COURSE NAME

Artificial intelligence and machine learning

Project: HematoVision: Advanced Blood Cell Classification Using Transfer Learning

1. Project Flow Diagram

```
Raw Image Input

Preprocessing (Resizing, Normalization)

Data Augmentation

Model (VGG16 + Custom Classifier)

Prediction Output (Blood Cell Class)
```

2. CNN Architecture (Transfer Learning with VGG16)

```
Input (224x224x3)
```

```
Pre-trained VGG16 Layers (Frozen)
   \downarrow
Flatten Layer
   \downarrow
Dense Layer (256 units, ReLU)
   \downarrow
Dropout Layer (rate=0.5)
   \downarrow
Output Layer (4 units, Softmax)
3. Model Training Pipeline
Dataset Folder
   \downarrow
ImageDataGenerator (Flow from Directory)
   \downarrow
Model.fit()
   \downarrow
Training & Validation
   \downarrow
Model Evaluation (Graphs, Metrics)
```

4. Confusion Matrix

	Pred: N	Pred: E	Pred: M	Pred: L
Actual:N	50	1	0	0
Actual:E	2	48	1	0
Actual:M	0	2	47	1
Actual: L	1	0	1	48

> N = Neutrophil, E = Eosinophil, M = Monocyte, L = Lymphocyte

5. Accuracy and Loss Graphs

> Plot these using matplotlib.pyplot

Accuracy vs Epoch

X-axis: Epoch

Y-axis: Accuracy

Lines: Training accuracy, Validation accuracy

Loss vs Epoch

X-axis: Epoch

Y-axis: Loss

Lines: Training loss, Validation loss