- (1) Decida se cada uma das afirmações a seguir é verdadeira ou falsa.
 - (a) Se uma matriz A é ortogonal, então A^{-1} é ortogonal. **Resposta:** Verdadeiro.
 - (b) Se uma matriz B é simétrica e inversivel, então B^{-1} é simétrica.

Resposta: Verdadeiro.

- (c) Existe transformação linear sobrejetiva $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$. Resposta: Falso.
- (d) Se o volume do paralelepipedo gerado por tres vetores v_1 , v_2 , v_3 em \mathbb{R}^3 é 1, então v_1 e v_2 , v_1 e v_3 , v_2 e v_3 são perpendiculares.

Resposta: Falso.

(e) A imagem de um plano $\pi \subset \mathbb{R}^3$ pela projeção ortogonal em uma reta R cobre a reta R se e somente se o plano não é perpendicular à reta R.

Resposta: Verdadeiro.

(f) A distancia entre duas retas L_1 , L_2 em \mathbb{R}^3 é diferente de zero se e somente se a imagem de L_1 pela projeção ortogonal em L_2 cobre L_2 .

Resposta: Falso.

(g) Uma reta no plano \mathbb{R}^2 possui uma única equação cartesiana.

Resposta: Falso.

(h) A composição de um espelhamento e uma rotação é uma transformação linear ortogonal.

Resposta: Verdadeiro.

(i) Se o traço de uma matriz 3×3 A é 1 e os autovalores de A são inteiros positivos, então A representa a projeção em uma reta de \mathbb{R}^3 segundo um plano transversal à reta.

Resposta: Verdadeiro.

(2) Considere a reta L_1 definida pela equação

$$x + y - z = 1$$

$$2x - y = 0,$$

e a reta L_2 definida pela equação

$$x - y + z = 0$$

$$z = -x$$
.

(a) Ache equações paramétricas para as retas L_1 e L_2 . **Resposta:** Uma equação paramétrica para L_1 é

$$r_1(t) = (0, 0, -1) + t(1, 2, 3)$$

e uma equaç ao para L_2 é

$$r_2(t) = t(1, 0, -1)$$

(b) Calcule a distancia entre as retas L_1 e L_2 .

Resposta: A distancia entre as retas é $1/\sqrt{6}$.

(c) Ache os valores de a para os quais as retas L_1 e L_a definida por

$$x - y + z = 0$$
$$z = -x + a$$

tem interseção.

Resposta: O único valor de a é a=1, e o ponto de interseção entre as retas é $(\frac{1}{2},1,\frac{1}{2})$.

(d) Caso exista a tal que $L_1 \cap L_a \neq \emptyset$, ache a equação cartesiana do plano que contém L_1 e L_a .

Resposta: O vetor normal ao plano procurado é perpendicular a ambas as retas, e contém o ponto de interseção obtido no item anterior. A equação do plano é x-2y+z=-1.

(3) Considere a reta r(t) = (t, t, t) e o plano $\pi : \{x + y - z = 0\}.$

(a) Ache a matriz que representa a projeção na reta r(t) segundo o plano π .

Resposta: A transformação linear é T(x, y, z) = (x + y - z)(1, 1, 1), e a matriz na base canónica é

$$[T] = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{array}\right).$$

(b) Ache a matriz que representa a projeção no plano π segundo a reta r(t).

Resposta: A matriz da trasformação é

$$A = \left(\begin{array}{rrr} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{array}\right).$$

(c) Ache a matriz que representa a projeção ortogonal no plano $\pi.$

Resposta: A matriz é

$$A = \left(\begin{array}{ccc} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{array}\right).$$

(d) Quais são os autovalores da matriz do item (a) e as multiplicidades dos mesmos?

Resposta: Os autovalores da matriz são 0 com multiplicidade 2 e 1 com multiplicidade 1.

(4) Considere a matriz

$$A = \left(\begin{array}{ccc} 0 & a & b \\ a & c & 0 \\ b & 0 & c \end{array}\right),$$

onde a, b, c são números reais.

(a) Calcule o polinomio característico de A e verifique que $r_1 = c$ é autovalor de A.

Resposta: O polinomio caracteristico de A é

$$p(x) = (x - c)(x(x - c) - a^2 - b^2)$$

e portanto, $r_1 = c$ é sempre uma raíz.

(b) Verifique que se r_2 e r_3 são os outros autovalores de A, então $r_2 + r_3 = c$.

Resposta: O traço de A é a soma dos autovalores de A. Como o traço de A é 2c, temos que

$$r_1 + r_2 + r_3 = 2c$$

e como $r_1 = c$ obtemos $r_2 + r_3 = c$.

(c) Verifique que se r_2 e r_3 são os outros autovalores de A, então $r_2r_3 = -(a^2 + b^2)$.

Resposta: Como r_2 e r_3 são raízes do polinomio $q(x) = x(x-c)-a^2-b^2$, que é um fator do polinomio caracteristico p(x), temos que o produto r_2r_3 deve ser o termo de grau zero de q(x), ou seja, $-(a^2+b^2)$.

(d) Suponhamos que c=2. Quais são os valores de a,b para os quais $r_2=4$ é autovalor de A? Diga quais são todos os autovalores nesse caso.

Resposta: Se c = 2, temos pelo item b que $r_2 + r_3 = 2$, e se $r_2 = 4$, temos $r_3 = -2$. Pelo item (c), $r_2r_3 = 4(-2) =$

 $-8 = -(a^2 + b^2)$, e portanto, os valores de a e b para os quais $r_2 = 4$ são $a^2 + b^2 = 8$.

(e) Assumindo que $c=2,\,a=2,\,b\geq 0$, e que $r_2=4$ é autovalor de A, ache uma matriz ortogonal P tal que $P^{-1}AP$ seja diagonal.

Resposta: Temos as mesmas condições do item (d), e além disso, a=2, $b \ge 0$. Se a=2, pelo item (d) temos $b^2=8-4=4$, o que implica que b=2. A matriz A é

$$A = \left(\begin{array}{ccc} 0 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{array}\right).$$

Os autovalores de A são 2, 4, -2, uma base de autovetores é $v_1 = (0, 1, -1), v_2 = (2, 1, 1), v_3 = (1, -1, -1)$, e uma matriz P tal que $P^{-1}AP$ é diagonal pode ser obtida tomando como colunas os vetores unitários nas direções de v_1, v_2, v_3 . Por exemplo,

$$P = \begin{pmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{pmatrix}.$$