

CS 422-04: Data Mining

Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture 6: Association Analysis (Rules)

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction. (Note: Implication means co-occurrence, not causality!)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$${Diaper} \rightarrow {Beer}$$

 ${Milk, Bread} \rightarrow {Eggs,Coke}$
 ${Beer, Bread} \rightarrow {Milk}$

Antecedent → Consequent

Binary representation of market basket data

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

- Goal of Association Rule Mining: Given a set of transactions, T, find all rules having:
 - support >= minsup
 - confidence >= minconf
- How do we get there?
- Two steps:
 - Frequent itemset generation: find all items that satisfy minsup threshold (frequent itemsets). (Is computationally expensive!!)
 - Rule generation: extract all high-confidence rules from the frequent itemsets (strong rules).

Lattice structure to enumerate all possible itemsets. A = Bread, B = Milk,

C = Diaper, ...

k items generate up to 2^k -1 frequent itemsets.

How many itemsets?

k items generate up to 2^k -1 frequent itemsets.

Number of itemsets for k items =
$$\binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k} = 2^k - 1$$

For a 3-itemset {a,b,c} the candidate rules will be: $ab \rightarrow c$, $ac \rightarrow b$, $a \rightarrow bc$, $b \rightarrow ac$, ..., $abc \rightarrow 0$ and $0 \rightarrow abc$

How many rules?

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
 d = No. of items
For d = 3, R = 12
For d = 6, R = 602

$$d = No. of items$$

For $d = 3$, $R = 12$
For $d = 6$, $R = 602$

- Brute force approach:
 - Each itemset in the lattice is a candidate frequent itemset. Store it in a database.
 - If candidate is contained in a transaction, support_count++.
 - Requires matching each transaction against every candidate.

Complexity: O(NMw) is exponential since $M = 2^d$.

- So, how to reduce this complexity?
 - **Reduce M,** the number of candidate itemsets (the *Apriori* principle).
 - Reduce the number of comparisons, using better data structures to store the candidate itemsets (Support Counting) or to compress the dataset (FP-Growth).

- The *Apriori* principle:
 - If an itemset is frequent, then all of its subsets must be frequent as well.

• The *Apriori* principle:

- Conversely, if an itemset is

infrequent, then all of its supersets must be infrequent as well.

The anti-monotone property

 Apriori holds due to the following property of support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(Y) \le s(X)$$

E.g. X=ABDE, Y=ABCDE, then s(ABCDE) <= s(ABDE), if we can prune ABCDE, we can prune ABDE.

Min. Support Count = 3 (minsup = 0.50)

Tid	Beer	Bread	Cola	Diaper	Eggs	Milk
T1	0	1	0	0	0	1
T2	1	1	0	1	1	0
Т3	1	0	1	1	0	1
T4	1	1	0	1	0	1
T5	0	1	0	1	0	1
Т6	0	1	0	1	1	1

Itemset	Count
Beer	3
Bread	5
Cola	1
Diaper	5
Eggs	2
Milk	5

Candidate 1-itemsets

Min. Support Count = 3 (minsup = 0.50)

Tid	Beer	Bread	Cola	Diaper	Eggs	Milk
T1	0	1	0	0	0	1
T2	1	1	0	1	1	0
Т3	1	0	1	1	0	1
T4	1	1	0	1	0	1
T5	0	1	0	1	0	1
Т6	0	1	0	1	1	1

Itemset	Count
Beer	3
Bread	5
Cola	1
Diaper	5
Eggs	2
Milk	5

Candidate 1-itemsets

Itemset	Count
Beer,Bread	2
Beer,Diaper	3
Beer, Milk	2
Bread,Diaper	4
Bread,Milk	4
Diaper,Milk	4

Candidate 2-itemsets

Min. Support Count = 3 (minsup = 0.50)

Tid	Beer	Bread	Cola	Diaper	Eggs	Milk
T1	0	1	0	0	0	1
T2	1	1	0	1	1	0
Т3	1	0	1	1	0	1
T4	1	1	0	1	0	1
T5	0	1	0	1	0	1
Т6	0	1	0	1	1	1

Itemset	Count
Bread,Diaper,Milk	3

Candidate 3-itemsets

$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 6 + 15 + 20 = 41$$
$$\binom{6}{1} + \binom{4}{2} + 1 = 6 + 6 + 1 = 13$$

Reduction of 68% in no. of candidate itemsets

CS 422-04 vgurbani@iit.edu

Itemset	Count
Beer	3
Bread	5
Cola	1
Diaper	5
Eggs	2
Milk	5

Candidate 1-itemsets

Itemset	Count
Beer,Bread	2
Beer,Diaper	3
Beer, Milk	2
Bread,Diaper	4
Bread,Milk	4
Diaper,Milk	4

Candidate 2-itemsets

Frequent Itemset Generation: Apriori algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB

 Eliminate candidates that are infrequent, leaving only those that are frequent

Slide courtesy: http://blog.hackerearth.com/beginners-tutorial-apriori-algorithm-data-mining-r-implementation

Frequent Itemset Generation: Generate candidate itemsets

- Many ways to generate candidate itemsets.
 - We study two: Brute-force method and $F_{k-1} \times F_{k-1}$ method.
- Requirements:
 - Do not generate too many unnecessary candidates. (Remember the anti-monotone property: supersets of infrequent itemsets are themselves infrequent.)
 - Candidate set is complete. No frequent itemset is left out.
 - Should not generate the same candidate more than once. {milk,diaper,beer} = {diaper,milk,beer} = {beer,milk,diaper} = ...
 - Generation of duplicate candidates leads to wasted compute cycles.
 - How to avoid duplicate candidates? Lexicographic ordering.

Frequent Itemset Generation: Generate candidate itemsets

Generate candidate itemsets using brute-force.

O(d*2^{d-1}), where d is total number of items.

Frequent Itemset Generation: Generate candidate itemsets

• Generate candidate itemsets using $F_{k-1} \times F_{k-1}$ method: merge a pair of frequent (k-1) itemsets IFF their first k-2 items are identical. To generate k=3-itemset, first k-2 = 3-1 = 1 items

- Support counting: determine frequency of occurrence of each candidate itemset that survives after pruning.
 - How? Compare each transaction against every candidate itemset and update support count of the candidates contained in the transaction.
 - Computationally expensive when candidate itemsets and number of transactions are large.

- Instead, we want to use efficient data structures for support counting.
 - Hashes! Search time: O(1).

Efficient enumeration of subsets.

• Generate hash tree. $h(p) = p \mod 3$.

Suppose you have 15 candidate itemsets of length 3:

You need:

- · Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Frequent Itemset Generation: Support counting $h(p) = p \mod 3$

Subset operation using a hash tree

Frequent Itemset Generation: Support counting $h(p) = p \mod 3$

Subset operation using a hash tree

CS 422-04 vgurbani@iit.edu