

School of Data Analysis and Artificial Intelligence Department of Computer Science

DATA SCIENCE FOR BUSINESS

Lecture 7. Time series forecasting

Moscow, May 27th, 2022.

TIME SERIES FORECASTING ACROSS INDUSTRIES

Logistics & Transportation

Forecasting of shipped packages: workforce planning

Retail grocery

Forecasting of sales during promotions: optimizing warehouses

Insurance

Claims prediction: determining insurance policies

Manufacturing

Predictive Maintenance: improving operational efficiency

Energy & Utilities

Energy load forecasting: better planning and trading strategies

RETAIL SALES DATA

Product Sales For The Last Year

SALES FORECASTING

Estimating the future sales

DEMAND FORECASTING

Demand forecasting is the process of predicting what the demand for certain products will be in the future.

- Supplier relationship management calculate how many products to order
- Customer relationship management predict which categories of products should be available the next period from a specific store location. This improves customer satisfaction and commitment to your brand.
- Order fulfillment and logistics optimizing supply chains, the product will be more likely to be in stock for ordering, and unsold goods won't occupy prime retail space.
- Marketing campaigns adjust ads and marketing campaigns and influence the number of sales.
- Manufacturing flow management. Being part of the ERP, the time series-based demand forecasting predicts production needs

DEMAND FORECASTING

Demand forecasting is the process of predicting what the demand for certain products will be in the future.

Retailers need accurate day-level forecasts for effective replenishment of fresh products as well as for managing capacity in all parts of their supply chains.

DEMAND FORECASTING

Price changes, promotions, and other business decisions impacting demand

WHAT IS TIME SERIES FORECASTING

Everything that is observed sequentially over time is a time series

Forecasting time series – how the sequence of observations will continue into the future

- 1. Numerical information about the past is available
- 2. Reasonable to assume that past patterns will continue into the future

TIME SERIES FORECASTING

Classical time series analysis

- Predicting future values by past observations of the same variable through autocorrelation
- Most often univariate
- Can use few external factors

$$y(t+1) = f(y(t), y(t-1), y(t-2), ...)$$

- Decomposition models (trend, seasonality)
- Moving average
- Exponential smoothing
- ARIMA

ML methods, forecasting as supervised learning

- History of comparable signals
- Many explanatory factors
- Large datasets

$$y(t) = f(x1(t), x2(t), ...)$$

 $y(t+h) = f(x1(t), x2(t), ...)$

ML algorithms (regression)

- GLM
- Random forest
- Gradient boosting

Time order dependence between observations!

Trend, Seasonal, Cyclic, what seasonality is

- Trend: Steady, long-term, moving gradually in one direction, long term increase or decrease
- Seasons: Regular short term variations often associated with months or quarters (fixed and known period)
- **Cycle:** A variation that occurs regularly, but may vary in length, oscillatory component not caused by seasonal factors that
- Random Components/Residual: Removal of trends and cyclical variations from time-series data uncovers fluctuations that is irregular, random factors often not relevant to prediction

Decomposition of additive time series

Classical decomposition:

- Estimating trend T(t) through a rolling mean
- Computing S(t) as the average detrended series Y(t)-T(t) for each season (e.g. for each month)
- Computing the remainder series as R(t)=Y(t)-T(t)-S(t)

$$y_t = T_t + C_t + S_t + I_t,$$

$$y_t = T_t \times C_t \times S_t \times I_t$$
.

Autocorrelation – correlation (linear relationship) between the lagged values of time series y(t) and y(t-k)

• Classical Decomposition: considers the time series as the overlap of several elementary components (i.e. trend, cycle, seasonality, error)

$$\widehat{y}_{T+h|T} = y_{T+h-m(k+1)},$$

• Exponential Smoothing: method based on the weighting of past observations, taking into account the overlap of some key time series components (trend and seasonality)

$$\hat{y}_{t+1|t} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \dots$$

• ARIMA (*AutoRegressive Integrated Moving Average*): class of statistical models that aim to treat the correlation between values of the series at different points in time using a regression-like approach and controlling for seasonality

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

A time series can be defined as "stationary" when its properties does not depend on the time at which the series is observed, so that:

- the values oscillate frequently around the mean, independently from time
- the variance of the fluctuations remains constant across time
- the autocorrelation structure is constant over time and no periodic fluctuations exist

Differencing – computing the difference between consecutive observations. $y_t' =$

$$y_t' = y_t - y_{t-1}$$

Can make non-stationary series stationary. Widely used as a preprocessing for ML methods

FORECASTING AS SUPERVISED LEARNING PROBLEM - REGRESSION

Direct modeling

FORECASTING WITH REGRESSION

Modeling with time lag

Regression: Y(t+h) = f(Y(t))

using previous time steps as input variables and use the next time step as the output variable.

ime	Υ	X	Y
2, 1 3, 1 4, 1	100 110 108 115 120	110, 108, 115,	

FORECASTING WITH REGRESSION

Modeling with time lag

Regression: Y(t+h) = f(Y(t), x1(t), x2(t), x3(t), x4, x5, x6)

FORECASTING WITH REGRESSION

Sliding window

$$\hat{y}_{t+k} = f_k(x_{t-w}, \dots, x_{t-1}, y_{t-w}, \dots, y_{t-1})$$

TRAINING & EVALUATION

Always train on the earlier timestamps, test and evaluate on the later timestamps

Avoid "signal leakage" !!

Standard quality metrics

Mean absolute error:
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Mean squared error:
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Root mean squared error:
$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

R-squared:
$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

MORE BOOKS

