Spooky Action: Scientific and Philosophical Challenges in the Era of Quantum Technology

David W. Lyons

Professor of Mathematical Sciences, Lebanon Valley College

Perry Lecture, Eastern Illinois University 31 October 2019

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- 3 Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- Summary

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- 4 Summary

Aims of This Talk

This talk will attempt to shed some light on fundamental concepts in quantum mechanics:

- superposition and measurement
- entanglement
- what all this is good for
- philosophical problems

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- Summary

 Entanglement makes it possible to communicate instantly over arbitrarily large distances

- Entanglement makes it possible to communicate instantly over arbitrarily large distances
- An observer can control experiments, the world, etc, by conscious thought alone

- Entanglement makes it possible to communicate instantly over arbitrarily large distances
- An observer can control experiments, the world, etc, by conscious thought alone
- Quantum entanglement explains telepathy

- Entanglement makes it possible to communicate instantly over arbitrarily large distances
- An observer can control experiments, the world, etc, by conscious thought alone
- Quantum entanglement plains telepathy

Lasers!

- Lasers!
- Secure communication

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy
 - ullet Example: clocks (today) resolve 10^{-18} seconds

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy
 - ullet Example: clocks (today) resolve 10^{-18} seconds
 - (compare to 10^{-15} five years ago)

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy
 - ullet Example: clocks (today) resolve 10^{-18} seconds
 - (compare to 10^{-15} five years ago)
 - \bullet when we get to 10^{-21} seconds we will be able to time a gravity wave passing through a small molecular lattice!

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers but breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics change)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy
 - ullet Example: clocks (today) resolve 10^{-18} seconds
 - (compare to 10^{-15} five years ago)
 - when we get to 10^{-21} seconds we will be able to time a gravity wave passing through a small molecular lattice!
- Efficient computation of currently unfeasible problems (many optimization problems of theoretical and commercial interest)

- Lasers!
- Secure communication
 - Today's internet standard secure communication uses the RSA protocol
 - "unbreakable" by (today's) classical computers by a breakable by a (future) quantum computer
 - By contrast, existing quantum secure communication is secure based on the laws of physics, therefore not breakable by any present or future means (unless the laws of physics thange)
- Simulation of physical systems (quantum chemistry, potential applications to drug design)
- Measurement devices in new realms of accuracy
 - Example: clocks (to ay) resolve 10^{-18} seconds
 - (compare to 10) five years ago)
 - when we ge to 10^{-21} seconds we will be able to time a gravity wave passing through a small molecular lattice!
- Efficient computation of currently unfeasible problems (many optimization problems of theoretical and commercial interest)

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- 4 Summary

Encoding information in strings of bits

ASCII - Binary Character Table

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
а	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100	D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	1	073	01001001
j	106	01101010	J	074	01001010

Encoding information in strings of bits

ASCII - Binary Character Table

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
а	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100	D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010	J	074	01001010

Encoding information in strings of bits

ASCII - Binary Character Table

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
a	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	С	067	01000011
d	100	01100100	D	068	01000100
е	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	1	073	01001001
j	106	01101010	J	074	01001010

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- 4 Summary

More gates

More gates

More gates

What's the point of all these boxes?

A classical computer is made entirely of NOT, AND, and OR boxes. The balls that pass through the boxes are bits.

What's the point of all these boxes?

A classical computer is made entirely of NOT, AND, and OR boxes. The balls that pass through the boxes are bits.

Quantum computers

A quantum computer is also made of boxes, but new kinds of boxes are available. The balls that pass through the boxes are *quantum* bits, or qubits.

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- 4 Summary

"Explanation" of the Hadamard paradox

"Explanation" of the Hadamard paradox

"Explanation" of the Hadamard paradox

Lyons (LVC) Spooky Action 2019.10.31 18 / 38

Lyons (LVC) Spooky Action 2019.10.31 18 / 38

Lyons (LVC) Spooky Action 2019.10.31 18 / 38

Classical bit "states"

Quantum Bit (qubit) states

(some amount of) \bigcirc + (some amount of) \blacksquare

Classical bit "states"

Quantum Bit (qubit) states

(some amount of) \bigcirc + (some amount of) \blacksquare

Superposition

qubit state = superposition of classical bit states

States of 2 classical bits

States of 2 classical bits

States of 2 quantum bits

$$a\bigcirc\bigcirc+b\bigcirc\bigcirc\bigcirc+c\bigcirc\bigcirc+d\bigcirc\bigcirc\bigcirc$$

States of 2 classical bits

States of 2 quantum bits

$$a\bigcirc\bigcirc+b\bigcirc\bigcirc\bigcirc+c\bigcirc\bigcirc+d\bigcirc\bigcirc\bigcirc$$

Superposition

2-qubit state = superposition of classical 2-bit states

States of 2 classical bits

States of 2 quantum bits

$$a\bigcirc\bigcirc + b\bigcirc\bigcirc + c\bigcirc\bigcirc + d\bigcirc\bigcirc$$

Superposition

2-qubit state = superposition of classical 2-bit states

Composite systems and subsystems

Putting qubits together forms a *composite* system. The individual qubits in the composite system are *subsystems*.

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- Summary

Two examples of 2-qubit states

the "plus-plus" state =
$$\bigcirc$$
 + \bigcirc + \bigcirc + \bigcirc + \bigcirc

the EPR state
$$= \bigcirc\bigcirc + \bullet \bullet$$

Two examples of 2-qubit states

the "plus-plus" state
$$= \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc = \bigcirc$$

= $(\bigcirc + \bigcirc)(\bigcirc + \bigcirc)$
the EPR state $= \bigcirc + \bigcirc + \bigcirc \bigcirc$

Two examples of 2-qubit states

Two examples of 2-qubit states

Product state

A state (like plus-plus) that can be described by states of its subsystems

Lyons (LVC) Spooky Action 2019.10.31 22 / 38

Two examples of 2-qubit states

Product state

A state (like plus-plus) that can be described by states of its subsystems

Entangled state

A state (like EPR) that cannot be described by states of its subsystems

What is computation?

What is computation?

Minimum ingredients

- Input
- Processor or Computer
- Output

What is computation?

Minimum ingredients

- Input
- Processor or Computer
- Output

Computation and Communication, cont'd

What is computation?

Computation and Communication, cont'd

What is computation?

Minimum ingredients

Two parties: Sender and Receiver

• Message: Information to be sent

• Channel: Medium by which information is sent

Computation and Communication, cont'd

What is computation?

Minimum ingredients

• Two parties: Sender and Receiver

• Message: Information to be sent

• Channel: Medium by which information is sent

Information Processing

Computation

$$m \longrightarrow \qquad \qquad \mathcal{C} \qquad \qquad \longrightarrow \mathcal{C}(m)$$

Communication

Cultural note on sender and receiver

- Sender is traditionally called "Alice"
- Receiver is traditionally called "Bob"
- Slides must be funny

Typical information theory talk slide

Improved information theory talk slide

Communications Task

Alice sends a message to Bob across a channel

EPR Protocol Step 1

Factory prepares state $\bigcirc\bigcirc$ + $\bullet \bullet$ Sends 1 qubit to Alice, 1 to Bob

EPR Protocol Step 2

Alice measures his qubit

Post measurement state is ••

EPR Protocol Step 3

Bob measures his qubit

Post measurement state is ••

Alice's measurement determines the result of Bob's. Even if they are separated by great distance.

Alice's measurement determines the result of Bob's. Even if they are separated by great distance.

This is *not* science fiction. This EPR experiment is performed routinely in labs all over the world on a daily basis.

Alice's measurement determines the result of Bob's. Even if they are separated by great distance.

This is *not* science fiction. This EPR experiment is performed routinely in labs all over the world on a daily basis.

The first experiment to demonstrate the EPR measurement was by Alain Aspect in 1982.

Intellectual dissonance

"...spooky action at a distance"

Outline

- Introduction
 - Aims of This Talk
 - Misconceptions versus truth that is stranger than fiction
- Classical Information Processing
 - Encoding
 - Logic gates and circuits
- Quantum Information Processing
 - The Hadamard gate: superposition and measurement
 - Entanglement
 - Reality
- Summary

Some philosophical problems

• Is the quantum state real? What is the status of the objects that appear in the mathematical model?

Some philosophical problems

- Is the quantum state real? What is the status of the objects that appear in the mathematical model?
- Observation, observer, measurements—all are very troublesome.

Some philosophical problems

- Is the quantum state real? What is the status of the objects that appear in the mathematical model?
- Observation, observer, measurements—all are very troublesome.
- Nonlocality is very troublesome.

Some main points

- Quantum mechanics is a practical, successful theory.
- Our use of quantum mechanics to predict outcomes of experiments is sophisticated and precise.
- Our ability to explain its meaning is primitive.
- We live in an exciting time.

http://quantum.lvc.edu/mathphys

Cool things that might be true

- Time travel can not (yet) be ruled out
- Black holes leak information
- Whether P = NP?
- Birds might do quantum computations for navigation