# Commensurability classes of arithmetic triangle groups

Dedicated to Professor Y. Kawada on his 60th birthday

### By Kisao TAKEUCHI

#### § 1. Introduction.

In the previous paper [13] we obtained a complete list of arithmetic triangle groups, i.e. the triangular Fuchsian groups which are commensurable with the unit groups of quaternion algebras. The next task is to determine 1) the explicit description of each group as the unit group of the quaternion algebra, 2) all inclusion relations between these groups. In §2 we shall determine the quaternion algebra associated with each arithmetic triangle group. From this we obtain the classification of all arithmetic triangle groups into the commensurability classes in the wide sense. In § 3 we shall determine the signatures of some arithmetic Fuchsian groups  $\Gamma^{(1)}(A, O_1)$ ,  $\Gamma^{(+)}(A, O_1)$  and  $\Gamma^{(*)}(A, O_1)$ , where  $O_{\scriptscriptstyle 1}$  is a maximal order of each quaternion algebra A which we are concerned with. This gives a partial solution of 1). As to 2) more generally, Singerman [11] had already determined all inclusion relations among the triangle groups by the group-theoretical method. As a special case of this result we obtain a complete solution of 2). However, by making use of the results in [12] and [13] we can also obtain most of the inclusion relations between arithmetic triangle groups independently. We want to note that some of the inclusion relations listed in [11] are realized by arithmetic triangle groups. From the numbertheoretical point of view it may not be worthless to give the complete diagrams of inclusion among the arithmetic triangle groups.

### § 2. Quaternion algebras associated with arithmetic triangle groups.

We recall the definition of arithmetic Fuchsian groups. Let k be a totally real algebraic number field of degree n. Then there exist n distinct Q-isomorphisms  $\{\varphi_i | 1 \le i \le n\}$  of k into the real number field R, where we assume that  $\varphi_1$ =the identity. Let A be a quaternion algebra over k unramified at  $\varphi_1$  and ramified at all other  $\varphi_i$   $(2 \le i \le n)$ . Then there exists an R-isomorphism  $\rho$  of  $A \otimes_Q R$  onto  $M_2(R) \oplus H \oplus \cdots \oplus H$ , where H is Hamilton's quaternion algebra over R. Let  $\rho_1$  be the composite of  $\rho|_A$  with the projection to  $M_2(R)$ . Then  $\rho_1$  is a k-isomorphism of A into  $M_2(R)$ .  $\rho_1$  is uniquely determined up to  $GL_2(R)$ -

conjugation. Let O be an order of A. Put  $U^{(1)} = \{ \varepsilon \in O \mid n(\varepsilon) = 1 \}$ , where n() is the reduced norm of A over k. Then  $\Gamma^{(1)}(A,O) = \rho_1(U^{(1)})$  is a discrete subgroup of  $SL_2(\mathbf{R})$ . It is well-known that  $\Gamma^{(1)}(A,O)$  is a discontinuous group on the upper half plane H such that  $\operatorname{vol}(H/\Gamma^{(1)}(A,O))$  is finite, where  $\operatorname{vol}()$  is the non-Euclidean volume on H.

DEFINITION 1. Let  $\Gamma$  be a discrete subgroup of  $SL_2(R)$  such that  $\operatorname{vol}(H/\Gamma)$   $<\infty$ . If  $\Gamma$  is commensurable with  $\Gamma^{(1)}(A,O)$ , then  $\Gamma$  is called an arithmetic Fuchsian group. Since A is uniquely determined by  $\Gamma$  up to isomorphism, we call A the quaternion algebra associated with  $\Gamma$ .

DEFINITION 2. Let  $\Gamma_1$  and  $\Gamma_2$  be discrete subgroups of  $SL_2(\mathbf{R})$  such that  $\operatorname{vol}(H/\Gamma_i)<\infty$   $(1\leq i\leq 2)$ . If there exists  $g\in GL_2(\mathbf{R})$  such that  $\Gamma_2$  is commensurable with  $g\Gamma_1g^{-1}$ , then we say that  $\Gamma_2$  is commensurable with  $\Gamma_1$  in the wide sense.

It is easy to see that this is an equivalence relation.

PROPOSITION 1. Let  $\Gamma_1$  and  $\Gamma_2$  be arithmetic Fuchsian groups and let  $A_1$  and  $A_2$  be the quaternion algebras associated with  $\Gamma_1$  and  $\Gamma_2$  respectively. Then  $\Gamma_1$  is commensurable with  $\Gamma_2$  in the wide sense if and only if  $A_1$  is isomorphic to  $A_2$ .

PROOF. Let  $k_i$  be the center of  $A_i$   $(1 \le i \le 2)$ . Suppose that  $\Gamma_1$  is commensurable with  $\Gamma_2$  in the wide sense. Then  $\Gamma^{(1)}(A_1, O_1)$  is commensurable with  $\Gamma^{(1)}(A_2, O_2)$  in the wide sense, where  $O_i$   $(1 \le i \le 2)$  is an order of  $A_i$ . By a suitable choice of the embeddings  $\rho_1$  and  $\rho_1'$  of  $A_1$  and  $A_2$  respectively we may assume that these groups are commensurable with each other. Put  $\Gamma_0 = \Gamma^{(1)}(A_1, O_1) \cap \Gamma^{(1)}(A_2, O_2)$ . By a result in [12] both of  $\rho_1(A_1)$  and  $\rho_1'(A_2)$  are spanned by  $\Gamma_0$  over Q. Hence  $\rho_1(A_1) = \rho_1'(A_2)$ . This shows that  $A_1$  is isomorphic to  $A_2$ .

Conversely, let  $\sigma$  be an isomorphism of  $A_1$  onto  $A_2$ . We shall show that  $\sigma|_{k_1}$ =the identity. Assume that  $\sigma|_{k_1}=\varphi_i$   $(2\leq i\leq \lceil k_1:Q\rceil)$ . Let  $\rho_i$  be an embedding of A into H such that  $\rho_i|_{k_1}=\varphi_i$ . Then  $\rho_i'\circ\sigma\circ\rho_i^{-1}$  is a  $k_2$ -isomorphism of  $\rho_i(A_1)$  onto  $\rho_i'(A_2)$ . Since the former is definite and the latter is indefinite, this is a contradiction. This shows that  $k_1=k_2$  and that  $\sigma$  is a  $k_1$ -isomorphism. Since  $\rho_1(A_1)$  and  $\rho_i'(A_2)$  are indefinite, by Skolem-Noether's theorem there exists  $g\in GL_2(R)$  such that  $\rho_1(A_1)=g^{-1}\rho_i'(A_2)g$ . Thus  $\rho_1(O_1)$  and  $g^{-1}\rho_i'(O_2)g$  are orders in the same quaternion algebra. It is well-known that the unit groups of orders in a quaternion algebra are commensurable with each other. This shows that  $\Gamma_1$  and  $\Gamma_2$  are commensurable with each other in the wide sense. q. e. d.

In view of Proposition 1 the classification of arithmetic triangle groups with respect to commensurability in the wide sense is equivalent to the determination of the quaternion algebra associated with each triangle group. Let  $\left(\frac{a,b}{k}\right)$ 

be the quaternion algebra over k defined as follows:  $B=k1+k\alpha+k\beta+k\alpha\cdot\beta$ ,  $\alpha^2=a$ ,  $\beta^2=b$ ,  $\alpha\cdot\beta+\beta\cdot\alpha=0$   $(a\neq 0,\ b\neq 0\in k)$ .

For any  $\xi = z_0 1 + z_1 \alpha + z_2 \beta + z_3 \alpha \beta$  we have  $n(\xi) = z_0^2 - az_1^2 - bz_2^2 + abz_3^2$ . Now we have the following

PROPOSITION 2. Let  $\Gamma$  be an arithmetic triangle group of type  $(e_1, e_2, e_3)$   $(2 \le e_1 \le e_2 \le e_3 < \infty)$ . Let A be the quaternion algebra associated with  $\Gamma$ . Put  $t_j = 2\cos(\pi/e_j)$   $(1 \le j \le 3)$ . Then A is isomorphic to  $(\frac{a,b}{k})$ , where  $k = \mathbf{Q}(t_1^2, t_2^2, t_3^2, t_1t_2t_3)$ ,  $a = t_2^2(t_2^2 - 4)$ ,  $b = t_2^2t_3^2(t_1^2 + t_2^2 + t_3^2 + t_1t_2t_3 - 4)$ .

PROOF. We may assume that  $\Gamma \ni -1_2$ . Then  $\Gamma$  has the following presentation:  $\Gamma = \langle \gamma_1, \gamma_2, \gamma_3; \gamma_1^{e_1} = \gamma_2^{e_2} = \gamma_3^{e_3} = \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = -1_2 \rangle$ . Moreover, we may assume that  $\operatorname{tr}(\gamma_j) = t_j$   $(1 \le j \le 3)$  (cf. [7]). A is given explicitly in the following way. Let  $\Gamma^{(2)}$  be the subgroup of  $\Gamma$  generated by  $\{\gamma^2 \mid \gamma \in \Gamma\}$ . Let  $A(\Gamma^{(2)})$  be the vector space spanned by  $\Gamma^{(2)}$  over  $\mathbf{Q}$  in  $M_2(\mathbf{R})$ . Then we see that the center k of  $\Lambda$  coincides with  $\mathbf{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma^{(2)}) = \mathbf{Q}(t_1^2, t_2^2, t_3^2, t_1t_2t_3)$  and that  $\Lambda$  is isomorphic to  $A(\Gamma^{(2)})$  (cf. [13]). Moreover, we may take  $\{1_2, \gamma_2^2, \gamma_3^2, \gamma_2^2 \cdot \gamma_3^2\}$  as a basis of  $A(\Gamma^{(2)})$  over k. For any  $\xi = x_0 \mathbf{1}_2 + x_1 \gamma_2^2 + x_2 \gamma_3^2 + x_3 \gamma_2^2 \cdot \gamma_3^2$  the reduced norm  $n(\xi)$  is given by  $n(\xi) = (x_0, x_1, x_2, x_3) \cdot D \cdot t(x_0, x_1, x_2, x_3)$ , where

$$D = \begin{pmatrix} 1 & c_1 & c_2 & c_3 \\ c_1 & 1 & c_4 & c_2 \\ c_2 & c_4 & 1 & c_1 \\ c_3 & c_2 & c_1 & 1 \end{pmatrix},$$

 $c_1 = 1/2 \cdot \text{tr} (\gamma_2^2), c_2 = 1/2 \cdot \text{tr} (\gamma_3^2), c_3 = 1/2 \cdot \text{tr} (\gamma_2^2 \cdot \gamma_3^2), c_4 = 1/2 \cdot \text{tr} (\gamma_2^2 \cdot \gamma_3^{-2}).$ By the transformation

$$\begin{cases} y_0 = x_0 + c_1 x_1 + c_2 x_2 + c_3 x_3, \\ y_1 = 1/(2 - 2c_1^2) \cdot \{(1 - c_1^2) x_1 + (c_1 c_2 - c_3) x_2 + (c_2 - c_1 c_3) x_3\}, \\ y_2 = 1/2 \cdot x_3, \\ y_3 = 1/(4 - 4c_1^2) \cdot (x_2 + c_1 x_3), \end{cases}$$

we have

$$n(\xi) = y_0^2 + (4 - 4c_1^2)y_1^2 - 4(c_1^2 + c_2^2 + c_3^2 - 2c_1c_2c_3 - 1)y_2^2 - 16(1 - c_1^2)(c_1^2 + c_2^2 + c_3^2 - 2c_1c_2c_3 - 1)y_3^2.$$

Put

$$a=4c_1^2-4$$
,  $b=4(c_1^2+c_2^2+c_3^2-2c_1c_2c_3-1)$ .

By an elementary calculation we see that

$$a=t_2^2(t_2^2-4)$$
,  $b=t_2^2t_3^2(t_1^2+t_2^2+t_3^2+t_1t_2t_3-4)$ .

Thus we have  $n(\xi)=y_0^2-ay_1^2-by_2^2+aby_3^2$ . It follows that A is isomorphic to  $\left(\frac{a,\,b}{k}\right)$ . q. e. d.

Let  $k_{\mathfrak{p}}$  be the completion of k at a finite prime spot  $\mathfrak{p}$  of k. By the calculation of the Hilbert symbol  $\left(\frac{a,\,b}{\mathfrak{p}}\right)$  we know whether  $A_{\mathfrak{p}} = A \bigotimes_k k_{\mathfrak{p}}$  is a division algebra or not. Since all fields k which we are concerned with are cyclotomic, it is a straightforward work to calculate  $\left(\frac{a,\,b}{\mathfrak{p}}\right)$ . Let D(A) be the product of all  $\mathfrak{p}$  such that  $A_{\mathfrak{p}}$  is a division quaternion algebra. D(A) is called the discriminant of A. Now we obtain the following table:

|       |                                                                                           | $(e_1, e_2, e_3)$                    | )                                                 |              | k                      | D(A)                                   |
|-------|-------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|--------------|------------------------|----------------------------------------|
| I     | $(2, 3, \infty)$ $(2, 4, \infty)$ $(3, \infty, \infty)$ $(4, 4, \infty)$ $(4, 4, \infty)$ | $(2, 6, \infty)$<br>$(6, 6, \infty)$ | $(2, \infty, \infty) \\ (\infty, \infty, \infty)$ | (3, 3, ∞)    | Q                      | (1)                                    |
| II    | (2, 4, 6) $(2, 6, 6)$ $($                                                                 | (3, 4, 4)                            | (3, 6, 6)                                         |              | Q                      | (2)(3)                                 |
| III   | (2, 3, 8) (2, 4, 8) (<br>(3, 8, 8) (4, 4, 4)                                              | (2, 6, 8)<br>(4, 6, 6)               | (2, 8, 8)<br>(4, 8, 8)                            | (3, 3, 4)    | $Q(\sqrt{2})$          | <b>p</b> <sub>2</sub>                  |
| IV    | (2, 3, 12) (2, 6, 12) (6, 6, 6)                                                           | (3, 3, 6)                            | (3, 4, 12)                                        | (3, 12, 12)  | $Q(\sqrt{3})$          | $\mathfrak{p}_2$                       |
| V     | (2, 4, 12) (2, 12, 12) (                                                                  | (4, 4, 6)                            | (6, 12, 12)                                       |              | $Q(\sqrt{3})$          | $\mathfrak{p}_{\mathfrak{z}}$          |
| VI    | (2, 4, 5) (2, 4, 10) (<br>(5, 10, 10)                                                     | (2, 5, 5)                            | (2, 10, 10)                                       | (4, 4, 5)    | $Q(\sqrt{5})$          | $\mathfrak{p}_2$                       |
| VII   | (2, 5, 6) $(3, 5, 5)$                                                                     |                                      |                                                   |              | $Q(\sqrt{5})$          | $\mathfrak{p}_{\mathfrak{z}}$          |
| VIII  | (2, 3, 10) (2, 5, 10) (                                                                   | (3, 3, 5)                            | (5, 5, 5)                                         |              | $Q(\sqrt{5})$          | $\mathfrak{p}_{\scriptscriptstyle{5}}$ |
| IX    | (3, 4, 6)                                                                                 |                                      |                                                   |              | $Q(\sqrt{6})$          | $\mathfrak{p}_2$                       |
| X     | (2, 3, 7) (2, 3, 14) (3, 3, 7) (7, 7, 7)                                                  | (2, 4, 7)                            | (2, 7, 7)                                         | (2, 7, 14)   | $Q(\cos \pi/7)$        | (1)                                    |
| XI    | (2, 3, 9) (2, 3, 18) (<br>(9, 9, 9)                                                       | (2, 9, 18)                           | (3, 3, 9)                                         | (3, 6, 18)   | $Q(\cos \pi/9)$        | (1)                                    |
| XII   | (2, 4, 18) (2, 18, 18) (                                                                  | (4, 4, 9)                            | (9, 18, 18)                                       |              | $Q(\cos \pi/9)$        | $\mathfrak{p}_2 \cdot \mathfrak{p}_3$  |
| XIII  | (2, 3, 16) (2, 8, 16) (                                                                   | 3, 3, 8)                             | (4, 16, 16)                                       | (8, 8, 8)    | $Q(\cos \pi/8)$        | $\mathfrak{p}_{2}$                     |
| XIV   | (2, 5, 20) (5, 5, 10)                                                                     |                                      |                                                   |              | $Q(\cos \pi/10)$       | $\mathfrak{p}_2$                       |
| XV    | (2, 3, 24) (2, 12, 24) (<br>(12, 12, 12)                                                  | (3, 3, 12)                           | (3, 8, 24)                                        | (6, 24, 24)  | $Q(\cos \pi/12)$       | $\mathfrak{p}_2$                       |
| XVI   | (2, 5, 30) (5, 5, 15)                                                                     |                                      |                                                   |              | $Q(\cos \pi/15)$       | $\mathfrak{p}_{_3}$                    |
| XVII  | (2, 3, 30) (2, 15, 30) (                                                                  | (3, 3, 15)                           | (3, 10, 30)                                       | (15, 15, 15) | $Q(\cos \pi/15)$       | $\mathfrak{p}_{\scriptscriptstyle{5}}$ |
| XVIII | (2, 5, 8) (4, 5, 5)                                                                       |                                      |                                                   |              | $Q(\sqrt{2},\sqrt{5})$ | $\mathfrak{p}_{\scriptscriptstyle 2}$  |
| XIX   | (2, 3, 11)                                                                                |                                      |                                                   |              | $Q(\cos \pi/11)$       | (1)                                    |

Table (1)

In the above table we denote by  $\mathfrak{p}_p$  the prime spot of k lying on the rational prime (p). As to  $\mathfrak{p}_p$  appearing in table (1) (p) does not split in k. Therefore,

 $\mathfrak{p}_p$  is uniquely determined by (p).

REMARK. In view of Proposition 1 table (1) can be considered as the table of classification of all arithmetic triangle groups with respect to commensurability in the wide sense.

## § 3. Signatures of the groups $\Gamma^{(1)}(A, O_1)$ , $\Gamma^{(+)}(A, O_1)$ and $\Gamma^{(*)}(A, O_1)$ .

Let  $\Gamma$  be an arithmetic triangle group of type  $(e_1, e_2, e_3)$ . Then  $\Gamma$  has the presentation:

$$\Gamma = \langle \gamma_1, \gamma_3, \gamma_3; \gamma_1^{e_1} = \gamma_2^{e_2} = \gamma_3^{e_3} = \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = \pm 1_2 \rangle.$$

For any  $\gamma \in \Gamma$  we have the expression

$$\gamma = \pm \gamma_{i_1}^{a_1} \cdots \gamma_{i_r}^{a_r}$$
.

Suppose that both of  $e_2$  and  $e_3$  are even. Put

$$\nu_{23}(\gamma) = \sum_{i_j=2,3} a_j \pmod{2}$$
.

Then  $\nu_{23}$  is well-defined and is a homomorphism of  $\Gamma$  onto  $\mathbb{Z}/2\mathbb{Z}$  (cf. [13]). Hence  $\Gamma_{23} = \operatorname{Ker}(\nu_{23})$  is a normal subgroup of  $\Gamma$  of index 2.

LEMMA 1. Let  $\Gamma$  be a triangle group of type  $(e_1, e_2, e_3)$ , where  $e_j < \infty$ ,  $e_2$  and  $e_3$  are even. Let  $\Gamma_{23}$  be as above. Then the following assertions hold:

If  $e_2=2$ ,  $e_3\geq 4$ , then  $\Gamma_{23}$  is a triangle group of type  $(e_1, e_2, e_3/2)$ .

If  $e_2 \ge 4$ ,  $e_3 \ge 4$ , then the signature of  $\Gamma_{23}$  is (0;  $e_1$ ,  $e_1$ ,  $e_2/2$ ,  $e_3/2$ ).

PROOF. First consider the case  $e_2 \ge 4$ ,  $e_3 \ge 4$ . Put

$$\delta_1 = \gamma_1, \quad \delta_2 = \gamma_2 \cdot \gamma_1 \cdot \gamma_2^{-1}, \quad \delta_3 = \gamma_2^2, \quad \delta_4 = \gamma_3^2.$$

Then it is easy to see that these are contained in  $\Gamma_{\scriptscriptstyle 23}$  and that

$$\delta_1{}^{e_1} \! = \! \delta_2{}^{e_1} \! = \! \delta_3{}^{e_2/2} \! = \! \delta_4{}^{e_3/2} \! = \! \pm 1_2 \,, \qquad \delta_1 \! \cdot \! \delta_2 \! \cdot \! \delta_3 \! \cdot \! \delta_4 \! = \! 1_2 \,.$$

We shall show that each elliptic  $\gamma$  of  $\Gamma_{23}$  is  $\Gamma_{23}$ -conjugate with one of  $\{\pm\delta_j{}^e\}$   $1\leq j\leq 4\}$ . There exists  $\delta\in\Gamma$  such that  $\gamma=\pm\delta\cdot\gamma_i{}^e\cdot\delta^{-1}$   $(1\leq i\leq 3)$ . Since  $\Gamma=\Gamma_{23}\cup\gamma_2\Gamma_{23}$ ,  $\gamma$  is conjugate with one of  $\{\pm\gamma_i{}^e,\pm\gamma_2\cdot\gamma_i{}^e\cdot\gamma_2{}^{-1}\}$ . If i=1, then  $\gamma$  is conjugate with  $\pm\delta_1{}^e$  or  $\pm\delta_2{}^e$ . If i=2 or 3, by definition of  $\Gamma_{23}$ , e is even. Therefore,  $\gamma$  is conjugate with one of  $\{\pm(\gamma_2{}^2)^{e'},\pm(\gamma_3{}^2)^{e'},(\gamma_2{}\cdot\gamma_3{}^2\cdot\gamma_2{}^{-1})^{e'}\}$ . Since  $\gamma_2{}\cdot\gamma_3{}^2\cdot\gamma_2{}^{-1}=(\gamma_2{}\cdot\gamma_3)\cdot\gamma_3{}^2(\gamma_2\gamma_3)^{-1},\gamma_2{}\cdot\gamma_3\in\Gamma_{23}$ , we see that  $\gamma$  is conjugate with one of  $\{\pm\delta_2{}^{e'},\pm\delta_3{}^{e'},\pm\delta_3{}^{e'}\}$ .

On the other hand, it is easy to see that no pairs of  $\{\delta_j | 1 \le j \le 4\}$  are conjugate with each other. It follows that the signature of  $\Gamma_{23}$  is  $(g; e_1, e_1, e_2/2, e_3/2)$ . By the formula  $2g-2+2(1-1/e_1)+(1-2/e_2)+(1-2/e_3)=$ 

 $[\Gamma:\Gamma_{23}](1-1/e_1-1/e_2-1/e_3)$ , we see that g=0. Similarly, in case  $e_2=2$ ,  $e_3\geq 4$ , we can prove our assertion. q.e.d.

In case where both of  $e_3$  and  $e_1$  (resp.  $e_1$  and  $e_2$ ) are even we can define a homomorphism  $\nu_{31}$  (resp.  $\nu_{12}$ ) of  $\Gamma$  onto  $\mathbb{Z}/2\mathbb{Z}$ . Therefore, we have the subgroup  $\Gamma_{31}$ =Ker  $(\nu_{31})$  (resp.  $\Gamma_{12}$ =Ker  $(\nu_{12})$ ) of  $\Gamma$ . In particular, if all of  $e_j$   $(1 \le j \le 3)$  are even, then  $\Gamma_{23}$ ,  $\Gamma_{31}$  and  $\Gamma_{12}$  are defined and we see easily that  $\Gamma^{(2)} = \Gamma_{23} \cap \Gamma_{31} \cap \Gamma_{12}$ .

LEMMA 2. Let  $\Gamma$  be a triangle group of type  $(e_1, e_2, e_3)$ , where  $e_j < \infty$   $(1 \le j \le 3)$ . Let  $\Gamma^{(2)}$  be the subgroup of  $\Gamma$  generated by  $\{\gamma^2 | \gamma \in \Gamma\}$ . Then the index  $d = [\Gamma\{\pm 1_2\}: \Gamma^{(2)} \cdot \{\pm 1_2\}]$  is equal to 1 or 2 or 4 according to the cases where at least two of  $e_j$  are odd, one of  $e_j$  is odd and the rest are even, all of  $e_j$  are even.

Since this proved in [13], we omit the proof.

Let A be a quaternion algebra over k. Let  $O_1$  and  $O_2$  be maximal orders of A. If there exists  $g \in A$  such that  $O_2 = gO_1g^{-1}$ , we say that  $O_1$  and  $O_2$  are of the same type. This is an equivalence relation and the number T(A) of classes with respect to this relation is called the type number of A. Let  $h(O_1)$  be the class number of  $O_1$ . Then it is well-known that  $T(A) \leq h(O_1)$ .

PROPOSITION 3. Let  $h(O_1)$  and T(A) be the class number of a maximal order  $O_1$  and the type number of A respectively. Then  $T(A)=h(O_1)=1$  for all quaternion algebras A appearing in table (1).

PROOF. Let k be the center of A. Let  $\mathfrak{M} = \prod_{i=2}^{n} \mathfrak{p}_{i\infty}$ , where  $\mathfrak{p}_{i\infty}$  is the infinite prime spot of k corresponding to  $\varphi_i$ . Let I(k) and P(k) be the groups of all fractional ideals and principal ideals in k respectively. Put

$$P(k, \mathfrak{M}) = \{(a) \in P(k) \mid a \equiv 1 \pmod{\mathfrak{M}}\}.$$

Let h(k) = [I(k): P(k)] and let  $h_1(k) = [I(k): P(k, \mathfrak{M})]$ . Then we have  $h_1(k) = h(k)[P(k): P(k, \mathfrak{M})]$ . Let E(k) be the group of all units of k and put

$$E_0(k) = \{e \in E(k) | e \text{ is totally positive}\}$$
,

$$E_1(k) = \{e \in E(k) | e \equiv 1 \pmod{\mathfrak{M}}\}.$$

Then we have  $[P(k):P(k,\mathfrak{M})]=2^{n-1}/[E(k):E_1(k)]$ . By making use of Minkowski's theorem and a result in Kubota [4] we see that h(k)=1 for all k appearing in table (1). On the other hand, by making use of the table of fundamental units in Billevič [1] we obtain the following table:

| k                      | $[E(k):E_0(k)]$ | $[E_0(k):(E(k))^2]$ | $[E(k):E_1(k)]$ | $d_k$ |
|------------------------|-----------------|---------------------|-----------------|-------|
| Q                      | 2               | 1 .,                | 1               | 1,    |
| $Q(\sqrt{2})$          | $2^2$           | 1                   | 2               | 8     |
| $Q(\sqrt{3})$          | . 2             | 2                   | 2               | 12    |
| $Q(\sqrt{5})$          | $2^2$           | 1                   | 2               | 5     |
| $Q(\sqrt{6})$          | 2               | 2                   | .2              | 24    |
| $Q(\cos \pi/7)$        | $2^{3}$         | 1                   | $2^{2}$         | 49    |
| $Q(\cos \pi/9)$        | $2^{3}$         | 1                   | $2^{2}$         | 81    |
| $Q(\cos \pi/8)$        | $2^4$           | 1                   | $2^3$           | 2048  |
| $Q(\cos \pi/10)$       | $2^{3}$         | 2                   | $2^3$           | 2000  |
| $Q(\cos\pi/12)$        | $2^{3}$         | 2                   | $2^{3}$         | 2304  |
| $Q(\cos \pi/15)$       | $2^{3}$         | 2                   | $2^{3}$         | 1125  |
| $Q(\sqrt{2},\sqrt{5})$ | $2^4$           | 1                   | $2^{3}$         | 1600  |
| $Q(\cos\pi/11)$        | 25              | 1                   | 24              | 14641 |

Table (2)

In the above table we denote by  $d_k$  the discriminant of k. From the above table we see that  $[E(k): E_1(k)] = 2^{n-1}$ , where n = [k:Q]. Therefore, we have  $h_1(k) = 1$  for all fields k appearing in table (1). On the other hand, Let  $O_1$  be a maximal order of A. Then by Eichler's theorem in [2] we have  $h(O_1) = h_1(k)$ . Since  $T(A) \leq h(O_1)$ , we see that  $T(A) = h(O_1) = 1$ . q. e. d.

Let  $O_1$  be a maximal order of A. Put

$$\Gamma^{\text{(+)}}(A,\,O_{\scriptscriptstyle 1}) = \{ 
ho_{\scriptscriptstyle 1}(arepsilon) \,|\, arepsilon \in O_{\scriptscriptstyle 1},\, n(arepsilon) \in E_{\scriptscriptstyle 0}(k) \}$$
 ,

$$\Gamma^{(*)}(A, O_1) = \{ \rho_1(\alpha) | \alpha \in A, \alpha O_1 = O_1\alpha, n(\alpha) \text{ is totally positive} \}.$$

Then these are subgroups of  $GL_2^+(\mathbf{R}) = \{g \in GL_2(\mathbf{R}) | \det(g) > 0\}$  and can be considered as Fuchsian groups of the first kind. By the formula of Shimizu in [8] we have

$$\mathrm{vol}\,(H/\varGamma^{(1)}(A,\,O_1)) {=} 4^{1-n} {\cdot} \pi^{-2n} d_k^{\,\,3/2} \zeta_k(2) \prod_{\mathfrak{p} \, | \, D(A)} (n_{k/\!\!Q}(\mathfrak{p}) - 1),$$

where  $\zeta_k(s)$  is the Dedekind zeta function of k. By a result in Shimura [9] we have

$$\begin{split} & \text{vol} \; (H/\varGamma^{\text{(1)}}(A,\,O_1)) \!\! = \!\! \lfloor E_0(k) : (E(k))^2 \rfloor \, \text{vol} \; (H/\varGamma^{\text{(+)}}(A,\,O_1)) \; , \\ & \text{vol} \; (H/\varGamma^{\text{(+)}}(A,\,O_1)) \!\! = \!\! \lfloor L_1 : \, L_2 \rfloor \, \text{vol} \; (H/\varGamma^{\text{(*)}}(A,\,O_1)) \; , \end{split}$$

where  $L_1$  and  $L_2$  are defined as follows:

$$L_1 = \{(a) = \mathfrak{p}_1 \cdots \mathfrak{p}_r \mathfrak{a}^2 \mid a \text{ is totally positive in } k, \mathfrak{p}_i \mid D(A), \mathfrak{a} \in I(k) \} ,$$

$$L_2 = \{(a^2) \mid a \text{ is non-zero in } k \} .$$

Since h(k)=1 and D(A) is given, it is easy to calculate  $[L_1:L_2]$ . Now we shall determine the signatures of  $\Gamma^{(1)}(A,O_1)$ ,  $\Gamma^{(+)}(A,O_1)$  and  $\Gamma^{(*)}(A,O_1)$  for each A appearing in table (1). Let  $\Gamma$  be the triangle group with the minimum  $\operatorname{vol}(H/\Gamma)$  among the groups with which A is associated. Since  $\Gamma^{(2)}$  is a subgroup of  $\Gamma^{(1)}(A,O_1)$ , in view of tables (1) and (2) by Lemmas 1 and 2 we obtain the following table:

| k                      | D(A)                                        | $[L_1:L_2]$ | $\Gamma^{\scriptscriptstyle (1)}(A,O_{\scriptscriptstyle 1})$ | $\Gamma^{\scriptscriptstyle (+)}(A,O_{\scriptscriptstyle 1})$ | $\Gamma^{(*)}(A, O_1)$ |
|------------------------|---------------------------------------------|-------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------|
| $\overline{Q}$         | (1)                                         | 1           | $(2, 3, \infty)$                                              | $(2,3,\infty)$                                                | $(2, 3, \infty)$       |
| $\dot{Q}$              | (2)(3)                                      | 4           | (0; 2, 2, 3, 3)                                               | (0; 2, 2, 3, 3)                                               | (2, 4, 6)              |
| $Q(\sqrt{2})$          | $\mathfrak{p}_{\scriptscriptstyle 2}$       | 2           | (3, 3, 4)                                                     | (3, 3, 4)                                                     | (2, 3, 8)              |
| $Q(\sqrt{3})$          | $\mathfrak{p}_2$                            | 1           | (3, 3, 6)                                                     | (2, 3, 12)                                                    | (2, 3, 12)             |
| $Q(\sqrt{3})$          | $\mathfrak{p}_{\scriptscriptstyle 3}$       | 1           | (0; 2, 2, 2, 6)                                               | (2, 4, 12)                                                    | (2, 4, 12)             |
| $Q(\sqrt{5})$          | $\mathfrak{p}_{_{2}}$                       | 2           | (2, 5, 5)                                                     | (2, 5, 5)                                                     | (2, 4, 5)              |
| $Q(\sqrt{5})$          | $\mathfrak{p}_{\scriptscriptstyle 3}$       | 2           | (3, 5, 5)                                                     | (3, 5, 5)                                                     | (2, 5, 6)              |
| $Q(\sqrt{5})$          | $\mathfrak{p}_{5}$                          | 2           | (3, 3, 5)                                                     | (3, 3, 5)                                                     | (2, 3, 10)             |
| $Q(\sqrt{6})$          | $\mathfrak{p}_{\scriptscriptstyle 2}$       | 1           | (0; 2, 3, 3, 3)                                               | (3, 4, 6)                                                     | (3, 4, 6)              |
| $Q(\cos \pi/7)$        | (1)                                         | 1           | (2, 3, 7)                                                     | (2, 3, 7)                                                     | (2, 3, 7)              |
| $Q(\cos \pi/9)$        | (1)                                         | 1           | (2, 3, 9)                                                     | (2, 3, 9)                                                     | (2, 3, 9)              |
| $Q(\cos \pi/9)$        | $\mathfrak{p}_2 \! \cdot \! \mathfrak{p}_3$ | 4           | (0; 2, 2, 9, 9)                                               | (0; 2, 2, 9, 9)                                               | (2, 4, 18)             |
| $Q(\cos \pi/8)$        | $\mathfrak{p}_{\scriptscriptstyle 2}$       | 2           | (3, 3, 8)                                                     | (3, 3, 8)                                                     | (2, 3, 16)             |
| $Q(\cos \pi/10)$       | $\mathfrak{p}_{\scriptscriptstyle 2}$       | 1           | (5, 5, 10)                                                    | (2, 5, 20)                                                    | (2, 5, 20)             |
| $Q(\cos \pi/12)$       | $\mathfrak{p}_2$                            | 1           | (3, 3, 12)                                                    | (2, 3, 24)                                                    | (2, 3, 24)             |
| $Q(\cos \pi/15)$       | $\mathfrak{p}_{\scriptscriptstyle 3}$       | 1           | (5, 5, 15)                                                    | (2, 5, 30)                                                    | (2, 5, 30)             |
| $Q(\cos \pi/15)$       | $\mathfrak{p}_{\mathfrak{s}}$               | 1           | (3, 3, 15)                                                    | (2, 3, 30)                                                    | (2, 3, 30)             |
| $Q(\sqrt{2},\sqrt{5})$ | $\mathfrak{p}_{\scriptscriptstyle 2}$       | 2           | (4, 5, 5)                                                     | (4, 5, 5)                                                     | (2, 5, 8)              |
| $Q(\cos \pi/11)$       | (1)                                         | 1           | (2, 3, 11)                                                    | (2, 3, 11)                                                    | (2, 3, 11)             |

Table (3)

Incidentally, we have

[4, 8, 8]

[2, 8, 8]

The values  $\zeta_k(2)$  given above coincide with results in various papers Lang [5], Meyer [6] and Siegel [10].

### § 4. Diagrams of inclusion among the groups $[e_1, e_2, e_3]$ .

Let  $\Gamma$  be a triangle group of type  $(e_1, e_2, e_3)$ . Then  $\Gamma \cdot \{\pm 1_2\}$  is also of this type and these groups are the same one as transformation groups on the upper half plane  $H = \{z \in C | \operatorname{Im}(z) > 0\}$ . Denote this group  $\Gamma \cdot \{\pm 1_2\}$  by  $[e_1, e_2, e_3]$ . Then  $[e_1, e_2, e_3]$  is uniquely determined by the type  $(e_1, e_2, e_3)$  up to  $SL_2(\mathbf{R})$ -conjugation. Suppose that  $[e_1, e_2, e_3]$  and  $[e_1', e_2', e_3']$  are commensurable with each other in the wide sense. Then by a suitable  $SL_2(\mathbf{R})$ -conjugation we may assume that these groups are commensurable with each other. Therefore, in each commensurability class in the wide sense we may choose the groups  $[e_1, e_2, e_3]$  for all types  $(e_1, e_2, e_3)$  such that these groups are commensurable with each other. By making use of the results in Greenberg [3], Petersson [7] and Singerman [11] and Lemmas 1, 2 and Proposition 3, we obtain the following diagrams:



[4, 4, 4]

















In the above diagrams by the number over or under the line connecting two groups we mean the group index between them.

#### References

- [1] Биллевич, К.К., Об единица алгебраических полей третьего и четвертого порядков, Математический Сборник Т. 40 (80) (1956), 123-136.
- [2] Eichler, M., Bestimmung der Idealklassenzahl in gewissen normal einfach Algebren, J. Reine Angew. Math. 176 (1936), 192-202.
- [3] Greenberg, L., Maximal Fuchsian groups, Bull. Amer. Math. Soc. 69 (1963), 569-573.
- [4] Kubota, T., Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85.
- [5] Lang, H., Über eine Gattung elementar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper, J. Reine Angew. Math. 233 (1968), 123-175.
- [6] Meyer, C., Über die Bildung von elementar-arithmetischen Klasseninvarianten in reell-quadratischen Zahlkörpern, Mannheim, 1966.
- [7] Petersson, H., Über die eindeutige Bestimmung und die Erweiterungsfähigkeit von gewissen Grenzkreisgruppen, Abh. Math. Sem. [Univ. Hamburg 12 (1938), 180-199.
- [8] Shimizu, H., On zeta functions of quaternion algebras, Ann. of Math. 81 (1965), 166-193.
- [9] Shimura, G., Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
- [10] Siegel, C.L., Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1969) 87-102.
- [11] Singerman, D., Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29-38.
- [12] Takeuchi, K., A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan, 27 (1975), 600-612.
- [13] Takeuchi, K., Arithmetic triangle groups (to appear in J. Math. Soc. Japan).

(Received July 12, 1976)

Kisao Takeuchi Department of Mathematics Faculty of Science Saitama University Urawa, Saitama, 338 Japan