Cumulative Constraints

Sabbir

October 28, 2015

1

Lets denote multiple Active applications ($1 \le i \le n$), which run all the time.

Table 1: Energy consumption for Active applications

	Mode 1	Mode 2	Mode 3
$\overline{A_1}$	50	60	70
A_2	40	45	55

Table 2: Profit for Active applications

	Mode 1	Mode 2	Mode 3
$\overline{A_1}$	100	110	120
A_2	90	100	110

If M, E, P denotes Mode of the application, Energy consumption and Profit for Application, then

- $M_{ij} \in [1,3]$ where $j \in [1,24]$
- $E_{ij} \in [0, 1000]$
- $P_{ij} \in [0, 1000]$ Now for $\forall i \in [1, n], \forall j \in [1, 24]$

- element $(M_{ij}, Row_i^{Energy}, E_{ij}) \%$ $E_i = Row_i^{Energy}[M_i]$
- element $(M_{ij}, Row_i^{Profit}, P_{ij}) \% P_i = Row_i^{Profit}[M_i]$

For, Batch jobs $(1 \leq i \leq m)$, it arrives with duration and deadline. The provider can earn profit only the job is finished before or at deadline, but not for accomplishing in each slots or duration. So, $Duration_i = fixed$, $Deadline_i = fixed$, $ConsumptionPerHour_i = fixed$.

Table 3: Energy consumption for Batch Application

	On	Off
B_1	60	0

Profit for Batch jobs and Penalty is $Q_i \in [0, 1000]$ and $\text{Pen}_i \in [0, 1000]$ respectively. $S_{Bi1} < S_{Bi2} \dots < S_{BiDuration_i} \in [1, 24], \quad E_i \in [0, 1000]$

• element $(S_{BiDuration_i}, [......Profit_i, Penalty_i, ...], Q_i)$

Total Profit 12 decoline

- $P = \sum_{i=1}^{n} P_{ij} + \sum_{i=1}^{m} Q_i$
 - Objective Function

maximize F

2 Example

Lets recall Table 1 where we have 2 Active jobs, such as A_1 and A_2 . For modelling the problem as cumulative constraints, we need to define Start(S), Duration(D) and Height(H). As we can not change the Global Height, we introduce a fake active job for each slot/duration if the height of available energy changes in every slot/duration. Lets, assume there are 6 slots. So, there will be 6 fake Active jobs as C_1 , C_2 , C_3 , C_4 , C_5 , and C_6 , which have same Start(S) and Duration(D) value of Active jobs, but different Height(H). and 1 Batch job that needs 3 duration for completion and it should accomplish before slot 5.

- $\bullet \ S_{A_1} \in [1,2,3,4,5,6], \ \ \mathcal{D}_{A_1} \in [1], \ \ \mathcal{H}_{A_1} \in [50,60,70]$
- $\bullet \ S_{A_2} \in [1,2,3,4,5,6], \ \ \mathcal{D}_{A_2} \in [1], \ \ \mathcal{H}_{A_2} \in [40,45,55]$
- $S_{B_1} \in [1, 2, 3, 4, 5, 6], D_{B_1} \in [3], H_{B_1} \in [60], where S_{B_1} + D_{B_1} \le Deadline$
 - $S_{C_1} \in [1]$, $D_{C_1} \in [1]$, $H_{C_1} = [GlobalHeight AvailableEnergy_1 (slot 1)]$
- $S_{C_2} \in [2]$, $D_{C_2} \in [1]$, $H_{C_2} = [GlobalHeight AvailableEnergy_2 (slot 2)]$
- $S_{C_3} \in [3]$, $D_{C_3} \in [1]$, $H_{C_3} = [GlobalHeight AvailableEnergy_3 (slot 3)]$
- $S_{C_4} \in [4]$, $D_{C_4} \in [1]$, $H_{C_4} = [GlobalHeight AvailableEnergy_4 (slot 4)]$
- $S_{C_5} \in [5]$, $D_{C_5} \in [1]$, $H_{C_5} = [GlobalHeight AvailableEnergy_5 (slot 5)]$
- $S_{C_6} \in [6]$, $D_{C_6} \in [1]$, $H_{C_6} = [GlobalHeight AvailableEnergy_6 (slot 6)]$ cumulative (< >, 175)