HYPER: Flexible and effective pooled testing via hypergraph factorization

David Hong
U Penn

Rounak Dey Harvard U

Xihong Lin Harvard U

Brian Cleary Broad Institute

Edgar Dobriban U Penn

Pooled testing

Goal: Screen more people using fewer tests (given limited/constrained resources).

Goal: Screen more people using fewer tests (given limited/constrained resources).

Classical Dorfman Pooling (1943)

Stage 1: pooled testing (n = 100 individuals in m = 10 pools)

Goal: Screen more people using fewer tests (given limited/constrained resources).

Classical Dorfman Pooling

Stage 1: pooled testing (n = 100 individuals in m = 10 pools)

1 infected individual (prevalence p = 1%)

Goal: Screen more people using fewer tests (given limited/constrained resources).

Classical Dorfman Pooling

Stage 1: pooled testing (n = 100 individuals in m = 10 pools)

Goal: Screen more people using fewer tests (given limited/constrained resources).

Classical Dorfman Pooling

Goal: Screen more people using fewer tests (given limited/constrained resources).

Classical Dorfman Pooling

Dorfman pooling in action at the Broad!

NEWS / 02.25.21

y

EMAIL

Broad Institute is processing pooled COVID-19 tests for Massachusetts K-12 schools

By Calley Jones

Here's more on how pooled testing works, and what students and parents can expect.

Credit : Scott Sassone, Broad Communications
Meghan Gillespie processes a pooled sample at Broad's COVID-19 diagnostic

Pooled testing involves placing nasal swabs from multiple people into the same sample tube and processing each tube as a single sample, saving time and resources. Credit: Scott Sassone, Broad Communications

"So far, Broad has processed 15,000 pools [...] representing approximately 84,000 people [...]."

"Five to ten individual swabs [...] are collected in the same tube [...]. If a pool is found to be positive for the virus, the school re-tests people individually in that pool to identify who has the virus."

Closer look: how does Dorfman assign individuals to pools?

Each individual is assigned to q = 1 of the pools by cycling through the list of all pools.

Closer look: how does Dorfman assign individuals to pools?

Each individual is assigned to q = 1 of the pools by cycling through the list of all pools.

Advantage: Simple and balanced – facilitates robust implementation

Closer look: how does Dorfman assign individuals to pools?

Each individual is assigned to q = 1 of the pools by cycling through the list of all pools.

Advantage: Simple and balanced – facilitates robust implementation

Limitation: Suboptimal – efficiency can be improved using designs with q > 1

Question: How to allow individuals to be assigned to multiple pools (q > 1)?

Question: How to allow individuals to be assigned to multiple pools (q > 1)?

Naïve approach for assigning each person to two pools (q = 2):

- 1. Order all possible pool pairs (AB,AC,BC,DE,...) lexicographically.
- 2. Cycle through the ordered pool pairs to assign the individuals.

Individual	1	2	3	4	5	6	7	8
Pool	AB	AC	AD	AE	AF	BC	BD	BE

Question: How to allow individuals to be assigned to multiple pools (q > 1)?

Naïve approach for assigning each person to two pools (q = 2):

- 1. Order all possible pool pairs (AB,AC,BC,DE,...) lexicographically.
- 2. Cycle through the ordered pool pairs to assign the individuals.

Problem: Pools are not balanced!

$$A=(1,2,3,4,5)$$
 $B=(1,6,7,8)$ $C=(2,6)$ $D=(3,7)$ $E=(4,8)$ $F=(5)$

Question: How to allow individuals to be assigned to multiple pools (q > 1)?

Naïve approach for assigning each person to two pools (q = 2):

- 1. Order all possible pool pairs (AB,AC,BC,DE,...) lexicographically.
- 2. Cycle through the ordered pool pairs to assign the individuals.

Problem: Pools are not balanced!

$$A=(1,2,3,4,5)$$
 $B=(1,6,7,8)$ $C=(2,6)$ $D=(3,7)$ $E=(4,8)$ $F=(5)$

- → uneven dilution
- → uneven sensitivity (indiv 1 has higher risk of false neg)

Tremendous study and progress on pooled testing in general – more than we can review today!

Tremendous study and progress on pooled testing in general – more than we can review today!

Today's goal. Assign individuals to pools in a maximally balanced way:

Tremendous study and progress on pooled testing in general – more than we can review today!

Today's goal. Assign individuals to pools in a maximally balanced way:

1. Assign all individuals to the same number q of pools

Individual							Individual	1	2	3	4
Pool	AB	С	DE	F	AB	CD	Pool	AB	CD	EF	В

Tremendous study and progress on pooled testing in general – more than we can review today!

Today's goal. Assign individuals to pools in a maximally balanced way:

1. Assign all individuals to the same number q of pools

Individual							Individual	1	2	3	4	5	6	
Pool	AB	С	DE	F	AB	CD	Pool	AB	CD	EF	BC	DF	AE	

2. Assign the m pools as evenly as possible

Individual	1	2	3	4	5	6	V	Individual	1	2	3	4	5	6	
Pool	AB	AC	AD	AE	AF	BC		Pool	AB	CD	EF	BC	DF	AE	

Tremendous study and progress on pooled testing in general – more than we can review today!

Today's goal. Assign individuals to pools in a maximally balanced way:

1. Assign all individuals to the same number q of pools

Individual							Individual	1	2	3	4	5	6	
Pool	AB	С	DE	F	AB	CD	Pool	AB	CD	EF	BC	DF	AE	

2. Assign the m pools as evenly as possible

Individual	1	2	3	4	5	6	~	Individual	1	2	3	4	5	6	
Pool	AB	AC	AD	AE	AF	BC		Pool	AB	CD	EF	BC	DF	AE	

3. Assign the $\binom{m}{q}$ possible pool combinations as evenly as possible

Individual	1	2	3	4	5	6	Individual							
Pool	AB	CD	EF	AB	CD	EF	Pool	AB	CD	EF	BC	DF	AE	

Tremendous study and progress on pooled testing in general – more than we can review today!

Today's goal. Assign individuals to pools in a maximally balanced way:

1. Assign all individuals to the same number *q* of pools

Individual	1	2	3	4	5	6		Individual	1	2	3	4	5	6	
Pool	AB	С	DE	F	AB	CD		Pool	AB	CD	EF	BC	DF	AE	

2. Assign the m pools as evenly as possible

Individual							Individual	1	2	3	4	5	6	
Pool	AB	AC	AD	AE	AF	BC	Pool	AB	CD	EF	BC	DF	AE	

3. Assign the $\binom{m}{q}$ possible pool combinations as evenly as possible

Individual								Individual	1	2	3	4	5	6	
Pool	AB	CD	EF	AB	CD	EF		Pool	AB	CD	EF	BC	DF	AE	

...in a way that is easy to adapt/tailor (e.g., easily increase # indiv in batch).

Random assignment: assign each individual to q pools uniformly at random.

Random assignment: assign each individual to q pools uniformly at random.

Advantage: pools and pool combinations are balanced on average

$$Pr(A_{-}) = Pr(B_{-}) = Pr(C_{-}) = Pr(D_{-}) = Pr(E_{-}) = Pr(F_{-}) = 5/15$$

 $Pr(AB) = Pr(AC) = Pr(AD) = \cdots = Pr(DF) = Pr(EF) = 1/15$

Random assignment: assign each individual to q pools uniformly at random.

Advantage: pools and pool combinations are balanced on average

$$Pr(A_{-}) = Pr(B_{-}) = Pr(C_{-}) = Pr(D_{-}) = Pr(E_{-}) = Pr(F_{-}) = 5/15$$

 $Pr(AB) = Pr(AC) = Pr(AD) = \cdots = Pr(DF) = Pr(EF) = 1/15$

Limitation: random draws are themselves rarely maximally balanced

Random assignment: assign each individual to q pools uniformly at random.

Advantage: pools and pool combinations are balanced on average

$$Pr(A_{-}) = Pr(B_{-}) = Pr(C_{-}) = Pr(D_{-}) = Pr(E_{-}) = Pr(F_{-}) = 5/15$$

 $Pr(AB) = Pr(AC) = Pr(AD) = \cdots = Pr(DF) = Pr(EF) = 1/15$

Limitation: random draws are themselves rarely maximally balanced

Random assignment: assign each individual to q pools uniformly at random.

Advantage: pools and pool combinations are balanced on average

$$Pr(A_{-}) = Pr(B_{-}) = Pr(C_{-}) = Pr(D_{-}) = Pr(E_{-}) = Pr(F_{-}) = 5/15$$

 $Pr(AB) = Pr(AC) = Pr(AD) = \cdots = Pr(DF) = Pr(EF) = 1/15$

Limitation: random draws are themselves rarely maximally balanced

$$A=(); B=(3,7,8); C=(1,4,6,8); D=(1,4,5); E=(2,3,5,7); F=(2,6)$$

Random assignment: assign each individual to q pools uniformly at random.

Advantage: pools and pool combinations are balanced on average

$$Pr(A_{-}) = Pr(B_{-}) = Pr(C_{-}) = Pr(D_{-}) = Pr(E_{-}) = Pr(F_{-}) = 5/15$$

 $Pr(AB) = Pr(AC) = Pr(AD) = \cdots = Pr(DF) = Pr(EF) = 1/15$

Limitation: random draws are themselves rarely maximally balanced

$$A=(); B=(3,7,8); C=(1,4,6,8); D=(1,4,5); E=(2,3,5,7); F=(2,6)$$

Only 1.3% are maximally balanced for this case (found by exhaustive search).

Exhaustive search: search through all possible pool assignments

Exhaustive search: search through all possible pool assignments

Advantage: systematic – guaranteed to find a maximally balanced design

Exhaustive search: search through all possible pool assignments

Advantage: systematic – guaranteed to find a maximally balanced design

Limitation: only practical for small cases.

How big is the search space?

possible assignments =
$$\binom{m}{q}^n$$

Exhaustive search: search through all possible pool assignments

Advantage: systematic – guaranteed to find a maximally balanced design

Limitation: only practical for small cases.

How big is the search space?

possible assignments =
$$\binom{m}{q}^n$$

Can be reduced by skipping designs that are "obviously unbalanced"...but still large.

Exhaustive search: search through all possible pool assignments

Advantage: systematic – guaranteed to find a maximally balanced design

Limitation: only practical for small cases.

How big is the search space?

possible assignments =
$$\binom{m}{q}^n$$

Can be reduced by skipping designs that are "obviously unbalanced"...but still large.

Will also need to be repeated for any change in n, m or $q \rightarrow$ harder to adapt

Exhaustive search: search through all possible pool assignments

Advantage: systematic – guaranteed to find a maximally balanced design

Limitation: only practical for small cases.

How big is the search space?

possible assignments =
$$\binom{m}{q}^n$$

Can be reduced by skipping designs that are "obviously unbalanced"...but still large.

Will also need to be repeated for any change in n, m or $q \rightarrow$ harder to adapt

Do maximally balanced designs even exist in general?

Design given by HYPER

Individual123456PoolABCDEFBCDFAE

Design given by HYPER


```
Individual123456PoolABCDEFBCDFAE
```

```
A=(1,6); B=(1,4); C=(2,4); D=(2,5); E=(3,6); F=(3,5)
```

```
AB=(1); AC=(); AD=(); AE=(6); AF=(); BC=(4); BD=(); BE=(); BF=(); CD=(2); CE=(); CF=(); DE=(); DF=(5); EF=(3)
```

Design given by HYPER


```
Individual
               AB
                           EF
Pool
                     CD
                                 BC
A=(1,6); B=(1,4); C=(2,4); D=(2,5); E=(3,6); F=(3,5)
AB=(1); AC=(); AD=(); AE=(6); AF=(); BC=(4); BD=(); BE=();
BF=(); CD=(2); CE=(); CF=(); DE=(); DF=(5); EF=(3)
Individual
                                                          8
                           EF
                                 BC
                                                         AF
               AB
                     CD
                                       DF
                                             AE
Pool
A=(1,6,8); B=(1,4,7); C=(2,4); D=(2,5,7); E=(3,6); F=(3,5,8)
AB=(1); AC=(); AD=(); AE=(6); AF=(8); BC=(4); BD=(7); BE=();
BF=(); CD=(2); CE=(); CF=(); DE=(); DF=(5); EF=(3)
```

Design given by HYPER


```
Individual
                     CD
                           EF
                                 BC
               AB
Pool
A=(1,6); B=(1,4); C=(2,4); D=(2,5); E=(3,6); F=(3,5)
AB=(1); AC=(); AD=(); AE=(6); AF=(); BC=(4); BD=(); BE=();
BF=(); CD=(2); CE=(); CF=(); DE=(); DF=(5); EF=(3)
Individual
                                                         8
                           EF
                                 BC
                                                         AF
               AB
                     CD
                                      DF
                                             AE
Pool
A=(1,6,8); B=(1,4,7); C=(2,4); D=(2,5,7); E=(3,6); F=(3,5,8)
AB=(1); AC=(); AD=(); AE=(6); AF=(8); BC=(4); BD=(7); BE=();
BF=(); CD=(2); CE=(); CF=(); DE=(); DF=(5); EF=(3)
```

How did we get this design?

Idea: think of pools as vertices in a graph → pool assignments are (hyper)edges

The 15 hyperedges of K_6^2 (in lexicographic order)

Idea: think of pools as vertices in a graph → pool assignments are hyperedges

The 20 hyperedges of K_6^3 (in lexicographic order)

Hypergraph 1-factors

1. AB, CD, EF

Hypergraph 1-factors

1. AB, CD, EF

2. BC, DF, AE

3. BD, AF, CE

4. BE, CF, AD

5. BF, DE, AC

Hypergraph 1-factors

1. AB, CD, EF

The 1-factors use each vertex once → balanced pools

2. BC, DF, AE

4. BE, CF, AD

3. BD, AF, CE

5. BF, DE, AC

The factorization uses each edge once → balanced pool combinations

Maximally balanced?

1. Assign all individuals to same number q of pools

2. Assign the m pools as evenly as possible \checkmark

3. Assign the $\binom{m}{q}$ possible pool combinations as evenly as possible

Flexible? (e.g., easy to increase # indiv in batch)

Question: does a hypergraph factorization always exist? Is this even possible in general?

Question: does a hypergraph factorization always exist? Is this even possible in general?

Answer: yes! (as long as m is a multiple of q)

Question: does a hypergraph factorization always exist? Is this even possible in general?

Answer: yes! (as long as m is a multiple of q)

Baranyai's theorem (1972): for any $2 \le q < m$ such that q divides m, the complete hypergraph K_m^q decomposes into 1-factors.

Well known in design theory and combinatorics, has not been used in group testing so far.

Question: does a hypergraph factorization always exist? Is this even possible in general?

Answer: yes! (as long as m is a multiple of q)

Baranyai's theorem (1972): for any $2 \le q < m$ such that q divides m, the complete hypergraph K_m^q decomposes into 1-factors.

Well known in design theory and combinatorics, has not been used in group testing so far.

But how to efficiently construct a factorization?

Efficient hypergraph factorization for q = 2 (well known)

Efficient hypergraph factorization for q = 2

With labels

A:0

BC, DF, AE

$$D : -1$$

F:-2

BE, CF, AD

BF, DE, AC

BD, AF, CE

Construction for q = 3

- For q=3, construction due to Thomas Beth (1979)
- Suppose m=6k, such that r = 6k-1 is a prime
- Consider Galois Field GF(r)
 - Adjoin infinity, to get projective line PG(1,r)
- Consider fractional linear map f: PG(1,r) → PG(1,r), f(x) = -(1+x)/x
 - Note that f is a fixed-point free map of order 3
- Let O be the partition of PG(1,r) into the (r+1)/3 orbits of f
- Let x be a primitive element of GF(r)
- Then, the partitions induced by LO + g, L = x^j , j = 1, ..., (r-1)/2, g in GF(r) form a 1-factorization of GF(r)

	AB	CD	EF	BC	DF	\mathbf{AE}	BD	AF	\mathbf{CE}	\mathbf{BE}	\mathbf{CF}	AD	
Individual	1	2	3	4	5	6	7	8	9	10	11	12	Test
Pool A													
Pool B													
Pool C													
Pool D													
Pool E													
Pool F													
Decoding													

	AB	CD	EF	BC	DF	AE	BD	AF	\mathbf{CE}	\mathbf{BE}	\mathbf{CF}	AD	
Individual	1	2	3	4	5	6	7	8	9	10	11	12	Test
Pool A													Θ
Pool B													\oplus
Pool C													\oplus
Pool D													\oplus
Pool E													Θ
Pool F													Θ
Decoding													

Individual pool assignments from hypergraph factorization

Putative positives – to be individually tested.

Decoding is simple – can be done with pencil and paper!

Decoding is simple - can be done with pencil and paper!

Note: Can also incorporate error correction by allowing putative positives to be in some negative pools.

Putative positives – to be individually tested.

Putting it all together: HYPER

Setup: factorize the hypergraph (for m = 6 pools with q = 2 splits)

to obtain a sequence of individual pool assignments (AB, CD, ...):

Stage 2: individual testing of the putative positives (P).

 $\begin{array}{c|cccc} Individual & 2 & 4 & 7 \\ \hline Test Result & \ominus & \oplus & \oplus \\ \end{array}$

Final conclusion: identify 4 and 7 as positive.

Features and limitations

	HYPER	Random	Array designs	P-BEST	Hypercube	
			8×12 16×24			
# individuals per batch (n)	any	any	96 384	384	$3^q/\text{stage}$	
# pools (m)	variable	any	20 40	48	3q/stage	
# splits (q)	≤ 3	any	2	6	$q/{\rm stage}$	
# stages	two	two	two	one	multi	
balanced pools	✓	× w.h.p.*	×	✓	✓	
balanced combinations	✓	× w.h.p.*	×	✓	×	
simple to implement by hand	✓	✓	✓	×	√?	
flexible / easily adapted	✓	✓	×	×	×	
simple to decode by hand	✓	✓	✓	×	×	
corrects false positive	✓	✓	✓	✓	✓	
corrects false negatives	optional	optional	×	✓	√?	

^{*}with high probability, i.e., probability $\gg 0$.

Random design: Cleary et al., 2020

Array design: Sinnott-Armstrong et al., 2020

P-BEST: Shental et al., 2020

Hypercube design: Mutesa et al., 2020

How well does it work?

Efficiency/sensitivity during simulated epidemic

samples = number of samples that can be collected per day # tests = number of tests that can be run per day

Effective screening capacity

Expected number of positive individuals identified per day

(Number of individuals screened) x (Average sensitivity)

HYPER maximizes effective screening capacity, especially in testing scarce settings

Black entry in each cell

Effective screening capacity

=

Effective number of individuals screened per day

=

Number of individuals screened x average sensitivity

Black entry in each cell

Effective screening capacity

=

Effective number of individuals screened per day

=

Number of individuals screened x average sensitivity

HYPER maximizes effective screening capacity across a range of resource constraints.

Analysis under common theoretical model

Model: n individuals, each positive independently with probability p

Analysis under common theoretical model

Model: n individuals, each positive independently with probability p

Question: What is the overall efficiency?

Supposing pool sizes are equal: k = nq/m is an integer.

Model: n individuals, each positive independently with probability p

Question: What is the overall efficiency?

Supposing pool sizes are equal: k = nq/m is an integer.

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1 - p)^k + \frac{q(q - 1)}{l(l - 1)} (1 - p)^{2k - u} \right] \qquad u = {m - 2 \choose q - 2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

Model: n individuals, each positive independently with probability p

Question: What is the overall efficiency?

Supposing pool sizes are equal: k = nq/m is an integer.

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1-p)^k + \frac{q(q-1)}{l(l-1)} (1-p)^{2k-u} \right] \qquad u = {m-2 \choose q-2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

Equality when q=2.

More complicated when tests can be noisy...see the paper!

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1-p)^k + \frac{q(q-1)}{l(l-1)} (1-p)^{2k-u} \right] \qquad u = {m-2 \choose q-2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1 - p)^k + \frac{q(q - 1)}{l(l - 1)} (1 - p)^{2k - u} \right] \qquad u = {m - 2 \choose q - 2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

How is this obtained?

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1 - p)^k + \frac{q(q - 1)}{l(l - 1)} (1 - p)^{2k - u} \right] \qquad u = {m - 2 \choose q - 2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

How is this obtained?

$$\mathbb{E}(\text{number of tests used}) = m + \sum_{i=1}^{n} \Pr(\text{individual } i \text{ is retested})$$

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1 - p)^k + \frac{q(q - 1)}{l(l - 1)} (1 - p)^{2k - u} \right] \qquad u = {m - 2 \choose q - 2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

How is this obtained?

$$\mathbb{E}(\text{number of tests used}) = m + \sum_{i=1}^{n} \Pr(\text{individual } i \text{ is retested})$$

Pr(individual i i s retested) = 1 - Pr(no positives in pools including individual i)

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1 - p)^k + \frac{q(q - 1)}{l(l - 1)} (1 - p)^{2k - u} \right] \qquad u = {m - 2 \choose q - 2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

How is this obtained?

$$\mathbb{E}(\text{number of tests used}) = m + \sum_{i=1}^{n} \Pr(\text{individual } i \text{ is retested})$$

Pr(individual i i s retested) = 1 - Pr(no positives in pools including individual i)

Task is to bound this probability!

$$\mathbb{E}T \le m + n \cdot \left[1 - \frac{2q}{l} (1-p)^k + \frac{q(q-1)}{l(l-1)} (1-p)^{2k-u} \right] \qquad u = {m-2 \choose q-2} \cdot \left\lceil n / {m \choose q} \right\rceil$$

How is this obtained?

$$\mathbb{E}(\text{number of tests used}) = m + \sum_{i=1}^{n} \Pr(\text{individual } i \text{ is retested})$$

Pr(individual i i s retested) = 1 - Pr(no positives in pools including individual i)

Task is to bound this probability!

Bonferroni inequality / Dawson-Sankoff inequality + bound on pool overlaps ← balance comes up here!

Question: Optimal number of pools for q=2 at low prevalence? (in the regime of large n, i.e., big batches)

Question: Optimal number of pools for q=2 at low prevalence? (in the regime of large n, i.e., big batches)

Taking $n \to \infty$, with y = m/n

$$E = \frac{T}{n} = \frac{m}{n} + 1 - 2(1-p)^{2n/m} + (1-p)^{4n/m-1} = y + 1 - 2(1-p)^{2/y} + (1-p)^{4/y-1}.$$

Question: Optimal number of pools for q = 2 at low prevalence? (in the regime of large n, i.e., big batches)

Taking $n \to \infty$, with y = m/n

$$E = \frac{T}{n} = \frac{m}{n} + 1 - 2(1-p)^{2n/m} + (1-p)^{4n/m-1} = y + 1 - 2(1-p)^{2/y} + (1-p)^{4/y-1}.$$

Set diff equal to zero and approximate solve in low prevalence limit:

$$\frac{\partial E}{\partial y} = 1 + \frac{4(1-p)^{2/y}\log(1-p)}{y^2} - \frac{4(1-p)^{4/y-1}\log(1-p)}{y^2}.$$

Question: Optimal number of pools for q=2 at low prevalence? (in the regime of large n, i.e., big batches)

Taking $n \to \infty$, with y = m/n

$$E = \frac{T}{n} = \frac{m}{n} + 1 - 2(1-p)^{2n/m} + (1-p)^{4n/m-1} = y + 1 - 2(1-p)^{2/y} + (1-p)^{4/y-1}.$$

Set diff equal to zero and approximate solve in low prevalence limit:

$$\frac{\partial E}{\partial y} = 1 + \frac{4(1-p)^{2/y}\log(1-p)}{y^2} - \frac{4(1-p)^{4/y-1}\log(1-p)}{y^2}.$$

Puiseux expansion around p=0 (of Taylor approx.) $y^{\star}\approx 2p^{2/3}-p.$

$$y^{\star} \approx 2p^{2/3} - p$$

Question: Optimal number of pools for q=2 at low prevalence? (in the regime of large n, i.e., big batches)

Taking $n \to \infty$, with y = m/n

$$E = \frac{T}{n} = \frac{m}{n} + 1 - 2(1-p)^{2n/m} + (1-p)^{4n/m-1} = y + 1 - 2(1-p)^{2/y} + (1-p)^{4/y-1}.$$

Set diff equal to zero and approximate solve in low prevalence limit:

$$\frac{\partial E}{\partial y} = 1 + \frac{4(1-p)^{2/y}\log(1-p)}{y^2} - \frac{4(1-p)^{4/y-1}\log(1-p)}{y^2}.$$

Puiseux expansion around p=0 (of Taylor approx.) $y^\star \approx 2p^{2/3}-p.$

$$y^{\star} \approx 2p^{2/3} - p$$

Dorfman efficiency: $2p^{1/2}$ Corresponding efficiency: $\mathbb{E}(T)/n \approx 3p^{2/3}$

Numerical optimization vs. asymptotic approximation

Conclusion

Today we saw:

- Pooled testing to increase screening capacity given limited testing resources
- Finding balanced designs for q > 1 via hypergraph factorization \rightarrow HYPER
- Efficient construction of hypergraph factorization for q=2,3
- Performance of HYPER under a realistic simulation
- Analysis under common theoretical model (noiseless case)

Check out our online tool: http://hyper.covid19-analysis.org

See paper (https://doi.org/10.1101/2021.02.24.21252394) for:

- More simulation studies
- Analysis under theoretical model with noisy tests
- ...

Conclusion

Today we saw:

- Pooled testing to increase screening capacity given limited testing resources
- Finding balanced designs for q > 1 via hypergraph factorization \rightarrow HYPER
- Efficient construction of hypergraph factorization for q=2,3
- Performance of HYPER under a realistic simulation
- Analysis under common theoretical model (noiseless case)

Check out our online tool: http://hyper.covid19-analysis.org

See paper (https://doi.org/10.1101/2021.02.24.21252394) for:

- More simulation studies
- Analysis under theoretical model with noisy tests
- ...