

REDES DE COMPUTADORES

Programa da Disciplina

INTRODUÇÃO	1.1.Conceito e Exemplos de Rede de Computadores 1.2.Estrutura de Uma Rede – Seus Principais Componentes 1.3.Comunicação na Rede: Funções, mensagens e protocolos 1.4.Organizando Tudo: o OSI e o TCP/IP
IDENTIFICAÇÃO NA REDE	2.1.Endereço Físico: Endereço Telefônico e Endereço de Rede Local 2.2.Endereço de Rede: Endereço IP e Mapeamento ARP e DHCP 2.3.Nomes de Hosts: Estrutura e Hierarquia de Nomes e o DNS 2.4.Conceito de Porta de Transporte e Operação Fim-a-fim
APLICAÇÕES	3.1.Introdução: Modelo Cliente/Servidor 3.2.Correio Eletrônico 3.3.Transferência de Arquivos 3.4.A WEB e o HTTP 3.5 VoIP over IP
INTERCONEXÃO DE REDES	4.1.Protocolos TCP e UDP 4.2.Endereçamento: revisão 4.3.O Protocolo IP e o ICMP 4.4.Roteamento
COMUNICAÇÃO DE DADOS	5.1.Redes Locais (LAN): Ethernet 5.2.Redes Metropolitanas (MAN): Metro Ethernet e SDH 5.2.Redes de Longa Distância (WAN): RS-232 e Modems, PPP e Frame Relay

Capítulo 1: INTRODUÇÃO

1.1 Conceito e Exemplos de Redes de Computadores

Redes de Computadores

Conjuntos de computadores interligados através de redes de comunicação de dados.

Exemplo de Rede (1) (Desenho Lógico)

Classificação das Redes

- Redes Locais (LANs Local Area Networks)
- Redes Metropolitanas (MANs Metropolitan Area Networks)
- Redes de Longa Distância (WANs Wide Area Networks)
- Redes Pessoais (PANs Personal Area Networks)
- Redes no Corpo Humano (BANs Body Area Networks)

LAN: Ex. 1: LAN Party

LAN: Ex. 2: Data Center 1

LAN: Ex. 3: Data Center 2

Wireless LANs

PANs: Exemplos

Rede de Sensores Sem Fio

É formada por um conjunto de dispositivos sensores sem fio distribuídos de forma densa capazes de organizar a rede automaticamente e obter informações do ambiente.

Redes de Sensores: Monitoração

Home Heart Beat - Eaton

Cap. 1 - Introdução - 15

BANs: Exemplos (1)

Computação Vestida

Monitoração

Rede Metropolitana de Alta Velocidade de Porto Alegre

REMAV SP:

Rede Metropolitana de Alta Velocidade de São Paulo Projeto INTERNET 2

MAN: Anéis de Fibra Ótica

Transmissão para WAN

Microondas

• Fibra Ótica

WANs:

Cabos Submarinos e Rede Telegráfica em 1901

WANs: A INTERNET

1.2 Comunicação na Rede

OBSERVAÇÕES (1)

- A comunicação entre os equipamentos da rede é feita hoje, na sua grande maioria, através de mensagens, carregadas em um conjunto de um ou mais pacotes.
- Esses pacotes são unidades de informação, transmitidas normalmente de maneira serial, bit a bit, pelas linhas ou canais de comunicação.
- Essas mensagens v\u00e3o comandar a execu\u00f3\u00e3o do mais diverso n\u00eamero de fun\u00f3\u00f3es e opera\u00e7\u00e3es na rede.
- Essas mensagens precisam possuir formatos bem definidos para que os programas de comunicação dos computadores e equipamentos de rede interpretem exatamente o que significam e o que devem fazer.

OBSERVAÇÕES (2)

- Além disso, as operações entre os equipamentos possuem sequências bem definidas, como por exemplo:
 - 1. Enviar o pedido de conexão;
 - 2. Esperar a resposta do pedido;
 - 3. Recebeu a resposta afirmativa;
 - 4. Enviar uma mensagem de dados;
 - 5. Esperar a confirmação da chegada.
- A definição do formato das mensagens, o significado de cada uma e a seguência de operações correta e suas variações é denominado no conjunto de PROTOCOLO DE COMUNICAÇÃO

1.4 Organizando Tudo

OBSERVAÇÕES (3)

- Numa rede misturamos todas as tecnologias existentes:
 - Par trançado;
 - Fibra ótica;
 - Rádio;
- Fazemos várias coisas, até "ao mesmo tempo":
 - Correio eletrônico,
 - Upload e download de arquivos,
 - Vídeo conferência,
 - Etc...
- COMO É QUE CONTROLAMOS TUDO ISSO???

ESTRUTURA DE

TECNOLOGIA DA INFORMAÇÃO

1.4.1 Sistema em Camadas

Um Modelo de Camadas para Comunicação:

Correio

Você escreve e imprime Documento e Entrega para Secretária

Secretária coloca num envelope. Manda para setor de expedição

Setor de Expedição coloca num malote.

Malote colocado numa VAN

destino

Malote entregue a Do caminhão um carteiro

Funcionário abre o envelope e lê o documento.

Secretária pega envelope e coloca na mesa do funcionário

Setor de Expedição abre malote e entrega correspondência

Malote entreque no destino

Um Modelo de Camadas para Comunicação:

Protocolos!!!

PROPRIEDADES DO MODELO

- Todos os níveis são mutuamente independentes;
- Apesar de usarem as funções de níveis inferiores, não lhes importam como são implementados;
- As partes envolvidas entram em acordo antecipadamente a respeito <u>de detalhes</u> (regras) da conversa em <u>cada</u> nível: <u>Protocolo</u> <u>de</u> Comunicação

FUNÇÕES DE REDE

Funções

Exemplos de Técnicas

Montar e interpretar comandos e respostas de sistemas e aplicações

Programas de aplicações: correio eletrônico, videoconferência, etc.

Codificar comandos e respostas em bits e bytes

Técnicas de codificação

Resolver Problemas de Diferenças de Velocidade de Processamento

Armazenamento e Controle de Fluxo

Acomodar Diferenças de Tamanho de Mensagens **Empacotamento e Desempacotamento**

Mensagens p/ Destino Correto Evitando Linhas/nós Defeituosos

Endereçamento e Roteamento

Transportar Mensagens Individuais

Controle de Enlace

Colocar os Bits no meio físico

Modems

Manter Caminho Físico

Linhas de Comunicação de Dados (fio par trançado, rádio, fibra ótica)

INTERAÇÃO AOS PARES (I)

WORKSTATION

INTERAÇÃO AOS PARES

Uso do Cabeçalho

INTERAÇÃO AOS PARES (III)

1.4.2 Arquiteturas para Redes de Computadores

ARQUITETURA X IMPLEMENTAÇÃO

ARQUITETURA

Definição das funções que uma rede de computadores e seus componentes devem executar.

IMPLEMENTAÇÃO

Distribuição dessas funções através dos elementos de hardware e software da rede.

ARQUITETURA DE SISTEMA DE COMUNICAÇÃO

Conjunto de funções que interagem aos pares através de um conjunto de acordos chamado PROTOCOLO.

Portanto encontramos:

<u>ARQUITETURAS DE REDES</u> especificadas em termos de <u>PROTOCOLOS DE COMUNICAÇÃO</u> entre <u>PARES IGUAIS DE NÍVEIS</u>.

Elementos de um Protocolo

- 1. Sintaxe (formato)
- 2. Semântica (significado)
- 3. Sequências (mecanismos)

ARQUITETURA TCP/IP

CAMADAS

MEIO FÍSICO 2

Interf.Física 2

Interf.Física 3

Interf.Física 2

Interf.Física 1

MEIO FÍSICO 1

(Transmissão)

(Transmissão)

MEIO FÍSICO 3

EXEMPLOS DE ARQUITETURAS

São exemplos de arquiteturas:

- TCP/IP: Transmission Control Protocol / Internet Protocol (DoD)
- SNA: Systems Network Architecture (IBM)
- IPX/SPX: Novell Architecture
- OSI: Open Systems Interconnections (ISO)

<u>Órgãos de Padronização em Redes e Telecomunicações</u>

- ISO International Standards Organization (Suiça)
- ITU International Telecommunication Union (Ex CCITT) (Suiça)
- EIA Eletronic Industries Association (USA)
- IEEE Institute of Eletrical and Eletronics Engineers (USA)

Administração e padronização na Internet

- IAB The Internet Architecture Board
- IRTF The Internet Reserach Task Force
- IETF The Internet Engineering Task Force
- IANA The Internet Assigned Numbers Authority
- InterNIC The Internet Network Information Center
- CERT/CC Computer Emergency Response Team Coordinate Center

1.4.4 O Modelo OSI: Visão Geral das Camadas

ARQUITETURA OSI

O modelo de referência é composto por sete camadas

CAMADA FÍSICA

- ♦ Transmissão transparente de sequências de bits pelo meio físico;
- ♦ Contém padrões mecânicos, funcionais, elétricos e procedimentos para acesso a esse meio físico;
- Mantém a conexão física entre sistemas;
 - Vários tipos de conexão:
 - Ponto-a-ponto ou multiponto
 - Full ou half duplex
 - Serial ou paralela

CAMADA DE ENLACE

- ◆ Esconde características físicas do meio de transmissão;
- ◆ Provê meio de transmissão confiável entre dois sistemas adjacentes;
- Funções mais comuns:
 - Delimitação de quadro
 - Detecção de erros
 - Seqüencialização
 - Controle de fluxo

CAMADA DE REDE

- ◆ Provê canal de comunicação independente do meio e dos meios;
- Efetua operações de chaveamento;
- Funções características:
 - Acesso à sub-rede
 - Operação da rede
 - Interconexão de redes e de sub-redes
 - Endereçamento lógico
 - Roteamento

CAMADA DE TRANSPORTE

- ◆Controla a comunicação fim-a-fim. Provê confiabilidade para as aplicações;
- ◆Transferência de dados transparente, independente de sub-redes;
- Significado fim-a-fim, independente de topologias de redes;
- Controle de qualidade de serviço de rede global:

classes de serviços:

- 0 Simples
- 1 Recuperação de erros básicos
- 2 Multiplexação
- 3 Recuperação de erro e multiplexação
- 4 Detecção, recuperação de erros e multiplexação

CAMADA DE SESSÃO

- Provê sincronismo de diálogo:
 Recepção x transmissão
- ◆ Recupera conexões de transporte sem perder conexões de sessão;
- ♦ Possui mecanismos de verificação (sincronização);
- ♦ Não efetua multiplexação da camada de transporte;
- ♦ Utiliza mesma conexão de transporte para várias conexões de sessão não simultâneas;

CAMADA DE APRESENTAÇÃO

- ♦ Transparência de representação de dados: *sintaxes*
- Sintaxes:
 - Do transmissor
 - Do receptor
 - De transferência

◆ Contexto de apresentação:

Sintaxe abstrata + sintaxe de transferência

CAMADA DE APLICAÇÃO

- Funções específicas de utilização dos sistemas;
- Categoria de processos de aplicação
 - Correio eletrônico
 - Transferência de arquivos
 - Serviço de diretório
 - Processamento de transações
 - Terminal virtual
 - Acesso a bancos de dados
 - Gerência de rede

Formato de dados

EDI/EDIFACT: electronic data interchange for administration, commerce, and trading

ODA/ODIF: open document architecture/interchange format

CGM/CGMIF: computer graphics metafile/interchange format

HTML: Hipertext Markup Language

XML: Extended Markup Language

MPEG: Moving Picture Especification Group

1.4.3 Arquitetura TCP/IP

APLICAÇÃO

APRESENTAÇÃO

SESSÃO

TRANSPORTE

REDE

ENLACE

FÍSICA

Aplicações

Transporte

Rede

Enlace

Física

Aplicações

Transporte

IP

Sub-rede

Legenda:

ARP - Address Resolution Protocol

IP - Internet Protocol

RARP - Reverse Address Resolution Protocol

SMTP - Simple Mail Transfer Protocol

UDP - User Datagram Protocol

FTP - File Transfer Protocol

ICMP - Internet Control Message Protocol

SNMP - Simple Network Management Protocol

TCP - Transmission Control Protocol

Aplicações

Transporte

Rede

Acesso à Sub-Rede

- São definidas diversas aplicações:
 - Transferência de Arquivos:
 - FTP (File Transfer Protocol).
 - NFS (*Network File System*).
 - Correio Eletrônico:
 - SMTP (Simple Mail Transfer Protocol).
 - POP3 (Post Office Protocol).
 - Terminais Virtuais:
 - TELNET.
 - World Wide Web:
 - HTTP (Hipertext Transport Protocol).
 - Gerenciamento de Redes:
 - SNMP (Simple Network Management Protocol).

Aplicações

Transporte

Rede

Acesso à Sub-Rede

• TCP (Transmission Control Protocol):

- comunicação fim-a-fim confiável.
 - orientado à conexão.
 - implementa mecanismos de controle de erro e fluxo.

• UDP (User Datagram Protocol):

- comunicação fim-a-fim simples.
 - não-orientado à conexão.
 - não implementa mecanismos de controle de erro e de fluxo.
 - a aplicação é responsável por suportar mecanismos de confiabilidade.

Aplicações

Transporte

Rede

Acesso à Sub-Rede

• IP (Internet Protocol):

- comunicação fim-a-fim simples.
- não-orientado à conexão.

• ICMP(Internet Control Message Protocol)

- notificação de não-entrega de pacotes.
- teste de comunicação (e.g., eco).
- regulação de fluxo (source quench).

Protocolos de Tradução de Endereços:

- ARP (Address Resolution Protocol)
- RARP (*Reverse ARP*).

Protocolos de Roteamento:

- RIP (Routing Information Protocol).
- OSPF (Open Shorthest Path First).

- Os protocolos da Arquitetura TCP/IP podem ser empregados sobre diversas tecnologias de redes.
- Como exemplos, podem-se citar:
 - Ethernet.
 - Frame Relay
 - PPP
 - ADSL
 - etc

Exemplo de Comunicação em uma Rede TCP/IP

Identifique a Camada

Função ou Problema	Camada Responsável
Tecnologia para derivação multiponto de uma fibra ótica.	
Manter condições de desempenho de rede, tais como tempo de resposta e vazão.	
Permitir acesso de várias aplicações simultâneas à rede.	
Efetuar transformações de estrutura de armazenamento de tipos de matrizes de dados.	
Fazer criptografia dos dados em tempo real, ou seja, no momento da transmissão.	
Identificação de mensagem (quadro) de dados com tamanho incorreto, geralmente maior que o permitido.	
Recuperar-se de uma perda de comunicação.	

ARQUITETURA TCP/IP

CAMADAS

