IC en casos de 2 poblaciones normales

Cuando se dispone de dos m.a.s. de dos v.a. normales X e Y, se pueden plantear intervalos de confianza sobre la diferencia de medias o el cociente de varianzas. Dependiendo de la información de la que se dispone los *estadísticos* a utilizar tienen distribuciones de un tipo u otro y son los que condicionan los valores del intervalo. Se estudian las siguientes circunstancias:

- Estudio de la diferencia de ambas medias.
 - Caso en el que se supone que las v.a. normales tienen las varianzas son iguales (homecedasticidad).
 - Caso en el que se supone que son normales pero que no puede asumirse que las varianzas son iguales.
 - Caso general para distribuciones con muestras grandes donde la normalidad es tiene carácter asintótico.
- Intervalo para la razón de varianzas en poblaciones normales.
- Determinación del tamaño muestral.

Diferencia de medias de dos normales de varianza común

Se consideran dos v.a. normales $X \sim N(\mu_1, \sigma)$, $Y \sim N(\mu_2, \sigma)$. El intervalo de confianza al $100(1-\alpha)$ % es:

$$I_{\mu_1-\mu_2}^{1-\alpha} = \left((\bar{X} - \bar{Y}) \pm t_{\frac{\alpha}{2},n_1+n_2-2} \cdot S_T \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$$

- ullet $ar{X}, ar{Y}$ son las medias muestrales respectivas.
- $\hat{S_T}^2 = \frac{(n_1 1) \cdot \hat{s}_1^2 + (n_2 1) \cdot \hat{s}_2^2}{n_1 + n_2 2}$
- n_1, n_2 son los tamaños muestrales respectivos,
- $t_{\frac{\alpha}{2}}$ es el valor crítico de la distribución t de Student correspondiente a cola a derecha de $\frac{\alpha}{2}$.

Diferencia de medias de dos normales de varianza distinta

Se consideran dos v.a. normales $X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$ $(\sigma_1 \neq \sigma_2)$. El intervalo de confianza al $100(1-\alpha)$ % es:

$$I_{\mu_1-\mu_2}^{1-lpha} = \left((ar{X} - ar{Y}) \pm t_{rac{lpha}{2}, \mathsf{g}} \cdot \sqrt{rac{\hat{\mathsf{s}}_1^2}{n_1} + rac{\hat{\mathsf{s}}_2^2}{n_2}}
ight)$$

- $g = n_1 + n_2 2 \Delta$, gr. de libertad,
- $\Delta = \text{es el entero más próximo a} \ \frac{((n_2-1)S_1-(n_1-1)S_2)^2}{(n_2-1)S_1^2+(n_1-1)S_2^2}$
- $S_i = \frac{\hat{s}_i^2}{n_i}, i = 1, 2$

IC de de la diferencia de medias de dos poblaciones normales, caso general

Para casos en los que n es grande sabemos que asintóticamente las v.a. pueden ser consideradas normales. El intervalo de confianza del $100(1-\alpha)$ % para la diferencia de medias es:

$$I_{\mu_1-\mu_2}^{1-lpha} = \left((ar{X} - ar{Y}) \pm z_{rac{lpha}{2}} \cdot \sqrt{rac{\hat{s}_1^2}{n_1} + rac{\hat{s}_2^2}{n_2}}
ight)$$

- \hat{s}_i^2 Son las quasi-varianzas muestrales respectivas,
- $Z_{\frac{\alpha}{2}}$ es el valor crítico de la distribución normal estándar correspondiente a cola a derecha de $\frac{\alpha}{2}$.

IC de de la razón de varianzas en poblaciones normales

El intervalo de confianza del $100(1-\alpha)$ % para el cociente de varianzas $\frac{\sigma_1^2}{\sigma_2^2}$ es:

$$I_{\frac{\sigma_1^2}{\sigma_2^2}}^{1-\alpha} = \left(F_a \cdot \frac{\hat{s}_1^2}{\hat{s}_2^2}, F_b \cdot \frac{\hat{s}_1^2}{\hat{s}_2^2}\right)$$

- \hat{s}_i^2 Son las quasi-varianzas muestrales respectivas,
- F_a y F_b cumplen que $P(F_a < F < F_b) = 1 \alpha$, donde F es una distribución F de Snedecor con $(n_2 1)$ y $n_1 1)$ grados de libertad. O sea:
- F_b es el valor que deja $1 \frac{\alpha}{2}$ a derecha de la F y F_a el que deja a izquierda el mismo valor y de la misma F.

Determinación del tamaño muestral

Si se plantea determinar el valor del tamaño muestral n para que el intervalo tenga una amplitud determinada L en los casos donde el intervalo se plantea como ($centro \pm amplitud$), se nos plantearía una ecuación L = amplitud. Como n interviene en la expresión de la amplitud, de ahí podríamos obtener un valor estimado o una cota de n.

- Media de población normal y varianza conocida: $amplitud = z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
- ② Proporción de una población: $amplitud = z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

$$2 L = z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \rightarrow n = z_{\frac{\alpha}{2}}^2 \cdot \frac{\hat{p}(1-\hat{p})}{L^2}$$