PAPER	RESULT
Bandwidth Improvements Using	The hexagonal slot provides the largest
Ground Slots for Compact UWB	impedance bandwidth of 3.1-16.3 GHz
Microstrip-fed Antennas	for S11; 10 dB, with an average gain of
	about 2.8 dBi and an average efficiency
	of about 88%
Development of a practical ultra- wide-	This antenna can also be operated at
band antenna with planar circuit inte-	2.478 GHz as it provides dual band op-
gration possibilities	eration. At 2.478 GHz the values of Re-
	turn loss and bandwidth are -30.218dB
	and 33.1 MHz respectively
Wide band high efficiency printed loop	A compact, 31mm x 21mm low pro-
antenna design for wireless communica-	file planar ultra-wide band patch an-
tion systems	tenna was introduced. The antenna was
	ex-cited using a rectangular edge-feed
	microstrip feed line. The impedance
	bandwidth of the antenna is about 11
	GHz (3.0-14GHz), which exceeds the
	FCC UBW requirement.
Design of reconfigurable slot antenna	Besides exhibiting a 10-dB bandwidth
	of 172% with 13.06:1 ratio bandwidth,
	a 14-dB bandwidth (low return loss)
	of 79% is also demonstrated in the
	higher UWB operating bands for out-
Design of band notched UWB patch an-	door propagation. The patch antenna ring ultrawide-
tenna with circular slot	bandwidth radiating between 2.5GHz
temia with circular slot	and 9.4GHz in order to achieve the op-
	eration Bluetooth / ISM, 2.5/3.5 GHz
	and 5.2/5.7 GHz WiMAX WLAN.
Microstrip Antenna gain enhancement	The resonant frequency of the antenna
using left-handed metamaterial struc-	is 1.99 GHz. return loss with frequency
ture	of antenna is found to be -30.33 dB at
	resonant frequency 1.99 GHz.
Single-feed dual-frequency rectangular	At 2GHz the verified and tested result
microstrip antenna with square slot	on RadiationEfficiency=91.99%, Direc-
	tivity=5.4dBi,Directive gain=4.98dBi