Exercises on Regular Expressions and Finite Automata

Throughout this exercise sheet, assume that the alphabet is $\Sigma = \{a, b\}$.

- 1. Recall that (basic) regular expressions are formed from 0 (matches nothing), 1 (matches just the empty word), alternation (r + s), concatenation (rs), and iteration (r^*) . Write regular expressions that accept exactly the following languages:
 - (a) words that consist of an even number of a's followed by an odd number of b's,
 - (b) words of an even length,
 - (c) words that contain exactly three a's,
 - (d) words that contain no more than three a's,
 - (e) words that do not contain two consecutive a's,
 - (f) words where every a is immediately followed by a b, and
 - (g) words that do not end with ba.
- 2. Using Thompson's algorithm or otherwise, convert the regular expression $(b+ab)^*(1+a+aa)(b+ba)^*$ into an NFA.
- 3. Consider an NFA with three states, named s_1 , s_2 , and s_3 . The start state is s_1 and the accepting state is s_3 . The *a*-transitions are $s_2 \to s_1$ and $s_2 \to s_3$. The *b*-transitions are $s_1 \to s_2$, $s_2 \to s_3$, and $s_3 \to s_1$. There is an ϵ -transition from s_1 to s_3 .
 - (a) Draw this NFA.
 - (b) Using the subset construction or otherwise, convert this NFA into a DFA.
 - (c) DFAs with fewer states can be more efficiently simulated. Can you simplify your DFA into a DFA that accepts the same language but requires fewer states?
 - (d) Describe (in simple English) the language that your DFA accepts.
- 4. Let us write Σ^* for the language that contains every word made up from characters in the alphabet Σ . This is sometimes called the *universal language over* Σ . Draw a DFA that accepts the language Σ^* .
- 5. Suppose you are given an NFA that accepts a language L_1 , and another NFA that accepts a language L_2 . Explain how to construct a new NFA that accepts the language $L_1 \cup L_2$ (that is, all words that are in *either* language).

- 6. For any language L, we shall define its *complement* as $\overline{L} = \Sigma^* \setminus L$; that is, the set of all words that are not in L.
 - (a) Draw a DFA that accepts the language $\{a, ba, ab\}$.
 - (b) Now draw a DFA that accepts the complement of that language.
 - (c) Suppose you are given a DFA that accepts a language L. Explain how to construct a new DFA that accepts the language \overline{L} .
- 7. Suppose you are given an NFA that accepts a language L_1 , and another NFA that accepts a language L_2 . Explain how to construct a new NFA that accepts the language $L_1 \cap L_2$ (that is, all words that are in *both* languages). [Hint: bear De Morgan's law in mind!]
- 8. For any language L, we shall write L^{-1} for the *reverse* language of L. L^{-1} accepts the same words as L, but each word has its sequence of characters reversed. For instance, ab is accepted by L^{-1} if and only if ba is accepted by L.
 - (a) Draw a DFA that accepts $\{ba, baa\}$.
 - (b) Draw an NFA that accepts the reverse language of $\{ba, baa\}$.
 - (c) Suppose you are given a DFA that accepts the language L. Explain how to construct an NFA that accepts the language L^{-1} .