MAU22C00 - TUTORIAL 4 SOLUTIONS

1) (From the 2016-2017 Annual Exam) Let $f: [-2,2] \to [-15,1]$ be the function defined by $f(x) = x^2 + 3x - 10$ for all $x \in [-2,2]$. Determine whether or not this function is injective and whether or not it is surjective. Justify your answers.

Injectivity: $f(x) = x^2 + 3x - 10 = (x - 2)(x + 5)$ This function is not injective on the interval [-2, 2]. Acceptable justifications: drawing the graph, providing two values $x_1, x_2 \in [-2, 2]$, $x_1 \neq x_2$ such that $f(x_1) = f(x_2)$ (for example, looking at the sign of its derivative to figure out when the function is increasing or decreasing in order to find those values), etc. Note that f(-1) = f(-2) = -12 and $-1 \neq -2$ for $-2, -1 \in [-2, 2]$.

Surjectivity: $f(x) = x^2 + 3x - 10$ is not surjective on the interval [-2, 2]. Acceptable justifications: drawing the graph, providing a value in [-15, 1] that f(x) does not assume, showing the minimum value occurs at $-\frac{3}{2}$, where $f\left(-\frac{3}{2}\right) = -12.25 > -15$, etc.

2) Use mathematical induction to prove the geometric series formula, which states that for any $a, r \in \mathbb{R}$ with $r \neq 1$ and any $n \in \mathbb{N}^*$,

$$a + ar + ar^{2} + \dots + ar^{n-1} = a \frac{(1 - r^{n})}{(1 - r)}.$$

Solution: Fix $a, r \in \mathbb{R}, r \neq 1$.

Base case: n = 1.

Then

$$a\frac{(1-r^1)}{(1-r)} = a(1) = a$$

as required.

Induction step: Assume true for n = k. Prove true for n = k + 1.

$$a + ar + ar^{2} + \dots + ar^{k-1} + ar^{k} = a \frac{(1 - r^{k})}{(1 - r)} + ar^{k}$$
$$= a \left(\frac{(1 - r^{k})}{(1 - r)} + \frac{(1 - r)r^{k}}{(1 - r)} \right) = a \left(\frac{(1 - r^{k}) + (r^{k} - r^{k+1})}{(1 - r)} \right)$$

$$= a \frac{(1 - r^{k+1})}{(1 - r)}$$

as required.

3) Where is the fallacy in the following argument by induction?

Statement: If p is an even number and $p \ge 2$, then p is a power of 2.

"Proof:" We give a proof using strong induction on the even number p. Denote by P(n) the statement "if n is an even number and $n \geq 2$, then $n = 2^j$, where $j \in \mathbb{N}$."

Base case: Show P(2). $2 = 2^1$, so 2 is indeed a power of 2.

Inductive step: Assume p > 2 and that P(n) is true for every n such that $2 \le n < p$ (the strong induction hypothesis). We have to show that P(p) also holds. We consider two cases:

Case 1: p is odd, then there is nothing to show.

Case 2: p is even. Since $p \ge 4$ and p is an even number, we can write p = 2n with $2 \le n < p$. By the inductive hypothesis, P(n) holds, so we conclude that $n = 2^j$ for some $j \in \mathbb{N}$. Since $p = 2n = 2 \times 2^j = 2^{j+1}$, we conclude that P(p) also holds.

Solution: The argument fails at the inductive step as it is possible that p = 2n and n is not even. For example, if $p = 6 = 2 \times 3$, the argument in the inductive step fails.