Tarea 5

1985269

29 de abril de 2019

1. Descripción del experimento

Fueron generados cinco grafos de órdenes distintos, luego fueron escogidos dos nodos entre los cuales se calculó el máximo flujo que puede transportarse de uno a otro. Este procedimiento fue repetido con varios pares de nodos y en cada una de las repeticiones se determinaron los coeficientes de argupamiento (clustering), centralidad (closeness centrality, load, centrality), exentricidad (eccentricity) etc. Los pesos de las aristas fueron asignados siguiendo una ditribución normal. El objetivo de este experimento es determinar si existe alguna relación entre dichos coeficientes y el valor de la función objetivo o con el tiempo de ejecución. Así como determinar cuales son los mejores nodos fuentes y sumideros.

2. Gederador de grafos

Fue utilizado el generador Watts-Strogatz small-world, este genera conexiones con una probabilidad predefinida. Se encuentra cierta similitud entre la manera en la que se genera este grafo con asentamientos poblacionales donde alrededor de las ciudades con una probabilidad mayor se fundan nuevos asentamientos y el flujo podría verse como el comercio.

A continuación se comparte el código de Python con el que se recopiló la información:

```
for i in range (5):
       rango=random.randint(ordenes[i],ordenes[i]*2)
       #G=nx.dense_gnm_random_graph(ordenes[i],rango)
      G=nx.watts_strogatz_graph(ordenes[i], int(ordenes[i]/2), 0.33, seed=
      None)
       lista = []
       lista [:]=G. edges
       width=np.arange(len(lista)*1,dtype=float).reshape(len(lista),1)
       for r in range(len(lista)):
           R=np.random.normal(loc=20, scale=5.0, size=None)
           width[r]=R
           G. add\_edge(lista[r][0], lista[r][1], capacity=R)
11
       for w in range (ordenes [i]):
12
13
           initial=final=0
14
           while initial == final:
                initial=random.randint(0,round(len(G.nodes)/2))
                final=random.randint(initial, len(G.nodes)-2)
17
18
           tiempo_inicial=time()
19
           T=nx.maximum_flow(G, initial, final)
20
           tiempo_final =time()
21
           tiempo_ejecucion=tiempo_final- tiempo_inicial
23
           data [contador,2]=nx.clustering(G, nodes=initial)
24
           data[contador,3]=nx.load_centrality(G, v=initial)
25
           data [contador, 4] = nx. closeness_centrality (G, u=initial)
26
           data [contador, 5] = nx. eccentricity (G, v=initial)
27
           data [contador, 6] = nx. pagerank (G, alpha = 0.9) [initial]
28
29
  #
           data [contador,7]=nx.clustering(G, nodes=final)
30
           data [contador, 8] = nx.load_centrality(G, v=final)
31
           data [contador, 9] = nx. closeness_centrality (G, u=final)
32
           data [contador, 10] = nx. eccentricity (G, v=final)
33
           data [contador, 11] = nx. pagerank (G, alpha = 0.9) [final]
34
35 #
           data [contador, 0]=T[0]
36
           data [contador,1] = tiempo_ejecucion
37
           data [contador, 12] = ordenes [i]
38
           contador+=1
```

3. Visualizació de los grafos Grafo

A continuación se presentan los grafos generados, los nodos marcados con formas y colores representan la fuente y el sumidero con verde y rojo respentivamente. Las aristas azules representan el flujo y su anchora es proporcional a su capacidad. Es posible observar como los grafo tienen ordenes distintos.

Figura 1: Grafo no dirigido cíclico de orden 10

Figura 2: Grafo no dirigido cíclico de orden 20

Figura 3: Grafo no dirigido cíclico de orden 30

Figura 4: Grafo no dirigido cíclico de orden 40

Figura 5: Grafo no dirigido cíclico de orden 50

4. Análisis de los datos

Los gráficos de caja y bigotes muestran como los datos obtenidos para cada uno de los nodos presentan ciertas similitudes, esto producto a que dependen del generador utilizado, es decir si fuera realizado un análisis entre distintos generadores resultaría una relación entre ellos y las caractirístias medidas para los nodos. El tiempo de ejecución registrado para el algoritmo de flujo máximo es pequeño para el tamaño de las instancias estudiadas. En la matriz de correlaciones el tiempo fila, columna 1 no se encuentra correlacionado fuertemente con ningúna otra variable, esto será ratificado más adelante. Aun así sí existen correlaciones fuertes entre las otras variables.

5. Análisis de varianza

Se realizó una prueba ANOVA para demostrar desigualdad entre las medias. Como indican los resultados de la prueba los valores p son pequeños las medias no son iguales, por lo cual se procedió a utilizar una prueba de mínimos cuadrados ordinarios a ver si con las variables resgistradas se pueden explicar los valores de la función objetivo.

		ANOVA.txt
	sum_sq	 PR>F
clustering_fuente	14340	 0
load_fuente	60054	 0
closeness_fuente	101311	 0
eccentricity_fuente	140950	 0
Prank_fuente	132493	 0
clustering_sumidero	10	 0
load_sumidero	15165	 0
closeness_sumidero	505	 0
eccentricity_sumidero	151097	 0
Prank_sumidero	146	 0.07
Residual	272297	 NaN
c@FancyVerbLinee	272297	 NaN

6. Mínimos cuadrados ordinarios

Los resultados de la regresión indican que con las variables medidas es posible explicar el comportamiento de los valores del flujo máximo con un error aceptable, el modelo hace una buena predicción. Las variables clustering no son significativas en el modelo al igual que load y page rank sumidero. Las caractirísticas más influyentes de los nodos fuentes son load, closensess y eccentricity mientras que los sumideros closeness y load en ese orden.

En el segundo experimento se realizó la misma prueba para el tiempo de ejecución y el resultado fue como se esperaba que el modelo no explica el comportamiento del tiempo ya que este depende de otras variables. Como se puede observar en la matriz de correlación el tiempo se correlaciona con el valor objetivo y esto tiene sentido ya que si existen varias aristas por las cuales pasa flujo la exploración es más grande y el tiempo de ejecución aumenta.

	OLS R	egress	ion Re	sults			
Den Veriebler		=====:	D			0.000	
Dep. Variable: Model:		FO OLS	R-squ			0.920 0.915	
Method:	ULS Least Squares		Adj. R-squared: F-statistic:				
	Sat, 20 Apr 2019			F-statistic:	160.5 3.61e-71		
Time:	12:27:00		Log-Likelihood:		-739.54		
No. Observations:	12.2	150	AIC:	inorimood.		1501.	
Df Residuals:		139	BIC:			1534.	
Df Model:		10					
Covariance Type:	nonro						
	coef		err	t	P> ^	[0.025	0.975]
Intercept	-1268.0017	223	 .711	-5.668	0.000	-1710.318	-825.68
clustering_fuente	-7.3702	76	. 549	-0.096	0.923	-158.722	143.98
load_fuente	6235.1056	565	. 337	11.029	0.000	5117.334	7352.87
closeness_fuente	718.4359	163	. 935	4.382	0.000	394.308	1042.56
eccentricity_fuente	222.4259	57	. 859	3.844	0.000	108.029	336.82
Prank_fuente	-1.034e+04	1317	.746	-7.848	0.000	-1.29e+04	-7736.63
clustering_sumidero	39.8599	79	. 430	0.502	0.617	-117.187	196.90
load_sumidero	200.1120	467	. 998	0.428	0.670	-725.203	1125.42
closeness_sumidero	1156.9662	176	. 495	6.555	0.000	808.005	1505.92
eccentricity_sumidero	78.2676	27	. 680	2.828	0.005	23.540	132.99
Prank_sumidero	-1989.1513	1327	. 265	-1.499	0.136	-4613.390	635.08
Omnibus:	1.709					1.384	
ProbOmnibus:	0.425 Jarque-Bera JB:			Bera JB:		1.486	
Skew:	-0	.243	ProbJB:			0.476	
Kurtosis:	3	.038	Cond.	No.		2.18e+03	

Olsm.	txt
-------	-----

OLS Regression Results

Dep. Variable:	Tie	mpo	R-squ	ared:		0.125		
Model:	OLS		Adj.	Adj. R-squared:		0.062		
Method:	Least Squares		F-statistic:		1.978			
Date:	Sat, 20 Apr 2	019	Prob	F-statistic:		0.0400		
Time:	12:27	:00	Log-L	ikelihood:		485.89		
No. Observations:		150	AIC:			-949.8		
Df Residuals:		139	BIC:			-916.7		
Df Model:		10						
Covariance Type:	nonrob	ust						
=======================================								
	coef	sto	l err	t	P> ^	Γ0.025	0.975]	
					• •	[0.020	0.575]	
Intercept	0.0893		.063		0.161	-0.036	0.215	
Intercept clustering_fuente	0.0893 -0.0162		0.063 0.022					
•		C		1.409	0.161	-0.036	0.215	
clustering_fuente	-0.0162	(0.022	1.409 -0.747	0.161 0.456	-0.036 -0.059	0.215 0.027	
clustering_fuente load_fuente	-0.0162 0.0033	(0.022	1.409 -0.747 0.021	0.161 0.456 0.984	-0.036 -0.059 -0.313	0.215 0.027 0.320	
clustering_fuente load_fuente closeness_fuente	-0.0162 0.0033 0.0226	(0.022 0.160 0.046	1.409 -0.747 0.021 0.486	0.161 0.456 0.984 0.628	-0.036 -0.059 -0.313 -0.069	0.215 0.027 0.320 0.114	
clustering_fuente load_fuente closeness_fuente eccentricity_fuente	-0.0162 0.0033 0.0226 -0.0082	()	0.022 0.160 0.046 0.016	1.409 -0.747 0.021 0.486 -0.499	0.161 0.456 0.984 0.628 0.618	-0.036 -0.059 -0.313 -0.069 -0.041	0.215 0.027 0.320 0.114 0.024	

Prank_sumidero	0.0528	0.376	0.141	0.888	-0.690
Omnibus:	143.935	Durbin-Wa	tson:		2.152
ProbOmnibus:	0.000	Jarque-Bera	ı JB:	1529	.659
Skew:	3.756	ProbJB:			0.00
Kurtosis:	16.722	Cond. No.			2.18e+03

0.050

0.008

-1.835

-0.820

0.069

0.413

-0.190

-0.022

0.007

0.009

0.796

-0.0917

-0.0064

7. Conclusiones

closeness_sumidero

eccentricity_sumidero

Fue realizada la experimentación propuesta y los resultados fueron analizados, dicho análisis arrojó que con las variables medidas es posible encontrar un modelo que explique el valor objetivo del algoritmo del flujo máximo utilizado. Los mejores nodos fuentes son aquellos que tienen un mayor valor de load, closeness y eccentricity. Mientras que los mejores sumidero son aquellos que presentan mayor valor de closeness. Además se comprobó que no existe una correlación fuerte entre el tiempo de ejecución y estas variables aunque existe cierta relación positiva entre el tiempo y el valor del flujo máximo.

Referencias

- [1] Janet M Six and Ioannis G Tollis. A framework for circular drawings of networks. In International Symposium on Graph Drawing, pages 107–116. Springer, 1999.
- [2] Yehuda Koren. On spectral graph drawing. In International Computing and Combinatorics Conference, pages 496–508. Springer, 2003.

- [3] EW Mayr. Praktikum algorithmen-entwurf (teil 6), nov. 2002, 6–11. Technische Universität München http://wwwmayr. in. tum. de/lehre/2002WS/algoprak/part6. ps. gz.
- [4] E. Shaeffer. https://elisa.dyndns-web.com/.