

ne gsm module

8051 MICR-CONTROLLER

SITUATION: faced by many of us

Idea comes here very simple and sweet the remote simple mobile in handy when in need.

GSM as part of this project involves because,

- GSM is a mobile communication modem.
- global system for mobile communication
- 850MHz, 900MHz, 1800MHz and 1900MHz frequency bands.
- TDMA technique relies on assigning different time slots to each user on the same frequency
- data transmission and voice communication and can carry 64kbps
 to 120Mbps of data rate.

Many Features of GSM:

Single supply voltage: 3.4V – 4.5V

Power saving mode: Typical power consumption in SLEEP mode is 1.5mA

Frequency bands:SIM900A Dual-band: EGSM900, DCS1800. The SIM900A can search the two frequency bands automatically. The frequency bands also can be set by AT command.

GSM class: Small MS

GPRS connectivity:GPRS multi-slot class 10 (default), GPRS multi-slot class 8 (option)

Transmitting power: Class 4 (2W) at EGSM 900, Class 1 (1W) at DCS 1800

Operating Temperature: -30°C to +80°C

Storage Temperature: -5°C to +90°C

DATA GPRS: download transfer max is 85.6KBps, Upload transfer max 42.8KBps

Supports CSD, USSD, SMS, FAX

Supports MIC and Audio Input

Speaker Input

Features keypad interface

Features display interface

Features Real Time Clock

Supports UART interface

Supports single SIM card

Firmware upgrade by debug port

Communication by using AT commands

Network Subsystem

ARCHITECTURE OF GSM

Applications

Cellular Communication
Robotics
Mobile Phone Accessories
Servers
Computer Peripherals
Automobile
USB Dongles

Table 5.4 Modes of SCON

SM0	SM1	Serial Mode	Explanation Baud Rate
0	0	0	0 8-bit Shift Register Oscillator / 12
0	1	1	8-bit UART Set by Timer 1 (*)
1	0	2	9-bit UART Oscillator / 32 (*)
1	1	3	9-bit UART Set by Timer 1 (*)

Pins used in 8051 are:

- GND
- XTAL1
- XTAL2
- Pin 1
- **SMO, SM1:** Serial Mode control Bits
- **TI:** It is known as Transmit Interrupt flag(Pin3.1)
- RI: It is known as Receive Interrupt flag(Pin3.0)

that combines these too apart from the technology you change too

A common thing

Nokia 3310 New 16 MB + 32 GB Expandable

Google - Pixel 3a with 64GB

The Different Types of SIM Cards SIM stands for subscriber identity module or subscriber identification module **Full SIM** Mini SIM Micro SIM **Nano SIM** Embedded SIM 85 mm x 53 mm 25 mm x 15 mm 15 mm x 12 mm 12.3 mm x 8.8 mm 6 mm x 5 mm Lifewire

in order to identify the owner and communicate with the mobile network

if your phone runs out of battery and you desperately need to make a phone call, and you have a spare around, you can just put the SIM card into the other phone and immediately use it.

The SIM also contains a small amount of memory which can store up to 250 contacts, some SMS messages and other information used by the carrier who supplied the card

12V, 9V, 5V etc...


```
#include<reg51.h>
unsigned char *command = "AT";
unsigned char *echo = "ATEO";
unsigned char *msgConfig = "AT+CMGF=1";
unsigned char *number = "AT+CMGS=\f
unsigned char *number = "AT+CMGS=\"
unsigned char *message = "hello";
unsigned char *CTRLZ = 0x1A;
void serial_init(void);
void serial(unsigned char);
void puts(unsigned char *p );
void delay(void);
void main()
serial_init();
puts(command);
delay(); // delay of approx 1 sec
puts(echo);
delay();
puts(msgConfig);
delay();
puts(number);
delay();
puts(message);
delay();
puts(CTRLZ);
while(1);
void serial_init(void)
TMOD=0x20; //timer 1, mode 2(8-bit autoreload) to set baud rate
TH1=0xFD; //-3 to TH1 for 9600 baud rate
SCON=0x50; // 8 bit txion, 1 start 1 stop bit, REN enable for both txfr and rxve
TR1=1; // start timer
```

```
void puts(char *p)
char *temp = p; /*temp pointer so that the actual pointer is not displaced */
while(*temp != 0x00)
serial(*temp);
temp++;
void serial(unsigned char x)
SBUF=x;
while(TI==0);
TI=0;
void delay(void) // delay for approx 1 sec
int i;
TMOD=0x01; // timer 0 in mode 1
for(i=0;i<142;i++)
TL0=0x00; // starting value from 0
TH0=0x00;
TRO=1; // start timer
while(TF0==0); // polling TF flag for high
TR0=0; // stop timer
TF0=0; // clear flag TF0
```

Command – Operation

AT+CSMS – Select message service.

AT+CMGF – Message format.

AT+CMGL - List messages.

AT+CMGR - Read message.

AT+CMGS – Send message.

AT+CMGD - Delete message.

ATA – Answer a call.

ATD – Dial a number.

ATDL – Dial the last outgoing number.

ATH – Hang up the call.

CODE: Of the Project -

			ACALL CEND
ORG 000H	Н	ACALL SEND	ACALL SEND
MOV TMOE	D,#00100001B	MOV A,# <mark>"T"</mark>	MOV A,#0DH
MOV TH1,	,#253D	ACALL SEND	ACALL SEND
MOV SCO	N,#50H	MOV A,# <mark>"+</mark> "	ACALL DELAY1
SETB TR1		ACALL SEND	MOV A,#"H"
		MOV A,# <mark>"C"</mark>	ACALL SEND
RS EQU F	P2.7	ACALL SEND	MOV A,#"E"
RW EQU F		MOV A,# <mark>"M"</mark>	ACALL SEND
E EQU F		ACALL SEND	MOV A,#"L"
	. 2.3	MOV A,# <mark>"G</mark> "	ACALL SEND
ΜΔΤΝ• Δ(CALL DINT	ACALL SEND	MOV A,#"L"
IIATIV. A	CALL DINI	MOV A,# <mark>"S"</mark>	ACALL SEND
MOV A,#'	II A II	ACALL SEND	MOV A,#"0"
ACALL SE		MOV A,#"="	ACALL SEND
		ACALL SEND	ACALL DELAY1
MOV A,#'			
ACALL SE		MOV A,#34D	MOV A,#1AH
MOV A,#6		ACALL SEND	ACALL SEND
ACALL SE		MOV A,#"+"	
ACALL DE	ELAYI	ACALL SEND	
		MOV A <mark>,#"9"</mark>	ACALL DELAY1
		ACALL SEND	
MOV A,#		MOV A <mark>,#"1"</mark>	
ACALL SE		ACALL SEND	ACALL DINT
MOV A,#		MOV A <mark>,#"9"</mark>	ACALL TEXT1
ACALL SE		ACALL SEND	ACALL DELAY1
MOV A,#		MOV A <mark>,#"5"</mark>	HERE1:SJMP HERE1
ACALL SE		ACALL SEND	TIERET. JOHN TIERET
MOV A,# <mark>'</mark>		MOV A <mark>,#"4"</mark>	
ACALL SE		ACALL SEND	SEND:CLR TI
MOV A,# <mark>'</mark>	<mark>"M</mark> "	MOV A <mark>,#"4"</mark>	MOV SBUF,A
ACALL SE		ACALL_SEND	
MOV A,# <mark>'</mark>	<mark>"G</mark> "	MOV A <mark>,#"3"</mark>	WAIT:JNB TI,WAIT
ACALL SE		ACALL_SEND	RET
MOV A,# <mark>'</mark>	<mark>"F</mark> "	MOV A <mark>,#"4"</mark>	
ACALL SE		ACALL SEND	DELAYA MOVERS HAED
MOV A,# <mark>'</mark>	<mark>"=</mark> "	MOV A <mark>,#"0"</mark>	DELAY1:MOV R6,#15D
ACALL SE	END	ACALL SEND	BACK: MOV TH0, #0000000B
MOV A,# <mark>'</mark>	<mark>"1</mark> "	MOV A <mark>,#"0"</mark>	MOV TL0,#0000000B
ACALL SE	END	ACALL SEND	SETB TRO
MOV A,#6	0DH	MOV A <mark>,#"7"</mark>	HERE: JNB TFO, HERE
ACALL SE		ACALL SEND	CLR TR0
ACALL DE		MOV A <mark>,#"7"</mark>	CLR TF0
		ACALL SEND	DJNZ R6,BACK
		MOV A,#34D	RET
MOV A,#	"A"		

OUTPUT: will be received in mobile

