Binary Decision Diagram

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-677: Foundation of VLSI CAD

Formal Equivalence Checking

BDD is canonical form of representation

 X_i

Shanon's expansion theorem

$$f(x_1, x_2,x_i,x_n) = x_i.f(x_1, x_2,, x_i=1,x_n) + x_i'. f(x_1, x_2,, x_i=0,x_n)$$

 $f(x_1, x_2, ..., x_i=1,x_n)$

$$f(x_1, x_2, ..., x_i=1,x_n)$$

Binary Decision Diagram

- Generate Complete Representation of Circuit Function
 - Compact, canonical form

- Functions equal if and only if representations identical
- Never enumerate explicit function values
- > Exploit structure & regularity of circuit functions

Decision Structures

Truth Table

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.

Variable Ordering

Assign arbitrary total ordering to variables

$$\triangleright$$
 e.g., $x_1 < x_2 < x_3$

Variables must appear in ascending order along all paths

- **Properties**
 - No conflicting variable assignments along path
 - Simplifies manipulation

Reduction Rule #1

Merge equivalent leaves

Reduction Rule #2

Merge isomorphic nodes

Reduction Rule #3

Eliminate Redundant Tests

Example OBDD

Initial Graph

Reduced Graph

- Canonical representation of Boolean function
 - For given variable ordering
 - Two functions equivalent if and only if graphs isomorphic o Can be tested in linear time
 - > Desirable property: simplest form is canonical.

Example Functions

Constants

- Unique unsatisfiable function
- **Unique tautology**

Variable

Treat variable as function

10

Typical Function

Odd Parity

Linear representation

Representing Circuit Functions

- Functions
 - All outputs of 4-bit adder
 - Functions of data inputs

- Shared Representation
 - Graph with multiple roots
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder

Linear growth

Effect of Variable Ordering

 $(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$

Good Ordering

Linear Growth

Bad Ordering

Exponential Growth

CADSL

Selecting Good Variable Ordering

- Intractable Problem
 - > Even when problem represented as OBDD
 - i.e., to find optimum improvement to current ordering

- Application-Based Heuristics
 - > Exploit characteristics of application
 - > e.g., Ordering for functions of combinational circuit
 - Traverse circuit graph depth-first from outputs to inputs
 - Assign variables to primary inputs in order encountered

Selecting Good Variable Ordering

- Static Ordering
 - > Fan In Heuristic
 - > Weight Heuristic
- Dynamic Ordering
 - Variable Swap
 - Window Permutation
 - ➤ Sifting

Swapping Adjacent Variables

Localized Effect

- > Add / delete / alter only nodes labeled by swapping variables
- Do not change any incoming pointers

Dynamic Variable Reordering

- Richard Rudell, Synopsys
- Periodically Attempt to Improve Ordering for All BDDs
 - ❖ Part of garbage collection
 - Move each variable through ordering to find its best location
- Has Proved Very Successful
 - Time consuming but effective
 - Especially for sequential circuit analysis

Dynamic Reordering By Sifting

- Choose candidate variable
- > Try all positions in variable ordering
 - Repeatedly swap with adjacent variable
- Move to best position found

ROBDD Sizes & Variable Ordering

- Bad News ★
 - Finding optimal variable ordering NP-Hard
 - Some functions have exponential BDD size for all orders e.g. multiplier
- Good News
 - Many functions/tasks have reasonable size ROBDDs
 - Algorithms remain practical up to 500,000 node OBDDs
 - Heuristic ordering methods generally satisfactory
- What works in Practice
 - Application-specific heuristics e.g. DFS-based ordering for combinational circuits
 - Dynamic ordering based on variable sifting (R. Rudell)

Operations with BDD (1/5)

- Restriction: A restriction to a function to x=d, denoted $f|_{x=d}$, where $x \in var(f)$, and $d \in \{0,1\}$, is equal to f after assigning x = d.
- \clubsuit Given BDD of f, deriving BDD of $f|_{x=d}$ is simple

Operations with BDD (2/5)

- Let v_1 , v_2 denote root nodes of f_1 , f_2 respectively, with $var(v_1) = x_1$ and $var(v_2) = x_2$
- If v_1 and v_2 are leafs, f_1 OP f_2 is a leaf node with value $val(v_1)$ OP $val(v_2)$

Operations with BDD (3/5)

❖ If $x_1 = x_2 = x$, apply shanon's expansion

$$f_1 ext{ OP } f_2 = x' \cdot (f_1|_{x=0} ext{ OP } f_2|_{x=0}) + x \cdot (f_1|_{x=1} ext{ OP } f_2|_{x=1})$$

Operations with BDD (4/5)

Operations with BDD (5/5)

 \Leftrightarrow Else suppose $x_1 < x_2 = x$, in variable order

$$f_1 ext{ OP } f_2 = x'_1 (f_1|_{x_1=0} ext{ OP } f_2) + x_1 (f_1|_{x_1=1} ext{ OP } f_2)$$

23

Operations with BDD: Example

$$\begin{array}{c|c} \mathsf{BDD} \ \mathsf{for} \\ \mathsf{f}_1|_{\mathsf{x}\mathsf{1}=\mathsf{0}} \ \mathsf{OP} \ \mathsf{f}_2 \end{array} =$$

Operations with BDD: Example

25

Operations with BDD: Example

26

From Circuits to BDD

Thank You

