$2^{\underline{a}}$ Prova de Cálculo Diferencial e Integral I

Nome:____

Turma:_____

Questões	Valores	Notas
1^a .	2.0	
2 ^a .	2.0	
3 ^a .	2.0	
4 ^a .	2.0	
5 ^a .	2.0	
Total	10.0	

.....

- 1. Calcule os limites.
 - (a) $\lim_{x \to -1} \frac{x^2 1}{x 1}$
 - (b) $\lim_{x\to 1} \frac{x^2 + x 2}{x^2 x}$
 - (c) $\lim_{x \to \infty} \frac{2x(x-1)}{4+9x^2}$
 - (d) $\lim_{x \to -\infty} \frac{\sqrt{3x^4 + x}}{x^2 8}$
- 2. Enuncie o teorema do confronto e use-o para calcular o limite:

$$\lim_{x \to 0} x^2 \mathrm{sen} \ \frac{1}{x^2}.$$

3. Encontre as assíntotas verticais do gráfico de

$$f(x) = -\frac{8}{x^2 - 4}.$$

- 4. Calcule, usando a regra da cadeia e demais regras de derivação, f'(x) e encontre o valor f'(1) para:
 - (a) $f(x) = (\cos x)(\ln x + x^2 2)$
 - (b) $f(x) = \frac{2x^2 + 3x 6}{x 2}$
 - (c) $f(x) = \ln(\cos(e^{x^3 + 2x + 3}))$
 - (d) $f(x) = \frac{2x^2(x-3)}{2+3x^2}$
- 5. Considere a curva C definida pela equação $y=\sqrt{x^2+16}$. Determine a equação da reta tangente a C no ponto (3,5).