ANILLOS

CAP 14 — Grimaldi

Cryptography and Network Security (CAP 4)

Estructuras Algebraicas

• Concepto: Combinación del conjunto de enteros y las operaciones sobre los elementos del conjunto.

• Criptografía requiere conjuntos de enteros y determinadas operaciones que son definidas para aquellos conjuntos.

Estructuras Algebraicas

Anillo: Concepto

• Un anillo, $R = <\{...\}$, •, \Box >, es una estructura algebraica con dos operaciones. $R(\bullet, \Box)$

Anillo: Propiedades

- 1. Cerrado con respecto a la operación:
 - Si a y b están en el conjunto, entonces el elemento a b=c está también en el conjunto
- 2. Asociativa:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

3. Conmutativa:

$$a \cdot b = b \cdot a$$

4. Existencia de identidad:

Existe z \mathbf{E} R tal que $\mathbf{a} \cdot \mathbf{z} = \mathbf{z} \cdot \mathbf{a} = \mathbf{a}$ para todo a R

5. Existencia de inversa:

Para cada a $\boldsymbol{\varepsilon}$ R existe un elemento $\mathbf{b} \ \boldsymbol{\varepsilon}$ R tal que

$$a \cdot b = b \cdot a = z$$

6. Distributiva de □ sobre •

$$a \square (b \cdot c) = a \square b \cdot a \square c$$

$$(b \cdot c) \square a = b \square a \cdot c \square a$$

Anillo: Ejemplo 1

• $R(Z_5, +,.)$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Es cerrado?

Asociativo?

Conmutativo?

Existencia de Identidad?

Existencia de Inverso?

Distributiva de . Sobre +?

Es cerrado?

Asociativo?

Conmutativo?

Anillo: Ejemplo

• El conjunto Z con dos operaciones, suma y multiplicación, es un anillo conmutativo. Para (Z,+,.) satisface las 5 propiedades para la suma, y las 3 propiedades para la multiplicación.

Anillo: Concepto

- Sea (R,+,.) un anillo.
 - a) Anillo conmutativo:

Si **a.b=b.a** para todo a,b **E** R

b) Divisores propios de cero: El anillo R NO tiene divisores propios de cero si para cualquiera

a,b
$$\mathbf{E}$$
 R, $\mathbf{a.b} = \mathbf{z} \rightarrow \mathbf{a} = \mathbf{z} \circ \mathbf{b} = \mathbf{z}$.

Anillo con unidad: Si un elemento u € R es tal que u≠z y
 a.u=u.a=a para todo a € R, decimos que u es elemento unidad, o identidad para el producto, de R y es único.

Anillo: ejemplo 2

Para $R = \{a,b,c,d,e\}$, definimos + y . Como

+	a	b	C	d	e
a	a	b	С	d	e
b	b	С	d	e	a
С	С	d	e	a	b
d	d	e	a	b	С
e	e	a	b	С	d

X	a	b	C	d	e
a	a	a	a	a	a
b	a	b	С	d	e
C	a	С	e	b	d
d	a	d	b	e	С
e	a	e	d	С	b

Identidad aditiva: a+z=z+a=a

Inverso aditivo : a+b=b+a=z

Inverso multiplicativo: xy=yx=u

Es conmutativa: es simétrica.

Elemento unidad: au=ua=a y u≠z

Anillo: Ejemplo 3

• Sea $R = \{s,t,v,w,x,y\}$, donde +y., están dadas por:

+	S	t	V	W	X	y
S	S	t	V	W	X	y
t	t	V	\mathbf{W}	X	y	S
V	v	W	X	y	S	t
W	w	X	y	S	t	V
X	x	y	S	t	V	W
Y	y	S	t	V	W	X

Identidad aditiva: a+z=z+a=aInverso aditivo : a+b=b+a=z

Inverso multiplicativo: xy=yx=u

+	S	t	V	w	X	y
S	S	S	S	S	S	S
t	S	t	\mathbf{V}	W	X	y
V	S	V	X	S	V	X
W	S	W	S	W	S	W
X	S	X	V	S	X	V
y	S	y	X	W	V	t

Es conmutativa: es simétrica.

Elemento unidad: au=ua=a y u≠z

Anillo: concepto

Unidad e inverso multiplicativo

Sea R un anillo con elemento unidad u. Si a,b ε R y ab=ba=u, entonces b es un inverso multiplicativo y a es una **unidad** de R. (El elemento b también es una **unidad** de R).

- Sea R un anillo conmutativo con elemento unidad. Entonces
 - a) R es un **dominio de integridad** si R no tiene divisores propios de cero.
 - b) R es un **cuerpo** (*field*) si todo elemento distinto de cero en R es una unidad.

Anillo: Ejemplo 4

• $R(Z_5, +,.)$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Es cerrado?

Asociativo?

Conmutativo?

Divisores propios de cero?

Elemento Unidad?

Inversos multiplicativos?

Unidades?

Divisores propios de cero?

Cuerpo?

Inversos aditivos y multiplicativos

```
Z = 0 1 2 3 4 5 6 7
8
+
addit. inv. = 0 7 6 5 4 3 2 1
.
multi. inv = - 1 - 3 - 5 - 7
```

Anillo: ejemplo 4

• Sean $\mathcal{U} = \{1,2\}$ y R = $\mathcal{G}(\mathcal{U})$. Definimos + y . sobre los elementos de R como:

$$A + B = A \Delta B = \{x \mid x \in A \text{ o } x \in B, \text{ pero no ambos}\}$$

$$A \cdot B = A \cap B = \text{la intersección de los conjuntos } A, B$$

+ (Δ)	0	{1}	{2 }	U
0				
{1}				
{2}				
$\mathcal U$				

.(೧)	0	{1}	{2 }	U
0				
{1}				
{2}				
${\mathcal U}$				

La estructura de anillo: ejemplo 1

• Sean $\mathcal{U} = \{1,2\}$ y R = $\mathcal{P}(\mathcal{U})$. Definimos + y . sobre los elementos de R como:

$$A + B = A \Delta B = \{x \mid x \in A \text{ \'o } x \in B, \text{ pero no ambos}\}\$$

A . $B = A \cap B = la$ intersección de los conjuntos A, B \mathcal{U}

+ (Δ)	0	{1}	{2 }	U
0	0	{1}	{2}	${\mathcal U}$
{1}	{1}	0	${\mathcal U}$	{2}
{2}	{2}	${\mathcal U}$	0	{1}
$\mathcal U$	${\mathcal U}$	{2}	{1}	0

. (N)	0	{1}	{2 }	U
0	0	0	0	0
{1}	0	{1}	0	{1}
{2}	0	0	{2}	{2}
$\mathcal U$	0	{1}	{2}	U

Identidad aditiva: a+z=z+a=a=0

Inverso aditivo : a+b=b+a=z

Es conmutativa: es simétrica.

Elemento unidad: au=ua=a y u≠z

Anillos y cuerpos finitos especiales

ENTEROS MODULO N

- Ejemplo:
- Operaciones de suma y producto en Z7
 - Formada por 7 clases de equivalencia:

$$Z7 = \{[0][1][2][3][4][5][6]\}$$

+	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

ENTEROS MÓDULO N

- Teorema:
 - Para n \in Z+, n > 1, Zn es un anillo conmutativo con elemento unidad igual a [1] en las operaciones binarias cerradas de + y .

ENTEROS MÓDULO N

• Ejemplo Z₅ es un cuerpo?

+	0	1	2	3	4
0					
1					
2					
3					
4					

Identidad aditiva: a+z=z+a=aInverso aditivo : a+b=b+a=z

Inverso multiplicativo: xy=yx=u

•	0	1	2	3	4
0					
1					
2					
3					
4					

Es conmutativa: es simétrica.

Elemento unidad: au=ua=a y u≠z

ENTEROS MÓDULO N

• Ejemplo Z_6 es un cuerpo?

+	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Identidad aditiva: a+z=z+a=a

Inverso aditivo : a+b=b+a=z

Inverso multiplicativo: xy=yx=u

Es conmutativa: es simétrica?.

Elemento unidad: au=ua=a y u≠z

ENTEROS MODULO N

- Teorema 14.13:
 - Zn es un cuerpo si y sólo si n es primo.
- En Z_6 , [5] es una unidad y [3] es un divisor de cero.
 - ¿Cómo reconocer cuándo [a] es una unidad en Zn, si n es compuesto?

Función Phi-Euler

- Encuentra el número de enteros (elementos) que:
 - Son más pequeños que N
 - Relativamente primos con N
- $\Phi(1) = 0$
- $\Phi(p) = p-1$
- $\Phi(n) = \Phi(p_1^{d_1}, p_2^{d_2}, \dots) = (n)[1-(1/p^1)][1-(1/p_2)]$

ENTEROS MODULO N

- Teorema 14.14:
 - En Zn, [a] es una unidad si y sólo si mcd(a,n) = 1
- Encuentre [25]⁻¹ en Z₇₂

mcd(25,72)

ENTEROS MODULO N

- [25] es una unidad en \mathbb{Z}_{72} , pero
 - ¿existe una forma de saber cuántas unidades tiene este anillo?
 - El número de unidades en Z_{72} es el número de enteros a tales que $1 \le a < 72$ y mcd(a,72) = 1.
 - Se calcula usando la función Φ Euler:
 - $\Phi(72) = \Phi(2^3.3^2) = (72)[1-(1/2)][1-(1/3)] = 24$
 - En general, para n ∈ Z+, n > 1, existen Φ(n)unidades y
 n-1-Φ(n) divisores propios de cero en Zn

Ejercicios:

- ullet Encontrar las unidades en Z_{12} y encontrar sus inversas multiplicativas.
- S={a,b} con operaciones de suma y multiplicación definidas como:

+	a	b
a	a	b
b	b	a

