Eksamen på Økonomistudiet vinter 2019-20

Lineære Modeller

13 januar 2020

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 3 sider incl. denne forside.

Syg under eksamen:

Bliver du syg under selve eksamen på Peter Bangs Vej, skal du

- kontakte en eksamensvagt for at få hjælp til registreringen i systemet som syg og til at aflevere blankt
- forlade eksamen
- kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest 5 dage efter eksamensdagen.

Pas på, du ikke begår eksamenssnyd!

Det er eksamenssnyd, hvis du under prøven

- Bruger hjælpemidler, der ikke er tilladt
- Kommunikerer med andre eller på anden måde modtager hjælp fra andre
- Kopierer andres tekster uden at sætte citationstegn eller kildehenvise, så det ser ud som om det er din egen tekst
- Bruger andres idéer eller tanker uden at kildehenvise, så det ser ud som om det er din egen idé eller dine egne tanker
- Eller hvis du på anden måde overtræder de regler, der gælder for prøven

Du kan læse mere om reglerne for eksamenssnyd på Din Uddannelsesside og i Rammestudieordningens afs. 4.12.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM Januar 2020

Eksamen i Lineære Modeller.

Mandag d.13 januar 2020.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

I \mathbf{R}^{2020} er der givet fire lineært uafhængige vektorer u_1, u_2, u_3 og u_4 . Lad v_1 og v_2 være givet ved $v_1 = u_1 + u_2 + u_3$ og $v_2 = u_1 + u_3 - u_4$. Vi kalder $\mathrm{span}\{u_1, u_2, u_3, u_4\} = U$ og $\mathrm{span}\{v_1, v_2\} = V$.

Vi betragter endvidere den lineære afbildning $L:U\to V$, som med hensyn til baserne u_1,u_2,u_3,u_4 i U og v_1,v_2 i V har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} .$$

- (1) Gør rede for at V er et underrum af U. Hvad er dimensionen af V?
- (2) Bestem koordinaterne til vektoren $L(u_3 u_4)$ med hensyn til basen v_1, v_2 for V.
- (3) Bestem koordinaterne til vektoren $L(u_3 u_4)$ med hensyn til basen u_1, u_2, u_3, u_4 for U.
- (4) Bestem en basis for nulrummet for L. Er L injektiv? Hvad siger dimensionsætningen om denne situation?
- (5) Vis at vektoren $-3u_1 + 2u_2 + 2u_3 + u_4$ tilhører nulrummet for L og bestem denne vektors koordinater med hensyn til den ovenfor fundne basis for nulrummet.
- (6) Bestem løsningsmængden til ligningen $Lx = v_1 v_2$.

Opgave 2.

Vi betragter en symmetrisk, 3×3 -matrix A, som har egenvektoren $v_1 = (1, 1, 1)$ med tilhørende egenværdi -1, samt to andre egenvektorer v_2 og v_3 , med tilhørende egenværdier 2 hhv. 1.

- (1) Bestem to mulige egenvektorer v_2 og v_3 hørende til egenværdierne 2 hhv. 1. (Der er uendelig mange muligheder.)
- (2) Bestem egenværdierne for matricen $A+A^2$ er denne matrix invertibel?
- (3) Bestem nulrummet for matricen $A + A^2$.
- (4) Bestem dimensionen af billedrummet for matricen $A + A^2$.
- (5) Bestem vektoren $e^{(A+A^2)}(v_1 + v_2 + v_3)$.

Opgave 3.

- (1) Beregn integralet $\int \cos^2((a-b)x)\sin(2bx)dx$, hvor a og b er reelle tal.
- (2) Løs ligningen $z^2 = t + it$, hvor t > 0. Løsningerne ønskes angivet på rektangulær form a + ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{x^3}{x^2 - x}\right)^n.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.