

ESC201: Introduction to Electronics Module 3: Frequency Domain Analysis

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Spectrum

Dr. Shubham Sahay ESC201

Frequency Domain

Any signal can be written as the summation of many sinusoids

Example: Speech Signals

Dr. Shubham Sahay

System Response in Time Domain

Limitations of Time Domain Visualisation

Capacitance was ~25 pF earlier
Suppose capacitance is reduced to ~21 pF

760k

Time (s) \rightarrow

20.93p C2

1m (

It is hard to find out what impact the change in capacitor has on circuit behaviour

 v_o

Response for Sinusoidal Signal

Different Frequency Sinusoidal Inputs

Measure response at many different frequencies for a constant input amplitude

Output Amplitude with Frequency

Amplitude as a function of frequency

- One can clearly see the frequency selective nature of the circuit
- The frequency selective nature if often called a filter

Output Phase with Frequency

Effect of Tuning the Circuit

Capacitor was ~25 pF.

Frequency Domain Analysis

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

- Transfer function has a magnitude and a phase
- Transfer function is a useful tool for finding the frequency response of a system

Frequency Response

$$V_{c} = V_{s} \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = V_{s} \frac{1}{j\omega RC + 1} H(\omega)$$

$$V_c(\omega) = V_S(\omega)H(\omega)$$

$$H(\omega) = \frac{V_c(\omega)}{V_s(\omega)}$$

Frequency Response

Transfer Input to Output:
Transfer function

Behavior of Circuit in Frequency Domain

$$v_{s}(t) = v_{s1}\cos(\omega_{1}t) + v_{s2}\cos(\omega_{2}t)$$

$$V_{c} = V_{s}\frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = V_{s}\frac{1}{j\omega RC + 1}H(\omega)$$

$$v_c(t) = v_{s1}|H(\omega_1)|\cos(\omega_1 t + \angle H(\omega_1)) + v_{s2}|H(\omega_2)|\cos(\omega_2 t + \angle H(\omega_2))$$

Frequency Domain Analysis

What if we give signal consisting of two sinusoids of frequencies ω_1 and ω_2

Linearity

Response is sum of individual responses

Transfer function of RC

$$H(j\omega) = \frac{1}{1 + j\omega RC}$$

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

At low ω

At high ω

$$\phi(\omega) = -\tan^{-1}(\omega CR)$$

 $\sim 0^{o}$ $\sim -90^{o}$

High-pass filter using RC Circuit

$$V_C = V_S \frac{R}{R + \frac{1}{j\omega C}} = V_S \frac{j\omega RC}{j\omega RC + 1}$$

High Pass Filter

$$\varphi(\omega) = 90 - \tan^{-1}(\omega CR)$$

Example

A capacitor offers very high impedance at low frequencies and very low impedance at high frequencies.

Try writing its Exact response

bandpass filter

Example: RLC Circuit

$$\frac{V_r}{V_i} = \frac{R}{j\omega L + \frac{1}{j\omega C} + R}$$

$$=\frac{j\omega RC}{1-\omega^2 LC+j\omega RC}$$

$$= \frac{j\omega RC}{(1-\omega^2 LC)+j\omega RC} \cdot \frac{(1-\omega^2 LC)-j\omega RC}{(1-\omega^2 LC)-j\omega RC}$$

$$\left| \frac{V_r}{V_i} \right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}}$$

Observe:

Low ω : $\approx \omega RC$

High ω : $\approx \frac{R}{\omega L}$ $\omega \sqrt{LC} = 1$: ≈ 1

Transfer function of RLC

Observe:

Low ω : $\approx \omega RC$

High ω : $\approx \frac{R}{\omega L}$ $\omega \sqrt{LC} = 1$: ≈ 1

Remember this trick to sketch the form of transfer functions quickly.

$$\left| \frac{V_r}{V_i} \right| = \frac{\omega RC}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\omega RC\right)^2}}$$

Example: RLC Circuit

Dr. Shubham Sahay ESC201

 $\angle \cup$

Response at Output

What if we plot output value on a linear-linear scale?

- Only higher frequency data is visible in linear scale
- Information of what happens at low frequency remains hidden due to the scale

Frequency on Abscissa in Log Scale

- Now we are able to see what is happening at the lower frequencies
- But how does the response change in between?

Logarithmic Frequency Scale

Number of decades =
$$\log_{10} \left(\frac{f_2}{f_1} \right)$$

Number of octaves = $\log_2 \left(\frac{f_2}{f_1} \right) = \frac{\log_{10} \left(\frac{f_2}{f_1} \right)}{\log_{10}(2)}$

"Octave" comes from the eight notes in western classical music. Even in Indian classical music, while practicing the 'Saptaka', eight notes (including the start of the next octave) is sung.

- In engineering, we often use $\omega = 2\pi f$ as the variable
- This just scales the axis by 2π ; ratios remain the same!

What About the Ordinate?

- Behaviour of the functions at intermediate frequencies are clearer now!
- Dimensional quantities, the log values indicate the ratios and are meaningful

Forms of Transfer Function

Decibel

The magnitude of gain transfer function is often specified in decibels

A popular unit to indicate increase in power as a ratio of base power

In Electrical analysis, power is proportional to V^2 or I^2 Voltage gain and Current gain in decibels is specified as

Electrical systems we often represent gain in current or voltage

This is reason decibels when describing electrical systems have a factor of 20

dBm, dBm_w and dBW Units

Electronic engineers use some practical units which are not formal:

• dBm or dB_{mW} : Power with reference power as 1 mW

• dBW: Power with reference power as 1 W

- In telephone, reference resistance considered is 600 Ω
- In radio frequency world, it is 50Ω

- Use of dB or dBm as absolute unite is discouraged in SI standards
- They supposed to be dimensionless unit for comparison

Dr. Shubham Sahay ESC201

Representing Sound

Decibel scale is more convenient for our perception of hearing

Change in sound pressure level	Apparent change in loudness
3 dB	Just noticeable
5 dB	Clearly noticeable
10 dB	Twice or half as loud
20 dB	4 times or 1/4 as loud

Sometimes the unit dB(A) with ambiance level noise as reference is used

The Central Pollution Control Board (CPCB) in India has laid down the permissible noise levels in India for different areas. Noise pollution rules have defined the acceptable level of noise in different zones for both daytime and night time.

In industrial areas, the permissible limit is 75 dB for daytime and 70 dB at night.

In commercial areas, it is 65 dB and 55 dB, while in residential areas it is 55 dB and 45 dB during daytime and night respectively.

https://www.downtoearth.org.in/blog/pollution/noise-pollution-violations-new-fines-proposed-by-cpcb-step-in-right-direction-72415

Decibel Scale

[H]	20Log10(H)
1000	60
100	40
10	20
2	6
<mark>√2</mark>	<mark>3</mark>
1	0
1/√2	-3
0.5	-6
0.1	-20
0.01	-40

Bode Plot

Hendrik Wade Bode

Wikipedia

Plots for rad/s and Hz will shift by a factor $log_{10}(2 \pi)$ laterally

Hendrik Bode developed a method to analyse these plots elegantly with asymptotes The asymptotic plots or the plots themselves are often called Bode plot

Bode Plot

A plot of the decibel magnitude of transfer function versus frequency using a logarithmic scale for frequency is called a **Bode plot**

Dr. Shubham Sahay ESC201