线性代数 A1 期中考试

2019年4月30日9:45—11:45

姓名 ______ 学号 ______ 得分 _____

一、填空题. 每空 5 分, 共 50 分. 答案需化简, 填在试卷上.

1. 设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
,则 $A^T A = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$, $A^k = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$ $(k \in \mathbb{N})$.

2. 设
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
,则 $\det(A) =$ _______, $A^{-1} = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$.

3. 设
$$A = \begin{pmatrix} I_n & I_n & O \\ I_n & O & I_n \\ O & I_n & I_n \end{pmatrix}$$
,则 $\det(A) = \underline{\hspace{1cm}}$, $A^{-1} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$.

4. 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
,则 $\operatorname{rank}(A) = \underline{\hspace{1cm}}$, $\operatorname{rank}(A^*) = \underline{\hspace{1cm}}$,

A 在 $\mathbb{Z}^{3\times3}$ 中的 Smith 标准形为 . .

- 5. 设 $A \in \mathbb{F}^{n \times p}$, $B \in \mathbb{F}^{m \times p}$. 矩阵方程 XA = B 有唯一解 $X \in \mathbb{F}^{m \times n}$ 的充分必要条件 是
- 二、解答题. 第 6-7 题各 12 分, 第 8-9 题各 13 分, 共 50 分. 需给出详细解答过程.

6. 求解
$$\mathbb{C}$$
 上的线性方程组
$$\begin{cases} x_1+x_2+x_3=a^2\\ x_1+ax_2+x_3=a \end{cases}$$
 ,其中 $a\in\mathbb{C}$.
$$x_1+x_2+a^2x_3=1$$

7. 设
$$n$$
 阶整数方阵 $A = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & \ddots & & \\ & \ddots & \ddots & 1 & \\ & & -1 & 0 \end{pmatrix}$, 其中空白处元素都是 0 .

证明: A 是可逆方阵当且仅当 n 是偶数,并求 A^{-1}

- 8. 证明:对任意方阵 A,存在单位下三角方阵 L 和置换方阵 P,使得 LPA 是上三角.
- 9. 证明:任意对称实数方阵 A 有 r = rank(A) 阶可逆主子矩阵.

参考答案

$$- , \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & k & -C_k^2 \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{pmatrix}, -4, \frac{1}{4} \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -2 \\ 3 & -2 & 1 \end{pmatrix}, (-2)^n, \frac{1}{2} \begin{pmatrix} I & I & -I \\ I & -I & I \\ -I & I & I \end{pmatrix},$$
 2, 1, diag(1, 3, 0), rank $\begin{pmatrix} A \\ B \end{pmatrix} = \operatorname{rank}(A) = n$

6. 方程组系数矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a^2 \end{pmatrix}$$
, $\det(A) = (a-1)^2(a+1)$. (3 分)

当
$$a \neq \pm 1$$
 时,A 可逆,方程组有唯一解 $x = (1 + a + a^2, -a, -1)$. (3 分)

当
$$a=1$$
 时,方程组化为 $x_1+x_2+x_3=1$,解得 $x=(1-s-t,s,t)$. (3 分)

当
$$a = -1$$
 时,方程组化为
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_2 + x_3 = -1 \end{cases}$$
,解得 $x = (-t, 1, t)$. (3 分)

7. 根据 Laplace 展开定理,
$$\det(A) = \Delta_n = \Delta_{n-2} = \dots = \begin{cases} 1, & 2 \mid n; \\ 0, & 2 \nmid n. \end{cases}$$
 (4 分)

$$A^{-1} = (A_{ji}) = ((-1)^{i+j} M_{ji}), \quad M_{ji} = \begin{cases} \Delta_{i-1} \Delta_{n-j}, & i \leq j; \\ (-1)^{i-j} \Delta_{j-1} \Delta_{n-i}, & i \geq j. \end{cases}$$
 (4 $\%$)

$$A_{ji} = \begin{cases} -1, & i \text{ 是奇数}, & j \text{ 是偶数}, & i < j; \\ 1, & i \text{ 是偶数}, & j \text{ 是奇数}, & i > j; \\ 0, & \text{其它}. \end{cases}$$
 (4 分)

8. 对 A 的阶数 n 归纳. 当 n=1 时,结论显然成立. 当 $n \ge 2$ 时,存在单位下三角方阵 $L_1 = \begin{pmatrix} 1 & \mathbf{0} \\ * & I_{n-1} \end{pmatrix}$ 和置换方阵 P_1 ,使得 $L_1P_1A = \begin{pmatrix} * & * \\ \mathbf{0} & B \end{pmatrix}$. (5 分)根据归纳假设,存在单位下三角方阵 L_2 和置换方阵 P_2 使得 L_2P_2B 是上三角.记 $\widetilde{L}_2 = \mathrm{diag}(1, L_2)$, $\widetilde{P}_2 = \mathrm{diag}(1, P_2)$, $U = \widetilde{L}_2\widetilde{P}_2L_1P_1A$ 是上三角. (3 分)注意到 $\widetilde{L}_1 = \widetilde{P}_2L_1\widetilde{P}_2^{-1}$ 也是单位下三角.因此,U = LPA,其中 $L = \widetilde{L}_2\widetilde{L}_1$ 是单位下三角方阵, $P = \widetilde{P}_2P_1$ 是置换方阵.

9.
$$A = P \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q = P \begin{pmatrix} B & C \\ O & O \end{pmatrix} P^T$$
,其中 P, Q 是可逆方阵. (4 分)

$$A^{T} = A \Rightarrow C = O \Rightarrow \det(B) \neq 0. \tag{3 \%}$$

设
$$P_1 = P\begin{pmatrix} I_r \\ O \end{pmatrix}$$
,则 $\operatorname{rank}(P_1) = r$,存在子矩阵 $P_2 = P_1\begin{bmatrix} i_1 & \cdots & i_r \\ 1 & \cdots & r \end{bmatrix}$ 可逆. (3分)

故
$$A = P_1 B P_1^T$$
, 主子矩阵 $A\begin{bmatrix} i_1 & \cdots & i_r \\ i_1 & \cdots & i_r \end{bmatrix} = P_2 B P_2^T$ 可逆. (3 分)