Курсовая работа по дискретной математике Четвертая задача

Клименко В. М. – М8О-103Б-22 – 11 вариант ${\rm Mapt},\ 2023$

Дано

Матрица длин дуг A:

$$\begin{pmatrix} \infty & 2 & \infty & 5 & \infty & 6 & \infty & \infty \\ 6 & \infty & 12 & 3 & \infty & \infty & \infty & \infty \\ 7 & \infty & \infty & \infty & 1 & \infty & \infty & 1 \\ 5 & 3 & \infty & \infty & 6 & 2 & \infty & \infty \\ \infty & \infty & 1 & \infty & \infty & \infty & 3 & 4 \\ 3 & \infty & \infty & 2 & \infty & \infty & 2 & \infty \\ \infty & \infty & \infty & \infty & 3 & \infty & \infty & 6 \\ 8 & \infty & \infty & \infty & 13 & \infty & \infty & \infty \end{pmatrix}$$

Задание

Используя алгоритм Φ орда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг A.

Решение

Пункт 1

	V1	V2	V3	V4	V5	V6	V7	V8	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$	$\lambda_i^{(7)}$
V1	∞	2	∞	5	∞	6	∞	∞	0	0	0	0	0	0	0	0
V2	6	∞	12	3	∞	∞	∞	∞	∞	2						
V3	7	∞	∞	∞	1	∞	∞	1	∞	∞						
V4	5	3	∞	∞	6	2	∞	∞	∞	5						
V5	∞	∞	1	∞	∞	∞	3	4	∞	∞						
V6	3	∞	∞	2	∞	∞	2	∞	∞	6						
V7	∞	∞	∞	∞	3	∞	∞	6	∞	∞						
V8	8	∞	∞	∞	13	∞	∞	∞	∞	∞						

Ответ