MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2009 SOLUTION KEY

Round 2

A)
$$2 \cdot \left[2,3,5,7,11,13,17,19,23,\cancel{2}\cancel{x} \right] \rightarrow 9$$

 $3 \cdot \left[3,5,7,11,13,\cancel{x} \right] \rightarrow 5$
 $5 \cdot \left[5,7,\cancel{x} \right] \rightarrow 2$
 $7 \cdot \left[7,\cancel{x} \right] \rightarrow 1$
 $11 \cdot \left[\cancel{x} \right] \rightarrow 0$

Thus, the number of semi-primes < 50 is 17.

B) Note the numbers along the right edge, 1, 3, 6, 10, These are <u>triangular</u> numbers. They numbers are generated by the formula $\frac{n(n+1)}{2}$. $n=1 \rightarrow 1$, $n=2 \rightarrow 3$, $n=3 \rightarrow 6$ etc. Thus, the last number in the 10^{th} row is $\frac{10(11)}{2} = 55$ and we must sum 46,47,48 53,54,55 = 5(101) = 505

$$46,47,48,...,53,54,55 = 5(101) = 50$$

B) Alternate solution #1

Note the numbers along the left edge. 1, 2, 4, 7, ... = 1, 1 + 1, 1 + (1 + 2), 1 + (1 + 2 + 3), ...

These numbers are generated by $1 + \frac{(n-1)n}{2} = \frac{n^2 - n + 2}{2}$. Thus, the first number in the 10^{th} row is $\frac{10^2 - 10 + 2}{2} = 46$ and the solution follows as above.

Alternate solution #2

Note the number(s) in the "center" of each row. If there is a single number only, double it. 2(1), 2 + 3, 2(5), 8 + 9, ... = 2, 5, 10, 17, ... = 1 + 1, 1 + 4, 1 + 9, 1 + 16, ...

These numbers are generated by $1 + n^2$. Thus, the "center" number is $\frac{1+n^2}{2}$ and, hence, the

sum of the 10 numbers in the 10^{th} row is $10\left(\frac{10^2 + 1}{2}\right) = 5(101) = \underline{505}$.