Loan Data

Introduction

This data set contains 113,937 loans with 81 variables on each loan, including loan amount, borrower rate (or interest rate), current loan status, borrower income, and many others. The aim of the data analysis is to provide a graphical summary of important features of the data set and predicting the Loan outcome in the dataset.

Columns Description

<u>Click here (https://docs.google.com/spreadsheets/d/1gDyi_L4UvIrLTEC6Wri5nbaMmkGmLQBk-Yx3z0XDEtI/edit#gid=0)</u>

Out[3]:

	ListingKey	ListingNumber	ListingCreationDate	CreditGrade	Term	LoanStatı
0	1021339766868145413AB3B	193129	2007-08-26 19:09:29.263000000	С	36	Complete
1	10273602499503308B223C1	1209647	2014-02-27 08:28:07.900000000	NaN	36	Curre
2	0EE9337825851032864889A	81716	2007-01-05 15:00:47.090000000	HR	36	Complete
3	0EF5356002482715299901A	658116	2012-10-22 11:02:35.010000000	NaN	36	Curre
4	0F023589499656230C5E3E2	909464	2013-09-14 18:38:39.097000000	NaN	36	Curre

5 rows × 81 columns

In [4]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 113937 entries, 0 to 113936
Data columns (total 81 columns):

Data	COTUMNIS (COCAT OF COTUMNIS).		
#	Column	Non-Null Count	Dtype
0	ListingKey	113937 non-null	object
1	ListingNumber	113937 non-null	int64
2	ListingCreationDate	113937 non-null	object
3	CreditGrade	28953 non-null	object
4	Term	113937 non-null	int64
5	LoanStatus	113937 non-null	object
6	ClosedDate	55089 non-null	object
7	BorrowerAPR	113912 non-null	float64
8	BorrowerRate	113937 non-null	float64
9	LenderYield	113937 non-null	float64
10	EstimatedEffectiveYield	84853 non-null	float64
11	EstimatedLoss	84853 non-null	float64
12	EstimatedReturn	84853 non-null	float64
13	ProsperRating (numeric)	84853 non-null	float64
14	ProsperRating (Alpha)	84853 non-null	object
15	ProsperScore	84853 non-null	float64
16	ListingCategory (numeric)	113937 non-null	int64
17	BorrowerState	108422 non-null	object
18	Occupation	110349 non-null	object
19	EmploymentStatus	111682 non-null	object
20	EmploymentStatusDuration	106312 non-null	float64
21	IsBorrowerHomeowner	113937 non-null	bool
22	CurrentlyInGroup	113937 non-null	bool
23	GroupKey	13341 non-null	object
24	DateCreditPulled	113937 non-null	object
25	CreditScoreRangeLower	113346 non-null	float64
26	CreditScoreRangeUpper	113346 non-null	float64
27	FirstRecordedCreditLine	113240 non-null	object
28	CurrentCreditLines	106333 non-null	float64
29	OpenCreditLines	106333 non-null	float64
30 21	TotalCreditLinespast7years	113240 non-null	float64
31	OpenRevolvingAccounts	113937 non-null	int64
32	OpenRevolvingMonthlyPayment	113937 non-null	float64
33	InquiriesLast6Months	113240 non-null	float64
34 25	TotalInquiries	112778 non-null	float64
35 26	CurrentDelinquencies	113240 non-null	float64
36 27	AmountDelinquent	106315 non-null 112947 non-null	float64
37	DelinquenciesLast7Years	113240 non-null	float64
38	PublicRecordsLast10Years PublicRecordsLast12Months		float64
39 40		106333 non-null 106333 non-null	float64
40	RevolvingCreditBalance		float64
41	BankcardUtilization AvailableBankcardCredit	106333 non-null	float64
42		106393 non-null	float64
43	TotalTrades	106393 non-null	float64
44	TradesNeverDelinquent (percentage)	106393 non-null	float64
45 46	TradesOpenedLast6Months	106393 non-null	float64
46 47	DebtToIncomeRatio	105383 non-null	float64
47	IncomeRange	113937 non-null	object
48	IncomeVerifiable	113937 non-null	bool
49 50	StatedMonthlyIncome	113937 non-null	float64
50	LoanKey	113937 non-null	object

+/2020		exploratory - Jupyter Noteb	OOK
51	TotalProsperLoans	22085 non-null	float64
52	TotalProsperPaymentsBilled	22085 non-null	float64
53	OnTimeProsperPayments	22085 non-null	float64
54	ProsperPaymentsLessThanOneMonthLate	22085 non-null	float64
55	ProsperPaymentsOneMonthPlusLate	22085 non-null	float64
56	ProsperPrincipalBorrowed	22085 non-null	float64
57	ProsperPrincipalOutstanding	22085 non-null	float64
58	ScorexChangeAtTimeOfListing	18928 non-null	float64
59	LoanCurrentDaysDelinquent	113937 non-null	int64
60	LoanFirstDefaultedCycleNumber	16952 non-null	float64
61	LoanMonthsSinceOrigination	113937 non-null	int64
62	LoanNumber	113937 non-null	int64
63	LoanOriginalAmount	113937 non-null	int64
64	LoanOriginationDate	113937 non-null	object
65	LoanOriginationQuarter	113937 non-null	object
66	MemberKey	113937 non-null	object
67	MonthlyLoanPayment	113937 non-null	float64
68	LP_CustomerPayments	113937 non-null	float64
69	LP_CustomerPrincipalPayments	113937 non-null	float64
70	LP_InterestandFees	113937 non-null	float64
71	LP_ServiceFees	113937 non-null	float64
72	LP_CollectionFees	113937 non-null	float64
73	LP_GrossPrincipalLoss	113937 non-null	float64
74	LP_NetPrincipalLoss	113937 non-null	float64
75	LP_NonPrincipalRecoverypayments	113937 non-null	float64
76	PercentFunded	113937 non-null	float64
77	Recommendations	113937 non-null	int64
78	InvestmentFromFriendsCount	113937 non-null	int64
79	InvestmentFromFriendsAmount	113937 non-null	float64
80	Investors	113937 non-null	int64

dtypes: bool(3), float64(50), int64(11), object(17)

memory usage: 60.7+ MB

Checking for Null Values

```
In [5]:

fig, ax = plt.subplots(figsize = (20,8))
ax = sns.heatmap(df.isnull(), vmin=0, vmax = 1)
```


Checking for Duplicate Values

```
In [6]:

df[df.duplicated()]
```

Out[6]:

ListingKey ListingNumber ListingCreationDate CreditGrade Term LoanStatus ClosedDate

0 rows × 81 columns

The above result shows no duplicate value is present

Renaming columns

```
In [7]:

df.rename(columns={'ListingCategory (numeric)' : 'ListingCategory_Numeric','ProsperRating (
```

In [8]: ▶

```
In [9]: ▶
```

df_raw=df[column]
df_raw.head(3)

Out[9]:

	ListingNumber	LoanStatus	EstimatedEffectiveYield	BorrowerAPR	BorrowerRate	ProsperRati
0	193129	Completed	NaN	0.16516	0.158	
1	1209647	Current	0.0796	0.12016	0.092	
2	81716	Completed	NaN	0.28269	0.275	

3 rows × 22 columns

Removing data having null Values

In [10]:

loan=df_raw.dropna()

Testing:

In [11]:

loan.head()

Out[11]:

	ListingNumber	LoanStatus	EstimatedEffectiveYield	BorrowerAPR	BorrowerRate	ProsperRati
1	1209647	Current	0.07960	0.12016	0.0920	
3	658116	Current	0.08490	0.12528	0.0974	
4	909464	Current	0.18316	0.24614	0.2085	
5	1074836	Current	0.11567	0.15425	0.1314	
6	750899	Current	0.23820	0.31032	0.2712	

5 rows × 22 columns

In [12]:

loan.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 76216 entries, 1 to 113936

Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	ListingNumber	76216 non-null	int64
1	LoanStatus	76216 non-null	object
2	EstimatedEffectiveYield	76216 non-null	float64
3	BorrowerAPR	76216 non-null	float64
4	BorrowerRate	76216 non-null	float64
5	ProsperRating_Numeric	76216 non-null	float64
6	ProsperRating_Alpha	76216 non-null	object
7	ProsperScore	76216 non-null	float64
8	EmploymentStatus	76216 non-null	object
9	Occupation	76216 non-null	object
10	EmploymentStatusDuration	76216 non-null	float64
11	IsBorrowerHomeowner	76216 non-null	bool
12	IncomeVerifiable	76216 non-null	bool
13	StatedMonthlyIncome	76216 non-null	float64
14	MonthlyLoanPayment	76216 non-null	float64
15	Recommendations	76216 non-null	int64
16	DebtToIncomeRatio	76216 non-null	float64
17	LoanOriginalAmount	76216 non-null	int64
18	PercentFunded	76216 non-null	float64
19	IncomeRange	76216 non-null	object
20	Investors	76216 non-null	int64
21	BorrowerState	76216 non-null	object
dtyp	es: bool(2), float64(10),	int64(4), object	(6)

dtypes: bool(2), +loat@memory usage: 10.6+ MB

In [13]: H

loan.describe()

Out[13]:

	ListingNumber	EstimatedEffectiveYield	BorrowerAPR	BorrowerRate	ProsperRating_Num
count	7.621600e+04	76216.000000	76216.000000	76216.000000	76216.000
mean	7.737463e+05	0.166738	0.223901	0.193621	4.132
std	2.344166e+05	0.067595	0.079372	0.074088	1.661
min	4.162750e+05	-0.181600	0.045830	0.040000	1.000
25%	5.603650e+05	0.114800	0.161570	0.134900	3.000
50%	7.425500e+05	0.157670	0.215660	0.184500	4.000
75%	9.747142e+05	0.219000	0.287800	0.254900	5.000
max	1.255149e+06	0.319900	0.423950	0.360000	7.000

Univariate Exploration

Loan Status

In [14]:
loan.LoanStatus.value_counts()

Out[14]:

Current	51170
Completed	17687
Chargedoff	4444
Defaulted	885
Past Due (1-15 days)	714
Past Due (31-60 days)	322
Past Due (91-120 days)	277
Past Due (61-90 days)	275
Past Due (16-30 days)	241
FinalPaymentInProgress	187
Past Due (>120 days)	14
Name: LoanStatus, dtype:	int64

In [15]:

```
counts = loan["LoanStatus"].value_counts().sort_values()
plt.barh(counts.index, counts.values);
```


The above graph shows loan status of maximum people is "current".

Loan Amount

In [16]: ▶

```
plt.hist(loan.LoanOriginalAmount,bins=np.arange(0,40000,4000))
plt.title("Original Amount vs No. of people")
plt.ylabel("No. of people")
plt.xlabel("Loan Amount");
```


The above graph shows Loan amount is usually between 0-15000. Maximum no. of people have loan amount in the range (approx) 4000-7500.

The Borrower's Annual Percentage Rate

In [17]: ▶

```
plt.hist(loan.BorrowerAPR,bins=np.arange(0.04,0.45,0.01))
plt.title("The Borrower's Annual Percentage Rate");
plt.ylabel("No. of people")
plt.xlabel("Rate");
```


The borrower percentage rate varies most commonly between 0.12 -036. The most common rate being 0.35-0.36.

Borrower Debt / Income

```
In [18]:
```

```
base_color = sns.color_palette()[1]
sns.distplot(loan.DebtToIncomeRatio, bins = 100)
plt.xlim(-0.1, 1)
plt.xlabel('Debt to Income Ratio')
plt.ylabel('No. of people')
plt.title('Borrower Debt / Income');
```


The Borrower's interest rate

```
In [19]:

plt.hist(data = loan, x = 'BorrowerRate')
plt.xlabel('Interest Rate')
plt.ylabel('No. of people')
plt.title("The Borrower's interest rate");
```


The borrowers interest rate varies mostly between 0.7-0.32

Prosper Score

The score ranges from 1-10, with 10 being the best, or lowest risk score.

In [20]: ▶

```
ax = plt.subplots()
counts = loan["ProsperScore"].value_counts().sort_values()
plt.bar(counts.index, counts.values)
plt.xlabel('Prosper score')
plt.ylabel('No. of people')
plt.title('Prosper Score');
```


The graph shows the borrowers are almost equally distributed, having both high as well as low risk borrowers.

Prosper Rating Alpha

(0 - N/A, 1 - HR, 2 - E, 3 - D, 4 - C, 5 - B, 6 - A, 7 - AA.)

In [21]: ▶

```
base_color = sns.color_palette()[0]
plt.figure(figsize=(7, 4))
sns.countplot(data=loan,x="ProsperRating_Alpha",order=["A","AA","B","C","D","E","HR"],color
plt.xlabel('Prosper rating')
plt.ylabel('No. of people')
plt.title('Prosper Rating');
```


The common prosper ratings are C,B and A respectively which is quite good. But HR also has reasonable number which cannot be ignored

Prosper Rating (Numeric)

(0 - N/A, 1 - HR, 2 - E, 3 - D, 4 - C, 5 - B, 6 - A, 7 - AA.)

In [22]:

```
plt.figure(figsize=(7, 4))
counts = loan["ProsperRating_Numeric"].value_counts().sort_values()
plt.bar(counts.index, counts.values)
plt.xlabel('Prosper rating')
plt.ylabel('No. of people')
plt.title('Prosper Rating');
```


The most common prosper rating is 4. But even borrowers with rating 1 are present.

Employment Status Of Borrower

In [23]: ▶

loan.EmploymentStatus.value_counts()

Out[23]:

Employed	65883
Full-time	7577
Other	2194
Retired	320
Part-time	199
Self-employed	42
Not employed	1

Name: EmploymentStatus, dtype: int64

In [24]: ▶

Most of the people who took loans are employed.

Homeowner?

In [25]: ▶

loan['IsBorrowerHomeowner'].value_counts().plot(kind='bar', figsize=[4,6],);

More people are houseowners.

Income of borrower

```
In [26]:
loan.IncomeRange.value_counts()
```

Out[26]:

```
$50,000-74,999 23692

$25,000-49,999 21421

$100,000+ 13977

$75,000-99,999 13547

$1-24,999 3578

Not employed 1
```

Name: IncomeRange, dtype: int64

In [27]: ▶

```
counts = loan["IncomeRange"].value_counts()
plt.barh(counts.index, counts.values)
plt.title("Distribution of Borrower's Income");
```


Most of the borrowers have income in the range 50,000-74,999 and 25,000-49,999 respectively

Monthly Income

In [28]: ▶

```
loan_sub = loan[loan['StatedMonthlyIncome'] <= 20000]
bin_edges = np.arange(0, loan_sub['StatedMonthlyIncome'].max()+1000, 1000)
plt.hist(data =loan_sub, x = 'StatedMonthlyIncome', bins = bin_edges)
plt.xlabel('Income')
plt.ylabel('No. of people')
plt.title('Monthly Income');</pre>
```


Monthly Income is right skewed. The common range is 1000-7000 approximately.

Monthly Loan Payment

plt.title("Monthly Loan Payment");

```
In [29]:
bin_edges = np.arange(0, loan['MonthlyLoanPayment'].max()+200, 200)
plt.hist(data =loan,x = 'MonthlyLoanPayment',bins = bin_edges)
plt.xlabel('Monthly Loan Payment')
plt.ylabel('No. of people');
```


Monthly loan payment is right skewed, common range lies in 0-400.

Summary:

- · Loan status of maximum people is "current".
- Loan amount is usually between 0-15000. Maximum no. of people have loan amount in the range (approx) 4000-7500.
- The borrower percentage rate varies most commonly between 0.12 -036. The most common rate being 0.35-0.36.
- Frequent value Borrower Debt to Income Ratio lies in 0.1-0.3.
- The borrowers interest rate varies mostly between 0.7-0.32
- The borrowers are almost equally distributed, having both high as well as low risk borrowers.
- The common prosper ratings are C,B and A respectively which is quite good. But HR also has reasonable number which cannot be ignored
- The most common prosper rating is 4. But even borrowers with rating 1 are present.
- · Most of the people who took loans are employed.
- · More people are houseowners.
- Most of the borrowers have income in the range 50,000-74,999 and 25,000-49,999 respectively
- Monthly Income is right skewed. The common range is 1000-7000 approximately.
- Monthly loan payment is right skewed, common range lies in 0-400.

Bivariate Exploration

Prosper Score and Loan Amount

In [30]: ▶

```
plt.figure(figsize=[10,5])
sns.violinplot(data=loan, x='ProsperScore', y='LoanOriginalAmount',inner= None);
```


Loan status and borrower APR

In [31]:

```
sns.boxplot(data = loan, y='LoanStatus',x = 'BorrowerAPR');
```


Correlation between important numeric variables

In [32]:

x=['LoanOriginalAmount', 'Investors','StatedMonthlyIncome', 'MonthlyLoanPayment', 'Borrower
sns.heatmap(loan[x].corr(), annot = True, fmt = '.2f',cmap = "Greens", center = 0);

The figure shows correlation between different important factors. Postitive correlation is between Loanoriginalamount and monthlyloanpayment. Negative correaltion is between borrowerrate and loanoriginalamount, borrowerrate and prosper score

Borrower Interest Rate vs Prosper score

In [33]:
loan[["ProsperScore","BorrowerRate"]].corr()

Out[33]:

	ProsperScore	BorrowerRate
ProsperScore	1.00000	-0.65832
BorrowerRate	-0.65832	1.00000

```
In [34]:

sns.regplot(data = loan, x = 'ProsperScore', y ='BorrowerRate')
plt.xlabel('Prosper score')
plt.ylabel('Rate')
plt.title('Borrower Interest Rate-Prosper score');
```


The figure clearly shows that Borrower Interest Rate and Prosper score are inversely related to each other

Loan Amount vs Borrower Interest Rate

In [35]:
loan[["LoanOriginalAmount","BorrowerRate"]].corr()

Out[35]:

	LoanOriginalAmount	BorrowerRate
LoanOriginalAmount	1.00000	-0.40686
BorrowerRate	-0.40686	1.00000

```
In [36]:
```

```
sns.regplot(data = loan, x = 'LoanOriginalAmount', y ="BorrowerRate",scatter_kws = {'alpha'
plt.xlabel('Loan Amount')
plt.ylabel('Rate')
plt.title('Loan Amount-Borrower Interest Rate');
```


The figure clearly shows Loan Amount and Borrower Interest Rate are negatively correlated.

ProsperScore and Employment Status

```
In [37]:

loan_df= loan[loan['IncomeRange'] != 'Not employed']
plt.figure(figsize = [8, 6])
sns.boxplot(data = loan_df, x = 'EmploymentStatus', y = 'ProsperScore');
plt.title('ProsperScore and Employment Status');
```

In [68]: ▶

```
plt.figure(figsize = [8, 6])
sns.violinplot(data = loan_df, y = 'EmploymentStatus', x = 'ProsperScore')
plt.title('ProsperScore and Employment Status');
```


Self employed have least prosper rating with some outliners present. Full time, part time and retired have high prosper rating.

Prosper Score and Income

In [69]: ▶

```
plt.figure(figsize = [8, 6])
base_color = sns.color_palette()[0]
sns.boxplot(data = loan_df, x = 'ProsperScore', y = 'IncomeRange', color = base_color);
plt.title('ProsperScore and Income Range');
```


People with income range 75,000-99,999 and 100,000+ have high prosper score. 75,000-99,999: q2:7 and q3:8 100,000: q2:7 and q3:9

In [40]: ▶

```
plt.figure(figsize = [12, 8])
sns.countplot(data = loan, y = 'LoanStatus', hue = 'IsBorrowerHomeowner')
plt.title('LoanStatus-HomeownerStatus');
```


Summary:

- Postitive correlation is between Loanoriginalamount and monthlyloanpayment. Negative correaltion is between borrowerrate and loanoriginalamount, borrowerrate and prosper score.
- Borrower Interest Rate and Prosper score are inversely related to each other. Borrowers with high prosper score get loan at lower annual percentage rate
- Loan Amount and Borrower Interest Rate are negatively correlated. Also loans of lesser amount is given at low annual percentage rate.
- Self employed have least prosper rating with some outliners present. Full time, part time and retired have high prosper rating. So full time employees get loan at a lesser rate as compared to others. Self-employed have to pay a high annual rate. Also full time employees gets loan easily whereas self-employed do not get loan easily.
- Prosper score affects the loan original amount.People with less prosper score have lesser loan amount than people with higher prosper score. Therefore it's easier to get high amount loan with higher prosper score
- People with income range 75,000-99,999 and 100,000+ have high prosper score. People with income > 75,000 get loan easily.
- Therefore people with higher income have higher prosper score and thereby they get high amount loans at a lower borrowerAPR.

Multivariable Exploration

Relation between LoanStatus-Loan Amount-Income Range

```
In [60]:

plt.figure(figsize = [12, 8])
x = sns.barplot(data = loan_df, x = 'IncomeRange', y = 'LoanOriginalAmount', hue = 'LoanSta
x.legend(loc=0, fontsize = 12, title = 'Loan Status')
plt.title(' LoanStatus-Loan Amount-Income Range');
```


Relation between Borrow Rate, BorrowerAPR and Prosper Rating

```
In [42]:
```

```
x = sns.FacetGrid(data = loan, hue = 'ProsperRating_Alpha', hue_order = ['AA','A','B','C','
x.map(sns.regplot,"BorrowerRate","BorrowerAPR", fit_reg = False);
plt.legend(fontsize = 10)
plt.title("Borrow Rate-BorrowerAPR-Prosper Rating");
```

c:\users\mridu\appdata\local\programs\python\python38-32\lib\site-package
s\seaborn\axisgrid.py:243: UserWarning: The `size` parameter has been ren
amed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

In [43]: ▶

```
loan_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 76215 entries, 1 to 113936
Data columns (total 22 columns):

ш	Columns (Cocal 22 Columns	•	Dtura
#	Column	Non-Null Count	Dtype
0	ListingNumber	76215 non-null	int64
1	LoanStatus	76215 non-null	object
2	EstimatedEffectiveYield	76215 non-null	float64
3	BorrowerAPR	76215 non-null	float64
4	BorrowerRate	76215 non-null	float64
5	ProsperRating_Numeric	76215 non-null	float64
6	ProsperRating_Alpha	76215 non-null	object
7	ProsperScore	76215 non-null	float64
8	EmploymentStatus	76215 non-null	object
9	Occupation	76215 non-null	object
10	EmploymentStatusDuration	76215 non-null	float64
11	IsBorrowerHomeowner	76215 non-null	bool
12	IncomeVerifiable	76215 non-null	bool
13	StatedMonthlyIncome	76215 non-null	float64
14	MonthlyLoanPayment	76215 non-null	float64
15	Recommendations	76215 non-null	int64
16	DebtToIncomeRatio	76215 non-null	float64
17	LoanOriginalAmount	76215 non-null	int64
18	PercentFunded	76215 non-null	float64
19	IncomeRange	76215 non-null	object
20	Investors	76215 non-null	int64
21	BorrowerState	76215 non-null	object
dtyp	es: bool(2), float64(10),	int64(4), object	_
	ry usage: 12.6+ MB		• •

High prosper rating has lesser Borrower rate and lesser borrower APR

Relation between ProsperRating_Alpha,Loan Amount and Income Range

In [59]: ▶

```
plt.figure(figsize = [12, 8])
x = sns.barplot(data = loan_df, x = 'IncomeRange', y = 'LoanOriginalAmount', hue = 'Prosper
x.legend(loc=0, fontsize = 12, title = 'Loan Status')
plt.title('ProsperRating_Alpha-Loan Amount-Income Range');
```


Income range 1-24,999 has large number of prosper rating as HR compared to the total borrowers in that range.

Relation between EmploymentStatus_Alpha,Loan Amount and Income Range

In [64]: ▶

```
plt.figure(figsize = [12 ,8])
x = sns.barplot(data = loan_df, x = 'IncomeRange', y = 'LoanOriginalAmount', hue = 'Employm
x.legend(loc=0, fontsize = 12, title = 'EmploymentStatus')
plt.title(' EmploymentStatus-Loan Amount-Income Range');
```


Employees with status 'Employed' and 'self-employed' take loans of larger amount. Employees with less income take loans of lesser total amount(Around 3000-5000)

Summary:

- High prosper rating has lesser Borrower rate and lesser borrower APR.So borrowers with high prosper rating get loans at a lesser rate and borrowerAPR
- Income range 100,000 + take loans with high original amount and have most common loan status as current.
- Income range 1-24,9999 takes low amount loans. Income Range 50,000-74,999 have most number of past due(>120 days) as status. Income range 1-24,999 has large number of prosper rating as HR compared to the total borrowers in that range. So employees having income in this range have lesser chance of getting loans of high amount.
- Employees with status 'Employed' and 'self-employed' take loans of larger amount. Employees with less income take loans of lesser total amount(Around 3000-5000)