第5章 触发器 Flip-Flop (FF)

• 组合逻辑电路:

基本单元 — 逻辑门 — 无记忆功能

数字系统中,信息 — 处理

也需要存储 —— 记忆器件或电路

• 时序逻辑电路:

基本单元 — FF — 记忆

触发器定义:记忆元件

它可以存储一位二进制信息,也称为锁存器 (Latch) 能储存一位二进制信息的基本单元。

a) 双稳态: 1 and 0
b) 置 1, 置 0
c) 原信号消失后, 保持新状态

§ 5.1 基本 RS-触发器

5.1.1 与非门构成的基本RS-FF

1. 电路

Note:
$$\begin{cases} \overline{S} \sim Q \\ \overline{R} \sim \overline{Q} \end{cases}$$

两个与非门交叉耦合

输入: \overline{S} Set 置位端 \overline{R} Reset 复位端

输出: $Q=1,\overline{Q}=0$ "1" 态 $Q=0,\overline{Q}=1$ "0" 态

定义: 传感器的状态为Q

符号

2. 工作原理

1)
$$\overline{S} = 0$$
, $\overline{R} = 1$ G_1 锁住 $Q=1$, $\overline{Q}=0$ Set (置1)

如果 \overline{S} 转成 1, 因为 $\overline{Q} = 0$, G_1 锁住, Q = 1

 $\overline{S} = \overline{R} = 1$ 保持原状态: No-change (NC)

传感器保持其目前的状态

$$2) \overline{S} = 1, \overline{R} = 0$$

G₂ 锁住

$$\overline{Q} = 1$$
, $Q = 0$ Reset (置0)

If \overline{R} converts to 1,

$$Q = 0$$
, G_2 锁住

$$\overline{S} = \overline{R} = 1$$

保持 Q=0

真值表

\bar{s}	_ R	Q	$ar{m{Q}}$	FF 状态
0	0			
0	1	1	0	Set (1)
1	0	0	1	Reset (0)
1	1	NC	NC	Set (1) Reset (0) No- change

3)
$$\stackrel{\frown}{=} \overline{S} = \overline{R} = 0$$
, $Q = \overline{Q} = 1$,

强制为逻辑高电平

当 $\overline{R},\overline{S}$ 同时从 $\mathbf{0}$ 变到 $\mathbf{1}$

此时要看逻辑门的延迟时间 t_{pd} :

都是稳定状态,但不知是哪种. 在 \overline{SR} 同时从0变到1时,状态不定

5.1.2 RS-FF的功能描述

状态和变量

 Q^{n+1} 下一时刻稳定状态 Q^n 目前的稳定状态 输入变量 (对RS-FF为 \overline{S} \overline{R})

描述逻辑关系的方法包括:

状态转移真值表(状态表) 状态方程(特征方程)

状态转移图和激励表 波形图(时序图)

基本 RS-FF功能描述

1. 功能表

真值表

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	uncertain
0	0	1	uncertain
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

2. 状态方程 (特征方程)

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	uncertain
0	0	1	uncertain
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{\overline{S}} + \overline{\overline{R}} = 1 \end{cases}$$

不同时为0

注意: 将 \overline{R} 和 \overline{S} 看作整体输入信号

符号上面的横线表示低电平有效

3. 状态图与状态表

状态图 用图形表示输出状态转换的条件和规律

组合电路:真值表-输入与输出关系

时序电路: 状态图-状态转换及转换条件

激励表

列出已知状态转换和所需要的输入条件的表称为激励表。激励表是以现态 Q^n 和次态 Q^{n+1} 为变量,以对应的输入 \overline{R} \overline{S} 为 函数的关系表.

表示出在什么样的激励下,才能使现态 Q^n 转换到次态 Q^{n+1} .

$$Q^n \longrightarrow Q^{n+1}$$

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	uncertain
0	0	1	uncertain
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

基本 RS-FF转换表

输出转换	FF 输入
$Q^n \rightarrow Q^{n+1}$	\overline{R} \overline{S}
0 0	Ф 1
0 1	1 0
1 0	0 1
1 1	1 Ф

4. 时序图 (波形图)

输出波形要对应输入波形. (初始状态 initially Q=0)

不确定

§ 5.2 时钟 FF (同步 FF)

在数字系统中,为协调各部分动作,需要某些FF 在同一时刻动作。引入一同步信号,使这些 FF 只 有在同步信号到达时才按输入信号改变状态。同步 信号被称时钟脉冲信号。

CLK 信号: Clock

CLK为周期性矩形脉冲波形

5.2.1 时钟 RS-FF

在基本RS-FF加 G_3 、 G_4 ,只有当 CLK=1, G_3 和 G_4 开门。当CLK=0, G_3 和 G_4 锁住.

讨论 CLK=1时情况

0 ↑ 正边沿有效

定义:

 Q^n CLK 到来之前 --- 原状态 Q^{n+1} CLK 到来之后 --- 新状态,次态

 Q^n , Q^{n+1} for every CLK

时钟 RS-FF 真值表

\overline{S}	\overline{R}	$Q \bar{Q}$	FF state
0	0	1 1	 S R 0→1不定
0	1	1 0	Set (1)
1	0	0 1	Reset (0)
1	1	NC NC	No-change

SRQ^{n}	Q^{n+1}	Comments
0 0 0	0	S=R=0
0 0 1	1	$Q^{n+1}=Q^n$
0 1 0	0	
0 1 1	0	<i>R≠S</i>
1 0 0	1	$Q^{n+1}=S$
1 0 1	1	
1 1 0	ϕ	R=S=1,
1 1 1	ϕ	$Q=Q=1$ $S R 1 \rightarrow 0 \phi$

•
$$S=0, R=1$$

 $G_3=1, G_4=0$ $Q^{n+1}=0$

$$\bullet S=1, R=0$$
 $G_3=0, G_4=1$
 $Q^{n+1}=1$

$$\bullet S=1, R=1, Q=\overline{Q}=1,$$
 S 和 R $1\rightarrow 0$, Q 不确定

输出与输入之间关系

同步RS-FF特征方程

$$\begin{cases}
Q^{n+1} = S + \overline{R}Q^n \\
S \cdot R = 0
\end{cases}$$
(不同时为1)

符号

缺点:

不确定状态

5.2.2 同步D-FF

符号

在S和R之间加一个非门,使 $S \neq R$

 $S=D, R=\bar{D}$ 无状态不定

工作原理:

CLK = 0, FF 保持

CLK =1, FF 工作

同步 D-FF 状态方程:

$$Q^{n+1} = D$$

5.2.3 同步 JK-FF

加两条反馈线到输入端

$$S = J\overline{Q}^n$$
, $R = KQ^n$

 Q, \overline{Q} 不同时为1,RS不同时 $1\rightarrow 0$,无状态不定

两输入: J, K

CLK = 0, FF 停; *CLK* = 1, FF 工作

JKQ ⁿ	Q^{n+1}	comments
0 0 0	0	<i>J=K</i> =0
0 0 1	1	$\int Q^{n+1} = Q^n$
0 1 0	0	
0 1 1	0	<i>J≠K</i>
1 0 0	1	$\int Q^{n+1} = J$
1 0 1	1	
1 1 0	1	<i>J</i> = <i>K</i> =1
1 1 1	0	$Q^{n+1}=\overline{Q}^n$

JK-FF 特征方程

从 RS-FF:

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$Q^{n+1} = \overline{J}Q^n + \overline{K}Q^n$$

符号:

CLK 正边沿有效

状态表

J	K Q ⁿ	Q^{n+1}
0	0 0	0
0	0 1	1
0	1 0	0
0	1 1	0
1	0 0	1
1	0 1	1
1	1 0	1
1	1 1	0

JK-FF 激励表

输出转换	FF 输入	
$Q^n \rightarrow Q^{n+1}$	$oldsymbol{J}$	K
0 0	0	Ф
0 1	1	Φ
1 0	Φ	1
1 1	Φ	0

JK-FF状态图

5.2.4 同步T-FF

T-FF状态方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\begin{cases} T=0, & Q^{n+1} = Q^n \\ T=1, & Q^{n+1} = \overline{Q}^n \end{cases}$$

5.2.5 同步触发器的缺点

在 CLK=1期间,FF处于触发状态, Q^{n+1} 随着输入信号 R, S, D, J, K, T 的变化而变化,出现空翻现象。

一个CLK周期内,Q端只能变化一次,变化一次以上称为触发器的空翻。

$$Q^{n+1} = D$$

同步 FF 都存在空翻问 题要克服,用新结构

§ 5.3 主从-FF (Master-Slave FF)

为了克服 FF 的空翻,出现了几种结构的 FF 原理都是边沿触发:

FF 在触发脉冲边沿处改变状态

边沿到来的瞬间触发,缩短触发时间

Master-Slave FF is one of them

5.3.1 主从 RS-FF

两个相同的同步RS-FF相连,两个CLK之间加一个非门(一个FF工作,另一个停止)。

从触发器的状态Q为整个触发器的状态。

主触发器的状态为Q'

CLK=0, M-FF停, Q'保持 CLK=1, 从FF开门,

 $\{: Q'$ 保持 : Q保持

 \underline{CLK} =1, M- FF 开门, $S,R \rightarrow Q$ ' CLK=0, 从 FF 关门

∴**Q** 保持

∴在 CLK=0 和 CLK=1期间, Q 保持

在 CLK 从 1 到 0 (CLK 下降沿)的时刻, 主FF内的信息传送到 Q

- ∴主从结构 RS-FF 是在CLK 下降沿触发的FF
 - Q是CLK有效边沿到达之前的最后信息

从-FF无空翻,Q无空翻

5.3.2 主从 JK-FF

在主从RS-FF上引出两条反馈 线构成主从 JK-FF。

主从 JK-FF 是合格产品, 无空翻, 无状态不定

5.3.3 触发器的直接输入

FF { 同步输入: *CLK*, *J*, *K*, *D*, *T*, *R*, *S* 异步输入 (直接输入)

直接置位输入 (set 1) \overline{S}_D 直接复位输入 (set 0) \overline{R}_D

$$\overline{R}_D = 0$$
, $\overline{S}_D = 1$, $Q = 0$
 $\overline{S}_D = 0$, $\overline{R}_D = 1$, $Q = 1$

异步输入强制触发器的状态,绝对优先,与J、K、CLK等信号无关。

\overline{S}_D	\overline{R}_D	$CLK J K Q^n$	Q^{n+1}
0	1	φ φφφ	$1 \bar{S}_D 1 \mathbf{E} \mathbf{E}$
1	0	φ φφφ	$\begin{bmatrix} 1 & 3b & 1 & \mathbf{K} & \mathbf{I} & \mathbf{I} \\ 0 & \overline{R}_D & 1 & \mathbf{K} & \mathbf{E} & \mathbf{K} & \mathbf{I} \end{bmatrix}$ 低有效
1	1		FF工作
0	0		不允许

$$\begin{cases}
Q^{n+1} = JQ^{n} + KQ^{n} \\
\overline{S}_{D} = \overline{R}_{D} = 1
\end{cases}$$

$$\begin{array}{c}
Q \quad Q \\
\overline{S}_{D} = \overline{R}_{D}
\end{array}$$

$$\begin{array}{c}
Q \quad Q \\
\overline{S}_{D} = \overline{R}_{D}
\end{array}$$

$$\begin{array}{c}
\overline{S}_{D} = \overline{S}_{D} = 1
\end{array}$$

无 \bar{S}_D , \bar{R}_D 波形时, $\bar{S}_D = \bar{R}_D = 1$

5.3.4 主从 D-FF

主从 JK-FF 加一个非门:

特征方程 $\begin{cases} Q^{n+1} = D \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$

D-FF 是 JK-FF 中 $J \neq K$ 的部分,是JK-FF 的特例

在 CLK 下降沿到达之前, 若D=0 (D=1), 当CLK 下降沿到达时, $Q^{n+1}=0$ ($Q^{n+1}=1$).

练习

5.3.5 主从 T-FF

T-FF特征方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\overline{S}_D = \overline{R}_D = 1$$

$$T=0, \quad Q^{n+1} = Q^n$$

$$T=1, \quad Q^{n+1} = \overline{Q}^n$$

CLK下降沿触发

T-FF 是 JK-FF 中J=K 的部分,是JK-FF 的特例

5.3.6 主从结构 FF的问题

主从 FF:

CLK=1期间,输入信号数据(J、K、D、T)不允许变化,否则会出现"一次变化"现象,使FF输出状态不能反映 CLK 在从 1 到 0 前瞬间 J、K 端的状态,破坏了逻辑关系。主从式FF只适用于具有窄时钟脉冲的场合。

主从FF只能用在CLK信号很窄的场合

§ 5.4 正边沿触发触发器

正常工作时要求Master-Salve JK-FF 在CLK=1期间J,K信号不变,但干扰信号仍能进入。

改进 二 正边沿触发

CLK

5.4.1 正边沿触发 D-FF

工作原理:
$$(\overline{S}_D = \overline{R}_D = 1)$$

D过 G_6 、 G_5 等在 G_3 、 G_4 入口

当CLK上升沿到达

若
$$D=0$$
, $G_6=1$, $G_5=0$, $G_3=1$, $G_4=0$, $Q=0$

若
$$D=1$$
, $G_6=0$, $G_5=1$, $G_3=0$, $G_4=1$, $Q=1$

$$Q^{n+1} = D$$

维持一阻塞式FF在CLK上升沿触发

CLK上升沿前 D的数据为CLK上升沿到时 Q^{n+1} 的状态

$$\mathbf{FF}$$
 正边沿触发 $\mathbf{Q}^{\mathbf{n+1}} = \mathbf{D}$

5.4.2 正边沿触发 JK-FF

符号:

除了上升沿触发外, 与主从JK-FF相同。

$$\begin{cases} Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

5.4.3 正边沿触发 T-FF

符号:

$$\begin{cases} Q^{n+1} = T \oplus Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

CLK正边沿触发

§ 5.5 触发器之间的转换

1. JK-FF 转成 D-FF

已知 FF:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$
 } 目标 FF: $Q^{n+1} = D$

目标 FF:
$$Q^{n+1} = L$$

$$J\overline{Q}^{n} + \overline{K}Q^{n} = D\left(\overline{Q}^{n} + Q^{n}\right)$$
$$= D\overline{Q}^{n} + DQ^{n}$$

$$\therefore J=D, \quad K=D$$

加一个非门

2. JK-FF 转成 T-FF

已知 FF:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$\exists \overline{K} \text{ FF: } Q^{n+1} = T \oplus Q^n = T\overline{Q}^n + \overline{T}Q^n$$

$$\exists \overline{K} \text{ FF: } Q^{n+1} = T \oplus Q^n = T\overline{Q}^n + \overline{T}Q^n$$

3. T-FF 转成 D-FF

已知 FF:
$$Q^{n+1} = T \oplus Q^n$$
 } 目标 FF: $Q^{n+1} = D$

目标
$$\mathbf{FF}$$
: $Q^{n+1} = D$

$$T \oplus Q^{n} = D$$

$$T = D \oplus Q^{n}$$

4. T-FF 转成 JK-FF

Given FF:
$$Q^{n+1} = T \oplus Q^n$$

Target FF: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

$$T \oplus Q^n = J\overline{Q}^n + \overline{K}Q^n$$

$$T = (J\overline{Q}^{n} + \overline{K}Q^{n}) \oplus Q^{n}$$
$$= J\overline{Q}^{n} + KQ^{n}$$

- 5. D-FF 转成 JK-FF
- 6. D-FF 转成 T-FF

§ 5.6 触发器应用

例1: 根据下图中触发器及 CLK, R_D, T 波形,对应 画出 Q 波形.

$$T=1, \quad Q^{n+1}=\overline{Q}^n$$

二分频电路

$$T_Q = 2T_{CLK}$$
 $f_Q = \frac{1}{2} f_{CLK}$ Toggle FF 翻转

例 2:

触发器如图所示,对应输入波形画出输出波形 Q.

例 3:对应下图电路的输入CLK和 K_1 波形画出输出 Q_1 和 Q_2 的波形。初始 Q_1 和 Q_2 为高电平.

 Q_1 和 Q_2 波形。初始状态 $Q_1=Q_2=0$.

消除 (接触跳动) 噪声电路: 当一个开关闭合时, 在开关完全闭合之前几毫秒时间内,有时会发生金 属接触点之间的碰撞和跳动,这样置位端将产生不 正确的结果,导致机器的误动作。(图(a))

(a) Switch contact bounce

(b) Contact-bounce eliminator circuit

用基本RS-FF:

当开关第一次与2点相接时, $\overline{S}=0$, $\overline{R}=1$,输出Q为高电平;当开关跳开时, $\overline{S}=1$, $\overline{R}=1$,输出Q不变。(图(b))