

Matrix Algebra

- Addition of Matrices
- Multiplication of Matrices
- Types of matrices
- Determinants
- ► Inverse of a matrix

Addition of Matrices

Addition of Matrices is possible only when the matrices are of same order.

Element wise addition is used to add two matrices of same order.

same order.

$$A = \begin{bmatrix} a & b \\ c & a \end{bmatrix}$$

$$A + B = \begin{bmatrix} a + w & b + y \\ c + w & d + w \end{bmatrix}$$

$$A + B = \begin{bmatrix} a + w & b + y \\ c + w & d + w \end{bmatrix}$$

Matrix Multiplication

The product AB is defined only when the number of columns of Matrix A is equal to the number of rows of matrix B

Brxp Amxn natrix multiplication not possible.

Consider the two matrices $A_{m \times n}$ and $B_{n \times p}$. The total number of multiplications and additions needed to obtain AB?

05. What is the minimum number of multiplications involved in computing the matrix product PQR? Matrix P has 4 rows and 2 columns, matrix Q has 2 rows and 4 columns and matrix R has 4 rows and 1 column ______. (GATE - 2013)

 $\frac{\mathbf{ACE}}{\mathbf{ACE}}$ $\mathbf{H} \times 2 \times 4 = 32$ $\mathbf{H} \times 4 \times 1 = 16$

$$P_{4x2}$$
. $(QR)_{2x1} = PQR$ $4x2x1 = 8$
 $ANS = 16$

Types of matrices

Idempotent matrix: An Idempotent matrix is a matrix which when multiplied by itself yields itself. $A^2 = A$

If $\mathbf{A}^2 = \mathbf{I}$ for a square matrix \mathbf{A} of order n, then \mathbf{A} is called an involutary matrix. $\mathbf{A}^2 = \mathbf{I}$ \Rightarrow $\mathbf{A} \cdot \mathbf{A} = \mathbf{I}$ \Rightarrow $\mathbf{A} \cdot \mathbf{A} = \mathbf{I}$

Nilpotent matrix: A Nilpotent matrix is a square matrix \mathbf{N} such that $\mathbf{N}^k = 0$ for some integer \mathbf{k} . The smallest such \mathbf{k} is called the degree or index of \mathbf{N} .

$$E^{x}$$
 $N \neq 0$ $N^{2} \neq 0$ $N^{3} = 0$ $N^{4} = N^{3} \cdot N = 0$, $N^{5} = 0$
 $N = 1$ $N = 1$

A square matrix A is said to be an Orthogonal matrix if

$$A^{-1} = A^{T}$$

$$\mathbf{A} = rac{1}{\sqrt{2}} egin{bmatrix} -1 & 1 \ 1 & 1 \end{bmatrix}$$

$$C_1 = \begin{pmatrix} -1|\sqrt{2} \\ 1|\sqrt{2} \end{pmatrix} \qquad C_2 = \begin{pmatrix} 1|\sqrt{2} \\ 1|\sqrt{2} \end{pmatrix}$$

$$C_1^T C_2 = (-1|\sqrt{2} |\sqrt{1}|^2) \left(|\sqrt{1}|^2 \right) = -\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$$

$$|\sqrt{1}|^2 = (-1|\sqrt{2} |\sqrt{1}|^2) \left(|\sqrt{1}|^2 + |\sqrt{2}|^2 + |\sqrt{2}|^$$

 $A = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $C_1 \text{ and } C_2 \text{ are orthogonal to each other.}$ $C_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $C_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2$

$$\mathbf{A} = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$C_{1} = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix} \qquad C_{2} = \begin{pmatrix} 2/3 \\ 1/3 \\ -2/3 \end{pmatrix} \qquad C_{3} = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix} \qquad 1/|C_{2}|/| = 1$$

$$C_{2}^{\mathsf{T}}C_{3} = (213 \quad 113 \quad -213) \begin{pmatrix} 213 \\ -213 \end{pmatrix} = 0$$

$$||C_1|| = \sqrt{\frac{1}{9} + \frac{4}{9} + \frac{4}{9}} \frac{ACE}{||C_2||} = ||C_3|| = 1$$

The columns of ormogonal matrix are perpendicular to each other.

The length of each column or row is equal to 1

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$C_1^T C_2 = (\cos \theta + \sin \theta) \left(-\sin \theta \right) = 0$$

Skew Symmetric matrix: A square matrix is said to be Skew Symmetric if
$$A^{T_{=}} - A$$
 (6x) $Q_{ij} = -Q_{ij}$

For Skew Symmetric matrix, the principal diagonal elements are always zero.

Conjugate of a matrix: The conjugate of a matrix A is obtained by replacing elements of A with their corresponding conjugates and is denoted by A.

If
$$\mathbf{A} = \begin{bmatrix} 1 - 2i & 3i \\ i & 4 + 6i \end{bmatrix}$$
 then $\overline{\mathbf{A}}$ is ____.

$$\overline{A} = \begin{bmatrix} 1+2i & -3i \\ -i & 4-6i \end{bmatrix}$$

$$Z = a + ib$$

$$\overline{L} = a - ib$$

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 2+i \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 \\ 2-i \end{bmatrix}$$

► Transposed conjugate of a matrix: If $\overline{\mathbf{A}}$ is a conjugate matrix of \mathbf{A} then $\overline{\mathbf{A}}^T$ is called transposed conjugate of \mathbf{A} and is denoted as \mathbf{A}^{θ} .

If
$$\mathbf{A} = \begin{bmatrix} 4+i & i \\ 2-3i & 5 \end{bmatrix}$$
 then \mathbf{A}^{θ} is ____.
 $\overline{A} = \begin{pmatrix} 4-i & -i \\ 2+3i & 5 \end{pmatrix}$ $\overline{A}^{\dagger} = \begin{pmatrix} 4-i & 2+3i \\ -i & 5 \end{pmatrix}$

Sym: AT=A

skew: AT = -A

 $\overline{A}^{T} = A$ ► Hermitian matrix:

► Skew Hermitian matrix: $\overline{A} = -A$

Identify Hermitian and skew Hermitian matrix.

$$\mathbf{A} = \begin{bmatrix} 2 & 1-3i \\ 1+3i & 4 \end{bmatrix} \mathbf{B} = \begin{bmatrix} -i & 2+i \\ -(2-i) & 0 \end{bmatrix}$$

► Unitary matrix: $A \overline{A}^T = \overline{A}^T A = \overline{\bot}$

$$\mathbf{A} = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$$

orthogonal matrix I = ATA = TAA

Since 1995

- 07. The number of $n \times n$ symmetric matrices possible with the entries chosen from the set $\{0, 1, 2, \dots, q-1\}$ is
 - (a) $q^{n\left(\frac{n+1}{2}\right)}$

(b) $q^{n\left(\frac{n-1}{2}\right)}$

(c) $(q-1)^{(n^2)}$

- (d) $q^{(n^2)}$
- (0,1) -> 2 clements
- $\{0,1,2\}\rightarrow 3$ elements
- (0,1,2, ... 01-13) 7 q elements

- verification n=2
- a) 9^{2(3/2)} = 9³
- b) $q^{2(1)/2} = q \times$
- e) (01-1) = (01-1) X

a) Ny X

€0,1,2, --- 9-13 or elements

Principal diagonal elements = 2

A bove P.D elements = 1

Aditya Vangala

P.D elements = 3 A bove P.D clements = 3

p.D elements = nAbove P.D elements = $\frac{n^2-n}{2}$ $n+\frac{n^2-n}{2}=\frac{n^2+n}{2}\Rightarrow 0$

Determinant

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bC$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{vmatrix} = 1(-1)^{1+1} \begin{vmatrix} 2 & 3 \\ 4 & 7 \end{vmatrix} + 1(-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 4 & 7 \end{vmatrix} + 1(-1)^{1+2} \begin{vmatrix} 1 & 2 \\ 4 & 7 \end{vmatrix}$$
Singular

$$z = 2 - 4 + 2 = 0$$

watrix

For the matrix given below, verify the Determinant using all rows and all columns.

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$cofactor = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix}$$

$$cofactor = \begin{bmatrix} -1 & -2 & -2 & -6 \\ 2 & -2 & 1 \end{bmatrix} = -3$$

$$cofactor = \begin{bmatrix} -1 & -2 & -2 & -3 \\ -2 & 1 & -2 \end{bmatrix} = -6$$

$$cofactor = \begin{bmatrix} -1 & -2 & -2 & -2 \\ 2 & 1 & -2 \end{bmatrix} = -6$$

$$cofactor = \begin{bmatrix} -1 & -2 & -2 & -2 \\ 2 & 1 & -2 \end{bmatrix} = -6$$

$$cofactor = \begin{bmatrix} -1 & -2 & -2 & -2 \\ 2 & 1 & -2 & -2 \end{bmatrix} = -6$$

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \qquad \begin{array}{c} \text{Cofactor} \\ \text{watrix} \\ \text{of } \mathbf{K} \end{array} = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \\ \end{array}$$

Det using 1st 8000 =
$$(-1)(-3) + (-2)(-6) + (-2)(-6) = 27$$

Det using 2nd row = $(2)(-6) + (1)(-6) + (-2)(-6) = 27$
Det using 3rd row = $(2)(-6) + (-2)(-6) + (1)(-6) = 27$
Det using 1st column = $(-1)(-3) + (-2)(-6) + (1)(-6) = 27$
Det using 2nd column = $(-1)(-6) + (1)(-6) + (-2)(-6) = 27$
Det using 2nd column = $(-2)(-6) + (1)(-6) + (-2)(-6) = 27$
Det using 3rd column = $(-2)(-6) + (-2)(-6) + (1)(-6) = 27$

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Sum of product of elements of 1st row with cofactors from 2nd row

cofactors from
$$(-2)(3)$$
 + $(-2)(-6)$ = $(-2)(-2)$ = $(-$

Sum of product of elements of 1st row with cofactors from 3rd row

$$(-1)(6) + (-2)(-6) + (-2)(3) = 0$$

Determinant

- Determinant of a square matrix is the sum of product of elements of a row or a columns with their cofactors.
- ► The cofactor of $\mathbf{A}_{n \times n}$ associated with the (i,j)-position is defined as

$$\mathbf{A}_{ij} = (-1)^{i+j} M_{ij}$$

where M_{ij} is the $(n-1)\times(n-1)$ minor obtained by deleting the i^{th} row and j^{th} column of **A**.

A minor determinant (or simply a minor) of A_{m×n} is defined to be the determinant of any k×k sub matrix of A.

- ▶ Effects of Row Operations: Let **B** be the matrix obtained from $\mathbf{A}_{n\times n}$ by one of the three elementary row operations:
 - ightharpoonup Type I: Interchange rows i and j.
 - ▶ Type II: Multiply row *i* by $\alpha \neq 0$.
 - ▶ Type III: Add α times row i to row j.

prow j.

$$R_1 \leftarrow 7R_2$$
 $B = \begin{pmatrix} d & e & f \\ a & b & c \\ \chi & \chi & \chi \end{pmatrix}$

$$\overline{I}$$
 $R_3 \rightarrow \kappa R_3$, $\kappa \neq 0$

The value of $det(\mathbf{B})$ is as follows:

$$ightharpoonup \det(\mathbf{B}) = -|A|$$
 for Type I operations. $\underline{\hspace{0.2cm}}$

▶
$$det(\mathbf{B}) = \angle |\mathbf{A}|$$
 for Type II operations.

$$ightharpoonup \det(\mathbf{B}) = \backslash \hline \backslash$$
 for Type III operations.

Properties of Determinants

Transposition doesn't alter determinants.

$$det(\mathbf{A}) = det(\mathbf{A}^T)$$

- $ightharpoonup |\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$ for all $n \times n$ matrices.
- $ightharpoonup A_{n\times n}$ is nonsingular if and only if $\det(\mathbf{A})\neq 0$.
- $ightharpoonup A_{n \times n}$ is singular if and only if det(A) = 0.
- Triangular Determinants

$$\begin{vmatrix} \widehat{t_{11}} & t_{12} & \cdots & t_{1n} \\ 0 & \widehat{t_{22}} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \cdots \\ 0 & 0 & \cdots & \widehat{t_{nn}} \end{vmatrix} = t_{11}t_{22}\cdots t_{nn}$$

- The determinants of a triangular matrix or a Diagonal is the product of its principal diagonal elements.
- If each element of a row or column in a square matrix is zero then the value of its determinant $\begin{pmatrix} 0 & b & 0 \\ d & e & f \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow O() + O() + O()$ is zero.
- odd order is always zero.
- ▶ The determinant of an orthogonal matrix is either 1 or -1.

The determinant of matrix A is 5 and determinant of matrix B is 40. The determinant of matrix AB is GATE 2014

02. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -3 & 3 \\ 1 & 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$,

$$C^{\mathsf{T}} = (\mathsf{A}\mathsf{B} - \mathsf{B}\mathsf{A})^{\mathsf{T}} = (\mathsf{A}\mathsf{B})^{\mathsf{T}} - (\mathsf{B}\mathsf{A})^{\mathsf{T}}$$
$$= \mathsf{B}^{\mathsf{T}}\mathsf{A}^{\mathsf{T}} - \mathsf{A}^{\mathsf{T}}\mathsf{B}^{\mathsf{T}}$$

$$A' = A$$
, $B' = B$
 $CT = BA - AB$
 $= -(AB - BA)$
 $= -C$
 $CT = -C$

then
$$|AB - BA| =$$

A and B are Symmetric $A^{T} = A$, $B^{T} = B$

$$C = AB - BA$$

$$C^{T} = (AB - BA)^{T} = (AB)^{T} - (BA)^{T}$$

$$= B^{T}A^{T} - A^{T}B^{T}$$

$$= C^{T} = C$$

AB - BA IS

$$AB - BA = S$$

Skew Sym modrix

$$C^{T} = BA - AB$$

$$= -(AB - BA)$$

$$= -(AB - BA)$$

$$= -C$$

$$C^{T} = C$$

H/W

06. If A and B are symmetric matrices of order

 3×3 , then consider the following:

 S_1 : AB = BA

 S_2 : AB – BA is singular

Which of the following is true?

- (a) S_1 is true and S_2 is false
- (b) S_1 is false and S_2 is true
- (c) Both S_1 and S_2 are true
- (d) Both S_1 and S_2 are false

Let A be a square matrix of order n - 1.

The elements of A are defined by

$$a_{ij} = \begin{cases} n-1 & \text{for } i=j \\ -1 & \text{for } i\neq j \end{cases}.$$

The determinant of A =

(a)
$$n^{n-1}$$

(b)
$$n^{n-2}$$

(c)
$$(n-1)^{n-2}$$

(b)
$$n^{n-2}$$

(d) $(n-1)^{n-3}$

$$\frac{\Omega=3}{2} \qquad A_{2\times 2}$$

$$\begin{bmatrix} -2 & -1 \\ -1 & 2 \end{bmatrix} \longrightarrow 11 = 4 - 1 = 3$$

Q.Let A be an $m \times n$ matrix and B an $n \times m$ matrix. It is given that $\det(I_m + AB) = \det(I_n + BA)$, where I_k is the $k \times k$ identity matrix. Using the above property, the determinant of the matrix given below is GATE-13

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 5 & 5 & 5 \\
1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 \\
S & 2 & 1 & 1 & 1 \\
S & 3 & 3 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 & 1 \\
S & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
S & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
S & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
S & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
S & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
S & 2$$

Consider the matrix

$$J_6 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} 6 \%$$

Which is obtained by reversing the order of the columns of the identity matrix I_6 . Let $P = I_6 + \alpha J_6$, where α is a non – negative real number. The value of α for which det (P) = 0 is _____.

(GATE-14-EC-SET1)