

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Himalayan vegetation.—Among the matters of botanical interest STEWART⁴⁵ has emphasized is the absence of all luxuriant tropical vegetation from this part of India, the indigenous flora being rather of the desert and scrub types. Perhaps the most interesting thing concerning this little known region is the similarity of the forests on the north side of the mountains to those of the eastern United States, as shown by the abundance of trees of such familiar genera as Pinus, Picea, Abies, Taxus, Juglans, Betula, Ulmus, Prunus, Acer, Quercus, Populus, and Berberis. Set in strong contrast are the most abundant genera upon the corresponding southern slopes. This aggregation includes Acacia, Capparis, Tamarix, Zizyphus, Melia, Albizzia, and Olea.—Geo. D. Fuller.

Mycorrhiza of Marattiaceae.—West⁴⁶ has made a careful study of the life history, host relations, and systematic position of a fungus long known to be present in the roots of the Marattiaceae. It is one of the Phycomycetes, and most nearly approaches *Phytophthora* in such characters as are available, but the sexual organs were not observed. West has established a new genus (Stigeosporium) to include it. No injury to the cells of infected roots by the parasite could be recognized, and the resting spores, with their oily contents, are also formed at the expense of the host. "The advantage of the association is almost entirely on the side of the fungus, the host plant thriving in spite of the presence of the endophyte."—J. M. C.

Cambium in monocotyledons.—Mrs. Arber4⁷ has brought together the scattered observations of the occurrence of an ephemeral intrafascicular cambium in monocotyledons, and records also some new observations. It is clear that such a cambium occurs more widely among monocotyledons than has been generally supposed. To the previously recorded cases she adds the inflorescence axes of *Eremurus himalaicus* and *Nothoscordum fragrans*, and the young shoots of *Asparagus officinalis*. The widespread occurrence of this "vestigial, intrafascicular cambium" is a strong additional argument in favor of the derivation of monocotyledons from dicotyledons.—J. M. C.

Seedling anatomy of Ranales.—Miss Blackburn⁴⁸ has investigated the seedling anatomy of a large number of the Ranales, chief attention being given to the Ranunculaceae. The results of chief phylogenetic interest are the

⁴⁵ STEWART, RALPH R., Some observations on the flora of northwest Himalaya. Torreya 15:215-260. figs. 4. 1915.

⁴⁶ West Cyrll On *Stigeosporium Marattiacearum* and the mycorrhiza of the Marattiaceae. Ann. Botany 31:77-99. pl. 3. figs. 9. 1917.

⁴⁷ Arber, Agnes, On the occurrence of intrafascicular cambium in monocotyledons. Ann. Botany 31:41-45. figs. 3. 1917.

⁴⁸ Blackburn, Kathleen B., On the vascular anatomy of the young epicotyl in some Ranalean forms. Ann. Botany 31:151-180. pl. 13. figs. 19. 1917.