Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 CS2CO01 Data Structure

Programme: Diploma Branch/Specialisation: CS

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

1 (IV	ICQs)	snould be written in full instea	id of only a, b, c or d.	
) .1	i.	Which of the following data	structures are indexed structures?	1
		(a) Linear arrays	(b) Linked lists	
		(c) Both (a) & (b)	(d) None of these	
	ii.	Which of the following show	vs the correct order of algorithms in	1
		increasing order of best case	time complexity?	
		(a) Insertion Sort, Selection	Sort, Merge Sort.	
		(b) Bubble Sort, Selection So	ort, Quick Sort.	
		(c) Quick Sort, Insertion Sor	t, Selection Sort.	
		(d) Insertion Sort, Quick Sor	t, Selection Sort.	
	iii.	A linear list in which each r	node has point to the predecessor and	1
		successors nodes is called		
		(a) Singly linked list	(b) Circular linked list	
		(c) Doubly linked list	(d) Linear linked list	
iv. The postfix form of the expression $(A+B)*(C*D-E)*F/G$ is?			ession $(A+B)*(C*D-E)*F/G$ is?	1
		(a) $AB + CD*E - FG /**$	(b) $AB + CD*E - F**G /$	
		(c) $AB + CD*E - *F*G /$	(d) $AB + CDE * - * F *G /$	
v. A full binary tree with n leaves contains		ves contains	1	
		(a) n nodes	(b) log2n nodes	
		(c) 2n - 1 nodes	(d) 2n+1 nodes	
	vi.	A binary search tree is also known as:		1
		(a) B-tree	(b) Binary sorted tree	
		(c) Binary ordered tree	(d) B+ tree	

P.T.O.

	vii.	Dijkstra algorithm is also called the shortest path problem.		1
		(a) Multiple source	(b) Single source	
		(c) Single destination	(d) Multiple destination	
viii.		A minimal spanning tree of	a graph G is?	1
		(a) A spanning sub Graph	(b) A tree	
		(c) Minimum weights	(d) All of these	
	ix.	A graph with no cycle is call	led as:	1
		(a) Directed Graph	(b) Acyclic graph	
		(c) Sub graph	(d) None of these	
	х.	Tree structure diagram in v	which pointers of data are stored at	1
		leaf nodes of diagram is class	ssified as:	
		(a) B tree (b) B ⁺ tree	(c) B^2 tree (d) B^* tree	
Q.2 i.		What is an algorithm? What	are its characteristics?	2
	ii.		earch. Write its time complexity.	3
	iii.		tiate between one dimensional and	5
		two dimensional arrays.		
OR	iv.	Explain selection sort and in	sertion sort briefly.	5
Q.3	i.	How do declare a structure of	of a linked list?	2
	ii.	What is doubly linked list?	? Explain inset operation in doubly	8
		linked list.		
OR	iii.	Translate the following arith	nmetic expression into its equivalent	8
		infix expression showing each	ch step of conversion:	
		1273-/215+*+		
Q.4	i.	What are the average number	ber of comparison in Binary search	2
		tree?		
	ii.	What is Binary Search Toperation in BST:	ree (BST)? Explain the following	8
		•	T(b) Inserting a new value in BST	

[3]

		A binary tree T has 9 nodes. The in order and pre-order traversal of T yield of the following sequence of nodes:	8
		Inorder: EACKFHDBG	
		Preorder: FAEKCDHGB	
		Draw the tree.	
Q.5	i.	Define Minimum Spanning Tree. List the technique to compute minimum spanning tree.	4
	ii.	Write Depth First Search algorithm to traverse a graph.	6
OR	iii.	Explain Dijkstra's algorithm with suitable example.	6
Q.6	i.	Give an algorithm for quick sort and write its time complexity.	4
	ii.	Define B+ tree. In an empty B+ tree, insert the following data: 65 70 75 80 85 60 55 50 45.	6
OR	iii.	Define the term Graph. With the help of suitable example give adjacency matrix representation and adjacency list representation of the graph.	6

CS2CO01 Data Structure

Marking Scheme

Q.1	i.	(a) Linear arrays	1
	ii.	(d) Insertion Sort, Quick Sort, Selection Sort.	1
	iii.	(c) Doubly linked list	1
	iv.	(a) $AB + CD*E - FG / **$	1
	v.	(c) 2n - 1 nodes	1
	vi.	(b) Binary sorted tree	1
	vii.	(b) Single source	1
	viii.	(d) All of these	1
	ix.	(b) Acyclic graph	1
	х.	(b) B ⁺ tree	1
Q.2	i.	Algorithm – 1 mark	2
		Characteristics – 1 mark	
	ii.	Function for linear search – 2 marks	3
		Time complexity – 1 mark	
	iii.	Array – 1 mark	5
		Difference – 4 marks (minimum 4 differences)	
OR	iv.	Selection sort - 2.5 marks	5
		Insertion sort – 2.5 marks	
Q.3	i.	Structure of a linked list	2
	ii.	Doubly linked list – 2 marks	8
		Inset operation in doubly linked list- 6 marks	
OR	iii.	Translate the following arithmetic expression into its equivalent	8
		infix expression showing each step of conversion:	
		1273-/215+*+	
Q.4	i.	Binary search tree	2
	ii.	Binary Search Tree- 2 marks	8
		(a) Searching a Value in BST - 3 marks	
		(b) Inserting a new value in BST − 3 marks	
OR	iii.	Inorder – 4 marks	8
		Preorder – 4 marks	

Q.5	i.	Minimum Spanning Tree − 2 marks	4
		Technique- 2 marks	
	ii.	Depth First Search algorithm to traverse a graph.	6
OR	iii.	Dijkstra's algorithm Overview – 1 marks	6
		Suitable example with proper steps -5 marks	
Q.6	i.	Write Algorithm for quick sort and write its time complexity.	4
	ii.	Define B+ tree – 1 marks	6
		inserting data: 65 70 75 80 85 60 55 50 45 – 5 marks	
OR	iii.	Graph – 2 marks	6
		Adjacency matrix representation – 2 marks	
		Adjacency list representation – 2 marks	
