

# Introduzione a KiCad

Introduzione a KiCad ii

2 marzo 2016

Introduzione a KiCad

# **Indice**

| 1 | Inti | roduzione a KiCad                                                | 1  |
|---|------|------------------------------------------------------------------|----|
|   | 1.1  | Scaricamento e installazione di KiCad                            | 2  |
|   | 1.2  | Sotto GNU/Linux                                                  | 2  |
|   | 1.3  | Sotto Apple OS X                                                 | 3  |
|   | 1.4  | Sotto Windows                                                    | 3  |
|   | 1.5  | Supporto                                                         | 3  |
| 2 | Il d | iagramma di flusso di KiCad                                      | 4  |
|   | 2.1  | Panorama sul diagramma di flusso di KiCad                        | 4  |
|   | 2.2  | Forward e back annotation                                        | 6  |
| 3 | Dis  | egno di schemi elettrici                                         | 7  |
|   | 3.1  | Usare Eeschema                                                   | 7  |
|   | 3.2  | Connessioni Bus in KiCad                                         | 20 |
| 4 | Pro  | gettazione circuiti stampati                                     | 22 |
|   | 4.1  | Usare Pcbnew                                                     | 22 |
|   | 4.2  | Generare file Gerber                                             | 30 |
|   | 4.3  | Usare GerbView                                                   | 31 |
|   | 4.4  | Sbroglio automatico con FreeRouter                               | 31 |
| 5 | For  | ward annotation in KiCad                                         | 33 |
| 6 | Cre  | are simboli elettrici in KiCad                                   | 35 |
|   | 6.1  | Usare l' editor dei componenti di libreria                       | 35 |
|   | 6.2  | Esportazione, importazione e modifica dei componenti di libreria | 38 |
|   | 6.3  | Creare componenti dello schema con quicklib                      | 38 |
|   | 6.4  | Fare un componente con un grande numero di pin                   | 39 |
|   |      |                                                                  |    |

Introduzione a KiCad iv

| 7 | Creare impronte di componenti                        |    |  |
|---|------------------------------------------------------|----|--|
|   | 7.1 Usare l' editor delle impronte                   | 42 |  |
| 8 | Note sulla portabilità dei file di progetto di KiCad | 4  |  |
| 9 | Uno sguardo sulla documentazione di KiCad            | 47 |  |
|   | 9.1 La documentazione di KiCad sul Web               | 4' |  |

Introduzione a KiCad v

Guida essenziale a KiCad, per realizzare senza sforzo circuiti stampati complessi.

#### Copyright

Questo documento è coperto dal Copyright © 2010-2015 dei suoi autori come elencati in seguito. È possibile distribuirlo e/o modificarlo nei termini sia della GNU General Public License (http://www.gnu.org/licenses/gpl.html), versione 3 o successive, che della Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), versione 3.0 o successive.

Tutti i marchi registrati all' interno di questa guida appartengono ai loro legittimi proprietari.

#### Collaboratori

David Jahshan, Phil Hutchinson, Fabrizio Tappero, Christina Jarron, Melroy van den Berg.

#### Traduzione

Marco Ciampa < ciampix@libero.it >, 2014-2015.

### Feedback

Si prega di inviare qualsiasi rapporto bug, suggerimento o nuova versione a:

- Documentazione di KiCad: https://github.com/KiCad/kicad-doc/issues
- Software KiCad: https://bugs.launchpad.net/kicad
- Traduzione di KiCad: https://github.com/KiCad/kicad-i18n/issues

### Data di pubblicazione

16 maggio, 2015.

Introduzione a KiCad 1 / 47

## Capitolo 1

## Introduzione a KiCad

KiCad è uno strumento open-source per la creazione di schemi elettrici e circuiti stampati. Sotto la sua apparente interfaccia monolitica, KiCad incorpora un elegante insieme di strumenti software indipendenti:

| Nome programma   | Descrizione                           | Estensione file              |  |
|------------------|---------------------------------------|------------------------------|--|
| KiCad            | Gestore progetti                      | *.pro                        |  |
| Eeschema         | Editor di schemi (e di componenti)    | *.sch, *.lib, *.net          |  |
|                  | elettrici                             |                              |  |
| CvPcb            | Selezionatore di impronte             | +*.net                       |  |
| PCBnew           | Editor di circuiti stampati           | *.kicad_pcb                  |  |
| GerbView         | Visualizzatore di file Gerber         | Tutti i classici file gerber |  |
| Bitmap2Component | Convertitore di immagini bitmap       | *.lib, *.kicad_mod, *.       |  |
|                  | in componenti o impronte              | kicad_wks                    |  |
| PCB Calculator   | Calcolatore per componenti,           | Nessuno                      |  |
|                  | spessore tracce, spaziature           |                              |  |
|                  | elettriche, codici colore, e altro··· |                              |  |
| Pl Editor        | Editor dei fogli mastri o di          | *.kicad_wks                  |  |
|                  | disposizione                          |                              |  |

### Nota

L' elenco delle estensioni non è completo e contiene solo un sottoinsieme dei file che vengono elaborati da KiCad ma è rappresentativo per una comprensione di base del tipo di file usati da ogni applicazione di KiCad.

KiCad può essere considerato abbastanza maturo da essere usato con soddisfazione per lo sviluppo e la manutenzione di schede elettroniche complesse.

KiCad non presenta alcun limite di dimensione scheda e può gestire tranquillamente fino a 32 strati rame, fino a 14 strati tecnici e 4 ausiliari. KiCad può creare tutti i file necessari per la fabbricazione di circuiti stampati, ovvero file Gerber per fotoplotter, file di forature, file per il posizionamento automatizzato dei componenti e molto altro.

Essendo open source (con licenza GPL), KiCad rappresenta lo strumento ideale per i progetti orientati alla creazione di hardware elettronico in salsa opensource.

Introduzione a KiCad 2 / 47

Su Internet, la home di KiCad è:

http://www.kicad-pcb.org/

### 1.1 Scaricamento e installazione di KiCad

KiCad gira su GNU/Linux, Apple OS X e Windows. È possibile trovare le informazioni e le copie di KiCad più aggiornate da:

http://www.kicad-pcb.org/download/

#### **Importante**



I rilasci stabili di KiCad avvengono periodicamente secondo la Politica di rilasci stabili di KiCad. Nuove funzioni vengono aggiunte al ramo di sviluppo con continuità. Se si vuole sfruttare queste nuove caratteristiche e contemporaneamente aiutare a testarne lo sviluppo, scaricare l' ultimo pacchetto nightly build ovvero sperimentale, per la propria piattaforma. I pacchetti sperimentali possono presentare dei bachi tuttavia è l' obiettivo del team di sviluppo di KiCad mantenere il ramo di sviluppo più funzionale possibile anche durante lo sviluppo di nuove caratteristiche (N.d.T: ergo, se i difetti che dovessero presentarsi vengono segnalati velocemente, altrettanto velocemente dovrebbero essere risolti).

## 1.2 Sotto GNU/Linux

Versioni stabili Versioni stabili di KiCad si possono trovare tramite i gestori dei pacchetti delle più diffuse distribuzioni cercando i pacchetti kicad e kicad-doc. Se la propria distribuzione non fornisce ancora l' ultima versione stabile, seguire le istruzioni per l' installazione delle versioni instabili, selezionare e quindi installare l' ultima versione stabile.

Versioni instabili (compilate quotidianamente) Le versioni instabili vengono create partendo dal codice sorgente più recente. Possono presentare dei difetti che potrebbero portare anche a rovinare i file di progetto, generare file gerber non corretti, ecc. ma generalmente sono stabili e sono corredati dalle ultime novità funzionali.

In Ubuntu, il modo più semplice per installare una versione instabile compilata quotidianamente di KiCad, è tramite PPA e Aptitude. Battere i seguenti comandi in un terminale:

```
sudo add-apt-repository ppa:js-reynaud/ppa-kicad
sudo aptitude update && sudo aptitude safe-upgrade
sudo aptitude install kicad kicad-doc-en
```

In Fedora il modo più semplice di installare una versione instabile e compilata quotidianamente, è tramite *copr*. Per installare KiCad tramite copr battere i seguenti comandi:

```
sudo dnf copr enable mangelajo/kicad
sudo dnf install kicad
```

In alternativa, si può scaricare e installare una versione pre-compilata di KiCad, o direttamente scaricare il codice sorgente, compilarlo e installare KiCad.

Introduzione a KiCad 3 / 47

## 1.3 Sotto Apple OS X

Versioni stabili Le versioni stabili di KiCad per OS X si possono trovare su: http://downloads.kicad-pcb.org/osx/-stable/

Versioni instabili (compilate quotidianamente) Le versioni instabili vengono create partendo dal codice sorgente più recente. Possono presentare dei difetti che potrebbero portare anche a rovinare i file di progetto, generare file gerber non corretti, ecc. ma generalmente sono stabili e sono corredati dalle ultime novità funzionali.

Le versioni instabili compilate giornalmente si possono trovare al seguente indirizzo: http://downloads.kicad-pcb.org/-osx/

### 1.4 Sotto Windows

Versioni stabili Le versioni stabili di KiCad si possono trovare su: http://downloads.kicad-pcb.org/windows/stable/

Versioni instabili (compilate quotidianamente) Le versioni instabili vengono create partendo dal codice sorgente più recente. Possono presentare dei difetti che potrebbero portare anche a rovinare i file di progetto, generare file gerber non corretti, ecc. ma generalmente sono stabili e sono corredati dalle ultime novità funzionali.

Per Windows si possono trovare versioni instabili compilate quotidianamente su: http://downloads.kicad-pcb.org/-windows/

## 1.5 Supporto

Se avete idee, commenti o domande o se vi serve solamente un aiuto:

- Visitare il Forum
- Iscrivervi al canale IRC #kicad su Freenode
- Visionare i molti tutorial

Introduzione a KiCad 4 / 47

## Capitolo 2

# Il diagramma di flusso di KiCad

A dispetto delle sue similitudini con altri CAD elettronici, KiCad è caratterizzato da un interessante flusso di lavoro nel quale i componenti dello schema elettrico e le impronte di circuito stampato sono effettivamente due entità separate. Ciò è spesso oggetto di discussioni nei forum su Internet.

## 2.1 Panorama sul diagramma di flusso di KiCad

Il flusso di lavoro di KiCad è composto da due compiti principali: creazione dello schema elettrico e progettazione fisica della scheda elettronica. Per questi due compiti è necessaria la presenza di una libreria di componenti e una di impronte. KiCad è fornito abbondantemente di entrambe le tipologie. Nel caso non fossero sufficienti, KiCad comprende anche gli strumenti necessari per la creazione di nuovi elementi.

Nella figura seguente si può osservare un diagramma di flusso rappresentante le sequenze di lavoro con KiCad. La figura spiega quali passi è necessario seguire e in che ordine. Quando è stato possibile è stata aggiunta un' icona come aiuto ulteriore.

Introduzione a KiCad 5 / 47



Introduzione a KiCad 6 / 47

Per ulteriori informazioni circa la creazione di un componente, consultare la sezione di questo documento intitolata Creare simboli elettrici in KiCad. Mentre per ulteriori informazioni su come creare una nuova impronta, consultare la sezione di questo documento intitolata Creare impronte di componenti.

Sul sito seguente:

#### http://kicad.rohrbacher.net/quicklib.php

Si troverà un esempio di uso di uno strumento che permette di creare velocemente componenti di libreria KiCad. Per ulteriori informazioni su quicklib, fare riferimento alla sezione di questo documento intitolata Crea componenti dello schema con quicklib.

### 2.2 Forward e back annotation

Dopo che uno schema elettrico sia stato completamente disegnato, il passo successivo è il trasferimento di questo in un circuito stampato seguendo il flusso di lavoro di KiCad. Una volta che il processo di stesura è stato completamente, o anche parzialmente completato, potrebbe servire aggiungere componenti o collegamenti, spostare elementi o altre modifiche. Ciò può essere svolto in due modi: tramite la cosidetta back annotation o tramite la forward annotation.

La back annotation è il processo di invio di cambiamenti nel circuito stampato indietro al suo schema elettrico corrispondente. Alcune persone non considerano questa funzionalità particolarmente utile.

La forward annotation è il processo di trasmissione dei cambiamenti nello schema elettrico al progetto di circuito stampato corrispondente. È una caratteristica fondamentale dato che non è desiderabile rifare totalmente il lavoro di progettazione di un circuito stampato ogniqualvolta si debbano effettuare delle modifiche allo schema elettrico. La forward annotation è discussa nella corrispondente sezione Forward Annotation.

Introduzione a KiCad 7 / 47

## Capitolo 3

# Disegno di schemi elettrici

In questa sezione impareremo a disegnare uno schema elettrico usando KiCad.

### 3.1 Usare Eeschema

1. Sotto Windows eseguire kicad.exe. Sotto Linux eseguire invece kicad nel terminale. All' avvio ci si troverà nella finestra principale del gestore dei progetti di KiCad. Da qui si ha accesso ad otto programmi indipendenti: Eeschema, Editor librerie di schemi elettrici, Pcbnew, Editor impronte di circuiti stampati, Gerb View, Bitmap2Component, PCB Calculator e Pl Editor. Fare riferimento allo schema del flusso di lavoro per avere un' idea su come si devono usare questi strumenti.



- 2. Creare un nuovo progetto: File → Nuovo progetto → Nuovo progetto. Intitolare il file del progetto tutorial1. Il file del progetto prenderà automaticamente l' estensione .pro. A questo punto KiCad chiede se si vuole creare una cartella dedicata, fare clic su Sì per conferma. Tutti i file del progetto saranno salvati li dentro.
- 3. Cominciamo col creare uno schema elettrico. Eseguiamo l' editor degli schemi elettrici *Eeschema*, È primo pulsante da sinistra.
- 4. Fare clic sull' icona *Impostazioni pagina* sulla barra strumenti in alto. Impostare la dimensione pagina come A4 e inserire il titolo *Tutorial 1*. Vedrete che a questo punto sarà possibile inserire più informazioni se

Introduzione a KiCad 8 / 47

necessario. Fate clic su OK. Queste informazioni popoleranno il foglio dello schema elettrico nell' angolo in basso a destra. Usare la rotellina del mouse per ingrandire. Salvare l' intero progetto di schema elettrico: File  $\rightarrow$  Salva schema progetto.

5. Ora inseriremo il nostro primo componente. Fare clic sull' icona *Piazza componente* sulla barra destra degli strumenti. La stessa funzionalità la si ottiene premendo la scorciatoia da tastiera *Aggiungi componente* (a).

#### Nota

Si può consultare l'elenco di tutte le scorciatoie da tastiera disponibili premendo il tasto?.

6. Fare clic nel mezzo del proprio schema elettrico. Apparirà la finestra Scegli componente sullo schemo. Inseriremo una resistenza. Cercare / filtrare R per Resistenza. Si può notare l' intestazione device sopra la resistenza. L' intestazione device è il nome della libreria nella quale il componente è inserito, una libreria generica molto utile.



- 7. Fare doppio clic su di essa. Ciò chiuderà la finestra *Scegli componente*. Inserire il componente nel foglio dello schema facendo clic dove lo si vuole posizionare.
- 8. Fare clic sull' icona lente per ingrandire la vista sul componente. In alternativa usare la rotellina del mouse per ingrandire/rimpicciolire la vista. Premere la rotellina (tasto centrale) del mouse per fare pan orizzontalmente e verticalmente.

Introduzione a KiCad 9 / 47

9. Posizionarsi con il puntatore del mouse sopra il componente R e premere il tasto r. Si noti che il componente ruota.

#### Nota

Non serve fare clic sul componente per ruotarlo.

10. Fare clic destro in mezzo al componente e selezionare **Modifica componente** → **Valore**. È possibile ottenere lo stesso risultato posizionandosi sopra il componente e premendo il tasto "v" . In alternativa, il tasto "e" aprirà la finestra di modifica generale. Si noti come la finestra del tasto destro, sotto mostri tutti i possibili tasti scorciatoia per tutte le azioni disponibili.



11. La finestra del valore del componente apparirà. Rimpiazzare il valore corrente R con 1k. Fare clic su OK.

#### Nota

Non si cambi il campo del riferimento (R?), questo verrà fatto automaticamente più avanti. Il valore dentro la resistenza dovrebbe essere ora 1k.



12. Per inserire un' altra resistenza, fare semplicemente clic dove si vuole che questa appaia. La finestra di selezione del componente apparirà nuovamente.

Introduzione a KiCad 10 / 47

13. La resistenza scelta in precedenza è ora presente nella lista della cronologia, elencata come R. Fare clic su OK e inserire il componente.



14. Nel caso si commetta un errore e si voglia cancellare un componente, clic destro sul componente e clic su *Cancella componente*, rimuoverà il componente dallo schema elettrico. In alternativa, si può spostare il puntatore del mouse sopra il componente che si desidera eliminare e premere il tasto *Canc*.

### Nota

È possibile cambiare qualsiasi scorciatoia da tastiera predefinita andando nelle **Preferenze** → **Tasti scorciatoia**→ **Modifica tasti scorciatoia**. Qualsiasi modifica verrà salvata immediatamente.

Introduzione a KiCad 11 / 47

15. È possibile anche duplicare un componente già presente nello schema passandoci sopra con il puntatore del mouse e premendo il tasto c. Fare clic dove si vuole per piazzare il componente duplicato.

16. Clic destro sulla seconda resistenza. Selezionare *Trascina componente*. Riposizionare il componente e fare clic sinistro per rilasciare. La stessa funzionalità può essere ottenuta posizionando il puntatore del mouse sopra il componente e premendo il tasto g. Usare il tasto r per per ruotare il componente. Il tasto x e y invertono il componente.

#### Nota

Clic-destro  $\rightarrow$  Sposta il componente (equivalente al tasto m ) è anch' esso una valida possibilità per spostare oggetti, ma è meglio usarla solo per etichette di componenti e componenti non ancora connessi. Vedremo più avanti il perché.

- 17. Modificare la seconda resistenza passandoci sopra con il puntatore del mouse e premendo il tasto  $\mathbf{v}$ . Rimpiazzare R con 100. Si può annullare qualsiasi operazione di modifica con la combinazione di tasti  $\mathrm{ctrl} + \mathrm{z}$ .
- 18. Cambiare la dimensione della griglia. Avrete probabilmente notato che sullo schema elettrico tutti i componenti si dispongono secondo una griglia a maglie larghe. Si può facilmente modificare la dimensione della griglia facendo clic-destro → Seleziona griglia. In generale, è raccomandabile usare una griglia di 50,0 mils per il foglio dello schema elettrico.
- 19. Ripetere i passi di aggiunta componenti, ma questa volta selezionare la libreria microchip\_pic12mcu invece della device e prelevare da essa il componente PIC12C508A-I/SN invece del componente R. Prima di aggiungere il componente, aggiungere microchip\_pic12mcu ai propri file componenti di libreria con Preferenze → Librerie componenti e premere il pulsante aggiungi.
- 20. Portare il puntatore del mouse sopra il componente microcontrollore. Premere il tasto y. Si noti come il componente viene ribaltato sul suo asse x o y. Premere nuovamente il tasto per riportarlo al suo orientamento originale.
- 21. Ripetere i passi di aggiunta di componenti, questa volta scegliendo la libreria device e prelevando il componente LED da essa.
- 22. Ordinare tutti componenti sullo schema come mostrato in basso.

Introduzione a KiCad 12 / 47



- 23. Ora è necessario creare il componente dello schema *MYCONN3* per il nostro connettore a 3 piedini. Si può saltare alla sezione intitolata creare componenti dello schema in KiCad per apprendere come creare questo componente da zero e poi ritornare a questa sezione per continuare con la scheda.
- 24. Ora è possibile inserire il nuovo componente appena creato. Premere il tasto "a" e prelevare il componente MYCONN3 nella libreria mylib.
- 25. L'identificatore del componente J? apparirà sotto l'etichetta MYCONN3. Se si vuole cambiare la sua posizione, fare clic destro su J? e poi clic su Sposta campo (equivalente al tasto m). Può essere utile ingrandire la vista prima o mentre si fa quest' operazione. Riposizionare J? sotto il componente come mostrato sotto. Le etichette possono essere spostate intorno a volontà.

Introduzione a KiCad 13 / 47



- 26. È giunto il momento di inserire i simboli di alimentazione e di massa. Fare clic sul pulsante *Piazza porta di alimentazione* sulla barra dei comandi a destra. In alternativa, premere il tasto p. Nella finestra di selezione del componente, scorrere in basso e selezionare *VCC* dalla libreria power. Fare clic su OK.
- 27. Fare clic sopra il pin della resistenza da 1k per inserire l' elemento VCC. Fare clic sull' area sopra il VDD del microcontrollore. Nella sezione Cronologia selezione componenti selezionare VCC e inserirlo accanto al pin VDD. Ripetere il processo di aggiunta e inserire l' elemento VCC sopra il pin VCC di MYCONN3.
- 28. Ripetere i passi di aggiunta pin ma questa volta selezionare l'elemento GND. Inserire un elemento GND sotto il pin GND di MYCONN3. Inserire un altro simbolo GND a destra del pin VSS del microcontrollore. Ora lo schema dovrebbe somigliare a questo:

Introduzione a KiCad 14 / 47



29. Nel prossimo passo collegheremo tutti i fili ai nostri componenti. Fare clic sull' immagine con nome *Piazza filo* sulla barra strumenti a destra.

### Nota

Attenti a non inserire *Piazza bus*, che è posizionato appena sotto ed ha il simbolo di un filo più spesso. La sezione connessioni bus in KiCad descrive come usare la selezione bus.

30. Fare clic sul cerchietto alla fine del pin 7 del microcontrollore e poi fare clic sul cerchietto sul pin 2 del LED. È possibile ingrandire anche mentre si instaurano le connessioni.

#### Nota

Se si vuole riposizionare componenti connessi, è importante usare il tasto g (da grab, in inglese afferra) e non il tasto m (per move = sposta). Usando il comando g si manterranno le connessioni. Rivedere il passo 24 in caso ci si fosse dimenticato come spostare un componente.

Introduzione a KiCad 15 / 47



31. Ripetere questo processo e collegare tutti gli altri componenti come mostrato sotto. Per terminare un collegamento basta fare doppio clic. Quando si collegano i simboli VCC e GND, il filo dovrebbe toccare il fondo del simbolo VCC e la parte medio alta del simbolo GND. Osservare l' immagine sottostante.



32. Ora considereremo un modo alternativo di creare delle connessioni usando le etichette. Prelevare lo strumento

Introduzione a KiCad 16 / 47

di etichettatura collegamenti facendo clic sull' icona Piazza nome collegamento — sulla barra strumenti a destra. È possibile usare anche il tasto l.

- 33. Fare clic in mezzo al collegamento connesso al pin 6 del microcontrollore. Chiamare questa etichetta INPUT.
- 34. Seguire la stessa procedura e inserire un' altra etichetta destra della resistenza da 100 ohm. Chiamare anch' essa *INPUT*. Le due etichette, avendo lo stesso nome. creano una connessione invisibile tra il pin 6 del PIC e la resistenza da 100 ohm. Questa è una tecnica utile quando si collegano tra loro fili in progetti complessi dove il disegno di tutte le connessioni li renderebbe caotici. Per piazzare un' etichetta non è necessario avere un filo, si può anche collegare direttamente ad un pin.
- 35. Le etichette possono essere usate anche per etichettare i collegamenti a scopo informativo. Collegare un' etichetta sul pin 7 del PIC. Inserire il nome uCtoLED. Etichettare il collegamento tra la resistenza e il LED, LEDtoR. Etichettare il collegamento tra MYCONN3 e la reistenza come INPUTtoR.
- 36. Non serve etichettare le linee VCC e GND dato che le etichette ricavate implicitamente dall'oggetto alimentazione a cui sono connesse.
- 37. Sotto si può osservare come dovrebbe apparire il risultato finale.



Introduzione a KiCad 17 / 47

38. Occupiamoci ora dei fili sconnessi. Ogni pin o o filo non connesso genererà un avvertimento quando verrà controllato da KiCad. Per evitare questi avvertimenti si può dare istruzioni al programma che i fili non connessi lo sono deliberatamente o impostare manualmente una segnalazione per ogni filo o pin come non connessi.

39. Fare clic sull' icona *Piazza indicatore di non connesso* sulla barra strumenti a destra. Fare click sui pin 2, 3, 4 e 5. Una X apparirà per indicare che la mancanza di connessione è intenzionale.



40. Alcuni componenti hanno pin di alimentazione invisibili. Li si può rendere visibili facendo clic sull' icona Mostra pin nascosti sulla barra strumenti di sinistra. I pin di alimentazione nascosti vengono connessi automaticamente se sono rispettate le convenzioni dei nomi di VCC e GND. In generale, non è consigliato rendere invisibili i pin di alimentazione.

41. Ora è necessario aggiungere un *Indicatore di alimentazione* per segnalare a KiCad che l' alimentazione arriva da qualche parte. Premere il tasto a, selezionare *Elenca tutto*, doppio clic sulla libreria power e ricerca di PWR\_FLAG. Piazzarne due. Connetterli al pin GND e a VCC come mostrato sotto.



#### Nota

Ciò eviterà il classico avvertimento di controllo dello schema: Attenzione: il pin power\_in non è pilotato (Net xx)

Introduzione a KiCad 18 / 47

42. Spesso è buona pratica scrivere commenti qui e là. Per aggiungere commenti sullo schema elettrico usare l'icona  $\Gamma$  sulla barra strumenti di destra.

- 43. Tutti i componenti ora necessitano di avere degli identificatori univoci. In effetti, molti componenti del nostro esempio si chiamano ancora R? o J?. L' assegnazione degli identificatori può essere effettuata automaticamente facendo clic sull' icona del pulsante Annota componenti dello schema
- 44. Nella finestra dell' annotazione, selezionare *Usa lo schema intero* e fare clic sul pulsante *Annota*. Fare clic su OK nel messaggio di conferma e poi su *Chiudi*. Si noti che tutti i ? sono stati rimpiazzati da numeri. Ogni identificatore è ora univoco. Nel nostro esempio, sono stati rinominati *R1*, *R2*, *U1* e *J1*.
- 45. Ora controlleremo in nostro schema in cerca di errori. Fare clic sull' icona Esegui controllo regole elettriche . Fare clic sul pulsante Esegui del controllo ERC. Verrà generato un rapporto (N.d.T: se verranno trovati problemi) di informazione su errori o avvisi come per esempio per fili sconnessi. Dovremmo ottenere 0 errori e 0 avvisi. In caso di errori o avvisi, apparirà sullo schema una piccola freccia verde nella posizione dove è stato rilevato l' errore o l' avviso. Spuntare Scrivi rapporto regole elettriche e premere nuovamente il pulsante Esegui del controllo ERC per ricevere ulteriori informazioni sui problemi rilevati.
- 46. Lo schema ora è finito. Possiamo creare un file di netlist al quale aggiungeremo un' impronta ad ogni componente.

  Fare clic sull' icona Generazione netlist sulla barra strumenti in alto. Fare clic su Netlist e poi su salva. Salvare con il file predefinito.
- 47. Dopo la generazione del file di netlist, fare clic sull' icona Esegui Cvpcb sulla barra strumenti in alto. Se esce una finestra di dialogo di errore per un file mancante, ignorarla e premere OK.
- 48. Cvpcb permette di collegare tutti i componenti nello schema con impronte presenti nelle librerie di KiCad. Il pannello in centro mostra tutti i componenti usati nel nostro schema. Qui selezionare D1. Nel pannello a destra ci sono tutte le impronte disponibili, scorrere fino a LEDs: LED-5MM e fare doppio clic su di esso.



- 49. È possibile che il pannello a destra mostri solo un sottogruppo selezionato delle impronte disponibili. Ciò è perché KiCad sta cercando di suggerirci un sottoinsieme di impronte adatte allo scopo. Fare clic per abilitare o disabilitare questi filtri.
- 50. Per *IC1* selezionare l'impronta *Housings\_DIP:DIP-8\_W7.62mm*. Per *J1* selezionare l'impronta *Connect:Banana\_Jack* Per *R1* e *R2* selezionare l'impronta *Discret:R1*.
- 51. Se si vuole vedere come appaiono le impronte che si sta scegliendo, ci sono due possibilità. Si può fare clic sull' icona Mostra impronta selezionata per un' anteprima dell' impronta corrente. Oppure, fare clic sull' icona Mostra documentazione elenco impronte e si otterrà un documento PDF multipagina con tutte

Introduzione a KiCad 19 / 47

le impronte disponibili. Si può stamparlo e controllare i propri componenti per assicurarsi che le dimensioni corrispondano.

52. Ecco fatto. Ora è possibile aggiornare il file della netlist con tutte le impronte associate. Fare click su **File**  $\rightarrow$  **Salva con nome**. Il nome predefinito tutorial1.net va bene, fare clic su salva. Altrimenti si può usare l' icona

. Il file netlist è ora stato aggiornato con tutte le impronte. Si noti che se mancano delle impronte di qualche dispositivo, sarà necessario farsele da sè. Quest' operazione sarà spiegata in una sezione successiva di questo documento.

- 53. Si può chiudere *Cvpcb* e tornare all' editor di schemi elettrici *Eeschema*. Salvare il progetto facendo clic su **File**→ **Salva schema progetto**. Chiudere l' editor dello schema elettrico.
- 54. Passare al gestore del progetto KiCad.
- 55. Il file netlist descrive tutti i componenti e le loro connessioni relative ai loro piedini. Il file netlist è in effetti solo un file di testo che è facilmente ispezionabile, modificabile anche con uno script.

#### Nota

I file delle librerie (\*.lib) sono anch' essi file di testo e sono facilmente modificabili a mano o con script.

56. Per creare una distinta materiali (BOM), andare nell' editor degli schemi elettrici *Eeschema* e fare clic sull'

icona Genera distinta materiali sulla barra strumenti in alto. Come impostazione predefinita non ci sono plug-in attivi. Questi si possono aggiungere, facendo clic sul pulsante **Aggiungi plugin**. Selezionare il file \*.xsl che si vuole usare, in questo caso selezioneremo, bom2csv.xsl.

#### Nota

Il file \*.xsl è posizionato nella cartella *plugins* dell' installazione di KiCad, è posizionata in: /usr/lib/kicad/plugins/. O ottenere il file attraverso:

 $\label{lem:wget} wget \ https://raw.githubusercontent.com/KiCad/kicad-source-mirror/master/eeschema/ \\ \hookleftarrow plugins/bom2csv.xsl$ 

#### KiCad genera automaticamente il comando, per esempio:

```
xsltproc -o "%0" "/home/<user>/kicad/eeschema/plugins/bom2csv.xsl" "%I"
```

Si potrebbe voler aggiungere l'estensione, in modo da cambiare questa linea di comando in:

```
xsltproc -o "%0.csv" "/home/<user>/kicad/eeschema/plugins/bom2csv.xsl" "%I"
```

Premere il tasto di Aiuto per ulteriori informazioni.

57. Ora premere *Genera*. Il file (con lo stesso nome del progetto) è posizionato nella cartella del progetto. Aprire il file \*.csv con LibreOffice Calc o Excel. Apparirà una finestra di importazione, premere OK.

Ora siamo pronti per spostarci nella parte di progettazione del circuito stampato, presentata nella prossima sezione. Comunque, prima di spostarci, diamo una rapida occhiata a come avviene la connessione tra pin di componenti usando le linee bus.

Introduzione a KiCad 20 / 47

## 3.2 Connessioni Bus in KiCad

Talvolta è necessario connettere diversi pin sequenziali di un componente A con altri pin sequenziali di un componente B. I questo caso ci sono due opzioni: il metodo a etichette che abbiamo già osservato o l' uso di una connessione bus. Vediamo come si fa.

- 1. Supponiamo di avere tre connettori a 4 pin che si vuole collegare pin a pin. Usare l' opzione etichetta (premendo il tasto l) per etichettare pin 4 della parte P4. Dare nome a quest' etichetta a1. Ora premere il tasto Ins per ottenere lo stesso elemento automaticamente aggiunto sul pin sotto il pin 4 (pin 3). Si noti come l' etichetta viene automaticamente rinominata a2.
- 2. Premere il tasto Ins più volte. Il tasto Ins corrisponte all' azione Ripeti l' ultimo elemento ed è un comando molto utile che può semplificarvi non poco la vita.
- 3. Ripetere la stessa azione di etichettatura sugli altri due connettori CONN\_2 e CONN\_3 e abbiamo finito. Se si prosegue e si crea un circuito stampato si noterà che questi tre connettori sono collegati assieme. Figura 2 mostra il risultato di quanto descritto. Per questioni estetiche è anche possibile aggiungere una serie di *Piazza elemento da filo a bus* usando l' icona e linee bus usando l' icona , come mostrato in figura 3. Si faccia presente, comunque, che non ci saranno effetti sul circuito stampato.
- 4. Si potrebbe anche dire che i fili corti collegati ai pin in figura 2 non sono strettamente necessari. In effetti, le etichette si potrebbero applicare direttamente ai pin.
- 5. Estendiamo un poco il discorso e supponiamo di avere un quarto connettore di nome CONN\_4 che, per qualche ragione, deve avere delle etichette un po' differenti (b1, b2, b3, b4). Ora noi vogliamo collegare Bus a con Bus b nuovamente pin a pin. Vogliamo farlo senza usare l' etichettatura dei pin (che è comunque possibile) e invece usare l' etichettatura sulla linea bus, con un' etichetta per bus.
- 6. Colleghiamo ed etichettiamo CONN\_4 usando il metodo di etichettatura spiegato in precedenza. Diamo nome ai pin b1, b2, b3 e b4. Colleghiamo i pin a una serie di *Elementi da filo a bus* usando l' icona e ad una linea bus usando l' icona . Vedere figura 4.
- 7. Inserire un' etichetta (premere il tasto l) sul bus di CONN 4 e darle nome b[1..4].
- 8. Inserire un' etichetta (premere il tasto l) sul bus precedente e darle nome a/1..4].
- 9. Quello che possiamo fare ora è di collegare il bus a[1..4] con il bus b[1..4] usando una linea bus tramite il pulsante
- 10. Collegando i due bus assieme, pin a1 verrà automaticamente collegato a pin b1, a2 verrò collegato a b2 e così via. Figura 4 mostra come appare il risultato finale.

#### Nota

Il comando *Ripeti l' ultimo elemento* accessibile tramite il tasto Ins può essere usato con successo per ripetere inserimenti multipli. For esempio, i fili corti connessi a tutti i pin in figura 2, figura 3 e Figure 4 sono stati piazzati con questo comando.

Introduzione a KiCad 21 / 47

11. Il comando  $Ripeti\ l'$  ultimo elemento accessibile tramite il tasto Ins può essere usato per piazzare molte serie di elementi filo a bus usando l' icona .



Introduzione a KiCad 22 / 47

## Capitolo 4

# Progettazione circuiti stampati

Ora è giunto il momento di usare il file netlist che abbiamo generato per stendere il progetto del circuito stampato. Ciò lo si ottiene tramite lo strumento Pcbnew.

## 4.1 Usare Pcbnew

- 1. Dal gestore dei progetti KiCad, fare clic sull' icona *Pcbnew*. Si aprirà la finestra *Pcbnew*. Se si riceve un messaggio di errore che dice che il file \*.kicad\_pcb non esiste e chiede se lo si vuole creare, fare clic su Si.
- 2. Cominciare inserendo alcune informazioni dello schema. Fare clic sull' icona *Impostazioni pagina* sulla barra strumenti in alto. Impostare la *dimensione pagina* a A4 e il titolo a Tutorial1.
- 3. È una buona idea cominciare con l' impostare l' isolamento e la larghezza minima pista alle specifiche richieste dal proprio fabbricante di circuiti stampati. In generale è possibile impostare l' isolamento a 0.25 e la larghezza minima pista a 0.25. Fare clic sul menu Regole di progettazione → Regole di progettazione. Se non lo mostra già, fare clic sulla scheda Editor della netclass. Cambiare il campo Isolamento in cima alla finestra a 0.25 e il campo Larghezza pista a 0.25 come mostrato sotto. Le misure qua sono in mm.



4. Fare clic sulla scheda Regole di progettazione globali e impostare Larghezza pista minima a 0.25'. Fare clic sul pulsante OK per confermare i propri cambiamenti e chiudere la finestra dell' editor delle regole di progettazione.

Introduzione a KiCad 23 / 47

5. Ora importeremo il file della netlist. Fare clic sull' icona Apri la netlist sulla barra strumenti in alto. Fare clic sul pulsante Esplora, selezionare tutorial1.net nel riquadro di selezione file, e fare clic su Leggi netlist corrente. Poi premere il tasto Chiudi.

- 6. Tutti i componenti dovrebbero ora essere visibili nell' angolo in alto a sinistra appena sopra la pagina. Scorrere se non si vedono.
- 7. Selezionare tutti i componenti con il mouse e spostarli nel centro della scheda. Se necessario è possibile ingrandire o rimpicciolire la vista mentre si spostano i componenti.
- 8. Tutti i componenti sono collegati tramite un gruppo di fili sottili chiamati *ratsnest*. Assicurarsi che il pulsante *Nascondi ratsnest scheda* sia premuto. In questo modo si può osservare la ratsnest (N.d.T: una specie di ragnatela) di collegamenti tra tutti i componenti.

#### Nota

Il suggerimento funziona al contrario: la scritta mostra cosa si ottiene premendo il pulsante.

9. Si può spostare ogni componente passandoci sopra con il puntatore del mouse e premendo il tasto g. Fare clic dove si vuole per piazzare il componente. Spostare tutti i componenti attorno in modo da minimizzare gli incroci dei fili.

### Nota

Se, invece di catturare i componenti (con il tasto g) quando li si sposta attorno, li si muove usando il tasto m noterete in seguito che si perdono le connessioni (succede lo stesso nell' editor degli schemi elettrici). Ergo, usare sempre il tasto g.

Introduzione a KiCad 24 / 47



- 10. Se la ratsnest sparisce o lo schermo diventa disordinato, clic destro e clic su *Aggiorna vista*. Si noti come un pin della resistenza da 100 ohm è connesso al pin 6 del componente PIC. Questo è il risultato del metodo di etichettatura usato per collegare i pin. Le etichette sono spesso preferite ai fili perché rendono lo schema elettrico meno disordinato.
- 11. Ora si definirà il bordo del circuito stampato. Selezionare *Edge.Cuts* dal menu a tendina nella barra strumenti in alto. Fare clic sull' icona *Aggiungi linea o poligono grafici* sulla arra degli strumenti a destra. Tracciare tutt' attorno il bordo della scheda, fare clic su ogni angolo, e ricordarsi di lasciare un piccolo spazio tra il bordo del verde e il bordo del circuito stampato.
- 12. Prossimo passo, collegare tutti i fili eccetto GND. In effetti, si collegheranno tutte le connessioni GND in un colpo usando un piano di massa piazzato sullo strato rame inferiore (chiamato B.Cu) sulla scheda.
- 13. Ora è necessario scegliere su che strato rame si vuole lavorare. Selezionare F.Cu (PgUp) nel menu a tendina della barra strumenti in alto. Questo è lo strato rame superiore.

Introduzione a KiCad 25 / 47



- 14. Se si decide invece, per esempio, di creare un circuito stampato a 4 strati, andare su **Regole di progettazione** → **Impostazione strati** e cambiare *Strati rame* a 4. Nella tabella *Strati* si possono etichettare gli strati e decidere per cosa verranno usati. Si noti che ci sono delle preimpostazioni molto utili che possono essere selezionate attraverso il menu *Raggruppamento predefinito strati*.
- 15. Clic sull' icona Aggiungi piste e via sulla barra strumenti a destra. Clic sul pin 1 di J1 e stendere una pista fino alla piazzola R2. Doppio-clic per impostare il punto dove finirà la pista. La larghezza di questa pista sarà il valore predefinito di 0.250 mm. Si può cambiare la larghezza della pista dal menu a tendina presente nella barra strumenti in alto. Si faccia presente che per valore predefinito una sola larghezza pista disponibile.

Introduzione a KiCad 26 / 47



16. Se si volesse aggiungere più larghesse piste g o andare sulla scheda **Regole di progettazione**  $\rightarrow$  **Regole di progettazione** globali e in fondo a destra di questa finestra aggiungere ogni altra larghezza si desideri avere accessibile. Poi si può scegliere la laghezza pista dal menu a tendina durante la stesura della scheda. Vedere l' esempio sottostante (in pollici).

Introduzione a KiCad 27 / 47

17. Alternativamente, si può aggiungere una netclass nella quale specificare un insieme di opzioni. Andare su **Regole** di progettazione → **Regole** di progettazione → **Editor** delle netclass e aggiungere una nuova netclass di nome power. Cambiare lo spessore pista da 8 mil (indicati come 0.0080) a 24 mil (indicati come 0.0240). Poi, aggiungere tutto quanto, esclusa la massa, alla netclass 'power' (selezionare default a sinistra e power a destra e usare le frecce).

- 18. Se si vuole cambiare la dimensione griglia, Clic destro → Selezione griglia. Assicurarsi di selezionare la dimensione griglia appropriata prima o dopo la disposizione dei componenti e la loro connessione tramite piste.
- 19. Ripetere questo processo fino a quando tutti i fili, eccetto pin 3 di J1, siano stati connessi. La scheda ora dovrebbe apparire come nell' esempio sottostante.



- 20. Ora si stenda una pista sull' altro lato rame della scheda. Selezionare B.Cu nel menu a discesa nella barra strumenti in cima. Fare clic sull' icona Aggiungi piste e via

  U1. Ciò non sarebbe necessario dato che possiamo fare lo stesso con il piano di massa. Si noti come è cambiato il colore della pista.
- 21. **Andare da pin A a pin B cambiando strato**. È possibile cambiare il piano rame mentre si sta stendendo una pista piazzando un via. Mentre si sta stendendo una pista sul lato rame superiore, clic destro e selezionare

Introduzione a KiCad 28 / 47

 $Piazza\ via$  o semplicemente premere il tasto v. Quest' operazione ci porterà sullo strato inferiore dove si potrà completare la pista.



- 22. Quando si vuole ispezionare una connessione particolare fare clic sull' icona Evidenzia collegamento sulla barra strumenti a destra. Fare clic sul pin 3 di J1. La pista e tutte le piazzole connesse dovrebbero evidenziarsi.
- 23. Ora verrà creato un piano di massa che sarà connesso a tutti i pin GND. Fare clic sull' icona Aggiungi zone sulla barra strumenti a destra. Verrà tracciato un rettangolo attorno alla scheda, perciò fare clic dove si vuole posizionare uno degli spigoli. Nella finestra di dialogo che apparirà, impostare Piazzola in zona a Piazzola termica e Orientamento bordi zone a O, V e fare clic su OK.
- 24. Stendere il bordo attorno alla scheda facendo clic su ogni angolo in rotazione. Doppio clic per finire il rettangolo. Clic destro dentro l'area che si ha appena tracciato. Clic su Riempi o aggiorna tutte le zone. La scheda dovrebbe riempirsi di verde e assomigliare a questo:

Introduzione a KiCad 29 / 47



- 25. Eseguire il controllo regole di progettazione facendo clic sull'icona Esegui controllo regole di progettazione presente sulla barra strumenti in alto. Clic su Avvia controllo regole. Non ci dovrebbero essere errori. Clic su Elenca disconnessi. Non ci dovrebbero piste non connesse. Clic su OK per chiudere la finestra di dialogo.
- 26. Salvare il file facendo clic su File  $\rightarrow$  Salva. Per ammirare la propria scheda in 3D, fare clic su Visualizza  $\rightarrow$  Visualizzatore 3D.

Introduzione a KiCad 30 / 47



- 27. Trascinare il puntatore del mouse per ruotare il circuito stampato.
- 28. La scheda ora è completa. Per spedirla ad una ditta che produce circuiti stampatiTo sarà necessario generare una serie di file Gerber.

## 4.2 Generare file Gerber

Una volta che il circuito stampato è stato completato, si possono generare i file Gerber per ogni strato e spedirli al prorio fabbricante di circuiti stampati di fiducia, con i quali questo creerà lo stampato.

1. Da KiCad, aprire lo strumento Pcbnew e caricare il file della scheda facendo clic sull' icona  $\square$ 



- 2. Clic su File  $\rightarrow$  Traccia. Seleziona Gerber come Formato di tracciatura e selezionare la cartella nella quale mettere tutti i file Gerber. Procedere facendo clic sul pulsante Traccia.
- 3. Questi sono tutti strati che bisogna selezionare per creare un tipico circuito stampato a 2 facce:

Introduzione a KiCad 31 / 47

| Strato             | Nome strato | Vecchio nome | Estensione  | Usa estensioni  |
|--------------------|-------------|--------------|-------------|-----------------|
|                    | KiCad       | strato KiCad | predefinita | nomefile Protel |
|                    |             |              | Gerber      | abilitata       |
| Strato rame        | B.Cu        | Copper       | .GBR        | .GBL            |
| Strato componenti  | F.Cu        | Component    | .GBR        | .GTL            |
| Strato serigrafia  | F.SilkS     | SilkS_Cmp    | .GBR        | .GTO            |
| sopra              |             |              |             |                 |
| Solder Resist rame | B.Mask      | Mask_Cop     | .GBR        | .GBS            |
| Solder Resist      | F.Mask      | Mask_Cmp     | .GBR        | .GTS            |
| componenti         |             |              |             |                 |
| Bordi              | Edge.Cuts   | Edges_Pcb    | .GBR        | .GM1            |

## 4.3 Usare GerbView

- 1. Per visualizzare tutti i file Gerber andare al gestore progetti di KiCad e fare clic sull' icona Gerb View. Sul menu a tendina selezionare Layer 1. Clic su **File**  $\rightarrow$  **Carica file Gerber** o fare clic sull' icona . Caricare tutti i file Gerber generati uno alla volta. Si noti come vengono visualizzati uno sopra l' altro.
- 2. Usare il menu sulla destra per selezionare/deselezionare lo strato da mostrare. Ispezionare con cura ogni strato prima di spedirlo per la produzione.
- 3. Per generare il file delle forature, da Pcbnew andare nuovamente al comando **File**  $\rightarrow$  **Traccia**. Le impostazioni predefinite dovrebbero andare bene.

## 4.4 Sbroglio automatico con FreeRouter

Sbrogliare una scheda a mano è veloce e divertente, comunque, per una scheda con molti componenti si può voler usare uno sbrogliatore automatico. Solo è meglio sbrogliare le piste critiche a mano e poi impostare lo sbrogliatore per fargli fare il lavoro noioso. Esso si attiva solo per le piste non connesse. Lo sbrogliatore che useremo qui è FreeRouter da freerouting.net.

#### Nota

Freerouter è un' applicazione open source java, ed è necessario compilarsela da sè per usarla con KiCad. Il codice sorgente di Freerouter si può trovare su questo sito: https://github.com/nikropht/FreeRouting

1. Da *Pcbnew* fare clic su **File** → **Esporta** → **Specctra DSN** oppure fare clic su **Strumenti** → **FreeRoute** → **Esporta un file Specctra Design (\*.dsn)** e salvare il file localmente. Eseguire FreeRouter e fare clic sul pulsante *Open Your Own Design*, cercare il file con estensione *dsn* e caricarlo.

Introduzione a KiCad 32 / 47

#### Nota

La finestra di dialogo **Strumenti**  $\rightarrow$  **FreeRoute** possiede un bel tasto di aiuto che apre un visualizzatore di file con dentro un piccolo documento (per ora non tradotto) dal nome **Freerouter Guidelines**. Seguire questa guida per usare FreeRoute con efficacia.

- 2. FreeRouter ha alcune caratteristiche che KiCad attualmente non possiede, né nello sbroglio manuale che in quello automatico. FreeRouter opera in due passi principali: primo, sbroglio della scheda e poi sua ottimizzazione. Una completa ottimizzazione può durare molto tempo, ma è possibile interromperla in ogni istante.
- 3. È possibile far partire lo sbroglio automatico facendo clic sul pulsante Autorouter sulla barra in cima. La barra in fondo fornisce informazioni sui processi di sbroglio in esecuzione. Se il contatore dei Pass passa il valore di 30, la scheda probabilmente non può essere sbrogliata automaticamente con questo sbrogliatore. Spargere di più i componenti o ruotarli meglio e riprovare. L' obbietivo delle rotazioni e posizionamenti dei componenti è di minimizzare il numero di incroci nella ratsnest.
- 4. Facendo un clic con il tasto sinistro sul mouse blocca lo sbroglio automatico e fa partire automaticamente il processo di ottimizzazione. Un ulteriore clic sinistro bloccherà il processo di ottimizzazione. A meno che non sia strettamente necessario, è meglio lasciare che FreeRouter finisca il suo lavoro.
- 5. Fare clic sul menu  $\mathbf{File} \to \mathbf{Export}$   $\mathbf{Specctra}$   $\mathbf{Session}$   $\mathbf{File}$  e salvare il file della scheda con estensione .ses. Probabilmente non servirà salvare il file delle regole di FreeRouter.
- 6. Tornare a Pcbnew. Ora è possibile importare la scheda sbrogliata facendo clic sull' icona **Strumenti**  $\rightarrow$  **FreeRoute** e poi sull' icona Reimporta il file Spectra Session (.ses) e selezionando il nostro file .ses.

Se c'è qualche pista sbrogliata che non ci convince, si può cancellarla e ri-sbrogliarla nuovamente, usando il tasto canc e lo strumento di sbroglio, che corrisponde all' icona Aggiungi pista sulla barra comandi di destra.

Introduzione a KiCad 33 / 47

### Capitolo 5

### Forward annotation in KiCad

Una volta completato il nostro schema elettrico, l' assegnazione delle impronte, la disposizione della scheda e generati i file Gerber, siamo pronti a spedire il tutto ad un produttore di circuiti stampati in modo che la nostra scheda possa diventare realtà.

Spesso, questo flusso di lavoro lineare, risulta essere non proprio così unidirezionale. Per esempio, quando si deve modificare/estendere una scheda per la quale si è, o altri hanno già, completato questo work-flow, è possibile che si renda necessario spostare componenti, rimpiazzarli con altri, cambiare impronte e altro ancora. Durante questo processo di modifica, ciò che in genere non si vuole fare è ri-sbrogliare da capo tutta la scheda. Ecco invece come si può procedere:

- 1. Supponiamo che si voglia rimpiazzare un ipotetico connettore CON1 con CON2.
- 2. Si è già completato lo schema elettrico e sbrogliato tutto il circuito stampato.
- 3. Da KiCad, avviare *Eeschema*, fare le modifiche cancellando CON1 e aggiungendo CON2. Salvare lo schema tramite l' icona e fare clic sull' icona della *Generazione netlist* sulla barra degli strumenti in cima.
- 4. Fare clic su Netlist e poi su salva. Salvare con il nome file predefinito dato che bisogna riscrivere il vecchio.
- 5. Ora assegnare un' impronta a CON2. Fare clic sull' icona Esegui Cvpcb sulla barra strumenti in cima. Assegnare l' impronta al nuovo dispositivo CON2. Il resto dei componenti ha ancora le impronte precedenti assegnate. Chiudere Cvpcb.
- 6. Tornando nell' editor degli schemi elettrici, salvare il progetto facendo clic su  $File \rightarrow Salva$  progetto schema. Chiudere l' editor.
- 7. Dal gestore dei progetti KiCad, fare clic sull' icona Pcbnew. Si aprirà la finestra di Pcbnew.
- 8. La vecchia scheda, già sbrogliata, dovrebbe aprirsi automaticamente. Importiamo in nuovo file netlist. Fare clic sull' icona Leggi netlist sulla barra strumenti in cima.

Introduzione a KiCad 34 / 47

9. Fare click sul pulsante *Esplora file netlist*, seleziona il file netlist nella finestra di dialogo di selezione file, e fare clic su *Leggi netlist corrente*. Poi fare clic sul pulsante *Chiudi*.

- 10. A questo punto si dovrebbe essere in grado di vedere una disposizione con tutti i componenti precedenti già sbrogliati. Sull' angolo in alto a sinistra si dovrebbe osservare tutti i componenti non sbrogliati, nel nostro caso solo CON2. Selezionare CON2 con il mouse. Spostare il componente nel mezzo della scheda.
- 11. Piazzare CON2 e sbrogliarlo. Una volta fatto, salvare e procedere con la generazione dei file Gerber come di consueto.

Il processo qui descritto può essere facilmente ripetuto quante volte si vuole. Oltre al metodo di Forward Annotation descritto poc' anzi, c'è un' altro metodo conosciuto come Backward Annotation. Questo metodo permette di fare le modifiche al circuito stampato già sbrogliato con Pcbnew e successivamente aggiornare tali modifiche nello schema elettrico e nel file di netlist. Il metodo di Backward Annotation, comunque, non viene considerato molto utile e perciò non lo si è descritto in questa sede.

Introduzione a KiCad 35 / 47

### Capitolo 6

### Creare simboli elettrici in KiCad

Alle volte un componente che si vuole piazzare sul proprio schema elettrico non è presente nelle librerie di KiCad. Ciò succede spesso e non c'è bisogno di preoccuparsi. In questa sezione vedremo come si può creare velocemente un nuovo componente dello schema con KiCad. In ogni caso, si ricordi che si possono sempre trovare componenti KiCad su Internet. Per esempio partendo da qui:

#### http://per.launay.free.fr/kicad/kicad\_php/composant.php

In KiCad, un componente è un testo che comincia con *DEF* e finisce con *ENDDEF*. Uno o più componenti vengono solitamente inseriti in un file di libreria con estensione .lib. Se si vuole aggiungere componenti ad un file libreria si può sempre usare i comandi di copia e incolla.

### 6.1 Usare I' editor dei componenti di libreria

- 1. Per creare nuovi componenti si può usare l'editor delle librerie di componenti (parte di Eeschema). Nella cartella del nostro progetto tutorial1 creare una cartella di nome library. Dentro metteremo i nuovi file di libreria myLib.lib appena avremo creato il nostro nuovo componente.
- 2. Ora possiamo cominciare a creare il nostro nuovo componente. Da KiCad, eseguire Eeschema, clic sull' icona Editor librerie e poi clic sull' icona Nuovo componente. Apparirà la finestra delle proprietà del componente. Dare come nome al nuovo componente MYCONN3, impostare il Designatore di riferimento predefinito a J, e il Numero di parti per contenitore a 1. Clic su OK. Se appare un avvertimento fare clic su Si. A questo punto il componente è composto solo dalle sue etichette. Aggiungiamo alcuni pin. Clic sull' icona Aggiungi pin sulla barra strumenti a destra. Per piazzare il pin, clic sinistro nel centro del foglio dell' editor delle parti appena sotto l' etichetta MYCONN3.
- 3. Nella finestra delle proprietà del pin che appare, impostare il nome del pin a *VCC*, impostare il numero del pin a *1*, e il *Funzionalità elettrica* a *Uscita alimentazione* poi fare clic su OK.

Introduzione a KiCad 36 / 47



- 4. Piazzare il pin facendo clic sulla posizione dove lo si desidera collocare, appena sotto l' etichetta MYCONN3.
- 5. Ripetere i passi di piazzamento di pin, questa volta impostando il *Nome pin* a *Ingresso*, *Numero pin* a 2, e *Funzionalità elettrica* a *Ingresso alimentazione*.
- 6. Ripetere ancora i passi di piazzamento di pin, questa volta impostando il *Nome pin* a *GND*, *Numero pin* a *3*, e *Funzionalità elettrica* a *Uscita alimentazione*. Sistemare i pin uno sopra l' altro. L' etichetta componente *MYCONN3* dovrebbe risultare al centro della pagina (dove le linee blu si incrociano).
- 7. Poi, disegnare il contorno del componente. Clic sull' icona Aggiungi rettangolo. Vogliamo disegnare un rettangolo vicino ai pin, come mostrato sotto. Per far ciò, fare clic dove si desidera posizionare l' angolo alto a sinistra del rettangolo. Clic nuovamente dove si vuole posizionare l' angolo basso a destra del rettangolo.

Introduzione a KiCad 37 / 47



- 8. Salvare il componente nella libreria myLib.lib. Clic sull' icona Nuova libreria, entrare nella cartella tutorial1/library/ e salvare il nuovo file di libreria con nome myLib.lib.
- 9. Andare su **Preferenze** → **Librerie componenti** e aggiungere sia tutorial1/library/ in Percorsi di ricerca definiti dall' utente che myLib.lib in File librerie componenti.
- 10. Fare clic sull' icona Seleziona libreria corrente . Nella finestra di selezione libreria fare clic su myLib e poi su OK. Si noti come l' intestazione della finestra indica la libreria attualmente in uso, che ora dovrebbe essere myLib.
- 11. Clic sull' icona Aggiorna componente corrente nella libreria corrente nella barra in cima. Salvare tutti i cambiamenti facendo clic sull' icona Salva la libreria attualmente caricata su disco nella barra strumenti in cima. Clic su Si in ogni messaggio di conferma che appare. Il nuovo componente dello schema elettrico è ora finito e disponibile nella libreria indicata nella barra del titolo della finestra.
- 12. Ora si può chiudere la finestra dell' editor dei componenti di libreria. Si tornerà alla finestra dell' editor degli schemi elettrici. Il nostro nuovo componente ora sarà disponibile nella libreria myLib.
- 13. Si può rendere qualsiasi file di libreria file.lib disponibile aggiungendolo al percorso delle librerie. Da EESchema, andare sulle **Preferenze** → **Libreria** e aggiungere entrambi i percorsi ad essa in Percorsi di ricerca definiti dall' utente e file.lib in File librerie componenti.

Introduzione a KiCad 38 / 47

#### 6.2 Esportazione, importazione e modifica dei componenti di libreria

Invece che creare un componente di libreria da zero è spesso più facile partire da uno già fatto e modificarlo. In questa sezione vedremo come esportare un componente dalla libreria standard di KiCad device nella nostra libreria myOwnLib.lib e come modificarlo.

- 1. Da KiCad, eseguire *Eeschema*, fare clic sull' icona *Editor delle librerie*, fare clic sull' icona *Seleziona libreria corrente* e scegliere la libreria *device*. Clic sull' icona *Carica componente dalla liberia corrente* e importare *RELAY\_2RT*.
- 2. Clic sull' icona Esporta componente , entrare nella cartella library/ e salvare il nuovo file di libreria con nome myOwnLib.lib.
- 3. È possibile rendere questo componente e l' intera libreria myOwnLib.lib disponibili aggiungendole al percorso di libreria. Da EESchema, andare su **Preferenze** → **Librerie componenti** e aggiungere sia library/ in Percorsi di ricerca definiti dall' utente che myOwnLib.lib nel File librerie componenti.
- 4. Clic sull' icona Seleziona libreria corrente . Nella finestra di selezione libreria clic su myOwnLib e poi su OK. Si noti come l' intestazione della finestra che indica la libreria attualmente in uso, ora dovrebbe mostrare myOwnLib.
- 5. Clic sull' icona Carica componente da modificare dalla libreria corrente e importa RELAY\_2RT.
- 6. Ora si può modificare il componente a piacimento. Passare con il puntatore del mouse sopra l' etichetta  $RELAY\_2RT$ , premere il tasto e e rinominarlo in  $MY\_RELAY\_2RT$ .
- 7. Fare clic sull' icona Aggiorna componente corrente nella libreria corrente nella barra strumenti in alto.

  Salvare tutti i cambiamenti facendo clic sull' icona Salva la libreria corrente su disco nella barra strumenti in alto.

### 6.3 Creare componenti dello schema con quicklib

Questa sezione presenta un modo alternativo per creare componenti dello schema elettrico per MYCONN3 (vedere MYCONN3 sopra) usando lo strumento Internet quicklib.

- 1. Andare alla pagina web del progetto quicklib: http://kicad.rohrbacher.net/quicklib.php
- 2. Compilare la pagina con le seguenti informazioni: Component name: MYCONN3 Reference Prefix: J Pin Layout Style: SIL Pin Count, N: 3

Introduzione a KiCad 39 / 47

3. Fare click sull' icona Assign Pins. Compilare la pagina con le seguenti informazioni: Pin 1: VCC Pin 2: input Pin 3: GND

- 4. Fare clic sull' icona *Preview it* (N.d.T: anteprima) e, se siete soddisfatti, clic su *Build Library Component* (N.d.T: crea componente libreria). Scaricare il file e rinominarlo demo1/library/myLib.lib.. Ecco fatto!
- 5. Osservatelo usando KiCad. Dal gestore di progetti KiCad, eseguire *EESchema*, fare clic sull' icona "Editor librerie", clic sull' icona "Importa componente", scorrere su *tutorial1/library/* e selezionare *myQuickLib.lib*.



6. È possibile rendere questo componente e l' intera libreria myOwnLib.lib disponibili aggiungendole al percorso di libreria. Da EESchema, andare su **Preferenze** → **Librerie componenti** e aggiungere sia library/ in Percorsi di ricerca definiti dall' utente che myOwnLib.lib nel File librerie componenti.

Come si può immaginare, questo metodo per la creazione di componenti di libreria può essere molto efficace quando si vogliono creare componenti con elevato numero di piedini.

### 6.4 Fare un componente con un grande numero di pin

Nella sezione intitolata Crea componenti dello schema con quicklib abbiamo visto come creare un componente dello schema elettrico usando lo strumento web quicklib. È probabile che ci si troverà comunque nella necessità di creare un componente dello schema elettrico con un grande numero di piedini (alcune centinaia). In KiCad per fortuna, ciò non è un grosso problema.

- 1. Supponiamo si voglia creare un componente dello schema elettrico per un dispositivo con 50 pin. È pratica comune disegnarlo usando più simboli con meno piedini, per esempo due disegni di 25 pin ognuno. Questa rappresentazione del componente semplifica la connessione ai piedini.
- 2. Il modo migliore per creare il nostro componente è di usare *quicklib* per generare due componenti di 25 pin ciascuno separatamente, ri-numerare i pin usando uno script Python ed infine fondere i due usando una semplice procedura di copia / incolla per unirli in un singolo componente tra un DEF e un ENDDEF.

Introduzione a KiCad 40 / 47

3. Troviamo sotto un esempio di semplice script Python che può essere usato assieme con i file *in.txt* e *out.txt* per ri-numerare la riga: X PIN1 1 -750 600 300 R 50 50 1 1 I in X PIN26 26 -750 600 300 R 50 50 1 1 I; ciò viene effettuato per tutte le righe del file *in.txt*.

#### Semplice script

```
#!/usr/bin/env python
''' semplice script per elaborare la numerazione dei pin di componenti KiCad'''
import sys, re
try:
   fin=open(sys.argv[1],'r')
   fout=open(sys.argv[2],'w')
except:
   print "Uso errato di questo script, provare:", sys.argv[0], "in.txt out.txt"
    sys.exit()
for ln in fin.readlines():
    obj=re.search("(X PIN)(\d*)(\s)(\d*)(\s.*)",ln)
if obj:
   num = int(obj.group(2))+25
   ln=obj.group(1) + str(num) + obj.group(3) + str(num) + obj.group(5) +'\n'
   fout.write(ln)
fin.close(); fout.close()
# per ulteriori informazioni sulla sintassi delle espressioni regolari e della generazione
   di componenti KiCad:
# http://gskinner.com/RegExr/
# http://kicad.rohrbacher.net/quicklib.php
```

1. Durante la fusione dei due componenti in uno, è necessario usare l' Editor Libreria da Eeschema per spostare il primo componente in modo che il secondo non finisca sopra di esso. Di seguito il file .lib finale e la sua rappresentazione in *Eeschema*.

#### Contenuti di un file \*.lib

```
#EESchema-LIBRARY Version 2.3
#encoding utf-8
# COMP

DEF COMP U 0 40 Y Y 1 F N

F0 "U" -1800 -100 50 H V C CNN

F1 "COMP" -1800 100 50 H V C CNN

DRAW

S -2250 -800 -1350 800 0 0 0 N

S -450 -800 450 800 0 0 0 N

X PIN1 1 -2550 600 300 R 50 50 1 1 I

...

X PIN49 49 750 -500 300 L 50 50 1 1 I
```

Introduzione a KiCad 41 / 47

ENDDRAW
ENDDEF
#End Library

|                                                                 |                                                                                                                                                  | COMP<br>U?                                                                                           | 72                                                                                                                                                                    |                                                                      |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1<br>3<br>5<br>7<br>9<br>11<br>13<br>15<br>17<br>19<br>21<br>23 | 1/2 PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9 PIN10 PIN11 PIN12 PIN13 PIN14 PIN15 PIN16 PIN17 PIN18 PIN19 PIN20 PIN21 PIN22 PIN23 PIN24 PIN25 | 2 26<br>4 28<br>6 30<br>8 32<br>10 34<br>12 36<br>14 38<br>16 40<br>18 42<br>20 44<br>22 46<br>24 48 | 2/2 PIN26 PIN27 PIN28 PIN29 PIN30 PIN31 PIN32 PIN33 PIN34 PIN35 PIN36 PIN37 PIN38 PIN39 PIN40 PIN41 PIN42 PIN43 PIN42 PIN43 PIN44 PIN45 PIN46 PIN47 PIN48 PIN49 PIN50 | 27<br>29<br>31<br>33<br>35<br>37<br>39<br>41<br>43<br>45<br>47<br>49 |

1. Lo script Python qui presentato è uno strumento molto potente per la gestione sia dei numeri che delle etichette di pin. Si faccia comunque presente che tutta la sua potenza deriva dalla sintassi arcana quanto incredibilmete utile delle espressioni regolari: <a href="http://gskinner.com/RegExr/">http://gskinner.com/RegExr/</a>.

Introduzione a KiCad 42 / 47

### Capitolo 7

## Creare impronte di componenti

Differentemente da altri strumenti software EDA, che possiedono un tipo di libreria che contiene sia i simboli delo schema elettrico che le varie corrispondenti impronte compatibili, i file KiCad .lib contengono i simboli dello schema elettrico e i file .mod contengono le impronte, o moduli. Cvpcb serve quindi a mappare le impronte ai simboli.

Come per i file .lib files, i file di libreria .kicad\_mod sono file di testo che possono contenere da una a qualsiasi numero di parti.

KiCad comprende una vasta libreria di impronte, ma a volte potreste scoprire che proprio l' impronta di cui avete bisogno non è presente nelle librerie di KiCad. Ecco i passaggi per la creazione di una nuova impronta di circuito stampato KiCad:

### 7.1 Usare I' editor delle impronte

- 1. Dal gestore di progetti KiCad lanciare l' esecuzione dello strumento Pcb new. Fare clic sull' icona Apri editor impronte sulla barra strumenti in cima. Si aprirà L' editor delle impronte.
- 2. Stiamo per salvare la nuova impronta MYCONN3 nella nuova libreria impronte myfootprint. Creare una nuova cartella myfootprint.pretty nella cartella progetto tutorial1/. Fare clic su Preferenze → Manager librerie di impronte e premere il pulsante Accoda libreria. Nella tabella, inserire myfootprint come denominazione, inserire \${KIPRJMOD}/myfootprint.pretty come percorso libreria e inserire KiCad come tipo plugin. Premere OK per
  - chiudere la finestra delle tabelle librerie PCB. Fare clic sull' icona Seleziona libreria attiva sulla barra degli strumenti in cima. Selezionare la libreria myfootprint.
- 3. Fare clic sull' icona Nuova impronta sulla barra strumenti in cima. Battere MYCONN3 come nome impronta. Nel mezzo dello schermo apparirà l' etichetta MYCONN3. Sotto l' etichetta si può osservare l' etichetta REF\*. Clic destro su MYCONN3 e spostarlo sopra REF\*. Clic destro su REF\*\_\_\_\_, selezionare Modifica testo e rinominarlo a SMD. Impostare il valore Mostra a Invisibile.

Introduzione a KiCad 43 / 47

4. Selezionare l' icona Aggiungi piazzola sulla barra strumenti a destra. Fare clic sullo spazio di lavoro per posizionare la piazzola. Clic destro sulla nuova piazzola e clic su Modifica piazzola. Altrimenti si può usare il tasto scorciatoia «e».



- 5. Impostare il numero piazzola a 1, Forma piazzola a Rettangolo, Tipo piazzola a SMD, Dimensione X forma a 0.4, e Dimensione Y forma a 0.8. Clic su OK. Clic nuovamente su Aggiungi piazzole per aggiungere ancora due piazzole.
- 6. Se si vuole cambiare la dimensione griglia, Clic destro → Seleziona griglia. Assicurarsi di selezionare la dimensione griglia appropriata prima di aggiungere i componenti.
- 7. Spostare l' etichetta MYCONN3 e l' etichetta SMD di lato in modo che il risultato somigli all' immagine mostrata sopra.

Introduzione a KiCad 44 / 47

8. Quando si inseriscono piazzole è spesso necessario misurare le distanze relative. Posizionare il puntatore dove si desidera impostare il punto di coordinate relative (0,0) e premere la barra spazio. Muovendo attorno il puntatore, si osserverà l' indicazione della posizione relativa del puntatore in basso nella finestra. Premendo ancora la barra spazio si imposterà una nuova origine per le coordinate.

9. Ora aggiungiamo un contorno impronta. Fare clic sul pulsante Aggiungi linea o poligono grafici presente nella barra comandi a destra. Disegnare un contorno del connettore attorno al componente.

10. Clic sull'icona Salva impronta nella libreria attiva nella barra strumenti in cima, usando il nome predefinito MYCONN3.

Introduzione a KiCad 45 / 47

### Capitolo 8

# Note sulla portabilità dei file di progetto di KiCad

Che file sono necessari se si vuole spedire a qualcuno l' intero progetto KiCad in modo che lo possa usare?

Quando si condivide un progetto KiCad con qualcuno, è importante che il file dello schema elettrico .sch, lo schema del circuito stampato .kicad\_pcb, il file del progetto .pro e il file della netlist .net, siano spediti assieme al file dei simboli elettrici .lib e a quello delle impronte di circuito stampato .mod. Solo così c'è la totale libertà di modifica dello schema e della scheda.

Con gli schemi elettrici di KiCad, servono i file .lib che contengono i simboli elettrici. Tali file di libreria devono essere caricati nelle preferenze di Eeschema. Invece con le schede (i file .kicad\_pcb), le impronte possono essere memorizzate dentro il file .kicad\_pcb. Si può spedire a qualcuno un file .kicad\_pcb e nient' altro, e saranno comunque in grado di visualizzarlo e di modificarne la disposizione. Comunque, quando vorranno caricare componenti da una netlist, servirà la presenza delle librerie di moduli (i file .kicad\_mod) che andranno caricate nelle preferenze di Pcbnew come per gli schemi elettrici. Inoltre, è necessario caricare i file .kicad\_mod nelle preferenze di Pcbnew per fare in modo che tali impronte vengano mostrate in Cvpcb.

Se qualcuno vi spedisce un file  $.kicad\_pcb$  con impronte che si vorrebbe usare in un' altra scheda, si può aprire l' editor delle impronte, caricare un' impronta dalla scheda corrente, e salvarla o esportarla in un' altra libreria di impronte. Si possono anche esportare tutte le impronte da un file  $.kicad\_pcb$  in una volta tramite il comando **Pcbnew**  $\rightarrow$  **File**  $\rightarrow$  **Archivia**  $\rightarrow$  **Impronte**  $\rightarrow$  **Crea archivio impronte**, che creerà un nuovo file  $.kicad\_mod$  con tutte le impronte della scheda.

Conclusione, se il circuito stampato è l' unica cosa che si vuole distribuire, allora il file della scheda .kicad\_pcb è sufficiente. Invece, se si desidera consentire la piena possibilità di usare e modificare lo schema, i suoi componenti e il circuito stampato, è fortemente raccomandato di creare un archivio zip e spedire la seguente cartella di progetto:

```
tutorial1/
|-- tutorial1.pro
|-- tutorial1.sch
|-- tutorial1.kicad_pcb
|-- tutorial1.net
|-- library/
```

Introduzione a KiCad  $$46\ /\ 47$$ 

```
| |-- myLib.lib
| |-- myQwnLib.lib
| \-- myQuickLib.lib
|
|-- myfootprint.pretty/
| \-- MYCONN3.kicad_mod
|
\-- gerber/
|-- ...
\-- ...
```

Introduzione a KiCad 47 / 47

### Capitolo 9

# Uno sguardo sulla documentazione di KiCad

Questa che state leggendo, è stata pensata come una guida veloce sulle parti più importanti di KiCad. Per avere istruzioni più dettagliate, consultare i file dei manuali accessibili dall' interno di ogni modulo di KiCad, facendo clic su  $Aiuto \rightarrow Manuale$ .

KiCad si presenta con un discreto numero di manuali multilingua per tutte le sue componenti software.

La versione inglese di tutti i manuali di KiCad viene distribuita con KiCad.

Oltre ai suoi manuali, KiCad viene distribuito con questa guida, che è stata tradotta in molte lingue (N.d.T: in italiano per esempio :-). I vari formati di questa guida sono distribuiti gratuitamente con tutte le versioni recenti di KiCad. Questa guida assieme, agli altri manuali, dovrebbe essere disponibile già pacchettizzata assieme a KiCad per la propria piattaforma.

Per esempio, su Linux le posizioni tipiche sono nelle seguenti directory, a seconda della propria distribuzione:

```
/usr/share/doc/kicad/help/it/
/usr/local/share/doc/kicad/help/it
Su Windows è in:
<directory di installazione>/share/doc/kicad/help/it
Su OS X:
/Library/Application Support/kicad/help/it
```

#### 9.1 La documentazione di KiCad sul Web

L' ultima documentazione di KiCad è disponibile in più lingue sul Web.

http://kicad-pcb.org/help/documentation/