

STD44N4LF6

N-channel 40 V, 8.9 mΩ 44 A DPAK STripFET™ VI DeepGATE™ Power MOSFET

Features

Order code	V _{DSS}	R _{DS(on)} max	I _D
STD44N4LF6	40 V	12.5 m Ω	44 A

- 100% avalanche tested
- Logic level drive

Applications

- Switching applications
- Automotive

Description

This device is an N-channel Power MOSFET developed using the 6th generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STD44N4LF6	44N4LF6	DPAK	Tape and reel

Contents STD44N4LF6

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 8
4	Package mechanical data	. 9
5	Packaging mechanical data	12
6	Revision history	1⊿

STD44N4LF6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	40	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	44	Α
I _D	Drain current (continuous) at T _C = 100 °C	31	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	176	Α
P _{TOT}	Total dissipation at T _C = 25 °C	50	W
	Derating factor	0.33	W/°C
T _{stg}	Storage temperature	- 55 to 175	°C
Tj	Operating junction temperature	- 55 10 175	

^{1.} Pulse is rated according SOA

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	3	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max (1)	50	°C/W

^{1.} When mounted on 1 inch², 2 oz Cu.

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AV}	Not-repetitive avalanche current	20	Α
E _{AS} (1)	Single pulse avalanche energy	150	mJ

^{1.} Starting Tj = 25 °C, $I_D = I_{AV}$, $V_{DD} = 24 V$

Electrical characteristics STD44N4LF6

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. Static

Symbol	Symbol Parameter Test conditions Mi		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage V _{GS} = 0	I _D = 250 μA	40	-		V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 20 V V _{DS} = 20 V,Tc = 125 °C		-	1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V		-	±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	-	2.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 5 \text{ V}, I_D = 20 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		11.3 8.9	18 12.5	mΩ

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f=1 MHz, V _{GS} = 0 V	-	1190 200 110	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 20 V, I_D = 40 A V_{GS} = 10 V (see Figure 14)	-	22 5 4.3	-	nC nC nC
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	3.1	-	Ω

Table 7. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$V_{DD} = 20 \text{ V}, I_D = 20 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	8.5 45	-	ns ns
t _{d(off)}	Turn-off delay time Fall time	(see Figure 15)	-	30 8	-	ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		44 176	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0	-		1.1	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 40 A, di/dt = 100 A/µs, V_{DD} = 32 V, T_{J} = 150 °C (see Figure 17)	-	25 25 2		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STD44N4LF6

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 6. Normalized B_{VDSS} vs temperature Figure 7. Static drain-source on resistance

AM08908v1 AM08909v1 C (pF) Vgs (V) V_{DD}=20V I_D=40A 12 10 Ciss 1000 8 6 Coss 100 Crss 4 2 10 15 20 25 Q_g(nC) 10 20 30 $V_{DS}(V)$

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

Figure 12. Source-drain diode forward characteristics

Test circuits STD44N4LF6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and products status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. DPAK (TO-252) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		1.50
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

V2

THERMAL PAD

E1

D1

R

CAUGE PLANE

Figure 19. DPAK (TO-252) drawing

L2

SEATING PLANE

577

0068772_H

a. All dimension are in millimeters

5 Packaging mechanical data

Table 10. DPAK (TO-252) tape and reel mechanical data

Tubic II	Таре	z) tape and reer		Reel	
D:	m	mm		mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Figure 21. Tape for DPAK (TO-252)

Figure 22. Reel for DPAK (TO-252)

Revision history STD44N4LF6

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
23-Feb-2010	1	First release.
03-Feb-2011	2	Document status promoted from preliminary data to datasheet.
16-Sep-2011	3	Updated <i>Table 4: Package mechanical data</i> . Minor text changes in cover page.
25-Oct-2011	4	Updated Table 7: Switching on/off (inductive load) and Table 8: Source drain diode. Updated Table 4: Package mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

