NMMB538 - Zkouška Jan Oupický

Lemma Q.1. Proof:

Denote $h = x_2^2 - f(x_1)$ and assume $h = u \cdot v$ where $u, v \in \bar{K}[x_1, x_2]$.

First assume $u, v \in \bar{K}[x_1, x_2] \setminus \bar{K}[x_1]$ i.e. $\deg_{x_2}(u) > 0$, $\deg_{x_2}(v) > 0$. Because $\deg_{x_2}(u) + \deg_{x_2}(v) = \deg_{x_2}(h) = 2 \implies \deg_{x_2}(u) = 1 = \deg_{x_2}(v)$. W.l.o.g assume $lc_{x_2}(u) = 1 = lc_{x_2}(v)$, we can do that since $lc_{x_2}(h) = 1$. Therefore we can write $u = x_2 - s_1$ and $v = x_2 - s_2$ where $s_1, s_2 \in \bar{K}[x_1]$. This gives us

$$x_2^2 - f(x_1) = h = (x_2 - s_1)(x_2 - s_2) = x_2^2 - (s_1 + s_2)x_2 + s_1s_2$$

So it must hold that $s_1 = -s_2$ and then $h = x_2^2 + s_1(-s_1) \implies f(x_1) = s_1^2$. Now assume w.l.o.g $u \in \bar{K}[x_1]$. We compare the leading coefficients.

$$1 = lc_{x_2}(h) = lc_{x_2}(u) \cdot lc_{x_2}(v) = u \cdot lc_{x_2}(v)$$

This shows that u must be invertible in $\bar{K}[x_1, x_2] \implies u \in \bar{K}^*$. In other words h is absolutely irreducible.

Sublemma Q.3.5 Let F/K be an algebraic function field, $char(K) \neq 2$, that is given by $y^2 = f(x)$, f being a quartic polynomial that is absolutely irreducible. Let $P \in \mathbb{P}_{F/K}$. If $x \notin P$ or $y \notin P$, then $x, y \notin P$ and $2v_P(x) = v_P(y)$.

Proof:

Lemma Q.4. Proof:

By sublemma Q.3.5 we know, that if $P \in \mathbb{P}_{F/K} : x^{-1} \in P \implies y^{-1} \in P$ and $2v_P(x) = v_P(y)$. Therefore $2|v_P(y^{-1}) \implies v_P(y^{-1}) \ge 2$.

$$(y)_{-} = \sum_{y^{-1} \in P} v_{P}(y^{-1})P \implies \deg((y)_{-}) = \sum_{y^{-1} \in P} v_{P}(y^{-1}) \deg(P) = [F : K(y^{-1})] = [F : K(y)] = \deg(f) = 4$$

We know $v_P(y^{-1}) \ge 2$, this means there are 3 possibilities.

- 1. There is only one place P s.t. deg(P) = 1 and $v_P(y^{-1}) = 4$.
- 2. There is only one place P s.t. deg(P) = 2 and $v_P(y^{-1}) = 2$.
- 3. There are 2 distinct places P_1, P_2 s.t. $\deg(P_1) = 1 = \deg(P_2)$ and $v_{P_1}(y^{-1}) = 2 = v_{P_2}(y^{-1})$.

For every possibility it holds that $(y)_{-}=2(x)_{-}$. And also that $\deg((x)_{-})=2$.

When determining the genus we can assume K = K. Denote the genus of F/K as g > 0. By the Riemann theorem we get that for $D \in \text{Div}(F/K) : \deg(D) - l(D) < g$. Since $\deg_{\bar{K}}(D) = [F : K(x)] = 2 \implies 2 - l(D) < g$. $D \ge 0 \implies l(D) \ge 1 \implies l(D) \ge 2 - g$. Therefore g = 1 or g = 0.