Integral de Riemann

1) Consideranos uma função f: [a,b] - IR limitade e uma partição P: a=to<t,<...<ti-,<ti>ti-,<ti>ti<...<tn=b do intervalo [a,b], 15 i < n

definição: a soma inferior de f relativa à partição P é s(f, P): = Z (inf 1 f(t); ti-1 s + s + ti) (ti-ti-1) e

a soma superior de f relativa à partique P e' $S(f,\theta):=\sum_{i=1}^{n}(1 \text{ sup } 1+(t); t_{i-1} \text{ state})(t_i-t_{i-1})$.

Temos $h(f,\theta) \leq S(f,\theta)$ para qualgran partição θ .

Observemos que se $-M \leq f(x) \leq M$ em [a,b] então $S(f,\theta) \geq -M(b-a)$ e $h(f,\theta) \leq M(b-a)$. Resulta que existem $\int_a^b f = \sup\{h(f,\theta)\} \theta$ partição $f(f,\theta) = \sup\{h(f,\theta)\} \theta$ partição $f(f,\theta) = \inf\{h(f,\theta)\} \theta$ part

Proposição: Saf & Saf.

prova: consideremos Be Q partições de [a,6], e R um refinamento comum (isto é, OCQ e QCR); podemos tomar par exemplo R=BUQ.

Segue-se que $s(f,0) \leq s(f,0) \leq s(f,0) \leq s(f,0),$ quaisque que sejone $\theta \in \Omega$. Resulta doi: sup $l s(f,0) \leq 0$ partição $f \leq inf (s(f,0); Q)$ partição $f \in S(f,0)$ definição: f é integrável quando sa f= sa f; o valor comm é denotado por sa f.

Convencionamos sa f:=-sa f.

Exemple 1: sega f(x) = 1 & $x \in [a,b]$ é racional, f(x) = 0 se $x \in [a,b]$ é irracional. Para qualque partique θ , temos $s(f,\theta) = 0$ e $S(f,\theta) = 1$, de mode que f = 0 e S = b - a

Exemple 2; se $f(x) = \alpha$, entre $S(f, \theta) = \Delta(f, \theta) = \alpha(b-a)$, para qualque θ . hogo, $\int_a^b f = \alpha(b-a)$.

Exemplo 3: Segam $h, f: [a,b] \rightarrow \mathbb{R}$ integraveio, com $h(x) \leq f(x)$ em [a,b]. Temos que $S(R,\theta)$ $\leq S(f,\theta)$ para toda partição $\theta \Rightarrow \int_a^b R \leq \int_a^b f$ (maio precisamente, $h(h,\theta) \leq S(h,\theta) \leq S(f,\theta)$ para qualque partição $h(h,\theta) \leq S(h,\theta) \leq \int_a^b R \leq S(h,\theta)$, temos que $\int_a^b R \leq S(f,\theta)$. Mas esta designal—temos que $\int_a^b R \leq S(f,\theta)$. Mas esta designal—dade vale para qualque $h(h,\theta) \leq \int_a^b f(h,\theta) \leq \int_a^b f(h,\theta)$ o partição $h(h,\theta) \leq \int_a^b f(h,\theta) \leq \int_a^b f(h,\theta)$

Exercício: seja g: I - R função limitade. Entar sup 1 g(x); x e I} - inf 1 g(x); x e I} = sup 1 1 g(x) - g(y) 1; x, y e I}

Um dos resultados mais importates relativos à integração é o seguinte

En outras palavras, denotando por 101=

= max 1 ti-ti-1; 1 \(\in i \) n temos que \(5(\xi, \theta) - A(\xi, \theta)\)

e pequeno des de que 101 seja suficiente mente

pequeno. \(\in \) consideramos uma seguência \(\theta_n\)

de participes de \([a,b]\) de modo que \([a_n 1 \rightarrow 0\),

ento \([im \) \(\sigma(g,\theta_n) = \([im \) \sigma(g,\theta_n) = \([im \) \alpha\)

ento \([im \) \(\sigma(g,\theta_n) = \([im \) \sigma(g,\theta_n) = \([im \) \alpha\)

q for continua.

Exemplo: vamos calcular $\int_0^1 q e \int_0^1 h \text{ onde } g(x) = X$ $e h(x) = x^2$. Consideremos particas O_n de [0,1] obtida dividindo [0,1] em n intervalos de ignal comprimento. No subintervalo $[\frac{i-1}{n},\frac{i}{n}]$ temos $\max\{g(x)\}=\frac{i}{n}e \max\{h(x)\}=[\frac{i}{n}]^2$. Logo $S(g,\theta_n)=\frac{\pi}{2}\frac{i}{n}\cdot\frac{1}{n}=\frac{1}{n^2}\frac{\pi}{2}i=\frac{1}{n^2}\frac{1+n}{2}\cdot n$ e $S(h,\theta_n)=\frac{\pi}{2}(\frac{i}{n})^2\frac{1}{n}=\frac{1}{n^3}\frac{\pi}{2}i^2=\frac{1}{n^3}\frac{n(n+1)(2n+1)}{6}$

Podemos relaxar a condição de continuidade do modo seguinte: dizemos que f: [a,b] - IR (1f(x)1 \le M para x \varepsilon [a,b]) é continua por partes quando existe partição (2 = a, = a < a, < ... < a, = b tal que f é continua em cada (a, 1, 1, 1 \le f \le K. tal que f é continua em cada (a, 1, 1, 1, 1 \le f \le K. Estas função são também integráveis. Para ver isso, damos exo qualquer e fixamos interalos techados I, = [c, 1, d,] em torno de cada a;

 $a = a_0 d_0$ $C_{j-1} a_j d_j$ $C_{k-1} a_k = b$

de mode que $\sum_{i=0}^{k} |T_i| < \frac{\epsilon}{4 \text{ M}}$.

 c_{3-2} a_{3-1} d_{3-1} c_{3-1} a_{j} d_{j}

En cada intervals [d_1-1, C_3-1] temos partição P; t.q. S(f|[d_3-1, C_3-1], 8;)- s(f|[d_3-1, C_3-1], 8;) < \frac{\infty}{2\infty}

Sendo \mathcal{B} a partição obtida reunindo todas as partição \mathcal{B}_i , obtemos $S(f, U\mathcal{B}_i) - \delta(f, U\mathcal{B}_i)$ $= \sum_{j=1}^{\infty} S(f_j\mathcal{B}_i) - \delta(f_j\mathcal{B}_i) + \sum_{j=1}^{\infty} (\sup_{j \in \mathcal{A}_i} |f(x)|, x \in I_j) - \inf_{j \in \mathcal{A}_i} |f(x)|, x \in I_j$ $\leq \frac{\varepsilon}{2\kappa} \cdot \kappa + 2m \cdot \frac{\varepsilon}{4m} = \varepsilon.$

Exemple: podemos ter junções integráveis com um conjunto enumeravel de portos de descontinui-dade. Seja h: [1,2] - R definida como f(x)=0

se x é irracional · e f(q)= q (p e q primos entre si) Charamente f é des continue nos racionais, dado que estes são aproximados por irracionais. Porém, f é continua nos irracionais. De fato, seja xo crracional e Xn - xo. A subsequência (Xnx) de (xn) formada por irracionais formere f(xn)=0 para todo Mx, logo lim f(xnx) = 0 = f(xo). Tomemos a subsequência (Pri) correspondente aos racionais. Então 9n; - 00 quando n; -00 (caso houvesse Pm -> xo e qm & L entas 1qm 3 e 1pm 3 seriau finitos, absurdo). Resulta que $f\left(\frac{p_{n_j}}{q_{n_i}}\right) = \frac{1}{q_{n_i}} \rightarrow 0$ = f(x6). Se Q é qualque partição, A (f,Q)=0, portanto If = 0. Dado E>0, temos org(x) < E exceto por un ne finito de portes X,,..., X, (corres pondundo ans racionais [] t.q. \frac{1}{9} > \epsilon . Adaptando 0 argumento usado na integnabilidade de funções continues por partes concluimos que existe partiças Q de mode que 5(5,Q)<E. Résulta la f=0.

② Teorema Fundamental de Cálmo Seja f: [a,b] → R integravel. hema: para qualquer ce(a,b), fl[a,c] e fl[c,b] sao integraveio. Alem disso, Saf=Saf+Scf

prova: dado E>0, consideremos partição o de [a,b] t.q. S(f, 0) - s(f, 0) < E, e formamos particias o acres centando o porto c; anda temos S(f,0)-s(f,0) «E Designemos por B, e B2 as restrições de O aos intervalos [a,c] e [c,b]. Seque-se que: 5(f,0)= S(f|[a,c],0,)+ S(f|[c,b],0]) e s(f,0)= $\varphi(t|^{Ea},c], \theta_1) + \varphi(t|^{Ea},\theta_1) = \rangle$ [S(f| [c, c], B,) - s(f| [c, c], B,] + [S(f| [c, b], B,) -s(f| [c, b], B,)] = 5(f,0)- >(f,0) < E > S(f| [a,c], 0,) - s(f) [a,c], 8,) < E e 5(+1[c,6], 82) - A(+1[c,6], 82) < E. Conclusos: f/[a,c] e f/[c,b] sas integraveis.

Para mostrer que $\int_{a}^{c} f + \int_{c}^{b} f = \int_{a}^{b} f$, usamos $S(f,\theta) = S(f|_{C_{0},c]},\Theta_{1}) + S(f|_{C_{0},b]},\Theta_{2}) \Rightarrow$ $S(f,\theta) \geqslant \int_{a}^{c} f + \int_{c}^{b} f \Rightarrow \int_{a}^{b} f \geqslant \int_{c}^{c} f + \int_{c}^{b} f \text{ (putifique!)}$ $S(f,\theta) \Rightarrow S(f|_{C_{0},c]},\Theta_{1}) + S(f|_{C_{0},b]},\Theta_{2}) \Rightarrow$ $S(f,\theta) \Rightarrow S(f|_{C_{0},c]},\Theta_{1}) + S(f|_{C_{0},b]},\Theta_{2}) \Rightarrow$ $S(f,\theta) \Rightarrow S(f|_{C_{0},c]},\Theta_{1}) + S(f|_{C_{0},b]},\Theta_{2}) \Rightarrow$

Teorema Fundamental do Cálcub: seya $f: [a,b] \rightarrow \mathbb{R}$ integrável e $F(x):=\int_a^x f$. Es f é continua en

ce [a,b] entro F é derivarel en C e F'(c)=f(c)prova: consideremos h < o; $F(c+h)-F(c)=\frac{1}{h}$ $\left[\int_a^{c+h} f-\int_a^c f\right]$ Como $\int_a^{c+h} f+\left[\int_{c+h}^c f-\int_a^c f-\int_{c+h}^c f-\int_a^c f-\int_a^c f-\int_a^c f-\int_{c+h}^c f-\int$

Em [c+h,c] temos que

inf f| [c+h,c] \le f(t) \le sup f | [c+h,c]

\[
\inf \left(\left(\left(\left) \left(\left) \left(\left) \reft(\left(\left) \reft(\reft) \reft(\left) \reft(\left(\left) \reft(\reft) \reft(\left(\left) \reft) \reft(\left(\reft) \reft(\reft) \req

Este Teorema e usado principal mente quando $f: [a,b] \rightarrow \mathbb{R}$ e continua; entao $F(x) = \int_a^x f$ satisfar F'(x) = f(x) para todo $x \in [a,b]$

definição: G: [a,b] - IR duivavel é primitiva de g quando G'(x) = g(x) en [a,b].

Observe que se G, e Gz são primitivas de g existe constante LEIR de modo que G,(x)=G2(x)+L em [a,b].

Auando f e contema, o Teoronia Fundamental do Cálculo mostra que f possui a primitiva $F(x) = \int_a^x f$. Sendo \widetilde{F} qualquer outra primitiva, deduzimos que $\widetilde{F}(x) = F(x) + \widetilde{F}(0)$, e portanto $\widetilde{F}(b) - \widetilde{F}(a) = \int_a^b f$.

Exemple: seya $g: [0,1] \rightarrow IR$ definida como g(x) = ix se $x \in [0,1]$ e $g(x) = \beta$ se $x \in (\frac{1}{2}, 1)$

(0 valor de g em /2 não tem influência no que se segue). Portanto, podemos definir $G(x)=\int_0^x g$; em $[0,\frac{1}{2}]$ temos $G(x)=\alpha x$, e em [1/2,0] temos $G(x)=\frac{\alpha}{2}+\beta(x-\frac{1}{2})$.

Exercício, seja g: [a, b] -IR integrável. Entros G(x)= são é continua.

Observe que no exemplo anterior G. deixa de ser derivavel no ponto 1/2, onde g nos e continua.

Exercício: seja $g: [-\frac{1}{2\pi}, \frac{1}{2\pi}] \rightarrow \mathbb{R}$ dipinida como $g(x) = 2 \times \text{sen} \frac{1}{x} - \cos \frac{1}{x}$, se $x \neq 0$. Mo stre que $G(x) = \int_{-\frac{1}{2\pi}}^{x} g$ é a função $H(x) = x^{2} \text{sen} \frac{1}{x}$, $x \neq 0$ e H(0) = 0.

Exercicio: seja f: [a,b] -, IR derivavel com dervada continua. Mostre que f(x)=f(a)+ fa+'(+) dt

Exercício: se -1 < x < 1, mostre que onc cos x = = x \(\int_{-x^2} + 2\int_{x}^1 \int_{1-t^2} \dt.

Exercício: sega h: [a, b] -> R crescente. Mostre que h é integnável.

Exercício: sejam f,g: [a,b] -IR continuas Mostre
que [sa fet)get) et] = [sa fet)2 dt][sa get)2dt].

Sugestão: use o produto enterno em 12".

Exercicio: sejam $f,g: [a,b] \rightarrow IR$ funções com derivadas continuas. Mostre que $\int_a^b f'(x)g(x) dx = (f.g)(b) - (f.g)(a) - \int_a^b f(x)g'(x) dx$

Exercicio: sigum f: [a,b] - IR continua e g:
[x, ß] - [a,b] com derivada continua. Mostre
que

de f(g(t)) g'(t) dt = \(g(d) \)
g(c) f(x) dx

Exercício: se f: [a,b] -> IR e derivavel com f' integravel, mostre que f(b)-f(a) = Ja f'(+) dt

Θ Operações com Integrais

Sejam f, g: [a, b] → IR integraiveis.

Proposição: 1) f+9 e f.9 são integráveis e

[\$\frac{b}{a}(f+9) = \frac{b}{a}f + \frac{b}{a}g; 2) se |f(x)| x k >0 para

\$\frac{b}{a} \times \text{Ea,b]} e algum k >0, então \frac{1}{6}x) e

integrável; 3) |f| \in \text{integrável e}

1 (\$\frac{b}{a}f(x)dx| \le [\frac{b}{a}|f(x)|dx .

prova:1) consideremos partição 8 de [a,b]. Como em cada sub intervalo temos em (ada sub intervalo temos inf 1 f(x) } + inf 1 g(x) } < f(x) + g(x) ≤ sup { f(x) } + sup 1 g(x) }, verso que sup 1 f(x) + g(x) } < sup { f(x) } + sup 1 g(x) } e inf 1 f(x) + g(x) } < inf 1 f(x) } + inf 1 g(x) }

=> 5(f+g,0) - 5(f+g,0) ≤ 5(f,0) - 5(f,0) + 5(g,0) - 5(g,0) - 5(g,0) + 5(g,0) - 5(g,0) + 5(g,0) - 5(g,0) + 5(g

Quanto à igualdade das integrais: seja E>0 qualquer. Existem participes B, e Bz de [a, b] de mods que 5 (f, 81) < 5 d + 6/2 S(g, 82) < 5 g + 8/2

Sendo d'refinaments comme de P, e B, temos 5 (f, 2) & S (f, 81) < \(\int_a f + \% $S(g, R) \leq S(g, R_2) + \int_a^b g + \frac{6}{2}$

(b) S(f,R) S(f,B) SaftE => S(f, d) +S(g, d) = jaf + jag + E => S(f+9, l) = Saf+ Sag+ E

=> \int_a^b (f+g) \int_a^b f + \int_a^b g + \in \cdots

Como a designaldade vale para todo E>O, concluimos que (a(f+9) = Saf+ Sag De modo análogo obtemos la 4+9) > sat+sag

As afirmativas para f.9 e 1 são de demonstração dunta (exercício).

3) Temos que 14(x)1-4(y)1/ < 14(x)-4(y)/ para qualque x,y. Sendo & partiços, em qualque subjutervab:

sup { | | f(x) | - | f(y) | } = sup + | f(x) - f(y) | }

=> 5(141,0) - 1141,0) < 5(4,0) - 1141,0)

Resulta dai que III é integravel.

Finalmente: - 15(x) = 5(x) = 15(x) | jumplica - 5a 15(x) dx = 5a + (x) x = 5a + (x) dx, on | 5a + (x) dx | = 5a + (x) dx.

Exemple: seya f: [a,b] -> 1R definida como f(x)=1 se x & Q , f(x)=-1 se x & Q . Entas of não é integrável; mas 1fix1=1 para todo x E [a, b], de modo que 151 e outegravel

Exemplo: Integrais Improprias

para cra. Consente le continua, e sa f(t) dt para cra. Caso exista lim 5° f(+)dt, definimos 1° f(+)dt como sendo este hunte.

Por exemplo, se f(+)= 1= 1 , t>1, entre la te=1-12 Logo, 500 dt = 1

Outra situação aparece quando temos uma função q: [a,b) - IR continua porém não limitada na vizinhança de b. Tomanos a integral la g(t) dt para E >0. Se existir lim 1 5 = E GH) dt, definiones este limite come (3 9(4) dt.

Por exemplo, seja g(t) = 1 Temos que so 1-E dt = = anc sen (1-E) - anc seno, de modo que so VI-te = 2 Se h(t)= 1/1+te, t>0, entre / dt = anctge = anctgo

Quando So If (+) dt (ou Sa If (+) dt) existe, di zemes que a integral é absolutamente convergente Escrevamos ff(x) = max1 f(x), 0} e f_(x) = - min 1 f(x), 0}. Segue-se que If(x) = f+(x) +f-(x) e f-(x)=f+(x)-f-(x). Condua que se a entegral e absolutamente convergente entre também é convergente

5) Fórmula de Taylor, versão infinitesimal.

Teorema: sepa r(x): = f(x) - T_{f,c}(x). Eutas 1, m r(x) =0 prova: Observemos que r é ne vezes duivavel em c, com r(i)(c) =0 para 0 = j = n. Provemos que uma junção com tal requesito satisfaz a propriedade enunciada para o limite. Façamos indução em n. Se n=1, devemo mostrái que Suponhamos o Teorema valido para qualque junção g(a,b) -- IR derivavel n-1 veres en c E(a,b) com g(1)(c)=0, 0=8=n-1: Ora: | (x-c) = | - (x)-r(c) = | + (tx)(x-c) | para algum tx entre c c x; portato, | rcx) |= | r'(tx) | tx-cyn-1 | 1 e portants / m | r(x) | = 0 pois / m | r'(tx) =0 (hipótese

constant is so us in man

Una aplicação interessante: seya f: (a, b) -> IR n
vezes desivavel em c e (a, b). Suponhamos n por e
f'(c)===== f⁽ⁿ⁻¹⁾(c)=0. Caso f⁽ⁿ⁾(c) > 0, então c e
ponto de virinmo local.

Basta votar que $f(x) = T_{1,c}(x) + r(x)$ con l'un $\frac{r(x)}{x \to c}$ $\frac{r(x)}{x \to c}$

e portante 10<1x-c1 for suficientemente seque-se que f(x)-f(c) >0.

6 Formula de Taylor, versão integral.

Consiste em encontrar uma expressão integral para o resto r(x). Por exemplo, no intervalo [0,1] podemos escrever $\frac{1}{1+x} = \sum_{j=0}^{n} (-1)^j x^j + \frac{(-1)^{n+j} x^{n+j}}{1+x}$

Portanto, log(1+x)= \frac{n}{l=0} \frac{(-1)^{i} \times^{i+1}}{d+1} + (-1)^{n+1} \int_{0}^{x} \frac{t^{n+1}}{1+t} dt

O termo \(\frac{7}{3\infty} \) = 0 polivormo de Taylor

de \(\times \log(1+\times) \) centrado em O, e (-1)"+1\(\frac{7}{0} \) \(\frac{1+t}{1+t} \) dt

é o resto em journa integral.

Teorema: seja $f: [a_1b] \rightarrow \mathbb{R}$ n+1 vezes chenivável, e $c \in [a_1b]$. Entos $f(x) = T_{f,c}(x) + r_n(x)$, onde $r_n(x) = \frac{1}{n!} \int_c^x (x-t)^n f^{(n+1)}(t) dt$

Observação: escrevendo $|f^{(mH)}(\pm)| \le M$ em [a,b], temas $|r_m(x)| \le \frac{M}{N!} |x-c|^{m+1} \Rightarrow \lim_{x\to c} \frac{r_m(x)}{(x-c)^n} = 0$. Recu peramos assim

provati a state for with our company

1) Façamos indução en n.

Para
$$n=1$$
, devenues verifican que $f(x) - [f(c) + f'(c)(x-c)] = \int_{c}^{x} (x-t) f''(t) dt$.

Ova, apliquemos integração por partes para calcular a integral. Fazendo U=x-t, dv=f"(t)dt, temos $\int_{c}^{\infty} (x-t) f''(t) dt = \int_{c}^{\infty} u dv = u \cdot v \Big|_{c}^{\times} - \int_{c}^{\infty} v du$

=
$$\int_{X} (f)(x-f) \Big|_{X}^{c} + \int_{X}^{c} f(f) df = -f(c)(x-c) + f(x) - f(c)$$

valido para n=k,e 2) Suponhamos o Teorema provenus para n=k+1.

Proveums para
$$N = k+1$$
.

Temos $f(x) = T_{1,c}(x) + T_{k}(x) = T_{1,c}(x) + \frac{1}{k!} \binom{x}{(x-t)^{k}} f^{(k+1)}(t) dt$

Where $f(x) = T_{1,c}(x) + T_{k}(x) = T_{1,c}(x) + \frac{1}{k!} \binom{x}{(x-t)^{k}} f^{(k+1)}(t) dt$

Where $f(x) = T_{1,c}(x) + T_{k}(x) = T_{1,c}(x) + \frac{1}{k!} \binom{x}{(x-t)^{k}} f^{(k+1)}(t) dt$.

$$= \frac{\int_{c}^{k+1}(x)}{\int_{c}^{k+1}(c)(x-c)^{k+1}} + \frac{1}{k!} \int_{c}^{x} (x-t)^{k} f^{(k+1)}(t) dt.$$

A pli que mos cutegrações por partes à cutegral: $(x-t)^{k+1}$) $v = f^{(k+1)}(t), dv = (x-t)^{k}. Seque-se que (v=-\frac{k+1}{k+1})$

$$\frac{1}{1!} \int_{X}^{K} (x-t)_{K+1} (t) dt = \frac{K!}{1!} \left[\frac{K+1}{(x-t)_{K+1}} t_{(K+1)}(t) \right]_{X}^{C}$$

$$0 = t_{(K+1)}(t) dt = \frac{K!}{1!} \left[\frac{K+1}{(x-t)_{K+1}} t_{(K+1)}(t) \right]_{X}^{C}$$

$$= \int_{c}^{x} \frac{(x-t)^{k+1}}{(x+t)^{k+1}} \cdot f^{(n+2)}(t) dt$$

$$= \frac{1}{k!} \left\{ \int_{c}^{(x+1)} \frac{(x-t)^{k+1}}{(x+1)^{k+1}} + \int_{c}^{x} \frac{(x-t)^{k+1}}{(x+2)^{k+1}} f^{(n+2)}(t) dt \right\}$$

$$= \frac{1}{|x|} \frac{1}{(k+1)!} \frac{1}{|x|} \frac{1}{|x|}$$

O polinômie de Taylor de ordem n é canadrizado pela propriedade limite do resto, o que é bastante

útil como veremos nos exemplos a seguir. Mais precisament:

Proposição: sap $f: [a,b] \rightarrow IR$ n vezeo denvável no ponto ce[a,b]. Se p(x) e polinômio de quan n t:q. f(x) = p(x) + S(x) com $\lim_{x\to c} \frac{S(x)}{(x-c)^n} = 0$, entro $T_{f,c}^n(x) = p(x)$

 $prova: \lim_{x \to c} \frac{T_{f,c}(x) - p(x)}{(x - c)^n} = 0 \Rightarrow \lim_{x \to c} T_{f,c}(x) - p(x) = 0$ $\Rightarrow T_{f,c}(c) - p(c) = 0 \quad (continuidade de T_{f,c}(x) - p(x))$

=> Tf,c (x) - p(x) = (x-c) p1(x), gram p1 = n-1.

De $T_{t,c}^{n}(x) - p(x) = \frac{p_1(x)}{(x-c)^{n-1}}$ concluins que

lum $p_1(x)$ =0, de modo que lum $p_1(x) = 0$ e entro $x \to c$ $(x-c)^{n-1}$ => $p_1(x) = (x-c)p_2(x)$, gran $p_2 = n-2$

Resulta que $\frac{T_{pc}^{n}(x)-p(x)}{(x-c)^{n}}=\frac{p_{c}(x)}{(x-c)^{n-2}}$, e, como antes, $p_{c}(c)=0$

Prossegundo o raciocínio chegamas a

 $\frac{1}{(x-c)^n} = a_n(x), com a_n(c) = 0$ e gran $a_n = 0$.

Portanto, Tinc (x) = p(x) [

Exemplo: como $\frac{1}{1+x} = \frac{\sum_{j=0}^{N} (-1)^{j} \times^{j} + \frac{(-1)^{N+1} \times^{N+1}}{1+x}}{1+x}$ para $x \ge -1$, e $\lim_{X\to 0} \frac{1}{x^{N}} \left[\frac{(-1)^{N+1} \times^{N+1}}{1+x} \right] = 0$, temos que $\frac{\sum_{j=0}^{N} (-1)^{j} \times^{j}}{1+x}$ e 0. polivornio de Taylor de $\frac{1}{1+x}$ de ordem v_{i} centrado em 0.

Integrando esta equação: $\log(1+x) = \frac{\sum_{j=0}^{n} \frac{(-1)^{j} \times^{j+1}}{j+1}}{j+1} + (-1)^{n+1} \int_{0}^{x} \frac{t^{n+1}}{1+t} dt , x > -1$ $Como |(-1)^{n+1}|_{0}^{x} \frac{t^{n+1}}{1+t} dt| \leq |\int_{0}^{x} t^{n+1} dt| \leq \frac{|x|^{n+2}}{n+2}, \text{ vemos}$ $que \sum_{j=0}^{n} \frac{(-1)^{j} \times^{j+1}}{j+1} \leq 0 \text{ polivorum de Toylor de log(1+x)}$

de ordem N+1 centra do em O.

Eu (-1,1] teurs que $|(-1)^{n+1}|_0^{\times} \frac{t^{n+1}}{1+t} dt| \leq \frac{|x|^{n+2}}{n+2} \leq \frac{1}{n+2}$ Fazendo $y \to \infty$ obtemos $\log(1+x) = \int_{3=0}^{\infty} \frac{(-1)^3 x^{3+1}}{3+1}$.

Eu particular $\log 2 = \sum_{j=0}^{\infty} \frac{(-1)^j}{j+1}$, conhecida como série harmónica.

Nesta mesma linha de idéias façams $x=y^2$ Nesta mesma linha de idéias façams $x=y^2$ na identidade $\frac{1}{1+x} = \sum_{j=0}^{n} (-1)^j x^j + (-1)^{n+j} x^{n+j}$,

obtendo $\frac{1}{1+y^2} = \sum_{j=0}^{n} (-1)^j y^2 + (-1)^{n+j} y^2 (n+j)$ (válida

Também para y < 0). Entres $\sum_{j=0}^{n} (-1)^j y^2 = 0$, polinó
mis de Taylor de $\frac{1}{1+y^2}$ centrado en 0 de orden 2n.

Integrando a expressão acima:

arctg y = $\sum_{j=0}^{\infty} (-1)^j \frac{y^2j+1}{2j+1} + (-1)^{n+1} \int_0^y \frac{dz}{1+t^2} dt$ arctg y = $\sum_{j=0}^{\infty} (-1)^j \frac{y^2j+1}{2j+1} + (-1)^{n+1} \int_0^y \frac{dz}{1+t^2} dt$ Ora, $\int_0^y \frac{t^2(n+1)}{1+t^2} dt \leq \int_0^y \int_0^z (-1)^j \frac{t^2(n+1)}{2j+1} dt = \int_0^z (-1)^j \frac{y^2j+1}{2j+1} = 0$ polinômio de Taylor de arc tg y

en tous de zero de orden 2n+1.

Towardo $141 \le 1$ podemos foger $n \to \infty$ e obter arc togy = $\frac{7}{1=0} \frac{(-1)^{\frac{1}{2}}}{2J+1}$; em partiala quando y=1 en contramos $\frac{JT}{4} = \frac{\infty}{1=0} \frac{(-1)^{\frac{1}{2}}}{2J+1}$.

Nos exemples acina representames as funções log(1+x) e aretog y por séries de potencias infinitas que são suas series de Taylor.

Exemplo: consideremos a função exponencial. Então em cada intervalo [-a, a] temos que e < M e $e^{x} = \sum_{d=0}^{n} \frac{x^{d}}{d!} + \frac{1}{n!} \int_{0}^{x} (x-t)^{n} e^{t} dt =$ $\left| \int_{0}^{x} (x-t)^{n} e^{t} dt \right| \leq a^{n+1} M$ Concluims de $\lim_{n \to \infty} \frac{a^{n+1}}{n!} = 0$ que $e^{x} = \sum_{d=0}^{\infty} \frac{x^{d}}{d!}$, que $e^{x} = a$ Atrie de Taylor de e^{x} centrada em o.

Vancos mostrar que o número e é irracional observenos inicialmente que no entrodo [-1,1] temos $\frac{1}{n!}\int_{0}^{1}(1-t)^{n}dt \leq e - \sum_{j=1}^{n}\frac{1}{j!} \leq \frac{1}{n!}\int_{0}^{1}(1-t)^{n}edt$ $\Rightarrow \frac{1}{(n+1)!} \leq e - \sum_{j=1}^{n}\frac{1}{j!} \leq \frac{e}{(n+1)!} \leq \frac{3}{(n+1)!}$

Superhours e racional par absendo. Escolhendo no sufreentemente grande temas que n! e seria natural; ora, $n! \sum_{j=0}^{n} \frac{1}{j!}$ também e natural; è natural; è $\frac{1}{n+1} \leq n!$ e - $\sum_{j=0}^{n} \frac{n!}{j!} \leq \frac{3}{n+1}$, o que e curposaível: $\frac{1}{n+1} \leq n!$ e - $\sum_{j=0}^{n} \frac{n!}{j!} \leq \frac{3}{n+1}$, o que e curposaível: $\frac{1}{n+1} \leq n!$ e dois naturais em um intervals de tanando terécuros dois naturais em um intervals de tanando curposión a 1.

6) Una aplicação à Física

Consideranos uma particula movendo-se na reta sob ação de uma força F(x); discrevendo a posição da particula em função do tempo como x(t), temos que a volocidade é dada por x'(t) e a aculinação por x''(t). Definamos o trabalho executado pela força enquanto a particula muda de um porto x_0 a um porto x_1 como $\int_{x_0}^{x_1} F(x) dx$; a energia curetica de uma portícula de mossa m e velocidade x e $\frac{mv^2}{2}$. Proposição: suponhamos que a particula nos

pouto xo e x, tenha energia anética myé e mvier respectivamente. Entre mvier mvoi = si F(x) dx.

prova : é uma consequência dusta da formula de umdança de variaveis en integrais. Temos $\int_{x_0}^{x_1} F(x) dx = \int_{t_0}^{t_1} F(x(t)) x'(t) dt$ ande $X(t_0) = x_0$ e $x(t_1) = x_1$. Cours F(x(t)) = m x''(t) (heir de Newton), veus que $\int_{x_0}^{x_1} F(x) dx = \int_{t_0}^{t_1} m x'(t) x''(t) dt = \int_{t_0}^{t_1} m \frac{1}{2t} \left[\frac{x'(t)^2}{2t} \right] dt = m \frac{x'(t)^2}{2t} \int_{t=t_0}^{t=t_0} = \frac{m v^2}{2} \frac{m v^2}{2}$

Una aplicação (idealizada) é a seguinte: una corpo de massa m é assernessado vorticulmente da superfície da terra com velocidade vo. Calculemos a altura máxima atingida por ele; sejam R o vaio da terra, M sua massa e H a altura máxima.

F(I) Sobre o corpo atua a força gravitacional

F(I) = - Gm M . Portanto o traballos

R centro executado por ela até o corpo atingir

de terra a posição x = H é (H - Gm M dx

(x+R)2

contante universal de gravitação. Usando a Proposição acima: - MGMM - MV2 => V0 = R(H+R)

R(H+R)

R(H+R)

Vê-se que a vebaidade mémma de lançamento

para que o corpo viao vetorne é dada por

Vinin = lim 26MH = 26M

R(H+R) = R