header-includes: - - -

- -

-

- - -

_

Assignment 3: ALDA

Abhilasha Kumar

October 5, 2017

1 Reading the Data

We first read a demographic file into our final data frame, so that we can use gender and age as covariates in our analysis.

```
> cell_demo = read.csv("cell_demo.csv", header = TRUE, sep = ",")
> cell = read.csv("cell_withitems_complete.csv", header = TRUE, sep = ",")
> cell = merge(cell, cell_demo, by = "ID")
> cell$ID = as.factor(as.character(cell$ID))
> library(plyr)
> library(dplyr)
> cell = cell %>% filter(cell$Messages <= 50)</pre>
```

2 Regression Model

We first run a model with DV as TimeJudgmentDistance, and IV as Days, and Vividness as a continuous covariate. We will incorporate a random slope for Days in our model.

```
> library(lme4)
> cell$Days.z = as.numeric(scale(cell$Days, scale = TRUE, center = TRUE))
> model = lmer(data = cell, TimeJudgmentDistance ~ Days.z*Vividness + (Days.z|ID))
> summary(model)
Linear mixed model fit by REML ['lmerMod']
Formula:
TimeJudgmentDistance ~ Days.z * Vividness + (Days.z | ID)
  Data: cell
REML criterion at convergence: 3698.2
Scaled residuals:
             10 Median
                             3Q
                                    Max
-3.1280 -0.4940 -0.0903 0.3262 4.4940
Random effects:
 Groups
                      Variance Std.Dev. Corr
                              0.7108
          (Intercept) 0.5052
          Days.z
                      0.4820
                               0.6943
                                        1.00
 Residual
                      4.7362
                               2.1763
Number of obs: 824, groups: ID, 44
Fixed effects:
                 Estimate Std. Error t value
(Intercept)
                  4.06068
                             0.24312 16.703
```

Days.z 1.95635 0.24193 8.086 Vividness -0.32318 0.02722 -11.872 Days.z:Vividness -0.19418 0.02690 -7.218

Correlation of Fixed Effects:

(Intr) Days.z Vvdnss

Days.z -0.042

Vividness -0.828 0.189

Dys.z:Vvdns 0.182 -0.828 -0.089

3 Making a Regression Output Table

Using xtable()

	type	term	b	CI
1	Fixed Parts	(Intercept)	4.06	(3.62, 4.51)
2	Fixed Parts	Days.z	1.96	(1.71, 2.38)
3	Fixed Parts	Vividness	-0.32	(-0.37, -0.28)
4	Fixed Parts	Days.z:Vividness	-0.19	(-0.23, -0.16)
5	Random Parts	\$\tau_{00}\$	0.51	(0.24, 0.62)
6	Random Parts	\$\tau_{11}\$	0.48	(0.16, 1.08)
7	Random Parts	\$\tau_{10}\$	1.00	(0.33, 1.00)
8	Random Parts	$\hat {\alpha^2}$	4.74	(4.33, 5.16)
9	Model Terms	ICC	0.17	
10	Model Terms	\$R^2_m\$	0.28	
11	Model Terms	R^2_c	0.40	

Table 1: Regression Output

			Model 1	
type	term	b	CI	
	Intercept	4.06	(3.62, 4.51)	
	Days.z	1.96	(1.71, 2.38)	
Fixed Parts	Vividness	-0.32	(-0.37, -0.28)	
	Days.z:Vividness	-0.19	(-0.23, -0.16)	
	$ au_{00}$	0.51	(0.24, 0.62)	
	$ au_{11}$	0.48	(0.16, 1.08)	
	$ au_{10}$	1.00	(0.33, 1.00)	
Random Parts	$\hat{\sigma^2}$	4.74	(4.33, 5.16)	
	ICC	0.17		
Model Terms	R_m^2	0.28		
Model Terms	R_c^2	0.40		

Table 2: papaja MLM Table Example

	TimeJudgmentDistance		
term	b	CI	
Fixed			
(Intercept)	4.06	(3.62, 4.51)	
Days.z	1.96	(1.71, 2.38)	
Vividness	-0.32	(-0.37, -0.28)	
Days.z:Vividness	-0.19	(-0.23, -0.16)	
Random			
$ au_{00}$	0.51	(0.24, 0.62)	
$ au_{11}$	0.48	(0.16, 1.08)	
$ au_{10}$	1.00	(0.33, 1.00)	
$\hat{\sigma^2}$	4.74	(4.33, 5.16)	
Summary		, ,	
ICC	0.17		
R_m^2	0.28		
R_c^{nr}	0.40		

Using kable() and kableExtra()

Using papaja

4 Plotting

Plotting Continuous Covariate: Matrix Multiplication

Using matrix multiplication

Using predict() function

TimeEstimate as a function of Days and Vividness

