Why the need for research and development?

- Diode laser arrays are not just assemblages of diode lasers – rather they are integrated electronic, thermal and optical systems.
- These issues all require consideration in the design, assembly and testing.
- New thermal management and optics concepts make possible significantly improved diode laser arrays.
- These require array designs to make optimal use of the new knowledge and to manufacture improved arrays efficiently, effectively and at minimal cost.

High average power diode pumped solid state laser

Motivation

A 100 kW laser weapon is made possible by advanced optics, optical control, thermal management technology and components

Challenges

- Management of pump source thermal issues and emitted light
- ➤ Acquisition of very high flux heat load
- ➤ Rejection of total waste heat load

A diode laser bar

Heat fluxes for various events

A diode laser array pumped solid state laser

Why the need for research and development?

- Diode laser arrays are not just assemblages of diode lasers – rather they are integrated electronic, thermal and optical systems.
- These issues all require consideration in the design, assembly and testing.
- New thermal management and optics concepts make possible significantly improved diode laser arrays.
- These require array designs to make optimal use of the new knowledge and to manufacture improved arrays efficiently, effectively and at minimal cost.

Key issues

- Diode bar layout and electrical connection arrangements.
 - Substrate design, soldering, bar-to-bar buses, series or parallel connections, electrically resistive-thermally conductive substrate materials, thin insulating coatings on metallic substrates
- Optics design, components preparation and integration with diode bar array
 - Beam control prisms, molded or polished, materials selection, coating designs, average power load limits, positioning and aiming tolerances, fixturing
- Thermal management technique selection and implementation
 - Coordinated with layout and optics demands, assure lowest diode operating temperature, uniform emitter temperature, efficient heat rejection

What does UCF have to offer?

- Our work on diode laser array thermal management and output light control.
- Key technologies:
 - EVAPORATIVE SPRAY COOLING
 - BEAM CONTROL PRISM OPTICS
- The possibilities:
 - Lower diode operating temperature
 - Higher efficiency.
 - Longer life.
 - Control of pump beam pattern .
 - Ease of manufacture and assembly.
 - More rugged, reliable and lower cost DEWs.

The generic beam control prism concept

Some beam control prisms

Experimental demonstration

Phase-Change Heat Transfer Techniques

Spray Cooling

- Droplets are deposited from nozzle to a heated surface to create surface nucleation, evaporation, enhanced convection, and 'secondary nucleation'
- Highest heat flux removal capability of all two-phase techniques; around 1000 W/cm² for water

Spray Cooling

IMC Collaboration on Spray Cooled Design

Efficiency Comparison for Spray Cooling vs. Liquid Heat Exchanger

