State Estimation ...

... in a more ge eral proba ilist rame ork:

- ► Bayes Filte (BF)
- ► KF Derivat n as a particular form of the last
- ► Particle Filter
- ► Ensemble KF
- Cubature KF

Bayes Filter Lecture 18

Bayes Filter Lecture 18

► Measurem + Und Equation

$$\underbrace{\Pr(\mathbf{x}_{k+1}|\mathbf{Y}_{k+1})}_{\text{updated posterior distribution}} = \frac{1}{Z_{k+1}} \underbrace{\Pr(\mathbf{x}_{k+1}|\mathbf{Y}_k)}_{\text{predictive distribution likelyhood function}} \underbrace{I(\mathbf{y}_{k+1}|\mathbf{x}_{k+1})}_{\text{likelyhood function}},$$

where z_{k+1} is the normalization constant defined as $z_{k+1} = \int_{\mathbb{D}^n} \Pr(\mathbf{x}_{k+1} | \mathbf{Y}_k)) I(\mathbf{y}_{k+1} | \mathbf{x}_{k+1}) d\mathbf{x}_{k+1}$.

Bayes Filter Lecture 18

- The prior detribution from (A_{k+1}, A_k) is later pully the dynamic equations,
- The likelihood function term $I(\mathbf{y}_{k-1}, \mathbf{x}_{k+1})$, a related only to the measurem
- ▶ The exact computation of the predictive distribution $\Pr(\mathbf{x}_{k+1}|\mathbf{Y}_k)$ is generally not possible, except for a couple of special cases. Both the probability prior and the integration are a problem.

Bayes Filter + KF Derivation Lecture 18

Particle Filter Lecture 18

- It is possible to represent a cobalt ty distribution as (large) collection a sample pents of particles
- ► How to extend a number p of particles from a green p bability distribution.
- ► It is possible to implement the Bayesian filter using a particle-based approach

Particle Filter Lecture 18

- the posterior
- Step 1: Ex act a num or μ pfortiel m/t distribution r(x_k|Y_k), e. to set or particles {λ,...,
 Step 2: To pproxima the predict outs buttle Pr(λ previous particle/sar ale is ropal ted though ne dy (including extracting the random process herse), to obtain the set $\{\mathbf{x}_{k+1|k}^1, \dots, \mathbf{x}_{k+1|k}^p\}$. This is a Monte-Carlo approximation.
- \triangleright Step 3: How to integrate a new observation \mathbf{y}_{k+1} and update the set of particles. The key technique for doing this is Importance Sampling.

Ensemble KF & Cubature KF Lecture 18

Well done!

DIall

