Ejemplos del Teorema de Seifert-Van Kampen y de la Proposición

Ejemplo 1

Sea X

Sea $U = X - \{p\}$

Sea
$$V = X - \{q\}$$

Sea
$$U \cap V = X - \{p, q\}$$

Todos son abiertos y arcoconexos, y $U \cap V \neq \emptyset$. Al hacer retracto de deformación tanto en U, V se queda una esfera S^2 , que es simplemente conexo. Además $U \cup V = X$. Por la proposición, se tiene que X es simplemente conexo:

$$\Pi_1(X) = \{1\}$$

Ejemplo 2

Sea X

Sea $U = X - \{p\}$, es abierto simplemente conexo porque

r.d

Sea $V=X-\{q\}$ los mismo es abierto simplemente conexo. Sea $U\cap V=X-\{p,q\}\neq\emptyset$ es abierto y arcoconexo. Además $U\cup V=X$. Por la proposición, se tiene que X es simplemente conexo:

$$\Pi_1(X) = \{1\}$$

Sea X

Sea $U = X - \{p\}$, es abierto simplemente conexo porque

De la misma forma, $V = X - \{q\}$, es simplemente conexo. Sea $U \cap V = X - \{p,q\} \neq \emptyset$ es abierto y arcoconexo. Además $U \cup V = X$. Por la proposición, se tiene que X es simplemente conexo:

$$\Pi_1(X)=\{1\}$$

Ejemplo 4

Sea X

Por lo anterior, también X es simplemente conexo.

Sea $X = S^2 \cup \{(0,0,z): |z| \ge 1\} \cup \{(x,y,0): ||(x,y)|| \ge 1\} \subset R^3$

Sea $U = S^2 \cup \{(0,0,z): |z| \ge 1\}$ es abierto y simplemente conexo.

Sea $V = S^2 \cup \{(x, y, 0): ||(x, y)|| \ge 1\}$ es abierto y simplemente conexo.

Ahora se tiene que $U \cup V = X$ y que $U \cap V = S^2 \neq \emptyset$ y arcoconexo. Por la proposición, se tiene que X es simplemente conexo:

$$\Pi_1(X) = \{1\}$$

Sea $X \subset \mathbb{R}^2$

Sea $U = X - \{p\} \Longrightarrow \Pi_1(U, x_0) \cong F([b]) \cong Z$

De la misma forma sea $V = X - \{q\} \Longrightarrow \Pi_1(V, x_0) \cong F([a]) \cong Z$

Sea $U \cap V = X - \{p, q\}$, es contráctil, es simplemente conexo, $\Pi_1(U \cap V, x_0) \cong \{1\}$.

Se tiene que $U,V,U\cap V$ son abiertos y arcoconexos, además $U\cup V=X$ y $U\cap V\neq\emptyset$. Por el **teorema de Seifert-Van Kampen:**

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) = \Pi_1(U,x_0) * \Pi_1(V,x_0) = \\ &= F([b]) * F([a]) = F([a],[b]) = Z * Z \end{split}$$

Sea $X \subset \mathbb{R}^2$

Sea $U = X - \{p\} \Longrightarrow \Pi_1(U, x_0) \cong F([b], [c]) \cong Z * Z$

$$\operatorname{Sea} V = X - \{q,r\} \Longrightarrow \Pi_1(V,x_0) \cong F([a]) \cong Z$$

$$V \stackrel{r.d}{\Rightarrow} \bigcirc$$

Sea $U\cap V$ = $X-\{p,q,r\}$, es contráctil, es simplemente conexo, $\Pi_1(U\cap V,x_0)\cong\{1\}$.

Se tiene que $U,V,U\cap V$ son abiertos y arcoconexos, además $U\cup V=X$ y $U\cap V\neq\emptyset$. Por el **teorema de Seifert-Van Kampen:**

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) = \Pi_1(U,x_0) * \Pi_1(V,x_0) = \\ &= F([b],[c]) * F([a]) = F([a],[b],[c]) \end{split}$$

Ejemplo 8

Sea $X \subset \mathbb{R}^2$ $7 \qquad 4 \qquad 3 \qquad 2 \qquad 1$ $\Pi_1(X,x_0) = F([a_1],[a_2],[a_3],[a_4],[a_5],[a_6],[a_7])$

Sea $U = X - \{p\} \Longrightarrow \Pi_1(U, x_0) \cong F([b], [c]) \cong Z * Z$

$$U \stackrel{r.d}{\Rightarrow} \qquad \qquad x_0 \qquad \qquad x_0$$

Sea $V = X - \{q\} \Longrightarrow \Pi_1(V, x_0) \cong F([a], [b]) \cong Z$

Sea $U \cap V = X - \{p, q\}, \Pi_1(U \cap V, x_0) \cong F([b])$:

$$U \cap V \stackrel{r.d}{\Rightarrow} \qquad \qquad x_0$$

Se tiene que $U,V,U\cap V$ son abiertos y arcoconexos, además $U\cup V=X$ y $U\cap V\neq\emptyset$. Por el **teorema de Seifert-Van Kampen:**

$$\begin{split} \Pi_{1}(X,x_{0}) &\cong \Pi_{1}(U,x_{0}) *_{\Pi_{1}(U \cap V,x_{0})} \Pi_{1}(V,x_{0}) = \\ &= \frac{F([b],[c]) * F([a],[b])}{N\left\{(i_{U})_{X}(x)\left((i_{v})_{X}(x)\right)^{-1} : x \in \Pi_{1}(U \cap V,x_{0})\right\}} = \\ &= \frac{F([b],[c],[a],[b])}{N\left\{(i_{U})_{X}([b])\left((i_{v})_{X}([b])\right)^{-1}\right\}} = \frac{F([b],[c],[a],[b])}{N\{[b]([b])^{-1}\}} = F([a],[b],[c]) \end{split}$$

 $\operatorname{Sea} RP^2 \cong \overline{D}/_{\sim} \ \operatorname{donde} p \sim q \Longleftrightarrow \begin{cases} p = q \\ 6 & \operatorname{Calcular \, el \, grupo \, fundamental.} \\ |p| = |q| = 1 \ \ y \ p = -q \end{cases}$

Sea $\pi\colon \overline{D}\to RP^2$ la proyección. Y vamos a considerar como U un disco abierto centrado en el origen, U=D(0,r) r<1. Y como $V=\overline{D}-\{0\}$, de manera que U y V son abiertos y arcoconexos, además, $U\cup V=RP^2$, y $U\cap V=D(0,r)-\{0\}\neq\emptyset$, abierto y arcoconexo.

Se toma $x_0 \in U - \{0\}$, para calcular $\Pi_1(RP^2)$. Y por lo tanto, $\pi(x_0) \in \pi(U \cap V)$ aplicando el teorema de **Seifert-Van Kampen**: $\pi(U \cap V) = \pi(U) \cap \pi(V)$

 $U \cap V = \overline{D} \ U, V, U \cap V \ abiertos y arcoconexos \ U \cap V \neq \emptyset$

$$\pi(U) \cup \pi(V) = RP^2 \quad \pi(U) \cap \pi(V) \neq \emptyset$$
$$\pi(U), \pi(V), \pi(U) \cap \pi(V)$$

abiertos y arcoconexos porque π continua, abierta y sobreyectiva

Como $\pi_{/U}:U\to\pi(U)$ homeomorfismo, U simplemente conexo, entonces $\pi(U)$ es simplemente conexo.

Veamos $\pi(V)$

De donde es homeomorfo a:

$$\Pi_1\bigl(\pi(V)\bigr)\cong F([a])$$

Veamos $\pi(U \cap V)$: $\pi_{/U \cap V}$: $U \cap V \to \pi(U \cap V)$ homeomorfismo.

$$\Pi_1\big(\pi(U\cap V)\big)\cong F([b])$$

Por el teorema de Seifert-Van Kampen:

$$\begin{split} \Pi_{1}(RP^{2},x_{0}) &\cong \Pi_{1}(\pi(U),x_{0}) *_{\Pi_{1}(\pi(U\cap V),x_{0})} \Pi_{1}(\pi(V),x_{0}) = \\ &= \frac{\{1\} * F([a])}{N\left\{\left(i_{\pi(U)}\right)_{RP^{2}}(x)\left(\left(i_{\pi(V)}\right)_{RP^{2}}(x)\right)^{-1} : x \in \Pi_{1}(\pi(U\cap V),x_{0})\right\}} = \\ &= \frac{F([a])}{N\left\{\left(i_{\pi(U)}\right)_{RP^{2}}([b])\left(\left(i_{\pi(V)}\right)_{RP^{2}}([b])\right)^{-1}\right\}} = \frac{F([a])}{N\left\{\left(\left(i_{\pi(V)}\right)_{RP^{2}}([b])\right)^{-1}\right\}} = \frac{F([a])}{F([a]^{2})} \cong \frac{Z}{2Z} \cong \\ &\cong Z_{2} \end{split}$$

Veamos $\pi(V)$

$$-1$$
 $\Rightarrow b \simeq a*a \text{ por normalización}$

$$\left(i_{\pi(V)}\right)_{RP^2}([b]) = [a]^2 \in \Pi_1\left(\pi(V)\right)$$

Sea $X \subset \mathbb{R}^3$

Consideramos $U=X-\{p\}, V=X-\{p_i:i=1,\dots,5\}, U\cap V=X-\{p,p_i:i=1,\dots,5\}.$ Se tiene que $U,V,U\cap V$ son abiertos y arcoconexos, además $U\cup V=X$ y $U\cap V\neq\emptyset.$ Veamos U:

Que es simplemente conexo, es decir, ${\it U}$ es simplemente conexo.

Veamos *V*:

Por lo tanto, $\Pi_1(V) \cong F([a])$.

Veamos $U \cap V$:

Sea W_1 , W_2 , $W_1 \cap W_2$ abiertos y arcoconexos, $W_1 \cap W_2 \neq \emptyset$ y $W_1 \cup W_2 = U \cap V$ Veamos W_1 :

Y es $\cong R^2 - \{0\}$, entonces

$$\Pi_1(W_1)\cong F([b_1]).$$

Veamos W_2 :

Por el anterior : $\Pi_1(W_1) \cong F([b_2])$.

Veamos $W_1 \cap W_2$: sería simplemente conexo. Por el **teorema de Seifert-Van Kampen:**

$$\Pi_1(U \cap V, x_0) \cong \Pi_1(W_1, x_0) *_{\Pi_1(W_1 \cap W_2)} \Pi_1(W_2, x_0) =$$

$$= \Pi_1(W_1, x_0) * \Pi_1(W_2, x_0) = F([b_1]) * F([b_2]) = F([b_1], [b_2])$$

Luego por el teorema de Seifert-Van Kampen:

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) = \\ &= \frac{\{1\} * F([a])}{N\left\{(i_U)_X(x) \left((i_V)_X(x)\right)^{-1} : x \in \Pi_1(U \cap V,x_0)\right\}} = \\ &= \frac{F([a])}{N\left\{(i_U)_X([b_i]) \left((i_V)_X([b_i])\right)^{-1} : i = 1,2\right\}} = \frac{F([a])}{\left[\varepsilon_{x_0}\right]} = F([a]) \end{split}$$

$$\text{Pero } (i_U)_X([b_1]) = (i_V)_X([b_2]) \quad (i_U)_X([b_2]) = (i_V)_X([b_1])$$

$$(i_U)_X([b_i]) \left((i_V)_X([b_i])\right)^{-1} = \left[\varepsilon_{x_0}\right]$$

Sea $X \subseteq \mathbb{R}^3$:

Sea $U = X \setminus \{E\}, V = X \setminus \{p,q\}$ $U \cap V = X \setminus \{E,p,q\}$, donde $U,V \vee U \cap V$ son abiertos y arcoconexos, además $U \cup V = X \vee U \cap V \neq \emptyset$.

 $\mathsf{Para}\ U$

Luego U es simplemente conexo. Para $U\cap V$

Luego $U \cap V$ es contráctil, y por lo tanto, simplemente conexo. Para V

Luego $\Pi_1(V, x_0) \cong F([a])$. Por el **teorema de Seifert-Van Kampen:**

$$\Pi_1(X,x_0) \cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) = \Pi_1(V,x_0) \cong F([a])$$

Sea $X \subseteq \mathbb{R}^3$:

Sea $U=X\setminus\{p,q\}, V=X\setminus\{r,s\}\ U\cap V=X\setminus\{r,s,p,q\}$, donde U,V y $U\cap V$ son abiertos y arcoconexos, además $U\cup V=X$ y $U\cap V\neq\emptyset$.

Para U

Luego U es simplemente conexo. Para V igual, es simplemente conexo. Para $U\cap V$

 $\mathrm{Luego}\Pi_1(U\cap V,x_0)\cong F([a]). \text{ Por el teorema de Seifert-Van Kampen:}$

$$\Pi_1(X,x_0) \cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) \cong \left\{ \left[\varepsilon_{x_0} \right] \right\}$$

Por lo tanto, $\Pi_1(V) \cong F([a])$.