

машаеж копирайтед

зачем сравнивать макромолекулы?

- 1. макромолекулы близкородственных организмов (чаще всего) больше похожи друг на друга, чем макромолекулы дальних родственников. измеряя их схожесть, можно предположить насколько далеки друг от друга организмы
- 2. если нам попалась новая неизвестная макромолекула, можно сравнить ее с известными. и если среди макромолекул с известной функцией найдется похожая, можно предположить функцию неизвестной
- 3. сравнивать макромолекулы можно не только между организмами, но и внутри одного. например, внутри тандемного повтора куски ДНК одинаковые. так можно найти новые тандемные повторы или ретротранспозоны (LINES и SINES)
- 4. секвенирование и картирование ридов :):

LTR - длинные концевые повторы, фланкируют гены

предположим, что:

похожие последовательности -> похожие 3D структуры с похожими функциями.

тогда сравнивать придется не 3D структуры (непонятно как), а последовательности нуклеотидов или аминокислот

HUMAN KKASKPKKAASKAPTKKPKATPVKKAKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK
CHIMP KKASKPKKAASKAPTKKPKATPVKKAKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK
MOUSE KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVKVKPVKASKPKKAKTVK
RAT KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVKVKPVKASKPKKAKPVK
COW KKAAKPKKAASKAPSKKPKATPVKKAKKPAATPKKTKKPKTVKAKPVKASKPKKTKPKT

нуклеотиды и аминокислоты имеют однобуквенные обозначения - можно сравнить их! так проблема сравнения биологических макромолекул сводится к проблеме сравнения строк

как насчет того, чтобы пройтись по двум строчкам и побуквенно их сравнить?

counter = 0

for i, j in range zip(a, b):

if i == j:

counter +=1

print(counter)

GAGCCTACTAACGGGAT CATCGTAATGACGGCCT

расстояние Хэмминга

= количеству однонуклеотидных замен в двух последовательностях, мы же считаем обратную величину

basic решение: берем на вход 2 строки, сравниваем побуквенно, если буквы совпали, повышаем значение "похожести", если нет, понижаем

как минимум 2 (две) проблемы:

1. как сравнить строки разной длины?

ЗАВТРА и ЗАВТРАК

2. неужели такое выравнивание кажется правильным?

так и в наших биологических последовательностях есть не только однобуквенные замены, есть еще вставки и делеции, как их обозначить?

добавляем еще один символ - "-". это одновременно и вставка (в одном слове), и делеция (в другом слове)

тогда выравнивание слов ПРЕДЕЛ и ДЕЛАТЬ будет выглядеть вот так:

более хитрые случаи:

ПИПИДАСТР - - -- - ПИ - - СТОЛЕТ

МАШИН -A БА - - HKA

КАКОЕ ВЫРАВНИВАНИЕ ЛУЧШЕ?

что такое хорошо и что такое плохо

- 1. совпадение хорошо
- 2. несовпадение плохо
- 3. гэп плохо

насколько плохо и хорошо?

матрица замен для нуклеотидов

матрица замен для аминокислот (blosum62)

какой score у этой последовательности?

ACT AAG

гэпы гораздо хуже мутаций => штраф за них больше

линейный штраф

любой гэп оценивается штрафом в -d (у нас по дефолту d = 10)

 аффинный штраф

вставка одного длинного участка лучше вставки нескольких коротких.

поэтому штраф = -d - (I - 1)*e, где:

I - длина гэпа e<<d

ACTTAG A- T-AG ACTTAG A--TAG

какое качество у этого выравнивания? -8

алгоритм Нидлмана-Вунша

моделька

представим наше выравнивание как путь в таблице:

4	S	I	M	I	L	A	R	Ι	Т	Y
P	7									
I		1	\rightarrow							
L				1		-				
L					7					
A						1				
R						-	1	\rightarrow	\rightarrow	\rightarrow

выравнивание:

SIMILARITY PI-LLAR---

выравнивание и путь взаимно однозначны

начинать будем в левой верхней пустой клетке, конец выравнивания - правая нижняя, а стрелки - путь, по которому мы идем.

добавим в модельку известные числа

		A	T	C	C	G	A	G	T	T
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
Α	-10									8
T	-20									
С	-30									
Α	-40									
G	-50						S(5, 6)			
T	-60									
C	-70									

S(i, j) - качество оптимального пути от клетки (0, 0) до клетки (i, j)

ATCCGAGTT

пустые клетки можно заполнять, если значения в Зех соседних клетках известны:

S (i - 1, j - 1)	S (i, j - 1)
S (i -1, j) -	S (i, j)

T.e.:

$$S(i,j) = \max \begin{cases} S(i,j-1) - d & \text{C T A G} \\ S(i-1,j-1) + s(x_i,y_j) & \text{T } -1 & 2 & -2 & -2 \\ S(i-1,j) - d & \text{G } & -2 & -2 & 2 & -1 \\ & G & -2 & -2 & -1 & 2 \end{cases}$$

(i, j) — соответствующая координата в таблице S(i, j) — значение для этой координаты в матрице замен

посчитаем первую ячейку (S (1,1)):

	ľ	A	\mathbf{T}	C	C	G	A	G	Т	Т
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
Α	-10	2 🔪								
Т	-20									
С	-30									
Α	-40									
G	-50									
Т	-60									
С	-70									

$$S(i,j) = \max egin{cases} S(i,j-1) - d &= ext{-10 - 10} = ext{-20} \ S(i,j) = \max egin{cases} S(i-1,j-1) + s(x_i,y_j) &= ext{0 + 2} = 2 \ S(i-1,j) - d &= ext{-10 - 10} = ext{-20} \end{cases}$$

матрица замен

max (-20, 2, -20) = 2 => записываем в ячейку 2 и ставим диагональную стрелку (потому что оттуда пришёл лучший ответ)

посчитаем S(2,1):

	ľ	A	T	C	C	G	A	G	T	T
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
Α	-10	2 🔪	-8 →							
Т	-20									
С	-30									
Α	-40									
G	-50									
Т	-60		8							
С	-70									

матрица замен

$$S(i,j) = \max \begin{cases} S(i,j-1) - d = 2 - 10 = -8 \\ S(i-1,j-1) + s(x_i,y_j) = -10 - 2 = -12 \\ S(i-1,j) - d = -20 - 10 = -30 \end{cases}$$

max (-8, -12, -30) = -8=> записываем в ячейку -8, горизонтальная стрелка

S(i,	j) = m		(i,j-1) (i-1,j-1) (i-1,j)	-d - 1 + d - 1 - d	$s(x_i, y_j)$)	7	$ \Gamma -1 $ $ \Lambda -2 $	$egin{array}{cccccc} T & I & I & I & I & I & I & I & I & I &$	$ \begin{array}{ccc} -2 & -2 \\ -2 & -2 \\ 2 & -1 \end{array} $
		A	T	C	C	G	A	G	Т	T
	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
Α	-10	2 🔪	-8-							
Т	-20									
С	-30									
A	-40									
G	-50									
Т	-60									
C	-70									

по итогу получаем заполненную матрицу:

		Λ	T	C	C	G	Λ	G	T	Т
	0	→ -10	\rightarrow -20	\rightarrow -30	\rightarrow -40	\rightarrow -50	\rightarrow -60	→ -70	→ -80	\rightarrow -90
Λ	↓-10	√2	→ -8	→ -18	→ -28	\rightarrow -38	> -48	\rightarrow -58	→ -68	→ -78
T	↓-20	> -12	\ ₄ 4	\rightarrow -6	→ -16	\rightarrow -26	→ -36	\rightarrow -46	> -56	> -66
C	↓-30	>-22	↓-6	>6	\ -4	→ -14	→ -24	\rightarrow -34	→ -44	\rightarrow -54
Λ	↓-40	> -28	↓-16	↓-4	\ ₄ 4	> -5	> -12	→ -22	\rightarrow -32	\rightarrow -42
G	1-50	1-38	↓ -26	↓-14	> -6	>6	\rightarrow -4	>-10	\rightarrow -20	\rightarrow -30
T	↓-60	↓ -48	> -36	↓ -24	> -15	↓-4	\ ₄ 4	> -6	> -8	> -18
C	↓-70	1 -58	↓-46	√-34	> -22	↓-14	> -6			\ -9

как из заполненной матрицы получить оптимальное выравнивание?

traceback

идём назад по стрелкам, попутно выписывая получившееся выравнивание

		Λ	Т	C	C	G	Λ	G	T	T
	0	→ -10	→ -20	\rightarrow -30	→ -40	\rightarrow -50	→ -60	→ -70	→ -80	→ -90
Λ	↓-10	×2	→ -8	→ -18	\rightarrow -28	\rightarrow -38	> -48	\rightarrow -58	→ -68	→ -78
T	↓ -20	> -12	1	\rightarrow -6	→ -16	→ -26	\rightarrow -36	→ -46	> -56	> -66
C	↓-30	> -22	↓-6	> 6	\ -4	→ -14	\rightarrow -24	→ -34	→ -44	\rightarrow -54
Λ	↓-40	> -28	↓ -16	↓-4	\ ₄	₹-5	\12	→ -22	\rightarrow -32	→ -42
G	↓ -50	↓ -38	↓ -26	↓ -14	> -6	> 6	\rightarrow -4	>-10	→ -20	\rightarrow -30
T	↓-60	↓-48	> -36	↓-24	×-15	↓-4	\ ₄	> -6	> -8	> -18
C	↓ -70	↓ -58	↓-46	₹-34	> -22	↓-14	> -6	√2	>-7	>-9

наше выравнивание:

ATCCGACTT AT - C- AGTC **score** выравнивания, грубо говоря, то, насколько хорошим оно получилось

самостоятельная работа

матрица замен

$$S(i, j) = \max \begin{cases} S(i, j - 1) - d \\ S(i - 1, j - 1) + s(x_i, y_j) \\ S(i - 1, j) - d \end{cases}$$

способы оптимизации: по памяти

часто приходится сравнивать большие последовательности - для них не ок хранить в памяти всю таблицу m*n. тем более, для подсчета качества выравнивания (score) она нам вся и не нужна. сколько строчек нужно для того, чтобы произвести все наши счетные операции?

S (i - 1, j - 1)	S (i, j - 1)
S (i -1, j)	S (i, j)

ответ: 2

их мы и будем хранить в двух списках!

способы оптимизации: по вычислительной сложности

мы не можем потерять вычисления без потери точности – тогда какие-то пути в таблице не будут пройдены. но точность можно потерять аккуратно:

допущение: если наше выравнивание очень плохое, нам не нужно знать, насколько именно – важен сам факт. тогда мы можем ограничить число гэпов так, чтобы такие возможные выравнивания не учитывались:

ATCAGTC

ATCCGAGTT

ATCCGAGTT - - - - - A - - -

заметим, что плохие выравнивания встречаются в верхнем правом и нижнем левом углах таблицы:

ATCCGAGTT

- - A -

ATCAGTC

C \rightarrow -20 \rightarrow -30 $\rightarrow -40$ \rightarrow -50 \rightarrow -10 \rightarrow -60 12 \rightarrow -28 V-48 1-10 \rightarrow -8 $\rightarrow -18$ \rightarrow -38 \rightarrow -58 1 -20 · -12 \rightarrow -6 \rightarrow -16 \rightarrow -26 \rightarrow -36 $\rightarrow -46$ 1 -30 V 6 \rightarrow -24 \rightarrow -34 1-6 \rightarrow -14 $\rightarrow -44$ \rightarrow -54 V-28 \rightarrow -22 \rightarrow -32 L -40 1 - 161-4 $\rightarrow -42$ 1-50 ×-10 1 - 381-26 1-14 \rightarrow -20 $\rightarrow -30$ × -36 1-24 ×-15 y -18 1-60 1 - 481-4 1 - 58~-34 L-46 1-14

-> можно их просто не учитывать!

ATCCGAGTT

все нежеланные значения теперь у нас находятся в серых треугольниках – в них мы напишем значения = -∞

алгоритм будет идти в пределах белой полосы шириной 2d + 1, где d – количество допустимых гэпов

он не будет отфильтровывать все пути с количеством гэпов > d, но он фильтрует большую часть и оставляет все пути, где гэпов < d

		A	T	C	C	G
	0	-10	-20	-30	-40	-50
A	-10					
T	-20					
C	-30					
A	-40					
G	-50					
					-	

домашнее задание

нарисуйте таблицу для выравнивания последовательностей ATGAGTCTCT и CTGTCTCCTG, запишите score и оптимальное выравнивание

бонус: попробуйте решить ту же задачу с аффинными гэпами (d = 10, e = 0,5) (бонус бонусом, но понимать принцип работы аффинного гэпа к следующему семинару хорошо бы всем)

спасибо за внимание!!

