

Introduction to Programmable Logic

Dr. Mohamed Abdel-Azim
Mansoura University
mazim12@yahoo.com

Introduction

Introduction

الإتجاه الأول:

- **♦** The output was pure software.
- **♦** No physical products.
- Even if we consider this software as a product; actually it is a slow realization of the required application.
- Low cost.

الإتجاه الثاني:

- **♦** The output was pure hardware.
- No specialized skills are required except:
 - Simple computer programs to draw the layout.
 - Simple computer programs to simulate the application.
 - Simple Wiring and Welding skills.
- The output product may be as shown below for the most clever engineers.
- Fairly high cost
- Fixed design.

الإتجاه الثاني:

- Draw the schematic diagram of the application and simulate it using simple computer programs:
 - PSpice.
 - Multisim.
- Draw the layout manually or using simple computer programs:
 - PSpice.
 - Eagle.
 - ◆ PCB123.
 - **♦ PCB Express.**
- Print the layout over a calk paper.
- Using the Silk Screen Technology or the Ultra Violet to a copper sheet coated with a photo-resist material.
- Etching using some acids.
- Washing to remove acid effects.
- Using drill to open component holes.
- Place the components.
- Soldering these components.

الإتجاه الثالث:

- Requires high level skills.
- Fairly high cost.
- Requires both software and hardware skills.
- Covers huge number of engineering applications.
- Sometimes produces new products for new and/or old applications.
- Simplify the hardware realization of many complex applications.

Programmable Chip

Technology Timeline

Technology Overview

1. Fixed Logic

Connect Standard Logic Chips Very Simple Glue Logic

2. Programmable Logic Devices "PLDs"

- Different Types
- SUM of PRODUCTS
- Prefabricated
- Programmable Links
- Reconfigurable

3. Complex PLDs

- CPLDs
- Programmable PLD Blocks
- Programmable Interconnects
- Electrically Erasable links

CPLD Architecture

Feedback Outputs

4. Application Specific Integrated Circuits (ASIC)

- An ASIC is an IC customized for a particular use, rather than intended for general-purpose use.
- For example, a chip designed solely to run a cell phone is an ASIC.
- ASIC Features:
 - Large Complex Functions.
 - Millions of Gates
 - Customized for Extremes of Speed, Low Power,
 - ♦ (Very) Expensive (in small quantities) > \$1 Million mask set
 - (Very) Hard to Design.
 - ◆ Long Design cycles.
 - **♦ NOT Reprogrammable.**
 - High Risk

Application Specific Integrated Circuits "ASICs"

Application Specific Integrated Circuits "ASICs"

Inexpensive
Easy to Design
Reprogrammable.

Large Complex Functions

Field Programmable Gate Arrays "FPGA"

- Field <u>Programmable</u> Gate Array
 - New Architecture
 - 'Simple' Programmable Logic Blocks
 - Massive Fabric of Programmable <u>Interconnects</u>

Large Number of Logic Block 'Islands' 1,000 ... 100,000+ in a 'Sea' of Interconnects

FPGA Architecture

5. Field Programming Gate Array (FPGA) Technology

Xilinx FPGA Architecture

- Logic Fabric (بنیة)
 - Gates and flip-flops
- Embedded Blocks
 - Memory
 - DSP/Multipliers
 - Clock management
 - High speed serial I/O
 - Soft/hard processors
- Programmable I/Os
- In-system programmable

Logic Fabric

- Logic Cell
 - Lookup table (LUT)
 - Flip-Flop
 - **♦ Carry logic**
 - Muxes (not shown)
- Slice
 - ◆ Two Logic Cells
- Spartan-3E FPGAs
 - ◆ 2K to 33K logic cells

Memory

- Block RAM
 - RAM or ROM
 - ◆ True dual port
 - Separate read and write ports
 - **♦ Independent port size**
 - Data width translation
 - Excellent for FIFOs

Block RAM Configurations							
Configuration	Depth	Data bits	Parity bits				
16K x 1	16Kb	1	0				
8K x 2	8Kb	2	0				
4K x 4	4Kb	4	0				
2K x 9	2Kb	8	1				
1K x 18	1Kb	16	2				
512 x 36	512	32	4				

Multipliers

- 18 x 18 Multipliers
 - Signed or unsigned
 - Optional pipeline stage
 - ◆ Cascadable

Clock Management

- Digital Clock Managers (DCMs)
 - ◆ Clock de-skew
 - Phase shifting
 - Clock multiplication
 - Clock division
 - Frequency synthesis

Programmable I/Os

- Single-ended
- Differential / LVDS
- Programmable I/O standards
 - Multiple I/O banks
- DDR I/O registers
- On-chip termination

	Standard	Output V _{CCO}	Input V _{REF}	
Single ended	LVTTL	3.3V		
	LVCMOS33	3.3V		
	LVCMOS25	2.5V		
	LVCMOS18	1.8V		
	LVCMOS15	1.5V		
	LVCMOS12	1.2V		
	PCI 32/64 bit 33MHz	3.3V		
	SSTL2 Class I	2.5V	1.25V	
	SSTL2 Class II	2.5V	1.25V	
	SSTL18 Class I	1.8V	0.9V	
	HSTL Class I	1.5V	0.75V	
	HSTL Class III	1.5V	0.9V	
	HSTL18 Class I	1.8V	0.9V	
	HSTL18 Class II	1.8V	0.9V	
	HSTL18 Class III	1.8V	1.1V	
	GTL		V8.0	
	GTL+		1.0V	
Differential	LVDS2.5	2.5V		
	Bus LVDS2.5	2.5V		
	Ultra LVDS2.5	2.5V		
	LVDS_ext2.5	2.5V		
	RSDS	2.5V		
	LDT2.5	2.5V		

Xilinx Spartan-3E Family

SPARTAN-3E	1	3S100E	3S250E	3S500E	3S1200E	3S1600E
	Device					
	Gates	100K	250K	500K	1.2M	1.6M
	Logic Cells	2,160	5,508	10,476	19,512	33,192
	Maximum I/O	108	172	232	304	376
	Block RAM bits	72K	216K	360K	504K	648K
	Distributed RAM bits	15K	38K	73K	136K	231K
	18x18 Multipliers	4	12	20	28	36
	DCMs	2	4	4	8	8

Highly Recommended Books

- The Design Warrior's Guide to FPGAs
- Clive Maxfield
- Fundamentals of Digital Logic with VHDL
- Stephen Brown, Zvonko Vranesic

Overview

What You Need?

- Hardware Description Language:
 - ♦ VHDL.
 - Verilog.
- FPGA:
 - Structure.
 - Download Skills.
 - Data Transfer Skills.

Thanks