Recitation 4. March 12

Focus: bases, four fundamental subspaces, fitting everything together.

Notation. Let V and W denote two real vector spaces.

Definition (reminder). Vectors v_1, \ldots, v_k are said to be *linearly independent* if the only way to write a zero linear combination $c_1v_1+\cdots+c_kv_k=0$ is to let all the scalars be zero: $c_1=\cdots=c_k=0$.

Definition (reminder). The *span*, or *linear span*, of some set of vectors $S \subset V$ is the set of all possible finite linear combinations of vectors from S, or mathematically:

Span
$$S = \{c_1 v_1 + \dots + c_l v_l \mid l \in \mathbb{Z}; v_1, \dots, v_l \in V; c_1, \dots, c_l \in \mathbb{R}\}.$$

The set S can be finite or infinite, and it can be linearly independent or linearly dependent. If $\operatorname{Span} S = V$, then we say that S generates, or spans, the vector space V.

Definition (reminder). A set of vectors v_1, \ldots, v_n is called a *basis* of V if it these vectors are linearly independent and span V. In this case, we say that V is n-dimensional. All bases in the same vector space have equal number of elements.

Definition. A linear operator, or a linear transformation, between vector spaces V amd W is a set function $A:V\to W$ that is linear, which means that A(v+v')=Av+Av' for vectors v and v' in V, and $A(\lambda v)=\lambda Av$ for a vector $v\in V$ and a scalar $\lambda\in\mathbb{R}$.

Definition. The *image* of a linear operator $A: V \to W$ is a subset of W that consists of all vectors of the form Av for $v \in V$, or mathematically: Im $A = \{Av \mid v \in V\}$.

Definition. The *kernel* of a linear operator $A: V \to W$ is a subset of V that consists of all vectors that are sent to zero, or mathematically: Ker $A = \{v \in V \mid Av = 0\}$.

Definition. The rank of a linear operator $A: V \to W$ is the dimension of its image dim Im A.

1. Prove that Im A and Ker A are vector subspaces of W and V, respectively.

Solution:			

2. How can an $m \times n$ matrix be viewed as a linear transformation? What are the dimensions of the two vector spaces?

Solution:			

3. Let us consider a matrix A as a linear operator $A: \mathbb{R}^n \to \mathbb{R}^m$. Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n , that is: $e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ldots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$. Describe Ae_1, \ldots, Ae_n in terms of A. Conclusion: we can define a linear operator $A: V \to W$ by its action on a basis of V.

		Solution:

- 4. Let V be the space of polynomials in two variables of the form $f(x,y) = a + bx + cy + dx^2$, and let W be the space of degree one polynomials in two variables.
 - a) Find (the simplest) bases of V and W. What are the dimensions of these spaces?
 - b) Consider a linear operator $A = \frac{d}{dx}$ from V to W. Write A as a matrix in the bases that we found in part (a).
 - c) What are the nullspace and column space of A? What are the kernel and image of $\frac{d}{dx}$? What is the conclusion?
 - d) What is the rank of A?

5.

- e) Bonus. Let us add twice the second column of A to the first, and denote the new matrix (linear transformation) by A'. How did the transformation change?
- f) Bonus. Write A' as a composition of A and some other linear transformation M. What are the vector spaces that M operates between?

Hint: recall column operations and how they are related to matrix multiplication on the right.

Solution:
Fix a linear operator $A: \mathbb{R}^n \to \mathbb{R}^m$ of rank r. Describe the relations between the four funda-
mental subspaces in terms of kernel and image. Tricky question: Would you be able to do that
if we said that $A: V \to W$ with the same rank and dimensions of the spaces?
Solution:

6. Fix a linear operator $A: \mathbb{R}^n \to \mathbb{R}^m$. Understand that if $b \in \mathbb{R}^m$ is in the image of A, then the system Ax = b has a solution, say x_0 . In this case, show in addition that the space of all solutions is $x_0 + \operatorname{Ker} A$. Now conclude that in the case of nonzero kernel (nullspace), the system Ax = b has either infinitely many solutions or no solutions at all, depending on whether $b \in \operatorname{Im} A$ or not.