SLEPIAN WOLF ENCODING

ASHUDEEP SINGH

CHANDRA PRAKASH

DISTRIBUTED SOURCE CODING

- An important problem in information theory and communication.
- DSC problems regard the compression of multiple correlated information sources that do not communicate with each other.
- By modeling the correlation between multiple sources at the decoder side together with channel codes, DSC is able to shift computation complexity from encoder side to the decoder side.
- Provides appropriate frameworks for video/multimedia compression and sensor networks.

SLEPIAN-WOLF BOUND

- Suppose Alice has X, and Bob has Y.
- Alice wants to compress data using entropy H(X)
- Bob wants to compress data using entropy H(Y)
- They use one decoder and the rate of compression is R(X)+R(Y)=H(X)+H(Y).
- But, Slepian Wolf encoding states that even if there is no link between Alice and Bob, you can do with H(X,Y) compression rate, knowing the correlation between X and Y.

AN EXAMPLE

- Suppose, weather in 2 neighboring towns-Janestown and Thomasville, is correlated.
- Each town has a weather "good" or "bad" with equal probabilities, and the probability that the 2 towns have different weather on a given day is p.
- Jane, a resident in Janestown wants to send last year's weather to Tom in Thomasville.
 - If Jane knows the weather in Thomasville, she can just send the difference string, which will have 365p bits as "1" and 365(1-p) as a "0". The difference string can be compressed to 365h₂(p) length h₂ being the entropy of difference string.
 - Even if Jane is unaware of the weather in Thomasville, she can send the same length signal.
 - This follows from **Slepian Wolf encoding**.

SFORMULATION

Let X and Y be two discrete sources, with probabilities p(x) and p(y), which are formed from N-independent drawings from a joint distribution p(x,y).

An encoding function f_1 is a map from X^n (n length drawing from X) to 2^{nR1} of a codeword,

$$f_1: X^n \to \{1, 2, \dots, 2^{nR_1}\}$$

Similarly for Y,

$$f_2: Y^n \to \{1,2,....2^{nR_2}\}$$

Then there is a single decoding function g, which is:

g:
$$\{1,2,....2^{nR_1}\}\times\{1,2,....2^{nR_2}\} \rightarrow X^n \times Y^n$$

This gives us back the sequences. In this process the error probability $\Pr(g(f_1(x^n),f_2(x^n))\neq (x^n,y^n)))=P_e^{(n)}$. (R_1,R_2) are achievable if \exists encoding and decoding functions, such that $P_e^{(n)} \rightarrow 0$, and $R_1 \ge H(X)$ and $R_2 \ge H(Y)$.

DADMISSIBLE RATE PAIRS

The systems of interest are those for which the probability that X_1^* doesn't equal X_1 and X_2^* doesn't equal X_2 can be made as small as possible by choosing sufficiently large n.

- Such systems are said to be ADMISSIBLE SYSTEMS.
- The rate pair (R1,R2) for an admissible system is called an *ADMISSIBLE RATE PAIR*.
- ❖ The closure of all such admissible pairs is called the ADMISSIBLE RATE REGION.

SLEPIAN WOLF THEOREM

states that:

The admissible rate region for the pair of rates (R1, R2) is the set of points that satisfy the three inequalities:

$$R_1 \ge H(X_1 | X_2)$$
 $R_2 \ge H(X_2 | X_1)$
 $R_1 + R_2 \ge H(X_1, X_2)$

SIGNIFICANCE OF THE THEOREM

- The significance of the theorem is seen by comparing it to the entropy bound for the compression rates of single sources.
- Separate encoders which ignore the source correlation can achieve rates only upto:

$$R_1 + R_2 \ge H(X_1) + H(X_2).$$

 However for Slepian-Wolf coding the encoders exploit the knowledge of correlation to achieve the same rates as an optimal joint encoder, namely

$$R_1 + R_2 \ge H(X_1, X_2).$$

Note that: $H(X_1)+H(X_2) \ge H(X_1,X_2)$

PROOF

- Necessity:
 - The necessity of the 3 inequalities follows by considering a modified system in which the pair of source sequences, X₁ and X₂ are input to a single encoder.
 - The output of this single encoder must have a rate at least $H(X_{1,}X_{2})$. Thus, $R_{1} + R_{2} \ge H(X_{1}, X_{2})$
 - Furthermore if the decoder somehow knows X_2 , the single encoder would require a code whose rate is at least $H(X_1 \mid X_2)$. Thus, $R_1 \ge H(X_1 \mid X_2)$
 - By symmetry, $R_2 \ge H(X_2 \mid X_1)$

PROOF (CONTD.)

SUFFICIENCY:

- Claim: Proving the admissibility at $R_1 = H(X_1 | X_2)$, $R_2 = H(X_2)$ is established, then we can say that the claimed region is admissible.
 - Proof:

- ii. the admissibility of all rate pairs on the straight line connecting the rate pair $R_1=H(X_1\mid X_2),\,R_2=H(X_2)$ with the rate pair $R_1=H(X_1),\,R_2=H(X_2\mid X_1)$ follows from timesharing; and
- iii. the admissibility of all rates within the admissibility region but not on the boundaries follows from wasting bits.

PROOF

- Sufficieny:
 - Consider the particular rate pair $R_1 = H(X_1 | X_2)$ and $R_2 = H(X_2)$.
 - Note that if $R_1=H(X_1\mid X_2)$, $R_2=H(X_2)$, then the output of Encoder-2 suffices to reconstruct X_2 . So, the system becomes equivalent to the below system.

PROOF (CONTD.)

- The original construction of an admissible system at the rate point $R_1 = H(X_1 | X_2)$, $R_2 = H(X_2)$ was found for a particular model of the statistics of the correlated source pair called the **twin binary symmetric source**.
 - A twin binary symmetric source is a memoryless source whose outputs X_1 and X_2 are binary random variables (taking on the values 0 and 1) described by
 - $P(X_1=0)=P(X_1=1)$
 - $P(X_2=0 | X_1=1)=P(X_2=1 | X_1=0)=p$
 - $P(X_2=0 | X_1=0)=P(X_2=1 | X_1=1)=1-p$,

p,(1-p) where p is a parameter satisfying $0 \le p \le 1$. Note that $P(X_2=0)=P(X_2=1)=1/2$.

- Define $h_2(p) = -[plog_2(p) + (1-p)log_2(1-p)]$. For the twin binary symmetric source:
 - $H(X_1)=1$
 - $H(X_2)=1$
 - $H(X_2 | X_1) = H(X_1 | X_2) = h_2(p)$
 - $H(X_1, X_2) = 1 + h_2(p)$.

For the twin binary symmetric source, the rate point of interest has $R1=H(X_1\mid X_2)=h_2(p)$ and $R_2=H(X_2)=1$.

PROOF (CONTD.)

- Compressing X₁:
 - The problem of compressing X_1 can be thought of as the problem where we transmit X_1 and X_2 is received at the other end of a Binary Symmetric channel. What we need is a parity check code!
 - It is known that a parity check code exists for a BSC with approx. $2^{n(1-h2(p))}$ codewords such that when X_2 is seen on the channel, we can reliably tell which codeword was actually sent (i.e. X_1).
 - But there are 2ⁿ binary strings that can be X₁.
 - So, we do a construction called co-set decomposition.
 - Each co-set has a length $2^{n(1-h2(p))}$, therefore the number of cosets are: $2^n/2^{n(1-h2(p))}=2^{nh2(p)}$
 - Now the encoder of X_1 can send the information about X_1 in $nh_2(p)$ bits.
 - Decoder uses this information and the already present information X_2 to construct X_1 reliably.

PROOF (CONCLUSION)

- Applying this construction to the problem at hand, X₁ must be in one
 of the cosets of the group code.
- If the source encoder transmits to the decoder the identity of the coset containing X_1 , the decoder can determine X_1 from this knowledge and its knowledge of X_2 by using a decoder for the coset code that operated on the "received" word X_2 .
- Since there are $2^{\text{nh}2(p)}$ cosets, the encoder must transmit $\text{nh}_2(p)$ binary digits.

The rate of transmission is $h_2(p)=H(X_1\mid X_2)$. This establishes the admissibility of the rate point $R_1=H(X_1\mid X_2)=h_2(p)$ and $R_2=H(X_2)=1$.

The entire admissible rate region then follows from symmetry, timesharing and wasting bits.

REMARKS

- The Slepian-Wolf theorem applies to a much wider class of problems than that described here.
- The statistical description of the source sequences can be of a much more general nature,
 - there can be more than two correlated source sequences, and
 - the configuration of the encoders and decoder can be of many different types.