

#### Reminders

Assignment #4 is due Friday

https://github.com/dilevin/CSC2549-a4-cloth-simulation

Assignment #5 will be live tomorrow, due November 1st

## **Graphics Reading Group**

Seminar Room in BA5166 (Dynamic Graphics Project)

Wednesdays 11am

## Let's Talk about Final Projects

30% of your final grade

Two components

Presentation – 15% of the mark

Due date: last class

Write up in SIGGRAPH style - 15% of the mark

Due date: 1 week before the end of the exam period

#### **Final Presentation Guide**

Duration: 5-6 minutes with 2-3 minutes for question

#### **Content:**

Problem Statement (1 Slide)

Related Work (1-2 Slides)

Methodology (as many slides as you need)

Results or Anticipated Results (at least one slide)

## Let's Talk about Final Projects

If you don't have a project idea, or haven't checked with me about your current plan, please do so.

# How does everyone feel about the assignment pace ...

... for the remainder of the class?

#### **Questions**



Kim et al. I Anisotropic Elasticity for Inversion-Safety and Element Rehabilitation

## **Generalized Coordinates for Rigid Bodies**



What makes an object rigid?



Idx12 = drt Ft Fdr

dx = Fdx

FTF=I > want

Risid is Idx = dx What does this imply?

FE orthogonal J FE Special Orthogonal

det(F) = +1

F = 
$$R$$

Trotation

Code:  $12 \times 1$  Nector  $\times d$ ,  $R$ 

rigid body

rigid body

rigid body

(in all b

#### **Generalized Velocities**

y = Ay 4(1)= exp(At)yo i = wxx is [w] x R= CYPM (CWJE) x. Retation

Code: NEVER!! expm(A) A=VXVF Vexp(x) VT

#### The Time Derivative of a Rotation Matrix



## The Time Derivative of a Rotation Matrix



$$\dot{x} = \left( \mathbb{R} \left[ \overline{x} \right] \mathbb{R}^T \mathbb{I} \right) \begin{pmatrix} \omega \\ P \end{pmatrix}$$

$$\mathcal{N}(x)$$

Generalized velocities

Cu - angular velocity Woncp

P - linear velocity Woncp

## **Kinetic Energy**

 $B = \int_{\infty} P(x) dV, \quad \bar{x} = \begin{pmatrix} \bar{x} \\ \bar{z} \end{pmatrix}$ SPR dV doing this center-of-mass. (origin)

Mo = Sp[R]CRILA 0

O m I

Com origin

 $\int_{\infty} F(x) dx = \int_{\infty} \nabla_{x} g(x) dx \int_{\infty} g(x)^{T} n dx$   $\int_{\infty} g(x) dx = \int_{\infty} g(x) dx \int_{\infty} g(x) dx$   $\int_{\infty} g(x) dx = \int_{\infty} g(x) dx \int_{\infty} g(x) dx$ 

 $M= \int_{P} 1 d\bar{x} = \int_{X} P D \cdot C\bar{x}^{\dagger} = \int_{X} D d\bar{x}$ = NL XN·X q = m 150 (Face = Striangler = Spxdn. 1x c=1 Di 1 normals we constant

## **Surface-Only Integration**





## The Newton-Euler Equations

Input: WE, YEKT Exponential Explicit Euler Output: 641 1. Velocity Level RIR RTWEET - RSRTWE 1 St (quo(we) + YEXT) 2. Position Level X(4)= expm(cw)st) RX

## The Result



libigl viewer

