Chapter 1 The Role of the Algorithms in Computing

Chi-Yeh Chen 陳奇業 成功大學資訊工程學系

藏行顯光成就共好

Achieve Securely Prosper Mutually

Algorithms

 Algorithm: Any well-defined computation procedure that takes some value, or set of values, as <u>input</u> and produces some value, or set of values, as <u>output</u>.

Algorithms

- Example: Sorting problem
 - Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - Output: A permutation $\langle a_1', a_2', ..., a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq ... \leq a_n'$

- An instance of a problem consists of the input needed to compute a solution to the problem.
- An algorithm is said to be correct if for every input instance, it halts with the correct output.
- A correct algorithm *solves* the given computational problem. An incorrect algorithm might not halt at all on some input instance, or it might halt with other than the desired answer.

- The Human Genome Project
 - Identifying all the 100,000 genes in human DNA
 - Determining the sequence of 3 billion chemical base pairs that make up human DNA
 - Storing information in human DNA databases
 - Developing tools for human DNA data analysis

Longest common subsequence

• **Promblem**: Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find a subsequence common to both whose length is longest. A subsequence doesn't have to be consecutive, but it has to be in order.

• Examples:

- The Internet Applications
 - Internet enables people to quickly access and retrieve large amounts of information
 - Finding good routes on which the data will travel (CH24 Shortest Paths)
 - Using a search engine to quickly find pages on which particular information resides (CH11 Hash tables, 32 String Matching)

- Electronic Commerce with Public-key Cryptography and Digital Signatures (CH31 Number-Theoretic Algorithms)
 - *Electronic commerce* enables goods and services to be negotiated and exchanged electronically
 - Credit card numbers
 - Passwords
 - Bank statements private

- Manufacturing and Other Commercial Settings
 - Allocating scarce resources in the most beneficial way

- How to assign crews to flights for an airline company?
- Where to place its wells for an oil company?
- Where to spend money buying advertising?
- Where to place more resources for an Internet service provider?

Efficiency

- Algorithms devised to solve the same problem often differ dramatically in their efficiency
- These difference can be significant than differences due to hardware and software
- *E.g.*, Sorting *n* items

- Efficiency
 - These difference can be significant than differences due to hardware and software

When
$$n = 10$$

Faster Computer

Insertion Sort $4 \cdot n^2$

Slower Computer

Merge Sort $50 \cdot n \log n$

Insertion sort takes: $4 \cdot 10^2 = 400$ (s)

Merge sort takes: $50 \cdot 10 \log 10 = 500$ (s)

When
$$n = 10^6$$

Faster Computer

Insertion Sort $4 \cdot n^2$

Slower Computer

 $\mathbf{MergeSort} \\ \mathbf{50} \cdot \boldsymbol{nlogn}$

Insertion sort takes:
$$4 \cdot 10^{12} = 4 \times 10^{12}$$
 (s)

Merge sort takes: $50 \cdot 10^6 \log 10^6 = 3 \times 10^8$ (s)

藏行顯光 成就共好

Achieve Securely Prosper Mutually

