JOINT CRAB: TOWARDS AN OPEN SOURCE, REPRODUCIBLE GAMMA-RAY ASTRONOMY

C. Nigro¹

¹DESY Zeuthen

A Python package for gamma-ray astronomy coding sprint 2018, MPIK Heidelberg

Cosimo Nigro 1 / 14

Introduction

Cosimo Nigro 2 / 14

The joint-crab project

- combined analyses (Fermi + IACT, IACT + IACT) already exist
 - \rightarrow no standard format
 - ightarrow case-by-case analysis method (= hacking / new implementations of collaboration softwares)
- joint-crab is the first Crab Nebula spectrum with Fermi, MAGIC, VERITAS, FACT, HESS event lists
- joint-crab intends to be the first fully reproducible multi-intrument VHE analysis!
- no scientific paper, purpose is:
 - → attract interest in DL3 activities in IACTs
 - → continue the effort started with Data formats for gamma-ray astronomy

Cosimo Nigro 3 / 14

How is reproducibility achieved?

- open source code used for the analysis: gammapy + sherpa
- all the code will be publicly available in https://github.com/gammasky/joint-crab
- \geq the size of the data is \sim MB, can be provided along with the code in github
- packages managed via anaconda environment
- it may happen that the conda virtual environment is not enough to guarantee reproducibility, a Docker container will be provided on Docker Hub
- long term archiving (journal, data center)?

Cosimo Nigro 4 / 14

Analysis

Cosimo Nigro 5 / 14

The analysis

analysis method: simple 1D analysis (standard in IACT), ingredients:

> OGIP files produced to be used with sherpa

Fermi-LAT 1D analysis

- > 3FHL event list
- > $N_{
 m ex}$ estimated via **ring background**
 - \rightarrow 0.3 deg On region
 - \rightarrow [1,2] deg ring Off region
- >~ exposure @ Crab position (gtexpcube2) PSF corrected $\sim A_{
 m eff} imes t_{
 m eff}$
- > spectral distortion less than 5% at these energies \approx EDISP with bias 0 and dispersion 0.05

Cosimo Nigro 7 / 14

Datasets

- first (Fermi + MAGIC + VERITAS + FACT+ HESS) combined analysis (@ event list level)
 - \rightarrow 3FHL event list + E > 30 GeV (avoid contamination from Pulsar)
 - ightarrow 2 MAGIC runs (\sim 40 mins) from 2013 (used for post-upgrade performance paper)
 - → 4 HESS runs from DL3 public data release 1
 - → FACT data from their already public Crab data release
 - → new! VERITAS data being finalized...

Cosimo Nigro 8 / 14

Spectrum

> log-parabola fit: $\frac{d\phi}{dE} = f_0 \times (\frac{E}{1\text{TeV}})^{-\Gamma + \beta \times \log(E/(1\text{ TeV}))}$

> a fit with naima can also be performed (physical instead of analytical function for flux)

Cosimo Nigro 9 / 14

Parameters contours

Cosimo Nigro 10 / 14

About this coding sprint... ("what do you want from us?")

Cosimo Nigro 11 / 14

A possible to-do list (joint-crab \rightarrow gammapy)

- there are some features that I have already implemented in the joint-crab project and that can be useful and already integrated in gammapy:
 - → 1D spectrum extraction for *Fermi*-LAT data discussion in issue #7
 - → better evaluation of the flux vs energy error band (butterfly) via multivariate sampling (instead of error propagation) discussion in issue #58

Cosimo Nigro 1:

A possible to-do list (gammapy \rightarrow joint-crab)

- there are features that would help us in the paper and are not yet implemented
 - → GTI handling for the event lists discussion in issue #57
- there are some issues open in our project, looking into them usually helps us to spot problems in gammapy
 - → results still differ when using gammapy's SpectrumFit or sherpa discussion in issue #71
 - → we have broken likelihood contours in sherpa discussion in issue #50

Cosimo Nigro 13 / 14

Action!

- this project is a big opportunity to test gammapy on real data, from all the existing gamma-ray instruments!
- talk to me or Cristoph if you want to help with any of this issues / features

Cosimo Nigro 14 / 14