Low-lying zeros in a family of holomorphic cusp forms

Lucile Devin

joint work with Daniel Fiorilli and Anders Södergren

Chalmers och Göteborgs Universitet

N-cube days XIII — November 26-27, 2020

Zeros of L-functions

Let L be an L-function. Where are the (non-trivial) zeros of L?

Figure – Zeros of ζ

FIGURE – Zeros of some L function from LMFDB

Zeros of L-functions

Let L be an L-function. How many zeros of L are close to $\frac{1}{2}$?

FIGURE – Zeros of ζ

FIGURE – Zeros of some L function from LMFDB

Zeros of L-functions

Let L be an L-function.

How many zeros of L are close to $\frac{1}{2}$?

 $\approx \frac{20}{2\pi} \log \frac{20C}{2\pi}$ zeros of L with imaginary part ≤ 20 , where C is the conductor.

FIGURE – Zeros of ζ

FIGURE – Zeros of some L function from LMFDB

A normalization is necessary : we multiply the imaginary part by $\frac{\log C}{2\pi}$

Counting zeros close to $\frac{1}{2}$

Let L(f, s) be an L-function of conductor c_f , then L(f, s) has $\approx 20 \frac{\log c_f}{2\pi}$ zeros of imaginary part smaller than 20.

Definition (One-level density for one L-function)

Let L(f,s) be an L-function of conductor c_f and let ϕ be an even Schwartz function we define

$$D(f,\phi) = \sum_{\substack{\gamma \\ L(f,\frac{1}{2} + i\gamma) = 0}} \phi(\frac{\gamma}{2\pi} \log c_f)$$

Counting zeros close to $\frac{1}{2}$ in a family

Let \mathcal{F} be a family of L-functions, and

$$\mathcal{F}(Q) = \begin{cases} \{ f \in \mathcal{F} : c_f \leq Q \} \text{ or} \\ \{ f \in \mathcal{F} : c_f = Q \} \text{ or} \\ \{ f \in \mathcal{F} : Q \leq c_f \leq 2Q \} \text{ or } \dots \end{cases}$$

with $|\mathcal{F}(Q)| \xrightarrow{Q \to \infty} \infty$.

Average over the family:

Definition (One-level density for a family of L-function)

Let $\mathcal F$ be a family of L-functions, let ϕ be an even Schwartz function we define

$$\mathcal{D}(\mathcal{F}(Q), \phi) = \frac{1}{|\mathcal{F}(Q)|} \sum_{f \in \mathcal{F}(Q)} \sum_{\substack{\gamma \\ L(f, \frac{1}{2} + i\gamma) = 0}} \phi(\frac{\gamma}{2\pi} \log Q)$$

The Katz-Sarnak heuristic

Inspired by ideas of Dyson, Montgomery and Odlyzko, using function fields analogues and random matrix models,

Conjecture (Katz-Sarnak)

For any family \mathcal{F} , there exist a symmetry type $G(\mathcal{F})$, such that for any even Schwartz function ϕ , one has

$$\lim_{Q \to \infty} \mathcal{D}(\mathcal{F}(Q), \phi) = \int \phi(x) W(G(\mathcal{F}))(x) dx$$

The Katz-Sarnak heuristic

Inspired by ideas of Dyson, Montgomery and Odlyzko, using function fields analogues and random matrix models,

Conjecture (Katz-Sarnak)

For any family \mathcal{F} , there exist a symmetry type $G(\mathcal{F})$, such that for any even Schwartz function ϕ , one has

$$\lim_{Q \to \infty} \mathcal{D}(\mathcal{F}(Q), \phi) = \int \phi(x) W(G(\mathcal{F}))(x) dx$$
$$= \int \hat{\phi}(x) \widehat{W(G(\mathcal{F}))}(x),$$

where
$$\widehat{\phi}(\xi) := \int_{\mathbf{R}} \phi(x) e^{-2\pi i \xi x} dx$$
.

Katz-Sarnak heuristic – symmetry types

Symmetry type	$\int \phi W$	graph of W
О	$\int \phi + \frac{1}{2}\phi(0)$	1.5-
		-2 -1 1 2
$SO(\mathrm{even})$	$\int \phi + \int \phi(x) \frac{\sin(2\pi x)}{2\pi x} \mathrm{d}x$	
		2 45 1 45 65 1 15 1
$SO(\mathrm{odd})$	$\int \phi + \phi(0) - \int \phi(x) \frac{\sin(2\pi x)}{2\pi x} dx$	2 12 12 13
Sp	$\int \phi - \int \phi(x) \frac{\sin(2\pi x)}{2\pi x} \mathrm{d}x$	3 05 5 05 05 05 15 0

Table – Possible symmetry types in real families

Katz-Sarnak heuristic – symmetry types

Symmetry type	$\int \hat{\phi} \hat{W}$	graph of \hat{W}
O	$\hat{\phi}(0) + \frac{1}{2}\phi(0)$	1.5
SO(even)	$\hat{\phi}(0) + \frac{1}{2} \int_{-1}^{1} \hat{\phi}$	15-
		-2 -1 1 2
$SO(\mathrm{odd})$	$\hat{\phi}(0) + \phi(0) - \frac{1}{2} \int_{-1}^{1} \hat{\phi}$	1.5
		-2 -1 1 2
Sp	$\hat{\phi}(0) - \frac{1}{2} \int_{-1}^{1} \hat{\phi}$	0.5-
		-2 1 2

Table - Possible symmetry types in real families

Determining the symmetry type

- Function fields analogue, Katz–Sarnak (1999)
- Direct calculation of $\lim_{Q\to\infty} \mathcal{D}(\mathcal{F}(Q),\phi)$:
 - Asymptotics with restriction on the support of $\hat{\phi}$ (maybe also under GRH). If one can extend the support of $\hat{\phi}$ up to $[-1 \epsilon, 1 + \epsilon]$ then the conjectural symmetry type is determined. Özlük–Snyder (1999), Iwaniec–Luo–Sarnak (2000)....
 - Ratios conjecture of Conrey-Farmer-Zirnbauer,
- Conrey-Snaith (2007), Miller (2008-),...

 Study the n-level density for $n \geq 2$:
 - $\frac{1}{|\mathcal{F}(Q)|} \sum_{f \in \mathcal{F}(Q)} \sum_{\substack{\gamma_1, \dots, \gamma_n \text{ distinct} \\ L(f, \frac{1}{2} + i\gamma_j) = 0}} \phi\left(\frac{\gamma_1}{2\pi} \log Q, \dots, \frac{\gamma_1}{2\pi} \log Q\right) \text{ where } \phi : \mathbf{R}^n \to \mathbf{R}$

with some restriction on the support of $\hat{\phi}$. Rubinstein (1998), Cho–Kim (2015),...

• Determine the symmetry type directly from invariants of the family, Duéñez-Miller (2006), Sarnak-Shin-Templier (2016).

Lower order terms

Study

$$\mathcal{D}(\mathcal{F}(Q), \phi) - \int \phi(x) W(G(\mathcal{F}))(x) dx.$$

How does this depend on the family \mathcal{F} ?

FIGURE – Rubinstein (1998) – 1-level densities for two families with symmetry type SO(even) and SO(odd)

Lower order terms

Study

$$\mathcal{D}(\mathcal{F}(Q), \phi) - \int \phi(x) W(G(\mathcal{F}))(x) dx.$$

How does this depend on the family \mathcal{F} ? Is there also a transition when $\operatorname{supp}(\hat{\phi})$ reaches 1?

- Symplectic families : Fouvry–Iwaniec (2003), Rudnick (2010), Fiorilli–Parks–Södergren (2017), Waxman ... lower order terms involving $\hat{\phi}(1)$
- Orthogonal families: Miller (2009), Ricotta-Royer (2010)... the lower order terms do not have a transition at 1.
- Special Orthogonal families : Miller–Montague (2011), D.–Fiorilli–Södergren : lower order terms involving $\hat{\phi}(1)$ again.

Holomorphic cusp forms of level 1

We fix a basis B_k of Hecke new eigenforms in the space H_k of holomorphic modular forms of level 1 and even weight k. For Re(s) > 1 the L-function of $f \in B_k$ takes the form

$$L(s,f) = \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s}$$
$$= \prod_p \left(1 - \frac{\alpha_f(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s}\right)^{-1} \qquad (\operatorname{Re}(s) > 1),$$

where $\lambda_f(n)$ are the Hecke eigenvalues of f, and $|\alpha_f(p)| = |\beta_f(p)| = 1$. One has $c_f = k^2$, L(s, f) extends to an entire function and satisfies a functional equation relating the values at s to those at 1-s with sign $(-1)^{\frac{k}{2}}$.

One-level density over the family

For an even Schwartz function ϕ , for h a non-negative, not identically zero smooth weight function with compact support in $\mathbf{R}_{>0}$,

One-level densities over families with constant sign of the functional equation:

$$\mathscr{D}_{K,h}^{\pm}(\phi) := \frac{1}{H^{\pm}(K)} \sum_{k \equiv 3 \pm 1 \bmod 4} h\left(\frac{k-1}{K}\right) \frac{1}{\Omega_k} \sum_{f \in B_k} \omega_f \sum_{\gamma_f} \phi\left(\gamma_f \frac{\log K^2}{2\pi}\right),$$

where
$$H^{\pm}(K) = \sum_{k \equiv 3 \pm 1 \mod 4} h\left(\frac{k-1}{K}\right)$$
,

$$\omega_f := \frac{\Gamma(k-1)}{(4\pi)^{k-1}} \left(\int_{SL_2(\mathbf{Z}) \setminus \mathbf{H}} y^{k-2} |f(z)|^2 dx dy \right)^{-1} \approx k^{-1},$$

(harmonic weights) and $\Omega_k := \sum_{f \in B_k} \omega_f = 1 + O(2^{-k})$.

Symmetry type

Theorem (Iwaniec-Luo-Sarnak, 2000)

Assuming the Generalized Riemann Hypothesis. The symmetry type is special orthogonal even or odd depending on the sign of the functional equation. More precisely, if $\operatorname{supp}(\hat{\phi}) \subset (-2,2)$, one has

$$\lim_{K \to \infty} \mathscr{D}_{K,h}^{\pm}(\phi) = \int_{\mathbf{R}} \widehat{\phi} \cdot \widehat{W}^{\pm},$$

with

$$\widehat{W}^+(t) = \widehat{W}(SO(\mathit{even}))(t); \quad \widehat{W}^-(t) = \widehat{W}(SO(\mathit{odd}))(t).$$

Lower order terms

Theorem (D.-Fiorilli-Södergren)

Let ϕ be an even Schwartz test function for which $supp(\hat{\phi}) \subset (-2,2)$, and let h be a non-negative, not identically zero smooth weight function with compact support in $\mathbf{R}_{>0}$. Assuming the Riemann Hypothesis for Dirichlet L-functions, we have the estimate

$$\mathscr{D}_{K,h}^{\pm}(\phi) = \int_{\mathbf{R}} \widehat{\phi} \cdot \widehat{W}^{\pm} + \sum_{1 \le j \le J} \frac{R_{j,h} \widehat{\phi}^{(j-1)}(0) \pm S_{j,h} \widehat{\phi}^{(j-1)}(1)}{(\log K)^j} + O_{\phi,h,J} \left(\frac{1}{(\log K)^{J+1}}\right),$$

where the constants $R_{j,h}$ and $S_{j,h}$ appearing in the lower-order terms can be made explicit and only depend on the weight function h.

Lower order terms

Theorem (D.-Fiorilli-Södergren)

Let ϕ be an even Schwartz test function for which $supp(\hat{\phi}) \subset (-2,2)$, and let h be a non-negative, not identically zero smooth weight function with compact support in $\mathbf{R}_{>0}$. Assuming the Riemann Hypothesis for Dirichlet L-functions, we have the estimate

$$\mathcal{D}_{K,h}^{\pm}(\phi) = \int_{\mathbf{R}} \widehat{\phi} \cdot \widehat{W}^{\pm} + \frac{\int_{0}^{\infty} h \cdot \log}{\int_{0}^{\infty} h} - \log(4\pi) - \gamma - \sum_{p} \frac{\log p}{p(p-1)}}{\log K} (\widehat{\phi}(0) \pm \widehat{\phi}(1)) + O_{\phi,h} \left(\frac{1}{(\log K)^{2}}\right),$$

Explicit formula

Lemma

Let ϕ be an even Schwartz test function. For $f \in B_k$, we have the formula

$$\begin{split} \sum_{\gamma_f} \phi \Big(\gamma_f \frac{\log K^2}{2\pi} \Big) &= -2 \widehat{\phi}(0) \frac{\log \pi}{\log K^2} \\ &+ \frac{1}{\log K^2} \int_{\mathbf{R}} \Big(\frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k+1}{4} + \frac{\pi i t}{\log K^2} \Big) + \frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k-1}{4} + \frac{\pi i t}{\log K^2} \Big) \Big) \phi(t) dt \\ &- 2 \sum_{p,\nu} \frac{\alpha_f^{\nu}(p) + \beta_f^{\nu}(p)}{p^{\frac{\nu}{2}}} \widehat{\phi} \Big(\frac{\nu \log p}{\log K^2} \Big) \frac{\log p}{\log K^2}. \end{split}$$

Here, $\alpha_f(p)$, $\beta_f(p)$ are the local coefficients of the L-function L(s, f), in particular we have $|\alpha_f(p)| = |\beta_f(p)| = 1$.

Petersson trace formula

We study $\sum_{f \in B_k} \omega_f(\alpha_f^{\nu}(p) + \beta_f^{\nu}(p))$, by the Hecke relations, one has

$$\alpha_f^{\nu}(p) + \beta_f^{\nu}(p) = \begin{cases} \lambda_f(p), & \text{if } \nu = 1\\ \lambda_f(p^{\nu}) - \lambda_f(p^{\nu-2}), & \text{if } \nu \ge 2. \end{cases}$$

Lemma (Petersson Trace formula)

Let $m, k \in \mathbb{N}$, with $2 \mid k$. We have the exact formula

$$\sum_{f\in B_k}\omega_f\lambda_f(m)=\delta(m,1)+2\pi i^k\sum_{c\geq 1}c^{-1}S(m,1;c)J_{k-1}\Big(\frac{4\pi\sqrt{m}}{c}\Big),$$

where
$$S(m, 1; c) = \sum_{\substack{x \mod c \\ (x,c)=1}} e(\frac{mx + \bar{x}}{c}).$$

Bounds on Bessel functions

FIGURE - Comparing J_5 to $\frac{1}{5!} \left(\frac{x}{2}\right)^5$ and $x^{-1/2}$

Lemma

Let $k \in \mathbb{N}$. We have the bound

$$J_{k-1}(x) \ll \min\left(\frac{1}{(k-1)!} \left(\frac{x}{2}\right)^{k-1}, x^{-\frac{1}{4}} (|x-k+1| + k^{\frac{1}{3}})^{-\frac{1}{4}}\right).$$

Petersson trace formula

Lemma (Petersson Trace formula)

Let $m, k \in \mathbb{N}$, with $2 \mid k$. We have the exact formula

$$\sum_{f \in B_k} \omega_f \lambda_f(m) = \delta(m, 1) + 2\pi i^k \sum_{c \ge 1} c^{-1} S(m, 1; c) J_{k-1} \left(\frac{4\pi \sqrt{m}}{c} \right),$$

$$= \delta(m, 1) + \begin{cases} O_{\epsilon} \left(\frac{m^{\frac{1}{4} + \epsilon}}{k} + \frac{k^{\frac{1}{6}}}{m^{\frac{1}{4} - \epsilon}} \right) \\ O_{\epsilon} \left(2^{-k} m^{\frac{1}{4} + \epsilon} \right) & \text{if } m \le \frac{k^2}{(4\pi e)^2}. \end{cases}$$

Petersson trace formula

Lemma (Petersson Trace formula)

Let $m, k \in \mathbb{N}$, with $2 \mid k$. We have the exact formula

$$\sum_{f \in B_k} \omega_f \lambda_f(m) = \delta(m, 1) + 2\pi i^k \sum_{c \ge 1} c^{-1} S(m, 1; c) J_{k-1} \left(\frac{4\pi \sqrt{m}}{c} \right),$$

$$= \delta(m, 1) + \begin{cases} O_{\epsilon} \left(\frac{m^{\frac{1}{4} + \epsilon}}{k} + \frac{k^{\frac{1}{6}}}{m^{\frac{1}{4} - \epsilon}} \right) \\ O_{\epsilon} \left(2^{-k} m^{\frac{1}{4} + \epsilon} \right) & \text{if } m \le \frac{k^2}{(4\pi e)^2}. \end{cases}$$

Use this in the term
$$-2\sum_{p,\nu} \frac{\lambda_f(p^{\nu}) - \lambda_f(p^{\nu-2})}{p^{\frac{\nu}{2}}} \widehat{\phi}\left(\frac{\nu \log p}{\log K^2}\right) \frac{\log p}{\log K^2}$$

Small support

Theorem (D.-Fiorilli-Södergren)

Let ϕ be an even Schwartz test function for which $supp(\hat{\phi}) \subset (-1,1)$, we have

$$\begin{split} \frac{1}{\Omega_k} \sum_{f \in B_k} \omega_f \sum_{\gamma_f} \phi \Big(\gamma_f \frac{\log k^2}{2\pi} \Big) &= -\widehat{\phi}(0) \frac{\log \pi}{\log k} \\ &+ \frac{1}{\log(k^2)} \int_{\mathbb{R}} \left(\frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k+1}{4} + \frac{\pi i t}{\log(k^2)} \Big) + \frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k-1}{4} + \frac{\pi i t}{\log(k^2)} \Big) \Big) \phi(t) dt \\ &+ 2 \sum_p \frac{1}{p} \widehat{\phi} \Big(\frac{2 \log p}{\log(k^2)} \Big) \frac{\log p}{\log(k^2)} + O\Big(k^{\frac{3}{2}} 2^{-k}\Big). \end{split}$$

Gamma factors

Lemma

Let $\epsilon > 0$ and let ϕ be an even Schwartz test function. In the range $k \leq K^5$, we have the estimate

$$\begin{split} \frac{1}{\log K^2} \int_{\mathbf{R}} \Big(\frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k+1}{4} + \frac{\pi i t}{\log X} \Big) + \frac{\Gamma'}{\Gamma} \Big(\frac{1}{4} + \frac{k-1}{4} + \frac{\pi i t}{\log K^2} \Big) \Big) \phi(t) dt \\ &= \widehat{\phi}(0) \Big(\frac{\log(k^2) - \log 16}{\log K^2} \Big) + O_{\epsilon}(k^{-1+\epsilon}). \end{split}$$

Estimating the sum with 1

Lemma

Let ϕ be an even Schwartz test function. For any fixed $J \geq 1$, we have the estimate

$$2\sum_{p} \frac{1}{p} \widehat{\phi} \left(\frac{\log p}{\log K} \right) \frac{\log p}{\log K^2} = \frac{\phi(0)}{2} + \sum_{1 \le j \le J} \frac{c_j \widehat{\phi}^{(j-1)}(0)}{(\log K)^j} + O_J \left(\frac{1}{(\log K)^{J+1}} \right),$$

where

$$c_1 := \int_1^\infty \frac{\theta(t) - t}{t^2} dt + 1 = -\gamma - \sum_p \frac{\log p}{p(p-1)}$$

and for $j \geq 2$,

$$c_j := \frac{1}{(j-2)!} \int_1^\infty (\log t)^{j-2} \left(\frac{\log t}{j-1} - 1 \right) \frac{\theta(t) - t}{t^2} dt.$$

Extended support

For $\sigma > 1$, we obtain, under the condition that $\operatorname{supp}(\hat{\phi}) \subset [-\sigma, \sigma]$,

$$\begin{split} \mathscr{D}_{K,h}^{\pm}(\phi) &= \widehat{\phi}(0) + \frac{-\log 4\pi + \frac{\int_{\mathbf{R}^+} h \cdot \log}{\int_{\mathbf{R}^+} h}}{\log K} \widehat{\phi}(0) \\ &+ \frac{\phi(0)}{2} + \sum_{1 \leq j \leq J} \frac{c_j \widehat{\phi}^{(j-1)}(0)}{(\log K)^j} + O_J \left(\frac{1}{(\log K)^{J+1}}\right) \\ &- \frac{1}{H^{\pm}(K)} \sum_{k \equiv 3 \pm 1 \bmod 4} h \left(\frac{k-1}{K}\right) \frac{2}{\Omega_k} \sum_{p} \sum_{f \in B_k} \omega_f \frac{\lambda_f(p)}{p^{\frac{1}{2}}} \widehat{\phi} \left(\frac{\log p}{\log K^2}\right) \frac{\log p}{\log K^2} \\ &+ O_{\epsilon} \left(K^{\frac{\sigma}{2} - 1 + \epsilon} + K^{-\frac{1}{3} + \epsilon}\right) \end{split}$$

Estimating the sum with $\lambda_f(p)$

Lemma

Let ϕ be an even Schwartz test function. Assume the Riemann Hypothesis for Dirichlet L-functions. For any fixed $J \geq 1$, we have the estimate

$$\frac{1}{H^{\pm}(K)} \sum_{k \equiv 3 \pm 1 \bmod 4} h\left(\frac{k-1}{K}\right) \frac{2}{\Omega_k} \sum_{p} \sum_{f \in B_k} \omega_f \frac{\lambda_f(p)}{p^{\frac{1}{2}}} \widehat{\phi}\left(\frac{\log p}{\log K^2}\right) \frac{\log p}{\log K^2} \\
= \pm \int_1^{\infty} \widehat{\phi} \pm \sum_{1 \le j \le J} \frac{S_j \widehat{\phi}^{(j-1)}(1)}{(\log K)^j} + O((\log K)^{-J-1})$$

Estimating the sum with $\lambda_f(p)$

Now we use the exact form in Petersson formula:

Lemma (Petersson Trace formula)

Let p be a prime and $k \in \mathbb{N}$, with $2 \mid k$. We have the exact formula

$$\sum_{f \in B_k} \omega_f \lambda_f(p) = 2\pi i^k \sum_{c \ge 1} c^{-1} S(p, 1; c) J_{k-1} \left(\frac{4\pi \sqrt{p}}{c} \right).$$

we obtain

$$-\frac{4\pi}{H^{\pm}(K)} \sum_{p} p^{-\frac{1}{2}} \widehat{\phi} \left(\frac{\log p}{\log K^{2}}\right) \frac{\log p}{\log K^{2}}$$

$$\sum_{c \geq 1} \frac{S(p, 1; c)}{c} \sum_{k \equiv 3 \pm 1 \bmod 4} h\left(\frac{k-1}{K}\right) \frac{i^{k}}{\Omega_{k}} J_{k-1}\left(\frac{4\pi\sqrt{p}}{c}\right)$$

Averaging over k

Lemma (Iwaniec)

For h a non-negative, smooth function with compact support in $\mathbf{R}_{>0}$ and for any $K \geq 2$, we have the estimates

$$2\sum_{k\equiv 0 \bmod 2} h\left(\frac{k-1}{K}\right) J_{k-1}(x) = h\left(\frac{x}{K}\right) + O\left(\frac{x}{K^3}\right);$$

$$2\sum_{k=0 \text{ mod } 2} i^k h\left(\frac{k-1}{K}\right) J_{k-1}(x) = O_A\left(\frac{x^A}{K^{2A}} + \frac{x^{\frac{1}{2}}}{K^5}\right).$$

This gives

$$\sum_{k=2+1 \bmod 4} h\left(\frac{k-1}{K}\right) \frac{i^k}{\Omega_k} J_{k-1}\left(\frac{4\pi\sqrt{p}}{c}\right) = \pm h\left(\frac{4\pi\sqrt{p}}{Kc}\right) + O\left(\star\right)$$

where \star sums well over c and p if $\sigma < 2$.

Estimating the sum over primes

Lemma (Iwaniec-Luo-Sarnak)

Assume the Riemann Hypothesis for Dirichlet L-functions. Then

$$\sum_{p \le t} S(p, 1; c) \log p = t \frac{\mu^2(c)}{\varphi(c)} + O(\varphi(c) t^{\frac{1}{2}} (\log(ct))^2),$$

where φ is Euler's totient function.

By integration by parts

$$\begin{split} \sum_{p} p^{-\frac{1}{2}} \widehat{\phi} \Big(\frac{\log p}{\log K^2} \Big) \frac{\log p}{\log K^2} S(p,1;c) h \Big(\frac{4\pi \sqrt{p}}{Kc} \Big) \\ &= \int_{0}^{\sigma} K^u \widehat{\phi}(u) \frac{\mu^2(c)}{\varphi(c)} h \Big(\frac{4\pi K^{u-1}}{c} \Big) du + O(K^{\sigma-1} (\log K)^3). \end{split}$$

Estimating the integral

$$I_{0,\sigma}:=\frac{\pi}{H^\pm(K)}\int_0^\sigma K^u\widehat{\phi}(u)\sum_{c>1}\frac{\mu^2(c)}{c\varphi(c)}h\Big(\frac{4\pi K^{u-1}}{c}\Big)du.$$

 $I_{0,1-\delta_K} = 0$ thanks to the hypothesis on the support of h. By integration by parts

$$I_{1+\delta_K,\sigma} = \int_{1+\delta_K}^{\sigma} \hat{\phi} + O(K^{-\frac{\delta_K}{2}})$$

By developing in Taylor series

$$I_{1-\delta_K,1+\delta_K} = \int_1^{1+\delta_K} \hat{\phi} + \sum_{1 \le j \le J} \frac{S_j \hat{\phi}^{(j-1)}(1)}{(\log K)^j} + O((\log K)^{-J-1})$$

Conclusion

We obtain, under the conditions that $\operatorname{supp}(\hat{\phi}) \subset (-2,2)$, that h has compact support in $\mathbf{R}_{>0}$, and the Riemann Hypothesis for Dirichlet L-functions

$$\begin{split} \mathscr{D}_{K,h}^{\pm}(\phi) &= \widehat{\phi}(0) + \frac{\phi(0)}{2} \mp \int_{1}^{\infty} \widehat{\phi} \\ &+ \frac{-\log 4\pi + \frac{\int_{\mathbf{R}^{+}} h \cdot \log}{\int_{\mathbf{R}^{+}} h}}{\log K} \widehat{\phi}(0) + \sum_{1 \le j \le J} \frac{c_{j} \widehat{\phi}^{(j-1)}(0)}{(\log K)^{j}} \\ &\mp \sum_{1 \le j \le J} \frac{S_{j} \widehat{\phi}^{(j-1)}(1)}{(\log K)^{j}} + O_{J} \Big(\frac{1}{(\log X)^{J+1}} \Big) \end{split}$$

Thank you!