Learning Theory

Machine Learning 10-601B
Seyoung Kim

Many of these slides are derived from Tom Mitchell, Ziv-Bar Joseph. Thanks!

Computational Learning Theory

- What general laws constrain inductive learning?
- Want theory to relate
 - Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target function is approximated
 - Manner in which training examples are presented
 - Probability of successful learning

^{*} See annual Conference on Computational Learning Theory

Sample Complexity

How many training examples suffice to learn target concept

- 1. If some random process (e.g., nature) proposes instances, and teacher labels them?
 - instances drawn according to P(X)
- 2. If learner proposes instances as queries to teacher?
 - learner proposes x, teacher provides f(x)

Active learning

- 3. If teacher (who knows f(x)) proposes training examples?
 - teacher proposes sequence $\{\langle x^1, f(x^1) \rangle, ... \langle x^n, f(x^n) \rangle$

Learning Theory

- In general, we are interested in
 - Sample complexity: How many training examples are needed for a learner to converge to a successful hypothesis?
 - Computational complexity: How much computational effort is needed for a learner to converge to a successful hypothesis?
 - The two are related. Why?

Problem Setting for Learning from Data

Given:

- Set of instances $X = \{x_1, ..., x_n\}$ for n input features
- Sequence of input instances drawn at random from P(X)
- Set of hypotheses $H = \{h: X \rightarrow \{0, 1\}\}$
- Set of possible target functions $C = \{c: X \to \{0,1\}\}$
- teacher provides noise-free label c(x)

Learner observes a sequence D of training examples of the form $\langle x, c(x) \rangle$ for some target concept $c \in C$

- Instances x are drawn from P(X)
- Teacher provides target value c(x)

Problem Setting for Learning from Data

Goal: Then, learner must output a hypothesis $h \in H$ estimating c such that

$$h = \arg\min_{h \in H} \ error_{train}(h)$$

h is evaluated on subsequent instances drawn from P(X)

Randomly drawn instances, noise-free classification

Function Approximation with Training Data

- Given X = {x: x is boolean and x={x₁, ..., x_n} } with n input features
- How many possible input values? |X| = 2ⁿ
- How many possible label assignments? 2^{2^n}
- The size of hypothesis space that can represent all possible label assignments? $|H| = 2^{2^n}$

In order to find h that is identical to c, we need observations for all data |X| = 2ⁿ
In practice, we are limited by training data!

Need to introduce inductive bias

True Error of a Hypothesis

Instance space X

The *true error* of h is the probability that it will misclassify an example drawn at random from P(X)

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$error_{train} \equiv \Pr_{x \in D}[hx \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \frac{\delta(h(x) \neq c(x))}{|D|}$$

True error of hypothesis h with respect to c

training examples D

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Probability distribution P(X)

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting = $error_{true}(h) - error_{train}(h)$

Can we bound $error_{true}(h)$

in terms of $error_{train}(h)$??

$$error_{train} \equiv \Pr_{x \in D}[h(x) \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \frac{\delta(h(x) \neq c(x))}{|D|}$$

training examples

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Probability distribution P(x)

if D was a set of examples drawn from P(X) and <u>independent</u> of h, then we could use standard statistical confidence intervals to determine that with 95% probability, $error_{true}(h)$ lies in the interval:

$$error_{\mathbf{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathbf{D}}(h) (1 - error_{\mathbf{D}}(h))}{n}}$$

but D is the $\underline{\textit{training data}}$ for h

Version Spaces

 $c: X \rightarrow \{0,1\}$

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ with respect to training data D is said to be ϵ -exhausted if every hypothesis h in $VS_{H,D}$ has true error less than ϵ .

$$(\forall h \in VS_{H,D}) \ error_{true}(h) < \epsilon$$

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that <u>any</u> consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{H,D})

Proof:

- Given, hypothesis space H, input space X, m labeled examples, target function $C=\{c:X\to\{0,1\}\}$, error tolerance ϵ
- Let h_1 , h_2 , ..., h_K be hypotheses with true error > ϵ . Then,

Probability that h_1 will be consistent with first training example \leq (1- ϵ)

Probability that h_1 will be consistent with m independently drawn training examples $\leq (1-\epsilon)^m$

Probability that at least one of h_1 , h_2 , ..., h_K (K bad hypotheses) will be consistent with m examples $\leq K(1-\epsilon)^m$

$$\leq |H|(1-\epsilon)^m$$
 since $K \leq |H|$
 $\leq |H|e^{-\epsilon m}$ since for $0 \leq \epsilon \leq 1$, $(1-\epsilon) \leq e^{-\epsilon m}$

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

1

Suppose we want this probability to be at most δ

$$\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \le |H|e^{-\epsilon m}$$

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that

every h in $VS_{H,D}$ satisfies $error_{\mathcal{D}}(h) \leq \epsilon$

Use our theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains <u>conjunctions of constraints</u> on up to n boolean attributes (i.e., n boolean literals).

E.g.,

X=< X1, X2, ... Xn >

Each $h \in H$ constrains each Xi to be 1, 0, or "don't care"

In other words, each h is a rule such as:

If X2=0 and X5=1

Then Y=1, else Y=0

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that

every h in $VS_{H,D}$ satisfies $error_{\mathcal{D}}(h) \leq \epsilon$

Use our theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals). Then $|H| = 3^n$, and

$$m \ge \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))$$

or

$$m \ge \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$$

Example: Simple decision trees

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Consider Boolean classification problem

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- Each hypothesis in H is a decision tree of depth 1

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner using H will output a hypothesis with true error at most 0.05?

Example: Simple decision trees

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Consider Boolean classification problem

- instances: $X = \langle X_1 \dots X_n \rangle$ where each X_i is boolean
- Each hypothesis in H is a decision tree of depth 1

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner using H will output a hypothesis with true error at most 0.05?

$$|H| = 4 \text{ n}$$
, epsilon = 0.05, delta = 0.01

$$m \ge \frac{1}{0.05} (\ln(4N) + \ln\frac{1}{0.01})$$

N=4	m≥148
N=10	m≥166
N=100	m>212

Example: H is Decision Tree with depth=2

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using only two variables

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner will output a hypothesis with true error at most 0.05?

Example: H is Decision Tree with depth=2

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using only two variables

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner will output a hypothesis with true error at most 0.05?

|H| = N(N-1)/2 x 16

$$m \ge \frac{1}{0.05} (\ln(8N^2 - 8N) + \ln\frac{1}{0.01})$$

N=4
$$m \ge 184$$

N=10 $m \ge 224$
N=100 $m \ge 318$ $m \ge \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 / \epsilon)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

Here ϵ is the difference between the training error and true error of the output hypothesis (the one with lowest training error)

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent flips of a coin with true Pr(heads) = θ we can bound the error ϵ in the maximum likelihood estimate $\widehat{\theta}$

$$\Pr[\theta > \hat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

Relevance to agnostic learning: for any <u>single</u> hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

• Now we assume this probability is bounded by δ . Then, we have

$$m > \frac{1}{\varepsilon^2} (\ln |H| + \ln(1/\delta))$$

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

a labeling of each member of S as positive or negativea

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X

Each ellipse corresponds to a possible dichotomy

Positive: Inside the ellipse

Negative: Outside the ellipse

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably (1- δ) approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

Consider 1-dim real valued input X, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ or, if $a < x < b$ then $y = 0$ else $y = 1$

Consider 1-dim real valued input X, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x>a$$
 then $y=1$ else $y=0$ vc(H2)=2 or, if $x>a$ then $y=0$ else $y=1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

What is VC dimension of lines in a plane?

•
$$H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$$

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, $VC(H_n)$ =n+1

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|? (hint: yes)

Assume VC(H) = K, which means H can shatter K examples.

For K examples, there are 2^{K} possible labelings. Thus, $|H| \ge 2^{K}$

Thus, $K \leq \log_2 |H|$

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 - Over n boolean features?
- Linear SVM over n continuous features
- Decision trees defined over n boolean features $F: \langle X_1, ... X_n \rangle \rightarrow Y$
- How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution and a target concept in C, such that if L observes fewer examples than

$$\max\left[rac{1}{\epsilon}\log(1/\delta),rac{VC(C)-1}{32\epsilon}
ight]$$

Then with probability at least δ , L outputs a hypothesis with

$$error_{\mathcal{D}}(h) > \epsilon$$

Agnostic Learning: VC Bounds for Decision Tree

[Schölkopf and Smola, 2002]

With probability at least (1- δ) every $h \in H$ satisfies

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples arrive at random
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- VC dimension as a measure of complexity of H

- Conference on Learning Theory: http://www.learningtheory.org
- Avrim Blum's course on Machine Learning Theory:
 - https://www.cs.cmu.edu/~avrim/ML14/