Utorok 18:00

Riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110000** (postupnosti sa môžu prekrývať). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Utorok 18:00

Riešenie

Zadaná postupnosť: 110000

Prechodová tabuľka pre automat typu Moore

	Nový stav		Čo je splnené?		
stav	x=0	x=1	Y		
S0	S0	S 1	0	Nič	
S 1	S0	S2	0	"1"	
S2	S 3	S2	0	"11"	
S 3	S4	S 1	0	"110"	
S4	S5	S 1	0	"1100"	
S5	S6	S 1	0	"11000"	
S6	S0	S 1	1	"110000"	

Zostrojíme prechodový graf stavového automat typu Moore

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej/hodnotu výstupnej premennej).

Utorok 18:00

Kódovanie stavov

			_ z3		
		z 2			
	S0	S2	S 3	S1	
z1	S4	S6	X	S5	

Stav	$z_1z_2z_3$
S0	000
S 1	001
S2	010
S 3	011
S4	100
S5	101
S 6	110

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

	Nový	Y	
stav	x=0	x=1	
000	000	001	0
001	000	010	0
010	011	010	0
011	100	001	0
100	101	001	0
101	110	001	0
110	000	001	1

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z2		
_	000	011	100	000
z 1	101	000	XXX	110
	001	001	XXX	001
X	001	010	001	010
D1,D2,D3				

Emma Macháčová, ID: 103037 Utorok 18:00

			z 3	
		z2		
	0	1	0	0
z 1	0	0	X	1
	0	0		0
X	0	1	0	1
		D2		
			z3	
		z2		<u> </u>
•	0	1	0	0
z 1	1	0	X	0
	1	1		1
X	1	0	1	0
		D3		
			z3	
		z2		<u> </u>
•	0	0	0	0
z 1	0	1	X	0
	0	0	X	0
X	0	0	0	0

Y = Z1.Z2.!X

Utorok 18:00

Budiace funkcie pre JK preklápacie obvody (JK-PO)

		$z\rightarrow Z$ J	K	
			X	
		0->1 1	X X	
		1-> <u>0</u> X	1	
			0	
			Z3	
		Z2		_
_	0	0	1	0
Z1	X X	X X	X	X X
	X	X	X	X
X	0	0	0	0
		$J1 = \bar{X}.Z2.Z$		
			Z3	
		Z2		_
_	X	X	X	X
Z1	0 1 X	1	X	0
	1	1	X	1
X	X	X	X	X
	K1 =	= (!X.Z1.Z2) -		
			Z3	
		Z2		
	0	X X X	X	0
Z1	0	X	X	1
		X	X X	0
X	0			[1
	J2 =	X.!Z1.Z3.+!		
			Z3	
		Z2		
	X X X X	0	1	X
Z1	X	1	X	X
	X	1	X	X
X	X	0	1	X
	K2 = (!X.Z)	(Z.Z3) + (X.!Z3)	(1.23) + (21.22)	2)

Utorok 18:00

K3 = X.!Z1.!Z2.Z3 + !X

0

X

Espresso

vstup .i 4 .o 6 .ilb X Z1 Z2 Z3 .ob J1 K1 J2 K2 J3 K3 .type fr .p 16 0000 0-0-0-0001 0-0--1 0010 0--01-0011 1--1-1 0100 -00-1-0101 -01--1 0110 -1-10-0111 -----1000 0-0-1-1001 0-1--1 1010 0--00-1011 0--1-0 1100 -10-1-1101 -10--0 1110 -1-11-1111 -----.e

vystup
J1 = (!X&Z2&Z3);

K1 = (X&!Z2) | (Z1&Z2);

J2 = (X&!Z1&Z3) | (!X&Z1&Z3);

K2 = (!X&Z2&Z3) | (X&!Z1&Z3) | (Z1&Z2);

J3 = (Z1&!Z2) | (X&Z1) | (!X&Z1&Z2) | (X&Z2);

K3 = (!Z1&!Z2) | (!X&Z1&Z3) | (!X&Z1&Z2);

1

Výstup z Espressa vyšiel rovnako ako môj

Emma Macháčová, ID: 103037 Utorok 18:00

Prepis na NAND s využitím Shefferovej operácie:

$$Y = Z1.Z2.!X = (Z1 \uparrow Z2 \uparrow (X \uparrow)) \uparrow (Z1 \uparrow Z2 \uparrow (X \uparrow))$$

$$J1 = !X.Z2.Z3 = ((X \uparrow) \uparrow Z2 \uparrow Z3) \uparrow ((X \uparrow) \uparrow Z2 \uparrow Z3)$$

$$K1 = X.!Z2 + Z1.Z2 = (X \uparrow (Z2 \uparrow)) \uparrow (Z1 \uparrow Z2)$$

$$J2 = X.!Z1.Z3 + !X.Z1.Z3 = (X \uparrow (Z1 \uparrow) \uparrow Z3) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z3)$$

$$K2 = !X.Z2.Z3 + X.!Z1.Z3 + Z1.Z2$$

= $((X \uparrow) \uparrow Z2 \uparrow Z3) \uparrow (X \uparrow (Z1 \uparrow) \uparrow Z3) \uparrow (Z1 \uparrow Z2)$

$$J3 = Z1.!Z2 + X.Z1 + !X.!Z1.Z2 + X.!Z2$$

= $(Z1 \uparrow (Z2 \uparrow)) \uparrow (X \uparrow Z1) \uparrow ((X \uparrow) \uparrow (Z1 \uparrow) \uparrow Z2) \uparrow (X \uparrow (Z2 \uparrow))$

$$K3 = !Z1.!Z2 + !X.Z1.Z3 + !X.!Z1.Z2$$

= $((Z1 \uparrow) \uparrow (Z2 \uparrow)) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z3) \uparrow ((X \uparrow) \uparrow (Z1 \uparrow) \uparrow Z2)$

Emma Macháčová, ID: 103037 Utorok 18:00

Utorok 18:00

Zhodnotenie

Navrhli sme synchrónny sekvenčný obvod so vstupom x a výstupom y tak, že na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110000** s tým, že postupnosti sa môžu prekrývať. Použili sme automat typu Moore. V pamäťovej časti sme použili minimálny počet JK-PO obvodov. Riešenie sme overili prostriedkami ESPRESSO a simuláciou v programe LOGISIM. Výsledný obvod má 18 logických členov NAND, a 57 vstupov (45 v kombinačnej časti a 12 v pamäťovej)