الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2016

hpH

المدة : 04 سا و 30د

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات+تقني رياضي

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الأول على 4 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

 $\log\left(\frac{\tau_f}{1-\tau_f}\right)$

التمرين الأول: (3,25 نقطة)

. C_0 محلول S_0 لحمض عضوي HA تركيزه المولي محلول

1. أ- اكتب معادلة انحلال الحمض HA في الماء.

ب- انشئ جدول التقدم لهذا التفاعل.

 C_0 ج- اكتب عبارة النسبة النهائية au_f لتقدم التفاعل بدلالة pH المحلول و

د- بيّن أنّ pH المحلول S_0 يُعطى بالعبارة:

$$pH = pK_a + \log\left(\frac{\tau_f}{1 - \tau_f}\right)$$

ك. لغرض تحديد التركيز المولي C_0 لهذا الحمض و التعرف على

. S_0 صيغته، نُحضِّر مجموعة محاليل ممدّدة مختلفة التراكيز المولية انطلاقا من المحلول الشكل-1

(الشكل)
$$pH=f\left(\log rac{ au_f}{1- au_f}
ight)$$
 قياس الـ $pH=f\left(\log rac{ au_f}{1- au_f}
ight)$ قياس الـ المحلول سمح برسم بيان الدالة

أ- اكتب عبارة الدالة الموافقة للمنحنى البياني.

 (HA/A^{-}) بـ استنتج ثابت الحموضة K_a للثنائية

. $au_f = 0.7$ من أجل من أجل محلول للحمض الخالب في محلول الخالب في محلول الخالب من أجل من أجل من أجل

. C_0 عطى قياس الـ pH لأحد المحاليل الممدّدة بـ 160 مرة القيمة pH=4,2 . احسب قيمة التركيز المولى

ه- يُبيِّن الجدول التالي قيم الثابت pK_a لبعض الثنائيات HA/A^- تعرّف على الحمض HA الموجود في القارورة.

HA/A^{-}	CH_3COOH/CH_3COO^-	НСООН/НСОО⁻	$C_6H_5COOH/C_6H_5COO^-$	كل المحاليل مأخوذة عند
pK_a	4,8	3,8	4,2	الدرجة 25°C

التمرين الثاني: (3,5 نقطة)

 $m_n = 1,00728u$ ؛ $m(^{95}Zr) = 94,8861u$ ؛ $m(^{138}Te) = 137,9007u$ ؛ $m(^{235}U) = 234,9935u$ $N_A = 6,02 \times 10^{23} mol^{-1}$ $1 MeV = 1,6 \times 10^{-13} J$ $1 u = 931,5 MeV/c^2$ $m_n = 1,00866 u$

$$\begin{bmatrix} 53I & 54Xe & 55Cs & 56Ba \end{bmatrix}$$

(المردود الطاقوي: $P = \frac{E_e}{E}$ الطاقة الكهربائية، الطاقة المتحررة المردود الطاقوي: المردود الطاقوي: المردود الطاقوي: المتحررة المتحرر

تُحَرِّرُ مُختلف الانشطارات الممكنة لليورانيوم 235، نيوترونات و يرافق ذلك تحرير طاقة حرارية معتبرة تُوَظَفُ لتوليد الطاقة الكهربائية، غير أن ذلك يُتبع بإنتاج نفايات إشعاعية مضرة للإنسان و البيئة.

يُمثل أحد تفاعلات الانشطار لليورانيوم U^{235} بالمعادلة التالية:

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{95}_{40}Zr + ^{138}_{52}Te + 3^{1}_{0}n$$

- 1. احسب الطاقة المتحررة عن تفاعل انشطار نواة اليورانيوم U
- 2. يمثل الشكل-2 المخطط الطاقوي لانشطار نواة اليورانيوم 235.

ماذا تمثل فيزيائيا ΔE_1 و ΔE_2 احسب قيمتيهما.

3. يُنتج مفاعل نووي يعمل باليورانيوم 235 استطاعة كهربائية $\rho=30$ بمردود طاقوی $\rho=30$

ما هي كتلة اليورانيوم المستهلكة خلال المدة $\Delta t = 30 \, jours$

 \cdot eta^- بنشاط إشعاعي، 4

أ- ما المقصود بالنشاط الإشعاعي β^{-} ؟

 $^{138}_{52}Te$ باكتب معادلة تفكك النواة ا

5. اذكر على الأقل خطرين من مخاطر هذه الظاهرة على الإنسان والبيئة.

التمرين الثالث: (3,5 نقطة)

2. لتبسيط الدراسة نعتبر مسارات الكواكب دائرية نصف قطرها r بحيث تقع الشمس في مركزها.

يُعطى الجدول الآتي مميزات حركة بعض هذه الكواكب:

M_2	M_1' M_1
F_1	F ₂
M_2'	
	الشكل-3

الكوكب	$r imes 10^6 \mathrm{Km}$ نصف قطر المسار	T الدور	$\frac{T^2}{r^3} (s^2.m^{-3})$
الزهرة	108,2	224 j 16h	
الأرض	149,6	365 j 6 h	
زحل	227,9	686 j 22 h	

- أ. بتطبيق القانون الثاني لنيوتن على مركز عطالة الكوكب P في المعلم الهيليومركزي، جِدْ عبارة سرعة الكوكب P بدلالة ثابت الجذب العام G ، كتلة الشمس M_S و نصف القطر r لمسار الكوكب P.
 - ب. اكتب عبارة الدور T للكوكب بدلالة $M_{
 m S}$ ، G و $M_{
 m S}$ ، ثم استنتج عبارة القانون الثالث لكبلر .
 - ج. اكمل الجدول السابق، ماذا تستتتج؟
 - د. احسب كتلة الشمس Ms.

ه. تتميز حركة كوكب المشتري حول الشمس بالدور $T=314\,j\,11\,h$ أوجد البعد $T=314\,j\,11\,h$ مركز الشمس? يُعطى: ثابت الجذب العام $G=6,67.10^{-11}\,SI$

التمرين الرابع: (3,25 نقطة)

أستر خلات البنزيل benzyl acetat سائل عديم اللون موجود في عدة زيوت زهرية مثل الجاردينيا والياسمين بنسبة تزيد عن 65%، و يستعمل لتقوية رائحة المواد والمركبات العطرية النباتية، صيغته نصف المفصلة هي بنسبة تزيد عن 65%، و يستعمل لتقوية رائحة المواد والمركبات العطرية النباتية، صيغته نصف المفصلة هي $CH_3 - COO - CH_2 - C_6H_5$ و يمكن تحضيره من أسترة حمض الايثانويك $m = 24 \ g$ من موضوع في حمام ماري مزيجا مكونا من $m = 24 \ g$ من الكحول البنزيلي النقي السائل وقطرات من حمض الكبريت المركز.

الشكل-4

- $ho = 1{,}039~g/mL$ تُعطى الكتلة الحجمية للكحول البنزيلي 108 g/mol و كتلته المولية الجزيئية
- الكتلة المولية الجزيئية لحمض الايثانويك: 60 g/mol
 - 1- عين من الشكل-4 التركيب المناسب لتحضير الأستر.
 - 2- احسب كمية المادة الابتدائية لكل من الحمض والكحول.
 - 3- استنتج الصيغة نصف المفصلة للكحول البنزيلي وصنفه.
 - 4- اكتب معادلة التفاعل الحادث في الدورق.
 - 5- انشئ جدول التقدم لهذا التفاعل.
 - 6- استنتج التركيب المولي للمزيج عند حالة التوازن.
 - 7- يمكن تحسين مردود الأسترة بعدة طرق نذكر منها:
 - أ- نزع الماء من المزيج السابق. علل.
- ب- نستبدل في المزيج الابتدائي حمض الايثانويك بكلور الايثانويل CH3COCl علل.

التمرين الخامس: (3,5 نقطة)

A و نهايته k و نهايته k و نهايته k و نهايته مون مرن مهمل الكتلة، حلقاته غير متلاصقة محوره أفقي، ثابت مرونته k و نهايته مقيدة. يُربط بطرفه الحر جسما صلبا m=250 و كتلته m=250 و غلى سطح طاولة أفقية وفق المحور m=250 الذي مبدؤه m=250 هو نفسه موضع توازن مركز العطالة m=250 (الشكلm=250).

يُمثِّل (الشكل-6) تغيرات الطاقة الكامنة المرونية E_{pe} للجملة

 α نابض + جسم) بدلالة الفاصلة اللحظية α لموضع

x(t)>0 مثِّل القوى المطبقة على (S) عند موضع فاصلته x(t)>0 مثِّل القوى المطبقة على (S)

x(t) بدلالة G بدلالة التفاضلية لحركة .2

 $x(t)=X_0.cos(\frac{2\pi t}{T_0})$. للمعادلة التفاضلية حلا من الشكل على التفاضلية حلا من الشكل T_0 عيث T_0 هي سعة الحركة و T_0 الدور الذاتي للنواس.

- m و k بدلالة k و T
- ب- بالتحليل البعدي بين أن الدور الذاتي T_0 متجانسا مع الزمن.
- - 4. اعتمادا على المنحنى البياني:
 - E_C أحدِ فاصلة موضع G إذا كانت الطاقة الحركية $E_C=rac{1}{2}$ E_T . للجسم مساوية لنصف طاقة الجملة: $x(t)=1.1~{
 m cm}$ وفاصلته $x(t)=1.1~{
 m cm}$. خ. قيمة x ثابت مرونة النابض .

التمرين التجريبي: (3 نقاط)

بحصة للأعمال التطبيقية في الفيزياء اقترح الأستاذ انجاز تجربة للتحقق من المعلومات التي كتبها المُصنيِّع على مكثفة مكتوب عليها $C=10~\mu F$ وذلك باستعمال التجهيزات التالية:

ناقل أومي مقاومته $R=10~K\Omega$ ، أسلاك توصيل ، قاطعة ، مولد للتوتر الثابت E وتجهيز التجريب المدعم بالحاسوب باستخدام لاقط التوتر .

بعد تركيب الدارة المناسبة وتشغيل تجهيز التجريب المدعم بالحاسوب وغلق القاطعة لدارة الشحن تحصل التلاميذ من خلال مجدول Excel على القيم التالية:

$u_{R}(V)$	9,000	5,458	3,330	2,008	1,218	0,738	0,448	0,271	0,164	0,060
t(s)	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,50

- 1. ارسم الدارة الكهربائية التي ركبها التلاميذ.
- u_R بين طرفي المقاومة. u_R بين طرفي المقاومة.
 - ، $u_R(t)=A\,e^{-t/\tau}$ علما أن حل المعادلة التفاضلية من الشكل: 3 . E و C ، R بدلالة τ و A و T
- 4. ارسم المنحنى البياني للدالة $u_R(t)=f(t)$ ثم استنتج كل من قيمتي E وثابت الزمن $u_R(t)=f(t)$ للدارة. نستعمل السلم: $1~{
 m cm} \to 1,000~{
 m V}$ و $1~{
 m cm} \to 1,000~{
 m V}$
 - حسب قيمة السعة C للمكثفة.

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على 4 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (3,5 نقطة)

 $(H_3O^+(aq) + Cl^-(aq))$ الماء كاور الماء (الماء الألمنيوم Al ومحلول عبين الألمنيوم الألمنيوم الماء الماء

$$2Al(s) + 6H_3O^+(aq) = 2Al^{3+}(aq) + 3H_2(g) + 6H_2O(\ell)$$
 تام معادلته: الذي يُنَمْذَجُ بتفاعل كيميائي تام معادلته:

نضع في حوجلة قطعة من الألمنيوم Al كتلتها
$$m_0$$
 مُملغمة ثم نضيف إليها في اللحظة $t=0$ الحجم

. C من محلول حمض كلور الماء تركيزه المولي V=100~mL

لمتابعة تطور التفاعل الكيميائي عند درجة حرارة ثابتة وضغط ثابت، نسجل في كل لحظة t حجم غاز الهيدروجين المنطلق، ثم نستنتج كتلة الألمنيوم المتبقية، و نُدون النتائج في الجدول التالي:

t(min)	0	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00
m(g)	4,05	2,84	2,27	1,94	1,78	1,70	1,64	1,62	1,62

اً أرسم على ورق ملمتري منحنى تغيرات الكتلة m(t) للألمنيوم المتبقى بدلالة الزمن باعتماد السلمm(t)

 $1 \text{cm} \rightarrow 1 \text{ min}$; $1 \text{cm} \rightarrow 0.5 \text{ g}$

ب – حدد المتفاعل المحد.

2 - أ - انشئ جدول التقدم للتفاعل الحادث.

ب – احسب كميات المادة الابتدائية $n_0(Al)$ و $n_0(H_3O^+)$ للمتفاعلات ثم استنتج التركيز المولي M=27~g~mol لمحلول حمض كلور الماء. تُعطى الكتلة المولية للألمنيوم

نعطى بالعبارة: $t=t_{1/2}$ للحظة في اللحظة وأن كتلة الألمنيوم المتبقية في اللحظة $t=t_{1/2}$

$$.\,t_{1/2}$$
 عيث m_f عيث الحالة النهائية. استنج بيانيا قيمة الألمنيوم المتبقية في الحالة النهائية. استنج بيانيا قيمة m_f

$$v_V = -rac{1}{2.V.M} rac{dm(t)}{dt}$$
 : بين أن عبارة السرعة الحجمية للتفاعل تعطى ب $t=3$ min احسب قيمتها في اللحظة .t = 3 min

التمرين الثاني: (3,0 نقطة)

يُستخدم الفوسفور 32 في الطب النووي لمعالجة ظاهرة الإفراط في إنتاج كريات الدم الحمراء في نخاع العظام، وذلك بحقن عينة من محلوله في جسم الإنسان.

$m \left({}^{32}_{15}P \right) = 31,9657 u$
$m \left({_{16}^{32}S} \right) = 31,9633 u$
$m \binom{1}{1}p = 1,00728 u$
$m \binom{1}{0}n = 1,00866 u$
$1 u = 931,5 \text{ MeV/}c^2$

مقتطف من المخطط (N-Z)							
³² ₁₅ P	33 16	34 17					
³¹ ₁₅ P	32 16	33 <i>Cl</i>					
³⁰ ₁₅ P	31 16	32 17					

بطاقة تعريف الفوسفور 32						
³² ₁₅ P	رمز النواة					
eta^-	نوع النشاط الاشعاعي					
8,46 MeV	طاقة الربط لكل نوية					
14 jours	نصف العمر t _{1/2}					

1- بالاستعانة بالمقتطف المعطى وبطاقة تعريف الفوسفور:

أ - اكتب معادلة تفكك نواة الفسفور 32.

ب - اكتب قانون التناقص الإشعاعي N(t) ثم عبر عن هذا التناقص بكتلة العينة المتبقية من العنصر المشع. ج - تحقق من قيمة طاقة الربط لكل نوية المعطاة في البطاقة.

m'(t) النواة الناتجة عن تفكك الفوسفور m'(t) هي نواة مستقرة، إذا كانت الكتلة m'(t) هي كتلة العينة المشكلة من هذه الأنوية المستقرة في اللحظة t و m_0 هي الكتلة الابتدائية لعينة الفوسفور 32.

بين أن: $m'(t)=m_{0}.~(1-e^{-\lambda t})$ هو ثابت النشاط الإشعاعي.

- 3- يمكن الحصول على النواة الناتجة السابقة من نواة أخرى موجودة على المقتطف (N-Z). ما هي هذه النواة ؟ اكتب معادلة هذا التحول النووي.
 - 4- بفرض أن عينة من أنوية P_{15}^{32} تصبح غير صالحة لما تصبح نسبة نشاطها إلى النشاط الابتدائي هي $t=2\ t_{1/2}$ ، بين أن المدة الزمنية لانتهاء صلاحية العينة ابتداء من تحضيرها هو $rac{A(t)}{A}=rac{1}{4}$

التمرين الثالث: (3,5 نقاط)

تتميز المكثفات بخاصية تخزين الطاقة الكهربائية و امكانية استغلالها عند الحاجة. لدراسة هذه الخاصية نربط مكثفة غير مشحونة سعتها C على التسلسل مع العناصر الكهربائية التالية:

مولد كهربائي للتوتر الثابت ${
m E}$ ، قاطعة ${
m K}$ وناقلين أوميين مقاومتيهما $R_1 = 1 \text{ k}$ و $R_2 = 4 \text{ k}$ و $R_1 = 1 \text{ k}$

1- أ- اعط تفسيرا مجهريا للظاهرة التي تحدث في المكثفة.

ب- بتطبيق قانون جمع التوترات جد المعادلة التفاضلية للشدة (i(t) للتيار الكهربائي المار في الدارة.

ج - للمعادلة التفاضلية السابقة حلا من الشكل:

$$i(t) = \alpha .e^{-\beta .t}$$

. E , C , R $_2$, R بدلالة α , β بدلاني الثابتين

2 - بواسطة الأقط شدة التيار الكهربائي موصول بالدارة و بواجهة دخول لجهاز إعلام آلى نحصل على منحنى تطور الشدة i(t) للتيار الكهربائي (الشكل-2).

- اعتمادا على البيان اوجد قيمة كل من:

ثابت الزمن T ، سعة المكثفة C ، التوتر الكهربائي E . $E_{C}(t)$ عط العبارة اللحظية للطاقة المخزنة في المكثفة -3واحسب قيمتها العظمي.

التمرين الرابع: (3,5 نقطة)

يُعطى مخطط عمود كهربائي كما في الشكل-3:

 $V_1 = V_2 = 50 \ \mathrm{mL}$ ججم المحلول في كل نصف عمود هو: $[Al^{3+}]_0 = 10^{-2} \ mol. \ L^{-1}$ التركيز الابتدائي لشوارد الألمنيوم: $[Cu^{2+}]_0 = 10^{-1} \ mol. \ L^{-1}$ عند ربط مقياس الفولط بين قطبي العمود حيث يوصل قطب

U=+1.6 V بصفيحة الألمنيوم يشير المقياس إلى القيمة (-)COM

t=0 نربط هذا العمود بمحرك كهربائي ونغلق الدارة في اللحظة t=0. حدد جهة التيار الكهربائي في الدارة.

2 - ما هو دور الجسر الملحى أثناء اشتغال العمود ؟ أعط الرمز الاصطلاحي لهذا العمود.

3- اكتب المعادلتين النصفيتين للأكسدة والإرجاع عند المسريين ثم معادلة التفاعل المنمذج للتحول الكيميائي في العمود أثناء اشتغاله.

4 – احسب كسر التفاعل الابتدائي Q_{ri} ثم حدد اتجاه تطوّر الجملة الكيميائية علما أن ثابت التوازن الموافق للتفاعل السابق هو: $K=1.9 \times 10^{37}$ عند الدرجة 25° C .

5- يُولِّد العمود تيارا كهربائيا شدته $I = 400 \, \mathrm{mA}$ خلال مدة زمنية 30 min من بداية اشتغاله.

أ- احسب كمية الكهرباء التي يُنتجها العمود خلال هذه المدة .

ب - انجز جدول التقدم للتفاعل الحادث في العمود .

. t=30 min في اللحظة Al $^{3+}(aq)$ و Cu $^{2+}(aq)$ في اللحظة $-1F=96500~C.mol^{-1}$ يعطى : ثابت فارادي

التمرين الخامس: (3,5 نقطة)

، AO = d = 1,5m لقوة الاحتكاك التي يخضع لها الجسم الصلب (S) أثناء حركته على مستو مائل AO = d = 1,5m لوية ميله عن الأفق $\alpha = 45^\circ$ نتركه دون سرعة ابتدائية من النقطة A وعندما يصل إلى النقطة (O) يغادرها ليسقط على الأرض عند النقطة (S) نقطيا وكتلته S يعطى S على الأرض عند النقطة (S) نقطيا وكتلته S يعطى S يعطى S يعطى الأرض عند النقطة (S) نقطيا وكتلته S

بحصة للأعمال المخبرية رسم التلاميذ البيان الممثل لتغيرات سرعة الجسم (S) بدلالة الزمن (الشكل-S) وذلك انطلاقا من التصوير المتعاقب لحركته على الجزء S0 وسجلوا كذلك إحداثيي النقطة S1 موضع سقوط (S2) على سطح الأرض بعد مغادرته المستوى المائل فوجدوا ($x_N = 0.62 \; \mathrm{m}$ 3).

- .A0 باستغلال التصوير المتعاقب: نرمز بa لتسارع (S) على الجزء 1.
- $f=m\;(g\sinlpha-a)$: بين أن ، AO على الجزء (S) على الجزء نيوتن على أ بتطبيق القانون الثاني لنيوتن على أ
- ب. باستغلال بيان الشكل-5 أوجد قيمة التسارع a لحركة (S) ثم استنتج الشدة f لقوة الاحتكاك المؤثرة عليه.
- . O النقطة O المميزتين لحركة O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين الزمنيتين O المميزتين لحركة O المميزتين لحركة O المميزتين الزمنيتين الزمنيتين النقطة O المميزتين لحركة O المميزتين لحركة O المميزتين المركة O الم
 - ا الرب المنا المنا
 - y = f(x)ب . استنتج معادلة المسار
 - ج. احسب V_0 طويلة شعاع السرعة التي غادر بها الجسم (S) المستوى المائل.
 - د . استنتج من جدید قیمهٔ a طویلهٔ شعاع تسارع (S) علی الجزء A0 د .
 - ه. باعتماد العلاقة المبينة في السؤال 1 أ ، اوجد من جديد الشدة f لقوة الإحتكاك.
 - 3. إذا علمت أن مجال حدود أخطاء القياس هو $N \leq f \leq 2,0$. ماذا تستنتج

التمرين التجريبي: (3 نقاط)

 $m .~K_e=10^{-14}$ المحاليل مأخوذة عند درجة الحرارة $^{
m 0C}$. يُعطى

اثناء عملية تنظيم محتويات مخبر الثانوية، عثر التلاميذ على قارورات لمحاليل أحماض عضوية أتلفت بطاقياتُها المحددة للاسم و الصيغة الجزيئية والتركيز المولي C_a للحمض (HA). للتعرف على أحدها، قام التلاميذ بمعايرة المحددة للاسم و الصيغة الجزيئية والتركيز المولي $V_a=20~\text{mL}$ من محلول أحد هذه الاحماض بمحلول مائي لهيدروكسيد البوتاسيوم $V_a=20~\text{mL}$ تركيزه المولي $V_a=20~\text{mol/L}$ باستعمال لاقط $v_a=10^{-2}~\text{mol/L}$ متر و واجهة دخول موصولة بجهاز إعلام آلي مزود

- ببرمجية مناسبة، تحصلنا على المنحنى البياني $V_b = pH = f(V_b)$ حجم البياني المضاف أثناء المعايرة، (الشكل-6)
 - 1. اعْط المفهوم الكيميائي لنقطة التكافؤ.
 - 2. عين إحداثيي نقطة التكافؤ واستنتج التركيز المولي C_a للحمض المعاير.
- 3. عين بيانيا pK_a الثنائية ($^ HA/A^-$) ثم تعرف على الحمض المعاير . يعطى الجدول

الثنائية [–] HA /A	рКа
$CH_3CO_2H / CH_3CO_2^-$	4,8
HCO_2H / HCO_2^-	3,8
$C_6H_5CO_2H / C_6H_5CO_2^-$	4,2

- 4. اعتمادا على البيان، بين دون اي حساب ان الحمض (HA) ضعيف.
- 5. أ اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث اثناء المعايرة.
 ب احسب ثابت التوازن K لهذا التفاعل. ماذا تستتتج؟
 - ج ما هو الكاشف الملون المناسب لهذه المعايرة ؟

مجال التغير اللوني الكاشف 6,2 - 7,6 أزرق البروموتيمول 8,2 - 10,0 الفينول فتاليين 4,2 - 6,2 أحمر الميثيل

انتهى الموضوع الثاني

		T							
ـة	العلام	عناصر الإجابة الموضوع 01							
مجموع	مجزأة								
		التمرين الأول: (3.25ن)							
	0.25	$HA+H_2O=A^-+H_3O^+$ أ- معادلة انحلال الحمض HA في الماء: O							
		ب- جدول تقدم التفاعل:							
		المعادلة $HA+H_2O=A^-+H_3O^+$							
		الحالة الابتدائية n_0 بوفرة 0 بوفرة 0							
	0.25	الحالة الانتقالية n_0-x بوفرة بوفرة بوفرة							
1.50		الحالة النهائية موفرة n_0-x_f بوفرة بوفرة الخالة النهائية							
	0.25	$ au_f = rac{10^{-pH}}{C_0}$ المحلول: pH المحلول: $ au_f$ بدلالة التقدم النهائي المحلول: ج $-$ عبارة نسبة التقدم النهائي							
	0.25								
	0.25	$pH = pK_a + \log \frac{\lfloor A^- \rfloor}{\lceil HA \rceil} \; ; \; \lceil A^- \rceil = \tau_f . C_0 \to \lceil HA \rceil = C_0 - \tau_f . C_0$							
	0.23	pH المحلول : pH المحلول :							
	0.25	$pH = pK_a + \log\left(\frac{\tau_f}{1 - \tau_f}\right)$							
		ا أ- استنتاج ثابت الحموضة K_a للثنائية $\left(HA/A^- ight)$: بالمطابقة نجد $pK_a=4,2$ ومنه							
	0.25	$K_a = 6.3 \times 10^{-5}$							
	0.25	$ ho H > p Ka$ بالتعويض نجد $ au_{ m f} = 0.7$ بالتعويض نجد							
1.75	0.25 0,25	الصفة الأساسية هي الغالبة (تقبل طرق صحيحة أخرى).							
		$ au_f = rac{10^{-pH}}{C} \Rightarrow C = rac{10^{-pH}}{ au_s} = 1,262 imes 10^{-4} mol \cdot L^{-1} : C_0$ جـ - التركيز المولي							
	0.25								
	0.25	$C_0 = F \cdot C = 2 \times 10^{-2} mo\ell \cdot L^{-1}$							
	0.25	C_6H_5COOH هـ المعني هو حمض البنزويك C_6H_5COOH							
		التمرين الثاني: (3.5 ن)							
	0.25 0.50	$E_{lib} = \Delta m $. 931.5 MeV الطاقة المتحررة عن تفاعل انشطار نواة اليورانيوم: $-$ تقبل الإجابة $E_{lib} = \Delta m $							
0.75	0.30	وتقبل الإجابة السالبة. $E_{\ell ib} = (m_i - m_f)C^2 = 176,50 MeV$							
	0.25 0.25	2) أ- طاقة الربط للنواة هي الطاقة الواجب تقديمها لتفكيك النواة إلى مختلف نوياتها.							
	0.23	طاقة الربط لنواة اليورانيوم: E _I = (92mp + 143 mn -m(U)). 931.5 MeV = 1784 MeV							
1.00	0.25	$E_{l}(Zr) + E_{l}(Te) = E_{l}(U) + E_{lib} = 1960,5 \text{ MeV}$							
1.00	0.25	$\Delta E_2 = -E_{\ell}(Zr) - E_{\ell}(Te) \implies \Delta E = \Delta E_2 + \Delta E_1 \Rightarrow \Delta E_2 = -1960,53407 MeV$							

العلامة		عناصر الإجابة
مجموع	مجزأة	الإجاب-
	0.25	: $\Delta t = 30 \ jours$ أ- كتلة اليورانيوم المستهلكة بعد مرور زمن $\Delta t = 30 \ jours$
1.00		$E_e = P \cdot \Delta t = 7,776 \times 10^{13} j$
	0.25	$\rho = \frac{E_e}{E} \Rightarrow E = \frac{E_e}{\rho} = 25,92 \times 10^{13} j$
	$0.25 \\ 0.25$,
	-	$m(U) = \frac{E \cdot M \left(\frac{235}{92}U\right)}{N_A \cdot E_{\ell ib}} = 3,6kg$
0.50	0.25	المقصود بالنشاط eta^- : هو إصدار الكترون من نواة مشعة. eta^-
	0.25	ب- معادلة نفكك النواة $138 Te ightarrow {}^{138}_{52} Te ightarrow {}^{138}_{52} Te$ باتواة $138 Te ightarrow {}^{138}_{52} Te$
		5) ذكر خطرين من أخطار الانشطار النووي: مختلف الأمراض والتشوهات التي تصيب الكائنات الحية و كل
0.25	0.25	الأضرار الناجمة عن التلوث الاشعاعي للبيئة.
		التمرين الثالث: (3.5 ن)
0.50	0.25	1- القانون الأول: تتحرك الكواكب وفق مدارات إهليليجية تشغل الشمس أحد محرقيها.
0.50	0.25	القانون الثاني: يمسح الشعاع الرابط بين الشمس والكوكب مساحات متساوية خلال مجالات زمنية متساوية.
		P أ- بتطبيق القانون الثاني لنيوتن في المعلم الهيليومركزي على الكوكب P .
	$0.25 \\ 0.25$	$\sum \vec{\mathbf{F}} = m \vec{a} \Rightarrow \overrightarrow{F_{S/P}} = m_P \vec{a}$
	0.25 0.25 0.25 0.25	$G \; rac{M_S m_P}{r^2} \; = m_P . \; rac{v^2}{r} \;\; \Rightarrow \;\; v = \sqrt{rac{{ m G} M_S}{r}} $ عبارة السرعة
	0.25	$T=rac{2\pi r}{r}$: ب $-$ عبارة الدور
		ν
	0.25	$T^2 = rac{4\pi^2 r^2}{v^2} = rac{4\pi^2 r^3}{GM_S} \Rightarrow T = 2\pi r \sqrt{rac{r}{G.M_S}}$
3.0	0.25	$rac{T^2}{r^3} = rac{4\pi^2}{{ m G}M_S} = {f Cte}$ استنتاج قانون کیبلر الثالث
		_ - ÷
		الزهرة SI -10. 2,97 الاستنتاج: قانون كيبلر الثالث محقق.
	0.25	الأرض SI -10. 2,97 ملاحظة: تقبل النتائج المحصورة بين
	0.25	زحل 2.9 ×10 ⁻¹⁹ 2,97 ،10 ⁻¹⁹ SI و 3.0 ×10 ⁻¹⁹
	0.25	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM_S} = K \Rightarrow M_S = \frac{4\pi^2}{GK} \Rightarrow M_S = \frac{4.10}{6,67.10^{-11} \cdot 2.97.10^{-19}} = 2.10^{30} \text{ kg} - 2$
	$0.25 \\ 0.25$	$\frac{T^2}{r^3} = \mathbf{K} \Rightarrow \mathbf{r}^3 = \frac{\mathbf{T}^2}{\mathbf{K}} \Rightarrow \mathbf{r} = \sqrt[3]{\frac{\mathbf{T}^2}{\mathbf{K}}} = 1,35.10^{11} m$ -2

مة	العلا				د ا له	عناصر ال				
مجموع	مجزأة					حاصر ہ				
		التمرين الرابع: (3.25 ن)								
0.50	0.25 0.25	$n_0(acid\)=rac{m_0}{M}=rac{24}{60}\ , \ n_0(acid\)=0,4moL$ حمية المادة الابتدائية :								
0.50	0.25 0.25	$n_0(alcool) =$	$n_0(alcool) = \frac{\rho V_0}{M} = \frac{1,039 \times 41,6}{108} \; , \; \; n_0(alcool) = 0,4moL \;] \ -2 \; $ Lead of the limit of the limi							
0.25	0.25	CH ₃	$_{3}COOH + C_{6}$	$H_5 - CH_2$	- <i>OE</i>	$H = CH_3CC$	<i>90</i> –	$CH_2 - C_6H_5$	$+H_2O$ جدول التقدم -4	
		المعادلة		CH ₃ CO	OH + ($C_6H_5-CH_2-$	- <i>OH</i> =	= CH ₃ COO – CH	$_{2}-C_{6}H_{5}+H_{2}O$	
		الحالة	التقدم			mol	مادة ك	كميات ال		
	0.25	الابتدائية	x = 0	0,4		0,4		0	0	
0.75	0.25 0.25	الوسطية	x(t)	0,4-x ((t)	0,4-x (t)	x(t)	x(t)	
		النهائية	x_f	0,4-x	f	$0,4-x_f$		x_f	x_f	
	0.25	m K=4 لاقا من	أو انط $r=0$,	الأسترة 67	مردود	المولات ⇒	ساوي ا	نزيج الابتدائي مت	5- كحول أولي و الم	
0.75	0.25	حمض	كحول			أستر		ماء	التركيب المولي	
	0.25	0,13	0,13	}	0	,27		0,27	للمزيج عند التوازن	
0.50	0.25 0.25	(تزايد الاستر).	الاتجاه المباشر			< Qr وبالتال	ح K		ملاحظة: نقبل الإجاب -6 أ. عند نزع الما الماء التفار التفار التفار التفار التفار التفار التفار التفار	
0.25	0.25	Ŕ	التمرين الخامس: \vec{R} (\vec{R} : \vec{R}) \vec{R} (\vec{R}) $$							
0.75	0.25 0.25	$\sum ec{\mathbf{F}} = oldsymbol{m} \ ec{a} \Rightarrow ec{F} + ec{P} + ec{R} = oldsymbol{m} \ ec{a}$ بتطبیق القانون الثانی لنیون: $\mathbf{a}^2 r$								
3., 3	0.25		$\frac{d^2x}{dt^2} + \frac{k}{m} x = 0 \iff -kx = ma$: x'x بالاسقاط على x'x بالاسقاط على على مبدأ انحفاظ الطاقة واستنتاج المعادلة التفاضلية.							
	0.25 0.25		$T_0 = 2\pi \sqrt{\frac{m}{k}}$	- <u>1</u> تج أن :	ية نست	عادلة التفاضا	في الم	بتعويض الحل	3- أ- عبارة الدور:	

العلامة		عناصر الإجابة						
مجموع	مجزأة							
	0.25	$ \left[T_{0}\right]^{2} = \frac{[M]}{[F][L]^{-1}} = \frac{[M]}{[M][L][T]^{-2}[L]^{-1}} \Rightarrow \left[T_{0}\right] = [T] \qquad \text{i.e.} $						
1.75	0.25	$\mathbf{v} = -\frac{2\pi}{T_0} \ X_0.sin(\frac{2\pi t}{T_0})$ ج- عبارة السرعة:						
	0.25	د–عبارة طاقة الجملة بدلالة الزمن: $E_{_{\rm T}}(t)=E_{_{\rm c}}(t)+E_{_{\rm pe}}(t)$						
	0.25	$E_{T}(t) = \frac{1}{2} m \left(-\frac{2\pi}{T_{0}} X_{0} \sin\left(\frac{2\pi}{T_{0}} t\right) \right)^{2} + \frac{1}{2} k \left(X_{0} \cos\left(\frac{2\pi}{T_{0}} t\right) \right)^{2}$						
	0.25	$\mathbf{E}_{\mathrm{T}}(\mathbf{t}) = \frac{1}{2} \mathbf{k} \mathbf{X}_{0}^{2} = \mathbf{C}^{te}$						
	0.25	$E_T = E_{pe}$ (max) من البيان وباعتماد الخاصية: $E_C = E_T/2$ من البيان وباعتماد الخاصية						
	0.23	$x=\pm \ 1.4 \ cm$: نجد بالاسقاط						
		x = 1.1cm بالموضع ذو الفاصلة						
0.75		${ m E_C} = 3.5 { m x} 10^{-3} { m j}$ من البيان: لما $x = 1.1~{ m cm}$ لدينا						
	0.25	$v = \sqrt{\frac{2E_C}{m}} = \pm 0.17 \text{ m/s}$ ومنه نجد:						
		$V - \sqrt{\frac{1}{m}} - \pm 0.17 \text{ m/s}$ ومنه نجد:						
		${ m E_T}=rac{1}{2}kX_0^2=5.10^{-3}$ J من البيان : k ج-قيمة						
	0.25	$k=25~\mathrm{N/m}$ نستنتج:						
		التمرين التجريبي: (3 ن)						
	0.25	الله الدارة الكهربائية: نربط على التسلسل: -المولد كهربائي -القاطعة - الناقل الأومى						
0.25		- المكثفة . نوصل القط التوتر بين طرفي الاناقل الأومي.						
		المست ، الولو بين سريع دسان الاولىي،						
	0.25	2- المعادلة التفاضلية:						
	0.25	$U_{\scriptscriptstyle R} + U_{\scriptscriptstyle C} = E$ قانون التوترات $U_{\scriptscriptstyle R} + U_{\scriptscriptstyle C} = E$						
1.00	0.25							
	0.25	$rac{dU_C}{dt} = rac{1}{RC}.U_R(t)$ باشتقاق المعادلة السابقة و علما أن:						
		$\frac{dU_R}{dt} + \frac{1}{RC}U_R(t) = 0$ نتحصل على:						
	0.25	-3 عبارتا $+$ و $+$ بتعويض الحل في المعادلة النفاضلية						
0.75	$0.25 \\ 0.25$	واستخدام الشروط الابتدائية نجد:						
		$\tau = RC$ $_{\mathfrak{G}}A = E$						
0.75	0.25 0.25 0.25	$ au=0.10~{ m s}$ و $E=9~{ m V}$ رسم المنحنى البياني ثم نجد بيانيا: -4						
0.25	0.25	$C = 10 \mu F$ ومنه $C = \frac{\tau}{R}$						

العلامة		عناصر الإجابة الموضوع 02							
مجموع	مجزأة	عناصر الإنجابة الموضوع 02							
0.50	0.25 0.25	التمرين الأول: (3.5 ن) -1 - -1 - -1 - -1 اللمنيوم: تتناقص إلى غاية بلوغ قيمة حدية (1.62 g). -1 - -1 المتفاعل المحد : يتبقى من الالمنيوم كتلة -1 -1 -1 وبمان التفاعل تام فالمتفاعل المحد هو -1 -1 -1 -2 المتقدم:							
			المعادلة	2A1(s) +	$-6H_3O^+(aq) =$	$= 2A1^{3+}$ (a)	$(a) + 3H_{\bullet}(a)$	+ 6H.O(<i>l</i>)	
		الحالة	التقدم	2111 (5)		ربية المادة بالمو			
		الابتدائية	x=0	n_0	C.V	0	0	بزيادة	
	0.25	الإنتقالية	x(t)	$n_0 - 2x$	CV - 6x	2x	3x	بزيادة	
		النهائية	X _f	$n_0 - 2x_f$	CV - 6x _f	$2x_f$	3x _f	بزيادة	
1.25							ائية:	يات المادة الابتد	ب- حساب کم
	0.25	$n_0(Al) = \frac{m}{M} = 0,15 \text{mol}$							
	0.25	1	$n_0(Al)$	$-2x_{\max} = n_f$	$(Al) \Rightarrow x_n$	$n_{\text{max}} = \frac{n_{\text{f}}(A)}{n_{\text{f}}(A)}$	$\frac{1)-n_0(A1)}{2} =$	4,5x10 ⁻² mol	l
	0.25	`	_		$V = 6x_{\text{max}}$		n ₀ (H ₃ O	⁺)=0,27m	ol
	0.25	$C = \frac{n_0(H_3O^+)}{V} = 2.7 \text{ mol/L}$							
		$x = x_f/2$ لمنا $x = x_f/2$ لمنا:							
		$n(A\ell)_t = n_0(A\ell) - 2x(t) = n_0(A\ell) - \frac{2x_f}{2}$							
	0.25 0.25	$\mathbf{x}_f = \frac{n_0(A\ell) - n(A\ell)_f}{2} \Rightarrow m_{t_{1/2}} = \frac{m_0 + m_f}{2}$							
0.75	0.25	t _{1/2} = 1 min نجد							
	0.25	السرعة المتوسطة للتفاعل: $v_m = -rac{\Delta}{2M \Delta t}$ بين لحظتين -4							
	0.25	$v_m = -\frac{2,84 - 4,05}{2 \times 27(1 - 0)} = 0.02 \text{ mol.min}^{-1}$							
$v_m = -\frac{1,94 - 2,84}{2 \times 27(3 - 1)} = 0,008 \text{ mol.min}^{-1}$					nol.min ⁻¹				
1.00	0.25	قيمة السرعة الوسطية بين اللحظتين $t=0$ و t_1 اكبر منها بين اللحظتين t_1 و t_2 لأن سرعة التفاعل تتناسب مع كمية المادة للمتفاعلات.							

العلامة		عناصر الإجابة					
مجموع	مجزأة	الإجاب					
	0.05	التمرين الثاني(3,0 نقطة)					
1.50	0.25 0.25	$^{32}_{15}P ightarrow ^{32}_{16}S + ^{0}_{-1}e$. أ . معادلة التحول النووي الحادث: 1 . أ . معادلة التحول النووي الحادث:					
	$0.25 \\ 0.25 \\ 0.25$	$m=m_0e^{-\lambda t}$; $N=rac{m}{M}$. \mathbb{N}_{A} ; $N=N_0e^{-\lambda t}$: ب. قانون التناقص الاشعاعي					
	0,50	$\frac{E_l}{A} = \frac{1}{A} (15 \text{ m}_p + 17 \text{ m}_n - \text{m(P)}) \times 931.5 \; ; \; \frac{E_l}{A} = 8,46 \text{ MeV/nucl\'eon}$					
0.50	0.50	$m' = m_0 - m = m_0 - m_0 e^{-\lambda t} = m_o (1 - e^{-\lambda t})$: إثبات العبارة المعطاة : .2					
0.50	$0.25 \\ 0.25$	$^{32}_{17}Cl ightarrow ^{32}_{16}S + ^{0}_{+1}e$.32 النواة هي الكلور 32.					
0.50	0.50	$\frac{A(t)}{A_O} = \frac{1}{4} \Leftrightarrow e^{-\lambda t} = \frac{1}{4} \Rightarrow \lambda t = 2.\ln 2 \Rightarrow t = 2\frac{\ln 2}{\lambda} = 2t_{1/2} \tag{4}$					
		التمرين الثالث:(3.5 نقاط)					
	0.25	11-أ- عند غلق القاطعة، يفرض المولد بين لبوسي المكثفة المتقابلين فرقا في الكمون الكهربائي، الشيء الذي يدفع بالإلكترونات الحرة للبوس ذو الكمون المرتفع (الموجب) بالتحرك نحو اللبوس الآخر عبر الدارة (يلعب المولد دور مضخة للالكترونات)، فتنشأ شحنة كهربائية موجبة على هذا اللبوس وفي نفس الوقت شحنة كهربائية سالبة على اللبوس المقابل. تتزايد هذه الشحنة بفعل التكهرب عن بعد بين اللبوسين (تكثيف الشحن الكهربائية) وخاصة بوجود عازل كهربائي، فيتزايد تدريجيا التوتر بين اللبوسين وتتوقف حركة الالكترونات عندما يبلغ هذا التوتر بينهما قيمة القوة المحركة الكهربائية للمولد . ب)-المعادلة التفاضلية للتيار (i):					
	0.25	$u_{R_1} + u_{R_2} + u_C = E$; $(R_1 + R_2) i + u_C = E$					
1.75	0.25	$(R_1 + R_2) \frac{di}{dt} + \frac{du_C}{dt} = 0$ $\frac{du_C}{dt} = \frac{i}{C} ; (R_1 + R_2) \frac{di}{dt} + \frac{i}{C} = 0$					
	0.25	$\frac{di}{dt} + \frac{1}{(R_1 + R_2)C} i = 0$					
	0.25 0.25 0.25	ج- بتعويض الحل في المعادلة التفاضلية و باستعمال الشروط الابتدائية نتحصل على:					
1.25	0.25 0.25 0.25 0.25 0.25	$C = \frac{\tau}{(R_1 + R_2)} = 100~\mu$ F و نستنتج $\tau = 0.5~s$. $\tau = 0.5~s$ و نستنج نجد -2 $E = (R_1 + R_2). I_0 = 10~V$					
	0.25	${ m E(C)}=rac{1}{2}{ m C}{ m u}_{ m C}^2(t)\;\;;\;\;\;{ m E(C)}=rac{1}{2}{ m CE}^2(1{ m -e}^{-rac{t}{ au}})^2\;$					
		الطاقة الأعظمية:					
0.50	0.25	$u_c = E \implies E_{max}(C) = \frac{1}{2}C E^2 ; E_{max}(C) = 5x10^{-3} j$					

٠.	نابع الإجابة الشمودجية الموضوع المتحال البكانوريا دورة: 2010						eta litaren aren		
04: ساعات و نصف		المده		وتقني رياضي (مكيف)	الشعبة: رياضيات و	يزيائيه	اختبار مادة: العلوم الف		
العلامة مجنوع					عناصر الإجابة				
25-	••• ••					/ähä: 2	5)!!!		
0.25	0.25	ن الرابع: (3,5 نقطة) جهة النبار خارج العمود: من صفيحة النبار خارج العمود: من صفيحة النبار خارج العمود: من صفيحة النبار خارج العمود:					, •		
	0.25	2- دور الجسر الملحي: - غلق الدارة الكهربائية - مسلك لانتقال الشوارد بين نصفي العمود لضمان الاعتدال							
0.50		الكهربائي للمحلولين .							
0.50	0.25	Θ $Al_{(s)}^{3+}/Al_{(aq)}^{3+}/Cu_{(aq)}^{2+}/Cu_{(s)}^{2+}\oplus$ تمثيل العمود – الرمز الاصطلاحي:							
	0.25	$2 \times \left(A l_{(s)} = A l^{3+}_{(aq)} + 3 e^{-}\right)$: عند المصعد = عند المصعد = -2							
	0.25	$3 \times \left(Cu^{2+}_{(aq)} + 2e^{-} = Cu_{(s)}\right)$ عند المهبط:							
0.75	0.25	$2Al_{(s)} + 3 Cu^{2+}_{(aq)} = 2Al^{3+}_{(aq)} + 3Cu_{(s)}$ عادلة النفاعل:							
0.50	0.25	$Q_{r,i} = rac{\left[Al^{3+}_{\;\;(aq)} ight]^2}{\left[Cu^{2+}_{\;\;(aq)} ight]^3} = rac{\left(10^{-2} ight)^2}{\left(10^{-1} ight)^3} = 0,1$ القيمة الإبتدائية لكسر النفاعل:				 القيمة الإبتدائية لكسر 			
	0.25			ىيابق.	اه المباشر للتفاعل الس	تطور الجملة في الإتج	ن $Q_{r,i} < K$ نما أن -		
	0.25		$ m Q = I. \Delta t = 0.4 imes 1800 = 720 \; C$. أ – كمية الكهرباء: . 5						
							ب- جدول التقدم:		
		معادلة	11	$2Al_{(s)}$	$+3 Cu^{2+}_{(aq)}$	$_{0}=2Al^{3+}_{(aq)}$	$+3Cu_{(s)}$		
	0.25 0.25	حالة الجملة	التقدم		mmol	كميات المادة بـ			
		الإبتدائية	0	$n_0(Al)$	5	0,5	$n_0(\mathcal{C}u)$		
1.50		الإنتقالية	\boldsymbol{x}	$n_0(Al)-2x$	5-3x	2x + 0.5	$n_0(Cu) + 3x$		
		النهائية	x_m	$n_0(Al)-2x_m$	$5-3x_m$	$2x_m + 0.5$	$n_0(Cu) + 3x_m$		
	0.25 0.25 0.25	$[Cu^{2+}] = ($	(5 - 3x)	ر /V/ و /Al ³⁻	+] = (0.5 + 2x)	: t يعبر الدارة /V	ج- لما min = 30		
				بالتعويض نجد:	x = 1,24 mm	ol نجد: $Q = i$	$. \Delta t = 6.x.F$		
				$[Cu^{2+}] = 25,6 \text{ m}$] و mol/L]	$Al^{3+}] = 59,6 \text{ mm}$	iol/L		
						3.5 ن)	التمرين الخامس: (5		
	0.25	مصريق القانون الثاني لنيوتن على الجسم (S) خلال الإنتقال AO							
	0.25	$\sum \vec{F} = m\vec{a} \implies \vec{P} + \vec{R} + \vec{f} = m\vec{a}$; \vec{f} فوة الاحتكاك \vec{R} ، رد فعل المستوي \vec{R} ، قوة الاحتكاك \vec{r}							
1.50	0.25				$mg \sin \alpha -$	f = ma نجد (Ox)	بالإسقاط على المحور		
	0.25	$f = m(g \sin \alpha - a)$ ومنه							
	0.25				$a = \frac{\Delta V}{\Delta t} = 3$	بمة التسارع $m.s^{-2}$,	ب ـ من القياسات نجد قب		
	0.25	$f_1 = 0.5(9.8\sin 45 - 3) = 1.96N$: $\vec{f_1}$ شدة قوة الإحتكاك :							
	0.25	$\vec{P} = m\vec{a} \implies m\vec{g} = m\vec{a} \implies \vec{a} = \vec{g}$ أ - و ب ـ المعادلتان الزمنيتان: القانون الثاني لنيوتن: $\vec{P} = m\vec{a} \implies m\vec{g} = m\vec{a} \implies \vec{a} = \vec{g}$							
	0.23					-			

العلامة		عناصر الإجابة
مجموع	مجزأة	الإجابة-
1.75	0.25 0.25 0.25	$y = \frac{g}{2v_0^2\cos^2\alpha}x^2 + (\tan\alpha)x$ معادلة $\begin{cases} x(t) = v_0\cos\alpha t \\ y(t) = \frac{1}{2}gt^2 + v_0\sin\alpha t \end{cases}$
	0.25	${ m v}_0=3,15m/s$: نعوض القيمتين ${ m x}_N$ و ${ m y}_N$ في معادلة المسار نجد: ${ m v}_0=3,15m/s$
	0.25	$v_o^2 - v_A^2 = 2.a.d \implies a = \frac{v_o^2 - v_A^2}{2d} = 3,3 m/s : \vec{a}$ د ـ شدة شعاع التسارع
	0.25	$f=0,5(9,8\sin 45-3,3)=1,81N$: $ec{f}$ قوة الإحتكاك : $ec{f}$ هـ ـ شدة شعاع قوة الإحتكاك : $ec{f}$
0.25	0.25	3 - النتيجتان مقبولتان لأنهما ضمن مجال حدود اخطاء التجربة.
		التمرين التجريبي:(03 نقاط)
0.25	0.25	
	0.25	2- عند التكافؤ يتحقق:
0.75	0.25 0.25	$n_i(HA) = n_E(HO^-) \Rightarrow C_aV_a = C_bV_{bE} \Rightarrow V_{bE} = \frac{C_aV_a}{Cb} = 10 \ mL$
	0.25	$(\mathrm{V_{bE}} = 10~\mathrm{mL}\;;\;\mathrm{pH_E} = 8.4\;)\;$ احداثیات نقطة التکافؤ:
0.50	$0.25 \\ 0.25$	$ ho H = p K_a = 4,8$ للثنائية : عند نصف التكافؤ : لما $V_b = V_{bE}/2$ لدينا $p k_a - 3$
	0.23	– من الجدول المرفق الحمض المعاير هو حمض الايثانويك CH ₃ COOH
0.25	0.25	-4 الحمض ضعيف لأن: $pH_0>2$ أو $pH_E>7$
	0.25	ر جادلة تفاعل المعايرة: $(P_3COOH(aq) + HO^-(aq) = CHCOO^-(aq) + H_2O(\ell)$ المعايرة: $(-5)^{-5}$
	0.25	$CH_3COOH(aq) + HO(aq) = CHCOO(aq) + H_2O(e)$ التوازن :
1.25	0.25 0.25	$K = \frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}\left[HO^{-}\right]_{f}} \cdot \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{a}}{K_{e}} \rightarrow K = 10^{(pK_{e}^{-}pK_{a})} = 1,6.10^{9}$
	0.25	$K > 10^4 \qquad \to Talphi \rightarrow Talphi$
	0.25	ج - الكاسف المناسب نهده المعايره مو العينون فالبين