Modern Fizika Labor

Fizika BSC

A mérés dátuma:	A mérés száma és címe:	Értékelés:
2009.04.27.	12, Folyadékáramlás 2D-ben, Kármán örvényút	
A beadás dátuma:	A mérést végezte: Meszéna Balázs, Tüzes Dániel	

Mérés célja

A hidrodinamika egyenletei meglepő sokszínűséget biztosítanak a megvalósuló áramlásokra, ezért tárgyalhatóságuk egyszerűsítéséért megszorításokat alkalmazunk. Egyik ilyen, hogy az áramlást 2D-ban vizsgáljuk, vagyis létezik olyan sík, melyben a folyadék részecskék sebessége sík irányú. Ha a folyadékról feltesszük, hogy összenyomhatatlan, izotróp hőmérsékletű, még mindig olyan sokféle és összetett megoldásokat látunk, melyek pontos leírása ma is munkát adnak a kutatóknak. A labor során az egyik érdekes megvalósuló áramlást, a Kármán örvényút mozgását tanulmányozzuk.

Megjegyzés: habár a hidrodinamika elnevezés folyadékok vizsgálatára enged következtetni, ez a szakterület már régen túllépett ezen, és éppúgy tárgyalja a légnemű anyagok áramlását is.

A Navier-Stokes egyenlet dimenziótlanításából eljutunk az áramlások hasonlóságának fogalmához, mely megadja, hogy két elrendezés mellett – ha ismerjük a peremfeltételeket megadó környezet jellemző méreteit, a közeg jellemző sebességét, sűrűségét és viszkozitását –, mikor lesz a két megvalósuló áramlási kép egymáshoz hasonlók. Meglepő, hogy a hasonlóság megvalósításához nem szükséges ugyanazt a

halmazállapotú közeget használnunk. Eképp lehetőség van például a Föld légkörének a tanulmányozására a laboratóriumon belül is, ahol szappanhártyákkal modellezzük azt, a paraméterek megfelelő beállításával.

Tehát éppoly fontosságú lehet a szappanhártyák viselkedésének a vizsgálata, mint közvetlenül a Föld légköréé. A kivitelezhetőségért így a laborban előbbivel fogunk foglalkozni, azon belül is az említett Kármán örvényúttal. A jelenség bemutatása és a kapcsolódó elméleti leírások megtalálhatók a

Egy példa a folyadékok és gázok hasonlóságára. A képen egy kimagasló hegyet láthatunk, mely mögött a felhőben kirajzolódik a Kármány örvényút.

http://arpad.elte.hu/~bene/hidro/eloadas/7_eloadas/7_eloadas.html oldalon. Ugyanitt további ábrákat, videókat és fényképeket is találhatunk.

Mérési leírás

A mérési elrendezéshez tekintsük az ábrát! Két, közös kezdő és végpontú damil szál között szappanhártyát feszítünk ki. A hártyát függőleges helyzetben tartva, felülről, a közös kezdőpontnál folyamatosan, közel állandó sebességgel adagoljuk a szappanoldatot, mely lehetővé teszi a szappanhártya élettartamának a kinyújtását. Egy vizsgált szakaszon a két damil szálat pontosan függőleges helyzetbe hozzuk, a köztük lévő távolságot rögzítjük. A szappanhártyába kör keresztmetszetű, különböző átmérőjű testeket teszünk 1-1 mérés során. Jó közelítéssel mondhatjuk, hogy a vizsgált tartományban (ahol a két damil szál párhuzamos) a szappanhártya sebessége közel állandó, ezért lehetőségünk lesz megfigyelni a tárgy mögött kialakuló örvényeket. Az örvényeket az itt nem részletezett vékonyréteg-interferencia jelenséggel tesszük láthatóvá, a monokromatikus fényforrásként egy nátrium spektrállámpa szolgált.

A mérés során segítségünkre lesz egy nagysebességű videokamera, mellyel az egyes időpillanatokat kimerevíthetjük.

Mérési eredmények

Az egész mérés során igyekeztünk a két damil párhuzamos részének a távolságát – az ún. csatornaszélességet – 4,5cm körül tartani. A kamera 1000 kép/másodperc sebességgel rögzítette az eseményeket, beállított képaránya 2:1 volt. A kamerával készült mérési eredményekben a távolságot képpontban kaptuk meg, melyből cm-t úgy kaptunk, hogy lefényképeztünk egy vonalzót, ezzel kalibrálva a berendezést.

A mérés során 4 különböző átmérőjű kör keresztmetszetű akadályt tettünk a szappanhártya útjába. Mértük a szappanhártyán a leváló örvények sebességét és a kialakult örvényút frekvenciáját, vagyis az egységnyi időre jutó kialakult örvények számát.

Örvények sebessége

A felvételen kijelölve és nyomon követve néhány jellegzetes hely (pl örvényközéppontok) mozgását, abból meghatározható az örvények sebessége. Adott keresztmetszetnél 2 független mérést, egy mérés során 2-3 örvény mozgását követtük. Azért nem többet és többször, mert nehézkes volt a megfelelő örvények megtalálása, idő hiányában pedig csak ennyire futotta.

A 3mm-es átmérőjű akadállyal végzett mérés során kapott adatokat feldolgozása után az alábbi táblázatban foglaljuk össze:

		rvény ko	ordinátái	2-es ör	vény ko	ordinátái	3-es ör	vény ko	ordinátái	
idő (s)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm).	y (cm).	$ \Delta \mathbf{r} $ (cm)	3
0	23,52	1,421	0	15,47	-0,4736	0	6,788	0	0	3mm
0,001	21,79	1,105	1,733627	13,58	-0,4736	1,747104	5,052	0,1579	1,365367	1-es
0,002	19,58	0,6315	3,96927	11,52	-0,3157	3,560258	3,157	-0,1579	3,082656	
0,003	17,68	0,1579	5,912635	9,788	-0,4736	5,18504	1,105	-0,4736	4,87272	akada
0,005	14,37	-0,4736	9,219561	6,63	-0,3157	7,871413	-1,421	-0,9472	7,028598	ály,
0,006	12,47	-0,4736	10,96419	4,262	-0,3157	9,856081	-3,789	-0,9472	8,542786	1.
0,007	10,58	-1,421	13,07621	2,21	-0,4736	11,59514	-5,525	-1,105	9,605722	mérés
0,008	8,683	-1,105	14,65643	1,263	-0,3157	12,2217	-7,262	-1,579	10,77894	rés
0,009	7,104	-0,7893	15,90174	-0,3157	-0,4736	13,4876	-8,841	-1,421	11,09513	
0,01	5,052	-0,9472	17,74662	-2,526	-0,3157	14,84942	-1 0,42	-0,7893	10,68726	

	1'-es ö	rvény k	oordinátái	2'-es ö	rvény ko	oordinátái	3'-es öı	rvény ko	ordinátái	
idő (s)	x (cm)	y (<i>cm</i>)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm).	y (cm).	$ \Delta \mathbf{r} $ (cm)	3mm-es
0	19,73	3,315	0	11,84	0,6315	0	3,473	-0,4736	0	п-е
0,001	17,21	3,631	1,986278	10,26	-0,1579	1,754702	2,052	-0,3157	0,973494	
0,002	16,1	3,473	3,005519	9,472	-0,1579	2,41104	0,4736	-0,3157	2,131558	akadály
0,003	14,52	2,999	4,585918	7,262	-0,4736	4,406491	-0,4736	-0,6315	3,029892	lály
0,005	10,74	1,579	8,507879	3,947	-0,6315	7,140699	-4,105	-0,9472	5,720465	, 2,
0,006	9,314	1,421	9,759237	2,999	-0,7893	7,973279	-5,841	-0,7893	6,668175	ves
0,007	7,736	1,105	11,2132	0,9472	-0,4736	9,303225	-7,578	-0,4736	7,390227	SZ
0,008	6,315	1,737	11,9341	0	-1,263	10,53426	-9,156	-0,9472	8,61034	ős m
0,009	3,789	1,263	14,15924	-2,684	-0,4736	11,84166	-11,21	-0,9472	9,550276	éř
0,01	2,368	0,9472	15,4209	-4,578	-0,1579	12,80941	-12,47	-0,6315	9,752213	és
0,011	1,263	0,9472	16,21789	-5,683	-0,6315	13,85443	-14,37	-1,105	10,81704	

A mérési eredményeket az alábbi közös grafikon ábrázolja:

A mérési eredmények jó közelítéssel egy egyenesre esnek. Az eltérést az okozhatja, hogy nem volt állandó a szappanhártya sebessége, mind időben (a vesszősök és vesszőtlenek közti különbség, a vesszős később készült), mind pedig térben (különböző sorszámú örvények a képernyő különböző helyén voltak). Előbbinek okozója, hogy a szappanoldat adagolója egy üveg alján lévő kifolyó, a kifolyt oldat miatt a nyomás és így a szappanoldat sebessége csökken, utóbbit pedig a damilszálak nem pont párhuzamos elrendezése okozhajta, ugyanis ha lefele kicsit szélesedik, akkor lentebb lassabban folyik a szappanhártya, ha feltételezzük az állandó szappanhártyavastagságot.

A mérésről leolvashatjuk, hogy a szappanhártya sebessége $\langle v_{_{3mm}} \rangle = (1.69 \pm 1.3) m / s$, ahol a hibát az átlagsebességek szórásából számoltuk.

Hasonlóképp megmértük a 4, 5 illetve 2,5mm átmérőjű akadály során az örvények sebességét, melyet rendre az alábbi táblázatok és grafikonok mutatnak.

	1-es ör	vény ko	ordinátái	2-es ör	rvény ko	ordinátái	3-es ör	vény ko	ordinátái	
idő (s)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	
0	9,314	-3,631	0	21,94	0,3157	0	-0,6315	2,999	0	
0,001	7,578	-3,789	1,743175	21	-0,1579	1,052567	-2,526	3,157	1,901077	4 <i>m</i>
0,002	6,473	-3,789	2,84539	19,58	0,3157	2,36	-3,947	2,842	3,319215	4 <i>mm</i> -
0,003	4,736	-3,947	4,588893	17,68	0,3157	4,26	-5,21	2,684	4,589323	es a
0,005	0,7893	-4,42	8,561135	15,16	0,3157	6,78	-7,736	3,473	7,120295	ika
0,006	-0,3157	-4,736	9,692892	13,58	0,1579	8,361489	-9,472	2,999	8,8405	akadály,
0,007	-2,052	-4,894	11,43596	11,68	0,3157	10,26	-10,42	3,157	9,789775	y, 1.
0,008	-3,473	-4,736	12,83466	10,1	-0,3157	11,85682	-11,84	2,999	11,2085	-
0,009	-4,578	-5,052	13,96449	8,683	0,1579	13,25794	-14,05	3,315	13,42222	méré
0,01	-6,473	-5,21	15,86577	7,262	0	14,68139	-14,84	3,315	14,21201	Š
0,011	-7,42	-5,368	16,82391	5,683	0,4736	16,25777	-16,58	3,157	15,94928	
0,012	-9,314	-5,368	18,70881	4,105	0,4736	17,8357	-18,63	3,631	18,00959	
0,013	-10,89	-5,368	20,27853	2,842	0,4736	19,09865	-20,37	3,157	19,73913	

Az illesztett egyenesekből az örvényút sebessége: $\langle v_{\scriptscriptstyle 4mm}
angle = (1.52 \pm 0.05) \, m$ / s .

	5	ітт-е	s akadály	/, 1. me	érés			5mm	ı-es ak	adály, 2,	vessző	s méré	és	
	1-es ör	vény ko	oordinátái	2-es ör	vény ko	oordinátái		1-es örvény koordinátái 2-es örvény koordinátá						
idő (s)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	idő (s)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	
0	34,82	-23,9	0	65,83	-23,42	0	0	36,08	-24,21	0	63,3	-25	0	
0,001	32,44	-23,74	2,385372	64,73	-23,9	1,200167	0,001	34,34	-24,37	1,747341	60,77	-24,85	2,534443	
0,002	30,86	-23,74	3,963231	63,3	-23,9	2,575131	0,002	32,92	-24,37	3,164048	59,98	-24,37	3,379245	
0,003	30,38	-23,9	4,44	61,72	-24,21	4,185236	0,003	32,6	-24,53	3,494682	58,24	-25,32	5,070108	
0,004	29,44	-24,21	5,388924	60,61	-23,58	5,222452	0,004	30,07	-25,16	6,08462	56,02	-25,32	7,28703	
0,005	27,54	-23,9	7,28	58,87	-24,21	7,004691	0,005	28,96	-25,32	7,206004	55,23	-25,32	8,076342	
0,006	26,59	-22,79	8,304517	58,87	-24,05	6,988455	0,007	27,85	-25,16	8,284648	52,07	-25,16	11,23114	
0,007	26,43	-23,42	8,403719	57,29	-24,37	8,592677	0,008	26,27	-25,64	9,913677	49,69	-25,48	13,61846	
0,008	24,21	-22,95	10,65245	54,91	-24,37	10,96125	0,009	23,58	-25,32	12,54919	47,32	-25,16	15,9808	
0,01	21,84	-23,26	12,99577	49,22	-24,37	16,63715	0,01	21,68	-28,33	14,9778	47,16	-25,16	16,14079	
0,011	20,73	-23,11	14,11213	50,01	-25	15,8987	0,011	19,94	-28,49	16,69784	45,74	-25	17,56	
0,012	19,31	-23,42	15,51743	47	-24,21	18,84656	0,012	17,72	-28,49	18,85227	43,36	-25,32	19,94257	
0,013	17,09	-23,26	17,74155	44,15	-24,37	21,7008	0,013	16,46	-28,8	20,14975	42,1	-24,69	21,20227	
0,014	18,04	-23,26	16,7922	43,52	-24,85	22,35578	0,014	14,88	-28,96	21,72562	40,67	-25	22,63	
0,015	14,24	-23,74	20,58062	40,04	-24,37	25,80749	0,015	13,29	-27,22	22,98791	37,82	-25,48	25,48452	
0,016	13,14	-24,05	21,68052	40,83	-24,69	25,03224	0,017	10,44	-25,48	25,67143	34,66	-25,32	28,64179	
0,017	11,24	-24,21	23,58204	38,14	-25,32	27,75511	0,018	10,29	-25,32	25,81388	34,02	-25,48	29,28393	
0,018	10,92	-24,37	23,90462	37,82	-25	28,05453	0,019	9,179	-25,32	26,92389	32,44	-25,48	30,86373	
							0,02	8,546	-25,32	27,55637	30,54	-25,32	32,76156	
							0,021	6,172	-25,32	29,92859	29,28	-25,32	34,0215	
							0,022	4,906	-25,32	31,19376	26,43	-25,32	36,87139	
							0,023	4,589	-25,16	31,50533	25,64	-25,95	37,67198	
						0,024	3,165	-25	32,92448	23,42	-26,27	39,90022		

A mérési eredményeket ezúttal is ábrázoltuk grafikusan:

Az illesztett egyenesekből $\left< v_{\scriptscriptstyle 5mm} \right> = \left(1,50 \pm 0,15 \right) m$ / s .

	1-es ör	vény ko	ordinátái	2-es ör	vény ko	ordinátái	3-es örv	vény ko	ordinátái	
idő	x (cm) y (cm		$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	2
0	-3,798	-6,647	0	1,108	-4,748	0	7,754	-6,014	0	,5mm
0,001	-4,906	-7,754	1,566242	-0,9495	-5,064	2,081625	5,855	-5,697	1,925277	
0,002	-7,121	-7,596	3,455854	-2,374	-5,064	3,496309	4,273	-5,539	3,513259	es :
0,003	-8,546	-7,438	4,813438	-3,482	-5,064	4,600865	1,583	-6,014	6,171	akadá
0,004	-9,812	-8,229	6,218595	-5,222	-5,381	6,361571	0	-6,014	7,754	dál
0,005	-11,71	-8,704	8,175023	-7,596	-6,488	8,876216	-0,4748	-6,647	8,253111	ly, 1
0,006	-13,29	-8,546	9,680096	-9,495	-6,172	10,6982	-3,007	-6,488	10,77143	m
0,007	-15,03	-8,546	11,3914	-10,76	-6,014	11,93533	-4,431	-6,488	12,19422	ér
0,01	-18,83	-9,812	15,36158	-16,14	-6,488	17,33554	-9,495	-6,647	17,26061	és

	1-es ör	vény ko	oordinátái	2-es ör	vény ko	oordinátái	3-es örv	vény ko	ordinátái	
idő	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (cm)	$ \Delta \mathbf{r} $ (cm)	x (cm)	y (<i>cm</i>)	$ \Delta \mathbf{r} $ (cm)	2,5
0	-9,653	-8,546	0	-4,431	-6,33	0	2,849	-5,855	0	
0,001	-10,92	-8,387	1,276938	-5,697	-6,172	1,275821	1,741	-5,855	1,108	mm-es
0,002	-13,61	-8,546	3,957	-7,121	-6,33	2,69	-0,1583	-6,805	3,153784	o)
0,003	-14,24	-8,862	4,597872	-9,02	-7,438	4,720867	-2,374	-7,438	5,45762	kad
0,004	-15,19	-9,653	5,646576	-10,92	-7,28	6,558172	-2,69	-8,071	5,965834	ály
0,005	-17,72	-9,653	8,1426	-13,14	-7,754	8,824651	-5,381	-7,438	8,380858	, 2,
0,006	-18,52	-9,337	8,902212	-14,24	-7,596	9,890361	-7,28	-8,229	10,40349	ves
0,007	-21,21	-9,337	11,58404	-16,14	-7,754	11,79527	-8,704	-7,28	11,64055	sző
0,008	-22,79	-9,179	13,15224	-17,41	-8,387	13,14099	-11,24	-6,963	14,1325	ś

A mérési eredményeket grafikusan szemléltetve:

A mérésekből: $\langle v_{2.5mm} \rangle = (1,65 \pm 0,05) m/s$.

A leválási frekvencia mérése

Feltételezve, hogy a levált örvények a szűk vizsgálódási tartományon belül azonos gyakorisággal érkeznek, az "örvényszám-megmaradást" kihasználva könnyen meg lehet mérni a leválási frekvenciát. Ugyanis egy adott helyet figyelve, az idő tengelyén megjelöljük azokat a pontokat, amikor örvény halad

el a vizsgált pont előtt. Vizsgálva két ilyen esemény közt eltelt időt, annak reciproka a leválási frekvencia. A sebességmérésnél használt átmérőjű akadályokkal vizsgálódtunk ebben az esetben is.

Naiv dolog volna feltételezni, hogy a kamera időfelbontása messze felülmúlná a térbeli felbontóképességet (ez nem is volna cél a gyártók részéről), ezért a pontos időkülönbségek mérésénél valójában nem pont ugyan azon pont előtt elhaladó örvényeket kell nézni, hanem csak hozzávetőleg: a vizsgált ponttól való távolságból és az örvény haladási sebességéből pedig jó közelítéssel meg lehet határozni, hogy mikor érne egzaktul (a mérési pontosságokhoz mérten) a vizsgált pontba az örvény. Egyszerűbb megoldás viszont, mely a végeredmény átlagát nem is befolyásolja, ha ezt nem vesszük figyelembe, és úgy vesszük, hogy akkor van pontosan a vizsgált pontban az örvény, amikor legközelebb van hozzá valamelyik felvételen. Az ebből a mérésből adódó szórás lehetőséget ad a hiba becslésére.

1-1 átmérő mellett 2-3 független mérést végeztünk. A mérési eredményeket az alábbi táblázat tartalmazza:

		d=3	mm			d=4	mm				d=5 <i>r</i>	nm			d	=2,5	mm	
	időp (ms)	$\Delta t \ (s)$	időp (ms)	$\Delta t \ (s)$	időp (ms)	$\Delta t \ (s)$	időp. (<i>ms</i>)	$\Delta t \ (s)$	időp (ms)	Δt (s)	időp. (ms)	$\Delta t \ (s)$	időp (ms)	$\Delta t \ (s)$	időp. (<i>ms</i>)	Δt (s)	időp (ms)	$\frac{\Delta t}{(s)}$
Ī	251		960		899		1215		-49		742		22		1065		1243	
	261	10	949	11	910	11	1229	14	-31	18	723	19	40	18	1058	7	1234	9
	270	9	940	9	924	14	1241	12	-15	16	704	19	57	17	1051	7	1226	8
	280	10	930	10	939	15	1255	14	2	17	688	16	77	20	1043	8	1220	6
	291	11	920	10	954	15	1270	15	22	20	670	18	95	18	1036	7	1212	8
	299	8	911	9	974	20	1286	16	40	18	654	16	112	17	1026	10	1205	7
	308	9	903	7	986	12	1299	13	57	17	638	16	133	21	1014	12	1196	9
	317	9	894	10			1316	17	77	20			153	20	1004	10	1189	7
	328	11	885	9					94	17			170	17				
	338	10							112	18			186	16				
	347	9							133	21			201	15				
	355	8							153	20								
á	tlag (s)	9,42			14,46			17,96					8,21					
SZ	órás (s)		0,96			2,	34				1,5	1	•		1,98			

A táblázatból leolvasható, ha hibának a szórást vesszük, akkor várható érték

$$\begin{split} & \left< T_{d=3mm} \right> = \left(9,42 \pm 0,96 \right) s \Rightarrow \left< f_{d=3mm} \right> = \left(0,106 \pm 0,01 \right) / \, s \, , \\ & \left< T_{d=4mm} \right> = \left(14,46 \pm 2,34 \right) s \Rightarrow \left< f_{d=4mm} \right> = \left(0,069 \pm 0,009 \right) / \, s \, , \\ & \left< T_{d=5mm} \right> = \left(17,96 \pm 1,51 \right) s \Rightarrow \left< f_{d=5cm} \right> = \left(0,0557 \pm 0,004 \right) / \, s \, , \\ & \left< T_{d=2,5mm} \right> = \left(8,21 \pm 1,98 \right) s \Rightarrow \left< f_{d=2,5mm} \right> = \left(0,121 \pm 0,02 \right) / \, s \, . \end{split}$$

Sajnálatos módon látható, hogy a relatív hiba bőven meghaladhatja a 10%-ot is, így a hibaterjedés képletei nem lesznek érvényesek (ott ugyanis a kis hibák miatt a linearitást feltételeztük).

A mérési eredményeket grafikonon is ábrázoltam:

A mérési eredményekre egyenest illesztettem, noha nem nagy dicsőség ezt 4 pontra megtenni. Szintúgy feltüntettem a frekvenciát.

A dokumentum végéhez csatolom a mérés során a 3mm-es örvényútnál illetve a kalibráláshoz használt fényképeket. A fényképek nagyítási mértékei megegyeznek.

