```
In [ ]:
```

```
1.1.1
 1
 3
   Support Vector Machin SVM is a supervised learning algorithm
   used for classification as well as Regression problems
 5
 6
   used to create a hyperline or best line or decision boundary that segregate n-dimension
 7
   into classes for future entries
   2 types linear and non-linear
 9
10
   SVM can be used for face detection, image classification and categorization etc.
11
12
    . . .
13
```

In [1]:

```
from sklearn.datasets import load_iris

X,y = load_iris(return_X_y=True) # splitting input and output
```

In [2]:

```
from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest = train_test_split(X,y,test_size=0.3,random_state=0)

# splitting training and testing data into 70% for training and 30% for testing
```

In [3]:

```
from sklearn.svm import SVC

clf = SVC(kernel='linear',random_state=0)

clf.fit(xtrain,ytrain)
```

Out[3]:

SVC(kernel='linear', random_state=0)

In [4]:

```
1  ypred = clf.predict(xtest)
2  ypred
```

Out[4]:

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 1, 2, 0, 2, 0, 0])
```

In [5]:

```
1 ypred = clf.predict(xtest)
2 
3 ypred
```

Out[5]:

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2, 1, 1, 2, 0, 2, 0, 0])
```

In [6]:

```
from sklearn.metrics import confusion_matrix

cm = confusion_matrix(ytest,ypred)
cm
```

Out[6]:

In [10]:

```
from sklearn.metrics import classification_report

cr = classification_report(ytest,ypred)
print(cr)
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	16
1	1.00	0.94	0.97	18
2	0.92	1.00	0.96	11
accuracy			0.98	45
macro avg	0.97	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

In [7]:

```
from sklearn.metrics import accuracy_score

ac = accuracy_score(ytest,ypred)
ac = ac*100
ac
```

Out[7]:

97.777777777777

In [8]:

import seaborn as sns
sns.heatmap(cm,annot=True)

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f1783fef40>

In []:

1