

Ch10.4 Connectivity (Week 14)

Paths

• path: a sequence of edges

 \Rightarrow pass through vertices or traverse edges

• **circuit:** a path that begin = end & length > 0

Connectedness in Undirected Graphs

- connected: there is a path between every pair of distinct vertices
- 1

Theorem 1 There is a simple path between every pair of distinct vertices of connected undirected graph.

Connected Components

• a graph is a connected subgraph that is not a proper subgraph of another connected subgraph

How Connected is a Graph ??

- **cut vertices** (or **articulation points**): the vertex that if removed itself and all incident edges, produces a subgraph with more connected components
- cut edge (or bridge): the edge that if removed, produces a graph with more connected components

Example 7 Find the cut vertices & cut edges in the graph. cut vertices $\rightarrow b, c, e$ (either one of them can disconnect the graph) cut edges $\rightarrow \{a,b\}$ and $\{c,e\}$ (same, either one can)

Vertex Connectivity $\kappa(G)$

- nonseparable graphs: connected graphs without cut vertices (complete graph: $K_n \ n \geq 3$)
- **vertex cut** (or **separating set**): if G-V' is disconnected (V': subset of the vertex)
- **vertex connectivity:** the minimum number of vertices in a vertex cut

$$\kappa(K_n) = n - 1$$
,

the number of vertices needed to be removed to produce a graph with a single vertex.

$$\kappa(G) \uparrow \to ext{more connected G is}$$

k-connected (or k-vertex-connected): $\kappa(G) \geq k$

Every connected graph, except a complete graph, has a vertex cut.

Edge Connectivity $\lambda(G)$

- edge cut: if G E' is disconnected, then the set of edges E' is an edge cut
- edge connectivity: minimum number of edges in an edge cut

Example 8 Find the **vertex connectivity** for each graphs.

 G_1 : one cut vertex, $\kappa(G_1)=1$

 G_2 : one cut vertex c, $\kappa(G_2)=1$

 G_3 : no cut vertices, vertex cut: $\{b,g\}$, $\kappa(G_3)=2$

 G_4 : one vertex cut of size two, $\{c,f\}$, no cut vertices,

 $\kappa(G_4)=2$

 G_5 : no vertex cut of size two,vertex cut: $\{b,c,f\}$,

 $\kappa(G_5)=3$

Example 9 Find the **edge connectivity** for each graphs.

 G_1 : one cut vertex (??), $\lambda(G_1)=1$

 G_2 : no cut vertex c, $\lambda(G_2)=2$

 G_3 : no cut edges, $\;\lambda(G_3)=2$

 G_4 : the removal of no two edges disconnects, does,

 $\lambda(G_4)=3$

 G_5 : same as G_4 , $\{a,b\},\{a,g\},\{a,h\}$ does, $\lambda(G_5)=3$

An Inequality for Vertex Connectivity and Edge Connectivity

$$\kappa(G) \le \lambda(G) \le \min_{v \in V} \deg(v).$$

Connectedness in Directed Graphs

- A directed graph is *strongly connected* if there is a path from a to b and from b to a whenever a and b are vertices in the graph.
- A directed graph is *weakly connected* if there is a path between every two vertices in the underlying undirected graph.

H: weakly connected

• strongly connected components/strong components: maximal strongly connected subgraphs

Paths and Isomorphism

ightarrow # of vertices, edges, and degree of vertices \Rightarrow same H has a simple circuit of length three, G has no.

5 vertices, 6 edges, 2 vertices of degree three, 3 vertices of degree 2, a simple circuit of length three, four, and five \leftarrow

Counting Paths Between Vertices

Theorem 2 Let G be a graph with adjacency matrix A with respect to the ordering $v_1, v_2, ..., v_n$ of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)th entry of A^r .

Example 15 How many paths of length four are there from a to d in the graph ??

The adjacency matrix is $A=\begin{bmatrix}0&1&1&0\\1&0&0&1\\1&0&0&1\\0&1&1&0\end{bmatrix}$. Hence, the number of paths of length four from a to d is the (1,4)th entry of A^4 . Becuase $A^4=\begin{bmatrix}8&0&0&8\\0&8&8&0\\0&8&8&0\\8&0&0&8\end{bmatrix}$, there are exactly eight paths of length

is the
$$(1,4)$$
th entry of A^4 . Becuase $A^4=egin{bmatrix}8&0&0&8\\0&8&8&0\\0&8&8&0\\8&0&0&8\end{bmatrix}$, there are exactly eight paths of length

four from a to d. By inspection of the graph, we see that a, b, a, b, d; a, b, a, c, d; a, b, d, b, d; a,b,d,c,d;a,c,a,b,d;a,c,d,c,d;a,c,d,b,d; and a,c,d,c,d are the eight paths of length four from a to d.