MAST30025: Linear Statistical Models

Weeks 12 and 13 Lab

1. The following data were collected, to compare two treatments. The treatments were randomly assigned to test subjects.

treatment 1		treatment 2	
$\operatorname{subject}$	response	$\operatorname{subject}$	response
10	7.5	11	9.5
9	9.6	6	9.7
5	8.4	2	10.8
12	10.6	8	11.9
7	9.9	4	10.0
1	10.6	3	12.9

- (a) Estimate the difference between treatment effects, and test if it is significantly different from 0.
- (b) Now suppose that it is discovered that the response can be affected by the season, and that the data was collected over a period of six months, in the order given by the table. That is, a month was spent collecting each row of the table.

We re-express the experiment by blocking: each month (row of the table) is considered one block, and we model the data as an additive two-factor model (the factors being the treatment and the block). Using this model, repeat your analysis. Is the estimate different? Is the p-value different?

2. In lectures, we showed that for the (randomised) complete block design

$$y_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij},$$

a solution to the reduced normal equations for $\boldsymbol{\tau} = (\tau_1, \dots, \tau_k)^T$ is given by

$$(\bar{y}_{.1} - \bar{y}_{..}, \ldots, \bar{y}_{.k} - \bar{y}_{..})^T$$
.

Here we suppose that we have b blocks and k treatments.

Consider now the completely randomised design, with k treatments and b replications of each treatment

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
.

Treating μ as a nuisance parameter, obtain the reduced normal equations for τ , then show that they admit the solution

$$(\bar{y}_1-\bar{y}_{\cdot},\ldots,\bar{y}_k-\bar{y}_{\cdot})^T.$$

3. Suppose we have a (randomised) complete block design, $y_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij}$, with b blocks and k treatments.

Let \mathbf{c}^T be a treatment contrast, so that $\mathbf{c}^T \boldsymbol{\tau}$ is estimable, in which case

$$\operatorname{Var} \mathbf{c}^T \boldsymbol{\tau} = \frac{\sigma^2}{b} \sum_{j=1}^k c_j^2.$$

- (a) Give an approximate $100(1-\alpha)\%$ CI for $\mathbf{c}^T \boldsymbol{\tau}$, using the percentage point from a normal rather than the correct percentage point from a t distribution. (This is reasonable if the degrees of freedom are large.)
- (b) Now suppose that you know σ^2 (perhaps you have an estimate from a pilot study), and that you think a plausible alternative to $\mathbf{c}^T \boldsymbol{\tau} = 0$ is given by some $\mathbf{c}^T \boldsymbol{\tau}^* \neq 0$. How large should b be to give a power of $100(1-\alpha)\%$ against this alternative (roughly)?

1

4. Consider the following data:

Response	Block	Treatment
1.245	1	1
1.804	1	2
2.468	2	1
6.664	2	3
5.573	3	1
-0.560	3	4
7.880	4	2
10.469	4	3
0.457	5	2
-3.621	5	4
-4.291	6	3
-9.384	6	4

- (a) Show that this data comes from a balanced incomplete block design, and give t, b, k, r and λ .
- (b) Give the design matrix X^A for a model with block and treatment effects (and an overall mean).
- (c) Using this model, estimate $\tau_1 \tau_2$, the difference between the first two treatment effects, and its variance. Write the variance estimate as $s^2 \mathbf{c}^T (X^{AT} X^A)^c \mathbf{c}$ for a suitable \mathbf{c} .
- (d) Give the design matrix X^B for a model with just treatment effects (and an overall mean).
- (e) Using this model, estimate $\tau_1 \tau_2$, the difference between the first two treatment effects, and its variance. Write the variance estimate as $s^2 \mathbf{c}^T (X^{BT} X^B)^c \mathbf{c}$ for a suitable \mathbf{c} .
- (f) Show that when going from model A (BIBD) to model B (CRD) the term $\mathbf{c}^T(X^TX)^c\mathbf{c}$ decreases, but s^2 increases markedly. What does this indicate?
- (g) Is your estimate for $\tau_1 \tau_2$ the same or different for the two models? Why?
- 5. Consider the BIBD model, with t treatments and b blocks of size k. Let λ be the number of times each pair appears, and write the design as

$$\mathbf{y} = X_1 \left[egin{array}{c} oldsymbol{lpha} \ oldsymbol{eta} \end{array}
ight] + X_2 oldsymbol{ au} + oldsymbol{arepsilon}.$$

Show that for this model, contrasts in τ are estimable.

If $\mathbf{c}^T \boldsymbol{\tau}$ is a contrast, show that an unbiased estimate is $(k/\lambda t)\mathbf{c}^T\mathbf{q}$, where

$$\mathbf{q} = \mathbf{t} - X_2^T X_1 \mathbf{b}$$

and \mathbf{t} are the treatment totals and \mathbf{b} the block totals.

6. An experimenter is tasked with designing an experiment to compare three treatment levels. There is a known confounding factor, so a blocked design is appropriate. Consider the following two designs, each using four blocks of size three:

- (a) Which design is a complete block design?
- (b) Write down the design matrix for each design. Hence show that $\tau_2 \tau_1$ is estimable in each case.

2

- (c) For each design, in terms of the unknown error variance σ^2 , what is the variance of the estimator for $\tau_2 \tau_1$, the difference between the first two treatment effects? Based on this, which design is better?
- 7. In some situations, it is sensible to think of block effects as random. For example, experiments performed on a single day might be considered as a single block, subject to some effect for conditions on that day.

Consider the following model for an experiment with fixed treatment effects τ and random block effects β (independent of the error ε):

$$\mathbf{y} = X_1 \boldsymbol{\beta} + X_2 \boldsymbol{\tau} + \boldsymbol{\varepsilon}, \quad \mathbb{E} \boldsymbol{\varepsilon} = \mathbf{0}, \quad \text{Var } \boldsymbol{\varepsilon} = \sigma^2 I, \quad \mathbb{E} \boldsymbol{\beta} = \mu \mathbf{1}, \quad \text{Var } \boldsymbol{\beta} = \sigma_{\beta}^2 I.$$

- (a) Find $\mathbb{E}\mathbf{y}$ and $V = \text{Var }\mathbf{y}$.
- (b) Give a solution to the generalised least squares problem:

$$\min_{\mathbf{t}} (\mathbf{y} - X_2 \mathbf{t})^T V^{-1} (\mathbf{y} - X_2 \mathbf{t}).$$

(c) A problem with the generalised least squares above is that μ may not be zero, so that if we write $\mathbf{y} = X_2 \boldsymbol{\tau} + \boldsymbol{\varepsilon}'$, then $\boldsymbol{\varepsilon}' = \boldsymbol{\varepsilon} + X_1 \boldsymbol{\beta}$ does not have a zero mean.

To get around this, first suppose that each block is of size k, so

$$X_1 = \left[egin{array}{cccc} \mathbf{1}_k & \mathbf{0}_k & \cdots & \mathbf{0}_k \\ \mathbf{0}_k & \mathbf{1}_k & \cdots & \mathbf{0}_k \\ dots & dots & \ddots & dots \\ \mathbf{0}_k & \mathbf{0}_k & \cdots & \mathbf{1}_k \end{array}
ight],$$

then suppose that U is such that $X_1^T U = 0$.

Put $\mathbf{y}_1 = U^T \mathbf{y}$ and $\mathbf{y}_2 = X_1^T \mathbf{y}$, then show that we can write them as linear models whose errors have mean zero.

(d) Show that $Cov(\mathbf{y}_1, \mathbf{y}_2) = \mathbb{E}(\mathbf{y}_1 - \mathbb{E}\mathbf{y}_1)(\mathbf{y}_2 - \mathbb{E}\mathbf{y}_2)^T = 0.$