Problems & Proofs in Elementary Inequality Bài Tập Bất Đẳng Thức & Chứng Minh

Nguyễn Quản Bá Hồng*

Ngày 19 tháng 5 năm 2023

Tóm tắt nội dung

A problem set for elementary inequality.

Muc luc

TA.	i liêu	,
3	Miscellaneous	2
2	Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz	1
1	Introduction	1

1 Introduction

The general structure of a problem on inequality is given by:

Problem 1. Let x_i , $\forall i = 1, 2, ..., n$ satisfy the condition $C(x_1, x_2, ..., x_n) = 0$. Prove that: (a) $A(x_1, x_2, ..., x_n) \leq 0$. (b) $B(x_1, x_2, ..., x_n) \geq 0$. (c) Find the minimum & maximum of $A(x_1, x_2, ..., x_n)$ & $B(x_1, x_2, ..., x_n)$.

Cấu trúc tổng quát của 1 bài toán bất đẳng thức:

Bài toán 1. Cho các biến x_i , $\forall i = 1, 2, \ldots, n$ thỏa mãn điều kiện $C(x_1, x_2, \ldots, x_n) = 0$. Chứng minh: (a) $A(x_1, x_2, \ldots, x_n) \leq 0$. (b) $B(x_1, x_2, \ldots, x_n) \geq 0$. (c) Tìm GTNN & GTLN của biểu thức $A(x_1, x_2, \ldots, x_n)$ & $B(x_1, x_2, \ldots, x_n)$.

Để nghiên cứu các bài toán bất đẳng thức & cực trị 1 cách có hệ thống, ta sẽ nghiên cứu 1 số dạng thường gặp của các $bi\mathring{e}u$ thức cần tìm cực trị A, B & đặc biệt là $bi\mathring{e}u$ thức điều $ki\mathring{e}n$ C.

2 Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz

The most basic inequality: $x^2 \ge 0$, $\forall x \in \mathbb{R}$. $x^2 = 0 \Leftrightarrow x = 0$. $x^2 > 0 \Leftrightarrow x \ne 0$.

Bài toán 2 (Bất đẳng thức Cauchy-Schwarz cho 2 số không âm). Chứng minh:

$$a+b\geq 2\sqrt{ab},\ \forall a,b\in\mathbb{R},\ a,b\geq 0.$$

Đẳng thức xảy ra khi nào?

1st proof.
$$a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0 \Rightarrow a+b\geq 2\sqrt{ab}, \ \forall a,b\in\mathbb{R},\ a,b\geq 0.$$
 "=" $\Leftrightarrow \sqrt{a}=\sqrt{b}\Leftrightarrow a=b.$

2nd proof.
$$(a+b)^2 - (2\sqrt{ab})^2 = a^2 + 2ab + b^2 - 4ab = a^2 - 2ab + b^2 = (a-b)^2 \ge 0 \Rightarrow (a+b)^2 \ge (2\sqrt{ab})^2 \Rightarrow a+b \ge 2\sqrt{ab}$$
 (vì $a,b \ge 0$ nên $a+b \ge 0$ & $2\sqrt{ab} \ge 0$). "=" $\Leftrightarrow a=b$.

Lưu ý 1. Ở 2nd proof, ta đã vận dụng tính chất cơ bản của căn bậc 2: $0 \le a \le b \Leftrightarrow \sqrt{a} \le \sqrt{b}$, $\forall a, b \in \mathbb{R}$. Phiên bản chặt/ngặt (strict) là: $0 \le a < b \Leftrightarrow \sqrt{a} < \sqrt{b}$, $\forall a, b \in \mathbb{R}$. Ý nghĩa hình học của 2 tính chất này: Hình vuông nào có cạnh lớn hơn thì có diện tích lớn hơn & ngược lại, hình vuông nào có diện tích lớn hơn thì có cạnh lớn hơn.

$$\exists rd\ proof.\$$
Dặt $x:=\sqrt{a},y:=\sqrt{b},x,y\in\mathbb{R},x,y\geq0.$ Có $a+b-2\sqrt{ab}=a+b-2\sqrt{a}\sqrt{b}=x^2+y^2-2xy=(x-y)^2\geq0\Rightarrow a+b\geq2\sqrt{ab}.$ "=" $\Leftrightarrow x=y\Leftrightarrow\sqrt{a}=\sqrt{b}\Leftrightarrow a=b.$

^{*}Independent Researcher, Ben Tre City, Vietnam

Lưu ý 2. \mathring{O} 3rd proof, ta đã sử dụng tính chất giao hoán của phép nhân & phép khai phương: $\sqrt{ab} = \sqrt{a}\sqrt{b}$, $\forall a, b \in \mathbb{R}$, $a, b \geq 0$

Bài toán 3. Với m, n, p nào thì bất đẳng thức $ma + nb \ge p\sqrt{ab}$ luôn đúng: (a) $\forall a, b \in \mathbb{R}, \ a, b \ge 0$. (b) $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 4 (Bất đẳng thức Cauchy-Schwarz cho 3 số không âm). Chứng minh:

$$a+b+c \ge 3\sqrt[3]{abc}, \ \forall a,b,c \in \mathbb{R}, \ a,b,c \ge 0.$$

Đẳng thức xảy ra khi nào?

Bài toán 5. Với m, n, p, q nào thì bất đẳng thức $ma + nb + pc \ge q\sqrt[3]{abc}$ luôn đúng: (a) $\forall a, b, c \in \mathbb{R}$, $a, b, c \ge 0$. (b) $\forall a, b, c \in \mathbb{R}$. Dẳng thức xảy ra khi nào?

Bài toán 6 (Bất đẳng thức Cauchy–Schwarz cho n số không âm). Chứng minh:

$$\sum_{i=1}^{n} a_{i} \geq n \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., a_{1} + a_{2} + \dots + a_{n} \geq \sqrt[n]{a_{1}a_{2} \cdots a_{n}}, \forall n \in \mathbb{N}^{*}, \forall a_{i} \in \mathbb{R}, a_{i} \geq 0, \forall i = 1, 2, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 7. Cho $n \in \mathbb{N}^*$. Với bộ $(m, m_1, m_2, \dots, m_n)$ nào thì bất đẳng thức:

$$\sum_{i=1}^{n} m_{i} a_{i} \geq m \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., m_{1} a_{1} + m_{2} a_{2} + \dots + m_{n} a_{n} \geq m \sqrt[n]{a_{1} a_{2} \cdots a_{n}},$$

đúng với: (a) $\forall a_i \in \mathbb{R}, \ a_i \geq 0, \ \forall i = 1, 2, \dots, n.$ (b) $\forall a_i \in \mathbb{R}, \ \forall i = 1, 2, \dots, n.$ Đẳng thức xảy ra khi nào?

3 Miscellaneous

Bài toán 8 ([Tuy23], Ví dụ 9, p. 23). Cho $x,y \in \mathbb{R}$, x,y > 0 thỏa mãn điều kiện $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$. Tìm GTNN của biểu thức $A = \sqrt{x} + \sqrt{y}$.

 $\text{1st proof. Vì } x,y>0 \text{ nên } \frac{1}{x},\frac{1}{y},\sqrt{x},\sqrt{y}>0. \text{ Áp dụng bất đẳng thức Cauchy cho 2 số dương } \frac{1}{x},\frac{1}{y},\text{ được: } \sqrt{\frac{1}{x}\cdot\frac{1}{y}}\leq\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\Rightarrow\frac{1}{\sqrt{xy}}\leq\frac{1}{4}\Rightarrow\sqrt{xy}\geq4. \text{ Áp dụng bất đẳng thức Cauchy cho 2 số dương } \sqrt{x},\sqrt{y},\text{ được: } A=\sqrt{x}+\sqrt{y}\geq2\sqrt{\sqrt{x}\sqrt{y}}=2\sqrt{\sqrt{x}}\geq2\sqrt{x}$

2nd proof. Áp dụng bất đẳng thức Cauchy lần lượt cho (\sqrt{x}, \sqrt{y}) & $(\frac{1}{x}, \frac{1}{y})$, được:

$$A = \sqrt{x} + \sqrt{y} \ge 2\sqrt{\sqrt{x}\sqrt{y}} = 2\sqrt{\frac{1}{\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{y}}}} \ge 2\sqrt{\frac{1}{\frac{1}{2}\left(\frac{1}{x} + \frac{1}{y}\right)}} = 2\sqrt{\frac{1}{\frac{1}{2} \cdot \frac{1}{2}}} = 4.$$

"="
$$\Leftrightarrow \sqrt{x} = \sqrt{y} \& \frac{1}{x} + \frac{1}{y} = \frac{1}{2} \Leftrightarrow x = y \& \frac{1}{x} + \frac{1}{y} = \frac{1}{2} \Leftrightarrow x = y = 4$$
. Vây $\min_{x,y \in \mathbb{R}, x,y > 0} A = 4 \Leftrightarrow x = y = 4$.

Nhận xét 1. "Trong thí dụ trên ta đã vận dụng bất đẳng thức Cauchy–Schwarz theo 2 chiều ngược nhau. Lần thứ nhất ta đã "làm trội" $\sqrt{\frac{1}{x} \cdot \frac{1}{y}}$ bằng cách vận dụng $\sqrt{ab} \leq \frac{a+b}{2}$ để dùng điều kiện tổng $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$, từ đó được $\sqrt{xy} \geq 4$. Lần thứ 2 ta đã "làm giảm" tổng $\sqrt{x} + \sqrt{y}$ bằng cách vận dụng bất đẳng thức Cauchy–Schwarz theo chiều $a + b \geq 2\sqrt{ab}$ để dùng kết quả $\sqrt{xy} \geq 4$. Không phải lúc nào ta cũng có thể dùng trực tiếp bất đẳng thức Cauchy–Schwarz đối với các số trong đề bài." – [Tuy23, p. 24]

Lưu ý 3. TXD của A chỉ là $D_A := \{(x,y) \in \mathbb{R}^2 | x,y \geq 0\}$, nhưng để điều kiện $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ có nghĩa thì cần thêm $x \neq 0, y \neq 0$, nên ta cần xét A trên tập hợp $D := \{(x,y) \in \mathbb{R}^2 | x,y > 0, \frac{1}{x} + \frac{1}{y} = \frac{1}{2}\} \subset D_A$. Hơn nữa, nếu viết GTNN của biểu thức A = A(x,y) trên tập $D = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0\}$ 1 cách chính xác về mặt toán học thì nên viết tưởng minh là $\min_{x,y \in \mathbb{R}, x,y > 0} A(x,y)$ hoặc $\min_{(x,y) \in D} A(x,y)$

Ta có thể mở rộng & tổng quát bài toán trên như sau:

Bài toán 9. Cho $x, y \in \mathbb{R}$, x, y > 0 thỏa mãn điều kiện $\frac{1}{x} + \frac{1}{y} = m > 0$, $m \in \mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 10. Cho $x, y \in \mathbb{R}$, x, y > 0 thỏa mãn điều kiện $\frac{a}{x} + \frac{b}{y} = m > 0$, $a, b, m \in \mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 11. Cho $x, y \in \mathbb{R}$, x, y, z > 0 thỏa mãn điều kiện $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = m > 0$, $a, b, c, m \in \mathbb{R}$ cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 12. Cho $n \in \mathbb{N}^*$, $x_i \in \mathbb{R}$, $x_i > 0$, $\forall i = 1, 2, \dots, n$, thỏa mãn điều kiện $\sum_{i=1}^n \frac{a_i}{x_i} = m > 0$, $a_i, m \in \mathbb{R}$, $\forall i = 1, 2, \dots, n$, cho trước. Có thể tìm GTNN & GTLN của các biểu thức nào? Liệt kê & chứng minh nhiều nhất có thể.

Bài toán 13 ([Tuy23], Ví dụ 10, p. 24). Tìm GTLN & GTNN của biểu thức $A = \sqrt{3x-5} + \sqrt{7-3x}$.

Bài toán 14 (Mở rộng [Tuy23], Ví dụ 10, p. 24). Biện luậnt theo các tham số $a,b,c,d \in \mathbb{R}$ để tìm GTLN & GTNN của biểu thức $A = \sqrt{ax+b} + \sqrt{cx+d}$.

Bài toán 15 ([Sơn+21], Bổ đề 1.1, p. 5). Chứng minh: $4ab \le (a+b)^2 \le 2(a^2+b^2)$, hay có thể viết dưới dạng $\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$, $ab \le \frac{(a+b)^2}{4}$, $\forall a,b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Hint.
$$(a+b)^2 - 4ab = (a-b)^2 \ge 0$$
, $2(a^2+b^2) - (a+b)^2 = (a-b)^2 \ge 0$, $\forall a,b \in \mathbb{R}$. " $=$ " $\Leftrightarrow a=b$.

Bài toán 16 ([Sơn+21], Bổ đề 1.2, p. 5). Chứng minh: $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$, hay có thể viết dưới dạng $ab+bc+ca \le \frac{1}{3}(a+b+c)^2$, $\forall a,b,c \in \mathbb{R}$. Dằng thức xảy ra khi nào?

Bài toán 17 ([Sơn+21], Bổ đề 1.3, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$, hay có thể viết dưới dạng $\frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b} \right)$, $\forall a, b > 0$. Dằng thức xảy ra khi nào?

Hint.
$$\frac{1}{a} + \frac{1}{b} - \frac{4}{a+b} = \frac{(a-b)^2}{ab(a+b)} \ge 0, \forall a, b > 0.$$
 "=" $\Leftrightarrow a = b > 0.$

Bài toán 18 ([Sơn+21], Bổ đề 1.4, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{a+b+c}$, hay có thể viết dưới dạng $\frac{1}{a+b+c} \le \frac{1}{9} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$, $\forall a,b,c>0$. Dằng thức xảy ra khi nào?

Bài toán 19 ([Son+21], Mở rộng Bổ đề 1.3–1.4, p. 6 cho n số). Chứng minh:

$$\frac{1}{a_1} + \ldots + \frac{1}{a_n} \ge \frac{n^2}{a_1 + \cdots + a_n}, i.e., \frac{1}{a_1 + \cdots + a_n} \le \frac{1}{n^2} \left(\frac{1}{a_1} + \cdots + \frac{1}{a_n} \right), \forall a_i > 0, \forall i = 1, \ldots, n,$$

hay có thể được viết gọn lại như sau:

$$\sum_{i=1}^{n} \frac{1}{a_i} \ge \frac{n^2}{\sum_{i=1}^{n} a_i}, i.e., \frac{1}{\sum_{i=1}^{n} a_i} \le \frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{a_i}, \forall a_i > 0, \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 20 ([Sơn+21], Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b} \le \sqrt{a} + \sqrt{b} \le \sqrt{2(a+b)}$, $\forall a,b \ge 0$. Dẳng thức xảy ra khi nào?

Bài toán 21 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b+c} \le \sqrt{a} + \sqrt{b} + \sqrt{c} \le \sqrt{3(a+b+c)}$, $\forall a,b,c \ge 0$. Đẳng thức xảy ra khi nào?

Bài toán 22 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7 cho n số). Chứng minh: $\sqrt{a_1 + \cdots + a_n} \le \sqrt{a_1} + \cdots + \sqrt{a_n} \le \sqrt{n(a_1 + \cdots + a_n)}$, $\forall a_i \ge 0, \ \forall i = 1, \dots, n, \ hay \ có \ thể \ dược viết gọn lại như sau:$

$$\sqrt{\sum_{i=1}^{n} a_i} \le \sum_{i=1}^{n} \sqrt{a_i} \le \sqrt{n \sum_{i=1}^{n} a_i}, \ \forall a_i \ge 0, \ \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 23 ([Sơn+21], Bổ đề 1.6, p. 7). Chứng minh: $a^3 + b^3 \ge ab(a+b)$, $\forall a, b \in \mathbb{R}$, $a+b \ge 0$. Dắng thức xảy ra khi nào? Hint. $a^3 + b^3 - ab(a+b) = (a+b)(a-b)^2 > 0$, $\forall a, b \in \mathbb{R}$, $a+b \ge 0$. "=" $\Leftrightarrow a = \pm b$.

Bài toán 24 ([Sơn+21], Mở rộng Bổ đề 1.6, p. 7). Chứng minh: $a^4 + b^4 \ge ab(a^2 + b^2)$, $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Tài liêu

- [Sơn+21] Nguyễn Ngọc Sơn, Chu Đình Nghiệp, Lê Hải Trung, and Võ Quốc Bá Cẩn. *Các Chủ Đề Bất Đẳng Thức Ôn Thi Vào Lớp 10*. Tái bản lần thứ 3. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2021, p. 143.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.