Elliptic Curves

Sierra Woods

Mentor: Asimina Hamakiotes University of Connecticut

December 10, 2022

Overview

- 1. Definitions
- 2. Weierstrass Equations
- 3. Group Structure with Addition
- 4. Mordell-Weil
- 5. Rank
- 6. Applications

Definitions

Definition (Elliptic Curves)

An *elliptic curve* E/\mathbb{Q} is a smooth cubic projective curve E defined over \mathbb{Q} with at least one rational point $\mathcal{O} \in E(\mathbb{Q})$ that is called the *origin*. Note that

- *smooth* means non-singular, there are no points on the graph where the tangent lines in the x, y, and z directions disappear
- projective means contained within the projective plane. We define the projective plane as

$$\mathbb{P}^{2}(\mathbb{R}) = \{ [x, y, 1] : x, y \in \mathbb{R} \} \cup \{ [a, b, 0] : a, b \in \mathbb{R} \}.$$

Geometrically

Elliptic Curves

Figure: Some different elliptic curves.

Geometrically

Elliptic Curves

Figure: Two curves in affine coordinates with singularities.

Equation

Definition

This is how we define an elliptic curve over the rationals E/\mathbb{Q} in the projective plane.

$$F(X,Y,Z) = aX^3 + bX^2Y + cXY^2 + dY^3 + eX^2Z + fXYZ + gY^2Z + hXZ^2 + jYZ^2 + kZ^3 = 0$$

with coefficients $a, b, \ldots, k \in \mathbb{Q}$ such that E is smooth.

Definition

Sometimes we consider simply the affine charts of E, where we consider points of the form [X, Y, 1] and study the curve given in affine coordinates by

$$aX^{3} + bX^{2} + cXY^{2} + dY^{3} + eX^{2} + fXY + gY^{2} + hX + jY + k = 0.$$

It is important to recognize that we are missing points of the form [X, Y, 0] satisfying the projective equation, called the *points at infinity*.

Geometrically

Elliptic Curves

We can utilize the coordinate change from affine to projective by x = X/Z and y = Y/Z.

1.
$$Y^2Z = X^3 - Z^3$$

2.
$$Y^2Z = X^3 + Z^3$$

3.
$$Y^2Z = X^3 - 3XZ^2 + 3Z^3$$

4.
$$Y^2Z = X^3 - 4XZ^2$$

5.
$$Y^2Z = X^3 - XZ^2$$

Geometrically

Elliptic Curves

Figure: For the curve on the left, we can find a projective curve $D: x^3 - y^2z$. After this, we can find the singularity as $\frac{\partial D}{\partial x} = \frac{\partial D}{\partial y} = \frac{\partial D}{\partial z} = 0$ at [0, 0, 1] by

$$\frac{\partial D}{\partial x} = 3x^2$$

$$\frac{\partial D}{\partial x} = 3x^2$$
 $\frac{\partial D}{\partial y} = -2yz$ $\frac{\partial D}{\partial z} = -y^2$.

$$\frac{\partial D}{\partial z} = -y^2$$

Weierstrass Equation

Definition (Weierstrass Equation)

A Weierstrass equation is an elliptic curve E of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_i \in \mathbb{Q}$. Typically however, we write a Weierstrass equation in projective coordinates as $y^2z=x^3+Axz^2+Bz^3$ or in affine coordinates as $y^2=x^3+Ax+B$. Any Weierstrass equation of this form is non-singular iff $4A^3+27B^2\neq 0$ and has a unique point at infinity called the origin $\mathcal{O}=[0,1,0]$.

Example

Looking back at our equations from earlier, we see $E: y^2 = x^3 + 1$ is non-singular because $4(0) + 27(1) = 27 \neq 0$. Similarly, $y^2 = x^3$ is singular because 4(0) + 27(0) = 0 and we found the point of singularity at (0,0) in affine or [0,0,1] in projective.

Isomorphisms

Definition

Let E: f(x,y) = 0 be an elliptic curve with origin \mathcal{O} , and let E': g(X,Y) = 0 be an elliptic curve with origin \mathcal{O}' . We say E is isomorphic to E' over \mathbb{Q} if there is an invertible change of variables $\psi: E \to E'$, defined by rational functions with coefficients in \mathbb{Q} , such that $\psi(\mathcal{O}) = \mathcal{O}'$.

Theorem

Let E/\mathbb{Q} be an elliptic curve given by a Weierstrass equation $y^2=x^3+Ax+B$ with $A,B\in\mathbb{Z}$. Then E has only a finite number of integral points.

Change of Coordinates

Proposition

Let $E/\mathbb{Q}: y^2+a_1xy+a_3y=x^3+a^2x^2+a_4x+a_6$ be an elliptic curve for $a_i\in\mathbb{Q}$. We can find a map by $(x,y)\to (u^{-2}x,u^{-3}y)$, we can find the equation of an elliptic curve isomorphic to E given by

$$E': y^2 + (a_1u)xy + (a_3u^3)y = x^3 + (a_2u^2)x^2 + (a_4u^4)x + (a_6u^6)$$

with coefficients $a_i u^i \in \mathbb{Z}$ for i = 1, 2, 3, 4, 6.

Example

Let
$$E: y^2 = x^3 + \frac{x}{2} + \frac{5}{3}$$
. We may change variables by $x = \frac{X}{6^2}$, and $y = \frac{Y}{6^3}$ to obtain

$$Y^2 = X^3 + 648X + 77760.$$

Addition of Points

P+Q

Let E be given by a Weierstrass equation $y^2=x^3+Ax+B$ with $A,B\in\mathbb{Q}$. Let P and Q be two rational points in $E(\mathbb{Q})$ such that $P\neq Q$ and let $\mathcal{L}=PQ$ be the line that goes through P and Q. If R is the third intersection point on \mathcal{L} , then the sum of P and Q, denoted by P+Q is the second point of intersection with E of the vertical line that goes through R, or in other words, the reflection of R across the x-axis.

Addition of Points

Let E be elliptic curve $v^2 = x^3 - 25x$. We can find $P, Q \in E(\mathbb{Q})$ by P = (5,0) and Q = (-4, 6). In order to find P + Q, we find $\mathcal{L} = P\overline{Q}$. We can find $m = \Delta y/\Delta x = -2/3$ and thus we find the line between them to be $\mathcal{L}:-\frac{2}{3}(x-5)$. We can find the third point of intersection by solving a systems of equation and thus we receive $R = (-\frac{5}{9}, \frac{100}{27})$. Now we reflect R across the x-axis, so $P+Q=(-\frac{5}{0},-\frac{100}{27}).$

Addition of Points

Figure: The rational points on $y^2 = x^3 + 1$ for P = (2,3). Notice 5P = -P so $6P = 5P + P = \mathcal{O}$.

Moreover, notice
$$3P + 2P = 5P = 2P + 3P$$
.

Review of Groups

Definition

A group (G, \cdot) is a set G associated with a binary operation \cdot where the following conditions are satisfied:

- 1. Closure: $\forall g, h \in G, g \cdot h \in G \text{ and } h \cdot g \in G$.
- 2. Identity: $\exists e \in G$ such that $\forall g \in G$, $e \cdot g = g = g \cdot e$.
- 3. Inverses: $\forall g \in G$, $\exists g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$.
- 4. Associativity: $\forall g, h, k \in G, g \cdot (h \cdot k) = (g \cdot h) \cdot k$.

If a group also satisfies commutativity, so $\forall g, h \in G$, $g \cdot h = h \cdot g$, then we say G is an abelian group. An abelian group is called finitely generated if $\exists H \subset G$ subset such that H generates G.

Mordell-Weil Theorem

Example

Going back to our equation, $E/\mathbb{Q}: y^2=x^3+1$, the point $P=(2,3)\in E(\mathbb{Q})$ has order 6. Given that $E(\mathbb{Q})$ has order 6, we can find that $E(\mathbb{Q})=\{\mathcal{O},P,2P,3P,4P,5P\}$ is a finitely generated abelian group. We can see closure, inverses by -P=5P, -2P=4P, and -3P=3P. This implies the identity is $\mathcal{O}\in E(\mathbb{Q})$, and we can see commutativity by geometry.

Theorem (Mordell-Weil)

There are points P_1, \ldots, P_n such that any other point $Q \in E(\mathbb{Q})$ can be expressed as a linear combination $Q = a_1P_1 + a_2P_2 + \cdots + a_nP_n$ for some $a_i \in \mathbb{Z}$. Thus $E(\mathbb{Q})$ is a finitely generated abelian group.

Mordell-Weil Cont.

Theorem (Weak Mordell-Weil)

 $E(\mathbb{Q})/mE(\mathbb{Q})$ is a finite group $\forall m \geq 2$.

Corollary

We find

$$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\mathsf{torsion}} \oplus \mathbb{Z}^{R_E}.$$

The Torsion Subgroup

$$E(\mathbb{Q})\cong E(\mathbb{Q})_{\mathsf{torsion}}\oplus \mathbb{Z}^{R_E}$$

Definition

We define the torsion subgroup to be

$$E(\mathbb{Q})_{\mathsf{torsion}} = \{ P \in E(\mathbb{Q}) : \exists n \in \mathbb{N} \text{ such that } nP = \mathcal{O} \}.$$

Definition

We define \mathbb{Z}^{R_E} as an abelian group where R_E represents the order of the set $F = \{P \in E(\mathbb{Q}) : nP \neq \mathcal{O} \ \forall n \in \mathbb{Z} \ s.t. \ n \neq 0\}$. And $\mathbb{Z}^{R_E} = \mathbb{Z} \times \cdots \times \mathbb{Z}$ for R_E times.

Ogg's Conjecture

Theorem

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{torsion}$ is isomorphic to exactly one of the following groups:

$$\mathbb{Z}/N\mathbb{Z}$$
 with $1 \leq N \leq 10$ or $N=12$, or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2M\mathbb{Z}$ with $1 \leq M \leq 4$

Example

Remembering our previous example, $E/\mathbb{Q}: y^2=x^3+1$, we saw $E(\mathbb{Q})_{torsion}=\{\mathcal{O},P,2P,3P,4P,5P\}$ was a group with order 6. Thus we can apply Ogg's Conjecture and say $E(\mathbb{Q})_{torsion}\cong \mathbb{Z}/6\mathbb{Z}$. Given there are only 6 rational points and we have found them all, we see $R_E=0$ thus $E(\mathbb{Q})\cong E(\mathbb{Q})_{torsion}\cong \mathbb{Z}/6\mathbb{Z}$.

More Examples

Example

Consider the curve $E/\mathbb{Q}: y^2=x^3+7105x^2+1327104x$. We can find the torsion subgroup to be generated by T=(1152,111744) with order 4 (so $4T=\mathcal{O}$). We can also find three points of infinite order: $P_1=(-6912,6912), P_2=(-5832,188568),$ and $P_3=(5400,206280).$ We see $E(\mathbb{Q})_{torsion}\cong \mathbb{Z}/4\mathbb{Z}$ and because $R_E=3$, we have $E(\mathbb{Q})\cong \mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}^3$. But what about the rank?

Rank

Theorem

For any $N \ge 1$, let $\nu(N)$ be the number of distinct positive prime divisors of N. Let E/\mathbb{Q} be an elliptic curve given by $E: y^2 = x^3 + Ax^2 + Bx$ for $A, B \in \mathbb{Z}$. We have:

$$R_E \le \nu(A^2 - 4B) + \nu(B) - 1.$$

Example

Going back to $E/\mathbb{Q}: y^2=x^3+7105x^2+1327104x$, we have A=7105 and B=1327104. So $A^2-4B=45172609$ which has prime factorization $97^2\cdot 4801$ so we find $\nu(45172609)=2$. Furthermore, 1327104 has prime factorization $2^{14}\cdot 3^4$, thus $\nu(1327104)=2$, and by the formula, $R_E\leq 2+2-1=3$. Since we found 3 points of infinite order and $R_E\leq 3$, we can clearly see $R_E=3$ and once again conclude $E(\mathbb{Q})\cong \mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}^3$.

Why?

Applications

- Fermat's last theorem
- Cryptography

Cryptography

- Recall point addition
- Point on curve called public point. Some number $pr \in \mathbb{Z}$ called private key, and we find the public key by multiplying public point by pr many times.
- Discrete Logarithmic Problem, so computationally difficult that there is no known algorithm to determine the answer or simplify the problem
- Elliptic curves are symmetric on both sides so we only consider x value and parity of y value, making it efficient for data-usage

Bitcoin

- Apple
- US Government
- Bitcoin uses the curve **Secp256k1** known as $y^2 = x^3 + 7$

References

- Judson, Thomas W. "Abstract Algebra: Theory and Applications." AATA, 9 Aug. 2021, http://abstract.ups.edu/aata/aata.html
- Lozano-Robledo, Álvaro. Elliptic Curves, Modular Forms, and Their L-Functions. Vol. 58, American Mathematical Society Institute for Advanced Study, 2009.
- Saqan, Suhail. "Explanation of Bitcoin's Elliptic Curve Digital Signature Algorithm." Medium, Medium, 26 Feb. 2022, https://suhailsaqan.medium.com/explanation-of-bitcoins-elliptic-curve-digital-signature-algorithm-6603f951863a.
- Weisstein, Eric W. "Elliptic Curve." Wolfram MathWorld, Wolfram Research, https://mathworld.wolfram.com/EllipticCurve.html.

The End