Winter Quarter 2020

1. A message from Bit Project

- a. Bit Project is a student-run educational initiative at UC Davis that is dedicated to promoting STEM education for underprivileged communities.
- b. Bit partners with companies like Microsoft, Postman, Mozilla, and much more to develop innovative STEM education solutions for K-12 students.
- c. They also work closely with LGBT, veteran, and Native American charities to code web apps that bring their communities together.
- d. Regardless of your major or experience level, they have opportunities for everyone in development, teaching kids, marketing, outreach, technical writing and much more. They'd love for you to join them.
- e. To find out more about what they do, please join them at our info session on January 15th at 6:30 PM in the Student Community Center Multi-Purpose Room. Pizza will be served!
- f. Quick summary: free pizza, good cause. January 15, 6:30 PM, SCC MPR.

_				
')	Basic	deti	nıtı	nnc

- a. Computer architecture
- b. Computer organization/microarchitecture

c. Tasks of a computer (according to Stallings)

d. Parts of a computer

- 3. Analog vs. digital
 - a. Analog
 - b. Digital
- 4. Boolean algebra
 - a. Duality principle
 - b. Operator precedence
 - c. Logic types

	Truth Tables for Digital Design Gates								
Opera	ation:	Nega	ation	AND	NAND	OR	NOR	XOR	
Gat	tes:	a	c c	a AND C	<u>b</u> NANDOC	a or c	a b NOR OC	b XOB C	
Α	В	~A	~B	A * B	~(A * B)	A + B	~(A + B)	$A \oplus B$	
0	0								
0	1								
1	0								
1	1								

5. Logical equivalence

Laws of Logical Equivalence						
Name	OR version	AND version				
Commutative	A + B = B + A	A * B = B * A				
Associative	(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)				
Distributive	A + (B * C) = (A + B) * (A + C)	A * (B + C) = (A * B) + (A * C)				
Idempotent	A + A = A	A * A = A				
Idontitu	A + 0 = A	A * 1 = A				
Identity	A + 1 = 1	A * 0 = 0				
Complement	A +~A = 1	A * ~A = 0				
Complement	~1 = 0	~0 = 1				
Double Negative	~(~A) = A					
De Morgan's	~(A + B) = ~A * ~B	~(A * B) = ~A + ~B				
Absorption	A + (A * B) = A	A * (A + B) = A				

6. Examples

a.
$$A + {}^{\sim}A * B = A + B$$
. Why?

b. Prove the OR version of the Absorption Law, A + A * B = A.

Winter Quarter 2020

c. Simplify the following digital logic circuit using propositional algebra.

