3. Derivata della funzione composta f(g(x)) - Derivata di $[f(x)]^{g(x)}$

Teorema

Se la funzione f(x) = t è derivabile $\forall x \in I$ e la funzione g(t) = y è derivabile in

$$t = f(x) \in f(I)$$

la funzione composta g(f(x)) = y è derivabile in x e risulta

$$Dg(f(x)) = g'(t) \cdot f'(x)$$
 essendo $t = f(x)$

Esempi

a) Calcolare la derivata della funzione

$$f(x) = e^{\sin x}$$

La funzione è composta dalle funzioni

$$e^t$$

e
$$t = sinx$$

le cui derivate sono

 e^t e

pertanto la derivata della funzione è

$$f'(x) = e^{\sin x} \cos x.$$

b) Calcolare la derivata della funzione

$$f(x) = \log(\cos(-2x + 1))$$

La funzione è composta dalle funzioni

$$t = cosz$$

$$logt$$
 $t = cosz$ $z = -2x + 1$

le cui derivate sono

$$-2$$

pertanto si ha

$$f'(x) = \frac{1}{\cos(-2x+1)}(-\sin(-2x+1))(-2) = 2tg(-2x+1)$$

Esercizi

(gli esercizi con asterisco sono avviati)

*1)
$$f(x) = sin(-x^2 + 1)$$

*2)
$$f(x) = tg(\pi x)$$

*3)
$$f(x) = log(x - x^2)$$

*4)
$$f(x) = \cos^2\left(\frac{\pi}{4} - x\right)$$

*5)
$$f(x) = e^{\sqrt{x}-2}$$

*6)
$$f(x) = \sqrt{tg(3x)}$$

Calcolo differenziale L. Mereu – A. Nanni

$$7)f(x) = log(sinx - cos3x)$$

*8)
$$f(x) = log\left(\frac{x+1}{x}\right)$$

*9)
$$f(x) = arctg(e^{-x^2})$$

$$10) f(x) = \arccos(5 - 2x)$$

*11)
$$f(x) = e^{-x^2} cos2x$$

*12)
$$f(x) = e^{\sqrt{\frac{x}{x-1}}}$$

*13)
$$f(x) = log(e^{3x} + 1)$$

*14)
$$f(x) = \sqrt{x} . \sin \sqrt{x}$$

*15)
$$f(x) = \sqrt{\log\left(tg\left(\frac{\pi}{4} - 3x\right)\right)}$$

*16)
$$f(x) = log\sqrt{sin2x}$$

*17)
$$f(x) = log(log(x^3 + 1))$$

$$18) f(x) = x^2 sin(x^2 - 1)$$

*19)
$$f(x) = log\sqrt{arctgx^2}$$

*20) Date le funzioni

$$f(x) = cosx$$
 e $g(x) = x^2$

calcolare le derivate delle funzioni

$$f(g(x))$$
 e $g(f(x))$.

*21) Date le funzioni

$$f(x) = arctgx$$

$$f(x) = arctgx$$
 e $g(x) = \sqrt{x}$

calcolare le derivate delle funzioni

$$f(g(x))$$
 e $g(f(x))$.

Derivata di $[f(x)]^{g(x)}$

Siano f(x) e g(x) due funzioni derivabili nell'intervallo I con $f(x) > 0 \ \forall x \in I$.

Scritta la funzione come

$$[f(x)]^{g(x)} = e^{\log[f(x)]^{g(x)}} = e^{g(x)\log f(x)}$$

derivando si ha la seguente formula:

$$D[f(x)]^{g(x)} = [f(x)]^{g(x)} \cdot \left[g'(x) log f(x) + g(x) \cdot \frac{f'(x)}{f(x)} \right]$$

L. Mereu – A. Nanni Calcolo differenziale

Esempio

$$D(\log x)^{x} = De^{\log(\log x^{x})} = D\left(e^{x\log(\log x)}\right) = e^{x\log(\log x)} \left[\log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x}\right] =$$

$$= (\log x)^{x} \left[\log(\log x) + \frac{1}{\log x}\right]$$

Esercizi

26)
$$f(x) = x^{sinx}$$
 27) $f(x) = (x^2 + 2x)^{x+2}$

28)
$$f(x) = (arctgx)^x$$
 29) $f(x) = x^{e^x}$

30)
$$f(x) = x^{x^2-1}$$
 31) $f(x) = (e^x + 1)^x$

Soluzioni

*1. S.
$$-2x\cos(-x^2+1)$$
; ($\sin t$, $t=-x^2+1$, $f'(x)=\cos(-x^2+1)\cdot(-2x)$...);

*2. S.
$$\pi(1+tg^2(\pi x))$$
; $(tgt, t = \pi x, f'(x) = (1+tg^2(\pi x)) \cdot \pi ...)$;

*3. S.
$$\frac{1-2x}{x-x^2}$$
; (logt, $t = x - x^2$, $f'(x) = \frac{1}{x-x^2} \cdot (1-2x)$...);

*4. S.
$$2\cos\left(\frac{\pi}{4} - x\right)(-\sin\left(\frac{\pi}{4} - x\right))(-1) = \cos 2x;$$

 $(\cos^2 t , t = \frac{\pi}{4} - x, f'(x) = 2\cos\left(\frac{\pi}{4} - x\right) \cdot (-\sin\left(\frac{\pi}{4} - x\right)) \cdot (-1) ...);$

*5. S.
$$\frac{e^{\sqrt{x}-2}}{2\sqrt{x}}$$
; (e^t , $t = \sqrt{x} - 2$, $f'(x) = e^{\sqrt{x}-2} \cdot \frac{1}{2\sqrt{x}}$...);

*6. S.
$$\frac{3}{2\cos^2(3x)\sqrt{tg(3x)}}$$
; (\sqrt{t} , $t = tgz$, $z = 3x$, $f'(x) = \frac{1}{2\sqrt{tg(3x)}} \cdot \frac{1}{\cos^2(3x)} \cdot 3$...);

7. S.
$$\frac{\cos x + 3\sin 3x}{\sin x - \cos 3x}$$
; *8. S. $-\frac{1}{x^2 + x}$; (logt, $t = \frac{x+1}{x}$, $f'(x) = \frac{1}{\frac{x+1}{x}} \cdot \frac{x - (x+1)}{x^2}$...);

*9. S.
$$-\frac{2xe^{-x^2}}{1+e^{2x^2}}$$
; (arctgt, $t=e^z$, $z=-x^2$, $f'(x)=\frac{1}{1+e^{-2x^2}}\cdot e^{-x^2}\cdot (-2x)...$);

10 S.
$$\frac{2}{\sqrt{1-(5-2x)^2}}$$
;

*11. S.
$$-2e^{-x^2}(x\cos 2x + \sin 2x)$$
;

(prodotto di due funzioni entrambe composte : $De^{-x^2} = -2xe^{-x^2}$, Dcos2x = -2sin2x , $f'(x) = De^{-x^2} \cdot cos2x + e^{-x^2} \cdot Dcos2x...$);

Calcolo differenziale L. Mereu – A. Nanni

*12. S.
$$\frac{\sqrt{\frac{x}{x-1}}e^{\sqrt{\frac{x}{x-1}}}}{2x(1-x)}$$
; (e^t , $t = \sqrt{z}$, $z = \frac{x}{x-1}$, ...); *13. S. $\frac{3e^{3x}}{e^{3x}+1}$; (tenere conto che $De^{3x} = 3e^{3x}$);

*14. S.
$$\frac{\sin\sqrt{x}+\sqrt{x}.\cos\sqrt{x}}{2\sqrt{x}}$$
; ($D\sqrt{x}=\frac{1}{2\sqrt{x}}$, $D\sin\sqrt{x}=\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}...$);

*14. S.
$$\frac{\sin\sqrt{x} + \sqrt{x}.\cos\sqrt{x}}{2\sqrt{x}}$$
; ($D\sqrt{x} = \frac{1}{2\sqrt{x}}$, $D\sin\sqrt{x} = \cos\sqrt{x} \cdot \frac{1}{2\sqrt{x}}$...);
*15. S. $\frac{-3}{\cos6x\sqrt{\log(tg(\frac{\pi}{4}-3x))}}$; (\sqrt{t} , $t = \log z$, $z = tgh$, $h = \frac{\pi}{4} - 3x$, $f'(x) = \frac{1}{2\sqrt{\log(tg(\frac{\pi}{4}-3x))}} \cdot \frac{1}{tg(\frac{\pi}{4}-3x)} \cdot \frac{1}{\cos^2(\frac{\pi}{4}-3x)} \cdot (-3)$...);

***16. S.**
$$ctg2x$$
; (logt, $t = \sqrt{z}$, $z = sinh$, $h = 2x$...);

*17. S.
$$\frac{3x^2}{(x^3+1)log(x^3+1)}$$
; ($logt$, $t = logz$, $z = x^3 + 1$, $f'(x) = \frac{1}{log(x^3+1)} \cdot \frac{1}{x^3+1} \cdot (3x^2)$...);

18. S.
$$2xsin(x^2-1)+2x^3cos(x^2-1)$$
;

*19. S.
$$\frac{x}{(1+x^4)arctgx^2}$$
; ($logt$, $t = \sqrt{z}$, $z = arctgh$, $h = x^2$...);

*20. S.
$$f(g(x)) = cos x^2$$
, $Df(g(x)) = -2x sin x^2$; $g(f(x)) = cos^2 x$, $Dg(f(x)) = -sin 2x$;

*21. S.
$$f(g(x)) = arctg\sqrt{x}$$
, $Df(g(x)) = \frac{\sqrt{x}}{2x(1+x)}$; $g(f(x)) = \sqrt{arctgx}$, $Dg(f(x)) = \frac{1}{2(1+x^2)\sqrt{arctgx}}$;

***22.** S.
$$x^{logx} \left[\frac{2}{x} logx \right];$$

$$\left(Dx^{logx} = De^{logx^{logx}} = De^{(logx) \cdot (logx)} = e^{(logx) \cdot (logx)} \cdot D((logx) \cdot (logx)) =$$

$$= x^{logx} \left(\frac{1}{x} logx + \frac{1}{x} logx \right) ;$$

*23. S.
$$(x+1)^{1-x} \left[-log(x+1) + \frac{1-x}{x+1} \right]$$
;

$$\left(D\left(x+1 \right)^{1-x} = De^{\log(x+1)^{1-x}} = De^{(1-x)\cdot \log(x+1)} = e^{(1-x)\cdot \log(x+1)} \cdot D\left((1-x)\cdot \log(x+1) \right) = \dots \right);$$

24. S.
$$(x)^{\sqrt{x}} \left[\frac{\log x + 2}{2\sqrt{x}} \right];$$

*25. S.
$$\left(\frac{2x}{x+1}\right)^{x^2} \left[2xlog\left(\frac{2x}{x+1}\right) + \frac{x}{x+1}\right];$$

$$\left(D\left(\frac{2x}{x+1}\right)^{x^2} = De^{\log\left(\frac{2x}{x+1}\right)^{x^2}} = De^{x^2log\frac{2x}{x+1}} = e^{x^2log\frac{2x}{x+1}} \cdot D\left(x^2log\frac{2x}{x+1}\right) = \cdots\right);$$

26. S.
$$x^{sinx} \left[cosx \cdot logx + \frac{sinx}{x} \right]$$
; **27. S.** $(x^2 + 2x)^{x+2} \left[log(x^2 + 2x) + \frac{2(x+1)}{x} \right]$;

28. S.
$$(arctgx)^x \left[log(arctgx) + \frac{x}{(1+x^2)arctgx} \right]$$
; **29.** S. $e^x \cdot x^{e^x} \cdot \frac{xlogx+1}{x}$;

30. S.
$$x^{x^2-2}(2x^2logx+x^2-1)$$
; **31.** S. $(e^x+1)^{x-1}[(e^x+1)log(e^x+1)+xe^x]$;