139. Le système $\begin{cases} 2^{x} = 3y \\ 3^{x} = 2y \end{cases}$ a pour solution le couple (x, y) tel que (x, y)

xy = -1/6 xy = 2/33. x + y = 14. x + y = 1/25. xy = -2/3

140.

1. 2/3 2. e (3) In 3/2 4. 3/2 5. In $\sqrt{3}$ (M.-98)

141. On donne l'équation $2 \ln(2x - 1) - \ln(3x - 2x^2) = \ln(4x - 3) - \ln x$ La somme des racines égale: 2. 11/6 3. 2 4. 13/6 5. 3 (M. -98) 1.13/7

1. 13/72. $142. \lim_{m \to \infty} \left(\frac{m+2}{m+3} \right)^{3m-3}$ vaut : $1 \cdot 2^3 \qquad 2 \cdot 2 \cdot 2 \cdot 2 = 3 \cdot e^{13} \qquad 4 \cdot e^2 \qquad 5 \cdot e^{-3} \qquad 3 \cdot e^{13} \qquad 4 \cdot e^2 \qquad 5 \cdot e^{-3} \qquad 5 \cdot e^{-3}$

143. Soient n₁ et n₂ les racines de l'équation :

(M. - 98)

(M.2000)

 $2 \ln(x+1) - \ln(3x-x^2) = \ln(3x-1) - 2\ln x.$ La somme $n_1 + n_2$ vaut :

1. 4 2. 3 3. 2 4. 0

1, $+\infty$ 2. $-\infty$ 3. -1 4. 0 5. 1 (B.-99)

145. La limite de $y = \frac{\sin^2 x - \sin^2 a}{x^2 - a^2}$ quant x tend vers a vaut :

1. $\frac{\sin a}{2a}$ 2. -1 3.0 4. $\pi/4$ 5. 1/2 (M.-2002)

146. L'expression $\log_2(e^{\ln x} + 4e^{-\ln x} + 2e^{2\ln 2x})$ pour x = 1/2 vaut : 1. $-1 + \log_2 13$ 3. $-2 + \log_2 21$ 5. $-1 + \log_2 21$

2. $\log_2 67$ 4. $2(1 + \log_2 3)$

147. On considère la fonction réelle $f(x) = \frac{1 + \ln x}{x}$ de la courbe représentative C dans le repère orthonormé xOy.

Déterminer l'abscisse x₁ du point M₁ de C où la fonction présente un maximum 1. e^3 2. e 3. $\sqrt{2}$ 4. 1 5. e/2 (M. 2000)