Regelungstechnik A (Grundlagen und Frequenzbereichsmethoden)

1 Gegenstand der Regelungstechnik

Satz 1.1 Die Regelungstechnik (RT) beschäftigt sich mit der selbsttätigen gezielten Beeinflussung des Verhaltens von dynamischen Systemen.

Die Eingänge werden in der RT aufgeteilt in von außen vorgebbare <u>Eingangsgrößen</u> und in durch die Umgebung festgelegte, störend wirkende <u>Störgrößen</u>. Von den Ausgängen werden nur diejenigen betrachtet, deren Verhalten unmittelbar interessiert. Ausgangsgrößen.

Gezielte Beeinflussung heißt: Durch Vorgabe der Eingangsgrößenverläufe soll erreicht werden, dass die Ausgangsgrößen trotz Störeinwirkung ein gewünschtes Sollverhalten aufweisen.

Beispiel 1 (Raumtemperatur)

Beispiel 2 (Personenaufzug)

Beispiel 3 (Auto fahren)

Allgemeine Aufgabenstellung der RT

Entwurf und Bereitstellung einer Einrichtung, die - hinzugefügt zur Strecke - die Eingangsgrößen automatisch im gewünschten Sinne generiert. Selbsttätige gezielte Beeinflussung.

Generelle Vorgehensweise zur Lösung

- 1. mathematische Modellbildung der Strecke zur Abstraktion von deren physikalischen Ausprägung und Ermöglichung der Anwendung universell einsetzbarer, systemtheoretisch fundierter Vorgehensweisen in Schritt 2. und 3.
- 2. Analyse des Streckenverhaltens
- 3. Entwurf der Steuer- und Regeleinrichtung
- 4. Realisierung der Steuer- und Regeleinrichtung
- 5. Inbetriebnahme und Erprobung des Gesamtsystems

2 Modellbildung der Strecke

Satz 2.1 Modellbildung der Strecke durch mathematische Beschreibungen der Wirkungszusammenhänge zwischen den Systemgrößen, die für die Aufgabenstellung relevant sind.

Ein Modell ist eine aufgabenspezifische Vereinfachung der Realität. In der RT bewährte Modellierungsform:

2.1 Darstellung der Strecke als Strukturbild (Blockschaltbild)

2.1.1 Beispiel: Permanten erregter Gleichstrommotor

- Geräteschema: (siehe Beiblatt 4)
- Systemdarstellung:

• Ermittlung der beschreibenden Gleichungen

Ankerstromkreis

$$u_L = L \frac{di_A}{dt} \to \frac{di_A(t)}{dt} = \frac{1}{L} u_L(t) \stackrel{\int_0^t}{\to} i_A(t) = i_A(0) + \frac{1}{L_A} \int_0^t u_L(\tau) d\tau \tag{2.1}$$

$$u_A = u_R + u_L + u_{ind} \rightarrow u_L(t) = u_A(t) - u_R(t) - u_{ind}(t)$$
 (2.2)

$$u_R(t) = R_A i_A(t) \tag{2.3}$$

$$U_{ind} = c\phi\omega(t) \qquad (2.4)$$

Rotierender Anker und Welle

$$J\dot{\omega} = M_{\sum} \rightarrow \dot{\omega}(t) = \frac{1}{J} M_{\sum}(t) \stackrel{\int_0^t}{\rightarrow} \omega(t) = \omega(0) + \frac{1}{J} \int_0^t M_{\sum}(\tau) d\tau$$
 (2.5)

$$M_{\Sigma}(t) = M_A(t) - M_L(t) \tag{2.6}$$

$$M_A(t) = c\phi_F L_A(t) \tag{2.7}$$

• Übersetzung der Gleichungen ins Strukturbild TODO:BILD