Складове от данни

Основни въпроси

- Мотивация
- Същност
- Функционалност
- Модели

Обосновка

- Проблем: Бързото увеличаване на данните
 - Автоматизирани инструменти за събиране на данни и развитие на технологии за БД водят до огромен обем данни, съхранени в БД и други информационни хранилища.
- Богати на данни, бедни на информация
- Решение: Data warehousing и data mining
 - Data warehousing и аналитична обработка в реално време
 - Извличане на знания правила, образци, шаблони, ограничения на данни в големи БД.

Необходимост от Data Warehouse?

- Оперативните системи не позволяват анализ на бизнес информация поради:
 - Липса на онлайн исторически данни
 - Необходимите за анализа данни принадлежат на различни с-ми
 - Самите схеми са неподходящи за DS
 - Системата на заявки не е достатъчна
 - Липса на средства за бизнес анализ
 - Неефективно зареждане и индексиране на големи количества данни
 - 2-размерно представяне не е достатъчно

A Sample Data Cube

Изчистване на данни и ETL-процес

- 1,3 Характеристики на екземплярите
- 2 Правила за транслация
- 4 Съответствие между изходните схеми и целевата схема

Data Mining: A KDD Process

Data Mining

- Data mining (разкриване на знания в БД):
 - Извличане на значима (нетривиална, пълна, предварително неизвестна и потенциално полезна) информация или модели от данни в големи БД.
- Възможни приложения
 - Анализи и управление на пазара
 - Анализ и управление на риска
 - Разкриване и управление на измами
 - Текст mining (news групи, e-mail, документи) и Web анализи
 - Интелигентни отговори на заявки

Data Warehouse. Концепции

- IBM "information warehouse"
- Дефиниция на Inmon
- Интегриране на данни от различни източници в едно хранилище - warehouse
- Технология за управление и анализ на данните

Основни идеи

- Интеграция на различни детайлизирани данни в единно хранилище (съгласуване и агрегация):
 - Исторически архиви
 - Данни от традиционни БД
 - Данни от външни източници
- Разделяне на данните за оперативна обработка
 и данните за решаване на аналитични задачи

DW - Дефиниция на Inmon

- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon (Building the Data warehouse, 1993)
- Data warehousing:
 - The process of constructing and using data warehouses

DW - предметно-ориентирана

- Фокусира върху основни същности като customer, product, sales, а не върху процеси.
- Акцентира върху моделирането и анализа на данни, необходими за вземане на решения, а не върху ежедневните транзакционни процеси.

DW - предметно-ориентирана

DW - интегрирани данни

- Основен аспект на DW
- Съгласува данни от множество разнородни източници
 - Релационни БД, Web страници, flat files
- Техники за изчистване и интегриране на данните.
 - Конвенции за имена, ограничения за домени

DW - интегрирани данни

DW - поддържане на хронология

- Данните са свързани с определена времева точка
 - Семестър, фискална година, период за пращане
- Времевият диапазон е значително по-голям, в сравнение с традиционните БД
 - Оперативни БД: стойности на текущите данни.
 - Данни в Data warehouse: осигуряват информация от историческа перспектива (последните 5-10 години)
- Всяка ключова структура в DW притежава явна или неявна времева характеристика

<u>DW – относително</u> неизменни

- DW физически разделена от данните, които се трансформират в оперативна среда
- Оперативните обновявания на данни не се извършват в DW
 - Не се изисква обработка на транзакции, контрол на конкурентността, възстановяване
 - Основни операции за данни:
 - ■Първоначално зареждане на данни
 - ■Достъп до данни

Examples of Common DW Applications

Sales Analysis

- Determine real-time product sales to make vital pricing and distribution decisions.
- Analyze historical product sales to determine success or failure attributes.
- Evaluate successful products and determine key success factors.
- Use corporate data to understand the margin as well as the revenue implications of a decision.
- Rapidly identify a preferred customer segments based on revenue and margin.
- Quickly isolate past preferred customers who no longer buy.
- Identify daily what product is in the manufacturing and distribution pipeline.
- Instantly determine which salespeople are performing, on both a revenue and margin basis, and which are behind.

Financial Analysis

- Compare actual to budgets on an annual, monthly and month-to-date basis.
- Review past cash flow trends and forecast future needs.
- Identify and analyze key expense generators.
- Instantly generate a current set of key financial ratios and indicators.
- Receive near-real-time, interactive financial statements.

Human Resource Analysis

- Evaluate trends in benefit program use.
- ldentify the wage and benefits costs to determine company-wide variation.
- Review compliance levels for EEOC and other regulated activities.

Other Areas

 Warehouses have also been applied to areas such as: logistics, inventory, purchasing, detailed transaction analysis and load balancing.

Data Warehouse <--> Operational DBMS

- OLTP (on-line transaction processing)
 - Основна задача на традиционните РСУБД
 - Ежедневни операции: покупки, продажби, банкови операции, ведомости, счетоводство
- OLAP (on-line analytical processing)
 - Основна задача на data warehouse system
 - Анализ на данните и вземане на решения

OLTP < -- > OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

DW модел – основни понятия

- Dimension (дименсия, размерност)
- Facts (Факти)
- Attributes (атрибути)
- Hierarchy (йерархия)
- Relationships (връзки)

DW модел - компоненти

- Dimension (дименсия, размерност)
 - Осигурява средства за анализ на бизнеса
 - С-жа 1 или няколко атрибута
 - Възможност за йерархия
- Attributes
 - Характеристики на дименсии
 - ■Цвят , размер
 - ■Ден, седмица, празник в дименсия време

DW модел - компоненти

- Hierarchy
 - Осигурява логическата връзка между 2 атрибута в дименсията
 - ■Географски район
- Relationship
 - Взаимоотношения между атрибутите в йерархията
 - ■1:1, M:M
- Facts
 - Колони от данни, свързани чрез ключове с дименсионни таблици

Multidimensional data model

- Складовете от данни са базират на модела на многомерни данни (multidimensional data model) който разглежда данните като един куб от данни
- Куб от данни, например sales, позволява данните да се моделират и разглеждат в м-во размерности
 - Дименсионни таблици item (item_name, brand, type), time(day, week, month, quarter, year)
 - Факт таблица, съдържаща мерки (напр. dollars_sold) и ключове към всяка от релационните дименсионни таблици

Пример: AllElectronics

- Фирма за търговия с електроника AllElectronics създава склад за данни за продажби (sales), за записи за продажби по отношение на размерностите
- време (time)
- артикул (item)
- клон (branch)
- местоположение (location).

AllElectronics – 2-D

- Двумерен (2-D) куб данни -таблица за продажби на артикули, продадени във
 - Ванкувър
 - Торонто
 - Ню Йорк
 - Чикаго
- Дименсии
 - (размерност "артикул"), организирани съгласно своите типове,
 - и разбити по тримесечия (quarters) размерност "време".
- Показаният факт или мярка е "продажби-вдолари" (в хиляди).

AllElectronics — 3-D

- Тримерен (3-D) куб данни -данните за продажби с използване на третата размерност – "местоположение" за градовете Чикаго, Ню Йорк, Торонто и Ванкувер.
- Дименсии
 - артикул
 - време
 - местоположение
- Факт "продажби-в-долари"

AllElectronics — 3-D

A Sample Data Cube

AllElectronics – fact table

- Един модел на многомерни данни обикновено е организиран около някоя централна тема (например "продажби"). Тази тема е представена чрез така наречена таблица на факти или факт таблица
- Фактите са определени числови мерки количествата, чрез които искаме да анализираме съществуващи релации между размерностите.
 - "продажби-в-долари" (amount_sold) и "продадени-бройки" (unit_sold).
- Факт таблицата съдържа имената на факти или мерки, както и ключове към всяка от съответните дименсионни таблици.

AllElectronics - dimensions

- Всяка размерност може да има асоциираната с нея таблица, наречена дименсионна таблица, която описва дадената размерност.
 - Дименсионна таблица"артикул" с атрибути "име-на-артикула" (item_name), "вид" (brand) и "тип" (type).

Концептуални модели

- Star schema (схема "звезда")
- Snowflake schema (схема "снежинка")
- Fact constellations (схема "съзвездие")

Звезда

- Една централна факт таблица и множество други таблици, разположени радиално около нея
- Свързване по първични и външни ключове
- Денормализиран модел, подходящ за статични БД

Dimensional Data Model Star Schema

Dim1 Key

Dimension

Table

Dim2 Key

Dimension

Table

Dim1 Key

Dim2 Key

Dim3 Key

Dim4 Key

Fact

Table

Dim3 Key

Dimension

Table

Dim4 Key

Dimension

Table

Star Schema

Star Schema – недостатъци

- Изисква често реконфигуриране
- Поради нивата на денормализация конструирането на модела се извършва бавно и трудно
 - Поддържане на хронология
 - Създаване на йерархии в дименсиите

Snowflake Schema

- По-близо до класическата ERD, отколкото схемата "звезда", защото дименсионните данни са по-нормализирани
- Разработката на модела означава създаване на йерархии във всяка от дименсиите (нормализация на данните)

Snowflake Schema

Snowflake Schema - недостатъци

- ■При много дименсии с много нива на йерархия – труден за управление модел
- Повече връзки затрудняват производителността
- Метаданни по-сложни

Constellation model

- Constellation model обхваща серия от модели "звезда"
 - При необходимост от няколко факт таблици

Fact Constellation

Факт таблици

■ Всеки запис във факт таблицата с-жа първичен ключ – конкатенация от външни ключове (foreign keys) към дименсионни таблици и факти или мерки, еднозначно идентифицирани от този първичен ключ

Ниво на детайлност

- Съхранение на данните с възможно най-голяма степен на детайлизация
 - Детайлизирани данни → сумарни
 - Невъзможен обратен процес
- Atomic level of detail най-ниско ниво на детайлизация

Дименсионни таблици

- Денормализирани
- "По-широки" от факт таблиците
 - повече колони
- "По-къси" от факт таблиците
 - по-малко редове
- Използват сурогатни ключове (Surrogate Keys)

Дименсионни таблици - моделиране

- Модел според съдържанието на данните
- Модел според необходимостта от обобщаване
- Удовлетворяване на изискванията на йерархиите – drill-up, drill-down
- Изцяло денормализирана star
- Нормализирана snowflake

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice:
 - project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes.

Browsing a Data Cube

