- 1 Avoiding tradeoffs between global seafood production and seafloor impacts
- 2 through fisheries innovation

3

- 4 T. Scott Smeltz, Christopher M. Free, Bradley P. Harris, Olaf P. Jensen, Jonathan H. Grabowski, Suresh A.
- 5 Sethi

6 7

- Supplemental Methods
- 8 Standardizing recovery rates
- 9 Recovery of seafloor habitats was parameterized as the time to recover from 5% to 95% (τ^*) following
- 10 an asymptotic recovery trajectory. Three benthic recovery meta-analyses $^{1-3}$ were used parameterize τ^*
- for soft, hard, and rocky reef seafloor habitat types. However, each of these analyses employed different
- recovery trajectories in their estimation of recovery. Grabowski et al.² reported the mean time to
- recovery $(\bar{\tau})$; Hiddink et al. estimated an intrinsic growth rate, r, of a logistic recovery curve; and
- Graham et $al.^3$ reported the yearly proportional recovery, C_{rp} , along a linear recovery path, equivalent
- to the slope of the recovery line. In order to standardize recovery rates across these analyses, we
- calculated τ^* from each of the respective recovery functions. In the following equations we set
- $H_0 = 0.05$ and $H_1 = 0.95$, representing recovery from 5% to 95%.
- 18 The Hiddink et *al. r* parameter was converted as:

$$\tau^* = -\frac{1}{r} \log \left(\frac{\frac{1}{H_1} - 1}{\frac{1}{H_0} - 1} \right) \tag{S.1}$$

19

20 The Graham et al. t parameter was converted as:

$$\tau^* = \frac{H_1 - H_0}{C_{rp}} \tag{S.2}$$

21

- The Grabowski et al. $\bar{\tau}$ parameter was converted to recovery parameter $\bar{\tau}$ then calculated from τ^* as
- 23 follows:

$$\tau^* = \tau[\log(1 - H_0) - \log(1 - H_1)] \tag{S.3}$$

25

24

26

27

28

Habitat	Source	Reported value	Description of value	$ au^*$ equivalent
type				(years to recover from
				5% to 95%)
Soft	Hiddink et al.	r = 0.82	Recovery to pre-trawl	7.2
substrate			biomass	
		r = 1.05	Recovery to pre-trawl	5.6
			abundance from otter trawls	
		r = 4.49	Recovery to pre-trawl	1.3
			abundance from beam trawls	
	Grabowski et al.	$\bar{\tau} = 3.25$	High energy mud habitats	9.6
		$\bar{\tau} = 3.13$	High energy sand habitats	9.2
		$\bar{\tau} = 3.00$	High energy granule/pebble	8.8
			habitats	
		$\bar{\tau} = 3.29$	Low energy mud habitats	9.7
		$\bar{\tau} = 3.17$	Low energy sand habitats	9.3
		$\bar{\tau} = 3.14$	Low energy granule/pebble	9.3
			habitats	
Hard	Grabowski et al.	$\bar{\tau} = 2.95$	High energy cobble habitats	8.69
substrate		$\bar{\tau} = 2.91$	High energy boulder habitats	8.57
		$\bar{\tau} = 3.10$	Low energy cobble habitats	9.13
		$\bar{\tau} = 3.06$	Low energy boulder habitats	9.01
Rocky reef	Graham et al.	$C_{rp} = 0.0356$		25.28
Table S1 Penorted recovery times from meta-analyses				

Table S1. Reported recovery times from meta-analyses