Logica Matematica 1

Davide Peccioli Anno accademico 2022-2023

Indice

1	Inti	Introduzione 1							
	1.1	Crisi delle fondamenta							
	1.2	Nozioni di base							
	1.3	Logica Proposizionale							
2	Sin	Sintassi							
	2.1	Simboli							
	2.2	Termini							
	2.3	Formule atomiche e Formule							
	2.4	Formalizzazione							
		2.4.1 Esempi fondamentali							
	2.5	Sostituzione							
3	Sen	Semantica 23							
	3.1	Esempi di \mathcal{L} -strutture							
	3.2	Interpretazione di enunciati e formule							
	3.3	Interpretazione nella Logica proposizionale							
		3.3.1 Applicazione alla logica del prim'ordine 33							
	3.4	Interpretazione dei termini							
	3.5	Validità delle formule							
4	$\mathcal{L} ext{-st}$	ruttura 43							
	4.1	\mathcal{L} -teoria							
	4.2	Sottostrutture 47							

Capitolo 1

Introduzione

1.1 Crisi delle fondamenta

(1.1) Alla fine del '800 nascono dei problemi con le fondamenti delle matematiche: proprio da questo nasce la Logica Matematica.

Esempio - Paradosso di Russel. (1.2) Supponiamo di avere una proprietà P. Sembra naturale che, data P, posso considerare la collezione degli insiemi che hanno tale proprietà:

$$\{x : x \text{ soddisfa } P\}$$

Posso prendere P: x non appartiene a se stesso. La collezione diventa:

$$A\coloneqq \{x:x\not\in x\}$$

Domanda: è vero che $A \in A$?

- Se ipotizzo che $A \in A$
 - $\Rightarrow A \notin A$: assurdo.
- Se ipotizzo che $A \notin A$
 - $\Rightarrow A \in A$: assurdo.

Ottengo quindi che $A \in A \Leftrightarrow A \notin A$.

Domande e problemi. (1.3)

- 1. Data una dimostrazioni, posso "verificare" che sia corretta?
- 2. Si può dimostrare ogni affermazione vera?
- 3. Cos'è una dimostrazione?

1.2 Nozioni di base

Cos'è una dimostrazione. (1.4) È una catena di passaggi che parte dall'ipotesi e arriva alla tesi.

A livello teorico dovremmo poter controllare tutti i passaggi, e stabilire se sono validi o meno. Non è chiaro però cosa siano esattamente i passaggi logici.

Vale che <u>ogni</u> dimostrazione matematica si basa su un numero finito (poco più di una decina) di passaggi.

Logica. (1.5) La logica è un linguaggio formale, composto da

- sintassi, ovvero le "regole grammaticali"; bisogna quindi introdurre
 - simboli e lettere da utilizzare;
 - regole per la formazione di "frasi"
 - regole corrette per i "passaggi logici"
- semantica, ovvero il significato di ciò che si scrive: comprende
 - il significato dei simboli
 - l'interpretazione delle "frasi" in un dato contesto
 - la "frase" è vera o falsa?

Il linguaggio formale che studienremo si chiama logica del prim'ordine.

1.3 Logica Proposizionale

Sintassi della logica proposizionale. (1.6)

• Simboli:

$$L = \{A, B, C, \dots\}, \land, \lor, \neg, \Rightarrow, \Leftrightarrow, (,)$$

dove L è l'insieme delle lettere proposizionali (ovvero il corrispettivo delle proposizioni semplici).

- Formule (proposizioni):
 - 1. se $A \in L$, allora (A) è una proposizione;
 - 2. se P è una proposizione formata, anche $(\neg P)$ lo è;
 - 3. se P e Q sono proposizioni, allora lo sono anche

$$(P \land Q), (P \lor Q), (P \Rightarrow Q), (P \Leftrightarrow Q)$$

• Regole di derivazione: sono nella forma:

$$\frac{P_1 \quad P_2 \quad \dots \quad P_n}{Q}$$

Queste regole sono:

$$-\frac{P \wedge Q}{P}$$

$$-\frac{P \wedge Q}{Q \wedge P}$$

$$-\frac{P \quad Q}{P \wedge Q}$$

$$- \dots$$

• <u>Dimostrazione</u> (derivazione): applicazione delle regole di derivazione che partendo da P_1, \ldots, P_n mi porta a concludere Q

Semantica della logica proposizionale. (1.7) Questi sono i significati attesi per i simboli:

- $\bullet \ \wedge :$ sta per la congiunzione,
- V: sta per la disgiunzione,
- \bullet \neg : sta per la negazione,
- $\bullet \Rightarrow$: sta per implicazione,

 $\bullet \Leftrightarrow$: sta per la bi-implicazione.

Questo però viene da:

• Valutazione (modello): è una funzione

$$v:L\longrightarrow \{\boldsymbol{V},\boldsymbol{F}\}$$

che non è determinata dalla logica.

Questa funzione, però, si estende a

$$v:\{\operatorname{Proposizioni}\}\longrightarrow \{oldsymbol{V}, oldsymbol{F}\}$$

secondo le seguenti regole:

- $-v(\neg P) = V$ esattamente quando v(P) = F
- $-v(P \wedge Q) = V$ esattamente quando v(P) = v(Q) = V;
- $-v(P \lor Q) = V$ esattamente quando v(P) = V oppure[†] v(Q) = V;
- $v(P \Rightarrow Q) = V$ esattamente quando se v(P) = V allora v(Q) = V;
- $-v(P \Leftrightarrow Q) = V$ esattamente quando v(P) = v(Q)
- Conseguenza Logica: $P_1, \ldots, P_n \models Q$ vuol dire che se P_1, \ldots, P_n sono vere, allora è vera anche Q. Formalizzando: per ogni $v: L \to \{V, F\}$, se

$$v(P_1) = \cdots = v(P_n) = \mathbf{V}$$

allora $v(Q) = \mathbf{V}$

Teorema I.

Teorema di Completezza per la Logica Proposizionale

 $P_1, \ldots, P_n \models Q$ se e solo se esiste una derivazione di Q da P_1, \ldots, P_n .

[†] C'è una ambiguità nell'utilizzo del termine "oppure", che risolveremo in seguito.

Capitolo 2

Sintassi

Mappa. (2.1)

- Simboli.
- Termini e formule.
- Modello/struttura.
- $\bullet\,$ Interpretazione di f
m
l nelle strutture.
- "Verità".
- Derivazioni.

2.1 Simboli

Alcuni simboli già utilizzati. (2.2)

- Variabili: x, y, z, \ldots ;
- costanti: $\pi, e, i, \ldots, 0, 1, \ldots$;
- funzioni: $f, g, h, \ldots, +, \cdot;$
- relazione: $\leq, <, >, \dots;$

Soffermiamoci inoltre su:

• connettivi: e, o, non, se...allora, ...se e solo se...

• quantificatori: per ogni $x \dots$, esiste $x \dots$

La differenza sostanziale tra i due gruppi di simboli individuati è che le componenti del primo variano da contesto a contesto, mentre quelli del secondo gruppo sono trasversali, e si utilizzano in ogni contesto.

Formalizzeremo definendo gli elementi del primo gruppo come <u>linguaggio</u>, mentre quelli del secondo gruppo come costanti logiche[†].

Connettivi. (2.3)

1. Congiunzione ("e"): \wedge .

 $\phi \wedge \psi \leadsto \text{vale } \phi \text{ e vale } \psi$

$$\frac{\phi \wedge \psi}{\phi} \qquad \frac{\phi \wedge \psi}{\psi} \qquad \frac{\psi}{\phi \wedge \psi} \qquad \frac{\phi \wedge \psi}{\psi \wedge \phi}$$

L'ultima affermazione, però, è derivabile dalle altre:

$$\frac{\phi \wedge \psi}{\phi} \qquad \frac{\phi \wedge \psi}{\psi}$$

$$\frac{\psi \wedge \phi}{\psi}$$

2. Disgiunzione ("o" inclusivo): \vee

 $\phi \wedge \psi \leadsto$ vale almeno una tra ψ e ϕ \leadsto vale ψ oppure vale ϕ , oppure entrambe.

Le principali regole sono

$$\frac{\psi}{\phi \vee \phi} \qquad \frac{\phi}{\phi \vee \phi} \qquad \frac{\phi \vee \psi \quad \text{non } \phi}{\psi}$$

3. Negazione ("non"): -

 $\neg \phi \leadsto \phi$ non è vera.

Le principali regole sono

$$\frac{\phi}{\neg\neg\phi}$$
 $\frac{\neg\neg\phi}{\phi}$

 $^{^\}dagger$ "costanti" logiche in quanto hanno lo stesso significato in tutte le branche della matematica.

4. Implicazione ("se...allora..."): \Rightarrow

 $\phi \Rightarrow \psi \quad \leadsto \text{ se vale } \phi \text{ allora vale } \psi.$

Notiamo che l'affermazione $\phi \Rightarrow \psi$ è falsa soltanto se ϕ è vera mentre ψ è falsa. Dunque si ha:

 $\phi \Rightarrow \psi \quad \leadsto$ o non vale ϕ oppure vale ψ .

Le principali regole sono:

$$\frac{\phi \Rightarrow \psi}{\neg \phi \lor \psi} \qquad \frac{\neg \phi \lor \psi}{\phi \Rightarrow \psi}$$

5. Bi-implicazione ("...se e solo se...") \Leftrightarrow

 $\phi \Leftrightarrow \psi \leadsto \phi \Leftrightarrow \psi$ sono vere o $\phi \in \psi$ sono false.

Le principali regole sono:

$$\frac{\phi \Leftrightarrow \psi}{(\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)} \qquad \frac{\phi \Rightarrow \psi \qquad \psi \Rightarrow \phi}{\phi \Leftrightarrow \psi}$$

Esempio - Leggi di De Morgan. (2.4) Le Leggi di De Morgan affermano che

$$\frac{\phi \wedge \psi}{\neg (\neg \phi \vee \neg \psi)} \qquad \frac{\neg (\neg \phi \vee \neg \psi)}{\phi \wedge \psi} \tag{2.1}$$

$$\frac{\phi \vee \psi}{\neg (\neg \phi \wedge \neg \psi)} \qquad \frac{\neg (\neg \phi \wedge \neg \psi)}{\phi \vee \psi} \tag{2.2}$$

e si possono derivare dalle regole viste finora

Esempio - Altri connettivi. (2.5) Ecco una lista di altri connettivi che non useremo:

• XOR \oplus : $\psi \oplus \phi \leadsto \phi$ o ψ ma non entrambi.

$$\psi \oplus \phi \leftrightsquigarrow (\psi \lor \phi) \land \neg (\psi \land \phi).$$

• NOR: ψ NOR $\phi \leadsto$ né ψ né ϕ .

$$\psi$$
 NOR $\phi \leftrightarrow (\neg \psi) \wedge (\neg \phi)$

Quantificatori. (2.6)

- 1. Quantificatore universale ("per ogni..."): $\forall x \, \psi \rightsquigarrow \text{per tutti gli } x \text{ vale } \psi$.
- 2. Quantificatore esistenziale ("esiste x..."): \exists $\exists x \, \psi \leadsto$ esiste almeno un x tale che ψ

Le principali regole sono

$$\frac{\neg (\forall x \, \psi)}{\exists \, x \, (\neg \, \psi)} \qquad \frac{\exists \, x \, (\neg \, \psi)}{\neg \, (\forall \, x \, \psi)} \qquad \frac{\neg \, (\exists \, x \, \psi)}{\forall \, x \, (\neg \, \psi)} \qquad \frac{\forall \, x \, (\neg \, \psi)}{\neg \, (\exists \, x \, \psi)}$$

Inoltre vale:

$$\begin{array}{ccc} \exists \, x \, \exists \, y \, \psi & & \forall \, x \, \forall \, y \, \psi \\ \exists \, y \, \exists \, x \, \psi & & \forall \, y \, \forall x \, \psi & & \forall \, y \, \exists \, x \, \psi \end{array}$$

In relazione alla congiunzione e la disgiunzione, vale:

$$\frac{\exists x \psi \quad \exists x \phi}{\exists x (\psi \lor \phi)} \qquad \frac{(\exists x \psi) \lor (\exists x \phi)}{\exists x (\psi \lor \phi)} \qquad \frac{\exists x (\psi \lor \phi)}{(\exists x \psi) \lor (\exists x \phi)}$$

$$\frac{\forall x \psi \quad \forall x \phi}{\forall x (\psi \land \phi)} \qquad \frac{(\forall x \psi) \land (\forall x \phi)}{\forall x (\psi \land \phi)} \qquad \frac{\forall x (\psi \land \phi)}{(\forall x \psi) \land (\forall x \phi)}$$

$$\frac{(\exists x \psi) \land (\exists x \phi)}{\exists x (\psi \land \phi)} \qquad \frac{\exists x (\psi \land \phi)}{(\exists x \psi) \land (\exists x \phi)}$$

$$\frac{(\forall x \psi) \lor (\forall x \phi)}{\forall x (\psi \lor \phi)} \qquad \frac{\forall x (\psi \lor \phi)}{(\forall x \psi) \lor (\forall x \phi)}$$

Linguaggio. (2.7) Il linguaggio \mathcal{L} è una lista di simboli fissata, composta da una parte fissa, ed una "mobile".

La parte fissa è composta da simboli che sono presenti in qualisiasi logica del prim'ordine:

- parentesi: (,);
- connettivi: $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$

• quantificatori: \forall , \exists

• variabili: $v_0, v_1, \dots^{\dagger}$

La parte "mobile", invece, dipende dalla parte della matematica che si studia:

• costante: a, b, c, \ldots

• funzione: f, g, h, \dots

• relazione: P, Q, R, \dots e =.

In realtà = deve esserci <u>sempre</u>, ma essendo anche una relazione lo abbiamo inserito nella parte "mobile".

Chiamiamo Const l'insieme delle costanti, Fun l'insieme delle funzioni e Rel l'insieme delle relazioni.

Per semplicità possiamo considerare

$$\mathcal{L} = \operatorname{Const} \cup \operatorname{Fun} \cup \operatorname{Rel}$$

Arietà. (2.8) Sia delle funzioni che delle relazioni, è necessario definirne la arietà, ovvero il numero di input:

- unaria (arietà 1) \leadsto un solo input;
- binaria (arietà 2) \rightsquigarrow due input

Si scrive ar(g) = 5

Esempio. (2.9) Consideriamo

$$\mathcal{L} = \{P, Q, g, b\}$$

con

- P simbolo di relazione binario,
- ullet Q simbolo di relazione unario,
- g simbolo di funzione unario,
- b simbolo di costante.

 $^{^{\}dagger}$ Si definisce in questo modo per avere a disposizione una quantità infinita di variabili.

Esempio - Linguaggio dei gruppi. (2.10) Consideriamo

$$\mathcal{L} = \{f, g, c\}$$

con

- f simbolo di funzione binario,
- q simbolo di funzione unario,
- \bullet c simbolo di costante.

2.2 Termini

 \mathcal{L} -termini. (2.11) Sono termini:

- costanti e variabili;
- se f è un simbolo di funzione con $\operatorname{ar}(f) = n$ e t_1, \ldots, t_n sono termini, allora è termine:

$$f(t_1,\ldots,t_n)$$

Albero sintattico. (2.12) L'albero sintattico è un diagramma che a partire dalla stringa data cerca di ricostruire le operazioni utilizzate per costruirla. Questo permette di stabilire se una stringa è un termine o meno.

Esempio. (2.13) Costruiamo l'albero sintattico, tramite il linguaggio dei gruppi, per la seguente stringa:

$$g\left(f\left(f\left(x,g(c)\right),g\left(g(c)\right)\right)\right)$$

L'albero diventa:

Da qui posso affermare che questo è un termine, poiché so ricostruirlo "al contrario".

Non Esempio. (2.14) Sempre considerando il linguaggio dei gruppi, mostriamo che

$$f\left(f\left(g(c)\right),g(x)\right)$$

non è un termine.

Definizione. (2.15) L'<u>altezza</u> di un termine t è l'altezza (ovvero la lunghezza del ramo più lungo partendo da θ) del suo albero sintattico. Si scrive ht(t)

Definizione. (2.16) Sia $t(x_1,...,x_n)$ un termine, dove $x_1,...,x_n$ sono le variabili che compaiono in t, e dati $s_1,...,s_n$ termini, la scrittura:

$$t\left[s_1/x_1,\,s_2/x_2,\ldots,\,s_n/x_n\right]$$

è il termine ottenuto da t sostituendo ogni x_i con s_i .

Esempio. (2.17) Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione, e $0, 1, 2, \ldots$ le costanti.

Sia t il termine f(x), e sia s il termine f(1).

Il termine f(f(1)) è ancora un termine, e lo scriviamo

$$f(f(1)) \rightsquigarrow t[s/x]$$

Lemma. (2.18) $t[s_1/x_1, s_2/x_2, ..., s_n/x_n]$ è un termine.

Dimostrazione di (2.18) Lo dimostriamo per induzione sull'altezza.

- Caso base: se ht(t) = 0 allora ci sono due casi:
 - -t è un simbolo di costante:

$$t [s_1/x_1, s_2/x_2, \dots, s_n/x_n] = t;$$

-t è un simbolo di variabile x_i :

$$t[s_1/x_1, s_2/x_2, \dots, s_n/x_n] = s_i.$$

Poiché t e s_i per ipotesi sono termini, ho dimostrato il caso base.

• Passo induttivo: suppongo che il lemma sia vero per tutti i termini di altezza $\leq n$ e prendo t di altezza n+1.

t è nella forma $f(u_1,\ldots,u_k)$ per qualche $f\in\mathcal{L}$ simbolo di funzionio con $\operatorname{ar}(f)=k$ e u_1,\ldots,u_k termini di altezza $\leq n$.

Dunque:

$$t [s_1/x_1, s_2/x_2, \dots, s_n/x_n] = f (u_i [s_1/x_1, s_2/x_2, \dots, s_n/x_n])$$

Per l'ipotesi induttiva, gli $u_i \left[s_1/x_1, s_2/x_2, \ldots, s_n/x_n \right]$ sono ancora termini, e quindi anche $t \left[s_1/x_1, s_2/x_2, \ldots, s_n/x_n \right]$ è termine.

2.3 Formule atomiche e Formule

Costruzione delle formule atomiche. (2.19)

• Dati due termini t_1 e t_1 ,

$$t_1 = t_2$$

è una formula atomica.

• Dato $R \in \text{Rel di arietà } n, \text{ dati } t_1, \dots, t_n \text{ termini,}$

$$R(t_1,\ldots,t_n)$$

è una formula atomica.

Osservazione. (2.20) A differenza dei termini, le formule atomiche non sono costruite per ricorsione, ma sono solamente quelle presentate sopra.

Costruzione delle formule. (2.21)

- Se φ è una formula, lo è anche $(\neg \varphi)$.
- Se φ e ψ sono formule e \odot è uno tra \wedge , \vee , \Rightarrow , \Leftrightarrow , allora $(\varphi \odot \psi)$ è una formula.
- Se φ è una formula, x variabile e Q è uno tra \forall , \exists , allora Q x φ è una formula.

Esempio. (2.22) Definisco il linguaggio:

$$\mathcal{L} = \{R, f, c\}$$

dove R è una relazione binaria, f è una funzione unaria e c è costante.

• Termini:

$$x, y, c, f(x), f(c), f(f(y)), \dots$$

• Formule atomiche:

$$f(x) = c, x = f(f(y)), R(x, y), R(f(c), f(f(y))).$$

• Formule:

Osservazione. (2.23) Per verificare la correttezza di una formula si utilizza un albero sintattico

Esempio. (2.24) Dato il linguaggio $\mathcal{L} = \{P, Q, R, S\}$, tutti simboli di relazione di arietà 1, tranne P che è simbolo di relazione di arietà 2, studiamo la formula:

Altezza di una formula. (2.25) Come per i termini, si utilizza la lunghezza del ramo più lungo nell'albero sintattico di una formula (partendo a contare dallo 0), per determinare l'altezza di una formula.

Definizione. (2.26) Una variabile che compare n volte in una formula si dice avere n <u>occorrenze</u>. Ci si riferisce alla prima occorrenza di una variabile, seconda occorrenza di una variabile, . . .

Definizione. (2.27) Quando si applica un quantificatore ad una variabile x e ad una formula φ , φ si dice raggio di azione del quantificatore.

Definizione. (2.28) Quando si applica un quantificatore ad una variabile x e ad una formula φ , tutte le variabili x contenute in φ si dicono vincolate.

Definizione. (2.29) Quando una variabile non è vincolata si dice libera.

Notazione. (2.30) Data una formula φ , con la scrittura

$$\varphi(x_1,\ldots,x_n)$$

si intende che se ci sono variabili libere in φ , allora sicuramente sono tra x_1, \ldots, x_n .

Definizione. (2.31) Si dice <u>enunciato</u> una formula priva di variabili libere.

Definizione. (2.32) Si dice <u>sottoformula</u> di una formula φ del primo ordine una qualsiasi formula che è necessaria per costruire la formula φ , compresa φ .

Osservazione. (2.33) Tutte e solo le sottoformule sono quelle che compaiono nei nodi dell'albero sintattico di una formula.

Definizione. (2.34) Si dice <u>sottoformula principale</u> di una formula è l'ultima (o le ultime due) utilizzata per costruire la formula

Definizione. (2.35) Si dice <u>costante logica principale</u> l'ultima costante logica utilizzata per la costruzione della formula

Esempio. (2.36) Data la formula $(\varphi \wedge \psi)$, si ha

$$\varphi \wedge \psi)$$

$$\varphi \qquad \qquad \psi$$

e ha come costante principale \wedge .

Convezioni. (2.37)

1. Per le funzioni binarie, posso usare la notazione infissa.

Es: x + y al posto di +(x, y).

2. Per "applicazioni" successive dello stesso simbolo di funzione binario uso l'associatività a destra.

Es:
$$x + y + z = x + (y + z)$$

3. Lo stesso per relazioni binarie.

Es:
$$x < y < z \rightsquigarrow x < y \land y < z$$
.

4. Priorità tra le costanti logiche, con il seguente ordine:

$$\neg, \forall, \exists$$

$$\land, \lor$$

$$\Rightarrow, \Leftrightarrow$$

Per stessa priorità al livello 1, lega più strettamente ciò che è a destra.

2.4 Formalizzazione

Definizione. (2.38) Per <u>formalizzazione</u> si intende il processo di traduzione di una qualche affermazione dal linguaggio naturale ad un linguaggio artificiale (come appunto la logica del primo ordine).

Osservazione. (2.39) La formalizzazione non è necessariamente unica. Osservazione. (2.40) Per formalizzare una frase è necessario avere:

- un linguaggio \mathcal{L} , ovvero un elenco dei simboli ammessi (sintassi);
- il significato di ciascun simbolo (semantica, ovvero *L*-struttura);
- universo del discorso, ovvero l'insieme degli elementi su cui variano le variabili.

Esempio. (2.41) "Il prodotto di due numeri è zero se e solo se almeno uno dei due è zero."

Per la formalizzazione scelgo il seguente linguaggio:

$$\mathcal{L} = \{f, c\},\$$

con f simbolo di funzione binario e c simbolo di costante, dove voglio interpretare f come prodotto e c come zero. La formalizzazione diventa

$$\forall x \forall y \ (f(x,y) = c \Leftrightarrow x = c \lor y = c)$$

Qual è la differenza tra questa formula e quella "senza quantificatori"?

$$\big(f(x,y)=c \Leftrightarrow x=c \vee y=c\big)$$

Questa seconda formula non è un enunciato, ovvero ha solo variabili libere: non ha senso chiedersi se questa formula è vera o falsa, ma ha solo senzo chiedersi per quali valori è vera o falsa.

Esempio. (2.42) "Ci sono infiniti numeri primi"

- 1. Scelgo come linguaggio $\mathcal{L} = \{P, <\}$ con
 - P simbolo di relazione binario,
 - < simbolo di relazione binario,

e con significato:

- P(x): "x è un numero primo",
- "<" simbolo di minore.

La formalizzazione diventa

$$\forall x \exists y \ (x < y \land P(y))$$

Questa però non è una traduzione "letterale", ma ho scritto una cosa equivalente.

- 2. Scelgo come linguaggio $\mathcal{L} = \{|, <, 1\}$ con
 - | simbolo di relazione binaria,
 - < simbolo di relazione binaria,
 - 1 simbolo di costante

e significato

- | relazione di divisibilità;
- < simbolo di minore;
- 1 il numero uno.

Sorge la domanda intermedia: come scrivo "y è primo"?

$$1 < y \land \forall z \ (z \mid y \Rightarrow z = 1 \lor z = y)$$

La formalizzazione, quindi, in questo linguaggio, sarà:

$$\forall x \exists y \ (x < y \land 1 < y \land \forall z \ (z | y \Rightarrow z = 1 \lor z = y))$$

Esempio. (2.43) "Per ogni n > 1 c'è almeno un primo tra $n \in 2n$ "

• Linguaggio:

$$\mathcal{L} = \{|,+,<,1\}$$

con

- "|" relazione binaria
- "+" funzione binaria:
- "<" relazione binaria;
- "1" costante.
- Significato: tutti i simboli hanno il loro significato naturale.
- Universo: IN.

Una prima bozza di formalizzazione è

$$\forall x \ (1 < x \Rightarrow \exists y \ ("y \text{ è primo"} \land x < y \land y < x + x))$$

Per scrivere "y è primo" posso scrivere

$$1 < y \land \forall z \ (z \mid y \Rightarrow z = 1 \lor z = y)$$

Per comodità di notazione, posso chiamare la formula precedente $\varphi(y)$, è quindi formalizzare l'intera formula è

$$\forall x \left(1 < x \Rightarrow \exists y \left(\varphi(y) \land x < y \land y < x + x \right) \right)$$

2.4.1 Esempi fondamentali

Quantificatore universale limitato. (2.44) Ua frase nella forma

 $\forall x \text{ tale che } P(x) \text{ vale } \dots$

può essere formalizzata come:

$$\forall x (P(x) \Rightarrow \dots)$$

Quantificatore esistenziale limitato. (2.45) Una frase nella forma

 $\exists x \text{ per cui } P(x), \text{ tale che } \dots$

può essere formalizzata come:

$$\exists x (P(x) \land \dots)$$

Esistenza e unicità. (2.46) Una frase nella forma

Esiste un unico x tale che P(x)

può essere formalizzata come:

$$\exists x \left(P(x) \land \neg \exists y \left(\neg (y = x) \land P(y) \right) \right)$$
$$\exists x \left(P(x) \land \forall y \left(P(y) \Rightarrow y = x \right) \right)$$
$$\exists x P(x) \land \forall y \forall z \left(P(y) \land P(z) \Rightarrow y = z \right)$$

Esistenza di almeno n oggetti. (2.47) Una frase nella forma

Esistono almeno n oggetti x tali che P(x)

può essere formalizzata come:

$$\exists x_1 \exists x_2 \dots \exists x_n$$

$$(P(x_1) \land P(x_2) \land \dots \land \neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \dots)$$

Esistenza di al massimo n oggetti. (2.48) Una frase nella forma

Esistono al massimo n oggetti x tali che P(x)

può essere formalizzata come

Non esistono almeno n+1 oggetti x tali che P(x)

Esistenza di esattamente n oggetti. (2.49) Una frase nella forma

Esistono esattamente n oggetti x tali che P(x)

può essere formalizzata come:

Esistono almeno n oggetti x tali che P(x) <u>e</u> esistono al massimo n+1 oggetti x tali che P(x)

Viceversa. (2.50) Quando si utilizza il "viceversa", è necessario scrivere due volte l'affermazione, esplicando quindi il significato di quel termine.

Osservazione. (2.51) Se nella frase nel linguaggio naturale compare una variabile non vincolata (esplicitamente o implicitamente) da un qualche quantificatori, allora nella sua formalizzazione tale variabile sarà libera.

Altrimenti sarà vincolata.

Esempio. (2.52) "n è un numero maggiore di 1"

 $\rightsquigarrow 1 < n$ considerando il linguaggio $\mathcal{L} = \{<, 1\}$

"Ci sono n maggiori di 1"

 $\leadsto \exists\, n\, (1 < n)$ considerando il linguaggio $\mathcal{L} = \{<, 1\}$

2.5 Sostituzione

Definizione. (2.53) Data una formula logica che contiene delle variabili vincolate, si chiamano <u>varianti</u> quelle formule ottenute dalla prima sostituendo una qualsiasi variabile vincolata con un'altra (non presente come variabile libera nella formula).

Esempio. (2.54) Sono varianti della stessa formula:

$$\exists y ((2 \cdot y) + 1 = x), \qquad \exists z ((2 \cdot z) + 1 = x).$$

Sostituzione nelle formule. (2.55) Si vuole applicare lo stesso principio che si utilizza per i termini anche per le formule (utilizzando la stessa notazione). Si devono fissare alcune regole.

- 1. Si sostituiscono solo le occorrenza libere delle variabili con dei termini.
- 2. Il termine s è <u>sostituibile</u> per x in ϕ se nessuna delle sue variabili viene vincolata una volta effettuata la sostituzioni.

Prassi. (2.56) Data una formula φ , una variabile x e il termine s, considero una variante φ' di φ , in cui rinomino tutte le variabili vincolate in modo che siano diverse dalle variabili libere di φ , e anche dalle variabili che compaiono nel termine s.

Esempio. (2.57) Consideriamo la formula $\varphi(y)$:

$$\exists x \forall y (R(x,y) \Rightarrow R(y,x)) \land \exists x R(x,y)$$

L'unica variabile libera è la y "al fondo".

Voglio effettuare la sostituzione $\varphi [f(x)/y]$.

Scrivo una variante $\varphi'(y)$:

$$\exists v \, \forall x \, (R(v,z) \Rightarrow R(z,v)) \land \exists u \, R(u,y)$$

e posso ora sostituire: $\varphi'[f(x)/y]$

$$\exists\, v\,\forall\, x\, \big(R(v,z)\,\Rightarrow\, R(z,v)\big)\,\wedge\,\exists\, u\, R\, \big(u,f(x)\big)$$

Capitolo 3

Semantica

Definizione. (3.1) Sia \mathcal{L} un linguaggio del primo ordine,

$$\mathcal{L} = \text{Rel} \cup \text{Fun} \cup \text{Const}$$

Una \mathcal{L} -struttura \mathcal{A} è composta da:

- un insieme $A \neq \emptyset$, detto <u>dominio</u> o <u>universo</u>;
- $\bullet \ per \ ogni \ f \in \operatorname{Fun} \ di \ arietà \ n, \ una \ funzione$

$$f^{\mathcal{A}}:A^n\to A$$

 $f^{\mathcal{A}}$ è chiamata <u>interpretazione</u> di f, e deve essere totale, ovvero definite su tutto A^n ;

- per ogni $R \in \text{Rel } di \text{ arietà } n, \text{ una relazione } n\text{-aria } R^{\mathcal{A}} \subseteq A^n \text{ su } A;$
- per ogni $c \in \text{Const}$, un elemento $c^{\mathcal{A}} \in A$.

Dunque una tipica \mathcal{L} -struttura con $\mathcal{L}=\{P,Q,\ldots,f,g,\ldots,c,d,\ldots\}$ sarà della forma:

$$\mathcal{A} = (A, P^{\mathcal{A}}, Q^{\mathcal{A}}, \dots, f^{\mathcal{A}}, g^{\mathcal{A}}, \dots, c^{\mathcal{A}}, d^{\mathcal{A}}, \dots)$$

Esempio. (3.2) Sia $\mathcal{L} = \{f\}$, f simbolo di funzione binario. Alcuni esempi sono i seguenti.

- $\mathcal{A} = (\mathbb{N}, +)$, dove $+ \grave{e} f^{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
- $\mathcal{B} = (\text{"retta"}, \text{"punto medio"}) = (\mathbb{R}, f^{\mathcal{B}})$ dove

$$f^{\mathcal{B}}: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto \frac{x+y}{2}.$

Un non esempio, invece, è il seguente:

• $\mathcal{C} = (\mathbb{N}, -)$, poiché – non è definito su tutto \mathbb{N}^2

Esempio. (3.3) Sia $\mathcal{L} = \{R\}$ simbolo di relazione binario. Alcuni esempi sono i seguenti.

- $\mathcal{A} = (\mathbb{N}, \leq)$, dove $\leq \grave{e} R^{\mathcal{A}}$.
- $\mathcal{B} = (\mathbb{N}, |)$, dove | è la relazione di divisibilità ed è $\mathbb{R}^{\mathcal{A}}$.
- $C = (T, R^{\mathcal{C}})$, dove T è l'insieme degli abitanti di Torino, e $R^{\mathcal{C}}$ è tale per cui $a R^{\mathcal{C}} b$ se e solo se a e b sono parenti.

3.1 Esempi di \mathcal{L} -strutture

Gruppi. (3.4) Un gruppo è un insieme G dotato di una operazione binaria * associativa, che ha elemento neutro e inversi.

• Se $\mathcal{L} = \{*\}$, con * simbolo di funzione binario.

Un gruppo è una \mathcal{L} -struttura che soddisfa i seguenti \mathcal{L} enunciati:

- $\forall x \forall y \forall z ((x * y) * z = x * (y * z));$
- $\exists z \forall x (x * z = x \land z * x = x);$
- $\exists z \ (\forall x (x * z = x \land z * x = x) \land \forall y \exists w (y * w = z \land w * y = z)).$

• Se $\mathcal{L}_{Gp} = \{*, ^{-1}, 1\}$, con * simbolo di funzione binario, $^{-1}$ simbolo di funzione unario (e scriveremo x^{-1} invece di $^{-1}(x)$), 1 simbolo di costante.

Un gruppo è una \mathcal{L}_{Gp} -struttura che soddisfa i seguenti \mathcal{L}_{Gp} -enunciati:

$$- \forall x \forall y \forall z ((x * y) * z = x * (y * z));$$

$$- \forall x (x * 1 = x \land 1 * x = x);$$

$$- \forall x (x^{-1} * x = 1 \land x * x^{-1} = 1)$$

Se voglio parlare di gruppi abeliani, aggiungerò a questi enunciati il seguente:

$$\forall \, x \, \forall \, y (x * y = y * x)$$

Campo. (3.5) Un campo è un insieme \mathbb{K} dotato di $+, -, \cdot, 0, 1$ tale che:

- 1. $(\mathbb{K}, +, -, 0)$ è gruppo abeliano;
- 2. $(\mathbb{K} \setminus \{0\}, \cdot, 1)$ è gruppo abeliano;
- $3. \cdot$ è distributivo rispetto alla somma.

Il linguaggio tipico dei gruppi è:

$$\mathcal{L}_{Fd} = \{+, -, \cdot, 0, 1\}$$

dove $+, \cdot$ sono funzioni binarie, - è funzione unaria, 0 e 1 sono costanti.

La formalizzazione sarà:

- 1. uguale a sopra:
- 2. qui è peculiare notare che nella scrittura non si è inserito il simbolo di funzione inversa di ·: infatti, <u>tutte</u> le funzioni devono essere totali, ovvero definite su tutto l'insieme, e l'inversa rispetto al prodotto non è mai definita su 0;

•
$$\forall x \forall y \forall z \begin{pmatrix} \neg (x = 0) \land \neg (y = 0) \land \neg (z = 0) \\ \Rightarrow (x \cdot y) \cdot z = x \cdot (y \cdot z) \end{pmatrix}$$

- · è abeliano:
- 1 è elemento neutro:
- $\forall x (\neg (x = 0) \Rightarrow \exists y (y \cdot x = 1))$

Campo ordinato. (3.6) Un <u>campo ordinato</u> è un campo K con una relazione di ordine lineare (totale), tale che

• se $a \le b$ allora $a + c \le b + c$;

• se $0 \le a$ e $0 \le b$, allora $0 \le a \cdot b$.

Come linguaggio scegliamo

$$\mathcal{L} = \{+, -, \cdot, 0, 1, \leq \}$$

e i campi ordinati sono \mathcal{L} -strutture che sono campi, e in più soddisfano:

- ordine: $\forall x \forall y \forall z \begin{pmatrix} x \leq x \land (x \leq y \land y \leq x \Rightarrow x = y) \\ \land (x \leq y \land y \leq z \Rightarrow x \leq z) \end{pmatrix}$;
- totale: $\forall x \forall y (x \leq y \lor y \leq x)$;
- $\forall x \forall y \forall z (x \leq y \Rightarrow x + z \leq y + z);$
- $\forall x \forall y (0 \le x \land 0 \le y \Rightarrow 0 \le x \cdot y)$.

Grafo. (3.7) Un grafo è composto da un insieme V di vertici, e da una relazione binaria E di vicinanza o adiacenza (ovvero c'è un lato tra i due punti): questa relazione può valere solo tra elementi diversi (proprietà irriflessiva), ed è simmetrica.

Il linguaggio è $\mathcal{L}_{Gr} = \{E\}$, con E simbolo di relazione binario.

Un grafo è una \mathcal{L}_{Gr} -struttura che soddisfa i seguenti enunciati:

- $\forall x (\neg (xEx));$
- $\forall x \forall y (xEy \Rightarrow yEx)$

Spazio vettoriale. (3.8) Uno <u>spazio</u> vettoriale è una struttura algebrica avente $(V, +, \mathbf{0})$ gruppo abeliano, e con un prodotto per scalari $\mathbb{K} \times V \to V$, con \mathbb{K} campo, tale che

$$a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$$
$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$
$$1 \cdot \mathbf{v} = \mathbf{v}$$
$$(ab)\mathbf{v} = a(b\mathbf{v})$$

Questo posso formalizzarlo come:

$$\mathcal{L} = \{+, 0\} \cup \{f_a : a \in \mathbb{K}\}$$

dove f_a sono funzioni unarie. L'idea è che per la mia struttura \mathcal{M} :

$$f_a^{\mathcal{M}}: V \longrightarrow V$$
 $v \longmapsto av$

Uno spazio vettoriale una \mathcal{L} -struttura \mathcal{M} che soddisfa i seguenti enunciati.

Formalizzando la seconda parte (ovvero quella sui prodotti scalari), iniziamo con la associatività: scrivo un blocco di formule, una per ciascun elemento del campo

$$\forall \mathbf{v} \forall \mathbf{w} \left(f_a(\mathbf{v} + \mathbf{w}) = f_a(\mathbf{v}) + f_a(\mathbf{w}) \right)$$

$$\forall \mathbf{v} \forall \mathbf{w} \left(f_b(\mathbf{v} + \mathbf{w}) = f_b(\mathbf{v}) + f_b(\mathbf{w}) \right)$$

:

Per quanto rigaurda invece la distributività, si scrive un blocco di formule, ciascuna per ogni $a,b\in\mathbb{K}$ ed ogni $c\in\mathbb{K}$ tale che a+b=c:

$$\forall \mathbf{v} \left(f_c(\mathbf{v}) = f_a(\mathbf{v}) + f_b(\mathbf{v}) \right)$$
:

Spazio metrico. (3.9) Uno spazio metrico è una coppia (X,d), con $d: X \times X \longrightarrow \mathbb{R}$ tale che

- 1. $d(x,y) \ge 0, \forall x,y \in X$, e d(x,y) = 0 se e solo se x = y;
- $2. \ d(x,y)=d(y,x), \, \forall \, x,y \in X;$
- 3. $d(x,z) \ge d(x,y) + d(y,z), \forall x, y, z \in X$.

Introduco un linguaggio $\mathcal{L} = \{P_q : q \in \mathbb{Q}^+\}$, dove P_q è un simbolo di relazione binaria. L'idea è che $P_q(x,y)$ sse d(x,y) < q. In questo contesto:

$$d(x,y) = \inf \left\{ q \in \mathbb{Q}^+ : P_q(x,y) \right\}$$

Dunque, uno spazio metrico è una \mathcal{L} -struttura che soddisfa i seguenti enunciati:

1. è una doppia implicazione:

• "d(x,x) = 0": scrivo una formula per ogni $q \in \mathbb{Q}^+$:

$$\forall x P_q(x,x)$$

- "se $x \neq y$, allora $d(x, y) \neq 0$ "???
- 2. scrivo una formula per ogni $q \in \mathbb{Q}^+$:

$$\forall x \forall y (P_q(x,y) \Leftrightarrow P_q(y,x))$$

3.2 Interpretazione di enunciati e formule

Esempio. (3.10) Consideriamo il linguaggio $\mathcal{L} = \{R, f, c\}$, dove R è una relazione binaria, f è una funzione binaria, e c è costante. Sia σ l'enunciato:

$$\sigma: \quad \forall x \left(\neg \exists y f(y, y) = x \Rightarrow R(c, x) \right)$$

Utilizzo la struttura: $\mathcal{M} = (\mathbb{N}, <, +, 0)$:

$$\sigma^{\mathcal{M}}: \quad \forall x \in \mathbb{N} \left(\neg \exists y \in \mathbb{N} \left(y + y \right) = x \Rightarrow 0 < x \right)$$

 σ quindi significa che "per ogni numero naturale, se è dispari allora è maggiore di 0".

Scriveremo $\mathcal{M} \vDash \sigma$ se e solo se $\sigma^{\mathcal{M}}$ è vera.

Esempio. (3.11) Consideriamo il linguaggio $\mathcal{L} = \{R, f, c\}$, dove R è una relazione binaria, f è una funzione binaria, e c è costante. Sia $\varphi(x)$ la formula:

$$\varphi(x): f(x,x) = c$$

Utilizzo la struttura: $\mathcal{M} = (\mathbb{N}, <, +, 0)$:

$$\varphi^{\mathcal{M}}: \quad x+x=0$$

Ci possiamo chiedere se $\mathcal{M} \models \varphi$? Contentendo una variabile libera (x), di suo questa affermazione non è né vera né falsa, ma dipende dal valore assegnato a x.

Interpretazione di un enunciato. (3.12) Sia \mathcal{M} una \mathcal{L} -struttura. L'interpretazione di un \mathcal{L} -enunciato σ in \mathcal{M} è la pseudo-formula $\sigma^{\mathcal{M}}$ ottenuta rimpiazzando ciascun simbolo $s \in \mathcal{L}$ con la sua interpretazione $s^{\mathcal{M}}$ e limitando tutte le variabili (e quindi i quantificatori) a variare sugli elementi di M.

Intepretando nella maniera usuale le costanti logiche, la pseudo-formula $\sigma^{\mathcal{M}}$ diventa un'affermazione (in linguaggio matematico) che riguarda la struttura \mathcal{M} . Scriveremo

$$\mathcal{M} \models \sigma$$

per dire che $\sigma^{\mathcal{M}}$ è un'affermazione vera in \mathcal{M} . In caso contrario, scriviamo $\mathcal{M} \nvDash \sigma$.

Se $\mathcal{M} \models \sigma$ diciamo che \mathcal{M} <u>soddisfa</u> σ , o che \mathcal{M} è un <u>modello</u> di σ . La relazione \models tra strutture ed enunciati si chiama relazione di soddisfazione.

Interpretazione di formule. (3.13) Se $\varphi(x_1,\ldots,x_n)$ è invece una \mathcal{L} formula contenente variabili libere, possiamo ancora definire $\varphi^{\mathcal{M}}$ come prima,
ma il fatto che $\sigma^{\mathcal{M}}$ sia vera o no nella \mathcal{L} -struttura \mathcal{M} dipenderà da quali
valori (= elementi di \mathcal{M}) assegniamo alle variabili libere.

Dati $a_1, \ldots, a_n \in M$, scriveremo $\mathcal{M} \models \sigma[a_1/x_1, \ldots, a_n/x_n]$ o, più brevemente,

$$\mathcal{M} \vDash \sigma[a_1, \dots, a_n]$$

per dire che $\sigma^{\mathcal{M}}$ è vera (in \mathcal{M}) una volta che alle occorrenze libere di ciascuna x_i assegniamo il valore a_i . La funzione $\alpha: \{x_1, \ldots, x_n\} \longrightarrow M$ data da $\alpha(x_i) = a_i$ viene detta <u>assegnazione</u> e talvolta scriveremo $\mathcal{M} \models \varphi[\alpha]$.

Insieme di verità. (3.14) L'insieme

$$\mathbf{T}_{\varphi} = \mathbf{T}_{\varphi(x_1,\dots,x_n)}^{\mathcal{M}} = \left\{ (a_1,\dots,a_n) \in M^n : \mathcal{M} \vDash \sigma[a_1,\dots,a_n] \right\}$$

è detto <u>insieme di verità</u> di φ in \mathcal{M} .

3.3 Interpretazione nella Logica proposizionale

Logica proposizionale. (3.15) Sia S un insieme di lettere proposizionali. L'insieme Prop(S) delle proposizioni (o formula proposizionali) su S è dato da tutte le stringhe che possono essere costruite a partire dagli elementi di S usando i connettivi come descritto nella logica del prim'ordine, ovvero:

- A è una proposizione per ogni $A \in S$;
- se P è una proposizione, allora lo è anche $(\neg P)$;
- se P e Q sono proposizioni e \odot è uno tra \land , \lor , \Longrightarrow , \Longleftrightarrow allora anche $(P\odot Q)$ è una proposizione.

Scriviamo $P(A_1, ..., A_n)$ per dire che le lettere proposizionali che occorrono in \mathcal{P} sono tra le $A_1, ..., A_n$. Se $Q_1, ..., Q_n \in \text{Prop}(S)$

$$P\left[Q_1/A_1,\ldots,Q_n/A_n\right]$$

è la proposizione che si ottiene sostituendo ciascun A_i con Q_i .

Si applicano le solite convenzioni per eliminare le parentesi non necessarie.

Valutazione. (3.16) Ricordando come è stata definita la funzione valutazione[†], possiamo associare ad ogni proposizione $P(A_1, \ldots, A_n)$ una funzione

$$f_P: \{0,1\}^n \longrightarrow \{0,1\}$$

tale che $f_P(i_1, \ldots, i_n) = 1$ se e solo se $\overline{v}(P) = i$ per qualche/ogni valutazione v tale che $v(A_k) = i_k$ per $1 \le k \le n$.

La tabella che riporta il grafico di f_P si chiama <u>tavola di verità</u> di P.

Se R è la proposizione $P[Q_1/A_1,\ldots,Q_n/A_n]$ e $Q_k(B_1,\ldots,B_m)$ per ogni $1\leq k\leq n$ allora

$$f_R(i_1,\ldots,i_m) = f_P(f_{Q_1}(i_1,\ldots,i_m),\ldots,f_{Q_n}(i_1,\ldots,i_m)).$$

Esempio. (3.17) Data una proposizione

$$P: \quad (\neg A \land B) \Rightarrow C$$

costruisco la tavola di verità:

[†] Vedi (1.7)

A	B	C	$\neg A$	$\neg A \wedge B$	$\mid P \mid$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	1

Esempio. (3.18) Consideriamo una proposizione:

$$Q: (A \Rightarrow B) \lor (B \Rightarrow A)$$

la cui tavola di verità è

A	B	$A \Rightarrow B$	$B \Rightarrow A$	Q
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

Osservo che, a differenza dell'esempio precedente, Q è <u>sempre vera</u>, a prescindere dal valore di verità di A e B.

Esempio. (3.19) Consideriamo una proposizione:

$$R: A \vee \neg A$$

la cui tavola di verità è

$$\begin{array}{c|c|c} A & \neg A & R \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array}$$

Definizione. (3.20) Una proposizione P è una <u>tautologia</u> (in simboli $\models P$) se v(P) = 1 per ogni valutazione v, ed p una contraddizione proposizionale se v(P) = 0 per ogni v.

Osservazione. (3.21) Se $P(A_1, ..., A_n)$ è una tautologia e $Q_1, ..., Q_n \in \text{Prop}(S)$, allora anche $P[Q_1/A_1, ..., Q_n/A_n]$ è una tautologia.

Osservazione. (3.22) P è una tautologia se e solo se $\neg P$ è una contraddizione.

Esempio. (3.23) Consideriamo le due proposizioni:

$$P: \neg A \wedge B, \qquad Q: \quad A \vee B$$

le cui tavole di verità sono:

A	B	$\neg A$	P	Q
0	0	1	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

Definizione. (3.24) Date due proposizioni P e Q, diciamo che P è <u>tautologicamente equivalente</u> a Q (in simboli $P \equiv Q$) se v(P) = v(Q) per <u>oqni valutazione v.</u>

Osservazione. (3.25) P e Q sono tautologicamente equivalenti se e solo se $P \Leftrightarrow Q$ è una tautologia

Esempio. (3.26) Consideriamo le due proposizioni:

$$P: A \vee B, Q: A \Rightarrow B$$

le cui tavole di verità sono:

Definizione. (3.27) Una proposizione P è <u>conseguenza tautologica</u> di un insieme di proposizioni Γ (in simboli $\Gamma \vDash P$) se v(P) = 1 per ogni valutazione v tale che v(Q) = 1 per ogni $Q \in \Gamma$.

Osservazione. (3.28) Q è conseguenza tautologica di P se e solo se $P \Rightarrow Q$ è tautologia

Inoltre, se $\Gamma = \{Q_1, \dots, Q_n\}$ è finito, allora $\Gamma \vDash P$ se e solo se

$$(Q_1 \wedge \ldots \wedge Q_n) \Rightarrow P$$

è una tautologia

3.3.1 Applicazione alla logica del prim'ordine

Intepretazione delle formule del prim'ordine. (3.29) Ogni formula del prim'ordine si scrive in maniera unica come combinazione booleana di formule primitive, ovvero è un elemento di Prop(S) dove S è l'insieme delle formule atomiche e delle formule esistenziali o universali (= formule primitive). In altre parole, σ è nella forma

$$P_{\sigma}[\psi_1/A_1,\ldots,\psi_n/A_n]$$

con P_{σ} formula proposizionale e ψ_1, \dots, ψ_n formule primitive.

Definizione. (3.30) Un \mathcal{L} -enunciato σ è una <u>tautologia</u> se tale è la corrisponente formula proposizionale P_{σ} .

Osservazione. (3.31) Chiaramente, se σ è una tautologia, allora $\mathcal{M} \models \sigma$ per ogni \mathcal{L} -struttura \mathcal{M} .

Estensioni. (3.32) Il concetto di tautologia si può estendere, con la stessa esatta definizione, a \mathcal{L} -formule arbitrarie: in questo caso, se $\sigma(x_1, \ldots, x_n)$ è una tautologia, allora $\mathcal{M} \models \sigma[a_1, \ldots, a_n]$ per ogni \mathcal{L} -struttura \mathcal{M} ed ogni $a_1, \ldots, a_n \in \mathcal{M}$.

Esempio. (3.33) Considero la formula:

$$\forall x \exists y P(x,y) \land \forall z (P(x,z) \Rightarrow z = x)$$

chiamo

$$A := \forall x \exists y P(x, y)$$

$$B := \forall z (P(x, z) \Rightarrow z = x)$$

e questa formula diventa, nella logica proposizionale, $A \wedge B$ (che non è una tautologia).

Perché ho dovuto scegliere proprio quelle come A e B? Costruiamone l'albero sintattico:

$$\forall x \exists y P(x,y) \land \forall z \left(P(x,z) \Rightarrow z = x \right)$$

$$\forall x \exists y P(x,y)$$

$$| \qquad \qquad |$$

$$\exists y P(x,y) \qquad P(x,z) \Rightarrow z = x$$

$$| \qquad \qquad |$$

$$P(x,y) \qquad P(x,z) \qquad z = x$$

Osservo quindi che, per scegliere le formule primitive di una formula del primo ordine, scendo lungo l'albero sintattico finché non aggiungo un quantificatore, e mi fermo alla sottoformula immediatamente più in alto.

3.4 Interpretazione dei termini

Interpretazione. (3.34) Sia t un \mathcal{L} -termine e x_1, \ldots, x_n le variabili che occorrono in t. Sia \mathcal{M} una \mathcal{L} -struttura e $a_1, \ldots, a_n \in \mathcal{M}$. Allora

$$t^{\mathcal{M}}[a_1,\ldots,a_n]$$

è l'elemento di M definito per ricorsione da

- se t è nella forma x_i , allora $t^{\mathcal{M}}[a_1, \ldots, a_n] = a_i$;
- se t è nella forma c per qualche $c \in \text{Cost}$, allora $t^{\mathcal{M}}[a_1, \dots, a_n] = c^{\mathcal{M}}$;
- se t è nella forma $f(s_1, \ldots, s_k)$ per qualche $f \in \text{Fun con ar}(f) = k$ e s_1, \ldots, s_k termini, allora

$$t^{\mathcal{M}}[a_1,\ldots,a_n] = f^{\mathcal{M}}\left(s_1^{\mathcal{M}}[a_1,\ldots,a_n],\ldots,s_k^{\mathcal{M}}[a_1,\ldots,a_n]\right)$$

In altre parole, $t^{\mathcal{M}}$ è la funzione n-aria

$$t^{\mathcal{M}}:M^n\longrightarrow M$$

orttenuta rimpiazzando ciascun $f \in \text{Fun e } c \in \text{Cost con } f^{\mathcal{M}} \text{ e } c^{\mathcal{M}}$, rispettivamente, e $t^{\mathcal{M}}$ è il valore di $t^{\mathcal{M}}$ sull'input (a_1, \ldots, a_n) .

Esempio. (3.35) Sia $\mathcal{L} = \{f, g, h, c\}$, f, g funzioni binarie, h funzione unaria e c costante.

Consideriamo il termine

e la struttura:

$$\mathcal{M} = (\mathbb{N}, +, \cdot, \exp_2, 1).$$

- $t^{\mathcal{M}}: (2^1 \cdot x) + 2^y$.
- Alcuni esempi di assegnazioni sono:

$$t^{\mathcal{M}}[2,3] = 2 \cdot 2 + 2^3 = 12;$$

 $t^{\mathcal{M}}[1,0] = 2 \cdot 1 + 2^0 = 3$

Se cambio struttura, e scelgo

$$\mathcal{N} = (\mathbb{Z}, \cdot, +, -, 0).$$

- $t^{\mathcal{N}}: ((-0)+x)\cdot (-y) \leadsto t^{\mathcal{N}}: -x\cdot y.$
- Alcuni esempi di assegnazioni sono:

$$t^{\mathcal{N}}[-2,5] = -((-2) \cdot 5) = 10$$

 $t^{\mathcal{N}}[5,-2] = -(5 \cdot (-2)) = 10$
 $t^{\mathcal{N}}[0,0] = 0$

Osservazione. (3.36) I termini, utilizzati in questo modo, possono servire per utilizzare nuovi elementi all'interno della struttura; nell'esempio precedente:

$$t^{\mathcal{M}}[1,1] = 4$$

posso quindi definire un termine t'=t[c/x,c/x] che è esattamente il numero naturale 4.

3.5 Validità delle formule

Relazione di soddisfazione. (3.37) Data una \mathcal{L} -struttura \mathcal{M} ed una formula $\varphi(x_1,\ldots,x_n)$, definiamo la relazione di soddisfazione

$$\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$$

per ricorcorsione sulla complessità di $\varphi(x_1,\ldots,x_n)$.

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\varphi(x_1,\ldots,x_n): t=s$$

(con t ed s termini), allora $\mathcal{M} \vDash \sigma[a_1, \ldots, a_n]$ se e solo se

$$t^{\mathcal{M}}[a_1, \dots, a_n] = s^{\mathcal{M}}[a_1, \dots, a_n].$$

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\varphi(x_1,\ldots,x_n): R(t_1,\ldots,t_k)$$

per R relazione e t_i termini, allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$(t_1^{\mathcal{M}}[a_1,\ldots,a_n],\ldots,t_k^{\mathcal{M}}[a_1,\ldots,a_n]) \in R^{\mathcal{M}}.$$

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\varphi(x_1,\ldots,x_n): \neg \psi$$

allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \nvDash \psi[a_1,\ldots,a_n].$$

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\psi_1 \wedge \psi_2$$

allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \vDash \psi_1[a_1, \dots, a_n]$$
 e $\mathcal{M} \vDash \psi_2[a_1, \dots, a_n]$.

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\psi_1 \vee \psi_2$$

allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \vDash \psi_1[a_1, \dots, a_n]$$
 oppure (inclusivo) $\mathcal{M} \vDash \psi_2[a_1, \dots, a_n]$.

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\psi_1 \Rightarrow \psi_2$$

allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \nvDash \psi_1[a_1, \dots, a_n]$$
 oppure $\mathcal{M} \vDash \psi_2[a_1, \dots, a_n]$.

• Se $\varphi(x_1,\ldots,x_n)$ è del tipo

$$\psi_1 \Leftrightarrow \psi_2$$

allora $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \vDash \psi_1[a_1, \dots, a_n]$$
 se e solo se $\mathcal{M} \vDash \psi_2[a_1, \dots, a_n]$.

- Se $\varphi(x_1,\ldots,x_n)$ è del tipo $\exists y \psi$ dobbiamo distinguere tre casi.
 - Se y non occorre libera in ψ , allora possiamo scrivere ψ come $\psi(x_1,\ldots,x_n)$ e $\mathcal{M} \models \psi[a_1,\ldots,a_n]$ se e solo se

$$\mathcal{M} \vDash \psi[a_1,\ldots,a_n].$$

- Se y occorre libera in ψ ed è diversa da tutte le x_i , allora possiamo scrivere ψ come $\psi(x_1, \ldots, x_n, y)$, e $\mathcal{M} \models \varphi[a_1, \ldots, a_n]$ se e solo se esiste qualche $b \in M$ tale che

$$\mathcal{M} \vDash \psi[a_1,\ldots,a_n,b].$$

- Se y occorre libera in ψ è $y = x_i$ per qualche i, allora possiamo scrivere ψ come $\psi(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)$ e si avrò che $\mathcal{M} \models \varphi[a_1, \ldots, a_m]$ se e solo se esiste qualche $b \in M$ tale che

$$\mathcal{M} \vDash \psi[a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n].$$

- Se $\varphi(x_1,\ldots,x_n)$ è del tipo $\forall y \psi$ dobbiamo distinguere tre casi.
 - Se y non occorre libera in ψ , allora possiamo scrivere ψ come $\psi(x_1, \ldots, x_n)$ e $\mathcal{M} \vDash \psi[a_1, \ldots, a_n]$ se e solo se

$$\mathcal{M} \vDash \psi[a_1,\ldots,a_n].$$

– Se y occorre libera in ψ ed è diversa da tutte le x_i , allora possiamo scrivere ψ come $\psi(x_1, \ldots, x_n, y)$, e $\mathcal{M} \vDash \varphi[a_1, \ldots, a_n]$ se e solo se per ogni $b \in M$ si ha che

$$\mathcal{M} \vDash \psi[a_1,\ldots,a_n,b].$$

– Se y occorre libera in ψ è $y=x_i$ per qualche i, allora possiamo scrivere ψ come $\psi(x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_n)$ e si avrò che $\mathcal{M} \models \varphi[a_1,\ldots,a_m]$ se e solo se per ogni $b \in M$ si ha che

$$\mathcal{M} \vDash \psi[a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n].$$

Esempio. (3.38) Consideriamo:

$$\mathcal{L} = \{R, f, g, h, c\}$$
$$\mathcal{M} = (\mathbb{N}, \leq, +, \cdot, \exp_2, 1)$$

e i termini

$$t(x,y): f(h(c),x)$$
 $s(x,y): g(x,y).$

Consideriamo anche la formula

$$\varphi(x,y): t = s.$$

Ci chiediamo se $\mathcal{M} \vDash \varphi[0, 2]$.

Iniziamo valutando $t^{\mathcal{M}}$ e $s^{\mathcal{M}}$:

$$t^{\mathcal{M}}:$$
 $2^1 + x$ $s^{\mathcal{K}}:$ $x \cdot y$

per poi assegnare i valori:

$$t^{\mathcal{M}}[0,2] = 0 + 2 = 2$$

 $s^{\mathcal{M}}[0,2] = 0 \cdot 2 = 0$

Quindi si ha che $\mathcal{M} \vDash \varphi[0,2]$ se e solo se $t^{\mathcal{M}}[0,2] = s^{\mathcal{M}}[0,2]$, ovvero se e solo se 2=0. FALSO

Esempio. (3.39) Consideriamo:

$$\mathcal{L} = \{R, f, g, h, c\}$$
$$\mathcal{M} = (\mathbb{N}, \leq, +, \cdot, \exp_2, 1)$$

e la formula:

$$\varphi: \neg \forall x (R(x,c) \Rightarrow \exists z (h(z) = x))$$

Ci chiediamo se $\mathcal{M} \models \varphi$.

$$\neg \forall x \left(R(x,c) \Rightarrow \exists z \left(h(z) = x \right) \right)$$

$$| \forall x \left(R(x,c) \Rightarrow \exists z \left(h(z) = x \right) \right)$$

$$| R(x,c) \Rightarrow \exists z \left(h(z) = x \right)$$

$$| R(x,c) \Rightarrow \exists z \left(h(z) = x \right)$$

$$| h(z) = x$$

Essenzialmente, $\varphi^{\mathcal{M}}$ è

Non è vero che per ogni $b \in \mathbb{N}, \, b \not \leq 1$ oppure per qualche $d \in \mathbb{N}, \, 2^d = b$

Formule con variabili libere. (3.40) Il fatto che $\mathcal{M} \models \varphi[a_1, \ldots, a_n]$ dipende solo dalle variabili x_{i_1}, \ldots, x_{i_k} che davvero occorono libere in ψ :

$$\mathcal{M} \vDash \varphi[a_1, \dots, a_n]$$
 se e solo se $\mathcal{M} \vDash \varphi[a_{i_1}, \dots, a_{i_k}]$

dove a sinistra pensiamo φ come $\varphi(x_1,\ldots,x_n)$ e a destra la pensiamo come $\varphi(x_{i_1},\ldots,x_{i_k})$.

Quindi se φ è un enunciato possiamo legittimamente scrivere

$$\mathcal{M} \vDash \varphi$$
.

Chiusura universale. (3.41) Per convenzione, se φ contiene le variabili libere x_1, \ldots, x_n si scrive

$$\mathcal{M} \vDash \varphi$$

per dire che $\mathcal M$ soddisfa la chiusura universale φ^\forall di $\varphi.$

Interpretazione insiemistica. (3.42) Osserviamo che date $\varphi(x_1, \ldots, x_n)$ e $\psi(x_1, \ldots, x_n)$ si ha

$$\mathbf{T}_{\neg \varphi} = M^n \setminus \mathbf{T}_{\varphi}$$
$$\mathbf{T}_{\varphi \wedge \psi} = \mathbf{T}_{\varphi} \cap \mathbf{T}_{\psi}$$
$$\mathbf{T}_{\varphi \vee \psi} = \mathbf{T}_{\varphi} \cup \mathbf{T}_{\psi}.$$

Inoltre, se $\varphi(x_1,\ldots,x_n)$ è $\exists y \varphi(x_1,\ldots,x_n,y)$ con $y \neq x_i$, allora

$$\mathbf{T}_{\varphi(x_1,\dots,x_n)} = p \left[\mathbf{T}_{\psi(x_1,\dots,x_n,y)} \right]$$

dove $p:M^{n+1}\longrightarrow M^n$ è la proiezione sulle prime n coordinate, ovvero

$$p(a_1,\ldots,a_n,y)=(a_1,\ldots,a_n).$$

Gli altri connettivi e il quantificatore universale danno luogo ad operazioni insiemistiche "derivate". Ad esempio

$$\mathbf{T}_{\varphi \Rightarrow \psi} = (M^n \setminus \mathbf{T}_{\varphi}) \cup \mathbf{T}_{\psi}.$$

Data una formula $\varphi(x_1,\ldots,x_n)$

$$\mathcal{M} \vDash \exists x_1 \dots \exists x_n \varphi$$
 se e solo se $\mathbf{T}_{\varphi(x_1,\dots,x_n)} \neq \emptyset$
 $\mathcal{M} \vDash \forall x_1 \dots \forall x_n \varphi$ se e solo se $\mathbf{T}_{\varphi(x_1,\dots,x_n)} = M^n$

Terminologia. (3.43) Una \mathcal{L} -formula φ si dice:

- <u>valida</u> se $\mathcal{M} \models \varphi$ per ogni \mathcal{L} -struttura \mathcal{M} ; osserviamo che non è uguale alla tautologia: quest'ultima, infatti, è tale per motivi proposizionali; quindi "tautologia" \Rightarrow "formula valida";
- insoddisfacibile se non esiste alcuna \mathcal{L} -struttura \mathcal{M} tale che $\mathcal{M} \models \varphi$;
- soddisfacibile se esiste una \mathcal{L} -struttura \mathcal{M} tale che $\mathcal{M} \vDash \varphi$.

Notazione. (3.44) Per indicare che una \mathcal{L} -formula è valida scriviamo

$$\models \varphi$$
.

Osservazione. (3.45) Chiaramente se φ è valida allora è anche soddisfacibile, ed un enunciato σ è valido se e solo se $\neg \sigma$ è insoddisfacibile

Notazione. (3.46) Dato un insieme Σ di \mathcal{L} -formule ed un \mathcal{L} -struttura \mathcal{M} , scriviamo $\mathcal{M} \models \Sigma$ quanto $\mathcal{M} \models \varphi$ èer ogni $\varphi \in \Sigma$.

Definizione. (3.47) Una \mathcal{L} -formula è <u>conseguenza logica</u> di un insieme Σ di \mathcal{L} -formule, in simboli

$$\Sigma \vDash \sigma$$

se per ogni \mathcal{L} -struttura \mathcal{M} tale che $\mathcal{M} \models \Sigma$ vale anche $\mathcal{M} \models \varphi$.

Definizione. (3.48) Due \mathcal{L} -formule φ e ψ sono <u>logicamente equivalenti</u>, in simboli

$$\varphi \equiv \psi$$

se $\varphi \vDash \psi$ e $\psi \vDash \varphi$, ovvero se per ogni \mathcal{L} -struttura \mathcal{M} si ha che $\mathcal{M} \vDash \varphi$ se e solo se $\mathcal{M} \vDash \psi$.

Osservazione. (3.49) Se $\Sigma = \{\psi_1, \dots, \psi_n\}$ è finito omettiamo le parentesi graffe e scriviamo $\psi_1, \dots, \psi_n \models \varphi$. In questo caso $\Sigma \models \varphi$ se e solo se $(\psi_1 \land \dots \land \psi_n) \Longrightarrow \varphi$ è valida. Similmente $\varphi \equiv \psi$ se e solo se $\varphi \Leftrightarrow \psi$ è valida

Osservazione. (3.50) Se $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ insieme finito di \mathcal{L} -formule, con \mathcal{M} \mathcal{L} -struttura, si ha che

$$\mathcal{M} \models \Sigma$$
 sse $\mathcal{M} \models \varphi_i \text{ per ogni } i$
sse $\mathcal{M} \models \varphi_1 \land \varphi_2 \land \dots \land \varphi_n$

Usi di \models . (3.51) Se φ è un enunciato o una formula, \mathcal{M} è una \mathcal{L} -struttura e Σ è un insieme di \mathcal{L} -formule:

- 1. $\mathcal{M} \vDash \varphi$ è una relazione di soddisfazione;
- 2. $\vDash \varphi$ rappresenta la validità:
- 3. $\Sigma \vDash \varphi$ è una relazione di conseguenza logica.

Osservazione. (3.52) Vale che

$$\emptyset \vDash \varphi$$
 sse $\vDash \varphi$.

Osservazione. (3.53) Vale che

$$\varphi \vDash \psi$$
 sse $\vDash \varphi \Rightarrow \psi$

Capitolo 4

\mathcal{L} -struttura

4.1 \mathcal{L} -teoria

Definizione. (4.1)

- Una $\underline{\mathcal{L}\text{-teoria}}$ è un insieme T di $\mathcal{L}\text{-enunciati}$, ed \mathcal{L} si dice $\underline{\text{lingauggio}}$ $\underline{\text{di } T}$. Una teoria del prim'ordine è una $\mathcal{L}\text{-teoria}$ per qualche $\underline{\text{linguaggio}}$ $\underline{\text{del prim'ordine }} \mathcal{L}$.
- Un <u>sistema di assiomi</u> (o assiomatizzazione) di una \mathcal{L} -teoria T è un insieme di \mathcal{L} -enunciati Σ tale che per ogni \mathcal{L} -enunciato σ

$$T \vDash \sigma$$
 se e solo se $\Sigma \vDash \sigma$

Osservazione. (4.2) Affinché $\Sigma \subseteq T$ sia un'assiomatizzazione di T è sufficiente che $\Sigma \vDash \sigma$ per ogni $\sigma \in T$.

Definizione. (4.3) Sia C una collezione di \mathcal{L} -strutture. La <u>teoria di C</u> è l'insieme $\operatorname{Th}(C)$ di tutti gli \mathcal{L} -enunciati σ tali che $\mathcal{M} \vDash \sigma$ per $\overline{\operatorname{ogni} \mathcal{M}} \in C$. Se $C = \{\mathcal{M}\}$ scriviamo $\operatorname{Th}(\mathcal{M})$ anziché $\operatorname{Th}(\{\mathcal{M}\})$.

Notazione. (4.4) Data una \mathcal{L} -teoria T, indichiamo con

l'insieme dei modelli di T (ovvero delle \mathcal{L} -strutture \mathcal{M} tali che $\mathcal{M} \models T$).

Quando $T = {\sigma}$ scriviamo $Mod(\sigma)$ al posto di $Mod({\sigma})$.

Osservazione. (4.5) Vale che

$$Mod(T_0 \cup T_1) = Mod(T_0) \cap Mod(T_1)$$

e inoltre, se $T_0 \subseteq T_1$, si ha che

$$Mod(T_1) \subseteq Mod(T_0)$$
.

Definizione. (4.6) Una \mathcal{L} -teoria T si dice <u>soddisfacibile</u> se ha un modello, ovvero se $Mod(T) \neq \emptyset$; in caso contrario T è <u>insoddisfacibile</u>.

Esempio. (4.7) Una teoria insoddisfacibile potrebbe essere:

$$T = \{\exists x \neg (x = x)\}\$$

in quanto, per definizione, in ogni linguaggio e struttura, x = x, e dunque

$$Mod(T) = \emptyset$$

Proposizione. (4.8) Sia $\Sigma \cup \{\sigma\}$ un insieme di \mathcal{L} -enunciati. Allora $\Sigma \vDash \sigma \text{ se e solo se } \Sigma \cup \{\neg \sigma\} \text{ è insoddisfacibile.}$

Dimostrazione di (4.8)

 \implies Sia \mathcal{M} tale che $\mathcal{M} \models \Sigma$.

Allora $\mathcal{M} \vDash \sigma$, perciò $\mathcal{M} \vDash \neg \sigma$.

Perciò, $\mathcal{M} \nvDash \Sigma \cup \{\neg \sigma\}$, e poiché \mathcal{M} è arbitrario, $\Sigma \cup \{\neg \sigma\}$ è insoddisfacibile.

 \longleftarrow Sia \mathcal{M} tale che $\mathcal{M} \models \Sigma$.

Poiché $\Sigma \cup \{\neg \sigma\}$ è insoddisfacibile, $\mathcal{M} \nvDash \neg \sigma$, quindi $\mathcal{M} \vDash \sigma$.

Poiché \mathcal{M} è arbitrario, $\Sigma \vDash \sigma$.

Definizione. (4.9) Una \mathcal{L} -teoria si dice <u>completa</u> se è soddisfacibile e per ogni \mathcal{L} -enunciato σ si ha che

$$T \vDash \sigma$$
 oppure $T \vDash \neg \sigma$.

Osservazione. (4.10) La completezza non è una caratteristica fondamentale: ci sono casi in cui si vuole che una certa teoria sia completa, e altri casi per cui è meglio che una teoria non lo sia. I due esempi che seguono ne sono una prova.

Esempio. (4.11) Sia $T = \text{Th}(\mathcal{C})$, dove \mathcal{C} è l'insieme di tutti i gruppi, nel linguaggio

$$\mathcal{L} = \{*, f, e\}.$$

Se consideriamo l'enunciato

$$\sigma: \quad \forall x \forall y (x * y = y * x)$$

ci chiediamo se $T \vDash \sigma$; questo è vero se e solo se ogni $\mathcal{M} \in \mathcal{C}$ soddisfa σ . Poiché ci sono i gruppi non abeliani, $T \nvDash \sigma$.

È allo stesso modo evidente che $T \nvDash \neg\, \sigma,$ poiché ci sono gruppi abeliani.

Ne consegue che una teoria "interessante" come la teoria dei gruppi
 <u>non è completa.</u>

Esempio. (4.12) Consideriamo Th(\mathcal{N}), dove $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$.

A inizio novecento questa teoria è stata oggetto di una domanda: esiste un sistema di assiomi Σ (finito?) per Th(\mathcal{N})?

Vorremmo che:

- 1. $\mathcal{N} \models \Sigma$;
- 2. Σ è completa (cioè <u>decide</u> tutte le congetture).

Definizione. (4.13) Due \mathcal{L} -strutture \mathcal{M} e \mathcal{N} si dicono <u>elementarmente</u> <u>equivalenti</u> se $\mathrm{Th}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$.

Teorema II.

Sia T una \mathcal{L} -teoria soddisfacibile. Sono fatti equivalenti:

- 1. Tè completa;
- 2. T è un sistema di assiomi di Th(\mathcal{M}) per qualche \mathcal{L} -struttura \mathcal{M} ;
- 3. per ogni $\mathcal{M}, \mathcal{N} \in \text{Mod}(T)$ si ha che \mathcal{M} e \mathcal{N} sono elementarmente equivalenti.

Lemma. (4.14) Notiamo che

$$Th(\mathcal{M}) \vDash \sigma$$
 se e solo se $\sigma \in Th(\mathcal{M})$.

Dimostrazione di (4.14)

← Ovvio.

 \Longrightarrow Siccome $\mathcal{M} \models \operatorname{Th}(\mathcal{M})$ per definizione, e $\operatorname{Th}(\mathcal{M}) \models \sigma$, $\mathcal{M} \models \sigma$ e quindi, per definizione, $\sigma \in \operatorname{Th}(\mathcal{M})$.

Dimostrazione di II. $\boxed{1. \Rightarrow 2.}$ Sia \mathcal{M} tale che $\mathcal{M} \models T$ (poiché T è soddisfacibile).

Per un generico σ , vale che

$$\operatorname{Th}(\mathcal{M}) \vDash \sigma \quad \text{sse} \quad \sigma \in \operatorname{Th}(\mathcal{M}) \quad \text{sse} \quad \mathcal{M} \vDash \sigma$$
 (4.1)

Voglio provare che T è un sistema di assiomi per $\mathrm{Th}(\mathcal{M}),$ cioè per ogni σ

$$T \vDash \sigma$$
 sse $Th(\mathcal{M}) \vDash \sigma$

[†] Per il lemma precedente.

[‡] Per definizione.

ovvero

$$T \vDash \sigma$$
 sse $\mathcal{M} \vDash \sigma$

Se $T \vDash \sigma$, poiché $\mathcal{M} \vDash T$, allora $\mathcal{M} \vDash \sigma$.

Viceversa, se $\mathcal{M} \models \sigma$, allora $\mathcal{M} \nvDash \neg \sigma$, e quindi $T \nvDash \neg \sigma$. Siccome T è completa, allora $T \models \sigma$.

 $2. \Rightarrow 3.$ Dimostro che per ogni $\mathcal{N} \models T$, $\operatorname{Th}(\mathcal{N}) = \operatorname{Th}(\mathcal{M})$, dove \mathcal{M} è una struttura tale per cui T è un sistema di assiomi per $\operatorname{Th}(\mathcal{M})$.

Dato σ ho due casi:

- se $\mathcal{M} \vDash \sigma$, allora $\operatorname{Th}(\mathcal{M}) \vDash \sigma$ (per 4.1), e quindi per ipotesi, $T \vDash \sigma$; poiché $\mathcal{N} \vDash T$, si ha $\mathcal{N} \vDash \sigma$. Segue che $\operatorname{Th}(\mathcal{M}) \subseteq \operatorname{Th}(\mathcal{N})$;
- se $\mathcal{M} \nvDash \sigma$, allora $\mathcal{M} \vDash \neg \sigma$, quindi come prima ottengo $\mathcal{N} \vDash \neg \sigma$, da cui $\mathcal{N} \nvDash \sigma$. Segue che Th(\mathcal{N}) \subseteq Th(\mathcal{M}).

Quindi $Th(\mathcal{M}) = Th(\mathcal{N})$

 $\boxed{3. \Rightarrow 1.}$ Dimostro il contrappositivo, ovvero che se non vale 1., allora non vale 3..

Se non vale 1. allora esiste un enunciato σ tale che

$$T \nvDash \sigma$$
 e $T \nvDash \neg \sigma$

• $T \nvDash \sigma$ significa che esiste \mathcal{M} tale che $\mathcal{M} \vDash T$, ma $\mathcal{M} \nvDash \sigma$, ovvero

$$\mathcal{M} \models T$$
. e $\mathcal{M} \models \neg \sigma$:

• $T \nvDash \neg \sigma$ significa che esiste \mathcal{N} tale che $\mathcal{N} \vDash T$, ma $\mathcal{N} \nvDash \neg \sigma$.

Quindi $\mathcal{M}, \mathcal{N} \in \text{Mod}(T)$, ma non sono elementarmente equivalenti, come testimoniato da $\neg \sigma$.

4.2 Sottostrutture

Definizione. (4.15) Sia \mathcal{M} una \mathcal{L} -struttura con dominio M. Una sottostruttura di \mathcal{M} è una \mathcal{L} -struttura \mathcal{N} con dominio $N \subseteq M$ tale che

- $R^{\mathcal{N}} = R^{\mathcal{M}} \cap N^k$ per ogni $R \in \text{Rel } con \ ar(R) = k;$
- $f^{\mathcal{N}} = f^{\mathcal{M}}|_{N^k}$ per ogni $f \in \text{Fun } con \ \text{ar}(f) = k$;

• $c^{\mathcal{N}} = c^{\mathcal{M}} \ per \ ogni \ c \in \text{Cost.}$

Notazione. (4.16) Scriviamo $\mathcal{N} \subseteq \mathcal{M}$ per dire che \mathcal{N} è una sottostruttura di \mathcal{M} .

Osservazione. (4.17) Dato $\emptyset \neq D \subseteq M$, la sottostruttura di \mathcal{M} generata da D è la più piccola sottostruttura \mathcal{N} di \mathcal{M} tale che $D \subseteq N$. Per trovare \mathcal{N} basta chiudere

$$D \cup \{c^{\mathcal{M}} : c \in \mathrm{Cost}\}$$

rispetto ad ogni $f^{\mathcal{M}}$ (questo fornisce il dominio N di \mathcal{N}) e poi definire $R^{\mathcal{N}}, f^{\mathcal{N}}, c^{\mathcal{N}}$ in accordo con le precedenti condizioni.

