$$9.2 y^{(4)} + 2y = \frac{x^2}{9} + \frac{2x}{3} + 4 \quad y(0) = y'(0) = y(3) = y'(3) = 0$$

27/11207 Non-Linear BVA.

or, 
$$G_{1}^{\circ}(x_{1}, y_{1}, y_{2}, \dots, y_{n-1}) = 0$$
  $i=1,2,3,\dots, y_{n-1}$ 

which forms (n-1) algebraic equs (non-linear) unvolving (n-1) variables. Thus a compact system results

Consider a non-linear appoint egn.

$$\phi(a) = 0$$

Newton-Raphson iterative method:

Let a (k) be the approximation of the root at any kth iteration level. Exact root,  $\alpha = x^{(k)} + Error$ .  $\alpha = x^{(k)} + \Delta x$ Now,  $\alpha = y(\alpha) = 0 \Rightarrow y(x^{(k)} + \Delta x) = 0$ 

$$\alpha = \alpha^{(k)} + \Delta x$$

Expand by the Taylor's some

$$\varphi(\chi^{(k)}) + \Delta \chi \varphi(\chi^{(k)}) + (\Delta \chi)^2 \varphi''(\chi^{(k)}) + \dots = 0$$

if  $\Delta x \ll 1$ , then  $\theta(x^{(k)}) + \Delta x \theta(x^{(k)}) = 0$ 

$$\Delta x = - \phi(x^{(k)})$$

Next approximation.
$$\chi^{(k+1)} = \chi^{(k)} - \varphi(\chi^{(k)}), k > 0$$

$$\varphi^{(\chi^{(k)})}$$

| Garling                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1; (4) 4) 1 4 m - (2) = 0  | i=1,2,, n-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Qual                        | The second and the second seco |
| will be solved iteratively, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| se served atteraprecy,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3,                          | The state of the s |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Let 
$$y(k+1) = y(k) + \Delta y$$
;  $k > 0$   $i = 1, 2, ..., n-1$   
Substitute this to  $\mathfrak{D}$ , we get.

Substitute this to D, we get,

$$G_{i}(y_{i}^{(k)}, y_{i}^{(k)}, \dots, y_{n+1}^{(k)}, x_{i}^{(k)}) + \Delta y_{1} \frac{\partial y_{1}}{\partial y_{1}} + \Delta y_{2} \frac{\partial y_{1}}{\partial y_{2}}$$

$$G_{i}(y_{i}^{(k)}, y_{i}^{(k)}, \dots, y_{n+1}^{(k)}, x_{i}^{(k)}) + \Delta y_{1} \frac{\partial y_{1}}{\partial y_{2}} + \Delta y_{2} \frac{\partial y_{1}}{\partial y_{2}}$$

$$G_{i}(y_{i}^{(k)}, y_{i}^{(k)}, \dots, y_{n+1}^{(k)}, x_{i}^{(k)}) + \Delta y_{1} \frac{\partial y_{1}}{\partial y_{2}} + \Delta y_{2} \frac{\partial y_{1}}{\partial y_{2}}$$

The system of egrs & us a system of (n-1) linear egrs of (n-1) variables  $\Delta y_1, \Delta y_2, \ldots, \Delta y_{n-1}$ 

Solving the (n-1) linear algebraic eq. (n-1) variables  $\Delta y_1, \Delta y_2, \ldots, \Delta y_{n-1}$  | we can obtain the modified  $sol^{n}$ ,  $y_1, d_1, d_2, \ldots, d_n$  |  $(k+1) = y_1, k + d_1, k > 0$ ,  $i=1,2,\ldots,n-1$ .

Repeat the process till.

## Total

Iteration starts with an unitial guesses for y:(0), (i.e. y(0) (0) -- , y(0) and Dyo = Dy = 0 at the boundary. (Neuton's linearization techniques) 4.(0) for 121,2,3, --, n-1

 $y^{(0)}(x) = f(x) = \frac{(x-a)}{(b-a)} \frac{1}{(b-a)} \frac{1}{(b-a)} \frac{1}{(b-a)} \frac{1}{a}$   $y^{(0)}(x) \rightarrow \text{Choose s.t. it sahities the B.c. is.}$ 



Scanned by CamScanner