Advances in the Analysis of Discrete Resonance Spectrograms

Using the DSR for Source Separation and Sequential Prediction

Nick Harley & Steve Homer

THE DISCRETE RESONANCE SPECTROGRAM (DRS)

Overview

- ► High resolution spectral analysis of audio signals
- Gives precise shape and location of spectral peaks
- Provides access to the content of audio signals

DRS ADVANTAGES AND APPLICATIONS

Target Applications

- Analysis of voice signals in industrial environments
- Vocal signature modelling
- Data compression

Advantages of the DRS

- Better resolution than FFT based methods
- Affords intelligent top-down signal processing
- Better integration with symbolic knowledge representation

CURRENT OBJECTIVES

Intelligent bottom-up pattern detection

- ▶ Parameter selection ✓
- ► Improve time resolution ✓
- ► Fundamental frequency (F0) tracking ✓
- Source detection and isolation
- Noise reduction

WORK TO DATE

Parameter selection ✓

An algorithm for automatically selecting parameters, reducing the need for tuning.

Improved time resolution ✓

A segmentation algorithm which uses smooth sliding window envelopes.

F0 estimation ✓

An algorithm for tracking fundamental pitch (Geraint).

Original signal ▷
Basic analysis ▷
Enhanced analysis ▷

IMMEDIATE NEXT STEPS

Phase and decay

Improve F0 tracking using phase and decay information

Inter-slice information

Use previous slice to inform analysis.

Source isolation

Use F0 information to detect and isolate individual sources.

SOURCE SEPARATION TO SEQUENTIAL PREDICTION

From Vertical to Horizontal Analysis

- Source separation looks at dependencies between frequencies within a slice, i.e. vertical analysis.
- Temporal correlations can be exploited to observe dependencies between slices, i.e. horizontal analysis.

BOUNDARY ENTROPY SEGMENTATION

Boundary Entropy

- Online chunking according to pairwise sequential regularities in order to compress a stream of symbols
- Unexpectedness: current symbol is relatively more rare
- Uncertainty: current symbol has more options to follow

SEQUENCE VS NETWORK INTERPRETATION OF BES

Sequence Interpretation

Information Content

$$h(x) = -\log p(x)$$

Entropy

$$H(x) = -\sum_{y \in Y} p(y|x) \log p(y|x)$$

Network Interpretation

In-Entropy

$$H_{in}(x) = -\sum_{y \in In(x)} p(x|y) \log p(x|y)$$

Out-Entropy

$$H_{\text{out}}(x) = -\sum_{y \in \text{Out}(x)} p(y|x) \log p(y|x)$$

HIERARCHICAL STRUCTURE AND DYNAMICS

Hierarchical Prediction

Hierarchical Structure

INFORMATION EFFICIENCY AND THE MDL PRINCIPLE

Memory Consolidation

- According to the information efficiency criterion of IDyOT, online boundary entropy segmentation is likely suboptimal
- ➤ **Offline memory consolidation** can fix some missteps that occurred online by lowering the total entropy of the model

Minimum Description Length Principle

- $ightharpoonup \Sigma$ (Description) = \mathcal{L} (Model) + \mathcal{S} (Data) (in bits)
- Least complex model that accurately describes the data
- Used for model selection in AIT and complex networks

PLACEMENT AND NEXT STEPS

Placement of Research

- Online vs offline community structure detection
- Topological vs causal structure inference in networks
- Static vs temporal system dynamics and link prediction

Immediate Next Steps

- Causal network topology inference and sequence prediction through boundary entropy segmentation
- Memory consolidation based on MDL principle for networks

APPLICATIONS AND FUTURE WORK

Applications

- Voice extraction in noisy industrial environments
- Pitch tracking and pitch to midi
- Straight up compression

Future Work

- Information-theoretic categorization of frequency space
- Robot route finding structure

ARTIFICIAL INTELLIGENCE RESEARCH GROUP

Computational Creativity Lab