Logică pentru informatică - note de curs

Universitatea Alexandru Ioan Cuza, Iași Facultatea de Informatică Anul universitar 2023-2024

> Ștefan Ciobâcă Andrei Arusoaie Rodica Condurache Cristian Masalagiu

Cuprins

1	Intr	oducere	5
2	Logi	ica propozițională informală	7
	2.1	Propoziții	7
	2.2	Propoziții atomice	8
	2.3	Conjuncții	8
	2.4	Disjuncții	9
	2.5	Implicații	9
	2.6	Negațiile	11
	2.7	Echivalențe	12
	2.8	Conectorii logici	12
	2.9	Ambiguități în limba română	12
	2.10	Fisă de exercitii	13

Capitolul 1

Introducere

Dacă aritmetica este știința care studiază numerele și operațiile cu numere, logica este știința în care obiectul studiului este reprezentat de *propoziții* și de operații cu propoziții.

De exemplu, dacă în aritmetică observăm că suma a două numere pare este un număr par, în logică am putea observa că disjuncția a două propoziții adevărate este o propoziție adevărată.

Logica se găsește la intersecția filosofiei, matematicii și informaticii și a cunoscut cea mai mare dezvoltare începând cu anii 1950, datorită aplicațiilor numeroase în Informatică.

În acest curs, vom studia la nivel introductiv logica propozițională și logica de ordinul I.

Logica propozițională este extrem de simplă, dar conceptele pe care le studiem, metodele pe care le învățăm și problemele pe care le întâlnim în logica propozițională se pot generaliza la alte logici mai complexe. De asemenea, logica propozițională corespunde în mod fidel organizării interne la nivel abstract a calculatoarelor, în sensul în care circuitele electronice se pot modela ca formule din logica propozițională. Logica propozițională are o teorie bogată și interesantă din punct de vedere matematic (exemple: teorema de compactitate, teorema de interpolare a lui Craig). Problema satisfiabilității pentru logica propozițională are multe aplicații în informatică. Este deosebit de importantă atât din punct de vedere teoretic (fiind problema canonică NP-completă) cât și practic (cu aplicații în verificarea programelor, în verificarea circuitelor, în optimizare combinatorială ș.a.).

Logica de ordinul I este o extensie a logicii propoziționale și are de asemenea aplicații numeroase în informatică, dar și în matematică. De exemplu, toată matematica pe care ați învățat-o în gimnaziu/liceu se bazează pe o așa numită teorie din logica de ordinul I numită **ZFC** (teoria **Z**ermelo-**F**raenkel a mulțimilor, împreună cu axioma alegerii – Axiom of Choice). În Infor-

matică, aplicații ale logicii de ordinul I apar în domeniul complexității descriptive, în baze de date relaționale, în verificarea automată a hardware-ului și software-ului, ș.a. De asemenea, multe alte logici (de exemplu, logicile de ordin superior) au aplicații în teoria limbajelor de programare, în fundamentele matematicii, teoria tipurilor etc.

Capitolul 2

Logica propozițională informală

Logica propozițională este logica propozițiilor, conectate între ele prin conectori logici cum ar fi sau, și și non. În acest capitol, vom trece prin bazele logicii propoziționale.

2.1 Propoziții

O propoziție este o afirmație care este sau adevărată, sau falsă. Iată câteva exemple de propoziții:

- 1. Port o cămașă albastră;
- 2. Tu deții un laptop și o tabletă, dar nu un telefon inteligent;
- 3. 2+2=4 (Doi și cu doi fac patru);
- 4. 1 + 1 = 1 (Unu plus unu este 1);
- 5. $1+1 \neq 1$ (Unu cu unu nu fac 1);
- 6. Dacă 1 + 1 = 1, atunci Pământul este plat;
- 7. Toate numerele naturale sunt întregi;
- 8. Toate numere raționale sunt întregi.

Iată câteva exemple de expresii care nu sunt propoziții:

1. Roșu și negru (nu este o afirmație);

- 2. π (nu este o afirmație);
- 3. Plouă? (întrebare, nu afirmație);
- 4. Pleacă! (exclamație, nu afirmație);
- 5. x > 7 (aici avem un predicat care depinde de x; după ce fixăm o valoare pentru x, obținem o propoziție);
- 6. Această afirmație este falsă. (deși este o afirmație, nu este propoziție, deoarece nu este sau adevărată sau falsă: dacă ar fi adevărată, atunci ar fi și falsă și invers).

Câteodată nu este foarte clar dacă o afirmație este propoziție cu adevărat, sau nu este foarte clară valoarea ei de adevăr. De exemplu, suntem de acord că zăpada este albă în general, dar la fel de bine se poate susține și contrariul: de exemplu, există zăpadă neagră (pe stradă în țările subdezvoltate în timpul iernii), astfel încât valoarea de adevăr a afirmației zăpada este albă este pusă în discuție. Faptul că o afirmație este propoziție sau nu este mai mult o problemă de logică filosofică.

2.2 Propoziții atomice

Unele propoziții sunt atomice, în sensul în care nu pot fi descompuse în propoziții mai mici:

- 1. Port o cămașă albastră;
- 2. Tu deții un laptop;
- 3. 2+2=4 (Doi și cu doi fac patru).

2.3 Conjuncții

Unele propoziții sunt compuse din altele mai mici. De exemplu, propoziția afară plouă și eu sunt supărat este compusă din afară plouă și din sunt supărat, legate între ele prin și. Dacă două propoziții, φ și respectiv ψ , sunt legate printr-un și, propoziția rezultată, φ și ψ , se numește o conjuncție (conjuncția lui φ și ψ).

O conjuncție este adevărată dacă ambele părți componente sunt adevărate. De exemplu, propoziția afară plouă și eu sunt supărat este adevărată dacă atât propoziția afară plouă cât și propoziția sunt supărat sunt adevărate. În particular, din moment ce nu sunt supărat, această conjuncție este falsă.

O conjuncție nu conține neapărat cuvântul $\dot{s}i$ în mod explicit. De exemplu, propoziția afară plouă, dar eu am o umbrelă este de asemenea o conjuncție, iar părțile ei componente sunt afară plouă $\dot{s}i$ eu am o umbrelă. Aceste propoziții sunt legate prin conjuncția adversativă dar.

Exercițiul 1. Găsiți părțile componente ale conjuncției mă joc acasă și învăț la scoală.

Exercițiul 2. Dați un exemplu de o conjuncție falsă și un exemplu de o conjunctie adevărată.

2.4 Disjuncții

Disjuncțiile sunt propoziții legate între ele prin sau. De exemplu, afară plouă sau sunt supărat este o disjunctie a propozițiilor afară plouă si sunt supărat.

Exercițiul 3. Găsiți părțile componente ale disjuncției Voi cumpăra un laptop sau o tabletă. Atenție! Cele două părți componente trebuie să fie propoziții (anumite cuvinte din cele două părți componente pot să fie implicite și în consecință să nu apară în text).

O disjuncție este adevărată dacă cel puțin una din părțile sale componente este adevărată. De exemplu, disjuncția 7>8 sau 8>7 este adevărată, deoarece 8>7 este adevărată.

Acest înțeles al disjuncțiilor se numește sau inclusiv și este standard în matematică. Câteodată cuvântul sau este folosit în limbaj natural în sensul de sau exclusiv. De exemplu, în propoziția albul sau negrul câștigă într-un joc de go, cuvântul sau are înțeles de sau exclusiv. Înțelesul este că sau albul câștigă, sau negrul, dar nu amândoi simultan (este exclusă opțiunea să fie ambele adevărate în același timp).

În continuare, prin disjuncție vom înțelege $sau\ inclusiv$ (interpretarea standard în matematică).

Exercițiul 4. Dați un exemplu de o disjuncție falsă și un exemplu de o disjuncție adevărată.

Exercițiul 5. Când este disjuncția φ sau ψ falsă (în funcție de valorile lui φ și ψ)?

2.5 Implicații

Implicațiile sunt propoziții de forma $dacă \varphi \ atunci \psi$. Propoziția φ se numește antecedent al implicației, iar propoziția ψ se numește consecvent (sau concluzie) al implicației.

Un exemplu de implicație este dacă trec la Logică, dau o petrecere. Antecedentul este trec la Logică, iar concluzia este dau o petrecere. Când este o implicație adevărată/falsă? O implicație este falsă dacă și numai dacă antecedentul este adevărat, dar consecventul este fals. Să presupunem că trec la Logică și că totuși nu dau o petrecere. Atunci implicația dacă trec la Logică, dau o petrecere, în ansamblul său, este falsă (antecedentul este adevărat, dar consecventul fals).

Înțelesul unei implicații merită o discuție mai amănunțită, deoarece poate fi contraintuitiv. Implicațiile, așa cum apar în matematică, pot fi diferite de implicațiile pe care le folosim în viața de zi cu zi. În viața de zi cu zi, când spunem dacă trec la logică, dau o petrecere, înțelegem că avem o legătura de cauzalitate între faptul de a trece la Logică și faptul de a da o petrecere. Alte exemple de astfel de legătură de cauzalitate: dacă am bani, cumpăr o mașină sau dacă mă ajuți, te ajut. În limbajul de zi cu zi, nu ne-am gândi niciodată să conectăm două propoziții printr-o implicație dacă cele două propoziții nu au legătură de cauzalitate între ele. De exemplu, propoziția dacă pământul este rotund, atunci 2 + 2 = 4 nu ar avea sens (deși este adevărată).

Implicația folosită în matematică se numește *implicație materială*. Valoarea de adevăr a unei implicații depinde doar de valorile de adevăr ale părților componente (antecedentul și consecventul), nu și de legătura de cauzalitate dintre ele. Acest înțeles al implicației materiale nu corespunde tot timpul cu înțelesul din limbajul natural (e.g., limba română), dar practica arată că este singurul înțeles rezonabil în matematică (și informatică).

În particular, atât propoziția dacă pământul este plat, atunci 2+2=5, cât și propoziția dacă pământul este plat, atunci 2+2=4 sunt adevărate, deoarece antecedentul este fals.

Exercițiul 6. Care sunt valorile de adevăr ale propozițiilor dacă 2 + 2 = 4, atunci Pământul este plat i dacă 2 + 2 = 5, atunci Pământul este plat?

Valoarea de adevăr a implicației $dacă \varphi$, $atunci \psi$ depinde doar de valorile de adevăr ale antecedentului, φ , și consecventului, ψ , și este prezentată în următorul tabel de adevăr:

arphi	ψ	dacă φ , atunci ψ
fals	fals	$adevreve{a}rat$
fals	$adev reve{a}rat$	$adevreve{a}rat$
$adev reve{a} rat$	fals	fals
$adevreve{a}rat$	$adevreve{a}rat$	$adevreve{a}rat$

Următorul exemplu arată că tabelul de adevăr de mai sus este singura intrepretare rezonabilă a implicației. Sunteți cu siguranță de acord că orice număr natural este număr întreg. Altfel spus, propoziția pentru orice număr x, dacă x este număr natural, atunci x este număr intreg este adevărată. În

particular veți fi de acord că propoziția este adevărată în cazurile particulare x = -10, x = 10 și x = 1.2 (din moment ce este vorba despre *orice număr x*).

Obținem cazurile particulare dacă -10 este număr natural, atunci -10 este număr întreg, dacă 10 este număr natural, atunci 10 este număr întreg și dacă 1.2 este număr natural, atunci 1.2 este număr întreg., care trebuie toate să fie adevărate. Aceste cazuri particulare exemplifică rândurile 2, 4 și 1 ale tabelului de adevăr de mai sus (de obicei, studenții nu au încredere în rândul 2). Cât despre a treia linia, o propoziție de forma dacă φ , atunci ψ , unde φ este adevărată, dar ψ este falsă, nu poate fi decât falsă. Altfel, ar trebui să acceptăm ca fiind adevărate propoziții cum ar fi Dacă 2+2=4, atunci 2+2=5. (antecedentul, 2+2=4, este adevărat, consecventul, 2+2=5, este fals).

Unele implicații pot fi relativ dificil de identificat. De exemplu, în propoziția trec la Logică doar dacă învăț, antecedentul este (împotriva aparențelor) trec la Logică, iar consecventul este învăț. Atenție! Propoziția de mai sus nu are același înțeles cu dacă învăț, trec la Logică.

Atenție! În propozițiile de forma trec la Logică doar dacă învăț sau trec la Logică numai dacă învăț, antecedentul este trec la Logică, iar consecventul este învăț. Aceste două propoziții nu au același înțeles cu propoziția dacă învăț, atunci trec la Logică.

Implicațiile în limba română pot câteodată să nu folosească șablonul dacă ... atunci De exemplu, sensul cel mai rezonabil al propoziției trec la Logică sau renunț la facultate (aparent o disjuncție), este că dacă nu trec la Logică, renunț la facultate (implicație). Din fericire, cele două propoziții sunt echivalente, într-un sens pe care îl vom studia în cursurile următoare.

2.6 Negațiile

O propoziție de forma nu este adevărat $c\breve{a}$ φ (sau pur și simplu nu φ) se numește negația lui φ . De exemplu, nu $plou\breve{a}$ este negația propoziției $plou\breve{a}$. Valoarea de adevăr a negației unei propoziții φ este opusul valorii de adevăr al propoziției φ . În momentul în care scriu acest text, propoziția $plou\breve{a}$ este falsă, și deci propoziția nu $plou\breve{a}$ este adevărată.

Exercițiul 7. Dați un exemplu de o propoziție falsă care folosește atât o negație, cât și o conjuncție.

2.7 Echivalențe

O propoziție de forma φ dacă și numai dacă ψ se numește echivalență sau dublă implicație. O astfel de propoziție, în ansamblul său, este adevărată dacă φ și ψ au aceeași valoare de adevăr (ambele false sau ambele adevărate).

De exemplu, în momentul în care scriu acest text, propoziția *plouă dacă și numai dacă ninge* este adevărată. De ce? Deoarece atât propoziția *plouă* cât și propoziția *ninge* sunt false.

Exercițiul 8. Care este valoarea de adevăr a propoziției Numărul 7 este impar dacă și numai dacă 7 este număr prim?

Echivalențele sunt, din punct de vedere semantic, conjuncția a două implicații: φ dacă și numai dacă ψ transmite aceeași informație cu

$$\underbrace{\varphi \ dac\check{a} \ \psi}_{implicația \ invers\check{a}} \quad \underbrace{\sharp i \ \ \underbrace{\varphi \ numai \ dac\check{a} \ \psi}_{implicația \ direct\check{a}}.$$

Propoziția φ dacă ψ este aceeași cu dacă ψ , atunci φ (doar că are altă topică). Propoziția φ numai dacă ψ are același înțeles cu φ doar dacă ψ și cu dacă φ , atunci ψ , după cum am discutat în secțiunea referitoare la implicații.

2.8 Conectorii logici

Cuvintele/expresiile *și*, *sau*, *dacă-atunci*, *doar dacă*, *non*, *dacă-și-numai-dacă* (și altele similare) sunt numite *conectori logici*, deoarece pot fi folosite pentru a conecta propozitii mai mici pentru a obtine propozitii mai mari.

Atenție! O propoziție este *atomică* în logica propozițională dacă nu poate fi despărțită în propoziții mai mici separate de conectorii logici discutați mai sus. De exemplu, propoziția *orice număr natural este și număr întreg* este o propoziție atomică (în logica propozițională).

Aceeași propoziție nu mai este neapărat atomică într-o altă logică mai bogată. De exemplu, în logica de ordinul I (pe care o vom studia în partea a doua a cursului), avem doi conectori suplimentari numiți cuantificatori. În logica de ordinul I, propoziția orice număr natural este și număr întreg nu este atomică.

2.9 Ambiguități în limba română

Am prezentat mai sus limbajul logicii propoziționale: propoziții atomice conectate prin *și*, *sau*, *non* etc. Până în acest moment, am folosit limba română.

Totuși, limba română (și orice alt limbaj natural) nu este potrivită pentru scopul nostru din cauza ambiguităților.

Iată exemple de propoziții ambigue:

- 1. *Ion și Maria sunt căsătoriți* (înțelesul 1: între ei; înțelesul 2: căsătoriți, dar posibil cu alte persoane);
- 2. Văd negru (înțeles 1: sunt supărat; înțeles 2: mă simt rău; înțeles 3: nu este lumină în jur etc.);
- 3. Trimit mesajul lui Ion (înțeles 1: mesajul este al lui Ion și eu îl trimit, nu se știe unde; înțeles 2: am un mesaj și îl trimit către Ion);
- 4. *Nu vorbesc și mănânc* (înțeles 1: neg faptul că și vorbesc și mănânc; înțeles 2: nu vorbesc, dar mănânc).

Astfel de ambiguități sunt cel puțin neplăcute dacă scopul nostru este să determinăm valoarea de adevăr a unei propoziții (dacă nici măcar nu suntem siguri ce înseamnă propoziția). Pentru peste 2000 de ani, logica a lucrat cu limbaj natural. Nevoia de a introduce un limbaj formal, simbolic, fără ambiguități, a apărut în secolele XVIII - XIX, odată cu dezvoltarea logicii matematice. În logica simbolică/formală, pe care urmează să o studiem, vom lucra cu un limbaj artificial, numit limbaj formal, care este proiectat de o asemenea manieră încât să nu conțină nicio ambiguitate.

În fapt, primul limbaj formal pe care îl vom studia va fi limbajul formal al logicii propoziționale (pe scurt, logica propozițională).

2.10 Fisă de exercitii

Exercițiul 9. Stabiliți care dintre următoarele expresii sunt propoziții:

- 1. Tu ai un laptop.
- 2. Zăpada este albă.
- 3. Zăpada nu este albă.
- 4. Tatăl meu merge la servici și eu merg la școală.
- 5. Afară plouă, dar eu am umbrelă.
- 6. Mâine va ploua sau nu va ploua.
- 7. Dacă obțin notă de trecere la logică, voi sărbători.
- 8. 2+2=4. (Doi plus doi egal cu 4.)

- 9. Rosu și Negru.
- 10. π .
- 11. Plouă?
- 12. Hai la pescuit!
- 13. x este mai mare decât 7.
- 14. Această afirmație este falsă.

Exercițiul 10. Pentru toate propozițiile identificate, stabiliți dacă sunt propoziții atomice sau compuse, iar dacă sunt compuse, stabiliți dacă sunt conjuncții, disjuncții, implicații, negații, echivalențe.

Exercițiul 11. Stabiliți dacă propozițiile de mai jos sunt propoziții atomice sau compuse, iar dacă sunt compuse, stabiliți tipul acestora (conjuncții, disjuncții, implicații, negații, echivalențe). Pentru fiecare propoziție compusă, discutați care sunt valorile de adevăr în funcție de valorile de adevăr ale componentelor.

- 1. Am mâncat atât de mult, încât mi-a fost rău.
- 2. Nu am rochie, nici pantofi.
- 3. Ma întorc acasă sau la amicul meu.
- 4. Merg afară dacă nu plouă.
- 5. Mă duc la el doar dacă nu mă ascultă.
- 6. Dacă nu merg la pescuit atunci soarele nu este rotund.
- $7.\,$ Dacă soarele nu este rotund atunci merg la pescuit.

Exercițiul 12. Reformulați exemplele de propoziții din Secțiunea 2.9 astfel încât ambiguitățile să fie evitate. Puteți să alegeți oricare înțeles.