	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	Test the c	we i	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1
2.	· Harry II	in - 1	$ \delta_0(n-k) 1, $	Z-k
3.	$\frac{1}{s}$ $\frac{r^{\frac{1}{s}}}{\frac{l^{\frac{1}{s}}}{l^{\frac{1}{s}}}}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e-at	e ^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	1 t t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	4.6.2.2.13	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{−akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2 + \omega^2}$	sin ωt	sin ωkT	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos ωt	cos ωkT	$\frac{1 - z^{-1}\cos\omega T}{1 - 2z^{-1}\cos\omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at} \sin \omega t$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin \omega T}{1 - 2e^{-aT}z^{-1}\cos \omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
18.			a ^k (t) on substitution is	the north $\frac{1}{1-az^{-1}} + \frac{1}{z} = \frac{1}{z}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	a distribution of the second contract of the
20.		A A Section 1999	$k = 1, 2, 3, \dots$ ka^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			$k^2 a^{k-1}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.		3 - 3	k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k^4a^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.		- 1)	$a^k \cos k\pi$	$\frac{1}{1+az^{-1}} \frac{2}{2+\alpha}$
	- Long de may	S. A.I.	$\frac{k(k-1)}{2!}$	State of the state