A report on LLMs

Introduction

Built on the transformer architecture, Large Language Models (LLMs) are advanced AI systems trained on vast amounts of text data to understand, generate, and manipulate human language, in order to perform tasks like text generation, translation, summarization, and question answering. Their ability to grasp context and semantics has turned them into a main asset to make AI more accessible. Thus, models like GPT-4, LLaMA, and PaLM have become central to AI applications across industries.

This report aims at analyzing and synthesizing the contributions, differences, similarities, and limitations of 4 research papers related to Large Language Models (LLMs)..

Themes /topics dealt with in the four selected papers are:

- An introduction to Large language Model
- The building of an Al-powered newsletter
- Language Models, are they reasonable?
- The Behind ChatGPT and Large Language Models,

Titles and publication sources of the papers

- 1. Introduction to Large Language Models (LLMs), Medium (published in Agentman blog series)
- 2. What I Learned by Building an AI-Driven Newsletter: Toloka Blog / Toloka AI
- 3. Unreasonable Language Models? Medium.com
- 4. The Story Behind ChatGPT and Large Language Models, Medium.com

Paper Summaries

For each paper (3 to 5 total):

- Provide the full citation (author, year, title, venue).
- Summarize the research problem, proposed solution, and main results.
- Mention datasets used, model architecture, and evaluation metrics.

Paper summaries

Introduction to Large Language Models (LLMs)

This article provides a beginner-friendly introduction to large language models (LLMs), aimed at full-stack developers. It explains what LLMs are, how they evolved from GPT to GPT-4, and their core underlying technologies like transformers, attention mechanisms, and tokenization. The author emphasizes how LLMs have democratized AI development, making it more accessible to non-experts. It outlines common applications such as Q&A systems, summarization, sentiment analysis, and translation. While the article is educational rather than research-focused, it lays the groundwork for building practical LLM-based systems. It highlights the transformative role of LLMs in modern AI and sets the stage for future articles on implementation and fine-tuning. Prasad Thammineni, 2023, Introduction to Large Language Models (LLMs): Medium / Agentman

What I Learned by Building an AI-Driven Newsletter

The article discusses Dr. Jack Saunders' experience building an AI-powered newsletter that summarizes new research papers. The challenge was building a system that reliably automates content curation and summarization using LLMs. He experimented with agent-based approaches but found them error-prone and unnecessarily complex. A fixed workflow, using APIs and prompt-based LLMs, proved more effective. Key insights included the non-determinism of LLMs, hallucinations, and the limits of even well-crafted prompts. Tools like ChatGPT, Brevo, and the arXiv API were leveraged. Human oversight remained essential for catching mistakes. The project highlighted LLMs' utility as assistants rather than autonomous agents. Saunders emphasizes practical use over hype and calls for simplicity and error resilience.

Dr. Jack Saunders, 2023, What I Learned by Building an AI-Driven Newsletter,: Toloka AI Blog, July 26, 2023

Unreasonable Language Models?

The article discusses the limitations of current large language models (LLMs) in reasoning tasks, referencing Apple's paper "The Illusion of Thinking." It critiques the assumption that increasing model size and inference time leads to better reasoning. Through puzzles like Tower of Hanoi and River Crossing, the Apple study shows that LLMs perform well on medium-complexity tasks but fail on high-complexity ones. Even with ample tokens, models often reduce output rather than increase reasoning depth. It questions current evaluation metrics that prioritize final answers over reasoning steps. Models often generate correct algorithms but fail to apply them to large-scale inputs. Tool limitations (e.g., no calculator) hinder model reasoning. Additionally, lack of web content might influence performance. Overall, it challenges whether LLMs truly "reason" or just excel at pattern recognition.

Apoorv Jain, 2025, Unreasonable Language Models? Medium (Online publication platform)

The Story Behind ChatGPT and Large Language Models

This article traces the evolution of large language models (LLMs) from early probabilistic models to today's advanced systems like ChatGPT. It highlights the limitations of early models in handling long-range dependencies and explains the transformative impact of the Transformer architecture. The LLM development pipeline includes three main phases: **Pretraining, Supervised Fine-Tuning (SFT)**, and **Reinforcement Learning (RL)**. Pretraining captures general language understanding, SFT teaches task-specific behavior, and RL aligns responses with human preferences. The article emphasizes the importance of reward models in RL and the risk of "reward hacking", where models exploit flaws in the system. It concludes by underlining the complexity of aligning LLMs with human values, not just scaling their size.

Abderraouf Lahmar, 2025, The Story Behind ChatGPT and Large Language Models, Medium

Comparative Analysis

Compare the papers across key aspects such as:

- · Objectives and problem domains
- · Model architectures and innovations
- Training or fine-tuning strategies
- Benchmarks and evaluation
- Strengths, limitations, and reproducibility

Use tables or charts if helpful for comparison.

Strengths, Limitations, and Reproducibility

- Strengths: Structured training pipeline; high language fluency
- Limitations: Reward hacking; sparse or flawed reward signals
- Reproducibility: Not detailed; high-resource requirement for replication

Insights and Reflection

- What trends or patterns emerge across the papers?
- Which methods or approaches seem most promising or innovative?
- What limitations or challenges are commonly acknowledged?
- What are potential future directions in this research area?

Trends or Patterns

- Clear pipeline evolution: Pretraining → SFT → RLHF
- Increasing focus on human alignment, not just model performance

Most Promising Methods

- Reinforcement Learning from Human Feedback (RLHF)
- Transformer-based architectures for scalability and efficiency

Common Limitations

- Misalignment due to flawed reward signals
- Reward hacking, where models game the system
- Lack of true understanding or reasoning ability in LLMs

Potential Future Directions

- Better reward modeling for nuanced feedback
- Hybrid models combining symbolic reasoning and LLMs
- More interpretable and controllable LLM behaviour

	A Comparison of 4 papers dealing with Large Language Models (LLM)				
Title & Author	Introduction to Large Language Models (LLMs), Prasad Thammineni	What I Learned by Building an AI- Driven Newsletter, Dr. Jack Saunders	Unreasonable Language Models? Apoorv Jain	The Story Behind ChatGPT and Large Language Models, Abderraouf Lahmar	
Key aspects					
Dataset	Not explicitly mentioned; generally refers to large text corpora	arXiv papers, news articles via TheNewsAPI, email content via Gmail API	Synthetic reasoning problems (e.g., Tower of Hanoi, River Crossing) with adjustable complexity.	Pretraining: Large- scale text corpora (books, internet, articles) SFT: Task- specific datasets (e.g., math problems with solutions) RL: Human preference-based feedback data	

Model	Transformer	LLMs (likely GPT-	Not explicitly	Transformer (based
Architecture	(based on	based) accessed via	stated, but implies	on Attention is All
Architecture	attention	prompting	standard LLMs and	You Need, 2017)
	mechanism)	P - P - O	reasoning-	,
	,		augmented LLMs.	
Evaluation	Not discussed in	Not formalized —	Success rate on	Coherence,
Metrics	detail; to be	manual review of	problem solutions,	helpfulness,
	covered in future	newsletter quality	token output	harmlessness
	articles	and JSON	analysis, step-by-	(qualitative)
		formatting	step reasoning	Reward signal
		accuracy	accuracy.	performance
		Note: This was		during RL
		more of a system-		Human feedback
		building case study		alignment
		than an empirical		
Objectives and	Educate	ML research paper Automate	Understand	Explain how LLMs
Objectives and	developers about	paper/news	limitations of LLMs	like ChatGPT are
Problem	LLMs and their	summarization for	in structured	trained
Domains	potential	a daily newsletter	reasoning tasks.	Break down the
	applications	a daily hetroletter	Evaluate	three-stage process
		Build a reliable,	generalization and	of language model
	Bridge the gap	semi-autonomous	stepwise problem-	development
	between full-stack	pipeline using LLMs	solving under	Address the
	development and		increasing	challenges of
	Al		complexity.	aligning models
				with human values
Model	Focus on	Prompt-driven	Comparison	Model
Architectures &	Transformers,	LLMs	between standard	Architectures and
Innovations	attention	Avoided	LLMs and	Innovations
	mechanisms, and	autonomous	reasoning-	Transformer
	tokenization	agents in favor of	optimized models.	architecture
	Overview of	structured	Focus on models'	enables better
	OpenAI's GPT series and mention	workflows	ability to simulate recursive and	long-range
	of Meta's LLaMA,		algorithmic	dependency handling
	Google's PaLM		thought.	RLHF
	GOOGIC 3 1 acivi		thought.	(Reinforcement
				Learning from
				Human Feedback)
				improves
				alignment
Training or	Describes fine-	No custom training;	Not explicitly	Self-supervised
Fine-Tuning	tuning as an	relied on pre-	discussed; assumes	pretraining for
Strategies	accessible method	trained LLMs and	standard pre-	language structure
	for adapting LLMs	API calls	trained LLMs.	Supervised fine-
	to specific tasks			tuning on domain-
	More in-depth			specific tasks
	strategies are			Reinforcement
	promised in			learning to refine
	upcoming articles			model outputs
				based on human
				preferences

Benchmarks & Evaluation	Not detailed in this article — intended for future parts of the series	Manual quality control and prompt structure validation Focus on robustness over formal metrics	Reasoning tasks split by difficulty (Low, Medium, High). Performance compared on stepwise output and final results	Human-centric evaluation of helpfulness, clarity, and safety Sensitivity to user intent and format adherence Behaviour under ethical constraints
	Strengths,	Limitations, and Re	producibility	
Strengths	Clear and accessible explanation of LLMs and their uses	Real-world insights into LLM deployment Emphasis on human-in-the-loop validation Use of existing APIs saved time	Highlights nuanced failures; real task modeling.	Structured training pipeline; high language fluency
Limitations	Lacks technical depth and empirical data	Reliance on external tools limits generalizability Prompt instability and JSON formatting issues Lack of formal evaluation metrics	Lacks tool access (e.g., calculator); strict output formatting affects fairness	Reward hacking; sparse or flawed reward signals
Reproducibility	Not applicable — this is a conceptual overview, not an experiment	High, as it uses publicly available APIs and tools	Dependent on synthetic problem generators and clear complexity tuning	Not detailed; high- resource requirement for replication
	In	sights and Reflec	tion	
Trends or Patterns	Focus on making LLMs more accessible to broader developer communities Emphasis on real- world applications like Q&A, summarization, and translation	LLMs are increasingly used in workflows with human oversight Shift from large, monolithic agents to modular pipelines	LLMs excel at moderate reasoning but fail at higher complexities. Reasoning capability does not scale linearly with tokens or model size.	Clear pipeline evolution: Pretraining → SFT → RLHF Increasing focus on human alignment, not just model performance
Most Promising Methods	Transformer architecture continues to dominate LLM development Fine-tuning pretrained models for task-specific applications	RLHF for safety and customization Prompt engineering with robust error handling Lightweight workflows over complex agent-based systems	Focusing on intermediate reasoning steps and algorithm simulation. Building models that integrate tool use (e.g., calculators or code interpreters).	Reinforcement Learning from Human Feedback (RLHF) Transformer-based architectures for scalability and efficiency

Common Limitations or Challenges	The article doesn't explore limitations directly but implies a gap in developer understanding Future challenges may involve model selection, deployment, and evaluation	Hallucinations, bias, formatting errors Fragile prompts and overreliance on LLM behavior consistency	Models failing to "dry run" logical steps for large inputs. Evaluation overly focused on final answers. Lack of interpretability and consistency in reasoning depth.	Misalignment due to flawed reward signals Reward hacking, where models game the system Lack of true understanding or reasoning ability in LLMs
Potential Future Directions	Building full-stack LLM applications (starting with Q&A systems) Exploring system architecture, best practices, and evaluation in depth	Smaller, efficient models (e.g., Chinchilla, RETRO) Self-verifying and steerable LLMs Integration with retrieval and API systems Emphasis on human values and alignment (via RLHF)	Incorporate external tools to simulate real-world problem-solving. Shift evaluation to multi-step reasoning traceability. Focus on curriculum learning or hybrid neuro-symbolic models for deep reasoning.	Future progress hinges on improving training strategies and evaluation methods to ensure models behave ethically, safely, and usefully.

Conclusion

Meta-Analysis of LLM Articles

These four articles collectively highlight the rapid evolution and growing capabilities of Large Language Models (LLMs). Key findings emphasize the foundational role of the transformer architecture, the importance of pretraining followed by supervised fine-tuning and reinforcement learning, and the ongoing challenge of aligning LLM outputs with human intent. While LLMs excel at language understanding and generation, their reasoning abilities remain limited, especially in complex tasks. Reward hacking, lack of interpretability, and reliance on large datasets are recurring challenges. However, innovations like hierarchical reasoning, fine-tuning strategies, and tool integration (e.g., calculators, code execution) show promise. The field is moving toward more robust, aligned, and generalizable models. As LLMs continue to integrate into real-world systems, their evolution is increasingly shaped by user interaction, safety, and ethical deployment.