Algorithmic Programming

- 1. Introduction
 - What Is Algorithm Programming and Analysis?
 - Big-O Notation
 - Case Study: An Anagram Detection Example
 (http://interactivepython.org/courselib/static/pythonds/Algorith mAnalysis/AnAnagramDetectionExample.html)
 - Solution 1: Checking Off
 - Solution 2: Sort and Compare
 - Solution 3: Brute Force
 - Solution 4: Count and Compare
 - Performance of Python Data Structures Compared to C
 - Lists
 - Dictionaries
- 2. Basic Data Structures
 - Linear Structures
 - Stack
 - Python Implementation
 - LAB: Balance Parentheses
 (https://www.reddit.com/r/dailyprogrammer/comments/5llk
 bj/2017012_challenge_298_easy_too_many_parentheses/)
 - Queue
 - Python Implementation
 - LAB: Printer Queue
 - Deque
 - Python Implementation
 - LAB: Palindrome Checker
 - List
 - Python Implementation
 - Unordered List

- Ordered List
- Linked List
- Union Find
 - Python Implementation
 - Union Find By Rank

3. Recursion

- Introduction
- The Three Laws of Recursion
 - A recursive algorithm must have a base case.
 - A recursive algorithm must change its state and move toward the base case.
 - A recursive algorithm must call itself, recursively.
- LAB:
 - Sierpinski Triangle
 - Tower of Hanoi
 - Exploring a Maze
- Dynamic Programming
 - Longest Common Sunsequence Algorithm Python Implementation
- 4. Sorting and Searching
 - Introduction
 - The Sequential Search
 - Python Implementation of Sequential Search
 - The Binary Search
 - Python Implementation of Binary Search
 - Hashing
 - Hash Functions
 - Collision Resolution
 - Python Implementation of Hashing
 - Sorting
 - The Bubble Sort

- The Selection Sort
- The Insertion Sort
- The Shell Sort
- The Merge Sort
- The Quick Sort
- 5. Trees and Tree Algorithms
 - Introduction
 - Terms and Definitions
 - Tree Traversals
 - Binary Heap Implementation
 - Binary Heap Operations
 - The Structure Property
 - The Heap Order Property
 - Heap Operations
 - Binary Search Trees
 - LAB: https://medium.com/@jamis/weekly-programming-challenge-1-55b63b9d2a1#.nbxbfoxb6
 - Balanced Binary Search Trees
 - Search Trees
 - Search Tree Implementation
 - AVL Tree Performance
 - Python Implementation
- 6. Graphs and Graph Algorithms
 - Introduction
 - Terms and Definitions
 - An Adjacency Matrix
 - Python Implementation
 - Breadth First Search
 - Python Implementation
 - LAB: The Knight's Tour Problem
 - Depth First Search

- Python Implementation
- Topological Sorting
- Shortest Path Problems
- o Dijkstra's Algorithm
 - Python Implementation
 - Speeding up Dijkstra