Analytic Geometry

Norm

A norm on a vector space V is a function $||\cdot||:V\to\mathbb{R}$ such that $\forall\lambda\in\mathbb{R},\ x,y\in V$, we have :

- $||\lambda x|| = |\lambda|||x||$
- $||x+y|| \le ||x|| + ||y||$
- $||x|| \ge 0$
- $||x|| = 0 \iff x = 0$

Manhattan Norm (L1 norm)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Euclidian Norm

$$||x||_2 = \sum_{i=1}^n x_i^2$$

When we say ||x|| without any subscript ,we usually refer to the Euclidian norm.

General inner product

An inner product is any mapping $<\cdot,\cdot>:V imes V o W$ such that $orall\ x,y,z\in V,\ p,q\in\mathbb{R}$, we have

- ullet < px + qy, z > = p < x, z > +q < y, z >
- ullet < z, px + qy > = p < z, x > +q < z, y >
- < x, y > = < y, x >
- \bullet < 1, 1 > is positive.

Suppose $\mathbf{x} = \sum x_i \mathbf{b}_i$ and $\mathbf{y} = \sum y_i \mathbf{b}_i$, then $<\mathbf{x}, \mathbf{y}> = \sum_i x_i < \mathbf{b_i}, \mathbf{y}> = \mathbf{x^Tz}$ where $z_i = <\mathbf{b_i}, \mathbf{y}> = <\mathbf{b_i}, \sum_j y_j \mathbf{b_j}> = \sum_j <\mathbf{b_i}, \mathbf{b_j}>y_j = \sum_j \mathbf{r_i}^T \mathbf{y}$ where $\mathbf{r_i}$ is the column vector with the j^{th} entry being $<\mathbf{b_i}, \mathbf{b_j}>$. And $\mathbf{r_i}^T$ is the row vector.

From here, it's easy to see that $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x^T A y}$ where $A_{ij} = \langle \mathbf{b_i}, \mathbf{b_j} \rangle$ is the matrix with the i^{th} row being $\mathbf{r_i}^T$.

Since $A_{ij} = <\mathbf{b_i}, \mathbf{b_i}> = <\mathbf{b_j}, \mathbf{b_i}> = A_{ji}$, thus \mathbf{A} is a symmetric matrix.

Moreover because $\forall \mathbf{x} \in V, < \mathbf{x}, \mathbf{x} >$ is positive, except for $\mathbf{x} = \mathbf{0}$ when it's 0, thus $\forall \mathbf{x} \in V - \{\mathbf{0}\}, \ \mathbf{x^TAx} > 0$, which is what we call a positive definite matrix.

So finally, an inner product is an operation on $V \subseteq \mathbb{R}^n$ given by $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{A} \mathbf{y}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix.

Induced norms

Any definition of a norm that can be expressed using an inner product as $||\mathbf{x}|| = \langle \mathbf{x}, \mathbf{x} \rangle$ is called an induced norm.

For any general inner product, the Cauch-Schwarz inequality guarantees that

 $|<\mathbf{x},\mathbf{y}>|\leq ||\mathbf{x}||\ ||\mathbf{y}||$, and thus, there is always a way of defining an angle between two vectors.

Angle between vectors

For any 2 vectors $\mathbf{x},\mathbf{y}\in V$, if the angle between them is heta , then :

$$\cos(heta) = rac{|<\mathbf{x},\mathbf{y}>|}{||\mathbf{x}|| \ ||\mathbf{y}||}$$

And thus, we also have a notion of orthogonality, which is when $\cos(\theta) = 0$ and thus $<\mathbf{x},\mathbf{y}>$ =0 .

Orthonormal bases

A bases $B=\{\mathbf{b_1},\mathbf{b_2},\ldots,\mathbf{b_n}\}$ is called orthonormal iff $\forall i,j\in\mathbb{N},\ i,j\leq n,\ i\neq j$, we have $<\mathbf{b_i},\mathbf{b_i}>=1$ and $<\mathbf{b_i},\mathbf{b_j}>=0$. The inner product for such a the vector space generated by this bases is basically the dot product.

Orthogonal Projections

Suppose U is a vector subspace of $V \subseteq \mathbb{R}^n$ with bases $B = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_m}\}$, then for any $\mathbf{x} \in V$, the projection $\mathbf{x}_U \in U$ is the vector in U with the least distance $||\mathbf{x} - \mathbf{x}_U||$ as given by a norm induced from inner product $<\cdot,\cdot>$.

It can be shown that it is the case when $\mathbf{x} - \mathbf{x}_U$ is perpendicular to every vector in B because then, using the triangle inequality, it gives less distance than any other case.

To find the coordinates of \mathbf{x}_U as expressed in B, say λ , we write the equations

$$0=<\mathbf{b_i},\mathbf{x}-\mathbf{x_{II}}>=<\mathbf{b_i},\mathbf{x}-\mathbf{B}\lambda>=\mathbf{b_i^TA(x-B}\lambda)$$
 . Stacking up these equation for all

3 of 5

$$i$$
 till m , we get : $\mathbf{0} = \mathbf{B^T A}(\mathbf{x} - \mathbf{B}\lambda) \implies \mathbf{B^T AB}\lambda = \mathbf{B^T Ax} \implies \lambda = (\mathbf{B^T AB})^{-1}\mathbf{B^T Ax} \implies \mathbf{x_U} = \mathbf{B}(\mathbf{B^T AB})^{-1}\mathbf{B^T Ax}$

Special case : If the default bases that everything is expressed in is an orthonormal bases , then $\mathbf{A}=\mathbf{I}$ and we basically have $\lambda=(\mathbf{B^TB})^{-1}\mathbf{B^Tx}$ and $\mathbf{x_U}=\mathbf{B}(\mathbf{B^TB})^{-1}\mathbf{B^Tx}$. This is what we'll use usually. This is basically the least squares solution for the problem $\mathbf{B}\lambda\approx\mathbf{x}$.

Special Special case : If the default bases as well as the bases B is orthonormal. In this case $\mathbf{B}^{\mathbf{T}}\mathbf{B} = \mathbf{I}^{m \times m}$ and thus $\lambda = \mathbf{B}^{\mathbf{T}}\mathbf{x}$ and $\mathbf{x}_U = \mathbf{B}\mathbf{B}^{\mathbf{T}}\mathbf{x}$.

Note that here $\mathbf{B}\mathbf{B}^{\mathbf{T}}$ is not (always) equal to $\mathbf{I}^{n \times n}$.

Projection of affine spaces

To project a vector is to find the point in a subspace closest to that vector, viewed as a point. Thus, being able to project a point on any general affine space (hyperplane) enables us to do things like SVC and SVM.

The projection of a point ${\bf x}$ on a hyperplane ${\bf x_0}+U$ is given by ${\bf x_0}+({\bf x}-{\bf x_0})_U$

Gram-Schmidt Orthogonalization

For a basis $B = \{\mathbf{b_1}, \mathbf{b_2} \dots, \mathbf{b_n}\}$, define

$$\mathbf{u_1} = \mathbf{b_1}$$
 and $\mathbf{u_k} = \mathbf{b_k} - (\mathbf{b_k})_{\mathrm{span}(\mathbf{u_1},\mathbf{u_2},\ldots,\mathbf{u_{k-1}})}$ for $1 < k \leq n$.

The basis $U = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3} \dots, \mathbf{u_n}\}$ is an orthonormal basis.

Here $(\mathbf{b_k})_{\mathrm{span}(\mathbf{u_1},\mathbf{u_2},\mathbf{u_3},\ldots,\mathbf{u_{k-1}})}$ is the projection of $\mathbf{b_k}$ on the span of the k-1 elements of U that we have already calculated.

5 of 5 29/08/23, 02:09