Natural Language Processing Techniques for Identifying Bacteriocins

Master thesis, Lasse Buur Rasmussen

Supervised by Asker Daniel Brejnrod and Mani Arumugam

UNIVERSITY OF COPENHAGEN

- Antibiotics
 - Antibiotic-resistant bacteria
 - Long-lasting alterations of gut microbiome

- Antibiotics
 - Antibiotic-resistant bacteria
 - Long-lasting alterations of gut microbiome
- Bacteriocins
 - Small antimicrobial peptides ribosomally synthesized by bacteria

- Antibiotics
 - Antibiotic-resistant bacteria
 - Long-lasting alterations of gut microbiome
- Bacteriocins
 - Small antimicrobial peptides ribosomally synthesized by bacteria
- Hamid et al. neural models & Word2Vec embedding
 - High performance challenge traditional bioinformatic classification methods.

- Antibiotics
 - Antibiotic-resistant bacteria
 - Long-lasting alterations of gut microbiome
- Bacteriocins
 - Small antimicrobial peptides ribosomally synthesized by bacteria
- Hamid et al. neural models & Word2Vec embedding
 - High performance challenge traditional bioinformatic classification methods.
- ELMo advantages
 - Word2Vec underlying assumption words single context.
 - Multiple representations each word.

Main findings

- Increased accuracy with ELMo embedding.
 - Hamid et al. test accuracy 86.0%.
 - Our classifier test accuracy 94.8%.
- Found 40 putative bacteriocins.

Contents

- Part 1
 - Searching for good encodings
 - Selecting best encodings
- Part 2
 - Combining encodings with neural networks
- Part 3
 - Applying the model

Contents

- Part 1
 - Searching for good encodings
 - Selecting best encodings
- Part 2
 - Combining encodings with neural networks
- Part 3
 - Applying the model

Encoding Biological Sequences

- Why?
 - Machines like numbers
 - Quantative rather than categorical

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA\cdot3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Sample dimensionality for 99 amino acids long sequence

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA =Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions. Sample dimensionality for 99 amino acids long sequence

Sequences with different lengths

MNTKMME KYYGNGVSCNKKGCSVD MSRYTGPSWKQSRRLGLSLTGTGKEL MANHSSAKKVVRQTVKRTLIN GSRYLCTPGSCW

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Sample dimensionality for 99 amino acids long sequence

Sequences with different lengths

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Sequences containing X

VAPFPEQFL<mark>X</mark> ISLEIC<mark>X</mark>IFHDN • Sample dimensionality for 99 amino acids long sequence

with

Sequences with different lengths

MNTKMME
KYYGNGVSCNKKGCSVD
MSRYTGPSWKQSRRLGLSLTGTGKEL
MANHSSAKKVVRQTVKRTLIN
GSRYLCTPGSCW

MNTKMME

KYYGNGVSCNKKGCSVD

MSRYTGPSWKQSRRLGLSLTGTGKEL

MANHSSAKKVVRQTVKRTLIN

GSRYLCTPGSCW

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA\cdot3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Sample dimensionality for 99 amino acids long sequence

Sequences with different lengths

Amino Acids to K-Mers

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

One-Hot Encoding

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

One-Hot Encoding

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

	Encoding	Equation	Dimensions
\longrightarrow	Atchley clust.	100C	100D
	Atchley	$97KM \cdot 15AF$	1455D
	One-hot	$99AA \cdot 22LE$	2178D
	Reduced alphabet	$99AA \cdot 11LE$	1089D
	Word2Vec clust.	100C	100D
	Word2Vec	$97KM \cdot 200W2V$	19400D
	ELMo summed	$99AA \cdot 1024ELS$	101376D
,	ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

	Encoding	Equation	Dimensions
	Atchley clust.	100C	100D
\longrightarrow	Atchley	$97KM \cdot 15AF$	1455D
	One-hot	$99AA \cdot 22LE$	2178D
	Reduced alphabet	$99AA \cdot 11LE$	1089D
	Word2Vec clust.	100C	100D
	Word2Vec	$97KM \cdot 200W2V$	19400D
	ELMo summed	$99AA \cdot 1024ELS$	101376D
	ELMo	$99AA \cdot 3072EL$	304128D

- Polarity
- Secondary structure
- Molecular volume
- Codon diversity
- Electrostatic charge

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Atchley Factors Encoding

Example with 2 sequences, k-mers with k=3 and 3 clusters

1 Replace Xs with most frequent AA in window of size 14

2 Unique k-mers from data set with atchley factors

```
12
APF -0.591 -1.302 -0.733 1.570 -0.146
                                                         1.891 -0.397
                                      ... -1.006 -0.590
CSI -1.343 0.465 -0.862 -1.020 -0.255
                                      ... -1.239 -0.547 2.131 0.393
EIC 1.357 -1.453 1.477 0.113 -0.837
                                                  0.465 -0.862 -1.020 -0.255
   1.357 -1.453 1.477 0.113 -0.837
                                      ... -1.006 -0.590
FHD -1.006 -0.590 1.891 -0.397 0.412
                                           1.050 0.302 -3.656 -0.259 -3.242
                 1.891 -0.397
                                0.412
                                           0.931 -0.179 -3.005 -0.503 -1.853
    0.336 -0.417 -1.673 -1.474 -0.078
                                                  0.828
ICS -1.239 -0.547 2.131 0.393
                                0.816
                                       ... -0.228 1.399 -4.760
IFH -1.239 -0.547 2.131 0.393
                                0.816
                                           0.336 -0.417 -1.673 -1.474 -0.078
ISL -1.239 -0.547 2.131 0.393 0.816
                                      ... -1.019 -0.987 -1.505 1.266 -0.912
LEI -1.019 -0.987 -1.505 1.266 -0.912
    0.189 2.081 -1.628 0.421 -1.392
                                           0.931 -0.179 -3.005 -0.503 -1.853
   0.189 2.081 -1.628 0.421 -1.392
                                                  2.081 -1.628 0.421 -1.392
    0.931 -0.179 -3.005 -0.503 -1.853
                                       ... -1.019 -0.987 -1.505 1.266 -0.912
SIF -0.228 1.399 -4.760 0.670 -2.647
                                                 -0.590
SLE -0.228 1.399 -4.760 0.670 -2.647
                                           1.357 -1.453 1.477 0.113 -0.837
VAP -1.337 -0.279 -0.544 1.242 -1.262
                                           0.189 2.081 -1.628 0.421 -1.392
[18 rows x 15 columns]
```

3 Assign each k-mer to cluster

```
Out[20]:
CSI
       Θ
EIC
EQF
FPE
ICS
IFH
ISL
LEI
PEQ
SLE
VAP
dtype: int32
```

4 Calculate fraction of k-mers belonging to each cluster per sequence

```
0 1 2
VAPFPEQFLQ 0.125 0.375 0.5
ISLEICSIFHDN 0.400 0.300 0.3
```

Reduced Alphabet Encoding

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
▶ Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Reduced Alphabet Encoding

Ī	Encoding	Equation	Dimensions
	Atchley clust.	100C	100D
	Atchley	$97KM \cdot 15AF$	1455D
	One-hot	$99AA \cdot 22LE$	2178D
>	Reduced alphabet	$99AA \cdot 11LE$	1089D
	Word2Vec clust.	100C	100D
	Word2Vec	$97KM \cdot 200W2V$	19400D
	ELMo summed	$99AA \cdot 1024ELS$	101376D
	ELMo	$99AA \cdot 3072EL$	$304128\mathrm{D}$

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Word2Vec countries and capital cities

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
▶ Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA =Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Word2Vec countries and capital cities

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
▶ Word2Vec clust.	100C	100D
▶ Word2Vec	$97KM \cdot 200W2V$	19400D
ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	$304128\mathrm{D}$

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Word2Vec 3-mer PCA projections

Word2Vec 3-mer PCA projections

Multiply input with weights and add biases

- Multiply input with weights and add biases
- Sum in next node

- Multiply input with weights and add biases
- Sum in next node
- Activate node

- Multiply input with weights and add biases
- Sum in next node
- Activate node
- Gradient of cost function with respect to weights and biases

- Multiply input with weights and add biases
- Sum in next node
- Activate node
- Gradient of cost function with respect to weights and biases
- Back-propagate through network

- Multiply input with weights and add biases
- Sum in next node
- Activate node
- Gradient of cost function with respect to weights and biases
- Back-propagate through network
- Step in the opposite direction of the gradient to minimize cost

The Word2Vec architecture

ELMo Embedding

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
► ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA\cdot3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

ELMo Embedding

Encoding	Equation	Dimensions
Atchley clust.	100C	100D
Atchley	$97KM \cdot 15AF$	1455D
One-hot	$99AA \cdot 22LE$	2178D
Reduced alphabet	$99AA \cdot 11LE$	1089D
Word2Vec clust.	100C	100D
Word2Vec	$97KM \cdot 200W2V$	19400D
► ELMo summed	$99AA \cdot 1024ELS$	101376D
ELMo	$99AA \cdot 3072EL$	304128D

Table 1: Dimensionality of the different encodings with a sequence set of maximum length 99. Legend: C = cluster, D = dimensions, KM = k-mer, AF = Atchley factors, AA = Amino acids, LE = Letters, W2V = Word2Vec dimensions, ELS = Summed ELMo dimensions, EL = ELMo dimensions.

Recurrent Neural Network

	Embedding models						
Name	Source	Trained on					
Word2Vec	Md-Nafiz Hamid and Iddo Friedberg. Identifying	Uniprot/TrEMBL					
	antimicrobial peptides using word embedding with	database					
	deep recurrent neural networks. Bioinformatics,						
	35(12):2009–2016, jun 2019.						
ELMo	Michael Heinzinger, Ahmed Elnaggar, Yu Wang,	UniRef50					
	Christian Dallago, Dmitrii Nechaev, Florian						
	Matthes, and Burkhard Rost. Modeling the Lan-						
	guage of Life – Deep Learning Protein Sequences,						
	2019.						

Contents

- Part 1
 - Searching for good encodings
 - Selecting best encodings
- Part 2
 - Combining encodings with neural networks
- Part 3
 - Applying the model

Encoding selection

- Similar data set
- Linear support vector machine
- Cross validation procedure with # folds = 10
- Goal: Select encodings to move forward with

	Data sets					
Name	Source	# data points				
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954				
	Bacteria; length: 14-99 amino acids					
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142				
	taxonomy: Bacteria; length: 14-99 amino acids					
UNI	UniProt keywords: "not Antibiotic", "not An-	1003				
	timicrobial", "not Plasmid"; taxonomy: Bacteria;					
	length: 10-359 amino acids					
BAC	CAMP (anything containing "bacteriocin"),	1003				
	BAGEL, Bactibase; length: 10-359 amino acids					

Training data						
Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points	
UniProt	LIP	GLY	0.66:1	2476	620	
Bacteriocin	Bacteriocin BAC UNI 1:1 1604 402					

	Data sets					
Name	Source	# data points				
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954				
	Bacteria; length: 14-99 amino acids					
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142				
	taxonomy: Bacteria; length: 14-99 amino acids					
UNI	UniProt keywords: "not Antibiotic", "not An-	1003				
	timicrobial", "not Plasmid"; taxonomy: Bacteria;					
	length: 10-359 amino acids					
BAC	CAMP (anything containing "bacteriocin"),	1003				
	BAGEL, Bactibase; length: 10-359 amino acids					

Training data					
Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points
UniProt	LIP	GLY	0.66:1	2476	620
Bacteriocin	BAC	UNI	1:1	1604	402

	Data sets					
Name	Source	# data points				
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954				
	Bacteria; length: 14-99 amino acids					
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142				
	taxonomy: Bacteria; length: 14-99 amino acids					
UNI	UniProt keywords: "not Antibiotic", "not An-	1003				
	timicrobial", "not Plasmid"; taxonomy: Bacteria;					
	length: 10-359 amino acids					
BAC	CAMP (anything containing "bacteriocin"),	1003				
	BAGEL, Bactibase; length: 10-359 amino acids					

Training data					
Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points
UniProt	LIP	GLY	0.66:1	2476	620
Bacteriocin	BAC	UNI	1:1	1604	402

	Data sets					
Name	Source	# data points				
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954				
	Bacteria; length: 14-99 amino acids					
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142				
	taxonomy: Bacteria; length: 14-99 amino acids					
UNI	UniProt keywords: "not Antibiotic", "not An-	1003				
	timicrobial", "not Plasmid"; taxonomy: Bacteria;					
	length: 10-359 amino acids					
BAC	CAMP (anything containing "bacteriocin"),	1003				
	BAGEL, Bactibase; length: 10-359 amino acids					

Training data					
Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points
UniProt	LIP	GLY	0.66:1	2476	620
Bacteriocin	BAC	UNI	1:1	1604	402

UniProt data set cross validation accuracy

UniProt data set test accuracy

UniProt data set accuracy

- Word embedding encodings best performance
- Summing ELMo similar to not summing
- Clustering Word2Vec decreases performance

Contents

- Part 1
 - Searching for good encodings
 - Selecting best encodings
- Part 2
 - Combining encodings with neural networks
- Part 3
 - Applying the model

Single filter

- Single filter
- Kernel size 2

- Single filter
- Kernel size 2
- Stride of 1

- Single filter
- Kernel size 2
- Stride of 1
- Inner matrix product

- Single filter
- Kernel size 2
- Stride of 1
- Inner matrix product
- "Compresses" information

Preventing overfitting

- Early stopping
- Dropout
- Regularization

NN architectures

Hamid et

al

NN architectures

Slide 60 of 76

BIDGRU UniProt cross validation accuracy

	Data sets						
Name	Source	# data points					
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954					
	Bacteria; length: 14-99 amino acids						
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142					
	taxonomy: Bacteria; length: 14-99 amino acids						
UNI	UniProt keywords: "not Antibiotic", "not An-	1003					
	timicrobial", "not Plasmid"; taxonomy: Bacteria;						
	length: 10-359 amino acids						
BAC	CAMP (anything containing "bacteriocin"),	1003					
	BAGEL, Bactibase; length: 10-359 amino acids						

Training data					
Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points
UniProt	LIP	GLY	0.66:1	2476	620
Bacteriocin	BAC	UNI	1:1	1604	402

Bacteriocin data set cross validation accuracy

Data sets						
Name	Source	# data points				
GLY	UniProt GO term: "Glycolytic-process"; taxonomy:	1954				
	Bacteria; length: 14-99 amino acids					
LIP	UniProt GO term: "Lipid-A-biosynthetic-process";	1142				
	taxonomy: Bacteria; length: 14-99 amino acids					
UNI	UniProt keywords: "not Antibiotic", "not An-	1003				
	timicrobial", "not Plasmid"; taxonomy: Bacteria;					
	length: 10-359 amino acids					
BAC	CAMP (anything containing "bacteriocin"),	1003				
	BAGEL, Bactibase; length: 10-359 amino acids					

	Training data						
	Name	Positive	Negative	Pos. Neg. Ratio	# training points	# test points	
	UniProt	LIP	GLY	0.66:1	2476	620	
→	Bacteriocin	BAC	UNI	1:1	1604	402	

Mean accuracy per epoch

CNNPAR bacteriocin data set test accuracy

- CNNPAR accuracy of 94.8%
 - > 98% with certainty > 0.8
- NeuBI accuracy of 86.0%

Contents

- Part 1
 - Searching for good encodings
 - Selecting best encodings
- Part 2
 - Combining encodings with neural networks
- Part 3
 - Applying the model

Application on Sberro's small protein families

- Human microbiome samples
- ~4500 small protein families < 50 AAs long
- 39 AMPs identified with AmPEP

Application on Sberro's small protein families

- More bacteriocins than AMPs
 - Broader class classifier harder to train?

Normalized certainty

Maximum certainty observed in Sberro

Maximum certainty observed in Sberro

- AmPEP < ~67% accuracy
- Conclusion: AmPEP is not good for identifying bacteriocins

Maximum certainty observed in Sberro

- AmPEP < ~67% accuracy
- Conclusion: AmPEP is not good for identifying bacteriocins

Main findings

- Increased accuracy with ELMo embedding.
 - Hamid et al. test accuracy 86.0%.
 - Our classifier test accuracy 94.8%.
- Found 40 putative bacteriocins.

The End

Distribution of ribosomal binding site fractions

