

#### V.GOKULKUMAR

velicharlagokulkumar@gmail.com
IITH Future Wireless Communication (FWC)

ASSIGN-5

### **Contents**

FWC22034

| 1 | Problem      | 1 |
|---|--------------|---|
| 2 | Solution     | 1 |
| 3 | Construction | 1 |

# 1 Problem

ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that  $\begin{tabular}{ll} \end{tabular} \label{eq:continuous} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabul$ 

(i) ar (ACB) = ar (ACF)(ii) ar (AEDF) = ar (ABCDE)



## 2 Solution

Theory:

In pentagon ABCDE,  $AC \parallel BF$ **To Prove:** Ar(ACB)=Ar(ACF)

 $\Delta$  ACB and  $\Delta$  ACF lies on same base AC and are between

same parallel AC and BF

**Theorem**: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

$$\therefore$$
 Ar( $\triangle$  ACB)=Ar( $\triangle$  ACF).....(1)  
Hence, Proved

**To Prove:** Ar(AEDF)=Ar(ABCDE) Add Ar(AEDC) to (1) both sides

 $Ar(\Delta ACB) + Ar(AEDC) = Ar(\Delta ACF) + Ar(AEDC)$ 

#### termux commands:

The input parameters for this construction are

| Symbol   | Value                                   | Description |
|----------|-----------------------------------------|-------------|
| а        | 6                                       | AC          |
| d        | -3                                      | DC          |
| f        | 3                                       | CF          |
| $\theta$ | $2\pi/3$                                | ∠C          |
| С        | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$  | Point C     |
| Е        | $\begin{pmatrix} -5 \\ 3 \end{pmatrix}$ | Point E     |

**To Prove:** Ar(ACB)=Ar(ACF)

B = F-C+A

Area of the triangle  $\Delta ACB$  is given by  $Ar(\Delta ACB) = \frac{1}{2} || \mathbf{A} \times \mathbf{B} || \dots (2)$  Area of the triangle  $\Delta ACF$  is given by  $Ar(\Delta ACF) = \frac{1}{2} || \mathbf{A} \times \mathbf{F} || \dots (3)$ 

**To Prove:** Ar(AEDF)=Ar(ABCDE)

v1=E-A

v2=E-D

 $Ar(\Delta AED) = \frac{1}{2} ||\mathbf{v1} \times \mathbf{v2}||.....(5)$ 

v3=D-A

v4=D-C

 $Ar(\Delta ADC) = \frac{1}{2} ||v3 \times v4||....(6)$ 

 $Ar(AEDC)=Ar(\Delta AED)+Ar(\Delta ADC)$ 

 $\therefore$  Ar(AEDF)=Ar(AEDC)+Ar( $\triangle$ ACF)......(7)

 $\therefore$  Ar(ABCDE)=Ar(AEDC)+Ar( $\triangle$ ACB)......(8)

The below python code realizes the above construction:

 $https://github.com/velicharlagokulkumar/FWC\_module1/\\tree/main/matrices/lines/codes/matrix.py$ 

### 3 Construction

