

操作指南

SDM620

迷你导轨式 单相多功能表

1. 简介

SDM620迷你导轨式单相多功能表,专为能效管理系统所设计;它采用导轨安装方式,直接与空气开关、断路器、接触器一起安装,是工厂、学校、医院、商场等具有能耗分项管理需求的信号采集单元。无需外置电流互感器,最大可直接接入63A电流,可测量交流电流、电压、功率、频率和双向电能等。

标配RS485通信接口,默认Modbus协议,可与各种组态系统或能耗管理系统兼容,把前端采集到的电参量 实时传送给系统数据中心,进行能耗管理和分析。

2. 功能介绍

- * 可测量交流电流、电压、有功功率、无功功率、视在功率、功率因数、频率和正反电能;
- * 液晶显示, 7位数字(0.00-99999999 kWh); 白色背光, 在暗处也有很好的视觉效果; 电能数据掉电永久保存;
- * 最大电流: 63A;
- * 接线方式: 单相; 输入供电, 无需辅助电源;
- * 无源脉冲输出,符合DIN43864;
- * 2线制RS485通信接口(标准Modbus-RTU通信协议),可选DL/T645-1997,2007;
- * 通讯参数一级菜单, 方便现场调试查询;
- * 35mm标准导轨式安装;
- * 免费下载调试软件。

3.参数

	参数项目	内容			
	接 线	单 相			
输 入	电 压	110V/220V			
		功耗 ≤5VA			
		额定电压: 0.9~1.1Un; 最大电压: 0.7~1.2Un			
	电 流	63A 额定直接接入			
		最小电流 20mA			
		功耗 ≤4VA			
	频 率	50 / 60 Hz			
	精 度	1%			
	RS485 通信	2 线制 RS485接口 (Modbus-RTU 协议)			
电能脉冲		无源电能脉冲			
		脉冲常数1600imp/kWh			
		脉冲宽度: 80ms±20ms			
	耐 压	工频交流电压2kVAC/分钟 (输入 / 输出)			
		输入/壳体; 输出/壳体 >50MΩ			
	静电抗干扰	EN61000-4-2,4级			
	辐射抗干扰	EN61000-4-3,4级			
试 验	快速瞬间脉冲群抗干扰	EN61000-4-4,4级			
标 准	浪涌抗干扰	EN61000-4-5,4级			
	传导射频干扰	EN55022,B级			
	辐射射频干扰	EN55022,B级			
	安 装	标准 35mm 导轨			
环 境		工作温度: -20C ~ +55C			
		存储温度: -40C ~ +70C			
		相对湿度: 5% ~ 95% (无凝露)			
		海拔: < 2500m			
其 他		尺寸: 36×65×100 (mm)			
	<u> </u>	重量: 185g			

4. 安装

4.1 外形尺寸

安装注意事项:

- 1. SDM安装于标准35mm导轨 上,最好是通风干燥的室内;
- 2. SDM有很好的防窃电设计,前 面板有2个铅封点;
- 3. SDM在63A下可直接接入,当 电流大于50A,请用专用的接线端 子》,以确保接线安全。

5.接线

注意:

- * SDM620接线有方向, 默认为下进上 出接法,如客户需上进下出接法,请在 订货时说明;
- * 接线方向将决定电能存放位置。

注意:

- 1. 同一条*RS485*总线上,设备数量不要超过*32*个;建议*RS485*用图中的*T*型接法;
- 2. 在RS485总线末端,请接一个120Ω的匹配电阻;
- 3. 在同一条*RS485*总线上每只*SDM620*都有一个不同的从设备地址,用户可通过按键或斯同瑞设置软件来对其设置。

6.显示

3

7. 设置

7.2 远程软件设置

注意: SDM620的通讯协议与SDM640完全一样,可用SDM640调试工具软件对SDM620接线通讯设置。

- 软件功能:

SDM640调试工具可以测试SDM640的通 l信状态;采集SDM640所有的电量数据; 可以批量设置SDM640的通信地址和波特 |率:可以批量对SDM640的电能清零。

|步骤1:运行"SDM640_调试工具.exe"。 步骤2: 选中PC上与SDM640通讯的 |COM、波特率、检验方式,输入的 SDM640设备地址(可在SDM640的显示 |菜单中找到),然后点击【连接】按键, 开始读取SDM640中的数据。(软件1000 毫秒读一次SDM640)

(如果在软件下方椭圆显示绿━,说明软 |件成功连接了SDM640,所有的数据显示 |在下面的文字框中。)

|(如果下方椭圆显示红||___,说明软件没有

连接到,请检查与SDM640连接的RS485接线是否正确,软件中的地址和波特率是否与SDM640显示的所对应。) 步骤3:如果你成功连接到了SDM640,软件【设置】按键和【电能清零】按键将被激活。

- 点击[【电能清零】对所有复费率电能数值清零;
- 如果需修改通讯地址、波特率、奇偶校验、互感器倍率等,请做出修改,然后点【设置】按键,最后检查修改 是否完成。

8. Modbus 通信协议

8.1 通信地址表

者 十进制	寄存器号 PLC	内 容	格式	读写	计算方法		
0 - 高	40001 - 高	设备地址	UInt8	R/W	001~247 (默认 00 1)		
- 低	- 低	波特率	UInt8	R/W	1:9600bps 2:4800bps 3:2400bps 4:1200bps (默认: 1)		
1 - 高	40002 - 高	数据格式	UInt8	R/W	0: 8,n,1 (默认: 0) 1: 8,e,1 2: 8,o,1 3: 8,n,2		
- 低	- 低	空					
2~7	40003~40008						
8	40009	CT 变比 UInt16 R/W 0001~9999 (外接互感器CT 200/5A, 变比 40)					
9	40010		空				
10,11	40011,40012	正向电能	UInt32	R/W	真实值 = (65536*高位寄存器+低位寄存器)/100 * CT		
12,13	40013,40014	反向电能	UInt32	R/W	(单位: kWh)		
14~41	40015~40042		空				
42	40043	电压	UInt16	R	真实值 = 寄存器值/10 (单位: V)		
43	40044	电流	UInt16	R	真实值 = 寄存器值/100 * CT (单位: A)		
44	40045	有功功率	Int16	R	真实值 = 寄存器值 * CT (单位: W)		
45	40046	无功功率	Int16	R	真实值 = 寄存器值 * CT (单位: Var)		
46	40047	视在功率	UInt16	R	真实值 = 寄存器值 * CT (单位: VA)		
47	40048	功率因数	UInt16	R	真实值 = 寄存器值/1000		
48	40049	频率	UInt16	R	真实值 = 寄存器值/100 (单位: Hz)		

数据格式:

Ulnt8: 1个字节, 无符号整数; Ulnt32: 4个字节, 无符号整数; Ulnt16: 2个字节, 无符号整数; Int16: 2个字节, 带符号整数;

单个寄存器占2个字节,高位在前,低位在后。

8.2 端口

- 1. SDM640配置2线制半双工RS485通信接口,内嵌标准的 Modbus-RTU通信协议;为保证通信质量请选用直径大于0.5 mm²的双芯屏蔽线。
- 2. 在同一条RS485总线上, 最多可接32个设备; 每只SDM640的通信地址必须设置为不同。
- 3. RS485 连接线应该远离高压线或高压环境,以防止辐射干扰,建议用T型接法,避免用星型接法。
- 4. SDM640的通信波特率可设置为 9600, 4800, 2400, 1200bps,

默认为9600bps

5. 数据格式为1个起始位,8个数据位,1个停止为,无校验。

8.3 通信举例

1. 读寄存器: 读通信地址为01的SDM640的电能值:

上位机命令:

通信地址	功能码	起始寄存器	需读寄存器数	CRC
01H	03H	00H,0AH	00H,02H	09H,E4H

SDM640回复:

通信地址	功能码	被读寄存器数		CRC
01H	03H	04H	01H,01H,4EH,22H	B6H,1FH

有功电度 = (65536*(256*01H+01H) + (256*4EH+22H))/100 = 168627.54 kWh

2. 读寄存器:读通信地址为01的SDM640的电压值:

上位机命令:

通信地址	I,	力能码	起始寄存器	需读寄存器数	CRC
01H		03H	00H,2AH	00H,01H	C2H,A5H
SDM640回复:					
通信地址	功能码	被读寄存器数			CRC
01H	03H	02H		08H,97H	6CH,22H

电压 = (256*08H+97H) /10 = 219.9V

9. 常见问题

9.1 通讯问题

- SDM640不回送数据

请确保SDM640的通讯设置(如通讯地址、波特率、数据格式等)与上位机要求一致;如果现场多台SDM640通讯都没有数据回送,请检测现场通讯总线的连接是否准确可靠;RS485转换器或串口服务器是否正常工作。如果只有一台SDM640或者少数SDM640通讯异常,请先检查相应的通讯线,可以修改交换异常和正常SDM640的通信地址来测试,排除或确认上位机软件问题;或者通过交换异常和正常SDM640的安装位置来测试,排除或确认SDM640故障。

- SDM640回送数据不准确

请仔细阅读通讯地址表中关于数据存放地址和存放格式的说明,并确保按照相应的数据格式转换。推荐客户 去斯同瑞官网下载SDM调试软件进行测试。

9.2 电参数测量不准确

- 1. 首先请确保正确的电压和电流信号连接到SDM640上,可以使用万用表来测量电压信号,必要时可使用钳形表来测量电流信号。
- 2. SDM640测量的是真有效值,电压信号和电流信号会与万用表的测试值有偏差,这是正常现象,因为两种的测量方式不一样。

9.3 电能数值不准确

SDM640的电能累加是基于对功率的测量,先观测SDM640的功率值与实际负荷是否相符。SDM640支持双向电能计量,在接线错误的情况下,有功功率为负的情况下,电能会累加到反向有功电能,正向有功电能不累加。在现场使用最多出现的问题是电流互感器进线和出线接反。

9.4 SDM640不亮

电压范围必须在额定电压上下1.2倍以内。超过规定范围的电压可能会损坏仪表,并且不能恢复。可使用万用表来测量电压值,如果电压正常,仪表无任何显示,可以考虑断电重新上电,若仪表还无法正常显示,请联系本公司售后服务部门。

6.

请关注斯同瑞微信公众号 可获得更多产品信息

上海斯同瑞电气科技有限公司

地址:上海市嘉定区南翔工业园纬五路198号

电话: 021-59969805 传真: 021-59969863

网站: http://www.standardel.cn Email: sales@standardel.com