1 More about Ideals

We begin with a discussion of prime and maximal ideals. All rings here are commutative with 1.

Definition 1.1. For some ideal $I \neq \langle 1 \rangle$, I is a *prime* ideal if R/I is an integral domain.

I is maximal if R/I is a field.

Example 1.2. In R[x], (x-a) is prime iff R is an integral domain, and maximal iff R is a field. This comes directly from the fact that $R[x]/\langle x-a\rangle \cong R$.

You might notice that the definitions above aren't the ones that are normally given for prime and maximal ideals. The normal definitions are that I being prime iff $\forall ab \in I$, either $a \in I$ or $b \in I$, and I is maximal iff \forall ideals J of I, $I \subseteq J \Rightarrow I = J$ or J = R. The equivalence of these definitions is an easy exercise and can be verified quickly.