21-484 Notes JD Nir jnir@andrew.cmu.edu April 18, 2012

Def (p. 235): A graph G' is a <u>subdivision</u> of a graph G, if G' can be obtained from G by replacing edges by paths.

Example:

G' is a subdivision of G.

<u>Thm:</u> (9.7, Kuratowski's theorem): G is planar if and only if it does not contain a subdivision of K_5 as a subgraph or a subdivision of $K_{3,3}$ as a subgraph.

- \rightarrow If G is planar, then G does not contain a K_5 subgraph or a $K_{3,3}$ subgraph because these graphs are not planar.
- $\rightarrow K_5$ is not planar since it has 5 vertices and 10 edges, $10 > 3 \cdot 5 6$
- \rightarrow a subdivision operation is replacing one edge uv by a path uwv where w is a new vertex adjacent only to u and v.
- \rightarrow If we do k subdivision operations of K_5 we end with 5+k vertices, 10+k edges, so...
- \rightarrow Should prove similarly to the proof that $K_{3,3}$ is not planar.

Example (9.8):

placeholder

"Adding a handle to a surface"

jnir@andrew.cmu.edu

- \rightarrow If you add k handles to the sphere, you get S_k , which is a surface of genus k.
- \rightarrow Def (p. 244): A graph G is embeddable in S_k if it can be drawn on S_k such that two edges do not intersect.
- A Graph G has genus if it can be embedded in $S_{\gamma(G)}$ but can not be embedded in $S_{\gamma(G-1)}$.

Claim: $\delta(G)$ is finite for all graphs G.

<u>Proof:</u> Draw G on the sphere such that every intersection point which is not a vertex is an intersection point of at most 2 edge.

 \rightarrow Add a handle for each intersection point

<u>Def:</u> A region of a surface is called $\underline{2\text{-cell}}$ if any closed curve can be continuously contracted in the region to a single point.

- A 2-cell embedding of a graph is an embedding such that every region is a 2-cell region.

Example: (9.25 + 9.27)

