ANÁLISIS APLICADO LAB. 2

1. Introducción

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función de clase $C^2(\mathbb{R}^n)$. Supongamos que $\mathbf{x}^* \in \mathbb{R}^n$ es un mínimo local estricto de f y que $\nabla^2 f(\mathbf{x}^*)$ es simétrica y positiva definida.

El método general de direcciones de descenso para aproximar un mínimo local de tal estilo es:

1.1. Método de direcciones de descenso.

Dados, la función f y $\mathbf{x}^0 \in B_R(\mathbf{x}^*) \setminus \{\mathbf{x}^*\}$ tal que $\nabla f(\mathbf{x}^0) \neq \mathbf{0}$. Si disponible, también se puede pasar el gradiente ∇f y la Hessiana $\nabla^2 f$ para evitar sus aproximaciones.

Empezamos, con $k \coloneqq 0$.

MIENTRAS $||F(x^k)|| > tol$ y k < maxIterations

P1. Escoger un vector $d^k \in \mathbb{R}^n$ de descenso $(\nabla f(x^k)^T d^k < 0)$.

P2. Encontrar $\alpha^k \in (0,1]$ tal que

$$f(\boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k) \le f(\boldsymbol{x}^k) + \alpha^k \Big(c_1 \nabla f(\boldsymbol{x}^k)^T \boldsymbol{d}^k \Big),$$

donde $0 < c_1 < 1$.

P3. Actualizar $x^{k+1} := x^k + \alpha^k d^k$, redefinir k := k+1 y continuar con el ciclo.

FIN

1.2. ¿Como encontrar a un α_k ? Por ahora, usen bisección. El dibujo muestra que funciona.

1.3. Direcciones de descenso.

■ Descenso por coordenadas.

En el paso **P1** escogemos al vector $d^k \in \{\pm e_i\}$ tal que e_i es el *i*-ésimo vector canónico que satisface $\nabla f(x^k)^T d^k = -\|\nabla f(x^k)\|_{\infty}$. Con esta dirección se cambia solo una coordenada cuando $x^k \mapsto x^{k+1}$, es decir, minimizamos en una coordenada.

■ Máximo descenso.

En cada iteración se usa el vector $\mathbf{d}^k := -\nabla f(\mathbf{x}^k) / \|\nabla f(\mathbf{x}^k)\|_2$. Nótese, que $\|\nabla f(\mathbf{x}^k)\|$ es el criterio de terminar la iteración. (Se puede ahorrar trabajo.)

■ Dirección de Newton.

En el caso que $\nabla^2 f(\boldsymbol{x}^k)$ es (simétrica) positiva definida en cada iteración, podemos escoger la dirección \boldsymbol{d}^k que es solución del sistema

$$\nabla^2 f(\boldsymbol{x}^k) \boldsymbol{d}^k = -\nabla f(\boldsymbol{x}^k) .$$

Esa es una dirección de descenso, por lo que vimos en clase 3.

2. Laboratorio

2.1. Funciones en MatLab. Escriba las funciones

En paso **P2** del algoritmo, se busca un $\alpha_k \in (0,1]$ con el cual se cumple la desigualdad. A este α^k lo buscamos usando bisección empezando en $\alpha_k = 1$.

En los ejemplos (abajo) se usaron los parámetros $c_1 \stackrel{\text{def}}{=} 1/10 \text{ y tol} \stackrel{\text{def}}{=} 10^{-5}$.

- 2.2. Experimentos. Usamos las funciones que hemos escrito en Laboratorio 1.
- 2.2.1. La función cuadrática. Sea f la función definida por $f(x) \stackrel{\text{def}}{=} \frac{1}{2}x^TAx + b^Tx + 1$, con

$$A \stackrel{\text{def}}{=\!=\!=} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{pmatrix} , \quad \boldsymbol{b} \stackrel{\text{def}}{=\!=\!=} \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} .$$

La función f tiene el único mínimo en $x^* = (1, 0, 0, 0)^T$.

Con el punto inicial $\boldsymbol{x}^0 \stackrel{\text{def}}{=\!=\!=} (4,4,4,4)^T$ se llega a la siguiente tabla.

método	iteraciones 1	iteraciones 2	Convergió
desCoor	1654	1403	Si
desMax	553	553	Si
desNewton	1	1	Si

Las "iteraciones 2" se obtuvieron con el gradiente y la Hessiana exacta.

2.2.2. La función de Rosenbrock. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función

$$f(\mathbf{x}) \stackrel{\text{def}}{=} 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$$
.

La función f tiene el único mínimo en $\boldsymbol{x}^* = (1, 1)^T$.

Con el punto inicial $x^0 \stackrel{\text{def}}{=} (2,3)^T$ se llega a la siguiente tabla.

método	iteraciones 1	iteraciones 2	Convergió
desCoor	1000	1000	No
desMax	1000	1000	No
desNewton	14	14	si

Las "iteraciones 2" se obtuvieron con el gradiente y la Hessiana exacta.

2.2.3. Visualizar lo que pasa. Hagan un plot que muestra algunos conjuntos de nivel y los primeros 30 iteraciones.

Ejemplo en comunidad.itam: scrLevelSet.m

