Álgebra Linear - Lista de Exercícios 7

Luís Felipe Marques

Setembro de 2022

1. Se AB = 0, as colunas de B estão em qual espaço fundamental de A? E as linhas de A estão em qual espaço fundamental de B? E possível que A e B sejam 3×3 e com posto 2?

Resolução:

Note o seguinte:

$$AB = \begin{bmatrix} \mathbf{a}_{1}^{T} & \cdots & \mathbf{b}_{p} \\ \vdots & \vdots & \cdots & \mathbf{b}_{p} \\ -\mathbf{a}_{m}^{T} & \cdots & \mathbf{b}_{p} \end{bmatrix} = \mathbf{0}$$

$$\iff \begin{bmatrix} -\mathbf{a}_{1}^{T}B & \cdots & \mathbf{b}_{p} \\ -\mathbf{a}_{1}^{T}B & \cdots & \mathbf{b}_{p} \end{bmatrix} = \mathbf{0}$$

$$\iff \begin{bmatrix} -\mathbf{a}_{1}^{T}B & \cdots & \mathbf{b}_{p} \\ -\mathbf{a}_{m}^{T}B & \cdots & \mathbf{b}_{p} \end{bmatrix} = \mathbf{0}$$

$$\iff \begin{bmatrix} A\mathbf{b}_{1} & \cdots & A\mathbf{b}_{p} \\ -\mathbf{a}_{1}^{T}B & \cdots & \mathbf{b}_{p} \end{bmatrix} = \mathbf{0}$$

$$\therefore \begin{cases} A\mathbf{b}_{i} = \mathbf{0} \ \forall \ i \in \{1, \dots, p\} \end{cases}$$

$$\therefore \begin{cases} A\mathbf{b}_{j} = \mathbf{0}^{T} \ \forall \ j \in \{1, \dots, m\} \end{cases}$$

Ou seja, as colunas de B estão no núcleo de A, e as linhas de A estão no núcleo à esquerda de B. Isso significa que $\begin{cases} C(B) \subset N(A) \\ C(A^T) \subset N(B^T) \end{cases}$.

Assim, podemos ver que não é possível que posto(A) = posto(B) = 2 com $A_{3\times3}$ e $B_{3\times3}$, já que, pelo Teorema do posto e por propriedades do posto, temos:

$$\begin{cases} \dim C(A) = \dim C(B) = \dim C(A^T) = \dim C(B^T) = 2\\ \dim N(A) = \dim N(B) = \dim N(A^T) = \dim N(B^T) = 1 \end{cases} \Rightarrow 2 = \dim C(B) \le \dim N(A) = 1$$

$$\iff 2 \le 1 \text{ Absurdo!}$$

Dado que, se $X \subset Y$, então dim $X \leq \dim Y$.

2. Se Ax = b e $A^Ty = 0$, temos $y^Tx = 0$ ou $y^Tb = 0$?

Resolução:

Perceba:
$$A^Ty = 0 \iff y^TA = 0^T \iff y^TAx = 0^Tx = 0 \iff y^T(Ax) = 0 \iff y^Tb = 0$$
.

3. O sistema abaixo não tem solução:

$$\begin{cases} x + 2y + 2z = 5 \\ 2x + 2y + 3z = 5 \\ 3x + 4y + 5z = 9 \end{cases}$$

Ache números y_1 , y_2 , y_3 para multiplicar as equações acima para que elas somem 0 = 1. Em qual espaço fundamental o vetor y pertence? Verifique que $y^Tb = 1$. O caso acima é típico e conhecido como a Alternativa de Fredholm: ou Ax = b ou $A^Ty = 0$ com $y^Tb = 1$.

1

Resolução:

Tome $y_1=y_2=1$ e $y_3=-1$. Daí, teríamos (1+2-3)x+(2+2-4)y+(2+3-5)z=0=1=5+5-9. Note que, se v_x , v_y e v_z são vetores com coordenadas iguais aos coeficientes de x, y e z, respectivamente, então $v_x^Ty=v_y^Ty=v_z^Ty=0$. Assim, se o sistema se traduz como Ax=b, então temos que $A^Ty=0$. Supondo que $N(A^T)$ não é trivial, como é o caso de nosso sistema, temos que $y'=\frac{y}{y^Tb}$ é tal que $y'^Tb=1$.

4. Mostre que se $A^TAx=0$, então Ax=0. O oposto é obviamente verdade e então temos $N(A^TA)=N(A)$.

Resolução:

Digamos que Ax = b e que $A^Tb = 0$. Como já vimos na questão 2, $b^Tb = 0 \iff b = 0$. Logo, $A^TAx = 0 \iff Ax = 0 \Rightarrow N(A) = N(A^TA)$.

5. Seja A uma matriz 3×4 e B uma 4×5 tais que AB = 0. Mostre que $C(B) \subset N(A)$. Além disso, mostre que posto(A) + posto $(B) \leq 4$.

Resolução:

$$AB = A \begin{bmatrix} | & | & | \\ \mathbf{b_1} & \cdots & \mathbf{b_5} \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ A\mathbf{b_1} & \cdots & A\mathbf{b_5} \\ | & | & | \end{bmatrix} = 0 \iff \begin{cases} A\mathbf{b_1} = 0 \\ \dots \\ A\mathbf{b_5} = 0 \end{cases}$$

Ou seja, as colunas de B estão em $N(A) \Rightarrow$ a base de C(B) está em $N(A) \Rightarrow C(B) \subset N(A)$.

Seja r igual a posto $(A) \Rightarrow 4 - r$ é a dimensão de $N(A) \Rightarrow \text{posto}(B) \le 4 - r$ (já que é um subespaço de $N(A)) \Rightarrow \text{posto}(A) + \text{posto}(B) \le r + 4 - r = 4$.

- **6.** Sejam \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} vetores não-zeros de \mathbb{R}^2 .
 - (a) Quais são as condições sobre esses vetores para que cada um possa ser, respectivamente, base dos espaços $C(A^T)$, N(A), C(A) e $N(A^T)$ para uma dada matriz A que seja 2×2 . Dica: cada espaço fundamental vai ter somente um desses vetores como base.
 - (b) Qual seria uma matriz A possível?

Resolução:

(a) Sem perda de generalidade, digamos que
$$\begin{cases} \operatorname{span} \mathbf{a} = C(A^T) \\ \operatorname{span} \mathbf{b} = N(A) \\ \operatorname{span} \mathbf{c} = C(A) \\ \operatorname{span} \mathbf{d} = N(A^T) \end{cases}$$
. Assim, temos $\mathbf{a} \perp \mathbf{b}$ e $\mathbf{c} \perp \mathbf{d}$.

(b) Seja
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
. Assim, $\mathbf{a} = (1,3), \, \mathbf{b} = (3,-1), \, \mathbf{c} = (1,2)$ e $\mathbf{d} = (2,-1)$.

- 7. Ache S^{\perp} para os seguintes conjuntos:
 - (a) $S = \{0\}$
 - (b) $S = \operatorname{span}\{[1, 1, 1]\}$
 - (c) $S = \text{span}\{[1,1,1],[1,1,-1]\}$
 - (d) $S = \{[1, 5, 1], [2, 2, 2]\}$. Note que S não é um subespaço, mas S^{\perp} é.

Resolução:

- (a) Assumindo, que estamos tratando do \mathbb{R}^3 , $S^{\perp} = \mathbb{R}^3$, já que $x^T 0 = 0 \ \forall \ x \in \mathbb{R}^3$.
- (b) Como dim S=1, dim $S^{\perp}=2$, assim basta achar dois vetores L.I. ambos ortogonais a [1,1,1]. Basta notar que $\mathbf{a}=[1,0,-1]$ e $\mathbf{b}=[0,1,-1]$ são tais que $\mathbf{a}^T[1,1,1]=\mathbf{b}^T[1,1,1]=0$ e que $\{\mathbf{a},\mathbf{b}\}$ é L.I. já que um não é múltiplo do outro $(\frac{0}{1}\neq\frac{-1}{-1})$. Assim, $S^{\perp}=\operatorname{span}\{\mathbf{a},\mathbf{b}\}$.
- (c) Como dim S=2, dim $S^{\perp}=1$, ou seja, basta achar um vetor ortogonais a ambos. Note que $\mathbf{x}=[1,-1,0]$ satisfaz essas condições, temos que $S^{\perp}=\operatorname{span}\mathbf{x}$.

2

- (d) Note que, se $\mathbf{x} \in \operatorname{span} S$, sendo da forma a[1,5,1] + b[2,2,2], então $x^T[1,5,1] = 27a + 14b$ e $x^T[2,2,2] = 14a + 12b$, e, assim, $x^T[1,5,1] = x^T[2,2,2] = 0 \iff a = b = 0$. Ou seja, nenhum elemento de span S está em S^{\perp} . Assim, $S^{\perp} = (\operatorname{span} S)^{\perp}$. Como dim span S = 2, então dim $S^{\perp} = 1$. Basta achar um vetor ortogonal aos dois elementos de S. Note que [1,0,-1] satisfaz às condições, então $S^{\perp} = \operatorname{span} \{[1,0,-1]\}$.
- 8. Seja A uma matriz 4×3 formada pelas primeiras 3 colunas da matriz identidade 4×4 . Projeta o vetor b = [1, 2, 3, 4] no espaço coluna de A. Ache a matriz de projeção P.

Resolução:

Temos:

$$P = A(A^T A)^{-1} A^T = A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} A^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Assim, a projeção de b em A $b_A = Pb = [1, 2, 3, 0].$

9. Se $P^2 = P$, mostre que $(I - P)^2 = I - P$. Para a matriz P do exercício anterior, em qual subespaço a matriz I - P projeta?

Resolução:

projeta no subespaço de \mathbb{R}^4 caracterizado por vetores da forma [0,0,0,x].