Digital Communication (UEC-639)

Tutorial-3

Dr. Amit Mishra

Question-1

Consider a signal $x(t) = 40 Sin(200 \pi t)$ is given as input to a PCM system. If 256 quantization levels are employed, then

- (a) Determine the voltage between levels when there is no compression?
- (b) Determine the smallest and largest effective separation between levels when compression is used with $\mu=255$

Solution-1 (a)

No compression is the case of uniform quantization.

Hence, the voltage between levels is equal to the step size of quantize:

The step size
$$\Delta = 2 * \frac{V_{max}}{L} = 2 * \frac{40}{256} = 0.3125 V$$

Solution-1 (b)

With Compression (that is a non-uniform quantizing), the smallest effective separation between levels will be the one closest to the origin, and the largest effective separation between levels will be the one closest to |x| = 1

We know that:

$$\frac{c(|x|)}{x_{max}} = y = \frac{\ln(1 + \mu|x|/x_{max})}{\ln(1 + \mu)}$$
$$x_{max} = 1$$

Let x_1 be the value of x corresponding to $\frac{1}{-1}$

$$y = 1/127$$
, that is, (-128 to + 127)

$$\frac{\ln(1+255|x_1|)}{\ln(256)} = \frac{1}{127}$$

Solving for $|x_1|$, we obtain

$$|x_1| = 1.75 \times 10^{-4}$$

Thus, the smallest effective separation between levels is given by

$$\Delta_{min} = V_{max} * |x_1|$$

= $40 * 1.75 \times 10^{-4}$
= $7 mV$

The, largest effective levels is corresponds to x_{127}

Let x_{127} be the value of x corresponding to $y = 1 - \frac{1}{127} = \frac{126}{127}$, that is,

$$\frac{\ln(1+255|x_{127}|)}{\ln(256)} = \frac{126}{127}$$

Solving for $|x_{127}|$, we obtain

$$|x_{127}| = 0.957$$

The largest effective separation between levels is given by

$$\Delta_{max} = V_{max} * (1 - |x_{127}|) = 40 * (1 - 0.957) = 1.72 V$$

Question-2

Consider an audio signal with spectral components from 300 to 3300 Hz. A PCM signal is generated with a sampling rate of 8000 samples per sec. The required output signal-to- quantizing-noise ratio is 30 dB.

- (a) What is the minimum number of uniform quantizing levels and bits per sample needed?
- (b) Determine the minimum system bandwidth required.
- (c) Repeats parts (a) to (c) when a μlaw compander is used with $\mu = 255$.

9/21/2023

Solution-2 (a)

We know that:

$$\left(\frac{S}{N_q}\right)_{0 \text{ dB}} = 1.76 + 20 \log L \ge 30$$

$$\log L \ge \frac{1}{20}(30 - 1.76) = 1.412 \rightarrow L \ge 25.82$$

Thus, the minimum number of uniform quantizing levels needed is 26.

We know that:

$$n = [\log_2 L] = [\log_2 26] = [4.7] = 5 \text{ b per sample}$$

The minimum number of bits per sample is 5.

Solution-2 (b)

the minimum required system bandwidth is

$$f_{PCM} = \frac{n}{2} f_s$$

= $\frac{5}{2} (8000) = 20000 \text{ Hz} = 20 \text{ kHz}$

Solution-2 (c)

$$\left(\frac{S}{N_q}\right)_{0 \text{ dB}} = 20\log L - 10.1 \ge 30$$

$$\log L \ge \frac{1}{20}(30 + 10.1) = 2.005 \rightarrow L \ge 101.2$$

Thus, the minimum number of quantizing levels needed is 102.

$$n = [\log_2 L] = [6.67] = 7$$

The minimum number of bits per sample is 7.

The minimum bandwidth required for this case is

$$f_{\rm PCM} = \frac{n}{2} f_s$$

$$=\frac{7}{2}(8000) = 28\,000\,\text{Hz} = 28\,\text{kHz}$$

Question-6

A DM system is designed to operate at 3 times the Nyquist rate for a signal with a 6 kHz bandwidth. The quantizing step size is 250 mV.

- (a) Determine the maximum amplitude of a 3-kHz input sinusoidal signal for which delta modulator does not show slope overload.
- (b) Determine the post filtered output signal-to-quantizing -noise ratio in dB.

9/21/2023

$$x(t) = A \sin(2\pi f_m t)$$

Max slope?

$$\frac{\left| \frac{dx(t)}{dt} \right|}{dt} = A 2 \pi f_m$$

$$= A (2 \pi)(3 * 10^3)$$

To ensure no overloading, we have

$$\frac{\Delta}{T_s} \geq \left. \frac{dx(t)}{dt} \right|_{\max}$$

where Δ is the quantization step—size.

The maximum allowable amplitude of the input signal is

$$A_{max} = \frac{\Delta}{\omega_m T_s}$$

$$Fs=1/Ts=2*Fm$$

$$Fs^*=3(Fs)=3*2*6*10^3$$

$$= \frac{250 \, mV}{2 \, \pi \, 3 * 10^3} \, 3 * 2 * 6 * 10^3$$

$$= 477.7 \, mV$$

Now, the post filtered output signal-to-quantizing-noise ratio is given as

$$(SNR)_o = \left(\frac{S}{N_q}\right)_o = \frac{3 f_s^3}{8 \pi^2 f_m^2 f_M}$$

where f_M is the frequency of post reconstruction filter $(f_M \ge f_m)$

For maximum SNR we select, $f_M = f_m$

$$SNR = \frac{(3 * [3 * 2 * 6 * 10^{3}]^{3})}{8 \pi^{2} (3 * 10^{3})^{3}}$$
$$= 65.72$$

SNR in dB = 10 * log10(65.72) = 18.18 dB

Thanks !