1.	Rank	of a	mat	trix	(in-	class)	(★☆)

Let $m \in \mathbb{N}_{\geq 2}$ be arbitrary and consider the $m \times m$ matrix

$$A_m = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{bmatrix}$$

with $a_{ij} = i + j$ for all $i, j \in \{1, 2, ..., m\}$.

- a) Calculate A_m for $m \in \{2, 3, 4\}$.
- **b)** Determine the rank of A. You need to motivate your answer.

b)
$$\operatorname{rank}(A_2) = 2$$
, $\operatorname{rank}(A_3) = 2$, $\operatorname{rank}(A_4) = 2$

1.
$$rank(A_m) \neq 0 \Rightarrow rank(A) \geq 1$$
 abhangig, weil $v_1 \neq 0!$

2. $(a_{11} \ a_{12})$ (a_{11}) (a_{12}) $(a_$

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \end{pmatrix}$$
, $\begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \end{pmatrix}$ linear unabhängig = $\begin{pmatrix} a_{11} \\ A \end{pmatrix} \geq 2$

3.
$$S_{e}$$
 $V_{1} = \begin{pmatrix} a_{2} \\ a_{-1} \end{pmatrix}$ $\begin{pmatrix} 1 + 2 \\ 2 + 2 \end{pmatrix} \begin{pmatrix} 1 + 1 \\ 2 + 1 \end{pmatrix}$

Sei
$$i > 2$$
. Es gilt $v_i = \begin{pmatrix} a_1 & 1 & 1 \\ a_2 & 1 & 2 \\ a_m & m + i \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ m & 1 & 1 \end{pmatrix}$

$$=$$
 $V_1 + i, (V_2 - V_1).$