$11n_{31} (K11n_{31})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 7u^{10} - 8u^9 - 23u^8 + 57u^7 - 2u^6 + 8u^5 - 87u^4 + 232u^3 + 3u^2 + 164b + 47u - 106, \\ &38u^{10} - 184u^9 + 414u^8 - 493u^7 + 446u^6 - 513u^5 + 828u^4 - 650u^3 + 397u^2 + 82a - 395u + 350, \\ &u^{11} - 5u^{10} + 12u^9 - 16u^8 + 16u^7 - 17u^6 + 25u^5 - 21u^4 + 14u^3 - 10u^2 + 10u - 1 \rangle \\ I_2^u &= \langle -a^2u - 2au + b - a + u, \ a^3 - a^2u + 2a^2 - au - a + u - 2, \ u^2 + u + 1 \rangle \\ I_3^u &= \langle b, \ -u^3 + 2u^2 + a - 2u, \ u^4 - u^3 + u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 7u^{10} - 8u^9 + \dots + 164b - 106, \ 38u^{10} - 184u^9 + \dots + 82a + 350, \ u^{11} - 5u^{10} + \dots + 10u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.463415u^{10} + 2.24390u^{9} + \dots + 4.81707u - 4.26829 \\ -0.0426829u^{10} + 0.0487805u^{9} + \dots - 0.286585u + 0.646341 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.359756u^{10} - 1.76829u^{9} + \dots - 3.79878u + 3.69512 \\ 0.0121951u^{10} + 0.164634u^{9} + \dots + 1.18902u - 0.506098 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.871951u^{10} + 3.85366u^{9} + \dots + 6.35976u - 6.43902 \\ 0.884146u^{10} - 3.68902u^{9} + \dots - 5.67073u + 1.43293 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.152439u^{10} + 1.31707u^{9} + \dots + 2.76220u - 4.04878 \\ -1.23780u^{10} + 5.41463u^{9} + \dots + 8.68902u - 0.256098 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.201220u^{10} + 1.15854u^{9} + \dots + 2.00610u - 3.52439 \\ -0.195122u^{10} + 3.11585u^{9} + \dots + 5.22561u - 0.152439 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{69}{82}u^{10} + \frac{319}{82}u^9 - \frac{364}{41}u^8 + \frac{460}{41}u^7 - \frac{935}{82}u^6 + \frac{476}{41}u^5 - \frac{687}{41}u^4 + \frac{520}{41}u^3 - \frac{539}{41}u^2 + \frac{673}{82}u - \frac{444}{41}u^8 + \frac{673}{41}u^4 + \frac{673}{$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{11} - 7u^{10} + \dots - 9u + 1$
c_2	$u^{11} + 11u^{10} + \dots + 5u + 1$
c_3, c_6	$u^{11} - 6u^{10} + \dots - 24u + 16$
c_5,c_8	$u^{11} - 2u^{10} + \dots + 96u + 64$
c_7, c_{10}	$u^{11} + 5u^{10} + \dots + 10u + 1$
c_9, c_{11}	$u^{11} - u^{10} + \dots + 80u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{11} - 11y^{10} + \dots + 5y - 1$
c_2	$y^{11} + 113y^{10} + \dots - 3895y - 1$
c_{3}, c_{6}	$y^{11} + 30y^{10} + \dots - 2240y - 256$
c_{5}, c_{8}	$y^{11} + 52y^{10} + \dots + 33792y - 4096$
c_7, c_{10}	$y^{11} - y^{10} + \dots + 80y - 1$
c_9,c_{11}	$y^{11} + 31y^{10} + \dots + 6676y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.685415 + 0.773477I		
a = -0.73400 + 2.17133I	-1.32886 - 1.52951I	-7.26885 + 4.94950I
b = -0.460151 - 0.697009I		
u = -0.685415 - 0.773477I		
a = -0.73400 - 2.17133I	-1.32886 + 1.52951I	-7.26885 - 4.94950I
b = -0.460151 + 0.697009I		
u = 0.855917 + 0.653801I		
a = 0.594255 + 0.858681I	4.33457 + 4.30583I	-3.61862 - 3.76799I
b = 0.710923 - 1.191110I		
u = 0.855917 - 0.653801I		
a = 0.594255 - 0.858681I	4.33457 - 4.30583I	-3.61862 + 3.76799I
b = 0.710923 + 1.191110I		
u = -0.315247 + 0.806810I		
a = -0.545836 + 0.331424I	-0.33628 - 1.50726I	-2.98443 + 4.38710I
b = -0.143998 + 0.360224I		
u = -0.315247 - 0.806810I		
a = -0.545836 - 0.331424I	-0.33628 + 1.50726I	-2.98443 - 4.38710I
b = -0.143998 - 0.360224I		
u = 0.94424 + 1.31822I		
a = -1.30445 - 1.00484I	-18.0782 + 10.5314I	-5.95863 - 4.05407I
b = -1.48748 + 2.15268I		
u = 0.94424 - 1.31822I		
a = -1.30445 + 1.00484I	-18.0782 - 10.5314I	-5.95863 + 4.05407I
b = -1.48748 - 2.15268I		
u = 0.110617		
a = -3.78537	-1.00288	-10.0670
b = 0.612580		
u = 1.64519 + 0.99588I		
a = 0.882711 + 0.513382I	-16.1660 - 1.6365I	-5.13576 + 0.13357I
b = -1.92558 - 3.89584I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.64519 - 0.99588I		
a = 0.882711 - 0.513382I	-16.1660 + 1.6365I	-5.13576 - 0.13357I
b = -1.92558 + 3.89584I		

 $\text{II. } I_2^u = \langle -a^2u - 2au + b - a + u, \ a^3 - a^2u + 2a^2 - au - a + u - 2, \ u^2 + u + 1 \rangle$

(i) Arc colorings

The first colorings
$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a^{2}u + 2au + a - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2}u + au + a - 3u \\ -a^{2} + au + 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2}u - 2a^{2} - au - 2a + 2 \\ -a^{2}u - a^{2} - au - a + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2}u + 2au + 2a - u \\ a^{2}u + 2au + a - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u + au + a - 3u \\ -a^{2} + au + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{21} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{22} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4a^2 2au a 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 - 1)^2$
c_2, c_6	$(u^3 + u^2 + 2u + 1)^2$
c_3	$(u^3 - u^2 + 2u - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_8	u^6
c_{7}, c_{11}	$(u^2 + u + 1)^3$
c_9,c_{10}	$(u^2 - u + 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_2, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_5, c_8	y^6
c_7, c_9, c_{10} c_{11}	$(y^2 + y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.901916 + 0.094973I	3.02413 + 0.79824I	-4.05323 - 2.24743I
b = -0.215080 + 1.307140I		
u = -0.500000 + 0.866025I		
a = -1.362120 + 0.277556I	3.02413 - 4.85801I	-7.63258 + 5.38377I
b = -0.215080 - 1.307140I		
u = -0.500000 + 0.866025I		
a = -2.03980 + 0.49350I	-1.11345 - 2.02988I	-15.8142 + 11.5861I
b = -0.569840		
u = -0.500000 - 0.866025I		
a = 0.901916 - 0.094973I	3.02413 - 0.79824I	-4.05323 + 2.24743I
b = -0.215080 - 1.307140I		
u = -0.500000 - 0.866025I		
a = -1.362120 - 0.277556I	3.02413 + 4.85801I	-7.63258 - 5.38377I
b = -0.215080 + 1.307140I		
u = -0.500000 - 0.866025I		
a = -2.03980 - 0.49350I	-1.11345 + 2.02988I	-15.8142 - 11.5861I
b = -0.569840		

III.
$$I_3^u = \langle b, -u^3 + 2u^2 + a - 2u, u^4 - u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - 2u^{2} + 2u\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u^{2} + 2u\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 2u\\u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{2} + 2u\\u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3}\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\-u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^3 3u^2 + 8u 12$

(iv) u-Polynomials at the component

. ,	_
Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_6	u^4
c_5, c_9	$u^4 - u^3 + 3u^2 - 2u + 1$
<i>C</i> ₇	$u^4 - u^3 + u^2 + 1$
c_8, c_{11}	$u^4 + u^3 + 3u^2 + 2u + 1$
c_{10}	$u^4 + u^3 + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
c_5, c_8, c_9 c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_7, c_{10}	$y^4 + y^3 + 3y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.351808 + 0.720342I		
a = 0.59074 + 2.34806I	-1.85594 - 1.41510I	-15.1414 + 7.6022I
b = 0		
u = -0.351808 - 0.720342I		
a = 0.59074 - 2.34806I	-1.85594 + 1.41510I	-15.1414 - 7.6022I
b = 0		
u = 0.851808 + 0.911292I		
a = 0.409261 - 0.055548I	5.14581 + 3.16396I	-0.358581 - 1.047693I
b = 0		
u = 0.851808 - 0.911292I		
a = 0.409261 + 0.055548I	5.14581 - 3.16396I	-0.358581 + 1.047693I
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^3+u^2-1)^2(u^{11}-7u^{10}+\cdots-9u+1)$
c_2	$((u+1)^4)(u^3+u^2+2u+1)^2(u^{11}+11u^{10}+\cdots+5u+1)$
<i>c</i> ₃	$u^{4}(u^{3} - u^{2} + 2u - 1)^{2}(u^{11} - 6u^{10} + \dots - 24u + 16)$
<i>C</i> ₄	$((u+1)^4)(u^3-u^2+1)^2(u^{11}-7u^{10}+\cdots-9u+1)$
<i>C</i> 5	$u^{6}(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{11} - 2u^{10} + \dots + 96u + 64)$
<i>c</i> ₆	$u^{4}(u^{3} + u^{2} + 2u + 1)^{2}(u^{11} - 6u^{10} + \dots - 24u + 16)$
C ₇	$((u^2+u+1)^3)(u^4-u^3+u^2+1)(u^{11}+5u^{10}+\cdots+10u+1)$
<i>c</i> ₈	$u^{6}(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{11} - 2u^{10} + \dots + 96u + 64)$
<i>c</i> ₉	$((u^{2}-u+1)^{3})(u^{4}-u^{3}+3u^{2}-2u+1)(u^{11}-u^{10}+\cdots+80u-1)$
c_{10}	$((u^2 - u + 1)^3)(u^4 + u^3 + u^2 + 1)(u^{11} + 5u^{10} + \dots + 10u + 1)$
c_{11}	$((u^{2} + u + 1)^{3})(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{11} - u^{10} + \dots + 80u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^3-y^2+2y-1)^2(y^{11}-11y^{10}+\cdots+5y-1)$
c_2	$((y-1)^4)(y^3+3y^2+2y-1)^2(y^{11}+113y^{10}+\cdots-3895y-1)$
c_3, c_6	$y^{4}(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{11} + 30y^{10} + \dots - 2240y - 256)$
c_5, c_8	$y^{6}(y^{4} + 5y^{3} + \dots + 2y + 1)(y^{11} + 52y^{10} + \dots + 33792y - 4096)$
c_7, c_{10}	$((y^2+y+1)^3)(y^4+y^3+3y^2+2y+1)(y^{11}-y^{10}+\cdots+80y-1)$
c_{9}, c_{11}	$((y^2 + y + 1)^3)(y^4 + 5y^3 + \dots + 2y + 1)(y^{11} + 31y^{10} + \dots + 6676y - 1)$