ABSTRACT

A method of preparing beta-spodumene bodies from a plastic batch comprised entirely of minerals, absent a glass component. The resulting structure has a stoichiometry of 1:1:4 (LiO₂:Al₂O₃:SiO₂) to 1:1:11 (LiO₂:Al₂O₃:SiO₂), and exhibits a low coefficient of thermal expansion, high porosity and high strength, and is suitable for automotive catalytic converter substrates requiring a fast light-off time. There is also provided a ceramic article having a solid-solution of beta-spodumene ranging in molar ratio from 1:1:4 LiO₂-Al₂O₃-SiO₂ to 1:1:11 LiO₂-Al₂O₃-SiO₂ wherein a component selected from the group consisting of magnesium oxide (MgO), manganese oxide (MnO), and cobalt oxide (CoO) is substituted for lithium oxide (LiO₂) at 10 to 65 mole %, and optionally a minor phase of mullite (3Al₂O₃-2SiO₂) in an amount of up to 50% by weight.