

Recurrent Neural Network (RNN)

Industrial AI Lab.

Prof. Seungchul Lee

Recurrent NN (RNN)

• Hidden state extraction and transformation

Recurrent NN (RNN)

• Hidden state extraction and transformation

Classification based on states

Learned latent state

Recurrent NN (RNN)

- Hidden state extraction and transformation
- Good for sequential data (dynamic behavior)

Classification based on states

Learned latent state and its dynamics

Recurrent NN

- Recurrence
 - Consider the classical form of a dynamical system:

$$s^{(t)} = f(s^{(t-1)}; \theta)$$

- This is recurrent because the definition of s at time t refers back to the same definition at time t-1
- Hidden state representation
- Learn both from sequential data

Representation Shortcut

- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything simple boxes
 - Each box actually represents an entire layer with many units

Finite-Response Model

- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - − *N* is the width of the system

In Theory, We Want Infinite Memory

- Required: Infinite response systems
 - What happens today can continue to affect the output forever
 - Possibly with weaker and weaker influence

$$Y_t = f(X_t, X_{t-1}, \dots, X_{t-\infty})$$

Infinite Response Systems

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-\infty}) \longrightarrow Y_t = f(X_t, Y_{t-1})$$

- Recursive
 - Required: Define initial output: Y_{t-1} for t=0
 - An input at X_0 at t=0 produces Y_0
 - $-Y_0$ produces Y_1 which produces Y_2 and so on until Y_∞ even if X_1, \dots, X_∞ are 0
 - Nonlinear autoregressive
- Output contains information about the entire past

Autoregression

• An autoregressive net with recursion from the output

More Complete Representation

- An autoregressive net with recursion from the output
- Showing all computations
- All columns are identical
- An input at t = 0 affects outputs forever

An Alternate Model for Infinite Response Systems

• the state-space model

$$h_t = f(x_t, h_{t-1})$$
$$y_t = g(h_t)$$

- h_t is the state of the network
- Need to define initial state h_{-1}
- This is a recurrent neural network
- State summarizes information about the entire past

Single Hidden Layer RNN (Simplest State-Space Model)

- The state (green) at any time is determined by the input at that time, and the state at the previous time
- All columns are identical
- An input at t = 0 affects outputs forever
- Also known as a recurrent neural net

Multiple Recurrent Layer RNN

- The state (green) at any time is determined by the input at that time, and the state at the previous time
- All columns are identical
- An input at t = 0 affects outputs forever
- Also known as a recurrent neural net

Recurrent Neural Network

- Simplified models often drawn
- The loops imply recurrence

The Detailed Version of RNN

The Detailed Version of RNN

RNN Applications

- Machine translation
- Speech recognition
- Text-to-speech
- Image captioning
- Video analysis/understanding

Recurrent Neural Network: Process Sequences

Recurrent Neural Networks

Unrolling the Recurrence

Feedforward Propagation

- This is a RNN where the input and output sequences are of the same length
- Feedforward operation proceeds from left to right
- Update Equations:

$$\mathbf{a}_{t} = b + W\mathbf{h}_{t-1} + U\mathbf{x}_{t}$$

$$\mathbf{h}_{t} = \tanh \mathbf{a}_{t}$$

$$\mathbf{o}_{t} = c + V\mathbf{h}_{t}$$

$$\hat{\mathbf{y}}_{t} = \operatorname{softmax}(\mathbf{o}_{t})$$

How to Train RNN

Backward Propagation

- Loss would just be the sum of losses over time steps
- Treat the recurrent network as a usual multilayer network and apply backpropagation on the unrolled network
- This is called Backpropagation through time (BPTT)

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

- Long-Term Dependencies
 - Gradients propagated over many stages tend to either vanish or explode
 - Difficulty with long-term dependencies arises from the exponentially smaller weights given to longterm interactions
 - Introduce a memory state that runs through only linear operators
 - Use gating units to control the updates of the state

Example

• "I grew up in France... I speak fluent French."

Long Short-Term Memory (LSTM)

- Consists of a memory cell and a set of gating units
 - Memory cell is the context that carries over
 - Forget gate controls erase operation
 - Input gate controls write operation
 - Output gate controls the read operation

Long Short-Term Memory (LSTM)

- Consists of a memory cell and a set of gating units
 - Memory cell is the context that carries over
 - Forget gate controls erase operation
 - Input gate controls write operation
 - Output gate controls the read operation

$$egin{aligned} i_t &= \sigmaig(x_t U^i + h_{t-1} W^iig) \ f_t &= \sigmaig(x_t U^f + h_{t-1} W^fig) \ o_t &= \sigmaig(x_t U^o + h_{t-1} W^oig) \ ilde{C}_t &= anhig(x_t U^g + h_{t-1} W^gig) \ C_t &= \sigmaig(f_t * C_{t-1} + i_t * ilde{C}_tig) \ h_t &= anh(C_t) * o_t \end{aligned}$$

Element-by-Element

Element-by-Element Addition

Element-by-Element Addition

Gating

Long Short-Term Memory

- Forget gate controls erase operation
- Input gate controls write operation
- Output gate controls the read operation

$$f_t = \sigma(W_f \mathbf{h}_{t-1} + U_f \mathbf{x}_t)$$

$$i_t = \sigma(W_i \mathbf{h}_{t-1} + U_i \mathbf{x}_t)$$

$$o_t = \sigma(W_o \mathbf{h}_{t-1} + U_o \mathbf{x}_t)$$

$$\tilde{\mathbf{c}}_t = \tanh(W\mathbf{h}_{t-1} + U\mathbf{x}_t)
\mathbf{c}_t = f_t \odot \mathbf{c}_{t-1} + i_t \odot \tilde{c}_t$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

Weakness of RNNs

Sequential computation is slow

Vanishing and exploding gradients are still problematic

• Long-term credit assignment is difficult

LSTM Implementation

Time Series Data and RNN

RNN for Classification

RNN for Prediction

LSTM with TensorFlow

- An example for predicting a next piece of an acceleration signal
- Regression problem

RNN Structure

```
n_step = 25
n_input = 100

## LSTM shape
n_lstm1 = 100
n_lstm2 = 100

## Fully connected
n_hidden = 100
n_output = 100
```


LSTM, Weights and Biases

- LSTM Cell
 - Do not need to define weights and biases of LSTM cells
- Fully connected
 - Define parameters based on the predefined layer size
 - Initialize with a normal distribution with $\mu=0$ and $\sigma=0.01$

```
weights = {
    'hidden' : tf.Variable(tf.random_normal([n_lstm2, n_hidden], stddev = 0.01)),
    'output' : tf.Variable(tf.random_normal([n_hidden, n_output], stddev = 0.01))
}
biases = {
    'hidden' : tf.Variable(tf.random_normal([n_hidden], stddev = 0.01)),
    'output' : tf.Variable(tf.random_normal([n_output], stddev = 0.01))
}

x = tf.placeholder(tf.float32, [None, n_step, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
```


Build a Model

- First, define the LSTM cells
- Second, compute hidden state (h) and LSTM cell (c) with the predefined LSTM cell and input

```
def build_model(x, weights, biases):
    with tf.variable_scope('rnn'):
        # Build RNN network
        with tf.variable_scope('lstm1'):
            lstm1 = tf.nn.rnn_cell.LSTMCell(n_lstm1)
            h1, c1 = tf.nn.dynamic_rnn(lstm1, x, dtype = tf.float32)
        with tf.variable_scope('lstm2'):
            lstm2 = tf.nn.rnn_cell.LSTMCell(n_lstm2)
            h2, c2 = tf.nn.dynamic_rnn(lstm2, h1, dtype = tf.float32)

# Build classifier
        hidden = tf.add(tf.matmul(h2[:,-1,:], weights['hidden']), biases['hidden'])
        hidden = tf.nn.relu(hidden)
        output = tf.add(tf.matmul(hidden, weights['output']), biases['output'])
        return output
```


Cost, Initializer and Optimizer

- Loss
 - Regression: Squared loss
- Initializer
 - Initialize all the empty variables
- Optimizer
 - AdamOptimizer: the most popular optimize

```
LR = 0.0001

pred = build_model(x, weights, biases)
loss = tf.square(tf.subtract(y, pred))
loss = tf.reduce_mean(loss)

optm = tf.train.AdamOptimizer(LR).minimize(loss)
init = tf.global_variables_initializer()

sess = tf.Session()
```


Prediction Example

Prediction Example

