

MID TERM EXAMINATIONS - October-November 2023

D. In m. ab	Semester	:	Fall 2023-24
Programme : B.Tech.	Slot	:	
Course Title/ : Electric Circuits and Systems/ EEE1001	0.00	Ι΄	E11+E12+E14
Course Code Electric Circuits and Cysteria	11. 11. 1.	+	50
Time : 1 ½ hours	Max. Marks	:	50

Answer all the Questions

Question Description

Sec.

1 a Determine the v_1 and v_2 in the circuit shown in figure using nodal analysis.

Sub.

Q.No.

b Using superposition theorem, determine the voltage drop v_0 across the 5Ω resistor.

2 a For the circuit shown in figure, find the Thevenin's equivalent circuit between the terminals a & b.

5

Marks

6

b Determine the equivalent resistance for the circuit shown below and find the current i_0 flowing through 2.5Ω resistor.

In the circuit shown in figure determine the voltage at 50 Hz to be applied across terminals AB in order that a current of 10A flows in the capacitor(398μF). Draw the phasor diagram for the circuit given.

- A circuit of $R=4\Omega$, L=0.5H and a variable capacitance C in series is connected across a 100V, 50 Hz supply. Calculate: (a) the value of the capacitance for which resonance will occur; (b) the voltage across the capacitor at resonance and the Q-factor of the circuit.
- 4 (a) A linear inverse continuous system is specified by $\frac{d^2y(t)}{dt} 7\frac{dy(t)}{dt} + 10y(t) = \frac{dx(t)}{dt} + 5x(t)$ the input is $x(t) = e^{-5t}u(t)$. Find the (i) natural response for the initial condition, $y(0^+) = 6$, $\frac{dy(0^+)}{dt} = 0$ (ii) forced response and (iii) total response of the system.
 - (b) Determine the equivalent inductance for the mutual coupled circuit shown in figure.

Interpret the working of p-n junction diode at different bias conditions with its V-I characteristics. In regard to the characteristics of the p-n junction diode, its forward characteristics is shown below. Find the dc forward resistance at point P and dynamic forward resistance.

Page 2 of 3

10

5

6

4

6

