Congratulations! You passed!

 $\begin{array}{c} \textbf{Grade} \\ \textbf{received} \ 100\% \end{array}$

Latest Submission Grade 100% **To pass** 80% or higher

Go to next item

1/1 point Which of the following accurately describes the state-action value function Q(s,a)? lacktriangledown It is the return if you start from state s, take action a (once), then behave optimally after that. $\ \bigcirc$. It is the return if you start from state s and repeatedly take action a. \bigcirc It is the return if you start from state s and behave optimally. \bigcirc . It is the immediate reward if you start from state s and take action a (once). **⊘** Correct Great! 2. 1/1 point You are controlling a robot that has 3 actions: \leftarrow (left), \rightarrow (right) and STOP. From a given state s, you have computed Q(s, \leftarrow) = -10, Q(s, \rightarrow) = -20, Q(s, STOP) = 0. What is the optimal action to take in state s? STOP \bigcirc \leftarrow (left) $\bigcirc \ \to (\mathsf{right})$ O Impossible to tell **⊘** Correct Yes, because this has the greatest value. 1/1 point For this problem, $\gamma=0.25$. The diagram below shows the return and the optimal action from each state. Please compute $Q(5, \leftarrow)$. \leftarrow return $Q(5,\leftarrow)=?$ 100 25 6.25 2.5 10 40 0 0 0 0 100 40 ← reward 0.625 0.391 0 1.25 O 2.5 **⊘** Correct Yes, we get 0 reward in state 5. Then 0 * 0.25 discounted reward in state 4, since we moved left for our $action. \ Now we behave optimally starting from state 4 onwards. So, we move right to state 5 from state 4 onwards. \\$ and receive $0*0.25^2$ discounted reward. Finally, we move right in state 5 to state 6 to receive a discounted reward of $40*0.25^3$. Adding these together we get 0.625 .