Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 23: Drawing The Nyquist Plot

Overview

In this Lecture, you will learn:

Review of Nyquist

Drawing the Nyquist Plot

- Using the Bode Plot
- What happens at $r = \infty$
- Poles on the imaginary axis

Phase Margin and Gain Margin

Reading Stability Margins off the Nyquist Plot

Review

Systems in Feedback

The closed loop is

$$\frac{kG(s)}{1+kG(s)}$$

We want to know when

$$1 + kG(s) = 0$$

Question: Does $\frac{1}{k} + G(s)$ have any zeros in the RHP?

Review

The Nyquist Contour

Definition 1.

The **Nyquist Contour**, C_N is a contour which contains the imaginary axis and encloses the right half-place. The Nyquist contour is clockwise.

A Clockwise Curve

- Starts at the origin.
- Travels along imaginary axis till $r = \infty$.
- At $r = \infty$, loops around clockwise.
- Returns to the origin along imaginary axis.

We want to know if

$$\frac{1}{k} + G(s)$$

has any zeros in the Nyquist Contour

Review

Contour Mapping Principle

Key Point: For a point on the mapped contour, $s^* = G(s)$,

$$\angle s^* = \angle G(s)$$

• We measure θ , not phase.

To measure the 360° resets in $\angle G(s)$

- We count the number of $+360^{\circ}$ resets in $\theta!$
- We count the number of times \mathcal{C}_G encircles the origin **Clockwise**.

The number of clockwise encirclements of $\boldsymbol{0}$ is

• The $\#_{zeros} - \#_{poles}$ in the RHP

The Nyquist Contour

Closed Loop

The number of unstable closed-loop poles is N+P, where

- N is the number of clockwise encirclements of -1/L.
- P is the number of unstable open-loop poles.

If we get our data from Bode, typically P=0

How to Plot the Nyquist Curve?

Plotting the Nyquist Diagram

Example

How are we to plot the Nyquist diagram for

$$G(s) = \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

- $\tau_1 = 1$
- $au_2 = \frac{1}{10}$

First lets take a look at the root locus.

Obviously stable for any k > 0.

Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information on $\left|G\right|$ at different frequencies.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	1	-45°	.7
С	3	-90°	.3
D	10	-135°	.07
E	100	-175°	.001

The last two columns give us points on the Nyquist diagram.

Plot the points from the Bode Diagram.

Point	ω	$\angle G$	G	_
Α	.1	0°	1	-
В	1	-45°	.7	We get
С	3	-90°	.3	· vve gei
D	10	-135°	.07	-
E	100	-175°	.001	-

the upper half of the Nyquist diagram from symmetry.

There are no encirclements of $-\frac{1}{k}$.

- Stable for all k > 0.
- We already knew that from Root Locus.

Example 2

$$G(s) = \frac{1}{(s+1)^3}$$

First lets take a look at the root locus.

We expect instability for large k.

Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information on $\left|G\right|$ at different frequencies.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	.28	-45°	.95
С	1	-135°	.35
D	1.8	-180°	.1
E	10	-260°	.001

Plot the points from the Bode Diagram.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	.28	-45°	.95
С	1	-135°	.35
D	1.8	-180°	.1
E	10	-260°	.001

Point D is especially important.

Point D: Two CW encirclements when $-\frac{1}{k} < -.1$ (N=2).

- Instability for $-\frac{1}{k} > -.1$
- Stable for k < 10.
- Could have used Routh Table.

Another Problem: Recall the non-inverted pendulum with PD feedback.

$$G(s) = \frac{s+1}{s^2 + \sqrt{\frac{g}{l}}}$$

Magnitude goes to ∞ at $\omega=\sqrt{\frac{g}{l}}$. Question How do we plot the Nyquist Diagram?

Problem: The Nyquist Contour passes through a pole.

Because of the pole, the argument principle is invalid.

What to do?

We Modify the Nyquist Contour.

- We detour around the poles.
- Can detour to the right or left.

If we detour to the left, then the poles count as unstable open loop poles.

• P=2

Assume we detour to the right.

Look at the detours at small radius.

- ullet Obviously, magnitude $o \infty$
- Before the Detour, the phase from the pole is

$$-\angle(s-p) = 90^{\circ}$$

 In the middle of the Detour, the phase from the pole is

$$-\angle(s-p) = 0^{\circ}$$

 At the end of the Detour, the phase from the pole is

$$-\angle(s-p) = -90^{\circ}$$

The total phase change through the detour is -180° .

- Corresponds to a CW loop at large radius.
- If there are two or more poles, there is a -180 loop for each pole.

Look at the following example:

$$G(s) = \frac{s+2}{s^2}$$

There are 2 poles at the origin.

- At $\omega = 0$.
 - ► $\angle G(0) = -180^{\circ}$
 - $|G(0)| = \infty$
- 2 poles means -360° loop at $\omega=0$

M. Peet

Lets re-examine the pendulum problem with derivative feedback.

Now we can figure out what goes on at ∞ .

• There is a -180° loop at each $\omega = \sqrt{\frac{g}{l}}$.

Conclusion: The loops connect in a non-obvious way!

For $0 < \frac{-1}{k} < 1$, we have N = 1

Recall the definitions of Gain Margin.

Definition 2.

The Gain Margin, $K_m = 1/|G(\imath \omega)|$ when $\angle G(\imath \omega) = 180^{\circ}$

 K_m is the maximum stable gain in closed loop.

It is easy to find the maximum stable gain from the Nyquist Plot.

Phase margin = $\Phi_M = \alpha$

Example

Recall

$$G(s) = \frac{1}{(s+1)^3}$$

Stability: Stable for k < 10.

$$K_m = 10$$
 or $20dB$.

Example

Suspension System with integral feedback

There is a pole at the origin.

• CW loop at ∞ .

Conclusion: Stable for $\frac{-1}{k} > -9.5$.

 $\bullet \ \ {\rm Stable} \ \ {\rm for} \ k < .105$

$$K_m = .105$$
 or $-19.5dB$

Question: What is the effect of a phase change on the Nyquist Diagram.

- A shift in phase changes the angle of all points.
- A Rotation about the origin.
- Will we rotate into instability?

M. Peet

Lecture 23: Control Systems

Recall the definitions of Phase Margin.

Definition 3.

The **Phase Margin**, Φ_M is the uniform phase change required to destabilize the system under unitary feedback.

Example

The Suspension Problem

Looking at the intersection with the circle:

• Phase Margin: $\Phi_M \cong 40^\circ$

Gain Margin is infinite.

26 / 28

Example

The Inverted Pendulum Problem

Even though open-loop is unstable, we can still find the phase margin:

• Phase Margin: $\Phi_M \cong 35^{\circ}$

Gain Margin is technically undefined because open loop is unstable.

• There is a minimum gain, not a maximum.

M. Peet Lecture 23: Control Systems

Summary

What have we learned today?

Review of Nyquist

Drawing the Nyquist Plot

- Using the Bode Plot
- ullet What happens at $r=\infty$
- Poles on the imaginary axis

Phase Margin and Gain Margin

Reading Stability Margins off the Nyquist Plot

Next Lecture: Controller Design in the Frequency Domain