MECH468 Modern Control Engineering MECH509 Controls

Homework 2. Due: February 15 (Monday), 11:59 pm, 2021.

1 Theoretical (hand-calculation) questions

Let us consider the following continuous-time system

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u,
y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x.$$

1. Check if the system is BIBO stable.

Hint: For a block-diagonal matrix
$$M = \begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix}$$
, $M^{-1} = \begin{bmatrix} M_1^{-1} & 0 \\ 0 & M_2^{-1} \end{bmatrix}$.

2. Check if the system is asymptotically stable, marginally stable, or unstable.

Hint: For a block-diagonal matrix $M = \begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix}$, the set of eigenvalues of M consists of the set of eigenvalues of M_1 and the set of eigenvalues of M_2 .

- 3. Check the controllability.
- 4. Check the observability.
- 5. Obtain the Kalman decomposition.

2 Matlab question

Consider a rotary pendulum shown below. This system has been taken from https://www.quanser.com/products/qube-servo-2/. All the equations and parameter values were given in HW1.

In HW1, we derived the linearized model for the pendulum system, i.e., around

$$\theta = 0, \ \dot{\theta} = 0, \ \alpha = 0, \ \dot{\alpha} = 0.$$

Task:

1. By hand-calculation, derive the linearized model for the inverted pendulum system, i.e., around

$$\theta = 0, \ \dot{\theta} = 0, \ \alpha = \pi, \ \dot{\alpha} = 0.$$

Hint: See HW1 for the derivation of the linearized model for the pendulum system, and think how to modify it.

- 2. Using Simulink and the linearized model, simulate for the case when all the initial states are zero except $\alpha(0) = \pi + 0.1$ [rad], and with no input. Plot the outputs $\theta(t)$ and $\alpha(t)$.
- 3. For both (pendulum and inverted pendulum) linearized systems, compute the eigenvalues of A-matrices and determine the internal stability.

Attach your Matlab code(s) (m-file and Simulink block) in your report.

Note: The requirement to attach Matlab codes to your homework assignments is:

- for making sure that each student did the homework independently, and
- for pointing out possible errors if the marker feels something is wrong. We will not aim at checking your Matlab codes in detail.