

Data Structure and Algorithms [CO2003]

Chapter 6 - Tree

Lecturer: Vuong Ba Thinh
Contact: vbthinh@hcmut.edu.vn

Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Basic Tree Concepts
- 2. Binary Trees
- 3. Expression Trees
- 4. Binary Search Trees

Outcomes '

- L.O.3.1 Depict the following concepts: binary tree, complete binary tree, balanced binary tree, AVL tree, multi-way tree, etc.
- L.O.3.2 Describe the strorage structure for tree structures using pseudocode.
- L.O.3.3 List necessary methods supplied for tree structures, and describe them using pseudocode.
- L.O.3.4 Identify the importance of "blanced" feature in tree structures and give examples to demonstate it.
- L.O.3.5 Identity cases in which AVL tree and B-tree are unblanced, and demonstrate methods to resolve all the cases step-by-step using figures.

Outcomes¹

- L.O.3.6 Implement binary tree and AVL tree using C/C++.
- L.O.3.7 Use binary tree and AVL tree to solve problems in real-life, especially related to searching techniques.
- L.O.3.8 Analyze the complexity and develop experiment (program) to evaluate methods supplied for tree structures.
- L.O.8.4 Develop recursive implementations for methods supplied for the following structures: list, tree, heap, searching, and graphs.
- L.O.1.2 Analyze algorithms and use Big-O notation to characterize the computational complexity of algorithms composed by using the following control structures: sequence, branching, and iteration (not recursion).

Definition

A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes.

- Degree of a node: the number of branches associated with the node.
- Indegree branch: directed branch toward the node.
- Outdegree branch: directed branch away from the node.

For the node d:

- **Degree** = 4
- Indegree branches: ad
 → indegree = 1
- Outdegree branches: dg, dh, di
- \rightarrow outdegree = 3

- The first node is called the root.
- indegree of the root = 0
- ullet Except the root, the indegree of a node =1
- outdegree of a node = 0 or 1 or more.

Terms

- A root is the first node with an indegree of zero.
- A leaf is any node with an outdegree of zero.
- A internal node is not a root or a leaf.
- A parent has an outdegree greater than zero.
- A child has an indegree of one.
 - ightarrow a internal node is both a parent of a node and a child of another one.
- Siblings are two or more nodes with the same parent.
- For a given node, an ancestor is any node in the path from the root to the node.
- For a given node, an descendent is any node in the paths from the node to a leaf.

Terms

- A path is a sequence of nodes in which each node is adjacent to the next one.
- The level of a node is its distance from the root.
 - \rightarrow Siblings are always at the same level.
- The height of a tree is the level of the leaf in the longest path from the root plus 1.
- A subtree is any connected structure below the root.

- Parents: a, b, d
- Children: b, c, d, e, f, g, h, i
- Leaves: c, e, f, g, h, i

- Internal nodes: b, d
- Siblings: $\{b,c,d\},\{e,f\},\{g,h,i\}$
- Height = 3

Tree representation

organization chart

- parenthetical listing a (b (e f) c d (g h i))
- indented list

Applications of Trees

- Representing hierarchical data
- Storing data in a way that makes it easily searchable (ex: binary search tree)
- Representing sorted lists of data
- Network routing algorithms

Binary Trees

A binary tree node cannot have more than two subtrees.

Binary Trees Properties

- To store N nodes in a binary tree:
 - The minimum height: $H_{min} = \lfloor \log_2 N \rfloor + 1$
 - ullet The maximum height: $H_{max}=N$
- Given a height of the binary tree, H:
 - The minimum number of nodes: $N_{min} = H$
 - The maximum number of nodes: $N_{max} = 2^H 1$

Balance

The balance factor of a binary tree is the difference in height between its left and right subtrees.

$$B = H_L - H_R$$

Balanced tree:

- balance factor is 0, -1, or 1
- subtrees are balanced

Binary Trees Properties

Complete tree

$$N = N_{max} = 2^H - 1$$

The last level is full.

Nearly complete tree

$$H = H_{min} = \lfloor \log_2 N \rfloor + 1$$

Nodes in the last level are on the left.

Binary Tree Structure

Definition

A binary tree is either empty, or it consists of a node called root together with two binary trees called the left and the right subtree of the root.

Binary Tree Structure: Linked implementation


```
node
  data <dataType>
  left <pointer>
  right <pointer>
end node
```

```
// General dataTye:
dataType
  key <keyType>
 field1 <...>
  field2 <...>
  fieldn <...>
end dataType
```

binaryTree root <pointer> end binaryTree

Binary Tree Structure: Array-based implementation

Suitable for complete tree, nearly complete tree.

Figure 1: Conceptual

binaryTree
 data <array of dataType>
end binaryTree

0 1 2 3 4 5 6 A B C D E F G

Figure 2: Physical Data Structure and Algorithms [CO2003]

Binary Tree Traversals

- Depth-first traversal: the processing proceeds along a path from the root through one child to the most distant descendent of that first child before processing a second child, i.e. processes all of the descendents of a child before going on to the next child.
- Breadth-first traversal: the processing proceeds horizontally from the root to all of its
 children, then to its children's children, i.e. each level is completely processed before the
 next level is started.

Depth-first traversal

- Preorder traversal
- Inorder traversal
- Postorder traversal

PreOrder NLR

InOrder LNR

PostOrder LRN

Preorder traversal (NLR)

In the preorder traversal, the root is processed first, before the left and right subtrees.

Processing order

Preorder traversal (NLR)


```
Algorithm preOrder(val root <pointer>)
Traverse a binary tree in node-left-right sequence.
Pre: root is the entry node of a tree or subtree
Post: each node has been processed in order
if root is not null then
   process(root)
   preOrder(root->left)
   preOrder(root->right)
end
Return
End preOrder
```

Inorder traversal (LNR)

In the inorder traversal, the root is processed between its subtrees.

Processing order

Inorder traversal (LNR)


```
Algorithm in Order(val root <pointer>)
Traverse a binary tree in left-node-right sequence.
Pre: root is the entry node of a tree or subtree
Post: each node has been processed in order
if root is not null then
   inOrder(root->left)
   process(root)
   in Order(root->right)
end
Return
```

End in Order

Postorder traversal (LRN)

In the postorder traversal, the root is processed after its subtrees.

Processing order

Postorder traversal (LRN)


```
Algorithm postOrder(val root <pointer>)
Traverse a binary tree in left-right-node sequence.
Pre: root is the entry node of a tree or subtree
Post: each node has been processed in order
if root is not null then
   postOrder(root->left)
   postOrder(root->right)
   process(root)
end
Return
```

End post Order

Breadth-First Traversals

In the breadth-first traversal of a binary tree, we process all of the children of a node before proceeding with the next level.

Processing order

Breadth-First Traversals

Algorithm breadthFirst(val root <pointer>)
Process tree using breadth-first traversal.

Pre: root is node to be processed

Post: tree has been processed

currentNode = root
bfQueue = createQueue()

Breadth-First Traversals


```
while currentNode not null do
   process(current Node)
   if currentNode->left not null then
      enqueue(bfQueue, currentNode->left)
   end
   if currentNode->right not nul then
      enqueue(bfQueue, currentNode->right)
   end
   if not emptyQueue(bfQueue) then
      currentNode = dequeue(bfQueue)
   else
      currentNode = NULL
   end
end
```


Expression Trees

- Each leaf is an operand
- The root and internal nodes are operators
- Sub-trees are sub-expressions

$$a * (b + c) + d$$

Infix Expression Tree Traversal

Infix Expression Tree Traversal


```
Algorithm infix(val tree <pointer>)
Print the infix expression for an expression tree.
Pre: tree is a pointer to an expression tree
Post: the infix expression has been printed
if tree not empty then
   if tree->data is an operand then
       print (tree->data)
   else
       print (open parenthesis)
       infix (tree->left)
       print (tree->data)
       infix (tree->right)
       print (close parenthesis)
    end
```

Postfix Expression Tree Traversal


```
Algorithm postfix(val tree <pointer>)
Print the postfix expression for an expression tree.

Pre: tree is a pointer to an expression tree

Post: the postfix expression has been printed

if tree not empty then

| postfix (tree->left)
| postfix (tree->right)
| print (tree->data)

end
```

End postfix

Prefix Expression Tree Traversal


```
Algorithm prefix(val tree <pointer>)
Print the prefix expression for an expression tree.
Pre: tree is a pointer to an expression tree
Post: the prefix expression has been printed
if tree not empty then
   print (tree->data)
   prefix (tree->left)
   prefix (tree->right)
end
End prefix
```


Binary Search Trees

Definition

A binary search tree is a binary tree with the following properties:

- 1. All items in the left subtree are less than the root.
- 2. All items in the right subtree are greater than or equal to the root.
- 3. Each subtree is itself a binary search tree.

Valid Binary Search Trees

Invalid Binary Search Trees

Binary Search Tree (BST)

- BST is one of implementations for ordered list.
- In BST we can search quickly (as with binary search on a contiguous list).
- In BST we can make insertions and deletions quickly (as with a linked list).

Binary Search Tree Traversals

- Preorder traversal: 23, 18, 12, 20, 44, 35, 52
- Postorder traversal: 12, 20, 18, 35, 52, 44, 23
- Inorder traversal: 12, 18, 20, 23, 35, 44, 52

The inorder traversal of a binary search tree produces an ordered list.

Binary Search Tree Search

Find Smallest Node

Algorithm findSmallestBST(val root <pointer>)

This algorithm finds the smallest node in a BST.

Pre: root is a pointer to a nonempty BST or subtree

Return address of smallest node

if root->left null then

return root

end

 $return\ findSmallestBST(root-> left)$

End findSmallestBST

Binary Search Tree Search

Find Largest Node

Algorithm findLargestBST(val root <pointer>)

This algorithm finds the largest node in a BST.

Pre: root is a pointer to a nonempty BST or subtree

Return address of largest node returned

if root->right null then

return root

end

return findLargestBST(root->right)

End findLargestBST

Recursive Search

Algorithm searchBST(val root <pointer>, val target <keyType>)
Search a binary search tree for a given value.

Pre: root is the root to a binary tree or subtree target is the key value requested

Return the node address if the value is found null if the node is not in the tree

Binary Search

Recursive Search

- if root is null then
- return null

end

- if target < root->data.key then
 - return searchBST(root->left, target)
- else if target > root->data key then
 - return searchBST(root->right, target)

else

- return root
- end

End searchBST

Iterative Search

Algorithm iterativeSearchBST(val root <pointer>, val target <keyType>) Search a binary search tree for a given value using a loop.

Pre: root is the root to a binary tree or subtree target is the key value requested

Return the node address if the value is found null if the node is not in the tree


```
Iterative Search
```

```
while (root is not NULL) AND (root->data.key <> target) do
   if target < root->data.key then
       root = root - > left
   else
      root = root->right
   end
end
```

return root

End iterativeSearchBST

Insert Node into BST

All BST insertions take place at a leaf or a leaflike node (a node that has only one null branch).

Algorithm iterativeInsertBST(ref root <pointer>, val new <pointer>) Insert node containing new data into BST using iteration.

Pre: root is address of first node in a BST new is address of node containing data to be inserted

Post: new node inserted into the tree

Insert Node into BST: Iterative Insert


```
if root is null then
   root = new
else
   pWalk = root
    while pWalk not null do
        parent = pWalk
        if new->data.key < pWalk->data.key then
            pWalk = pWalk->left
        else
          pWalk = pWalk > right
        end
   end
    if new->data.key < parent->data.key then
        parent-> left = new
    else
        parent->right = new
   end
end
End iterativeInsertBST
```


Algorithm recursiveInsertBST(ref root <pointer>, val new <pointer>) Insert node containing new data into BST using recursion.

Pre: root is address of current node in a BST new is address of node containing data to be inserted

Post: new node inserted into the tree

Insert Node into BST: Recursive Insert


```
if root is null then
   root = new
else
   if new->data.key < root->data.key then
       recursiveInsertBST(root->left, new)
   else
       recursiveInsertBST(root->right, new)
   end
end
Return
End recursive InsertBST
```


Deletion of a leaf: Set the deleted node's parent link to NULL.

Deletion of a node having only right subtree or left subtree: Attach the subtree to the deleted node's parent.

Deletion of a node having both subtrees:

Replace the deleted node by its predecessor or by its successor, recycle this node instead.

Using largest node in the left subtree

Using smallest node in the right subtree

Algorithm deleteBST(ref root <pointer>, val dltKey <keyType>)
Deletes a node from a BST.

Pre: root is pointer to tree containing data to be deleted dltKey is key of node to be deleted

Post: node deleted and memory recycled if dltKey not found, root unchanged

Return true if node deleted, false if not found


```
if root is null then
    return false
end
if dltKey < root->data.key then
    return deleteBST(root->left, dltKey)
else if dltKey > root->data.key then
    return deleteBST(root->right, dltKey)
```



```
else
       Deleted node found - Test for leaf node
   if root->left is null then
       dltPtr = root
       root = root->right
       recycle(dltPtr)
       return true
   else if root->right is null then
       dltPtr = root
       root = root->left
       recycle(dltPtr)
       return true
```



```
else
   else
       // Deleted node is not a leaf.
       // Find largest node on left subtree
       dltPtr = root > left
       while dltPtr->right not null do
         dltPtr = dltPtr > right
       end
       // Node found. Move data and delete leaf node
       root->data = dltPtr->data
       return deleteBST(root->left, dltPtr->data.key)
   end
end
End deleteBST
```