

Decision Tree R로 쉽게 이해하기!

조인식 조교

금요일의 즐거운 시험

예상시험시간: 1시간 ~ 1시간반

시험내용: Classification 알고리즘 활용/Clustering 알고리즘 활용

시험방법: R studio를 이용한 실습시험 및 hwp 시험지파일로 결과제출

오전수업 이후 1시부터 2시반까지 개인스터디 후 2시반에 시험시작

시험을 다본 뒤 시험지파일(.hwp) + 이번주간 머신러닝실습파일(.R) 파일 압축 후

(X조)학생이름.zip 파일로 제출

후 귀가

* 인터넷/교재/카톡 사용 불가.

Titanic dataset을 이용한 decision tree

출처 : 위키피디아

Decision Tree의 활용목적

- Classification 데이터들의 규칙을 찾아내 최적의 트리를 수축한 뒤 미래에 들어오는 데이터를 모델에 의해 분류하기 위하여 사용
- Clustering(Segmentation) 데이터들을 특정 그룹에 의하여 분류
- Dimension reduction / Feature selection 예측변수(독립변수)가 매우 많을 경우 이 중 목표변수(종속변수)에 영향을 미치며 작용하는 최적의 변수들을 찾아내 결과적으로 데이터의 차원을 축소시킴

어떤 모델을 사용하는게 좋을까에 대한 고찰

- 통계 ↔ 기계학습
 통계는 데이터를 설명하고 규칙을 이해하기 위하여 데이터를 분석한다면 기계학습은 데이터간의 규칙을 발견하여 미래의 데이터에 예측하는데에 보다 초점을 둔다.
- 기계학습에서의 설명력 기계학습을 통해 구축된 모델이 어떠한 근거로 예측할 데이터(또는 test 데이터)를 분류했는지를 분석가(또는 사용자)에게 설명해주는 능력
- 기계학습에서의 예측력 기계학습을 통해 구축된 모델이 TEST 데이터를 예측한 성능의 척도(Accuracy, Recall 등)가 높음
- 통상적으로 예측력이 높은 모델은 설명력이 낮고 설명력이 높은 모델은 예측력이 낮다(= 완벽한 모델은 없다)
- Decision Tree는 보통 설명력이 높고 예측력이 상대적으로 낮은 모델에 해당함

어떤 모델을 사용하는게 좋을까에 대한 고찰

- Decision Tree가 설명력은 높지만 예측력이 낮다면 좋은 알고리즘이 아닐까?

NO! 비즈니스 분야에 따라서 데이터의 예측력보다 설명력을 더 요구하는 분야도 있다.

- 의료분야에서 암환자를 예측한다고 가정하자.

모델이 암환자인지 아닌지 예측할 때 정확도가 99% 일지라도 1%의 오차는 치명적으로 작용할 수 있다. 이럴때는 정확도는 80%일지라도 모델이 이를 의사에게 잘 설명해줄 경우 이는 진단에 더 효과적으로 사용될수 있다.

어떤 모델을 사용하는게 좋을까에 대한 고찰

성능척도에 대한 고찰

실제 결과

예측결과

	정상	암환자	
정상	50	15	
암환자	5	30	

Accuracy = (50+30) / (50+5+15+30) = 80%

Recall = 50/(50+15) = 91%

Precision = 50 / (50+5) = 71%

의료분야에서는 모델이 정상인을 암환자로 예측한 것 보다 암환자를 정상이라고 예측한 것이 더 치명적일 수 있다.

(정상인을 암환자로 예측한 경우 재검사를 하면 되지만 암환자를 정상인이라고 예측할 경우 암환자가 정상이라 판단되어 검사를 실시하지 않을 수 있으므로)

Accuracy 는 가장 공평한 평가방법일까 ? ··· No!

Decision Tree

Anyway...

Decision Tree에도 다양한 방법의 개선알고리즘이 존재한다.

출처 : 위키피디아

Decision Tree

변수들의 선택의 기준

- 어떤 변수로 구분했을 때 가장 Class Label이 구분이 되는 점을 찾는다.

변수의 분기포인트의 기준

- 불순도가 가장 낮아지는 지점을 찾는다(= 순도가 가장 높아지는 지점을 찾는다)
- 〉 순도가 증가하고 불순도가 감소하는 방향으로 모델이 학습

순도와 불순도의 지표

- 카이제곱 통계량 : 데이터의 분포, 가정된 분포 사이의 차이를 나타내는 측정값
- 지니지수 : 순수도, 1에 가까울수록 데이터가 순수한 상태
- 엔트로피 지수 : 혼란도, 높을수록 데이터가 순수하지 않은 상태

Decision Tree의 계보

Decision Tree의 낮은 예측력을 앙상블기법으로 보완한 Random Forest

앙상블 기법중 bagging(Bootstrap aggregating)기법을 활용한 대표적인 기법

Decision Tree의 낮은 예측력을 앙상블기법으로 보완한 Random Forest

Y = vote result of sub models

Random Forest

Decision Tree

특정 질문에 대한 응답을 따라가는 방식으로 데이터를 분류해가는 알고리즘

Forest

이러한 Decision Tree로 구성된 Forest(숲)을 구축하는 알고리즘으로 여러 Tree들에 대하여 다수결의 원칙에 따르듯 숲의 구성원들의 투표를 통해 의사결정을 내린다.

Random

숲을 구성하는 각 트리를 구축할 때 각 트리를 구성하는 변수(열)을 무작위성에 근거하여 구성한다. 즉 각 트리는 모든 요소들에 대한 트리로 구성하지 않고 일부만을 각각 선별하여 작은 트리들을 만들어낸다.

Decision Tree vs. Random Forest

Vs.

Random Forest

Vs. Decision Tree

- 예측성능 향상
- Bias (데이터 편향문제 해결)
- 모델의 신뢰도 향상
- 모델의 시각화가 어려워짐(각 tree들을 모두 시각화할 수 없으므로 설명력감소)
- 트리를 여러가지 구성하여야 하므로 속도적 성능 하락
- 데이터사이언티스트들이 좋아하는 모델 HPO(Hyper Parameter Optimization)이 상대적으로 쉬움 예측성능이 훌륭하게 나타남("일단 랜포에 돌려보자"라는 말도 있음) 연속형/명목형 변수를 둘다 사용가능
- 사장님이 싫어하는 모델
 분석업무를 맡긴 직원은 고성능을 얘기하지만 어떻게 그렇게 분류했는지가 명확하게 드러나지 않음(설명력 부족)
- 최근 각 관측치를 모델이 왜 그렇게 판단했는지를 알려주는 알고리즘도 개발 (LIME PACKAGE) Why should I Trust you? 논문 참고추천

My Little Project

- 건강보험자료의 국민의 혈압혈당 데이터를 토대로 고혈압을 진단하는 모델을 만들어보자.
- 데이터 : 국민건강보험공단(nhiss.nhis.or.kr) 〉 통계 〉 국가건강검진데이터 〉 혈압혈당데이터 에서 수령가능
- 클라이언트의 의뢰: 혈압혈당데이터를 토대로 고혈압을 예측하는 모델을 만들어주세요.
- 실습한 Decision Tree를 활용해보고 RandomForest도 활용해보자. 또한 이전에 실습한 kNN알고리즘도 활용해보고 각 알고리즘별로 성능이 어떠한지 판단한다.

이미지출처 : BIRC-Business Intelligence Research Center