- 19) I)- Calcular el pH que tendrán las soluciones resultantes al mezclar a 25ºC:
 - a) 200 cm³ de solución 0,05 M de ácido sulfúrico con 40 cm³ de solución 0,5M de hidróxido de sodio.
 - b) 400 cm³ de solución 0,5 M de ácido sulfúrico con 600 cm³ de solución 0,3M de hidróxido de sodio.
 - Se supone α =1 para todos los electrolitos presentes y que los volúmenes son aditivos.
 - II)-Escribir las ecuaciones químicas que representan las reacciones ocurridas en a) y b) respectivamente, en forma molecular, iónica neta y iónica completa. Rta: a) pH=7, b) pH=0,65

En este tipo de ejercicios, tener en cuenta:

n= V x M

n: número de moles

V: volumen de solución en (litros),

M: molaridad de la solución (moles/litro)

pH = - log [H⁺] , [H⁺] concentración de ión H⁺ en (moles/litro de solución)
pOH= - log [OH⁻] , [OH⁻] concentración de ión OH⁻ en (moles/litro de solución)
pH + pOH =14 , pH= pOH =7 (neutro)

- a) $V(H_2SO_4) = 200 \text{ cm}^3$, $[H_2SO_4] = 0.05 \text{ M}$
- \rightarrow n° moles H₂SO₄= V x M= (200 cm³x 10⁻³l/cm³)x 0,05moles/l = **0,01 M**,
- \rightarrow por tener 2 moles de H⁺ \rightarrow 0,01 moles H2SO4/litro x 2 moles H⁺/ mol de H2SO4=

= 0,02 moles de H⁺/I

V(NaOH)= 40 cm3, [NaOH]= 0,5 M

- \rightarrow n° moles NaOH = VxM= (40 cm³x 10⁻³l/cm³) x 0,5moles/l = **0,02 M**,
- \rightarrow por tener 1 mol OH⁻, \rightarrow 0,02 moles NaOH /litro x 1 mol OH⁻/ mol de NaOH= =0,02 moles de OH⁻/ I

Como $[H^+] = [OH^-] \rightarrow el pH = 7 = pH neutro$

......

El ejercicio fue resuelto en moles, si lo resolvemos en equivalentes:

1 equivalente ácido = 1 mol de H+ del ácido.

 $N = M \times k$, N: normalidad, M: molaridad, k: nro. de H⁺ ó OH⁻

En el caso del H₂SO₄, 2 moles de H⁺, M= 0,5 moles/litro, **calculo N**: 0,05(moles H₂SO₄/litro)x 2 (moles H⁺/mol H₂SO₄)x (1equivH₂SO₄/mol H⁺)= 0,1 equiv H₂SO₄/l= 0,1 N

n° (número de equivalentes)= $V \times N$, normalidad de la solución: N:(equiv/litro) n° equiv H2SO4= $V \times N$ = (200 cm³x 10⁻³l/cm³) x 0,1 N = 0,02N

En el caso del NaOH, 1 mol de OH⁻, 0,5M, calculo N:

0.5(moles NaOH/litro) x (1mol OH $^-$ /mol NaOH) x (1equivNaOH/mol OH $^-$) = = 0.5 equiv/litro NaOH = 0.5 N $\text{Idem NaOH} \rightarrow \mathbf{n}^\circ \mathbf{equiv NaOH} = (40 \times 10^{-3}) \text{ I x 0.5N} = \mathbf{0.02N}$

b) VH₂SO₄=400cm³, [H₂SO₄]= 0,5M con VNaOH=600cm³, [NaOH]= 0,3M

Calculo N H₂SO₄ = 0,5 M x 2 equiv/mol= 1N n^0 equivH₂SO₄ = V x N = (400x10⁻³) litros x 1 N = 0,4 equiv. H₂SO₄= 0,4 moles de H⁺

 $N \text{ NaOH} = 0.3 \text{M} \times 1 \text{equiv/mol} = 0.3 \text{ N}$

 n^0 equivNaOH =VxN =(600x10⁻³)litros x 0.3N = 0,18 equiv.NaOH = 0,18 moles OH⁻¹

Exceso de moles de H^+ : 0,4 moles H^+ – 0,18 moles OH^- = 0,22 moles H^+ en 1 litro

pH = - log (0,22) = 0,65

II)

a) forma molecular:

$$H_2SO_4$$
 (ac) + 2NaOH (ac) \rightarrow Na₂SO₄ (ac) + 2H₂O (I)

forma iónica:

$$2 \text{ H}^+ (ac) + \text{SO4}^{2^-} (ac) + 2 \text{ Na}^+ (ac) + 2 \text{ OH}^- (ac) \rightarrow 2 \text{ Na}^+ (ac) + \text{SO4}^{2^-} (ac) + 2 \text{ H}_2O (I)$$
 forma iónica neta: