法律声明

- □本课件包括演示文稿、示例、代码、题库、视频和声音等内容,小象学院和主讲老师拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意及内容,我们保留一切通过法律手段追究违反者的权利。
- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

Python库

本次说明

□本PPT后面仅列举使用Python库的效果截图, 详细内容请参考该PPT的配套代码。

数值计算

- □ 对于某二分类问题,若 for i in range(n / 2 + s += c(n, i) * p * return s

 0.6的分类器,采用少数 if __name__ == "__main__": for t in range(10, 101 print t, '次采样正确率: 0.6331032576

 终分类,则最终分类正 10 次采样正确率: 0.6331032576
 20 次采样正确率: 0.82463094648
 40 次采样正确率: 0.87023429415
 - 若构造100个分类器呢?

```
def bagging(n, p):
     for i in range(n / 2 + 1, n + 1):
         s += c(n, i) * p ** i * (1 - p) ** (n - i)
     return s
     for t in range(10, 101, 10):
         print t, '次采样正确率: ', bagging(t, 0.6)
C:\Pvthon27\pvthon, exe D:/Pvthon/ML/6. Package/6. 1. Ensumble. pv
10 次采样正确率:
               0.6331032576
20 次采样正确率: 0.755337203316
30 次采样正确率:
               0.824630946493
40 次采样正确率:
               0.870234294178
50 次采样正确率:
               0.902192635847
60 次采样正确率:
               0.925376305649
70 次采样正确率:
               0.942565538515
80 次采样正确率:
               0.955502944118
90 次采样正确率:
               0.965347339325
100 次采样正确率: 0.972900802243
```

时域与频域信号

快速傅里叶变换FFT与频域滤波

快速傅里叶变换FFT与频域滤波

快速傅里叶变换FFT与频域滤波

不同的阈值

Lorenz方程与初始条件

50

常微分方程

Code

```
s0 = (0., 1., 0.)
t = np.arange(0, 30, 0.01)
s = odeint(lorenz, s0, t)
plt.figure(figsize=(12, 8), facecolor='w')
plt.subplot(121, projection='3d')
plt.plot(s[:, 0], s[:, 1], s[:, 2], c='g')
plt.title(u'微分方程计算结果', fontsize=16)
s = lorenz trajectory(s0, 40000)
plt.subplot(122, projection='3d')
plt.plot(s[:, 0], s[:, 1], s[:, 2], c='r')
plt.title(u'沿着梯度累加结果', fontsize=16)
plt.tight layout(1, rect=(0,0,1,0.98))
plt.suptitle(u'Lorenz系统', fontsize=20)
plt.show()
ax = Axes3D(plt.figure(figsize=(8, 8)))
s0 = (0., 1., 0.)
s1 = lorenz trajectory(s0, 50000)
s0 = (0., 1.0001, 0.)
s2 = lorenz trajectory(s0, 50000)
# 曲线
ax.plot(s1[:, 0], s1[:, 1], s1[:, 2], c='g', lw=0.4)
ax.plot(s2[:, 0], s2[:, 1], s2[:, 2], c='r', lw=0.4)
# 起点
ax.scatter(s1[0, 0], s1[0, 1], s1[0, 2], c='g', s=50, alpha=0.5)
ax.scatter(s2[0, 0], s2[0, 1], s2[0, 2], c='r', s=50, alpha=0.5)
# 终点
ax.scatter(s1[-1, 0], s1[-1, 1], s1[-1, 2], c='g', s=100)
ax.scatter(s2[-1, 0], s2[-1, 1], s2[-1, 2], c='r', s=100)
ax.set title(u'Lorenz方程与初始条件', fontsize=20)
ax.set xlabel(u'X')
ax.set ylabel(u'Y')
ax.set zlabel(u'z')
plt.show()
```


奇异值分解-效果

SVD

图像的卷积

prewitt_y.png

soble.png

图像的卷积

Code

卷积网络

卷积

深度网络

VGGNet

		ConvNet C	onfiguration						
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
FC-4096									
FC-4096									
FC-1000									
		soft	-max						

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

某股票收盘价数据处理

Demo

作业

- □ 实现任何一个函数曲线/曲面的Python显示。
 - Matplotlib
- □ 尝试使用SVD实现图像处理和特征提取。
- □ 熟悉Python的Numpy/Scipy数值计算数学库。

我们在这里

大数据平台技术 http://wenda.ChinaHadoop.cn 专题 招聘求职 yarn运行时一直重复这个info...好像没找到资源,应该从哪里检查呢? 大数据行业应用 视频/课程/社区 数据科学 系统与编程 贡献 云计算技术 机器学习 Eric_Jiang 回复了问题 • 2 人关注 • 1 个回复 • 6 次浏览 • 2016-05-18 13:29 35 微博 贡献 wangxiaolei 回复了问题 • 1 人关注 • 10 个回复 • 47 次浏览 • 2016-05-18 12:04 @ChinaHadoop sqoop把mysql数据导入Hbase报如图错误 贡献 @邹博_机器学习 kafkaOffsetMonitor打开页面以后无法显示内容? kafka fish 回复了问题 • 4 人关注 • 2 个回复 • 8 次浏览 • □ 微信公众号 markdown公式编辑\$符号不起作用 热门用户 贡献 markdown masterwzh 回复了问题 • 3 人关注 • 1 个回复 • 13 次浏览 • 2016-05-18 08:40 小泵 17 个问题, 0 次赞同

← → C wenda.chinahadoop.cn/explore/

贡献

△ 通知

再多 >

55 个问题 3 次幣同

55 个问题, 12 次營同

48 个问题, 0 次赞同

hiveman 19 个问题, 1 次赞同

找到,进入源码编译之后的目录如图二!这个文件找不到怎么解决呢?是编译没产生?

opentsdb fish 回复了问题 • 3 人关注 • 5 个回复 • 49 次浏览 • 2016-05-17 18:53

计算机广告 wayaya 回复了问题 • 4 人关注 • 7 个回复 • 108 次浏览 • 2016-05-17 18:26

opentsdb安装时出现72个warning,是正常的么?

关于在线广告和个性化推荐区别的一点浅见

■ 大数据分析挖掘

感谢大家!

恳请大家批评指正!