CS 5003: Parameterized Algorithms

Lectures 24-25

Krithika Ramaswamy

IIT Palakkad

Cluster Graphs

A graph in which each component is a complete graph

d-Cluster Graphs

d-clustering is NP hard as finding maximum clique can be reduced

A graph with d components each of which is a complete graph

Clustering

Cluster Editing

Instance: An undirected graph G and an integer k

Question: Poes there exist a set of at most k edge additions and deletions

to G so that the resulting graph is a cluster graph?

Parameter: k

cluster graph

Cluster Editing Induced P3 = u-v-w, st edge u-w is not there. Forward dirn is easy. Reverse dirn: Assume for the

Lemma: A graph is a cluster graph iff it has no P3 as an induced subgraph

Algorithm_Cluster_Editing(G,k)

- If G is a cluster graph declare that (G,k) is yes-instance
- If $k \le 0$ return, otherwise, find a $P_3 = (w, u, v)$
- Branch 1: Delete (u, v), decrease k by 1, set (u, v) as forbidden. Recurse on resultant instance.
- Branch 2: Delete (u, w), decrease k by 1, set (u, w) as forbidden, (v, w) as forbidden, {u, v} as permanent. Recurse on resultant instance.
- Branch 3: Add (w, v), decrease k by 1, set (u, v), (u, w) and (v, w) as permanent. Recurse on resultant instance.

d-Clustering

Instance: An undirected graph G and an integer k

Question: Poes there exist a set of at most k edge additions and deletions

to G so that the resulting graph is a d-cluster graph?

Parameter: k

d-cluster graph

3-Clustering

Instance: An undirected graph G and an integer k

Question: Poes there exist a set of at most k edge additions and deletions

to G so that the resulting graph is a 3-cluster graph?

Parameter: k

3-cluster graph

* Randomly color the vertices of G using $q = \lceil (8k)^{5} \rceil$ colours

Focus on finding a solution in which each edge is properly colored

- * Randomly color the vertices of G using $q = \lceil (8k)^{5} \rceil$ colours
- * Focus on finding a solution in which each edge is properly colored

- * Randomly color the vertices of G using $q = \lceil (8k)^{5} \rceil$ colours
- * Focus on finding a solution in which each edge is properly colored

- * Randomly color the vertices of G using $q = \lceil (8k)^{.5} \rceil$ colours
- * Focus on finding a solution in which each edge is properly colored
 - * Colorful solution

- * Each colour class is a cluster graph with at most d components
 - * Otherwise, no colorful solution

* At most ddq choices

* For each choice, find a solution that respects that choice

- * Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- * Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components

- Add an edge between every pair of non-adjacent vertices that are guessed to be in the same component
- Pelete the edge between every pair of adjacent vertices that are guessed to be in different components
- * If total no. of edge modifications is <= k, then we have a colorful solution

 $d^{qd} = d^{sqrt(k)d} = 2^{\log(d^{sqrt(k)d)}} = \dots$

- * Running Time: 20(sqrt(k) d log d) n0(1)
- * Correctness:
 - * If (G,k) is a no-instance then Algorithm is correct
 - * If (G,k) is a yes-instance
 - * The colouring need not color the edges of any solution properly
 - * Success probability >= 2^{-sqrt(k/2)}

Theorem: d-Clustering can be solved in randomized $2^{0(sqrt(k) d \log d)} n^{0(1)}$ time, with success probability at least $2^{-sqrt(k/2)}$.

* By repeating the algorithm $2^{0(sqrt(k/2))}$ times,

Theorem: d-Clustering can be solved in randomized $2^{0(sqrt(k) d \log d)} n^{0(1)}$ time, with constant success probability.

Lemma: If the vertices of a simple graph G on k edges are coloured independently and uniformly at random with $\lceil (8k)^{.5} \rceil$ colors, then the probability that E(G) is properly colored is >= at least $2^{-sqrt(k/2)}$.

- * Let v_1 be a vertex of min degree in $G_0 = G$
- * Let v_2 be a vertex of min degree in $G_1 = G v_1$
- Let v_3 be a vertex of min degree in $G_2 = G \{v_1 \cup v_2\}$
- * Let v4 be a vertex of min degree in $G_3 = G \{v_1 \cup v_2 \cup v_3\}$
- * ...
- * Let v_n be a vertex of min degree in $G_{n-1} = G \{v_1 \cup v_2 \cup v_3 \cup \ldots \cup v_{n-1}\}$
- * Gn is the empty graph

Lemma: If the vertices of a simple graph G on k edges are coloured independently and uniformly at random with $\lceil (8k)^{.5} \rceil$ colors, then the probability that E(G) is properly colored is >= at least $2^{-sqrt(k/2)}$.

- * v_i is a vertex of min degree in $G_{i-1} = G \{v_1 \cup v_2 \cup v_3 \cup \ldots \cup v_{i-1}\}$
- * di is the degree of vi in Gi-1
- * $d_i \le |V(G_{i-1})| 1$ as graph is simple
- * $2k = 2|E(G)| > = 2|E(G_{i-1})| > = d_i|V(G_{i-1})|$ $> = d_i(d_i + 1) > = d_i^2$
- $* d_i <= sqrt(2k)$

Lemma: If the vertices of a simple graph G on k edges are coloured independently and uniformly at random with $\lceil (8k)^{.5} \rceil$ colors, then the probability that E(G) is properly colored is >= at least $2^{-sqrt(k/2)}$.

- * v_i is a vertex of min degree in $G_{i-1} = G \{v_1 \cup v_2 \cup v_3 \cup \ldots \cup v_{i-1}\}$
- * d_i is the degree of v_i in G_{i-1} and $d_i <= sqrt(2k)$

Consider the process of randomly coloring V(G) in the order v_n , v_{n-1} , v_{n-2} , ..., v_1

- * Pi :event that E(Gi) is properly colored
 - * $Pr(P_n) = 1$

Lemma: If the vertices of a simple graph G on k edges are coloured independently and uniformly at random with $\lceil (8k)^{.5} \rceil$ colors, then the probability that E(G) is properly colored is >= at least $2^{-sqrt(k/2)}$.

- * Pi: event that E(Gi) is properly colored
 - * $Pr(P_n) = 1$
- * $Pr(P_{i-1} | P_i) >= (q-d_i)/q > = 2^{-2d_i/q}$

Properly colored

Gi

 V_n , V_{n-1} , V_{n-2} , ..., V_{i+1}

Vn, Vn-1, Vn-2, ..., Vi+1, Vi

Lemma: If the vertices of a simple graph G on k edges are coloured independently and uniformly at random with $\lceil (8k)^{.5} \rceil$ colors, then the probability that E(G) is properly colored is >= at least $2^{-sqrt(k/2)}$.

$$\begin{split} Pr(P_0) &= Pr(P_0 \mid P_1) \; Pr(P_{1}) = Pr(P_0 \mid P_1) \; Pr(P_1 \mid P_2) \; Pr(P_2) \\ &= \dots = Pr(P_n) \; \text{\mathbf{T}} \; Pr(P_{i-1} \mid P_i) \\ &>= \; \mathbf{T} \; 2^{-2} d_i/q^2 = 2^{-2} d_i/q$$

Perandomization

Pefinition: A (n,k,q)-coloring family F is a family of functions from [n] to [q] such that for every graph G on vertex set [n] with <= k edges, there is a function f in F that properly colors E(G).

Theorem: For any n,k>=1, there is a $(n,k,\mathcal{O}(\sqrt{k}))$ -coloring family of size $2^{O(\sqrt{k}\log k)}\log n$ that can be constructed in $2^{O(\sqrt{k}\log k)}n\log n$ time.

Theorem: d-Clustering can be solved in $2^{O(\sqrt{k}(d+\log k))}n^{O(1)}$ time.