

Internet Of Things

Getting Started with Hardware

Dr. Murad Yaghi Eng. Malek Al-Louzi

School of Computing and Informatics - Al Hussein Technical University

Fall 2024/2025

Introduction

The Raspberry Pi 4 has a GPIO header with 40 pins

- GPIOs allow you to easily control hardware components and communicate with other devices
- It brings the Raspberry Pi much closer to hardware applications making it perfect for robotics, IOT, ...etc

Introduction

BE CAREFUL

- Before you plug anything to a Raspberry Pi pin, you have to know that you can easily damage the board if you do something wrong
- If you pay attention and double check everything there is no reason you will burn the board

PINOUT

Power Pins

- The power pins are used as a source to power external components not to power the Raspberry Pi itself from external source
- You can find 2 pins bringing 3.3 Volts and 2 pins bringing 5
 Volts
- Those pins can be used to give power to components such as sensors and small motors

Ground Pins (GND)

- The ground is very useful for making a common reference between all components
- Always remember to connect all components to the ground

8 of the 40 GPIOs are ground, you can find them with the

three letters GND

						_			
		3V3	0	-	0 (2	 5V		
SC	DA	GPIO 2	0		3 (9	 5V		
SC	EL .	GPIO 3	0		5	9	 Grou	nd	
GPC	LKO	GPIO 4	0		7	3 H	 GPIO	14	TXD
		Ground	0		9 (0	 GPIO	15	RXD
		GPIO 17	0		00 (2	 GPIO	18 F	PCM_CLK
		GPIO 27	0		13 (4	 Grou	nd	
		GPIO 22	0		(6	 GPIO	23	
		3V3	0		()	8	 GPIO	24	
MC	OSI	GPIO 10	0		19 2	0	 Grou	nd	
M	so	GPIO 9	0		3 2	2	 GPIO	25	
SC	LK	GPIO 11	0		3 2	9	 GPIC	8	CE0
		Ground	0		25 2	6	 GPIC	7	CE1
ID_	SD	GPIO 0	0		②	8	 GPIC	1	ID_SC
		GPIO 5	0		29 3	0	 Grou	nd	
		GPIO 6	0		30 3	2	 GPIO	12	PWM0
PW	M1	GPIO 13	0		33 3	A	 Grou	nd	
PCM	LFS	GPIO 19	0		35 3	6	 GPIO	16	
		GPIO 26	0			18	 GPIO	20 F	PCM_DIN
		Ground	0-		39 (0	 GPIO	21 P	CM_DOUT
						_			

- With the ground pins and power pins we already have 12 pins taken and 28 left as GPIO
- GPIO means General Purpose Input Output
- Basically, a GPIO is a pin can use to write some data to external component as output or read data from external component as input
- GPIOs will allow you to:
 - Read some basic sensors for example infrared or push button
 - Control Led and motors

 The Raspberry Pi GPIOs are similar to digital pins on Arduino board

- First you need to choose whether you want to use them as input or output
- If you configure a GPIO as input, you will be able to read the value from it (HIGH or LOW), which also means the max voltage or zero Volt
- If you configure a GPIO as output, you will be able to write value to it (HIGH or LOW).
- So digital pin or GPIO has only two states:
 - LOW: means zero Volt
 - HIGH: means 3.3 Volt

- Its like a switch that you turn ON and OFF
- You can control GPIOs using code
- For the code to actually read or write a state to a GPIO, you can use the GPIO api Python module which will make things very simple for you

RPi.GPIO Python module

GPIOs – Voltage

- All GPIOs work with 3.3 Volt
- Its important to know that if you want to plug a component with a different voltage

Communication Protocols

- You can use a few communication protocols directly with the Raspberry Pi GPIOs
- With these protocols you will be able to transfer far more information than digital pins
- On pinout, you can see two columns for alternate

functions

			$\overline{}$		
	3V3	0	02	 5V	
SDA	GPIO 2	0	3 4	 5V	
SCL	GPIO 3	0	56	 Ground	
GPCLK0	GPIO 4	0	78	 GPIO 14	TXD
	Ground	0	9 0	 GPIO 15	RXD
	GPIO 17	0	1 0 1 2	 GPIO 18	PCM_CLK
	GPIO 27	0	13 (2)	 Ground	
	GPIO 22	0	(B) (B)	 GPIO 23	
	3V3	0	17 (18)	 GPIO 24	
MOSI	GPIO 10	0	19 20	 Ground	
MISO	GPIO 9	0	3 2	 GPIO 25	
SCLK	GPIO 11	0	3 3	 GPIO 8	CE0
	Ground	0	25 25	 GPIO 7	CE1
ID_SD	GPIO 0	0	3 3	 GPIO 1	ID_SC
	GPIO 5	0	29 30	 Ground	
	GPIO 6	0	3 3	 GPIO 12	PWM0
PWM1	GPIO 13	0	GS GO	 Ground	
PCM_FS	GPIO 19	0	35 36	 GPIO 16	
	GPIO 26	0	37 3 8	 GPIO 20	PCM_DIN
	Ground	0	39 40	 GPIO 21	PCM_DOUT

Communication Protocols

- Some GPIOs have alternate functions
- You don't need to know all alternate functions to get started
- Some communication protocols:
 - UART
 - SPI
 - 12C

Breadboard

 To be able to create a Hardware circuits with Raspberry Pi you have to know just a little bit about breadboard and resistors

Breadboard is used to connect multiple components

together with GPIOs

Breadboard

- What you need to know that underneath the surface, there are metal lines that make connections between components
- A component that you plug on a line is electrically connected to all of other components on that line

Resistors

- To connect an LED, we will need LED, some wires, and one resistor
- The resistor is used to lower the amount of current that goes through the LED
- Also help to protect GPIOs so they don't burned with too much current

Resistors

- How to recognize resistor?
- Sometimes you will have to read resistor value from the color bands on the resistors

Resistors

- Usually, you will see 4 bands or 5 bands resistor
- The first 2 or 3 bands correspond to a number, the next band corresponds to multiplier (x1, x10, x100) ohm
- The last band is for tolerance, you will not need to worry about it in this class, any value will be fine

Resistors – Example

1K ohm = 1000 ohm

Eng. Malek Lozi

Eng. Malek Lozi

Eug. Malek ron

Any Questions???

Eng. Malek Lozi

Eng. Malek Lozi

Walek Fosi

Eng. Malek Lozi

Eug. Walek For