ĐÁP ÁN THAM KHẢO ĐỀ THI ĐẠI HỌC NĂM 2011 MÔN TOÁN-KHỐI B

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I: 1/ Khảo sát, vẽ (C):

$$m = 1 \Rightarrow y = x^4 - 4x^2 + 1$$

$$D = R$$
, $y' = 4x^3 - 8x$, $y' = 0 \Leftrightarrow x = 0$ hay $x = \pm \sqrt{2}$

Hàm số đồng biến trên $(-\sqrt{2}; 0)$ và $(\sqrt{2}; +\infty)$, nghịch biến trên $(-\infty; -\sqrt{2})$ và $(0; \sqrt{2})$

Hàm số đạt cực đại tại x = 0 và $y_{CD} = 1$, đạt cực tiểu tại $x = \pm \sqrt{2}$ và $y_{CT} = -3$

$$\lim_{y \to +\infty} y = +\infty$$

Bảng biến thiên:

X	-∞	_	$\sqrt{2}$		0		$\sqrt{2}$		+∞	
y'	-	-	0	+	0	_	0	+		
у	+∞ <	^	-3	_ \	. 1		-3	_	*	+∞

2/
$$y' = 4x^3 - 4(m+1)x$$

 $y' = 0 \Leftrightarrow x = 0 \text{ hay } x^2 = m+1$

Hàm số có 3 cực trị \Leftrightarrow m + 1 > 0 \Leftrightarrow m > -1

Khi đó đồ thị hàm số có 3 cực trị A (0; m),

B
$$(\sqrt{m+1}; -m^2 - m - 1); C (-\sqrt{m+1}; -m^2 - m - 1)$$

Ta có: OA = BC
$$\Leftrightarrow$$
 m² = 4(m + 1) \Leftrightarrow m = 2 ± 2 $\sqrt{2}$ (thỏa m > -1)

Câu II.

1. Phương trình đã cho tương đương:

 $2\sin x \cos^2 x + \sin x \cos x = 2\cos^2 x - 1 + \sin x + \cos x$

$$\Leftrightarrow \sin x \cos x (2\cos x + 1) = \cos x (2\cos x + 1) - 1 + \sin x$$

$$\Leftrightarrow$$
 cosx(2cosx + 1)(sinx - 1) - sinx + 1 = 0

$$\Leftrightarrow$$
 sinx = 1 hay cosx(2cosx + 1) – 1 = 0

$$\Leftrightarrow$$
 x = $\frac{\pi}{2} + k2\pi$ hay $2\cos^2 x + \cos x - 1 = 0$

$$\Leftrightarrow$$
 x = $\frac{\pi}{2} + k2\pi$ hay cosx = -1 hay cosx = $\frac{1}{2}$

$$\Leftrightarrow$$
 $x = \frac{\pi}{2} + k2\pi$ hay $x = \pi + k2\pi$ hay $x = \pm \frac{\pi}{3} + k2\pi$ ($k \in \mathbb{Z}$)

2. Đặt
$$t = 3\sqrt{2+x} - 6\sqrt{2-x} \implies t^2 = 9(10 - 3x - 4\sqrt{4-x^2})$$

Phương trình đã cho trở thành : $t^2 - 9t = 0 \Leftrightarrow t = 0$ hay t = 9

Với
$$t = 0$$
: $3\sqrt{2+x} = 6\sqrt{2-x} \iff x = \frac{6}{5}$

Với t = 9:
$$3\sqrt{2+x} - 6\sqrt{2-x} = 9 \text{ (điều kiện : } -2 \le x \le 2)$$

$$\Leftrightarrow \sqrt{2+x} = 3 + 2\sqrt{2-x} \Leftrightarrow 2 + x = 9 + 12\sqrt{2-x} + 4(2-x)$$

$$\Leftrightarrow 12\sqrt{2-x} = 5x - 15 \text{ (vô nghiệm)}$$

Cách khác : Đặt $u = \sqrt{2+x} \ \text{và } v = \sqrt{2-x} \ (u, v \ge 0)$, phương trình đã cho trở thành:

$$\begin{cases} 3u - 6v + 4uv = u^2 + 4v^2 & (1) \\ u^2 + v^2 = 4 & (2) \end{cases}$$

$$(1) \Leftrightarrow 3(u-2v) = (u-2v)^2 \Leftrightarrow u = 2v \text{ hay } u = 2v + 3$$

Với u = 2v ta có (2)
$$\Leftrightarrow$$
 v² = $\frac{4}{5}$ suy ra: 2 - x = $\frac{4}{5}$ \Leftrightarrow x = $\frac{6}{5}$
Với u = 2v + 3 ta có (2) \Leftrightarrow (2v + 3)² + v² = 4 \Leftrightarrow 5v² + 12v +5 = 0 (VN vì v≥ 0)

Câu III:

$$I = \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos^{2} x} + \int_{0}^{\frac{\pi}{3}} \frac{x \sin x dx}{\cos^{2} x} = \left[\tan x\right]_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}} \frac{x \sin x dx}{\cos^{2} x} = \sqrt{3} + \int_{0}^{\frac{\pi}{3}} \frac{x \sin x dx}{\cos^{2} x}$$

Đặt $u = x = 2$ du = dx

$$dv = \frac{\sin x dx}{\cos^2 x}$$
, chọn $v = \frac{1}{\cos x}$

$$\Rightarrow I = \sqrt{3} + \int_{0}^{\frac{\pi}{3}} \frac{x \sin x dx}{\cos^{2} x} = \sqrt{3} + \frac{x}{\cos x} \Big|_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos x} = \sqrt{3} + \frac{2\pi}{3} + \int_{0}^{\frac{\pi}{3}} \frac{\cos x dx}{\sin^{2} x - 1}$$
$$= \sqrt{3} + \frac{2\pi}{3} + \frac{1}{2} \ln \left| \frac{\sin x - 1}{\sin x + 1} \right|_{0}^{\frac{\pi}{3}} = \sqrt{3} + \frac{2\pi}{3} + \frac{1}{2} \ln \frac{2 - \sqrt{3}}{2 + \sqrt{3}}$$

Câu IV.

Ta có : OI = $\frac{a}{2}$, \triangle OIA₁ là nửa tam giác đều

$$\Rightarrow$$
 A₁I = 2OI = a

$$V_{\text{ABCD.A}_1B_1C_1D_1} = a.a\sqrt{3}.\frac{a\sqrt{3}}{2} = \frac{3a^3}{2}$$

Gọi B₂ là điểm chiếu của B₁ xuống mặt phẳng ABCD

Vậy d $(B_1,\,A_1BD)$ chính là đường cao vẽ từ B_2 của ΔOB_2B

$$S_{(OBB_2)} = \frac{1}{2}a \cdot \frac{1}{2}a\sqrt{3} = \frac{a^2\sqrt{3}}{4} = \frac{1}{2}OB \cdot B_2 H$$

$$\Rightarrow B_2 H = 2 \cdot \frac{a^2\sqrt{3}}{4} \cdot \frac{1}{a} = \frac{a\sqrt{3}}{2}$$

Câu V.

Theo giả thiết ta có $2(a^2+b^2)+ab=(a+b)(ab+2)$. Từ đây suy ra:

$$2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = \left(\frac{1}{a} + \frac{1}{b}\right)(ab + 2) \text{ hay } 2\left(\frac{a}{b} + \frac{b}{a}\right) + 1 = a + \frac{2}{b} + b + \frac{2}{a}$$

Áp dụng bất đẳng thức Cauchy, ta có : $a + \frac{2}{b} + b + \frac{2}{a} \ge 2\sqrt{2} \left(\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} \right)$

Đặt
$$t = \frac{a}{b} + \frac{b}{a}$$
, ta suy ra : $2t + 1 \ge 2\sqrt{2}\sqrt{t+2} \implies 4t^2 - 4t - 15 \ge 0 \implies t \ge \frac{5}{2}$

Mặt khác:
$$P = 4\left(\frac{a^3}{b^3} + \frac{b^3}{a^3}\right) - 9\left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right) = 4(t^3 - 3t) - 9(t^2 - 2) = 4t^3 - 9t^2 - 12t + 18 = f(t)$$

$$f'(t) = 12t^2 - 18t - 12$$
, $f'(t) = 0 \Rightarrow t = -\frac{1}{2}$ hay $t = 2$

$$\Rightarrow$$
 Min f(t) = $-\frac{23}{4}$ khi t = $\frac{5}{2}$

Vậy min P =
$$-\frac{23}{4}$$
 khi a = 1 và b = 2 hay a = 2 và b = 1.

Câu VI.a.

1. Phương trình ON có dạng
$$\begin{cases} x = at \\ y = bt \end{cases}$$
 (a² + b² \neq 0), N (at₁; bt₁) và M (at₂; bt₂)

$$N = ON \cap \Delta$$
: $at_1 - bt_1 - 4 = 0 \Leftrightarrow t_1 = \frac{4}{a - b}$ $(a \neq b)$

M = ON
$$\cap$$
 d : 2at₂ - bt₂ - 2 = 0 \Leftrightarrow t₂ = $\frac{2}{2a-b}$ (2a \neq b)

Suy ra:
$$N\left(\frac{4a}{a-b}; \frac{4b}{a-b}\right)$$
, $M\left(\frac{2a}{2a-b}; \frac{2b}{2a-b}\right)$

Ta có: OM.ON =
$$8 \Leftrightarrow \frac{4}{|a-b|} \sqrt{a^2 + b^2} \frac{2}{|2a-b|} \sqrt{a^2 + b^2} = 8 \Leftrightarrow a^2 + b^2 = |a-b||2a-b|$$

TH1:
$$a = 0$$
 ta $có : b^2 = b^2$, chọn $b = 1 \Rightarrow N(0; -4)$, $M(0; -2)$

TH2:
$$a \ne 0$$
, chọn $a = 1$ ta được: $1 + b^2 = |(1 - b)(2 - b)| \iff 1 + b^2 = |b^2 - 3b + 2|$

$$\Leftrightarrow \begin{bmatrix} b^2 - 3b + 2 = 1 + b^2 \\ b^2 - 3b + 2 = -1 - b^2 \end{bmatrix} \Leftrightarrow b = \frac{1}{3}. \text{ Vây N } (6; 2); \text{ M } \left(\frac{6}{5}; \frac{2}{5}\right).$$

$$\underline{\text{Cách khác}}$$
: Điểm $N \in d \Rightarrow N (n; 2n - 2) \Rightarrow \overrightarrow{ON} = (n; 2n - 2)$

$$\text{Diễm } M \in \Delta \Rightarrow M (m; m-4) \Rightarrow \overrightarrow{OM} = (m; m-4)$$

Nhận xét : 2 đường thẳng d và
$$\Delta$$
 nằm cùng phía đối với điểm O nên OM.ON = 8

$$\Leftrightarrow \overrightarrow{OM}.\overrightarrow{ON} = 8 \Leftrightarrow m = 5n (1)$$

Ta có
$$\overrightarrow{OM}$$
 cùng phương với $\overrightarrow{ON} \Leftrightarrow m.n + 4n - 2m = 0$ (2)

Từ (1) và (2)
$$\Rightarrow$$
 $5n^2 - 6n = 0 \Leftrightarrow n = 0$ hay $n = \frac{6}{5}$

Với
$$n = 0$$
 thì $m = 0$, ta có điểm $M(0; -4)$; $N(0; -2)$

Với n =
$$\frac{6}{5}$$
 thì m = 6, ta có điểm M (6; 2); N $\left(\frac{6}{5}; \frac{2}{5}\right)$

2. Ta có
$$\Delta$$
 cắt (P) tại I (1; 1; 1); điểm $M \in (P) \Longrightarrow M(x; y; 3-x-y)$

$$\Rightarrow$$
 $\overrightarrow{MI} = (1 - x; 1 - y; -2 + x + y)$. Vector chỉ phương của \triangle là $\vec{a} = (1; -2; -1)$

Ta có:
$$\begin{cases} \overrightarrow{MI.a} = 0 \\ MI^2 = 16.14 \end{cases} \iff \begin{cases} y = 2x - 1 \\ (1 - x)^2 + (1 - y)^2 + (-2 + x + y)^2 = 16.14 \end{cases}$$

$$\Leftrightarrow$$
 x = -3 hay x = 5

Với
$$x = -3$$
 thì $y = -7$. Điểm M (4; -7; 6)

Với
$$x = 5$$
 thì $y = 9$. Điểm M (5; 9; -11)

Câu VII.a. Gọi $z = x + yi \neq 0$ với $x, y \in R$

$$\frac{1}{z} - \frac{5 + i\sqrt{3}}{z} - 1 = 0 \iff z\overline{z} - 5 - i\sqrt{3} - z = 0 \iff x^2 + y^2 - x - 5 - (\sqrt{3} + y)i = 0$$

$$\Leftrightarrow x^2 - x - 2 = 0 \text{ và } y = -\sqrt{3} \Leftrightarrow (x = -1 \text{ và } y = -\sqrt{3}) \text{ hay } (x = 2 \text{ và } y = -\sqrt{3})$$

Vậy
$$z = -1 - \sqrt{3}i$$
 hay $z = 2 - \sqrt{3}i$.

Câu VI.b.

1. Ta có phương trình BD : y = 1, phương trình EF : y = 3, nên BD // EF $\Rightarrow \Delta ABC$ cân tại A

Ta có BD = BE
$$\Rightarrow \left(\frac{5}{2}\right)^2 = (x - \frac{1}{2})^2 + (3 - 1)^2$$

$$\Rightarrow$$
 x = 2 hay x = -1 (loại) \Rightarrow E (2; 3)

Đường thẳng BE cắt AD tại A nên ta có: A $(3; \frac{13}{3})$

2.
$$M \in \Delta \Rightarrow M (-2 + t; 1 + 3t; -5 - 2t)$$

 $\overrightarrow{AB} = (-1; -2; 1); \overrightarrow{AM} = (t; 3t; -6 - 2t); [\overrightarrow{AB}, \overrightarrow{AM}] = (t + 12; -t - 6; -t)$
 $S_{MAB} = 3\sqrt{5} = \frac{1}{2} |[\overrightarrow{AB}, \overrightarrow{AM}]| = 3\sqrt{5} \Leftrightarrow \frac{1}{2} \sqrt{(t + 12)^2 + (-t - 6)^2 + t^2} = 3\sqrt{5}$
 $\Leftrightarrow 3t^2 + 36t = 0 \Leftrightarrow t = 0 \text{ hay } t = -12$
 $V_{a}^2y M (-2; 1; -5) \text{ hay } M (-14; -35; 19)$

Câu VII.b.
$$z = \left[\frac{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}{\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)} \right]^{3} = \sqrt{8} \frac{\cos\pi + i\sin\pi}{\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}}$$
$$= 2\sqrt{2} \left[\cos\left(\pi - \frac{3\pi}{4}\right) + i\sin\left(\pi - \frac{3\pi}{4}\right) \right] = 2\sqrt{2} \left[\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right] = 2 + 2i$$

Vậy phần thực của z là 2 và phần ảo của z là 2.

Cách khác:
$$z = \frac{1+3i\sqrt{3}+9i^2+3\sqrt{3}i^3}{1+3i+3i^2+i^3} = \frac{4}{1-i} = 2+2i$$

Vậy phần thực của z là 2 và phần ảo của z là 2.