- 5. Seymour R.B., Carraher C.E., (2003) Polymer Chemistry, Marcel Dekker.
- 6. Teraoka, I. (2002). Polymer solutions: an introduction to physical properties.
- 7. Hiemenz, P. C., & Lodge, T. P. (2007). Polymer chemistry. CRC press.

Suggestive readings

- 1. Brydson J.A., (2016) Plastics Materials, Butterworth Heinemann, 8th Edition.
- 2. Schultz J.M., (2001) Polymer Crystallization, American Chemical Society.
- 3. Ghosh P., (2010) Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, Tata McGraw Hill.
- 4. Shah V., (2006) Handbook of Plastics Testing and Failure Analysis, John Wiley & Sons, Inc., 3rd Edition.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 2 (DSC-2): RAW MATERIALS FOR POLYMERS

Credit distribution, Eligibility and Prerequisites of the Course

Course title &	Credits	Credit di	stribution (of the course		Pre-requisite
Code		Lecture	Tutorial	Practical/ Practice	ycriteria	of the course (if any)
RAW MATERIALS FOR POLYMERS	4	3	0	1	PCM	

Learning Objectives

The Learning Objectives of this course are as follows:

- To learn about the resources of polymers
- To learn about basic concepts of polymer latex
- To gain knowledge of properties of monomers and their synthesis XXX

Learning outcomes

The Learning Outcomes of this course are as follows:

- Apply the knowledge of latex manufacturing and compounding
- Apply the knowledge of techniques used in monomer production

SYLLABUS OF DSC-2

UNIT - I (6 hours)

INTRODUCTION TO CRUDE OIL AND IT'S REFINING

Petroleum oil, natural gas, coal: capabilities and limitations. general consideration of petrochemicals, an overview of petroleum refining, desalting, distillation, cracking and its types

UNIT – II (15 hours)

SYNTHESIS OF MONOMERS FROM PETROCHEMICALS

Ethylene, vinyl acetate, vinyl chloride, ethylene oxide and ethylene glycol, acrylonitrile, methyl methacrylate, isoprene, phenol, styrene, terephthalic acid, adipic acid, caprolactam, hexamethylenediamine

UNIT - III (6 hours)

LATEX

Natural rubber latex: collection process, composition, concentration and stabilization of latex

UNIT - IV (9 hours)

LATEX ADDITIVES AND IT'S COMPOUNDING

Vulcanizing agents, fillers, accelerator, coagulating agent, wetting, dispersing and emulsifying agents, stabilizers, thickening agents and other additives, compounding formulations for product manufacturing

UNIT -V (9 hours)

LATEX PRODUCT MANUFACTURING TECHNIQUES

Latex compound formulation, process of manufacturing, finishing and applications of spreading, casting and dipping (Dipping-principle and procedure of dipping process- different types of dipping –after treatment of latex deposits -Manufacture of dipped goods with formulation and flow chart-defects and remedies . latex casting – principle and procedure of casting-production of cast articles –mould preparation, latex thread and latex foam

Practical component- (30 hours)

- 1. Analysis of formalin/phenol/epichlorohydrin/Plasticizer
- 2. Determination of hydroxyl value/carboxyl value/ester value/epoxy value
- 3. Determination of colour and viscosity by gardner's tube method
- 4. Fractional distillation of crude oil.
- 5. To calculate dry rubber content (DRC) of latex.
- 6. To determine the coagulation strength of latex.
- 7. Preparation of balloon by dipping process.
- 8. Latex compounding for preparation of gloves & balloons.
- 9. Synthesis of adipic acid from cyclohexanol using Conc. HNO3.
- 10. To prepare monomers from C4 hydrocarbons.
- 11. Determination of percentage purity of phenol.

Essential/recommended readings

- 1. Kumar D., Chandra R., (2001) Latex Technology, Dhanpat Rai & Co.
- 2. Rao B.K.B., (2007) Textbook on Petrochemicals, Khanna Publishers.

- 3. Blackley, D.C., "High Polymer Latices", Vol 1 and 2, Chapman and Hall, 1997
- 4. Mausser, R.F., "The Vanderbilt Latex Hand book" 3rd edn. R.T. Vanderbilt Company, 1987.

Suggestive readings

- 1. Rao B.K.B., (2007) Modern Petroleum Refining Processes, Oxford and IBH
- 2. Maiti S., (2002) Introduction to Petrochemicals, Oxford & IBH Publ. Co.
- 3. Speight J.G., (2006) Chemistry and Technology of Petroleum, CRC Press.
- 4. Martin J. M., Smith W.K., (2007) Handbook of Rubber Technology, CBS Publishers.

DISCIPLINE SPECIFIC CORE COURSE-3 (DSC-3): UNIT

OPPD I MIONIC

Credit distribution, Eligibility and Pre-requisites of the Course

Course title& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
UNIT OPERATIONS	4	3	0	1	PCM	PCM

Learning Objectives

The Learning Objectives of this course are as follows:

- To understand concepts of unit operations and their importance in polymer industries
- To learn about the concepts of separation equipments used in the process industry XXX

Learning outcomes

The Learning Outcomes of this course are as follows:

- Select suitable criteria for solving material and energy balance problems
- Illustrate energy and material balance equations for open and closed systems

SYLLABUS OF DSC-3

UNIT – I (6 hours)

INTRODUCTION TO UNIT OPERATIONS

Unit operations: concept and requirement, material and energy balances (with and without chemical reactions), energy transport in non-isothermal systems

UNIT - II (9 hours)

MECHANICAL OPERATIONS

Mechanical Operations: Size reduction and its equipment (ball mill, jack crusher, end and