Re	ecomme	nded rang	ge	PN series ATH series												
				1		2)	3 4				5 6				
	14/			Copp	ers	Carbon		Stainless		Pre-har		Hardene				
	vvork r	material				Alloys	Alloy steels		steels	steels						
Definite standard doubt of suf-			1000/		(180~250HB)		(25~35HRC)		(35~45HRC)		(45~55HRC)		(55~65HRC)			
Ratio to standard depth of cut			120%		100%		90%		80%		65%		60% Revolution Feed rate			
Ball radius RE	Tool dia. DC	length	<i>a</i> p (mm)	Revolution <i>n</i>	Feed rate	n	Feed rate	n	Feed rate		Feed rate	n	Feed rate	n	Feed rate	
(mm)	(mm)	(mm)	, ,	min ⁻¹	mm/min	min ⁻¹	mm/min	min ⁻¹	mm/min	n min ⁻¹	mm/min	min ⁻¹	mm/min	min ⁻¹	mm/min	
0.05	0.1	0.2	0.004	50,000	300 300	50,000	250 250	50,000	250 250	50,000	225 225	50,000	200	50,000	188 188	
0.05	0.1	0.5	0.002	50,000	300	50,000	250	50,000	250	50,000	225	50,000	200	50,000	188	
		0.5	0.015	50,000	420	50,000	350	50,000	350	50,000	325	45,500	273	42,000	210	
		0.75 1	0.013	50,000	420 420	50,000	350 350	50,000	350 350	50,000	325 325	45,500 45,500	273 273	42,000 42,000	210 210	
	0.0	1.25	0.008	50,000	378	50,000	315	48,600	306	45,900	269	40,500	219	37,800	170	
0.1	0.2	1.5	0.007	50,000	378	50,000	315	48,600	306	45,900	269	40,500	219	37,800	170	
		2	0.006	50,000	378	50,000	315	48,600 43,200	306 242	45,900	269 212	40,500 36,000	219	37,800	170 134	
		2.5 3	0.005	48,000 48,000	323 323	48,000 48,000	269 269	43,200	242	40,800	212	36,000	173 173	33,600 33,600	134	
		0.5	0.02	50,000	600	50,000	500	50,000	500	50,000	450	45,000	383	42,000	336	
		0.75	0.018	50,000	600	50,000	500	50,000	500	50,000	450	45,000	383	42,000	336	
		1.25	0.016	50,000	600 600	50,000 50,000	500 500	50,000	500 500	50,000	450 450	45,000 45,000	383 383	42,000 42,000	336 336	
0.15	0.3	1.5	0.012	50,000	600	50,000	500	50,000	500	50,000	450	45,000	383	42,000	336	
		2	0.009	50,000	540	50,000	450	48,600	437	45,900	372	40,500	310	37,800	272	
		2.5	0.008	50,000	540	50,000	450	48,600	437 437	45,900 45,900	372 372	40,500 40,500	310 310	37,800	272	
		3 0.75	0.006	50,000	540 691	50,000 48,000	450 576	48,600 43,200		40,800	449	36,000	360	37,800 33,600	272 336	
	0.4	1	0.04	50,000	691	48,000	576	43,200	518	40,800	449	36,000	360	33,600	336	
		1.5	0.034	50,000	691	48,000	576	43,200	518	40,800	449	36,000	360	33,600	336	
0.2		2.5	0.028	50,000	691 560	48,000 43,200	576 467	43,200 38,880	518 420	40,800 36,720	449 364	36,000 32,400	360 292	33,600 30,240	336 272	
0.2		3	0.010	50,000	560	43,200	467	38,880	420	36,720	364	32,400	292	30,240	272	
		3.5	0.008	50,000	560	43,200	467	38,880	420	36,720	364	32,400	292	30,240	272	
		4	0.005	50,000	560	43,200	467	38,880	420	36,720	364	32,400	292	30,240	272	
		4.5 1	0.004	46,080 48,000	470 960	38,400 40.000	392 800	34,560 36,000	353 720	32,640 34,000	305 612	28,800	245 540	26,880 28,000	228 476	
		1.5	0.04	48,000	960	40,000	800	36,000	720	34,000	612	30,000	540	28,000	476	
		2	0.035	48,000	960	40,000	800	36,000	720	34,000	612	30,000	540	28,000	476	
		2.5 3	0.033	43,200 43,200	778 778	40,000 36,000	800 648	32,400 32,400	583 583	30,600 30,600	496 496	27,000 27,000	437 437	25,200 25,200	386 386	
0.25	0.5	4	0.02	43,200	778	36,000	648			30,600	496	27,000	437	25,200	386	
		5	0.018	43,200	778	36,000	648	32,400	583	30,600	496	27,000	437	25,200	386	
		5.5	0.008	38,400	653	32,000	544			27,200	416		367	22,400	324	
		<u>6</u> 8	0.007	38,400 38,400	653 653	32,000 32,000	544 544				416 416		367 367	22,400 22,400	324 324	
		1	0.05	48,000	1,440	40,000	1,200			34,000	884	30,000	720	28,000	560	
		2	0.042	48,000	1,440	40,000	1,200	36,000	1,080	34,000	884	30,000	720	28,000	560	
		2.5	0.038	48,000 48,000	1,440 1,440	40,000	1,200 1,200		1,080	34,000 34,000	884 884	30,000	720 720	28,000	560 560	
		3 3.5	0.034	43,200	1,231	40,000 36,000	1,026	32,400	923	30,600	756	27,000	616		479	
		4	0.024	43,200	1,231	36,000	1,026	32,400	923	30,600	756	27,000	616	25,200	479	
		4.5	0.022	43,200	1,166	36,000	972	32,400		30,600	716	27,000			454	
0.3	0.6	5 5.5	0.02	43,200 43,200	1,166 1,166	36,000 36,000	972 972			30,600 30,600	716 716	27,000 27,000	583 583		454 454	
		6	0.017	43,200	1,166	36,000	972			30,600	716		583		454	
		7	0.008	38,400	979	32,000	816	28,800	734	27,200	601	24,000	490	22,400	381	
		8	0.008	38,400	979	32,000	816			27,200	601	24,000	490	22,400	381	
		9 10	0.006	38,400 33,600	979 857	32,000 28,000	816 714			27,200 23,800	601 526	24,000 21,000	490 428		381 333	
		12	0.003	28,800	691	24,000	576			20,400	424	18,000	346		269	
		2	0.061	48,000	1,584	40,000	1,320	36,000	1,188	34,000	977	30,000	805	28,000	660	
0.35	0.7	4	0.034	43,200	1,354	36,000	1,128		1,015	30,600	835	27,000	688		564	
		6 8	0.027 0.01	43,200 38,400	1,283 1,013	36,000 32,000	1,069 844			30,600 27,200	791 625	27,000 24,000	652 515		535 422	
		0	1 0.01	50,400	1,013	JZ,000	044	20,000	100	21,200	1 020	۷4,000	1 313	۷۷,400	422	

High accuracy cuttiing condition

Please refer to P.10 about high efficiency cutting conditions

Epoch Deep Ball Evolution EPDBE-PN EPDBE-ATH

Pos		- -	222	PN series												
Recommended range										ATH series						
				1		2		3		4		5		6	3	
	Work r	naterial		Coppers		Carbon steels, Alloy steels		Stainless Tool s	,	Pre-hardened steels		Hardened steels		Hardened steels		
						(180~250HB)			(25~35HRC)		(35~45HRC)		(45~55HRC)		5HRC)	
Ratio to standard depth of cut			120%		100%		90%		80%		65%		60%			
Ball radius		Under neck length	a p		1			Revolution	Feed rate		1					
RE (mm)	DC (mm)	LU (mm)	(mm)	n min ⁻¹	Vf mm/min	n min ⁻¹	Vf mm/min	<i>n</i> min ⁻¹	Vf mm/min	n min ⁻¹	Vf mm/min	n min ⁻¹	Vf mm/min	<i>n</i> min ⁻¹	Vf mm/min	
		2	0.08	48,000	1,728	40,000	1,440	36,000	1,296	34,000	1,088	30,000	900	28,000	784	
		<u>4</u> 5	0.056	48,000 43,200	1,728 1,400	40,000 36,000	1,440 1,166	36,000 32,400	1,296 1,050	34,000 30,600	1,088 881	30,000 27,000	900 729	28,000 25,200	784 635	
0.4	0.8	6	0.032	43,200	1,400	36,000	1,166	32,400	1,050	30,600	881	27,000	729	25,200	635	
		8	0.02	38,400	1,244	32,000	1,037	28,800	933	27,200	783	24,000	648	22,400	564	
		10 2	0.01	38,400 45,600	1,175 1,944	32,000 38,000	979	28,800 34,200	881 1,458	27,200 32,300	740 1,215	24,000 28,500	1,004	22,400 26,600	533 891	
0.45	0.9	4	0.058	45,600	1,944	38,000	1,620	34,200	1,458	32,300	1,215	28,500	1,004	26,600	891	
		6 8	0.042	41,040 36,480	1,574 1,399	34,200 30,400	1,312	30,780 27,360	1,181	29,070 25,840	984 875	25,650 22,800	813 723	23,940 21,280	722 641	
		2	0.1	43,200	2,160	36,000	1,800	32,400	1,620	30,600	1,377	27,000	1,134	25,200	1,008	
		3 4	0.1	43,200 43,200	2,160	36,000 36,000	1,800	32,400	1,620	30,600	1,377	27,000	1,134	25,200	1,008	
		5	0.07	43,200	2,160	36,000	1,800	32,400 32,400	1,620 1,620	30,600 30,600	1,377 1,377	27,000 27,000	1,134 1,134	25,200 25,200	1,008 1,008	
		6	0.04	38,880	1,750	32,400	1,458	29,160	1,312	27,540	1,115	24,300	919	22,680	816	
		7 8	0.04	38,880 38,880	1,750 1,750	32,400 32,400	1,458 1,458	29,160 29,160	1,312 1,312	27,540 27,540	1,115 1,115	24,300 24,300	919 919	22,680 22,680	816 816	
0.5	1	9	0.03	38,880	1,750	32,400	1,458	29,160	1,312	27,540	1,115	24,300	919	22,680	816	
		10 12	0.025	38,880 34,560	1,750	32,400 28,800	1,458	29,160	1,312	27,540	1,115	24,300	919	22,680	816	
		13	0.013	34,560	1,469 1,469	28,800	1,224 1,224	25,920 25,920	1,102 1,102	24,480 24,480	936 936	21,600 21,600	771 771	20,160 20,160	685 685	
		14	0.01	34,560	1,469	28,800	1,224	25,920	1,102	24,480	936	21,600	771	20,160	685	
		16 18	0.008	34,560 30,240	1,469 1,210	28,800 25,200	1,224	25,920 22,680	1,102 907	24,480 21,420	936 771	21,600 18,900	771 635	20,160 17,640	685 564	
		20	0.005	25,920	1,037	21,600	864	19,440	778	18,360	661	16,200	544	15,120	484	
	1.1	4	0.1	40,320 40,320	2,110	33,600 33,600	1,758 1,758	30,240 30,240	1,582 1,582	28,560 28,560	1,301 1,301	25,200 25,200	1,090 1,090	23,520 23,520	967 967	
0.55		6	0.04	36,720	1,774	30,600	1,478	27,540	1,330	26,010	1,094	22,950	916	21,420	813	
		8	0.04	36,720	1,774	30,600	1,478	27,540	1,330	26,010	1,094	22,950	916	21,420	813	
		10 4	0.025	36,720 36,923	1,774	30,600 30,769	1,478 1,610	27,540 27,692	1,330 1,449	26,010 26,154	1,094 1,208	22,950 23,077	916 998	21,420 21,538	813 886	
		6	0.06	34,560	1,797	28,800	1,498	25,920	1,348	24,480	1,102	21,600	950	20,160	806	
0.6	1.2	8 10	0.04	34,560 34,560	1,797 1,617	28,800 28,800	1,498 1,423	25,920 25,920	1,348 1,213	24,480 24,480	1,102 1,102	21,600 21,600	950 855	20,160 20,160	806 726	
		12	0.03	34,560	1,617	28,800	1,348	25,920	1,213	24,480	1,102	21,600	855	20,160	726	
0.7	1.4	8 12	0.055	30,240 30,240	1,814 1,633	25,200 25,200	1,512 1,361	22,680	1,361 1,225	21,420	1,157 1,041	18,900 18,900	983	17,640 17,640	882 794	
0.7	1.4	16	0.033	26,880	1,371	22,400	1,142	22,680 20,160	1,028	19,040	874	16,800	885 743	15,680	666	
		4	0.1	33,600	2,218	28,000	1,848	25,200	1,663	23,800	1,428	21,000	1,134	19,600	980	
		6 8	0.1	33,600 30,240	2,218 1,796	28,000 25,200	1,848 1,497	25,200 22,680	1,663 1,347	23,800 21,420	1,428 1,157	21,000 18,900	1,134 919	19,600 17,640	980 794	
		10	0.06	30,240	1,796	25,200	1,497	22,680	1,347	21,420	1,157	18,900	919	17,640	794	
0.75	1.5	12 14	0.06	30,240 26,880	1,796 1,508	25,200 25,200	1,497 1,497	22,680 20,160	1,347 1,131	21,420 19,040	1,157 971	18,900 16,800	919 771	17,640 15,680	794 666	
		16	0.019	26,880	1,508	22,400	1,257	20,160	1,131	19,040	971	16,800	771	15,680	666	
		18 20	0.019	26,880 26,880	1,508 1,508	22,400 22,400	1,257 1,257	20,160	1,131 1,131	19,040 19,040	971 971	16,800 16,800	771 771	15,680 15,680	666 666	
		8	0.11	31,200	2,184	26,000	1,820	20,160 23,400	1,638	22,100	1,370	19,500	1,170	18,200	1,019	
0.8	1.6	12	0.065	28,080	1,769	23,400	1,474	21,060	1,327	19,890	1,110	17,550	948	16,380	826	
		16 20	0.04	28,080 24,960	1,769 1,485	23,400 20,800	1,474 1,238	21,060 18,720	1,327 1,114	19,890 17,680	1,110 932	17,550 15,600	948 796	16,380 14,560	826 693	
		8	0.13	31,200	2,496	26,000	2,080	23,400	1,872	22,100	1,547	19,500	1,287	18,200	1,092	
0.9	1.8	12 16	0.07	28,080 28,080	2,022	23,400 23,400	1,685 1,685	21,060 21,060	1,516 1,516	19,890 19,890	1,253 1,253	17,550 17,550	1,042 1,042	16,380 16,380	885 885	
		20	0.022	24,960	1,697	20,800	1,414	18,720	1,273	17,680	1,052	15,600	875	14,560	743	
		3	0.2	25,200	2,520	21,000	2,100	18,900	1,890	17,850	1,607	15,750	1,355	14,700	1,176	
1	2	6	0.2	25,200 25,200	2,520 2,268	21,000 21,000	2,100 1,890	18,900 18,900	1,890 1,701	17,850 17,850	1,607 1,428	15,750 15,750	1,355 1,197	14,700	1,176 1,058	
	_	8	0.14	25,200	2,268	21,000	1,890	18,900	1,701	17,850	1,428	15,750	1,197	14,700	1,058	
		10	0.14	25,200	2,016	21,000	1,680	18,900	1,512	17,850	1,285	15,750	1,071	14,700	941	

ons Cutting coating Ball High 6

Ball High accuracy

ating Square ATH Coati

Square High efficiency S

condition Techn

6

Hardened steels

(55~65HRC)

60%

Revolution Feed rate

mm/min

847

847

847

762

762

762

680

640

640

527

452

1.125

1,125

911

911

820

765

1,344

1,089

1,175

914

950

950

799

1,288

876

876

min-

13,230 13,230

13.230

13,230

13,230

13,230

12,495

11,760 11,760

10,290

8.820

12,950

12,950

11.655

11,655

11,655

10,360

11,200

10,080

8,960

9,625

8,663

8,663

7,700

8,050

6,440

6,440

8.050 1.288

8,050 1,288

8,050 1,288

7,245 1,043

7,245 1,043

7,245 1,043

7,245 1,043

6,300 1,134

6,300 1,134

5.670 1.021

11,200 1,344

11,200 1,344

11,200 1,210

10,080 1,089

10,080 1,089

ATH series

5

Hardened steels

(45~55HRC)

65%

mm/min

964

964

964

868

868

868

774

728

728

600

514

1,373

1,373

1,111

1,111

1,000

1,512

1,512

1,361

1,225

975

933

Revolution Feed rate Revolution Feed rate

min-

14.175

14,175

14,175

14,175

14,175

14,175

13,388

12,600

9,450

13,875

12,488

12,488

11,100

12,000

10,800

8,250

10,800 1,225

9,600 1,028

9,281 1,159

9,281 1,159

8,625 1,466

8,625 1,466

8.625 1.466

8,625 1,466

7,763 1,188

7,763 1,188

7,763 1,188

6,750 1,350

6,750 1,350

1,188

997

997

7,763

6,900

6,900

10,313 1,434

874 12,600

720 11,025

mm/min

1,157

1,041

1,041

929

874

617

1,688

15,725 1,688 13,875

14.153 1.367 12.488

1,229

13,600 1,822 12,000

1,822

13,600 | 1,640 | 12,000

1,476

13,600 1,822 12,000 1,512

14,153 1,367

12,580 1,148

12,240 1,476

10,880 1.239

11,688 1,763

10,519 1,425

10,519 1,425

9,350 1,199

9.775 1.760

9,775 1,760

9,775 1,760 9,775 1,760

8,798 1,425

8,798 1,425

8,798 1,425

8,798 1,425

7.820 1.196

7,820 1,196

7,650 1,530

7,650 1,530

4

Pre-hardened

steels

(35~45HRC)

80%

16,065 1,157

16,065 1,157

16,065 1,041

min-

16,065

16,065

16,065

15,173

14,280

14,280

10,710

15,725

14,153

13,600

12,240

847 12,495

		40	0.2	9,720	2,100	8,100	1,750	7,290	1,575	6,885	1,239	6,075	1,094	5,670	919
		12	0.6	10,800	3,024	9,000	2,520	8,100	2,268	7,650	1,890	6,750	1,537	6,300	1,260
3	_	20	0.5	10,200	2,652	8,500	2,210	7,650	1,989	7,225	1,658	6,375	1,348	5,950	1,105
	6	30	0.42	9,600	2,304	8,000	1,920	7,200	1,728	6,800	1,360	6,000	1,200	5,600	1,008
		50	0.15	8,640	1,866	7,200	1,555	6,480	1,400	6,120	1,102	5,400	972	5,040	816
 **(1) a_p is shown as the criteria for Group 2 workpieces. For other groups, adjust the cutting depth according to the cutting depth factors in the above table. **(2) When performing cutting where cutting chips may cause clogging, such as for rib processing, blind grooves, etc., cutting depth setting should be set by multiplying a cutting depth factor to calculate the cutting depth amount, and this amount should then be reduced to 80% of the calculated value. **(3) Adjust by setting a_e to (3 to 5)×(a_p)×(cutting depth ratio). When performing finishing processing, calculate the theoretical cusp height and set accordingly. 															
Cutting depth setting example: When cutting rib groove contours in hardened steel (50HRC) using an EPDBE2020-10-ATH tool: Cutting depth = 0.14 (a_0) × 0.65 (cutting depth factor for Group 5 hardened steel) × 0.8 (for closed-area cutting) = 0.073 mm															
Note ① PN coating is less electro conductive. Therefore, electric transmitted measuring systems may not work. ② Use the appropriate coolant for the work material and machining shape. ③ These Recommended Cutting Conditions indicate only the rule of a thumb for the cutting conditions. In actual machining, the condition should be															

Note

PN series

1

Coppers

120%

22,680 1,814

22,680 1,814

22,680 1,814

22.680 1.633

22,680 1,633

22,680 1,633

21,420 1,457

20,160 1,371 20,160 1,371

17,640 1,129

22,200 2,700 22,200 2,700

19.980 2.186

19,980 2,186

19,980 1,967

17,760 1,836

19,200 2,880

19,200 2,880

19,200 2,880

19,200 2,592

17.280 2.333

17,280 2,333

17,280 2,333

15,360 1,958

16,500 2,820

14,850 2,280

14,850 2,280

13,200 1,918

13,800 | 2,760 |

13,800 2,760 13,800 2,760

12,420 2,236

12,420 2,236

12,420 2,236

12,420 2,236

11,040 1,877

11,040 | 1,877 |

10,800 2,592

10,800 2,592

968

15,120

mm/mir

min-1

2

Carbon steels.

Alloy steels

(180~250HB)

100%

Revolution Feed rate Revolution Feed rate Revolution Feed rate

18,900 1,512

18,900 1,512

18,900 1,512

18,900 1,361

18,900 1,361

18,900 1,361

17,850 1,214

16,800 1,142

16,650 1,822

14,800 1,530

14,400 1,944

12,800 1,632

12,375 1,900

11,000 1,598

13,800 | 2,760 | 11,500 | 2,300 | 10,350 | 2,070

11,500 2,300 11,500 2,300

10,350 1,863

10,350 1,863

10,350 1,863

10,350 1,863

9,200 1,564

9,200 | 1,564 |

9,000 2,160

9,000 2,160

16,800

14,700

12,600

16,650

mm/min

1,142

18,500 2,250 16,650 18,500 2,250 16,650

16.650 1.822 14.985

1,639

16,000 2,400 14,400 16,000 2,160 14,400

min-

3

Stainless steels

Tool steels

(25~35HRC)

90%

17,010 1,361

17,010 1,361

mm/mir

1,361

1,225

1,225

1,225

1,092

1,028

1,028

2,025

2,025

1.640

1,640

1,475

1,377

2,160

1,944

1,750

1,469

1,710

1,438

2,070

2,070

1,677

1,677

1,944

9,315 1,677

9,315 1,677

8,280 1,408

8,280 | 1,408

8,100 1,944

9,720 2,333 8,100 1,944 7,290 1,750 6,885 1,377 6,075 1,215

14.400 1.944 12.960 1.750 12.240 1.476 10.800 1.225

726

min-

17,010

17.010

17,010

17,010

16,065

15,120

15,120

16,650

14,985

14,985

13,320

12,960

11,520

11,138

9,900

10,350

10,350

9,315

9,315

8,100

16,000 2,400 14,400 2,160

16,000 | 2,400 | 14,400 | 2,160

14,400 1,944 12,960 1,750

13,750 2,350 12,375 2,115

12,375 | 1,900 | 11,138 | 1,710

11,500 | 2,300 | 10,350 | 2,070

941 13,230

806 11,340

Recommended range

Work material

Ratio to standard depth of cut Under necl

length

(mm)

12

13

14 16

18

20

22

25

30

35

40

10

15

20

25

30

10

13

16

20

25

30

35

15

25

35

45

10

13

16

20

25

30

35

40

45

50

20

25

30

8

6

0.08

0.08

80.0

0.08

0.06

0.05

0.042

0.035

0.015

0.012

0.01

0.25

0.17

0.08

0.065

0.044

0.3

0.21

0.21

0.21

0.12

0.08

0.08

0.064

0.24

0.14

0.09

0.072

0.4

0.32

0.28

0.28

0.16

0.16

0.1

0.1

0.08

0.07

0.35

0.35

0.2

0.1

Ball radius Tool dia.

DC (mm)

2

2.5

3

3.5

4

5

1

1.25

1.5

1.75

2

2.5

adjusted according to the machining shape, purpose and the machine type.

⁽⁴⁾ If the rpm of the machine is low, lower the feed rate also to put the rpm and feed rate in the same ratio.

0

2 types of coatings to handle a variety of work materials.

Recommended machining areas for each coating

PN Coating cutting area

ATH Coating cutting area

Mild steels

30HRC

40HRC

50HRC

Hardened material

Cutting Data 1

Work material : SCM440 ⊕ 30HRC

Holder: HSK-F63

Tool dia.: R0.5×Under neck 6mm

Coolant : Air-blow

n=28,000min⁻¹ (vc=88m/min) vf=1,200mm/min (fz=0.02mm/t)

ap=0.036mm ae=0.108mm OH=18mm

Cutting length 10m

Cutting Data 2

Work material: HPM-MAGIC 40HRC

Holder: HSK-F63

Tool dia. : R0.5×Under neck10 mm

Coolant : Air-blow

n=24,300min⁻¹ (vc=76m/min) vf=900mm/min (fz=0.018mm/t) ap=0.04mm Cutting reciprocating slot.

OH=18mm

Cutting Data 3

Work material : DACH 45HRC

Holder: HSK-F63

Tool dia. : R0.5×Under neck 6mm

Coolant : Air-blow

 $n=27,540 \text{min}^{-1} \text{ (}v_c=86 \text{m/min)}$ $v_f=1,115 \text{mm/min (}f_z=0.02 \text{mm/t)}$

a_p=0.032mm a_e=0.096mm OH=18mm

Cutting length 10m

Cutting Data 4

Work material: HPM38 52HRC

Holder: HSK-F63

Tool dia. : R0.5×Under neck10mm

Coolant : Air-blow

n=24,300min⁻¹ (vc=76m/min) vf=919mm/min (fz=0.018mm/t) ap=0.016mm OH=18mm Cutting length 20m

Technical data Ball nose

Enables high-accuracy stable machining with excellent surface quality.

Technical Data SCM440(H) 33HRC rib slot evaluation

Tool: EPDBE2010-10-PN (R0.5 Under neck10mm)

★This is amazing! Point 1 Uniformity of machined surface

EPDBE2010-10-PN Forms uniform cutter marks. No vibrations occurred.

Cutter marks are not uniform. In addition, friction has collapsed marks

★This is amazing! Point 2 Low deflection provides improved machining accuracy!

Rib slot evaluation

Work material : SCM440⊕ 33HRC Holder: HSK-F63 Coolant: Wet $n=16,000 \text{min}^{-1} (v_c=50 \text{m/min})$

 $v_f = 1,000 \text{mm/min} (f_z = 0.03 \text{mm/t})$ $a_p \times a_e = 0.02 \text{mm} \times 0.04 \text{mm}$

*Machining error amount:: (Ideal dimension)-(Measured dimension after cutting)

★This is amazing! Point 3 Long life: Wear resistance plus good chipping resistance

Technical Data

Tool: EPDBE2010-10-ATH (R0.5 Under neck10mm)

★This is amazing! Point 1 Wear condition is stable. No chipping even on high-hardness materials.

Technical Data

Tool: EPDBE2010-10-ATH (R0.5 Under neck10mm)

★This is amazing! Point 2 High accuracy achieved due to little deflection.

Periphery helix angle is strong, improving cutting performance.

Technical Data

Tool interference check, Re-grinding

Example of difference in neck interference area

Difference in interference area for R=0.3 x Under neck length=2mm

(Figures show a slope angle of 1°.)

When a conventional product and new product with R=0.3 x Under neck length=2mm are compared for a surface with a 1° slope angle, the conventional EPDB2006-2-TH has an effective under neck length of 3.13mm, but for the new EPDBE2006-2-ATH, the effective under neck length is 2.66mm.

The improved neck shape used in these new products results in a different interference area than the EPDB and EPDS conventional models.

For checking interference:

Re-grinding compatibility range table

Item code	Product name	Tool dia.	Shape	Re-grinding range	compatibility (mm)
nom code	1 Toddot Hairio	(mm)	Спаро	Outer dia.	End
EPDBE-PN	Epoch Deep Ball Evolution (PN Coating)	0.1~6		N/A	1~6
EPDBE-ATH	Epoch Deep Ball Evolution (ATH Coating)	0.1~6		N/A	1~6
EPDSE-PN	Epoch Deep Square Evolution (PN Coating)	0.1~6		6	2~6
EPDSE-ATH	Epoch Deep Square Evolution (ATH Coating)	0.1~6		6	2~6

[Note] Contact our sales office regarding whether or not regrinding is possible for tools where Under neck length/Tool diameter is 10 or greater.

The diagrams and table data are examples of test results, and are not guaranteed values.

"MOLDINO" is a registered trademark of MOLDINO Tool Engineering, Ltd.

Attentions on Safety

Cautions regarding handling

- (1) When removing the tool from its case (packaging), be careful that the tool does not pop out or is dropped. Be particularly careful regarding contact with the tool flutes.
- (2) When handling tools with sharp cutting flutes, be careful not to touch the cutting flutes directly with your bare hands.

2. Cautions regarding mounting

- (1) Before use, check the outside appearance of the tool for scratches, cracks, etc. and that it is firmly mounted in the collet chuck, etc.
- (2) If abnormal chattering, etc. occurs during use, stop the machine immediately and remove the cause of the chattering.

3. Cautions during use

- (1) Before use, confirm the dimensions and direction of rotation of the tool and milling work material.
- (2) The numerical values in the standard cutting conditions table should be used as criteria when starting new work. The cutting conditions should be adjusted as appropriate when the cutting depth is large, the rigidity of the machine being used is low, or according to the conditions of the work material.
- (3) Cutting tools are made of a hard material. During use, they may break and fly off. In addition, cutting chips may also fly off. Since there is a danger of injury to workers, fire, or eye damage from such flying pieces, a safety cover should be attached when work is performed and safety equipment such as safety goggles should be worn to create a safe environment for work.
- (4) There is a risk of fire or inflammation due to sparks, heat due to breakage, and cutting chips. Do not use where there is a risk of fire or explosion. Please caution of fire while using oil base coolant, fire prevention is necessary.

 (5) Do not use the tool for any purpose other than that for which it is intended.

4. Cautions regarding regrinding

- (1) If regrinding is not performed at the proper time, there is a risk of the tool breaking. Replace the tool with one in good condition, or perform regrinding.

 (2) Grinding dust will be created when regrinding a tool. When regrinding, be sure to attach a safety cover over the work area and wear safety clothes such as safety goggles, etc.
- (3) This product contains the specified chemical substance cobalt and its inorganic compounds. When performing regrinding or similar processing, be sure to handle the processing in accordance with the local laws and regulations regarding prevention of hazards due to specified chemical substances.

MOLDINO Tool Engineering, Ltd.

Head Office

Hulic Ryogoku Bldg. 8F, 4-31-11, Ryogoku, Sumida-ku, Tokyo, Japan 130-0026 International Sales Dept.: TEL +81-3-6890-5103 FAX +81-3-6890-5128

Europe MOLDINO Tool Engineering Europe GmbH Itterpark 12, 40724 Hilden, Germany. Tel +49-(0)2103-24820 Fax +49-(0)2103-248230

China MOLDINO Tool Engineering (Shanghai), Ltd. Room 2604-2605, Metro Plaza, 555 Loushanguan Road, Changning Disctrict, Shanghai, 200051, China Tel +86-(0)21-3366-3058 Fax +86-(0)21-3366-3050

America MITSUBISHI MATERIALS U.S.A. CORPORATION

DETROIT OFFICE Customer service 41700 Gardenbrook Road, Suite 120, Novi, MI 48375-1320 U.S.A Tel +1(248) 308-2620 Fax +1(248) 308-2627

Mexico MMC METAL DE MEXICO, S.A. DE C.V.

Av. La Cañada No.16, Parque Industrial Bernardo Quintana, El Marques, Querétaro, CP 76246, México
Tel +52-442-1926800

Official Web Site

http://www.moldino.com/en/

Database for selection Cutting Tool Products [TOOL SEARCH] TOOLSEARCH

Search Web

Brazil MMC METAL DO BRASIL LTDA.

- CEP 01333-010 São Paulo - SP ., Brasil Rua Cincinato Braga, 340 13° andar.Bela Vista Tel +55(11)3506-5600 Fax +55(11)3506-5677

MMC Hardmetal (Thailand) Co.,Ltd. MOLDINO Division

622 Emporium Tower, Floor 22/1-4, Sukhumvit Road, Klong Tan, Klong Toei, Bangkok 10110, Thailand TEL:+66-(0)2-661-8175 FAX:+66-(0)2-661-8176

MMC Hardmetal India Pvt Ltd.

H.O.: Prasad Enclave, #118/119, 1st Floor, 2nd Stage, 5th main, BBMP Ward #11, (New #38), Industrial Subub, Yeshwanthpura, Bengaluru, 560 022, Karnataka, India.

Tel +91-80-2204-3600

DISTRIBUTED BY:

