Course Code	PAD21202J	Course Name	BUILD	ING MACHINE	LEARNIN	G PIPELINE	•	ours tego		С	7		Pro	fess	iona	ıl Co	re (Cours	ses			L 3	T 0	P 4	C 5
Pre-requisite Courses Nil Co-requisite Courses Nil														Prog	ress	ive C	ours	es	Nil						
Course Offe	Course Offering Department Data Science Data Bo							ok / C	Code	s/Sta	ndar	ds	Nil												
Course Learning Rationale (CLR): The purpose of learning this course is to:						Le	arn	ing				Pro	ogra	m L	earı	ning	Out	com	es (l	PLC))		~		
CLR-1 :	Simpler proce	esses to u	pdate exis	ting models, Less	time spent	to reproduce n	nodels	1	2	3		1	2	3	4	5 6	5 7	8	9	10	11	12	13	14	15
CLR-2:	Help detect p	otential b	iases in th	e datasets or in th	e trained mo	odels		Le	Fy	Ex			I	i		Α	b				32				
CLR-3 :	Free up devel	lopment t	ime for da	ta scientists and i	ncrease their	r job satisfacti	ion.		pe	pe			Ap	- II	r S	k ili	3.86	An		Pr	Co		I	Pr ,	
CLR-4:	Automated machine learning pipelines will free up from maintaining existing models.				of	cte	cte		nd am	pli v	h c	c i	ls y	Sk	aly s ze,	In	ob	m m	An	(of	Lif e			
CLR-5 :	Publishing th	e Trained	l Model as	a Web Service for	or Inference			Th		At		ent		Re u	ır S	p U	t in	Int	sti	m	un	aly tic	r i	0	Lo
CLR-6:	Validating a	Recomme	endation S	ystem				ın ki	ofi	tai		al	- C	_A a	5.5		i M	er	gat	So	ıca		N .	iai .	ng Le
Course Le	earning Outco	omes	At the en	d of this course, l	earners will	be able to:		ng (B lo o m)	y	me nt (%		Kn ow led ge	nc s	ci oli			n eli w ng d	pr et Da ta	Sk ills	lvi ng Sk ills	n Sk	1115	llis l	vi '	ar ni ng
CLO-1:	Recognise a omanagement		-	an and understand g concept,	d the purpor	se of a data		3	80	70		L	Н		Н	L -	-	-	L	L	-	Н	-	-	-
CLO-2:	Understand E Vector Norm		Data Scie	nce, Linear Alge	bra, Vector	Scalar Multipl	lication -	3	85	75		M	Н	L	M	L -	-	-	М	L	-	Н	-	-	-
CLO-3:	Understand matrix operations				3	75	70		M	H	M .	Н	L -		25	M	L		Н	12	-	2			
CLO-4:	0-4: Determinants – Orthogonal matrices Gaussian distribution – Binomial distribution				3	85	80		M	H	M	H .	L -		-	M	L	-	Н	-	-	-			
CLO-5 :	O-5: Loading ,Scaling and encoding the data				3	85	75		H	H	M .	H .	L -	. 2	2	M	L	200	H			2			
CLO-6: Find principal component using Principal Component Analysis and Normalizing a dataset				3	80	70		L	Н	-	Н	L -	-	-	L	L	-	Н	-	-	-				
Duration (hour)		21		21			21						21							2	1				

		Claud took poloning and Data						
S-1	SLO-1	Cloud technologies and Data governance, designing a data governance process	Linear Algebra Basics	Matrix arithmetic , working with matrix, From Scalars and Vectors	Work with Vectors	Loading and exploring a dataset		
	SLO-2	managing a Data governance strategy, monitoring a data governance strategy	Linear algebra for Machine learning	Shapes and indexing	Basis and projection of vectors	the binarizer(), the minmaxscaler()		
S-2	. 71 1 -	maintaining a Data governance strategy	Linear Transformations, Intuition	Matrix operations- Addition and Scalar Multiplication	work with - Matrix multiplication	the standard scalar		
0-2		Data access governance		Transposition, Matrix Decomposition	Inverse matrix	the normalizer, the maxabsscaler()		
	SLO-1	risk and Data safety compliance	Classes of space- scalar	Matrix and PCA-covariant matrix		label encoding, One-Hot encoding		
S-3	5LU-2	governance and its relationship with big data	Vector and its types	Eigen value,	linear Transformations	Loading and analyzing a dataset		
S 04	SLO-1	I AD Data collection	I AP : Vector addition	LAB : Matrix	I AD : Creating a			
- S 07	SLO-2	LAB :Data collection	LAB : Vector addition , vector multiplication	Transformation in	LAB : Creating a Recommendation Engine	LAB :Recommending Items Based on Other Items		
S-8	SLU-I	why big data requires governance	Vector space , Subspaces	Eigen vector calculation	Gaussian elimination	building and evaluating a Linear		
5-0	SLO-2	why is Big Data different?	types of Vector space	sparse matrix	Gaussian elimination-Example problem	Regression mode		
S-9	OLU-I	Cloud technologies and Data governance	Operation on vectors-Addition	Tensor Arithmetic	Determinants	scaling and encoding the data		
3-9	SLU-Z	designing a Data governance process	Subtraction	Hadamard product and Tensors-	Determinants	Analyzing the effects of pre- processing		
S-10	SLU-1	maintaining a data governance strategy	multiplications	Singular-Value Decomposition	Orthogonal matrices	Standardizing continuous data		
3-10	910-2	Data access governance, Data access patterns	multiplications	Probability basics and propositions	Orthogonal matrices	Loading a dataset,		
S 11	SLO-1			2 0/23 00 01 (200000)				
s 14	SLO-2	LAB : Manipulating data		LAB :Using KNN describing Similarity neighborhoods	LAB :Recommending Another Item	LAB :Evaluating a Recommendation System		
S-15	SLU-1	data breach prevention – least privilege	Scalar and vector multiplications	random variable	Eigenvectors and Linear Transformations	scaling a dataset		
3-13	SLO-2	system permissions		Central limit theorem	Change of Basis	spotting correlations in a dataset		
S-16	. 31 \ /-	create an AWS user and group, vulnerability assessments	Linear product Vector	parameter estimation	Linear Transformations in Different Bases	Principal Component Analysis		

	OLU-Z	Data classification,, data encryption	Theorems related to linear products	Gaussian distribution	Eigen decomposition	
S17	SLO-1		Vector Norms- Definitions, Examples of Norms	Binomial distribution	Pseudo inverse	Normalizing a dataset
		solutions, logging	Norm Representations	Dinomial distribution		Normalizing a dataset
S 18 - S 21	2102	Lab: matrix addition, Matrix subtraction, Matrix multiplication	3	LAB :Tensor Hadamard product	EXE II III diling itcilio to	LAB : Validating a Recommendation System

	 Data Governance: The Definitive Guide, By Evren Eryurek, Uri Gilad,
	Valliappa Lakshmanan, Anita Kibunguchy and Jessi Ashdown, March
Resources	2020
	Essential Math for Data Science, By Hadrien Jean, November 2020

- 1. Feature Engineering for Machine Learning, By Alice Zheng and Amanda Casari, 2018.
- 2. Python Feature Engineering Cookbook, By Soledad Galli, January 2020

Learning A	earning Assessment											
	Bloom's		Final Examination									
	Level of	CLA –	1 (10%)	CLA – 2 (10%)		CLA –	3 (20%)	CLA –	4 (10%)#	(50% weightage)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
	Remember	20%	2007	15%	15%	15%	150/	15%	15%	15%	150/	
Level 1	Understand		20%				15%				15%	
I1 0	Apply	2007	200/	200/	200/	200/	200/	200/	200/	200/	200/	
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate	10%	100/	150/	150/	150/	150/	150/	150/	150/	150/	
Level 3	Create		10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100 % 10		00 % 100 %			10	0 %	×2			

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr.G.Muruganandam, Group Project Manager, HCL Technologies, Chennai	Dr.Muthu, Professor, Loyola College, Chennai	Ms.A.Rajalakshmi						
Mr.M. Hemachandar, Tech Lead, Wipro Limited, Chennai	Dr. Vincent, Associate Professor, VIT							