``	Pol 1.
	(1) Let's show MAP assignment with an example. Graph. even number verticies graph with a cycle.
	Assume the joine prohibility p(x) can factorize in this model. The first fixed for the following p(x) and factorize in this model. Exercise The fixed for
	where $W_a = a$ to $E_1,, k3$. Converting to integer programming to show MAP assignment. Then we get $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (x_n) \cdot x_n + \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (x_n, x_n) \cdot (a_{n-1}) \times x_n $
	109 Z goes away since It is a constant value.
	Here, term (2) has to be 0 Since if $xi.\pm x_3$ Some value 1 or 0 multiply $1^02.1 = 0$. If $xi.\pm x_3 + x_4 = x_3$ then 0.1020 is 0.
	More fore, we have to show by summing up over first term MOX \(\sum_{\text{TeV}} \sum_{\text{r}} \forall \text{i} \) (X_7). Xi. Bea \(\text{zeV} \times \text{r} \)
	and gick mass satisfying constraints and maximizing MAP. Vi, \$\frac{7}{2}\tau_{\beta}(\text{X}_{\beta}) = 1 = 3\frac{7}{6}(1) + 9\frac{7}{6}(2) + \cdots + 9\frac{7}{6}(k) = 1

If we pick one to be 1 test will be o. 元 θ λ 3 (X λ, X)= θ λ (X λ) ... MAX [$9_{A}(W_{A=1}) \cdot | +9_{B}(W_{A=2}) \cdot 2 + \cdots + 9_{A}(W_{A=k}) \cdot k$ + $9_{B}(W_{B=1}) \cdot | +9_{B}(W_{B=2}) \cdot 2 + \cdots + 9_{B}(W_{B=k}) \cdot k$ + $9_{C}(W_{C=1}) \cdot | +9_{C}(W_{C=2}) \cdot 2 + \cdots + 9_{C}(W_{B=k}) \cdot k$ + $9_{C}(W_{P}=P) \cdot | +9_{C}(W_{P}=2) \cdot 2 + \cdots + 9_{C}(W_{P}=k) \cdot k$]

To maximize, we pick. k for WA, then adjacent nodes can choose only k-1 for corresponding nodes, which secondly maximizing probability assignment.

·· 8x+ (XA=k)=1 8xB(WB=H)=1 8xp(Wb=K1)=1 8xc(Wc=k)=1.

-'. Ect. It WA=k, Wc=k then WB=k-1, Wp=k1. Similarly it WB=k, Wp=k then WA=k1, Wc-k1.

Am one of these two is maximiting assignment

If we extend the graph with more vertices, this can be shown some way.
We can show using Induction by assuming this example as thee.

Weight = {1,2,3}.

For MAP IP

The have customax
$$[4x_{4}(X_{4}=1)\cdot]+8x_{4}(X_{4}=2)\cdot2+8x_{4}(X_{4}=3)\cdot3+8x_{5}(X_{5}=1)\cdot]+8x_{5}(X_{5}=2)\cdot2+8x_{5}(X_{5}=3)\cdot3+8x_{5}(X_{5}=3)\cdot3+8x_{5}(X_{5}=3)\cdot3+8x_{5}(X_{5}=3)\cdot3+8x_{5}(X_{5}=3)\cdot3$$

For MAP LP