Celebrity Image Classification - Summary

The task is to develop an image classification model trained on the given celebrity image dataset. The model aims to classify any input image into one of five classes - Lionel Messi, Roger Federer, Maria Sharapova, Serena Williams and Virat Kohli. The dataset is split into training and testing sets in the ratio 3:1.

The model architecture used is Convolutional Neural Network (CNN) with a sequential model involving two convolutional layers. The model summary is as follows:

Model: "sequential"

Layer (type)	Output Shape	Param #
=======================================	:======================================	
conv2d (Conv2D)	(None, 126, 126, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 63, 63, 32)	0
conv2d_1 (Conv2D)	(None, 61, 61, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0
dropout (Dropout)	(None, 30, 30, 64)	0
flatten (Flatten)	(None, 57600)	0
dense (Dense)	(None, 64)	3686464
dense_1 (Dense)	(None, 5)	325

Total params: 3706181 (14.14 MB) Trainable params: 3706181 (14.14 MB) Non-trainable params: 0 (0.00 Byte)

The Adam optimizer is employed along with the Sparse Categorical Cross-Entropy loss function.

Celebrity Image Classification - Summary2The model is trained on the given data for 10 epochs with batches of size 64, and 10%

of the training data is reserved for validation.

The resultant model has an accuracy of 71.43%. The classification report obtained is as follows:

classification	Report precision	recall	f1-score	support
0	1.00	0.86	0.92	7
1	0.75	0.90	0.82	10
2	0.75	0.67	0.71	9
3	0.75	1.00	0.86	9
4	1.00	0.57	0.73	7
accuracy			0.81	42
macro avg	0.85	0.80	0.81	42
weighted avg	0.83	0.81	0.80	42

The loss is plotted as follows:

The accuracy is plotted as given below:

