SUMS 31AH - Midterm Review

Merrick Qiu

October 25, 2021

1 Find the change of basis matrix P, from β to α

$$\alpha = \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} \right\}$$

$$\beta = \left\{ \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} = -\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

2 Union and Intersection of two subspaces a subspace?

The union of two subspaces is not necessarily a subspace (for dim(v) >= 2). For example, the x and y axis. The intersection of two subspaces is a subspace. Zero is in S_1 and S_2 , so zero is in $S_1 \cap S_2$. Let $c \in \mathcal{F}$ and $v \in S_1 \cap S_2$. Since $cv \in S_1$ and $cv \in S_2$, we know that $cv \in S_1 \cap S_2$. Let $v, w \in S_1 \cap S_2$. Since $v + w \in S_1$ and $v + w \in S_2$, $v + w \in S_1 \cap S_2$.

3 Linear transformation $T: \mathbb{R} \to \mathbb{R}$ from [-1, 1] to [1,3]?

Since [-1, 1] contains zero but [1,3] doesn't, and a linear transformation always maps zero to zero, the statement is false. Think of linear transformations from \mathbb{R} to \mathbb{R} as scalar multiplication.

4 If A and AB are invertible, then B is invertible.

Socks and shoes principle: If A and B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$ Hint: If T invertible, then exists U such that I = TU = UT.

$$(AB)^{-1}AB = I \implies ((AB)^{-1}A)B = I$$
 (1)

$$\implies (AB)^{-1}A = B^{-1}(Left) \tag{2}$$

$$AB(AB)^{-1} = I \implies B(AB)^{-1} = A^{-1}$$
 (3)

$$\implies B(AB)^{-1}A = A^{-1}A = I \tag{4}$$

$$\implies (AB)^{-1}A = B^{-1}(Right) \tag{5}$$

5 Does there exist 2024 independent vectors in \mathbb{R}^{2021} ?

No, a basis is the maximal linearly independent set, but since the basis has 2021 elements, there cannot be a linearly independent set with 2024 elements.