Programare logică și funcțională - examen scris -

Notă

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP (DEFUN F(N) (COND ((= N 0) 0) (> (F (- N 1)) 1) (- N 2)) (T (+ (F (- N 1)) 1)) )
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (- N 1)). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se o listă formată din numere întregi și subliste de elementele listei (inclusiv și cele din subliste) formează o : 7, 4], 2, 5, 1] rezultatul va fi true .	numere îr secvență s	ntregi, se o simetrică.	cere un progra De exemplu, p	m SWI-Prolog c entru lista [1, 5	are verifică dacă , [2,4], 7, 11, 2	á toate 5, [11,
	7, 4], 2, 5, 1] rezultatul va fi true .	·					

C. Să se scrie un program PROLOG care generează lista aranjamentelor de **k** elemente dintr-o listă de numere întregi, pentru care produsul elementelor e mai mic decât o valoare **V** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [1, 2, 3], $\mathbf{k}=2$ și $\mathbf{V}=7 \Rightarrow [[1,2],[2,1],[1,3],[3,1],[2,3],[3,2]]$ (nu neapărat în această ordine)

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se determine calea de la radăcină către un nod dat. Se va folosi o funcție MAP.

 <u>Exemplu</u> pentru arborele (a (b (g)) (c (d (e)) (f)))
 a) nod=e => (a c d e)
 b) nod=v => ()