A bullet of mass m is fired at speed v into a block of mass M and gets lodged inside the block. The block hangs on a two strings of length l connected to the ceiling. How high up will the block rise after it is struck by the bullet?

Now, we can use conservation of energy:

$$\frac{1}{2} \left(\frac{m^2}{M+m^2} \right)^2 v^2 = \left(\frac{M+m}{M+m} \right)^3 h$$

$$\frac{1}{2} \frac{m^2}{M+m^2} v^2 = gh$$

$$h = \frac{1}{2g} \left(\frac{m v}{M+m} \right)^2$$

Sand is poured at a rate \(\mu\) (in kg/s) onto a moving conveyor belt of velocity \(v \).
 The sand matches the speed of the belt when it lands on it. Find the power \(P \)
 exerted by the motor driving the belt. How much of this power goes into the speed of the sand, and how much is lost to heat?

$$P = \frac{W}{\Delta t} \qquad \text{mass of sand} : M$$

$$\Delta t = \frac{M}{M}$$

$$P = \frac{1}{2}Mv^{2}$$

$$At = \frac{Mv^{2}}{\Delta t}$$

$$At = \frac{Mv^{2}}{\Delta t}$$

$$\Delta P = M\Delta t \qquad P = \frac{Mv^{2}}{\Delta t}$$

$$P = Mv^{2} \qquad \text{hal } f \text{ is lost to heat}$$