ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Kingma, Jimmy Cite: 72366

> 2021.05.25 임진혁

Ondari Index

- 1. Introduction
- 2. Related works
- 3. Proposed Method
- 4. Experiment
- 5. Conclusion

(1) Optimizer

- To solve optimization problem
- Find optimal parameter which is make minimum loss

(1) Optimizer

Direction towards low Loss

$$heta_{t+1} = heta_t - lpha \cdot g_t$$

(1) Optimizer

Move as much as Step size

(2) Gradient descent

- Batch gradient descent: Entire training sample

$$\theta_t = \theta_{t-1} - \alpha \nabla_{\theta}(\theta)$$

- Stochastic gradient descent: Each training sample

$$heta_t = heta_{t-1} - lpha
abla_ heta(heta; x^{(i)}; y^{(i)})$$

- Mini-batch gradient descent: *n* training sample

$$heta_t = heta_{t-1} - lpha riangledown_ heta(heta; x^{(i:i+n)}; y^{(i:i+n)})$$

Stochastic Optimization Problem

Stochastic Gradient Descent

Gradient Descent

Stochastic Optimization Problem

- Jitter

- Saddle point

- Mini batch noise

(2) Gradient descent

Problem: Parameters are updated only by depending on gradient

(2) Gradient descent

⇒ Key Point: Not rely on current gradient and adjust step size

2 Related works

(1) Momentum

$$v_t = \underbrace{\gamma v_{t-1}}_{} + lpha \triangledown_{ heta} J(heta) \qquad (\gamma < 1)$$
Momentum

$$heta_t = heta_{t-1} - v_t$$

$$v_t = lpha riangledown_{ heta} J(heta)_t + \gamma lpha riangledown_{ heta} J(heta)_{t-1} + \gamma^2 lpha riangledown_{ heta} J(heta)_{t-2} + \cdots$$

- To Solve the prior problem
- Consider the previous parameter direction
- Focus on the latest gradients

2 Related works

(2) Adagrad

$$g_{t,i} = riangledown_{ heta} J(heta_i)$$

- The gradient of the objective function to θ_i at t

$$G_t = G_{t-1} + (\triangledown_{\theta} J(\theta_t))^2$$

- Sum of the squares of the gradients

$$heta_{t+1} = heta_t - \boxed{rac{lpha}{\sqrt{G_t + arepsilon}}} \cdot igtriangledown_{ heta} J(heta_t)$$

- How can control the stepsize
- Update parameters differently (element-wise product)
- However, the stepsize can be reduced

2 Related works

(3) RMSProp

$$G_t = \gamma G_{t-1} + 1 - \gamma (orall_{ heta} J(heta_t))^2$$

$$heta_{t+1} = heta_t - rac{lpha}{\sqrt{G_t + arepsilon}} \cdot riangledown_{ heta} J(heta_t)$$

- To solve the problem of reducing stepsize
- Exponentially decaying average of squared gradients
- Well-suited for dealing with non-stationary data

3, Proposed Method: ADAM

Adam: "Efficient" optimization method

- High-dimensional parameter
- Little memory requirement
- Naturally step size annealing
- Invariant to re-scaling of gradient

Adam: Adaptive Moment estimation

- Adaptive
- Moment
- Estimation

$$egin{aligned} g_t &=
abla f_t \left(heta_{t-1}
ight) \ m_t &= eta_1 m_{t-1} + \left(1 - eta_1
ight) g_t \ v_t &= eta_2 v_{t-1} + \left(1 - eta_2
ight) g_t^2 \end{aligned}$$

$$heta = heta_{t-1} - oldsymbol{lpha} rac{m_t}{v_t + \epsilon}$$

3, Marin Proposed Method: ADAM

Adam: Adaptive Moment estimation

- Adaptive
 - individual adaptive step size
- Moment
 - 1st moment(Mean): *m*
 - 2nd mement(Variance): v

$$egin{aligned} g_t &=
abla f_t \left(heta_{t-1}
ight) \ m_t &= eta_1 m_{t-1} + \left(1 - eta_1
ight) g_t \ v_t &= eta_2 v_{t-1} + \left(1 - eta_2
ight) g_t^2 \end{aligned}$$

$$heta = heta_{t-1} - rac{lpha}{v_t + \epsilon}$$

- Estimation
 - Decay Rates $\beta 1$, $\beta 2$ (exponential moving average)

Adam: Momentum + RMSprop

Momentum

$$v_t = \gamma v_{t-1} + \alpha g_t$$

$$\theta_t = \theta_{t-1} - v_t$$

Sparse gradient, Saddle point, Local minima with momentum

RMSprop

$$v_t = \gamma v_{t-1} + (1-\gamma)g_t^2$$

$$heta_t = heta_{t-1} - rac{lpha}{\sqrt{v_t} + \epsilon} g_t$$

Adaptive learning rate methods: Less Update, Large Stepsize

Adam: Momentum + RMSprop

1st moment (Mean)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

2nd moment (Variance)

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$heta = heta_{t-1} - lpha rac{m_t}{\sqrt{v_t} + \epsilon}$$

Momentum

$$v_t = \gamma v_{t-1} + \alpha g_t$$

 $\theta_t = \theta_{t-1} - v_t$

RMSprop

$$egin{aligned} v_t &= oldsymbol{\gamma} v_{t-1} + (1-oldsymbol{\gamma}) oldsymbol{g}_t^2 \ heta_t &= heta_{t-1} - rac{lpha}{\sqrt{v_t} + \epsilon} g_t \end{aligned}$$

Adam: Momentum + RMSprop

$$egin{align} m_t &= eta_1 m_{t-1} + \left(1 - eta_1
ight) g_t \ oldsymbol{v_t} &= oldsymbol{eta_2} v_{t-1} + \left(1 - oldsymbol{eta_2}
ight) oldsymbol{g_t^2} \ heta &= heta_{t-1} - lpha_{rac{m_t}{\sqrt{v_t} + \epsilon}} \ \end{pmatrix}$$

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

- Adaptive
 - individual adaptive step size (a)
- Moment
 - 1st moment(Mean) : *m*
 - 2nd mement(Variance): v
- Estimation
 - Decay Rates $\beta 1$, $\beta 2$

- 0. Initialization
- Each moment estimate vector is initialized to zero.
- 1. Loop (each time *t*)
 - (1) Calculate current timestep's gradient
 - (2) Update estimate vector using gradient & decay parameter
 - (3) Update the weight parameter

0. Initialization

- Each moment estimate vector is initialized to zero.

```
m_0 = 0 first_moment = 0 second_moment = 0
```

- 1. Loop (each time t) for t in range(num_iterations):
 - (1) Calculate current timestep's gradient

$$g_t =
abla f_t(heta_{t-1})$$
 dx = compute gradient(x)

- (2) Update estimate vector using gradient & decay parameter

```
m_t = eta_1 m_{t-1} + (1-eta_1) g_t first_moment = beta1 * first_moment + (1 - beta1) * dx v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2
```

- (3) Update the weight parameter until convergence

$$\theta = \theta_{t-1} - \alpha \frac{m_t}{\sqrt{v_t} + \epsilon}$$
 x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

To approximate well $E[estimate] \Rightarrow E[gradint]$

If Beta is close to 1, each moment estimation values biased to zero.

So, Use bias corrected moment values to update weights

$$egin{align} \hat{m}_t &= m_t / \left(1 - eta_1^t
ight) \ \hat{v}_t &= v_t / \left(1 - eta_2^t
ight) \ heta &= heta_{t-1} - lpha rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \ \end{matrix}$$

To approximate well $E[estimate] \Rightarrow E[gradint]$

$$egin{aligned} \mathbb{E}\left[v_{t}
ight] &= \mathbb{E}\left[\left(1-eta_{2}
ight)\sum_{i=1}^{t}eta_{2}^{t-i}\cdot g_{i}^{2}
ight] \ &= \mathbb{E}\left[oldsymbol{g}_{t}^{2}
ight]\cdot\left(1-eta_{2}
ight)\sum_{i=1}^{t}eta_{2}^{t-i}+\zeta \ &= \mathbb{E}\left[oldsymbol{g}_{t}^{2}
ight]\cdot\left(1-eta_{2}^{t}
ight)+\zeta \end{aligned}$$

To approximate well $E[estimate] \Rightarrow E[gradint]$

Case of "Bias Correction not applied"

To approximate well $E[estimate] \Rightarrow E[gradint]$

Case of "Bias Correction applied"

Update Rule

It is important for Adam to choose the step size effectively

The step size has two upper bounds

$$\Delta_t = lpha \cdot \widehat{m}_t / \sqrt{\hat{v}_t}$$

The first case(sparsity case)

The amount of update change should be made larger by increasing the step size

The second case(general case)

The amount of update change is made small by reducing the step size.

Update Rule

It is important for Adam to choose the step size effectively The step size has two upper bounds

$$\Delta_t = lpha \cdot \widehat{m}_t / \sqrt{\hat{v}_t}$$

(i) Frist Case

$$(1-eta_1) > \sqrt{1-eta_2} \hspace{1cm} ==> \hspace{1cm} |\Delta_t| \leq \alpha \cdot (1-eta_1) \, / \sqrt{1-eta_2}$$

(i) Second Case

$$(1-\beta_1) \langle = \sqrt{1-\beta_2} = => |\Delta_t| \leq \alpha$$

4 Kdarr Experiment

Experiment(1): Logistic Regression

	id	imdb_id	original_title	director	production	genre	cast	budget	revenue	runtime	release_year	V
0	135397	tt0369610	Jurassic World	Colin Trevorrow	Universal Studios	Action	Chris Pratt	150000000	1513528810	124	2015	
1	76341	tt1392190	Mad Max Fury Road	George Miller	Village Roadshow Pictures	Action	Tom Hardy	150000000	378436354	120	2015	
2	262500	tt2908446	Insurgent	Robert Schwentke	Summit Entertainment	Adventure	Shailene Woodley	110000000	295238201	119	2015	
3	140607	tt2488496	Star Wars The Force Awakens	JJ Abrams	Lucasfilm	Action	Harrison Ford	200000000	2068178225	136	2015	
4	168259	tt2820852	Furious	James Wan	Universal Pictures	Action	Vin Diesel	190000000	1506249360	137	2015	

MNIST

IMDB dataset

(for sparse feature problem)

^{*}Results are reported using the best parameter

^{*}Use same parameter initialization

^{*}Hyper-parameters(learning rate, momentum) are searched over dense grid

4 Karr Experiment

Experiment(1): Logistic Regression

^{*}Results are reported using the best parameter

^{*}Use same parameter initialization

^{*}Hyper-parameters(learning rate, momentum) are searched over dense grid

4 Experiment

Experiment(2): MULTI-LAYER NEURAL NETWORKS

- two fully connected hidden layer with 1000 hiden units (Relu activation, mini-batch 128 size)
- Cross-Entropy Loss
- Adam most Fast

^{*}Results are reported using the best parameter

^{*}Use same parameter initialization

^{*}Hyper-parameters(learning rate, momentum) are searched over dense grid

Experiment(3): BIAS-CORRECTION TERM

no bias correction terms

bias correction terms

^{*}Results are reported using the best parameter

^{*}Use same parameter initialization

^{*}Hyper-parameters(learning rate, momentum) are searched over dense grid

5 Conclusion

- Simple and efficient optimization algorithm
- How AdaGrad(Momentum) handles sparse gradients (different step size for each parameter)

+

- How RMSProp reflects the past slope less than the present

Reference

- P.Kingma, D., Jimmy, Ba. (2015). ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION. ICLR
- "ADAM Review". https://ropiens.tistory.com/90. (2021.05.13)

Thank you

