290578US0XPCT.ST25.txt SEQUENCE LISTING

<110>	Ishida, Nobuhiro Tokuhiro, Kenro Nagamori, Eiji Takahashi, Haruo Saito, Satoshi Ohni Shi, Tohru												
<120>	Promoter in the presence of organic acid and utilization ther	reof											
<130>	290578US0XPCT												
<140> <141>	10/578,614 2006-05-08												
<150> <151>	PCT/JP04/16799 2004-11-05												
<150> <151>	JP 2003-379076 2003-11-07												
<160>	47												
<170>	PatentIn version 3.4												
<210> <211> <212> <213>	1 810 DNA Saccharomyces cerevisiae												
<400> ctcgct	1 ccgca gccacgggtc aacccgattg ggatcacccc actggggccc aagcctgata	60											
tccgac	cctcc atgaaatttt ttttttctt tcgattagca cgcacacaca tcacatagac	120											
tgcgtc	cataa aaatacacta cggaaaaacc ataaagagca aagcgatacc tacttggaag	180											
gaaaag	ggagc acgcttgtaa gggggatggg ggctaagaag tcattcactt tcttttccct	240											
tcgcgg	stccg gacccgggac ccctcctctc cccgcacgat ttcttccttt catatcttcc	300											
ttttat	tcct atcccgttga agcaaccgca ctatgactaa atggtgctgg acatctccat	360											
ggctgt	gact tgtgtgtatc tcacagtggt aacggcaccg tggctcggaa acggttcctt	420											
cgtgac	caatt ctagaacagg ggctacagtc tcgataatag aataataagc gcatttttgc	480											
tagcgc	ccgcc gcggcgcccg tttcccaata gggaggcgca gtttatcggc ggagctctac	540											
ttcttc	ctat ttgggtaagc ccctttctgt tttcggccag tggttgctgc aggctgcgcc	600											
ggagaa	acata gtgataaggg atgtaacttt cgatgagaga attagcaagc ggaaaaaaac	660											
tatggc	tagc tgggagttgt ttttcaatca tataaaaggg agaaattgtt gctcactatg	720											
tgacag	ytttc tgggacgtct taacttttat tgcagaggac tatcaaatca tacagatatt	780											
gtcaaa	aaaaa aaaaagacta ataataaaaa	810											

290578US0XPCT.ST25.txt	
<212> DNA <213> Saccharomyces cerevisiae	
<400> 2 cttgacgggt attctgagca tcttactcag tttcaagatc ttttaatgtc caaaaacatt	60
tgagccgatc taaatacttc tgtgttttca ttaatttata aattgtactc ttttaagaca	120
tggaaagtac caacatcggt tgaaacagtt tttcatttac atatggttta ttggttttc	180
cagtgaatga ttatttgtcg ttaccctttc gtaaaagttc taacacgttt ttaagtattg	240
tttagttgct ctttcgacat atatgattat ccctgcgcgg ctaaagttaa agatgcaaaa	300
aacgtaagac aactgaagtt aatttacgtc aattaagttt tccagggtaa tgatgttttg	360
ggcttccact aattcaataa gtgtgtcatg aaatacgttg tgaagagcat ccagaaataa	420
tgaaaagaaa caacgaaact gggtcggcct gttgtttctt ttctttacca cgtgatctgc	480
ggcatttaca ggaagtcgct cgttttgcgc agttgttgca acgcagctac ggctaacaaa	540
gcctagtgga actcgactga tgtgttaggg cctaaaactg gtggtgacag ctgaagtgaa	600
ctattcaatc caatcatgtc atggctgtca caaagacctt gcggaccgca cgtacgaaca	660
catacgtatg ctaatatgtg ttttgatagt acccagtgat cgcagacctg caatttttt	720
gtaggtttgg aagaatatat aaaggttgca ctcattcaag atagttttt tcttgtgtgt	780
ctattcattt tattattgtt tgtttaaatg ttaaaaaaac caagaactta gtttcaaatt	840
aaattcatca cacaaacaaa caaaacaaa	869
<210> 3 <211> 957 <212> DNA <213> Saccharomyces cerevisiae	
<pre><400> 3 gccctgctaa acacgcccta ctaaacactt caaaagcaac ttaaaatatt tttatctaat</pre>	60
tatagctaaa acccaatgtg aaagacatat catactgtaa aagtgaaaaa gcagcaccgt	120
tgaacgccgc aagagtgctc ccataacgct ttactagagg gctagatttt aatggcccct	180
tcatggagaa gttatgagga caaatcccac tacagaaagc gcaacaaatt ttttttccg	240
taacaacaaa catctcatct agtttctgcc ttaaacaaag ccgcagccag agccgttttt	300
ccgccatatt tatccaggat tgttccatac ggctccgtca gaggctgcta cgggatgttt	360
tttttttacc ccgtggaaat gaggggtatg caggaatttg tgcggggtag gaaatctttt	420
ttttttttag gaggaacaac tggtggaaga atgcccacac ttctcagaaa tgcatgcagt	480
ggcagcacgc taattcgaaa aaattctcca gaaaggcaac gcaaaatttt ttttccaggg	540
aataaacttt ttatgaccca ctacttctcg taggaacaat ttcgggcccc tgcgtgttct	600
tctgaggttc atcttttaca tttgcttctg ctggataatt ttcagaggca acaaggaaaa	660

290578US0XPCT.ST25.txt 720 attagatggc aaaaagtcgt ctttcaagga aaaatcccca ccatctttcg agatcccctg 780 taacttattg gcaactgaaa gaatgaaaag gaggaaaata caaaatatac tagaactgaa aaaaaaaaag tataaataga gacgatatat gccaatactt cacaatgttc gaatctattc 840 ttcatttgca gctattgtaa aataataaaa catcaagaac aaacaagctc aacttgtctt 900 957 ttctaagaac aaagaataaa cacaaaaaca aaaagttttt ttaattttaa tcaaaaa <210> 4 <211> 940 <212> DNA Saccharomyces cerevisiae <400> cgctgaatac gtcctgtcaa ttcaaatata tcacgttgtg agcagcccta aagaagaaaa 60 120 cctcaacagc agtattacta ttacaatcaa acaactttag tgccgcgtga taccgggggt tgaagtgggt gcattgagcc gtattcttct tccccgtaag aaagttgtgt atccttttta 180 240 ctgcgttgta atagcttctg aaaacctaaa aaatgaacgc tatgtagctc atatccgttt tgcataagta agaataacta cttgtgcagg gtgccgaaag ggatggaaaa ccgctgcagc 300 aacccttgtt acatacagtc ggatccatct gacttacttt ccttgcgtct ccctgcgcga 360 420 ttttgttggc cattttccag atcctctaga atttttcaag ggtcgagccg taggaggatt 480 ctctcagaag gcaaaaacgc atcgaaagcg tgctttgtaa gaatatttgg tatggctaaa 540 gtaagcaaag ccatatcccg atcccgatcc cgactcttat tccgatccct tccgccacat cctgcatgtt tattcgaata ccaaattagc tcatcttcgt tatttcatca tccctttctg 600 ctatggcaag gacaagtttt tttctagcat ctcatcgaaa actttcctct ccctaattgg 660 720 ccaaagtttt catattcatc atcagttaga aagtataata tcaatccctt acctcattac aagttgtatc acactaaaaa aatcatatat aagtctgtga gagtcttcaa ttatttagcg 780 840 900 aacaaatatt aactcaatta ttattattta taattacaaa aacaaaacaa caagtttgag actttaatat cttttgatta ctaaaaacaa caaatttcaa 940 <210> 800 <212> DNA <213> Saccharomyces cerevisiae <400> cgcatccgaa ttcaatgtag cacctgagat ctcaaatagc ttttggccaa tcctaatctt 60 120 gaaaacttca tggtttggta aaagctcggg ggtagtttct aactcttttg tataaaccac gatctcgccc ttttggccag acatctgata tgagcgtgcg tgtgagtgac tttacacttg 180 240 tctatccacg tcctgaagtt gttcgtgttc tttggatatt cgtgttcaag ctaataatga

Page 3

gcctttaagg taatacaatt tataaaccac caccttggcc tcgatctatt gcgcttatgt 300

geoccanage cancerdate careameters enoughed togatocate gogocoatege	
tgtctattag taatcaagaa aagaacccta aatcatcggc gtcccctgtg gggctctcgg	360
aaaaaccggt cctgacgtca ctgaaaagat ttcggcacat ggtcatggga ccagagaaaa	420
attaatccga catgtggaat atttccttcc gttaaggtag tgagcgcgga tttttctga	480
tttgtaatta tacggggagc tctggccaaa aaggtcagta tttggtgatg aagttgaata	540
tcatcttttg attttcttct gtatcattct ttttcttttt ccacacccct tccggacggt	600
attcacatat tgttgagagg ttaaatgaaa aataaagggg tggaaaatta aggacgagat	660
gtaagggaaa agcataaacg aaacattata taaaggagca caatttcctc tcccttgcca	720
attgtgcata taccgtttct ttataacgaa atttcaacaa accagaacaa cacaagtact	780
accaataacc acaacaaaac	800
<210> 6 <211> 901 <212> DNA <213> Saccharomyces cerevisiae <400> 6	
tcgatggaag atgcaacttg caaatgtagt ccggttacca agagacccaa acctcttcca	60
ctttactatt tctcctttga gaaatatatc agtttgcggt aataggtaat atgaaaaagg	120
caataaaaaa aagagatact tgtcaccatc tcgtctccct ttaccttttt tacttaatct	180
tcttcgtcgt catctgttcc atccctttcc tagcttagtc ttctccggct agttcttagt	240
gcggtaagca aaaaaatagc gtttttttc cctcaccagg actttttttg ttaaccgaaa	300
atcggcatct ctagttttcc tggacaaaaa agacaaaatg gaaataaaca ctcatacgaa	360
tcagtaaaga tgtaaataat cgcagtaacg actgcacaag gatgtcagaa aaagcagttt	420
aattccagaa gtggttttcc aatttatcac acatgtacat gaagggaaat gtttaaatac	480
ggtcttcgta aaacaaagga tctcttcacc tggtttcttc atttataagt agtgtctttt	540
tcggtaactt aagatatatc cttatttctt tcccacttct cgttatttct tcttttccc	600
ttttcaagtt cttcttttta tttattatta agcttatttt aattcttaga tcgttgtcac	660
tatcttttgt ccttattgtt aagaaacatt gcgaagaaaa agaataataa aagaaactca	720
gaaaaaaaag aagtttcctc gaacaaaaat attattattt caataacttt ttctttct	780
acatccaatt ttttgaccct attttaacat taattttttg ctttaatttt aactaatacc	840
taatttcact taatatctaa tcatcttcct ttaacccaca gaacaaagaa gaaaaataac	900
a	901

<212> DNA

<213> Bos taurus	
<220> <221> CDS <222> (1)(999) <223> Lactate Dehydrogenase	
<pre><400> 7 atg gca act ctc aag gat cag ctg att cag aat ctt ctt aag gaa gaa Met Ala Thr Leu Lys Asp Gln Leu Ile Gln Asn Leu Leu Lys Glu Glu 1 5 15</pre>	48
cat gtc ccc cag aat aag att aca att gtt ggg gtt ggt gct gtt ggc His Val Pro Gln Asn Lys Ile Thr Ile Val Gly Val Gly Ala Val Gly 20 25 30	96
atg gcc tgt gcc atc agt atc tta atg aag gac ttg gca gat gaa gtt Met Ala Cys Ala Ile Ser Ile Leu Met Lys Asp Leu Ala Asp Glu Val 35 40 45	144
gct ctt gtt gat gtc atg gaa gat aaa ctg aag gga gag atg atg gat Ala Leu Val Asp Val Met Glu Asp Lys Leu Lys Gly Glu Met Met Asp 50 55 60	192
ctc caa cat ggc agc ctt ttc ctt aga aca cca aaa att gtc tct ggc Leu Gln His Gly Ser Leu Phe Leu Arg Thr Pro Lys Ile Val Ser Gly 65 70 75 80	240
aaa gac tat aat gtg aca gca aac tcc agg ctg gtt att atc aca gct Lys Asp Tyr Asn Val Thr Ala Asn Ser Arg Leu Val Ile Ile Thr Ala 85 90 95	288
ggg gca cgt cag caa gag gga gag agc cgt ctg aat ttg gtc cag cgt Gly Ala Arg Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg 100 105 110	336
aac gtg aac atc ttt aaa ttc atc att cct aat att gta aaa tac agc Asn Val Asn Ile Phe Lys Phe Ile Ile Pro Asn Ile Val Lys Tyr Ser 115 120 125	384
cca aat tgc aag ttg ctt gtt gtt tcc aat cca gtc gat att ttg acc Pro Asn Cys Lys Leu Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr 130 135 140	432
tat gtg gct tgg aag ata agt ggc ttt ccc aaa aac cgt gtt att gga Tyr Val Ala Trp Lys Ile Ser Gly Phe Pro Lys Asn Arg Val Ile Gly 145 150 150	480
agt ggt tgc aat ctg gat tca gct cgc ttc cgt tat ctc atg ggg gag Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Gly Glu 165 170 175	528
agg ctg gga gtt cac cca tta agc tgc cat ggg tgg atc ctt ggg gag Arg Leu Gly Val His Pro Leu Ser Cys His Gly Trp Ile Leu Gly Glu 180 185 190	576
cat ggt gac tct agt gtg cct gta tgg agt gga gtg aat gtt gct ggt His Gly Asp Ser Ser Val Pro Val Trp Ser Gly Val Asn Val Ala Gly 195 200 205	624
gtc tcc ctg aag aat tta cac cct gaa tta ggc act gat gca gat aag Page 5	672

```
290578US0XPCT.ST25.txt
Val Ser Leu Lys Asn Leu His Pro Glu Leu Gly Thr Asp Ala Asp Lys
                                215
gaa cag tgg aaa gcg gtt cac aaa caa gtg gtt gac agt gct tat gag
Glu Gln Trp Lys Ala Val His Lys Gln Val Val Asp Ser Ala Tyr Glu
225 230 235 240
                                                                                              720
gtg atc aaa ctg aaa ggc tac aca tcc tgg gcc att gga ctg tca gtg
Val Ile Lys Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val
245 250 255
                                                                                              768
                                                                                             816
gcc gat ttg gca gaa agt ata atg aag aat ctt agg cgg gtg cat ccg
Ala Asp Leu Ala Glu Ser Ile Met Lys Asn Leu Arg Arg Val His Pro
att tcc acc atg att aag ggt ctc tat gga ata aaa gag gat gtc ttc Ile Ser Thr Met Ile Lys Gly Leu Tyr Gly Ile Lys Glu Asp Val Phe
                                                                                             864
                                                                                              912
ctt agt gtt cct tgc atc ttg gga cag aat gga atc tca gac gtt gtg
Leu Ser Val Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Val Val
                                                            300
aaa gtg act ctg act cat gaa gaa gag gcc tgt ttg aag aag agt gca
Lys Val Thr Leu Thr His Glu Glu Glu Ala Cys Leu Lys Lys Ser Ala
                                                                                             960
                           310
                                                                                              999
gat aca ctt tgg ggg atc cag aaa gaa ctg cag ttt taa
Asp Thr Leu Trp Gly Ile Gln Lys Glu Leu Gln Phe
<210>
<211>
         332
<212>
         PRT
<213>
         Bos taurus
<400>
Met Ala Thr Leu Lys Asp Gln Leu Ile Gln Asn Leu Leu Lys Glu Glu 10 10 15
His Val Pro Gln Asn Lys Ile Thr Ile Val Gly Val Gly Ala Val Gly 20 25 30
Met Ala Cys Ala Ile Ser Ile Leu Met Lys Asp Leu Ala Asp Glu Val
Ala Leu Val Asp Val Met Glu Asp Lys Leu Lys Gly Glu Met Met Asp
Leu Gln His Gly Ser Leu Phe Leu Arg Thr Pro Lys Ile Val Ser Gly
Lys Asp Tyr Asn Val Thr Ala Asn Ser Arg Leu Val Ile Ile Thr Ala
```

290578US0XPCT.ST25.txt Gly Ala Arg Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg Asn Val Asn Ile Phe Lys Phe Ile Ile Pro Asn Ile Val Lys Tyr Ser Pro Asn Cys Lys Leu Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr Tyr Val Ala Trp Lys Ile Ser Gly Phe Pro Lys Asn Arg Val Ile Gly 145 150 155 160 Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Gly Glu 165 170 175 Arg Leu Gly Val His Pro Leu Ser Cys His Gly Trp Ile Leu Gly Glu 180 185 190 His Gly Asp Ser Ser Val Pro Val Trp Ser Gly Val Asn Val Ala Gly 195 200 205 Val Ser Leu Lys Asn Leu His Pro Glu Leu Gly Thr Asp Ala Asp Lys Glu Gln Trp Lys Ala Val His Lys Gln Val Val Asp Ser Ala Tyr Glu 225 230 235 240 Val Ile Lys Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val 245 250 255 Ala Asp Leu Ala Glu Ser Ile Met Lys Asn Leu Arg Arg Val His Pro 260 265 270 Ile Ser Thr Met Ile Lys Gly Leu Tyr Gly Ile Lys Glu Asp Val Phe Leu Ser Val Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Val Val 290 295 300 300 Lys Val Thr Leu Thr His Glu Glu Glu Ala Cys Leu Lys Lys Ser Ala 305 310 315 320 Asp Thr Leu Trp Gly Ile Gln Lys Glu Leu Gln Phe 325 330

<210> 9 <211> 971 <212> DNA

<211>	21	230370030/11012316/10	
<212> <213>	DNA Artificial Sequence		
<220> <223>	Synthetic primer		
<400> caaggt	12 aagt tgaccggtat g		21
<210><211><211><212><213>	13 22 DNA Artificial Sequence		
<220> <223>	Synthetic primer		
<400> gatgga	13 agag ttagagtcac cc		22
<210> <211> <212> <213>	14 20 DNA Artificial Sequence		
<220> <223>	Synthetic primer		
<400> tcatgg	14 gctg tttggtcttc		20
<210> <211> <212> <213>	15 20 DNA Artificial Sequence		
<220> <223>	Synthetic primer		
<400> agcgtc	15 gtag ttggcacctc		20
<210> <211> <212> <213>	16 20 DNA Artificial Sequence		
<220> <223>	Synthetic primer		
<400> aattgc	16 agtc agccgtgatg		20
<210><211><211><212><213>	17 20 DNA Artificial Sequence		

<220> <223>	Synthetic primer	
	17 gctt gctctgcttc	20
<210><211><211><212><213>	18 20 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
	18 gcgt gggctaagag	20
<210> <211> <212> <213>	19 20 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> ggtttc	19 cttg gcagcgtaag	20
<210> <211> <212> <213>	20 20 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> gctgcc	20 tgtg ttcactccac	20
<210><211><211><212><213>	21 20 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> tggctg	21 caaa acgttaccac	20
<210> <211> <212> <213>	22 22 DNA Artificial Sequence	
<220> <223>	Synthetic primer	

<400> caacga	<400> 22 caacgaattg aacgctgctt ac 22				
<210> <211> <212> <213>	23 24 DNA Artificial Sequence				
<220> <223>	Synthetic primer				
<400> attcaa	23 cggc ttccttaact tctg	24			
<210> <211> <212> <213>	24 23 DNA Artificial Sequence				
<220> <223>	Synthetic primer				
<400> gttttc	24 aagg aattagacac tgc	23			
<210> <211> <212> <213>	25 23 DNA Artificial Sequence				
<220> <223>	Synthetic primer				
<400> caacag	25 tctt ttgagtagca gtc	23			
<210> <211> <212> <213>	26 35 DNA Artificial Sequence				
<220> <223>	Synthetic primer				
<400> atatat	26 gcgg ccgctcgcag ccacgggtca acccg	35			
<210> <211> <212> <213>	27 41 DNA Artificial Sequence				
<220> <223>	Synthetic primer				
<400> atatata	27 acta gtttttatta ttagtctttt ttttttttga c Page 11	41			

<210> <211> <212> <213>	28 39 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> atatat	28 gcgg ccgcttgacg ggtattctga gcatcttac	39
<210> <211> <212> <213>	29 38 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> tatata	29 ctag tttgttttgt ttgtttgtgt gatgaatt	38
<210> <211> <212> <213>	30 33 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> atatat	30 gcgg ccgccctgct aaacacgccc tac	33
<210> <211> <212> <213>	31 40 DNA Artificial Sequence	
<220> <223>	Synthetic primer	
<400> atatata	31 acta gtttttgatt aaaattaaaa aaactttttg	40
<210> <211> <212> <213>	34	
<220> <223>	Synthetic primer	
<400> atatat	32 gcgg ccgctgaata cgtcctgtca attc	34
<210>	33	

290578US0XPCT.ST25.txt <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 33 36 atatatacta gttgaaattt gttgttttta gtaatc <210> 34 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> atatatgcgg ccgcatccga attcaatgta gcacc 35 <210> 37 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 35 37 atatatacta gtgttttgtt gtggttattg gtagtac <210> 36 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 47 agctagctag cggccgcgat ggaagatgca acttgcaaat gtagtcc 37 47 <210> <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 47 agctagctac tagtgttatt tttcttcttt gttctgtggg ttaaagg 38 <210> <211> 42 <212> <213> Artificial Sequence

<220> <223> Synthetic primer	
<400> 38 agctagctag cggccgcgtt gaatgttagc gtcaacaac	ca ag 42
<210> 39 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic primer	
<400> 39 agctagctac tagtttgttt gtttatgtgt gtttattcg	ga aactaag 47
<210> 40 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic primer	
<400> 40 agctagctag cggccgcgtt gaatgttagc gtcaacaac	ca ag 42
<210> 41 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic primer	
<400> 41 tatatactag tttgattgat ttgactgtgt tattttg	37
<210> 42 <211> 1052 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic DNA	
<220> <221> CDS <222> (13)(1011)	
<pre><400> 42 acagaattca ca atg gct act ttg aaa gat caa</pre>	ttg att caa aat ttg ttg 51 Leu Ile Gln Asn Leu Leu 10
aaa gaa gaa cat gtt cca caa aat aaa att aa	ct att gtt ggt gtt ggt 99 e 14

Lys	Glu 15	Glu	His	Val	Pro	G]n 20		29057 Lys						Val	Gly	
gct Ala 30	gtt Val	ggt Gly	atg Met	gct Ala	tgt Cys 35	gct Ala	att Ile	tct Ser	att Ile	ttg Leu 40	atg Met	aaa Lys	gat Asp	ttg Leu	gct Ala 45	147
gat Asp	gaa Glu	gtt Val	gct Ala	ttg Leu 50	gtt Val	gat Asp	gtt Val	atg Met	gaa Glu 55	gat Asp	aaa Lys	ttg Leu	aaa Lys	ggt Gly 60	gaa Glu	195
					cat His											243
gtt Val	tct Ser	ggt Gly 80	aaa Lys	gat Asp	tat Tyr	aat Asn	gtt Val 85	act Thr	gct Ala	aat Asn	tct Ser	aga Arg 90	ttg Leu	gtt Val	att Ile	291
att Ile	act Thr 95	gct Ala	ggt Gly	gct Ala	aga Arg	caa Gln 100	caa Gln	gaa Glu	ggt Gly	gaa Glu	tct Ser 105	aga Arg	ttg Leu	aat Asn	ttg Leu	339
gtt Val 110	caa Gln	aga Arg	aat Asn	gtt Val	aat Asn 115	att Ile	ttt Phe	aaa Lys	ttt Phe	att Ile 120	att Ile	cca Pro	aat Asn	att Ile	gtt Val 125	387
aaa Lys	tat Tyr	tct Ser	cca Pro	aat Asn 130	tgt Cys	aaa Lys	ttg Leu	ttg Leu	gtt Val 135	gtt Val	tct Ser	aat Asn	cca Pro	gtt Val 140	gat Asp	435
att Ile	ttg Leu	act Thr	tat Tyr 145	gtt Val	gct Ala	tgg Trp	aaa Lys	att Ile 150	tct Ser	ggt Gly	ttt Phe	cca Pro	aaa Lys 155	aat Asn	aga Arg	483
					tgt Cys											531
atg Met	ggt Gly 175	gaa Glu	aga Arg	ttg Leu	ggt Gly	gtt Val 180	cat His	cca Pro	ttg Leu	tct Ser	tgt Cys 185	cat His	ggt Gly	tgg Trp	att Ile	579
ttg Leu 190	ggt Gly	gaa Glu	cat His	ggt Gly	gat Asp 195	tct Ser	tct Ser	gtt Val	cca Pro	gtt Val 200	tgg Trp	tct Ser	ggt Gly	gtt Val	aat Asn 205	627
					ttg Leu											675
					tgg Trp											723
					aaa Lys											771
ttg Leu	tct Ser 255	gtt Val	gct Ala	gat Asp	ttg Leu	gct Ala 260	gaa Glu	tct Ser	att Ile	atg Met	aaa Lys 265	aat Asn	ttg Leu	aga Arg	aga Arg	819

290578USOXPCT.ST25.txt gtt cat cca att tct act atg att aaa ggt ttg tat ggt att aaa gaa	867
Val His Pro Ile Ser Thr Met Ile Lys Gly Leu Tyr Gly Ile Lys Glu 270 275 280 285	
gat gtt ttt ttg tct gtt cca tgt att ttg ggt caa aat ggt att tct Asp Val Phe Leu Ser Val Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser 290 295 300	915
gat gtt gtt aaa gtt act ttg act cat gaa gaa gct tgt ttg aaa Asp Val Val Lys Val Thr Leu Thr His Glu Glu Glu Ala Cys Leu Lys 305 310 315	963
aaa tct gct gat act ttg tgg ggt att caa aaa gaa ttg caa ttt taa Lys Ser Ala Asp Thr Leu Trp Gly Ile Gln Lys Glu Leu Gln Phe 320 330	1011
taactcgagc ttggttgaac acgttgccaa ggcttaagtg a	1052
<210> 43 <211> 332 <212> PRT <213> Artificial Sequence	
<220> <223> Synthetic Construct	
<400> 43	
Met Ala Thr Leu Lys Asp Gln Leu Ile Gln Asn Leu Leu Lys Glu Glu 1 5 10 15	
His Val Pro Gln Asn Lys Ile Thr Ile Val Gly Val Gly Ala Val Gly 20 25 30	
Met Ala Cys Ala Ile Ser Ile Leu Met Lys Asp Leu Ala Asp Glu Val 35 40 45	
Ala Leu Val Asp Val Met Glu Asp Lys Leu Lys Gly Glu Met Met Asp 50 60	
Leu Gln His Gly Ser Leu Phe Leu Arg Thr Pro Lys Ile Val Ser Gly 65 70 75 80	
Lys Asp Tyr Asn Val Thr Ala Asn Ser Arg Leu Val Ile Ile Thr Ala 85 90 95	
Gly Ala Arg Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln Arg 100 105 110	
Asn Val Asn Ile Phe Lys Phe Ile Ile Pro Asn Ile Val Lys Tyr Ser 115 120 125	
Pro Asn Cys Lys Leu Leu Val Val Ser Asn Pro Val Asp Ile Leu Thr 130 135 140 Page 16	

Tyr Val Ala Trp Lys Ile Ser Gly Phe Pro Lys Asn Arg Val Ile Gly 145 150 155 160

Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Gly Glu 165 170 175

Arg Leu Gly Val His Pro Leu Ser Cys His Gly Trp Ile Leu Gly Glu 180 185 190

His Gly Asp Ser Ser Val Pro Val Trp Ser Gly Val Asn Val Ala Gly 195 200 205

Val Ser Leu Lys Asn Leu His Pro Glu Leu Gly Thr Asp Ala Asp Lys 210 220

Glu Gln Trp Lys Ala Val His Lys Gln Val Val Asp Ser Ala Tyr Glu 225 230 235 240

Val Ile Lys Leu Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser Val 245 250 255

Ala Asp Leu Ala Glu Ser Ile Met Lys Asn Leu Arg Arg Val His Pro 260 265 270

Ile Ser Thr Met Ile Lys Gly Leu Tyr Gly Ile Lys Glu Asp Val Phe 275 280 285

Leu Ser Val Pro Cys Ile Leu Gly Gln Asn Gly Ile Ser Asp Val Val 290 295 300

Lys Val Thr Leu Thr His Glu Glu Glu Ala Cys Leu Lys Lys Ser Ala 305 310 315 320

Asp Thr Leu Trp Gly Ile Gln Lys Glu Leu Gln Phe 325

<210> 44

<211> 31 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer

<400> 44

atatatggat ccgcgtttat ttacctatct c

31

<210> 45

290578US0XPCT.ST25.txt <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 45 31 atatatgaat tctttgattg atttgactgt g <210> 46 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 46 atatatctcg aggccagcta acttcttggt cgac 34 <210> 47 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <400> 47 atatatgaat tctttgattg atttgactgt g 31