Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (УНИВЕРСИТЕТ ИТМО)

Факультет «Систем управления и робототехники»

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3

По дисциплине «Частотные методы» на тему: «Жесткая фильтрация»

Студент: Охрименко Ева

Преподаватели: Догадин Егор Витальевич Пашенко Артем Витальевич

> г. Санкт-Петербург 2025

Содержание

1	Task. Жесткие фильтры			
	1.1	Крати	кое условие	4
	1.2		аем высокие частоты	6
		1.2.1	Предподготовка	2
		1.2.2	Фиксирую b	
		1.2.3	Вывод	Ę
		1.2.4	Фиксирую $ u_0$	Ę
		1.2.5	Вывод	7
	1.3	Убира	аем специфические частоты	8
		1.3.1	Предподготовка	
		1.3.2	Случай, когда $b=0$	
		1.3.3	Остальные случаи	
		1.3.4	Выводы по пунктам 1.3.2 и 1.3.3	11
	1.4	_	аем низкие частоты?	
		1.4.1	Предподготовка	12
		1.4.2	Графики	
		1.4.3	Выводы	
2	Tasl	k. Фил	тьтрация звука	16
			кое условие	

1 Task. Жесткие фильтры

1.1 Краткое условие

Рассмотрите функцию g(t), заданную как:

$$g(t) = \begin{cases} a, & t \in [t_1, t_2], \\ 0, & t \notin [t_1, t_2], \end{cases}$$

и её зашумлённую версию:

$$u(t) = g(t) + b\xi(t) + c\sin(dt),$$

где $\xi(t) \sim U[-1,1]$ — белый шум, а b,c,d — параметры.

- При c=0 найдите Фурье-образ u(t), обнулите его вне $[-\nu_0,\nu_0]$ и выполните обратное преобразование. Исследуйте влияние ν_0 и b.
- При ненулевых b, c, d обнулите Фурье-образ на выбранных частотах, подавляя шум и гармонику. Исследуйте влияние параметров.
- бнулите Фурье-образ в окрестности $\nu = 0$, пропустите сигнал через фильтр и оцените результат.

Ожидаемые результаты:

Графики исходного, зашумлённого и фильтрованного сигналов, а также их Фурье-образов. Выводы по каждому пункту.

1.2 Убираем высокие частоты

1.2.1 Предподготовка

Для начала выберу все нужные параметры для этого задания:

$$a = 4, t_0 = 0, t_1 = 3, c = 0, d = 5, b = 0.5$$

Тогда у меня получится прямоугольная функция:

$$g(t) = \begin{cases} 4, & t \in [0,3], \\ 0, & t \notin [0,3], \end{cases}$$

Теперь посмотрим, какая функция белого шума получилась:

$$u(t) = g(t) + 0.5\xi(t) + 0\sin(dt),$$

где $\xi(t) \sim U[-1,1]$ — равномерное распределение на интервале [-1,1].

Слагаемое с синусом отсутствует, поэтому колебаний у шума также не будет.

Теперь посмотрим на график функций g(t) и u(t):

Рис. 1: График g(t) и u(t)

Дальше в задании нужно найти фурье-образ u(t), обнулить его значение на диапазоне $[-\nu_0, \nu_0]$ и восстановить сигнал с помощью обратного преобразования фурье.

1.2.2 Фиксирую b

Для начала выберем значения $\nu_0=0.5$ и b=0.5. Теперь посмотрим на график получившегося отфильтрованного сигнала при этих значениях. Также я приведу графики модулей фурье образов сигнала g(t), зашумленного сигнала u(t) и отфильтрованного сигнала.

Рис. 2: Графики при $\nu_0 = 0.5$ и b = 0.5

Внизу можно заметить 2 бегунка, с помощью которых можно менять параметры. В этой части задания я зафиксирую параметр b=0.5 и буду исследовать влияние на поведение функций параметра ν_0 . Выберу несколько $\nu_0=\{\,1,1.5,3,10\,\}$ и отрисую графики:

Рис. 3: Графики при $\nu_0 = 1$ и b = 0.5

Рис. 4: Графики при $\nu_0=1.5$ и b=0.5

Рис. 5: Графики при $\nu_0=3$ и b=0.5

Рис. 6: Графики при $\nu_0 = 10$ и b = 0.5

1.2.3 Вывод

- С увеличением ν_0 изменялось количество колебаний отфильтрованного сигнала. Число гармоник увеличивалось, однако при большем значении ν_0 не всегда удавалось получить хорошо отфильтрованный сигнал. Наиболее удачным оказался график при параметрах $\nu_0 = 3$ и b = 0.5. На этом графике форма отфильтрованного сигнала практически идеально совпадает с исходной, а шум удалён наиболее эффективно.
- Можно заметить, что графики модулей Фурье-образов отфильтрованного сигнала и шума совпадают при всех выбранных значениях ν_0 . Теперь обратим внимание на синюю линию модуль Фурье-образа. С увеличением ν_0 синий график постепенно начинает совпадать с остальными, практически полностью повторяя их форму. Это означает, что при увеличении частоты среза ν_0 фильтр пропускает больше частот, что приводит к лучшему сохранению формы сигнала.

1.2.4 Фиксирую ν_0

Для этого задания выберу несколько значений $b = \{0, 0.5, 1, 2\}$, чтобы исследовать поведение графиков при фиксированном значении $\nu_0 = 3$. Это значение было выбрано, поскольку ранее мне показалось, что при этом значении сигнал хорошо фильтруется. Ниже рассмотрим эти графики:

Рис. 7: Графики при $\nu_0=3$ и b=0

Рис. 8: Графики при $\nu_0=3$ и b=0.5

Рис. 9: Графики при $\nu_0=3$ и b=1

Рис. 10: Графики при $\nu_0=3$ и b=2

1.2.5 Вывод

- При увеличении *b* увеличивается шум, а также растет амплитуда колебаний синего графика. То есть чем больше шум, тем больше помех в отфильтрованном сигнале . Идеальным графиком будет первый, поскольку шума совсем нет, соответственно мы фактически фильтруем не зашумленный сигнал, а идеальный.
- ullet Спектр отфильтрованного сигнала близок к спектру g(t), но остаются небольшие шумовые компоненты. Различия между модулями фурье-образов слабо заметны при моих параметрах b.

1.3 Убираем специфические частоты

1.3.1 Предподготовка

Для этого задания выберу параметры функций:

$$a = 4, t_0 = 0, t_1 = 3, c = 1, d = 2, b = 0.5$$

Значение частоты я выберу $\nu_0=0.5$. Стоит указать, что это только начальные значения и в ходе этого задания я буду их менять, чтобы посмотреть, как это отображается на графике.

У меня получатся следующие функции:

$$g(t) = \begin{cases} 4, & t \in [0, 3], \\ 0, & t \notin [0, 3], \end{cases}$$

$$u(t) = g(t) + 0.5\xi(t) + \sin(2t),$$

где $\xi(t) \sim U[-1,1]$ — равномерное распределение на интервале [-1,1]. Отрисую график для выбранных значений:

Рис. 11: Графики при $b=0.5,\, c=1,\, d=1$ и $\nu_0=3$

В отличие от предыдущего пункта можно заметить, что шум пошел по синусоиде.

В этом задании нужно сделать совмещенный фильтр - он убирает не только низкие частоты, но и гармонические колебания. Алгоритм задания такой же, как и описыватся в пункте 1.1.1.

Также отмечу, что, поскольку нужно исследовать довольно много меняющихся параметров в этом задании, я приведу несколько показательных случаев в следующих пунктах и отражу влияние компонент в выводе.

1.3.2 Случай, когда b=0

Отдельно рассмотрю случай, когда b = 0. Вот несколько графиков

Рис. 12: Графики при $b=0,\, c=2.5,\, d=0.1$ и $\nu_0=4$

Рис. 13: Графики при $b=0,\, c=3,\, d=5$ и $\nu_0=0.75$

Рис. 14: Графики при $b=0,\,c=2,\,d\approx 1$ и $\nu_0=3$

1.3.3 Остальные случаи

Приведу графики, когда $b \neq 0$:

Рис. 15: Графики при $b=2,\,c=0.75,\,d\approx 5$ и $\nu_0=1$

Рис. 16: Графики при $b=0,\, c=3,\, d=5$ и $\nu_0=0.75$

Рис. 17: Графики при $b=1,\, c=2,\, d=2$ и $\nu_0=7$

1.3.4 Выводы по пунктам 1.3.2 и 1.3.3

Много раз поменяв параметры b, c, d и $\nu_0,$ я пришла к следующим выводам:

- Параметр b: Чем больше значение b, тем больше шума накладывается на сигнал. Это связано с тем, что b определяет амплитуду шума.
- \bullet Параметр c: Увеличение c приводит к увеличению амплитуды колебаний зашумлённой функции. Также c влияет на количество колебаний шума, делая их более частыми или редкими.
- Параметр d: Увеличение d приводит к увеличению частоты гармонической составляющей шума, что делает колебания более частыми.

• Параметр ν_0 : Чем больше частота среза ν_0 , тем больше колебаний сохраняется в отфильтрованном сигнале. Это связано с тем, что фильтр пропускает больше высокочастотных компонент.

На графиках заметно, что совмещенный фильтр эффективно работает при присутствии колебаний в зашумленной функциии.

1.4 Убираем низкие частоты?

1.4.1 Предподготовка

Для начала в этом задании я выберу такие функции:

$$g(t) = \begin{cases} 4, & t \in [0, 3], \\ 0, & t \notin [0, 3], \end{cases}$$

$$u(t) = g(t) + 0.5\xi(t) + \sin(2t),$$

где $\xi(t) \sim U[-1,1]$ — равномерное распределение на интервале [-1,1].

И пропущу функцию u(t) через фильтр, который обнуляет фурье-образ в окресности точки v=0

1.4.2 Графики

Изображу график для выбранных ранее параметров:

Рис. 18: Графики при $b=0.5,\, c=1,\, d=2$ и $\Delta v=0.5$

Далее буду менять окрестность точки v - $\Delta v = \{0,1\}$ для трех наборов параметров b, c, d, которые будут отражены внизу рисунка.

Рис. 19: Графики при $b=0.5,\,c=1,\,d=2$ и $\Delta v=0$

Рис. 20: Графики при $b=0.5,\, c=1,\, d=2$ и $\Delta v=1$

Рис. 21: Графики при $b=0.3,\,c=2,\,d\approx 1$ и $\Delta v=0$

Рис. 22: Графики при $b=0.3,\,c=2,\,d\approx 1$ и $\varDelta v=1$

Рис. 23: Графики при $b=1,\,c\approx 3.5,\,d=5$ и $\Delta v=0$

Рис. 24: Графики при $b=1,\,c\approx 3.5,\,d=5$ и $\Delta v=1$

1.4.3 Выводы

- На графиках видно, что при разных значениях частот среза изменяется степень фильтрации и форма сигнала.
- Фильтр успешно подавляет низкочастотные компоненты сигнала, что видно по изменению формы отфильтрованного сигнала и его Фурье-образа. Низкочастотные компоненты вблизи ν практически отсутствуют после фильтрации.
- Однако данный фильтр не является идеальным решением. Подавление низких частот в сигнале может быть не всегда целесообразным, так как низкочастотные компо-

ненты часто содержат полезную информацию. Кроме того, шум в высокочастотной области сигнала сохраняется, что может ухудшить качество обработки.

Таким образом, проведенный анализ подтверждает, что фильтр низких частот эффективно справляется с задачей подавления низкочастотных компонент сигнала, но его использование может быть ограничено из-за сохранения шума и возможного искажения полезной информации.

2 Task. Фильтрация звука

2.1 Краткое условие