

基于力和力矩的模型预测控制实现双足机器人的高动态运动

Junheng Li and Quan Nguyen

Fig. 1: 十自由度双足机器人。双足机器人在崎岖的地形上以速度行走 $v_{xd}=1.6\,\mathrm{m/s}$ 。模拟视频:https://youtu.be/Z2s4iuYkuvg。

Abstract—本文提出了一种基于力和矩的动态四足机器人模型预测控制(MPC)新框架。本文提出一种针对10自由度双足机器人的MPC公式,使用输入力和力矩的简化刚体动力学。这个MPC控制器将计算应用于机器人的最佳输入,包括每只脚的三维力和二维力矩。这些所需的输入将通过将这些力和力矩映射到每条腿上5个执行器的电机扭矩来产生。在一个10自由度(DoF)双足机器人的物理仿真中评估了所提出的控制设计。该机器人可以在崎岖不平的地形上实现高达1.6 m/s的快速行走,并具有精确的速度跟踪。在相同的控制框架下,所提出的方法可以使用同一组控制参数实现广泛的动态运动,包括步行、跳跃和跑步。

I. 简介

研究双足机器人的动机受到商业和社会学利益的广泛推动[1]。双足机器人应用的预期结果范围从在危险操作中取代人类[2],其中需要在未知复杂地形中高度动态的机器人,到在医疗领域和康复过程中开发高度功能的双足机器人应用,如为残疾人提供动力下肢假肢的研究的最新进展[3]。

There are many control strategies that can be used for control of bipedal robots, such as 零力矩点(ZMP)或采用弹簧加载倒立摆(SLIP)模型[4], [5], [6]。两种方法都成功地维持了双足机器人的稳定运动(例如[4], [6])。混合零动力学方法是另一种控制框架,利用输入输出线性化,一个非线性反馈控制器,具有虚拟约束,允许在欠驱动双足机器人上动态行走[1], [7], [8]。最近,基于力的MPC控制被引入动态四足机器人[9],允许机器人执行广泛的动态步态,并对粗糙的地形具有鲁棒性。MPC框架在动态运动中的一个优点是,控制器可以预测未来可能由于欠驱动导致不稳定的运动,并根据预测求解最优输入来稳定系统。

MPC还通过各种方式应用于双足机器人的控制。[10]中提出的控制框架应用MPC来最小化人启发

李俊恒和阮泉就职于南加州大学洛杉矶分校航空航天与机械工程系,加州90089。邮箱:@usc.edu, quann@usc.edu

控制(HIC)方法中的快速指数稳定控制李雅普诺夫函数(RES-CLF)的值。[11]提出的ZMP预瞄控制方案试图通过MPC来解决一个最优控制问题,即找到一个最优的机器人质心跳动序列。然而,这些方法要么是基于位置控制来跟踪由优化产生的关节轨迹;或者倾向于解决循序渐进的计划问题。本文专注于一种实时反馈控制方法,可以处理广泛的行走步态,而不依赖于离线轨迹优化。

受[9]中提出的四足机器人基于力的MPC方法的启发,本文提出了一种新的控制框架,利用MPC来解决最优地面反作用力和力矩,以实现双足机器人的动态运动。研究了可用于MPC框架的不同模型,并介绍了在双足机器人模型上最有效的表述。所提出的方法允许一个10自由度的双足机器人在崎岖地形上进行高速和鲁棒的运动。利用Spatial v2的软件依赖性,在MATLAB和Simulink中构建了一个高保真的物理仿真模型。

本文的主要贡献如下:

- 针对10自由度双足机器人的运动问题,提出了一种 基于力和矩的MPC框架。
- 本文研究了可用于MPC框架的不同刚体动力学模型。然后在我们提出的方法中使用最有效的模型。
- 所提出的MPC框架可以实现具有精确速度跟踪的三维动态运动。
- 所提出的控制框架可以使用同一组控制参数实现广泛的动态运动,如快速行走、跳跃和跑步。
- 由于使用了基于力和力矩的控制输入,所提出方法 对粗糙地形也具有鲁棒性。我们成功地演示了在崎 岖地形上以1.6 m/s速度快速行走的问题。崎岖地形 由最大高度0.075 m的楼梯和两个连续楼梯之间的最 大差0.055 m组成。

论文的其余部分组织如下。II部分介绍了双足机器人的模型设计和物理参数。本节还提供了仿真方法和控制体系结构。III节介绍了动力学和控制器的选择、设计和提出的基于力和矩的MPC控制器的表述。一些突出的结果在IV节中给出,并对控制器在各种动态运动中的性能进行了分析。

II. 双足机器人模型与仿真

A. 机器人模型

在本节中,我们将介绍将在整个论文中使用的机器人模型。一个10自由度的双足机器人由每条腿5个关节驱动组成(见图2a)。通常,一个10自由度的双足机器人有外展(ab)和髋关节,允许三维旋转,以及踝关节,允许双腿支撑站立(例如[12],[13])。

我们的双足设计由机器人身体、ab链、臀部链、大腿链、小腿链和脚链组成(腿的配置定义见图2b,物理参数见表I)。机器人本体采用了Unitree A1机器人,为垂直构型。在这个机器人设计中建模的关节执行器是Unitree A1模块化执行器,这是一个轻量级和强大的扭矩控制电机,适用于迷你腿机器人(见表II的参数执行器)。

Fig. 2: a)机器人CAD模型b)双足机器人左腿的连杆和关节构型。

TABLE I: 机器人物理参数

Parameter	Symbol	Value	Units
Mass	m	11.84	kg
Body Inertia	I_{xx}	0.0443	$\mathrm{kg}\cdot\mathrm{m}^2$
	I_{yy}	0.0535	$\mathrm{kg}\cdot\mathrm{m}^2$
	I_{zz}	0.0214	$\mathrm{kg}\cdot\mathrm{m}^2$
Body Length	l_b	0.114	m
Body Width	w_b	0.194	m
Body Height	h_b	0.247	m
Thigh and Calf Lengths	l_1, l_2	0.2	m
Foot Length	l_{toe}	0.09	m
	l_{heel}	0.05	m

B. 模拟

双足机器人的仿真主要是在MATLAB Simulink中使用Spatial v2包[14]构建的。图3显示了我们的控制体系结构的图表,也表示了我们的仿真软件。

仿真软件要求用户在仿真开始时输入所需的状态。所需状态形成一个列向量,包括所需的身体质心(CoM)位置 p_d ,所需的身体CoM速度 \dot{p}_d ,所需的旋转矩阵 R_d (调整为9×1向量)和所需的角速度 ω_d 的机器人身体。

Fig. 3: 控制图。所提出方法的简化框图和控制结构。

III. 动力学与控制

A. 简化动力学

在本节中,我们将研究MPC控制框架中可以使用的不同动态模型。虽然双足机器人的全身动力学是高度非线性的,但我们有兴趣使用简化的刚体动力学来保证我们

TABLE II: 关节驱动器参数

Parameter	Value	Units
Max Torque	33.5	Nm
Max Joint Speed	21	Rad/s

的MPC控制器可以实时有效地解决。此外,为了能够吸收动态运动带来的频繁而剧烈的冲击,双足机器人的设计还要求四肢和连接都要轻便。这使得重量和旋转惯性的每个环节部分都是非常小的与身体重量和旋转惯性。因此,腿连杆在机器人动力学中的作用可能被忽略,形成简化的刚体动力学[15], [16]。这也是许多有腿机器人控制器设计中的一个常见假设[17], [18]。

我们已经考虑并测试了三个简化的动力学模型,如图4所示。这三种选择的主要区别是每只脚上接触点的数量,接触位置,以及接触力和力矩在每个接触点形成。模型1类似于[16]中提到的四足机器人的简化动力学选择,有4个接触点施加三维接触力。然而,将此动力学模型应用于我们的10自由度双足机器人,在模拟旋转运动测试中,机器人无法正确执行俯仰运动。对模型2进行了改进,进一步简化了接触点。然而,使用这种简地进行侧倾运动。因此,我们提出了模型3,它排除了围绕x-轴的外部力矩,只包含三维接触力和围绕y和z-轴的二维力矩。这个模型使机器人能够有效地执行所有的三维旋转。因此,选择模型3作为该框架下的最终简化动力学设计。有关此决策过程验证的更多细节见IV部分。模型3动力学的详细推导如下。

本文的双足模型有两条腿,两条腿都由5自由度组成。通常,应用于机器人的外部接触力仅限于许多足机器人动力学中的三维力(例如,[12], [15])。然而,由于额外的髋关节和踝关节驱动,外部力矩也可以包含在机器人动力学中,形成机器人身体的加速度 \ddot{p}_c ,角动量变化率 \dot{H} 关于CoM [18],以及接触力和力矩之间的线性关系 $u=[F_1,F_2,M_1,M_2]^T,F_i=[F_{ix},F_{iy},F_{iz}]^T,M_i=[M_{iy},M_{iz}]^T,i=1,2$, shown as follows:

$$\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} u = \begin{bmatrix} m(\ddot{p}_c + g) \\ \dot{H} \end{bmatrix}, \tag{1}$$

where

$$\boldsymbol{D}_1 = \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{I}_{3\times3} & \mathbf{0}_{3\times2} & \mathbf{0}_{3\times2} \end{bmatrix}, \tag{2}$$

$$D_2 = [(p_1 - p_c) \times (p_2 - p_c) \times L L],$$
 (3)

$$\mathbf{L} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}. \tag{4}$$

术语 $(p_i - p_c)$ 表示在世界坐标中从机器人身体CoM位置到脚i位置的距离向量;其中 $(p_i - p_c)$ ×表示表示 $(p_i - p_c)$ × F_i 叉积的斜对称矩阵。在这里, \dot{H} 可以近似为 $\dot{H} = I_G\dot{\omega}$ (如[15]所讨论的),其中 I_G 表示机器人体在世界坐标系中的质心转动惯量, $\dot{\omega}$ 表示机器人体在世界坐标系中的角速度[16], [18]。

Equation (1) to (4) describes the simplified dynamics model 3. This model only used 5 force and moment inputs \boldsymbol{U} which are directly mapped to 5 joint torques in each leg.

Fig. 4: 三种简化动力学模型。图中的黄色点代表简化动力学中的接触点位置a)每个机器人脚的脚趾和脚跟处有2个接触点,施加的三维力b)每个脚中部有1个接触点,施加的三维力和三维力矩c)每个脚中部有1个接触点,施加的三维力和二维力矩。模型3是我们提出的方法中使用的最终选择。

我们用旋转矩阵R作为状态变量来表示机器人体的姿态,也可以直接转换为欧拉角。我们通过将角速度近似为欧拉角 $\Theta = [\phi, \theta, \psi]^T$ 线性化旋转矩阵,其中 ϕ 是滚转角, θ 是俯仰角, ψ 是偏航角。在小横摇角和俯仰角[9]的假设下, Θ 的变化率与角速度 ω 在世界坐标上的关系可近似为:

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \approx \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{\omega} . \tag{5}$$

因此,得到欧拉角的运动学约束如下:

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \approx \mathbf{R}_z(\psi)\boldsymbol{\omega}. \tag{6}$$

结合近似的方向动力学和平移动力学,机器人的简化动力学可表示为:

$$egin{aligned} rac{d}{dt}egin{bmatrix} oldsymbol{\Theta} \ oldsymbol{p}_c \ oldsymbol{\phi}_c \end{bmatrix} = oldsymbol{A}egin{bmatrix} oldsymbol{\Theta} \ oldsymbol{p}_c \ oldsymbol{\phi}_c \end{bmatrix} + oldsymbol{B}oldsymbol{u} + oldsymbol{B}oldsymbol{u} + oldsymbol{G}oldsymbol{0} \ oldsymbol{g} \end{bmatrix}, \end{aligned}$$

where

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \boldsymbol{R}_z(\psi) & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{I}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3}, \end{bmatrix}, \tag{8}$$

Here, \tilde{I}_G^{-1} is approximated by rotation inertia of the robot body in its body frame I_b and $R_z(\psi)$ from (6):

$$\tilde{\boldsymbol{I}}_{\boldsymbol{G}} = \boldsymbol{R}_z(\psi) \boldsymbol{I}_b \boldsymbol{R}_z(\psi)^T. \tag{10}$$

通过将重力分配为额外的状态变量,现在状态 $x = [\Theta, p_c, \omega, \dot{p}_c, g]^T$ 将允许(7)中的动力学被重写为具有连续时间矩阵 \hat{A}_c 和 \hat{B}_c 的线性状态空间形式:

$$\dot{x}(t) = \hat{A}_{c}(\psi)x(t) + \hat{B}_{c}([p_{1} - p_{c}], [p_{2} - p_{c}], \psi)u(t).$$
 (11)

(11)中的线性化动力学现在适用于[9]中提出的凸MPC公式。

B. MPC制定

讨论了动力学模型后,我们现在提出关于MPC控制器制定的细节。

(11)中的线性化动力学可以在每个时间步i以离散时间形式表示

$$x[i+1] = \hat{A}[i]x[i] + \hat{B}[i]u[i], \qquad (12)$$

其中离散时间矩阵 \hat{A} 是一个常数矩阵,从 $\hat{A}_c(\psi)$ 使用整个参考轨迹期间的平均偏航值计算; \hat{B} 矩阵从 $\hat{B}_c([p_1-p_c],[p_2-p_c],\psi)$ 计算,使用平均偏航角和足部位置的期望值。唯一的例外是,在第一个时间步, $\hat{B}[1]$ 是从机器人的当前状态而不是参考轨迹计算的。

具有有限视界长度k的MPC问题可以写成以下标准形式:

(5)
$$\min_{\boldsymbol{x},\boldsymbol{u}} \sum_{i=0}^{k-1} (\boldsymbol{x}_{i+1} - \boldsymbol{x}_{i+1_{ref}})^T \boldsymbol{Q}_i (\boldsymbol{x}_{i+1} - \boldsymbol{x}_{i+1_{ref}}) + \|\boldsymbol{u}_i\| \boldsymbol{R}_i$$
(13)

s.t.
$$x[i+1] = \hat{A}[i]x[i] + \hat{B}[i]u[i], i = 0...k-1$$
(14)

$$c_i^- \le C_i u_i \le c_i^+, \quad i = 0 \dots k - 1$$
 (15)

$$\boldsymbol{D}_{i}\boldsymbol{u}_{i}=0, \quad i=0\ldots k-1 \tag{16}$$

在(13)中, x_i 和 u_i 是时间步i的系统状态和控制输入。Note that the MPC prediction is computed based on the measured states of current step (i.e. i=0). Q_i 和 R_i 是定义each state and control input variable. \hat{A} 和 \hat{B} 在(14)中的权重的矩阵,是来自(12)的离散时间系统动态约束。(15)中的 c_i^- 、 c_i^+ 和 C_i 表示MPC问题的不等式约束。 D_i in (16)表示相等约束。在该问题中,支配MPC控制器最优控制输入的等式约束为摆脚的零向量。

MPC控制器根据动态约束(14)和以下不等式约束求解最优地接触力和力矩:

$$-\mu \mathbf{F}_{iz} \le \mathbf{F}_{ix} \le \mu \mathbf{F}_{iz}$$
$$-\mu \mathbf{F}_{iz} \le \mathbf{F}_{iy} \le \mu \mathbf{F}_{iz} \tag{17}$$

$$0 < \mathbf{F}_{min} \le \mathbf{F}_{iz} \le \mathbf{F}_{max} \tag{18}$$

$$|\tau_i| \le \tau_{max}.\tag{19}$$

在这里,(17)支配x和y方向的接触力在摩擦金字塔内, μ 是摩擦系数。在z-方向的接触力也应该落在力的上界和下界(18),其中下界是积极的,以保持与地面接触。同样重要的是要限制关节扭矩在物理马达的饱和范围内(19)。

*C. OP*制定

通过III-A节中的线性动力学和III-B节中的MPC公式。 我们的控制器可以被表示为一个二次规划(QP),可以实 时有效地求解。

首先,整个MPC预测周期的动态约束(11)可以表示为:

$$X = A_{qp}x_0 + B_{qp}U, (20)$$

其中X是包含下一个k视野的系统状态的列向量、x[i+ $1], x[i+2] \dots x[i+k]$ 和U是包含当前状态u[i]和下一个k-11视野的最优控制输入的列向量, $u[i+1], u[i+2] \dots u[i+1]$ k-1]在时间步i。现在MPC控制器可以写成下面的QP形 式:

$$\min_{\boldsymbol{U}} \frac{1}{2} \boldsymbol{U}^T \boldsymbol{h} \boldsymbol{U} + \boldsymbol{U}^T \boldsymbol{f}$$
 (21)
s.t. $\boldsymbol{C} \boldsymbol{U} \leq \boldsymbol{d}$ (22)

s.t.
$$CU \le d$$
 (22)

$$\mathbf{A}_{eq}\mathbf{U} = \mathbf{b}_{eq} \tag{23}$$

其中C和d是不等式约束矩阵, A_{eq} 和 b_{eq} 是等式约束矩 阵,和

$$\boldsymbol{h} = 2(\boldsymbol{B}_{qp}^{T} \mathbf{M} \boldsymbol{B}_{qp} + \mathbf{K}), \tag{24}$$

$$f = 2B_{ap}^{T} \mathbf{M} (A_{ap} x_0 - y). \tag{25}$$

对角矩阵K和M是状态变量变化率和力/力矩大小的权 重。

The resulting controller input of each leg from QP problem $u_i = [F_i, M_i]^T$ is mapped to its joint torques by

$$\boldsymbol{\tau}_i = \boldsymbol{J}_i^T \boldsymbol{u}_i, \tag{26}$$

where J_i is the Jacobian matrix of ith leg

$$\boldsymbol{J}_i^T = \begin{bmatrix} \boldsymbol{J}_v^T & \boldsymbol{J}_\omega^T \boldsymbol{L} \end{bmatrix}, \tag{27}$$

其中 J_v 和 J_ω 是 J_i 的线速度和角速度分量。

D. 摆动腿控制

如本节前面所述,由于等式约束,处于摆动阶段的机 器人腿不会施加地面接触力,因此不受基于力和力矩 的MPC控制。利用PD位置控制器在笛卡尔空间中控制期 望的足部轨迹,以实现在每个步态周期内控制足部和腿 的位置。The gait sequence is purely based on timing and the gait cycle length is currently set at 0.3s. 我们使用正向 运动学获得当前脚的位置。脚的速度由:

$$\dot{\boldsymbol{p}}_{foot_i} = \boldsymbol{J}_i^T \dot{\boldsymbol{q}}_i, \tag{28}$$

其中 ф, 为时间步i时每条腿的关节速度状态反馈。

在世界框架中所需的脚位置 p_{foot} ,由[9]中采用的脚放 置策略确定:

$$\boldsymbol{p}_{foot_d} = \boldsymbol{p}_{hip} + \dot{\boldsymbol{p}}_c \Delta t / 2, \tag{29}$$

其中 p_{hip} 是髋关节在世界坐标系中的位置, Δt 是一个步 态周期中站立脚在地面上花费的时间。

摆动腿力可以通过处理连接到虚拟弹簧-阻尼系 统[19]的脚来计算。脚的重量被忽略是合理的,因为它 与机器人身体相比是非常小的[15]。根据PD控制律,足 部力为:

$$F_{swing_i} = K_P(p_{foot_d} - p_{foot_i}) + K_D(\dot{p}_{foot_d} - \dot{p}_{foot_i})$$
(30)

(c) 俯仰运动比较

Fig. 5: 模型1和模型3在俯仰运动仿真中的比较a)与模型1仿真结束时的 快照b)与模型3仿真结束时的快照c)与10°期望俯仰输入的俯仰运动响应

其中 K_P 和 K_D 为PD控制增益,或虚拟弹簧-阻尼系统的 弹簧刚度和阻尼系数。

与(26)类似, 关节力矩可以计算为:

$$\boldsymbol{\tau}_{swing_i} = \boldsymbol{J}_v^T \boldsymbol{F}_{swing_i}. \tag{31}$$

利用笛卡儿PD控制,摆动腿可以运动并被控制以遵循 期望的足部放置轨迹。步态发生器在一个固定的步态周 期内判断机器人腿是处于站立阶段还是摆动阶段,并为 相应的腿分配适当的控制器。现在机器人已经实现了摆 腿和站立腿控制,可以进行MPC仿真测试。

IV. 仿真结果

在本节中, 我们将对所提出的方法进行不同动态运动 的数值验证。鼓励读者观看补充视频1来可视化我们的 结果。为了进行仿真,在MATLAB中利用Spatial v2软件 建立了双足机器人模型和地面接触模型。MPC采样频率 设置为0.03 s, 同时在1 kHz上运行模拟。在MPC中, 在 每个时间步预测一个包含10个视野的步态周期,其中每 个步态周期固定在0.30 s。 This prediction length has been also used in [9].

The weighting factors Q in (13) are tuned to balance the performance between different control actions. In our simulation, we use $Q_x = Q_y = 50$, $Q_z = 100$, $Q_{\phi} =$ $Q_{\theta}=100$, and $Q_{\psi}=20$. The rest weighting factors in Qremains at 1.

A. 简化动力学验证

首先,我们展示了两腿着地站立时简单旋转运动的仿 真结果,以验证Ⅲ节中的主张,即对于用于控制设计的 简化动力学,模型3是比模型1和模型2更好的选择。

正如在III节中提到的,简化的动力学模型1无法执行俯 仰运动。如图5所示,使用简化动力学模型1和模型3之间

¹https://voutu.be/Z2s4iuYkuvg

Fig. 6: 模型2和模型3在侧倾运动仿真中的比较a)与模型2仿真结束时的快照b)与模型3仿真结束时的快照c)与10°期望侧倾输入的侧倾运动响应比较

的俯仰运动比较。后者是我们最终选择在MPC公式中使用的。观察到模型1的仿真结果不能响应期望的俯仰输入,而模型3可以执行俯仰运动。

然后我们进一步简化模型1,并在每个接触点添加三维力矩输入以形成简化的动力学模型2。然而,在横摇试验中,模型2的响应与期望的横摇输入不正确,偏航角也有偏差,如图6所示。利用模型3,机器人仿真成功进行了侧倾运动试验。因此,我们决定将模型3用于我们提出的方法。以下是采用模型3的MPC控制对步行和跳跃运动的仿真结果。

B. 速度跟踪

在此模拟中,我们测试了在期望速度时变和期望CoM高度0.5 m的向前行走运动(正向x-方向)中MPC的性能。速度跟踪图如图7所示,采用MPC的实际响应曲线显示出良好的跟踪性能。与期望输入相比,速度响应的最大偏差为0.076 m/s。除了向前行走,我们还成功地模拟和演示了横向行走和对角线行走。该结果验证了所提出的控制框架在实现双足机器人三维动态运动方面的有效性。

Fig. 7: 速度跟踪。期望速度输入与实际速度响应在x方向上的比较。

C. 在崎岖地形上高速行走

实验还验证了控制器在高速崎岖地形下的运动性能。具体来说,机器人被命令行走在由不同高度和长度的楼梯形成的2.4米长的崎岖地形上。楼梯高度从0.020 m到0.075 m,两个连续楼梯之间的最大高度差为0.055 m。为了验证MPC在崎岖地形上移动的可行性和潜力,机器人被命令遵循一个期望的高速度 $v_{x_d}=1.6$ m/s。图1提供了这个模拟的快照。

CoM位置图、速度图和体向图如图8和图9所示。可以观察到,在此仿真过程中,CoM的位置和方向保持了较小的跟踪误差。在整个仿真过程中,关节扭矩(如图。11所示)在合理的范围内,并满足表II所示的扭矩饱和。

Fig. 8: 粗糙地形模拟中的体成分和速度图。

Fig. 9: 粗糙地形仿真中的机器人定位图。

D. 双足跳跃

在本节前面介绍的旋转和行走模拟的基础上,我们还实现了其他步态,如跳跃。跳跃步态包括在每个步态的最后四分之一期间的双支撑阶段和飞行阶段。跳跃步态的说明如图12所示。可以观察到,在跳跃运动过程中,机器人处于一个清晰的飞行阶段。This result validated that our proposed approach can work effectively for different dynamic locomotion on bipedal robots. We plan to optimize the MPC formulation in future work to enable faster and more aggressive motions.

V. 结论

总之,我们提出了一种有效的基于力和矩的模型预测控制方法,实现了10自由度双足机器人在粗糙地形上的高动态运动。该框架还允许机器人使用相同的控制框架

Fig. 10: 粗糙地形模拟中的MPC力和力矩图。

Fig. 11: 粗糙地形仿真中的关节力矩图。

和相同的控制参数集来实现广泛的3-D运动。凸MPC公式可以转化为一个二次规划问题,有效求解的实时性小于1ms。我们探索并找到了最适合控制框架的动力学模型,并成功地模拟了具有时变速度输入、粗糙地形高速运动和不同动态步态的行走。仿真结果表明,速度跟踪试验中的控制性能与期望输入的最大偏差为0.076 m/s。在崎岖地形测试中,该机器人能够在各种高度的崎岖地形中行走,并在1.6 m/s处保持较高的前进速度。未来的工作将包括扩展该方法以实现更激进的运动,以及在机器人硬件上对该框架进行实验验证。

REFERENCES

 E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback control of dynamic bipedal robot locomotion. CRC press, 2018.

Fig. 12: 双足跳跃仿真插图

- [2] Y. Chen, A. Pandey, Z. Deng, A. Nguyen, R. Wang, T. Liu, P. Thonapalin, Q. Nguyen, and S. Gupta, "A semi-autonomous quadruped robot for performing disinfection in cluttered environments," in 2021 ASME Mechanism and Robotics Conference, IEEE, 2021.
- [3] H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames, "First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach," *Autonomous Robots*, vol. 41, no. 3, pp. 725–742, 2017.
- [4] A. D. Ames, E. A. Cousineau, and M. J. Powell, "Dynamically stable bipedal robotic walking with nao via human-inspired hybrid zero dynamics," in *Proceedings of the 15th ACM international conference* on Hybrid Systems: Computation and Control, pp. 135–144, 2012.
- [5] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, "Biped walking pattern generator allowing auxiliary zmp control," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993–2999, IEEE, 2006.
- [6] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, "The dynamics of legged locomotion: Models, analyses, and challenges," *SIAM review*, vol. 48, no. 2, pp. 207–304, 2006.
- [7] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, "Dynamic walking on stepping stones with gait library and control barrier," in Workshop on Algorithimic Foundations of Robotics, 2016.
- [8] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle, and K. Sreenath, "Dynamic walking on randomly-varying discrete terrain with one-step preview.," in *Robotics: Science and Systems*, vol. 2, 2017.
- [9] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9, IEEE, 2018.
- [10] M. J. Powell, E. A. Cousineau, and A. D. Ames, "Model predictive control of underactuated bipedal robotic walking," in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5121– 5126. IEEE, 2015.
- [11] P.-B. Wieber, "Trajectory free linear model predictive control for stable walking in the presence of strong perturbations," in 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 137–142, IEEE, 2006.
- [12] G. T. Levine and N. M. Boyd, "Blackbird: Design and control of a low-cost compliant bipedal robot,"
- [13] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and J. Grizzle, "Feedback control of a cassie bipedal robot: Walking, standing, and riding a segway," in 2019 American Control Conference (ACC), pp. 4559–4566, IEEE, 2019.
- [14] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
- [15] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim, "Optimized jumping on the mit cheetah 3 robot," in 2019 International Conference on Robotics and Automation (ICRA), pp. 7448–7454, IEEE, 2019.
- [16] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, "Mit cheetah 3: Design and control of a robust, dynamic quadruped robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2245–2252, IEEE, 2018.
- [17] M. Focchi, A. Del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell, and C. Semini, "High-slope terrain locomotion for torque-controlled quadruped robots," *Autonomous Robots*, vol. 41, no. 1, pp. 259–272, 2017.
- [18] B. J. Stephens and C. G. Atkeson, "Push recovery by stepping for humanoid robots with force controlled joints," in 2010 10th IEEE-RAS International conference on humanoid robots, pp. 52–59, IEEE, 2010.
- [19] G. Chen, S. Guo, B. Hou, and J. Wang, "Virtual model control for quadruped robots," *IEEE Access*, vol. 8, pp. 140736–140751, 2020.