#### Hall Effect (Oct. 1879)

Maxwell 的書上說: $\vec{B}$  作用在導体上而非電流上,有無 $\vec{B}$  對電流分布無影響。 Hall 在 1877 年開始當 H. Rowland 的研究生。他懷疑上述說法,他想電流應被推到 導線的一側而降低有效截面積使電阻增加,但他無法測得此效應。Rowland 早先已 發現電線兩側間有微弱電壓,便建議 Hall 用金箔重作此實驗,而發現了 Hall effect。

 $\vec{v}_d = v_d \hat{x}, \quad \vec{B} = B \hat{y},$   $\vec{E}_H = E_H \hat{z}.$ 

 $\vec{v}_d$ (& $\vec{J}$ , $\vec{E}$ )均勻。





(b) 
$$nq = J/v_d = J(-B/E_H) = (I/wt)(Bw/V_H) = IB/V_H t$$
.

 $\therefore$ 量 $V_H$ 可知 $v_d$  & nq · 若 $V_H > 0$  · 則q > 0 。

Most metals:  $e^-$ . Metals  $Co, Zn, Pb, Fe & semiconductors <math>Si, Ge: h^+$  (hole).

Force on a wire: $e^-$ cloud 受磁力向上而拉正離子, 或說正離子受到向上 $\vec{E}_{_H}$ 的作用。

H.W.: Ex. 54; Prob. 1, 2, 4, 5, 6.



# Ch. 30 Sources of the Magnetic Field

Oersted described his work ( $I \Rightarrow \vec{B}$ ) to Paris Academy of Science in Sept. 1820. Biot-Savart announced in Oct. 1820 that  $B \propto I/r$  for a long straight wire. (They measured the period of oscillation of a magnetized needle in  $\vec{B}$  field.)

### Force between parallel wires

 $F_{21} = I_2 L B_1 = I_2 L (\mu_0 I_1 / 2\pi D) = (\mu_0 / 2\pi) I_1 I_2 L / D$ .

 $\therefore$  force per unit length  $F/L = (\mu_0/2\pi)(I_1I_2/D)$ .

**Definition of 1 A**: Let D = 1m & L = 1m,

when  $I_1 = I_2 = 1A$ ,  $F = 2 \times 10^{-7} N$ .

 $2 \times 10^{-7} N = (\mu_0/2\pi)(1A)^2(1m)/(1m)$ ,  $\mu_0 = 4\pi \times 10^{-7} N/A^2$  exact.

(If D = 1 cm, L = 1 m,  $I_1 = I_2 = 1A$ , then  $F = 2 \times 10^{-5} N = 2 \text{ dyne}$ .)

 $1C \equiv 1A \cdot 1 \text{ sec}$ , and the charge of electron was found to be  $1.6 \times 10^{-19} C$ .

 $1/4\pi \in 0$  was measured to be  $9.0 \times 10^9 N \cdot m^2/C^2$ .



$$1/\mu_0 \in_0 = (1/4\pi \in_0)/(\mu_0/4\pi) = (9.0 \times 10^9 \, N \cdot m^2/C^2)/(10^{-7} \, N \cdot \sec^2/C^2)$$
$$= 9.0 \times 10^{16} \, m^2/\sec^2 = \text{ (speed of light)}^2.$$

### $d\vec{B}$ of a current element

For a long straight wire  $B = \mu_0 I/2\pi r \leftrightarrow E = \lambda/2\pi \in_0 r$ .  $dB \propto 1/r^2$ ? Biot-Savart (Dec. 1820, after Laplace's hint):  $dB = (\mu_0/4\pi) I d\ell \sin\theta/r^2$ ,  $d\vec{B} = (\mu_0/4\pi) I d\vec{\ell} \times \hat{r}/r^2$ .

## $\vec{B}$ of a moving charge

$$Id\vec{\ell} = JAd\vec{\ell} = \vec{J}Ad\ell = nq\vec{v}_dAd\ell = (nqAd\ell)\vec{v}_d = (dQ)\vec{v}_d,$$
  
∴  $d\vec{B} = (\mu_0/4\pi)(dQ)\vec{v}_d \times \hat{r}/r^2$  · 但只適用於:

(a)緩慢且非加速;或(b)電流圈中的穩定電流(雖電荷有加速)。





$$B = (\mu_0 I/4\pi) \int d\ell \sin\theta / r^2$$
.  $\sin\theta = \sin(\alpha + \pi/2) = \cos\alpha$ ,

$$\ell = R \tan \alpha , \quad d\ell = R d\alpha / \cos^2 \alpha , \quad 1/r^2 = \cos^2 \alpha / R^2 .$$

$$B = (\mu_0 I / 4\pi) \int_{\alpha_1}^{\alpha_2} \cos \alpha d\alpha / R = (\mu_0 I / 4\pi R) (\sin \alpha_2 - \sin \alpha_1)$$

= 
$$(\mu_0 I/4\pi R)[a/(R^2+a^2)^{1/2}+b/(R^2+b^2)^{1/2}].$$

- (1) a = b,  $B = (\mu_0 I / 4\pi) 2a / R(R^2 + a^2)^{1/2}$ .
- (2)  $a,b \rightarrow \infty$ ,  $B = \mu_0 I / 2\pi R$ .
- (3)  $b = 0, a \to \infty, B = \mu_0 I / 4\pi R$ .

例: A circular loop



 $dec{eta} \quad dec{\ell} \perp ec{r} \;,\; \therefore dB = (\mu_0/4\pi)Id\ell/r^2 \;, \ dB_{axis} = dB\sinlpha \ = (\mu_0/4\pi)(Id\ell/r^2)(a/r) \;. \ B_{axis} = (\mu_0Ia/4\pi r^3)\int_0^{2\pi a}d\ell \;.$ 



- (1) At z = 0,  $B_{axis} = \mu_0 I/2a$ .  $\leftrightarrow$  直導線  $B = \mu_0 I/2a\pi$ .
- (2) When  $z \gg a$ ,  $B_{axis} \approx \mu_0 I a^2 \pi / 2\pi z^3 = \mu_0 \mu / 2\pi z^3$   $\leftrightarrow E_{axis} \approx p / 2\pi \in_0 z^3$ . (右圖)















繞得很緊密,# of turns per unit length  $n=N/\ell$ 。

由圓形電流圈的  $B_{axis}$  可知  $dB = \mu_0 (ndzI)a^2/2(a^2+z^2)^{3/2}$  。

 $d \neq$  代  $z = a \tan \theta + dz = a d\theta / \cos^2 \theta +$ 得

 $dB = [\mu_0 n I a^3 d\theta / \cos^2 \theta] / 2(a^2 + a^2 \tan^2 \theta)^{3/2}$ 

 $= [\mu_0 n I d\theta / \cos^2 \theta] / [2/\cos^3 \theta] = \mu_0 n I d\theta \cos \theta / 2.$ 

 $\therefore B = (\mu_0 nI/2) \int_{\theta}^{\theta_2} \cos \theta d\theta$ 

 $= (\mu_0 nI/2)[\sin \theta_2(Z) - \sin \theta_1(Z)].$ 





**Ampere's law** (Ampere 不喜歡 Biot-Savart 的工作,因為 (a) 實驗沒精確到足以宣稱  $\sin \theta$ ; (b) 不存在 isolated current element,它永遠是線路的一部份) 先考慮無限長直導線電流 I 與積分迴路 C。



- (1) C 正圓形:  $\oint_C \vec{B} \cdot d\vec{\ell} = \oint_C B d\ell = (\mu_0 I/2\pi r)2\pi r = \mu_0 I$  。
- (2) C 任意形狀:  $\vec{B} \cdot d\vec{\ell} = Bd\ell_{\parallel} = (\mu_0 I/2\pi r)rd\theta = (\mu_0 I/2\pi)d\theta$  · ind. of r ·  $\therefore \oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 I$  與正圓形相同(或= $(\mu_0 I/2\pi)\int_0^{2\pi} d\theta = \mu_0 I$ )。
- (3) I 在 C 外部:::成對抵消 · ::  $\oint_C \vec{B} \cdot d\vec{\ell} = 0$  ( 或 =  $(\mu_0 I/2\pi) \int_{\theta_0}^{\theta_0} d\theta = 0$  ) °
- (4) 多電流: $\oint_C \vec{B} \cdot d\vec{\ell} = \oint_C (\sum \vec{B}_i) \cdot d\vec{\ell} = \sum_{i \notin C \setminus D} \mu_0 I_i = \mu_0 I_{encl} \cdot I_{encl}$  是在 C 內的總電流。

**Ampere's law**:  $\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 I_{encl}$  for current loop & C of any shapes  $\cdot I_{encl}$  是穿過以C 為邊界的任何面的總電流  $\cdot I$  & C 的方向由右手決定  $\cdot$ 

此 law 可由 Biot-Savart  $\vec{B}=(\mu_0/4\pi)q\vec{v}\times\hat{r}/r^2$  導得。但後來發現此  $\vec{B}$  只適用於電荷緩慢且不加速時,或雖電荷有加速但是在電流圈的穩定電流中時,而 Ampere's law 卻適用於任何情況,因此應是由 Ampere's law 在特殊條件下導出 Biot-Savart law。



### 例:長圓柱中的均勻電流

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_{encl}$$



$$\Rightarrow B2\pi r = \begin{cases} \mu_0(Ir^2/R^2) \text{ for } r < R \\ \mu_0 I \text{ for } r > R \end{cases} \Rightarrow B(r) = \begin{cases} (\mu_0/2\pi)(I/R^2)r \text{ for } r < R \\ \mu_0 I/2\pi r \text{ for } r > R \end{cases}$$

例:極緊密的無窮長螺管(電流I、每單位長度繞n圈)

內部 $\vec{B}$ 不能有徑向分量(否則有 $\oint_{S} \vec{B} \cdot d\vec{A} \neq 0$ )·也不能有圓

切線分量(否則有 $\oint_C \vec{B} \cdot d\vec{\ell} \neq 0$  但 C' 內無電流)。

$$\oint_{C} \vec{B} \cdot d\vec{\ell} = \int_{a}^{b} \vec{B} \cdot d\vec{\ell} = B\ell = \mu_{0}(n\ell I) \implies B = \mu_{0}nI \text{ (與前同)}$$



例:Toroid(電流I、共繞N圈)

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu_0 I_{encl} \Rightarrow B2\pi \ r = \mu_0(NI) \Rightarrow B(r) = \mu_0 NI/2\pi \ r.$$

當 
$$r \to \infty$$
 ·  $N/2\pi$   $r = n$  時 ·  $B = \mu_0 nI$  。



 $\vec{F}_{\scriptscriptstyle F} \& \vec{F}_{\scriptscriptstyle B}$  between charged particles



Q在q處建立磁場 $\vec{B} = (\mu_0/4\pi)(Qv/r^2)\hat{z}$ .

故 q 受磁力  $\vec{F}_B = qv\hat{x} \times \vec{B} = -(\mu_0/4\pi)(qQv^2/r^2)\hat{y}$ 。

而 q 受電力  $\vec{F}_E = q\vec{E} \approx (1/4\pi \in 0)(qQ/r^2)\hat{y}$ 

 $\therefore F_B/F_E = -\mu_0 \in_0 v^2 = -v^2/c^2 \quad \cdot$ 

但總力 $\vec{F}_E + \vec{F}_B = md^2\vec{r}/dt^2$ 與慣性座標無關,而在

它們的靜止座標中 $F_E = qQ/4\pi \in r^2$  ·  $F_B = 0$  ·

 $F_E + F_B = F_E + F_B = qQ/4\pi \in {}_{0} r^2$ 

故  $F_E = qQ/4\pi \in {}_0 r^2 - F_B \approx (1 + v^2/c^2) qQ/4\pi \in {}_0 r^2$  (右上圖)



H.W.: Ex. 9, 14, 21, 22; Prob. 1, 3, 4, 5, 8, 9.

## **Ch. 31 Electromagnetic Induction**

Oersted found  $I \Rightarrow B$  in 1820. Within weeks, electromagnet was found.

那磁場 B 能產生電流 I 嗎? Joseph Henry found in Aug. 1830 that a current was induced

by a changing magnetic field. But he did not publish immediately.

Magnetic flux  $\phi_B \equiv \int_S \vec{B} \cdot d\vec{A}$  for any  $\vec{B}(\vec{r},t)$  & surface S,

unit: 1 weber (W)  $\equiv 1T \cdot 1m^2$ .

Gauss's law for  $\vec{B}$ :  $\oint_S \vec{B} \cdot d\vec{A} = 0$  (=  $q_M$ , but  $q_M = 0$ ).



Faraday found (1831):

(1) Fixed coil, changing  $\vec{B}(\vec{r},t)$  (右圖)

