Chromatography Anomaly Detection System Using One-Class SVM and LSTM with Streamlit UI

May 9, 2025

Introduction

Purpose: Detect anomalies in High-Performance Liquid Chromatography (HPLC) systems to ensure reliability and performance.

Why it matters: Anomalies (e.g., column clogging, high retention time) can lead to inaccurate results and system downtime.

Solution: A machine learning system combining One-Class SVM, LSTM, and a Streamlit dashboard for real-time monitoring.

Problem Statement

Challenges in HPLC:

- Complex data with multiple parameters (e.g., peak width, retention time).
- Anomalies are rare but critical (e.g., column overuse, contamination). Need for predictive maintenance to prevent failures.

Goal: Automatically identify historical and future anomalies, provide actionable insights, and visualize results intuitively.

Solution Overview

Key Components

One-Class SVM: Detects anomalies in historical data by learning normal behavior.

LSTM: Predicts future parameter values and potential anomalies.

GPT-4: Analyzes anomalies and suggests chromatography-specific causes (e.g., "column clogging").

Streamlit UI: Interactive dashboard for data visualization and anomaly monitoring.

Input/Output

Input: data.csv (HPLC data).

Output: train_model/predictions.csv, anomaly plots, and GPT-4 summaries.

Data Processing

Input Data: data.csv with columns like injection_time,
column_serial_number, peak_width_5, etc.

Preprocessing Steps:

Convert injection_time to datetime, remove timezone.

Handle missing values using median imputation per column.

Clip outliers at 99th percentile.

Encode categorical columns (e.g., system_name) using LabelEncoder.

Add features: injection_count, days_since_start.

Output: Cleaned DataFrame ready for model training.

Model Workflow

Historical Anomaly Detection

One-Class SVM:

Trains on normal data (nu=0.1, kernel='rbf').

Flags outliers as anomalies (anomaly_flag).

Computes anomaly_score and anomaly_deviation.

Future Predictions

LSTM:

Uses sequences (SEQ LENGTH=10) to predict

14 days ahead.

Bidirectional LSTM with 150 units, Huber loss.

Anomaly Detection: Applies One-Class SVM on predictions.

Cause Analysis

GPT-4 generates causes (e.g., "High peak_width_5 due to column clogging; recommend replacement").

Streamlit UI

Dashboard Overview

Purpose: Visualize historical and predicted anomalies, filter data, and summarize findings.

Access: Run streamlit run app.py, view at http://localhost:8501.

Key Features

Sidebar Filters: System Name, Method Set, Column Serial Number, Performance Metric.

Plots: Scatter plot of parameters with anomalies (historical: orange X, predicted: red X).

Deviation Graph: Shows anomaly deviations over time (1 day, 1 week, 1 month).

Tables: Historical and predicted data with anomaly details.

GPT-4 Summary: Tabular summary of future anomalies.