Logical Representations and Computational Methods for Markov Decision Processes

Craig Boutilier

Department of Computer Science

University of Toronto

Planning in Artificial Intelligence

- ■Planning has a long history in AI
 - strong interaction with logic-based knowledge representation and reasoning schemes
- Basic planning problem:
 - Given: start state, goal conditions, actions
 - Find: sequence of actions leading from start to goal
 - Typically: states correspond to possible worlds; actions and goals specified using a logical formalism (e.g., STRIPS, situation calculus, temporal logic, etc.)
- Specialized algorithms, planning as theorem proving, etc. often exploit logical structure of problem is various ways to solve effectively

NASSLI Lecture Slides (c) 2002, C. Boutilier

Difficulties for the Classical Model

- •Uncertainty
 - in action effects
 - in knowledge of system state
 - a "sequence of actions that guarantees goal achievement" often does not exist
- •Multiple, competing objectives
- Ongoing processes
 - lack of well-defined termination criteria

NASSLI Lecture Slides (c) 2002, C. Boutilier

Some Specific Difficulties

- •Maintenance goals: "keep lab tidy"
 - goal is never achieved once and for all
 - can't be treated as a safety constraint
- Preempted/Multiple goals: "coffee vs. mail"
 - must address tradeoffs: priorities, risk, etc.
- Anticipation of Exogenous Events
 - e.g., wait in the mailroom at 10:00 AM
 - on-going processes driven by exogenous events
- Similar concerns: logistics, process planning, medical decision making, etc.

NASSLI Lecture Slides (c) 2002, C. Boutilier

5

Markov Decision Processes

- Classical planning models:
 - logical rep'n s of deterministic transition systems
 - goal-based objectives
 - plans as sequences
- Markov decision processes generalize this view
 - controllable, stochastic transition system
 - general objective functions (rewards) that allow tradeoffs with transition probabilities to be made
 - more general solution concepts (policies)

NASSLI Lecture Slides (c) 2002, C. Boutilier

Logical Representations of MDPs

- MDPs provide a nice conceptual model
- Classical representations and solution methods tend to rely on state-space enumeration
 - combinatorial explosion if state given by set of possible worlds/logical interpretations/variable assts
 - Bellman's curse of dimensionality
- Recent work has looked at extending AI-style representational and computational methods to MDPs
 - we'll look at some of these (with a special emphasis on "logical" methods)

NASSLI Lecture Slides (c) 2002, C. Boutilier

7

Course Overview

- Lecture 1
 - motivation
 - introduction to MDPs: classical model and algorithms
- Lecture 2
 - Al/planning-style representations
 - probabilistic STRIPs; dynamic Bayesian networks; decision trees and BDDs; situation calculus
 - some simple ways to exploit logical structure: abstraction and decomposition

NASSLI Lecture Slides (c) 2002, C. Boutilier

Course Overview (con't)

Lecture 3

- decision-theoretic regression
- propositional view as variable elimination
- exploiting decision tree/BDD structure
- approximation
- first-order DTR with situation calculus

Lecture 4

- linear function approximation
- exploiting logical structure of basis functions
- discovering basis functions

NASSLI Lecture Slides (c) 2002, C. Boutilier

9

Course Overview (con't)

- Lecture 5
 - temporal logic for specifying non-Markovian dynamics
 - model minimization
 - wrap up; further topics

NASSLI Lecture Slides (c) 2002, C. Boutilier

Markov Decision Processes

- ■An MDP has four components, S, A, R, Pr:
 - (finite) state set S (|S| = n)
 - (finite) action set A (|A| = m)
 - transition function Pr(s,a,t)
 - each Pr(s,a,-) is a distribution over S
 - represented by set of n x n stochastic matrices
 - bounded, real-valued reward function R(s)
 - represented by an n-vector
 - ■can be generalized to include action costs: R(s,a)
 - can be stochastic (but replacable by expectation)
- Model easily generalizable to countable or continuous state and action spaces

NASSLI Lecture Slides (c) 2002, C. Boutilier

Graphical View of MDP

NASSLI Lecture Slides (c) 2002, C. Boutilier

17

Assumptions

- Markovian dynamics (history independence)
 - $Pr(S^{t+1}|A^t,S^t,A^{t-1},S^{t-1},...,S^0) = Pr(S^{t+1}|A^t,S^t)$
- Markovian reward process
 - $Pr(R^t|A^t,S^t,A^{t-1},S^{t-1},...,S^0) = Pr(R^t|A^t,S^t)$
- Stationary dynamics and reward
 - $Pr(S^{t+1}|A^t,S^t) = Pr(S^{t'+1}|A^{t'},S^{t'})$ for all t, t'
- Full observability
 - though we can't predict what state we will reach when we execute an action, once it is realized, we know what it is

NASSLI Lecture Slides (c) 2002, C. Boutilier

Policies

- Nonstationary policy
 - $\pi:S \times T \rightarrow A$
 - π(s,t) is action to do at state s with t-stages-to-go
- Stationary policy
 - $\pi:S \to A$
 - π(s) is action to do at state s (regardless of time)
 - analogous to reactive or universal plan
- These assume or have these properties:
 - full observability
 - history-independence
 - deterministic action choice

NASSLI Lecture Slides (c) 2002, C. Boutilier

19

Value of a Policy

- •How good is a policy π? How do we measure "accumulated" reward?
- ■Value function V: S → R associates value with each state (sometimes S x T)
- ${
 m I\hspace{-.1em}{}^{\bullet}}{
 m V}_{\pi}(s)$ denotes value of policy at state s
 - how good is it to be at state s? depends on immediate reward, but also what you achieve subsequently
 - expected accumulated reward over horizon of interest
 - note V_π(s) ≠ R(s); it measures *utility*

NASSLI Lecture Slides (c) 2002, C. Boutilier

Value of a Policy (con't)

- Common formulations of value:
 - Finite horizon n: total expected reward given π
 - Infinite horizon discounted: discounting keeps total bounded
 - Infinite horizon, average reward per time step

NASSLI Lecture Slides (c) 2002, C. Boutilier

21

Finite Horizon Problems

- Utility (value) depends on stage-to-go
 - hence so should policy: nonstationary $\pi(s,k)$
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for π

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{k} R^{t} \mid \pi, s\right]$$

■Here R^t is a random variable denoting reward received at stage t

NASSLI Lecture Slides (c) 2002, C. Boutilier

Successive Approximation

- Successive approximation algorithm used to compute $V_{\pi}^{k}(s)$ by dynamic programming
- (a) $V_{\pi}^{0}(s) = R(s), \quad \forall s$
- (b) $V_{\pi}^{k}(s) = R(s) + \sum_{s'} \Pr(s, \pi(s, k), s') \cdot V_{\pi}^{k-1}(s')$

$$\pi(s,k)$$

0.7

 0.3
 0.3
 0.3
 0.3

NASSLI Lecture Slides (c) 2002, C. Boutilier

23

Successive Approximation

- ■Let Pπ,k be matrix constructed from rows of action chosen by policy
- In matrix form:

$$V^k = R + P^{\pi,k} V^{k-1}$$

- Notes:
 - π requires T n-vectors for policy representation
 - V_{π}^{k} requires an n-vector for representation
 - Markov property is critical in this formulation since value at s is defined independent of how s was reached

NASSLI Lecture Slides (c) 2002, C. Boutilie

Value Iteration (Bellman 1957)

- Markov property allows exploitation of DP principle for optimal policy construction
 - no need to enumerate |A|^{Tn} possible policies
- ■Value Iteration

Bellman backup

$$V^0(s) = R(s), \quad \forall s$$

$$V^{0}(s) = R(s), \quad \forall s$$

$$V^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

$$\pi^*(s,k) = \arg\max\sum_{s'} \Pr(s,a,s') \cdot V^{k-1}(s')$$

Vk is optimal k-stage-to-go value function

NASSLI Lecture Slides (c) 2002, C. Boutilier

25

Value Iteration

$$V^{\dagger}(s4) = R(s4) + max \{ 0.7 V^{\dagger+1} (s1) + 0.3 V^{\dagger+1} (s4) = 0.4 V^{\dagger+1} (s2) + 0.6 V^{\dagger+1} (s3) \}$$

NASSLI Lecture Slides (c) 2002, C. Boutilier

27

Value Iteration

- ■Note how DP is used
 - optimal soln to k-1 stage problem can be used without modification as part of optimal soln to k-stage problem
- Because of finite horizon, policy nonstationary
- ■In practice, Bellman backup computed using:

$$Q^{k}(a,s) = R(s) + \sum_{s'} \Pr(s,a,s') \cdot V^{k-1}(s'), \quad \forall a$$
$$V^{k}(s) = \max_{a} Q^{k}(a,s)$$

NASSLI Lecture Slides (c) 2002, C. Boutilier

Complexity

- ■T iterations
- ■At each iteration |A| computations of n x n matrix times n-vector: O(|A|n³)
- ■Total O(T|A|n³)
- ■Can exploit sparsity of matrix: O(T|A|n²)

NASSLI Lecture Slides (c) 2002, C. Boutilier

29

Summary

Resulting policy is optimal

$$V_{\pi^*}^k(s) \ge V_{\pi}^k(s), \quad \forall \pi, s, k$$

- convince yourself of this; convince that nonMarkovian, randomized policies not necessary
- Note: optimal value function is unique, but optimal policy is not

NASSLI Lecture Slides (c) 2002, C. Boutilier

Discounted Infinite Horizon MDPs

- ■Total reward problematic (usually)
 - many or all policies have infinite expected reward
 - some MDPs (e.g., zero-cost absorbing states) OK
- ■"Trick": introduce discount factor $0 \le \beta < 1$
 - future rewards discounted by β per time step

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

Note: $V_{\pi}(s) \leq E\left[\sum_{t=0}^{\infty} \beta^{t} R^{\max}\right] = \frac{1}{1-\beta} R^{\max}$

•Motivation: economic? failure prob? convenience?

NASSLI Lecture Slides (c) 2002, C. Boutilier

31

Some Notes

- Optimal policy maximizes value at each state
- Optimal policies guaranteed to exist (Howard60)
- Can restrict attention to stationary policies
 - why change action at state s at new time t?
- ■We define $V*(s) = V_{\pi}(s)$ for some optimal π

NASSLI Lecture Slides (c) 2002, C. Boutilier

Value Equations (Howard 1960)

■Value equation for fixed policy value

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} \mathbf{Pr}(s, \pi(s), s') \cdot V_{\pi}(s')$$

■Bellman equation for optimal value function

$$V *(s) = R(s) + \beta \max_{a} \sum_{s'} \mathbf{Pr}(s, a, s') \cdot V *(s')$$

NASSLI Lecture Slides (c) 2002, C. Boutilier

33

Backup Operators

- We can think of the fixed policy equation and the Bellman equation as operators in a vector space
 - e.g., $L^a(V) = V' = R + \beta P^a V$
 - V_{π} is unique fixed point of policy backup operator L_{π}
 - V* is unique fixed point of Bellman backup L*
- ■We can compute V_π easily: **policy evaluation**
 - simple linear system with n variables, n constraints
 - solve $V = R + \beta PV$
- Cannot do this for optimal policy
 - max operator makes things nonlinear

NASSLI Lecture Slides (c) 2002, C. Boutilie

Value Iteration

Can compute optimal policy using value iteration, just like FH problems (just include discount term)

$$V^{k}(s) = R(s) + \beta \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

• no need to store argmax at each stage (stationary)

NASSLI Lecture Slides (c) 2002, C. Boutilier

35

Convergence

- ■L(V) is a contraction mapping in Rⁿ
 - $|| LV LV' || \le \beta || V V' ||$
- ■When to stop value iteration? when $||V^k V^{k-1}|| \le ε$
 - $||V_{k+1} V_k|| \le \beta ||V_k V_{k-1}||$
 - this ensures $||V^k V^*|| \le \varepsilon \beta / 1 \beta$
- Convergence is assured
 - any guess V: || V* L*V || = ||L*V* L*V || ≤ β|| V* V ||
 - so fixed point theorems ensure convergence

NASSLI Lecture Slides (c) 2002, C. Boutilier

How to Act

■Given V* (or approximation), use *greedy* policy:

$$\pi^*(s) = \arg\max\sum_{s'} \Pr(s, a, s') \cdot V^*(s')$$

- if V within ε of V*, then V(π) within 2ε of V*
- There exists an ε s.t. optimal policy is returned
 - even if value estimate is off, greedy policy is optimal
 - proving you are optimal can be difficult (methods like action elimination can be used)

NASSLI Lecture Slides (c) 2002, C. Boutilier

37

Policy Iteration

•Given fixed policy, can compute its value exactly:

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} \Pr(s, \pi(s), s') \cdot V_{\pi}(s')$$

- ■Policy iteration exploits this
- 1. Choose a random policy π
- 2. Loop:
 - (a) Evaluate V_{π}
 - (b) For each s in S, set $\pi'(s) = \arg\max \sum_{s'} \Pr(s, a, s') \cdot V_{\pi}(s')$
 - (c) Replace π with π'

a

Until no improving action possible at any state

NASSLI Lecture Slides (c) 2002, C. Boutilier

Policy Iteration Notes

- Convergence assured (Howard)
 - intuitively: no local maxima in value space, and each policy must improve value; since finite number of policies, will converge to optimal policy
- ■Very flexible algorithm
 - need only improve policy at one state (not each state)
- Gives exact value of optimal policy
- Generally converges much faster than VI
 - each iteration more complex, but fewer iterations
 - quadratic rather than linear rate of convergence

NASSLI Lecture Slides (c) 2002, C. Boutilier

39

Modified Policy Iteration

- MPI a flexible alternative to VI and PI
- Run PI, but don't solve linear system to evaluate policy; instead do several iterations of successive approximation to evaluate policy
- You can run SA until near convergence
 - but in practice, you often only need a few backups to get estimate of V(π) to allow improvement in π
 - quite efficient in practice
 - choosing number of SA steps a practical issue

NASSLI Lecture Slides (c) 2002, C. Boutilie

Asynchronous Value Iteration

- Needn't do full backups of VF when running VI
- ■Gauss-Siedel: Start with V^k .Once you compute V^{k+1}(s), you replace V^k(s) before proceeding to the next state (assume some ordering of states)
 - tends to converge much more quickly
 - note: Vk no longer k-stage-to-go VF
- ■AVI: set some V⁰; Choose random state s and do a Bellman backup at that state alone to produce V¹; Choose random state s...
 - if each state backed up frequently enough, convergence assured
 - useful for online algorithms (reinforcement learning)

NASSLI Lecture Slides (c) 2002, C. Boutilier

41

Some Remarks on Search Trees

- Analogy of Value Iteration to decision trees
 - decision tree (expectimax search) is really value iteration with computation focussed on reachable states
- Real-time Dynamic Programming (RTDP)
 - simply real-time search applied to MDPs
 - can exploit heuristic estimates of value function
 - can bound search depth using discount factor
 - can cache/learn values
 - can use pruning techniques

NASSLI Lecture Slides (c) 2002, C. Boutilier

References

- M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, 1994.
- D. P. Bertsekas, *Dynamic Programming: Deterministic and Stochastic Models*, Prentice-Hall, 1987.
- R. Bellman, *Dynamic Programming*, Princeton, 1957.
- R. Howard, *Dynamic Programming and Markov Processes*, MIT Press, 1960.
- C. Boutilier, T. Dean, S. Hanks, Decision Theoretic Planning: Structural Assumptions and Computational Leverage, *Journal of Artif. Intelligence Research* 11:1-94, 1999.
- A. Barto, S. Bradke, S. Singh, Learning to Act using Real-Time Dynamic Programming, *Artif. Intelligence* 72(1-2):81-138, 1995.

NASSLI Lecture Slides (c) 2002, C. Boutilier