OSC 165H1S Jan 20th Employee Grenden Salary 60,000 500 40,000 30,000 50,000 P(x)=>Q(x) considered true except if there is to for which pex) is true and Qa) false PEQ NEP but x &Q means Pox Q. YXER, PO $\chi^{2}-2\chi+2=0 => \chi>\chi+5$ Q(x)_ There is no $\pi \in \mathbb{R}$, st. $\pi' = 2x + 2 = 0$ so there is no x to contradict the claim that P(x) => Q(x) is true, IF Al Quits, Consider: Every male employee earns between 25000 and 45,000

True? Yes.

YXEE, B(X)=>M(X) The converse is Employes making between 25,000 and 45,000 are male True? Yes. double implication $\forall x \in E$, M(x) = B(x) aims are equivalent $\forall x \in E$, M(x) = B(x) $\forall x \in E$, M(x) = B(x)The claims are equivalent An employer applyer is male if only if the propose makes between

Consider: XXEIR, X32X+2=0 =>X>X+5 True no conterexamp True Consider: VXER, x2-2x+5=0=> X>X+5 Fight HXEIR, X > X+5=> X+2x+2=0 True

Fighish HXEIR, 7 Q(X)

P is necessary and sufficient for Q: counter example so it is true P is the exactly when Q is the Pasimplies Q and conversely all express equivalent. How to express that 2 properties are true? Claim: The employee makes less than 70,000 and more than 25.000. X E.E., Salary (X) < 75,000 and salary (X) X = Al. Claim Ane X= 1=6, Claim Foty false $A(x) \notin B(x)$ Solony (Pla) <7000 Frue XEARB Salary (1=6)>2500 false A(x) 1 B(x) Sots -- this is intersection 2 guic this consination of tot claims called conjunction. in English, and both groups & joins except. There is a pen and a telephone. Symbols: Let D = set of objects

Let P(x) x is a per

T(x) T is a telephone IXED. PIXI JXCDJXE

(old mean there is an Signet that is both a pen and a telephone GUTINGS - PAXE Consider: The solutions are X<10 and X>20 we join interest The solotions are (x<10 and x>10) X>10,X<20 The Solutions are both x <10 and x that is >20 graphtogether X6 +>> Can also combine claims to express that at least one is The employee is fende or earns more than 35,000. here for the flo. True for Carlos True for Ellen a union of the two properties A(x) or B(x) XEAUB ACX) V B(X)

Jan 23rd CSC165HIS

Tutorial tomorrow only

IM-Shw BA2175 → BA1220

O Conjunction / and
(All) employees make between 25,000 and 75,000.

∀7 € E, (schary (x) >25,000 Λ (salary (x) <75,000)

② disjunction/or
The employee is female or eans more than 35,000.

sentence: F(x) V salany(x)>3.5,000

Stutement: 7= Flo Flo female, salary (Flo) < 35,000 True

7=(arlos tarlos male salary (arbs) > 35,000 True 7=Ellen = (Ellen) true salary (Ellen) > 35,000 True 7=Dag = F(Doig) False salary (Dag) < 35,000 False

AVB true when A, B or A and B are true. (inclusive or)

English sometimes means exact exclusive or.
e.g. You may take CSC148 or CSC 150 for credit.
"either"

interpretation: can't take both

A xor B true (A17B)V(B17A)

Restricting Domains
o can use quantification
· implication
· conjunction and disjunction to restrict set of objections
Every D that is a P is also a Q. (Every object in D that has $ \forall x \in D$, $P(x) \Rightarrow Q(x)$) $\forall x \in P$, $Q(x)$ when the is true
Dap die in Dlie in Shaded area.
$\forall x \in D, \forall P(x) \lor Q(x)$
A =>B
<=>
Every Dis a Panda Q (Every object in D has proporty Pand proporty VXED, POXIQCX) when this is a true statement.
DPOQ all objects lie in PNQ (the shaded area)
Some D that is a Pis also a Q.
I TED, PONTQ(X)
A TED, TWITCH
it this true the shaded were is not empty.

statement is true when shaded area is not empty.

Negation:

Symbol 7
Q: when is this statement?

RED, P(x) fulse?

A: When PCX) is false for every x in the domain i.e. P(x) is true for every x in domain.

SO TEXED P(X) (=> YXED. TPCX) isequal to

words: There is no x such that P(x) is true, equal to, for all X. P(x) is false.

∃ x 6 Ø, P(x) Q: « When is ∀x 6D, P(x) fake?

CSC/65H1S Jan 25th	Rei (Liu
retain: Pcx) ⇒ Q(x)	
equivalent to	(
-P(x) VQ(x)	,

-(∃ x ∈ D, P(x)) <=> ∀ x ∈ D, -1 P(x) words: There is no x for which Pais true. equal to [For all x, P(x) is false (¬P(x) is true)

when is $\forall x \in D$, P(x) false?

There must be a counterexample P(x) $\exists x \in D$, $\neg P(x)$ (being false) \iff $\neg (\forall x \in D, P(x))$ $\exists x \in D$, P(x) is false. $\exists x \in D$, P(x)

[The missing sentences here are word version of the following statements]

This is not frue, since there is some employee making over 110,000.

Thus its negation must be true.

	Her, Every P is a Q. $\forall x \in X$, $P(x) \Rightarrow Q(x)$.
	egation:
	Not every Pis a Q. (=> There is a P which is not a Q.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ere is a P that is a Q. <=> $\forall x \in X$, $\neg (P\alpha) \land Q(x)$
:	FXEX, PARQUES <=> YXEX TPW V TQ(x)
^	legation: $\langle - \rangle \forall X \in X P(x) = \rangle \neg Q(x)$
	No Pis a Q. $\langle = \rangle \forall x \in X$, $Q(x) = \rangle \forall P(x)$
<u> </u>	7 (3x ex, Pix) 1 Q(x)) No Pisa Q is equivalent to
	Every Q is a non-Q.
X	Pho I propose W//6/4/4//
	P (a) regate // P/
<u>- Lule</u>	
	¬(∀X∈X,··-) <=> ₹X ∈X, ¬(··-)
	7(]X(X,···) <=> \(X \in X \), 7(···) 7(P(x)=> (X(x)) <=> P(x) A7 Q(x)
	= (P(x) 1 Q(x)) <=> P(x)=> 7 Q(x)
	<=> (Q(x) =>7 P(x)
	(=> 7 P(x) V7 Q(x)
•. • • • • • • • • • • • • • • • • • •	
ΛĘ	gate the statement:
	VXEX, By EY, P(x,y) => Q(x,y)
	(VXEX, Zy EY, Pay)=>Qx,y)
/ =	=> ===================================
	IXEX, 7(Ju EY, P(X, V) => Q(X, U))
<u></u>	= = XeX, 7 (=yeY, P(x,y) => R(x,y)) => => R(x,y) => R(x,y))
<=	> => => X & X, Yy & Y, P(x,y) A7Q(x,y)
	-

P(x) V(Q(x) => R(x)could mean (P(x) V(Q(x)) => R(x)or P(x) V(Q(x) => R(x))

Procedure rules

highest ()

then 7

then \wedge, \vee then $\Rightarrow, \leftarrow\Rightarrow$ lowest \exists, \forall

3

CSC165H1S Lecture 9 Jan. 27th Rui Qiu Venn Diagram of [P(x) = > (2(x) = > R(x))] is false 8 regions [P(x)=> (Q(x)=>R(x))] is true Afternatively use a truth table P(x) A Q OX) PCX PW=>(QU)=>R(X) PWAQU) Qu R(x) (x) = > R(x)=> ROX) $P(x) \Rightarrow Q(x) \Rightarrow P(x) = P(x) \land Q(x) = P(x)$ Since # of entires is 2^k (k = # of predicates), we use logical arithmetic rules to simplify: commutativity: a+5=5+a PAQ <>> QAP associativity: (a+5)+(=a+(b+e) {(PVQ)VR <=> PV(QVR) distributivity: a * cb+c) = a * b + d * c (PAQ) AR <=> PACQAR) {P/(QVR) <=> (P/Q) V (P/R) PV(WR) <=>(PVQ) \(PVR) Additive identity: X+0=X idempotancy: 0 *C = 0 ? multiplicative identity: 7.1=X

Conjunction identity: PN(QV-Q) <=>P, PND <=>P

disjunction identity: PV(Q#N-7Q) <=>P, PND <=>P

Statement "Variable X is not equal to 2 on 3." Equiv. Expression: not (x==2) or (x==3)not (x==2) and not (x==3) "not (x==2) on not (x==3)" Inequiv. Expression. ->always true! (X不可能回对张27values) Demorgan's Laws 7(PAQ)=7PV7Q 7(PVQ)=7PMa Statement P=>Q <=>7PvQ is true :. 7(12=7Q) <=> 7(1PVQ) 77PFA7Q PATA : 7(P=>Q)<=>P1 Equivalent (Biconditional) P<=> (1) <=> (P=>Q) \ (Q=>P) 1 De morgan <=> (¬PVQ) \(¬Q VP) <=> ((¬PVQ) \7Q) V (¬PVQ) \P) distributting of V" <=>((-PATQ) V(QATQ)) V((7PAP) V(QPAP)) <=> (1PA7Q)V(QAP)

Rui Qiu Jan 30th CSC/65H1 S Multiple Quantifiens Jone Make employee makes less than 55,000. 3 xEE, 7 F(x) / L(x) define (U.s): employee x makes salary s" BXEE, BSEN, TF(x) AT (x, s) A SESSDOO for salary bound w ∃ x∈E, ∃s ∈ IN, ¬F(x) ∧T(x,s) ∧S≤W For salary burned w. BSEN, BXEE, JFWNT(x,s)NSEW is equivalent as is (WESA (S.X)T, MIDE) N(X)=1 r, 33x E Mixed qualifiers Consider: DAXEH, ZyEB, X+Y=5 (forall, one) ② PyeB, IKEA, x+y=5 (for one, all) Are these statements equivalent? Consider A= [1,23.4] B= [1,2,2,4] DTrue @ False · 7 (YXEA, Zy & B, X+ Y=5 <=> ZY &B; YXEA, X+Y=5) cannot commute quantifiers of different type. Another example: · P(m,n): "n is the square of m" IMEIN, P(m,n) There is an integer that is the square of another int. BAYEN, BXEN, P(m,n)

Same

= F(m,n) EX2, P(m,n)

2 1	
every element IN2=N×N	_
P(m,n) "the product of m,n is an integer	
$m * n \in N$	
TYMEN, YNEN, P(M,n)	
\	
ATA:	u
donain Ppople	
Likes (x,y): "person x likes person y"	
· [Every likes Everyone].	
one	
YXEP, YYEP, Likes (X,y)	
TyeP, YXEP, Likes (x,y)	
= IXEP, = yEP/Likes (X,y)	
a yer, axer, cires (e,y)	
The state of Company	
YXCP, FUEP, libes (XVV) is the this equiplet	<i>ن</i> کے .
Ir	10 ·
= YEP, YXEP. Likes (X,4)	
There is someone liked by evenione	
of the street of	
TEXEP, JUEP, Likes (X, M) => FUEP, VXEP, Likes (X, U)	
Transitive Transitive	
	4
then a>c	
> is total.	
	YMEIN, YNEIN, P(m,n) Y nein, ymein, P(m,n) Y (m,n) ein, P(m,n)

CSC165H1S = Feb 1st Rui Qiu
Statement P(x)=>Q(x) <=> its (contrapositive : 7Q(x)=>7P(x)
domain unspecified (N, R, E)
predicate P. Q not specified (x²<100, x>0, x is male)
Let D represent set of all possible domains
(P all possible predications
CON HOAD HIS CRIST OF CONTRACT BY
Say YDED, YPEP, YQEP, (P(x) => Q(x)) (=>7P(x))
Truth Table:
P Q P=>Q 7Q 7P 7Q=>7P (P=>Q)<=>(7Q=7P
TTTELE
T F F T
E I T T T
The without the state of the st
Converse: consider $(P(x) = \neg Q(x)) < 2 \rightarrow (Q(x) = \neg P(x))$
Consider D=N+, P(x): x is odd, Q(x): x+1 is even
χ is odd =>X+1 is even $P(x) \Rightarrow Q(x)$
& X+1 is even => X is odd Q(x)=>P(x)
Consider D=R, P(x): "x>2", Q(x) "x>4"
P(x)=>Q(x): x>2=>x2>4 The
$Q(x) \Rightarrow P(x) : x^2/4 \Rightarrow x > 2 $
·· Can say
(The D. Jack, Gade, Cade)
$(Pcx)=>Q(x)$ $\langle => Pcx)$
this statement is said to be satisfiable
* if no domain depredicates can make a statement true, say the
statement "un satisfiable".
IX: 7 (3 DED, 3 PEP, 3 QEP, P(x))

	Chapter 4 Proof
	[Defin]: A proof is an argument that shows that a statement is true.
	[Theorem] "Every odd integer has a square that is odd."
	[Theorem] "Every odd integer has a square that is odd." or "square of every odd purchasis integer is odd." D. 1
	Proof:
	Comvince yourself it's true: any number is odd if remainder when divided by 2 is 0.
	D Yx∈Z, x° \$2 =0, False ← Counter ex: X=2, ∈Z
	② ∀x∈Z, x is odd => x² is odd;
- -	Pcy): y is odd.
	$\forall x \in \mathbb{Z}, P(x) \Rightarrow P(x^2)$
	$\forall x \in \mathbb{Z}, \frac{P(2x+1)^2}{2}$
	$\forall x \in Z$. $D(x) \land P(x')$ false \leftarrow Counten ex: even \neq number
	$\exists x \in \mathbb{Z} \mathcal{P}(x) \land P(x^2) \text{True}$
	Assume $n \in \mathbb{Z}$ is an arbitrary integer have
	1 with assumption to see
	(If we can prove that n^2 is odd then then shown $P(n) \Rightarrow P(n^2)$)
	SAssume n∈ Z
	Assume n is odd
gen i	Ishow n² is odd)
	Then nº is odd.
	Then n is odd =>= n is odd.
	Then $\forall n \in \mathbb{Z}$, n is odd $\Rightarrow n^2$ is odd
	n is odd
	then $0.82 = 1$ then $0 = 29 + 1$ 0.62
	then $n=2g+1$, $g \in \mathbb{Z}$ $\therefore n^2 = (g+1)^2$
	$10^2 = 49^2 + 29 + 1$
	$= 2(2q^{2}+q)+1$ $= n^{2} 2 = 1 \qquad (n^{2} \text{ is odd})$

Rui Qiu CSC165H1S Feb. 3rd Theorem: Every odd int. has a square that is odd. symbols the Z, n is odd => n2 is odd. trying to prove a universal quantification def": An integer n is odd if and only if ∃g∈Z, n=zg+1 (n×2==1) Assume n = Z (arbitrary int.) (domains restriction) Assume n is odd (assume antecedant is true) (need to show consequence must be true) in is odd, then then 3g ∈ Z, n=2g+1 Let j & Z, be St. n=29+1

Then $n^2 = (2j+1)^2 = 4j^2 + 4j + 1 = 779 2(2j^2 + 2j) + 1$

But for integer j, 2j2+2j isan integer So ∃k ∈ Z, n=2k+1 Then no is odd what we wanted to prove

domain assumption Final proof: Assume n ∈ Z, # n is an abit arbitary integer. Assume n is odd # n is an arb. Int. Assume anteredent true

Then Ig EZ, n=2g+1 # by defin of odd Let JER be s.t. n=2j+1 #label qual gustient j. # gubstitution #algebra

Then ∃k∈Z, n=2k+1, #2g2+2j ∈Z. When j ∈Z.
Then to n' is odd.
Then n is odd => n^2 is odd.
Thus the Z, n is odd => n is add # n is an arbitary int.
pin
Theorem: for every non-negative real number (x, y)
if this mother than
if xis greater than y, then their geometric mean, \sqrt{xy} is less than their arithmetic mean $\frac{x+y}{2}$
- free the second means, my
15 1633 Than their arithmetic mean -
YXEIR , ty EIR CX>Y)=> X+Y >VXY
universal
universal quantification
Proof. Assume x,y are arbitrary meen nonegative real mobers Assume xxy # assume antecedent.
Then X-y>0
Then $(x-y)^2 > 0$ Then $(x-y)^2 > 0$
Then x2-2xy+y2>0 stucked here
1/ more to the
Then $x^2-2xy+y^2>0$ stucked here $\frac{x+y}{2} = \sqrt{xy}$ Long hsion!
<=> x+y > 2\/xy
2 > 1/(x, x) = 4 × + x > 0 = 2/(x x > 0)
$\langle = \rangle (x+y)^2 > 4(xy) \qquad \# x+y>0, 2\sqrt{x}y>0$
$\sim \sqrt{1 + \frac{1}{2} 4 \times 1}$
$\langle = \rangle (X-Y)^2 > 0$
This Proof
7ms 1mg x-2xy+y2+4xy 4xy
technique is (X+y) > 4xy
THE TOTAL TO
Direct $(x > y) = > (x + y)$
then X+Y>2√XY (X, Y ∈ R ≥0)
Proof of then $x+y>2\sqrt{xy}$ (x, $y\in \mathbb{R}^{20}$) A universally Implication. $\frac{x+y}{2}>\sqrt{xy}$
Qui'''

 in logic => is transitive	
$\forall x \in D$, $(P(x) \Rightarrow Q(x)) \land (Q(x) \Rightarrow R(x))$ Conclude $\forall x \in D$, $P(x) \Rightarrow R(x)$	
Why? PEQ QER PER	
Logical derivation Consider $\gamma((P=>Q)\wedge(Q\Rightarrow R))\Rightarrow(P=>R)$ $\iff \gamma((P=>Q)\wedge(Q\Rightarrow R))\vee(P\Rightarrow R))$	(implreution)
<=> (77 ((P=>Q))(Q=>PR) / 7(P=>PR)	(dellorgan)
((P⇒Q)/(Q⇒R))/17(P⇒R)	(double negation)
 <=> (¬PVQ)A (¬QVR)A ¬(¬PVR) <=> (¬PVQ)A(¬QVR)A (PA¬R) <=>(¬PVQ)AP))A(¬QVR)A¬R) (C <=> (¬PAP)V(PAQ)A (¬QA¬R)V(I	(deMorgan) omm, assoc)
(=) PARATRATR (False)	
 $(P = > Q \land (Q = > R)) = (P = > R)$	

•

CSC165H1S Feb 6th Rui Qiu	
$P\Lambda(PVQ) \Leftarrow P$ $PV(P\Lambda Q) \Leftarrow P$ $Velleman calls these absorption PV(QV \neg Q) \Leftarrow QV \neg Q Can be used for Q4)$	-
Last week we proved $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
Claim: $CI \forall X \in D$, $p(x) \Rightarrow q(x)$ make a change of implications. $C = 2.0 \forall X \in D$, $p(x) \Rightarrow r_1(x)$ $2.1 \forall X \in D$, $p(x) \Rightarrow r_2(x)$ $(by \text{ transitivity of implication})$ $2.1 \forall X \in D$, $r_1(x) \Rightarrow q(x)$)
Proof Structure. Assume $\pi \in D$ PREDICA Then $p(x)$. Then $\forall x \in D$, $p(x) \# x$ was assumed to be a typical element of D .	
· How to figure out a chain of implications? Drabe a list of things that pix implies. P(x) { r_2(x) } P(x) { r_2(x) }	

6	Dracke a list of things that imply goo.
	$\frac{S_{1}(x)}{S_{2}(x)} > S^{(x)} \longrightarrow q(x)$
	$S_{11}(x) \rightarrow S_{02}$ $S_{12}(x) \rightarrow S_{02}$
	HEOREM: Yn & Z, *n is odd , is the converse true?
	$\forall n \in \mathbb{Z}, n^2 \text{ is odd} \Rightarrow n \text{ is odd.}$
+	Assume $n \in \mathbb{Z}$, #n is arbitrary int.
	Assume n^2 is odd # antecedent Then $\exists q \in \mathbb{Z}$, $n^2 = Zq + 1$ # def^n of odd.
rough rock	Then need a sort to get to n.
n isodd	act1
ISEK, Zn=	$\frac{t \cdot n^{-2k+1}}{4k+1}$
11.0	Consider the contrapositive of stat.
	$\forall n \in \mathbb{Z}, \neg (n \text{ is odd}) \Rightarrow (n^2 \text{ is odd})$
MO-K	∀n∈Z, n is even => n² is even (similar to odd pbm)
	of Structure:
	Assume $n \in \mathbb{Z}$, # n arbitrary Assume n is each # antexactiont
10 A	Then I g \ Z, n=2g # defn of even? Let \(\mathfrak{g} \in \mathfrak{Z} \), best n=2j
·	Then $n^2 = 4j^2 = 2(2j^2)$
A	in indirect proof of a universally quantified implication
-	$\forall x \in D, p(x) \Rightarrow g(x)$

Assume 7 ED Assume 7q(x) # negtion of conclusion Then Then 7 p(x) # negation of assumption Then Town => Town Then p(x) = g(x) # contra positive Then YXGD, p(x) => q(x) I and itself P= {peIN | p has exactly 2 unique divisors} Prime numbers $= \{2,3,5,7,11,13,\cdots\}$ tlow many prime # s ? on many . ~

Theorem: There are an infinite number of prime numbers $\forall n \in \mathbb{N}$, |p| > n

CSC 165 H1S Lec 14 Feb 8th Rui Qiu
Test 1 Coverage: to end of Chapter 3 on course notes.

THRM: There are an infinite number of primes. (Translation) i.e. P=set of prime numbers, IPI cardinality of P. then $\forall n \in \mathbb{N}$, IPI > n. universal quantifier Q(n), a predicate

[Direct Proof] Assume $n \in \mathbb{N}$ Assume $\neg S$ then $\neg C \nmid n \in \mathbb{N}$, |P| > n) then $\exists n \in \mathbb{N}$, $|P| \le n$ let $k \in \mathbb{N}$ best be s.t. |P| = kThen $k \le n$ then k > 1 # since Po = 2 is prime # listall prime numbers \leftarrow then $p = \{P_0, P_1, \dots, P_{k-1}\}$

let r=pop...pr...pr...

Then re IN # since IN closed under multiplication

then r> |

let t=r+1

then te IN

then I peP, p divides t # + is not prime

let pjeP s.t. p divides t => t has prime factors.

then I m e N s.t. t=Pj.m

Also p clivides

then I u e N, r=pju

consider t-r=p,m-pju=pjcm-u)

then p divides t-r

then t-r=1

then P_j divides 1 then $P_j = 1$ then $1 \in P$ (since $P_j \in P$) but $1 \notin P$ (since 1 has only one divisor) then $(1 \in P) \land (1 \notin P)$ This is a false statement then S is true.

(Assume 75) leads to a statement that is false # hence 75 is false # S is true

.. There are an infinite number of primes!

** The proof technique used is called "proof by contradiction"

Q: How to prove on existential claim?

3 x &D, p(x)

 \rightarrow construct an $x \in D$ s.t. p(x) is true.

Prove 3x EIR 73+3x2-47=12.

[Proof]: let $\chi=2$ # consider a particular value Then $\chi \in \mathbb{R}$ # well known then $\chi^3+3\chi^2-4\chi=2^3+3\cdot2^2-4\cdot2=12$ # Substitution then $\exists \chi \in \mathbb{R}$, $\chi^3+3\chi^2-4\chi=12$

Feb 10th CSC/65H1 &S Rus Qiu Term Test 1 Tue Feb 14th 25-35 pm EX 100 Proving a statement about a sequence Sequence: a., a, ..., an ... Consider the claim: $\exists i \in N, aj \leq i \Rightarrow j < i$ T/F depends on sequence Gosider particular sequence aj: 0,1,4,9, ..., 12 j 0.1,2,3, ---, j Is the claim T/F for this sequence Claim says 目ieN事, ··· aj si=>j<i Since a groof about I s # satisfy domain restriction Then it N #j is ambitrary Assume jeN proving this will depend on value of fact that aj=i Assume aj≤i _ Then j<t Then jett aj si =>j <i Then j∈IN, aj≤i=>j<i Induction: try i=2 #since i=2 Then aj ≤2 # since 03= # since \$ $j^2 \leq 2$ Let i=2 Then # 1 since 52 < 2 $j \le \sqrt{2}$ Then Then ieN j<2 Then

Then

Assume jeN

Assume aj = i

Ahen Qj≤i=>j<i Then \j \ N, aj \ i => j < i' Then liew, by en, agei =>j<i Alternate proof of aj <i =>j <i inclined proof (prove contrapositive) 1 ¬(j <i)=>(aj ≤i) $j > i \Rightarrow aj > i$ Assume jzi Then j≥2 Then qj=j2>4 Then j zi=zaj>i New problem: Given 12.345 truncate get 12. for it EIR+, use the function to truncate truncate. # floor (x)=Lx] is the largest int. ≤ x cell(X)=[X] is the smallest Int. >X L12361=12 floor: R>Z 1177=17 L-3.141=-4express the definition using last: logic: =>Z<LX] (LXJ e Z) N (LXJ = X) N (AX E X X E X) more general (YXEIR, YELXI) <=> (YEZ) / (Y < X) / (Y & Z, Z & X => Z < Y) A theorem about Lx1 Theorem: YXER, LXJ<X+11 a theorem about XEIR, what about LX1?

LXL is many to one

Proof: Assume $x \in \mathbb{R}$ Let $y = L \times J$ Then $y \leq x$ # def of floor Also x < x + 1 # 0 < 1, add x + 0 both sides Then y < x + 1Then $L \times J < x + 1$ Then $\forall x \in \mathbb{R}$, $L \times J < x + 1$

_ ____

.....

```
多Floor function Lx]:
                    \pi \in \mathbb{R}, largest integer \leq \pi.
              HXEIR, Y=LX] <=> YEZ NY=X N (YZEZ, ZEX => Z EY)
             * Note: we prove that YXEIR LX1<7+1
            [Theorem]: \forall x \in \mathbb{R}, \lfloor x \rfloor > \chi - \rfloor (<=> \lfloor x \rfloor + \lfloor x \rfloor + \rfloor
               [Proof]: <try direct proof>
                        Assume XER # X is an arbitrary real number
                                Let y=LXI # introduce symbol to stand for LXI.
                                Then yez # from defin of floor func.
                              Then y \in X
Then y+1>y (# since 1>0)
  LX1 >X-l
on 2244 on 24124
have not used. YZEZ. ZEX=>ZEY
                              Then y+1 ∈ Z # Z closed under addition
                                YZEZ,ZEX=>ZEY # contrapositive: YZEZ,7(ZEY)=>7(ZEX
                                YZEZ, Z74=>Z>X
                                y+1 € Z
                                y+1>y =>y+1>x
                                            TX+1>X
                                          「バンメー
           [final proof]:
Assume
                              XEIR
                              let y= Lx]
                              Then y & Z
                              Then y≤x
                               then y+1>y
                               then y+1 ∈ Z
                                                  I # from def of LXI, contrapositive of
                               Then y+1 > X
                                                               its 3rd term?
                               then y > X-1
                               then Lx1>7-1
                      Then YXEIR, LXI >X-1
```

Rui Qiu

盘 CSC165H1S

Goal:

Feb 13th

Another sequence problem: sequence YneN, an= Ln/21 $a_0 = L0/21$, $a_1 = L1/21$, $a_2 = 0.3 = 1$, $a_4 = 0.5 = 2$ Consider the statement (claim): Fien. Yjen,jri =>ajrai Glum out to be false. * how to prove?) * Disproving a result -> show negation! 7 (ZiEN, tjEN,j>i=>aj=ai) <=> Yi EN, Zj EN, 7(j>1=>qj=ai) <=> ∀i €N, (j>1) ∧ (q; ≠ai) universal quantification [Prof]: Assume ieN let j=i+2 Then jeN Then j=i+2>i Then $a_j = L_j/21$, $L(i+2)/2J = L_j/2+J$ Then ay +at Then (j>1) Λ (ay $\neq a_i$) Then BjEN, (j>i) \ (gj+ai) Then tien, ajen, (j-i) \(aj \neq ai) Then BiEN, \fi \in N, j >i => aj=ai is false.

Ri Qu CSC/65HIS Feb Kth S: Yx E X, ty EY. Prop => Q(xy) interpretation: x=IR PLAY) YEX y= Q (x y y= Lx) To disprove Soison Should you prove YXEX. Yy ET, P(xy)=>7Q(xy) tempting P=>Q, negate to P=>>Q P=>Q <=> 7PVQ 7(7PVQ) negation PATQ YXEX, YyeT, 7(p(xm) => Q(xmy)) ? How about 7S: 7 (AXEX, ATE) P(X,Y) => O(MY) (=> => (Yx) => (Y=Y) => (Xxy)) <=> IXEX, IYET, POXY) AT Q(X) Y) Let X=2, Then XER Let y=1 Then $y \in \mathbb{Z}$ Then P(2,1) # sime ≤ 2 Than 7Q(2,1) # since ! = 121 Consider VEIR, e>0=>(3deir, d>01(4xeir, oca) 0</x-a|<d=>|fix-l|<e)

want to prove this

for a given func. f

and consists a, d.

	Structure of Proof:
	Assume eles #abitrary element of IR Assume ezo #antecodent
···	Let de =
	Then de elR # verify domain
!	
	Then de >0.
	Assume XER
	Assume 0<1xal <de, #anteredent<="" th=""></de,>
	<u></u>
	Then If(x)-1/ <e< th=""></e<>
	Then U<==> x-a <de=> f(x)-1 <e< th=""></e<></de=>
	Then YXEIR. 0< X-a <de=> xm-1 <e< th=""></e<></de=>
	Than IdelR, don (xxxx. Exclx-4< bede => 1flx)-1ke
	Then e>0 => (3d & IR, 0x x-a < de => (20 the fix)-1 < (e))
	Then Yeel, e70=>(===================================
	$\Rightarrow \frac{f(x)-e^{-1}}{e^{-1}} f(x)-(e)$
	to negate this: DEA
	start from ontside:
. ,	recall 7(P=7Q) <=7 PN7Q
	7 (PAQ) (=>7PV7Q <>>-VQ
,	
	to get
] = 61R, e>O \ (\text{\ticr{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex
	Consider
	Theorem: If n is natural number, n2+n is even.
· · · · · · · · · · · · · · · · · · ·	logic. Yn elvin2+n even.
	YneN, 3 8elv, noth noth
	y was a subject to the subject to th

approach: show result holds for even n. Since is on odd, result follows for all. Assume: n EIV, # n arbitrary n is even on is odd. (3 i EN, n=2i) V (3 i EN, n=2i+1) Casel. Assume FIEIN, n=2i # n integer Let i, EN best n=2io Then non = (210) +210 Then Ij EW, n'+n=2j Then nothin is even. Case 2: Assume I i EIN, n=2i+1 # n is odd Let io EIN, but n n=2iot1 Then h2+n=(2i+1)+ (2i+1) = 2(210+310+1) Then Ij EIN, n2+n=2j/ >> Thon hith is even

Then hith is even Then the IN, nith is the even

IN GENERAL, WANT TO PROVE A = 7B

white to can break A into A, Az, -An

prove A, VAz VB, V--- VAn =>B

need to prove A, =>B

Az =>B

A =>B

Then A=>B • you need to prove each implication since arbitrary elevent could be in day any A.

Pray by cases.

Rui Qiu

Theorem: When the square of any integer is divided by 3, the remainder is either 1 or 0.

1783=0 or 1 $\exists k \in \mathbb{Z}$,s.t. n=3k3keZ, st. n=3k+1

Proof: $\forall n \in \mathbb{Z}$, $(\exists k \in \mathbb{Z}, n^2 = 3k) \vee (\exists k \in \mathbb{Z}, n^2 = 3k+1)$ form universally quantifier disjunction

Is it tome?

n=7

n2=49 n2=1

=3*0+1 =3 *16+1

n=10 $n^2=100$

n=3

=3x33+\ n2=9

眸=3×3+0

note: YneZ, IkeZ, (n=3k)V(n=3k+1)V(n=3k+2)

n23=0

3keZ, n=3k

Let j∈ Z, n=3j

Then n2= 9;2

=3 (3j2)

Then IREX, n=3k

n\$3=1

3ke器, n=3k+1

Let $j \in \mathbb{R}$, n=3j+1

Then n2=(3j+1)= 9j2+6j+1

 $=3(3j^2+2j)+1$

Then \$ 6 2 n2=3k+1

n23=2

IkeZ, n=3k+2

Leticz, n=3/12/12

Thomas = (3j+2) = 912+ 12j+4

 $=3(3)^{2}79171)+1$

Then IKEZ, n=3k+01

Complete proof: Assume nEZ # n is an arbitrary integer Then IREZ, (n=3k)V(n=3k+1)V(n=3k+2) # by remainder theorem Let ko∈ Z, (n=3ko) v(n=3ko+1) v(n=3ko+2) Case 1: Assume n=3k. Then n2=(3 k.) =3(3k.) Then IKEZ, n2=3k (ase 2: Assume $n=3k_0+1$ Then $n^2 = (3k_0 + 1)^2$ $=3(3k^2+2k_0)+1$ Then Ike Z, n2=3k+1 (ase 3: Assume n = 3ho + 2 Then n= 9k3+12k0+4 $=3(3k_0^2+4k_0+1)+1$ (hen] ke Z, n2=3k.+1 Then Ynez ,n=3k Vn2=3k+1 If must want to prove a, but don't know cases to try try to pe construct some P try to prove PV 7P=>Q prosf ? Cree 1: Assume P Then of Case 2: Assume 7P_ Then Q Then Q Another statement form: can show (D=>QVR7 PATQ=>R note: Q is either true on false lequivalent. if Q is true, P=>PQVR is true independent of P.R. P=>(QVR) it Q is false then P=>QVR is the when P=>Ristme G7PV(QVR) (=>6PVQ)VR (=7 th)

How to prove A <=>B theorem of A <=> C. Statement ...` <=>B of the form earlier: proved n is odd then n' is odd. n' is odd then n is odd So we have proven is odd iff no is odd. Theorem for every int n, 排写n iff 31n and 51n. alb means b is divisible by a ∃962.s.t. b=9a Proof: (=>) Prove ∀n ∈ Z, 15/n => (3/n) ∧ (5/n) Assume n & Z Assume 15/1 Then 3 k E Z, n=15k Let ko E Z, n=15k. Then n=3(5ko) Then Ikez, n=3k Then 3/n Then h=5 (3k.) Than 3/11 Than Ike & nestk Then 5/n Then 5/n x3/n Then 15/n=>(3/1/x/5/n) (=) Assume (3/n/x(5/n) beed to show \$ 15/n2

Rui Qiu CSC165HIS Feb 27th Proving an equivalence/bimplication Theorem For every integer >n, 15/n iff 3/n and 5/n alb a divides b (b & a == 0) Proof Approach prove D 4n & Z , 3/n ,5/n => 15/n DYneZ, 15/n=>3/11/5/1 D (=>) Assume Assume n & Z_ Assume 15/n Then IkeB, n=15k Let REZ, n=13ko Then n= 3.5% =3(5k.) Then Ikez, n=3k Then 3/n Then n=5(3ko) Then BREZ, n=5k Then 5/n Then 3/n 15/n Then 15/n=>3/n15/n Then Vnez, 15/n => 3/n 1965/n (=) Prove YneZ, 3/n/5/n=> 15/n Assume n E Z Assure 3/n 15/n Then IKEZ, n=3k Then I mez mesm Let koEZ, n=3k. Let MOEZ, n=5mo

want 15/7

3 Po, p, p2, ... Ps. EP, n=po, p1, -- Ps Let p.=3, P.=5 Then n=(3,5)(P2,P1,-P3) =15.8 > = 15(P2--P3) # g=P3--P3 Then Ikez, n=15k Then g & Z Then Isln # Since Z closed under Then \$ 3/10 A5/10 => 15/1 Then Yn & Z, 3/1/ =>15/n=>15/n Then Yn & Z, 3 | n Non & b/n Symbol introduction Rule Assume A

contradiction (7 introduction) Then 7A

(direct) ThenB (=>introduction) Then A >> B Assume 7B (indirect)

Then 7 A

Assume A

Then A=>B Assume $a \in D$

Then Pa Then YaED, Pca) (Vintroduction) aED

Pca) Then I a GD, P(a) (A introduction)

Then ANB Then AVB A=>B B=>A

Use known facts eliminate symbols ituknow A=>B A=>13 additional A γB infor Then B Then 7 A if u know AAB if uknow A=B Then A Spe separately Then A=73 Than 13-X Then B if you know AVB it you know ta ED, Play additional infor 7A x€D Then P(x) Then B if you know 7A =>B if u know EXED, Pcop <=>>(A) VB Let Xo & D. be such that P(xe) <=>AVB Vintroduce

Ch5 Algorithm Anolysis and A V can you prove that the algorithm

· · · · · · · · · · · · · · · · · · ·	_CSC165H1S	Feb 29#		Rui Qiu
	chs Algor	thim Analysis and	d Asymptotic	Analysis
-	decimal nu	mber representation	on	
	2.	tens hundreds thousands		
	1-	+ 3×10 + 0×100 +2×1000		
	· 	xlio1+3×101+0*101+.	2. ×101	
	base	used is $\beta = 10$		
	"digits	$0.1.2,, 9 = \beta - 1$ integers		
	other	base 3=16	nexade	ecimal (dd 1BM)
	β	= 8	' coctal	
	B come u	= 3 = 2 binary se any base Bi	twith 1/31 >	·
	in gene	ral, can represent	t any intege	r value as
	for	$t(t_0 \times \beta^0 + t_1 \times \beta' + t_2)$ any base $\beta \in \mathbb{Z}$ $t_i \in \mathbb{Z}$,	$+t_{n} \times \beta^{n} + \infty$ $\beta = has \beta > 1$ $0 \le t_{i} < \beta $)
	$\beta=2$			
·	$\beta = 0$)		

How to convert between bases $\beta = 10$ and $\beta = 2$?

Setween base $\beta = 10$

Alternate: find 1st to motor

(2/2, then 12 total to right

giren n, $n \in \mathbb{Z}^+$ i=0 do $f(i) = n \neq 2$

n = n/2 i = i+1) while (n>0)

$$\frac{(1/0) \cdot (01)_{2}}{(1/0) \cdot (01)_{2}} = \left(2^{3} + 2^{2} + 2^{0} + 2^{-4} + 2^{-3}\right)_{0}$$

note:
$$\sqrt{10} = (0.1)_{10}$$

$$= (0.000110011001100)_{2}$$

pritheetic

same algorithm as in decimal just romember
(1),0+(1),0=(10)2

$$\beta = 0$$
 $\beta = 2$

binary multiplication

{

proof of correctness

Resi Qiu March 2nd CSC/65 HI Base B BEZ, 181>1 XER x= + ... t2 × B2 + t, × B + t + B + t × B binary numbers B=2 $(1)_2 + (1)_2 = (10)_2$ A function for multiplying 2 binary numbers. in binary, XZ shifts bits to left 101 ×10 = 1010 see the sheet and the function" in binary /2 Shifts bits to right 101/10=10 in the end we want z=m·n 50 function returns mxn It loop varia invariant is valid then when loop exists we have Z = mn - xy and x = 0then Z=mn before 1st execution of the loopbody, we have x=m, y=n, Z=0 mn-xy=mn-mn=0so we have Z=mh-xy

need to show:

if Z=mm xy at start of loop body

then
Z=mm-xy at end of loop body

Let Xi represent the value of variable x before the start of the 1th examination of the loop (and simply for y, Z.

the value of x at end of the i-1 st iteration.

Assume Zi=mn-xiyi # invariable invariant holds
at start of lap

CASE 1: Assume Xi is odd.

Xi [... 5 b. 1]

Tien O -- bab

Then
$$Z_{i+1} = Z_{i+1}$$

 $X_{i+1} = (X_{i-1})/2$
 $Y_{i+1} = 2Y_{i}$
 $Y_{i+1} = 2Y_{i+1}$
 $Y_{i+1} = 2Y_{i+1}$
 $Y_{i+1} = 2Y_{i+1}$

 $= Z_{i+1}$

Than Zi+=mm-xi+14i+1

CASE 2. Assume Xi is even

Then Zi+1=Zi

Then 71+1= X/2

Then yi+1 = yi *2

Then mn-xi+14+1

 $=mn-(x_{1}/2)(y_{1}*2)$

=mn- Yiy

= \(\mathbb{Z} i \)

= Zi+1

Then Zix Emn-Xi+1 yi+1
Then since Xi is either even on odd, we have

Zi+1=mn-Xi+1 yi+1

Then Zi=mn-Xiyi=>ZZi+1=mn-Xi+1yi+1

X: [--.b.b.,d

Xi+1 [-- b2, b,

And since That = 0, Zeast =mn - Hast Yest =mn and so fraction returns correct result.

How many iterations of loop body

m=10 to $x=10 \rightarrow x=1 \rightarrow x=0$ exit loop 2 iterations m=101 $x=101 \rightarrow x=10 \rightarrow x=10 \rightarrow x=11 \rightarrow x=0$ exit loop 3 iterations m=101 $Y=1101 \rightarrow x=110 \rightarrow x=110$

so, # bits is a reg'd to represent m is the # of iterations of loop.

CSC 165HIS March 7th

def LS(L, π): search keys i=0 #1

While i < len(L) #2

if $L[i]=\pi$: #3

return i #4 i=i+1 #5

return -| #6

Rui Qiu

L=[2,5,3,7] $\chi=5$ # steps reg'd 7 in general if $\chi==L[j]$ # steps executed 1+3(j+1)

return index i s.t. $[\Xi'L[i]=X]$ Or -1 if $\neg\exists i \in N$, L[i]==Xmost #steps when α does not appear in list

#steps is 1+3([en(L)-1+1)]+2

=3 [en(L)+3

· called worst case runtrace for algorithm
· get a guarantee on max runtime

· How to count # of steps in program?

· might count

function call · 1 step for call

1 step for each

paren evaluation

to steps to evaluate function.

return statements -1 step to return
- #steps to evaluate
return values

if stat

-1 step to branch to next stat
-1 step for each component of condition

assignment

·1 steps for assignment # steps required to evaluate R4S

integer arithmetic, float arithmetic, logical arithmetic, . 1 step for each operation · asing variable in reality -1 step -five for each · using list element step vaues 1 step (depends on memory use) + # of steps to figure out index. for simplicity, Count # of steps later on, we will account for furt that steps to be different five. usually express runtime of an algrithm as a function of ste of the input to algorithm. useful information for linear search, wonst case runtime rentine grows $\omega(n) = 3n + 3$ to mearly with somewhat and thankithous Since come from assuming list length e.g. true to search a list of length 106 len(n) all steps take same thing 2/00 x time of search 1:st length 104 terminology: tpw #steps for algorithm P
on input X Ap(n) Eaverage # of steps for P or input of size n. Bp(n) best case # steps for Pon input of size n Wpln) sworst ase # steps for P on input of size n. Bp(n) = min { tp(x) | x & Inputsp A size (x)=n}

 $Wp(n) = max\{tp(x) | x \in Inputsp \land Size(x) = n\}$

3 algorithms with worst case runtimes 3n2, 8n2 and = n2 step.

· only total conclusion to make is runtime ~ n' double input size, quadruple runtime

WLs(n) = 3n +3 n=len(L) WBs (n) = 9[log_n] 9[log_n]

LS, BS are two algorithms that would be used to search a sorted list.

which algorithm is faster
-depends on size of list

n=5, $W_{LS}(5) = 18$ steps $W_{BS}(5) = 27$ steps n=16, $W_{LS}(6) = 51$ steps $W_{BS}(16) = 36$ steps n=1024, $W_{LS}(1024) = 3075$

WBG (1024) = 90

as n grows. BS becomes much fuster than LS.

(n=8) WLS(8)=27

WBS(8)=27

> cutoff / breakpoint in comparison of algorithms.

Yn > breakpoint, better to use BS.

insight!

WLS (n)=3n+3

-turns WLs (n) = 2n+3 steps improvened only Shifts breakpoint important feature is how runtime varies with n.

T(n)	10	100	/300	19000	100,000
log271	3	. 6	7	/3	16
\sqrt{n}	3	10	3/	100	3/6
n	 (0	102	/o³	124	105
nlogen	30	600	9000	13×104	16×155
n²	100	10000	106	108	1010
n³	1000	106	109	1012	105
2 ⁿ	1024	1030	10	10 3000	30000 10

/billion steps/sel

10 16 years a year

10 20 Steps 10000 year

1.7

Mar 9th Rw Qiu MATI CSC165H1 invariant becomes = keN, A[k]=x VjeN, j<i => A[j]≤x algorithm return fcn) - on input of size n messy - complicated formula. try to estimate /approximate by gcn1 - 'nice' simple formula · we knownt a gen) to estimate an upperbound of fin), to within a contract factor for all n after some breakpoint values. ·want a constant c , breakpoint B, st. f(n) < g(n) for all n > B consider $f,g: N \rightarrow R^{*0}$ input bruntime det": f(n) is Ocgan) if there exists positive constants (and B S.t. for st gor all n>B to within a constant factor, f(n) grows no faster than g(n) Ex: def silly (num) no while loop num = num · / 561.3 num = num *2 runtime will be constant print num is, num independing of input we say # runtime is ()(1) if __name__ == __main__ n = int (raw_input('Number?')) constant runtime t(n) ≤ (o) for some constant silly (n) How does turtine change as n changes Dx: 当 i=100 loop body: 2 status > 2 steps while icn loop condition 1 Step Sum += 1 1 += 1 total runtime : t(1) = 1+3(n+100) +1

There is a ((here C=4) and a breakpoint B (B=500 works), s.t.

Ex: i=1while $i \le n/2$ j=1while $j \le m \times \pi$ Sum j = 1 j = 1 j = 1

How does nuntime change each iterator of inner loop takes constant time O(i)

outer loop formula LN/21 times

the # of steps is (LN/21 n²

Lis is O(n³) sin L] only coffects constant

March 12th CSC165H1S Rai Qiu tor t,g N-> IR20, fin) is O(gin) if I positive constants C and B such that fon & c gon) for all NZB up to a constant factor, f(n) grows no faster than get g(n) last time: t(n)=3n'+3Ln/2]+5 (run time for given algorithm) intuition (t(n)) is O(n²) prove it fin by defin of O need to prove = ceiR+, = B∈IN, Yn ∈IN, n> B=3n2+3Ln/21+5 ≤cn2 Structure let C= Let Boz Assume ne IN Assume & n>B Then 3n2+3[n/2]+5 €cn2 Let Co=4 Then GEIR+ Let B .= 4 Then BEN Assume nEN Assume n>Bo n² montone # since Then n2 > Bo Then In25 Then n. \frac{1}{2} > 1 L \frac{1}{2}] > 3 L \frac{1}{2}] # 1 > 4 Then nº > 31-21+5

Then 3n2+n2 > 3n2+31-11+5 # add 3n2 to both sides

Then $t(n) \leq 4n^2 = Gn^2$

```
Then n > B => + (n) < Gn?
      Then YneIN, n>Bo => t(n) < Con2
Then ICEIR+, IBEIN, YNGIN, NZB ⇒ t(n) ≤ (on'
Then ten) is 0 (n2)
       example
        Sun=0
        i=1
```

While $(i \le n)$: while $(j \leftarrow i)$: Sum=sum+1 j = j + 1i = i + 1

intuitive analysis · each iterations of innermost loop takes 0(1) time C constant · on the ith iteration of the outer loop (know isn) (i) iterations of the inner loop each iteration of outer loop takes

O(1) time.

· He outer by body executed n times · the overall runtime is (

O(n2) time

· looks like an overestimate, since e.g. i=4, imer loop executed 4 x's not n times.

To show fen) is not O(g(n)) -use proof by Contradiction to disprove.

previous argument #executions of inner bup total: 1/2 1/2 2/2

but $\frac{1}{2}n^2$ is $O(n^2)$

So we end up with same answer in terms of 0 meither (number is O(n3))

only need the & When comparing on runtime with another (1) O(n2) algorithm.

2 key properties of 0 notation · constant fudors disappear if d>o is a constant then df(n) is O(df(n)) and f(n) is O(df(n)) · low orden terms disappear e.g. $n^{5}+n^{3}+6n^{2}$ is $O(n^{5})$ $n^{2}+n\log n$ is $O(n^{2})$ in general, if n goes to : $\lim_{n\to\infty}\frac{h(n)}{f(n)}=0$ then f(n)+h(n) is O(f(n)) following observations (6n is O(n)

42 n is ()(n) > O(n) describes a 1651 +2012 is O(n) Set of functions bn is not O(logn) on is not ((In) 6n is not ()(165) rely on defin if aceir+, abein, YneN, N>B=> g(n)≤cn then ∃ CE/R+, ∃BE/N YneN,n≥B=>dq(n)≤Cn for do

()(n)= 1+1 >1/2)

[g: IN→IR >0/3ceIR+, 3BeN,

YneW,n>B=>g(n) ≤cn}

Suppose P(n) is a predicate for nEN, and also know: PCO) A (YneW, PCN) => PCn+1)

You know Pco is true.

Pu istrue # Po) AP(0)=>Pu)

P(a) true # P(1) 1 P(1) => P(2)

Then YneN, Pu) true

Argument called Principle of Simple induction

Prove for neN, $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$ proved by induction $\sum_{i=0}^{n} i = \frac{n(n+i)}{2}$ Rare $\forall n \in \mathbb{N}$, $\forall n \in \mathbb{N}$

Prove Ynew, Pan)

(1), prove Pu) Let no=0

Then $\sum_{i=0}^{n_0} i = \sum_{i=0}^{n_0} i = 0$ Then $\frac{n_0(n_0+1)}{2} = \frac{0 \times 1}{2} = 0$ Then $\sum_{i=0}^{n_0} i = \frac{n_0(n_0+1)}{2}$

Then Pino)

Thon P(o)

@ prore thew, Pan)=>Pan+)

proof: Assume $n \in \mathbb{N}$.

Assume P(n)Then $\sum_{i=0}^{n} i = \frac{n(n+i)}{2}$

Then $\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) = \frac{n(n+1)}{2} + n+1 = \frac{n(n+1)(n+2)}{2}$

Then Puntl)

Then Pun)=>Pun+1)

Then Y nEN, Am => Put)

Then PWA P(n)=>P(n+1)

Then by the principle of simple induction, Ynew, Pcn)

```
Consider Pan): 2">2n
Oprove Pco:
       Let no=0
       Then 2" = 2°= 1
       Then 2110=0
       Then 2">21.
      Then P(no)
       Then P(O)
Dprove then, Pun)=>Punti)
       Assume neIN.
          Assume Pcn)
               Then 2 >21 #by assumption
               Case 1: Assume 170
                  Then 2(n+1) =2n+2 52n+2n=2.2n=2n+1
                  Then Puntl)
              Case 2: Assume n=0
                  Then 2(n+1)=2(0+1)=2
                  Then 2"+1=2
                  Then 2 nx > 2 (n+1)
                  Then (2(nH)
               Then in either case, Parti)
             Than (Pun) => (Pun+1)
          Than YNEN, PCN) => PCNH)
        Then Plo) A Pln) => Plati)
        Then by the principle of simple induction, Inc. IN, Pcn)
(onsider Pcn) 2"≥n3
                             n^3
                     2<sup>n</sup>
      observation:
                               Pa) V
                    130
        n-0
                            PioV
                 200
         n=1
                             7P(2) X
        N=2
                4<8
                            ¬R3) X
                  8<27
        n=3
        7Pa) X
        n=9
                  5122129
```

n=10

1024 ₹ >1000

P(10) V

N=1 2048 > 133|

P(n) V

What statement P(n) is true

Yn∈N,∃B∈N,n>B=>2ⁿ>n³

Yn∈N, n>10=>P(n)

How to prove? P(n) ∧ Yn∈N,n>10=> (P(n)=>P(n+1))

Yn∈N (0,1,2,-,8,9),P(n)

A(t define $Q(n): 2^{n+10} > (n+10)^3$ prove: $\forall n \in \mathbb{N}, Q(n)$ prove $Q(0) \land (\forall n \in \mathbb{N}, Q(n) = > Q(n+1))$

CSC165HIS March 2/et Ri Qiu Properties of 0,52,0 0 0 is transitive acbabec then acc For all functions fig. h W-XR>0 fe O(g) A ge O(h) => f = O(h) Proof : Assume fig.h N-1R20 Assume feo(g) AgeOW Then f & Olg) Then $g \in OG$ ∃CEIR+,∃BEN, YneN, n>B=>f(n)≤cq(n) Let GERT, and BOEIN, be s.t. Ynew, n>Bo =>f(n) < (-g(n)) ∃ CGIR+, ∃BEIN, Yn EIN, n>B=> g cn) ≤ ch Cn) c,h(n) Let cleret, and BIGIN, best Ynew, men >8, => gan) < Gal) * # need to prove \$\famile{\pi} \in O(h) then fe (th) Let $C_2 = C_0C_1$ and $B_2 = max(B_0, B_1)$ Then GEIR+ and BielN Then n≥B, Assume n EN and n > B Then gun) SCI han) Then n7Bo Than fun = (2h(n) Then f(n) ≤ coq(n) Then the IN, n>B => f(n) (2h(n) (SCIHCN) Then ICEIR+, IBEN, YNEIN, YNEIN, NZB=>f(n) < ch(n) Then feoch) Then feorg) ngeoth =>feo(h)
Then \(\forall f, g, h \cdot N \rightarrow R^{20}\), \(feo(g) \lambda g \in O(h) => f \in O(h)\) D f ∈ 0G) <=>g ∈Ω(f) for all f,g. IN → IR≥0 feog) (=> gesif)

Proof: (=>) Prove $f \in O(g) \Rightarrow g \in \Omega(f)$ Assume f,g: N-1R30 Assume feOcg)
Then = & CEIR+, = BEN, +n EN, n >B => f(n) = cg(h) Let a EIR+, BO EIN, best theN n>B =>f(n) = (0, g(n) Assume nelly and ny B, Let $C_i = \frac{1}{c_0}$, $B_i = B_0$ Then finiscogen Then $C_i \in \mathbb{R}^+$, $B_i \in \mathbb{N}$ Then - for squ) Then Cifunguny Then I cell , I BEIN, yn EN, n >B => cf(n) \le gcn)
Then YneN, n >B=> cf(n) \le gcn)
Then YneN, n >B=> Cf(n) \le gcn) Then $f \in O(g) \Rightarrow g \in \Omega(f)$ Then $\forall f, g, W \Rightarrow R^{20}, f \in O(g) \Rightarrow g \in \Omega(f)$ (<=) Similar to above 3 \f.g: IN>IR>0 geo(fx=>geo(f). Proof (=>) Assume fig: N->1R>0 Assume $g \in \theta(f)$ ∃c, eirt, ∃c, ert, ∃Ben, Ynein, n>B => C2 f(n) < g(n) < C, f(n) Let Co∈IR+, Co∈IR+, BoEIN, best Ynenv,n≥Bo=>Gufcn)≤gcn)≤c.of(n) · pull out g(n) < Gof(n) pull out
 g(n)≥Gof(n)
 g∈O(f) and g∈Ωf) <= geof) Agesig)

__ chose B2 = max (Bo, B)

as ACf)

Q to ponder
D =f, a ∈N→R ²⁰ , f∈ O(9) ∧ q ∈ O(f)
D =f,g ∈N→R ²⁰ , f∈0(g) ∧g∈0(f) D =f,g∈N→R ²⁰ , f €0(g) ∧g €0(f)
Apply this to algorithms
· program named P
. work for inputs of
of input size size (1)=n
· tp(n)-run time of p on input
x of size n
define $Tp(x) = worst$ case run time for algorithm P on input of size n . $= max \{ tp(x) \mid \pi \in I \Lambda \text{ Size } (n) = n \}$ C set of inputs to p
$= \max \{ tp(x) T \in I \land Size(i) = n \}$
Cset of inputs to p
Let $U: \mathbb{N} \to \mathbb{R}^{>0}$
be an upper bound on worst case run time
· · · · · · · · · · · · · · · · · · ·
[pcn) $\in \mathcal{O}(u)$
to prove. ∃ CEIR+, ∃BEN, YNEW, 72B=> Tp(n) ≤ cU(n)
$\iff \underline{\qquad} max \{tp(x) \mid x \in I \land size (x) \neq = r$

	CSC/b5H1S March 23 rel Kui (Xiu
	Program P
	recursion input x, size(x)=n
	1000/2:00
	not the furtime of a program of on input to.
	not tpcx) runtime of a program P on input 7. I set of all possible inputs to program
	And the second s
	Tp(n) = worst case runtime for p or input of size n
	Tp(n) = Worst case runtime for p or input of size n = $man \{ tp(x) x \in I \land Size(x) = n \}$
	U:N->R Cupper bound in worst condition)
	Hasto she Take Division 2
	How to show Tp(n) & O(U(n))?
	/p €0 (U) <=>] C ∈ Rt, BEIN, YNEN, N>B=>Tp(n) ≤ U(n)
· · · · · · · · · · · · · · · · · · ·	
	(x) = 8< F=> => +p(x)
	: to show Tp(n) \in O(u(n)),
	need to find c, B & show for an arbitrary input of
	need to find c,B& show for an arbitrary input of size n the program P takes at least Uni steps.
	The project of the pr
	Insertion Sort
	Intuition - O(12)
	- nested loops size of inputs
· - · · · · · · · · · · · · · · · · · ·	- nested loops - auter bup dependent on len4=n = size of inputs - inner loop too
	— inner loop too
	$\Rightarrow 0 (n^2)$
	To derive Tis(n) & O(n2) where n=len(A)
	,
	To prove : a cert, aben, the I size (n)=n>B=> trs(n)=cn2
	(proof): Let co = Bo
	Then co ER+ and BSEN
	Assume input 7 is an array of length 1780
	Then from inner loop we know: j=0 and j <i< ken(a)="n</th"></i<>
	1/3 = 0 and $1/3 < 1 < 1 < 1 < 1$
	(i.e. i=j=n)

s condition so inner loop executes at most n-1 times inner loop has 3 steps per iteration and I step to exit. line 5-7 take at most (3n+1) steps outer loop has 5+(3n+1) steps per iteration = 3n+6 steps times line 2-9 are executed at most (n-1) < n times so total # runtime is n(3n+6)+1 + 1 steps exit toline 1 So tis(7)<3n2+6n+2 ≤con Con for co=11 for and Bo=1 Then I CERT, IBEN, -Then $T_{is}(n) \in O(n^2)$ What about lover bounds? TISO) == ESZ(1) (vill + show time) Then it follows that $T_{LS}(n) \in \Theta(n^2)$ meaning Tish & Sillin) LINDR <=>=>=> C L(n) = Tp(n) <=>= -= ... \rightarrow n>B => (L(n)≤max{tp(x) | x ∈ I \rightarrow size(x)=n} <=> I CER+, IBEN, YNEN, NZB => IX EI, SiZE(X)=NACL(M) < tp(X) 10 prove Tp(n) I (LIN) constructed an input x of size n for which two can show takes at least 11.

The worst case runtime comes her [A[i]>A[i])

frest is in decreasing order

	CSC165HIS March 30th Rui Qiu
	CSC165H1S March 30th Rui Qiu Try to find a g: x > N, f:N > x that is 1-to-1 or onto
	elements o we can still count the elements in set X!
	×. / 1
	$\chi_1/2$
	$\begin{array}{c c} X_1 & 2 \\ X_2 & 3 \\ X_3 & \vdots \end{array}$
•	^3 /
	
	Defn: A set X is said to be countable iff.
	Othere is a function of: N-X that is onto. or equivalently.
Por the first	There is a fun q: X >1N that is one to one.
	Defn: A set X is said to be countable iff. Defn: A set X is said to be countable iff. Defn: A set X is said to be countable iff. Defn: A set X is said to be uncountable. Otherwise the set is said to be uncountable.
	\cdot
,	> Dot'n define fin > 7 by fin = 5 n/2 if n even * for >
	Claim: Z is countable. Defin define $f: N \to Z$ by $f(n) = \begin{cases} n/2 & \text{if } n \text{ even } *f(n) > Z \end{cases}$ if $f(n) = \begin{cases} (+n)/2 & \text{if } n \text{ odd } *f(n) < Z \end{cases}$
	$m = \frac{1}{2} = > 0 = (-2m \rightarrow 0.40)$
	$f(0)=0 f(1)=0 \rightarrow not one-to-one!$
	J
	Claim: $f: \mathbb{N} \to \mathbb{Z}$ is onto: $\forall m \in \mathbb{Z}, \exists n \in \mathbb{N}, f(n) = m$
· .	Ymez, =nelv, f(n)=m
	Assume me Z
	Then m<0 or m>0 Case 1 Assume m<0
	Let $n_s = 1 - 2m = 2(m) + 1$
	Then no EN
-	Then no is odd
	Then $f(n_0) = \frac{1-n_0}{2} = \frac{1-(1-2m)}{2} = m$
	Then mco => =neN, fcn=m
	Case 2. Assume $m \ge 0$ Let $n_0 = 2m$
~	Then no EIN

Then no is even Then $f(n) = \frac{n_0}{2} = \frac{2M}{2} = M$ Then Inell, for)=M Then man => Inen, fun=m Then INENA, f(n)=m. Diagonalization: The f function is a way to list all the elements in Z fco), f(1), f(2), f(3), f(4) f(5) arguments from N ··· -> we'll eventually list all elements Arguments to show that a set X is countable are often given informally by showing that it is possible to list every element in X. This corresponds to giving fill -> X that is onto? consider the rationals $Q = \{\frac{n}{A} : n \in \mathbb{Z}, d \in \mathbb{N}^*\}$ consider $Q^{+} = \int \frac{n}{d}$, $n, d \in \mathbb{N}$ Claim: Q+ is countable Prove by giving informal list argument: consider sublist 0: 1/1 Sublist 1: 1/2,2/1 sublist 2, 1/3,2/2,3/1 3: 1/4, 2/3, 3/2, 4/1 each Subject contains $\frac{n}{d}$ such that n+d=i, for i=2,3,4,...The rational $\frac{p}{q}$ suppears in position $p \not\equiv in$ sublist p+q-2.

CTrue for any P, & EN+)

Let f: N - Q+ be defined (implicitly) by this listing

Then f is onto because every element of Q+ will be listed

Then by defin, Q+ is countable!

Claim: Q is countable Note: Q: Q+U[0]UQ Let $f: \mathbb{N} \to \mathbb{Q}^+$ be the onto function from previous result Here is list of all elements in $\mathbb{Q}: 0$, f(0), -f(0), f(1), -f(1), f(2)1 1 -7 -7 Let fi: N > Q defined by this listing. Every elements of Quil eventually be listed. Then for is onto Therefore Q is countable.

CSC/65H1 April 2nd Rui Qiu

A set X is countable means
Othere is a function f: N-> X that is onto
or equiv.

2 there is a function g: X-> N that is one-to-one.

often show set countable by describing a method that is guaranteed to list every element in X.

describe find by saying how to find value in list.

seen for Q+-ways to list all elements

for Z, we elect described f(n) and proved onto Z.

**R - Claim R is uncountable

Countable $\exists f:N \rightarrow X, \forall x \in X. \exists y \in N, \not = f(y) = X$ uncountable $\neg () \not =$ $\forall f:N \rightarrow X, \exists x \in X. \forall y \in N, f(y) \neq X.$

The real numbers

Then r can be expressed as an infinite decimal expansion of form. $r = m \cdot d_0 d_1 d_2 - r$

where $m \in \mathbb{Z}$ and $\forall i \in [0,1,2.3.4.5.6,7.8.9]$

• for r to have a unique expansion, it cannot end in repeated 9's. = e.g. 1.00 = 0.99

add $\forall i \in \mathbb{N}$, $ol_i = 9 \Rightarrow \exists k \in \mathbb{N}. k > i \land d_k \neq 9$ Claim IR is un countable $\Leftrightarrow Prover f$ technique: proof by contradiction. Assume IR is countable.

Then If: IN->IR that is onto.

If: IN->IR, YXEIR, IYEW, f(y)=X

Let fo: IN->IR be st. YXEIR, IYEW, fo(y)=X

Then \(\tau_{\color}(n) \) is a real number.

Then \(\tau_{\color}(n)

fo(1)=i1:dioldis dia ...din ...eR :
fo(2)=i2:d20d21/d22 ...din ...din ...din ...din ...din ...din ...din

(There are of for). r = for VineW, so f not onto)

Where ' $\forall j \in \mathbb{N}$, $\forall j \in \mathbb{Z}$ is integer part of $f_0(j)$ and $\forall j \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $d_{j,k} \in \{0,1,--,9\}$ and no repeating 9's extend.

define reR s.t. r=2 dod, de...dn = 0
where \(\text{if N, chi = 0} \)

where \(\text{if N, chi = 0} \)

if \(\text{disi \neq 0} \)

Since for IN-IR is onto, = REIN , fock) = r fock) = mrdko. dredk2...dx0.

and \$ = 0. d. d. d. ... dn ...

we have $\neq m_k = 0$ and $\forall i \in W$, $d_{k,i} = d_i = \int_0^1 i \int_0^1 d_{i,i} d_{$

in particular, taking i=k,

dkk = dk = 1 if dkx = 0

o if dkx ≠0

from which it follows dek = 0 => dk.k=1 dak=1 => dak=0 dek = 1 <=> dkk=0 Dragonalization Argument We have a contradiction. Then our assumption must be false! Then - (IR is countable) Then IR is not countable. key elements construction carried out for artifacty f: N->R needed to construct an element relR < the set under cuscussion such that when, for) # n. · then there is no f: N-IR that is onto. · then set is not an countable. I, n, d sign and a number # of How are Q. Zdifferent from R? T some elements of IR reg an a of information f element) 5 all can be have described using a finite elements amount of info. def let A be a set. The power set of A, denoted P(A), is the set whose element's are all the subsets of A. P(A)= (x/X SA) A= (5,12) 94)=14,15).12],(5,12) tudoricl. P(N)

problem write a complete program that assumes the question will a given program eventually halt or will it go into an infinite loop? assume we have written: a completer function det helt (f,i) a valid input to f hat most returns True if f(i) " Return frue iff f(i) will eventually halt." will eventually halt. body to be determined. False otherwise. Prone by contradiction, that this for doesn't that a correctly functioning but function exist. exists. Then consider the following: $def \cdot C(f)$ $def \cdot halt(f,i)$ place statements for but here if halt (f,f): # line 1 while True: # line 2 #line 3 pass # line4 rotum False What is the behaviour of the function call CCc)? Either cco halts or it doesn't halt. Case 1: Assume ccc) halts. Then the function call halt (CC,C) return True in line 1. Then ccc) goes into an on loop. The 2,3. Then ccc) hults => ccc) doesn't halt

Case 2: Assume Ccco doesn't helt line 1

Then holt(c,c) returns talse Then ccc) returns false (and : halts) like 4 Then Ccc) doesn't halt => c(c) does halt

Then C(c) doesn't halt <=> c(c) does halt

This is a contradiction! (of form P<=>7P)

Then, by contradiction, halt does does not exist!

The halting problem is an example of a problem that is not computable.

Exam 3 hr

can bring aid sheet

— double sided A4

handwritten

original—no photocopies.

- exam will not trave possible equivalence formula.

Office hours

Starting next week

M-F 2-3 pm

(BA 4230)

+ Mon Apr 23 2-4 pm.

(avoid ~ Fri Apr 20 +4/14+h)

Coverage:

Comprehensive

day 1 to today course notes: to end of section 6.5

3hr 1hr on material since since 5.3

2hr on Ch+3, Ch4-5,3, Ch5.4-6.4

~ 5 Ch5.4-6.4

1. Find a tight bound on the worst-case running time of the following algorithm.

Precondition: L is a list that contains n > 0 real numbers. 1. 这三个「都是 Worst case 木甸 2. for i = 0, 1, ..., n - 1: 3. for $j = i, i + 1, \dots, n - 1$: 4. 5. 6. 7. $\max = \sup$ Letc=3 and B=3 Assume neW and n>B=3 . The first line takes 1 < n3 steps . The second line loop over i iterates at most n times, DOTHE loop over j iterates at most n times. confle loop to k interches at most n times. for a total of steps. · The other statement in the j loop takes 3 steps. \$ 50 the loop body for j takes n+3 ≤2n steps: so the bops over j takes at most 2n2 steps. So the loop over i takes at most 2n3 steps; The entire algorithm takes at most 213+13=313_steps Then $\forall n \in \mathbb{N}, n \geqslant 3 \Longrightarrow T(n) \leqslant cn^3$. Then T(n) & O(n3). Assume n∈ IN and n≥1

 $7(n) \in \Omega(\frac{n^3}{27})$

Essume $n \in \mathbb{N}$ and $n \ge 1$ Then for each value of i in $\{0, ... L^{n/3}\}$ for each value of j in $\{L^{2n/3}\}, ..., n-1\}$ k iterates over $\{i, ..., j\}$ so the loop for k does has at least n/3 steps $(L^{2n/3}]-L^{n/3}$

```
T(n) E()(n3) > 3 CERt, 3 BEIN, YNEW, n3B=> T(n) < cn3
T(n) \in \Omega(n^3) \longrightarrow \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow T(n) \geqslant cn^3
T(n) \in \Theta(n^3)
     Find a tight bound on the worst-case running time.

# Precondition: L is a list that contains 1700 real numbers.
                     1.max=0
                     2. for i=0,1,..,n-1:
                          forj=i,i+1,...,n-1:
                               sum = 0
                               for k=i,i+l,---yj:
                     5.
                                  Sum=sum+L[k]
                                     if sum-max:
                                        max = Sum
           Proof Structure:
                  Let c'= ... and B' = ...
                  Then c'ER+ and B'EN.
                  Assume n ENV and n & B' and L is a list of n real numbers.
                       ...show t(L)≤cn3... (t(L) is the number of steps
```

2. Prove that $T_{\mathrm{BFT}}(n) \in \Theta(n^2)$, where BFT is the algorithm below.

```
BFT(E, n):
 1.
           i = n - 1
 2.
           while i > 0:
 3.
                  P[i] = -1
                  Q[i] = -1
 4.
                 i = i - 1
 5.
 6.
           P[0] = n
 7.
           Q[0] = 0
 8.
           t = 0
 9.
           h = 0
           while h \leqslant t:
10.
                  i = 0
11.
                  while i < n:
12.
                        if E[Q[h]][i] \neq 0 and P[i] < 0:
13.
                               P[i] = Q[h]
14.
                               t = t + 1
15.
16.
                               Q[t] = i
17.
                         i = i + 1
18.
                  h = h + 1
```

(Although this is not directly relevant to the question, this algorithm carries out a breadth-first traversal of the graph on n vertices whose adjacency matrix is stored in E.)

Rui Où

1. For each equivalence below, either provide a derivation from one side of the equivalence to the other (justify each step of your derivation with a brief explanation — for example, by naming one of the equivalences (see over for a list), or show that the equivalence does not hold (warning: you cannot use a derivation to show non-equivalence — instead, think carefully about what an equivalence means, and how you can disprove it).

(implication) <=>7(-PVQ)V(-PVR) (impleation) (De Morgan's) <=> (PA-Q)V(-PVR) $(P \wedge \neg Q) \vee \neg P) \vee R \qquad (associativity)$ $(= \neg (P \vee \neg P) \wedge f(Q \vee \neg P)) \vee R \qquad (distributivity)$ $(= \neg (P \vee \neg Q) \vee R \qquad (Identity)$ $(= \neg (P \vee \neg Q) \vee R \qquad (Identity)$ Dept. of Computer Science, University of Toronto. St. George Campus Toronto. St. George Campus Toronto. St. George Campus Toronto.

Standard Equivalences (where P, Q, P(x), Q(x), etc. are arbitrary sentences)

 Commutativity $P \wedge Q \iff Q \wedge P$ $P \lor Q \iff Q \lor P$ $P \Leftrightarrow Q \iff Q \Leftrightarrow P$

 Associativity $P \wedge (Q \wedge R) \iff (P \wedge Q) \wedge R$ $P \lor (Q \lor R) \iff (P \lor Q) \lor R$

 Identity $P \wedge (Q \vee \neg Q) \iff P$ $P \lor (Q \land \neg Q) \iff P$

• Absorption $P \wedge (Q \wedge \neg Q) \iff Q \wedge \neg Q$ $P \lor (Q \lor \neg Q) \iff Q \lor \neg Q$

• Idempotency $P \wedge P \iff P$ $P \lor P \iff P$

• Double Negation $\neg \neg P \iff P$

• DeMorgan's Laws $\neg (P \land Q) \iff \neg P \lor \neg Q$ $\neg (P \lor Q) \iff \neg P \land \neg Q$

 Distributivity $P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)$ $P \vee (Q \wedge R) \iff (P \vee Q) \wedge (P \vee R)$

 Implication $P \Rightarrow Q \iff \neg P \lor Q$

• Biconditional $P \Leftrightarrow Q \iff (P \Rightarrow Q) \land (Q \Rightarrow P)$

• Renaming (where P(x) does not contain variable y)

 $\forall x, P(x) \iff \forall y, P(y)$ $\exists x, P(x) \iff \exists y, P(y)$

• Quantifier Negation $\neg \forall x, P(x) \iff \exists x, \neg P(x)$ $\neg \exists x, P(x) \iff \forall x, \neg P(x)$

• Quantifier Commutativity $\forall x, \forall y, S(x,y) \iff \forall y, \forall x, S(x,y)$ $\exists x, \exists y, S(x,y) \iff \exists y, \exists x, S(x,y)$

• Quantifier Distributivity (where S does not contain variable x) $S \wedge \forall x, Q(x) \iff \forall x, S \wedge Q(x)$ $S \lor \forall x, Q(x) \iff \forall x, S \lor Q(x)$ $S \wedge \exists x, Q(x) \iff \exists x, S \wedge Q(x)$

 $S \vee \exists x, Q(x) \iff \exists x, S \vee Q(x)$

2. An "interpretation" for a logical statement consists of a domain D (any non-empty set of elements) and a meaning for each predicate symbol. For example, $D = \{1, 2\}$ and P(x): "x > 0" is an interpretation for the statement $\forall x \in D, P(x)$ (in this case, one that happens to make the statement True). For each statement below, provide one interpretation under which the statement is true and another interpretation under which the statement is false—if either case is not possible, explain why clearly and concisely.

(a) $\forall x \in D, P(x) \iff \exists y \in D, P(y)$

 $D=\{1,2\}$ and P(x): x>0TRUE

(b) $\forall x \in D, \exists y \in D, P(x, y) \land \forall z \in D, P(z, y) \Rightarrow z = x$

1. Consider the following statement:

If m and n are odd integers, then mn is an odd integer.

(a) Express the statement using logical notation.

$$(m-2k+1, n-2j+1)$$

$$Wm, n \in \mathbb{Z}, m \times 2 = 1, n \times 2 = 1 \Rightarrow m \cdot n \times 2 = 1$$

$$\forall m,n \in \mathbb{Z}$$
, $\exists k \in \mathbb{Z}$, $m=2k+1$) $\land (\exists k \in \mathbb{Z}, n=2k+1) = \Rightarrow (\exists k \in \mathbb{Z}, m \cdot n = 2k+1)$

(b) This statement can be proven using a direct proof. Write a detailed proof structure for the statement. Don't write a complete proof - for now, focus on the proof structure only and leave out all of the actual "content".

Assume 75 = 1, 1/2 + m, n & Z, m/2=1, n/2=1

then m.n.g 2=1.

Then 4m, n EZ, m/2=1, n/2=1

(c) Now, complete the proof of the statement.

Proof: Assume $m \approx 2 = 1$, $n \approx 2 = 1$ m = 2k+1, $k \in \mathbb{Z}$

n=2j+1, $j \in \mathbb{Z}$

 $m \cdot n = (2k+1)(2j+1)$

=4kj+2k+2j+1

= 2(kj+k+j)+1

Then $\forall m, n \in \mathbb{Z}$ $m \not = 1$. Then $\exists k \in \mathbb{Z}$, $s \not = m = 2k + 1$

Assume m, n & & Then min is odd.

Then $(\exists k \in \mathbb{Z}, m = 2k+1)$ and $(\exists k \in \mathbb{Z}, n = 2k+1)$ Let $i \in \mathbb{Z}$ s.t. m = 2i+1Let $j \in \mathbb{Z}$, s.t. n = 2j+1Then m.n = 4j+2i+2j+1

Winter 2012

2. Consider the following statement:

If m and n are integers with mn odd, then m and n are odd.

(a) Express the statement using logical notation.

1/m, n e Z, mn \$2=1 => m \$2=1, n \$2=1 $\forall m, n \in \mathbb{Z}$, $(\exists k \in \mathbb{Z}, mn = 2k+1) = > (\exists k \in \mathbb{Z}, m = 2k+1) \wedge (\exists k \in \mathbb{Z}, n = 2k+1)$ YMEZ, NEZ. (3kEZ, MM=2k+1) → (3kEZ, M=2k+1) ∧ (3kEZ, N=2k+1)

(b) This statement can be proven using an indirect proof. Write a detailed proof structure for the statement. Don't write a complete proof - for now, focus on the proof structure only and leave out all of the contrapositive: YmeZ, neZ, (日本水E思, m=2k) V(日水EZ, n=2k)

Assume m,n∈忍 Assume Vm, n ∈ Z, mn = 2=1 => (ke思, mn=2k) whiseven or n is even $\frac{-\sqrt{m}}{2}=1$, $\frac{-\sqrt{m}}{2}=1$ ($\frac{m}{2}=1$) $\frac{-\sqrt{m}}{2}=1$ $\frac{-\sqrt{m}}{2}=1$

Then m.n is even then $\{(\forall m, n \in \mathbb{Z}, mn \not\in \mathbb{Z} = 1) = (\exists m, n \in \mathbb{Z}, mn \not\in \mathbb{Z} = 1)$ Then (misoren)=>m·n is even then 1(1, m,ne, mn/s 2=1)=> T(m/s2!=1 Vn/s2!=1)

Then mn is odd=>(m isodd) \(\n isodd)

Then Yme Z, Yn EZ, mnisodd =>(misodd) 1 (n isodd)

(c) Now, complete the proof of the statement.

Proof. (Assume Vm, n & 2 = 1
Assume 7 (m/2 = 1, n/2 = 1) (-> (m/2! - 1) n/2

Assume Ymne Z

Assume $\exists k \in \mathbb{Z}$, mn=2k+1Assume $\exists (\exists k \in \mathbb{Z}, m=2k+1) \land (\exists k \in \mathbb{Z}, n=2k+1)$

Then IKE Z, m=2k Let i∈ ₹ be such that m=2i Then $m \cdot n = 2i \cdot n = 2(i-n)$

Then min is an even #

As in Tutorial 1, suppose that you are given seven different programs A, C, E, G, I, K, M, each meant to carry out the same task, where programs C, G, K, M are written in Python and programs A, E, I are written in Java. Let P represent the set of all programs (our "universe" or "domain"), J represent the set of all Java programs, and T represent the set of all correct programs.

Recall that in class, we have seen how set notation like " $x \in T$ " can be expressed in predicate notation as "T(x)", and how this can be used to write different sentences symbolically. Make sure that you understand this correspondence well before answering the following questions.

- 1. For each English sentence below, give representation(s) of the sentence that use the language of symbolic logic. In this course, we prefer that you use quantifiers over the whole universe (in this case P) and then use predicate notation to restrict the domain.
 - (a) Some incorrect program is written in Java.

(c) Only programs written in Python are incorrect.

(d) The program is correct and is written in Python.

(e) If some Java program is correct, then all Java programs are correct. $\exists x \in P, J(x) \land T(x) = \forall x \in P, J(x) \Rightarrow T(x)$ $(\exists x \in J, T(x)) \Rightarrow (\forall x \in J, T(x))$

- 2. Give a natural English sentence that captures the meaning of each symbolic sentence below.
 - (a) $\exists x \in P, \neg J(x) \land T(x)$

Some programs written in Python are correct.

(b) $\forall x \in P, \neg J(x) \land T(x)$

All programs written in python are correct.

(c) $\neg \forall x \in P, T(x) \Rightarrow J(x)$

None of correct programs are written in Java.

(d) $\forall x \in P, \neg J(x) \Leftrightarrow T(x)$

Only programs written in Python are correct.

(e) $(\forall x \in P, J(x) \Rightarrow T(x)) \lor (\forall x \in P, J(x) \Rightarrow \neg T(x))$

All programs written in Java are correct on incorrect.

1. Prove or disprove that the set $S_1 = \{(a, b) : a \in \mathbb{N}, b \in \mathbb{N}\}$ is countable.

Examples of elements in P(W)

. {0}

- [1,4,5]

- []

- [PelN, p is prime]

- {2,2²,2³,2⁴,--)

- N

To prove S is countable, fo: IN->S, where
for= the element of S,
at partion n in the list Therefore Si is countable. tundamental theorem of arithmetic states that every natural states mumber has a unique prime factorization. f: A>B, f is one to one iff \(\forall x, \, \gamma_e \ta, \, \forall x) = \forall x_2 = \forall x_1 Assume $a_1b_1, a_2, b_3 \in \mathbb{N}$ Assume $a_1b_1, a_2, b_3 \in \mathbb{N}$ Assume $a_1b_2, a_2, b_3 \in \mathbb{N}$ By the fundamental a_1b_2 Horren, $a_1=a_2, b_1=b_2$ Therefore $a_1=a_2, b_3=b_4$ and $a_1=a_2, b_3=b_4$ and $a_1=a_2, b_3=b_4$ 2. Prove or disprove that the set $S_2 = \mathcal{P}(\mathbb{N})$ is countable.

Recall that the power set of a set A, denoted $\mathcal{P}(A)$, is the set of all subsets of A. That is $\mathcal{P}(A) = \{X : X \subseteq A\}$.

Prove that Sz is uncountable by Contradiction.

4 sets, S, |p(s) > |s| 73f, PCS) -> s,f is one-to-

Assume Sz is countable

If: N-S2 st. Sa is onto. Let fo: N-S2: fo is onto. Then YDESI I NEW, Dafo (n)

(*)

Let Do = [m = N; m & fcm)] Then DES2

ike f(a)=[1,3,5] 2 not in the set! f(y)=[2,4,6] "4 in the set!"

not this

Assume nEN

Eithennefoln) orn offoln)

Case n e f. (n)

n ≠ Do because n∈f.(n)

D≠fo(n) because n∈fo(n), n≠D

Case n & fo(n)

n e Do because néfocn)

we know Do ≠ fo(n)

.: Do # fo(n) in either case

 $\forall n \in \mathbb{N}, D_0 \neq f_0(n)$ (*)

I Des, then, Dotfolm (**)

TYDES, InelN, Do=fo(n) contradiction (4)

Then Sz is uncountable

Prove or disprove each of the following statements. Write detailed proof structures and justify your work.

1. For all real numbers r, s, if r and s are both positive, then $\sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$.

Assume
$$r.s \in R$$
Assume $r>0 \land r>0$
 $\sqrt{r}+\sqrt{s}=?$
Indirect Proof

2. For all real numbers x and y, $x^4 + x^3y - xy^3 - y^4 = 0$ exactly when $x = \pm y$.

$$\forall x,y \in \mathbb{R} : x^4 + x^3y - xy^3 - y^4 = 0 <=>(x = y \lor x = -y)$$

Assume
$$7, y \in \mathbb{R}$$
Assume $x^{3} + x^{3}y - xy^{3} - y^{4} = 0 <=> x = \pm y$
 $2 \text{ Cases:} \quad \text{Prove that}$

① $x^{4} + x^{3}y - xy^{3} - y^{2} => x = \pm y$
Assume $x^{4} + x^{3}y - xy^{3} - y^{4} = 0$

$$x^{4} - y^{4} + xy(x^{2} - y^{4}) = 0$$

$$(x^{2} + y^{2}) \times (x + y) \times (x + y) \times (x - y) \times y = 0$$

$$(x^{2} + y^{2} + x + y) \times (x + y) \times (x + y) = 0$$

$$(x^{3} - y^{3}) \times (x + y) = 0$$

2 cases,

$$x^3-y^3=0$$

 $x^3=y^3$
 $x=y$
 $x=y$
 $x=y$
 $x=-y$
 $x=-y$

HEA

Therefore x++x3y-xy3-y4=0=>x=ty

2cases

$$\Theta$$
 $x=y$
then $x^4+x^3y-xy^3-y^4=y^4+y^4-y^4-y^4=0$

Then
$$x^4 + x^1y - xy^3 - y^4 = y^4 - y^4 + y^4 - y^4 = 0$$

In either case, $x^4 + x^3y - xy^3 - y^4 = 0$
Therefore $x = \pm y \implies x^4 + x^3y - xy^3 - y^4 = 0$

Then x 4+x5y-xy30-y4<=>x=±y

Then xx4+x5y-xy3-y4<=>x=±y

to end of §5.3

Ru Oil

for is ((n))
42n is (Xn)
42n is ((bn+165))
42n usually use a simply described function

4n is O(n²)

prefer 4n is O(n)

since n's growth tigher to 4n's

then n²s growth.

165 is Ocn)

for C=1, B=165 ¥neN, N>Bo, 165≤CN

but n is not () (165) 7(n is ()(165))

7(ICERT, IBEN, Yne IN, N>B=>n=C.165)

Equivalent: YCGIR+, YBEN, INEN, N>BAN>C165.

Priof: Assume CER+, BEN

Let no= max (13, 16:165+17

Then no EIN

Then nozB

Then 127 [C/65+17

> C:165

Then $\exists n \in \mathbb{N}, n \geqslant B \land n > (-165)$ Then $\forall C \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \land n > (-165)$ Then n is not ()(165)

defin: for any function of f: IN->IR>0 Let $O(f(n)) = \{g: N \rightarrow IR^{20}\} \exists C \in IR^{+}, \exists B \in IN, \forall n \in IN, n > B \Rightarrow g(n) = \widehat{Cf(n)}\}$

The set Fall fins that grow to faster than f(n)

You can show that, $O(1) = O(\log_2 n) = O(n^2) = O(2^n) = O(3^n)...$ = O(3)

How to show PCQ?

Ex: $O(5\log n + n^2 + 2n^3/3)$ is $O(n^3)$ $O(12n + n\log n)$ is $O(n\log n)$ $O(12n + n\log n + 2^n + n^2)$ is $O(2^n)$

can apply () to at bound above the growth/decay of any punction. $f: \mathbb{N}^{>}\mathbb{R}^{>0}$

eg. $f(n) = \frac{5}{n+1}$ new is 0 (1)

Since ICER+, IBEN, YneW, n>B=> 5 n+1 < c.1

Proof: Let G= 1

Then CoEIRT

Let Bo=4

Then BOEIN

Assume nell, 173B.

Then $f(x) = \frac{5}{0+1} \le \frac{5}{5} = 1 = C_0$

since 0< 1 = 1 = 1

for lake 16/

and A+1>5=>1>4

Then $\forall n \in \mathbb{N}, n \geq \mathbb{R} = \geq f(n) \leq C_0 \cdot 1$

Then ICGRT, IBGN, HOEN, N>B=>fW=G-1

Use Ω to give lover bounds on the growth of a function Defin For any function $f: \mathbb{N} \to \mathbb{R}^{20}$ | $\exists c \in \mathbb{R}^+$, $\exists B \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \geqslant B = >g(n) > c + (n)$

Co=1 1234

,	CSC165H1S Rui Qiu March 16th Term test 2 25-35pm EX100 up to end of 5.3 the amount of functions
	Term test 2 25-35pm EX100
	up to end of (J.3)
	the arouth of functions
 Lo	$f: \mathbb{N} \to \mathbb{R}^{>0}$
10 Mag	the growth of functions $f: \mathbb{N} \to \mathbb{R}^{>0}$ $f(n) = \{g: \mathbb{E} \mathbb{N} \to \mathbb{R}^{>0} \exists C \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow g(n) \leqslant cf(n) \}$ in) Set of fens that given in faster than f .
- I	tion of the contract of the co
В.	think of O(f) as proving providing an upper bound on gon).
1 5"	(n) eget a lover bound on growth of g(n) use Ω
W C	for) get a lover bound on growth of g(n) use Ω for) $\Omega(f)=\{g:N\to R^{20}\mid\exists c\in R^{+},\exists B\in N,\forall n\in N,n\geqslant B\Rightarrow g(n)\geqslant cf(n)\}$
+	
	consider h: N->IR >0
	consider $h: N \rightarrow IR^{>0}$ pane pooren $h \in (2^n)$
	$h \in \Omega(1)$
	θ(f)= {g: IN→IR >0 g e O(f) ∧ g ∈ Ω(f)) = {g: IN→IR >0 ∃C, ∈IR +, ∃G∈IR +, ∃E
	EN, Yn EN, n>B,=>
	$C_if(n) \leq g(n) \leq (z_if(n))$
	A more complex example:
	Prove that 213-514+716 is O(12-415+618)
	want to space I celet, IBEN, Ynell, n>B=>203-50"+708c(n-40)
	structure of proof: Let G= 9 Then GER+
 _	Let Bo = 0 Then Bell
<u> </u>	Assume $n \in N $ and $n = B_0$
	Then 213-504+716
	€ Co(n²-41°+618)

Then IceIRT, IBEN, 2

 $2n^3 - 5n^4 + 6n^8 \le 2n^3 + 7n^6$ #since $-5n^4 \le 0$ \text{ YneW} $\le 2n^6 + 7n^6$ #since $n^3 \le n^6$ \text{ YneW} $= 9n^6 \le 9n^8$

example: consider f(n) = n $h(n) = n \log n$ $C (aim : \frac{h(n)}{h(n)} \in \Omega (f(n))$

nlogn e s ((m)

To prove: BCER+, BBEN, YNEN, N>B=> nlogn > Cn

Let G = 1Then $G \in \mathbb{R}^+$

Let Bo = 2

Then BOEN

Assume neN, n>B.

Then nlogn > -A - #forn >2

=1-n

> Con

1. Write a detailed structured proof that $5n^4 - 3n^2 + 1$ is $\mathcal{O}(6n^5 - 4n^3 + 2n)$.

Defin of O(...): ∃(ER+, ∃BEN, YneN, n>B=>5n4-3n2+1 €c (6n5-4n3+2n)

Proof Structure: Let G=1, then G∈ R+

Let B. = 6, then B. EN

Assume n = N, n > Bo = 6

Then $5n^4-3n^2+1 \le 5n^4+1$

<5n++ ±n+ # since n>1

 $\leq 6n^4$

≤室n5 #sincen>6

Sons

≤6n5-4n5

 $\leq 6n^{5}-4n^{3}$

4/ns 4/n3 +21

Thus 5n4-3n3+1 < Co(6n3-4n3+2n) when n>Bo Therefore 514-312+1 is 0 (615-413+21).

Scratch work: 1504-3071 STON4+1

2. Write a detailed structured proof that $6n^5 - 4n^3 + 2n$ is not $\mathcal{O}(5n^4 - 3n^2 + 1)$.

Proof Studine: Assume CEIR+, BEIN

Lot no=13c7+B+1 then n.c.N

 $\frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}} > C \text{ (}$ $\frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}} > C \text{ (}$ $\frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}} > C \text{ (}$ $\frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}} > \frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}} = \frac{1.0 \times 150 \text{ A()}}{1.0 \times 150 \text{ A()}}$ #Then show $n_0 \gg 3_0 \Lambda() > c()$:
Then $n_0 = \lceil 3c7 + B + 1 \gg R$ # since $c \in \mathbb{R}^+$

Then no = [3c7+B+1>] # since co-1R+, B eN

>2(3c). no" # sine n.>3(

= c (500°+10°+)

 $\geq c(sn_0^4+1)$ # since $n_0 > 1$

> c (5 no 4 - 3 no 2 +1) # since no >1

n=13c7+1+1B

Thus no>B 16005-4003+200>CC5004-3002+1)
Therefore YCER+, YBEN, INEN, NZB1603-403+20>C(504-302+1)

Recall that a **precondition** is a condition that is assumed to be true **before** a set of instructions are executed, a **postcondition** is a condition that is assumed to be true **after** a set of instructions have been executed, and a **loop invariant** is a condition between variables that is always true at the start and at the end of a loop iteration. Another way to say this is that the **loop invariant** is a condition that must be true every time the program evaluates the loop condition.

Now consider the following algorithm (written in pseudo-code, where "=" represents assignment).

1. Write a detailed argument that shows that the loop invariant holds just before the loop condition is evaluated for the first time, under the assumption that the precondition is true.

2. Assuming that the loop invariant is correct, write a detailed argument that shows that the postcondition will be satisfied once the loop terminates.

3. Write a detailed argument that shows that the loop invariant is correct. That is, show that the loop invariant is true each time the program evaluates the loop condition.

Assume precondition holds Assume bop invariant is true, and the loop corries out at least one more Then fst<1st Then mid=|(fst+(st)/2] >(fst+lst)/2-1>(fst+fst)/2-1=fst-1| mid=lffst+lst)/21 < [(lst+lst)/2] = lst => fst-1 < mid =< lst Case 1: Armid7 < 8 Then A[fst] < A[fst+1] < -- < A[mid] < 8 fst'=mid+1 1st'=1st Then Osfst' (0sfstsmid<mid+1) then fst'≤lst (--) => fst'≤lst' Then Ist < lenca) (by loop invariant) => (because Ii & [ffst, ..., lst], Ali]=x, by Loop invariant)

Then Ist < lenca) Alfst1 +x, Alfst+1] +x, Almid] +x) Then loop invariant is true. Case 2: A[md] >x

4. In order to prove that the algorithm is correct, there is one important property that must be shown (in addition to proving that the loop invariant is correct and that the postcondition holds at the end of the loop). State this property clearly, and then write a detailed argument that it is true.

whether the loop terminates
næd to show it can be terminated.

Theck (lst-fst) # it is always decrousing,

if it reaches 0. then it the loop
terminates.