Rekursion

Vorteile	Nachteile
 Probleme lassen sich eleganter und intuitiver lösen Schrittweise Aufteilung in immer kleinere Probleme 	 Bei jedem Aufruf: neue Methodenschachtel auf dem Stack anlegen Stack hat nur begrenzte Größe Jeder Methodenaufruf und Rücksprung zum Aufrufer kostet Zeit Häufig langsamer als äquivalente Schleife
Rekursionstypen	
<pre>Lineare Rekursion Die Funktion ruft sich im Rekursionsfall genau einmal selbst auf. public static int sum(int n) { if (n <= 0) { return 0; } return n + sum(n-1); }</pre>	<pre>Endrekursion Spezialfall der linearen Rekursion: im Rekursionsfall ist der (einzige) rekursive Aufruf die letzte Aktion. Endrekursive Funktionen lassen sich entrekursivieren. public static int ggt(int a, int b) { if (a == b) return a; if (a < b) return ggt(a, b-a); </pre>
<pre>Kaskadenförmige Rekursion Die Funktion ruft sich im Rekursionsfall unter Umständen mehrfach selbst auf. public static int fib(int n) { if (n == 0 n == 1) { return 1; } return fib(n-1) + fib(n-2); }</pre>	Verschachtelte Rekursion Rekursiver Aufruf der Funktion zur Bestimmung der Parameter des rekursiven Aufrufs. Kommt in der Praxis quasi nie vor public static int foo(int i) { // return foo(foo(i)); }
<pre>Verschränkte Rekursion Zwei verschiedene Funktionen rufen sich im Rekursionsfall gegenseitig auf. public static int foo(int i) { // return bar(i-1); } public static void bar(int i) { // return foo(i*2); }</pre>	

Induktionsanfang Basisfall n=0:

$$\operatorname{sum}(\mathsf{n}) \stackrel{\mathit{n=0}}{\equiv} \operatorname{sum}(\mathsf{0}) \stackrel{\mathit{if-then}}{\equiv} 0 \equiv \sum_{i=0}^{0} i \equiv S_0$$

Induktionsvorraussetzung (n-1):

$$\operatorname{sum}(n-1) \equiv S_{n-1} \equiv \sum_{i=0}^{n-1} i$$

Induktionsschritt (n-1→n):

$$\operatorname{sum}(\mathsf{n}) \stackrel{if-else}{\equiv} \mathsf{n} + \operatorname{sum}(\mathsf{n}-1) \stackrel{IV}{\equiv} n + \sum_{i=0}^{n-1} i \equiv \sum_{i=0}^n i \equiv S_n \quad \blacksquare$$

Bei Induktion mit mehreren Induktionsanfängen

Zeigen Sie, dass folgende Aussage gilt:

$$\forall n \geq 0: \ \ \text{lf(n)} \ \equiv \ \sum_{k=0}^{n-1} k!$$

Induktionsanfang 2 Basisfälle n=0 und n=1:

$$\frac{IA_0 (n = 0):}{\sum_{k=0}^{0-1} k! = 0 \equiv 0 = 1f(0)} \frac{IA_1 (n = 1):}{\sum_{k=0}^{1-1} k! = 0! = 1 \equiv 1 = 1f(1)}$$

Induktionsvorraussetzungen:

$$\frac{IV_{n-1} (n-1):}{1f(n-1)} = \sum_{k=0}^{(n-1)-1} k! = \sum_{k=0}^{n-2} k! \qquad \frac{IV_n (n):}{1f(n)} \equiv \sum_{k=0}^{n-1} k!$$

$$\begin{aligned}
& 1f(n+1) = (n+1) \cdot 1f((n+1) - 1) - ((n+1) - 1) \cdot 1f((n+1) - 2) \\
&= (n+1) \cdot 1f(n) - n \cdot 1f(n-1) \stackrel{N_{n-1},N_n}{\equiv} \\
&= (n+1) \cdot \sum_{k=0}^{n-1} k! - n \cdot \sum_{k=0}^{n-2} k! = \\
&= n \cdot \sum_{k=0}^{n-1} k! + \sum_{k=0}^{n-1} k! - n \cdot \sum_{k=0}^{n-2} k! = \\
&= n \cdot (n-1)! + n \cdot \sum_{k=0}^{n-2} k! + \sum_{k=0}^{n-1} k! - n \cdot \sum_{k=0}^{n-2} k! = \\
&= n! + \sum_{k=0}^{n-1} k! = \sum_{k=0}^{(n+1)-1} k! \qquad \blacksquare
\end{aligned}$$

Totale Korrektheit

- Terminierung gehört zur (totalen) Korrektheit einer rekursiven Methode dazu
 - o Rekursion muss nach endlich vielen Schritten fertig sein
- Gesucht wird eine Terminierungsfunktion T(n) mit den folgenden Eigenschaften
 - Werte von T(n) sind ganzzahlig
 - o Die Folge der T(n) ist streng monoton fallend
 - T(n) ist nach unten beschränkt meist >=0

```
static long sum(int n) {
    if (n == 0) {
        return 0;
    } else {
        return n + sum(n-1);
    }
}
\forall n \in \mathbb{N}, n \geq 0 : sum(n) \equiv \sum_{i=0}^{n} i =: S_n
```

Eine passende Terminierungsfunktion ist z.B.: T(n) = n

- Werte sind ganzzahlig (int bzw. $n \in \mathbb{N}$),
- streng monoton fallend (rekursiver Aufruf mit n-1) und
- nach unten beschränkt (Basisfall n==0 bzw. $n \ge 0$)