PENDING CLAIMS

The claims were timely amended in the PCT application under Article 34 on August 22, 2005. No claim amendments are made herein. Accordingly, the currently pending claims, which correspond to those presented in the Article 34 amendment, are as follows:

1. A process for preparing a compound of Formula V:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 V

or salt thereof,

wherein:

 R^1 is H or C_1 - C_8 alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring;

comprising:

a) reacting a compound of Formula XII:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 XII

with a halogenating/sulfonating reagent for a time and under conditions suitable for forming a compound of Formula XI:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 XI

wherein X¹ is a leaving group;

b) reacting said compound of Formula XI with a compound of Formula:

or salt thereof, for a time and under conditions suitable for forming a compound of Formula X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 X

or salt thereof;

c) reacting said compound of Formula X with a further halogenating/sulfonating reagent for a time and under conditions suitable for forming a compound of Formula IX:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8
 R^8

or salt thereof;

wherein X^2 is halo or SO_2R " and R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy; and

- d) reacting said compound of Formula IX with a cyclizing reagent for a time and under conditions suitable for forming said compound of Formula V.
- 2. The process of claim 1 wherein said cyclizing reagent is AlCl₃.
- 3. The process of claim 1 wherein said halogenating/sulfonating reagent is PBr₃ or PCl₃.
- 4. The process of claim 1 wherein said further halogenating/sulfonating reagent is SOBr₂ or SOCl₂.
- 5. The process of claim 1 wherein X^2 is Cl.
- 6. The process of claim 1 wherein X^1 is Br.
- 7. The process of claim 1, 5, or 6 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 8. A process for preparing a compound of Formula V:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 V

or salt thereof,

wherein:

R¹ is H or C₁-C₈ alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring; comprising:

a) reacting a compound of Formula XI:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 XI

wherein X^1 is a leaving group, with a compound of Formula:

or salt thereof, for a time and under conditions suitable for forming a compound of Formula X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 X

or salt thereof;

b) reacting said compound of Formula X with a halogenating/sulfonating reagent for a time and under conditions suitable for forming a compound of Formula IX:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8

or salt thereof;

wherein X^2 is halo or SO_2R " and R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy; and

- c) reacting said compound of Formula IX with a cyclizing reagent for a time and under conditions suitable for forming said compound of Formula V.
- 9. The process of claim 8 wherein said cyclizing reagent is AlCl₃.
- 10. The process of claim 8 wherein said halogenating/sulfonating reagent is SOBr₂ or SOCl₂.
- 11. The process of claim 8 wherein X^2 is Cl.
- 12. The process of claim 8 wherein X^1 is Br.
- 13. The process of claim 8, 11, or 12 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 14. A process for preparing a compound of Formula V:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 V

or salt thereof,

wherein:

 R^1 is H or C_1 - C_8 alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or

heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C₁-C₈ alkyl, halo, C₁-C₈ haloalkyl, and alkoxy; or R⁴ and R⁵ together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

R¹⁰ and R¹¹ are each, independently, H, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkynyl, C₃-C₇ cycloalkyl, C₁-C₈ haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R¹⁰ and R¹¹ together with the N atom to which they are attached form a heterocyclic ring; comprising:

a) reacting a compound of Formula X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 X

or salt thereof;

with a halogenating/sulfonating reagent for a time and under conditions suitable for forming a compound of Formula IX:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8
 R^8

or salt thereof;

wherein X^2 is halo or SO_2R " and R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy; and

- b) reacting said compound of Formula IX with a cyclizing reagent for a time and under conditions suitable for forming said compound of Formula V.
- 15. The process of claim 14 wherein said cyclizing reagent is AlCl₃.
- 16. The process of claim 14 wherein said reacting of step (b) is carried out in the presence of 1,2-dichlorobenzene.
- 17. The process of claim 14 wherein said halogenating/sulfonating reagent is SOBr₂ or SOCl₂.
- 18. The process of claim 14 wherein X^2 is Cl.
- 19. The process of claim 14 wherein said reacting of step (a) is carried out in the presence of solvent.
- 20. The process of claim 19 wherein said solvent comprises dimethylformamide or toluene.
- 21. The process of claim 14 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 22. A process for preparing a compound of Formula V:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 V

or salt thereof,

wherein:

R¹ is H or C₁-C₈ alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

R^{8a} and R^{8b} are each, independently, H, halo, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₇ cycloalkyl, C₁-C₈ haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C₃-C₇ cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

R¹⁰ and R¹¹ are each, independently, H, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₁-C₈ alkynyl, C₃-C₇ cycloalkyl, C₁-C₈ haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R¹⁰ and R¹¹ together with the N atom to which they are attached form a heterocyclic ring; comprising reacting a compound of Formula IX:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8
 R^8

or salt thereof, wherein X^2 is halo or SO_2R " and R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy, with a cyclizing reagent for a time and under conditions suitable for forming said compound of Formula V.

23. The process of claim 22 wherein said cyclizing reagent is AlCl₃.

- 24. The process of claim 22 wherein said reacting is carried out in the presence of 1,2-dichlorobenzene.
- 25. The process of claim 22 wherein said reacting is carried out at a temperature between about 100 and about 150 °C.
- 26. The process of claim 22 wherein X^2 is Cl.
- 27. The process of claim 22 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 28. A process for preparing a compound of Formula IX:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8
 R^8

or salt thereof,

wherein:

R¹ is H or C₁-C₈ alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)-alkyl, C(O)-alkyl, C(O)-heterocycloalkyl, C(O)-heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

R^{8a} and R^{8b} are each, independently, H, halo, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₇ cycloalkyl, C₁-C₈ haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl,

C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C₃-C₇ cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl;

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring; and

X² is halo or SO₂R"; and

R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy; comprising reacting a compound of Formula X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 X

or salt thereof, with a halogenating/sulfonating reagent for a time and under conditions suitable for forming said compound of Formula XI.

- 29. The process of claim 28 wherein said halogenating/sulfonating reagent is SOBr₂ or SOCl₂.
- 30. The process of claim 28 wherein X^2 is Br.
- 31. The process of claim 28 wherein X^2 is Cl.
- 32. The process of claim 28 wherein said reacting is carried out in the presence of a solvent comprising dimethylformamide or toluene.
- 33. The process of claim 28 wherein said elevated temperature is from about -40 to about 80 °C.

- 34. The process of claim 28 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 35. A process for preparing a compound of Formula X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 X

or salt thereof,

wherein:

R¹ is H or C₁-C₈ alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring; comprising reacting a compound of Formula XI:

wherein X1 is a leaving group,

with a compound of Formula:

for a time and under conditions suitable for forming said compound of Formula X.

- 36. The process of claim 35 wherein X^1 is Br.
- 37. The process of claim 35 wherein said temperature is from about 80 to about 110 °C.
- 38. The process of claim 35 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 39. A compound of Formula IX or X:

$$R^4$$
 R^5
 R^6
 R^{8b}
 R^{8a}
 R^8

 R^4 R^5 R^6 R^{8b} R^{8a} X

or salt form thereof,

wherein:

R¹ is H or C₁-C₈ alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), or C_1 - C_4 haloalkyl;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl;

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring;

X² is halo or SO₂R"; and

R" is C_1 - C_8 alkyl, aryl, or heteroaryl each optionally substituted by one or more halo, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, or C_1 - C_4 haloalkoxy.

- 40. The compound of claim 39 wherein X^2 is Cl.
- 41. The compound of claim 39 or 40 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 42. A method of resolving a mixture of compounds of Formula Va and Vb:

wherein:

 R^1 is H or C_1 - C_8 alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), OH, C_1 - C_4 haloalkyl, or CH₂OH;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)-alkyl, C(O)-Brankyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring; comprising:

contacting said mixture of compounds with a chiral resolving acid to form chiral resolving acid salts of said compounds, wherein said chiral resolving acid comprises substantially one stereoisomer; and

precipitating said chiral resolving acid salts of said compounds, wherein the resulting precipitate is enriched in the chiral resolving acid salt of one of said compounds of Formula Va or Vb.

- 43. The method of claim 42 wherein said chiral resolving acid is tartaric acid.
- 44. The method of claim 42 wherein said chiral resolving acid is L-(+)-tartaric acid.
- 45. The method of claim 42 wherein said precipitate is enriched in the chiral resolving acid salt of said compound of Formula Vb.
- 46. The method of claim 42 or 44 wherein R¹ is H, R² is Me, R³ is H, R⁴ is Cl, R⁵ is H, R⁶ is H, R^{8a} is H, and R^{8b} is H.
- 47. A chiral resolving acid salt of a compound of Formula Va or Vb:

wherein:

 R^1 is H or C_1 - C_8 alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), OH, C_1 - C_4 haloalkyl, or CH₂OH;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)-alkyl, C(O)-alkyl, C(O)-by-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

R^{8a} and R^{8b} are each, independently, H, halo, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₇ cycloalkyl, C₁-C₈ haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl,

C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C₃-C₇ cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring.

- 48. The salt of claim 47 wherein said salt is a tartaric acid salt.
- 49. The salt of claim 47 wherein said tartaric acid is L-(+)-tartaric acid.
- 50. The salt of claim 47 having Formula Vb.
- 51. The salt of claim 47, 49, or 50 wherein R^1 is H, R^2 is Me, R^3 is H, R^4 is Cl, R^5 is H, R^6 is H, R^{8a} is H, and R^{8b} is H.
- 52. A composition comprising at least one chiral resolving acid salt of claim 47.
- 53. The composition of claim 52 wherein said composition comprises said tartaric acid salt form of a compound of Formula Va and said tartaric acid salt form of a compound of Formula Vb, wherein said composition is enriched in one of either of said tartaric acid salt form of a compound of Formula Va or said tartaric acid salt form of a compound of Formula Vb.
- 54. A hydrochloric acid salt of a compound of Formula Va or Vb:

wherein:

 R^1 is H or C_1 - C_8 alkyl;

 R^2 is C_1 - C_8 alkyl, -CH₂-O-(C_1 - C_8 alkyl), C(O)O-(C_1 - C_8 alkyl), -C(O)NH-(C_1 - C_8 alkyl), OH, C_1 - C_4 haloalkyl, or CH₂OH;

 R^3 , R^4 , R^5 , and R^6 are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, hydroxy, OR^9 , alkoxyalkyl, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, hydroxyalkyl, $NR^{10}R^{11}$, CN, NO_2 , heterocycloalkyl, aryl, or heteroaryl, wherein said aryl and heteroaryl can be substituted with one or more substituents selected from C_1 - C_8 alkyl, halo, C_1 - C_8 haloalkyl, and alkoxy; or R^4 and R^5 together with the atoms to which they are attached form a 5- or 6-member heterocyclic ring having one O atom;

 R^{8a} and R^{8b} are each, independently, H, halo, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, alkoxyalkyl, hydroxy, C(O)-alkyl, C(O)O-alkyl, C(O)NH-alkyl, or hydroxyalkyl, or R^{8a} and R^{8b} together with the carbon atom to which they are attached form a C_3 - C_7 cycloalkyl group;

 R^9 is H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl; and

 R^{10} and R^{11} are each, independently, H, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_1 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_1 - C_8 haloalkyl, aralkyl, aryl, heteroaryl, heteroarylalkyl, or allyl, or R^{10} and R^{11} together with the N atom to which they are attached form a heterocyclic ring.

- 55. The salt of claim 54 having Formula Vb.
- 56. The salt of claim 54 or 55 wherein R¹ is H, R² is Me, R³ is H, R⁴ is Cl, R⁵ is H, R⁶ is H, R^{8a} is H, and R^{8b} is H.
- 57. The salt of claim 54 having Formula Vb wherein R¹ is H, R² is Me, R³ is H, R⁴ is Cl, R⁵ is H, R⁶ is H, R^{8a} is H, and R^{8b} is H.
- 58. A composition comprising at least one hydrochloric acid salt of claim 54.