Discrete Mathematics Exercise 4

Qiu Yihang, 2020/09/27

1. *a*)

Solution:

We figure out that under this partial assignment, $[p_1 \lor p_5 \lor \neg p_2]]_{\mathcal{J}} = \mathbf{F}$.

Given that $p_2 \mapsto \mathbf{T}$ is the result of the Unit Propagation of $p_3 \mapsto \mathbf{F}$, $p_5 \mapsto \mathbf{F}$ is a pick itself and $p_1 \mapsto \mathbf{F}$ is the result of the Unit Propagation of $p_5 \mapsto \mathbf{F}$, the conflict clause generated should be $p_3 \vee p_5$.

\boldsymbol{b})

Solution:

According to the process of CDCL, we can easily know that p_5 and p_1 will be unpicked.

 \boldsymbol{c}

Solution:

Given that $p_3 \mapsto \mathbf{F}$, from $p_3 \vee p_5$ we know that $p_5 \mapsto \mathbf{T}$. Then from $p_6 \vee \neg p_5$ we know $p_6 \mapsto \mathbf{T}$.

Thus, the next unit propagation is $[p_5 \mapsto \mathbf{T}, p_6 \mapsto \mathbf{T}]$.

2. a)

Solution:

Since $p_2 \mapsto \mathbf{F}$ and $p_4 \mapsto \mathbf{F}$, from $p_2 \vee p_4 \vee \neg p_9$ we know that $p_9 \mapsto \mathbf{F}$. Then from $\neg p_6 \vee p_9$ we know $p_6 \mapsto \mathbf{F}$.

Similarly, from $p_6 \vee p_{10}$ we know $p_{10} \mapsto \mathbf{T}$.

Thus, the result of unit propagation is $[p_9 \mapsto \mathbf{F}, p_6 \mapsto \mathbf{F}, p_{10} \mapsto \mathbf{T}]$.

b)

Solution:

Since $p_1 \mapsto \mathbf{F}$, $p_7 \mapsto \mathbf{T}$ and $p_4 \mapsto \mathbf{F}$, from $p_1 \vee p_4 \vee \neg p_5 \vee \neg p_7$ we know that $p_5 \mapsto \mathbf{F}$. Thus, the result of unit propagation is $[p_5 \mapsto \mathbf{F}]$.

c)

Solution:

Since $[\![p_1 \lor p_5]\!]_{\mathcal{J}} = \mathbf{F}$, $p_1 \mapsto \mathbf{F}$ is a pick itself and $p_5 \mapsto \mathbf{F}$ is the result of $p_4 \mapsto \mathbf{F}$, $p_1 \mapsto \mathbf{F}$ and $p_7 \mapsto \mathbf{T}$, the conflict clause generated should be $p_1 \lor p_4 \lor \neg p_7$.

d)

Solution:

According to the process of CDCL, we can easily know that p_5 and p_1 will be unpicked.

e)

Solution:

Since $p_7 \mapsto \mathbf{T}$ and $p_4 \mapsto \mathbf{F}$, from $p_1 \vee p_4 \vee \neg p_7$, we know that $p_1 \mapsto \mathbf{T}$. Thus, the result of unit propagation is $[p_1 \mapsto \mathbf{T}]$.

- 3. a) Solution: $\exists x (C(x) \land D(x) \land F(x))$
 - **b**) Solution: $\forall x (C(x) \lor D(x) \lor F(x))$
 - c) Solution: $\exists x (C(x) \land F(x) \land \neg D(x))$
 - **d**) Solution: $\forall x \left(\neg (C(x) \land D(x) \land F(x)) \right)$
 - e) Solution: $(\exists x (C(x))) \land (\exists x (D(x))) \land (\exists x (F(x)))$