

=> Um filtro "passa-alto" apemas "amita" simais erjas progrêmeras estejarm acima da progrêmera de carte. se à Frequência Fore momor que este paraimetro, ocosteria uma atemuação mais ou memos acemtuada do simal. O circento "passa-alto" referente é montado de mamoira a que sga medida a temsão mos terminais da ræsistêmaa. Material : Osciloscápio digital, geradore de simais; places elebrororeas como circevito eletroco (passa-baixo e passa-alto) com embada e sarda BNC; Priceadimento: . Montaro erreuto "passa baixo" · Selecionar no gerador de sinais uma amplitude do simal simusoidal à volta dos 5V. Fazor, como a ajuda do osciloscópio, as medições correctus de temsão piro apro dos simais de entrada e saida (2 vgo e 2 vco) e a diferença de face emtra os dois simais. (Isto tudo para anda proguência selectornada) (NOTA: As frequêmas utilizadas socão do internolo Eão, 20×103 TH · Apos possuir os valores clas medições, elaborar uma tabella com es seguintes percarmetros: Freguência, logaritano da Fragueria; temsão piao-a-pia do simil de embrada, temsão pico-a-pico do simal de saida, Ac (Ac= diferença de fase em gravs e diferença de fase som madramos Elaborar um prájeo com log(f) mo axo das aborssas e Ac no eixo das ordenadas norm os resultados adquirados · Introduzios mo mesmo exertico a função teóraca: (e limearizar

Filtro Passa-Baixo							
R (Ω)	3300						
u(R)	± 5%						
C (F)	8,41E-08	84,1 nF					
u(C)	0,1						

Filtro Passa-Alto								
R (Ω)	3300							
u(Ω)	± 5%							
C (F)	8,56E-08	85,6 nF						
u(C)	0,1							

Filtro Passa-Baixo

f(Hz) protocolo	f (Hz)	u(f)	log(f) (Hz)	u(log(f))	2Vg0 (V)	u(V)	2Vc0 (V)	u(V)	Ac	u(Ac)	Ac teórico
30	27,00	0,01	3,2958	0,0004	5,04	0,01	4,96	0,01	0,984	0,003	0,9989
50	56,00	0,01	4,0254	0,0002	5,04	0,01	4,96	0,01	0,984	0,003	0,9953
100	96,00	0,01	4,5643	0,0001	4,96	0,01	4,88	0,01	0,984	0,003	0,9863
150	145,00	0,01	4,9767	0,0001	4,96	0,01	4,80	0,01	0,968	0,003	0,9695
160	161,00	0,01	5,0814	0,0001	4,96	0,01	4,80	0,01	0,968	0,003	0,9628
200	199,00	0,01	5,2933	0,0001	4,96	0,01	4,64	0,01	0,935	0,003	0,9447
250	254,00	0,01	5,53733	0,00004	4,96	0,01	4,40	0,01	0,887	0,003	0,9143
300	299,00	0,01	5,70044	0,00003	4,96	0,01	4,32	0,01	0,871	0,003	0,8867
400	402,00	0,01	5,99645	0,00002	4,96	0,01	3,96	0,01	0,798	0,003	0,8188
500	496,00	0,01	6,20658	0,00002	4,92	0,01	3,60	0,01	0,732	0,003	0,7563
750	750,00	0,01	6,62007	0,00001	4,92	0,01	2,88	0,01	0,585	0,002	0,6074
1000	997,00	0,01	6,90475	0,00001	4,92	0,01	2,36	0,01	0,480	0,002	0,4986
2000	2030	1	7,6158	0,0005	4,88	0,01	1,30	0,01	0,266	0,002	0,2719
5000	4980	1	8,5132	0,0002	4,88	0,01	0,544	0,001	0,1115	0,0003	0,1144
7500	7480	1	8,9200	0,0001	4,88	0,01	0,360	0,001	0,0738	0,0003	0,0764
10000	10010	1	9,2113	0,0001	4,88	0,01	0,272	0,001	0,0557	0,0002	0,0572
12500	12400	1	9,4255	0,0001	4,88	0,01	0,220	0,001	0,0451	0,0002	0,0462
15000	14700	1	9,5956	0,0001	4,88	0,01	0,182	0,001	0,0373	0,0002	0,0390
17000	16800	1	9,7291	0,0001	4,88	0,01	0,162	0,001	0,0332	0,0002	0,0341
19000	18900	1	9,8469	0,0001	4,88	0,01	0,142	0,001	0,0291	0,0002	0,0303

αc (graus)	u(αc) (º)	αc (rad)	u(αc)(rad)	f^2	(x)	1/Ac^2 (y)	1/Ac^2 (y) aj.	Resíduos	αcteórico (rad)
0,0	0,1	0	0,002		729	1,0325	0,2346	0,7979	-0,047047113
-4,4	0,4	-0,077	0,007		3136	1,0325	0,2425	0,7900	-0,097342626
-9,0	0,7	-0,16	0,01		9216	1,0331	0,2624	0,7707	-0,165864199
-15,1	0,5	-0,264	0,009		21025	1,0678	0,3010	0,7668	-0,247656393
-18,5	0,1	-0,323	0,002		25921	1,0678	0,3170	0,7508	-0,273701595
-20	1	-0,35	0,02		39601	1,1427	0,3618	0,7809	-0,334009278
-25,1	0,5	-0,438	0,009		64516	1,2707	0,4433	0,8275	-0,41694911
-29	1	-0,50	0,02		89401	1,3182	0,5247	0,7936	-0,480611204
-35,9	0,1	-0,627	0,002		161604	1,5688	0,7609	0,8079	-0,611394451
-42,9	0,5	-0,749	0,009		246016	1,8678	1,0371	0,8307	-0,713087294
-53,1	0,3	-0,927	0,005		562500	2,9184	2,0724	0,8460	-0,918000247
-61	1	-1,06	0,02		994009	4,3462	3,4841	0,8620	-1,048815576
-75,1	0,7	-1,31	0,01		4120900	14,0914	13,7138	0,3776	-1,295473469
-84,2	0,1	-1,470	0,002		24800400	80,4715	81,3671	-0,8957	-1,456146835
-86,5	0,5	-1,510	0,009		55950400	183,7531	183,2749	0,4782	-1,494278989
-86,4	0,1	-1,508	0,002		100200100	321,8858	328,0385	-6,1527	-1,513569237
-87,6	0,6	-1,53	0,01		153760000	492,0331	503,2606	-11,2275	-1,52458173
-88,6	0,4	-1,546	0,007		216090000	718,9470	707,1742	11,7728	-1,53180458
-88,5	0,1	-1,545	0,002		282240000	907,4226	923,5850	-16,1624	-1,536674496
-87,6	0,1	-1,529	0,002		357210000	1181,0355	1168,8506	12,1849	-1,540463341

Filtro Passa-Alto

f(Hz) protocolo	f (Hz)	u(f)	log(f) (Hz)	u(log(f))	2Vgo (V)	u(V)	2Vc0 (V)	u(V)	Ar	u(Ar)	Ar teórico
30	30,00	0,01	3,4012	0,0003	4,88	0,01	0,284	0,01	0,058	0,002	0,0532
50	48,00	0,01	3,8712	0,0002	5,04	0,01	0,488	0,01	0,097	0,002	0,0849
100	101,00	0,01	4,6151	1E-04	5,12	0,01	0,984	0,01	0,192	0,002	0,1764
150	153,00	0,01	5,03044	7E-05	5,12	0,01	1,44	0,01	0,281	0,002	0,2621
160	160,00	0,01	5,07517	6E-05	5,12	0,01	1,50	0,01	0,293	0,002	0,2732
200	202,00	0,01	5,30827	5E-05	5,12	0,01	1,84	0,01	0,359	0,002	0,3375
250	250,00	0,01	5,52146	0,00004	5,12	0,01	2,16	0,01	0,422	0,002	0,4056
300	302,00	0,01	5,71043	3E-05	5,12	0,01	2,52	0,01	0,492	0,002	0,4724
400	401,00	0,01	5,99396	2E-05	5,12	0,01	3,04	0,01	0,594	0,002	0,5799
500	500,00	0,01	6,21461	0,00002	5,12	0,01	3,44	0,01	0,672	0,002	0,6638
750	751,00	0,01	6,62141	1E-05	5,12	0,01	4,12	0,01	0,805	0,003	0,7999
1000	1020	1	6,928	0,001	5,12	0,01	4,44	0,01	0,867	0,003	0,8753
2000	2020	1	7,6109	0,0005	5,12	0,01	4,84	0,01	0,945	0,003	0,9632
5000	4980	1	8,5132	0,0002	5,20	0,01	5,120	0,001	0,985	0,002	0,9937
7500	7500	1	8,9227	0,0001	5,28	0,01	5,200	0,001	0,985	0,002	0,9972
10000	10000	1	9,2103	0,0001	5,28	0,01	5,200	0,001	0,985	0,002	0,9984
12500	12500	1	9,43348	0,00008	5,28	0,01	5,200	0,001	0,985	0,002	0,9990
15000	15100	1	9,6225	0,0001	5,28	0,01	5,200	0,001	0,985	0,002	0,9993
17000	17100	1	9,7468	0,0001	5,20	0,01	5,200	0,001	1,000	0,002	0,9995
19000	19000	1	9,8522	0,0001	5,28	0,01	5,200	0,001	0,985	0,002	0,9996

αc (graus)	u(α₀) (º)	αc (rad)	u(αc)(rad)	1/f^2 (x)	1/Ar^2 (y)	1/Ar^2 (y) aj.	Resíduos	αcteórico (rad)
86,7	0,1	1,513	0,002	0,0011	295,2589	292,2294525	3,0294	1,517600336
87	1	1,52	0,02	0,0004	106,6649	114,6925199	-8,0276	1,4858
80,2	0,7	1,40	0,01	9,80296E-05	27,0738	26,59097907	0,4829	1,3934
74,6	0,3	1,302	0,005	4,27186E-05	12,6420	12,08797264	0,5540	1,3056
74,5	0,1	1,300	0,002	3,90625E-05	11,6508	11,12930925	0,5215	1,2941
68,1	0,3	1,189	0,005	2,45074E-05	7,7429	7,312840199	0,4301	1,2265
62,8	0,2	1,096	0,003	0,000016	5,6187	5,082128195	0,5365	1,1532
58,6	0,4	1,023	0,007	1,09644E-05	4,1280	3,761759842	0,3662	1,0788
50,9	0,1	0,888	0,002	6,21887E-06	2,8366	2,517432979	0,3191	0,9522
48,1	0,1	0,840	0,002	0,000004	2,2153	1,935627482	0,2796	0,8450
36,2	0,2	0,632	0,003	1,7730E-06	1,5443	1,351701584	0,1926	0,6436
27,1	0,6	0,47	0,01	9,6117E-07	1,3298	1,138820432	0,1909	0,5047
12,9	0,5	0,225	0,009	2,4507E-07	1,1190	0,951054373	0,1680	0,2720
6	1	0,11	0,02	4,0322E-08	1,0315	0,897366659	0,1341	0,1127
3	2	0,05	0,03	1,7778E-08	1,0310	0,891455393	0,1396	0,0750
1,4	0,2	0,025	0,003	0,00000001	1,0310	0,889415994	0,1416	0,0563
1	1	0,02	0,02	6,4E-09	1,0310	0,888472044	0,1425	0,0450
2,2	0,6	0,04	0,01	4,3858E-09	1,0310	0,887943897	0,1431	0,0373
0	1	0,01	0,02	3,4199E-09	1,0000	0,887690625	0,1123	0,0329
1,4	0,5	0,024	0,009	2,7701E-09	1,0310	0,88752025	0,1435	0,0296

Amalisando O gráfico de Az em função de log (f. aperceberno-mes da existêmera de 2 assímtotas horizontais lineares. Uma dá-se quando a frequência é alta e Ajun 1 e outria guamdo a freglêmeja é barxa e Az a O. Podermos então comelura a existência de 2 regimes assimptoticamente lineaces Qu soga, w->0 => Az->0 W->+0 => Az->1 Isto faz semtido visto estarmos a considercon Filtoros passa-alto! Estimativas de Fc comsiderande fase de - 97 ou ap = 1 (ambos os filteres) > Filtre Passa-baixo · Tragada a limba comtímua para de=-11 mo gráfico da fase em fumção da Freguência, faz-se a média das Fraguêmeias dos 2 pomtos mais próximos da limba e obtem-se: Fc = (623±0,7) Hz I gual ao valore obtido attravés do Eroco (1) = 8,7%, gréafice Ac em função de f. > Filtono Passa-alto : Tragada a limba comtímua pera aq = 17 mo grafico da fase em função da frequêmera, 4 faz-se a media das frequêmeras dos 2 pombs mais próximos da limba e obtem-se; fc = (625,5 to,7)Hz, igual que valor obtido através do Erozo (1.) = 9,1%. gravilla Ac em Fingão de P

Amalise/comelusãos.

- · Imicialmente os valores da fase em radiamos de ambos os filtros possuíam igual módulo aos valores teóricos, mas simais contrarios. Tal sucedeu muito proyavelmente ao facto do osciloseópio ter medido camal s-camal 1 em vez de camal 1-camal 2. Como estamos a faltor do desfazamento de uma onda em relação a cutra, bastou inverter o simal dos dados associdos a fase e assim obter comordâmera como os dados teóricos.
- Após efetuado o cálculo da fraguência de corte (fc) por 3 mameiras diferentes em eada filtro: média das fraguêmeras associadas a 2 pomtos experimentais do gráfico de Achimedia das fraguêmeras associadas a 2 pomtos experimentais do gráfico de fase e Utilização da equação (y=ma+b) referente a limentação da expressão de amplitude, e hega-se a comelusão que o vso da equação de limearização farmece o volor da frequêmera de corte experimental mais próximo do volor teórico, ou seja, com memos purcemtagem de voro.
- Poi motórna a rmameira de como se estabelaceram limites assimptoticamente linewres mos gráficos de Ac/Ar em função do logaritmo da freguência. A vardade é que os valores da temsão pro-a-pico mos simuis de emtrada e saída mão varievam muito para cada freguência considerada. Daí Ac/Ar aprosentari valores compreendidos embre 0 e 1.