Voltage drop factors for 0,6/1 kV cables YVV(NYY)

POWER DISTRIBUTION SYSTEMS

Midterm Exam

April 27th, 2020

1. In the following single phase distribution feeder, the nominal phase voltage is 380 V. Calculate the voltage drop between transformer and terminal 2 for the following cases;

2.				
<u>Case</u>	<u>Cable Size</u> (bw Tr and 1)	<u>Cable Size</u> (bw 1 and 2)	<u>Load 1</u>	<u>Load 2</u>
a)	4x25ç	4x25ç	10+Row# [kVA] (p.f. 0.8)	5 [kW] (p.f. 0.8)
b)	4x25ç	4x25ç	10+Row# [kVA] (p.f. 0.9)	5 [kW] (p.f. 0.8)
c)	4x25ç	4x16ç	10+Row# [kVA] (p.f. 0.9)	5 [kW] (p.f. 0.8)

									U=38	80 V	O)
Conductor	Voltage drop factor ΔU [V/kWkm]			Percen	Percent voltage drop factor ΔU% [%/kWkn			Wkm]				
c.s.a.		PF				PF						
$[mm^2]$	1	0,95	0,90	0,80	0,70	0,60	1	0,95	0,90	0,80	0,70	0,60
4x1,5	38,16	38,26	38,30	38,38	38,47	38,56	10,04	10,07	10,08	10,10	10,12	10,15
4x2,5	23,34	23,43	23,48	23,55	23,63	23,72	6,143	6,167	6,179	6,198	6,218	6,241
4x4	14,53	14,62	14,66	14,74	14,81	14,90	3,823	3,847	3,858	3,878	3,898	3,921
4x6	9,711	9,798	9,839	9,910	9,982	10,06	2,555	2,578	2,589	2,608	2,627	2,649
4x10	5,763	5,845	5,884	5,951	6,018	6,096	1,517	1,538	1,548	1,566	1,584	1,604
4x16ç	3,632	3,709	3,746	3,809	3,873	3,947	0,956	0,976	0,986	1,002	1,019	1,039
4x25ç	2,289	2,366	2,402	2,463	2,526	2,598	0,602	0,623	0,632	0,648	0,665	0,684
4x35ş	1,650	1,724	1,758	1,818	1,878	1,948	0,434	0,454	0,463	0,478	0,494	0,513
4x50ş	1,218	1,292	1,327	1,386	1,447	1,517	0,321	0,340	0,349	0,365	0,381	0,399
4x70ş	0,845	0,916	0,949	1,007	1,065	1,132	0,222	0,241	0,250	0,265	0,280	0,298
4x95ş	0,611	0,681	0,715	0,772	0,831	0,898	0,161	0,179	0,188	0,203	0,219	0,236
4x120ş	0,484	0,553	0,586	0,642	0,699	0,765	0,127	0,146	0,154	0,169	0,184	0,201
4x150ş	0,395	0,464	0,497	0,553	0,610	0,675	0,104	0,122	0,131	0,145	0,160	0,178
4x185ş	0,316	0,385	0,418	0,474	0,531	0,596	0,0831	0,101	0,110	0,125	0,140	0,157
4x240ş	0,243	0,313	0,345	0,401	0,458	0,524	0,0641	0,0823	0,0909	0,106	0,121	0,138
4x300ş	0,197	0,266	0,299	0,354	0,411	0,477	0,0517	0,0699	0,0786	0,0933	0,108	0,126
4x400ş	0,157	0,225	0,258	0,313	0,369	0,434				0,0824		
4x500ş	- p. 2	In a	1	consis	a mong	in still	A. Carrie				81	

2. At the end of a power distribution system, a certain feeder supplies three distribution transformers, each one supplying a group of customers whose connected loads are as under:

<u>Transformer</u>	<u> Maximum Load [kw]</u>	Load factor [%]
Tr1	1000+10*Row#	40
Tr2	1200+10*Row#	20
Tr3	?	15

If the diversity factor and load factor of feeder are 1.3 and 30%, respectively, find;

- a) The maximum load on the Tr3
- b) The maximum load on the feeder

- 3. A 3-phase, 4-wire distributor supplies a balanced voltage of 230 V (phase-neutral) to a load 30 A at p.f. 0.866 leading for Y phase and 30 A at unity p.f. for B phase. The resistance of each line conductor and of neutral line are 0.2 Ω and 0.4 Ω , respectively. The p.f. of load at R phase is 0.866 lagging and magnitude of sending end voltage of R phase, $|E_R|$ is (235+Row#) Volt. Calculate;
 - a) The magnitude of current for R phase, $|I_R|$
 - b) The neutral current, I_N .
 - c) Phase angle of sending end voltage, δ

Row#	Student Id
1	116202009
2	115202027
3	115202056
4	115202018
5	115202036
6	116202151
7	116202138
8	116202069
9	116202147
10	116202021
11	111202022
12	115202044
13	117207071
14	115200084
15	115202111
16	114202079
17	115202086
18	115207053
19	116202065
20	116202002
21	115202119
22	115202081
23	115202078
24	116202135
25	115202016