Z/5Z. C. R. Acad. Sci. Paris Sér. I Math. 332, 1−6 (2001)
- Lecacheux, O.: Rang de courbes elliptiques avec groupe de torsion non trivial, J. Théor. Nombres Bordeaux 15, 231–247 (2003)

 Lecacheux, O.: Rang de courbes elliptiques dont le groupe de torsion est non trivial. Ann. Sci. Math. Québec 28, 145–151 (2004)

- Lenstra, A.K., Lenstra, H.W. Jr., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
- 253. Lenstra, H.W. Jr.: Factoring integers with elliptic curves. Ann. of Math. 126, 649-673 (1987)
- 254. LeVeque, W.J.: Topics in Number Theory I, II. Dover, New York (1984)
- van Lint, J.H.: On a set of diophantine equations. T. H.-Report 68 WSK-03, Department of Mathematics, Technological University Eindhoven, Eindhoven (1968)
- 256. Ljunggren, W.: On the Diophantine equation $x^2 + 4 = Ay^4$. Norske Vid. Selsk. Forh. 24, 82–84 (1951).
- 257. LMFDB Collaboration: The L-functions and modular forms database (2023) https://www.lmfdb.org
- Long, C., Bergum, G.E.: On a problem of Diophantus. In: Philippou, A.N., Horadam, A.F., Bergum, G.E. (eds.) Application of Fibonacci Numbers, Vol. 2, pp. 183–191. Kluwer, Dordrecht (1988)
- Lozano-Robledo, Á.: Elliptic Curves, Modular Forms and their L-functions. American Mathematical Society, Providence (2011)
- 260. Luca, F.: On shifted products which are powers. Glas. Mat. Ser. III 40, 13–20 (2005)
- Luca, F., Fujita, Y.: On Diophantine quadruples of Fibonacci numbers. Glas. Mat. Ser. III
 52, 221–234 (2017)
- Luca, F., Fujita, Y.: There are no Diophantine quadruples of Fibonacci numbers. Acta Arith. 185, 19–38 (2018)
- 263. Luca, F., Szalay, L.: Fibonacci Diophantine triples. Glas. Mat. Ser. III 43, 253-264 (2008)
- 264. Luca, F., Szalay, L.: Lucas Diophantine triples. Integers 9, 441-457 (2009)
- Luca, F., Osgood, C.F., Walsh, P.G.: Diophantine approximations and a problem from the 1988 IMO. Rocky Mountain J. Math. 36, 637–648 (2006)
- 266. van Luijk, R.: On Perfect Cuboids. Thesis, Universiteit Utrecht (2000)
- 267. Mani, N., Rubinstein-Salzedo, S.: Diophantine tuples over \mathbb{Z}_p . Acta Arith. 197, 331–351 (2021)
- Martin, G., Sitar, S.: Erdős-Turán with a moving target, equidistribution of roots of reducible quadratics, and Diophantine quadruples. Mathematika 57, 1–29 (2011)
- Matthews, K.R., Robertson, J.P., White, J.: On a diophantine equation of Andrej Dujella. Glas. Mat. Ser. III 48, 265–289 (2013)
- Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64, 1217–1269 (2000)
- Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18, 183–266 (1972)
- Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977)
- Mazur, B. (with an appendix by D. Goldfeld): Rational isogenies of prime degree. Invent. Math. 44, 129–162 (1978)
- 274. Mestre, J.-F.: Construction d'une courbe elliptique de rang ≥ 12. C. R. Acad. Sci. Paris Sér. I 295, 643–644 (1982)
- Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques. Compositio Math. 58, 209–232 (1986)
- 276. Mestre, J.-F.: Courbes elliptiques de rang ≥ 11 sur Q(t). C. R. Acad. Sci. Paris Sér. I 313, 139–142 (1991)
- 277. Mestre, J.-F.: Courbes elliptiques de rang ≥ 12 sur Q(t). C. R. Acad. Sci. Paris Sér. I 313, 171–174 (1991)
- 278. Mignotte, M.: A kit on linear forms in three logarithms. preprint (2008)
- 279. Mignotte, M., Voutier, P. (with an appendix by Laurent, M.): A kit for linear forms in three logarithms. Math. Comp., to appear.
- Mikić, M.: On the Mordell-Weil group of elliptic curves induced by the families of Diophantine triples. Rocky Mountain J. Math. 45, 1565–1589 (2015)

- 281. Milne, J.S. Elliptic Curves. BookSurge Publishers, Charleston (2006)
- 282. Mohanty, S.P., Ramasamy, A.M.S.: On $P_{r,k}$ sequences. Fibonacci Quart. 23, 36–44 (1985)
- Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48, 243–264 (1987)
- 284. Mootha, V.K.: On the set of numbers {14, 22, 30, 42, 90}. Acta Arith. **71**, 259–263 (1995)
- Mootha, V.K., Berzsenyi, G.: Characterizations and extendibility of P_t-sets, Fibonacci Quart.
 27, 287–288 (1989)
- 286. Mordell, L.J.: Diophantine Equations. Academic Press, New York (1969)
- Morgado, J.: Generalization of a result of Hoggatt and Bergum on Fibonacci numbers. Portugaliae Math. 42, 441–445 (1983–1984)
- 288. Morgado, J.: Note on some results of A. F. Horadam and A. G. Shannon concerning a Catalan's identity on Fibonacci numbers. Portugaliae Math. 44, 243–252 (1987)
- Morgado, J.: Note on a Shannon's theorem concerning the Fibonacci numbers and Diophantine quadruples. Portugaliae Math. 48, 429–439 (1991)
- Morgado, J.: Note on the Chebyshev polynomials and applications to the Fibonacci numbers. Portugaliae Math. 52, 363–378 (1995)
- 291. Nagao, K.: An example of elliptic curve over Q with rank ≥ 20. Proc. Japan Acad. Ser. A Math. Sci. 69, 291–293 (1993)
- 292. Nagao, K.: An example of elliptic curve over $\mathbb{Q}(T)$ with rank ≥ 13 , Proc. Japan Acad. Ser. A Math. Sci. **70**, 152–153 (1994)
- Nagao, K.: Construction of high-rank elliptic curves with a nontrivial torsion point. Math. Comp. 66, 411–415 (1997)
- 294. Nagell, T.: Introduction to Number Theory. Chelsea, New York (1981)
- Najman, F.: Integer points on two families of elliptic curves. Publ. Math. Debrecen 75, 401–418 (2009)
- Najman, F.: Compact representation of quadratic integers and integer points on some elliptic curves. Rocky Mountain J. Math. 40, 1979–2002 (2010)
- 297. Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Letters 23, 245–272 (2016)
- Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J. Comput. 39, 874–903, (2009)
- Nguyen, P.G., Vallee, B. (Eds.): The LLL Algorithm. Survey and Applications. Springer, Berlin (2010)
- Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. Wiley, New York (1991)
- 301. Nowicki, A.: Liczby Kwadratowe. Podróżze po Imperium Liczb 03. Olsztyn, Toruń (2011)
- 302. Ono, K.: Euler's concordant forms. Acta Arith. 78, 101-123 (1996)
- 303. PARI Group, PARI/GP version 2.15.4. Bordeaux (2023) http://pari.math.u-bordeaux.fr/
- 304. Park, J., Poonen, B., Voight, J., Wood, M.M.: A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc. (JEMS) 21, 2859–2903 (2019)
- 305. Perron, O.: Die Lehre von den Kettenbruchen I, II. Teubner, Stuttgart (1954)
- 306. Petričević, V.: Personal communication (2019, 2022, 2023)
- 307. Piezas, T.: Extending rational Diophantine triples to sextuples.

 http://mathoverflow.net/questions/233538/extending-rational-diophantine-triples-to-sextuples
- 308. Rathbun, R.: Personal communication (2003)
- Rickert, J.H.: Simultaneous rational approximations and related diophantine equations. Math. Proc. Cambridge Philos. Soc. 113, 461–472 (1993)
- Rihane, S.E., Luca, F., Togbé, A.: There are no Diophantine quadruples of Pell numbers. Int. J. Number Theory 18, 27–45 (2022)
- 311. Rockett, A.M., Szusz, P.: Continued Fractions. World Scientific, Singapore (1992)
- Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)

- 313. Sadek, M., El-Sissi, N.: On large F-Diophantine sets. Monatsh. Math. 186, 703-710 (2018)
- 314. Sadek, M., Yesin, T.: Divisibility by 2 on quartic models of elliptic curves and rational Diophantine D(q)-quintuples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM **116**, Article 139 (2022)
- 315. Sansone, G.: Il sistema diofanteo $N + 1 = x^2$, $3N + 1 = y^2$, $8N + 1 = z^2$, Ann. Mat. Pura Appl. (4) **111**, 125–151 (1976)
- Schinzel, A.: Selected Topics on Polynomials. University of Michigan Press, Ann Arbor (1982)
- Schinzel, A.: Polynomials with special regard to reducibility. Cambridge University Press, Cambridge (2000)
- 318. Schmidt, W.M.: Integer points on curves of genus 1. Compositio Math. 81, 33-59 (1992)
- 319. Schmidt, W.M.: Diophantine Approximation. Springer-Verlag, Berlin (1996)
- Schmidt, W.M.: Diophantine Approximation and Diophantine Equations. Springer-Verlag, Berlin (1996)
- 321. Schmitt, S., Zimmer, H.G.: Elliptic Curves. A Computational Approach. de Gruyter, Berlin (2003)
- 322. Schütt, M., Shioda, T.: Mordell-Weil Lattices. Springer, Singapore (2019)
- 323. Serre, J.-P.: A Course in Arithmetic. Springer-Verlag, New York (1996)
- Shannon, A.G.: Fibonacci numbers and Diophantine quadruples: Generalizations of results of Morgado and Horadam. Portugaliae Math. 45, 165-169 (1988)
- 325. Shockley, J.E.: Introduction to Number Theory. Holt, Rinehart and Winston, New York (1967)
- Shorey, T.N.: Linear forms in the logarithms of algebraic numbers with small coefficients I,
 II. J. Indian Math. Soc. 38, 271–292 (1974)
- 327. Shparlinski, I.E.: On the number of Diophantine *m*-tuples in finite fields. Finite Fields Appl. **90**, Paper No. 102241 (2023)
- 328. Silverman, J.H.: Computing heights on elliptic curves. Math. Comp. 51, 339-358 (1988)
- Silverman, J.H.: The difference between the Weil height and the canonical height on elliptic curves. Math. Comp. 55, 723–743 (1990)
- Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Springer-Verlag, New York (1994)
- 331. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Dordrecht (2009)
- 332. Silverman, J.H., Tate, J.: Rational Points on Elliptic Curves. Springer, Cham (2015)
- 333. Skolem, T: Diophantische Gleichungen. Chelsea, New York (1950)
- Smart, N.P.: The Algorithmic Resolution of Diophantine Equations. Cambridge University Press, Cambridge (1998)
- 335. Soldo, I.: On the existence of Diophantine quadruples in $\mathbb{Z}[\sqrt{-2}]$. Miskolc Math. Notes **14**, 265–277 (2013)
- Srinivasan, A.: D(-1)-quadruples and products of two primes. Glas. Mat. Ser. III 50, 261–268 (2015)
- Stewart, C.L.: On sets of integers whose shifted products are powers. J. Combin. Theory Ser. A 115, 662–673 (2008)
- 338. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer-Verlag, Berlin (1993)
- 339. Stoll, M.: On the average number of rational points on curves of genus 2. preprint (2009) arXiv: 0902.4165
- 340. Stoll, M.: Documentation for the ratpoints program. preprint (2013) arXiv: 0803.3165
- 341. Stoll, M.: Diagonal genus 5 curves, elliptic curves over ℚ(t), and rational diophantine quintuples. Acta Arith. **190**, 239–261 (2019)
- Stroeker, R.J., Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67, 177–196 (1994)
- Tijdeman, R.: Diophantine equations and Diophantine approximations. In: Number theory and applications, pp. 215–243. Kluwer, Dordrecht (1989)
- Trudgian, T.: Bounds on the number of Diophantine quintuples. J. Number Theory 157, 233–249 (2015)

345. Tzanakis, N.: Explicit solution of a class of quartic Thue equations. Acta Arith. **64**, 271–283 (1993)

- 346. Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith. **75**, 165–190 (1996)
- Tzanakis, N.: Elliptic Diophantine Equations. A Concrete Approach Via the Elliptic Logarithm. de Gruyter, Berlin (2013)
- 348. Udrea, Gh.: A note on the sequence (W_n) of A. F. Horadam. Portugaliae Math. **53**, 143–155 (1996)
- Udrea, Gh.: A problem of Diophantus-Fermat and Chebyshev polynomials of the first kind.
 Rev. Roumaine Math. Pures Appl. 45, 531–535 (2000)
- 350. Vajda, S.: Fibonacci & Lucas Numbers, and the Golden Section. Theory and Applications. Ellis Horwood, Chichester (1989)
- 351. Vellupillai, M.: The equations $z^2 3y^2 = -2$ and $z^2 6x^2 = -5$. In: Hoggatt, V.E., Bicknell-Johnson, M. (eds.) A Collection of Manuscripts Related to the Fibonacci Sequence, pp. 71–75. The Fibonacci Association, Santa Clara (1980)
- 352. Vinogradov, I.M.: Elements of Number Theory. Nauka, Moscow (1972) (in Russian)
- 353. Vorobiev, N.N.: Fibonacci Numbers. Birkhäuser, Basel (2002)
- 354. Voznyy, M.: Personal communication (2021, 2023)
- 355. Waldschmidt, M.: Open Diophantine problems. Moscow Math. J. 4, 245-305 (2004)
- Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, Boca Raton (2008)
- 357. de Weger, B.M.M.: Algorithms for Diophantine Equations. Centrum voor Wiskunde en Informatica, Amsterdam (1989)
- 358. Weil, A: Number Theory: An Approach through History from Hammurapi to Legendre. Birkhäuser, Boston (1987)
- Weintraub, S.H.: Factorization. Unique and Otherwise. CMS, Ottawa; A K Peters, Wellesley (2008)
- 360. Worley, R.T.: Estimating $|\alpha p/q|$. Austral. Math. Soc. Ser. A **31**, 202–206 (1981)
- 361. Yip, C.H.: Multiplicatively reducible subsets of shifted perfect *k*-th powers and bipartite Diophantine tuples. preprint (2023) arXiv: 2312.14450
- 362. Zannier, U.: Some applications of Diophantine Approximation to Diophantine Equations. Forum Editrice, Udine (2003)
- Zhang, Y., Grossman, G.: On Diophantine triples and quadruples. Notes Number Theory Discrete Math. 21(4), 6–16 (2015)
- 364. Zwegers, S.: On the associativity of the addition on elliptic curves. preprint (2024) arXiv: 2401.02346

Index

2-isogenous elliptic curve, 54 2-Selmer rank, 60 analytic rank, 64 Baker, Alan, 170 Baker-Davenport reduction, 199 Binet's formula, 225 Birch and Swinnerton-Dyer conjecture, 63	elliptic functions, 27 elliptic integrals, 27 elliptic logarithm, 191 Euler, Leonhard, 4 Eulerian quadruple, 8 exotic rational Diophantine quintuple, 291 Fermat, Pierre de, 3 Fibonacci numbers, 221
canonical height, 71 Cassini's identity, 222 Chebyshev & function, 271 conductor, 38 continued fraction, 161 convergent, 162 partial quotient, 161	Gallagher's larger sieve, 270 genus, 28 Gusić-Tadić algorithm, 109 height, 71 height determinant, 73 hyperelliptic curve, 28
D(n)-m-tuple, 15, 259 Davenport, Harold, 199 degree of a Diophantine triple, 255 degree of an algebraic number, 171 descent via 2-isogeny, 54	isogeny, 54 <i>j</i> -invariant, 35 Jacobi symbol, 280
Diophantine m -tuple, 8 Diophantine m -tuple with the property $D_k(n), 14, 273$ Diophantus of Alexandria, 1 double regular quadruple, 289	<i>k</i> -th power Diophantine <i>m</i> -tuple, 14, 273 lattice, 74 basis, 74
Edwards curves, 33 elliptic curve, 23 discriminant, 24, 35 induced by Diophantine quadruple, 148 induced by Diophantine triple, 84 of maximal rank, 59 reduced, 38	Legendre symbol, 270 Legendre's theorem, 162 LLL algorithm, 75 LLL-reduced basis, 74 logarithmic Weil height, 171 Lucas numbers, 221 Lutz, Élisabeth, 44 Lutz-Nagell theorem, 44

312 INDEX

Mahler measure, 171	rank of an elliptic curve, 42
Mazur's bound, 65	rational Diophantine <i>m</i> -tuple, 8
Mazur's theorem, 46	reduction
Mestre's conditional upper bound, 67	additive, 36
Mestre's polynomial method, 61	good, 36
minimal polynomial, 171	multiplicative, 36
over \mathbb{Z} , 171	non-split, 36
minimal Weierstrass equation, 36	split, 36
Mordell's equation, 178	regular $D(q)$ -triple, 2
Mordell, Louis Joel, 42	C (1) 1
Mordell-Weil basis, 73	regular Diophantine quadruple, 5 regular Diophantine triple, 2
Mordell-Weil theorem, 42	
Worden Wen dieorem, 42	regular rational Diophantine quintuple, 87
naïve height of an algebraic number, 171	regulator, 73
Nagell, Trygve, 44	repdigit in base g , 256
Néron-Tate pairing, 72	
F8, 7.	Schmidt's subspace theorem, 174
operator ∂ , 254	second descent, 59
	Siegel's identity, 188
p-adic valuation, 102	standard Diophantine triple, 247
parallelogram law, 71	strong Diophantine <i>m</i> -tuple, 19
parity conjecture, 64	
Pell numbers, 100	Tate's normal form, 47
Pell's equation, 157	Thue equation, 181
fundamental solution, 159	Thue's theorem, 183
Pellian equation, 166	Thue, Axel, 181
ambiguous class, 167	torsion group, 42
associated solutions, 166	triangular number, 21
class of solutions, 166	twist, 145
fundamental solution in a class, 167	
primitive solution, 169	
perfect cuboid, 112	unique extension conjecture, 11
almost, 112	
projective plane, 24	Weierstrass \(\rho\)-function, 27
property $D(-1;1)$, 4	Weierstrass form, 24
	short, 24
quadratic non-residue, 270	Weil, André, 42
quadratic residue, 270	Worley's theorem, 162