

Índice

- 1. Embedding Methods
- 2. Lipschitz Embeddings
- 3. FastMap

$$\begin{bmatrix} L & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} I & 2 & 3 & 4 \end{bmatrix}$$

28,28 7**8**4

Sea (\mathcal{O},d) y (\mathcal{F},d') son *metric space*. Un mapeo inyectivo $f:(\overset{\bullet}{\mathcal{O}},d)\to (\overset{\bullet}{\mathcal{F}},d')$ es llamado D-embedding,

donde $D \geq 1$ es un número real, si un número r>0 de modo que para todo $o_1,o_2 \in \mathcal{O}$

$$r \cdot d(o_1, o_2) \le d'(f(o_1), f(o_2)) \le D \cdot r \cdot d(o_1, o_2)$$

El menor valor de D que cumpla la condición anterior es llamada distorsión de f.

El mapeo $f:(\mathcal{O},d) \to (\mathcal{F},d')$ es llamado **C-Lipschitz** si $d'\big(f(o_1),f(o_2)\big) \leq C \cdot d(o_1,o_2)$ para todo $o_1,o_2 \in \mathcal{O}$. Sea:

$$||f||_{\text{Lip}} = \sup \left\{ \frac{d'(f(o_1), f(o_2))}{d(o_1, o_2)} : o_1, o_2 \in \mathcal{O}, o_1 \neq o_2 \right\}$$

la **Lipschitz-norm** de f, la más pequeña posible tal que sea **C-Lipschitz**. Ahora bien, si f es un **mapa biyectivo**, no es difícil comprobar que su distorsión es igual a $||f||_{\text{Lip}}||f^{-1}||_{\text{Lip}}$. Por esta razón, los mapas con una distorsión finita se denominan a veces **bi-Lipschitz**.

Stress

$$\frac{\sum_{o_1,o_2} \left[d'(f(o_1), f(o_2)) - d(o_1, o_2) \right]^2}{\sum_{o_1,o_2} d(o_1, o_2)^2}$$

Multidimensional scaling (MDS): método de construcción de f que se basa en la minimización de la tensión

Un **Lipschitz** *embedding* se define en términos de un conjunto R de subconjuntos de S, $R = \{A_1, A_2, ..., A_k\}$. Los subconjuntos A_i se denominan conjuntos de referencia de la incrustación. Sea d(o,A) una extensión de la función de distancia d a un subconjunto $A \subset S$ tal que $d(o,A) = \min_{x \in A} d(o,x)$. Un *embedding* con respecto a R se define como un mapeo f tal que:

$$f(o) = (d(o, A_1), d(o, A_2), ..., d(o, A_k))$$

En otras palabras, estamos definiendo un espacio de coordenadas donde cada eje corresponde a un subconjunto $A_i \subset S$ de los objetos, y los valores de coordenadas del objeto o son las distancias de o al elemento más cercano en cada uno de A_i .

Si d' es la métrica l_p , f se define de tal manera que $f(o) = \left(\frac{d(o,A_1)}{q}, \frac{d(o,A_2)}{q}, \dots, \frac{d(o,A_k)}{q}\right)$, donde $q = k^{1/p}$

$$\frac{c}{[\log_2 N]} \cdot d(o_1, o_2) \le \underline{d}'(\underline{f(o_1)}, \underline{f(o_2)}) \le \underline{d}(o_1, o_2)$$

para cualquier par de objetos $o_1, o_2 \in S$, donde c > 0 es una constante.

Ejemplo:

Object	01	02	03	04	05	06	07	08	09	0 ₁₀
01	0	2	13	7	3	8	11	4	9	10
02	2	0	11	9	3	10_	9	2	11_	8
- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1 3	11	0	6	T 10	9	4	9	6	3
04	7	9	6	0	6	3	8	9	2	5
o ₅	3	3	10	6	0	7	8	3	8	7
06	8	10	9	3	7	0	9	10	3	6
07	11	9	4	8	8	9	0	7	10	3_
→) o ₈	T 4	2	9	9	3	10	7	T 07	11	6
09	9	11	6	2	8	3	10	11	0	7
o ₁₀	10	8	3	5	7	6	3	6	7	0

$$\begin{cases}
(0_3) = (0, 10, 3) \\
(0_9) = (0, 3, 0) \\
A_1 = \{o_2, o_8\}
\end{cases}$$

$$A_2 = \{o_1, o_5\}$$

$$A_3 = \{o_6, o_8, o_9, o_{10}\}$$

P=2

Ejemplo:

Object	01	02	03	04	05	06	07	08	09	0 ₁₀
01	0	2	13	7	3	8	11	4	9	10
02	2	0	11	9	3	10	9	2	11	8
o ₃	13	11	0	6	10	9	4	9	6	3
04	7	9	6	0	6	3	8	9	2	5
o ₅	3	3	10	6	0	7	8	3	8	7
o ₆	8	10	9	3	7	0	9	10	3	6
07	11	9	4	8	8	9	0	7	10	3
08	4	2	9	9	3	10	7	0	11	6
09	9	11	6	2	8	3	10	11	0	7
0 ₁₀	10	8	3	5	7	6	3	6	7	0

Reference Set	01	02	03	04	05	06	07	08	09	o ₁₀	
A ₁	2	0	9	9	3	10	7	0	11	6	
A_2	0	2	10	6	0	7	8	3	8	7	
A_3	4	2	3	2	3	0	3	0	0	0	
A_4	0	2	4	0	3	3	0	0	2	3	

$$A_1 = \{o_2, o_8\}$$

$$A_2 = \{o_1, o_5\}$$

$$A_3 = \{o_6, o_8, o_9, o_{10}\}$$

$$A_4 = \{o_1, o_4, o_7, o_8\}$$

Η

- 2) Calatar proyéction sobre L(P,1P2)

3) Projector sobra un plano perpondicular a \mathcal{L} $\frac{1^{2}}{2}(0_{1},0_{2}) = \frac{1}{2}(0_{1},0_{2}) = (\chi_{1}-\chi_{2})^{2}$

2 = 52 + c2 - 2 cm

(a)

