MESURES ET INTEGRATION

Exercice 1. Soit E un ensemble infini non dénombrable. Pour toute partie A de E, on pose m(A) = 0 si A est au plus dénombrable, et $m(A) = +\infty$ sinon. L'application m est-elle une mesure sur $\mathcal{P}(E)$?

Exercice 2. Soit $(X, \mathcal{P}(X))$ un espace mesurable où X est non-vide et $a \in X$. Pour tout $A \in \mathcal{P}(X)$, on pose

$$\delta_a(A) = \begin{cases} 1 & \text{si } a \in A, \\ 0 & \text{sinon.} \end{cases}$$

- 1. Démontrer que δ_a est une mesure finie sur $(X, \mathcal{P}(X))$. On appelle δ_a la mesure de Dirac en a.
- 2. Déterminer les parties de E négligeables pour δ_a .

Exercice 3. Mesures images.

- 1. Soit (X, \mathcal{A}, ν) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $f: (X, \mathcal{A}) \longrightarrow (Y, \mathcal{B})$ une fonction mesurable. Montrer que $\mu: \mathcal{B} \longrightarrow [0, +\infty]$ définie par $\mu(B) = \nu(f^{-1}(B))$ pour tout $B \in \mathcal{B}$ est une mesure sur (Y, \mathcal{B}) . On l'appelle la mesure image de ν par f et on écrit $\mu = f_*\nu$.
- 2. Soit $(X, \mathcal{A}, \nu) = ((0, 1), \mathcal{B}((0, 1)), \lambda)$ avec λ mesure de Lebesgue. Soit μ une mesure de probabilité quelconque sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et soit

$$F(t) := \mu((-\infty, t)), \qquad t \in \mathbb{R}$$

la fonction de répartition de μ . On définit la fonction $f:(0,1)\longrightarrow \mathbb{R}$ par

$$f(x) := \inf\{t \mid F(t) \ge x\}, \quad x \in (0,1).$$

Prouver que $\mu = f_* \lambda$.

3. Calculer la fonction f de la question précédente pour les μ suivantes :

$$\mu = \delta_x, \qquad \mu = \mathbb{1}_{[2,3]}(x)dx.$$

Exercice 4. Une mesure diffuse purement atomique. Soit E un ensemble non dénombrable et \mathcal{E} la tribu engendrée par l'ensemble des singletons de E. Posons, pour $A \in \mathcal{E}$, $\mu(A) = 0$ si A est au plus dénombrable et $\mu(A) = 1$ si A^c est au plus dénombrable.

- 1. Si $E = \mathbb{R}$, donner un exemple de partie qui ne soit pas dans la tribu \mathcal{E} .
- 2. Montrer que μ est une mesure de probabilité (c'est-à-dire une mesure positive telle $\mu(E)=1$).
- 3. Vérifier que μ est **diffuse**, c'est-à-dire $\mu(\{x\})=0$ pour tout $x\in E.$
- 4. Déterminer les **atomes** de μ . c'est-à-dire les parties $A \in \mathcal{E}$ de mesure strictement positive et telles que pour toute partie $B \in \mathcal{E}$ incluse dans A on a soit $\mu(B) = 0$ soit $\mu(A \setminus B) = 0$. En déduire que μ est **purement atomique**, c'est-à-dire que E est l'union d'atomes de μ .

Exercice 5. Lemme de Borel-Cantelli. Soit (X, \mathcal{A}, μ) est un espace mesuré avec la mesure positive μ , $(A_n)_{n\in\mathbb{N}}$ une suite d'élément de \mathcal{A} . On rappelle que

 $\lim_{n} \sup_{n} A_{n} := \bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k} = \{ x \in X \mid x \text{ appartient à une infinité des } A_{k} \}.$

- 1. Démontrer que $\mu(\limsup_n A_n) = 0$ à condition que $\sum_{n \in \mathbb{N}} \mu(A_n) < +\infty$.
- 2. Soit $(f_n)_n$ et f des fonctions définies sur E à valeurs réelles $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ —mesurable. On suppose que pour tout a > 0, on a

$$\sum_{n=0}^{+\infty} \mu(|f_n - f| > a) < +\infty.$$

Montrer que la suite de fonctions $(f_n)_n$ converge simplement vers $f \mu$ -p.p.

Exercice 6. Mesure de Lebesgue sur \mathbb{R} . On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ est la mesure de Lebesgue.

- 1. Montrer que λ est σ -finie, c'est-à-dire qu'il existe une suite croissante $(E_n)_n$ d'ensembles mesurables tels que $\mathbb{R} = \bigcup E_n$ et $\lambda(E_n) < +\infty$ for all n.
- 2. Montrer que pour tout compact K dans \mathbb{R} , $\lambda(K) < +\infty$.
- 3. Un ouvert de \mathbb{R} de mesure finie est-il forcement borné?
- 4. Montrer que, quelque soit $\varepsilon > 0$, il existe un ouvert U de \mathbb{R} , dense dans \mathbb{R} tel que $\lambda(U) \leq \varepsilon$.
- 5. Soit A un borélien de \mathbb{R} . Si A contient un ouvert non-vide, montrer que $\lambda(A)>0$. La réciproque est-elle vraie ?

Exercice 7. Soit (X, \mathcal{A}, μ) un espace mesuré et f, g deux fonctions mesurables, positives de (X, \mathcal{A}) à $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que

- 1. Inégalité de Markov : Pour tout a > 0, $\mu(\{f > a\}) \le \frac{1}{a} \int_X f d\mu$.
- 2. Si f est integrable dans X, alors $\mu(\{x \in X \mid f(x) = +\infty\}) = 0$. Autrement dit, f est μ -p.p. finie.
- 3. $\int_X f d\mu = 0$ si et seulement si f est nulle μ -p.p., c'est-à-dire $\mu(\{x \in X \mid f(x) \neq 0\}) = 0$.
- 4. Si $f = g\mu$ -p.p. (c'est-à-dire $\mu(\{x \in X \mid f(x) \neq g(x)\}) = 0$), alors $\int_X f d\mu = \int_X g d\mu$.

Exercice 8. Soit (X, \mathcal{A}, μ) un espace mesuré avec μ une mesure non nulle et $f: (X, \mathcal{A}) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction mesurable. Montrer que pour tout $\varepsilon > 0$, il existe $A \in \mathcal{A}$ de mesure $\mu(A) > 0$ tel que pour tout $x, y \in A$,

$$|f(x) - f(y)| < \varepsilon.$$

Exercice 9. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \longrightarrow [0, 1]$ une fonction étagée positive. On définit pour tout $A \in \mathcal{A}$,

$$\mu_f(A) = \int_X f \mathbb{1}_A d\mu = \int_A f d\mu.$$

Montrer μ_f est une mesure sur (X, \mathcal{A}) .

Exercice 10. Intégration par rapport à une mesure image. Soit $f:(E,\mathcal{E}) \longrightarrow (F,\mathcal{F})$ une application mesurable et μ une mesure bornée sur (E,\mathcal{E}) . Notons $f_*\mu$ la mesure image de μ par f (c.f. l'exercice 3).

1. Montrer qu'une fonction $\phi: F \longrightarrow \mathbb{R}$ \mathcal{F} -mesurable est $f_*\mu$ -intégrable si et seulement si $\phi \circ f$ est μ -intégrable et que dans ce cas

$$\int_{E} \phi \circ f d\mu = \int_{F} \phi d(f_* \mu);$$

cette égalité fondamentale est la formule d'intégration par rapport à une mesure image. Dans le cas particulier où f est un difféomorphisme entre deux ouverts de \mathbb{R}^n , la mesure image $f_*\mu$ peut être explicitée en fonction du déterminant de la différentielle de f, et la formule devient alors la formule du changement de variable.

2. Suppose que $(F, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et ϕ est la fonction identité de \mathbb{R} . Écrire l'égalité de la question précédente dans ce cas là. ¹

^{1.} En Théorie des Probabilités, la fonction f s'appelle une variable aléatoire et $f_*\mu$ est la loi de f.