EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 6: Incremental algorithm

Yesterday we have defined

$$\text{chain complex} \qquad \ldots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \ldots$$

$$n$$
-cycles $Z_n(K) = \operatorname{Ker}(\partial_n)$

$$n$$
-boundaries $B_n(K) = \operatorname{Im}(\partial_{n+1})$

$$n^{\text{th}}$$
 homology group $H_n(K) = Z_n(K)/B_n(K)$

Yesterday we have defined

$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

$$n$$
-cycles

$$Z_n(K) = \mathsf{Ker}(\partial_n)$$

$$n$$
-boundaries

$$B_n(K) = \operatorname{Im}(\partial_{n+1})$$

$$n^{\mathrm{th}}$$
 homology group

Today's objectives:

how to compute them?

what do they represent?

I - Incremental algorithm

II - Applications

III - Matrix algorithm

Let K be a simplicial complex with n simplices. Choose a total order of the simplices

$$\sigma^1 < \sigma^2 < \dots < \sigma^n$$

such that

$$\forall \sigma, \tau \in K, \ \tau \subsetneq \sigma \implies \tau < \sigma.$$

In other words, a face of a simplex is lower than the simplex itself. For every $i \leq n$, consider the simplicial complex

$$K^i = {\sigma^1, ..., \sigma^i}.$$

We have $\forall i \leq n, K^{i+1} = K^i \cup \{\sigma^{i+1}\}$, and $K^n = K$. They form an inscreasing sequence of simplicial complexes

$$K^1 \subset K^2 \subset \ldots \subset K^n$$
.

5/14 (1/8)

Let $k \geq 0$. We will compute the homology groups of K^i incrementally:

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . Otherwise, σ^i is *negative*.

Example:

• $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).

$$H_k(K^1), H_k(K^2), H_k(K^3), H_k(K^4), H_k(K^5), H_k(K^6), H_k(K^7), H_k(K^8), H_k(K^9), H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).

$$H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).
- $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.

$$H_k(K^1), \ H_k(K^2), \ H_k(K^3), \ H_k(K^4), \ H_k(K^5), \ H_k(K^6), \ H_k(K^7), \ H_k(K^8), \ H_k(K^9), \ H_k(K^{10})$$

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma^i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ^i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ^i . Otherwise, σ^i is *negative*.

Example:

- $\sigma^1 \in K^1$ is **positive** because it is included in the cycle $c = \sigma^1$ (indeed, $\partial_0(\sigma^1) = 0$).
- $\sigma^2 \in K^2$ is **positive** because it is included in the cycle $c = \sigma^2$ (indeed, $\partial_0(\sigma^2) = 0$).
- $\sigma^6 \in K^5$ is **negative** because it is not included in a cycle $Z_1(K^5)$. Indeed, $C_1(K^5)$ only contains 0 and σ_5 , and $\partial_1(\sigma^5) = \sigma^1 + \sigma^2 \neq 0$.
- $\sigma^8 \in K^8$ is **positive** because it is included in the cycle $c = \sigma^5 + \sigma^6 + \sigma^7 + \sigma^8$ (indeed, $\partial_1(c) = 2\sigma^1 + 2\sigma^2 + 2\sigma^3 + 2\sigma^4 = 0$).

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is positive, then $\beta_d(K^i) = \beta_d(K^{i-1}) + 1$, and for all $d' \neq d$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: if $c \in Z_d(K^i)$ is a cycle that contains σ_i , then c is not homologous (in K^i) to a cycle of $c' \in Z_d(K^{i-1})$.

By contradiction: if c=c'+b with $c'\in Z_d(K^{i-1})$ and $b\in B_d(K^i)$, then $c-c'=b\in B_d(K^i)$. This is absurd because we just added σ_i : it cannot appear in a boundary of K^i .

As a consequence, $\dim Z_d(K^i) = \dim Z_d(K^{i-1}) + 1$.

Moreover, if c is a cycle of K^i that contains σ^i , then $\partial_i(\sigma^i) = \partial_i(c) + \partial_i(\sigma^i) = \partial_i(c + \sigma^i)$, and $c + \sigma^i$ is a chain of K^{i-1} . Hence $\dim B_{d-1}(K^i) = \dim B_{d-1}(K^{i-1})$.

We conclude by using the relation $\beta_d(K^i) = \dim Z_d(K^i) - \dim B_d(K^i)$.

Definition: Let $i \in [1, n]$, and $d = \dim(\sigma_i)$. Recall that $K^i = K^{i-1} \cup \{\sigma_i\}$. The simplex σ_i is *positive* if there exists a cycle $c \in Z_d(K^i)$ that contains σ_i . Otherwise, σ_i is *negative*.

Remark: By adding σ^i in the simplicial complex, the only groups that may change are $Z_d(K^i)$ and $B_{d-1}(K^i)$.

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d-1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

Proof: We start by proving the following fact: $\partial_d(\sigma^i)$ is not a boundary of K^{i-1} .

Otherwise, we would have $\partial_d(\sigma^i) = \partial_d(c)$ with $c \in C_d(K^{i-1})$, i.e. $\partial_d(\sigma^i + c) = 0$. Hence $\sigma^i + c$ would be a cycle of K^i that contains c, contradicting the negativity of σ^i .

As a consequence, $\dim B_{d-1}(K^i) = \dim B_{d-1}(K^{i-1}) + 1$.

Moreover, since σ^i is negative, we have $\dim Z_d(K^i) = \dim Z_d(K^{i-1})$.

We conclude by using the relation $\beta_d(K^i) = \dim Z_d(K^i) - \dim B_d(K^i)$.

```
Lemma: If \sigma^i is positive, then \beta_d(K^i) = \beta_d(K^{i-1}) + 1, and for all d' \neq d, \beta_{d'}(K^i) = \beta_{d'}(K^{i-1}).
```

Lemma: If σ^i is negative, then $\beta_{d-1}(K^i) = \beta_{d-1}(K^{i-1}) - 1$, and for all $d' \neq d-1$, $\beta_{d'}(K^i) = \beta_{d'}(K^{i-1})$.

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes K^1 \subset \cdots \subset K^n = K

Output: the Betti numbers \beta_0(K), ...\beta_d(K)

\beta_0 \leftarrow 0, ..., \beta_d \leftarrow 0;

for i \leftarrow 1 to n do

d = \dim(\sigma^i);

if \sigma^i is positive then
\beta_k(K^i) \leftarrow \beta_k(K^i) + 1;

else if d > 0 then
\beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;
```

	•	•	•	•	•					
	K^1	K^2	K^3	K^4	K^5	K^6	K^7	K^8	K^9	K^{10}
Dimension	0	0	0	0	1	1	1	1	1	2
Positivity	+	+	+	+	_	_	_	+	+	_
$\beta_0(K^i)$	1	2	3	4	3	2	1	1	1	1
$eta_1(K^i)$	0	0	0	0	0	0	0	1	2	1

We deduce the following algorithm:

```
Input: an increasing sequence of simplicial complexes K^1 \subset \cdots \subset K^n = K

Output: the Betti numbers \beta_0(K), ...\beta_d(K)

\beta_0 \leftarrow 0, ..., \beta_d \leftarrow 0;

for i \leftarrow 1 to n do

d = \dim(\sigma^i);

if \sigma^i is positive then
\beta_k(K^i) \leftarrow \beta_k(K^i) + 1;

else if d > 0 then
\beta_{k-1}(K^i) \leftarrow \beta_{k-1}(K^{i-1}) - 1;
```

I - Incremental algorithm

II - Applications

III - Matrix algorithm

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

First, a definition: say that a simplicial complex L is combinatorially connected of for every vertex v, w of L, there exists a sequence of edges that connects v and w:

$$[v, v_1], [v_1, v_2], [v_2, v_3], ..., [v_n, w].$$

Let m be the number of connected components X, and let K be triangulation of X. We accept the following equivalent statement: there exists m disjoint, non-empty and combinatorially connected simplicial sub-complex $L_1, ..., L_m$ of K such that

$$K = \bigcup_{1 \le i \le m} L_i$$

Proposition: Let X be a (triangulable) topological space. Then its 0^{th} Betti number, $\beta_0(X)$, is equal to the number of connected components of X.

Let K be a triangulation of X.

Proof: Let T be a spanning forest of K, that is, a union of spanning trees. It admits m combinatorially connected components.

Consider an ordering of the simplices of K that begins with an ordering of T.

Apply the incremental algorithm. Each vertex increases β_0 by 1.

Since T is a tree, all its edges are negative simplices (T has no cycles), hence decrease β_0 . Each tree of the forest contains k-1 edges, where k is the number of vertices of the corresponding component.

Since T is a spanning tree, each other edges of K is positive, hence β_0 does not change. Similarly, the other simplices of K do not change β_0 . We deduce the result.

For any $n \geq 1$, consider the vertex set $V = \{0, \dots, n\}$, and the simplicial complex

$$\Delta_n = \{ S \subset V, S \neq \emptyset \}.$$

We call it the *simplicial standard* n-simplex. Define its boundary as

$$\partial \Delta_n = \Delta_n \setminus V.$$

The simplicial complex $\partial \Delta_n$ is a triangulation of the (n-1)-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^n$. As a consequence, for all $i \geq 0$, $H_i(\mathbb{S}_n) = H_i(\partial \Delta_{n+1})$.

For any $n \geq 1$, consider the vertex set $V = \{0, \dots, n\}$, and the simplicial complex

$$\Delta_n = \{ S \subset V, S \neq \emptyset \}.$$

We call it the *simplicial standard* n-simplex. Define its boundary as

$$\partial \Delta_n = \Delta_n \setminus V.$$

The simplicial complex $\partial \Delta_n$ is a triangulation of the (n-1)-sphere $\mathbb{S}_{n-1} \subset \mathbb{R}^n$. As a consequence, for all $i \geq 0$, $H_i(\mathbb{S}_n) = H_i(\partial \Delta_{n+1})$.

Proposition: The Betti numbers of \mathbb{S}_n are:

- $\beta_i(\mathbb{S}_n) = 1$ for i = 0 or n,
- $\beta_i(\mathbb{S}_n) = 0$ else.

Proof: Consider the simplicial standard n-simplex Δ_n . It is homotopy equivalent to a point (its topological realization deform retracts on any point of it). Hence Δ_n has the same Betti numbers as the point:

- $\beta_1(\mathbb{S}_n) = 1$,
- $\beta_i(\mathbb{S}_n) = 0$ for i > 0.

Now, if we run the incremental algorithm for homology on Δ_n , but stopping before adding the n-simplex V, we would obtain the Betti numbers of $\partial \Delta_n$.

Note that the n-simplex is negative. Hence

- $\beta_n(\partial \Delta_n) = \beta_n(\Delta_n) + 1$,
- $\beta_i(\partial \Delta_n) = \beta_i(\Delta_n)$ for $i \neq n$.

 Δ_2

 $\partial \Delta_2$

 Δ_3

Proposition: The Betti numbers of \mathbb{S}_n are:

- $\beta_i(\mathbb{S}_n) = 1$ for i = 0 or n,
- $\beta_i(\mathbb{S}_n) = 0$ else.

Invariance of domain

Theorem (Invariance of Domain): For every integers m, n such that $m \neq n$, the spaces \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.

Proof: Let m, n such that $m \neq n$. By contradiction, suppose that \mathbb{R}^n and \mathbb{R}^m are homeomorphic via f.

Let 0 denote the origin of \mathbb{R}^n . By restriction, we get a homeomorphism

$$\mathbb{R}^n \setminus \{0\} \to \mathbb{R}^m \setminus \{f(0)\}.$$

We deduce the following weaker statement: $\mathbb{R}^n \setminus \{0\}$ and $\mathbb{R}^m \setminus \{f(0)\}$ are homotopic equivalent.

We deduce that the sphere \mathbb{S}_{n-1} and \mathbb{S}_{m-1} are homotopic equivalent.

Hence \mathbb{S}_{n-1} and \mathbb{S}_{m-1} must admit the same homology groups. This contradict the previous proposition.

Euler characteristic

Reminder: the Euler characteristic of a simplicial complex K is

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (\text{number of simplices of dimension } i).$$

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$\chi(X) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(X)$$

where n is the maximal integer such that $\beta_i(X) \neq 0$.

Euler characteristic

Proposition: Let X be a (triangulable) topological space. Then its Euler characteristic is equal to

$$\chi(X) = \sum_{0 \le i \le n} (-1)^i \cdot \beta_i(X)$$

where n is the maximal integer such that $\beta_i(X) \neq 0$.

Proof: Let K be a triangulation of X. Pick an ordering $K^1 \subset \cdots \subset K^n = K$ of K, with $K^i = K^{i-1} \cup \{\sigma^i\}$ for all $2 \leq i \leq n$.

By induction, let us show that, for all $1 \le m \le n$,

$$\sum_{0 \le i \le m} (-1)^i \cdot \beta_i(K^m) = \sum_{0 \le i \le m} (-1)^i \cdot (\text{number of simplices of dimension } i \text{ of } K^m).$$

For m=1, σ^m is a 0-simplex, and the equality reads 1=1.

Now, suppose that the equality is true for $1 \le m < n$, and consider the simplex σ^{m+1} . Let $d = \dim \sigma^{m+1}$. The right-hand side of the Equation is increased by $(-1)^d$.

If σ^{m+1} is positive, then $\beta_d(K^{m+1}) = \beta_d(K^m) + 1$, hence the left-hand side of the Equation is increased by $(-1)^d$.

Otherwise, it is negative, and $\beta_{d-1}(K^{m+1}) = \beta_{d-1}(K^m) - 1$, hence the left-hand side of the Equation is increased by $-(-1)^{d-1} = (-1)^d$.

I - Incremental algorithm

II - Applications

III - Matrix algorithm

The only thing missing to apply the incremental algorithm is to determine whether a simplex is positive or negative.

Let K be a simplicial complex, and $\sigma^1 < \sigma^2 < \cdots < \sigma^n$ and ordering of its simplices.

Define the boundary matrix of K, denoted Δ , as follows: Δ is a $n \times n$ matrix, whose (i, j)-entry $(i^{\text{th}} \text{ row}, j^{\text{th}} \text{ column is})$

 $\Delta_{i,j} = 1$ if σ^i is a face of σ^j and $|\sigma^i| = |\sigma^j| - 1$ 0 else.

By adding columns one to the others, we create chains. If we were able to reduce a column to zero, then we found a cycle.

																				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
	σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	σ^8	σ^9	σ^{10}			σ^1	σ^2	σ^3	σ^4	σ^5	σ^6	σ^7	ó ó	σ^9	σ^{10}						
σ^1	\int_{0}^{∞}	0	0	0	1	0	0	1	0	0		σ^1	$\sqrt{0}$	0	0	0	1	0	0	0	0	0						
σ^2	0	0	0	0	1	1	0	0	1	0		σ^2	0	0	0	0	1	1	0	0	1	0						
σ^3	0	0	0	0	0	1	1	0	0	0		σ^3	0	0	0	0	0	1	1	0	0	0						
σ^4	0	0	0	0	0	0	1	1	1	0		σ^4	0	0	0	0	0	0	1	0	1	0						
σ^5	0	0	0	0	0	0	0	0	0	1		σ^5	0	0	0	0	0	0	0	0	0	1						
σ^6	0	0	0	0	0	0	0	0	0	0		σ^6	0	0	0	0	0	0	0	0	0	0						
σ^7	0	0	0	0	0	0	0	0	0	0		σ^7	0	0	0	0	0	0	0	0	0	0						
σ^8	0	0	0	0	0	0	0	0	0	1		σ^8	0	0	0	0	0	0	0	0	0	1						
σ^9	0	0	0	0	0	0	0	0	0	1		σ^9	0	0	0	0	0	0	0	0	0	1						
σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/		σ^{10}	$\int 0$	0	0	0	0	0	0	0	0	0/						
$_1(\sigma^6)$	$\partial_1(\sigma^5 + \sigma^6 + \sigma^7 + \sigma^8) = 0$ $\partial_1(\sigma^5 + \sigma^6 + \sigma^7 + \sigma^8) = 0$																											

The process of reducing columns to zero is called *Gauss reduction*.

For any $j \in \llbracket 1, n \rrbracket$, define $\delta(j) = \max\{i \in \llbracket 1, n \rrbracket, \Delta_{i,j} \neq 0\}.$

If $\Delta_{i,j} = 0$ for all j, then $\delta(j)$ is undefined.

We say that the boundary matrix Δ is *reduced* if the map δ is injective on its domain of definition.

Algorithm 2: Reduction of the boundary matrix

Input: a boundary matrix Δ Output: a reduced matrix $\widetilde{\Delta}$ for $i \leftarrow 1$ to n do while there exists i < i with $\delta(i) = \delta$

while there exists i < j with $\delta(i) = \delta(j)$ do add column i to column j;

0 0 0 (1) 1 0 0 00 σ^7 σ^{10}

Algorithm 2: Reduction of the boundary matrix

Input: a boundary matrix Δ

Output: a reduced matrix Δ

for $i \leftarrow 1$ to n do

while there exists i < j with $\delta(i) = \delta(j)$ do | add column i to column j;

Lemma: Suppose that the boundary matrix is reduced. Let $j \in [\![1,n]\!]$. If $\delta(j)$ is defined, then the simplex σ^j is negative.

Otherwise, it is positive.

Conclusion

We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate 'test of positivity of a simplex'.

Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33

Conclusion

We defined the standard algorithm for (persistent homology).

It works incrementally, by using the predicate 'test of positivity of a simplex'.

Using the algorithm, we have been able to compute the homology groups of the spheres, and as a consequence we proved the Invariance of Domain.

Homework: Exercises 31, 34

Facultative: Exercises 33