Deep Learning KU (708.220) WS23

Assignment 1: Maximum Likelihood Estimation

Consider a classification problem with two classes C_0 and C_1 . For each class C_k , the samples come from a d-dimensional Gaussian distribution with mean vector $\boldsymbol{\mu}_k$ and a covariance matrix $\boldsymbol{\Sigma}_k = \sigma_k^2 \boldsymbol{I}_d$, where \boldsymbol{I}_d is the $d \times d$ identity matrix and $\sigma_k \in \mathbb{R}^+$.

Probability of data point vector \boldsymbol{x} conditioned on class k equals:

$$p(\boldsymbol{x}|\mathcal{C}_k) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu_k})^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu_k})\right).$$

Hint: $|\Sigma_k|$ is the determinant of $\Sigma_k = \sigma_k^2 I_d$, and equals σ_k^{2d} .

Your training set consists of samples $\boldsymbol{X} = \langle \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)} \rangle$, where the data points $\boldsymbol{x}^{(m)} \in \mathbb{R}^d$ are independently and identically distributed. You have the corresponding binary targets $\boldsymbol{t} = (t^{(1)}, \dots, t^{(N)})^T$, with $t^{(m)} \in \{0, 1\}$, which indicates the class of the input sample (i.e., $t^{(m)} = 1$ indicates class C_1).

You will fit a parameterized model for the data-generating distribution:

$$p(X, t|\theta) = p(t|\theta) \cdot p(X|t, \theta).$$

Your model includes a prior probability for the occurrence of each class, where class C_0 occurs with probability $P(C_0) = p_0$, and class C_1 occurs with probability $P(C_1) = 1 - p_0$. The parameters of your model are: $\theta = \langle p_0, \mu_0, \mu_1, \sigma_0, \sigma_1 \rangle$.

Task details:

- a) (3 pts): Write the likelihood $p(\boldsymbol{x}^{(m)}, t^{(m)}|\boldsymbol{\theta})$ of a single example $\boldsymbol{x}^{(m)}, t^{(m)}$. Accordingly, write the likelihood $p(\boldsymbol{X}, \boldsymbol{t}|\boldsymbol{\theta})$ of the whole training set $\boldsymbol{X}, \boldsymbol{t}$, and then use this to derive the log-likelihood of the training set.
- b) (3 pts): Derive the maximum-likelihood estimate of μ_1 for this model.
- c) (2 pts): Derive the maximum-likelihood estimate of p_0 for this model.
- d) (2 pts): Let's say we are interested in classifying samples by minimizing expected loss, where the loss matrix L will be expressed as:

$$L = \begin{bmatrix} 0 & 20 \\ 1 & 0 \end{bmatrix}.$$

Firstly, using Bayes' rule, express $p(C_0|\mathbf{x})$ and $p(C_1|\mathbf{x})$ in terms of p_0 . Then use these to derive an expression for the loss, for each possible classification outcome (i.e., correct C_0 , correct C_1 , false C_0 , false C_1).

Total: 10 points

Provide full derivations including intermediate steps. Present your results clearly, structured and legible.

Assignment details:

- Assignment issued: October 11th, 2023, 08:00
- Deadline: October 25th, 2023, 08:00
- Solution submission: Upload to TeachCenter as one PDF.
- Rules: There are no groups allowed for this task. Please submit your individual work for your assignment. Copying of solutions or reports from other students is strictly forbidden.