Day 26 – Randomize Algorithms (cont.)

CSE21 Fall 2018

December 5, 2018

https://sites.google.com/ucsd.edu/cse21fa18/

Element Distinctness

Given list of positive integers $A = a_1, a_2, ..., a_n$, and m memory locations available

List: 27, 19, 34, 17, ----

ChainHashDistinctness(A, m)

- 1. Initialize array M[1,..,m] to null lists.
- 2. Pick a hash function h from all positive integers to 1,..,m.
- 3. For i = 1 to n,
- 4. For each element j in M[h(a_i)],
- 5. If $a_i = a_i$ then return "Found repeat"
- Append a_i to the tail of the list M [$h(a_i)$]
- 7. Return "Distinct elements"

Correctness: Goal is

If there is a repetition, algorithm finds it **V**If there is no repetition, algorithm reports "Distinct elements"

Element Distinctness: MEMORY

Given list of positive integers $A = a_1, a_2, ..., a_n$, and m memory locations available

ChainHashDistinctness(A, m)

- Initialize array M[1,..,m] to null lists.
- 2. Pick a hash function h from all positive integers to 1,..,m.
- 3. For i = 1 to n,
- 4. For each element j in M[h(a_i)],
- 5. If $a_i = a_i$ then return "Found repeat"
- 6. Append a_i to the tail of the list M [$h(a_i)$]
- 7. Return "Distinct elements"

What's the memory use of this algorithm?

Size of memory locations: O(m). Total size of all the linked lists: O(n). Total memory: O(m+n).

ChainHashDistinctness(A, m)

- Initialize array M[1,..,m] to null lists. Pick a hash function h from all positive integers to 1,..,m. $\Theta(1)$
- For i = 1 to n,
- For each element j in M[h(a_i)],
- If $a_j = a_i$ then return "Found repeat"

 Append a_i to the tail of the list M [$h(a_i)$] 6.
- Return "Distinct elements"

Total time: O(n + \sum # collisions between pairs a_i and a_j , where j<i)

= O(n + total # collisions)

Worst case is when we don't find a_i: O(1 + size of list M[$h(a_i)$]) = $O(1 + \# j < i \text{ with } h(a_i) = h(a_i))$

Collisions depend on choice of hash function

h: { desired memory locations } → { actual memory locations }

Ideal hash function model: each output in {1,2,...,m} is equally likely.

So **h** is a function that chooses a random number in {1,2,...,m} for each input a_i.

Total time: O(n + $\sum_{i=1}$ # collisions between pairs a_i and a_j , where j<i)

What's the expected total number of collisions?

For each pair (i,j) with j<i, define: $X_{i,j} = 1$ if $h(a_i) = h(a_j)$ and $X_{i,j} = 0$ otherwise.

Total # of collisions =
$$\sum_{(i,j):j < i} X_{i,j}$$

$$E(X_{ij}) = (1) \cdot P(X_{ij} = 1) + (0) P(X_{ij} = 0)$$

$$= \frac{1}{m}$$

So by linearity of expectation: E(total # of collisions) = $\sum_{(i,j):j< i} E(X_{i,j})$

Total time: O(n +
$$\sum_{i=1}^{n}$$
 # collisions between pairs a_i and a_j , where j

= O(n + total # collisions)

What's the expected total number of collisions?

For each pair (i,j) with j<i, define: $X_{i,j} = 1$ if $h(a_i) = h(a_j)$ and $X_{i,j} = 0$ otherwise.

So by linearity of expectation:

E(total # of collisions) =
$$\sum_{(i,j):j < i} E(X_{i,j}) = \binom{n}{2} \frac{1}{m} = O(n^2/m)$$

Total time: O(n +
$$\sum_{i=1}^{n}$$
 # collisions between pairs a_i and a_j , where j

= O(n + total # collisions)

Total expected time: $O(n + n^2/m)$

In ideal hash model, as long as m>n the total expected time is O(n).

Note: This is much better than our original approach using sorting.

(nlogn)

Birthday paradox

Given a group of n people. Assume that each person is equally likely to have any birthday. What's the chance of two people in this group sharing the same birthday?

Let n = 2. What is the probability that two people share the same birthday if there are only two people?

Ans: 1/365

Birthday paradox

Let n = 3. What is the probability that two people share the same birthday if there are three people?

Let A be the even that at least two people share the same birthday. Then A^c is the event that all people have distinct birthdays.

$$P(A) = 1 - P(A^c) = 1 - \frac{365 * 364 * 363}{365^3} \approx 0.008$$

prob. of

no collision

Birthday paradox

In general, if there are n people (with n < 365) then the probability that at least two share

the same birthday is:

$$P(n) = 1 - \frac{(365)(364) \dots (365 - (n-1))}{365^n}$$

$$=1-\frac{365!/(365-n)!}{365^n}$$

n	P(n)
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%
70	99.9%

Connection to Hash Functions

- Number of people = number of elements in the array
- Days of the year = number of memory locations
- Hash function: h(person) = birthday
- Collisions mean that two people share the same birthday.
- People who don't share a birthday with anyone else = isolated elements in a hash function

In general, if there are n elements and k memory locations (with $n \le k$) then the probability of collision is:

$$P(n,k) = 1 - \frac{k!/(k-n)!}{k^n}$$

Of course, it is trivial to see that P(n, k) = 1 if n > k

Probability in Hash Functions

Suppose we are hashing n elements into k locations. What is the expected number of isolated elements in a hash function (i.e. number of locations with exactly 1 item)?

Let X be the random variable that counts the number of isolated elements.

Then

$$X = \sum_{i=1}^{n} X_i$$

Where $X_i = 1$ if X_i is an isolated element and $X_i = 0$ otherwise.

elements.

$$P(X_{\bar{i}} = 1) = P(\text{ elements})$$

take

 $k-1 \text{ spots}$

$$E(X_i) = P(X_i = 1) = \frac{k * (k-1)^{n-1}}{k^n} = \left(\frac{k-1}{k}\right)^{n-1} = \left(\frac{|k-1|}{k}\right)^{n-1}$$

So,

$$E(X) = \sum_{i=1}^{n} E(X_i) = n * \left(\frac{k-1}{k}\right)^{n-1}$$

Probability in Hash Functions

Suppose we are hashing n elements into k locations. What is the expected number of empty locations?

Let X be the random variable that counts the number of empty locations.

Then

$$X = \sum_{i=1}^{k} X_i$$

Where $X_i = 1$ if X_i is an empty location and $X_i = 0$ otherwise.

cation and
$$X_i = 0$$
 otherwise. X_i is empty then we have to place all $E(X_i) = P(X_i = 1) = \frac{(k-1)^n}{k^n} = \left(\frac{k-1}{k}\right)^n$ into the other $k = 1$ spots

$$E(X) = \sum_{i=1}^{k} E(X_i) = k * \left(\frac{k-1}{k}\right)^{n-1}$$

So,

Announcements

- <u>Final Exam</u>: **Wednesday, December 12, 8:00am 10:59am** in Price Center Theater.
- You are allowed to bring one page of notes, standard size, both sides
- Solutions to practice exam, old exam, and HW8 will be available on
 TritonED this Friday (12/7) after 4pm
- HW8 still dues Sunday 12/9, but it will be graded for completion only.

ichicher ponts

. RN only points from lecture.

points from sections will be added on Fri.