Linear Regression with Multiple Variables

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

$$\blacksquare h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Size (feet ²)	Number of Bedrooms	Number of Floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Size (feet ²)	Number of Bedrooms	Number of Floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

n: number of features (n =4 in the above)

 $\mathbf{x}^{(i)}$: input (features) of i^{th} training example

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

 $x_i^{(i)}$: value of feature j in i^{th} training example

$$x_3^{(3)}=2$$

- Hypothesis (one variable)
- Hypothesis (Multiple variables)
 - $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$
 - e.g. $h_{\theta}(x) = 90 + 0.2x_1 + 0.03x_2 + 2x_3 3x_4$

- Multivariate linear regression

 - For convenience of notation, define $x_0 = 1$. (i.e. $x_0^{(i)} = 1$).

$$\mathbf{z} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} , \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$= \theta^T x$$

$$= x^T \theta$$

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

Gradient Descent for Multiple Variables

Hypothesis

Parameters

$$\theta = [\theta_0, \theta_1, \cdots, \theta_n]^T \in \mathbb{R}^{n+1}$$

Cost function

$$I(\theta) = J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent

Repeat {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

} (simultaneously update for every j = 0,1,2,...,n)

- One variable (n = 1)
- Repeat {

$$\theta_{0} \leftarrow \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_{1} \leftarrow \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(Update for θ_0 and θ_1 simultaneously)

- Mutiple $(n \ge 1)$
- Repeat {

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

(Update θ_i for every

$$j = 0,1,2,...,n$$
 simultaneously) $x_0^{(i)} = 1$

$$x_0^{(i)} = 1$$

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 \leftarrow \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

Feature Scaling

Idea: Make sure features are on a similar scale

- $x_1 = \text{size } (0 2000 \text{ feet}^2)$
- x_2 = number of bedrooms (1 5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

- $x_2 = \frac{\text{number of bedrooms}}{5}$
- $0 \le x_1, x_2 \le 1$
- Making gradient descent converge much faster

Feature Scaling

Feature Scaling

- Get every feature into approximately $-1 \le x_1$, $x_2 \le 1$ range.
- Given $x_0 = 1$,
 - $0 \le x_1 \le 3 \implies OK$
 - $-2 \le x_2 \le 0.5$ → OK
 - $-100 \le x_2 \le 100$ → change
 - $-0.0001 \le x_2 \le 0.0001 \Rightarrow$ change

Feature Scaling

Mean Normalization

- Replace x_i with $x_i \mu_i$ to make features have approximately zero mean
 - One of apply to $x_0 = 1$.
- For example,

$$x_1 = \frac{\text{size} - 100}{2000}, \ x_2 = \frac{\text{# of bedrooms} - 2}{5}$$

$$-0.5 \le x_1, x_2 \le 0.5$$

$$x_1 \leftarrow \frac{x_1 - \mu_1}{S_1}$$

- μ_1 : average value of x_1
- S_1
 - Either Range of x_1 (max-min) or Standard deviation of x_1

- μ_2 : average value of x_2
- S_2
 - Either Range of x_2 (max-min) or Standard deviation of x_2

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

- - "Debugging"
 - How to make sure gradient descent is working correctly
 - **I** How to choose learning rate α

Making sure gradient descent is working correctly

Declare convergence if $J(\theta)$ decreases by less than $\varepsilon = 10^{-3}$ in one iteration.

Making sure gradient descent is working correctly

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
 - But if α is too small, gradient descent can be slow to converge.

Summary

- Too small α
 - Slow convergence
- **Too large** α
 - Most of times, $J(\theta)$ may not decrease on every iteration
 - $I(\theta)$ may not converge
 - (Sometimes, slow convergence is also possible.)
- To choose α , try

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

Housing Prices Prediction

Two features

 $h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$

 \boldsymbol{x}_1

- (New) One feature
 - Area x = frontage*depth

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$ $x_1 = (size), \ x_2 = (size)^2, \ x_3 = (size)^3$

- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$ $x_1 = (size), \ x_2 = (size)^2, \ x_3 = (size)^3$
- Feature scaling is necessary
 - size: 1-1,000 (ft²) \rightarrow size²: 1~10⁶, size³: 1~10⁹

Choice of Features

Choice of Features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2 \sqrt{size}$$

Extending Linear Regression

- Extending Linear Regression to More Complex Models
 - The inputs \boldsymbol{x} for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - log, exp, square root, square, etc.
 - Polynomial transformation

$$y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3$$

- Basis expansions
- Dummy coding of categorical inputs
- Interactions btw variables
 - \triangleright example: $x_3 = x_1 \cdot x_2$

→ This allows use of linear regression techniques to fit non-linear datasets

Linear Basis Function Models

Generally,

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} \emptyset_{j}(x)$$
 Basis function

Typically, $\emptyset_0(x) = 1$ so that θ_0 acts as a bias

In the simplest case, we use linear basis functions:

$$\emptyset_j(\mathbf{x}) = x_j$$

Linear Basis Function Models

Polynomial basis functions

$$\emptyset_j(\mathbf{x}) = \mathbf{x}^j$$

Gaussian basis functions

$$\emptyset_j(\mathbf{x}) = exp\left\{-\frac{\left(x - \mu_j\right)^2}{2s^2}\right\}$$

Sigmoidal basis functions

$$\emptyset_j(\mathbf{x}) = \sigma\left(\frac{\mathbf{x} - \mu_j}{S}\right)$$

where
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Outline

- Multiple features
- Gradient descent for multiple variables
- Feature scaling in gradient descent
- Learning rate in gradient descent
- Features and polynomial regression
- Normal equation

Normal Equation

- \blacksquare A least-square solution \tilde{v} to Av = w

iff

- \tilde{v} is a solution to the normal equation $A^TAv = A^Tw$
 - $\tilde{v} = (A^T A)^{-1} A^T w$

Normal Equation

- Normal equation
 - Method to solve for θ analytically
- \blacksquare If $\theta \in R$

$$I(\theta) = a\theta^2 + b\theta + c$$

Solve for θ

- If $\theta \in \mathbb{R}^{n+1}$
 - $I(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$
 - Set $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)
 - Solve for θ_0 , θ_1 , \cdots , θ_n

Normal Equation

- $\blacksquare \text{ If } \theta \in R^{n+1}$
 - $I(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$

where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$
, $X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(m)} \end{pmatrix}^T \end{bmatrix}$ (design matrix), $x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$

$$\rightarrow \theta = (X^T X)^{-1} X^T y$$

Example

M = 4

 $\left[x^{(2)}\right]^T$

		Size (feet ²)	Number of Bedrooms	Number of Floors	Age of home (years)	Price (\$1000)
a	¢ ₀	x_1	x_2	x_3	x_4	y
,	1	2104	5	1	45	460
,	1	1416	3	2	40	232
,	1	1534	3	2	30	315
,	1	852	2	1	36	178

Example

m = 5

	Size (feet ²)	Number of Bedrooms	Number of Floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	\boldsymbol{y}
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
1	3000	4	1	38	540

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix} \in R^{5 \times (n+1)} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{bmatrix}$$

Examples and Features

- \blacksquare m examples: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
- n features

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in R^{n+1},$$

$$X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(m)} \end{pmatrix}^T \end{bmatrix} \in R^{m \times (n+1)}$$

$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

$$\bullet \qquad \theta = (X^T X)^{-1} X^T y$$

Examples and Features

- \blacksquare m examples: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$
- One feature

$$X = \begin{bmatrix} 1 & x_1^{(1)} \\ 1 & x_1^{(2)} \\ \vdots & \vdots \\ 1 & x_1^{(m)} \end{bmatrix} \in R^{m \times 2}$$

Gradient Descent vs Normal Equation

 \blacksquare m examples and n features

Gradient Descent	Normal Equation	
Need to choose α	No need to choose α	
Needs many iterations	No need to iterate	
	Need to compute $(X^TX)^{-1}$ ($\rightarrow O(n^3)$)	
Works well even when n is large	Slow if n is very large	

Normal Equation

- - What if X^TX is non-invertible? (i.e. $(X^TX)^{-1}$ does not exist)
 - Singular or degenerate
 - Pseudo inverse

- Singular X^TX
 - Redundant features (linearly dependent)
 - e.g. x_1 = size in feet²
 - $x_2 = \text{size in } m^2$
 - $x_1 = (3.28)^2 * x_2$
 - Too many features (e.g. $m \le n$)
 - Delete some features, or use regularization

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- Eric Eaton, https://www.seas.upenn.edu/~cis519
- http://www.holehouse.org/mlclass/04_Logistic_Regression.html