Homework 3

```
Q1).
Ans:
Given linear equation
  Y = alpha + beta1*X1 + beta2*X2 + noise;
  X1 = \text{rand}(\text{"normal"}, 1, 4); /*Given X1 \sim (1, 4) */
                               /*Given X2 \sim (3,1) */
  X2 = rand("normal",3,1);
  noise=rand("normal",0,1
                                   /*Given noise \sim N(0,1)*/
for model diagnostics, we perform the following
1.Independent:
Residuals are taken into new data set named diagnostic using
proc reg data=LinearSimulation;
model y=x1 x2 / r;
output out=diagnostics r=residual;
for checking independence, we plot residuals vs x1 and residuals vs x2
using
proc plot data=diagnostics;
plot residual*x1;
plot residual*x2;
run:
2. Normally distributed.
We plot histogram for residuals using proc chart
proc chart data=diagnostics;
vbar residual;
RUN;
proc chart data=diagnostics;
hbar residual;
RUN;
To test normality, we use univariate for the variable residual
proc UNIVARIATE data=diagnostics NORMAL PLOT;
VAR residual;
RUN:
```

3)Mean 0.

We can say mean is 0 after checking the plots drawn in previous step

```
To perform hypothesis test, we use proc means PROC MEANS data=diagnostics T PRT; VAR residual;
```

4. Constant variance

For variance we check the plots generated in Univariate plot step.

Program:

```
DATA LinearSimulation(keep=X1 X2 Y y bin);
alpha=1;
beta1=2;
beta2 = -1.5;
DO i = 1 \text{ TO } 200;
                                    /*200 observations */
X1 = rand("normal",1,4);
                             /*Given X1 \sim (1.4) */
 X2 = rand("normal",3,1);
                              /*Given X2 \sim (3,1) */
 noise=rand("normal",0,1);
                                     /*Given noise \sim N(0,1)*/
 Y = alpha + beta1*X1 + beta2*X2 + noise;
 if Y>0 then Y bin=1;
 ELSE Y bin=0;
OUTPUT:
END;
RUN;
proc reg data=LinearSimulation;
model y=x1 x2 / r;
output out=diagnostics r=residual;
title Regression analysis of the simulated data;
RUN;
proc plot data=diagnostics;
plot residual*x1;
plot residual*x2;
proc chart data=diagnostics;
vbar residual;
RUN;
proc chart data=diagnostics;
hbar residual;
RUN;
proc UNIVARIATE data=diagnostics NORMAL PLOT;
```

```
VAR residual;
RUN;
PROC MEANS data=diagnostics T PRT;
VAR residual;
run;
```

Output:

Pr value is 1. So that, hypothesis is strong pr value. We can not reject the hypothesis

Q2).

1.

Ans: we read data from xls file and print the data using Proc statement

Program:

```
proc import out=FAA
datafile='/folders/myfolders/FAA.xls'
dbms=xls replace;
getnames=yes;
run;
proc print data=faa;
run;
proc univariate data=faa;
run;
```

Output:

Obs	speed	height	duration	distance
1	-3.201972938	4.0204062406	-3.613007405	-2.022284703
2	-0.387381209	2.7244854843	-1.416226412	-4.812581886
3	-1.588459052	2.6779510991	-0.426559743	-4.464098686
4	0.0575087497	4.7033888382	-2.133081778	-5.255471538
	1.2070541898	-1.148674309	-2.416986084	8.5162898349
6	-1.111237375	3.4425367422	-1.70005665	-5.863120367
7	0.2718188314	7.1426833734	-2.553496058	-10.10463493
8	-0.401239963	0.3232698553	-0.820678102	-1.644663547
9	-3.004859433	0.3206727069	-0.644766424	2.2956862121
10	2.1565266117	-0.01100316	-1.743844722	10.022349992
11	-0.562608237	2.7019773592	-3.12881724	-3.405346825
12	-1.028663943	2.6659924073	-1.384817146	-3.11590121
13	-5.610744548	5.2375701574	-1.575007355	13.709014529
14	-0.836957396	4.3187191433	-2.67649656	-5.987624658
15	-1.034930576	1.264051536	-1.511384072	-2.133945832
16	0.0541689946	3.1681816393	-3.41874273	-5.599731191
17	-0.934653191	0.6558471669	-1.842706287	-1.14577757
18	0.1308280649	5.3881185136	-1.58090139	-7.356267389
19	-2.985058124	3.15738323	-1.563934788	-1.843209754

2.

To study the relation among variables speed, height, duration and distance

i) We do plots for distance vs speed, height and duration

```
proc plot data=faa;
plot distance*speed;
plot distance*height;
plot distance*duration;
```

ii) calculate the correlation matrix for distance vs speed, height and duration

```
PROC CORR data = faa;
VAR distance;
WITH speed height duration;
RUN;
proc corr data=faa;
var speed height duration;
with distance;
title Correlaiton coefficients with Y;
run;
```

iii) we do regression analysis using proc reg data=faa; model distance=speed height duration; title Regression analysis of the simulated data set;

run;

iv)model checking

1. Independent. 2. Normally distributed. 3. Mean 0. 4. Constant variance are checked for regression model

output:

0.06651

0.3494

Correlaiton coefficients with Y The CORR Procedure 1 With Variables: distance 3 Variables: speed height duration Simple Statistics Variable Std Dev Sum Minimum Maximum Label Mean distance -0.38777 -77.55427 -10.96633 41.00778 distance 200 6.90152 200 -0.86519 1.96032 -173.03802 -5.68050 5.70367 speed speed height 2.87119 2.13767 574.23806 -2.19287 8.04519 height -402.81313 -4.59092 1.32887 duration 200 -2.01407 1.01587 duration Pearson Correlation Coefficients, N = 200 Prob > |r| under H0: Rho=0 speed height duration

0.12313

0.0824

distance distance -0.51245

<.0001

```
3) data FAA; do i=1 to 200; speed=-1+2*rannor(12); height=3+2*rannor(12); duration=-2+rannor(12); error=rannor(12); alpha=1; beta_1=2; beta_2=-1.5; beta_3=1; distance=alpha+beta_1*speed+beta_2*height+beta_3*speed*speed+error; output; end; keep speed height duration distance; run; proc export data=FAA dbms=excel2002 outfile='C:\Users\...\FAA.xls' rep
```

after observing the ouput, the given linear equation satisfies the all conditions we checked in 4 steps i.e Plots, correlation matric, regression analysis and model checking as the data from the output is similar to give input file.