

Pressure Test Certificate

Test Date: 2019-02-13

Description: Slocum CTD

Sensor Information:

Model Number: Slocum

Serial Number: 9547

Pressure Test Protocol:

Low Pressure Test: 40

PSI

Held For: 15

Minutes

High Pressure Test: 1450

PSI

Held For: 15

Minutes

Passed Test: True

Tested By: sc

High pressure is generally equal to the maximum depth rating of the instrument

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9547 CALIBRATION DATE: 13-Feb-19

Slocum Payload CTD PRESSURE CALIBRATION DATA 1450 psia S/N 11151149

COEFFICIENTS:

PA0 =		1.216188e-001
PA1 =		4.528622e-003
PA2 =		-7.197683e-012
PTEMPA0	=	-6.715397e+001
PTEMPA1	=	5.181634e-002
PTEMPA2	=	-4.528451e-007

PTCA0 = 5.239926e+005 PTCA1 = 2.130615e+000 PTCA2 = -4.897662e-002 PTCB0 = 2.504613e+001 PTCB1 = -5.750000e-004

PTCB2 = 0.000000e+000

PRESSURE SPAN CALIBRATION

THERMAL CORRECTION

Date, Offset (%FSR)

● 13-Feb-19 -0.00

PRESSURE (PSIA)	INSTRUMENT OUTPUT (counts)	THERMISTOR OUTPUT (volts)	COMPUTED PRESSURE (PSIA)	RESIDUAL (%FSR)	TEMP (°C)	THERMISTOR OUTPUT (volts)	INSTRUMENT OUTPUT (counts)
14.42	527168.2	1761.1	14.41	-0.00	32.50	1957	527271.20
300.95	590421.6	1765.8	300.98	0.00	29.00	1887	527278.00
588.04	653760.8	1766.6	587.88	-0.01	24.00	1787	527273.80
875.45	717255.7	1766.2	875.42	-0.00	18.50	1678	527273.40
1162.90	780719.7	1767.1	1162.78	-0.01	15.00	1608	527280.80
1450.04	844183.6	1767.5	1450.07	0.00	4.50	1400	527261.60
1162.77	780719.7	1767.0	1162.78	0.00	1.00	1331	527256.60
875.24	717258.0	1766.8	875.44	0.01			
588.28	653854.1	1767.0	588.30	0.00	TEMPER	RATURE (°C)	SPAN
300.97	590429.6	1771.4	301.01	0.00		-5.00	25.05
14.41	527170.1	1772.0	14.41	-0.00		35.00	25.03

y = thermistor output (counts)

 $t = PTEMPA0 + PTEMPA1 * y + PTEMPA2 * y^2$

 $x = instrument output - PTCA0 - PTCA1 * t - PTCA2 * t^2$

 $n = x * PTCB0 / (PTCB0 + PTCB1 * t + PTCB2 * t^2)$

pressure (PSIA) = $PA0 + PA1 * n + PA2 * n^2$

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9547 CALIBRATION DATE: 17-Feb-19

Slocum Payload CTD TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

a0 = -1.895000e-004 a1 = 3.210765e-004 a2 = -5.384225e-006 a3 = 2.247653e-007

BATH TEMP (° C)	INSTRUMENT OUTPUT (counts)	INST TEMP (° C)	RESIDUAL (° C)
1.0000	578290.2	1.0000	-0.0000
4.5000	495176.2	4.5001	0.0001
15.0000	317031.6	14.9999	-0.0001
18.5000	274944.8	18.5000	0.0000
24.0000	221122.6	24.0002	0.0002
29.0000	182506.0	28.9998	-0.0002
32.5000	160090.2	32.5001	0.0001

n = Instrument Output (counts)

Temperature ITS-90 (°C) = $1/\{a0 + a1[ln(n)] + a2[ln^2(n)] + a3[ln^3(n)]\}$ - 273.15

Residual (°C) = instrument temperature - bath temperature

Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA

+1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 9547 CALIBRATION DATE: 17-Feb-19

Slocum Payload CTD CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

BATH TEMP	BATH SAL	BATH COND	INSTRUMENT	INSTRUMENT	RESIDUAL
(° C)	(PSU)	(S/m)	OUTPUT (Hz)	COND (S/m)	(S/m)
22.0000	0.0000	0.0000	2706.54	0.0000	0.00000
1.0000	34.7998	2.97469	5387.18	2.97469	-0.00000
4.5000	34.7808	3.28170	5590.61	3.28171	0.00000
15.0000	34.7401	4.26325	6195.59	4.26326	0.00001
18.5000	34.7321	4.60840	6394.47	4.60839	-0.00001
24.0000	34.7233	5.16632	6703.23	5.16633	0.00001
29.0000	34.7188	5.68814	6979.35	5.68814	-0.00000
32.5000	34.7156	6.06041	7169.68	6.06046	0.00005

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

