Topic: Exploratory Data Analysis (EDA)

Presentation of Bivariate Data

Part B: One quantitative and one qualitative variable

School of Mathematics and Applied Statistics

Bivariate Data: Two Variables

Different tables / plots for different data types . . .

For two qualitative variables:

- two-way tables
- stacked bar graphs
- clustered bar graphs

Bivariate Data: Two Variables

Different tables / plots for different data types . . .

For two qualitative variables:

- two-way tables
- stacked bar graphs
- clustered bar graphs

For one quantitative and one qualitative variable:

- side-by-side box plots
- back-to-back stem & leaf plots

Bivariate Data: Two Variables

Different tables / plots for different data types . . .

For two qualitative variables:

- two-way tables
- stacked bar graphs
- clustered bar graphs

For one quantitative and one qualitative variable:

- side-by-side box plots
- back-to-back stem & leaf plots

For two quantitative variable/s:

- scatterplots
- line plots (against time)

Comparing Batches: One quantitative and one qualitative variable

Question: Is there a difference between two or more batches of data?

- One quantitative variable
- Two batches (male & female)
- Or many batches (eg brands)

The aim is to turn data into meaningful information AND to communicate it effectively

- Plots should be on the same scale
- Do NOT use two separate plots
- Different plots will show different aspects of the data

Later we examine hypothesis tests - eg. are the population means significantly different?

Example: Measured Heights (cm) for 46 M and 19 F

Presentation of Bivariate Data - Part B Comparing Batches Introduction Dot Plots Stem & Leaf Plots Box Plots

Comparing batches

Example: Measured Heights (cm) for 46 M and 19 F

To compare: Use one plot, one set of axes

Example: Measured Heights (cm) for 46 M and 19 F

Height for Males and Females

Comparing batches: Communication

Key descriptors involve comparison

Based on comparative techniques make comparative statements

- Greater than . . .
- Similar to
- Less than

Comparing batches: Communication

Key descriptors involve comparison

Based on comparative techniques make comparative statements

- Greater than
- Similar to ...
- Less than

For all key features

- Contexts
- Shape of distribution
- Outliers/Extremes
- Centre
- Spread
- Patterns

Comparison - Dot plots

Comparison of male and female shoe size

We can easily see:

- spread
- possible outliers

What can't we see?

- shape of the distribution
- centre of data
- density of dots (ie how many people with one shoe size) as dots overlayed

What does the data reveal?

Distribution shape:

- Male: bell-shaped
- Female: skewed with a longer tail of small shoe sizes (negative skew, skewed to left)

- Distribution shape:
 - Male: bell-shaped
 - Female: skewed with a longer tail of small shoe sizes (negative skew, skewed to left)
- Outliers Possible but not shown here

- Distribution shape:
 - Male: bell-shaped
 - Female: skewed with a longer tail of small shoe sizes (negative skew, skewed to left)
- Outliers Possible but not shown here
- Centre can only see mode
 - mode for males is 10 &
 - is higher than mode for females (8)

- Distribution shape:
 - Male: bell-shaped
 - Female: skewed with a longer tail of small shoe sizes (negative skew, skewed to left)
- Outliers Possible but not shown here
- Centre can only see mode
 - mode for males is 10 &
 - is higher than mode for females (8)
- Spread can determine range
 - for males is 7-15 and females 4-11.5
 - so range is a little wider for males 8 than females 7.5

- Distribution shape:
 - Male: bell-shaped
 - Female: skewed with a longer tail of small shoe sizes (negative skew, skewed to left)
- Outliers Possible but not shown here
- Centre can only see mode
 - mode for males is 10 &
 - is higher than mode for females (8)
- Spread can determine range
 - for males is 7-15 and females 4-11.5
 - so range is a little wider for males 8 than females 7.5
- Pattern
 - M: bell within a bell; F: not so clear
 - M & F: fewer half sizes

- Context: shoe size
 - 118 Males & 31 Females

- Context: shoe size
 - 118 Males & 31 Females

Comparison: Box Plots

- Context: shoe size
 - 118 Males & 31 Females

- Distribution shape:
 - F is more asymmetric than M with relatively shorter tail of upper values

- Context: shoe size
 - 118 Males & 31 Females

- Distribution shape:
 - F is more asymmetric than M with relatively shorter tail of upper values
- Outliers
 - M: two high (sizes 14 & 15)
 - F: a low (size 4) & a high (size 11.5)

Comparison: Box Plots

- Context: shoe size
 - 118 Males & 31 Females

- Distribution shape:
 - F is more asymmetric than M with relatively shorter tail of upper values
- Outliers
 - M: two high (sizes 14 & 15)
 - F: a low (size 4) & a high (size 11.5)
- Centre can only see median
 - median for M is size 10 &
 - is higher than for F (size 8)

Presentation of Bivariate Data - Part B Comparing Batches

Comparison: Box Plots

- Context: shoe size
 - 118 Males & 31 Females

- Distribution shape:
 - F is more asymmetric than M with relatively shorter tail of upper values
- Outliers
 - M: two high (sizes 14 & 15)
 - F: a low (size 4) & a high (size 11.5)
- Centre can only see median
 - median for M is size 10 &
 - is higher than for F (size 8)
- Spread: can determine IQR and range
 - IQR for M is 11-9=2 and F 8.5-7=1.5
 - IQR is slightly greater for M than F
 - range is a little wider for M 8 than F 7.5

Comparison: Box Plots

- Context: shoe size
 - 118 Males & 31 Females

- Distribution shape:
 - F is more asymmetric than M with relatively shorter tail of upper values
- Outliers
 - M: two high (sizes 14 & 15)
 - F: a low (size 4) & a high (size 11.5)
- Centre can only see median
 - median for M is size 10 &
 - is higher than for F (size 8)
- Spread: can determine IQR and range
 - IQR for M is 11-9=2 and F 8.5-7=1.5
 - IQR is slightly greater for M than F
 - range is a little wider for M 8 than F 7.5
- Pattern cannot be seen in this plot

Utility: Boxplots versus Stem-and-leaf Plots

Boxplots

- are especially useful for comparing ≥ 2 samples or batches.
- show the 5-number summary and outliers
- but not the individual values.

Presentation of Bivariate Data - Part B Comparing Batches Introduction Dot Plots Stem & Leaf Plots Box Plots

Utility: Boxplots versus Stem-and-leaf Plots

Boxplots

- are especially useful for comparing

 2 samples or batches.
- show the 5-number summary and outliers
- but not the individual values.

Stem-and-leaf plots

- show individual values, and
- give a better picture of the shape of the spread.
- but their detail makes them unsuitable for comparing more than two groups (back-to-back)
- not suitable when a large no. of observations

Plane Type

→I I