Formulario Examen II - Elementos Activos

Parámetros de Gran Señal				
Región activa directa $V_{BE} > V_{TH}$ y $V_{CE} > V_{BE}$		Corriente de colector (activa directa) $I_C = I_S \cdot \left(e^{\frac{V_{BE}}{V_t}} - 1\right) \left(1 + \frac{V_{CE}}{V_A}\right)$		
Tensión del diodo base-emisor	$V_{BE} = V_t \ln \left(\frac{I_C}{I_S} \right)$	Corriente de subumbral	$I_S = \frac{A_E \cdot q \cdot D_n \cdot n_i^2}{N_B W_B}$	
Corriente de colector	$I_C = \beta I_B$	Corriente de emisor	$I_E = I_C + I_B$ $I_E = (\beta + 1)I_B$	
Ganancia de base común	$\alpha = \frac{I_C}{I_E} = \frac{\beta}{\beta + 1}$	Ganancia de emisor común	$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$	

Parámetros de Pequeña Señal (Modelo π)				
$\begin{array}{c c} B & C \\ \hline r_{\pi} & v_{\pi} & g_{m}v_{\pi} & r_{o} \\ \hline E & \end{array}$		$A_V = \frac{v_{out}}{v_{in}}$		
Transconductancia	$g_m = \frac{I_C}{V_T} = \frac{\partial i_C}{\partial v_{BE}}\Big _{I_C}$	Resistencia de base	$r_{\pi}=rac{eta}{g_m}$	
Resistencia de salida	$r_o = \frac{V_A}{I_C}$	Resistencia de salida	$\frac{1}{r_o} = \frac{I_C}{V_A} = \frac{\partial i_C}{\partial v_{CE}} \Big _{Q}$	

Modelo de Ebers-Moll Simplificado (NPN): Activa Directa (Modelo T)		
I_E E B C	$I_C = lpha_F I_{ES} \left(e^{V_{BE}/V_T} - 1 \right)$ $I_E = -I_{ES} \left(e^{V_{BE}/V_T} - 1 \right) = (-1/lpha_F)I_C$	
I _E β _F I _B I _C B _I	$I_{E} = -I_{ES}(e^{-\beta LF} I - 1) = (-1/\mu_{F})I_{C}$ $I_{C} = \beta I_{B}$	