最优化算法

孙天阳

中国科学技术大学数学科学学院

tysun@mail.ustc.edu.cn

2025年2月3日

目園		1
1	凸集	2
2	凸函数	3
3	最优化问题解的存在性	4
4	无约束可微问题的最优性理论	5
5	对偶理论	6
6	共轭函数	7

1 凸集

2 凸函数

在最优化领域, 经常会涉及对某个函数其中的一个变量取 inf 或 sup 的操作, 这导致函数的取值可能为无穷, 于是有了下面的定义

定义 2.1. 令 $\mathbb{R} := \mathbb{R} \cup \{\pm \infty\}$ 为广义实数空间, 则映射 $f: \mathbb{R}^n \to \mathbb{R}$ 称为广义实值函数.

定义 2.2. 给定广义实值函数 f 和非空集合 \mathcal{X} . 如果存在 $x \in \mathcal{X}$ 使得 $f(x) < +\infty$ 且对任意的 $x \in \mathcal{X}$ 有 $f(x) > -\infty$, 那么称函数 f 关于集合 \mathcal{X} 是适当的.

对于最优化问题 $\min f(x)$, 适当函数可以帮助我们去掉一些不感兴趣的函数, 从而在一个比较合理的函数类中考虑最优化问题. 规定适当函数的定义域为 $\operatorname{dom} f = \{x | f(x) < +\infty\}$.

定义 2.3. 设 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, 称 $C_{\alpha} = \{x | f(x) \leq \alpha\}$ 为 f 的 α -下水平集.

定义 2.4. 设 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, 称

$$\operatorname{epi} f = \{(x, t) \in \mathbb{R}^{n+1} | t \geqslant f(x) \}$$

为 f 的上方图. 若 epif 为闭集, 则称 f 为闭函数.

定义 2.5. 设 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, 若对任意的 $x \in \mathbb{R}^n$ 有 $\lim \inf_{y \to x} f(y) \geqslant f(x)$, 则称 f(x) 为下半连续函数.

命题 2.1. 设 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ 是适当函数, 则以下命题等价

- (1) f(x) 是下半连续的
- (2) f(x) 是闭函数
- (3) f(x) 的任意 α -下水平集都是闭集

3 最优化问题解的存在性

考虑优化问题

$$\min f(x), \quad x \in \mathcal{X}$$

其中 $\mathcal{X} \subset \mathbb{R}^n$ 为可行域. 首先要考虑的是最优解的存在性, 其次是唯一性, 然后考虑如何求出最优解. 我们知道定义在紧集上的连续函数一定存在最大值点和最小值点, 但在许多实际问题中, 定义域可能不是紧的, 目标函数也不一定连续, 因此我们对此命题进行推广

定理 3.1. 设 \mathcal{X} 是闭集, 函数 $f: \mathcal{X} \to (-\infty, +\infty]$ 适当且闭, 且以下条件中任意一个成立,

- (1) dom $f := \{x \in \mathcal{X} : f(x) < +\infty\}$ 是有界的.
- (2) 存在一个常数 $\bar{\gamma}$ 使得下水平集 $C_{\bar{\gamma}} := \{x \in \mathcal{X} : f(x) \leq \bar{\gamma}\}$ 是非空且有界的.
- (3) 对于任何满足 $||x^k|| \to +\infty$ 的点列 $\left\{x^k\right\} \subset \mathcal{X}$, 都有 $\lim_{k \to \infty} f(x^k) = +\infty$.

则函数 f 的最小值点集 $\{x \in \mathcal{X} | f(x) \leq f(y), \forall y \in X\}$ 非空且紧.

证明.

- (2) 设 $t = \inf_{x \in \mathcal{X}} f(x) = -\infty$, 存在点列 $\{x^k\}_{k=1}^{\infty} \subset C_{\bar{\gamma}}$ 使得 $\lim_{k \to \infty} f(x^k) = -\infty$, 因为 $C_{\bar{\gamma}}$ 有界, 所以 $\{x^k\}_{k=1}^{\infty}$ 必有收敛子列, 不妨仍记为 $\{x^k\}_{k=1}^{\infty}$, 设它的序列极限是 x^* , 因为 \mathcal{X} 是闭集, 所以 $x^* \in \mathcal{X}$. 易知 $(x^k, f(x^k))$ 收敛于 (x^*, t) , 因为 epi f 是闭集, 所以 $(x^*, t) \in \text{epi } f$, 所以 $f(x^*) \leq t = -\infty$, 这与 f 是适当的矛盾, 故 t 是有限值. 考察集合 $f^{-1}(t)$, 因为闭集的原像是闭集, 而 $f^{-1}(t) \subset C_{\bar{\gamma}}$ 是有界集, 所以是紧集.
- (1) 由 f 的适当性与条件 (1) 显然能推出条件 (2).
- (3) 假设某个下水平集无界, 由条件 (3) 显然能导出矛盾.

4 无约束可微问题的最优性理论

5 对偶理论

6 共轭函数

函数 f 的共轭函数定义为

$$f^*(y) = \sup_{x} (y^T x - f(x)).$$

我们来理解一下这个函数, 给定 y, 决定了关于 x 的以 y 为斜率的线性函数 y^Tx , 比函数 f(x) 高的最大距离, 就是 $f^*(y)$. 因此一个具有明显几何意义的结论是

$$f(x) \geqslant y^T x - f^*(y)$$

即函数 f(x) 全部在直线 $y^Tx - f^*(y)$ 的上方, 且这件事是刚好成立的. 所以或许可以将 $f^*(y)$ 诠释为 f(x) 上以 y 为斜率的位置的切线的负截距. 所以变量 y 应该被理解为函数 f(x) 的斜率. 回忆 Legendre 变换,

$$f^*(y) = y^T x - f(x),$$

其中将 x 通过隐式方程 $y = \nabla f(x)$ 视作关于 y 的函数.