

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6683/01)

January 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\sum x = 773, \sum y = 724$ $r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e. $r = 0.155357$	B1, B1 M1 A1ft A1
(b)	Both weak correlation Neither score is a good indication of future performance Interview test is slightly better since correlation is positive	(5) B1g B1h (2) Total 7 marks
NB	$S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1, S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4, S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$	
(a)	$1^{\text{st}} B1$ for $\sum x$ and $2^{\text{nd}} B1$ for $\sum y$, should be seen or implied.	
(b)	 M1 for at least one correct attempt at one of S_{xx}, S_{yy} or S_{xy} and then using in the correct formula 1st A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S_{xx}, S_{xy}, and S_{yy} but possibly incorrect values for these placed correctly in r. 2nd A1 for awrt 0.155 	
	If $ r > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible. Give B1 for one correct line, B1B1 for any 2. If the only comment is the test(s) are a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line) The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative.	
	Treat 1 st B1 as B1g and 2 nd as B1h An answer of "no" alone scores B0B0	

Question Number	Scheme						
2.							
(a)	mean is $\frac{2757}{12}$, = 229.75 AWRT 230	M1, A1					
	sd is $\sqrt{\frac{724961}{12}} - (229.75)^2 = 87.34045$ AWRT 87.3	M1, A1					
	[Accept s = AWRT 91.2]						
(b)	Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420 $Q_2 = \frac{1}{2}(186 + 210) = 198$	(4) B1					
	$Q_1 = \frac{1}{2}(169 + 171) = 170$	B1					
	$Q_3 = \frac{1}{2}(250 + 258) = 254$	B1					
(c)	$Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392) Patients F (420) and B (390) are outliers.	(3) M1, A1 B1ft B1ft					
(d)	$\frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33	(4) M1, A1					
	Positive skew.	A1ft					
		(3) Total 14 marks					
(a)	1 st M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.						
NB	for using a correct formula, root required but can ft their mean Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here. Answers only from a calculator in (a) can score full marks						
(b)	1 st B1 for median= 198 only, 2 nd B1 for lower quartile 3 rd B1 for upper quartile						
S.C.	If all Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen and used then award B0B1 as a special case for these last two marks.						
(c)	for a clear attempt using their quartiles in given formula, for any value in the range 370 - 392 1 st B1ft for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420) 2 nd B1ft for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420) If more points are given score B0 here for the second B mark. (Can score M0A0B1B1 here)						
(d)	M1 for an attempt to use their figures in the correct formula – must be seen (≥ 2 correct substitutions) 1 st A1 for AWRT 0.33 2 nd A1ft for positive skew. Follow through their value/sign of skewness. Ignore any further calculations. "positive correlation" scores A0						

_									
3.	Width Freq. Density	1 1 6 7	4 2	6	3 5.5	5 2	3 1.5	12 0.5	M1
	Total area is (1×		×2)+	,= 70		0.	.5 ×12	or 6	A1
	$(90.5-78.5) \times \frac{1}{2} \times \frac{140}{\text{their } 70}$ Number of runners is 12								
	A1 (5) Total 5 marks								
	[Maybe of 1st A1 for 0.5×1 of the bar 2nd M1 for attempth B1 for 70 see	ot at width of the n histogram or 2 or 6 (may be above 78.5 - 9 oting area of continuous anywhere in tanswer of 12	in table seen or 0.5. orrect battheir w	e] the his $ar \times \frac{14}{their}$	stogram	Í	be relat	ed to the	e area
	Minimum workin Beware 90.5 - 78					2 shoul	d come	from $\frac{14}{70}$	0 0
	Common answer is $0.5 \times 12 = 6$ (this scores M1A1M0B0A0) If unsure send to review e.g. $2 \times 0.5 \times 12 = 12$ without 70 being seen								

4. (a)	$S_{rv} =$	$=1818.5 - \frac{41 \times 406}{10}, =153.9$	(could be seen in (b))	AWRT 154	M1, A1	
		$= 188 - \frac{41^2}{10} = 19.9$	(could be seen in (b))		A1	
(b)		$\frac{153.9}{19.9}$, = 7.733668 $40.6 - b \times 4.1$ (= 8.89796)		AWRT 7.73	M1, A1	(3)
	y = 8	A1	(4)			
(c)	A tyj	pical car will travel 7700 mile	es every year		B1ft	(4) (1)
(d)	x = 5 So m		M1 A1	(2)		
					Total 10 n	
(a) (b)	M1 1 st A1 2 nd A1 Ignore	for correct attempt or expre for one correct for both correct the epen marks for part (b)				
	1 st M1 1 st A1 2 nd M1 2 nd A1	Quoting a correct formula for correct equation with 2	ula for <i>a</i> (minus required). Ft but making one slip in sub.eg dp accuracy. .73 even if not written as fina	y = 406 is OK		
	Correct	answers only (from calc) sc	ore 4/4 if correct to 2dp or 3	3/4 if AWRT 2dp		
(c)	B1ft	for their $b \times 1000$ to at least	2 sf. Accept "7.7 thousand"	but value is neede	ed	
(d)	M1	for substituting $x = 5$ into the	heir final answer to (b).			
	A1	for AWRT 48000 (Accept	"48 thousands")			
	Al	for AWRI 48000 (Accept	"48 thousands")			

6. (a)	200 or 200g	B1 (1)
(b)	P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e.	
	Correct use of 0.8 or 0.	· ·
	$Z = (\pm) \frac{210 - 200}{\sigma}$	M1
	O Company of the comp	1.22
	$\frac{10}{\pi} = 0.8416$	16 B1
	σ $\sigma = 11.882129$ AWRT 11.9	A1
		(5)
(c)	$P(X < 180) \qquad = P\left(Z < \frac{180 - 200}{\sigma}\right)$	M1
	= P(Z < -1.6832) $= 1 - 0.9535$	M1
	= 0.0465 or AWRT 0.046	A1
		(3)
		Total 9 marks
(a)	"mean = 200g" is B0 but "median = 200" or just "200" alone is B1	
	Standardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1^{st} M1 for a correct probability statement (as given or eg P(200 <x<210)=0.3 o.<="" td=""><td>e</td></x<210)=0.3>	e
(0)	or shaded diagram - must have values on z-axis and probability areas show	*
	1 st A1 for correct use of 0.8 or $p = 0.2$. Need a correct probability statement.	
	May be implied by a suitable value for z seen (e.g. $z = 0.84$) 2^{nd} M1 for attempting to standardise. Values for x and μ used in formula.	
	2^{nd} M1 for attempting to standardise. Values for x and μ used in formula. Don't need $z =$ for this M1 nor a z-value, just mark standardization.	
	B1 for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)]	
	2^{nd} A1 for AWRT 11.9	
	180 – 20	0
(c)	1 st M1 for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-20}{\text{their }\sigma}$	<u>-</u>
	2 nd M1 NB on epen this is an A mark ignore and treat it as 2 nd M1	
	for $1 - a$ probability from tables provided compatible with their	
	probability statement. A1 for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))	
	101 0.0403 of 11 wilet 0.040 (Dependent on both wis in part (c))	
		1

7.(a)	P(R =	$P(R=3\cap B=0) = \frac{1}{4} \times \frac{1}{4}, = \frac{1}{16}$								
(b)		3	0	3	6	9				
		2	0	2	4	6				
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1		
		0	0	0	0	0			(3)	
		В	R	1	2	3				
(c)	$a = \frac{7}{16}$	$a = \frac{7}{16}, b = c = d = \frac{1}{16}$								
(d)	E(T)	$E(T) = \left(1 \times \frac{1}{16}\right) + \left(2 \times \frac{1}{8}\right) + \left(3 \times \frac{1}{8}\right) + \left(4 \times \frac{1}{16}\right) + \dots$								
		A1	(2)							
(e)	$Var(T) = \left(1^2 \times \frac{1}{16}\right) + \left(2^2 \times \frac{1}{8}\right) + \left(3^2 \times \frac{1}{8}\right) + \left(4^2 \times \frac{1}{16}\right) + \dots - \left(\frac{9}{4}\right)^2$ $= \frac{49}{4} - \frac{81}{16} = 7\frac{3}{16} \text{ or } \frac{115}{16} \qquad \text{(o.e.)}$ AWRT 7.19							M1A1,	(2) M1	
								A1 Total 14	(4) marks	
(a)	M1	for $\frac{1}{4} \times \frac{1}{4}$								
(c)	1 st B1 2 nd B1	$1^{st} B1$ for $\frac{7}{16}$,								
(d)	M1									
(e)	1 st M1	*								
	1 st A1	1 st A1 for $\frac{49}{4}$ (o.e.) or a fully correct expression (all non-zero terms must be seen)								
	2 nd M1 for subtracting their $[E(T)]^2$, Must be some attempt to square $-\frac{9}{4}$ is M0 but $-\frac{9}{16}$								M1	
	2 nd A1 for correct fraction or AWRT 7.19 Full marks can still be scored in (d) and (e) if <i>a</i> is incorrect									