Ray tracing

CS 4300

Amit Shesh

Drawbacks of current "Pipeline" approaches

- Interactivity limits the realism of effects
- Shadows and reflections are not very easy
 - As we have seen...
- Transparency is...tricky too (beyond simple things)

Figure 1: Ray tracer (comparable to your program)

Figure 2: Ray tracer with shadows

Figure 3: Ray tracer with shadows and reflections

Figure 4: Ray tracer with shadows, reflections and transparency

Figure 5: Ray tracer with shadows, reflections and multiple transparency

What could your ray tracer do?

- Graphics Hall of Fame
- Internet Ray Tracing Competition (archived)
- Results from POV-Ray

What is ray tracing?

- How the real-world physics works
- Ray tracing
- What is involved?
 - Math (we will go over this)
 - Minimal use of OpenGL

The ray-object intersection

- Fundamental to a ray tracer
- Basic question:
 - Given ray R and object O, does R hit O and if so, where?
- Math differs with each object

The ray-plane intersection

- Plane equation: ax + by + cz + d = 0
- Ray: $p = s + t\vec{v}$
- Problem: Find point of intersection, denoted by 't'

The ray-plane intersection

- Plane equation: ax + by + cz + d = 0
- Ray: $p = s + t\vec{v}$
- Problem: Find point of intersection, denoted by 't'

• Solution:
$$t = \frac{-(as_x + bs_y + cs_z + d)}{av_x + bv_y + cv_z}$$

The ray-box intersection

- If ray intersects box, it will go "in" and then come "out" (2 intersections)
- Find intersection with 6 planes and choose
- Ray: $p = s + t\vec{v}$
- If it intersects the two "x" planes, then $-0.5 \le s_x + tv_x \le 0.5$

The ray-box intersection

- If ray intersects box, it will go "in" and then come "out" (2 intersections)
- Find intersection with 6 planes and choose
- Ray: $p = s + t\vec{v}$
- If it intersects the two "x" planes, then $-0.5 \le s_x + tv_x \le 0.5$
- Solution:

$$(t_{min}, t_{max}) = (\frac{-0.5 - s_X}{v_X}, \frac{0.5 - s_X}{v_X})$$

- What if $v_x = 0$?
- Find ranges for t using all three pairs, find their intersection

The ray-box intersection

- Normals:
 - From point of intersection, determine which face was hit
 - From hit face, compute normal directly
- Texture mapping:
 - · From point of intersection, determine which face was hit
 - From hit face, one can compute the texture coordinates (try to reverse-engineer)

The ray-sphere intersection

- If ray intersects sphere, it will go "in" and then come "out" (2 intersections)
- Ray: $p = s + t\vec{v}$
- Sphere: $(x x_c)^2 + (y y_c)^2 + (z z_c)^2 = r^2$

The ray-sphere intersection

- If ray intersects sphere, it will go "in" and then come "out" (2 intersections)
- Ray: $p = s + t\vec{v}$
- Sphere: $(x x_c)^2 + (y y_c)^2 + (z z_c)^2 = r^2$
- Solution: $t = \frac{-B \pm \sqrt{B^2 4AC}}{2A}$
 - $A = v_x^2 + v_y^2 + v_z^2$
 - $B = 2(v_x(s_x x_c) + v_y(s_y y_c) + v_z(s_z z_c))$
 - $C = (s_x x_c)^2 + (s_y y_c)^2 + (s_z z_c)^2 r^2$

The ray-sphere intersection

- Normals:
 - Determine normal from point of intersection and center of sphere
- Texture mapping:
 - From point of intersection, determine latitude ϕ and longitude θ
 - ϕ gives t and θ gives s

Transformations

- Ray and object must be in the same coordinate system
- t is independent of coordinate system
 - Applying t to ray in X coordinate system will give point of intersection in X
- Calculate t where the Math is the simplest
- Scenegraph:
 - Pass ray down the scene graph, similar to draw
 - In leaf, transform ray to leaf's coordinate system to do the Math

Computing "nearest" intersection

- Usually we want the "nearest" intersection, with respect to where the ray started
 - We want the smallest positive value of t (Why?)
- This simulates Z-buffer test in ray tracer
- Where to do this?
 - Compare with nearest intersection in the leaf itself
 - Take all 't' values and compare outside the scene graph

The overall setup

```
raytrace(width,height)
Load world to view in modelview
for y \leftarrow 0 to height do
    for x \leftarrow 0 to width do
        Create ray R from camera through pixel (x,y)
        color \leftarrow raycast(R, modelview)
        pixel(x, y) \leftarrow color
    end for
end for
```

Ray casting

```
\begin{tabular}{ll} \textbf{raycast(R,modelview)} \\ Load world to view in modelview \\ & (result,material) \leftarrow closest\_intersection(R,modelview,hitrecord) \\ & \textbf{if result} \leftarrow true \begin{tabular}{ll} \textbf{true then} \\ & color \leftarrow shade(R,hitrecord,lights,material) \\ & \textbf{else} \\ & color \leftarrow background-color \\ & \textbf{end if} \\ \end{tabular}
```

Shadows

- Shadow is the "absence" of light
- Basic algorithm: for each point of intersection P, check if P can see light L_i
 - If it can, calculate shading for L_i else continue onto next light
- Shadow ray: from P in the direction towards the light
- Use ray cast to see if shadow ray hits something between P and the light
- Fudge shadow ray a bit in its direction to avoid precision issues

Reflections and Transparency

- To give material reflectivity and transparency, consider coefficients a, r, t
 - a: Absorption (0: not absorbent, 1: fully absorbent
 - r: Reflection (0: not reflective, 1: fully reflective
 - t: Transparency (0: not transparent, 1: fully transparent
 - Constrain a + r + t = 0
- Final color = $aC_a + rC_r + tC_t$
 - C_a: Color from the material itself (shading + texture mapping)
 - \bullet C_r : Color reflected by the object at point of evaluation
 - C_t: Color due to light passing through the object at point of evaluation

Reflections

- For a reflective object, consider only "specular" reflection (single direction of reflection)
- Law of reflection: Angle of reflection = Angle of incidence
- $\vec{R} = \vec{I} 2(\vec{N} \circ \vec{I})\vec{N}$
 - \vec{l} : Direction of incoming ray
 - \vec{N} : Normal at point of evaluation
 - \vec{R} : Direction of reflected ray
- Find color reflected by this object at point of evaluation
 - Create reflection ray starting at point of evaluation in direction \vec{R}
 - Shoot the ray into the world and see what color it returns (i.e. raycast!)

Transparency

- Transparent objects "bend" light because speed of light changes
- Refractive index η : The ratio of speeds of light in vacuum to material (thus always ≥ 1)
- Snell's law: $\frac{\sin(\theta_i)}{\sin(\theta_r)} = \frac{\eta_r}{\eta_i}$

Transparency

•
$$\vec{T} = \frac{\eta_i}{\eta_r} \vec{I} + (\frac{\eta_i}{\eta_r} \cos(\theta_i) - \cos(\theta_r)) \vec{N}$$

- \vec{T} : Direction of transparency ray
- \vec{N} : Normal at point of evaluation
- \vec{l} : Direction of incoming ray
- η_i : Refractive index of medium of incoming ray
- η_r : Refractive index of medium of transparency ray

•
$$\cos(\theta_i) = -\underline{(\vec{N} \circ \vec{I})}$$

•
$$\sin(\theta_i) = \sqrt{1 - \cos(\theta_i)^2}$$

•
$$\sin(\theta_r) = \frac{\dot{\eta}_i}{\eta_r} \sin(\theta_i)$$

•
$$\cos(\theta_r) = \sqrt{1 - \sin(\theta_r)^2}$$

• Detecting total internal reflection: $sin(\theta_r)$ above is invalid, leading to invalid math for $cos(\theta_r)$

Transparency

- Find color refracted by this object at point of evaluation
 - Create refraction ray starting at point of evaluation in direction $\vec{\mathcal{T}}$
 - Shoot the ray into the world and see what color it returns (i.e. raycast!)
- Must keep track of medium where the ray is
- What about intersecting transparent objects?
 - Option 1: Do not allow: ray is either inside a solid or out in air
 - Option 2: Objects are completed contained within others: can keep track on a stack
 - Option 3: Keep track of where you are and where you will be at all times (trickiest)