DSTL Unit 3 - Propositional Logic

Aditya Tandon, Dept. of CSE, ABES-EC

Today's Roadmap

- 1 Motivation & Big Picture
- 2 Syntax & Semantics
- 3 Equivalences, Laws & Normal Forms
- 4 Reasoning & Inference
- 5 Applications
- 6 Relatable Examples: Delhi–NCR Context
- 7 Quick Checks & Exercises

Why Propositional Logic in CS?

- Specification & Verification: Reason about program correctness.
- Circuit Design: Logic gates implement propositional connectives.
- Databases: SQL predicates mirror logical formulas.
- **AI/SE:** SAT/SMT solvers power compilers, verification, planning, testing.

Examples You'll Recognize

- If the buffer is full **then** drop packet **else** enqueue.
- A request must be authenticated **and** authorized.
- A transaction commits only if all checks pass.

We will formalize such statements to reason unambiguously.

Propositions & Truth Values

Proposition: Declarative statement that is either true or false, but not both.

Examples

- "New Delhi is the capital of India." (**T**)
- "What time is it?" (Not a proposition)
- 2+2=5 (**F**)

Connectives (Operators)

- Negation: $\neg p$
- **C**onjunction: $p \land q$
- Disjunction: $p \lor q$
- Exclusive-or: $p \oplus q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$

Operator Precedence (High \rightarrow Low)

$$\neg$$
 > \wedge > \oplus > \vee > \leftrightarrow

Tip: Use parentheses liberally in teaching code/specs.

Practice: Parse and evaluate

$$p \lor \neg q \to p \land q$$

for all four truth assignments of (p, q).

Truth Tables: Core Connectives

Negation

Conjunction

Disjunction

p	q	$p \lor q$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F

Implication

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Implication: Intuition & Rephrasings

 $p \rightarrow q$ means: if p holds, q must hold.

- "p implies q", "q if p", "p is sufficient for q", "q is necessary for p".
- **Contrapositive:** $\neg q \rightarrow \neg p$ (logically equivalent to $p \rightarrow q$).
- **Converse:** $q \rightarrow p$ (not equivalent).
- Inverse: $\neg p \rightarrow \neg q$ (not equivalent).

Biconditional (Bi-implication)

Notation: $p \leftrightarrow q$ (read: "p iff q")

Meaning: p and q have the same truth value.

Truth table:

$$\begin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

Natural language: "p is necessary and sufficient for q".

Biconditional: Useful Rewrites

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$

Tip: In proofs or SAT/CNF conversions, expand $p \leftrightarrow q$ using one of the above forms.

Terminology: SAT / UNSAT

- **SAT** (Satisfiable): There exists some assignment of truth values that makes the formula TRUE.
- **UNSAT** (Unsatisfiable): No assignment makes the formula TRUE.
- Valid / Tautology: Formula is TRUE under all assignments.

Logical Equivalence (≡)

Two formulas φ, ψ are equivalent if they have the same truth value under every valuation.

Examples

- $p \to q \equiv \neg p \lor q$
- **Contrapositive:** $p \rightarrow q \equiv \neg q \rightarrow \neg p$

De Morgan & Basic Laws

De Morgan's

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Double Negation

$$\neg \neg p \equiv p$$

Distributivity

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Idempotent

$$p \wedge p \equiv p, \ p \vee p \equiv p$$

Tautology, Contradiction, Contingency

- **Tautology:** Always true (e.g. $p \lor \neg p$).
- **Contradiction:** Always false (e.g. $p \land \neg p$).
- Contingency: Sometimes true, sometimes false (most formulas).

Normal Forms: DNF & CNF

Disjunctive Normal Form (DNF): OR of AND-clauses (literals).

$$(p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge r)$$

Conjunctive Normal Form (CNF): AND of OR-clauses.

$$(p \lor q \lor \neg r) \land (\neg p \lor r) \land (q \lor r)$$

Why care? SAT solvers expect CNF; truth-table to DNF is straightforward.

Equivalence Practice (Worked)

Simplify:

$$(p \rightarrow q) \land (p \rightarrow r)$$

Solution outline

$$(p o q) \equiv (\neg p \lor q), \ \ (p o r) \equiv (\neg p \lor r)$$
 $(\neg p \lor q) \land (\neg p \lor r) \equiv \neg p \lor (q \land r)$

(using distributivity). **So:** $(p \rightarrow q) \land (p \rightarrow r) \equiv \neg p \lor (q \land r)$.

Satisfiability & Validity

- **Satisfiable:** Some assignment makes formula true.
- Unsatisfiable: No assignment makes it true.
- Valid: True under all assignments (tautology).

Consistency of specs reduces to satisfiability of their conjunction.

Inference Rules (Sound)

- Modus Ponens: $p, p \rightarrow q \vdash q$
- Modus Tollens: $\neg q, p \rightarrow q \vdash \neg p$
- Hypothetical Syllogism: $(p \rightarrow q), (q \rightarrow r) \vdash p \rightarrow r$
- Disjunctive Syllogism: $p \lor q$, $\neg p \vdash q$
- **Addition:** $p \vdash p \lor q$
- **Conjunction:** $p, q \vdash p \land q$

Proof Methods at a Glance

- Truth tables: brute force but certain.
- Algebraic rewrites: use equivalences to simplify.
- Proof by contradiction / contrapositive.

Translating Natural Language \rightarrow Logic

"You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."

p: "You can ride"; q: "You are under 4 feet tall"; r: "You are older than 16".

Formalization: $(q \land \neg r) \rightarrow \neg p$

System Specs: Consistency Check

- **1** Msg stored in buffer **or** retransmitted. $(B \lor R)$
- **2** Msg **not** stored in buffer. $(\neg B)$
- **3** If stored then retransmitted. $(B \rightarrow R)$
- 4 Msg **not** retransmitted. $(\neg R)$

Are these consistent? Check satisfiability of $(B \lor R) \land (\neg B) \land (B \rightarrow R) \land (\neg R)$.

- From $\neg B \& B \lor R$ we get R.
- Contradicts $\neg R \Rightarrow$ **Unsatisfiable**. Specs are inconsistent.

Logic & Circuits

- Map $p \land q$ to AND gate, $p \lor q$ to OR, $\neg p$ to NOT.
- $p \rightarrow q \equiv \neg p \lor q$ helps implement implication using OR + NOT.
- Optimization: Use equivalences to reduce gate count.

DNF from Truth Table (Mini-Example)

Suppose f(p,q) is true exactly when p = T, q = F or p = F, q = T.

$$f \equiv (p \land \neg q) \lor (\neg p \land q) \equiv p \oplus q$$

Metro Gate Logic: Smart Card

Let:

$$p =$$
 "Smart card has sufficient balance", $q =$ "Gate opens"

Rule: $p \rightarrow q$.

Truth table:

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Case (F,T) means gate opens without balance — a system error.

Metro Gate Logic Diagram

Rule: $p \rightarrow q$

Lab Entry Rule

Let:

$$p=$$
 "You are a registered user", $q=$ "You wear lab coat", $r=$ "You

Policy: You can enter lab iff (registered and wearing lab coat).

$$r \leftrightarrow (p \land q)$$

Food Delivery Logic

p = "Restaurant is open",q = "Area is serviceable",s = "You have internet",r = "You can place order"

Rule: You can place order only if all three conditions are true:

$$(p \land q \land s) \rightarrow r$$

If any of p, q, s is false (restaurant closed, area not serviceable, or no internet) \Rightarrow you cannot place order.

Food Delivery Logic Diagram

Rule: $(p \land q \land s) \rightarrow r$

Street Light with Motion Sensor

Let:

$$d =$$
 "It is dark", $m =$ "Motion detected", $l =$ "Light ON"

Rule: If it is dark and motion is detected, then light turns on:

$$(d \wedge m) \rightarrow I$$

Street Light Logic Diagram

Rule: $(d \wedge m) \rightarrow I$

Quick Check 1 (Precedence)

Evaluate $p \vee \neg q \rightarrow p \wedge q$ when $(p, q) = (\mathsf{T}, \mathsf{F})$.

Choices: A. T B. F

Quick Check 2 (Equivalence)

Which is equivalent to $p \rightarrow q$?

A)
$$q \rightarrow p$$
 B) $\neg p \lor q$ **C)** $p \land q$

Quick Check 3 (Consistency)

Are the following jointly satisfiable?

$$\neg P \lor Q, \quad \neg Q, \quad P$$

Choices: A. Yes B. No

Exercise 1 (Translation)

Formalize: "Access is granted if and only if the user is authenticated and not blacklisted."

G: granted, A: authenticated, B: blacklisted.

Exercise 2 (CNF Practice)

Convert
$$(p \rightarrow q) \land (r \lor \neg q)$$
 to CNF.

Exercise 3 (Tautology?)

Is
$$ig[(p o q)\wedge(p o
eg q)ig] o
eg p$$
 a tautology?

Exercise 4 (SAT Warm-up)

Is
$$(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r) \land (\neg r)$$
 satisfiable?

Recap

- Syntax/semantics of propositional logic; precedence.
- Truth tables, equivalence, laws, DNF/CNF.
- Implication variants (converse, inverse, contrapositive).
- Reasoning methods, satisfiability, consistency.
- Applications: specs, puzzles, circuits.

What's Next

- Predicate Logic: quantifiers \forall , \exists
- Normal forms for predicates, prenex form (later)
- Proof systems & strategies

Answers (Quick Checks)

QC1: (p,q) = (T,F): compute $\neg q = T$, then $p \lor \neg q = T$, and $p \land q = F$, so $T \to F$ is F. **Ans:** B.

QC2: $p \rightarrow q \equiv \neg p \lor q$. Ans: B.

QC3: From $\neg Q$ and $\neg P \lor Q$, we infer $\neg P$. But also P.

Contradiction. Ans: No.

Exercise 1 (Model Answer)

"Access is granted iff authenticated and not blacklisted."

$$G \leftrightarrow (A \land \neg B)$$

Exercise 2 (CNF Sketch)

$$(p
ightarrow q) \wedge (r \vee \neg q) \equiv (\neg p \vee q) \wedge (r \vee \neg q)$$
 (already CNF).

Exercise 3 (Tautology)

Yes. If p implies q and also p implies $\neg q$, then p cannot be true; thus $\neg p$ must hold. Hence the implication is always \mathbf{T} .

Exercise 4 (Unsat)

 $(\neg r)$ forces $r = \mathbf{F}$. Then $(\neg p \lor r)$ becomes $\neg p$, and $(\neg q \lor r)$ becomes $\neg q$. But $(p \lor q)$ requires p or q true. Contradiction. Unsatisfiable.

Appendix: Answers/Outlines

End

Thank you!

