CNN TRAINING & FAMOUS ARCHITECTURES

Dr. Brian Mc Ginley

PREVENTING OVERFITTING

- The usual things should be tried
 - Regularisation
 - Early Stopping
- But sometimes that is enough. Two methods I'll discuss briefly are
 - Data Augmentation
 - Dropout

DATA AUGMENTATION

- If you only have a limited number of images, one way to get "more" is to do data augmentation. The more data we have, the less likely the model is going to be overfit. https://www.tensorflow.org/tutorials/images/data_augmentation
- Where you make multiple copies of the labelled training data and make modifications to it. Then you have many "new" labelled images.

DATA AUGMENTATION

- If, after the modification, it is still obvious to a human what is in the image then a well-trained algorithm should cope too.
- Examples:
 - Random Crops
 - Scaling
 - Rotations
 - Translations
 - Noise
 - Mirror be careful.
 - Lens and perspective distortions

DROPOUT

- https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
- Another method of regularising the parameters, (using a patent by Google) is called Dropout.
- Dropping out 10%, 20% or 40% of the output units randomly from the applied layer during the Training process.
- This ensures the prediction does not become too reliant on some units/filters.
- Important to note: this (and data augmentation) only applies during the training phase. When using a network for inference/prediction, it will always use all the units in every layer.
- Note:
 - Dropout is patented by Google, but it is unclear whether this is to protect it from others doing so or to enforce the patent.

DROPOUT

- Figure: Network with and without dropout
- http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

(a) Standard Neural Net

(b) After applying dropout.

FAMOUS ARCHITECTURES

- To understand how the Architectures have progressed we will take a quick tour of the significant architectures for feed-forward classification and localisation, including:
 - LeNet 1989 (published in 1998)
 - AlexNet 2012
 - VGGNet 2014
 - GoogLeNet 2014
 - ResNet 2015
- Don't assume these are the only architectures. There are too many to go through but those mentioned above would be unlikely to be left out of any list.

LENET

• The LeNet (1998) by Yann leCun was the first successful use of a convolutional neural network. It was successfully deployed for use in postal services for reading hand written postal codes. It would be a while before they could be used at scale.

Figure: LeNet Architecture

ALEXNET

• AlexNet (2012) was the break through for CNNs. Alex Krishevsky et al. created an network that won the ImageNet challenge by a huge margin. It has not been won since by anything other than a CNN.

Figure: The AlexNet Architecture

ALEXNET - 8 LAYERS

```
• 227 × 227 × 3
                     Input
■ 55 × 55 × 96
                     Conv1: 96-11 × 11 filters at stride 4, pad 0
■ 27 × 27 × 96
                     MaxPool1: 3 \times 3 filters at stride 2
• 27 × 27 × 256
                     Norm1: 3 × 3 Normalisation Layer
• 27 × 27 × 256
                     Conv2: 256 5 \times 5 filters at stride 1, pad 2
■ 13 × 13 × 256
                     MaxPool2: 3 \times 3 filters at stride 2
■ 13 × 13 × 256
                     Norm2: 3 × 3 Normalisation Layer
■ 13 × 13 × 384
                     Conv3: 384.3 \times 3 filters at stride 1, pad 1
■ 13 × 13 × 384
                     Conv4: 384 3 \times 3 filters at stride 1, pad 1
• 13 × 13 × 256
                     Conv5: 256 3 \times 3 filters at stride 1, pad 1
```

MaxPool3: 3×3 filters at stride 2

4096 neurons

4096 neurons

4096 neurons

• 6 × 6 × 256

• 4096 FC6:

• 4096 FC6:

• 4096 FC6:

ALEXNET

- ReLU
- Norm layers which aren't really used any more
- Seven CNN ensembles
- Training details:
 - Dropout of 0.5
 - Batchsize 128
 - A lot of data augmentation
 - SGD with momentum 0.9
- Learning rate le-2, which was reduced by a factor of 10 each time.
- This was carried out manually.
- The architecture looks a little more complicated than it actually was.
 - The problem was that there was not enough memory on GPUs at the time to fit the whole model on a single GPU, so the diagram shows it split across two GPUs.

VGG-NET

- VGGNet 2014 (Visual Geometry Group - Oxford - Davi Frossard K. Simonyan and A. Zisserman).
- Came second in the classification category on ImageNet but first in localisation.
- Main concepts: Go deeper (11 to 19 layers) with more uniform conv-layers i.e. all 3 × 3 stride 1 and pad 1.2 × 2 max-pool stride 2.
- With depth, the 3 ×3 filters further into the network have an increased receptive field.

VGG-NET TRAINING

- Similar training to AlexNet.
- There was none of the Normalisation layers. They also use an Ensemble of 7 networks.
- One other thing to note is that the features of the last FC-4096 layer were found to generalise well to other tasks.
- This is useful to note for a technique called Transfer Learning.

GOOGLENET

GoogLeNet – later renamed Inception

MORE DEPTH BETTER?

- Evidence that more layers does not necessarily mean better accuracy.
- Deep Residual Learning for Image Recognition paper

RESNET

- Published (2015) by Microsoft introduced a new architecture called Residual Network.
 - 34 layer ResNet Deep Residual Learning for Image Recognition Kaiming He et al.
- ResNets have become associated with solving the *vanishing gradient problem* as they will certainly do this.
- But they created examples at 50 layers, 101 layers and 152 layers.

