

Machine learning

Decision Trees & Ensemble methods

xgboost

Wouter Gevaert & Marie Dewitte

Inhoud

Decision trees voor classificatie

→ Decision trees voor regressie

Ensemble learning

Decision trees voor classificatie

Introductie aan de hand van een voorbeeld

$$-3\left(R=6\right)$$

$$G=7$$

Classificeer een stuk fruit met een rondheid van 6 en een groenheid van 7

Hoe bepalen waar de boom te splitsen?

Entopy = meter am womande

Entropy en information gain

Een goede split is deze waarbij de wanorde afneemt en beide kanten 'zuiverder (pure) worden'

Entropy H: maat voor de wanorde (gemiddelde informatieinhoud)

$$H = \sum_{i=1}^{N} p_i \log_2\left(\frac{1}{p_i}\right)$$
 $H = -\sum_{i=1}^{N} p_i \log_2\left(p_i\right)$

Entropy en information gain

Kans op een appel:
$$\frac{8}{15} = 0,53$$

Kans op een niet-appel:
$$\frac{7}{15} = 0,47$$

$$H = -(0,53 \times \log_2(0,53) + 0,47 \times \log_2(0,47)) = -(-0,99740) = 0,9974$$

Entropy en information gain

Information gain = entropy voor de split - entropy na de split

Entropy links

$$p(appel) = \frac{1}{5} = 0,20$$

$$p(niet - appel) = \frac{4}{5} = 0,80$$

$$H = -(0, 20 \log_2(0, 20) + 0, 80 \log_2(0, 80)) = 0, 72$$

Entropy rechts

$$p(appel) = \frac{7}{10} = 0,70$$

$$p(niet - appel) = \frac{3}{10} = 0,30$$

$$H = -(0,70\log_2(0,70) + 0,30\log_2(0,30)) = 0,88$$

Information gain = 0,9974 –
$$(\frac{5}{15} \times 0,72 + \frac{10}{15} \times 0,88) = 0,17073$$

Entropy en information gain

Information gain = entropy voor de split - entropy na de split

Entropy boven

$$p(appel) = \frac{7}{9} = 0,78$$

$$p(niet-appel)=\frac{2}{9}=0,22$$

$$H = -(0,78\log_2(0,78) + 0,22\log_2(0,22)) = 0,76$$

Entropy onder

$$p(appel) = \frac{1}{6} = 0, 17$$

$$p(niet - appel) = \frac{5}{6} = 0, 0, 83$$

$$H = -(0, 17 \log_2(0, 17) + 0, 83 \log_2(0, 83)) = 0, 66$$

Information gain = 0,9974
$$-(\frac{9}{15} \times 0,76 + \frac{6}{15} \times 0,66) = 0,27740$$
 $\approx 0,27740$

Entropy en information gain

Splits telkens bij de split die je de hoogte information gain oplevert.

Information gain = = 0,17073

Information gain = 0,27740

- Gini impurity

Alternatief voor het gebruik van de entropy.

De Gini impurity is een maat voor hoe vaak een willekeurig gekozen element van de set verkeerd gelabeld zou worden als het willekeurig werd gelabeld volgens de distributie van de labels in de subset.

$$G=1-\sum_{i=1}^N p_i^2$$

Gini impurity

$$G = 1 - (0,53^2 + 0,47^2) = 0,4982$$

Kans op een appel:
$$\frac{8}{15} = 0,53$$

Kans op een niet-appel:
$$\frac{7}{15} = 0,47$$

Gini impurity

Gini impurity links

$$p(appel) = \frac{1}{5} = 0, 20$$

$$p(niet - appel) = \frac{4}{5} = 0, 80$$

$$G = 1 - (0, 20^2 + 0, 80^2) = 0,32$$

Gewogen Gini impurity = $\frac{5}{15} \times 0,32 + \frac{10}{15} \times 0,42 = \boxed{0,39}$

Gini impurity rechts

$$p(appel) = \frac{7}{10} = 0,70$$

$$p(niet-appel) = \frac{3}{10} = 0,30$$

$$G = 1 - (0,70^2 + 0,30^2) = 0,42$$

- Gini impurity - difout.

Gini impurity boven

$$p(appel) = \frac{7}{9} = 0,78$$

$$p(niet-appel)=\frac{2}{9}=0,22$$

$$G = 1 - (0,78^2 + 0,22^2) = 0,34$$

Gini impurity onder

$$p(appel) = \frac{1}{6} = 0, 17$$

$$p(niet - appel) = \frac{5}{6} = 0, 0, 83$$

$$G = 1 - (0.17^2 + 0.83^2) = 0.28$$

$$G = 1 - (0, 17^2 + 0, 83^2) = 0, 2$$

Gewogen Gini impurity =
$$\frac{9}{15} \times 0.34 + \frac{6}{15} \times 0.28 = \boxed{0.32}$$

Gini impurity

Splits telkens bij de split die je de laagste Gini impurity oplevert.

Gewogen Gini impurity = = 0,39

Gewogen Gini impurity = 0,32

- detents mer mid. Pineatah

- DT

Lineoin deterel -> Lineoine

represie

Decision trees voor regressie

- nier-gencolle dota

- Pagerinani

- Trousparant

25+30+35+38+48

	Į.	Ų.				
Day	Outlook	Temp.	Humidity	Wind	Golf Players	
1	Sunny	Hot	High	Weak	25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2	Sunny	Hot	High	Strong	30	J – –
3	Overcast	Hot	High	Weak	46	-> VAP
4	Rain	Mild	High	Weak	45	
5	Rain	Cool	Normal	Weak	52	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
6	Rain	Cool	Normal	Strong	23	
7	Overcast	Cool	Normal	Strong	43	
8	Sunny	Mild	High	Weak	35	
9	Sunny	Cool	Normal	Weak	38	
10	Rain	Mild	Normal	Weak	46	
11	Sunny	Mild	Normal	Strong	48	
12	Overcast	Mild	High	Strong	52	
13	Overcast	Hot	Normal	Weak	44	
14	Rain	Mild	High	Strong	30	

Voorbeeld

Voorbeeld

Problematiek van decision trees

Decision trees hebben de neiging tot overfitting.

Oplossing: **combineer** de voorspellingen van verschillende gerandomiseerde modellen (bijvoorbeeld decision trees) tot één model

Given a jury of voters and assuming independent errors. If the probability of each single person in the jury of being correct is above 50% then the probability of the jury being correct tends to 100% as the number of persons increase.

Nicolas de Condorcet (1743 - 1794)

Overzicht Ensemble learning methodes

- Bootstrap aggregating (bagging)
- Boosting
 - Bayes optimal classifier
 - Bayesian model averaging/combination
 - Bucket of models
- → Stacking

Concept van bagging - Majority voting

Bagging

Concept van bagging - Majority voting

Bagging

De techniek van bagging

Methode om de variantie te reduceren en overfitting te vermijden.

Kies verschillende subsets (bags) uit de trainingset.

Willekeurige selectie met teruglegging

Train op elke subset een classifier

Bagging

Random Forest Trees - hyperparameters

n_estimators: number of trees in the forest. Meestal hoe meer hoe beter.

Criterion: Gini of Entropy (default Gini)

Maximum number of features: het maximum aantal features per boom.

- int : aantal features
- float: percentage
- 'auto': max_features = vierkantswortel van totaal aantal features
- 'sqrt': max_features = vierkantswortel van totaal aantal features
- 'log2': log van het totaal aantal features
- Default worden alle features gebruikt.

Random forest trees

Random Forest Trees - hyperparameters

max_depth: de maximale diepte van de boom. Als je te maken hebt met noisy data is het aan te raden de maximale diepte beperkt te houden.

min_samples_split: het minimum aantal samples nodig om binnen een boom te blijven splitsen.

min_samples_leaf: het minimum aantal samples dat zich aan een blad van de boom moet bevinden. Hoe groter deze waarde, hoe minder vatbaar voor overfitting.

Bootstrap aggregating: Bagging (zie verder). Staat default op True.

Bagging

Random Forest Trees - hyperparameters

oob_score: de gemiddelde error bij het testen van een sample op bomen die niet op deze sample getraind zijn geweest.

Adaboost

--- Adaboost

→ Gradient Boosting

Region'e

- CLASSIFICATIE

- pobola

- pobola

- pobola

Gradient Boosting

Residuals vs. x (Iteration 18)

Residuals vs. x (Iteration 19)

Residuals vs. x (Iteration 20)

Data Point #	prediction from base learner 1	prediction from base learner 2	prediction from base learner 3	prediction from base learner M	actual
1	y ₁₁	y ₁₂	y ₁₃	y ₁ M	y ₁
2	y ₂₁	Y ₂₂	y ₂₃	y ₂ M	y ₂
N	y _N î	y _{N2}	y _N 3	y _N M	Y _N

Ensemble learning

Samenvattend overzicht

Bagging Boosting Stacking • Reduceert de variantie Verhoogt de Ensemble van strong accuraatheid learners Robuust tegen uitschieters en noisy Niet robuust tegen Metalearner die de uitschieters of noisy data opimale combinatie data leert van de base Dikwiils via Random learners **Forest Trees**