НИУ «Высшая школа экономики»

Лабораторная работа №1

Изучение статистики распределения параметров номинально одинаковых объектов

Выполнил Никитин Илья БФЗ 191_2

Оглавление

Цель работы	2
теоретическое обоснование	
Экспериментальная установка	
Ход эксперимента	
Измерение масс	
Измерение отклонения от идеальной сферы	
Измерение объемов	
Вычисление плотности	
Вывод:	
= === *□	

Цель работы

При выполнении работы требуется изучить распределение параметров исследуемых объектов (массы, размеров, объёма), оценить их среднюю плотность и сделать вывод, сделаны ли эти элементы из одного материала или нет.

Теоретическое обоснование

$$\sigma_{x} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - x_{cp})^{2}}$$
 -стандартное отклонение величины х

$$\sigma_{x_{cs}} = \frac{\sigma_{x}}{\sqrt{n}}$$
 -случайная погрешность

$$\sigma_{_{X_{abc}}} \! = \! \sqrt{\sigma_{_{X_{cs}}}^2 \! + \! \Delta_{_{\mathbf{g}}}^2} \;$$
 -абсолютная погрешность

$$\sigma_{f(x,y)} = \sqrt{\left(\partial \frac{f}{\partial x} \sigma_x\right)^2 + \left(\partial \frac{f}{\partial y} \sigma_y\right)^2}$$
 -абсолютная погрешность f(x,y)

Определение плотности веществ, из которых изготовлены исследуемые объекты: $\rho = \frac{m}{V}$

Экспериментальная установка

- Электронные ювелирные весы с погрешностью ±0,01г
- Мензурка с погрешностью ±0,5мл
- Микрометр с погрешностью ±0,005 мм

Ход эксперимента

Измерение масс

В ходе работы я измерил массы таблеток, а также шариков трех разных цветов, результаты измерений занесены в соответствующую таблицу:

	Бледно-голубые		емно-зелёные		Прозрачно-бирюзовые		Таблетки Сини
N₂	Массы, гр	Ne	Macca, rp	Ne	Масса, гр	N≘	Macca, rp
1	5.16	1	5.21	1	4,96	1	6,27
2	4.93	2	5.53	2	5,51	2	5,99
3	5.15	3	5.19	3	5,36	3	6,19
4	5.34	4	5.25	4	5,36	4	5,46
5	4.77	5	5.23	5	5.25	5	5,91
6	4.89	6	5.42	6	5.56	6	5.88
7	5.15	7	5.46	7	5,40	7	5,73
8	5.26	8	5.13	8	5.23	8	5,86
9	4.99	9	5.20	9	5.86	9	6,13
10	5.25	10	5.23	10	5.26	10	6.11
11	5.29	11	4.98	11	5.21	11	5,98
12	4.67	12	5.26	12	5,20	12	5,92
13	5.11	13	5.18	13	5,39	13	5,73
				14			
14	5.34	14	5.44		4,90	14	5,64
15	4.85	15	5.46	15	4,96	15	6,09
16	5.05	16	5.09	16	5,65	16	5,70
17	4.84	17	5.14	17	5,69	17	6,28
18	5.60	18	5.42	18	5,21	18	5,47
19	5.36	19	5.09	19	5,10	19	5,64
20	5.24	20	5.19	20	5,59	20	5,73
21	4.77	21	5.33	21	5,47	21	5,90
22	4.70	22	5.51	22	5,26	22	5,10
23	5.11	23	5.21	23	5.41	23	6,20
24	4.70	24	5.36	24	5.68	24	6.09
25	4.82	25	5.10	25	5,48	25	5,95
26	5.20	26	5.29	26	5.05	26	6,31
27	4.68	27	5.24	27	5.38	27	6,11
28	5.15	28	5.57	28	5,64	28	5,67
29	4.93	29	5.49	29	5,61	28	6,40
30	4.93 5.16	30	5.49	30	5,66	30	5.62
31	5.28	31	5.58	31	5,06	31	5,39
32	4.81	32	4.99	32	5,59	32	5,53
33	4.93	33	5.68	33	5,00	33	6,37
34	5.11	34	5.34	34	5,64	34	6,14
35	4.57	35	5.81	35	5,78	35	5,63
36	5.06	36	5.46	36	5,11	36	6,30
37	5.22	37	5.59	37	4,71	37	5,95
38	5.23	38	5.49	38	5.78	38	6,11
39	5.28	39	5.61	39	5.48	39	5,97
40	5.15	40	5.69	40	5.34	40	6.33
41	5.00	41	5.33	41	5.21	41	5,54
42	5.21	42	5.44	42	5.51	42	5.81
43	4.92	43	5.32	43	5.45	43	5,47
44	5.11	44	5.00	44	5.50	44	6.10
45	5.09	45	5.15	45	5.18	45	6,00
45	5.00	45	5.40	45	5,16	45	5,58
	4.45	40	5.40	46			5,58
47					5,06	47	
48	5.01	48	5.38	48	5,50	48	5,58
49	5.03	49	5.30	49	5,47	49	5,75
50	4.97	50	5.40	50	5,48	50	5,80
51_	5.37			51	5,29		
52	5.49						
53	5.40						
54	5.45				i		
55	5.39						
56	5.40				I		
57	5.37						

По результатам экспериментов были построены гистограммы распределения масс в таблетках и шарах различных цветов:

Рассчитаем погрешность измерения массы:

Стандартное отклонение массы:
$$\sigma_m = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (m_i - m_{cp})^2}$$

$$\sigma_{\it mбледно-голубых}$$
=0,2488

$$\sigma_{m meмнo-зеленых}$$
=0,1901

$$\sigma_{mnpo3pa4hыx\,бирюзовыx}$$
=0,2540

$$\sigma_{m maблеток}$$
=0,2951

Находим случайную погрешность массы: $\sigma_{m_{ci}} = \frac{\sigma_m}{\sqrt{n}}$

$$\sigma_{\it m_{\it cn}}$$
бледно-голубых $=$ 0,0330

$$\sigma_{m_{\circ},m$$

$$\sigma_{\rm m_{ci}}$$
прозрачных бирюзовых $=$ 0,0356

$$\sigma_{m_{c_n}$$
таблеток}=0,0417

Учитывая инструментальную погрешность весов $\Delta_{\scriptscriptstyle \! B} = 0.01~\it e$, абсолютная погрешность массы

равна:
$$\sigma_{m_{aбc}} = \sqrt{\sigma_{m_{cn}}^2 + \Delta_{e}^2}$$

$$\sigma_{m_{abc}}$$
бледно-голубых $=0$,0344

$$\sigma_{m_{off}, memho-3enehux} = 0,0287$$

$$\sigma_{\it m_{\it abc}}$$
прозрачных бирюзовых $=$ 0,0370

$$\sigma_{\it m_{\it abc}\it maблеток}$$
=0,0429

Измерение отклонения от идеальной сферы

В ходе работы у бледно-голубых шаров были измерены поперечные размеры в 5 различных осях:

	Бледно-голубые					
Nº	Массы, гр	Диаметр 1, мм	Диаметр 2, мм	Диаметр 3, мм	Диаметр 4, мм	Диаметр 5, мм
1	5,16	15,91	15,89	15,92	15,93	15,95
2	4,50	15,17	15,18	15,20	15,21	15,22
3	4,93	15,65	15,67	15,64	15,68	15,65
4	5,15	15,90	15,93	15,87	15,91	15,84
5	5,34	16,07	16,04	16,08	16,08	16,13
6	4,77	15,47	15,55	15,51	15,49	15,54
7	4,89	15,61	15,66	15,62	15,63	15,63
8	5,15	15,92	15,91	15,38	15,92	15,89
9	5,26	15,94	16,00	15,99	15,98	15,97
10	4,99	15,76	15,74	15,74	15,77	15,69
11	5,25	15,95	15,96	15,97	15,93	15,96
12	5,29	16,05	16,06	16,06	16,05	16,08
13	4,67	15,35	15,33	15,34	15,37	15,34
14	5,11	15,80	15,85	15,84	15,86	15,81
15	5,34	16,34	16,09	16,23	16,15	16,27
16	4,85	15,63	15,64	15,61	15,57	15,59
17	5,05	15,74	15,83	15,79	15,71	15,78
18	4,84	15,55	15,53	15,50	15,54	15,57
19	5,60	16,20	16,31	16,19	16,32	16,26
20	5,36	15,99	16,09	16,07	16,17	16,01

Найдем ошибку диаметра для каждого шарика по формулам: $\sigma_d = \sqrt{\frac{1}{n-1}\sum_{i=1}^n \left(d_i - d_{cp}\right)^2}$

$$\sigma_{d_{cs}} = \frac{\sigma_d}{\sqrt{n}}$$
 $\sigma_{d_{a6c}} = \sqrt{\sigma_{d_{cs}}^2 + \Delta_e^2}$

No	Ошибка диаметра
1	0,011
2	0,011
3	0,009
4	0,017
5	0,015
6	0,016
7	0,010
8	0,010
9	0,011
10	0,015
11	0,008
12	0,007
13	0,008
14	0,013
15	0,044
16	0,014
17	0,021
18	0,013
19	0,027
20	0,032

Найдем среднее отклонение как среднюю ошибку диаметра: $\sigma_{cp.om\kappa n} = \frac{\sum\limits_{i=1}^{n} \sigma_{d_{osc}i}}{n}$

$$\sigma_{\it cp.omкл}$$
 $=$ 0.0156

Измерение объемов

В ходе работы были измерены объемы шаров и таблеток с помощью нескольких мензурок:

	Прозрачные бирюзовые					
Nº	Кол-во шариков	Кол-во шариков Общая масса, гр				
1	1	5,23	2			
2	2	10,42	4			
3	3	15,86	6			
4	4	21,19	8			
5	5	26,99	10			
6	10	53,00	21			
7	20	107,00	43			
8	40	213,59	85			
9	60	321,77	127			
		Бледно-голубые				
Nº	1/	06	06			
145	Кол-во шариков	Общая масса, гр	Объем, мл			
1	кол-во шариков	5,22	2			
1	1	5,22	2			
1 2	1 2	5,22 10,01	2 4			
1 2 3	1 2 3	5,22 10,01 15,10	2 4 6			
1 2 3 4	1 2 3 4	5,22 10,01 15,10 20,02	2 4 6 8			
1 2 3 4 5	1 2 3 4 5	5,22 10,01 15,10 20,02 25,37	2 4 6 8 10			
1 2 3 4 5 6	1 2 3 4 5	5,22 10,01 15,10 20,02 25,37 49,60	2 4 6 8 10 21			
1 2 3 4 5 6 7	1 2 3 4 5 10 20	5,22 10,01 15,10 20,02 25,37 49,60 98,56	2 4 6 8 10 21 41			

		Тёмно-зеленые	
No	Кол-во шариков	Общая масса, гр	Объем, мл
1	1	4,69	2
2	2	10,16	4
3	3	15,32	6
4	4	20,00	8
5	5	25,50	11
6	10	51,72	21
7	20	105,87	43
8	40	211,30	85
9	60	318,11	127
		Tof poting outling	

		Таблетки синие	
Nº	Кол-во таблеток	Общая масса, гр	Объем, мл
1	1	5,89	2
2	2	11,59	5
3	3	17,11	7
4	4	22,91	10
5	5	28,64	12
6	10	57,96	25
7	20	115,58	50
8	30	176,31	75
9	50	294,13	124

Найдем ошибку объема по данным эксперимента 9 (так как чем больше тел одновременно, тем выше точно) формулам, написанным выше:

	Ошибка объема
Бледно-голубые	0,0083
Темно-зелёные	0,0083
Прозрачные бирюзовые	0,0083
Таблетки синие	0,0100

Вычисление плотности

По полученным данным построим графики зависимости m(V), а так же посчитаем погрешности измерений плотности:

Для вычисления плотности воспользуемся формулой: $\sigma_{f(x,y)} = \sqrt{\left(\partial \frac{f}{\partial x} \sigma_x\right)^2 + \left(\partial \frac{f}{\partial y} \sigma_y\right)}$

$$\sigma_{\rho} = \sqrt{\left(\partial \frac{\rho}{\partial V} \sigma_{V}\right)^{2} + \left(\partial \frac{\rho}{\partial m} \sigma_{m}\right)^{2}}$$

	Средний объем		Средняя масса Ошибка объема		Ошибка плотности
Бледно-голубые	2,12	5,36	0,0083	0,0344	0,0191
Темно-зелёные	2,05	5,03	0,0083	0,0287	0,0172
Прозрачные бирюзовые	2,12	5,30	0,0083	0,0370	0,0200
Таблетки синие	2,48	5,88	0,0100	0,0429	0,0198

Итоговая таблица значений:

	Средняя плотность, г/мл^3	Средний объем, мл^3	Средняя масса, г	Ошибка объема, мл^3	Ошибка массы, г	Ошибка плотности, г/мл^3	Плотность, г/мл^3	Объем, мл^3	Macca, r
Бледно-голубые	2,53	2,12	5,36	0,0083	0,0344	0,0191	2,53 ± 0,02	2,12 ± 0,01	$5,36 \pm 0,03$
Темно-зелёные	2,45	2,05	5,03	0,0083	0,0287	0,0172	2,45 ± 0,02	2,05 ± 0,01	5,03 ± 0,03
Прозрачные бирюзовые	2,50	2,12	5,30	0,0083	0,0370	0,0200	2,50 ± 0,02	2,12 ± 0,01	5,30 ± 0,04
Таблетки синие	2,37	2,48	5,88	0,0100	0,0429	0,0198	2,37 ± 0,02	2,48 ± 0,01	5,88 ± 0,04

Вывод:

- 1. В ходе работы были измерены массы таблеток и шариков различного цвета. Результаты измерений показали, что распределение масс удовлетворяет распределению Гаусса.
- 2. С помощью мензурки были получены значения объема шариков и таблеток, опыт с измерением объема большого количества шариков одновременно позволил довольно точно определить объем. Так же была посчитана плотность материала, из которого сделаны шарики и таблетки.
- 3. С помощь ю микрометра было получено среднее отклонение шарика от идеальной сферы. Оно довольно мало и позволяет считать шарики идеальными сферами
- 4. Плотность всех видов шариков с хорошей точностью совпадает с плотностью силикатного стекла $\rho_{\text{силикат}}=2$,5 г/мл 3 . Плотность таблеток позволяет предположить, что таблетки сделаны из кварцевого стекла плотностью $\rho_{\text{кварц}}=2$,2 г/мл 3