

Rafał Kornat

Nr albumu: 412521

Badanie porównawcze strategii ofensywnych w grze "Statki" w kontekście efektywności i skuteczności wybranych metod

Praca magisterska na kierunku Informatyka

> Praca wykonana pod kierunkiem Dr-a Artura Lipnickiego Katedra analizy Nieliniowej

Łódź, 2024

Słowa kluczowe: pierwsze, drugie, trzecie, czwarte

Title in English: Title in English

Keywords: first, second, third, fourth

Spis treści

1.	Wst	ep																														5
	1.1.	Zasady	y g	gr:	y							•																				5
2.	Wst	ep							•											•			•					•				7
	2.1.	Podsta	aw	ov	ve	Po	oje	eci	a																							7
		2.1.1.]	De	fii	nic	eje	e o	ra	Z	Τv	vio	erc	lz	en	ia	ι -	Si	tai	ty	sty	yk	a			•		•		•		7
Bil	oliogr	afia																														Ç

Rozdział 1

Wstęp

1.1. Zasady gry

Klasyczna gra w "Statki" to strategiczna rozgrywka dla dwóch osób, której celem jest zatopienie wszystkich okrętów przeciwnika. Każdy gracz posiada dwie plansze: jedną do rozmieszczenia swoich statków, a drugą do zaznaczania strzałów oddanych w stronę rywala. Plansze są rozmiaru 10x10, są one oznaczone odpowiednio literami od A do J w poziomie i cyframi od 1 do 10 w pionie. Flota każdego z graczy składa się:

- jednego lotniskowca (pięć pól),
- jednego pancernika (cztery pola),
- jednego krążownika (trzy pola),
- jednego okrętu podwodnego (trzy pola),
- jednego niszczyciela (dwa pola).

Statki rozmieszczane są na planszy w pozycji pionowej lub poziomej i do końca gry nie mogą zmieniać swojej lokalizacji. Okręty mogą stykać się bokami lub rogami, co stanowi odstępstwo od klasycznych zasad, gdzie takie zachowanie jest zabronione. Rozgrywka odbywa się w turach, w których gracze wykonują strzały na przemian. W celu oddania strzału, gracz podaje współrzędne pola, na przykład B5. Następnie przeciwnik sprawdza i informuje, czy na podanym polu znajduje się statek. Mówi słowo "pudło" w przypadku, gdy na danym polu nie ma statku, a "trafiony" w przeciwnym przypadku. Gdy wszystkie pola danego statku są trafione, statek zostaje zatopiony, a właściciel statku informuje oponenta o jego zatopieniu. Gra kończy się, gdy jedna z osób jako pierwsza zatopi wszystkie okręty wroga.

Rozdział 2

Wstęp

2.1. Podstawowe Pojecia

2.1.1. Definicje oraz Twierdzenia - Statystyka

W trakcie analizy strategii w grze "Statki" będziemy operować skończonymi przestrzeniami. Z tego powodu będziemy korzystać z ustalonego nazewnictwa, które zostanie zaczerpnięte z książki [1]

Definicja 2.1.1. (Wartośc oczekiwana dla zmiennej dyskretnej) [1]

Jeśli X jest dyskretną zmienną losową przyjmującą wartości $x_1, x_2, \ldots z$ prawdopodobieństwami p_1, p_2, \ldots , to wartość oczekiwana $\mathbb{E}(X)$ jest dana wzorem:

$$\mathbb{E}(X) = \sum_{i=1}^{\infty} x_i \cdot p_i$$

Definicja 2.1.2. (Wariancja dla zmiennej dyskretnej) [1]

Jeśli X jest dyskretną zmienną losową przyjmującą wartości $x_1, x_2, \ldots z$ prawdopodobieństwami p_1, p_2, \ldots oraz wartością oczekiwaną $\mathbb{E}(X)$, to wariancja $\mathrm{Var}(X)$ jest dana wzorem:

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2 \right] = \sum_{i=1}^{\infty} (x_i - \mathbb{E}(X))^2 \cdot p_i$$

Definicja 2.1.3. (Odchylenie standardowe dla zmiennej dyskretnej) [1]

Jeśli X jest dyskretną zmienną losową, to odchylenie standardowe σ jest dane wzorem:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Test chi-kwadrat jest testem statystycznym używanym do oceny, czy obserwowane częstości zdarzeń różnią się istotnie od tych spodziewanych w założonym modelu. Jest powszechnie stosowany w analizie danych kategorycznych.

Definicja 2.1.4. (**Test chi-kwadrat**) Wartość statystyki chi-kwadrat (χ^2) dla testu chi-kwadrat jest obliczana na podstawie porównania między obserwowanymi (O_i) a spodziewanymi (E_i) częstościami w poszczególnych kategoriach. Dla k kategorii, wzór na χ^2 jest następujący:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

 $\it W$ przypadku dużych prób, statystyka ta ma rozkład chi-kwadrat z $\it k-1$ stopniami swobody.

Bibliografia

[1] Jacek Koronacki, Jan Mielniczuk *Statystyka dla studentów kierunków technicznych i przyrodniczych*, Warszawa, Wydawnictwo Naukowo-Techniczne.