Α. Θεωρία Πληροφορίας

Άσκηση 1

Θεωρούμε μια πηγή τριών διακριτών συμβόλων χωρίς μνήμη (Discrete Memoryless Source, DMS) με αλφάβητο

$$\Phi = \{S_0, S_1, S_2\}$$

όπου οι πιθανότητες εμφάνισης των συμβόλων είναι

$$p(S_0) = p_0 = 0.4$$
, $p(S_1) = p_1 = 0.3$, $p(S_2) = p_2 = 0.3$

Ακόμα, γνωρίζουμε πως η πηγή αυτή παράγει σύμβολα με ρυθμό $r_s=1000$ σύμβολα/sec. Να υπολογίσετε την εντροπία της πηγής και το μέσο ρυθμό πληροφορίας στην έξοδο της πηγής.

Λύση

Η εντροπία μιας διαχριτής πηγής χωρίς μνήμη δίνεται από τον τύπο

$$H(\Phi) = \sum_{s \in \Phi} p(s) \log_2 \left(\frac{1}{p(s)}\right)$$

έτσι θα έχουμε:

$$\begin{split} H(\Phi) &= p_0 \log_2\left(\frac{1}{p_0}\right) + p_1 \log_2\left(\frac{1}{p_1}\right) + p_2 \log_2\left(\frac{1}{p_2}\right) \\ &= p_0 \log_2\left(p_0^{-1}\right) + p_1 \log_2\left(p_1^{-1}\right) + p_2 \log_2\left(p_2^{-1}\right) \\ &= -p_0 \log_2\left(p_0\right) - p_1 \log_2\left(p_1\right) - p_2 \log_2\left(p_2\right) \\ &= -0.4 \log_2\left(0.4\right) - 0.3 \log_2\left(0.3\right) - 0.3 \log_2\left(0.3\right) \\ &\approx 1.571 \text{ bits/σύμβολο} \end{split}$$

Έτσι, ο μέσος ουθμός πληφοφορίας της πηγής θα είναι

$$R_{\Phi} = H(\Phi) \cdot r_s$$
 $\approx 1.571 \text{ bits/σύμβολο} \cdot 1000 \text{ σύμβολα/sec}$
 $= 1571 \text{ bits/sec}$

Για την πηγή της άσκησης 1, να βοεθεί η κωδικοποίηση Huffman, το μέσο μήκος του κώδικα και η απόδοση της κωδικοποίησης Huffman.

Λύση

Ο κώδικας Huffman είναι ένας προθεματικός κώδικας ο οποίος προσπαθεί να αντιστοιχίσει κάθε σύμβολο ενός αλφαβήτου σε μια ακολουθία από δυαδικά ψηφία (κωδική λέξη) με σκοπό να πετύχει χαμηλό μέσο μήκος κώδικα. Για να υπολογίσουμε την κωδικοποίηση Huffman ενός αλφαβήτου με N σύμβολα ακολουθούμε μια διαδικασία από N-1 φάσεις. Σε κάθε φάση, στα 2 λιγότερο πιθανά σύμβολα ανατίθενται τα δυαδικά ψηφία 0 και 1 ενώ τα σύμβολα αυτά ομαδοποιούνται σε ένα σύμβολο στην επόμενη φάση. Η πιθανότητα εμφάνισης του νέου κάθε φορά συμβόλου είναι το άθροισμα των πιθανοτήτων των συμβόλων που ομαδοποιήθηκαν. Μετά το τέλος της παραπάνω μεθόδου, η κωδική λέξη για κάθε σύμβολο προκύπτει από τις αναθέσεις δυαδικών ψηφίων που κάναμε σε κάθε φάση, με αντίθετη όμως σειρά. Έτσι, θα έχουμε:

και έτσι έχουμε την αντιστοίχηση

Σύμβολο	Κωδική λέξη	Μήκος κωδικής λέξης $(l(s))$
S_0	1	1
S_1	00	2
S_2	01	2

και το μέσο μήκος κώδικα θα είναι

$$\begin{array}{ll} \overline{L} & = & \displaystyle\sum_{s \in \Phi} p(s) l(s) \\ & = & 0.4 \cdot 1 + 0.3 \cdot 2 + 0.3 \cdot 2 \\ & = & 1.6 \quad \text{bits/symbol} \end{array}$$

και η απόδοση του κώδικα Huffman θα είναι

$$n = \frac{H(\Phi)}{\overline{L}} = 0.9819$$

2

Θεω
ρούμε τώρα τη δεύτερης τάξης επέκταση της πηγής της άσκησης 1. Η νέα πηγή θα αποτελείται από $3^2=9$ σύμβολα και πιο συγκεκριμένα το νέο αλφάβητο θα είναι το

$$\Phi^2 = \{S_0 S_0, S_0 S_1, S_0 S_2, S_1 S_0, \dots, S_2 S_2\} = \{\sigma_0, \sigma_1, \dots, \sigma_8\}$$

Για την πηγή αυτή, να υπολογιστεί η εντροπία και ο μέσος ουθμός πληροφορίας της.

Λύση

Αρχικά θα υπολογίσουμε τις πιθανότητες των νέων συμβόλων. Ακριβώς επειδή η πηγή πληροφορίας δεν έχει μνήμη (δηλαδή διαδοχικά σύμβολα που εκπέμπονται από την πηγή είναι στατιστικά ανεξάρτητα) οι πιθανότητες των ομαδοποιημένων συμβόλων θα δίνονται από το γινόμενο των πιθανοτήτων εμφάνισης των επιμέρους συμβόλων.

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
S_0S_0	S_0S_1	S_0S_2	S_1S_0	S_1S_1	S_1S_2	S_2S_0	S_2S_1	S_2S_2
0.16	0.12	0.12	0.12	0.09	0.09	0.12	0.09	0.09

Η εντροπία της πηγής υπολογίζεται ως:

$$H(\Phi^2) = \sum_{s \in \Phi^2} p(s) \log_2 \left(\frac{1}{p(s)}\right)$$

$$= -0.16 \log_2(0.16) - 4 \cdot 0.12 \log(0.12) - 4 \cdot 0.09 \log(0.09)$$

$$\approx 0.4230 + 1.4683 + 1.2506$$

$$= 3.142$$

Γενικά, η σχέση που συνδέει την εντροπία μιας πηγής $H(\Phi)$ με την εντροπία της n τάξης επέκτασής της $H(\Phi^n)$ είναι

$$H(\Phi^n) = n \cdot H(\Phi)$$

γεγονός που επιβεβαιώθηκε και με την παραπάνω διαδικασία.

Ο ουθμός συμβόλων της νέας πηγής θα δίνεται από τον τύπο

$$r_s' = \frac{r_s}{2} = 500$$
 σύμβολα/ sec

αφού κάθε σύμβολο της νέας πηγής αντιστοιχεί σε δύο σύμβολα της αρχικής. Τελικά, ο μέσος ουθμός πληροφορίας της νέας πηγής θα είναι:

$$R_{\Phi^2} = 500$$
 σύμβολα/ $\sec \cdot 3.142$ bits/ $\sec = R_{\Phi}$

Δηλαδή, ο ουθμός παραγωγής πληροφορίας δεν άλλαξε με τη δεύτερης τάξης επέκταση της πηγής.

Για την πηγή της άσκησης 3, να βρεθεί η κωδικοποίηση Huffman και να υπολογιστεί η απόδοση της κωδικοποίησης αυτής.

Λύση

Σύμφωνα με τη μέθοδο που περιγράψαμε στην άσκηση 2 θα έχουμε για την εύρεση της κωδικοποίησης Huffman:

Με βάση το παραπάνω σχήμα, βρίσκουμε την ακόλουθη κωδικοποίηση για τα σύμβολα:

Σύμβολο (s)	σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
Κώδικας	001	010	011	100	110	111	101	0000	0001
$ extbf{M}$ ήκος $(l(s))$	3	3	3	3	3	3	3	4	4

Έτσι, το μέσο μήκος κώδικα θα δίνεται από τον τύπο:

$$\begin{array}{ll} \overline{L} &=& \displaystyle\sum_{s\in\Phi^2} p(s)l(s) \\ &=& 0.16\cdot 3 + 0.12\cdot 3 + 0.12\cdot 3 + 0.12\cdot 3 + 0.09\cdot 3 + 0.09\cdot 3 + 0.12\cdot 3 \\ && +0.09\cdot 4 + 0.09\cdot 4 \\ &=& 3.18 \ \ {\rm bits/} \ {\rm σύμβολo} \end{array}$$

Τελικά, η απόδοση της κωδικοποίησης αυτής θα είναι:

$$n = \frac{H(\Phi^2)}{\overline{L}} = \frac{3.14}{3.18} = 0.9881$$

Παρατηρούμε εδώ πως με τη δεύτερης τάξης επέκταση της πηγής, ενώ ο μέσος ρυθμός πληροφορίας παραμένει ίδιος, πετυχαίνουμε καλύτερη απόδοση κωδικοποίησης. Αυτό μπορούμε να το δείξουμε γενικά ξεκινώντας από το γνωστό τύπο:

$$H(\Phi) \le \overline{L} < H(\Phi) + 1$$

όπου \overline{L} το μήκος ενός προθεματικού κώδικα. Η εφαρμογή του τύπου αυτού στην n τάξης επέκταση της πηγής δίνει:

$$H(\Phi^n) \le \overline{L}_n < H(\Phi^n) + 1 \quad \Leftrightarrow$$

$$n \cdot H(\Phi) \le \overline{L}_n < n \cdot H(\Phi) + 1 \quad \Leftrightarrow$$

$$H(\Phi) \le \frac{\overline{L}_n}{n} < H(\Phi) + \frac{1}{n}$$

Δηλαδή, καθώς το n αυξάνεται τόσο περισσότερο το μήκος του προθεματικού κώδικα πλησιάζει την εντροπία της πηγής (=βέλτιστο μήκος κώδικα) και η απόδοση της κωδικοποίησης τείνει στο 1 καθώς το n τείνει στο άπειρο.

Σημείωση: Στο σημείο αυτό θα πρέπει να σημειωθεί ότι η διαδικασία κωδικοποίησης Huffman δεν είναι μοναδική. Συγκεκριμένα, υπάρχουν αρκετά σημεία του αλγορίθμου που μπορούν να υλοποιηθούν με διαφορετικό τρόπο, καταλήγοντας σε άλλη κωδικοποίηση. Ως τέτοια αναφέρουμε:

- (α) Αν δύο σύμβολα έχουν την ίδια πιθανότητα εμφάνισης υπάρχουν 2 τρόποι αρχικής διάταξής τους.
- (β) Η ανάθεση των ψηφίων "0" και "1" μπορεί να γίνει από πάνω προς τα κάτω ή από κάτω προς τα πάνω.
- (γ) Αμφιβολία συναντάμε όταν ένα σύμβολο που προχύπτει από συνδυασμό δύο άλλων έχει την ίδια πιθανότητα με κάποιο ήδη υπάρχον. Στην περίπτωση αυτή μπορεί να τοποθετηθεί όσο ψηλότερα ή όσο χαμηλότερα γίνεται. Γενικά, είναι προτιμότερο να τοποθετείται όσο ψηλότερα γίνεται.

Εφαρμόζοντας τη μια ή την άλλη διαφοροποίηση του αλγορίθμου ενδεχομένως να οδηγηθούμε σε περιπτώσεις όπου ένα σύμβολο έχει διαφορετικό κώδικα ή ακόμα και διαφορετικό μήκος κώδικα (διαφορετικό αριθμό bits). Ωστόσο, σε όλες τις περιπτώσεις το μέσο μήκος κώδικα \overline{L} διατηρείται σταθερό.

5

Η έξοδος μιας έγχοωμης ψηφιακής κάμερας η οποία έχει ανάλυση 500×400 εικονοστοιχεία (pixels) κωδικοποιείται με χρήση παλέτας 256 χρωμάτων. Αν υποθέσουμε πως οι τιμές γειτονικών pixels είναι μεταξύ τους στατιστικά ανεξάρτητες και ότι σε κάθε pixel τα 256 επίπεδα εμφανίζονται με τις εξής πιθανότητες:

Περιοχή Επιπέδων	0-99	100-149	150-209	210-255
Πιθανότητα Εμφάνισης	0.1	0.5	0.3	0.1

Υποθέτουμε ακόμα πως στα πλαίσια κάθε περιοχής τα χρώματα εμφανίζονται ισοπίθανα. Να υπολογιστούν:

- (α) Το μέσο πληροφοριακό περιεχόμενο κάθε pixel.
- (β) Το ολικό πληφοφοφιακό πεφιεχόμενο μιας εικόνας.
- (γ) Ο μέσος ουθμός πληφοφορίας στην έξοδο της κάμερας αν γνωρίζουμε πως αυτή δίνει r=25 frames/sec.

Λύση

Το μέσο πληφοφοριακό περιεχόμενο ενός pixel είναι ίσο με την εντροπία της πηγής. Για να υπολογίσουμε την εντροπία της πηγής διαπιστώνουμε πως τα σύμβολα της πηγής είναι οι αριθμοί από 0 έως 255 (256 σύμβολα) και απομένει να υπολογίσουμε τις πιθανότητες κάθε συμβόλου. Δεδομένου ότι σε κάθε περιοχή επιπέδων τα χρώματα εμφανίζονται ισοπίθανα, η πιθανότητα ενός pixel να λάβει μια (συγκεκριμένη) τιμή στην πρώτη περιοχή θα είναι

$$p_0 = \frac{1}{100} \cdot 0.1 = 0.001$$

αφού η περιοχή αποτελείται από 100 σύμβολα. Όμοια, για τις άλλες περιοχές θα έχουμε:

$$p_1 = \frac{1}{50} \cdot 0.5 = 0.01$$

$$p_2 = \frac{1}{60} \cdot 0.3 = 0.005$$

και

$$p_3 = \frac{1}{46} \cdot 0.1 = \frac{0.1}{46}$$

Έτσι, η εντροπία της πηγής θα είναι:

$$\begin{split} H &= \sum_{i=0}^{255} p(s_i) \log_2 \left(\frac{1}{p(s_i)}\right) \\ &= \sum_{i=0}^{99} p_0 \log_2 \left(\frac{1}{p_0}\right) + \sum_{i=100}^{149} p_1 \log_2 \left(\frac{1}{p_1}\right) + \sum_{i=150}^{209} p_2 \log_2 \left(\frac{1}{p_2}\right) \\ &+ \sum_{i=210}^{256} p_3 \log_2 \left(\frac{1}{p_3}\right) \\ &= 100 \cdot 0.001 \log_2 \left(\frac{1}{0.001}\right) + 50 \cdot 0.01 \log_2 \left(\frac{1}{0.01}\right) \\ &= 60 \cdot 0.005 \log_2 \left(\frac{1}{0.005}\right) + 46 \cdot \frac{0.1}{46} \log_2 \left(\frac{46}{0.1}\right) \\ &= 0.1 \log_2(10^3) + 0.5 \log_2(10^2) + 0.3 \log_2(2 \cdot 10^2) + 0.1 \log_2(46 \cdot 10) \\ &= 0.3 \log_2(10) + \log_2(10) + 0.3 + 0.6 \log_2(10) + 0.1 \log_2(2 \cdot 23 \cdot 10) \\ &= 0.3 \log_2(10) + \log_2(10) + 0.3 + 0.6 \log_2(10) + 0.1 + 0.1 \log_2(23) \\ &+ 0.1 \log_2(10) \\ &= 0.4 + 2 \log_2(10) + 0.4 + 0.1 \log_2(23) \\ &\approx 7.496 \quad \text{bits/pixel} \end{split}$$

Κάθε εικόνα (frame) αποτελείται από:

$$=500 \times 400 = 200000$$
 pixels

Επειδή τα pixels θεωφούνται στατιστικά ανεξάρτητα μεταξύ τους, το ολικό πληφοφοριακό περιεχόμενο μιας εικόνας θα είναι:

$$= \cdot H = 200000$$
 pixels $\cdot 7.496$ bits/pixel $= 14.992 \cdot 10^5$ bits/frame

Τέλος, ο ουθμός πληροφορίας της κάμερας θα δίνεται από τον τύπο

$$R = I \cdot r = 374.8 \cdot 10^5$$
 bits/sec

Ο διεθνής κώδικας Morse χοησιμοποιεί μια ακολουθία από τελείες και παύλες για τη μετάδοση γραμμάτων του αγγλικού αλφαβήτου. Η παύλα παριστάνεται με ένα παλμό ρεύματος διάρκειας 3msec και η τελεία με έναν παλμό ρεύματος διάρκειας 1msec. Η πιθανότητα εμφάνισης της παύλας είναι το 1/3 της πιθανότητας εμφάνισης της τελείας.

- (α) Υπολογίστε το πληφοφοφιακό πεφιεχόμενο της τελείας και της παύλας.
- (β) Υπολογίστε τη μέση πληροφορία του κώδικα.
- (γ) Αν μεταξύ κάθε δύο συμβόλων παρεμβάλλεται ένα διάστημα παύσης 1msec, υπολογίστε το μέσο ρυθμό μετάδοσης πληροφορίας.

Λύση

(α) Ας συμβολίσουμε με S_0 το σύμβολο της παύλας και με S_1 το σύμβολο της τελείας. Έστω ακόμα πως τα σύμβολα αυτά έχουν πιθανότητες εμφάνισης p_0 και p_1 αντίστοιχα. Από τα δεδομένα της εκφώνησης μπορούμε τότε να υπολογίσουμε τις πιθανότητες αυτές:

$$p_0 + p_1 = 1 p_0 = \frac{1}{3}p_1$$
 \Rightarrow $p_0 = \frac{1}{4} p_1 = \frac{3}{4}$

Έτσι, μπορούμε να υπολογίσουμε το πληροφοριακό περιεχόμενο της τελείας και της παύλας:

$$I(S_0) = \log_2 \frac{1}{p_0} = 2$$
 bits/σύμβολο

$$I(S_1) = \log_2 \frac{1}{p_1} \approx 0.415$$
 bits/σύμβολο

(β) Η μέση πληφοφοφία του κώδικα είναι η εντφοπία της πηγής που τον παφάγει και δίνεται από τον τύπο:

$$H = p_0 \cdot I(S_0) + p_1 \cdot I(S_1) = 0.811$$
 bits/σύμβολο

(γ) Τώρα, για να υπολογίσουμε το μέσο ρυθμό μετάδοσης της πληροφορίας υπολογίζουμε αρχικά το μέσο ρυθμό μετάδοσης συμβόλων. Αν συνυπολογίσουμε για κάθε ένα σύμβολο και το χρονικό διάστημα πάυσης 1msec που το ακολουθεί, ο συνολικός χρόνος μετάδοσης για κάθε σύμβολο θα είναι

$$t_0 = 4$$
 msec

και

$$t_1 = 2$$
 msec

Ο μέσος χρόνος για τη μετάδοση ενός συμβόλου θα είναι

$$\overline{t} = p_0 \cdot t_0 + p_1 \cdot t_1 = 2.5 \quad \text{msec}$$

και ο μέσος ουθμός συμβόλων

$$r=rac{1}{\overline{t}}=rac{1}{2.5}$$
 σύμβολα/msec $=400$ σύμβολα/sec

Τελικά, ο μέσος ουθμός πληροφορίας υπολογίζεται ως:

$$R = r \cdot H = 324.4$$
 bits/sec

9

Β. Κωδικοποίηση Καναλιού & Χωρητικότητα Διαύλου

Άσκηση 7

Σε ένα δυαδικό συμμετοικό κανάλι εισέρχονται σύμβολα με ρυθμό $r_s=1000$ σύμβολα/δευτερόλεπτο. Αν γνωρίζουμε πως τα σύμβολα 0 και 1 είναι ισοπίθανα, να υπολογιστεί ο ρυθμός μετάδοσης πληροφορίας μέσα από το κανάλι αυτό για κάθε μια από τις περιπτώσεις $p=0.9,\,p=0.8$ και $p=0.6,\,$ όπου p η πιθανότητα σωστής μετάδοσης.

Λύση

Το δυαδικό συμμετρικό κανάλι το οποίο εξετάζουμε μπορεί να παρασταθεί από το ακόλουθο σχήμα:

Ο ζητούμενος ουθμός μετάδοσης πληροφορίας δίνεται από τον τύπο

$$D_t = I(\mathcal{X}, \mathcal{Y}) \cdot r_s$$

όπου $I(\mathcal{X},\mathcal{Y})$ η αμοιβαία πληφοφοφία (η πληφοφοφία που τελικά μεταδίδεται από το κανάλι). Την αμοιβαία πληφοφοφία θα την υπολογίσουμε από τον τύπο

$$I(\mathcal{X}, \mathcal{Y}) = H(\mathcal{X}) - H(\mathcal{X}|\mathcal{Y})$$

όπου

$$H(\mathcal{X}) = \frac{1}{2}\log_2 2 + \frac{1}{2}\log_2 2 = 1 \text{ bit/symbol}$$

η εντροπία της πηγής πληροφορίας (πρίν το κανάλι) και

$$H(\mathcal{X}|\mathcal{Y}) = \sum_{i=0}^{1} \sum_{j=0}^{1} p(x_i, y_j) \log_2 \frac{1}{p(x_i|y_j)}$$

η υπό συνθήκη εντροπία (η απώλεια πληροφορίας κατά τη μετάδοση). Απομένει λοιπόν ο υπολογισμός των από κοινού πιθανοτήτων (joint probabilities) $p(x_i,y_j)$, καθώς και των υπο συνθήκη πιθανοτήτων (conditional probabilities) $p(x_i|y_j)$. Αυτές μπορούν να βρεθούν με τη βοήθεια του τύπου:

$$p(x_i, y_j) = p(y_j | x_i) \cdot p(x_i) = p(x_i | y_j) \cdot p(y_j)$$
(7.1)

Για τις από κοινού πιθανότητες βρίσκουμε άμεσα:

$$p(x_0, y_0) = p(y_0|x_0) \cdot p(x_0) = \frac{1}{2}p$$

$$p(x_0, y_1) = p(y_1|x_0) \cdot p(x_0) = \frac{1}{2}(1-p)$$

$$p(x_1, y_0) = p(y_0|x_1) \cdot p(x_1) = \frac{1}{2}(1-p)$$

$$p(x_1, y_1) = p(y_1|x_1) \cdot p(x_1) = \frac{1}{2}p$$

Για να υπολογίσουμε τις υπό συνθήκη πιθανότητες $p(x_i|y_j)$, αρκεί να υπολογίσουμε τις πιθανότητες $p(y_j)$, και να χρησιμοποιήσουμε και πάλι τη σχέση (7.1):

$$p(x_i|y_j) = \frac{p(x_i, y_j)}{p(y_i)}$$

Οι πιθανότητες εμφάνισης των συμβόλων εξόδου υπολογίζονται από την ιδιότητα:

$$p(y_j) = \sum_{i=0}^{1} p(x_i, y_j)$$

$$= \sum_{i=0}^{1} p(y_j | x_i) p(x_i)$$

$$= p(y_j | x_0) p(x_0) + p(y_j | x_1) p(x_1)$$

η οποία δίνει $p(y_0)=p(y_1)=\frac{1}{2}$. Αυτό σημαίνει ότι τα σύμβολα εξόδου είναι ισοπίθανα, γεγονός που ερμηνεύεται από τα ισοπίθανα σύμβολα εισόδου και τη συμμετρία του καναλιού. Οι τέσσερεις υπό συνθήκη πιθανότητες μπορούν να υπολογιστούν πλέον ως:

$$p(x_0|y_0) = \frac{p(x_0, y_0)}{p(y_0)} = \frac{\frac{1}{2}p}{\frac{1}{2}} = p$$

$$p(x_0|y_1) = \frac{p(x_0, y_1)}{p(y_1)} = \frac{\frac{1}{2}(1-p)}{\frac{1}{2}} = 1 - p$$

$$p(x_1|y_0) = \frac{p(x_1, y_0)}{p(y_0)} = \frac{\frac{1}{2}(1-p)}{\frac{1}{2}} = 1 - p$$

$$p(x_1|y_1) = \frac{p(x_1, y_1)}{p(y_1)} = \frac{\frac{1}{2}p}{\frac{1}{2}} = p$$

Η υπό συνθήκη εντροπία θα είναι

$$\begin{split} H(\mathcal{X}|\mathcal{Y}) &= \sum_{i=0}^{1} \sum_{j=0}^{1} p(x_i, y_j) \log_2 \frac{1}{p(x_i|y_j)} \\ &= \frac{1}{2} p \log_2 \frac{1}{p} + \frac{1}{2} (1-p) \log_2 \frac{1}{1-p} + \frac{1}{2} (1-p) \log_2 \frac{1}{1-p} \\ &\quad + \frac{1}{2} p \log_2 \frac{1}{p} \\ &= p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p} \end{split}$$

και τελικά

$$D_t = \left(1 - p \log_2 \frac{1}{p} - (1 - p) \log_2 \frac{1}{1 - p}\right) \cdot r_s$$

Αντικαθιστώντας τις τιμές πιθανότητας σωστής μετάδοσης που μας δόθηκαν στην εκφώνηση, προκύπτει:

p = 0.9	$D_t = 531$ bits/sec
p = 0.8	$D_t = 278$ bits/sec
p = 0.6	$D_t = 29$ bits/sec

Από τον παραπάνω πίνακα, συμπεραίνουμε ότι αν και η πηγή παράγει πληροφορία κατά $D_s = H(X) \cdot r_s = 1000 {\rm bit/sec}$, κατά τη διέλευση της πληροφορίας μέσα από το κανάλι μειώνεται σημαντικά ο ρυθμός της. Ακόμη και για υψηλή πιθανότητα σωστής μετάδοσης p = 90%, ο ρυθμός μετάδοσης πληροφορίας έχει φθάσει περίπου στο μισό. Καθώς αυξάνεται η πιθανότητα σφάλματος (1-p), ο ρυθμός μετάδοσης πληροφορίας μέσα από το BSC μειώνεται δραστικά, ενώ για (1-p) = 1/2 έχουμε $D_t = 0$.

Να υπολογιστεί η χωρητικότητα C ενός διακριτού συμμετρικού καναλιού χωρίς μνήμη (Binary Symetric Channel, BSC).

Λύση

Η χωρητικότητα ενός διακριτού καναλιού χωρίς μνήμη ορίζεται ως η μέγιστη δυνατή μέση μεταδιδόμενη πληροφορία ανά χρήση του καναλιού (π.χ. διάστημα συμβόλου). Η μεγιστοποίηση αυτή γίνεται ως προς όλες τις δυνατές κατανομές εισόδου.

$$C = \max_{p(x)} I(\mathcal{X}|\mathcal{Y})$$

Δηλαδή, η χωρητικότητα του καναλιού επιτυγχάνεται όταν στην είσοδο εφαρμόζεται πηγή "προσαρμοσμένη" στο κανάλι.

Λόγω της συμμετρίας του BSC, η χωρητικότητα επιτυγχάνεται όταν τα σύμβολα εισόδου είναι ισοπίθανα, δηλαδή όταν

$$p(x_0) = p(x_1) = \frac{1}{2}$$

Στη συνέχεια θα αποδείξουμε και μαθηματικά τον ισχυρισμό αυτό. Έστω ότι έχουμε τη γενική περίπτωση όπου η κατανομή εισόδου είναι:

$$p(x_0) = p_0$$
 kai $p(x_1) = 1 - p_0$

και η πιθανότητα σωστής μετάδοσης του καναλιού είναι p. Αν ακολουθήσουμε τη διαδικασία υπολογισμού της αμοιβαίας πληφοφοφίας $I(\mathcal{X}|\mathcal{Y})$ όπως έγινε στην άσκηση 7 χρησιμοποιώντας τη μεταβλητή p_0 αντί της τιμής 1/2, τότε

$$I(p_0) = p_0 p \log_2 \frac{p}{p_0 p + (1 - p_0)(1 - p)}$$

$$+ p_0 (1 - p) \log_2 \frac{1 - p}{p_0 (1 - p) + (1 - p_0) p}$$

$$+ (1 - p_0)(1 - p) \log_2 \frac{1 - p}{p_0 p + (1 - p_0)(1 - p)}$$

$$+ (1 - p_0) p \log_2 \frac{p}{p_0 (1 - p) + (1 - p_0) p}$$

Η πρώτη παράγωγος της παραπάνω συνάρτησης ως προς τη μεταβλητή p_0 είναι

$$\frac{\vartheta I(p_0)}{\vartheta p_0} = (1 - 2p) \log_2 \frac{1 - p - p_0 + 2p_0 p}{p + p_0 - 2p_0 p}$$
$$= (1 - 2p) \log_2 \frac{(1 - p) - p_0 (1 - 2p)}{p + p_0 (1 - 2p)}$$

και μπορεί να δειχθεί πως:

- Για $p_0 < 1/2$, $\frac{\vartheta I(p_0)}{\vartheta p_0} > 0$ και έτσι η $I(p_0)$ είναι γνησίως αύξουσα.
- Για $p_0>1/2,\, \frac{\vartheta I(p_0)}{\vartheta p_0}<0$ και έτσι η $I(p_0)$ είναι γνησίως φθίνουσα.
- Για $p_0=1/2, \, \frac{\vartheta I(p_0)}{\vartheta p_0}=0$ και έτσι στο σημείο αυτό έχουμε ολικό μέγιστο.

Αποδείξαμε έτσι τον αρχικό μας ισχυρισμό.

Ένα τερματικό CRT χρησιμοποιείται για την αποστολή αλφαριθμητικών δεδομένων σε έναν υπολογιστή. Το CRT είναι συνδεδεμένο με τον υπολογιστή με μια τηλεφωνική γραμμή που έχει εύρος ζώνης 3000Hz και SNR εξόδου 10 dB. Δεχόμαστε πως το τερματικό έχει 128 χαρακτήρες και ότι η αποστολή δεδομένων από το τερματικό αποτελείται από ακολουθίες ανεξάρτητων ισοπίθανων χαρακτήρων.

- (α) Βοείτε τη χωρητικότητα του καναλιού.
- (β) Βρείτε το μέγιστο (θεωρητικό) ρυθμό με τον οποίο μπορούμε να μεταδώσουμε δεδομένα από το τερματικό στον υπολογιστή χωρίς σφάλματα.

Λύση

(α) Η χωρητικότητα του ενθόρυβου καναλιού δίνεται από το θεώρημα Shannon-Hartley με τον τύπο:

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

όπου B είναι το εύρος ζώνης του καναλιού και S/N είναι ο λόγος ισχύος σήματος προς θόρυβο στην έξοδο του καναλιού. Αφού ο λόγος σήματος προς θόρυβο είναι εκφρασμένος σε dB θα έχουμε:

$$10\log_{10}\frac{S}{N} = 10 \Leftrightarrow \frac{S}{N} = 10$$

και έτσι

$$C = 3000 \log_2 11 \approx 10378$$
 bits/sec

(β) Για να υπολογίσουμε το μέγιστο θεωρητικό ρυθμό με τον οποίο μπορούμε να μεταδώσουμε δεδομένα, υπολογίζουμε αρχικά την εντροπία της πηγής (CRT):

$$H = \sum_{i=1}^{128} p_i \log_2 \frac{1}{p_i} = \sum_{i=1}^{128} \frac{1}{128} \log_2 128 = 128 \frac{1}{128} \log_2 128 = 7$$
 bits/σύμβολο

Ο περιορισμός που τίθεται από το θεώρημα κωδικοποίησης καναλιού του Shannon είναι

$$H \cdot r_s \leq C \quad \Leftrightarrow \quad r_s \leq \frac{C}{H} = 1482 \quad \text{symbols/sec}$$

Τηλεοπτικό σήμα με εύφος ζώνης 10MHz οδηγείται σε κύκλωμα δειγματοληψίας που λειτουργεί με φυθμό ίσο με 1.2 φορές το φυθμό Nyquist. Τα δείγματα που προκύπτουν από τη δειγματοληψία (υποθέτουμε πως είναι στατιστικά ανεξάφτητα) κβαντίζονται με τη χρήση ενός κβαντιστή 8 bits. Η δυαδική ακολουθία που προκύπτει, μεταδίδεται δια μέσου ιδανικού χαμηλοπερατού διαύλου με εύφος ζώνης 30MHz και προσθετικό λευκό θόφυβο με κατανομή Gauss και ισχύς τέτοια ώστε να είναι SNR=20dB. Είναι δυνατή η χωρίς σφάλματα μετάδοση της δυαδικής ακολουθίας μέσα από το συγκεκριμένο δίαυλο;

Λύση

Σύμφωνα με τα δεδομένα της άσκησης, ο ουθμός δειγματοληψίας είναι

$$f_s = (1.2 \cdot 2 \cdot 10) \text{MHz} = 24 \text{MHz}$$

δηλαδή έχουμε $24\cdot 10^6$ δείγματα ανά δευτερόλεπτο. Κάθε δείγμα απαιτεί στη συνέχεια 8 bits για αποθήκευση, και έτσι ο ρυθμός δυαδικών ψηφίων θα είναι

$$r_b = 8 \cdot 24 \cdot 10^6 \text{bits/sec} = 192 \cdot 10^6 \text{bits/sec}$$

Ας υπολογίσουμε τώρα τη χωρητικότητα του διαύλου που εξετάζουμε. Σύμφωνα με το νόμο Shannon-Hartley η χωρητικότητα του καναλιού μετάδοσης θα είναι:

$$C = B_T \log_2 \left(1 + \frac{S}{N} \right)$$
 bits/sec

όπου B_T = 30 MHz και

$$\frac{S}{N} = 20dB \Leftrightarrow 10 \log_{10} \frac{S}{N} = 20 \Leftrightarrow \frac{S}{N} = 100$$

Έτσι η χωρητικότητα ή ο μέγιστος δυνατός ρυθμός πληροφορίας από το δοσμένο κανάλι για χωρίς σφάλματα μετάδοση θα είναι

$$C = 30 \cdot 10^6 \log_2(101) \approx 199.75 \cdot 10^6 \text{bits/sec}$$

Παρατηρούμε πως $C>r_b$ και άρα η μετάδοση διαμέσου του συγκεκριμένου διαύλου είναι δυνατή.

Ένας φίλος σου διατείνεται ότι μπορεί να σχεδιάσει ένα σύστημα για τη διαβίβαση της εξόδου ενός μίνι υπολογιστή σε έναν εκτυπωτή γραμμών που λειτουργεί με ταχύτητα 30 γραμμών ανά λεπτό μέσω μιας κοινής τηλεφωνικής γραμμής εύρους ζώνης 3.5KHz με λόγο σήματος προς θόρυβο SNR=30dB. Ας δεχθείτε ότι ο εκτυπωτής αυτός χρειάζεται δεδομένα των 8 bits ανά χαρακτήρα και τυπώνει γραμμές των 80 χαρακτήρων. Τον πιστεύεις;

Λύση

Ας υπολογίσουμε αρχικά τη χωρητικότητα του καναλιού

$$\frac{S}{N} = 30$$
 dB $\Leftrightarrow 10 \log_{10} \frac{S}{N} = 30 \Leftrightarrow \frac{S}{N} = 10^3$

και έτσι

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$
$$= 3500 \cdot \log_2 (1 + 10^3)$$
$$\approx 34885 \text{ bits/sec}$$

Ο ουθμός δεδομένων του εκτυπωτή τώρα θα είναι:

$$\frac{30 \text{grammés}}{\text{λεπτό}} \cdot \frac{80 \text{cragant.}}{\text{grammá}} \cdot \frac{8 \text{bits}}{\text{crafa}} = \frac{19200 \text{bits}}{\text{λεπτό}} = 320 \quad \frac{\text{bits}}{\text{sec}}$$

ο οποίος είναι μικρότερος από τη χωρητικότητα του καναλιού και άρα η μετάδοση είναι δυνατή.

Η έξοδος της ψηφιακής κάμερας της Άσκησης 5 διοχετεύεται σε τηλεπικοινωνιακό κανάλι με θόρυβο τέτοιας ισχύος ώστε να έχουμε SNR=20dB. Να υπολογιστεί το ελάχιστο απαιτούμενο εύρος ζώνης ώστε να μεταδοθεί η πληροφορία χωρίς σφάλματα.

Λύση

Αρχικά, μετατρέπουμε το λόγο σήματος προς θόρυβο ο οποίος είναι εκφρασμένος σε dB:

 $\frac{S}{N} = 20dB \Rightarrow 10\log_{10}\frac{S}{N} = 20 \Rightarrow \frac{S}{N} = 100$

Έστω τώρα πως το χρησιμοποιούμενο κανάλι έχει εύρος ζώνης . Χρησιμοποιώντας το μέσο ρυθμό πληροφορίας R της κάμερας ο οποίος υπολογίστηκε στην άσκηση 5, έχουμε:

$$\begin{split} R &\leq C &\Leftrightarrow \\ R &\leq B \log_2 \left(1 + \frac{S}{N}\right) &\Leftrightarrow \\ B &\geq \frac{R}{\log_2 \left(1 + \frac{S}{N}\right)} \end{split}$$

και με αντικατάσταση βρίσκουμε

 $B \ge 5.63$ MHz

C. Δειγματοληψία - Κβαντισμός - Πολυπλεξία Ασκηση 13

Ένα σήμα χαμηλών συχνοτήτων x(t) έχει φάσμα που δίνεται από την

$$X(f) = \left\{ \begin{array}{ll} 1 - \frac{|f|}{200}, & |f| < 200 \\ \\ 0, & \text{παντού αλλού} \end{array} \right.$$

- (α) Δεχθείτε ότι το x(t) δειγματοληπτείται ιδανικά (με άπειρη αριθμητική ακρίβεια) χρησιμοποιώντας συχνότητα δειγματοληψίας $f_s=300~{\rm Hz}$. Σχεδιάστε το φάσμα του δειγματοληπτημένου σήματος.
- (β) Επαναλάβετε το προηγούμενο εφώτημα για $f_s = 400~{\rm Hz}.$

Λύση

Σχεδιάζουμε το φάσμα του αρχικού σήματος

Γενικά, στην περίπτωση της ιδανική δειγματοληψίας, το φάσμα του δειγματοληπτημένου σήματος $X_\delta(f)$ σχετίζεται με το φάσμα του αρχικού σήματος με τη σχέση:

$$X_{\delta}(f) = \frac{1}{T_s} \sum_{n = -\infty}^{\infty} X\left(f - \frac{n}{T_s}\right)$$

όπου $T_s=1/f_s$ η περίοδος δειγματοληψίας. Στην περίπτωση που εξετάζουμε, όπου $f_s=300$ Hz, το φάσμα του δειγματοληπτημένου σήματος θα είναι η περιοδική επανάληψη του φάσματος του αρχικού σήματος με περίοδο 300 Hz και επειδή το εύρος του φάσματος του αρχικού σήματος είναι 400 Hz (από -200 έως 200) θα έχουμε περιοχές επικάλυψης εύρους 100 Hz. Με άλλα λόγια, δεν πληρείται το κριτήριο του Nyquist $(f_s \geq 2 \cdot f_{max})$ για δειγματοληψία χωρίς απώλεια πληροφορίας. Έτσι, σχεδιάζουμε το φάσμα $X_\delta(f)$.

Αντίθετα, στην περίπτωση όπου $f_s=400~{\rm Hz}$, το μριτήριο Nyquist πληρείται έστω και οριακά, οπότε δεν έχουμε περιοχές επικάλυψης. Το φάσμα του δειγματοληπτημένου σήματος τότε θα είναι:

20

Το αναλογικό σήμα $x(t)=2\cos(400\pi t)+6\cos(640\pi t)$ δειγματοληπτείται ιδανικά με συχνότητα δειγματοληψίας $f_s=500$ Hz και δίνει έτσι το σήμα διακριτού χρόνου x_n . Να υπολογιστεί το συχνοτικό περιεχόμενο $X(e^{j\omega})$ του σήματος x_n .

Λύση

Ένα από τα γνωστά ζεύγη Fourier δίνεται από τη σχέση

$$\cos(2\pi f_0 t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2} \left(\delta(f - f_0) + \delta(f + f_0)\right)$$

Το σήμα x(t) γράφεται έτσι:

$$x(t) = 2\cos(400\pi t) + 6\cos(640\pi t)$$
$$= 2\cos(2\pi 200t) + 6\cos(2\pi 320t)$$

και έτσι το φάσμα του θα δίνεται από τον τύπο

$$X(f) = 2\frac{1}{2}(\delta(f - 200) + \delta(f + 200)) + 6\frac{1}{2}(\delta(f - 320) + \delta(f + 320))$$
$$= \delta(f - 200) + \delta(f + 200) + 3\delta(f - 320) + 3\delta(f + 320)$$

Παρατηρούμε στο σημείο αυτό πως η συχνότητα δειγματοληψίας που έχει επιλεγεί βρίσκεται κάτω από το όριο Nyquist το οποίο στην περίπτωσή μας είναι η συχνότητα 640 Hz. Έτσι, θα έχουμε αναδίπλωση συχνοτήτων. Η αναδίπλωση συχνοτήτων γίνεται με τους ακόλουθους 2 κανόνες:

• Συχνότητες οι οποίες στο αρχικό σήμα είναι μεγαλύτερες από τη συχνότητα δειγματοληψίας χάνουν ακέραια πολλαπλάσια της συχνότητας δειγματοληψίας και εμφανίζονται στο διάστημα $[0,f_s)$. Αν για παράδειγμα μια συχνότητα f_a στο αρχικό σήμα είναι ίση με

$$f_a = k \cdot f_s + f_a'$$

τότε αυτή θα αναδιπλωθεί στη συχνότητα f'_a η οποία ανήκει στο διάστημα $[0,f_s)$ και έχει χάσει k ακέραια πολλαπλάσια.

• Επιπρόσθετα, αν η συχνότητα f_a' ανήκει στο διάστημα $(\frac{f_s}{2},f_s)$ τότε αυτή υφίσταται επιπλέον αναδίπλωση και μάλιστα αντικατοπτρίζεται στη συμμετρική της ως προς $\frac{f_s}{2}$ συχνότητα.

Τέλος, το δειγματοληπτημένο σήμα θα παρουσιάζει περιοδικό φάσμα με περίοδο f_s .

Με βάση τους παραπάνω μανόνες, η συχνότητα 200 Hz θα παραμείνει ανεπηρέαστη από το φαινόμενο της αναδίπλωσης αφού είναι μικρότερη από $\frac{F_s}{2}$ =250 Hz. Αντίθετα, η συχνότητα 320 Hz είναι μεγαλύτερη από 250 Hz και άρα θα αντιματοπτριστεί στη συμμετρική της ως προς $\frac{F_s}{2}$ συχνότητα, δηλαδή στη συχνότητα 180 Hz. Στο ακόλουθο σχήμα έχουμε σχεδιάσει το συχνοτικό περιεχόμενο του σήματος x_n όπου οι συναρτήσεις δέλτα που εμφανίζονται εκτός των διακεκομμένων γραμμών αντιστοιχούν σε περιοδικές επαναλήψεις του βασικού φάσματος. Το ύψος των δέλτα συναρτήσεων υπολογίζεται ως $1/T_s$ επί το ύψος των αντίστοιχων δέλτα συναρτήσεων του φάσματος του αναλογικού σήματος.

Η συνά
οτηση πυκνότητας πιθανότητας $f_s()$ των τιμών ενός αναλογικού σήματος παρουσιά
ζεται στο ακόλουθο σχήμα

Σχεδιάστε έναν ομοιόμορφο κβαντιστή 4 σταθμών και υπολογίστε το λόγο (ισχύος) σήματος προς θόρυβο κβάντισης του δειγματοληπτημένου σήματος.

Λύση

Η δυναμική περιοχή του σήματος είναι το διάστημα [-1,1] η οποία έχει εύρος 2. Στην περιοχή αυτή ο κβαντιστής θα πρέπει να εισάγει 4 στάθμες κβάντισης και αφού είναι ομοιόμορφος οι στάθμες αυτές θα πρέπει να ισαπέχουν. Εύκολα βρίσκουμε πως η απόσταση ανάμεσα σε 2 διαδοχικές στάθμες κβάντισης θα είναι

$$\Delta = \frac{2}{4} = \frac{1}{2}$$

και έτσι τα άκρα των περιοχών θα είναι τα σημεία $x_0=-1, x_1=-1/2, x_2=0, x_3=1/2$ και $x_4=1.$ Οι στάθμες κβάντισης θα είναι τα κέντρα των περιοχών αυτών και έτσι θα έχουμε

$$m_1 = -\frac{3}{4}$$
, $m_2 = -\frac{1}{4}$, $m_3 = \frac{1}{4}$, $m_4 = \frac{3}{4}$

Αν θεωρήσουμε το αρχικό σήμα ως S και το δειγματοληπτημένο ως S_q , τότε η

μέση ισχύς του θορύβου κβάντισης θα είναι

$$N_{q} = \int_{-1}^{+1} (S - S_{q})^{2} f_{s}(S) dS$$

$$= \sum_{i=0}^{3} \int_{x_{i}}^{x_{i+1}} (S - m_{i+1})^{2} f_{s}(S) dS$$

$$= \int_{x_{0}}^{x_{1}} (S - m_{1})^{2} f_{s}(S) dS + \int_{x_{1}}^{x_{2}} (S - m_{2})^{2} f_{s}(S) dS$$

$$+ \int_{x_{2}}^{x_{3}} (S - m_{3})^{2} f_{s}(S) dS + \int_{x_{3}}^{x_{4}} (S - m_{4})^{2} f_{s}(S) dS$$

$$= \int_{x_{0}}^{x_{1}} (S - m_{1})^{2} (S + 1) dS + \int_{x_{1}}^{x_{2}} (S - m_{2})^{2} (S + 1) dS$$

$$+ \int_{x_{2}}^{x_{3}} (S - m_{3})^{2} (-S + 1) dS + \int_{x_{3}}^{x_{4}} (S - m_{4})^{2} (-S + 1) dS$$

Υπολογίζοντας τα παραπάνω ολοκληρώματα, προκύπτει ότι η μέση ισχύς του θορύβου κβαντισμού είναι

$$N_q = \frac{1}{48}$$

Για την ισχύ του σήματος, έχουμε

$$P = \int_{-1}^{+1} S^2 f_s(S) dS$$

$$= \int_{-1}^{0} S^2 (S+1) dS + \int_{0}^{+1} S^2 (-S+1) dS$$

$$= \frac{1}{6}$$

και τελικά, ο λόγος σήματος προς θόρυβο κβαντισμού είναι

$$\frac{P}{N_a} = \frac{48}{6} = 8 = 9.03$$
dB

Έξι ανεξάρτητες πηγές με εύρη ζώνης (bandwidth) W, W, 2W, 2W, 3W και 3W Hertz πρόκειται να μεταδοθούν με πολυπλεξία διαίρεσης χρόνου (TDM) σε ένα κοινό τηλεπικοινωνιακό κανάλι. Πώς μπορεί να γίνει αυτό και ποιο είναι το απαιτούμενο εύρος ζώνης του καναλιού;

Λύση

Σύμφωνα με το αριτήριο Nyquist, οι πηγές με μεγαλύτερο εύρος ζώνης χρειά-ζονται πιο πυανή δειγματοληψία. Συγκεαριμένα οι πηγές με εύρος ζώνης W θα πρέπει να δειγματοληπτηθούν με συχνότητα τουλάχιστον 2W.

Ένας απλός τρόπος να τις πολυπλέξουμε είναι να δειγματοληπτούμε όλες τις πηγές με τη μεγαλύτερη συχνότητα δειγματοληψίας 6W (ή να παρεμβάλουμε μηδενικά). Έτσι, σε κάθε περίοδο διάρκειας 1/(6W) θα υπάρχουν 6 δείγματα, επομένως ο συνολικός ρυθμός θα είναι 36W και το εύρος ζώνης 18W για να μεταδοθεί το σήμα.

Ένας πιο αποδοτικός τρόπος είναι ο ακόλουθος: Δειγματοληπτούμε κάθε πηγή στον αντίστοιχο Nyquist ουθμό της και ουθμίζουμε τον μεταγωγέα σε κάθε κύκλο να μεταδίδει από 1 δείγμα των 2 πρώτων πηγών, 2 δείγματα των δύο πηγών με εύρος ζώνης 2W και 3 δείγματα από τις τελευταίες πηγές. (Αφού $T_s=2T_s'=3T_s''$).

Έτσι, στη χρονική διάρκεια της μεγαλύτερης περιόδου $(T_s=\frac{1}{2W})$ έχουμε στην πραγματικότητα 1+1+2+2+3+3=12 δείγματα, δηλαδή έχουμε ένα δείγμα κάθε $r=\frac{1}{24W}$ δευτερόλεπτα ή ο ρυθμός δειγμάτων είναι 24W και το απαιτούμενο εύρος ζώνης είναι τουλάχιστον 12W.

24 φωνητικά σήματα δειγματοληπτούνται ομοιόμορφα και κατόπιν πολυπλέκονται με διαίρεση χρόνου. Η δειγματοληψία είναι πρακτική (flat-top δείγματα) με διάρκεια 1 μsec. Η πολυπλεξία περιλαμβάνει πρόβλεψη για συγχρονισμό με έναν επιπλέον παλμό ικανού πλάτους και διάρκειας 1 μsec. Για κάθε σήμα η υψηλότερη συχνότητα δεν ξεπερνά τα 3.4 KHz. Έστω ότι δειγματοληπτούμε με συχνότητα 8 KHz. Να υπολογιστεί η απόσταση μεταξύ δυο διαδοχικών παλμών του πεπλεγμένου σήματος. Αν η δειγματοληψία γίνεται στο ρυθμό Nyquist, ποια θα είναι η απόσταση

Λύση

Η περίοδος δειγματοληψίας είναι

$$T_s = \frac{1}{8000Hz} = 125$$
 µsec

και η διάρκεια κάθε παλμού είναι T=1 μsec. Στο πεπλεγμένο σήμα τώρα, σε μια περίοδο διάρκειας T_s θα έχουμε 24 παλμούς το πλάτος των οποίων θα αντιστοιχεί σε δειγματοληπτημένες τιμές των φωνητικών σημάτων (παλμοί δεδομένων), και έναν παλμό συγχρονισμού με κάθε παλμό (είτε είναι δεδομένων ή συγχρονισμού) να έχει διάρκεια 1 μsec. Έτσι, από τα 125 μsec της περιόδου T_s τα 25 μsec διατίθενται σε παλμούς (24 παλμοί δεδομένων, 1 συγχρονισμού) και τα υπόλοιπα 100 μsec αποτελούν διαστήματα χωρίς σήμα. Τα διαστήματα αυτά παρατηρούνται μετά από κάθε παλμό και έτσι κάθε ένα έχει διάρκεια

$$T_d = \frac{T_s - N \cdot T_p}{N} = \frac{125 - 25 \cdot 1}{25} = 4$$
 µsec

όπου $T_p=1$ μsec η χρονική διάρκεια ενός παλμού και N=25 το πλήθος όλων των παλμών σε μια περίοδο.

Αν η δειγματοληψία γίνεται στο
 ουθμό Nyquist, δηλαδή $f_s=6800 {\rm Hz}$ και $T_s'=147$ μ
sec τότε ο παραπάνω τύπος δίνει

$$T_d' = 4.88$$
 µsec

D. Μετάδοση Βασικής Ζώνης

Άσκηση 18

Σχεδιάστε ένα δυαδικό σύστημα PAM βασικής ζώνης για τη μετάδοση δεδομένων με ρυθμό $R_b=3600$ bits/sec. Η απόκριση του καναλιού δίνεται από τη σχέση

$$H_c(f) = \left\{ egin{array}{ll} 10^{-2} & \qquad \mbox{για} & |f| < 2400 \\ 0 & \qquad & \alpha \mbox{ll} \mbox{o} \mbox{\'e} \end{array}
ight.$$

Στο κανάλι υπεισέρχεται λευκός προσθετικός θόρυβος ο οποίος ακολουθεί την κατανομή Gauss.

Λύση

Από τη σχέση που δίνει την απόκριση του καναλιού διαπιστώνουμε πως το διαθέσιμο εύρος ζώνης είναι

$$W = 2400 \, \text{Hz}$$

Θα χοησιμοποιήσουμε τον παλμό ανυψωμένου συνημιτόνου (raised cosine) για να σχεδιάσουμε τα φίλτρα πομπού και δέκτη. Το φάσμα του παλμού αυτού δίνεται από τη σχέση

$$X_{rc}(f) = \begin{cases} \frac{1}{2B_T} & |f| < B_T(1 - \rho) \\ \frac{1}{4B_T} \left(1 + \cos \left[\frac{\pi(|f| - f_1)}{2B_T - 2f_1} \right] \right) & B_T(1 - \rho) \le |f| \le B_T(1 + \rho) \\ 0 & |f| > B_T(1 + \rho) \end{cases}$$

όπου

- $B_T = \frac{R_s}{2}$ είναι το ελάχιστο απαιτούμενο εύρος ζώνης για τη μετάδοση ενός σήματος με ρυθμό σηματοδοσίας (ρυθμό συμβόλων) R_s . Στην περίπτωσή μας, επειδή το σύστημα είναι δυαδικό η έννοια του bit ταυτίζεται με την έννοια του συμβόλου, οπότε $R_s = R_b$.
- $B_T(1+\rho)$ είναι το εύρος ζώνης που καταλαμβάνει ένας παλμός φάσματος ανυψωμένου συνημιτόνου με παράγοντα αναδίπλωσης $0 \le \rho \le 1$.

Ποσκειμένου να χρησιμοποιήσουμε όλο το διαθέσιμο εύρος ζώνης W, θέτουμε

$$B_T(1+\rho) = W \Leftrightarrow \rho = \frac{1}{3}$$

και έτσι το φάσμα του παλμού που θα χρησιμοποιήσουμε στο σχεδιασμό του συστήματός μας θα είναι

$$X_{rc}(f) = \begin{cases} \frac{1}{3600} & |f| < 1200 \text{Hz} \\ \frac{1}{7200} \left(1 + \cos \left[\frac{\pi(|f| - 1200)}{1200} \right] \right) & 1200 \le |f| \le 2400 \\ 0 & |f| > 2400 \end{cases}$$

Τέλος, για να ικανοποιείται η συνθήκη για μηδενική διασυμβολική παρεμβολή

$$|G_t(f)| \cdot |H_c(f)| \cdot |G_r(f)| = |X_{rc}(f)|$$

τα φίλτρα πομπού και δέκτη επιλέγονται ως

$$|G_r(f)| = |G_t(f)| = \frac{|X_{rc}(f)|^{1/2}}{|H_c(f)|^{1/2}} = 10|X_{rc}(f)|^{1/2}$$

28

Καθορίστε τα βέλτιστα φίλτρα πομπού και δέκτη για ένα δυαδικό τηλεπικοινωνιακό σύστημα που μεταδίδει δεδομένα με ρυθμό $R_b=4800 {\rm bits/sec}$ σε ένα κανάλι με απόκριση συχνοτήτων

$$|C(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{W}\right)^2}}, \quad |f| \le W$$

όπου $W=4800 {\rm Hz}$. Ο προσθετικός θόρυβος που εισάγει το κανάλι είναι λευκός, γκαουσιανός και έχει μηδενική μέση τιμή.

Λύση

Το ελάχιστο απαιτούμενο εύρος ζώνης για τη μετάδοση των δεδομένων υπολογίζεται ως

$$B_T = \frac{R_b}{2} = 2400 \text{Hz}$$

Εφόσον το διαθέσιμο εύρος ζώνης του καναλιού $W=4800 {\rm Hz}$ είναι μεγαλύτερο, μπορούμε να χρησιμοποιήσουμε παλμό μορφοποίησης ανυψωμένου συνημιτόνου. Ο συντελεστής αναδίπλωσής του υπολογίζεται ως:

$$B_T \cdot (1 + \rho) = W \Leftrightarrow \rho = 1$$

Όπως είδαμε στην άσκηση 18, το φάσμα του παλμού ανυψωμένου συνημιτόνου αποτελείται από τρία τμήματα που ορίζονται με τη βοήθεια των τιμών $B_T(1-\rho)$ και $B_T(1+\rho)$. Στην περίπτωσή μας, ισχύει

$$B_T(1-\rho)=0$$

άρα για $\rho=1$ εξαφανίζεται το επίπεδο τμήμα της απόκρισης συχνότητας και αυτή απλοποιείται ως:

$$X_{rc}(f) = \left\{ egin{array}{ll} rac{1}{9600} \left(1 + \cos rac{\pi |f|}{4800}
ight) & |f| < 4800 \ 0 & lpha \lambda \lambda o ύ \end{array}
ight.$$

Το πλάτος της απόκρισης συχνότητας των φίλτρων πομπού και δέκτη θα πρέπει

να ακολουθεί τη σχέση:

$$|G_t(f)| = |G_r(f)| = \frac{|X_{rc}(f)|^{1/2}}{|C(f)|^{1/2}}$$

$$= \frac{\left\{\frac{1}{9600} \left(1 + \cos\frac{\pi|f|}{4800}\right)\right\}^{1/2}}{\left\{1 + \left(\frac{f}{4800}\right)^2\right\}^{-1/4}}$$

$$= \frac{1}{\sqrt{9600}} \left(1 + \cos\frac{\pi|f|}{4800}\right)^{1/2} \left(1 + \left(\frac{f}{4800}\right)^2\right)^{1/4},$$

$$|f| \le 4800$$

30

Δύο σήματα με πεπερασμένα εύρη ζώνης 20 KHz και 30 KHz αντίστοιχα, δειγματοληπτούνται και πολυπλέκονται χρονικά. Η δειγματοληψία γίνεται κατά τρόπο που για το κάθε σήμα χωριστά να ικανοποιείται το κριτήριο του Nyquist. Τα προκύπτοντα δείγματα κβαντίζονται από έναν ομοιόμορφο κβαντιστή 256 επιπέδων και στη συνέχεια κωδικοποιούνται δυαδικά. Η δυαδική πηγή πληροφορίας μετασχηματίζεται σε Μιαδική (M-ary) με M=16. Οι παλμοί των συμβόλων της Μιαδικής πηγής μορφοποιούνται με χρήση συνάρτησης τύπου raised cosine και μεταδίδονται στη βασική ζώνη μέσω ενός καναλιού με εύρος ζώνης B=120 KHz. Ζητούνται τα εξής

- (α) Να υπολογιστεί το ελάχιστο απαιτούμενο εύρος ζώνης (B_{min}) . Είναι το διαθέσιμο εύρος ζώνης αρχετό ώστε να γίνει σωστά η μετάδοση;
- (β) Έστω $B_{min} < 120$ KHz. Πως μποφεί να αξιοποιηθεί το πλεονάζον εύφος ζώνης; (Σημείωση: Η προφανής απάντηση για μετάδοση άλλης πηγής δεν θα ληφθεί υπόψη)
- (γ) Έστω $B_{min} > 120$ Hz. Ποιο βασικό πρόβλημα θα προκύψει; Σε ποιο σημείο του όλου συστήματος θα επεμβαίνατε ώστε να πετύχετε τελικά σωστή μετάδοση;

Λύση

Και τα δύο σήματα δειγματοληπτούνται στους αντίστοιχους Nyquist ουθμούς τους. Στη συνέχεια κβαντίζονται με τη χρήση ενός κβαντιστή των 8 bits. Έτσι, υπολογίζουμε τους αντίστοιχους ουθμούς bits/sec.

$$W_1 = 20 \text{KHz} \Rightarrow F_{s1} = 40 \text{KHz} (\delta \epsilon \text{ίγματα/sec}) \Rightarrow r_{b1} = 320000 \text{bits/sec}$$

$$W_2 = 30 \text{KHz} \Rightarrow F_{s2} = 60 \text{KHz} (\delta \epsilon \text{ίγματα/sec}) \Rightarrow r_{b2} = 480000 \text{bits/sec}$$

Οι δυαδικές ακολουθίες στη συνέχεια μετασχηματίζονται σε ακολουθίες 16αδικών συμβόλων, άρα έχουμε 4 bits/σύμβολο και προκύπτουν οι ακόλουθοι ουθμοί συμβόλων:

$$r_{s1} = \frac{r_{b1}}{4} = 80000$$
symbols/sec, $T_{s1} = \frac{1}{80}$ msec

$$r_{s2} = \frac{r_{b2}}{4} = 120000$$
symbols/sec, $T_{s2} = \frac{1}{120}$ msec

Οι δύο πηγές πολυπλέχονται χρονικά. Η μεγαλύτερη περίοδος είναι η T_{s1} . Επειδή όμως η T_{s1} δεν είναι ακέραιο πολλαπλάσιο της T_{s2} , που σημαίνει ότι σε διάρκεια T_{s1} δεν παράγεται ακέραιος αριθμός συμβόλων από τη δεύτερη πηγή,

κάνουμε το εξής: Βρίσκουμε το ελάχιστο κοινό πολλαπλάσιο των T_{s1} και T_{s2} , έστω T_s , και επιλέγουμε αυτό ως διάρκεια ενός πλαισίου. Στην περίπτωσή μας το ελάχιστο κοινό πολλαπλάσιο είναι το

$$T_s = \frac{1}{40} = 2\frac{1}{80} = 3\frac{1}{120}$$
 msec

πράγμα που σημαίνει ότι σε μια περίοδο T_s του πεπλεγμένου σήματος θα έχουμε 2 δείγματα από την πρώτη πηγή και 3 δείγματα από τη δεύτερη πηγή, δηλαδή συνολικά 5 δείγματα σε χρόνο T_s ή ένα δείγμα σε χρόνο

$$r = \frac{T_s}{5} = \frac{1}{200}$$
 msec

Έτσι, στο πεπλεγμένο σήμα έχουμε τελικά ουθμό

$$r_s = \frac{1}{r} = 200$$
 KHz = 200000 σύμβολα/sec

και για τη μετάδοση του σήματος αυτού απαιτείται εύρος ζώνης τουλάχιστον

$$B_{min} = \frac{r_s}{2} = 100 \text{ KHz}$$

και έτσι διαπιστώνουμε πως το διαθέσιμο εύρος ζώνης είναι αρκετό.

Ε. Μετάδοση Ευρείας Ζώνης

Άσκηση 21

Δυαδικά δεδομένα μεταδίδονται μέσω μικροκυματικής ζεύξης με ρυθμό $r_b=10^6$ bits/sec. Η πυκνότητα φάσματος ισχύος στην είσοδο του δέκτη είναι $\frac{N_0}{2}=10^{-10} {
m Watt/Hz}$. Να βρεθεί η μέση ισχύς του φέροντος που απαιτείται για να διατηρηθεί μια μέση πιθανότητα σφάλματος $P_e \leq 10^{-4}$ για ομόδυνη δυαδική FSK και για ομόδυνη δυαδική PSK. Δίνεται ότι $Q(3.719) \simeq 10^{-4}$.

Λύση

Η μέση πιθανότητα σφάλματος bit για καθεμιά από τις δύο ζητούμενες διαμοφοσεις (ομόδυνη δυαδική FSK και ομόδυνη δυαδική PSK) είναι:

$$P_e^{FSK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

$$P_e^{PSK} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

όπου E_b η μέση ενέργεια ανά διάρκεια bit T_b . Εφόσον $Q(3.719) \simeq 10^{-4}$, θα πρέπει να ισχύει

$$\sqrt{\frac{E_b^{FSK}}{N_0}} \leq 3.719$$

$$\sqrt{\frac{2E_b^{PSK}}{N_0}} \leq 3.719$$

Δεδομένου ότι $\frac{N_0}{2}=10^{-10} {
m Watt/Hz}$, η ελάχιστη απαιτούμενη μέση ενέργεια ανά bit για τις δύο διαμορφώσεις είναι:

$$\begin{array}{lcl} E_{b,min}^{FSK} & = & 2 \cdot 10^{-10} \cdot 3.719^2 = 2.76 \; \mu \mathrm{Watt} \\ E_{b,min}^{PSK} & = & \frac{2 \cdot 10^{-10} \cdot 3.719^2}{2} = 1.38 \; \mu \mathrm{Watt} \end{array}$$

Επειδή η μέση ισχύς εκφράζεται ως $P_b = \frac{E_b}{T_b} = E_b r_b$, προκύπτει ότι η ελάχιστη μέση ισχύς που απαιτείται είναι

$$P_{b,min}^{FSK}=2.76~\mu {
m Watt}\cdot 10^6 {
m bits/sec}=2.76~{
m mWatt/sec}$$
 $P_{b,min}^{PSK}=1.38~\mu {
m Watt}\cdot 10^6 {
m bits/sec}=1.38~{
m mWatt/sec}$

Με βάση τα παραπάνω, διαπιστώνουμε ότι η διαμόρφωση FSK απαιτεί διπλάσια μέση ισχύς (3dB αύξηση στο SNR) σε σχέση με την PSK, προκειμένου να πετύχει την ίδια πιθανότητα σφάλματος. Αυτό σημαίνει ότι η PSK είναι αποδοτικότερη ως προς την ισχύ.

Τηλεπικοινωνιακό σύστημα μεταδίδει δυαδικά δεδομένα με ουθμό $r_b=2.5\cdot 10^6$ bits/sec. Κατά τη διάρκεια της μετάδοσης, λευκός θόρυβος Gauss, μηδενικής μέσης τιμής και πυκνότητας φάσματος ισχύος $\frac{N_0}{2}=10^{-20}$ Watt/Hz προστίθεται στο σήμα. Απουσία θορύβου, το πλάτος της λαμβανόμενης ημιτονικής κυματομορφής για το ψηφίο 1 ή 0 είναι 1 μV. Βρείτε τη μέση πιθανότητα σφάλματος για ομόδυνη δυαδική FSK και PSK σηματοδοσία.

Λύση

Η μέση πιθανότητα σφάλματος bit για τις δύο διαμορφώσεις είναι:

$$P_e^{FSK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

$$P_e^{PSK} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
(22.1)

όπου E_b είναι η μέση ενέργεια ανά περίοδο bit T_b . Προκειμένου να βρούμε τις ζητούμενες πιθανότητες, θα πρέπει να υπολογίσουμε τη μέση ενέργεια ανά bit.

Αν μια ημιτονική κυματομορφή (όπως το φέρον κύμα στις περιπτώσεις των FSK και PSK διαμορφώσεων) έχει πλάτος A, τότε η μέση ισχύς του υπολογίζεται ως

$$P = \frac{1}{T} \int_0^T A^2 \cos^2 \left(\frac{2\pi}{T}t\right) dt = \frac{A^2}{2} = 0.5 \cdot 10^{-12} \text{Watt/sec}$$
 (22.2)

όπου Τ η περίοδος του φέροντος κύματος.

Η μέση ισχύς εκφράζει το πηλίκο της ενέργειας που καταναλώνεται σε ένα χρονικό διάστημα προς το διάστημα αυτό. Στην εξίσωση (22.2), χρησιμοποιήσαμε την περίοδο της φέρουσας ως το χρονικό διάστημα. Αν τώρα χρησιμοποιήσουμε την περίοδο ενός bit, έχουμε:

$$\begin{array}{lcl} P & = & \frac{E_b}{T_b} = E_b r_b \Rightarrow \\ \\ E_b & = & \frac{P}{r_b} = \frac{0.5 \cdot 10^{-18} \text{ Watt/sec}}{2.5 \cdot 10^6 \text{ bits/sec}} = 2 \cdot 10^{-19} \text{Watt} \end{array}$$

Αντικαθιστώντας την τιμή της μέσης ενέργειας ανά bit στις εκφράσεις της σχέσης (22.1), τελικά έχουμε:

$$\begin{array}{lcl} P_e^{FSK} & = & Q(\sqrt{10}) = 7.82 \cdot 10^{-4} \\ P_e^{PSK} & = & Q(\sqrt{20}) = 3.87 \cdot 10^{-6} \end{array}$$

Με βάση τα παραπάνω, διαπιστώνουμε ότι για μια συγκεκριμένη τιμή λόγου σήματος προς θόρυβο στο δέκτη, η διαμόρφωση PSK εμφανίζει χαμηλότερη πιθανότητα σφάλματος. Στην περίπτωσή μας, για SNR=10dB η διαμόρφωση PSK πετυχαίνει δύο τάξεις μεγέθους μικρότερο BER σε σχέση με την FSK.

Η εκπεμπόμενη κυματομορφή σε ένα σύστημα ομόδυνης δυαδικής PSK σηματοδοσίας ορίζεται ως:

$$s(t) = A_c k \sin(2\pi f_c t) \pm A_c \sqrt{1 - k^2} \cos(2\pi f_c t), \quad 0 \le t \le T_b$$

όπου το θετικό πρόσημο αντιστοιχεί στο σύμβολο 1 και το αρνητικό στο σύμβολο 0. Ο πρώτος όρος αντιπροσωπεύει μια συνιστώσα φέροντος που χρησιμοποιείται για συγχρονισμό του δέκτη με τον πομπό. Σε αυτό το σύστημα, παρουσία προσθετικού λευκού θορύβου Gauss μηδενικής μέσης τιμής και πυκνότητας φάσματος ισχύος $N_0/2$, η μέση πιθανότητα σφάλματος είναι

$$P_e = Q\left(\sqrt{rac{2E_b(1-k^2)}{N_0}}
ight)$$
 όπου $E_b = rac{1}{2}A_c^2T_b$

- (α) Υποθέστε ότι το 10% της ισχύος του μεταδιδόμενου σήματος διατείθεται στη συνιστώσα συγχρονισμού. Βρείτε το λόγο E_b/N_0 που απαιτείται για την επίτευξη πιθανότητας σφάλματος ίσης με 10^{-4} . Δίνεται ότι $Q(3.719) \simeq 10^{-4}$.
- (β) Συγκρίνετε αυτή την τιμή E_b/N_0 με αυτή που απαιτείται για ένα συμβατικό PSK σύστημα με την ίδια πιθανότητα σφάλματος.

Λύση

(α) Είναι γνωστό ότι η μέση ισχύς μιας ημιτονικής κυματομορφής πλάτους A είναι $P=A^2/2$ (βλέπε και λύση προηγούμενης άσκησης). Άρα, η ισχύς του σήματος συγχρονισμού είναι:

$$P_{sync} = \frac{A_c^2 k^2}{2}$$

Η μέση ισχύς του μεταδιδόμενου σήματος συνολικά είναι:

$$P_{tot} = \frac{E_b}{T_b} = \frac{A_c^2}{2}$$

Αφού το σήμα συγχρονισμού καταναλώνει το 10% της συνολικής ισχύος, προκύπτει ότι:

$$\frac{P_{sync}}{P_{tot}} = k^2 = 0.1 \quad \Rightarrow \quad k = \sqrt{0.1}$$

Εφόσον η πιθανότητα σφάλματος bit με τη συγκεκριμένη διαμόρφωση είναι

$$P_e = Q\left(\sqrt{\frac{2E_b(1-k^2)}{N_0}}\right) = Q\left(\sqrt{\frac{1.8E_b}{N_0}}\right)$$

για να έχω πιθανότητα σφάλματος $P_e=10^{-4}$, απαιτείται:

$$\sqrt{\frac{1.8E_b}{N_0}} = 3.719$$

$$\frac{E_b}{N_0} = 7.683 = 8.8 \text{dB}$$
(23.1)

(β) Σε ένα συμβατικό PSK σύστημα, για την επίτευξη της ίδιας πιθανότητας σφάλματος προκύπτει

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = 10^{-4} \Rightarrow$$

$$\left(\frac{E_b}{N_0}\right)_{PSK} = 6.915 = 8.4 \text{dB}$$
(23.2)

Από τις σχέσεις (23.1) και (23.2), συμπεραίνουμε ότι η προτεινόμενη διαμόρφωση PSK απαιτεί μεγαλύτερη ισχύς (μεγαλύτερο SNR), προκειμένου να πετύχει την ίδια πιθανότητα σφάλματος με τη συμβατική PSK. Αυτό οφείλεται στο ότι ένα μέρος της μεταδιδόμενης ισχύος αφιερώνεται στη διαδικασία του συγχρονισμού.