Задача 1. Докажете, че събитията A и B са независими, ако индикаторите 1_A , 1_B са независими случайни величини.

Доказателство:

$$\mathbb{P}(A\cap B) = \mathbb{P}(1_{A\cap B} = 1) = \underbrace{\mathbb{P}(1_A 1_B = 1)}_{\text{само когато}} = \mathbb{P}(1_A = 1\cap 1_B = 1) \overset{\text{незав.}}{\underset{1_A \perp \!\!\! \perp 1_B}{=}}$$
 и двата индикатора са $1^{-\text{ца}}$

$$=\mathbb{P}(1_A=1)\mathbb{P}(1_B=1)=\mathbb{P}(A)\mathbb{P}(B)$$
, което искахме да докажем.

Задача 2. (независимост дискретни сл. вел.)

- 1. Кога наричаме две събития независими? Дефинирайте кога наричаме две дискретни случайни величини независими и кога некорелирани.
- 2. Нека хвърляме n>3 пъти монета с вероятност за ези p и дефинираме събитията A= "третото хвърляне е ези" и B= "общо са се паднали 3 езита". При какви условия A и B са независими?

Решение:

2.1. Две събития A и B се наричат независими и бележим $A \perp \!\!\! \perp B$, тогава и само тогава когато $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$ (Ако $\mathbb{P}(A) > 0 \Rightarrow \mathbb{P}(B \mid A) = \mathbb{P}(B)$, т.е. независимостта означава, че случването на събитието A не ни носи никаква информация за B).

Две дискретни случайни величини $X,\ Y$ във вероятностно пространство V се наричат независими и бележим $X \perp\!\!\!\perp Y$, тогава и само тогава когато

$$\mathbb{P}(X=x_j;\ Y=y_k)=\mathbb{P}(X=x_j\cap Y=y_k)\stackrel{def.}{=}\mathbb{P}(X=x_j)\mathbb{P}(Y=y_k), \, \forall j,k.$$

Целта на корелацията е да мери някаква степен на линейност между X и Y. Ако $DX < \infty$ и $DY < \infty$, тогава $\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$ се нарича коефициент на корелация между X и Y.

Това реално е нормираната ковариация на X и Y, където $cov(X,Y)=\mathbb{E}\left[(X-\mathbb{E}X)(Y-\mathbb{E}Y)\right]$ се нарича ковариация. За да бъдат двете случайни величини X и Y некорелирани е необхоимо и достатъчно

лин. функц.

$$cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}X)(Y - \mathbb{E}Y)\right] = \mathbb{E}(XY - X\mathbb{E}Y - Y\mathbb{E}X + \mathbb{E}XY) \stackrel{\mathbb{E}}{=} \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y = 0$$
, т.е. $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$. За дискретния случай това е:

$$\sum_{i} \sum_{j} x_i x_j \mathbb{P}(X = x_i \cap Y = y_j) = \sum_{i} x_i \mathbb{P}(X = x_j) \sum_{j} y_j \mathbb{P}(Y = y_i)$$

2.2 Дефинираме си с успех падането на "ези" от хвърлянето на дадена монета.

(1) $\mathbb{P}(A) = p$ (интересуваме се само от третия успех, който е с вероятност p)

B е конкретен изход от биномно разпределена случайна величина Bin(n,p) за k=3 успеха.

(2)
$$\mathbb{P}(B) = \mathbb{P}(\text{общо 3 успеха}) = \binom{n}{3} p^3 (1-p)^{n-3}$$

Нека $X_i = \{$ на $i^{ ext{-тата}}$ позиция се пада "ези" $\}$, $1 \leq i \leq n$. X_i са независими в съвкупност (бернулиеви експерименти).

 $\mathbb{P}(A \cap B) = \mathbb{P}(X_3 \cap \{\text{на останалите } n-1 \text{ позиции разпределяме 2 успеха}\}) = \mathbb{P}(X_3) \times \mathbb{P}(\{\text{на останалите } n-1 \text{ позиции разпределяме 2 успеха}\}) = p \times \binom{n-1}{2} p^2 (1-p)^{n-3}.$

За да са независими събитията A и B е необходимо и достатъчно да е изпълнено условието: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, това се случва когато:

$$\binom{n-1}{2}p^3(1-p)^{n-3} = \binom{n}{3}p^4(1-p)^{n-3}, \text{ т.е. когато } p = \frac{\binom{n-1}{2}}{\binom{n}{3}} = \frac{\frac{(n-1)!}{(n-3)!2!}}{\frac{n!}{(n-3)!3!}} = \frac{3}{n}.$$

Следователно A и B са независими когато np=3

Задача 3. Нека X е непрекъсната случайна величина с функция на разпределение F, която е строго монотонно растяща върху реалната права. Покажете, че $Y = F(X) \in \mathcal{U}(0,1)$. Коментар: Всъщност условията върху F могат да се облекчат, но идеята е, че ако можем да симулираме равномерно разпределение с компютър и знаем F^{-1} , то $F^{-1}(Y)$ ще ни е симулация за X.

Решение:

$$F_Y(y) \stackrel{def.}{=} \mathbb{P}(Y < y) = \mathbb{P}\left(F(X) < y\right) \stackrel{F \uparrow \text{ мон.}}{=} \mathbb{P}\left(X < F^{-1}(y)\right) = F\left(F^{-1}(y)\right) = y.$$
 Следователно $Y \in \mathcal{U}(0,1)$, тъй като $F_{\mathcal{U}}(t) = t = F_Y(t), \ \forall t \in [0,1]$ (функциите на разпределение на равномерното и Y са равни).

Задача 4. (независимост непрекъснати сл. вел.)

- 1. Дефинирайте кога наричаме две непрекъснати случайни величини независими и кога некорелирани.
- 2. Дефинирайте функция пораждаща моментите $M_X(t)$ на случайната величина X. Нека $X \sim \mathcal{N}(0,1)$. Пресметнете $M_X(t)$. На колко са равни $\mathbb{E} X,\, \mathbb{E} X^2,\, \mathbb{E} X^3$?
- 3. Нека $X \sim \mathcal{N}(0,1)$. Потърсете случайна величина, която е полином на X и е некорелирана, но не е независима с X.

Решение:

4.1. Нека $X=(X_1,X_2)$. Тогава $X_1 \perp \!\!\! \perp X_2$, когато $F_X(x)=F_{X_1}(x_1)F_{X_2}(x_2)$ или $\mathbb{P}(X_1 < x_1, X_2 < x_2) = \mathbb{P}(X_1 < x_1)\mathbb{P}(X_2 < x_2)$ за всяко $x=(x_1,x_2) \in \mathbb{R}^2$. Ако X е вектор от НСВ, то независимостта е еквивалентна на $f_X(x_1,x_2)=f_{X_1}(x_1)f_{X_2}(x_2), \ \forall x=(x_1,x_2) \in \mathbb{R}^2$.

Аналогично както при дискретния вариант имаме, че X и Y са некорелирани когато

$$\int_{D_X} \int_{D_Y} x\,y\,\,\mathrm{d}\,F_Y(y)\mathrm{d}\,F_X(x) = \int_{D_X} x\,\,\mathrm{d}\,F_X(x) \int_{D_Y} y\,\,\mathrm{d}\,F_Y(y),$$
 където F_Z е функцията на разпределение на HCB Z .

4.2. Нека X е случайна величина. Ако $\mathbb{E}e^{tX}$ съществува за $t\in (-\varepsilon,\varepsilon)$ и някое $\varepsilon>0$, то $M_{\scriptscriptstyle X}(t)=\mathbb{E}e^{t{\scriptscriptstyle X}}$ за $t\in(-arepsilon,arepsilon)$ се нарича функция на моментите.

Нека $X \sim \mathcal{N}(0,1)$. Тогава,

$$f_X(x) = f_{\mathcal{N}(0,1)} = f_{\mathcal{N}(\mu,\sigma^2)}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx \bigg|_{\substack{\mu = 0 \\ \sigma^2 = 1}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

$$M_X(t) = \mathbb{E}e^{tX} = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{t^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 - 2tx + t^2)}$$

$$= e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-t)^2}{2}} dx = e^{\frac{t^2}{2}}.$$

$$\mathbb{E} X^k = rac{\partial}{\partial t^k} M_X(t) \, \Big|_{t=0}$$
, за $k \geq 1$. Следователно:

$$\mathbb{E}X = \frac{\partial}{\partial t} M_X(t) \Big|_{t=0} = \frac{\partial}{\partial t} e^{\frac{t^2}{2}} \Big|_{t=0} = \frac{2t}{2} e^{\frac{t^2}{2}} \Big|_{t=0} = 0$$

$$\mathbb{E}e^{tX} = \mathbb{E}e^{t\mathcal{N}(0,1)} = \int_0^1 e^{tx} \, \mathrm{d} \, x = \frac{1}{t}(e^t - 1) = f(t), \lim_{n \to \infty} \frac{e^t - 1}{t} \stackrel{\text{Лопитал}}{=} \lim_{t \to 0} \frac{e^t}{1} = 1$$

$$\mathbb{E}X^{2} = \frac{\partial}{\partial t^{2}} M_{X}(t) \Big|_{t=0} = \frac{\partial}{\partial t} \left(t e^{\frac{t^{2}}{2}} \right) \Big|_{t=0} = e^{\frac{t^{2}}{2}} + t \times \frac{2t}{2} \times e^{\frac{t^{2}}{2}} \Big|_{t=0} = e^{\frac{t^{2}}{2}} + t^{2} e^{\frac{t^{2}}{2}} \Big|_{t=0} = 1$$

$$\mathbb{E}X^{3} = \frac{\partial}{\partial t^{3}} M_{X}(t) \Big|_{t=0} = \frac{\partial}{\partial t} \left(e^{\frac{t^{2}}{2}} + t^{2} e^{\frac{t^{2}}{2}} \right) \Big|_{t=0} = t e^{\frac{t^{2}}{2}} + 2t e^{\frac{t^{2}}{2}} + t^{3} e^{\frac{t^{2}}{2}} \Big|_{t=0} = 3t e^{\frac{t^{2}}{2}} + t^{3} e^{\frac{t^{2}}{2}} \Big|_{t=0} = 0$$

4.3.

От 4.2. Доказахме, че за $X \in \mathcal{N}(0,1) \to \mathbb{E} X = 0$.

Търсим полином Y = g(X), за който е изпълнено cov(X,Y) = 0 и $Y \perp \!\!\! \perp X$.

Тъй като Y = g(X) е функция на X, то ще следва че $Y \not\perp\!\!\!\perp X$. За да бъдат некорелирани е необходимо $0 = cov(X,Y) = \mathbb{E}XY - \underbrace{\mathbb{E}X}_{}\mathbb{E}Y = \mathbb{E}XY = \mathbb{E}Xg(X) = \int_{-\infty}^{\infty} xg(x)f_X(x)\mathrm{d}x = \int_{-\infty}^{\infty} xg(x)f_X(x)\mathrm{d}x$

$$= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x g(x) e^{-rac{x^2}{2}} \, \mathrm{d}\, x$$
. Последното ще се нулира когато функцията под интеграла е

нечетна, което е еквивалентно на това
$$xg(x)$$
 да е нечетна или $g(x)$ да е четна. Т.е. $Y=X^2, Y=X^4, \ldots, Y=\cos(X), Y=e^{x^2}+e^{-x^2}$ са все валидни примери.

Задача 5. Нека X е случайна величина с плътност $3(1-x)^2$ за $x\in(0,1)$. Намерете първите два цели момента и изчислете функцията на моментите.

Решение:

Нека първо проверим дали плътността X е добре дефинирана:

$$1 \stackrel{?}{=} \int_{D_X} = f_X(x) dx = \int_0^1 3(1-x)^2 dx = 3 \int_0^1 1 - 2x + x^2 dx = 3 \left(x - \frac{2x}{x} + \frac{x^3}{3} \right) \Big|_0^1 = 3 \left(1 - 1 + \frac{1}{3} \right) = 1.$$

$$M_X(t) = \mathbb{E}e^{tX} = \int_0^1 e^{tX} 3(1-x)^2 dx = 3 \underbrace{\int_0^1 e^{tx} dx - 6 \underbrace{\int_0^1 x e^{tx} dx + 3 \underbrace{\int_0^1 x^2 e^{tx} dx}_{I_3}}_{I_3}$$

$$I_1 := \int_0^1 e^{tx} \, \mathrm{d} \, x = \frac{1}{t} \int_0^1 e^{tx} \, \mathrm{d} \, tx = \frac{1}{t} e^{tx} \bigg|_0^1 = \frac{e^t}{t} - \frac{1}{t}$$

$$I_2 := \int_0^1 x e^{tx} \, \mathrm{d} \, x = \frac{1}{t} \int_0^1 x \, \mathrm{d} \, e^{tx} \stackrel{\text{M.4.}}{=} \frac{1}{t} \left(x e^{tx} \bigg|_0^1 - \underbrace{\int_0^1 e^{tx} \, \mathrm{d} \, x} \right) = \frac{x e^{tx}}{t} \bigg|_0^1 - \frac{1}{t} \left(\frac{e^t}{t} - \frac{1}{t} \right) = \underbrace{\int_0^1 x e^{tx} \, \mathrm{d} \, x}_{I_1}$$

$$= \frac{e^t}{t} - 0 - \frac{e^t - 1}{t^2} = \frac{e^t}{t} - \frac{e^t}{t^2} + \frac{1}{t^2}$$

$$I_3 := \int_0^1 x^2 e^{tx} \, \mathrm{d} \, x = \frac{1}{t} \int_0^1 x^2 \, \mathrm{d} \, e^{tx} \stackrel{\text{M.4.}}{=} \frac{1}{t} x^2 e^{tx} \bigg|_0^1 - \frac{1}{t} \int_0^1 e^{tx} \, \mathrm{d} \, x^2 = \frac{e^t}{t} - \frac{2}{t} \underbrace{\int_0^1 x e^{tx} \, \mathrm{d} \, x}_{I_2} = \underbrace{\int_0^1 x^2 e^{tx} \, \mathrm{d} \, x}_{I_2}$$

$$=rac{e^t}{t}-rac{2}{t}\left(rac{e^t}{t}-rac{e^t}{t^2}+rac{1}{t^2}
ight)=rac{e^t}{t}-rac{2e^t}{t^2}+rac{2e^t-2}{t^3}$$
. Следователно,

$$M_X(t) = 3I_1 - 6I_2 + I_3 = \frac{3e^t}{/t} - \frac{3}{t} - \frac{6e^t}{/t} + \frac{6e^t}{/t^2} - \frac{6}{t^2} + \frac{3e^t}{/t} - \frac{6e^t}{/t^2} + \frac{6e^t}{t^3} - \frac{6}{t^3} = 0$$

$$= -\frac{3}{t} - \frac{6}{t^2} + \frac{6e^t}{t^3} - \frac{6}{t^3}.$$

$$\mathbb{E}X = 3 \int_0^1 x (1 - x)^2 dx = 3 \int_0^1 x - 2x^2 + x^3 dx = 3 \left(\frac{x^2}{2} - \frac{2x^3}{3} + \frac{x^4}{4} \right) \Big|_0^1 =$$

$$= 3 \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = 3 \left(\frac{6 - 8 + 3}{12} \right) = \frac{1}{4}$$

$$\mathbb{E}X^2 = 3 \int_0^1 x^2 (1-x)^2 dx = 3 \int_0^1 x^2 - 2x^3 + x^4 dx = 3 \left(\frac{x^3}{3} - \frac{2x^4}{4} + \frac{x^5}{5} \right) \Big|_0^1 = 3 \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right) = \frac{1}{10} \left(10 - 15 + 6 \right) = \frac{1}{10}.$$

Задача 6. Нека X,Y и Z са случайни величини със стойности в $\mathbb N$ и $f:\mathbb N\to\mathbb N$. Кога наричаме X и Y еднакво разпределени? Да предположим, че последното е изпълнено. Вярно ли е, че f(X) и f(Y) са еднакво разпределени? А X+Z и Y+Z? Докажере или дайте контрапримери. Вярно ли е, че ако X и Z са независими, то стига $\mathbb E(f(X))<\infty$ и $\mathbb E(g(Z))<\infty$, където $g:\mathbb N\to\mathbb N$, то $\mathbb E(f(X)g(Z))=\mathbb E(f(X))\mathbb E(g(Z))$.

Решение:

X и Y са еднакво разпределени $\Leftrightarrow F_X = F_Y$. Ако X,Y са HCB, то $\Rightarrow f_X = f_Y$. Вярно ли е че f(X) и f(Y) са еднакво разпределени, ако $X \stackrel{d}{=} Y$.

Трябва да покажем, че за всяко $n\in\mathbb{N}$ е вярно, че $\mathbb{P}(f(x)=n)=\mathbb{P}(f(Y)=n)$. Но $\{f(X)=n\}=\bigcup_{k\in\mathbb{N}: f(k)=n}\{X=k\}$ или събитието $\{f(X)=n\}$ е обединението на

независимите събития $\{X=k\}$ за тези k, за които f(k)=n. Пример, ако $f(l)=l^2$, то $\{f(X)=n\}$ е празното множесто, ако n не е квадрат и $\{f(X)=n\}=\{x=\sqrt{n}\}$ иначе. Тогава

$$\mathbb{P}(f(X) = n) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = n} \{X = k\}\right) = \sum_{k \in \mathbb{N}: f(K) = n} \mathbb{P}(X = k) = \sum_{k \in \mathbb{N}: f(k) = n} \mathbb{P}(Y = k) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = n} \{Y = k\}\right) = \mathbb{P}(f(Y) = n).$$

 $X + Z \cup Y + Z$?

 $X \perp\!\!\!\perp Y$ и X и Y са разпределени така:

$$\mathbb{P}(X=1) = \mathbb{P}(X=2) = \mathbb{P}(Y=1) = \mathbb{P}(Y=2) = \frac{1}{2}$$
. Нека $Z=-X\Rightarrow \mathbb{P}(Z=-1) = \mathbb{P}(Z=-2) = \frac{1}{2}$. Тогава $\mathbb{P}(X+Z=n) = \mathbb{P}(n=0) = \begin{cases} 1, & n=0 \\ 0, & n\neq 0 \end{cases}$ $\mathbb{P}(Y+Z=n) = \mathbb{P}(Y-X=n)$. Нека $n=1\Rightarrow \mathbb{P}(X+Z=1) = 0$ $\mathbb{P}(Y+Z=1) = \mathbb{P}(Y-X=1) = \mathbb{P}(Y=2; X=1) \stackrel{X\perp\!\!\!\perp Y}{=} \mathbb{P}(Y=2) \mathbb{P}(X=1) = \frac{1}{4}$

 \Rightarrow при $n=1: \mathbb{P}(X+Z=n) \neq \mathbb{P}(Y+Z=n) \Rightarrow X+Z$ и Y+Z не са еднакво разпределени.

Вярно ли е, че ако X и Z са независими, то стига $\mathbb{E}(f(X))<\infty$ и $\mathbb{E}(g(Z))<\infty$, където $g:\mathbb{N}\to\mathbb{N}$, то $\mathbb{E}(f(X)g(Z))=\mathbb{E}(f(X)g(Z))$. Стига да докажем , че f(X) и g(Z) са независими.

 $X \perp\!\!\!\perp Z \Leftrightarrow \mathbb{P}(X=x_j,Z=Z_k) = \mathbb{P}(X=x_j)\mathbb{P}(Z=z_k), \forall j,k$. Трябва да покажем, че за всяко $m,n\in\mathbb{N}$ е вярно, че $\mathbb{P}(f(X)=m,g(Z)=n)=\mathbb{P}(f(X)=m)\mathbb{P}(g(Z)=n)$.

$$\mathbb{P}(f(X) = m, g(Z) = n) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = m} \{X = k\}; \bigcup_{l \in \mathbb{N}: g(l) = n} \{Z = l\}\right) = \sum_{k \in \mathbb{N}: f(k) = m} \sum_{l \in \mathbb{N}: g(l) = n} \mathbb{P}(X = k; Z = l) = \sum_{k \in \mathbb{N}: f(k) = m} \sum_{l \in \mathbb{N}: g(l) = n} \mathbb{P}(X = k) \mathbb{P}(Z = l) = \sum_{k \in \mathbb{N}: f(k) = m} \mathbb{P}(X = k) \sum_{l \in \mathbb{N}: g(l) = n} \mathbb{P}(Z = l) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = m} \{X = k\}\right) \mathbb{P}\left(\bigcup_{l \in \mathbb{N}: g(l) = n} \{Z = l\}\right) = \mathbb{P}\left(f(X) = m\right) \mathbb{P}\left(g(Z) = n\right)$$

Задача 7. (контрапример ЗГЧ)

1. Разполагаме със зар с 2 червени и 4 черни страни и със зар с 4 червени и 2 черни страни. Вероятността да се падне, която и да е от страните е 1/6.

Избираме с вероятност 1/2 един от двата зара и го хвърляме безкраен брой пъти. Да дефинираме за $n \geq 1$

$$X_n = \left\{ egin{align*} 1, & \mbox{ ако на } n\mbox{-тото хвърляне се е паднала черна страна,} \\ 0, & \mbox{ иначе} \, . \end{array}
ight.$$

Докажете, че дефинираните по-горе случайни величини са еднаков разпределени и пресметнете очакването им. Независими ли са?

2. Формулирайте слабия ЗГЧ. Докажете, че той е в сила/не е в сила за редицата $(X_n)_n$.

Решение:

Дефинираме събитието "пада се черна страна при хвърляне" с успех. Нека Y е случайната величиниа $\{$ избираме един от двата зара $\}$

Номерираме заровете с числата 1 и 2 (1 е с повече черни страни)

$$\mathbb{P}(Y=1) = \frac{1}{2}, \, \mathbb{P}(Y=2) = \frac{1}{2}.$$

$$\frac{\sum_{i=1}^n X_n}{N} \xrightarrow[n \to \infty]{\text{п.с.}} \underbrace{V}$$
 , където $V = \begin{cases} \frac{2}{3}, & \text{когато } Y = 1 \\ \frac{1}{3}, & \text{когато } Y = 2 \end{cases}$, но това не е ЗГЧ, т.к. V е случайна $\underbrace{V}_{n \to \infty}$ сл.вел.

 $\mathbb{P}(\text{ycnex}) = \frac{2}{3}$ $\frac{1}{2} \qquad \mathbb{P}(\text{ycnex}) = \frac{1}{3}$

величина, а не константа.

$$X_i = \frac{2}{3} \times 1_{\{Y=1\}} + \frac{1}{3} \times 1_{\{Y=2\}}$$

$$\mathbb{E}V=rac{2}{3}\mathbb{E}1_{\{Y=1\}}+rac{1}{3}\mathbb{E}1_{\{Y=2\}}=rac{2}{3} imesrac{1}{2}+rac{1}{3} imesrac{1}{2}=rac{1}{2}.$$
 Казваме, че за X е изпълнен ЗГЧ (слаб), ако $rac{\sum_{i=1}^{n}(X_{i}-\mathbb{E}X_{i})}{n}\stackrel{\mathbb{P}}{\underset{n
ightarrow\infty}{\longrightarrow}}0$ (*)

 $X=(X_i)_{i=1}^{\infty}$, наричаме редица от независими в съвкупност и еднакво разпределение сл. вел., ако $X_i \stackrel{d}{=} X_1, \ \forall i \geq 1$ и са независими. Нека $X=(X_i)_{i=1}^{\infty}$ от нез. едн. раз. сл. вел. Нека в доп. $\mathbb{E} \left| X_1 \right| = \mu < \infty$, тогава е изпълнено (*).

Задача 8. Докажете, че вероятността броят на шестиците при хвърляне на стандартен зар 900 пъти да е между 120 и 180 е поне 31/36.

Доказателство:

<u>Неравенство на Чебишев</u>: Нека A е множеството от стойности, за които $|X - \mathbb{E}X| > a$. Тогава $A = \{ |X - \mathbb{E}X| > a \} = \{ (X - \mathbb{E}X)^2 > a^2 \}$

Искаме да ограничим вероятността за случването на събитието A отгоре.

$$DX \stackrel{def.}{=} \mathbb{E}(X - \mathbb{E}X)^2 \times 1 = \mathbb{E}(X - \mathbb{E}X)^2 \times 1_{\{A\}} + \underbrace{\mathbb{E}(X - \mathbb{E}X)^2 \times 1_{\{\overline{A}\}}}_{\geq 0} \geq$$

$$\geq \mathbb{E}(X - \mathbb{E}X)^2 \times 1_A \geq a^2 \mathbb{E}1_{\{A\}} = a^2 \mathbb{P}(A). \text{ Следователно } \mathbb{P}(A) \leq \frac{DX}{a^2}.$$

T.e.
$$\mathbb{P}(|X - \mathbb{E}X| > a) = \mathbb{P}(\mathbb{E}X - a < X < \mathbb{E}X + a) \le \frac{DX}{a^2}$$
.

Сега обратно към задачата.

Нека
$$X_i = \{$$
 пада се 6-ца при хвърляне на $i^{ extsf{-TUS}}$ зар $\}$, $i = \overline{1,n}$ и $S_n = \sum_{i=1}^n X_i$. Очевидно $X_i \in Ber\left(p = \frac{1}{6}\right)$ и $S_{900} \in Bin\left(n = 900, p = \frac{1}{6}\right)$, тъй като брои успехите в

бернулиево разпределени случайни величини. Тъй като бернулиевите експерименти са независими и еднакво разпределени със средно $\mu=\mathbb{E} X_1=p=\frac{1}{6}$ и

 $\sigma^2 = \mathbb{D} X_1 = p(1-p) = \frac{1}{6} \times \frac{5}{6} = \frac{5}{36}$, то от ЦГТ може да направим следното приближение (считаме, че n=900 е достатъчно голямо):

$$\frac{\sum_{i=1}^{900} X_i - n\mu}{\sqrt{n\sigma^2}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1), \text{ r.e. } \frac{S_{900} - 900 \times \frac{1}{6}}{\sqrt{900 \times \frac{5}{36}}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$$

Следователно, $\mathbb{P}(120 \le S_{900} \le 180) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le 180 - 150) = \mathbb{P}(120 - 150 \le S_{900} - 150 \le S_{900$

$$= \mathbb{P}\left(-\frac{3\% \times 6}{3\% \times \sqrt{5}} \le \mathcal{N}(0,1) \le \frac{3\% \times 6}{3\% \times \sqrt{5}}\right) = \mathbb{P}\left(|Z - \underbrace{\mathbb{E}Z}_{=0}| \le \frac{6}{\sqrt{5}}\right) = \mathbb{P}\left(|Z - \underbrace{\mathbb{E}Z}_{=0}| \le \frac{6}{\sqrt{5}}\right)$$

$$= \mathbb{P}\left(|Z| \le \frac{6}{\sqrt{5}}\right) = 1 - \mathbb{P}\left(|Z| > \frac{6}{\sqrt{5}}\right) \stackrel{\text{неравенство}}{\ge} 1 - \frac{DZ}{\left(\frac{6}{\sqrt{5}}\right)^2} = 1 - \frac{5}{36} \times 1 = \frac{31}{36}.$$

Задача 9.

Хвърляте монета 1000 пъти и получавате 800 езита. Това ви усъмнява, че монетата е честна. Нека θ е вероятността за ези.

 Пресметнете каква е вероятността да наблюдавате 800 езита при допускане, че монетата е честна;

П

- Използвайте ЦГТ, за да конструирате доверителен интервал с ниво на доверие за точковата оценка на θ . Най-вероятно няма да можете да изпилзвате понятието централна статистика, но се опитайте чрез увеличаване на доверителния интервал, което е реултат от оценка на дисперсията (зависеща от θ)
- (* *) Ако приемете, че вероятността за честна монета е 0.99 и с вероятност 0.01 е точковата оценка, която получавате от тези 1000 хвърляния, т.е. 4/5. Как бихте преизчислили вероятността за честност при настъпването на тези данни?

Решение:

Според лектора може би задачата е грешна, но все пак каква е идеята:

$$Ber(\theta)$$

 $Bin(1000, \theta)$

$$T = \frac{S_n - n\theta}{\sqrt{n\theta(1 - \theta)}} \in \mathcal{N}(0, 1)$$

$$\mathbb{P}(T > a) \stackrel{\theta = \frac{1}{2}}{=} \mathbb{P}\left(\frac{S_n - n \times \frac{1}{2}}{\sqrt{n \times \frac{1}{4}}} > \frac{a - n \times \frac{1}{2}}{\sqrt{n \times \frac{1}{4}}}\right) \stackrel{n = 1000}{=} \mathbb{P}\left(\mathcal{N}(0, 1) > \frac{800 - 1000 \times \frac{1}{2}}{\sqrt{1000 \times \frac{1}{4}}}\right) = 0$$

$$\mathbb{P}\left(\mathcal{N}(0,1) > \frac{300 \times 2}{100}\right) = \mathbb{P}\left(\mathcal{N}(0,1) > 6\right) = 1 - \mathbb{P}\left(\mathcal{N}(0,1) \le 6\right) \approx 1 - 1 = 0.$$

$$T = \frac{S_n - n\theta}{\sqrt{n\theta(1-\theta)}} \in \mathcal{N}(0,1)$$

$$\mathbb{P}(q_1 \leq T \leq q_2) = \mathbb{P}\left(q_1\sqrt{n\theta(1-\theta)} + n\theta \leq S_n \leq q_2\sqrt{n\theta(1-\theta)} + n\theta\right)$$

$$\gamma = \mathbb{P}\left(\frac{S_n}{n} - q_1 \sqrt{\frac{\theta(1-\theta)}{n}} \ge \theta \ge \frac{S_n}{n} - q_2 \sqrt{\frac{\theta(1-\theta)}{n}}\right)$$

Имаме, че
$$\left(\theta - \frac{1}{2}\right)^2 \ge 0 \Rightarrow \theta(1-\theta) \le \frac{1}{4}$$

$$1-\gamma = \mathbb{P}\left(\theta < \frac{S_n}{n} - q_2\sqrt{\frac{\theta(1-\theta)}{n}}\right) + \mathbb{P}\left(\theta > \frac{S_n}{n} - q_1\sqrt{\frac{\theta(1-\theta)}{n}}\right) \ge \frac{1-\gamma}{n}$$

$$\stackrel{\theta(1-\theta) \leq \frac{1}{4}}{\geq} \mathbb{P}\left(\theta < \frac{S_n}{n} - q_2 \frac{\sqrt{\frac{1}{4}}}{\sqrt{n}}\right)$$

$$\mathbb{P}(T>a) \stackrel{\theta=\frac{1}{2}}{=} \mathbb{P}\left(\frac{S_n - n \times \frac{1}{2}}{n\sqrt{n \times \frac{1}{4}}} > a\right) = \mathbb{P}\left(\frac{S_n - \frac{n}{2}}{\frac{\sqrt{n}}{2}} > a\right) = \mathbb{P}\left(\frac{2S_n - n}{\sqrt{n}} > a\right)$$

Задача 10. Нека X е сучайна величина с разпределение

 $f_X(x;\theta) = C(\theta)e^{-\theta x^2}, \ x>0, \ \theta>0.$ Намерете максимално правдоподобна оценка за θ от n наблюдения. Можете да използвате, че $C(\theta) = K\theta^{1/2}$, където K не зависи от θ . Вярно ли е, че оценката е състоятелна?

Решение:

$$f_X(x;\theta) = C(\theta)e^{-\theta x^2}, x > 0, \theta > 0$$

$$L_X(x, \theta) = C^n(\theta) \prod_{j=1}^n e^{-\theta X_j^2} = K^n \theta^{\frac{n}{2}} e^{-\theta \sum_{j=1}^n X_j^2}$$

$$\ln L_X(x;\theta) = n \ln K + \frac{n}{2} \ln \theta - \theta \sum_{i=1}^n X_i^2$$

$$\frac{\partial}{\partial \theta} \ln L_X(x; \; \theta) = \frac{n}{2\theta} - \sum_{j=1}^n X_j = 0 \Rightarrow \hat{\theta} = \frac{n}{2\sum_{j=1}^n X_j^2}$$

Състоятелна ли е оценката? Ако искаме да докажем, че е състоятелна, трябва проверим следното (*):

$$\hat{\theta} = \frac{n}{2\sum_{j=1}^{n}X_{j}^{2}}$$
, нека н.е.р. $Y_{j} = X_{j}^{2}$. Тогава $\hat{\theta}(\overrightarrow{X}) = \frac{1}{2}\frac{n}{\sum_{j=1}^{n}X_{j}^{2}} = \frac{1}{2}\frac{n}{\sum_{j=1}^{n}Y_{j}}$.

$$\frac{\sum_{j=1}^{n} Y_{j}}{n} \xrightarrow[n \to \infty]{\mathbb{P}, \Pi. C.} \mathbb{E} Y_{1} = \mathbb{E} X_{1}^{2}.$$

$$\hat{\theta}(\overrightarrow{X}) \xrightarrow[n o \infty]{\text{п.с.}} \frac{1}{2\mathbb{E}X_1^2} \stackrel{?}{=} \theta$$
 (ако е състоятелна)

$$\mathbb{E}X_{1}^{2} = K\theta^{\frac{1}{2}} \int_{0}^{\infty} x^{2} e^{-\theta x^{2}} dx = \frac{K\theta^{\frac{1}{2}}}{\theta^{\frac{3}{2}}} \int_{0}^{\infty} \theta x^{2} e^{-\theta x^{2}} d\sqrt{\theta}x =$$

$$\stackrel{\sqrt{\theta}x=y}{=}\frac{K}{\theta}\int_{0}^{\infty}\underbrace{y^{2}e^{-y^{2}}}_{\text{HEYETHA}}\mathrm{d}y\stackrel{\text{HEYETHOCT}}{=}\frac{K}{2\theta}\frac{\sqrt{2\pi\frac{1}{2}}}{\sqrt{2\pi\frac{1}{2}}}\int_{-\infty}^{\infty}y^{2}e^{-y^{2}}\mathrm{d}y=\frac{K\sqrt{\pi}}{2\theta}\times\frac{1}{2},\text{ т.е. оценката}$$

е състоятелна (схожда се добре към функция на тита, от която може да изразим тита с обратната функция).

11. Нека $X \in \mathcal{N}(\mu,4)$. Постройте $90\,\%$ доверителен интервал за μ , ако наблюденията над X са: 1,3,4,4.

Решение:

Знаем, че $X \in \mathcal{N}(\mu, \sigma^2)$, като σ^2 е известно ($\sigma = 2$), т.е. $\mu = \theta$.

Имаме, че
$$\hat{\mu} = \overline{X_n} = \frac{1}{n} \sum_{j=1}^n X_j = \frac{1+3+4+4}{4} = 3.$$

$$\underbrace{= \mathcal{N}(\mu, \frac{\sigma^2}{n})}_{\in \mathcal{N}(\mu, \frac{\sigma^2}{n})}$$

Пояснения защо $\frac{1}{n}\sum_{j=1}^n X_j \in \mathcal{N}\big(\mu, \frac{\sigma^2}{n}\big)$:

линейност

$$\sum_{j=1}^n X_j \overset{\text{Ha }\mathcal{N}}{\in} \mathcal{N}(n\mu,\, n\, \sigma^2) \Rightarrow \frac{1}{n} \sum_{j=1}^n X_j \in \mathcal{N}\left(\frac{n\mu}{n}, \frac{n\, \sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

Използвахме свойството $\mathcal{N}(\mu_1,\sigma_1^2)+\mathcal{N}(\mu_2,\sigma_2^2)=\mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$ за независими нормално разпределени сл. вел. (каквито в случая са нашите опити \overrightarrow{X} , тъй като ще са прототипи на X - от там ги взимаме).

Тогава
$$T(\overrightarrow{X},\mu)=\underbrace{\frac{\overline{X_n}-\mu}{\sigma}}_{\text{нормираме}}\in\mathcal{N}(0,1),\,\sigma$$
 е известно число. Следователно

получаваме, че T е намаляваща функция по μ и $\mathbb{P}(T \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} \,\mathrm{d}\,y$, т.е.

не зависи от $\mu \stackrel{def.}{\Rightarrow} T$ е централна статистика за μ (тя е монотонна и намаляваща по μ и нейното разпределение съвпада с $\mathcal{N}(0,1)$, т.е. не зависи от θ)

Тогава, $\gamma = \mathbb{P}(-q < T < q)$, тъй като $\mathcal{N}(0,1)$ е симетрично:

Това ни гарантира, че (-q,q) ще е най-тесния интервал, тъй като в $(-\infty,-q)$ и (q,∞) е сбита най-малко маса (навсякъде извън тези интервали е сбита повече маса)

 $q=q_{rac{1}{2}+rac{7}{2}}$, който квантил го има в таблицата за нормалното стандартно разпределение.

$$\gamma = \mathbb{P}(-q < T < q) = \mathbb{P}\left(-q_{\frac{1}{2} + \frac{\gamma}{2}} < \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} < q_{\frac{1}{2} + \frac{\gamma}{2}}\right) \Rightarrow$$

$$\Rightarrow \mathbb{P}\bigg(\mu \in \big(\overline{X_n} - \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}, \overline{X_n} + \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}\big)\bigg) = \gamma \Rightarrow$$

 \Rightarrow

(Даденото е $\gamma = 0.90, \, \sigma = 2, \, n = 4$)

$$I_1 = \overline{X_n} - \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}} = 3 - \frac{2}{\sqrt{4}} \times q_{0.95} \approx 3 + 1.645 = 4.645$$

$$I_2 = \overline{X_n} + \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}} = 3 + \frac{2}{\sqrt{4}} \times q_{0.95} \approx 3 - 1.645 = 1.355$$