7 лекция.

17 октября 2024 г.

Следствие. Если $A \in M_n(\mathbb{C}), \overline{A^T} = A$. Тогда \exists унитарная матрица C, такая что $C^T A \overline{C} = diag(\lambda_1, ..., \lambda_r)$, где

$$diag(\lambda_1, ..., \lambda_r) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_r \end{pmatrix}$$

 $\forall i \ \lambda_i \in \mathbb{R}.$

Доказательство:

Возьмем самосопряженный оператор $\mathcal{L}_A^{\mathbb{C}}:\mathbb{C}\longrightarrow\mathbb{C}$. Тогда по последней теореме предыдущего параграфа у этого оператора существует ортогональный базис из собственных векторов, то есть есть матрица перехода C, такая что:

$$C^{-1}AC = diag(\lambda_1, \dots, \lambda_r)$$

В силу свойств матрицы перехода, $C^T = \overline{C^{-1}} \ \square$

§Нормальные операторы.

Определение. Оператор $\mathcal{A}: V \longrightarrow V$ над пространством со скалярным произведением (евклидовым или унитарным) называется нормальным, если:

$$\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$$

То есть если он коммутирует со своим сопряженным.

Основные примеры: (к слову, другие примеры нормальных операторов встречаются редко)

- 1. Самосопряженные $\mathcal{A}^* = \mathcal{A}$. Все собственные числа вещественные.
- 2. Кососимметричные $A = -A^*$. Все собственные числа мнимые.
- 3. Изометричные $\mathcal{A}^* = \mathcal{A}^{-1}$. Все собственные числа на единичной окружности.

Замечание-напоминание:

Изометричность означает, что оператор \mathcal{A} "сохраняет расстояние": $(\mathcal{A}u,\mathcal{A}v)=(u,v)$. Равносильность этого определения и того что выше понятна: в одну сторону это выглядит так - если $\mathcal{A}^{-1}=\mathcal{A}^*$, то $(\mathcal{A}u,\mathcal{A}v)=(u,\mathcal{A}\mathcal{A}^*v)=(u,v)$. В обратную сторону, если $\forall u,v\;(u,\mathcal{A}\mathcal{A}^*v)=(u,v)=(u,Id\;v)$, то $\forall u,v\;(u,(\mathcal{A}\mathcal{A}^*-Id)v)=0$, то есть $\mathcal{A}\mathcal{A}^*=Id$.

Теорема. У нормального оператора над унитарным пространством существует ортонормированный базис из собственных векторов.

Доказательство:

Можно доказывать в точности как теорему для самосопряженных операторов. Можно и слегка по-другому. Выберем собственное число λ и рассмотрим собственное подпространство $U = \ker(\mathcal{A} - \lambda Id)$. По лемме о коммутирующих операторах оно инвариантно относительно \mathcal{A}^* . Рассмотрим ортогональное дополнение U^{\perp} - оно инвариантно относительно \mathcal{A}^* уже по лемме о сопряженных операторах. По той же лемме о коммутирующих операторах оно инвариантно относительно \mathcal{A} .

Таким образом, получаем разложение:

$$V = U \oplus U^{\perp}$$

Причем $\mathcal{A}_{U^{\perp}}$ инвариантное относительно обоих операторов пространство, которые на нем тоже коммутируют. Остается только воспользоваться индукцией \square .

 $3 a \partial a u a$ -замечание: Из этого доказательства явно следует, что если $\mathcal{A}u = \lambda u$, то $\mathcal{A}^*u = \overline{\lambda}u$. Но так же это можно доказать и без ссылки на теорему.

Теперь можно рассмотреть нормальные операторы над евклидовым пространством.

Лемма. Если a+bi - корень $\chi_{\mathcal{A}}(t)$ - характеристического многочлена оператора \mathcal{A} над евклидовым пространством, то на подпространстве

 $U = \ker(\mathcal{A}^2 - 2a\mathcal{A} + (a^2 + b^2)Id)$ существует ортонормированный базис, в котором \mathcal{A}_U имеет вид блочно-диагональной матрицы с блоками вида:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Доказательство:

Рассмотрим матрицу этого оператора A = [A] в каком-то ортонормированном базисе. По условию нормальности $A^T = A$.

Напоминание:

Можно рассмотреть оператор $\mathcal{L}_A^\mathbb{C}:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ с той же матрицей, но уже над $\mathbb{C}.$

В нем уже существует ортонормированный базис из собственных столбцов:

$$w1, w2, \ldots, w_r.\overline{w_1}, \overline{w_2}, \ldots, \overline{w_r}.$$

Где w_k отвечают собственному числу $\lambda = (a + bi)$, а $\overline{w_k}$ отвечают собственному числу $\overline{\lambda} = (a - bi)$.(Та же выкладка: $Aw = \lambda w \iff A\overline{w} = \overline{\lambda}\overline{w}$, потому что $A = \overline{A}$). Имеем разложение:

$$V = \ker(\mathcal{A} - \lambda E) \oplus (\mathcal{A} - \overline{\lambda}E)$$

Причем w_i образуют базис левого слогаемого, а $\overline{w_i}$ - правого. Если разложить $w_k = u_k + iv_k$, $\overline{w_k} = u_k - iv_k$, где u_k, v_k - чисто вещественные столбцы. По тем же самым рассуждениям они образуют базис(их число равно размерности пространства и через них выражается другой базис.) Надо проверить его ортонормированность. Для этого посчитаем скалярные произведения:

$$(w_k, w_l) = 0 \iff (u_k + iv_k, u_l + iv_l) = (u_k, u_l) + (v_k, v_l) + i((u_k, v_l) - (u_l, v_k)) = 0$$

$$(w_k, \overline{w_l}) = 0 \iff (u_k + iv_k, u_l - iv_l) = (u_k, u_l) - (v_k, v_l) + i((u_k, v_l) + (u_l, v_k)) = 0$$

$$(w_k, w_k) = 1 \iff (u_k, u_k) + (v_k, v_k) + i((u_k, v_k) - (u_k, v_k)) = 1$$

$$(w_k, \overline{w_k}) = 0 \iff (u_k + iv_k, u_k - iv_k) = (u_k, u_k) - (v_k, v_k) + i((u_k, v_k) + (u_k, v_k)) = 0$$

Так как все скалярные произведение с u_k, u_l, v_k, v_l вещественны,то из этих равенств сразу же следует, что $k \neq l \Rightarrow (u_k, u_l) = 0, (v_k, v_l) = 0,$ $\forall k, l(v_k, u_l) = 0$ и $\forall k \ (v_k, v_k) = (u_k, u_k) = \frac{1}{2}.$ Легко видеть, что если в V выбрать вектора u_k', v_k' , которые в изна-

Легко видеть, что если в V выбрать вектора u'_k, v'_k , которые в изначальном базисе записываются как $[u'_k] = \sqrt{2}u_k$, $[v'_k] = \sqrt{2}v_k$, то получится то что требуется по условию теоремы \square .

Следствие. Канонический вид изометричной матрицы над вещественным пространством - это блочнодиагрнальная матрица с 1-блоками + — 1 отвечающим вещественным собственным числам, и 2-блоками из предыдущего параграфа отвечающим парным комплексным собственным числам(нарисовать матрицу потом)

"Детский" случай - канонический вид изометрии над \mathbb{R}^3 :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

§Полярное разложение.

Onpedenehue. Самосопряженный оператор $\mathcal{A}:V\longrightarrow V$ называется положительно определенным, если выполнено одно из следующих условий:

1. Все собственные числа $\lambda_i > 0$

2.
$$\forall v \neq 0 (Av, v) = (v, Av) = \overline{(Av, v)} > 0$$

Доказательство равносильности:

$$1 \Rightarrow 2$$

В ортонормированном базисе e_1, \ldots, e_k имеем:

$$v = \sum x_l e_l, (\mathcal{A}v, v) = (\sum \lambda_l x_l e_l, \sum x_l e_l) = \sum \lambda_l (x_l \overline{x_l}) > 0$$

 $2 \Rightarrow 1$

$$Av = \lambda v \Rightarrow (Av, v) = \lambda(v, v) > 0 \Rightarrow \lambda > 0.$$

Теорема. Если \mathcal{A} - положительно определенный оператор, то существует единственный положительно определенный оператор \mathcal{B} , такой что $\mathcal{B}^2 = \mathcal{A}$.

Доказательство:

Существование.

В базисе из ортонормированных собственных векторов матрица \mathcal{A} будет выглядеть как $diag(\lambda_1, \lambda_2, \dots, \lambda_r)$. Все собственные числа положительны, поэтому достаточно взять \mathcal{B} с матрицей $diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r})$.

Единственность.

Пусть $\mu_1, \mu_2, \dots, \mu_r$ - собственные числа $\mathcal{B}, \mu_i > 0 \ \forall i$.

$$V = \bigoplus \ker(\mathcal{B} - \mu_i Id)$$

$$U_i = \ker(\mathcal{B} - \mu_i Id)$$

 B_{U_i} - гомотетия с коэффициентом μ_i . \mathcal{A}_{μ_i} - гомотетия с коэффициентом $\mu_i^2 \Rightarrow$ все μ_1^2,\dots,μ_r^2 - различны, $U_i = \ker(\mathcal{A} - \mu_i^2 Id)$.

Если $x = \bigoplus x_i, x_i \in U_i$, то $\mathcal{A}x = \bigoplus \mu_i x_i \Rightarrow$ если количество коэффициентов отличных от нуля больше одного, то x не является собственным числом для $\mathcal{A}. \Rightarrow \forall i U_i$ - собственное подпространство, значит

$$V = \bigoplus U_i$$

не зависит от выбора $\mathcal{B} \square$.

Полярное разложение.

Пусть $\mathcal{A}:V\longrightarrow V$ - оператор на пространстве со скалярным произведением. Тогда существует единственное разложение $\mathcal{A}=\mathcal{SQ}$, такое что \mathcal{S} - положительно определенный, а \mathcal{Q} - изометрия.

Доказательство:

Единственность:

$$\mathcal{A}\mathcal{A}^* = \mathcal{S}\mathcal{Q}\mathcal{Q}^*\mathcal{S}^* = \mathcal{S}^2$$

Так как $(\mathcal{A}\mathcal{A}^*v,v)=(\mathcal{A}^*v,\mathcal{A}^*v)>0$, то $\mathcal{A}\mathcal{A}^*$ - положительно определен. Из предыдущей теоремы следует, что $\mathcal S$ определен однозначно, откуда $\mathcal Q$ определяется однозначо как $\mathcal Q=\mathcal S^{-1}\mathcal A$.

Существование.

Надо взять $\mathcal S$ как единственное положительное определенное решение уравнения $\mathcal S^2=\mathcal A\mathcal A^*$. Осталось проверить что $\mathcal Q=\mathcal S^{-1}\mathcal A$ - изометрия:

$$\mathcal{S}^{-1}\mathcal{A}\mathcal{A}^*(\mathcal{S}^{-1})^* = Id \Rightarrow \mathcal{Q}\mathcal{Q}^* = Id$$