Eine Woche, ein Beispiel 5.21 Hochchild (co)homology

1 Def.
$$C^{hav}(A)$$
 $\rightarrow A \otimes_A \otimes_A \otimes_A A \otimes_A A \xrightarrow{3} A \otimes_A A \otimes_A A \xrightarrow{3} A \xrightarrow{3} A \xrightarrow{3} A \otimes_A A \xrightarrow{3} A \xrightarrow{3} A \xrightarrow{3} A \otimes_A A \xrightarrow{3} A \xrightarrow{3} A \otimes_A A \xrightarrow{3} A \xrightarrow{3} A \otimes_A A \xrightarrow{3} A \xrightarrow{3} A \xrightarrow{3} A \otimes_A A \xrightarrow{3} A \xrightarrow{3}$

Rmk. It works similarly for group cohomology.

In gp coh case, one even has identification

and therefore more expressions for 2,8 d?

Rmk.
$$H^{n}(G, M) = Ext_{z[G]}^{n}(Z, M)$$
 $H_{n}(G, M) = Tor_{n}^{z[G]}(Z, M)$
 $RHom_{z[G]}(Z, M)$
 $Z^{L} \otimes_{z[G]} M$
 $HH^{n}(A, M) = Ext_{A}^{n}e(A, M)$
 $RHom_{A}e(A, M)$
 $RHom_{A}e(A, M)$
 $A^{L} \otimes_{A}e(M)$

2. Cyclic cohomology

$$C_{\lambda}^{n}(A,A^{\vee}):=\left\{f\in C^{n}(A,A^{\vee})\mid f(a_{0}\otimes\cdots\otimes a_{n})=(-1)^{n}f(a_{1}\otimes\cdots\otimes a_{n})\right\}$$

 $HC^{1}(A):=H^{1}(C_{\lambda}^{1}(A,A^{\vee}))$

We have a LES:

$$\begin{array}{c}
HC^{n+1}(A) \longrightarrow HH^{n+1}(A,A^{\vee}) \longrightarrow H^{n+1}(C/C_{\lambda}) \xrightarrow{\Sigma} HC^{n}(A) \\
CHC^{n}(A) \xrightarrow{I} HH^{n}(A,A^{\vee}) \xrightarrow{B} H^{n}(C/C_{\lambda}) \xrightarrow{\Xi} HC^{n-1}(A)
\end{array}$$

2 In low-dimension

- 1 (0-0-0				
^	HH,(A,M)	HH, (A)	HH"(A,M)	HH"(A)
0	A OAM	A Oze A	Homae (A,M)	Homae (A, A)
	=M/[AM]	= A/[AA]	= Mª= smeMlan=mag	= Z(A)
1	_	12 A/k when A is comm	Out Der (A,M)	Out Der(A)
2			Alg Ext (A, M)	Square-zero deformation = flat k[t](+)-alg E st E⊗k(t)(+) k≅ A
3	_		crossed bimodules	obstruction space

3 Examples _ in k[t](t"), k

3 Examples	- 1n	17(1) / "	
A	HH, (A, M)	НН ¹ (А, м)	proj resolution
k	SM n=0	SM h=0	$0 \longrightarrow \underset{1}{\overset{K}{\longrightarrow}} \underset{1}{\overset{K}{\longrightarrow}} 0$
k[x]	[k[x] h=0,1 0 n>2	SK[x] N=0,1	$0 \longrightarrow A^{e} \longrightarrow A^{e} \longrightarrow A^{e} \longrightarrow A \longrightarrow 0$
k[x,y]	\begin{cases} k[x,y] & \lambda = 0 \\ k[x,y] & \lambda = 1 \\ k[x,y] & \lambda = 2 \\ 0 & \lambda > 3 \end{cases}	$\begin{cases} k[x,y] & n=0 \\ k[x,y]^{\Theta^2} & n=1 \\ k[x,y] & n=2 \\ o & n \ge 3 \end{cases}$	$0 \longrightarrow A^{e} \longrightarrow A^{e} \xrightarrow{A^{e}} A^{e} \longrightarrow X \longrightarrow 0$ $1 \longmapsto (-(y_{1}, y_{2}), x_{1}, x_{2}) \qquad 1 \longmapsto 1$ $(1, 0) \longmapsto x_{1} - x_{2}$ $(0, 1) \longmapsto y_{1} - y_{2}$
k[t]/(tk) Char ktn	\int M n=0 \tM ztn \M/tk-1M ztn n>0	\int M n=0 \t M ztn \Mth Mth 2tn n>0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
k[t]/(t*) char kln	W	Μ	1 -> r-s
k (x,y>/ryx-xy-1) char k =0	SO 1=0,1 K n=2 O n>3	SK n=0 0 n>1	$0 \longrightarrow A^{e} \xrightarrow{A^{e}} A^{e} \xrightarrow{A^{e}} A^{e} \xrightarrow{A} 0$ $(1,0) \longmapsto X_{1} - X_{1}$ $(0,1) \longmapsto Y_{1} - Y_{2}$
KQ Q:connected acyclic	S K n=0 0 n>1		$ \begin{array}{ccc} \circ & \longrightarrow \bigoplus_{\mathbf{J} \in (\mathcal{U}_1)} A^{\mathbf{e}} e_{\iota(\mathbf{J})} \otimes e_{\iota(\mathbf{J})} \longrightarrow \bigoplus_{\mathbf{V} \in (\mathcal{U}_0)} A^{\mathbf{e}} e_{\mathbf{V}} \otimes e_{\mathbf{V}} \longrightarrow A \longrightarrow \circ \\ & e_{\iota(\mathbf{J})} \otimes e_{\iota(\mathbf{J})} \otimes e_{\iota(\mathbf{J})} \longrightarrow e_{\iota(\mathbf{J}_0)} \otimes e_{\iota(\mathbf{J}_0)} \otimes e_{\iota(\mathbf{J}_0)} \\ & e_{\iota(\mathbf{J})} \otimes e_{\iota(\mathbf{J}_0)} \longrightarrow e_{\iota(\mathbf{J}_0)} \otimes e_{\iota(\mathbf{J}_0)} \otimes e_{\iota(\mathbf{J}_0)} \otimes e_{\iota(\mathbf{J}_0)} \end{array} $
K[G] G: finite gp	0 #conj closs N = 0		

Morita equivalence

A movita B def Moda equiv ModB

Thm. Each $f \cdot d$ algover $K = \overline{K}$ is Morita equiv to a basic alg. [Rep notes 1, Cor 24.5]

Theorem 24.4. Let A be a finite-dimensional K-algebra. Let P be a projective generator of mod(A), and set $B := \text{End}_A(P)^{\text{op}}$. Then

$$F := P \otimes_B - : \operatorname{mod}(B) \to \operatorname{mod}(A)$$

and

$$G := \operatorname{Hom}_A(P, -) \colon \operatorname{mod}(A) \to \operatorname{mod}(B)$$

are equivalences of categories which are quasi-inverses of each other.

e.g. $M^{n \times n}(\mathbb{C}) \longrightarrow \mathbb{C}$ $\mathbb{C}[S_3] \sim \mathbb{C}^{\Theta 3}$ $X^{\Theta n} = X \otimes_{\mathbb{C}} \mathbb{C}^{\Theta n} \longleftrightarrow X$ $Y \longmapsto H_{\text{lom}_{M^{n \times n}}(\mathbb{C}) - \text{mod}}(\mathbb{C}^{\Theta n}, Y)$

 $Hlom_{\mathfrak{C}-mod}(\mathfrak{C}^{\otimes n},X) \longrightarrow Y \otimes_{M^{n}(\mathfrak{C})} \mathfrak{C}^{\otimes n}$