VE492 HW3 张致源 518370910045 1. (a): Since every iterated dominance equilibrium 5* adopts the dominant strategy. $\forall i, \mathcal{U}_{i}(s^{*}) \geq \mathcal{U}_{i}(s_{i}^{*}, S_{-i}^{*})$ The definition of nash equilibrium is Vi, Ui(S*) > Vi(Si', S_i) Sp, S* satisfy the condition of being Nash equilibrium Sp, every iterated dominance equilibrium S* is a Nash equilibrium. (b): For example. A B a 0,0 1,1 6 1,1 0,0 No dominance strategy. So, we cannot find a dominance equilibrium. However, (b, A) and (a, B) are in Norsh Equilibrium. 2x < 2 and $x^2 < 3$ 2. (A): and X<1 \int_{0}^{∞} , $-\sqrt{3}$ < \times 1 So, if x=0, the game has

no pure Nash equilibrium.

(b):
$$x^{2} > 3$$
, $x < 4$
 $\sqrt{3} < x < 4$ or $x < \sqrt{3}$
So, if $x = 2$, (c, C) is pure Nash exhibition.
3. 0 2 4 6 8 10 - - - 1000
1 (0,0)(1,0)(1,0)(1,0)(1,0)(1,0) (1,0)
3 (0,0)(0,2)(3,0)(3,0)(3,0)(3,0)
5 (0,0)(0,2)(0,4)(5,0)(5,0)(5,0)
7 (0,0)(0,2)(0,4)(0,6)(7,0)(7,0)
9 (0,0)(0,2)(0,4)(0,6)(0,6)(0,0)
11 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)
11 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)
11 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)
12 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)
13 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)
14 (0,0)(0,2)(0,4)(0,6)(0,8)(0,0)

So. Strategy (0,0) when player I annound I, and player 2 announce 2 is Nash equilibrium.

4. (a)
$$V(53) = R(53) = 3$$

 $V(54) = R(54) = 9$
 $V(55) = R(55) = 5$
 $V(56) = R(56) = 6$
 $V(51) = \frac{1}{5}(-6 + V(51) + V(52) + V(53) + V(54) + V(55) + V(56))$
 $V(52) = \frac{1}{5}(-6 + V(51) + V(52) + V(53) + V(54) + V(55) + V(56))$
 $S_0, V(51) = V(52) = 3$

State s_1 s_2 s_3 s_4 s_5 s_6 $\pi(s)$ RollRollStopStopStop $V^{\pi}(s)$ 334 \mathcal{E}

(b): If $\pi(52)$ is stop. V(52) = 2. Solves) is roll.

If $\pi(53)$ is roll, $V(53) = f(-6+3V(3)+15) \Rightarrow V(9) = 3$.

So stop and roll is the same.

If $\pi(54)$ is roll, $V(54) = f(-6+3V(54)+14) \Rightarrow V(54) = \frac{8}{3} < 4$ $\pi'(54)$ is stop.

If $\pi(55)$ is roll, $V(55) = \frac{1}{6}(-6+3V(55)+13) \Rightarrow V(55) = \frac{7}{3} < f$ $\pi'(55)$ is roll

State s_1 s_2 s_3 S_4 s_5 s_6 Roll Roll Stop | Stop Stop Stop Roll/Stop $\pi'(s) \mid \text{Roll}$ Stop Roll Stop Stop

(TC(S))

Be cause the improved policy is the same as TC(S) in part (a). It already has converged. So, TC(S) from part (a) is optimal.

(d) B

So,