Propositional
A propositional logic
A proposition is simply a statement. True or false. A proposition is a statement that can be either
Thue on false. Statement that can be either
meet (and)
V -> Jain 1
=> negation (not) implies iff
Conjunction: If p and q are arbitrary propositiones, then the conjunction of p and q is pand and cuill be true iff both p and q are true
and will be true iff both p and q are true
huth table.
P P P P P P P P P P P P P P P P P P P

Dissuration of If P and a are arbitary propositions, Then the dissurction of p and q Pvq and will be true iff either p or q is true or both p and q are true

Truth table 8

Definition : If p and q are arbitrary proposition Then the conditional of p and q is written P ⇒ 9_

and will be true iff either p is false on 2 is written pag true.

Megation: If p is a proposition than negation of Parietten ~ P and will be true if py false.

Truth table:

PINP

FIT

TIFIT

Definition & If P and q are arbitrary proposition Then The biconditional of P and q written P (and will be true iff both p and 9 are true or folse. PQPDQ FFTF FTFF

Question: for Homee propositions p.q. and r Prove the distributive law.

Soins for three propositions P, q and 10 The distribution law is

(PAQ) VP = (PVP) AQVP)

You can prove this by theoritically or
by thath table.

Tautologies

for every value of its propositional variables.

The Anith I in [P-9] \ P] -> q is a fautology.

Truth	table 1	,
1 9 9 1 0 50	table is a	o follows
17 7	4 P-79) A PTICO	201001
17 6 6		$\rightarrow 9/19 \rightarrow 9/1$
16 4 +		
		1
1-11-1		Tildi
	1	
	¥ 1 1	

As we can see every value of [(P->2)AP] >9
is True, it is a tautology.

Contradictions

A contradiction is a formulae which is always folse for every value of its propositional variables

Example: prove (pvq) 1 [P) 1 (g)] is a contradiction.

Proof: Do yourself.