

Telecommunications Networking

- 1. Introduction
- 2. Local Area Networking
- 3. Error Control and Retransmission Protocols
- 4. Architectural Principles of the Internet
- 5. Flow Control in Internet: TCP
- 6. Routing Algorithms
- 7. Routing Protocols
- 8. The principles of ATM
- 9. Traffic Management in ATM
- 10. Scheduling
- 11. Quality of Service
- 12. Quality of Service routing
- 13. Peer-to-peer networks

What is Routing?

- Delft University of Technology
 - Finding one (or more) paths between two (or more) nodes in the network
 - often there is an optimality criterion (e.g. shortest path)

consistent network view

To	Link	Cost
А	local	0
В	1	1
С	3	1
Е	3	6

forwarding table

Forwarding in Internet

Routing Information

Delft University of Technology

minimum information (next hop info)

complete topology information

Cost

0

6

Network Topologies

Delft University of Technology

full mesh (complete graph)

Tree (connected, loopless graph)

2D (square) lattice

arbitrary topology: Graph G(N,L)

N: set of nodes

L: set of links

Representations of Graphs

adjacency matrix

adjacency-list representation

Graph characteristics

Delft University of Technology

- Number of nodes N=|N|
- Number of edges L=|L|

 $(\max: N(N-1)/2)$

- Degree d_i of node j: number of incident links
- Note that:

$$0 \le d_i \le N - 1$$

$$\sum_{j=1}^{N} d_{j} = 2L$$

Minimum degree

$$\delta(G) \equiv \min_{j \in G} d_j$$

Average degree

$$d_a \equiv \frac{1}{N} \sum_{j=1}^{N} d_j = \frac{2L}{N}$$

Connectivity of a Graph

 $\lambda(G)$ (or $\kappa(G)$): the minimum number of links (nodes) whose removal disconnects G

Shortest Path Routing

- Link metric is either *additive* (e.g. delay, cost,...) or *min-max* (e.g. available capacity,...)
- Shortest path P(A,B) is minimizer of $\sum_{i \to j \in P(A,B)} w(i \to j)$

Principles of Shortest PathRouting

Delft University of Technology

Algorithms:

- Dijkstra's shortest path algorithm
- The Bellman-Ford shortest path algorithm
- Subsections of shortest paths are again shortest paths
 - only valid in single parameter routing

• Relaxation:

- Let $d[n] = w(P_{A \rightarrow n})$. Can we lower d[n] by finding another path from A →n that has smaller weight
- estimates of d[n] descend monotonously towards the shortest path

RELAX(u, v, w, d, π)

- 1. if $d[v] > d[u] + w(u \rightarrow v)$
- 2. then $d[v] \leftarrow d[u] + w(u \rightarrow v)$
- 3. $\pi[v] \leftarrow u$

Delft University of Technology

INITIALIZE

Node	Dist	Prev	In-Q
A	0	Local	Y
В	∞	None	Y
С	∞	None	Y
D	∞	None	Y
Е	∞	None	Y
F	∞	None	Y

Node	Dist	Prev	In-Q
G	∞	None	Y
Н	∞	None	Y
I	∞	None	Y
J	∞	None	Y
K	∞	None	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Delft University of Technology

Extract A, Relax E and K

*Queue reorders with updates

Node	Dist	Prev	In-Q
<u>A</u>	0	Local	<u>N</u>
E	2	A	Y
K	6	A	Y
В	∞	None	Y
С	∞	None	Y
D	∞	None	Y

Node	Dist	Prev	In-Q
F	∞	None	Y
G	∞	None	Y
Н	∞	None	Y
I	∞	None	Y
J	∞	None	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Delft University of Technology

Extract E, Relax C, D, F and K

	Node	Dist	Prev	In-Q
	A	0	Local	N
	<u>E</u>	<u>2</u>	<u>A</u>	<u>N</u>
	C	5	E	Y
Э,	K	6	A	Y
	F	9	Е	Y
	D	10	E	Y

Node	Dist	Prev	In-Q
В	∞	None	Y
G	∞	None	Y
Н	∞	None	Y
I	∞	None	Y
J	∞	None	Y

 $Is d[u] + w(u \rightarrow v) < d[v] ?$

*K doesn't decrease C, D and F do

Extract C, Relax D and K

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
<u>C</u>	<u>5</u>	<u>E</u>	<u>N</u>
K	6	A	Y
F	9	Е	Y
D	10	E/C	Y

Node	Dist	Prev	In-Q
В	∞	None	Y
G	∞	None	Y
Н	∞	None	Y
I	∞	None	Y
J	∞	None	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Extract K, Relax F, H (others already permanently labeled)

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
С	5	Е	N
<u>K</u>	<u>6</u>	<u>A</u>	<u>N</u>
F	9	Е	Y
D	10	E/C	Y

Node	Dist	Prev	In-Q
Н	10	K	Y
В	∞	None	Y
G	∞	None	Y
I	∞	None	Y
J	∞	None	Y

$$Is d[u] + w(u \rightarrow v) < d[v] ?$$

Extract F, Relax G

Node **Dist Prev** In-Q A 0 Local N E A N \mathbf{C} 5 E N $\underline{\mathbf{K}}$ <u>6</u> $\underline{\mathbf{F}}$ E/C D Y 10

Need to toss for next extract

Node	Dist	Prev	In-Q	
Н	10	K	Y	
G	12	F	Y	
В	∞	None	Y	
I	∞	None	Y	
J	∞	None	Y	

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Extract D, Relax B, H, I, J

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
C	5	Е	N
K	6	A	N
F	9	Е	N
<u>D</u>	<u>10</u>	E/C	N

Node	Dist	Prev	In-Q
Н	10	K	Y
G	12	F	Y
I	12	D	Y
J	15	D	Y
В	21	D	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Delft University of Technology

Extract H, Relax G and I

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
С	5	Е	N
K	6	A	N
F	9	Е	N
D	10	E/C	N

Node	Dist	Prev	In-Q
<u>H</u>	<u>10</u>	<u>K</u>	<u>N</u>
G	12	F/H	Y
I	12	D	Y
J	15	D	Y
В	21	D	Y

*2nd Path Found

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Extract G (tossed in favor of I), Relax I

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
С	5	Е	N
K	6	A	N
F	9	Е	N
D	10	E/C	N

Node	Dist	Prev	In-Q
Н	10	K	N
<u>G</u>	<u>12</u>	<u>F/H</u>	N
I	12	D	Y
J	15	D	Y
В	21	D	Y

$$Is d[u] + w(u \rightarrow v) < d[v] ?$$

Extract I, Relax J

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
С	5	Е	N
K	6	A	N
F	9	Е	N
D	10	E/C	N

Node	Dist	Prev	In-Q
Н	10	K	N
G	12	F/H	N
Ī	<u>12</u>	<u>D</u>	N
J	15	D	Y
В	21	D	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Extract J, Relax B

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
C	5	Е	N
K	6	A	N
F	9	Е	N
D	10	E/C	N

Node	Dist	Prev	In-Q
G	12	F/H	N
I	12	D	N
Н	14	G	N
<u>J</u>	<u>15</u>	D	N
В	19	J	Y

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

Extract B, Return-path Reverse of Prev values from B to A

Node	Dist	Prev	In-Q
A	0	Local	N
Е	2	A	N
С	5	E	N
K	6	A	N
F	9	Е	N
D	10	E/C	N

Node	Dist	Prev	In-Q
G	12	F/H	N
I	12	D	N
Н	14	G	N
J	15	D	N
<u>B</u>	<u>19</u>	<u>J</u>	N

- Other paths also found
- Once extracted, node distance is minimal and definite (label-setting)
- If B wasn't furthest path, early stop could have occurred
- Based on queue implementation, computation complexity varies: O(|N|+|L|.log|L|) using Fibonacci heap

Delft University of Technology

Bellman-Ford (G,A,B)

- 1. Initialize (G,A,d,π)
- 2. for h = 1 to N-1
- 3. do for each link $u \rightarrow v$ of L
- 4. Relax (u, v, w, d, π)

Relax every link per hopcount in each iteration O(N.L) complexity

Adjacency list

u	V	W
A	В	1
A	C	1
A	G	1
В	A	1
В	C	3
В	Е	1
C	В	3
C	D	2
C	F	3
D	C	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

Initialize vector of distances and previous nodes

Node	Distance	Prev
A	0	Local
В	∞	None
С	∞	None
D	∞	None
Е	∞	None
F	∞	None
G	∞	None

$$Is d[u] + w(u \rightarrow v) < d[v] ?$$

Delft University of Technology

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
С	В	3
С	D	2
С	F	3
D	C	2

u	V	W
u	V	**
D	E	2
E	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	∞ -> 1	None->A
С	∞	None
D	∞	None
Е	∞	None
F	∞	None
G	∞	None

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[A] + w(A, B) < d[B]$$

$$0 + 1 < \infty$$

Delft University of Technology

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
C	В	3
С	D	2
С	F	3
D	С	2

u	V	w
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
C	∞ -> 4	None->A
D	∞	None
Е	∞	None
F	∞	None
G	∞	None

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[A] + w(A, C) < d[C]$$

$$0 + 4 < \infty$$

Delft University of Technology

Adjacency list

u	V	w
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
C	В	3
C	D	2
C	F	3
D	С	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A
D	∞	None
Е	∞	None
F	∞	None
G	∞ -> 1	None->A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[A] + w(A, G) < d[G]$$

$$0 + 1 < \infty$$

TUDelft

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
C	В	3
C	D	2
C	F	3
D	С	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	С	-1
G	F	5

1		1
h	—	1
11		T

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A
D	∞	None
Е	∞	None
F	∞	None
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?
 $d[B] + w(B, A) < d[A]$
 $1 + 1 < 0$

False

TUDelft

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	E	1
C	В	3
C	D	2
C	F	3
D	C	2

u	V	w
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	∞	None
E	∞	None
F	∞	None
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?
 $d[B] + w(B, C) < d[C]$
 $1 + 3 < 4$ 2nd path found!

Delft University of Technology

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	E	1
C	В	3
C	D	2
C	F	3
D	C	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	∞	None
Е	∞ -> B	None->2
F	∞	None
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[B] + w(B, E) < d[E]$$

$$1 + 1 < \infty$$

TUDelft

Delft University of Technology

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
С	В	3
C	D	2
C	F	3
D	C	2

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	∞	None
Е	В	2
F	∞	None
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?
 $d[C] + w(C, B) < d[B]$
 $4 + 3 < 1$

False

Delft University of Technology

Adjacency list

u	V	w
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
С	В	3
C	D	2
C	F	3
D	C	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	∞ -> 6	None->C
Е	В	2
F	∞	None
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[C] + w(C, D) < d[D]$$

$$4 + 2 < \infty$$

Delft University of Technology

Adjacency list

u	V	W
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
С	В	3
C	D	2
C	F	3
D	C	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	C	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	6	С
Е	2	В
F	∞ -> 7	None->C
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?

$$d[C] + w(C, F) < d[F]$$

$$4 + 3 < \infty$$

Delft University of Technology

TUDelft

Adjacency list

u	V	w
A	В	1
A	C	4
A	G	1
В	A	1
В	C	3
В	Е	1
С	В	3
C	D	2
C	F	3
D	С	2

u	V	W
D	Е	2
Е	D	2
Е	F	2
F	A	6
F	D	-3
F	Е	2
F	G	5
G	A	1
G	С	-1
G	F	5

h=1

Node	Distance	Prev
A	0	Local
В	1	A
С	4	A(/B)
D	6 -> 4	C -> E
Е	2	В
F	7	С
G	1	A

Is
$$d[u] + w(u \rightarrow v) < d[v]$$
?
 $d[E] + w(E, D) < d[D]$
 $2 + 2 < 6$ True, REPLACE!!!

- Finish for all L
 - Repeat procedure until no changes
 - At most N-1 times

- Compared to Dijkstra:
 - O(N.L) complexity, theoretically longer in execution
 - Much easier to program (no min-queues)
 - Handles negative weights correctly (given no loops)
- Optional Nth iteration detects loops
 - Shouldn't change

Minimum Spanning Trees

- Best (all terminal) multicast interconnection
- Prim's and Kruskal's algorithm: greedy
- Intelligent flooding?

Kruskal's Algorithm

Delft University of Technology

Kruskal's Algorithm

Delft University of Technology

- Select by independent link weight
- Keep administration of trees in memory

- Easy to program (sort links by weight)
- Low computation complexity O(|L|.log|L|)

Delft University of Technology

• Select arbitrary starting node as start tree

Delft University of Technology

- Select smallest link attached to current tree
- Expand to connected node

Delft University of Technology

• Repeat ...

Delft University of Technology

• Repeat until ...

Delft University of Technology

• Repeat until all ...

Delft University of Technology

• Repeat until all nodes ...

Delft University of Technology

• Repeat until all nodes ...

Delft University of Technology

• Repeat until all nodes ...

Delft University of Technology

• Repeat until all nodes have ...

Delft University of Technology

• Repeat until all nodes have been ...

- Repeat until all nodes have been found
- Easy to remember, complex to program
- Looks like Dijkstra's algorithm, O(|N|+|L|.log|L|)

Questions Ch. 6

Delft University of Technology

• On network X, compute with algorithm Y the Z (shortest path or minimum spanning tree) from A (to B). Give the solution and an activity table of your calculations.