# ფიზიკა

ლევან კანკაძე

19 დეკ. 2021 წ.

# სარჩევი

| წინასიტყვაობა.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| მექანიკა 2.1 4 ვექტორი 2.2 რეაქტიული მოძრაობა 2.3 სტატიკა 2.4 შენახვის კანონები დაჯახებებში 2.5 მასათა ცენტრი 2.5.1 ამოცანები. 2.6 შენახვის კანონები 2.7 ჭოჭონაქები 2.8 კინემატიკური ბმები დინამიკის ამოცანებში 2.9 მოძრაობა მოსახვევში 2.9.1 ამოცანები 2.10 მეშვიდე კლასი. 2.11წრეწირზე მოძრაობა 2.12 კოსმოსი 2.12.1ნიუტონის გრავიტაციული ფორმულა 2.12.2ელიფსი 2.12.3გეპლერის კანონები 2.12.4გრავიტაციული ურთიერთქმედების პოტენციალური ენერგია 2.12.5გოსმოსური სიჩქარეები 2.12.6ამოცანები | 12                   |
| <b>სითბური მოვლენები</b> 3.1 სითბური ბალანსი                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| <b>ელექტრობა</b><br>4.1 კონდენსატორი                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>17</b><br>17      |
| გეომეტრიული ოპტიკა 5.1 ჩრდილი და ნახევარჩრდილი                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19<br>20<br>21<br>21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1 4 ვექტორი        |

სარჩევი

# წინასიტყვაობა.

აქ არის მოგროვებული სხვადასხვა მასალები ფიზიკაში.

# მექანიკა

- 2.1 4 ვექტორი
- 2.2 რეაქტიული მოძრაობა
- 2.3 სტატიკა

სტატიკაში შეისწავლება მყარი სხეულების წონასწორობა, რომელზეც მოქმედებს ძალები. წონასწორობაში იგულისხმება მდგომარეობა, რომლისთვისაც, სხეულს არ გააჩნია აჩქარება, ანუ მოძრაობს თანაბრად და წრფივად, ან ნაწილობრივ, იმყოფება უძრავად ათვლის ინერციულ სისტემაში. (პრაქტიკულად ამოცანებში, დედამიწასთან დაკავშირებული ათვლის სისტემა ითვლება ინერციულად).

განვიზილოთ თუ რა ძალები მოქმედებს წონასწორობაში მყოფ სზეულზე. პირველ რიგში უნდა გავიზსენოთ სიმძიმის ძალა. ეს სიმძიმის ძალა არის ტოლქმედი სზეულის შემადგენელი ნაწილა-კების სიმძიმის ძალისა. სიმძიმის ძალა გადის სზეულის მასათა ცენტრზე.

შემდეგ მოქმედებს ბმის რეაქციის ძალები - ეს ძალები ეწინააღმდეგება სხეულის მოძრაობას რომელიმე მიმართულებით. ბმის რეაქციის ძალა მიმართულია იმ მიმართულების საწინააღმდეგოდ, რომელი მიმართულებითაც ბმა ეწინააღმდეგება სხეულის მოძრაობას. რეაქციის ძალებია - დრეკადობისა და ზახუნის ძალები. მათი მოდულები და ზოგჯერ მიმართულება წინასწარ არაა ცნობილი და დამოკიდებულია, სხეულის ფორმაზე, ზედაპირების მდგომარეობაზე, ასევე სხეულზე მოქმედ სხვა ძალებზე.

რეაქციის ძალის მიმართულების განსაზღვრა აუცილებელია სტატიკის ამოცანების სწორად ამოსაზსნელად.

ამიტომაც განვიზილოთ როგორაა მიმართული რამდენიმე საზის ბმის რეაქციის ძალები:

1.

2. გადაბმა არის დრეკადი ძაფით ან უმასო ღეროთი, ძაფის შემთხვევაში დრეკადობის ძალა არის ყოველთვის მიმართული ძაფის გასწვრივ და "გამოდის"იმ წერტილიდან რომლითაც მიმაგ-რებულია სხეულზე ან ხდება გადაბმა. ღეროს დრეკადობის ძალის შემთხვევაში იგულისხმება იმ ძალის მნიშვნელობა რომლითაც ღერო იჭიმება ან იკუმშება, თუ ღერო უმასოა მაშინ აღძრული ძალა მიმართული იქნება ღეროს გასწვრივ, ხოლო მიმართულება (გამოდის თუ შედის ძალა გადაბმის წერტილში) უნდა დავადგინოთ ამოცანის პირობით.

8 თავი 2. მექანიკა



სურ 2.1: ძალები

#### 3. სახსრული შეერთება -

**ამოცანა** თხელი ერთგვაროვანი ღერო საზსრულადაა დამაგრებული წერტილ A-ში. დეროს მე-ორე ბოლო კედელზე ძაფითაა დამაგრებული, ისე როგორც ნაზაზზეა 2.2 ნაჩვენები. ღეროს მასაა m=1 გგ, ღერო ჰორიზონტისადმი დაზრილია  $\alpha=45^\circ$ . იპოვეთ საზსარში აღძრული დრეკადობის ძალა.



სურ 2.2: ამოცანა.

## 2.4 შენახვის კანონები დაჯახებებში

## 2.5 მასათა ცენტრი

მექანიკის ამოცანების ამოხსნისას, მატერიალურ წერტილთა სისტემის მასათა ცენტრის მცნების გამოყენებამ, შეიძლება ფასდაუდებელი დახმარება გაგვიწიოს. ზოგიერთი ამოცანის ამოხსნა საგ-რძნობლად მარტივდება და თვალსაჩინო ზდება, ზოლო ზოგიერთის ამოხსნა საერთოდ შეუძლებე-ლია მისი გამოყენების გარეშე. სანამ შევუდგებით კონკრეტული ამოცანების ამოხსნას, დავიხსო-მოთ ძირითადი მასათა ცენტრის თვისებები, რომლების ილუსტრირებული იქნება კონკრეტული მაგალითებით.

მატერიალურ წერტილთა სისტემის მასათა ცენტრი (ინერციის ცენტრი) ვუწოდოთ წერტილს, რომელიც ახასიათებს სისტემაში მასის განაწილებას და რომლის კოორდინატებიც მოიცემა ფორ-მულებით

$$x_{\theta_{\theta}} = \frac{m_1 x_1 + \dots + m_N x_N}{m_1 + \dots + m_N} \quad y_{\theta_{\theta}} = \frac{m_1 y_1 + \dots + m_N y_N}{m_1 + \dots + m_N} \quad z_{\theta_{\theta}} = \frac{m_1 z_1 + \dots + m_N z_N}{m_1 + \dots + m_N}$$
 (2.1)

 $m_i$  - მატერიალური წერტილების მასებია,  $x_1,y_i,z_i$  - ამ წერტილების კოორდინატებია. თუ მკითზვე-ლისათვის ცნობილია რადიუს ვექტორის მცნება, ზემოთ მოყვანილი სისტემა შეიძლება ჩაიწეროს, ერთ ვექტორულ ტოლობად:

$$r_{\vec{\theta}} = \frac{m_1 \vec{r_1} + \dots + m_N \vec{r_N}}{m_1 + \dots + m_N}$$
 (2.2)

გავარჩიოთ რამდენიმე ამოცანა:

**ამოცანა 1** ვიპოვოთ მარტივი სისტემის მასათა, ცენტრი რომელიც შედგება ორი წერტილისაგან

#### 2.5.1 ამოცანები.

**ამოცანა** ცილინდრული ღეროს ერთი ნახევარი თუთიისა , მეორე ნახევარი - ალუმინის. განსაზღვრეთ სისტემის მასათა ცენტრის მდებარეობა, თუ ღეროს სიგრძე 40 სმ-ია.

**ამოცანა** თუთიისა და ალუმინის ერთნაირი მოცულობის ორი ბირთვი შეერთებულია შეხების წერტილით. განსაზღვრეთ სისტემის მასათა ცენტრი.

**ამოცანა** 3 და 5 მასის ორი სფერო მიმაგრებულია 2 კგ მასის და 30 სმ სიგრძის ღეროს ბო-ლოებზე. სფეროს რადიუსებია, შესაბამისად, 5 და 7 სმ. განსაზღვრეთ სისტემის მასათა ცენტრი.

**ამოცანა** ზუთი სფერო, რომელთა მასა მიმდევრობით 1, 2, 3, 4, 5, კგ-ის ტოლია, დამაგრებუ-ლია ღეროზე ისე, რომ მათი ცენტრები ერთმანეთისაგან, თანაბარი მანძილებითაა დაშორებული. უგულებელყავით ღეროს მასა და გაიგეთ სისტემის მასათა ცენტრი.

**ამოცანა** ერთგვაროვანი R რადიუსის წრიული ფორმის თხელი ფირფიტიდან ორჯერ ნაკლები რადიუსის წრე ისეა ამოჭრილი, რომ ფირფიტის კიდეს ეხება. განსაზღვრეთ დარჩენილი ფიგურის მასათა ცენტრი.

**ამოცანა** ერთგვაროვანი R=105.6 სმ წრიული ფორმის თხელი წრიდან ამოჭრილია კვადრატი ისე, როგორც სურათზეა გამოსახული. განსაზღვრეთ დარჩენილი ფიგურის მასათა ცენტრი.

### 2.6 შენაზვის კანონები

**01.** m მასის უძრავ ბირთვს V სიჩქარით ეჯახება M მასის მოძრავი ბირთვი. იპოვეთ ბირთვების სიჩქარეები დაჯახების შემდეგ, თუ დაჯახება დრეკადია და ცენტრული. ძალის მოქმედებს წრფე გადის სხეულის მასათა ცენტრზე - სიმძიმის ცენტრი.

### 2.7 ჭოჭონაქები

**01.** იპოვეთ რა ძალით მოქმედებს ჭერზე, ნაზატზე გამოსაზული უმასო ჭოჭონაქების სისტემა. თოკები უჭიმვადია და უმასო, თითოეული სხეულის მასაა m. ზაზუნი უგულებელყავით.



სურ 2.3: A boat.

# 2.8 კინემატიკური ბმები დინამიკის ამოცანებში

მექანიკის ამოცანებში ხშირად გვხდება სიტუაცია, როდესაც სხეულის მოძრაობა არ არის თავისუფალი. ეს შეზღუდვა შეიძლება იყოს განპირობებული მყარი ზედაპირებით, უჭიმვადი ძაფებით, ხისტი ღეროებით და ასე შემდეგ. მარტივ შემთხვევებში ამ შეზღუდვებს ვითვალისწინებთ ავტომატურად და არც კი ვსაუბრობთ მასზე. მაგალითად სხეულის აჩქარებას პირდაპირ მივმართავთ სიბრტყის გასწვრივ (ცხადია მყარი ზედაპირის შემთხვევაში), ბუქსირზე ჩაბმული მანქანისა და მაბუქსირებელი მანქანის სიჩქარეს ვთვლით ტოლად (ვგულისხმობთ რომ მანქანები გადაბმულია უჭიმვადი ტროსით). ხანდახან კი აუცილებელია ეს შეზღუდვა აღვწეროთ სპეციალური განტოლებების საშუალებით, რომელთაც ჩვენ ვუწოდებთ **კინემატიკურ ბმას**. განვიხილოთ რამდენიმე ამოცანა. 10 თავი 2. მექანიკა

### 2.9 მოძრაობა მოსახვევში

#### 2.9.1 ამოცანები

**ამოცანა.** როგორი უნდა იყოს გზის პროფილი, რომ ავტომობილმა, მოსახვევში სიჩქარის შეუმცირებლად და უსაფრთხოდ მოუხვიოს?

ამოცანა. გზის ჰორიზონტალურ უბანზე 140 მ რადიუსის წრეწირის 309-იანი რკალის დასაწყისში ავტომობილი ყველა წამყვანი 1." ალით იწყებს მოძრაობას და ზრდის სიჩქარის მოდულს. როგორ, ჩაქსიმალური სიჩქარით შეუძლია გავიდეს ავტომობილი გზის წრ, უბანზე? გზის ვაკისთან ბორბლების ზაზუნის კოეფიციენტი 0,3.

ამოცანა. გზის პორიზონტალურ უბანზე 140 მ რადიუსის მოსაზვევში 14 ტ. მატარებლის ვაგონის სიჩქარე 18 კმ/სთ-ია. განსაზღვრეთ, რა ძალით მოქმედებს რელსი ვაგონის რებორდზე? გარეთუ შიდა რელსი მოქმედებს ბორბალზე? 3

- + 1013. ჯერ შეაფასეთ, შემდეგ განსაზღვრეთ, რამდენჯერ შეიცვ. ღება რებორდზე მოქმედი ძალის მოდული მატარებლის ვაგონის სიჩქარის ორჯერ გაზრდისას? შეადარეთ ერთმანეთს რელსის რე- ორდზე და რებორდის რელსზე მოქმედი ძალები.
- 1014. 800მ რადიუსის სიმრუდის მოსაზვევში მატარებელი მოძრაობს. '08/წმ სიჩქარით. რამდენით მაღლა უნდა იყოს გარე რელსი შიდაზე, ჩომ თვლების რებორდები არ ახღენღენ გვერდით დაწოლას რელსე- ზე? ლიანდაგის სიგანეა 1534მმ.
- 1015. თქვენი ვარაუდით, რატომ ამცირებს მემანქანე მატარებლის იჩქარის მოდულს მოსახვევში?
- 1016. მოციგურავე მოძრაობს 42მ რადიუსის წრეწირზე მოდუ- ლით 120/წმ სიჩქარით. ჰორი-ზონტისადმი რა კუთხით უნდა გადაიხ- როს იგი წონასწორობის შესანარჩუნებლად?
- 1017. რა მაქსიმალური სიჩქარით შეუძლია იმოძრაოს მოტო- იკლმა გზის ჰორიზონტალურ უბანზე 90მ რადიუსის სიმრუდის ოსაზვევში, თუ სრიალის ზაზუნის კოეფიციენტია 0,4? რას უნდა ედრიდეს ამ დროს შვეულიდან გადაზრა?
- 1018. რა მაქსიმალური სიჩქარით შეუძლია იმოძრაოს მოტო" აიკლმა 309 -იანი კუთხით დახ-რილ ტრეკზ; ი შემოწერს 909 ჩადიუსის წრეწირს? ხახუნის კოეფიციენტი 0:4-ია.  $\cdot$  ,

არაერთი იმობილის. მგზავრი მოსახვევში მოხვევის. საბი"

. თ; "თქმის ეუმჩნეველია. რვვეი" 8 ავის მოხვევა კი მგზავრისათვის თითქ"

1020. თვითმფრინავი. ი.

უხვევს 6კმ რადიუსის წრეწირის რკალზე ?"

114

**01.** მოტოციკლეტისტი მოძრაობს ჰორიზონტალურ ზედაპირზე v=70 კმ/სთ სიჩქარით, ბრუნდება R=100 მ რადიუსის მოსაზვევში, რა კუთზით უნდა გადაიზაროს რომ არ დაეცეს? ამოზსნა

აქაც ხახუნის ძალაა, ძალა რომელიც აჩერებს მოტოციკლისტს,  $F_{fr}=\frac{mv^2}{R}$ , საყრდენის რეაქციის ძალა N=mg. მომენტების წესი სიმძიმის ცენტრის მიმართ მომცემს განტოლებას  $F_{fr}\cdot l\sin\alpha=Nl\cos\alpha$ . აქ მოცემული არაა  $\mu$  და მაგიტომ გვჭირდება. ეს მომენტები.

**02.** რა მაქსიმალური v სიჩქარით შეიძლება იმოძრაოს მანქანამ  $\alpha$  გუთხით დახრილ სიბრტყეზე თუ სიმრუდის რადიუსია R და ზახუნის კოეფიციენტი ბორბლებსა და გზას შორის არის k.



სურ 2.4: A boat.

განსაზღვრე პლანეტის  $\rho$  საშუალო სიმკვრივე, თუ ეკვატორზე დინამომეტრზე ჩამოკიდებული ტვირთი 10~%-ით მსუბუქია ვიდრე პოლუსზე. დღეღამის ხანგრძლივობა პლანეტაზე t=6~სთ-ია.

## 2.10 მეშვიდე კლასი.

ამოცანა ნომერი 4. ერთ ქვეყანაში გეოლოგმა იპოვა შავი მეტეორიტი

### 2.11 წრეწირზე მოძრაობა

წრეწირზე მოძრაობისას აღწერისას წრფივი სიჩქარის მცნებასთან ერთად შემოაქვთ კუთზური სიჩქარის განმარტებაც. თუკი ნივთიერი წერტილი წრეწირზე მოძრაობისას  $\Delta t$  დროში შემოწერს რკალს, რომლის კუთზური ზომაა  $\Delta \phi$ , მაშინ კუთზური სიჩქარეა  $\omega = \frac{\Delta \phi}{\Delta t}$ .

### 2.12 კოსმოსი

#### 2.12.1 ნიუტონის გრავიტაციული ფორმულა

ორი ნივთიერი წერტილი ერთმანეთს მიიზიდავს ძალით, რომელიც პირდაპირპროპორციულია მათი მასების ნამრავლისა და უკუპროპორციულია მათ შორის მანძილის კვადრატის.

$$F = G \frac{m_1 m_2}{r^2} (2.3)$$

ანდა ჩაწერილი ვექტორული ფორმით.

$$\vec{F} = G \frac{m_1 m_2}{r^3} \vec{r} \tag{2.4}$$

 $G=6.67 \times 10^{-11} \frac{\mathbf{6} \cdot \mathbf{d}^2}{\mathbf{3}\mathbf{d}^2}$  კოეფიციენტს მსოფლიო მიზიდულობის ანუ გრავიტაციული მუდმივი ეწოდება. ის პირველად ინგლისელმა ფიზიკოსმა ჰენრი კავენდიშმა განსაზღვრა ცდით.

#### 2.12.2 ელიფსი

#### 2.12.3 კეპლერის კანონები

#### კეპლერის პირველი კანონი

პლანეტები მოძრაობს ელიფსებზე, რომელთა ერთ-ერთ ფოკუსში იმყოფება მზე.

#### კეპლერის მეორე კანონი

პლანეტის რადიუს-ვექტორი დროის ტოლ შუალედებში ტოლ ფართობებს მოხვეტს.



სურ 2.5: კეპლერის მეორე კანონი - მოხვეტილი ფართობების ტოლობის კანონი.

#### კეპლერის მესამე კანონი

პლანეტების გარშემოვლის პერიოდების კვადრატები ისე შეეფარდება ერთმანეთს, როგორც მათი ორბიტების დიდი ნახევარდერძების კუბები.

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3} \tag{2.5}$$

12 თავი 2. მექანიკა

#### 2.12.4 გრავიტაციული ურთიერთქმედების პოტენციალური ენერგია

r მანძილით დაშორებული  $m_1$  და  $m_2$  მასის ნივთიერი წერტილების გრავიტაციული ურთიერთქმე-დების პოტენციალური ენერგიის ფორმულის მიღებას ინტეგრების ცოდნა სჭირდება. ჩვენ მოვიყ-ვანთ შედეგს გამოყვანის გარეშე:

 $U = -G\frac{m_1 m_2}{r} + C (2.6)$ 

სადაც C ნებისმიერი მუდმივაა. მისი კონკრეტული მნიშვნელობა დამოკიდებულია ნულოვანი დონის არჩევაზე. ჩვეულებრივ, ნულად თვლიან უსასრულოდ დაშორებული სხეულების პოტენციალურ ენერგიას. ამ შემთხვევაში C=0 და

$$U = -G \frac{m_1 m_2}{r}$$

.

#### 2.12.5 კოსმოსური სიჩქარეები

#### პირველი კოსმოსური სიჩქარე

პირველი კოსმოსური სიჩქარე არის ის სიჩქარე, რომელიც საჭიროა სხეულს მივანიჭოთ გასრო-ლისას რომ არ დაეცეს უკან დედამიწაზე და გააგრძელოს მის გარშემო ბრუნვა. სხეულისთვის დაგწეროთ ნიუტონის მეორე კანონი:

$$\frac{mv^2}{r_E} = G \frac{M_E m}{r_E^2} {(2.7)}$$

სადაც  $M_E$  არის დედამიწის მასა,  $r_E$  არის დედამიწის რადიუსი. განვიხილავთ დედამიწასთან ახლოს მბრუნავ თანამგზავრს ამიტომაც  $r_E$  არის დედამიწის რადიუსი და დედამიწის ზედაპირიდან დაშორებას არ ვითვალისწინებთ.

2.7 განტოლებიდან მივიღებთ:

$$v = \sqrt{\frac{GM_m}{r_E}} \tag{2.8}$$

თუ გავითვალისწინებთ იმასაც რომ თავისუფალი ვარდნის აჩქარება  $g = GM/r_E^2$  საბოლოოდ მივიღებთ:

$$v = \sqrt{gr_E} = 7.91 \times 10^3 \, \text{d/fd}$$
 (2.9)

#### მეორე კოსმოსური სიჩქარე

მეორე კოსმოსური სიჩქარის მინიჭებისას სხეულს შეუძლია დატოვოს დედამიწის ორბიტა, თუკი ჩავწერთ სრულ მექანიკურ ენერგიას.

$$E = \frac{mv^2}{2} - G\frac{M_E m}{r_E} {(2.10)}$$

სადაც m არის სხეულის მასა,  $M_E$  დედამიწის მასა,  $r_E$  დედამიწის რადიუსი.

ცხადია როდესაც დედამიწის დატოვებს მას აღარ ექნება დედამიწასთან ურთიერთქმედების პოტენციალური ენერგია, და რადგან მინიმალურ სიჩქარეს ვეძებთ აღარც კინეტიკური ენერგია ექნება ორბიტის დატოვებისას მაშინ

$$\frac{mv^2}{2} - G\frac{M_E m}{r_E} = 0 {(2.11)}$$

აქედან მივიღებთ:

$$v = \sqrt{\frac{2GM_E}{r_E}} = \sqrt{2gr_E} = 11.2 \times 10^3 \text{ d/fd}$$
 (2.12)

#### მესამე კოსმოსური სიჩქარე

მესამე კოსმოსური სიჩქარეს თუ მივანიჭებთ სხეულს დედამიწის მიმართ, ის გაექცევა მზეს.

2.12. კოსმოსი

#### 2.12.6 ამოცანები

**01.** რა დროში დაეცემა მთვარე დედამიწას თუ ის სწრაფად გაჩერდება. ამოხნსა: ამ ამოცანაში უნდა გამოვიყენოთ კეპლერის მესამე კანონი:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3} \tag{2.13}$$

დავარდნა შეიძლება განვიზილოთ როგორც ძალიან გაწელილი ელიფსი. თუ დავუშვებთ რომ თავიდან მთვარის რადიუსი იყო a ახალი რადიუსი იქნება a/2, მაშინ ვარდნის დრო იქნება.

$$T_1^2 = T_2^2 \cdot \frac{(a/2)^3}{a^3} = T_2^2 \frac{1}{8}$$
 (2.14)

სადაც  $T_2$  არის ძველი მთვარის პერიოდი, მაშინ დავარდნის დრო იქნება პერიოდის ნახევარი  $T_1/2$   ${\bf 02.}$  უძრავად დამაგრებული M მასის ნივთიერი წერტილის გრავიტაციულ ველში დიდი მანძილით დაშორებული წერტილიდან (ამ მანძილზე გრავიტაციული ურთიერთქმედება შეგვიძლია უგულებელვყოთ) v სიჩქარით მოძრაობს m მასის ნივთიერი წერტილი, რომლის სამიზნე პარამეტ-რია  $\rho$ . იპოვეთ უმცირესი მანძილი ნივთიერ წერტილებს შორის.



სურ 2.6: ამოცანა.

ამოზსნა: იზსნება იმპულსის მუდმივობისა და ენერგიის მუდმივობით. პასუხი:

$$r_{min} = \frac{1}{v^2}$$

14 თავი 2. მექანიკა

# სითბური მოვლენები

# 3.1 სითბური ბალანსი

თუ ნივთიერება დნება  $+\lambda m$  გამყარება  $-\lambda m$ , თუ ნივთიერება ორთქლდება +rm კონდესირდება -rm.

# 3.2 ამოცანები.

# ელექტრობა

# 4.1 კონდენსატორი

კონდენსატორის ენერგია გამოითვლება შემდეგი ფორმულით:

$$C = \frac{q}{\varphi}$$

18 თავი 4. ელექტრობა

# გეომეტრიული ოპტიკა

## 5.1 ჩრდილი და ნახევარჩრდილი

თუ სზეულს დავანათებთ წერტილოვანი წყაროდან, მაშინ საგნის ჩრდილი იქნება სრული, მკვეთრად შემოზაზული საზღვარით.



სურ 5.1: ჩრდილი.

თუკი ობიექტს ვანათებთ არაწერტილოვანი გაწელილი სინათლის წყაროთი, მაშინ ის ასევე წარმოქმნის ნახევარჩრდილს - ნაწილობრივ განათებულ ეკრანის არეს, სადაც მხოლოდ მანათობელი ობიექტის ნაწილიდან ეცემა სინათლე. ზოგიერთ შემთხვევაში შეიძლება სრული ჩრდილი საერთოდ არ გვქონდეს, და მხოლოდ იყოს ნაზევარჩრდილი.



სურ 5.2: ნახევარჩრდილი.

ნახევარჩრდილის ზომის და გეომეტრიული ფორმის განსაზღვრა შესაძლებელია გეომეტრიული აგებით, სინათლის წრფივი გავრცელების მიხედვით.

## 5.2 თხელი ლინზები

ლინზას ორი სფერული ზედაპირით შემოსაზღვრულ გამჭვირვალე სხეულს უწოდებენ. თუ მისი სისქე მცირეა სფერული ზედაპირების სიმრუდის რადიუსთან შედარებით, მაშინ ლინზას თხელს უწოდებენ 5.3.



სურ 5.3: სხივთა სვლა თხელ ა) შემკრებ, ბ) გამბნევ ლინზაში.

ლინზები პრაქტიკულად ყველა ოპტიკური ზელსაწყოს შემადგენლობაში შედიან. არსებობს შემკრები და გამბნევი ლინზები. შემკრები ლინზა შუაში უფრო სქელია ვიდრე კიდეებზე, გამბნევი კი პირიქით, შუაშია უფრო თხელი.

თხელი ლინზის ფორმულა

$$\frac{1}{f} + \frac{1}{d} = \frac{1}{F} \tag{5.1}$$

D სიდიდე ფოკუსური მანძილის შებრუნებულია და ლინზის ოპტიკურ ძალას უწოდებენ. ოპტიკური ძალის ერთეულია დიოპტრი. დიოპტრი ერთი მეტრი ფოკუსური მანძილის მქონე ლინზის ოპტიკური ძალაა:

# 5.3 გამოსახულების აგება ლინზებსა და სფერულ სარკეებში

ლინზით ან სარკით მიღებული გამოსახულების ადგილმდებარეობის განსაზღვრა შეიძლება ორი მეთოდით - ალგებრული გამოთვლით (ლინზისა და სარკის ფორმულის გამოყენებით) ანდა გეომეტრიული აგებით.

პირველი მეთოდი თუმც არის უფრო უნივერსალური, ზშირად რთულ ოპტიკურ სისტემებში მას თავს ვერ ავარიდებთ. სამაგიეროდ მეორე მეთოდი უფრო თვალსაჩინოა. ამიტომაც ალგებრულად ამოცანის შემთხვევაშიც კი ვაკეთებთ ნახაზს, რომელიც გვეხმარება საჭირო სისტემის დაწერაში. თუ ამოცანა არ არის ზედმეტად შრომატევადი(?), აგებით ამოხსნა არის უფრო მოსახერხებელი.

თხელ ლინზებში გამოსახულების აგებისას ვსარგებლობთ სამი ძირითადი თვისებით სინათ-ლის სხივის ნახ.ა) 5.4.

- 1) სხივი  $AA_1$ , რომელიც გადის ლინზის ოპტიკურ ცენტრში O (მეორენაირად ეძახიან დამხმარე ოპტიკურ ღერძს) არ გარდატყდება.
- 2) სხივი  $BB_1$ ,რომელიც ეცემა ლინზას მთავარი ოპტიკური ღერძის პარალელურად გარდა- ტყდება და გაივლის ლინზის უკანა F' ფოკუსსი.
- 3) სხივი  $CC_1$ , რომელიც გადის წინა ფოკუსში F, ლინზაში გარდატეხის მერე გამოდის მთავარი ოპტიკური ღერძის პარალელურად.

უკანა ფოკუსი F' ეწოდება წერტილს რომელშიც იკრიბებიან გარდატეზის შემდგომ ოპტიკური ღერძის პარალელურად,ლინზაზე დაცემული სზივები. წინა F და უკანა F' ფოკუსები განლაგებულები არიან თზელი ლინზის მიმართ სიმეტრიულად. F გადის უკანა ფოკალური სიბრტზე, F'-ში გადის უკანა ფოკალური სიბრტყე.

ზანდაზან ასევე გვეზმარება შემდეგი წესებიც: 1) სზივები, რომლებიც ლინზას ეცემიან პარალელურ ნაკადად, გარდატეზის შემდეგ იკრიბებიან უკანა ფოკალურ სიბრტყეში 5.5.

2) სზივები რომლებიც გამოდიან ლინზიდან პარალელურ ნაკადად, ლინზაზე დაცემამდნენ გადაიკვეთნენ წინა ფოკალურ სიბრტყეში 5.6.



სურ 5.4: სხივთა სვლა თხელ ა) შემკრებ, ბ) გამბნევ ლინზაში.



სურ 5.5: ლინზაზე დაცემულ პარალელურ სხივთა სვლა თხელ ა) შემკრებ, ბ) გამბნევ ლინზაში.

## 5.4 სფერული სარკე

# 5.5 მარგველაშვილი

**6-118.** პარალელურ სხივთა კონა ეცემა შემკრებ ლინზას, რომლის ფოკუსური მანძილია 20 სმ. ლინზიდან რა მანძილზე უნდა მოვათავსოთ მეორე ასეთივე ლინზა, რომ მისგან გამოსული სხივები ისევ პარალელური იყოს?

6-119. შემკრებ ლინზას, რომლის ფოკუსური მანძილია. 20 (გ ეცემა პარალელურ სზივთა კონა. ლინზის ოპტიკურ ღერთე მისგან 60 სმ მანძილზე მოთავსებულია მეორე შემკრები ლინზა, რომ ნაც კვლავ პარალელური სზივები გამოდის. იპოვეთ მეორე ლიზას ფოკუსური მანძილი.

6–190. გამბნევი ლინზის ფოკუსური მანძილია 7 სმ. რა მანძილზე უნდა დავაყენოთ შემკრები ლინზა, რომლის ფოკუსური მანძილია 20 სმ, რომ მივიღოთ პარალელური სზივები, თუ გამბნევ ლინზაზ ეცემა პარალელური სზივები?

6–181. მილში მოთავსებულია ორი შემკრები ლინზა, რომლებიც ერთმანეთისაგან დაშორებულია 16 სმ-ით. პირველი ლინზის ფოკე- სური მანძილია 8 სმ, მეორისა — 5 სმ. საგანი მდებარეობს პირველი ლინზიდან 40 სმ მანძილზე, მეორე ლინზიდან რა მანძილზე მიიღება გამოსახულება?



სურ 5.6: ლინზიდან გამოსული პარალელურ სხივთა "უკუსვლა"თხელ ა) შემკრებ, ბ) გამბნევ ლინზაში.

9–199. შემკრებ ლინზას ეცემა მთავარი ოპტიკური ღერძის პარ $\gg$ - ლელური სზივთა კონა. შემკრები ლინზიდან 10 სმ-ის მანძიღბე ი თავსებულია გამბნევი ლინზა. გამბნევი ლინზიდან რა მანი ე. 20 იღება გამოსახულება, თუ შემკრები ლინზის ფოკუსური მანძილ სმ, გამბნევისა კი — 15 სმ. ს პარ $\gg$ 

## 5.6 ამოცანები.

**რიმკევიჩი 1075** რამდენით გაიზრდება კუთზე დაცემულ და არეკვლილ სზივებს შორის, თუ ბრტყელ სარკეს  $\phi$  კუთზით შემოვაბრუნებთ ღერძის გარშემო, რომელიც სზივის არეკვლის წერტილში გადის და სზიგების განლაგების სიბრტყის მართობია?

რიმკევიჩი 1076 დახაზეთ ორი ურთიერთმართობი AO და OB სარკე. OB სარკეზე დაცემული CD სხივი და სხივის შემდგომი სვლის DE და EF მიმართულებები. დაამტკიცეთ, რომ EF სხივი CD-ს პარალელურია, CD სხივის ნებისმიერი კუთხით დაცემისას.

**რიმკევიჩი 1083** რა h სიმაღლეზე იმყოფება A აეროსტატი, თუ H სიმაღლის კოშკიდან იგი ჰორიზონტისადმი  $\alpha$  კუთხით ჩანს, ზოლო მისი გამოსაზულება ტბაში ჰორიზონტისადმი  $\beta$  კუთხით ჩანს.

**რიმკევიჩი 1097** 2 მ სიღრმის წყალსაცავის ფსკერზე ჩასობილია ხიმინჯი, რომელიც წყლის ზედაპირიდან 0.5 მ-ზეა ამოშვერილი. იპოვეთ ხიმინჯის ჩრდილის სიგრძე წყალსაცავის ფსკერზე, თუ სზივები  $30^{\circ}$ -იანი კუთხით ეცემიან.

რიმკევირი 1101 . იპოვეთ პარალელურწაზნაგებიან გამჭვირვალე ფირფიტაში გამავალი სზივის a წანაცვლება, თუ სზივის დაცემის კუთხეა  $\alpha$ , გარდატეზის კუთხე  $\gamma$ , ზოლო ფირფიტის სისქე d. მეიძლება თუ არა ამ ფირფიტაში გამავალმა სზივმა წაინაცვლოს ისე, რომ მის მიმართულებასა და პირვანდელ მიმართულებას შორის მანძილი ფირფიტის სისქეზე მეტი აღმოჩნდეს?

- .. ორ ბრტყელ სარკეს შორის კუთხე არის  $\alpha$ . იპოვეთ სარკეებს შორის მოთავსებული მნათი წერტილის რამდენი გამოსახულება მიიღება ასეთ სარკეში.
- **01.** როგორია დაცემის კუთხე, თუ წყლის ზედაპირიდან არეკვლილი სხივი გარდატეხილი სხივის პერპენდიკულარულია.
- **02.** სინათლის სხივი ეცემა d=0.6 სმ სისქის ბრტყელი პარალელური მინის ფირფიტას.დაცემის კუთხე  $60^{\circ}$ -ია. იპოვეთ ამ ფირფიტაში გასული სხივის წანაცვლების სიდიდე.

*5.6. ამოცანე*ბი.



სურ 5.7: .

# ბირთვული ფიზიკა

$$\alpha$$
 დამლა $^{235}_{~92} \mathrm{U} \longrightarrow ^{231}_{~90} \mathrm{Th} + ^{4}_{2} \mathrm{He}$