The Bonner fixed point theorem:

Let B" denok the cloud hall of raction 1 in R", with boundary the unit sphere sn-1. Recall that, if ACX, a retraction r; X-A is a continuous map st. r(a) = a VaEA.

Than: There is no retraction of B2 onto S1.

Pf: if r: B2 > s' is a retraction, then i or = ids1, so

 $\pi_1(S_1, x_0) \xrightarrow{i_*} \pi_1(B_1, x_0) \xrightarrow{r_*} \pi_1(S_1, x_0)$ $\{ y \circ r_* = \text{trival hom.} \neq id: \mathbb{Z} \rightarrow \mathbb{Z}.$ [1] (convex $\subset \mathbb{R}^2$, shraight (ine homotopy) Contradiction.

(More elementary way to say this: given a nontrivial loop f in 5', iof is nullhamotopic in B2, via some homotopy H from f to exo. Then roll is a path homotopy f as exo in S1, contradiction.).

[with more alg. top., similarly \$ retraction B" -> S" - Vn].

>> Bouver fixed point theorm.

[with more algetop., the same holds for continuous rays $B^n \to B^n$ for internediate value than, cf. HW2) $\frac{Rroof:}{VI}$ ascume $f: B^2 \to B^2$ continuous f(V) = V

Proof: ascume f: B2-1B2 continuous, f(x) \$x \text{VKEB2.

Then define h: B2 -> S1 by myping each PEB2 to the point when the ray from f(P) to P hits $\partial B^2 = S^1$.

(formula: h(p)=p+t(p-f(p)) where t>0 st. $||h(p)||^2=1$. can solve by quadratic formula, so t does depend continuously on p).

This give a continuous map $h: B^2 \rightarrow S^1$, moreover if $p \in S^1$ then h(p) = p, so we get a retraction $B^2 \rightarrow S^1$. Contradiction.

* A loop in (X, x_0) is defined as a map $I \rightarrow X$ et = $\{0,1\} \rightarrow \{x_0\}$, but since I/0~1 is homeo. to S', can also think of it as a map (S', Po) - (X, xo). So $\pi_4(X,x_0)$ tells us about homotopy classes of maps $(S',p_0) \rightarrow (X,x_0)$... but also $S' \rightarrow X$.

Lemma: Let h: 5'-1 x continuous, then the following are equivalent:

- (1) h is nullhomotopic
- (2) h extends to a continuous map $k: B^2 \to X$ $(k_{|\partial B^2 = S^1} = h)$. (3) $h_*: \pi_1(S^1) \to \pi_1(X)$ is the trivial homomorphism.

These are nontrial on $\pi_1(5^1)$ (in fact, map generator $1 \in \mathbb{Z}$ to $d \in \mathbb{Z}_{>0}$) hence don't extend over \mathbb{B}^2 . But if f had no roots, $z \mapsto f(rz)/|f(rz)|$ would be such an extension.

Q: Assume $X = U \cup V$, with U and V open subsets, and we know $\pi_1(U)$ and $\pi_1(V)$. Can we find $\pi_1(X)$?

 $S^2 = U \cup V$, $\pi_1(U) \ R \pi_1(V)$ himal

figure 8 = UUV, each of U&V has homelopy by of S!

The Seifert-lan Kangen, which we'll see soon, gives a general way to calculate TI,(X) in this situation. For now we'll just prove a weaker (and exier) version.

Thun; Super X= UUV, U and V open, UnV path-connected, $x_0 \in U \cap V$.

Let $i: U \hookrightarrow X$ and $j: V \hookrightarrow X$ to the inclusion maps. Then the image of $i_{*}: \pi_{i}(U, x_{0}) \to \pi_{i}(X, x_{0})$ and $j_{*}: \pi_{i}(V, x_{0}) \to \pi_{i}(X, x_{0})$ governote $\pi_{i}(X, x_{0})$.

ie.: every element of $\pi_i(X,x_0)$ can be expressed as a product of elements in $\text{Im}(i_x)$ and $\text{Im}(j_x)$ -ie. every loop in (X,x_0) is path-homotopic to a composition of loops entirely contained in either U or V.

Pf: Let f; I - X be a loop band of 20.

 $[0,1] = f^{-1}(U) \cup f^{-1}(V)$ open (over, [0,1] compact =) using the lebegue number lemma, we can subdivide [0,1] into $0=a_0<a_1<...<a_n=1$ st. $f([a_{i-1},a_i])$ is colained in either U or V. Eliminating unnecessary a; from the list, can assume U and V alternate along the way, and in parkalar f(a;) EUNV Vi. Let $f_i = f_{[a_{i-1}, a_i]}$ so that $[f] = [f_1] * ... * [f_n]$.

For each i, choose a path ox; in UNV from x0 to f(ai). (take $\alpha_0 = \alpha_n = constant$ path at x_0).

Then [f] = [x₀ × f₁ × x₁⁻¹] × [x₁ × f₂ × x₂⁻¹] × ... × [x_{n-1} × f_n × x_n⁻¹] loops at xo, entirely contained in U on in V

Corollagi X= UUV with UEV open and simply-connected UnV path Gameched

⇒ X is simply-connected.

V= S^- (0,...0-1) Si South pole.

Then U and V are homeomaphic to Rn via stereographic projection f: U-1 Rn mapping each point x ∈ U to the point where the line in Rht, Mongh N and X intesects the equatorial plane Rn x {0}.

Ie:
$$f(x) = \frac{1}{1-x_{n+1}} (x_1,...,x_n)$$
 (excit: check this is a homeo.) change to $+$ for $V \xrightarrow{\sim} IR^n$.

Hence: U and V, homeomorphic to Rh, are simply connected UnV ______ R^-{point}, is path-conected (n > 2!)

Corollay: Sn is simply conected for n≥2.

=> Corollay: an open subset in Rn33 cannot be homeomorphic to an open subset in R2. Indeed: UCR open, pEU => 3 open ball p ∈ Br(p) = U, and Br(p)-{p} deform. rebrots onto a sphere => Br(p)-{p} is simply connected. Whereas $q \in V \subset \mathbb{R}^2$ open ⇒ 4 open 9 ∈ NCV, N-{9} can't be simply connected (retracts to circle). (The argument for IR^{n>2} vs. IR is easier, only was connectedness)

Ex: recall from HW: the quotient of S^n by $x \sim -x$, $P: S^n \to S^n/_{\sim} \sim RP^n$ is a dyre 2 overing map. $V=P(U)\subset\mathbb{R}^n$ $P^{-1}(V)=U\coprod (-U)$ [X]=[-X]

Also recall: Using conspondence $\pi_1(RP^h, b_0) \longrightarrow P^1(b_0) = \{2 \text{ points}\}$ sujective because 5° connected; injective because 5° is sirply connected if n = 2 (if a loop f in RPM litts to a loop f in 5", then f is horn-topic to contact loop in 5", a projecting by P, P.F = f is homotopic to a constant loop in RPM). For 172, $\pi_1(RR^n)$ is a group with 2 elements, have isomorphic to $\mathbb{Z}_{2\mathbb{Z}}$.

Ex. X = figure 8 space, bx

Grulted can cover by opens U, V which have deformation retractions to S', UNV =) By theorem, $\pi_1(X)$ is generall by the image of two maps from $\mathbb{Z}_{,}$ ie can express every loop in terms of power of [a] and [b] (a,b loops around each S1) generators of $\pi_1(U)$, $\pi_1(V)$, ie every element is a product of $[a]^{\pm 1}$'s & $[b]^{\pm 1}$'s.

(3)

but don't know relations between [a] and [b].

Can show that [a] and [b] don't commute - [a] * [b] \$ [b] * [a].

One way to do this is by boking of covering map

The lift of ax b starting at eo ends at (1,0) hence [a]x[b] x[a] = -1 bx a -1 -1 at (0,1)

so $\pi_1(X,x_0)$ is not abelian. In fact, we'll show later that it is the free group generated by [a] and [b], i.e. elts are arbitrary words in $[a]^{\pm 1}$ and $[b]^{\pm 1}$ with no relations whatsoever (except $[a]^{-1}*[a] = 1$ et.).