LaPIS Diagnostic Test Workbook - Mathematics

Name : Theashwin R P

Class: 7

Section : A

School : AKV Public School

Login ID : AKV118

Theashwin R P's Performance Report

Score: 26/40 Percentage: 65.0%

Theashwin R P's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved	
LCM Finding LCM	
Types of angles Identification of types of angles	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

 $\underline{Question:\ 2}$

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 = _____

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is $__$.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Data handling

Topics to be Improved		
Chance of probability Basis of probability, Sample space in probability		
Arithmetic mean, mode and median	Mean, Median and Mode	

Hi, here in this video you will learn Basics of probability	
Question: 7	
Identify the sure events and impossible events	
(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wise direction.	
(iv) Ball is square in shape.	
Answer:	
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event.	
Clock rotates in clock wise direction is event. Ball is square in shape is event.	
<u>Question: 8</u>	
Probability of sure events is (greater / smaller) than probability of impo	ossible events.
Answer:	
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.	
Question: 9	

$\underline{Answer:}$

probability of getting a pen from his box.

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the

Does Raju have	pen in his box, r of getting pen from h	(Yes/ No		0/1)		
Hi, here in th	nis video you will le	earn M o	ean, Mo	edian, N	/Iode	
Question: 10						
Find the mode o	f the following data: 5	, 15, 23, 5	5, 32, 44,	72, 55, 6, 3	3, 5, 65, 45, 6	67, 24, 19 and 98.
Answer:						
Arranging the da	ber that occursata in ascending order: occurs most number of					
Question: 11						
	ntains median of the gi					
ascending or dese Arrange the give	(first/cencending order. on data in ascending or the given data is	der :				
Question: 12						
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =	, Median = ar	nd Mode	=			
$\underline{Answer:}$						
$Mean = \frac{1}{m}$	of all observation umber of observation					
Therefore, mean	l observation = = a in ascending order : _			of observa	tion =	

Here, median = $\underline{\hspace{1cm}}$, mode = $\underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 13
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 14
Write the possible outcomes while spinning the given wheel.
0 10 250 100 5 25 1 500
Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
<i>Question:</i> 15
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

A bag contains,	and balls.	
If one of the ball is blue in colou	r, then other ball can be or	
If one of the ball is green in colo	ur, then other ball can be or	
If one of the ball is red in colour	then other ball can be or	
Therefore, if two balls are taken	out then possible outcomes are blue +,	
+	+	

Geometry

Topics to be Improved		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Related angles	Complementary angles	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Criteria of congruence
Question: 16
Circle the groups that contain congruent images.
Answer:
Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
Question: 17
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .
Answer:
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question:	18	_	_	_			_	

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Related An	gles
--	------

Question: 19

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 20

Shade the complementary angles.

......

85°, 95°		45°, 45°		6°, 84°		73°, 107°		36°, 64°		90°, 90°
----------	--	----------	--	---------	--	-----------	--	----------	--	----------

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ} + 95^{\circ} =$$
 _____ and this is _____ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ _____ and this is _____ angles. $6^{\circ} + 84^{\circ} =$ _____ and this is _____ angles. $73^{\circ} + 107^{\circ} =$ _____ and this is _____ angles. $36^{\circ} + 64^{\circ} =$ _____ and this is _____ angles. $90^{\circ} + 90^{\circ} =$ _____ and this is _____ angles.

Question: 21	
--------------	--

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of $15^{\circ} = \underline{\qquad}$,	Complement of $90^{\circ} = \underline{\hspace{1cm}}$
Supplement of $15^{\circ} = \underline{\hspace{1cm}}$,	Supplement of $90^{\circ} = $

 $\operatorname{Hi},$ here in this video you will learn $\operatorname{{\bf Pythagoras}}$ $\operatorname{{\bf property}}$

Question: 22	
In a right angled triangle, square of thelegs.	= sum of the squares of the
Answer:	

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

<u>Question: 23</u>

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Number system

	Topics to be Improved
Law of Exponents	Law of Exponents
Positive and negative rational numbers	Identification of positive rational numbers

Hi,	here	in	this	${\rm video}$	you	will	learn	Law	of	exponent	$\bar{\mathbf{s}}$
-----	------	----	------	---------------	-----	------	------------------------	-----	----	----------	--------------------

Question: 25	

 $(x)^0$ is equal to ______.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____
Power = _____

.....

Any number or variable with power zero is equal to _____. Therefore, $(x)^0$ equal to _____.

Question: 26

i.
$$a^m \times a^n =$$

ii.
$$a^m \div a^n =$$

Answer:

Multiplication of two numbers with same base with different power, their exponents are $___$ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

Question: 27

Circle the result of the expression $(a^0\times b^1)+(m^1\times n^0)+(x^0\times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to_____(One/ Zero).

Any number with power one is equal to _____ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 28

Segregate positive and negative rational number.

.....

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is ______ (positive/negative) rational number.

In the given circle, positive rational numbers are $___$ and negative rational numbers are

 $\frac{Question: 29}{-3}$

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number.

Division of $\frac{-3}{-4} = \square$ and this _____ rational number.

(Positive / Negative / Neither positive nor nega	tive rational nu	ımber)	
Question: 30			
The product of a positive rational number and a negative rational number. (Positive/ Negative/ neither positive nor		r is	
Answer:			
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = rational number	×	=	_ and this is

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video you	will learn Basics of percentage	- 0.1
Question: 31		
2% can be written as		
Answer:		
Percentages are numerators of f	fractions with denominator $2\% = \frac{\square}{\square}$	
Question: 32		
Arun attended the LaPIS test f Arun?	for 100 marks and got 75% marks. What is the	mark scored by
Answer:		
Arun attended LaPIS test for $_$	marks. He got 1	narks.
75 % can be written in fraction	n form ———	
Then the mark scored by Arun	$ = \text{Total mark} \times 75\% = \times $	=
Question: 33		
	in which 10 of them are rotten. Find the perce	entage of rotten
$\underline{Answer:}$		
There are apples in a b Number of rotten apples are		

Fraction form of rotten apples	s in a basket =
Convert it into a percent=	x% =

Algebra

Topics to be Improved				
Monomials, binomials, trinomials and polynomials Types of algebraic expression mials				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi,	here	in	this	video	you	will	learn	Types	of	expression
-----	------	----	------	-------	-----	------	-------	-------	----	------------

Question: 34

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

......

.....

The terms in the expression are _______, ______, and ______.

Therefore, there are _____ terms in the expression.

Question: 35

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 36	
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)	
Answer:	
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression	sion.
Hi, here in this video you will learn Addition on expression	
Question: 37	
Shade the like terms.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)
Answer:	
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are	
Question: 38	
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$	
Answer:	
(Like / Unlike) terms can be added or subtracted.	
$_{7r^2+ r} \Box_{-2} \Box_{-2} = (7 + 2)_{r^2} =$	
Question: 39 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.	
(i) Total chocolates Ram and Sam have :	
(ii) How many icecreams Sam have more than Ram :	

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:		
Ram's chocolate + Sam's chocolates =	+	=

(ii)	How many	icecreams Sam h	ave more tha	an Ram:		
		icecrean	n - i	cecream =	_	=

Hi, here in this video you will learn Subtraction on expression

Question:	11	า
Wilesitoni	<i></i>	,

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) term
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 41

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

- (i) Number of boys in school A = _____,
 - Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $__$.

- (ii) Number of boys in school B = _____,
 - Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 42

Solve the following:

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.