Seminar 1

- 1. Find the lower and the upper bounds, then sup, inf, max, min for each of the following:
 - (a) $[-3,2) \cup \{3\}$.

(c) $(-5,5) \cap \mathbb{Z}$.

(b) $(-1,1] \cup (2,\infty)$.

- (d) Ø.
- 2. Find the sup, inf, max, min for each of the following sets:
 - (a) $\{x \in \mathbb{Q} \mid x^2 < 3\}.$

(c) $\left\{\frac{n}{n+1} \mid n \in \mathbb{N}\right\}$.

(b) $\{x^2 - 4x + 3 \mid x \in \mathbb{R}\}.$

- (d) $\{2^{-k} + 3^{-m} \mid k, m \in \mathbb{N}\}.$
- 3. Suppose that S is nonempty and bounded above. Show that the set $-S := \{-x \mid x \in S\}$ is bounded below and $\inf(-S) = -\sup(S)$.
- 4. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be two functions defined on a nonempty set D. Prove that

$$\inf_{x \in D} \left(f(x) + g(x) \right) \ge \inf_{x \in D} f(x) + \inf_{x \in D} g(x) \quad \text{and} \quad \sup_{x \in D} \left(f(x) + g(x) \right) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x).$$

Give examples where the above inequalities are strict.

5. \bigstar Let $a, b \in \mathbb{R}$ with a > 0. If S is nonempty and bounded above, prove that

$$\sup_{x \in S} (ax + b) = a \sup(S) + b.$$

6. Which of the following sets are neighborhoods of 0?

$$[-1,1] \cup \{2\}; \quad (-1,1) \cap \mathbb{Q}; \quad \bigcap_{n=1}^{\infty} [-\frac{1}{n}, \frac{1}{n}].$$

- 7. Let $x \in \mathbb{R}$ and $U, V \in \mathcal{V}(x)$. Prove that $U \cap V \in \mathcal{V}(x)$.
- 8. \bigstar Let $a, b \in \mathbb{R}$. Prove that there exist neighborhoods $U \in \mathcal{V}(a)$ and $V \in \mathcal{V}(b)$ s.t. $U \cap V = \emptyset$.
- 9. Find the interior and the closure for each of the following sets:
 - (a) (1,2].

(c) $(-1,1] \cup (2,\infty)$.

(b) $[-3,2) \cup \{3\}.$

- (d) $(-5,5) \cap \mathbb{Z}$.
- 10. \bigstar Let $A = (0,1) \cap \mathbb{Q}$. Show rigorously that $\inf A = 0$, $\sup A = 1$, $\inf A = \emptyset$ and $\operatorname{cl} A = [0,1]$.

Solutions should be uploaded on Teams in the corresponding Assignment.

Homework questions are marked with \bigstar .