MÉTHODES D'OPTIMISATION STOCHASTIQUES

Xavier Olive

avec l'aide de Nathalie Bartoli, Gaspard Berthelin, Alexandre Gondran, Olivier Poitou, Rémy Priem

OBJECTIFS DU COURS

- appréhender les situations dans lesquelles les méthodes stochastiques (métaheuristiques) sont pertinentes;
- comprendre les grandes familles d'algorithmes d'optimisation stochastique;
- ► manipuler (parfois coder) trois algorithmes parmi les plus utilisés et les essayer sur des problèmes « jouets ».

Évaluation Chaque binôme devra étudier une méthode d'optimisation non couverte par le cours et la présenter devant le groupe lors de la dernière séance (le 18 octobre).

DÉROULÉ DES SÉANCES

- ➤ 7 novembre : Recuit simulé – Simulated annealing
- ► 12 novembre : Algorithmes génétiques – *Genetic algorithms*
- ► 20 novembre : CMA-ES
- ▶ 3 décembre Présentations

BRAINSTORMING

MÉTAHEURISTIQUES

- Ant colony optimisation
- Artificial bee colony
- Genetic algorithms (advanced version)
- ► Harmony search
- ▶ Particle swarm optimisation
- ► Shuffled frog leaping
- Stochastic (constraint based) local search
- ► Tabu search
- ► Cross-entropy method?

MÉTAHEURISTIQUES

- Ant colony optimisation
- Artificial bee colony
- Genetic algorithms (advanced version)
- ► Harmony search
- ▶ Particle swarm optimisation
- ► Shuffled frog leaping
- Stochastic (constraint based) local search
- ► Tabu search
- Cross-entropy method?

Consigne: Présenter chaque méthode de manière intuitive. Une démonstration sur un problème jouet sera valorisée (codée par vos soins *ou* récupérée sur le net)

DÉFINITION

$$\min_{x} f(x)$$

Notations:

- ► x est un vecteur de *variables*, ou d'inconnues;
- ► *f* est une *fonction objectif*, ou fonction d'évaluation.

La *modélisation* d'un problème consiste à identifier des variables et une fonction objectif.

OPTIMISATION CONTRAINTE × NON-CONTRAINTE

$$\min_{x} f(x)$$
 en respectant $c(x)$

Notations:

• c est une fonction contrainte, à valeurs dans $\{\top, \bot\}$.

Dans le cas d'une optimisation non contrainte, on a

$$\forall x : c(x)$$

OPTIMISATION CONTINUE × DISCRÈTE

Les variables x peuvent être à valeurs dans :

- un ensemble *continu*, comme \mathbb{R} ;
- ▶ un ensemble *discret*, comme ℤ;
- ▶ un ensemble *fini*, comme {0,1}.

Les variables d'un problème peuvent prendre leurs valeurs sur des ensembles de nature différente.

OPTIMISATION GLOBALE × LOCALE

- Les méthodes de résolution adaptées à certains problèmes garantissent de trouver le minimum global s'il existe.
- Pour d'autres types de problèmes, il est difficile de savoir qu'on a trouvé un minimum global : les algorithmes convergent vers des minima locaux.

OPTIMISATION STOCHASTIQUE × DÉTERMINISTE

- Les méthodes de résolution peuvent toujours converger de la même manière : on parle de méthode déterministe.
- ► Si deux exécutions du programme convergent différemment, on parle alors de méthode stochastique. Attention à la graine de votre programme!

MÉTHODES CLASSIQUES

- Programmation non linéaire (gradient, gradient conjugué, BGFS, etc.);
- Programmation linéaire (simplexe; Dantzig, 1947);
- ► Programmation linéaire en nombres entiers (MILP);
- Programmation par contraintes (CSP)

MÉTHODES CLASSIQUES

- Programmation non linéaire (gradient, gradient conjugué, BGFS, etc.);
- Programmation linéaire (simplexe; Dantzig, 1947);
- ► Programmation linéaire en nombres entiers (MILP);
- Programmation par contraintes (CSP)
- Pour MILP et CSP, la taille du problème et/ou des domaines peut être un facteur fortement limitant.

MÉTAHEURISTIQUES

C'est la solution de secours quand les méthodes classiques sont inefficaces : on obtient une solution de bonne qualité en un temps raisonnable.

- ▶ On cherche *au hasard* x_{k+1} dans le voisinage de x_k , en combinant aspects d'optimisation et d'exploration.
- ► Métaphores de comportements observés dans la nature.
- Métaheuristique = méthode stochastique générique à adapter à chaque problème.

RULE OF THUMB

Ces méthodes sont efficaces quand :

- la fonction d'évaluation est de type boîte noire;
- le problème se formalise bien en MILP/CSP mais le domaine est trop grand (cf. complexité);
- ▶ la fonction d'évaluation est bruitée (→ CMA-ES);

MÉTAHEURISTIQUES

Deux grandes classes de méthodes :

- ► les méthodes par trajectoire : on manipule un élément à la fois dans l'espace des solutions pour tenter de construire une trajectoire qui converge vers un optimum.
 - recherche locale, recuit simulé, etc.
- les méthodes par population : on manipule plusieurs éléments à la fois; les meilleurs éléments guident la génération de la population à l'itération suivante.
 - ▶ algorithmes génétiques, essaims particulaires, etc.

RECUIT SIMULÉ – SIMULATED ANNEALING

Méthode par trajectoire inspirée de la métallurgie

- ► On choisit au hasard une solution initiale à **énergie** E₀ et une **température initiale** élevée T₀;
- ightharpoonup À chaque itération, on choisit un voisin de l'état précédent, qui correspond à une variation d'énergie ΔE :
 - si $\Delta E < 0$, la modification est appliquée;
 - ▶ sinon, on l'accepte avec une probabilité $e^{-\frac{\Delta E}{T}}$.
- La température suit une loi décroissante.

À VOUS DE JOUER

L'algorithme étant facile, nous allons le coder tout en nous assurant d'avoir bien compris où se situe la vraie difficulté :

- ▶ le choix des paramètres;
- ▶ la définition d'un voisinage.

Nous allons le développer sur une fonction 2D générée aléatoirement, puis le tester sur un plus gros problème.

ALGORITHMES GÉNÉTIQUES

Méthode par population, l'évolution selon Darwin

- ► On choisit au hasard une population¹ initiale de taille fixée;
- ► **Sélection** : à chaque itération, on choisit des éléments parmi les mieux évalués ;
- ► Croisement : à chaque itération, on hybride les éléments sélectionnés pour générer la génération suivante ;
- Mutation : à chaque itération, une partie de la population est légèrement modifiée pour la génération suivante;

¹ On parle ici de *chromosome*.

À VOUS DE JOUER

Aujourd'hui encore, nous allons coder cette méthode pour :

- essayer différentes stratégies de sélection, croisement et mutation sur un problème jouet;
- trouver des tailles de population, taux de croisement et de sélection efficaces pour notre problème.

ALGORITHME

```
initialize population
foreach iteration :
    evaluate population
    append the k best elements into your new population
    for a1, a2 in selection(population) :
        b1, b2 = cross(a1, a2)
        "sometimes" mutate b1 and/or b2
        append b1, b2 to your new population
```

OPÉRATEURS DE SÉLECTION

► Tournoi:

Tirer deux éléments au hasard, garder le meilleur des deux.

► Roulette russe :

Tirer un élément au hasard (loi uniforme), avec une probabilité proportionnelle à l'évaluation de chaque élément.

OPÉRATEURS DE CROISEMENT

- Croisement en un point :
 On découpe les chromosomes en un point tiré au hasard.
- Croisement en deux points :
 On découpe les chromosomes en deux points tirés au hasard.
- Croisement uniforme:On tire au sort pour chaque gène si on échange ou pas.

