Matrix Multiplication Assignment (Dynamic Programming) Due: December 5, 2016

Given n matrices and their dimensions, write a function to determine the associative order of multiplication that minimizes the number of numeric multiplications required. As we know, if two matrices A and B have dimensions $r_A \times c_A$ and $r_B \times c_B$, multiplication is possible iff $c_A = r_B$. If this condition holds, the cost (number of numeric multiplications) is $r_A \times r_B \times c_B$ (or equivalently, $r_A \times c_A \times c_B$). Then, for example, if we have four matrices A, B, C and D, having dimensions 2×10 , 10×5 , 5×1 and 1×7 , respectively, computing (AB)(CD) requires 205 multiplications, whereas computing (A(BC))D requires only 84 multiplications. Since returning merely a number gives us no clue as to how to achieve it, your function will return the associative order of multiplication as a string containing only asterisks and parentheses, with the asterisks as placeholders for the matrices, and the parentheses indicating the multiplicative grouping. For example, "(*(***)) *" (quotes not included!) would indicate $(A_0(A_1A_2))A_3$. Specifically, your function's signature is

string matmul(const VI& d)

where d is an (n+1)-element vector such that the i^{th} matrix has dimensions $d[i] \times d[i+1]$.

The number of matrices, n satisfies $3 \le n \le 1000$, and each matrix dimension d[i] satisfies $1 \le d[i] \le 1000$.