Math 5601 Homework 9

Jacob Hauck

November 10, 2023

Problem 1.

Let A be a nonsingular matrix, and let $A^{(2)}$ be the matrix from the lecture slides in the second step of Gaussian elimination. Then there exists $s \ge 2$ such that $a_{2s}^{(2)} \ne 0$.

Proof. Suppose on the contrary. By the Gaussian elimination process, we know that $a_{21}^{(2)}=0$. If there is no $s\geq 2$ such that $a_{2s}^{(2)}\neq 0$, then the whole second row of $A^{(2)}$ is zero. Hence, expanding by cofactors along the second row, we see that the determinant of $A^{(2)}$ is

$$\det(A^{(2)}) = 0 \cdot \det(B_1) + 0 \cdot \det(B_2) + \dots + 0 \cdot \det(B_n) = 0,$$
(1)

where B_i is the cofactor corresponding to $a_{2i}^{(2)}$. Then $A^{(2)}$ is singular.

This is a contradiction because $A^{(2)}$ was obtained from A by elementary row operations, and A was nonsingular, and applying row operations to a nonsingular matrix must result in a nonsingular matrix.

Problem 2.