

ELEN0016 - Computer Vision - Student project 2021 HELD Jan, NAA Marco, PEETERS Martin

Abstract

- Goal: Detecting and counting droplets and cells in high frame rate videos
- First idea: Background substraction

- ⇒ too many limitations and poor results
- Second idea: Deep learning
 - ⇒ You Only Look Once (YOLOv5)

- Main results :
- □ Droplets: Nearly perfect detection (mAp@.5 of 0.987)
- ☐ Cells: Satisfying results (mAp@.5 of 0.832)

Problem statement

Objectives

- Detecting and counting droplets and cells in high frame rate videos
- Tracking of droplets in order to avoid counting them multiple times
- Evalutate the performance of our method

Challenges

- Cells close to each other are often detected as a single cell
- Avoid counting "noise" as a cell
- Find optimal trade-off between performance and inference time

Methodology

YOLOv5

- Divides the image into boxes
- Apply a single neural network
- Predicts bounding boxes and class probabilities
- State of the art in object detection

Model Training

- Creation of dataset :
 - We mainly used frames where we have at least one cell
 - Created three datasets:
 - Train set (70%)
 - Validation set (20%)
 - Test set (10%)
- Train & Test our YOLOv5 model on Colab

Counting algorithm

- We have a droplet class which contains:
- x_coordinate of the droplet at time t
- list containing the number of detected cells
- For each frame:
 - YOLOv5 detects all objects
 - For each detected droplet, we determine if:
 - it is a new droplet (create a new droplet object)
 - the droplets was already in the previous frame (we add the number of detected cells to the list of the droplet object)
 - We check if a droplet from the previous frame **left** the screen, if yes:
 - We take the average of the list of the droplet object
 - Increment the number of detected droplets and the number of x detected cells

Results

Comparison between models

- Mean average precision comparison between different models with increasing image size
- Extremely good results for detecting droplets
- Model with 40 fps seems to be a good trade-off between performance and inference time

Parameter tuning

- Find optimal confidence threshold
- ☐ Balance between **precision** and **recall**
- ☐ Choose threshold of 0.55
- Droplets: nearly perfect no matter the confidence threshold
- Cells: quite good results too, until some point where the precision drops

Final result

Class	Precision	Recall	mAp@.5	mAp@.95
All	0.92	0.908	0.909	0.645
Droplet	0.967	0.987	0.987	0.95
Cell	0.874	0.831	0.832	0.341

Conclusion

- YOLOv5s has exceeded our expectations
- Impressive results on challenge trial 1 & 2
- Possible improvements: only detect every second frame ⇒ double speed