Documentation

ContaminationFlow on Linux and Windows

Hoai My Van, Rudolf Schönmann

Contents

1.	Gen	erai Structure	1
2.		taminationFlow Linux Call of Application from Command line	2 3
	2.1.	Communication	3 4
	2.2.		4
	2.4.	e v	5
	2.4.	Iterative Algorithm	7
	۷.0.	2.5.1. Initialization of simulation	7
		2.5.2. Simulation on subprocesses	8
	2.6.	Update main buffer	9
	2.7.		9 11
	2.1.	Summary	11
3.	Con	taminationFlow Windows	12
-			$\frac{1}{12}$
		•	12
			12
		-	13
Α.	Forr	nulas for new Quantities	14
В.	Data	atypes	16
	B.1.	Class Members	16
	B.2.	Functions	16
_	•		
C.			17 17
			17
	C.2.		19
		1 1	19
		1 1	20
		1 1	20
		11	20
		11	21
		C.2.6. UpdateSubProcess.cpp	
		C.2.7. UpdateMainProcess.cpp	22

1. General Structure

General structure for ContaminationFlow simulation

- ullet Code adapted from Molflow
- \bullet Contamination Flow Windows primary used to create Geometry and to view simulation results through the ${\rm GUI}$
- ContaminationFlow Linux primary used for simulation and calculation of counters, profiles, etc.
- Loadbuffer contains information of geometry
- Hitbuffer contains information such as hit counters, profiles, etc.
- Import and export of buffer files for communication between ContaminationFlow Windows and ContaminationFlow Linux
- Export of simulationHistory for ContaminationFlow Linux

2. ContaminationFlow Linux

- Parallel simulation on several sub processes
- Processing and control of data in main process
- Update and accumulation of hit counters and other information such as profiles
- SimulationHistory, final hitbuffer and used parameters exported to results folder

Figure 2.1.: Processing of data in main and sub processes

2.1. Call of Application from Command line

New class ProblemDef

- Defines parameters used for simulation
- Possible adaptation of default paramaters through input file
- Creates result folder for simulation if desired
 - Final resultbuffer
 - Final covering, input file and console output as text files

Application with custom parameters using input file

Call of ContaminationFlow Linux application in the command line:

```
$ module load mpi
$ mpirun -n N MolflowLinux inputfile save
```

with the following command line parameters:

- N: desired number of worker processes; simulation on K=N-1 worker processes
- MolflowLinux: path to application, e.g. ~/MolflowLinux/Debug/MolflowLinux
- inputfile: path to file that defines simulation parameters
- save: determines whether result directory is created (1: true, 0:false); default: 1 and the input file defining the following parameters:
 - loadbufferPath: path to loadbuffer file, contains geometry, e.g. ~/loadbuffer
 - hitbufferPath: path to hitbuffer file, contains counters, etc., e.g. ~/hitbuffer
 - simulationTime: simulation time per iteration step; default: 10.0
 - unit: simulation time unit; default: s
 - maxTime: maximum simulation time; default: 10.0
 - maxUnit: maximum simulation time unit; default: y
 - *iterationNumber*: number of iterations; default: 43200
 - particleDia: diameter of particles; default: 2.76E-12
 - E_{de} : binding energy of a particle on pure substrate; default: 1E-21
 - H_{vap} : vaporization enthalpy of a particle in case of multilayer contamination; default: 0.8E-19
 - W_{tr} : transition width between monolayer and multilayer properties; default: 1
 - *sticking*: constant sticking coefficient for all facets, set to zero, not used at the moment; default: 0
 - targetPaticles: minimum number of desorbed particles per iter.; default: 1000
 - targetError: average statistical uncertainty (error) to be achieved for each iteration, calculated as the average (weighted with the facets area) of the normalized standard deviation of events per facet; default: 0.001
 - hitRatioLimit: Ratio at which hits are ignored, default: 0
 - Tmin or t_min : minimum time for step size; default: 1E-4
 - maxStepSize or t_max: maximum time for step size; default: max
 - maxSimPerIt: maximum simulation steps per iteration; default: max
 - coveringMinThresh: minimum covering (through multiplication); default: 10000

- histsize: Size of history lists; default: max
- *vipFacets*: very important facets: facets with have their own target error. input in inputfile as alternating sequence of facet numbers and respective target errors separated via blanks; default: []

Terminology

- Simulation time: desired computation time until check if target is reached for iteration
- Simulated time: physical time in the simulated system, e.g. flight time or residence time of a particle
- Maximum simulation time: desired total simulated time
- Step size: desired simulated time per particle for iteration

2.2. Communication

Import and export of buffer files

• New Databuff struct that replaces Dataport struct from MolFlow Windows

```
typedef unsigned char BYTE;
typedef struct {
  signed int size;
  BYTE *buff;
} Databuff;
```

- New functions importBuff(·) and exportBuff(·) for import of buffer files and export of Databuff struct
- New functions checkReadable(·) and checkWriteable(·) to check if file is readable or writeable

Communication between worker processes via MPI

- Main process 0 sends Databuff struct containing loadbuffer and Databuff struct containing hitbuffer and required simulationHistory values to sub processes using MPI_Bcast(·)
- Sub processes send updated Databuff struct containing hitbuffer and required simulationHistory values to main process 0 using MPI_Send(·) and MPI_Recv(·)

2.3. Usage of boost Library

Multiprecision

- Increase precision for variables if required
- Avoid overflow for integer and underflow for floating point numbers

2.4. New Quantities

New counter covering

- Number of carbon equivalent particles on facet
- Increases with adsorption, decreases with desorption
- Extracted from new hitbuffer counter from Simulationcalc.cpp file in getCovering(·)

Coverage

- Number of monolayers of adsorbed particles
- Calculated from covering, particle diamieter (previously gas mass) and facet area
- Coverage computed from Simulationcalc.cpp file in calcCoverage(·)

Sticking factor

- Ratio adsorbed particles to impinging particles
- Set to 0, can be adapted for all facets through input file

Binding energy

- Either E_{de} or H_{vap}
- Depending on the how many layers of particles are adsorbed.
- If coverage is smaller than a monolayer, it will be decided at random.

Desorption

- Number of particles desorbing
- Calculated from binding energy, covering and temperature
- Desorption computed from Simulationcalc.cpp file in calcDesorption(·)

Outgassing

- Number of particles from outgassing
- Calculated from facet outgassing and temperature defined in sHandle =; Um die genaue Berechnung vom Outgassing muessen wir uns noch kuemmern.
- Outgassing computed from Worker.cpp file in CalcTotalOutgassingWorker()

K_{real/virtual}

- Number of real particles represented by test particles
- Calculated from desorption & outgassing and number of desorbed molecules
- \bullet K_{real/virtual} computed from Simulationcalc.cpp file in GetMoleculesPerTP(\cdot)

Statistical Error

- Event error: calculated from hits and desorbed particles (of facet and total)
- Covering error: calculated from adsorbed and desorbed particles (of facet and total)
- Used to determine significance of simulation results of iteration

Step size

- \bullet Minimum time between adsorption and desorption
- Step size computed from UpdateMainProcess.cpp file in getStepSize()

2.5. Iterative Algorithm

2.5.1. Initialization of simulation

Figure 2.2.: Overview: Initialize simulation

New class to store Simulation History

• SimulationHistory class

```
class SimulationHistory {
public:
   SimulationHistory();
   SimulationHistory(Databuff *hitbuffer);

HistoryList<llong> coveringList;
HistoryList<llong> desorbedList;
HistoryList<double> hitList;
HistoryList<double> errorList_event;
HistoryList<double> errorList_covering;

double lastTime;
int currentStep;
};
```

```
template <typename T> class HistoryList {
public:
    HistoryList();
    std::vector<std::pair<double,std::vector<T>>> pointInTimeList;
    std::vector<T> currentList;
};
```

- In SimulationLinux.h and SimulationLinux.cpp file
- SimulationHistory updated after each iteration in UpdateCovering(·) from UpdateMainProcess.cpp file
- Currently recorded quantities: covering and error (event and covering) for each facet for each iteration, total hits and desorbed particles for each facet
- lastTime: simulated time (accumulated time steps) instead of computation time

2.5.2. Simulation on subprocesses

Figure 2.3.: Overview: simulation on sub processes

Calculate Step Size

- Use simHistory -> currentStep to calculate logarithmic step size
- Calculation in UpdateMainProcess.cpp file in getStepSize()

Calculate Covering Threshold

- Set lower threshold for covering for each facet to prevent covering getting negative
- Stop simulation once threshold is reached
- Threshold set in setCoveringThreshold(·) from Iteration.cpp file

Multiply small covering

- Multiply covering so that smallest covering > ProblemDef::coveringThreshMin
- Multiply covering threshold with same factor
- Calculation in checkSmallCovering(·) from SimulationLinux.cpp file

Calculate desorption

- Desorption calculated from current covering values
- Calculation in UpdateDesorption(·) from UpdateSubProcess.cpp file

Calculate residence time and binding energy

- Residence time of a particle on a surface calculated from binding energy, coverage and thermal oscillation frequency
- Binding energy calculated using binding energy on pure substrate, vaporization enthalpy and coverage
- Thermal oscillation frequency calculated using temperature, Boltzmann constant and Planck's constant
- Calculation in UpdateSojourn(·) from UpdateSubProcess.cpp file

Target error reached?

- Calculate statistical error in UpdateError() from UpdateSubProcess.cpp file
- Error to check can be either covering or event error (currently covering)
 - Check if vip facets reached their own target error
 - Check if normal facets total error reached target error
 - Currently vip facets not included in normal facets
- Total error calculated from summing facet error weighted with facet area
- Set error of facets that reached ProblemDef::hitRatioLimit to inf
- Set error of facets with no hits and desorption to inf
- Facets with error=inf are not considered
 - if vip facet: target automatically reached
 - if normal facet: facet error and area not used for calculation
- Check in checkErrorSub(·) from UpdateSubProcess.cpp file

2.6. Update main buffer

Before summation of subprocesses

- Calculate step size in UpdateMainProcess.cpp file in getStepSize() depending on, if the target error was reached
- Multiply covering in hitbuffer of main process in checkSmallCovering(·) from SimulationLinux.cpp file if covering is multiplied in sub processes

Figure 2.4.: Overview: update of covering in hitbuffer

Error Calculation

- Calculate statistical error of normal facets
- Error to can be either covering or event error (currently covering)
 - Covering: adsorbed and desorbed particles, weighted with opacity
 - Events: hits and desorbed particles, weighted with opacity
- Total error calculated from summing facet error weighted with facet area
- Set error of facets that reached ProblemDef::hitRatioLimit to inf
- Set error of facets with no hits and desorption to inf
- ullet Facets with error=inf are not used for calculation of total error
 - if vip facet: target automatically reached
 - if normal facet: facet error and area not used for calculation
- Save error in simHistory→errorList
- Management in UpdateErrorMain(·) from UpdateMainProcess.cpp file
 - ⇒ Increase simHistory→currentStep if target error reached

Calculate & Update Covering

- $K_{real/virtual}$ computed from Simulationcalc.cpp file in GetMoleculesPerTP(\cdot)
- Divide covering in hitbuffer if previously multiplied
- Use $K_{real/virt}$ to calculate new covering
- Save new covering in simHistory—coveringList and hitbuffer
- Calculation in UpdateCovering(⋅) from UpdateMainProcess.cpp file
- Update buffers in UpdateCoveringPhys(·) from UpdateMainProcess.cpp file

2.7. Summary

Figure 2.5.: Overview: ContaminationFlow application

General Pipeline

- Initialize MPI, ProblemDef p and SimulationHistory simHistory
- Load geometry into Simulation sHandle using LoadSimulation()
- Iteration until desired maximum simulation time is reached:
 - Reset hitbuffer counters using initbufftotero(·)
 - Broadcast simHistory→coveringList using MPI_Bcast(⋅)
 - Simulation in sub processes
 - Simulate until targetParticles and targetError or covthresh reached
 - Update hitbuffers of sub processes from sHandle using UpdateSubHits(·)
 from UpdateSubProcess.cpp
 - Update Main process:
 - Send hitbuffer to main process using MPI_Send(·) and MPI_Recv(·)
 - Update of hitbuffer in UpdateMainHits(·) from UpdateMainProcess.cpp
 - Update error of iteration using UpdateErrorMain(·) from UpdateMainProcess.cpp
 - Calculate real covering in main process using $K_{real/virtual}$ in UpdateCovering(·) from UpdateMainProcess.cpp, save in simHistory
 - Update real covering in hitbuffer of main process in UpdateCoveringphys(·) from UpdateMainProcess.cpp
- Export final results (hitbuffer and simulation History) to results folder
- Close MPI

3. ContaminationFlow Windows

• Create Geometry and set parameters such as initial coverage and temperature

3.1. Graphical User Interface

Add screenshot of GUI

New GUI elements

- "Particles out" renamed to Contamination level
 - Text field for covering
 - Text field for coverage
- New facet properties
 - Effective surface factor
 - Facet depth and facet volume
 - Diffusion coefficient
 - Concentration and gas mass
- Window for CoveringHistory (reworked to SimulationHistory in ContaminationFlow Linux)
- PressureEvolution window expanded
 - Added list that contains information of graph
 - Option to show only selected facets or all
 - List exportable

3.2. Communication

Import and export of buffer files via GUI

• New Databuff struct

```
typedef unsigned char BYTE;
typedef struct
  signed int size;
  BYTE *buff;
Databuff;
```

- New functions importBuff(·) and exportBuff(·) for import and export of buffer files/Databuff struct
- New options in file menu: Export buffer and Import buffer

3.3. New Quantities

New counter covering

• Covering computed in SimulationMC.cpp file in updatecovering(·)

- Added covering counter to hitbuffer
- Added covering to GUI, can be defined through textfield

New facet property effetiveSurfaceFactor

• Defines increase of facet area due to texture

New facet property facetDepth

• Defines depth of facet

New facet property diffusionCoefficient

• Defines diffusion coefficient

New facet property concentration

• Defines concentration = mass of particles in volume

Removal of irrelevant quantities

- Sticking factor and pumping speed removed from GUI
- calcSticking() and calcFlow() in Molflow.cpp file not used anymore
- Flow not needed for iterative Algorithm

3.4. Iterative algorithm

New class to store covering for all facets at any time

- In HistoryWin.cpp and HistoryWin.h file
- std::vector<std::pair<double,std::vector<double>>> pointintime_list to store points in time and respective covering for all facets
- New GUI option to add and remove entries for pointintime_list
- New GUI option to export or import a complete list

A. Formulas for new Quantities

Constants

$$k_b = 1.38 \, 10^{-23}$$

 $h = 6.626 \, 10^{-34}$ (A.1)

Variables

$$T = \text{Facet temperature}$$
 (A.2)

Number of carbon equivalent particles of one monolayer

$$N_{mono} = \frac{\text{Area of Facet } [\text{m}^2]}{\text{ProblemDef::particleDia}^2 [\text{m}^2]}$$
(A.3)

Carbon equivalent relative mass factor

$$\Delta N_{surf} = \frac{\text{carbon equivalent gas mass}}{12.011} \tag{A.4}$$

Covering θ^*

$$\theta^* = N_{\text{particles on facet}}$$
 (A.5)

Coverage θ

$$\theta = \frac{\theta^*}{N_{mono}/\Delta N_{surf}} \tag{A.6}$$

Binding Energy E

$$E = \begin{cases} E_{de}, & \text{if particle binds with substrate} \\ H_{vap}, & \text{if particle binds with adsorbate} \end{cases}$$
 (A.7)

Residence Time τ

$$A = \exp\left(-E/(k_b T)\right)$$

$$\tau_0 = \frac{k_b T}{h}$$

$$\tau = \frac{-\ln(rnd) \cdot \tau_0}{A}$$
(A.8)

Step Size t_{step}

 $t_{min} = ProblemDef::t_min$

 $t_i = t_{min} \cdot \exp\left(i \cdot \ln(\text{ProblemDef::maxTimeS}/T_{min})/\text{ProblemDef::iterationNumber}\right)$

$$t_{step} = \min(t_{currentStep+1} - t_{currentStep}, \text{ProblemDef::t_max})$$
(A.9)

Desorption des

$$\tau_{0} = \frac{h}{k_{b}T}$$

$$\tau_{subst} = \tau_{0} \cdot \exp\left(\frac{E_{de}}{k_{b}T}\right)$$

$$\tau_{ads} = \tau_{0} \cdot \exp\left(\frac{H_{vap}}{k_{b}T}\right)$$

$$t_{ads} = \tau_{ads} \cdot (\theta - 1)$$
(A.10)

$$des = \begin{cases} 0, & \text{if } \theta = 0 \text{ or } T = 0\\ \theta \cdot \left(1 - \exp(-t_{step}/\tau)\right), & \text{else if } \theta \le 1\\ t_{step}/\tau_{ads}, & \text{else if } \theta - 1 \ge t_{step}/\tau_{ads}\\ \theta - 1 + \left(1 - \exp(-(t_{step} - t_{ads}/\tau))\right), & \text{else if } \theta - 1 < t_{step}/\tau_{ads} \end{cases}$$

Outgassing out

$$out = \frac{\text{Facet outgassing}}{k_b T} \tag{A.11}$$

Small covering factor

mincov =Smallest covering on a single facet that desorbs

 $\text{small covering factor} = \begin{cases} 1, & \text{if } mincov \geq \text{ProblemDef::coveringMinThresh} \\ 1 + 1.1 \cdot (\text{ProblemDef::coveringMinThresh}/mincov), & \text{otherwise} \end{cases}$ (A.12)

K_{real/virtual}

$$K_{\text{real/virtual}} = \frac{\sum_{\text{facets}} \left(out + des \right)}{\text{number of total desorbed molecules/small covering factor}}$$
(A.13)

Error

$$\operatorname{error}(counter) = \begin{cases} inf & \text{if } (counter) \text{ on facet } = 0 \\ \left(\frac{1}{(counter) \text{ on facet}} \cdot \frac{1 - (counter) \text{ on facet}}{\operatorname{total}(counter)}\right)^{0.5} & \text{, else} \end{cases}$$
(A.14)

 $error_covering = error(adsorbed particles + desorbed particles)$ $error_event = error(hits + desorbed particles)$

B. Datatypes

B.1. Class Members

Name	Datatype	Alias
SimulationHistory::coveringList	boost::multiprecision::uint_128t	covBoost
FacetHitBuffer::covering	llong	covLlong
FacetProperties::desorption	boost::multiprecision::float128	desBoost
Simulation::coveringThreshold	llong	

B.2. Functions

Function	Output Datatype	Relevant Input
getCovering()	boost::multiprecision::float128	covBoost
getCovering()	llong	covLlong
calcCoverage()	boost::multiprecision::float128 or llong	getCovering()
calcDesorption()	boost::multiprecision::float128	calcCoverage()
calctotalDesorption()	boost::multiprecision::float128	desBoost
GetMoleculesPerTP()	boost::multiprecision::float128	desBoost

C. Overview of new Classes and Functions

C.1. New Classes

SimulationHistory			
coveringList	of class HistoryList, stores covering history		
errorList_event	of class HistoryList, stores error history for events		
errorList_covering	of class HistoryList, stores error history for covering		
hitList	of class HistoryList, stores hits for each facet		
desorbedList	of class HistoryList, stores desorbed particles for each facet		
startNewParticle	Determines wether to create a new particle for next iteration		
numFacet	number of Facets		
numSubProcess	number of sub processes used for simulation		
$nbDesorbed_old$	number of total desorbed molecules of previous iteration \Rightarrow To calculate difference between consecutive iterations		
flightTime	Simulated flight time for iteration		
nParticles	Simulated particles for iteration		
lastTime	Total simulated time = last time in Lists		
currentStep	step of logarithmic time step calculation in getStepSize()		
stepSize	current step size		
updateHistory()	Reset and update from hitbuffer		
appendList()	Updates coveringList from hitbuffer		
print()	Print to terminal		
write()	Write to file		

HistoryList		
pointInTimeList	list containing history respective facet values	
currentList	list containing facet values at current step	
currIt	current iteration number	
appendCurrent()	Appends currentList to pointInTimeList	
appendList()	Append input list to pointInTimeList	
convertTime()	Converts time for better clarity	
printCurrent()	Print currentList as table to terminal, optional message	
print()	Print pointInTimeList as table to terminal, optional msg	
write(), read()	Write to file, read from file	
set/getCurrent()	Set/get value of desired facet in currentList	
setLast(), getLast()	Set/get value of desired facet from pointInTimeList	

ProblemDef		
resultpath	Path of result folder	
outFile	Path of file that contains terminal output	
loadbufferPath	Path of loadbuffer file	
hitbufferPath	Path of hitbuffer file	
$\begin{array}{c} \text{simulationTime, unit} \\ \Rightarrow \text{simulationTimeMS} \end{array}$	Computation time of each iteration in milliseconds	
$\begin{array}{c} \text{maxTime, maxUnit} \\ \Rightarrow \text{maxTimeS} \end{array}$	Maximal total simulated time in seconds	
iterationNumber	Number of iterations	
particleDia	Diameter of particles	
E_de, H_vap	Parameters to calculate binding energy, see equation A.7	
sticking	Sticking factor for all facets	
targetParticles/-Error	Target values for each iteration	
hitRatioLimit	threshold of hitratio at which hits are ignored	
coveringMinThresh	Minimum covering, multiplication to this if covering low	
t_min, t_max	Minimum/ Maximum step size	
maxSimPerIt	Maximun simulation steps per iteration	
histSize	Size of history lists (most recent values in memory)	
vipFacets	alterning: vip facet and target error, e.g. 1 0.001 3 0.002	
readInputfile()	Initialization from input file	
printInputfile()	Print to terminal	

C.2. New Functions

C.2.1. molflowlinux_main.cpp

Preprocessing		
parametercheck()	Checks validity of input parameters from input file Defines values for ProblemDef object p	
importBuff()	Import load- and hitbuffer to main process	
MPI_Bcast()	Send loadbuffer to sub processes	
LoadSimulation()	Load geometry from loadbuffer	
initCoveringThresh()	Initialize covering threshold	
simHistory	Initialize SimulationHistory object	

Simulation Loop		
initbufftozero()	Reset all hitbuffer counters except covering	
MPI_Bcast()	Send simHistory—coveringList and simHistory—currentStep to sub processes	
$\operatorname{setCoveringThreshold}()$	Sets covering threshold for each facet	
${\bf Update Sojourn()}$	Sets sojourn variables for each facet	
${\bf Update Desorption Rate}()$	Sets desorption for each facet, ends simulation if 0	
${\rm checkSmallCovering}()$	multiplies covering to reach threshold if covering small	
simulateSub()	Simulation on sub processes	
$MPI_Send(), MPI_Recv()$	Send sub hitbuffer to main process	
${\bf Update MCMain Hits ()}$	Add simulation results from sub hitbuffer to main hitbuffer	
${\bf Update Error Main ()}$	Calculate and save error of iteration to simHistory	
UpdateCovering()	Calculate and save new covering to simHistory	
UpdateCoveringphys()	Saves current covering to hitbuffer	
$\verb simHistory \rightarrow \verb coveringList \\ \verb simHistory \rightarrow \verb errorList \\$	Adapt size to p→histSize if necessary	
End simulation if maximum simulation time is reached		

Postprocessing	
exportBuff()	Export final hitbuffer
$simHistory \rightarrow write()$	Export simulation history

C.2.2. SimulationLinux.cpp

simulateSub()		
targetParticles, targetError	Calculate target values from overall target and number sub processes	
simHistory->updateHistory()	Reset and update SimulationHistory object from sHandle	
smallCoveringFactor	If covering is small: Covering is multiplied by smallCoveringFactor to be able to have statistics without overflow of the covering variable	
SimulationRun()	Simulate for desired simulation time	
UpdateError()	Calculate current error of sub process	
CheckErrorSub()	Checks if normal facets reached targetError and if vip facets reached own target	
UpdateMCSubHits()	Save simulation results to hitbuffer	

Small covering		
CheckSmallCovering()	If covering is small, find smallCoveringFactor to reach $p\rightarrow coveringMinThresh$	
Undo multiplication	In UpdateCovering()	

C.2.3. Iteration.cpp

Set Covering Threshold to avoid negative covering		
initCoveringThresh()	Initializes size of covering threshold vector	
setCoveringThreshold()	Sets covering threshold for each facet	

C.2.4. Buffer.cpp

Buffer functions	
Databuff struct()	signed int size BYTE *buff
checkReadable()	Checks if file can be opened for reading
checkWriteable()	Checks if file can be openend or created for writing
importBuff()	Imports buffer file to Databuff struct
exportBuff()	Exports Databuff struct to buffer file

C.2.5. Calculations in SimulationCalc.cpp etc.

SimulationCalc.cpp	
getCovering()	Get covering from hitbuffer or simHistory
getHits()	Get number of hits from hitbuffer
getnbDesorbed()	Get number of total desorbed molecules from hitbuffer
getnbAdsorbed()	Get number of total adsorbed molecules from hitbuffer
calcNmono()	see equation A.3
calcdNsurf()	see equation A.4
calcCoverage()	see equation A.6
calcEnergy()	see equation A.7
calcStickingnew()	sets sticking coefficient to p—sticking
calcDesorption()	see equation A.10
GetMoleculesPerTP()	see equation A.13
calctotalDesorption	calculates desorption for startFromSource()
calcPressure()	TODO has to be verified
calcParticleDensity()	TODO has to be verified

worker.cpp	
CalcTotalOutgassingWorker()	see equation A.11, calculates outgassing
	for startFromSource()

SimulationLinux.cpp	
convertunit()	Converts simutime*unit to milliseconds

C.2.6. UpdateSubProcess.cpp

Update sHandle paramters from hitbuffer		
UpdateSticking()	Updates sticking	
UpdateDesorptionRate()	Updates desorption	
UpdateSojourn()	Enables sojourn time $=$ $\stackrel{\cdot}{\iota}$ Verstehe ich nicht	

Error calculations	
UpdateErrorSub()	Calculates error per facet, see equation A.14 Saves to simHistory → errorList_covering and simHistory → errorList_event
UpdateError()	Sums up error of normal facets & weights by facet area Currently covering error instead of event error
CheckErrorSub()	Checks if normal & vip facets reached respective target

Update hitbuffer	
initbufftozero()	Sets hitbuffer except covering to zero
UpdateMCSubHits()	Saves simulation results from sHandle into hitbuffer

C.2.7. UpdateMainProcess.cpp

Update main hitbuffer from sub hitbuffer	
UpdateMCMainHits()	Add simulation results from sub hitbuffer to main hitbuffer

Update real covering in hitbuffer	
getStepSize()	Calculates step size for current step, see equation A.9
UpdateCovering()	Uses Krealvirt to calculate new covering Saved to simHistory→coveringList
UpdateCoveringphys()	Saves current real covering to hitbuffer
UpdateErrorMain()	Calculates total error for each facet, see equation A.14 Saves to simHistory—errorList_event and simHistory—errorList_covering
CalcPerIteration()	Calculates total error (covering and event) and covering over all facets per iteration