LC029 정보검색

2022 11 17

Chapter 19: Web Search Basics

Web Search Characteristics

Advertising as Economic Model & Spam

Index Size Estimation

Duplicate Documents

Web Search Characteristics

Web Search Basics

Characteristics of Web document collection

Creation

- Decentralized : no design and no co-ordination.
- Distributed and democratized content creation.
- Diversity of backgrounds and motives of its participants.

Contents

- Includes truth, lies, obsolete information, contradictions.
- In many languages (many variations in grammar and style)
 require different stemmers and linguistic operations
- Can be either static or dynamically generated.

static

Characteristics of Web document collection

dynamic generation of web pages

: 가 가

Characteristics of Web document collection

Structures

- Unstructured (text, html, ...)
- Semi-structured (XML, annotated photos)
- Structured (Databases)
- Scale : フォ
 - Much larger than previous text collections.
 - By 1995, Altavista has crawled and indexed 30 M pages.
 - In 1995, the volume of web pages was doubling every few months.
 - The growth is now slowed down, but still expanding.

Web Information Retrieval

- Web Information Retrieval
 - Web document collections are useful when they are discoverable.
 - Keyword-based search : Altavista, Excite, Infoseek
 - Based on inverted index and ranking mechanism
 - Taxonomy-based search: Yahoo 가가
 - Convenient and intuitive for finding web pages.
 - For accurate and consistent classification, manual classification is needed.
 - Manual classification entails significant human efforts.
 - Mismatch between users and editors of the taxonomy.
 - As the size of taxonomy grows, it is hard for users to find information.

Web Information Retrieval

- First generation of Web Information Retrieval
 - Used classical search techniques we have learned.
 - For indexing, query processing and ranking at web scale, they need to harness tens of machines together.
 - The quality and relevance of web search results are not satisfactory due to the idiosyncrasies of content creation on the web.
 - New ranking and spam-fighting techniques have invented to improve the quality of search results.
 - Need to measure the authoritativeness of a document based on cues such as which website hosts it.

가 가

Web Search User Experience

Web Search User Experience

- Traditional IR : 가가 ,
 - Users were typically professionals.
 - They are trained in the art of phrasing queries.
- Web Search : 가가 ,
 - Users do not know about the heterogeneity of web content.
 - They do not know the syntax of query language, the art of phrasing queries.
 - Average number of keywords is 2-3.
 - They seldom use operators such as AND, OR and wildcards.

How far do people look for results?

When you search something, how many entries do you typically review before clicking one?

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)

How far do people look for results?

If you don't find what you are looking for, when do you revise your search or move on to another search engine?

- After reviewing the first few entries
- After reviewing the first page
- After reviewing the first 2 pages
- After reviewing the first 3 pages
- After reviewing more than 3 pages

User Query Needs

- Web search queries are categorized into three groups.
 - Informational

```
Low hemoglobin
```

- Want to learn about something (40% ~ 65%).
- Try to assimilate information from multiple web pages.
- Navigational
- 가

Sungshin Women's University

- Want to go to that page (15% ~ 25%).
- Measure of user satisfaction is precision at 1.
- Transactional
 - Want to do something (20% ~ 35%).
 - Purchasing a product

Apple ipod

Downloading a file

Mars surface images

Accessing a service

Road condition of Seoul

Search engine should return results listing those services.

User Query Needs

- Other than that, users want to:
 - Find a good hub.
 Car rental Brasil
 - Do an exploratory search to see what is going on.

 Web documents have hyperlinks between them as a directed graph.

- The links are not randomly distributed.
 - The distribution of the number of links into a web page does not follow the Poisson distribution.
 - The distribution follows **power law**: The number of web pages with in-degree $i \propto \frac{1}{i^{\alpha}}$ where α is typically 2.1.

```
when i = 1, 1/1^{2.1} = 1.00

when i = 2, 1/2^{2.1} = 0.23

when i = 3, 1/3^{2.1} = 0.10

when i = 4, 1/4^{2.1} = 0.05

when i = 5, 1/5^{2.1} = 0.03
```

Advertising as Economic Model

Paid Inclusion Model

- The Yellow Pages
 - Companies pay for larger / darker fonts.
 - It is fair because they pay for that.

Paid Inclusion Model

- The Yellow Pages
 - Companies pay for larger / darker fonts.
 - It is fair because they pay for that.

Paid Inclusion Model

- The Yellow Pages
 - Some companies use some tricky method to list their name early in the list.
 - aaaaaaCheapestPhoneCompanyaaaaa
 - They do not pay for that.
 - Web search engine followed the Yellow Pages' paid inclusion model.

```
CheapestPhoneCompany
: 가가 가 " ( )
```

Advertisement

Early Stage

- Banner advertisement at popular websites (MSN, CNN, ...)
- The purpose of the advertisement was to convey a positive feeling about their **brand**.
- The advertisement was priced on CPM (cost per mille).

Later

 As the goal of the advertisement was to induce a transaction, the pricing model was changed to CPC (cost per click).

Sponsored Search: GOTO

- Goto was not a search engine in the traditional sense.
 - Your search ranking depended on how much you paid.
 - When the user clicked on a result page, Goto was compensated by the corresponding advertiser.
- Goto users are actively expressing an interest and intent related to the query term.
 - A user typing **iphone** is more likely to buy it than simply browsing news about **iphone**.
 - Auction for keywords: casino was expensive!

25

Sponsored Search: GOTO

- Goto was morphed into Overture, and finally acquired by Yahoo!
 - Meanwhile Goto/Overture's annual revenues were nearing \$1 billion.
- Google added paid-placement ads to the side, independent of search results.
 - Pure search engine + Sponsored search engine

Sponsored Links

Sponsored Links

Sponsored Links

Spam

Trouble with Sponsored Links

- To rank highly, it costs money.
- An alternative is Search Engine Optimization (SEO):
 - Tuning your web page to rank highly in the algorithmic search results for selected keywords.
 - It is an alternative to paying for placement, thus, intrinsically a marketing function.
 - Performed by companies (Search Engine Optimizers) for their clients.
 - Some perfectly legitimate, some very shady.

Search Engine Optimization: Keyword Stuffing

- First generation Search Engines relied heavily on tf·idf.
 Web pages with high tf would rank highly.
 - This led to the first generation of spam.
 - Sophisticated spammers rendered the repeated terms in the same color as the background.
 - Repeated terms got indexed by indexers.
 - But not visible to humans on browsers.
 - Thus, pure word density cannot be trusted as an IR signal.

Search Engine Optimization: Keyword Stuffing

They also use meta-tags.

<meta name="description" content="... London
hotels, hotel, holiday inn, hilton, discount, booking,
reservation, mp3, britney spears, ..." />

- Meta tags are snippets of text that describe a page's content.
- Meta tags don't appear on the page itself, but only in the page's source code.
- Meta tags are essentially little content descriptors that tell
 Search Engines what a web page is about.

As a result, ...

- Search Engine became sophisticated enough to screen out a large number of repetitions of particular keywords.
- Spammers responded with a richer set of spam techniques.
 - Cloaking
 - Doorway Page
 - Click Spam

Search Engine Optimization: Cloaking

- Serve fake content to search engine spider.
 - Indexed by the search engine under misleading keywords.
- When users search for these keywords, they receive different web pages.

Search Engine Optimization: Doorway Page

- A doorway page contains text and meta data carefully chosen to rank highly on selected keywords.
- When a browser request the doorway page, it is redirected to a more commercial page.

Search Engine Optimization: Click Spam

- No universally accepted definition of click spam.
- Example
 - Repeatedly clicking on sponsored search results to exhaust the advertising budget of a competitor.

```
: :
```

Index Size Estimation

Index Size Estimation

- What is the size of web?
 - The web is really infinite.
 - Static web contains duplication, mostly due to mirroring (~40%).
 - Dynamic webe.g. calendar, HTTP 404

HTTP 404 - 파일을 찾을 수 없음 Internet Explorer

- What can we measure?
 - The static web pages are whatever search engines have to index.
 - To know the coverage of a search engine relative to another, we measure the relative index sizes.

Relative Index Sizes of Two Engines

Sample choose URLs randomly from A. Check if contained in B.

$$\rightarrow$$
 A \cap B = (1/2) \times Size A

Sample choose URLs randomly from B. **Check** if contained in A.

$$\rightarrow$$
 A \cap B = (1/6) \times Size B

$$(1/2)\times$$
Size A = $(1/6)\times$ Size B

Each test involves: (i) Sampling URLs (ii) Checking

Relative Index Sizes of Two Engines

- Ideal Strategy
 - Generate a random, uniformly-distributed URL.
 - Check for containment in the index of each engine.
- Problem
 - Random, uniformly-distributed URLs are hard to find!
 - It is enough to generate a random URL contained in a given Engine.
 - Approach 1: Random Searches
 - Approach 2: Random IP Addresses
 - Approach 3: Random Queries
 IP 4
 4

Sampling URLs

- Approach 1: Random Searches
 - Send a random search from a search log.
 - Search log is an accumulation of all search queries of a work group.
 - This may include the bias from the types of searches made by the work group.
 - Pick a random page from the search results.
 - Check if the page is contained in the other engine.

Sampling URLs

- Approach 2: Random IP Addresses
 - Generate a random IP address.
 - Send a request to a web server of that address.
 - Collect all pages at that server.
 - Check if those pages are contained in each engine.

Sampling URLs

- Approach 3: Random Queries
 - Pick a set of random terms from dictionary.
 - Lexicon: 400,000+ words from a web crawl
 - Form a random query with two or more terms connected conjunctively.
 - Do search with the random conjunctive query.
 - Pick a page p at random from the top 100 returned results.
 - Check if the page p is contained in the other engine.

: 가

Duplicate Documents

Duplicate Documents

- The web is full of duplicated content.
 - Mirroring for reliability
 - 40% of the web pages are duplicates of other pages.
 - No need to index multiple copies of the same pages.
 - Save storage space
 - Reduce processing overheads

가

Duplicate Documents

- Duplication
 - Can be detected with a *fingerprint*, a succinct (say 64-bit) digest of the characters on a page.
 - If two fingerprints are equal, we test whether the pages are really equal.
- Near-Duplication
 - There are many cases of near duplication on the web.
 - Compute similarity of two documents.
 - Jaccard Coefficient can be used.
 - Use similarity threshold to detect near duplicates.
 - e.g. Similarity > 80% => Documents are "near duplicates"

Jaccard Coefficient

- Measurement of the overlap of two sets A and B.
 - Jaccard(A, B) = |A ∩ B| / |A ∪ B|
- Always assigns a number between 0 and 1.
 - Jaccard(A, A) = 1
 - Jaccard(A, B) = 0 if A \cap B = \emptyset
- A and B don't have to be the same size.
- Used to measure the similarity of A and B.

Jaccard Coefficient: Scoring Example

- For each of the two documents below, calculate Jaccard Coefficient of them.
 - Document 1: caesar died in march
 - Document 2: the long march in Korea

$$Jaccard(d1, d2) = 2/(4 + 5 - 2) = 1/7 = 0.143$$

• Are the documents duplicates of each other?

d1

can a can can a can? a rose is a rose. she sells sea shells.

d2

she sells a rose. a rose is a can. can a can can sea shells.

- Jaccard(d1, d2) = 15/(15 + 15 15) = 1.0
 Therefore, d1 is a duplicate of d2, or vice versa.
- In reality, they are not!!

:

Use k-gram of terms.d1

can a can can a can? a rose is a rose. she sells sea shells.

can a can a a can a rose can a rose is

...

k 1

d2

she sells a rose. a rose is a can. can a can can sea shells.

she sells a rose sells a rose a a rose a rose rose a rose is a rose is a rose is a can

•••

- Shingling of a document
 - k-shingles of a document d are defined to be a set of all k-grams in d.
 - a rose is a rose is a rose (assume k = 4)

```
a_rose_is_a

rose_is_a_rose

is_a_rose_is

a_rose_is_a
```

 Two documents are near duplicates if the sets of shingles are nearly the same.

- $S(d_j)$: the set of shingles of document d_j
- Similarity is measured by

$$\mathrm{Sim}(d_i,d_j) = \mathrm{Jaccard}(S(d_i),S(d_j)) \, = \, \frac{|S(d_i)\cap S(d_j)|}{|S(d_i)\cup S(d_j)|}$$

- We have to compute Jaccard coefficients for all pairs of web documents.
- Computing <u>exact set intersection</u> of shingles between <u>all pairs</u> of web documents is **expensive** and **intractable**.

- Approximate using a <u>cleverly chosen subset of</u> <u>shingles</u> for each document.
- This subset is called a sketch of the document.
- Calculate similarity based on the short sketch.

- For a document d, a $sketch_d$ is given as follows:
 - Let h be a hash function that maps all shingles in the universe to $[0..2^m]$. $h(a_rose_is_a) = 921037246$
 - Let π_i be a <u>random permutation</u> on $[0..2^m]$.
 - Pick MIN $\{\pi_i(h(s))\}$ over all shingles s for d. (=> $sketch_d$) It is much like a card shuffling and choosing the first one.

Test if $(Sketch_{d_1} == Sketch_{d_2})$

It is much like a card shuffling for both decks and choosing the first one from each deck, and seeing if they are the same one.

- Let S(d1) = {"apple", "banana", "berry"}
 S(d2) = {"cherry", "apple", "lemon", "berry"}
- After hashing

S(d1)	S(d2)
	cherry
berry	berry
	lemon
apple	apple
banana	

After Permutation

S(d1)	S(d2)
	cherry
berry	berry
	lemon
apple	apple
banana	

S(d1)	S(d2)
	lemon
	cherry
apple	apple
berry	berry
banana	

S(d1)	S(d2)
berry	berry
banana	
	cherry
apple	apple
	lemon

Sketch

- Let S(d1) = {"red", "blue", "purple", "green", "yellow"}
 S(d2) = {"blue", "orange", "purple", "violet"}
- After hashing

$$S(d1) = \{1, 2, 4, 5, 7\}$$

 $S(d2) = \{2, 3, 4, 6\}$

Assume the following permutations

$$\pi_1 = \{(1 \to 7), (2 \to 2), (3 \to 4), (4 \to 1), (5 \to 3), (6 \to 6), (7 \to 5)\}$$

$$\pi_2 = \{(1 \to 4), (2 \to 6), (3 \to 5), (4 \to 2), (5 \to 1), (6 \to 7), (7 \to 3)\}$$

$$\pi_3 = \{(1 \to 3), (2 \to 4), (3 \to 1), (4 \to 5), (5 \to 2), (6 \to 7), (7 \to 6)\}$$

• Apply π_1 to S(d1) and S(d2) $\pi_1(S(d1)) = \{7, 2, 1, 3, 5\}$ $\pi_1(S(d2)) = \{2, 4, 1, 6\}$

• After hashing
S(d1) = {1, 2, 4, 5, 7}, S(d2) = {2, 3, 4, 6}

Assume the following permutations

$$\pi_1 = \{(1 \rightarrow 7), (2 \rightarrow 2), (3 \rightarrow 4), (4 \rightarrow 1), (5 \rightarrow 3), (6 \rightarrow 6), (7 \rightarrow 5)\}$$

$$\pi_2 = \{(1 \rightarrow 4), (2 \rightarrow 6), (3 \rightarrow 5), (4 \rightarrow 2), (5 \rightarrow 1), (6 \rightarrow 7), (7 \rightarrow 3)\}$$

$$\pi_3 = \{(1 \rightarrow 3), (2 \rightarrow 4), (3 \rightarrow 1), (4 \rightarrow 5), (5 \rightarrow 2), (6 \rightarrow 7), (7 \rightarrow 6)\}$$

• Apply π_1 , π_2 , π_3 to S(d1) and S(d2)

```
\pi_1(S(d1)) = \{1, 2, 3, 5, 7\}, \ \pi_1(S(d2)) = \{1, 2, 4, 6\} 

\pi_2(S(d1)) = \{1, 2, 3, 4, 6\}, \ \pi_2(S(d2)) = \{2, 5, 6, 7\} 

\pi_3(S(d1)) = \{2, 3, 4, 5, 6\}, \ \pi_3(S(d2)) = \{1, 4, 5, 7\}
```

permutation 3 1 1/3 : 가 가 가

Computation of $Jaccard(S(d_1), S(d_2))$

- Theorem $Sim(d_1, d_2) = Jaccard(S(d_1), S(d_2)) = P(\text{sketch}_{d_1}, \text{sketch}_{d_2})$
- Approximate $Jaccard(S(d_1), S(d_2))$
 - Create a **sketch vector** $sketch_d[]$ (of size < 200) for each document d_1 and d_2
 - \rightarrow Do 200 random permutations: π_1 , π_2 ,..., π_{200}
 - If $(sketch_{d_1}[i] == sketch_{d_2}[i])$ more than t times, then they are **near duplicates**.
 - t is determined empirically.

Computation of $Jaccard(S(d_1), S(d_2))$

- Is sketch efficient?
 - Assume the $S(d_1)$ and $S(d_2)$ are shingles of two documents
 - To compute Jaccard of $S(d_1)$ and $S(d_2)$, we have to know $S(d_1) \cap S(d_2)$ which requires $|S(d_1)| \times |S(d_2)|$ operations
 - Now using the sketch, the number of operation reduces $|S(d_1)| + |S(d_2)|$ for each permutation. As we repeat the permutation P times, total operation required is:

$$(|S(d_1)| + |S(d_2)|) \times P \iff |S(d_1)| \times |S(d_2)|$$

Computation of $Jaccard(S(d_1), S(d_2))$

- Is sketch efficient?
 - Assume that there are N documents in the collection
 - To compute Jaccard of $S(d_i)$ and $S(d_j)$, we have to know $S(d_j) \cap S(d_j)$ which requires $|S(d_i)| \times |S(d_j)|$ operations
 - This should be repeat for all the pairs in the collection
 - Once a sketch vector sketch_d[] is created for each document d in the collection
 - Now using the sketch vectors, It is just 200 iterations of comparison to compute $P(\text{sketch}_{d_i'}, \text{sketch}_{d_j'})$ for a pair of d_i and d_i in the collection

Near Duplicate Documents

- Now we have an extremely efficient method for estimating a Jaccard coefficient for a pair of documents.
- But we still have to estimate N^2 coefficients where N is the number of web pages.
 - Still slow!!

가 가