定理 2.6 < S , * > を半群とする。S が有限集合であるとき , a*a=a となる S のある要素 a が存在する。

【証明】

< S , * > は半群であるから , * は閉じた演算である。 S の任意の要素b に対して , $b^2 = b * b \in S$, $b^3 = b^2 * b = b * b^2 \in S$, ... , $b^{m+1} = b^m * b = b * b^m \in S$ 。 S は有限集合であるから , ある j > i が存在して , $b^j = b^i$ が成り立つ。 p = j - i とすると , $b^i = b^p * b^i$ 。 ゆえに , 任意の $q \ge i$ に対して , $b^q = b^p * b^q$ が成り立 つ。 $p = j - i \ge 1$ であるから , $kp \ge i$ となるような $k \ge 1$ が存在する。よって , S の要素 b^{kp} に対して , $b^{kp} = b^p * b^{kp}$ $= b^p * (b^p * b^{kp})$ $= b^{2p} * (b^p * b^{kp})$ $= b^{2p} * (b^p * b^{kp})$ $= b^{3p} * b^{kp}$

 $=b^{kp}*b^{kp}$ である。

 b^{kp} を a とすると , a*a=a が成り立つ。