Reinforcement Learning

Lecture 8: Policy gradient methods

Chris G. Willcocks

Durham University

Lecture overview

Lecture covers chapter 13 in Sutton & Barto [1] and examples from David Silver [2]

- Policy-based methods
- definition
- characteristics
- deterministic vs stochastic policies
- 2 Policy gradients
- gradient-based estimator
- Monte Carlo REINFORCE
- 3 Actor-critic methods
- definition
- algorithm
- function approximation error in AC methods
- extensions

Policy-based methods introduction

Definition: policy-based methods

Last week, we used a function approximator to estimate the value function:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s),$$

and for control we estimated Q:

$$\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a).$$

This week we will estimate policies:

$$\pi_{\theta}(a|s) = P(a|s,\theta)$$

Given a state, what's the distribution over actions?

Example: what's the optimal policy?

Policy-based methods characteristics

Policy-based RL characteristics

This approach has the following **advantages**:

- Can be more efficient that calculating the value function
- Better convergence guarantees
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

And the following disadvantages:

- Converges on local rather than global optimum
- Inefficient policy evaluation with high variance

Example: continuous action spaces •

Policy-based methods deterministic vs stochastic policies

Example: deterministic vs stochastic policies Deterministic policy for feature vectors describing the walls around a state: Stochastic policy:

Example from [2].

Policy gradients gradient estimators

Definition: gradient estimators

While we could optimise θ for non-differentiable functions using approaches such as genetic algorithms or hill climbing, ideally we want to use a gradient based estimator:

$$\mathcal{L}^{\mathsf{PG}}(\theta) = \hat{\mathbb{E}}_t \left[\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \hat{A}_t \right]$$

where \hat{A}_t is an estimate of the 'advantage' (difference between the return and the state values, you could also replace \hat{A}_t with q(s,a) instead for higher variance). The expectation $\hat{\mathbb{E}}_t$ is an empircal average over a finite batch of samples [3]. Typically π follows a categorical distribution (softmax) or a Gaussian for continuous action spaces.

Therefore we empirically follow the gradient that maximizes the likelihood of the actions that give the most advantage.

Policy gradients Monte Carlo REINFORCE

Definition: Monte Carlo REINFORCE

REINFORCE estimates the return in the previous equation by using a Monte Carlo estimate [4].

- Initialise some arbitrary parameters θ
- Iteratively sample episodes
- Calculate the complete return from each step
- For each step again, update in the gradient times the sample return

Algorithm: Monte Carlo REINFORCE

PyTorch example: 🗹

 $\begin{tabular}{ll} \# \mbox{ initialise } \theta \mbox{ with random values} \\ \pi = \mbox{PolicyNetwork}(\theta) \end{tabular}$

while(True):

sample episode following π $S_0, A_0, R_1, ..., S_{T-1}, A_{T-1}, R_T \sim \pi$

for
$$t$$
 in range $(T-1)$:

$$G_t \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla \ln \pi(A_t | S_t, \theta)$$

Actor-critic methods introduction

Definition: actor-critic methods

We combine policy gradients with action-value function approximation, using two models that may (optionally) share parameters.

• We use a **critic** to estimate the *Q* values:

$$q_{\mathbf{W}}(s,a) \approx q^{\pi_{\theta}}(s,a)$$

 We use an actor to update the policy parameters θ in the direction suggested by the critic.

Example: Actor critic

Actor-critic methods algorithm

Definition: actor-critic

Putting this together, actor-critic methods use an approximate policy gradient to adjust the actor policy in the direction that maximises the reward according to the critic:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) q_{\mathbf{w}}(s, a)$$

Algorithm: Actor-Critic (**PyTorch** ☑)

```
# initialise s, \theta, \mathbf{w} randomly # sample a \sim \pi_{\theta}(a|s) for t in range(T): sample r_t and s' from environment(s, a) sample a' \sim \pi_{\theta}(a'|s') \theta \leftarrow \theta + \alpha q_{\mathbf{w}}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s) # update actor \delta_t = r_t + \gamma q_{\mathbf{w}}(s', a') - q_{\mathbf{w}}(s, a) # TD error \mathbf{w} \leftarrow \mathbf{w} + \alpha \delta_t \nabla_{\mathbf{w}} q_{\mathbf{w}}(s, a) # update critic a \leftarrow a', s \leftarrow s'
```

Actor-critic methods TD3

Function approximation error in actor-critic

In practice, tricks are needed to reduce function approximation in actor-critic methods. TD3 [5]:

- Dual critic networks + actor network
- Adds $\epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$ to actions
- Delayed policy updates, replay buffer

Algorithm: TD3 [5]

Initialize critic networks $Q_{\theta_1}, Q_{\theta_2}$, and actor network π_{ϕ} with random parameters θ_1, θ_2, ϕ Initialize target networks $\theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi$ Initialize replay buffer \mathcal{B}

for t = 1 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'Store transition tuple (s, a, r, s') in \mathcal{B}

 $\begin{array}{l} \text{Sample mini-batch of N transitions } (s,a,r,s') \text{ from } \mathcal{B} \\ \tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \operatorname{clip}(\mathcal{N}(0,\tilde{\sigma}), -c,c) \\ y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s',\tilde{a}) \end{array}$

Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$ if $t \mod d$ then

Update ϕ by the deterministic policy gradient:

 $\nabla_{\phi}J(\phi) = N^{-1} \sum_{} \nabla_{a}Q_{\theta_{1}}(s,a)|_{a=\pi_{\phi}(s)} \nabla_{\phi}\pi_{\phi}(s)$ Update target networks:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$
$$\phi' \leftarrow \tau \phi + (1 - \tau)\phi'$$

end if

Extensions and further reading

Extensions

This has introduced the foundations, hopefully now you have a good platform to read about the extensions to this.

- 1. Recommended further study (papers & code): 🗗
- 2. Recommended further study (theory & STAR):

Extensions include:

- Advantage actor critic (A3C & A2C) [6]
- Experience replay & prioritised replay [7]
- Proximal policy optimisation [3]
- Addressing Function Approximation Error in Actor-Critic Methods (TD3) [5] - recommended starter

Take Away Points

Summary

In summary:

- Policy gradients open up many new extensions
- Choose extensions to reduce variance to stabilise training
- Consider regularisation to encourage exploration
- Going off-policy gives better exploration
- Its possible for the actor and critic to share some lower layer parameters, but be careful about it
- Experience replay can increase sample efficiency (where simulation is expensive)

References I

- [1] Richard S Sutton and Andrew G Barto.

 Reinforcement learning: An introduction (second edition). Available online . MIT press, 2018.
- [2] David Silver. Reinforcement Learning lectures. https://www.davidsilver.uk/teaching/. 2015.
- [3] John Schulman et al. "Proximal policy optimization algorithms". In: arXiv preprint arXiv:1707.06347 (2017).
- [4] Ronald J Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: <u>Machine learning</u> 8.3-4 (1992), pp. 229–256.
- [5] Scott Fujimoto, Herke Hoof, and David Meger. "Addressing function approximation error in actor-critic methods". In: International Conference on Machine Learning. PMLR. 2018, pp. 1587–1596.
- [6] Volodymyr Mnih et al. "Asynchronous methods for deep reinforcement learning". In: International conference on machine learning. 2016, pp. 1928–1937.

References II

- [7] Ziyu Wang et al. "Sample efficient actor-critic with experience replay". In: arXiv preprint arXiv:1611.01224 (2016).
- [8] Shixiang Gu et al. "Q-prop: Sample-efficient policy gradient with an off-policy critic". In: arXiv preprint arXiv:1611.02247 (2016).