Artificial Intelligence

Two-player, zero-sum, perfect-information

Games (Chapter 5)

Instructor: Qiang Yu

Game playing

- Rich tradition of creating game-playing programs in Al
- Many similarities to search
- Most of the games studied
 - have two players,
 - are zero-sum: what one player wins, the other loses
 - have perfect information: the entire state of the game is known to both players at all times
- E.g., tic-tac-toe, checkers, chess, Go, backgammon, ...
- Will focus on these for now
- Recently more interest in other games
 - Esp. games without perfect information; e.g., poker
 - Need probability theory, game theory for such games

"Sum to 2" game

- Player 1 moves, then player 2, finally player 1 again
- Move = 0 or 1
- Player 1 wins if and only if all moves together sum to 2

Player 1's utility is in the leaves; player 2's utility is the negative of this

Backward induction (aka. minimax)

- From leaves upward, analyze best decision for player at node, give node a value
 - Once we know values, easy to find optimal action (choose best value)

Modified game

 From leaves upward, analyze best decision for player at node, give node a value

A recursive implementation

- Value(state)
- If state is terminal, return its value
- If (player(state) = player 1)
 - v := -infinity
 - For each action
 - v := max(v, Value(successor(state, action)))
 - Return v
- Else
 - v := infinity
 - For each action
 - v := min(v, Value(successor(state, action)))
 - Return v

```
\begin{aligned} \text{Minimax}(s) &= \\ \begin{cases} \text{Utility}(s) & \text{if Terminal-Test}(s) \\ \max_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ \min_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \end{cases} \end{aligned}
```

Space? Time?

Do we need to see all the leaves?

 Do we need to see the value of the question mark here?

Do we need to see all the leaves?

 Do we need to see the values of the question marks here?

Alpha-beta pruning

- Pruning = cutting off parts of the search tree (because you realize you don't need to look at them)
 - When we considered A* we also pruned large parts of the search tree
- Maintain alpha = value of the best option for player 1 along the path so far
- Beta = value of the best option for player 2 along the path so far

Pruning on beta

- Beta at node v is -1
- We know the value of node v is going to be at least
 4, so the -1 route will be preferred
- No need to explore this node further

Pruning on alpha

- Alpha at node w is 6
- We know the value of node w is going to be at most
 -1, so the 6 route will be preferred
- No need to explore this node further

• Define Search order: from left to right

MAX

MIN

MAX

MIN

从根节点开始,初始化根节点的 α=-∞, β=∞, 向左边的σ=-∞, 可左边的方点, 可应是开。到D节点, 得到D的值为3, 得到D的值为3, 适应是Min节点, 由于点是Min节点, 所以更新B节点的β值为min(∞,3)=3

MAX

MIN

MAX

MIN

接下来从B到E, 再从 E返回B, min(3,6)仍 为3。从B返回根节点 A, A是 Max 节点, 更新A的α值为 max(-∞, 3[B的β值])=3

接下来从根节点往右 深入,把根节点的 $\beta=\infty$, α=3 依次传给C 、F、I,从I深入M 再返回时, I 是 Min 节点, 更新 Ι 的 β = $min(\infty, 1) = 1$ 。留意到 此时 I 的 $\alpha=3>\beta$, 所以无需再探索I的 剩余子节点, 把未探 索的子节点剪掉.

MAX

MIN

的 α 值仍为 max(3, 1)=3不变。从F到J再 MAX返回,更新 F 的 α = max(3, 5) = 5。从 F 返 回 C,更新 C 的 β = min(∞, 5) = 5

从节点I返回到F,F

MIN

MAX

MIN

从 C 到 G, 把 C 的 β=5, α=3 传给 G, 从 G 到 K 再返回 G, 更

MAX^新 G 的 $\alpha = \max(3, 6)$ = 6。注意到 G 的 $\alpha = 6$ > β,把 G 的其余子 节点剪掉.

MIN

MAX MIN MAX MIN

MIN

MIN

从G返回C, C的β $= \min(5, 6) = 5$ 不变 。从C到H然后返 MAX 回, C的 $\beta = \min(5, \frac{1}{2})$ 4) = 4 ° 最后,从C返回根 节点A,A是Max 节点, A的 α= $\max(3, 4[C的β值]) =$ 4,

Modifying recursive implementation to do alpha-beta pruning

- Value(state, alpha, beta)
- If state is terminal, return its value
- If (player(state) = player 1)
 - v := -infinity
 - For each action
 - v := max(v, Value(successor(state, action), alpha, beta))
 - If v >= beta, return v
 - alpha := max(alpha, v)
 - Return v
- Else
 - v := infinity
 - For each action
 - v := min(v, Value(successor(state, action), alpha, beta))
 - If v <= alpha, return v
 - beta := min(beta, v)
 - Return v

Benefits of alpha-beta pruning

- Without pruning, need to examine $O(b^m)$ nodes
- With pruning, depends on which nodes we consider first
- If we choose a random successor, need to examine $O(b^{3m/4})$ nodes
- If we manage to choose the best successor first, need to examine $O(b^{m/2})$ nodes
 - Practical heuristics for choosing next successor to consider get quite close to this
- Can effectively look twice as deep!
 - Difference between reasonable and expert play

Repeated states

- As in search, multiple sequences of moves may lead to the same state
- Again, can keep track of previously seen states (usually called a transposition table in this context)
 - May not want to keep track of all previously seen states...

Using evaluation functions

- Most games are too big to solve even with alphabeta pruning
- Solution: Only look ahead to limited depth (nonterminal nodes)
- Evaluate nodes at depth cutoff by a heuristic (aka. evaluation function)
- E.g., chess:
 - Material value: queen worth 9 points, rook 5, bishop 3, knight 3, pawn 1
 - Heuristic: difference between players' material values

Chess example

Chess example

Material value:

queen worth 9 points, rook 5, bishop 3, knight 3, pawn 1

White to move

Ki				В	
р					R
			R		
	p				
р		p			
	K				

- Depth cutoff: 3 ply
 - Ply = move by one player

Chess (bad) example

White to move

- Depth cutoff: 3 ply
 - Ply = move by one player

Addressing this problem

- Try to evaluate whether nodes are quiescent
 - Quiescent = evaluation function will not change rapidly in near future
 - Only apply evaluation function to quiescent nodes
- If there is an "obvious" move at a state, apply it before applying evaluation function

Playing against suboptimal players

- Minimax is optimal against other minimax players
- What about against players that play in some other way?

Many-player, general-sum games of perfect information

- Basic backward induction still works
 - No longer colled minimay

Games with random moves by "Nature"

- E.g., games with dice (Nature chooses dice roll)
- Backward induction still works...
 - Evaluation functions now need to be cardinally right (not just ordinally)

Games with imperfect information

- Players cannot necessarily see the whole current state of the game
 - Card games
- Ridiculously simple poker game:
 - Player 1 receives King (winning) or Jack (losing),
 - Player 1 can raise or check,
 - Player 2 can call or fold
- Dashed lines indicate indistinguishable states

 Backward induction does **not** work, need random strategies for optimality! (more in Chapter 17)

Intuition for need of random strategies

"nature"

check raise

fold call,

1 gets Jack

player 1

fold call

check

player 2

1 gets King

player 1

fold call,

raise

- Suppose my strategy is "raise on King, check on Jack"
 - What will you do?
 - What is your expected utility?
- What if my strategy is "always raise"?
- What if my strategy is "always raise when given King, 10% of the time raise when given Jack"?

The state of the art for some games

Chess:

- 1997: IBM Deep Blue defeats Kasparov
- ... there is still some (very limited) debate about whether computers are really better...
- though now, if humans at a tournament come up with unexpectedly brilliant moves, it is often suspected that they secretly used a computer!

Checkers:

- Computer world champion since 1994
- ... there was still debate about whether computers are really better ("It wouldn't have beaten Tinsley if he were still around!" How to disprove that?) ...
- until 2007: checkers solved optimally by computer

• Go:

- Branching factor really high, seemed like would stay out of reach for a while
- Then AlphaGo came superior to human players

Poker:

- Al now defeating top human players in 2-player ("heads-up") games
- 3+ player case much less well-understood

Is this of any value to society?

- Some of the techniques developed for games have found applications in other domains
 - Especially "adversarial" settings
- Real-world strategic situations are usually not two-player, perfect-information, zero-sum, ...
- But game theory does not need any of those
- Example application: security scheduling at airports