

Description

The VSM150N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_{D} = 150A$ $R_{DS(ON)} < 4.5 m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

100% UIS TESTED!

100% ∆Vds TESTED!

Package Marking and Ordering Information

Device Ma	rking	Device	Device Package	Reel Size	Tape width	Quantity
VSM150N0	06-TC	VSM150N06	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	150	А
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	105	А
Pulsed Drain Current	I _{DM}	600	А
Maximum Power Dissipation	P _D	220	W
Derating factor		1.47	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	1400	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	0.68	°C/W	
---	-------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	68	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	•		•			•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =75A	-	3.4	4.5	mΩ
Forward Transconductance	g Fs	V _{DS} =50V,I _D =75A	180	-	-	S
Dynamic Characteristics (Note4)	•		•			•
Input Capacitance	C _{lss}	.,	-	4644	-	PF
Output Capacitance	C _{oss}	$V_{DS}=30V, V_{GS}=0V,$	-	460	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	426	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	26	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_D =2 A , R_L =15 Ω	-	24	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =2.5 Ω	-	91	-	nS
Turn-Off Fall Time	t _f		-	39	-	nS
Total Gate Charge	Qg	V 20VI 20A	-	113		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=30A,$ $V_{GS}=10V$	-	20		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	45		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	150	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	42	60	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66	80	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance