

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Rio Claro

Relatório de estudo sobre grafos do tipo árvore

Grafos e Aplicações

Equipe:

André Luis Dias Nogueira Felipe Melchior de Britto Rafael Daiki Kaneko Ryan Hideki Tadeo Guimarães Vitor Marchini Rolisola

Conteúdo

1	Resumo	3
2	Introdução	4
3	Implementação	5
4	Resultados e discussão	6
5	Conclusão	7
6	Referências bibliográficas	8

1 Resumo

2 Introdução

Grafos são estruturas fundamentais em teoria dos grafos, utilizadas para modelar uma variedade de problemas em diferentes áreas, desde redes de computadores até genética.

Um grafo é uma estrutura matemática usada para modelar relações entre objetos de um conjunto. Ele é composto por dois conjuntos: um conjunto de vértices (ou nós) e um conjunto de arestas (ou arcos) que conectam esses vértices. Os vértices representam os objetos e as arestas representam as relações entre esses objetos.Bergamin Junior 2024

Por exemplo, na representação de uma rede social, os vértices podem representar pessoas e as arestas podem representar as conexões de amizade entre elas.

Um tipo especial de grafo, conhecido como árvore, apresenta propriedades únicas que tornam essa classe particularmente interessante para estudo. Uma árvore é definida como um grafo não-orientado, conexo e acíclico, o que significa que não possui ciclos e, além disso, qualquer remoção de uma de suas arestas resulta em um grafo desconexo. Essas características permitem que árvores sejam a estrutura mínima necessária para garantir a conectividade entre os vértices de um grafo com o menor número de arestas possíveis, um aspecto crucial para a otimização de recursos em diversos cenários práticos.

A análise de árvores em grafos tem implicações diretas em problemas de interligação, como o fornecimento de redes elétricas, onde o objetivo é minimizar o custo de conexão ao garantir que todas as unidades estejam conectadas. Além disso, árvores também desempenham um papel importante na computação, particularmente em algoritmos de ordenação, como o Heapsort, e na modelagem de genealogias e redes hierárquicas. O presente relatório visa explorar as propriedades matemáticas e aplicativas das árvores, abordando tanto sua definição formal quanto suas extensões, como arborescências e a aplicação em algoritmos de busca.

A introdução a essas ideias será contextualizada com base nas propriedades da conectividade e da aciclicidade, discutindo ainda como árvores podem ser vistas como estruturas mínimas e otimizadas para representação de relações complexas, ao mesmo tempo que mantêm a simplicidade computacional.

3 Implementação

4 Resultados e discussão

5 Conclusão

Bibliografia

Bergamin Junior, Emilio (2024). URL: https://drive.google.com/file/d/1ZE6hkZ3LWcdHdRhw44ctXAg view.