

Sistemas Digitais

Simulação de Blocos Esquemáticos no Quartus II e FPGA

Altera Cyclone II

Altera Cyclone II

Altera Cyclone II - CUIDADOS!!!

- Cada aluno é responsável pelo kit que está usando.
- Não conecte nenhuma fonte de tensão ao kit.
- Não conectar nenhum cabo ou fio com a placa ligada.
- Não consumir bebidas na bancada.
- Não colocar a placa sobre uma superfície metálica.
- Segurar as placas pelas bordas.
 - Não colocar a mão nos componentes (problemas com a eletricidade estática podem queimar os componentes).
- Não retirar a placa do Laboratório Digital.
- Terminada a experiência guardar a placa na caixa.
- Qualquer dúvida, perguntar ao professor ou ao técnico.

Altera Cyclone II - Gravação

JTAG Configuration Setup

Altera Cyclone II - Gravação

AS Configuration Setup

Altera Cyclone II - Push Buttons

Pressionado: Nível Baixo (0V)

Solto: Nível Alto (3,3 V)

Possui circuito com Schmitt Trigger para debounce

Push Button Switch FPGA Pin Connections

Switch	FPGA Pin	Description
KEY[0]	PIN_R22	Pushbutton[0]
KEY[1]	PIN_R21	Pushbutton[1]
KEY[2]	PIN_T22	Pushbutton[2]
KEY[3]	PIN_T21	Pushbutton[3]

Altera Cyclone II – Togle Switches

Pressionado: Nível Baixo (0V)

Solto: Nível Alto (3,3 V)

Toggle Switch	FPGA Pin	Connections
---------------	----------	-------------

Switch	FPGA Pin	Description
SW[0]	PIN_L22	Toggle Switch[0]
SW[1]	PIN_L21	Toggle Switch[1]
SW[2]	PIN_M22	Toggle Switch[2]
SW[3]	PIN_V12	Toggle Switch[3]
SW[4]	PIN_W12	Toggle Switch[4]
SW[5]	PIN_U12	Toggle Switch[5]
SW[6]	PIN_U11	Toggle Switch[6]
SW[7]	PIN_M2	Toggle Switch[7]
SW[8]	PIN_M1	Toggle Switch[8]
SW[9]	PIN_L2	Toggle Switch[9]

Altera Cyclone II – LEDs

LED FPGA Pin Connections		
Signal Name	FPGA Pin	Description
LEDR[0]	PIN_R20	LED Red[0]
LEDR[1]	PIN_R19	LED Red[1]
LEDR[2]	PIN_U19	LED Red[2]
LEDR[3]	PIN_Y19	LED Red[3]
LEDR[4]	PIN_T18	LED Red[4]
LEDR[5]	PIN_V19	LED Red[5]
LEDR[6]	PIN_Y18	LED Red[6]
LEDR[7]	PIN_U18	LED Red[7]
LEDR[8]	PIN_R18	LED Red[8]
LEDR[9]	PIN_R17	LED Red[9]
LEDG[0]	PIN_U22	LED Green[0]
LEDG[1]	PIN_U21	LED Green[1]
LEDG[2]	PIN_V22	LED Green[2]
LEDG[3]	PIN_V21	LED Green[3]
LEDG[4]	PIN_W22	LED Green[4]
LEDG[5]	PIN_W21	LED Green[5]
LEDG[6]	PIN_Y22	LED Green[6]
LEDG[7]	PIN_Y21	LED Green[7]

Altera Cyclone II – Display de 7 segmentos

Aceso: Nível Baixo (0V) Apagado: Nível Alto (3,3 V)

Seven-Segment Display FPGA Pin Connections (Part 2 of 2)

Seven-Segment Display FPGA Pin Connections (Part 1 of 2)		
Signal Name	FPGA Pin	Description
HEX0[0]	PIN_J2	Seven-Segment segment 0[0]
HEX0[1]	PIN_J1	Seven-Segment segment 0[1]
HEX0[2]	PIN_H2	Seven-Segment segment 0[2]
HEX0[3]	PIN_H1	Seven-Segment segment 0[3]
HEX0[4]	PIN_F2	Seven-Segment segment 0[4]
HEX0[5]	PIN_F1	Seven-Segment segment 0[5]
HEX0[6]	PIN_E2	Seven-Segment segment 0[6]
HEX1[0]	PIN_E1	Seven-Segment segment 1[0]
HEX1[1]	PIN_H6	Seven-Segment segment 1[1]
HEX1[2]	PIN_H5	Seven-Segment segment 1[2]
HEX1[3]	PIN_H4	Seven-Segment segment 1[3]
HEX1[4]	PIN_G3	Seven-Segment segment 1[4]
HEX1[5]	PIN_D2	Seven-Segment segment 1[5]
HEX1[6]	PIN_D1	Seven-Segment segment 1[6]

Seven-Seyment Display Frum Fill Connections (Fait 2 of 2)		
Signal Name	FPGA Pin	Description
HEX2[0]	PIN_G5	Seven-Segment segment 2[0]
HEX2[1]	PIN_G6	Seven-Segment segment 2[1]
HEX2[2]	PIN_C2	Seven-Segment segment 2[2]
HEX2[3]	PIN_C1	Seven-Segment segment 2[3]
HEX2[4]	PIN_E3	Seven-Segment segment 2[4]
HEX2[5]	PIN_E4	Seven-Segment segment 2[5]
HEX2[6]	PIN_D3	Seven-Segment segment 2[6]
HEX3[0]	PIN_F4	Seven-Segment segment 3[0]
HEX3[1]	PIN_D5	Seven-Segment segment 3[1]
HEX3[2]	PIN_D6	Seven-Segment segment 3[2]
HEX3[3]	PIN_J4	Seven-Segment segment 3[3]
HEX3[4]	PIN_L8	Seven-Segment segment 3[4]
HEX3[5]	PIN_F3	Seven-Segment segment 3[5]
HEX3[6]	PIN_D4	Seven-Segment segment 3[6]

Altera Cyclone II – Cartão SD

Comunicação SPI

SD Card FPGA Connections		
Signal Name	FPGA Pin	Description
SD_DAT	W20	Data to/from SD Card
SD_DAT3	U20	SD Card Chip Select
SD_CMD	Y20	Command line for SD Card
SD_CLK	V20	SD Card Clock

Altera Cyclone II – Comunicação RS232

Table 2–16. RS-232 Serial Circuit FPGA Pin Connections		
Signal Name	FPGA Pin	Description
UART_RXD	PIN_F14	UART Receiver
UART_TXD	PIN_G12	UART Transmitter

Quartus II – Projeto com FPGA

Quartus II – Projeto com FPGA

- Veremos agora:
 - Criação de novo projeto
 - Criação de diagrama lógico
 - Compilação
 - Atribuição de Pinos
 - Gravação da FPGA
 - Criação de waveform
 - Simulação

- Criação de um novo projeto:
 - Abra o Quartus II
 - Vá em "File > New Project Wizard"
 - Introduction: Next
 - Directory, Name, Top-Level Entity [page 1 of 5]
 - Definir diretório: "C:\Programas Cyclone II"
 - Escolher o nome do projeto: "xor_schematic"
 - Escolher o nome do top-level: "xor_schematic"
 - Next
 - Add Files [page 2 of 5]: Next

- Criação de um novo projeto:
 - Family and Device Settings [page 3 of 5]
 - Family: Cyclone II
 - Device: EP2C20F484C7 (Obs.: suportado até o Quartus 13.0)
 - Next
 - EDA Tool Settings [page 4 of 5]: Next
 - Sumary: Finish

Circuito a ser desenvolvido: XOR

- Criação do diagrama lógico:
 - Vá em "File > New... > Block Diagram/Schematic File > OK"
 - Salve o diagrama: File > Save As... > xor_schematic.bdf
 - Clique duplo na área de desenho ou clique em 🔁

- Digitar and 2 no campo "Name" > OK, ou
- Selecionar biblioteca primitivers > logic
 - Duplo clique em AND2 ou clique em AND2 e OK
 - Clicar na área de desenho para colar
- Repetir para a outra AND2 (ou ctrl+clique e arrasta para copiar), um OR2 e dois NOTs.

- Criação do diagrama lógico:
 - Inserir os conectores de entrada (input) e saída (output)
 - Digitar o nome dos conectores no campo "Name", ou
 - Selecionar biblioteca primitivers > pin, ou
 - Clicar em 🖳
 - Nomear os sinais de entrada x1, x2 e saída f
 - Duplo clique e preencher "Pin name(s)", ou
 - Duplo clique no label e preencher
 - Girar os NOTs 🔼
 - Conectar os fios 🗔
 - Salvar 🔢

- Compilação:
 - Vá em "Processing > Start Compilation", ou
 - Clique no íncone
 - Verifique o relatório de compilação:
 - Processing > Compilation Report, ou
 - Clicar no ícone

Flow Summary	
Flow Status	Successful - Mon May 28 16:42:38 2018
Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	xor_schematic
Top-level Entity Name	xor_schematic
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	1 / 18,752 (< 1 %)
Total combinational functions	1 / 18,752 (< 1 %)
Dedicated logic registers	0 / 18,752 (0 %)
Total registers	0
Total pins	3 / 315 (< 1 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

- ▷ Simulação (Passo 1 Criação da Waveform):
 - Vá em "File > New... > University Program VWF"
 - Adicionar sinais
 - Clicar botão direito na coluna de nomes de sinais
 "Insert Node or Bus... > Node Finder...", ou
 - Vá em "Edit > Insert > Insert Node or Bus... >
 Node Finder..."
 - Clicar em List
 - Clicar nos sinais e depois em , ou
 - Clicar em >>> para selecionar todos os sinais
 - OK > OK

- ▷ Simulação (Passo 1 Criação da Waveform):
 - Edit > Set End Time... > 200 ns
 - Inserir forma periódica para as entradas
 - Selecionar linha x1 e pressionar botão "Count
 Value" \(\subseteq \sub
 - Start value: 0, Count every: 100 ns
 - Repetir para x2 (Start value: 0, Cont every: 50 ns)
 - Salvar como waveform_xor_squematic.vwf

▷ Simulação (Passo 1 – Criação da Waveform):

- Simulação (Passo 2 Executar a simulação): a janela do "Simulation Waveform Editor" deve estar aberta
 - Simulação funcional (RTL): atrasos não são levados em consideração
 - Simulation > Run Funcional Simulation, ou
 - Pressionar o ícone

- Observar que não há atrasos para a saída
- Simulação com timing (Gate Level): comportamento similar ao da FPGA
 - Simulation > Run Timing Simulation , ou
 - Pressionar o ícone

• Observar atrasos e *glitches*

Resultado da Simulação RTL

Resultado da Simulação a Nível de Portas Lógicas

- Atribuição de pinos:
 - Os toogle switches SW0 (L22) e SW1 (L21) devem ser atribuídos às entradas x1 e x2, e o LED verde LEDGO (U22) deve ser atribuído à saída f (U22).
 - Vá em "Assignmentes > Pin Planner", ou
 - Clique no ícone
 - Atribua os pinos conforme figura abaixo

- Feche o Pin Planner
- Recompile o projeto 📂

- Gravação da FPGA:
 - Conecte o cabo USB no kit Cyclone II
 - Ligue o kit pressionando o botão vermelho
 - Verifique se o novo dispositivo foi reconhecido pelo Windows. Se não for, vá no Gerenciador de Dispositivos e instale o Driver para o dispositivo USB Blaster presente em "C:\altera\13.0sp1\quartus\drivers"
 - Conecte o cabo USB no kit Cyclone II
 - Vá em "Tools > Programer", ou clique no ícone 🖤

- Clique no botão 🔔 Hardware Setup...
- Em "Hardware Settings" selecione USB-Blaster e feche a janela

- Gravação da FPGA:
 - Clique em , vá em "<diretório_do_ projeto> \output_files", selecione o arquivo "xor_ schematic.sof" e clique em open
 - Ligue o kit pressionando o botão vermelho
 - Marque a caixa de seleção "Program/Configure"
 - Clique em Add Device... e selecione "Cyclone II", "EP2C20F484"
 - Coloque o toogle switch RUN/PROG na posição RUN
 - Para iniciar a gravação da FPGA clique em

- Ferramentas adicionais:
 - RTL Viewer: "Tools > Netlist Viewers > RTL Viewer"

Technology Map Viewer: "Tools > Netlist Viewers > Technology Map Viewer"

Referências

- Materiais da Altera:
 - Cyclone II FPGA Starter Development Board Reference Manual
 - Quartus II Introduction Using Schematic Design
- - intro_esquematico_hierarquia_Quartus_v13.pdf
 - tutorial_sobre_hierarquia.pdf