Making Patent Citations Uncool Again

Gaétan de Rassenfosse EPFL - IIPP

Cyril Verluise PSE and Collège de France¹

Research Retreat IIPP-CEMI, March 2020

Motivation

- Patent-to-patent citations: device for major breakthrough in Innovation, Growth, etc
- lacktriangle Many more Citations: Non Patent Literature, In-text ightarrow potential to shed new light on old and new issues
- ▶ Improved ability to extract data from unstructured content \rightarrow Patent field: [Marx and Fuegi, 2019] (in-text), [Bryan et al., 2020] (front-page)
- Renewed interest for Patent Citations

Approach

- ► Open source (MIT-2)
- Comprehensive
- ► Leverage (existing) Machine Learning Solutions

Contributions

- October, 19th: Release of the "Worldwide Patent-to-NPL Citations" database -Beta
- November, 21st: __ v0.1
- November, 26th: Release of the "US Contextual Patent-to-Patent and Patent-to-NPL" database - Beta
- **▶ December, 28th**: __ v0.1
- ► March, 3rd: Release of the "Worldwide Patent-to-NPL Citations" database v0.2

How it works

A stack of industrial-strength open source software

Extraction, Parsing and Consolidation

- ▶ **GROBID** ([GRO, 2020]): a machine learning library for extracting, parsing and re-structuring raw documents (...) into structured documents with a particular focus on technical and scientific publications.
 - Started in 2008 and open sourced in 2011 by Patrice Lopez
 - Leverage Conditional Random Fields to label sub-parts of the text
 - ▶ State-of-the-art in bibliographic reference parsing [Tkaczyk et al., 2018]
- ▶ **Biblio-Glutton**: a bibliographical reference matching service.

Labeling, Validation, Text Classification

- **Doccano**: Open source text annotation tool for machine learning practitioner.
- **spaCy**: Industrial-strength Natural Language Processing textCategorizer.

In practice

Architecture

- ▶ 1 machine with input data, GROBID and Biblio-Glutton + PubMed and Unpaywall
- ▶ 1 machine with Crossref database

Efficiency

- lacktriangle NPL Citations: \sim 2 million NPL citations per day ightarrow 100 USD for DOCDB
- ightharpoonup Full-text: \sim 300k full-texts per day \rightarrow 600 USD for USPTO

Dataset

Worldwide Patent-to-NPL Citations - v0.2-npl

Input: 40 million DOCDB NPL citations
What we do

- ► Classify in 9 classes²
- ► Parse³
- Consolidate bibliographical references

Results

- 1. Classify with 90% accuracy \rightarrow 27 million bibliographic references
- 2. Match a DOI for 11 million+ NPL citations with 99% precision
- 3. Parsing precision of the main bibliographical attributes ranges above 70%

²Bibliographical reference, office action, patent..., search report, webpage, product documentation, norm and standard, database, litigation

³Retrieve structured attributes title_a, title_j, year, etc

v0.2-npl - Classification

NPL citations are messy

ML text classification

- Define 9 classes
- ▶ Label \approx 3k NPL citations by hand
- ▶ Learn a multi-class text classifer (cnn+bow), evaluate on development set
- ► Results:

accuracy	precision	recall	f1	
0.9	0.89	0.88	0.88	

Table: Classifier average performance over all classes More

Last but not least, apply at scale More

v0.2-npl - Consolidation

Number of DOI matches: 11,005,114

Evaluation

- ► Random draw
- ► Label 300 by hand (gold)
- Results:

match	version	year			
doc	discrepancy	discrepancy			
0.99	0.0	0.02			

Table: Share of DOI matches with ...

v0.2-npl - Parsing

Parsing of the remaining (non DOI-matched) bibliographical references

Evaluation

- Random draw
- ► Label main attributes by hand for 150 bibliographical references (gold)
- Results:

	True	False	Accuracy
year	138	12	0.92
volume	135	15	0.9
issue	132	18	0.88
title article	116	34	0.77
title journal	107	43	0.71
title meta (non journal)	120	30	0.8

US contextual Patent-to-Patent and Patent-to-NPL

Input: 16 million USPTO full-text patents

What we do?

- Extract
- Parse
- Consolidate patent citations and bibliographical reference

Results

- 1. 70+ million contextual bibliographical reference extracted
- 2. 13+ million contextual bibliographical reference matched with a DOI
- 3. 80+ million contextual patent citations extracted

No validation yet

What's next?

"ASK NOT WHAT YOUR COUNTRY CAN DO FOR YOU..." Happy for contribution!

Last words

Data Access

- ▶ License: Open access, CC4 (very permissive)
- ► Google Cloud Bigquery: Publicly Available at https://console.cloud.google.com/bigquery?project=npl-parsing&p= npl-parsing&d=patcit&page=dataset. Easy to query, adpated to the scale
- ▶ Bulk Download: Coming soon!
- ▶ List-based download (API-like): Depending on community request

Stay up-to-date

We are constantly improving the database, make sure that you have the latest news

- ► Star the project GitHub repo: https://github.com/cverluise/PatCit
- ► Follow us on twitter @gderasse and @CyrilVerluise
- ▶ Drop us a mail so that we add you the loop

Contribute!

This project is by and for the community \rightarrow sandbox for experimenting a new way of doing.

- Raise issues
- Request features
- ► Tackle issues (good first issue)
- Fork, extend, merge Take credit for your work

Thank you!

References I

(2008 — 2020).

Grobid.

https://github.com/kermitt2/grobid.

Bryan, K. A., Ozcan, Y., and Sampat, B. (2020). In-text patent citations: A user's guide. *Research Policy*, 49(4):103946.

Marx, M. and Fuegi, A. (2019).
Reliance on science: Worldwide front-page patent citations to scientific articles.

Boston University Questrom School of Business Research Paper, (3331686).

Tkaczyk, D., Collins, A., Sheridan, P., and Beel, J. (2018). Evaluation and comparison of open source bibliographic reference parsers: a business use case.

arXiv preprint arXiv:1802.01168.

Classifier performance by class

	BIBL REF	SEARCH REPORT	OFFICE ACTION	PAT	PROD DOC.	NORM STD	WEB PAGE	DATA BASE	LITI- GATIO
precision	0.92	1.0	0.99	0.91	0.44	0.86	0.53	0.89	0.25
recall	0.95	0.92	0.93	0.94	0.43	0.6	0.53	0.73	0.11
f1	0.93	0.96	0.96	0.93	0.44	0.71	0.53	8.0	0.15
support	370.0	86.0	76.0	68.0	37.0	20.0	17.0	11.0	9.0

Classifier confusion matrix

Number of NPL citation by class

npl_class	count
BIBLIOGRAPHICAL_REFERENCE	27478140
OFFICE_ACTION	3247676
PATENT	2698016
SEARCH_REPORT	2279862
WEBPAGE	1293687
PRODUCT_DOCUMENTATION	734606
NORM_STANDARD	600323
Unknown	260030
DATABASE	246578
LITIGATION	191017