TEMA №10

Сложни обекти

Съдържание

Тема 10: Сложни обекти

- Съставни обекти
- Ротационни обекти
- Влачене по траектория
- Конструктивна геометрия
- Параметрично моделиране
- Процедурно моделиране

Съставни обекти

Съставни обекти

Съставни обекти

- Най-лесен начин за изграждане на нови обекти
- Изградени са от примитиви
- Примитивите могат да са променени

Образът на съставен обект

– Обединение от образите на обектите в него

От друга страна

- Всеки модел е съставен обект
- Преди растеризация се разбива на триъгълници

Пример

Модел на хапче с антибиотик

- Две отделни цилиндрични части
- Заоблени в края

Геометричен модел

- Два цилиндъра и две полусфери
- Размерите са с параметри, за да променяме обекта

Втори пример

Модел на вълнолом

– Съставен от много еднотипни обекти

Геометричен модел

- Три пресечени конуса и три сплескани полусфери
- Веднъж пакетирани като обект,
 може да ползваме като примитиви

Ротационни обекти

Ротационни обекти

Основни елементи

- Контур или профил (крива)
- Ротационна ос

Получаване

- Контурът е завъртян около оста
- Получената повърхност е повърхността на ротационно тяло

Извън КГ

Ротационни обекти

- Създавани в занаятчийството от векове (стругари, грънчари, но не и пивовари)

Пък и не само там

- В архитектурата
- В стъкларията
- В производството на камбанки

Най-общ вид

Ако имаме

- Ос от единичен вектор $\vec{v}ig(v_{x},v_{y},v_{z}ig)$
- Точка $Pig(p_x,p_y,p_zig)$ от контур

To

– След завъртане на ъгъл α около ос \vec{v} на точка P ще получим Q с координати, които трудно се помнят

$$Q\begin{pmatrix} q_x \\ q_y \\ q_z \end{pmatrix} = \begin{pmatrix} v_x^2 + (1 - v_x^2)\cos\alpha & v_x v_y (1 - \cos\alpha) - v_z \sin\alpha & v_x v_z (1 - \cos\alpha) + v_y \sin\alpha \\ v_x v_y (1 - \cos\alpha) + v_z \sin\alpha & v_y^2 + (1 - v_y^2)\cos\alpha & v_y v_z (1 - \cos\alpha) - v_x \sin\alpha \\ v_x v_z (1 - \cos\alpha) - v_y \sin\alpha & v_y v_z (1 - \cos\alpha) + v_x \sin\alpha & v_z^2 + (1 - v_z^2)\cos\alpha \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$$

Обаче

– При вертикална ос $\vec{v}(0,0,1)$, Q става:

$$Q \begin{pmatrix} q_x \\ q_y \\ q_z \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} p_x \cos \alpha - p_y \sin \alpha \\ p_x \sin \alpha + p_y \cos \alpha \\ p_z \end{pmatrix}$$

Илюстрация

Въртене на контур

Конструиране

Най-често като тор

- Контурът се представя като начупена линия или като верига от отсечки
- Всяка отсечка поражда пресечен конус

Влачене по траектория

Влачене по траектория

Основни елементи

- Контур/профил или 3D обект
- Линия в 3D (не задължително права)

Получаване

- Контурът/обектът се плъзга по линията (sweep)
- Ротационните тела са частен случай на влачене по окръжност

Разширение на модела

Допълнителни елементи

 Характеристики на плъзгания обект зависят от местоположението по траекторията

Описание на модел

- Описание на траекторията
- Описание на влачения обект
- Описание на характеристиките му

Пример

Плъзгане на мащаба в диапазон

- Мащабиране по X и Y
- Мащабиране по Z

Крива на Лисажу (Lissajous)

Хармонична крива в 3D

– Задава се параметрично

$$x(t) = a_x \sin(b_x t + c_x)$$

$$y(t) = a_y \sin(b_y t + c_y)$$

$$z(t) = a_z \sin(b_z t + c_z)$$

- Ще я построим от малки цилиндри
- Всеки ще е ориентиран по тангентата

Ето как:

– А тангенциалният вектор $\vec{v}(t)$ в точка P(t) намираме числено така: $\vec{v}(t) \approx P(t+\Delta t) - P(t)$

Оцветяване

- При $a_x = a_y = a_z$ фигурата на Лисажу лежи в куб със страна 2ax (защо?)
- Нека този куб е цветово RGB пространство

Резултат

- При случайни коефициенти
- В RGB пространство

Конструктивна геометрия

Основни елементи

Набор от примитиви

- Избрано множество от графични примитиви
- Трансформирани (мащабирани, завъртяни, ...)

Набор от операции

 Логически или аритметични операции за работа с графични примитиви

(аналогични са на операциите за работа с множества)

Какво се прави после?

Изрази

- Конструират се изрази с графичните примитиви
- Прилагат се операциите над тях

Дървовидна структура

- Крайният обект се представя като математически израз с операции от конструктивната геометрия
- Може да има скоби за вложени изрази

Конструктивни операции

Събиране и умножение

- Събиране = обединение на тела
- Умножение = сечение на тела

Изваждане и разлика

- Разлика и изваждане са различни
- Изваждане = тяло извадено от друго
- Разлика = необщите части от тела

Пример

Вложени сфери

– С изрязани кръгове

"Magic balls" http://youtu.be/dV2PdCTx9dE

Параметрично моделиране

Параметрично моделиране

Основни идеи

Обект зададен с уравнение с параметри, описващи пространствената му размерност, а не размерите му (за повърхност – два параметъра, за обемно тяло – три)

Непряко дефиниране на обект

 Един набор от параметри дефинира друг набор от параметри, който вече определя обекта

Внимание

- Параметричността се определя от реализацията на рисуването, а не от това дали са подадени параметри
- Параметрите дефинират чрез функция как "координатите" обхождат точките от обекта

Пример за непараметричен обект

Рисуване на квадрат с дължина на страна a не е параметрично моделиране на квадрата, въпреки че a е параметър на процедурата, която го рисува

Уравнения

Моделиране на 3D обекти

- Често чрез тяхната повърхност отвътре са кухи
- Повърхността се задава чрез уравнение P=F(u,v), където u и v са параметрите
- За непрякото дефиниране се ползва

$$F(x,y,z) = 0$$
, като $\begin{vmatrix} x = x(u,v) \\ y = y(u,v) \\ z = z(u,v) \end{vmatrix}$

Пример

Модел на люспа от Pringles

- Елипсовиден контур
- Хиперболично-параболоидна повърхност

- Уравнение
$$f(x,z) = \frac{x^2}{a^2} - \frac{z^2}{b^2}$$

Реализация

Започваме с полярни координати

- Единична окръжност в Oxz
- Точките са с полярни координати (r, α)
- А с декартови са $(r\cos\alpha, 0, r\sin\alpha)$

Опъваме окръжността в елипса

- Мащабиране по X и Z с $R_{\chi}=4$ и $R_{Z}=3$
- Получаваме $(4r\cos\alpha, 0, 3r\sin\alpha)$

Преминаваме в 3D

– Добавяме фиктивна у координата

Изчисляваме y на базата на x и z

– Харесваме си
$$a=4$$
 и $b=3$, т.е. $y=\frac{x^2}{16}-\frac{z^2}{9}$

Люспата минава следните трансформации

- Двумерен модел

$$\begin{vmatrix} r \in [0,1] \\ \alpha \in [0,2\pi] \end{cases} \Rightarrow \begin{vmatrix} x = r \cos \alpha \\ z = r \sin \alpha \end{cases} \Rightarrow \begin{vmatrix} x = R_x r \cos \alpha \\ z = R_z r \sin \alpha \end{vmatrix}$$

За тримерен модел добавяме у

$$\begin{vmatrix} x = \cdots \\ y = 0 \Rightarrow \\ z = \cdots \end{vmatrix} = \begin{vmatrix} x = \cdots \\ y = \frac{x^2}{a^2} - \frac{z^2}{b^2} \\ z = \cdots \end{vmatrix}$$

В крайна сметка имаме

$$\begin{vmatrix} r \in [0,1] \\ \alpha \in [0,2\pi] \Rightarrow \end{vmatrix} y = r^2 \left(\frac{R_x^2}{a^2} \cos^2 \alpha - \frac{R_z^2}{b^2} \sin^2 \alpha \right)$$
$$z = R_z r \sin \alpha$$

– И след малко украсяване:

Други примери

Други параметрични модели

- Секси повърхност (по проф. Станилов)
- Хиперболичен хиперболоид
- Сърце

http://youtu.be/-nhvbwMnGa4

"Hyperhyperboloid" http://youtu.be/KabzJeJaXJQ

"Mathematics ... loves you" http://youtu.be/nRF7cUQIAnM

Процедурно моделиране

Процедурно моделиране

Основни характеристики

- Геометричната фигура се генерира чрез програма
- Може да включва всички останали начини на графично моделиране
- Най-мощното и най-функционалното моделиране
- Затова подробностите са в друга лекция

Въпроси?

Повече информация

[**LUKI**] стр. 189

[AGO2] ctp. 167-171, 174-178

[**SALO**] ctp. 348-360

[MORT] ctp. 226-228, 233-243

[**PAQU**] стр. 100

[**BAGL**] ctp. 35-36

А също и:

- Elica Dalest Applications
 http://www.elica.net/site/museum/Dalest/dalest.html
- Lissajous Curve
 http://mathworld.wolfram.com/LissajousCurve.html

Край