Another example

Wenda Qiu

2016年12月25日

• an undirected graph

- an undirected graph
- add x to *u*

- an undirected graph
- add x to *u*

- an undirected graph
- add x to *u*

- an undirected graph
- add x to u
- query neighbors' sum

- an undirected graph
- add x to u
- query neighbors' sum

- an undirected graph
- add x to *u*
- query neighbors' sum
- O(m) = n

• store the value v[x]

- store the value v[x]
- O(n) space

- store the value v[x]
- O(n) space
- O(1) time for add

- store the value v[x]
- O(n) space
- O(1) time for add
- O(m) time for query

• store the sum s[x]

- store the sum s[x]
- O(n) space

- store the sum s[x]
- O(n) space
- O(n) time for add

- store the sum s[x]
- O(n) space
- O(n) time for add

- store the sum s[x]
- O(n) space
- O(n) time for add

- store the sum s[x]
- O(n) space
- O(n) time for add
- O(1) time for query

Observation

• bad when large deg(x)

Observation

- bad when large deg(x)
- "heavy" when deg(x) > B

Heavy-Light Divide

Heavy-Light Divide

Combined Approach

• $s[x] = \sum v[heavy\ neighbors] + \sum v[light\ neighbors]$

Combined Approach

- $s[x] = \sum v[heavy\ neighbors] + \sum v[light\ neighbors]$
- for $\sum v[heavy\ neighbors]$ use approach 1
- for $\sum v[light\ neighbors]$ use approach 2

• if v is heavy, $vh[u] \leftarrow vh[u] + x$

• if v is heavy, $vh[u] \leftarrow vh[u] + x$

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors
- O(1) time for heavy

- if v is heavy, $vh[u] \leftarrow vh[u] + x$
- if u is light, $sl[v] \leftarrow sl[v] + x$, u, v are neighbors
- O(1) time for heavy
- O(B) time for light

• $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time
- $cnt_heavy \cdot B \le 2m = O(n)$

- $\sum v[heavy\ neighbors] = \sum_{y\ is\ heavy\ neighbor} vh[y]$
- $\sum v[light neighbors] = sl[x]$
- $O(1 + cnt_heavy)$ time
- $cnt_heavy \cdot B \le 2m = O(n)$
- O(n/B) time

• O(n) space

- O(n) space
- O(B) time for add

- O(n) space
- O(B) time for add
- O(n/B) time for query

- O(n) space
- O(B) time for add
- O(n/B) time for query
- make $B = \sqrt{n}$

- O(n) space
- O(B) time for add
- O(n/B) time for query
- make $B = \sqrt{n}$
- $O(\sqrt{n})$ for each operation