Data Mining and Machine Learning

Assignment Project Exam Help

K-Means Clustering
Add WeChat powcoder

Peter Jančovič

Objectives

- To explain the need for *K*-means clustering
- To understand the *K*-means clustering algorithm
 Assignment Project Exam Help
 To understand the relationships between:
- - Clustering antirearisment GNMs
 - K-means clustering and E-Mestimation for GMMs

Clustering so far

- Agglomerative clustering
 - Begin by assuming that every data point is a separate centroidssignment Project Exam Help
 - Combine closest centroids until the desired number of clusters is relatined//powcoder.com
- See agglom.c on the course Canvas page
 Add WeChat powcoder
 Divisive clustering
- - Begin by assuming that there is just one centroid/cluster
 - Split clusters until the desired number of clusters is reached

Optimality

- Neither agglomerative clustering nor divisive clustering is optimal
- In other words, the set of centroids which they give is not guarantacesto point mitter distortion

Add WeChat powcoder

Optimality continued

- For example:
 - In agglomerative clustering, a dense cluster of data points will be consistent of a single Examilitely to minimise distortion, need several centroids in a region where there are many data points
 - A single 'oudier' was Chaitpown oldster
- Agglomerative clustering provides a useful starting point, but further refinement is needed

12 centroids

K-means Clustering

- Suppose that we have decided how many centroids we need - denote this number by K
- Suppose that we have an initial estimate of suitable positions for bup K/controider.com
- K-means clustering is an iterative procedure for moving these centroids to reduce distortion

Derivation of the *K*-means clustering algorithm

- Based on direct minimization of distortion
- Given a set of centroids $C^0 = c_1, ..., c_K$, and a set of data $Y = y_1, ..., y_N$, differentiating $Dist(C^0)$ with respect to the differentiating $Dist(C^0)$ with result to zero gives:

result to zero gives: $c_k^d = \frac{1}{|Y(k)|} \sum_{y_n \in Y(k)}^{Y(k)} y_n$

where Y(k) is the set of data points for which c_k is the closest centroid

Derivation of the *K*-means clustering algorithm (continued)

The equation

$$c_k^d = \frac{1}{|Y(A)|} \sum_{\substack{y_n \in Y(k)}} y_n$$
Project Exam Help

is not closed https://powceder.com/he RHS depend on c_k Add WeChat powcoder

Although this equation cannot give a direct solution for c_k^d , it can be used as the basis of an iterative algorithm

K-means clustering - notation

Suppose there are T data points, denoted by:

$$Y = y_1, y_2, ..., y_t, ..., y_T$$

 $Y = y_1, y_2, ..., y_t, ..., y_T$ Assignment Project Exam Help
Suppose that the initial K clusters are denoted by:

$$C^0$$
 https://powcoder.com

• One iteration of Kingenty alustering will produce a new set of clusters

$$C^1 = c_1^1, c_2^1, ..., c_k^1, ..., c_K^1$$

Such that

$$Dist(C^1) \leq Dist(C^0)$$

K-means clustering (1)

- For each data point y_t let $c_{i(t)}$ be the closest centroid
- In other words: d(y, c;(t)) = min_md(y, c_m)
 Assignment Project Exam Help
 Now, for each centroid c⁰_k define:

https://powcoder.com
$$Y^{0} = \{y : i(t) = k\}$$
A'dd We'Chat powcoder

• In other words, Y_k^0 is the set of data points which are closer to c^{0}_{k} than any other centroid

K-means clustering (2)

• Now define a new k^{th} centroid c_k^l by:

where $|Y_k^0|$ is Aldeln Wie Geratopouropter in Y_k^0

• In other words, c^l_k is the average value of the samples which were closer to c^0_k than to any other centroid

K-means clustering (3)

Now repeat the same process starting with the new centroids:

Assignment Project Exam Help
$$\overset{\bullet}{=} c_1, c_2, ..., c_k, ..., c_K$$

to create a newtpst/opersoded.com

... and so on until the process converges

 Each new set of centroids has smaller distortion than the previous set

Initialisation

- An outstanding problem is to choose the initial centroid set C^0
- Possibilities include:
 - Chooses Sprameon Pyoject Exam Help
 - Choose $C_{\text{https://powcoder.com}}^0$ clustering
- Choose C⁰ using divisive clustering
 Choice of C⁰ can be important
 - K-means clustering is a "hill-climbing" algorithm
 - Finds a local minimum of the distortion function
 - This local minimum is determined by C^0

Local optimality

N.B: I've drawn the cluster set space as 1 dimensional for simplicity. In reality it is a very high dimensional space

Example - distortion

C programs on Canvas

- agglom.c
 - Agglomerative clustering
 Assignment Project Exam Help

agglom datafpis! #powebler.eomumCent

- Runs agglomerative clustering on the data in dataFile until the number of centroids is numCent. Writes the centroid (x,y) coordinates to centFile

C programs on Canvas

- k-means.c
 - K-means clustering
 Assignment Project Exam Help

k-means datepsi/powerder.eempFile

- Runs 10 iterations of *k*-means clustering on the data in dataFile starting with the centroids in centFile.
- After each iteration writes distortion and new centroids to opFile

Relationship with GMMs

- The set of centroids in clustering corresponds to the set of means in a GMM
- Measuring Adisignosensing rejected Expansist Melpin clustering corresponds to assuming that the GMM variances are all equal to 1
- k-means clustering coverponds to the mean estimation part of the E-M algorithm, but:
 - In k-means samples are allocated 100% to the closest centroid
 - In E-M samples are shared between GMM components according to posterior probabilities

K-means clustering - example

First iteration of *k*-means

			Dist	tance to centroids	Closest centroid				
			d(x(n),c(1))	d(x(n),c(2))	d(x(n),c(3))	c(1)	c(2)	c(3)	
Data	1.2	1.7	0.92	1.81	2.36	1			
	1	1.1	1.42	2.04	3.00	1			
	1.5	2.5	0.75	1.80	1.52	1			
	2	2.1	1.31	1.17	1.92		1		
	1.3	3.1	0.81	2.33	1.01	1			
	1.8	1.9	1.21	1.26	2.10	1			
	0.9	Ass	signmei	nt Proj	ect Exan	n Help 1			
	0.2	1.2	1.41	2.82	3.20	1			
	2	1.1	http://	//nowc	oder _{0.8} con		1		
	2.5	3.7	https://	/ powc	oder con	U		1	
	2.4	4.2	2.37	2.77	0.68			1	
	3.1	3.9	Add:74	VeCha	t powco	der		1	
	2.8	4.5	2.86	3.01	1.16			1	
	1.6	2.1	0.94	1.52	1.91	1			
	0.7	1.7	0.80	2.31	2.53	1			
					<u>Totals</u>	<u>9</u>	<u>2</u>	<u>4</u>	
Centroids (0)	0.75	2.5							
	3	1.5							
-002	1.75	4		D	istortion(0)	15.52			

Slide 22

First iteration of *k*-means

			Distance to centroids			Closest centroid			c(c(1)		c(2)		c(3)	
			d(x(n),c(1))	d(x(n),c(2))	d(x(n),c(3))	c(1)	c(2)	c(3)	x	у	х	у	x	у
Data	1.2	1.7	0.92	1.81	2.36		1			1.20	1.70				
	1	1.1	1.42	2.04	3.00		1			1.00	1.10				
	1.5	2.5	0.75	1.80	1.52		1			1.50	2.50				
	2	2.1	1.31	1.17	1.92			1				2.00	2.10		
	1.3	3.1	0.81	2.33	1.01		1			1.30	3.10				
	1.8	1.9	1.21	1.26	2.10		1			1.80	1.90				
	0.9	1.5	1.01	249 o	ntha	nt P	rhi	ect	Evar	n Hel	11 .50				
	0.2	1.2	1.41	2.82	3.20	1111.	10		LAM	0.20	1.20				
	2	1.1	1.88	1.08	2.91			1				2.00	1.10		
	2.5	3.7	2.12	2.26	11psc.	//no	WC	ode	er:cor	n				2.50	3.70
	2.4	4.2	2.37	2.77	0.68	//PO	***	out	1	A A				2.40	4.20
	3.1	3.9	2.74	2.40	1.35				1					3.10	3.90
	2.8	4.5	2.86	3.01	C1(16	WeC	Tha	it no	owco	der				2.80	4.50
	1.6	2.1	0.94	1.52	1.91		1	· P		1.60	2.10				
	0.7	1.7	0.80	2.31	2.53		1			0.70	1.70				
						<u>Totals</u>	<u>9</u>	<u>2</u>	<u>4</u>	<u>10.2</u>	<u>16.8</u>	<u>4</u>	<u>3.2</u>	<u>10.8</u>	<u>16.3</u>
Centroids															
(0)	0.75	2.5													
	3	1.5													

Slide 23

Dist'n(0)

15.52

First iteration of *k*-means

Slide 24

Second iteration of *k*-means

			Dista	ance to centro	Clos	Closest centroid				
			d(x(n),c(1))	d(x(n),c(2))	d(x(n),c(3))	c(1)	c(2)	c(3)		
Data	1.2	1.7	0.18	0.81	2.81	1				
	1	1.1	0.78	1.12	3.43	1				
	1.5	2.5	0.73	1.03	1.98	1				
	2	2.1	0.90	0.50	2.10		1			
	1.3	3.1	1.24	1.66	1.71	1				
	1.8	1 .9	gnmen	t Proje	ot E ^{2.35}	m Help 1	1			
	0.9	A-5501	18111116.43	rryje	CL L3.14	m Heip ₁				
	0.2	1.2	1.15	1.84	3.81	1				
	2	1.1	https:///	nower	oder.co	m	1			
	2.5	3.7	2.29	2.16	0.43			1		
	2.4	4.2	2.65	2.63	0.33	1		1		
	3.1	3.9	Add 2.83	eChat	powa	oder		1		
	2.8	4.5	3.12	3.01	0.44			1		
	1.6	2.1	0.52	0.64	2.26	1				
	0.7	1.7	0.46	1.30	3.10	1				
						<u>8</u>	<u>3</u>	<u>4</u>		

Centroids(1) 1.133333 1.866667

2 1.6

2.7 4.075

Second iteration of *k*-means

Slide 26

Data Mining and Machine Learning

UNIVERSITY^{OF} BIRMINGHAM

- Three example 2-dimensional datasets
- For each data set, and for k=1,...,10:
 Assignment Project Exam Help
 Create k centroids using agglomerative clustering

 - Run k-meanstabsorithowfoodstitecations for these initial centroid values
 - Add WeChat powcoder
 Plot distortion after 15 iterations of k-means as a function of number of centroids

• Gaussian distributed data: single 2D Gaussian, centre (0,0), variance 16 in x and y directions

• Five 2D Gaussians, centres (0,0), (1,2), (4,4), (-2,-5) and (-3,1), variance 0.5 in *x* and *y* directions

■ Two 2D Gaussians, centres (2,2), (-2,-2), variance 4 in x and y directions

Summary

- The need for k-means clustering
- The k-means clustering algorithm
 Assignment Project Exam Help
 Example of k-means clustering
- Choosing k empirically coder.com

Add WeChat powcoder

