

範	HR	ROR	DR	K
運	R0	R5000	D0	
算元				16 位元
兀	R3839	R8071	D3999	
Sc	0	0	\circ	0~7
Ps	0	0	0	0~3
Fo	0	0	\circ	
Mr	0	0	0	
WR	0	O*	0	

● 將此指令放在 50mS 定時中斷處理程式(50MSI)、或利用 0.1mS 高速計時器產生 50mS 定時中斷來執行此指令,以便以較準確的時間間隔對手搖輪輸入脈波作取樣、並依倍率設定(Mr+0 與 Mr+1)計算輸出脈波數;同時在此間隔時間內以 Fo 所設定的頻率,將計算出來的輸出脈波數作輸出。

輸出頻率(Fo)設定値必須夠高,加減速(由 FUN141 指令之參數 4 與參數 8 設定)也必須夠快才足夠在高放大倍率(100 或 200 倍)的情況下,在間隔時間內將計算出來的輸出脈波數輸出完畢;否則會有失步現象。

● 當執行控制 "EN" 爲 1 時,每個間隔時間會對手搖輪輸入脈波作取樣;如果沒有取樣到有脈波輸入,則本指令不會有輸出;如果有取樣到有脈波輸入,則會根據倍率設定(Mr+0 與 Mr+1)計算輸出脈波數,然後以 Fo 所設定的輸出頻率,將計算出來的輸出脈波數作輸出。

輸出脈波數=(間隔時間內手搖輪輸入脈波數×Fa)/Fb

- 本指令會配合高速脈波輸出之硬體資源管理旗標(Ps0 爲 M1992, Ps1 爲 M1993, Ps2 爲 M1994, Ps3 爲 M1995)作控制;如果該硬體被其它定位指令使用中(FUN140/FUN147),則就算有取樣到有手搖輪脈波輸入,也不會有輸出。
- 當脈波輸出中,輸出指示 ACT=1;否則為 0。
- 本指令會佔用 4 個工作暫存器(WR),其它程式不可重複使用。

NC定位控制指令

FUN148 MPG

手搖輪定位控制指令

FUN148 MPG

X32 : 選擇第 0 軸 (Ps0) X33 : 選擇第 1 軸 (Ps1) X34 : 輸出倍率爲 1 X35 : 輸出倍率爲 10 X36 : 輸出倍率爲 100 M100: 手搖輪作動選擇

DR2005: 第 0 軸最高輸出頻率(FUN141 指令之參數 4); 200000K Hz

R2011 : 第 0 軸加減速時間(FUN141 指令之參數 8); 30mS

DD600: 第 0 軸手搖輪作動輸出頻率; 200000K Hz

DR2105: 第 1 軸最高輸出頻率(FUN141 指令之參數 4); 200000K Hz

R2111 : 第 1 軸加減速時間(FUN141 指令之參數 8); 30mS

DD602: 第 1 軸手搖輪作動輸出頻率; 200000K Hz

範例說明:在 50MSI 定時中斷處理程式裏放入 Ps0 與 Ps1 之手搖輪定位處理指令。

當 X32=1 且 M100=1 時, 啓動 Ps0 手搖輪定位處理;每個間隔時間(50mS) 會對手搖輪輸入脈波(來自 HSC0)作取樣;如果沒有取樣到有脈波輸入,則 FUN148 指令不會有輸出;如果有取樣到有脈波輸入,則會根據倍率設定(D700 與 D701)計算輸出脈波數,然後以 DD600 所設定的輸出頻率,將計

算出來的輸出脈波數作輸出。

輸出脈波數=(間隔時間內 HSC0 輸入脈波數×D700)/D701

編號	狀態	資料	編號	狀態	資料	編號	狀態	資料	編號	狀態	資料	
DR4080	十進制	0	DR4082	十進制	0	D800	十進制	0	D810	十進制	2	
DR4088	十進制	114200	DR4090	十進制	21000	D801	十六進制	0000H	D811	十六進制	0101H	
						DD802	十進制	11250	DD812	十進制	11703	
DR2005	十進制	200000	DR2105	十進制	200000	DR4096	十進制	11703				
R2011	十進制	30	R2111	十進制	30				M100	致能	ON	
DD600	十進制	200000	DD602	十進制	200000	D700	十進制	100	D701	十進制	1	
M500	致能	OFF	M501	致能	ON	X34	致能	OFF				
X32	致能	OFF	X33	致能	ON	X35	致能	OFF	X36	致能	ON	

X32 :選擇第 0 軸 (Ps0) X33 :選擇第 1 軸 (Ps1) X34 :輸出倍率爲 1 X35 :輸出倍率爲 10 X36 :輸出倍率爲 100 M100:手搖輪作動選擇

DR2005: 第 0 軸最高輸出頻率(FUN141 指令之參數 4); 200000K Hz

R2011 : 第 0 軸加減速時間(FUN141 指令之參數 8); 30mS

DD600: 第 0 軸手搖輪作動輸出頻率; 200000K Hz

DR2105: 第 1 軸最高輸出頻率(FUN141 指令之參數 4); 200000K Hz

R2111 : 第 1 軸加減速時間(FUN141 指令之參數 8); 30mS

DD602: 第 1 軸手搖輪作動輸出頻率; 200000K Hz

範例說明: 將 0.1mS 高速計時器(HSTA)設定為 50mS 定時中斷,並在 HSTAI 中斷處理程式裏放入 Ps0 與 Ps1 之手搖輪定位處理指令。

當 X33=1 且 M100=1 時,啓動 Ps1 手搖輪定位處理;每個間隔時間(50mS) 會對手搖輪輸入脈波(來自 HSC0)作取樣;如果沒有取樣到有脈波輸入,則FUN148 指令不會有輸出;如果有取樣到有脈波輸入,則會根據倍率設定(D700 與 D701)計算輸出脈波數,然後以 DD602 所設定的輸出頻率,將計算出來的輸出脈波數作輸出。

輸出脈波數=(間隔時間內 HSC0 輸入脈波數×D700)/D701