

#### UNIVERSITY OF GHANA

(All rights reserved)

# BSc. (ENG) MATERIALS SCIENCE AND ENGINEERING END OF SECOND SEMESTER EXAMINATIONS: 2016/2017 SCHOOL OF ENGINEERING SCIENCES

# MATERIALS SCIENCE AND ENGINEERING DEPARTMENT MTEN 322: PHYSICAL METALLURGY I (3 CREDITS)

**TIME ALLOWED: 2.5 HOURS** 

#### Answer ALL Questions

### ATTACH FIGURE 3 TO YOUR ANSWER SHEET

1

## With respect to Table 1;

- a. Calculate the critical radius (in centimeters) of a homogenous nucleus that forms when pure liquid Fe solidifies. Assume  $\Delta T = 0.18$ Tm. Use Table 1 provided. [5 marks]
- b. Calculate the number of atoms in the critical-sized nucleus at this undercooling if the crystal structure of Fe is BCC. (Atomic radius,  $R_{Fe} = 0.1241 \text{ nm}$ ). [9 marks]

Table 1: Values of the freezing temperature, heat of fusion, surface energy, and maximum undercooling for selected metals (B Chambers, Solidification of metals, Wiley, 1964)

| Metal | Free<br>ten | zing<br>1p, Kas | Heat of<br>fusion (J/cm³) | Surface<br>energy (J/cm3). | Maximum undercooling, observed (ΔT[°C]) |
|-------|-------------|-----------------|---------------------------|----------------------------|-----------------------------------------|
| Pb    | 327         | 600             | 280                       | $33.3 \times 10^{-7}$      | 80                                      |
| Al    | 660         | 933             | 1066                      | $93 \times 10^{-7}$        | 130                                     |
| Ag    | 962         | 1235            | 1097                      | $126 \times 10^{-7}$       | <b>2</b> 27                             |
| Cu    | 1083        | 1356            | 1826                      | $177 \times 10^{-7}$       | 236                                     |
| Ni    | 1453        | 1726            | 2660                      | $255 \times 10^{-7}$       | 319                                     |
| Fe    | 1535        | 1808            | 2098                      | $204 \times 10^{-7}$       | 295                                     |
| Pt    | 1772        | 2045            | 2160                      | $240 \times 10^{-7}$       | 332                                     |

Examiner: D. S. Konadu

Consider the copper-zinc (Cu-Zn) binary phase diagram in Figure 1. This phase diagram has six (6) points where three phases coexist. For each of these three-phase points:

- a. List the coordinates of composition (weight percent) and temperature for each point.
- b. Write the invariant reaction that occurs during slow cooling of the Cu Zn alloy through each point
- c. Name the type of invariant reaction which takes place at each point.



Figure 1: The copper-zinc binary phase diagram (Callister Jr & Rethwisch, 2008). [21 marks]

Consider the orthorhombic unit cell shown in Figure 2 where  $a \ne b \ne c$ . Let the atomic radius be 0.12 nm, a = 0.306 nm and c/a = 1.33. Calculate the lattice parameters **b** and **c** and the theoretical density. Take the atomic weight as 69 g/mol and Avogadro's constant as  $6.022 \times 10^{23}$  atoms/mol.



Figure 2: The orthorhombic unit cell (Callister Jr & Rethwisch, 2008).

[9 marks]

4

- a. A plate of iron is exposed to a carburizing (carbon-rich) atmosphere on one side and a decarburizing (carbon-deficient) atmosphere on the other side at 700 °C. If a condition of steady state is achieved, calculate the diffusion flux of carbon through the plate if the concentrations of carbon at positions of 5 and 10 mm beneath the carburizing surface are 1.2 and 0.8 Kg/m³ respectively. Assume a diffusion coefficient of 3 × 10<sup>-11</sup> m²/s at this temperature.
   [5 marks]
- b. Consider a steel that initially has a uniform carbon concentration of 0.25 wt% and is to be treated at 950 °C. If the concentration of carbon at the surface is suddenly brought to and maintained at 1.20 wt%, how long will it take to achieve a carbon content of 0.80 wt% at a position 0.5 mm below the surface? The diffusion coefficient for carbon in iron at this temperature is 1.6 x 10<sup>-11</sup> m<sup>2</sup>/s; assume that the steel piece is semi-infinite. [11 marks]

Table 2: Tabulation of error function values (Callister Jr & Rethwisch, 2008)

| <u></u> | erf(z) | Z    | erf(z) | z   | erf(z) |
|---------|--------|------|--------|-----|--------|
| 0       | 0      | 0.55 | 0.5633 | 1.3 | 0.9340 |
| 0.025   | 0.0282 | 0.60 | 0.6039 | 1.4 | 0.9523 |
| 0.05    | 0.0564 | 0.65 | 0.6420 | 1.5 | 0.9661 |
| 0.10    | 0.1125 | 0.70 | 0.6778 | 1.6 | 0.9763 |
| 0.15    | 0.1680 | 0.75 | 0.7112 | 1.7 | 0.9838 |
| 0.20    | 0.2227 | 0.80 | 0.7421 | 1.8 | 0.9891 |
| 0.25    | 0.2763 | 0.85 | 0.7707 | 1.9 | 0.9928 |
| 0.30    | 0.3286 | 0.90 | 0.7970 | 2.0 | 0.9953 |
| 0.35    | 0_3794 | 0.95 | 0.8209 | 2.2 | 0.9981 |
| 0.40    | 0.4284 | 1.0  | 0.8427 | 2.4 | 0,9993 |
| 0.45    | 0.4755 | 1.1  | 0.8802 | 2.6 | 0.9998 |
| 0.50    | 0.5205 | 1.2  | 0.9103 | 2.8 | 0.9999 |

#### 5

Consider the binary equilibrium phase diagram in Figure 3. Make phase analysis of the equilibrium solidification of the lead-tin (Pb-Sn) alloys at the points j, k, l, and m in the Pb-Sn. In each phase analysis, find the phases present, the compositions of the phases, the amount of phases present, and draw the microstructures. [25 marks]

6

- a. List the types of second phases under equilibrium and non-equilibrium conditions.
- b. Name and define the four main diffusion paths in materials
  - c. The application of coatings is typically done in four ways, mention them.
- d. How does undercooling affects nucleation rate N? Provide a simple explanation.
- e. Differentiate between homogenous nucleation and heterogenous nucleation.
- f. Dendritic growth occurs in pure metals by temperature inversions. Describe temperature inversion. [25 marks]

Examiner: D. S. Konadu