Etude d'une corde statique suspendue

* On prend un élément infinitésimal de corde de longueur $dl = \sqrt{dx^2 + dy^2}$. On note $\alpha(x)$ l'angle de la corde par rapport à l'horizontal à l'abscisse x. On applique le principe fondamental de la statique :

$$\begin{cases} -T(x) \cdot \cos(\alpha(x)) + T(x+dx) \cdot \cos(\alpha(x+dx)) = 0 \\ -T(x) \cdot \sin(\alpha(x)) + T(x+dx) \cdot \sin(\alpha(x+dx)) - \mu g \sqrt{dx^2 + dy^2} = 0 \end{cases}$$

De la première équation, on voit que $T(x) \cdot \cos(\alpha(x)) = cste = T_0 \cos(\alpha_0)$, où T_0 et α_0 sont la tension et l'angle au début de la corde (par exemple. On a donc $T(x) = T_0 \cos(\alpha_0)/\cos(\alpha(x))$.

 \star La seconde équation s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}x}T(x)\cdot\sin(\alpha(x)) = \mu g\sqrt{1+\left(\frac{dy}{dx}\right)^2}$$

Avec la relation trouvée sur la tension, on obtient :

$$dx \frac{\mathrm{d}}{\mathrm{d}x} \left[T_0 \cos(\alpha_0) \tan(\alpha(x)) \right] = \mu g dx \sqrt{1 + \frac{dy^2}{dx^2}}$$

Comme tan(x) = dy/dx, on tombe sur l'équation différentielle :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{l_c} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

avec $l_c = T_0 \cos(\alpha_0)/\mu g$.

* Avec le changement de variable p(x) = dy/dx, on a :

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{1}{l_c}\sqrt{1 + p(x)^2}$$

On obtient alors:

$$\frac{\mathrm{d}p}{\sqrt{1+p(x)^2}} = \frac{\mathrm{d}x}{l_c}$$

On reconnait que la primitive est la fonction inverse du sinus hyperbolique :

$$\sinh^{-1}(p) = \frac{x}{l_c} + \alpha \tag{1}$$

On obtient alors:

$$y(x) = l_c \cosh\left(\frac{x}{l_c} + \alpha\right) + \beta \tag{2}$$

Avec les conditions aux limites (y(-D/2) = y(+D/2) = 0), on a :

$$y(x) = l_c \left[\cosh \left(\frac{x}{l_c} \right) - \cosh \left(\frac{D}{2l_c} \right) \right]$$

* Il faut calculer la longeur L de la corde pour obtenir son poids $P = \mu g L$. La longueur correspond à l'intégrale curviligne :

$$L = \int_C \mathrm{d}l = \int_{-D/2}^{D/2} dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

En utilisant l'équation différentielle trouvée précédemment, on a tout simplement :

$$L = \int_{-D/2}^{D/2} dx \frac{d^2y}{dx^2} = \left[\frac{dy}{dx}\right]_{-D/2}^{D/2} = 2l_c \sinh\left(\frac{D}{2l_c}\right)$$

Et donc:

$$P = 2T_0 \cos(\alpha_0) \operatorname{sh}\left(\frac{D}{2l_c}\right)$$

Le poids est relié à la tension en bout de la corde.

* En reprenant les expressions trouvées précédemment, on a :

$$\frac{\mathrm{d}}{\mathrm{d}x}T(x)\cdot\sin(\alpha(x)) = \mu g\sqrt{1+\left(\frac{dy}{dx}\right)^2} = \mu g\sqrt{1+\mathrm{sh}\left(\frac{x}{l_c}\right)^2} = \mu g\mathrm{ch}\left(\frac{x}{l_c}\right)$$

Et donc:

$$T(x) \cdot \sin(\alpha(x)) = \mu g l_c \operatorname{sh}\left(\frac{x}{l_c}\right) = T_0 \cos(\alpha_0) \operatorname{sh}\left(\frac{x}{l_c}\right)$$

Il n'y a pas de constante d'intégration car en $x=0, \alpha=0$. La tension totale est donc :

$$T(x) = \sqrt{T(x)^2 \sin^2(\alpha(x) + T(x)^2 \cos^2(\alpha(x))}$$
$$= T_0 \cos(\alpha_0) \sqrt{1 + \sinh^2\left(\frac{x}{l_c}\right)}$$
$$= T_0 \cos(\alpha_0) \cosh\left(\frac{x}{l_c}\right)$$

La tension est minimale en x=0, elle ne spporte pas son poids à ce point-là. Elle est maximale en $x=\pm D/2$ car il y la tension et le poids de la corde en ce point-là.

Pour comparer la tension (maximale) et le poids, on peut s'intéresser au rapport des deux :

$$\frac{P}{T_{max}} = 2 \times \frac{\sinh(D/2l_c)}{\cosh(D/2l_c)} = 2 \tanh\left(\frac{D}{2l_c}\right)$$

Le poids est toujours inférieur à $2\times$ la tension : c'est normal car la tension est répartie en 2, sur les deux points d'accroche. Le poids est toujours inférieur à $2T_{max}$, car dans le cas où $\alpha_0 = \pi/2$, on retrouve $P = 2T_{max}$: la corde est pliée veticalement en deux, la tension correspond uniquement au poids. A l'inverse, le poids devient négligeable devant la tension lorsque la corde devient horzontale.

 \star La flèche correspond tout simplement à la différence entre le point le plus haut et le plus bas, soit -y(0):

$$h = l_c \left[\cosh \left(\frac{D}{2l_c} \right) - 1 \right]$$

On utilise la relation $\cosh^2 - \sinh^2 = 1$:

$$\left(\frac{h}{l_c} + 1\right)^2 - \left(\frac{L}{2l_c}\right)^2 = 1$$

et donc:

$$l_c = \frac{L^2/4 - h^2}{2h}$$

Ainsi, avec simplement une photo d'une chaîne suspendue, on peut connaitre L, h et α_0 , on en déduit l_c qui nous donne l'information sur T_0

Etude d'un instrument à corde

• On reprend le même raisonnement que précédemment en appliquant le principe fondamental de la dynamique et en négligeant la pesanteur :

$$\begin{cases} -T(x) \cdot \cos(\alpha(x)) + T(x+dx) \cdot \cos(\alpha(x+dx)) = 0 \\ -T(x) \cdot \sin(\alpha(x)) + T(x+dx) \cdot \sin(\alpha(x+dx)) = \mu dx \frac{\partial^2 y}{\partial t^2} \end{cases}$$

Comme l'écart reste très petit, on a $\cos(\alpha) \simeq 1$ et $\sin(\alpha) \simeq \alpha$. Comme $\alpha \simeq dy/dx$, on trouve une équation d'Alembert, qui correspond à la propagation des ondes dans la corde :

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

avec $c = T_0/\mu$.

- Les solutions sont de la forme y(x,t) = f(t-x/c) + g(t+x/c): cela correspond à des ondes se propageant suivants les x croissants (f) et les x décroissants (g).
- \bullet Ce sont des solutions stationnaires. On trouve des solutions harmoniques pour F et G:

$$F(x)G''(t) = c^2G(t)F''(x)$$

et alors:

$$\frac{F''(x)}{F(x)} = \frac{G''(t)}{G(t)} = -\omega_0^2$$

Les deux fractions étant fonction de variables indépendantes l'une de l'autre, on peut les égaliser à $-\omega_0^2$, le signe - permettant d'avoir des solutions bornées.

Alors:

$$F'''(x) + \frac{\omega_0^2}{c^2} F(x) = 0$$
$$G'''(t) + \omega_0^2 G(t) = 0$$

• Dans le cas d'ondes stationnaires, on a y(x,t) = F(x)G(t), cad indépendance entre les variables de temps et d'espace. En injectant dans l'équation de propagation, on trouve que la fonction F est une fonction sinusoïdale, qui avec les conditions aux limites est nécessairement :

$$F(x) = F_0 \sin(k_n x), \quad k_n = \frac{n\pi}{L}$$

Et d'autre part :

$$G(t) = G_1 \cos(\omega t) + G_2 \sin(\omega t)$$

En réinjectant les solutions de F(x)G(t) trouvées, on tombe sur la relation de dispersion :

$$\omega = \omega_n = k_n c = \frac{n\pi c}{L}$$

Comme toute superposition des solutions précédentes au mode n vérifient l'équation de propagation, la solution générale est donc une somme des solutions au mode n:

$$y(x,t) = \sum_{n} \left[A_n \cos(\omega_n t) + B_n \sin(\omega_n t) \right] \cdot \sin(k_n x)$$

• On commence par relier les coefficients A_n et B_n avec les conditions initiales :

$$\begin{cases} y(x,0) = \sum_{n} A_n \sin(k_n x) \\ \frac{dy}{dt}(x,0) = \sum_{n} \omega_n B_n \sin(k_n x) \end{cases}$$

On peut inverser les intégrales en utilisant l'orthogonalité des fonctions sinusoïdales :

$$\int_0^1 \mathrm{d}u \sin(n\pi u) \sin(m\pi u) = \frac{\delta_{nm}}{2}$$

On a alors:

$$\begin{cases} A_n = \frac{2}{L} \int_0^L dx \cdot y(x,0) \sin\left(\frac{n\pi x}{L}\right) \\ B_n = \frac{2}{n\pi c} \int_0^L dx \cdot \frac{dy}{dt}(x,0) \sin\left(\frac{n\pi x}{L}\right) \end{cases}$$

Avec les conditions initiales données, on a $\frac{dy}{dt}(x,0) = 0$, cad $B_n = 0$. De la même manière :

$$A_n = \frac{2}{L} \int_0^a dx \frac{h}{a} x \sin\left(\frac{n\pi x}{L}\right) + \frac{2}{L} \int_a^L dx \frac{h(L-x)}{L-a} \sin\left(\frac{n\pi x}{L}\right)$$

En intégrant par partie, on obtient :

$$A_n = \frac{2h}{n^2 \pi^2} \frac{L^2}{a(L-a)} \sin\left(\frac{n\pi a}{L}\right)$$

Corde pendue verticalement

* En appliquant le principe fondamental de la dynamique, on trouve :

$$\begin{cases} T(z+dz) \cdot \cos(\alpha(z+dz)) - T(z) \cdot \cos(\alpha(z)) + \mu g \, dz = 0 \\ \mu \, dz \frac{\partial^2 \Psi}{\partial t^2} = T(z+dz) \cdot \sin(\alpha(z+dz)) - T(z) \cdot \sin(\alpha(z)) \end{cases}$$

Si on prend l'hypothèse $\sin(\alpha(z)) \simeq \tan(\alpha(z)) \simeq \alpha(z) \simeq \frac{\partial \Psi}{\partial z}$ et $\cos(\alpha(z)) \simeq 1$, on obtient :

$$\left\{ \begin{array}{l} T(z) = \mu gz \\ \\ \mu \frac{\partial^2 \Psi}{\partial t^2} = \frac{\partial}{\partial z} (T(z)\alpha(z)) \end{array} \right.$$

En rentrant l'expression de la tension, on obtient donc :

$$\frac{\partial^2}{\partial t^2} \Psi(z,t) = g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \Psi(z,t) \right)$$

* Ce sont des solutions stationnaires. En injectant, on trouve :

$$\left[\omega^2 \alpha(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \alpha(z, t) \right) \right] \cos(\omega t) + \left[\omega^2 \beta(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \beta(z, t) \right) \right] \sin(\omega t) = 0$$

Comme cette équation est vraie $\forall t$, on a nécessairement : trouve :

$$\omega^2 \alpha(z) + g \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \alpha(z, t) \right) = 0$$

 α et β vérifient la même équation différentielle en z.

* Avec le changement de variable, on a $\alpha(z)=\alpha(0)A(Z(z)),\ \alpha'(z)=\alpha(0)\frac{\omega^2}{g}A'(Z(z))$ et $\alpha''(z)=\alpha(0)\frac{\omega^4}{g^2}A''(Z(z))$. L'équation différentielle devient donc :

$$A(z) + A'(Z) + ZA''(Z) = 0 (3)$$

* La série entière s'écrit :

$$A(Z) = 1 + \sum_{k=1}^{\infty} A_k Z^k$$

Injecté dans l'équation différentielle, on trouve :

$$1 + A_1 + \sum_{k=1}^{\infty} (A_k + (k+1)A_{k+1} + k(k+1)A_{k+2})Z^k = 0$$

On en déduit $A_1 = -1$ et $A_{k+1} = -A_k/(k+1)^2$, donc :

$$A_k = \frac{(-1)^2}{(k!)^2}$$

* Comment pourrait-on trouver une relation de dispersion $\omega(k)$?

Chaîne suspendue

Cas statique

 \star On prend un élément infinitésimal de corde de longueur $dl = \sqrt{dx^2 + dy^2}$. On note $\alpha(x)$ l'angle de la corde par rapport à l'horizontal à l'abscisse x. On applique le principe fondamental de la statique :

$$\left\{ \begin{array}{l} -T(x)\cdot\cos(\alpha(x))+T(x+dx)\cdot\cos(\alpha(x+dx))=0\\ \\ -T(x)\cdot\sin(\alpha(x))+T(x+dx)\cdot\sin(\alpha(x+dx))-\mu g\sqrt{dx^2+dy^2}=0 \end{array} \right.$$

De la première équation, on voit que $T(x) \cdot \cos(\alpha(x)) = cste = T_0 \cos(\alpha_0)$, où T_0 et α_0 sont la tension et l'angle au début de la corde (par exemple. On a donc $T(x) = T_0 \cos(\alpha_0)/\cos(\alpha(x))$.

La seconde équation s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}x}T(x)\cdot\sin(\alpha(x)) = \mu g\sqrt{dx^2 + dy^2}$$

Avec la relation trouvée sur la tension, on obtient :

$$dx \frac{\mathrm{d}}{\mathrm{d}x} \left[T_0 \cos(\alpha_0) \tan(\alpha(x)) \right] = \mu g dx \sqrt{1 + \frac{dy^2}{dx^2}}$$

Comme tan(x) = dy/dx, on tombe sur l'équation différentielle :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{l_c} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

avec $l_c = T_0 \cos(\alpha_0)/\mu g$.

* Avec le changement de variable p(x) = dy/dx, on a :

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{1}{l_c}\sqrt{1 + p(x)^2}$$

On obtient alors:

$$\frac{\mathrm{d}p}{\sqrt{1+p(x)^2}} = \frac{\mathrm{d}x}{l_c}$$

On reconnait que la primitive est la fonction inverse du sinus hyperbolique :

$$\sinh^{-1}(p) = \frac{x}{l_c} + \alpha \tag{4}$$

On obtient alors:

$$y(x) = l_c \cosh\left(\frac{x}{l_c} + \alpha\right) + \beta \tag{5}$$

Avec les conditions aux limites (y(-D/2) = y(+D/2) = 0), on a :

$$y(x) = l_c \left[\cosh\left(\frac{x}{l_c}\right) - \cosh\left(\frac{D}{2l_c}\right) \right]$$

* La tension horizontale est constante et vaut $T_h(x) = T_0 \cos(\alpha_0)$. La tension verticale est $T_v(x) = T(x)\sin(\alpha(x)) = T_0\cos(\alpha_0)\tan(\alpha(x)) = T_0\cos(\alpha_0)\frac{dy}{dx}$. On a donc :

$$T_v(x) = T_0 \cos(\alpha_0) \sinh\left(\frac{x}{l_c}\right)$$

* La longueur correspond à l'intégrale curviligne :

$$L = \int_C \mathrm{d}l = \int_{-D/2}^{D/2} dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

En utilisant l'équation différentielle trouvée précédemment, on a tout simplement :

$$L = \int_{-D/2}^{D/2} dx \frac{d^2y}{dx^2} = \left[\frac{dy}{dx}\right]_{-D/2}^{D/2} = 2l_c \sinh\left(\frac{D}{2l_c}\right)$$

La flèche correspond tout simplement à la différence entre le point le plus haut et le plus bas, soit -y(0) :

$$h = l_c \left[\cosh \left(\frac{D}{2l_c} \right) - 1 \right]$$

On utilise la relation $\cosh^2 - \sinh^2 = 1$:

$$\left(\frac{h}{l_c} + 1\right)^2 - \left(\frac{L}{2l_c}\right)^2 = 1$$

et donc:

$$l_c = \frac{L^2/4 - h^2}{2h}$$

Ainsi, avec simplement une photo d'une chaîne suspendue, on peut connaitre L, h et α_0 , on en déduit l_c qui nous donne l'information sur T_0

Cas dynamique

- \diamond A ce moment là $T_0 \gg \mu g$, et donc $l_c \longrightarrow \infty$ et la corde est horizontale. L'angle $\alpha(x)$ est très petit. On néglige la gravité dans ce cas-là.
- ⋄ On reprend le même raisonnement que précédemment en appliquant le principe fondamental de la dynamique et en négligeant la pesanteur. On trouve une équation d'Alembert, qui correspond à la propagation des ondes dans la corde :

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

avec $c = T_0/\mu$. Les solutions sont de la forme y(x,t) = f(t-x/c) + g(t+x/c): cela correspond à des ondes se propageant suivants les x croissants (f) et les x décroissants (g).

 \diamond Dans le cas d'ondes stationnaires, on a y(x,t) = F(x)G(t), cad indépendance entre les variables de temps et d'espace. En injectant dans l'équation de propagation, on trouve que la fonction F est une fonction sinusoïdale, qui avec les conditions aux limites est nécessairement :

$$F(x) = F_0 \sin(k_n x), \quad k_n = \frac{n\pi}{L}$$

Et d'autre part :

$$G(t) = G_1 \cos(\omega t) + G_2 \sin(\omega t)$$

En réinjectant les solutions de F(x)G(t) trouvées, on tombe sur la relation de dispersion :

$$\omega = \omega_n = k_n c = \frac{n\pi c}{L}$$

Comme toute superposition des solutions précédentes au mode n vérifient l'équation de propagation, la solution générale est donc une somme des solutions au mode n:

$$y(x,t) = \sum_{n} [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \cdot \sin(k_n x)$$

 \diamond On commence par relier les coefficients A_n et B_n avec les conditions initiales :

$$\begin{cases} y(x,0) = \sum_{n} A_n \sin(k_n x) \\ \frac{dy}{dt}(x,0) = \sum_{n} \omega_n B_n \sin(k_n x) \end{cases}$$

On peut inverser les intégrales en utilisant l'orthogonalité des fonctions sinusoïdales :

$$\int_{0}^{1} du \sin(n\pi u) \sin(m\pi u) = \frac{\delta_{nm}}{2}$$

On a alors:

$$\begin{cases} A_n = \frac{2}{L} \int_0^L dx \cdot y(x, 0) \sin\left(\frac{n\pi x}{L}\right) \\ B_n = \frac{2}{n\pi c} \int_0^L dx \cdot \frac{dy}{dt}(x, 0) \sin\left(\frac{n\pi x}{L}\right) \end{cases}$$

Avec les conditions initiales données, on a $\frac{dy}{dt}(x,0) = 0$, cad $B_n = 0$. De la même manière :

$$A_n = \frac{2}{L} \int_0^a dx \frac{h}{a} x \sin\left(\frac{n\pi x}{L}\right) + \frac{2}{L} \int_a^L dx \frac{h(L-x)}{L-a} \sin\left(\frac{n\pi x}{L}\right)$$

En intégrant par partie, on obtient :

$$A_n = \frac{2h}{n^2 \pi^2} \frac{L^2}{a(L-a)} \sin\left(\frac{n\pi a}{L}\right)$$

 \diamond Ici, les harmoniques décroissent en $1/n^2$. En fonction des conditions initiales, on peut avoir d'autres décroissances, qui dépendent du type d'instrument de musique. Cela détermine alors le nombre d'harmoniques qui détermine le timbre de l'instrument.

Propagation sur une ligne électrique

♠ Une loi des noeuds et une loi des mailles donnent :

$$\begin{cases} V_{n-1} - V_n = L \frac{\mathrm{d}I_n}{\mathrm{d}t} \\ I_n = I_{n+1} + C \frac{\mathrm{d}V_n}{\mathrm{d}t} \\ V_n - V_{n+1} = L \frac{\mathrm{d}I_{n+1}}{\mathrm{d}t} \end{cases}$$

Avec ces trois expressions, on obtient facilement:

$$\frac{\mathrm{d}^2 V_n}{\mathrm{d}t^2} = \omega_0^2 (V_{n+1} + V_{n-1} - 2V_n) \tag{6}$$

avec $\omega_0 = 1/\sqrt{LC}$.

♠ Avec les relations précédentes, on obtient :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} C V_n^2 + L I_n^2 \right) = V_n (I_n - I_{n+1}) - I_n (V_n - V_{n-1}) = I_n V_{n-1} - I_{n+1} V_n$$

Le terme global représente la variation temporelle de l'éerngie contenue dans une cellule n, I_nV_{n-1} est la puissance qui est reçue depuis la cellule n-1 et le terme $I_{n+1}V_n$ est la puissance qui est transmise à la cellule n+1. C'est un bilan d'énergie.

 \spadesuit C'est un retard exprimé en déphasage qui s'ajoute à chaque traversée d'une cellule. Avec une récurrence : $A_n = A_0 \exp(-jn\alpha)$. On injecte cette expression dans l'équation de "propagation", et on trouve :

$$\begin{cases} \omega^2 = 2\omega_0^2 (1 - \cos(\alpha)) \\ = 4\omega_0^2 \sin^2\left(\frac{\alpha}{2}\right) \end{cases}$$

- \spadesuit Comme le sinus est borné, on a forcément $\omega < \omega_c = 2\omega_0$. La phase de la tension est donc $\omega t n\alpha$, ce qui correspond à une propagation de cellule en cellule. La vitesse de propagation est $v_{\varphi} = \omega/\alpha$, qui correspond au nombre de cellules parcourues par unité de temps (ce n'est pas en m/s mais en s⁻¹!).
- \spadesuit Si $\omega \ll \omega_c$, alors $\sin(\alpha/2) \simeq \alpha/2$ et donc $\omega \simeq \omega_0 \alpha$ et donc $v_{\varphi} = \omega_0$. La vitesse de phase ne dépend pas de ω donc il n'y a pas de dispersion. Le retard est donc $\tau = 1/\omega_0$ Application numérique : on trouve $\omega_0 = 2 \cdot 10^6 \text{rad/s}$ et $\tau = 5 \cdot 10^{-7} \text{s}$. Il faut donc 200 cellules.
- \spadesuit La vitesse de groupe est $v_g = d\omega/d\alpha$, elle correspond à la propagation de l'information d'un paquet d'onde (ou de l'énergie). On a $v_g = \omega_0 \cos(\alpha/2)$. Pour $\alpha = \pi$, $v_g = 0$, il n'y a plus de propagation. Cela correspond à la pulsation de coupure ω_c .
- \spadesuit En utilisant la relation entre le courant I_n et les tensions aux bornes de la cellule, on obtient :

$$B_n = \frac{A_n}{jL\omega}(\exp(j\alpha) - 1) = \frac{2A_n}{L\omega}\exp(j\alpha/2)\sin(\alpha/2) = \frac{A_n}{L\omega_0}\exp(j\alpha/2)$$

Pour calculer la moyenne temporelle de l'énergie de la cellule, il faut nécessairement passer en réel (sous peine d'avoir des valeurs moyennes nulles !) : $V_n = \Re[A_n \exp(j\omega t)]$ et $I_n = \Re[B_n \exp(j\omega t)]$. Alors :

$$\left\langle \frac{1}{2}CV_n^2 \right\rangle = \frac{1}{4}C \mid A_n \mid^2$$

$$\left\langle \frac{1}{2}LI_n^2 \right\rangle = \frac{1}{4}\frac{L}{L^2\omega_0^2}\mid A_n\mid^2 = \frac{1}{4}C\mid A_n\mid^2$$

On obtient donc:

$$E = \frac{1}{2}C \mid A_n \mid^2$$

La cellule reçue de la cellule n-1 s'écrit :

$$P = \langle V_{n-1}(t)I_n(t)\rangle = \frac{1}{2}C \mid A_n \mid^2 \frac{\cos(\alpha/2)}{LC\omega_0}$$

Comme $\omega_0 \cos(\alpha/2) = v_g$, on a alors:

$$P = \frac{1}{2}C \mid A_n \mid^2 v_g$$

On obtient donc:

$$\frac{P}{E} = v_g$$

La vitesse de groupe est donc la vitesse de propagation de l'énergie.

Propagation dans une ligne coaxiale dissipative

♠ Une loi des noeuds et une loi des mailles donnent :

$$\begin{cases} V_{n-1} - V_n = L \frac{\mathrm{d}I_n}{\mathrm{d}t} + RI_n \\ I_n = I_{n+1} + C \frac{\mathrm{d}V_n}{\mathrm{d}t} + GV_n \end{cases}$$

Avec ces trois expressions, on obtient facilement:

$$LC\frac{d^{2}V_{n}}{dt^{2}} + (LG + RC)\frac{dV_{n}}{dt} + RGV_{n} = V_{n+1} + V_{n-1} - 2V_{n}$$
(7)

On a donc $\omega_0^2 = 1/LC$, $\alpha = G//C + R/L$ et $\beta = RG/LC$.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} C V_n^2 + \frac{1}{2} L I_n^2 \right) = V_n (I_n - I_{n+1} - G V_n) + I_n (V_{n-1} - V_n - R I_n)$$

$$= I_n V_{n-1} - I_{n+1} V_n - G V_n^2 - R I_n^2$$

Le terme global représente la variation temporelle de l'éerngie contenue dans une cellule n, I_nV_{n-1} est la puissance qui est reçue depuis la cellule n-1 et le terme $I_{n+1}V_n$ est la puissance qui est transmise à la cellule n+1. Les termes GV_n^2 et RI_n^2 sont els pertes dues à la conductance et à la résistance. C'est un bilan d'énergie.

- \spadesuit On a tout simplement C=ca, G=ga, L=la et R=ra. On peut aussi montrer que ce sont des grandeurs linéiques infinétisémiales comme a=dx.
- ♠ Comme $V_n(t) = V(x,t) = V(na,t)$ et que a = dx, on a alors $V_{n+1}(t) = V((n+1)a,t) = V(na+a,t) = V(x+dx,t)$. On peut montrer que $V_{n+1} + V_{n-1} 2V_n = dx^2 \frac{\partial^2 V}{\partial x^2}$ avec un d.l. à l'ordre 2 en dx. Alors :

$$lc\frac{\partial^{2}V}{\partial t^{2}} + (lg + rc)\frac{\partial V}{\partial t} + rgV = \frac{\partial^{2}V}{\partial x^{2}}$$
 (8)

♠ On retombe sur l'équation d'Alembert. Les solutions sont de la forme :

$$V(x,t) = f\left(t - \frac{x}{c_0}\right) + g\left(t + \frac{x}{c_0}\right)$$

La vitesse de propagation est bien $c_0^2 = 1/lc$.

♠ Il suffit d'injecter l'expression proposée dans l'équa. diff. :

$$k^2 = lc\omega^2 - j(lg + rc) - rg \tag{9}$$

 \spadesuit En factorisant par lc, on obtient :

$$k^{2} = \frac{\omega^{2}}{c_{0}^{2}} \left(1 - \frac{j}{\omega} \left(\frac{r}{l} + \frac{g}{c} \right) - \frac{1}{\omega^{2}} \frac{rg}{lc} \right)$$

Comme $(1+x)^{\frac{1}{2}}=1+x/2-x^2/8$, en ne gardant que les termes d'ordre 2, on obtient :

$$k = \frac{\omega}{c_0} \left[1 - \frac{j}{2\omega} \left(\frac{r}{l} + \frac{g}{c} \right) + \frac{1}{8\omega^2} \left(\frac{r}{l} - \frac{g}{c} \right)^2 \right]$$

La tension s'écrit alors : $V(x,t)=V_0\exp\left[j(\omega t-k'x)\right]\exp\left[-k"x\right]$. On a alors une longueur caractéristique de décroissance $\delta=1/k''$. Pas de dispersion si v_φ ne dépend pas de ω , cad k' ne dépend pas de ω , cad $\frac{r}{l}-\frac{g}{c}=0$.