

$$\frac{\partial \omega}{\partial b} = \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\text{sum of positive weights}$$

$$\text{egnal in magnitude to sum}$$

$$\text{of negative weights}$$

$$\text{Visualization}$$

$$\text{in the case } b = 0$$

$$\frac{\partial \omega}{\partial z} = 0$$

with of dis	< c	
CITIC CE WES		
Proced	dure	
Look for a wrongly	classified	χi
with di < C . So		∞;
Adjust di and dj		
To	If di-	Dogga + clas
If same chss		- 45
	c] A	
di dj	di	dj
	2.5	7
In \(\S\alpha_i - \frac{1}{2} \S\alpha_i \)	xi yi oj yj Ži ž	j g tg.
all d's one fixed, exce		
ones. Optimize th		
e l		
di + dj = k		xi-dj=K
alj <u>c</u>		
di		
sno algorithm		