Pattern Recognition Lecture 06-2 Deep Learning Visualization

Prof. Jongwon Choi Chung-Ang University Fall 2022

Beyond Training Error

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

Enjoy 2% extra performance

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

Enjoy 2% extra performance

Accuracy = 0.983

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Quite new, try it out yourself!

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Forces the network to have a redundant representation; Prevents co-adaptation of features

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!

Only ~ 10^{82} atoms in the universe...

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
  # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Regularization: Dropout at test time

Dropout makes our output random!

Output Input (label) (image)
$$y = f_W(x,z) \quad \text{Random} \quad \text{mask}$$

Want to "average out" the randomness at test-time

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

But this integral seems hard ...

Regularization: Dropout at test time

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$

During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y) + \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$

At test time, **multiply** by dropout probability

Regularization: Dropout at test time

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Regularization: Dropout (Vanilla)

```
""" Vanilla Dropout: Not recommended implementation (see notes below)
 p = 0.5 # probability of keeping a unit active. higher = less dropout
 def train step(X):
   """ X contains the data """
   # forward pass for example 3-layer neural network
   H1 = np.maximum(0, np.dot(W1, X) + b1)
   U1 = np.random.rand(*H1.shape) < p # first dropout mask
                                                                     drop at train time
   H1 *= U1 # drop!
   H2 = np.maximum(0, np.dot(W2, H1) + b2)
   U2 = np.random.rand(*H2.shape) < p # second dropout mask
   H2 *= U2 # drop!
   out = np.dot(W3, H2) + b3
   # backward pass: compute gradients... (not shown)
   # perform parameter update... (not shown)
                                                                       scale at test time
 def predict(X):
   # ensembled forward pass
   H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
   H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014
```

Based on slides for <u>Stanford cs231n</u> by Li, Jonson, and Young. Modified and reused with permission

Regularization: Dropout (Inverted)

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
                                                        drop & scale at train time
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
                                                       test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```


Figures copyright JLMR, 2014. Reproduced for educational purposes.

Check that your loss is reasonable

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

returns the loss and the gradient for all parameters

Q: What should your loss values be?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Check that your loss is reasonable

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['Wl'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

```
model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes loss, grad = two_layer_net(X_train, model, y_train, 0.0) disable regularization

2.30261216167

returns the loss and the gradient for all parameters

For cross entropy, loss ~2.3 = log10

"correct " for 10 classes
```

Check that your loss is reasonable

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

3.06859716482

Let's try to train now...

Tip: Make sure that you can overfit very small portion of the training data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

Let's try to train now...

Tip: Make sure that you can overfit very small portion of the training data

Very small loss, train accuracy 1.00, nice!

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
                                  model, two layer net,
                                  num epochs=200, reg=0.0,
                                  update='sgd', learning rate decay=1,
                                  sample batches = False,
                                  learning rate=le-3, verbose=True)
Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
      Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
      Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03
```

finished optimization. best validation accuracy: 1.000000

Let's try to train now...

Start with small regularization and find learning rate that makes the loss go down.

Let's try to train now...

Start with small regularization and find learning rate that makes the loss go down.

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sgd', learning rate decay=1,
                                  learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization. best validation accuracy: 0.192000
```

Loss barely changing

Let's try to train now...

Start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sgd', learning rate decay=1,
                                  learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization. best validation accuracy: 0.192000
```

Loss barely changing: Learning rate is probably too low

Let's try to train now...

Start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sgd', learning rate decay=1,
                                  learning rate=le-6, verbose=True)
Finished epoch 1 / 10: cost 2.302576, train: 0.080000, val 0.103000, lr 1.000000e-06
Finished epoch 2 / 10: cost 2.302582, train: 0.121000, val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10: cost 2.302558, train: 0.119000, val 0.138000, lr 1.000000e-06
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06
Finished epoch 6 / 10: cost 2.302518, train: 0.179000, val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10: cost 2.302466, train: 0.180000, val 0.176000, lr 1.000000e-06
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10: cost 2.302459, train: 0.206000, val 0.192000, lr 1.000000e-06
Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization. best validation accuracy: 0.192000
```

Loss barely changing: Learning rate is probably too low

Notice train/val accuracy goes to 20% though, what's up with that? (remember this is softmax)

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

Now let's try learning rate 1e6.

loss not going down: learning rate too low

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

```
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
                                  model, two layer net,
                                  num epochs=10, reg=0.000001,
                                  update='sgd', learning rate decay=1,
                                  sample batches = True,
                                  learning rate=le6, verbose=True)
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log
 data loss = -np.sum(np.log(probs[range(N), y])) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract
  probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06
```

loss not going down: learning rate too low loss exploding: learning rate too high cost: NaN almost always means high learning rate...

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low loss exploding: learning rate too high

3e-3 is still too high. Cost explodes....

=> Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-5]

Hyperparameter Optimization

The pain and the glory

Validation strategy

coarse -> fine validation in stages

- First stage: only a few epochs to get rough idea of what params work
- Second stage: longer running time, finer search
- ... (repeat as necessary)

Tip for detecting explosions in the solver: If the cost is ever > 3 * original cost, break out early

Example: coarse search for 5 epochs

```
val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)
val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
```

nice

Example: fine search

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)
```

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-4, 0)
    lr = 10**uniform(-3, -4)
```

Example: fine search

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)
```

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-4, 0)
    lr = 10**uniform(-3, -4)
```

```
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acc: 0.492000, ir: 2.2/9484e-04, req: 9.991345e-04, (1 / 100)
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
val acc: 0.530000. lr: 5.808183e-04. reg: 8.259964e-02. (8 / 100)
val acc: 0.489000, lr: 1.979168e-04, req: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

53% - relatively good for a 2-layer neural net with 50 hidden neurons.

Example: fine search

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-5, 5)
    lr = 10**uniform(-3, -6)
```

```
max_count = 100
for count in xrange(max_count):
    reg = 10**uniform(-4, 0)
    lr = 10**uniform(-3, -4)
```

```
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
Val acc: 0.492000, ir: 2.2/9484e-04, req: 9.991345e-04, (1 / 100)
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
val acc: 0.530000. lr: 5.808183e-04. reg: 8.259964e-02. (8 / 100)
val acc: 0.489000, lr: 1.979168e-04, req: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

53% - relatively good for a 2-layer neural net with 50 hidden neurons.

But this best validation result is worrying. Why?

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Typical hyperparameters

- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0

Typical situation

Visualize VISUALIZE VISUALIZE

Visualize VISUALIZE VISUALIZE

What do you think is wrong here?

What do you think is wrong here?

The network is not being trained until it reaches a point. Recall that this would be when we are at the "flat" region in our activated responses.

Monitor and visualize the **metric**

big gap = overfitting

=> drop out? augmentation?

no gap

=> increase model capacity?

Track the effective learning rate

```
# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())

update = -learning_rate*dW # simple SGD update

update_scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~1e-3
```

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay) want this to be somewhere around 0.001 or so

Training Neural Networks

- Check your input data
- Find a reasonable range for your hyperparameters
 - Try log-scale
- Launch your hyperparameter search
- VISUALIZE EVERYTHING