Smartcards e Cartão de Cidadão

Smartcards

- Dispositivos físicos para armazenamento de chaves e operações sobre as mesmas
 - Invioláveis, resistentes a ataques por canais paralelos ou vírus

- Objetivo: permitir a utilização de chaves, sem o seu compromisso
 - Titular pode utilizar chave para realizar operações criptográficas (Simétricas e assimétricas)
 - Autenticar o titular, Gerar assinaturas de documentos, Gerar respostas a desafios, Armazenar valores
- Utilizações:
 - Autenticação, Cartões bancários, Cartões de Identificação, Transportes, SIM

Smartcards

Cartão com capacidades de computação

- CPU
- ROM
- EEPROM
- RAM

Interface

- Com contactos
- Sem contactos

Smartcards

- CPU
 - 8/16 bit
 - Crypto-coprocessor (opt.)
- ROM
 - Sistema Operativo
 - Comunicação
 - Algoritmos criptográficos
- EEPROM
 - Sistema de Ficheiros
 - Programas / aplicações
 - Chaves/ passwords

RAM

- Dados temporários
 - Apagados quando cartão é desligado
- Contactos Mecânicos

• ISO 7816-2

Segurança Física

- Resistente a acessos físicos diretos
- Resistente a ataques por canais paralelos

Interação com Smartcards: APDU (ISO 7816-4)

	h	eadei	•	body		
CLA	INS	P1	P2	Lc	Optional data	Le

body trailer
Optional data SW1 SW2

- APDU de Comando
 - CLA (1 byte)
 - Classe da instrução
 - INS (1 byte)
 - Comando
 - P1 e P2 (2 bytes)
 - Parâmetros específicos do comando
 - LC
 - Comprimento dos dados opcionais
 - Le
 - Comprimento dos dados esperados na resposta
 - Zero (0) significa todos os dados disponíveis

- APDU de Resposta
 - SW1 e SW2 (2 bytes)
 - Byte de estado
 - 0x9000 significa SUCESSO

Interação com o Smartcard: Protocolos de baixo-nível T=0 e T=1

- T=0
 - Enviado um octeto de cada vez
 - Mais lento
- T=1
 - Octetos transmitidos em blocos
 - Mais rápido mas requer suporte nas camadas superiores
- ATR (ISO 7816-3)
 - Resposta à operação de RESET
 - Reporta o protocolo esperado pelo cartão

Pilha de Comunicações

Off card applications

APDU

(Application Protocol Data Unit)

$$T=0/T=1$$

In card applications

APDU

(Application Protocol Data Unit)

$$T=0/T=1$$

Interação com o Smartcard: Protocolos de baixo-nível T=0 e T=1

```
ATR: 3B 7D 95 00 00 80 31 80 65 B0 83 11 00 C8 83 00 90 00
+ TS = 3B --> Direct Convention
+ T0 = 7D, Y(1): 0111, K: 13 (historical bytes)
  TA(1) = 95 --> Fi=512, Di=16, 32 cycles/ETU
    125000 bits/s at 4 MHz, fMax for Fi = 5 MHz => 156250 bits/s
  TB(1) = 00 --> VPP is not electrically connected
  TC(1) = 00 --> Extra guard time: 0
+ Historical bytes: 80 31 80 65 B0 83 11 00 C8 83 00 90 00
  Category indicator byte: 80 (compact TLV data object)
    Tag: 3, len: 1 (card service data byte)
      Card service data byte: 80
        - Application selection: by full DF name
        - EF.DIR and EF.ATR access services: by GET RECORD(s) command
        - Card with MF
    Tag: 6, len: 5 (pre-issuing data)
      Data: B0 83 11 00 C8
    Tag: 8, len: 3 (status indicator)
      LCS (life card cycle): 00 (No information given)
      SW: 9000 (Normal processing.)
Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B 7D 95 00 00 80 31 80 65 B0 83 11 00 C8 83 00 90 00
3B 7D 95 00 00 80 31 80 65 B0 83 11 .... 83 00 90 00
        Portuguese ID Card (eID)
        http://www.cartaodecidadao.pt/
```

Codificação de objetos nos smartcards: TLV e ASN.1 BER

- Tag-Length-Value (TLV)
 - Tag: Tipo de objeto
 - Length: Tamanho do objeto
 - Value: Dados do objeto
- Cada TLV é codificado através das regras ASN.1 BER
 - Abstract Syntax Notation, Basic Encoding Rules
- Dados de um objeto podem conter outros TLV
 - Estrutura recursiva
- Permite ignorar objetos desconhecidos

Modelo de computação do Smartcard Cartões Java

- Smartcards executam Applets Java
 - Utilizam o Java Card Runtime Environment

- O JCRE executa no topo do SO nativo
 - Java Virtual Machine
 - Card Executive
 - Gestão do Cartão
 - Comunicações
 - Java Card Framework
 - Bibliotecas de funções

Modelo de computação do Smartcard Cartões Java

Cartão de Cidadão

- Cartão de identificação das dimensões de um cartão de crédito
- Contém vários métodos de fornecer informação identidade
 - Informática
 - Interação com o Smartcard
 - Visual, legível por humanos
 - Fotografia, números e nomes
 - Visual, legível por dispositivos
 - MRZ (Machine Readable Zone)

Atributos Visuais: Legíveis por humanos

Nome

Sobrenome, Nome próprio, Pais

Atributos físicos

Sexo e Altura

Outros

- Data de nascimento, nacionalidade
- Fotografia
- Assinatura caligráfica

Números

- Número de identificação Civil (e checksum)
- Num: Identificação Fiscal, Sistema Nacional de Saúde, Segurança Social
- Número do documento e validade

Versão do cartão

Atributos visuais: legíveis por dispositivos

Nome

- Sobrenome, Nome próprio, Nomes adicionais
- Número de nomes

Atributos Físicos

Sexo

Outros

 Data de nascimento e nacionalidade

Números

- Identificação Civil (e checksum)
- Número do documento (e checksum)
- Número de documentos emi I<PRT00000000<<0<ZZ4<<<<<2
- Validade

8108108F1201158PRT<<<<<<<1

AVILA<<PAULA<ANDREIA<CONCEICAO

Atributos Visuais de Segurança

Atributos Digitais

- Todos os atributos visíveis com a exceção da assinatura
- Morada
- Modelo da impressão digital biométrica
- 2 pares de chaves assimétricos (Autenticação e Assinatura)
- 5 certificados de chave pública
 - 2 relacionados com os pares de chaves anteriores
 - 3 relacionadas a CAs intermédias necessárias para construir o caminho de certificação
- 1 chave simétrica para EMV-CAP (retirado recentemente)
- 4 Códigos de utilizadores (PINs)
 - Autenticação, Assinatura, Morada, PUK

Proteção por PIN

Possuir o cartão é insuficiente para

- Obter morada (exceto nos recentes)
- Obter ou usar a chave privada de autenticação
- Obter ou usar a chave privada de assinatura
- Obter ou usar a chave secreta de EMV-CAP

Operações protegidas por PIN

- PIN de 4 números
- PIN é bloqueado após 3 tentativas incorretas

Exceções

Forças policiais podem obter a morada sem o PIN

Certificados no Smartcard: Objetivos

- Possibilita autenticar o dono do cartão
 - O dono pode distribuir o seu certificado para outras pessoas/serviços que passar a poder verificar a sua identidade
- Possibilita o dono autenticar outras pessoas com cartões semelhantes
 - Cadeia de certificação presente no cartão
- Possibilita o cartão autenticar clientes com certificados semelhantes
 - Algumas operações podem ser pedidas ao cartão com certificados "especiais" que o cartão valida

Certificados no Smartcard

Certificados no Smartcard: Interoperação com outras aplicações

Aplicações de watchdog detetam inserção e remoção

Inserção

- Aplicações obtêm certificados e inserem-nos nos repositórios dos navegadores
- Utilização das chaves respetivas é condicionada pelos PIN

Remoção

 Aplicações removem certificados dos repositórios dos navegadores

Aplicações em Smartcards: Aplicações no Cartão de Cidadão

IAS Classic V3

- Autenticação e assinatura digital
- Utilização de pares de chaves assimétricas

EMV-CAP

- Geração de one-time-passwords para canais alternativos (telefone, Fax, etc..)
- Retirado em 2016

Precise Biometric BIO Match On Card

Validação de impressões digitais

Serviços criptográficos do Smartcard: Middleware

- Bibliotecas que servem de ponte entre as funcionalidades do Smartcard e as aplicações de mais alto nível
- Baseado em soluções normalizadas:
 - PKCS #11
 - Cryptographic Token Interface Standard (cryptoki)
 - Definido pela RSA Security Inc.
 - PKCS #15
 - Cryptographic Token Information Format Standard
 - Definidopela RSA Security Inc.
 - CAPI CSP
 - CryptoAPI Cryptographic Service Provider
 - Definido pela Microsoft para sistemas Windows
 - · PC/SC
 - Personal computer/Smart Card
 - Plataforma para acesso a smartcards em Windows e Linux

PKCS #11: Integração do Middleware Cryptoki

PKCS #11: Hierarquia de objetos

PKCS #11: Sessões do Cryptoki

- Ligações lógicas entre aplicações e cartões (tokens)
 - Sessões de leitura
 - Sessões de leitura e escrita
- Operações em sessões ativas
 - Administrativas
 - Login/logout
 - Gestão de objetos
 - Criar ou destruir um objeto no cartão
 - Criptográficas
- Objetos de sessão
 - Objetos temporários criado (e válidos) durante a sessão
- Tempo de vida das sessões
 - Normalmente apenas para uma única operação

PKCS #11: Cryptoki Sessões de Leitura

Sessão pública de Leitura

- Acesso de leitura aos objetos públicos
- Acesso de leitura/escrita aos objetos de sessão públicos

Funções de leitura do utilizador

- Acesso de leitura a todos os objetos do cartão (públicos ou privados)
- Acesso de leitura/escrita a todos os objetos de sessão (públicos ou privados)

PKCS #11: Cryptoki Sessões de leitura e escrita

- Sessão pública e Leitura e Escrita
 - Ler e escrever todos os objetos públicos
- Funções do SO de Leitura e Escrita
 - Ler/escrever objetos públicos
 - Não os objetos privados
 - O SO pode definir o PIN dos utilizadores
 - SO = Security Officer
- Funções do utilizador de Leitura e Escrita
 - Ler e escrever todos os objetos

PKCS #11: Conceitos utilizados pelo CC

PIN de Autenticação

PIN do utilizador no PKCS #11

PIN de Assinatura

Não exposto pelo interface PKCS #11

PIN de Morada

- Não exposto pelo interface PKCS #11
- 0000 por defeito nos cartões recentes

PKCS #11 SO PIN

Não utilizado pelos titulares do cartão

Middleware PTEID para Windows

Middleware PTEID para Unix

PTEID middleware & SDK

• Distribuição pública

- Windows
- MAC OS X Yosemite
- Linux
- Caixa Mágica, Fedora, OpenSuse, Red Hat, Ubuntu

Linguagens

- Bibliotecas dinâmicas para C/C++
- Wrapper Java (JNI) para as bibliotecas C/C++
- Wrapper C# .NET para as bibliotecas C/C++

Manuais

- Validação de Número de Documento do Cartão de Cidadão
- Autenticação com Cartão de Cidadão
- Manual Técnico do Middleware do Cartão de Cidadão
- Certificados e Entidades de Certificação
- Outros

PTEID middleware & SDK

- API adicional para interagir com o CC
 - Fornecida pela biblioteca libpteid.so
- Permite acesso ao dados relativos ao cidadão
 - Nome, Fotografia, etc...
- Objetos PTEID armazenados como ficheiros
 - 3f000003 = Trace
 - 3f005f00ef02 = Citizen Data (Identification Data, Photo)
 - 3f005f00ef05 = Citizen Address Data (Pin Protected)
 - 3f005f00ef06 = SOd (Security Object Data)
 - 3f005f00ef07 = Citizen Notepad

Assinatura de Documentos

- CC permite geração de assinaturas e estas podem ser inseridas em objetos
 - Emails, Documentos PDF, ...
- Assinatura digital substitui assinatura caligrafrada
 - Importante no contexto legal ou Adm. pública (notas na UA)
 - Nativamente suportada em alguns formatos
- Utiliza chave privada e Selo Temporal da PKI
 - CC: http://ts.cartaodecidadao.pt/tsa/server
 - Selo Temporal é vital para garantir instante da assinatura

Autenticação com o CC

 Autenticador envia um NONCE ao CC para ser cifrado com a chave privada

- Problema: Browsers não possuem acesso ao cartão
 - Possível configurar libpteidpkcs11.so, mas só para acesso via API PKCS#11
 - Possível usar applet Java (obsoleto)
- Solução: Utilizar um plugin no computador do utente
 - Expõe servidor web no localhost
 - Permite acesso ao cartão através do servidor web
 - Apenas a pedidos autenticados pela infraestrutura do CC
 - Necessita de aprovação prévia para cada nova integração

Plugin Autenticação.gov

Cidadão Nacional (c/Cartão da Cidadão)

Chave Móvel Digital (CMD)

- Objetivo: possibilitar autenticação/assinatura mesmo sem o CC presente
 - mas com segurança de nível "semelhante"

Princípios de funcionamento

- Necessita de um CC para autenticar o pedido de uma CMD
- Utentes podem autenticar-se/assinar documentos usando a CMD
- Não necessita de plugin instalado
- Não necessita de cartão para utilização futura
- Utiliza 2FA: PIN no site + código por outro canal (SMS, Twitter...)

Processo baseado na criação de um par de chaves, armazenado remotamente

- 1. Cidadão usa o CC para pedir uma CMD
 - 1. Especifica uma senha/pin
 - 2. Especifica um canal de autenticação
- 2. É gerado um par de chaves
- 3. Chave pública enviada para geração de certificados
- 4. Chaves e certificado armazenados em ambiente seguro
 - 1. Protegido pela senha do utilizador
- 5. Permitidas operações a quem validar a autenticidade

Faça a sua autenticação com:

CARTÃO DE CIDADÃO CHAVE MÓVEL DIGITAL Universidade de Aveiro solicitou alguns dos seus dados para realizar o serviço *online* pretendido 🚺 Nome Próprio Nome Completo Nacionalidade Identificação Fiscal Identificação Civil RECUSAR **AUTORIZAR**

Chave Móvel Digital

Número de telemóvel	
+351	•
PIN	
CANCELAR	AUTENTICAR

Se ainda não tem saiba como obter Chave Móvel Digital aqui

Chave Móvel Digital

Para validar a autenticação, insira nos próximos 5 minutos o código que foi enviado via SMS para o seu telemóvel.

Código de segurança

CONFIRMAR