Workshop 7 – Week 8 – Worksheet 8

Question 8.1 Construct a max binary heap from the following keys. Insert the items one-at-a-time, where Z is the maximum, and Λ is the minimum:

[Old Problem: H G P J E M E K O L A Q]	
8 7 16 10 5 13 5 11 15 12 1 17	

1. Construct a max binary heap using the top-down approach.

8

8			8											
---	--	--	---	--	--	--	--	--	--	--	--	--	--	--

To Insert: 7 16 10 5 13 5 11 15 12 1 17

--

8 7

8	7					

To Insert: 16 10 5 13 5 11 15 12 1 17

--

16 7 8

16	7	8									
----	---	---	--	--	--	--	--	--	--	--	--

To Insert: 10 5 13 5 11 15 12 1 17

--

16 10 8 7

16	10	Q	7				
10	10	0	'				

To Insert: 5 13 5 11 15 12 1 17

--

16 10 8 7 5

16	10	8	7	5				

To Insert: 13 5 11 15 12 1 17

--

To Insert: 1 17

To Insert: 17

Done.

2. Now construct a max binary heap from the same keys, using the bottom-up "heapify" method.

8 7 16 10 5 13 5 11 15 12 1 17

First we start from the bottom level, both 11 and its children and 15 and its children are proper heaps.

15 and its children is a proper heap. Repeating the same process for E and its children;

3. What is the complexity of each method? Did the time it took you to do the exercise on paper correlate (roughly) with the theoretical complexity?

Method 1: $O(n \log n)$

Method 2: O(n)