Exercises Solved: All.

Exercise 1 (3 points). Munkres exercise 1.9, p.15.

Collaborators: None.

Let \mathcal{A} be a nonempty collection of subsets of X, and let \mathcal{J} be an index set for \mathcal{A} . Then DeMorgan's Laws are

$$X - \bigcup_{\alpha \in \mathcal{J}} A_{\alpha} = \bigcap_{\alpha \in \mathcal{J}} (X - A_{\alpha}) \text{ and}$$
$$X - \bigcap_{\alpha \in \mathcal{J}} A_{\alpha} = \bigcup_{\alpha \in \mathcal{J}} (X - A_{\alpha}).$$

Law 1: Let $x \in X - \bigcup_{\alpha} A_{\alpha}$, then x is in none of the A_{α} , so $x \in X - A_{\alpha}$ for all α . Thus $x \in \bigcap_{\alpha} (X - A_{\alpha})$, so $X - \bigcup_{\alpha} A_{\alpha} \subset \bigcap_{\alpha} (X - A_{\alpha})$. Conversely, let $x \in \bigcap_{\alpha} (X - A_{\alpha})$, then x is not in A_{α} for any α , so x cannot be in their union, i.e. $x \in X - \bigcup_{\alpha} A_{\alpha}$. Thus $\bigcap_{\alpha} (X - A_{\alpha}) \subset X - \bigcup_{\alpha} A_{\alpha}$. Since we have proven both inclusions, this means the two sets are equal.

Law 2: This uses the same strategy of proving both inclusions. Let $x \in X - \bigcap_{\alpha} A_{\alpha}$, then $x \notin A_{\beta}$ for some β , i.e. $x \in X - A_{\beta}$. Then it is certainly in the union of all possible $X - A_{\alpha}$, i.e. $x \in \bigcup_{\alpha} (X - A_{\alpha})$. Conversely, let $x \in \bigcup_{(X - A_{\alpha})}$, then $x \in X - A_{\beta}$ for some β , so $x \notin A_{\beta}$. Thus $x \notin \bigcap_{\alpha} A_{\alpha}$, or equivalently, $x \in X - \bigcap_{\alpha} A_{\alpha}$.

Exercise 2 (6 points). Munkres exercise 2.4, p.21.

Collaborators: None.

- a. By the associativity of function composition, $(f \circ g) \circ (g^{-1} \circ f^{-1}) = f \circ (g \circ g^{-1}) \circ f^{-1} = f \circ f^{-1}$, which is just the identity map. Thus $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$, so a set $C_0 \subset C$ has the same image under both.
- b. Let f, g be injective, and suppose g(f(x)) = g(f(y)). Since g is injective, this implies that f(x) = f(y), and since f is injective, this implies that x = y. Thus $g \circ f$ is injective.
- c. If $g \circ f$ is injective, then we claim that f must be injective but g need not be. Suppose $f(a_1) = f(a_2)$, then since g is a function, $g(f(a_1)) = g(f(a_2))$. Then by the injectivity of $g \circ f$, we have $a_1 = a_2$, so f is injective.

Now consider the maps $f: \{0\} \to \{0,1\}$ and $g: \{0,1\} \to \{0\}$ given by f(0) = 0 and g(0) = g(1) = 0. Since there is only one element of C and one element of A, the composition $g \circ f$ is necessarily injective; however, the map g is not injective.

- d. Let f, g be surjective, and suppose $c \in C$. Since g is surjective onto C, there is some $b \in B$ such that g(b) = c. And since f is surjective onto B, there is some $a \in A$ such that f(a) = b. Then g(f(a)) = c, so $g \circ f$ is surjective onto C.
- e. If $g \circ f$ is surjective, then we claim that g must be surjective but f need not be. Since $g \circ f$ is surjective, then for all $c \in C$, there is some $a \in A$ such that g(f(a)) = c. Then g maps $f(a) \in B$ to c. Thus g maps elements of B onto every element of C.

Now consider the counterexample maps f and g from part (c). The composition $g \circ f$ is surjective, but f is not.

f. The composition of injective functions is injective, and the composition of surjective functions is surjective. Conversely, the second map of a surjective composition must be surjective while the first map of an injective composition must be injective.

Exercise 3 (5 points). Find a countable basis that generates the standard topology on \mathbb{R}^n .

Collaborators: Lucas Fagan, Michael Liu.

We claim that

$$\mathcal{C} = \{ B(p,q) \mid p \in \mathbb{Q}^n, q \in \mathbb{Q} \}$$

is a countable basis for the standard topology on \mathbb{R}^n . We must first show that this set is countable. Since \mathbb{Q} is countable, so is each set

$$\mathcal{C}_p = \{ B(p,q) \mid q \in \mathbb{Q} \} .$$

Additionally, since the finite product of countable sets is countable, \mathbb{Q}^n is countable. Then since the countable union of countable sets is countable, this means $\mathcal{C} = \bigcup_{p \in \mathbb{Q}^n} \mathcal{C}_p$ is countable.

Denote the topology generated by \mathcal{C} by \mathcal{T}_C , and denote the standard topology on \mathbb{R}^n by \mathcal{T}_S . To show that \mathcal{C} generates the standard topology, we will show that $\mathcal{T}_S \subset \mathcal{T}_C$ and $\mathcal{T}_C \subset \mathcal{T}_S$.

Since \mathbb{Q}^n is a subset of \mathbb{R}^n , the usual basis $\mathcal{B} = \{B(x,\varepsilon) \mid x \in \mathbb{R}^n, \varepsilon > 0\}$ for the standard topology contains \mathcal{C} . Thus $\mathcal{T}_C \subset \mathcal{T}_S$.

To show that $\mathcal{T}_S \subset \mathcal{T}_C$, we show that for all $B(y,\varepsilon) \in \mathcal{B}$ and $x \in B(y,\varepsilon)$, there is some $C \in \mathcal{C}$ such that $x \in C \subset B(y,\varepsilon)$. Let $B(y,\varepsilon)$ be an arbitrary element of \mathcal{B} , and let $x \in B(y,\varepsilon)$, then ||x-y|| = d for some $d < \varepsilon$. Also, since \mathbb{Q} is dense in \mathbb{R} , we can find a $p \in \mathbb{Q}^n$ such that

$$||y - p|| < ||y - x|| = d$$
 and $||x - p|| < \varepsilon - d$,

i.e. p is closer to y than x is and p is closer to x than x is to the border of $B(y,\varepsilon)$. Let q be any rational number smaller than $\varepsilon-d$, and choose C=B(p,q), then x is in C and for all $z\in C$,

$$||z - y|| \le ||z - q|| + ||q - y|| < \varepsilon - d + d = \varepsilon.$$

Thus C is contained in $B(y,\varepsilon)$, so $\mathcal{T}_S \subset \mathcal{T}_C$.

Since we have shown both inclusions, it follows that the topology generated by \mathcal{C} is the same as the standard topology on \mathbb{R}^n .

Exercise 4 (5 points). Let T be the collection of subsets of \mathbb{R} consisting of \emptyset and every set U such that $\mathbb{R} \setminus U$ is finite. Show that T is a topology for \mathbb{R} . If T_S is the standard topology for \mathbb{R} , is $T = T_S$, $T \subseteq T_S$ or $T_S \subseteq T$?

Collaborators: None.

T is a topology: To show that T is a topology on \mathbb{R} , we must show that it contains \emptyset and \mathbb{R} and is closed under arbitrary unions and finite intersections.

- a. By definition, T contains \varnothing . Then $\mathbb{R} \mathbb{R} = \varnothing$, which is finite, so $\mathbb{R} \in T$.
- b. Consider the arbitrary union $\bigcup_{\alpha} U_{\alpha}$ of elements of T. Its complement $\mathbb{R} \bigcup_{\alpha} U_{\alpha}$ is equivalent to, by DeMorgan's Laws, $\bigcap_{\alpha} (\mathbb{R} U_{\alpha})$. Each of the $(\mathbb{R} U_{\alpha})$ is finite by assumption, so their intersection must also be finite. Thus T is closed under arbitrary unions.
- c. Consider the finite intersection $\bigcap_{i=1}^N U_i$ of elements of T. Then again by DeMorgan's Laws, $\mathbb{R} \bigcap_{i=1}^N U_i = \bigcup_{i=1}^N (\mathbb{R} U_i)$. Each $(\mathbb{R} U_i)$ is finite, and the finite union of finite sets is itself finite. Thus T is closed under finite intersections.

T is strictly coarser than T_S : We claim that T is a proper subset of T_S . Any element of T has a complement of the form $\{x_i\}_{i=1}^N$, so any element of T is of the form $\mathbb{R} - \{x_i\}_{i=1}^N$. If we order the x_i in increasing order, this coincides with the set

$$(-\infty, x_1) \cup (x_1, x_2) \cup \cdots \cup (x_{N-1}, x_N) \cup (x_N, \infty),$$

which is open in T_S since it is the union of open intervals of \mathbb{R} . Thus $T \subset T_S$.

This is in fact a strict inequality. Take arbitrary a < b, then the interval (a,b) is open in \mathbb{R} , yet its complement is $\mathbb{R} - (a,b) = (-\infty,a] \cup [b,\infty)$ is infinite. Thus (a,b) is in T_S but not in T, so T is a strict subset of T_S .

Exercise 5 (5 points). Let C denote the unit circle $\{(x,y) \mid x^2+y^2=1\}$ in \mathbb{R}^2 and let [0,1) denote the half-open interval $\{t \mid 0 \leq t < 1\}$ in \mathbb{R} . Endow C and [0,1) with the subspace topology from \mathbb{R}^2 and \mathbb{R} , respectively. Define $f:[0,1)\to C$ by $f(t)=(\cos(2\pi t),\sin(2\pi t))$. Is f a homeomorphism?

Collaborators: None.

The map f is not a homeomorphism, as its inverse is not continuous. We demonstrate this by finding an open set U in [0,1) such that $(f^{-1})^{-1}(U) = f(U)$ is not open in C.

Let U=[0,1/2). This is open in [0,1), as it is the intersection of [0,1) and an open set, say (-1,1/2), of \mathbb{R} . Then f(U) is the upper half of the unit circle, including the point (1,0) and excluding the point (-1,0). This is not open in C, though, since for any $\varepsilon>0$, the ball $B((1,0),\varepsilon)$ intersected with C is not entirely contained in C.