

Lecture 6 Week 7

Mohamad Nassereddine

Lecture Contents

- Input and Output
- Graphics and Visualization

Importing and Exporting data

- Until now, all operations have been performed on data entered either manually, or generated automatically
- However, most Engineering projects retain their data in files that can be opened, read, edited and saved.
- Common office tools for data manipulation include Microsoft Excel (spreadsheets) and Access (databases), or Adobe Photoshop for images.
 - However, the capability of these programs is largely user-interface driven.
 - MATLAB provides a full programming and development environment.

Accessing files using MATLAB

- MATLAB provides some built-in functions for accessing and manipulating data in files
 - Files can be read or written to
 - Multiple common file formats available

```
• eg. *.mat, *.jpg, *.xlsx, *.csv,
*.txt
```

- For files that are not in a standard format, MATLAB also provides low-level File I/O (input/output) functions that allow:
 - Reading a line at a time
 - Specifying what format the data is
 - ... and much, much more

File listings

- When opening files in MATLAB, we require a way to determine
 - which file we want (eg. filename),
 - how to interpret it (eg. known extension format),
 - and where it is located (directory structure information).

 Current Folder Location

File types and uses

- Many different file types exist
 - (*.mat) MATLAB files containing
 - (*.jpg, *.png, ...) image files
 - (*.xlsx, *.xls, ...) Microsoft Excel spreadsheets
 - (*.txt) Text files
 - (*.csv) Comma-Separated Values files
 - Can be opened in notepad like textfiles
 - Can also be opened in MS Excel as a (limited) spreadsheet

http://au.mathworks.com/help/matlab/import export/supported-file-formats.html

Supported File Formats for Import and Export

R2019a

The following table shows the file formats that you can import and export from the MATLAB® application.

In addition to the functions in the table, you also can use the Import Tool to import text or spreadsheet file formats interactively.

File Content	Extension	Description	Import Function	Export Function
MATLAB formatted	MAT	Saved MATLAB workspace	load	save
data		Partial access of variables in MATLAB workspace	matfile	matfile
Text	any, including:	Comma delimited numbers	readmatrix	writematrix
TXT		Delimited numbers	readmatrix	writematrix
		Delimited numbers, or a mix of text and numbers	textscan	none
		Column-oriented delimited	readtable	writetable
		numbers or a mix of text and numbers readcell	writecell	
			Tables/not covere	ed in ENGG100

Spreadsheet	XLS XLSX XLSM	Column-oriented data in worksheet or range of spreadsheet	readmatrix readtable	writematrix writetable
	XLSB (Systems with Microsoft [®] Excel [®] for Windows [®] only)		readvars	writecell
	XLTM (import only) XLTX (import only)			
	ODS (Systems with Microsoft Excel for Windows only)			
Extensible Markup Language	XML	XML-formatted text	xmlread	xmlwrite
Data Acquisition Toolbox™ file	DAQ	Data Acquisition Toolbox	dagread	none
Scientific data	CDF	Common Data Format	See Common Data Format	See cdflib
	FITS	Flexible Image Transport System	See FITS Files	See FITS Files

	NC	Network Common Data Form (HetCDF)	SEE NEIOUF FILES	See Neicop Files
mage	BMP	Windows Bitmap	imread	imwrite
	GIF	Graphics Interchange Format		
	HDF	Hierarchical Data Format		
	JPEG JPG	Joint Photographic Experts Group	Joint Photographic Experts Group	
	JP2 JPF JPX J2C J2K	JPEG 2000		
	PBM	Portable Bitmap		
	PCX	Paintbrush		
*	PGM	Portable Graymap		
	PNG	Portable Network Graphics		
	PNM	Portable Any Map		
	PPM	Portable Pixmap		
	RAS	Sun™ Raster		
	TIFF TIF	Tagged Image File Format		
	XWD	X Window Dump		
	CUR	Windows Cursor resources	imread	none
	ICO	Windows Icon resources		2

	COIL	WILLIAMS OUISON LESOUNCES	IIII cau	Holie
	ICO	Windows Icon resources		
Audio (all platforms)	AU SND	NeXT/Sun sound	audioread	audiowrite
	AIFF	Audio Interchange File Format		
	AIFC	Audio Interchange File Format, with compression codecs		
	FLAC	Free Lossless Audio Codec		
	OGG	Ogg Vorbis		
	WAV	Microsoft WAVE sound		
Audio (Windows)	M4A MP4	MPEG-4	audioread	audiowrite
	any	Formats supported by Microsoft Media Foundation	audioread	none
Audio (Mac)	M4A MP4	MPEG-4	audioread	audiowrite
Audio (Linux®)	any	Formats supported by GStreamer	audioread	nontin function
Video (all platforms)	AVI	Audio Video Interleave	video and Al	ed in ENGG100
	MJ2	Motion JPEG 2000		
Video (Windows)	MPG	MPEG-1	audioread audioread videoReader videoReader videoReader videoReader	ream
	ASF ASX WMV	Windows Media [®]		
	any	Formats supported by Microsoft DirectShow®		
Video (Windows 7 or later)	MP4 M4V	MPEG-4	VideoReader	VideoWriter
	MOV	QuickTime	VideoReader	none
	any	Formats supported by Microsoft Media Foundation		
Video (Mac)	MP4 M4V	MPEG-4	VideoReader	VideoWriter
	MPG	MPEG-1	VideoReader	none
	MOV	QuickTime		
	any	Formats supported by QuickTime, including .3gp, .3g2, and .dv		
Video (Linux)	any	Formats supported by your installed GStreamer plug-ins, including .ogg	VideoReader	none
Triangulation	STL	Stereolithography	stlread	stlwrite

You can use web services such as a RESTful or WSDL to read and write data in an internet media type format such as JSON, XML, image, or text. For more information, see:

Weh Access

Reading and Writing to Files

- Common file types can be accessed using built-in MATLAB functions
 - Process entire files at once
 - Little knowledge required about the format
 - Import either by selection box (below), or programmatically
- Files that are formatted differently require low-level I/O (input/output) functions
 - Requires in-depth knowledge of the file format
 - Access file data line-by-line or even character-by-character

Loading and saving a *.mat file

- Loading and saving variables into/from a *.mat
 file
 - Allows for easy loading and saving of your current workspace and variables
 - You can return to the current workspace at a later stage, or on another computer

Command	Purpose
load	Load variables from file into workspace
save	Saves workspace variables in a file.
matfile	Access and change variables directly in MAT-files, without loading into memory

Importing/exporting Images

Command	Purpose
imshow	Display image
image	Display image from array
imagesc	Scale data and display image object
imread	Read image from graphics file
imwrite	Write image to graphics file
imfinfo	Information about graphics file
imformats	Manage image file format registry
frame2im	Return image data associated with movie frame
im2frame	Convert image to movie frame
im2java	Convert image to Java image

Index image function

A number of sample images are built into MATLAB

- >> load clown
- >> image(X)

- >> load clown
- >> image(X)
- >> colormap(map)

A colormap is matrix of values between 0 and 1 that define the colors for graphics objects such as surface, image, and patch objects.

load clown
image(X)
colormap(map)
axis image
axis off

Color	RGB Triplet
yellow	[1 1 0]
magenta	[101]
cyan	[0 1 1]
red	[100]
green	[0 1 0]
blue	[0 0 1]
white	[1 1 1]
black	[0 0 0]

load clown
image(X)
colormap(spring)
axis image
axis off

True Color (RGB) Images

Stored as 3D matrix mxnx3

```
X=imread('Matlab_Logo.png');
image(X)
axis image
axis off
```

We don't need to load a colormap because the colour-intensity information is included in the matrix

Importing/Exporting Spreadsheets

	mat <5x5 dou	ıble>			
	1	2	3	4	5
1	17	24	1	8	15
2	23	5	7	14	16
3	4	6	13	20	22
4	10	12	19	21	3
5	11	18	25	2	9

Command	Purpose
xlsfinfo	Determine if file contains Microsoft Excel spreadsheet
xlsread	Read Microsoft Excel spreadsheet file
xlswrite	Write Microsoft Excel spreadsheet file

Importing/Exporting Text and Comma-Separated Values files

Command	Purpose
csvread	Read comma-separated value (CSV) file
csvwrite	Write comma-separated value file
readmatrix	creates an array by reading column-oriented data from a file
dlmwrite	Write matrix to ASCII- delimited file
textscan	Read formatted data from text file or string
type	Display contents of file

IN DUBAI

Comma-Separated Values files

```
X
  ExampleFile2.csv - Notepad
File Edit Format View Help
                          (°C), Dew Point, Rel. Humidity (%), Rain since 9am (mm)
Temp (°C),App. Temp
                                Command Window
                                   >> % start at row TWO, but just to be
                                   % confusing, this function starts
                                   % numbering rows from ZERO
                                   mat = csvread('ExampleFile2.csv', 1, 0)
   4,18.8,16.2,87,0
                                   mat =
                                      19.1000
                                                 19.5000
                                                            15.4000
                                                                      79.0000
                                                                                   0.2000
                                      19.2000
                                                 21.2000
                                                            15.9000
                                                                      81.0000
                                                                                   0.2000
                                      18.8000
                                                 20.4000
                                                            15.9000
                                                                      83.0000
                                                                                   0.2000
  .4,16.1,15.7,90,0
.4,16.5,15.9,91,17.4
,17.2,15.7,92,17.4
                                                 19.5000
                                                            15.5000
                                                                      83,0000
                                      18.4000
                                                                                        n
                                      19.0000
                                                 19.4000
                                                            16.4000
                                                                      85.0000
                                                                                        0
                                      18.4000
                                                 19.1000
                                                            16.0000
                                                                      86.0000
                                                                                        0
                                      18.5000
                                                 19.2000
                                                           16.1000
                                                                      86,0000
                                                                                        n
                                      18.4000
                                                 18.8000
                                                            16.2000
                                                                      87.0000
                                                                                        Ω
                                      18.3000
                                                 18.3000
                                                            16.3000
                                                                      88.0000
                                      18.2000
                                                 17.0000
                                                            16.2000
                                                                      88.0000
                                      18.1000
                                                 17.4000
                                                            16.3000
                                                                      89.0000
                                                                                        n
                                      17.9000
                                                 17.1000
                                                            16.1000
                                                                      89.0000
                                      17.4000
                                                 16.1000
                                                           15.7000
                                                                       90.0000
                                      17.4000
                                                 16.5000
                                                            15.9000
                                                                       91.0000
                                                                                 17.4000
                                      17.0000
                                                 17.2000
                                                            15.7000
                                                                       92.0000
                                                                                 17.4000
                                fx >>
```

UNIVERSITY OF WOLLONGONG IN DUBAI

Command Window

New to MATLAB? See resources for Getting Started.

```
>> csvread('magic.csv')
ans =
                          15
   17
         24
                    14
                          16
   23
              13
                    20
                          22
        12
              19 21
   10
   11
         18
               25
```

>> csvread('magic.csv',1,2)

ans =

7	14	16
13	20	22
19	21	3
25	2	9

M = csvread(<u>filename,R1,C1</u>)

reads data from the file starting at row offset R1 and column offset C1.

For example, the offsets R1=0, C1=0 specify the first value in the file.

csvread('magic.csv,1,2) reads the data from the 2nd row and 3rd column

Delimited Text Files

Low-level File I/O

- The MATLAB built-in functions are great when we have data formatted in a standard way
- But what if the data we have is not stored in a common/known format?
 - We may need to read the data line-by-line
 - We may even need to read the data characterby-character

Note! every line has the same format: []---[],,,[]***[]---[] where [] stands for a number

```
ObfuscatedData.txt - Notepad
 File Edit Format View
19.1---19.5,,,15.4***79---0.2
19.2---21.2,,,15.9***81---0.2
18.8---20.4,,,15.9***83---0.2
18.4---19.5,,,15.5***83---0
19---19.4,,,16.4***85---0
18.4---19.1,,,16***86---0
18.5---19.2,,,16.1***86---0
18.4---18.8,,,16.2***87---0
         -17.4...16.3***89---0
          -17.1,,,16.1***89---0
17.4---16.1,,,15.7***90---0
17.4---16.5,,,15.9***91---17.4
17---17.2,,,15.7***92---17.4
```


Low-level File I/O functions

Command	Purpose
fclose	Close one or all open files
feof	Test for end-of-file
ferror	Information about file I/O errors
fgetl	Read line from file, removing newline characters
fgets	Read line from file, keeping newline characters
fileread	Read contents of file into string
fopen	Open file, or obtain information about open files
fprintf	Write data to text file
fread	Read data from binary file
frewind	Move file position indicator to beginning of open file
fscanf	Read data from text file
fseek	Move to specified position in file
ftell	Position in open file
fwrite	Write data to binary file

To open files in text mode, attach the letter 't' to the permission argument, such as 'rt' or 'wt+'.

Using Low-Level functions

```
Editor - C:\Users\montse\Documents\MATLAB\Lecture6\readTextFile.m
 readTextFile.m
        % Start with an empty matrix
        mat = [];
        % Next, open text file, with read permission
                                                                           79.0000
                                                                                       0.2000
        fileID = fopen('ObfuscatedData.txt', 'rt');
                                                                                       0.2000
                                                                            81.0000
                                                                           83.0000
                                                                                       0.2000
        % Now, using a while, continually read the file
                                                                           83.0000
        % using fscanf (with known pattern), until EOF
                                                                           85.0000
      while ~feof(fileID)
                                                                           86.0000
            nextrow = fscanf(fileID, \%f--\%f,,\%f***\%d--\%fn', 5);
10 -
                                                                           86.0000
11 -
            nextrow = nextrow'; % transpose col->row
                                                                           87.0000
12 -
            mat = [mat; nextrow];
                                                                           88.0000
13 -
        end
                                                                           88.0000
14
                                                                           89.0000
15
        % Finally, close the file
                                                                           89.0000
16 -
        fclose(fileID);
                                                                            90.0000
17 -
        mat
                                                                            91.0000
                                                                                      17.4000
                                           17.0000
                                                      17,2000
                                                                15.7000
                                                                           92.0000
                                                                                      17.4000
  Open the file for reading, and obtain the file identifier, fileID.
```

Use '%f' to specify floating-point numbers.

Plotting and GUIs

Plotting Data

x.axis array (1x63)

y-axis array (1x63)

- We have already seen some simple plots in some of the previous tuts/WSAs, but haven't investigated further
 - Usually it is to display an array of values over time

```
x = 0:0.1:2*pi;
y = sin(2*x).*cos(x);
plot(x,y);
title('Heading: An Example Plot');
xlabel('Label for the X-axis');
ylabel('Label for the Y-axis');
legend('Some data name');
```


Plot the (x,y) coords

NB: vectors MUST be the same length!

LineSpec — Line style, marker, and color

Color	Description
У	yellow
m	magenta
С	cyan
r	red
g	green
b	blue
W	white
k	black

Line Style	Description		
-	Solid line (default)		
	Dashed line		
:	Dotted line		
	Dash-dot line		

Marker	Description		
0	Circle		
+	Plus sign		
*	Asterisk		
•	Point		
X	Cross		
S	Square		
d	Diamond		
۸	Upward-pointing		
	triangle		
V	Downward-		
	pointing triangle		
>	Right-pointing		
	triangle		
<	Left-pointing		
	triangle		
р	Pentagram		
h	Hexagram		

Multiple plots on same axes

- We can place multiple data series on the same graph
- We can also format the look by changing colour, marker and style.
 - See the help file for the
 plot function to see the
 full range of styles

```
x = 0:0.1:2*pi;
y = sin(2*x).*cos(x);
z = -sin(x).*cos(9*x);
plot(x, y, 'ok:', x, z, '^r-.');
```


meshgrid

• [X,Y] = meshgrid(x,y) returns 2-D grid coordinates based on the coordinates contained in vectors x and y.

ans =

10

26

```
>> x = 1:3;
y = 1:5;
[X,Y] = meshgrid(x,y)
```

Evaluate the expression x^2+y^2 the 2-D grid.

surf(X,Y,Z) = surface plot. The function al
uses Z for the colour data, so colour is
proportional to height.

mesh(X,Y,Z) = draws a wireframe mesh with colour determined by Z, so colour is proportional to surface height.

X =	=			Y =		
	1	2	3	1	1	1
	1	2	3	2	2	2
	1	2	3	3	3	3
	1	2	3	4	4	4
	1	2	3	5	5	5

IN DUBAT

Graphing in 3D

- Requires x / y component matrices using meshgrid
- And also a function:

$$z = f(x, y)$$

 Then plot using either mesh or surf

$$z = \frac{\sin\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}}$$

```
% Mexican Hat plot from Prac1
[x, y] = meshgrid(-8:0.5:8);
r = sqrt(x.^2 + y.^2);
z = sin(r) ./r;
mesh(z) % or surf(z);
```


Graphical User Interface (GUI)

- Most engineering applications eventually require a user-friendly way to interact with the data
- As Engineers, we might know how the 'computation engine' works, but our clients may not have the necessary background
- We can build simple click-on-button graphical interfaces to allow a non-programmer to operate the functions we have written

We are going to use the new App Designer feature in MATLAB for GUI's

GUI Example – App Designer

Creating a new GUI

App Designer


```
methods (Access = private)
    % Value changed function: AmplitudeSlider
    function AmplitudeSliderValueChanged(app, event)
        value = app.AmplitudeSlider.Value;
    end
                        STEP 6 OF 9
end
                        To plot in an axes, you need to use the axes component as the
% App initialization
                        first input argument to the plot command.
methods (Access = pr
                        Add the following code:
    % Create UIFigur
                          plot(app.UIAxes, value*peaks)
    function create
        % Create UIFigure
         app.UIFigure = uifigure;
         ann UTFigure Position = [100 100 640 480]:
```



```
methods (Access = private)
    % Value changed function: AmplitudeSlider
    function AmplitudeSliderValueChanged(app, event)
         value = app.AmplitudeSlider.Value;
         plot(app.UIAxes, value*peaks)
    end
                        STEP 7 OF 9
end
% App initialization
                        Use app. Component. Property to get or set a component
                        property in code.
methods (Access = pr
                       Add the following code to set the axes ylim property:
    % Create UIFigur
                           app.UIAxes.YLim = [-1000 1000];
    function created
```


GUI – App Designer Example

Example code:

[x, y] = meshgrid(-8:0.5:8); $r = sqrt(x.^2 + y.^2);$ z = sin(r) ./r;

> UNIVERSITY OF WOLLONGONG IN DUBAI

Callbacks for each button to reflect required functionality

Layout the UI

UNIVERSITY OF WOLLONGONG IN DUBAI

Adding Callbacks

- A callback is a function that executes when a user interacts with a UI component in your app. Most components can have at least one callback.
- When we create a "pushbutton", we also want to link it with a function that should be executed when the button is clicked.

Adding Callbacks

For the lab...

