Mechanik

Kinematik

Ortsvektor: $\vec{r}(t)$

Geschwindigkeit: $\vec{v}(t) = \frac{d\vec{r}}{dt}$

Beschleunigung: $\vec{a}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$

Kreisbewegung

Winkel: $\varphi = \frac{b}{r} = \frac{\text{Bogenlänge}}{\text{Radius}}$

Winkelgeschwindigkeit: $\vec{\omega}(t) = \frac{d\vec{\varphi}}{dt}$

Bahngeschwind.: $\vec{v} = \vec{\omega} \times \vec{r}$

Zentripetalbeschl.: $\vec{a}_{\rm Z} = -r\omega^2 \vec{e}_{\rm r}$

Kraft und Impuls

Impuls: $\vec{p} = m \cdot \vec{v}$

Kraft: $\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$

Hookesche: F(x) = -Dx

Stauchung/Dehnung x

Arbeit, Energie, Leistung

Kin. Energie: $E_{\rm kin} = \frac{1}{2}mv^2$

Arbeit: $W = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r}$

Pot. Energie: $E_{\rm pot}(\vec{r}) = -\int_{\vec{r_0}}^{\vec{r}} \vec{F}(\vec{r'}) \cdot \mathrm{d}\vec{r'}$

Leistung: $P = \frac{\mathrm{d}W}{\mathrm{d}t}$

Gravitationsfeld

Gravitationskraft:

 $\vec{F}_{\rm G} = -G \frac{m_1 \cdot m_2}{r^2} \cdot \vec{e}_r$

Feldstärke: $\vec{g} = \frac{\vec{F}}{m_2}$

Potential: $\phi_{\text{pot}} = \frac{E_{\text{pot}}}{m_2}$

Drehbewegung, Rotation starrer Körper

Massenmittelpunkt: $\vec{r}_{SP} = \frac{\sum m_i \vec{r}_i}{M_{ges}} = \frac{1}{M} \int \vec{r} \cdot dM$

Drehimpuls: $\vec{L} = \vec{r} \times \vec{p}$

Drehmoment: $\vec{M} = \vec{r} \times \vec{F} = \frac{d\vec{L}}{dt}$

Feste Achse A: $\vec{L} = J_{A} \cdot \vec{\omega}_{A}$

Trägheitsmoment: $J = \int r^2 dm$

Satz von Steiner: $J_{\rm d} = J_{\rm Schwerpunkt} + md^2$

Rotationsenergie: $E_{\rm rot} = \frac{1}{2}J\omega^2$

Arbeit: $W = \int \vec{M} \cdot d\vec{\varphi}$

Scheinkräfte

BGL:

Ansatz:

gleichförmig rotierendes Bezugssystem

Zentrifugalkraft: $\vec{F}_{\text{ZF}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$

Corioliskraft: $\vec{F}_{\rm C} = -2m\vec{\omega} \times \vec{v}$

Reibung

Reibungskraft: $\left| \vec{F}_{\mathrm{R}} \right| = \mu \left| \vec{F}_{\mathrm{N}} \right|$

Stoke'sche Reibung: $\vec{F}_{\rm R} = -6\pi\eta r\vec{v}$

Newton'sche Reibung: $\vec{F}_{\mathrm{R}} = -\frac{1}{2} c_{\mathrm{W}} \rho A \, |\vec{v}| \, \vec{v}$

Harmonische Schwingung

frei

 $m\ddot{x} = -Dx$

 $x(t) = x_0 \sin(\omega_0 t + \varphi)$ $\omega_0 = \sqrt{\frac{D}{m}}$

gedämpft

 $m\ddot{x} = -Dx - \beta \dot{x}$

$$x(t) = Ae^{-\delta t}\cos(\omega t + \varphi)$$
$$\omega = \sqrt{\omega_0^2 - \delta^2}, \ \delta = \frac{\beta}{2\pi}$$

erzwungen

 $m\ddot{x} = -Dx - \beta \dot{x} + F_{\text{extern}}(t)$

(Harmonische) Wellen 1D

$$\frac{\partial^2 \xi(x,t)}{\partial x^2} = \frac{1}{v_{\rm Phase}^2} \frac{\partial^2 \xi(x,t)}{\partial t^2}$$

Phasengeschwindigkeit v_{Phase}

$$\xi(x,t) = A\cos(\omega t - kx)$$

Amplitude A, Wellenzahl k, Kreisfrequenz ω

Doppler-Effekt

Geschwindigkeit des Empfängers/Senders v

Bewegter Sender:
$$f_{\rm e} = f_{\rm s} \left(\frac{v_{\rm Phase}}{v_{\rm Phase} \pm v} \right)$$

Bewegter Sender:
$$f_{\rm e} = f_{\rm s} \left(\frac{v_{\rm Phase}}{v_{\rm Phase} \pm v} \right)$$

Bewegter Empfänger: $f_{\rm e} = f_{\rm s} \left(1 \pm \frac{v}{v_{\rm Phase}} \right)$

Ruhende Flüssigkeiten

Druck:
$$p = \frac{|\vec{F}|}{|\vec{A}|}$$

Kompressibilität: $\kappa = -\frac{1}{V} \cdot \frac{\partial V}{\partial p}$

Schweredruck: $p = \rho gh$

Auftrieb: $F_{\text{Auftrieb}} = \rho_{\text{Fluid}} V_{\text{verdrängt}} g$

Oberflächenspannung: $\sigma = \frac{\Delta W}{\Delta A}$

Strömende Flüssigkeiten

Bernoulli-Gleichung: $p + \frac{1}{2}\rho u^2 + \rho gh = \text{const}$

Kontinuitätsgl.: $A_1u_1 = A_2u_2$

Hagen-Poiseuille: $\frac{V}{t}=\frac{\pi R^4}{8\eta}\frac{\Delta p}{L}=\frac{\pi R^4}{8\eta}\frac{\partial p}{\partial z}$

Thermodynamik und ideale Gase

Ideale Gase

Stoffmenge: ν , allg. Gaskonstante: R

Teilchenzahl: N, Boltzmann-Konst.: $k_{\rm B}$

Freiheitsgrade: f

$$pV = \nu RT = Nk_{\rm B}T$$

Innere Energie: $U = \nu f \frac{1}{2}RT = \nu c_V T$

Entropie: $dS = \frac{dQ}{T}$

barometr. Höhenformel: $p(h) = p_0 \cdot e^{-\frac{\rho_0 g h}{p_0}}$

Adiabate: $pV^{\frac{c_p}{c_V}} = pV^{1+\frac{2}{f}} = pV^{\gamma} = \text{konst.}$

Wirkungsgrad: $\eta = \left| \frac{\Delta W_{\text{ges}}}{Q_{\text{ein}}} \right|$

Wärme-menge, -leitung, -ausdehnung

Wärmekapazität (WK): C, massenspez. WK: c

molare WK: c_{molar} , Stefan-Boltzmann-Konst.: σ_{SB}

 $dQ = C \cdot dT = c \cdot m \cdot dT = c_{\text{molar}} \cdot \nu \cdot dT$

Wärmestrom: $\frac{dQ}{dt} = -\lambda \cdot A \cdot \frac{dT}{dx}$

Strahlungsleistung (schw. Körper): $P = \sigma_{SB}AT^4$

lin. Ausdehnung: $l(\vartheta) = l_0(1 + \alpha(\vartheta - \vartheta_0))$

Volumenausdehnung: $V(\vartheta) = V_0(1 + \gamma(\vartheta - \vartheta_0))$

1. Hauptsatz der Thermodynamik

$$\Delta U = \Delta Q + \Delta W \text{ mit } \Delta W = -\int p dV$$

Elektromagnetismus

Elektrisches Feld

Coulombkraft: $\vec{F}_{\rm C} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 \cdot q_2}{r^2} \cdot \vec{e}_r$

Feldstärke: $\vec{E} = \frac{\vec{F}}{q_2}$

Potential: $\varphi_{\text{pot}} = \frac{E_{\text{pot}}}{q_2}$

Fluss: $\Phi_E = \int_A \vec{E} \cdot d\vec{A}$

Punktladung:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \cdot \vec{e_r}$$

$$\varphi_{\rm pot} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r} + {\rm konst}$$

Elektrischer Dipol

$$\stackrel{-q}{-}$$
 $\stackrel{\rightharpoonup}{d}$ $\stackrel{+q}{+}$

Diplomoment: $\vec{p_e} = q \cdot \vec{d}$

im homogenen Feld

$$\vec{M} = \vec{p_e} \times \vec{E}$$

$$E_{\rm pot} = -\vec{p_e} \cdot \vec{E}$$

Felder mit Dielektrikum

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon_0 \vec{E} + \vec{P}$$

Polarisation:

$$\vec{P} = \frac{N}{V} \cdot \vec{p_e} = n \cdot \vec{p_e}$$

Energiedichte:

$$w_e = \frac{\mathrm{d}W_e}{\mathrm{d}V} = \frac{1}{2}\vec{E}\cdot\vec{D}$$

Elektrischer Strom, Widerstand, Leistung

Stromstärke $I=\frac{\mathrm{d}Q}{\mathrm{d}t}=\int \vec{j}\mathrm{d}\vec{A}$

Stromdichte: $\vec{j} = n \cdot q \cdot \vec{v}_{\rm d}$

Ladungsträgerbeweglichkeit: $\mu = \frac{v_{\rm d}}{E}$

Driftgeschwindigkeit: $\vec{v}_{\rm d}$

Ladungsträgerdichte: n

Widerstand: $R = \frac{U}{I}$

Ohmsches Gesetz: $\vec{j} = \sigma \cdot \vec{E}$

spez. Leitfähigkeit σ

el. Leistung: $P = U \cdot I$

Kontinuitätsgleichung:

$$\nabla \cdot \vec{j}(\vec{r},t) = -\frac{\partial}{\partial t} \rho(\vec{r},t)$$

Raumladungsdichte ρ

Kondensator

Kapazität: $C = \frac{Q}{U}$

Spannung/Potentialdifferenz U

Feldenergie: $W_e = \frac{1}{2}CU^2$

Plattenkondensator:

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

$$E = \frac{U}{d}$$

Homogener Leiter, Schaltung von Widerständen/Kondensatoren

homogener Leiter: $R = \frac{1}{\sigma} \frac{l}{A}$

$$R_{\rm A} = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

$$R_{\rm B} = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

$$R_{\rm C} = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

in Reihe: $R_{\text{ges}} = \sum_{i} R_{i}$ $\frac{1}{C_{\text{ges}}} = \sum_{i} \frac{1}{C_{i}}$ parallel: $\frac{1}{R_{\text{ges}}} = \sum_{i} \frac{1}{R_{i}}$ $C_{\text{ges}} = \sum_{i} C_{i}$

Magnetfeld, Lorentzkraft, Magnetischer Dipol

Biot-Savart-Gesetz:

$$d\vec{B} = \frac{\mu_r \cdot \mu_0}{4\pi} \cdot \frac{I \cdot d\vec{l} \times \vec{r}}{r^3}$$

Lorentzkraft:

$$\begin{split} \vec{F}_{\rm L} &= q \cdot \left(\vec{E} + \vec{v} \times \vec{B} \right) \\ \vec{F}_{\rm m} &= I \cdot \vec{l} \times \vec{B} \end{split}$$

Dipolmoment $\vec{p}_{\rm m} = I \cdot \vec{A}$

in homogenen B-Feld:

$$\vec{M} = \vec{p}_{\rm m} \times \vec{B},$$

$$E_{\rm pot} = -\vec{p}_{\rm m} \cdot \vec{B}$$

Magnetischer Fluss, Induktion

Fluss durch Fläche A: $\phi_B = \int_A \vec{B} \cdot \mathrm{d}\vec{A}$

Induktionsspannung: $|U_i| = N \cdot \left|\frac{\mathrm{d}\phi_B}{\mathrm{d}t}\right| = L \cdot \left|\frac{\mathrm{d}I}{\mathrm{d}t}\right|$

Induktivität: $L = N \cdot \frac{\mathrm{d}\phi_B}{\mathrm{d}I}$

Energie

Energie des Magnetfeldes einer Induktivität:

$$W_{\rm m} = \frac{1}{2}LI^2$$

Energiedichte: $w_{\rm m} = \frac{\mathrm{d}W_{\rm m}}{\mathrm{d}V} = \frac{1}{2}\vec{H}\cdot\vec{B} = \frac{\vec{B}^2}{2\cdot\mu_r\cdot\mu_0}$

Komplexe Wechselstromwiderstände

$$Z = \frac{U}{I} = R + iX$$

mit
$$U = U_0 \cdot e^{i\omega t}$$
, $I = I_0 \cdot e^{i(\omega t + \varphi)}$

Wirkwiderstand: R, Blindwiderstand: X,

Scheinwiderstand: |Z|

Kondensator: $Z_{\rm C} = \frac{1}{i\omega C}$

Ideale Spule: $Z_{\rm L} = i\omega L$

Reale Spule: $Z_{\rm L} = R_{\rm Sp} + i\omega L$

Elektromagnetische Wellen im Vakuum

Wellengleichung 1D: $\frac{\partial^2 \vec{E}}{\partial x^2} = \frac{1}{c^2} \cdot \frac{\partial^2 \vec{E}}{\partial t^2}$

$$\vec{B} = \frac{1}{\omega} \cdot \left(\vec{k} \times \vec{E} \right)$$

Phasengeschwindigkeit: $c^2 = \frac{1}{\mu_0 \epsilon_0}$

Wellenwiderstand des Vakuums:

$$Z = \frac{E}{H} = \mu_0 \cdot \frac{E}{B}$$

Poynting-Vektor: $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$

Maxwell-Gleichungen (hier für $\varepsilon_r = \mu_r = 1$)

Bezeichnung	Integralform	Differenzielle Form
Gaußscher Satz: E-Feld	$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\rm ein}}{\varepsilon_0}$	$\mathrm{div} \vec{E} = rac{ ho}{arepsilon_0}$
Gaußscher Satz: B-Feld	$\oint \vec{B} \cdot d\vec{A} = 0$	$\operatorname{div} \vec{B} = 0$
Faradaysches Induktionsgesetz	$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$	$\mathrm{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
Amperesches Durchflutungsgesetz	$\oint \vec{B} \cdot d\vec{s} = \mu_0 \left(I + \varepsilon_0 \frac{\partial}{\partial t} \int \vec{E} \cdot d\vec{A} \right)$	$\operatorname{rot} \vec{B} = \mu_0 \left(\vec{j} + \vec{j}_V \right)$

Verschiebungsstromdichte: $\vec{j}_V = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \frac{\partial \vec{D}}{\partial t}$