MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2014-2015

PRÀCTICA 3

Exercici 1 [Problemes ben/mal condicionats]

Un problema és ben (mal) condicionat quan, canviant poc les dades, canvia poc (molt) el resultat. O sigui, la condició d'un problema té relació amb la sensitivitat de la solució respecte a les dades.

Considerem el problema de valors inicials (PVI)

$$\begin{cases} y'(x) = cy(x) + 1 & x \in [0, 10] \\ y(0) = \alpha \end{cases}$$

en els casos c=+2 i c=-2. Volem trobar y(10) en funció de α , en un entorn de $\alpha=1$.

Es pot comprovar que la solució del PVI és

$$y(x) = \left(\alpha + \frac{1}{c}\right)e^{cx} - \frac{1}{c} .$$

Tant per al cas c=2 com per al cas c=-2, feu el següent: sigui yexact el valor de y(10) quan $\alpha=1$ i sigui yaprox el valor de y(10) quan $\alpha\approx 1$. Compareu la variació en y(10) amb la variació en α . O sigui, feu una taula de dues columnes amb valors $(\alpha-1)$ i (yaprox-yexac).

Quin dels dos casos $(c = \pm 2)$ és ben condicionat i quin és mal condicionat?

Exercici 2 [Mètode estable/inestable]

Un *mètode numèric és inestable* quan l'acumulació dels errors fa que el resultat aproximat sigui molt dolent.

Considerem el PVI anterior en el cas concret

$$\begin{cases} y'(x) &= -2y(x) + 1 \\ y(0) &= 1 \end{cases}$$

La seva solució exacta és $y(x) = \frac{1}{2} (e^{-2x} + 1)$.

Ens inventem un mètode numèric per a calcular aproximadament y(10). Fixem un valor natural gran N, sigui h=10/N i definim $x_n=nh$ $\forall n=0,1,\ldots N$. Tenint en compte l'aproximació de segon ordre

$$y'(x) = \frac{y(x+h) - y(x-h)}{2h} + O(h^2) ,$$

podem escriure

$$y(x_{n+1}) \approx y(x_{n-1}) + 2hy'(x_n) = y(x_{n-1}) + 2h(-2y(x_n) + 1)$$
.

Per tant, considerem la recurrència

$$y_{n+1} = y_{n-1} + 2h(-2y_n + 1) .$$

El valor y_N serà el valor aproximat de y(10) que busquem. Com que la recurrència és de segon ordre, cal conèixer y_0 i y_1 . La condició inicial ens dóna directament $y_0 = 1$. Per a y_1 , prenem el valor exacte $y_1 = \frac{1}{2} \left(e^{-2h} + 1 \right)$.

Feu una taula de l'error $y(10) - y_N$ en funció del pas h.