Report No:CCISE160710106

FCC REPORT

Applicant: Aqua trading(shenzhen)limited

Address of Applicant: No.22D, NEO Building Block B, No.6011.Shennan avenue

Futian District, Shenzhen China

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: RS3

Trade mark: AKUA

FCC ID: 2AGE2-RS3

Applicablestandards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 22 Jul., 2016

Date of Test: 22 Jul., to 24 Aug., 2016

Date of report issued: 25 Aug., 2016

Test Result: Pass *

*In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Aug., 2016	Original

Tested by: | | Aug., 2016

Test Engineer 25 Aug., 2016

Reviewed by: Date: 25 Aug., 2016

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	Т	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	Т	EST RESULTS ANDMEASUREMENT DATA	
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	17
8	F	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	Pass	
Radiated Emission	Part15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Aqua trading(shenzhen)limited		
Address of Applicant:	No.22D, NEO Building Block B, No.6011.Shennan avenue Futian District, Shenzhen China		
Manufacturer:	Aqua trading(shenzhen)limited		
Address of Manufacturer:	No.22D, NEO Building Block B, No.6011.Shennan avenue Futian District, Shenzhen China		
Factory:	Shenzhen Xin Kingbrand Enterprises Co., Ltd		
Address of Factory:	Kingbrand Industrial Zone, Nanpu Road, Shang Liao Lin Pi Keng, Shajing Town, Baoan District, Shenzhen City, Guangdong		

5.2 General Description of E.U.T.

Product Name:	Smartphone	
Model No.:	RS3	
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh	
AC adapter :	Model: aifeng4S Input: AC100-240V 50/60Hz 0.15A Output: DC 5.0V, 1A	

5.3 Test Mode

Operating mode	Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode	
FM mode	Keep the EUT in FM receiver mode	
GPS mode	Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE160710106

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	E178FPC N/A	
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.8 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna SCHWARZBECK		BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	4 Pre-amplifier HP (10kHz-1.3GHz)		8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
7	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Conducted Emission

OII					
FCC Part15 B Section 15.107					
ANSI C63.4:2014					
150kHz to 30MHz					
Class B					
RBW=9kHz, VBW=30kHz					
	Limit ((dBuV)			
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
	60	50			
* Decreases with the logarith	nm of the frequency.				
Reference Plan	ne	_			
AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment and	on network(L.I.S.N.). The pedance for the measure also connected to the ohm/50uH coupling imports to the block diagram of the maximum emiss dall of the interface ca	ne provide a ring equipment. e main power through bedance with 500hm of the test setup and in conducted ion, the relative bles must be changed			
Temp.: 23°C Hun	nid.: 56% Pre	ess.: 101kPa			
	Refer to section 5.3 for details				
	ls				
	ANSI C63.4:2014 150kHz to 30MHz Class B RBW=9kHz, VBW=30kHz Frequency range (MHz) 0.15-0.5 0.5-5 0.5-30 * Decreases with the logarith Reference Plant LISN 40cm 80c AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization Soohm/50uH coupling impedence Stabilization Network Test table height=0.8m 1. The peripheral devices are a LISN that provides a 50 termination. (Please refers photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment an according to ANSI C63.4: Temp.: 23°C Hun	ANSI C63.4:2014 150kHz to 30MHz Class B RBW=9kHz, VBW=30kHz Frequency range (MHz) 0.15-0.5 0.5-5 0.5-5 0.5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN LISN LISN LISN LISN LISN LISN LISN Lish impedence Stabilization Network Test table height-0.8m 1. The E.U.T and simulators are connected to the n line impedance stabilization network(L.I.S.N.). Th 500hm/50uH coupling impedance for the measur 2. The peripheral devices are also connected to the a LISN that provides a 500hm/50uH coupling impedance. (Please refers to the block diagram of photographs). 3. Both sides of A.C. line are checked for maximum interference. In order to find the maximum emiss positions of equipment and all of the interface ca according to ANSI C63.4: 2014on conducted me			

Measurement data:

Line:

Trace: 11

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Smart phone

Model : RS3

Test Mode : PC mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark

(emark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>d</u> B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.154	26.74	0.14	10.78	37.66	65.78	-28.12	QP
2	0.154	22.66	0.14	10.78	33.58	55.78	-22.20	Average
3	0.170	26.37	0.14	10.77	37.28	64.94	-27.66	QP
4	0.253	16.33	0.16	10.75	27.24	61.64	-34.40	QP
1 2 3 4 5 6 7 8 9	0.258	13.38	0.16	10.75	24.29	51.51	-27.22	Average
6	0.381	7.91	0.23	10.72	18.86	48.25	-29.39	Average
7	0.771	12.57	0.30	10.80	23.67	56.00	-32.33	QP
8	4.224	18.61	0.34	10.88	29.83	56.00	-26.17	QP
9	4.746	15.87	0.35	10.86	27.08	46.00	-18.92	Average
10	19.428	20.12	0.33	10.92	31.37	50.00	-18.63	Average
11	22.655	26.94	0.35	10.89	38.18	60.00	-21.82	QP
12	22.655	24.15	0.35	10.89	35.39	50.00	-14.61	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 9 of 18

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT Smart phone

Model RS3 Test Mode : PC mode Power Rating : AC 120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

emark		-					14 E-14 (11 (11 (11 (11 (11 (11 (11 (11 (11 (
		Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	₫₿u₹	<u>d</u> B	₫B	dBu₹	dBu√	<u>d</u> B	
1	0.150	21.19	0.12	10.78	32.09	56.00	-23.91	Average
2	0.154	29.03	0.12	10.78	39.93	65.78	-25.85	QP
3	0.171	26.79	0.13	10.77	37.69	64.90	-27.21	QP
4	0.178	17.07	0.14	10.77	27.98	54.59	-26.61	Average
2 3 4 5 6 7 8 9	0.259	13.07	0.18	10.75	24.00			Average
6	0.263	16.48	0.18	10.75	27.41	61.34	-33.93	QP
7	0.393	12.61	0.23	10.72	23.56	57.99	-34.43	QP
8	0.393	8.62	0.23	10.72	19.57	47.99	-28.42	Average
9	17.661	21.87	0.27	10.90	33.04	60.00	-26.96	QP
10	17.755	20.50	0.27	10.90	31.67	50.00	-18.33	Average
11	23.511	22.80	0.24	10.88	33.92	50.00	-16.08	Average
12	23.888	26.21	0.24	10.88	37.33	60.00	-22.67	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

0.2 Radiated Ellission										
Test Requirement:	FCC Part15 B S	FCC Part15 B Section 15.109								
Test Method:	ANSI C63.4:201	14								
Test Frequency Range:	30MHz to 6000I	MHz								
Test site:	Measurement D	istance:	3m (Se	mi-Anechoi	c Chan	nber)				
Receiver setup:	Frequency	Dete		RBW	VB\		Remark			
	30MHz-1GHz	Quasi-	•	120kHz	300k		Quasi-peak Value			
	Above 1GHz	Pea RM		1MHz	3MF		Peak Value			
Limit:	Frequenc			1MHz (dBuV/m @		7∠ 	Average Value Remark			
Liffiit.	30MHz-88M		LIIIII	40.0	<i>(</i> 3111)		Quasi-peak Value			
	88MHz-216N			43.5			Quasi-peak Value			
	216MHz-960			46.0			Quasi-peak Value			
	960MHz-1G			54.0			Quasi-peak Value			
				54.0			Average Value			
	Above 1GI	ΗZ		74.0			Peak Value			
	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz									
	SOCM I	E EUT	G Test Recei	3m round Reference Plane	e Pre-Amptifier	Contro	oller			

	1							
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 							
	 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. 							
		t-receiver sys dBandwidth v				and		
	SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limit specified, then testing could be stopped and the peak values EUT would be reported. Otherwise the emissions that did not have margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test environment:	Temp.:	25°C	Humid.:	55%	Press.:	101kPa		
Test Instruments:	Refer to se	ection 5.7 for	details					
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data:

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart phone Model: RS3
Test mode: PC Mode
Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: YT
RFMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>d</u> B/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	55.221	18.99	0.00	0.00	0.00	18.99	40.00	-21.01	QP
2	103.806	23.91	0.00	0.00	0.00	23.91	43.50	-19.59	QP
3	165.487	35.21	0.00	0.00	0.00	35.21	43.50	-8.29	QP
4	239.987	39.55	0.00	0.00	0.00	39.55	46.00	-6.45	QP
5	283.979	35.49	0.00	0.00	0.00	35.49	46.00	-10.51	QP
6	721.726	39.64	0.00	0.00	0.00	39.64	46.00	-6.36	QP

Vertical:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT Smart phone : Smart phone
Model : RS3
Test mode : PC Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARY

REMARK

	Freq		Intenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∇	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	59.441	21.84	0.00	0.00	0.00	21.84	40.00	-18.16	QP
2	103.080	30.53	0.00	0.00	0.00	30.53	43.50	-12.97	QP
3	165.487	37.99	0.00	0.00	0.00	37.99	43.50	-5.51	QP
1 2 3 4 5	239.987	31.90	0.00	0.00	0.00	31.90	46.00	-14.10	QP
5	314.377	35.21	0.00	0.00	0.00	35.21	46.00	-10.79	QP
6	721.726	42.73	0.00	0.00	0.00	42.73	46.00	-3.27	QP

Above 1GHz

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone

Model : RS3
Test mode : PC Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∇	$-\frac{dB}{m}$	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	3420.597	46.32	27.47	8.63	38.96	43.46	74.00	-30.54	Peak
2	3420.597	36.70	27.47	8.63	38.96	33.84	54.00	-20.16	Average
2	4139.249	46.25	32.90	9.79	41.01	47.93	74.00	-26.07	Peak
4	4139.249	36.52	32.90	9.79	41.01	38.20	54.00	-15.80	Average
5	5403.809	45.20	35.10	11.26	40.20	51.36	74.00	-22.64	Peak
6	5403.809	35.68	35.10	11.26	40.20	41.84	54.00	-12.16	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart phone

Model : RS3
Test mode : PC Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

Thursday									
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∇	$\overline{dB/m}$	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	3079.404	49.79	25.97	7.98	40.59	43.15	74.00	-30.85	Peak
2	3079.404	39.66	25.97	7.98	40.59	33.02	54.00	-20.98	Average
3	4107.156	47.20	32.79	9.76	41.04	48.71	74.00	-25.29	Peak
4	4107.156	37.21	32.79	9.76	41.04	38.72	54.00	-15.28	Average
5	4941.121	44.42	36.64	10.72	40.05	51.73	74.00	-22.27	Peak
6	4941, 121	34.16	36.64	10.72	40.05	41.47	54.00	-12.53	Average