

8.2.4 Scelte Greedy Alternative

Oltre alla scelta greedy vista precedentemente, ne esistono altre:

o Scegli l'attività di durata inferiore \rightarrow non è ottima.

Controesempio:

PLASTRA

COMPLESSOR 1

Scegli l'attività col minor numero di sovrapposizioni → non è ottima.

62550Y

Controesempio:

10N

0110

o Scegli l'attività che inizia per prima \rightarrow non è ottima.

J AGGUMLS D

Controesempio:

S GRPAGUETORO

o Scegli l'attività che inizia per ultima \rightarrow è ottima.

Esercizió: matching sulla linea

Sia S = {si, si, ..., sm} um insiene di

punti ordinati sulla setta sede, sappresentanti
dei server. Sia C = {ci, ci, ..., cm} um

insieme di punti ordinati sulla setta sede,
sappresentanti dei dient. Il costa di

assegnare sun client ci ad un server s

è [Ci-s]. Fornise un algnitme greedy

cle assegna agni dient ad un server distinta

e che minimizzi il costa totale (equiv., media)

dell'assegnamento.

```
GREEDY-SEL(S, f)

1 n = S. length

2 A = \{a_1\}

3 last = 1 // indice dell'ultima attività selezionata

4 for m = 2 to n

5 if s_m \ge f_{last}

6 A = A \cup \{a_m\}

7 last = m

8 return A
```

```
GREEDY-CLIENT-SERVER(C, S)

1. n = S.length

// Assunzione (client e server sono dello stesso numero)

2. SORT(C) → Ordina client

3. SORT(S) → Ordina server

4. OPT = {c_1, s_1} → Il pezzo iniziale è il primo elemento

5. last = 1

6. for m = 2 to n

7. if {c_m - s_m} ≥ {c_last - s_last}

8. OPT = OPT U {c_m - s_m}

9. last = m
```


monete tale che il loro valore totale sia n . Consideriamo l'algoritmo greedy che consiste nel selezionare ripetutamente la moneta di valore più grande possibile.
(a) Fornire un valore di n per cui l'algoritmo greedy non restituisce una soluzione ottima.
(b) Supponiamo ora che i valori delle monete siano 10, 5, 1. In questo caso l'algoritmo greedy restituisce sempre una soluzione ottima: dimostrare che ogni insieme ottimo M* di monete di valore totale n contiene la scelta greedy.
M = 60 = 20 / 50 / 1
MUTTER
$H H H \frac{60}{20} = 3$
(m=60)— To manetado 1 F) PU GERNOS (1 moneta do 50) = MONETE
50 + 10
3 manete do 20
[3 - 11] >
GREED-I GUENA
D) -> WT-AND-PASIS -> TAGUA-E
X = OPT corno (N COLLA
SOLD = SOL Ud m 3
avallogs at

Esercizio 2 (9 punti) Supponiamo di avere un numero illimitato di monete di ciascuno dei seguenti valori: 50, 20, 1. Dato un numero intero positivo n, l'obiettivo è selezionare il più piccolo numero di

(b) Sia M* una soluzione ottima. Sia x il valore maggiore tra 10, 5, e 1 che sia non superiore a n. Se M* contiene una moneta di valore x, la proprietà è dimostrata. Altrimenti, sia M ⊆ M* un insieme di (2 o più) monete di valore totale x (si osservi che tale insieme esiste sempre quando i valori delle monete sono 10, 5, 1); consideriamo M' = M* \ M ∪ X, dove X è l'insieme contenente una moneta di valore x. M' è un insieme di monete di valore totale n e di cardinalità inferiore a quella di M*: assurdo, quindi questo secondo caso non può verificarsi, e quindi M* contiene necessariamente una moneta di valore x.

Esercizio 2 (10 punti) Dato un insieme di n numeri reali positivi e distinti $S = \{a_i, a_2, \ldots, a_n\}$, con $0 < a_i < a_j < 1$ per $1 \le i < j \le n$, un (2,1)-boxing di S è una partizione $P = \{S_1, S_2, \ldots, S_k\}$ di S in k

sottoinsiemi (cioè, $\bigcup_{j=1}^k S_j = S$ e $S_r \cap S_t = \emptyset, 1 \le r \ne t \le k$) che soddisfa inoltre i seguenti vincoli:

$$|S_j| \le 2$$
 e $\sum_{a \in S_j} a \le 1$, $1 \le j \le k$.

In altre parole, ogni sottoinsieme contiene al più due valori la cui somma è al più uno. Dato S, si vuole determinare un (2,1)-boxing che minimizza il numero di sottoinsiemi della partizione.

- Scrivere il codice di un algoritmo greedy che restituisce un (2,1)-boxing ottimo in tempo lineare. (Suggerimento: si creino i sottoinsiemi in modo opportuno basandosi sulla sequenza ordinata.)
- Si enunci la proprietà di scelta greedy per l'algoritmo sviluppato al punto precedente e la si dimostri, cioè si dimostri che esiste sempre una soluzione ottima che contiene la scelta greedy.

0 RX WB (2,1)-BOXING(S)Esempio n <- |S| 1234567 Inizializziamo l'insieme, la partizione e gli estremi. P <- empty_set P = (7, 6, 5, 4, 3, 2, 1)last <- n while (first <= last) Si considera un ciclo per cui "first" è <= "last" (perché scansioniamo gli estremi, come detto) if (first < last) and a_first + a_last <= 1 then P <- P U {{a_first, a_last}} Se l'estremo inf. è < dell'estremo sup non abbiamo ancora salvato nulla in P (non abbiamo estr. inf) allora salvo in P sia l'estremo inf che l'estremo sup else e incremento first. Salvandolo una volta sola, so che la somma è sempre > 1. P <- P U {{a_last}} Altrimenti salvo solo l'estremo superiore migliore, la cui somma last <- last - 1 è sempre >= 1 PCSTE return P Questo algoritmo scansiona ogni elemento una sola volta, quindi la sua complessità è lineare. Greedy-Sel(S, f) $1 \quad n = S. length$ $A = \{a_1\}$ 3 last = 1 // indice dell'ultima attività selezionata for m = 2 to nif $s_m \geq f_{last}$ 6 $A = A \cup \{a_m\}$ 7 $last\,=\,m$ return A La scelta greedy è {a₁, a_n} se n > 1 e a₁ + a_n ≤ 1, altrimenti {a_n}. Ora dimostriamo che esiste sempre una soluzione ottima che contiene la scelta greedy. I casi n=1 e $a_1+a_n>1$ sono banali, visto che in questi casi ogni soluzione ammissibile deve contenere il sottoinsieme $\{a_n\}$. Quindi assumiamo che la scelta greedy sia $\{a_1, a_n\}$. Consideriamo una qualsiasi soluzione ottima dove a_1 e a_n non sono accoppiati nello stesso sottoinsieme. Quindi, esistono due sottoinsiemi S_1 e S_2 , con $a_1 \in S_1$ e $a_n \in S_2$. Sostituiamo questi due sottoinsiemi con $S_1' = \{a_1, a_n\}$ (cioè, la scelta greedy) e $S_2' = S_1 \cup S_2 \setminus \{a_1, a_n\}. \ |S_2'| \leq 2 \text{ e, se } |S_2'| = 2, \text{ allora } S_2' = \{a_s, a_t\} \text{ con } a_s \in S_1 \text{ e } a_t \in S_2. \text{ Siccome } a_t \in S_2 \text{ or } a_t \in S_2 \text{ or } a_t \in S_2.$ a_t era precedentemente accoppiato con a_n , a maggior ragione può essere accoppiato con $a_s < a_n$, quindi la nuova soluzione così creata è ammissibile e ancora ottima. Spiegata in termini semplici: la scelta greedy consiste nel scegliere quello che sta agli estremi. Esiste sempre una soluzione ottima in quanto il sottoinsieme che consideriamo è sempre formato da almeno due elementi (tolto il caso base) per cui tra questi ci siano i nostri estremi inf. e sup. Andando a fare le differenze ottime (scegliendo di volta in volta gli estremi migliori), di sicuro avremo ancora una differenza ottima, perché scegliamo gli estremi migliori (più piccolo per inf. e più grande per sup) in ogni momento. 2-1 BOXING -> 4 (5 ACP 524 6906

BALLAN -> 2

 L'idea è provare ad accoppiare il numero più piccolo (a₁) con quello più grande (a_n). Se la loro somma è al massimo 1, allora S₁ = {a₁, a_n}, altrimenti S₁ = {a_n}. Poi si procede analogamente

sul sottoproblema $S \setminus S_1$.