Alopecia

Qiang Liu

2022-09-21

First include basic settings and related packages.

```
> library(tidyverse)
## Warning:
            'tidyverse' R 4.2.1
## Warning: 'ggplot2' R 4.2.1
## Warning: 'tibble' R 4.2.1
## Warning: 'dplyr' R 4.2.1
## Warning: 'forcats' R 4.2.1
> library(skimr)
## Warning:
             'skimr' R 4.2.1
> library(MASS)
## Warning: 'MASS' R 4.2.1
> library(openxlsx)
## Warning: 'openxlsx' R 4.2.1
> library(pander)
## Warning: 'pander' R 4.2.1
> library(ggplot2)
> library(Rcpp)
```

Warning: 'Rcpp' R 4.2.1

```
> library(dplyr)
> library(viridis)

## Warning: 'viridis' R 4.2.1

> library(ggstatsplot)

## Warning: 'ggstatsplot' R 4.2.1

> library(plyr)
> library(hrbrthemes)

## Warning: 'hrbrthemes' R 4.2.1
```

Read and roughly view data 'Alopecia' in project's working directory

```
> age_countrydata <- read.xlsx("Age and Country.xlsx")
> countrydata <- read.xlsx("Country.xlsx")
> gender_degreedata <- read.xlsx("Gender and Degree.xlsx")
> age_degreedata <- read.xlsx("Age and Degree.xlsx")
> skim(age_countrydata)
```

Table 1: Data summary

Name	age_countrydata
Number of rows	3047
Number of columns	4
Column type frequency:	
character	2
numeric	2
Group variables	None

Variable type: character

$skim_variable$	$n_{missing}$	$complete_rate$	\min	max	empty	n_unique	whitespace
Country	0	1.00	5	6	0	6	0
Gender	49	0.98	1	1	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Age	0	1	35.93	15.13	15	24	32	44	93	
Time	0	1	2016.55	3.36	2012	2012	2018	2019	2022	

> skim(countrydata)

Table 4: Data summary

Name	countrydata
Number of rows	19
Number of columns	2
Column type frequency:	
character	1
numeric	1
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Country	0	1	3	9	0	19	0

Variable type: numeric

$skim_variable$	$n_{missing}$	$complete_rate$	mean	sd	p0	p25	p50	p75	p100	hist
Count	0	1	420.79	618.63	20	66	130	479.5	2495	

> skim(gender_degreedata)

Table 7: Data summary

Name Number of rows	gender_degreedata 1290
Number of columns	4
Column type frequency:	
character	2
numeric	2
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Country	0	1	3	8	0	6	0
Gender	0	1	1	1	0	2	0

Variable type: numeric

skim_variable	n_missing	$complete_rate$	mean	sd	p0	p25	p50	p75	p100	hist
HNS	460	0.64	3.14	1.44	1	2	3	4	9	
LS	830	0.36	1.53	0.81	0	1	1	2	3	

> skim(age_degreedata)

Table 10: Data summary

Name	age_degreedata
Number of rows	419
Number of columns	5
Column type frequency:	
character	2
numeric	3
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Country	0	1	5	5	0	2	0
Gender	0	1	1	1	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Age	0	1.00	48.29	20.20	18	25.5	45.5	64	93	
HNS	53	0.87	3.39	1.51	1	2.0	3.0	4	7	
LS	366	0.13	0.85	1.15	0	0.0	0.0	2	3	

Warning: Removed 28 rows containing non-finite values (stat_ydensity).

Warning: Removed 110 rows containing missing values (geom_violin).

Violin plot of age of alopecia patients in different country


```
> pdf("boxplot of country.pdf",width=8,height=8)
> ggbetweenstats(
+ data=age_countrydata,
+ x=Country,
+ y=Age,
+ title="Age distribution of alopecia patients in different country",
+ message=FALSE
+ )
```

```
> pdf("boxplot of gender.pdf",width=8,height=8)
> ggbetweenstats(
+ data=age_countrydata,
+ x=Gender,
+ y=Age,
+ title="Age distribution of alopecia patients in different gender",
+ message=FALSE
+ )
```

```
> pdf("boxplot of time.pdf",width=8,height=8)
> ggbetweenstats(
+    data=age_countrydata,
+    x=Time,
+    y=Age,
+    title="Age distribution of alopecia patients in different Time",
+    message=FALSE
+ )
```

> male_degreedata <- gender_degreedata[grep(pattern="M",gender_degreedata\$Gender),]
> female_degreedata <- gender_degreedata[grep(pattern="F",gender_degreedata\$Gender),]</pre>

```
> male_degreedata %>%
+ ggplot(aes(x=HNS, fill=Country)) +
+ geom_histogram(color="#e9ecef", alpha=0.6, position = 'identity') +
+ scale_fill_brewer(palette = "Paired") +
+ labs(fill="") +
+ theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank(),
+ panel.background=element_blank(),axis.line=element_line(colour="black"))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
> female_degreedata %>%
+    ggplot(aes(x=LS, fill=Country)) +
+    geom_histogram(color="#e9ecef", alpha=0.6, position = 'identity') +
+    scale_fill_brewer(palette = "Paired") +
+    labs(fill="")+
+    theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank(),
+         panel.background=element_blank(),axis.line=element_line(colour="black"))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
> pdf("boxplot of female degree.pdf",width=8,height=8)
> ggbetweenstats(
+ data=female_degreedata,
+ x=Country,
+ y=LS,
+ title="LS distribution of alopecia patients in different Country",
+ message=FALSE
+ )
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
> male_agedata <- age_degreedata[grep(pattern="M",age_degreedata$Gender),]</pre>
```

```
> linear.model <- lm(HNS~Age,data=male_agedata)
> summary(linear.model)
```

```
##
## lm(formula = HNS ~ Age, data = male_agedata)
##
## Residuals:
      Min
               1Q Median
                               ЗQ
                                      Max
## -3.3406 -0.9068 0.0516 0.8935
                                  3.6030
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.281867
                         0.193280
                                  11.806 < 2e-16 ***
              0.024508
                         0.003928
                                    6.239 1.23e-09 ***
## Age
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.433 on 364 degrees of freedom
## Multiple R-squared: 0.0966, Adjusted R-squared: 0.09411
## F-statistic: 38.92 on 1 and 364 DF, p-value: 1.227e-09
```

```
> stepwiseSelection <- stepAIC(linear.model, direction="both", trace=FALSE, k=log(NROW(male_agedata)))
> summary(stepwiseSelection)
##
## Call:
## lm(formula = HNS ~ Age, data = male_agedata)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -3.3406 -0.9068 0.0516 0.8935 3.6030
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.281867
                         0.193280 11.806 < 2e-16 ***
              0.024508
                         0.003928
                                   6.239 1.23e-09 ***
## Age
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.433 on 364 degrees of freedom
## Multiple R-squared: 0.0966, Adjusted R-squared: 0.09411
## F-statistic: 38.92 on 1 and 364 DF, p-value: 1.227e-09
> pander::pander(stepwiseSelection)
```

Table 13: Fitting linear model: HNS \sim Age

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.282	0.1933	11.81	1.871e-27
\mathbf{Age}	0.02451	0.003928	6.239	1.227e-09

$$HNS(male) = 2.282 + 0.02451 * Age$$

```
> pdf("Cor of Age and Degree of male androgenetic alopecia (HNS).pdf", width=9, height=7.5)
> ggscatterstats(
   data=male_agedata,
   x=Age,
  y=HNS,
+ type="p",
+ bin=30,
+ conf.level=0.99,
+ messages=TRUE
+ )
## Registered S3 method overwritten by 'ggside':
    method from
##
##
     +.gg
          ggplot2
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
> dev.off
## function (which = dev.cur())
## {
##
       if (which == 1)
##
           stop("cannot shut down device 1 (the null device)")
##
       .External(C_devoff, as.integer(which))
##
       dev.cur()
## }
## <bytecode: 0x000001ddfdfa5ef0>
## <environment: namespace:grDevices>
```