0.1 Fourier 积分不等式

定理 0.1 (Fourier 型积分不等式)

若 $f(x) \in C^1[a,b]$, 则

(1)

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx \right)^{2} \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件为

$$f(x) = c_1 + c_2 \cos\left(\frac{\pi(x-a)}{b-a}\right), c_1, c_2 \in \mathbb{R}.$$

(2) 若 f(a) = f(b), 则

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx \right)^{2} \le \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c_1 + c_2 \cos\left(\frac{2\pi x}{b-a}\right) + c_3 \sin\left(\frac{2\pi x}{b-a}\right), c_1, c_2, c_3 \in \mathbb{R}.$$

(3) 若 f(a) = f(b) = 0, 则

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c \sin\left(\frac{\pi(x-a)}{b-a}\right), c \in \mathbb{R}.$$

¢

- $\dot{\mathbf{z}}$ (1) 中对 f 进行偶延拓的原因是: 使延拓后的区间端点函数值相等, 从而就能利用 Fourier 级数的逐项微分定理.
 - (2) 已经有区间端点函数值相等的条件了, 所以不需要进行延拓.
- (3) 中对 f 进行奇延拓的原因是: f 满足 f(a) = f(b) = 0, 此时对 f 做奇延拓后能使得 $f \in C^1[2a b, b]$, 进而就能得到更好的结论.(如果只有 $f(a) = f(b) \neq 0$, 那么 f 奇延拓后在 x = a 处间断.)

证明

(1) 把 f(x) 延拓到 [2a-b,b], 使得 $f(x)=f(2a-x),x\in[a,b)$, 则 $f(b)=f(2a-b),f\in C[2a-b,b]$ 且分段可微, 并且此时 f 关于 x=a 轴对称. 因此设 f(x) 有傅立叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi n(x-a)}{b-a}\right),$$

进而由 Fourier 级数的逐项微分定理可得

$$f'(x) \sim -\frac{\pi}{b-a} \sum_{n=1}^{\infty} [na_n \sin\left(\frac{\pi n(x-a)}{b-a}\right)].$$

这里

$$a_n = \frac{1}{b-a} \int_{2a-b}^{b} f(x) \cos\left(\frac{\pi n(x-a)}{b-a}\right) dx, n \in \mathbb{N}_0.$$

我们由 Parseval 恒等式可得

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 \right],$$
$$\int_{2a-b}^{b} |f'(x)|^2 dx = \frac{\pi^2}{b-a} \sum_{n=1}^{\infty} n^2 a_n^2.$$

从而有

$$\int_{2a-b}^{b} |f(x)|^2 dx - (b-a) \frac{a_0^2}{2} = (b-a) \sum_{n=1}^{\infty} a_n^2 \leqslant (b-a) \sum_{n=1}^{\infty} n^2 a_n^2 = \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx$$

$$\iff \int_{2a-b}^{b} |f(x)|^2 dx - \frac{1}{2(b-a)} \left(\int_{2a-b}^{b} f(x) dx \right)^2 \le \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx.$$

利用对称性,就有

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{(b-a)} \left(\int_{a}^{b} f(x) dx \right)^{2} \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件为

$$f(x) = c_1 + c_2 \cos\left(\frac{\pi(x-a)}{b-a}\right), c_1, c_2 \in \mathbb{R}.$$

(2) 设

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nx}{b-a}\right) + b_n \sin\left(\frac{2\pi nx}{b-a}\right) \right),$$

由 Fourier 级数的逐项微分定理可得

$$f'(x) \sim \frac{2\pi}{b-a} \sum_{n=1}^{\infty} \left(-na_n \sin\left(\frac{2\pi nx}{b-a}\right) + nb_n \cos\left(\frac{2\pi nx}{b-a}\right) \right).$$

这里

$$a_n = \frac{2}{b-a} \int_a^b f(x) \cos\left(\frac{2\pi nx}{b-a}\right) dx,$$

$$b_n = \frac{2}{b-a} \int_a^b f(x) \sin\left(\frac{2\pi nx}{b-a}\right) dx.$$

由 Parseval 恒等式, 我们有

$$\int_{a}^{b} |f(x)|^{2} dx = \frac{b-a}{2} \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right],$$

$$\int_{a}^{b} |f'(x)|^{2} dx = \frac{2\pi^{2}}{b-a} \sum_{n=1}^{\infty} n^{2} (a_{n}^{2} + b_{n}^{2}).$$

因此

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{(b-a)a_{0}^{2}}{4} = \frac{b-a}{2} \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2}\right) \leqslant \frac{b-a}{2} \sum_{n=1}^{\infty} n^{2} \left(a_{n}^{2} + b_{n}^{2}\right) = \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx$$

$$\iff \int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx\right)^{2} \leq \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c_1 + c_2 \cos\left(\frac{2\pi x}{b-a}\right) + c_3 \sin\left(\frac{2\pi x}{b-a}\right).$$

(3) 令

$$f(x) = -f(2a - x), x \in [2a - b, a),$$

则 $f(x) \in C^{1}[2a-b,b]$, 并且此时 f 关于 (a,0) 点中心对称. 设 f(x) 有傅立叶级数

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi n(x-a)}{b-a}\right),$$

由 Fourier 级数的逐项微分定理可得

$$f'(x) \sim \frac{\pi}{b-a} \sum_{n=1}^{\infty} n b_n \cos\left(\frac{\pi n(x-a)}{b-a}\right).$$

这里

$$b_n = \frac{1}{b-a} \int_{2a-b}^{b} f(x) \sin\left(\frac{\pi n(x-a)}{b-a}\right) dx, n \in \mathbb{N}_0.$$

我们由 Parseval 恒等式可得

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \sum_{n=1}^{\infty} b_n^2,$$
$$\int_{2a-b}^{b} |f'(x)|^2 dx = \frac{\pi^2}{b-a} \sum_{n=1}^{\infty} n^2 b_n^2.$$

从而有

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \sum_{n=1}^{\infty} b_n^2 \leqslant (b-a) \sum_{n=1}^{\infty} n^2 b_n^2 = \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx$$

$$\iff \int_{2a-b}^{b} |f(x)|^2 dx \leqslant \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx.$$

利用对称性,我们有

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c \sin\left(\frac{\pi(x-a)}{b-a}\right).$$