Discrete Mathematics and Logic Graph Theory Lecture 4

Andrey Frolov Professor

Innopolis University

What did we know in the last week?

0. Are you ready to travel?

What did we know in the last week?

- 1. Euler paths and cycles
- 2. Eulerians
- 3. The sufficient and necessary condition
- 4. The Fleury's algorithm

Traversability

Example

 $v_1v_2v_3v_1$ – a non-walk $v_1v_2v_3v_2$ – some walk $v_1v_2v_3v_2v_1$ – a closed walk $v_4v_3v_4$ – a closed walk $v_4v_3v_2$ – a path $v_1v_2v_3v_4$ – a path $v_1v_2v_3v_4v_1$ – a cycle

Definitions

A path P is called a **Hamilton path** if P visits every vertex once.

If the *P* is a cycle, then it is called a **Hamilton cycle**.

Remark (the terminology problem)

A Hamilton cycle = A hamilton cycle = A Hamilton circuits = \dots

Definition

A path (cycle) P is called a **Hamilton path** (cycle) if P visits every **vertex** once.

a Hamilton path!

a Hamilton cycle!

Relationship

an Euler path (cycle)	a Hamilton path (cycle)
It visits every edge once	It visits every vertex once

Definitions

A graph is hamiltonian if it has a Hamilton cycle.

Definitions (only in russian)

A graph is semi-hamiltonian if it has a Hamilton a path.

Definition

A path (cycle) P is called a **Hamilton path** (cycle) if P visits every **vertex** once.

a semi-Hamiltonian

a Hamiltonian!

Relationship

an Eulerian	a Hamiltonian
It contains a cycle	It contains a cycle
which visits every edge once	which visits every vertex once
sufficient and necessary conditions	
iff every vertex has even degree	Does not exist!

Theorem (Dirac, 1952)

Let G be a simple graph with $n \ge 3$ vertices. Suppose that for any vertex v

$$deg(v) \ge n/2$$
.

Then G is a **hamiltonian**.

Theorem (Dirac, 1952)

 $\forall v (deg(v) \ge n/2) \Rightarrow G$ is a hamiltonian.

Proof

By contradiction, assume that G is not a hamiltonian.

Let $G' \supset G$ be a maximal non-hamiltonian with the same vertices.

It means that G' + vv' is a hamiltonian for any non-adjacent vertices v, v'.

Note that G' is not a complete (see Lab exercises).

Proof

Choose some non-adjacent vertices v, v'.

Since G' + vv' is a hamiltonian, G' contains a Hamilton path from v to v':

$$v_1 \rightarrow \cdots \rightarrow v_{i-1} \rightarrow v_i \rightarrow \cdots \rightarrow v_n$$

where $v_1 = v, v_n = v'$.

Proof

1) Suppose that there exists i(1 < i < n) such that $vv_i \in G'$ and $v_{i-1}v' \in G'$.

Hence, $v_1 \dots v_{i-1} v_n v_{n-1} \dots v_i v_1$ is a Hamilton cycle.

$$\overbrace{v_1 \to \cdots \to v_{i-1} \to v_i} \to \cdots \to v_n$$

This is a contradiction.

Proof

2) Suppose that there does not exist i (1 < i < n) such that

$$vv_i \in G' \text{ and } v_{i-1}v' \in G'.$$
 (1)

Let $D_1(v) = \{v_i \mid vv_i \in E'\}$ and $D_2(v') = \{v_i \mid v_{i-1}v' \in E'\}$.

$$|D_1(v) \cup D_2(v')| < n \text{ (since } v_1v_n \notin E')$$

and $D_1(v) \cap D_2(v') = \emptyset \text{ (by (1) above)}.$

Therefore, d(v) + d(v') < n.

This is a contradiction with $d(u) \ge n/2$ for any u.

Ore's theorem

Theorem (Ore, 1960)

Let G be a simple graph with $n \ge 3$ vertices. Suppose that for any non-adjacent vertices v, v'

$$deg(v) + deg(v') \ge n$$
.

Then G is a **hamiltonian**.

Proof

The same proof (Bondy and Chvatal, 1974).

A traveling salesman

A traveling salesman wants to tour five cities A, B, C, D, E and starts at point A. He needs to choose the best Hamilton path!

A traveling salesman

There is no algorithm in polynomial time!

What we knew today?

- 1. Hamilton paths and cycles
- 2. Hamiltonians
- 3. Ore's Theorem
- 4. Dirac's Theorem
- 5. The traveling salesman problem

Thank you for your attention!