Enzymes

- Définitions Classification
- Catalyse enzymatique
- Cinétique michaelienne
- Détermination d'une activité enzymatique
- Effecteurs
- Mécanismes de régulation Allostérie
- Coenzymes

Références bibliographiques

- C. Moussard, Biochimie Structurale et Métabolique, 3ème éd., De Boeck, 2006
- R.K. Murray et al. Biochimie de Harper, 3ème éd. française, De Boeck, 2008
- S. Weinman et P. Méhul, Toute la Biochimie, Dunod, 2004
- B. Sablonnière et al. Biochimie et Biologie Moléculaire, Omniscience, 2006

1. Définition

Enzyme: « protéine* jouant le rôle de catalyseurs de réactions chimiques chez les êtres vivants »

 accélère une réaction thermodynamiquement possible

« substrat(s) » → « produit(s) »

- efficacité
- spécificité d'action élevée (type de réaction, nature des substrats, stéréospécificité)
- ni consommé ni modifié à la fin de la réaction

(* Sauf ribozymes: ARN à action catalytique)

1. Classification - Nomenclature

- Nomenclature: type de réaction + ase
- Classification internationale (IUPAC-IUBMB)
 - EC 1: oxydo-réductases
 - EC 2: transférases
 - EC 3: hydrolases
 - EC 4: lyases
 - EC 5: isomérases
 - EC 6: ligases

Ex: Hexokinase = EC 2.7.1.1 (ATP:D-hexose 6-phosphotransférase)

 Isoenzymes: propriétés catalytiques identiques mais propriétés physico-chimiques distinctes

EC 1: oxydo-réductases

- Catalysent les réactions de transfert d'électrons
- Ex: glycérol-3-phosphate deshydrogénase

EC 2: transférases

- Catalysent les réactions de transfert d'atome ou de groupements d'atomes
- Ex: Acyl-CoA:cholestérol acyltransférase (ACAT)

EC 3: hydrolases

- Catalysent les réactions de coupure de liaison par l'eau
- Ex: β-galactosidase

$$HOOH$$
 $HOOH$
 $O-R$
 $HOOH$
 $O-R$
 $HOOH$
 $O-R$
 $HOOH$
 $O-R$
 $O-R$

EC 4: lyases (synthases)

- Catalysent les réactions de coupure de liaison autrement que par l'eau
- Ex: sphingosine 1-phosphate lyase

8

EC 5: isomérases (racémases, épimérases, mutases)

- Catalysent les réactions d'isomérisation
- Ex: phosphoglucomutase

 α -D-Glucose-6-phosphate

α-D-Glucose-1-phosphate

Autre ex: phosphohexose isomérase (G6P→F6P)

EC 6: ligases (synthétases)

- Catalysent les réactions de création de liaison par couplage à l'hydrolyse d'ATP
- Ex: carbamoyl phosphate synthétase

$$NH_4^+ + HCO_3^- \xrightarrow{2 \text{ ATP}} + H_3N^+ - C^-O^-P^-O^-$$

2. Notions de catalyse enzymatique

Pouvoir catalytique

Les enzymes diminuent l'énergie libre d'activation ΔG^0

2. Notions de catalyse enzymatique (suite)

Site actif

Région de l'enzyme où se fixe(nt) le(s) substrat(s) [+ coenzymes] et où a lieu la réaction

= poche ou sillon

Liaisons faibles avec certains résidus d'AA

β-glucosylcéramidase

2. Notions de catalyse enzymatique (suite)

- Site actif: interaction enzyme-substrat
- Modèle « clé-serrure »

- Modèle de l'ajustement induit

3. Cinétique enzymatique

Notion de vitesse initiale (v_i)

$$S \longrightarrow P$$

• à l'instant t₀

$$v_i = tg \alpha_0$$

la concentration en substrat affecte la vitesse

 $v_i = f([S])$ pour [E] constante

• équation de L. Michaelis et M. Menten (1913)

$$\frac{[E][S]}{[ES]} = \frac{k_2 + k_3}{k_1} = K_M$$
 Constante de Michaelis-Menten

Equation de Michaelis-Menten :

$$v_i = \frac{V_{max}[S]}{K_M + [S]}$$

car:
$$v = k_3$$
 [ES] $V_{max} = k_3$ [E_{total}] et [E] = [E_{total}] – [ES]

• cinétique « Michaelienne » : représentation graphique

• cinétique « Michaelienne » : représentation graphique selon Lineweaver et Burk

Signification des paramètres cinétiques

V_{max} : vitesse quand E saturée en S

K_M: concentration de S quand E à demi-saturation

pour $k_3 <<< k_1$:

K_M inversement proportionnel à l'**affinité** de E pour S

Conséquences pratiques:

- si [S] >>> K_M : $V_i = V_{max} = k_3 [E_{total}]$

c'est en excès de S que l'on dose une E

- si [S] $<<< K_M : v_i \cong k [S]$

c'est en excès de E que l'on dose un S

4. Détermination d'une activité enzymatique

• Unités de mesure

1 UI = quantité d'enzyme qui catalyse la transformation de

1 µmole de S par minute (dans des conditions définies)

1 katal (kat) = quantité d'enzyme qui catalyse la transformation de 1 mole de S par seconde

Par rapport à une unité de volume ou de masse de E

= Activité enzymatique spécifique

ex: N µmol. min⁻¹. mg⁻¹ de protéines

4. Détermination d'une activité enzymatique (suite)

CH₂CH₂OH + NAD+

Conditions

- [S] saturante
- Température et pH optimaux
- Moyens:
 - [S] marqué (radioactif, coloré, fluorescent, chromogénique, fluorogénique,...)
 - Coenzyme (ex: dosage d'une deshydrogénase par NADH)

CH2CHO + NADH + H+

Cours de L1 - T. Levade

5. Effecteurs

5.1. Facteurs physico-chimiques

- Température

5. Effecteurs (suite)

5.2. Effecteurs chimiques

- Activateurs (cf. aussi Régulation)
 ions métalliques (Mg²⁺, Zn²⁺,...)
- Inhibiteurs
- inhibiteurs irréversibles: se lient de façon
 covalente à un groupement fonctionnel de l'enzyme (site actif) → inactivation
- Ex: 5-FU et thymidylate synthase (« substrat suicide »)
 - inhibiteurs réversibles

Inhibiteurs compétitifs

Liaison non covalente au site actif de E à la place de S

Affinité de E pour S \longrightarrow K_M apparent \nearrow (V_{max} intacte, car l déplacé par un excès de S)

Inhibiteurs NON compétitifs

Liaison non covalente à un site différent du site actif

NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

Inhibiteurs NON compétitifs

- Affinité de E pour S inchangée
- → V_{max} **\(\)** (K_M inchangé) comme si [E_{total}] **\(\)** 27

6. Mécanismes de régulation

Vitesse d'une réaction (limitante) dépendante de:

- la disponibilité en substrat ± coenzyme
- la quantité d'enzyme (synthèse / dégradation)
- l'activité de l'enzyme:
 - activation par protéolyse limitée : zymogène E
 - activation par liaison d'une protéine de contrôle
 - activation par modification covalente (réversible):
 - Ex: 2 formes interconvertibles de E (active ←→ inactive):
 - . forme phosphorylée (sur Ser, Thr ou Tyr) via protéine kinase
 - . forme déphosphorylée via protéine phosphatase

6. Mécanismes de régulation (suite)

Ex: régulation du métabolisme du glycogène par l'insuline via la (dé)phosphorylation des enzymes

6. Mécanismes de régulation (suite)

Vitesse d'une réaction (limitante) dépendante de:

- l'activité de l'enzyme:
 - régulation par allostérie :

. Enzyme allostérique

se distingue d'une enzyme michaelienne par la courbe v_i = f ([S])
possède une structure quaternaire (protéine oligomérique)

. fonctionne de manière coopérative

6. Mécanismes de régulation (suite)

Vitesse d'une réaction (limitante) dépendante de:

- l'activité de l'enzyme:
 - régulation par contrôle allostérique :
 - . Effecteurs allostériques activateurs ou inhibiteurs

se fixent sur
sites allostériques
modifient la
conformation
du site actif
u ou 7 l'affinité

de E pour S

7. Notions sur les Coenzymes

- Définition: cofacteurs indispensables à certaines enzymes (apoenzymes):
 - coenzymes libres ou cosubstrats
 - coenzymes liés ou groupements prosthétiques
 apoenzyme + coenzyme = holoenzyme
- Propriétés:
 - pas de nature protéique
 - souvent hétérocycliques et hydrosolubles
 - retrouvent leur état initial après réaction
 - transfèrent une entité (électron, atome, molécule)
 - souvent, des vitamines ou dérivés

7. Coenzymes - Classification

7.1. Coenzymes d'oxydo-réduction

transfèrent des électrons ou des équivalents réducteurs

- coenzymes pyridiniques ou nicotiniques (vit B3 ou PP)
- coenzymes flaviniques (vit B2)
- acide lipoïque
- coenzymes quinoniques (CoQ)
- coenzymes héminiques
- protéines à centre Fer-Soufre

7. Coenzymes - Classification

7.1. Coenzymes d'oxydo-réduction

Ex: coenzymes pyridiniques ou nicotiniques : Nicotinamide Adénine Dinucléotide (NAD)

7. Coenzymes – Classification (suite)

7.2. Coenzymes de transfert de groupements d'atomes

- biotine (vit H)
- acide tétrahydrofolique (vit B9)
- cobalamines (vit B12)
- coenzyme A (vit B5)
- pyrophosphate de thiamine (vit B1)
- phosphate de pyridoxal (vit B6)

 CO_2

Groupements monocarbonés (CH₃,...)

 CH_3

Groupements acyles

Décarboxylation

Décarboxylation, transamination,...

7. Coenzymes – Classification (suite)

7.2. Coenzymes de transfert de groupements d'atomes

Ex: coenzyme A (CoA)

Coenzyme A (CoA)

$$\beta\text{-mercaptoethylamine} \qquad \text{pantothenate} \qquad \text{adenosine 3', 5'-} \\ \text{diphosphate} \qquad \text{di$$