Modelos de Computação CC1004

2016/2017

Modelos de Computação CC1004	2010/2017
Teste – 17.05.2017	duração: 3h
N.º Nome	
1. Sejam M e L as linguagens de alfabeto $\Sigma = \{a, b, c\}$ dadas	s por
$\mathbf{M} = \{x \mid x \text{ tem número par de a's ou} \}$	termina em c}
$\mathbf{L} = \{x \mid x \text{ tem número par de a's, na}\}$	ão tem c's e não termina em bb}
Note que $bc \in \mathbf{M}$, $bc \notin \mathbf{L}$, $b \in \mathbf{M}$, $b \in \mathbf{L}$, $bbb \in \mathbf{M}$, mas bbb	$o otin \mathbf{L}$.
a) Descreva M por uma expressão regular (abreviada).	c) Desenhe o AFD mínimo que aceita L.
a) Deserva 111 per uma expressao regular (aere rada).	c) Desenne o Ar D minimo que acena E.
b) Descreva L por uma expressão regular (abreviada).	
d) Seja $R_{\mathbf{L}}$ a relação de equivalência em Σ^{\star} dada por $xR_{\mathbf{L}}y$ Descreva informalmente cada classe de equivalência de $R_{\mathbf{L}}$, i satisfazem e que nos permite decidir se uma dada palavra $x \in \Sigma$	ndicando uma condição que as palavras de tal classe
e) Apresente uma GIC linear à direita que gere M e não seja a	mbígua.

2. Seja \mathbf{K} a linguagem das palavras de alfabeto $\Sigma = \{a, b, c\}$ que têm exatamente um a e pelo me exemplo, acbcc $\in \mathbf{K}$ e cbcc $\notin \mathbf{K}$.	enos um b. Por
a) Apresente uma expressão regular (abreviada) que descreva a linguagem K.	
b) Apresente as regras de produção de uma GIC G , não ambígua , que gere a linguagem \mathbf{K} e tenha sín Apresente a árvore de derivação da palavra acbcc segundo G .	$\frac{}{}$ mbolo inicial A
c) Explique sucintamente porque é que a gramática que apresentou gera K e não é ambígua.	
3. Sejam s e r expressões sobre $\Sigma = \{a,b\}$ dadas por $s = ((a + (ab))^*)$ e $r = ((bs)(ab))$.	
Desenhe o diagrama de transição do autómato finito que resulta da aplicação do método de Thomps regular r , segundo a construção dada nas aulas. Identifique nesse diagrama por i_s e f_s o estado in autómato que resultaria da aplicação do mesmo método à expressão s .	

N.	Nome
	eja L a linguagem constituída pelas palavras que começam por b, terminam em ab, não têm bb como subpalavra o número de a's é o dobro do número de b's, com alfabeto $\Sigma = \{a, b\}$. Por exemplo, babaaaaab pertence a L .
	apresente um autómato de pilha que reconheça L por pilha vazia . Indique sucintamente a interpretação de cada do e as ideias principais subjacentes.
	to e as ideias principais subjacentes.
D ₀	olva apenas uma das alíneas 4b) e 4c)
	Prove que L não satisfaz a condição do lema da repetição para linguagens regulares para nenhum $n > 0$.
c)	ndique um conjunto de palavras de Σ^* que determinam um conjunto infinito de classes de R_L . Justifique.
d)	Dê exemplo de uma linguagem que seja um subconjunto de L e que $\mathbf{n}\tilde{\mathbf{a}}\mathbf{o}$ seja independente de contexto.

5.	Seja A o AFND- ε representado	pelo diagrama de	transição seguinte,	com alfabeto $\Sigma =$	$\{0,1\}.$

	1	
s_1	$\varepsilon,1$ (S_2) $(0,1,\varepsilon)$ (S_3)	0 > (S4)
	1	

a) Indique o conjunto de estados em que A pode estar após analisar 10010 \qquad e 100011 \qquad .

b)	Desenhe o diagrama de transição do AFD A' , equivalente a A , que se obtém pelo método de conversão dado.
De	signe os estados do AFD por conjuntos e represente apenas os estados acessíveis do estado inicial de A' .

c) Averigue se existem duas palavras de Σ^* que não são equivalentes para o AFD A' mas que seriam equivalentes para o AFD mínimo que reconhece $\mathcal{L}(A')$ e duas palavras que sejam equivalentes para o AFD A' mas não para o AFD mínimo. Justifique a resposta (deverá dar exemplos se existirem e justificar).

 	<u> </u>	•	,	

6. Seja $G = (\{S, X, Y\}, \{0, 1\}, P, S)$ uma GIC, com P dado pelas regras representadas à esquerda.

a) Apresente uma derivação de 0011 $\in \mathcal{L}(G)$ que não seja uma derivação pela esquerda nem pela direita.

$X \rightarrow XX \mid 1$	
$Y \ o \ extsf{0} \ \ YY$	
). Dê evemplo de duas palayras x e y de $f(C)$ ta	is que x só admite uma árvore de derivação e u admite pelo menos

b) Dê exemplo de duas palavras x e y de $\mathcal{L}(G)$ tais que x só admite uma árvore de derivação e y admite pelo menos duas, e apresente essas árvores. Diga, justificando, se se pode concluir que G é ambígua ou que G não é ambígua.

(Continua)

N.º		Nome			
7.	7. Resolva apenas uma das duas questões seguintes:				
	a) Na continuação de 6., justifique que G está na forma normal de Chomsky e aplique o algoritmo CYK para averiguar se $10011 \in \mathcal{L}(G)$ e, com base na tabela produzida, indicar todas as subpalavras de 10011 que pertencem a $\mathcal{L}(G)$.				
O see squalge	111M10101) dê como re símbolo branco é • e a uerda e no fim deve ap	esultado M máquina j ontar o díg mplementa	ng que dadas duas sequências em binário separadas por um M (por exemplo, seguido da sequência que representar um inteiro maior (no exemplo, M10111), pode deslocar M se for conveniente. No início o cursor está na posição mais à ito mais significativo do resultado. Apresente também as ideias principais do L. Admita que os números dados não têm 0's não significativos, isto é, o dígito o for 0.		