Тема 4. АЛГЕБРАЇЧНІ СТРУКТУРИ

Лекція 4.3. Кільця і поля

План лекції

- 1. Подібність алгебраїчних систем.
- 2. Кільця та ідеали кілець.
- 3. Поля Галуа.

- Література. 1. Конспект лекцій.
 - 2. Балога С.І. Дискретна математика. Навчальний посібник. Ужгород: ПП «АУТДОР-. ШАРК», 2021. – 124 с.
 - 3. Акимов О.Е. Дискретная математика. Логика. Группы. Графы. Фракталы. – М.: АКИМОВА, 2005. – 656 с.

1. Подібність алгебраїчних систем

Під час розгляду прикладів груп була помітна схожість групи залишків за модулем та групи коренів рівняння $x^n = 1$ або групи двійкових чисел з операцією XOR та групи багаточленів над GF(2).

Цілком доречне питання – за яких умов подібність ϵ достатньою підставою для поширення результатів вивчення однієї алгебраїчної системи на іншу і коли таке можливі також у зворотному напрямку.

Якщо у двох алгебраїчних систем

$$K = (A, \phi_1, \phi_2, ..., \phi_p)$$
 ra $M = (B, \psi_1, \psi_2, ..., \psi_p)$

кількість операцій та арність для кожної пари ϕ_i та ψ_i однакова, існує відображення Γ множини A на множину B ($\Gamma: A \to B$) таке, що

$$\Gamma(\phi_n(a_1,\,a_2,\,...,\,a_f))=\psi_n(\Gamma(a_1,\,a_2,\,...,\,a_f)),$$

тобто, результат операції на образами елементів першої системи у другій системі має збігатись з образі у другій системі результату операції над елементами в першій системі, то маємо ступінь подібності з назвою гомоморфізм К на М.

Цю тезу для бінарної операції, пояснює рис. 1.

Рис. 1. Ілюстрація до умов наявності гомоморфізма алгебраїчної системи К на систему М

Якщо водночає існує гомоморфізм К на М та гомоморфізм М на К, то такий ступінь подібності має назву **ізоморфізм.** Якщо використовується відображення множини на її підмножину то ступінь подібності має назву **автоморфізм.**

Приклади

Приклад **гомоморфізму** групи Z_6 та підгрупи групи коренів рівняння $x^6 = 1$. Маємо алгебраїчні системи:

$$Z_6 = (A, \oplus_6)$$
 $A = \{0, 1, 2, 3, 4, 5\}$ ta $K = (B, \cdot)$, $B = \left\{1, e^{j\frac{2\pi}{6}3}\right\}$

відображення множини А на множину В подане, за допомогою двочасткового графа нижче (рис. 7-2).

Рис. 2. Відображення $A \rightarrow B$

Перевірка відповідності операндів та операцій полягає у наступному:

- 1) нейтральний елемент Z₆ відображено у нейтральний елемент К;
- 2) операція між будь-яким елементом та нейтральним у Z_6 дає у результаті вихідний елемент і це ж відбувається з їх образами у K, бо множення на 1 залишає результат $e^{j\frac{2\pi}{6}3}$;
- 3) операція між будь-якими двома елементами у Z_6 та її результат чітко відповідають операціям над образами елементів і образ результату, який одержано у Z_6 , завжди дорівнює результату операції над образами операндів у системі K.

Приклад **ізоморфізму** між півгрупою додатних дійсних чисел та півгрупою дійсних чисел. Маємо системи:

$$A = (R+, \cdot)$$
 to $B = (R,+)$

R+ – множина додатних R – множина дійсних дійсних чисел чисел

У цих систем кількість та арність операцій однакова.

Результати відображення:

множини $R+ \to R$, якщо $x \in R+$, дістають за виразом y = 1gx; множини $R \to R+$ — за виразом $x = 10^y$.

Відповідність операндів та результатів відома, бо то ϵ підстава для використання звичайних десяткових логарифмів, які добре полегшують виконання операцій множення та піднесення до степені.

Приклад **автоморфізму** групи трирозрядних двійкових чисел з операцією XOR G = (C, XOR), C = (000, 001, 011, 010, 100, 101, 110, 111) на підгрупу $G1 = (D, XOR), D = \{000, 111\}.$

Зрозуміло, що кількість і арність операцій у групи та підгрупи не можуть бути різними. Відображення множини С на множину D можливе за таким правилом: якщо елемент у складі множини С має у молодшому розряді одиницю, то образ цього елемента у множині D1 ϵ 111, інакше образ елемента ϵ 000. Перевірки (невичерпні) не суперечать наявності автоморфізму:

Взаємно-однозначна відповідність простору функцій на інтервалі аргументів та простору багатовимірних векторів була основою для побудови функціонального аналізу (розділ математики)

2. Кільця та ідеали кілець

Def. Кільце $\Re = (\mathbf{M}, +, \times)$ - це множина з двома бінарними операціями (+) и (×) , такими, що

- 1. M абелева група відносно складання (+).
- 2. Операція (×) замкнута та асоціативна: для всіх $a, b, c \in \mathbf{M},$ $a \times (b \times c) = (a \times b) \times c.$
- 3. . Виконуються закони дистрибутивності: для всіх $a, b, c \in \mathbf{M}$, $a \times (b + c) = a \times b + a \times c$, $(b + c) \times a = b \times a + c \times a$.

Це алгебраїчні системи з двома визначальними операціями. Першу з цих операцій умовно звуть складанням або адитивною операцією, другу — мультиплікативною операцією або множенням.

Щоб алгебраїчна система була кільцем потрібно виконання таких вимог:

- 1) множина та операція складання мають створювати комутативну групу (операція має бути ще й комутативна);
 - 2) замкненість множини відносно множення;
 - 3) асоціативність множення
 - 4) дистрибутивність множення відносно складання.

Якщо алгебраїчна система відповідає цим вимогам, то вона має назву – асоціативне кільце. Додатково

– якщо операція множення комутативна, то алгебраїчна система має назву комутативне кільце;

- якщо у множині ε нейтральний елемент за множенням, то система ма ε назву кільце з одиницею;
 - у кільці з одиницею є мультиплікативна група;
- якщо для елементів множини A можливо $a_i \cdot a_j = 0$, то система має назву кільце з дільниками нуля, а ці елементи є дільники нуля.

Приклад: $R = (A, \oplus_6, \otimes_6)$, $A = \{0, 1, 2, 3, 4, 5\}$, операція множення за модулем 6 виконується аналогічно додаванню за модулем, тобто, після звичайного множення знаходять залишок від ділення результату звичайного множення на 6. Перевіримо виконання вимог:

- 1) ϵ комутативна група за складанням за модулем 6; операція комутативна;
- 2) результат операції множення за модулем обов'язково належить множині А, тобто замкненість множини відносно операції множення гарантована;
- 3) асоціативність множення можна стверджувати на підставі того, що під час виконання операції спочатку виконують звичайне множення, а воно асоціативне та комутативне;
 - 4) дистрибутивність можна перевірити за виразом

$$a_i \otimes_6 (a_j \oplus_6 a_k) = a_i \otimes_6 a_j \oplus_6 a_i \otimes_6 a_k$$
 для $a_i = 3$, $a_j = 4$, $a_k = 5$ маємо $3 \otimes_6 (4 \oplus_6 5) = 3 \otimes_6 4 \oplus_6 3 \otimes_6 5$ $3 \otimes_6 3 = 0 \oplus_6 3$ $3 = 3$.

Таким чином, маємо комутативне кільце. До складу множини належить нейтральний елемент за множенням (це 1), а також $2 \otimes_6 3 = 0$. Це комутативне кільце з одиницею з дільниками нуля.

Ідеал кільця це підмножина кільця, яка є підгрупа за складанням, що містить в собі всі добутки елементів кільця (перший операнд) та підмножини кільця (другий операнд).

У попередньому прикладі група за додаванням має підгрупу з множиною $I = \{0, 2, 4\}$. Ця підмножина кільця має властивість: якщо її помножити за модулем 6 на будь—який елемент кільця, то результатом буде або повторення множини, або число, яке належить підмножині. Така підмножина і має назву — ідеал кільця. Важлива властивість ідеал а — у ньому завжди є елемент, на який можна поділити без залишку всі елементи ідеалу. У прикладі це 2.

Найпростішим прикладом кільця ϵ кільце Z цілих чисел.

Оскільки ми в основному обмежуємося розглядом кінцевих алгебраїчних структур, то таким прикладом може служити кільце повної системи лишків за модулем n.

Наприклад, кільце парних цілих чисел не містить мультиплікативну одиницю і не ε областю цілісності. Важливо, що ненульові елементи кільця необов'язково утворюють мультиплікативну групу, тобто. можуть мати зво-

ротних по множенню елементів. Однак у кільці з одиницею ϵ мультиплікативна група оборотних елементів.

Наприклад, в кільці $\mathbb{Z}/9\mathbb{Z}$ елементи $\{1, 2, 4, 5, 7, 8\}$ утворюють мультиплікативну циклічну групу 6-го порядку. Усі її елементи взаємно прості з числом 9. Її генератором, наприклад, може бути елемент 2, оскільки $23 = -1 \mod 9$, $26 = 1 \mod 9$.

Наприклад, кільце парних цілих чисел не містить мультиплікативну одиницю і не ϵ областю цілісності. Важливо, що ненульові елементи кільця необов'язково утворюють мультиплікативну групу, тобто. можуть не мати обернених за множенням елементів. Однак у кільці з одиницею ϵ мультиплікативна група обернених елементів. Наприклад, в кільці $\mathbb{Z}/9\mathbb{Z}$ елементи $\{1, 2, 4, 5, 7, 8\}$ утворюють мультиплікативну циклічну групу 6-го порядку. Усі її елементи взаємно прості з числом 9. Її генератором, наприклад, може бути елемент 2, оскільки $2^3 = -1 \mod 9$, $2^6 = 1 \mod 9$.

4.3. Поля Галуа

Def. Скінчене поле або поле Галуа **GF(q)** – це множина q елементів з бінарними операціями додавання (+) і множення (×), всі елементи якої утворюють адитивну абелеву групу, а всі ненульові елементи – мультиплікативну групу. Складання і множення у полі пов'язані законом дистрибутивності.

Число q елементів поля ϵ його порядком (він збігається з порядком адитивної групи), при цьому порядок його мультиплікативної групи дорівнює q - 1.

Оскільки ненульові елементи поля становлять мультиплікативну групу, кожен елемент має зворотний, тоді множення на зворотний елемент можна розглядати як поділ: $a/b = ab^{-1}$

Розрізняють прості та розширені поля Галуа.

Просте поле Галуа $\mathbf{GF}(\mathbf{p})$ – це поле простого порядку $\mathbf{q} = \mathbf{p}$ (\mathbf{p} – просте число). Зокрема, кільце лишків за модулем п стає полем, якщо $\mathbf{n} = \mathbf{p}$ – просте число. І тут будь-який ненульовий лишок є взаємно простим із числом \mathbf{p} і, отже, має зворотний. Наприклад, при $\mathbf{p} = \mathbf{5}$ таблиці Келі складання та множення елементів поля мають вигляд

_	+	01234
	0	0 1 2 3 4
	1	1 2 3 4 0 2 3 4 0 1 3 4 0 1 2
	2	23401
	3	3 4 0 1 2
	4	40123
		I

×	01234
0	00000
1	0 1 2 3 4
2	0 2 4 1 3
3	0 3 1 4 2
4	0 4 3 2 1

Неважко бачити, що всі умови для адитивної та мультиплікативної груп поля виконуються. Зокрема всі ненульові елементи мають єдині обернені елементи за множенням.

Мультиплікативна група простого поля позначається як F_p^* і має порядок p-1. Вона є циклічною групою парного порядку (виключаючи групу F_2^*) і, отже, завжди має підгрупи порядків, які є дільниками числа p-1.

Розширені поля Галуа **GF**(**p**ⁿ) будуються як розширення простого поля. Вони мають порядок $q = p^n$, де p – просте число. Число називаються характеристикою поля. Елементи розширених полів прийнято представляти за допомогою поліномів ступеня (n-1) над полем **GF**(**p**)

$$A(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}, a_i \in \mathbf{GF}(\mathbf{p}),$$

або n-вимірних векторів $A = (a_0, a_1, a_2, ..., a_{n-1})$ відповідного n-вимірного векторного простору.

Додавання в розширеному полі здійснюється за правилами додавання поліномів (або покоординатним додаванням проекцій векторів за mod p), а множення зводиться до визначення остачі від ділення

$$C(x) = res\{A(x)B(x)/P(x)\} = A(x)B(x) \bmod P(x), \tag{2}$$

де P(x) – неприведений поліном.

Поліном P(x) називається неприведеним, якщо він не розкладається у добуток поліномів менших ненульових степенів над полем GF(p) (тобто з коефіцієнтами GF(p)). Це поняття споріднене з простим числом в теорії чисел. У табл. 4.1 наведені в двійковій формі всі неприведені поліноми ступенів n = 1, ..., 6 над полем GF(2).

T ~ 1	1 TT	•	/ • •	\
	І Напициала	TI HATIIAMII ATUHAIIA	11 / HIDILITADA E	ΙΜΑΠΟΤΟΡΠΑΙΙΙΙΠ Ι
таолиня 4	• і пенникелеі	н поліноми ступеня	II I /IBI/IBC I	пределавиення г
т ислици т	· · · · · · · · · · · · · · · · · · ·	ii iiosiiiiowiii ei , iieibi	и (двинове и	родотавления

n = 1	n = 2	n=3	n=4	n = 5	<i>n</i> = 6
10	111	1011	10011	100101	1000011
11		1101	11001	101001	1001001
			11111	101111	1010111
				110111	1011011
				111011	1100001
				111101	1100111
					1101101
					1110011
					1110101

Оскільки всі операції з коефіцієнтами здійснюються за mod p, редукцію (2) називають редукцією за подвійним модулем modd (P(x), p).

Найбільш широко в теорії кодування використовуються розширення двійкового поля $\mathbf{GF}(2^n)$ або поля характеристики 2. Векторне пред-

7 Дискретна математика. Тема 4. Алгебраїчні структури. Лекція 3. Поля

ставлення відповідних поліномів у цьому разі записують зазвичай двійковою послідовністю з молодшим розрядом справа. Наприклад,

$$A(x) = x^4 + x^3 + x^2 + 1 = (11101).$$

Для простоти використовуємо знак рівності у правій частині виразу, хоча має місце еквівалентність між поліноміальною формою та векторним записом коефіцієнтів полінома.