Universidade do Minho

26 de novembro de 2021

1º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este teste é constituído por 6 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4, 5\}, A, A \cup \{\Delta\}, \delta, 0, 5, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(2, a, D)	(2, a, D)	$(3, \Delta, E)$
2	(1, a, D)	(1, a, D)	
3	(4,b,E)		$(5,\Delta,C)$
4	(3, a, E)		

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta aababbba)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).
- 2. Seja $A = \{a, b\}$. Indique uma máquina de Turing que calcule a função

3. Construa uma máquina de Turing que reconheça a linguagem

$$L = \{ucv : u, v \in \{a, b\}^*, |u|_a = |v|_a\},\$$

sobre o alfabeto $A = \{a, b, c\}$, e descreva informalmente a estratégia dessa máquina.

- 4. Considere os problemas de decisão
 - Aceita_{ϵ}: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita a palavra vazia ϵ ?
 - Atinge Estado: dados uma máquina de Turing \mathcal{T} e um estado q de \mathcal{T} , será que \mathcal{T} atinge o estado q quando iniciada com a fita vazia?
 - a) Mostre que $Aceita_{\epsilon} \leq AtingeEstado$.
 - b) Conclua que o problema AtingeEstado é indecidível.

5. Seja $A = \{a,b\}$ e seja $\mathcal T$ a seguinte máquina de Turing sobre A com duas fitas, onde $x \in A$ e $y \in \{a,b,\Delta\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração (0, Δaabbab, Δ) e diga se a palavra aabbab é aceite por T.
- **b)** Para que palavras $u \in A^*$, $(0, \underline{\Delta}u, \underline{\Delta})$ é uma configuração de ciclo?
- c) Para que palavras $v \in A^*$, a partir de $(0, \underline{\Delta}v, \underline{\Delta})$ pode ser computada uma configuração de rejeição?
- d) Identifique a linguagem L reconhecida por \mathcal{T} . Justifique.
- e) Verifique que é possível fazer uma alteração (simples) na máquina \mathcal{T} de modo a obter uma máquina de Turing \mathcal{T}' que reconhece L e que nunca entra em ciclo. Conclua que L é recursiva.
- 6. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se \mathcal{T} é uma máquina de Turing cujo cursor nunca se move (ou seja, apenas efetua o movimento "centro"), então a configuração inicial de qualquer palavra u é uma configuração de ciclo de \mathcal{T} .
 - b) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} , será que $L(\mathcal{T})$ é recursivamente enumerável?
 - c) A função característica χ_{AA} da linguagem AutoAceite é Turing-computável.
 - d) A linguagem reconhecida pela composição sequencial de duas máquinas de Turing é a interseção das linguagens reconhecidas por essas máquinas.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 4.5 \text{ valores } (1+1+1.25+1.25) \\ \textbf{2.} & 1.5 \text{ valores} \\ \textbf{3.} & 2.25 \text{ valores} \\ \textbf{4.} & 2.5 \text{ valores } (1.5+1) \\ \textbf{5.} & 5.25 \text{ valores } (1+1+1+1.25+1) \\ \textbf{6.} & 4 \text{ valores } (1+1+1+1) \end{cases}$$