(在此卷上答题无效)

名校联盟全国优质校 2023 届高三大联考

化学试题

2023.2

本试验共8页。总分100分。考试时间75分钟。

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑。如 **宿改动、用橡皮擦干净后、再选涂其他答案标号。回答非选择题时、将答案写在答题卡上。** 写在本试卷上无效。
 - 3. 考试结束后, 将本试卷和答题卡一并交回。

可能用到的相对原子质量: H 1 Li 7 N 14 O 16 Na 23 S 32 Zn 65 1 127

- 一、选择题: 本题共 10 小题, 每小题 4 分, 共 40 分。每小题只有一个选项符合题目要求。
- 1. 厦门大学开发了一种硫醇 (R-SH) 修饰的镍基催化剂可提升苯甲醛制苯甲胺的催化活性与 选择性。下列说法不正确的是
 - A. Ni 元素的价电子排布式为 3d84s2
- B. 硫醇不瓜于醇类
- C. 苯甲醛中碳原子的杂化方式为 sp² D. 升温会增强催化剂的催化活性
- 2. 超临界 CO₂ 碳酸化技术 (反应如下) 是实现碳中和的有效手段, 其中 R-代表烃基。下列 叙述正确的是

- A. 化合物 1 分子中的所有原子共平面
- B. 化合物 2 与化合物 3 含有相同的官能团
- C. 1 mol 甲醇和化合物 4 分别与足量 Na 反应产生的 H, 之比为 2:1
- D. 上述转化过程中涉及的反应类型只有取代反应

化学试题 第1页 (共8页)

3. 常温常压下,以大气污染物 NO 为氮源,以铜为催化剂电化学合成氨的化学方程式如:

 $2NO + 5H_2$ $\frac{\text{@l(l)}}{\text{one}}$ $2NH_3 + 2H_2O$, 设 N_A 为阿伏加德罗常数的值,下列说法正确的是

- A. 22.4 L H₂O (已折算为标况) 中含有的孤电子对数为 2N_A
- B. 每产生 17 g NH₃, NO 失去的电子数为 4N_A
- C. 1 L 1 mol·L⁻¹ 氨水中、含有的 NH₃·H₂O 分子数等于 N_A
- D. 消耗 2.24 L H₂ (已折算为标况) 时,产生的 NH₃分子数为 0.04N_A
- 4. 一种新型锂离子电池的电解质的阴离子结构如图,其由同一短周期的 X、Y、Z、W 四种元 紫组成,且 W 的原子序数为 Y、Z 最外层电子数之和。下列说法一定正确的是
 - A. 氢化物的沸点: W>X
 - B. 元索 Y 与 H 组成的微粒中含有两个共价键
 - C. YW2分子构型为直线形
 - D. 最高价氧化物对应水化物的酸性: X>Z

5. 利用SO₂ Zn/H₂O₄ ZnS₂O₄ NaOH 溶液 Na₂S₂O₄转化制取连二亚硫酸钠 (Na₂S₂O₄) 的装置如图。

下列说法不正确的是

- A. 单向阀的作用是防倒吸
- B. 先通人 SO₂ 至悬浊液变澄消,再打开滴液漏斗旋塞
- C. NaOH 溶液不宜加入过多的原因是防止 Na,S,O, 水解
- D. 上述反应液经过滤, 在冷却搅拌下加入一定量 NaCl 的作用是提高产率
- 6. 利用辉锑矿 (主要成分为 Sb,S₃, 含 Fe₂O₃、MgO、SiO₂ 等杂质) 为原料制备 SbOCl 的工艺 流程如图所示。还原性: Fe > Sb > Fe²*。

下列说法正确的是

- A. "溶浸"中浸出渣的主要成分为 SiO₂
- B. "还原"加入Sb的目的是将Fex还原为Fe
- C. "水解"时发生的主要反应为; Sb3+ + H₂O + Cl- == SbOCl ↓ + 2H+
- D. 可采用边加热、边搅拌的形式促进 Sb3的水解

化学试题 第2页 (共8页)

7.60 ℃水浴加热或冰水浴冷却条件下, 将邻氨基苯甲酰胺的乙醇溶液级慢滴加到 CuUl₂ N N 溶液中, 分别得到化合物 a 和化合物 b。

反应过程能量变化示意如图。下列关于这两种化合物的说法错误的是

- A. 配位原子的种类相同, Cu 配位数不同
- B. 升高相同温度时,活化能越大,反应速率变化越大
- C. 可通过测定铜离子含量鉴别两种产物
- D. 化合物 a 为动力学产物 (曲线 1), 化合物 b 为热力学产物 (曲线 2)
- 8. 下列有关氨水的应用及化学用语表达正确的是
 - A. AlCl₃ 溶液中加入过量氨水制 Al(OH)₃: Al³⁺ + 3OH⁻ == Al(OH)₅↓
 - B 饱和氨盐水中通人 CO₂ 制纯碱: CO₂ + 2NH₃·H₂O + 2Na+ = Na₂CO₃ ↓ + 2NH₄ + H₂O
 - C 利用浓氨水检验 Cl2 管道是否泄漏: 8NH3 + 3Cl2 == N2 + 6NH4Cl
 - D. 5% CuSO₄ 氨水溶液治疗犊牛钱癣: Cu²+ 6 NH₃·H₂O == Cu(NH₃)₄(OH)₂ ↓ + 4H₂O+ 2NH₄ +
- 9. 锂硫电池放电过程中正极变化为 $S_8 \rightarrow Li_2S_8 \rightarrow Li_2S_4 \rightarrow Li_2S_2 \rightarrow Li_2S_3 \rightarrow Li_2S_5$ 。我国科学家掺入 Ni 解 央 Li_2S_8 、 Li_2S_6 、 Li_2S_6 、 Li_2S_6 答解度小、易透过隔膜的问题。下列说法正确的是

- A. 放电时, 负极电解质溶液每增重 0.07 g, 电路转移 0.01 N_A电子
- B. 充电时, 电池的总反应方程式为 16Li + xS_x = 8Li_xS_x (2≤x≤8)
- C. Ni 对多硫化物的吸附能力相比于石墨烯更小
- D. Ni 应当掺杂在电池隔膜的正极一侧

11. W v.N mar Add _ are / 11. _ are

10. 利用 Na₂S₂O₃ 氧化 Na₂S 回收单质硫,涉及反应如下: ①S₂O₃²⁻ + H₂O = 2HSO₃⁻, ②HSO₃⁻ + 2S²⁻ + 5H⁻ = 3S↓ + 3H₂O, ③SO₃²⁻ + S = S₂O₃²⁻。25 ℃时, 0.1 mol·L⁻¹ Na₂S₂O₃ 溶液中含硫微粒分布系数随 pH 变化如图 1。Na₂S 溶液的初始浓度为 780 mg·L⁻¹,其初始 pH 与剩余硫化物及单质硫的含量关系如图 2。下列说法不正确的是

- A. 0.1 mol·L⁻¹ Na₂S₂O₅ 水溶液中 $c(SO_3^{2-}) > c(H_2SO_3)$
- B. 0.1 mol·L⁻¹ Na₂S₂O₅ 水溶液中 $K_{a1} \cdot K_{a2} + K_{a1} \cdot c(H^*) + c^2(H^*) = \frac{2c(Na^*)c^2(H^*)}{c(H_sO_1)}$
- C. 初始 pH 由 6 升至 9, $\frac{\Delta(\Phi \oplus \Phi \oplus \Phi)}{\Delta(\Phi \oplus \Phi)} > \frac{3}{2}$ 的主要原因是发生反应③
- D. 初始 pH 由 6 降至 5, 单质 S 减少的主要原因是部分 S² 转化为 H_S 二、非选择题: 本题共 5 小题, 共 60 分。
- 11. (13 分) 利用炼钢锌灰 (主要成分为 ZnO、ZnFe₂O₄ 和 Fe₂O₃, 含少量 As₂O₃、CuO 等 杂质) 为原料制备锌的工艺流程如下。

- (1)"焙烧"的目的是将难以溶浸的 ZnFe₂O₄ 转化为 ZnO, 该过程 _____ 氧化还原反应 (填"是"或"不是")。
- (2) "氨没"过程, 氨浓度为 1 mol·L⁻¹ 时, 298 K 时锌配合物种类与 pH 关系如图。
- ①控制氨浸液 pH 为 10~11, ZnO 溶解为 Zn (NH₃)₄ 的离子方程式为 _____。
- ②已知 Zn^{2*}(aq)+4NH₃(aq) → Zn(NH₃)^{2*}(aq) ΔH<0。当浸取液足量时,随着浸取液温度升高,ZnO 溶解低反而降低的原因是 _____。

(3)"除岬"过程:
①AsO3 ⁻ 转化为 FeAsO4 的肉子方程式为。
②已知 Fe(OH), 胶体粒子吸附 Fe ²⁴ 带正电荷。适当增加 FeCl ₂ 的用量可提高砷去除率的原
因及。
(4)"电解"过程电极极采用涂钉钛板和铝板。
①阴极沉积锌的电极反应为。
②阳极产生的 Cl ₂ 会被 NH, 还原。理论上阴极沉积 9.75 g Zn, 阳极产生的 N ₂ 在标准状况
下的体积为。
12. (14分) 某实验小组在探究 Fe3+ 对氨法脱硫工艺的影响。
步骤 I 模拟氨法脱硫
在 在 近风 树中选择 合适 的
A
A B C
(1) 装置 A 中盛放液体药品的仪器名称为。
(2) 装型 B 中使用多孔球泡的目的是。
(3) 装置 C 中盛放的药品是。
(4) 取 2.00 mL 装置 B 中制得溶液[S(N)含量以 HSO₃ 计]于盛有 20.00 mL 0.1000 mol·L-
示准碘溶液的碘瓜瓶中,调节 pH 后以淀粉为指示剂,用 0.2000 mol·L ⁻¹ Na ₂ S ₂ O ₃ 溶液进行滴
定, 平均消耗 Na ₂ S ₂ O ₃ 溶液的体积为 8.00 mL。.
①碘虽瓶中 I₂和 HSO₃反应的肉子方程式为。
②步骤 I 中制得溶液 c(HSO ₃) =。
③若直接使用标准碘溶液滴定 HSO_3 ,则会导致测得 $c(HSO_3)$ (填 "偏大"
偏小"或"无影响")。 _'
步骤Ⅱ 亚硫酸氢铵的氧化
取步骤 I 制得溶液平均分成 5 份, 分别添加·FeCl, (HCl 酸化) 使溶液中 Fe ³⁺ 达到指定浓
度,持续通人空气,反应 180 min 后,测得各组 $c(\mathrm{HSO}_3^-)$ 变化量及 $c(\mathrm{SO}_4^{2-})$ 变化量如下表所
π . :

组别	1	2	3	4	5 0.02 mol·L ⁻¹ 0.551	
c(Fe³·)/ mol·L-¹	0	0.001 mol·L-1	0.005 mol·L ⁻¹	0.01 mol·L ⁻¹		
$\Delta c (HSO_3^-) / mol \cdot L^{-1}$	0.533	0.535	0.542	0.549		
$\Delta c(SO_4^{2-})/ \text{mol} \cdot L^{-1}$	ac(SO ₄ ²⁻)/ mol·L ⁻¹ 0.470		0.518	0.526	0.525	

(5)	实验组别	1	的目的是	
-----	------	---	------	--

(6)
$$c(Fe^3)$$
过商时, HSO_3 的氧化率 $[\frac{\Delta c(SO_4^2)}{\Delta c(HSO_3)}]$ 降低的原因为 ______。

- A. 0.005~0.01 mol·L-1
- B. 0.01~0.02 mol·L-1
- C. 0.005~0.02 mol·L-1
- D. 0.001~0.01 mol·L-1

主反应:
$$2CH_2 = CH_2(g) + O_2(g) \Longrightarrow 2 \stackrel{O}{\longleftarrow} (g) \Delta H_3$$

制反应:
$$CH_2 = CH_2(g) + 3O_2(g) \Longrightarrow 2CO_2(g) + 2H_2O(g)$$
 $\Delta H_2 = -1334.6 \text{ kJ·mol}^{-1}$

(2) 一定条件下,向 1 L密闭容器中通人 2 mol CH₂ = CH₂(g)和 2 mol O₂(g), 平衡时公 的选择性 $\frac{n(\sqrt{0})}{n(\frac{1}{2} + \frac{1}{2} + \frac{1}{2})}$ 为 0.6, 乙烯的平衡转化率为 0.6, 则该温度下主反应的

(3) 以上过程反应机理如下:

反应 I:
$$Ag(s)+O_2(g) = Ag+O_2^-(s)$$
 设

反应 II:
$$CH_2 = CH_2(g) + Ag^*O_2^-(s) = \bigcirc_{-}^{O}(g) + Ag^*O^-(s)$$
 快

一定能够提高主反应反应逐率的措施有 _____(填标号)。

- A. 升高温度 B. 通人衍性气体 C. 增大 $CH_2 = CH_2$ 浓度 D. 增大 O. 浓度

(4) 加入 1.2-二氮乙烷会发生 2Cl(g) + 2Ag+O-(s) = 2AgCl(s) + O2(g)。一定条件下, [

应经过一定时间后, 个 产率及选择性与 1,2-二氟乙烷浓度关系如图。

(5) 反应结束后, 控制氨水浓度对失活催化剂 (主要成分是 AgCl) 进行回收。25℃时, K_m (AgCl)=10^{-9.74}, Ag*(aq) + 2NH₃(aq) == [Ag(NH₃)₂]* (aq) K_n =10^{10.46}

①
$$AgCl(s) + 2NH_3(aq) = [Ag(NH_3)_2]^*(aq) + Cl^*(aq) K = ____(填数值)_0$$

②1 L 氨水中至少含有 _____ mol NH, 才能回收 1 mol AgCl。

14. (10 分) 利用四辛基膦油酸型离子液体 [Pssss] [Oleate] (结构如下图 "无环状结构") 可回收三元锂正极材料 (LiNi,Co,Mn,O_x) 中的金属离子。全科试题免费下载公众号《高中僧课堂》

回答下列问题:

- (1) [Psss] [Oleate] 中电负性最大的元素基态原子的价电子排布式为 _____。
- (2) [Pssss]* 中 P 原子的杂化类型为 ______; 1 mol [Pssss] [Oleate] 含有 π 键的数目为 _____
 - (3) 某 LiNi, Co, Mn, O₂(x+y+z=1)品胞如右图所示, 每层原子种类相同。
 - ①每个品胞中含有的 LiNi,Co,Mn,O2 单元数有 _____ 个。
 - ②该晶体中 Ni 元素的化合价为 _____。
 - (4) 回收过程发生如下转化:

LiNi_xCo_yMn_zO₂ 预处理 M²⁺(M:Ni、Co、Mn) [P₈₈₈₈] [Oleate] M²⁺ ([Oleate])₂

- ②[Psss] [Oleate]提取金属离子能为:Co2-____Mn2+(填">"或"<")。
- ③pH 过低时, [Psss] [Oleate]提取金属离子能力减弱的原因为 _____。

15. (10分) 鼠尾草广泛应用于医药领域, 其成分中有大量的萜类化合物。其中一种中间体 (F) 的合成路线如下。

OH
$$A \qquad C_{10}H_{14}O \qquad LiBr \qquad C_{10}H_{13}BrO$$

$$A \qquad B \qquad C$$

$$C_{12}CuCN \downarrow$$

$$OCH_3 \qquad OCH_3 \qquad CH_3CH_2OH \qquad OCH_3$$

$$CH_2Br \qquad CO_2CH_2CH_3 \qquad CN$$

$$E \qquad D$$

- (1) A 的官能团名称为 _____。
- (2) A 转化为 B 的反应类型为 _____。
- (3) C→D 的反应机理示意图如下 (已知: Ar 表示芳香环, 转化 I 中略去部分产物):

$$ArBr \xrightarrow{CuCN} I \qquad [Ar-Br]: [Cu(CN)_2]^-$$

$$[Ar-Br]: [V] \qquad [V] \qquad [V] \qquad [CuBr+CN]^-$$

$$ArBr \qquad Z \qquad CuBr+CN^-$$

- ①中间体 Z 为 ______
- ②若用 KCN 代替 CuCN 则无法按上述机理进行反应, 其原因为 _____。
- (4) D→E 为两步反应: D→G→E, 其中第二步为取代反应, 其化学方程式为 _____。
- (5) E→F 中 LiAlH, 先将 E 转化为 _____ (填结构简式) 再与 PBr; 反应。
- (6) 化合物 Y 是 E 的同分异构体、同时满足下迷条件:
- ①Y 的核磁共振氢谱有 5 组峰, 峰面积之比为 1:1:2:2:12;
- ②Y 遇到 FeCl, 溶液显紫色, 还可以发生银镜和水解反应。

则 Y 的结构简式为 _____。

名校联盟全国优质校 2023 届高三大联考

化学参考答案及评分细则

说明, 化学方程式或离子方程式中, 化学式写错的不给分; 化学式对而未配平或重要条件错误扣 1分, 气体或沉淀符号未标扣 1分, 以上扣分不累计。

一、选题题(每小题 4 分, 共 40 分)

题号	1	2	3	4	5	6	7	8	9	10
答案	D	В	D	D	С	С	Ð	C	Đ	В

二、填空题(本题包括5个小题,共60分)

二、填空题(本题包括 5 个小题,共 60 分)	
11. (13分)	
(1)不是	(1分)
(2)①ZnO+2NH ₄ ++2NH ₃ ·H ₂ O==Zn(NH ₃) ²⁺ +3H ₂ O	(2分)
②温度升高,生成锌氨配合物(放热反应)的平衡逆向移动	(2分)
(3) ①2AsO 3^- +2Fe 2^+ +3H 2 O 2 ==2FeAsO 4 ↓+2H 2 O+2OH $^-$	(2分)
②Fe(OH)3胶体粒子吸附 Fe3+带正电荷,有利于吸附带负电荷的 AsO4, 开	%成共沉淀 (2
分)	
(4)①[Zn(NH ₃) ₄] ²⁺ +2e ⁻ =Zn+4NH ₃	(2分)
②1.12 L	(2分)
12. (14分)	
(1)分液漏斗	(1分)
(2)增大 SO ₂ 的吸收率	(2分)
(3)碱石灰	(1分)
$(4) (1)I_2 + HSO_3^- + H_2O = SO_4^{2-} + 2I^- + 3H^+$	(2分)
②0.6 mol·L ⁻¹	(2分)
③偏小	(1分)
(5)对比 Fe ³⁺ 能否促进 SO ₃ ²⁻ 的氧化	(2分)
$(6)c(Fe^{3+})$ 过高,溶液酸性增强, SO_3^{2-} 分解程度增大	(2分)
(7)C	(1分)
13. (13分)	
(1)-124.4 kJ·mol ^{-f}	(1分)
(2)4.05	(2分)

压缩体积 (2分) (2分) (3)AD (4)浓度低时抑制副反应增加主反应选择性,浓度较高时则会使催化剂失活降低催化效果 (2分) (5)110072 (2分) (2)2+10^{-0.36} (2分) 14. (10分) $(1)2s^22p^4$ (1分) (各1分,共2 $(2)sp^3$; $6N_A$ 分) (3) 13(1分) (2)+2(1分) (4)①[P888][Oleate]的阴阳离子结构中均含有大量的疏水基团烃基,使其难溶于水 (2分) 2)> (1分) ③pH 过低, C(H+)浓度较大, 使得部分[Oleate]一被质子化, 从而无法和 M2+结合 (2分) 15. (10分) (1)(酚)羟基 (1分) (2)取代反应 (1分) (3) (1) [AFCN]-(1分) ②K⁻氧化性太弱无法实现转化 I, 也无法形成后续的配离子中间体 (1分) осн3 OCH, H₂SO₄ + H20 CH₃CH₂ OH CO CH2CH соон (4)(2分) ĊH₂OH (2分) (5)

(2分)

HCOD

HCOO

(6)