K-Means: Clustering

K-means is an algorithm that trains a model that groups similar objects together.

DONE BY:SAHITI EMANI

STUDENT ID:19556

GUIDED BY:PROF.HENRY CHANG

TABLE OF CONTENTS

- Introduction
- How does k-means work?
- Example and explanation based on clustering concept
- Applications of k-means clustering
- Steps explained in detail
- Conclusion
- Bibliography

INTRODUCTION:

- K-means is an algorithm that trains a model that groups similar objects together.
- The k-means algorithm accomplishes this by mapping each observation in the input dataset to a point in the *n*-dimensional space here *n* is the number of attributes of the observation.
- Clustering algorithms are unsupervised.
- In unsupervised learning, which labels that might be associated with the objects in the training dataset aren't used.
- For example, your dataset might contain observations of temperature and humidity in a particular location, which are mapped to points (*t*, *h*) in 2-dimensional space.

TYPES OF CLUSTERING:

Clustering is a type of unsupervised learning wherein data points are grouped into different sets based on their degree of similarity.

The various types of clustering are:

- Hierarchical clustering
- Partitioning clustering

Hierarchical clustering is further subdivided into:

- Agglomerative clustering
- Divisive clustering

Partitioning clustering is further subdivided into:

- K-Means clustering
- Fuzzy C-Means clustering

EXAMPLE ON CLUSTERING CONCEPT:

EXAMPLE: https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/exercise_algorithm.html (Link for further reference)

2. Please refer K-means example to calculate 2-cluster K-means for the following subjects • •

Subject	Α	В
1	1.5	1.0
2	1.0	2.0
3	2.0	3.5
4	5.0	6.0
5	3.5	4.0
6	4.5	5.0
7	2.5	4.5

EXAMPLE:CONT'D

Gluen:-	es K-nuans example means for the fo	,
Subject	A	В
1	1.5	1.0
2	1.0	2.0
3	2.0	3.5
4	5.0	6.0
5	3.5	4.0
6	4.5	5.0
7	2.5	4.5
	e-means Step-step a: The Scores of tu un Indbulduals:	
Note: Key clusters	tueo Enformation mg. lata in matrix uning that the do ped into 2-clust	r before k-means

Define the 1. Calcul			id:-
hihat is co	entroid? un posi	tion of	authepeints in
	I A	В	Centraid = (AtB/
Subject	1.125	I.D	(1.5+1.0)/2 = 1.25
	1.0	2.0	1.5
2	2.0	3.5	2.75
4	5.0	6.0	5.5
5	3:5	4.0	3.45
-	4.5	5:0	4.75
7	2.5	4.5	3.5
eenteeld	3.		um & maximilis the two Indhidual Cucildean distance nital cluster means.
3. Let the	backen	rma M	
3. Let the furthers of		the dividual	11.00 1100 100

EXAMPLE:CONT'D

D			MILLIE R		
Process:	117,50	117	4-7-1		
1 C- 1					
Centrolo	te ithe de	ctanu of	each eup	ject & the s	2
0			Charte	1 1 1 1 1 1 1 1 1	
Subject	A	B	Centeple	Distance	Des.
	1.2	1.0	1.25	0 (1.25)	(5.5)4
3	1.0	5.0	105	0.52	4
4	5.0	3.5	2.75	105	2.75
	5.0	6.0	5.5	4.25	0
5	3.5	4.0	3.75	2.5	1.75
6	4.5	5.0	4.75	3.5	0.75
7	2.5	4.5	3.5	2.25	2
9. Mn. u		0.0		4	
& Jo athe	vienu	ning i	undin du	als are no	2m
explain	uc un v	equenu	and all	ocated to	the
custis	to which	in the	y are do	set, in a	reums
of tu	cliclean	allstan	ie to the	cluster m	ean.

1	3. The mean vectory is recalculated each time a	
	hew member is added. Its trib	

Leave	cluster 1		cluster	.2
Step1	Individual	MeanVertor (Centroid)		
1	1	(1.5, 1.0)	4	(5.0,6.0)
2	1,2	(1.25,1.5)	4 111	(5.0,6.0)
3	1,2,3	(1.15, 2.16)	4	(5.0, 6.0)
4	1,2,3	(1.5, 2.16)	4,5	(4.25, 5.0)
5	1,2,3	(1.5,2.16)	4,5,6	(4.33,5.0)
6	1,2,3	(1.5, 2.16)	4,5,6,7	(3.8,4.8)

Note: - 1.5 = 1.5 +1.0+2.0 = 1.5
3
2.16 = 1.0+2.0+3.5 = 2.16
isimilarly, 3 3.8 = 5.0+3.5+4.5+2.5
3.8 = 5.0+3.5+4.5+2.5
4.8 = 6.0+4.0 +5.0+4.5
4.
- Late to the state of the late of the lat

Step H: Check the visual of the new clusterling.
Now, the intellal pautition has changed and
the two clusters at this stage having the
journing Characteristics:

	Individual	mean vector censura	ł
cluster 1	1,2,3	(1.5,2.16)	-
cluster 2	4,5,6,7	(3.8, 4.8)	
			1

EXAMPLE:CONT'D

Step-5: Compani	each endeuldus	i's destance to the
2-clust	ess.	
But cany	or yet be were	that each Endividue
has been as	reguld to the or	ight cluster.
	O. Level	
0-	0 olf	edual's dectance
so, we com	cluster man d	uldual's distance
opposete clu	efec.	
geparise au	The sell of	
for eg:-	The state of the	
The destance	between Indule	ival 1 and the
centuroid of	clustey1	
	5+ (2.16-1) = 41.3	UCK = 1.157 = 1.15
= 11(1.5-1.5) + (x.16-17 = 41.2	450 1151-115
similarly.	butteren Sands	fuldual 1 and the
centraid of	Chiefel 2.	
central of	8-1.5)+(4.8-1)	= 19.73-4.4124#
- 11W		
Individual	Dist. to	Dist. to mean
Fredomin Conn.	mean Centroid	(Centraid) of
	of cluster 1	Cluster2:
A Company	1.15	4.54
3	0.527	4.065
	1.424	2.325
4	5.190	1.590
5	2.713	0.951
6	4·126 2·538	0.637
1		

Step-6: The iterative reto no-more relocation to occur.

APPLICATIONS OF K-MEANS:

k-means algorithm is very popular and used in a variety of applications such as market segmentation, document clustering, image segmentation and image compression, etc.

It's applications are:

- Geyser eruptions segmentation (2D dataset).
- Image compression.
- Academic performance.
- Search Engines

CONCLUSION:

- K-means gives more weight to the bigger clusters.
- K-means assumes spherical shapes of clusters with radius equal to the distance between the centroid and the furthest data point and doesn't work well when clusters are in different shapes such as elliptical clusters.
- If there is overlapping between clusters, kmeans doesn't have an intrinsic measure for uncertainty for the examples belong to the overlapping region in order to determine for which cluster to assign each data point.
- K-means may still cluster the data even if it can't be clustered such as data that comes from uniform distributions.

BIBLIOGRAPHY:

https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aao3e644b48a#:~:text=kmeans%2oalgorithm%2ois%20very%2opopular,data%2owe're%2odealing%2owith.

https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html

https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/k-means_example.html