

Lab Manual

Subject: Machine Learning

Course Code: AI-414

Muneeb Sajid 2023-BS-AI-028

Supervised By: Mr. Saeed

DEPARTMENT OF COMPUTATIONAL SCIENCES FACULTY OF INFORMATION TECHNOLOGY

The University of Faisalabad

	Table of Content
Sr no	Regression Project
1	Importing the Dependencies:
2	Data Collection and Data Processing
3	Labeling Categorical Columns
4	Labeling Categorical Columns
5	Standardization
6	Separating Dependent and Independent Columns
7	Displaying Target Values Distribution
8	Splitting Data
9	Training Model
10	Evaluation Accuracy
11	Classification Project
	Importing the Dependencies:
12	Data Collection and Data Processing
13	Data Cleaning, Removing Null Values and Removing Duplicates
14	One Hot Encoding
15	Standardization
16	Displaying Target Values Distribution
17	Splitting Data
18	Training Model
19	Evaluation Accuracy

Project No 01:

Car Price Prediction

Import Drive

```
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

Importing the Dependencies:

```
import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

Data Collection and Data Processing

```
data = pd.read csv('/content/drive/MyDrive/Project/car price prediction.csv')
```

Data.head

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize	fuelsystem	boreratio	str
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3

Data.tail

data	.tail()													
	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize	fuelsystem	boreratio	strok
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.1
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.1
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	 173	mpfi	3.58	2.8
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	 145	idi	3.01	3.4
204	205	-1	volvo 264al	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.1

Data.shape

```
data.shape
(205, 26)
```

Data.info

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
                   Non-Null Count Dtype
# Column
                     -----
0 car_ID
                    205 non-null int64
1 symboling
                    205 non-null int64
2 CarName
                    205 non-null object
3 fueltype
                    205 non-null
                                     object
4 aspiration
                    205 non-null
                                     object
5 categorical_cols = ['fueltype','aspiration','doornumber','carbody','drivewheel','enginelocation','enginetype',
      'cylindernumber',
6
7
       'fuelsystem'
8 ]
10 label_encoder = LabelEncoder()
11 for column in categorical_cols:
      data[column] = label_encoder.fit_transform(data[column])
```

Data.describe

data.	describe()										
	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	•
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	3.329756	3.255415	
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	0.270844	0.313597	
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.540000	2.070000	
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	3.150000	3.110000	
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.310000	3.290000	
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	3.580000	3.410000	
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	3.940000	4.170000	

Data.columns

```
data.columns
```

Labeling Categorical Columns

Standardization

Separating Dependent and Independent Columns

```
x = data.drop(['price'], axis=1)
y = data['price']
```

Displaying Target Values Distribution

```
plt.figure(figsize=(8, 6))
sns.histplot(y, bins=30, kde=True)
plt.title('Target Variable Distribution After Outlier Removal')
plt.xlabel('Energy Consumption (kWh)')
```

Text(0.5, 0, 'Energy Consumption (kWh)')

Splitting Data

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
```

Training Model

```
model = LinearRegression()
model.fit(x_train, y_train)
```

Evaluating Accuracy

```
y_pred = model.predict(x_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_square = r2_score(y_test,y_pred)

print("\nEvaluation Metrics:")
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")
print(f"R-squared: {r2_square}")
```

Evaluation Metrics: MAE: 2985.1056 MSE: 18651075.3110

RMSE: 4318.6891

R-squared: 0.7713103044650615

Project No 02

Fake Currency Classification

Importing the Dependencies:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

Data Collection and Data Processing:

```
banknote_data = pd.read_csv('/content/drive/MyDrive/Project/data_banknote_authentication.csv')
banknote_data.columns = ['variance', 'asymmetry', 'kurtosis', 'entropy', 'authentication']
```

Data.Head

ba	banknote_data.head()									
	variance	asymmetry	kurtosis	entropy	authentication					
0	4.54590	8.1674	-2.4586	-1.46210	0					
1	3.86600	-2.6383	1.9242	0.10645	0					
2	3.45660	9.5228	-4.0112	-3.59440	0					
3	0.32924	-4.4552	4.5718	-0.98880	0					
4	4.36840	9.6718	-3.9606	-3.16250	0					

Data .Tail

banknote_data.tail()

	variance	asymmetry	kurtosis	entropy	authentication
1366	0.40614	1.34920	-1.4501	-0.55949	1
1367	-1.38870	-4.87730	6.4774	0.34179	1
1368	-3.75030	-13.45860	17.5932	-2.77710	1
1369	-3.56370	-8.38270	12.3930	-1.28230	1
1370	-2.54190	-0.65804	2.6842	1.19520	1

Data.Shape:

banknote_data.shape

(1347, 5)

Data.Describe

banknote_data.describe()

	variance	asymmetry	kurtosis	entropy	authentication
count	1371.000000	1371.000000	1371.000000	1371.000000	1371.000000
mean	0.431410	1.917434	1.400694	-1.192200	0.444931
std	2.842494	5.868359	4.310105	2.101683	0.497139
min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000
25%	-1.774700	-1.711300	-1.553350	-2.417000	0.000000
50%	0.495710	2.313400	0.616630	-0.586650	0.000000
75%	2.814650	6.813100	3.181600	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

Data.Columns

```
banknote_data.columns

Index(['variance', 'asymmetry', 'kurtosis', 'entropy', 'authentication'], dtype='object')
```

Data Cleaning, Removing Null Values and Removing Duplicates

One Hot Encoding

```
numerical_cols = ['variance', 'asymmetry', 'kurtosis', 'entropy']
Q1 = banknote_data[numerical_cols].quantile(0.25)
Q3 = banknote_data[numerical_cols].quantile(0.75)
IQR = Q3 - Q1
outlier_removed_data = banknote_data[~((banknote_data[numerical_cols] < (Q1 - 1.5 * IQR)) | (banknote_data[numerical_cols] > (Q3 + 1.5 * IQR))).any(a
outlier_removed_data.shape
```

Standardization

```
X = outlier_removed_data.drop('authentication', axis=1)
Y = outlier_removed_data['authentication']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
feature_names = X.columns
X_scaled = pd.DataFrame(X_scaled, columns=feature_names, index=X.index)
X_scaled.head()
```

	variance	asymmetry	kurtosis	entropy
0	1.412546	1.112068	-0.935469	-0.243186
1	1.159769	-0.921273	0.279584	0.580915
2	1.007561	1.367118	-1.365900	-1.363475
3	-0.155142	-1.263165	1.013584	0.005481
4	1.346554	1.395156	-1.351872	-1.136559

Displaying Target Values Distribution

```
plt.figure(figsize=(8, 6))
sns.histplot(Y, bins=30, kde=True)
plt.title('Target Variable Distribution After Outlier Removal')
plt.xlabel('Conterfeit')
```

Text(0.5, 0, 'Conterfeit')


```
smote = SMOTE(random_state=42)
X_resampled, Y_resampled = smote.fit_resample(X_scaled, Y)

data_resampled = pd.concat([pd.DataFrame(X_resampled, columns=X.columns), pd.DataFrame(Y_resampled, columns=['authentication'])], axis=1)
data_resampled.head()
```

	variance	asymmetry	kurtosis	entropy	authentication
D	1.412546	1.112068	-0.935469	-0.243186	0
1	1.159769	-0.921273	0.279584	0.580915	0
2	1.007561	1.367118	-1.365900	-1.363475	0
3	-0.155142	-1.263165	1.013584	0.005481	0
4	1.346554	1.395156	-1.351872	-1.136559	0

Splitting Data

```
X = data_resampled.drop("authentication", axis=1)
Y = data_resampled['authentication']

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1, stratify=Y, random_state=42)

print(X.shape, X_train.shape, X_test.shape)

(1444, 4) (1299, 4) (145, 4)
```

Training Model

[0 72]]

```
model = RandomForestClassifier(random_state=42)
model.fit(X_train, Y_train)
Y_pred = model.predict(X_test)
```

Evaluating Accuracy

```
print("Accuracy:", accuracy_score(Y_test, Y_pred))
print("Classification Report:\n", classification_report(Y_test, Y_pred))
print("Confusion Matrix:\n", confusion_matrix(Y_test, Y_pred))
Accuracy: 0.9793103448275862
Classification Report:
              precision
                          recall f1-score
                                             support
          0
                  1.00
                           0.96
                                     0.98
                                                 73
                  0.96
                           1.00
                                     0.98
                                                 72
                                     0.98
                                                145
   accuracy
  macro avg
                0.98
                           0.98
                                     0.98
                                                145
                 0.98
                           0.98
                                     0.98
                                                145
weighted avg
Confusion Matrix:
[[70 3]
```