ΤΟ ΑΞΙΩΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΤΟΥ Π.Λ.

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

- Ο ΠΑ (προτασιανός λονισμός) είναι το αξιννιατικ
- Ο ΠΛ (προτασιακός λογισμός) είναι το αξιωματικό σύστημα που:
- Έχει ως **αξιώματα** (αξιωματικά σχήματα) τα: ΑΣ1, ΑΣ2, ΑΣ3.
- Και ως αποδεικτικό κανόνα τον **Modus Ponens** (M.P.)
- Σε αυτό το αξιωματικό σύστημα μελετάμε αν ισχύουν:
- Τυπική Συνεπαγωγή Τ ⊢ φ
 όταν ισχύουν οι υποθέσεις του Τ αν εξάγεται με διαδοχικές εφαρμογές του MP ο τύπος φ
 - **Τυπικό Θεώρημα** ⊢ **φ** δηλαδή αν εξάγεται ο τύπος φ με διαδοχικές εφαρμογές MP

Στις τυπικές αποδείξεις επιτρέπεται να χρησιμοποιήσουμε:

1) ΥΠΟΘΕΣΕΙΣ του συνόλου τύπων

2)ΑΞΙΩΜΑΤΙΚΑ ΣΧΗΜΑΤΑ και Συντακτικές αντικ/σεις σε αυτα: ΑΣ1:
$$\phi \rightarrow (\psi \rightarrow \phi)$$

AΣ2:
$$(φ \rightarrow (ψ \rightarrow χ)) \rightarrow ((φ \rightarrow ψ) \rightarrow (φ \rightarrow χ))$$

AΣ3: $(\neg \phi \rightarrow \neg \psi) \rightarrow ((\neg \phi \rightarrow \psi) \rightarrow \phi)$

3) MODUS PONENS

Αν ισχύει Φ Και ισχύει Φ→Ψ

Τότε ισχύει Ψ (από Modus Ponens)

4) ΤΥΠΙΚΑ ΘΕΩΡΗΜΑΤΑ

5) ΤΥΠΙΚΕΣ ΣΥΝΕΠΑΓΩΓΕΣ Εφόσον δίνονται από την εκφώνηση

Σ

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Nα αποδειχθεί ότι
$$\{ \varphi \to (\psi \to \chi) \, , \varphi \to \psi \} \vdash \varphi \to \chi$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow (\psi \rightarrow \chi) \ Y\pi \acute{o}\theta \epsilon \sigma \eta$ 2. $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \ A\Sigma 2$
- 3. $(\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)$ MP1,2
- 4. $\phi \rightarrow \psi \quad Y\pi \dot{\phi}\theta \epsilon \sigma \eta$ 5. $\phi \rightarrow \chi \quad MP4,3$

ΠΡΟΣ ΤΑ ΠΙΣΩ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Να αποδειχθεί ότι

$$\neg \phi \vdash (\neg \psi \rightarrow \phi) \rightarrow \psi$$

ΛΥΣΗ: ...,

Η τυπική απόδειξη είναι: 1. \neg φ Υπόθεση

- 2. $\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \Sigma A \sigma \tau o A \Sigma 1 \acute{o} \pi o \psi \dot{\phi} : \neg \phi, \psi : \neg \psi$
- 3. $\neg \psi \rightarrow \neg \phi$ MP1,2
- 5. ¬ψ → ¬ψ IVIP1,2
- 4. $(\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)$ ΣΑ στο ΑΣ3 όπου φ: ψ , ψ : φ 5. $(\neg \psi \rightarrow \phi) \rightarrow \psi$ MP3.4

ΤΥΠΙΚΟ ΘΕΩΡΗΜΑ:

Να αποδειχθεί ότι

$$\vdash (\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi)$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- . $\phi \rightarrow (\chi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ψ: χ
- 2. $(\phi \rightarrow (\chi \rightarrow \phi)) \rightarrow ((\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi)) \Sigma A \sigma \tau \sigma A \Sigma 2 \sigma \sigma \sigma \psi : \chi$
- 3. $(\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi) \text{ MP1,2}$