Wealth Distribution: Stochastic Aging and Entrepreneurship

Prof. Lutz Hendricks

Econ720

August 29, 2017

Topics

We have seen that the stochastic life-cycle model goes a long way towards accounting for U.S. wealth inequality.

But fails to account for the concentration of wealth within the top 5% or 1% of the population.

We study two candidate solutions (in one paper)

- 1. bequests
- 2. alternative labor earning processes

Stochastic aging

A computational problem: the curse of dimensionality.

The household problem must be solved for all possible combinations of states.

Approximation: put states on a grid.

With many states, the grid gets very large.

Stochastic aging collapses the age dimension into a few phases (e.g. work and retirement)

Key reference: Castaneda et al. (2003)

Castaneda et al. (2003): Model

Main innovations relative to Huggett (1996):

- Households are altruistic (additional source of wealth and motive for saving).
- Earnings process is chosen to match SCF data on earnings and wealth inequality.
- Social Security system modeled in more detail (to give high retirement incomes to low earnings households; helps account for low wealth observations).
- Progressive income tax system (found important for wealth distribution).
- Stochastic aging.

Main finding: The model accounts for distribution of earnings and wealth.

Environment

There is a continuum of families.

Each family consists of non-overlapping individuals.

In each period, a person:

- draws a stochastic labor endowment e,
- chooses consumption and saving,
- retires with some probability,
- dies with some probability.

New individuals inherit assets and labor endowments from their parents.

Household problem

State variables:

- "age": working or retired (there is no symbol for age).
- ▶ labor endowment e.
- wealth a.

The exogenous states are collected in s = (age, e).

 s_t evolves according to a transition matrix Γ .

Household problem

$$\max E\left\{\sum_{t=0}^{\infty} \beta^{t} u(c_{t}, \ell - l_{t}) | s_{0}\right\}$$

subject to the budget constraint

$$c + z = y - \tau(y) + a \tag{1}$$

$$y = ar + we_s l(s, a) + \omega(s)$$
 (2)

$$a'(z) = \{ \begin{array}{c} z \text{ if survive} \\ (1 - \tau_E(z)) z \text{ if death} \end{array}$$
 (3)

Remarks

Households are modeled as infinitely lived.

- ► This is a reduced form for a sequence of non-overlapping individuals linked by altruistic bequests.
- ► There is no separate age state variable.

Labor endowments are drawn from $S = \varepsilon \cup \Re$.

- ▶ $e \in \mathcal{E}$ means "working".
- $ightharpoonup e \in \mathfrak{R}$ means retired.

Stochastic aging

Individuals are born as working $(e \in \mathcal{E}, \omega = 0)$.

In each period, they draw a new e.

If $e \in \mathfrak{R}$, the household retired.

If retired and household draws $e \in \mathcal{E}$, he dies and is replaced by a child.

Benefits:

- ▶ Small state vector: (s,a).
- Value function must be computed for only 2 "ages"

Drawbacks:

- Some households have very long or short working lives.
- ► Hard to match life-cycle features (age-earnings profile, mortality rates)

Dynamic program

$$v(s,a) = \max \ u(c,\ell-l) + \beta \sum_{s' \in S} \Gamma_{ss'} \ v\left(s',a'(z)\right) \tag{4}$$

$$c + z = y - \tau(y) + a \tag{5}$$

$$y = a r + e(s) lw + \omega(s)$$
 (6)

$$a'(z) = \{ \begin{array}{c} (1 - \tau_E(z)) \ z \ \text{if} \ s \in \Re \ \text{and} \ s' \in \varepsilon \\ z \ \text{otherwise} \end{array}$$
 (7)

Other model agents

Firms maximize period profits.

▶ Production technology is F(K,L).

Government

- ▶ Taxes bequests at rate $\tau_E(z)$, where z is the bequest amount.
- ▶ Taxes income at rate $\tau(y)$.
- Provides retirement transfers to households.
- ▶ Balances the budget in each period: $G_t + Tr_t = T_t$.

Steady state

Objects:

- ▶ Policy functions: c(s,a), z(s,a), l(s,a).
- ▶ Government policies: $\tau(y)$, $\tau_E(z)$, $\omega(s)$, G.
- A stationary probability distribution over household types: x.
- ▶ Aggregate quantities: K, L, T, Tr.

Steady state

These satisfy:

- Policy functions are optimal decision rules.
- ► Factor market clearing: $K = \int a \ dx$, $L = \int e(s) \ l(s,a) \ dx$.
- ► Goods market clearing:

$$F(K,L) + (1 - \delta) K = G + \int [c(s,a) + z(s,a)] dx.$$

- Firm's first-order conditions.
- Government budget constraints.
- Measure of households is stationary.

Calibration

(We omit details)

Income and estate tax schedule mimick U.S. progressive tax system. Labor endowments are drawn from a Markov chain Transition matrix matches:

- **•** points on the Lorenz curves for earnings and wealth $(\Gamma_{\varepsilon\varepsilon}, e(s))$.
- ▶ intergenerational persistence of labor endowments ($\Gamma_{\Re \varepsilon}$).
- ▶ length of working lives $(p_{\varepsilon,\rho})$.
- ▶ life expectancy $(p_{\rho,\rho})$.

Total number of parameters: 39 (unusually large [for macro])

Other calibration targets

Various features of U.S. tax schedules.

Aggregate ratios: K/Y, I/Y, G/Y, Tr/Y, l/ℓ

Ratio of standard deviations for *c* and *l*.

Average length of work life: 45 years.

Average length of retirement: 18 years.

Average earnings middle age / young: 1.3

Intergenerational correlation of log lifetime earnings: 0.4

Results

Model economy matches cross-sectional earnings distribution very well.

Wealth distribution match is good, not perfect.

TABLE 7 Distributions of Earnings and of Wealth in the United States and in the Benchmark Model Economies (%)

	Gini	Quintile				TOP GROUPS (Percentile)			
ECONOMY		First	Second	Third	Fourth	Fifth	90th- 95th	95th- 99th	99th- 100th
		A. Distributions of Earnings							
United States Benchmark	.63 .63	40 .00	3.19 3.74	12.49 14.59	23.33 15.99	61.39 65.68	12.38 15.15	16.37 17.65	14.76 14.93
	B. Distributions of Wealth								
United States Benchmark	.78 .79	39 .21	1.74 1.21	5.72 1.93	13.43 14.68	79.49 81.97	12.62 16.97	23.95 18.21	29.55 29.85

Assessment

The model successfully replicates the cross-sectional distribution of wealth.

No departure from standard theory is needed.

Key features for the model's success:

- Intended bequests permit households to accumulate wealth over longer time periods.
- ► Earnings process consistent with cross-sectional SCF data.

Earnings process

Calibration does not use information on persistence of earnings.

The earnings process is "cooked" to match the wealth distribution.

The lower 3 earnings states "look like" something estimated from the PSID (though persistence is very high).

The top earnings state is totally transitory.

TABLE 5 Relative Endowments of Efficiency Labor Units, e(s), and the Stationary Distribution of Working-Age Households, γ_{ε}^*

	s = 1	s = 2	s = 3	s = 4
e(s)	1.00	3.15	9.78	1,061.00
γ_{ε}^{*} (%)	61.11	22.35	16.50	.0389

Earnings process

The top earnings level is very large

TABLE 4

Transition Probabilities of the Process on the Endowment of Efficiency Labor Units for Working-Age Households That Remain at Working Age One Period Later, Γ_{ee} (%)

From s	To s'					
	s' = 1	s' = 2	s' = 3	s' = 4		
s = 1	96.24	1.14	.39	.006		
s = 2	3.07	94.33	.37	.000		
s = 3	1.50	.43	95.82	.020		
s = 4	10.66	.49	6.11	80.51		

Intuition:

- households win the lottery once every 25 years
- ▶ lottery winners save everything because the top state is so transitory

Reservations

The paper shoes that it is **possible** to write down a standard life-cycle model that matches wealth concentration based on an earnings process with the right amount of cross-sectional inequality.

It does not show that a life-cycle model generates the right wealth distribution when a "realistic" earnings process is imposed.

Could one fix this?

- why not combine info on the process for the bottom 99% from the PSID with info for the cross-sectional distribution for everyone from SCF?
- ▶ one solution: Nardi et al. (2016)

References I

- Castaneda, A., J. Diaz-Gimenez, and J. V. Rios-Rull (2003): "Accounting for the US earnings and wealth inequality," *Journal of political economy*, 111, 818–857.
- Huggett, M. (1996): "Wealth distribution in life-cycle economies," *Journal of Monetary Economics*, 38, 469–494.
- Nardi, M. D., G. Fella, and G. P. Pardo (2016): "The Implications of Richer Earnings Dynamics for Consumption, Wealth, and Welfare," Working Paper 21917, National Bureau of Economic Research.