Cash Transfers and Cognitive Development: treatment effect

Estimar los efectos de un tratamiento para cada individuo mediante modelos de Machine Learning para optimizar el éxito del tratamiento

Borrego Burón, José Manuel

Magre i Pont, Jaume

Roura i Cubí, Antonino

Sanginés-Uriarte Dooly, Joel

PROGRAMA ATENCIÓN A CRISIS

- Promoción del desarrollo cognitivo en la primera infancia.
- Ayudas económicas a hogares pobres en 2005-2006 en Nicaragua.
- Enmarcado dentro de un estudio de su impacto en las familias: datos económicos sociopersonales, de hábitos de vida y de desarrollo psicomotriz de los niños.

TEMPORIZACIÓN

Encuestas de seguimiento

Información completa sobre el estado socioeconómico del hogar incluidos módulos de gastos detallados

Salud mental de los cuidadores educación y comportamiento parental (versión abreviada de la puntuación HOME)

Salud y nutrición infantil incluidos el peso y la altura del niño y desarrollo cognitivo infantil (TVIP)

Habilidades sociopersonales lingüísticas motrices finas y motrices gruesas (Prueba de detección del desarrollo de Denver)

Información sobre estimulación, peso al nacer, atención médica preventiva etc.

Para mayores de 36 meses:

- Test de Vocabulario en Imágenes Peabody (TVIP)
- Prueba de memoria a corto plazo (batería de McCarthy)
- Prueba de desarrollo motor de las piernas (batería de McCarthy)
- Índice de problemas de comportamiento (BPI)

107 Variables de entrada

25 Variables de resultado

EVALUACIÓN DEL EFECTO: RANDOMIZED CONTROLLED TRIAL

Identificar la heterogeneidad en el efecto al tratamiento para optimizar su respuesta

Tratamiento

Aplicado en los subgrupos que más se benefician

$$ITE_i = Y_i^1 - Y_i^0$$

EVALUACIÓN DEL EFECTO INDIVIDUAL

$$ITE_i = Y_i^1 - Y_i^0$$

	Y	Т	Var1	Var2
0	8.24	1	0.25	7
1	4.78	0	0.65	6
	•••	•••	•••	

Generar *dataset* contrafactual y predecir el *outcome*

	Y	Т	Var1	Var2
0	7.89	0	0.25	7
1	<u>4.91</u>	1	0.65	6
•••			•••	

$$- \text{ITE}_i = Y_i^1 - Y_i^0$$

LIMPIEZA DE DATOS

Datos brutos

Selección inicial de variables

	Var1	Var2			
0	-	-			
1	-	-			
•••	•••	•••			
45	4511 x 51 var.				

Omisión registros *NaN* > 80% var.

Omisión registros age_transfer < -11

Codificación de variables categóricas

s1male head 05 s3atoilet_hh_05 s3awater_access_hh_05 s3aelectric_hh_05 s4p6_vitamina_i_05 s4p7 parasite i 05 s11ownland_hh_05

Omisión registros por valores atípicos

cons food pc 05 com control 05 s3ap24_htime_h_05 prfruitveg_f_05

Dataset final

Normalización

s1age_head_05 s3ap23_stime_h_05 s3ap24_htime_h_05 s3ap25_hqtime_h_05 cons food pc 05 cons_tot_pc_05 yrsedfath

age_transfer bweight ed_mom com_haz_05 com_waz_05 com_tvip_05 com_control_05 Imputación NaN por media/moda

Imputación según unidad familiar

prfruitveg f 05 prstap_f_05 s2mother_inhs_05 propfood_05

cons_food_pc_05 ed_mom yrsedfath vitamiron_06

PREDICCIÓN

LightGBM RMSE: 0.431 R^2: 32.24%

LightGBM.predict(X + Tr) = Contrafactual

 $T_i = 0$ $ITE_i = \tilde{Y}_1 - Y_0$ (contrafactual-obs) $T_i = 1$ $ITE_i = Y_1 - \tilde{Y}_0$ (obs-contrafactual)

ANÁLISIS DE SUBGRUPOS

INTERPRETACIÓN DE LOS *DECISION TREES:* COMUNITARIO

VARIABLES COMUNITARIAS IMPORTANTES

- Com_deworm_05
- MUN6

INTERPRETACIÓN DE LOS *DECISION TREES:* INDIVIDUAL

VARIABLES INDIVIDUALES IMPORTANTES

- bweight
- ed_mom
- s3ap25_hqtime_h_05

VALIDEZ DEL MÉTODO: COMPARACIÓN DE ITES Y ATES

- Error grande, signos parecidos. Subestimación.
- No invalida, pero tampoco lo respalda

LIMITACIONES DEL ESTUDIO

- Estudio base causal
- Variables con poco poder predictivo
- Número de observaciones bajo
- z_all_06

BIBLIOGRAFÍA

- [Athey and Imbens, 2015] Athey, S. and Imbens, G. (2015). Recursive partitioning for heterogeneous causal effects.
- [Case and Paxson, 2006] Case, A. and Paxson, C. (2006). Stature and status: Height, ability, and labor market outcomes.
- [Crépon et al., 2014] Crépon, B., Devoto, F., Duflo, E., and Pariente, W.(2014). Estimating the impact of microcredit on those who take it up: Evidence from a randomized experiment in morocco.
- [Currie and Thomas, 1999] Currie, J. and Thomas, D. (1999). Early test scores, socioeconomic status and future outcomes.
- [Friedberg et al., 2018] Friedberg, R., Tibshirani, J., Athey, S., and Wager, S. (2018). Local linear forests.
- [Jacob, 2021] Jacob, D. (2021). Cate meets ml conditional average treatment effect and machine learning. SSRN Electronic Journal.
- [Kwak and Kim, 2017] Kwak, S. K. and Kim, J. H. (2017). Statistical data preparation: Management of missing
 values and outliers.
- [Lamont et al., 2018] Lamont, A., Lyons, M. D., Jaki, T., Stuart, E., Feaster, D. J., Tharmaratnam, K., Oberski, D., Ishwaran, H., Wilson, D. K., and Horn, M. L. V. (2018). Identification of predicted individual treatment effects in randomized clinical trials. Statistical Methods in Medical Research, 27:142–157.
- [Macours et al., 2012] Macours, K., Schady, N., and Vakis, R. (2012). Cash transfers, behavioral changes, and cognitive development in early childhood: Evidence from a randomized experiment.
- [Yao, 2021] Yao, F. (2021). Machine learning with limited data.
- [Zhou et al., 2017] Zhou, D. P., Balandat, M., and Tomlin, C. J. (2017). Estimating heterogeneous treatment effects in residential demand response.