# **Polynômes**

# I. Taux de variation

Définition 1

Soit f une fonction définie sur un intervalle I de  $\mathbb{R}$ , et a et b deux nombres de l'intervalle I, distincts.

Le taux de variation de f entre a et b est le nombre :

$$\tau = \frac{f(b) - f(a)}{b - a}$$

**Exemple.** Soit f la fonction définie sur  $\mathbf{R}$  par f(x) = 5x + 1. Calculer le taux de variation de f entre 2 et 4.

# II. Polynôme du second degré

- Définition 2

Les fonctions de la forme  $x \mapsto ax^2 + b$  (avec a et b des nombres réels, et  $a \neq 0$ ) et  $x \mapsto a(x-x_1)(x-x_2)$  (avec a,  $x_1$ ,  $x_2$  des nombres réels, et  $a \neq 0$ ) sont des **polynômes du second degré**.

#### Propriété 1 (Représentation graphique) -

La représentation graphique d'une fonction polynôme du second degré est une parabole :

- 1. si a < 0, la fonction est d'abord croissante puis décroissante, et admet un maximum;
- 2. si a > 0, la fonction est d'abord décroissante puis croissante, et admet un minimum.

#### Propriété 2 (Sommet) —

- 1. La parabole représentative d'un polynôme de la forme  $f(x) = ax^2 + b$  a pour sommet S(0; b).
- 2. La parabole représentative d'un polynôme de la forme  $f(x) = a(x x_1)(x x_2)$  a pour sommet  $S(\alpha; \beta)$ , avec :

$$\alpha = \frac{x_1 + x_2}{2}$$
 et  $\beta = f(\alpha)$ .

La parabole est symétrique par rapport à la droite de coordonnées  $\alpha$  (où  $\alpha$  est l'abscisse de son sommet).

 $\mathbf{Exemple.}$  Soient les deux polynômes du second degré définis sur  $\mathbf{R}$  par :

$$f(x) = 3x^2 + 1$$
 et  $g(x) = -(x-1)(x+2)$ .

1. Identifier les nombres  $a, b, x_1$  ou  $x_2$  sur ces deux expressions.

2. Dans un repère, placer le sommet de chacune des courbes, puis tracer son allure.

- Propriété 3 (♥ Tableau de variations) -

|                              | a < 0                                                                                         | a > 0                         |
|------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|
| $f(x) = ax^2 + b$            | $ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f & & b & \\ \hline \end{array} $ | $0 \longrightarrow b$         |
| $f(x) = a(x - x_1)(x - x_2)$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                        | $\alpha + \infty$ $f(\alpha)$ |

**Exemple.** On considère les deux fonctions définies sur  ${\bf R}$  par :

$$f(x) = -4x^2 - 1$$
 et  $g(x) = 2(x-4)(x+1)$ .

Pour chacune des deux fonctions :

1. Dresser son tableau de variations.

2. Déterminer la valeur de ses extremums.

#### - Propriété 4 (Racines) -

Soit un polynôme du second degré de la forme  $f(x) = a(x - x_1)(x - x_2)$ .

L'équation f(x) = 0 a deux solutions, qui sont appelées racines du polynôme, et sont égales à  $x_1$  et  $x_2$ .

Dans le cas où  $x_1 = x_2$ , il n'y a qu'une racine appelée racine double.

## Exemple.

- 1. Soit f la fonction définie sur  $\mathbb{R}$  par f(x) = -3(x-4)(x+2).
  - (a) Résoudre f(x) = 0.

- (b) Déterminer les coordonnées du sommet de la parabole associée à f.
- (c) Placer le sommet et les racines dans un repère, et tracer l'allure de la courbe.

(d) Par lecture graphique, dresser le tableau de signes de f.

- 2. Soit g la fonction définie sur  ${\bf R}$  par  $g(x)=4x^2+1$ .
  - (a) Résoudre g(x) = 0.



(b) Dresser le tableau de signes de g.

# III. Polynôme de degré 3

#### Définition 3 –

Les fonctions de la forme  $x \mapsto ax^3 + b$  (avec a et b des nombres réels, et  $a \neq 0$ ) et  $x \mapsto a(x-x_1)(x-x_2)(x-x_3)$  (avec  $x_1, x_2, x_3$  des nombres réels distincts, et  $a \neq 0$ ) sont des polynômes du troisième degré.

### - Propriété 5 (♥ Variations) -

- Fonction de la forme  $x \longmapsto ax^3 + b$ :
  - si a < 0, la fonction est **décroissante**;
  - si a > 0, la fonction est **croissante**.
- Fonction de la forme  $x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ :
  - si a < 0, la fonction est **décroissante**, puis **croissante**, puis **décroissante**;
  - si a > 0, la fonction est **croissante**, puis **décroissante**, puis **croissante**.

|                                       | a < 0                 | a > 0                 |  |
|---------------------------------------|-----------------------|-----------------------|--|
| $f(x) = ax^3 + b$                     | $x - \infty + \infty$ | $x - \infty + \infty$ |  |
|                                       |                       |                       |  |
| $f(x) = a(x - x_1)(x - x_2)(x - x_3)$ | $x - \infty + \infty$ | $x - \infty + \infty$ |  |
|                                       |                       |                       |  |

Exemple. Dresser le tableau de variations des deux fonctions suivantes :

1. 
$$f(x) = -2x^3 + 4$$

2. 
$$g(x) = 4(x-2)(x+1)(x+3)$$

Propriété 6 (Allure des courbes)



## Exemple.

- 1. On définit la fonction f sur  $\mathbf{R}$  par  $f(x) = -2x^3 + 3$ .
  - (a) Identifier a et b.
  - (b) Dresser le tableau de variations de f.

- 2. On définit la fonction g sur  $\mathbb{R}$  par g(x) = 2(x-2)(x+3)(x-1).
  - (a) Identifier  $a, x_1, x_2, x_3$ .
  - (b) Dresser le tableau de variations de g.

- (c) Quelles sont les solutions de g(x) = 0?
- (d) Dresser le tableau de signes de g.

## Propriété 7 ———

L'équation  $a(x-x_1)(x-x_2)(x-x_3)=0$  a trois solutions :  $x=x_1,\,x=x_2$  ou  $x=x_3.$