AI_PHASE 3: PREDICTING HOUSE PRICES USING MACHINE LEARNING

Data loading and preprocessing:

Import the required Libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline add Codeadd Markdown

import warnings
warnings.filterwarnings('ignore')
add Codeadd Markdown

Loading the dataset:

add Codeadd Markdown

data = pd.read_csv('/kaggle/input/usa-housing/USA_Housing.csv')
data.head()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.4586	5.682861	7.009188	4.09	23086.8005	1.06E+06	208 Michael Ferry Apt. 674\nLaurab ury, NE 3701
1	79248.6425	6.0029	6.730821	3.09	40173.0722	1.51E+06	188 Johnson Views Suite 079\nLake Kathleen, CA

add Codeadd Markdown

We can interpret that this is a regression problem since the house prise can't be labelled, it is a continuous variable.

The dataset contains the following features:-

- Avg. Area Income: Average Income of residents of the area the house is located in.
- Avg. Area House Age: Average Age of Houses in same area
- Avg. Area Number of Rooms: Average Number of Rooms for Houses in same area
- Avg. Area Number of Bedrooms: Average Number of Bedrooms for Houses in same area
- Area Population: Population of the area the house is located in.
- Price: Price of the house.

Address: Address for a particular house.

add Codeadd Markdown

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
# Column
                    Non-Null Count Dtype
                  -----
                        5000 non-null float64
0 Avg. Area Income
1 Avg. Area House Age
                          5000 non-null float64
2 Avg. Area Number of Rooms 5000 non-null float64
3 Avg. Area Number of Bedrooms 5000 non-null float64
4 Area Population
                        5000 non-null float64
5 Price
                   5000 non-null float64
6 Address
                    5000 non-null object
dtypes: float64(6), object(1)
memory usage: 273.6+ KB
add Codeadd Markdown
```

data.isnull().sum() #The data does not have any null values

```
Avg. Area Income 0
Avg. Area House Age 0
Avg. Area Number of Rooms 0
Avg. Area Number of Bedrooms 0
Area Population 0
Price 0
Address 0
dtype: int64
add Codeadd Markdown
```

add Codeadd Markdown

data.columns

data.describe()

```
Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
    'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'],
    dtype='object')
```

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000	5000	5000	5000	5000	5.00E+03
mean	68583.109	5.977222	6.987792	3.98133	36163.516	1.23E+06
std	10657.9912	0.991456	1.005833	1.234137	9925.65011	3.53E+05
min	17796.6312	2.644304	3.236194	2	172.610686	1.59E+04
25%	61480.5624	5.322283	6.29925	3.14	29403.9287	9.98E+05
50%	68804.2864	5.970429	7.002902	4.05	36199.4067	1.23E+06
75%	75783.3387	6.650808	7.665871	4.49	42861.2908	1.47E+06
max	107701.748	9.519088	10.759588	6.5	69621.7134	2.47E+06

EDA(Exploratory Data Analysis):

Creating plots to analyze our data using different visualization techniques. add Codeadd Markdown

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x7f95ba648190>

sns.distplot(data['Price'])
plt.plot()

sns.heatmap(data.corr(), annot=True)

<AxesSubplot:>

sns.scatterplot(x=data['Avg. Area Income'], y=data['Price'])

<AxesSubplot:xlabel='Avg. Area Income', ylabel='Price'>

sns.scatterplot(x=data['Avg. Area House Age'], y=data['Price'])

<AxesSubplot:xlabel='Avg. Area House Age', ylabel='Price'>

add Codeadd Markdown

Training Our Linear Regression Model:

add Codeadd Markdown

#dividing the data into dependent and independent features

X = data.drop(labels = ['Price', 'Address'], axis=1)

Y = data['Price']

add Codeadd Markdown

X

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population
0	79545.4586	5.682861	7.009188	4.09	23086.8005
1	79248.6425	6.0029	6.730821	3.09	40173.0722
2	61287.0672	5.86589	8.512727	5.13	36882.1594
3	63345.24	7.188236	5.586729	3.26	34310.2428
4	59982.1972	5.040555	7.839388	4.23	26354.1095
•••	•••	•••	•••		
4995	60567.9441	7.830362	6.137356	3.46	22837.361
4996	78491.2754	6.999135	6.576763	4.02	25616.1155
4997	63390.6869	7.250591	4.805081	2.13	33266.1455

$5000 \text{ rows} \times 5 \text{ column}$

add Codeadd Markdown

Y

```
0 1.059034e+06
```

4 6.309435e+05

4995 1.060194e+06

4996 1.482618e+06

4997 1.030730e+06

4998 1.198657e+06

4999 1.298950e+06

Name: Price, Length: 5000, dtype: float64

add Codeadd Markdown

 $\#Shape\ of\ X\ and\ Y$

print(f"X Shape: {X.shape}")

print(X)

print(f"y Shape: {Y.shape}")

print(Y)

X Shape: (5000, 5)

Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms \
79545.458574 5.682861 7.009188

U	/9545.4585/4	5.682861	7.009188
1	79248.642455	6.002900	6.730821
2	61287.067179	5.865890	8.512727
3	63345.240046	7.188236	5.586729
4	59982.197226	5.040555	7.839388

^{1 1.505891}e+06

^{2 1.058988}e+06

^{3 1.260617}e+06

```
4995
      60567.944140
                         7.830362
                                         6.137356
4996
      78491.275435
                         6.999135
                                         6.576763
4997
       63390.686886
                         7.250591
                                         4.805081
4998
     68001.331235
                         5.534388
                                         7.130144
4999
      65510.581804
                         5.992305
                                         6.792336
  Avg. Area Number of Bedrooms Area Population
0
             4.09 23086.800503
             3.09 40173.072174
1
             5.13 36882.159400
2
             3.26
3
                   34310.242831
             4.23 26354.109472
4
               3.46 22837.361035
4995
               4.02\quad 25616.115489
4996
               2.13 33266.145490
4997
4998
               5.44 42625.620156
4999
               4.07 46501.283803
[5000 rows x 5 columns]
y Shape: (5000,)
0
   1.059034e+06
1
    1.505891e+06
2
    1.058988e+06
3
    1.260617e+06
    6.309435e+05
4995 1.060194e+06
4996 1.482618e+06
4997 1.030730e+06
4998 1.198657e+06
4999 1.298950e+06
Name: Price, Length: 5000, dtype: float64
add Codeadd Markdown
```

Spliting data for our model:

add Codeadd Markdown

from sklearn.model_selection import train_test_split

#Train-Test Split to train our model on the training set and then use the test set to evaluate the model X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=10) add Codeadd Markdown

Scale/Normalize the Training data:

add Codeadd Markdown

from sklearn.preprocessing import StandardScaler

```
scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
```

```
X_test = scaler.transform(X_test)
add Codeadd Markdown

X_norm
array([[ 0.24082188, -1.0185292 , -0.77505327, -1.34738436, -1.03787896],
       [ 0.98865562,  1.66179379,  3.18432256, -0.45796685, -0.92397092],
       [ 0.14525596, -0.18436613,  1.45749594,  1.78174815,  0.71971398],
       ...,
       [ 0.20142052,  0.59892004, -0.52979241, -0.66819281, -1.2877454 ],
       [ 0.49559505,  0.75068063,  0.60135685,  0.20505347,  0.48354548],
       [-0.4372132 ,  0.40979201,  1.9322583 ,  0.01908436, -2.21714608]])
add Codeadd Markdown
```

Creating and fitting our Linear Regression Model:

add Codeadd Markdown

from sklearn.linear_model import LinearRegression

lin_model = LinearRegression(normalize=True)
lin_model.fit(X_norm,y_train)
LinearRegression(normalize=True)
add Codeadd Markdown

View Parameters:

```
add Codeadd Markdown
```

print(f"Model parameters:- w: {lin_model.coef_}, b:{lin_model.intercept_}")

Model parameters:- w: [230102.81587921 164125.74656351 121432.99857953 591.86181588 149933.87898543], b:1236207.893936157

add Codeadd Markdown

Making predictions:

add Codeadd Markdown

```
# make a prediction using lin_model.predict()
y_pred_linear_model = lin_model.predict(X_test)
add Codeadd Markdown

plt.figure(figsize=(10,10))
plt.scatter(y_test, y_pred_linear_model, c='blue')
plt.xlabel('True Values', fontsize=15)
plt.ylabel('Predictions', fontsize=15)
plt.axis('equal')
plt.show()
```


Regression Evaluation Metrics:

add Codeadd Markdown

The common evaluation metrics for regression problems are:

- Mean Absolute Error(MAE)
- Mean Squared Error(MSE)
- Root Mean Squared Error (RMSE)

add Codeadd Markdown

from sklearn import metrics

def evaluated_results(true, predicted):
 print('______')

Train set evaluation:

MAE: 81383.52050897086 MSE: 10146811289.400652 RMSE: 100731.38184995107