Problem Set 1, Solutions

August 22, 2020

1. Consider n straight lines. They divide the plane into segments. Prove that it is always possible to paint those segments in two colors such that adjacent¹ segments have different colors

Hint: Use induction

Solution: Consider n = 1. The plane is therefore divided into coordinates such that $y > m_1x + b_1$ and $y < m_1x + b_1$. Paint the former points red and the latter blue, and we are done. Now, consider the case that we have a map with n - 1 lines. Assume that the map has been painted red and blue so adjacent segments have different colors. Now, add a line $y = m_nx + b_n$. For any two segments not in contact with this new line, the rules are satisfied by assumption. Consider all points such that $y < m_nx + b_n$. In this half-plane, the rules are satisfied, and we can flip all the colors and still satisfy the coloring rule, since the rules were satisfied in this half-plane with only n-1 lines. If we flip all the colors in this half-plane, then the coloring rules are satisfied along the boundary $y = m_nx + b_n$ as well, as now all segments divided by $y = m_nx + b_n$ are now split into two colors.

2. Suppose that $a_1 = 1$ and $a_{n+1} = 2a_n + 1$ and for any $n \ge 1$. Find the value of a_n . Hint: Calculate the first values of a_1, a_2, a_3, \ldots and try to guess the general formula. Then use induction.

Solution: If $a_1 = 1 = 2^1 - 1$, then by the formula, $a_2 = 3 = 2^2 - 1$. Thus, $a_3 = 7 = 2^3 - 1$. We posit that $a_n = 2^n - 1$. Assume $a_n = 2^n - 1$. Consider the form of $a_{n+1} = 2a_n + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 1$, as desired.

3. Prove the second De Morgan's Law: $(A \cup B)^c = A^c \cap B^c$.

First, we show that $(A \cup B)^c \subset A^c \cap B^c$. Let $x \in (A \cup B)^c$. Thus, $x \notin A \cup B$. Therefore, x is not in A or B. Thus, x must be in A^c , and likewise, x must be in B^c . Therefore, $x \in A^c \cap B^c$, and thus $(A \cup B)^c \subset A^c \cap B^c$.

Now, we show that $A^c \cap B^c \subset (A \cup B)^c$. Let $x \in A^c \cap B^c$. Thus, $x \notin A$ and $x \notin B$. To be in $A \cup B$, it must be that x is in at least one of A or B, however x is in neither. Therefore, $x \in (A \cup B)^c$. Thus, $A^c \cap B^c \subset (A \cup B)^c$.

4. Suppose $A = \{2k+1 \mid k \in \mathbb{Z}\}$, $B = \{3k \mid k \in \mathbb{Z}\}$ (i.e. A is the set of odd numbers and B is the set of numbers divisible by 3). Find $A \cap B$ and $B \setminus A$.

 $A \cap B$ is the set of all numbers divisible by 3 which are odd. We find an expression for $A \cap B$ similar to that for the component sets. For $x \in A$, there exists k_a such that $x = 2k_a + 1$, and for $y \in B$, there exists k_b such that $y = 3k_b$. Now, consider that any element in $A \cap B$ is the

 $^{^{1}}$ Adjacent = have common interval

product of elements in $A \cap B$, i.e. if x is odd and divisible by 3, and y is odd and divisible by 3, then xy is odd and divisible by 3. Thus, we get that $xy = 6k_ak_b + 3k_b$. Letting $k_b = 1$ and $k_a = k$, we have that $A \cap B = \{6k + 3 \mid k \in \mathbb{Z}\}$. Now, considering $B \setminus A$, the set of all multiples of 3 that are even. Thus, similar reasoning as before leads to $B \setminus A = \{6k \mid k \in \mathbb{Z}\}$, since $B \setminus A = B \cap A^c$, where $A^c = \{2k \mid k \in \mathbb{Z}\}$.

- 5. Prove that the following are metric functions on \mathbb{R}^n :
 - (a) $d_1(x, y) = \sum_{k=1}^n |x_k y_k|$, where $x = (x_1, \dots, x_n)'$, $y = (y_1, \dots, y_n)'$. Let $x, y, z \in \mathbb{R}^n$. Clearly $d_1(\cdot, \cdot)$ is non-negative. We first demonstrate x = y iff $d_1(x, y)$. If x = y, then $x_k - y_k = 0$ for all k, and thus $d_1(x, y) = 0$. Now, consider that $d_1(x, y) = 0$. That implies that $\sum_{k=1}^n |x_k - y_k| = 0$. Since each $|x_k - y_k| \ge 0$, this implies that $|x_k - y_k| = 0$ for all k, and therefore $x_k = y_k$ for all k, and hence x = y. Now, we demonstrate symmetry: $d_1(x, y) = d_1(y, x)$. $d_1(x, y) = \sum_{k=1}^n |x_k - y_k|$. For each k, $|x_k - y_k| = |y_k - x_k|$, and therefore $\sum_{k=1}^n |x_k - y_k| = \sum_{k=1}^n |y_k - x_k| = d_1(y, x)$, as desired. Now, we consider the triangle inequality. $d_1(x, y) = \sum_{k=1}^n |x_k - y_k| \le |x_k - z_k| + |y_k - z_k|$, and therefore the sum does: $\sum_{k=1}^n |x_k - y_k| \le \sum_{k=1}^n |x_k - z_k| + |y_k - z_k| = d_1(x, z) + d_1(y, z)$, as desired.
 - (b) $d_{\infty}(x, y) = \max_{1 \le k \le n} |x_k y_k|$, where $x = (x_1, \ldots, x_n)'$, $y = (y_1, \ldots, y_n)'$ Let $x, y, z \in \mathbb{R}^n$. Consider the vector of absolute differences $a = (|x_1 - y_1|, \ldots, |x_n - y_n|)'$. Each element of this vector is non-negative, and since $\max_k a_k \ge a_i$, for all i, the function is non-negative. Now, we show that $d_{\infty}(\cdot, \cdot)$ identifies elements. Since $a \ge 0$, $\max_k a_k = 0$ implies that all $a_k = 0$. Thus, $d_{\infty}(x, y) = 0$ if and only if $|x_k - y_k| = 0$ for all k, which occurs iff x = y. Now, we consider symmetry. The a_k are invariant in the sense that $(|x_1 - y_1|, \ldots, |x_n - y_n|)' = (|y_1 - x_1|, \ldots, |y_n - x_n|)'$, and thus $\max_k a_k$ is invariant to the ordering, therefore $d_{\infty}(x, y) = d_{\infty}(y, x)$. Now, we consider the triangle inequality. Let $b = (|x_1 - z_1|, \ldots, |x_n - z_n|)'$, and $c = (|y_1 - z_1|, \ldots, |y_n - z_n|)'$. We show $\max_k a_k \le \max_k b_k + \max_k c_k$. Let $k^* = \arg\max_k a_k$. Then, the k^* components obey the triangle inequality: $a_{k^*} \le b_{k^*} + c_{k^*}$. We have that $b_{k^*} \le \max_k b_k$, and $c_{k^*} \le \max_k c_k$, and therefore $\max_k a_k = a_{k^*} \le b_{k^*} + c_{k^*} \le \max_k b_k + \max_k c_k$, and we are done.
- 6. Suppose that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ in a metric space (X, d). Is it true that $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$?
 - Yes. An interpretation of this result is that every metric is a continuous function. The continuity of a metric (and this result) is (almost) an immediate consequence of the triangle inequality. Let $\epsilon > 0$. Consider that $x_n \to x$ and $y_n \to y$ implies that there exists N s.t. $\forall n \geq N$, $d(x, x_n) < \epsilon/2$ and $d(y_n, y) < \epsilon/2$. By the triangle inequality (applied twice), we have that $d(x_n, y_n) \leq d(x, x_n) + d(y, y_n) + d(x, y) < d(x, y) + \epsilon$. Now, we also have that $d(x, y) \leq d(x, x_n) + d(y, y_n) + d(x_n, y_n) \leq d(x_n, y_n) + \epsilon \leq d(x, y) + 2\epsilon$, for $n \geq N$. Thus, for $n \geq N$, $d(x, y) \epsilon \leq d(x_n, y_n) \leq d(x, y) + \epsilon$, and thus $|d(x, y) d(x_n, y_n)| < \epsilon$ for all $n \geq N$. Thus, $d(\cdot, \cdot)$ is a continuous function from $X \times X$ to \mathbb{R}_+ , and the result follows immediately.
- 7. Let $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ be sequences of real numbers. Suppose that $x_n \to A$, $z_n \to A$ and, for any $n, x_n \le y_n \le z_n$. Prove that y_n converges and $\lim_{n \to \infty} = A$.
 - Let $\epsilon > 0$. Thus, there exists an N such that for all $n \geq N$, $|x_n A| < \epsilon$ and $|z_n A| < \epsilon$. This implies that $-\epsilon < x_n A < \epsilon$, or $A \epsilon < x_n < A + \epsilon$. Similarly for z_n , $A \epsilon < z_n < A + \epsilon$.

The ordering of the sequences implies that $A - \epsilon < x_n \le y_n \le z_n < A + \epsilon$ for all $n \ge N$. Thus, $|y_n - A| < \epsilon$ for all $n \ge N$.