CS 2009 Design and Analysis of Algorithms

Waheed Ahmed Email: waheedahmed@nu.edu.pk

LAST TIME

- Greedy algorithms! Three examples:
 - Activity selection (greedy choice: pick activity with earliest finish time)
 - Coin Change (greedy choice: take the largest possible bill or coin that does not overshoot)
 - Fractional Knapsack (greedy choice: select item with highest value/weight value until bag is full)

THE GREEDY PARADIGM

Commit to choices one-at-a-time,
never look back,
and hope for the best.

Greedy doesn't always work.

WHAT WE'LL COVER TODAY

- Applications of the greedy algorithm design paradigm to Minimum Spanning
 Trees
 - Prim's algorithm
 - Kruskal's algorithm

MINIMUM SPANNING TREES

What are minimum spanning trees (MSTs)?

TREES IN GRAPHS

Let's go over some terminology that we'll be using today.

A tree is an undirected, acyclic, connected graph.

Which of these graphs are trees?

TREES IN GRAPHS

Let's go over some terminology that we'll be using today.

A tree is an undirected, acyclic, connected graph.

Which of these graphs are trees?

TREES IN UNIDIRECTED GRAPHS?

- However, in undirected graphs, there is another definition of trees
- Tree
 - A undirected graph (V, E), where E is the set of undirected edges

SPANNING TREES

A spanning tree is a tree that connects all of the vertices

Which of these graphs are spanning trees?

Doesn't connect all vertices

Examples of MST

Example:

For the remainder of today, we're going to work with undirected, weighted, connected graphs.

The cost of a spanning tree is the sum of the weights on the edges.

An **MST** of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have multiple spanning trees. It may also have multiple MSTs (if 2 different spanning trees have the same exact cost)

This spanning tree has a cost of **67**.

For the remainder of today, we're going to work with **undirected**, **weighted**, **connected graphs**.

The cost of a spanning tree is the sum of the weights on the edges.

An **MST** of a graph is a spanning tree of the graph with minimum cost.

Note: A graph may have multiple spanning trees. It may also have multiple MSTs (if 2 different spanning trees have the same exact cost)

This spanning tree has a cost of **37**.

This is an MST of this graph, since there is no other spanning tree with smaller cost.

The task for today:

Given an undirected, weighted, and connected graph G, find the minimum spanning tree (as a subset of the G's edges)

APPLICATIONS OF MSTs

Network design

Find the most cost-effective way to connect cities with roads/water/electricity/phone

Cluster analysis

Find clusters in a dataset (one of the algorithms we'll see today can be modified slightly to basically do this)

Image processing

Image segmentation, which finds connected regions in the image with minimal differences

Useful primitive

Finding an MST is often useful as a subroutine or approximation for more advanced graph algorithms

Brainstorm some greedy algorithms to find an MST!

PRIM'S ALGORITHM

Greedily add the closest vertex!

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

11 14 First, we can 8 10 G (doesn't matter which node)

initialize our tree to contain a single arbitrary node in G

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

11 14 Claim the edge coming out of the 10 "frontier" with the smallest weight G (if there's a tie, choose any)

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Consider the edges coming out of the "frontier" of our growing tree.

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

Claim the edge coming out of the "frontier" with the smallest weight

Greedy choice:

Grow a single tree, & greedily add the shortest edge that could grow our tree

And we're done! **This is our MST.** (with weight 37)

CLRS textbook version PSEUDOCODE For PRIM'S

ALGORITHM

```
MST-PRIM(G, w, r)
                                          v.key is the minimum weight of any edge
                                           connecting v to a vertex in the tree.
     for each u \in G.V
                                          v.key = \infty if there is no such edge.
           u.key = \infty
                                           The attribute \mathbf{v}.\boldsymbol{\pi} names the parent of v in the
           u.\pi = NIL
                                          tree.
    r.key = 0
 5 Q = G.V
     while Q \neq \emptyset
           u = \text{EXTRACT-MIN}(Q)
           for each v \in G.Adj[u]
                if v \in Q and w(u, v) < v.key
10
                      \nu.\pi = u
11
                      v.kev = w(u, v)
```

Runtime (Build Min heap line 1-5): O(V)

(while loop excute |V| and EXTRACT-MIN log V): O(V log V)

For loop line 8-11: O (E)

Total Prim Algo Runtime = O (V log V + E log V) = O (E log V) ???

PSEUDOCODE For PRIM'S ALGORITHM

```
MST-PRIM(G, w, r)
    for each vertex u \in G. V
      u.key = \infty
      u.\pi = NIL
    r.kev = 0
    O = \emptyset
    for each vertex u \in G.V
       INSERT(Q, u)
    while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q) // add u to the tree
       for each vertex v in G. Adj[u] // update keys of u's non-tree neighbors
10
          if v \in Q and w(u, v) < v. key
               v.\pi = u
               v.key = w(u, v)
13
               DECREASE-KEY(Q, v, w(u, v))
14
```

v.key is the minimum weight of any edge connecting v to a vertex in the tree.

v.key = ∞ if there is no such edge. The attribute **v.** π names the parent of v in the tree.

Prim's algorithm operates much like Dijkstra's algorithm.

Runtime (Build Min heap line 1-7): O(V)

(while loop excute |V| and EXTRACT-MIN log V): O(V log V)

For loop line 10-12: O (E)

Total Prim Algo Runtime = O (V log V + E log V) = O (E log V) ???

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

- 1) the **distance** from itself to the growing spanning tree using *one edge*
- **2) how to get to there** (the closest neighbor that's reached by the tree already)

PRIM(G = (V,E), s):

for all v besides s: $d[v] = \infty$ and k[v] = NULL

HOW DO WE IMPLEMENT THIS?

Each vertex that's not yet reached by the growing tree keeps track of:

- the **distance** from itself to the growing spanning tree using *one edge*
- how to get to there (the closest neighbor that's reached by the tree already)

HOW DO WE IMPLEMENT THIS?

KRUSKAL'S ALGORITHM

Greedily add the cheapest edge!

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Every node on its own starts as an individual tree in this forest

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

44

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

46

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

cheapest edge that would combine two trees

(i.e. that won't cause a cycle)

Choose the

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees

(i.e. that won't cause a cycle)

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

Choose the cheapest edge that would combine two trees

(i.e. that won't cause a cycle)

Greedy choice:

Maintain a forest of trees, & greedily add the cheapest edge to combine trees

We're done! This is the MST.

KRUSKAL'S ALGORITHM: PSEUDOCODE

```
KRUSKAL-NOT-VERY-DETAILED(G = (V,E)):
    E-SORTED = E sorted by weight in non-decreasing order
    MST = {}
    for v in V:
        put v in its own tree
    for (u,v) in E-SORTED:
        if u's tree and v's tree are not the same:
            MST.add((u,v))
            merge u's tree with v's tree
    return MST
```

To implement these lines, we'll use a *Union-Find data structure*, which supports 3 operations: **MAKE-SET(x)**, **FIND(x)**, and **UNION(x,y)**

CLRS textbook version PSEUDOCODE For KRUSKAL'S ALGORITHM

```
MST-KRUSKAL(G, w)
1 \quad A = \emptyset
2 for each vertex v ∈ G.V.
       MAKE-SET(\nu)
   sort the edges of G.E into nondecreasing order by weight w
   for each edge (u, v) \in G.E, taken in nondecreasing order by weight
       if FIND-SET(u) \neq FIND-SET(v)
            A = A \cup \{(u, v)\}
                                                                since E \le V^2, we have \log E = O(\log V)
           Union(u, v)
                                                                       O(E \log E) = O(E \log V),
   return A
        Runtime (Time to sort line 4): O(E log E) (merge sort)
                     (Make Set |V|, for loop 5-8 : O (E)
                      Total Algo Runtime = O (E log E)
```