

date 11/07/2022

page 1 of 8

SERIES: PDQE20-D | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 20 W isolated output
- ultra-wide input voltage range
- single/dual regulated outputs
- 1500 Vdc isolation
- extended temperature range (-40~105°C)
- input under-voltage protection
- output short circuit, over-current, over-voltage protection
- DIP package
- EN/BS EN 62368-1
- UL 62368-1

MODEL		put tage	output voltage		tput rent	output power	ripple & noise¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PDQE20-Q24-S3-D ³	24	9~36	3.3	0	5000	16.5	100	88
PDQE20-Q24-S5-D ³	24	9~36	5	0	4000	20	100	90
PDQE20-Q24-S12-D ³	24	9~36	12	0	1667	20	100	90
PDQE20-Q24-S15-D ³	24	9~36	15	0	1333	20	100	91
PDQE20-Q24-S24-D ³	24	9~36	24	0	833	20	100	91
PDQE20-Q24-D5-D ³	24	9~36	±5	0	±2000	20	200	87
PDQE20-Q24-D12-D ³	24	9~36	±12	0	±833	20	200	90
PDQE20-Q24-D15-D ³	24	9~36	±15	0	±667	20	200	90
PDQE20-Q24-D24-D ³	24	9~36	±24	0	±417	20	200	89
PDQE20-Q48-S3-D	48	18~75	3.3	0	5000	16.5	100	88
PDQE20-Q48-S5-D	48	18~75	5	0	4000	20	100	90
PDQE20-Q48-S12-D	48	18~75	12	0	1667	20	100	91
PDQE20-Q48-S15-D	48	18~75	15	0	1333	20	100	91
PDQE20-Q48-S24-D	48	18~75	24	0	833	20	100	91
PDQE20-Q48-D5-D	48	18~75	±5	0	±2000	20	200	86
PDQE20-Q48-D12-D	48	18~75	±12	0	±833	20	200	90
PDQE20-Q48-D15-D	48	18~75	±15	0	±667	20	200	90
PDQE20-Q48-D24-D	48	18~75	±24	0	±417	20	200	90

Notes:

- 1. From $5\sim100\%$ load, nominal input, 20 MHz bandwidth oscilloscope, with 10 μ F tantalum and 1 μ F ceramic capacitors on the output. From $0\sim5\%$ load, ripple and noise is <5% Vo.
- 2. Measured at nominal input voltage, full load.
- 3. Model is not CE or UKCA certified.
- 4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/description	on	min	typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models		9 18	24 48	36 75	Vdc Vdc
start-up voltage	24 Vdc input models 48 Vdc input models				9 18	Vdc Vdc
surge voltage	for maximum of 1 secon 24 Vdc input models 48 Vdc input models	nd	-0.7 -0.7		50 100	Vdc Vdc
under voltage shutdown	24 Vdc input models 48 Vdc input models		5.5 12	6.5 15.5		Vdc Vdc
current	24 Vdc input models	3.3 Vdc output models 5, 12 Vdc output models 15, 24 Vdc output models all dual output models		958	800 947 937	mA mA mA mA
	48 Vdc input models	3.3 Vdc output models 5 Vdc output models 12, 15, 24 Vdc output models all dual output models	5	969	400 474 469	mA mA mA mA
remote on/off (CTRL) ⁵	turn on (CTRL pin open or pulled high $(3.5\sim12\ Vdc))$ turn off (CTRL pin pulled low to GND $(0\sim1.2\ Vdc))$ input current when switched off			2	7	mA
filter	Pi filter					

5. The voltage of the CTRL pin is referenced to input GND pin. Notes:

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3, 5 Vdc output models			10,000	μF
	12 Vdc output models			1,600	μF
	15 Vdc output models			1,000	μF
manyimayya anna sikiya landa	24 Vdc output models			500	μF
maximum capacitive load ⁶	±5 Vdc output models			2,000	μF
	±12 Vdc output models			800	μF
	±15 Vdc output models			600	μF
	±24 Vdc output models			300	μF
	single output models: 0% to full load		±1	±3	%
voltage accuracy ⁷	dual output models: 5% to full load		±1	±3	%
	from low line to high line, full load				
line regulation	positive outputs		±0.2	±0.5	%
	negative outputs		±0.4	±1	%
load regulation ⁸	from 5% to full load		±0.5	±1	%

Note:

- 6. Tested at input voltage range and full load. 7. At $0\sim5\%$ load, the max output voltage accuracy for the dual output models is $\pm4\%$. 8. At $0\sim100\%$ load, the max load regulation for the dual output models is $\pm5\%$.

CUI Inc | SERIES: PDQE20-D | DESCRIPTION: DC-DC CONVERTER

date 11/07/2022 | page 3 of 8

OUTPUT (CONTINUED)

parameter	conditions/description	min	typ	max	units
cross regulation	dual output models: main output 50% load secondary output from 10~100% load			±5	%
start-up time	nominal input, constant resistive load		10		ms
adjustability ⁹	see application notes		±10		%
switching frequency ¹⁰	PWM mode 3.3, 5 Vdc output models all other models		300 270		kHz kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage 3.3, 5 Vdc output models ±5 Vdc output models all other models		±5 ±3 ±3	±8 ±8 ±5	% % %
temperature coefficient	at full load			±0.03	%/°C

Note:

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%
over current protection	single output models dual output models	110 110	150 150	190 200	% %
short circuit protection	hiccup, continuous, self recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units		
isolation voltage	input to output for 1 minute at 1 mA input/output to case for 1 minute at 1 mA	1,500 1,000			Vdc Vdc		
isolation resistance	input to output at 500 Vdc	1,000			МΩ		
isolation capacitance	input to output, 100 kHz / 0.1 V		2,000		pF		
safety approvals ¹¹	certified to 62368-1: UL, EN/BS EN	certified to 62368-1: UL, EN/BS EN					
conducted emissions	CISPR32/EN55032, class B (external circuit requ	CISPR32/EN55032, class B (external circuit required, see Figure 3-b, 4-b)					
radiated emissions	CISPR32/EN55032, class B (external circuit required, see Figure 3-b, 4-b)						
ESD	· · · · · · · · · · · · · · · · · · ·	IEC/EN61000-4-2, contact ±6 kV; air ±8 kV, class B (single output models) IEC/EN61000-4-2, contact ±4 kV, class B (dual output models)					
radiated immunity	IEC/EN61000-4-3, 10 V/m, class A				-		
EFT/burst	IEC/EN61000-4-4, ±2 kV, class B (external circui	it required, see F	igure 3-a, 4-	a)			
surge	IEC/EN61000-4-5, line-line ±2 kV, class B (exter	nal circuit requir	ed, see Figur	e 3-a, 4-a)			
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A						
MTBF	as per MIL-HDBK-217F, 25°C	1,000,000			hours		
RoHS	yes						

Note:

11. UL approval only on single output models.

^{9.} For single output models only. 10. Value is based on full load. At loads <50%, the switching frequency decreases with decreasing load

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
	see derating curves				
operating temperature	3.3, 5 Vdc output models	-40		95	°C
	all other models	-40		105	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~150 Hz, 0.75 mm for 90 minutes on each axis	5		G	

DERATING CURVES

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

MECHANICAL

parameter	conditions/description	min	tvp	max	units
dimensions 25.40 x 25.40 x 11.70 [1.000 x 1.000 x 0.461 inch]			-77		mm
case material	aluminum alloy				
weight			15		g

MECHANICAL DRAWING

units: mm [inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin diameter tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	CTRL	CTRL			
2	GND	GND			
3	Vin	Vin			
4	+Vo	+Vo			
5	trim	0V			
6	0V	-Vo			

APPLICATION CIRCUIT

This series has been tested according to the following recommended circuits (Figures 1 & 2) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent series resistance provided that the capacitance is less than the maximum capacitive load of the model.

Figure 1
Single Output Models

Table 1

Vout (Vdc)	Cin (µF)	Cout (µF)
3.3/5/12/15	100	100
24	100	47

Figure 2 Dual Output Models

Table 2

Vin (Vdc)	Cin (µF)	Cout (µF)
24	100	10
48	10~47	10

EMC RECOMMENDED CIRCUIT

Figure 3
Single Output Models

Table 3

Recommended External Circuit Components				
Vin (Vdc)	24	48		
FUSE	choose according to actual input current			
C0, C4	330 μF / 50 V	330 μF / 100 V		
C1, C2	4.7 μF / 50 V	4.7 μF / 100 V		
C3	Refer to the Cout in Table 1			
LDM1	2.2 μH / 4 A	2.2 μH / 2 A		
CY1, CY2	1 nF / 2 kV			

Figure 4 Dual Output Models

Table 4

Recommended External Circuit Components				
Vin (Vdc)	24	48		
FUSE	choose according to actual input current			
C0, C4	330 μF / 50 V 330 μF / 10			
C1, C2	4.7 μF / 50 V	4.7 μF / 100 V		
C3	Refer to the Cout in Table 2			
LDM1	4.7 μH			
CY1, CY2	1 nF / 2 kV			

APPLICATION NOTES

Output voltage trimming Leave open if not used.

Trim up

Figure 5

Trim down

$$R_{\text{TRIM}} = \frac{a \cdot R_{\text{BOTTOM}}}{R_{\text{BOTTOM}} - a} - R_{\text{O}} \qquad a = \frac{V_{\text{REF}}}{V_{\text{OUT}} - V_{\text{REF}}} \cdot R_{\text{TOP}}$$

Formula for Trim up

$$R_{TRIM} = \frac{a \cdot R_{TOP}}{R_{TOP} - a} - R_{O} \qquad a = \frac{V_{O}}{R_{TOP}}$$

$$a = \frac{V_{OUT} - V_{REF}}{V_{REF}} \cdot R_{BOTTOM}$$

Formula for Trim down

Table 5

R_{TOP}	R _{BOTTOM}	R_{o}	V_{REF}
(kΩ)	(kΩ)	(kΩ)	(V)
4.829	2.87	15	1.25
2.894	2.87	10	2.5
11.000	2.87	17.4	2.5
14.494	2.87	17.4	2.5
24.872	2.87	20	2.5
	(kΩ) 4.829 2.894 11.000 14.494	$(k\Omega)$ $(k\Omega)$ 4.829 2.87 2.894 2.87 11.000 2.87 14.494 2.87	$(k\Omega)$ $(k\Omega)$ $(k\Omega)$ 4.829 2.87 15 2.894 2.87 10 11.000 2.87 17.4 14.494 2.87 17.4

Note: Value for $\rm R_{TOP'}$ $\rm R_{BOTTOM'}$ $\rm R_{O'}$ and $\rm V_{REF}$ refer to Table 3 (fixed internal values).

 R_{TRIM} : Trim resistance

a: User-defined parameter, no actual meanings

 V_{OUT} : Nominal output voltage

CUI Inc | SERIES: PDQE20-D | DESCRIPTION: DC-DC CONVERTER date 11/07/2022 | page 8 of 8

REVISION HISTORY

rev.	description	date
1.0	initial release	05/16/2019
1.01	safeties updated in features and safety line, packaging removed	01/14/2021
1.02	derating curves and circuit figures updated	08/23/2021
1.03	Vref updated for 3.3 Vdc output model	02/07/2022
1.04	CE certification updated for 24V models	11/07/2022

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.