Geometric Shapes: Constructive Solid Geometry

Module 3 Lecture 7

CZ2003

Solid Objects

- Voyels (volume elements)
- Parametric representation
- · Explicit (variant of implicit) representation

Previously we Learnt

•Implicit

- f(x,y) = 0 2D curve
- f(x,y,z)=0 3D surface
- Explicit
 - y=f(x) x=f(y) 2D curves (seldom used)
 - z=f(x,y) y=f(x,z) x=f(y,z) 3D surfaces (seldom used)

Parametric

2D/3D Curves: 1 parameter Surfaces: 2 parameters 3D Solids: 3 parameters

CZ2003

Using Explicit Functions for Defining Solid Objects

Let's change in any implicit function "=" to "≤" or "≥"

$$f(x, y) = 0$$
 $g = f(x,y) \le 0$ or $g = f(x,y) \ge 0$
 $f(x,y,z) = 0$ $g = f(x,y,z) \le 0$ or $g = f(x,y,z) \ge 0$

It becomes an explicit function in +1 dimension (scientific name **Frep**), i.e. $g = f(x,y,z) \ge 0$ evaluates some coordinate or value in the dimension other than x, y, z.

In this course, we will ONLY use ≥ 0 :

$$g = f(x, y) \ge 0$$
 and $g = f(x, y, z) \ge 0$

to be consistent with the rendering algorithm and other mathematics used in the remaining part of this module.

CZ2003

3

Half-plane **Implicit Representation**

Implicit

$$Ax + By + C \ge 0$$

$$\frac{x}{a} + \frac{y}{b} - 1 \ge 0$$

$$\frac{x}{a} + \frac{y}{b} - 1 \ge 0$$

Implicit Representation

Half-plane

$$-(Ax + By + C) \ge 0$$

$$-\frac{x}{a} - \frac{y}{b} + 1 \ge 0$$

Plane-bounded Half-space

Above the plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0 \Longrightarrow$$

5

7

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 \ge 0$$

Plane-bounded Half-space

Below the plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0 \Rightarrow$$

$$1 - \frac{x}{a} - \frac{y}{b} - \frac{z}{c} \ge 0$$

Plane-bounded Half-space

x ≥ 0

The displayed size of the half-space surface is defined by the XYZ domain

9

Solid Sphere and Ellipsoid

CZ2003

12

Constructive Solid Geometry (CSG)

- CSG is a family of schemes introduced for representing rigid solids as Boolean constructions and combinations of solid components.
- The three basic operators *union* U, *intersection* ∩, and *difference* \ are applied to primitive objects.
- In CSG, objects are represented as binary trees, called CSG trees. Each leaf is a primitive object and each nonterminal node is either a Boolean operator or a motion (translation, rotation) which operates on the subnodes.

Constructive Solid Geometry

003 11

Implicit Representation of CSG

$$G: f(x,y,z) \ge 0$$

$$G_3 = G_1 \cup G_2$$
: $f_3 = f_1 \vee f_2 = \max(f_1, f_2)$ Union

$$G_3 = G_1 \cap G_2$$
: $f_3 = f_1 \wedge f_2 = \min(f_1, f_2)$ Intersection

$$G_3 = -G_1$$
: $f_3 = -f_1$ Outer part or Complement

$$G_3 = G_1 \setminus G_2$$
: $f_3 = f_1 \setminus f_2 = \min(f_1, -f_2)$ Subtraction

Example:

$$G_5 = G_1 \cup ((G_2 \cap G_3) \setminus G_4)$$
:

$$f_5 = f_1 \lor ((f_2 \land f_3) \setminus f_4) = \max(f_1, \min(\min(f_2, f_3), -f_4)) \ge 0$$

CZ2003

13

Implicit Representation of Boolean Operations

CZ2003

16

Implicit Representation of Boolean Operations

Implicit Representation of Boolean Operations

03 15

Implicit Representation of Boolean Operations

CZ2003

17

Implicit Representation of Boolean Operations

CZ2003

18

20

CSG with Implicit Functions

The displayed size of the half-space surface is defined by the XYZ domain

CSG with Implicit Functions

• $min(x+1,1-x,y+1,1-y,z+1,1-z) \ge 0$

C72002

CSG with Implicit Functions

CZ2003

21

23

Summary. Constructive Solid Geometry using Function Reprentations (FReps)

$$G: f(x,y,z) \ge 0$$

$$G_3 = G_1 \cup G_2$$
: $f_3 = f_1 \vee f_2 = \max(f_1, f_2)$ Union

$$G_3 = G_1 \cap G_2$$
: $f_3 = f_1 \wedge f_2 = \min(f_1, f_2)$ Intersection

$$G_3 = -G_1$$
: $f_3 = -f_1$ Outer part or Complement

$$G_3 = G_1 \setminus G_2$$
: $f_3 = f_1 \setminus f_2 = \min(f_1, -f_2)$ Subtraction

Example:

$$G_5 = G_1 \cup ((G_2 \cap G_3) \setminus G_4)$$
:

$$f_5 = f_1 \lor ((f_2 \land f_3) \setminus f_4) = \max(f_1, \min(\min(f_2, f_3), -f_4)) \ge 0$$

CSG with Implicit Functions

min/max(min(x+1,1-x,y+1,1-y,z+1,1-z), min(x+1,1-x,y+1,1-z), min(x+1,1-z), min(x+1,1-z), min(x+1,1-z), min(x+1,1-z), min(x+1,1-z

CZ2003

22

Summary

- Solid objects can be defined by
 - Changing implicit equations of surfaces into inequalities ≤0 or ≥0
 - Parametric equations with 3 parameters (3D solids)
- Sweeping can be easily formulated by using parametric functions for the cases of translational and rotational sweeping
- Boolean or Set-theoretic operations can be defined for implicit functions and implicit inequalities when min/max functions are used;
 We assume only inequalities ≥0 for the functions-arguments and functions-results of the operations.

CZ200

Analytic Shape Representations. Summary

```
•Implicit
• f(x,y) = 0 2D curve
• f(x,y,z) = 0 3D surface
•Explicit
• y = f(x) x = f(y) 2D curves
• z = f(x,y) y = f(x,z) x = f(y,z) 3D surfaces
• g = f(x,y,z) \ge 0 solid objects
U max(f_1, f_2) \ge 0 \cap \min(f_1, f_2) \ge 0 \cap \min(f_1, f_2) \ge 0
•Parametric
• 2D/3D Curves: 1 parameter
• Surfaces: 2 parameters
• 3D Solids: 3 parameters
```