Estudo 2

Jonatan Almeida e Helbert Paulino

2023-10-25

Resumo

Este estudo de caso tem por objetivo realizar comparações estatísticas entre os dados coletados de ações na bolsa de valores e determinar quais delas irão produzir melhor retornos financeiros para um investidor, que deseja investir todo o seu montante em uma dessas ações. Dessa forma, torna-se crucial determinar qual ação ofecere maior variação positiva no preço e, para isso, analisaremos o histórico delas.

Análise exploratória dos dados

Os dados que analisaremos consistem no conjunto de fechamento de preços de cinco ações nos últimos 36 meses. Com isso, através do seu histórico, podemos analisar o desempenho de diferentes companhias, observando a condição de independência dos dados. Conforme a tabela obtida, a primeira linha é referente ao período mais atual (ou seja, a variação de preço desse mês para o anterior) até a última linha. Contudo, antes de realizar alguns testes estatísticos, vale a pena analisar graficamente os preços em nessas ações a fim de se obter uma consciência situacional de cada uma. Podendo avaliar um balanço financeiro e postular sobre quais seriam mais rentáveis, de forma hipotética. Para isso, vamos plotar para cada companhia o histórico das ações. Antes, para a plotagem temporal, torna-se necessário reordenar a tabela antes de fazer a plotagem. As figuras a seguir ilustram o processo para cada grupo de ações.

Historico da ação

Variação mensal

Pode-se observar em uma primeira análise que a ação 4 (representado pela linha azul) apresenta maior indicativo de valorização, bem como é a que apresenta melhor variação percentual mensal. As ações em amarelo e roxo apresentam também tendência de crescimento, enquanto as ações em verde e vermelho demonstram tendência de queda. Isso, no entanto, precisa ser avaliado com outras técnicas para inferir sobre a variação ao longo dos meses, o que será objeto de investigação nos testes de hipóteses.

Análise Estatística

Para poder classificar e determinar qualis ações seriam as melhores a serem investidas (e se vale a pena investir nelas), temos que definir as hipóteses do experimento. Ao analisarmos as amostras, tendo em vista que são pertencentes a diferentes companhias, que, teoricamente, não possuem relação de dependência explícita, então podemos assumir que os dados são independentes (ou seja, iid). Além disso, tendo em vista que temos um N > 30, variância e média finitas, então podemos usar do TCL (Teorema Centra do Limite) para inferir que as médias seguirão uma distribuição normal.

Se considerarmos o modelo estatístico baseado nos efeitos para cada nível, dado por:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$

em que i = 1,...,a (número de níveis) e j = 1,...,n (número de observações). Em que μ é a média global, τ_i é o efeito do nível i e ϵ_{ij} é o resíduo.

Dessa forma, a pergunta de interesse nos leva a definir os seguintes testes de hipoteses:

$$\begin{cases} H_0: \tau_i = 0, \forall i \in [1, a] \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

Ou seja, dentro de um determinado valor de tolerância, os efeitos dos níveis são nulos ou para algum dos níveis ele varia de forma significativa? Para avaliar isso, utilizaremos o box plot para observarmos a variabilidade para cada nível, bem como eventuais assimetrias. Para garantir confiabilidade em nosso teste, será definido um $\alpha=0.05$.

Como pode-se observar, as medianas das ações em amarelo, azul e roxo, são superiores a 0, o que demonstra que essas ações apresentam potencial de valorização. Além disso, o quartil inferior das ações em azul e roxo mostram essas ações apresentaram, no período avaliado, maior valorização. Podemos avaliar, também, com o teste ANOVA, a relação entre os efeitos e as hipóteses levantas.

Nesse teste, obtemos o p-valor de 1.2x10^-15, que é significativamente menos que um α (p-valor < 0.05). Nesse caso, há pelo menos um dos níveis em que temos um efeito significativamente maior que 0. Contudo, vale a pena checar se as premissas adotadas (independência e normalidade) foram atendidas. Para isso, aplicaremos o teste de Shapiro-Wilk com $\alpha = 0.05$.

```
##
## Shapiro-Wilk normality test
##
## data: my.model$residuals
## W = 0.97713, p-value = 0.005541
```

Segundo o teste Shapiro-Wilk, obtemos um valor de p-valor superior a um $\alpha = 0.05$, porém este valor não é muito menor que nosso α . Então vamos analisar gáficamente.

[1] 71 72

Histogram of my.model\$residuals

Observado o QQPlot, observa-se indicios de normalidade nos residuos do modelo. Quando olhamos o histograma dos residuos, notamos também uma similaridade com a distribuição normal. Portanto, vamos considerar normalidade nos dados.

Um teste importante é o teste de homoscedasticidade, que diz basicamente, onde temos como hipotese nula que as variancias são homogeneas. Para isso utilizaremos o teste de Fligner com $\alpha = 0.05$.

```
##
## Fligner-Killeen test of homogeneity of variances
##
## data: values by ind
## Fligner-Killeen:med chi-squared = 2.7619, df = 4, p-value = 0.5984
```


Com um $p-valor > \alpha$, temos como resultado da homoscedasticidade, a não rejeição da hipotese nula, ou seja, os dados possuem variancias homogeneas.

Com toda essa analise realizada, podemos agora realizar uma comparação estatistica de cada ação para dizer realmente qual é a melhor ação para investir. Para isso utilizaremos uma abordagem denominade de "Todos contra todos" atraves do metodo de Tukey, que possui é conhecido como Abordagem de Diferença Significativa Honesta. Para isso sera escolhido um $\alpha = 0,05$, ou seja, um nivel de 0,95 para o teste.

```
## Carregando pacotes exigidos: mvtnorm
## Carregando pacotes exigidos: survival
## Carregando pacotes exigidos: TH.data
## Carregando pacotes exigidos: MASS
##
## Attaching package: 'TH.data'
  The following object is masked from 'package:MASS':
##
##
##
       geyser
##
     Simultaneous Confidence Intervals
##
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = values ~ ind, data = returns)
##
```

```
## Quantile = 2.758
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
##
                Estimate
                           lwr
                                      upr
## X2 - X1 == 0 0.0057907 -0.0009084
                                       0.0124897
## X3 - X1 == 0 0.0012114 -0.0054876
                                       0.0079105
## X4 - X1 == 0 0.0197343
                            0.0130353
                                       0.0264333
## X5 - X1 == 0 0.0133169
                            0.0066178
                                       0.0200159
## X3 - X2 == 0 -0.0045792 -0.0112783
                                       0.0021198
## X4 - X2 == 0 0.0139436
                           0.0072446
                                       0.0206427
## X5 - X2 == 0 0.0075262 0.0008272
                                       0.0142252
## X4 - X3 == 0 0.0185229 0.0118238
                                       0.0252219
## X5 - X3 == 0 0.0121054 0.0054064
                                       0.0188045
## X5 - X4 == 0 -0.0064174 -0.0131165
                                       0.0002816
```

95% family-wise confidence level

Podemos observar claramente no resultado gráfico que a ação X4 obteve um melhor resultado em relação as demais. Seguido da ação 5, que também teve um resultado muito bom. Quando olhamos para o BoxPlot, observamos exatamente este comportamento.

Determinação do poder de teste

XXX

Atividades específicas

Ambos os autores realizaram a avaliação dos dados estatísticos, pesquisaram sobre a ferramenta utilizada para os cálculos, realizaram correções nos trabalhos, implementações em R e sugestão de testes.

Conclusões

Concluimos que existe sim uma ação melhor para investimento. A ação 4 obteve o melhor resultado no teste "Todos contra Todos". A ação 5 também obteve um resultado interessante, porém analistando o BoxPlot é uma ação que possui uma variabilidade maior que a 4. Logo, com um resultado maior e uma variabilidade menor, a ação com melhor retorno é a 4.