Fonction racine carrée

I) Définition

On appelle fonction racine carrée, la fonction définie sur l'intervalle [0 ; + ∞ [, qui a tout réel x associe \sqrt{x} nombre réel positif tel que $\left(\sqrt{x}\right)^2 = x$

On notera dans la suite $f(x) = \sqrt{x}$

Exemples:

$$f(4) = 2$$
; $f(100) = 10$; $f(0) = 0$; $f(\frac{1}{9}) = \frac{1}{3}$

II) Etude

1) Variations de f sur $[0; + \infty]$

Soient u et v deux réels positifs ou nuls

Comparons f(u) et f(v)

On sait que $(\sqrt{u}-\sqrt{v})(\sqrt{u}+\sqrt{v})=\sqrt{u}^2-\sqrt{v}^2=u-v$ d'après la définition de f Donc $f(u)-f(v)=\frac{u-v}{\sqrt{u}+\sqrt{v}}$

d'où f(u) - f(v) possède le même signe que u - v (car $\sqrt{u} + \sqrt{v} \ge 0$ par définition)

La fonction f est donc strictement croissante sur $[0; +\infty[$,

2) Tableau de variations et courbe :

a) Tableau de variations :

b) Courbe

III) Compléments

1) Equations et inéquations:

a) Equation $\sqrt{x} = k$ avec x positif ou nul

D'après la définition de la fonction racine carrée, on a :

- Si k ≥ 0 √x = k possède une solution x = k²
 Si k < 0 √x = k ne possède aucune solution.

Exemples:

- **1°)** Résoudre l'équation $\sqrt{x} = 5$ Solution x = 25
- **2°)** Résoudre l'équation $\sqrt{x} = -3$ L'équation n'a aucune solution

b) Equation $\sqrt{x} = \sqrt{y}$ avec x et y positifs ou nuls

La fonction racine carrée étant strictement croissante sur [0; +∞[l'équation $\sqrt{x} = \sqrt{y}$ avec x et y positifs ou nuls est équivalente à l'équation x = y

Exemples:

- **1°)** Résoudre l'équation $\sqrt{x} = \sqrt{2}$. La solution de cette équation est x = 2
- **2°)** Résoudre l'équation $\sqrt{3x-4} = \sqrt{x}$.

On ne peut résoudre cette équation que si $3x - 4 \ge 0$ et $x \ge 0$ soit $x \ge \frac{4}{3}$

Si $x \ge \frac{4}{3}$ alors l'équation est équivalente à 3x - 4 = x soit x = 2

L'équation admet donc une solution x = 2 car $2 \ge \frac{4}{3}$.

3°) Résoudre l'équation $\sqrt{2x-8} = \sqrt{2-x}$.

On ne peut résoudre cette équation que si : $2x - 8 \ge 0$ et $2 - x \ge 0$ c'est-à-dire:

$$x \ge 4$$
 et $x \le 2$ ce qui est impossible donc $S = \emptyset$.

4°) Résoudre l'équation $\sqrt{5x+10} = \sqrt{20x+50}$.

On ne peut résoudre cette équation que si $5x + 10 \ge 0$ et $20x + 50 \ge 0$

soit
$$x \in [-2; +\infty[$$
 alors l'équation est équivalente à $5x + 10 = 20x + 50$
soit $x = -\frac{40}{15}$

Mais $-\frac{40}{15} \notin [-2; +\infty[$ donc **l'équation n'a aucune solution**.

5°) Résoudre l'équation $\sqrt{4-x^2} = \sqrt{x+1}$

. On ne peut résoudre cette équation que si $4 - x^2 \ge 0$ et $x + 1 \ge 0$

soit $x \in [-1;2]$ alors l'équation est équivalente à $4-x^2=x+1$

C'est-à-dire : $-x^2 - x + 3 = 0$

$$\Delta = 1 - 4 \times (-1) \times 3 = 13$$

$$x_2 = \frac{1+\sqrt{13}}{-2} < -2$$
 et $x_2 = \frac{1-\sqrt{13}}{-2}$ $1 < x_2 < 2$ donc l'équation a une solution $\frac{1-\sqrt{13}}{-2}$

L'interprétation géométrique de cette équation est l'intersection d'un demi-cercle avec une demi-parabole

c) Inéquation $\sqrt{x} \le \sqrt{y}$ avec x et y positifs ou nuls

Inéquation $\sqrt{x} \le a$

Si a < 0 l'inéquation n'a **aucune solution** car \sqrt{x} est positif ou nul

Si **a** ≥ **0** l'inéquation a pour ensemble de solutions l'intervalle [0 ; a²]

Inéquation $\sqrt{x} \ge a$

Si **a < 0** l'inéquation **a** pour solutions

I'ensemble \mathbb{R} car \sqrt{x} est positif ou nul

Si $a \ge 0$ l'inéquation a pour ensemble de solutions

I'intervalle [a^2 ; + ∞ [

Exemples:

- **1°)** Résoudre l'inéquation $\sqrt{x} \le 3$
- L'ensemble des solutions: $x \in [0; 9]$
- **2°)** Résoudre l'inéquation $\sqrt{x} \ge -2$
- L'ensemble des solutions : \mathbb{R}
- **3°)** Résoudre l'inéquation $\sqrt{x} \le -1$
- L'ensemble des solutions: Ø
- **4°)** Résoudre l'inéquation $\sqrt{x} \ge \frac{3}{5}$
- L'ensemble des solutions: $\left[\frac{9}{25}; +\infty\right]$

Autre exemple : Résoudre l'inéquation $\sqrt{2-x} \ge \sqrt{x+3}$

On ne peut résoudre cette équation que si $2 - x \ge 0$ et $x + 3 \ge 0$

soit
$$x \in [-3; 2]$$

alors l'inéquation est équivalente à $2 - x \ge x + 3$

soit
$$2x \leq -1$$

soit $2x \le -1$ C'est-à-dire : $x \le -\frac{1}{2}$

Donc
$$x \in [-3; -\frac{1}{2}]$$

L'ensemble des solutions est donc : $[-3; -\frac{1}{2}]$

2) Remarque:

Si on trace en repère orthonormé la représentation graphique de la fonction f définie par $f(x) = \sqrt{x}$ et celle de la fonction g définie par $g(x) = x^2$ avec $x \ge 0$ alors les deux courbes sont symétriques par rapport à la droite d'équation y = x.

On peut à partir du graphique précédent conclure que :

Si $x \in [0;1]$ on a $x^2 \le x \le \sqrt{x}$

Si i $x \in [1; +\infty[$ on a $\sqrt{x} \le x \le x^2$