Sistemas de Numeração

Por que Binário?

- Primeiros computadores projetados eram decimais
 - Mark I e ENIAC
- John von Neumann propôs processamento com dados binários (1945)
 - Simplificava o projeto de computadores
 - Usado tanto por instruções como por dados
- Relação natural entre comutadores on/off e cálculos com lógica Booleana

On	Off
Verdadeiro	Falso
Sim	Não
1	0

Contagem e Aritmética

- Decimal ou sistema de base 10
 - Origem: contando nos dedos
 - "Dígito" vem do Latim digitus, que significa "dedo"
- *Base*: o número de dígitos diferentes no sistema numérico, incluindo zero
- *Decimal* ou *base 10*: 10 dígitos, 0 até 9
- Binário ou base 2: 2 dígitos, 0 e 1
 - Bit (dígito binário)
- Octal ou base 8: 8 dígitos, 0 até 7
- Hexadecimal ou base 16: 16 dígitos, 0 até F
 - Exemplos: $10_{10} = A_{16}$; $11_{10} = B_{16}$

Considerando os Bits

- Bits são normalmente armazenados e manipulados em grupos
 - -8 bits = 1 byte
 - -4 bytes = 1 palavra (em sistemas de 32 bits)
- Número de bits usados em cálculos
 - Afetam a precisão dos resultados
 - Limitam o tamanho dos números manipulados pelo computador

Números: Representação Física

- Diferentes numerais, mesmo número de laranjas
 - Homem das cavernas: IIIII
 - Romano: V
 - Arábico: 5

- Diferentes bases, mesmo número de laranjas
 - -5_{10}
 - -101_{2}
 - -12_{3}

Sistemas de Numeração

- Romanos: independentes da posição
- Moderno: baseado na notação posicional (valor posicional)
 - Decimal: sistema de notação posicional baseado em potências de 10.
 - Binário: sistema de notação posicional baseado potências de 2
 - Octal : sistema de notação posicional baseado em potências de 8
 - Hexadecimal: sistema de notação posicional baseado em potências de 16

Sistemas Numéricos mais Comuns

Sistema	Base	Símbolos	Usado por humanos?	Usado por computadores?
Decimal	10	0, 1, 9	Sim	Não
Binário	2	0, 1	Não	Sim
Octal	8	0, 1, 7	Não	Não
Hexa- decimal	16	0, 1, 9, A, B, F	Não	Não

Quantidades / Contagem (1 de 3)

Decimal	Binário	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantidades / Contagem (2 de 3)

Decimal	Binário	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantidades / Contagem (3 de 3)

Decimal	Binário	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversão Entre Bases

• Possibilidades:

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Decimal para Decimal (só para entender)

Binário para Decimal

Binário para Decimal

• Técnica

- Multiplique cada bit por 2ⁿ, onde n é o "peso"
 do bit
- O peso é a posição do bit, começando em 0 à direita
- Adicione os resultados

Octal para Decimal

Octal para Decimal

• Técnica

- Multiplique cada bit por 8ⁿ, onde n é o "peso"
 do bit
- O peso é a posição do bit, começando em 0 à direita
- Adicione os resultados

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hexadecimal para Decimal

Hexadecimal para Decimal

• Técnica

- Multiplique cada bit por 16ⁿ, onde n é o "peso"
 do bit
- O peso é a posição do bit, começando de 0 à direita
- Adicione os resultados

ABC₁₆ => C x 16° = 12 x 1 = 12
B x 16¹ = 11 x 16 = 176
A x 16² = 10 x 256 = 2560

$$2748_{10}$$

Decimal para Binário

Decimal para Binário

• Técnica

- Divida por dois, guardando os restos
- Primeiro resto é o bit 0 (bit menos significativo)
- Segundo resto é o bit 1
- Etc.

$$125_{10} = ?_2$$

Octal para Binário

Octal para Binário

- Técnica
 - Converta cada dígito octal para uma representação binária equivalente de 3 bits

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hexadecimal para Binário

Hexadecimal para Binário

- Técnica
 - Converta cada dígito hexadecimal para uma representação binária equivalente de 4 bits.

$$10AF_{16} = ?_2$$

$$10AF_{16} = 0001000010101111_{2}$$

Decimal para Octal

Decimal para Octal

- Técnica
 - Divida por 8
 - Guarde os restos

$$1234_{10} = ?_{8}$$

Decimal para Hexadecimal

Decimal para Hexadecimal

- Técnica
 - Divida por 16
 - Guarde os restos

Exemplo

$$1234_{10} = ?_{16}$$

Binário para Octal

Binário para Octal

- Técnica
 - Divida os bits em grupos de três, começando à direita
 - Converta para dígitos octais

Exemplo

$$1011010111_2 = ?_8$$

 $1011010111_2 = 1327_8$

Binário para Hexadecimal

Decimal Octal

Binário Hexadecimal

Binário para Hexadecimal

• Técnica

- Divida os bits em grupos de quatro, começando à direita
- Converta para dígitos hexadecimais

Exemplo

$$1010111011_2 = ?_{16}$$

 $1010111011_2 = 2BB_{16}$

Octal para Hexadecimal

Octal para Hexadecimal

- Técnica
 - Use Binário como uma representação intermediária

Exemplo

$$1076_8 = ?_{16}$$

 $1076_8 = 23E_{16}$

Hexadecimal para Octal

Hexadecimal para Octal

- Técnica
 - Use Binário como uma representação intermediária

Exemplo

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

Exercício – Converta ...

Decimal	Binário	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Não use calculadora!

Pule a resposta

Resposta

Exercício – Converta ...

Resposta

Decimal	Binário	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Potências mais Comuns (1 de 2)

• Base 10

Potência	Prefixo	Símbolo	Valor
10-12	pico	p	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	mili	m	.001
10^3	kilo	k	1000
10^{6}	mega	M	1000000
109	giga	G	1000000000
10^{12}	tera	Т	1000000000000

Potências mais Comuns (2 de 2)

• Base 2

Potência	Prefixo	Símbolo	Valor
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
2^{30}	Giga	G	1073741824

- O que são os valores de "k", "M", e "G"?
- Em computação, em particular com <u>memórias</u>, a interpretação de base-2 geralmente se aplica

Exemplo

Exercício – Espaço Livre

• Determine o "espaço livre" de todos os *drives* de um computador do laboratório

	Espaço Livre		
Drive	Bytes	GB	
A:			
C:			
D:			
E:			
etc.			

Revisão – multiplicando potências

• Para bases comuns, adicione os expoentes

$$a^b \times a^c = a^{b+c}$$

$$2^6 \times 2^{10} = 2^{16} = 65,536$$

$$2^{6} \times 2^{10} = 64 \times 2^{10} = 64 k$$

Adição Binária (1 de 2)

• Dois valores de 1-bit

A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	10	
			"dois"

Adição Binária (2 de 2)

- Dois valores de *n*-bits
 - Adicione os bits individualmente
 - Propague as sobras
 - -E.g.,

Multiplicação (1 de 3)

• Decimal (só para entender)

$$\begin{array}{r}
 35 \\
 \times 105 \\
 \hline
 175 \\
 000 \\
 \hline
 35 \\
 \hline
 3675 \\
 \end{array}$$

Multiplicação (2 de 3)

• Binário, dois valores de 1-bit

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplicação (3 de 3)

- Binário, dois valores de *n*-bits
 - Como no caso de valores decimais
 - -E.g.,

		1	1	1	0
	X	1	0	1	1
		1	1	1	0
	1	1	1	0	
	00	0	0		
1	11	0			
10	01	1	0	1	0

Frações

• Decimal para decimal (só para entender)

3.14 =>
$$4 \times 10^{-2} = 0.04$$

 $1 \times 10^{-1} = 0.1$
 $3 \times 10^{0} = 3$
 3.14

Frações

Binário para decimal

10.1011 => 1 x
$$2^{-4}$$
 = 0.0625
1 x 2^{-3} = 0.125
0 x 2^{-2} = 0.0
1 x 2^{-1} = 0.5
0 x 2^{0} = 0.0
1 x 2^{1} = 2.0
2.6875

Frações

Exercício – Converta ...

Decimal	Binário	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Não use calculadora!

Pule a resposta

Resposta

Exercício – Converta ...

Resposta

Decimal	Binário	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

