- b. Develop an SRS for developing a module on "choosing a course" considering a part of any academic software.
- 32. a. Describe the reverse engineering process in detail.

(OR)

b. Compare and contrast the various restructuring types.

	 	-					
Reg. No.							

B.Tech. DEGREE EXAMINATION, JUNE 2019

1st to 7th Semester

15SE202 - SOFTWARE ENGINEERING PRINCIPLES

(For the candidates admitted during the academic year 2015-2016 to 2017-2018)

т		4			
N	ഹ	v	Δ	۰	

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

but does not

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1.	_	when executed provide desired feat								
	. ,	Instructions	` /	Data structures						
	(C)	Documentation	(D)	Configuration						
2.				rket place to address mass consumer market.						
		System	` '	Embedded						
	(C)	Product line	(D)	Web apps						
3.		Assessing progress against the project plan is an activity of								
	(A) Software project tracking and control									
	(C)	Software quality assurance	(D)	Software configuration management						
4.		ch approach is suitable when objective details	es de	efined by customer are general but does no						
	(A)	Incremental	(B)	Prototyping						
	` '	Agile		Waterfall						
5.		determines the value of each function	n requ	uired of the system.						
				Information deployment						
	` '	Task deployment		Value analysis						
6.		elements are implied by scenarios.		8						
•		Functional	(B)	Class						
	. ,	Behavioral	` '	Flow oriented						
7.	00000		` /							
		represents								
		Actor	(B)	Use case						
	-	System	(D)	User						
8.		classes are used to create interface.								
		Entity	(B)	Roundary						

(D) Behavioural

(C) Controller

	9.		ogram should not have any bugs that in Firmness		its function refers to Commodity	
		` '	Delight	• /	Principle	
	10.		partmentalization of data and function			
		, ,	Abstraction	(B)	Architecture	
		(C)	Pattern	(D)	Modularity	
	11.		is an indication of the relative functi		_	
			Cohesion		Coupling	
		(C)	Interaction	(D)	Dependence	
	12.	A la	rge program composed of a single mod	ule		
		(A)	Modularity	(B)	Monolithic software	
		(C)	Abstraction	(D)	Polymorphism	
	13.	Busi	ness goals are identified within the con	text (of four key drivers	
		(A)	Business definition	(B)	Process identification	
		(C)	Process evaluation	` '	Process specification	
			· ·	, ,	T	
	14.	_	ogram with weak data architecture requ		*	
			Reverse engineering		Document restructuring	
		(C)	Code restructuring	(D)	Data restructuring	
	15.	Cost	benefit = C_{reeng} –			
		(A)	Cmaint	(B)	Expected life	
		(C)	C_{reeng}	(D)	Reengineering risk factor	
	16.	Forn	nal verification methods are applied to	unco	ver errors in the design	
		(A)	Planning	(B)	High level design	
		(C)	Development	(D)	Post mortem	
	17.		model is suitable when risk plays	majo	r factor.	
		(A)	Waterfall	_	Spiral	
		(C)	Incremental		Prototype	
	1.0					i) '
	18.		ioritized list the project requirements the	_		ustomer
			Backlog	-	Sprints	
		(C)	Scrum	(D)	Demos	
1	19.	In a	class diagram the middle compartment	refe	rs to	
		_				
		-				
		(A)	Class name	(B)	Attributes	
		(C)	Functions	(D)	Object	
	20.		_ identifies the source of each requirer	nent.		
		(A)		(B)	Source traceability	
		(C)	Interface traceability	` '	Dependency traceability	
Page 2	2 of 4	` /		, ,	1	14JF1-7/15SE202
						1 101 1 1/11 1111/1/1/

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. List out the characteristics that make software different from other things human being build.
- 22. Compare and contrast spiral with winwin spiral model
- 23. Categorize the types of quality function deployment.
- 24. Summarize the elements of requirements analysis.
- 25. Draw the pattern template.
- 26. Describe any two black box testing methods.
- 27. Represent a business process reengineering model.

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

28. a. Prove three examples of software development projects that would be amenable to prototyping. Name two applications that would be more difficult to prototype.

(OR)

- b. Identify which model would be appropriate for the following projects and justify merits and demerits with diagrams (i) an incremental complier for Java (ii) a guidance system for an interplanetary probe.
- 29. a.i. Draw an use case diagram for a car rental service.

(8 Marks)

(4 Marks)

ii. Illustrate the basic guidelines required for collaborative requirements gathering.

(OR)

- b. There are many different ways to look at the requirements for a computer based system. Summarize the different modes of representation that force the software team to consider requirements from different viewpoints.
- 30. a. Write a note on fundamental software design concepts that provide a necessary framework for getting it right.

(OR)

- b.i. Illustrate a component from object oriented and conventional point of view. (8 Marks)
- ii. List out the principles that guide the designer as each software component is developed.

 (4 Marks)
- 31. a. Compare and contrast the various coding styles and standards.

(OR)

Page 3 of 4 14JF1-7/15SE202