Econometrics 710 Midterm Exam March 6, 2001

1. The model is

$$y_i = x_i'\beta + e_i, \qquad E(e_i \mid x_i) = 0, \qquad E(e_i^2 \mid x_i) = \sigma_i^2.$$

Assume the σ_i^2 are known. Let $D = diag\{\sigma_1^2, ..., \sigma_n^2\}$. Let $\hat{\beta}$ be the OLS estimator of β , and let $\tilde{\beta}$ be the (infeasible) GLS estimator of β .

- (a) Show that $Cov(\hat{\beta} \tilde{\beta}, \tilde{\beta} \mid X) = 0$.
- (b) Deduce that $Cov\left(\hat{\beta}, \tilde{\beta} \mid X\right) = Var\left(\tilde{\beta} \mid X\right)$.
- (c) Deduce that $Var\left(\hat{\beta} \tilde{\beta} \mid X\right) = Var\left(\hat{\beta} \mid X\right) Var\left(\tilde{\beta} \mid X\right)$.
- (d) Write $V_n = Var\left(\hat{\beta} \tilde{\beta} \mid X\right)$ as a function of X and D.

2. The model is

$$y_i = x_i'\beta + e_i$$
 $E(e_i \mid x_i) = 0.$

An econometrician is worried about the impact of some unusually large values of the regressors. The model is thus estimated on the subsample for which $|x_i| \leq c$, for some fixed c. Let $\tilde{\beta}$ denote the OLS estimator on this subsample. It equals

$$\tilde{\beta} = \left(\sum_{i=1}^{n} x_i x_i 1(|x_i| \le c)\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i 1(|x_i| \le c)\right)$$

where $1(\cdot)$ denotes the indicator function.

- (a) Show that $\tilde{\beta} \to_p \beta$.
- (b) Find the asymptotic distribution of $\sqrt{n} \left(\tilde{\beta} \beta \right)$.
- (c) Bonus Question: Suppose instead the model is

$$y_i = x_i'\beta + e_i$$
 $E(x_ie_i) = 0.$

Does result (a) change?

3. Let $(y_1, ..., y_n)$ be a real-valued random sample from distribution F with mean $\mu = E(y_i)$ and variance $\sigma^2 = Var(y_i)$. Let $\hat{\mu} = \overline{y}$ be the sample mean and let $T_n = \hat{\mu} - \mu$. Let

$$au_n = E\left(T_n\right) = \int T_n dF$$

be the bias of $\hat{\mu}$ for μ . Let

$$\tau_n^* = \int T_n dF_n$$

be the bootstrap estimate of bias, where $F_n(x)$ is the empirical distribution function of the data $(y_1, ..., y_n)$. (Note: This is distinct from $\hat{\tau}_n^*$, the simulation estimate of τ_n^*).

- (a) Show that $\tau_n = 0$ and $\tau_n^* = 0$
- (b) Now consider $\theta = \mu^2$. Let $\hat{\theta} = \hat{\mu}^2$, set $T_n = \hat{\theta} \theta = \hat{\mu}^2 \mu^2$. Find $\tau_n = E(T_n)$, the bias of $\hat{\theta}$ for θ .
- (c) Bonus Question: Find $\tau_n^* = \int T_n dF_n$, the bootstrap estimate of bias.