Diagramas de Decisão Binária (BDDs)

Aula 2

Luiz Carlos Vieira

7 de outubro de 2015

MAC0239 - Introdução à Lógica e Verificação de Programas

Conteúdo

- BDDs ordenados e reduzidos (ROBDDs)
- Algoritmos para ROBDDs
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

Relembrando: múltiplas ocorrências

 A definição de BDDs não impede uma variável de ocorrer mais de uma vez em um caminho

- Mas tal representação pode incorrer em desperdícios
 - linha sólida do $m{p}$ à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas na aula anterior

Relembrando: comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

 \bullet [p,q,p]

• [p]

ullet [p,q]

- \bullet [p,q]
- [p]

- $\bullet \quad [p,q]$
- ullet [p,r]

- \bullet [p,q]
- [p, r, q]

- ullet [p,q]
- \bullet [p,r,q]
- [p

- \bullet [p,q]
- [p, r, q]
- ullet [p,r]

- \bullet [p,q]
- [p, r, q]
- ullet [p,r,p]

- [p,q]
- \bullet [p, r, q]
- ullet [p,r,p]

• [p]

- \bullet [p,q]
- \bullet [p, r, q]
- ullet [p,r,p]

 \bullet [p,q]

- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- [p,q]
- [p

- [p,q]
- \bullet [p, r, q]
- ullet [p,r,p]

- \bullet [p,q]
- ullet [p,q]

- \bullet [p,q]
- \bullet [p, r, q]
- ullet [p,r,p]

- \bullet [p,q]
- \bullet [p,q,r]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- \bullet [p,q,r]
- [p]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- $\bullet \quad [p,q,r]$
- \bullet [p,q]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- \bullet [p,q,r]
- \bullet [p,q]

BDDs ordenados

Quando a ordem das variáveis em qualquer caminho é sempre a mesma, o BDD passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)

Definição: OBDDs

Definição 6.6

Seja $[p_1, p_2, ..., p_n]$ uma lista ordenada de variáveis sem duplicação e seja B um BDD tal que todas as suas variáveis aparecem em algum lugar da lista. Dizemos que B tem a ordem $[p_1, p_2, ..., p_n]$ se todos os nós de variáveis de $oldsymbol{B}$ ocorrem na lista, e, para toda ocorrência de p_i seguido de p_i ao longo de qualquer caminho em B (ou seja, $p_i \prec p_i$), temos i < j

Exemplo de BDD ordenado

Ordem: [p,q,r] (em qualquer caminho)

Exemplo de BDD não ordenado

Sem ordem única ([p,q,r] à esquerda e [p,r,q] à direita)

OBDDs reduzidos

Quando são reduzidos, OBDDs passam a ser chamados de Diagramas de Busca Binária Ordenados Reduzidos (ROBDD)

Vantagens da ordenação de BDDs

- Reduções em um OBDDs mantêm ordem original
 - C1: compartilha nós terminais
 - C2: elimina nós não-terminais redundantes
 - C2: compartilha sub-diagramas idênticos
- Compromisso com ordem e redução produzem representação única de funções booleanas
 - chamada de forma canônica
- Comparação de ROBDDs de ordens compatíveis é imediata
 - basta verificar se suas estruturas são idênticas

Teorema: ROBDDs são únicos

Teorema 6.7

A representação em ROBDD de uma função dada ϕ é unica. Isto é, sejam B e B' dois ROBDDs com ordens compatíveis; se B e B' representam a mesma função booleana, então eles têm estruturas idênticas.

 Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;
- Teste de implicação. Pode-se testar se uma função ϕ implica em outra ψ calculando o ROBDD para $\phi \land \neg \psi$; a implicação é verdadeira se e somente se este ROBDD é igual a B_0 .

Impacto da escolha da ordenação

Considere a escolha da ordem de variáveis para a seguinte função booleana em CNF:

$$\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land ... \land (p_{2n-1} \lor p_{2n})$$

- Se a escolha for a "ordem natural de ocorrência na fórmula" $([p_1,p_2,p_3,...,p_{2n-1},p_{2n}])$, o ROBDD terá 2n+2 nós
- Se a escolha for "indices impares antes de indices pares" $([p_1,p_3,p_5,...,p_{2n-1},p_2,p_4,p_6,...,p_{2n}]), \text{ o ROBDD}$ terá 2^{n+1} nós

Ordem "natural" para n=3

ROBDD para $\phi\equiv(p_1\vee p_2)\wedge(p_3\vee p_4)\wedge(p_5\wedge p_6)$ com a ordem de variáveis $[p_1,p_2,p_3,p_4,p_5,p_6]$

Ordem "ímpares \prec pares" para n=3

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1, p_3, p_5, p_2, p_4, p_6]$

Escolha da ordenação

- A sensibilidade do tamanho de um ROBDD à ordem escolhida é o preço pago pelas facilidades obtidas
- Encontrar a ordem ótima também é um problema computacional caro
 - mas há heurísticas para ordens razoavelmente boas
 - tipicamente, agrupa-se as variáveis com interações mais fortes

ROBDDs como representação

- RODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, não se pode realizar as operações ∧ e ∨ da forma "inocente" anteriormente estudada
 - elas podem introduzir ocorrências múltiplas de variáveis

Principais algoritmos para ROBDDs

As seguintes operações estão no cerne do uso sério de ROBDDs:

- Redução. Permite reduzir OBDDs de forma eficiente
 - consiste basicamente da aplicação das simplificações C1-C3
- **Aplicação**. Permite realizar as operações lógicas \land , \lor e \neg (via $\phi \oplus 1$)
 - mantendo o BDD ordenado e reduzido

Estrutura de dados

Os algoritmos das operações com ROBDDs utilizam como estrutura de dados uma tabela

$$T: \langle v, i_l, i_h
angle \mapsto i_v$$
, tal que:

- ullet $\langle v, i_l, i_r
 angle$ representa um nó qualquer no ROBDD
 - com uma variável $oldsymbol{v}$
 - e identificadores de seus nós-filhos i_l (low, pela linha pontilhada) e i_h (high, pela linha sólida)
- $oldsymbol{i}_v$ representa um inteiro positivo que serve como identificador único do nó da variável v

llustração dessa estrutura de dados

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2
$\langle r,0,1 angle$	3
$\langle q,3,1 angle$	4
$\langle p,2,4 angle$	5

Observações

Nos algoritmos apresentados a seguir, assume-se que:

- ullet A tabela T é uma variável global e |T| é o número de linhas existentes nessa tabela
- ullet $T(\langle v,i_l,i_h
 angle)=$ NULL quando $(i_v,\langle v,i_l,i_h
 angle)
 otin T$
- LO e HI acessam os nós-filhos de um nó
- ID acessa o identificador de um nó
- VAR acessa a variável de um nó

Algoritmo de redução

Reduz um OBDD de maneira recorrente. Funciona assim:

- 1. Percorre o OBDD de baixo para cima (busca em profundidade) atribuindo identificadores inteiros aos nós
- 2. Se o nó for terminal, atribui ou reutiliza o identificador (simplificação C1)
- 3. Se os identificadores dos filhos forem iguais, atribui ao nó esse mesmo identificador (simplificação C2)
- 4. Se existir outro nó com os mesmos filhos, atribui seu identificador ao nó (simplificação C3)
- 5. Caso contrário, atribui ao nó o próximo inteiro livre

Pseudocódigo de GETNODE

precondição: recebe uma variável e os identificadores dos nós canônicos de seus filhos **pós-condição:** devolve o identificador do nó canônico da variável

```
1: função GETNODE(v, i_l, i_h)
      se v \notin \{0,1\} então
          se i_l = i_h então
                                                                         ⊳ simplificação C2
3.
              devolva i_I
4:
5: i \leftarrow T(\langle v, i_l, i_h \rangle)
     se i = NULL então
                                                                   i = |T|
7:
          T \leftarrow T \cup \{(i, \langle v, i_l, i_h \rangle)\}
8:
      devolva i
9:
```

Pseudocódigo de REDUCE

```
precondição: recebe o nó raiz de um diagrama a ser reduzido
pós-condição: devolve o identificador do nó canônico (isto é, do diagrama reduzido)
 1: função REDUCE(n)
         se n \in \{0,1\} então

⊳ simplificação C1

 2:
             devolva GETNODE(VAR(n), NULL, NULL)
 3.
        i_n \leftarrow T(\langle VAR(n), ID(LO(n)), ID(HI(n)) \rangle)
 4.
        se i_n = \text{NULL} então
 5:
             i_l \leftarrow \text{REDUCE}(\text{LO}(n))
 6:
             i_h \leftarrow \text{REDUCE}(\text{HI}(n))
 7:
             i_n \leftarrow \text{GETNODE}(\text{VAR}(n), i_l, i_h)

⊳ simplificação C3

 8:
         devolva i_n
 9:
```


n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, \text{NULL}, \text{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

O compartilhamento é grande vantagem

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

Algoritmo de aplicação

Obtém o resultado de B_{ϕ} op B_{ψ} , sendo op uma operação booleana (\land , \lor , \oplus ou \neg via $B_{\phi} \oplus 1$). Funciona assim:

- 1. inicia com a variável v de maior ordem (mais à esquerda na lista de ordenação)
- 2. divide o problema em dois subproblemas, dependendo de $oldsymbol{v}$ ser $oldsymbol{0}$ ou $oldsymbol{1}$, e resolve de maneira recorrente
- 3. nas folhas, aplica a operação booleana $\it op$ diretamente

Dependência conceitual

O algoritmo para a aplicação de operações booleanas entre OBDDs utiliza o conceito da Expansão de Shannon

Definição: restrições

Definição 6.9

Sejam ϕ uma expressão booleana e p uma variável. Denotamos por $\phi[0/p]$ a expressão booleana obtida substituindo-se todas as ocorrências de p em ϕ por 0. A expressão $\phi[1/p]$ é definida de maneira semelhante. As expressões $\phi[0/p]$ e $\phi[1/p]$ são chamadas de <u>restrições</u> em ϕ com relação à variável p.

Exemplos de restrições

Para $\phi \equiv p \wedge (q \vee \neg p)$ tem-se:

- ullet $\phi[0/p]$ é igual a $0 \wedge (q \vee \neg 0)$
 - que é semanticamente equivalente a ${f 0}$
- ullet $\phi[1/p]$ é igual a $1 \wedge (q \vee \neg 1)$
 - que é semanticamente equivalente a $oldsymbol{q}$
- ullet $\phi[0/q]$ é igual a $p \wedge (0 \vee \neg p)$
 - que é semanticamente equivalente a \perp
- $\phi[1/q]$ é igual a $p \wedge (1 \vee \neg p)$
 - que é semanticamente equivalente a $oldsymbol{p}$

Uso das restrições

- As restrições permitem executar recorrências em expressões booleanas decompondo-as em expressões mais simples
- Se p é uma variável em ϕ , então ϕ é equivalente a $\neg p \land \phi[0/p] \lor p \land \phi[1/p]$
 - facilmente verificável
 - fazendo p=0 resulta em $\phi[0/p]$
 - fazendo p=1 resulta em $\phi[1/p]$

Lema: Expansão de Shannon

Lema 6.10

Para todas as expressões booleanas ϕ e todas as variáveis p (mesmo as que não ocorrem em ϕ), temse a chamada Expansão de Shannon:

$$\phi \equiv \neg p \wedge \phi[0/p] \vee p \wedge \phi[1/p]$$

Uso no algoritmo de aplicação

A Expansão de Shannon permite expressar qualquer operador da gramática da Lógica Proposicional:

$$\phi \ op \ \psi \equiv \neg p_i \wedge (\phi[0/p_i] \ op \ \psi[0/p_i]) \vee p_i \wedge (\phi[1/p_i] \ op \ \psi[1/p_i])$$

E, no algoritmo de aplicação, é usada para eliminar as variáveis com a aplicação das restrições

Programação dinâmica

- O algoritmo de aplicação também utiliza programação dinâmica para melhorar a eficiência
 - recursão com tabela para armazenar valores já calculados

No pseudocódigo do algoritmo, a seguir, essa tabela é referenciada como C (de $\it cache$)

Pseudocódigo de APPLY

23:

devolva r

```
precondição: recebe um operador lógico e os nós raízes de dois diagramas com ordens compatíveis
pós-condição: devolve o identificador do nó canônico do resultado da operação
 1: função APPLY(op, n_{\phi}, n_{\psi})
         v_{\phi} \leftarrow \text{VAR}(n_{\phi})
         v_{2l}, \leftarrow \text{VAR}(n_{2l},)
 3:
         se (v_\phi \in \{0,1\}) \wedge (v_\psi \in \{0,1\}) então
 4:
                                                                                                         > se ambos são nós terminais
 5:
             r \leftarrow n_{\phi} \ op \ n_{\psi}
                                                                                                      > aplica a operação diretamente
             devolva GETNODE (r, NULL, NULL)
 6.
 7.
         r \leftarrow C(op, n_{\phi}, n_{\psi})

⊳ verificação da programação dinâmica

 8:
         se r = NULL então
 g.
             se v_{di} = v_{di}, então
                                                                                                             D se têm a mesma variável
                  i_l \leftarrow APPLY(op, LO(n_{d_l}), LO(n_{d_l}))
10.
11:
                  i_h \leftarrow APPLY(op, HI(n_\phi), HI(n_\psi))
12:
                  r \leftarrow \text{GETNODE}(v_{\phi}, i_l, i_h)
13.
             else
                  se v_{\phi} \prec v_{\psi} então
                                                                                                          \triangleright se v_{d} ocorre antes de v_{d},
14:
15:
                       i_l \leftarrow APPLY(op, LO(n_\phi), n_\psi)
16.
                       i_h \leftarrow \text{APPLY}(op, \text{HI}(n_\phi), n_\psi)
17:
                       r \leftarrow \text{GETNODE}(v_{\phi}, i_l, i_h)
18:
                  else
                                                                                                               \triangleright se v_{\phi} ocorre após v_{\psi}
                       i_l \leftarrow APPLY(op, n_d, LO(n_d))
19.
                       i_h \leftarrow APPLY(op, n_\phi, HI(n_\psi))
20.
21:
                       r \leftarrow \text{GETNODE}(v_{ib}, i_l, i_h)
              C \leftarrow C \cup \{(\langle op, n_d, n_d \rangle, r)\}
22:

→ atualização da tabela da progamação dinâmica
```


Ordem: [p,q,r,s]

mesma variável: recorrência em ambos diagramas

Ordem: [p,q,r,s]

mesma variável: recorrência em ambos diagramas

Ordem: [p,q,r,s]

nós terminais: aplica operação $(0 \lor 0 = 0)$

Ordem: [p,q,r,s]

nós terminais: aplica operação $(1 \lor 1 = 1)$

Ordem: [p,q,r,s]

37/49

0

Ordem: [p,q,r,s]

1

0

Ordem: [p,q,r,s]

 $1 \succ s$: recorrência no diagrama da direita

Ordem: [p,q,r,s]

nós terminais: aplica operação $(1 \lor 0 = 1)$

Ordem: [p,q,r,s]

nós terminais: aplica operação $(1 \lor 1 = 1)$

Ordem: [p,q,r,s]

simplificação: nó \boldsymbol{s} que sempre chega a $\boldsymbol{1}$ ignorado

Ordem: [p,q,r,s]

Conclusão parcial: cria/compartilha subdiagrama

Ordem: [p,q,r,s]

mesma variável: recorrência em ambos diagramas

Outros algoritmos para ROBDDs

Há também esses outros dois algoritmos importantes:

- Restrição. Permite eliminar variáveis em diagramas
- Existência. Permite utilizar quantificadores em expressões

O algoritmo de restrição

O algoritmo de restrição (RESTRICT) calcula o RODDB que representem $\phi[0/p]$ ou $\phi[1/p]$. É bem simples, e funciona assim:

- ullet Para cada nó n marcado com a variável p, as arestas que entram são redirecionadas
 - para LO(n) se o valor de restrição é 0
 - para $ext{HI}(n)$ se o valor de restrição é 1
- Então, o algoritmo de redução é chamado para reduzir o OBDD resultante

O algoritmo de existência

O algoritmo de existência (EXISTS) representa expressões em termos de subconjuntos de restrições. Funciona assim:

- Seja uma expressão $p \lor (\neg q \land r)$. Ela só é verdadeira se p=1 ou se y=0 e r=1
 - ou seja, tratam-se de restrições sobre p, q e r
- Pode-se expressar o relaxamento em um subconjunto de variáveis
 - escrevendo $\exists p.\phi$ para a função booleana ϕ com restrição sobre p relaxada
 - formalmente $\exists p.\phi \stackrel{\scriptscriptstyle\mathsf{def}}{=} \phi[0/p] \lor \phi[1/p]$

O que significa

Essencialmente, $\exists p.\phi$ significa que ϕ é verdadeira se puder ser feita verdadeira para p=0 ou para p=1

Analogamente

Analogamente, $orall p.\phi$ significa que ϕ é verdadeira se puder ser feita verdadeira tanto para p=0 como para p=1

E por isso o quantificador booleano \forall é o dual de \exists :

$$\forall p.\phi \stackrel{\mathrm{def}}{=} \phi[0/p] \wedge \phi[1/p]$$

O algoritmo EXISTS

Assim, o algoritmo EXISTS pode ser implementado em termos dos algoritmos APPLY e RESTRICT da seguinte forma:

 $\texttt{APPLY}(\lor, \texttt{RESTRICT}(0, p, B_\phi), \texttt{RESTRICT}(1, p, B_\phi))$

Construção de ROBDDs

Formas de construção de ROBDDs com os algoritmos

Fórmula booleana ϕ	ROBDD $B_{\phi}representante$
0	B_0
1	B_1
p	B_p
$ eg \phi$	trocar 0 por 1 e vice-versa em B_ϕ
$\phi \vee \psi$	APPLY (ee, B_ϕ, B_ψ)
$\phi \wedge \psi$	APPLY (\wedge, B_ϕ, B_ψ)
$\phi \oplus \psi$	APPLY (\oplus, B_ϕ, B_ψ)
$\phi[1/p]$	RESTRICT $(1,p,B_\phi)$
$\phi[0/p]$	RESTRICT $(0,p,B_\phi)$
$\exists p.\phi$	APPLY $(ee, B_{\phi[0/p]}, B_{\phi[1/p]})$
$orall p.\phi$	APPLY $(\wedge, B_{\phi[0/p]}, B_{\phi[1/p]})$

Desempenho dos algoritmos

Formas de construção de ROBDDs com os algoritmos

Algoritmo	Complexidade no Tempo
REDUCE	$O(B imes \log B)$
APPLY	$O(B_\phi imes B_\psi)$
RESTRICT	$O(B imes \log B)$
EXISTS	NP completo

Biblioteca de ROBDDs para o EP

- BDDs from Python EDA: http://pyeda. readthedocs.org/en/latest/bdd.html
 - Python EDA é uma biblioteca Python para projetos de automação
 - usando álgebra booleana

Uso é simples

>>> from pyeda.inter import *

```
>>> f = expr("a & b | a & c | b & c")
>>> f
Or(And(a, b), And(a, c), And(b, c))
>>> f = expr2bdd(f)
>>> f
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f5568746
```

Verificações

```
>>> f = ~a & ~b | ~a & b | a & ~b | a & b
>>> f
>>> f.is_one()
True
>>> g = (~a | ~b) & (~a | b) & (a | ~b) & (a | b)
>>> g
>>> g.is_zero()
True
```

Operações

```
>>> f = expr("a & b | a & c | b & c")
>>> f.restrict({a: 0})
<pyeda.boolalg.bdd.BinaryDecisionDiagram at 0x7f5568746
>>> f.restrict({a: 1, b: 0})
c
>>> f.restrict({a: 1, b: 1})
1
```