

Scipy.org (http://scipy.org/) Docs (http://docs.scipy.org/) SciPy v0.15.1 Reference Guide (index.html) index (genindex.html) modules (py-modindex.html) next (generated/scipy.signal.convolve.html) previous (generated/scipy.optimize.show_options.html)

Signal processing (scipy.signal)

Convolution

convolve (generated/scipy.signal.convolve.html#scipy.signal.convolve)(in1, in2[, mode])

correlate (generated/scipy.signal.correlate.html#scipy.signal.correlate)(in1, in2[, mode])

fftconvolve (generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve)(in1, in2[, mode])

convolve2d (generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d) (in1, in2[, mode, boundary, fillvalue])

correlate2d (generated/scipy.signal.correlate2d.html #scipy.signal.correlate2d) (in1, in2[, mode, boundary, ...])

sepfir2d (generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d)((input, hrow, hcol) -> output)

Table Of Contents (index.html)

Signal processing (scipy.signal)

Convolve Convolution
two Ntwo Ndimension Filtering
arrays.
Crosscorrelate
two NLinear Systems
dimensional acrays.
Convolve TIR filter
design
Continuous-Time
Linear Systems
dimensional acrays.
Systems
Convolve TIR Representations
two NWaveforms
dimensional acrays
University of the continuous of the continuou

Bravioustapic

ଞ୍ଚିମ୍ମିୟୁ:optimize.show_options (ଟୁମ୍ପର-rated/scipy.optimize.sho correlate ଧୁକ୍ୟୁ:topic

ditiperssignate convolve (grangerated/scipy.signal.convo Description:

B-splines

bspline (generated/scipy.signal.bspline.html#scipy.signal.bspline)(x, n)	B-spline basis function of order n.
cubic (generated/scipy.signal.cubic.html#scipy.signal.cubic)(x)	A cubic B- spline.
quadratic (generated/scipy.signal.quadratic.html#scipy.signal.quadratic)(x)	A quadratic B-spline.
gauss_spline (generated/scipy.signal.gauss_spline.html#scipy.signal.gauss_spline)(x, n)	Gaussian approximation to B-spline basis function of order n.
cspline1d (generated/scipy.signal.cspline1d.html#scipy.signal.cspline1d)(signal[, lamb])	Compute cubic spline coefficients for rank-1 array.
qspline1d (generated/scipy.signal.qspline1d.html#scipy.signal.qspline1d)(signal[, lamb])	Compute quadratic spline coefficients for rank-1 array.
cspline2d (generated/scipy.signal.cspline2d.html#scipy.signal.cspline2d) ((input {, lambda, precision}) -> ck)	Description:
qspline2d (generated/scipy.signal.qspline2d.html#scipy.signal.qspline2d) ((input {, lambda, precision}) -> qk)	Description:

cspline1d_eval (generated/scipy.signal.cspline1d_eval.html#scipy.signal.cspline1d_eval) (cj, newx[, dx, x0])

spline at the new set of points. Evaluate a

Evaluate a

qspline1d_eval (generated/scipy.signal.qspline1d_eval.html#scipy.signal.qspline1d_eval) (cj, newx[, dx, x0])

quadratic spline at the new set of points.

spline_filter (generated/scipy.signal.spline_filter.html#scipy.signal.spline_filter)(lin[, lmbda])

Smoothing spline (cubic) filtering of a rank-2 array.

Filtering

order_filter (generated/scipy.signal.order_filter.html#scipy.signal.order_filter)(a, domain, rank)

Perform an order filter on an N-dimensional array.

medfilt (generated/scipy.signal.medfilt.html#scipy.signal.medfilt)(volume[, kernel_size]) medfilt2d (generated/scipy.signal.medfilt2d.html#scipy.signal.medfilt2d)(input[, kernel_size]) wiener (generated/scipy.signal.wiener.html#scipy.signal.wiener)(im[, mysize, noise]) symiirorder1 (generated/scipy.signal.symiirorder1.html#scipy.signal.symiirorder1)((input, c0, z1 {, ...)

Perform a median filter on an N-dimensional array. Median filter a 2-dimensional array.

symiirorder2 (generated/scipy.signal.symiirorder2.html#scipy.signal.symiirorder2) ((input, r, omega {, ...)

Perform a Wiener filter on an N-dimensional array. Implement a smoothing IIR filter with mirror-symme boundary conditions using a cascade of first-order sections.

Ifilter (generated/scipy.signal.lfilter.html#scipy.signal.lfilter)(b, a, x[, axis, zi]) Ifiltic (generated/scipy.signal.lfiltic.html#scipy.signal.lfiltic)(b, a, y[, x]) lfilter_zi (generated/scipy.signal.lfilter_zi.html#scipy.signal.lfilter_zi)(b, a)

Implement a smoothing IIR filter with mirror-symme boundary conditions using a cascade of second-ord Filter data along one-dimension with an IIR or FIR fil

filtfilt (generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt)(b, a, x[, axis, padtype, padlen]) savgol_filter (generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter) (x, window_length, polyorder[, ...])

Compute an initial state zi for the Ifilter function tha corresponds to the steady state of the step respons

deconvolve (generated/scipy.signal.deconvolve.html#scipy.signal.deconvolve)(signal, divisor)

Apply a Savitzky-Golay filter to an array.

Construct initial conditions for Ifilter.

hilbert (generated/scipy.signal.hilbert.html#scipy.signal.hilbert)(x[, N, axis])

Deconvolves divisor out of signal

A forward-backward filter.

hilbert2 (generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2)(x[, N]) decimate (generated/scipy.signal.decimate.html#scipy.signal.decimate)(x, q[, n, ftype, axis]) detrend (generated/scipy.signal.detrend.html#scipy.signal.detrend)(data[, axis, type, bp]) resample (generated/scipy.signal.resample.html#scipy.signal.resample)(x, num[, t, axis, window]) (http://docs.python.org/dev/library/signal.html#mor signal).

transform. Compute the '2-D' analytic signal of xDownsample the signal by using a filter. Remove linear trend along axis from data.

Compute the analytic signal, using the Hilbert

Resample x to num samples using Fourier method a the given axis.

Filter design

bilinear (generated/scipy.signal.bilinear.html#scipy.signal.bilinear)(b, a[, fs])

findfreqs (generated/scipy.signal.findfreqs.html#scipy.signal.findfreqs)(num, den, N)

Return a digital filter

from an analog one using a

bilinear transform. Find an

array of frequencies

for computing the response of

a filter.

firwin (generated/scipy.signal.firwin.html#scipy.signal.firwin)(numtaps, cutoff[, width, window, ...])

FIR filter design using the window method. FIR filter

design using

firwin2 (generated/scipy.signal.firwin2.html#scipy.signal.firwin2)(numtaps, freq, gain[, nfreqs, ...])

the window

method. freqs (generated/scipy.signal.freqs.html#scipy.signal.freqs)(b, a[, worN, plot]) Compute frequency response of analog filter. freqz (generated/scipy.signal.freqz.html#scipy.signal.freqz)(b[, a, worN, whole, plot]) Compute the frequency response of a digital filter. Complete iirdesign (generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign) IIR digital (wp, ws, gpass, gstop[, analog, ...]) and analog filter design. iirfilter (generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter)(N, Wn[, rp, rs, btype, analog, ...]) IIR digital and analog filter design given order and critical points. kaiser_atten (generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten)(numtaps, width) Compute the attenuation of a Kaiser FIR filter. kaiser_beta (generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta)(a) Compute the Kaiser parameter beta, given attenuation kaiserord (generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord)(ripple, width) Design a Kaiser window to limit ripple and width of transition region. savgol_coeffs (generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs) Compute (window_length, polyorder[, ...]) the coefficients for a 1-d Savitzky-Golay FIR filter. remez (generated/scipy.signal.remez.html#scipy.signal.remez) Calculate (numtaps, bands, desired[, weight, Hz, ...]) the minimax optimal filter using the Remez exchange algorithm. unique_roots (generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots)(p[, tol, rtype]) Determine unique roots and their multiplicities from a list of roots. residue (generated/scipy.signal.residue.html#scipy.signal.residue)(b, a[, tol, rtype]) Compute partialfraction expansion of b(s) / a(s). residuez (generated/scipy.signal.residuez.html#scipy.signal.residuez)(b, a[, tol, rtype]) Compute partial-

fraction

expansion of b(z) / a(z). invres (generated/scipy.signal.invres.html#scipy.signal.invres)(r, p, k[, tol, rtype]) Compute b(s) and a(s) from partial fraction expansion. invresz (generated/scipy.signal.invresz.html#scipy.signal.invresz)(r, p, k[, tol, rtype]) Compute b(z) and a(z) from partial fraction expansion. Lower-level filter design functions: abcd_normalize (generated/scipy.signal.abcd_normalize.html#scipy.signal.abcd_normalize)([A, B, C, D]) Check statespace matrices and ensure they are twodimensional. band_stop_obj (generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj) **Band Stop** (wp, ind, passb, stopb, gpass, ...) Objective Function for order minimization. besselap (generated/scipy.signal.besselap.html#scipy.signal.besselap)(N) Return (z,p,k) for analog prototype of an Nth order Bessel filter. buttap (generated/scipy.signal.buttap.html#scipy.signal.buttap)(N) Return (z,p,k) for analog prototype of Nth order Butterworth filter. cheb1ap (generated/scipy.signal.cheb1ap.html#scipy.signal.cheb1ap)(N, rp) Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter. cheb2ap (generated/scipy.signal.cheb2ap.html#scipy.signal.cheb2ap)(N, rs) Return (z,p,k) for Nth order Chebyshev type I analog lowpass filter. cmplx_sort (generated/scipy.signal.cmplx_sort.html#scipy.signal.cmplx_sort)(p) Sort roots based on magnitude. Return (z,p,k) ellipap (generated/scipy.signal.ellipap.html#scipy.signal.ellipap)(N, rp, rs) of Nth order elliptic analog lowpass filter. Transform a lp2bp (generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp)(b, a[, wo, bw]) lowpass filter prototype to a bandpass filter. lp2bs (generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs)(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter. lp2hp (generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp)(b, a[, wo]) Transform a lowpass filter prototype to a highpass filter. lp2lp (generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp)(b, a[, wo])

normalize (generated/scipy.signal.normalize.html#scipy.signal.normalize)(b, a)

Transform a lowpass filter prototype to a different frequency. Normalize polynomial representation of a transfer function.

Matlab-style IIR filter design

butter (generated/scipy.signal.butter.html#scipy.signal.butter)

(N, Wn[, btype, analog, output])

 $buttord\ (generated/scipy.signal.buttord.html \#scipy.signal.buttord)$

(wp, ws, gpass, gstop[, analog])

cheby1 (generated/scipy.signal.cheby1.html#scipy.signal.cheby1)

(N, rp, Wn[, btype, analog, output])

cheb1ord (generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord)

(wp, ws, gpass, gstop[, analog])

cheby2 (generated/scipy.signal.cheby2.html#scipy.signal.cheby2)

(N, rs, Wn[, btype, analog, output])

cheb2ord (generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord)

(wp, ws, gpass, gstop[, analog])

ellip (generated/scipy.signal.ellip.html#scipy.signal.ellip)

(N, rp, rs, Wn[, btype, analog, output])

ellipord (generated/scipy.signal.ellipord.html#scipy.signal.ellipord)

(wp, ws, gpass, gstop[, analog])

bessel (generated/scipy.signal.bessel.html#scipy.signal.bessel)

(N, Wn[, btype, analog, output])

Butterworth digital and

analog filter design.

Butterworth filter order selection.

Chebyshev type I digital and analog filter

design. Chebyshev type

I filter order selection. Chebyshev type II digital and

analog filter design.

Chebyshev type II filter order selection.

Elliptic (Cauer) digital and analog filter design.

Elliptic (Cauer) filter order selection.

Bessel/Thomson digital and analog filter design.

Continuous-Time Linear Systems

freqresp (generated/scipy.signal.freqresp.html#scipy.signal.freqresp) (system[, w, n])

Iti (generated/scipy.signal.lti.html#scipy.signal.lti)(*args, **kwords) Isim (generated/scipy.signal.lsim.html#scipy.signal.lsim)

(system, U, T[, X0, interp])

lsim2 (generated/scipy.signal.lsim2.html#scipy.signal.lsim2)(system[, U, T, X0])

impulse (generated/scipy.signal.impulse.html#scipy.signal.impulse) (system[, X0, T, N])

impulse2 (generated/scipy.signal.impulse2.html#scipy.signal.impulse2) (system[, X0, T, N])

step (generated/scipy.signal.step.html#scipy.signal.step)(system[, X0, T, N]) step2 (generated/scipy.signal.step2.html#scipy.signal.step2)(system[, X0, T, N]) bode (generated/scipy.signal.bode.html#scipy.signal.bode)(system[, w, n])

Calculate the frequency response of a continuous-time system.

Linear Time Invariant class which simplifies representation. Simulate output of a continuous-time linear system.

Simulate output of a continuous-time linear system, by using the ODE solver scipy.integrate.odeint

(generated/scipy.integrate.odeint.html#scipy.integrate.odeint).

Impulse response of continuous-time system.

Impulse response of a single-input, continuous-time linear system.

Step response of continuous-time system. Step response of continuous-time system.

Simulate output

Calculate Bode magnitude and phase data of a continuous-time system.

Discrete-Time Linear Systems

dlsim (generated/scipy.signal.dlsim.html#scipy.signal.dlsim)(system, u[, t, x0])

 $\label{thm:continuous} dimpulse (generated/scipy.signal.dimpulse.html \# scipy.signal.dimpulse) \\ (system[, x0, t, n])$

 $dstep \ (generated/scipy.signal.dstep.html \#scipy.signal.dstep) (system[, x0, t, n]) \\$

of a discretetime linear system. Impulse response of discrete-time system. Step response of discrete-time

system.

LTI Representations

tf2zpk (generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk)(b, a)	Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter.
zpk2tf (generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf)(z, p, k)	Return polynomial transfer function representation from zeros
tf2ss (generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss)(num, den)	Transfer function to state-space representation.
ss2tf (generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf)(A, B, C, D[, input])	State-space to transfer function.
zpk2ss (generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss)(z, p, k)	Zero-pole-gain representation to state-space representation
ss2zpk (generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk)(A, B, C, D[, input])	State-space representation to zero-pole- gain representation.
cont2discrete (generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete) (sys, dt[, method, alpha])	Transform a continuous to a discrete state-space system.

Waveforms

chirp (generated/scipy.signal.chirp.html#scipy.signal.chirp) (t, f0, t1, f1[, method, phi, vertex_zero])	Frequency- swept
	cosine generator.
gausspulse (generated/scipy.signal.gausspulse.html#scipy.signal.gausspulse)	Return a
t[, fc, bw, bwr, tpr, retquad,])	Gaussian modulated sinusoid:
max_len_seq (generated/scipy.signal.max_len_seq.html#scipy.signal.max_len_seq) (nbits[, state, length, taps])	Maximum Length
	Sequence (MLS) generator
$sawtooth \ (generated/scipy.signal.sawtooth.html \#scipy.signal.sawtooth) (t[, width])$	Return a periodic sawtooth

square (generated/scipy.signal.square.html#scipy.signal.square)(t[, duty])

sweep_poly (generated/scipy.signal.sweep_poly.html#scipy.signal.sweep_poly)(t, poly[, phi])

periodic squarewave waveform. Frequencyswept cosine generator, with a timedependent frequency.

or triangle waveform.

Return a

Window functions

window, Nxf, fftbins]) barthann (generated/scipy.signal.barthann.html#scipy.signal.barthann)(Mf, sym]) Return a modified Bartlett Hann window. bartlett (generated/scipy.signal.bartlett.html#scipy.signal.bartlett)(Mf, sym]) Betturn a Bartlett window. blackman (generated/scipy.signal.blackman.html#scipy.signal.blackman)(Mf, sym]) Blackman (generated/scipy.signal.blackman.html#scipy.signal.blackmanharris) Return a Blackman (Mf, sym]) Bohman (generated/scipy.signal.bohman.html#scipy.signal.bohman)(Mf, sym]) Bohman (generated/scipy.signal.bohman.html#scipy.signal.bohman)(Mf, sym]) Bohman (generated/scipy.signal.boxcar.html#scipy.signal.boxcar)(Mf, sym]) Bohman (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, atf, sym]) Bohman boxcar (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, atf, sym]) Beturn a Dolph-Chebyshe window. cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(Mf, sym]) Return a window with a simple cosine flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(Mf, sym]) Return a diat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, stdf, sym]) Return a Gaussian (generated/scipy.signal.gaussian.html#scipy.signal.general_gaussian)(M, p, sigf, sym]) Return a Gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sigf, sym])	Window functions	
modified Bartlett Hann window. bartlett (generated/scipy.signal.bartlett.html#scipy.signal.bartlett)(M[, sym]) Bartlett (generated/scipy.signal.blackman.html#scipy.signal.blackman)(M[, sym]) Blackman (generated/scipy.signal.blackman.html#scipy.signal.blackman)(M[, sym]) Blackman blackmanharris (generated/scipy.signal.blackmanharris.html#scipy.signal.blackmanharris) Blackman (M[, sym]) Blackman window. bohman (generated/scipy.signal.bohman.html#scipy.signal.bohman)(M[, sym]) Bohman (generated/scipy.signal.boxcar.html#scipy.signal.boxcar)(M[, sym]) Bohman Bo	get_window (generated/scipy.signal.get_window.html#scipy.signal.get_window) (window, Nx[, fftbins])	
blackman (generated/scipy.signal.blackman.html#scipy.signal.blackman)(M[, sym]) blackmanharris (generated/scipy.signal.blackmanharris.html#scipy.signal.blackmanharris) complete the string of the s	barthann (generated/scipy.signal.barthann.html#scipy.signal.barthann)(M[, sym])	modified Bartlett- Hann
Blackmar window. (M[, sym])	bartlett (generated/scipy.signal.bartlett.html#scipy.signal.bartlett)(M[, sym])	Bartlett
(M[, sym]) A-term Blackmar Harris window. bohman (generated/scipy.signal.bohman.html#scipy.signal.bohman)(M[, sym]) Return a boxcar (generated/scipy.signal.boxcar.html#scipy.signal.boxcar)(M[, sym]) Return a boxcar or rectangul window. chebwin (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, at[, sym]) Return a Dolph- Chebyshe window. cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(M[, sym]) Return a window with a simple cosine flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a diat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a generaliz Gaussian speneraliz	blackman (generated/scipy.signal.blackman.html#scipy.signal.blackman)(M[, sym])	Blackman
Bohman window. boxcar (generated/scipy.signal.boxcar.html#scipy.signal.boxcar)(M[, sym]) Return a boxcar or rectangul window. chebwin (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, at[, sym]) Return a bolph-Chebyshe window. cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(M[, sym]) Return a window with a simple cosine shape. flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a flat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym])	blackmanharris (generated/scipy.signal.blackmanharris.html#scipy.signal.blackmanharris (M[, sym])	minimum 4-term Blackman- Harris
boxcar or rectangul window. chebwin (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, at[, sym]) Return a Dolph-Chebyshe window. cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(M[, sym]) Return a window with a simple cosine shape. flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a flat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian (generated/scipy.signal.general_gaussian)(M, p, sig[, sym]) Return a Gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) with a generaliz Gaussian shape.	bohman (generated/scipy.signal.bohman.html#scipy.signal.bohman)(M[, sym])	Bohman
Dolph-Chebyshe window. cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(M[, sym]) Return a window with a simple cosine shape. flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a flat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) Return a window. generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a generalized Gaussian shape.	boxcar (generated/scipy.signal.boxcar.html#scipy.signal.boxcar)(M[, sym])	boxcar or rectangula
window with a simple cosine shape. flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a flat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a generaliz Gaussian shape.	chebwin (generated/scipy.signal.chebwin.html#scipy.signal.chebwin)(M, at[, sym])	Dolph- Chebyshev
flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym]) Return a flat top window. gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym]) Return a Gaussian window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) Return a window. Return a window with a generaliz Gaussian shape.	cosine (generated/scipy.signal.cosine.html#scipy.signal.cosine)(M[, sym])	window with a simple cosine
Gaussian window. general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a generaliz Gaussian shape.	flattop (generated/scipy.signal.flattop.html#scipy.signal.flattop)(M[, sym])	Return a flat top
(generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sym]) window with a generaliz Gaussian shape.	gaussian (generated/scipy.signal.gaussian.html#scipy.signal.gaussian)(M, std[, sym])	Gaussian
•	general_gaussian (generated/scipy.signal.general_gaussian.html#scipy.signal.general_gaussian)(M, p, sig[, sy	m]) window with a generalized Gaussian
	hamming (generated/scipy.signal.hamming.html#scipy.signal.hamming)(M[, sym])	

Hamming window. hann (generated/scipy.signal.hann.html#scipy.signal.hann)(M[, sym]) Return a Hann window. kaiser (generated/scipy.signal.kaiser.html#scipy.signal.kaiser)(M, beta[, sym]) Return a Kaiser window. nuttall (generated/scipy.signal.nuttall.html#scipy.signal.nuttall)(M[, sym]) Return a minimum 4-term Blackman-Harris window according to Nuttall. parzen (generated/scipy.signal.parzen.html#scipy.signal.parzen)(M[, sym]) Return a Parzen window. slepian (generated/scipy.signal.slepian.html#scipy.signal.slepian)(M, width[, sym]) Return a digital Slepian (DPSS) window. triang (generated/scipy.signal.triang.html#scipy.signal.triang)(M[, sym]) Return a triangular window.

Wavelets

cascade (generated/scipy.signal.cascade.html#scipy.signal.cascade)(hk[, J]) Return (x, phi, psi) at dyadic points K/2**J from filter coefficients. daub (generated/scipy.signal.daub.html#scipy.signal.daub)(p) The coefficients for the FIR low-pass filter producing Daubechies wavelets. morlet (generated/scipy.signal.morlet.html#scipy.signal.morlet) Complex Morlet (M[, w, s, complete]) wavelet. qmf (generated/scipy.signal.qmf.html#scipy.signal.qmf)(hk) Return high-pass qmf filter from lowricker (generated/scipy.signal.ricker.html#scipy.signal.ricker)(points, a) Return a Ricker wavelet, also known as the "Mexican hat wavelet". cwt (generated/scipy.signal.cwt.html#scipy.signal.cwt)(data, wavelet, widths) Continuous wavelet transform.

Peak finding

find_peaks_cwt (generated/scipy.signal.find_peaks_cwt.html#scipy.signal.find_peaks_cwt) Attempt (vector, widths[, wavelet, ...]) to find the peaks in a 1-D array. argrelmin (generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin)(data[, axis, order, mode]) Calculate the relative minima of data. argrelmax (generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax)(data[, axis, order, mode]) Calculate the relative

argrelextrema (generated/scipy.signal.argrelextrema.html#scipy.signal.argrelextrema) (data, comparator[, axis, ...])

maxima of data.
Calculate the relative extrema of data.

Spectral Analysis

periodogram (generated/scipy.signal.periodogram.html#scipy.signal.periodogram) (x[, fs, window, nfft, detrend, ...])

power spectral density using

Estimate

welch (generated/scipy.signal.welch.html#scipy.signal.welch)(x[, fs, window, nperseg, noverlap, ...])

a periodogram.

lombscargle (generated/scipy.signal.lombscargle.html#scipy.signal.lombscargle)(x, y, freqs)

Estimate power spectral density using Welch's method.

 $vector strength (generated/scipy.signal.vector strength.html \#scipy.signal.vector strength) \\ (events, period)$

Computes the Lomb-Scargle periodogram. Determine the vector strength of the events corresponding to the given period.