

Geometria Analitica

Videoaula 3.11

Produto Misto

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FFI IPF TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Produto Misto

Sejam \vec{u} , \vec{v} , \vec{w} vetores em \mathbb{R}^3 .

O **produto misto** entre \vec{u} , \vec{v} e \vec{w} é o número real dado por:

$$(\vec{u}, \vec{v}, \vec{w}) = \vec{u} \cdot (\vec{v} \times \vec{w}).$$

Método Prático

x_1	x_2	x_3
y_1	y_2	y_3
z_1	z_2	z_3

Exemplo

Considere os vetores $\vec{u} = (2, -1, 0), \ \vec{v} = (-1, 4, 3), \ \vec{w} = (3, 1, 1).$

$$(\vec{u}, \vec{v}, \vec{w})$$

Propriedades do Produto Misto

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto misto:

• $(\vec{u}, \vec{v}, \vec{w}) = 0$ se e somente se \vec{u}, \vec{v} e \vec{w} são coplanares.

 $\bullet \quad (\vec{u} \,,\, \vec{v} \,,\, \vec{w}) \,=\, (\vec{v} \,,\, \vec{w} \,,\, \vec{u}) \,=\, (\vec{w} \,,\, \vec{u} \,,\, \vec{v}).$

Propriedades do Produto Misto

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto misto:

$$\bullet \quad (\vec{u} \ , \ \vec{v} \ , \ \vec{w}) \ = \ (\vec{u} \times \vec{v}) \cdot \vec{w}.$$

Propriedades do Produto Misto

Para quaisquer vetores no espaço, são válidas as seguintes propriedade do produto misto:

$$\bullet \quad (\vec{u} \ , \ \vec{v} \ , \ \vec{w} + \vec{r}) \ = \ (\vec{u} \ , \ \vec{v}, \ \vec{w}) + (\vec{u} \ , \ \vec{v} \ , \ \vec{r}).$$

•
$$(\vec{u}, \vec{v}, \lambda \vec{w}) = (\vec{u}, \lambda \vec{v}, \vec{w}) = (\lambda \vec{u}, \vec{v}, \vec{w}) = \lambda (\vec{u}, \vec{v}, \vec{w}).$$

Aplicação 1

Considere os vetores $\vec{u} = (3, -1, 2), \ \vec{v} = (-1, 4, 0), \ \vec{w} = (3, 10, 4).$

Verifique se \vec{u} , \vec{v} e \vec{w} são coplanares.

Aplicação 2

Considere os pontos A = (1, 2, 0), B = (3, 1, 1), C = (2, 1, 4) e D = (-1, 3, 1).

Verifique se os pontos A, B, C e D são coplanares.

Interpretação Geométrica

O módulo do produto misto é o volume do paralelepípedo determinado pelos vetores.

Exemplo

Considere os vetores $\vec{u} = (x, 5, 0), \ \vec{v} = (3, -2, 1), \ \vec{w} = (1, 1, -1).$

Calcule x para que o volume do paralelepípedo gerado por \vec{u} , \vec{v} e \vec{w} seja 24.