15 de octubre de 2011 Total: 32 puntos Tiempo: 2 h. 10 m.

SEGUNDO EXAMEN PARCIAL

Este es un examen de desarrollo, por tanto, debe aparecer todos los pasos, y sus respectivas justificaciones, que sean necesarios para obtener su respuesta.

1. Considere las dos relaciones \mathcal{R} y \mathcal{S} definidas sobre el conjunto $A = \{2, 4, 6, 8\}$, donde \mathcal{R} está definida por

$$a\mathcal{R}b \Leftrightarrow [a+b < 10]$$

y la matriz de S cumple que $M_S[i,j] = 1 \iff [i=2 \lor j=3]$.

- (a) Calcule el gráfico de \mathcal{R} y el gráfico de \mathcal{S} . (3 puntos)
- (b) Determine la matriz asociada a la relación $(\overline{\mathcal{R}} \mathcal{S}^{-1}) \cup (\mathcal{R} \cap \mathcal{S})$. (3 puntos)
- 2. Sea A un conjunto, sobre P(A) se define la relación \mathcal{R} de manera que $M\mathcal{R}N$ si y solo si |M| = |N|, es decir, M se relaciona con N si y solo si tienen la misma cardinalidad.
 - (a) Demuestre que \mathcal{R} es una relación de equivalencia. (4 puntos)
 - (b) Si $A = \{a, b, c, d\}$ calcule la clase de equivalencia de $\{a, c\}$. (2 puntos)
- 3. Sean \mathcal{R} y \mathcal{S} dos relaciones definidas sobre un conjunto A, con A no vacío. Si se sabe que \mathcal{R} es transitiva y \mathcal{S} es simétrica, demuestre que si $a(\mathcal{R} \cap \mathcal{S})b \wedge b\mathcal{R}c$, entonces $b(\mathcal{R} \circ \mathcal{S})c$.

(4 puntos)

4. Considere la función $f: \mathbb{R} - \{-2\} \to \mathbb{R} - \{0\}$ con criterio $f(x) = \frac{1}{x+2}$, y la función $g: \mathbb{R} - \{2\} \to \mathbb{R} - \{1\}$ con criterio $g(x) = \frac{x-3}{x-2}$. Si se sabe que ambas funciones son biyectivas, verifique que:

$$(f \circ g^{-1})(x) = \frac{x-1}{4x-5}$$

y además, determine el dominio de $f \circ g^{-1}$. (4 puntos)

- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ biyectiva, si $(2,5) \in G_f$ y además $f^{-1}\left(\frac{k+4}{k-2}\right) = 2$, calcule el valor de k. (3 puntos)
- 6. Para los conjuntos $A=\{a,b,c\},\,B=\{0,1,2,3,4\}$ y $C=\{1,2,3\}$. Considere la función $f\colon P(A)\to B$ definida por f(M)=|M| y la función $g\colon B\to C$ definida por

$$g(x) = \begin{cases} x+1 & \text{si } x < 3\\ x-2 & \text{si } x \ge 3 \end{cases}$$

- (a) Determine si $g \circ f$ es inyectiva y/o si $g \circ f$ es sobreyectiva. (3 puntos)
- (b) Calcule $f^{-1}(\{2,3\})$. (1 punto)
- (c) Calcule $(g \circ f)^{-1}(\{2,3\})$. (1 punto)
- 7. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y además, que g es una función de B en C.

Demuestre que si $g \circ f$ es inyectiva y f es sobreyectiva, entonces g es inyectiva. (4 puntos)