Aspartame Does Not Affect Aminergic and Glutamatergic Receptor Kinetics in Rat Brain

M. A. REILLY AND A. LAJTHA

The Nathan S. Kline Institute for Psychiatric Research Center for Neurochemistry Orangeburg, New York 10962

Chronic exposure to antagonists or agonists can up- or down-regulate neurotransmitter receptors. Changes in central nervous system (CNS) receptors might underlie adverse reactions anecdotally attributed to ingestion of aspartame (L-aspartyl-L-phenylalanine methyl ester, APM). This high-intensity sweetener is metabolized in the gastrointestinal tract to phenylalanine, which is absorbed into the circulatory system. Phenylalanine and its metabolite tyrosine compete with tryptophan for transport into brain, where levels of these amino acids may influence the synthesis of the aminergic neurotransmitters norepinephrine, dopamine, and serotonin. The influence of postprandial variation in plasma amino acid levels and of food additives that may affect plasma amino acids deserves careful attention. Phenylalanine with its known neurotoxic effects in phenylketonuria is of special interest. This paper reports the lack of effect of prolonged APM administration on several neurotransmitter receptor systems in brain of adult and weanling rats.

Adult male Sprague-Dawley rats were given APM 500 mg/kg daily for 30 days in their drinking water. By use of standard receptor assay procedures, 1,2 the binding kinetics for adrenergic, dopaminergic, and serotonergic receptors were determined in appropriate brain regions (TABLE 1). Brain content of the aminergic neurotransmitters and their major metabolites was measured, as were plasma and brain levels of phenylalanine, tyrosine, and other amino acids. Neither receptor kinetics (K_d and B_{max}), nor neurotransmitter content, nor levels of phenylalanine and tyrosine in

plasma and brain were altered.

Because of the greater vulnerability of the immature mammalian brain to neurotoxic action, studies for possible effects of APM on CNS aminergic function were done in weanlings (age 20 to 22 days) born to rats given APM 500 mg/kg daily in drinking water throughout gestation and lactation. No CNS effect of APM exposure was found in aminergic receptor kinetics (TABLE 1), levels of neurotransmitters and metabolites, or in plasma levels of phenylalanine and tyrosine. However, small but significant decreases occurred in brain levels of phenylalanine, glutamate, and aspartate. Subsequent studies found no effect of perinatal APM exposure on glutamatergic binding (TABLE 1), but decreases in glutamate and aspartate were again observed in cerebral cortex and hippocampus (TABLE 2). After termination of exposure to APM, levels of these excitatory amino acids returned to normal within three weeks (TABLE 2).

We conclude that prolonged high-dose APM ingestion does not affect aminergic or glutamatergic receptor kinetics in brain of adult or weanling rats. ¹⁻³ Because APM administration in drinking water did not significantly affect plasma levels of amino acids, these findings are not unexpected. However, the possible effects of significant changes in plasma amino acids levels require close attention.

TABLE 1. Receptor Kinetics in Rat Brain

Control		APM (500 mg/kg daily)	
K _d	B _{max}	- K _d	B _{max}
0.05 ± 0.01	203 ± 11	0.04 ± 0.01	215 ± 25
2.5 ± 0.02	115 ± 8	2.1 ± 0.3	100 ± 11
1.5 ± 0.04	143 ± 3	1.4 ± 0.06	29 ± 5
		•	
2.2 ± 0.3	167 ± 14	2.6 ± 0.6	163 ± 20
0.54 ± 0.04	269 ± 34	0.60 ± 0.10	284 ± 54
0.33 ± 0.02	281 ± 15	0.43 ± 0.04	251 ± 17
	•		
0.55 ± 0.1	780 ± 54	0.60 ± 0.10	806 ± 62
0.35 ± 0.03	852 ± 54	0.39 ± 0.01	743 ± 55
	•		
0.06 ± 0.01	279 ± 15	0.05 ± 0.01	250 ± 17
0.056 ± 0.005	307 ± 15	0.054 ± 0.004	256 ± 22
2.64 ± 0.17	1.82 ± 0.12	3.11 ± 0.48	1.58 ± 0.17
4.49 ± 0.88	1.99 ± 0.20	5.41 ± 0.57	1.80 ± 0.20
843 ± 119	35.3 ± 6.7	941 ± 60	37.3 ± 3.2
	18.9 ± 3.1	534 ± 42	26.9 ± 3.5
	K_d 0.05 ± 0.01 2.5 ± 0.02 1.5 ± 0.04 2.2 ± 0.3 0.54 ± 0.04 0.33 ± 0.02 0.55 ± 0.1 0.35 ± 0.03 0.06 ± 0.01 0.056 ± 0.005 2.64 ± 0.17 4.49 ± 0.88	K_d B_{max} 0.05 ± 0.01 203 ± 11 2.5 ± 0.02 115 ± 8 1.5 ± 0.04 143 ± 3 2.2 ± 0.3 167 ± 14 0.54 ± 0.04 269 ± 34 0.33 ± 0.02 281 ± 15 0.55 ± 0.1 780 ± 54 0.35 ± 0.03 852 ± 54 0.06 ± 0.01 279 ± 15 0.056 ± 0.005 307 ± 15 2.64 ± 0.17 1.82 ± 0.12 4.49 ± 0.88 1.99 ± 0.20 843 ± 119 35.3 ± 6.7	K_d B_{max} K_d 0.05 ± 0.01 203 ± 11 0.04 ± 0.01 2.5 ± 0.02 115 ± 8 2.1 ± 0.3 1.5 ± 0.04 143 ± 3 1.4 ± 0.06 2.2 ± 0.3 167 ± 14 2.6 ± 0.6 0.54 ± 0.04 269 ± 34 0.60 ± 0.10 0.33 ± 0.02 281 ± 15 0.43 ± 0.04 0.55 ± 0.1 780 ± 54 0.60 ± 0.10 0.35 ± 0.03 852 ± 54 0.39 ± 0.01 0.06 ± 0.01 279 ± 15 0.05 ± 0.01 0.056 ± 0.005 307 ± 15 0.054 ± 0.004 2.64 ± 0.17 1.82 ± 0.12 3.11 ± 0.48 4.49 ± 0.88 1.99 ± 0.20 5.41 ± 0.57 843 ± 119 35.3 ± 6.7 941 ± 60

Note: Dopaminergic receptor kinetics were determined in striatum, serotonergic 5-HT_{tA}

Kinetics in hippocampus, and all others in cerebral cortex except where otherwise noted. K_d values represent nM concentrations; B_{max} values are fmol/mg protein, except for glutamatergic receptors, where B_{max} values are pmol/mg protein. Values are means \pm SEM for 6–12 individual Scatchard determinations. No K_d or B_{max} comparison (APM treatment vs.

control) yielded a statistically significant difference (Student's t test).

Abbreviations: APM, L-aspartyl-L-phenylalanine methyl ester; NMDA, N-methyl-Daspartate.

TABLE 2. Glutamate and Aspartate Levels in Cerebral Cortex and Hippocampus of Rats after Maternal Ingestion of Aspartame^a

Region	Amino Acid	Control	APM Exposure
At time of weaning			
Cerebral cortex	Glutamate Aspartate	9050 ± 260 3720 ± 100	8230 ± 210^{b} 3240 ± 130^{b}
Hippocampus	Glutamate Aspartate	9250 ± 230 2870 ± 140	8370 ± 290^{b} 2790 ± 110
Three weeks after term	ination of aspartame	•	-
Cerebral cortex	Glutamate Aspartate	8820 ± 260 2950 ± 130	10400 ± 1080 3150 ± 83
Hippocampus	Glutamate Aspartate	8470 ± 540 2010 ± 170	9640 ± 870 2010 ± 53

[&]quot;Values represent nmol/g tissue and are means ± SEM of five rats per group. ^bDifferences in control vs. APM, p < 0.05; all others, not significant (Student's t test). APM,

L-aspartyl-L-phenylalanine methyl ester.

REFERENCES

- REILLY, M. A., E. A. DEBLER, A. FLEISCHER & A. LAJTHA. 1989. Biochem. Pharmacol. 38: 4339–4341.
 REILLY, M. A., E. A. DEBLER & A. LAJTHA. 1990. Res. Commun. Psychol. Psychiatry Behav. 15: 141–159.
 REILLY, M. A., E. A. DEBLER, A. FLEISCHER & A. LAJTHA. 1989. Res. Commun. Psychol. Psychiatry Behav. 14: 287–303.