

Dokumentace k projektu pro předměty IZP a IUS

Iterační výpočty $_{\mathrm{projekt}\ \check{\mathrm{c}}.\ 2}^{\mathrm{total}}$

23. listopadu 2010

Autor: Radek Ševčík, xsevci44@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

1	Úvod	1
2	Analýza problému a princip jeho řešení	1
	2.1 Zadání problému	1
	2.2 Nekonečné řady	1
	2.3 Statistické funkce	1
3	Návrh řešení problému	1
	3.1 Rozsah hodnot	1
	3.2 Vztahy použité pro výpočet	1
	3.3 Přesnost výpočtu	2
	3.4 Úprava vstupních hodnot	2
	3.5 Specifikace testů	
4	Popis řešení	3
	4.1 Ovládání programu	3
	4.2 Vlastní implementace	
5	Závěr	3
\mathbf{A}	Metriky kódu	3

1 Úvod

Tento dokument popisuje návrh a implementaci aplikace pro výpočet matematických funkcí (vážený aritmetický průměr, vážený kvadratický průměr, obecný logaritmus a hyperbolický tangens).

2 Analýza problému a princip jeho řešení

Protože výpočet matematických funkcí založených na nekonečných řadách může být časově náročné, musíme provést některá opatření, aby výpočet skončil v rozumném čase.

2.1 Zadání problému

Cílem tohoto projektu je vytvoření programu v jazyce C, který vypočte matematické funkce obecný logaritmus a hyperbolický tangens se zadanou přesností na počet platných cifer a statistické funkce váženého aritmetického a kvadratického průměru s výpisem průběžných výsledků.

Přesnost, která je zadána jako počet platných cifer musíme přepočítat na hodnotu epsilon. Epsilon bude sloužit k ukončení algoritmu tak, že absolutní hodnota rozdílu výsledků dvou po sobě jdoucích kroků bude menší nebo rovna epsilon.

Požadovanou funkci, přesnost a bázi logaritmu vybereme přepínačem. Program bude načítat vstupní hodnoty ze standartního vstupu a výsledek bude vypisovat na standartní výstup.

2.2 Nekonečné řady

Interval konvergence je důležitým faktorem pro výpočet řady, vstupní hodnota mimo tento interval může způsobit zacyklení algoritmu. I pro řadu konvergentní na celém oboru $\mathbb R$ může vstupní hodnota zapříčinit zdlouhavý výpočet. Z těchto důvodů je nutné upravit vstupní hodnoty do oboru nejlepší konvergence. Dále musíme ošetřit vstupní hodnoty, které jsou mimo definiční obor funkce.

2.3 Statistické funkce

Pro průběžné výsledky je vhodné ukládání do datové struktury s konstantní prostorovou složitostí. Výběrem vhodné struktury můžeme docílit lineární časové složitosti.

3 Návrh řešení problému

3.1 Rozsah hodnot

Podle zadání bude použit datový typ double. Tento typ je omezen rozsahem i přesností definovaném ve standardu IEEE 754. Pro urychlení výpočtů je možné použít matematický koprocesor.

3.2 Vztahy použité pro výpočet

•
$$\log_a x = \frac{\ln x}{\ln a}$$
 $(a \in \mathbb{R}^+ \setminus \{1\})$
 $\ln x = 2 \sum_{n=0}^{\infty} (\frac{x-1}{x+1})^{2n+1} \cdot \frac{1}{2n+1}$ $(x > 0)$

•
$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1} \quad (x \in \mathbb{R})$$

 $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad (|x| < +\infty)$

•
$$\bar{x}' = \sum_{i=1}^n \frac{x_i h_i}{h_i} \quad (h_i \ge 0)$$

•
$$\bar{x}_K' = \sqrt{\sum_{i=1}^n \frac{x_i^2 h_i}{h_i}} \quad (h_i \ge 0)$$

3.3 Přesnost výpočtu

Přesnost zadanou jako počet platných cifer (relativní) převedeme na absolutní přesnost epsilon tak, že rozdíl 2 po sobě jdoucích výpočtů musí být menší nebo rovno $10^{-sigdig}$. Datový typ double je omezen svou přesností na počet cifer definovanou v konstantě DBL_DIG.

3.4 Úprava vstupních hodnot

Použité řady konvergují na celém oboru \mathbb{R} , avšak upravením hodnot do intervalu nejrychlejší konvergence můžeme samotný výpočet urychlit. Pro použité řady funkcí e^x a $\ln x$ platí, že rychleji konvergují hodnoty blížící se k 0. Proto vstupní hodnoty u exponenciální funkce upravíme podle vztahu $e^{c+d} = e^c \cdot e^d$, kde e^c je celá část a vypočítá se opakovaným násobením e. U logaritmu využijeme věty o logaritmech $\ln 123,456 = \ln 1,23456 + 2 \ln 10$.

3.5 Specifikace testů

nan

Z použitých vztahů pro výpočet je nutné ošetřit vstupní hodnoty mimo definiční obor.

```
Test 1: Chybná syntaxe \longrightarrow Detekce chyby.
./proj2 --log 2 4 <<< "inf nan 0 1"
./proj2 --tanh <<< "inf nan 0 1"
Test 2:
        Funkce \tanh x.
./proj2 --tanh 4 <<< "nan inf -1 0 1"
nan
inf
-7.6159415596e-01
0.000000000e+00
7.6159415596e-01
Test 3: Funkce \log_a x.
./proj2 --logax 4 10 <<< "17 -1 0 1 inf nan"
1.2304238357e+00
nan
-inf
0.000000000e+00
inf
```

```
Test 4: Funkce \bar{x}'_K.

./proj2 --wqm <<< "7 5 68 25 9" 7 62.141 nan
```

4 Popis řešení

4.1 Ovládání programu

Program je konzolová aplikace a je obsluhován parametry. Vstupní hodnoty čte ze stdin a výpis provádí na stdout.

```
--logax <sigdig> <a> ...logaritmus o základu a s přesností na sigdig platných cifer
--tanh <sigdig> ...hyperbolický tangens s přesností na sigdig platných cifer
--wam ...vážený aritmetický průměr
--wqm ...vážený kvadratický průměr
-h ...pro výpis nápovědy
```

4.2 Vlastní implementace

Parametry příkazové řádky zpracovává funkce parseParams, která je spouštěna jako první ve funkci main. Na základě parametru se vybere funkce, která načítá vstupní data, volá funkci pro výpočet a vypisuje formátovaný výsledek. To jsou funkce computeLog, computeTanh a computeWeightedMean.

Funkcím computeLog a computeTanh se parametrem předá přesnost epsilon vypočítaná funkcí sigdigToEpsilon. Funkce váženého průměru computeWeightedMean podle parametru rozhodne zda-li bude počítat aritmetický nebo kvadratický průměr.

Funkce provádějící samotný výpočet se nazývají izp_tanh, izp_log, izp_wam a izp_wqm. Poslední 2 zmíněné funkce pracují se strukturou WeightedValue, kde se do 1. parametru uloží suma 1. a 2. parametru pro ukládání mezivýpočtů.

5 Závěr

Program byl úspěšně otestován v prostředí operačních systémů Gnu/Linux a MS Windows. Navržené řešení je přenositelné na všechny platformy.

Reference

[1] Hans-Jochen BARTSCH, Matematické vzorce, 2009, ISBN 80-200-1448-9.

A Metriky kódu

Počet souborů: 5 souborů

Počet řádků zdrojového textu: 751 řádků

Velikost statických dat: 7205 bajtů

Velikost spustitelného souboru: 11840 bajtů (systém Linux, 32 bitová architektura, při

překladu bez ladicích informací)