Professor: Fred Khoury

1. Find the domain of:

a)
$$f(x) = \frac{\sqrt{2x+3}}{x^2-6x+5}$$

$$b) \quad f(x) = \frac{1}{(x+4)\sqrt{x-2}}$$

- 2. For the function f given by $f(x) = -x^2 + x + 5$, find the difference quotient $\frac{f(x+h) f(x)}{h}$
- 3. Let $f(x) = \sqrt{x+4}$
 - a) Sketch the graph of f.
 - b) Find the domain and range of f.
 - c) Find the intervals on which f is increasing or is decreasing
- 4. Explain how the graph $y = -2f\left[\frac{1}{2}(x-3)\right] + 5$ compares to the graph of y = f(x)
- 5. Sketch the graph $f(x) = \begin{cases} x-3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x+4 & \text{if } x \ge 1 \end{cases}$
- 6. Let $f(x) = \sqrt{3x+2}$ and $g(x) = \frac{1}{x^2}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- 7. Let $f(x) = \sqrt{25 x^2}$ and $g(x) = \sqrt{x 3}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- 8. Let $f(x) = \frac{x-1}{x-2}$ and $g(x) = \frac{x-3}{x-4}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- 9. Let $f(x) = \frac{1}{15} \left(x^5 20x^3 + 64x \right)$. Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

- 10. Find the quotient and remainder if $f(x) = 3x^5 4x^3 + x + 5$ is divided by $p(x) = x^3 2x + 7$
- 11. Find the zeros of $f(x) = (x^2 2x + 1)^2 (x^2 + 2x 3)$, and state the multiplicity of each zero.
- 12. Find all solutions of the equation: $x^4 + 9x^3 + 31x^2 + 49x + 30 = 0$
- 13. Find the vertical asymptotes, horizontal asymptotes, oblique asymptotes, intercepts, and holes (if any) of:

a)
$$y = \frac{x-2}{x^2 - 4x + 3}$$

b)
$$y = \frac{(x+2)(x-1)}{x^2 - 3x - 10}$$

c)
$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

14. Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical \ asymptote: \ x = -3 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: 5 \\ hole \ at \ x = 2 \end{cases}$$

15. Let
$$f(x) = 2x^3 - 5$$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists.
- c) Find the domain and range of f(x) and $f^{-1}(x)$
- d) Sketch f(x) and $f^{-1}(x)$

16. Let
$$f(x) = \frac{2x-7}{9x+1}$$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists.
- c) Find the domain and range of f(x) and $f^{-1}(x)$
- d) Sketch f(x) and $f^{-1}(x)$
- 17. Let $f(x) = 3^{-x^2}$, determine the asymptote, domain, range, increasing and decreasing, and sketch f(x)

- 18. Let $f(x) = \log_2(x+3)$, determine the asymptote, domain, range, increasing and decreasing, and sketch f(x)
- 19. Solve the equations:

a)
$$2^{5x+3} = 3^{2x+1}$$

b)
$$8^{2x} \left(\frac{1}{4}\right)^{x-2} = 4^{-x} \left(\frac{1}{2}\right)^{2-x}$$

c)
$$3^{2x-1=}\frac{1}{3}$$

d)
$$2\ln(x+3)-\ln(x+1)=3\ln 2$$

e)
$$\log_4(x+1) = 2 + \log_4(3x-2)$$

$$f) \quad x^2 \left(-2xe^{-x^2} \right) + 2xe^{-x^2} = 0$$

$$e^x + 2 = 8e^{-x}$$

$$h) \quad \log \sqrt{x} = \sqrt{\log x}$$

$$i) \quad \log\left(x^2\right) = \left(\log x\right)^2$$

j)
$$\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$$

20. Solve the equation for x in terms of y.

$$a) \quad y = \frac{1}{10^x + 10^{-x}}$$

b)
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

21. Express the following in terms of sums and differences of logarithms $\log_a \sqrt[4]{\frac{m^8 n^{12}}{a^3 b^5}}$

Solution

1.
$$a) \left[-\frac{3}{2}, 1 \right] \cup (1, 5) \cup (5, \infty)$$
 $b) \{x > 2\}$

2.
$$-2x-h+1$$

3.

4. Reflected across *x*-axis, stretched vertically by 2 units, stretched horizontally by $\frac{1}{2}$ units, shifted right 3 units, and up 5 units.

5.

6.
$$a) f(g(x)) = \frac{\sqrt{2x^2 + 3}}{x}$$
 Domain: $\{x \neq 0\}$

b)
$$g(f(x)) = \frac{1}{3x+2}$$
 Domain: $\left\{x \neq -\frac{2}{3}\right\}$

7.
$$a) f(g(x)) = \sqrt{28-x}$$
 Domain: $\{3 \le x \le 28\}$
 $b) f(g(x)) = \sqrt{\sqrt{25-x^2}-3}$ Domain: $\{-4 \le x \le 4\}$

8.
$$a) f(g(x)) = \frac{1}{-x+5}$$
 Domain: $\{x \neq 4, 5\}$

- b) $f(g(x)) = \frac{-2x+5}{-3x+7}$ Domain: $\{x \neq 2, \frac{7}{3}\}$
- 9. $f(x) = \frac{1}{15}x(x^4 20x^2 + 64) \rightarrow Zeros:0, \pm 2, \pm 4$

	4 –2	2 () /	2 4	1
_	+	_	+	_	+

$$f(x) > 0$$
 $-4 < x < -2$; $0 < x < 2$; $x > 4$

$$f(x) < 0$$
 $x < -4$; $-2 < x < 0$; $2 < x < 4$

10.
$$Q(x) = 3x^2 + 2$$
 $R(x) = -21x^2 + 5x - 9$

- 11. x=1 (multiplicity of 5); x=-3 (multiplicity of 1)
- 12. -3, -2, $-2 \pm i$
- 13. *a*) $VA: x = 1, x = 3,; HA: y = 0; x int: 2; y int: <math>-\frac{2}{3}$ Hole: n/a OA: n/a

b)
$$VA: x = 5; \quad HA: y = \frac{4}{3}; \quad x - \text{int}: 1; \quad y - \text{int}: \frac{4}{15}; \quad hole: \left(-2, \frac{4}{7}\right) \quad OA: n/a$$

c)
$$VA: n/a$$
; $HA: n/a$ $x-int: -2$; $y-int: -4$; $hole: (2, 0) OA: y=x^2-4$

14.
$$f(x) = \frac{3x^2 - 21x + 30}{2x^2 + 2x - 12}$$

15. a) Yes b)
$$f^{-1}(x) = \sqrt[3]{\frac{x+5}{2}}$$
 c) Domain & Range of $f(x)$ and $f^{-1}(x)$:

b)
$$f^{-1}(x) = \frac{-x-7}{9x-2}$$

16. a) Yes b) $f^{-1}(x) = \frac{-x-7}{9x-2}$ c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $\Box - \left\{ -\frac{1}{9} \right\}$

Range of $f(x) = \text{Domain of } f^{-1}(x) : \Box - \left\{ \frac{2}{9} \right\}$

17.

Asymptote: y = 0 $\textit{Domain} \colon \left(-\infty, \infty \right)$

Range: (0,1]

Incr.: $(-\infty, 0)$

Decr.: $(0, \infty)$

18.

19. *a*)
$$x = \frac{\ln 3 - 3\ln 2}{5\ln 2 - 2\ln 3} = \frac{\ln\left(\frac{3}{8}\right)}{\ln\left(\frac{32}{9}\right)} \approx -0.7732$$

b)
$$x = -\frac{6}{5}$$

$$c) x = 0$$

$$d) x = 1$$

e)
$$x = \frac{33}{47}$$

$$f(x) = 0, \pm 1$$

$$g) x = \ln 2$$

h)
$$x = 1, 10,000$$

i)
$$x = 1$$
, 100

$$j) x = \frac{99}{31}$$

20. a)
$$x = \log\left(\frac{1 \pm \sqrt{1 - 4y^2}}{2y}\right)$$
 b) $x = \frac{1}{2}\ln\left(\frac{1 + y}{1 - y}\right)$

21.
$$2\log_a m + 3\log_a n - \frac{3}{4} - \frac{5}{4}\log_a b$$