Verteilte Modellierung und virtuelle Integration von überlappenden Komponenten

Ein aspektorientierter Ansatz am Beispiel von Funktionsarchitekturen für eingebettete Systeme im Automobil.

Ekkart Kleinod

Forschungskolloquium SWT TU-Berlin

19. Mai 2011

1/44

Ziel

Diese Dissertation beschäftigt sich mit verteilter Modellierung und virtueller Integration von überlappenden Komponenten im Bereich des Automobilbaus. Ziel ist, eine Methode zu schaffen, mit der überlappende Komponenten modelliert werden können. Dazu werden Beschreibungsmittel und Methoden definiert.

Agenda

Ziel

Ausgangslage

Problem

Lösung

Stand der Dissertation

2/44

Ziel

Prinzipdarstellung

Ausgangslage

VEIA-Referenzprozess der Systemmodellierung, Fokus logische Architektur

Problem

Nichtfunktionale Änderungen, querliegende Funktionen

9/44

7/44

Problem

Modellierung = Änderung

Problem

Änderungen bewahren

Problem

Modellieren und mischen

Lösung

Beispiel: Einfaches E/E-System – Überlappungen

12/44

Lösung

Beispiel: Einfaches E/E-System – Angestrebte Modellierung

Lösung

Beispiel CBS: Trennung der Modellierung

14/44

Lösung

Beispiel CBS: Erste Identität

Lösung

Beispiel CBS: Neue Modellierungsmöglichkeiten

Lösung

Neue Metamodellartefakte

- abstrakte Komponenten
- Aspektrelationen bestehend aus Aspektlinks (identity, inner, copy, replace)
- Kardinalität für Komponenten und Ports

18/44

Lösung

Beispiel CBS: Nach der Mischung

Lösung

Anwendungsfälle

- Überlappungen
- Verfeinerungen
- Mustermodellierung

21/44

Lösung

Anwendungsfall Mustermodellierung

Lösung

Anwendungsfall Verfeinerung

22/44

Stand der Dissertation

Geplante Bestandteile

- Modellierungsmittel (Metamodell) für überlappende Komponenten
- Methodisches Vorgehen in der Praxis
- Beispiele zur Anwendung
- Algorithmus zur Mischung der Modelle
- prototypische Implementierung Mischalgorithmus

Stand der Dissertation

Prototyp aXBench

VEIA-Referenzprozess der Systemmodellierung

Stand der Dissertation

Aktuell

- Lösung beschrieben
- Metamodell
- Text komplett aufgeschrieben, derzeit in zweiter Überarbeitung
- aXLang (Sprache) erweitert
- Implementierung identity fast fertig, Rest noch nicht
- Offen für Hinweise auf ähnliche Arbeiten

27/44

Metamodelle

26/44

Ursprüngliches (vereinfachtes) Metamodell

Metamodelle

Geändertes Metamodell

Modellierungsmöglichkeiten

Instanziierungsmöglichkeiten

34/44

Modellierungsmöglichkeiten

Gemeinsame Kardinalität

32/44

Modellierungsmöglichkeiten

Reihenfolge der Instanziierung

Beispiel CBS

Organisationseinheiten

Beispiel CBS

CBS, Motormanagement, Anzeigen

38/44 39/44

Beispiel CBS

Anwendungsfall Vollständige Mustermodellierung

Beispiel CBS

Anwendungsfall Redundante Verbindung

Beispiel CBS

CBS-Musterarchitektur

42/44

Beispiel CBS

Hauptuntersuchung und Motoröl (Systemarchitektur)

44/44

Beispiel CBS

Hauptuntersuchung und Motoröl

