Predicting HPV Infection Rates in World wide Using Machine Learning

SAINATH R

June 19, 2025

Project Overview

- This project aims to predict HPV infection rates across Indian states, where current data is limited.
- It uses machine learning models trained on data from countries with similar development levels.
- The goal is to help estimate cervical cancer risk and improve screening or vaccination strategies.

Top Covariates Used

- Anemia prevalence among women (15–49 years)
- Physicians per 1,000 people
- Population estimate
- Smoking prevalence (female, 2016)
- Total fertility rate (2017)
- Contraception use (2019)
- HIV prevalence (adults)
- Multiple pregnancies (%)
- Male circumcision (WHO 2007)
- Condom use
- Start year of screening coverage
- Human Development Index (HDI)
- Life expectancy at birth
- Incidence of tuberculosis (per 100k)
- Diabetes, Hypertension prevalence (%)
- HPV Vaccine, STIs

HPV-Related Prevalence Targets

- NCC-16-prevalence
- NCC-18-prevalence
- Output Description
 Output Descript
- High CIN-16-prevalence
- Migh CIN-18-prevalence
- ICC-16-any-prevalence
- ICC-16-SCC-prevalence
- ICC-16-ADC-prevalence
- ICC-18-any-prevalence
- ICC-18-SCC-prevalence
- ICC-18-ADC-prevalence

Data Preprocessing - Dropped Columns

- Dropped: Continent, all case counts, aggregate CIN/ICC prevalence columns
- Objective: Simplify data to focus on relevant predictors and targets

Feature Engineering - Disease Incidence Score

- Columns with different units (e.g., TB per 100k vs Diabetes %).
- Normalization used:

Normalized =
$$\frac{X - \min(X)}{\max(X) - \min(X)}$$

TB incidence scaled using population estimate for consistency.

Handling Categorical and Special Columns

- Screening Year:
 - ullet Not started / Unknown o 0
 - Year values converted to integers
- Male Circumcision:

Missing Value Imputation

- Numeric columns: Median Imputation
- Categorical columns: Mode Imputation

Dimensionality Reduction - PCA

- Used PCA(n_components=0.95)
- Retains 95% variance with fewer features

Train-Test Split and Outliers

- Train: 80% (used for CV and training)
- Test: 20% (final evaluation)
- Outlier Detection included during training

Model Results - High CIN Combined

Model	Train R ²	Test R ²	Train RMSE	Test RMSE
Random Forest	0.6057	-0.2965	0.2164	0.5126
Ridge (Iterative)	0.4434	-0.3384	0.2572	0.5208
XGBoost (Model Imp)	1.0000	-1.3537	0.0004	1.5342
SVR (Sigmoid)	0.1371	0.0597	0.9289	0.9697

Model Results - Low CIN Combined

Model	Train R ²	Test R ²	Train RMSE	Test RMSE
Ridge (Iterative)	0.3261	-1.4812	0.5686	0.6813
XGBoost (Model Imp)	0.9942	-2.4673	0.0536	0.7208
Random Forest	0.8525	-1.5410	0.3841	1.5941
SVR (Poly)	0.0130	0.0574	0.9935	0.9709

Model Results - CIN Combined

Model	Train R ²	Test R ²	Train RMSE	Test RMSE
Random Forest (Iter)	0.2329	-0.0962	0.3688	0.4236
XGBoost (Iter)	0.3801	-0.1329	0.3315	0.4306
SVR (Iter)	0.0947	-0.1682	0.4007	0.4373
Ridge (Iter)	0.3886	-0.4333	0.3293	0.4843
XGBoost (Model)	0.9887	-0.5134	0.0448	0.4977

Next Steps

- Continue data scraping of Indian states from NCDIR reports and research articles
- Train final models on enriched Indian datasets
- Validate predictions with real HPV burden studies

Future Work

- Extend the current model to make state-wise HPV prevalence predictions for Indian states using newly scraped data from NCDIR reports and research articles.
- Improve model generalization and predictive power, particularly enhancing R² scores on the test set.
- Validate predicted prevalence against epidemiological studies or surveys as they become available.
- Explore spatial modeling and temporal trends to better understand region-specific HPV risk patterns.