Logical Organisation of Computer-I

Tim	e:Thre	e Hours	Maximu	ım Marks: 80
Not	e : Atte	mpt five questions in all Select	t one question from	each section.
		o. 1 is compulsory.		
		(COMPULSORY Q	UESTION)	
1.	(a)	Write the full form:		
	V. A	ASCII, EBCDIC, DRAM.		3
	(b)	Make Truth tabe for 3 variable A	AND, NOR gate.	3
	(c)	Prove that NAND is a universal		3
2	(d)	State & prove Demogran's law.		_3
4 91	(e)	Make Venn diagram for OR, Al	ND, NOR gates.	3
	(f)	Define Duality principle.		1
		UNIT-I		
2.	(a)	Convert as directed:		- 100 mg
		$(7.3)_{10} \otimes ()_2$		
		$(10.625)_{10}$ $(10.625)_{10}$		
		(X) , $\mathbb{B}(1234)_{10}$		
		(AF3D)®(),		
		(117.6C) ® Octal.		10
	(b)	Use 2's compliment to solve		
		-6 -42	-9	
		-8 +30	-4	6

	•	**	D.C.41, 2013
3.	(a) (b)	Explain Floating point representation. Write a note on 2421, cyclic code.	8 4
	(c)	Perform BCD addition for 9+6 UNIT-II	4
4.	(a) (b)	Define Boolean Algebra & write its postulates. Solve using Boolean Algebra:	8
		$XY + \overline{X}Z + YZ = XY + \overline{X}Z$	
5.	(a)	$ABC + A\overline{B}C + A\overline{B}\overline{C} + A\overline{B}\overline{C} = A$ Solve using K-map	4
		$Z = \sum 0, 2, 3, 7, 9 + \sum 1, 4, 5, 11$	
		$Z = \pi 0, 2, 4, 6$	8
	(b)	Prove using Truth table	4
		$A \oplus (B \oplus C) = (A \oplus B) \oplus C$	
	(c)	Draw and label 4 variable K-map, UNIT-III	4
6.	(a)	Define Logic and explain NAND, XOR, OR gate	s. 8
	(b)	Draw circuits:	
		(i) $X = (\overline{A}B + A\overline{B})CD + \overline{XY}Z$	
		(ii) $P = (AB + \overline{AB})\overline{CD} + (\overline{A} + \overline{B})\overline{CD}$	4
7.	(a)	Write note on AND-OR-INERT using example.	8
	(b)	Explain Multilevel realization using NAND gate UNIT-IV	s.
8.	(a)	Explain 4: 1 multiplexer.	
	(b)	Draw 10 to 4 Line Encoder.	16
9.	(a)	Explain 8421 to Cyclic code converter.	
	(b)	Make 7-segmen display unit.	16