

Fall 2023

Digital Engineering

Dr. Hatem Yousry

Agenda

- SOP (SUM OF PRODUCTS) & POS (PRODUCT OF SUMS).
- Truth Table notation for Minterms and Maxterms.
- Canonical and Standard Forms.

Definitions

- Literal: A variable or its complement
- Product term: literals connected by •
- Sum term: literals connected by +
- Minterm: is a Boolean expression resulting in 1 for the output of a single cell, and 0s for all other cells in a Karnaugh map, or truth table. Minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms.
- Maxterm: Maxterm for each combination of the variables that produces a **0** in the function and then taking the **AND** of all those terms.

AND/OR Implementation of an SOP Expression

- Implementing an SOP expression simply requires ORing the outputs of two or more AND gates.
- A product term is **produced by an AND operation, and the sum** (addition) of two or more product terms is produced by an **OR operation.**
- Therefore, an SOP expression can be implemented by AND-OR logic in which the outputs of a number (equal to the number of product terms in the expression) of AND gates connect to the inputs of an OR gate, for the expression AB + BCD + AC. The output X of the OR gate equals the SOP expression.

The Sum-of-Products (SOP) Form

- When two or more product terms are summed by Boolean addition, the resulting expression is a sum-of-products (SOP).
- Some examples are: \sum of products

$$AB + ABC$$

 $ABC + CDE + \overline{B}C\overline{D}$
 $\overline{A}B + \overline{A}B\overline{C} + AC$

- Represents exactly one combination in the truth table.
- Denoted by m_j , where j is the decimal equivalent of the minterm's corresponding binary combination (b_i) .
- A variable in m_j is complemented if its value in b_j is 0, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, $\mathbf{b}_j = \mathbf{011}$ and its corresponding minterm is denoted by $m_i = \mathbf{A'BC}$

Maxterm - A Sum Term : M_j

- Represents exactly one combination in the truth table.
- Denoted by M_j , where j is the decimal equivalent of the maxterm's corresponding binary combination (b_i) .
- A variable in M_j is complemented if its value in b_j is 1, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, $\mathbf{b}_j = \mathbf{011}$ and its corresponding maxterm is denoted by $\mathbf{M}_i = \mathbf{A} + \mathbf{B}' + \mathbf{C}'$

Truth Table notation for Minterms and Maxterms

- Minterms and Maxterms are easy to denote using a truth table.
- Example:
 Assume 3
 variables x,y,z
 (order is fixed)

X	y	Z	Minterm	Maxterm
0	0	0	$x'y'z' = m_0$	$\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{M}_0$
0	0	1	$x'y'z = m_1$	$x+y+z'=M_1$
0	1	0	$x'yz' = m_2$	$x+y'+z=M_2$
0	1	1	$x'yz = m_3$	$x+y'+z'=M_3$
1	0	0	$xy'z' = m_4$	$x'+y+z=M_4$
1	0	1	$xy'z = m_5$	$\mathbf{x'+y+z'} = \mathbf{M}_5$
1	1	0	$xyz' = m_6$	$\mathbf{x'+y'+z} = \mathbf{M}_6$
1	1	1	$\mathbf{x}\mathbf{y}\mathbf{z} = \mathbf{m}_7$	$\mathbf{x'+y'+z'} = \mathbf{M}_7$

Canonical Forms (Unique)

- Any Boolean function **F**() can be expressed as a *unique* **sum** of **minterms** and a unique **product** of **max**terms (under a fixed variable ordering).
- In other words, every function **F**() has two canonical forms:
 - Canonical Sum-Of-Products
 - (sum of minterms) \sum
 - Canonical Product-Of-Sums
 - (product of maxterms)

- Canonical Sum-Of-Products: The **minterms** included are those m_j such that $\mathbf{F}(\) = \mathbf{1}$ in row j of the truth table for $\mathbf{F}(\)$.
- Canonical Product-Of-Sums: The **maxterms** included are those M_j such that $\mathbf{F}(\) = \mathbf{0}$ in row j of the truth table for $\mathbf{F}(\)$.

Canonical and Standard Forms

Minterms and Maxterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.
 - For example, two binary variables x and y,
 - *xy*, *xy*′, *x*′*y*, *x*′*y*′
 - It is also called a standard product.
 - n variables con be combined to form 2^n minterms.
- A maxterm (standard sums): an OR term
 - It is also call a standard sum.
 - 2^n maxterms.

Minterms and Maxterms

Each *maxterm* is the complement of its corresponding *minterm*, and vice versa.

Minterms and Maxterms for Three Binary Variables

	y	Z	Minterms		Maxterms		
x			Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

- The complement of a Boolean function
 - The **minterm**s that produce a **maxterms**

•
$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6 = x'y'z' + x'yz' + x'yz + xyz'z + xyz'$$

•
$$f_1 = (f_1')'$$

= $(x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z) = M_0 M_2 M_3$
 $M_5 M_6$

•
$$f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_0 M_1 M_2 M_4$$

- Any Boolean function can be expressed as
 - A sum of minterms ("sum" meaning the ORing of terms).
 - A product of maxterms ("product" meaning the ANDing of terms).
 - Both boolean functions are said to be in Canonical form.

Sum of Minterms

- Sum of minterms: there are 2^n minterms and 2^{2n} combinations of function with n Boolean variables.
- Example : express F = A + BC' as a sum of minterms.
 - F = A + B'C = A(B + B') + B'C = AB + AB' + B'C = AB(C + C') + AB'(C + C') + (A + A')B'C = ABC + ABC' + AB'C' + AB'C' + A'B'C'
 - $F = A'B'C' + AB'C' + ABC' + ABC = m_1 + m_4 + m_5 + m_6 + m_7$
 - $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - or, built the truth table first

Truth Table for F = A + B'C

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Product of Maxterms

- Product of maxterms: using distributive law to expand.
 - x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') = (x+y+z)(x+y+z')(x+y'+z)
- Example: express F = xy + x'z as a product of maxterms.
 - F = xy + x'z = (xy + x')(xy + z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z)
 - x'+y = x' + y + zz' = (x'+y+z)(x'+y+z')
 - $F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M_0M_2M_4M_5$
 - $F(x, y, z) = \Pi(0, 2, 4, 5)$

Canonical and Standard Forms

- We need to consider formal techniques for the simplification of Boolean functions.
- Identical functions will have exactly the same canonical form.
- Minterms and Maxterms
- Sum-of-Minterms and Product-of- Maxterms
- Product and Sum terms
- Sum-of-Products (SOP) and Product-of-Sums (POS).

Example

- Truth table for $f_1(a,b,c)$ at right
- The canonical sum-of-products form for f₁ is

$$f_1(a,b,c) = m_1 + m_2 + m_4 + m_6$$

= $a'b'c + a'bc' + ab'c' + abc'$

• The canonical product-of-sums form for f₁ is

$$f_1(a,b,c) = M_0 \cdot M_3 \cdot M_5 \cdot M_7$$

= $(a+b+c)\cdot(a+b'+c')\cdot(a'+b'+c').$

• Observe that: $m_j = M_j$

a	b	c	\mathbf{f}_1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Shorthand: \sum and \prod

- $f_1(a,b,c) = \sum m(1,2,4,6)$, where \sum indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m_1 , m_2 , m_4 , and m_6 .
- $f_1(a,b,c) = \prod M(0,3,5,7)$, where \prod indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M_0 , M_3 , M_5 , and M_7 .
- Since $m_j = M_j$ ' for any j, $\sum m(1,2,4,6) = \prod M(0,3,5,7) = f_1(a,b,c)$

Conversion of a General Expression to **SOP Form**

- Any logic expression can be changed into SOP form by applying Boolean algebra techniques.
- For example, the expression A(B + CD) can be converted to SOP form by applying the **distributive law:**

$$A(B + CD) = AB + ACD$$

Convert each of the following Boolean expressions to SOP form:

(a)
$$AB + B(CD + EF)$$

(a)
$$AB + B(CD + EF)$$
 (b) $(A + B)(B + C + D)$ (c) $(\overline{A + B}) + C$

(c)
$$(\overline{A + B}) + C$$

Solution

(a)
$$AB + B(CD + EF) = AB + BCD + BEF$$

(b)
$$(A + B)(B + C + D) = AB + AC + AD + BB + BC + BD$$

(c)
$$\overline{(A+B)} + \overline{C} = (\overline{A+B})\overline{C} = (A+B)\overline{C} = A\overline{C} + B\overline{C}$$

Conversion Between Canonical Forms

- Replace \sum with \prod (or *vice versa*) and replace those j's that appeared in the original form with those that do not.
- Example:

```
f_{1}(a,b,c) = a'b'c + a'bc' + ab'c' + abc'
= m_{1} + m_{2} + m_{4} + m_{6}
= \sum (1,2,4,6)
= \prod (0,3,5,7)
= (a+b+c) \cdot (a+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c')
```


Standard Forms (NOT Unique)

• Standard forms are "like" canonical forms, except that **not all variables need appear** in the individual product (SOP) or sum (POS) terms.

• Example:

$$f_1(a,b,c) = a'b'c + bc' + ac'$$

is a *standard* sum-of-products form

• f₁(a,b,c) = (a+b+c)•(b'+c')•(a'+c') is a *standard* product-of-sums form.

Conversion of SOP from standard to canonical form

- Expand *non-canonical* terms by inserting equivalent of 1 in each missing variable x:
 (x + x') = 1
- Remove duplicate minterms
- $f_1(a,b,c) = a'b'c + bc' + ac'$ = a'b'c + (a+a')bc' + a(b+b')c'= a'b'c + abc' + a'bc' + abc' + ab'c'= a'b'c + abc' + a'bc + ab'c'

Conversion of POS from standard to canonical form

- Expand noncanonical terms by **adding 0** in terms of missing variables (e.g., xx' = 0) and using the **distributive law**
- Remove duplicate maxterms
- $f_1(a,b,c) = (a+b+c) \cdot (b'+c') \cdot (a'+c')$ = $(a+b+c) \cdot (aa'+b'+c') \cdot (a'+bb'+c')$
- = $(a+b+c) \cdot (a+b'+c') \cdot (a'+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c')$ = $(a+b+c) \cdot (a+b'+c') \cdot (a'+b'+c') \cdot (a'+b+c')$

- SOP for Minterm (m) in the form of
- And + And + And +
- $\sum (m1, m2, \dots, m_i) = sum \ of \ minterms$
- As the minterms included are those m_j such that F() = 1 in row j of the truth table for F().
- POS for Maxterm (M) in the form of
- OR . OR . OR
- $\prod (M1, M2, \dots M_j) = product \ of \ maxterms$
- As the maxterms included are those M_j such that F() = 0 in row j of the truth table for F().
- Observe that: $m_j = M_j$

Name:

	Inputs			Output			
0	0	0	0	0			
1	0	0	0	1			
3	0	0	1	0			
	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			
10	1	0	1	0			
11	1	0	1	1			
12	1	1	0	0			
13	1	1	0	1			
14	1	1	1	0			
15	1	1	1	1			

SOP \sum and **POS** \prod

Thank You

Dr. Hatem Yousry @nctu.edu.eg

