Bone Fracture Detection via X-Ray Image Processing

11.04.2025

Overview

- **Dataset**: a collection of radiographic images (IMG_SIZE=(224,224), in greyscale) covering all anatomical body regions (limbs, hips, knees, ...)
- Categories: train, test, and validation
- Subcategories: fractured and non-fractured
- Challenges:
 - Dataset contains corrupted images (removed via cleaning)
 - Random file names (unimportant when using ImageDataGenerator)
 - Multiple copies of the same image
 - Rotated images

Sample Image Grid

Image Distribution across Splits

Preprocessing and Augmentation

- Constants: IMG_SIZE=(224,224), BATCH_SIZE=32
- Random Transformations: rotation, shift, zoom, flips
- Normalization: rescales pixel values to [0,1] for better Neural Network performance
- **ImageDataGenerator** is applied for training, validation, and testing a binary classification task
 - shuffle=False for test data ensures prediction
 - Class labels are inferred from subfolder names (frac, non-frac)

Build a Model

- Architecture: sequential
- Convolutional Layers: 32 filters, ReLU activation, 3x3 Kernel size,
 224x224x3 input shape
- **Pooling Layers:** MaxPooling(2,2) downsamples feature maps
- **Flatenning**: to create 1D dense layers
- **Dropout (0.5)** drops 50% of neurons during training
- Dense sets up fully connected layers
- Final Layer: I neuron (binary classification) and sigmoid activation

Model Summary

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 222, 222, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 111, 111, 32)	0
conv2d_1 (Conv2D)	(None, 109, 109, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 54, 54, 64)	0
flatten (Flatten)	(None, 186624)	0
dropout (Dropout)	(None, 186624)	0
dense (Dense)	(None, 128)	23888000
dense_1 (Dense)	(None, 1)	129

Training Phase

```
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Accuracy and Loss

Confusion Matrix

Further Improvement

Use of Hashing to remove duplicates

Avoids data leakage, class imbalance, and wasted computation

Use of Transfer Learning

 MobileNetV2 is lightweight and efficient using a pre-trained model for better performance of medical imaging

Rotation Invariance Strategies

- Add rotation invariance strategies or augmentation tricks for rotated duplicates
- **Wise choice of filename** for better reproducibility, debugging, and interpretation

Thank you!