试 题 六 (考试时间: 120 分钟)

一、单项选择题题(每小题 4 分,共 24 分)	
1.设 A, B 是 3 阶方阵,已知 $ A = -1$, $ B = 2$	A ,则行列式 $\begin{vmatrix} 2A & A \\ 0 & -B \end{vmatrix} = ()$.
(A) 16 (B) -16 (C)	4 (D) -4
2.已知 ξ_1, ξ_2 是线性方程组 $Ax = b$ 的两个解,则().	
(A) $\xi_1 + \xi_2 \not\equiv Ax = 0$ 的解	(B) $\xi_1 - \xi_2$ 是 $Ax = b$ 的解
(C) $\xi_1 + \xi_2 \not\equiv Ax = b$ 的解	(D) $\xi_1 - \xi_2 \neq Ax = 0$ 的解
3.n 阶矩阵 A有 n 个不同特征值是 A 与对角矩(A) 充分必要条件(C) 必要但不充分的条件	下相似的(). (B) 充分但不必要的条件 (D) 既不充分也不必要的条件
4.矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ 的特征值是().	
(A) 1, 2, 3 (B) 1, 1, 2 (C)	C) 1, 1, 3 (D) 1, -1, 3
5.设 A 是一个 3 阶实对称矩阵, $\Delta_1, \Delta_2, \Delta_3$ 分别为 A 的 1 阶, 2 阶, 3 阶顺序主子式,	
则 A 为负定矩阵的充要条件是().	
(A) $\Delta_1 < 0, \Delta_2 < 0, \Delta_3 < 0$ (B)	$\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$
(C) $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0$ (D)	$\Delta_1 > 0, \Delta_2 < 0, \Delta_3 > 0$
6.设 $\alpha = (1, 2, 3, 4), \beta = (4, -3, 2, -1),$ 下列	命题不成立的是().
(A) α 与 β 正交 (B) α , β 线性相关.	(C) $(\alpha^{\mathrm{T}}\beta)^2 = O$ (D) $\ \alpha\ = \ \beta\ $
二、 填空题(任选四个小题,每小题 4 分,共 16 分) 1. 若对于任意 n 维列向量 x ,均有 $Ax=0$,则 $A=$	
2. 如果矩阵 $A_{m \times n}$ 与 $B_{s \times t}$ 满足 $AB = BA$,则 m, n, s, t 应满足的条件是	
3. 若向量组 α_1 = (1,0,2,3), α_2 = (1,1,3,5), α_3 = (1,-1, a +2,1) 的秩为 2,则 a =	
4. 设非齐次线性方程组的系数矩阵的秩 $R(A_{5 imes 3}) = 2$, η_1, η_2 是该方程组的两个解且有	
$\eta_1 + \eta_2 = (2,6,0)^{\mathrm{T}}$, $2\eta_1 + 3\eta_2 = (10,5,15)^{\mathrm{T}}$,则该方程组的通解为	

5. 用 MATLAB 计算矩阵的行列式的程序为[L, U]=lu(A), dU=diag(U); |A|=_____.

三、(14分) 设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$
 ①

与方程 $x_1 + 2x_2 + x_3 = a - 1$

有公共解,求 a 的值及所有公共解.

四、(10分)设3阶矩阵A,B满足A+B=AB.

(1) 证明
$$A - E$$
 可逆,并求其逆; (2) 若 $B = \begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 求矩阵 A .

五、(12 分) 已知二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3+2bx_2x_3$ 经正交变换化成标准形 $f=y_2^2+2y_3^2$. (1) 求 a,b 之值; (2) 求出化该二次型为标准形的正交变换.

(2)

六、(6 分) 设 x 为 n 维列向量, 且 $x^Tx = 1$, $H = E - 2xx^T$, 求证 H 是对称的正交阵. (在七、八、九题中任选二题)

七、(9分) 计算行列式

$$D_{n} = \begin{vmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n+a \end{vmatrix}$$

八、(9分)

- (1) 请叙述程序[U0,ip]=rref(A)的意义及作用.
- (2) 写出求 3 阶矩阵 A 的特征值与特征向量的程序.

九、(9 分)设口³中的两组基为 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$ 和 $\beta_1 = (1,2,1)^T$, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$.

- (1) 求从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为A.
- (2) 求向量 $\beta = \beta_1 2\beta_2 + \beta_3$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

试题六参考答案

一、单项选择题题(每小题4分,共24分)

 $k(1,-2,3)^T + (1,3,0)^T$.

1 设 A, B 是 3 阶方阵,已知 |A| = -1, |B| = 2 ,则 $\begin{vmatrix} 2A & A \\ 0 & -B \end{vmatrix} = (A)$ (B) -16(C) -4(A) 16 2. 已知 ξ_1, ξ_2 是线性方程组Ax = b的两个解,则(D) (A) $\xi_1 + \xi_2$ 是 Ax = 0 的解 (B) $\xi_1 - \xi_2$ 是 Ax = b 的解 (D) $\xi_1 - \xi_2 = 0$ 的解 (C) $\xi_1 + \xi_2$ 是 Ax = b 的解 3. n 阶矩阵 $A \neq n$ 个不同特征值是 A = A 与对角矩阵相似的 (B) (A) 充分必要条件 (B) 充分但不必要的条件 (C) 必要但不充分的条件 (D) 既不充分也不必要的条件 4. 矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ 的特征值是(C) (A) 1, 2, 3 (B) 1, 1, 2 (C) 1, 1, 3 (D) 1, -1, 3 5. 设A是一个3阶实对称矩阵, $\Delta_1, \Delta_2, \Delta_3$ 分别为A的1阶,2阶,3阶顺序主子式,则A为负定矩阵的充要条件是(C). A) $\Delta_1 < 0, \Delta_2 < 0, \Delta_3 < 0$ (B) $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$ (C) $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0$ (D) $\Delta_1 > 0, \Delta_2 < 0, \Delta_3 > 0$ 6. 设 $\alpha = (1, 2, 3, 4)$, $\beta = (4, -3, 2, -1)$, 下列命题不成立的是(B) (A) $\alpha 与 \beta$ 正交 (B) α , β 线性相关 (C) $(\alpha^T \beta)^2 = O$ (D) $\|\alpha\| = \|\beta\|$ 二、填空题(任选四个小题,每小题 4 分,共 16 分) 1. 若对于任意n维列向量x,均有Ax=0,则A=0. 2. 如果矩阵 $A_{m \times n}$ 与 $B_{s \times t}$ 满足 AB = BA,则 m, n, s, t 应满足的条件是_m = n = s = t. 3. 若向量组 $\alpha_1 = (1,0,2,3), \alpha_2 = (1,1,3,5), \alpha_3 = (1,-1,a+2,1)$ 的秩为 2,则 $a = \underline{} - \underline{} \underline{}$. 4. 设非齐次线性方程组的系数矩阵的秩 R($A_{5 imes3}$)=2, η_1,η_2 是该方程组的两个解且有 $\eta_1 + \eta_2 = (2,6,0)^{\mathrm{T}}$, $2\eta_1 + 3\eta_2 = (10,5,15)^{\mathrm{T}}$, 则该方程组的通解为 5. 用 MATLAB 计算矩阵的行列式的程序为____det(A)___

三、(14分) 设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$
 ①

与方程

$$x_1 + 2x_2 + x_3 = a - 1$$

2

有公共解,求 a 的值及所有公共解.

【解】联立①,②導
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$

因(1), ②有公共解,所以
$$(a-1)(a-2)=0$$
,即 $a=1$ 或 $a=2$ ——————9分

四、(10分)设3阶矩阵A, B满足A+B=AB.

(1) 证明
$$A-E$$
 可逆,并求其逆; (2) 若 $B=\begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$,求矩阵 A .

从而
$$(A-E)(B-E)=E$$
,即 $A-E$ 可逆,其逆为 $B-E$ ———————5分

$$\operatorname{FFIX} A = E + (B - E)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -3 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ -\frac{1}{3} & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} ------ 10 \text{ fr}$$

五、(12 分) 已知二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3+2bx_2x_3$ 经正交变换化成标准形 $f=y_2^2+2y_3^2$. (1) 求 a,b 之值; (2) 求出化该二次型为标准形的正交变换。

由题设知,A的特征值为0, 1, 2, 所以 $\left|A\right|=0$, $\left|E-A\right|=0$, $\left|2E-A\right|=0$,

解揚
$$a=b=0$$

(2) 当 $\lambda_{\mathrm{l}}=0$ 时,解齐次方程组 Ax=0 , 得基础解系 $\xi_{\mathrm{l}}=(\mathrm{l},0,-\mathrm{l})$,

当 $\lambda_2=1$ 时,解齐次方程组 (E-A)x=0 , 得基础解系 $\xi_2=(0,1,0)$,

当 $\lambda_3=2$ 时,解齐次方程组 (2E-A)x=0 , 得基础解系 $\xi_1=(1,0,1)$.----8 分

单位化 51, 52, 53 得,

$$e_1 = \frac{1}{\sqrt{2}}\xi_1 = \frac{1}{\sqrt{2}}(1,0,-1)$$
, $e_2 = \xi_2 = (0,1,0)$, $e_3 = \frac{1}{\sqrt{2}}\xi_3 = \frac{1}{\sqrt{2}}(1,0,1)$ —— 10 \$\frac{\sigma}{2}\$

故化该二次型为标准形的正交变换为

六、(6分)设x为n维列向量,且 $x^Tx=1$, $H=E-2xx^T$,求证H是对称的正交阵.

$$H^{T}H = (E - 2xx^{T})(E - 2xx^{T}) = E - 4xx^{T} + 4xx^{T}xx^{T}$$

$$= E - 4xx^{T} + 4x(x^{T}x)x^{T} = E$$

所以,H是对称的正交阵。

(在七、八、九题中任选二题)

$$D_{n} = \begin{vmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n+a \end{vmatrix}$$

$$\begin{bmatrix} n & n & n & m & m+a \\ 1 & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n+a \end{bmatrix}$$

$$= \begin{bmatrix} \frac{n(n+1)}{2} + a \end{bmatrix} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n+a \end{vmatrix}$$

$$= \begin{bmatrix} \frac{n(n+1)}{2} + a \end{bmatrix} a^{n-1}$$

$$= \begin{bmatrix} \frac{n(n+1)}{2} + a \end{bmatrix} a^{n-1}$$

$$= \begin{bmatrix} \frac{n(n+1)}{2} + a \end{bmatrix} a^{n-1}$$

$$= \left[\frac{n(n+1)}{2} + a\right] \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & a & 0 & \cdots & 0 \\ 0 & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{vmatrix} \qquad ----- 7$$

八、(9分)

- (1)请叙述命令[U0,ip]=rref(A)的意
- (2) 写出求 3 阶矩阵 A 的特征值与特 征向量的程序.

【解】(1) [U0, ip]=rref(A)是将矩阵 A 化为行最简阶梯形的命令, ip 指幽了 矩阵 A 的基准元素 (首非零元素) 所在 的列数。它可以用作解方程组; 判断向 量组的线性相关性;求向量组的极大无 吴组; 求矩阵的逆; 求矩阵的秩等。(5

(2) clear

输入矩阵 A

[V,D]=eig(A) % 矩阵 D 为矩 阵 A 的特征值构成的对角阵,矩阵 V 的 列向量为矩阵A与特征值D对应的特征

或者 clear

输入矩阵 A

f=poly(A), %求特征多项式 r=roots(f), %求特征值

B1=r(1)*eye(3)-A;

%求特征值向量

P1=null(B1, 'r')

B2=r(2)*eye(3)-A;

P2=null(B2, 'r')

B3=r(3)*eye(3)-A;

P3=null(B3, 'r') ----9 分

九、(9 分)设 \Box^3 中的两组基为 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$ 和 $\beta_1 = (1,2,1)^T$, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$. (1) 求从基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过 渡矩阵为A. (2) 求向量 $\beta = \beta_1 - 2\beta_2 + \beta_3$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

[解] (1) 设
$$(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)A$$
,则

$$A = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix} \qquad ----6$$

(2) 尼知向量
$$\beta = \beta_1 - 2\beta_2 + \beta_3$$
 在基 $\beta_1, \beta_2, \beta_3$ 的坐标 $Y = (1, -2, 1)^T$, — — 7 分

所以向量 $\beta=\beta_1-2\beta_2+\beta_3$ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标为

$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}$$

