Field Effect Transistor

Text Book
Electronic Devices and Circuit Theory
by R Boylestad and L Nashelsky

Transistor Family

Field effect transistor (FET)

FET Characteristics

- FET is voltage controlled device
- High input impedance than BJTs
- Voltage gain is less than BJTs
- FETs are more temperature stable than BJTs
- FETs are minimal in size and weight
- Low power consumption
- Output impedance are comparable between FETs and BJTs

Applications:

- Can be used as linear amplifier or digital device in logic circuits
- Suitable for IC
- Widely used in high frequency applications
- In buffering (interfacing) applications.

Construction of JFET (n-ch)

Operation

Pinch-off voltage

Figure 5.6 I_D versus V_{DS} for $V_{GS} = 0$ V.

Figure 5.7 Pinch-off $(V_{GS} = 0 \text{ V}, V_{DS} = V_P)$.

Characteristics

Figure 5.10 n-Channel JFET characteristics with $I_{DSS} = 8$ mA and $V_P = -4$ V.

Voltage-controlled resistor and Symbols

$$r_d = \frac{r_o}{(1 - V_{GS}/V_P)^2}$$

Symbols

Control relations and Transfer characteristics

Plotting transfer curve

Eq. (5.3):
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

$$= I_{DSS} \left(1 - \frac{0}{V_P}\right)^2 = I_{DSS} (1 - 0)^2$$

$$I_D = I_{DSS} \left| V_{GS} = 0 \text{ V} \right|$$

$$I_D = I_{DSS} \left(1 - \frac{V_P}{V_P}\right)^2$$

= $I_{DSS}(1 - 1)^2 = I_{DSS}(0)$

$$I_D = 0 \text{ A}|_{V_{GS} = V_P}$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

= $I_{DSS} \left(\frac{1 - V_P/2}{V_P}\right)^2 = I_{DSS} \left(1 - \frac{1}{2}\right)^2 = I_{DSS}(0.5)^2$
= $I_{DSS}(0.25)$

$$I_D = \frac{I_{DSS}}{4} \bigg|_{V_{GS} = V_{P}/2}$$

$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

= $V_P \left(1 - \sqrt{\frac{I_{DSS}/2}{I_{DSS}}} \right) = V_P (1 - \sqrt{0.5}) = V_P (0.293)$

$$V_{GS} \cong 0.3 V_{P}|_{I_D} = I_{DSS}/2$$

Four points

TABLE 5.1 V_{GS} versus I_D Using Shockley's Equation

V_{GS}	I_{D}
0	I_{DSS}
$0.3 V_P$	$I_{DSS}/2$
$0.5 V_P$	$I_{DSS}/4$
V_{D}	0 mA

Example-1

Plot the transfer characteristics of (i) an n-channel JFET having I_{DSS} =12mA and V_p =-6V and (ii) a p-channel JFET having I_{DSS} =4mA and V_p =3V

Summary

Figure 5.22 (a) JFET versus (b) BJT.

$$JFET \qquad BJT$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 \iff I_C = \beta I_B$$

$$I_D = I_S \qquad \Leftrightarrow \qquad I_C \cong I_E$$

$$I_G \cong 0 \text{ A} \qquad \Leftrightarrow \qquad V_{BE} \cong 0.7 \text{ V}$$
(5.10)

Depletion type MOSFET (n-ch)

Figure 5.23 *n*-Channel depletion-type MOSFET.

Figure 5.24 *n*-Channel depletion-type MOSFET with V_{GS} =0 V and an applied voltage V_{DD} .

Operation

Characteristics

Depletion type MOSFET (p-ch)

Circuit symbols

Example-2

Draw the transfer characteristic of an n-channel depletion type MOSFET having I_{DSS} =10mA and V_{P} =-4V.

Enhancement type MOSFET (n-ch)

Operation

Effect of changing V_{DS}

Figure 5.33 Change in channel and depletion region with increasing level of V_{DS} for a fixed value of V_{GS} .

Characteristics

Shockley equation

$$I_D = k(V_{GS} - V_T)^2$$

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_T)^2}$$

 $I_{D(on)} = 10$ mA when $V_{GS(on)} = 8$ V from the characteristics of Fig.

$$k = \frac{10 \text{ mA}}{(8 \text{ V} - 2 \text{ V})^2} = \frac{10 \text{ mA}}{(6 \text{ V})^2} = \frac{10 \text{ mA}}{36 \text{ V}^2}$$
$$= 0.278 \times 10^{-3} \text{ A/V}^2$$

N-Channel E-MOSFET

Enhancement type MOSFET (p- ch)

Circuit symbols

Example-3

Plot the transfer characteristic of an n-channel enhancement type MOSFET having $V_{GS(TH)}$ =3V, and given $I_{D(on)}$ =3mA and $V_{GS(on)}$ =10V

(a) Eq. (5.14):
$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$$
$$= \frac{3 \text{ mA}}{(10 \text{ V} - 3 \text{ V})^2} = \frac{3 \text{ mA}}{(7 \text{ V})^2} = \frac{3 \times 10^{-3}}{49} \text{ A/V}^2$$
$$= 0.061 \times 10^{-3} \text{ A/V}^2$$

(b) Eq. (5.13):
$$I_D = k(V_{GS} - V_{\vec{D}})^2$$

= $0.061 \times 10^{-3} (V_{GS} - 3 \text{ V})^2$
For $V_{GS} = 5 \text{ V}$,

$$I_D = 0.061 \times 10^{-3} (5 \text{ V} - 3 \text{ V})^2 = 0.061 \times 10^{-3} (2)^2$$

= 0.061 × 10⁻³(4) = 0.244 mA

For $V_{GS}=8$, 10, 12, and 14 V, I_D will be 1.525, 3 (as defined), 4.94, and 7.38 mA, respectively. The transfer characteristics are sketched in Fig. 5.40.

CMOS inverter.

Practice yourself and send me your feedback, if any.