DSAA ASSIGNMENT2 - REPORT PARYUL JAIN 20171083 IIIT-H

t = timer('TimerFcn', 'stat=false; disp("Timer!")', 'StartDelay',10);
start(t)
stat=true;
while(stat==true)
% disp('.')
pause(1)
end
clear all; close all; clc

The FFT function will return a complex double array. If you read in a .JPG or a .TIF file, you will notice that they are UINT8 arrays. So, you will have to take the real part of the IFFT and then convert it back into UINT8.
new_image = flipdim(original_image,1) // vertical flip
new_image = flipdim(original_image,2) // horizontal flip
dftmtx(N) -> gives the W matrix

.....

QUESTION-1

PART 1,3

cameraman.tif -> ORIGINAL IMAGE

USING IMPLEMENTED GAUSSIAN FILTER with N=100, SIGMA=5

USING FSPECIAL(creates predefined 2d filter). GAUSSIAN FILTER with N=100, SIGMA=5

USING IMPLEMENTED GAUSSIAN FILTER with N=100, SIGMA=2

USING FSPECIAL(creates predefined 2d filter). GAUSSIAN FILTER with N=100, SIGMA=2

USING IMPLEMENTED GAUSSIAN FILTER with N=1000, SIGMA=5

USING FSPECIAL(creates predefined 2d filter). GAUSSIAN FILTER with N=1000, SIGMA=5

As we see that when we increase sigma, the distortion increases in both the implemented as well as the fspecial generated filter.

Also when we increase N , the value at any point is generated using values from very large areas, so we can see that distortion comes into play.

The only difference i could infer was that the values by the implemented gaussian filter tend to be lesser than the values obtained after passing thru the fspecial filter.

PART 2,3

Designed median filter with N=5 (WINDOW SIZE);

Designed median filter with N=2 (WINDOW SIZE);

Median filter helps remove outliers. Since the median of a window is unaffected by an outlier , it helps remove 'salt and pepper' noise.

PART 4

Median filter is the best as it removes salt and pepper noise from inp1.png

PART 5

Notch filter will be best suitable .Since we can see the noise in figure 2, we need to remove the specific noise . So we filter out specific frequencies.

Α.

After convolution	the height ,w	idth and channe	els of the output a	are as follows.

H = Height of the original image

W = Width of the original image

F = Filter Height and Width

Z = Zero Padding.

N = Number of filters.

New_height = floor((H+ 2*Z -F)/S)+1;

New_width = floor((W+ 2*Z -F)/S)+1;

New_channels = N * Channels; //(No change.)

В.

So for each element there will be F*F multiplications and F*F-1 additions.

And now since the total number of elements in the resultant matrix are

T = New_height * New_width * New_Channels;

So total number of Operations of multiplications will be = T * F * F; and

The total number of Operations of additions will be = T * ((F * F) - 1);

-----XXXXXXXXXXXXXX

QUESTION 6

Original Image

Fft Of the Original Image

Fft of fft of image

The most common observation is that the fft of fft is double flipped .

In the frequency domain (i.e after taking the first fft, we manually flip the image wrt to both x and y direction since we know (by observation)) that the final image is flipped in both x and y.

This effectively makes the image of the same orientation.

fft of image

Q.What does fft of an image denote?

A.It denotes the amplitudes and frequencies of the sines/cosines that, when added up, will give you the original image.

-----xxxxxxxxxxxx

QUESTION 7