Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy

Dmitrii Vinichenko, Pavel Tikhomirov, Arina Chumachenko

Skoltech

December 22, 2023

Introduction

Goal

To implement empirical likelihood (EL) ratio tests for goodness-of-fit

The outline of the EL approach

 X_1, \ldots, X_n – i.i.d.

The EL function:

$$L_p = \prod_{i=1}^n p_i,$$

$$s.t. \sum_{i=1}^{n} p_i = 1, \sum_{i=1}^{n} p_i X_i = 0$$

and p_i , i = 1, ..., n maximize the likelihood L_p .

EL ratio test for normality

 X_1, \ldots, X_n – independent

 $H_0: X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2); \quad \mu, \sigma \text{ are unknown}$

The likelihood ratio:

$$\frac{\prod\limits_{i=1}^{n}f_{H_{1}}(X_{i})}{\prod\limits_{i=1}^{n}f_{H_{0}}(X_{i})} = \frac{\prod\limits_{i=1}^{n}f_{H_{1}}(X_{i})}{(2\pi es^{2})^{-\frac{n}{2}}}, \quad s^{2} = \frac{1}{n}\sum_{j=1}^{n}\left(X_{j} - \frac{1}{n}\sum_{k=1}^{n}X_{k}\right)^{2}$$
(1)

The maximum EL technique to nonparametric estimate

$$L_f = \prod_{i=1}^n f(X_i) = \prod_{i=1}^n f(X_{(i)}) = \prod_{i=1}^n f_i, \quad f_i = f(X_{(i)})$$

Statement 1:

$$\Delta_m \leqslant 1, \quad \Delta_m = \frac{1}{2m} \sum_{i=1}^n \int_{X_{(i-m)}}^{X_{(i+m)}} f(x) dx$$

In the empirical form:

$$\tilde{\Delta}_m \leqslant 1, \quad \tilde{\Delta}_m = \frac{1}{2m} \sum_{j=1}^n \left(X_{(j+m)} - X_{(j+m)} \right) f_j$$

The likelihood ratio test statistic

Thus, values of f_1, \ldots, f_n , which maximize $\log(L_f)$ and satisfy $\tilde{\Delta}_m \leqslant 1$:

$$f_i = \frac{2m}{n\left(X_{(i+m)} - X_{(i-m)}\right)} \Rightarrow T_{mn} = (2\pi e s^2)^{\frac{n}{2}} \prod_{i=1}^{n} \frac{2m}{n\left(X_{(i+m)} - X_{(i-m)}\right)}$$

4 D > 4 D > 4 E > 4 E > E 990

Reconsideration of the test statistic

First reconsideration

The maximum EL:

$$\min_{1 \leq m < \frac{n}{2}} \max_{f_1, \dots, f_n : \tilde{\Delta}_m \leq 1} \prod_{i=1}^n f_i$$

The empirical modification of the test statistic (1):

$$V_n^1 = \min_{1 \le m < \frac{n}{2}} (2\pi e s^2)^{\frac{n}{2}} \prod_{i=1}^n \frac{2m}{n \left(X_{(i+m)} - X_{(i-m)} \right)}$$
(2)

Second reconsideration

$$V_n^2 = \min_{1 \leq m < n^{1-\delta}} (2\pi e s^2)^{\frac{n}{2}} \prod_{i=1}^n \frac{2m}{n \left(X_{(i+m)} - X_{(i-m)} \right)}, \quad 0 < \delta < 1 \quad (3)$$

Testing

Condition

We reject the null hypothesis iff

$$\log\left(V_{n}^{j}\right) > C,\tag{4}$$

where C is a test-threshold, j = 1, 2, and V_n^j – test statistics (2), (3).

Significance level of the test

Since,

$$\sup_{u,\sigma} P_{\mathcal{H}_0} \left\{ \log \left(V_n^j \right) > C \right\} = P_{X_1, \dots, X_n \sim \mathcal{N}(0,1)} \left\{ \log \left(V_n^j \right) > C \right\}, \quad j = 1, 2$$

the type I error of the tests (4) can be calculated exactly.

Results of the experiment

Set up $\delta=0.5$. Fig.1 and Fig.2 plot Monte-Carlo roots C_{α} of $P_{X_1,...,X_n\sim\mathcal{N}(0,1)}\left\{\log\left(V_n^j\right)>C_{\alpha}\right\}=\alpha$, for different α and n.

Figure 1: The values of thresholds C_{α} for the test (4) with j=1.

Results of the experiment

Figure 2: The values of thresholds C_{α} for the test (4) with j=2.

8 / 11

Results

n = 20	T_{1n}	T_{2n}	T_{3n}	T_{4n}	T_{5n}	T_{6n}	T_{7n}
Exp(1)	0.68	0.779	0.835	0.813	0.83	0.821	0.786
Gamma(2,1)	0.278	0.398	0.466	0.429	0.463	0.447	0.391
Unif(0,1)	0.315	0.38	0.435	0.393	0.465	0.477	0.426
Beta(2,1)	0.296	0.387	0.447	0.415	0.474	0.47	0.423
Cauchy(0,1)	0.74	0.77	0.753	0.69	0.629	0.563	0.48
n = 20	T _{8n}	T _{9n}	T _{10n}	T _{nn}	V_n^1	V_n^2	W
Exp(1)	0.75	0.742	0.654	0.122	0.835	0.84	0.839
Gamma(2,1)	0.347	0.342	0.28	0.091	0.462	0.471	0.509
00	0.547	0.542	0.20	0.051	0.402	0.711	0.505
Unif(0,1)	0.39	0.461	0.403	0.529	0.426	0.441	0.196

n = 50	V_n^1	V_n^2	W	n = 70	V_n^1	V_n^2	W
Exp(1)	1.000	1.000	1.000	Exp(1)	1.000	1.000	1.000
Gamma(2,1)	0.929	0.938	0.947	Gamma(2,1)	0.987	0.991	0.993
Unif(0,1)	0.959	0.960	0.755	Unif(0,1)	0.995	0.996	0.933
Beta(2,1)	0.958	0.959	0.832	Beta(2,1)	0.996	0.996	0.965
Cauchy(0,1)	0.443	0.992	0.998	Cauchy(0,1)	0.359	0.999	1.000

Figure 3: Monte Carlo power estimates of some tests for normality; $\alpha = 0.05$.

 $V_{n}^{j},\,j=1,2$ by (4), $\delta=$ 0.5; W corresponds to the Shapiro-Wilk W test.

Referenced paper

Vexler A., Gurevich G.

Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy

https://doi.org/10.1016/j.csda.2009.09.025

Our Team

Our GitHub