Aula 2b – Fundamentos da imagem digital

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

Relacionamento básico entre pixels

Vizinhança entre pixels

Adjacência

Caminho (ou curva) digital

Regiões conectadas e componentes conectados

Fundo e objetos de uma imagem

Borda contorno, ou fronteira

Operações lógicas e aritméticas entre imagens

Operações aritméticas

Operações lógicas

Medidas de distância

Vizinhança de um pixel

Vizinhança-4 de p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Vizinhança-diagonal de p, $N_D(p)$:

$$(x-1, y-1), (x-1, y+1), (x+1, y-1), (x+1, y+1)$$

Vizinhança-8 de p, $N_8(p)$:

$$N_4(p) U N_D(p)$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Adjacência

Adjacencia-4: Dois pixels p e q são adjacentes-4 se: Os valores de p e q pertencem ao conjunto V eO pixel q está no conjunto $N_4(p)$

Adjacencia-8: Dois pixels p e q são adjacentes-8 se: Os valores de p e q pertencem ao conjunto V e O pixel q está no conjunto $N_s(p)$.

Adjacência-m (adjacência mista): Dois pixels p e q são adjacentes-m se:

- (i) q está em $N_{A}(p)$, OU
- (ii) q estiver em $N_D(p)$ e a intersecção entre $N_4(p)$ e $N_4(q)$ não contém nenhum pixel cujos valores pertencem a V.

Caminho (ou curva) digital

Um caminho do pixel p com coordenadas (x, y) ao pixel q com coordenadas (s, t) é uma sequencia de pixels distintos com coordenadas:

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

em que:
 $(x_0, y_0) = (x, y),$
 $(x_n, y_n) = (s, t)$ e

Se $(x_0, y_0) = (x_n, y_n)$ o caminho é fechado

Dependendo do tipo de adjacência escolhida, os caminhos podem ser:

os pixels (x_i, y_i) e (x_{i-1}, y_{i-1}) são adjacentes para $1 \le i \le n$

caminho-4

caminho-8

caminho-m

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Caminho (ou curva) digital

- Considerando vizinhança-4
- Um dos caminhos entre p em (2, 5) e q em (2,2):
 - (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um dos caminhos entre p em (2,3) e q em (6,2):
 - Não existe um caminho.

- Considerando vizinhança-8
- Um dos caminhos entre p em (2, 5) e q em (2,2):
 - (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- Um dos caminhos entre p em (2,3) e q em (6,2):
 - (2,3), (2,2), (3,2), (4,3), (5,3), (6,3), (6,2).

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

6

Regiões conectadas e componentes conectados

Região conectada

Qualquer região R que existe pelo menos um caminho entre quaisquer pares de pixels (p, q)

Componente conectado

Região conectada máxima Não é um subconjunto próprio de nenhuma região conectada maior

Região não-conectada Região conectada não máxima 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0 0 0 Região conectada máxima

Região conectada máxima (Componente conectado)

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Imagem binária

Componentes conectados

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Fundo e objetos de uma imagem

Frente (foreground) da imagem (objetos)

Conjunto de todos os componentes conectados na imagem Fundo (*background*) da imagem

O complemento do conjunto dos componentes conectados

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

9

Borda, contorno ou fronteira

- Borda de um componente conectado C:
 - Conjunto de pontos em C que são adjacentes aos pontos do complemento de C.
 - Dependente da conectividade.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

10

Borda, contorno ou fronteira

- Borda externas de um componente conectado C:
 - Conjunto de pontos no complemento de C, (C)^c, que são adjacentes aos pontos em C.

 $N_8(p)$

- Bordas sempre formam um conjunto fechado.
 - Algoritmos seguidores de contorno.

0 2 1 1 1 1 1 3 0 0 0 1 0 4 1 5 1 6 7 X

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Operações aritméticas

- Operações aritméticas são realizadas entre pixels correspondentes
- SOMA

$$-g(x, y) = f_1(x, y) + f_2(x, y)$$

SUBTRAÇÃO

-
$$g(x, y) = f_1(x,y) - f_2(x,y)$$

MULTIPLICAÇÃO

$$- g(x, y) = f_1(x,y) \times f_2(x,y)$$

- DIVISÃO
 - $g(x, y) = f_1(x,y) / f_2(x,y)$

Tipos de dados no Python (scikit-image)

dtype	de	até	Descrição
uint8	0	255	Inteiro de 8 bits sem sinal
uint16	0	65,535	Inteiro de 16 bits sem sinal
uint32	0	4,294,967,295	Inteiro de 32 bits sem sinal
float	-1.0	+1.0	Ponto flutuante de 64 bits
int8	-128	127	Inteiro de 8 bits com sinal
int16	-32,768	+32,767	Inteiro de 16 bits com sinal
int32	-2 ³¹	2 ³¹ - 1	Inteiro de 32 bits com sinal

Função	Descrição			
img_as_float	Converte para float			
img_as_ubyte	Converte para uint8			
img_as_uint	Converte para uint16			
img_as_int	Converte para int16			

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

1.

Operações aritméticas

SOMA

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

$g' = \frac{L-1}{g_{max} - g_{min}} \times (g - g_{min})$								
	0	1	2	3	4	У		
0	0	0	0	0	0			
1	2	5	6	7	3			
2	2	5	6	7	3			
3	2	3	2	2	2			
4	3	2	3	2	2			
X						•		
1	7							

g	p/9*7	p′
0	0.00	0
1	0.77	1
2	1.55	2
3	2.33	2
4	3.11	3
5	3.88	4
6	4.66	5
7	5.44	5
8	6.22	6
9	7.00	7

Operações lógicas e aritméticas

SUBTRAÇÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

 $g'(x,y) = \max(g(x,y),0)$

g'(x,y) = |g(x,y)|

 $g'(x,y) = g(x,y) - \min(g(x,y))$

g(x,y) < 0? L + g(x,y) : g(x,y)

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

1:

(*)

Operações lógicas e aritméticas

MULTIPLICAÇÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

$g(x,y) = f_1(x,y) \times f_2(x,y)$

(*) Corrigir conforme fizemos com a SOMA e SUBTRAÇÃO

MULTIPLICAÇÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

$f_2(x,y)$

$g(x,y) = f_1(x,y) \times f_2(x,y)$

Operações lógicas e aritméticas

DIVISÃO

k = 3 (número de bits) $L = 2^k = 2^3 = 8$ Intervalo: [0, L-1] ou [0, 7]

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Operações lógicas

- Operações logicas ocorrem entre imagens binárias
 - Pixels == 0 → False
 - Pixel == $1 \rightarrow$ True

А	В	NOT A	A AND B	A OR B	A NAND B	A NOR B	A XOR B
0	0	1	0	0	1	0	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	1	0

Operações lógicas

Medidas de distância

Considere três pixels e suas respectivas coordenadas

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

p em (x, y)

q em (s, t)

z em (v, w)

D é uma função ou medida de distância

$$D(p, q) \ge 0$$

$$D(p, q) = 0$$
 se $p = q$

$$D(p,\,q)=D(q,\,p)$$

$$D(p,\,z)\leq D(p,\,q)+D(q,\,z)$$

Distância Euclidiana

Distância cityblock

Distância chessboard

Distância Euclidiana

A distância euclidiana entre os pixels p em (x, y) e q em (s, t)

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

Para p com coordenadas (2,2) e:

q com coordenadas (1,2):

$$D_e(p,q) = \sqrt{(2-1)^2 + (2-2)^2}$$

$$D_e(p,q) = \sqrt{1^2 + 0^2}$$

$$D_e(p,q) = \sqrt{1} = 1$$

q com coordenadas (1,1):

$$D_e(p,q) = \sqrt{(2-1)^2 + (2-1)^2}$$

$$D_e(p,q) = \sqrt{1^2 + 1^2} = \sqrt{2}$$

g com coordenadas (0,3):

$$D_e(p,q) = \sqrt{(2-0)^2 + (2-3)^2}$$

$$D_e(p,q) = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

$$D_e(p,q) = \sqrt{(2-6)^2 + (-1)^2} = \sqrt{5}$$

	0	1	2	3	4	у
0	$\sqrt{8}$	√ <u>5</u>	2	$\sqrt{5}$	$\sqrt{8}$	
1	√ <u>5</u>	$\sqrt{2}$	1	$\sqrt{2}$	√ <u>5</u>	
2	2	1	0	1	2	
3	√ <u>5</u>	$\sqrt{2}$	1	$\sqrt{2}$	√ <u>5</u>	
4	$\sqrt{8}$	√5	2	√ <u>5</u>	$\sqrt{8}$	
						1

Distância entre o pixel com coordenadas (2, 2) e todos os demais pixels.

x ↓

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Distância city block

Distância city block entre p em (x, y) e q em (s, t)

$$D_4(p, q) = |x - s| + |y - t|$$

Distância chessboard

Distância chessboard entre p em (x, y) e q em (s, t)

$$D_8(p, q) = max(|x-s|, |y-t|)$$

	0	1	2	3	4	У
0	2	2	2	2	2	
1	2	1	1	1	2	
2	2	1	0	1	2	
3	2	1	1	1	2	
4	2	2	2	2	2	
х ,	/					ı

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

Referencias

MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.

Disponível para download no site do autor (Exclusivo para uso pessoal)

http://dainf.ct.utfpr.edu.br/~hvieir/pub.html

Seção 2.2 – pág. 25

Seção 2.3 – pág 28 (exceto Seção 2.3.3)

GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009. Disponível na Biblioteca Virtual da Pearson.

Seção 2.5 – pág. 44

Seção 2.6 – pág. 46 (até 2.6.4, parar antes de Conjuntos fuzzy (pág. 54)).

J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.

http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

Seção 3

Referencias e material complementar

- scikit-image. Image data types and what they mean.
 - https://scikit-image.org/docs/dev/user_guide/data_types.html

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN392 (PER 2020-2)

FIM