Database Technologies PG-DAC September 2021

Content

- Introduction to DBMS
- Basic Database Terminology
- Types of DBMS
 - Relational
 - Object Relational
 - NoSQL Databases
- Introduction to MySQL, MySQL Clients (Monitor, Shell, Workbench)

First

An Inventory Control Application

Then

A Purchasing Application

part-file

vendor-file

order-file

A Finance Application

account-file

user-file

vendor-file

order-file

and Now

The Information Seeker!

Problems

- Data Redundancy
- No consistency
- No integrity
 - maintaining and assuring the accuracy
- Concurrency related problems
 - Note: OS concurrency never handled database concurrency implementations
- Security Not everyone should be allowed to access all the data at all the time

The Causes?

- No sharing
- Data isolation
- Diffused responsibilities
- Poor coordination
- Disorganized developments
- Data redundancy
- Weak integrity

Problems with File systems

- Problems with file processing systems
 - Limited data sharing
 - Poor enforcement of standards
 - Inconsistent data
 - Inflexibility everything dependent on programs
 - Even simple tasks required extensive programming
 - Security feature practically nil
 - Complex system administration
 - Excessive program maintenance

A Solution

Data, Information, Database

- Data –raw facts
- Information- Result of processing raw data to reveal meaning
- So data is building blocks of information
- Information produced by processing raw data
- Accurate, timely, relevant information is the key to good decision making
- A database is a collection of information that is organized so that it can easily be accessed, managed, and updated.
- Database- Shared, integrated computer structure that stores a collection of end-user data and meta data

Introduction to DBMS

- A database management system (DBMS) is system software for creating and managing databases.
- Data Base Management system- collection of programs responsible for managing the structure and control access to data
- The DBMS provides users and programmers with a systematic way to create, retrieve, update and manage data.

Introduction to DBMS

Architecture for a DBMS

- External view-Content of the database as seen by a particular external user defined by external schema
- Conceptual view- Abstract view of the physical level defined by conceptual schema
- Internal view- Low level representation of the entire database defined by internal schema

Architecture for a DBMS

Conceptual Model Design

Logical Model Design

Physical Model Design

Data Models

Three Components

Structures

- rows and columns?
- nodes and edges?
- key-value pairs?
 - a sequence of bytes?

Constraints

- all rows must have the same number of columns
- all values in one column must have the same type
- a child cannot have two parents

Operations

- find the value of key x
- find the rows where column "lastname" is "Jordan"
- get the next N bytes

Types of databases

Documentoriented databases

Relational Model

table module student course attributes faculty assign book test session perf attend fee

Relational model

- A DBMS is said to be a Relational DBMS or RDBMS if the database relationships are treated in the form of a table.
- Three keys on relational DBMS
 - Relation
 - Domain
 - Attributes.
- A number of RDBMSs are available, some popular examples are Oracle, Sybase, Ingress, Informix, Microsoft SQL Server, and Microsoft

Relational model (contd)

- Properties of Relational Tables:
 - Values Are Atomic
 - Each Row is Unique
 - Column Values Are of the Same Kind
 - The Sequence of Columns is Insignificant
 - The Sequence of Rows is Insignificant
 - Each Column Has a Unique Name

Relational Database

Object-Oriented Model

Object-Oriented Model

- New user defined data types.
- Complex data types
- Object references and methods
- New capabilities like encapsulation, inheritance etc. for databases.
- Intuitive and Natural Model

What is Object Oriented Database? (OODB)

- A database system that incorporates all the important object-oriented concepts
- Some additional features
- Unique Object identifiers
- Persistent object handling
- Designer can specify the structure of objects and their behavior (methods)
- Better interaction with object-oriented languages such as Java and C++
- Definition of complex and user-defined types
- Encapsulation of operations and user-defined methods

- Queries look very similar in SQL and OQL, sometimes they are the same
- In fact, the results they give are very different Query returns
- Foundation for several OO database management
 systems ORACLE8, DB2, etc

OQL	SQL
Object	Tuple
Collection of objects	Table

Benefits of OODBMS

- Object database is a good choice for three factors: business need, high performance, and complex data.
- With ODBMS, lesser code is required compared to RDBMS.
 - If using Java or C++ -- no need to translate into a database sub-language such as SQL, ODBC, or JDBC.
 - The data structure that you can imagine in Java or C++ can be stored directly without translation in an ODBMS.
- ODBMS give better performance than an RDBMS.
 - The data is read off the disk, it is already in the format that Java or C++ uses (OO). No translation is needed.

Shortcomings OODBMS

- Object databases are not as popular as RDBMS. It is difficult to find object DB developers.
- Not many programming language support object databases.
- RDBMS have SQL as a standard query language. Object databases do not have a standard.
- Object databases are difficult to learn for nonprogrammers.

Object Model

Object-Relational Model

Object-Relational Model

- Add 'object oriented-ness' to tables
- Combination of
 - OO features Complex objects, Functions, Inheritance, Overloading

And

- Relations features Tables, Views, Transactions, Recovery, Indexing, Optimization, SQL queries
- Data is still stored in tables
- SQL3 ('object-oriented' SQL) is the language for data definition, manipulation, and query.

10/6/2021 34

Object-Relational Model

- Extend the relational data model by including object orientation and constructs to deal with added data types.
- Allow attributes of tuples to have complex types, including non-atomic values such as nested relations.
- Preserve relational foundations, in particular the declarative access to data, while extending modeling power.
- Upward compatibility with existing relational languages.
- PostgreSQL is the most popular pure ORDBMS.
- Some popular databases including Microsoft SQL Server, Oracle, and IBM DB2 also support objects and can be considered as ORDBMS.

Stonebraker's Application Matrix

	No Query	Query
Complex Data	OODBMS	ORDBMS
Simple Data	File System	RDBMS

Stonebraker's view: Most applications will move to the upper right.

Current and Emerging Trends

Analytics

- Data Warehousing
- Data Mining
- Big Data

Types

- Document oriented databases
- Multimedia databases
- Distributed databases
- Mobile and Embedded databases

Conclusion

- Data: Known facts that can be recorded and have implicit meaning
- Database: Collection of interrelated data
- DBMS: A computerized data/record keeping system for managing data

- Open Source SQL database management system
- Developed, distributed, and supported by Oracle Corporation.
- MySQL Database Server is very fast, reliable, scalable, and easy to use.

		8.0	5.7
Operating System	Architecture		
Oracle Linux / Red Hat / CentOS			
Oracle Linux 8 / Red Hat Enterprise Linux 8 / CentOS 8	x86_64, ARM 64	•	
Oracle Linux 7 / Red Hat Enterprise Linux 7 / CentOS 7	ARM 64		
Oracle Linux 7 / Red Hat Enterprise Linux 7 / CentOS 7	x86_64		•
Oracle Linux 6 / Red Hat Enterprise Linux 6 / CentOS 6	x86_32, x86_64		•
Oracle Solaris			
Solaris 11 (Update 4+)	SPARC_64		•
Canonical			
Ubuntu 21.04	x86_64		
Ubuntu 20.04 LTS	x86_64	•	
Ubuntu 18.04 LTS	x86_32, x86_64		•
SUSE			
SUSE Enterprise Linux 15 / OpenSUSE 15 (15.2)	x86_64		
SUSE Enterprise Linux 12 (12.5+)	x86_64		•
Debian			
Debian GNU/Linux 11	x86_64		

Microsoft Windows Server		
Microsoft Windows 2019 Server	x86_64	
Microsoft Windows 2016 Server	x86_64	
Microsoft Windows 2012 Server R2	x86_64	
Microsoft Windows		
Microsoft Windows 10	x86_64	•
Apple		
macOS 11	x86_64, ARM_64	
macOS 10.15	x86_64	
Various Linux		
Generic Linux (tar format)	x86_32, x86_64, glibc 2.12, libstdc++ 4.4	
Yum Repo		
APT Repo		
SUSE Repo		

Microsoft Windows Server		
Microsoft Windows 2019 Server	x86_64	
Microsoft Windows 2016 Server	x86_64	
Microsoft Windows 2012 Server R2	x86_64	
Microsoft Windows		
Microsoft Windows 10	x86_64	•
Apple		
macOS 11	x86_64, ARM_64	
macOS 10.15	x86_64	
Various Linux		
Generic Linux (tar format)	x86_32, x86_64, glibc 2.12, libstdc++ 4.4	
Yum Repo		
APT Repo		
SUSE Repo		

MySQL Installation

• DB Configuration.txt

MySQL Client – Command Line

```
base) surabhi@surabhi-seng:~$ sudo mysql
sudo] password for surabhi:
Velcome to the MySQL monitor. Commands end with ; or \q.
Your MySQL connection id is 14
Server version: 8.0.26-0ubuntu0.20.04.2 (Ubuntu)
Copyright (c) 2000, 2021, Oracle and/or its affiliates.
Dracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement
nysql> show databases;
 Database
 information schema
 mysql
 performance schema
 sys
 rows in set (0.00 sec)
nysql>
```


Design

- MySQL Workbench enables a DBA, developer, or data architect to visually design, model, generate, and manage databases.
- It includes everything a data modeler needs for creating complex ER models, forward and reverse engineering,

Develop

- MySQL Workbench delivers visual tools for creating, executing, and optimizing SQL queries.
- The SQL Editor provides color syntax highlighting, auto-complete, reuse of SQL snippets, and execution history of SQL.
- The Database Connections Panel enables developers to easily manage standard database connections
- The Object Browser provides instant access to database schema and objects.

Administer

- MySQL Workbench provides a visual console to easily administer MySQL environments and gain better visibility into databases.
- Developers and DBAs can use the visual tools for configuring servers, administering users, performing backup and recovery, inspecting audit data, and viewing database health.

- Database Migration
- MySQL Workbench now provides a complete, easy to use solution for migrating Microsoft SQL Server, Microsoft Access, Sybase ASE, PostreSQL, and other RDBMS tables, objects and data to MySQL.
- Developers and DBAs can quickly and easily convert existing applications to run on MySQL both on Windows and other platforms.
- Migration also supports migrating from earlier versions of MySQL to the latest releases.

- References

- "An Introduction to Database Systems", C. J. Date, Sixth Edition
- "Database System Concepts", Avi Silberschatz, Henry F. Korth, S.
 Sudarshan
- http://www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/
- "Fundamentals of Database Systems", Ramez Elmasri, Shamkant B. avathe
- "Database Management Systems", Raghu Ramakrishan
- "Relational Database Selected Writings", C. J. Date
- MySQL manuals