$p(\{O_t\}_{t=1}^T) = \sum_{S_1, \dots, S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T)$ $= \sum_{S_1, \dots, S_T} p(S_t|S_{t-1}) \prod_{t=1}^T p(S_t|S_{t-1})$

find probability of observed sequence

$$S_1,...,S_T$$
 $t=2$ $t=1$ requires summing over all possible hidden state values at all times — K^T exponential # terms!

Instead: $p(\{O_t\}_{t=1}^T) = \sum_{t=1}^T p(\{O_t\}_{t=1}^T, S_T = k)$

$$\alpha_{\mathsf{T}}^{\mathsf{k}}$$
 Compute recursively