

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-24 (EVEN)

Test: CLA-T1 Date: 19.02.2024

Course Code & Title: 21CSC204J Design and Analysis of Algorithms

Duration: 1 hour 40 min

Year & Sem: II Year / IV Sem Max. Marks: 50

~			
Course	Articu	lation	Matrix:

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		ecific s	
													PSO-	PSO-	PSO-
CO1	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO2	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO3	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO4	2	1	2	1	-	-	-	-		3	-	3	3	1	-
CO5	2	1	2	1	-	-	-	-		3	-	3	3	1	-

	Part - A					
	(1 x 10 = 10 Marks) Instructions: Answer all					
Q.	Question	M	В	C	P	P
No		a	L	O	O	I
		r				C
		k				0
		S				d
<u> </u>	Comments and of all a wide an arrange	1	1	1	1	<u>e</u>
1	Correctness of algorithm means	1	1	1	1	1.
	a) Algorithm works in linear timeb) Algorithm uses linear space					6.
	c) Algorithm is efficient					1
	d) Algorithm behaves as expected					
2	The objective of time complexity analysis is	1	1	1	1	1.
-	a) To determine the development time of algorithm	•	•	•		6.
	b) To determine the compile time of algorithm					1
	c) To determine the running time of algorithm					
	d) To determine the complexity of conditions in an algorithm					
3	Asymptotic notations deal with	1	1	1	12	1.
	a) Running time for small values of input					6.
	b) Running time for medium values of input					1
	c) Running time for large values of input (tending to ∞)					
<u> </u>	d) Running time for inputs in the range 1-100		_			
4	Which among these is both an asymptotically tight lower and upper bound	1	1	2	3	1.
	?					7.
	a) $O(n) b) o(n) c) \omega(n) d) \Theta(n)$					1
	$A_{\text{novem}} d \cap \Omega(n)$					
	Answer: d) $\Theta(n)$					

	2	1	1		3	1
5	$f(n) = n^2 \text{ is}$	1	1	2	3	1. 2.
	a) $O(n^2)$ b) $O(\log \log n)$ c) $O(n)$ d) $O(1)$					$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
	a) $O(n^2)$ b) $O(\log \log n)$ c) $O(n)$ d) $O(1)$ Answer: a) $O(n^2)$					
	, , ,					
6	The worst case running time of binary search is	1	1	2	3	1.
	a) $O(n)$ b) $O(n^2)$ c) $O(\log n)$ d) $O(1)$					7.
	Answer: c) $O(\log n)$					1
7	Which among the following is NOT an application of divide and conquer	1	1	2	3	1.
	strategy?					7.
	a) Bubble sort b) Binary Search					1
	b) Binary Search c) Merge sort					
	d) Strassen's matrix multiplication					
8	Partition algorithm on an array of size n takes running time	1	1	2	3	1.
	a) $O(n)$ b) $O(n^2)$ c) $O(\log \log n)$ d) $O(1)$					7.
	Answer: a) $O(n)$					1
	1 mo wer. <i>a)</i> o (10)					
9	In order to divide the closest pair problem into subproblems, we need to	1	1	2	3	1.
	compute					7.
	a) Median x-coordinate					1
	b) Min x-coordinate					
	c) Mean x-coordinate d) Mode of x-coordinates					
	d) Wode of x-coordinates					
10	Which technique can be used to obtain the asymptotic running time for a	1	1	2	3	1.
	recursive algorithm by direct application without solving recurrences?					7.
	a) Master theorem					1
	b) Substitution method					
	c) Recursion tree d) Mathematical Induction					
	with the matter induction					
	Part – B					
11	$(5 \times 4 = 20 \text{ Marks}) \qquad \text{Instructions: Answer All the Question}$	_		1	1	
11	Prove that $3n^2 + 2n + 5 \in \Theta(n^2)$	5	2	1	1	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
						2.
	Solution 2 2 2					1
	$3n^2 + 2n + 5 \leq 3n^2 + 2n^2 + 5n^2 + n > 0$					
	= 102					
	2 - 2 4 -					
	Also, sn2+2n+5 > 3n2/04 n>o.					
	· 0 (3n2 (8n2+2n+5 5 10n2 fn>1=1					
	C1=8, C=10, ·C1, C2>0.					
12	$0.3n^2 + 2n + 5 \in \Theta(n^2)$	5	2	1	1	1.
12	Solve $T(n) = 2T(\frac{n}{2}) + n$ using recursion tree method (Assume T(1))	5	2	1	1	1. 2.
12	$0.3n^2 + 2n + 5 \in \Theta(n^2)$	5	2	1	1	1 1

	Solution. n_{2}^{2} n_{2}					
13	Illustrate Partition algorithm used in quicksort for the following array: 31, 43, 22, 15, 54, 17, 44, 29, 38 (use first element as pivot) 8oln. 31 43 22 15 54 17 44 29 30 private 1/P 1/P 1/2 interchange. 31 29 22 15 54 17 44 43 38 Now interchange 1 > 22 Now interchange A[o] with A[r].	5	2	2	3	2. 6. 2

14	State Master theorem and demonstrate with an example.	5	2	2	1	1.
	96 a> 1, b>1 for the recursence $T(n) = aT(n/b) + f(n)$ 1) 9 $f(n) = O(n^{\log a - \epsilon})$ for $\epsilon > 0$ Then $T(n) \in \Theta(n^{\log a})$. 2) 9 $f(n) = \Theta(n^{\log a})$ Then $T(n) \in \Theta(n^{\log a})$ Then $T(n) \in \Theta(n^{\log a})$ and $af(n/b) \le cf(n)$ for some $e > 0$ and $af(n/b) \le cf(n)$ for some $e > 0$ and sufficiently large n , Then $T(n) \in \Theta(f(n))$ Reauthe.					2. 1
	T(n) = 2T(n/2) + n. a=2, b=2, f(n)=n. $f(n)=n \in \Theta(n^{\log_2 n}) = \Theta(n^{\log_2 n}) = \Theta(n^{\log_2 n})$. o (b) age case 2, we get $T(n) = \Theta(n^{\log_2 n})$. $= \Theta(n \log_2 n)$					
	Part – C					
	(2 x 10 = 20 Marks) Instructions: Answer All the Quest	<u>io</u> ns	<u> </u>			
15. A	Consider the algorithm below: Algorithm F(A, lo, hi) Begin If hi = lo return A[lo] Mid = floor((hi + lo)/2)	1 0	3	1	2	2. 6. 2
	X1 = F(A, 1, mid) X2 = F(A, mid+1, hi) Return(X1 + X2) End (i) Summarize what algorithm F is doing? (ii) Devise recurrence relations for running time of algorithm F (Assume inputs which are powers of 2). (iii) Compute the asymptotic time complexity using substitution method.					

	(i) Computing the sum of array A from (2 marks) widex to to index shi. (ii) $T(n) = \begin{cases} c_1 & \text{if } n = 1 \\ 2T(N_2) + c_2 & \text{for } n > 1 \end{cases}$ (2 marks) (C) (iii) $T(n) = 2T(n/2) + c_2$ $= 2\left[2T(N_4) + c_2\right] + c_2$ $= 2\left[2\left[2T(N_2) + c_2\right] + c_2\right] + c_2$ $= 2\left[2\left[2T(N_2) + c_2\right] + c_2\right] + c_2$ $= 2^2T(N_2) + c_2\left[1 + 2\right]$ $= 2^2T(N_2) + c_2\left[1 + 2\right]$ $= 2^3T(N_2) + c_2\left[1 + 2 + 4\right]$ $= $					
	$= n T(D) + c_2(1) \left[\frac{2 \log n}{2-1} \right] = c_1 n + c_2(n-1).$					
	OR	!				
15. B	Vimal works with a detective agency and is need of processing suspect details in alphabetical order quickly. He has two processes running simultaneously (a) a sorting algorithm that will sort details of suspects and provide them in sorted order (b) a background process that will process the next suspect in sorted order without waiting for entire sorted list. He is in need of completing the task non-recursively and quickly. (i) Recommend the appropriate sorting algorithm for this task.	1 0	3	1	2	2. 6. 4
	(ii) Compute the time complexity of this algorithm.(iii) List the best case, average case, worst case time complexity of this algorithm.					

16.	(i) Bubble 801 on Selection Sort legaus e every Acceptive Hendrion produces another (the next) element in the 201 ded list. (2 marks) (ii) Bubble 801 (A) Frequency. (i) for i=1 to A length -1 (i) for i=1 to A length -1 (ii) for i=1 to A length down to i+1 (iii) for i=1 to A length down to i+1 (iv) for i=1 to A length down to i+1 (iv) for i=1 to A length down to i+1 (iv) exchange Ajj with Ajj max = (n-i+1) (ii) exchange Ajj with Ajj max = (n-i+1) (iii) exchange Ajj with Ajj max = (n-i+1) (iv) (n-i+1+1) (iv) (n-i+1	1	3	2	2	2.
16. A	Ashiq provides an online sorting service for his customers. He is afraid that some malicious users will send sorting sequences that will take a long time to sort. (i) Analyze which sorting algorithm should he use for best sorting performance? Justify your answer. (ii) Explain the algorithm for the same. (iii) Illustrate how the algorithm will work for the following array 37, 12, 8, 35, 27, 39, 18, 25.	0	3	2		6. 4

16A (1) Bubble sort, insertion bout - had sorting performance Quick Sort - word case O(12), so malicious users can exploit this to cause bad performance ?. Merge sort is best sorting also - O(nlog n) (3 marks) in worst case (ii) Morgesort Algorithm. Algorithm Mergerort (A, low, high). if low < high mid = Llow + high >/2] Merge Sout (A, low, mid) Merge Sort (A, mid+1, high) Merge (A, low, mid, high) Merce Algorithm, low, mid, high 2. if ACID < ACID, why ACID into pext position of C copy A [] into next position of C. 3. Repeat step 2 until i > mid or j > high.
4. ib i > mid, copy A[j] to A[high] to next
location in C else spy A[i] to A[mid) to rest location in C 5. Copy c hade to A [low ... high] (4 marks) (This level of detail is not required as this pent carries only 4 marks)

