Econometria de Séries Temporais*

Exercícios sobre os modelos MA e AR

João Ricardo Costa Filho

Abstract

Esta lista de exercícios tem por objetivo auxiliar a(o) aluna(o) a consolidar os conceitos **teóricos** dos processos MA e AR, com base na dinâmica de equações a diferenças que estudamos no começo do curso. São fundamentais, portanto, a definição de estacionariedade (e como verificar se um processo estocástico a satisfaz), equação característica e as suas raízes, polinômio do operador defasagem e as suas raízes e os resultados do Teorema de Wold.

^{*}joaocostafilho.com.

Questão 1

Quais são as condições para que um processo estocástico seja um ruído branco?

Questão 2

Mostre que VAR $[\epsilon_t] = E[\epsilon_t^2]$ se ϵ_t for um ruído branco.

Questão 3

Quais são as condições para que um processo estocástico seja estacionário?

Questão 4

Um MA(1) com $|\theta|$ < 1 é (fracamente) estacionário? Justifique matematicamente.

Questão 5

Um AR(1) com $|\phi| < 1$ é (fracamente) estacionário? Justifique matematicamente.

Questão 6

Um AR(1) com $|\phi| = 1$ é (fracamente) estacionário? Justifique matematicamente.

Questão 7

Considere dois ativos, X e Y, tais que as respectivas dinâmicas dos retornos reais anuais (letras minúsculas; em pontos percentuais) ao longo do tempo são dadas por:

$$y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1},$$

$$x_t = c + \phi x_{t-1} + \varepsilon_t,$$

Note que x e y são afetados **pelos mesmos choques**, isto é, ε_t é o mesmo nos dois. Defina o retorno do portfolio com dois ativos como $z_t = \omega_y y_t + (1 - \omega_y) x_t$. A variância do portfolio é dada, portanto, por VAR $[z_t]$. Dados $\mu = 5$, $\theta = 0.9$, c = 1.5, $\phi = 0.7$ e $\sigma^2 = 4$, responda:

- a) Faça um gráfico com o retorno esperado do portfolio **no longo prazo** como função de ω_y .
- b) Faça um gráfico com o desvio-padrão do portfolio no longo prazo como função de ω_y .

Questão 8

Seja y_t uma variável aleatória tal que

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2},$$

onde ε_t é um ruído branco.

Encontre:

- a) $E[y_t]$.
- b) $VAR[y_t]$.
- c) $\gamma_1, \gamma_2, \gamma_3$ (isto é, a autocovariância de y_t com y_{t-1}, y_{t-2} e y_{t-1} , respectivamente).
- d) ρ_1, ρ_2, ρ_3 (isto é, a autocorrelação de y_t com y_{t-1}, y_{t-2} e y_{t-1} , respectivamente).
- e) Dsenhe um gráfico de ρ_j (no eixo vertical) por j (eixo horizontal), considerando $\sigma^2 = 1, \theta_1 = 0.8$ e $\theta_2 = 0.3$.
- f) Dsenhe um gráfico de ρ_j (no eixo vertical) por j (eixo horizontal), considerando $\sigma^2=1, \theta_1=0.8$ e $\theta_2=-1.2$.

Questão 9

Sabemos que podemos escrever um AR(p) como um $MA(\infty)$. Mas será que há resultado análogo para MA(q)? Vejamos:

- a) Considere o seguinte processo estocástico: $y_t = \mu + \varepsilon_t \theta_1 \varepsilon_{t-1} \theta_2 \varepsilon_{t-2}$. Qual é o modelo descreve o processo estocástico?
- b) Reescreva o processo do item (a) com o operador defasagem.
- c) Reescreva o resultado do item (b) com o polinômio do operador defasagem $(\theta(L))$.
- d) Divida os dois lados de (c) pelo polinômio do operador defasagem.
- e) Qual é a hipótese necessária para o resultado do item (d)?
- f) Quais as condições necessárias para que essa hipótese se verifique?
- g) Qual é o modelo que temos no item (d)?

Questão 10

Leia a seção 2.13 (páginas 37 e 38) do Capítulo 2 de Bueno (2012) e resolva o exercício 9 (página 40).

Questão 11

(Exercício baseado nos exercícios do capítulo 2 de Enders, 2014) Considere o seguinte processo estocástico: $y_t = 1, 5y_{t-1} - 0, 5y_{t-2} + \varepsilon_t$.

- a) Encontre as raízes da equação característica da parte homogêna do processo.
- b) Escreva o processo com o operador defasagem (L).
- c) Compare a equação característica ao polínômio $\phi(L)$.
- d) Compare as raízes do polínômio $\phi(L)$ com as raízes da equação característica.
- e) Simule o processo para $t \in [2, 100]$ (assuma $y_0 = y_1 = 5$) sem choques aleatórios.
- f) Simule o processo para $t \in [2, 100]$ (assuma $y_0 = y_1 = 5$) com choques aleatórios.
- g) Discuta o papel das duas raízes no resultado da simulação no item (f).
- h) O processo é (fracamente) estacionário? Justifique.
- i) Com base na sua análise nos itens (a)-(h), se a taxa de inflação (π_t) puder ser representada pelo processo estocástico $\pi_t = 1, 5\pi_{t-1} 0, 5\pi_{t-2} + \varepsilon_t$, você diria que a economia poderia entrar em um processo hiperinflacionário? Justifique.
- j) E se a taxa de inflação (π_t) puder ser representada pelo processo estocástico $\pi_t = 1, 6\pi_{t-1} 0, 5\pi_{t-2} + \varepsilon_t$, você diria que a economia poderia entrar em um processo hiperinflacionário?? (Utilize os mesmos choques do item (f) para visualizar a dinâmica do processo, mas justifique matematicamente a sua resposta).

Questão 12

Assuma que a taxa de câmbio real, q_t seja uma variável aleatória tal que

$$q_t = 0.3 + 0.7q_{t-1} + \varepsilon_t.$$

Quantos períodos um choque em q_t leva para que 90% dele tenha se dissipado?

Questão 13

Seja y_t uma variável aleatória tal que

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t$$
.

- a) Reescreva a o processo com o operador defasagem.
- b) Coloque y_t em evidência no lado esquerdo da equação.
- c) Defina $\Phi(L) = (1 \phi_1 L \phi_2 L^2)$ e substitua no resultado do item (b).
- d) Divida os dois lados da equação por $\Phi(L)$.
- e) Assuma que as raízes do polinômio de defasagens estão **fora** do circulo unitário. Se esse for o caso, temos que $\frac{1}{\Phi(L)} = 1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 + \dots$ Escreva o processo considerando o resultado acima. Qual é o nome desse modelo?
- f) Dado que na expansão do polinômio temos $\theta_j = \phi_1 \theta_{j-1} + \phi_2 \theta_{j-2}$, com $\theta_0 = 1$ e $\theta_{-1} = 0$, assuma $\phi_1 = 0.94$ e $\phi_2 = -0.204$ e calcule $\frac{\partial y_t}{\partial \varepsilon_{t-4}}$.

References

Bueno, R. D. L. d. S. (2012). Econometria de Séries Temporais. Cengage Learning.

Enders, W. (2014). Applied econometric time series. Wiley Series in Probability and Statistics, fourth edition.