S1 – Examen 2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

	Nom:	Prénom :		Classe:	
--	------	----------	--	---------	--

Répondre exclusivement sur le sujet.

Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (5 points)

Simplifiez au maximum les expressions ci-dessous. Le résultat ne devra pas contenir de parenthèses.

Expression non simplifiée	Expression la plus simplifiée (pas de parenthèses)
$\overline{(C+D)+(B+\overline{D})}$	0
$(B + \overline{D}).(\overline{A} + \overline{D}).(A + D).A.B$	$A.B.\overline{D}$
$\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.C.\overline{D} + A.\overline{B}.\overline{C}.\overline{D} + A.\overline{B}.C.\overline{D}$	$\overline{\mathrm{B.D}}$
$\overline{A.B.}(A.B+C)+A.B.C$	С
$(B + \overline{D} + C.B).\overline{\overline{C}.B}.\overline{\overline{C}.B}$	$\overline{\mathrm{B.D}}$

Exercice 2 (4 points)

1. Donnez la première forme canonique des expressions ci-dessous.

Expression Première forme canonique	
$A.B.C + A.\overline{B}$	$A.B.C + A.\overline{B}.C + A.\overline{B}.\overline{C}$
$(\overline{A} + \overline{C}).(A + C + \overline{D}).B.\overline{C}$	$\overline{A}.B.\overline{C}.\overline{D} + A.B.\overline{C}.D + A.B.\overline{C}.\overline{D}$

2. Donnez la seconde forme canonique des expressions ci-dessous.

Expression	Seconde forme canonique	
$(A+C).(\overline{A}+B+C)$	$(A + B + C).(A + \overline{B} + C).(\overline{A} + B + C)$	
A+B.C	$(A + B + C).(A + B + \overline{C}).(A + \overline{B} + C)$	

Exercice 3 (6 points)

Remplissez les diagrammes de Karnaugh ci-dessous (**bulles incluses**) et donnez leurs expressions les plus simplifiées. **Aucun point ne sera attribué à une expression si son tableau est faux.**

- 3. Soit *N* un nombre binaire codé sur 3 bits (*C*, *B*, *A*). *A* est le bit de poids faible.
 - S1 = 1 pour N = 1, 3, 4, 5
 - S2 = 1 pour N = 0, 2, 4, 5, 6, 7

		BA					
	S1	00	01	11	10		
•	0	0	1	1	0		
C	1	1	1	0	0		

$$S1 = \overline{C}.A + C.\overline{B}$$

		BA					
	S2	00	01	11	10		
C	0	1	0	0	1		
C	1	1	1	1	1		

$$S2 = \overline{A} + C$$

- 4. Soit *N* un nombre binaire codé sur 4 bits (*D*, *C*, *B*, *A*). *A* est le bit de poids faible.
 - S3 = 1 pour N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15

RA

- S4 = 1 pour N = 0, 1, 4, 6, 8, 9, 12, 14
- S5 = 1 pour N = 0, 2, 8, 10 et S5 n'est pas définie pour N = 5, 7, 13, 15
- S6 = 1 pour N = 2, 6 et S6 n'est pas définie pour N = 0, 1, 4, 5, 8, 9, 12, 13

		D /1					
	S3	00	01	11	10		
DC	00	1	1	1	1		
	01	1	1	1	1_		
	11	0	1	1	0		
	10	0	1	1	0		

$$S3 = \overline{D} + A$$

	2.1					
S4	00	01	11	10		
00	1	1	0	0		
01	1	0	0	1		
11	1	0	0	1		
10	$\sqrt{1}$	1	0	0		

BA

$$S4 = \overline{C}.\overline{B} + C.\overline{A}$$

DC

DC

	D/ I					
S5	00	01	11	10		
00	1	0	0	1		
01	0	Ф	Ф	0		
11	0	Ф	Ф	0		
10	1	0	0	1		

RΔ

$$S5 = \overline{C}.\overline{A}$$

	BA						
S6	00	01	11	10			
00	Ф	Φ	0	1			
01	Φ	Φ	0	1			
11	Ф	Φ	0	0			
10	Ф	Φ	0	0			

$$S6 = \overline{D}.\overline{A}$$

DC

Exercice 4 (3 points)

Quatre responsables d'une société (A, B, C et D) peuvent avoir accès à un coffre. Ils possèdent chacun une clé différente. Il a été convenu que :

- A ne peut ouvrir le coffre que si au moins un des responsables B ou C est présent ;
- B, C et D ne peuvent l'ouvrir que si au moins deux des autres responsables sont présents.
- 1. Dans la table de vérité ci-dessous, on considère que :
 - A = 0 signifie que A est absent (idem pour B, C et D);
 - A = 1 signifie que A est présent (idem pour B, C et D);
 - S = 0 signifie que le coffre ne peut pas être ouvert ;
 - S = 1 signifie que le coffre peut être ouvert.

Complétez la table de vérité.

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Donnez l'expression la plus simplifiée de S (pas de parenthèse dans le résultat).

$$S = A.B + A.C + B.C.D$$

Exercice 5 (2 points)

On souhaite réaliser un circuit qui compare 2 bits. Il comporte :

Entrées : A et B (bits à comparer).

Sorties: 'A > B', 'A = B' et 'A < B' avec:

- 'A > B' = $1 \sin A > B$;
- 'A = B' = 1 ssi A = B;
- 'A < B' = 1 ssi A < B.
- 1. Remplissez la table de vérité suivante.

Α	В	'A > B'	'A = B'	'A < B'
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

2. Donnez les expressions les plus simplifiées des sorties. **Vous utiliserez le OU EXCLUSIF si cela est possible.**

$'A > B' = A.\overline{B}$	$'\mathbf{A} = \mathbf{B}' = \overline{\mathbf{A} \oplus \mathbf{B}}$	$'A < B' = \overline{A}.B$
----------------------------	---	----------------------------

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.