Simulation: External control of Swarms of Copters

Asema Hassan and Johannes Gätjen

¹Department of Informatics Otto-von-Guericke Universitat Magdeburg

Swarm Lab, 2016

Outline

- Introduction
 - Background/Objective
 - Previous work
- Our work
 - Milestones
 - Achievements
- Conclusion

Outline

- Introduction
 - Background/Objective
 - Previous work
- 2 Our work
 - Milestones
 - Achievements
- 3 Conclusion

Background/Objective

- Projector above arena in SwarmLab
- Can be used to give inputs to copters, e.g. formations
- Implement in Simulation environment:
 - Model projector based input
 - Model color sensor
 - Let copters react to input
- Goal: Attraction and repulsion controlled by projector input

Outline

- Introduction
 - Background/Objective
 - Previous work
- Our work
 - Milestones
 - Achievements
- 3 Conclusion

Previous work

Flying in Formation SS15

- PID Controllers
- Projector image as texture on floor
- Color sensor; 1px camera attached with copter, pointing towards floor
- Ineffective gradient following

Outline

- Introduction
 - Background/Objective
 - Previous work
- Our work
 - Milestones
 - Achievements
- 3 Conclusion

Milestones

- Generate input images (height/gradient maps)
- Use color sensor values to change copter behavior
- Oynamic changing of input images
- Position sensor (GPS or IMU)
- Save color sensor values in local map
- Calculate gradient from local map data
- Use local map for gradient following
- External control of parameters; remote API
- Evaluate copter gradient following behavior
- Evaluate swarm behavior

Outline

- Introduction
 - Background/Objective
 - Previous work
- Our work
 - Milestones
 - Achievements
- 3 Conclusion

1. Gradient Maps:

- MATLAB to generate different gradient maps
- Height in red, gradient in green and blue

Gradient Maps

Swarm Lab, 2016

- 2. Gradient Follower Behavior:
 - Compute gradient directly from color
 - Set target in direction of gradient
 - To reach the "highest" point
 - Tested with different gradient maps
 - [Demo simpleGradient]

3. Dynamic Landscapes:

- Dynamic loading of landscapes via external control scripts
- Texture moves along X/Y
- UI to set parameters
- Can set scale, speed and file
- Can also be set via remote API
- Now whole arena moves with copter
- [Demo Large_hills_smooth_gradient_map]

- 4.Implement a position sensor (GPS or IMU):
 - Local map requires knowledge about position
 - Implemented IMU (inertial measurement unit)
 - Absolute position not necessary
 - More general applications
 - XYZ Velocity, Orientation and Angular rate
 - Perfect data from simulation, added white noise
 - Considered real data for noise magnitude, but sampling rate too low to get meaningful values

Swarm Lab. 2016

- 5. Save sensor values in local map:
 - Create virtual map grid (2D array) with a defined resolution
 - User can set total size and field size (for resolution)
 - Color/height values written in center
 - Data shifted according to copter movement
 - Incremental averaging of values: $(1 \alpha) \cdot \text{old} + \alpha \cdot \text{new}$
 - Relative position for more accuracy

Finken Local map:	_ ×
Size of Map (in CM):	120
Size of Field (in CM):	5
Update	
Display Data	

Swarm Lab. 2016

- 6. Calculating gradient from local map:
 - Need three values arranged in L-shape

7. Use local map for gradient following:

Baseline behavior **Explore** No Can calculate gradient? Yes Calculate Gradient Set target at fixed distance in gradient direction Fly to target

7. Use local map for gradient following:

 ${\color{red} \textbf{Figure: Baseline}/Straight\ mode}$

Swarm Lab, 2016

7. Use local map for gradient following:

Figure: Baseline/Straight mode

Figure: Drunk mode

- 8. External Control of parameters:
 - Using Remote API with Python
 - To set parameters externally
 - Start and stop simulation
 - Repeated evaluation
 - [Demo RemoteApiController]

- 9. Evaluate copter gradient following behavior:
 - Log recorded height values from color sensor
 - Repeat simulation 25 times with random starting positions
 - Average height over time
 - Compare parameter settings

Figure: Comparison of modes on pyramid map

Figure: Comparison of modes on hills map

Figure: Comparison of IMU noise levels on pyramid map with drunk mode

Figure: Comparison of IMU noise levels on pyramid map with straight mode

Summary Evaluation

- Unfortunately very many different parameters
- Copters can effectively find high points
- Straight mode faster than drunk, because no detours
 - Do not utilize additional information
- Straight mode more robust against noise
 - Local map in drunk mode more distorted

To do

10. Evaluate swarm gradient following behavior:

Figure: Multiple copters in Simulation not implemented yet

Conclusion

- Can generate random landscape images
- Implemented velocity sensor with white noise
- Copter builds map for surroundings
- Uses map to follow a gradient
- Simulation can be controlled via remote API

Swarm Lab. 2016

Limitations

- Color sensor unrealistically accurate
- ullet Very many parameters to set o difficult to evaluate
- IMU noise magnitude not based on real data

Future Work

- Combine external control and swarm behavior
- Include global knowledge from local map
- Would benefit from better tuned PID controller
- Can store other information in local map
- Incorporate more long-term memory?

Swarm Lab. 2016

Discussions

Thank you for your attention!

Swarm Lab, 2016