# Estimación del Coeficiente de Dispersión Longitudinal Método de Chapra basado en estudios con trazadores

#### 1. Introducción

Los estudios con trazadores permiten determinar parámetros clave del transporte de solutos en cuerpos de agua, tales como velocidad media y coeficiente de dispersión longitudinal. En esta guía se implementa el método descrito por **Steven C. Chapra** en su libro *Surface Water-Quality Modeling*, específicamente el Ejemplo 10.4 (Sección 10.4).

### 2. Datos del experimento

• Masa inyectada:  $M = 5 \,\mathrm{kg}$ 

 $\bullet$  Caudal:  $Q=3\times 10^5\,\mathrm{m}^3/\mathrm{día}$ 

• Ancho del río:  $B = 45 \,\mathrm{m}$ 

■ Estaciones de muestreo:  $x_1 = 1 \,\mathrm{km}, \ x_2 = 8 \,\mathrm{km}$ 

#### Curva de concentración – Estación 1 (x = 1 km)

| t  (min)      | 30 | 40  | 50  | 60  | 70  | 80  | 90 | 100 | 110 | 120 |
|---------------|----|-----|-----|-----|-----|-----|----|-----|-----|-----|
| $C (\mu g/L)$ | 0  | 100 | 580 | 840 | 560 | 230 | 70 | 15  | 3   | 0   |

#### Curva de concentración – Estación 2 (x = 8 km)

| t  (min)                                                   | 370 | 400 | 430 | 460 | 490 | 520 | 550 | 580 |
|------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| $\begin{array}{c} 610 \\ C \ (\mu \text{g/L}) \end{array}$ | 0   | 10  | 80  | 250 | 280 | 140 | 35  | 5   |
| 0                                                          |     |     |     |     |     |     |     |     |

### 3. Cálculo de parámetros intermedios

Se aplican las siguientes fórmulas para cada estación:

• Concentración media:

$$\bar{C} = \frac{\sum_{i=0}^{n-1} (C_i + C_{i+1})(t_{i+1} - t_i)}{2(t_n - t_0)}$$

■ Tiempo medio:

$$t_m = \frac{\sum_{i=0}^{n-1} (C_i t_i + C_{i+1} t_{i+1}) (t_{i+1} - t_i)}{\sum_{i=0}^{n-1} (C_i + C_{i+1}) (t_{i+1} - t_i)}$$

• Varianza temporal:

$$\sigma_t^2 = \frac{\sum_{i=0}^{n-1} (C_i t_i^2 + C_{i+1} t_{i+1}^2)(t_{i+1} - t_i)}{\sum_{i=0}^{n-1} (C_i + C_{i+1})(t_{i+1} - t_i)} - t_m^2$$

### 4. Cálculo de la velocidad media

$$v = \frac{x_2 - x_1}{t_{m2} - t_{m1}} = \frac{7000}{481,9 - 62,2} = 0,1667 \,\text{m/s}$$

# 5. Cálculo del coeficiente de dispersión

Según Chapra (Ec. 10.35):

$$D_L = \frac{v^3}{2} \cdot \frac{\sigma_{t2}^2 - \sigma_{t1}^2}{x_2 - x_1}$$

Sustituyendo:

$$D_L = \frac{(0.1667)^3}{2} \cdot \frac{1043 - 137}{7000} = 5.0 \times 10^{-3} \,\mathrm{m}^2/\mathrm{s} = 500 \,\mathrm{cm}^2/\mathrm{s}$$

#### 6. Resultado Final

$$D_L = 500 \,\mathrm{cm}^2/\mathrm{s}$$
,  $v = 0.1667 \,\mathrm{m/s}$ 

### 7. Observaciones

- El cálculo de integrales se puede aproximar mediante el método del trapecio.
- La calidad del resultado depende del número y distribución de puntos medidos.
- El método puede adaptarse a otros escenarios, incluyendo sustancias no conservativas.



Figura 1: Curvas de concentración vs tiempo en dos estaciones de muestreo

## 8. Gráficas de las curvas de concentración

## 9. Referencia

Chapra, S. C. (1997). Surface Water-Quality Modeling, Sección 10.4, pp. 207–209.