Kapitel 6

Fehlertoleranz

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Motivation

- Bisher: Rechnerarchitektur am Beispiel von ReTI
- Fehler auf verschiedenen Ebenen entdecken und beheben
 - → Fehler durch Fertigungsdefekte, Störungen: Kapitel 6
 - → Konzeptuelle Fehler, Entwurfsfehler: Kapitel 7
- Allgemeine Rechnerarchitektur und Entwurfskonzepte

WS 2016/17 TS/RW – Kapitel 6 2 / 26

Physikalische Fehler

- Bei der Informationsverarbeitung und -Übermittlung können physikalische Störungen auftreten.
 - Elektrisches Rauschen, Radiation, Defekte.
 - Absichtliche Manipulation durch Angreifer.
- Die Störungen äußern sich darin, dass Wert 0 statt Wert 1 berechnet/übertragen wird und umgekehrt.
 - **"**Kippen" des Werts $0 \rightarrow 1$, $1 \rightarrow 0$.
- Hier konzentrieren wir aus auf Fehler bei der Datenübertragung.
 - Manche Fehler betreffen direkt die Hardware oder andere Systemteile. Ihre Behandlung ist komplexer.

Wiederholung

Sei $A = \{a_1, \dots, a_m\}$ ein endliches Alphabet der Größe m.

- Eine Abbildung $c: \underline{A} \to \{0,1\}^n$ heißt Code fester Länge, falls c injektiv ist.
- Die Menge $\underline{c(A)} := \{w \in \{0,1\}^n \mid \exists \underline{a} \in A : \underline{c(a)} = w\}$ heißt Menge der Codewörter.
- Minimale Codelänge: Für einen Code $c: A \to \{0,1\}^n$ fester Länge gilt: $n \ge \lceil \log_2 m \rceil$.

 $a \rightarrow 000$ $e \rightarrow 100$ $5 \rightarrow 001$ $f \rightarrow 100$ $c \rightarrow 010$ $g \rightarrow 110$ $d \rightarrow 600$ $h \rightarrow 110$

FREBURG

Fehler bei Datenübertragung (1/2)

Annahme:

- Sei c ein Code minimaler fester Länge n.
- Ein Datum \underline{a} (z.B. ein Buchstabe, eine Zahl) wird, durch ein Codewort $\underline{w} = c(\underline{a})$ repräsentiert übertragen.
- Sei $\underline{\tilde{w}} \in \{0,1\}^n$ das empfangene Wort.
- Bei der Übertragung (z.B. über Internet) können einzelne Bits von c(a) kippen. Dann ist $w \neq \tilde{w}$.

Fehler bei Datenübertragung (2/2)

Ziel:

- Durch Verändern des Codes c in einen Code C fester Länge n+r sollen diese Bits
 - erkannt
 - → Fehlererkennende Codes

 Bsp. für 1-fehlererkennenden Code: Parity-Code
 - korrigiert
 - → Fehlerkorrigierende Codes Bsp. für 1-fehlerkorrigierenden Code: Hamming-Code

werden.

Fehlererkennende Codes

ldee:

- Wähle Codewörter $\underline{w} \in c(A)$ so, dass nach Kippen von Bits Wörter $\underline{\tilde{w}} \in \{0,1\}^n$ entstehen, die keine Codewörter sind, c with d.h. $\underline{\tilde{w}} \notin c(A)$.
- Wird ein Nicht-Codewort empfangen, so muss ein Übertragungsfehler aufgetreten sein.

- Benutze Codes mit $\underline{n} = \lceil log_2 m \rceil + \underline{r}$ mit r > 0.
- Benutze die r zusätzlichen Bits zum Test auf Übertragungsfehler.
- Beispiel: Parity-Code

070 1

Parity-Code

- Eine Bitfolge $w \in \{0,1\}^n$ besteht den Paritätstest (engl. Parity-Check), wenn die Anzahl der auf 1 gesetzten Bitstellen gerade ist.
- Sei $c: A \rightarrow \{0,1\}^n$ ein Code fester Länge von A. Betrachte den Code $C: A \rightarrow \{0,1\}^{n+1}$, der aus Code c entsteht, in dem eine Bitstelle an jedes Codewort c(a) hinten angefügt wird und so gesetzt wird, dass der neue Code C(a) den Paritätstest besteht.

Fehlererkennender Code

- Ein Code $c: A \rightarrow \{0,1\}^n$ fester Länge heißt <u>k</u>-fehlererkennend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort durch Kippen von bis zu <u>k</u> Bits verfälscht wurde.
- Der Parity-Code C ist 1-fehlererkennend.
 - **Beweis**: Kippt bei der Übertragung von *C*(*a*) genau eine Bitstelle, so kommt eine Bitfolge an, die den Paritätstest nicht besteht und somit kein Codewort von *C* darstellt. Überprüft der Empfänger die Parität der empfangenen Bitfolge, kann er auf einen Fehler schließen.

WS 2016/17 TS/RW – Kapitel 6 9 / 26

Fehlererkennender Code

- Ein Code $c: A \rightarrow \{0,1\}^n$ fester Länge heißt k-fehlererkennend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort durch Kippen von bis zu k Bits verfälscht wurde.
- Der Parity-Code C ist 1-fehlererkennend.
 - **Beweis**: Kippt bei der Übertragung von *C*(*a*) genau eine Bitstelle, so kommt eine Bitfolge an, die den Paritätstest nicht besteht und somit kein Codewort von *C* darstellt. Überprüft der Empfänger die Parität der empfangenen Bitfolge, kann er auf einen Fehler schließen.

SMILE - Fehlererkennung bei Parity-Code

Welche Fehler bei der Übertragung werden durch den Paritätstest beim Empfänger erkannt? Das letzte Bit bei Sender und Empfänger sei dabei das Parity-Bit.

```
a. Sender: 100010101, Empfänger: 100010101 🗡
```

- b. Sender: 100110100, Empfänger: 100010100 ∨
- c. Sender: 111010101, Empfänger: 101010101 🗸
- d. Sender: 000000000, Empfänger: 10000000)

Hamming-Abstand (1/2)

Definition

Der <u>Hamming-Abstand</u> $dist(\underline{v},\underline{w})$ zweier n-Bitfolgen v und w ist die Anzahl der Stellen, an denen v und w sich unterscheiden.

- $dist(\underline{0}000110\underline{1},\underline{1}000110\underline{0}) = 2$
- \blacksquare dist(00001101,00001101) = 0
- Ist v das übertragene und w das empfangene Codewort, so liegt ein Übertragungsfehler genau dann vor, wenn $dist(v, w) \neq 0$.
 - Ein Übertragungsfehler heißt einfach, wenn dist(v, w) = 1.
- Der Hamming-Abstand eines Codes $c: A \rightarrow \{0,1\}^n$ ist der kleinste Abstand zweier Codewörter von c:
 - $dist(c) := min\{dist(c(a_i), c(a_i)); a_i, a_j \in A \text{ mit } a_i \neq a_j\}.$

Lemma

Ein Code \underline{c} fester Länge ist $\underline{genau \ dann \ k}$ -fehlererkennend, wenn $dist(c) \ge k + 1$ gilt.

■ **Beweisidee:** Durch das Kippen von bis zu $\underline{I} \le k$ Bits kann aus Codewort $a \in c(A)$ kein anderes Codewort $a^* \in c(A)$ entstehen, denn sonst wäre $dist(c(a), c(a^*)) = \underline{I}$, was kleiner als der Hamming-Abstand des Codes wäre.

Fehlerkorrigierende Codes

Idee:

Benutze <u>r</u> zusätzliche Bits, so dass das gesendete Codewort aus dem empfangenen Wort rekonstruiert werden kann.

■ Beispiel: Hamming-Code

Hamming-Code

```
321 65 4327

444 4444

000 -700_0--

001 00-1--
```

091

■ Benutze die Bitstellen 2⁰, 2¹, ..., 2^{r-1} als 2⁻² 2¹-2 Überprüfungsbits, wobei die Bitstelle 2^j die Bitstellen überprüft, deren Binärdarstellungen an der j-ten Stelle eine 1 haben.

■ Die Bitstelle 2^j wird so belegt, dass gerade viele Bitstellen, deren Binärdarstellungen an der j-ten Stelle eine 1 haben, gesetzt sind. (vgl. Paritätstest)

Hamming-Code an einem Beispiel

Uncodiertes Wort: 0111 0101 0000 1111.

```
→ m = 16.
Us länge des Code Wort
```

- Konstruktion des Hamming-codierten Codeworts:
 - Das Wort wird unter Auslassung der "Zweierpotenz"-Bitstellen aufgeschrieben:

$$01110 \underbrace{1010000}_{2^{\circ}} \underbrace{111}_{2^{\circ}} \underbrace{1}_{2^{\circ}} \underbrace{1}_{2^{\circ}} \underbrace{1}_{2^{\circ}}$$

- Dies ergibt insgesamt 21 Bitstellen (r = 5).
- Die "Zweierpotenz"-Bitstellen werden als Überprüfungsbits benutzt (Nummerierung beginnt rechts mit der Stelle 1).
- Zur Erinnerung: Die Bitstelle 2^j wird so belegt, dass gerade viele Bitstellen, deren Binärdarstellungen an der j-ten Stelle eine 1 haben, gesetzt sind.

Hamming-Code-Beispiel (1/4)

								21	
		2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	zu codierende	Bitfolge	
-7	3						1		
アア	5						1		
	6						1		
	7						1		_
_	9						0		
	10						0		
	11						0	\	
	12						0		
	13						1		
	14						0		
	15						1		
-	17						0		1
	18						1		2
	19						1		- 1
	20						1		
	21						ل ن	,	9
	~ I						0 0		

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

-**K**EBURG

WS 2016/17 TS/RW – Kapitel 6 16 / 26

Hamming-Code-Beispiel (2/4)

	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	zu codierende Bitfolge
3				_	_	1
5			_		_	1
6			_	_		1
7			_	_	_	1
9		_			_	0
10		_		_		0
11		_		_	_	0
12		_	_			0
13		_	_		_	1
14		Ø	0	0		0
15		<u>0</u> 1	1	1	1	1
17	_				_	0
18	_			_		1
19	_			_	_	1
20	_		_			1
21	_		_		_	0

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

101012 = 21,0 11111 43220

Hamming-Code-Beispiel (3/4)

Der Prüfbitwert ergibt sich aus der Summe modulo 2 der jeweiligen Spalte.

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

Hamming-Code Beispiel (4/4)

■ Die Bitfolge 0111 0101 0000 1111

wird mit dem Hamming-Code zum Codewort 0 1110 110 0000 0111 0100.

WS 2016/17 TS/RW – Kapitel 6 19 / 26

Und wie findet man einen Fehler? (1/2)

Nehme einen Übertragungsfehler an Position 13 des Codeworts an.

Fehlerhaft empfangenes Wort: 0 1110 11000000 0111 0100.

Und wie findet man einen Fehler? (2/2)

WS 2016/17

21 / 26

Fehlerkorrigierende Codes

Definition

Ein Code $c: A \to \{0,1\}^n$ fester Länge heißt k-fehlerkorrigierend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort w durch Kippen von bis zu k Bits verfälscht wurde und daraufhin w aus dem empfangenen Wort \tilde{w} rekonstruiert werden kann.

■ Der Hamming-Code ist 1-fehlerkorrigierend. Die Anzahl der Zusatzbits $\underline{r} = 1 + \lfloor log_2 m \rfloor$ ist minimal (Korrektheit folgt aus noch folgendem Satz).

WS 2016/17 TS/RW – Kapitel 6 22 / 26

Zusammenhang Hamming-Abstand und Fehlerkorrektur

Lemma

Ein Code c fester Länge ist genau dann k-fehlerkorrigierend, wenn $dist(c) \ge 2k + 1$ gilt.

Beweis:

- Sei $\underline{M(c(a_i), k)} := \{\underline{w} \in \{0, 1\}^n \mid dist(\underline{c(a_i)}, \underline{w}) \leq \underline{k}\}$ die Kugel um $c(a_i)$ mit Radius k.
- Dann gilt: \underline{c} ist k-fehlerkorrigierend $\Leftrightarrow \underline{\forall a_i, a_j} i \neq j$ gilt: $M(c(\underline{a_i}), k) \cap M(c(a_j), k) = \emptyset$.
- Für den Beweis ist also zu zeigen: $[\forall a_i, a_j \ i \neq j : M(c(a_i), k) \cap M(c(a_j), k) = \varnothing] \Leftrightarrow dist(c) \geq 2k + 1.$

WS 2016/17 TS/RW – Kapitel 6 23 / 26

Beweis der Hilfs-Behauptung

$$A \Rightarrow b \qquad \neg B \Rightarrow \neg A$$

$$C(a_i') = b_0$$

$$C(a_i')$$

- Beweis "←":
- \longrightarrow Annahme: $M(c(a_i),k) \cap M(c(a_j),k) \neq \emptyset$.
 - Es gibt also bim Durchschnitt mit: $\underline{dist(c)} \leq \underline{bist(c(a_i), c(a_j))} \leq \underline{dist(c(a_i), b)} + \underline{dist(b, c(a_j))} \leq \underline{k + k}.$

Anzahl Zusatzbits für Fehlerkorrigierende Codes

Satz

Für einen 1-fehlerkorrigierenden Code $c: A \to \{0,1\}^{m+r}$ fester Länge über A mit $A = 2^m$ gilt: $r \ge 1 + \lfloor log_2 m \rfloor$.

Beweis:

- $M_1(a) := \{b \in \{0,1\}^{m+r} : b \text{ entsteht aus } c(a) \text{ durch Kippen von bis zu 1 Bit}\}.$
- Nach Lemma muss gelten: $M_1(\underline{a_1}) \cap M_1(\underline{a_2}) = \emptyset$ für alle $a_1, a_2 \in A$,
- es gilt $|M_1(a)| = m + r + 1$ für alle $a \in A$.
- Also müssen 2^m überschneidungsfreie Kugeln, jede mit (m+r+1) Elementen, im Raum \mathbb{B}^{m+r} enthalten sein: $2^m(m+r+1) \le 2^{m+r}$.
- Behauptung: Aus $2^m(m+r+1) \le 2^{m+r}$ folgt $r \ge 1 + \lfloor log_2 m \rfloor$.
- Sei hierzu $\underline{k} := \lfloor log_2 m \rfloor \Rightarrow 2^k \leq m$.
- $2^{m}(m+r+1) \le 2^{m+r} \Leftrightarrow \underline{m+r+1} \le 2^{r} \Rightarrow 2^{k} + \underbrace{X+1} \le 2^{r} \Rightarrow 2^{k} + 1 \le 2^$

Ausblick

- Wir haben bisher angenommen, dass Fehler auf Kommunikationskanälen auftreten.
- Es gibt auch Fehler in der Hardware selbst.
 - Permanente Fehler (Fertigungsdefekte)
 → Testmethoden (Rechnerarchitektur, Spezialvorlesung "Testen")
 - Latente Fehler ("Beinahe-Defekte")
 → Stresstest (Spezialvorlesung "Testen")
 - <u>Transiente</u> Fehler (Störungen während des Betriebs)
 → Fehlertoleranz, Redundanz (Spezialvorlesung "Testen")
 - Absichtlich herbeigeführte Fehler (Angriffe)
 - Aus Vergleich des Systemverhaltens mit und ohne Fehler auf geschützte Daten schließen (Fault-Based Cryptanalysis). (Seminar)
- Vor allem bei sicherheitskritischen Systemen in neuesten Fertigungstechnologien sind Fehler problematisch.

WS 2016/17 TS/RW – Kapitel 6 26 / 26