Лекция 19 от 01.02.2016

Изоморфизм (продолжение)

На прошлой лекции мы ввели теорему и доказали одну лемму. Напомним их.

Теорема. Если два конечномерных векторных пространства V и W изоморфны, то $\dim V = \dim W$.

Лемма (1). Если dim V = n, mo $V \simeq F^n$.

Замечание. Говорят, что функция φ отождествляет пространство V с пространством F^n , если $\varphi:V\stackrel{\sim}{\to} F^n$.

Но перед тем, как доказывать эту теорему, докажем лучше еще одну лемму.

Лемма (2). Пусть $\varphi: V \xrightarrow{\sim} W$ — изоморфизм векторных пространств, а e_1, \ldots, e_n — базис V. Тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$ — произвольный вектор. Положим $v \in V$ таковым, что $v = \varphi^{-1}(w)$.

$$v = x_1 e_1 + \ldots + x_n e_n, \quad x_i \in F$$

$$w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) \Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Покажем, что $\varphi(e_1), \ldots, \varphi(e_n)$ — линейно независимые вектора.

Пусть $\alpha_1, \ldots, \alpha_n \in F$ таковы, что $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$. Это то же самое, что $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применяя φ^{-1} , получаем $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Но так как e_1, \ldots, e_n базис в V, то $\alpha_1 = \ldots = \alpha_n = 0$, и потому вектора $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы. Следовательно, этот набор векторов — базис в W.

Теперь приступим наконец к доказательству теоремы.

Доказательство.

- $\Rightarrow V \simeq W \Rightarrow \exists \varphi : V \xrightarrow{\sim} W$. Тогда по лемме 2, если e_1, \ldots, e_n базис V, то $\varphi(e_1), \ldots, \varphi(e_n)$ базис W, и тогда $\dim V = \dim W$.
- \Leftarrow Пусть dim $V=\dim W=n$. Тогда по лемме 1 существуют изоморфизмы $\varphi:V\xrightarrow{\sim} F^n$ и $\psi:W\xrightarrow{\sim} F^n$. Следовательно, $\psi^{-1}\circ\varphi:V\to W$ изоморфизм.

То есть получается, что с точностью до изоморфизма существует только одно векторное пространство размерности n. Однако не стоит заканчивать на этом курс линейной алгебры. Теперь главная наша проблема — это как из бесконечного множества базисов в каждом векторном пространстве выбрать тот, который будет наиболее простым и удобным для каждой конкретной задачи.

Например, рассмотрим вектор $v \in F^n$ с координатами $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Пусть $v \neq 0$. Тогда су-

ществует такой базис e_1, \ldots, e_n , что $v = e_1$, то есть в этом базисе вектор имеет координаты

$$v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Пусть V, W — векторные пространства над F, и e_1, \ldots, e_n — базис V.

Предложение.

- 1. Всякое линейное отображение $\varphi: V \to W$ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$.
- 2. Для всякого набора векторов $f_1, \ldots, f_n \in W$ существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \varphi(e_2) = f_2, \ldots, \varphi(e_n) = f_n$.

Доказательство.

- 1. Пусть $v \in V$, $v = x_1e_1 + \ldots + x_ne_n$, где $x_i \in F$. Тогда $\varphi(v) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n)$, то есть если мы знаем вектора $\varphi(e_i)$, то сможем задать $\varphi(v)$ для любого $v \in V$.
- 2. Определим отображение $\varphi: V \to W$ по формуле $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Прямая проверка показывает, что φ линейна, а единственность следует из пункта 1.

Следствие. Если $\dim V = \dim W = n$, то для всякого базиса e_1, \ldots, e_n пространства V и всякого базиса f_1, \ldots, f_n пространства W существует единственный изоморфизм $\varphi : V \xrightarrow{\sim} W$ такой, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство. Из пункта 2. предложения следует, что существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$. Но тогда $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1f_1 + \ldots + x_nf_n$ для любых $x_i \in F$. Отсюда следует, что φ биекция.

Матрицы линейных отображений

Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис V, $f = (f_1, \ldots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Определение. $Mampuua\ A=(a_{ij})\in Mat_{m\times n}(F)$ называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak f$ (или по отношению κ базисам $\mathfrak e$ и $\mathfrak f$).

Замечание. Существует биекция {линейные отображения $V \to W$ } $\rightleftarrows Mat_{m \times n}$.

Замечание. $B A^{(j)}$ стоят координаты $\varphi(e_i)$ в базисе f.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_n)\cdot A$$

Рассмотрим пример.

Пусть $P_n = F[x]_{\leq n}$ — множество многочленов над полем F степени не выше n. Возьмем дифференцирование $\Delta: P_n \to P_{n-1}$.

Базис P_n-1,x,x^2,\ldots,x^n . Базис $P_{n-1}-1,x,\ldots,x^{n-1}$. Тогда матрица линейного отображения будет размерности $n\times(n+1)$ и иметь следующий вид.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

Предложение. Eсли $v = x_1e_1 + \ldots + x_ne_n \ u \ \varphi(v) = y_1f_1 + \ldots + y_mf_m, \ mo$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Доказательство. С одной стороны:

$$\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) = (\varphi(e_1), \ldots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \ldots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Однако с другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Сравнивая обе части, получаем требуемое.

А теперь проанализируем операции над матрицами линейных отображений.

V и W — векторные пространства. Обозначение: $\mathrm{Hom}(V,W):=$ множество всех линейных отображений $V \to W$.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Определение.

1.
$$\varphi + \psi \in \text{Hom}(V, W) - \mathfrak{smo}(\varphi + \psi)(v) := \varphi(v) + \psi(v)$$
.

2.
$$\alpha \in F, \alpha \varphi \in \text{Hom}(V, W) - \mathfrak{smo}(\alpha \varphi)(v) := \alpha(\varphi(v)).$$

Упражнение.

- 1. Проверить, что $\varphi + \psi$ и $\alpha \varphi$ действительно принадлежат Hom(V, W).
- 2. Проверить, что Hom(V, W) является векторным пространством.

Предложение. Пусть $e = (e_1, \dots, e_n) - \textit{базис } V$, $f = (f_1, \dots, f_m) - \textit{базис } W$, $\varphi, \psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi+\psi$, а $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Тогда
$$A_{\varphi+\psi} = A_{\varphi} + A_{\psi} \ u \ A_{\alpha\varphi} = \alpha A_{\varphi}.$$

Доказательство. Упражнение.

Теперь возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы e, f и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$. Пусть A — матрица φ в базисах f и g, B — матрица ψ в базисах e и f, C — матрица $\varphi \circ \psi$ в базисах e и g.

Предложение. C = AB.

Замечание. Собственно говоря, отсюда и взялось впервые определение умножения матрии.

Доказательство. Запишем по определению:

$$(\varphi \circ \psi)(e_r) = \sum_{p=1}^k c_{pr} g_p, \quad r = 1, \dots, n$$

$$\psi(e_r) = \sum_{q=1}^m b_{qr} f_q, \quad r = 1, \dots, n$$

$$\varphi(f_q) = \sum_{p=1}^k a_{pq} g_p, \quad q = 1, \dots, m$$

Тогда:

$$(\psi \circ \psi)(e_r) = \varphi(\psi(e_r)) = \varphi\left(\sum_{q=1}^m b_{qr} f_g\right) = \sum_{q=1}^m b_{qr} \varphi(f_g) = \sum_{q=1}^m b_{qr} \left(\sum_{p=1}^k a_{pq} g_p\right) = \sum_{p=1}^k \left(\sum_{q=1}^m a_{pq} b_{qr}\right) g_p$$

$$\downarrow \downarrow$$

$$c_{pr} = \sum_{q=1}^m a_{pq} b_{qr}$$

$$\downarrow \downarrow$$

$$C = AB$$

И снова, пусть V и W — векторные пространства с линейным отображением $\varphi: V \to W$.

Определение. Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Определение. Образ φ — это множество $\operatorname{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}.$

Пример. Все то жее $\Delta: P_n \to P_{n-1}$. Для него $\operatorname{Ker} \Delta = \{f \mid f = const\}$, $\operatorname{Im} \Delta = P_{n-1}$.