Policy Gradient

Insoon Yang

Department of Electrical and Computer Engineering Seoul National University

Q) What's the meaning of $\pi(a|s)$?

Q) What's the meaning of $\pi(a|s)$?

Q) What's the meaning of $\pi(a|s)$?

Q) How can we find a good $\pi(a|s)$, which is a **function**?

Q) What's the meaning of $\pi(a|s)$?

Q) How can we find a good $\pi(a|s)$, which is a **function**?

Idea:

- ullet Parameterize policy by a parameter vector $heta \in \mathbb{R}^\ell$: $\pi_{ heta}(a|s)$
- ullet Find an optimal heta

[S. Levine, CS285]

[S. Levine, CS285]

ullet Let $au:=(s_0,a_0,\ldots,s_T,a_T)$ denote the state-action trajectory

[S. Levine, CS285]

- Let $\tau := (s_0, a_0, \dots, s_T, a_T)$ denote the state-action trajectory
- By Markov property,

$$p_{\theta}(\tau) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

[S. Levine, CS285]

- Let $\tau := (s_0, a_0, \dots, s_T, a_T)$ denote the state-action trajectory
- By Markov property,

$$p_{\theta}(\tau) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

• Approximate MDP problem:

$$\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right] =: J(\theta)$$

$$\max_{\theta} \ J(\theta)$$

Gradient ascent:

$$\max_{\theta} \ J(\theta)$$

Gradient ascent:

• Initialize θ_0 ;

$$\max_{\theta} J(\theta)$$

Gradient ascent:

- Initialize θ_0 ;
- ② For $k = 1, 2, \ldots$ until converges, do

$$\max_{\theta} J(\theta)$$

Gradient ascent:

- Initialize θ_0 ;
- ② For $k = 1, 2, \ldots$ until converges, do
 - Set

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\theta_k),$$

where

$$\max_{\theta} J(\theta)$$

Gradient ascent:

- Initialize θ_0 ;
- ② For $k = 1, 2, \ldots$ until converges, do
 - Set

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\theta_k),$$

where

$$\left\{ \begin{array}{l} \alpha: \text{ stepsize} \\ \nabla_{\theta}J(\theta_k): \text{ gradient of } J \text{ at } \theta_k \end{array} \right.$$

$$\max_{\theta} J(\theta)$$

Gradient ascent:

- Initialize θ_0 ;
- ② For $k = 1, 2, \ldots$ until converges, do
 - Set

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\theta_k),$$

where

$$\left\{ \begin{array}{l} \alpha: \text{ stepsize} \\ \nabla_{\theta}J(\theta_k): \text{ gradient of } J \text{ at } \theta_k \end{array} \right.$$

• Set $k \leftarrow k+1$;

How to find the gradient $\nabla_{\theta} J(\theta)$?

Recall that

$$J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_{t}, a_{t}) \right]$$

How to find the gradient $\nabla_{\theta} J(\theta)$?

Recall that

$$J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_{t}, a_{t}) \right]$$

How to find the gradient $\nabla_{\theta} J(\theta)$?

Recall that

$$J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

• Let $r(\tau) := \sum_t r(s_t, a_t)$

How to find the gradient $\nabla_{\theta}J(\theta)$?

Recall that

$$J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

- Let $r(\tau) := \sum_t r(s_t, a_t)$
- Rewrite

$$J(\theta) = \int p_{\theta}(\tau)r(\tau)d\tau$$

How to find the gradient $\nabla_{\theta}J(\theta)$?

Recall that

$$J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

- Let $r(\tau) := \sum_t r(s_t, a_t)$
- Rewrite

$$J(\theta) = \int p_{\theta}(\tau)r(\tau)d\tau$$

• Differentiate J w.r.t θ :

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} p_{\theta}(\tau) r(\tau) d\tau$$

Can we simplify the gradient $\nabla_{\theta}J(\theta)$?

Can we simplify the gradient $\nabla_{\theta} J(\theta)$?

Note that

$$\nabla_{\theta} \log p_{\theta}(\tau) = \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

Can we simplify the gradient $\nabla_{\theta} J(\theta)$?

Note that

$$\nabla_{\theta} \log p_{\theta}(\tau) = \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

Therefore, the gradient can be written as

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} p_{\theta}(\tau) r(\tau) d\tau$$

$$= \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$$

Can we further simplify the gradient $\nabla_{\theta}J(\theta)$?

Can we further simplify the gradient $\nabla_{\theta}J(\theta)$?

Note that

$$\log p_{\theta}(\tau) = \log \left[p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t) \right]$$
$$= \log p(s_0) + \sum_{t=0}^{T} \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t)$$

Can we further simplify the gradient $\nabla_{\theta}J(\theta)$?

Note that

$$\log p_{\theta}(\tau) = \log \left[p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t) \right]$$
$$= \log p(s_0) + \sum_{t=0}^{T} \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t)$$

Therefore, the gradient can be written as

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) r(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} r(s_{t}, a_{t}) \right) \right]$$

Evaluating the policy gradient

Evaluating the policy gradient

• So far, we have the **policy gradient theorem**:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} r(s_{t}, a_{t}) \right) \right]$$

Evaluating the policy gradient

• So far, we have the **policy gradient theorem**:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{T} r(s_{t}, a_{t}) \right) \right]$$

ullet REINFORCE algorithm: using empirical estimate of $\mathbb{E}_{ au\sim p_{ heta}(au)}$

Machine Learning, 8, 229-256 (1992)

© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

RONALD J. WILLIAMS rjw@corwin.ccs.northeastern.edu College of Computer Science, 161 CN, Northeastern University, 360 Huntington Ave., Boston, MA 02115

REINFORCE algorithm

Initialize θ ;

- $\textbf{ Sample } \{\tau^i\}_{i=1}^N:=\{(s_0^i,a_0^i,\dots,s_T^i,a_T^i)\}_{i=1}^N \text{ using the current policy } \pi_\theta(a_t|s_t)$
- Estimate the gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t=0}^{T} r(s_{t}^{i}, a_{t}^{i}) \right)$$

Perform gradient ascent:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta);$$

Set

$$\pi_{\theta}(\cdot|s_t) \sim \mathcal{N}(f_{NN}(s_t); \Sigma)$$

Set

$$\pi_{\theta}(\cdot|s_t) \sim \mathcal{N}(f_{NN}(s_t); \Sigma)$$

In other words,

$$\pi_{\theta}(a_t|s_t) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}(a_t - f_{NN}(s_t))^{\top} \Sigma^{-1}(a_t - f_{NN}(s_t))\right)$$

Set

$$\pi_{\theta}(\cdot|s_t) \sim \mathcal{N}(f_{NN}(s_t); \Sigma)$$

In other words,

$$\pi_{\theta}(a_t|s_t) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}(a_t - f_{NN}(s_t))^{\top} \Sigma^{-1}(a_t - f_{NN}(s_t))\right)$$

Therefore,

•
$$\log \pi_{\theta}(a_t|s_t) = -\frac{1}{2}(a_t - f_{NN}(s_t))^{\top} \Sigma^{-1}(a_t - f_{NN}(s_t)) + \text{constant}$$

Set

$$\pi_{\theta}(\cdot|s_t) \sim \mathcal{N}(f_{NN}(s_t); \Sigma)$$

In other words,

$$\pi_{\theta}(a_t|s_t) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}(a_t - f_{NN}(s_t))^{\top} \Sigma^{-1}(a_t - f_{NN}(s_t))\right)$$

Therefore,

- $\log \pi_{\theta}(a_t|s_t) = -\frac{1}{2}(a_t f_{NN}(s_t))^{\top} \Sigma^{-1}(a_t f_{NN}(s_t)) + \text{constant}$
- $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) = \frac{1}{2}(a_t f_{NN}(s_t))\nabla_{\theta}f_{NN}(s_t)$

Advantages and Disadvantages

Advantages:

- Simple
- Unbiased gradient
- Locally optimal solution

Advantages and Disadvantages

Advantages:

- Simple
- Unbiased gradient
- Locally optimal solution

Disadvantages:

- High variance of the gradient
- On policy: Must use the most recent policy (Huge # of samples required)

How to reduce variance?

How to reduce variance?

Increase the batch size

How to reduce variance?

- Increase the batch size
- ② Use a baseline, b, not related to θ :

$$\begin{split} &\mathbb{E}_{\tau \sim p_{\theta}} [\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)] = \nabla_{\theta} J(\theta) - \mathbb{E}_{\tau \sim p_{\theta}} [\nabla_{\theta} \log p_{\theta}(\tau) b] \\ &= \nabla_{\theta} J(\theta) - \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) b d\tau \\ &= \nabla_{\theta} J(\theta) - \int \nabla_{\theta} p_{\theta}(\tau) b d\tau \\ &= \nabla_{\theta} J(\theta) - b \nabla_{\theta} \int p_{\theta}(\tau) d\tau \\ &= \nabla_{\theta} J(\theta) - b \nabla_{\theta} 1 \\ &= \nabla_{\theta} J(\theta) \end{split}$$

 \Longrightarrow Subtracting a baseline b is unbiased in expectation!

No baseline:

$$\operatorname{Var}[\nabla_{\theta} J^{NB}(\theta)] = \mathbb{E}[(\nabla_{\theta} \log p_{\theta}(\tau) r(\tau))^{2}] - \mathbb{E}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]^{2}$$

No baseline:

$$\operatorname{Var}[\nabla_{\theta} J^{NB}(\theta)] = \mathbb{E}[(\nabla_{\theta} \log p_{\theta}(\tau) r(\tau))^{2}] - \mathbb{E}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]^{2}$$

With baseline:

$$Var[\nabla_{\theta}J^{B}(\theta)] = \mathbb{E}[(\nabla_{\theta}\log p_{\theta}(\tau)(r(\tau) - b))^{2}] - \mathbb{E}[\nabla_{\theta}\log p_{\theta}(\tau)(r(\tau) - b)]^{2}$$
$$= \mathbb{E}[(\nabla_{\theta}\log p_{\theta}(\tau)(r(\tau) - b))^{2}] - \mathbb{E}[\nabla_{\theta}\log p_{\theta}(\tau)r(\tau)]^{2}$$

No baseline:

$$\operatorname{Var}[\nabla_{\theta} J^{NB}(\theta)] = \mathbb{E}[(\nabla_{\theta} \log p_{\theta}(\tau) r(\tau))^{2}] - \mathbb{E}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]^{2}$$

With baseline:

$$\operatorname{Var}[\nabla_{\theta} J^{B}(\theta)] = \mathbb{E}[(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b))^{2}] - \mathbb{E}[\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)]^{2}$$
$$= \mathbb{E}[(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b))^{2}] - \mathbb{E}[\nabla_{\theta} \log p_{\theta}(\tau)r(\tau)]^{2}$$

Therefore,

$$\operatorname{Var}[\nabla_{\theta}J^{B}(\theta)] \leq \operatorname{Var}[\nabla_{\theta}J^{NB}(\theta)]$$

if $b \in [0, 2r(\tau)]$.

Which baseline to choose?

Recall

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t=0}^{T} r(s_{t}^{i}, a_{t}^{i}) \right)$$

Further approximate it by

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$
$$= \frac{1}{N} \sum_{i} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) Q(s_{t}^{i}, a_{t}^{i})$$

• Choose baseline $b := v(s_t^i)$:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \underbrace{\left[Q(s_{t}^{i}, a_{t}^{i}) - v(s_{t}^{i})\right]}_{=:A(s_{t}^{i}, a_{t}^{i})}$$

- Case I: Trajectory A receives +10 rewards and Trajectory B receives -10 rewards
- Case II: Trajectory A receives +10 rewards and Trajectory B receives +1 rewards

- Case I: Trajectory A receives +10 rewards and Trajectory B receives -10 rewards
- Case II: Trajectory A receives +10 rewards and Trajectory B receives +1 rewards
- ⇒ PG will increase the probability of both trajectories in Case II

- Case I: Trajectory A receives +10 rewards and Trajectory B receives -10 rewards
- Case II: Trajectory A receives +10 rewards and Trajectory B receives +1 rewards
- ⇒ PG will increase the probability of both trajectories in Case II

Now, Consider $\nabla_{\theta}J(\theta) \approx \frac{1}{N}\sum_{i}\sum_{t=0}^{T}\nabla_{\theta}\log\pi_{\theta}(a_{t}^{i}|s_{t}^{i})[Q(s_{t}^{i},a_{t}^{i})-b]$ with baseline b=5

- Case I: Trajectory A receives +10 rewards and Trajectory B receives -10 rewards
- Case II: Trajectory A receives +10 rewards and Trajectory B receives +1 rewards
- \Longrightarrow PG will increase the probability of both trajectories in Case II

Now, Consider $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) [Q(s_{t}^{i}, a_{t}^{i}) - b]$ with baseline b = 5

- Case I: Trajectory A receives +5 rewards and Trajectory B receives -15 rewards
- Case II: Trajectory A receives +5 rewards and Trajectory B receives -4 rewards

- Case I: Trajectory A receives +10 rewards and Trajectory B receives -10 rewards
- Case II: Trajectory A receives +10 rewards and Trajectory B receives +1 rewards
- \Longrightarrow PG will increase the probability of both trajectories in Case II

Now, Consider $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) [Q(s_{t}^{i}, a_{t}^{i}) - b]$ with baseline b = 5

- Case I: Trajectory A receives +5 rewards and Trajectory B receives -15 rewards
 - Case II: Trajectory A receives +5 rewards and Trajectory B receives -4 rewards
- \Longrightarrow PG will increase the probability of Trajectory A but decrease the probability of Trajectory B

• Keep in mind that gradient will be very noisy

- Keep in mind that gradient will be very noisy
- Use much larger batches ($100 \times$ larger than DQN)

- Keep in mind that gradient will be very noisy
- Use much larger batches (100× larger than DQN)
- Tuning learning rates is very hard
 Adaptive size rule like Adam can be fine (but not the best)

- Keep in mind that gradient will be very noisy
- Use much larger batches (100× larger than DQN)
- Tuning learning rates is very hard
 Adaptive size rule like Adam can be fine (but not the best)
- Use Actor-Critic with advanced PG methods Will learn DDPG, TRPO, SAC