Assignment 2 MATH 3423 - Numerical Methods 2 Acadia University

Daniel Lemire, Ph.D.

Winter 2002 Due February 25th 2002

1 Requirements

If you met the requirements (presentation), you were granted 5/5.

2 Linear Splines

2.1 Approximation Order in 1D

- 1. Given f is a smooth function, let Sf be the linear spline (a function piecewise linear and continuous) interpolating the values $y_k = f(k\Delta x)$ over the nodes $x_k = k\Delta x$.
 - (a) If f(x)=x and $\Delta x=1$, find $\|Sf-f\|_{L^{\infty}([0,10])}=\max{\{|Sf(x)-f(x)|:x\in[0,10]\}}$. Solution: since f is linear, the error must be zero.
 - (b) If $f(x) = \sqrt{x}$ and $\Delta x = 1$, find $\|Sf f\|_{L^{\infty}([1,2])} = \max\{|Sf(x) f(x)| : x \in [1,2]\}$. Solution: $Sf = (2-x) + \sqrt{2}(x-1)$ and $f = \sqrt{x}$, hence $Sf - f = (2-x) + \sqrt{2}(x-1) - \sqrt{x}$. We have to find the extrema of Sf - f over [1,2]. First, we solve for f'(z) = 0 to get $z = \frac{-1}{8\sqrt{2}-12}$. We get that the minimum of Sf - f is about -0.01776695. Hence $\|Sf - f\|_{L^{\infty}([1,2])}$ is about 0.01776695.
 - (c) If $f(x) = \sqrt{x}$ and $\Delta x = 1/2$, find $\|Sf f\|_{L^{\infty}([1/2,1])} = \max\{|Sf(x) f(x)| : x \in [1/2,1]\}$. Solution: Same idea again. $Sf f = \sqrt{2}(1-x) + 2(x-1/2) \sqrt{x}$, we solve for the extrema and find a minimum of -0.01256313292354 at $x \cong 0.72855339059327$ and hence $\|Sf f\|_{L^{\infty}([1/2,1])} \cong 0.01256$.
 - (d) If $f(x) = \sqrt{x}$ and $\Delta x = 1/4$, find $\|Sf f\|_{L^{\infty}([1/4,1/2])} = \max\{|Sf(x) f(x)| : x \in [1/4,1/2]\}$. Solution: Same again... $Sf f = 2(1/2 x) + \frac{4}{\sqrt{2}}(x 1/4) \sqrt{x}$. This time, we find a minimum of -0.00888347648318 and hence $\|Sf f\|_{L^{\infty}([1/4,1/2])} \cong 0.00888$.
 - (e) If $f(x) = x^2$ and $\Delta x = 1$, find $||Sf f||_{L^{\infty}([0,1])} = \max\{|Sf(x) f(x)| : x \in [0,1]\}$. Solution: Sf = x and thus $Sf - f = x - x^2$ and the extrema is at x = 1/2. Therefore $||Sf - f||_{L^{\infty}([0,1])} = \frac{1}{4}$.
 - (f) If $f(x) = x^2$ and $\Delta x = 1$, find $\|Sf f\|_{L^{\infty}([0,10])} = \max\{|Sf(x) f(x)| : x \in [0,10]\}$. Solution: The trick he is that we have 10 elements (11 nodes). On [k,k+1], the spline is given by $Sf(x) = k^2 + (x-k)((k+1)^2 k^2)$, hence the difference is given by $Sf(x) f(x) = -x^2 + (2k+1)x k^2 k$. Solving for Sf'(x) f'(x) = 0, we get $x_{max} = \frac{2k+1}{2}$ and $Sf(x_{max}) f(x_{max}) = 1/4$ and hence $\|Sf f\|_{L^{\infty}([0,10])} = 1/4$.
- 2. Given f is a smooth function, let Sf be the linear spline (a function piecewise linear and continuous) interpolating the values $y_k = f(k\Delta x)$ over the nodes $x_k = k\Delta x$.

(a) The function

$$\Phi(t) = f(t) - Sf(t) - \frac{(t - x_k)(t - x_{k+1})}{(x - x_k)(x - x_{k+1})} (f(x) - Sf(x))$$

for any x in (x_k, x_{k+1}) has at least 3 distinct roots in $[x_k, x_{k+1}]$, hence its second derivative has at least one zero by Rolle's theorem. Use this fact to estimate $||Sf - f||_{L^{\infty}([x_k, x_{k+1}])} = \max\{|Sf(x) - f(x)| : x \in [x_k, x_{k+1}]\}$ in terms of the second derivative of f.

Solution: The zeroes of $\Phi(t)$ are $t=x_k,x,x_{k+1}$. Hence, there exists ξ such that $\Phi''(\xi)=0$ and therefore $f(x)-Sf(x)=\frac{(x-x_k)(x-x_{k+1})}{2}f''(\xi)$. If $|f''|\leq M$ then $|f(x)-Sf(x)|\leq \frac{M(x-x_k)(x-x_{k+1})}{2}\leq \frac{M(\Delta x)^2}{8}$.

- (b) Let $f(x) = \sqrt{x}$ and $\Delta x = 1/2^{n+1}$, using part (a) find a good upper bound for $||Sf f||_{L^{\infty}([1/2^{n+1}, 1/2^n])} = \max \{|Sf(x) f(x)| : x \in [1/2^{n+1}, 1/2^n]\}$. What do you expect will be $\lim_{n \to \infty} ||Sf f||_{L^{\infty}([1/2^{n+1}, 1/2^n])}$? Solution: $f''(x) = \frac{-1}{4x^{3/2}}$ and f'' is bounded by $\frac{1}{4(1/2^{n+1})^{3/2}} = 2^{3n/2+1/2}$ over $[1/2^{n+1}, 1/2^n]$, hence $|f(x) Sf(x)| \le \frac{M(\Delta x)^2}{8} = \frac{2^{3n/2+1/2}}{8 \times 2^{2n+2}} = \frac{1}{32 \times 2^{\frac{n+1}{2}}}$. As $n \to \infty$, the error should go down to zero.
- (c) Generalize your result from part (a) for $||Sf f||_{L^{\infty}((-\infty,\infty))} = \max\{|Sf(x) f(x)| : x \in (-\infty,\infty)\}$ with any Δx . Solution: The only difference here is that we have several nodes instead of only two. Other than that, the estimate can be chosen to be the same $|f(x) - Sf(x)| \le \frac{M(\Delta x)^2}{8}$.
- (d) If $f(x) = x^2$ and $\Delta x = 1$, can you easily give an upper bound for $||Sf f||_{L^{\infty}((-\infty,\infty))} = \max\{|Sf(x) f(x)| : x \in (-\infty,\infty)\}$? Explain. Solution: Given that f''(x) = 2, then an easy upper bound is $\frac{M(\Delta x)^2}{8} = \frac{2(1)^2}{8} = \frac{1}{4}$.

2.2 Splines in the plane

1. Given three points in the plane $\underline{x_1}, \underline{x_2}, \underline{x_3}$ with corresponding z values z_1, z_2, z_3 find a linear interpolation of these values z(x,y) = a + bx + cy. Hint: you need to generalize Lagrange or Newton interpolation. Use Maple/Matlab/... to check your answer!

Solution: Let $x_1 = (x_1, y_1), x_2 = (x_2, y_2), x_3 = (x_3, y_3)$, then

$$\begin{bmatrix} 1 & x1 & y1 \\ 1 & x2 & y2 \\ 1 & x3 & y3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} z1 \\ z2 \\ z3 \end{bmatrix}$$

and

$$z(x,y,z) = \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} 1 & x1 & y1 \\ 1 & x2 & y2 \\ 1 & x3 & y3 \end{bmatrix}^{-1} \begin{bmatrix} z1 \\ z2 \\ z3 \end{bmatrix}$$

$$= \frac{((x1-x)y2 + (x-x2)y1 + (x2-x1)y)z_3 + ((x-x1)y3 + (x3-x)y1 + (x1-x3)y)z_2 + ((x2-x)y3 + (x-x3)y2 + (x3-x2)y)z_1}{(x2-x1)y3 + (x1-x3)y2 + (x3-x2)y1} .$$

We observe that it is very close to Lagrange formula, but a lot more complicated at the same time. The lesson here is that life in 2D is a lot more difficult than in 1D.

2. Assume that $f(x,y) = 1 + 2x + 2y + xy + x^2 + y^2$. Let $\underline{x_1} = (0,0), \underline{x_2} = (1,0), \underline{x_3} = (0,1)$. Find $\varepsilon = \max \{|z(\underline{x}) - f(\underline{x})| : \underline{x} \in \triangle x_1, x_2, x_3\}$.

Solution: $z_1 = f(\underline{x_1}) = 1$, $z_2 = f(\underline{x_2}) = 4$, $z_3 = f(\underline{x_3}) = 4$ and hence we have $z(\underline{x}) = 3y + 3x + 1$, then $z(\underline{x}) - f(\underline{x}) = x + y - xy - x^2 - y^2$. Setting the gradient to zero, we get (1 - y - 2x, 1 - x - 2y) = 0 and x = y = 1/3. It can be seen to be the maximum and we get $\varepsilon = 1/3$.