Maki 的完美算术教室 系列在线数学课程——数学分析

Maki 的数学分析课程(第一版)配套习题集

2020 年 第一版

2020年7月15日更新

转发请注明出处,禁止一切商业用途,版权归我们编辑团队所有,侵权必究

Bilibili 个人空间: https://space.bilibili.com/391930545

官方网站: https://www.maki-math.com Maki 的个人邮箱: maki@maki-math.com

目录

1	数理	逻辑与集合论	1		
	1.1	与、或、非 (Akihi 编辑)	1		
	1.2	推出和等价 (Vict 编辑)	3		
	1.3	全称量词和存在量词 (Vict 编辑)	4		
	1.4	证明与证伪(Yuan_T 编辑)	6		
	1.5	数学归纳法 (MilK 编辑)	8		
	1.6	朴素集合论(tt 编辑)	9		
	1.7	函数 (icc7 酱编辑)	11		
	1.8	基本初等函数	13		
2	函数	极限和连续性	14		
	2.1	邻域和去心邻域	14		
	2.2	极限的直观定义与严格定义	14		
	2.3	极限的性质	14		
	2.4	函数的连续性及性质	14		
	2.5	复合函数的连续性	14		
	2.6	夹逼定律	14		
	2.7	介值定理——IVT	14		
	2.8	极值定理——EVT	14		
3	导数	<u> </u>	15		
	3.1	导数的直观定义和严格定义	15		
	3.2	导数的公式与性质	15		
	3.3	三角函数的导数	15		
	3.4	链式法则	15		
	3.5	反三角函数的导数	15		
	3.6	指数与对数函数的导数	15		
4	导数	的应用	16		
	4.1	隐函数求导	16		
	4.2	中值定理——MVT	16		
	43	局部单调性与一阶导数	16		

	4.4	凸性与二阶导数	16				
	4.5	极值存在的充分条件和必要条件	16				
	4.6	求函数的极值与最值	16				
	4.7	L'Hôspital 法则	16				
	4.8	函数作图	16				
5	定积分						
	5.1	上确界与下确界,确界存在公理	17				
	5.2	Σ 记号与常用公式	17				
	5.3	定积分的 Riemann 定义,各种黎曼和	17				
	5.4	定积分的 Darboux 定义	17				
	5.5	黎曼不可积的函数例子	17				
6	不定积分						
	6.1	不定积分的定义	18				
	6.2	换元积分法	18				
	6.3	分部积分法	18				
	6.4	三角函数换元积分法	18				
	6.5	Tabular Method——分部积分法的推广	18				
7	微积分基本定理						
	7.1	微积分第一基本定理——FTC1	19				
	7.2	微积分第二基本定理——FTC2	19				
8	积分	的应用	2 0				
	8.1	求面积	20				
	8.2	求旋转体的体积	20				
9	反常积分						
	9.1	无界函数的反常积分	21				
	9.2	区间长度为无限的反常积分	21				
10	数列	极限	22				
	10.1	数列极限的定义	22				
	10.2	数列极限的性质	22				

参	参考文献 2					
	12.3	Taylor 级数的导数与不定积分	24			
	12.2	Taylor 定理	24			
	12.1	Taylor 多项式与 Taylor 余项	24			
12	Tay	lor 级数	24			
	11.3	级数的各种审敛法	23			
	11.2	幂级数与 Hadamard 公式	23			
	11.1	特殊级数的求法	23			
11	级数		23			
	10.6	π 的定义	22			
	10.5	e 的定义	22			
	10.4	连续函数的数列极限版等价定义	22			
	10.3	数列极限与函数极限的异同	22			

1 数理逻辑与集合论

这一章作为高等数学的基础,是非常重要的。请至少做出 80% 的习题,保证对后面章节而言能有充分的知识储备。

1.1 与、或、非 (Akihi 编辑)

证明下列逻辑恒等式

1.
$$\neg(\neg p) \iff p$$

2.
$$p \land q \iff q \land p$$
. $p \lor q \iff q \lor p$

3.
$$(p \land q) \land r \iff p \land (q \land r)$$
. $(p \lor q) \lor r \iff p \lor (q \lor r)$

4.
$$p \land (q \lor r) \iff (p \land q) \lor (p \land r)$$
. $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$

5.
$$\neg (p \land q) \iff \neg p \lor \neg q$$
. $\neg (p \lor q) \iff \neg p \land \neg q$

证伪下列逻辑推断

1.
$$p \land q \iff p \lor q$$

2.
$$p \wedge (q \vee r) \iff (p \wedge q) \vee r$$

3.
$$\neg (p \land q) \iff \neg p \land \neg q$$

1.2 推出和等价 (Vict 编辑)

证明下列逻辑恒等式

1.
$$(p \Rightarrow F) \Rightarrow (p = F)$$

$$2. (p \Rightarrow q) \iff (\neg p \lor q)$$

3.
$$(p \Rightarrow (q \land r)) \iff (p \Rightarrow q) \land (p \Rightarrow r)$$

$$4. \ ((p \lor q) \Rightarrow r) \iff (p \Rightarrow r) \land (q \Rightarrow r)$$

5.
$$((p \lor q \lor r) \Rightarrow s) \iff (p \Rightarrow s) \land (q \Rightarrow s) \land (r \Rightarrow s)$$

证伪下列逻辑推断

1.
$$T \Rightarrow F$$

2.
$$((p \land q) \Rightarrow r) \iff (p \Rightarrow r) \land (q \Rightarrow r)$$

1.3 全称量词和存在量词 (Vict 编辑)

证明下列逻辑恒等式

1.
$$\forall x \in \mathbb{R}, \ x^2 \neq -1$$

$$2. \ \forall x, y \in \mathbb{R}, \ x^2 + y^2 \ge 2xy$$

3.
$$\exists x > 0, \ x^3 - 4x = 0$$

4.
$$\exists x \in \mathbb{N}_1, \ \exists y \in \mathbb{N}_1, \ x+y=3$$

化简下列在开头带有"非"的复杂命题

1.
$$\neg(\exists x \in A, \exists y \in B, p(x,y))$$

2.
$$\neg(\forall x \in A, \forall y \in B, \forall z \in C, p(x, y, z))$$

3.
$$\neg(\exists x \in A, \forall y \in B, \forall z \in C, p(x, y, z))$$

1.4 证明与证伪 (Yuan_T 编辑)

- 1. 证明下列命题
 - (a) 若 m 和 n 都是偶数,则 m+n 是偶数

(b) 若 m 和 n 都是偶数,则 $m \cdot n$ 是偶数

(c) $\mbox{if } x \in \mathbb{R}, \ x^2 - 3x - 4 \neq 0 \Rightarrow x \neq 4$

(d) 若 m+n 是奇数,则 m 是奇数或 n 是奇数

(e) $\sqrt{20} \notin \mathbb{Q}$

(f) $\forall x \in \mathbb{N}_1, \exists y \in \mathbb{N}_1, y > x$

(g) $\exists x \in \mathbb{N}_1, \ \forall y \in \mathbb{N}_1, \ x + y = y + 1$

2. 说明下列命题是错误的

(a)
$$\forall x \in \mathbb{N}_1, \ x \cdot (x-1) \cdot (x-2) \cdot (x-3) = 0$$

(b) $\forall x \in \mathbb{N}_1, \exists y \in \mathbb{N}_1, x + y = 1000$

(c) $\exists x \in \mathbb{N}_1, \ \forall y \in \mathbb{N}_1, \ x + y = y$

(d) $\exists x \in \mathbb{N}_1, \ \forall y \in \mathbb{N}_1, \ x > y$

1.5 数学归纳法 (MilK 编辑)

1. 证明

(a)
$$\forall n \in \mathbb{N}_1 \ ((p \Rightarrow (q_1 \land \dots \land q_n)) \iff ((p \Rightarrow q_1) \land \dots \land (p \Rightarrow q_n)))$$

(b)
$$\forall n \in \mathbb{N}_1 (((p_1 \vee \cdots \vee p_n) \Rightarrow q) \iff ((p_1 \Rightarrow q) \wedge \cdots \wedge (p_n \Rightarrow q)))$$

(c) if
$$a_n = qa_{n-1}$$
 for $n \ge 2$, then $\forall n \in \mathbb{N}_1$, $a_n = q^{n-1}a_1$.

(d) if
$$a_n = 2n - 1$$
 for $n \ge 1$, then $\forall n \in \mathbb{N}_1, a_1 + \dots + a_n = n^2$.

(e) if
$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$,
then $\forall n \in \mathbb{N}_1$, $a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$.

2. (难题) 证明: "反向归纳法"

$$(\forall n\in\mathbb{N}_1,\ p(n))\iff ((\exists\ \mathbb{X} 穷多个\ n,\ p(n))\wedge(\forall\ n\in\mathbb{N}_2,\ p(n)\Rightarrow p(n-1))),$$
其中 $\mathbb{N}_2=\{2,3,4,\cdots\}.$

1.6 朴素集合论(tt 编辑)

证明下列命题:

1.
$$A \cap B = B \cap A$$
; $A \cup B = B \cup A$.

2.
$$A \cap (B \cap C) = (A \cap B) \cap C$$
; $A \cup (B \cup C) = (A \cup B) \cup C$.

 $3. \ A\cap (B\cup C)=(A\cap B)\cup (A\cap C); A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$

4. $(A \cap B)^c = A^c \cup B^c$; $(A \cup B)^c = A^c \cap B^c$.

5. $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

6. $A = (A \cap B) \sqcup (A \setminus B)$.

7. $A \cup B = (A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)$.

证明下列命题:

1. $\{15x : x \in \mathbb{Z}\} \subsetneq \{5y : y \in \mathbb{Z}\}.$

2. 若 $m, n \in \mathbb{Z}$, 则 $\{mnx : x \in \mathbb{Z}\} \subset \{my : y \in \mathbb{Z}\}$.

3. $\{2x + 2y : x, y \in \mathbb{Z}\} = \{2z : z \in \mathbb{Z}\}.$

4. $\{4x + 6y : x, y \in \mathbb{Z}\} = \{2z : z \in \mathbb{Z}\}.$

- 1.7 函数 (icc7 酱编辑)
 - 1. 证明

(a)
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

(b)
$$(A_1 \times A_2 \times A_3) \cap (B_1 \times B_2 \times B_3) = (A_1 \cap B_1) \times (A_2 \cap B_2) \times (A_3 \cap B_3)$$

(c)
$$f(A^c) \subset (f(A))^c$$

2. 证伪 (找出反例)

(a)
$$(f(A))^c \subset f(A^c)$$

3. 证明 (用逻辑演绎)

(a)
$$(A_1 \times \cdots \times A_n) \cap (B_1 \times \cdots \times B_n) = (A_1 \cap B_1) \times \cdots \times (A_n \cap B_n)$$

(b)
$$f^{-1}(A_1 \cup \dots \cup A_n) = f^{-1}(A_1) \cup \dots \cup f^{-1}(A_n)$$

(c)
$$f^{-1}(A_1 \cap \dots \cap A_n) = f^{-1}(A_1) \cap \dots \cap f^{-1}(A_n)$$

(d)
$$f(A_1 \cup \cdots \cup A_n) = f(A_1) \cup \cdots \cup f(A_n)$$

1.8 基本初等函数

2 函数极限和连续性

- 2.1 邻域和去心邻域
- 2.2 极限的直观定义与严格定义
- 2.3 极限的性质
- 2.4 函数的连续性及性质
- 2.5 复合函数的连续性
- 2.6 夹逼定律
- 2.7 介值定理——IVT
- 2.8 极值定理——EVT

3 导数

- 3.1 导数的直观定义和严格定义
- 3.2 导数的公式与性质
- 3.3 三角函数的导数
- 3.4 链式法则
- 3.5 反三角函数的导数
- 3.6 指数与对数函数的导数

4 导数的应用

- 4.1 隐函数求导
- 4.2 中值定理——MVT
- 4.3 局部单调性与一阶导数
- 4.4 凸性与二阶导数
- 4.5 极值存在的充分条件和必要条件
- 4.6 求函数的极值与最值
- 4.7 L'Hôspital 法则
- 4.8 函数作图

5 定积分

- 5.1 上确界与下确界,确界存在公理
- 5.2 Σ 记号与常用公式
- 5.3 定积分的 Riemann 定义,各种黎曼和
- 5.4 定积分的 Darboux 定义
- 5.5 黎曼不可积的函数例子

6 不定积分

- 6.1 不定积分的定义
- 6.2 换元积分法
- 6.3 分部积分法
- 6.4 三角函数换元积分法
- 6.5 Tabular Method——分部积分法的推广

7 微积分基本定理

- 7.1 微积分第一基本定理——FTC1
- 7.2 微积分第二基本定理——FTC2

- 8 积分的应用
- 8.1 求面积
- 8.2 求旋转体的体积

- 9 反常积分
- 9.1 无界函数的反常积分
- 9.2 区间长度为无限的反常积分

10 数列极限

- 10.1 数列极限的定义
- 10.2 数列极限的性质
- 10.3 数列极限与函数极限的异同
- 10.4 连续函数的数列极限版等价定义
- 10.5 e 的定义
- 10.6 π 的定义

11 级数

- 11.1 特殊级数的求法
- 11.2 幂级数与 Hadamard 公式
- 11.3 级数的各种审敛法

- 12 Taylor 级数
- 12.1 Taylor 多项式与 Taylor 余项
- 12.2 Taylor 定理
- 12.3 Taylor 级数的导数与不定积分

参考文献

- [1] 常庚哲、史济怀 (2003). 数学分析教程 (上册) (第三版). 高等教育出版社. (ISBN 978-7-312-03009-3)
- [2] Holden, Tyler (2014-2015). MAT137 Lecture Notes. http://home.tykenho.com/LectureNotes137 _Preview.pdf
- [3] Spivak, Micheal (2008). Calculus (4th ed.). Publish or Perish, Inc. (ISBN 978-0-914098-91-1)