

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XVI

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Ordinaria.

Fecha 15 de Junio de 2022.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Integrando una conveniente función sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : \varepsilon < |z| < R, 0 < \arg z < \pi/2\}$, con $0 < \varepsilon < 1 < R$, calcular la integral:

$$\int_0^{+\infty} \frac{\log(x)}{1+x^4} \, dx.$$

Ejercicio 2 (2.5 puntos). Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_{z_0}^{z_{n-1}} e^{z-t} \operatorname{sen}(tn+z^2) dt \quad \forall z \in \mathbb{C}.$$

Demostrar que:

- 1. f_n es holomorfa en \mathbb{C} .
- 2. La serie de funciones $\sum_{n\geqslant 1} f_n$ converge uniformemente en $\mathbb C$ y su suma es una función entera.

Ejercicio 3 (2.5 puntos). Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Demostrar que, si la función Im f tiene un extremo relativo en un punto de Ω , entonces f es constante.

Ejercicio 4 (2.5 puntos). Sean $f, g \in \mathcal{H}(\mathbb{C})$ de modo que

$$f\left(g\left(\frac{1}{n}\right)\right) = \frac{1}{n^3}$$

para todo $n \in \mathbb{N}$. Probar que una de las funciones es un polinomio de grado uno y que la otra es un polinomio de grado tres.

Ejercicio 1 (2.5 puntos). Integrando una conveniente función sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : \varepsilon < |z| < R, 0 < \arg z < \pi/2\}$, con $0 < \varepsilon < 1 < R$, calcular la integral:

$$\int_0^{+\infty} \frac{\log(x)}{1+x^4} \, dx.$$

Calculamos primero los puntos donde se anula el denominador de la función a integrar:

$$1 + z^4 = 0 \implies z^4 = -1 \implies z \in \left\{ e^{i\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)} : k \in \{0, 1, 2, 3\} \right\} = \left\{ e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}} \right\}.$$

Para cada $k \in \{0, 1, 2, 3\}$, definimos por simplicidad:

$$z_k = e^{i\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$

Sea por tanto $A = \{z_k : k \in \{0, 1, 2, 3\}\}$. Definimos la función:

$$f: \ \mathbb{C} \setminus A \ \longrightarrow \ \mathbb{C}$$
$$z \ \longmapsto \ \frac{\log(z)}{1+z^4}$$

Notemos que $f \in \mathcal{H}(\mathbb{C} \setminus A)$, y que $A' = \emptyset$, por lo que podemos aplicar el Teorema de los Residuos. Como \mathbb{C} es homológicamente conexo, podemos aplicar el Teorema de los Residuos para cualquier ciclo Σ en $\mathbb{C} \setminus A$. Para todo R > 1 y $\varepsilon \in]0,1[$, consideramos el siguiente ciclo:

$$\Sigma_{\varepsilon,R} = -\gamma_{\varepsilon} + [\varepsilon, R] + \sigma_R - [i\varepsilon, iR]$$

representada en la Figura 1, donde:

$$\gamma_{\varepsilon}: [0, \pi/2] \longrightarrow \mathbb{C}$$

$$t \longmapsto \varepsilon e^{it}$$

$$[\varepsilon, R]: [\varepsilon, R] \longrightarrow \mathbb{C}$$

$$t \longmapsto t$$

$$\sigma_{R}: [0, \pi/2] \longrightarrow \mathbb{C}$$

$$t \longmapsto Re^{it}$$

$$[i\varepsilon, iR]: [\varepsilon, R] \longrightarrow \mathbb{C}$$

$$t \longmapsto it$$

Por el Teorema de los Residuos, tenemos que:

$$\int_{\Sigma_{\varepsilon,R}} f(z) dz = 2\pi i \sum_{w_0 \in A} \operatorname{Res}(f, w_0) \operatorname{Ind}_{\Sigma_{\varepsilon,R}}(w_0).$$

Calculemos ahora los índices de los polos. Por cómo hemos definido el ciclo, tenemos que:

$$\operatorname{Ind}_{\Sigma_{\varepsilon,R}}(z_0) = 1$$

 $\operatorname{Ind}_{\Sigma_{\varepsilon,R}}(z_k) = 0$ para todo $k \in \{1,2,3\}.$

Figura 1: Ciclo de integración $\Sigma_{\varepsilon,R}$ del Ejercicio 1.

Por tanto, tenemos que:

$$\int_{\Sigma_{\varepsilon,R}} f(z) dz = 2\pi i \operatorname{Res}(f, z_0).$$

Antes de calcular el residuo, calculemos las integrales resultantes. Tenemos que:

$$\int_{[\varepsilon,R]} f(z) dz = \int_{\varepsilon}^{R} \frac{\log(z)}{1 + z^4} dz$$

Tomando límite con $\varepsilon \to 0^+$, y $R \to +\infty$, tenemos lo buscado.

Veamos ahora qué ocurre con la integral sobre el segmento $[i\varepsilon, iR]$:

$$\int_{[i\varepsilon,iR]} f(z) \, dz = i \int_{\varepsilon}^{R} f(it) \, dt = i \int_{\varepsilon}^{R} \frac{\log(it)}{1 + (it)^{4}} \, dt = i \int_{\varepsilon}^{R} \frac{\ln t + i \arg(it)}{1 + t^{4}} \, dt = i \int_{\varepsilon}^{R} \frac{\ln t + i \arg(it)}{1 + t^{4}} \, dt = i \int_{\varepsilon}^{R} \frac{\ln t + i \arg(it)}{1 + t^{4}} \, dt = -\frac{\pi}{2} \cdot \int_{\varepsilon}^{R} \frac{1}{1 + t^{4}} \, dt + i \int_{\varepsilon}^{R} \frac{\ln t}{1 + t^{4}} \, dt.$$

Veamos ahora qué ocurre con la integral sobre la curva γ_{ε} :

$$\left| \int_{\gamma_{\varepsilon}} f(z) \, dz \right| \leqslant \frac{\pi}{2} \cdot \varepsilon \cdot \sup \left\{ \left| \frac{\log(z)}{1 + z^4} \right| : z \in \gamma_{\varepsilon}^* \right\}$$

Para todo $z \in \gamma_{\varepsilon}$, tenemos que:

$$|1 + z^4| \geqslant ||1| - |z^4|| = |1 - \varepsilon^4| = 1 - \varepsilon^4$$
$$|\log(z)| = |\ln|z| + |\arg(z)| \leqslant \ln\varepsilon + \frac{\pi}{2}$$

Por tanto, tenemos que:

$$\left| \int_{\gamma_{\varepsilon}} f(z) \, dz \right| \leqslant \frac{\pi}{2} \cdot \varepsilon \cdot \frac{\ln \varepsilon + \frac{\pi}{2}}{1 - \varepsilon^4}.$$

Como esta expresión es válida para cualquier $\varepsilon \in]0,1[$, podemos hacer $\varepsilon \to 0^+$ y tenemos que:

$$\lim_{\varepsilon \to 0^+} \int_{\gamma_{\varepsilon}} f(z) \, dz = 0.$$

Veamos ahora qué ocurre con la integral sobre σ_R :

$$\left| \int_{\sigma_R} f(z) \, dz \right| \leqslant \frac{\pi}{2} \cdot R \cdot \sup \left\{ \left| \frac{\log(z)}{1 + z^4} \right| : z \in \sigma_R^* \right\}$$

Para todo $z \in \sigma_R$, tenemos que:

$$|1 + z^4| \ge ||1| - |z^4|| = |1 - R^4| = R^4 - 1$$

 $|\log(z)| = |\ln|z| + |\arg(z)| \le \ln R + \frac{\pi}{2}$

Por tanto, tenemos que:

$$\left| \int_{\sigma_R} f(z) \, dz \right| \leqslant \frac{\pi}{2} \cdot R \cdot \frac{\ln R + \frac{\pi}{2}}{R^4 - 1}.$$

Como esta expresión es válida para cualquier R>1, podemos hacer $R\to +\infty$ y tenemos que:

$$\lim_{R \to +\infty} \int_{\sigma_R} f(z) \, dz = 0.$$

Uniendo todas las integrales que hemos calculado, tenemos que:

$$2\pi i \operatorname{Res}(f, z_0) = \int_0^\infty \frac{\log(t)}{1 + t^4} dt + \frac{\pi}{2} \cdot \int_0^\infty \frac{1}{1 + t^4} dt - i \int_0^\infty \frac{\log(t)}{1 + t^4} dt$$

Calculemos ahora el residuo en el punto $z_0=e^{i\frac{\pi}{4}}$ aplicando la Regla de L'Hôpital:

$$\lim_{z \to e^{i\frac{\pi}{4}}} \left(z - e^{i\frac{\pi}{4}} \right) f(z) = \log \left(e^{i\frac{\pi}{4}} \right) \lim_{z \to e^{i\frac{\pi}{4}}} \frac{1}{4z^3} = \frac{\log \left(e^{i\frac{\pi}{4}} \right)}{4 \left(e^{i\frac{\pi}{4}} \right)^3} = \frac{i \cdot \pi/4}{4e^{i\frac{3\pi}{4}}} = \frac{i\pi e^{i\frac{7\pi}{4}}}{16} = \frac{i\pi}{16} \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) = \frac{i\pi\sqrt{2}}{32} (1 - i)$$

Por tanto, sabemos que f tiene un polo simple en $z_0 = e^{i\frac{\pi}{4}}$, y que:

Res
$$(f, e^{i\frac{\pi}{4}}) = \frac{i\pi\sqrt{2}}{32}(1-i)$$

Por tanto, tenemos que:

$$2\pi i \left(\frac{i\pi\sqrt{2}}{32}(1-i)\right) = \int_0^{+\infty} \frac{\log(t)}{1+t^4} dt + \frac{\pi}{2} \cdot \int_0^{+\infty} \frac{1}{1+t^4} dt - i \int_0^{+\infty} \frac{\log(t)}{1+t^4} d$$

Igualando las partes imaginarias, tenemos que:

$$\int_0^{+\infty} \frac{\log(t)}{1+t^4} \, dt = -\frac{\pi^2 \sqrt{2}}{16}$$

Ejercicio 2 (2.5 puntos). Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} e^{z-t} \operatorname{sen}(tn+z^2) dt \quad \forall z \in \mathbb{C}.$$

Demostrar que:

1. f_n es holomorfa en \mathbb{C} .

Definimos Φ como sigue:

$$\begin{array}{cccc} \Phi: & [n,n+1] \times \mathbb{C} & \longrightarrow & \mathbb{C} \\ & (t,z) & \longmapsto & e^{z-t} \operatorname{sen}(tn+z^2) \end{array}$$

Tenemos claramente que Φ es continua en $[n, n+1] \times \mathbb{C}$, y para cada $t \in [n, n+1]$, la función $z \mapsto \Phi(t, z)$ es holomorfa en \mathbb{C} . Por tanto, por el Teorema de Holomorfía de Integrales dependientes de un parámetro, se concluye que $f_n \in \mathcal{H}(\mathbb{C})$.

2. La serie de funciones $\sum_{n\geqslant 1} f_n$ converge uniformemente en $\mathbb C$ y su suma es una función entera.

Sea $K \subset \mathbb{C}$ compacto. Para todo $z \in K$ y $n \in \mathbb{N}$, tenemos que:

$$|f_n(z)| = \left| \int_n^{n+1} e^{z-t} \operatorname{sen}(tn + z^2) dt \right|$$

$$\leq \sup \left\{ \left| e^{z-t} \operatorname{sen}(tn + z^2) \right| : t \in [n, n+1] \right\}$$

Hacemos uso de que, para cada $t \in [n, n+1]$, tenemos que:

$$|e^{z-t}| = e^{\operatorname{Re}(z) - t} \leqslant e^{\operatorname{Re}(z) - n}$$
$$|\operatorname{sen}(tn + z^2)| \leqslant |\operatorname{sen}(tn) \cos(z^2)| + |\cos(tn) \operatorname{sen}(z^2)| \leqslant |\cos(z^2)| + |\operatorname{sen}(z^2)|$$

Además, como K es compacto y las funciones parte real, seno y coseno son continuas, tenemos que $\exists M_1, M_2 \in \mathbb{R}$ tales que:

$$M_1 = \max \{ \text{Re}(z) : z \in K \}$$

 $M_2 = \max \{ |\cos(z^2)| + |\sin(z^2)| : z \in K \}$

Por tanto, tenemos que:

$$|f_n(z)| \leqslant e^{M_1 - n} M_2$$

Veamos ahora que la serie de las cotas converge. Para ello, previamente vemos que la siguiente serie converge:

$$\sum_{n\geqslant 1} e^{-n} = \sum_{n\geqslant 1} \left(\frac{1}{e}\right)^n$$

Como 1/e < 1, la serie anterior converge. Por tanto, tenemos que la serie de las cotas converge, y por el Test de Weierstrass, la serie de funciones $\sum_{n\geq 1} f_n$

converge uniformemente en K.

Por el Teorema de Convergencia de Weierstrass, la suma de la serie de funciones es una función holomorfa en \mathbb{C} .

Ejercicio 3 (2.5 puntos). Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Demostrar que, si la función Im f tiene un extremo relativo en un punto de Ω , entonces f es constante.

Definimos la siguiente función:

Como f es holomorfa, g es holomorfa en Ω . Calculemos su módulo:

$$|g(z)| = |e^{-if(z)}| = e^{\operatorname{Im} f(z)}.$$

Como Im f tiene un extremo relativo en un punto $z_0 \in \Omega$, como la exponencial real es estrictamente creciente, entonces |g| tiene un extremo relativo en z_0 .

- Si Im f tiene un máximo relativo en z_0 , entonces |g| tiene un máximo relativo en z_0 . Por el principio del módulo máximo, g es constante en Ω .
- Si Im f tiene un mínimo relativo en z_0 , entonces |g| tiene un mínimo relativo en z_0 . Por el principio del módulo mínimo, como la exponencial compleja no se anula, g es constante en Ω .

En cualquier caso, q es constante en Ω . Sea por tanto $\alpha \in \mathbb{C}^*$ tal que:

$$g(z) = e^{-if(z)} = \alpha \quad \forall z \in \Omega.$$

Por tanto, se tiene que:

$$f(z) \in i \operatorname{Log}(\alpha) \quad \forall z \in \Omega.$$

Como además f es continua y dicho conjunto es discreto, se tiene que $\exists \beta \in i \operatorname{Log}(\alpha)$ tal que:

$$f(z) = \beta \quad \forall z \in \Omega.$$

Por tanto, f es constante en Ω .

Ejercicio 4 (2.5 puntos). Sean $f,g\in\mathcal{H}(\mathbb{C})$ de modo que

$$f\left(g\left(\frac{1}{n}\right)\right) = \frac{1}{n^3}$$

para todo $n \in \mathbb{N}$. Probar que una de las funciones es un polinomio de grado uno y que la otra es un polinomio de grado tres.

Definimos el siguiente conjunto:

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Como $A' = \{0\} \subset \mathbb{C}$, podemos aplicar el Pincipio de Identidad, y deducir que:

$$f(g(z)) = z^3 \qquad \forall z \in \mathbb{C}$$

Supongamos que g es una función entera no polinómica. Por el Corolario del Teorema de Casorati, $\exists \{z_n\}_{n\in\mathbb{N}} \subset \mathbb{C}$ con $\{z_n\} \to \infty$ tal que:

$$\{g(z_n)\} \to 0.$$

Ese hecho, junto con la continuidad de f, nos permite deducir que:

$$\{f(g(z_n))\} \to f(0).$$

Por otro lado, $\{z_n\} \to \infty$, junto con la continuidad de f, g y que $f(g(z)) = z^3$, nos permite deducir que:

$$\{f(g(z_n))\}\to\infty.$$

Por tanto, llegamos a que la sueción $\{f(g(z_n))\}\$ es a la vez convergente y divergente, lo que es una contradicción. Por tanto, g es un polinomio.

Suponemos ahora que f no es un polinomio. Por el Corolario del Teorema de Casorati, $\exists \{w_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ con $\{w_n\}\to\infty$ tal que:

$$\{f(w_n)\} \to 0.$$

Ahora, haciendo uso de que g es sobreyectiva por ser un polinomio (gracias al Teorema Fundamental del Álgebra), podemos encontrar una sucesión $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ tal que:

$$g(z_n) = w_n \quad \forall n \in \mathbb{N}.$$

Por tanto, tenemos que:

$$\{f(g(z_n))\} = \{f(w_n)\} \to 0.$$

Por otro lado, supongamos que $\{z_n\} \to \alpha \in \mathbb{C}$. Entonces, por la continuidad de g tenemos que:

$$\{g(z_n)\} = \{w_n\} \to g(\alpha)$$

En contradicción con que $\{w_n\} \to \infty$. Por tanto, $\{z_n\} \to \infty$. Por la continuidad de f, g y que $f(g(z)) = z^3$, tenemos que:

$$\{f(g(z_n))\} = \{z_n^3\} \to \infty.$$

Por tanto, llegamos a que la succión $\{f(g(z_n))\}\$ es a la vez convergente y divergente, lo que es una contradicción. Por tanto, f es un polinomio.

Por tanto, f y g son polinomios. Como $f(g(z)) = z^3$, tenemos que:

$$\deg(f) \cdot \deg(g) = 3 \Longrightarrow \{\deg(f), \deg(g)\} = \{1, 3\}.$$

Por tanto, una de las funciones es un polinomio de grado uno y la otra es un polinomio de grado tres.