

DAP2 – Zusätzliches Vorlesungsmaterial 1

Vorlesungstermin: 12.04.2018

Einheit 1.1: O-Notation

1. $10n \in O(n)$

<u>Beweis:</u> Zu zeigen: es gibt Konstanten $c, n_0 > 0$, sodass für alle $n \ge n_0$ es

$$10n \le c \cdot n$$

gilt. Wähle $n_0 = 1$ und c = 10. Dann ist $10n \le 10n$ für alle $n \ge n_0$ erfüllt.

2. $n^2 \notin O(1000n)$

Beweis:

Zu zeigen: für jede Konstante c und n_0 gibt es ein $n \geq n_0$, sodass

$$n^2 > c \cdot 1000 \cdot n$$

ist. Seien also c und n_0 beliebige positive Konstanten. Wähle $n = \max\{(c+1) \cdot 1000, n_0\}$. Es gelten dann $n \ge n_0$ und

$$n^2 \ge \max\{(c+1) \cdot 1000, n_0\} \cdot n \ge (c+1) \cdot 1000 \cdot n > c \cdot 1000 \cdot n.$$

Somit folgt $n^2 \notin O(1000n)$.

3. O(1000n) = O(n)

Beweis:

Zu zeigen: $g(n) \in O(1000n) \Leftrightarrow g(n) \in O(n)$

" \Rightarrow " Sei $g(n) \in O(1000n)$. Dann gibt es $c, n_0 > 0$, sodass für alle $n \ge n_0$ es $g(n) \le c \cdot 1000n$ gilt. Setze nun c' = 1000c. Dann gilt es für alle $n \ge n_0$ auch

$$g(n) \le c' \cdot n$$
.

Also ist $g(n) \in O(n)$.

" \Leftarrow " Sei $g(n) \in O(n)$. Dann gibt es $c, n_0 > 0$, sodass für alle $n \ge n_0$ es $g(n) \le c \cdot n$ gilt. Damit gilt insbesonders auch $g(n) \le c \cdot 1000n$. Somit ist $g(n) \in O(1000n)$.

1

4. Für allen Konstanten c > 0 und $\varepsilon > 0$ gilt:

$$O(\log^c n) \subseteq O(n^{\varepsilon}).$$

Beweis:

Seien c > 0, $\varepsilon > 0$ festgewählte Konstanten. Zu zeigen: für alle $g(n) \in O(\log^c n)$ gilt auch $g(n) \in O(n^{\varepsilon})$.

Wir zeigen zunächst die folgende Behauptung.

Behauptung: Für jedes k > 0, n > 1 gilt $\log^k n \le k^k \cdot n$.

Beweis:

$$\log^k n = \log^k \left(\left(n^{1/k} \right)^k \right) = k^k \cdot \log^k \left(n^{1/k} \right) \le k^k \cdot \left(n^{1/k} \right)^k = k^k \cdot n$$

(da $\log x \le x$ für $x \ge 1$ und mit $x = n^{1/k}$).

Sei nun $g(n) \in O(\log^c n)$. Dann gibt es $c', n_0 > 0$, sodass $g(n) \le c' \cdot \log^c n$ für alle $n \ge n_0$ gilt. Wir zeigen im Folgenden, dass

$$\log^c n \le \left(\frac{c}{\varepsilon}\right)^c \cdot n^{\varepsilon}$$

ist. Damit folgt mit $c'' = c' \cdot \left(\frac{c}{\varepsilon}\right)^c$, dass $g(n) \leq c'' \cdot n^{\varepsilon}$ ist und somit $g(n) \in O(n^{\varepsilon})$.

Es bleibt zu zeigen, dass $\log^c n \leq \left(\frac{c}{\varepsilon}\right)^c \cdot n^{\varepsilon}$ ist. Für $k = \frac{c}{\varepsilon} > 0$ folgt aus unserer Behauptung und der Monotonität der Wurzelfunktion auf \mathbb{R}^+

$$\log^c n = (\log^{\frac{c}{\varepsilon}} n)^{\varepsilon} \le ((\frac{c}{\varepsilon})^{\frac{c}{\varepsilon}} \cdot n)^{\varepsilon} = (\frac{c}{\varepsilon})^c \cdot n^{\varepsilon}.$$

5. $10n \in \Omega(n)$

Beweis:

Zu zeigen: Es gibt $c, n_0 > 0$, sodass für alle $n \ge n_0$ es

$$10n > c \cdot n$$

gilt. Wähle $n_0 = 1$ und c = 1. Dann ist $10n \ge n$ für alle $n \ge n_0$ erfüllt.

6. $1000n \notin \Omega(n^2)$

Beweis:

Zu zeigen: Für allen Konstanten $c, n_0 > 0$ gibt es eine $n \ge n_0$ mit

$$1000n < c \cdot n^2.$$

Seien also c, n_0 beliebige Konstanten. Wähle

$$n = \max\left\{\frac{1001}{c}, n_0\right\}.$$

Dann gilt $n \ge n_0$ und

$$c \cdot n^2 \ge c \cdot \max\left\{\frac{1001}{c}, n_0\right\} \cdot n \ge c \cdot \frac{1001}{c} \cdot n = 1001n > 1000n.$$

7. $f(n) \in \Omega(g(n)) \Leftrightarrow g(n) \in O(f(n))$

Beweis:

" \Rightarrow " Sei $f(n) \in \Omega(g(n))$. Dann gibt es $c, n_0 > 0$, sodass für alle $n \geq n_0$ gilt

$$f(n) \ge c \cdot g(n)$$

Damit gilt auch

$$g(n) \le \frac{1}{c} \cdot f(n) = c' \cdot f(n)$$

für alle $n \ge n_0$ mit $c' = \frac{1}{c} > 0$, und somit $g(n) \in O(f(n))$.

" \Leftarrow " Sei $g(n) \in O(f(n))$. Dann gibt es $c, n_0 > 0$, sodass für alle $n \ge n_0$ gilt

$$g(n) \le c \cdot f(n)$$

Damit gilt auch

$$f(n) \ge \frac{1}{c} \cdot g(n) = c' \cdot g(n)$$

für alle $n \ge n_0$ mit $c' = \frac{1}{c} > 0$, und somit $f(n) \in \Omega(g(n))$.

8. $n^{1-\sin(\pi n/2)} \notin \Theta(n)$

Beweis:

Wenn $f(n) = n^{1-\sin(\pi n/2)} \in \Theta(n)$ wäre, dann wäre $f(n) \in \Omega(n)$ und $f(n) \in O(n)$. Das ist äquivalent zu $\exists c', c'', n'_0, n''_0 > 0$, sodass $f(n) \geq c' \cdot n$ und $f(n) \leq c'' \cdot n$ für alle reelle Zahlen $n \geq \max\{n'_0, n''_0\}$ ist.

Wir wissen, dass die Funktion f(n) periodisch mit Periode 2π ist, und dass $\sin x \in [-1, 1]$ gilt. Außerdem gilt dass $\sin(\pi n/2) = 1$ ist, wenn $n = 1 \mod 4$ ist, und $\sin(\pi n/2) = -1$, wenn $n = 3 \mod 4$ ist. Damit gilt $f(n) = n^0 = 1$ für alle n mit $n = 1 \mod 4$ und $f(n) = n^2$ für alle n mit $n = 3 \mod 4$.

Seien $c', c'', n'_0, n''_0 > 0$ Konstanten definiert wie im ersten Paragraph. Dann gilt $f(n) < c' \cdot n$ für jedes $n \ge n_0$ mit $n = 1 \mod 4$, was ein Widerspruch ist. (Ebenso gilt $f(n) > c'' \cdot n$ für jedes $n \ge \max\{n_0, c''\}$ mit $n = 3 \mod 4$. Dies ist ebenfalls ein Widerspruch.)

9. $n \in o(n^2)$

Beweis: Die Definition von klein-o-Notation lautet:

$$o(f(n)) = \{g(n) : (\forall c > 0) (\exists n_0 > 0) (\forall n \ge n_0) : g(n) < c \cdot f(n)\}.$$

Sei c > 0. Wähle $n_0 = \frac{1}{c-1}$. Es gilt für $n \ge n_0 = \frac{1}{c-1}$, dass

$$g(n) = n < c \cdot \frac{1}{c-1} \cdot n \le c \cdot n^2 = c \cdot f(n),$$

und somit $n \in o(n^2)$.

10. $n \notin o(n)$

Beweis:

 $\neg (n \in o(n))$ heißt, dass

$$(\exists c > 0) (\forall n_0 > 0) (\exists n \ge n_0) : g(n) \ge c \cdot f(n)$$

ist. Wähle c=1. Dann gilt für beliebiges $n_0>0$ und $n=n_0$ dass

$$g(n) = n = 1 \cdot n = 1 \cdot f(n)$$

und $n \notin o(n)$ ist.