Parambrata Dutta Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Solid State:

5.		s) for the packing of ice	dentical disc in two di on number is 4.	imensions is/a	re:		
12.	-	lizes in a structure h	naving FCC unit cell of 24×10 ²³ atoms.	of an edge 200) pm. Calculate the		
13.	undergoes a transit		ns. At about 910°C, t red cubic ' γ ' form. Cal- nperature.				
31.		-	onsist of iron in both vacancies as a perce		-		
41.	An ionic compound has a unit cell consisting of A ions at the corners of a cube and B io centres of the faces of the cube. The empirical formula of this compound would be-						
	(A) A2B	(B) AB	(C) A ₃ B	(D) AB ₃			

				[JEE Main (April) 2021]			
	(A) Protium		Tritium				
	(C) Deuterium	(D)	Deuterium and Tritiu	m			
Ans.	В						
61.	Which quantum number is not related with Schrodinger equation						
	(A) Principal		(B) Azimuthal				
	(C) Magnetic		(D) Spin				
39.	What is the work function of the metal if the light of wavelength 4000 Å generates photoelectrons of velocity $6 \times 10^5 \text{ ms}^{-1}$ form it ? (Mass of electron = $9 \times 10^{-31} \text{ kg}$						
	Velocity of light = $3 \times 10^8 \text{ ms}^{-1}$						
	Planck's constant = 6.626×10^{-34} Js						
	Charge of electron = $1.6 \times 10^{-19} \text{ JeV}^{-1}$) [JEE Main (Jan.) 20						
	(1) 2.1 eV (2	3.1 eV	(3) 0.9 eV	(4) 4.0 eV			
37.	A photon of energy $h\nu$ is absorbed by a free electron of a metal having work function $w \le h\nu$. Then:						
	(A) The electron is sure to come out						
	(B) The electron is sure to come out with a kinetic energy (hv − w)						
	(C) Either the electron does not come out or it comes with a kinetic energy (hv – w)						
	(D) It may come out with a kinetic energy less than (hν – w)						

Three energy levels P, Q, R of a certain atom are such that $E_P \le E_Q \le E_R$. If λ_1 , λ_2 and λ_3 are the

wave length of radiation corresponding to transition $R \to Q$; $Q \to P$ and $R \to P$ respectively.

(A) $\lambda_1 + \lambda_2 = \lambda_3$ (B) $\frac{1}{\lambda_1} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$ (C) $\lambda_3 = \sqrt{\lambda_1 \lambda_2}$ (D) $\frac{2}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$

The correct relationship between λ_1 , λ_2 and λ_3 is

Isotope(s) of hydrogen which emits low energy β -particles with t_0 value > 12 years is/are:

51.

25.

Functions:

3.	The area bounded by the graph of $f(x)$ and the x-axis from $x = -1$ to $x = 9$ is						
	(A) $\frac{31}{2}$	(B) 15	(C) 12	(D) $\frac{15}{2}$			
6.		Let $f: A \to B$ and $g: B \to C$ be two functions and $gof: A \to C$ is defined. Then which of the					
	following statement(s) is true?						
	(A) If gof is onto then f must be onto.						
	(B) If f is into and g is onto then gof must be onto function.						
	(C) If gof is one-one then g is not necessarily one-one.						
		MUL	TIPLE CORRECT TY	PE			
	fx ²	- 4. if lxl <	3 .	т			
6.	The value of (a	+ b) is equal to					
	(A) -2	(B) -1	(C) 0	(D) 1			
32.	Let $f(x)$ be a polynomial of degree 3 such that $f(x) = -\frac{2}{k}$ for $k = 2, 3, 4, 5$. Then the value of 52 –						
	10 f(10) is equ		K		EE - Main 2021]		
10.	Let $f(x) = \sin x - \cos^2 x$. If $f(x) = a$ has at least one solution in $\left[0, \frac{\pi}{2}\right]$, then find the number of						
	integral values of a. EXERCISE-2						
		INTE	RGER TYPE QUESTI	ON			
			(Min. $\{f(t): 0 \le t$	< x $: 0 < x < 1$			