Random forest με εξαγωγή χαρακτηριστικών

Χρήση media pipe για εξαγωγή χαρακτηριστικών

Εφτιαξα κώδικα όπου αναζητά όλα τα αρχεία βίντεο με κατάληξη .MOV σε συγκεκριμένους φακέλους, και για κάθε βίντεο εξάγει δεδομένα από σημεία-κλειδιά του σώματος (pose landmarks) με τη βοήθεια του MediaPipe BlazePose.

Αποθηκεύει τα δεδομένα πόζας (x, y, z και visibility για επιλεγμένα σημεία του σώματος) σε ένα αρχείο CSV για κάθε βίντεο, περιλαμβάνοντας πληροφορίες όπως το ID του βίντεο, την πάθηση (π.χ. ΚΟΑ ή PD) και την πλευρά (π.χ. 01 ή 02).

Εξαγωγή χαρακτηριστικών και δημιουργία ακολουθιών με στατιστικά στοιχεία των χαρακτηριστικών

1. Μεταδεδομένα:

- Disease
- Side
- Level
- Window
- Source File

2. Bilateral Similarity Features (Διμερή Ομοιότητα)

Για κάθε άρθρωση: Hip, Knee, Ankle, Heel

- Hip Similarity Mean
- Hip Similarity Max
- Hip Similarity Std
- Knee Similarity Mean
- Knee Similarity Max
- К.Л.П.

✓3. Step Length Features (Μήκος Βήματος)

Υπολογίζονται από τις αποστάσεις μεταξύ των αστραγάλων (ankles):

- Step_Length_Mean
- Step_Length_Max
- Step_Length_Std

√ 4. Features ανά πλευρά (Left / Right)

Για κάθε πλευρά (Left / Right), εξάγονται τα εξής:

➤ Hip (γωνία)

- Left Hip Mean, Left Hip Max, Left Hip Std
- Right_Hip_Mean, Right_Hip_Max, Right Hip Std

➤ Knee γωνία (γωνία)

- Left_Knee_Mean, Left_Knee_Max, Left Knee Std
- Right Knee Mean, Right Knee Max, Right Knee Std

> Ankle (νωνία)

- Left_Ankle_Mean, Left_Ankle_Max, Left Ankle Std
- Right_Ankle_Mean, Right_Ankle_Max, Right_Ankle_Std

➤ Heel (ύψος πτέρνας)

- Left Heel Max, Left Heel Min
- Right_Heel_Max, Right_Heel_Min

Συνολικός αριθμός χαρακτηριστικών (εκτός μεταδεδομένων):

- Bilateral Similarity: 12 χαρακτηριστικά (4 αρθρώσεις × 3 metrics)
- Step Length: 3
- Left πλευρά: 11
- Right πλευρά: 11
 Σύνολο: 37 χαρακτηριστικά + 6 μεταδεδομένα = 43 στήλες

Κανονικοποίηση δεδομένων προτού εισαχθούν στο RF με MinMaxScaler

🗱 Εκπαίδευση του Μοντέλου Random Forest

Για την ταξινόμηση των δεδομένων, χρησιμοποιήθηκε ο αλγόριθμος Random Forest με τις παρακάτω ρυθμίσεις (υπερ παραμέτρους):

- n_estimators = $500 \rightarrow \alpha \rho i \theta \mu \dot{\phi} \varsigma$ δέντρων στο δάσος max_depth = $20 \rightarrow \mu \dot{\epsilon} \gamma i \sigma \tau \dot{\phi}$ βάθος κάθε δέντρου
- min_samples_split = $10 \rightarrow \epsilon \lambda \dot{\alpha} \chi$ ιστος αριθμός δειγμάτων για διαχωρισμό κόμβου \rightarrow
- \rightarrow min_samples_leaf = $5 \rightarrow ελάχιστα δείγματα σε φύλλο δέντρου$

📦 Χαρακτηριστικά Εκπαίδευσης:

- Χρησιμοποιήθηκε ομαδοποίηση με βάση το ld (Group-based training)
- Εκπαίδευση με δύο τεχνικές:
 - Train Test Split (Group ShuffleSplit τυχαίος χωρισμός έχοντας ως group το id των ατόμων)
 - Leave-One-Group-Out (LOSO) (κάθε φορά αποκλείεται ένα άτομο από την εκπαίδευση για δοκιμή)

⊚ Στόχοι ταξινόμησης:

- Móvo η ασθένεια (Disease)
- Συνδυαστικά ασθένεια και στάδιο (Disease + Stage)