Регистры СУ УРТК для управления исполнительными устройствами

Для управления исполнительными устройствами робота в СУ УРТК определены два внутренних восьмиразрядных регистра: DRV0 и DRV1. Разряды этих регистров представляют собой команды управления исполнительными устройствами робота. При установке разряда регистра в состояние "1" процессор посылает команду на включение двигателя указанной степени в направлении, соответствующем разряду; при установке разряда в состояние "0" посылается команда остановки двигателя.

Табл. 2. Назначение разрядов регистров

Номер разряда	Разряды DRV0	Разряды DRV1
0	M0-	M4-
1	M0+	M4+
2	M1-	M5-
3	M1+	M5+
4	M2-	D0
5	M2+	D1
6	M3-	D2
7	M3+	Ew

Существует несколько режимов управления:

• позиционный – движение робота по заданным точкам;

- цикловой выполнение заданной последовательности действий;
- контурный движение рабочего органа по заданной траектории

Регистры СУ УРТК для опроса датчиков

На каждом универсальном мехатронном модуле робота установлено два типа датчиков – концевые датчики начального и конечного положений и импульсные датчики. В зависимости от конфигурации на модуле может быть установлен либо один, либо два импульсных датчика. Для хранения информации о состоянии датчиков всех степеней робота в модуле микропроцессора БУ УРТК определены три внутренних восьмиразрядных регистра: SNS0, SNS1 и SNS2. Если датчик сработал, модуль микропроцессора устанавливает соответствующий разряд регистра в состояние "0", в противном случае значение его равно "1".

Назначение разрядов регистров приведено в таблице 3. Однако следует помнить, что разряды регистров инвертированы.

Табл. 3. Назначение разрядов регистров

Номер разряда	Разряды SNS0	Разряды SNS1	Разряды SNS2
0	М0 нач	М2 нач	М4 нач
1	М0 кон	М2 кон	М4 кон
2	М0 имп	М2 имп	М4 имп
3	М1 нач	М3 нач	М5 нач

4	М1 кон	М3 кон	М5 кон
5	М1 имп	М3 имп	М5 имп
6	Резерв0	Резерв2	Резерв4
7	Резерв1	Резерв3	Резерв5

Ход работы

Описание блок-схемы функции main()

В данной блок схеме показана работы функции main(), она запускается при нажатии «запустить». Первым делом считываются показания с концевых датчиков, данные с инкрементных нам не важны, так как мы в функции Allcalibrate() перемещаем М0+(к двигателю), М1-(от двигателя), М2(от двигателя) в конечные положения. Далее запускается бесконечный цикл while(1), происходит постоянное считывание данных с клавиатуры. В зависимости от выбора в операторе switch() происходит выбор определенного действия, после которого switch() прерывается.

Блок-схема 1. Алгоритм работы функции main()

Блок-схема функции cikl()

Блок-схема 2. Алгоритм работы функции cikl()

Блок-схема 2.1. Алгоритм работы функции cikl()