Relation Between the Mass-Spring System and the Dynamic Speckle

Abstract

In this article will be studied the relation between the mass-spring system and the dynamic speckle.

Keywords: Biospeckle laser, Biospeckle signal, Dynamic speckle,

1. Introduction

The biospeckle laser analysis has presented as a versatile tool in the analysis of biological activity.

2. System description

The Fig. 1.a) represents the signal z with samples z(n), obtained in a pixel of a dynamic speckle analysis, where E[z] indicates the mean value of z. Be

Figure 1: Data acquisition system setup of the coffee seed.

other side the Fig. 1.b) represents the signal x_M with samples $x_M(n)$, obtained in a mass-spring system of M elements, where each mass is separated of another by a distance of L/M, like can be seen in the Fig. 2. Thus, in this system the

Figure 2: Data acquisition system setup of the coffee seed.

mass are denoted as m_i , the springs as k_i and the displacements of each mass by x_i , for all $1 \le i \le M$.

The objective of this work it is to solve the next inverse problem: Known y(n),

$$y(n) = z(n) - E[z] \tag{1}$$

and assuming M elements with $m_i = m = 1/L$; what values of k_i generate a signal x_M that minimize E, where

$$E = \frac{1}{2} \sum_{n} (y(n) - x_M(n))^2$$
 (2)

3. Mass-spring system

Assuming a mass spring system like seen in the Fig. 2 with $m_i = m$ we can to get the system of Eq. (3).

$$m\ddot{\mathbb{X}} = -\mathbf{P}\mathbb{X},$$
 (3)

where

$$\mathbb{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{N-1} \\ x_N \end{pmatrix} \tag{4}$$

and

$$\mathbf{P}(\mathbf{K}) \equiv \mathbf{P} = \begin{pmatrix} k_1 + k_2 & -k_2 & 0 & \dots & 0 & 0 \\ -k_2 & k_2 + k_3 & -k_3 & \dots & 0 & 0 \\ 0 & -k_3 & k_3 + k_4 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x_{N-1} + x_N & -x_N \\ 0 & 0 & 0 & \dots & -x_N & x_N \end{pmatrix}, \quad (5)$$

so that **P** is a function of $\mathbf{K} = (k_1 \ k_2 \ k_3 \ \dots \ k_{M-1} \ k_M)^T$.

3.1. Exact solution

Knowing the system shown in the Eq. (3), we can solve It using the Eq. (6),

$$X(t) = V \left(D_1 cos(\mathbf{w}t) + D_2 sin(\mathbf{w}t) \right), \tag{6}$$

or Eq. (7)

$$X(t) = \mathbf{V}\left(\cos(\mathbf{W}t)\mathbf{d}_1 + \sin(\mathbf{W}t)\mathbf{d}_2\right),\tag{7}$$

where, $\mathbf{V} = (e_1, e_2, \dots, e_M)$ and $\mathbf{w} = (\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_M})^T$ are a matrix and a column vector conform using the eigenvectors e_i and eigenvalues λ_i of \mathbf{P}/m , being \mathbf{W} a diagonal matrix conform with the elements of vector \mathbf{w} . By other side, \mathbf{D}_1 and \mathbf{D}_2 are two any constant diagonal matrices conform by the elements of column vectors \mathbf{d}_1 and \mathbf{d}_2 respectively. Thus, we now that $\dot{\mathbb{X}}(t)$ and $\ddot{\mathbb{X}}(t)$ are defined by the Eqs. (8) and (9) respectively.

$$\dot{\mathbb{X}}(t) = \mathbf{V} \left(-\mathbf{D}_1 \mathbf{W} sin(\mathbf{w}t) + \mathbf{D}_2 \mathbf{W} cos(\mathbf{w}t) \right), \tag{8}$$

$$\ddot{\mathbb{X}}(t) = -\mathbf{V} \left(\mathbf{D}_1 \mathbf{W}^2 cos(\mathbf{w}t) + \mathbf{D}_2 \mathbf{W}^2 sin(\mathbf{w}t) \right), \tag{9}$$

thus, It is fulfill that $\mathbf{W}^2 = (VD_1)^{-1}(P/m)(VD_1) = (VD_2)^{-1}(P/m)(D_2)$.

3.1.1. Constant values from two points

Now, to get the constant values in the column vectors \mathbf{d}_1 and \mathbf{d}_2 , we can use the Eq. (10)

$$\begin{pmatrix} \mathbf{V}cos(\mathbf{W}t_1) & \mathbf{V}sin(\mathbf{W}t_1) \\ \mathbf{V}cos(\mathbf{W}t_2) & \mathbf{V}sin(\mathbf{W}t_2) \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{X}(t_1) \\ \mathbb{X}(t_2) \end{pmatrix} = \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{pmatrix}$$
(10)

3.1.2. Constant values from position and velocity of a point

Now, to get the constant values in the column vectors \mathbf{d}_1 and \mathbf{d}_2 , we can use the Eq. (11)

$$\begin{pmatrix} \mathbf{V}cos(\mathbf{W}t_1) & \mathbf{V}sin(\mathbf{W}t_1) \\ -\mathbf{V}\mathbf{W}sin(\mathbf{W}t_1) & \mathbf{V}\mathbf{W}cos(\mathbf{W}t_1) \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{X}(t_1) \\ \dot{\mathbb{X}}(t_1) \end{pmatrix} = \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{pmatrix}$$
(11)

3.2. Finite differences: Knowing two consecutive samples

Applying finite differences we known that $\mathbb{X} \equiv \mathbb{X}(n)$ and $\ddot{\mathbb{X}} \equiv (\mathbb{X}(n+1) - 2\mathbb{X}(n) + \mathbb{X}(n-1))/\tau^2$, so that the Eq. (3) can be rewrite as

$$\mathbb{X}(n) = \left(2\mathbf{I} - \mathbf{P}\frac{\tau^2}{m}\right)\mathbb{X}(n-1) - \mathbb{X}(n-2),\tag{12}$$

now deriving $\mathbb{X}(n)$ by the vector $\mathbf{K} = (k_1 \ k_2 \ k_3 \ \dots \ k_{M-1} \ k_M)$, so that $\mathbb{J}(n) \equiv \frac{\partial \mathbb{X}(n)}{\partial \mathbf{K}}$, we get the Eq. (13)

$$\mathbb{J}(n) = -\frac{\tau^2}{m} \bigcup_{i} \left[\frac{\partial \mathbf{P}}{\partial k_i} \mathbb{X}(n-1) \right] + \left(2\mathbf{I} - \mathbf{P} \frac{\tau^2}{m} \right) \mathbb{J}(n-1) - \mathbb{J}(n-2), \quad (13)$$

where

$$\frac{\partial \mathbf{P}}{\partial k_{i}} = \begin{pmatrix}
0 & 0 & 0 & \dots & 0 & 0 \\
0 & 1 & -1 & \dots & 0 & 0 \\
0 & -1 & 1 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & 0 & 0 \\
0 & 0 & 0 & \dots & 0 & 0
\end{pmatrix} i - th , \tag{14}$$

3.3. Finite differences: Knowing one sample and velocity

In this case, It is necessary define $\dot{\mathbb{X}} = \mathbb{V}$, so that the Eq. (3) can be rewrite as

$$\begin{pmatrix} \dot{\mathbb{X}} \\ \dot{\mathbb{V}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbb{I}_{M \times M} \\ -\mathbf{P}/m & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbb{X} \\ \mathbb{V} \end{pmatrix}, \tag{15}$$

so that we got

$$\dot{\mathbb{U}} = A\mathbb{U},\tag{16}$$

where $\mathbb{U} = (\mathbb{X}; \mathbb{V})$ and $A = (\mathbf{0}, \mathbb{I}_{M \times M}; -\mathbf{P}/m, \mathbf{0}).$

Applying finite differences we known that $\mathbb{U} \equiv \mathbb{U}(n)$ and $\dot{\mathbb{U}} \equiv (\mathbb{U}(n) - \mathbb{U}(n-1))/\tau_2$, so that the Eq. (16) can be rewrite as

$$\mathbb{U}(n) = (\mathbf{I} - \mathbf{A}\tau_2)^{-1} \mathbb{U}(n-1), \tag{17}$$

Problems with finite differences: To got a good approximation it is necessary to choose $\tau_2 \gg \tau$ (where τ is the value used in the section 3.2). Experimentally was see that $\tau_2 \geq \tau^2$.

Now deriving $\mathbb{U}(n)$ by the vector $\mathbf{K} = (k_1 \ k_2 \ k_3 \ \dots \ k_{M-1} \ k_M)$, so that $\mathbb{Q}(n) \equiv \frac{\partial \mathbb{U}(n)}{\partial \mathbf{K}}$, we get the Eq. (18)

$$\mathbb{Q}(n) = \tau_2 \left(\mathbf{I} - \mathbf{A} \tau_2 \right)^{-1} \bigcup_i \left[\frac{\partial \mathbf{A}}{\partial k_i} \mathbb{U}(n) \right], + \left(\mathbf{I} - \mathbf{A} \tau_2 \right)^{-1} \mathbb{Q}(n-1), \quad (18)$$

where

$$rac{\partial \mathbf{A}}{\partial k_i} = egin{pmatrix} \mathbf{0} & \mathbf{0}_{M imes M} \ -rac{1}{m}rac{\partial \mathbf{P}}{\partial k_i} & \mathbf{0} \end{pmatrix},$$

(19)

4. Minimization problem

The minimization problem seen in the Eq. (2) can be rewrite as

$$E(\mathbf{K}) = \frac{1}{2} \sum_{n} (y(n) - \mathbf{B}^{T} \mathbb{X}(n, \mathbf{K}))^{2}$$
(20)

where $\mathbf{B} = (0\ 0\ 0\ \dots\ 0\ 1)^T,\ y(n)$ are known values and $\mathbb{X}(n)$ that is a function of $\mathbf{K} = (k_1\ k_2\ k_3\ \dots\ k_{M-1}\ k_M)^T$.

Now, knowing that a minimum of $E(\mathbf{K})$ in \mathbf{K} is found when $\frac{\partial E(\mathbf{K})}{\partial k_i} = 0$ for all integer $1 \leq i \leq M$; we calculate the Eq. (21).

$$\frac{\partial E(\mathbf{K})}{\partial k_i} = \sum_{n} \left(\mathbf{B}^T \frac{\partial \mathbb{X}(n, \mathbf{K})}{\partial k_i} \right)^T \left(\mathbf{B}^T \mathbb{X}(n, \mathbf{K}) - y(n) \right), \tag{21}$$

Now reordering the Eq. (21) using a vectorial differentiation by \mathbf{K} , we get the Eq. (22).

$$\frac{\partial E(\mathbf{K})}{\partial \mathbf{K}} = \sum_{n} (\mathbf{B}^{T} \mathbb{J}(n, \mathbf{K}))^{T} (\mathbf{B}^{T} \mathbb{X}(n, \mathbf{K}) - y(n)), \tag{22}$$

where $\mathbb{J}(n) = \frac{\partial \mathbb{X}(n)}{\partial \mathbf{K}}$.

4.1. Landweber iterative method

The Landweber iteration method propose that the minimization of a nonlinear function $E(\mathbf{K})$ can be found using the gradient descent method, so that

$$\mathbf{K}_{j} \leftarrow \mathbf{K}_{j-1} - \alpha \frac{\partial E(\mathbf{K}_{j-1})}{\partial \mathbf{K}}$$
 (23)

where $0 < \alpha < 2/||\frac{\partial E(\mathbf{K})}{\partial \mathbf{K}}||^2$ and $||\cdot||$ is the spectral norm. Thus, following the Landweber iteration method and using the Eq. (22) in our minimization problem, It can be solved using the Eq. (24).

$$\mathbf{K}_{j} \leftarrow \mathbf{K}_{j-1} - \alpha \sum_{n} \left(\mathbf{B}^{T} \mathbb{J}(n, \mathbf{K}_{j-1}) \right)^{T} \left(\mathbf{B}^{T} \mathbb{X}(n, \mathbf{K}_{j-1}) - y(n) \right)$$
(24)

4.2. Tikhonov iterative method

If we assume that the problem of to get **K** will be solved iteratively, we can rewrite the Eq. (22) as if was evaluated by $\mathbb{X}_j(n)$ and $\mathbb{J}_{j-1}(n)$, as in the Eq. (25).

$$\sum_{n} \left\{ \left(\mathbf{B}^{T} \mathbb{J}_{j-1}(n) \right)^{T} \left(\mathbf{B}^{T} \mathbb{X}_{j}(n) - y(n) \right) \right\} = \mathbf{0}.$$
 (25)

Where $\mathbb{J}_{j-1}(n) = \mathbb{J}(n, \mathbf{K}_{j-1})$ and $\mathbb{X}_{j}(n) = \mathbb{X}(n, \mathbf{K}_{j-1})$.

Knowing by the Taylor theorem that $\mathbb{X}_{j}(n) \approx \mathbb{X}_{j-1}(n) + \mathbb{J}_{j-1}(n) (\mathbf{K}_{j} - \mathbf{K}_{j-1})$

$$\mathbf{K}_{j} = \mathbf{K}_{j-1} + \left(\sum_{n} \left(\mathbf{B}^{T} \mathbb{J}_{j-1}(n)\right)^{T} \left(\mathbf{B}^{T} \mathbb{J}_{j-1}(n)\right)\right)^{-1} \sum_{n} \left(\mathbf{B}^{T} \mathbb{J}_{j-1}(n)\right)^{T} \left(y(n) - \mathbf{B}^{T} \mathbb{X}_{j-1}(n)\right).$$
(26)

joint with the Eqs. (12) and (13) we got:

$$\mathbb{X}(n, \mathbf{K}) = \left(2\mathbf{I} - \mathbf{P}(\mathbf{K})\frac{\tau^2}{m}\right)\mathbb{X}(n-1, \mathbf{K}) - \mathbb{X}(n-2, \mathbf{K}),\tag{27}$$

$$\mathbb{J}(n, \mathbf{K}) = -\frac{\tau_2^2}{m} \bigcup_i \left[\frac{\partial (\mathbf{P})}{\partial k_i} \mathbb{X}(n-1, \mathbf{K}) \right] + \left(2\mathbf{I} - \mathbf{P}(\mathbf{K}) \frac{\tau_2^2}{m} \right) \mathbb{J}(n-1, \mathbf{K}) - \mathbb{J}(n-2, \mathbf{K}),$$
(28)

5. Numerical results

oioio

6. Conclusion

In this work were presented

7. Acknowledgment

We wish to acknowledge the partial financial support for this study provided by the CAPES scholarship PNPD Program, FAPEMIG and CNPQ.

8. Bibliography