

Markscheme

May 2017

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а	i	$n(Ag) = \frac{3.275 \text{ g}}{107.87 \text{ g mol}} = 0.03036 \text{ «mol} $ AND $n(O) = \frac{3.760 \text{ g} - 3.275 \text{ g}}{16.00 \text{ gmol}^{-1}} = \frac{0.485}{16.00} = 0.03031 \text{ «mol} $ $\frac{0.03036}{0.03031} \approx 1 / \text{ ratio of Ag to O approximately 1 : 1, so} $ $AgO \checkmark$	Accept other valid methods for M1. Award [1 max] for correct empirical formula if method not shown.	2
1	а	ii	temperature too low OR heating time too short OR oxide not decomposed completely ✓ heat sample to constant mass «for three or more trials» ✓	Accept "not heated strongly enough". If M1 as per markscheme, M2 can only be scored for constant mass technique. Accept "soot deposition" (M1) and any suitable way to reduce it (M2). Accept "absorbs moisture «from atmosphere» (M1) and "cool in dessicator" (M2). Award [1 max] for reference to "impurity" AND design improvement.	2
1	b		$A_{\rm r}$ closer to 107/less than 108 «so more ¹⁰⁷ Ag» OR $A_{\rm r}$ less than the average of (107 + 109) «so more ¹⁰⁷ Ag» \checkmark	Accept calculation that gives greater than 50% ¹⁰⁷ Ag.	1

C	Question			Ans	wers		Notes	Total
1	С	i	Flask containing	Colour of solution	Product formula		ccept name for the products. $Ia^+ + OH^{-n}$ for NaOH.	
			Na ₂ O	blue AND	NaOH ✓	Ignore co	efficients in front of formula.	3
			P ₄ O ₁₀	yellow ✓	H₃PO₄ ✔			
1	С	ii			I particles AND conducts on ns/charged particles AND	mobile ob	ward marks without concept of parges being present.	
				ectricity/is poor conductor of electricity ✓	Award [1 electrical	max] if type of bonding or conductivity correctly in each compound.	2	
						Do not at electrons	ccept answers based on	
						Award [1 solution.	max] if reference made to	
1	d		energy levels o	screte/specific/certain/diffe converge/get closer togeth	erent shells/energy levels ener at higher energies	Accept ap M1, M2 o	opropriate diagram for either r both.	2
			OR energy levels of	converge with distance fro	m the nucleus ✓	_	ve marks for answers that referes in the spectrum.	

C	Questi	on	Answers	Notes	Total
2.	а	i	$\operatorname{Sn^{2+}}(\operatorname{aq}) \to \operatorname{Sn^{4+}}(\operatorname{aq}) + 2e^{-} \checkmark$	Accept equilibrium sign. Accept $Sn^{2+}(aq) - 2e \rightarrow Sn^{4+}(aq)$	1
2	а	ii	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3Sn^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(I) + 3Sn^{4+}(aq) \checkmark$	Accept equilibrium sign.	1
2	а	iii	« [K ₂ Cr ₂ O ₇] = $\frac{13.239 \text{ g}}{294.20 \text{ g mol}^{-1} \times 0.100 \text{ dm}^3}$ =» 0.450 «mol dm ⁻³ » ✓		1
2	а	iv	$n(Sn^{2+}) = \text{``}0.450 \text{ mol dm}^{-3} \times 0.01324 \text{ dm}^{3} \times \frac{3 \text{ mol}}{1 \text{ mol}} = \text{``}0.0179 \text{``mol}\text{``}\checkmark$ $\text{``}[Sn^{2+}] = \frac{0.0179 \text{ mol}}{0.0100 \text{ dm}^{3}} = \text{``}1.79 \text{``mol dm}^{-3}\text{``}\checkmark$	Award [2] for correct final answer.	2
2	а	v	hydroxyl/OH OR aldehyde/CHO ✓	Accept "hydroxy/alcohol" for "hydroxyl". Accept amino/amine/NH ₂ .	1
2	b	i	«E [⊕] =» +0.85 «V» ✓	Accept 0.85 V.	1
2	b	ii	$\Delta G^{\ominus} \ll -nFE^{\ominus} \gg = -2 \text{ (mol } e^{-} \gg \times 96500 \text{ (C } \text{mol}^{-1} \gg \times 0.85 \text{ (V)} \text{)}$ $\ll \Delta G^{\ominus} = \gg -164 \text{ (kJ)} \text{)}$	Accept "«+»164 «kJ»" as question states energy released. Award [1 max] for "+" or "-" 82 «kJ». Do not accept answer in J.	2
2	b	iii	incompletely filled d-orbitals ✓ colour depends upon the energy difference between the split d-orbitals ✓ variable/multiple/different oxidation states ✓ different «nature/identity of» ligands ✓ different number of ligands ✓		3 max

C	Question		Answers	Notes	Total
2	С		Zn/zinc is a stronger reducing agent than Fe/iron	Accept "Zn is more reactive than Fe".	
			OR	Accept "Zn oxide layer limits further	
			Zn/zinc is oxidized instead of Fe/iron	corrosion".	1
			OR	Do not accept "Zn layer limits further	-
			Zn/zinc is the sacrificial anode ✓	corrosion".	

C	uesti	on	Answers	Notes	Total
3.	а	i			1
3	а	II	decrease in temperature ✓ endothermic «reaction» AND «equilibrium» shifts to the left/reactants OR endothermic «reaction» AND Kc decreases OR endothermic «reaction» AND concentration of PCI₃ increased/concentration of PCI₃ and CI₂ decreased OR «equilibrium» shifts in the exothermic direction ✓	Do not accept "temperature change". Accept "△H positive" in place of "endothermic". Accept "products" instead of "PCI₃ and CI₂".	2
3	b		Lewis structure: CI — P — CI CI Molecular geometry: trigonal/triangular pyramidal ✓ Bond angles: < 109.5° ✓	Penalize missing lone pairs once only between this question and 4(b)(ii). Accept any combination of lines, dots or crosses to represent electrons. Do not apply ECF. Do not accept answer equal to or less than 90°. Literature value is 100.1°.	3

C	uesti	on	Answers	Notes	Total
4.	а	i	triple bond in nitrogen «molecule» AND single bond in hydrazine ✓	Accept bond enthalpy values from data booklet (158 and 945 kJ mol ⁻¹).	
			triple bond is stronger than single bond		2
			OR		
			more shared «pairs of» electrons make bond stronger/attract nuclei more ✓		
4	а	ii	hydrogen bonding «between molecules, dinitrogen tetraoxide does not» ✓		1
4	а	iii	N ₂ H ₄ : −2 AND N ₂ O ₄ : +4 ✓		1
4	а	iv	N ₂ H ₄ AND oxidized/oxidation state increases OR N ₂ H ₄ AND loses hydrogen OR N ₂ H ₄ AND reduces/removes oxygen from N ₂ O ₄ ✓	Accept "N ₂ H ₄ AND gives electrons «to N ₂ O ₄ »".	1

Q	uesti	ion	Answers	Notes	Total
4	b	i	lone pair on p orbital «of O atom» overlaps/delocalizes with pi electrons «from double bond» ✓	Accept "p/pi/π electrons are delocalized/not localized".	
			both O–O bonds have equal bond length		
			OR		
			both O–O bonds have same/1.5 bond order		3
			OR		
			both O–O are intermediate between O–O AND O=O ✓		
			both O–O bonds have equal bond energy ✓		
4	b	ii	ALTERNATIVE 1:	Accept any combination of lines, dots or crosses to represent electrons.	
				Do not accept structure that represents 1.5 bonds.	
			FC: -1 AND +1 AND 0 \checkmark	Do not penalize missing lone pairs if already penalized in 3(b).	
			ALTERNATIVE 2:	If resonance structure is incorrect, no ECF.	2
				Any one of the structures with correct formal charges for [2 max].	
			10 0/		
			FC: 0 AND +1 AND −1 ✓		

Q	Question		Answers	Notes	Total
4	С		Any two of:		
			IE₄: electron in lower/inner shell/energy level		
			OR		
			IE₄: more stable/full electron shell ✓		
					_
			IE ₄ : electron closer to nucleus	Accept "increase in effective nuclear	2 max
			OR	charge" for M2.	
			IE₄: electron more tightly held by nucleus ✓		
			IE₄: less shielding by complete inner shells ✓		
4	d	i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Do not award M2 without a calculation	
				for M1 but remember to apply ECF.	
			reaction proceeds to the left/NO ₂ (g) «until $Q = K_c$ »		2
			OR		
			reverse reaction «favoured» ✓		
4	d	ii	$\Delta G = 0 \checkmark$		
			reaction at equilibrium		
			OR		
			rate of forward and reverse reaction is the same		2
			OR		
			constant macroscopic properties ✓		

C	Question		Answers	Notes	Total
5.	а	i	concentration of acid decreases OR	Accept "less frequency/chance/rate/ probability/likelihood of collisions". Do not accept just "less acid" or "less	
			surface area of magnesium decreases✓	magnesium".	1
				Do not accept "concentration of reagents decrease".	_
5	а	ii	Time / s curve starting from origin with steeper gradient <i>AND</i> reaching same maximum volume ✓		1
5	b	i	«rate =» k [NO ₂] ² ✓	Accept rate = $k [NO_2]^2 [CO]^0$.	1
5	b	ii	 «step» I AND CO does not appear in the rate law expression OR «step» I AND only «2 molecules of» NO₂ appears in rate expression ✓ 	Do not allow ECF from (i).	1

(Question 5b continued)

C	Question		Answers	Notes	Total
5	b	iii	«IR or UV-vis» spectroscopy OR colorimetry OR colour change «over time» ✓	Accept GC/gas chromatography.	1
5	b	iv	« <i>E</i> _{a(rev)} = 226 + 132 =» 358 «kJ» ✓	Do not accept –358.	1
5	b	v	Rate [NO ₂]	Curve must go through origin.	1
5	С		activation energy is independent of temperature ✓	Accept "no relationship".	1
5	d		$2NO_{2}(g) + H_{2}O(I) \rightarrow HNO_{3}(aq) + HNO_{2}(aq)$ OR $4NO_{2}(g) + 2H_{2}O(I) + O_{2}(g) \rightarrow 4HNO_{3}(aq) \checkmark$	Accept ionized forms of the acids.	1

C	Question	Answers	Notes	Total
6.	а	Initiation: CI−CI → CI• + CI• ✓	Do not penalize missing electron dot on radicals if consistent throughout.	
			Accept CI ₂ , HCI and CH ₃ CI without showing bonds.	
		Propagation: $CI \bullet + CH_4 \rightarrow CI - H + \bullet CH_3 \checkmark$ $CI - CI + \bullet CH_3 \rightarrow CI - CH_3 + CI \bullet \checkmark$	Do not accept hydrogen radical, H• or H, but apply ECF to other propagation steps.	3
6	b	« ΔH^{\ominus} =» −82.0 «kJ» − 92.3 «kJ» − (−74.0 «kJ») ✓ « ΔH^{\ominus} =» −100.3 «kJ» ✓	Award [2] for correct final answer.	2
6	С	H ₂ C=CHCl	Accept "CH₂CHCI" or "CHCICH₂".	
		OR	Do not accept "C₂H₃CI".	
		H C=C Cl		1

C	Question		Answers	Notes	Total
7.	а	i	Number of hydrogen environments: 3 ✓ Ratio of hydrogen environments: 2:3:9 ✓ Splitting patterns: «all» singlets ✓	Accept any equivalent ratios such as 9:3:2. Accept "no splitting".	3
7	а	ii	carbonyl OR C=O ✓	Accept "ketone" but not "aldehyde".	1
7	а	iii	CH_3 O $ $ $ $ $ $ $ $ $ $ $ $ $ $	Accept (CH ₃) ₃ CCH ₂ COCH ₃ . Award [1] for any aldehyde or ketone with C ₇ H ₁₄ O structural formula.	2
7	b	i	hexane AND hex-1-ene ✓	Accept "benzene AND hexane AND hex-1-ene".	1
7	b	ii	CH₃CH₂CH₂CHBrCH₃ ✓	Accept displayed formula but not molecular formula.	1
7	С	i	Reagents: «concentrated» sulfuric acid AND «concentrated» nitric acid ✓ Name of mechanism: electrophilic substitution ✓		2
7	С	ii	benzene has «delocalized» π bonds «that are susceptible to electrophile attack» \textit{AND} alkanes do not \checkmark	Do not accept "benzene has single and double bonds".	1

Question		on	Answers	Notes	Total
7	d		H	Accept OH ⁻ with or without the lone pair.	
			CH ₃ CH ₂ CH ₂ Br HOCBr HO HO H	Do not allow curly arrows originating or H in OH ⁻ .	
			CH ₃ CH ₂ CH ₂ H CH ₂ CH ₂ CH ₃	Accept curly arrows in the transition state.	3
			curly arrow going from lone pair/negative charge on O in ⁻OH to C ✓ curly arrow showing Br leaving ✓ representation of transition state showing negative charge, square brackets and	Do not penalize if HO and Br are not at	
				180°.	
				Do not award M3 if OH–C bond is	
				represented.	
		partial bonds ✓	partial bonds ✓	Award [2 max] if wrong isomer is used.	

Question		on	Answers		nswers	Notes	Total
8.	а	i	H ₂ O/water ✓		Accep	pt "hydroxide ion/OH ⁻ ".	1
	а	ii	Acid	Base			
			HOCI AN	ID OCI-			1
			H ₂ O AN	OH - ✓			
	b	i	$\text{«0.100 mol dm}^{-3} \times 0.0250 \text{ dm}^3 \text{»} = 0.00250 \text{ «mol»} \checkmark$				1
	b	ii	$ M = \frac{0.510 \mathrm{g}}{0.00250 \mathrm{mol}} $	- =» 204 «g mol ⁻¹ »	✓		1
	b	iii		+] × 0.100 »			1
			1.00×10^{-13} «mol	dm ^{−3} » ✓			1
	b	iv	weak <i>AND</i> pH at e OR weak acid <i>AND</i> for	equivalence greater			1
	b	v	calorimetry OR		Accepindica	pt "indicator" but not "universal ator".	
			measurement of h OR conductivity measurement				1
	b	vi		equivalence =» 5.0			1

Question	Answers	Notes	Total
С	$K_{\rm a} = 10^{-4.35} / 4.46683 \times 10^{-5} \checkmark$	Award [3] for correct final answer to two decimal places.	
	$[H_3O^+] = \sqrt{4.46683 \times 10^{-5} \times 1.60 \times 10^{-3}} \ / \sqrt{7.1469 \times 10^{-8}} \ / 2.6734 \times 10^{-4} \text{ emol}$	If quadratic equation used, then:	
	dm ⁻³ » ✓	$[H_3O^+] = 2.459 \times 10^{-4} \text{ emol dm}^{-3}$	3
	$pH = \text{\'e}-\log \sqrt{7.1469 \times 10^{-8}} = 3.57 \checkmark$	and pH = 3.61	

Question		on	Answers	Notes	Total
9.	а	i	$\Delta H = 177.0 - \frac{189.2}{2} - 285.5 \text{ «kJ» } \checkmark$	Accept other methods for correct manipulation of the three equations.	
			«∆ <i>H</i> =» – 203.1 «kJ» ✓	Award [2] for correct final answer.	2
	а	ii	203.1 «kJ» = 0.850 «kg» × 4.18 «kJ kg $^{-1}$ K $^{-1}$ » × ΔT «K»	Award [2] for correct final answer.	
			<i>OR</i> «△ <i>T</i> =» 57.2 «K» ✓	Accept two, three or four significant figures.	
			« <i>T_{final}</i> = (57.2 + 21.8)°C =» 79.0«°C» / 352.0 «K»✓	Unit, if specified, must be consistent with value stated.	
			If 200.0 kJ was used:		2
			200.0 «kJ» = 0.850 «kg» × 4.18 «kJ kg ⁻¹ K ⁻¹ » × ΔT «K»		
			OR		
			«∆T=» 56.3«K» ✓		
			« <i>T_{final}</i> = (56.3 + 21.8)°C =» 78.1 «°C» / 351.1 «K»✓		
	b	i	« Δ S $^{\ominus}$ =» 270 «J K $^{-1}$ mol $^{-1}$ » − 267 «J K $^{-1}$ mol $^{-1}$ » − 131 «J K $^{-1}$ mol $^{-1}$ » \checkmark	Award [2] for correct final answer.	_
			«∆S [⊕] =» −128 «J K ⁻¹ mol ⁻¹ » ✓		2
	b	ii	«non spontaneous if» $\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus} > 0$		
			OR		
			$\Delta H^{\ominus} > T \Delta S^{\ominus} \checkmark$	Award [2] for correct final answer. Accept 699 °C.	2
			« <i>T</i> above» $\frac{-124.4 \text{ «kJ mol}^{-1}\text{»}}{-0.128 \text{ «kJ K}^{-1} \text{mol}^{-1}\text{»}}$ =» 972 «K» ✓	Do not award M2 for any negative T value.	