Johnson Lindenstrauss

ECE 4200

Goal

Perform a Linear projection to preserve interpoint distances.

A **linear projection** from $\mathbb{R}^d \to \mathbb{R}^k$ is specified by a $k \times d$ matrix W.

A point $\bar{X} \in \mathbf{R}^d$ is mapped to $\hat{\bar{X}} = W\bar{X}$

Why preserve interpoint distances?

If all pairwise distances are preserved, the overall geometric structure is preserved

Faster computations in lower dimensions

ε -distance preservation

Suppose $\overline{X}_1, \overline{X}_2, ..., \overline{X}_n$ are n points in d (large) dimensions. A matrix $W: R^d \to R^k$ is ε -distance preserving if:

$$(1 - \varepsilon) \| \bar{X}_i - \bar{X}_j \|_2^2 \le \| \hat{\bar{X}}_i - \hat{\bar{X}}_j \|_2^2 \le (1 + \varepsilon) \| \bar{X}_i - \bar{X}_j \|_2^2$$

Interpoint distances are preserved up to multiplicative factor

Q1: how small can k be made?

Q2: how to find such a W?

JL theorem

Q1: Let $0.5 > \varepsilon > 0$ and $k > \frac{30 \log n}{\varepsilon^2}$.

There exists an ε -distance preserving map $W: \mathbb{R}^d \to \mathbb{R}^k$.

Q2: Random projection works

A random linear transform

Let W be a $k \times d$ matrix such that

$$W_{ij} \sim N\left(0, \frac{1}{k}\right).$$

Suppose we map each \bar{X}_i to $W\bar{X}_i \in R^k$.

We will show that there is a **W** that satisfies the theorem.

Step 1: Mean preservation

Let W be the $k \times d$ matrix such with each

$$W_{ij} \sim N\left(0, \frac{1}{k}\right).$$

Claim: Given a fixed \bar{X} , and W generated as above, then

$$\mathbb{E}[\|W\bar{X}\|_{2}^{2}] = \|\bar{X}\|_{2}^{2}$$

Step 1: Mean preservation

Claim: Given a fixed \overline{X} , and W generated as above, then

$$\mathbb{E}[\|W\bar{X}\|_{2}^{2}] = \|\bar{X}\|_{2}^{2}$$

Using this, for any i, j

$$\mathbb{E}\left[\left\|\widehat{\bar{X}}_{i} - \widehat{\bar{X}}_{j}\right\|_{2}^{2}\right] = \mathbb{E}\left[\left\|W(\bar{X}_{i} - \bar{X}_{j})\right\|_{2}^{2}\right] = \left\|\widehat{\bar{X}}_{i} - \widehat{\bar{X}}_{j}\right\|_{2}^{2}$$

Step2: Concentration

Claim: Suppose $k > \frac{30 \log n}{\varepsilon^2}$, when W is chosen at random

$$\Pr\bigg((1-\varepsilon) \|\bar{X}_i - \bar{X}_j\|_2^2 \le \|\widehat{\bar{X}}_i - \widehat{\bar{X}}_j\|_2^2 \le (1+\varepsilon) \|\bar{X}_i - \bar{X}_j\|_2^2\bigg) > 1 - \frac{1}{2n^2}$$

Once we have this we can finish the proof by the union bound.

Step2: Concentration

For i, j, let

$$A_{ij}^{c} \coloneqq \left\{ (1 - \varepsilon) \left\| \bar{X}_i - \bar{X}_j \right\|_{2}^{2} \le \left\| \hat{\bar{X}}_i - \hat{\bar{X}}_j \right\|_{2}^{2} \le (1 + \varepsilon) \left\| \bar{X}_i - \bar{X}_j \right\|_{2}^{2} \right\}.$$

 A_{ij} : event that for the distance between \overline{X}_i , and \overline{X}_j is not preserved.

Then, we will show that

$$\Pr(A_{ij}) < \frac{1}{2n^2}.$$

UNION Bound

For any events E_1 , ...

$$\Pr(E_1 \cup E_2 \cup \cdots) \leq \Pr(E_1) + \Pr(E_2) + \cdots$$

Applying this,

$$\Pr(A_{12} \cup A_{13} \cup \dots) < \Pr(A_{12}) + \Pr(A_{13}) + \dots$$

 $< \binom{n}{2} \frac{1}{2n^2} < \frac{1}{4}.$

This shows that

$$\Pr((A_{12} \cup A_{13} \cup \cdots)^c) > 0.$$

Showing that there is some W for which this event happens! (what is this event?)

How to prove concentration?

A general statement reads as:

A random variable X is pretty close to its mean, with high probability.

Markov Inequality

For a non-negative random variable X, and $\alpha > 1$:

$$\Pr(X > \alpha \mathbb{E}[X]) < \frac{1}{\alpha}.$$

Eg,

$$\Pr(X > 2\mathbb{E}[X]) < \frac{1}{2}.$$

PROOF: HZ

Chebychev's Inequality

VARIANCE implies **CONCENTRATION**.

For a random variable X with variance σ^2 , and $\alpha > 1$:

$$\Pr(|X - \mathbb{E}[X]| > \alpha \cdot \sigma) < \frac{1}{\alpha^2}.$$

Eg, *X*: # Heads in 1024 coin tosses. Var(X) = 256. $Pr(|X - \mathbb{E}[X]| > 32) < \frac{1}{4}$.

$$\Pr(|X - \mathbb{E}[X]| > 32) < \frac{1}{4}.$$

PROOF: HZ

To prove JL

Markov and Chebychev will be insufficient.

Chernoff Bounds!

Chebychev's Inequality

Exponential bounds!