Transposition Techniques

Dr. E. Suresh Babu

Assistant Professor

Department of CSE

National Institute of Technology, Warangal

Outline

- * Transposition Techniques
 - **√** Rail Fence
 - **✓ Simple Columnar**
 - **✓ Multi stage Columnar**

Transposition Techniques

Transposition Techniques

- ❖ We will use a different notion in Classical Cryptography:
 Permuting The Plaintext.
- ❖ A very different kind of mapping is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a TRANSPOSITION CIPHER.

Rail Fence Transposition Technique

Rail Fence Transposition Technique

- The simplest Transposition cipher is the Rail Fence Technique,
 - ✓ The **Plaintext** is written down as a **sequence of diagonals** and then **read off as a sequence of rows.**

Rail Fence Transposition Technique

❖ For Example, To encipher the message "meet me after the toga party" with a rail fence of depth 2, we write the following:

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

Limitations with Rail Fence Transposition Technique

This Rail Fence Transposition Technique is very easy to analyze by cryptanalyst

Simple Columnar Transposition Cipher

Simple Columnar Transposition Cipher

- ❖ A more complex scheme is to write the message in a rectangle, row by row, and read the message off, column by column, but permute the order of the columns.
- * The order of the columns then becomes the key to the algorithm..

Simple Columnar Transposition Cipher

- * The plaintext is written horizontally onto a piece of paper of fixed width and the ciphertext is read off vertically
- Decryption is a matter of writing the ciphertext vertically onto a piece of paper of identical width and then reading the plaintext off horizontally.

For Example

Plaintext: attack postponed until two a mxyz

Key	4	3	1	2	5	6	7
	a	t	t	a	C	k	p
Plain Text	0	S	t	p	0	n	е
	d	u	n	t	i	1	t
	w	0	a	m	X	y	Z

* Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Analysis

- * A pure columnar transposition cipher is easily recognized
 - ✓ it has the same letter frequencies as the original plaintext.
- * Cryptanalysis is fairly straightforward and involves laying out the ciphertext in a matrix and playing around with column positions.
- * Digram and trigram frequency tables can be useful.

- * The Transposition Cipher can be made significantly more secure by performing more than one stage of transposition.
- ❖ The result is a more complex permutation that is not easily reconstructed.

First Stage Transposition

Plaintext: attack postponed until two a mxyz

Key	4	3	1	2	5	6	7
	a	t	t	a	C	k	p
Plain Text	0	S	t	p	0	n	е
	d	u	n	t	i	1	t
	w	0	a	m	x	y	Z

* Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

❖ if the foregoing message is reencrypted using the same algorithm,

* Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Key	4	3	1	2	5	6	7
Plain Text	t	t	n	a	a	p	t
	m	t	S	u	0	a	0
	d	w	C	0	i	X	k
	n	1	y	p	e	t	Z

- ❖ To visualize the result of the double transposition, designate the letters in the original plaintext message by the numbers designating their position.
- ❖ Thus, with 28 letters in the Original message, the original sequence of letters is

a t t a c k p o s t p o n e

01 02 03 04 05 06 07 08 09 10 11 12 13 14

d u n t I l t w o a m x y z

15 16 17 18 19 20 21 22 23 24 25 26 27 28

* After the first transposition, we have

Key	4	3	1	2	5	6	7
	a	t	t	a	C	k	p
	0	S	t	p	0	n	е
Plain Text	d	u	n	t	i	1	t
	w	0	a	m	X	y	Z
Key	4	3	1	2	5	6	7
	1	2	3	4	5	6	7
First	8	9	10	11	12	13	14
Transposition	15	16	17	18	19	20	21
	22	23	24	25	26	27	28

03 10 17 24 **04** 11 **18 25 02 09 16 23** 01 08

15 22 05 12 19 26 06 13 20 27 07 14 21 28

After the Second transposition, we have

Key	4	3	1	2	5	6	7
	t	t	n	a	a	p	t
	m	t	s	u	0	a	0
Cipher	d	W	C	0	i	X	k
Text	n	1	y	p	e	t	Z
Key	4	3	1	2	5	6	7
	3	10	17	24	4	11	18
Second Transposition	25	2	9	16	23	1	8
	15	22	5	12	19	26	6
	13	20	27	07	14	21	28

17 09 05 27 24 16 12 07 10 02 22 20 03 25

15 13 04 23 19 14 11 01 26 21 18 08 06 28

Analysis

This is a much less structured permutation and is much more difficult to cryptanalyze

Outline

- * Transposition Techniques
 - **√** Rail Fence
 - **✓ Simple Columnar**
 - ✓ Multi stage Columnar

Thank U