

Data Mining

Chapter 5: Decision Tree and Ensemble Learning

Yunming Ye, Baoquan Zhang
School of Computer Science
Harbin Institute of Technology, Shenzhen

Agenda

- Decision Tree
 - Basic Idea of Decision Tree Induction
 - Decision Tree Classification Algorithms
 - Performance Evaluation and Tree Pruning
 - Regression Tree
- Ensemble Learning
 - Basic Idea of Ensemble Learning
 - Gradient Boosting Methods
 - Deep Forest

6.1 Basic Idea of Decision Tree Induction

Tree-like Decision Process: an example

Basic idea of Decision Tree Induction for Classification

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - > Tree is constructed in a top-down recursive divide-and-conquer manner
 - > At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

6.2 ID3, C4.5, CART

Attribute Selection Measure: Information Gain

$$H(D) = -\sum_{i=1}^{N} p_i \log p_i = -\sum_{i=1}^{N} \frac{|D_i|}{|D|} \log \frac{|D_i|}{|D|}$$

$$H(D|A) = \sum_{j=1}^{v} \frac{|D^{(j)}|}{|D|} H(D^{(j)})$$

$$I(D;A) = H(D) - H(D|A)$$

Compute H(D)

$$H(D) = -\frac{10}{15}\log\frac{10}{15} - \frac{5}{15}\log\frac{5}{15} = 0.918$$

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通讨
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

Compute H(T|A=年龄)

$$H(D|A_1) = \frac{1}{15}H(T^{\frac{1}{15}} + \frac{13}{15}H(T^{\frac{1}{15}} + \frac{1}{15}H(T^{\frac{2}{15}}) - \frac{1}{15}H(T^{\frac{2}{15}} + \frac{1}{15}H(T^{\frac{2}{15}} + \frac{1}{15}H(T^{\frac{2}{15}}) - \frac{1}{15}H(T^{\frac{2}{15$$

$$\frac{13}{15} \times \left(-\frac{8}{13} \log \frac{8}{13} - \frac{5}{13} \log \frac{5}{13} \right) +$$

$$\frac{1}{15} \times \left(-\frac{1}{1} \log \frac{1}{1} \right)$$

= 0.833

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	由年	一般	直	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

Compute H(D|A=消费收入比)、 H(D|A=未偿还贷款)

$$H(T|A_2) = \frac{6}{15}H(T^{-\frac{1}{15}}H(T^{\frac{1}{15}}) + \frac{1}{15}H(T^{\frac{1}{15}}) + \frac{3}{15}H(T^{\frac{1}{15}})$$

$$= \frac{6}{15} \times \left(-\frac{6}{6}\log\frac{6}{6}\right) + \frac{5}{15} \times \left(-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5}\right) + \frac{1}{15} \times \left(-\frac{1}{1}\log\frac{1}{1}\right) + \frac{3}{15} \times \left(-\frac{2}{3}\log\frac{2}{3} - \frac{1}{3}\log\frac{1}{3}\right) = 0.507$$

$$H(T|A_3) = \frac{6}{15}H(T^{(1)}) + \frac{2}{15}H(T^{(1)}) + \frac{3}{15}H(T^{(2)}) + \frac{4}{15}H(T^{(3)})$$

$$= \frac{6}{15} \times \left(-\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6}\right) + \frac{2}{15} \times \left(-\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2}\right) + \frac{3}{15} \times \left(-\frac{3}{3}\log\frac{3}{3}\right) + \frac{4}{15} \times \left(-\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4}\right) = 0.767$$

			_	
序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

Compute I(D;A)

$$I(D; A_1) = H(D) - H(D|A_1) = 0.918 - 0.833 = 0.085$$

 $I(D; A_2) = H(D) - H(D|A_2) = 0.918 - 0.507 = 0.411$

 $I(D; A_3) = H(D) - H(D|A_3) = 0.918 - 0.767 = 0.151$

$$I(D; A_{max}) = I(D; A_2) = 0.411$$

序号	年龄	消费收入比	未偿还贷款	审批
1	中年	高	高	不通过
2	中年	一般	高	通过
3	中年	一般	较高	通过
4	中年	一般	低	通过
5	中年	一般	高	通过
6	老年	正常	低	通过
7	中年	超出	中	通过
8	中年	一般	较高	通过
9	青年	超出	低	通过
10	中年	正常	低	通过
11	中年	一般	较高	通过
12	中年	正常	低	不通过
13	中年	超出	中	不通过
14	中年	正常	高	不通过
15	中年	正常	低	不通过

C4.5: Gain Ratio

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$I_R(D;A) = \frac{I(D;A)}{SplitInfo_A(D)}$$

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

Gini index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$gini(D)=1-\sum_{j=1}^{n} p_{j}^{2}$$

where p_i is the relative frequency of class j in D

• If a data set D is split on A into two subsets D_1 and D_2 , the *gini* index *gini*(D) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

• The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

6.4 How to Compute Gini index for Categorical Attributes?

Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistics: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and(2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

6.5 Performance Evaluation and Tree Pruning

Evaluation of Misclassification Error

- Evaluation data
- Training set/validation set/testing set

Classifier Accuracy Measures

- **Accuracy** of a classifier M, Acc(M): percentage of test set tuples that are correctly classified by the model M.
 - Error rate(misclassification rate) of M=1-acc(M)

Confusion matrix

Predicted class

Actual class

	C1	C2
C1	true positives	false negatives
C2	false positives	true negatives

classes	buy_computer=yes	buy_computer=no	total	recognition(%)
buy_computer=yes	6954	46	7000	99.34
buy_computer=no	412	2588	3000	86.27
total	7366	2634	10000	95.52

Cross-Validation

Overfitting Problem & Pruning Strategies in Tree Induction

Overfitting problem of decision tree

- Tree pruning:
 - Pre-pruning
 - Post-pruning

6.6 Regression Tree

Regression Tree Induction

序号	未偿还贷款比	年龄	消费收入比	评估分
1	0.7	35	0.6	50
2	0.3	36	0.7	85
3	0.2	25	1.2	45
4	0.1	40	0.3	90
5	0.5	50	1.1	60

Loss function(MSE):

Minimize:
$$rac{1}{n}\sum_{m=1}^{M}\sum_{oldsymbol{x}_i\in R_m}(c_m-y_i)^2$$

$$c_m = ave(y_i|m{x}_i \in leaf_m)$$

If we select attribute j and its value s as a splitting point:

$$\sum_{x_i \in R_1} (y_i - c_1)^2 + \sum_{x_i \in R_2} (y_i - c_2)^2$$

$$\min_{j,s} [\min_{c_1} \sum_{x_i \in R_1} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i - c_2)^2]$$

$$c_1 = rac{1}{N_1} \sum_{x_i \in R_1} y_i \qquad \qquad c_2 = rac{1}{N_2} \sum_{x_i \in R_2} y_i$$

6.7 Introduction to Ensemble Learning

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Main Idea

Why does it work?

- Suppose there are 25 base classifiers
 - \triangleright Each classifier has error rate, $\epsilon = 0.35$
 - > Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Stacking
 - Bagging
 - Boosting

stacking

Bagging

- Sampling with replacement
- Build classifier on each bootstrap sample
- Each sample has equal probability of being selected

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Random Forests grows many classification trees (that is why the name!)
- Ensemble of unpruned decision trees
- Each base classifier classifies a "new" vector
- Forest chooses the classification having the most votes (over all the trees in the forest)

Random Forests

- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Each tree is grown using a bootstrap sample of training data
 - ightharpoonup At each node, best split is chosen from random sample of m_{try} variables instead of all variables

Random Forests

Adaboost - Adaptive Boosting

- Instead of sampling, re-weight
 - Previous weak learner has only 50% accuracy over new distribution
- Can be used to learn weak classifiers
- Final classification based on weighted vote of weak classifiers
 - Records that are wrongly (correctly) classified will have their weights increased (decreased)

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

Adaboost

- Given a set of d class-labeled tuples, $(\mathbf{X_1}, \mathbf{y_1}), \dots, (\mathbf{X_d}, \mathbf{y_d})$
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
 - Tuples from D are sampled (with replacement) to form a training set D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - A classification model M_i is derived from D_i
 - Its error rate is calculated using D_i as a test set
 - If a tuple is misclassified, its weight is increased, o.w. it is decreased
- Error rate: $err(X_j)$ is the misclassification error of tuple X_j . Classifier M_i error rate is the sum of the weights of the misclassified tuples:
- The weight of classifier M_i's vote is

$$error(M_i) = \sum_{j}^{d} w_j \times err(\mathbf{X_j})$$

$$\log \frac{1 - error(M_i)}{error(M_i)}$$

Some Comments on Ensemble Learning

- Strength & Correlation
 - Out-of-bag (OOB) error
- High dimensional data
- Parallelized Algorithms

6.8 Gradient Boosting Methods

Reference

J. Friedman(1999). Greedy Function Approximation: A Gradient Boosting Machine.

Guarantee: sum of residuals is monotonously decreasing. Residuals are highly related to loss.

Notations

A training set $\mathcal{D} = \{(x_i, y_i)\}_{1}^{N}$. A loss function L. The model F.

F is an additive model

$$F(x; w) = \sum_{k=0}^{K} \alpha_k h_k(x; w_k) = \sum_{k=0}^{K} f_k(x; w_k)$$
 (3)

Define:

$$F_k = \sum_{i=0}^k f_i \tag{4}$$

 $\{h_k(x; w_k)\}_1^K$, $\{\alpha_k\}_1^K$, $\{w_k\}_1^K$: weak learners and their weights, parameters.

Goal

Overall Loss Function

$$\mathcal{L} = \underbrace{\sum_{i=1}^{N} L(y_i, F(x_i; w))}_{Training \ loss} + \underbrace{\sum_{k=1}^{K} \Omega(f_k)}_{Regularization}$$
(5)

Goal

$$F^* = \operatorname*{arg\,min}_{F} \mathcal{L} \tag{6}$$

This is a NP hard problem

Learn Greedily

Iteration 0

Choose a f0, usually a constant

Iteration k

$$f_k = \operatorname*{arg\,min}_{f_k} \mathcal{L}(f_k) \tag{7}$$

$$= \arg\min_{f_k} \sum_{i=1}^{N} L(y_i, F_{k-1}(x_i; w) + f_k(x_i)) + \Omega(f_k)$$
 (8)

Finally

$$F^* = \sum_{k=1}^K f_k$$

Boosting Tree

输入: 训练数据集T = { $(x_1, y_2), (x_2, y_2), \dots, (x_N, y_N)$ }, $x_i \in X \subseteq R^n, y_i \in Y \subseteq R$; ←

输出:提升树: $f_M(x)$ 。 \leftarrow

- (1) 初始化 $f_0(x) = 0$ 。 \leftarrow
- (2) 对 $m=1,2,\cdots$, $M_{\circ} \leftarrow$
 - (a) 计算残差: ←

$$r_{mi} = y_i - f_m - 1(x_i)$$
, $i - 1, 2, \dots, N \vdash$

- (b) 拟合残差: r_{mi} 学习一个回归树, 得到T(x; Θ_m)。←
- (c) 拟合残差: 更新 $f_m(x) = f_{m-1}(x) + T(x; \Theta_m)$ 。←
- (3) 得到回归问题提升树←

$$f_M(x) = \sum_{m=1}^M \mathsf{T}(x; \, \Theta_m) \subset$$

Gradient Boosting Machine

```
\Omega(f_k) = 0 in [Friedman(1999)].
1 choose an initial f_0, let F_0 = f_0
2 for k = 1, 2, ..., K
   2.1 \tilde{y}_i = -\frac{\partial L(y_i, F_{k-1}(x_i))}{\partial F_{k-1}(x_i)}, i = 1, 2, ..., N
          \{\tilde{y}_i\}_{1}^{N}: pseudo responses, a measurement of residuals, namely
          \{y_i - F_{k-1}(x_i)\}_{1}^{N}
   2.2 w^* = \arg\min_{w} \sum_{i=1}^{N} [\tilde{y}_i - h_k(x_i; w)]^2
          Train h_k to fit \{(x_i, \tilde{y}_i)\}_{1}^{N} using square error loss
   2.3 \rho^* = \arg\min_{\rho} \sum_{i=1}^{N} L(y_i, F_{k-1}(x_i) + \rho h_k(x_i; w^*))
          Perform a line search, so that F_{k-1} + \rho^* h_k reduces L most
    2.4 let f_k = \rho^* h_k(x; w^*), F_k = F_{k-1} + f_k
          Update F_k
3 output F_K
```

GBDT

输入: 训练数据集 $T = \{(x_1, y_2), (x_2, y_2), \dots, (x_N, y_N)\}, x_i \in X \subseteq$

 R^n , $y_i \in Y \subseteq R$; 损失函数L(y, f(x));

输出:回归树 $\hat{f}(x)$ 。←

(1) 初始化↩

$$f_0(x) = \arg\min_{c} \sum_{i=1}^{N} L(y_i, c) \in$$

- (2) 对 $m=1,2,\cdots$, $M \leftarrow$
- (a)对 *i* = 1, 2, ···, *N*计算 ←

$$r_{mi} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = f_{m-1}(x)} \in$$

- (b) 对 r_{mi} 拟合一个回归树,<u>得到第</u>m棵树的叶结点区域 R_{mj} , $j=1,2,\cdots,J$ 。 \leftarrow
- (c)对j = 1, 2, ···, J, 计算←

$$c_{mj} = agr \min_{c} \sum_{x_i \in R_{mj}} L(y_i, f_{m-1}(x) + c) \in$$

(d) 更新↓

$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J} c_{mj} I(x \in R_{mj}) \in$$

(3) 得到回归树↔

$$\hat{f}(x) = f_M(x) \sum_{m=1}^{M} \sum_{j=1}^{J} c_{mj} I(x \in R_{mj}) \in$$

6.9 XGBoost

Tianqi Chen, Carlos Guestrin(2016). **XGBoost: A Scalable Tree Boosting System**. KDD'16.

How do we learn?

- Objective: $\sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k} \Omega(f_k), f_k \in \mathcal{F}$
- We can not use methods such as SGD, to find f(since they are trees, instead of just numerical vectors)
- Solution: Additive Trainging(Boosting)
 - Start from constant prediction, add a new function each time

$$\begin{array}{ll} \hat{y}_i^{(0)} &= 0 \\ \hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i) \\ \hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i) \\ & \cdots \\ \hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \\ \end{array} \qquad \qquad \text{New function}$$

Model at training round t

Keep functions added in previous round

Additive Training

- How do we decide which f to add?
 - Optimize the objective!
- The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

$$= \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + f_t(x_i) + \Omega(f_t) + constant$$

Goal: find f_t to minimize this

Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

- Goal $Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) + constant$
 - Seems still complicated except for the case of square loss
- Take Taylor expansion of the objective Recall $f(x+\Delta x)\simeq f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)\Delta x^2$
 - Define $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

If you are not comfortable with this, think of square loss

$$g_i = \partial_{\hat{y}^{(t-1)}} (\hat{y}^{(t-1)} - y_i)^2 = 2(\hat{y}^{(t-1)} - y_i) \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 (y_i - \hat{y}^{(t-1)})^2 = 2$$

Our New Goal

Objective, with constants removed

$$\sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$$

- where $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$
- why spending much efforts to derive the objective, why not just grow trees ...
 - Theoretical benefit:know what we are learning, convergence
 - Engineering benefit, recall elements of supervised learning
 - and g_i comes fh_i m definition of loss function
 - the learning of function only depend on the objective via and
 - think of how you can separat g_i nodules h_i f you code when you are asked to implement boosted tree for square loss and logistic loss

the definition of tree

 We define tree by a vector of scores in leafs, and a leaf index mapping function that maps an instance to a leaf

Define Complexity of a Tree

 Define complexity as sum of leaf weights (this is not the only possible definition)

Revisit the Objectives

- Define the instance set in leaf j as $I_j = \{i | q(x_i) = j\}$
- Regroup the objective by each leaf

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_{j}} g_{i} \right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \gamma T$$

This is sum of T independent quadratic functions

The Structure Score

Two facts about single variable quadratic function

$$argmin_x Gx + \frac{1}{2}Hx^2 = -\frac{G}{H}, \ H > 0 \quad \min_x Gx + \frac{1}{2}Hx^2 = -\frac{1}{2}\frac{G^2}{H}$$

Let us define

$$G_j = \sum_{i \in I_j} g_i \ H_j = \sum_{i \in I_j} h_i$$

$$Obj^{(t)} = \sum_{j=1}^{T} \left[(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2 \right] + \gamma T$$

= $\sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T$

 Assume the structure of tree (q(x)) is fixed, the optimal weight in each leaf, and the resulting objective value are

$$w_j^* = -\frac{G_j}{H_j + \lambda} \quad Obj = -\frac{1}{2} \sum_{j=1}^T \frac{G_j^2}{H_j + \lambda} + \gamma T$$

The Structure Score Calculation

1

g1, h1

2

g2, h2

3

g3, h3

4

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

- Enumerate the possible tree structures q
- Calculate the structure score for the q, using the scoring eq.

$$Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

Find the best tree structure, and use the optimal leaf weight

 $w_j^* = -\frac{G_j}{H_j + \lambda}$

• But ... there can be infinite possible tree structures...

Greedy Learning of the Tree

- In practice, we grow the tree greedily
 - Start from tree with depth 0
 - For each leaf node of the tree, try to add a split. The change of objective after adding the split is

Remaining question: how do we find the best split?

Efficient Finding of the Best Split

• What is the gain of a split rule $x_j < a$? Say x_j is age

All we need is sum of g and h in each side, and calculate

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

 Left to right linear scan over sorted instance is enough to decide the best split along the future.

An Algorithm for Split Finding

- For each node, enumerate over all features
 - For each feature, sorted the instances by feature value
 - Use a linear scan to decide the best split along that feature
 - Take the best split solution along all the features
- Time Complexity growing a tree of depth L
 - It is O(n d k logn):or each level, need O(n log n)time to sort. There are d features, and we need to do it for K level.
 - This can be further optimized(e.g. use approximation or caching the sorted features)
 - Can scale to very large dataset.

Pruning and Regularization

Recall the gain of split, it can be negative!

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

- When the training loss reduction is smaller than regularization
- Trade-off between simplicity and predictivness
- Pre-stopping
 - Stop split if the best split have negative gain
 - But may a split can benefit futures splits...
- Post-Prunning
 - Grow a tree to maximum depth, recursively prune all the leaf splits with negative gain

Recap: Boosted Tree Algorithm

- Add a new tree in each iteration
- Beginning of each iteration, calculate

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$

• Use the statistics to greedily grow a tree $f_t(x)$

$$Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

- Add $f_t(x)$ to the model $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$
 - Usually, instead we do $y^{(t)} = y^{(t-1)} + \epsilon f_t(x_i)$
 - ϵ is called step-size or shrinkage, usually set around 0.1
 - This is means we do not do full optimization in each step and reserve chance for future rounds, it helps prevent overfitting.

6.10 Deep Forest

Zhi-Hua Zhou, Ji Feng(2017). **Deep Forest: Towards An Alternative to Deep Neural Networks**. IJCAI 2017.

What's essential with DNNs? --Representation learning

Layer-by-Layer processing is crucial

Decision trees?

Boosting?

Layer-by-layer processing, but ...
insufficient complexity still, insufficient complexity
always on original features always on origin features

Most crucial for deep models:
Layer-by-layer processing
Feature transformation
Sufficient model complexity

Using neural networks

- Too many hyper-parameters
 - tricky tuning, particularly when across tasks
 - Hard to repeat others' results; e.g., even when several authors all use CNNs, they are actually using different learning models due to the many different options such as convolutional layer structures
- Model complexity fixed once structure decided; usually, more than sufficient
- Big training data required
- Theoretical analysis difficult
- Blackbox

Deep models revisited

 Currently, Deep Models are DNNs: multiple layers of parameterized differentiable nonlinear modules that can be trained by backpropagation

 Not all properties in the world are "differentiable", or best modelled as "differentiable"

There are many non-differentiable learning modules (not able to be trained by backpropagation)

A Grand Challenge

Can we realize deep learning with non-differentiable modules?

This is fundamental for understanding:

- Deep models ?= DNNs
- Can do DEEP with non-differentiable modules? (without backpropagation)
- Can enable Deep model to win more tasks?
-

To have

- Layer-by-layer processing, and
- Feature transformation, and
- Sufficient model complexity

The gcForest approach

gcForest(muti-Gained Cascade Forest)

- A decision tree forest(ensemble)approach
- Performance highly competitive to DNNS across a broad range of tasks
- Much less hyper-parameters
 - Easier to set
 - Default setting works well across a broad range of tasks
- Adaptive model complexity
 - Automatically decided upon data
 - Small data applicable

Cascade Forest structure

Passing the output of one level as input to another level:

- Related to Stacking [Wolpert, NNJ 1992; Breiman, MLJ 1996], a famous ensemble method
- Stacking usually one or two levels, as it is easy to overfit with more than two levels; could not enable a deep model by itself

ensembles

Generation of class vectors

Acknowledgements

- Some text, figures and formulations are from WWW. Thanks for their sharing. If you have copyright claim please contact with me at yym@hit.edu.cn.
- This lecture is distributed for nonprofit purpose.

Thank You for Your Attention

Contact me at: yym@hit.edu.cn

Tel: 26033008, 13760196623

Address: Rm.1402, H# Building