Chapter IR:III

III. Indexing

- Indexing Basics
- □ Inverted Index
- Query Processing I
- □ Query Processing II
- □ Index Construction
- □ Index Compression

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
$\overline{t_1}$						
t_2						
t_3						
t_4						
t_5						
÷						٠

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	
t_1						
t_2						
t_3						
t_4						
t_5						
÷						٠

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	
t_1	1					
t_2	1					
t_3	1					
t_4	0					
t_5	1					
÷						٠

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
t_1	1	1	0	0	0	
t_2	1	1	0	1	0	
t_3	1	1	0	1	1	
t_4	0	1	0	0	0	
t_5	1	0	0	0	0	
÷						٠

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

□ Index terms T

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
t_1	382	128	0	0	0	
t_2	4	379	0	1	0	
t_3	289	272	0	2	1	
t_4	0	16	0	0	0	
t_5	271	0	0	0	0	
÷						٠

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
t_1	$\boxed{w_{1,1}}$	$\boxed{w_{1,2}}$	$w_{1,3}$	$\boxed{w_{1,4}}$	$w_{1,5}$	
t_2	$\boxed{w_{2,1}}$	$w_{2,2}$	$w_{2,3}$	$\boxed{w_{2,4}}$	$\boxed{w_{2,5}}$	
t_3	$oxed{w_{3,1}}$	$w_{3,2}$	$w_{3,3}$	$w_{3,4}$	$w_{3,5}$	
t_4	$\boxed{w_{4,1}}$	$oxed{w_{4,2}}$	$oxed{w_{4,3}}$	$\boxed{w_{4,4}}$	$\boxed{w_{4,5}}$	
t_5	$\boxed{w_{5,1}}$	$w_{5,2}$	$lacksquare w_{5,3}$	$oxed{w_{5,4}}$	$\boxed{w_{5,5}}$	
ŧ						٠

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
t_1	$w_{1,1}$	$w_{1,2}$	$w_{1,3}$	$w_{1,4}$	$w_{1,5}$	
t_2	$w_{2,1}$	$w_{2,2}$	$w_{2,3}$	$w_{2,4}$	$w_{2,5}$	
t_3	$w_{3,1}$	$w_{3,2}$	$w_{3,3}$	$w_{3,4}$	$w_{3,5}$	
t_4	$w_{4,1}$	lacksquare	$w_{4,3}$	$w_{4,4}$	$w_{4,5}$	
t_5	$w_{5,1}$	lacksquare	$w_{5,3}$	lacksquare	$w_{5,5}$	
ŧ						100

Documents D

- d_1 Antony and Cleopatra
- d_2 Julius Caesar
- d_3 The Tempest
- d_4 Hamlet
- d_5 Othello

\Box Index terms T

- t_1 Antony
- t_2 Brutus
- t_3 Caesar
- t_4 Calpurnia
- t_5 Cleopatra

□ Term Weights

- Boolean
- Term frequency
- ...

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
$\overline{t_1}$	$w_{1,1}$	$w_{1,2}$	$w_{1,3}$	$w_{1,4}$	$w_{1,5}$	
t_2	$\boxed{ w_{2,1} }$	$oxed{w_{2,2}}$	$w_{2,3}$	$\boxed{w_{2,4}}$	$w_{2,5}$	
t_3	$\boxed{w_{3,1}}$	$oxed{w_{3,2}}$	$oxed{w_{3,3}}$	$lacksquare w_{3,4}$	$oxed{w_{3,5}}$	
t_4	$\boxed{ w_{4,1} }$	$oxed{w_{4,2}}$	$oxed{w_{4,3}}$	$\boxed{w_{4,4}}$	$oxed{w_{4,5}}$	
t_5	$\boxed{w_{5,1}}$	$oxed{w_{5,2}}$	$oxed{w_{5,3}}$	$\boxed{w_{5,4}}$	$w_{5,5}$	
÷						٠

Observations:

- □ Most retrieval models induce a term-document matrix by computing term weights $w_{i,j}$ for each pair of term $t_i \in T$ and document $d_j \in D$.
- $lue{}$ Query-independent computations that only depend on D are done offline.
- \Box Online, given a query q, the term weights required are looked up to score documents.

Term-Document Matrix

	d_1	d_2	d_3	d_4	d_5	• • •
$\overline{t_1}$	$w_{1,1}$	$w_{1,2}$				
t_2	$\boxed{ w_{2,1} }$	$\boxed{w_{2,2}}$		$\boxed{w_{2,4}}$		
t_3	$oxed{w_{3,1}}$	$oxed{w_{3,2}}$		$oxed{w_{3,4}}$	$oxed{w_{3,5}}$	
t_4		$\boxed{w_{4,2}}$				
t_5	$\boxed{w_{5,1}}$					
÷						٠

Observations:

- \Box The size of the term-document matrix is $|T| \cdot |D|$.
- □ The term-document matrix is sparse: the vast majority of term weights are 0.
- Therefore, most of the storage space required for the full matrix is wasted.
- Using a sparse-matrix representation yields significant space savings.

Data Structure

An index is implemented as a multimap (i.e., a hash table with multiple values).

Components of an externalized implementation:

Term vocabulary file

Lookup table which maps terms $t_i \in T$ to the start of their posting list in the postings file.

Postings file(s)

File(s) that store posting lists on disk.

 \Box Index entries d_i , [...], so-called postings

Data Structure

An index is implemented as a multimap (i.e., a hash table with multiple values).

Design choices:

- ullet Information stored in a posting $[d_i, [\ldots]]$.
- Ordering of each term's posting list.
- Encoding and compression techniques for further space savings.
- Physical implementation details, such as external memory and distribution.

Posting

Given term t and document d, their posting may include the following:

```
<document> [<weights>] [<position>] [...]
```

<document>:

 \Box Reference to the document d in which term t occurs (or to which it applies).

<weights>:

- \Box Term weight w for term t in document d.
- \Box Often, only basic term weights are stored (e.g., term frequency tf(t,d)). Storing model-specific weights saves space at the expense of flexibility.

<position>:

- □ Term positions within the document, i.e., term, sentence, page, chapter, etc.
- □ Field information, e.g., title, author, introduction, etc.

Posting

Two special-purpose entries are distinguished:

```
... <skip pointer>
```

<list length>:

- \Box Added to the first entry of the posting list of a term t.
- Stores the length of the posting list.
- What does the length of a posting list indicate?

```
<skip pointer>:
```

- Used to implement a skip list in a term's posting list, when ordered by ID.
- \Box Allows for random access to postings in $O(\log df(t, D))$.
- \Box Second entry of a posting list, and then at random (or regular) intervals. An effective amount of skip entries has been found to be $\sqrt{df(t,D)}$.

Posting

Two special-purpose entries are distinguished:

```
......<list length>
```

```
... <skip pointer>
```

<list length>:

- \Box Added to the first entry of the posting list of a term t.
- Stores the length of the posting list.
- \Box Equals the number of documents containing t (document frequency df(t, D)).

```
<skip pointer>:
```

- □ Used to implement a skip list in a term's posting list, when ordered by ID.
- \Box Allows for random access to postings in $O(\log df(t, D))$.
- Second entry of a posting list, and then at random (or regular) intervals. An effective amount of skip entries has been found to be $\sqrt{df(t, D)}$.

Posting List, Postlist

Example for two posting lists, where for term t_i postings k, $tf(t_i, d_k)$ are stored:

\overline{T}	Postings
:	
t_i	[2,4] $[4,9]$ $[8,2]$ $[16,1]$ $[19,7]$ $[23,5]$ $[28,6]$ $[41,8]$ $[50,6]$ $[77,8]$
t_{j}	[1,1] $[2,3]$ $[3,5]$ $[5,2]$ $[8,17]$ $[41,6]$ $[51,5]$ $[60,5]$ $[71,3]$ $[77,2]$
:	

Ordering:

- by document identifier. Problem: good documents randomly distributed.
- → by document quality. Early termination, but re-assigning IDs necessary.
- by term weight. Early termination, but renders skip lists useless.

Compression:

- \Box The size of an index is in O(|D|), where |D| denotes the disk size of D.
- Posting lists can be effectively compressed with tailored techniques.

Remarks:

- ☐ The name "inverted index" is redundant: an index always maps terms to (parts of) documents where they occur. Better suited, but used less often, is "inverted file", which conveys that a (document) file is inverted to form an index.
- Some retrieval models do not assign zero weights, but default to non-zero weights instead. Such weights can be omitted from an inverted index as well; they can be stored as a constant and used whenever a term weight for a given term-document pair is required that is not present in the inverted index.
- ☐ There is a tradeoff between the amount of information stored in a posting, and the time it takes to process a posting list in search of a document. The more information is stored in a posting, the more must be decoded or at least loaded into memory during postlist traversal.
- □ A skip entry may include more than one pointer, allowing for skip steps of various lengths.
- □ Dependent on the search scenario, constructing more than one index with different properties may be beneficial.