

Компьютерное зрение

Практический курс Савельева Юлия Олеговна <u>i.o.saveleva.kpfu@gmail.com</u> 2-й семестр, 21.03.2020 г.

Сглаживание

Перед подачей изображения на вход ORB необходимо произвести его сглаживание. Можно произвести сглаживание фильтром Гауса, но это будет работать дольше, чем сглаживание с помощью интегрального изображения.

- 1. Необходимо реализовать функцию создания интегрального изображения. С помощью питру это будет удобнее всего реализовать через функции cumsum по строкам, а затем по столбцам.
- 2. Также необходимо реализовать функцию сглаживания (подсчет среднего внутри окна 5х5) с помощью интегрального изображения (см следующий слайд)

Сглаживание

	Mexagnare rapherenca!	Waserbar upopa men:
1	12345	1 3 6 10 15
1	1 2 3 4 5	3 9 18 30 4\$
	12348	4 12 24 40 60
	12345	5 15 30 50 75
		2 2 2
	Megnoronum pazurep ox	na cramulanue = 5×3
	1. Neosxogum padding croba. B vanien cryude	ho 3
1	1000001000	A
	100030010005	n B
	100000000	
	10001361015	~ ¢
	0003 9 18 30 48	
	000412244060	
	000515(305075)	
	777	
	2 Tenepo 39 2 anepayor onepayoro exonercos nomo nocrumanos e gue beeno uzospanienos	e bornames 1
	anefayuro cronerens	n 1 anotomino Eveniro
9	women werumands	estes sugification source
	que aces azospanies	
	1-B-C+D	
	(paymet orma)2	
	(10 1	
1		

Декорреляция тестов

- 1. Необходимо декоррелировать тесты с помощью случайно отобранных картинок из Microsoft Coco Train images 2017.
- 2. Находим все ключевые точки на всех изображениях и считаем для них бинарные дескрипторы длины n (n тестов).
- 3. Считаем среднее для каждой координаты (каждого теста) і (i=1, ..., n) по всем дескрипторам и сортируем тесты по возрастанию удаленности от 0.5 и помещаем их во множество Т

Декорреляция тестов

- 4. Для каждого элемента из Т:
 - а) Самый первый тест просто кладем в множество декоррелированных тестов R и удаляем его из множества T
 - b) Каждый следующий тест удаляем из Т и сравниваем его по расстоянию Хэмминга со всеми тестами из R, если мера сходства выше порогового значения, то этот тест просто отбрасывается, иначе добавляется в R
 - с) Если не получается набрать нужное количество тестов, то необходимо изменить пороговое значение и повторить процедуру декорреляции

Учет угла поворота и масштаба. Исправленный алгоритм.

1. Перед началом вычисления бинарных векторов в каждой ключевой точке необходимо создать маски поворота для всех возможных углов. Так как множество возможных вещественных значений угла бесконечно, то разделим окружность 0° - 360° на сектора в 12° и для каждого значения угла α = {0°, 12°, 24°, 36°, 48°, ..., 348°, 360°} заранее создадим матрицу поворота:

m = cv2.getRotationMatrix2D(center=(0, 0), angle=a, scale=1)

2. Каждую матрицу поворота умножить на полученный ранее тесты, и получить маски для тестов при каждом угле поворота, которые потом использовать в цикле по ключевым точкам внутри BRIEF

Учет угла поворота и масштаба. Исправленный алгоритм.

Задачи

Дедлайны 27.03.2020, 03.04.2020

- 1. Реализация сглаживания изображения с помощью Integral Image
- 2. Реализация процедуры создания нескоррелированных тестов в BRIEF и визуализация результата
- 3. Эффективная реализация применения углов поворота к области вокруг ключевой точки в BRIEF
- 4. Реализация системы ORB для матчинга ключевых точек на двух изображениях

На следующее занятие

1. BRIEF Descriptor

4

2. Rotated BRIEF

3. **ORB**

- 4. Object Localization with Key Points
- 5. Bag of Visual Words