scoazze ● EN

Scoazze (scoazze)

Carlo, as many other people in Provincia di Treviso, produces a lot of rubbish with each activity he carries out during his day. Still, he is a strong advocate of separate waste collection, and for this reason he has N trash bins at home, indexed from 0 to N-1, each one for a different type of garbage (plastic, cans, glass, ...).

Every trash bin has a capacity of C_i bags, that can never be exceeded, otherwise Treviso's image would be hurt. Fortunately, every night the $S.A.V.N.O.^1$ garbage truck passes by and can completely empty a **single continuous interval** of trash cans, removing all of their contents. Note that the garbage truck can clear at most one interval per night.

Figure 1: The so called *neturbin* that empties some of Carlo's trash bins every night.

Obviously, such a great service comes at a cost (the *waste-tax*): the price of clearing an interval is the **sum of the unused capacities** for each trash bin in that interval.

More formally, if U_i is the number of bags in the *i*-th trash bin, the price of emptying an interval [L, R] is: $\sum_{i=L}^{R} C_i - U_i$.

Carlo, after struggling for quite some time with keeping the bins empty, decides to manage his trash more efficiently. Right now, all of his bins are empty. Over the next K days, on day j (j = 0, 1, ..., K - 1), he will produce Q_j bags of a single garbage type T_j , which he will put in the right trash bin. Every evening he will decide whether to call the *neturbin* to empty a range of his bins.

After those K days, Carlo will go to Milan, and he would like to have all his trash bins emptied before leaving home.

He doesn't have a lot of money, so help him find out the minimal amount he will have to spend.

Among the attachments of this task you may find a template file scoazze.* with a sample incomplete implementation.

scoazze Page 1 of 3

¹Scrapheap Abolishing Vans Near hOme

Input

The first line contains the integers N and K, the number of trash bins and the number of days. The second line contains N integers C_i , the capacity of the trash bins.

Each of the following K lines contains two integers: T_j, Q_j , the type of trash and the number of bags Carlo will produce on day j, respectively.

Output

You need to write a single integer: the minimum price Carlo has to pay to have all his trash bins emptied after the K days.

Constraints

- $1 \le N \le 200\,000$.
- $1 \le K \le 200\,000$.
- $1 < C_i < 10^9$ for each $i = 0 \dots N 1$.
- $0 \le T_j \le N 1$ for each $j = 0 \dots K 1$.
- $1 \le Q_j \le 10^9$ for each j = 0 ... K 1.
- It is guaranteed that $Q_j \leq C_{T_j}$ for each $j = 0 \dots K 1$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples. **8**|**8**|**8**|**8**|**8**| $N \le 4, K \le 7.$ - Subtask 2 (17 points) *8*|8|8|8| - Subtask 3 (25 points) Carlo produces each type of trash at least once. *8888* - Subtask 4 (20 points) Over the K days, Carlo produces at most C_i bags of trash of type i, for *8888* each $i = 0 \dots N - 1$. - Subtask 5 (38 points) No additional limitations. *8888*

Examples

input	output
2 3	7
5 7	
0 4	
1 1	
1 7	

scoazze Page 2 of 3

input	output
5 7	304
66 73 68 79 78	
2 50	
3 69	
0 1	
2 20	
4 12	
1 44	
3 11	

Explanation

In the **first sample case** it is optimal to call the garbage truck after day 1 and clear both of the trash bins (price: (5-4)+(7-1)=7). The truck should also be called after the last day to empty the second bin (price: (7-7)=0). The total price is 7.

In the **second sample case** we empty the bins with indices 2 and 3 after day 4 (price: 18 + 10 = 28). After the last day we clear all the bins (price: 65 + 29 + 48 + 68 + 66 = 276). The total price is: 304.

scoazze Page 3 of 3