

MODULE NAME:	MODULE CODE:
MATHEMATICAL PRINCIPLES OF COMPUTER SCIENCE	MAPC5112

ASSESSMENT TYPE:	EXAMINATION (PAPER ONLY)
TOTAL MARK ALLOCATION:	120 MARKS
TOTAL HOURS:	2 HOURS (+10 minutes reading time)

INSTRUCTIONS:

- 1. Please adhere to all instructions in the assessment booklet.
- 2. Independent work is required.
- 3. Five minutes per hour of the assessment to a maximum of 15 minutes is dedicated to reading time before the start of the assessment. You may make notes on your question paper, but not in your answer sheet. Calculators may not be used during reading time.
- 4. You may not leave the assessment venue during reading time, or during the first hour or during the last 15 minutes of the assessment.
- 5. Ensure that your name is on all pieces of paper or books that you will be submitting. Submit all the pages of this assessment's question paper as well as your answer script.
- 6. Answer all the questions on the answer sheets or in answer booklets provided. The phrase 'END OF PAPER' will appear after the final set question of this assessment.
- 7. Remember to work at a steady pace so that you are able to complete the assessment within the allocated time. Use the mark allocation as a guideline as to how much time to spend on each section.

Additional instructions:

- 1. This is a CLOSED BOOK assessment.
- 2. Calculators are allowed.
- 3. For multiple-choice questions, give only one response per question. The marker will ignore any question with more than one answer, unless otherwise stated. You should, therefore, be sure of your answer before committing it to paper.
- 4. Answer All Questions.

Question 1 (Marks: 20) Multiple-choice questions: Select one most correct answer for each of the following. In your answer booklet, write down only the number of the question and next to it, the letter of the correct answer. **Q.1.1** What is the <u>inverse</u> of the statement 'All mirrors are reflective'? (2) (a) If it is reflective, it is a mirror; (b) If it is reflective, it is not a mirror; If it is not a mirror, then it is not reflective; (c) (d) If it is not reflective, then it is not a mirror; None of the above. (e) **Q.1.2** Consider a propositional language where: (2) A ="Simi comes to the party"; B ="Marike comes to the party"; C ="Elton comes to the party"; D = "Vuyo comes to the party". Which of the below mathematical statements/propositions is the correct equivalent of the English sentence "If Vuyo comes to the party, then Marike and Elton come too"? (a) $C \rightarrow \neg A \land \neg B$; (b) $D \rightarrow (\neg C \rightarrow A)$; (c) $D \leftrightarrow (C \land \neg A)$; (d) $D \rightarrow B \wedge C$; None of the above. (e) **Q.1.3** What is the rule for the closed sequence 1, 4, 9, 16, 25...? (2) $x_n = 1+n$; (a) (b) $x_n = 1 + (n+n^2);$ (c) $x_n = n^2$; (d) $x_n = n^2 + 1$;

(e) None of the above.

Q.1.4	The r	n^{th} term of a sequence is given by $x_n = 3n^2 - 1$. Which term of the sequence is	(2)
	equa	I to 866?	
	(a)	12 th ;	
	(b)	13 th ;	
	(c)	15 th ;	
	(d)	20 th ;	
	(e)	17 th .	
Q.1.5	Wha	t is the range for the function $f(x) = \sqrt{x} - 2$?	(2)
	(a)	R;	
	(b)	$\{y \in R \mid y > -2\};$	
	(c)	$\{y \in R \mid -4 \le y \le 4\};$	
	(d)	$\{y \in R \mid y \ge -2\};$	
	(e)	None of the above.	
Q.1.6	Wha	t is the domain for the function $f(x) = \sqrt{(x+3)}$?	(2)
	(a)	$\{ x \in \mathbb{R} \mid x \ge -3 \};$	
	(b)	$\{^{\mathcal{X}} \in R \mid -3 \le ^{\mathcal{X}} \le 3\};$	
	(c)	$\{x \in R \mid x \ge 3\};$	
	(d)	R;	
	(e)	None of the above.	
Q.1.7	Give	the inverse of the function $f(x) = 5x - 4$.	(2)
	(a)	$f^{-1}(y) = (y - 4)/5;$	
	(b)	$f^{-1}(y) = (y + 4)/5;$	
	(c)	$f^{-1}(y) = (4 - y)/5;$	
	(d)	$f^{-1}(y) = 1/(5y - 4);$	
	(e)	None of the above.	

Q.1.8	Whic	h of the following functions is NOT injective (one-to-one)?	(2)
	(a)	$f(x) = x^3 + 4$ from R to R;	
	(b)	$f(x) = x^3 + 4$ from N to N;	
	(c)	$f(x) = x^2 + 4$ from R to R;	
	(d)	$f(x) = x^2 + 4$ from N to N;	
	(e)	$f(x) = x^4 + 4$ from N to N.	
Q.1.9	The f	unction f:Z \rightarrow Z defined by f(n) = [n/2] is	(2)
	(a)	Injective;	
	(b)	Surjective;	
	(c)	Bijective;	
	(d)	Composite;	
	(e)	Inverse.	
Q.1.10	What	is the <u>converse</u> of the statement: 'If something is an orange, then it has pips'?	(2)
	(a)	If something has pips, then it is an orange;	
	(b)	If something does not have pips, then it is not an orange;	
	(c)	If something is not an orange, then it does not have pips;	
	(d)	If something has no pips, then it is an orange;	
	(e)	None of the above.	

Question 2 (Marks: 20)

Match the description in Column A with the most correct term/ phrase from Column B. In your answer booklet, write down only the question number and, next to it, the letter of the correct answer.

Column A			Column B		
Q.2.1	A particular way of assigning bit patterns to the characters on a	a.	Additive Principle		
	keyboard.		(with sets)		
Q.2.2	A scheme that tells us how each number should be represented	b.	Multiplicative		
	with a pattern of bits.		Principle		
Q.2.3	If event A can occur in m ways, and event B can occur in n disjoint	C.	Cardinality of a		
	ways, then the event "A or B" can occur in m + n ways.		union (two sets)		
Q.2.4	Given sets A and B, we can form the set $A\times B=\{(x,y): x\in A\land y\in B\}$ to	d.	Cardinality of a		
	be the set of all ordered pairs (x,y) where x is an element of A and		union (three sets)		
	y is an element of B. We call A×B the Cartesian product of A and				
	В.				
Q.2.5	Given two sets A and B, we have $ A \times B = A \times B $.	e.	Disjoint events		
Q.2.6	For any finite sets A and B, $ A \cup B = A + B - A \cap B $.	f.	Cartesian Product		
Q.2.7	There is no way for A and B to both happen at the same time.	g.	IP addressing		
Q.2.8	If event A can occur in m ways, and each possibility for A allows	h.	Multiplicative		
	for exactly n ways for event B, then the event "A and B" can occur		Principle (with		
	in m x n ways.		sets)		
Q.2.9	For any finite sets A, B, and C,	i.	Additive Principle		
	AUBUC = A + B + C - A∩B - A∩C - B∩C + A∩B∩C .				
Q.2.10	Given two sets A and B, if $A \cap B = \emptyset$ (that is, if there is no element in	j.	ASCII		
	common to both A and B), then AUB = A + B .				
		k.	Unicode		
			encoding		
		I.	Text		
		m.	Two's		
			complement		

Questic	n 3	(Marks	s: 25 <u>)</u>
Q.3.1	Let <i>A</i> = {:	1, 2, 3, 4, 5, 6}, $B = \{2, 4, 6\}$, $C = \{1, 2, 3\}$ and $D = \{7, 8, 9\}$.	
	Determin	ne whether each of the following is true, false, or meaningless. Motivate	
	your ansv	wer.	
	Q.3.1.1	$B \in C$;	(1)
	Q.3.1.2	A < D;	(1)
	Q.3.1.3	{3} ⊂ <i>C</i> ;	(1)
	Q.3.1.4	$B \subset A$;	(1)
	Q.3.1.5	$\emptyset \in A$.	(1)
Q.3.2	Find the	intersection $A \cap B$, union $A \cup B$ and differences $A - B$, $B - A$ of sets A , B if:	(4)
	$A = \{2,4,5\}$	5,6,8};	
	B = {-3,0,	.2,3,4,5,6,7}.	
	Answer:		
	<i>A</i> ∩ <i>B</i> =;		
	A∪B =;		
	A-B =;		
	B-A =.		
Q.3.3		the following questions regarding sequences:	
	Q.3.3.1	Find a_6 in the sequence defined by $a_n = 2a_{n-1} - a_{n-2}$ with $a_0 = 3$ and $a_1 = 4$.	(5)
	Q.3.3.2	You are given the formulas below:	(4)
		$T_n = \frac{n(n+1)}{2} \text{ and } a_n = 2^n$	
		Use the formulas to find closed formula(s) for the following sequence:	
		(b_n) : 1, 2, 4, 7, 11, 16, 22,	
		(~[])· +, -, ·, ·, · + + · · · · · · · · · · · · ·	

Q.3.4 Use a set notation to describe each of the following Venn diagrams:

(2)

Diagram A:

Diagram B:

Q.3.5 Consider the function $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{a, b, c, d\}$ given by:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & a & b & c & c & c \end{pmatrix}.$$

Find the complete inverse image of each element in the codomain.

Q.3.6 Find the domain, codomain and range of the function:

(3)

(2)

 $g: \{10,20,30\} \rightarrow \{vwx,wxy,xyz\}$ defined by g(10) = xyz, g(20) = vwx and g(30) = vwx.

Questio	uestion 4 (Marks: 25)					
Q.4.1	Use one appropriate example to explain the following counting principles. In your					
	explanation	on, provide:				
	• The	e description (of the principle (2);			
	• One	e example usi	ng a calculation (3).			
	Q.4.1.1	Additive Prin	ciple;			(5)
	Q.4.1.2	Additive Prin	ciple (with sets).			(5)
Q.4.2	How man	y functions f	$: \{1, 2, 3, 4, 5\} \rightarrow \{a, b\}$ a	re surjective? Explain yo	our answer.	(5)
Q.4.3	Answer th	ne following o	uestions regarding data	representation and IP a	ddressing:	
	Q.4.3.1	Convert the	e following 0110001 from	n binary to decimal.		(2)
	Q.4.3.2	Convert the	e following 50 from decir	nal to binary.		(2)
	Q.4.3.3	Which class	s does the following IP ac	ddress 119.18.45.0 belo	ng to?	(1)
	Q.4.3.4	Identify the	network portion and th	e host portion of the IP	address	(3)
		192.200.15	.0. Write down the defau	ult subnet mark for each	n address.	
	Q.4.3.5	Using the II	Using the IP address and subnet mask shown write out the <u>network</u>		(2)	
		address:			,	
			IP Address:	Subnet Mask:		
			199.20.150.35	255.255.255.0		

Question 5 (Marks: 3		
Q.5.1	Consider the statement about a maths test,	(4)
	"If it's algebra or there will be algebra, then I will pass."	
	Translate the above statement into symbols. Clearly state which statement is P and which is Q.	
Q.5.2	Make a truth table for the statement in Q.5.1 above.	(12)

Q.5.3	Consider the statement:			
	<u>"For all int</u>	egers a and b, if a + b is even, then a and b are even".		
	Q.5.3.1	Write the contrapositive of the statement.	(1)	
	Q.5.3.2	Write the converse of the statement.	(1)	
	Q.5.3.3	Write the negation of the statement.	(2)	
Q.5.4	For each of the statements below, say what method of proof you should use to prove them. Then say how the proof starts and how it ends. "There are no integers x and y, such that x is a prime greater than 5 and x = 6y + 3."			
Q.5.5		the statement: $a_1 = n + n + n + n + n + n + n + n + n + n$	(6)	
	Prove the	statement using cases if n is even or if n is odd.		

END OF PAPER