Limit order placement with Deep Reinforcement Learning

Learning from patterns in raw historical cryptocurrency market data

Marc B. Juchli

https://github.com/backender/ctc-executioner

Thesis committee:

Prof. dr. ir. M.J.T. Reinders

Dr. M. Loog

Dr. J. Pouwelse

Contents

- Introduction
- Previous approaches
- Methodology
- Data curation
- Framework construction
- Evaluation
- Results and limitations
- Recommendations and conclusion

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

TUDelft

Why limit order placement?

Financial institutions buy or sell assets based on various reasons:

- Customer request
- Fundamental- or technical analysis
- ...
- → Invariable outcome is the decision to buy or sell assets.

<u>Limit order placement (optimization):</u>

the way how to attempt to make a purchase or sale

aims for best possible price for trader

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Why cryptocurrency data?

- Is traded in the same way as other currencies and securities (shares, bonds, etc.)
- Market data is free and available in real time
- Volatile market prices
- Low entry barrier → Many inexperienced traders
- Personal interest

Order book

Bid: price in a buy order

Ask: price in a sell order

Spread: gap between bid and ask

Order

side :: buy | sell

:: limit(price, amount), type

market(amount)

Action: Submit order (at price a level)

Result: Trades

Price	Amount
6341.3	16.973
6339 .5	0.040
6339.1	2.990
6338.8	1.000
6337.9	1.000
6336 .5	1.000
6336.4	1.000
633 6.3	1.000
6335 .3	3.000
6335.1	0.980
6334.0	1.000
6333.8	3.156
6330.2	1.000
63	328.0 USD
6327.9	0.102
6327 .3	0.255
6327 .2	0.002
6325.6	1. 191
6323.7	0.585
6322.4	0.050
6322 .3	0.683
6321.6	0.002
6321.5	0.292
6321.4	3.364
6321 .3	4.746
6321 .1	1. 930
6320.6	2.162
https://trade.kraker	n.com/markets/kraken/btc/usc

Buyers

Sellers

Limit order matching process

Limit order matching process

Limit order placement (optimization)

Fixed time horizon (H=100 seconds)

t=H

Fixed inventory (I=1.0 BTC)

8

t=0

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Research objectives

How can the application of deep reinforcement learning contribute to the optimization of limit order placement?

- 1. Which historical <u>market data patterns</u> drive market participants to buy or sell assets, and how can these patterns be <u>incorporated into features</u> used by a deep reinforcement learning agent?
- 2. How should one <u>design a reinforcement learning environment and agents</u>, in the context of order placement?
- 3. How can one <u>evaluate a reinforcement learning environment and agent</u> in the context of order placement?
- 4. In which way do the previously constructed features enable a reinforcement learning agent to <u>improve the way it places orders</u>?

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Methodology

Preliminaries

Data curation

RL Framework

Evaluation

Methodology

Methodology

Preliminaries

Data curation RL Framework

Evaluation

Data types and structure

Match Engine

Order Placement

Market Event Data collection

Preprocessing

Data analysis

Feature Construction Environment

Agents

Procedure

Evaluate

RQ 1.2 RQ 1.3 / 1.4 **RQ 1.1**

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Data collection and processing

- 24 hours of data (USD/BTC)
- Collected using SignalR API (websocket abstraction)

- Limit order created
- Limit order cancelled
- Order filled (Trade)

- Processed events
- Reconstruct complete order book

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Data analysis

- First logical choice (given prior research) were hand-crafted features
 - Number of created/cancelled orders/trades
 - Transaction volume
 - - ...
 - 200+ indicators possible (see <u>TA-Lib</u>: Technical Analysis Library)
- Come with difficulties and inconveniences:
 - Benefit for limit order placement not immediately evident
 - Computation required for <u>each</u> market event (>1/second) and <u>each</u> feature

Data analysis: Orders

Volume of created orders

Volume of cancelled orders

Time

Data analysis: Orders

Volume of created orders

Volume of cancelled orders

Time

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

t-m

Construction of Feature I (RQ 1.1)

State: (lookbackWindow m, 2*bookSide n, 2)

Data analysis: Trades

Traded volume

Traded volume with bid-/ask price

Time Time

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Construction of Feature II (RQ 1.1)

$$s_{trade} = \begin{pmatrix} \Delta t s_1 & p_1 & q_1 & o s_1 \\ \Delta t s_2 & p_2 & q_2 & o s_2 \\ \vdots & \vdots & \vdots & \vdots \\ \Delta t s_n & p_n & q_n & o s_n \end{pmatrix} \forall p, q, o s, t s \in Trade$$

Time difference is measured from the time of the order placement *t*

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Framework construction

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Environment – Overview

Enables an agent to find a policy to place limit orders

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Environment – Configuration

Feature Type: I, II

Order Side: Buy, Sell

Inventory (I): 1.0 BTC

Time Horizon (H): 100 seconds

Time step length (∆t):

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Environment – State space

- Observation (Agent's input)
 - Private Variables (inventory left i, time left t)
 - Market feature (I or II) of current order book state: FT_t

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Environment – Action space

Example:

$$\Delta a = \$0.10$$

 $|A| = 5$

$$p_{m}$$
+ \$0.20
 p_{m} + \$0.10
 p_{m}

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendation and conclusion

RL Environment – Reward

Measure:
$$VWAP = \frac{\sum Number\ of\ shares*Share\ price}{\sum Total\ shares}$$
 of trades

$$r = p_{m^T} - p_{vwap}$$

Reward:

$$r = p_{vwap} - p_{m^T}$$

for selling

for buying

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Agents

- Aims to find a policy that optimizes limit order placement
- Uses the environment
- With/without market features

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Agent – Q-Learner

Q-Table:

State: (time, inventory)	Action	Value

- Not suitable when using market features
- Same state would likely <u>not</u> appear twice
- Suitable when using private variables only

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

RL Agent – DQN

- Action-value function approximation with neural network
- Widely-used CNN in use as well as a MLP (2-hidden layers)
- Recent successes with raw signal data [1,2]
- Experience replay: train on random mini-batches
- MSE loss function

^[1] https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

^[2] https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Evaluation Procedure (RQ 1.3)

- Empirical analysis
 - Expected return for (1) market order and (2) optimal placed limit order
 - Environment parameter tuning
- Q-Learning agent policy
 - Average return (without market features)
- DQN agent policy
 - Average return (with market features)
- DQN agent limitations

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

TUDelft

Real world data sets

Figure 6.1: Bid/ask mid-price of 30 minute order book recordings.

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

TUDelft

Artificial data sets

(a) Linear configuration of order book states with slope (b) Order book states configured according to sine a = -0.1 function with f = 10

Figure 6.15: Artificial order books with duration of 10 minutes

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Training and Testing

- Data sets are split with ratio 2 : 1
- 5000 epochs training
- 1000 epochs testing
- 1 epoch = 1 order fulfilled

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Empirical analysis

- Return (VWAP)
- 201 actions
- Limit levels -100...100
- 100 orders (e.g. epochs) for each level
- 20'100 orders in total

E[Limit order] (optimal)	E[Market order]	
-9.88	-30.53	

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Q-Learning Agent

Epochs

Testing

Q-Learner

| E[Market | Order] | -30.53

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

DQN Agent – Real world data

Multiple window sizes tested.

Feature I	Feature II	E[Market
$\Sigma[B1, S1, B2, BS2]$	$\Sigma[B1, S1, B2, BS2]$	Order]
<u>-18.62</u>	3.36	-30.53

Table 6.6: Summary of rewards during backtest of DQN-CNN agent using different feature vector sizes.

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

DQN Agent – Artificial

(a) Linear configuration of order book states with slope a=-0.1

(b) Order book states configured according to sine function with $f=10\,$

(a)	Optimal (Reward)	Agent
Buy	\$10.0	\$9.45
Sell	\$-0.10	\$-0.10

(b)	Optimal (VWAP)	Agent
Buy	\$9'990.0	\$9'992.0
Sell	\$10'010.0	\$10'007.0

- Near-optimal placement
- Absence of market noise
- Stationary evolution of order book
- Liquidity constantly provided

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

TUDelft

DQN Agent – Limitations

Figure 6.13: Wide spread between bid and ask prevents agent from selling.

Results and **limitations**

DQN Agent – Limitations

Figure 6.14: Agent is impatient and does not foresee trend change.

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Performance overview (RQ 1.4)

E[Market	E[Limit order]	Q-Learning	DQN-CNN	DQN-CNN
Order]	(optimal)		(Feature I)	(Feature II)
-30.53	-9.88	-28.29	-18.62	3.36

Table 6.7: Summary of expected and achieved average rewards from empirical evaluations and reinforcement learning applications.

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Conclusion

- RQ 1.1
 - Found market patterns
 - 2 features constructed
- RQ 1.2
 - Sequential decisions make RL suitable
 - Built around given exchange functionality
 - Extendible in terms of features and capabilities
- RQ 1.3
 - Evaluation procedure developed
 - Indication of optimization capabilities
 - Found limitations
- RQ 1.4
 - Limit order placement was optimized
 - There is more potential

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

In Practice

Exchange

Placement Module

Buy/Sell X within 100 seconds

Previous approaches

Methodology

Data curation

Framework construction

Evaluation

Results and limitations

Recommendations and conclusion

Recommendations

- Test on live-market with actual purchases and sales
- Tune DQN agent parameters
- Combine with a statistical framework
- Extend to a "market maker": Buy+Sell=Profit

Questions?

