A brief Introduction to Predictive Models for Data Science

Introduction to Data Science

(Example from Duda & Hart, Pattern Classification & Scene Analysis, 1973)

(Example from Duda & Hart, Pattern Classification & Scene Analysis, 1973)

Question: Can we build a system to do the task automatically?

- Install camera to capture image of fish
- Compute **features** of fish from image:
 - X₁: length
 - X₂: width
 - X₃: colour

- if $X_1/X_2 < 1.4$ and $X_3 = blue => bass$
- if $X_1/X_2 > 2.1$ and $X_3 = (lightblue, pink) => tuna$
- else => unknown

Predictive Models

A predictive model is any model that makes a prediction

usually based on a set of features describing an object.

The prediction could be:

- a binary outcome (spam, not-spam)
- categorical (bass, tuna, other)
- a real value (the age of the fish)
- a vector of real values (probability of bass, tuna, etc.)
- Etc.

Predictive Models

- If the predicted value is binary/categorical we usually refer to the model as a classifier
- If it predicts real values we refer to it as regression
- Although there are many other types of model (e.g. ranking, translation, etc.)

Predictive Models

The predictive model uses equations/rules to map the input features to output values

Predictive Model

Predictive Model

Models are learnt from Examples

Instance	X1 = length	X2 = width	X3 = colour	Y = class
	55	51	blue	bass
	65	23	pink	tuna
	67	54	blue	bass
	54	20	light-blue	tuna
	62	26	pink	tuna
	44	62	blue	bass
	47	55	light-blue	bass
	73	31	pink	tuna
	54	48	light-blue	bass
	57	23	light-blue	tuna

Training a Model

Predictive models are learnt from training data and then applied to make predictions on new instances

How are models learnt?

- Each training instance
 (fish in our case) is just a
 point in some feature
 space
- Here the colour denotes the class
 - (blue = bass, green = tuna, red = unknown)

How are models learnt?

Many (classification)
learning algorithms work
by dividing the feature
space into regions of the
same type

In practice

- In practice, the data is usually overlapping
- making it hard to separate the classes

In practice

- and we have many feature dimensions
- with some features more useful than others

Different Models

There are many different types of models that we can train to classify objects

Testing models

We evaluate predictive models based on how well they predict the labels for test instances (not used

in training)

Performance of predictive models

Generally:

- The more training data the better the test performance
- And (providing there is sufficient training data) the more features the better performance

End of Introduction!

 We'll talk more about predictive models in the coming weeks, especially in module 5.