www.nammakalvi.in

- **b. Rail:** Tamil Nadu has a well-developed rail network as part of Southern Railway, Headquartered at Chennai. Tamil Nadu has a total railway track length of 6,693 km and there are 690 railway stations in the State.
- **d. Ports:** Tamil Nadu has three major ports; one each at Chennai, Ennore, and Tuticorin, as well as one intermediate port in Nagapattinam, and 23 minor ports.

Chapter 12

II. Very Short Answer Questions:

21. If
$$62 = 34 + 4x$$
 what is x?

Solution:
$$62 = 34 + 4x$$

$$62 - 34 = 4x$$

$$28 = 4x$$

$$x = \frac{28^{7}}{4_{1}}$$

$$\therefore x = 7$$

22. Given the demand function q = 150 - 3p, derive a function for MR.

Solution :

Demand function q = 150 - 3p, MR = ? $\frac{dq}{dp} = -3$ $\eta d = \frac{-p}{q} \frac{dq}{dp} = \frac{-p}{150 - 3p} (-3)$ $= \frac{3p}{150 - 3p}$ MR = $p \left[1 - \frac{1}{\eta d} \right] = p \left[1 - \frac{1}{\frac{3p}{150 - 3p}} \right]$ $= p \left[1 - \frac{(150 - 3p)}{3p} \right]$ $= p \left[\frac{3p - 150 + 3p}{3p} \right]$ $= p \left[\frac{6p - 150}{3p} \right]$ $= \frac{6}{3} [p - 25]$ = 2[p - 25]MR = 2p - 50

23. Find the average cost function where $TC = 60 + 10x + 15x^2$.

Solution: $TC = 60 + 10x + 15x^2$ Formula $= \frac{TC}{x}$ Average cost function $= \frac{60}{x} + \frac{10x}{x} + \frac{15x^2}{x}$ $= \frac{60}{x} + 10 + 15x$

24. The demand function is given by $x=20-2p-p^2$ where p and x are the price and the quantity respectively. Find the elasticity of demand for p=2.5 [Govt. MQP-2018]

Solution:

25. Suppose the price p and quantity q of a commodity are related by the equation $q = 30 - 4p - p^2$ find

(i)
$$e_d$$
 at $p = 2$ (ii) MR

Solution :

(1)
$$\frac{dq}{dp} = (-4-2p)$$

$$\eta d = \frac{-p}{q} \left(\frac{dq}{dp} \right)$$

$$= \frac{4p+2p^2}{30-4p-p^2}$$

$$= \frac{4(2)+2(2)^2}{30-4(2)^2-4} = \frac{8+8}{30-8-4}$$

$$= \frac{16}{30-12} = \frac{16}{18} = \frac{8}{9}$$

(ii) MR = ?

$$MR = \frac{dq}{dp}(-4-2p)$$

$$R = pq$$

$$= p(30-4p-p^2)$$

$$= 30p-4p^2-p^3$$

$$MR = \frac{dR}{dp}$$

$$= 30(1)-4(2p)-3(p)^2$$

$$= 30-8p-3p^2$$

$$MR = 30-8p-3p^2$$

26. What is the formula for elasticity of supply if you know the supply function? [BEQ]

Solution:

Elasticity of supply
$$=\frac{p}{q}\frac{dq}{dp}$$

 $Ps = X_0P_0$ – integration of supply function within limited

$$= X_0 P_0 - \int_0^{x_0} g(x) dx$$

27. What are the Main menus of MS Word?

- . Home menu
- Insert
- Page Layout
- Reference
- · Review
- View

III. Short Answer Questions:

28. Illustrate the uses of Mathematical Methodsm in Economics.

- Mathematical Methods help to present the economic problems in a more precise form.
- Mathematical Methods help to explain economic concepts.

- 3. Mathematical Methods help to use a large Number variables in economic analyses.
- **4.** Mathematical Methods help to quantify the impact or effect of any economic activity implemented by Government or anybody.

29. Solve for x quantity demanded if 16x - 4 = 68 + 7xSolution:

$$16x - 4 = 68 + 7x$$

$$16x - 7x = 68 + 4$$

$$9x = 72$$

$$x = \frac{72}{9}$$

$$\therefore x = 8$$

30. A firm has the revenue function R = 600q - 0.03q² and the cost function is C = 150q + 60,000, where q is the number of units produced. Find AR, AC, [BEQ] MR and MC.

Solution:

MR = Marginal Revenue =
$$\left(R \frac{1}{q}\right)$$

R = $600q - 0.03q^2$
R = $600 - (0.03) 2(q) = 600 - 0.06q$
AR = $\frac{R}{q}$
= $\frac{600q - 0.03q^2}{q}$

$$= \frac{600 \cancel{A}}{\cancel{A}} - \frac{0.03qf}{\cancel{A}}$$

$$= 600 - 0.03q$$

Average cost (AC) =
$$\frac{\text{Total cost}}{\text{output}}$$

= $\frac{150q + 60000}{\text{cost}}$

$$AC = \frac{150 \cancel{q} + 60000}{\cancel{q}} + \frac{60000}{\cancel{q}}$$

$$AC = 150 + \frac{60000}{\cancel{q}}$$

Marginal cost (MC) =
$$\frac{d}{dq}$$
 (C)
= $\frac{d}{dq}$ (150q + 60000)
MC = 150

31. Solve the following linear equations by using Cramer's rule.

 $x_1 - x_2 + x_3 = 2;$

$$x_{1} + x_{2} - x_{3} = 0;$$

$$-x_{1} - x_{2} - x_{3} = -6$$
Solution:
$$x_{1} - x_{2} + x_{3} = 2;$$

$$x_{1} + x_{2} - x_{2} = 0;$$

$$-x_{1} - x_{2} - x_{3} = -6$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

∴Δ = -4

32. If a firm faces the total cost function $TC = 5 + x^2$ where x is output, what is TC when x is 10?

-2 - 2 + 0

Solution:

TC =
$$5 + (10)^2$$

= $5 + 100$
 \therefore TC = 105

33. If $TC = 2.5q^3 - 13q^2 + 50q + 12$ derive the M function and AC function.

Solution:

$$\frac{dc}{dq} = M.C, \qquad A.C = \frac{\text{Total cost}}{\text{output}}$$

$$\frac{dc}{dq} = 2.5 (3) q^2 - (13 \times 2) q + 50$$

$$M.C = 7.5q^2 - 26q + 50$$

$$A.C = \frac{2.5 q^3 - 13q^2 + 50q + 12}{q}$$

$$= \frac{2.5 q^{3^2}}{\cancel{n}} - \frac{13q^2}{\cancel{n}} + \frac{50\cancel{n}}{\cancel{n}} + \frac{12}{q}$$

$$\therefore A.C = 2.5q^2 - 13q + 50 + \frac{12}{q}$$

34. What are the steps involved in executing a MS Excel sheet?

- i) Plan the keystrokes needed to complete the tasks.
- (ii) Click Tools.
- (iii) Assign a Name for the Macro.
- (iv) Assign a shortcut key for the Macro.
- (v) Click Ok.
- (vi) Perform the steps needed to create your report.
- (vii) Click on the stop button on the Macro toolbar to stop recording and save the Macro.
- 35. A Research scholar researching the market for fresh cow milk assumes that Qt = f(Pt, Y,A,N,Pc) where Qt is the quantity of milk demanded, Pt is the price of fresh cow milk, Y is average household income, A is advertising expenditure on processed pocket milk, N is population and Pc is the price of processed pocket milk.
- (a) What does Qt = f(Pt, Y,A,N, Pc) mean in words?
- (b) Identify the independent variables.
- (c) Make up a specific form for this function. (Use your knowledge of Economics to deduce whether the coefficients of the different independent variables should be positive or negative.)
- a) i) Qt is the functions of Pt, Y, A, N, Pc.
 - ii) Other determinants of demand are,
 - Pt Price of fresh cow milk. Y Average household Income.
 - A Advertising expenditure on processed pocket milk.
 - N Population.
 - ❖ Pc Price of processed pocket milk.
- (b) i)'Y' (Average household Income and population) and 'N' are independent variables.
 - ii) Pc is depending on Pt, A and N.
 - iii) 'A' is depending on 'N'.
- (c) When price of fresh cow milk increases quantity of milk demanded decreases.
 - ➤ When average household income increases and quantity of milk demanded is also increases.

- 36. Calculate the elasticity of demand for the demaschedule by using differential calculus meth P = 60 - 0.2Q where price is
 - (i) zero Solution :
- (ii) Rs. 20
- (iii) Rs. 40. [Govt. MQP-2018; HY-20]

$$\frac{60}{0.2} \times \frac{10}{10} = \frac{600}{2} = 300$$

Elasticity of demand

$$e_d = \frac{q}{p} \frac{dp}{dq}$$

$$p = 60 - 0.0$$

$$p = 60 - 0.2q$$

$$\frac{dp}{dq} = 0.001(1)$$

$$\frac{dp}{dq} = -0.2$$

(i)
$$q = 0$$

 $p = 60 - 0.2(0) = 60 - 0$
 $e_d = \frac{0}{60} \times (-0.2)$

(ii)
$$\begin{aligned} e_d &= 0 \\ q &= 20 \\ p &= 60 - 0.2(20) \\ p &= 60 - 4 \\ p &= 56 \end{aligned}$$
$$e_d &= \frac{20}{56} \times (-0.2) = \frac{-4}{56}$$

$$e_d = 0.071$$

(iii)
$$q = 40$$

 $p = 60 - 0.2(40)$
 $p = 60 - 8$
 $p = 52$
 $e_d = \frac{40}{52} \times -0.2 = \frac{8}{52}$
 $e_d = 0.153$

37. The demand and supply functions are $P_{x} = 1600 - x^{2}$ and $P_{z} = 2x^{2} + 400$ respectively. Find the consumer's surplus and producer's Surplus at equilibrium point. Solution:

$$P_{d} = 1600 - x^{2}$$

$$P_{s} = 2x^{2} + 400$$

$$P_{d} = Ps$$

$$1600 - x^{2} = 2x^{2} + 400$$

$$1600 - x^{2} - 2x^{2} - 400 = 0$$

$$-3x^{2} + 1200 = 0$$

$$+ 3x^{2} = +1200$$

$$x^{2} = \frac{1200}{5}$$

$$x = \pm \sqrt{400}$$

$$x_{0} = 20$$

_		-		200	100
	P		0	20	40
	ηd	=	2		
	ηd	=	\overline{q}	$\frac{dp}{dq} = \frac{-40}{100}$	$-\frac{1}{0.2} = \frac{1}{20}$
	q	==	100 -p	dp -40	1 4
	q			$ \epsilon \frac{10}{10} = \frac{200}{2} = \frac{10}{2} $	= 100
	0.2q		20	CONTROL OF STREET	
	0.2q	=		40	3.5
Vhe	n P	=	40		
	ηd	=	0.5		
		=	$\frac{20}{40}$	$=\frac{1}{2}=0.5$	
	ηd	=	$\frac{-p}{q}$	$\frac{dq}{dp} = \frac{-2q}{200}$	$\frac{0}{0} - \frac{1}{0.2}$
	q	=	200		
	q	-	$\frac{40}{0.2}$	$\times \frac{10}{10} = \frac{400}{2}$	
	0.2q	=	40		
	0.2q	22	60 -	20	
hen P		=	20		
	nd	=	O		
		=	$\frac{0}{60}$:	= 0	
	ηd	=	$\frac{-p}{q}$	$\frac{dq}{dp} = \frac{-0}{300}$	$\frac{-1}{0.2}$
	q	20	300		720
	q	=	0.2	$\times \frac{10}{10} = \frac{600}{2}$	= 300

P	0	20	40
q	300	200	100
ηd	0	0.5	2

- 38. What are the ideas of information and communication technology used in economics? Introduction:
- (i) Information and communication Technology (ICT) is the infrastructure that enables computing faster and
- (ii) The following tables gives an idea of range of technologies that fall under the category of ICT.

S.No	Information	Technologies	
1	Creation	Personal Computers, Digital Camera, Scanner, Smart Phone	
2	Processing	Calculator, PC, Smart Phone	
3 Storage		CD, DVD, Pen Drive, Microchip, Cloud	
4 Display		PC, TV, Projector, Smart Phone	

Best of Luck

www.nammakalvi.in