Report for PEP Section in mzTab File example_5

The PEP section of the mzTab file contains 26,794 quantified peptide features measured in 54 samples.

	number of peptides
quantified	26,794
identified (total)	26,794
identified (unique modified)	21,658
identified (unique stripped)	19,580

Table 1: Total number of quantified and identified peptides.

mod	specificity	number
Oxidation	M	4942
Methylthio	\mathbf{C}	4473
Dioxidation	M	112
Label: $13C(6)15N(2)$	K	26
Label: $13C(6)15N(4)$	R	17

Table 2: Statistics of modifications.

Figure 1: Frequency plot of peptide quantifications.

Figure 2: (modified sequence, charge) pair multiplicity vs frequency plot. Each peptide feature (characterised by a (possibly) modified peptide sequence and a charge state) should ideally occur only once in the analysis. In other words, peptides of multiplicity 1 should have a very high frequency. The plot below should show a significant spike on the left and can be used as QC of the analysis.

(a) peptide abundances 1, median (intensity) = 455,025,504

(b) peptide abundances 2, median (intensity) = 424,578,000

(c) peptide abundances 3, median (intensity) =412,578,512

Figure 3: peptide abundance distributions. $\,$

Figure 4: Kendrick nominal fractional mass plot

Figure 5: Fold changes of peptide abundances 1 and 2. $\mathrm{median(fc)} = -0.0026 \qquad \mathrm{sd(fc)} = 2.0776$

Figure 6: Fold changes of peptide abundances 1 and 3. $median(fc) = 0.2421 \qquad sd(fc) = 1.7661$

Figure 7: Fold changes of peptide abundances 2 and 3. $median(fc) = 0.1175 \qquad sd(fc) = 1.3543$

Figure 8: Pearson correlation of all peptide abundances. (min correlation = 0.1484, median correlation = 0.5701, max correlation = 1)

Figure 9: Boxplot of all peptide abundances.

modified sequence	accession	charge	retention time	m/z
LSLM(Oxidation)YAR	P78527	2	3727.04	435.23
LSLMYAR	P78527	2	4790.39	427.23
EQC(Methylthio)C(Methylthio)YNC(Methylthio)GKPGHLAR	P62633	4	4025.06	454.93
EQC(Methylthio)C(Methylthio)YNC(Methylthio)GKPGHLAR	P62633	3	4045.75	606.23
M(Oxidation)VQEAEKYKAEDEKQR	P11142	4	1316.10	500.25
M(Oxidation)VQEAEKYKAEDEKQR	P11142	3	1320.29	666.66
MVQEAEKYKAEDEKQR	P11142	3	1585.13	661.33
M(Oxidation)VQEAEKYKAEDEKQR	P11142	2	1324.47	999.48
MVQEAEKYKAEDEKQR	P11142	4	1577.81	496.25
TVPFC(Methylthio)STFAAFFTR	P29401	2	12736.46	820.88
GNFGGSFAGSFGGAGGHAPGVAR	P52272	3	5570.46	678.99
GNFGGSFAGSFGGAGGHAPGVAR	P52272	2	5569.35	1017.98
GNFGGSFAGSFGGAGGHAPGVARK	P52272	4	4336.39	541.52
GNFGGSFAGSFGGAGGHAPGVARK	P52272	3	4346.43	721.69

Table 3: Peptides of interest. Note that the script requires a vector of stripped peptides sequences, but in the above table we list the modified peptide sequences.

modified sequence	accession	charge	retention time	m/z
AALETDENLLLC(Methylthio)APTGAGK	O75643	2	9446.27	966.97
ANSNLVLQADR	O75643	$\frac{2}{2}$	3364.48	600.82
DILC(Methylthio)GAADEVLAVLK	O75643	$\frac{2}{2}$	13363.36	788.41
GLFYFDNSFRPVPLEQTYVGITEK	O75643	3	10851.51	940.81
GNIIISTPEKWDILSR	O75643	3	8401.82	614.67
GYTLLSEGIDEMVGIIYKPK	O75643	3	12026.42	742.73
HLILPEKYPPPTELLDLQPLPVSALR	O75643	4	10522.78	738.18
HLSDHLSELVEQTLSDLEQSK	O75643	4	11777.91	602.80
HLSDHLSELVEQTLSDLEQSK HLSDHLSELVEQTLSDLEQSK	O75643	3	11778.33	803.40
LELSVHLQPITR	O75643	3	6463.56	469.28
LTAIDILTTC(Methylthio)AADIQR	O75643	ე ე	13199.51	882.46
LYDLNHNEIGELIR	O75643	$\frac{2}{3}$	7560.42	566.96
M(Oxidation)DTDLETM(Oxidation)DLDQGGEALAPR	O75643	2	6919.78	1105.48
M(Oxidation)TQNPNYYNLQGISHR	O75643	$\frac{2}{3}$	4206.52	651.31
MTQNPNYYNLQGISHR	O75643	3	4594.64	645.98
RLDLVHTAALMLDKNNLVK	O75643	3 4	8302.19	541.81
SGGPVVVLVQLEREEEVTGPVIAPLFPQK	O75643	3	12091.36	1029.91
SLQYEYK	O75643	ა ე	2782.59	465.73
SLVQEMVGSFGK	O75643	2	8622.79	641.33
TGNFQVTELGR	O75643	$\frac{2}{2}$	4983.82	611.31
TNLLLQAHLSR	O75643	3	4683.05	422.58
TRRDEPTGEVLSLVGKLEGTR	O75643	4	7443.32	579.07
VPIPVKESIEEPSAK	O75643	3	4274.05	541.63
VVLLTGETSTDLK	O75643		6029.52	
YAQAGFEGFK	O75643	2		688.39 559.27
	P06576	$\frac{2}{3}$	4657.65	
AHGGYSVFAGVGER	P06576 P06576		4066.84	469.57
AHGGYSVFAGVGER		2	4067.38	703.84
AIAELGIYPAVDPLDSTSR	P06576	$\frac{2}{2}$	10056.72	994.52
DQEGQDVLLFIDNIFR ECNDLYHEM(Oridestor) JESCYINLK	P06576	3	13754.13	961.49
EGNDLYHEM(Oxidation)IESGVINLK	P06576	3	6967.34	693.00
EGNDLYHEMIESGVINLK ETRLVLEVAQHLGESTVR	P06576 P06576	3 4	9519.98	687.67
ETRLVLEVAQHLGESTVR ETRLVLEVAQHLGESTVR	P06576	3	7089.19 7085.92	510.03 679.71
FLSQPFQVAEVFTGHM(Oxidation)GK	P06576	3	8779.41	680.34
FLSQFFQVAEVFTGHMGK	P06576	3	9681.53	675.01
FLSQFFQVAEVFTGHM(Oxidation)GK	P06576	2	8779.66	1020.01
FTQAGSEVSALLGR	P06576	$\frac{2}{2}$	7458.45	
FTQAGSEVSALLGR FTQAGSEVSALLGRIPSAVGYQPTLATDM(Dioxidation)GTMQER	P06576	3	10274.31	718.38 1238.94
FTQAGSEVSALLGRIPSAVGYQPTLATDMGTM(Oxidation)QER	P06576	3	10761.70	1233.61
GFQQILAGEYDHLPEQAFYM(Oxidation)VGPIEEAVAK	P06576	3	11504.92	1122.88
GFQQILAGEYDHLPEQAFYMVGPIEEAVAK	P06576	3	12341.34	1117.55
GGKIGLFGGAGVGK	P06576	2	3908.14	609.35
GQKVLDSGAPIKIPVGPETLGR	P06576	$\frac{2}{4}$	6585.67	558.82
GQKVLDSGAPIKIPVGPETLGR	P06576	3	6587.37	744.76
GSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSR	P06576	3	11298.03	1238.97
IGLFGGAGVGK	P06576	2	5844.10	488.28
IM(Oxidation)DPNIVGSEHYDVAR	P06576	3	4749.42	611.29
IM(Oxidation)DPNIVGSEHYDVAR	P06576	2	4748.42	916.44
IMDPNIVGSEHYDVAR	P06576	3	5605.08	605.96
IM(Oxidation)DPNIVGSEHYDVAR	P06576	3	5605.37	611.29
IMDPNIVGSEHYDVAR	P06576	$\frac{3}{2}$	5607.40	908.44
IM(Oxidation)NVIGEPIDER	P06576	$\frac{2}{2}$	5304.34	701.36
IMNVIGEPIDER	P06576	$\frac{2}{2}$	6546.60	693.36
IM(Oxidation)NVIGEPIDERGPIK	P06576	3	5343.69	599.66
IMNVIGEPIDERGPIK	P06576	3	6292.57	594.33
IM(Oxidation)NVIGEPIDERGPIK	P06576	3	6297.18	599.66
IMNVIGEPIDERGPIK	P06576	$\frac{3}{2}$	6296.13	890.98
IM(Oxidation)NVIGEPIDERGPIK	P06576	$\frac{2}{2}$	5333.90	898.98
IM(Oxidation)NVIGEFIDERGFIK IMNVIGEPIDERGPIKTK	P06576	$\frac{2}{4}$	5258.30	503.28
IM(Oxidation)NVIGEPIDERGPIKTK	P06576	$\frac{4}{4}$	4395.74	503.28
IM(Oxidation)NVIGEPIDERGPIKTK IM(Oxidation)NVIGEPIDERGPIKTK	P06576	3	4391.38	676.04
IM(Oxidation)NVIGEPIDERGPIKTK IM(Oxidation)NVIGEPIDERGPIKTK	P06576	3 4	5256.54	507.28
IPSAVGYQPTLATDM(Dioxidation)GTMQER	P06576	$\frac{4}{2}$	6010.84	1149.54
IL 24ACA CACHA TANDACAN (O . 1 '.) OEB	F 00570		7115.07	1143.04