4

EVALUATION OF POTENTIAL ENGINE OILS FOR USE IN ADMINISTRATIVE VEHICLES OPERATING ON M85 METHANOL FUEL

のの

10

13

2

INTERIM REPORT BFLRF No. 260

Ву

B.B. Baber
Belvoir Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Under Contract to

U.S. Army Belvoir Research, Development and Engineering Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-87-C-0043

Approved for public release; distribution unlimited

December 1988

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

SECORITY CLASSIFICA	TION OF THIS I	AGE					
			REPORT DOCU	MENTATION F	PAGE		
1a. REPORT SECURITY CLASSIFICATION				1b. RESTRICTIVE MARKINGS			
Unclassified			None				
2a. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION/A	VAILABILITY OF REP	ORT		
N/A	- <u>-</u>			Approved	for public	release:	
2b. DECLASSIFICATIO	N/DOWNGRAD	ING SCHEDULE		1	ion unlimit	•	
N/A							
4. PERFORMING ORGA		ORT NUMBER(S)		5. MONITORING ORG	GANIZATION REPORT	F NUMBER(S)	
BFLRF No. 2	260						
6a. NAME OF PERFORM Belvoir Fue	els and L	ubricants	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT	ORING ORGANIZATI	ON	
Research Fa	cility (SwRI)					
6c. ADDRESS (City, St	ate, and ZIP Cod	ie)	<u> </u>	7b. ADDRESS (City,	State, and ZIP Code)		
Southwest R	lesearch	Institute					
San Antonio	, Texas	78284					
O. NAME OF FUNCTION			To: 055105 0141001	0.0000000000000000000000000000000000000		510471041 41114050	
8a. NAME OF FUNDING ORGANIZATION [.S. Army	Belvoir	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAAK70-85-C-0007;			
ORGANIZATION C Research, D	evelopmen	nt and		DAAK70-87-C-0043, WD 6			
Engineering 8c. ADDRESS (City, Sta			STRBE-VF	10. SOURCE OF FUNDING NUMBERS			
SC. ADDRESS ICITY, ST	ate, and ZIP Lod	e)		PROGRAM		TA 04	THOOK LIBET
Fort Belvoi	r, VA 2	2060-5606		ELEMENT NO.	PROJECT NO.1L263001	TASK NO.	WORK UNIT
				63001D	D150	07(3)	7.00250.010.110.
11. TITLE (Include Secu	nty Classification			<u> </u>		<u> </u>	<u> </u>
Evaluation	of Potent	rial Engin	e Oils for Use	in Administr	ative Vehic	les Operati	ing on
M85 Methano	1 Fuel (J)	c offs for use	TH MUMILITACE	acive venic	ies operati	ing on
12. PERSONAL AUTHO							
Baber, Bur	1 B.						
13a. TYPE OF REPORT	· · · · · · · · · · · · · · · · · · ·	13b. TIME COV		14. DATE OF REPORT	(Year, Month, Day)	15. PAGE C	OUNT
Interim			y 85 to N <u>ov 88</u>			98	
			and B have not				
			the Appendices,	may be obta	ined from t	he Defense	Technical
Informatio	n Center	•					
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number					_		
FIELD GF	ROUP S	SUB-GROUP	Lubricating (Oils Metha	nol Fuel	Test Method	is
ļ	Lubricants M85 Methanol						
<u> </u>			<u> </u>				.
19. ABSTRACT (Continu	ue on reverse if i	necessary and iden	tify by block number)				
Six Juhricant	s compri	sed of var	ious lubricant fo	armulations :	vora ovaleca	ad to det==	احتطين مستحد
notential and	ine oil w	acd or val	a mare wear and	dinuiations, \	were evaluat	eu to deter	mine which
borentrar eng	THE OH WO	onia brokia	e more wear and	u/or corrosion	protection	ior adminis	trative-type

Six lubricants, comprised of various lubricant formulations, were evaluated to determine which potential engine oil would provide more wear and/or corrosion protection for administrative-type vehicle engines operating on M85 methanol fuel. The six lubricants were first evaluated using a modified ASTM V-D cyclic test procedure. The three best oils were then evaluated in a second test series using steady-state/cold test conditions. These three oils provided the same order of protection from wear and corrosion in the steady-state/cold test conditions as they provided using the cyclic test conditions. All three lubricants coded AL-15427-L, AL-16155-L, and AL-15610-L are recommended for use in administrative-type vehicle engines when operating on M85 methanol fuel.

20. DISTRIBUTION AND LABILITY OF AUSTRACT	21. ABSTRACT SECURITY CLASSIFICATION		
% UNCLASSIFIED/UNLIMITED SAME AS RPT. SODTIC USERS	Unclassified		
22a. NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE (include Area Code)	22c. OFFICE SYMBOL	
T.C. Bowen	(703) 664-3576	STRBE-VF	

EXECUTIVE SUMMARY

Problems and Objectives: The U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program was conducted as the result of a request by Vice President Bush to Secretary Weinberger and legislative directives contained in FY85 Department of Energy Authorization bill, Section 202, PL 98-525. The purpose of the demonstration program was to establish the feasibility of using methanol as an alternative fuel for administrative-type vehicles. The phase of the program discussed in this report was concerned with the evaluation of various lubricant formulations for potential engine oils that would provide more wear and/or corrosion protection needed for engines operating on M85 methanol fuel than is currently afforded by existing MIL-L-46152 oils.

Importance of Project: The use of methanol fuel in engines designed for gasoline results in increased wear and corrosion to vital engine parts. One method of decreasing this wear and corrosion is the use of a lubricant formulated to offset the deleterious actions of the fuel. This program evaluated several possible lubricants to determine the best lubricant to use in any future Government programs related to M85 methanol-fueled engines.

Technical Approach: A number of organizations were invited to submit oils that they believed would provide the added protection required for M85-fueled engines. As a result of the requests, six oils were evaluated in an initial test series using modified ASTM V-D cyclic test conditions. The three best oils were determined, based upon wear metal debris in the used oil samples. A second test series was conducted on these three selected oils using steady-state/cold test conditions. Under these conditions, test variables such as decline in engine response and other factors can increase the difficulty in differentiating among test results. Therefore, "bracketing" the test runs with reference runs was performed in both test matrices. This bracketing procedure allows for normalization of the test results to a common baseline.

Accomplishments: Based upon the data obtained in this phase of the Army Methanol-Fueled Administrative Vehicle Demonstration Program, three lubricants were recommended for use in administrative-type methanol-fueled vehicle engines. These three lubricants provided the same order of protection from wear and corrosion in the steady-state/cold test conditions as they provided using the cyclic test conditions.

Military Impact: In the event of a gasoline shortage, an alternative fuel must be utilized by the military's fleet of spark-ignition engine vehicles. The most likely candidate to stretch out the gasoline supply is a methanol/gasoline blend. However, the use of this blend, M85, may result in increased wear, corrosion, and other maintenance problems for the military's administrative vehicles. To help offset these maintenance problems, resulting in increased downtime and logistics burden, a specially formulated lubricant may be used in the vehicles. The most likely candidates were evaluated, and recommendations were made as to the three best methanol-resistant lubricants to use in any future Government programs related to M85 methanol-fueled engines.

FORE WORD

This work was conducted at the Belvoir Fuels and Lubricants Research Facility (BFLRF) located at Southwest Research Institute (SwRI), San Antonio, TX under Contract Nos. DAAK70-85-C-0007 and DAAK70-87-C-0043 during the period July 1985 through November 1988. The work was funded by the U.S. Army Belvoir Research, Development and Engineering Center (Belvoir RDE Center), Ft. Belvoir, VA, with Messrs. F.W. Schaekel and T.C. Bowen (STRBE-VF), as the contracting officer's representatives and Mr. M.E. LePera, chief of Fuels and Lubricants Division (STRBE-VF), as the project technical monitor.

TABLE OF CONTENTS

Section	1		Page
I.	INTE	RODUCTION AND BACKGROUND	1
II.	PRO	GRAM OBJECTIVE · · · · · · · · · · · · · · · · · · ·	i
III.	EXP	ERIMENTAL APPROACH ······	1
	A. B. C. D.	Test Engine Test Fuel Test Procedures Candidate Oils	2 3 4 5
IV.	DISC	CUSSION OF RESULTS	6
	A. B.	V-D Cyclic Test Conditions · · · · · · Steady-State/Cold Test Conditions · · · · · · · · · · · · · · · · · · ·	6 8
٧.	CON	CLUSIONS · · · · · · · · · · · · · · · · · · ·	01
VI.	REC	OMMENDATIONS · · · · · · · · · · · · · · · · · · ·	12
APPEN	DICE	S	
A. B.	Me	idual Summary Data Sheets for Each Test Conducted Using the odified V-D (Cyclic) Test Conditionsidual Summary Data Sheets for Each Test Conducted Using the	13
_ v		eady-State (Cold) Test Conditions) · · · · · · · · · · · · · · · · · · ·	69

LIST OF ILLUSTRATIONS

Figure		Page
1	White Emulsion-Type Sludge in Valve Cover Before and After Flush for Test No. 20 · · · · · · · · · · · · · · · · · ·	11
	LIST OF TABLES	
Table		Page
1	V-D Cyclic Test Conditions - 24 Hours · · · · · · · · · · · · · · · · · · ·	4
2	Steady-State/Cold Test Conditions - 24 Hours · · · · · · · · · · · · · · · · · · ·	4
3	Analysis of Test Oils · · · · · · · · · · · · · · · · · · ·	5
4	Summary of the Total Net Used Oil Wear Metal Data for Each Test	
	Conducted in Test Matrix 1 · · · · · · · · · · · · · · · · · ·	7
5	Average Normalized Percent of Reference Oil · · · · · · · · · · · · · · · · · · ·	7
6	Summary of the Total Net Used Oil Wear Metal Data for Each Test	
	Conducted in Test Matrix 2 · · · · · · · · · · · · · · · · · ·	8
7	Average Normalized Percent of Reference Oil · · · · · · · · · · · · · · · · · · ·	9
8	Sludge Ratings · · · · · · · · · · · · · · · · · · ·	10

I. INTRODUCTION AND BACKGROUND

The U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program was conducted as the result of a request by Vice President Bush to Secretary Weinberger and legislative directives contained in FY85 DOE Authorization bill, Section 202, PL 98-525. The purpose of the demonstration program was to establish the feasibility of using methanol as an alternative fuel for administrative-type vehicles.

One phase of this program was concerned with the evaluation of various lubricant formulations for potential engine oils that would provide more wear and/or corrosion protection needed for engines operating on M85 methanol fuel than is currently afforded by existing MIL-L-46152 oils.

II. PROGRAM OBJECTIVE

The results from this phase of the program will be used to recommend an oil(s) that appears to be the most suitable for inclusion in any future Government programs related to M85 methanol-fueled engines.

III. EXPERIMENTAL APPROACH

A letter was distributed in mid-1985 to twelve organizations known to have a "methanol lubricant," or that had shown earlier interests in developing a suitable formulation. The organizations were invited to submit an oil(s) that they believed would provide the added protection required for M85-fueled engines. A total of five special lubricants were submitted by the invited organizations. In addition, one fully formulated oil for use in gasoline-fueled vehicles was selected by Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI) and was included in the program. The six oils were evaluated in an initial test series using modified ASTM V-D cyclic test conditions. The three best oils were determined, based upon wear metal debris in the used oil samples. A second test series was conducted on these selected oils using steady-state/cold test conditions.

A. Test Engine

A new Ford 2.3L, four-cylinder overhead cam engine was used for each test matrix. The engines were built according to ASTM Sequence V-D specifications except that ring gaps were adjusted for this methanol application and a modified electroless nickel-plated carburetor is used. Piston rings from an ASTM Sequence V-D parts kit were used (top ring, molybdenum and second ring, cast iron).

1. Engine Test Stand Configuration

The test engine was mounted on an SwRI test stand that was configured to conduct Sequence V-D tests. The exceptions to the standard Sequence V-D procedure were as follows:

- An oil filter was installed for all test work.
- A special oil changing and flushing system was used for this technique. Basically, it is a system that can efficiently change the oil consistently and save much time. This system is described in more detail in the next subsection.
- A carburetor was specially modified to accommodate the methanol fuel.
 These modifications included main jet and air bleed changes to provide near stoichiometric air/fuel ratios.
- The engine test stand was plumbed to both methanol and Phillips "J fuel with provisions for quick changeovers.

2. Oil Flush/Changes (Flying Flush)

A special oil changing and flushing procedure that has proven to be effective and consistent was used in this program. The system provides for performing oil changes/flushes with the engine running. A special detergent oil, SwRI oil code LO-12119, was used as a part of each test to remove effects of previous oils. Details of the flushing technique are included in the following listing:

Time, <u>hr:min</u>	Action
0:00	 Shut engine down Determine oil level Change to "J" carburetor Change to "J" fuel Purge fuel line Change fuel filter Change oil filter
0:30	 Start engine Flush three times with flush oil After the third flush, run engine under Sequence V-D Stage II test conditions
2:00	 Shut engine down Change to methanol carburetor Change to methanol fuel Purge fuel line Change fuel filter Remove oil filter Install oil filter cap
2:30	Start engineFlush three times with candidate oil
2:50	 Shut engine down Remove oil filter cap Install new oil filter filled with candidate oil
2:55	Start engine
3:00	• Start test

B. Test Fuel

The test fuel was commercial grade, 200 proof methanol plus 15 vol% Phillips "J" gasoline (Batch 28). Water, chlorine, and sodium content of the fuel were determined. SwRI methanol code AIS-22 was used. The analysis results are shown in the following listing:

AIS-SwRI-M-D-04-03-84

Sample A: 0.047 wt% H₂O

Sample B: 0.078 wt% H₂O

Sample C: 0.059 wt% H₂O

Sample A: 0.058 wt% H₂O

Sample B: 0.044 wt% H₂O

Methanols were mixed, blended with Phillips "J" fuel, and placed into a holding tank. Composite samples were tested for sodium and chlorine, with the following results:

Sample	Sodium, ppm	Chlorine, wt%
05-14-87	3	0.005
06-10-87	2	0.017

C. Test Procedures

After reviewing the literature and the candidate oil test data provided by the suppliers of the candidate oils, it was apparent that two general types of laboratory engine wear screener test procedures (cyclic and steady state) have been used for oil evaluations as shown in TABLES 1 and 2.

TABLE 1. V-D Cyclic Test Conditions - 24 Hours

Stage	<u>Rpm</u>	Bhp	Oil Temp, °F (°C)	Coolant Temp, OF (OC)	Time, minutes per cycle
I	2500	33.5	175 (79)	135 (57)	120
H	2500	3 3. 5	187 (86)	155 (68)	75
Ш	1500	1.5	120 (49)	120 (49)	45

TABLE 2. Steady-State/Cold Test Conditions - 24 Hours

Rpm	Bhp	Oil Temp, °F (°C)	Coolant Temp, OF (OC)
2500	33.5	125 (52)	115 (46)

Two test matrices were conducted. The first test matrix used the cyclic test conditions given in TABLE I and included all six test oils involved in the program. The second test

matrix, using the steady-state/cold test conditions given in TABLE 2, was conducted using the three best oils as determined from the first test matrix. Since test variables such as decline in engine response and other factors can increase the difficulty in differentiating among test results, "bracketing" test runs with reference runs (using one of the candidate oils as the reference oil) was included in both test matrices. This bracketing procedure allows for normalization of the test results to a common baseline.

D. Candidate Oils

The following six candidate oils were received for evaluation in this program. Analysis results of the lubricants are shown in TABLE 3.

TABLE 3. Analysis of Test Oils

BFLRF Oil Code	Viscosity at 45°C, cSt, D 445	Viscosity at 100°C, cSt, D 445	VI, D 2270	TAN, <u>D 664</u>	TBN, D 664
AL-14965-L	136.6	14.0	100	2.68	10.5
AL-14966-L	137.8	14.2	001	2.86	10.4
AL-15427-L	72.0	11.1	145	3.42	7.4
AL-15610-L	118.2	14.1	119	3.49	6.6
AL-16155-L	\$2 . 7*	10.4	104	2.49	15.0
AL-16156-L	78.8	10.0	107	2.45	14.5

^{*} This candidate oil was used as the baseline "reference" oil in Test Matrices I and 2 to facilitate normalization of the test results. SwRI oil code LO-12119 was used as the flush oil for all tests.

For each test, a new oil sample as well as used oil samples were taken after each 8-, 16-, 20-, and 24-hr operating period. Samples were analyzed for the following metals by Inductively Coupled Plasma (ICP) analyses:

- Iron (Fe)
- Chromium (Cr)
- Aluminum (AI)
- Copper (Cu)

- Tin (Sn)
- Lead (Pb)
- Silicon (Si)
- Molybdenum (Mo)

The wear data from the intermediate samples taken after 16-, 18-, and 20-hr operating periods were reviewed to ensure that no catastrophic wear was occurring during each test. Data from the 24-hr sample were used to determine the total net wear obtained for each test.

IV. DISCUSSION OF RESULTS

A. V-D Cyclic Test Conditions

TABLE 4 presents a summary of the wear metal data obtained for the Test Matrix 1 using the modified V-D cyclic test conditions. All six candidate oils were included in Test Matrix 1. Individual operational summary data sheets and metal determinations from the used oil samples for each test in Test Matrix 1 are included in Appendix A. The total net used oil wear metal data for each are summarized in TABLE 4. The net used oil wear metal data used in this report are the sums of the 24-hr sample wear metals in ppm less the sums of the new sample wear metals for each individual test. TABLE 4 also presents the normalized reference oil comparison data and the normalized percent of reference oil for each test.

Even though silicon was included in each of the individual used oil analyses, it was not included in the comparisons of new and used oil samples. The silicon appears to be part of an additive package for two of the candidate lubricants and, therefore, was not considered as a wear metal element. The remaining seven wear metals were included in the wear metal comparisons presented in TABLE 4.

The average normalized percents of reference oil were calculated for the six candidate oils and are presented in TABLE 5 in the order of protection from wear and corrosion provided by the six individual oils. Oil AL-15427-L generated the least amount of net total wear metals, thereby providing the best protection against wear and corrosion when evaluated using the V-D cyclic test conditions for 24 hours. The reference oil, AL-

TABLE 4. Summary of the Total Net Used Oil Wear Metal Data for Each Test Conducted in Test Matrix 1*

(Cyclic Test Conditions)

Test Sequence No.	BFLRF Oil Code	Total Net, Wear Metal, ppm	Reference Oil Comparison Data	Normalized Percent of Reference Oil
1(a)	AL-16155-L	19		
2	AL-16155-L(b)	116	116.0	100.0
3	AL-14965-L	134	116.3	115.2
4	AL-15427-L	107	116.6	91.8
5	AL-16155-L ^(b)	117	117.0	0.001
6	AL-16156-L	150	115.8	129.5
7	AL-15610-L	144	114.5	125.8
3	AL-14965-L	253	113.2	223.5
9	AL-16155-L ^(b)	112	112.0	100.0
10	AL-15427-L	32	100.5	81.6
11	AL-15610-L	98	89.0	110.1
12	AL-16156-L	104	77.5	134.2
13	AL-16155-L ^(b)	6 6	66.0	100.0
14	AL-14965-L	165	63.0	261.9
15	AL-15610-L	82	60.0	136.7
16	AL-14966-L	98	<i>57.</i> 0	171.9
17	AL-16155-L ^(b)	54	54.0	100.0
18	AL-14966-L	63	51.0	123.5

^{*} Total net wear metal equals 24-hr sample total data less new sample total data.

TABLE 5. Average Normalized Percent of Reference Oil (Cyclic Test Conditions)

BFLRF Oil Code	Average Normalized Percent of Reference Oil
AL-15427-L	86.7
AL-16155-L	100.0*
AL-15610-L	124.2
AL-16156-L	131.8
AL-14966-L	147.7
AL-14965-L	200.2

^{*} Reference oil for all tests.

⁽a) Test conducted using Phillips "J" unleaded gasoline. All other tests conducted using M85 methanol fuel.

⁽b) Reference oil test.

16155-L, provided the next best protection under the V-D cyclic test conditions, with oil AL-14965-L providing the least protection of the six candidate oils included in the program.

It should be mentioned that approximately 81.2 percent of the total net wear metals for the 17 tests using M85 fuel was generated from iron, and approximately 6.7 percent was observed for molybdenum. Chromium accounted for only 1.4 percent of the wear metals noted with aluminum, copper, tin, and lead all being approximately 2.6 percent each.

B. Steady-State/Cold Test Conditions

Evaluation of the three best lubricants as determined using the V-D cyclic test conditions was then continued using steady-state/cold test conditions. Test oils AL-15427-L, AL-16155-L (reference oil for all tests in Test Matrices 1 and 2), and AL-15610-L were evaluated in Test Matrix 2 (steady-state/cold test conditions). TABLE 6 presents a summary of the total net used oil wear data obtained for Test Matrix 2. Individual summary operational data sheets and element determinations for oil samples for each test in Test Matrix 2 are included in Appendix B. As in the wear summaries of Test Matrix 1, silicon was not included in the comparisons of the new and used oil samples taken in Test Matrix 2.

TABLE 6. Summary of the Total Net Used Oil Wear Metal Data for Each Test Conducted in Test Matrix 2*

(Steady-State/Cold Test Conditions)

Test Sequence No.	BFLRF Oil Code	Total Net, Wear Metal, ppm	Reference Oil Comparison Data	Normalized Percent of Reference Oil
19(a)	AL-16155-L	35		~-
20	AL-16155-L AL-16155-L ^(b)	341	341.0	100.0
21	AL-15427-L	264	290.3	90.9
22	AL-15610-L	209	239.7	87. 2
23	A L- 16155-L ^(b)	189	189.0	100.0
24	AL-15427-L	167	182.4	91.6
25	AL-15610-L	240	1 75. 7	136.6
26	AL-16155-L ^(b)	169	169.0	100.0

^{*} Total net wear metal equals 24-hr sample total data less new sample total data.

⁽a) Test conducted using Phillips "J" unleaded gasoline. All other tests conducted using M85 methanol fuel.

⁽b) Reference oil test.

The average normalized percents of reference oil were calculated for the three candidate oils and are presented in TABLE 7 in the order of protection from wear and corrosion provided by the three remaining candidate oils. It will be noted that these three candidate oils provided the same order of protection from wear and corrosion in the steady-state/cold test conditions as they provided using the cyclic test conditions.

TABLE 7. Average Normalized Percent of Reference Oil (Steady-State/Cold Test Conditions)

Percent of Reference Oil
91.3
100.0*
111.9

^{*} Reference oil for all tests.

It should be noted that in all tests conducted in Sequence 2 except No. 19 (which was run on Phillips "J" gasoline), a "white emulsion" type sludge formed on the rocker arm cover and cam baffle. This type sludge was reported by S.E. Schwartz*, et al., in an earlier program, and was determined to be composed of methanol, water, and engine oil. This same emulsion would also clog the blowby condenser, causing an increase in crankcase pressure. The operator had to use compressed air to "blow-down" the passages in the condenser. All oils exhibited this same tendency. Incidences of "blow-down" varied somewhat, but were not significantly different from test-to-test. After each test and prior to the initial flush, the rocker arm cover and valve deck were rated for sludge. This sludge was then physically removed prior to the flush. Sludge ratings are presented in TABLE 8.

The valve deck was practically clean when compared with the area between the rocker arm cover and the baffle for all three oils tested. The average sludge rating for the rocker arm cover and baffle varied from 7.39 for the cleanest oil tested (AL-15610-L) to

^{*} Schwartz, Shirley E., Smolenski, Donald J., and Clark, Sidney L., "Entry and Retention of Methanol Fuel in Engine Oil," SAE Technical Paper Series 880040, February 29, 1988.

TABLE 8. Sludge Ratings

Toot No	pri pr	Average Sludge (10	
Test No. Sequence 2	BFLRF Oil Code	Rocker Arm Cover & Baffle	Valve _Deck_
19	AL-16155-L	**	~~
20	AL-16155-L	2.91	9.57
21	AL-15427-L	5.18	9.58
22	AL-15610-L	8.32	9.45
23	AL-16155-L	2.90	9.37
24	AL-15427-L	5.64	9.46
25	AL-15610-L	6.43	9.35
26	AL-16155-L	1.92	9.32

2.57 for AL-16155-L, the reference oil used in both Sequence 1 and Sequence 2 tests. Test oil AL-15427-L provided an average midrange number of 5.41 for the sludge between the rocker arm cover and baffle. Photographs from Test No. 20, before and after the normal flush following the 24-hr test, are presented in Fig. 1. After noting that all sludge was not removed from the rocker arm cover and the cam baffle during the normal flushing procedure, it was decided to physically remove all "white" sludge after each test prior to the normal flushing for the next test. This procedure was followed for all the remaining tests in Sequence 2.

V. CONCLUSIONS

The degree of protection from wear and corrosion provided by six different engine oils formulated for use with M85 fuel indicated the best protection was obtained when using lubricant AL-15427. The least protection was provided by lubricant AL-14965-L. The three lubricants providing the best protection, in the order of protection from wear and corrosion, were AL-15427-L, AL-16155-L, and AL-15610-L. These three lubricants provided the same order of protection from wear and corrosion in the steady-state/cold test conditions as they provided using the cyclic test conditions.

Test No. 20, before flush

Test No. 20, after flush

Figure 1. White emulsion-type sludge in valve cover before and after flush for Test No. 20

VI. RECOMMENDATIONS

Based upon the data obtained in this phase of the Army Methanol-Fueled Administrative Vehicle Demonstration Program, three lubricants coded AL-15427-L, AL-16155-L, and AL-15610-L are recommended for use in administrative-type vehicle engines. It is believed worthy of mention that two of these three oils are known to have been used in the fleet test portion of the program with no lubricant-related problems occurring during the program.

APPENDIX A

Individual Summary Data Sheets for Each Test Conducted Using the Modified V-D (Cyclic) Test Conditions

WEAR SCREENER	TEST
OIL CODE	AL-16155-L
SWRI NO.	LO-34026
DATE	05-19-87
TEST NO.	31-01-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	5
	Phillips "J"
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEI	Phillips "J"
FLUSH TIME	5 Hours*
DISCUSSION	
	mple:
- End of candidate f	lush ("0" hour)
- 8,16, 20, 24 hours	3
- "New" Oil	

* Included 2 hour V-D break-in and coolant flush.

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	#UMBER 31-01-237-84-3			DATE	COMPLE	TED	05-2	20-87			
CLIEN	T OIL CODE AL-16155-L			SWRI OIL CODE LO-34026							
		s	TAGE I		s	TAGE I	I	s	TAGE I	II	
		MAX	MIM	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed	, rpm	2508	2501	2504	2507	2502	2504	767	748	755	
Load,	bhp	33.9	33.4	33.6	33.8	33.4	33.5	1.3	1.0	1.1	
011	Cooler into engine, °F	176	170	175	187	185	186	124	118	121	
	Engine AT(Out-In), 'F	6	2	3	6	14	5	1	0	0	
	Pump Gallery, psi	63.0	60.0	60.9	59.0	58.0	58.6	57.1	56.0	56.8	
	Engine Gallery, psi	58.0	54.0	55.2	54.0	52.0	52.8	53.4	52.0	52.9	
	ΔP (Pump-Engine), psi	6.0	5.0	5.7	6.1	5.0	5.7	4.0	3.4	3.8	
	Cyl. Head Gallery, psi	55.0	51.0	53.4	51.7	50.0	50.7	53.1	51.0	52.2	
	AP (Engine-Head), psi	4.5	0.3	1.9	3.0	1.0	2.2	2.0	0.2	0.7	
	Cooling, min	22233	23222	12203	E3358	2222	2222				
Water	Jacket Outlet, 'F	136	124	133	156	155	156	122	119	121	
	AT (Out-In), °F	15	13	14	14	13	13	17	15	16	
	Flow, gpm	15.4	14.7	15.1	15.5	14.9	15.1	52222	2222	-	
	Blowby Heat Exch., 'F	131	119	128	151	150	150	116	113	115	
	Marine Manifold, 'F	149	137	146	169	168	168	140	131	138	
Carb.	Temperature, °F	81	78	80	81	78	80	88	76	81	
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	
	Pressure, in. H ₇ 0	0.24	0.22	0.23	0.24	0.22	0.22	0.28	0.25	0.26	
Blow	y Temperature, °F	130	120	127	149	147	148	113	112	113	
Blowb	by Rate, cfm	1.81	1.65	1.70	2222	2222	23825	22122	12221		
Crank	case Pressure, in. H ₂ O	0.01	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	
Ignit	cion Timing, 'BTDC	46	46	46	-3323	20220	2222	10	10	10	
Intak	te Manifold Vacuum, in. Hg	8.1	7.4	7.9	8.0	7.4	7.8	15.4	12.4	13.2	
Fuel	Flow, lb/hr										
Exhau	st Back Press., in. H ₂ 0	13.2	8.9	11.0	13.0	8.4	10.8	3.2	1.8	2.4	
Exhau	ust 02, %	1.17	0.91	1.02	1.10	0.90	1.02	1.01	0.15	0.60	
Gas	co, %	0.35	0.16	0.21	0.21	0.12	0.20	6.80	6.40	6.60	
Analy	sis SOx, ppm	2222	22222	D1222			3250	2222	22223	====	

Southwest Research Institute Testing Laboratory

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIS: 171

-		
_		
31.1X		
TABOUATORY.		
VRALYTICAL		

31-01-237-84 3

TEST

	1.0-34026	
DATE	SWRI CODE:	CHARGE NO.:

METALS IN PPM

=								1					<u> </u>			
Ca																
St								<u> </u>								
M										<u> </u>				1		
Αg						<u> </u>				<u> </u>		<u> </u> 	<u> </u> 			
													-			
Ва																
а																
uz												1				
=			,	,								:				
MO		- 1			~							!				
		¥	7	7	~>							<u> </u>		,		
Pb		7	-	~	m 	~										
Si		4	c	6	8	5										
Ag		<1	Ţ	î	! >	Ü										
z Z													-			
Sn		2	4.	5	9	ာ										
n _O		¢1	_	24	2	7										
72		<1	3	5	S	7										
cr		¢1	7	<-1	< 1	7							<u>:</u>			
re Fe		~	7	10	11	11										
LN#				-												
Code	Test Hours	Man	Σ	16	7.0	77							1			

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-34026
DATE	05-20-87
TEST NO.	31-02-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	32
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUE	LPhillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sa	mple:
- End of candidate	flush ("0" hour)
- 8, 16, 20, 24 hou	rs
- "New" Oil	

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-02-237-84-3		DATE	COMPLE	TED	05-2	2-87				
CLIEN	T OIL CODE AL-16155-L			SWRI OIL CODE LO-34026							
		S	TAGE I		S	TAGE I	I	s	TAGE III		
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed	, rpm	2510	2496	2506	2512	2497	2503	760	746	754	
Load,	bhp	33.7	33.2	33.5	33.8	33.3	33.6	1.00	0.57	0.85	
Oil	Cooler into engine, 'F	177	172	174	187	185	186	121	119	120	
	Engine aT(Out-In), F	4	2	3	51	3	4	2	1	2	
	Pump Gallery, psi	63.0	62.0	62.6	61.0	60.0	60.5	58.7	57.0	58.0	
	Engine Gallery, psi	57.5	56.0	57.0	56.01	54.0	54.8	55.0	54.0	54.5	
	iP (Pump-Engine), psi	6.5	5.0	5.7	6.01	5.0	5.7	5.2	3.0	3.8	
	Cyl. Head Gallery, psi	57.4	54.0	56.11	54.5	52.0	53.4	55.5	52.0	54.0	
	iP (Engine-Head), psi	3.0	0.0	0.8	4.0	0.0	1.4	2.0	0.0	1.2	
	Cooling, min	12225	*****	1222	PERE	=====	27222	35	25	30	
Water	Jacket Outlet, 'F	136	133	134	156	155	156	132	119	121	
	AT (Out-In), F	14	12	13	13	12	13	15	11	13	
	Flow, gpm	15.4	14.7	15.1	15.3	14.8	15.0	22222	-	E-186-	
	Blowby Heat Exch., F	130	127	128	149	147	148	114	113	114	
	Marine Manifold, 'F	150	147	149	169	167	168	136	132	133	
Carb.	Temperature, 'F	82	79	81	81	80	81	85	80	82	
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	
	Pressure, in. H ₂ O	0.24	0.22	0.23	0.24	0.22	0.22	0.26	0.20	0.24	
Blow	by Temperature, 'F	128	125	127	147	140	1431	113	113	113	
Blow	by Rate, cfm	1.68	1.55	1.62		2222	******	-	25522	2	
Crani	case Pressure, in. H ₂ 0	1.80	0.01	0.50	1.70	0.01	0.70	1.10	0.01	0.40	
Ignit	tion Timing, 'BTDC	46	46	46	22222	STEER	:2222	10	10	10	
Intak	ke Manifold Vacuum, in. Hg	9.2	8.5	8.8	9.0	7.7	8.5	15.6	11.1	14.4	
Fuel	Flow, 1b/hr										
Exhau	ist Back Press., in. H ₂ O	11.2	9.5	10.4	11.3	9.4	10.41	2.81	2.4	2.6	
Exhau	15t 02, %	1.19	0.88	1.07	1.11	1.00	1.06	0.85	0.15	0.30	
Gas	co, 1	0.70	0.25	0.49	0.65	0.26	0.51	6.901	6.40	6.66	
Analy	rsis NOx, ppm	12223	EE223	2222			23901				

Southwest Research Institute Testing Laboratory

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLSUM PRODUCTS RESEARCH ANALYTICAL LARORATORY BLISE, 171

TEST: 31-02-237-84-3

	10-34026	
DATE:	SWRI CODE:	CHARGE NO.:

METALS IN PPM

=	1	;			į										
Ca			-												
Sb		_													
Æ		7													
Mg															
Ва															
d))			
uz) 1 1	•	 				<u> </u>		: :		1	!		 	
=		-									; ; ;	· · · · · · · · · · · · · · · · · · ·			
£	, , ,		1	7	D.	10						1	1	!	
a _a		· 1	l I	~	m	4									
Si		7	-	4	4	5									
Ag	, ! !	7		ç.	د ا	<1					!	; ;			
ž													1		
Sn		~	1	~	7	7								•	
Cu		ţ,	-	2	2	2									
۸1		7	-	4	5	5									
Cr		17	;	-	-	~						!			
Fe		~		93	80	92									
I.N		! !		• !		 	# # # #					 			
Code	Test Rours	Mew	1	10	707					1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	† 1 1 1 1 7 7 1		

WEAR SCREENER TEST USING METHANOL FUEL OIL CODE AL-14965-L SWRI NO. LO-34460 DATE 05-24-87 31-03-237-84-3 TEST NO. ENGINE NO. 237 TOTAL ENG HRS 59 FUEL M-85 (Tank # 105) TEST HOURS 24 LO-12119 FLUSH OIL FLUSH OIL FUELPhillips "J" FLUSH TIME 3 Hours DISCUSSION ____ (1) Take 2 ounce Oil Sample: - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours - "New" Oil

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-03-237-84-3			DATE	COMPLE	TED	05-2	26-87	······································	
CLIEB	T OIL CODE AL-14965-L			SVRI	OIL CO	DE	LO-3	14460		
		s	TAGE I		s	TAGE I	I	S	TACE I	II
		MAX	MIM	AVG	MAX	MIN	AVG	MAX	MIN	AVG
Speed	, rpm	2508	2499	2503	2508	2500	2504	764	756	759
Load,	bhp	33.8	33.3	33.6	33.5	33.4	33.5	1.2	0.7	1.0
Oil	Cooler into engine, 'F	176	174	175	187	185	186	122	118	121
	Engine AT(Out-In), °F	7	4	5	6	14	5	1	0	1
	Pump Gallery, psi	66.0	61.0	65.0	64.0	63.4	63.7	59.4	58.3	58.9
	Engine Gallery, psi	61.0	59.7	60.0	58.4	57.9	58.2	55.6	54.3	55.1
	AP (Pump-Engine), psi	5.6	1.0	4.8	5.6	5.0	5.4	4.0	3.5	3.8
	Cyl. Head Gallery, psi	59.4	57.5	58.6	57.3	56.0	56.7	55.2	53.5	54.5
	AP (Engine-Head), psi	3.0	0.7	1.5	3.0	0.5	1.3	1.5	0.3	0.8
	Cooling, min	====	22322	2223	5:353	2222		14	13	14
Water	Jacket Outlet, °F	135	134	135	155	154	155	122	118	121
	AT (Out-In), °F	14	12	13	13	12	13	12	11	12
	Flow, gpm	15.2	14.6	15.0	15.0	14.8	14.9	3222	27222	
	Blowby Heat Exch., °F	129	127	128	149	145	147	116	113	115
	Narine Manifold, 'F	151	148	150	170	167	169	135	132	133
Carb.	Temperature, °F	82	80	81	81	78	80	94	80	91
Air	Humidity, grains/lb	79.5	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pressure, in. H ₂ 0	0.24	0.20	0.22	0.22	0.20	0.22	0.26	0.24	0.25
Blow	y Temperature, °F	130	127	128	148	146	146	117	113	115
Blow	by Rate, cfm	1.78	1.63	1.68	2222	E2222	F-22-E	-	-	
Crani	case Pressure, in. H,O	0.70	0.01	0.15	0.60	0.01	0.17	0.10	0.00	0.06
Ignit	ion Timing, 'BTDC	46	46	46		22222	22222	10	10	10
Intak	te Manifold Vacuum, in. Hg	8.8	8.4	8.6	8.6	8.3	8.5	15.3	14.8	15.0
Fuel	Flow, lb/hr									
Exhau	Exhaust Back Press., in. H ₂ 0		9.0	9.9	11.1	9.0	10.0	2.1	1.3	1.6
Exhau	nst 02, %	1.18	0.98	1.06	1.08	0.92	1.00	0.60	0.55	0.58
Gas	co, %	0.72	0.59	0.65	0.78	0.61	0.69	0.65	0.60	0.63
Analy	sis NOx, ppm	39232	20020	=====			2770		:2:23	2222

Southwest Research Institute Testing Laboratory

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETHOLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLKS. 171

31-03-237-84-3

TEST:

AL-14905-L

SAMPLE:

	10-34460	
DATE:	SWRI CODE:	CHARGE NO.:

METALS IN PPM

ż			 												
Ca		_													
Sb															
Mn													! 		
Mg					_										
Ва															
a,															
uz	}		1												
æ		1	; i i												
M _O		<1	C4 :	;	12	14		_							
Pb		<1	<u>~</u>	-	Э	E									
Si		13	5	'	æ	6						,			
Ag		7	7	1	<u>^</u>	<u></u>									
Z Z															
Sn		4	۰	-	3	5									
Cu		2	4	1	4	5									
A1		∵	-	-	3	4									
Cr		<u>.</u>	7	1	-	7									
F.e		Ю	65	-	93	110									
I.N.						_									
Code	Test Hours	Nes	=]0	20	24									

: 15:

	WEAR SCREENER	TEST USING METHANOL FUEL
	OIL CODE	AL-15427-L
	SWRI NO.	LO-34461
	DATE	05-27-87
	TEST NO.	31-04-237-84-3
	ENGINE NO.	237
	TOTAL ENG HRS	86
	FUEL	M-85 (Tank # 105)
	TEST HOURS	24
	FLUSH OIL	LO-12119
	FLUSH OIL FUE	Phillips "J"
	FLUSH TIME	3 Hours
	DISCUSSION	
(1) Take	2 ounce Oil Sam	mple:
- End	of candidate f	flush ("0" hour)
	16, 20, 24 hour	cs_
"Nev	v" Oil	

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-04-237-84-3	DATE COMPLETED 05-29-87										
CLIEN	T OIL CODE AL-15+27-L			SWRI OIL CODE LO-34461								
		s	TAGE I		s [,]	TAGE I	ı	s	II			
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG		
Speed	, rpm	2510	2490	2499	2509	2490	2502	760	753	758		
Load,	bhp	33.8	33.0	33.4	33.6	33.5	33.6	1.3	0.8	1.0		
011	Cooler into engine, 'F	176	172	174	187	185	186	123	121	122		
	Engine AT(Out-In), 'F	2	0	1	2	1	2	1	0	0		
	Pump Gallery, psi	61.4	60.0	60.9	59.2	58.5	58.9	56.8	56.0	56.2		
	Engine Gallery, psi	55.2	54.6	55.0	54.0	52.0	52.8	53.1	52.0	52.6		
	ΔP (Pump-Engine), psi	6.2	5.0	5.8	6.5	5. 0	6.0	4.0	3.0	3.6		
	Cyl. Head Gallery, psi	54.6	51.5	52.7	52.2	49.0	50.8	52.7	50.0	51.0		
	ΔP (Engine-Head), psi	3.5	0.4	2.0	4.5	0.3	2.2	3.0	1.0	2.0		
	Cooling, min			****	:::::::::::::::::::::::::::::::::::::::			16	15	16		
Water	Jacket Outlet, °F	136	134	135	156	154	1551	122	119	121		
	AT (Out-In), 'F	13	12	12	12	11	12	13	11	12		
	Flow, gpm	15.2	14.8	15.0	15.2	14.8	15.0	*****	12222	2		
	Blowby Heat Exch., F	129	127	128	150	146	148	116	112	113		
	Marine Manifold, °F	152	149	151	171	169	170	134	131	132		
Carb.	Temperature, 'F	82	79	81	81	80	811	82	79	80		
Air	Humidity, grains/lb	80.9	79.2	79.2	80.9	79.2	79.5	80.9	79.2	79.5		
	Pressure, in. H ₇ 0	0.24	0.22	0.23	0.24	0.22	0.23	0.26	0.24	0.25		
Blow	by Temperature, °F	130	126	128	149	145	147	115	112	113		
Blow	by Rate, cfm	1.69	1.59	1.62	######################################		20003	****	22222	E:E:		
Cran	kcase Pressure, in. H ₂ 0	0.10	0.01	0.04	0.10	0.00	0.04	0.10	0.01	0.28		
Igni	tion Timing, °ETDC	46	46	46		2255	*****	10	10	10		
Intal	ke Manifold Vacuum, in. Hg	9.60	9.10	9.25	9.20	8.90	9.00	15.6	14.8	15.2		
Fuel	Flow, lb/hr											
Exha	ust Back Press., in. H ₂ O	11.7	8.3	9.5	10.8	8.7	9.8	1.0	0.1	0.3		
Exhai	ust 02, %	1.10	0.80	1.00	1.06	0.86	0.97	0.88	0.10	0.61		
Gas	CO, %	0.62	0.43	0.53	0.65	0.45	0.571	6.70	6.20	6.50		
Anal	ysis NOx, ppm	-	-		2840	2650	27451	*****	24555	******		

Southwest Research Institute Testing Laboratory

AUTOMOTIVE PRODUCTS 6 EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIK: 171

•			

31-04-237-84-3

TEST

Al.-15427-1.

SAMPLB:

	10-34461	
DATE:	SWRI CODE:	CHARGE NO.:

METALS IN PPM

ż								1	!		:		
Са				-						·			
Sb													
M													
Мд													
Ва													
a,													
Zn													
E						<u> </u>						-	
										_			
Mo		< 1	-	2	4	5							
Pb		<1	<1	1	1	3							
Si		۳	4	5	5	9							
Ag		2	<1	<u></u>	2	۲							
Ñ													
Sn		Ţ	<u>.</u>	\ \(\tau \)	2	٣							
Cu		₽	7	2	3	~							
Al		1	3	m	6	e							
Cr		7	-	2	3	3							
Fe		2	37	61	75	06							
LN													
Code	Test Hours	Nes	≈	16	50	24							

: 15/

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-34026
DATE	05-30-87
TEST NO.	31-05-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	113
·	M-85 (Tank # 105)
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEI	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sam	mple:
- End of candidate f	lush ("0" hour)
- 8, 16, 20, 24 hour	s
- "New" Oil	
	·

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	MUME	31-05-237-84-3			DATE	COMPLE	TED	05-3	1-87		
CLIER	1 01	L CODE AL-16155-L			SwRI	OIL CO	DE	L0-3	4026		
			s	TAGE I		s	TAGE I	I	s	TAGE I	II
		· · · · · · · · · · · · · · · · · · ·	MAX	MIN	AVG	MAX	MIM	AVG	MAX	MIN	AVG
Speed	, rp	a	2506	2498	2503	2511	2500	2504	766	754	759
Load,	bhp		33.9	33.2	33.6	33.7	33.4	33.6	1.1	0.7	0.9
011	Coo	ler into engine, °F	177	174	175	187	184	186	121	118	119
	Eng	ine AT(Out-In), °F	3	1	2	4	2	3	1	0	С
	Pum	p Gallery, psi	62.7	62.0	62.3	61.0	60.0	60.7	60.5	56.9	57.9
	Eng	ine Gallery, psi	57.0	56.0	56.8	56.0	54.0	55.0	54.0	53.0	53.6
	ΔP	(Pump-Engine), psi	6.0	5.0	5.5	6.0	5.0	5.7	4.0	2.7	3.7
	Cyl	. Head Gallery, psi	56.3	54.0	55.2	54.2	52.0	53.2	53.5	52.0	52.7
	ΔP	(Engine-Head), psi	7.0	0.0	4.0	8.0	1.0	3.0	2.0	0.0	1.0
	Coo	ling, min	E=1=3	2-229	E2223	92233	22222	E=223	16	13	14
Water	Jac	ket Outlet, °F	135	134	135	155	154	155	121	118	119
	ΔT	(Out-In), °F	14	12	13	14	12	12	12	10	11
	Flo	v, gpm	15.0	14.6	14.9	15.0	14.9	15.0	32830	23232	RETTE
	Blo	wby Heat Exch., °F	130	128	129	149	148	148	115	112	113
	Mar	ine Manifold, 'F	154	150	151	171	170	170	133	130	131
Carb.	Tem	perature, °F	81	78	80	81	79	80	83	78	79
Air	Hum:	idity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pre	ssure, in. H ₂ O	0.24	0.22	0.23	0.23	0.21	0.22	0.26	0.21	0.24
Blow	by To	emperature, °F	129	127	128	146	145	146	115	111	113
Blow	by Ra	ate, cfm	1.78	1.73	1.76	-	22222	£=1=1	£2\$::3	====	3222
Crani	KCES(Pressure, in. H ₂ O	0.07	0.01	0.03	0.04	0.01	0.03	0.07	0.01	0.02
Ignit	tion	Timing, 'BTDC	46	46	46	23922	22221	22221	10	10	10
Intal	te Ma	anifold Vacuum, in. Hg	9.2	8.6	8.9	9.0	8.8	8.9	15.8	15.2	15.5
Puel	Flo	, lb/hr									
Exhau	ist I	Back Press., in. H ₂ 0	11.2	8.9	10.4	11.3	9.6	10.6	2.0	0.0	1.1
Exhau	ist	02, \$	1.18	1.00	1.11	1.16	0.99	1.09	0.80	0.45	0.60
Gas		CO, \$	0.68	0.40	0.53	0.60	0.41	0.52	6.80	6.50	6.7C
Analy	7815	NOx, ppm	22222	2222	2222			2180	BE223	11:2	2222

Southwest Research Institute Testing Laboratory

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLKS. 171

I	
'	
	~
	- 13
1	Ξ
	-
	-
	-
	~
	11 05 - 237 84 - 3
	-
	ſ
	. !
	- 1
	- 1
	ı
	1
	••
	-
	TEST:
	- 22
	=

	10-34026	
DATE:	SWRI CODE:	CHARGE NO.:

METALS IN PPM

įż	1						1								
Ca															
Sb					\vdash			<u> </u>			-	-	-	-	-
A C	-	1		<u>}</u>	 	 	_					-	 		
Mg	<u> </u> 	 	 		-					<u> </u>			<u> </u>	<u> </u>	
_	<u> </u>						-		<u> </u>						
Ba															
A .															
uz							ļ]			
B	 	<u>:</u>	<u></u>	-		<u></u>		<u>!</u> 	<u>:</u>]			ļ	1 1	<u> </u>	<u>!</u>
ОМ		2	-		4	2							<u>-</u>		
Pp.	1	<u>!</u>	1	1	<u> </u>	<u></u>					<u> </u>			<u> </u>	
		🗓		1.2	2	m								<u> </u>	
Si		m -	5	3	4	5									
Ag		2	2	\	₹										
ź															
Sn		<u>.</u>	Ţ	<u> </u>	7	-									
Cu		<u>د</u>	7		2	~									
A1		~	-	٣	4	4									
cr		<1		7	~	3									
Fe		~	3.4	56	76	92									
LN															
Code	Test Hours	New	Σ	16	20	24									

	WEAR SCREENER	TEST USING METHANOL FUEL
	OIL CODE	AL-16156-L
	SWRI NO.	LO-33993
	DATE	06-01-87
	TEST NO.	31-06-237-84-3
	ENGINE NO.	237
	TOTAL ENG HRS	140
	FUEL	M-85 (Tank # 105)
	TEST HOURS	24
	FLUSH OIL	LO-12119
	FLUSH OIL FUEL	.Phillips "J"
	FLUSH TIME	3 Hours
	DISCUSSION	
(1) Take 2 ounce Oil Sample:		
- End of candidate flush ("0" hour)		
- 8, 16, 20, 24 hours		
- "New" Oil		

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-06-237-84-3	DATE	COMPLETED 06-02-87								
CLIEN	r oil code AL-16156-L	SWRI	LO-33993								
		s	TAGE I		s	TAGE I	I	s	STAGE III		
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed.	, r pm	2514	2491	2503	2512	2501	2506	75 7	750	753	
Load,	bhp	33.6	33.2	33.4	33.8	33.6	33.7	1.1	0.8	1.0	
Oil	Cooler into engine, 'F	177	174	176	188	185	187	122	118	120	
	Engine AT(Out-In), 'F	3	0	1	3	2	2	5	0	3	
,	Pump Gallery, psi	62.6	62.0	62.1	61.0	60.0	60.3	59.0	58.0	58.4	
	Engine Gallery, psi	57.0	56.0	56.7	54.5	54.0	54.2	56.0	54.2	55.0	
	AP (Pump-Engine), psi	6.0	5.0	5.4	7.0	5.5	6.1	4.4	3.0	3.4	
	Cyl. Head Gallery, psi	57.0	53.0	54.7	54.0	51.0	52.3	56.0	52.2	53.5	
	ΔP (Engine-Head), psi	3.5	0.0	2.0	3.5	0.0	1.9	2.5	0.0	1.5	
	Cooling, min	FEFE	24222	PERE	*****	22222	Target.	16	14	15	
Water	Jacket Outlet, °F	136	134	135	155	153	154	122	107	119	
ĺ	ΔT (Out-In), °F	15	12	14	14	12	13	15	11	13	
	Flow, gpm	15.2	14.8	15.1	15.1	14.8	15.1	PARES	2222	27222	
	Blowby Heat Exch., 'F	130	128	129	149	147	148	115	100	111	
	Marine Manifold, °F	153	148	150	171	168	169	134	118	130	
Carb.	Temperature, °F	81	78	80	81	80	80	81	80	81	
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	
	Pressure, in. H ₂ O	0.26	0.22	0.23	0.24	0.20	0.22	0.26	0.22	0.24	
Blowt	y Temperature, °F	130	128	129	148	145	146	115	98	110	
Blowt	by Rate, cfm	1.88	1.70	1.74	un march	22222	42222	2222	CERT	223E3	
Crani	case Pressure, in. H ₂ 0	0.90	0.01	0.14	0.60	0.01	0.01	0.10	0.01	0.04	
Ignit	cion Timing, °BTDC	46	46	46	2222	32233		10	10	10	
Intak	ce Manifold Vacuum, in. Hg	8.9	8.3	€.6	8.7	8.3	8.5	15.2	14.5	14.8	
Fuel	Flow, lb/hr										
Exhaust Back Press., in. H ₂ O			9.0	10.1	11.4	9.1	10.6	3.0	2.2	2.6	
Exhau	1st 02, %	1.15	1.03	1.08	1.12	0.93	1.04	0.37	0.04	0.22	
Gas	co, %	0.63	0.32	0.47	0.65	0.32	0.50	7.00	6.50	6.70	
Analy	rsis NOx, ppm	====	22222	22238			2360		2:2:3	====	

AL-16156-L

SPONSOR CODE:

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIS; 171

31-	
06-237-84-3	

	10-33993	
DATE:	SWRI CODE:	CHARGE NO.:

_ =			i	ĺ			1		İ			1			ļ	
Ca																
Sb													-			
₩ ₩		-			 .	<u> </u>	 			ļ	-	<u> </u>				
Mg	<u> </u>	<u> </u>		<u> </u>	<u> </u>						1		<u> </u>		<u> </u>	
	-			<u> </u>	<u> </u>								-			
Ва																
a.																
uz																
В	; !											 				
MO		<u>.</u>	m	ي	7	6			!	<u> </u>						1
Pp		ů	1	4	4	5										
Sí		-	3	4	4	4								<u> </u>		
Λg	<u></u>	<u>.</u>	7	¢1	<u>.</u>	- - -							<u>' </u>	<u>, </u>		
i Z														!	!	
Sn		<u>^</u>		4	4	9										
Cu		<u>.</u>	4	4	4	5			-							
Al		-	4	9	7	8								<u> </u>		
		₹	-	3	٦	3	<u> </u>									
Cr									1		1					
Fe		4	65	95	103	119										
LN																
Code	Test Hours	Ne S	π	٦ ₀	70	\$ C					ī					

-	
OIL CODE	AL-15610-L
SWRI NO.	LO-34579
DATE	06-03-87
TEST NO.	31-07-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	167
FUEL	M-85 (Tank # 105)
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEI	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil San	mple:
- End of candidate f	flush ("0" hour)
- 8, 16, 20, 24 hour	s
- "New" Oil	

WEAR SCREENER TEST USING METHANOL FUEL

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMB	ER 31-07-237-84-3	DATE COMPLETED 06-04-87											
CLIEN	AL-15610-L						SWRI OIL CODE LO-34579							
			S	TAGE I		s	TAGE I	I	STAGE III					
			MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG			
Speed, rpm				2494	2501	2505	2496	2500	760	750	753			
Load.	bhp		33.8	33.4	33.6	33.8	33.3	33.6	1.2	0.8	1.1			
Oil	Cool	ler into engine, 'F	177	171	175	187	185	187	120	1119	120			
	Eng	ine aT(Out-In), 'F	. 6	1	3	2	1	2	3	0	1			
	Pum	Gallery, psi	64.4	63.5	64.0	62.6	62.0	62.2	59.4	58.0	59.0			
	Engi	ine Gallery, psi	58.8	58.0	58.3	56.8	56.0	56.4	55.2	54 7	55.0			
	¿P ((Pump-Engine), psi	6.0	5.3	5.7	8.5	5.4	6.3	4.7	3.0	4.0			
•	Cyl.	Head Gallery, psi	58.6	55.5	57.3	56.4	54.0	55.1	55.7	53.0	54.6			
•	4P (Engine-Head), psi	3.0	0.1	1.0	2.8	0.2	1-41	2.0	0.5	1.2			
	Cool	ling, min	-		-	regra	22223	51223	20	14	16:			
Water	Jack	et Outlet, 'F	135	133	134	155	154	155	122	119	120			
	iT (Out-In), °F	14	13	14	15	13	13	14	11	10			
1	Flow	, gpm	15.3	15.0	15.1	15.2	15.0	15.1	1-1-1		-			
i	Blow	rby Heat Exch , 'F	129	127	128	148	147	148	114	112	113			
ĺ	Mari	ne Manifold, 'F	153	148	150	170	169	169	132	122	129			
Carb.	Temp	perature, 'F	821	79	80	80	80	80	82	80	80			
Air	Humi	dity, grains/lb	79.2	77.8	78.9	79.2	79.2	79.2	79.2	76.4	78.6			
	Pres	sure, in. H ₇ 0	0.26	0.22	0.23	0.24	0.22	0.23	0.26	0.24	0.25			
Blowb	у Те	mperature, 'F	128	125	127	145	143	1441	113	111	112			
Blowb	y Ra	te, cfm	1.83	1.71	1.76	******	*****	CZZZZ:	****	22 3 2	2			
Crank	case	Pressure, in. H,0	1.00	0.01	0.27	0.70	0.01	0.23	1.00	0.01	0.24			
Ignit	ion	Timing, 'BTDC	46	46	46	2222	*****	2222	10	10	10			
Intake Manifold Vacuum, in. Hg			8.8	8.4	8.6	8.7	8.4	8.6	15.5	15.0	15.2			
Fuel Flow, 1b/hr														
Exhaust Back Press., in. H ₂ O				8.3	9.6	10.4	8.4	9.21	1.4	0.5	1.1			
Exhau	st	02, %	1.14	0.85	1.04	1.15	0.96	1.04	0.48	0.18	0.30			
Gas		co, %	0.43	0.22	0.28	0.46	0.23	0.35	7.00	6.40	6.60			
Analy	S13	NOx, ppm		2222	23222			21501		1227	2222			

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIST. 171

:
31-07-237-84-3
31-(
TEST

14579	
SWRI CODE:	CHARGE NO. :

METALS IN PPM

=				į								
Ca												
Sb								-				
Æ												
Mg												
Ва												
Q,												
uz				• • •						_		
63				• 1 1								
W _O		<1	2	\$	7	6						
Pb		<1	<1	7	1	2						
Si		3	4	; '	5	5						
Ag		<1	¢1	7	<u> </u>	<u>.</u>						
 Z												
Sn		<1	¢1	Ū	¢1	3						
Cu		<1	-	2	2	3						
Al		<1	1	4	2	7						
Cr		<1	2	-	2	۳						
Fe		2	42	76	86	119						
LN				† † !								
Code	Test Hours	New	æ	10	20	24						

151:

WEAR SCREEN	ER TEST USING METHANOL FUEL
OIL CODE	AL-14965-L
SWRI NO.	LO-34460
DATE	06-08-87
TEST NO.	31-08-237-84-3
ENGINE NO.	237
TOTAL ENG H	RS 194
FUEL	M-85 (Tank # 105)
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL F	UELPhillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil	Sample:
- End of candidat	e flush ("0" hour)
- 8, 15, 20, 24 h	ours
- "New" Oil	
- 	

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-08-237-84-3	DATE	E COMPLETED 06-09-87								
AL-14965-6					SWRI OIL CODE LO-34460						
		s	TAGE I		S'	TAGE I	ī	s	TAGE I	II	
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed	, r ym	2510	2498	2504	2507	2500	2503	763	748	753	
Load,	bhp	33.7	33.2	33.4	33.6	33.2	33.4	1.2	1.0	1.1	
011	Cooler into engine, 'F	176	174	175	187	185	186	122	118	121	
	Engine aT(Out-In), °F	6	3	5	4	3	141	7	2	1	
	Pump Gallery, psi	65.8	65.0	65.2	64.4	63.0	63.6	60.0	59.0	59.6	
	Engine Gallery, psi	69.7	59.0	60.9	59.0	58.0	58.41	56.1	55.4	55.9	
	AP (Pump-Engine), psi	6.0	4.0	5.0	5.7	5.0	5.21	4.3	3.0	3.8	
	Cyl. Head Gallery, psi	59.5	57.0	58.1	57.0	55.8	56.5	55.6	53.0	54.4	
	ΔP (Engine-Head), psi	4.0	0.0	2.2	3.0	1.0	1.9	3.0	1.0	1.9	
	Cooling, min	2222		FILLE	ENTER	-		15	13	14	
Water	Jacket Outlet, 'F	136	134	135	156	155	155	121	120	120	
	AT (Out-In), 'F	15	12	14	14	13	13	13	12	13	
	Flow, gpm	15.1	14.7	14.9	15.0	14.8	14.9	E.chino		*****	
	Blowby Heat Exch., 'F	130	128	129	149	148	1481	114	113	114	
	Marine Manifold, 'F	152	149	150	171	169	170	134	130	132	
Carb.	Temperature, °F	81	80	80	81	80	801	83	80	81	
Air	Humidity, grains/1b	79.2	79.2	79.2	79.2	79.2	79.21	79.2	79.2	79.2	
	Pressure, in. H-0	0.24	0.21	0.22	0.22	0.21	0.221	0.24	0.24	0.24	
Blow	by Temperature, °F	129	127	128	147	146	1461	114	112	113	
Blow	by Rate, cfm	1.78	1.71	1.74		FIFE	******	*****	-	*****	
Crani	kcase Pressure, in. H ₂ O	0.09	0.01	0.02	0.04	0.01	0.021	1.00	0.01	0.02	
Igni	tion Timing, 'BTDC	46	46	46			-	10	10	10	
Intake Manifold Vacuum, in. Hg			7.5	8.2	8.6	7.8	8.3	15.1	14.6	14.9	
Fuel Flow, lb/hr			0.01	0.02	0.02	0.02	0.021	0.01	0.01	0.01	
Exhaust Back Press., in. H20			9.4	10.6	10.9	9.0	10.1	1.2	0.0	0.7	
Exhau	ust 02, %	2.60	1.02	1.34	2.20	1.06	1.30	0.25	0.17	0.21	
Gas	co, %	0.50	0.12	0.29	0.42	0.18	0.34	7.00	6.40	6.60	
Analy	ysis NOx, ppm	-			2340	2340	23400			-	

AUTOMOTIVE PRODUCTS & PMISSIONS RESEARCH DIVISION DEPT. OP PETROLEUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLES. 171

31-08-237-84-3

TEST:

AL-14965-1.	
;one:	
SPONSOR	

SAMPLE:

	1.0-34460	
DATE:	SWRI CODE:	CHARGE NO.:

ᆂ			i	ļ		į	i									
Ca						i										
Sb																
A n																
Mg									<u></u>							
Ba																
а														<u> </u>		
										<u> </u>				1		
uZ						,										
В										ļ) 		
МО		-	4	14	17	19								1		
P.P.		¢1	m	5	5	5										
Si		16	15	16	16	16										
νд		Ţ	<u>.</u>	<u>^</u>	Ç	1.										
ž																
Sn		₩	~	m	2	4			<u> </u>					<u> </u>		
Cu		т	4	2	9	9										
Al		<u></u>	7	7	8	6							<u> </u>		<u> </u>	
Cr		Ĉ.	-	3	3	Э									-	
Fe		-	35	180	195	212								<u>: -</u> -		<u> </u>
LN						2						-				
13	, v			<u> </u>			-			-		<u> </u>			 	
Code	Test Hours	New	ສ	16	20	24										

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SwRI NO.	LO-34026
DATE	06-10-87
TEST NO.	31-09-237-84-3
	237
	221
	M+85 Tank = 105
TEST HOURS	24
· FLUSH OIL	LO-12119
	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	**************************************
(1) Take 2 ounce Oil San	mple:
- End of candidate	flush ("0" hour)
- 8, 16, 20, 24 hou	rs
- "New" Oil	

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-09-237-84-3			DATE COMPLETED 06-11-87								
CLIEN	AL-16155-L			SWRI	OIL CO	L0-3	L0-34026					
		S	TAGE I		STAGE II			STAGE III				
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG		
Speed	, rpm	2510	2490	2499	2510	2490	2501	765	751	759		
Load,	bhp	33.7	33.1	33.4	33.8	33.2	33.6	1.1	0.6	0.8		
Oil	Cooler into engine, °F	176	174	175	186	185	186	122	118	120		
	Engine &T(Out-In), °F	2	0	1	3	2	2	5	2	14		
	Pump Gallery, psi	62.8	62.0	62.3	60.9	60.5	60.7	58.7	58.0	58.4		
	Engine Gallery, psi	58.0	56.7	57.1	55.2	54.8	55.0	55.4	55.0	55.1		
	ΔP (Pump-Engine), psi	6.0	4.0	5.2	6.0	5.5	5.6	3.6	3.0	3.4		
	Cyl. Head Gallery, psi	56.5	54.0	54.8	54.4	52.0	53.1	55.0	52.0	53.6		
	ΔP (Engine-Head), psi	4.0	0.6	2.3	3.0	0.5	1.8	3.0	0.1	1.5		
	Cooling, min		F2223	2222		2222		15	14	15		
Water	Jacket Outlet, 'F	136	133	134	155	154	155	122	121	122		
	aT (Out-In), °F	15	13	14	14	13	14	13	11	12		
	Flow, gpm	15.1	14.8	15.0	15.0	14.8	14.9	S-TES		2-532		
	Blowby Heat Exch., 'F	130	127	128	148	147	148	116	113	115		
	Marine Manifold, 'F	151	147	149	170	169	169	134	132	133		
Carb.	Temperature, °F	81	79	80	81	80	801	81	80	81		
Air	Humidity, grains/lb	82.1	79.2	79.2	79.2	79.2	79.21	79.2	79.2	79.2		
	Pressure, in. H ₂ O	0.22	0.18	0.20	0.22	0.18	0.20	0.24	0.22	0.23		
Blow	by Temperature, °F	129	127	127	146	145	146	115	112	114		
Blow	by Rate, cfm	1.90	1.72	1.85	*****	2222	-		-	2222		
Crani	kcase Pressure, in. H20	0.11	0.01	0.06	0.80	0.01	0.27	0.10	0.01	0.06		
Igni	tion Timing, 'BTDC	46	46	46	=====	*****	=====	10	10	10		
Intal	ke Manifold Vacuum, in. Hg	9.1	8.7	8.8	8.9	8.4	8.6	15.6	15.1	15.3		
Fuel	Flow, lb/hr											
Exhau	ist Back Press., in. H ₂ O	10.9	8.8	10.1	10.9	9.3	10.1	0.1	0.0	0.3		
Exhau	95t 02, %	1.18	0.15	1.00	1.20	0.99	1.11	1.10	0.23	0.57		
Gas	co, %	4.80	0.07	0.73	0.52	0.07	0.34	6.80	6.00	6.40		
Analy	rsis NOx, ppm	2222	2222	3223	2080	2080	2080		2555			

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIG. 171

31-09-237-84-3

TEST

SAMPLE:

	1.0-34026	
DATE:	SWRI CODE:	CHARGE NO.:

z		1	,	1	1	. 1		i İ				1 1		i
Ca														
Sb		}												
Mn														
Mg														
Ba	-				_									
a														
uZ														
В														
Mo		<u>.</u>	· .	3	4	5					_		_	
eg.		2	¢1	2	3	3								
Si		4	4	9	9	7	,				}			
Ag		ů	<1	<1	<1	¢1								
.1 Z						ı					i i			
Sn		ů	<1	3	5	4								
n _C		<1	<1	4	4	4								
Al		1	2	4	5	9								
Cr		<1	<u>د</u> 1	-	2	2								
Fe		3	25	69	84	92								
LN#				_										
Code	Test Hrs.	New Oil	33	16	20	24								

OIL CODE AL-15427-L SWRI NO. LO-34461 DATE 06-12-87 TEST NO. 31-10-237-84-3 ENGINE NO. 237 TOTAL ENG HRS 248 M-85 Tank # 105 FUEL TEST HOURS 24 FLUSH OIL LO-12119 FLUSH OIL FUEL Phillips "J" FLUSH TIME 3 Hours DISCUSSION (1) Take 2 ounce Oil Sample - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours - "New" Oil

WEAR SCREENER TEST USING METHANOL FUEL

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-10-237-84-3			DATE COMPLETED 06-13-87								
CLIEN	T OIL CODE AL-15427-L			SWRI	OIL CO	DE	L0-3	L0-34461				
<u> </u>		s	TAGE I	STAGE I			ī	S	TAGE III			
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG		
Speed	. rpm	2512	2494	2503	2508	2498	2503	748	733	741		
Load,	bhp	33.8	33.5	33.6	33.7	33.2	33.5	1.4	1.0	1.2		
Oil	Cooler into engine, °F	177	173	175	186	186	186	121	119	120		
	Engine AT(Out-In), °F	2	0	1	1	1	1	14	2	3		
	Pump Gallery, psi	60.2	58.9	59.6	58.4	57.3	58.0	56.0	55.0	55.2		
	Engine Gallery, psi	56.8	53.1	54.4	52.5	51.2	52.0	52.5	50.8	51.7		
	ΔP (Pump-Engine), psi	6.6	5.0	5.8	6.2	5.9	6.0	4.6	3.0	3.7		
	Cyl. Head Gallery, psi	53.8	50.5	52.3	51.1	49.0	50.0	51.5	49.0	50.3		
	ΔP (Engine-Head), psi	4.5	0.4	1.7	3.0	0.3	1.7	3.0	0.1	1.2		
	Cooling, min			######		X-	E-	16	12	14		
Water	:Jacket Outlet, °F	136	133	134	155	154	154	122	120	121		
	AT (Out-In), °F	14	13	14	14	12	13	14	12	13		
	Flow, gpm	15.1	14.8	14.9	15.0	14.8	14.9	24222		-		
	Blowby Heat Exch., 'F	130	127	128	148	147	148	115	113	114		
	Marine Manifold, °F	152	147	149	170	166	168	133	132	132		
Carb.	Temperature, 'F	82	78	81	81	80	80	32	79	80		
Air	Humidity, grains/lb	88.2	79.2	80.1	79.2	79.2	79.2	79.2	79.2	79.2		
	Pressure, in. H ₂ O	0.22	0.18	0.20	0.20	0.18	0.19	0.24	0.22	0.24		
Blow	by Temperature, 'F	129	126	127	146	144	145	114	112	113		
Blow	by Rate, cfm	1.92	1.83	1.88	Undrawn	2222	-	*****		-		
Cran	kcase Pressure, in. H ₂ O	0.90	0.10	0.50	0.60	0.10	0.40	1.00	0.10	0.60		
Igni	tion Timing, °BTDC	46	46	46	7222	-		10	10	10		
Inta	ke Manifold Vacuum, in. Hg	9.2	8.7	9.0	9.0	8.9	8.9	15.8	14.8	15.1		
Fuel	Flow, lb/hr											
Exha	ust Back Press., in. H ₂ O	11.7	8.4	10.3	11.6	10.0	10.9	0.8	0.1	0.4		
Exha	ust 02, %	1.20	0.97	1.08	1.10	0.93	1.04	0.46	0.30	0.38		
Gas	co, %	0.49	0.15	0.36	0.53	0.21	0.36	7.00	6.50	6.70		
Anal	ysis NOx, ppm			-			2110		-	40.404		

SPONSOR CODE: AL-15427-L

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIG. 171

ň	
¥	
A BOKA FORY	
3	
5	
2	
<u>ن</u> :-	
3	
ANALYTICAL	
_	

31-10-237-84-3	
TEST:	

	LO-34461	
DATE:	SWRI CODE:	CHARGE NO.:

z	1			1								
g			_								 	
Sb								_	 		 	
S								,				
Æ												
Мд												
Ва												
a,												
uZ												
В												
₩ O				3	4	5						
Pb		¢1	<u>.</u>	1	1	7						
Si		2	4	5	5	9						
Ag		<1	Ç	<1	<1	۲>						
Ni							_					
Sn		7	2	2	3	3						
ಪ		<1	<1	-	1	٦						
Al		1	2	2	Э	3						
Cr		۲>	<1	-	-	2						
Fe		7	26	49	63	7.1						
LN#												
Code	Test Hrs.	New Oil	8	16	20	24						

OIL CODE AL-15610-L LO-34579_____ SWRI NO. 06-18-87 DATE 31-11-237-84-3 TEST NO. 237 ENGINE NO. TOTAL ENG HRS 275 FUEL M-85 Tank # 105 TEST HOURS 24 LO-12119 FLUSH OIL FLUSH OIL FUEL Phillips "J" FLUSH TIME 3 Hours DISCUSSION (1) Record extra temperatures and note Phase - Oil Sump - Intake Manifold and #4 Runner -_Water Pump (2) Take 2 ounce Oil Sample - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours - "New" Oil

WEAR SCREENER TEST USING METHANOL FUEL

SEQUENCE V-D

OPERATIONAL SUMMARY

TEST	HUMB	ER 31-11-237-84-3		DATE	COMPLE	TED	06-2	0-87			
CLIEN	T OI	AL-15610-L			SWRI	OIL CO	DE	Lo-3	4579		
			s	TAGE I		s	TAGE I	I	s	TAGE I	II
			MAX	MIN	AVG	MAX	MIH	AVG	MAX	MIM	AVG
Speed	, rp	n	2513	2498	2506	2508	2491	2503	773	752	764
Load,	bhp		33.8	29.7	33.2	33.8	33.6	33.7	1.3	0.1	0.8
Oil	Cool	ler into engine, °F	176	173	175	187	185	186	121	119	120
	Eng:	ine AT(Out-In), °F	7	2	14	5	2	3	3	0	2
	Pumj	p Gallery, psi	64.8	64.0	64.3	62.8	62.0	62.4	59.9	59.0	59.6
	Engi	ine Gallery, psi	59.8	58.0	58.9	57.3	57.0	57.2	56.1	54.0	55.5
	ΔP	(Pump-Engine), psi	6.0	5.0	5.4	5.6	5.0	5.3	5.0	3.5	4.0
	Cyl.	. Head Gallery, psi	55.3	54.0	54.8	53.7	51.9	52.7	52.0	50.0	51.1
i	ΔP (Engine-Head), psi	5.7	3.0	4.1	5.3	3.4	4.4	6.0	3.0	4.4
	Cool	ling, min	22222	22223	23233	2223	22222	2222	20	14	16
Water	Jack	et Outlet, 'F	135	133	134	15 5	154	154	121	119	120
	AT (Out-In), °F	15	13	14	14	12	13	13	12	12.
	Flow	low, gpm		14.9	15.0	15.1	14.9	15.0	=====	2222	230E3
	Blow	by Heat Exch., °F	130	128	128	148	146	148	115	112	113
•	Mari	ne Manifold, 'F	151	149	150	169	168	169	133	130	132
Carb.	Temp	perature, 'F	78	81	80	79	81	80	84	79	81
Air	Humi	dity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pres	sure, in. H ₂ O	0.26	0.20	0.23	0.24	0.22	0.23	0.26	0.24	0.25
Blow	b y Te	mperature, °F	129	127	128	147	145	146	114	111	113
Blow	by Ra	ite, cfm	2.08	1.90	1.97	2222	22223	52223	22223	E====	33022
Crani	CLSC	Pressure, in. H ₂ 0	0.60	0.10	0.20	0.20	0.10	0.10	0.20	0.10	0.10
Ignit	tion	Timing, 'BTDC	46	46	46	20222	2222	22222	10	10	10
Intake Manifold Vacuum, in. Hg			9.0	8.4	8.7	8.7	8.4	8.5	15.3	14.6	15.0
Fuel Flow, 1b/hr											
Exhaust Back Press., in. H ₂ 0			10.9	8.4	10.2	11.6	10.8	11.1	0.7	0.1	0.5
Exhau	ist	02, \$	1.16	1.01	1.10	1.09	1.00	1.06	0.44	0.07	0.27
Gas		co, \$	0.60	0.34	0.50	0.55	0.39	0.50	6.90	6.20	6.60
Analy	7818	NOx, ppm	2222	11221	22220			2200	22222	23221	22222

:AMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESPARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LANGRATORY BLIS, 171

MARKETTONE IMPORATORE BEING: 171	31-11-237-84-3
	31-11-
110011	•
VUVE	:T:

	10-34579	
DATE:	SWRI CODE:	CHARGE NO.:

ż				ί	}							į
Ca					_							
qs								 			l	
S												
Mn										_		
Mg												
Ba												
d.												
uZ												
B												
Mo		< J	- C1	જ	<i>\$</i>	3						
Pb		<1	-	74	S	<u></u>						
Si		4	ភេ	9	9	7						
Ag		<1 <1		7	1.	12						
Ni											 	
Sn			\ \[\tau \]	-		4						
ਹ		2	∵ ∵	-	-	-						
A1		ţ.	₹	2	-	1						
J.		1.	-	2	2	2						
Fe		7	33	63	73	85						
LN												
Code	Test Hours	New	æ	16	20	24						

OIL CODE AL-16156-L SWRI NO. LO-33993 ______ 06-21-87 DATE TEST NO. 31-12-237-84-3 ENGINE NO. 237_____ TOTAL ENG HRS 302 M-85 Tank # 105 FUEL TEST HOURS 24 LO-12119 FLUSH OIL FLUSH OIL FUEL Phillips "J" FLUSH TIME 3 Hours DISCUSSION (1) Take 2 ounce Oil Sample - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours - "New" Oil

WEAR SCREENER TEST USING METHANOL FUEL

SEQUENCE V-D
OPERATIONAL SUNMARY

TEST	NUMBER 31-12-237-84-3			DATE	COMPLE	TED	06-2	3-87							
CULEN	AL-16156-L			SWRI	OIL CO	DE	L0-3	3993							
		s	TAGE I		s	TAGE I	I	s	TAGE I	II					
		MAX	MIM	AVG	MAX	MIM	AVG	MAX	MIM	AVG					
Speed	, rpm	2510	2498	2504	2509	2501	2505	759	752	756					
Load,	bhp	33.7	33.3	33.5	33.7	33.3	33.6	1.2	0.9	1.0					
011	Cooler into engine, 'F	177	174	175	187	186	187	122	120	121					
	Engine &T(Out-In), °F	1	0	2	3	٥	2	6	2	i,					
	Pump Gallery, psi	63.1	62.0	62.5	61.0	60.9	61.0	59.0	58.0	58.4					
	Engine Gallery, psi	57.6	57.0	57.2	55.0	56.0	55.4	55.4	54.0	54.6					
	ΔP (Pump-Engine), psi	5.7	5.0	5.3	6.0	5.0	5.6	14.14	3.0	3.8					
	Cyl. Head Gallery, psi	53.1	52.0	52.5	51.0	50.0	50.8	51.0	50.0	50.5					
	AP (Engine-Head), psi	5.5	4.0	4.7	5.1	4.0	4.5	5.0	3.0	4.1					
	Cooling, min	-	22202	11111	\$2222	22220	1233	17	14	15					
Water	Jacket Outlet, °F	136	134	135	155	155	155	122	119	120					
	AT (Out-In), °F	14	13	14	13	12	13	14	12	13					
	Flow, gpm	15.3	15.0	15.1	15.3	15.0	15.1	22222	-	82833					
	Blowby Heat Exch., °F	130	128	129	149	148	148	115	112	113					
	Marine Manifold, °F	153	149	150	170	169	170	133	130	131					
Carb.	Temperature, °F	82	79	80	82	79	81	85	80	83					
Air	Humidity, grains/1b	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2					
	Pressure, in. H ₂ O	0.24	0.20	0.22	0.24	0.20	0.21	0.26	0.23	0.24					
Blow	by Temperature, 'F	130	128	129	147	146	146	115	112	113					
Blow	by Rate, cfm	2.08	1.93	2.00	:::::	ESSEE.	12322	2222	2222	23323					
Cran	kcase Pressure, in. H ₂ O	0.20	0.10	0.10	0.20	0.10	0.10	0.20	0.10	0.10					
Igni	tion Timing, 'BTDC	46	46	46		23828	25220	10	10	10					
Inta	ke Manifold Vacuum, in. Hg	8.8	8.3	8.6	8.6	8.4	8.5	15.3	14.7	15.0					
Puel	Flow, lb/hr														
Exhaust Back Press., in. H ₂ 0			9.2	10.8	11.5	9.3	10.4	0.8	0.0	0.3					
Exhaust 02, %			1.00	1.06	1.05	0.96	1.02	0.34	0.25	0.27					
Gas	co, %	0.59	0.33	0.44	0.50	0.43	0.47	6.50	6.30	6.40					
Analy	ysis Nox, ppm	2222	23223	227.32			2730	2222	30323	2222					

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLKS. 171

AMALYTICAL LABORATORY BLIKS, 171 TEST: 31-12-237-84-3

	1.0-33993	
DATE:	SWRI CODE:	CHARGE NO.:

=		1	l	1	1						
Ca							 <u> </u>				
Sb											
Æ											
Mg											
Ва											
۵۰											
Zn											
æ											_
MO		<u>.</u>	ţ-	4	9	9					
Pb		¢1	û	~	4	4					
Si		1.	5	4	5	2					
Ag		<u>^</u>	<u>^</u>	¢1	<1						
Ni											
Sn		۵	1	3	9	7					
Cn		¢1	∵	2	2	2					
N		¢1	¢1	2	3	8					
Cr		7	-	1	2	2					
Fe		7	23	54	78	83					
LN#		_									
Code	Test Hours	ием	æ	16	20	24					

WEA	AR SCREENER	TEST USING METHANOL FUEL
OII	CODE	AL-16155~L
SwF	RI NO.	LO-34026
DAT	.E	06-23-87
TES	ST NO.	31-13-237-84-3
ENG	INE NO.	237
TOT	AL ENG HRS	329
FUE	:L	M-85 Tank # 105
TES	T HOURS	24
FLU	SH OIL	LO-12119
FLU	SH OIL FUE	Phillips "J"
FLU	SH TIME	3 Hours
DIS	CUSSION	
(1) Take 2 o	unce Oil Sa	mple:
End of	candidate	flush ("0" hour)
- 8, 16,	20, 24 hou	ırs
- "New"	oil	
		

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-13-237-84-3			DATE	COMPLE	TED	06-2	5-87		
CLIEN	AL-16155-L			SWRI	OIL CO	DE	LO-3	4026		
		s	TAGE I		s	TAGE I	I	s	TAGE I	II
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
Speed	, rpm	2510	2494	2502	2503	2498	2500	763	748	755
Load,	bhp	33.8	33.3	33.6	33.8	33.3	33.5	1.4	0.7	1.1
011	Cooler into engine, °F	177	173	175	187	185	186	121	118	120
	Engine AT(Out-In), °F	3	1	2	4	2	2	6	3	4
	Pump Gallery, psi	63.2	62.0	62.5	61.0	60.6	60.9	59.0	58.7	58.9
	Engine Gallery, psi	58.0	56.0	57.2	56.0	55.0	55.2	55.5	54.0	54.8
	ΔP (Pump-Engine), psi	6.0	4.0	5.2	6.0	5.0	5.7	5.0	3.3	4.1
	Cyl. Head Gallery, psi	54.5	53.0	53.6	52.2	51.0	51.5	52.5	50.0	51.4
	ΔP (Engine-Head), psi	5.0	2.4	3.6	4.1	2.9	3.6	4.3	2.7	3.4
	Cooling, min	-	23222	2222	-	-	22222	16	13	15
Water	Jacket Outlet, 'F	135	133	134	155	154	154	122	118	120
!	AT (Out-In), °F	14	13	14	14	13	13	14	12	13
	Flow, gpm	15.3	15.1	15.2	15.2	14.9	15.1	23011	22000	83222
	Blowby Heat Exch., °F	130	127	129	149	147	148	115	112	113
	Marine Manifold, °F	150	148	150	170	168	169	134	129	132
Carb.	Temperature, °F	81	80	80	81	79	80	85	80	83
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pressure, in. H ₂ O	0.24	0.20	0.22	0.24	0.22	0.23	0.26	0.23	0.24
Blow	by Temperature, °F	130	127	129	148	145	147	115	111	113
Blow	by Rate, cfm	2.04	1.91	1.96	6289X	200,00	*****	22222	13512	220KS
Crani	scase Pressure, in. H ₂ 0	0.40	0.10	0.10	0.40	0.10	0.20	1.00	0.10	0.30
Ignit	tion Timing, 'BTDC	46	46	46	86553	22225	22022	10	10	10
Intai	ke Manifold Vacuum, in. Hg	8.8	8.7	8.7	8.8	8.5	8.7	15.2	14.8	15.0.
Fuel	Flow, lb/hr									
Exhaust Back Press., in. H ₂ 0			10.1	10.8	11.2	9.2	10.0	0.6	0.0	0.2
Exhaust 02, %			0.92	1.01	1.01	0.93	0.99	0.46	0.40	0.42
Gas	CO, \$	0.51	0.28	0.38	0.50	0.25	0.38	6.90	6.40	6.60
Analy	rsis NOx, ppm	22222	12122	22222	2450	2210	2330	22223	22222	22323

SAMPLB:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION

É	Ξ	
TOTIVE FROMUCIA . ENIBATORA RESEARCH DIV	DEPT. OF PETROLHUM PRODUCES RESEARCH	ANALYTICAL LABORATORY BLIK. 171
¥	CTS	BLD
ממוחממ	PRODU	A'FORY
	OLBUM	LABOR
27.00	PETE	FICAL
	ò	ALY
	DEPT.	M
_		

31-13-237-84-3

TEST:

	LO-34026	
DATE:	SWRI CODE:	CHARGE NO.:

ż								1							
Ca															
Sb		<u> </u>						 			-				
Mn	<u> </u>		 	-	 - -	 			-	_			-	 - -	
Mg			<u> </u>		<u> </u>	<u> </u>									
	<u> </u>				-										
Ba															
d															
u2															
В												_			
Mo		₹	□ □	-	7	m									
Pb		1	□ □	7	7	2									
Si		2	5	7	2	3									
Ag						<u> </u>									
<u>۷</u>		<-1	<1	2		۲۰									
N i															
Sn		3	3	9	3	5									
Cn		41	41	₽	-	1									
N1		2	1	3	2	2									
5		<1	¢1	<u>^</u>	41	¢1									
Fe		10	23	46	99	89									
LN															
Code	Test Hours	New	30	16	20	24									

<u>!</u>	WEAR SCREENER	TEST USING METHANOL FUEL
,	OTT, CODE	AL-14965-L
		LO-34460
1	DATE	07-14-87
•	TEST NO.	31-14-237-84-3
1	ENGINE NO.	237
•	TOTAL ENG HRS	356
1	FUEL	M-85 Tank # 105
7	TEST HOURS	24
Ī	FLUSH OIL	LO-12119
I	FLUSH OIL FUEL	Phillips "J"
I	FLUSH TIME	3 Hours
I	DISCUSSION	
(1) Take 2	ounce Oil Sam	ole:
End_c	f candidate f	lush ("0" hour)
	. 20. 24 hours	s
		
	····	
		

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-14-237-84-3			DATE	COMPLE	TED	07-1	5-87		
CLIEN	T OIL CODE AL-14965L			SWRI	OIL CO	DE	L0-3	4460		
		s	TAGE I		s	TAGE I	ı	s	TAGE I	II
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
Speed	, rpm	2509	2493	2503	2510	2498	2507	762	755	759
Load,	bhp	33.7	33.0	33.3	33.8	33.1	33.4	1.0	0.9	1.0
011	Cooler into engine, °F	177	174	175	188	186	187	122	119	121
	Engine aT(Out-In), F	7	3	5	8	14	5	7	3	5
	Pump Gallery, psi	67.2	66.0	66.6	65.1	64.7	64.9	60.8	60.0	60.3
	Engine Gallery, psi	61.4	60.0	61.0	60.0	59.0	59.3	57.2	55.0	56.1
	ΔP (Pump-Engine), psi	6.1	5.0	5.6	6.0	5.0	5.6	5.0	3.4	4.2
	Cyl. Head Gallery, psi	57.4	55.0	56.3	58.8	54.0	55.3	52.0	50.0	51.1
	ΔP (Engine-Head), psi	6.1	4.2	5.0	6.0	0.3	4.1	6.6	4.0	5.2
	Cooling, min	39513	Market 1	-	1220	-	22503	15	13	14
Water	Jacket Outlet, 'F	135	134	135	156	154	155	122	119	121
	ΔT (Out-In), °F	14	13	14	13	13	13	14	11	12
	Flow, gpm	15.3	14.9	15.2	15.3	14.7	15.0	:2331	CHEST	62022
	Blowby Heat Exch., 'F	130	128	129	150	148	149	115	113	114
	Marine Manifold, °F	150	149	150	171	169	170	134	132	133
Carb.	Temperature, °F	81	80	81	81	80	81	82	80	81
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pressure, in. H ₂ O	0.22	0.20	0.22	0.22	0.20	0.21	0.26	0.24	0.25
Blow	y Temperature, 'F	130	127	129	148	145	146	115	112	114
Blow	by Rate, cfm	2.15	1.92	2.08	2723	20202	#####	20133	*****	22322
Crani	ccase Pressure, in. H20	0.90	0.10	0.50	0.80	0.10	0.40	1.20	0.20	0.80
Ignit	tion Timing, 'BTDC	46	46	46	-	25330		10	10	10
Intel	se Manifold Vacuum, in. Hg	8.6	7.9	8.4	8.7	8.3	8.5	14.7	14.5	14.6
Fuel	Flow, lb/hr									
Exhau	ist Back Press., in. H ₂ O	11.4	9 · 3	10.4	10.8	9.8	10.4	1.1	0.4	0.9
Exhau	ist 02, %	1.40	1.06	1.20	1.34	1.00	1.16	0.54	0.16	0.26
Gas	co, \$	0.95	0.40	0.71	0.97	0.47	0.72	6.90	6.30	6.50
Analy	rsis NOx, ppm	32330	22323	22322	2300	2300	2300	50033	22223	22223

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLKUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIG. 171

31-14-237-84-3

	7-29	:	

SPONSOR CODE:

SAMPLE:

07-16-87	IO-34460	
DATE:	SWRI CODE:	CHARGE NO.

z		,		ı - 	l !			1	1 1	l f	[!		1 1		i 1
Ca											 	.			
Sb															
Mn															
						_									
Мд															
Ва		ļ													
ď															
uz															
									ı				 		
8															
ω		¢1	3	10	13	15									
Pb		3	4	5	4	9									
Si		15	6	6	14	14									
Ag		<1	<1	<1	<1	<1									
N i														ļ	
ď.		<1	·1	1	~	7									
Cu		2	5	8	6	6									
A1		¢1	4	2	5	4	_				-				
Cr		<1	√ 1	<u>.</u>	-	п									
Fe		2	73	107	127	140									
LN							_								
	(0												 		
Code	Test Hours	New	В	16	20	24				,					

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-15610-L
SWRI NO.	LO-34579
DATE	07-16-87
TEST NO.	31-15-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	383
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEL	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sam	
- End of candiate fl	
- 8, 16, 20, 24 hour	· · · · · · · · · · · · · · · · · · ·
- "New" Oil	

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-15-237-84-3			DATE	COMPLE	TED	07-1	.7-87		
CLIEN	T OIL CODE AL-15610-L			SWRI	OIL CO	DE	L0-3	14579		
		s	TAGE I		s	TAGE I	I	s	TAGE I	II
		MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
Speed	, rpm	2513	2496	2506	2514	2505	2508	768	755	762
Load,	bhp	33.7	33.3	33.5	33.7	33.4	33.5	1.2	1.0	1.1
Oil	Cooler into engine, °F	177	175	176	187	186	186	122	120	121
	Engine AT(Out-In), °F	7	3	5	14	2	3	3	2	2
	Pump Gallery, psi	65.0	64.0	64.6	63.6	63.0	63.3	59.8	59.0	59.5
	Engine Gallery, psi	59.2	59.0	59.0	57.6	57.0	57.4	56.2	54.0	55.4
	ΔP (Pump-Engine), psi	6.9	5.0	6.0	6.2	6.0	6.0	5.0	3.2	3.9
	Cyl. Head Gallery, psi	57.4	56.0	56.8	55.0	54.0	54.6	54.0	53.1	53.6
	ΔP (Engine-Head), psi	3.8	1.6	2.5	3.0	2.4	2.7	3.1	0.0	1.8
	Cooling, min	12001	F2580	23232	-	FREEZ	-	15	14	15
Water	Jacket Outlet, °F	136	134	134	155	154	155	122	120	121
	AT (Out-In), 'F	14	13	14	14	13	13	14	11	12
	Flow, gpm	15.2	15.0	15.1	15.2	15.0	15.1	17110	22222	#####
	Blowby Heat Exch., °F	130	128	129	148	147	148	115	113	114
	Marine Manifold, °F	150	147	149	170	168	169	134	131	132
Carb.	Temperature, °F	81	78	80	82	78	80	83	80	82
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2
	Pressure, in. H ₂ O	0.22	0.20	0.21	0.22	0.20	0.21	0.26	0.24	0.25
Blow	by Temperature, °F	130	128	129	147	146	146	114	113	113
Blow	by Rate, cfm	2.37	2.13	2.24	-	22232	84222	E2222	-	£2550
Crani	case Pressure, in. H ₂ O	1.00	0.10	0.60	0.80	0.10	0.50	1.20	0.10	0.60
Ignit	tion Timing, *BTDC	46	46	46	STEEL STEEL		-	10	10	10
Intai	te Manifold Vacuum, in. Hg	9.0	8.6	8.8	8.9	8.6	8.8	15.2	14.6	14.9
Fuel	Flow, lb/hr									
Exhau	st Back Press., in. H ₂ O	11.7	10.5	11.0	11.4	10.3	11.0	3.0	1.4	1.9
Exhau	nst 02, %	1.17	0.96	1.05	1.19	0.85	1.04	0.40	0.15	0.22
Gas	co, %	0.85	0.60	0.74	0.81	0.70	0.75	6.90	6.40	6.70
Analy	sis NOx, ppm	22320	-	-	2000	2000	2000	22228	E2222	E3823

SAMPLE

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLISHM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLES. 171

TEST: 31-15-237-84-3

	1.0-34579	
DATE:	SWRI CODE:	CHARGE NO. :

METALS IN PPM

ž						1									
Ca															
Sb					<u></u>										
Mn							<u> </u>			! 	ļ	! ! 			
Mg					<u> </u> 					<u> </u> 	<u> </u> 	<u> </u> 	<u> </u>		
Ва															
مہ															
nZ															
m i															
М		<u> </u>	<u></u>	⊽		4									
Pb		<.1	Ç	2	4	2									
Si		<1	-	4	e .	4									
Ag			⊽	⊽	- □	⊽									
i.															
Sn		2	<u> </u>	⊽	7	2									
Cu		₽	-	-	2	2									
A1		۲>	⊽		2	7									
Cr		<1		4	2										
Fe		Э	28	50	64	73									
LN															
Code	Test Hours	NoN	æ	91	20	24									

S

	WEAR SCREENER	TEST USING METHANOL FUEL
	OIL CODE	AL-14966-L
	SWRI NO.	LO-35235
	DATE	07-24-87
	TEST NO.	31-16-237-84-3
	ENGINE NO.	237
	TOTAL ENG HRS	410
	FUEL	M-85 Tank # 105
	TEST HOURS	24
	FLUSH OIL	LO-12119
	FLUSH OIL FUEL	Phillips "J"
	FLUSH TIME	3 Hours
	DISCUSSION	
(1) Take 2	ounce Oil Sam	mple:
- End	of candidate f	lush ("0" hour)
_ 8, 1	.6, 20, 24 hour	's
	r" Oil	
		
		-

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-16-237-84-3			DATE COMPLETED 07-26-87								
CLIEN	T OIL CODE AL-14966-L			SWRI	OIL CO	DE	L0-3	5235				
		s	TAGE I		s	TAGE I	I	s	TAGE I	II		
		MAX	MIM	AVG	MAX	MIN	AVG	MAX	MIM	AVG		
Speed	, rpm	2510	2497	2502	2506	2500	2504	763	756	760		
Load,	bhp	33.8	33.2	33.5	33.8	33.4	33.6	1.1	0.9	1.0		
Oil	Cooler into engine, 'F	177	173	176	188	186	187	121	118	120		
	Engine AT(Out-In), °F	9	14	6	7	14	6	7	3	5		
	Pump Gallery, psi	66.6	66.3	66.4	65.0	64.6	64.7	60.7	60.1	60.4		
	Engine Gallery, psi	60.9	60.6	60.7	59.2	58.8	58.9	56.6	55.4	55.8		
	ΔP (Pump-Engine), psi	5.8	5.6	5.7	5.9	5.7	5.8	5 · 3	3.9	4.6		
	Cyl. Head Gallery, psi	60.2	59.0	59.6	58.2	56.8	57.6	55.8	54.7	55.4		
	ΔP (Engine-Head), psi	1.7	0.6	1.1	2.2	1.0	1.4	1.9	0.2	0.6		
	Cooling, min	-	63E33	STREET	2222	-	2222	15	12	14		
Water	Jacket Outlet, °F	136	133	135	155	154	154	120	122	121		
	AT (Out-In), °F	14	13	13	13	12	13	13	11	12		
	Flow, gpm	15.2	15.0	15.1	15.5	14.7	15.1	******	22221	CREST.		
	Blowby Heat Exch., °F	130	127	129	149	147	148	116	113	114		
	Marine Manifold, °F	152	148	150	171	169	170	134	113	129		
Carb.	Temperature, °F	81	78	80	81	79	80	81	79	80		
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2		
	Pressure, in. H ₂ O	0.18	0.17	0.18	0.18	0.14	0.16	0.24	0.20	0.22		
Blow	by Temperature, 'F	130	128	129	147	145	146	115	112	114		
Blow	by Rate, cfm	2.16	1.93	2.07		13333	E2020	E3222	23333	E222		
Crani	case Pressure, in. H ₂ 0	0.60	0.10	0.20	0.40	0.10	0.30	1.10	0.10	0.30		
Ignit	tion Timing, 'BTDC	46	46	46	2022	-	22222	10	10	10		
Intak	te Manifold Vacuum, in. Hg	9.0	8.4	8.6	8.8	8.6	8.7	15.5	15.0	15.2		
Fuel	Flow, lb/hr											
Exhau	ist Back Press., in. H ₂ O	11.6	9.8	10.8	11.8	10.0	10.8	1.9	0.1	1.2		
Exhau	1st 02, %	1.16	1.01	1.09	1.12	0.93	1.02	0.23	0.11	0.18		
Gas	co, %	0.79	0.64	0.71	0.82	0.70	0.76	6.60	6.20	6.40		
Analy	sis NOx, ppm	-	20220	20530	2010	2010	2010	11121	2222B	20020		

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIS: 171

SE -

SPONSOR CODE: AL-14966-L.

TEST: 31-16-237-84-3

DATE: 1.0-35235

CHARGE NO.:

Ż			 										
Ca										·			
Sb													
Mn		1				_							
Mg													
Ва													
a		i —											
nz							<u></u>						
=	:								<u>-</u> 				
MO		7	-	9	3	0.1							
Pb		7	-	4	4	5							
Si		14	ກ	7	7	Э		: 	-	 			
ЬĄ		7	⊽	Ţ.	٠1 د	1>				 		 	
iz													
Sn		Ţ	7	5	J.	10							
c.		-	3	3	3	3							
A1		2	3	4	S.	5							
cr		7	7	Ū	<1	د1							
Fe		-	28	51	62	7.1							
I.N.								i				 	
Code	Test Hours	New	ສ	16	7.0	24							

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-34369
DATE	07-26-87
TEST NO.	31-17-237-84-3
ENGINE NO.	237
TOTAL ENG HRS	437
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUE	L Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sa	ample:
- End of candidate	flush ("0" hour)
- 8, 16, 20, 24 hou	ırs
- "New" Oil	······································

SEQUENCE V-D
OPERATIONAL SUMMARY

TEST	NUMBER 31-17-237-84-3	DATE COMPLETED 07-28-87									
CLIEN	T OIL CODE AL-16155-L		SWRI OIL CODE LO-34369								
		s	TAGE I	STAGE II			STAGE III				
		MAX	MIM	AVG	MAX	MIN	AVG	MAX	MIM	AVG	
Speed, rpm			2501	2505	2512	2504	2507	763	752	756	
Load,	bhp	33.7	33.4	33.6	33.7	33.2	33.5	1.0	0.8	0.9	
011	Cooler into engine, °F	177	174	175	187	186	187	120	119	120	
	Engine AT(Out-In), °F	14	2	3	4	3	4	5	4	5	
	Pump Gallery, psi	63.8	62.9	63.5	61.8	61.0	61.5	59.6	58.8	59.1	
	Engine Gallery, psi	57.8	57.0	57.5	55.7	55.0	55.4	55.4	54.0	55.0	
	ΔP (Pump-Engine), psi	6.2	5.7	6.0	6.2	6.0	6.1	5.0	3.5	4.2	
	Cyl. Head Gallery, psi	56.6	56.0	56.4	54.4	53.9	54.1	54.8	54.0	54.5	
	ΔP (Engine-Head), psi	1.3	1.0	1.1	1.6	1.0	1.2	1.4	0.0	0.7	
	Cooling, min		2222	-	25222	12222	ETTER!	16	13	14	
Water	Jacket Outlet, 'F	136	134	135	156	155	156	122	119	120	
	ΔT (Out-In), °F	14	13	13	13	12	12	12	10	11	
	Flow, gpm	15.3	15.0	15.1	15.0	14.9	15.0	2222	23233	2220	
	Blowby Heat Exch., °F	131	129	129	150	149	150	116	112	114	
	Marine Manifold, °F	150	150	150	171	169	170	133	129	131	
Carb.	Temperature, °F	81	80	80	81	79	80	81	79	80	
Air	Humidity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	
	Pressure, in. H ₂ O	0.18	0.14	0.17	0.18	0.14	0.17	0.24	0.21	0.23	
Blowb	by Temperature, °F	130	128	129	149	146	148	115	112	113	
Blowt	by Rate, cfm	2.48	2.08	2.26	2222	838E3	2222	23233	£2929	-	
Crank	case Pressure, in. H20	1.00	0.30	0.80	0.90	0.30	0.60	1.30	0.80	1.00	
Ignit	cion Timing, 'BTDC	46	46	46	22222	22232	21121	10	10	10	
Intak	ce Manifold Vacuum, in. Hg	9.1	8.8	8.9	9.0	8.8	8.8	15.7	15.5	15.6	
Fuel Flow, lb/hr											
Exhaust Back Press., in. H ₂ 0			9.1	10.2	12.0	9.6	10.5	1.0	0.6	0.8	
Exhaust 02, %			0.96	1.08	1.16	0.93	1.02	0.60	0.22	0.36	
Gas	co, %	0.96	0.70	0.81	0.87	0.70	0.80	6.70	6.40	6.60	
Analy	rsis NOx, ppm	2222	39220	22222			2050	22222	2223	2222	

SAMPLE:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION

	RPT. OF PETROLRUM PRODUCES RESEARCH	171
	Crs RE	ANALYTICAL LABORATORY BLIK: 171
	PRODU	RATORY
	ROLEUM	INBOI
	PP PET	YTICAL
:	EPT. (ANAL

31-17-237-84-3

TEST

	LO-34369	
DATE:	SWRI CODE:	CHARGE NO.:

z	١	1	1	1	1	i	l			1			
Ca								\ 					
qs					Ì								
M													
Мд													
Ва													
ď													
uz													
æ			İ										
MO		7	7	7	7	<1							
Pb		1	9	2	4	1							
Si		₽	₽	-		2							
Ag		⊽	⊽	<u>~</u>	7	<1							
Z													
Sn		7	20	10	6	9							
Cu		1	-	2	2	2							
Al		3	4	4	77	4							
cr		<1	2	<u>.</u>	<1	⊽							
Fe		77	20	40	45	57							
Liv.		!			_								
code	Test Hours	New	Ω	16	20	24					***************************************		

WEAR SCREENER TEST USING METHANOL FUEL OIL CODE AL-14966-L SwRI NO. LO-35235 DATE 07-31-87 TEST NO. 31-18-237-84-3 ENGINE NO. 237_______ TOTAL ENG HRS 464 FUEL M-85 Tank # 105 TEST HOURS 24 LO-12119 FLUSH OIL FLUSH OIL FUEL Phillips "J" FLUSH TIME 3 Hours DISCUSSION (1) Take 2 ounce Oil Sample: - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours <u>- "New" Oil</u>

SEQUENCE V-D

OPERATIONAL SUMMARY

TEST	NUMB	ER 31-18-237-84-3			DATE	COMPLE	TED	07-3	1-87			
CLIEN	T DI	L CODE AL-14966-L			SWRI OIL CODE LO-35235							
			s	TAGE I		STAGE II			s	TAGE I	III	
			MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed	, rp	in .	2512	2508	2509	2525	2509	2513	766	751	755	
Load,	bhp		33.7	33.1	33.5	33.7	33.4	33.5	1.0	0.8	1.0	
Oil	Coo	ler into engine, °F	177	175	176	189	185	187	122	119	121	
l	Eng	ine AT(Out-In), °F	7	4	6	7	4	6	6	14	5	
	Pum	p Gallery, psi	66.6	66.0	66.4	65.2	64.0	64.7	60.5	60.0	60.2	
	Eng	ine Gallery, psi	60.9	60.0	60.6	59.4	58.7	59.0	56.6	55.0	56.0	
	ΔΡ	(Pump-Engine), psi	6.4	5.6	6.0	6.3	5.0	5.8	6.0	4.1	4.8	
	Cyl.	. Head Gallery, psi	59.9	58.0	59.4	57.7	57.0	57.4	56.0	54.0	55.2	
	ΔP	(Engine-Head), psi	2.0	0.7	1.3	2.4	1.1	1.8	1.4	0.0	0.8	
	Cool	ling, min	23203	83220	22222	2222	83323	2222	15	13	14	
Water	Jack	ket Outlet, °F	135	133	134	155	155	155	122	119	120	
	AT I	(Out-In), °F	14	13	13	14	12	13	13	11	12	
	Flow	, gpm	15.3	14.9	15.1	15.2	14.8	15.0	2222	*****	2222	
	Blow	rby Heat Exch., °F	130	128	129	149	148	149	116	112	114	
	Mari	ine Manifold, °F	150	149	150	171	169	170	142	130	133	
Carb.	Tem	perature, °F	82	79	81	82	80	81	83	80	81	
Air	Humi	idity, grains/lb	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	79.2	
	Pres	ssure, in. H ₂ 0	0.18	0.17	0.17	0.18	0.15	0.17	0.24	0.22	0.23	
Blow	by Te	emperature, °F	130	128	129	149	147	148	115	112	113	
Blow	by Ra	ite, cfm	2.18	2.05	2.14	23233	E2223	22223	23223	2===	2222	
Cran	KC&&	Pressure, in. H ₂ O	0.80	0.20	0.40	0.40	0.20	0.30	1.10	1.00	1.00	
Igni	tion	Timing, 'BTDC	46	46	46	22230	22222	21221	10	10	10.	
Intal	ke Ma	nifold Vacuum, in. Hg	8.9	8.4	8.6	8.8	8.5	8.6	15.2	15.1	15.2	
Fuel	Flow	, lb/hr										
Exhai	ust E	Back Press., in. H ₂ 0	11.7	10.0	10.7	11.7	8.6	10.3	1.1	0.1	0.7	
Exhai	ust	02, \$	1.18	1.00	1.10	1.05	0.95	1.00	0.65	0.19	0.46	
Gas	[co, %	0.97	0.80	0.87	0.95	0.80	0.85	6.70	6.20	6.40.	
Analy	ysis	NOx, ppm	2222	112333	23223			2350	=====	23223	2222	

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION

•		
•	_	
•	=	
	\simeq	
•	=	_
5	5	
	~	_
÷	U:	_
•	22	
•	~	
:		×
•	22	=
•	H	=
_	ě١	==
2	~	
•	≍	\succ
)	=	2
4	₹,	0
2	Ĩ	Ē
Ď	-	~
ï	_	-≥
ř	Σ	5
3	\supset	₹.
•	22	7
	=	3
•	0	_
	~	
4	-	=
•	22	-
į	죠	U
•	_	_
3	٥.	F
)	=	>
4	•	_a
ULIVE FRODUCIS & CAISSIONS RESEARCH FOR	DEPT. OF PETROLBUM PRODUCTS RESEARCH	ANALYTICAL LABORATORY BLIKS. 171
	-	Z
a	2	•
>	***	•
4	#	
-	=	
ż		

31-18-237-84-3

TEST

DATE: 07-30-87	SWRI CODE: 1.0-35235	CHARGE NO.:
0-87	5235	

METALS IN PPM

ž														
బ														
Sp														
A.														
Мд												<u> </u>		
Ba														
۵,														
			_		<u> </u>	i i								
uz														
8														
Mo		₽	<u>.</u>	2	_	~								
Pb		-	3	4	2	5								
Si		17	12	6	10	10								
Ag		₽	<u>^</u>	7		₹								
ź		·												
Sn		1.	7		2	<u></u>								
S		1	4	4	4	4								
A1		₽.	2	2	2	2								
25			<u>د</u> 1	<u></u>	2	7								
Fe		-	18	36	46	55					_			
LN							_							
Code	Test Hours	MeM	æ	16	20	24								

....

APPENDIX B

Individual Summary Data Sheets for Each Test Conducted Using the Steady-State (Cold) Test Conditions

WEAR SCREENER	TEST USING METRANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-34369
DATE	08-26-87
TEST NO.	31-01-10-85-3
ENGINE NO.	10
TOTAL ENG HRS	5
FUEL	Phillips "J"
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEI	Phillips "J"
FLUSH TIME	5 Hours*
DISCUSSION	
(1) Take 2 ounce Oil Sar	mple:
- End of candidate	flush ("0" hour)
- 8, 16, 20, 24 hour	rs
- "New" Oil	

^{*}Includes 2-hour V-D break-in and coolant flush.

SEQUENCE V-D

OPERATIONAL SUMMARY

TEST	NUMB	31-01-10-85-3			DATE COMPLETED 08-27-87							
CLIEN	T OI	L CODE AL-16155-L			SWRI OIL CODE							
			g	TAGE I	STAGE I			ı	S'	TAGE III		
			MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG	
Speed	, rp	m	2511	2501	2505	2513	2506	25091	756	747	752	
Load,	bhp		33.8	33.2	33.5	33.9	33.3	33.6	1.4	1.2	1.3	
Oil	Coo	ler into engine, °F	176	173	175	187	186	186	132	118	121	
	Eng	ine AT(Out-In), °F	1 4	2	3	3	2	21	1	0	0	
	Pum	p Gallery, psi	61.5	58.0	59.2	57.5	56.0	56.71	58.8	57.0	58.2	
	Eng	ine Gallery, psi	1 54.0	1 50.0	51.6	51.0	48.0	49.11	54.01	52.0	53.1	
	ΔP	(Pump-Engine), psi	1 8.3	6.5	7.6	8.1	6.5	7.51	5.71	4.5	5.2	
	Cyl	. Head Gallery, psi	51.4	1 48.0	48.9	47.0	1 45.0	45.911	52.01	42.0	49.6	
	ΔP	(Engine-Head), psi	1 4.0	2.0	2.7	4.0	3.0	3.511	3.5	1.2	2.0	
	Cool	ling, min	10.23.80	医 对射 生物	野児園園園	STATE OF THE PARTY	HILLENS	EMBER 1	15	12	14	
Water	Jack	ket Outlet, 'F	135	133	134	156	155	1561	1221	118	119	
	ΔT ((Out-In), 'F	15	14	15	15	13	141	15	9	13	
	Flow	, gpm	1 15.3	14.8	15.0	15.2	14.8	15.1	非智慧技術(With the last of t	Distriction of	
	Blow	vby Heat Exch., 'F	131	128	130	152	150	151	119	102	113	
	Mar	ine Manifold, °F	150	147	149	171	169	170	137	121	131	
Carb.	Temp	perature, 'F	81	78	801	81	79	8011	861	81	82	
Air	Humi	idity, grains/lb	1 79.2	79.2	79.2	79.2	79.21	79.21	79.21	79.21	79.2	
	Pres	ssure, in. H ₂ 0	0.26	0.22	0.24	0.26	0.201	0.24!	0.281	0.231	0.26	
Blow	by Te	emperature, °F	1 133	130	132	152	150	151	118	1021	112	
Blow	by Ra	ite, cfm	2.33	2.03	2.15	EXEC		E31252			SHEET	
Crani	kcase	Pressure, in. H ₂ 0	0.03	0.01	0.02	0.02	0.01	0.01	0.091	0.01	0.04	
Ignit	tion	Timing, °BTDC	1 46	46	461			SERRE	10	10	10	
Intal	ke Ma	nifold Vacuum, in. Hg	8.8	8.2	8.6	8.7	8.21	8.51	15.7	15.11	15.5	
Fuel	Flow	, lb/hr							1			
Exhau	ust B	Back Press., in. H ₂ O	11.2	9.3	10.3	10.7	10.0	10.41	1.1	0.1	0.7	
Exhau	ıst	02, %	1.16	0.96	1.05	1.10	0.95	1.0211	0.521	0.431	0.48	
Gas		co, %	0.43	0.28	0.36	0.40	0.331	0.361	4.01	3.21	3.6	
Analy	/sis	NOx, ppm	· · · · · · · · · · · · · · · · · · ·	Extal	BERRY!		1	356011		K WITTER	在 电影电影	

SAMPLR:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIK: 171

31-01-10-85-3

TEST

08-26-87	1,0-34369	
DATE:	SWRI CODE:	CHARGE NO.

METALS IN PPM

Ž			1		1		ĺ						
်													
qs													
Æ				<u> </u>						 			H
							 	 <u> </u>		 <u> </u>		<u> </u>	
Mg													
Ba													
d													
uZ													
B													
Мо		⊽	~	ā	V	Ç							
Pb		9	я	9	4	8							
Si		<1	5	7	ສ	7							
Ag		<1	د <u>ا</u>	<-1	2	<-li>1>							
N.													
Sn		¢1	∴	CI	m	7							
r)			9	7	80	10							
Al		<1	9	7	ж	10							
5		<1	.1	<u>^</u>	<u>^</u>	4.1							
Fe		м	5	7	30	6							
LN#													
Code	Test Hours	new oil	ສ	16	7.0	1.5							

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-35822
DATE	09-15-87
TEST NO.	31-02A-10-85-3
ENGINE NO.	10
TOTAL ENG HRS	62
FUEL	M-85 Tank # 105
TEST HOURS	2.4
FLUSH OIL	LO-12119
FLUSH OIL FUEL	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sar	mple:
End_of_candidate_f	flush ("0" hour)
- 8, 16, 20, 24 hour	cs
- "New" Oil	
(2) Note test conditions	s are "steady state"

 Client Oil Code:
 AL-16155-L
 Test Number:
 31-02A-10-85-3

 Laboratory Oil Code:
 LO-35822
 Date Completed:
 09-16-87

		Maximum	Minimum	Average
Speed, rpm		2506	2497	2502
Load, bhp		33.7	33.2	33.5
	Cooler into Engine, °F	126	123	125
	Engine AT (Out-In), °F	18	13	15
l	Pump Gallery, psi	71.3	69.0	69.7
oil	Engine Gallery, psi	54.0	62.0	62.8
j	AP (Pump-Engine), psi	3,0	5.3	6,9
i	Cylinder Head Gallery, psi	60.8	58.0	59.8
	ΔP (Engine-Head), psi	4.0	2.5	2.0
 	Cooling, minutes	////////	1///////	////////
	Jacket Outlet, °F	116	113	115
	AT (Out-In), °F	10	8	9
Water	Flow, gpm	15.2	15.0	15.1
	Blowby Heat Exchanger, °F	113	107	111
	Marine Manifold, °F	93	86	90
Carburetor	Temperature, °F	82	80	81
Air	Humidity, grains/lb	79,2	79.2	-g.2
	Pressure, in. H ₂ O	2.26	0,21	2,23
Blowby Tempe	erature, °F	118	108	113
Blowby Rate	, cfm	2,10	2.02	2.07
Crankcase Pi	ressure, in. H ₂ O	5,0+	1.8	÷.5+
Ignition Tim	ning, °BTDC	46	46_	46
Intake Manii	Fold Vacuum, in. Hg	9.3	8.6	3.9
Fuel Flow,	lbs/hr			
Exhaust Back	Pressure, in. H ₂ O	10.6	9.5	13.7
Exhaust	02, 3	1,00	2.52_	`.77
Gas	co. 3	0.83	ე,6ე	2.73
Analysis	NOx, ppm			1960

AUTOMOTIVE PRODUCTS & 1. ASSIONS RESEARCH DIVISION DEPT. OP PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLES. 171

31-028-10 85-3

TEST

78-51-60	SWRI CODE: 1,0-35822	CHARGE NO.:
DATE	SWRT C	CHARGE

METALS IN PPM

ž															:
Ca												·			
qs															
Mn								[<u> </u>				 	 	
Mg											<u> </u>			<u> </u>	
Ва									<u> </u> 						
G,]			 	<u> </u> 	
u2						 .	<u> </u> 		}		<u> </u>				
				-								!	 -		
8			, , ,												
Mo		<u>^</u>	-	4	7	7									
Pb		9	я	14	91	22									
Si		۲,	~	7	10	13									
Ag		<1	Ţ.	<1	<u>دا</u>	۲ ⁻									
ž															
Sn		<15	<15	<15	<15	<15									
η		₽	14	27	37	47									
A1		ţ		3	<1	9									
Cr		∵	∵	¢1	<1	√ 1									
Fe		æ	37	86	169	268									
LN															
Code	Test Hours	Nex	π	â	0.7	4									

URGENCY DATE:

WEAR SCREENER TEST USING METHANOL FUEL OIL CODE _AL-15427-L SWRI NO. LO-34461 09-17-87 DATE 31-03-10-85-3 TEST NO. _10____ ENGINE NO. TOTAL ENG HRS 89 FUEL M-85 Tank # 105 TEST HOURS 24 FLUSH OIL LO-12119 FLUSH OIL FUEL Phillips "J" FLUSH TIME _ 3 Hours DISCUSSION ____ (1) Take 2 ounce Oil Sample: - End of candidate flush ("0" hour) - 8, 16, 20, 24 hours - "New" Oil (2) Note test conditions are "steady state"

 Client Oil Code:
 AL-15427-L
 Test Number:
 31-03-10-85-3

 Laboratory Oil Code:
 L0-34461
 Date Completed:
 09-18-87

Maximum | Minimum | Average 2508 2496 2502 Speed, rom 33.7 33.4 33.6 Load, bho 126 Cooler into Engine, °F 124 126 14 11 Engine LT (Cut-In), °F 12 69.6 66.9 l 58.7 Pump Gallery, psi Engine Gallery, psi 52.0 60.5 61.6 Dil 7.9 iP (Pump-Engine), psi 5.0 7.0 <u>52.</u>0 <u>56.4</u> Cylinder Head Gallery, psi 58.4 LP (Engine-Head), psi 4.5 1.8 3.4 Cooling, minutes Jacket Outlet, °F 116 114 115 11 AT (Out-In), °F 10 Water 18.2 15.0 15.4 Flow, gpm Blowby Heat Exchanger, °F 112 109 110 90 83 i Marine Manifold, °F 87 81 Temperature, °F 30 Carburetor 79.2 79.2 Humidity, grains/lb 79.2 Air 0.24 0.22 Pressure, in. HaO 0.24 113 Blowby Temperature, °F 110 112 Blowby Rate, ofm 2.12 2.02 2.09 1.80 0.19 1.28 Crankcase Pressure, in. HaO Ignition Timing, °BTDC 46 46 46 9.2 8.8 Intake Manifold Vacuum, in. Ho 3.0 ___ | ---Fuel Flow, lbs/hr ---Exhaust Back Pressure, in. HgO 11.0 9.9 10.4 1.15 i 0.91 Exhaust 3.46 $\mathfrak{I}_{2,k}$ 1 53, 1 1.43 1.23 2.75 Analysis 1 NOx, irm 1980

AUTOMOTIVE PRODUCTS & EL.SSIONS RESEARCH DIVISION DEPT. OP PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLIKE, 171

_		
7		
;		
131.1X5.		
2		
2		
S		
LABORATORY		
-		
ANALYTICAL		
Ž		
<		

TEST:

DATE:	SWRIC
31-03-10-65-3	
-111-11	

09-17-87

1.0-34461

SWRI CODE:

METALS IN PPM

ž	1	١ ,	. 1		ļ	ı	1	ı	ı	ŀ	ı	ı	I	ł	ı 1	
						_										
Ca																
gs																
Mn																
Mg																
Ва																
ā,																
uz																
æ																
Mo		<u>.</u>	7	~	3	2										
Pb		4	7	3	6	12										
Si		4	5	7	10	13										
Αg		٠ <u>1</u>	Ţ	<.1	<1	4.1										
Z																
Sn		د15	<15	<15	<15	<15										
Cu		<1	3.1	3.1	38	41										
A 1		÷	7	7	٣	٣										
cr		Ţ	7	∵	~	7						 				
Fe		~	77	36.	170	305										
I.N.						! !							! ! !			
Code			£ .		3.	-	1					1				

URGERICY DATE:

	WEAR SCREENER	TEST USING METHANOL FUEL
	OIL CODE	AL-15610-L
	SWRI NO.	LO-34579
	DATE	09-20-87
	TEST NO.	31-04-10-85-3
	ENGINE NO.	10
	TOTAL ENG HRS	116
	FUEL	M-85 Tank # 105
	TEST HOURS	24
	FLUSH OIL	LO-12119
	FLUSH OIL FUEL	Phillips "J"
	FLUSH TIME	3 Hours
	DISCUSSION	
(1)	Take 2 ounce Oil Sam	ole:
	- End of candidate fl	Lush ("0" hour)
	- 8, 16, 20, 24 hours	<u> </u>
	- "New" Oil	
(2)	Note test conditions	are "steady state"
	· · · · · · · · · · · · · · · · · · ·	

Client Oil Code: AL-15610-L Test Number: 31-04-10-85-3

Laboratory Oil Code: LO-34579 Date Completed: 09-21-87

	<u> </u>	Maximum	Minimum	Average
Speed, rpm		2508	2498	2502
Load, bhp		33.7	33.2	33.5
	Cooler into Engine, °F	127	124	126
! i	Engine AT (Out-In), °F	21	18	19
	Pump Gallery, psi	72.6	70.5	71.2
) : 0il	Engine Gallery, psi	65.1	64.0	64.9
911	AP (Pumb-Engine), psi	8.0	5.5	7.5
	Cylinder Head Gallery, psi	59.8	58.0	59.0
	ΔP (Engine-Head), psi	7.0	5.0_	5.9
	Cooling, minutes	////////	////////	111111111
	Jacket Outlet, °F	116	113	115
	AT (Out-In), ?F	12	9	10
Water	Flow, gpm	15.4	14.8	15.0
	Blowby Heat Exchanger, °F	113	107	110
	Marine Manifold, °F	92	87	39
Carburetor	Temperature, °F	81	78	80
Air	Humidity, grains/lb	79.2	79.2	79,2
74.L	Pressure, in. H ₂ O	0.26	2.22	0.24
Blowby Tempe	erature, °F	115	110	112
Blowby Rate	, cfm	2.29	1.95	2.10
Crankcase Pr	ressure, in. H ₂ O	5.00	0.08	2,40
Ignition Timing, °BTDC		46	46	46
Intake Manifold Vacuum, in. Hg		8.8	8.4	8.6
Fuel Flow, lbs/hr				
Exhaust Back Pressure, in. HaO		11.6	9.3_	12.3
Exhaust 02, 3		1.19	0.96	2.09
Gas CO, 3		0.51	0.31	0.42
Analysis	NOx, ppm			2100

AMPLR:

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANAI.

	TEST	
	PONSOR CODE: AL-15010-L	
	CODE:	
-	HORRON	

171	
BLDG.	
ATORY	
INIVI	
XTECAL	
	LYTICAL LABORATORY BLIKL, 171

31-04-10-85-3

09-20-87		
DATE:	SWRI CODE:	CHARGE NO. :

METALS IN PPM

ž						ł		}	}				
Ca													
Sb			-									-	
Mn													
Σ													
Мд													
Ba										_			
Р													
uZ													
æ													
MO		∵	¢1	11	12	5							
Pb		¢.1	<-li>-	<1	<1	<1							
Si		4	5	9	7	6							
Λg		-	<1	<1	<.1	<1							
ž.													
Sn		<15	<15	<15	<15	<15							
Cn		<1	11	14	15	18							
۸1		₽	<1	<1	41								
Cr		1	¢1	5	2	3							
Fe		3	19	52	75	187							
LN													
Code	Test Hours	New	Σ	lo	20	7							

URGRUCY DATE:

	•
OIL CODE	AL-16155-L
SWRI NO.	LO-34369
DATE	09-22-87
TEST NO.	31-05-10-85-3
ENGINE NO.	10
TOTAL ENG HRS	143
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEL	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Samp	le:
- End of candidate fl	ush ("0" hour)
- 8, 16, 20, 24 hours	
- "New" Oil	
(2) Note test conditions	are "steady state"
<u> </u>	

WEAR SCREENER TEST USING METHANOL FUEL

Client Oil Code: AL-16155-L Test Number: 31-05-10-85-3

Laboratory Oil Code: LO-35822 Date Completed: 39-23-87

		Maximum	Minimum	Average
Speed, rpm		2509	2500	2504
Load, bhp		33.7	33.2	33.5
	Cooler into Engine, °F	126	123	125
 -	Engine AT (Out-In), °F	18	14	16
	Pumb Gallery, psi	71,0	68.8	70.1
oil	Engine Gallery, 551	63.5	62.9	63.1
911	AP (Pumb-Engine), psi	3.5	5.8	- : i
	Cylinder Head Gallery, psi	61.6	59.2	60.8
	AP (Engine-Head), psi	3.8	1.9	2.3
	Cooling, minutes	////////	////////	////////
	Jacket Outlet, °F	116	114	116
	ΔT (Out-In), °F	10	9	10
Water	Flow, gpm	15.3	15.0	15.1
	Blowby Heat Exchanger, °F	116	112	114
	Marine Manifold, °F	93	85	89
Carburetor	Temperature, °F	81	78	30
Air	Humidity, grains/lb	79.2	79.2	79.2
	Pressure, in. H ₂ O	0.24	ე.20	0.23
Blowby Tempe	erature, °F	113	109	111
Blowby Rate	. cfm	2.29	2.02	2.10
Crankcase Pi	ressure, in. H ₂ O	2.2	0.6	2.4
Ignition Timing, °BTDC		46	46	46
Intake Manifold Vacuum, in. Hg		9.2	3.8	3.0
Fuel Flow, lbs/hr				
Exhaust Back Pressure, in. H ₂ O		11.5	9.7	10.6
Exhaust	02, 3	1.19	1.00	1.06
Gas	CO, 3	7.32	0.14	7.22
Analysis	110x, ppm			1950

AUTOMOTIVE PRODUCTS & E. (SSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH

Š	171
TS KE	ANALYTICAL LABORATORY BLIKI, 171
	rory 1
WOST	NBORA:
FEROL	.vr. 17
2	LYTIC
DEPT. OF PETROLISUM PRODUCTS RESEAR	ANA
_	

-05	=	~
31-05		

09-77-87	: LO-35822	
DATE:	SWRI CODE:	CHARGE NO.

METALS IN PPM

Code	LN	Fe	Cr	Al	Cu	Sn	NI	Ag	Si	Pb	MO	В	u2	ď	Ba	М	M	Sb	Ca	Ž
Test Hours												-								
New		2	<1	3	41	<15		<1	2	<1	<1									
8		27	<1	4	9	<15		₽	3	4	4									
16		69	<1	9	6	<15		Ţ	9	2	8									1
20		102	<1	5	11	<15		₽	7	15	6									
24		162	1	4	14	<15		₹	8	1	12									
											-									
												,								}
									·											
=														•	RGENCY	URGRUCY DATE:				

	WEAR SCREENER	TEST USING METHANOL FUEL
	OTT. CODE	AT. 15427 T
		AL-15427-L
		LO-34461
	DATE	09-24-87
	TEST NO.	31-06-10-85-3
	ENGINE NO.	10
	TOTAL ENG HRS	170
	FUEL	M-85 Tank # 105
	TEST HOURS	24
	FLUSH OIL	LO-12119
	FLUSH OIL FUEL	Phillips "J"
	FLUSH TIME	3 Hours
	DISCUSSION	
(1)		
	- End of candidate f	lush ("0" hour)
	- 8, 16, 20, 24 hour	s
	- "New" Oil	
(2)	Note test conditions	are "steady state"
		** ***********************************

 Client Oil Code:
 AL-15427-L
 Test Number:
 31-06-10-85-3

 Laboratory Oil Code:
 LO-34461
 Date Completed:
 09-25-87

		Maximum	Minimum	Average
Speed, rpm		2508	2500	2503
Load, bhp		33.8	33.3	33.6
	Cooler into Engine, °F	126	123	125
	Engine AT (Out-In), °F	13	10	11
: !	Pump Gallery, psi	68.6	66.0	67.5
oil	Engine Gallery, psi	51.5	59.8	50.6
311	AP (Pump-Engine), psi	3.0	5.8	6.9
	Cylinder Head Gallery, psi	57.7	56.0	57.1
	<pre>AP (Engine-Head), psi</pre>	4.1	2,5	3.5
<u> </u>	Cooling, minutes	////////	////////	111111111
	Jacket Cutlet, °F	117	114	115
! i	AT (Out-In), °F	12	7	9
Water	Flow, gpm	15.3	14.8	15.0
!	Blowby Heat Exchanger, °F	113	108	110
	Marine Manifold, °F	90	85	97
Carburetor	Temperature, °F	81	78	79
Air	Humidity, grains/lb	79.2	79.2	79.2
	Pressure, in. HoO	0.24	0.21	2.23
Blowby Temperature, °F		117	109	:13
Blowby Rate, cfm		2.50	2.23	2.34
Crankcase Pressure, in. H2O		3.00	0.08	1.32
Ignition Timing, °BTDC		46	46	46
Intake Manifold Vacuum, in. Hg		9.2	8.8	9.0
Fuel Flow,	lbs/hr			
Exhaust Back	Pressure, in. H ₂ O	11.3	9,0	12.2
Exhaust	02, 3	1.14	1,00	1.09
Gas	CO, 3	2.46	0.14	2.34
Analysis	NOx, ppm			2200

AUTOMOTIVE PRODUCTS & EMISSIONS RESEARCH DIVISION DEPT. OF PETROLRUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLAS. 171

31-06-10-85-3
TEST:

-87	161	
09-24-87	1,0-34461	•
	SWRI CODE:	CHARGE NO.:
DATE:	SWRI	CHAR

METALS IN PPM

ž	ļ	1					İ	ĺ				
Ca												
	<u> </u>											
Sb												
M												
Mg												
Ва												
Ь												
u2												
В												
Mo		· .	ć.	1	2	7						
Pb		<1	^	¢1	4.1	5						
Si		2	4	7	R	10						
Ag		<1	⊽		¢.	7						
Ni												
Sn		<15	<15	<15	<15	<15						
ດວ		7	6	12	13	17						
Al		<1	¢1	¢1	<1 <1	41						
Cr		<1	⊽		1	٦						
Fe		9	22	74	104	149						
LN												
Code	Test Hours	New	ω	16	20	5.4						

URGENCY DATE:

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-15610-L
	LO-34579
	09-29-87
TEST NO.	31-07-10-85-3
ENGINE NO.	10
TOTAL ENG HRS	197
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEL	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Sam	ole
- End of candidate f	lush ("0" hour)
	5
- "New" Oil	
(2) Note test conditions	are "steady state"
127 Note test conditions	are steady state
	
	

Client Oil Code: AL-15610-L Test Number: 31-07-10-85-3

Laboratory Oil Code: LO-34579 Date Completed: 09-30-87

		Maximum	Minimum	Average
Speed, rpm		2508	2493	2504
Load, bhp		33.8	33.4	33.6
	Cooler into Engine, °F	126	124	125
	Engine AT (Out-In), °F	20	10	17
· !	Pump Gallery, psi	71.6	69.5	70.9
oil	Engine Gallery, psi	54.0	63.0	53.6
311	1P (Pump-Engine), psi	8.6	5.5	7.4
	Cylinder Head Gallery, psi	50.4	58.5	59.4
	ΔP (Engine-Head), psi	5.5	3.0	4.2
	Cooling, minutes	////////	////////	////////
	Jacket Outlet, °F	117	114	115
	AT (Out-In), °F	10	8	9
Water	Flow, gpm	15.3	15.0	15.2
	Blowby Heat Exchanger, °F	113	110	112
	Marine Manifold, °F	92	86	39
Carburetor	Temperature, °F	<u>8</u> 2	75	80
Air	Humidity, grains/lb	79.2	79.2	79.2
	Pressure, in. HaO	0.24	0.18	0.21
Blowby Temperature, °F		117	_ 111_	113
Blowby Rate	2.44	2.34	2.38	
Crankcase Pr	2.5	1.2	1.8	
Ignition Tim	46	46	46	
Intake Manif	9.0	8.7	8.E	
Fuel Flow,	lbs/hr			
Exhaust Back	Pressure, in. HoO	11.1	8.0	10.3
Exhaust	02, 3	1.12	0.94	1.03
Cas	CO. 3	၁.40	0.17	0.28
Analysis	MOx, ppm			3060

	AL-15610-L
Size	PONSOR CODE:

AUTOMOTIVE PRODUCTS & Emissions research division dept. Of Petrolbum products research analytical langratory blig. 171

	1
	L
	ı
	1
	ì.
	Ł
	ı
	1
	ı.
	1
	1
	1
	1
	1
~	ı
	!
ະລ	1
	1
- 30	
	t
	ı
	1
_	1
_	1
- 1	ı
'	ı
	ı
_	1
_	Į.
Ī	1
1	1
$\overline{}$	1
3	٠
. ,	1
	1
	Ł
	ı

TEST:

09-29-87	1.0-34579	
DATE:	SWRI CODE:	CHARGE NO. :

METALS IN PPM

Ž							ļ					
Ca												
Sb												
Mn												
Mg									-			
Ba												
ď												
uZ												
E												
Mo		<1	دًا د	e	7	4			,			
Pb		2	20	22	19	22						
Si		4	5	7	6	6						
Ag		<1	.	<1	<1	<1						
Nj												
Sn		<15	<15	26	27	36						
Cu		<1	17	21	25	28						
Al		2	2	4	3	4						
Cr		<1	<1	1	۲>	7						
Fe		7	29	76	112	166						
LN												
Code	Test Hours	New	ລ	16	0.0	24						

91

WEAR SCREENER	TEST USING METHANOL FUEL
OIL CODE	AL-16155-L
SWRI NO.	LO-35822
DATE	10-01-87
TEST MO.	31-08-10-85-3
ENGINE NO.	10
TOTAL ENG HRS	224
FUEL	M-85 Tank # 105
TEST HOURS	24
FLUSH OIL	LO-12119
FLUSH OIL FUEL	Phillips "J"
FLUSH TIME	3 Hours
DISCUSSION	
(1) Take 2 ounce Oil Samm	ole:
- End of candidate fl	Lush ("0" hour)
- 8, 16, 20, 24 hours	5
- "New" Oil	
(2) Note test conditions	are "steady state"

Client Oil Code: AL-16155-L Test Number: 31-08-10-85-3

Laboratory Oil Code: LO-35822 Date Completed: 10-02-87

		Maximum	Minimum	Average
Speed, rpm		2508	2500	2503
Load, bhp		33.8	33.3	33.6
	Cooler into Engine, °F	126	124	125
	Engine AT (Cut-In), °F	20_	17	19
· ·	Pumb Gallery, psi	71.7	70.0	70.8
) 011	Engine Gallery, psi	63.6	62.6	63.1
322	AP (Pump-Engine), psi	9.1	7.0	8
	Cylinder Head Gallery, psi	50.6_	59.0	59.8
	ΔP (Engine-Head), psi	4.0	2.4	3.2
 - 	Cooling, minutes	////////	/////////	111111111
İ	Jacket Outlet, °F	116_	114	115
	ΔT (Out-In), °F	10	9	10
Water	Flow, gpm	15,4	15.0	15.1
	Blowby Heat Exchanger, °F	113	108	111
	Marine Manifold, °F	92	87	90
Carburetor	Temperature, °F	82_	78	90
Air	Humidity, grains/lb	79.2	79.2	-9.2
	Pressure, in. H ₂ O	2.24	2.20	2.21
Blowby Tempe	erature, °T	116	111	:13
Blowby Rate	, cfm	2.42	2.17	2.32
Crankcase Pr	ressure, in. H_O	2.2	1.4	1.8
Ignition Tim	ning, °BTDC	46	46	46
Intake Mani	fold Vacuum, in. Hg	8.9	9.6	3.8
Fuel Flow,	lbs/hr			
Exhaust Back	Pressure, in. H ₂ O	11.0	9.4	10.4
Exhaust	02, %	1.10	ე.80	1.04
Gas	CO, 3	0.66	0.21	2.34
Analysis	NOx, ppm	2010	1500	:755

AUTOMOTIVE PRODUCTS & E., SSIONS RESEARCH DIVISION DEPT. OF PETROLBUM PRODUCTS RESEARCH ANALYTICAL LABORATORY BLES. 171

1-58-01-80-11

- d-52/db	
-10155-1.	

10-01-87	1.0-35822	
DATE:	SWRI CODE:	CHARGE NO.:
3	ĸ	

METALS IN PLM

ž															1	
Ca																
d S		<u> </u>						<u>!</u>								
FMT.		-		-	-				<u> </u> 		<u> </u>		-	<u> </u>		
-		-									ļ 					
Mg																
Ba																
Ь																
u2																
i n	<u> </u>				<u>. </u>									<u>'</u> 		
Мо		⊽			-7	9										
Pb			<u>.</u>	<u> </u>	2	7										
Si				2	4	4										
Ag		<1	⊽	7	1.	<1										
Z,		<u> </u>	Y	1												
Sn		<15	<15	<15	<15	<15										
Cu		41	5	6	12	15										
Al		<1	د <u>ا</u>	۵	7	2										
Cr		<1	2	7	1	2										
Fe		М	26	70	102	140										
LN															i	
Code	Test Hours	Ne.v	သ	16	50	क ट										

DRGENCY DATE:

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE		CDR US ARMY TANK-AUTOMOTIVE COMMAND	
DEFENSE TECHNICAL INFORMATION CT CAMERON STATION ALEXANDRIA VA 22314	R 12	ATTN: AMSTA-RG	1 1 1
DEPT OF DEFENSE OASD/P&L ATTN: L/EP (MR DYCKMAN) WASHINGTON DC 20301-8000	i	AMSTA-MV	1 1 1
CDR DEFENSE GENERAL SUPPLY CTR ATTN: DGSC-SSM ATTN: DGSC-STC RICHMOND VA 23297-5000 DOD ATTN: DUSDRE (RAT) (DR DIX) ROOM 3-D-1089, PENTAGON WASHINGTON DC 20301 DEPARTMENT OF THE ARMY	1 1	· · · · · · · · · · · · · · · · · · ·	
	10	CDR US ARMY LABORATORY COMMAND ATTN: AMSLC-TP-PB (MR GAUL) ADELPHI MD 20783-1145	
STRBE-BT FORT BELVOIR VA 22060-5606 HQ, DEPT OF ARMY ATTN: DALO-TSE DALO-TSZ-B (MR KOWALCZYK) DALO-PLA (DR WILTSHIRE) SARD-TR (MS VANNUCCI) WASHINGTON DC 20310-0561		CDR US ARMY YUMA PROVING GROUND ATTN: STEYP-MT-TL-M (MR DOEBBLER) 1 YUMA AZ 85364-9130 CDR US ARMY RESEARCH OFFICE ATTN: SLCRO-EG (DR MANN) 1 P O BOX 12211 RSCH TRIANGLE PARK NC 27709-2211	
CDR US ARMY MATERIEL COMMAND ATTN: AMCDE-SS AMCSM-SP AMCDE-WH 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	1 1 1	CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN: STRGP-PW 1 BLDG 247, DEFENSE DEPOT TRACY TRACY CA 95376-5051	
PROJ MGR, MOBILE ELECTRIC POWER ATTN: AMCPM-MEP-TM (COL BRAMLETTE) 7500 BACKLICK ROAD SPRINGFIELD VA 22150	1	CDR AMC MATERIEL READINESS SUPPORT ACTIVITY (MRSA) ATTN: AMXMD-MO (MR BROWN) 1 LEXINGTON KY 40511-5101	

CDR US ARMY ORDNANCE CENTER &		DEPARTMENT OF THE NAVY	
SCHOOL ATTN: ATSL-CD-CS ABERDEEN PROVING GROUND MD 21005-5006	1	OFFICE OF THE CHIEF OF NAVAL RESEARCH ATTN: OCNR-126 (DR ROBERTS) ARLINGTON VA 22217-5000	1
CDR US ARMY ENGINEER SCHOOL ATTN: ATSE-CD	i	DEPARTMENT OF THE AIR FORCE	
FORT LEONARD WOOD MO 65473-5000 CDR		HQ AIR FORCE SYSTEMS COMMAND ATTN: AFSC/DLF (DR DUES) ANDREWS AFB MD 20334	l
US ARMY QUARTERMASTER SCHOOL ATTN: ATSM-CDM ATSM-LL FSD FORT LEE VA 23801	1	CDR US AIR FORCE WRIGHT AERO LAB ATTN: AFWAL/POSL (MR JONES)	1
PROJECT MANAGER PETROLEUM & WATER LOGISTICS ATTN: AMCPM-PWL	1	WRIGHT-PATTERSON AFB OH 45433-6563 CDR	
4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 CDR		SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS) KELLY AIR FORCE BASE TX 78241	l
US ARMY LOGISTICS CTR ATTN: ATCL-CD ATCL-MS	1	OTHER GOVERNMENT AGENCIES	
FORT LEE VA 23801-6000 HQ US ARMY TRAINING & DOCTRINE CMD ATTN: ATCD-SL	1	NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND OH 44135	1
FORT MONROE VA 23651-5000	1	US DEPARTMENT OF ENERGY	i
CDR US ARMY TRANSPORTATION SCHOOL ATTN: ATSP-CD-MS FORT EUSTIS VA 23604-5000	1	MAIL CODE CE-151 FORRESTAL BLDG. 1000 INDEPENDENCE AVE, SW WASHINGTON DC 20585	