

A resistência equivalente deste circuito é de:

a)	10 Ω	para	$R_{x} = 7,6 \Omega$	***************************************	
			_	***************	
c)	25 Ω	para	$R_x = 6 \Omega$	***************************************	
a)	30 O	para	R = 6Ω		

Nota: Dado que as resistênciam de 10, 20, 30 e 40 Ω estão em curto-circuito, não exercem influência no valor da resistência do conjunto. Então apenas se mantém o valor de R_s.

2.2.6.1

O filamento de uma válvula deve funcionar com 5 V e 0,25A.

A bateria que vai alimentar a válvula é de 6 V.

Qual deve ser o valor da resistência que se deve ligar em série com o filamento ?

ъ)	20 Ω	
o)	1,25 Ω	
٨٤	0.5	ļ

図

d) 0,5 g L

Nota:

Dado que o filamento funciona com 5 V e a bateria é de 6 V, tem de haver uma queda de tensão de 1 V na resistência que se liga em série com o filamento.

Como a corrente é de 0,25A, aplicando a lei de Chm à resistência, vem:

$$V = RI \implies R = \frac{V}{r} \implies R = \frac{1}{0.25} = 4 \Omega$$