Tema 6: Más allá de NP: La jerarquía polinómica

Serafín Moral

Modelos Avanzados de Computación - Universidad de Granada

La Clase DP

El Problema del Viajante de Comercio Exacto

Dado un ejemplo del viajante de comercio y un valor *X* determinar si la solución del problema es exactamente *X*.

Este problema no se sabe que esté ni en NP ni en coNP.

La clase **DP**

Un lenguaje L está en **D**P si y solo si existen dos lenguajes $L_1 \in \mathbf{NP}$ y $L_2 \in \mathbf{CoNP}$ tales que $L = L_1 \cap L_2$.

DP no es $NP \cap CoNP$. De hecho $NP \cup CoNP \subseteq DP$.

Clase DP

Problema SAT-UNSAT

Dados dos conjuntos de cláusulas, determinar si el primero es consistente y el segundo inconsistente.

Teorema

El problema del viajante de comercio exacto y el problema SAT-UNSAT son DP-completos.

Otros Problemas DP-completos

Consistencia Crítica

Dado un conjunto de cláusulas, ¿Es cierto que es inconsistente, pero se puede hacer consistente quitándole una de las cláusula?

Consistencia Única

Dado una fórmula booleana, ¿es cierto que existe una única asignación de valores de verdad que hace que se satisfaga la fórmula?

Circuito Hamiltoniano Crítico

Dado un grafo no dirigido, ¿es cierto que no tiene un circuito hamiltoniano, pero que añadiéndole un arco podemos conseguirlo?

3 Colores Crítico

Dado un grafo, ¿es cierto que no se puede colorear con 3 colores, pero si se podrían quitándole un vértice?

En general, los problemas que preguntan por la existencia de una única solución no se sabe si son **DP**-completos (excepto la consistencia única).

Las Clases P^{NP} y FP^{NP}

Oráculo

Un oráculo es un programa que resuelve un problema determinado y al que se le puede llamar en la resolución de otro problema, contanto esa llamada como un sólo paso.

La clase **DP** es la clase de problemas que se pueden resolver llamándo a un oráculo que resuelva un problema NP-completo dos veces y aceptar si la primera llamada dice 'SI' y la segunda llamada dice 'NO'.

Clase PNP

Problemas de decisión que pueden resolverse en tiempo polinómico pudiendo llamar a un oráculo que resuelve un problema **NP**.

Clase FPNP

Problemas de funciones que pueden resolverse en tiempo polinómico pudiendo llamar a un oráculo que resuelve un problema **NP**.

Problemas **FP**^{NP}-completos

- MAXSAT con peso: Dado un conjunto de cláusulas con pesos, determinar una asignación de valores de verdad que maximice la suma de los pesos de las cláusulas que se satisfacen.
- Salida Máxima de una MT no determinista: Dada una máquina de Turing no-determinista M y una entrada 1ⁿ de tal forma que la máquina termina en un tiempo O(n) para todos los posibles cálculos de M y escribe un entero en binario de longitud n en la cinta de salida, determinar el mayor entero que puede escribir la máquina.
- EL Problema de Optimización en el Problema del Viajante de Comercio: Dado un problema del viajante de comercio, determinar el circuito de coste óptimo.
- EL Problema de Coste en el Problema del Viajante de Comercio: Dado un problema del viajante de comercio, determinar el mínimo coste de un circuito (sin necesidad de calcular el circuito que da lugar a ese coste).

La Jerarquía Polinómica

Las clases con oráculo

Análogamente a P^{NP}, se pueden definir NP^{NP} (problemas de decisión que se pueden resolver polinómicos no deterministas que puede llamar a un oráculo que resuelve un problema NP). y CoNP^{NP} (problemas de decisión cuyo complementario se puede resolver mediante un algoritmo polinómico no determinista que puede llamar a un oráculo que resuelve un problema NP).

La Jerarquía Polinómica

- El nivel básico:
 - \bullet $\Delta_0 = P$
 - $\Sigma_0 = P$
 - \bullet $\Pi_0 = P$
- La definición Recursiva:
 - $\bullet \ \Delta_{i+1} = P^{\Sigma_i}$
 - $\bullet \ \Sigma_{i+1} = NP^{\Sigma_i}$
 - $\bullet \ \Pi_{i+1} = CoNP^{\Sigma_i}$

La Jerarquía Polinómica

Ejemplos

$$\Delta_0 = P, \quad \Sigma_0 = P, \quad \Pi_0 = P$$

$$\Delta_1 = P$$
, $\Sigma_1 = NP$, $\Pi_1 = CoP$

$$\Delta_2 = P^{NP}, \quad \Sigma_2 = NP^{NP}, \quad \Pi_2 = CoNP^{NP}$$

Teorema: La Jerarquía Polinómica y la clase BPP

$$\textbf{BPP} \subseteq \Sigma_2 \cap \Pi_2$$

La Jerarquía Polinómica

Teorema

Sea L un lenguaje e $i \ge 1$, entonces $L \in \Sigma_i$ si y solo si existe una relación R polinómicamente equilibrada tal que $\{x; y : R(x, y)\}$ está en Π_{i-1} y

$$L = \{x : \exists y \text{ tal que } R(x, y)\}$$

Teorema

Sea L un lenguaje e $i \ge 1$, entonces $L \in \Pi_i$ si y solo si existe una relación R equilibrada polinómicamente (con polinomio n^k) tal que $\{x; y : R(x, y)\}$ está en Σ_{i-1} y

$$L = \{x : \forall y \text{ tal que } |y| \leq |x|^k, R(x, y)\}$$

Caso Particular

 $L \in \Sigma_2$ si y solo si existe una relación R(x,y,z) verificable en tiempo polinómico y un polinomio p(n) tal que

$$L = \{x \in A^* | \exists y, \forall z \text{ con } |y| \le p(|x|), |z| \le p(|x|), \ R(x, y, z) = 1\}$$

 $L \in \Pi_2$ si y solo si existe una relación R(x, y, z) verificable en tiempo polinómico y un polinomio p(n) tal que

$$L = \{x \in A^* | \forall y, \exists z \text{ con } |y| \le p(|x|), |z| \le p(|x|), \ R(x, y, z) = 1\}$$

La Clase **PH** (La Jerarquía Polinómica)

Definición

$$\mathbf{PH} = \bigcup_{i \geq 0} \Sigma_i$$

Teorema

Si existe un problema **PH** completo, entonces la jerarquía polinómica se colapsa en un nivel *i*:

$$\mathbf{PH} = \bigcup_{0 < j < i} \Sigma_j = \Sigma_i$$

La clase PH

Teorema

PH ⊆ PESPACIO

La pregunta: ¿Son iguales PH y PESPACIO?

No existe una distinción clara entre ambas clases (un problema en **PESPACIO** que no esté en **PH**).

Si son iguales, la jerarquía polinómica se colapsa en un nivel: $\mathbf{PH} = \Sigma_i$.

Teorema

Si SAT puede ser resuelto por una familia polinómica de circuitos (no necesariamente uniforme), entonces la jerarquía polinímica se colapsa en el segundo nivel: $PH = \Sigma_2$.

Estructura de clases

