

Data Processing on Modern Hardware

Jana Giceva

Lecture 8: GPUs





### Intro to GPU computing

# Moore's Law (recap)



- Increase of transistors / CPU does not yield single-core performance
- Performance capped due to economic feasibility, power, and safety
- Q: Is the solution to add more cores (multicore lecture)?
  - Only partially. Why?





- Specialization give up generality, for better efficiency and speed-up certain operations.
- Various accelerators on the spectrum.

### Accelerators





- The idea of accelerators is to leverage a new architecture as an alternative.
- But, new hardware > different programming model → increased complexity.
- In GPUs case, the efficiency is reached through high level of parallelism.
  - Throughput-oriented design
  - Often aimed at scientific workloads. Why?

# Graphics Processing Unit (GPU)



- Highly specialized co-processing chip
  - Primary target: Image rendering → parallel computations
- Performance increased ~2.4x yearly (during Moore's Law, CPUs performance increased 1.8x)







#### GPGPUs are general purpose GPUs

CPU cores != GPU cores → fundamental design differences

#### CPU cores:

- Latency-oriented design
- Tens of cores
- Minimize the latency of arith ops
- Bandwidth: ~100 GB/s

#### GPU cores:

- Throughput-oriented design
- Thousands of cores
- Large number of FLOPS
- Bandwidth: ~ 3 TB/s (H100), ~6 TB/s (GB200)

### **GPU** architecture



#### Compute units

- Computation cores
- Register files
- L1 cache
- Shared memory

#### On-chip memory

- L1 cache, shared memory
- L2 cache

#### On-device memory

- GPU global memory
- High bandwidth, but also high latency



# **Terminology**



- Different vendors have different nomenclature
- NVIDIA and AMD are the biggest GPGPU vendors as of today

| Host                | AMD GPU               | NVIDIA GPU                  | Intel Gen11    | OpenCL                |
|---------------------|-----------------------|-----------------------------|----------------|-----------------------|
| CPU                 | GPU                   | GPU                         | GPU            | Compute<br>Device     |
| Multi-<br>processor | Compute Unit          | Streaming<br>Multiprocessor | Subslice       | Compute Unit          |
| Core                | Processing<br>Element | Compute Core                | Execution Unit | Processing<br>Element |
| Thread              | Work Item             | Thread                      | /              | Work Item             |
| Vector              | Vector                | SIMT Warp                   | SIMD           | Vector                |

Parallel and High Performance Computing

# GPU compute unit [vendor independent]



- Compute cores
  - 32 or more

- Registers
  - Private memory per core

- Local memory
  - Shared for all cores in the compute unit
- Thread scheduler
  - Assigns threads or thread groups to cores



Parallel and High Performance Computing

# Streaming Multiprocessor [NVIDIA A100]



- Computation cores
  - CUDA or Tensor cores
  - GPU equivalent of a vector lane
- Streaming multiprocessor (SM)
  - GPU equivalent of a full CPU core
  - 64 CUDA cores per SM → 6'912 in A100
  - 4 Tensor cores per SM → 432 in A100
- L1 cache + shared memory
- Warp scheduler
- Register Files
- Dispatch Unit



### L1 cache + Shared Memory – SM [A100]



- Combined since the Volta architecture (ca. 2018)
- Before unified L1 cache and shared memory:
  - L1 cache was managed by the OS
  - Shared memory was managed explicitly by the code
- Now:
  - No cache misses
  - Can be configured for each SM separately
  - Same address space
  - Shared memory serves as scratchpad memory
  - A100 SM: up to 164 KiB for shared memory



# Register File [A100]



- Sends data directly to the computation core
- Does not invoke load instructions to fetch data
- Organized in 32 banks
- Each bank stores data private to a single thread
- Two orders of magnitude lower access latency compared to global memory





# Warp Scheduler – [A100]



- Assigns groups of threads in an execution queue
- All threads in the group must execute the same instruction
- The warp scheduler assigns a single thread per core

- Current designs allow a whole thread group to be executed in a single cycle
  - 32 threads per group
  - A100 (server-grade GPU)
    - SM count: 108, CUDA core count: 6'912 → 64 cores/SM
    - 2 warps in a single cycle per SM → 216 per GPU



# GPU Programming Model Physical execution

# Physical Execution Model



- In the stream multiprocessor (SM), threads are scheduled in warps
  - Each warp has 32 threads
  - One warp is executed in a single SM
- All threads in a warp:
  - Correspond to the same thread block
  - Execute the same instruction in parallel
- Warps share the control unit in the SM
- Max active threads = threads per warp \* warps per SM \* SMs
- For NVIDIA A100 = 32 \* 64 \* 108 = 221 184

# Independent Threads Scheduling



All threads within a warp execute the same instructions

- When one thread enters a branch, all threads have to execute it
  - The effect is called branch divergence
  - All threads are active
- Lock step execution (pre-Volta)
- Interleaved execution model (>Volta)

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;</pre>
```



## Lock-step execution model



#### Maintains execution state per warp (32 threads)

- Single program counter and call stack
- Reduced resources to track thread state



#### Divergent branches are serialized

- All statements within a branch are executed until completion
- A mask is used to detect active threads
- The mask is stored until threads converge

#### Thread lose concurrency

- Using locks/mutexes can lead to bottlenecks
- No fine-grained parallelism

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}</pre>
```



### Interleaved Execution Model



- Maintains execution state per thread
  - Program counter and call stack
  - Convergence optimizer handles exec. order
- Interleaved execution across branches
- Thread communication within a warp
- Does Z reconverge automatically?
  - Data required from another thread
  - No synchronization → auto-reconverge
- Explicit reconvergence
  - \_\_syncwarp() ensures convergence after Z
  - What happens if the call is made before Z?

# Volta

```
Convergence
Optimizer
```

```
if (threadIdx.x < 4) {
    Α;
} else {
    X;
```







## Warp execution





- Parallel execution of warps to mask memory access penalties
  - L1 cache latency = 28 cycles (CPU was 4 cycles)
  - Global GPU memory latency ~ 350 cycles (CPU was 50-70 cycles)
  - Executing a warp instruction = 4 cycles (for 8 scalar processors)
- So, to hide L1 cache latency: 28/4 = 7 warps
- To hide global memory latency: 350/4 = 88 warps



# GPU Programming Model Logical Execution

#### Frameworks



#### Open Computing Language (OpenCL)

- Vendor independent, industry standard
- Different hardware (CPU, GPU, FPGA)
- C/C++

#### Compute Unified Device Architecture (CUDA)

- Proprietary for NVIDIA GPUs
- C/C++, Fortran
- Wrappers for Python, Perl, Mathematica, F#

#### AMD ROCm

- Open source, vendor independent
- Different hardware (CPU, GPU, APU)







# **GPU Program Execution**





#### **Execution Flow**



- A kernel is executed by many GPU threads
  - Kernel = GPU equivalent of a CPU thread



- A GPU thread executes a sequence of instructions assigned to a computational core
- Achieving massive parallelism
  - High number of threads are spawned at the same time
  - Single instruction multiple threads (SIMT) execution model
- SIMT vs. SIMD
  - SIMD single instruction is executed on all data
  - SIMT single instruction is executed only on the active threads

### GPU Threads, Blocks and Grids



- Threads are grouped into thread blocks
  - All threads in one thread block run in the same SM
  - Threads in the same block can communicate
- Each threads has a unique <blockID, threadID> pair
- Can explicitly access different parts of the data
- Blocks form a grid
- Thread blocks are *independent*
- They are executed in random order









#### GPU acceleration in Databases

### Selection



Given a predicate P, choose a subset of tuples from a relation R that satisfy P and remove the rest.



```
int i=0;
for (i=0; i<n; i++){
    if (pred(X[i])) {
        Y.add(X[i]);
    }
}</pre>
```

### Prefix-scans



- Apply a binary associative operator 

  to an array of n elements.
  - Given an input a = [a0, a1, ..., an-1]
  - − The output is a'=[0, a0, (a0 $\oplus$ a1), (a0 $\oplus$ a1 $\oplus$ a2), ..., (a0 $\oplus$ a1 $\oplus$ ... $\oplus$ an-2)]

**Prefix sum:** 

| X | Χ' |
|---|----|
| 2 | 0  |
| 6 | 2  |
| 3 | 8  |
| 8 | 11 |
| 5 | 19 |

### Parallel selection



- Predicate P: X>4
- Idea: pre-compute locations by prefix sum



**1.** Build flag array *fl*:

- 2. Compute prefix sum *ps* from *fl*
- 3. Scan *fl* and write *X[i]* to *ps[i]* in *Y*

#### Prefix sum: a reduction



- Reduction: reduce a set of values to a single value using a binary operator ⊕
- From the prefix scan slide:
  - Given an input a = [a0, a1, ..., an-1]
  - The output is a'=[0, a0, (a0 $\oplus$ a1), (a0 $\oplus$ a1 $\oplus$ a2), ..., (a0 $\oplus$ a1 $\oplus$ ... $\oplus$ an-2)]
- We can use reductions as a building block for a prefix sum operation
- Question: How can we parallelize reductions and prefix scan operations in general?

# Binary reduction trees





- To compute the sum of an array, we require log(n) steps with a binary reduction tree.
- The input array can be split into X blocks of 2 elements to be summed.
- We assign each block of two elements to a single thread.

### Reduction Trees on GPUs



- A naïve implementation based on Hillis and Steele ('86), on GPUs by Horn('05)
- But, is not work efficient
  - It performs more add operations
     O(n log n) than a sequential
     implementation O(n)

Q: How can we improve it?



### Reduction Trees on GPU



- Blelloch Algorithm (two phases, up-sweep shown here)
- One thread per two elements
- After every step, half of the threads remain active
- Single traversal of the tree performs (O(n)) add operations

```
_global__ void SimpleSumReductionKernel (float* input, float* output){
    unsigned int i = 2*threadIdx.x;
    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2){
        if (threadIdx.x % stride == 0){
            input[i] += input[i + stride];
        }
        __syncthreads();
    }
    if(threadIdx.x == 0){
        *output = input[0];
    }
}</pre>
```



- Strided memory access
- Each thread accesses 2 locations
- Stride doubles every iteration (1, 2, 4)
- Is this efficient?

# Reduction sum kernel – Analysis



- In reduction kernels, we halve the number of active threads in each iteration
- Increasing the stride, increases the distance between the active threads
- After n iterations → underutilized warps
- Example: given an input of 256 elements
  - We activate 128 threads, i.e., 4 warps
  - We need log2(256) = 8 iterations to calculate the reduction sum
  - At iteration 6, only warps 0 and 2 are active with 1 thread each.
- Question: how can we be more efficient?



# Technique: minimize control divergence



- Decrease the stride in each iteration
- So subsequent iterations operate on collocated threads and memory locations
- Adjacent warps and threads would deactivate
- Efficient use of the cache lines.

```
_global__ void ConvergentSumReductionKernel(float* input, float* output){
    unsigned int i = threadIdx.x;
    for (unsigned int stride = blockDim.x; stride >=1; stride /= 2){
        if (threadIdx.x < stride){
            input[i] += input[i + stride];
        }
        __syncthreads();
    }
    if(threadIdx.x == 0){
        *output = input[0];
    }
}</pre>
```



## Technique: where you read/write matters



- Where do we write the intermediate results to?
- The input array is stored in global memory.
- Partial results are written to global memory.
- Load the input from global memory
- Write and read every intermediate from shared (shared access is 150x faster than global memory)

- Example: array with 256 elements
  - 36 global memory accesses/writes

Only initial input and final output are read/written,
 a total of 9 global memory accesses.

```
__global___ void ConvergentSumReductionKernel(float* input, float* output){
    unsigned int i = threadIdx.x;
    for (unsigned int stride = blockDim.x; stride >=1; stride /= 2){
        if (threadIdx.x < stride){
            input[i] += input[i + stride];
        }
        __syncthreads();
    }
    if(threadIdx.x == 0){
        *output = input[0];
    }
}</pre>
```



### Reduction Trees on GPUs: final prefix sum



- With the current implementation, we do not have the partial sums yet.
- Solution:
  - Add one more phase the sweep down phase
  - Add partial sums to successor elements
  - Output: final prefix sum



- Blue arrows: move down
- Red arrows: partial sums
- Two phase parallel stage add operations: 2n
- Output: full prefix sum
- Same performance optimizations as earlier.



### GPU considerations on DB-engine level

# Challenges of GPUs for Data Analytics





- Challenge 1: Limited memory capacity
  - Some data sets do not fit in GPU memory

- Challenge 2: Limited interconnect bandwidth
  - Transferring data from CPU can be expensive

# But, GPU trends...





- GPU memory capacity increase by 6x in the last 5 years
- PCIe increases by 2x every two years
- NVLink bandwidth increase by 3x in 5 years.
  - NVLink C2C (2022) connects NVIDIA GPU and NVIDIA CPU (450 GB/s)

### Tile-based execution model



- Problem: conventional execution model incurs excessive memory traffic for reading and writing intermediate results
- Key idea: partition data into small tiles and store intermediate results in the shared memory



(a) Conventional execution model

(b) Tile-based execution model

# How much does it help?





- With Crystal, GPU is on average 25x faster than CPU when running the Star-Schema-Benchmark (SSB)
  - Hardware: V100 GPU, Intel i7-6900 CPU (8 cores), SSB (SF 20)

https://uwaterloo.ca/data-systems-group/sites/default/files/uploads/documents/talk-xiangyao-3-12.pdf

## Do we need to pre-load all the data?



#### Predicated loading primitive

- Keep track of valid tuples using a bitmap
- Use the bitmap for on-demand tuple loading → avoid loading tuples that have already been invalidated by predicates on other columns



Figure 10: CRYSTAL vs CRYSTAL-Opt. query execution.

src: https://www.vldb.org/pvldb/vol17/p441-cao.pdf

#### What's the bottleneck?



Remember the Roofline model?



## Compression can help!



- Idea 1: working with tile-based compressed data
- Idea 2: GPU-optimized compression format, leverage the GPU registers and shared memory



## Performance analysis on compression



- SSB Q1.1 is a simple scan with filter and aggregation.
- The roofline analysis above shows that it is the most scan (i.e., bandwidth) bound query.
- FLS-GPU: Interleaving of values in a vector employed by FastLanes → 2-3x faster
- -opt: predicate-pushdown brings additional benefit



Table 11: On the scan-bound Q1.1 that stands to profit most from compressed scans, FLS-GPU shows strong performance, which is significantly enhanced in FLS-GPU-opt.

| Scheme      | SF1-T4 | SF10-T4 | SF1-V100 | SF10-V100 |
|-------------|--------|---------|----------|-----------|
| Crystal     | 0.35   | 3.39    | 0.115    | 1.080     |
| Crystal-opt | 0.26   | 2.49    | 0.070    | 0.608     |
| FLS-GPU     | 0.21   | 1.92    | 0.087    | 0.642     |
| FLS-GPU-opt | 0.139  | 1.19    | 0.057    | 0.335     |

https://dl.acm.org/doi/pdf/10.1145/3662010.3663450

#### References



- Lecture: Hardware-conscious Data Processing by Prof. Tilmann Rabl (HPI)
- Slides: from Xiangyao Yu (University of Wisconsin Madison) on GPU Databases The New Modality of Data Analytics
- **Blog:** by Mark Harris (NVIDIA), Shubhabrata Sengupta (UC Davis), and John Owens (UC Davis) https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

#### Book:

- David B. Kirk and Wen-mei W. Hwu
   "Programming Massively Parallel Processors" a hands-on approach, 4<sup>th</sup> edition (2023)
  - chapter 10: Reduction (and minimizing divergence), chapter 11: Prefix sum (scan)

#### Various papers:

- Afroozeh et al. "Accelerating GPU Data Processing using FastLanes Compression". ACM DaMoN 2024
- Cao et al. GPU Database Systems Characterization and Optimization. PVLDB 2023
- Shanbhag et al, A study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics. SIGMOD 2020



## Appendix

## **Evolution of GPUs**











## **Evolution of GPUs II**





### Performance Considerations -- overview



| Optimization                | Compute Benefits                    | Memory Benefits                                     | How To                                                                                        |
|-----------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Coalesced Memory Access     | Fewer stalls for memory access      | Better utilization of cache lines                   | Rearrange the mapping of threads to data.  Rearranging the layout of the data.                |
| Maximizing Occupancy        | Hide pipeline latency               | Hide DRAM latency                                   | Tune SM usage: threads/block, shared memory/block, registers/thread.                          |
| Thread Coarsening           | Less divergence and synchronization | Less global memory traffic                          | Assign multiple units of parallelism to each thread to reduce the price of parallelism.       |
| Privatization               | Fewer stalls for atomic updates     | Less contention and serialization of atomic updates | Partial updates to a private copy of the data and updating the universal copy once when done. |
| Minimize Control Divergence | High SIMD efficiency                | -                                                   | Rearrange the mapping of threads to data.  Rearranging the layout of the data.                |
| Tiling Reused Data          | Fewer stalls for memory access      | Less memory traffic                                 | Place reused data in a block of shared memory.                                                |