Resistive Wall

R. Fitzpatrick^a

Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712, USA

I. RESISTIVE WALL PHYSICS

A. Resistive Wall

Let the inner surface of the resistive wall surrounding the plasma lie at $\mu = \mu_w$, and let the outer surface lie at $\mu = \mu_w - \bar{d}_w \sinh \mu_w$, where $\bar{d}_w \ll 1$ is a positive constant. The physical wall thickness is

$$d(\eta) = \frac{\bar{d}_w \sinh \mu_w}{|\nabla \mu|} = h_w(\eta) \sinh \mu_w \,\bar{d}_w,\tag{1}$$

where

$$h_w(\eta) = \frac{1}{z_w - \cos \eta},\tag{2}$$

and $z_w = \cosh \mu_w$. Let the electrical conductivity of the wall material vary as

$$\sigma(\eta) = \frac{\bar{\sigma}_w}{h_w^2(\eta) \sinh^2 \mu_w},\tag{3}$$

where $\bar{\sigma}_w$ is a positive constant. It follows that $\sigma d^2 = \bar{\sigma}_w \bar{d}_w^2$.

B. Wall Matching Conditions

If we write

$$\mathbf{b} = \nabla \times \mathbf{A} \tag{4}$$

in the vacuum region then the boundary conditions at the wall are

$$\mathbf{n}_w \times \mathbf{A}|_{z_{w-}} = \frac{1}{\cosh \lambda} |\mathbf{n}_w \times \mathbf{A}|_{z_{w+}}$$
 (5)

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} h_{w} \sinh \mu_{w}} \mathbf{n}_{w} \times (\mathbf{n}_{w} \times \mathbf{A})|_{z_{w+}} + \frac{\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w-}}}{\cosh \lambda}, \quad (6)$$

a rfitzp@utexas.edu

$$\lambda = \sqrt{\hat{\gamma} \, \bar{d}_w},\tag{7}$$

$$\hat{\gamma} = \gamma \,\bar{\tau}_w,\tag{8}$$

$$\bar{\tau}_w = \mu_0 R_0^2 \, \bar{\sigma}_w \, \bar{d}_w, \tag{9}$$

where γ is the growth-rate of the magnetic perturbation, and $\bar{\tau}_w$ is the effective L/R time of the wall. Here, $\mathbf{n}_w = -\mathbf{e}_{\mu}$ is an outward unit normal vector to the wall. Now,

$$\nabla \times \mathbf{A} = \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\phi}}{\partial \eta} - \frac{\partial \hat{A}_{\eta}}{\partial \phi} \right) \mathbf{e}_{\mu} + \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\eta} + \frac{1}{h^2} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\phi}, \tag{10}$$

where

$$\hat{A}_{\mu} = h A_{\mu},\tag{11}$$

$$\hat{A}_{\eta} = h A_{\eta}, \tag{12}$$

$$\hat{A}_{\phi} = h \sinh \mu \, A_{\phi}. \tag{13}$$

Furthermore,

$$\mathbf{n}_w \times \mathbf{A} = -\mathbf{e}_u \times \mathbf{A} = A_\phi \, \mathbf{e}_n - A_n \, \mathbf{e}_\phi, \tag{14}$$

$$\mathbf{n}_w \times (\mathbf{n}_w \times \mathbf{A}) = -\mathbf{e}_\mu \times (\mathbf{n}_w \times \mathbf{A}) = -A_\eta \, \mathbf{e}_\eta - A_\phi \, \mathbf{e}_\phi, \tag{15}$$

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A}) = -\mathbf{e}_{\mu} \times (\nabla \times \mathbf{A}) = \frac{1}{h^{2}} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\eta} - \frac{1}{h^{2} \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\phi}.$$
(16)

Thus, the wall matching conditions become

$$\left. \hat{A}_{\eta} \right|_{z_{w-}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\eta} \right|_{z_{w+}},\tag{17}$$

$$\left. \hat{A}_{\phi} \right|_{z_{w+}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\phi} \right|_{z_{w-}},\tag{18}$$

$$\left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w+}} = \frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\eta}\right|_{z_{w+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w-}}, \tag{19}$$

$$\left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\phi}\right|_{\mu_{z+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w-}}.$$
(20)

Let

$$C(z,\eta,\phi) = \frac{\partial \hat{A}_{\eta}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \eta}.$$
 (21)

The wall matching conditions reduce to

$$C(z_{w-}, \eta, \phi) = \frac{1}{\cosh \lambda} C(z_{w+}, \eta, \phi), \tag{22}$$

$$\frac{\partial C(z_{w+}, \eta, \phi)}{\partial z} = \frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh^{2} \mu_{w}} C(z_{w+}, \eta, \phi) + \frac{1}{\cosh \lambda} \frac{\partial C(z_{w-}, \eta, \phi)}{\partial z}.$$
 (23)

However, if

$$\mathbf{b} = \mathrm{i}\,\nabla V = \nabla \times \mathbf{A} \tag{24}$$

then

$$C = -i h \sinh \mu \frac{\partial V}{\partial \mu} = -i h (z^2 - 1) \frac{\partial V}{\partial z}.$$
 (25)

Thus,

$$C = -i \frac{z^2 - 1}{z - \cos \eta} \sum_{m} \left[\frac{U_m}{2 (z - \cos \eta)^{1/2}} + (z - \cos \eta)^{1/2} \frac{dU_m}{dz} \right] e^{-i (m \eta + n \phi)}, \tag{26}$$

$$\frac{\partial C}{\partial z} = -i \sum_{m} \left[\frac{(3/4) \sin^2 \eta}{(z - \cos \eta)^{5/2}} - \frac{(1/2) \cos \eta}{(z - \cos \eta)^{3/2}} + \frac{m^2 + n^2/(z^2 - 1)}{(z - \cos \eta)^{1/2}} \right] U_m e^{-i(m\eta + n\phi)}. \quad (27)$$

It follows that

$$\sum_{m} \left[\frac{U_{m}}{2} + (z - \cos \eta) \frac{dU_{m}}{dz} \right]_{z_{w-}} e^{-i m \eta} = \frac{1}{\cosh \lambda} \sum_{m} \left[\frac{U_{m}}{2} + (z - \cos \eta) \frac{dU_{m}}{dz} \right]_{z_{w+}} e^{-i m \eta},$$
(28)

$$\sum_{m} \left[\frac{3}{4} \sin^2 \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^2 \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] U_m e^{-i m \eta} \bigg|_{z_{w+}} =$$

$$f_w \sum_{m} (z - \cos \eta) \left[\frac{U_m}{2} + (z - \cos \eta) \frac{dU_m}{dz} \right]_{z_{w+}} e^{-i m \eta}$$

$$+\frac{1}{\cosh \lambda} \sum_{m} \left[\frac{3}{4} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} \bigg|_{z_{w-}},$$
(29)

where

$$f_w = \frac{\lambda \tanh \lambda}{\bar{d}_w}. (30)$$

Thus, we can write

$$\sum_{m'} I_{mm'} U_{m'}(z_{w-}) = \frac{1}{\cosh \lambda} \sum_{m'} I_{mm'} U_{m'}(z_{w+}), \tag{31}$$

$$\sum_{m'} J_{mm'} U_{m'}(z_{w+}) = f_w \sum_{m',m''} k_{mm''} I_{m''m'} U_{m'}(z_{w+}) + \frac{1}{\cosh \lambda} \sum_{m'} J_{mm'} U_{m'}(z_{w-}), \qquad (32)$$

where

$$I_{mm'} = \left(\frac{1}{2} + z \frac{d}{dz}\right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m+1\,m'} + \delta_{m-1\,m'}\right),\tag{33}$$

$$J_{mm'} = \left[\frac{5}{8} + \left(\frac{1}{2} + z^2\right) \left(m'^2 + \frac{n^2}{z^2 - 1}\right)\right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m'^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{m+1\,m'} + \delta_{m-1\,m'}\right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m'^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{m+2\,m'} + \delta_{m-2\,m'}\right), \tag{34}$$

$$k_{mm'} = z \,\delta_{mm'} - \frac{1}{2} \,(\delta_{m+1\,m'} + \delta_{m-1\,m'}). \tag{35}$$

C. Vacuum Solution

Now,

$$U_m(z) = p_{m-1} \hat{P}_{|m|-1/2}^n(z)$$
(36)

in the region $z < z_w$, whereas

$$U_m(z) = p_{m+} \hat{P}_{|m|-1/2}^n(z) + q_{m+} \hat{Q}_{|m|-1/2}^n(z)$$
(37)

in the region $z > z_w$. Let $\underline{\underline{I}}_p$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \, \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \, \frac{d}{dz} \left(\delta_{m+1\,m'} + \delta_{m-1\,m'} \right) \right] \hat{P}^{n}_{|m'|-1/2}(z) \right\}_{z_{m}}$$
(38)

values. Let $\underline{\underline{I}}_q$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m+1\,m'} + \delta_{m-1\,m'} \right) \right] \hat{Q}^{n}_{|m'|-1/2}(z) \right\}_{z_w}$$
(39)

values. Let $\underline{\underline{J}}_p$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m+1\,m'} + \delta_{m-1\,m'} \right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m+2\,m'} + \delta_{m-2\,m'} \right) \right\} \hat{P}^n_{|m'|-1/2}(z_w) \tag{40}$$

values. Let $\underline{\underline{J}}_q$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m+1\,m'} + \delta_{m-1\,m'} \right) \right\}$$

$$+ \left[-\frac{1}{16} + \frac{1}{4} \left(m'^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m+2m'} + \delta_{m-2m'} \right) \hat{Q}^n_{|m'|-1/2}(z_w) \tag{41}$$

values. Let $\underline{\underline{k}}$ be the matrix of the $k_{mm'}$ values. Finally, let \underline{p}_{+} be the vector of the p_{m+} values, et cetera. Thus, we obtain

$$\underline{\underline{I}}_{p}\underline{p}_{-} = \frac{1}{\cosh\lambda} \left(\underline{\underline{I}}_{p}\underline{p}_{+} + \underline{\underline{I}}_{q}\underline{q}_{+} \right), \tag{42}$$

$$\underline{\underline{J}}_{p}\underline{p}_{+} + \underline{\underline{J}}_{q}\underline{q}_{+} = f_{w}\underline{\underline{k}}\left(\underline{\underline{I}}_{p}\underline{p}_{+} + \underline{\underline{I}}_{q}\underline{q}_{+}\right) + \frac{1}{\cosh\lambda}\underline{\underline{J}}_{p}\underline{p}_{-},\tag{43}$$

which can be rearranged to give

$$\left(\tanh^{2}\lambda \underline{\underline{J}}_{p} - f_{w}\underline{\hat{\underline{I}}}_{p}\right)\underline{p}_{+} + \left(\underline{\underline{J}}_{pq} + \tanh^{2}\lambda \underline{\underline{J}}_{qp} - f_{w}\underline{\hat{\underline{I}}}_{q}\right)\underline{q}_{+},\tag{44}$$

where

$$\underline{\hat{\underline{I}}}_p = \underline{\underline{k}}\,\underline{\underline{I}}_p,\tag{45}$$

$$\underline{\underline{\hat{I}}}_{q} = \underline{\underline{k}}\,\underline{\underline{I}}_{q},\tag{46}$$

$$\underline{\underline{J}}_{pq} = \underline{\underline{J}}_{q} - \underline{\underline{J}}_{p} \hat{\underline{\underline{I}}}_{p}^{-1} \hat{\underline{\underline{I}}}_{q}, \tag{47}$$

$$\underline{\underline{J}}_{qp} = \underline{\underline{J}}_{p} \underline{\hat{\underline{I}}}_{p}^{-1} \underline{\hat{\underline{I}}}_{q}. \tag{48}$$

Now, $z_w \sim 1/\bar{b}_w$, where \bar{b}_w is the mean wall minor radius. In the large aspect-ratio limit, $\bar{b}_w \ll 1$, we have $\underline{I}_p \sim \mathcal{O}(1)$, $\underline{I}_q \sim \mathcal{O}(1)$, $\underline{J}_p \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{J}_q \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{\underline{K}}_p \sim \mathcal{O}(1/\bar{b}_w)$, $\underline{\underline{K}}_q \sim \mathcal{O}(1/\bar{b}_w)$, and $\underline{\underline{k}} \sim \mathcal{O}(1/\bar{b}_w)$ It follows that $\underline{\hat{I}}_p \sim \mathcal{O}(1/\bar{b}_w)$, $\underline{\hat{I}}_q \sim \mathcal{O}(1/\bar{b}_w)$, $\underline{J}_{pq} \sim \mathcal{O}(1/\bar{b}_w^2)$ and $\underline{J}_{qp} \sim \mathcal{O}(1/\bar{b}_w^2)$. Thus, the ratio of the first to the second term multiplying \underline{p}_+ in Eq. (44) is

$$\tanh \lambda \, \frac{\bar{d}_w}{\lambda \, \bar{b}_w}.\tag{49}$$

However, the wall analysis is premised on the assumption that

$$\frac{\bar{d}_w}{\lambda \, \bar{b}_w} \ll 1. \tag{50}$$

Hence, the first term is negligible with respect to the second, irrespective of the value of λ . The ratios of the three terms multiplying \underline{q}_{+} in Eq. (44) are

$$\frac{\bar{d}_w}{\lambda \bar{b}_w}$$
, $\tanh^2 \lambda \frac{\bar{d}_w}{\lambda \bar{b}_w}$, $\tanh \lambda$. (51)

Thus, in the thin-shell limit, $\lambda \ll 1$, the second term is negligible with respect to the first. In the thick-shell limit, $\lambda \gg 1$, the third term is dominant. Thus, we can neglect the second term. Hence, we deduce that

$$\underline{q}_{+} = \underline{\underline{\mathcal{F}}} \ \underline{p}_{+}, \tag{52}$$

where

$$\underline{\underline{\mathcal{F}}} = f_w \, \underline{\underline{I}} \, (\underline{\underline{J}} + f_w \, \underline{\underline{1}})^{-1}, \tag{53}$$

$$\underline{\underline{I}} = -\underline{\hat{I}}_q^{-1} \underline{\hat{I}}_p, \tag{54}$$

$$\underline{\underline{J}} = \underline{\hat{\underline{I}}}_p^{-1} (\underline{\underline{J}}_q \underline{\underline{I}} + \underline{\underline{J}}_p). \tag{55}$$

Note that $\underline{\underline{I}} \sim \mathcal{O}(1)$ and $\underline{\underline{J}} \sim \mathcal{O}(1/\bar{b}_w)$.

D. Toroidal Electromagnetic Torque

The net toroidal electromagnetic torque acting on the plasma is

$$T_{\phi} = -2\pi^2 n \operatorname{Im}(\underline{p}_{+}^{\dagger} \underline{q}_{+}) = -2\pi^2 n \operatorname{Im}(\underline{p}_{+}^{\dagger} \underline{\mathcal{F}} \underline{p}_{+}) = -\pi^2 n \operatorname{Im}[\underline{p}_{+}^{\dagger} (\underline{\mathcal{F}} - \underline{\mathcal{F}}^{\dagger}) \underline{p}_{+}]. \tag{56}$$

However, we expect this torque to be zero if f_w is real, which implies that $\underline{\underline{\mathcal{F}}} = \underline{\underline{\mathcal{F}}}^{\dagger}$ when f_w is real. In other words,

$$f_w \underline{\underline{I}} (\underline{\underline{J}} + f_w \underline{\underline{1}})^{-1} = f_w (\underline{\underline{J}}^{\dagger} + f_w \underline{\underline{1}})^{-1} \underline{\underline{I}}^{\dagger}, \tag{57}$$

which implies that

$$f_w \left(\underline{J}^{\dagger} + f_w \, \underline{1} \right) \underline{I} = f_w \, \underline{I}^{\dagger} \left(\underline{J} + f_w \, \underline{1} \right). \tag{58}$$

However, the previous equation holds for arbitrary real f_w , so we can separately equate the coefficients of f_w and f_w^2 to give

$$\underline{\underline{J}}^{\dagger} \underline{\underline{I}} = \underline{\underline{I}}^{\dagger} \underline{\underline{J}}, \tag{59}$$

$$\underline{I} = \underline{I}^{\dagger}. \tag{60}$$

It follows that $\underline{\underline{I}}$ and

$$\underline{\underline{K}} = \underline{\underline{I}}\underline{\underline{J}} \tag{61}$$

are both real symmetric matrices. In general,

$$\underline{\underline{\mathcal{F}}} - \underline{\underline{\mathcal{F}}}^{\dagger} = (f_w - f_w^*) \left[(\underline{\underline{\mathcal{F}}} + f_w \underline{\underline{1}})^{-1} \right]^{\dagger} \underline{\underline{K}} \left(\underline{\underline{\mathcal{F}}} + f_w \underline{\underline{1}} \right)^{-1}, \tag{62}$$

$$T_{\phi} = -2\pi^{2} n \operatorname{Im}(f_{w}) \left[\left(\underline{\underline{J}} + f_{w} \underline{\underline{1}} \right)^{-1} \underline{p}_{+} \right]^{\dagger} \underline{\underline{K}} \left[\left(\underline{\underline{J}} + f_{w} \underline{\underline{1}} \right)^{-1} \underline{p}_{+} \right]. \tag{63}$$

Thus, $\underline{\underline{\mathcal{F}}}$ is clearly Hermitian, and T_{ϕ} is zero, if f_w is real.