MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2012 ROUND 1 ALG 2: SIMULTANEOUS EQUATIONS AND DETERMINANTS

ANSWERS

A >		/		`
A,	۱ (
/ A	, ,		•	. ,

***** NO CALCULATORS IN THIS ROUND *****

- A) For a unique ordered quadruple (x, a, b, c), $\begin{bmatrix} 19-3x & 2x+b \\ x+a & \frac{x}{3}+c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, the 2 x 2 identity matrix. Compute (x, a, b, c).
- B) There are 3 integers n_1 , n_2 and n_3 for which $\begin{vmatrix} 1 & x & 2 \\ x & 1 & 2 \\ 1 & 2 & x \end{vmatrix} = 0$.

 Compute the ordered triple (n_1, n_2, n_3) , where $n_1 < n_2 < n_3$.
- C) For positive integers a and b, the system of equations $\begin{cases} x+y+1=0\\ 2x-y+a=0 \text{ defines a set of } \underline{\text{concurrent}}\\ 3x+4y+b=0 \end{cases}$

lines, i.e. they intersect at a common point. Determine (x, y), the coordinates of the point of concurrency, for which a + b is a maximum.