2014-0917 GORDON MOSHER P325 M= A.leugth CIS-17C MARKLEHR Solved/ Cost Lines BUBBLE SORT polynomial fine OKAS 1 for ; = 1, to A, ken -1 C, n-1 n $\binom{1}{2}$ $\binom{n-2}{2}\frac{1}{2}\binom{n-1}{2}$ n(n+1)-1 2. for j = len dounts i+1 n(n-1) 3 If (3 (n-2)= (n-2) n(n-1)Cy

$$T(n) = C_{1}n$$

$$+ C_{2} \left(\frac{r(n+1)}{2} - 1 \right) C_{2}/2 n^{2} + C_{2}/2 n - C_{2}$$

$$+ C_{3} \left(\frac{n \cdot (n-1)}{2} \right) C_{3}/2 n^{2} - C_{3}/2 n$$

$$+ C_{4} \left(\frac{r(n-1)}{2} \right) C_{4}/2 n^{2} - C_{4}/2 n$$

3) Show that when $|x| \le 1$, we have the approximation $e^x = 1 + x + 6(x^2)$

pgSo properties of exponential functions

for $|x| \leq 1$, $1 + x \leq e^{x} \leq 1 + x + x^{2}$ when $x \to 0$, the approximation of e^{x} by 1 + x is good $e^{x} = 1 + x + \Theta(x^{2})$