Copyright - not legal for resale.

19 Introducing Momentum and From Isaac Covid lessons archive: isaacphysics.org/pages/covid19_gcse

Momentum measures how much 'motion' an object has, taking into account its mass and velocity.

momentum = mass (kg)
$$\times$$
 velocity (m/s) $p = mv$

The unit of momentum is kilogram metres per second (kg m/s)

The sign of the momentum (plus or minus) tells you the direction. In these one dimensional problems, positive momentum means 'travelling East' and negative momentum means 'travelling West'.

Momentum is a vector – it has a direction.

19.1 Complete the table. Each row represents a separate situation.

Mass	Velocity (m/s)	Momentum (kg m/s)		
2.0 kg	+4.5	(a)		
1.6 kg	-3.4	(b)		
50 g	2.5 East	(c)		
60.3 kg	31 West	(d)		
120 kg	Stationary	(e)		
360 kg	(f)	1 200 East		
2.0 g	(g)	2.0 West		

Example 1 – A 3.0 kg motion trolley is moving at 2.0 m/s East. A force of 4.2 N acts on it for 6.0 s.

Acceleration = force/mass = $4.2 \text{ N}/3.0 \text{ kg} = 1.4 \text{ m/s}^2$

Velocity change = acceleration \times time = 1.4 m/s² \times 6.0 s = 8.4 m/s

New velocity $= 2.0 \, \mathrm{m/s} + 8.4 \, \mathrm{m/s} = 10.4 \, \mathrm{East} \, \mathrm{m/s}$

Original momentum = mass \times velocity = 3.0 kg \times 2.0 m/s = +6.0 kg m/s

New momentum = $3.0 \text{ kg} \times 10.4 \text{ m/s} = +31.2 \text{ kg m/s}$

Change in momentum = 31.2 kg m/s - 6.0 kg m/s = +25.2 kg m/s

Notice that force \times time = 4.2 N \times 6.0 s = +25.2 Ns

The last line of the example suggests:

change in momentum (kg m/s) = force (N)
$$\times$$
 time (s)

$$p_{\text{after}} - p_{\text{before}} = Ft$$

- 19.2 A 5.0 kg trolley is initially moving at 3.5 m/s West. A 12.4 N force (East) acts on it for 3.5 s. Take 'travelling East' as being positive, and 'travelling West' as being negative.
 - (a) Calculate the acceleration
 - (b) Calculate the velocity change
 - (c) Calculate the original momentum
 - (d) Calculate the new momentum
 - (e) Calculate the change in momentum
 - (f) Is the change in momentum equal to the product of the force and time?
- 19.3 Complete the table. Each row represents a separate situation. You should fill the different columns in the easiest order (which may not be left to right). The first row has been worked as an example.

<i>m</i> (kg)	v (m/s)		p (kg m/s)			F (N)	t (s)
	Before	After	Before	Change	After	F (IN)	ι (5)
1.0	0.0	180	0.0	180	180	3.0	60
2.5	0.0	(a)	(b)	(c)	(d)	4.2	12
25	0.0	(e)	(f)	(g)	(h)	16.9	300
700	10	31	(i)	(j)	(k)	(1)	12
1 800	13	0.0	(m)	(n)	(o)	-12000	(p)
15 g	0.0	250	(q)	(r)	(s)	(t)	2.0 ms

Example 2 - First row of table above

Momentum before $= mu = 1.0 \text{ kg} \times 0.0 = 0.0 \text{ kg m/s}$

Momentum change = $Ft = 3.0 \text{ N} \times 60 \text{ s} = 180 \text{ kg m/s}$

Momentum afterwards $= 0.0 + 180 = 180 \,\mathrm{kg}$ m/s

Velocity afterwards = momentum/mass = 180/1.0 = 180 m/s

Impulse

We define impulse $(Ns) = force(N) \times time(s)$

so impulse (Ns) = change in momentum (kg m/s)

So, a moving object with $400 \, \text{kg}$ m/s of momentum would need a $400 \, \text{N}$ force to stop it in one second.

Newton's 2^{nd} Law: resultant force = rate of change of momentum.

- 19.4 What magnitude of force is needed to accelerate a 300 000 kg wide-body jet from 0.0 m/s to take off speed of 90 m/s in 50 s?
- 19.5 What will the momentum of a 200 kg rocket be after a 10 kN force has pushed it for four minutes?
- 19.6 At what speed is a 20 gram air rifle pellet moving if it has a momentum of 1.6 kg m/s?
- 19.7 A girl on a 10 kg bicycle is riding it at a speed of 6.0 m/s. If the momentum of the girl and bicycle is 360 kg m/s, what is the mass of the girl?
- 19.8 Your mass is 60.6 kg and you are about to land on your feet after a jump, falling at 0.85 m/s.

Calculate the force on each leg if:

- (a) you bend your knees and stop in 0.75 s;
- (b) you keep your knees locked and stop in $0.082 \, \mathrm{s}$.
- 19.9 An 800 kg car is travelling at 70 mph and overtaking a $15\,000$ kg truck travelling at 55 mph. Calculate the ratio of the momentum of the truck to the momentum of the car ($p_{\text{truck}}/p_{\text{car}}$).
- 19.10 Calculate the momentum of a $20\,000$ tonne ship moving through the water at a speed of 12 m/s. [Note: 1 tonne = 1000 kg]

Additional Introducing Momentum and Impulse Questions

- 19.11 A car is travelling at 15 m/s. It has $18\,000 \text{ kg m/s}$ of momentum. What is the car's mass?
- 19.12 Two cars are travelling in the same direction. One has a mass of $1\,000\,\mathrm{kg}$ and is moving at $10\,\mathrm{m/s}$, the other's mass is $1\,200\,\mathrm{kg}$ and it is moving at $15\,\mathrm{m/s}$. What is the total momentum of the cars?

²⁸/₃₇