

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A method of preparing a compound according to formula (I):

wherein

A is a carbonyl group -(C=O)-;

B is selected from the group consisting of an oxadiazole ring, an amido group of the formulae -(C=O)-NR₃R₄, and -(CH₂)_n-X-R₈,

wherein the oxadiazole ring is any of the formulae:

(Xa)

(Xb)

R₁ is H or a C₁-C₆-alkyl;

R₂ is selected from the group consisting of aryl, heteroaryl and saturated or unsaturated 3-8-membered cycloalkyl;

R₃ and R₄ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, alkoxy, sulfanyl, acyl, alkoxy carbonyl, aminocarbonyl, saturated or unsaturated 3-8-membered cycloalkyl which may contain 1 to 3 heteroatoms selected of N, O, S, aryl, heteroaryl, C₁-C₆-alkyl aryl and C₁-C₆-alkyl heteroaryl;

X is O or NR₉;

R₈ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₁-C₆-alkyl aryl, heteroaryl, C₁-C₆-alkyl heteroaryl, C₂-C₆-alkenyl, C₂-C₆-alkenyl aryl, C₂-C₆-alkenyl heteroaryl, C₂-C₆-alkynyl, C₂-C₆-alkynyl aryl, C₂-C₆-alkynyl heteroaryl, C₃-C₈-cycloalkyl, heterocycloalkyl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkyl carboxy, acyl, C₁-C₆-alkyl acyl, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, alkoxycarbonyl, C₁-C₆-alkyl alkoxycarbonyl, aminocarbonyl, C₁-C₆-alkyl aminocarbonyl, C₁-C₆-alkyl acylamino, C₁-C₆-alkyl ureido, amino, C₁-C₆-alkyl amino, sulfonyloxy, C₁-C₆-alkyl sulfonyloxy, sulfonyl, C₁-C₆-alkyl sulfonyl, sulfinyl, C₁-C₆-alkyl sulfinyl, C₁-C₆-alkyl sulfanyl and C₁-C₆-alkyl sulfonylamino;

R₇ is selected from the group consisting of hydrogen, sulfonyl, amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, wherein said alkyl, alkenyl, alkynyl chains are optionally interrupted by a heteroatom selected from N, O or S, aryl, heteroaryl, saturated or unsaturated 3-8-membered cycloalkyl, heterocycloalkyl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl groups are optionally fused with 1-2 further cycloalkyl, heterocycloalkyl, aryl or heteroaryl group, an acyl moiety, C₁-C₆-alkyl aryl, C₁-C₆-alkyl heteroaryl, C₁-C₆-alkenyl aryl, C₁-C₆-alkenyl heteroaryl, C₁-C₆-alkynyl aryl, C₁-C₆-alkynyl heteroaryl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkenyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkynyl cycloalkyl, C₁-C₆-alkenyl heterocycloalkyl, C₁-C₆-alkynyl cycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, alkoxycarbonyl, aminocarbonyl, C₁-C₆-alkyl carboxy, C₁-C₆-alkyl acyl, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, C₁-C₆-alkyl alkoxy-carbonyl, C₁-C₆-alkyl aminocarbonyl, C₁-C₆-alkyl acylamino, C₁-C₆-alkyl ureido, C₁-C₆-alkyl amino, C₁-C₆-alkyl ammonium, C₁-C₆-alkyl sulfonyloxy, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfinyl, C₁-C₆-alkyl sulfanyl, C₁-C₆-alkyl sulfonylamino, C₁-C₆-alkyl aminosulfonyl, hydroxy, halogen and cyano;

R₉ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₁-C₆-alkyl aryl, C₁-C₆-alkyl heteroaryl, aryl and heteroaryl;

R₈ and R₉ can form together with the N atom to which they are linked to, a 5-8 membered saturated or unsaturated heterocycloalkyl ring; and

n is an integer from 1 to 3;

said method comprises the following steps :

Step 1 : transformation of the pyrrolidine of formula (II) into an acyl derivative of formula (IV) using an acylating agent (III) :

Step 2 : Oxidation of the acyl derivative (IV), with a oxidizing agent, obtaining a pyrrolidone of formula (V) :

Step 3 : Transformation of the pyrrolidone of formula (V) into compound (VII) using a suitable alkoxyamine, aryloxylamine or hydroxylamine of general formula (VI) :

Step 4 : Transformation of the compound (VII) with an amine of general formula (VIII) or an N-hydroxyamidine of general formula (IX) thus yielding

compounds (Ia) and (Ib), or transforming compound (VII) first into a nitrile (VIIa), which is then transformed into the hydroxyamidine (VIIb) that is then reacted with a carboxylic acid R⁷-COOH to yield compound (Ic), or first esterifying and then reducing compound (VII) using a suitable esterification or reducing agent, respectively, thus yielding compound (Id):

Claim 2 (Currently Amended): The method of preparing a compound according to formula (I) according to claim 1:

wherein

A is a carbonyl group -(C=O)-;

B is either an amido group of formula -(C=O)-NR₃R₄ or an oxadiazole ring of any of the formulae:

(Xa)

(Xb)

R₇ is selected from the group consisting of hydrogen, sulfonyl, amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, wherein said alkyl, alkenyl, alkynyl chains are optionally interrupted by a heteroatom selected from N, O or S, aryl, heteroaryl, saturated or unsaturated 3-8-membered cycloalkyl, heterocycloalkyl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl groups are optionally fused with 1-2 further cycloalkyl, heterocycloalkyl, aryl or heteroaryl group, an acyl moiety, C₁-C₆-alkyl aryl, C₁-C₆-alkyl heteroaryl, C₁-C₆-alkenyl aryl, C₁-C₆-alkenyl heteroaryl, C₁-C₆-alkynyl aryl, C₁-C₆-alkynyl heteroaryl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkenyl cycloalkyl, C₁-C₆-alkenyl heterocycloalkyl, C₁-C₆-alkynyl cycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, alkoxy carbonyl, aminocarbonyl, C₁-C₆-alkyl carboxy, C₁-C₆-alkyl acyl, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, C₁-C₆-alkyl alkoxy-carbonyl, C₁-C₆-alkyl aminocarbonyl, C₁-C₆-alkyl acylamino, C₁-C₆-alkyl ureido, C₁-C₆-alkyl amino, C₁-C₆-alkyl ammonium, C₁-C₆-alkyl sulfonyloxy, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfinyl, C₁-C₆-alkyl sulfanyl, C₁-C₆-alkyl sulfonylamino, C₁-C₆-alkyl aminosulfonyl, hydroxy, halogen and cyano;

R₁ is H or a C₁-C₆-alkyl;

R₂ is selected from the group consisting of aryl, heteroaryl and saturated or unsaturated 3-8-membered cycloalkyl;

R₃ and R₄ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, alkoxy, sulfanyl, acyl, alkoxycarbonyl, aminocarbonyl, saturated or unsaturated 3-8-membered cycloalkyl which may contain 1 to 3 heteroatoms selected of N, O, S, aryl, heteroaryl, C₁-C₆-alkyl aryl and C₁-C₆-alkyl heteroaryl;

said method comprises the following steps :

Step 1 : transformation of the pyrrolidine of formula (II) into an acyl derivative of formula (IV) using an acylating agent (III) :

Step 2 : Oxidation of the acyl derivative (IV), with a oxidizing agent,

obtaining a pyrrolidone of formula (V) :

Step 3 : Transformation of the pyrrolidone of formula (V) into

compound (VII) using a suitable alkoxyamine, aryloxylamine or hydroxylamine of general formula (VI) :

Step 4 : Transformation of the compound (VII) with an amine of general formula (VIII) or an N-hydroxyamidine of general formula (IX) thus yielding compounds (Ia) and (Ib), or transforming compound (VII) first into a nitrile (VIIa), which is then transformed into the hydroxyamidine (VIIb) that is then reacted with a carboxylic acid R⁷-COOH to yield compound (Ic). :

Claim 3 (Currently Amended): The method according to claim 1 [[or 2]], wherein the acyl chloride of step 1 is 1'1'-biphenyl-4-carbonyl chloride or 2'-methyl-1'1'-biphenyl-4-carbonyl chloride.

Claim 4 (Currently Amended): The method according to ~~any of claims 1 to 3~~ claim 1, wherein the *oxidizing* agent of Step 2 is pyridine-sulfurtrioxide complex (Py-SO₃) in combination with DMSO.

Claim 5 (Currently Amended): The method according to ~~any of claims 2 to 4~~ claim 2, wherein the reaction is performed in presence of triethylamine.

Claim 6 (Currently Amended): The method according to ~~any of claims 1 to 5~~ claim 1, wherein the alkoxyamine used in step 3 is O-methylhydroxylamine hydrochloride.

Claim 7 (Currently Amended): The method according to ~~any of claims 1 to 6~~ claim 1, wherein R₁ is a methyl group, R₂ is a biphenyl.

Claim 8 (Currently Amended): The method according to ~~any of claims 1 to 7~~ claim 1, wherein B is an amido group of the formula -(C=O)NHR₅, with R₅ being an C₁-C₆-alkyl aryl group.

Claim 9 (Original): The method according to claim 8, wherein R₅ is a phenylethyl group, which is substituted with an amino or hydroxy group.

Claim 10 (Currently Amended): The method according to ~~any of claims 1 to 7~~ claim 1, wherein B is a 1,2,4 oxadiazole substituent

with R₇ being a C₁-C₆-alkyl or a cycloalkyl optionally containing one or 2 heteroatoms.

Claim 11 (Currently Amended): The method according to ~~any of claims 1, 3, 4, or 6 to 7~~ claim 1, wherein B is -(CH₂)_n-X-R₈, with X being O, R₈ being hydrogen; and n being 1.

Claim 12 (Currently Amended): The method according to ~~any of claims 1 to 11~~ claim 11, wherein the compound is selected from the group consisting of:

(2S,4E and 4Z)-N-[(2S)-2-hydroxy-2-phenylethyl]-4-(methoxyimino)-1-[(2'-methyl[1,1'-biphenyl]-4-yl)carbonyl]-2-pyrrolidine carboxamide,
(3E,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-3-pyrrolidinone *O*-methyloxime,
(3Z,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-3-pyrrolidinone *O*-methyloxime,
(3E,5S)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-1-[(2'-methylbiphenyl-4-yl)carbonyl]pyrrolidin-3-one *O*-methyloxime,
(3Z,5S)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-1-[(2'-methylbiphenyl-4-yl)carbonyl]pyrrolidin-3-one *O*-methyloxime,
(3EZ,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-{5-[(dimethylamino)-methyl]-1,2,4-oxadiazol-3-yl}-3-pyrrolidinone *O*-methyloxime,
(3Z,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-{5-[(dimethylamino)-methyl]-1,2,4-oxadiazol-3-yl}-3-pyrrolidinone *O*-methyloxime,
(3E,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-{5-[(dimethylamino)-methyl]-1,2,4-oxadiazol-3-yl}-3-pyrrolidinone *O*-methyloxime,

(3EZ,5S)-5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one *O*-methyloxime,
(3Z,5S)-5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one *O*-methyloxime,
(3E,5S)-5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one *O*-methyloxime, and
(3Z/E, 5S)-1-(biphenyl-4-yl carbonyl)-5-hydroxymethyl) pyrrolidine-3-one-*O*-methyloxime.