Discrete Math 2 HW 1

Ben Awad

August 30, 2016

Problem 9.1.6.

c.

Reflexive proof:

- 1. x x = 0 where x is a real number (algebra)
- 2. 0 can be represented as $\frac{0}{1}$ and is therefore a rational number (defintion of rational)
- 3. Therefore for all real x, (x, x) is in the relation

Symmetric proof:

- 1. Assume $x-y=\frac{a}{b}$ where x, y are real numbers and a, b are integers (definition of rational)

 - 2. $-\frac{a}{b} = y x$ (algebra) 3. $-\frac{a}{b} = 0 \frac{a}{b} = \frac{0}{b} \frac{a}{b} = \frac{0-a}{b}$ (algebra) 4. k = 0 a where k is some integer (closure)

 - 5. $\frac{k}{b} = y x$ (algebra)
 - 6. Therefore, if (x, y) is in the relation, (y, x) must also be in the relation

Not anti-symmetric because (10, 5) and (5, 10) are in the set and $10 \neq 5$

Transitive proof:

- 1. Let $x y = \frac{a}{b}$ where x, y are real numbers and a, b are integers (definition of rational)
- 2. Let $y-z=\frac{c}{d}$ where y, z are real numbers and c, d are integers (definition of rational)
- 3. $x = \frac{a}{b} + y$ (algebra)
- 4. $-z = \frac{c}{d} y$ (algebra)
- 5. $\left(\frac{a}{b} + y\right)^{a} + \left(\frac{c}{d} y\right) = x z$ (algebra)
- 6. $\frac{a}{b} + \frac{c}{d} = x z$ (algebra)
 7. $x z = \frac{a}{b} + \frac{c}{d} = \frac{a*d}{b*d} + \frac{c*b}{b*d} = \frac{a*d+c*b}{b*d} = \frac{k}{h}$ for some integer k, h (algebra, closure)
 8. Since k, h are integers $\frac{k}{h}$ is rational (definition of rational)
- 8. Therefore for (x, z) are in the relation and the relation is transitive

d.

Not reflexive because (5, 5) is not in the set because $5 \neq 2 * (5)$

Not symmetric because (10, 5) is in the set 10 = 2 * (5), but (5, 10) is not in the set $5 \neq 2 * (10)$

Anti-symmetric proof:

- 1. x = 2y (definition (x, y))
- 2. y = 2x (definition (y, x))
- 3. $y \neq 4y$ (algebra)

4. The first part of the implication is always false therefore the whole thing is always true

Not transitive because (4, 2) is in the set 4 = 2 * (2) and (2, 1) is in the set 2 = 2 * (1), but (4, 1) is not in the set $4 \neq 2 * (1)$

Problem 9.1.32.

$$R \circ S$$
: {(3, 2), (3, 3), (4, 4), (2, 3), (4, 3), (2, 2), (3, 4)} $S \circ R$: {(1, 2), (1, 1), (2, 1), (2, 2)}

Problem 9.1.36.

c.
$$\{(a,b) \in R^2\}$$

e. $\{(a,b) \in R^2 | a > b\}$

Problem 9.6.10.

Not partial order because it is not transitive. $c \to d$, $d \to b$, but c does not go to b

Problem 9.6.22.

Problem 9.6.26.