1 Preliminaries

Definice 1.1 (Slabá derivace)

Necht $f\in L^1_{loc}(\mathbb{R}^n)$. Říkáme, že $g\in L^1_{loc}(\mathbb{R}^n)$ je slabou derivací f podle i-té proměnné, pokud platí

 $\int_{\mathbb{R}^n} f \partial_i \varphi d\lambda^n = -\int_{\mathbb{R}^n} g \varphi d\lambda^n \qquad \varphi \in \mathcal{D}(\mathbb{R}^n) = \mathbb{C}_0^{\infty}(\mathbb{R}^n).$

Definice 1.2 (Značení)

$$\partial_i f(x) = \lim_{h \to \mathbf{0}} \frac{f(x + e_i h) - f(x)}{h}, \qquad \nabla f(x) = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_n f(x) \end{pmatrix},$$

 $D_i f$ slabá derivace dle *i*-té proměnné, $\nabla f(x) = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ Dn f(x) \end{pmatrix}$,

 $D \cdot$ bude také značit derivaci distribuce? (Distribuční derivaci?)

 $f\in Lip(X,Y)$ jsou všechny Lipschitzovská zobrazení (tj. $\varrho_Y(f(a),f(b))\leqslant lip(f)\cdot\varrho_X(a,b))$ zXdo Y.

 $A\triangle B := (A\backslash B) \cup (B\backslash A)$ (symetrický rozdíl množin).

Definice 1.3 (Lebesgueova–Stieltjesova míra)

 μ míra vytvořená $M:I(\mathbb{R})\to [0,\infty)$ pomocí Caratheodorovy konstrukce se nazývá Lebesgueova–Stieltjesova míra.

Definice 1.4 (Radonova míra)

 $\mathcal{M}_{loc}^+(\Omega)$ je prostorem všech Borelovských měr na $\Omega \subset \mathbb{R}^n$, které jsou vnitřně regulární $(\mu(E) = \sup \{\mu(K) | K \subset E\})$, lokálně kompaktní.

Pokud navíc $|\mu| < \infty$, pak je to prostor \mathcal{M}^+ . $\mathcal{M}_{loc}(\Omega) = \mu^+ - \mu^-$.

Definice 1.5 (?)

$$\psi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}}, & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$

$$\psi_k(x) = k^n \psi(kx)$$

1

Poznámka

$$\int |\Psi| = 1, \qquad \psi(x) = \psi(x'), |x| = |x'|, \qquad \psi \in \mathcal{D}(\mathbb{R}^n)$$
$$\psi_k(x) > 0 \implies |x| < \frac{1}{k}$$

Věta 1.1 (Lebesgueova o derivaci 1)

Nechť $1 \leq p < \infty$. Nechť $\Omega \subset \mathbb{R}^n$ otevřená. A nechť $f \in L^p_{loc}(\Omega)$. Potom pro skoro všechna $x \in \Omega$:

$$\lim_{r\to 0} \int_{B(x,r)} |f(y) - f(x)|^p d\lambda^n(x) = 0.$$

 $D\mathring{u}kaz$

Bez důkazu.

Definice 1.6 (Lebesgueův bod)

Každý takový bod se nazývá (p) Lebesgueův bod.

Definice 1.7 (Konvoluce)

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

Za podmínek, kdy pravá strana existuje. $g\,$ může být i míra.

Poznámka

Je-li $f*g \in L^1$ pak f*g = g*f. (Z Fubiniovy věty.)

Tvrzení 1.2

Nechť $u \in L^1_{loc}(\mathbb{R}^n)$. Pak $\psi_k * u(x)$ je definováno $\forall x \in \mathbb{R}^n$ a $\forall k \in \mathbb{N}$.

 $D\mathring{u}kaz$

Nebyl. Viz Funkcionalka.

Věta 1.3

 $u \in L^1_{loc}(\mathbb{R}^n)$. $Pak \ \psi_k * u \in \mathbb{C}^{\infty}(\mathbb{R}^n) \ a \ \partial_i(\psi_k * u) = \partial_i \psi_k * u$.

 $D\mathring{u}kaz$

Nebyl. Viz Funkcionalka.

Lemma 1.4

Necht $f \in L^p$. Potom $\psi_k * f \in L^p$ $p \in [1, \infty]$. Navíc $\|\psi_k * f\|_p \leqslant \|f\|_p$.

 $D\mathring{u}kaz$

Nebyl. Viz Funkcionalka.

Věta 1.5

 $f \in L^1_{loc}(\mathbb{R}^n)$ necht x je Lebesgueův bod f (a $f(x) = \lim_{r \to 0} \int_{B(x,r)} f$) pak $\psi_k * f(x) \xrightarrow{k} f(x)$.

 $D\mathring{u}kaz$

Nebyl.

Věta 1.6

Nechť $f \in C_0^{\infty}(\mathbb{R}^n)$. Potom $\psi_k * f \rightrightarrows f$ na \mathbb{R}^n .

Důkaz

Nebyl.

Lemma 1.7

 $\overline{Pro \ p \in [1, \infty) \ plati \ \overline{C_0^{\infty}(\mathbb{R}^n)}^{L^p} = L^p(\mathbb{R}^n).}$

 $D\mathring{u}kaz$

Nebyl. (Docela jednoduchý.)

Věta 1.8

 $1 \leqslant p < \infty : f \in L^p(\mathbb{R}^n) \implies \psi_k * f \to f \ v \ L^p(\mathbb{R}^n).$

 $D\mathring{u}kaz$

Nebyl.

Pozn'amka

 $(\psi_1 * f \xrightarrow{w} f \vee L^{\infty})$

Věta 1.9

Nechť $u \in Lip(\mathbb{R}^n, \mathbb{R})$. Pak u je slabě diferencovatelná na \mathbb{R}^n a $||Du||_{L^{\infty}} \leq lip(u)$.

 $D\mathring{u}kaz$

Necht $x, z \in \mathbb{R}^n$.

$$|\psi_k * u(z) - \psi_k * u(x)| = \left| \int (u(z-y) - u(x-y))\psi_k(y)d\lambda^n \right| \le lip(u)|z-x|.$$

 $lip(u_k) := lip(\psi_k * u) \leq lip(u)$. Nechť B je koule v \mathbb{R}^n . $\{\nabla u_k\}$ je omezená v $L^2(B)$ slabě konverguje k $g \in L^2(B, \mathbb{R}^n)$.

 $\{f\in L^2(B): \|f\|_{\infty}\leqslant c\}$ konvexní a uzavřená \implies slabě uzavřená \implies $\|g\|_{\infty}\leqslant lip(u).$ Tedy

$$\int_{B} u \nabla \varphi \leftarrow \int_{B} u_{k} \nabla \varphi = - \int_{B} \nabla u_{k} \varphi \rightarrow - \int_{B} g \varphi.$$

Lemma 1.10

Nechť $E \subset \Omega$ a pro nějaké r > 0: $E + B(\mathbf{o}, r) \subset \Omega$. Potom $\exists \eta \in \mathcal{D}(\Omega)$, že $\eta = 1$ na E.

 $D\mathring{u}kaz$

 $E+B\left(0,\frac{r}{2}\right)\subset\subset\Omega$. Najdeme k, že $\frac{1}{k}<\frac{r}{2}$. Potom $\psi_{k}*\chi_{E+B\left(0,\frac{r}{2}\right)}$ je hledaná funkce.

2 Absolutně spojité funkce

Poznámka (V této kapitole vždy)

 $I = (a_0, b_0)$ je interval. $\mathbb{D}(I)$ bude množina všech konečných dělení $(a_0 < x_0 < \ldots < x_n < b_0)$ intervalu.

Definice 2.1 (Variace funkce)

Necht $D = \{x_0 < x_1 < \ldots < x_m\} \in \mathbb{D}(I)$ a $u : I \to \mathbb{R}$. Potom variace u podle dělení D je $V(u, D) = \sum_{i=1}^{n} |u(x_i) - u(x_{i-1})|$.

Variace u je $V(u, I) = \sup_{D \in \mathbb{D}(I)} V(u, D)$.

Je-li $V(u,I)<\infty$ pak říkáme, že u má konečnou variaci na I.

Definice 2.2 (Absolutně spojité funkce)

Nechť $u: I \to \mathbb{R}$. Říkáme, že u je (klasicky) absolutně spojité na I, jestliže ke každému $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro všechny $\{[a_i, b_i]\}_{i=1}^m$ po dvou disjunktní $\sum_{i=1}^m b_i - a_i < \delta$ je $\sum_{i=1}^n |u(b_i) - u(a_i)| < \varepsilon$.