

Depletion Mode MOSFET

IXTY01N100D IXTU01N100D IXTP01N100D

1000V **V**_{DSX}

 $R_{\scriptscriptstyle DS(on)} \leq$ Ω 08

N-Channel

Symbol	Test Conditions	Maximum F	Maximum Ratings		
V _{DSX}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$	1000	V		
V _{DGX}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	1000	V		
V _{GSX}	Continuous	±20	V		
\mathbf{V}_{GSM}	Transient	±30	V		
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm J}$	400	mA		
P _D	$T_{c} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	25 1.1	W		
T,		- 55 +150 150	°C °C		
T _{JM} T _{stg}		- 55 +150	°C		
T,	Maximum Lead Temperature for Soldering	300	°C		
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C		
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in.		
Weight	TO-252 TO-251 TO-220	0.35 0.40 3.00	g g g		

v	1000	1 _J = 25 0 to 150 0	DGX
\	±20	Continuous	V _{GSX}
\	±30	Transient	$V_{\rm GSM}$
m <i>A</i>	400	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm J}$	I _{DM}
W	25	T _c = 25°C	P _D
V	1.1	$T_A^{\circ} = 25^{\circ}C$	
°C	- 55 +150		T_{J}
°C	150		T _{JM}
°C	- 55 +150		T _{stg}
°C	300	Maximum Lead Temperature for Soldering	T _L
°C	260	1.6 mm (0.062in.) from Case for 10s	T _{SOLD}
Nm/lb.in	1.13 / 10	Mounting Torque (TO-220)	M _d
Ç	0.35	TO-252	Weight
ç	0.40	TO-251	_
ç	3.00	TO-220	

Symbol (T, = 25°C,	Test Conditions Unless Otherwise Specified)		Charac Min.	teristic Typ.	Values ⊢ Max	-
BV _{DSX}	$V_{GS} = -10V, I_{D} = 25\mu A$		1000			V
V _{GS(off)}	$V_{DS} = 25V, I_{D} = 25\mu A$		- 2.0		- 4.5	V
I _{GSX}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
DSX(off)	$V_{DS} = V_{DSX}, V_{GS} = -10V$	T _J = 125°C			10 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 0V$, $I_D = 50mA$, Note 1			50	80	Ω
l _{D(on)}	$V_{GS} = 0V, V_{DS} = 25V, Note 1$			400		mA

G = Gate D = Drain S = Source Tab = Drain

Features

- Normally ON Mode
- International Standard Packages
- Low R_{DS(on)} HDMOS™ Process
 Rugged Polysilicon Gate Cell Structure
- · Fast Switching Speed

Advantages

- · Easy to Mount
- Space Savings
- High Power Density

Applications

- · Level Shifting
- Triggers
- Solid State Relays
- · Current Regulators

Symbol Test Conditions Chara (T = 25°C, Unless Otherwise Specified) Min.			ncteristic Values Typ. Max.		
(1, - 20	, 0, 0	The 33 Other Wise Openheu)		Typ.	Wax.
\mathbf{g}_{fs}		$V_{DS} = 100V, I_{D} = 100mA, Note 1$	100	200	mS
C _{iss})			100	pF
\mathbf{C}_{oss}	}	$V_{GS} = -10V, V_{DS} = 25V, f = 1MHz$		12	pF
C _{rss}	J			2	pF
t _{d(on)})	Resistive Switching Times		7	ns
t _r	Ţ	$V_{GS} = \pm 5V, V_{DS} = 50V, I_{D} = 50mA$		10	ns
$\mathbf{t}_{d(off)}$	(34	ns
t,	J	$R_{\rm G} = 30\Omega$ (External)		64	ns
Q _{g(on)})			5.8	nC
\mathbf{Q}_{gs}	}	$V_{GS} = \pm 5V, V_{DS} = 500V, I_{D} = 50mA$		3.6	nC
\mathbf{Q}_{gd}	J			0.4	nC
R _{thJC}					5.0 °C/W
R _{thCS}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.	
V _{SD}	$I_F = 100 \text{mA}, V_{GS} = -10 \text{V}, \text{ Note 1}$			1.5	V
t	$I_F = 750 \text{mA}, -\text{di/dt} = 100 \text{A/} \mu \text{s}$			1.5	μs
ır	$V_{R} = 25V, V_{GS} = -10V$				

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 7. $R_{DS(on)}$ Normalized to I_D = 50mA Value

Fig. 9. Transconductance 350 $T_J = -40^{\circ}C$ $V_{DS} = 100V$ 25°C 300 125°C 250 gfs - MilliSiemens 150 100 0 50 100 150 200 250 I_D - MilliAmperes

IXYS Reserves the Right to Change Limits, Test Conditions, $\ \ \ \text{and} \ \ \ \ \ \text{Dimensions}.$

IXTY01N100D IXTU01N100D IXTP01N100D

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

IXTY01N100D IXTU01N100D IXTP01N100D

SYM	INCHES		MILLIM	MILLIMETERS	
21M	MIN	MAX	MIN	MAX	
Α	.086	.094	2.19	2,38	
A1	0	.005	0	0.12	
A2	.038	.046	0.97	1.17	
b	.025	.035	0.64	0.89	
b2 b3	.030	.045	0.76	1.14	
b3	.200	.215	5.08	5.46	
С	.018	.024	0.46	0.61	
c2	.018	.023	0.46	0.58	
D	.235	.245	5.97	6.22	
D1	.180	.205	4.57	5.21	
E	.250	.265	6.35	6.73	
E1	.170	.205	4.32	5.21	
е	.090 BSC		2,28	BSC	
e1	.180	BSC	4.57	BSC	
Н	.370	.410	9.40	10.42	
L	.055	.070	1.40	1.78	
L1	.100	.115	2.54	2.92	
L2	.020	BSC	0.50	BSC	
L3	.025	.040	0.64	1.02	
L4	.025	.040	0.64	1.02	
θ	0°	10°	0°	10°	

- NOTE: 1. This drawing comply JEDEC T0-252AA value except L3 dimension.
 2. All metal surface are tin plated except trimmed area.

TO-251 Outline

TO-220 Outline

SYM	INCH	IES .	MILLIN	1ETERS
2114	MIN	MAX	MIN	MAX
Α	.087	.094	2.20	2.40
A1	.032	.048	0.82	1.22
b	.026	.034	0.66	0.86
(b2)	.030	.038	0.76	0.96
b4	.198	.222	5.04	5.64
С	.018	.024	0.45	0.60
c2	.016	.024	0.40	0.60
D	,232	,248	5,90	6.30
(D1)	.179	.195	4.55	4.95
E	.252	.268	6.40	6.80
(E1)	.191	207،	4,85	5,25
е	.090	BSC	2.28 BSC	
e1	.180	BSC	4.57 BSC	
L	.358	.374	9.10	9.50
L1	.063	.079	1.60	2.00
L2	.020	.035	0.50	0.90

- NOTE: 1. ALL METAL AREA ARE MATTE PURE TIN PLATED EXCEPT TRIMMED AREA. 2. THESE DIMENSIONS DO NOT INCLUDE PROTRUSIONS OF THE MOLD.
 - 3. THE () MARK IS THE REFERENCE ONLY.

D D D D D D D D D D D D D D D D D D D	A1—1 (D2) A2 (E1) 3X b—1 — 3
	1 - Gate 2,4 - Drain 3 - Source

SYM	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
b2	.045	.057	1.15	1.45	
С	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
E	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100 BSC		2.54	BSC	
e1	.200 BSC		5.08	BSC	
H1	.244	.268	6.20	6.80	
Г	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	
)TE:					

1. All metal surface are matte pure tin plated except trimmed area.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.