Fundamentos del PAID

Proceso de adquisicion de la imagen

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Muestreo y cuantización

Ejemplo de resultado de muestreo y cuantización

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

La calidad de la imagen digital es detrminada por el número de muestras y los niveles discretos de intensidad utilizados en el muestreo y la cuantización

Representación matricial de una imagen digital

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Otras representaciones de una imagen digital

a b c

FIGURE 2.18

- (a) Image plotted as a surface.
- (b) Image displayed as a visual intensity array.
- (c) Image shown as a 2-D numerical array (0, .5, and 1 represent black, gray, and white, respectively).

Representación tradicional (visualización de intensidades)

Representación matricial (valores numéricos de f(x,y))

Bits necesarios en funcion de Ny k

TABLE 2.1 Number of storage bits for various values of N and k.

								<u> </u>
N/k	1(L=2)	2(L=4)	3(L = 8)	4(L=16)	5(L = 32)	6(L = 64)	7(L = 128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,0 97,15 2
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	(8,388,608)
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Imagen 8-bits

1 byte

Ejemplo de reducción de resolución espacial (submuestreo)

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Submuestreo por eliminación de filas y columnas

Ejemplo de reducción de resolución espacial

Se hizo zoom de las imágenes al tamaño original

a b c d

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

Re-muestreo a 1024x1024

(Ejemplo de pérdida de información por el submuestreo preliminar)

a b c d e f

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Variación de la cuantización

Variación de la cuantización

Interpolación

- Utilizar información (datos) conocida para estimar valores en posiciones desconocidas.
- Herramienta básica de remuestreo (zoom +/-), rotación, transformaciones geométricas.

Interpolación

500x500

Zoom

750x750

3 pasos:

- 1. Creación de nuevas posiciones de pixel (malla imaginaria).
- 2. Asignación de niveles de gris a las nuevas posiciones.
- 3. Expansión (de la malla) al tamaño deseado (para preservar la resolución inicial).

3 pasos:

1. Creación de nuevas posiciones de pixel (malla imaginaria).

nuevas celdas < pixel original

3 pasos:

2. Asignación de niveles de gris a las nuevas posiciones.

Interpolación: Utilizar información (datos) conocida para estimar valores en posiciones desconocidas.

3 pasos:

2. Asignación de niveles de gris a las nuevas posiciones.

Interpolación del vecino más próximo:
Nivel de gris del punto más cercano en la imagen original

$$I(X,Y)=I(u,v)$$

Punto en la nueva imagen

3 pasos:

2. Asignación de niveles de gris a las nuevas posiciones.

<u>Interpolación bilineal:</u> Promedio ponderado de los 4 vecinos más cercanos

$$I(X,Y) = W_{u,v}I(u,v) + W_{u+1,v}I(u+1,v) + W_{u+1,v+1}I(u,v+1) + W_{u+1,v+1}I(u+1,v+1)$$

$$W_{u,v} = (u+1-x)(v+1-y)$$

$$W_{u+1,v} = (x-u)(v+1-y)$$

$$W_{u,v+1} = (u+1-x)(y-v)$$

$$W_{u+1,v+1} = (x-u)(y-v)$$

Punto en la nueva imagen

Ejemplos de zoom

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Geometría de la imagen

Geometría de la imagen = relaciones básicas entre píxeles

- Vecinos de un pixel
- Adyacencia, conectividad, regiones y fronteras
- Medidas de distancia

Vecinos de un pixel p(x, y)

• $N_4(p)$: 4-vecinos de p

Vecinos de un pixel p(x,y)

• $N_D(p)$: vecinos diagonales de p

Vecinos de un pixel p(x, y)

• $N_8(p)$: 8-vecinos de p

Adyacencia

- Base para definir la conectividad que a la vez es el concepto fundamental para definir regiones y fronteras)
- 2 píxeles son adyacentes si:
 - Son vecinos
 - Satisfacen algún criterio de similaridad:
 - Mismo nivel de gris
 - Diferencia máxima de niveles de gris
 - Tienen un nivel de gris que pertenece a un conjunto *V* limitado de niveles de gris.
- Ejemplo imagen binaria (ng 0 o 1):
 - $-V = \{1\}$: 2 pixeles son adyacentes si son vecinos y tienen un ng = 1.

Tipos de adyacencia entre p y q

- 4-adyacencia:
 - $-q \in N_4(p) \mathbf{Y}$
 - -p y q tienen valores de V

- 8-adyacencia:
 - $-q \in N_8(p) \mathbf{Y}$
 - -p y q tienen valores de V

Tipos de adyacencia entre p y q

- m-adyacencia (adyacencia mixta):
 - − p y q tienen valores de V Y
 - $-q \in N_4(p)$ O ($q \in N_D(p)$ Y $N_4(p) \cap N_4(q)$ no tiene píxeles con valores en V)

Camino de p(x,y) a q(s,t)

n = Longitud del camino

$$(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$$

$$(x_0, y_0) = (x, y)$$

$$(x_n,y_n)=(s,t)$$

$$(x_i, y_i)$$
 y (x_{i-1}, y_{i-1}) son advacentes

Mas sobre caminos

• Camino cerrado:

$$-(x_0,y_0)=(x_n,y_n)$$

- 4-,8-,m-caminos:
 - Camino dependiendo de la adyacencia especificada.

Conectividad

- Dentro de un subconjunto *S* de píxeles de la imagen:
 - p y q son conexos si existe un camino entre los dos, compuesto por píxeles de S
- Componente conexo:
 - Conjunto de píxeles conexos a un pixel p en S.
 - Si sólo hay un componente conexo en S, se llama conjunto conexo.

Mas sobre conectividad

- Región:
 - Subconjunto de píxeles de una imagen que es un conjunto conexo.
- Regiones adyacentes (4 y 8):
 - Su unión forma un conjunto conexo.
- Regiones disyuntas:
 - No son adyacentes.

Regiones adyacentes o disyuntas?

El tipo de adyacencia debe ser especificado

 R_i y R_j son regiones adyacentes si se usa 8adyacencia. Con 4adyacencia son disyuntas

Frontera (o contorno)

- Frontera de una región:
 - Conjunto de píxeles de la región que tienen uno o más vecinos que no pertenecen a la región.

El tipo de adyacencia debe ser especificado

No haría parte de la frontera si se usa 4-adyacencia

Regla general: 8-adyacencia

Frontera ≠ Borde

- Frontera
 - Camino cerrado.
- Borde
 - Discontinuidad del nivel de gris en un punto
 - Puntos donde la derivada de la imagen es superior a un umbral.
- En imágenes binarias:
 - Borde = Frontera

Medidas de distancia

$$p: (x,y) \quad q: (s,t) \quad z: (v,w)$$

- D es una función de distancia o métrica si:
 - $-D(p,q) \ge 0 \ (D(p,q) = 0 \ \text{ssi} \ p=q),$
 - -D(p,q)=D(q,p),
 - $-D(p,z) \le D(p,q) + D(q,z)$

Medidas de distancia

• Distancia euclidiana:

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

• Distancia D_4 (citi-block):

$$-D_4(p,q) = |x - s| + |y - t|$$

Medidas de distancia

• Distancia D_8 :

$$-D_8(p,q) = \max(|x - s|, |y - t|)$$

3 3 3 3 3 3 3 3 2 2 2 2 2 3 3 2 1 1 1 2 3 3 2 1 1 1 2 3 3 2 1 1 1 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3								
3 2 1 1 1 2 3 3 2 1 0 1 2 3 3 2 1 1 1 2 3 3 2 2 2 2 2 3	3	3	3	3	3	3	3	
3 2 1 0 1 2 3 3 2 1 1 1 2 3 3 2 2 2 2 2 3	3	2	2	2	2	2	3	
3 2 1 1 1 2 3 3 2 2 2 2 2 3	3	2	1	1	1	2	3	
3 2 2 2 2 2 3	3	2	1	0	1	2	3	
	3	2	1	1	1	2	3	
3 3 3 3 3 3 3	3	2	2	2	2	2	3	
	3	3	3	3	3	3	3	

• Distancia D_m :

 Longitud del m-camino mas corto entre dos puntos

	рЗ	p4
p1	p2	
р		

$$V = \{1\}$$

	0	_1
0	1	
1		

$$D_m(p,p_4)=2$$

$$D_m(p,p_4)=3$$

 p_2 y p no son m-adyacentes

Operaciones entre imágenes

Operaciones entre imágenes basadas en píxeles (pixel a pixel)

- Operaciones aritméticas
 - Adición
 - Sustracción
 - Máximo
 - Mínimo
- Operaciones lógicas
 - AND
 - OR
 - XOR
 - NOT

Adición

En la teoría:

$$- s(x,y) = f(x,y) + g(x,y)$$

En la práctica:

-
$$s(x,y) = gain * (f(x,y) + g(x,y) - offset)$$
 1. $s_m = s - min (s)$

- Otra solución:
 - Dejar en 255 (niv. de gris max) todos los píxeles que exceden 255.

1.
$$s_m = s - \min(s)$$

2.
$$s_f = K (s_m / \max(s_m))$$

Reescalar los valores en el rango [0, K]

Sustracción

- En la teoría:
 - s(x,y) = f(x,y) g(x,y)
- En la práctica:
 - s(x,y) = gain * (f(x,y) g(x,y) + offset)
- Ejemplos:
 - 1. Sumar 255 a cada pixel y luego dividir entre 2
 - 2. Llevar el mínimo a 0 (sumando el valor + negativo) y luego escalar todos los valores al intervalo [0,255], multiplicando cada pixel por 255/max de la imagen.

Ejemplos de sustracción

FIGURE 2.27 (a) Infrared image of the Washington, D.C. area. (b) Image obtained by setting to zero the least significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity.

Ejemplos de sustracción

A: Imagen antes de inyección de producto de contraste

B: Imagen después de inyección de producto de contraste

A - **B**

A – B reescalada

Max, min

• Máximo:

$$-s(x,y) = \max (f(x,y), g(x,y))$$

• Míximo:

$$-s(x,y) = \min (f(x,y), g(x,y))$$

Operaciones lógicas

• El valor del pixel es procesado como una cadena de números binarios

- La operación se hace bit a bit
- Operaciones:
 - AND, OR: Se usan como máscaras para seleccionar ROIs (regiones de interés de una imagen)
 - NOT: pixel negro (0) se vuelve blanco (1)

Operaciones lógicas

AND

a b c d e f

FIGURE 3.27
(a) Original image. (b) AND image mask.
(c) Result of the AND operation on images (a) and (b). (d) Original image. (e) OR image mask.
(f) Result of operation OR on images (d) and (e).

OR