优化理论与算法

第九章 牛顿与拟牛顿法

郭加熠|助理教授

目录

牛顿法介绍

阻尼牛顿法

自和谐性质

其他与总结

回顾梯度下降法

重复

- 1. 搜索方向: $\Delta x := -\nabla f(x)$
- 2. 线搜索: 通过固定或回溯线搜索选择步长 t
- 3. 更新: $x := x + t\Delta x$

直到满足停止条件为止

- ▶ 停止准则通常为形式 $\|\nabla f(x)\|_2 \leq \epsilon$ 。
- ▶ 对于 *m*-强凸函数 *f* 有线性收敛结果:

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

其中 $c \in (0,1)$ 依赖于 m,线搜索设置

▶ 非常简单,但通常非常慢,特别是条件数较差情况

牛顿步

牛顿步 Δx_{nt} , 既定义方向, 又定义长度

$$\Delta x_{\mathsf{nt}} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

▶ $x + \Delta x_{nt}$ 最小化以下二阶近似:

$$\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

▶ $x + \Delta x_{nt}$ 为以下最优性条件(线性系统)的解

$$\nabla f(x+v) \approx \nabla \hat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

牛顿法

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$
$$x_+ = x + \Delta x_{\rm nt}$$

- ▶ 即使对于强凸函数,也不保证全局收敛
- ▶ 但在距离最优解较近时,局部表现优越
- ▶ 对于二次问题 $f(x) = \frac{1}{2}x^T Ax + bx$,只需一步(假设 A 可逆)

$$f(x_1, x_2) = -\log(1 - x_1 - x_2) - \log(x_1) - \log(x_2)$$

从 $\left[\frac{1}{10}; \frac{1}{10}\right]$ 开始牛顿法

从 $\left[\frac{1}{10}; \frac{6}{10}\right]$ 开始牛顿法

使用牛顿法执行一步

局部收敛性分析

- ▶ 假设 f(x) 是强凸的,二次连续可微,且 Hessian $\nabla^2 f(x)$ 非奇异,可得局部**超线性收敛**
- ▶ 在上述条件基础上,继续假设 Hessian $\nabla^2 f(x)$ 还具有 Lipschitz 连续性,可得局部二次收敛
- ▶ 从 $x^{k+1} x^* = x^k x^* \nabla^2 f(x^k)^{-1} \nabla f(x^k)$ 开始证明
- ▶ 证明使用一个关键性质是

$$\nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x + t(y - x)) (y - x) dt$$

目录

牛顿法介绍

阻尼牛顿法

自和谐性质

其他与总结

牛顿递减量

牛顿递减量 $\lambda(x)$ 是度量 $x 与 x^*$ 接近程度的一种测度

$$\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$$

性质

▶ 利用二阶近似 \hat{f} , 给出 $f(x) - p^*$ 的估计:

$$f(x) - \inf_{y} \hat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

▶ 等于牛顿步的二次 Hessian 范数:

$$\lambda(x) = \|\Delta x_{\mathsf{nt}}\|_{\nabla^2 f(x)} = (\Delta x_{\mathsf{nt}}^T \nabla^2 f(x) \Delta x_{\mathsf{nt}})^{1/2}$$

- ▶ 牛顿方向的方向导数: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- ▶ 仿射不变性

阻尼牛顿法

思想: 不采取单位步长, 而使用线搜索确定步长

给定一个起始点 $x \in \text{dom } f$, 容差 $\epsilon > 0$ 。重复以下步骤:

1. 计算牛顿步和减量

$$\Delta x_{\mathsf{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$$

- 2. 停止准则: 如果 $\lambda^2/2 \leq \epsilon$, 则退出
- 3. 线搜索: 通过回溯线搜索选择步长 t
- 4. 更新: $x := x + t\Delta x_{nt}$

线搜索

牛顿方向对于凸函数为**下降方向**: t 足够小时,有 $f(x + t\Delta x) < f(x)$ 回溯线搜索(参数 $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

▶ 从 t=1 开始, 重复 $t:=\beta t$ 直到

$$f(x + t\Delta x) \le f(x) + \alpha t \nabla f(x)^T \Delta x$$

▶ 图形解释:回溯直到 t ≤ t₀

经典收敛性分析

假设

- ▶ f 在定义域 S 上为强凸 (常数为 m), 且 f 为 M-光滑
- ▶ $\nabla^2 f$ 在 S 上 Lipschitz 连续,常数为 L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

(L 衡量 f 可以用二次函数近似的程度)

结论: 存在常数 $\eta \in (0, m^2/L), \ \gamma > 0$, 使得

- ▶ 如果 $\|\nabla f(x)\|_2 \ge \eta$, 则 $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- ▶ 如果 $\|\nabla f(x)\|_2 < \eta$,则

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

收敛阶段分析

阻尼牛顿阶段 ($\|\nabla f(x)\|_2 \ge \eta$)

- ▶ 大多数迭代需要回溯步骤
- 函数值至少减少 γ
- ▶ 如果 $p^* > -\infty$,则此阶段最多在 $(f(x^{(0)}) p^*)/\gamma$ 次迭代后结束
- 二次收敛阶段 ($\|\nabla f(x)\|_2 < \eta$)
 - ▶ 所有迭代使用单位步长 t = 1
 - ▶ $\|\nabla f(x)\|_2$ 二次收敛到零: 如果 $\|\nabla f(x^{(k)})\|_2 < \eta$, 则

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \ge k$$

迭代次数

结论: 直到 $f(x) - p^* \le \epsilon$ 的迭代次数

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- $ightharpoonup \gamma$, ϵ_0 是依赖于 m, L, $x^{(0)}$ 的常数
- ▶ 第二项很小(数量级为6),在实际应用中几乎为常数次迭代
- ▶ 在实践中,常数 m, L (因此 γ , ϵ_0) 通常未知
- ▶ 提供了收敛性质的定性分析(即,解释了两个算法收敛阶段)

例子: $x \in \mathbb{R}^2$

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

- ▶ 回溯参数 $\alpha = 0.1$, $\beta = 0.7$
- ▶ 仅在 5 步内收敛
- ▶ 二次局部收敛

例子: $x \in \mathbb{R}^{100}$

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

- ▶ 回溯参数 $\alpha = 0.01$, $\beta = 0.5$
- ▶ 回溯线搜索几乎和精确线搜索一样快(并且更简单)
- ▶ 清楚地显示算法的两个阶段

示例在 \mathbb{R}^{10000} 中 (具有稀疏 a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- ▶ 回溯参数 $\alpha = 0.01$, $\beta = 0.5$.
- ▶ 性能与小样本相似

目录

牛顿法介绍

阳尼牛顿法

自和谐性质

其他与总结

仿射不变性

假设: 给定 f, 非奇异 $A \in \mathbb{R}^{n \times n}$ 。设 x = Ay, g(y) = f(Ay)。

仿射不变性: g 的牛顿迭代结果,恰好为 f 的牛顿迭代结果

$$y^{+} = y - (\nabla^{2}g(y))^{-1}\nabla g(y)$$

= $y - (A^{T}\nabla^{2}f(Ay)A)^{-1}A^{T}\nabla f(Ay)$
= $y - A^{-1}(\nabla^{2}f(Ay))^{-1}\nabla f(Ay)$

两边同乘以矩阵 A

$$Ay^{+} = Ay - (\nabla^{2}f(Ay))^{-1}\nabla f(Ay)$$

即,

$$x^{+} = x - (\nabla^{2} f(x))^{-1} f(x)$$

因此, 迭代情况与问题放缩(条件数) 无关; 这在梯度下降中是不成立的

自和谐

经典收敛性分析的缺点

- ▶ 依赖于未知常数 (*m*, *L*,...)
- ▶ 收敛上界分析不具有仿射不变性

通过自和谐进行收敛性分析 (Nesterov 和 Nemirovski)

- ▶ 不依赖于任何未知常数
- ▶ 提供仿射不变界限
- ▶ 适用于特殊类别的凸函数("自和谐"函数)
- ▶ 在凸优化中,用于分析多项式时间多种算法的收敛性

自和谐函数

定义

- ▶ 凸函数 $f: \mathbb{R} \to \mathbb{R}$ 是自和谐函数,当 $|f'''(x)| \le 2(f''(x))^{3/2}$ 对所 有 $x \in \text{dom } f$ 成立
- ▶ 如果 g(t) = f(x + tv) 对所有 $x \in \text{dom } f$, $v \in \mathbb{R}^n$ 是自和谐的,那 么 $f : \mathbb{R}^n \to \mathbb{R}$ 是自和谐的

示例

- ▶ 线性和二次函数
- ▶ 负对数 $f(x) = -\log x$
- ▶ $f(X) = -\log \det X$, 定义域为 \mathbb{S}_{++}^n
- ▶ $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$ 在 $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$ 上

仿射不变性: 如果 $f: \mathbb{R} \to \mathbb{R}$ 是自和谐的, 那么 $\tilde{f}(y) = f(ay + b)$ 也是自和谐的:

$$\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)$$

自和谐函数的收敛性分析

总结: 存在常数 $\eta \in (0, 1/4], \ \gamma > 0$, 使得

- ▶ 如果 $\lambda(x) > \eta$, 则 $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- ▶ 如果 $\lambda(x) \leq \eta$,则 $2\lambda(x^{(k+1)}) \leq (2\lambda(x^{(k)}))^2$ (η 和 γ 仅依赖于回溯参数 α , β)

复杂度界限: 牛顿迭代次数由以下界限决定

$$\frac{f(\mathbf{x}^{(0)}) - \mathbf{p}^*}{\gamma} + \log_2 \log_2(1/\epsilon)$$

对于 $\alpha = 0.1$, $\beta = 0.8$, $\epsilon = 10^{-10}$, 界限评估为 $375(f(\mathbf{x}^{(0)}) - \mathbf{p}^*) + 6$

目录

牛顿法介绍

阳尼牛顿法

自和谐性质

其他与总结

编程实现

每次迭代的主要计算量: 求导数 + 求解牛顿系统

$$H\Delta x = -g$$

其中
$$H = \nabla^2 f(x)$$
, $g = \nabla f(x)$

通过 Cholesky 分解

$$H = LL^{T}, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = ||L^{-1}g||_{2}$$

- ▶ 对于非结构化系统, 计算量为 (1/3)n³ 次浮点运算
- ▶ 如果 H 稀疏,带状,则计算量 $\ll (1/3)n^3$

另一种确定步长的方法: 信赖域方法

考虑以下二次优化问题:

$$\begin{aligned} & \min_{d} & \nabla f(x)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(x) d \\ & \text{s.t.} & & \|d\|_{2} \leq r \end{aligned}$$

迭代准则

$$x_+ = x + d^*,$$

- ▶ 以上问题称为信赖域子问题
- ▶ 如果 r 很小,则是一种下降方法
- ▶ 动态更新 r (例如,效果好就提升 r,效果差就缩小 r)
- ▶ 适用于非凸问题

示例:逻辑回归

逻辑回归示例,n = 500,p = 100:我们比较梯度下降和牛顿法,两者都使用回溯。牛顿法与梯度下降法表现不同。

回到逻辑回归示例:现在 x 轴以每次迭代所需时间为参数

每次梯度下降步骤是 O(p), 但每次牛顿步骤是 $O(p^3)$

与一阶方法的比较

特性	牛顿法	梯度下降
内存/迭代	$O(n^2)$	O(n)
计算量/迭代	$O(n^3)$	O(n)
回溯线搜索	O(n)	O(n)
局部收敛性	快	慢
条件数	不受影响	影响严重
脆弱性	对 bugs/数值错误更敏感	更稳健