Some basic equivalences

Name	Equivalences	Equivalences
Idempotence	(1) A ∧ A ≡ A	(2) A ∨ A ≡ A
Associativity	(3) A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C	(4) A \vee (B \vee C) \equiv (A \vee B) \vee C
Commutativity	(5) $A \wedge B \equiv B \wedge A$	(6) $A \vee B \equiv B \vee A$
Distributivism	(7) $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$	(8) A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)
Identity	(9) A ∧ True ≡ A	(10) A ∨ False ≡ A
Domination	(11) A ∧ False ≡ False	(12) A ∨ True ≡ True
Double negation	(13) ¬ (¬ A) ≡ A	
Complement	(14) A ∧ ¬ A ≡ False (16) ¬ True ≡ False	(15) A ∨ ¬ A ≡ True (17) ¬ False ≡ True
De Morgan's	$(17) \neg (A \lor B) \equiv \neg A \land \neg B$	$(18) \neg (A \land B) \equiv \neg A \lor \neg B$
Absorption	$(19) A \vee (A \wedge B) \equiv A$	$(20) A \wedge (A \vee B) \equiv A$
Conditional Identity	$(21) A \rightarrow B \equiv \neg A \vee B$	(22) $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$

Rules of Inferences - PROPOSITIONS

Rule	Name
P P→Q ∴ Q	Modus Ponens
¬Q P→Q ∴¬ P	Modus Tollens
P ∴ P∨Q	Addition
P ∧ Q ∴ P	Simplification

Rule	Name
P Q ∴ P ∧ Q	Conjunction
$P \rightarrow Q$ $Q \rightarrow R$ $\therefore P \rightarrow R$	Hypothetical Syllogism
P∨Q ¬P ∴Q	Disjunctive Syllogism
P ∨ Q ¬P ∨ R ∴ Q ∨ R	Resolution

Rules of Inferences with QUANTIFIERS

Rule	Name	Example
c is arbitrary or particular ∀x P (x) ∴ P (c)	Universal Instantiation / Elimination	Sam is a student in the class. Every student in the class completed the assignment. Therefore, Sam completed his assignment.
c is arbitrary P(c) ∴ ∀x P (x)	Universal Generalization / Introduction	Let c be an arbitrary integer c ≤ c2 Therefore, every integer is ≤ to its square (careful!)
∃x P(x) ∴ c is particular P (c)	Existential Instantiation / Elimination	There is an integer that is equal to its square. Therefore, c2 = c, for some integer c.
c is arbitrary or particular P (c) ∴ ∃x P(x)	Existential Generalization / Introduction	Sam is a particular student in the class. Sam completed the assignment. Therefore, there is a student in the class who completed the assignment.