Phys 4620, Spring 2006 Exam #1

1. A ring of radius R in the xy plane carries a constant current I. A small conducting loop of radius $a \ll R$ is also perpendicular to and concentric with the z axis and is located at some value of z also much larger than its size: $a \ll z$. However, we allow z to change with time.

The small loop has resistance r.

Find magnitude of the current induced in the small loop in terms of the other variables of the problem.

2. Two small circular wire loops, with radii a_1 and a_2 lie in the xy plane their centers are on the x axis, at x=0 and x=r, where $r\gg a_1$ and $r\gg a_2$. Find their mutual inductance, M_{12} .

It will help to approximate the current loops as magnetic dipoles and to recall the formulae for the field of a dipole,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}}) = \frac{\mu_0}{4\pi} \frac{1}{r^3} [3(\mathbf{m} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}]$$

3. A wire (in the plane of the page) carries a current in the direction shown. A loop of wire also in the plane of the page, as shown. The current in the wire (which goes "down" here) is *decreasing*.

Using Lenz's law or any other valid reasoning, deduce which way the induced current will flow in the loop (clockwise or counterclockwise).

4. A (long) conducting cylinder has length L and radius a. One end of the cylinder is held at potential V=0 and the other is at $V=V_0$. We will assume that the E field inside the cylinder is uniform and directed along the cylinder axis, and since the conductivity is uniform, so is the current density J, with $I=J(\pi a^2)$.

- a) What is the magnitude of the E field in the cylinder? (This ought to be easy!)
- b) What is the magnitude of the B field at the surface of the cylinder?

- c) What is the magnitude and direction of the Poynting vector at the surface of the cylinder?
- d) What is the physical meaning (in words) of the Poynting vector?
- e) Calculate the rate of energy flow through the surface of the cylinder.
- f) Is there a way to understand this result in terms of simple 2120-type physics?
- 5. Given the wave

$$f(x,t) = 5\sin(kx - \omega t)$$

express this (according to our usage in 4620) as a complex wave of the form

$$\tilde{f}(x,t) = \tilde{A}e^{i(kx-\omega t)}$$

that is, find \tilde{A} . You might note that $\sin x = \cos(\frac{\pi}{2} - x)$.

6. The wave equation for the electric and magnetic fields in vacuum are

$$\nabla^2 \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}, \qquad \nabla^2 \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

Start with the Maxwell equations in vacuum and show how either one of these is derived.

7. When we chose a general solution for the EM wave of the form

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(kz-\omega t)}, \qquad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(kz-\omega t)}$$

(where the vectors $\tilde{\mathbf{E}}_0$ and $\tilde{\mathbf{B}}_0$ are complex, constant vectors) and applied the conditions $\nabla \cdot \mathbf{E} = 0$, $\nabla \cdot \mathbf{B} = 0$ we found that the EM wave had to be transverse.

Show how this condition says the waves must be transverse.

Useful Equations

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla T) \cdot d\mathbf{l} = T(\mathbf{b}) - T(\mathbf{a}) \qquad \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d\tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d\mathbf{a} \qquad \int_{\mathcal{S}} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{\mathcal{P}} \mathbf{v} \cdot d\mathbf{l}$$

Spherical:

$$d\mathbf{l} = dl_r \,\hat{\mathbf{r}} + dl_\theta \,\hat{\boldsymbol{\theta}} + dl_\phi \,\hat{\boldsymbol{\phi}} \qquad d\tau = r^2 \sin\theta \,dr \,d\theta \,d\phi$$

Gradient:

$$\nabla T = \frac{\partial T}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial T}{\partial \theta}\hat{\boldsymbol{\theta}} + \frac{1}{r\sin\theta}\frac{\partial T}{\partial \phi}\hat{\boldsymbol{\phi}}$$
 (1)

Divergence:

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$
 (2)

Curl:

$$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_r}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$
(3)

Laplacian:

$$\nabla^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}$$
(4)

Cylindrical:

$$d\mathbf{l} = dl_s \,\hat{\mathbf{s}} + dl_\phi \,\hat{\boldsymbol{\phi}} + dl_z \,\hat{\mathbf{z}}$$
 $d\tau = s \, ds \, d\phi \, dz$

Gradient:

$$\nabla T = \frac{\partial T}{\partial s}\hat{\mathbf{s}} + \frac{1}{s}\frac{\partial T}{\partial \phi}\hat{\boldsymbol{\phi}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}$$
 (5)

Divergence:

$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (sv_s) + \frac{1}{s} \frac{\partial v_\phi}{\partial \phi} + \frac{\partial v_z}{\partial z}$$
 (6)

Curl:

$$\nabla \times \mathbf{v} = \left(\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z}\right) \hat{\mathbf{s}} + \left(\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s}\right) \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (sv_\phi) - \frac{\partial v_s}{\partial \phi}\right] \hat{\mathbf{z}}$$
(7)

Laplacian:

$$\nabla^2 T = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial T}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}$$
 (8)

More Math

Gradients:

$$\nabla (fg) = f\nabla g + g\nabla f$$
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

Divergences:

$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

Product Rules:

(1) $\nabla \cdot (\nabla T)$ (Divergence of curl)

$$\nabla \cdot (\nabla T) = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \nabla^2 T$$

(2) $\nabla \times (\nabla T)$ (Curl of gradient)

$$\nabla \times (\nabla T) = 0$$

(3) $\nabla(\nabla \cdot \mathbf{v})$ (Gradient of divergence) Nothing interesting about this; does not occur often.

(4) $\nabla \cdot (\nabla \times \mathbf{v})$

$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$

(5) $\nabla \times (\nabla \times \mathbf{v})$ (Curl of a curl)

$$\nabla \times (\nabla \times \mathbf{v}) = \nabla(\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v}$$

Physics:

$$F = \frac{1}{4\pi\epsilon_0} \frac{Qq}{\mathbf{r}^2} \,\hat{\mathbf{z}} \qquad \mathbf{F} = Q\mathbf{E} \qquad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{\mathbf{r}_i^2} \,\hat{\mathbf{z}} \,_i \qquad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\rho(\mathbf{r}')}{\mathbf{r}^2} \,\hat{\mathbf{z}} \,d\tau'$$

$$\Phi_E = \int_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0} \qquad \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \qquad \nabla \times \mathbf{E} = 0$$

$$\mathbf{E} = -\nabla V \qquad -\nabla^2 V = \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \qquad V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{r}} \frac{\rho(\mathbf{r}')}{\mathbf{r}} \,d\tau'$$

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{\sigma}{\epsilon_0} \qquad \mathbf{E}_{\text{above}}^{\parallel} = \mathbf{E}_{\text{below}}^{\parallel} \qquad W = \frac{1}{8\pi\epsilon_0} \sum_{\substack{i,j \\ i \neq j}}^n \frac{q_i q_j}{\mathbf{r}_{ij}}$$

$$W = \frac{1}{2} \int \rho V \, d\tau = \frac{\epsilon_0}{2} \int E^2 \, d\tau \qquad \mathbf{f} = \frac{1}{2\epsilon_0} \sigma^2 \hat{\mathbf{n}} \qquad P = \frac{\epsilon_0}{2} E^2 \qquad C \equiv \frac{Q}{V}$$

$$\begin{split} \mathbf{p} &\equiv \int \mathbf{r}' \rho(\mathbf{r}') \, d\tau' \qquad V_{\mathrm{dip}}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} \qquad \mathbf{E}_{\mathrm{dip}}(r,\theta) = \frac{\rho}{4\pi\epsilon_0 r^3} (2\cos\theta \, \hat{\mathbf{r}} + \sin\theta \, \hat{\boldsymbol{\theta}}) \\ \mathbf{p} &= \alpha \mathbf{E} \qquad \mathbf{N} = \mathbf{p} \times \mathbf{E} \qquad \mathbf{F} = (\mathbf{p} \cdot \nabla) \mathbf{E} \qquad U = -\mathbf{p} \cdot \mathbf{E} \\ \sigma_b &= \mathbf{P} \cdot \hat{\mathbf{n}} \qquad \rho_b = -\nabla \cdot \mathbf{P} \qquad \mathbf{P} = \epsilon_0 \chi_e \mathbf{E} \\ \mathbf{D} &= \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon \mathbf{E} \qquad \nabla \cdot \mathbf{D} = \rho_f \qquad \oint \mathbf{D} \cdot d\mathbf{a} = Q_{f,\mathrm{enc}} \end{split}$$

$$\mathbf{F}_{\mathrm{mag}} &= Q(\mathbf{v} \times \mathbf{B}) \qquad \mathbf{F}_{\mathrm{mag}} = \int I(d\mathbf{I} \times \mathbf{B}) \qquad \mathbf{K} \equiv \frac{d\mathbf{I}}{dl_\perp} \qquad \mathbf{J} \equiv \frac{d\mathbf{I}}{da_\perp} \qquad \nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} \\ \mathbf{B}(\mathbf{r}) &= \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{\mathbf{x}}}{\epsilon^2} \, dl' = \frac{\mu_0}{4\pi} I \int \frac{dl' \times \hat{\mathbf{x}}}{\epsilon^2} \qquad \mu_0 = 4\pi \times 10^{-7} \frac{\mathbf{N}}{\mathbf{A}^2} \qquad 1 \ \mathbf{T} = 1 \frac{\mathbf{N}}{\mathbf{A} \cdot \mathbf{m}} \\ \nabla \cdot \mathbf{B} &= 0 \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \qquad \oint \mathbf{B} \cdot d\mathbf{I} = \mu_0 I_{\mathrm{enc}} \qquad \mathbf{B} = \nabla \times \mathbf{A} \\ \nabla \cdot \mathbf{A} &= 0 \qquad \nabla^2 \mathbf{A} = -\mu_0 \mathbf{J} \qquad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\epsilon} \, d\tau' \\ B_{\mathrm{above}}^\perp &= B_{\mathrm{below}}^\perp \qquad \mathbf{B}_{\mathrm{above}} - \mathbf{B}_{\mathrm{below}} = \mu_0 (\mathbf{K} \times \hat{\mathbf{n}}) \qquad \mathbf{A}_{\mathrm{above}} = \mathbf{A}_{\mathrm{below}} \qquad \frac{\partial \mathbf{A}_{\mathrm{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\mathrm{below}}}{\partial n} = -\mu_0 \mathbf{K} \\ \mathbf{A}_{\mathrm{dip}}(\mathbf{r}) &= \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \qquad \text{where} \qquad \mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a} \\ \mathbf{A}_{\mathrm{dip}}(\mathbf{r}) &= \frac{\mu_0}{4\pi} \frac{\mathbf{m} \sin\theta}{r^2} \hat{\boldsymbol{\phi}} \qquad \mathbf{B}_{\mathrm{dip}}(\mathbf{r}) = \nabla \times \mathbf{A} = \frac{\mu_0}{4\pi} \frac{1}{r^3} [3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{m}] = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \, \hat{\mathbf{r}} + \sin\theta \, \hat{\boldsymbol{\theta}}) \\ \mathbf{N} &= \mathbf{m} \times \mathbf{B} \qquad \mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B}) \\ \mathbf{A}(\mathbf{r}) &= \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\mathbf{J}_b(\mathbf{r}')}{\epsilon} \, d\tau' + \frac{\mu_0}{4\pi} \int_{\mathcal{S}} \frac{\mathbf{K}_b(\mathbf{r}')}{\epsilon} \, da' \qquad \text{where} \qquad \mathbf{J}_b = \nabla \times \mathbf{M} \qquad \text{and} \qquad \mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}} \\ \mathbf{J} &= \mathbf{J}_b + \mathbf{J}_f \qquad \mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \qquad \nabla \times \mathbf{H} = \mathbf{J}_f \qquad \oint \mathbf{H} \cdot d\mathbf{I} = I_{f,enc} \end{split}$$

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \qquad \nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} \qquad \mathcal{E} = -\frac{d\Phi}{dt}$$

$$W = \frac{1}{2}LI^2 \qquad W = \frac{1}{2\mu_0} \int_{\text{all space}} B^2 d\tau$$

$$D_1^{\perp} - D_2^{\perp} = \sigma_f \qquad B_1^{\perp} - B_2^{\perp} = 0 \qquad \mathbf{E}_1^{\parallel} - \mathbf{E}_2^{\parallel} = 0 \qquad \mathbf{H}_1^{\parallel} - \mathbf{H}_2^{\parallel} = \mathbf{K}_f \times \hat{\mathbf{n}}$$

$$\Phi_2 = M_{21}I_1 \qquad \mathcal{E} = -L\frac{dI}{dt}$$

$$\frac{dW}{dt} = -\frac{d}{dt} \int_{\mathcal{V}} \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \frac{1}{\mu_0} \oint_{\mathcal{S}} (\mathbf{E} \times \mathbf{B}) \cdot d\mathbf{a} \qquad \mathbf{S} \equiv \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

$$T_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right)$$
$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

Specific Results:

$$B = \frac{\mu_0 I}{4\pi s} (\sin \theta_2 - \sin \theta_1)$$

$$B = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + z^2)^{3/2}}$$

