CAIRO UNIVERISITY

FACULTY OF SCIENCE

MATHEMATICS DEPARTMENT

Exam Midterm Math 493 (Operations research) 4th year

Time allowed: 45 minutes

Date: 10-12-2020

Answer the following questions:

1) Consider the following (LP) problem:

Maximize
$$Z=3x_1+x_2+5$$

Subject to:

$$x_1 + x_2 = 3$$

$$x_1 + 3x_2 \le 8$$

$$2x_1 + x_2 \le 3$$
; $x_1, x_2 \ge 0$

- a) Solve the above (LP) problem by:
- i) Graphical method and specify S, θ , θ_x and θ_μ . ii) Two-Phase technique.

 - b) Find redundant constraints and degenerate points of this (LP) problem.
 - c) Find the Dual problem of the (LP) problem after change x_2 by x_2 free.
- 2) a) prove that if a maximize (LP) problem in standard form has finite optimal solution then it has an extreme optimal point.
 - b) The following tableau represents a Minimize (LP) problem in standard form:

	X ₁	X ₂	X ₃	X ₄	X ₅	Solution
Z-eqn.	0	b	e	0	0	-9
	1	c	1	0	0	a
	0	d	-1	1	0	2
	0	-1	1	0	1	4

Give conditions on the parameters a, b, c, d, and e so that:

i) The table is in optimal form. ii) The table is in unbounded form. ... iii) The table is in infeasible form (2).

G-ve Sol. 113 Weget in

Best Wishes

infeasible form(1)

3 bi 60, aix 7,0, 4x2,0 3 bi to , aix = 0 4 K;

CAIRO UNIVERISITY

FACULTY OF SCIENCE

MATHEMATICS DEPARTMENT

Math 493 (Operations research) 4th years

2nd Mid Term Exam

Time allowed: 1Hr

Date: 28-12-2020

Answer the following questions:

(1) Solve the following (ILP) problem by apply Gomory's cutting plane method

Minimize
$$Z = x_1 - 2x_2$$

Subject to $2x_1 + x_2 \le 5$
 $-4x_1 + 4x_2 \le 5$

 $x_1, x_2 \ge 0$ And integers

The optimal continuous solution for given (ILP) problem is given by the table:

Basis	X ₁	X ₂	X ₃	X ₄	Solution
Z	0	0	-1/3	-5/12	-15/4
X ₁	1	0	1/3	-1/12	5/4
X ₂	0	1	1/3	1/6	5/2

(2) Solve the following (FLP) problem

Max
$$\frac{x_1+2x_2}{4x_1+3x_2+3}$$

Subject to $x_1+x_2 \le 2$; $-x_1+x_2 \le 1$
 $x_1, x_2 \ge 0$

- (3) Select (True) or (False) and correct the wrong answer for the following statements:
- a. The dual simplex method solves any (LP) problem. *
- b. The feasible region of (ILP) problem is convex set. discovere
- c. In (FLP) problem the objective function

$$w = \frac{p^t x + a}{q^t x + b} ;$$

$$(q^t x + b) > 0 \quad or \quad (q^t x + b) < 0$$

$$\forall x \in S$$

- d. The feasible region of (FLP) problem is discrete set. Linear
- e. The variables in (ILP) problem are non-negative and integers.