

ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ

Άσκηση 3. Προγραμματισμός Ρομπότ Adept

Σκοπός Άσκησης

Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"
- Ρομπότ τύπου Adept (AdeptOne)
- Κινηματική ανάλυση
- Διαφορική ανάλυση
- Σχεδιασμός Τροχιάς

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"

Teach Pendant

Σχήμα 1.3. MCP Layout

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"
- Ρομπότ τύπου Adept (AdeptOne)

AdeptOne

- Επίπεδη κινηματική δομή (τύπου Scara)
- Κατάλληλη για
 εργασίες τύπου
 "λήψη-και-εναπόθεση"
 (pick-and-place)
- Διάφορες λειτουργίες διδασκαλίας

AdeptOne

Λειτουργία
 διδασκαλίας
 εκφρασμένη στο
 χώρο των
 αρθρώσεων

Figure 4-8. JOINT State (SCARA)

AdeptOne

Λειτουργία
 διδασκαλίας
 εκφρασμένη στην
 βάση του ρομποτ

Figure 4-4. WORLD State (SCARA)

AdeptOne

• Λειτουργία διδασκαλίας εκφρασμένη στο τελικό στοιχείο δράσης του ρομποτ

Figure 4-6. TOOL State

AdeptOne

Λειτουργία
 διδασκαλίας με
 απελευθέρωση
 των αρθρώσεων

Figure 4-11. FREE State (Four-Axis SCARA)

Quiz #1

 Посо frame μετακίνησης επιλέγετε για να οδηγήσετε το τελικό στοιχείο δράσης στον στόχο με το χειριστήριο?

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"
- Ρομπότ τύπου Adept (AdeptOne)
- Κινηματική ανάλυση

Quiz #2

Με βάση την σύμβαση DH σε ποιο σημείο τοποθετείται το δεύτερο πλαίσιο αναφοράς O₂?

Ποιά η φορά του άξονα z₂?

Κινηματική ανάλυση

Σύμβαση DH:

Τοποθέτηση πλασίων

Link	ai	αi	di	θі	

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"
- Ρομπότ τύπου Adept (AdeptOne)
- Κινηματική ανάλυση
- Διαφορική ανάλυση

Διαφορική Κινηματική

$$\dot{p} = J\dot{q}$$

$$\dot{\boldsymbol{p}} = \begin{bmatrix} \boldsymbol{v}_E \\ \boldsymbol{\omega}_E \end{bmatrix} \qquad \begin{array}{ll} \text{όπου } \boldsymbol{v}_E, \, \boldsymbol{\omega}_E \text{ : γραμμική και γωνιακή ταχύτητα} \\ \text{του τελικού στοιχείου δράσης E} \end{array}$$

όπου $\dot{q} = [\dot{q}_1, ..., \dot{q}_n]^T$: (nx1) διάνυσμα των ταχυτήτων των αρθρώσεων

Εκφυλισμός διάταξης ρομποτικού βραχίονα.

 $\frac{\textit{Iδιόμορφες διατάζεις (singular configurations})}{\textbf{Υ}πάρχει τουλάχιστον μία διεύθυνση κατά την οποία το ρομπότ δεν}$ μπορεί να κινηθεί

Ιδιόμορφη διάταξη

Quiz #3

$$\dot{p} = egin{bmatrix} J_{11} & ... & J_{1n} \ oldsymbol{\dot{q}} \ J_{n1} & J_{nn} \end{bmatrix} \dot{q}$$

Διαφορική Κινηματική

\mathcal{V}_{x}	$oxedsymbol{J}_{11}$	• • •		$oldsymbol{J}_{14}$	
$\boldsymbol{\nu}_{\boldsymbol{y}}$					$ \dot{q}_1 $
$oldsymbol{ u}_z$ _		• • •			$ \dot{q}_2 $
$-\omega_{x}$	0	-0	0		\dot{q}_3
ω_{y}	0	0	0	0	$ \dot{q}_4 $
ω_z	$oxedsymbol{oldsymbol{J}_{61}}$	• • •		$oldsymbol{J}_{64}$ _	

Αντίστροφη Διαφορική

Δεδομένης επιθυμητής ταχύτητας τελικού στοιχείου δράσης (v, ω) → Εύρεση {q˙_i} (i=1,...,n)

$$\dot{q} = J^{-1}\dot{p}$$

q : ταχύτητες αρθρώσεων για να επιτύχουμε επιθυμητή ταχύτητα **p** τελικού στοιχείου δράσης

Έλεγχος Ταχύτητας

Δομή Άσκησης

- Σκοπός: Εξοικείωση με τη βασική μέθοδο "εν λειτουργίας" (on-line) προγραμματισμού (ή αλλιώς "διδασκαλίας") του ρομπότ
- Χρήση χειριστηρίου τύπου "Teach Pendant"
- Ρομπότ τύπου Adept (AdeptOne)
- Κινηματική ανάλυση
- Διαφορική ανάλυση
- Σχεδιασμός Τροχιάς

Σχεδιασμός Τροχιάς

Δρόμος (path): Καμπύλη που διαγράφει το ρομπότ στο χώρο, η οποία ενώνει δύο (ή περισσότερες) ενδιάμεσες θέσεις (σημεία διέλευσης)

Τροχιά (trajectory): Χρονική ακολουθία ενδιάμεσων θέσεων (στο Καρτεσιανό χώρο) ή διατάζεων (στο χώρο των αρθρώσεων)

Ο αλγόριθμος σχεδιασμού τροχιάς κατασκευάζει συναρτήσεις του χρόνου για την εξέλιξη των μεταβλητών θέσης (ή διάταξης) του ρομπότ, οδηγώντας σε μια συνεχή (ομαλή) καμπύλη μεταξύ των ακραίων σημείων (αρχή – στόχος), παρεμβάλλοντας ουσιαστικά ενδιάμεσες θέσεις (αλγόριθμοι παρεμβολής)

Οι θέσεις αυτές **στέλνονται στον αλγόριθμο αντίστροφης κινηματικής**, ο οποίος (σε κάθε δειγματοληπτικό διάστημα) δίνει τις εντολές κίνησης (θέσεις ή διατάξεις αναφοράς) στους τοπικούς βρόχους ελέγχου των αρθρώσεων

Σχεδιασμός Τροχιάς

Πολυωνυμική παρεμβολή

Αρχικές / Τελικές Συνθήκες (boundary conditions) για τροχιά συνεχή, με συνεχή 1η παράγωγο (ταχύτητα)

$$\xi(0) = \xi_0$$

$$\xi(t_f) = \xi_f$$

$$\xi(0) = \xi_0$$

$$\dot{\xi}(0) = \dot{\xi}_0 \qquad \qquad \dot{\xi}(t_f) = \dot{\xi}_f$$

$$\xi(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Kίνηση Pick & Place (World)

Κίνηση Pick & Place (Joint)

Σχεδιασμός Τροχιάς

Γλώσσα Προγραμματισμού V+ Ρομπότ Adept

HERE

<u>Σύνταξη:</u> here #location_var

Λειτουργία: Θέτει την τιμή μιας μεταβλητής (π.χ. location_var) ακριβού σημείου (#) ίση με την θέση του ρομποτικού βραχίονα την χρονική στιγμή της εκτέλεσης της

#PPOINT precision-point function

Σύνταξη: #PPOINT (j1_value, j2_value, j3_value, j4_value, j5_value, j6_value, j7_value, j8_value, j9_value, j10_value, j11_value, j12_value)

Λειτουργία: Επιστρέφει με ακρίβεια την τιμή ενός σημείου, η οποία είναι η σύνθεση των επιμέρους δοσμένων τιμών. Οι δε τιμές αυτών είναι οι θέσεις των αρθρώσεων του ρομποτικού βραχίονα από την βάση του, έως το Τ.Σ.Δ.

Παράδειγμα: Ας υποθέσουμε ότι θέλουμε να κινήσουμε συντονισμένα την δεύτερη και τρίτη άρθρωση ενός ρομποτικού βραχίονα 4 βαθμών ελευθερίας

Γλώσσα Προγραμματισμού V+ Ρομπότ Adept

MOVET

<u>Σύνταξη:</u> MOVET location, hand_opening

Λειτουργία: Θέτει σε κίνηση τον ρομποτικό βραχίονα σε θέση και

προσανατολισμό που περιγράφονται από τη δοσμένη θέση

(location) και ταυτοχρόνως λειτουργεί την αρπάγη. Η

περιγραφόμενη κίνηση είναι «joint-interpolated motion».

Παράμετροι:

MOVET #PPOINT(x[0], x[1]+a, x[2]-a/2, x[3]), 1

Παράδειγμα:

MOVET #PPOINT(x[0], x[1]+a, x[2]-a/2, x[3]), 1

Εργαστηριακή Αναφορά

- Σκοπός
- Περιγραφή της διάταξης
- Κινηματική Ανάλυση (Denavit Hartenberg)
- Διαφορική Ανάλυση (Ιακωβιανή, Ιδιόμορφες διατάξεις)
- Περιληπτική ανάλυση σχεδιασμού τροχιάς με πολυωνυμική παρεμβολή
- Διάγραμμα ροής με λειτουργικές διαδικασίες για μια εργασία
 Pick & Place με Ν ενδιάμεσα σημεία. (π.χ. Σχεδιασμός
 δρόμου, παρεμβολή, αντίστροφη κινηματική, έλεγχος
 singularities)

Γλώσσα Προγραμματισμού V+ Ρομπότ Adept

TRANS

<u>Σύνταξη:</u> TRANS (X_value, Y_value, Z_value, y_value, p_value, r_value)

Λειτουργία: Επιστρέφει τον μετασχηματισμό των δοσμένων Χ, Υ και Ζ μετατοπίσεων και των y,p και r περιστροφών προσανατολισμού.

Παράδειγμα:

Μετασχηματίζουμε την θέση του Τ.Σ.Δ. σύμφωνα με τις δοθείσες τιμές και τον αποθηκεύουμε στην μεταβλητή θέσης location. Την μεταβλητή αυτή μπορούμε να την χρησιμοποιήσουμε με μία εντολή ΜΟVE για την κίνηση του βραχίονα στην καινούργια θέση (αντίστροφο κινηματικό πρόβλημα).

SET location = TRANS (+100,+100,+100,0,180,0)