Setul 12

de probleme și exerciții de matematică (relative la șiruri și serii de funcții reale)

S12.1 Pentru şirurile de funcții de mai jos, să se determine mulțimea de convergență punctuală și limita punctuală care corespunde fiecăruia dintre punctele respectivei mulțimi:

a)
$$(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}(\mathbb{R};\mathbb{R}), f_n(x) = \left(|\sin x|^n + |\cos x|^n + \left(\frac{\sqrt{2}}{2}\right)^n\right)^{1/n}, \forall n \in \mathbb{N}^*, x \in \mathbb{R};$$

b)
$$(f_n)_{n\geq 3} \subset \mathcal{F}([0,1];\mathbb{R}), \ f_n(x) = \left\{ \begin{array}{l} xn^{\alpha}, & \operatorname{dacă}\ x \in \left[0,\frac{1}{n}\right] \\ \left(\frac{2}{n}-x\right)n^{\alpha}, & \operatorname{dacă}\ x \in \left(\frac{1}{n},\frac{2}{n}\right] \ , \ n\geq 3, \alpha>0; \\ 0, & \operatorname{dacă}\ x \in \left(\frac{2}{n},1\right] \end{array} \right.$$

c)
$$(f_n)_{n\in\mathbb{N}^*}\subset \mathcal{F}((\mathbb{R}_+)^3;\mathbb{R}^3), f_n(x,y,z)=\left(\frac{ne^x+xe^{-x}}{x+n},\operatorname{arctg}(ny),\frac{1}{1+z^n}\right), \forall n\in\mathbb{N}^*, x,y,z\in\mathbb{R}_+;$$

d)
$$(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}(\mathbb{R};\mathbb{R}), f_n(x) = \frac{\sum_{k=1}^n [k^n x]}{n^{m+1}}, m \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, x \in \mathbb{R};$$

e)
$$(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}(\mathbb{R};\mathbb{R}), f_n(x) = \prod_{k=0}^n (1+x^{2^k}), \forall n \in \mathbb{N}^*, x \in \mathbb{R};$$

f)
$$(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}([0,1];\mathbb{R}^4), f_n(x) = \left(\frac{\ln(1+n^4x^2)}{2n}, x^n(1-x^n), n^2x^2e^{-n^2x^2}, \frac{n^3x}{1+n^4x^2}\right),$$

 $\forall n \in \mathbb{N}^*, x \in [0,1].$

S12.2 Ce se poate spune despre convergența uniformă a următoarelor șiruri de funcții?

a)
$$(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}(\mathbb{R};\mathbb{R}), f_n(x) = \frac{n - (x - 1)e^{nx}}{e^{nx} + n}, \forall n \in \mathbb{N}^*, x \in \mathbb{R};$$

b)
$$(f_n)_{n \in \mathbb{N}^*} \subset \mathcal{F}([1, +\infty); \mathbb{R}^2), f_n(x) = \left(\frac{x^n}{(1+x^{2n})^n}, \frac{\sin(n!x)}{n}\right), \forall n \in \mathbb{N}^*, x \in [1, +\infty);$$

c)
$$(f_n)_{n \in \mathbb{N}^*} \subset \mathcal{F}(A; \mathbb{R}), f_n(x, y) = \frac{nx - ny - 1}{(n - 1)x + (n + 1)y + 2}, \forall n \in \mathbb{N}^*, \forall (x, y) \in A = \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{1}{2} - y < x < y + 2 \right\};$$

d)
$$(f_n)_{n \in \mathbb{N}^*} \subset \mathcal{F}(A; \mathbb{R}^2), f_n(x, y) = \left(\frac{(\ln(xy))^{2n} - 2}{(\ln(xy))^{2n} + 2}, \frac{n(x^2 + y^2)}{x^2 + y^2 + n + 1}\right), \forall n \in \mathbb{N}^*,$$

$$\forall (x, y) \in A = \left\{(x, y) \in \mathbb{R}^2 \mid \frac{1}{3} \le xy \le 2\right\}.$$

S12.3

- a) Fie $A \subseteq \mathbb{R}$ şi $(f_n)_{n \in \mathbb{N}^*} \subset \mathcal{F}(A; \mathbb{R})$ aşa încât $f_n(x) \xrightarrow[n \to \infty]{} 0$, $\forall x \in A$. Să se arate că dacă există $x_0 \in A$ astfel încât $\lim_{x \to x_0} f_n(x) = c_n$, iar $c_n \nrightarrow 0$ pentru $n \to \infty$, atunci convergența şirului $(f_n)_{n \in \mathbb{N}^*}$ nu poate fi uniformă pe A.
- b) Să se calculeze limitele:

$$\lim_{x \searrow 0} \left(\lim_{\substack{n \to \infty \\ n \geq 2}} \left(n^2 \left(\sqrt[n]{x} - \sqrt[n+1]{x} \right) \right) \right), \lim_{\substack{n \to \infty \\ n \geq 2}} \left(\lim_{x \searrow 0} \left(n^2 \left(\sqrt[n]{x} - \sqrt[n+1]{x} \right) \right) \right),$$

$$\lim_{x \to 2} \left(\lim_{\substack{n \to \infty \\ n > 2}} \left(n^2 \left(\sqrt[n]{x} - \sqrt[n+1]{x} \right) \right) \right) \text{ si } \lim_{\substack{n \to \infty \\ n > 2}} \left(\lim_{x \to 2} \left(n^2 \left(\sqrt[n]{x} - \sqrt[n+1]{x} \right) \right) \right).$$

Să se explice faptul că primele două limite diferă, iar celelalte două nu.

- c) Ce se poate spune despre continuitatea funcției limită, în cazul șirului de funcții $(f_n)_{n\in\mathbb{N}^*} \subset \mathcal{F}(\mathbb{R};\mathbb{R})$, unde $f_n(x) = \frac{x^2}{1 + (2\sin x)^{2n}}, \forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}$?
- d) Să se arate că, deși șirul $(f_n)_{n\in\mathbb{N}^*}\subset \mathcal{F}(\mathbb{R};\mathbb{R})$, cu $f_n(x)=\frac{1}{n}\mathrm{arctg}(x^n)$, $\forall:n\in\mathbb{N}^*$, $x\in\mathbb{R}$, este convergent uniform pe \mathbb{R} , limita șirului derivatelor nu este egală cu derivata limitei lui $(f_n)_{n\in\mathbb{N}^*}$. Să se explice de ce.

S12.4

i) Să se stabilească mulțimea de definiție a sumei pentru următoarele serii de funcții, precum și submulțimea ei în punctele căreia există limita globală a respectivei sume:

a)
$$\sum_{n \in \mathbb{N}_+} \left(x^n \operatorname{arctg} \frac{x}{2^n}, (-1)^{n+1} \frac{(\ln x)^n}{n^{\ln x}} \right), x \in \mathbb{R}_+^*;$$

b)
$$\sum_{n \in \mathbb{N}^*} \left(e^{(x+y+z)^2} - \left(1 + \frac{1}{n}\right)^{n(x+y+z)} \right), (x, y, z) \in \mathbb{R}^3;$$

c)
$$\sum_{n \in \mathbb{N}^*} \left(\left(1 + \frac{1}{n} \right)^n \left(\frac{1 - y}{1 - 2y} \right)^n, \frac{(-1)^n (x - 3)^n}{(2n + 1)\sqrt{n + 1}}, \frac{n \cdot 3^{2n}}{2^n} z^n (1 - z)^n \right), (x, y, z) \in A,$$
 unde $A = \left\{ (x, y, z) \in \mathbb{R}^3 \mid y \neq \frac{1}{2} \right\}.$

ii) Se poate deriva, termen cu termen, fiecare din seriile de mai jos, în raport cu argumentele precizate?

a)
$$\sum_{n\geq 2} \left(\frac{(-1)^n}{\ln n} \left(\frac{1-x^2}{1+x^2} \right)^n, \left(\frac{n}{x^n} \right)^n, \frac{(n+3)(xy)^n}{(2^n-1)(x^2+1)^{n/2}} \right), x \in \mathbb{R}^*, y \in \mathbb{R}$$
 (derivare în raport cu x);

b)
$$\sum_{n \in \mathbb{N}^*} \left(n^{\ln n} (2x - y)^n, (-1)^{n+1} \frac{(x+y)^{2n-1}}{(2n-1)!} \right), (x,y) \in \mathbb{R}^2$$
 (derivare în raport cu y);

c)
$$\sum_{n\geq 2} \left\{ \ln \left[\left(1 - \frac{1}{n} \right)^x \left(1 + \frac{x}{n} \right) \right] + \operatorname{th}(nx) - \operatorname{th}\left[(n-1)x \right] \right\}, \ x \in \mathbb{R}.$$

S12.5

i) Să se găsească mulțimea de convergență corespunzătoare fiecăreia dintre seriile de puteri ce urmează:

a)
$$\sum_{n \in \mathbb{N}^*} \left(\cos \frac{1}{n} \right)^{\frac{n^2 + 2}{n + 2}} \cdot x^n, \ x \in \mathbb{R};$$

b)
$$\sum_{n \in \mathbb{N}^*} (-1)^{n-1} \frac{(x-4)^n}{n \cdot 3^n}, x \in \mathbb{R};$$

c)
$$\sum_{n \in \mathbb{N}^*} (\sqrt{n} - 1)^n \cdot x^n, x \in \mathbb{R}.$$

ii) Să se determine suma fiecărei serii de mai jos:

a)
$$\sum_{n \in \mathbb{N}^*} \frac{x^{n+2}}{n(n+1)(n+2)}, x \in A_c \subset \mathbb{R};$$

b)
$$\sum_{n \in \mathbb{N}^*} \frac{(n+1)^3}{n(n+2)} x^{n-1}, x \in A_c \subset \mathbb{R};$$

c)
$$\sum_{n \in \mathbb{N}^*} \frac{x^{4n+3}}{(4n+3)!}, x \in A_c \subset \mathbb{R}.$$

S12.6

i) Să se găsească seriile Taylor corespunzătoare funcțiilor de mai jos, în punctele indicate:

a)
$$f(x) = e^{-x} - 2\cos x, x_0 = 0, x \in \mathbb{R};$$

b)
$$f(x) = \ln(1 - x^2) + \sin x, x \in (-1, 1), x_0 = 0;$$

c)
$$f(x) = \frac{2x-5}{x^2-4x+3}, x \in \mathbb{R} \setminus \{1,3\}, x_0 = -1;$$

d)
$$f(x) = \sqrt{\frac{1+x}{1-x}}, x \in (-1,1], x_0 = 0;$$

e)
$$f(x) = x \arctan x + \ln \sqrt{1 + x^2}, x \in \mathbb{R}, x_0 = 1;$$

f)
$$f(x) = \int_0^x \frac{\arctan t}{t} dt, x \in [-1, 1], x_0 = 0.$$

ii) Pe baza seriei de tip MacLaurin a funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = (x-1)\ln\left(x+\sqrt{1+x^2}\right)$, să se arate că are loc egalitatea:

$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{2^{2n+2} (2n)!!} = \frac{1}{2} + \ln \frac{\sqrt{5}-1}{2}.$$

- iii) Să se aproximeze funcția $h:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}_+^*,\ h(x)=(1+\sin x)^x,\ \hat{\text{n}}$ vecinătatea punctului $x_0=0,$ printr-un polinom de gradul patru.
- iv) Să se determine eroarea absolută pentru formula de calcul aproximativ:

$$\ln(\sin x + 1) \approx x - \frac{x^2}{2} + \frac{x^3}{6}, x \in \left(-\frac{\pi}{4}, \pi\right).$$

a) Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x+2\pi) = f(x)$, $\forall x \in \mathbb{R}$, cu

$$f|_{[-\pi,\pi]}(x) = \begin{cases} -1, & \text{dacă } x \in (-\pi,0) \\ 1, & \text{dacă } x \in (0,\pi) \\ 0, & \text{dacă } x \in \{-\pi,0,\pi\} \end{cases}.$$

Să se determine seria Fourier-trigonometrică corespunzătoare. Să se analizeze apoi convergența punctuală (simplă) a seriei rezultate. Să se compare, în cele din urmă, funcția f cu suma seriei în cauză și să se deducă, astfel, suma seriei numerice $\sum_{n\in\mathbb{N}}\frac{(-1)^n}{2n+1}.$

- b) Să se afle seria Fourier trigonometrică asociată funcției $f:(-\pi,\pi]\to\mathbb{R}_+,\ f(x)=|x|$ și apoi să se calculeze sumele seriilor numerice $\sum_{n\in\mathbb{N}}\frac{1}{(2n+1)^2}$ și $\sum_{n\in\mathbb{N}}\frac{1}{(2n+1)^4}.$
- c) Să se arate că

$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin(n\pi x)}{n^3} = \frac{\pi^3}{12} (x^3 - x), \ \forall \ x \in [-1, 1]$$

și, în particular, că

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}.$$

- S12.8 Să se determine mulțimea de convergență punctuală și mulțimea de convergență uniformă pentru șirul de funcții $(f_n)_{n\in\mathbb{N}^*}\subset\mathcal{F}(\mathbb{R}_+^*;\mathbb{R}), \ f_n(x)=\frac{\ln{(1+nx)}}{nx^n},\ \forall\ x\in\mathbb{R}_+^*,\ n\in\mathbb{N}^*.$ Este suma seriei $\sum_{n\in\mathbb{N}^*}f_n \text{ o funcție continuă pe mulțimea ei de definiție?}$
- **S12.9** Fie $f(x,y) = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{n^2+n+1} \left(\frac{(x+y)^2-2}{1+2(x-y)^2} \right)^n$, $(x,y) \in A \subseteq \mathbb{R}^2$. Să se stabilească mulțimea $\tilde{A} \subseteq A$ pe care f este global continuă, precum și mulțimea $\check{A} \subseteq A$ pe care f este diferențiabilă Fréchet de ordinul întâi.
 - **S12.10** Să se arate că dacă $f(x,y,z) = \sum_{n=1}^{\infty} \frac{x^n y^n z^n}{nz^{n-1}}$, atunci

$$x\frac{\partial f}{\partial x}(x,y,z) + y\frac{\partial f}{\partial y}(x,y,z) + z\frac{\partial f}{\partial z}(x,y,z) = \frac{xyz}{2 - xyz},$$

$$\forall (x, y, z) \in \mathbb{R}^3, |xyz| \le a < 1 \text{ (cu } a \in (0, 1)).$$

S12.11 Apelând la f''(x), să se găsească seria MacLaurin corespunzătoare funcției

$$f(x) = \frac{2x^2 + 1}{4} \arcsin x + \frac{3x}{4} \sqrt{1 - x^2}, x \in (-1, 1).$$

S12.12 Pe baza seriei Fourier trigonometrice atașată funcției $f: [-\pi, 0] \to \mathbb{R}, f(x) = x(1-x)$, să se arate că suma seriei numerice $\sum_{n \in \mathbb{N}^*} \frac{1 + (2\pi + 1)(-1)^{n+1}}{n^2} \text{ este } \frac{\pi^2}{12} (2\pi + 3).$

Bibliografie recomandată

- 1. Gh. Bucur, E. Câmpu, S. Găină Culegere de probleme de calcul diferențial și integral. (Vol. III, cap. 7), Ed. Tehnică, București, 1967.
- **2.** Irinel Radomir, Andreea Fulga *Analiză matematică. Culegere de probleme. (Cap. 9)*, Ed. Albastră, Cluj-Napoca, 2005.
- **3.** Constantin Drăguşin, Octav Olteanu, Marinică Gavrilă *Analiză matematică*. Teorie şi aplicații. (Vol. I, §3.4, Vol. II, cap. 15 și cap. 16), Ed. Matrix Rom, București, 2006.
- **4.** Silvia-Otilia Corduneanu *Capitole de analiză matematică*, Editura Matrix Rom, București, 2010.