0. Notations:

- ullet N: number of experts, N>1
- d: number of slices per expert, d > 1
- *h*: length of embedding vectors
- m: dimension of the first fully connected layer
- n: dimension of the second fully connected layer
- *b*: batch size
- B_{comp} : computations per second
- B_{comm} : communications per second
- r: each token is routed to top-r experts ($1 \le r < N$)
- T_0 : time consumed to dispatch a batch of tokens when there is no slicing (it is also the time consumed to combine outputs of experts), note that $T_0 \leq \frac{\frac{b}{d} \cdot h(d-1)}{B_{comm}} = \frac{bh(d-1)}{dB_{comm}}$
- δ : time saved by doing expert-slicing per batch
- ullet R: ratio of sliced MoE inference time over unsliced MoE inference time

1. Structure of Moe (according to GShard):

 FC_{ij} stands for the j-th fully connected layer of the i-th expert, and W_{ij} denotes the matrix corresponding to FC_{ij} .

2. Slicing (N=d=2)

2.1 Structure

Assume for token x is routed to expert E_0 .

$$W_{00} = egin{bmatrix} W_{00}^0 \ W_{00}^1 \end{bmatrix}, W_{01} = egin{bmatrix} W_{01}^0 & W_{01}^1 \end{bmatrix}$$

$$t = \operatorname{Activation}(\operatorname{W}_{00}\operatorname{x}) = egin{bmatrix} \operatorname{Activation}(\operatorname{W}_{00}^0\operatorname{x}) \ \operatorname{Activation}(\operatorname{W}_{00}^1\operatorname{x}) \end{bmatrix}$$

$$o = W_{01}t = W_{01}^0 \mathrm{Activation}(\mathbf{W}_{00}^0\mathbf{x}) + \mathbf{W}_{01}^1 \mathrm{Activation}(\mathbf{W}_{00}^1\mathbf{x})$$

2.2 Analysis

By doing expert-slicing, computation and communication cost change as follows:

	Before	After
Number of multiplications per GPU per token	hm+mn	(hm+mn)/2
Number of additions per GPU per token	(h-1)m+(m-1)n	(h-1)m/2+(m-1)n/2
Number of activations per GPU per token	m+n	m/2+n/2
Communication cost per batch	$2T_0$	$rac{bh}{2B_{comm}} + rac{bh}{2B_{comm}} = rac{bh}{B_{comm}}$

3 General Situation

	Before	After
Number of multiplications per GPU per token	$(hm+mn)\cdot rac{N}{d}$	$(hm+mn)\cdotrac{N}{d^2}$
Number of additions per GPU per token	$[(h-1)m+(m-1)n]\cdotrac{N}{d}$	$[(h-1)m+(m-1)n]\cdotrac{N}{d^2}$
Number of activations per GPU per token	$(m+n)\cdot rac{N}{d}$	$(m+n)\cdotrac{N}{d^2}$
Communication cost per batch	$2T_0$	$rac{bh(d-1)}{dB_{comm}} + rac{bh(d-1)}{dB_{comm}} = rac{2bh(d-1)}{dB_{comm}}$

$$\delta = 2b(1-rac{1}{d})rac{hm+mn}{B_{comp}}\cdotrac{N}{d}+2T_0-rac{2bh(d-1)}{dB_{comp}}$$

Since $1-\frac{1}{d}>0$ while $T_0\leq \frac{bh(d-1)}{dB_{comm}}$, there is a trade-off between less computation cost and more communication cost. If δ proves **positive**, then expert-slicing is effective.

Moment Estimation of T_0, δ, R

Denote the number of communications required for token $x_{ij} (0 \le j \le \frac{b}{d} - 1)$ on GPU $i (0 \le i \le d - 1)$ as $G_{ij} \in [\frac{(r-1)N}{d}, \frac{rN}{d}]$, the number of communications between GPU i and other GPUs as M_i .

It is well-known that $\binom{d}{r}=\binom{d-1}{r-1}+\binom{d-1}{r}$.

$$E(G_{ij}) = rac{N}{d}[(r-1)\cdotrac{inom{d-1}{r-1}}{inom{d}{r}}+r\cdotrac{inom{d-1}{r}}{inom{d}{r}}] = rac{Nr(d-1)}{d^2}$$

$$E(M_i) = E(\sum_{j=0}^{rac{b}{d}-1} G_{ij}) = \sum_{j=0}^{rac{b}{d}-1} E(G_{ij}) = rac{bNr(d-1)}{d^3}$$

$$E(T_0) = E(rac{hM_i}{B_{comm}}) = rac{bNhr(d-1)}{d^3B_{comm}}, 1 \leq r < N$$

For sparsely-gated MoE network, assuming m=4h, n=h, r=1, we have

$$\hat{\delta} = 2bh(1-rac{1}{d})[rac{8h}{B_{comp}}\cdotrac{N}{d}+rac{1}{B_{comm}}(rac{N}{d^2}-1)]$$

$$\hat{\delta} > 0 \Leftrightarrow h > rac{1}{8} rac{B_{comp}}{B_{comm}} (1 - rac{N}{d^2}) \cdot rac{d}{N}$$

$$\hat{R} = rac{rac{16h^2 \cdot rac{N}{d^2}}{B_{comp}} + rac{2h(d-1)}{dB_{comm}}}{rac{16h^2 \cdot rac{N}{d}}{B_{comp}} + rac{2Nh(d-1)}{d^3B_{comm}}}
ightarrow rac{1}{d}(h
ightarrow \infty)$$