# GROUP III NITRIDE CRYSTAL GROWTH METHOD, GROUP III NITRIDE CRYSTAL GROWTH APPARATUS, GROUP III NITRIDE CRYSTAL, AND SEMICONDUCTOR DEVICE

Publication number: JP2003292400 Publication date: 2003-10-15

Inventor: SARAYAMA SHOJI; IWATA HIROKAZU; YAMANE

HISANORI; SHIMADA MASAHIKO; AOKI MASATAKA

Applicant: RICOH KK

Classification:

- international: C30B29/38; C30B9/00; H01S5/323; H01S5/343;

C30B29/10; C30B9/00; H01S5/00; (IPC1-7):

C30B29/38; C30B9/00; H01S5/343

- european:

Application number: JP20030018507 20030128

Priority number(s): JP20030018507 20030128; JP20020019986 20020129

Report a data error here

#### Abstract of **JP2003292400**

PROBLEM TO BE SOLVED: To clarify the relation among crystal growth conditions, crystal form, and whether crystal growth occurs or not and thereby enable the crystal growth of a group III nitride under practical crystal growth conditions.

SOLUTION: In region A (in the figure), a GaN crystal does not grow. In region B, a GaN crystal grows dominantly only on a seed crystal. In region C, a columnar GaN crystal grows dominantly. In region D, a platy GaN crystal grows dominantly. Here, 'dominantly' means that most of the crystal grows in this form

COPYRIGHT: (C)2004, JPO



Data supplied from the esp@cenet database - Worldwide

#### (19) 日本国特許庁 (JP)

### (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-292400 (P2003-292400A)

(43)公開日 平成15年10月15日(2003.10.15)

| (51) Int.Cl. <sup>7</sup> |       | 識別記号  | FI      |       | 3   | f-7]-}*(参考) |
|---------------------------|-------|-------|---------|-------|-----|-------------|
| C 3 0 B                   | •     |       | C 3 0 B | 29/38 | D   | 4G077       |
|                           | 9/00  |       |         | 9/00  |     | 5 F O 7 3   |
| H01S                      | 5/343 | 6 1 0 | H01S    | 5/343 | 610 |             |

#### 審査請求 未請求 請求項の数20 OL (全 19 頁)

|                        |                                                      |              | THE TO ALL THE TOTAL OF THE TOT |  |
|------------------------|------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (21)出願番号               | 特願2003-18507(P2003-18507)                            | (71)出願人      | 000006747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| (22)出顧日                | 平成15年1月28日(2003.1.28)                                | /70\ 50mm →s | 株式会社リコー<br>東京都大田区中馬込1丁目3番6号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| (31)優先権主張番号<br>(32)優先日 | 特願2002-19986 (P2002-19986)<br>平成14年1月29日 (2002.1.29) | (72)発明者      | 皿山 正二<br>東京都大田区中馬込1丁目3番6号 株式<br>会社リコー内                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| (33)優先權主張国             | 日本 (JP)                                              | (72)発明者      | 岩田 浩和<br>東京都大田区中馬込1丁目3番6号 株式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                        |                                                      | (74)代理人      | 会社リコー内<br>100090240<br>弁理士 植本 雅治                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                        | ,                                                    |              | 品数百に幼ノ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

#### 最終頁に続く

## (54) 【発明の名称】 I I I 族窒化物結晶成長方法および I I I 族窒化物結晶成長装置および I I I 族窒化物結晶および半導体デバイス

#### (57)【要約】

【課題】 結晶成長条件と結晶形態、結晶成長の有無の 関係を明らかにし、実用的な結晶成長条件でのIII族窒 化物の結晶成長を可能とする。

【解決手段】 領域Aは、GaN結晶が成長しない領域である。また、領域Bは、種結晶のみにGaN結晶が支配的に結晶成長する領域である。また、領域Cは、柱状のGaN結晶が支配的に結晶成長する領域である。また、領域Dは、板状のGaN結晶が支配的に結晶成長する領域である。なお、ここでいう支配的とは、大部分がその形態で結晶成長している状態をいう。



2

#### 【特許請求の範囲】

【請求項1】 反応容器内で、アルカリ金属と少なくともIII 族金属を含む物質とが混合融液を形成し、該混合融液と少なくとも窒素を含む物質とから、III 族金属と窒素とから構成されるIII 族窒化物を結晶成長させるIII 族窒化物結晶成長方法であって、圧力と温度とで規定される領域に対応する結晶成長条件で、III 族窒化物結晶成長方法。

1

【請求項2】 請求項1記載のIII族窒化物結晶成長方法において、結晶成長条件として、圧力と温度とで規定される領域を複数個設けるとき、複数の領域のそれぞれに応じて互いに異なる結晶形態のIII族窒化物の結晶が成長可能であることを特徴とするIII族窒化物結晶成長方法。

【請求項3】 請求項2記載のIII族窒化物結晶成長方法において、複数の領域のうちの1つの領域は、III族窒化物の結晶成長形態として、種結晶に結晶成長するものであることを特徴とするIII族窒化物結晶成長方法。

【請求項4】 請求項2記載のIII族窒化物結晶成長方法において、Pを反応容器内の実効的な窒素圧力(Pa)、Tを混合融液の絶対温度(K)、a,bを係数とするとき、成長するIII族窒化物の結晶形態は、log

P=a/T+bで表される境界により規定される領域 に応じて決定されることを特徴とするIII族窒化物結晶 成長方法。

【請求項5】 請求項4記載のIII族窒化物結晶成長方法において、IogP=a/T+bで表される境界は、アルカリ金属のIII族金属との比によって制御可能であることを特徴とするIII族窒化物結晶成長方法。

【請求項6】 請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、種結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を種結晶を用いて結晶成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項7】 請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、柱状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を柱状結晶を用いて結晶成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項8】 請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、板状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を板状結晶を用いて結晶成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項9】 請求項1乃至請求項8のいずれか一項に 記載のIII族窒化物結晶成長方法において、III族窒化物 結晶が成長せずに分解する条件領域、種結晶成長する成 長条件領域、柱状結晶が成長する成長条件領域、板状結 晶が成長する成長条件領域の内、複数の条件領域を利用 50 して、III族窒化物結晶を成長させることを特徴とするI II族窒化物結晶成長方法。

【請求項10】 請求項9記載のIII族窒化物結晶成長方法において、III族窒化物結晶が成長せずに分解する条件領域と柱状結晶または板状結晶が成長する成長条件領域とを利用して、III族窒化物結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項11】 請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、アルカリ 金属としてナトリウム(Na)を用い、少なくともIII 族金属を含む物質としてガリウム(Ga)を用い、少なくとも窒素を含む物質として窒素ガス(N。)を用いて、III族窒化物として窒化ガリウム(GaN)を結晶成長させるときに、窒化ガリウム(GaN)の結晶成長条件を窒素ガス圧力とガリウムとナトリウムの混合融液の温度とで規定することを特徴とするIII族窒化物結晶成長方法。

【請求項12】 請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1,b1,a2,b2を、a1=-5.40E-3,b1=4.83,a2=-5.59E-3,b2=5.47の係数とするとき、a./T+b. $\leq$ log P $\leq$ a2/T+b2で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(GaN)を結晶成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項13】 請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a2,b2,a3,b3を、a30 2=-5.59E-3,b2=5.47,a3=-5.67E-3,b3=5.83の係数とするとき、a2/T+b2≦log P≦a3/T+b3で表される結晶成長条件領域で、柱状の窒化ガリウム(GaN)結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

【請求項14】 請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a3,b3を、a3=-5. 6 7E-3,b3=5. 83の係数とするとき、a3/T40 +b3  $\leq$ 1 og Pで表される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させることを特徴とするIII族窒化物の結晶成長方法。

【請求項15】 種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内の1つの成長条件領域を選択してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有していることを特徴とするIII族窒化物結晶成長装置。

【請求項16】 III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が

成長する成長条件領域、板状結晶が成長する成長条件領 域の内、複数の条件領域を利用してIII族窒化物結晶を 成長させるための圧力制御機構及び温度制御機構を有し ていることを特徴とするⅢ族窒化物結晶成長装置。

【請求項17】 請求項1乃至請求項14のいずれか一 項に記載の111族窒化物結晶成長方法で作製されたこと を特徴とするIII族窒化物結晶。

【請求項18】 請求項17記載の111族窒化物結晶を 用いたことを特徴とする半導体デバイス。

【請求項19】 請求項18記載の半導体デバイスにお 10 いて、該半導体デバイスは、光デバイスであることを特 徴とする半導体デバイス。

【請求項20】 請求項18記載の半導体デバイスにお いて、該半導体デバイスは、電子デバイスであることを 特徴とする半導体デバイス。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、III族窒化物結晶 成長方法およびII族窒化物結晶成長装置およびII族窒 化物結晶および半導体デバイスに関する。

#### [0002]

【従来の技術】現在、紫~青~緑色光源として用いられ ているInGaAIN系(III族窒化物)デバイスは、 その殆どがサファイア基板あるいはSiC基板上に、M O-CVD法(有機金属化学気相成長法)やMBE法 (分子線結晶成長法) 等を用いた結晶成長により作製さ れている。サファイアやSiCを基板として用いる場合 には、III族窒化物との熱膨張係数差や格子定数差が大 きいことに起因する結晶欠陥が多くなる。このために、 デバイス特性が悪く、例えば発光デバイスの寿命を長く することが困難であったり、動作電力が大きくなったり するという問題がある。

【0003】更に、サファイア基板の場合には絶縁性で あるために、従来の発光デバイスのように基板側からの 電極取り出しが不可能であり、結晶成長したIII族窒化 物半導体表面側からの電極取り出しが必要となる。その 結果、デバイス面積が大きくなり、高コストにつながる という問題がある。また、サファイア基板上に作製した III族窒化物半導体デバイスは、劈開によるチップ分離 が困難であり、レーザダイオード(LD)で必要とされ 40 る共振器端面を劈開で得ることが容易ではない。このた め、現在はドライエッチングによる共振器端面形成や、 あるいはサファイア基板を100μm以下の厚さまで研 磨した後に、劈開に近い形での共振器端面形成を行って いるが、この場合にも、従来のLDのような共振器端面 とチップ分離を単一工程で容易に行うことが不可能であ り、工程の複雑化ひいてはコスト高につながる。

【0004】これらの問題を解決するために、サファイ ア基板上にIII族窒化物半導体膜を選択横方向成長やそ

提案されている。

【0005】例えば文献「Japanese Journal of Applie d Physics Vol. 36(1997) Part 2, No. 12A, L1568-157 1」(以下、第1の従来技術という)には、図7に示す ようなレーザダイオード(LD)が示されている。図7 のレーザダイオードは、MO-VPE(有機金属気相成 長)装置にてサファイア基板1上にGaN低温バッファ 層2とGaN層3を順次成長した後に、選択成長用のS iO2マスク4を形成する。このSiO2マスク4は、 別のCVD(化学気相堆積)装置にて、SiO。膜を堆 積した後に、フォトリソグラフィ、エッチング工程を経 て形成される。次に、このSiOzマスク4上に再度、 MO-VPE装置にて20μmの厚さのGaN膜3'を 成長することで、横方向にGaNが選択成長し、選択横 方向成長を行わない場合に比較して結晶欠陥を低減させ ている。更に、その上層に形成されている変調ドープ歪 み超格子層(MD-SLS) 5を導入することで、活性 層6へ結晶欠陥が延びることを防いでいる。この結果、 選択横方向成長及び変調ドープ歪み超格子層を用いない 20 場合に比較して、デバイス寿命を長くすることが可能と なる。

【0006】この第1の従来技術の場合には、サファイ ア基板上にGaN膜を選択横方向成長しない場合に比べ て、結晶欠陥を低減させることが可能となるが、サファ イア基板を用いることによる、絶縁性と劈開に関する前 述の問題は依然として残っている。更には、SiO2マ スク形成工程を挟んで、MO-VPE装置による結晶成 長が2回必要となり、工程が複雑化するという問題が新 たに生じる。

【0007】また、別の方法として、例えば文献「Appl ied Physics Letters, Vol. 73, No. 6, p. 832-834(199 8)」(以下、第2の従来技術という)には、GaN厚膜 基板を応用することが提案されている。この第2の従来 技術では、前述の第1の従来技術での20 μmの選択横 方向成長後に、H-VPE (ハイドライド気相成長)装 置にて200μmのGaN厚膜を成長し、その後に、こ の厚膜成長したGaN膜を $150\mu m$ の厚さになるよう に、サファイア基板側から研磨することにより、GaN 基板を作製する。このG a N基板上に、MO-VPE装 置を用いて、LDデバイスとして必要な結晶成長を順次 行ない、LDデバイスを作製することで、結晶欠陥を低 減させることが可能になるとともに、サファイア基板を 用いることによる絶縁性と劈開に関する前述の問題点を 解決することが可能となる。なお、この第2の従来技術 と同様のものとして、特開平11-4048号が提案さ れており、図8には特開平11-4048号の半導体レ ーザが示されている。

【0008】しかしながら、この第2の従来技術は、第 1の従来技術よりも更に工程が複雑になっており、より の他の工夫を行うことで、結晶欠陥を低減させることが 50 一層のコスト高になる。また、この第2の従来技術の方

法で200μm程度の厚さのGaN厚膜を成長する場合には、基板であるサファイアとの格子定数差及び熱膨張係数差に伴う応力が大きくなり、基板の反りやクラックが生じるという問題が新たに発生する。

【0009】この問題を回避するために、特開平10-256662号には、厚膜成長する元の基板(サファイ アとスピネル)の厚さを1mm以上とすることが提案さ れている。このように、厚さ1mm以上の基板を用いる ことにより、200μmの厚膜のGaN膜を成長させて も、基板の反りやクラックを生じさせないようにしてい る。しかしながら、このように厚い基板は、基板自体の コストが高く、また研磨に多くの時間を費やす必要があ り、研磨工程のコストアップにつながる。すなわち、厚 い基板を用いる場合には、薄い基板を用いる場合に比べ て、コストが高くなる。また、厚い基板を用いる場合に は、厚膜のGaN膜を成長した後には基板の反りやクラ ックが生じないが、研磨の工程で応力緩和し、研磨途中 で反りやクラックが発生する。このため、厚い基板を用 いても、容易に、結晶品質の高いG a N基板を大面積化 で作製することはできない。

【0010】一方、文献「Journal of Crystal Growth, Vol. 189/190, p. 153-158(1998)」(以下、第3の従来技術という)には、GaNのバルク結晶を成長させ、それをホモエピタキシャル基板として用いることが提案されている。この第3の従来技術は、1400~1700℃の高温、及び数10kbarもの超高圧の窒素圧力中で、液体GaからGaNを結晶成長させる手法となっている。この場合には、このバルク成長したGaN基板を用いて、デバイスに必要なIII族窒化物半導体膜を成長することが可能となる。従って、第1及び第2の従来技術のように工程を複雑化させることなく、GaN基板を提供できる。

【0011】しかしながら、第3の従来技術では、高温,高圧中での結晶成長が必要となり、それに耐えうる反応容器が極めて高価になるという問題がある。加えて、このような成長方法をもってしても、得られる結晶の大きさは高々1cm程度であり、デバイスを実用化するには小さ過ぎるという問題がある。

【0012】この高温、高圧中でのGaN結晶成長の問題点を解決する手法として、文献「Chemistry of Mater 40 ials Vol.9 (1997) p. 413-416」(以下、第4の従来技術という)には、Naをフラックスとして用いたGaN結晶成長方法が提案されている。この方法はアジ化ナトリウム(NaNa)と金属Gaを原料として、ステンレス製の反応容器(容器内寸法;内径=7.5 mm、長さ=100 mm)に窒素雰囲気で封入し、その反応容器を600~800℃の温度で24~100時間保持することにより、GaN結晶を成長させるものである。この第4の従来技術の場合には、600~800℃程度の比較的低温での結晶成長が可能であり、容器内圧力も高々150

00kg/cm<sup>2</sup>程度と第3の従来技術に比較して圧力を低くできる点が特徴である。しかし、この第4の従来技術の問題点としては、得られる結晶の大きさが1mmに満たない程度に小さい点である。この程度の大きさではデバイスを実用化するには第3の従来技術と同様に小さすぎる。

【0013】また、特開2000-327495号(以下、第5の従来技術という)には、上述の第4の従来技術と基板を用いたエピタキシャル法を組み合わせた技術が提案されている。この第5の従来技術では、子め基板表面にGaNあるいはAINを成長させたものを基板として用い、この上に第4の従来技術を用いてGaN膜をエピタキシャル成長させる。しかし、この第5の従来技術は基本的にエピタキシャル成長であり、第1や第2の従来技術と同様に結晶欠陥の問題解決には至らない。更に、予めGaN膜あるいはAIN膜を基板上に成長させるため、工程が複雑となり高コストにつながる。

【0014】また、最近、特開2000-12900号及び特開2000-22212号(以下、第6の従来技術という)には、GaAs 基板を用いてGaN 厚膜基板を作製する方法が提案されている。図9、図10には、この第6の従来技術によるGaN 厚膜基板の作製方法が示されている。先ず、図9を参照すると、(111)GaAs 基板60上に第1の従来技術と同様に $SiO_2$  膜やSiN 膜をマスク61として、GaN 膜63を $70\mu$  m~1 mmの厚さに選択成長する(図9(1)~

(3))。この結晶成長はH-VPEにより行う。その後、王水によりGaAs基板60をエッチング,除去し、GaN自立基板63を作製する(図9(4))。このGaN自立基板63を元に、更に再度H-VPEにより、数10mmの厚さのGaN結晶64を気相成長させる(図10(1))。この数10mmの厚さのGaN結晶64をスライサーによりウェハ状に切り出し、GaNウェハを作製する(図10(2),(3))。

【0015】この第6の従来技術では、GaN自立基板63が得られ、更に数10mmの厚さのGaN結晶64を得ることができる。しかしながら、第6の従来技術には次のような問題点がある。すなわち、SiN膜やSiQz膜を選択成長用マスクとして用いるため、その作型工程が複雑になり、コスト高につながる。また、H-VPEにより数10mmの厚さのGaN結晶を成長さ結晶を多に、反応容器内にも同様の厚さのGaN結晶(単右晶や多結晶)やアモルファス状のGaNが付着し、このでというにはの成長毎にエッチング、除去されるため、量産性に問題がある。また、GaAs基板が犠牲基板として一回の成長毎にエッチング、除去されるため、コスト高につながる。また、結晶品質に関しても、基本的にはGaAsという異種基板上の結晶成長からる、本的にはGaAsという異種基板上の結晶成長から高いという問題も残る。

[0016]

【発明が解決しようとする課題】本発明は、第1あるいは第2の従来技術の問題点である工程を複雑化させることなく、また、第3の従来技術の問題点である高価な反応容器を用いることも無く、かつ、第3,第4の従来技術の問題点である結晶の大きさが小さくなることなく、高性能の発光ダイオードやLD等のデバイスを作製するために実用的な大きさで、かつ、低コスト,高品質のII は疾窒化物結晶を成長させることの可能なIII族窒化物結晶成長方法およびIII族窒化物結晶および半導体デバイスを提供することを目的としている。

【0017】さらに、本発明は、第5あるいは第6の従来技術の問題点である結晶品質を低下させることなく、且つ工程を複雑化させることなく、低コストで高品質のIII族窒化物結晶を成長させることの可能なIII族窒化物結晶成長方法およびIII族窒化物結晶および半導体デバイスを提供することを目的としている。

【0018】また、本願の発明者は、従来技術(特に第4の従来技術)の問題点を改善するために、これまで、特開2001-058900、特開2001-064097、特開2001-64098、特開2001-10202316、特開2001-119103の技術を提案している。

【0019】例えば、特開2001-058900では、III族原料とV族原料を外部より反応容器内に供給することを提案している。また、特開2001-064097では、V族原料を安定に供給することを提案している。また、特開2001-64098では、種結晶を用いて成長する方法を提案している。また、特開2001-102316では、III族金属とアルカリ金属の混合融液からのIII族窒化物結晶の成長について提案している。また、特開2001-119103では、立方晶のIII族窒化物結晶の成長方法を提案している。

【0020】しかし、これまで、アルカリ金属を用いて III族窒化物結晶を成長する方法で、結晶成長条件と結 晶形態、結晶成長の有無の関係が明らかでなかった。

【0021】本発明は、さらに、結晶成長条件と結晶形態、結晶成長の有無の関係を明らかにし、実用的な結晶成長条件でのIII族窒化物の結晶成長を可能とするIII族窒化物結晶成長方法およびIII族窒化物結晶成長装置およびIII族窒化物結晶および半導体デバイスを提供することを目的としている。

#### [0022]

【課題を解決するための手段】上記目的を達成するために、請求項1記載の発明は、反応容器内で、アルカリ金属と少なくともIII族金属を含む物質とが混合融液を形成し、該混合融液と少なくとも窒素を含む物質とから、III族金属と窒素とから構成されるIII族窒化物を結晶成長させるIII族窒化物結晶成長方法であって、圧力と温度とで規定される領域に対応する結晶成長条件で、III族窒化物の結晶を成長させることを特徴としている。

【0023】また、請求項2記載の発明は、請求項1記 載のIII族窒化物結晶成長方法において、結晶成長条件 として、圧力と温度とで規定される領域を複数個設ける とき、複数の領域のそれぞれに応じて互いに異なる結晶 形態のIII族窒化物の結晶が成長可能であることを特徴 としている。

【0024】また、請求項3記載の発明は、請求項2記載のIII族窒化物結晶成長方法において、複数の領域のうちの1つの領域は、III族窒化物の結晶成長形態として、種結晶に結晶成長するものであることを特徴としている。

【0025】また、請求項4記載の発明は、請求項2記載のIII族窒化物結晶成長方法において、Pを反応容器内の実効的な窒素圧力(Pa)、Tを混合融液の絶対温度(K)、a,bを係数とするとき、成長するIII族窒化物の結晶形態は、logP=a/T+bで表される境界により規定される領域に応じて決定されることを特徴としている。

【0026】また、請求項5記載の発明は、請求項4記載のIII族窒化物結晶成長方法において、log P=a/T+bで表される境界は、アルカリ金属のIII族金属との比によって制御可能であることを特徴としている

【0027】また、請求項6記載の発明は、請求項1乃 至請求項5のいずれか一項に記載のIII族窒化物結晶成 長方法において、種結晶を用いて結晶成長可能な結晶成 長条件領域で、III族窒化物の結晶を種結晶を用いて結 晶成長させることを特徴としている。

【0028】また、請求項7記載の発明は、請求項1乃 至請求項5のいずれか一項に記載のIII族窒化物結晶成 長方法において、柱状結晶を用いて結晶成長可能な結晶 成長条件領域で、III族窒化物の結晶を柱状結晶を用い て結晶成長させることを特徴としている。

【0029】また、請求項8記載の発明は、請求項1乃 至請求項5のいずれか一項に記載のIII族窒化物結晶成 長方法において、板状結晶を用いて結晶成長可能な結晶 成長条件領域で、III族窒化物の結晶を板状結晶を用い て結晶成長させることを特徴としている。

【0030】また、請求項9記載の発明は、請求項1乃 至請求項8のいずれか一項に記載のIII族窒化物結晶成 長方法において、III族窒化物結晶が成長せずに分解す る条件領域、種結晶成長する成長条件領域、柱状結晶が 成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用して、III族窒化物結晶 を成長させることを特徴としている。

【0031】また、請求項10記載の発明は、請求項9 記載のIII族窒化物結晶成長方法において、III族窒化物 結晶が成長せずに分解する条件領域と柱状結晶または板 状結晶が成長する成長条件領域とを利用して、III族窒 化物結晶を成長させることを特徴としている。 【0032】また、請求項11記載の発明は、請求項1 乃至請求項5のいずれか一項に記載のIII族窒化物結晶 成長方法において、アルカリ金属としてナトリウム(N a)を用い、少なくともIII族金属を含む物質としてガ リウム(Ga)を用い、少なくとも窒素を含む物質とし て窒素ガス(N2)を用いて、III族窒化物として窒化 ガリウム(GaN)を結晶成長させるときに、窒化ガリ ウム(GaN)の結晶成長とで見定することを特 徴としている。

【0033】また、請求項12記載の発明は、請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1,b1,a2,b2を、a1=-5.40E-3,b1=4.83,a2=-5.59E-3,b2=5.47の係数とするとき、a1/T+b1  $\leq$ 1 og P $\leq$ a2/T+b2で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(GaN)を結晶成長させることを特徴としている。

【0034】また、請求項13記載の発明は、請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力 (Pa)、Tを混合融液の絶対温度 (K)、a2,b2,a3,b3を、a2=-5.59E-3,b2=5.47,a3=-5.67E-3,b3=5.83の係数とするとき、a2/T+b2  $\leq$  log P $\leq$ a3/T+b3で表される結晶成長条件領域で、柱状の窒化ガリウム (GaN) 結晶を成長させることを特徴としている。

【0035】また、請求項14記載の発明は、請求項11記載の111族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a3,b3を、a3=-5.67E-3,b3=5.83の係数とするとき、a3/T+b3 $\leq$ 1ogP7表される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させることを特徴としている。

【0036】また、請求項15記載の発明は、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内の1つの成長条件領域を選択してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有していることを特40る。後としている。

【0037】また、請求項16記載の発明は、III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有していることを特徴としている。

【0038】また、請求項17記載の発明は、請求項1 乃至請求項14のいずれか一項に記載のIII族窒化物結 晶成長方法で作製されたIII族窒化物結晶であることを 特徴としている。

【0039】また、請求項18記載の発明は、請求項17記載のIII族窒化物結晶を用いた半導体デバイスであることを特徴としている。

【0040】また、請求項19記載の発明は、請求項1 8記載の半導体デバイスにおいて、該半導体デバイス は、光デバイスであることを特徴としている。

【0041】また、請求項20記載の発明は、請求項1 8記載の半導体デバイスにおいて、該半導体デバイス は、電子デバイスであることを特徴としている。

#### [0042]

30

【発明の実施の形態】以下、本発明の実施形態を図面に 基づいて説明する。

#### 【0043】第1の実施形態

7 の係数とするとき、 $a_1/T+b_1 \le log$   $P \le a$  本発明の第1 の実施形態は、反応容器内で、アルカリ金  $L/T+b_2$  で表される結晶成長条件領域で、種結晶を 隔と少なくともIII 族金属を含む物質とが混合融液を形 成し、該混合融液と少なくとも窒素を含む物質とから、 はし、該混合融液と少なくとも窒素を含む物質とから、 III 族金属と窒素とから構成されるIII 族窒化物を結晶成 長の 1 日記載のIII 族窒化物結晶成長方法において、1 を窒素 度とで規定される領域に対応する結晶成長条件で、1 III 成次圧力(1 Pa)、1 を混合融液の絶対温度(1 K)、1 族窒化物の結晶を成長させることを特徴としている。

【0044】ここで、III族金属とは、Ga, Al, In等であり、また、アルカリ金属には、K, Na等が使用可能である。また、窒素を含む物質とは、窒素ガスや、アジ化ナトリウム、アンモニアなどの窒素を構成元素に含む化合物である。

【0045】また、結晶成長条件を規定する圧力とは、 反応容器内の空間部分の圧力である。同様に、結晶成長 条件を規定する温度とは、結晶成長が起こる融液内、融 液表面の温度である。

【0046】本発明において、III族窒化物の結晶成長方法は次のようになされる。すなわち、反応容器内には、アルカリ金属と少なくともIII族金属を含む物質と、少なくとも窒素を含む物質とがあり、この反応容器を結晶成長可能な温度に上げること、及び、反応容器内の実効窒素分圧をIII族窒化物結晶が結晶成長する条件に設定することにより、III族窒化物の結晶成長が開始し、III族窒化物を継続的に結晶成長させることができる。

【0047】このように、本発明の第1の実施形態のII I族窒化物結晶成長方法では、反応容器内で、アルカリ 金属と少なくともIII族金属を含む物質とが混合融液を 形成し、該混合融液と少なくとも窒素を含む物質とか ら、III族金属と窒素とから構成されるIII族窒化物を結 晶成長させるIII族窒化物結晶成長方法であって、圧力 と温度とで規定される領域に対応する結晶成長条件で、 III族窒化物の結晶を成長させるので、III族窒化物結晶 (具体的には、例えばIII族窒化物の薄膜結晶成長用の 基板となるIII族窒化物結晶)を容易に得ることができ る。すなわち、第1あるいは第2の従来技術で述べたよ うな複雑な工程を必要とせずに、低コストで、高品質の 111族窒化物結晶及びそれを用いた半導体デバイスを得 ることが可能となる。

【0048】また、1000℃以下と成長温度が低く、 100気圧程度以下と圧力も低い条件下で口族窒化物 の結晶成長が可能となることから、第3の従来技術のよ うに超高圧、超高温に耐えうる高価な反応容器を用いる 必要がない。その結果、低コストで、III族窒化物結晶

【0049】さらに、圧力と温度とで規定される領域に 対応する結晶成長条件で、III族窒化物の結晶を成長さ せるので、結晶成長の制御性を格段に向上させることが 可能となり、所望の結晶形態を容易に得ることができ る。

【0050】換言すれば、圧力と温度とで規定される領 域に対応する結晶成長条件で、III族窒化物の結晶を成 長させるので、混合融液を用いた良質なIII族窒化物結 晶を成長する場合の条件制御性を向上させることができ 20 る。すなわち、圧力と温度を制御することで、良質なII 1族窒化物結晶を成長することが可能となる。

#### 【0051】第2の実施形態

本発明の第2の実施形態は、第1の実施形態のIII族窒 化物結晶成長方法において、結晶成長条件として、圧力 と温度とで規定される領域を複数個設けるとき、複数の 領域のそれぞれに応じて互いに異なる結晶形態のIII族 窒化物の結晶が成長可能であることを特徴としている。

【0052】このように、第2の実施形態では、結晶成 長条件として、圧力と温度とで規定される領域を複数個 30 設けるとき、複数の領域のそれぞれに応じて互いに異な る結晶形態のIII族窒化物の結晶を成長可能であるの で、結晶成長の制御性を格段に向上させることが可能と なり、所望の結晶形態を容易に得ることができる。

#### 【0053】<u>第3の実施形態</u>

本発明の第3の実施形態は、第2の実施形態のIII族窒 化物結晶成長方法において、複数の領域のうちの1つの 領域は、111族窒化物の結晶成長形態として、種結晶に 結晶成長するものであることを特徴としている。

【0054】このように、第3の実施形態では、複数の 40 領域のうちの1つの領域は、III族窒化物の結晶成長形 態として、種結晶に結晶成長するものであるので、他の 領域への核発生及び結晶成長が殆ど発生せず、これによ り、無駄な原料の消費を抑え、大型のIII族窒化物単結 晶を作製することが可能となる。また、種結晶のある所 定位置に大型の単結晶を成長させることができる。更 に、種結晶の結晶方位を制御することで、成長する結晶 の結晶方位も制御することが可能となり、基板として用 いる際に意図した結晶方位を使用することが容易とな る。

#### 【0055】第4の実施形態

本発明の第4の実施形態は、上述した第2の実施形態の III族窒化物結晶成長方法において、成長するIII族窒化 物の結晶形態が、次式(数1)で表される境界により規 定される領域に応じて決定されることを特徴としてい

12

[0056]

【数1】log P=a/T+b

【0057】ここで、Pは反応容器内の実効的な窒素圧 及びそれを用いた半導体デバイスを得ることが可能とな 10 力(Pa)、Tは混合融液の絶対温度(K)、a, bは 係数である。

> 【0058】このように、第4の実施形態は、Pを反応 容器内圧力(Pa)、Tを混合融液の絶対温度(K)、 a, bを係数とするとき、成長するIII族窒化物の結晶 形態が、log P = a/T + bで表される境界により 規定されるので、上記数式を元にして成長条件を決定 し、良質なIII族窒化物結晶を成長することが可能とな る。より詳しくは、上記数式を元にして、圧力と温度を 決定することで、所望の結晶形態のIII族窒化物結晶を 成長させることが可能となる。

#### 【0059】第5の実施形態

本発明の第5の実施形態は、第4の実施形態の111族窒 化物結晶成長方法において、log P=a/T+bで 表される境界は、アルカリ金属のIII族金属との比によ って制御可能であることを特徴としている。

【0060】このように、第5の実施形態では、第4の 実施形態のIII族窒化物結晶成長方法において、1og

P=a/T+bで表される境界は、アルカリ金属(例 えば、Na)のIII族金属(例えば、Ga)との比によ って制御可能であるので、領域を容易に制御することが できる。

#### 【0061】<u>第6の実施形態</u>

本発明の第6の実施形態は、第1乃至第5のいずれかの 実施形態のIII族窒化物結晶成長方法において、種結晶 を用いて結晶成長可能な結晶成長条件領域で、III族窒 化物の結晶を種結晶を用いて結晶成長させることを特徴 としている。

【0062】このように、第6の実施形態では、種結晶 を用いて結晶成長可能な結晶成長条件領域で、III族窒 化物の結晶を種結晶を用いて結晶成長させることで、大 型のIII族窒化物単結晶を作製することが可能となる。 すなわち、上記の結晶成長条件領域では、種結晶を元に した結晶成長が支配的であり、他の領域への核発生及び 結晶成長が殆ど発生しないことから、無駄な原料の消費 を抑え、大型のIII族窒化物単結晶を作製することが可 能となる。また、種結晶のある所定位置に大型の単結晶 を成長させることができる。更に、種結晶の結晶方位を 制御することで、成長する結晶の結晶方位も制御するこ とが可能となり、基板として用いる際に意図した結晶方

50 位を使用することが容易となる。

#### 【0063】第7の実施形態

本発明の第7の実施形態は、第1乃至第5のいずれかの 実施形態のIII族窒化物結晶成長方法において、柱状結 晶を用いて結晶成長可能な結晶成長条件領域で、III族 窒化物の結晶を柱状結晶を用いて結晶成長させることを 特徴としている。

【0064】このように、第7の実施形態では、柱状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を柱状結晶を用いて結晶成長させるので、良質な柱状結晶を成長させることが可能となる。すなわ 10 ち、上記の結晶成長条件領域では、柱状結晶が支配的に結晶成長することから、面方位が明確となっている。従って、この柱状結晶を元にIII族窒化物基板を作製する場合に、面方位の決定、スライスが容易となる利点がある。

#### 【0065】第8の実施形態

本発明の第8の実施形態は、第1乃至第5のいずれかの 実施形態のIII族窒化物結晶成長方法において、板状結 晶を用いて結晶成長可能な結晶成長条件領域で、III族 窒化物の結晶を板状結晶を用いて結晶成長させることを 20 特徴としている。

【0066】このように、第8の実施形態では、板状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を板状結晶を用いて結晶成長させるので、良質な板状結晶を成長することが可能となる。すなわち、上記の結晶成長条件領域では、板状結晶が支配的に結晶成長することから、III族窒化物基板として用い易い。この板状結晶をそのままIII族窒化物基板として用いることも可能である。あるいは、表面の凹凸がある場合でも、表面研磨するのみでIII族窒化物基板として用することができる。また、面方位が明確となっていることができる。また、面方位が明確となっていることからも、基板としての使用を容易にすることができる。更に、この結晶成長条件領域での結晶成長では、板状結晶の面方向結晶成長速度が早いことから、効率的にIII族窒化物結晶を成長することができ、低コストにつながる。

#### 【0067】<u>第9の実施形態</u>

本発明の第9の実施形態は、第1乃至第8のいずれかの 実施形態のIII族窒化物結晶成長方法において、III族窒 化物結晶が成長せずに分解する条件領域、種結晶成長す 40 る成長条件領域、柱状結晶が成長する成長条件領域、板 状結晶が成長する成長条件領域の内、複数の条件領域を 利用して、III族窒化物結晶を成長させることを特徴と している。

【0068】第9の実施形態は、III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用して、II I族窒化物結晶を成長させることで、複数の形態を有する結晶成長が可能となる。従って、同一の結晶成長にお50 いて異なる形態のIII族窒化物結晶を得ることができる。

#### 【0069】第10の実施形態

本発明の第10の実施形態は、第9の実施形態のIII族 窒化物結晶成長方法において、III族窒化物結晶が成長 せずに分解する条件領域と柱状結晶または板状結晶が成 長する成長条件領域とを利用して、III族窒化物結晶を 成長させることを特徴としている。

【0070】第10の実施形態は、III族窒化物結晶が成長せずに分解する条件領域と柱状結晶または板状結晶が成長する成長条件領域とを利用して、III族窒化物結晶を成長させることで、III族窒化物結晶に対して分解と成長の両方を行うことができ、これにより、次のような効果を得ることができる。すなわち、柱状結晶や板状結晶が成長する条件領域では、多数の結晶核が発生する。多数の結晶核発生と分解の両条件を推移させることで、小さな結晶が分解され、より大きな結晶が成長し易くなる。従って、第10の実施形態によれば、大型の結晶を成長させることができる。

#### 【0071】<u>第11の実施形態</u>

本発明の第11の実施形態は、第1乃至第5のいずれかの実施形態のIII族窒化物結晶成長方法において、アルカリ金属としてナトリウム(Na)を用い、少なくともIII族金属を含む物質としてガリウム(Ga)を用い、少なくとも窒素を含む物質として窒素ガス(N2)を用いて、III族窒化物として窒化ガリウム(GaN)を結晶成長させるときに、窒化ガリウム(GaN)の結晶成長条件を窒素ガス圧力とガリウムとナトリウムの混合融液の温度とで規定することを特徴としている。

【0072】このように、第11の実施形態は、アルカリ金属としてナトリウム(Na)を用い、少なくともIII族金属を含む物質としてガリウム(Ga)を用い、少なくとも窒素を含む物質として窒素ガス(N2)を用いて、III族窒化物として窒化ガリウム(GaN)を結晶成長させるときに、窒化ガリウム(GaN)の結晶成長や空素ガス圧力とガリウムとナトリウムの混合融液の温度とで規定するので、良質なGaN結晶を制御性良く成長させることが可能となる。更に、NaとGaを用いることから、NaとGaが均一に混ざり合い、温度を均一に制御することが可能となる。従って、窒素ガス圧力と混合融液の温度を制御することで、所望の結晶形態も制御して、所望の結晶形態のGaN結晶を容易に成長させることが可能となる。

#### 【0073】第12の実施形態

本発明の第12の実施形態は、第11の実施形態のIII 族窒化物結晶成長方法において、次式で表される結晶成 長条件領域で、種結晶を用いて窒化ガリウム (GaN) を結晶成長させることを特徴としている。

[0074]

【数2】a:/T+b:≦log P≦a:/T+b2 【0075】 ここで、Pは窒素ガス圧力 (Pa)、Tは 混合融液の絶対温度(K)、a1, b1, a2, b 2は係数で、a 1 = -5. 40E-3, b 1 = 4. 8 る。

【0076】このように、第12の実施形態は、Pを窒 素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、  $a 1, b 1, a 2, b 2 \delta, a 1 = -5.40 E - 3,$ b1=4.83, a2=-5.59E-3, b2=5. 47の係数とするとき、a1/T+b1≦log P≦ a2/T+b2で表される結晶成長条件領域で、種結晶 を用いて窒化ガリウム (GaN) を結晶成長させるよう にしており、種結晶を元にしてGaN結晶を成長させる ことが、圧力と温度を制御することで可能となる。すな わち、上記の結晶成長条件領域では、種結晶を元にした 結晶成長が支配的であり、他の領域への核発生及び結晶 成長が殆ど発生しないことから、無駄な原料の消費を抑 え、大型のIII族窒化物単結晶を作製することが可能と なる。また、種結晶のある所定位置に大型の単結晶を成 20 長させることができる。更に、種結晶の結晶方位を制御 することで、成長する結晶の結晶方位も制御することが 可能となり、基板として用いる際に意図した結晶方位を 使用することが容易となる。

#### 【0077】第13の実施形態

本発明の第13の実施形態は、第11の実施形態のIII 族窒化物結晶成長方法において、次式で表される結晶成 長条件領域で、柱状の窒化ガリウム (GaN) 結晶を成 長させることを特徴としている。

#### [0078]

【数3】a2/T+b2≦log P≦a3/T+b3 【 0 0 7 9 】 ここで、 P は窒素ガス圧力 ( P a ) 、 T は 混合融液の絶対温度(K)、a2, b2, 3は係数で、a 2=-5.59E-3. b 2=5.4 7, a 3 = -5.67E - 3, b 3 = 5.83 cbる。

【0080】このように、第13の実施形態は、Pを窒 素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、  $a 2, b 2, a 3, b 3 \delta, a 2 = -5.59 E - 3,$  $b\ 2=5$ . 47,  $a\ 3=-5$ . 67E-3,  $b\ 3=5$ . 83の係数とするとき、a2/T+b2≦log P≦ a 3 / T + b 3 で表される結晶成長条件領域で、柱状の 窒化ガリウム(G a N)結晶を成長させるようにしてお り、これにより、良質な柱状結晶を成長させることが可 能となる。すなわち、上記の結晶成長条件領域では、柱 状結晶が支配的に結晶成長することから、面方位が明確 となっている。従って、この柱状結晶を元にIII族窒化 物基板を作製する場合に、面方位の決定、スライスが容 易となる利点がある。また、この結晶成長条件領域で

長することから、前述の第12の実施形態で用いる種結 晶として、この第13の実施形態の結晶成長条件領域で 結晶成長した柱状結晶を使用することができる。

#### 【0081】第14の実施形態

本発明の第14の実施形態は、第11の実施形態のIII 族窒化物結晶成長方法において、次式で表される結晶成 長条件領域で、板状の窒化ガリウム (GaN) 結晶を成 長させることを特徴としている。

#### [0082]

【数4】a₃/T+b₃≦log P

【0083】ここで、Pは窒素ガス圧力 (Pa)、Tは 混合融液の絶対温度(K)、a3,b3は係数で、a3 =-5.67E-3, b3=5.83 c5.63

【0084】このように、第14の実施形態は、Pを窒 素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、 a 3, b 3  $\delta$ , a 3 = -5. 6 7 E - 3, b 3 = 5. 8 3の係数とするとき、a3/T+b3≦log Pで表 される結晶成長条件領域で、板状の窒化ガリウム (Ga N)結晶を成長させるようにしており、これにより、良 質な板状結晶を成長することが可能となる。すなわち、 上記の結晶成長条件領域では、板状結晶が支配的に結晶 成長することから、111族窒化物基板として用い易い。 この板状結晶をそのままIII族窒化物基板として用いる ことも可能である。あるいは、表面の凹凸がある場合で も、表面研磨するのみでIII族窒化物基板として使用す ることができる。また、面方位が明確となっていること からも、基板としての使用を容易にすることができる。 更に、この結晶成長条件領域での結晶成長では、板状結 晶の面方向結晶成長速度が早いことから、効率的にIII 30 族窒化物結晶を成長することができ、低コストにつなが る。また、この結晶成長条件領域では、種結晶がなくと も、自発核発生により板状結晶が成長することから、前 述の第12の実施形態で用いる種結晶として、この第1 4の実施形態の結晶成長条件領域で結晶成長した板状結 晶を使用することができる。

#### 【0085】<u>第15の実施形態</u>

本発明の第15の実施形態は、種結晶成長する成長条件 領域、柱状結晶が成長する成長条件領域、板状結晶が成 長する成長条件領域の内の1つの成長条件領域を選択し 40 てIII族窒化物結晶を成長させるための圧力制御機構及 び温度制御機構を有しているIII族窒化物結晶成長装置 である。

【0086】第15の実施形態のIII族窒化物結晶成長 装置は、種結晶成長する成長条件領域、柱状結晶が成長 する成長条件領域、板状結晶が成長する成長条件領域の 内の1つの成長条件領域を選択して川族窒化物結晶を 成長させるための圧力制御機構及び温度制御機構を有し ているので、III族窒化物結晶を種結晶成長する成長条 件、柱状結晶成長条件、板状結晶成長条件の所望の成長 は、種結晶がなくとも、自発核発生により柱状結晶が成 50 条件に圧力,温度を制御することができる。従って、1

る。

17

台の結晶成長装置で、所望の成長条件でIII族窒化物結晶を成長させることが可能となる。

#### 【0087】第16の実施形態

本発明の第16の実施形態は、III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有しているIII族窒化物結晶成長装置である。

【0088】第16の実施形態のIII族窒化物結晶成長装置は、III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域の内、複数の条件領域を利用して成長させるための圧力制御機構及び温度制御機構を有することで、III族窒化物結晶を分解条件、柱状結晶成長条件、板状結晶成長条件の任意の条件に制御することができる。従って、任意の形態のIII族窒化物や大型のIII族窒化物結晶を成長させることが可能となる。

#### 【0089】第17の実施形態

本発明の第17の実施形態は、第1乃至第14のいずれ かの実施形態のIII族窒化物結晶成長方法で作製されたI II族窒化物結晶である。

【0090】このIII族窒化物結晶は、第1乃至第14 のいずれかの実施形態のIII族窒化物結晶成長方法で作 製されたものであるので、高品質のものとなっている。

#### 【0091】第18の実施形態

本発明の第18の実施形態は、第17の実施形態のIII 族窒化物結晶を用いた半導体デバイスである。

【0092】このように、第18の実施形態は、第17 の実施形態のIII族窒化物結晶を用いた半導体デバイス であるので、高品質の半導体デバイスを提供できる。

【0093】なお、ここで、半導体デバイスは、光デバイスであっても良いし、電子デバイスであっても良い。 【0094】次に、上述した各実施形態をより詳細に説明する。なお、以下では、説明の便宜上、III族窒化物結晶がGaN結晶であるとして説明する。

【0095】図1は本発明のIII族窒化物結晶成長方法で用いられる結晶成長装置の一例を示す図である。

【0096】図1を参照すると、反応容器101内には、アルカリ金属(以下の例では、Na)と少なくともII I族金属(以下の例では、Ga)を含む物質との混合融液 103を保持する混合融液保持容器102が設置されている。

【0097】なお、アルカリ金属(Na)は、外部から供給されても良いし、あるいは、最初から反応容器101内に存在していても良い。

【0098】また、混合融液保持容器102の上には蓋 109があり、混合融液保持容器102と蓋109との 50

間には、気体が出入できる程度の僅かな隙間がある。 【0099】また、反応容器101は、例えばステンレスで形成されている。また、混合融液保持容器102は、例えば、BN(窒化ホウ素)、あるいは、AIN、あるいは、パイロリティックBNで形成されている。 【0100】また、反応容器101には、III族窒化物(GaN)を結晶成長可能な温度に反応容器101内を制御するための加熱装置106が設けられている。すなわち、加熱装置106による温度制御機能によって、反び、結晶成長が停止する温度に下げること、及び、それらの温度に任意の時間保持することが可能となってい

18

【0101】また、図1のIII族窒化物結晶成長装置には、反応容器101内に少なくとも窒素を含む物質(例えば、窒素ガス、アンモニアガスまたはアジ化ナトリウム)を供給するための供給管104が設けられている。なお、ここで言う窒素とは、窒素分子あるいは窒素を含む化合物から生成された窒素分子や原子状窒素、および窒素を含む原子団および分子団のことであり、本発明において、窒素とは、このようなものであるとする。

【0102】また、少なくとも窒素を含む物質は、容器 107に収納されている。ここで、少なくとも窒素を含む物質として窒素ガスを用いるときには、容器107に は窒素ガスが収納されている。

【0103】また、少なくとも窒素を含む物質として窒素ガスを用いるときには、供給管104には、窒素ガスの圧力を調整するために圧力調整機構(例えば、圧力調整弁)105が設けられている。また、図1の装置には、反応容器101内の窒素ガスの圧力を検知する圧力センサー112と、混合融液保持容器102の温度を検知する温度センサー112とが設置され、反応容器101内の圧力が所定の圧力となるように、圧力センサー111は圧力調整機構105にフィードバックをかけるように構成されている。また、温度センサー112は、加熱装置106にフィードバックをかけるように構成されている。

【0104】本発明の具体例では、少なくとも窒素を含む物質として、窒素ガスを用い、窒素ガスを、反応容器 101外に設置されている容器107から供給管104 を通して反応容器101内の空間108に供給することができる。この際、窒素ガスは、図1に示されているように、反応容器101の下側から供給されるようにしている。この窒素ガスの圧力は、圧力調整機構105によって調整することができる。

【0105】図1の装置を用いてIII族窒化物(GaN)の結晶を成長させる場合、反応容器101内の温度,圧力を所定の温度,所定の圧力に設定し、この状態を一定時間保持することで、混合融液保持容器102内にはIII族窒化物結晶としてGaN結晶110が成長す

る。この場合、このときの温度、圧力の成長条件によ り、GaN結晶110の結晶形態が異なってくる。

19

【0106】図2は結晶成長条件の温度と圧力の関係を 表した図である。なお、図2において、縦軸は反応容器 101内の窒素圧力であり、横軸は混合融液103の温 度(絶対温度)の逆数をとったものである。

【0107】図2において、領域Aは、GaN結晶が成 長しない領域である。また、領域Bは、種結晶のみにG a N結晶が支配的に結晶成長する領域である。また、領 域Cは、柱状のGaN結晶が支配的に結晶成長する領域 10 である。また、領域Dは、板状のGaN結晶が支配的に 結晶成長する領域である。なお、ここでいう支配的と は、大部分がその形態で結晶成長している状態をいう。

【0108】領域Cで支配的に成長する柱状の窒化ガリ ウム (GaN) 結晶とは、六方晶系のGaN結晶におい て、C軸<0001>方向に結晶が伸びた形状のもので ある。また、領域Dで支配的に成長する板状の窒化ガリ ウム (GaN) 結晶とは、六方晶系のGaN結晶におい て、C面すなわち(0001) 面方向に結晶が伸びた形 状のものである。

【0109】領域Aは、ライン1より圧力が低く、温度 が高い(1/Tが小さい)領域である。また、領域B は、ライン1とライン2で挟まれた領域である。また、 領域Cは、ライン2とライン3で挟まれた領域である。 また、領域Dは、ライン3よりも圧力が高く、温度が低 い(1/Tが大きい)領域である。

【0110】ここで、本願の発明者らは、ライン1とラ イン2とライン3が、それぞれ、次のように表されるこ とを実験的に見出した。

って表わされる。

[0112]

【数5】log P=a1/T+b1

【0113】ここで、Pは窒素ガス圧力(Pa)、Tは 混合融液の絶対温度(K)、a1, b1は係数で、a1 =-5.40E-3, b 1 = 4.83  $\circ$  5.

【0114】また、ライン2は、次式(数6)によって 表わされる。

[0115]

【数6】log P=a2/T+b2

【0116】ここで、Pは窒素ガス圧力(Pa)、Tは 混合融液の絶対温度(K)、a2, b2は係数で、a2 =-5.59E-3, b 2=5.47 c 6.50

【0117】また、ライン3は、次式(数7)によって 表わされる。

[0118]

【数7】log P=a3/T+b3

【0119】ここで、Pは窒素ガス圧力(Pa)、Tは 混合融液の絶対温度(K)、a3, b3は係数で、a3 =-5.67E-3, b3=5.83 c5.83

【0120】前述した数2は、窒素ガス圧力がライン1 とライン2との間の領域Bになければならないことを表 わし、また、数3は窒素ガス圧力がライン2とライン3 との間の領域Cになければならないことを表わし、ま た、数4は窒素ガス圧力がライン3より上の領域Dにな ければならないことを表わしている。

【0121】先ず、図2の領域Bの結晶成長条件を用い てGaN結晶を成長させる場合について説明する。この 領域Bでは、種結晶に支配的に結晶成長する。従って、 種結晶以外の領域には、結晶核の発生、及び結晶成長は 殆どしない。

【0122】具体的に、図1の結晶成長装置を用い、結 晶成長条件として、窒素ガス圧力を2MPa、融液温度 を850°C (1/T=8.9E-4 K<sup>-1</sup> ) にしてG a N結晶成長させた場合、図3に示すような結晶成長と なる。すなわち、図1の混合融液103中に種結晶とな るGaN結晶301を設置しておき、上記の結晶成長条 件(窒素ガス圧力; 2MPa、融液温度; 850℃) に 保持する。その後、種結晶301を元に、GaN結晶が 20 大きく成長し、成長後のGaN結晶302となる。

【0123】ここで、種結晶301として六角柱状の結 晶を用いており、その種結晶301の周りに結晶が成長 し、GaN結晶が大きくなっている。図3において、六 角柱の上面及び底面が(0001)面となっている。

【0124】図2の領域Bでは、種結晶に支配的に結晶 成長することから、種結晶以外の領域には新たな結晶成 長は起こり難く、原料の効率的な消費が可能となる。す なわち、種結晶を元にして成長するGaN結晶で殆どの 原料が消費されることとなり、最初に仕込んだ金属Ga 【0111】すなわち、ライン1は、次式(数5)によ 30 が効率的に使用される。その結果、より大きなGaN結 晶を成長させることが可能となる。

> 【0125】また、種結晶を元に結晶成長できることか ら、結晶方位の制御も容易になる。特に、予め結晶方位 の明確となっているGaN結晶を種結晶として用いるこ とにより、結晶方位の精密制御が可能となる。その結 果、最終的にGaN基板として結晶をスライスする際 に、面方位が明確にし易いという利点がある。

> 【0126】また、このようにして得られるGaN結晶 は、欠陥密度の小さい良質な結晶となっている。

【0127】また、この例では、六角柱状の種結晶を用 いているが、後述のような板状結晶を種結晶として用い ても良い。また、従来技術で述べたエピタキシャル膜上 に結晶成長させることも可能である。この場合、板状の 大きなGaN結晶を実現することができる。

【0128】次に、図2の領域Cの結晶成長条件を用い てGaN結晶を成長させる場合について説明する。この 領域Cでは、柱状結晶が支配的に結晶成長する。

【0129】具体的に、図1の結晶成長装置を用い、結 晶成長条件として、窒素ガス圧力を3MPa、融液温度 50  $\times 800\%$  (1/T=9. 32E-4 K<sup>-1</sup>) にして

22

GaN結晶を成長させた場合、図4(a)または図4(b)に示すような柱状結晶401が成長する。すなわち、図1の結晶成長装置において、上記の結晶成長条件(窒素ガス圧力; 3MPa、融液温度; 800℃)に保持することで、混合融液103中に図4(a)または図4(b)の形態のGaN結晶401が成長する。

【0130】ここで、図4(a)のように成長したGa N結晶401は六角柱状のものであり、また、図4

(b) のように成長したGaN結晶401は六角柱の上方に六角錘が重なったような形状のものである。図4(a),図4(b)のいずれのGaN結晶401も上面

及び底面がC面(0001)面となっており、C軸方向に伸びた結晶形態である。

【0131】図2の領域Cでは、上述のように柱状結晶が支配的に結晶成長することから、面方位が明確となっている。従って、この柱状結晶を元にGaN基板を作製する場合に、面方位の決定、スライスが容易となる利点がある。

【0132】また、この領域Cでは、種結晶がなくとも、自発核発生により柱状結晶が成長することから、前 20 述の領域Bで用いる種結晶として、本領域Cで結晶成長した柱状結晶を使用することができる。

【0133】次に、図2の領域Dの結晶成長条件を用いてGaN結晶を成長させる場合について説明する。この領域Dでは、板状結晶が支配的に結晶成長する。

【0134】具体的に、図1の結晶成長装置を用い、結晶成長条件として、窒素ガス圧力を5 MPa、融液温度を750  $\mathbb{C}$  (1/T=9. 77E-4  $\mathbb{K}^{-1}$  ) にして  $\mathbb{C}$  GaN結晶を成長させた場合、図5 に示すような板状結晶501 が成長する。すなわち、図1 の結晶成長装置に 30 おいて、上記の結晶成長条件(窒素ガス圧力;5 MPa、融液温度;750  $\mathbb{C}$ )に保持することで、混合融液103 中、及び、融液表面に、図5 の形態の $\mathbb{C}$  a N結晶501 が成長する。

【0135】なお、図2の領域Dの結晶成長条件を用いて成長させたGaN結晶501としては、図5に示すような六角板状のもの以外にも、多角形状の六方晶の板状結晶も得られる。いずれもC面(0001)面方向に伸びた結晶形態である。

【0136】この領域Dでは、板状結晶が支配的に結晶成長することから、GaN基板として用い易い。この板状結晶をそのままGaN基板として用いることも可能である。あるいは、表面の凹凸がある場合でも、表面研磨するのみで、GaN基板として使用することができる。また、面方位が明確となっていることからも、基板としての使用を容易にすることができる。

【0137】更に、この領域Dでの結晶成長では、板状結晶の面方向結晶成長速度が早いことから、効率的にGaN結晶を成長することができ、低コストにつながる。 【0138】また、この領域Dでは、種結晶がなくと も、自発核発生により板状結晶が成長することから、前述の領域Bで用いる種結晶として、本領域Dで結晶成長した板状結晶を使用することができる。

【0139】このように、本発明のIII族窒化物結晶成長方法を用いて、III族窒化物結晶を作製することができる。このように作製されたIII族窒化物結晶は、結晶欠陥の少ない高品質な結晶となっている。

【0140】また、図11は本発明の結晶成長装置の他の例を示す図である。図11の結晶成長装置は、図1の10結晶成長装置において、圧力センサー111と圧力調整 弁105との間に、圧力制御機構130が設けられ、また、温度センサー112と加熱装置106との間に温度制御機構131が設けられている。

【0141】図11の結晶成長装置では、圧力調整弁105を圧力制御機構130を介して制御し、また、加熱装置106を温度制御機構131を介して制御することで、III族窒化物結晶の成長条件の設定や変更などを自動的に行うことが可能となる。この結果、1台の結晶成長装置で、所望の形態のIII族窒化物結晶を成長させることが可能となる。あるいは、III族窒化物結晶を分解条件、柱状結晶成長条件、板状結晶成長条件の任意の条件に制御することが可能となる。従って、任意の形態のIII族窒化物や大型のIII族窒化物結晶を成長させることが可能となる。すなわち、意図した結晶形態を任意の時間成長、分解することが可能となり、低コストで大型のIII族窒化物結晶を成長させることができる。

【0142】図12あるいは図13は図11の結晶成長装置の具体例を示す図である。図12,図13の例では、図11の圧力制御機構130,温度制御機構131の機能を有するパーソナルコンピュータ140が設けられている。すなわち、圧力センサー111,温度センサー112からの検知情報はパーソナルコンピュータ140に入力され、パーソナルコンピュータ140によって、圧力センサー111,温度センサー112からの検知情報に基づいて、容器101内の圧力,温度が所定の圧力,温度となるように圧力調整弁105,加熱装置106を制御するように構成されている。

【0143】ここで、図12の例では、パーソナルコンピュータ140には、操作部として、板状結晶選択部141と、柱状結晶選択部142とが設けられており、また、記憶部143には、板状結晶を成長させるための成長条件(圧力、温度データ)と、柱状結晶を成長させるための成長条件(圧力、温度データ)とが記憶されている。

【0144】図12の例では、オペレータが板状結晶選択部141を選択操作すると、コンピュータ140は、記憶部143から板状結晶を成長させるための成長条件(圧力,温度データ)を読み出し、容器101内の圧力,温度を、この圧力,温度に自動制御する。これによ50 り、板状結晶を確実に成長させることができる。

23

【0145】また、オペレータが柱状結晶選択部142 を選択操作すると、コンピュータ140は、記憶部14 3から柱状結晶を成長させるための成長条件(圧力,温 度データ)を読み出し、容器101内の圧力,温度を、 この圧力、温度に自動制御する。これにより、柱状結晶 を確実に成長させることができる。

【0146】また、図13の例では、パーソナルコンピ ュータ140には、操作部として、種々の成長方法を選 択可能な選択部144-1~144-nが設けられてい る。また、記憶部143には、種々の成長方法を実現す るためのデータが記憶されている。例えば、記憶部14 3には、選択部144-1に対応させて、領域CでGa N結晶を成長させた後、領域Dの成長条件に変更する成 長方法を実現するためのデータが記憶され、また、選択 部144-2に対応させて、領域Cあるいは領域DでG a N結晶を成長させた後、分解領域である領域Aに条件 を変更し、しかる後、更に領域Cあるいは領域Dに条件 を変更する成長方法を実現するためのデータが記憶され ている。

【0147】この場合、例えば選択部144-1が選択 20 されると、これに対応したデータが記憶部143から読 み出され、領域CでG a N結晶を成長させた後、領域D の成長条件に変更する成長方法が実行されるようになっ ている。また、例えば選択部144-2が選択される と、これに対応したデータが記憶部143から読み出さ れ、領域Cあるいは領域DでGaN結晶を成長させた 後、分解領域である領域Aに条件を変更し、その後、更 に領域Cあるいは領域Dに条件を変更する成長方法が実 行されるようになっている。

【0148】このような構成では、オペレータが選択部 144-1を選択すると、領域CでGaN結晶を成長さ せた後、領域Dの成長条件に変更する成長方法が実行さ れ、柱状結晶と板状結晶の両方の結晶形態のG a N結晶 を成長させることができる。

【0149】また、オペレータが選択部144-2を選 択すると、領域Cあるいは領域DでGaN結晶を成長さ せた後、分解領域である領域Aに条件が変更し、領域C あるいは領域Dで成長した柱状あるいは板状のG a N結 晶の内、小さい結晶が分解する。その後、更に領域Cあ るいは領域Dに条件が変更し、再度GaN結晶成長が開 40 始し、この結果、大きな結晶を成長させることができ

【0150】図6は本発明のIII族窒化物結晶を用いて 作製された半導体デバイスの構成例を示す図である。な お、図6の半導体デバイスは、半導体レーザとして構成 されている。図6の半導体レーザは、本発明の111族窒 化物結晶成長方法により作製されたIII族窒化物結晶を 用いたn型GaN基板601上に、n型AlGaNクラ ッド層602、n型GaNガイド層603、InGaN

イド層605、p型AIGaNクラッド層606、p型 GaNコンタクト層607が順次に結晶成長されて積層 されている。

【0151】この結晶成長方法としては、MO-VPE (有機金属気相成長) 法やMBE (分子線エピタキシ 一) 法等の薄膜結晶成長方法を用いることができる。 【0152】そして、このようなGaN, AlGaN, InGaNの積層膜にリッジ構造が形成され、SiOa 絶縁膜608がコンタクト層607のところでのみ穴開 10 けした状態で形成され、上部及び下部に、各々、p側オ ーミック電極(Au/Ni)609及びn側オーミック 電極(Al/Ti) 610が形成されている。

【0153】この半導体レーザでは、p側オーミック電 極609及びn側オーミック電極610から電流を注入 することで、レーザ発振し、図6の矢印方向にレーザ光 が出射される。

【0154】この半導体レーザは、本発明のIII族窒化 物結晶(GaN結晶)を基板として用いているため、半 導体レーザデバイス中の結晶欠陥が少なく、大出力動作 且つ長寿命のものとなっている。また、GaN基板はn 型であることから、基板に直接電極を形成することがで き、第1の従来技術(図7)のようにp側とn側の2つ の電極を表面からのみ取り出すことが必要なく、低コス ト化を図ることが可能となる。更に、光出射端面を劈開 で形成することが可能となり、チップの分離と併せて、 低コストで高品質なデバイスを実現することができる。 【0155】なお、上述の例では、InGaN MQW を活性層604としたが、AlGaN MQWを活性層 604として、発光波長の短波長化を図ることも可能で ある。すなわち、本発明では、GaN基板の欠陥及び不 純物が少ないことで、深い順位からの発光が少なくな り、短波長化しても高効率な発光デバイスが可能とな

【0156】また、上述の例では、本発明を光デバイス に適用した場合について述べたが、本発明を電子デバイ スに適用することもできる。すなわち、欠陥の少ないG a N基板を用いることで、その上にエピタキシャル成長 したGaN系薄膜も結晶欠陥が少なく、その結果、リー ク電流を抑制できたり、量子構造にした場合のキャリア 閉じ込め効果を高めたり、高性能なデバイスが実現可能 となる。

【0157】すなわち、本発明のIII族窒化物結晶は、 前述したように、結晶欠陥の少ない高品質な結晶であ る。このIII族窒化物結晶を用いて、デバイスを作製あ るいは基板として用いて、薄膜成長からデバイス作製を 行うことで、高性能なデバイスが実現できる。ここで言 う高性能とは、例えば半導体レーザや発光ダイオードの 場合には、従来実現できていない高出力且つ長寿命なも のであり、電子デバイスの場合には低消費電力、低雑 MQW (多重量子井戸) 活性層 6 0 4 、p型 G a Nガ - 50 音、高速動作、高温動作可能なものであり、受光デバイ

スとしては低雑音、長寿命等のものである。

【0158】なお、上述の例では、反応容器101内に少なくとも窒素を含む物質(例えば、窒素ガス、アンモニアガスまたはアジ化ナトリウム)を供給するとしたが、反応容器101内に少なくとも窒素を含む物質(例えば、窒素ガス、アンモニアガスまたはアジ化ナトリウム)と不活性気体(例えば、アルゴンガス)との混合気体を供給するようにしても良い。

【0159】なお、ここでいう不活性気体とは、反応容器101内で、アルカリ金属、少なくともIII族金属を含む物質、及び少なくとも窒素を含む物質と反応しない気体である。

【0160】このように、反応容器101内に少なくとも窒素を含む物質(例えば、窒素ガス、アンモニアガスまたはアジ化ナトリウム)と不活性気体(例えば、アルゴンガス)との混合気体を供給する場合でも、III族窒化物結晶成長のための圧力は、混合ガス全体の圧力ではなく、反応容器内の実効的な窒素ガス圧力によって決定される。

#### [0161]

【発明の効果】以上に説明したように、請求項1乃至請求項12記載の発明によれば、反応容器内で、アルカリ金属と少なくともIII族金属を含む物質とが混合融液を形成し、該混合融液と少なくとも窒素を含む物質とから、III族金属と窒素とから構成されるIII族窒化物を結晶成長させるIII族窒化物結晶成長方法であって、圧力と温度とで規定される領域に対応する結晶成長条件で、III族窒化物の結晶を成長させるので、III族窒化物結晶(具体的には、例えばIII族窒化物の薄膜結晶成長用の基板となるIII族窒化物結晶)を容易に得ることができる。すなわち、第1あるいは第2の従来技術で述べたような複雑な工程を必要とせずに、低コストで、高品質のIII族窒化物結晶及びそれを用いた半導体デバイスを得ることが可能となる。

【0162】また、1000℃以下と成長温度が低く、 100気圧程度以下と圧力も低い条件下でIII族窒化物 の結晶成長が可能となることから、第3の従来技術のよ うに超高圧, 超高温に耐えうる高価な反応容器を用いる 必要がない。その結果、低コストで、III族窒化物結晶 及びそれを用いた半導体デバイスを得ることが可能とな 40 る。

【0163】さらに、結晶成長の制御性を格段に向上させることが可能となり、所望の結晶形態を容易に得ることができる。

【0164】換言すれば、請求項1乃至請求項12記載の発明においては、反応容器内で、アルカリ金属と少なくともIII族金属を含む物質とが混合融液を形成し、該混合融液と少なくとも窒素を含む物質とから、III族金属と窒素とから構成されるIII族窒化物を結晶成長させるIII族窒化物結晶成長方法であって、圧力と温度とで

規定される領域に対応する結晶成長条件で、III族窒化物の結晶を成長させるので、混合融液を用いた良質なIII族窒化物結晶を成長する場合の条件制御性を向上させることができる。すなわち、圧力と温度を制御することで、良質なIII族窒化物結晶を成長することが可能となる。

【0165】特に、請求項2記載の発明によれば、請求項1記載のIII族窒化物結晶成長方法において、結晶成長条件として、圧力と温度とで規定される領域を複数個設けるとき、複数の領域のそれぞれに応じて互いに異なる結晶形態のIII族窒化物の結晶を成長可能であるので、結晶成長の制御性を格段に向上させることが可能となり、所望の結晶形態を容易に得ることができる。

【0166】また、請求項3記載の発明によれば、請求項2記載のIII族窒化物結晶成長方法において、複数の領域のうちの1つの領域は、III族窒化物の結晶成長形態として、種結晶に結晶成長するものであるので、他の領域への核発生及び結晶成長が殆ど発生せず、無駄な原料の消費を抑え、大型のIII族窒化物単結晶を作製することが可能となる。また、種結晶のある所定位置に大型の単結晶を成長させることができる。更に、種結晶の結晶方位を制御することで、成長する結晶の結晶方位も制御することが可能となり、基板として用いる際に意図した結晶方位を使用することが容易となる。

【0167】また、請求項4,請求項5記載の発明によれば、請求項2記載のIII族窒化物結晶成長方法において、Pを反応容器内の実効的な窒素圧力(Pa)、Tを混合融液の絶対温度(K)、a,bを係数とするとき、成長するIII族窒化物の結晶形態は、log P=a/T+bで表される境界により規定される領域に応じて決定されるので、上記数式を元にして成長条件を決定し、良質なIII族窒化物結晶を成長することが可能となる。より詳しくは、上記数式を元にして、圧力と温度を決定することで、所望の結晶形態のIII族窒化物結晶を成長させることが可能となる。

【0168】また、請求項6記載の発明によれば、請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、種結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を種結晶を用いて結晶成長させるので(すなわち、上記の結晶成長条件領域では、種結晶を元にした結晶成長が支配的であり、他の領域への核発生及び結晶成長が殆ど発生しないことから)、無駄な原料の消費を抑え、大型のIII族窒化物単結晶を作製することが可能となる。また、種結晶のある所定位置に大型の単結晶を成長させることができる。更に、種結晶の結晶方位を制御することで、成長する結晶の結晶方位も制御することが可能となり、基板として用いる際に意図した結晶方位を使用することが容易となる。

0 【0169】また、請求項7記載の発明によれば、請求

20

項1乃至請求項5のいずれか一項に記載のIII族窒化物 結晶成長方法において、柱状結晶を用いて結晶成長可能 な結晶成長条件領域で、川族窒化物の結晶を柱状結晶 を用いて結晶成長させるので、良質な柱状結晶を成長さ せることが可能となる。すなわち、上記の結晶成長条件 領域では、柱状結晶が支配的に結晶成長することから、 面方位が明確となっている。従って、この柱状結晶を元 に川族窒化物基板を作製する場合に、面方位の決定、 スライスが容易となる利点がある。

項1乃至請求項5のいずれか一項に記載のIII族窒化物 結晶成長方法において、板状結晶を用いて結晶成長可能 な結晶成長条件領域で、III族窒化物の結晶を板状結晶 を用いて結晶成長させるので、良質な板状結晶を成長す ることが可能となる。すなわち、上記の結晶成長条件領 域では、板状結晶が支配的に結晶成長することから、II I族窒化物基板として用い易い。この板状結晶をそのま まIII族窒化物基板として用いることも可能である。あ るいは、表面の凹凸がある場合でも、表面研磨するのみ でIII族窒化物基板として使用することができる。ま た、面方位が明確となっていることからも、基板として の使用を容易にすることができる。更に、この結晶成長 条件領域での結晶成長では、板状結晶の面方向結晶成長 速度が早いことから、効率的にIII族窒化物結晶を成長 することができ、低コストにつながる。

【0171】また、請求項9記載の発明によれば、請求 項1万至請求項8のいずれか一項に記載の111族窒化物 結晶成長方法において、III族窒化物結晶が成長せず分 解する条件領域、種結晶成長する成長条件領域、柱状結 晶が成長する成長条件領域、板状結晶が成長する成長条 30 件領域の内、複数の条件領域を利用して、[1]族窒化物 結晶を成長させることで、複数の形態を有する結晶成長 が可能となる。従って、同一の結晶成長において異なる 形態のIII族窒化物結晶を得ることができる。

【0172】また、請求項10記載の発明によれば、請 求項9記載のIII族窒化物結晶成長方法において、III族 窒化物結晶が成長せずに分解する条件領域と柱状結晶ま たは板状結晶が成長する成長条件領域とを利用して、11 I族窒化物結晶を成長させることで、III族窒化物結晶に 対して分解と成長の両方を行うことができ、これによ り、次のような効果を得ることができる。すなわち、柱 状結晶や板状結晶が成長する条件領域では、多数の結晶 核が発生する。多数の結晶核発生と分解の両条件を推移 させることで、小さな結晶が分解され、より大きな結晶 が成長し易くなる。従って、請求項10記載の発明によ れば、大型の結晶を成長させることができる。

【 0 1 7 3 】また、請求項 1 1 記載の発明によれば、請 求項1乃至請求項5のいずれか一項に記載のIII族窒化 物結晶成長方法において、アルカリ金属としてナトリウ ム(Na)を用い、少なくともIII族金属を含む物質と

してガリウム (Ga) を用い、少なくとも窒素を含む物 質として窒素ガス(N2)を用いて、III族窒化物とし て窒化ガリウム(GaN)を結晶成長させるときに、窒 化ガリウム (GaN) の結晶成長条件を窒素ガス圧力と ガリウムとナトリウムの混合融液の温度とで規定するの で、良質なGaN結晶を制御性良く成長させることが可 能となる。すなわち、窒素ガスを用いることから圧力の 制御が容易となる。更に、NaとGaを用いることか ら、NaとGaが均一に混ざり合い、温度を均一に制御 【0170】また、請求項8記載の発明によれば、請求 10 することが可能となる。従って、窒素ガス圧力と混合融 液の温度を制御することで、所望の結晶形態も制御し て、所望の結晶形態のIII族窒化物結晶を容易に成長さ せることが可能となる。

> 【0174】また、請求項12記載の発明によれば、請 求項11記載のIII族窒化物結晶成長方法において、P を窒素ガス圧力(Pa)、Tを混合融液の絶対温度 (K), a 1, b 1, a 2, b 2  $\delta$ , a 1 = -5. 40 E-3, b1=4. 83, a2=-5. 59E-3, b2=5.47の係数とするとき、a<sub>1</sub>/T+b<sub>1</sub>≤lo gP≦a₂/T+b₂で表される結晶成長条件領域で、 種結晶を用いて窒化ガリウム (GaN) を結晶成長させ ることにより、種結晶を元にしてGaN結晶を成長させ ることが、圧力と温度を制御することで可能となる。す なわち、上記の結晶成長条件領域では、種結晶を元にし た結晶成長が支配的であり、他の領域への核発生及び結 晶成長が殆ど発生しないことから、無駄な原料の消費を 抑え、大型のIII族窒化物単結晶を作製することが可能 となる。また、種結晶のある所定位置に大型の単結晶を 成長させることができる。更に、種結晶の結晶方位を制 御することで、成長する結晶の結晶方位も制御すること が可能となり、基板として用いる際に意図した結晶方位 を使用することが容易となる。

【0175】また、請求項13記載の発明によれば、請 求項11記載のIII族窒化物結晶成長方法において、P を窒素ガス圧力(Pa)、Tを混合融液の絶対温度 (K), a 2, b 2, a 3, b 3  $\delta$ , a 2 = -5.59 E-3, b = 5. 47, a = -5. 67 E-3, b = -53=5.83の係数とするとき、a2/T+b2≦lo gP≦a3/T+b3で表される結晶成長条件領域で、 40 柱状の窒化ガリウム (GaN) 結晶を成長させることに より、良質な柱状結晶を成長させることが可能となる。 すなわち、上記の結晶成長条件領域では、柱状結晶が支 配的に結晶成長することから、面方位が明確となってい る。従って、この柱状結晶を元にIII族窒化物基板を作 製する場合に、面方位の決定、スライスが容易となる利 点がある。また、この結晶成長条件領域では、種結晶が なくとも、自発核発生により柱状結晶が成長することか ら、前述の請求項12で用いる種結晶として、本結晶成 長条件領域で結晶成長した柱状結晶を使用することがで 50 きる。

30

【0176】また、請求項14記載の発明によれば、請 求項11記載のIII族窒化物結晶成長方法において、P を窒素ガス圧力(Pa)、Tを混合融液の絶対温度 (K), a 3, b 3  $\delta$ , a 3 = -5. 6 7 E - 3, b 3 = 5. 83の係数とするとき、a3/T+b3 ≤ log Pで表される結晶成長条件領域で、板状の窒化ガリウ ム(GaN)結晶を成長させることにより、良質な板状 結晶を成長することが可能となる。すなわち、上記の結 晶成長条件領域では、板状結晶が支配的に結晶成長する ことから、III族窒化物基板として用い易い。この板状 結晶をそのままIII族窒化物基板として用いることも可 能である。あるいは、表面の凹凸がある場合でも、表面 研磨するのみでIII族窒化物基板として使用することが できる。また、面方位が明確となっていることからも、 基板としての使用を容易にすることができる。更に、こ の結晶成長条件領域での結晶成長では、板状結晶の面方 向結晶成長速度が早いことから、効率的にIII族窒化物 結晶を成長することができ、低コストにつながる。ま た、この結晶成長条件領域では、種結晶がなくとも、自 発核発生により板状結晶が成長することから、前述の請 20 求項12で用いる種結晶として、本結晶成長条件領域で 結晶成長した板状結晶を使用することができる。

【0177】また、請求項15記載の発明によれば、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域の内の1つの成長条件領域を選択してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有しているので、1台の結晶成長装置で、所望の成長条件でIII族窒化物結晶を成長させることが可能となる。

【0178】また、請求項16記載の発明によれば、II 30 I族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有しているので、III族窒化物結晶を分解条件、柱状結晶成長条件、板状結晶成長条件の任意の条件に制御することができる。従って、任意の形態のIII族窒化物や大型のIII族窒化物結晶を成長させることが可能となる。

【0179】また、請求項17記載の発明によれば、請 40 求項1乃至請求項14のいずれか一項に記載のIII族窒 化物結晶成長方法で作製されたIII族窒化物結晶である ので、高品質のIII族窒化物結晶を提供できる。

【0180】また、請求項18乃至請求項20記載の発明によれば、請求項17記載のIII族窒化物結晶を用いた半導体デバイスであるので、高品質の半導体デバイスを提供できる。

#### 【図面の簡単な説明】

【図1】本発明のIII族窒化物結晶成長方法で用いる結晶成長装置の構成例を示す図である。

【図2】III族窒化物の結晶成長条件の温度と圧力の関係を示す図である。

【図3】本発明により成長させたIII族窒化物結晶の一例を示す図である。

【図4】本発明により成長させたIII族窒化物結晶の他の例を示す図である。

【図5】本発明により成長させたIII族窒化物結晶の他の例を示す図である。

【図6】本発明に係る半導体光デバイスの構成例を示す 図である。

【図7】従来のレーザダイオードを示す図である。

【図8】従来の半導体レーザを示す図である。

【図9】第6の従来技術によるGaN厚膜基板の作製方法を示す図である。

【図10】第6の従来技術によるGaN厚膜基板の作製 方法を示す図である。

【図11】本発明の結晶成長装置の他の構成例を示す図である。

【図12】図11の結晶成長装置の具体例を示す図である。

【図13】図11の結晶成長装置の具体例を示す図である。

#### 【符号の説明】

50

| 101                    | 反応容器             |
|------------------------|------------------|
| 102                    | 混合融液保持容器         |
| 1 0 3                  | 混合融液             |
| 104                    | ガス供給管            |
| 1 0 5                  | 窒素圧力調整弁          |
| 106                    | 加熱装置             |
| 107                    | 窒素ガス容器           |
| 108                    | 反応容器内の空間         |
| 109                    | 混合融液保持容器の蓋       |
| 1 1 0                  | III族窒化物(G a N)結晶 |
| 1 1 1                  | 圧力センサー           |
| 1 1 2                  | 温度センサー           |
| 1 3 0                  | 圧力制御機構           |
| 1 3 1                  | 温度制御機構           |
| 1 4 0                  | パーソナルコンピュータ      |
| 1 4 1                  | 板状結晶選択部          |
| 1 4 2                  | 板状結晶選択部          |
| 1 4 3                  | 記憶部              |
| $1 \ 4 \ 4 - 1 \sim 1$ | 44-n 選択部         |
| 3 0 1                  | 種結晶              |
| 302                    | 成長後のG a N結晶      |
| 401                    | 六角柱状のG a N結晶     |
| 5 0 1                  | 板状のG a N結晶       |
| 6 0 1                  | n 型G a N基板       |
| 602                    | n型AlGaNクラッド層     |
| 6 0 3                  | n 型G a Nガイド層     |
| 6 0 4                  | InGaN MQW活性層     |
|                        |                  |

(17)

特開2003-292400

32

31

|       |                |         | 02         |
|-------|----------------|---------|------------|
| 6 0 5 | p 型G a Nガイド層   | * 6 0 8 | SiOz絶縁膜    |
| 606   | p型AlGaNクラッド層   | 6 0 9   | p 側オーミック電極 |
| 6 0 7 | p 型G a Nコンタクト層 | * 610   | n 側オーミック電極 |



【図2】

【図3】





【図5】



[図6]







【図12】



【図13】



#### フロントページの続き

(72)発明者 山根 久典

宮城県仙台市宮城野区鶴ヶ谷1-12-4

(72)発明者 島田 昌彦

宮城県仙台市青葉区貝ヶ森3-29-5

#### (72)発明者 青木 真登

宮城県宮城郡利府町青山3-3-1

Fターム(参考) 4G077 AA02 BE15 CC04 EA02 EA03

EA06 EG30 EH10 HA02 HA12

5F073 AA13 AA74 CA07 CB02 CB22

DA05 DA32 EA24 EA28

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第1区分

【発行日】平成18年3月30日(2006.3.30)

【公開番号】特開2003-292400(P2003-292400A)

【公開日】平成15年10月15日(2003.10.15)

【出願番号】特願2003-18507(P2003-18507)

【国際特許分類】

C 3 0 B 29/38 (2006.01) C 3 0 B 9/00 (2006.01) H 0 1 S 5/343 (2006.01)

[FI]

C 3 0 B 29/38 D C 3 0 B 9/00 H 0 1 S 5/343 6 1 0

#### 【手続補正書】

【提出日】平成18年2月8日(2006.2.8)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

#### 【請求項1】

反応容器内で、アルカリ金属と少なくともIII族金属を含む物質とが混合融液を形成し、該混合融液と少なくとも窒素を含む物質とから、III族金属と窒素とから構成されるIII族窒化物を結晶成長させるIII族窒化物結晶成長方法であって、圧力と温度とで規定される領域に対応する結晶成長条件で、III族窒化物の結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項2】

請求項1記載のIII族窒化物結晶成長方法において、結晶成長条件として、圧力と温度とで規定される領域を複数個設けるとき、複数の領域のそれぞれに応じて互いに異なる結晶形態のIII族窒化物の結晶が成長可能であることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項3】

請求項2記載のIII族窒化物結晶成長方法において、複数の領域のうちの1つの領域は、III族窒化物の結晶成長形態として、種結晶に結晶成長するものであることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項4】

請求項2記載のIII族窒化物結晶成長方法において、Pを反応容器内の実効的な窒素圧力(Pa)、Tを混合融液の絶対温度(K)、a,bを係数とするとき、成長するII I族窒化物の結晶形態は、logP=a/T+bで表される境界により規定される領域に応じて決定されることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項5】

請求項4記載のIII族窒化物結晶成長方法において、IogP=a/T+bで表される境界は、アルカリ金属のIII族金属との比によって制御可能であることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項6】

請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、

• •

種結晶を用いて結晶成長可能な結晶成長条件領域で、III 族窒化物の結晶を種結晶を用いて結晶成長させることを特徴とするIII 族窒化物結晶成長方法。

#### 【請求項7】

請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、 住状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を柱状結晶 を用いて結晶成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項8】

請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、 板状結晶を用いて結晶成長可能な結晶成長条件領域で、III族窒化物の結晶を板状結晶 を用いて結晶成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項9】

請求項1乃至請求項8のいずれか一項に記載のIII族窒化物結晶成長方法において、 III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域を利用して、III族窒化物結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項10】

請求項9記載のIII族窒化物結晶成長方法において、IIII族窒化物結晶が成長せずに分解する条件領域と柱状結晶または板状結晶が成長する成長条件領域とを利用して、III族窒化物結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項11】

請求項1乃至請求項5のいずれか一項に記載のIII族窒化物結晶成長方法において、アルカリ金属としてナトリウム(Na)を用い、少なくともIII族金属を含む物質としてガリウム(Ga)を用い、少なくとも窒素を含む物質として窒素ガス(N2)を用いて、III族窒化物として窒化ガリウム(GaN)を結晶成長させるときに、窒化ガリウム(GaN)の結晶成長条件を窒素ガス圧力とガリウムとナトリウムの混合融液の温度とで規定することを特徴とするIII族窒化物結晶成長方法。

#### 【請求項12】

請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1,b1,a2,b2を、a1=-5.40 $\times$ 10 $^-$ 3 $^-$ 3 $^-$ ,b1=4.83,a2=-5.59 $\times$ 10 $^-$ 3 $^-$ 3 $^-$ ,b2=5.47の係数とするとき、a1/T+b1≦log P≦a2/T+b2で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(GaN)を結晶成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項13】

請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a2,b2,a3,b3を、a2=-5. 59 × 10 -3, b2=5. 47,a3=-5. 67 × 10 -3, b3=5. 83 の係数とするとき、a2/T+b2  $\leq$ 1 og P  $\leq$  a3/T+b3 で表される結晶成長条件領域で、柱状の窒化ガリウム(GaN)結晶を成長させることを特徴とするIII族窒化物結晶成長方法。

#### 【請求項14】

請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a3,b3を、a3=-5.67 $\times$ 10 $^{-3}$ ,b3=5.83の係数とするとき、a3/T+b3 $\le$ 1 og Pで表される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させることを特徴とするIII族窒化物の結晶成長方法。

#### 【請求項15】

種結晶成長する成長条件領域、柱状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内の1つの成長条件領域を選択してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有していることを特徴とするIII族窒化物結晶成長

(3)

. u . .

装置。

【請求項16】

III族窒化物結晶が成長せずに分解する条件領域、種結晶成長する成長条件領域、柱 状結晶が成長する成長条件領域、板状結晶が成長する成長条件領域の内、複数の条件領域 を利用してIII族窒化物結晶を成長させるための圧力制御機構及び温度制御機構を有し ていることを特徴とするIII族窒化物結晶成長装置。

【請求項17】

請求項1乃至請求項14のいずれか一項に記載のIII 族窒化物結晶成長方法で作製されたことを特徴とするIII 族窒化物結晶。

【請求項18】

請求項17記載のIII族窒化物結晶を用いたことを特徴とする半導体デバイス。

【請求項19】

請求項18記載の半導体デバイスにおいて、該半導体デバイスは、光デバイスであることを特徴とする半導体デバイス。

【請求項20】

請求項18記載の半導体デバイスにおいて、該半導体デバイスは、電子デバイスであることを特徴とする半導体デバイス。

【請求項21】

アルカリ金属とIII族金属とを含む混合融液を保持する混合融液保持容器を備える結晶成長装置において前記混合融液保持容器内に窒素を含む物質を供給してIII族窒化物結晶を製造するIII族窒化物結晶の製造方法であって、

各々が前記 I I I 族窒化物結晶を結晶成長または分解させる結晶成長条件の領域を示す 複数の結晶成長領域のうちの少なくとも1つの結晶成長領域に含まれる結晶成長条件を設 定する第1の工程と、

前記設定した結晶成長条件を一定時間保持する第2の工程とを備え、

前記結晶成長条件は、前記混合融液保持容器内の圧力と前記混合融液の温度とからなる 、III族窒化物結晶の製造方法。

【請求項22】

前記第1の工程は、柱状結晶からなる I I I 族窒化物結晶を結晶成長させる結晶成長条件を設定する、請求項21に記載の I I I 族窒化物結晶の製造方法。

【請求項23】

前記第1の工程は、板状結晶からなるIII 族窒化物結晶を結晶成長させる結晶成長条件を設定する、請求項21に記載のIII 族窒化物結晶の製造方法。

【請求項24】

前記第1の工程は、種結晶のみに前記III 族窒化物結晶が結晶成長する結晶成長条件 を設定する、請求項21に記載のIII 族窒化物結晶の製造方法。

【請求項25】

前記種結晶は、前記複数の結晶成長領域のうちの1つの結晶成長領域に含まれる結晶成 長条件を用いて結晶成長された I I I 族窒化物結晶からなる、請求項24に記載の I I I 族窒化物結晶の製造方法。

【請求項26】

前記1つの結晶成長領域に含まれる結晶成長条件は、柱状結晶を結晶成長させる結晶成 長条件である、請求項25に記載のIII族窒化物結晶の製造方法。

【請求項27】

前記1つの結晶成長領域に含まれる結晶成長条件は、板状結晶を結晶成長させる結晶成 長条件である、請求項25に記載のIII族窒化物結晶の製造方法。

【請求項28】

前記第1の工程は、

板状結晶からなる I I I 族窒化物結晶を結晶成長させる第1の結晶成長条件を設定する 第1のサブエ程と、 . . .

前記III 族窒化物結晶を分解する第2の結晶成長条件を設定する第2のサブ工程と、 板状結晶からなるIII 族窒化物結晶を結晶成長させる第3の結晶成長条件を設定する 第3のサブ工程とを含み、

前記第2の工程は、

前記第1の結晶成長条件を保持する第4のサブ工程と、

前記第2の結晶成長条件を保持する第5のサブ工程と、

前記第3の結晶成長条件を保持する第6のサブ工程とを含み、

前記第4のサブ工程は、前記第1のサブ工程の後に実行され、

前記第2のサブ工程は、前記第4のサブ工程の後に実行され、

前記第5のサブ工程は、前記第2のサブ工程の後に実行され、

前記第3のサブ工程は、前記第5のサブ工程の後に実行され、

前記第6のサブ工程は、前記第3のサブ工程の後に実行される、請求項21に記載のⅠ

I 【族窒化物結晶の製造方法。

【請求項29】

前記第1の工程は、

<u>柱状結晶からなるIII族窒化物結晶を結晶成長させる第1の結晶成長条件を設定する</u> 第1のサブ<u>工程と、</u>

前記 I I I 族窒化物結晶を分解する第2の結晶成長条件を設定する第2のサブ工程と、 柱状結晶からなる I I I 族窒化物結晶を結晶成長させる第3の結晶成長条件を設定する 第3のサブ工程とを含み、

前記第2の工程は、

前記第1の結晶成長条件を保持する第4のサブ工程と、

前記第2の結晶成長条件を保持する第5のサブ工程と、

前記第3の結晶成長条件を保持する第6のサブ工程とを含み、

前記第4のサブ工程は、前記第1のサブ工程の後に実行され、

前記第2のサブ工程は、前記第4のサブ工程の後に実行され、

前記第5のサブ工程は、前記第2のサブ工程の後に実行され、 前記第3のサブ工程は、前記第5のサブ工程の後に実行され、

前記第6のサブ工程は、前記第3のサブ工程の後に実行される、請求項21に記載のI II族窒化物結晶の製造方法。

【請求項30】

前記混合融液保持容器内の圧力をPとし、前記混合融液の絶対温度をTとし、a および b を定数としたとき、前記複数の結晶成長領域のうちの隣接する2つの結晶成長領域の境界は、logP=a/T+bによって表される、請求項21から請求項29のいずれか1項に記載のIII族窒化物結晶の製造方法。

【請求項31】

請求項21から請求項30のいずれか1項に記載のIII族窒化物結晶の製造方法によって製造されたIII族窒化物結晶を用いて作製された半導体デバイス。

【請求項32】

当該半導体デバイスは、光デバイスである、請求項31に記載の半導体デバイス。

【請求項33】

当該半導体デバイスは、電子デバイスである、請求項31に記載の半導体デバイス。

【請求項34】

反応容器と、

前記反応容器内に配置され、前記反応容器内の空間に連通する領域にアルカリ金属と I II族金属とを含む混合融液を保持する混合融液保持容器と、

前記反応容器内に窒素を含む物質を供給する供給管と、

前記反応容器内をIII族窒化物結晶が結晶成長可能な温度に制御する加熱装置と、 前記反応容器内の圧力を調整する圧力調整機構とを備え、

前記加熱装置は、各々が前記III族窒化物結晶を結晶成長または分解させる結晶成長

(5)

条件の領域を示す複数の結晶成長領域のうちの少なくとも1つの結晶成長領域に含まれる 結晶成長可能な温度に前記反応容器内を制御し、

前記圧力調整機構は、前記少なくとも1つの結晶成長領域に含まれる結晶成長可能な圧力に前記反応容器内の圧力を調整し、

前記結晶成長条件は、前記反応容器内の圧力と前記反応容器内の温度とからなる、II I族窒化物結晶成長装置。

【請求項35】

前記加熱装置は、柱状結晶からなるIII族窒化物結晶を結晶成長可能な温度に前記反 応容器内を制御し、

前記圧力調整機構は、前記柱状結晶からなるIII族窒化物結晶を結晶成長可能な圧力に前記反応容器内の圧力を調整する、請求項34に記載のIII族窒化物結晶成長装置。

【請求項36】

前記加熱装置は、板状結晶からなるIII族窒化物結晶を結晶成長可能な温度に前記反応容器内を制御し、

前記圧力調整機構は、前記板状結晶からなるIII 族窒化物結晶を結晶成長可能な圧力 に前記反応容器内の圧力を調整する、請求項34に記載のIII 族窒化物結晶成長装置。

【請求項37】

前記加熱装置は、種結晶のみに結晶成長するIII族窒化物結晶を結晶成長可能な温度 に前記反応容器内を制御し、

前記圧力調整機構は、前記種結晶のみに結晶成長する I I I 族窒化物結晶を結晶成長可能な圧力に前記反応容器内の圧力を調整する、請求項 3 4 に記載の I I I 族窒化物結晶成長装置。

【請求項38】

前記種結晶は、前記複数の結晶成長領域のうちの1つの結晶成長領域に含まれる結晶成 長条件を用いて結晶成長されたIII 族窒化物結晶からなる、請求項37に記載のIII 族窒化物結晶成長装置。

【請求項39】

前記種結晶は、柱状結晶からなる、請求項38に記載のIII族窒化物結晶成長装置。 【請求項40】

前記種結晶は、板状結晶からなる、請求項38に記載のIII 族窒化物結晶成長装置。 【請求項41】

前記反応容器内の圧力をPとし、前記反応容器内の絶対温度をTとし、aおよびbを定数としたとき、前記複数の結晶成長領域のうちの隣接する2つの結晶成長領域の境界は、logP=a/T+bによって表される、請求項34から請求項40のいずれか1項に記載のIII族窒化物結晶成長装置。

【請求項42】

反応容器と、

前記反応容器内に配置され、前記反応容器内の空間に連通する領域にアルカリ金属と I II 族金属とを含む混合融液を保持する混合融液保持容器と、

前記反応容器内に窒素を含む物質を供給する供給管と、

前記結晶成長可能な圧力と前記結晶成長可能な温度とによって規定される圧力ー温度相関図を記憶する記憶部と、

前記圧力 - 温度相関図を前記記憶部から読み出して前記反応容器内の圧力および温度を I I I 族窒化物結晶を結晶成長可能な圧力および温度に設定するコンピュータとを備える I I I 族窒化物結晶成長装置。

【請求項43】

前記圧力-温度相関図は、各々が前記III 族窒化物結晶を結晶成長または分解させる 結晶成長条件の領域を示す複数の結晶成長領域に分割されている、請求項42に記載のI II 族窒化物結晶成長装置。

【請求項44】

前記複数の結晶成長領域は、

<u>柱状結晶からなる [ ] 【族窒化物結晶を結晶成長させる結晶成長条件の領域を示す第 1</u> の結晶成長領域と、

板状結晶からなるIII 族窒化物結晶を結晶成長させる結晶成長条件の領域を示す第2 1 の結晶成長領域と、

種結晶のみに前記 I I I 族窒化物結晶が結晶成長する結晶成長条件の領域を示す第3の 結晶成長領域と、

前記 I I I 族窒化物結晶を分解する結晶成長条件の領域を示す第4の結晶成長領域とを 含む、請求項43に記載のIII 族窒化物結晶成長装置。

【請求項45】

住状形状からなるIII族窒化物結晶。

【請求項46】

前記柱状形状は、<0001>方向に伸びた形状からなる、請求項45に記載のIII 族窒化物結晶。

【請求項47】

<u>前記柱状形状の端面は、(0001)面からなる、請求項45に記載のIII族窒化物</u>結晶。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 3

【補正方法】変更

【補正の内容】

[0033]

また、請求項12記載の発明は、請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1,b1,a2,b2を、a1=-5.40×10 $^{-3}$ ,b1=4.83,a $^{-2}$ =-5.59×10 $^{-3}$ ,b2=5.47の係数とするとき、a1/T+b1  $\leq$ 1 og P $\leq$ a2/T+b2 で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(GaN)を結晶成長させることを特徴としている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 4

【補正方法】変更

【補正の内容】

[0034]

また、請求項13記載の発明は、請求項11記載のIII族窒化物結晶成長方法において、 Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a 2,b 2,a 3,b 3 を、a 2 = -5. 5 9 × 1 0  $^{-3}$  , b 2 = 5 . 4 7,a 3 = -5 . 6 7 × 1 0  $^{-3}$  , b 3 = 5 . 8 3 の係数とするとき、a  $_2$  / T + b  $_2$   $\leq$  1 o g P  $\leq$  a  $_3$  / T + b  $_3$  で表される結晶成長条件領域で、柱状の窒化ガリウム(GaN)結晶を成長させることを特徴としている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 5

【補正方法】変更

【補正の内容】

[0035]

また、請求項 1 4 記載の発明は、請求項 1 1 記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a 3, b 3 を、a 3 = - 5 . 6 7 × 1 0 - 3 , b 3 = 5 . 8 3 の係数とするとき、a  $_3$  / T + b  $_3$   $\le$  1 o  $_8$  Pで表

される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させることを特徴としている。

#### 【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0 0 7 5

【補正方法】変更

【補正の内容】

[0075]

ここで、Pは窒素ガス圧力(Pa)、Tは混合融液の絶対温度(K)、a 1, b 1, a 2, b 2 は係数で、a 1=-5.  $40 \times 10^{-3}$ , b 1=4. 83, a 2=-5.  $59 \times 10^{-3}$ , b 2=5. 47 である。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 7 6

【補正方法】変更

【補正の内容】

[0076]

このように、第12の実施形態は、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1,b1,a2,b2を、a1=-5.40 $\times$ 10 $^{-3}$ ,b1=4.83,a2=-5.59 $\times$ 10 $^{-3}$ ,b2=5.47の係数とするとき、a1/T+b1  $\leq$ 10gP $\leq$ a2/T+b2 で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(GaN)を結晶成長させるようにしており、種結晶を元にしてGaN結晶を成長させることが、圧力と温度を制御することで可能となる。すなわち、上記の結晶成長条件領域では、種結晶を元にした結晶成長が支配的であり、他の領域への核発生及び結晶成長が殆ど発生しないことから、無駄な原料の消費を抑え、大型のIII族窒化物単結晶を作製することが可能となる。また、種結晶のある所定位置に大型の単結晶を成長させることができる。更に、種結晶の結晶方位を制御することで、成長する結晶の結晶方位も制御することが可能となり、基板として用いる際に意図した結晶方位を使用することが容易となる。

#### 【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 7 9

【補正方法】変更

【補正の内容】

[0079]

ここで、Pは窒素ガス圧力(Pa)、Tは混合融液の絶対温度(K)、a 2, b 2, a 3, b 3 は係数で、a 2=-5. 5  $9 \times 10^{-3}$ , b 2=5. 4 7, a 3=-5. 6  $7 \times 10^{-3}$ , b 3=5. 8 3 である。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】 0 0 8 0

【補正方法】変更

【補正の内容】

[0800]

このように、第13の実施形態は、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a2,b2,a3,b3を、a2=-5.59 $\times$ 10 $^{-3}$ ,b2=5.47,a3=-5.67 $\times$ 10 $^{-3}$ ,b3=5.83の係数とするとき、a2/T+b2  $\leq$ 10gP $\leq$ a3/T+b3 で表される結晶成長条件領域で、柱状の窒化ガリウム(GaN)結晶を成長させるようにしており、これにより、良質な柱状結晶を成長させることが可能となる。すなわち、上記の結晶成長条件領域では、柱状結晶が支配的に結晶成長することから、面方位が明確となっている。従って、この柱状結晶を元にIII族窒化物基板を作製す

る場合に、面方位の決定、スライスが容易となる利点がある。また、この結晶成長条件領域では、種結晶がなくとも、自発核発生により柱状結晶が成長することから、前述の第12の実施形態で用いる種結晶として、この第13の実施形態の結晶成長条件領域で結晶成長した柱状結晶を使用することができる。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0 0 8 3

【補正方法】変更

【補正の内容】

[0083]

ここで、Pは窒素ガス圧力(Pa)、Tは混合融液の絶対温度(K)、a3, b3は係数 で、a3=-5, 67<u>×10<sup>-3</sup></u>, b3=5, 83である。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】 0 0 8 4

【補正方法】変更

【補正の内容】

[0084]

このように、第14の実施形態は、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a3,b3を、a3=-5.67 $\times$ 10 $^{-3}$ ,b3=5.83の係数とするとき、a3/T+b3  $\leq$ 1 og Pで表される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させるようにしており、これにより、良質な板状結晶を成長することが可能となる。すなわち、上記の結晶成長条件領域では、板状結晶が支配的に結晶成長条件領域では、板状結晶をそのままIII族窒化物基板として用い易い。この板状結晶をそのままIII族窒化物基板として用いることも可能である。あるいは、表面の凹凸がある場合でも、表面研磨するのといることができる。また、面方位が明確となっていることがらも、基板としての使用を容易にすることができる。更に、この結晶成長条件領域では、がらも、基板としての使用を容易にすることができる。の結晶成長条件領域では、種結晶を成長することができ、低コストにつながる。また、この結晶成長条件領域では、種結晶がなくとも、自発核発生により板状結晶が成長することから、前述の第12の実施形態で用いる種結晶として、この第14の実施形態の結晶成長条件領域で結晶成長した板状結晶を使用することができる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】 0 1 1 3

【補正方法】変更

【補正の内容】

[0113]

ここで、P は窒素ガス圧力(P a)、T は混合融液の絶対温度(K)、a 1, b 1 は係数で、a 1 = - 5. 4 0  $\times$  1 0  $^{-$  3, b 1 = 4 . 8 3 である。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】 0 1 1 6

【補正方法】変更

【補正の内容】

[0116]

ここで、P は窒素ガス圧力(P a)、T は混合融液の絶対温度(K)、a 2 , b 2 は係数で、a 2 = - 5 . 5 9  $\times$  1 0  $^{-$  3 , b 2 = 5 . 4 7 である。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】 0 1 1 9

【補正方法】変更

【補正の内容】

[0119]

ここで、Pは窒素ガス圧力 (Pa)、Tは混合融液の絶対温度 (K)、a3, b3は係数で、a3=-5.67×10<sup>-3</sup>, b3=5.83である。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】 0 1 2 2

【補正方法】変更

【補正の内容】

[0122]

具体的に、図1の結晶成長装置を用い、結晶成長条件として、窒素ガス圧力を2MPa、融液温度を850  $\mathbb{C}$  ( $1/T=8.9 \times 10^{-4}$   $K^{-1}$ ) にしてGaN結晶成長させた場合、図3に示すような結晶成長となる。すなわち、図1の混合融液103中に種結晶となるGaN結晶301を設置しておき、上記の結晶成長条件(窒素ガス圧力;2MPa、融液温度;850  $\mathbb{C}$ )に保持する。その後、種結晶301を元に、GaN結晶が大きく成長し、成長後のGaN結晶302となる。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】 0 1 2 9

【補正方法】変更

【補正の内容】

[0129]

具体的に、図1の結晶成長装置を用い、結晶成長条件として、窒素ガス圧力を3 M P a 、融液温度を800  $\mathbb C$  (1/T=9.  $32 \times 10^{-4}$  K  $^{-1}$ ) にしてG a N 結晶を成長させた場合、図4 (a) または図4 (b) に示すような柱状結晶40 1 が成長する。すなわち、図10 結晶成長装置において、上記の結晶成長条件(窒素ガス圧力;3 M P a 、融液温度;800  $\mathbb C$ )に保持することで、混合融液10 3 中に図4 (a) または図4 R>4 (b) の形態のG a N 結晶40 1 が成長する。

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】 0 1 3 4

【補正方法】変更

【補正の内容】

[0134]

具体的に、図1の結晶成長装置を用い、結晶成長条件として、窒素ガス圧力を5 M P a 、融液温度を750 C  $(1/T=9.77 \times 10^{-4} \text{ K}^{-1})$  にしてG a N 結晶を成長させた場合、図5 に示すような板状結晶5 O 1 が成長する。すなわち、図1 の結晶成長装置において、上記の結晶成長条件(窒素ガス圧力;5 M P a 、融液温度;750 C)に保持することで、混合融液103 中、及び、融液表面に、図5 の形態のG a N 結晶501 が成長する。

【手続補正17】

【補正対象書類名】明細書

【補正対象項目名】 0 1 7 4

【補正方法】変更

【補正の内容】

[0174]

また、請求項12記載の発明によれば、請求項11記載のIII 族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a1, b1, a2

、 b 2 を、 a 1 = -5 . 40  $\times$  10  $^{-3}$  , b 1 = 4 . 8 3 , a 2 = -5 . 5 9  $\times$  10  $^{-3}$  , b 2 = 5 . 4 7 の係数とするとき、a 1 / T + b 1  $\leq$  1 o g P  $\leq$  a 2 / T + b 2 で表される結晶成長条件領域で、種結晶を用いて窒化ガリウム(G a N)を結晶成長させることにより、種結晶を元にしてG a N 結晶を成長させることが、圧力と温度を制御することで可能となる。すなわち、上記の結晶成長条件領域では、種結晶を元にした結晶成長が支配的であり、他の領域への核発生及び結晶成長が殆ど発生しないことから、無駄な原料の消費を抑え、大型の  $\times$  11 L 族窒化物単結晶を作製することが可能となる。また、種結晶のある所定位置に大型の単結晶を成長させることができる。更に、種結晶の結晶方位を制御することで、成長する結晶の結晶方位も制御することが可能となり、基板として用いる際に意図した結晶方位を使用することが容易となる。

【手続補正18】

【補正対象書類名】明細書

【補正対象項目名】 0 1 7 5

【補正方法】変更

【補正の内容】

[0175]

また、請求項13記載の発明によれば、請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a2,b2,a3,b3を、a2=-5.59×10 $^{-3}$ ,b2=5.47,a3=-5.67×10 $^{-3}$ ,b3=5.83の係数とするとき、a2/T+b2 $\le$ logP $\le$ a3/T+b3で表される結晶成長条件領域で、柱状の窒化ガリウム(GaN)結晶を成長させることにより、良質な柱状結晶を成長させることが可能となる。すなわち、上記の結晶成長条件領域では、柱状結晶が支配的に結晶成長することから、面方位が明確となっている。従って、この柱状結晶を元にIII族窒化物基板を作製する場合に、面方位の決定,スライスが容易となる利点がある。また、この結晶成長条件領域では、種結晶がなくとも、自発核発生により柱状結晶が成長することから、前述の請求項12で用いる種結晶として、本結晶成長条件領域で結晶

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】 0 1 7 6

【補正方法】変更

【補正の内容】

[0176]

また、請求項14記載の発明によれば、請求項11記載のIII族窒化物結晶成長方法において、Pを窒素ガス圧力(Pa)、Tを混合融液の絶対温度(K)、a3,b3を、a3=-5.67 $\times$ 10 $^{-3}$ ,b3=5.83の係数とするとき、a3/T+b3 $\leq$ 1ogPで表される結晶成長条件領域で、板状の窒化ガリウム(GaN)結晶を成長させることにより、良質な板状結晶を成長することが可能となる。すなわち、上記の結晶成長中のは、板状結晶が支配的に結晶成長することから、III族窒化物基板として用い易い。この板状結晶をそのままIII族窒化物基板として用いることも可能である。あるいは、表面の凹凸がある場合でも、表面研磨するのみでIIII族窒化物基板として使用することができる。更に、この結晶成長条件領域での結晶成長では、板状結晶の面方向結晶成長条件領域での結晶成長では、板状結晶の面方向結晶ができる。また、この結晶成長条件領域では、種結晶がなくとも、自発核発生により板状結晶が成長することから、効率的にIII族窒化物結晶を成長することができ、低コストにつなが、また、この結晶成長条件領域では、種結晶がなくとも、自発核発生により板状結晶が成長することから、前述の請求項12で用いる種結晶として、本結晶成長条件領域で結晶