Infinitesimal Calculus 3

Lecture 17, Wednsday December 28, 2022 Ari Feiglin

We now generalize Taylor polynomials to more than 1 or 2 dimensions. Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ which is differentiable m+1 times $(f \in C^{m+1})$. We can define an initial point $x^0 = (x_1^0, \dots, x_n^0)$ and h be our difference vector $h = (h_1, \dots, h_n)$ then:

$$f(x^{0}+h) = \sum_{k=0}^{m} \frac{1}{k!} \left(\left(h_{1} \frac{\partial}{\partial x_{1}} + \dots + h_{n} \frac{\partial}{\partial x_{n}} \right)^{k} f \right) (x^{0}) + \frac{1}{(n+1)!} \cdot \left(\left(h_{1} \frac{\partial}{\partial x_{1}} + \dots + h_{n} \frac{\partial}{\partial x_{n}} \right)^{n+1} f \right) (x^{0} + \theta h)$$

for some $0 < \theta < 1$ where:

$$\left(h_1 \frac{\partial}{\partial x_1} + \dots + h_n \frac{\partial}{\partial x_n}\right)^k f = \sum_{i_1 + \dots + i_n = k} \binom{k}{i_1, \dots, i_n} \cdot \frac{\partial^k f}{\partial x_1^{i_1} \dots \partial x_n^{i_n}} h_1^{i_1} \dots h_n^{i_n}$$

If we perform an m = 0 order Taylor expansion:

$$f(x^{0} + h) = f(x^{0}) + \sum_{k=0}^{n} h_{k} f_{x_{k}}(x^{0} + \theta h) \implies f(x^{0} + h) - f(x^{0}) = \sum_{k=0}^{n} h_{k} f_{x_{k}}(x^{0} + \theta h)$$

And this is equal to $\nabla f(x^0 + \theta h) \cdot h$, and so we get that:

$$f(y^0) - f(x^0) = \nabla f(x^0 + \theta(y^0 - x_0)) \cdot (y^0 - x^0)$$

So if we let $c = \nabla f(x^0 + \theta(y^0 - x^0))$ then we get the following theorem, which is a generalization of Lagrange:

Theorem 17.1 (Lagrange's Theorem):

If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable then for every $x, y \in \mathbb{R}^n$:

$$f(y) - f(x) = c \cdot (y - x)$$

where c is in \overrightarrow{xy} .

Corollary 17.2:

Suppose $D \subseteq \mathbb{R}^n$ is open and connected (and therefore path-connected), and $f: D \longrightarrow \mathbb{R}$ is differentiable. If ∇f is identically 0 in D, then f is constant.

Proof:

Let $x, y \in D$, since D is path connected, there is a path between x and y. Since D is open, it is polygonal connected, so we can assume that x and y are connected by a line (otherwise, we show that $f(x) = f(x_1)$ the next point in the polygonal chain connecting x and y and so on). We know that $f(x) - f(y) = \nabla f(c) \cdot (x - y)$, and c must lie on the line between x and y, so $c \in D$ and therefore f(x) - f(y) = 0 as required.

Theorem 17.3:

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ defined in a neighborhood of $x^0 = (x_1^0, \dots, x_n^0)$ which accepts a maximum or minimum there. If for every $1 \le k \le n$, $f_{x_k}(x^0)$ exists, then they are all 0.

Proof:

We define $g_k(x) = f(x_1^0, \dots, x_{k-1}^0, x, x_k^0, \dots, x_n^0)$, then g_k has a maximum or minimum at x_k^0 . Furthermore, we know that $g'_k(x_k^0) = f_{x_k}(x^0)$ and since g_k has a local maximum at this point, $g'(x_k^0) = 0$ and therefore $f_{x_k}(x^0) = 0$ as well.

Notice then that at a local maximum or minimum, $\nabla f(x) = 0$.

Definition 17.4:

A critical point of f is a point x such that $\nabla f(x)$.

So local minima and maxima are critical points, but not all critical points are maxima or minima. The degree 1 Taylor expansion of $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ at a critical point is:

$$f(x_0 + h, y_0 + \ell) = f(x, y) + \frac{1}{2} (f_{xx}h^2 + 2f_{xy}h\ell + f_{yy}\ell^2)(x^0 + \theta \vec{h})$$

If we let $A = f_{xx}(x^0 + \theta \vec{h})$, $B = f_{xy}(x^0 + \theta \vec{h})$, and $C = f_{yy}(x^0 + \theta \vec{h})$ we have that:

$$f(x^0 + \vec{h}) - f(x^0) = \frac{1}{2} (Ah^2 + 2Bhk + Ck^2)$$

Notice then that if we focus on the polynomial:

$$Ah^{2} + 2Bhk + Ck^{2} = k^{2} \left(A\left(\frac{h}{k}\right)^{2} + 2B\left(\frac{h}{k}\right) + C \right)$$

if we let $x = \frac{h}{k}$ then this is equal to $Ax^2 + 2Bx + C$ multiplied by some positive constant. Notice then that if the discriminant is negative the polynomial doesn't change its sign, that is if $B^2 - AC < 0$.

Theorem 17.5:

Suppose f(x,y) is in C^2 and (x_0,y_0) is a critical point. If at (x_0,y_0)

- (1) $f_{xx}f_{yy} f_{xy} > 0$, then the discriminant is negative, and $f_{xx} > 0$ then the point is a minimum.
- (2) $f_{xx}f_{yy} f_{xy} > 0$ and $f_{xx} < 0$ then the point is a maximum.
- (3) $f_{xx}f_{yy} f_{xy} < 0$ then the point is neither a maximum nor a minimum.
- (4) $f_{xx}f_{yy} f_{xy} = 0$ then everything is possible.

Proof:

(1) Since second derivatives are continuous, the discriminant is negative in a neighborhood of (x_0, y_0) so for every point in the neighborhood, we have that

$$f(x,y) - f(x_0, y_0) = \frac{1}{2} \cdot p(x)$$

for some polynomial p(x), whose sign doesn't change in this neighborhood, so $f(x_0, y_0)$ is either below or above every point in this neighborhood, and from what we know about single dimension second derivatives, since $f_{xx}(x_0, y_0) > 0$ the point is a maximum.

- (2) The proof is identical to what it is above.
- (3) Since the discriminant is positive, the difference in f is positive and negative in any neighborhood of (x_0, y_0) and it's therefore not a maximum nor minimum.

Definition 17.6:

The Hessian of a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ in C^2 is a matrix $H(\vec{x}) \in \mathbb{R}^{n \times n}$ defined by $[H]_{ij} = f_{x_i x_j}(\vec{x})$.

Note that if $\vec{k} = (k_1, \dots, k_n)$ then:

$$\vec{k}^T H(\vec{x}) \vec{k} = (f_{x_1} h_1 + \dots + f_{x_n} h_n)^2 (\vec{x})$$

Definition 17.7:

A matrix A is positive if for every vector \vec{k} , $\vec{k}^T A \vec{k} > 0$.