Inferring spike trains given calcium-sensitive fluorescence observations

Joshua Vogelstein

Johns Hopkins University

May 31, 2008

The Most Important Slide of the Talk

The Most Important Slide of the Talk

Acknowledgments

- Sticking around until the end: You
- Letting me tell you what I think: The Organizers
- Support: Eric D. Young
- Theory: Liam Paninski and Baktash Babadi
- Data: Brendon O. Watson and Rafael Yuste

Outline

- Introduction
- Simplification
- Sophistication
- 4 Generalization
- Discussion

Outline

- Introduction
- 2 Simplification
- Sophistication
- Generalization
- Discussion

Motivation

Motivation

Goal

Develop a framework to infer spike trains from calcium-sensitive fluorescence observations.

Goal

Develop a framework to infer spike trains from calcium-sensitive fluorescence observations.

Why is this difficult

(1) nonlinear dynamics, (2) non-Gaussian noise, (3) poor temporal resolution, (4) unknown parameters.

Goal

Develop a framework to infer spike trains from calcium-sensitive fluorescence observations.

Why is this difficult

(1) nonlinear dynamics, (2) non-Gaussian noise, (3) poor temporal resolution, (4) unknown parameters.

Approach

Develop probabilistic "forward-models" of the experimental system, and invert them to find the spike trains.

Outline

- Introduction
- 2 Simplification
- Sophistication
- Generalization
- Discussion

A simple setup

Model 1: Poisson spiking, linear calcium, iid noise

$$egin{aligned} F_t &= [\mathsf{Ca}^{2+}]_t + arepsilon_t, \qquad arepsilon_t \sim \mathcal{N}(0,1) \ aurac{[\mathsf{Ca}^{2+}]_t - [\mathsf{Ca}^{2+}]_{t-1}}{\Delta} &= -[\mathsf{Ca}^{2+}]_{t-1} + [\mathsf{Ca}^{2+}]_0 + \mathit{An}_t \ n_t \sim \mathit{Poisson}(n_t; \lambda \Delta). \end{aligned}$$

A simple setup

Model 1: Poisson spiking, linear calcium, iid noise

$$\begin{split} F_t &= [\mathsf{Ca}^{2+}]_t + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0,1) \\ \tau \frac{[\mathsf{Ca}^{2+}]_t - [\mathsf{Ca}^{2+}]_{t-1}}{\Delta} &= -[\mathsf{Ca}^{2+}]_{t-1} + [\mathsf{Ca}^{2+}]_0 + \mathit{An}_t \\ n_t \sim \mathit{Poisson}(n_t; \lambda \Delta). \end{split}$$

Problem 1: Find most likely spike train, given the fluorescence

$$\widehat{\mathbf{n}} = \operatorname*{argmax}_{n_t > 0 \forall t} P(\mathbf{n}|\mathbf{F})$$

A (relatively) simple method

Method 1: a non-negative sparse solution

```
\begin{split} \widehat{\mathbf{n}} &= \underset{n_t \geq 0 \forall t}{\operatorname{argmax}} \, P(\mathbf{n}|\mathbf{F}) \\ &= \underset{n_t \geq 0 \forall t}{\operatorname{argmax}} \, P(\mathbf{F}|\mathbf{n}) P(\mathbf{n}) \\ &= \underset{n_t \geq 0 \forall t}{\operatorname{argmax}} \, \mathcal{N}(\mathbf{F}; [\mathsf{Ca}^{2+}], 1) Poisson(\mathbf{n}; \lambda \Delta) \\ &\approx \underset{n_t \geq 0 \forall t}{\operatorname{argmax}} \, \mathcal{N}(\mathbf{F}; [\mathsf{Ca}^{2+}], 1) Exp(\mathbf{n}; \lambda \Delta). \end{split}
```

A (relatively) simple method

Features of Method 1: Fast and Concave

- $[Ca^{2+}]$ is a linear function of n
- Replace sharp threshold $n_t \ge 0$ with log-concave threshold $\eta f(n_t)$, and slowly "sharpen" until converging
- The soft threshold makes the argument log-concave
- We use Newton-Raphson to maximize argument: $[Ca^{2+}] \leftarrow [Ca^{2+}] + s\mathbf{H}^{-1}\mathbf{g}$
- Because calcium filter is exponential, **H** is tridiagonal
- Therefore \mathbf{H}^{-1} may be computed in O(T) instead of $O(T^3)$
- Wiener filter (optimal for $n \sim \text{Gaussian}$) requires $O(T \log T)$

A simple demo

Simulated demo 1: Fluorescence, optimal linear and non-negative filter

A simple comparison

Comparison 1: Optimal linear vs. Optimal non-negative

	Optimal linear	Optimal non-negative
Parameters	$\{A, \tau, \sigma, \lambda\}$	$\{A, \tau, \sigma, \lambda\}$
Speed	$O(T \log T)$	O(T)
Performance	good	better
Overall	X	✓

Outline

- Introduction
- 2 Simplification
- Sophistication
- 4 Generalization
- Discussion

A sophisticated model

Model 2: Incorporating saturation and signal-dependent noise

$$egin{aligned} F_t &= S([\mathsf{Ca}^{2+}]_t) + \text{"noise}_t \text{"} \ & ext{"noise}_t \text{"} &= S([\mathsf{Ca}^{2+}]_t) + \sigma_F arepsilon_t, & arepsilon_t \sim \mathcal{N}(0,1) \ S(x) &= lpha rac{x^n}{x^n + k_d} + eta. \end{aligned}$$

A sophisticated method

Method 2: A sequential Monte Carlo (a.k.a., particle filtering) expectation maximization (SMC-EM) solution

The goal is the find the probability of a spike occurring in any image frame, given the entire sequence of fluorescence observations:

$$E[n_t = 1|\mathbf{F}].$$

Technical note

We use a Forward-Backward approach to estimate the E step (where the Forward recursion is approximated using SMC), and gradient ascent to solve the M step, which is concave.

A sophisticated demo

A sophisticated comparison

Comparison 2: Optimal linear vs. non-negative vs. nonlinear

	Linear	Non-negative	Nonlinear
Parameters	$\{A, \tau, \sigma, \lambda\}$	$\{A, \tau, \sigma, \lambda\}$	$+\{n, k_d, \alpha, \beta, \sigma_F\}$
Speed	$O(T \log T)$	O(T)	$O(N^2T)$
Performance	good	better	best
Errorbars	X	X	✓
Overall	X	\checkmark	√ √

Outline

- Introduction
- 2 Simplification
- Sophistication
- 4 Generalization
- Discussion

Generalizations

Generalization 1: Stimulus and spike history dependence

Replace Poisson spiking with a Generalized Linear Model (GLM)

Generalization 2: Superresolution

Sampling spikes with finer temporal resolution than image frames, to determine when within a frame a spike occurs

A generalized demo

A generalized comparison

Comparison 3: Optimal non-negative vs. Generalized optimal nonlinear

	Non-negative	Generalized nonlinear
Parameters	$\{A, \tau, \sigma, \lambda\}$	$+\{n, k_d, \alpha, \beta, \sigma_F, \mathbf{k}, \boldsymbol{\omega}, \tau_h, \sigma_h\}$
Speed	O(T)	$O(N^2T)$
Performance	good	better
Errorbars	X	✓
Spike histories	X	✓
Stimulus	ish	✓
Superresolution	ish	✓
Overall	\checkmark	√ √

Outline

- Introduction
- 2 Simplification
- Sophistication
- Generalization
- Discussion

Further generalizations

Relaxing the assumptions

- Slower rise time for fluorescence
- Multiple time constants for calcium

Other

- Movement artifacts
- Spatial filtering of image
- Populations of neurons

References

Coming soon...

- Vogelstein JT et al. Fast algorithms for inferring spike trains from calcium sensitive fluorescence observations. In preparation.
- Vogelstein, JT, et al. Model-based optimal inference of spike times given noisy calcium sensitive fluorescence observations. Under review at Biophysical Journal.