

Exercise Session 1 MDMC Spring 2024

Simon Dürr, Sophia Johnson, Nikolaos Lempesis, Andrea Levy, Vladislav Slama

February 27, 2023

February 27, 2023

Exercise General Information

- Practical exercises every other week in BCH 1113
 - 2 hours to work on your own and with support from TAs
- Reports
 - For each exercise, you need to write a report answering all the questions
 - We provide you templates (google doc/overleaf) for answering the questions

In this first set of exercises, you will encounter some basic concepts that are important in mole dynamics and Monte Carlo simulations. Later in the course, you will be introduced to the unde derivations and relations. This set of exercises considers some general concepts of practical s including the link between quantum mechanics and classical mechanics, and a statistical appr solving certain mathematical problems.

Exercise General Information

- Report Submission
 - pdf document answering the questions and relevant output
 - Due date is usually the next exercise session (check Moodle!)
 - Detailed feedback via Moodle after the interview
 - No grade
 - Overall comment and detailed correction of the exercises
- Interviews during next exercise session are about 10-15 minutes
 - Test your understanding of the exercise
 - Good occasion to discuss your doubts and questions
 - We will release the schedule ahead of the session so you know when and with whom you will interview

Exercises contribute to 1/2 of final grade! We count the best 5 out of the 6 reports for your exercise grade.

Exercise structure

Control of the second of th

Follow the link between classical and quantum models

Learn to compute π using a Monte Carlo approach

Understand how to generate randomness on a computer

mater in script

Chapter 1 - From Quantum Mechanics to Classical Mechanics Resources

Ab initio molecular dynamics: basic theory and advanced methods, Marx & Hutter, p.11-20

Learn Computer Graphics From Scratch!, Scratchapixel, Monte Carlo Methods in Practice: Generating Random Numbers

Resource Platforms

The following resources will be used to access and complete the exercises (more details later):

- Moodle page
 - Access exercise notebook
 - Turn in reports
 - Ask questions on the forum
- Exercise website:

https://lcbc-epfl.github.io/mdmc-public/

- Access jupyter notebooks on Noto
- Access to public github repository to raise issues for fixes/improvements to the exercises
- Read theory and questions
- Noto
 - Run and edit code blocks
 - Please note, for the most recent updates to the exercises you must access noto from the exercise website directly

Computer environment

- We will use a virtual environment that you can directly launch from the exercise website
- Click the rocket button on the top right of the code files and choose JupyterHub to launch noto.epfl.ch
- Make sure to access noto this way each time you begin the exercise to ensure you have the latest version!

Computer environment

- On noto.epfl.ch your work will be saved on your EPFL storage
- Make sure to always activate (top right) the Computational Chemistry kernel

 Please activate 3rd party permission on your EPFL Google Account using go.epfl.ch/GoogleColabPermissions

February 27, 2023

Jupyter notebooks

- .iynb files organized in cells
 - Markdown (text)
 - Code
- Run a code cell by pressing Play button (or Ctrl+Enter)

Jupyter notebooks

- .iynb files organized in cells
 - Markdown (text)
 - Code
- Run a code cell by pressing :arrow_forward: (or Ctrl+Enter)

Text cell

```
[1]: x = 1
```


Exercise 1 - Intro & Tips

Today we'll be building a tool to estimate the value of π through a random sampling method (akin to Monte Carlo methods). The focus of the exercise is to get a better sense of how we can implement random sampling for numerical integration.

Tips!

- There is a small portion linking quantum ideas to classical mechanics. Please let us know if you need additional support regarding the notation/formalisms here.
- It may be a good idea to start from the practical part, to get familiar with the environment and ask us questions
- Places where you need to modify the code blocks should be noted with comments in the code $\$ ## Begin code to modify ##

Questions?

Questions on the exercises (or the theory) outside exercise hours or problems with the reports? You can always contact us

- Moodle Forum, preferred way of communication since everyone can see the questions (and answer!)
- Email us, always better to include multiple of us to get an answer faster (at least always include Andrea and Sophie)
 - andrea.levy@epfl.ch
 - sophia.johnson@epfl.ch
- At least one of us will always try to be present during lectures, feel free to ask us questions before/after the lecture or during the break!