Tucil1_13519111 _13519122

February 20, 2022

1 Decision Tree Learning

1.0.1 Member:

- Febriawan Ghally Ar Rahman (1359111)
- Mgs. Tabrani (13519122)

1.0.2 Content

- 1. DecisionTreeClassifier
- 2. Id3Estimator
- 3. K Means
- 4. LogisticRegression
- 5. Neural network
- 6. SVM

1.1 1. Load Datasets

```
[319]: import pandas as pd from sklearn import datasets import numpy as np
```

1.1.1 1.1 Load breast cancer dataset

```
[320]:
            mean radius
                         mean texture mean perimeter
                                                        mean area mean smoothness \
                  17.99
                                 10.38
                                                122.80
                                                            1001.0
                                                                            0.11840
       0
       1
                  20.57
                                 17.77
                                                132.90
                                                            1326.0
                                                                            0.08474
       2
                  19.69
                                 21.25
                                                130.00
                                                            1203.0
                                                                            0.10960
```

3	11.42	20.38		77.58	386.1	0.14250
4	20.29	14.34		135.10	1297.0	0.10030
				100.10	1231.0	0.10000
564	21.56	22.39		142.00	1479.0	0.11100
565	20.13	28.25		131.20	1261.0	0.09780
566	16.60	28.08		108.30	858.1	0.08455
567	20.60	29.33		140.10	1265.0	0.11780
568	7.76	24.54		47.92	181.0	0.05263
	1110	21.01		11.02	101.0	0.00200
•	-	mean con	•	mean con	_	mean symmetry \
0	0.27760		.30010		0.14710	0.2419
1	0.07864	0	0.08690		0.07017	0.1812
2	0.15990	0	.19740		0.12790	0.2069
3	0.28390	0	.24140		0.10520	0.2597
4	0.13280		.19800		0.10430	0.1809
		· ·				0.1000
 E <i>C</i> 4	0 11500	0			 0. 13000	0 1706
564	0.11590		.24390		0.13890	0.1726
565	0.10340		14400		0.09791	0.1752
566	0.10230	0	.09251		0.05302	0.1590
567	0.27700	0	.35140		0.15200	0.2397
568	0.04362	0	.00000		0.00000	0.1587
	mean fractal dime	ension	worst t	exture	worst perime	eter worst area
0		.07871	W0150 0	17.33	_	.60 2019.0
				11.00		
1	0.	.05667		23.41	158	3.80 1956.0
1 2	0.	.05667 .05999		23.41 25.53	158 152	3.80 1956.0 2.50 1709.0
1	0.	.05667		23.41	158 152	3.80 1956.0
1 2	0. 0.	.05667 .05999		23.41 25.53	158 152 98	3.80 1956.0 2.50 1709.0
1 2 3 4	0. 0.	.05667 .05999 .09744		23.41 25.53 26.50	158 152 98	3.80 1956.0 2.50 1709.0 3.87 567.7
1 2 3 4	0. 0. 0.	.05667 .05999 .09744 .05883		23.41 25.53 26.50 16.67	158 152 98 152 	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0
1 2 3 4 564	0. 0. 0.	.05667 .05999 .09744 .05883 		23.41 25.53 26.50 16.67 26.40	158 152 98 152 166	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 2027.0
1 2 3 4 564 565	0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623		23.41 25.53 26.50 16.67 26.40 38.25	158 152 98 152 166 155	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 5.00 1731.0
1 2 3 4 564 565 566	0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533		23.41 25.53 26.50 16.67 26.40 38.25 34.12	158 152 98 152 166 155	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0
1 2 3 4 564 565 566 567	0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533 .05648		23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42	158 152 98 152 166 155 126	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 5.10 2027.0 5.00 1731.0 5.70 1124.0 6.60 1821.0
1 2 3 4 564 565 566	0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533		23.41 25.53 26.50 16.67 26.40 38.25 34.12	158 152 98 152 166 155 126	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0
1 2 3 4 564 565 566 567	0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533 .05648		23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42	158 152 98 152 166 155 126	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 5.10 2027.0 5.00 1731.0 5.70 1124.0 6.60 1821.0
1 2 3 4 564 565 566 567	0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	ompactnes	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37	158 152 98 152 166 155 126 184 59	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 5.10 2027.0 5.00 1731.0 5.70 1124.0 6.60 1821.0
1 2 3 4 564 565 566 567	0. 0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	ompactnes 0.6656	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37	158 152 98 152 166 155 126 184 59	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	-	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst	158 152 98 152 166 155 126 184 59	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.00.00.00.00.00.00.00.00.00.00.00.00.0	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0	158 152 98 152 166 155 126 184 59 concavity 0.7119 0.2416	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0	158 152 98 152 166 155 126 184 59 c concavity 0.7119 0.2416 0.4504	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0	158 152 98 152 166 155 126 184 59 c concavity 0.7119 0.2416 0.4504 0.6869	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0	158 152 98 152 166 155 126 184 59 c concavity 0.7119 0.2416 0.4504	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0	158 152 98 152 166 155 126 184 59 concavity 0.7119 0.2416 0.4504 0.6869 0.4000	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568 0 1 2 3 4 564	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050 	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0	158 152 98 152 166 155 126 184 59 c concavity 0.7119 0.2416 0.4504 0.6869 0.4000 0.4107	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0	158 152 98 152 166 155 126 184 59 concavity 0.7119 0.2416 0.4504 0.6869 0.4000	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050 	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0 0	158 152 98 152 166 155 126 184 59 c concavity 0.7119 0.2416 0.4504 0.6869 0.4000 0.4107	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568 0 1 2 3 4 564 565	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050 0.2113 0.1922	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0 0	158 152 98 152 166 155 126 184 59 0.7119 0.2416 0.4504 0.6869 0.4000 0.4107 0.3215	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6
1 2 3 4 564 565 566 567 568 0 1 2 3 4 564 565 566	0.000000000000000000000000000000000000	.05667 .05999 .09744 .05883 .05623 .05533 .05648 .07016	0.6656 0.1866 0.4245 0.8663 0.2050 0.2113 0.1922 0.3094	23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37 s worst 0 0 0 0	158 152 98 152 166 155 126 184 59 0.7119 0.2416 0.4504 0.6869 0.4000 0.4107 0.3215 0.3403	3.80 1956.0 2.50 1709.0 3.87 567.7 2.20 1575.0 3.10 2027.0 3.00 1731.0 3.70 1124.0 3.60 1821.0 3.16 268.6

	worst	concave points	worst symmetry	worst fractal dimension	diagosis
0		0.2654	0.4601	0.11890	0.0
1		0.1860	0.2750	0.08902	0.0
2		0.2430	0.3613	0.08758	0.0
3		0.2575	0.6638	0.17300	0.0
4		0.1625	0.2364	0.07678	0.0
		•••	•••	•••	•••
564		0.2216	0.2060	0.07115	0.0
565		0.1628	0.2572	0.06637	0.0
566		0.1418	0.2218	0.07820	0.0
567		0.2650	0.4087	0.12400	0.0
568		0.0000	0.2871	0.07039	1.0

[569 rows x 31 columns]

1.1.2 1.2 Load play tennis dataset

```
[321]: df_play_tennis = pd.read_csv('data/play_tennis.csv')
df_play_tennis = df_play_tennis.drop(['day'],axis=1)

# Display play tennis dataframe
df_play_tennis
```

```
[321]:
            outlook temp humidity
                                      wind play
              Sunny
                      Hot
                              High
                                      Weak
      0
                                             No
      1
             Sunny
                     Hot
                              High Strong
      2
          Overcast
                     Hot
                              High
                                      Weak
                                           Yes
      3
              Rain Mild
                              High
                                      Weak
                                           Yes
      4
              Rain Cool
                            Normal
                                      Weak
                                           Yes
      5
              Rain Cool
                           Normal Strong
                                             No
      6
          Overcast Cool
                            Normal Strong
                                           Yes
      7
              Sunny Mild
                                      Weak
                                             No
                             High
      8
             Sunny Cool
                            Normal
                                      Weak Yes
      9
              Rain Mild
                            Normal
                                      Weak Yes
      10
             Sunny Mild
                            Normal Strong Yes
      11
          Overcast Mild
                              High Strong
                                           Yes
          Overcast
                            Normal
                                      Weak Yes
      12
                     Hot
      13
              Rain Mild
                              High Strong
                                             No
```

1.2 2. Encode Categorical Data

```
[322]: # Encode categorical data in play tennis dataframe
from sklearn import preprocessing
df_play_tennis = df_play_tennis.apply(preprocessing.LabelEncoder().

ofit_transform)
```

```
# Divide play tennis dataframe to data and target
dataset_play_tennis = df_play_tennis.to_numpy()
X_play_tennis = []
y_play_tennis = []
for i in range(len(dataset_play_tennis)):
    X_play_tennis.append(dataset_play_tennis[i][:-1])
    y_play_tennis.append(dataset_play_tennis[i][-1])

# Display encoded dataframe
df_play_tennis
```

```
[322]:
           outlook temp humidity wind play
       0
                 2
                       1
                                 0
                                       1
       1
                 2
                       1
                                 0
                                       0
                                             0
       2
                 0
                       1
                                 0
                                       1
                                             1
                 1
                       2
                                 0
       3
                                       1
                                             1
       4
                 1
                       0
                                             1
       5
                       0
                 1
       6
                 0
                       0
                                 1
                                             1
       7
                 2
                       2
                                 0
                                       1
                                             0
                 2
                       0
       8
                                 1
                                       1
                                             1
       9
                 1
                       2
                                 1
                                      1
                                             1
                 2
                       2
                                       0
      10
                                 1
                                             1
                       2
       11
                 0
                                 0
                                       0
                                             1
       12
                 0
                       1
                                             1
       13
                                             0
```

1.3 3. Split Datasets

1.4 4. Learning with Decision Tree Classifier Algorithm

```
[324]: from sklearn.tree import DecisionTreeClassifier
```

1.4.1 4.1 Breast Cancer

4.1.1 Metrics Evaluation

	precision	recall	f1-score	support
0	0.92	0.85	0.88	39
1	0.92	0.96	0.94	75
accuracy			0.92	114
macro avg	0.92	0.90	0.91	114
weighted avg	0.92	0.92	0.92	114

- f1-score for target '0' (diagnosed as breast cancer) is 0.88
- f1-score for target '1' (diagnosed as breast cancer) is 0.94
- accuracy for decision tree classifier model is 0.92 > We can conclude that another part of data given will probably predicted to be correct, because accuracy is high, then f1-scores are close to accuracy.

1.4.2 4.2 Play Tennis

4.2.1 Metrics Evaluation

support	f1-score	recall	precision	
1	0.67	1.00	0.50	0
2	0.67	0.50	1.00	1
3	0.67			accuracy
3	0.67	0.75	0.75	macro avg
3	0.67	0.67	0.83	weighted avg

- f1-score for target '0' (decided as not play) is 0.67
- f1-score for target '1' (decided as play) is 0.67

• accuracy for decision tree classifier model is 0.67 > We can conclude that this model is not as good as logistic regression and neural network models because it has lower accuracy and f1-scores, although accuracy is equal to f1-scores.

1.5 5. Learning with ID3 Estimator Algorithm

```
[327]: import six
  import sys
  sys.modules['sklearn.externals.six'] = six
  import mlrose
  from id3 import Id3Estimator
  from id3 import export_graphviz
  estimator = Id3Estimator()
```

1.5.1 5.1 Breast Cancer

5.1.1 Decision Tree

```
[328]: estimator = estimator.fit(X_training_breast_cancer, y_training_breast_cancer) tree = export_graphviz(estimator.tree_, 'tree.dot', breast_cancer.feature_names)
```

5.1.2 Metrics Evaluation

```
[329]: y_predict = estimator.predict(X_testing_breast_cancer)
print(metrics.classification_report(y_testing_breast_cancer, y_predict))
```

	precision	recall	f1-score	support
0	0.87	0.87	0.87	39
1	0.93	0.93	0.93	75
accuracy			0.91	114
macro avg	0.90	0.90	0.90	114
weighted avg	0.91	0.91	0.91	114

- f1-score for target '0' (diagnosed as breast cancer) is 0.87
- f1-score for target '1' (diagnosed as breast cancer) is 0.93
- accuracy for id3 estimator model is 0.91 > We can conclude that another part of data given will probably predicted to be correct, because accuracy is high, then f1-scores are close to accuracy.

1.5.2 5.2 Play tennis

5.2.1 Decision Tree

5.2.2 Metrics Evaluation

```
[331]: y_predict = estimator.predict(X_testing_play_tennis)
print(metrics.classification_report(y_testing_play_tennis, y_predict))
```

	precision	recall	f1-score	support
0	0.50	1.00	0.67	1
1	1.00	0.50	0.67	2
accuracy			0.67	3
macro avg	0.75	0.75	0.67	3
weighted avg	0.83	0.67	0.67	3

- f1-score for target '0' (decided as not play) is 0.67
- f1-score for target '1' (decided as play) is 0.67
- accuracy for id3 estimator model is 0.67 > We can conclude that this model is not as good as logistic regression and neural network models because it has lower accuracy and f1-scores, although accuracy is equal to f1-scores.

1.6 6. Learning with K Means Algorithm

```
[332]: from sklearn.cluster import KMeans from sklearn.metrics.cluster import homogeneity_score
```

1.6.1 6.1 Breast Cancer

6.1.1 Homogeneity

Homogeneity Score: 0.4156347969069669

6.1.2 Metrics Evaluation

[334]: print(metrics.classification_report(y_testing_breast_cancer, y_predict))

support	f1-score	recall	precision	
39	0.22	0.36	0.16	0
75	0.02	0.01	0.04	1
114	0.13			accuracy
114	0.12	0.19	0.10	macro avg
114	0.09	0.13	0.08	weighted avg

- f1-score for target '0' (diagnosed as breast cancer) is 0.22
- f1-score for target '1' (diagnosed as breast cancer) is 0.02
- accuracy for kmeans model is 0.13 > We can conclude that the accuracy of this model is not good rather than any models in this exploration.

1.6.2 6.2 Play Tennis

6.2.1 Homogeneity

Homogeneity Score: 0.0

6.2.2 Metrics Evaluation

```
[336]: import warnings
warnings.filterwarnings('ignore')
print(metrics.classification_report(y_testing_play_tennis, y_predict))
```

	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.67	1.00	0.80	2
accuracy			0.67	3
macro avg	0.33	0.50	0.40	3
weighted avg	0.44	0.67	0.53	3

- f1-score for target '0' (decided as not play) is 0.00
- f1-score for target '1' (decided as play) is 0.80
- accuracy for kmeans model is 0.67 > We can conclude that this model is not as good as logistic regression and neural network models because it has lower accuracy and f1-scores.

1.7 7. Learning with Logistic Regression Algorithm

```
[337]: from sklearn.linear_model import LogisticRegression from sklearn import metrics
```

1.7.1 7.1 Breast cancer

```
[338]: clf_breast_cancer = LogisticRegression(random_state=0, max_iter=10000).

ofit(X_training_breast_cancer, y_training_breast_cancer)

y_predict = clf_breast_cancer.predict(X_testing_breast_cancer)
```

7.1.1 Metrics Evaluation

[339]: print(metrics.classification_report(y_testing_breast_cancer, y_predict))

	precision	recall	f1-score	support
0	0.90	0.90	0.90	39
1	0.95	0.95	0.95	75
accuracy			0.93	114
macro avg	0.92	0.92	0.92	114
weighted avg	0.93	0.93	0.93	114

- f1-score for target '0' (diagnosed as breast cancer) is 0.90
- f1-score for target '1' (diagnosed as breast cancer) is 0.95
- accuracy for logistic regression model is 0.93 > We can conclude that another part of data given will probably predicted to be correct, because accuracy is high, then f1-scores are close to accuracy.

1.7.2 7.2 Play tennis

7.2.1 Metrics Evaluation

[341]: print(metrics.classification_report(y_testing_play_tennis, y_predict))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1
1	1.00	1.00	1.00	2
accuracy			1.00	3
macro avg	1.00	1.00	1.00	3
weighted avg	1.00	1.00	1.00	3

- f1-score for target '0' (decided as not play) is 1.00
- f1-score for target '1' (decided as play) is 1.00
- accuracy for logistic regression model is 1.00 > We can conclude that another part of data given will almost predicted to be correct, because accuracy is equal to f1-scores.

1.8 8. Learning with Neural Network Algorithm

[342]: from sklearn.neural_network import MLPClassifier

1.8.1 8.1 Breast cancer

```
[343]: clf_breast_cancer = MLPClassifier(random_state=1, max_iter=300).

fit(X_training_breast_cancer, y_training_breast_cancer)

y_predict = clf_breast_cancer.predict(X_testing_breast_cancer)
```

8.1.1 Metrics Evaluation

[344]: print(metrics.classification_report(y_testing_breast_cancer, y_predict))

	precision	recall	f1-score	support
0	0.97	0.90	0.93	39
1	0.95	0.99	0.97	75
accuracy			0.96	114
macro avg	0.96	0.94	0.95	114
weighted avg	0.96	0.96	0.96	114

- f1-score for target '0' (diagnosed as breast cancer) is 0.93
- f1-score for target '1' (diagnosed as breast cancer) is 0.97
- accuracy for neural network model is 0.96 > We can conclude that another part of data given will probably predicted to be correct, because accuracy is high, then f1-scores are close to accuracy.

1.8.2 8.2 Play tennis

```
[345]: clf_play_tennis = MLPClassifier(random_state=1, max_iter=1000).

fit(X_training_play_tennis, y_training_play_tennis)

y_predict = clf_play_tennis.predict(X_testing_play_tennis)
```

8.2.1 Metrics Evaluation

[346]: print(metrics.classification_report(y_testing_play_tennis, y_predict))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1
1	1.00	1.00	1.00	2
accuracy			1.00	3
macro avg	1.00	1.00	1.00	3
weighted avg	1.00	1.00	1.00	3

- f1-score for target '0' (decided as not play) is 1.00
- f1-score for target '1' (decided as play) is 1.00
- accuracy for neural network model is 1.00 > We can conclude that another part of data given will almost predicted to be correct, because accuracy is equal to f1-scores.

1.9 9. Learning with SVM algorithm

[347]: from sklearn.svm import SVC

1.9.1 9.1 Breast cancer

[348]: clf_play_tennis = SVC().fit(X_training_breast_cancer, y_training_breast_cancer)
y_predict = clf_play_tennis.predict(X_testing_breast_cancer)

9.1.1 Metrics Evaluation

[349]: print(metrics.classification_report(y_testing_breast_cancer, y_predict))

	precision	recall	f1-score	support
0	0.97	0.77	0.86	39
1	0.89	0.99	0.94	75
accuracy			0.91	114
macro avg	0.93	0.88	0.90	114
weighted avg	0.92	0.91	0.91	114

- f1-score for target '0' (diagnosed as breast cancer) is 0.86
- f1-score for target '1' (diagnosed as breast cancer) is 0.94
- accuracy for SVM model is 0.91 > We can conclude that another part of data given will probably predicted to be correct, because accuracy is high, then f1-scores are close to accuracy.

1.9.2 9.2 Play tennis

[350]: clf_play_tennis = SVC().fit(X_training_play_tennis, y_training_play_tennis)
y_predict = clf_play_tennis.predict(X_testing_play_tennis)

9.2.1 Metrics Evaluation

[351]: print(metrics.classification_report(y_testing_play_tennis, y_predict))

	precision	recall	f1-score	support
0	0.50	1.00	0.67	1
1	1.00	0.50	0.67	2
accuracy			0.67	3
macro avg	0.75	0.75	0.67	3
weighted avg	0.83	0.67	0.67	3

- f1-score for target '0' (decided as not play) is 0.67
- f1-score for target '1' (decided as play) is 0.67

\bullet accuracy for SVM model is 0.67 > We can conclude that this model is not as good as logistic regression and neural network models because it has lower accuracy and f1-scores, although accuracy is equal to f1-scores.					