AVALIAÇÃO 2 Renan Carlos Loculenstein Comonico Prierdung riangular

(2) a) Determine T(x, y, z) //
b) Matriz de Tem relação a bose
$B = \{(-1,1,0), (1,-1,1), (0,1,-1)\}$
$L_{DT}(-1,1,0) = (-1+1,1+0,-1-0) = (0,1,-1)$
$Z_DT(1,-1,1)=(1-1,-1+1,1-1)=(0,0,0)$
$\frac{2}{\sqrt{10}} = (0+1, 0-1, -1+1) = (1, -1, 0)$
$\int \chi_1(-1,1,0) + \chi_1(1,-1,1) + Z_1(0,1,-1) = (0,1,-1)$
$\chi_{2}(-1,1,0) + \chi_{2}(1,-1,1) + Z_{2}(0,1,-1) = (0,0,0)$
$(-1,1,0) + Y_3(1,-1,1) + Z_3(0,1,-1) = (1,-1,0)$
$ \frac{4D(x_1, y_1, z_1)}{4D(x_1, y_1, z_1)} = \begin{cases} -x + y = 0 & x_1 = 0 \\ x - y + z = 1 & y_1 = 0 \\ y - z = -1 & z_1 = 1 \end{cases} $
$\frac{1}{4\nu(\chi_2, y_2, z_2)} = \begin{cases} -\chi + y = 0 & \chi_2 = 0 \\ \chi - y + z = 0 & \gamma_2 = 0 \end{cases}$ $\frac{1}{4\nu(\chi_2, y_2, z_2)} = \begin{cases} -\chi + y = 0 & \chi_2 = 0 \\ y - z = 0 & \zeta_2 = 0 \end{cases}$

credeal

$\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} -2 + y = 1 \\ 2 - y + z = -1 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$ $\frac{1}{2p(x_3, y_3, z_3)} = \begin{cases} x - y + z = -1 \\ y - z = 0 \end{cases}$
A moting $e \rightarrow x_1 x_2 x_3$ $x_1 x_2 x_3$ $x_1 x_2 x_3$ $x_2 x_3$
Portante, a motrin é [0 0 -1] 0 0 0 1 0 0

credeal