Basics

write Newton's law for the ith particle.

$$\mathbf{F}_i = \dot{\mathbf{p}}_i \tag{1}$$

expanding out F_i as $\sum \mathbf{F}_{ji} + \mathbf{F}_i^e$, where \mathbf{F}_{ji} is the constraint force of particle j on i,

$$\sum_{j} \mathbf{F}_{ji} + \mathbf{F}_{i}^{e} = \dot{\mathbf{p}}_{i} \tag{2}$$

sum this over i,

$$\sum_{i,j} \mathbf{F}_{ji} + \sum_{i} \mathbf{F}_{i}^{e} = \sum_{i} \dot{\mathbf{p}}_{i} \tag{3}$$

due to the law of action and reaction, $\mathbf{F_{ji}} = -\mathbf{Fij}$, the sum over pairs of reaction forces cancel out, so the first term is 0. The second term we write as $\mathbf{F^e}$, or total external force. To interpret the third term we define the center-of-mass vector \mathbf{R} as the mass-weighted sum of the r_i ,

$$\mathbf{R} = \frac{\sum m_i \mathbf{r}_i}{\sum m_i} \tag{4}$$

to obtain

$$\mathbf{F}^e = M\ddot{\mathbf{R}} \tag{5}$$