

1st Data Split2nd Cross Validation

0 우수과제팀

팀명	모델 성능	
과적합의노예조_2번째 제출	1.399	
교수님저희싫어하시조_1번째 제출	1.421	
머린이탈출하조_1번째 제출	1.423	
머신러닝정복해조_2번째 제출	1.484	
A+만들어조_1번째 제출	1.486	

stage 3 stage 2 stage 1 stage 4 stage 5 stage 6 Domain Modeling Data Understanding Prediction **Evaluation** and Deployment and Preprocessing Ensemble **Data Collection**

Data Preprocessing (데이터 전처리)

- Feature 만들기
- 결측값, 이상치 처리
- train, test 데이터 분리
- 기존에 배웠던 방법 사용시 과적합의 문제가 발생하기 때문에 train, test, validation 데이 터까지 나눠줘야 함

기본적인 데이터 분리 방법

train test

우리의 목적은 학습을 통해 모델의 underfitting된 부분을 제거해 나가면서 overfitting이 발생하기 직전에 학습을 멈추는 것!

validation 데이터 분리 방법

- Validation 데이터는 별도로 만들어진 dataset이 아니라 train에서 추출된 dataset임
- 모델의 파라미터 추정에는 train을 사용, 하이퍼파라미터 설정에는 validation을 사용, 테스트 셋에 모형을 적용시켜 정확도를 측정
- 파라미터 (모델 내부에서 결정되는 변수), 하이퍼파라미터 (모델 세부 조정 값)

Validation dataset을 이용한 학습 과정

Train, test로 split

Train, test, validation으로 split

분리한 데이터들의 차이점

	Training dataset	Validation dataset	Test dataset
학습 과정에서 참조할 수 있는가?	0	0	Х
모델의 인자값 (가중치) 설정에 이용되는가?	0	X	Х
모델의 성능 평가에 이용되는가?	X	0	0

- Test dataset은 모델의 성능을 평가하는 데이터이기 때문에 중간 과정에 영향X
- 모델의 인자값 (가중치)는 모델을 '학습'시키는 과정에서 업데이트 되는 것이고 validation dataset은 모델의 학습이 끝나고 하이퍼파라미터를 최적화하는 데 사용되는 것!
- Validation dataset은 최종 모델을 평가하는 것이 아닌 학습 과정에서 성능을 평가함

stage 2 stage 3 stage 1 stage 4 stage 5 stage 6 Domain Modeling Data Understanding Prediction **Evaluation** and Deployment and Preprocessing Ensemble **Data Collection**

Cross Validation (교차 검증)

- 모델에서 사용되는 하이퍼파라미터를 조정하고 과적합을 막기 위해 사용하는 검증 방식
- 모델의 학습 과정에서 train, validation데이터를 나눌 때 단순히 1번 나누는 게 아니라 K번 나누고 각각의 학습 모델의 성능을 비교하여 평균 값을 모델의 성능으로 판단

2 Cross Validation

교차검증 사용 이유

- 데이터셋이 부족할 때 적용하는 방법

전체 데이터가 학습/검증으로 한번에 나누기 작은 경우 여러번 데이터를 나누고 각 교차검증마다의 모델 성능을 비교하는 방식으로 학습을 진행하면 데이터가 부족한 문제를 보완할 수 있음

- 보다 일반화된 모델 성능 평가 가능

여러차례 나누는 교차검증 방식을 통해 전체 데이터 전 범위를 학습하고 검증 데이터로 성능을 평가 함으로서 보다 일반화된 모델을 생성할 수 있음

2

Cross Validation

k-fold cross validation (k겹 교차검증)

- 1. Train 데이터를 K 등분 (이미지의 경우 K=5)
- 2. 1/5을 validation으로, 4/5 를 train으로
- 3. Validation을 바꿔가며 성능 평가
- → 총 5개의 성능 결과가 나올 것이고 5개의 평균이 해당 학습 모델의 성능임

Cross Validation

Stratified k-fold cross validation (계층별 k겹 교차검증)

- 데이터 클래스 별 분포가 불균형한 상황에서 사용하는 방법
- 데이터 클래스 별 분포를 고려해서 데이터 폴드 세트를 만드는 방법이 계층별 k-겹 교 차 검증

THANK YOU