Перестановки, подстановки, четность, нечетность. Свойства.

Перестановка - любая последовательность длины n на множестве $1, 2, \ldots, n$, в которой каждое число от 1 до n входит один раз

 Подстановка - биекция (взаимно однозначное отображение) на множестве чисел $\{1,2,\dots,n\}$ в $\{1,2,\dots,n\}$

Число инверсий перестановки- количество пар вида (i,j), где i < j, j имеет меньший индекс чем i Число инверсий подстановки - сумма чисел инверсии в верхнем и нижнем ряду.

Чётность перестановки/подстановки- чётная если число инверсий четное и наоборот.

Теорема о смене чётности перестановки: пусть g - перестановка. Тогда при перестановке любой пары элементов чётность подстановки меняется.

Доказательство: Пусть g имеет m инверсий.

- I. Переставляем соседние элементы. $g=(i_1,\ldots,i_k,i_{k+1},\ldots,i_n)$. Если $i_k < i_{k+1}$, то образуется ровно одна новая инверсия.
- 2. $(i_1, \ldots, i_k, i_{k+1}, \ldots, i_{s-1}, i_s, \ldots, i_n)$. Мы переставляем i_k и i_s .
 - $(i_1,\ldots,i_k,i_{k+1},,i_{k+2}\ldots,i_k,i_s,\ldots,i_n)$. Мы сделаем s-1-k перестановок соседних элементов, тогда чётность поменяется s-1-k раз.
 - Просто переставляем i_k и i_s . $(i_1,\ldots,i_{k+1},\ldots,i_{k+2},\ldots,i_s,i_k,\ldots,i_n)$. Чётность меняется на 1.
 - Ведём i_s назад на то место, где сейчас находится i_{k+1} , на которой вначале стоял i_k . Снова после s-1-k перестановок чётность поменяется.

Осталось заметить, что чётность поменялась нечётное количество раз.

Теорема о чётность подстановок:

- 1. Любая подстановка может быть представлена в каноническом виде
- 2. Чётность подстановки не зависит от упорядочения верхнего ряда Доказательство:
- **1.** Просто записываем подстановку по порядку. Очевидно, что ей соответствует то же самое отображение
- 2. $\begin{pmatrix} a_1 & \dots & a_i & \dots & a_k & \dots & a_n \\ b_1 & \dots & b_i & \dots & b_k & \dots & b_n \end{pmatrix}$. Переставим в этой подстановке i-й и k-й элементы. При этом сама подстановка не изменится. При этом по предыдущей теореме чётность не изменилась, т.к. одновременно изменились чётности верхнего и нижнего ряда.

Единичная подстановка -
$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$
 Обратная подстановка - для $g=\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$, $g^{-1}=\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ 1 & 2 & \dots & n \end{pmatrix}$, подстановка имеет такую же чётность как и исходная.