## 武族科技大学试 题

2007年~2008年第一学期

| 课程名称:                     | 自动控制原理                                             | 适用专业年级:                    | 自动化 2005 级     |
|---------------------------|----------------------------------------------------|----------------------------|----------------|
| 考生学号:                     |                                                    | 考 生姓名:                     |                |
| 试卷类型:                     | A 卷 ■ B 卷 □                                        | 考试方式: 开卷[                  | □ 闭卷 ■         |
|                           |                                                    | ••••••                     |                |
| 一、(12 分)选择<br>1.若二阶系统处    | 题<br>于欠阻尼状态,则系统的阻                                  | 尼比 <i>ξ</i> 应是( )。         |                |
| A $0 < \xi < 1$ B         | $3\xi = 1$ $C\xi > 1$ $D\xi = 0$                   | -                          |                |
|                           | 比开环控制系统具有 ( )。<br>工作稳定性好 C系统精度                     | 高 D系统成本低                   |                |
|                           | 阶跃响应过程平稳性的指标<br>超调量 C 调节时间 D 稳                     |                            |                |
| A 绝对稳定 B 5. 某单位负反馈        | 输出量精度的指标是 ( )。<br>超调量 C相对稳定 D稳<br>提制系统的开环传递函数为     |                            | 2),则该系统的闭环传递函数 |
| 6. 设线性连续技                 | 9/(s+11) C 9/(s+9)<br>空制系统—对闭环极点为-1                | ± j0.5,则其对应                |                |
| A单调收敛分量                   | B单调发散分量                                            | C振荡收敛分量                    | D振荡发散分量        |
|                           | <ul><li>宽,闭环根轨迹图对称于(</li><li>C 分离点 D 渐近线</li></ul> | )。                         |                |
|                           |                                                    | )/[s(s+1)(s+3)],           | 此系统闭环特征方程的根之   |
| 和是( )。<br>A-4 B-6         | C-2 D-1                                            |                            |                |
| _                         | で - 2 - D - 1<br>充的增益裕量定义为 201g[1/                 | $ G(j\omega_a) $ ],其中 $a$  | )。为()。         |
|                           | 时的 $\omega$ B $ G(j\omega_g)  = \infty$ F          |                            | 8              |
| $C \angle G(j\omega_g) =$ | $-180^{\circ}$ 的 $\omega$ D $\angle G(j\omega_g)$  | $=-90^{\circ}$ 时的 $\omega$ |                |
|                           | 统输入一个正弦信号 A sin a<br>医信号 B 同频率的余弦信号                |                            |                |
|                           | 系统的稳定性,不仅与系统<br>入信号的性质 B 输入信号的                     |                            | . ,            |
|                           | 的传递函数为( )。 $-e^{Ts}$ C $(1-e^{-Ts})/s$ D (         | (1-Ts)/s                   |                |

二、(8分) 求下列函数的拉氏变换或 Z 变换

- 1. L[1(t)] =
- 2.  $L[\delta(t)] =$
- 3.  $L^{-1}[e^{-\tau s}] =$
- 4.  $L^{-1}\left[\frac{1}{s^2+3s+2}\right] =$

- 5. Z[1(t)] =
- 6.  $Z[\delta(t)] =$
- 7.  $Z[e^{-at}] =$
- 8.  $Z[a^n] =$

三、(10分)请你应用自动控制原理分析家用电饭煲的保温控制系统的工作过程,并画出其方块图。

四、(25分)求传递函数

1.  $\bar{x}U_c(s)/U_i(s)$ 



2. 系统结构如下图所示, 求系统传递函数 C(s)/R(s)



3. 已知线性系统结构如图所示,



- (1) 求给定误差传递函数  $\frac{E(s)}{R(s)}$ ;
- (2) 求扰动误差传递函数  $\frac{E(s)}{N(s)}$  。

4. 已知系统结构如图所示,问: 可以写出  $\frac{C(z)}{R(z)}$  形式的脉冲传递函数吗? 如果能,请写出;

否则,写出系统输出序列 z 变换 C(z)



五、(10 分)有闭环系统特征方程如下,试用劳斯判据分别判定其稳定性,并说明特征根在复 平面上的分布

1. 
$$s^4 + 2s^3 + 6s^2 + 4s + 3 = 0$$
,

2. 
$$s^5 + s^4 + 5s^3 + 3s^2 + 4s + 3 = 0$$

六、(15 分)某单位负反馈系统开环传递函数为 
$$G(s) = \frac{K_g}{(s+1)(s+2)(s+6)}$$

- 1. 确定根轨迹的起点、终点;
- 2. 确定实轴上的根轨迹分布;
- 3. 计算根轨迹的渐近线;
- 4. 计算根轨迹的分离点;
- 5. 计算根轨迹与虚轴的交点;
- 6. 确定当系统临界稳定时的开环放大系数 K:
- 7. 画出根轨迹图。

七、(20分)

- 1. 已知单位负反馈系统闭环传递函数为  $\Phi(s) = \frac{4}{s^2 + 3s + 4}$
- (1) 写出系统闭环特征方程;
- (2) 计算闭环特征根:
- (3) 求系统的阻尼比 $\xi$ 和自然谐振频率 $\omega_n$ ;
- (4) 求系统的超调量 $\delta$ % 和调节时间 $t_{co}$ 。
- (5) 求出单位阶跃信号输入下的稳态误差。
- 2. 已知某 I 型线性系统开环幅相频率特性如下图所示,并且开环稳定,即 P=0,试用奈氏 判据判断闭环系统的稳定性。



- 3. 已知单位负反馈系统的开环传递函数为  $G(s) = \frac{10}{s(0.1s+1)}$ 
  - (1) 试绘制系统的开环对数幅频特性;
  - (2) 求幅值穿越频率  $\omega_c$ ;
  - (3) 求对数相频特性 $\varphi(\omega_c)$ ;
  - (4) 求相位裕量 $\gamma(\omega_c)$ ;
  - (5) 判定其闭环系统的稳定性。
- 4. 已知某采样系统结构图如下:



- (1) 写出系统开环脉冲传递函数 G(z);
- (2) 写出系统闭环脉冲传递函数 $\Phi(z)$ ;
- (3) K = 5 时,闭环系统是否稳定?