$\underline{\mathbf{Auteur}}: \mathbf{Abdoulaye} \ \mathbf{DABO}$

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Définition	2
2	Forme algébrique	2
3	Nombres Complexes et Géométrie	3
4	Forme trigonométrique	4
5	Forme exponentielle dun nombre complexe	4
6	Racine n-ième d'un nombre complexe	4
7	Racine $n-ime$ de l'unité	5
8	Equation du second degré à coéfficients complexes	5

1 Définition

Définition 1.1

Les nombres complexes sont les nombres qui s'écrivent sous la forme z = a + ib où a et b sont des réels.

Le nombre i verifie $i^2 = -1$.

On note $\mathbb C$ l'ensemble des nombres complexes.

L'addition et la multiplication dans \mathbb{C} suivent les mêmes règles que dans \mathbb{R} .

Définition 1.2

Le module d'un nombre complexe z=a+ib est le réel noté $||z||=\sqrt{a^2+b^2}$.

Proprieté 1

Pour tout nombres complexes z et z':

- si z = x + iy, $x \in \mathbb{R}$ et $y \in \mathbb{R}$, $z\overline{z} = |z|^2 = x^2 + y^2$
- $\bullet \ |-z| = |z| \qquad \bullet \ |\overline{z}| = |z|$
- $|z + z'| \le |z| + |z'|$ (inégalité triangulaire)
- |zz'| = |z| |z'| $|z^n| = |z|^n$ $\frac{|z|}{|z'|} = \left|\frac{z}{z'}\right|$

2 Forme algébrique

Définition 2.1

L'écriture z = a + ib est la forme algébrique du nombre complexe z. Le nombre x est la partie réelle de z et le nombre y est la partie imaginaire de z. On les notes respectivement par $\mathbf{Re}(\mathbf{z})$ et $\mathbf{Im}(\mathbf{z})$.

z est un réel \Leftrightarrow $\mathbf{Im}(\mathbf{z}) = 0$

z est un imaginaire pure $\Leftrightarrow \mathbf{Re}(\mathbf{z}) = 0$.

Proprieté 2

Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire : soit z = x + iy et z' = x' + iy', avec x, y, x' et y' quatre nombres réels, alors,

$$z = z' \iff \left(x = x' \text{ et } y = y'\right)$$

Définition 2.2

Le conjugué dun nombre complexe z=a+ib est le nombre complexe noté : $\overline{z}=a-ib$

Proprieté 3

$$\bullet \ \overline{\overline{z}} = z \qquad \bullet \ z\overline{z} = x^2 + y^2 \qquad \bullet \ \overline{zz'} = \overline{z}\overline{z'} \qquad \bullet \ \overline{z^n} = \overline{z}^n$$

•
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

• si
$$z \neq 0$$
, $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$ • si $z' \neq 0$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$

•
$$z + \overline{z} = 2 \mathbf{Re}(\mathbf{z})$$
 et donc, z imaginaire pur $\iff \mathbf{Re}(\mathbf{z}) = 0 \iff z = -\overline{z}$

•
$$z - \overline{z} = 2i\mathbf{Im}(\mathbf{z})$$
, et donc, $z \in \mathbb{R} \iff \mathbf{Im}(\mathbf{z}) = 0 \iff z = \overline{z}$

3 Nombres Complexes et Géométrie

Le plan est rapporté à un repère orthonormal $(O; \vec{u}, \vec{v})$ direct. A tout nombre complexe z = x + iy, $x \in \mathbb{R}$, $y \in \mathbb{R}$, on associe le point M de coordonnées M(x; y). On dit que z est l'affixe du point M, ou du vecteur \overrightarrow{OM} ; et que le point M, ou le vecteur \overrightarrow{OM} est l'image de z.

La distance $OM = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}$ est égale au **le module** du nombre complexe z.

Définition 3.1

Soit dans le plan complexe un point M d'affixe $z=x+iy,\,x\in\mathbb{R},\,y\in\mathbb{R}.$

On appelle **argument** du nombre complexe non nul z, noté $\arg(z)$, toute mesure en radians de l'angle orienté : $\left(\overrightarrow{u},\overrightarrow{OM}\right)$.

Remarque:

• Un nombre complexe non nul z a une infinité d'arguments : si θ est un de ces arguments, alors tous les autres sont de la forme $\theta + k2\pi$, $k \in \mathbb{Z}$.

On note $\arg(z) = \theta$ (modulo 2π), ou $\arg(z) = \theta$ [2π], ou encore, pour simplifier (mais alors par abus de langage), $\arg(z) = \theta$.

• Si z est un réel $(z = x + i \times 0)$, alors |z| = |x|: le module coïncide avec la valeur absolue pour les nombres réels.

4 Forme trigonométrique

Définition 4.1

La forme trigonométrique dun nombre complexe z ($z \neq 0$) est de la forme : $z = r(cos(\theta) + isin(\theta))$ avec : avec r = ||z||, le module de z et θ un argument de z.

5 Forme exponentielle dun nombre complexe

Pour tout réel θ , on pose : $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Ainsi $z = re^{i\theta}$ avec r = ||z|| et θ un argument de z.

Si z est un réel, $z = re^{i\theta}$ avec $\theta = 0$ mondulo 2π .

Si z est un imaginaire pure, $z=re^{i\theta}$ avec $\theta=\frac{\pi}{2}$ mondulo $2\pi.$

• Formule d'Euler

$$\forall x \in \mathbb{R} \cos(x) = \frac{1}{2}(e^{ix} + e^{-ix}) \text{ et } \sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix})$$

• Formule de Moivre

$$\forall \ \theta \in \mathbb{R} \ \mathrm{et} \ \forall \ n \in \mathbb{N}^*, \ \left(e^{i\theta}\right)^n = e^{in\theta}$$

6 Racine n-ième d'un nombre complexe

Définition 6.1

Soit Z un nombre complexe, on appelle racine **n-ième** de Z tout nombre complexe z tel que $z^n = Z$.

L'équation complexe $z^n = Z$ admet n racines distinctes.

Son ensemble solution est donné par $\mathbb{S}_n = \{r^{\frac{1}{n}}e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}, k \in \{0,, n-1\}\}$ avec r = ||z|| et θ un argument de z

Exemple

Résoudre dans \mathbb{C} léquation $z^3 = \sqrt{3} + i$.

Posons $Z = \sqrt{3} + i$ On a : $|Z| = |\sqrt{3} + i| = \sqrt{3 + 1} = 2$

L'écriture trigonométrique de $Z=2(\frac{\sqrt{3}}{2}+i\frac{1}{2}).$ On voit que $Arg(Z)=\frac{\pi}{6}$

Les solutions sont : $z_k = 2^{\frac{1}{n}} e^{i(\frac{\pi}{18} + \frac{2k\pi}{3})}$, $k \in \{0, 1, 2\}$.

7 Racine n-ième de l'unité

Définition 7.1

On appelle racine n-ime de l'unité tous les nombres complexes z vérifiant : $z^n=1$. L'ensemble des racines n-imes de lunité est donne par $\mathbb{S}_n=\{e^{i\frac{2k\pi}{n}},k\in\{0,....,n-1\}\}$

Théorème 7.1

Les racines n-imes dun nombre complexe Z sont exactement les produits de lune dentre elles avec les racines n-imes de lunité. Autrement dit, si z est tel que $z^n=Z$, alors $\mathbb{S}_n=\{ze^{i\frac{2k\pi}{n}},\ k\in\{0,....,n-1\}\}$

8 Equation du second degré à coéfficients complexes

L'équation $az^2 + bz + c = 0$, où $a \neq 0$, b et c sont trois réels, de discriminant $\Delta = b^2 - 4ac$ admet :

- $\bullet\,$ si $\Delta=0,$ une solution réelle double $z=-\frac{b}{2a}$
- si $\Delta > 0$, deux solutions réelles distinctes $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- si $\Delta < 0$, deux solutions complexes conjuguées :

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$
 et , $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$

Dans tous les cas, le trinôme du second degré se factorise selon (avec éventuellement $z_1 = z_2$) : $az^2 + bz + c = a(z - z_1)(z - z_2)$.

Merci de signaler toutes erreurs via WhatsApp: +221777426690