Classifying Cafeteria Meals

Nicas Frank, Elias Teoman Eroglu, Joshua Nerling, Hannes Simon, Benedikt Schuster

Leipzig, 03.02.2025

Table of Contents

01

Business Case & Methodology

02

Evaluation of the Results & XAI

03

Critical Review & Outlook

04

Model Deployment & Live Demo

01

Business Case& Methodology

Business Case

Idea

Basis: Machine

Learning

New Payment Option

Self-checkout tills and smartphone app Simple and Intuitive Use

Automatic payment by scanning the dish

Models reliably classify the dishes

Benefits

- 1 Cost reduction
- More efficient payment process
- 3 Customer satisfaction

Business Case

Benefits

- 1 Cost reduction
- More efficient payment process
- Customer satisfaction

Approach to Solutions

CNN developed and trained by us

- Lean architecture
- Full control and transparency
- Limited data basis
- Higher risk of overfitting

EfficientNet with transfer learning

- Proven network
- Comprehensive data basis
- Higher complexity
- Limited transparency

Methodology

02

Evaluation of the Results & XAI

	Custom CNN	EfficientNet (ImageNet)	EfficientNet (Food101)
Accuracy	0.92	0.96	0.99
Precision	0.92	0.95	0.99
Recall	0.93	0.96	0.99
F1-Score	0.92	0.95	0.99
Inference time	0,087 s	0,231 s	0,238 s
Parameters	25,71 million	6,53 million	6,53 million
GFLOPs	9,61	0,41	0,41

	Custom CNN	EfficientNet (ImageNet)	EfficientNet (Food101)
Accuracy	0.92	0.96	0.99
Precision	0.92	0.95	0.99
Recall	0.93	0.96	0.99
F1-Score	0.92	0.95	0.99
Inference time	0,087 s	0,231 s	0,238 s
Parameters	25,71 million	6,53 million	6,53 million
GFLOPs	9,61	0,41	0,41

Custom CNN

EfficientNet (ImageNet)

EfficientNet (Food101)

- 1 No prominent patterns of systematic errors are observed.
- Predictions are well-distributed across classes, indicating strong generalization across dish categories.
- No single class showing a significant number of misclassifications or consistent error trends.

Grad-CAM

actual meal

tablet

Grad-CAM

03

Critical Review & Outlook

Critical Review

Result Quality

- Promising Accuracies for all examined models
- Contractionary XAI-Results
- Risk of overfitting due to a controlled training environment

Data Collection

- Challenges with meal presentation variability
- Varying camera angles & lighting conditions
- Small Train/Valid-Dataset

Model Design

- Current classification works reliably only when a single dish is on the tray.
- High training effort required when introducing new dishes.

Business Case

- Mobile App vs. Fixed kiosks
- Fraud prevention

Future Work

Result Quality

Data Collection

Model Design

Business Case

Enhance Mobile App with QR-Code Verification

Model Deployment & Live Demo

Model Deployment

First Mockup

UI of MensAl

Thanks!

Do you have any questions?

Nicas Frank, Elias Teoman Eroglu, Joshua Nerling, Hannes Simon, Benedikt Schuster

dr65cehe@studserv.uni-leipzig.de

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

References

- https://www.studierendenwerk-goettingen.de/fileadmin/_processed_/c/e/csm_NEWS-Selbstscan-Kasse_1_371c57ff26.jpg
- https://tutor-church-15580.netlify.app/assets/img/lime_logo.jpg
- https://miro.medium.com/v2/resize:fit:1162/0*pUaDvGZV8Q-5ZBhC.jpg
- Memes erstellt mit: https://imgflip.com/

05
Backup

Methodology

01 02 03 04 05

Goals and success factors

- Precise detection of the dishes
- Ensure robustness under realistic conditions
- Transparency of model decisions through XAI
- Minimization of misclassification
- Scalability and efficiency
- Simple and self-explanatory operation

Metrics

- Accuracy
- Precision
- Recall
- F1-Score
- Inference time
- FLOPs
- Confusion matrix
- XAI visualizations

Data collection

Aim of the data procurement

- Ensuring a sufficient amount of data for classification
- Covering different variations of the dishes (e.g. different angles, lighting conditions, arrangement)

Variations allow us to achieve a high level of data diversity and train the models for realistic scenarios

- 10 different dishes
- 50 original images
 per dish
- Slight variation of the arrangement in each picture

Data processing (preprocessing, data augmentation)

- Division of the dishes into 10 classes
- Data split within each class
 - 64 % training data
 - 16 % validation data
 - o 20 % test data
- Data transformation & data extension
 - Training data:
 - > RandomResizedCrop, RandomHorizontalFlip, GaussianBlur, ToTensor, Normalize
 - Test and validation data:
 - > Resize, CentercropToTensor, Normalize

Class 2

Class 3

Class 10

Data processing (preprocessing, data augmentation)

- 1 Random-Resized Crop
 - Randomly cuts out an area and scales it to 224x224 pixels
 - Goal: Increases variety and robustness against different plate positions
- 2 Horizontal Flip
 - Mirrors the image horizontally at random
 - Objective: Provides robustness against symmetrical variations (e.g. left-right rotations)
- Gaussian blur
 - Applies random blurring, simulates blurred images
 - Objective: Trains the model to be robust against blurring

- Increase the number of training images per class: from 40 to 40 X number of epochs
- More robust
 training: Better
 generalization to new
 data
- Better model
 performance: Higher
 accuracy through
 more versatile
 training data

Transfer Learning: EfficientNet

• Transfer learning enables the reuse of pre-trained neural networks for specific tasks.

	EfficientNet (ImageNet)	EfficientNet (Food101)	
Pretrained on	ImageNet data set (general purpose images)	Food101 dataset (food)	
	mammal placental carnivore canine dog working dog husky vehicle craft watercraft sailing vessel sailboat trimaran		
Usage	Broad visual feature selection for general tasks	Specific feature selection for food classes	
Modification	 Classifier layer for target class replaced All previous layers frozen (no update of weights) 		

Quellen:

https://trendskout.com/wp-content/uploads/2020/04/image_recognition_illustration.png https://production-media.paperswithcode.com/datasets/Food-101-0000000037-8c457091_ZXHhL3x.jpg

Training process & model optimization

Optimization methods

- 1 Hyperparameter:
 - Batch size: 16
 - Learning rate: Determined by Learning Rate Finder
 - Epochs: Maximum of 50 training epochs
- 2 Manual fine adjustment:
 - Batchsize
 - Model architecture
 - Dropout
- Adaptive learning rate
 Early Stopping

Quelle: Patlatzoglou, Konstantinos. (2022). Deep Learning for Electrophysiological Investigation and Estimation of Anesthetic-Induced Unconsciousness

Training process & model optimization

Custom CNN

EfficientNet (ImageNet)

EfficientNet (Food101)

- 1 No prominent patterns of systematic errors are observed.
- Predictions are well-distributed across classes, indicating strong generalization across dish categories.
- No single class showing a significant number of misclassifications or consistent error trends.