《计 算 智 能》 软件工程研究生试题

2011年1月 长春

- 填空: (毎题 4 分, 共 28 分)	
1、计算智能主要包含大量中的分子。	
域。	
2、根据韦肖(Willshow)的证明,表示一个"知识"的神经元数量,最好是网	
约2000000000000000000000000000000000000	
RANGE UN 最好用的 10 = 20	
48年2000000000000000000000000000000000000	
是 3 1 1 2 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	
习方式是多的学习	
方式是 多少多了	
TAN 4、前向网络常用误差函数来判别其实际输出向量 Y _K 与教师信号向量 T _K 的	
读差。若以为输入样本的个数,m 为输出向量的维数,则二乘误差函数的表达	
2 2 1 1	
5、反馈型神经网络有两种工作方式,其中在任一时刻7,只有某一个节点变化而其余节点的状态保持不变的是一个方式。所有的节点都改变状态的	
是195工作方式。并行()对步)	
D89 6、反馈型神经网络常用能量函数来判别其状态的稳定性, 请给出一种	
Flopfield 所定义的能量函数 表达式为。 F=	
7. 按下图给出的·M-P 模型的权值和阈值,则输出与输入之间的逻辑函数式	1
$f_{1}(x_{1},x_{2},x_{3}) = \underbrace{f_{1}}_{1}\underbrace{f_{2}(x_{1},x_{2},x_{3})}_{1} = \underbrace{f_{1}}_{1}\underbrace{f_{2}(x_{1},x_{2},x_{3})}$	3
$x_1 = \frac{1}{1} (x_1, x_2, x_3)$ $x_2 = \frac{1}{1} (x_1, x_2, x_3)$ $x_3 = \frac{1}{1} (x_1, x_2, x_3)$	1
$\sum_{i=1}^{n} \frac{1}{2} \frac{1}{1} $	-
$\sum_{i=1}^{n} \frac{1}{2} $	1
· 二、 选择: (每题 5 分, 共 20 分)	
1、神经网络处于 / 状态时, 其各连接权值固定, 计算单元的状态变化。	
	g ·

2011年

一、慎定

二个领域。

- 2. 根据丰荫 (Will show) 的证明、表示一个"知识"的神经元数量、最好是网络中游经规数的对数值、那么若神经网络中总共有106个元神经元、则每个"知识最好用(200)个神经元朱编码。
 - 3. 死祀等习: 先将证忆模式设计成为稳态、给是有关信息时就回忆起来的

有效师指导的学习:给定输入模式、教师指定期望输出、调整权务达到

委等习:给定于新入模式、使某些(个)神经元关卷的学习动气.

t, 负馈型神经网络有西种工作3代、「单行

事行:在任一时刻七、只有某一个中点变化而其杂节点、的状态保持不变并行:所有节点都改变状态

商给出一种 Hopfield 阶定义的能量函数, 表达允为

7. 按下图给比的M-P模型的权值和网值,则输出与输入之间的逻辑 些数式 f(x1, x2, x3)= 元元次

 $f_2(\chi_1, \chi_2, \chi_3) = \overline{\chi}_1 \chi_2 \chi_3 + \chi_1 \overline{\chi}_2 \chi_3 + \chi_1 \chi_2 \overline{\chi}_3 + \chi_1 \chi_2 \overline{\chi}_3 + \chi_1 \chi_2 \overline{\chi}_3$

一、选择

1、神经网络处于(-2作期)状态时、勘查接权值固定、计算影响级

神龙网络处于(鸟子胡、) 状态时,名计算单元状态。各连接板值目 杨钗、

- 2、BP网络学习规则: (纠错规则) DP算法: 对模型降算法 Hopfield 网络等习规则: (相关规则)
- 3、能设制化一凸多边形式光星的凸区域的感知器最为1986())个隐屋。
- 4. 能完全避免陷人局部极行動的网络类型(绕网络).

1. 即网络模型并不是一个非线性动力学系统, 而是一个非线性映射.

2. 新馈型神经网络写了训练的目的是快速收敛,一般用误差函数 未判定其效效程度

食暖 唯神经网络学习训练的目彻是快速 的 寻找稳定点。

一般用领是函数来判别是否超于稳定点。

3、从知识在储艺式未看,神经网络将知识在在权务数中、都具有分布储物特定

4. 自组织、映射网络为一个无数师指导物、自适应、自组织物网络、

四、下图为具有一个隐层的感知器。试画图解释其分类能力。

新出层节点转出了一个一个一个一个

输入是2个节点、隐层为3个节点。

则可形成 3个2维定间的超平面。

隐层等了个节点的新出 $Y_j' = f(\frac{p}{2} | W_{ij} \cdot X_i - c_j)$ (7=1.2.3)

可以在二维格人定间上决定 三条直线、目向各自W了和6; 祖. 二三年直线 斜手物截断

从隐华之到潮发层民要满足下式不能得到 砂鍋から.

Y= [(x1, x)[(W11.X1+W4.X2-61)>c]

1/2·11、 + W22·12-162176 11 (W13·21+W23·26-163)7074. 超過數數數數數數數

一个十八七十九个时间 遗传算法的答踪:

- 11)随机产生从个染色体、构成初始群体 S.
- 12) 计算群体 S中名染色体的造型及。
- 四根据名染色体的适应度、按一足概率随机地选择上对(1<K<学) 染色体-构成分群体s'. s'cs.
- 的.随机地将5年染色体西西殿村.
- (5)对每时染色体按照某一概率实施交叉操作、形成长对新的3染色体的成 "肠子群体 S"
- 的对5"中的染色体按某一概率实施变并操作。
- 印计算 5+5"群中所有染色体的适应度,并泡汰掉适应度小的长对染色体。 形成新一代群体5.
- 18) 考适应度最大的染色体病产要求的适应度或评价标准, 成完成指定的 搜索、则编码S中送延度最大的染色体、符到问题的求解、否则轻向(3)

*花本流程图.

一、填空: (每空2分, 共28分)

一人先将记忆模式设计成为稳态,给定有关信息时就回忆起来的学习方式是从以为 给定输入模式和期望输出,通过调整连接权值和阈值达到稳定的学习方式是有数分析多类的 定一个输入模式,使某些(个)神经元兴奋的学习方式是 美国 日本

2、在梯度下降算法中,学习步长 11的选取是为 调整下降速度 ____, 当几过大时会下降太快, 所能站进全局意优质

3、在模糊控制过程中,首先要通过 模拟 将清晰量转换为模糊量,然后通过 ______来求解,最后通过诸如 **_ 角心** 之 法实现去模糊操作。

4、下图给出的 M-P 模型的权值和阈值,则输出与输入之间的逻辑函数式 fl(x1,x2,x3)= カナケレカラ; f2(x1,x2,x3)= もかかけれたかったまたがたから

$$X_1 - 1$$
 $X_2 - 1$
 $X_3 - 1$
 $X_2 - 1$
 $X_3 - 1$
 $X_3 - 1$
 $X_3 - 1$
 $X_4 - 1$
 $X_5 - 1$
 X_5

$$X_1 \xrightarrow{1} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_1} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_2} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_3} \underbrace{\frac{1}{1}}_{X_3$$

(S) 设 A、B 是同一论域 U 上的两个模糊集合,表属度函数分别为 $^{\mu_A}(u)$ 和 $^{\mu_B}(u)$,试求它 们的并、交、补运算:

$$\frac{\mu_{A\cap B}(u) = \mu_{A}(u) \wedge \mu_{B}(u) = \underline{mn / un(n)}, MB^{(u)})}{\mu_{A\cup B}(u) = \mu_{A}(u) \vee \mu_{B}(u) = \underline{mun / un(n)}, MB^{(u)})}$$

$$\frac{\mu_{A\cup B}(u) = \mu_{A}(u) \vee \mu_{B}(u) = \underline{mun / un(n)}, MB^{(u)})}{\mu_{A}(u) = \underline{mun / un(n)}}$$

选择: (每题 2 分, 共 10 分)

31、神经网络处于 // 状态时, 其各连接权值固定, 计算单元的状态变化。

A. 初始期 B. 学习期 C. 稳定期 D. 工作期

2、BP 网络使用的学习规则是 B ; Hopfield 网络使用的学习规则是

A. 相关规则 B. 纠错规则 C. 竞争规则 D. 模拟退火算法 30、能识别任一凸多边形或无界的凸区域的感知器最少包含 3个隐层。

以 、能完全避免陷入局部极小问题的网络类型是

A. 前向型 B. 反馈型

C. 竞争型 D. 以上都不能

5、下面哪一种方法不是去模糊法

A. 重心法 B. 最大隶属度法 C. α , β 两阶段调整法 D. 系数加权平均法

三、判断: (每题2分, 共8分)

1、BP 网络模型并不是一个非线性动力学系统,只是一个非线性映射。

、反馈型神经网络的学习目的是快速寻找到稳定点,一般用误差函数来

3、从知识存储方式来看,模糊系统将知识存在规则集中,神经网络将知识存在权系数中都具有分布存储的特点。

4、自组织映射网络中的权值是输入样本的记忆,是一种有教师指导的网络。2023

L

四、Hopfield 网络与 BP 网络相比,在网络结构、学习方法和工作过程这几方面有何不同? 给出 Hopfield 网络权值的学习方法。(共 15 分)

五、简述下列函数的定义,给出一种数学表达式,并说明函数的使用场合和方法。传输函数(激励函数)、误差函数、能量函数、适应度函数、隶属度函数。(每个函数 3 分,共15 分)

下图为具有一个隐层的感知器,试画图解释其分类能力。(10分)

您屋第一分节点切的编出为

可以在二级等例上老量 三条前件

七、根据下面的九条模糊规则试构造一个模糊神经网络拓扑图,并说明各层的功能。(图 分,功能 4 分,共 14 分)

rule1: if X1 is small and X2 is small then Y is H3

rule2: if X1 is small and X2 is mid then Y is H4

rule3: if X1 is small and X2 is big then Y is H5

rule4 : if XI is mid and X2 is small then Y is H3

rule5 : if X1 is mid and X2 is mid then Y is H1

rule6 : if X1 is mid and X2 is big then Y is H1

rule7 : if X1 is big and X2 is small then Y is H2

rule8 : if X1 is big and X2 is mid then Y is H4

rule9: if X1 is big and X2 is big then Y is H5

- 一. 填空
- 1、死记是可、有数师杨号是习、高等定习。
- 2. 在梯度下降算法时, 学习写长 介的选取起为(洞整下降迷年),
- 当了过小时.(下降缓慢),当了过大时全(阵过快.可能输过锅~~~)
- 3. 在模糊控制过程中, 首先是通过(模糊化)将清晰是轻换为模糊是 然后.面过《模糊规则进行模糊搬来求解,最后面过诱如(例法)法 实现去模糊操作.

4. fix..x. 如)题

J. 设A. B是同一论城 U上的两个模型爆发, 表展度函数分别为从4(11) 和 MB(U), 试成它们的并,交,补运等.

 $MANB(u) = M_A(u) \wedge M_B(u) = min \{M_A(u), M_B(u)\}$ $MAVB(u) = uA(u) V MB(u) = max{MA(u), MB(u)}$ MA (u) = - MA(u).

一. 选择.

长模糊法: 度心法、最大走后度法, 系数力积平均法, 表层度限临落平均法. 四. Hopfield 网络与即网络相比·在网络结构、尝了方法和工作过程这几方面 有何不同?给出 Hapfield 网络权值的学习法

1 -	門地世科特例结(BP网络)
1	取高的校连接受是
<u> </u>	一般不考虑一辆入车辆出到的延迟
3	只表达糊入输出之间的映射技术.
16 1	文实现非核性映射.

日海法、计算过程和安钦建度比较慢.

出家和训练的目的是快速的领,我用误到

食暖型神经网络(Hopfield) 取产和发连缓慢 网络)

考定期入期出现在时间上的 延迟.需要用边点为程来提出 非线性动力是条弦。

空河目的是快速寻找到稳定点、投 用能是函数采制制是香鸭于超过点。

Hopfield 网络和值学习方法.

Hebb·罗规则:网络中若等了与第一个神经元同时处于兴奋状态。则创了之间的连接极值《行应与加强、即

{Wか(n+1)=Wか(n)+dWが、 OWか = 以かり d >0 学习選手を数。

Hopfield 使用维正的Hebb 规则.

DWNj = (270-1) (27j-1) Y E (0.1]. Y E [1.1]

- IN US TO BERKX.

人误绝数: E(w)=g(f(w, Xk, Tk)). K=1,2...N.
E称为误差(测度)函数、即网络的实际到处变化
与数师信号向量下的误气用误气函数来判别。常用
二乘误差函数加以判别、其中、从为辅政样本的代数
m为辅助你面景的维数。 $E=\frac{1}{2}\sum_{k=1}^{N}E_{k}=\frac{1}{2}\sum_{k=1}^{N}|Y_{k}-T_{k}||^{2}=\frac{1}{2}\sum_{$

2、能量函数;Horteld将能量函数的概念引入分析为馈账神经网络、彻稳定过程、使网络这行的稳定性判断有3可靠的证据、E=-艺艺了USIXXi-ZIXi.

3. 适应度函数:在遗传算法中引入适应度函数来评价群体中染色体价代表的解的优势、其值越大、相应染色体价代表的解创始。 f(i) = 一日的 日的代表设务函数值,日的一个表际假创始。

4、最属度函数: 在模糊系统中,引入隶属度企数来(确定一个模糊多是。属于哪个模糊集合论成物线度). 岸使用三角形函数, 格形函数等.

 $M(x) = \begin{cases} \frac{x-b}{a-b}, & b \leq x \leq a \\ \frac{C-x}{C-a}, & a < x \leq C \end{cases}$

TMIN发展及义三个模糊多头

{Small. mid, big}. 勒出变量定义5个模糊is杂{Hi, Ha... Ho}

$$big(x) = Sigmoid(A, (x-\beta,))$$
 $big(x)$

$$mid(x) = \exp\left(-(x-\beta_z)/(\alpha_z)^2\right)$$
 $mid(x) = \exp\left(-\frac{1}{\sqrt{Wei}}\right)$
 $mid(x) = \exp\left(-\frac{1}{\sqrt{Wei}}\right)$

$$small(x) = 1 - sigmoid(d_3(1+\beta_3))$$
 $small(x) = 1 - sigmoid(Wa x I_i)$

根据人条规则可知输出条约(H. H. H. H. H. H. H.)、输出了值有3种

B层模构化: Oi - Zi - Wsi = Xi - Wbi

C及.模构化: O;= Signoid(WciXI;).

= exp(-7;/Woi)2.

= 1- Sigmord (Was X I;)

院安规模柳排代规则: 完成与的功能.

01 = 712.

· E是: 实现模糊排程规则: 完成求和功能.

Oi = Sigmoid (I (Is X Wei))

FE: 利用意心法实现解模糊化.

 $O_1 = \Sigma (W_{1i} \times I_{i})$ $Q_2 = \Sigma I_{i}$.

GE: D= 21/22.

2013年计算机学院硕士研究生试题

	Inter s		**
-	填罕:	(每题2分,	11
	1 manual W	、中枢 2 分,	共26分)
			0 /3 /

1、先将记忆模式设计成为稳态,给定有关信息时就回忆起来的学习方式 是 如此為 ; 给定输入模式和期望输出,通过调整连接权值和阈值达到稳 定的学习方式是**有数价化设力**;给定一个输入模式,使某些(个)神经元兴奋门25 的学习方式是一个多分。

2、反馈型神经网络有两种工作方式	++ .
其余节点的状态保持不变的是 Dub	, 其中在任一时刻 t, 只有某一个节点变化而
一间当	, 具中在任一时刻 t, 只有某一个节点变化而 工作方式; 所有的节点都改变状态的是 _ \begin{subar}{c} 89
工作方式。	

1960

4、在梯度下降算法中,学习步长 月的选取是为 400年11月11日 当月过小时 会多的连接性 当日过大时会 产品振荡 Pul

5. 接下图给出的 M-P 模型的权值和阈值,则输出与输入之间的逻辑函数式 $fl(x1,x2,x3) = \frac{\pi_1 \pi_2 \pi_3}{12(x1,x2,x3)} = \frac{\pi_1 \pi_3 \pi_3}{12(x1,x2,x3)} = \frac{\pi_1 \pi_3}{12(x$ X_2 X_2 X_3 X_4 X_5 X_5 X_5 X_7 X_7

二、选择: (每题 2 分, 共 12 分)

是一个法域规划 4.37

$$P_{i,50}$$
 六、设论域 $X = \{x_1, x_2, x_3, x_4\}$ 模糊集合 A, B 分别是 $A = \frac{0.7}{x_1} + \frac{0.6}{x_2} + \frac{0.5}{x_3} + \frac{0.4}{x_4}$, $B = \frac{0.8}{x_1} + \frac{0.3}{x_2} + \frac{0}{x_3} + \frac{0.1}{x_4}$. 求 $A \cap B, A \cup B, \overline{A}, \overline{B}$. (5分)

七、根据下面的九条模糊规则是构造一个模糊神经网络拓扑图,并说明各层的功能(图 10 分 对此人

rule1 : if X1 is small and X2 is small then Y is H3

rule2 : if X1 is small and X2 is mid then Y is H4 /

rule3 : if X1 is small and X2 is big then Y is H5

rule4 : if X1 is mid and X2 is small then Y is H3

rule5 : if X1 is mid and X2 is mid then Y is H1

rule6 : if X1 is mid and X2 is big then Y is H1

rule7 : if X1 is big and X2 is small then Y is H2

rule8 : if X1 is big and X2 is mid then Y is H4

rule9 : if X1 is big and X2 is big then Y is H5

八、设待分类对象的集合简记为{1, 2, 3, 4, 5}, 给定模糊相似矩阵, 试用某种聚类算法将其聚成三类。(5分)

建三在梯度下降算法基础上的.

每思想:把学习过程分为西部分:第一阶段:信号正何传播过程 输入层、隐层、输出层、逐层处理并计算每个节点、倾实际输出值。

第二个阶段:误差修正选包传播过程,若输出层没有得到期望的输出 则逐是遂归伤计算实际新出与期望朝出之间的误差。依据误差够改权值. 即算法过程.

- DW和 D初始化
 - ②输入一个学习样本(Xk. Tk)
 - ③ 计算隐层各型点的塑盐、 Y=+(高WijYj-0j)=+(高WijXi-0j)
- 每计算输出是产品的输出。 Y3 = f(= Wik Yi - OK)
- 图输出层节点和隐层节点之间,连接权值够记量. OK = (TK-YZ) YZ (1- YZ)
- ⑤ 隐层节点和新入层节点间连接和值的记号。 Sj = Yj . (1- Yj) & ok Wjk
- 用误差修正量成米修正输出层和隐层间连接权值矩阵和阅值位是
- 5一、隐层和鞠入层间
- D如果全部等门样本未取完则返回(2)
- D. 计算误差函数 E. 判断E是否小于误差上限, 若小于叫结果, 否则若尝习次数

- ①连接权值的初始化.
- ②对网络新月一个样本模式 . XK=(X1, X2....Xn)
- ③计算XP与全部输出节点间的权值向是W的距离。 $d_i(t) = \sum_{i=1}^{n} (X_i - W_{ij}(t))^2$
- 图 选择有最小距离的华·凯 N5 为竞争获 胜点、 dit = min (di)
- ⑤ 调整权值 $\Delta W_{ij} = \Delta(t) \beta(N_j, N_j^*)(X_i W_{ij}(t))$. 4 Wsi = 0 i & Ni*It)
- ①若还有输入群本则轻②. 当都输入完.且满足 max (| Wij (t+1) - Wij (t) |) < 至、网篇法结束。
- 特点:①网络中的权值是新入样本的记忆.
- 包护网络学习时对权值的洞整, 不是对关在节点对应权值进行调整. 而对其用国区域的内的节点同时进行调整
 - 图学习结果使比较相近的新入样本在新出二维年面上位置也比较接近。
 - 图可实现在线学习. 己%设的权值将保险.

$$Y_{j} = f(x_{j}) = f(\frac{r}{2} + w_{j} Y_{i} + l_{j} - w_{j})$$

 $j = 1.2 - n$

- 0网络绿兔性
- 日网络 极定点、
- 目粮烧成吸收城.

不道

中国的网络三个模式

$$W^{-2} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

和恒知時

可能信物.

冷对各个影响、并来断点的远是于上海

推动。15月 Hebb 规则伸至网络和虚型序之下。15年17月 7:27.17 日部中国最下选为二旅。

P. [1.0,1] P. . [1.0.1,1] T. [0.0.0.1]

 $W = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 11 & 0 & 1 \\ 10 & 1 & 1 \end{bmatrix} = \begin{pmatrix} 0 & -1 & 1 & -1 \\ 2 & 1 & 1 & 1 \end{pmatrix}$

A. 7A=JA (Z WAXi- G)

2个约中信号是 北小4种松之

A CANAL

A:模糊化层、设容量表层度函数层。 On = My (Xi)

B:规则偏层、取最小层、Oi2=Fsk=min(Oii,Ozi···Oni)

C: 后件神经网络是. 每餐规则的后件部分对应于一个有两个隐是的 例馈光神经网络。

$$O_i^3 = O_i^2 \operatorname{net}_i(X) = F_{i} \operatorname{net}_i(X).$$

限:非模糊化层、重心法。

2010年计算机学院硕士研究生试题:

(请在答题纸上答题)

一、填空: (每空2分, 共26分)

是 <u>承记享了</u>: 给定输入模式和期望输出,通过调整连接权值和阈值达到稳定的学习方式是有数的类别。 产品,使某些(个)神经元兴奋的学习方式是有数的类别。

 $f1(x1,x2,x3) = \overline{x}_{x}\overline{x}_{x}x_{x}$

12(x1,x2,x3)= 7,7,7,4+7,7,7,+1,7,5,+1,7,5,+1,7,5,

A. 二值 B. 离散 C. 核率 D/多值

2 BP 网络使用的学习规则是 Hopfield 网络使用的学习规则是 C

A. 相关规则 B. 纠错规则 C. 竞争规则 D. 模拟退火算后

Terrout contract to	
意识别任一凸多边形或无界的凸区域的感知器最少包含 <u>Q</u> 个隐层。	
A. 0 B 1 D. 不一定	
4、能完全避免陷入局部极小问题的网络类型是。	
A. 前向型 B. 反馈型 C/ 竞争型 D. 以上都不能	
、5人下面哪一种方法不是去模糊法	
A. 重心法 B. 最大隶属度法 $C./\alpha$, β 两阶段调整法 D. 系数加权平均	
三、判断: (每题 3 分, 共 12 分)	
以 BP 网络模型并不是一个非线性动力学系统,只是一个非线性映射。	
P46	
2x 反馈型神经网络的学习目的是快速寻找到稳定点,一般用误差函数来判别 是否差于稳定点。	
	2
3/录属度函数和概率函数有相同的数当含义。Pus 3/录属度函数和概率函数有相同的数当含义。Pus 3/3 表属度数数与概念。 和它的都是事形的不	
FOR (7 Di (X) (RIMI) STO CONTROL 34 27	1
从知识存储方式来看,模糊系统将知识存在规则集中,神经网络将知识存于身多清明析的19月	7
在权系数中,都具有分布存储的特点。 Pro Pus 立机的规学不确定	17.
从知识存储方式来看,模糊系统将知识存在规则集中,神经网络将知识存于有易清明析的 只是在权系数中,都具有分布存储的特点。	医
四、言组织映新网络(Kohoman) 与IRD 网络出版 古网络人士	7
四、自组织映射网络(Kohonen)与(BP 网络泥比,在网络结构、学习方法方面有	
何不同?给出自组织映射网络权值的学习方法步骤。(共 15 分)	
P网络· 自租级网络·	
()	
YI A THE NT TO NT	10
x, x2 xn n3/23/10 10 5/2	

有磁师指导的训播规则

n个额心中点。