1.2 牛顿运动定律及其应用

- 1.2.1 牛顿运动定律
- 1.2.2 自然界中的力
- 1.2.3 牛顿运动定律的应用
- 1.2.4 非惯性系与惯性力

牛顿运动定律的应用十分广泛

牛顿运动定律 (Newton's laws of motion)

惯性 Inertia

物体保持原来运动状态的性质。

质量 Mass

用质量定量地表示物体惯性的大小。

以相同的力作用于这两物体

$$a_1 < a_2 \qquad \frac{a_1}{a_2} = \mathbb{R} \underline{\mathbb{B}}$$

$$\frac{m}{m_0} = \frac{a_0}{a}$$

千克标准原器示意图

$$m = \frac{a_0}{a} m_0$$

已知 m_0 ,再测出 a_0 和 a ,便可确定m.

物体移动时惯性的量度. 称为惯性质量.

单位: 千克 (kg)

经典力学中,质量m与物体的运动状态和参照系的选择无关

相对论中: $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

动量 Linear Momentum

定义:

质点的动量: $\vec{p} = m\vec{v}$ 直角系中: $\begin{cases} p_x = mv_x \\ p_y = mv_y \\ p_z = mv_z \end{cases}$

方向与速度方向一致

单位: 千克·米/秒 (kg·m/s)

质点系的动量: $\vec{p} = \sum_{i} \vec{p}_{i} = \sum_{i} m_{i} \vec{v}_{i}$

一. 牛顿第一定律(惯性定律)

任何物体如果没有力作用在它上面,都将保持静止的或作匀速直线运动的状态。

1. 定义了惯性参考系

惯性系---在该参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态不变. 使牛顿第一定律成立的参考系

2. 定义了物体的惯性和力

惯性---物体本身要保持运动状态不变的性质. 力----迫使一个物体运动状态改变的一种作用. 定性的给出了力与运动状态变化的关系

二. 牛顿第二定律

质点的加速度与它所受力的方向相同,加速度的大小与它的质量成反比,与它所受合力的大小成正比。

给出了运动的变化与所加的动力之间的定量关系

$$\vec{F} = m\vec{a}$$

另一种表述:物体的动量对时间的变化率与所受的外力成正比,并且发生的外力的方向上

牛顿第二定律也可表示为:
$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt}$$

这种表示无论是高速(m可变)还是低速运动都正确.

低速时质量不变
$$\vec{F} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

同时受几个外力作用 $\sum \bar{F}_i = m\bar{a}$

注意: 上式具有瞬时性, 矢量性

直角坐标系

分量形式 $\begin{cases} \sum_{i} F_{ix} = ma_{x} \\ \sum_{i} F_{iy} = ma_{y} \\ \sum_{i} F_{iz} = ma_{z} \end{cases} \begin{cases} \sum_{i} F_{in} = ma_{n} = m \frac{v^{2}}{R} \\ \sum_{i} F_{it} = ma_{t} = m \frac{dv}{dt} \end{cases}$

自然坐标系

$$\sum_{i} F_{in} = ma_{n} = m \frac{v^{2}}{R}$$

$$\sum_{i} F_{it} = ma_{t} = m \frac{dv}{dt}$$

三. 牛顿第三定律(作用力与反作用力)

如果物体1对物体2有力的作用,那么物体2对物体1 也会有力的作用。两者大小相等,方向相反,沿一 条直线。

通常称为作用力与反作用力

牛顿定律只适用于惯性系。

SI单位

一、单位制

SI即国际单位制

力学物理量

基本量 基本单位 (长度,质量,时间) (m, kg, s)

单位制(SI)

导出量 导出单位 (速度,加速度,力等) (m/s,m/s²,N等)

做题时数字后面必须标明单位,否则 无物理意义。

自然界中的力

一、万有引力

(1) 万有引力定律: $f = G \frac{m_1 m_2}{r^2}$ $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ --万有引力恒量

(2) 力的强度: 地面上相隔1 m 的人 ~ 10^{-7} N

• 不直接适用于两个有限大的物体

- 可直接应用公式计算的特例
 - (1) 两个均匀球体间的万有引力可用此公式计算

$$f = G \frac{Mm}{r^2}$$

- (2) 质量均匀分布的球壳对质点的引力
 - ☺ 质点在球壳内,所受引力为零
 - ☺ 质点在球壳外,引力可直接用此公式计算

- \bigcirc 质点m位于球内距球心r 处可直接用公式,但是M为半径r 以内的质量 $M_{\rm p}$,与外面的质量无关
- ☺ 质点位于球外,可直接使用公式

例:一水平放置的均匀细棒AB长为L,质量为M。如图所示,在其延长线上距A端 d 处有一个质量为 m_0 的质点 P,求:细棒与质点 P 间引力的大小。

解: 设细棒的线密度为 2。因质量均匀分布,故

$$\lambda = \frac{\mathrm{d}m}{\mathrm{d}l} = \frac{M}{L}$$

质点受到的引力

$$\mathrm{d}f = G \frac{m_0 \mathrm{d}m}{x^2} = G \frac{m_0 \lambda \mathrm{d}x}{x^2}$$

$$f = \int_{d}^{L+d} G \frac{m_0 \lambda dx}{x^2} = G \frac{m_0 M}{d(d+L)}$$

$$L \ll d, \qquad f = G \frac{m_0 M}{d^2}$$

与平方反比定律一致。

$$\vec{W} = m\vec{g}$$
 方向竖直向下

地球附近的物质所受的地球引力

根据万有引力来求重力加速度的值,源自物体与地球之间的万有引力,忽略地球的自转,并设地球是半径为R的球体。

$$P \cong \frac{GmM_E}{R^2} = mg$$
, $g = G\frac{M_E}{R^2}$ R : 地球质量 R : 地球半径

三、弹力

作用在相互接触的物体之间,与物体的形变相联

系,是一种弹性恢复力。

(1) 弹簧的弹力

胡克定律:

$$\vec{f} = -k\vec{x}$$

正比于物体相对于坐标原点的 位移x

x的大小为弹簧的形变量

(2) 正压力 N, 支持力,

方向: 垂直于接触面指向对方

(3) 张力 T,内部的弹力

四、摩擦力 (the force of friction)

(1) 滑动摩擦力 $f_k = \mu_k N$, 滑动摩擦系数 支持力

(2) 静摩擦力

静摩擦力不是一个定值,增大推力F,物体所受到的静摩擦力也会随之增大。但是静摩擦力也不会一直增大。

一般来说,同一个物体的静摩擦系数大于滑动摩擦系数

常见物质的摩擦系数:

材料	$\mu_{\rm s}$	$\mu_{ m k}$
钢一钢	0.7	0.6
黄铜一钢	0.5	0.4
铜一铸铁	1.1	0.3
玻璃一玻璃	0.9	0.4
橡胶一水泥路面(干)	1.0	0.8
橡胶一水泥路面 (湿)	0.3	0.25
涂蜡的滑雪板和雪面(0℃)	0.1	0.05

五 基本的自然力

四种基本相互作用:

- 1. 万有引力相互作用(The gravitational Force)
- 2. 电磁相互作用 (The Electromagnetic Force)
- 3. 强相互作用 (The Strong Nuclear Force)
- 4. 弱相互作用(The weak Nuclear Force)

相互作用种类	力程(m)	强度*(N)
万有引力相互作用	无限远	10 ⁻³⁴
弱相互作用	小于10-17	10-2
电磁相互作用	无限远	102
强相互作用	10-15	104

牛顿定律的应用

解题步骤

- > 选定对象,隔离物体
- > 受力分析, 画示意图
- > 分析运动
- > 选坐标系,列方程,求解未知量
- > 检验与讨论

解题步骤

1. 确定研究对象;

一般采用隔离体法.即把系统中的几个物体分别研究。 如果在运动过程中几个物体之间没有相对运动,根据问题的 需要也可把这几个物体作为一个整体处理.

这时要注意区分内力与外力

 F
 a

 无相对运动

2. 受力分析

找出研究对象所受的全部外力, 画出示力图

3. 分析运动

分析研究对象的运动状况,并确定各研究对象运动状况之间的联系(约束条件).

4. 列方程

列出牛顿方程. 根据需要选择适当的坐标系,将力和加速度分解,列出各坐标轴方向的牛顿方程.

5. 解方程,对结果作必要讨论。

例 1: 一柔软绳长 l,线密度 ρ ,一端着地开始自由下落,下落的任意时刻,给地面的压力为多少?

解: 建坐标 以整个绳子为研究对象,分析受力, 设任意时刻t,绳给地面的压力为 N

$$N - \rho g l = \frac{dp}{dt} = \frac{d(mv)}{dt}$$

$$= \frac{d(\rho y v)}{dt} = \rho \left(v \frac{dy}{dt} + y \frac{dv}{dt}\right)$$

$$N - \rho g l = \rho \left(v \frac{dy}{dt} + y \frac{dv}{dt} \right)$$

$$v = \frac{dy}{dt} \qquad -g = \frac{dv}{dt}$$

$$N = \rho g l + \rho \left(v^2 - y g \right)$$

$$v^2 = 2g(l - y)$$

$$N = \rho g l + 2\rho (l - y)g - \rho y g$$

$$N = 3\rho g (l - y)$$

例2:有阻力的抛体问题.

己知:质量为m的炮弹,以初速度 v_0 与水平方向成仰角 ϕ

射出. 若空气阻力与速度成正比, 即 $\vec{f} = -k\vec{v}$

求:运动轨道方程 y[x]=?

解:二维空间的变力情况.

- 1. 选 m 为研究物体.
- 2. 建坐标 xoy.

$$t = 0$$
 时, $\begin{cases} x = 0, y = 0 \\ v_{x 0} = v_0 \cos \phi, v_{y 0} = v_0 \sin \phi \end{cases}$

$$v_{y0} = v_0 \sin \phi$$

列方程:
$$\begin{cases} m \frac{dv_x}{dt} = -kv_x \\ m \frac{dv_y}{dt} = -mg - kv_y \\ \frac{dv_x}{v_x} = -\frac{k}{m} dt \end{cases}$$

$$\frac{v_x}{kdv_y} = -\frac{k}{m}dt$$

$$\frac{m}{mg + kv_y} = -\frac{m}{m}dt$$

$$\begin{cases}
\int_{v_{x0}}^{v_x} \frac{dv_x}{v_x} = \int_{0}^{t} -\frac{k}{m} dt \\
\int_{v_{y0}}^{v_y} \frac{k dv_y}{mg + kv_y} = \int_{0}^{t} -\frac{k}{m} dt
\end{cases}$$

得
$$\begin{cases} v_x = (v_0 \cdot \cos \varphi) \cdot e^{-\frac{kt}{m}} \\ v_y = (v_0 \sin \varphi + \frac{m}{k}g) \cdot e^{-\frac{m}{k}t} - \frac{mg}{k} \end{cases}$$

再次积分
$$\begin{cases}
\int_{x_0}^x dx = \int_0^t v_x \cdot dt \\
\int_{y_0}^y dy = \int_0^t v_y \cdot dt
\end{cases}$$

得
$$\begin{cases} x = \frac{mv_0 \cos \varphi}{k} (1 - e^{-\frac{k}{m}t}) \\ y = (\frac{mv_0 \sin \varphi}{k} + \frac{m^2 g}{k^2}) \cdot (1 - e^{-\frac{k}{m}t}) - \frac{mg}{k}t \end{cases}$$

消去t,得轨道方程:

$$y = \left(\tan\phi + \frac{mg}{kv_0\cos\phi}\right)x + \frac{m^2g}{k^2}\ln\left(1 - \frac{kx}{mv_0\cos\phi}\right)$$

例3. 一根不可伸长的轻绳跨过固定在O点的水平光滑细杆,两端各系一个小球。a球放在地面上,b球被拉到水平位置,且绳刚好伸直。从这时开始将b球自静止释放。设两球质量相同。

求: (1) b球下摆到与竖直线成 θ 角时的 ν ;

(2) $\theta = ?a$ 球刚好离开地面。

解: (1)分析b运动

a球离开地面前b做半径为 l_b 的竖直圆周运动。

分析b受力, 选自然坐标系

当b 球下摆到与竖直线成 θ 角时

$$\int F_n = T - mg\cos\theta = m\frac{v^2}{l_b}$$
 (1)

$$F_{t} = mg\sin\theta = m\frac{dv}{dt}$$
 (2)

由(2) 式得
$$g \sin \theta = \frac{dv}{dt} = \frac{dv}{ds} \cdot \frac{ds}{dt} = v \frac{dv}{ds}$$

$$\therefore \int_{0}^{v} v dv = \int_{0}^{s} g \sin \theta (ds) = \int_{\frac{\pi}{2}}^{\theta} g \sin \theta (-l_{b} d\theta)$$

$$\therefore v = \sqrt{2l_b g \cos \theta} \qquad (3)$$

(2) 分析a运动

当 T = mg 时,a 球刚好离地

曲 (2) 式
$$F_n = mg - mg \cos \theta = m \frac{v^2}{l_b} = m \frac{2l_b g \cos \theta}{l_b}$$

$$\begin{array}{c|c}
 & l_b & b \\
\hline
\theta & \vec{T} \\
\vec{T} & m\vec{g}
\end{array}$$

$$\theta = \cos^{-1}\frac{1}{3}$$

例4. 质量为0.25 kg的质点,受力 $\vec{F} = t\vec{i}$ (SI)的作用,t = 0 时该质点以 $\vec{v} = 2\vec{j}$ m/s的速度通过坐标原点,则该质点任意时刻的位置矢量是:

解:
$$\vec{a} = \frac{\vec{F}}{m} = \frac{t}{0.25}\vec{i} = 4t\vec{i}$$

$$\int_{2\vec{j}}^{\vec{v}} d\vec{v} = \int_{0}^{t} \vec{a} dt \qquad \vec{v} - 2\vec{j} = 2t^{2}\vec{i}$$

$$\vec{v} = 2t^{2}\vec{i} + 2\vec{j}$$

$$\int_{0}^{\vec{r}} d\vec{r} = \int_{0}^{t} \vec{v} dt \qquad \vec{r} = \frac{2}{3}t^{3} + 2t\vec{j}$$

1.2.4 非惯性系与惯性力

(Inertial reference frame)

什么是非惯性系?

相对惯性系作加速运动的参照系为非惯性系. 在惯性系中与在非惯性系中观测物体运动有何区别?

一. 在惯性系中

甲观测A,A物静止.

A物受合外力

$$\vec{F} = 0$$

满足牛顿第二定律

乙在相对地匀速运动的车 中观测A物为匀速运动。

A 物受合外力

$$\vec{F} = 0$$
 $\vec{a} = 0$

满足牛顿第二定律

惯性系——在该参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态不变.

二. 在非惯性系中

丙在相对地以加速 \vec{a} 向右运动的车上,看 A 物沿反向 \vec{a} 加速运动.

 $\vec{F} = 0$ $\vec{a} \neq 0$ 在非惯性系中牛顿定律不再成立.

可见在惯性系中与在非惯性系中观测同一物体运动, 其结论却不相同.

三 惯性力 (Inertial force)

(一) 平动参照系中的惯性力

设: S 系为惯性系,S'系为非惯性系,

S'相对于 S 加速度 a_0

物体相对S, 加速度 \vec{a} , 物体相对S' 加速度 \vec{a}'

$$\vec{a} = \vec{a}' + \vec{a}_0$$

质点 m 在 S 系 $\vec{F} = m\vec{a}$ $\vec{F} = m\vec{a}' + m\vec{a}_0$ \vec{F} 不随参考系变化

在 S' 系 $\vec{F} \neq m\vec{a}'$

mg

牛顿第二定律在非惯性系不成立

由质点 m 在S系

$$\vec{F} = m\vec{a}' + m\vec{a}_0$$

$$\vec{F} - m\vec{a}_0 = m\vec{a}'$$

令:
$$\vec{F}_0 = -m\vec{a}_0$$
 在非惯性系引入虚拟力---惯性力

$$\vec{F} + \vec{F}_0 = m\vec{a}$$
 在非惯性系 S '中, 牛顿第二定律形式上成立

此结论可推广到非平动的非惯性系,如转动参考系。注意:惯性力不是物体间的相互作用力,没有施力物体,因而也就没有反作用力。惯性力的方向沿 $-\bar{a}_0$ 大小等于物体的质量m乘以参照系的加速度 a_0

例. 质量为M, 倾角为 α 的斜面放在光滑的水平桌面上, 斜面光滑, 长为l ,斜面顶端放一个质量为m的物体, 开始时斜面和物体都静止不动, 求物体从斜面顶端滑到斜面底端所需时间.

解: 以斜面为参考系(非惯性系) 物体相对于斜面有沿 a_M 斜面方向的加速度 a' 当m 滑下时,M 加速度方向如图 mg

分析物体受力

其中 $m a_M$ 就是惯性力. 而 mg 和 N 是真实力.

列方程:

沿斜面方向: $mg\sin\alpha + ma_M\cos\alpha = ma'$

垂直于斜面方向: N-mgcos α + ma_M sin α =0

分析M(相对惯性系):

 $N \sin \alpha = M a_M$ 水平方向

由此解得相对加速度 $a'=(m+M)\sin\alpha g/(M+m\sin^2\alpha)$

例:在一匀加速运动的车厢内,观察单摆,求其平衡位置(加速度 a_0 ,摆长l,质量m)

解: 在S'系
$$a = \sqrt{a_0^2 + g^2}$$

平衡位置

$$\theta = \tan^{-1} \frac{a_0}{g}$$

(二) 匀角速转动参照系中的惯性离心力

从地面参照系(惯性参照系)观察一转动系统:

 $\vec{F} = -m\omega^2 \vec{r}$ 方向指向圆心 从水平转台(非惯性参照系)上观察:

$$\vec{a}'=0$$
 $\vec{F} \neq 0$ 牛二在非惯性系不成立

同前面引入惯性离心力:

 $\vec{F}_i = m\omega^2 \vec{r}$ 指向离心的方向

$$\vec{F} + \vec{F}_i = 0 \qquad \vec{a}' = 0$$

引入惯性离心力后,在非惯性系中,牛顿第二定律形式上成立

例:水桶以 ω 旋转,求水面形状?

解:水面 z 轴对称,选柱坐标系。任 选水面一小质元,其在切线方向静止

在旋转参考系中,沿水面切线方向

$$mg\sin\theta - mr\omega^2\cos\theta = 0$$

$$\frac{1}{\theta}$$
 $mr\omega^2$

$$tg\theta = \frac{r\omega^2}{g} \rightarrow \frac{dz}{dr} = \frac{r\omega^2}{g}$$

积分
$$\int_{z_0}^{z} dz = \int_{0}^{r} \frac{r\omega^2}{g} dr$$
 $z = z_0 + \frac{r^2\omega^2}{2g}$

$$z = z_0 + \frac{r^2 \omega^2}{2g}$$

注意: 惯性力是虚拟的,但是作用效果却是真实的。

思考生活中哪些时刻有惯性力的效果存在?

(三)科里奥利力(选学)

如果物体相对于匀角速转动参考系而言并不是静止的,而是作相对运动,那么在该转动参考系中的观测者看来,除了惯性离心力以外,物体还将受到另外一种假想的力——科里奥利力(简称科氏力)

该力与质点(相对于转动参考系)的速度垂直,并产生侧向偏转

设:两人在转动平面上沿径向直线玩投球游戏

在惯性系中看

球离开投掷者后沿直线运动,而接球人随平台运动到该点的左侧,因此接不到它。

在平台的转动参考系中

接球人静止不动,而球却偏向右边去了,接不到它。

在非惯性系(平台参考系),使球偏离直线运动的力称为科里奥利力

下面通过惯性系中的一个简单例子来计算科里奥利力

设: *θ*为平台上的一条固定的径向直线与空间某一固定直线之间的夹角

$$\omega = \frac{d\theta}{dt} \qquad S = r\theta$$

$$\frac{dS}{dt} = r\frac{d\theta}{dt} = r\omega$$

现假设从圆心沿径向直线朝外以速率 v 投出一球经过时间 t,球运动了径向距离 r = vt同时r 处的点沿圆弧运动了s 距离 $s = r \omega t = (vt) \omega t$

s 也是在转动参考系中由科氏力所造成的球的偏转距离 在转动参考系中偏转是向右的(沿速度方向看)

在转动参考系中

$$s = v\omega t^{2} = \frac{1}{2}(2\omega v)t^{2} = \frac{1}{2}a_{\uparrow\downarrow}t^{2}$$

$$a_{\uparrow\downarrow} = (2\omega v)$$

$$F_{\uparrow\downarrow} = ma_{\uparrow\downarrow} = 2m\omega v$$

普遍情况: $\vec{F}_{\text{A}} = m\vec{a}_{\text{A}} = 2m\vec{v} \times \vec{\omega}$

推广到三维球面

将v沿 $(\hat{r},\hat{\theta},\hat{\varphi})$ 方向分解

 $\vec{f}_{\text{F}} = -2mv_r\omega\sin\theta\hat{\varphi} + 2mv_{\varphi}\omega\cos\theta\hat{\theta}$ $-2mv_{\theta}\omega\cos\theta\hat{\varphi} + v_{\phi}\omega\sin\theta\hat{r}$

由上式第一项可以说明落体偏东

第二、第三项可以说明当江水沿 v_{θ} 或 v_{ϕ} 流动时,在北半球看江水将冲刷其右岸。

- 1. 无论物体沿哪个方向运动(v有垂直于转轴的分量), 都将受到科氏力的作用,并不仅限于径向运动。
- 2. \vec{F}_{Al} 沿 $\vec{v} \times \vec{o}$ 的方向,由此可说明许多自然现象

3. 要使质点能沿半径相对于圆盘作匀速直线运动,可以将质点放入圆盘上的径向槽内,当盘转动时槽施加给质点一力 F_{t} ,且 $F_{t} = F_{A}$ 方向相反。

2. 都江堰水利工程(岷江内外江水量调配)

3. 傅科摆 证明地球转动的摆

1851年, 让 傅科 (Jean Foucault)

巴黎国葬院大厅

67米长的绳索悬挂重达28千克的摆锤,下方是巨大的沙盘。

南北极处的科里奥利效应最明显,赤道处傅科摆一般不会发生进动。

为何使用如此大的摆?

北京天文馆傅科摆复制模型

4. 地球上的其他科里奥利效应

炮弹偏右(北半球)

地球不动时炮弹轨迹

一战英德马岛海战,校正后的炮弹为什么总是偏离目标向左?

南半球炮弹偏左!

我们身边还有哪些科里奥利效应?

