Statistical Estimation	Homework 2
ASEN 5044 Fall 2018	Due Date: Sep 20, 2018
Name: Andrew Kramer	PhD Student

Exercise 1

In the game of blackjack, the player is initially dealt two cards from a deck of ordinary playing cards. Without going into all the game's details, it is enough to know the best possible hand for a player to receive on the initial deal is a combination of an ace of any suit and any face card or ten. What is the probability that a player will be dealt this combination?

The number of ways a single player can be dealt a blackjack (assuming there is only one player) is $\binom{4}{1}\binom{16}{1} = 64$. So the number of events in our event space (which we'll call A) is 64. The total number of ways to deal 2 cards to that player is $\binom{52}{2} = 1326$. So, the number of events in the whole sample space is 1326. the probability of a single player being dealt a blackjack is therefore

$$\frac{N_A}{N} = \frac{\binom{4}{1}}{\binom{16}{1}} = \frac{64}{1326} = 0.048$$

Exercise 2

Discrete and random variables X and Y can each take on integer values 1, 3, and 5. The joint probability table of X and Y is given below.

Table 1: Your first table.				
X	Y=1	Y=3	Y=5	
1	1/18	1/18	1/18	
3	1/18	1/18	1/6	
5	1/18	1/6	1/3	

Problem (a)

Are the random variables X and Y independent?

No, the table clearly shows that the probability of X taking on certain values changes depending on the value of Y. For instance $P(X=3|Y=3) \neq P(X=3|Y=5)$ If X and Y were independent then P(X=x|Y=y) would be the same for all values of y.

Problem (b)

Find the unconditional (marginal) probability P(Y = 5).

The marginal probability
$$P(Y = 5) = P(Y = 5|X = 1) + P(Y = 5|X = 3) + P(Y = 5|X = 5) = (1/18) + (1/6) + (1/3) = (5/9).$$

Homework 1 ASEN 5044

Problem (c)

What is the conditional probability P(Y = 5|X = 3)?

Generally $P(A|B) = \frac{P(A,B)}{P(B)}$. This means we need to calculate the marginal probability P(X=3) = (1/18) + (1/18) + (1/6) = (5/18). With this information we can find

$$P(Y = 5|X = 3) = \frac{P(Y = 5, X = 3)}{P(X = 3)} = \frac{1/6}{5/18} = \frac{3}{5}$$

Exercise 3

Determine the value of a in the function

$$f_X(x) = \begin{cases} ax(1-x) & x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

so that $f_X(x)$ is a valid probability density function.

For $f_X(x)$ to be a valid probability density function $\int_{-\infty}^{\infty} f_X(x) dx$ must be equal to one.

$$1 = \int_{-\infty}^{\infty} f_X(x) dx$$
$$= \int_0^1 ax (1 - x) dx$$
$$= a \int_0^1 (x - x^2) dx$$
$$= a \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$$
$$= a \left(\frac{1}{2} - \frac{1}{3} \right)$$
$$1 = \frac{a}{6}$$
$$a = 6$$

Exercise 4

The probability density function of an exponentially distributed random variable is defined as follows

$$f_X(x) = \begin{cases} ae^{-ax} & x > 0\\ 0 & x \le 0 \end{cases}$$

where $a \geq 0$.

Problem (a)

Find the probability distribution function of an exponentially distributed random variable.

Homework 1 ASEN 5044

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$
$$= \int_{a}^{b} ae^{-ax} dx$$
$$= -e^{-ax} \Big|_{a}^{b}$$

assuming $0 < a \le b$.

Problem (b)

Find the mean of an exponentially distributed random variable.

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$= a \int_{0}^{\infty} x e^{-ax} dx$$

$$= a \left[\left(-\frac{x}{a} - \frac{1}{a^2} \right) e^{-ax} \right]_{0}^{\infty}$$

$$= \left[\left(-x - \frac{1}{a} \right) e^{-ax} \right]_{0}^{\infty}$$

$$= \left(-\infty - \frac{1}{a} \right) e^{-a\infty} + \frac{1}{a} e^0$$

Because $e^{-\infty} = 0$, $E[X] = \frac{1}{a}$.

Problem (c)

Find the second moment of an exponentially distributed random variable.

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$
$$= \int_0^{\infty} x^2 a e^{-ax} dx$$
$$= \frac{1}{a^2} \int_0^{\infty} t^2 e^{-t} dt$$
$$= \frac{1}{a^2} \Gamma(2+1) = \frac{2!}{a^2}$$
$$= \frac{2}{a^2}$$

Homework 1 ASEN 5044

Problem (d)

Find the variance of an exponentially distributed random variable.

$$\sigma_x^2 = E[X^2] - (E[X])^2$$

$$= \frac{2}{a^2} - \left(\frac{1}{a}\right)^2$$

$$= \frac{1}{a^2}$$

Problem (e)

What is the probability that an exponentially distributed random variable takes on a value within one standard deviation of its mean?

The standard deviation is $\sqrt{\frac{1}{a}} = \frac{1}{a}$, we simply need to evaluate the probability distribution function from 0 to $\frac{2}{a}$:

$$P(0 < X \le \frac{2}{a}) = 1 - e^{-ax} \Big|_{0}^{2/a}$$
$$= (1 - e^{-a\frac{2}{a}}) - (1 - e^{0})$$
$$= 1 - e^{-2}$$

So the probability that X falls within one standard deviation of the mean is a constant, unrelated to the value of a.

Exercise 5

Exercise 6

AQ 1

AQ 2