NAME:

PROBLEM 1: Design a fourbar mechanism to give the two positions shown of coupler motion. Both rockers should be designed to have 30° of travel.

Find: w, θ , W_{1x} , W_{1y} , W_{2x} , W_{2y} , U, σ , U_{1x} , U_{1y} , U_{2x} , U_{2y} ,

FIGURE 5-1
Two-position analytical synthesis

TWO POSITION ANALYTICAL MOTION SYNTHESIS

$$\vec{W}_2 + \vec{Z}_2 = \vec{W}_1 + \vec{Z}_1 + \vec{P}_{21}$$

$$\left| \vec{W}_1 \right| = \left| \vec{W}_2 \right| = w$$

$$\left| \vec{Z}_1 \right| = \left| \vec{Z}_2 \right| = z$$

$$\vec{W}_{1} = \mathbf{w} \cdot \left[\cos \left(\mathbf{\theta} \right) \hat{i} + \sin \left(\mathbf{\theta} \right) \hat{j} \right]$$

$$\vec{W}_2 = \mathbf{w} \cdot \left[\cos \left(\mathbf{\theta} + \mathbf{\beta}_2 \right) \hat{i} + \sin \left(\mathbf{\theta} + \mathbf{\beta}_2 \right) \hat{j} \right]$$

$$\bar{Z}_1 = \mathbf{z} \cdot \left[\cos\left(\frac{\boldsymbol{\phi}}{\boldsymbol{\phi}}\right) \hat{i} + \sin\left(\frac{\boldsymbol{\phi}}{\boldsymbol{\phi}}\right) \hat{j} \right]$$

$$\bar{Z}_2 = \mathbf{z} \cdot \left[\cos(\phi + \alpha_2) \hat{i} + \sin(\phi + \alpha_2) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos\left(\frac{\delta_2}{\delta_2}\right) \hat{i} + \sin\left(\frac{\delta_2}{\delta_2}\right) \hat{j} \right]$$

APPROACH B

GIVEN:		CHOSEN:		FIND:	
P12	2.191	z	1.583	w	5.33
δ2	16.98	ф	353.7	θ	-120.8
α.2	56.52	β2	30	W1x	-2.73
				W1y	-4.58

$$\begin{bmatrix} \cos\left(\beta_{2}\right) - 1 & -\sin\left(\beta_{2}\right) \\ \sin\left(\beta_{2}\right) & \cos\left(\beta_{2}\right) - 1 \end{bmatrix} \begin{bmatrix} W_{1x} \\ W_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos\left(\delta_{2}\right) - z \cdot \left[\cos\left(\phi + \alpha_{2}\right) - \cos\left(\phi\right)\right] \\ p_{21} \cdot \sin\left(\delta_{2}\right) - z \cdot \left[\sin\left(\phi + \alpha_{2}\right) - \sin\left(\phi\right)\right] \end{bmatrix}$$

$$\vec{U}_2 + \vec{S}_2 = \vec{U}_1 + \vec{S}_1 + \vec{P}_{31}$$

$$\left| \vec{U}_1 \right| = \left| \vec{U}_2 \right| = u$$

$$\left| \vec{S}_1 \right| = \left| \vec{S}_2 \right| = s$$

$$\vec{U}_1 = \mathbf{u} \cdot \left[\cos(\sigma) \hat{i} + \sin(\sigma) \hat{j} \right]$$

$$\vec{U}_2 = \mathbf{u} \cdot \left[\cos \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{i} + \sin \left(\mathbf{\sigma} + \mathbf{\gamma}_2 \right) \hat{j} \right]$$

$$\vec{S}_1 = \mathbf{s} \cdot \left[\cos(\mathbf{\psi}) \hat{i} + \sin(\mathbf{\psi}) \hat{j} \right]$$

$$\vec{S}_2 = \mathbf{s} \cdot \left[\cos \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{i} + \sin \left(\mathbf{\psi} + \mathbf{\alpha}_2 \right) \hat{j} \right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right]$$

$$\begin{bmatrix} \cos\left(\gamma_{2}\right) - 1 & -\sin\left(\gamma_{2}\right) \\ \sin\left(\gamma_{2}\right) & \cos\left(\gamma_{2}\right) - 1 \end{bmatrix} \begin{bmatrix} U_{1x} \\ U_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos\left(\delta_{2}\right) - s \cdot \left[\cos\left(\psi + \alpha_{2}\right) - \cos\left(\psi\right)\right] \\ p_{21} \cdot \sin\left(\delta_{2}\right) - s \cdot \left[\sin\left(\psi + \alpha_{2}\right) - \sin\left(\psi\right)\right] \end{bmatrix}$$

PROBLEM 2: In the four bar linkage shown a=7in, b=11in, c=6in, d=9in, and θ_2 =120°. For both the open and crossed configurations determine θ_3 , θ_4 , B_x , B_y and expressions for the vectors \vec{r}_1 , \vec{r}_2 , \vec{r}_3 , \vec{r}_4 in both Cartesian and magnitude-unit vector form.

K1= 4.6800E+00 K2= 4.8497E-01 K3= 3.3923E+00 K4= -1.4036E+01

	x comp	y comp	mag	angle	i	j
r04=	9.00	0.00	9.00	0.0	1.000	0.000
rA=	-3.50	6.06	7.00	120.0	-0.500	0.866
rBA=	11.00	-0.25	11.00	-1.3	1.000	-0.023
rBO4=	-1.50	5.81	6.00	104.5	-0.250	0.968
rB=	7.50	5.81	9.48	37.8	0.790	0.612
rPA=	7.80	12.81	15.00	58.7	0.520	0.854
rP=	4.30	18.88	19.36	77.2	0.222	0.975
vA=	-90.93	-52.50	105.00	-150.0	-0.866	-0.500
vBA=	0.67	29.15	29.15	88.7	0.023	1.000
vB=	-90.26	-23.35	93.23	-165.5	-0.968	-0.250
vPA=	-33.96	20.67	39.76	148.7	-0.854	0.520
vP=	-124.89	-31.83	128.89	-165.7	-0.969	-0.247
aA=	1181.54	-1136.49	1639.41	-43.9	0.721	-0.693
аВА	-79.01	-74.69	108.73	-136.6	-0.727	-0.687
аВ	1102.53	-1211.18	1637.84	-47.7	0.673	-0.739
aPA=	34.33	-144.23	148.26	-76.6	0.232	-0.973
aP=	1215.88	-1280.72	1765.96	-46.5	0.689	-0.725
ALT	x comp	y comp	mag	angle	i	j
rO4=	9.00	0.00	9.00	0.0	1.000	0.000
rA=	-3.50	6.06	7.00	120.0	-0.500	0.866
rBA=	7.01	-8.48	11.00	-50.4	0.637	-0.771
rBO4=	-5.49	-2.42	6.00	-156.3	-0.915	-0.403
rB=	3.51	-2.42	4.26	-34.6	0.824	-0.567
rPA= rP=	14.79	2.50	15.00	9.6	0.986	0.166
vA=	11.29 -90.93	8.56 -52.50	14.17 105.00	37.2 -150.0	0.797 -0.866	0.604 -0.500
vA= vBA=	83.62	69.12	108.49	39.6	0.771	0.637
vBA=	-7.31	16.62	18.16	113.7	-0.403	0.037 0.915
vPA=	-24.61	145.88	147.94	99.6	-0.166	0.986
vP=	-115.54	93.38	148.56	141.1	-0.778	0.629
aA=	1181.54	-1136.49	1639.41	-43.9	FALSE	-0.693
aBA	-903.63	641.27	1108.04	144.6	-0.816	0.579
аВ	277.92	-495.22	567.88	-60.7	0.489	-0.872
aPA=	-1373.41	-629.90	1510.97	-155.4	-0.909	-0.417
aP=	-191.87	-1766.39	1776.78	-96.2	-0.108	-0.994

PROBLEM 3: In the four bar slider-crank linkage shown a=7in, b=25in, offset =10in, and θ_2 =330°. For both the open and crossed configurations determine θ_3 , B_x , B_y and expressions for the vectors \vec{r}_1 , \vec{r}_2 , \vec{r}_3 in both Cartesian and magnitude-unit vector form.

Slider Crank

a= 7		Link 2		
b=	25	Link 3		
C=	10	Link 1		
$\theta_2 =$	330	5.759586532		
$\dot{\theta_2} =$	100	1/s		
$\ddot{\theta}_{2}^{-}=$	18	$\frac{1}{s^2}$		
By=	10.00	10.00		
Bx=	27.10	-14.98		
$\theta_3 =$	32.7	147.3		
$\dot{\theta}_3 =$	-28.81	28.81		
$\theta_3 =$	-1136.01	1136.01		
vB=	738.94	-38.94		
aB=	-77635.22	-43482.34		

PROBLEM 4: Develop general equations that can be used to calculate b, θ_3 , & θ_4 in the inverted slider crank when given a, c, d, θ_2 , & γ .

FOR THE INVENTED SLIDER CRAWK THE FIXED ANGLE & DEFINES THE OFFSET BETWEEN THE SCIDER AND LINK 4. THIS RESULTS IN A RELATIONSHIP BETWEEN OZ AND O4

NOTE THAT I'S A CONSTANT. THE LOCP THAT DEFINES THE RINEMATICS OF THIS PROBLEM CAN BE WILLIEW.

$$\vec{\Gamma}_{z} + \vec{\Gamma}_{s} = \vec{\Gamma}_{1} + \vec{\Gamma}_{4}$$

$$\vec{\Gamma}_{z} = \Gamma_{z} \cdot \hat{\mathbb{C}}_{rz} \ (= \alpha \cdot \hat{\mathbb{C}}_{rz}) = \Gamma_{z} (\cos \theta_{z} \hat{\imath} + \sin \theta_{z} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = \Gamma_{s} \cdot \hat{\mathbb{C}}_{rs} \ (= b \cdot \hat{\mathbb{C}}_{rs}) = \Gamma_{s} (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = \partial_{z} \cdot \hat{\mathbb{C}}_{rs}$$

$$\vec{\Gamma}_{s} = G_{rs} \cdot \hat{\mathbb{C}}_{rs} \ (= c \cdot \hat{\mathbb{C}}_{rs}) = \Gamma_{s} (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = G_{rs} \cdot \hat{\mathbb{C}}_{rs} \ (= c \cdot \hat{\mathbb{C}}_{rs}) = \Gamma_{s} \cdot (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = G_{rs} \cdot \hat{\mathbb{C}}_{rs} \ (= c \cdot \hat{\mathbb{C}}_{rs}) = \Gamma_{s} \cdot (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = G_{rs} \cdot \hat{\mathbb{C}}_{rs} \ (= c \cdot \hat{\mathbb{C}}_{rs}) = \Gamma_{s} \cdot (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

$$\vec{\Gamma}_{s} = G_{rs} \cdot \hat{\mathbb{C}}_{rs} \ (= c \cdot \hat{\mathbb{C}}_{rs}) = G_{rs} \cdot (\cos \theta_{s} \hat{\imath} + \sin \theta_{s} \hat{\jmath})$$

6

THE LEWGTH (3 = b HARIES AS THE LINKACE MOVES. THUS (3 = b IS A HARIABLE THAT MOST BE SOLDED FOR. THIS CREATES AN ADDITIONAL UNKNOON THAT NEEDS TO BE DETERMINED, O4, O4, G., G. &. HOWEVER, 1) IS A THIRD EQUATION THAT CAN BE USED TO DETERMINE THESE MANIANES GLOEN BY, a, C, d.

= (c. cos 04+ d-a-cosóz) (sin 04-cos 1-cos 04 · sin 1)

888

22-141

C.cos f. sin O4.cos O4 + C.sin f.sin O4-a.cos f. sin Oz.cos O4-a.sin f.sin Ozsin O4 = c.cos O4.sin O4.cos f-c.cos O4.sin ftd.sin O4.cos f-d.cos O4.sin f - a.cos O2.sin O4.cos fta.cos O2 cos O4.sin f

C. cost sin 04 cos 04 + C. sin f. sin 04 - a cos f. sin 02 cos 04 - a sin f. sin 02 - sin 04 - cos 04 sin 04 cos 04 sin f - d. sin 04 cos f + d. cos 04 sin f + a cos 02 sin 04 cos 04 sin f

C.sin f. (sin204+cos204)-a. (sin02.cosf+sinf.cos02).cos04 +a. (cos 02.cosf-sin02.sinf).sin04-d.cosf.sin04+dsinf.cos04=0

C. sin & - a. sin (Oz+). cos 64 + a. cos (Oz+). sin 04 - d. cos P. sin 64 + d. sin f. cos 04 = 0

[a·cos(Oz+))-d·cos]. sin (4+[-a·sin(0z+))+d·sin)]·cos(4+c·sin) =0

$$K_1 \cdot \sin \Theta_y + K_2 \cdot \cos \Theta_y + K_3 = 0$$

$$K_1 = \alpha \cdot \cos (\Theta_2 + \beta) - \alpha \cdot \cos \beta$$

$$K_2 = -\alpha \cdot \sin (\Theta_2 + \beta) + \alpha \cdot \sin \beta$$

$$K_3 = C \cdot \sin \beta$$

(12)

(13)

(24)

(15)

USING THE TRICOMETRIC IDENTITIES

(16)

$$\cos z \cdot d = \frac{1 - \tan^2 d}{1 + \tan^2 d}$$
 \Rightarrow $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$

17

SUBSTITUTING (16) AND (17) INTO (12)

$$K_1 \cdot \frac{2 \cdot \tan \frac{\Theta_4}{2}}{1 + \tan^2 \frac{\Theta_1}{2}} + K_2 \cdot \frac{1 - \tan^2 \frac{\Theta_1}{2}}{1 + \tan^2 \frac{\Theta_1}{2}} + K_3 = 0$$

2. K1. tan = + K2 - K2. can = = + K3 + K3. tan = = 0 (K3-K2). tan = + 2. K1. tan = + (K3+K2) = 0

$$\tan^2 \frac{\Theta_4}{2} + \frac{2 \cdot K_1}{K_3 \cdot K_2} \cdot \tan \frac{\Theta_4}{2} + \frac{K_3 + K_2}{K_3 - K_2} = 0$$

$$\tan^{2} \frac{\Theta_{4}}{2} + \frac{2 \cdot K_{4}}{K_{5} - K_{2}} \cdot \tan \frac{\Theta_{4}}{2} + \left(\frac{K_{3}}{K_{5} - K_{2}}\right)^{2} - \left(\frac{K_{3}}{K_{3} - K_{2}}\right)^{2} + \frac{K_{3} + K_{2}}{K_{3} - K_{2}} = 0$$

$$\left(\tan \frac{\Theta_{4}}{2} + \frac{K_{4}}{K_{5} - K_{2}}\right)^{2} = \left(\frac{K_{4}}{K_{5} - K_{2}}\right)^{2} - \left(\frac{K_{3} + K_{2}}{K_{3} - K_{2}}\right)$$

$$\tan \frac{\Theta_{4}}{2} = -\frac{K_{4}}{K_{5} - K_{2}} + \sqrt{\left(\frac{K_{4}}{K_{5} - K_{2}}\right)^{2} - \left(\frac{K_{3} + K_{2}}{K_{3} - K_{2}}\right)}$$

$$\tan \frac{\Theta_{4}}{2} = -\frac{K_{4}}{K_{5} - K_{2}} + \sqrt{\frac{K_{4}^{2} - K_{4}^{2}}{K_{5} - K_{2}}} \cdot \left(\frac{K_{5} - K_{2}}{K_{5} - K_{2}}\right)$$

$$\tan \frac{\Theta_{4}}{2} = -\frac{K_{4}}{K_{5} - K_{2}} + \sqrt{\frac{K_{4}^{2} - K_{4}^{2} - K_{4}^{2}}{(K_{5} - K_{2})^{2}}}$$

$$\tan \frac{\Theta_{4}}{2} = -\frac{K_{4} + \sqrt{K_{4}^{2} + K_{4}^{2} - K_{3}^{2}}}{K_{5} - K_{2}}$$

$$\Theta_{4} = 2 \cdot \tan^{4} \left[\frac{-K_{4} + \sqrt{K_{4}^{2} + K_{4}^{2} - K_{3}^{2}}}{K_{5} - K_{2}}\right]$$

$$\Theta_{4} = 2 \cdot \tan^{4} \left[\frac{-K_{4} + \sqrt{K_{4}^{2} + K_{4}^{2} - K_{3}^{2}}}{K_{5} - K_{2}}\right]$$

$$(18)$$

THE SOLUTION OF THE INVENTED SLIDER CRANK LINKAGE STARTS WITH THE DEFINATION OF THE LINKAGE PARAMETERS

GIVEN: a, c, d, O2, d >

THE PARLAMETERS THAT NEED TO BE DETERMINED INCLUDE

FIND: b, O3, & O4

THESE PARAMETERS ARE FECUND USING (1), (10), (13), (14), (15) AND (18)