

CONTEÚDO PROGRAMÁTIC

1-NTRODUÇÃO AO PYTHON

- Histórico geral
- Ambientação
- Instalação dos aplicativos
- 2. Conceitos de Programação em Python
- Variáveis, operadores

laços

- e operações de E/S
- Exceções e strings
 Geradores e iteradores

Módulos e pacotes

- Listas, estruturas de decisão e
 - 0 E Coradoreo e nere
- Funções, tuplas e dicionários •
- Gerenciamento de arquivos

Módulos diversificados.

3. Introdução a programação orientada a objetos em Python

CRITÉRIOS DE AVALIAÇÃO

Presença

Presença superior a 75%

Maximo 20horas, ou 6 dias de aula.

Atividades

Executar os exercícios de fixação

Toda aula terá exercícios de fixação

Projeto Final

Um projeto que será implementado nas ultimas semanas do curso

TIPOS DE DADOS

Dados são as informações a serem processadas por um computador

Há três principais tipos de dados primitivos

- Numéricos (Decimal ou Inteiro)
- Caracteres
- Lógicos

TIPO NUMÉRICO

Tornando ao aspecto computacional, os dados numéricos representáveis em um computador são divididos em apenas duas classes: os INTEIROS e os REAIS.

Inteiro números inteiros, positivos e negativos

Real números fracionários, positivos e negativos

TIPO CARACTER

Também conhecido como tipo literal

- Se refere a uma sequencia que contenham letras, números e símbolos
- Os caracteres devem ser sempre representados com aspas no código
- Pode se falar também em cadeia string alfanumérico ou char

TIPO LÓGICO (Booleano)

São dados cujos os valores somente podem assumir

- Verdadeiro (True)
- Falso (False)

Também conhecido como tipo Booleano

VARIÁVEI

- Uma variável é uma localização na memória RAM do computador que é utilizada para armazenar temporariamente os dados que são utilizados pelo programa
- As variáveis possuem características como:
 - Identificação
 - Endereço
 - Tipo
 - Tamanho
 - Valor

CONSTANTE

S

É uma posição na memória cujo o valor não muda durante a execução do programa;

Por exemplo, o valor Pi é uma constante, pois possui sempre o mesmo valor (3,1415...)

CONSTANTES FÍSICAS

Constante física	Símbolo	Valor
Aceleração da gravidade na superfície terrestre	g	9,80 m/s ²
Constante eletrostática do vácuo	k ₀	9 . 10 ⁹ N.m ² /C ²
Carga elementar	е	1,6 . 10 ⁻¹⁹ C
Elétron-volt	eV	1,6 . 10 ⁻¹⁹ J
Massa do elétron	m _e	9,1 . 10 ⁻³¹ kg
Massa do próton	$m_{\scriptscriptstyle \mathrm{p}}$	1,67 . 10 ⁻²⁷ kg
Permeabilidade magnética do vácuo	μ_0	4π . 10 ⁻⁷ T. m/A
Permitividade elétrica do vácuo	ε ₀	8,8 . 10 ⁻¹² F/m
Velocidade da luz no vácuo	С	3 . 108 m/s
Constante de Plank	h	6,63 . 10 ⁻³⁴ J.s ou 4,14 . 10 ⁻¹⁵ eV.s

NOMENCLATURA DE

VARIÁVEIS Um nome de variável é uma sequência de letras (a \rightarrow z, A \rightarrow Z) e números (0 \rightarrow 9), que devem sempre começar com uma letra. Apenas letras comuns são permitidas.

Letras acentuadas, cedilhas, espaços, caracteres especiais como \$, #, @, etc. são proibidos, exceto para o caractere _ (sublinhado/underline).

Além dessa regra é importante também estar atento às palavras reservadas da linguagem

False	class	finally	is	return
None	continue	for	lambda	try
True	def	from	nonlocal	while
and	del	global	not	with
as	elif	if	or	yield
assert	else	import	pass	
break	except	in	raise	

MANEIRAS DE DECLARAR

VARIÁNCES ita para variáveis, funções e outros elementos do código é mais uma questão de convenção e estilo do que uma questão de funcionalidade direta. No entanto, o estilo de escrita desempenha um papel importante na legibilidade, manutenção e colaboração em projetos de programação. Aqui estão algumas formas de declarar as variáveis.

Camel Case – No Camel Case a primeira palavra toda fica no formato minúsculo e as primeiras letras subsequentes de palavras adicionais em maiúscula.

camelCase

Snake Case – No Snake Case a todas as letras minúsculas e as palavras são separadas por underline.

snake_case

DECLARAÇÃO DE

MARIÁ VAESu uma constante possa ser utilizada pelo programa, primeiro ela deve ser declarada, para que seja reservado o espaço na memória para armazenamento de seus dados

```
texto="2" #declaração de variável string
texto1= str(2); #declaração de variável do tipo string
numero=3 #declaração de variável numerica, podendo ser Inteira ou Real
numero1= int(3) #declaração de variável numerica, do tipo inteiro
numero2= float(3) #declaração de variável numerica, do tipo Real
print(texto)
print(texto1)
print(numero)
print(numero1)
print(numero2)
```

OPERADORES ARITMETICOS

Os operadores aritméticos são elementos fundamentais em linguagens de programação que permitem a realização de operações matemáticas sobre variáveis e valores. Os operadores aritméticos mais comuns incluem:

```
#Operador de soma
    soma = n1 + n2
10
    #Operador de subtração
    subtracao = n1 - n2
13
    #Operador de multiplicação
    multiplicacao = n1 * n2
16
    #Operador de divisão
    divisao = n1 / n2
```


OPERADORES ARITMETICOS

Os operadores aritméticos são elementos fundamentais em linguagens de programação que permitem a realização de operações matemáticas sobre variáveis e valores. Os operadores aritméticos mais comuns incluem:

```
#Operador de Divisão Inteira
divisaoInteira = n1 // n2

#Operador de potência
potencia = n1 ** n2

#Operador Módulo
restoDaDivisão = n1 % n2
```


LER VALORES INSERIDOS PELO

```
#Atribui dados digitado pelo usuario e converte em Numero Inteiro
numeroInteiro = int(input("Digite um numero Inteiro: "))

#Atribui dados digitado pelo usuario e converte em Numero Decimal
numeroReal = float(input("Digite um numero Decimal: "))

#Atribui dados digitado pelo usuario e converte em Bool
booleano = bool(input("Digite um valor Boleano: "))

#Atribui dados digitado pelo usuario e converte em Texto
string = str(input("Digite um texto: "))
```

IDENTIFICAÇÃO DO TIPO PRIMITIVO

A identificação do tipo primitivo em programação desempenha o papel de garantir a integridade, eficiência e compreensão do código. Ao conhecer os tipos de dados envolvidos, os programadores podem realizar operações apropriadas, validar entradas, otimizar a alocação de memória e escolher estruturas de dados eficientes.

```
#Identificar o tipo primitivo
print(type(numeroInteiro))
print(type(numeroReal))
print(type(booleano))
print(type(string))
```

ANÁLISE DA VARIÁVEL

A análise de variáveis é importante no desenvolvimento de software, proporcionando compreensão do comportamento dos dados, identificação de erros, otimização de desempenho e validação de entrada.

```
#Identifica se o valor é do tipo numerico
    print(n.isnumeric())
    #Identifica se o valor é do tipo string
    print(n.isalpha())
    #Identifica se o valor é do tipo alfanumerico
    print(n.isalnum())
11
    #Identifica se o valor esta com as letras maiusculas
    print(n.isupper())
13
14
    #Identifica se o valor esta com as letras minusculas
    print(n.islower())
16
17
    #Identifica se o valor não tem casas decimais
    print(n.isdecimal())
```


VAMOS PRATICAR

