

9999999

微型旋转编码器

QY1503-SPIXE

Rev.1.3

QY1503-SPIXE 是一款非接触式磁绝多圈对值位置编码器,可用于精确测量单圈 360°内的任意角度及512圈的多圈角度。可输出SPI信号作为绝对式编码器使用。 内置芯片由非接触式磁绝对位置编码器由磁电阻(MR)/霍尔角度传感 器和数字处理芯片集成而成。配合磁铁实现角度、位置和转速测量。

产品说明

一、工作原理

编码器采用的是磁电技术。由两个 MR/霍尔电桥构成。当磁场旋转电桥输出四组正弦 波信号组合成 A、B、C、D,每个正弦波相差 90 度相位差(相对于一个周波为 360 度),将 C、D 信号反向,叠加在 A、B 两相上,可增强稳定信号。

传感器数字信号处理分部分:

- (1) 通过 Rotation Digital Computer (CORDIC)算法,可以得到一圈内任意位置高精度、低时延角度。
 - (2)通过低功耗模块记录圈数。

信号经过芯片处理后,输出标准的 SPI 信号。

二、产品特点

磁电编码器具有结构简单、体积小、寿命长、安装方便、功耗小、频率高、耐振动、不怕灰尘、油污及盐雾等的污染或腐蚀等特点。另外,还具有无触点、位置重复精度高等优点。

- ※ 电压推挽输出
- ※ 4-16.5V 宽电源 ,3.3V I/O 信号
- ※ 低功耗,备用电池保持计圈
- ※ 高精度(4096分辨率),低角度误差
- ※ 360 度角度测量,512 圈多圈角度计数
- ※ SPI 输出最大 10Mbit,绝对位置输出
- ※ 体积小, 重量轻

三、应用领域

旋转编码器是测量旋转运动、角速度的传感器,也可与机械测量设备一起使用,例如丝杠,测量直线运动。

- ※ 智能车
- ※ 机床
- ※ 电机
- ※ 工业机器人
- ※ 运送设备
- ※ 测量,测试和检验设备

技术规格

电气规格

最大额定参数

• 电压:电源 -0.3 - 16.5V I/O 0 - 3.6V

• ESD: +/- 4kV

工作参数

• 工作电压*: 4-16.5V

• 电流消耗: 全功耗模式 18 mA 低功耗模式 98uA

• 输出: 推挽输出

• 角度刷新速度: 1uS

• 线数*: 4096 线 (角度误差噪声 < 0.25 度) 512 圈

机械规格

材料

• 外壳:铝合金

轴:不锈钢

• 排线*: 15 cm 电缆, 带或不带连接器

力学参数

• 转子转动惯量: 0.5·10-7 kgm2

• 启动扭矩:: 0.001 Nm (25 ° C 时)

• 轴最大负荷: 径向 1N, 轴向 0.5N

● 轴向窜动: ±0.05 mm

• 工作寿命: MTBF > 50000 h

● 重量: ≈ 11 克

• 机械允许转速: 10000 rpm

环境规格

环境温度

• 最高工作温度: 80°C

• 最低工作温度: -40 ° C

防护等级

• EN 60 529 IP64

注意: 1. 请不要超出额定范围使用。

2. 带*注释项,请订购时选择。

接线方式:

间距 2.54mm 插针连接头。

引脚	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
SPI	地	Vcc	SO	SI	CLK	CSN

不用的引脚请悬空。

SPI 通信协议:

读/写输出

1)写周期:包含1位同步码(低)1位读写码(高)6位地址码和8位数据。

2)读周期:分两步,第一步写入地址,返回数据无效。第二步再次写入地址,返回数据有效。

读周期包含 1 位同步码(低) 1 位读写码(低) 6 位地址码和 8 位数据(全0)。

数据传输出

同时双向传输数据。

时序

时钟上升沿数据有效,下降沿输出数据。

SPI INTERFACE SPECIFICATIONS									
SPI Clock Frequency ^[2]	f _{SCLK}	MISO pins, C _L = 20 pF	0.1	_	10	MHz			
SPI Clock Duty Cycle [2]	D _{fSCLK}	SPI _{CLKDC}	40	-	60	%			
SPI Frame Rate [2]	t _{SPI}		5.8	-	588	kHz			
Chip Select to First SCLK Edge [2]	t _{CS}	Time from CS going low to SCLK falling edge	50	_	_	ns			
Chip Select Idle Time [2]	t _{CS_IDLE}	Time CS must be high between SPI message frames	200	-	-	ns			
Data Output Valid Time [2]	t _{DAV}	Data output valid after SCLK falling edge	_	_	50	ns			
MOSI Setup Time [2]	t _{SU}	Input setup time before SCLK rising edge	25	-	-	ns			
MOSI Hold Time[2]	t _{HD}	Input hold time after SCLK rising edge	50	-	-	ns			
SCLK to CS Hold Time ^[2]	t _{CHD}	Hold SCLK high time before CS rising edge	5	-	-	ns			
Load Capacitance ^[2]	CL	Loading on digital output (MISO) pin	_	_	20	pF			

数据读取:

模式切换

进入低功耗模式条件:SCK 与 CS 与 MOSI 保持低电平大于 64uS。并且转速低于 100RPM。

进入全功耗模式条件: SCK 或 CS 或 MOSI 保持高电平。或者转速大于 100RPM。

注意: 低功耗模式芯片间歇工作,工作 160uS,休眠 100mS。主电源接入后,应立即将 CS 拉高进入全功耗模式。

SPI 的SCK与CS与MOSI推荐接下拉电阻,保证确保主电源断电后进入低功耗模式。

角度读取

角度:地址 20

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	EF	UV	Р		ANGLE										

EF [14] 状态位: 0 或 1

UV [13] 电压过低: 0 正常 1 异常 P [12] 奇偶校验: 始终为奇数校验

ANGLE [11:0]: 角度输出 12bit 值/4096*360 度

下图是角度读取时序: 先发送第一次(16bit)读指令(地址 0x20),移除 SPI 残留寄存器值, 重发(16bit)读取指令得到角度信息为: 709A => EF = 1; UV(电压过低) = 1;P(奇偶校验) = 1; 角度 = 154(9A)/360 = 13.535 度;

圈数:地址 2C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ID			Р		TURNS										

ID [15:13] ID 值: 110

P [12] 奇偶校验: 始终为奇数校验

TURNS [11:0]: 用 2 的补码表示, 45 度/bit (-255 到+256 圈)

二进制数值	十进制数值	圈数
0000 0000 0000	0	0
0000 0000 0001	+1	+1/8
0001 1111 1111	+511	+63.875
0010 0000 0000	+512	+64
1111 1111 1111	-1	-1/8
1000 0000 0000	-2048	-256

角度清零:须手工读数机械调零。(也可通过指令置零。)

圈数清零:圈数不能超过-255到+256圈,彻底断电清零。(也可通过指令置零。)

连接外部后备电池:

编码器多圈功能用圈数计数器实现。为避免断电时丢失绝对值位置信息,编码器 必须由外部后备电池供电。

推荐使用 12V, 1500mAh 的后备电池。正常工作条件下,通常使用寿命 3 年以上。(环境温度 25 度,轴静止不动,年自放电速度 < 30%)

如果电池电压低于 3.9V, 编码器会报出错信息。

参考电路:

安装尺寸:

编码器主体尺寸: ϕ 15mm;轴 ϕ 3×10mm;固定孔为:M2 螺丝,2 个安装孔在 ϕ 11的圆上。

排线宽 8mm 厚 1mm。出线口与安装螺丝孔连线方向一致。卡圈外径φ5mm。安装时注意避开。

附件选配清单:(单独订购)

品名	描述	图片
连轴器	微型编码器弹性连轴器	
齿轮	微型编码器齿轮 0.4 模 45 齿/ 0.6 模 30 齿	
支架	微型编码器安装支架(BEH 车用)	C
插座	简易牛角插座 2.54mm 间距 DC3-6P 直针	

安装使用注意事项:

安装或使用不当会影响编码器性能及使用寿命。

机械方面:

- 1.编码器轴与用户端输出轴之间尽量采用弹性软连接,以避免因用户轴的串动、跳动而造成编码器轴系的损坏。
 - 2. 安装时请注意允许的轴负载。
 - 3. 应保证编码器轴与用户输出轴度 < 0.20mm,与轴线的偏角 < 1.5°。
 - 4. 不要超过极限转速,超过极限转速将导致信号丢失同时影响轴承寿命。

电气方面:

- 1.编码器的信号线不要接到连接超过最高额定电压。
- 2.开机前,应仔细检查,产品说明书与编码器型号是否相符,接线是否正确。

环境方面:

- 1.编码器是精密仪器,使用时要注意周围有无强磁铁。
- 2. 请注意环境温度、湿度是否在编码器使用要求范围之内。
- 3. 不要溅上水、油等,必要时要加上防雨罩。

售后服务:

- 1. 保修维护,生产安装工艺原因引发的故障免费保修一年,元件损坏除外(非人为破坏),需维修产品必须寄回我司维修,如找第三方或自己维修过的,则不予处理。
- 2. 保修期内,在产品保修期内,产品质量问题引起的故障全部返厂免费维护维修;在免费保修期间,一切生产安装工艺原因引发的故障我们将无条件的免费维修,违反操作规程或国家规定的不可抗拒的外部因素除外。
- 3. 免保期结束后,我们继续提供产品终身维修服务,根据产品维修的具体情况收取相应的材料和维修费用。
- 4. 对用户提出的维修和帮助要求给予最快的响应,用户提出维修申请后,保证48小时内给出回应。
 - 5. 需要返厂维修的设备,设备到工厂后,返修期不超过7个工作日。
 - 6. 建立专人专线完善的售后服务体系,随时为您提供技术服务。
- 7. 时刻保持工作通讯联系,为客户提供24小时的免费技术支持,随时为客户提供技术服务。

选用使用时之注意事项

选购以及使用时,以下各点请予理解。

- 1.除额定值、性能外,使用时亦请遵守「使用条件等」规定。
- 2.使用「奥凯特商品」时,请实施、进行(i)于额定值以及性能有余裕之情形下使用「奥凯特商品」;(ii)于「奥凯特商品」发生故障时亦能对「客户用途」之危害降到最小之安全设计(iii)在整体系统中建构对使用者之危险通知安全对策;
- 3.「奧凯特商品」系以作为一般工业产品使用之通用品而设计、制造。 因此并不供以下之用途而为使用,客户如将「奥凯特商品」用于以下用途时,「奥凯特」对「奥凯特商品」一概不予保证。
- (a)有高度安全性需求之用途(例如:核能控制设备、燃烧设备、航空、太空设备、铁路设备、升降设备、娱乐设备、医疗用机器、安全装置、其他有危害生命身体之用途)
- (b)有高度信赖性需求之用途(例如:瓦斯·自来水·电力等之供应系统、24 小时连续运转系统、结算系统等有关权利·财产之用途等)
- (c) 严苛条件或环境下之用途(例如:设置于屋外之设备、遭化学污染之设备、受遭电磁波妨害之设备、受有震动、冲击之设备等)
- (d)「型录等」所未记载之条件或环境之用途
- (e)「本型录等记载之商品」并非汽车(含二轮机动车。以下同)用商品。请勿将其安装于 汽车使用。

责任限制

本手册所记载之保证,为有关「奥凯特商品」之全部保证。

就与「奥凯特商品」有关所发生之损害,「奥凯特」以及「奥凯特商品」之经销商,不予负责。