Math 260 Exam 3 Take Home

David L. Meretzky

Friday Decmeber 7th, 2018

Problems 1-5 are worth 18 points each. Problem 6 is worth 10 points. The test is out of 100 points.

Definition 1. Let V be a real or complex vectorspace, $\mathbf{F} = \mathbf{R}$ or \mathbf{C} . A norm on V is a real-valued function $|| \quad || : V \to \mathbf{R}$ such that

- 1. for any non-zero vector $v \in V$, ||v|| > 0,
- 2. for any scalar $\alpha \in \mathbf{F}$, $||\alpha v|| = |\alpha|||v||$ for all $v \in V$,
- 3. for any $u, v \in V ||u + v|| \le ||u|| + ||v||$

We call V a normed linear space.

Let $B = e_1, ..., e_n$ be the usual basis for \mathbf{F}^n . For instance, we know that \mathbf{R}^n has the usual euclidean norm: for $v \in \mathbf{F}^n$, $v = a_1e_1 + ... + a_ne_n$, define

$$||v|| = \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \tag{1}$$

Example 1.

$$||(1,-1)|| = \sqrt{1^2 + (-1)^2}$$

Clearly \mathbf{F}^n is a normed linear space. You will show that if V is finite dimensional then $\mathcal{L}(V)$ is a normed linear space.

Definition 2. Let V be a finite dimensional normed linear space and let $T \in \mathcal{L}(V)$. Define the operator norm of T to be the smallest number M such that $||Tv|| \leq M||v||$ for any $v \in V$. We will write ||T|| to mean that smallest number M, the operator norm.

Notice that the norms in the expression $||Tv|| \le M||v||$ are the norm that V was born with. That is, this definition only makes sense if V has a norm.

Problem 1. Let $B = e_1, ..., e_n$ be an orthonormal basis for V a normed linear space of dimension n. Let $T \in \mathcal{L}(V)$. Let $m = Max\{||Te_1||, ||Te_2||, ..., ||Te_n||\}$. That is, m is the length of the longest vector in the list $Te_1, ..., Te_n$. Prove that for any vector $v \in V$, $||Tv|| \leq mn$.

Problem 2. Let $B=e_1,...,e_n$ be an orthonormal basis for V a normed linear space of dimension n. Let $T\in \mathcal{L}(V)$. Show that the operator norm of T exists and is finite. (I am asking you to show that taking any $v\in V$, show that there exists a number K such that $||Tv|| \leq K||v||$.) Hint: Use the conclusion of the previous problem. Hint: maybe the problem is easier if you assume ||v|| = 1?

Now that we know the operator norm exists and is finite:

Problem 3. Show that the operator norm is a norm (satisfies definition 1) on $\mathcal{L}(V)$ for a finite dimensional normed linear space V.

What does the operator norm have to do with the largest eigenvalue?

Let T be an invertable linear operator of a finite dimensional normed linear space V.

Problem 4. Let v be an eigenvector for T with eigenvalue λ . Prove that $||Tv|| = |\lambda|||v||$. Prove that $|\lambda| \le ||T||$.

Problem 5. Suppose $T \in \mathcal{L}(V)$ is invertible. Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

Problem 6. Let V be a normed linear finite dimensional inner product space over \mathbf{R} . What can you say about the relationship between the norm on V and the operator norm on $\mathcal{L}(V, \mathbf{R})$? Define the operator norm on $\mathcal{L}(V, \mathbf{R})$ by letting $||\phi||$ for $\phi \in \mathcal{L}(V, \mathbf{R})$ be the smallest number M such that $|\phi(v)| \leq M||v||$ for all $v \in V$.

Hint: The Reisz Representation Theorem gives a nice association: for every $\phi \in \mathcal{L}(V, \mathbf{R})$ there exists a unique $v \in V$ such that $\langle v \rangle$ is equal to $\phi(v)$.