Configuración de NAT

Alejandro Rodríguez Rojas

Índice

3
3
7
8
9
12
15

1 Introducción

Vamos a realizar el siguiente ejercicio de NAT:

Vamos a simular con máquinas virtuales con VirtualBox el funcionamiento de un router Linux para que funcione como <u>NAT</u>.

- 1) Necesitamos tres máquinas:
 - Un servidor Linux Debian, con dos tarjetas de red:
 - La primera en modo puente, que se configura por DHCP y que coge una IP en el rango 172.22.0.0/16 (para nosotros la ip pública).
 - La segunda en modo red interna (192.168.0.1) que será la puerta de enlace de los clientes
 - Dos clientes: Para realizar las pruebas, uno Linux y uno Windows. Tendrán una interfaz de red en modo red interna, con el direccionamiento que observas en el dibujo.
- 2) Configura las tres máquinas y comprueba que los clientes pueden hacer ping al router pero que no tienen internet.
- 3) Configura el servidor Linux para que funcione como Router y <u>NAT</u> para que los clientes puedan acceder a internet.
- 4) Instala un servidor web en el cliente linux, y configura el servidor Linux para hacer DNAT y que desde la máquina real se pueda acceder a la página web alojada en el cliente.
- 5) Realiza el mismo ejercicio pero con un servidor Windows Server 2008.

2 Configuración de las tres máquinas

Necesitamos 3 máquinas virtuales, una Debian(servidor), otra debian también(cliente) y otra Windows.

La de servidor tendrá dos interfaces de red, una hacia el exterior(modo puente) y otra hacia una red interna, y las demás máquinas hacia dicha red interna.

En la máquina Servidor configuraremos un DHCP para que el NAT de Ips a las máquinas clientes, por lo que primero configuraremos su /etc/network/interfaces.

```
GNU nano 2.7.4
                      Fichero: /etc/network/interfaces
 This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
source /etc/network/interfaces.d/*
# The loopback network interface
auto lo
iface lo inet loopback
auto enp0s3
iface enp0s3 inet dhcp
auto enp0s8
iface enp0s8 inet static
address 192.168.0.1
netmassk 255.255.255.0
broadcast 192.168.0.255
                         [ 17 líneas escritas ]
              ^0 Guardar
                                           ^K Cortar txt ^J Justificar
  Ver ayuda
                               Buscar
                                             Pegar txt
   Salir
                               Reemplazar
                                                            Ortografía
                 Leer fich.
```

Ya tendremos la máquina servidor preparada, ahora debemos instalar el servicio dhcp.

En el fichero /etc/default/isc-dhcp-server ponemos la interfaz de red que queremos hacer que de dhcp.

```
# On what interfaces should the DHCP server (dhcpd) serve DHCP requests?
# Separate multiple interfaces with spaces, e.g. "eth0 eth1".
INTERFACESv4="enp0s8<mark>"</mark>
INTERFACESv6=""
```

Y por último elegimos el rango de DHCP del servidor, /etc/dhcp/dhcpd.conf

```
# This is a very basic subnet declaration.
subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.2 192.168.0.254;
option routers 192.168.0.1;
}
```

Y ahora reiniciamos el servicio(systemctl restart isc-dhcp-server).

A partir de aquí al iniciar las otras máquinas ya tendrán su IP.

^{*}apt-get install isc-dhcp-server

```
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast s
group default qlen 1000
link/ether 08:00:27:51:82:73 brd ff:ff:ff:ff:ff
inet 192.168.0.2/24 brd 192.168.0.255 scope global enp0s3
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe51:8273/64 scope link
valid_lft forever preferred_lft forever
usuario@debian:~$
```

Comprobamos que las máquinas se comunican entre si.

```
C:\Users\alejandro>ping 192.168.0.2

Haciendo ping a 192.168.0.2 con 32 bytes de datos:
Respuesta desde 192.168.0.2: bytes=32 tiempo<1m TTL=64

Estadísticas de ping para 192.168.0.2:
Paquetes: enviados = 4, recibidos = 4, perdidos = 0
```

```
usuario@debian:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.407 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.532 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=0.571 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=0.620 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=0.523 ms
^C
--- 192.168.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4082ms
rtt min/avg/max/mdev = 0.407/0.530/0.620/0.075 ms
usuario@debian:~$
```

3 Preparación del NAT

Debemos ahora preparar el enrutamiento para que pueda el servidor pasar paquetes de una interfaz a otra.

```
root@debian:/home/usuario# echo 1 > /proc/sys/net/ipv4/ip_forward root@debian:/home/usuario#
```

Esta configuración se borra cuando el equipo no esté, por lo que si queremos evitar eso debemos descomentar una linea en /etc/sysctl.conf

```
# Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1
```

Y ahora debemos configurar la NAT con las iptables, que se haría en la máquina servidor.

```
root@debian:/home/usuario# nano /etc/sysctl.conf
root@debian:/home/usuario# iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -o e
np0s3 -j MASQUERADE
root@debian:/home/usuario#
```

Ahora comprobamos si tienen conexión a Internet.

Debian →

```
usuario@debian:~$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=53 time=13.4 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=53 time=14.8 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=53 time=13.5 ms
^C
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 13.484/13.962/14.811/0.616 ms
usuario@debian:~$
```

Windows →

```
C:\Users\alejandro>ping 8.8.8.8
aciendo ping a 8.8.8.8 con 32 bytes de datos:
espuesta desde 8.8.8.8: bytes=32 tiempo=122ms TTL=53
espuesta desde 8.8.8.8: bytes=32 tiempo=14ms TTL=53
espuesta desde 8.8.8.8: bytes=32 tiempo=14ms TTL=53
espuesta desde 8.8.8.8: bytes=32 tiempo=119ms TTL=53
espuesta desde 8.8.8.8: bytes=32 tiempo=119ms TTL=53
```

^{*}Si gueremos que funcione realmente debemos hacer un DNS hacia 8.8.8.8

4 Instalación del Servicio Web

Debemos primero instalar apache2 en nuestra máquina Servidor.

Y realizamos una IP table de DNAT para poder acceder en nuestra máquina anfitrión.

```
root@debian:/home/usuario# iptables -t nat -A PREROUTING -p tcp --dport 80 -i en
p0s3 -j DNAT --to 192.168.1.53
```

Y vemos que efectivamente en nuestra máquina se puede abrir la página web.

^{*}apt-get install apache2

5 Realización en Windows Server

Ahora debemos cambiar la máquina servidor de Debian por una Windows Server 2008(tendrá dos tarjetas de red como la anterior).

Vamos al panel de control y centro de redes.

Luego de esto seleccionamos la red de area local que es nuestra red interna.

Con esto ya tendríamos la máquina preparada para el DHCP.

5.1 Configuración de Servidor DHCP

Debemos entrar al Administrador del Servidor.

Vamos a funciones y agregar funciones.

Seleccionamos la opción de Servidor DHCP.

Nos debe de salir el enlace de nuestra red interna.

*Si no nos sale reiniciar el Administrador del Servidor.

Vamos al apartado Ambitos DHCP y damos a Agregar...

Quitamos el Ipv6.

Y Confirmamos e Instalamos.

Y ahora entramos con otras máquinas y observamos si reciben IP.

```
Vatid_tit forever preferred_tit forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP

group default qlen 1000
    link/ether 08:00:27:51:82:73 brd ff:ff:ff:ff:ff
    inet 192.168.0.2/24 brd 192.168.0.255 scope global enp0s3
    valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe51:8273/64 scope link
    valid_lft forever preferred_lft forever

usuario@debian:~$

■
```

```
Sufijo DNS específico para la conexión. :
Vínculo: dirección IPv6 local. . . : fe80::3860:567a:8888:4e55%11
Dirección IPv4. . . . . . . . . . . . 192.168.0.3
Máscara de subred . . . . . . . . . 255.255.255.0
Puerta de enlace predeterminada . . . : 192.158.0.255
daptador de túnel isatap.
daptador de túnel isatap.
(10F46FD8-DC08-40AF-8D0B-A1CDC34EAE79):
Estado de los medios. . . . . . . . . . . . . medios desconectados
Sufijo DNS específico para la conexión. . :
:\Users\alejandro>_
```

```
C:\Users\alejandro>ping 192.168.0.2

Haciendo ping a 192.168.0.2 con 32 bytes de datos:
Respuesta desde 192.168.0.2: bytes=32 tiempo=1ms TTL=64
Respuesta desde 192.168.0.2: bytes=32 tiempo<1m TTL=64
```

5.2 Configuración del NAT

Primero en la red externa debemos configurar el DNS de google.

Vamos ahora al administrador de servidor y agregar funciones.

Seleccionamos en servicios de función la opción de enrutamiento.

Y instalamos.

Hacemos click derecho en Enrutamiento.

Seleccionamos la opción de NAT.

Y seleccionamos la red que esta conectada a Internet.

Y ya tendremos nuestro NAT preparado.