Deep Learning

https://www.streamingnology.com

@streamingnology

https://github.com/streamingnology

streamingnology

@streamingnology

卷积神经网络:卷积层的作用

提取图像的特征值

图 5-2 视觉世界形成了视觉模块的空间层次结构:超局部的边缘组合成局部的对象, 比如眼睛或耳朵,这些局部对象又组合成高级概念,比如"猫"

图片像素

3	5	0	2	9	8
1	2	7	8	9	9
4	5	3	9	3	2
0	2	0	6	2	8
2	9	4	7	5	3
1	7	6	7	5	6

卷积核 Kernel

-1	0	1
-1	0	1
-1	0	1

$$-1x2=-2$$
 $0x7=0$
 $1x8=8$
 $-1x5=-5$
 $0x3=0$

$$1x9 = 9$$

$$-1x2 = -2$$

$$0 \times 0 = 0$$

$$1x6 = 6$$

$$(-2)+0+8+(-5)+0+9+(-2)+0+6=14$$

图片像素

3	5	0	2	9	8
1	2	7	8	9	9
4	5	3	9	3	2
0	2	0	6	2	8
2	9	4	7	5	3
1	7	6	7	5	6

卷积核 Kernel

-1	0	1
-1	0	1
-1	0	1

图片像素

3	5	0	2	9	8
1	2	7	8	9	9
4	5	3	9	3	2
0	2	0	6	2	8
2	9	4	7	5	3
1	7	6	7	5	6

卷积核 Kernel

-1	0	1
-1	0	1
-1	0	1

卷积后像素

	14	4	-4	

图片像素

3	5	0	2	9	8	0
1	2	7	8	9	9	0
4	5	3	9	3	2	0
0	2	0	6	2	8	0
2	9	4	7	5	3	0
1	7	6	7	5	6	0

卷积核 Kernel

-1	0	1
-1	0	1
-1	0	1

填充padding

图片像素

3	5	0	2	9	8	0
1	2	7	8	9	9	0
4	5	3	9	3	2	0
0	2	0	6	2	8	0
2	9	4	7	5	3	0
1	7	6	7	5	6	0
0	0	0	0	0	0	0

卷积核 Kernel

-1	0	1
-1	0	1
-1	0	1

填充padding

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

步长stride=2

图片像素

3	5	0	2	9	8
1	2	7	8	9	9
4	5	3	9	3	2
0	2	0	6	2	8
2	9	4	7	5	3
1	7	6	7	5	6

步长stride=2

图片像素

3	5	0	2	9	8
1	2	7	8	9	9
4	5	3	9	3	2
0	2	0	6	2	8
2	9	4	7	5	3
1	7	6	7	5	6

参考资料 4

卷积核 3x3 步长 stride=2 填充 padding

1	2	3	4	5
2				4
3				3
4				2
5	4	3	2	1

1	2	3
2		2
3	2	1

提取图像的特征值

$$egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

Original image

Sobel x-axis kernel

卷积核kernel

```
[? ? ?
? ? ?
? ? ?
```

卷积神经网络中卷积核kernel 参数是在训练神经网络时 网络自己学习到的

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	11	

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	11	7

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	11	7
16		

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	11	7
16	14	

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

12	11	7
16	14	-4

卷积后像素

7	3	3	11	7	-18
12	2	7	11	0	-21
9	5	14	4	-4	-14
16	1	6	3	-9	-10
18	7	2	2	-3	-12
16	7	-2	0	-5	-10

max pooling 2x2 stride=2

12	11	7
16	14	-4
18	2	-3

降低图片冗余 6x6 → 3x3

Reference

- 1. Intro to TensorFlow for Deep Learning https://classroom.udacity.com/courses/ud187
- 2. TensorFlow中文版 https://www.youtube.com/playlist?list=PLQY2H8rRoyvwr-3llvJXA1JyOlpcblGa1
- 3. https://www.ahmedbesbes.com/blog/introduction-to-cnns
- CS231n: Convolutional Neural Networks for Visual Recognition https://cs231n.github.io
- 5. A Comprehensive Guide to Convolutional Neural Networks https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

END

https://www.streamingnology.com

@streamingnology

https://github.com/streamingnology

streamingnology

@streamingnology