CVPR 2018 Non-local Neural Networks

2022.07.27

논문 리뷰

배성훈

• Research Background:

- Long-range dependencies를 포착하는 것에 있어 RNN, CNN은 근본적인 한계를 가짐
- <u>local neighborhood만 processing</u>
- Long-range dependencies를 더 잘 포착하기 위해 non-local operation을 응용

CNN filter가 한번에 볼 수 있는 영역이 제한적

Method:

- 기존의 denoising에 사용된 Non-local filter로부터 Motivate
- Non-local Means Filter
- 한 장의 이미지 내에서 Target Pixel과 유사한 영역 (q^1, q^2, q^3) 을 찾아 평균을 취하는 방식
- <u>영상 전체 영역 (Non-local) 활용</u>

Non-local Mean Filter => Large Receptive Field

Method:

- Non-local mean filter의 영상 전체 영역을 활용하는 방법은 <u>long-range dependency 해결</u>
- 이를 응용한 Non-local block 제안
- Non-local operation:
- Input x에서 feature(i)와 전체 영역(j)에 대한 feature의 similarity를 계산하고, similarity가 큰 영역의 embedding된 feature의 값을 더 크게 activate

$$y_i = \frac{1}{C(x)} \sum_{\forall j} \frac{f(x_i, x_j)g(x_j)}{\text{Similarity 계산 Linear embedding}}$$

Method:

• $g(x_i)$: linear embedding

• $g(x_j) = W_g x_j$ W_g : Weight matrix

Method:

- $f(x_i, x_j)$: 특정 i번째 feature에서 다른 위치의 feature(j)와 similarity 계산
- 4가지 version 제안, 성능 향상은 모두 비슷함
- Gaussian: $f(x_i, x_j) = e^{x_i^T x_j}$
- Embedded Gaussian: $f(x_i, x_j) = e^{\theta(x_i)^T \varphi(x_j)}$

Non-local block (f = Gaussian)

$$\theta(x_i) = W_{\theta} x_i$$
 , $\varphi(x_i) = W_{\varphi} x_i$

Non-local block (f = Embedded Gaussian)

Method:

- $f(x_i, x_j)$:
- Dot product: $f(x_i, x_j) = \theta(x_i)^T \varphi(x_j)$
- Concatenation: $f(x_i, x_j) = \text{ReLU}(w_f^T[\theta(x_i), \varphi(x_j)])$

Non-local block (f=Dot product)

Method:

• Non-local Block:

$$z_i = W_z y_i + x_i$$
Residual Connection

• 사전 학습된 모델 내 쉽게 삽입하여 Fine-tune 하는 방식으로 사용 가능

Method:

- Baseline: ResNet-50 C2D
- For video

- Method:
 - Baseline: ResNet-50 $I3D_{3x3x3}$, $I3D_{3x1x1}$

• Experiments:

- Video Classification using Kinetics, Charades dataset
- Res5 직전에 non-local block 추가하는 것이 제일 좋은 성능

Similarity (**f**) 계산 방법에 따른 결과 비교

model, R50	top-1	top-5
C2D baseline	71.8	89.7
Gaussian	72.5	90.2
Gaussian, embed	72.7	90.5
dot-product	72.9	90.3
concatenation	72.8	90.5

Non-local block이 추가되는 위치에 따른 결과 비교

model, R50	top-1	top-5
baseline	71.8	89.7
res ₂	72.7	90.3
res ₃	72.9	90.4
res_4	72.7	90.5
res ₅	72.3	90.1

Experiments:

- Non-local block을 사용했을 때 연산량을 줄이면서 성능 향상 (Top-1 error 기준 2% 증가)
- <u>I3D에 Non-local block 추가</u>하는 실험 또한 최대 3% 성능 향상
- <u>시공간축</u>에 non-local block을 추가하는게 가장 좋은 성능을 보임

C2D vs I3D vs A 5 block non-local C2D

model, R101	params	FLOPs	top-1	top-5
C2D baseline	1×	1×	73.1	91.0
$\overline{\text{I3D}_{3\times3\times3}}$	1.5×	1.8×	74.1	91.2
$I3D_{3\times1\times1}$	1.2×	1.5×	74.4	91.1
NL C2D, 5-block	1.2×	1.2×	75.1	91.7

I3D + Non local block

	model	top-1	top-5
	C2D baseline	71.8	89.7
R50	I3D	73.3	90.7
	NL I3D	74.9	91.6
	C2D baseline	73.1	91.0
R101	I3D	74.4	91.1
	NL I3D	76.0	92.1

Space vs Time vs Spacetime

model		top-1	top-5
R50	baseline	71.8	89.7
	space-only	72.9	90.8
	time-only	73.1	90.5
	spacetime	73.8	91.0
R101	baseline	73.1	91.0
	space-only	74.4	91.3
	time-only	74.4	90.5
	spacetime	75.1	91.7

• Experiments:

- Kinetics dataset에서 SoTA를 달성
- 기존의 SoTA를 달성한 모델들과 비교해 적은 입력으로 더 좋은 성능을 보임
- 이 외에도 다른 분야에서도 의미있는 실험 결과를 보임

Comparisons with state-of-the-art results in Kinetics

model	backbone	modality	top-1 val	top-5 val	top-1 test	top-5 test	avg test [†]
I3D in [7]	Inception	RGB	72.1	90.3	71.1	89.3	80.2
2-Stream I3D in [7]	Inception	RGB + flow	75.7	92.0	74.2	91.3	82.8
RGB baseline in [3]	Inception-ResNet-v2	RGB	73.0	90.9	-	-	-
3-stream late fusion [3]	Inception-ResNet-v2	RGB + flow + audio	74.9	91.6	-	-	-
3-stream LSTM [3]	Inception-ResNet-v2	RGB + flow + audio	77.1	93.2	-	-	-
3-stream SATT [3]	Inception-ResNet-v2	RGB + flow + audio	77.7	93.2	-	-	-
NL I3D [ours]	ResNet-50	RGB	76.5	92.6	-	-	-
	ResNet-101	RGB	77.7	93.3	-	-	83.8

한줄평: Denoising에 사용되는 Non-local filter로부터 영감을 받아 효율적이면서 다른 architecture에 적용하기 쉽다는 점과 기존의 video task의 고정 입력으로 쓰인 optical flow를 사용하지 않고 좋은 성능을 낸 점이 상당히 인상적이였 다. 특히 이미지의 전체 영역을 활용한다는 점은 다른 분야에서도 충분히 활용할 가치가 있다고 생각한다.