Multivariate Statistics

Lecture 09

Fudan University

1 The Distribution of the Sample Correlation Coefficient

1 The Distribution of the Sample Correlation Coefficient

2 Tests for the Hypothesis of Lack of Correlation

- 1 The Distribution of the Sample Correlation Coefficient
- Tests for the Hypothesis of Lack of Correlation
- 3 The Asymptotic Distribution of Sample Correlation

- 1 The Distribution of the Sample Correlation Coefficient
- Tests for the Hypothesis of Lack of Correlation
- 3 The Asymptotic Distribution of Sample Correlation
- Partial Correlation Coefficients

- 1 The Distribution of the Sample Correlation Coefficient
- Tests for the Hypothesis of Lack of Correlation
- The Asymptotic Distribution of Sample Correlation
- 4 Partial Correlation Coefficients

If one has a sample (of p-component vectors) $\mathbf{x}_1, \dots, \mathbf{x}_N$ from a normal distribution, the maximum likelihood estimator of the correlation between the i-th component and the j-th component is

$$r_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}},$$

where $x_{i\alpha}$ is the *i*-th component of \mathbf{x}_{α} and

$$\bar{x}_i = \frac{1}{N} \sum_{\alpha=1}^N x_{i\alpha}.$$

We shall treat that r_{ij} and need only consider the joint distribution of $(x_{i1}, x_{j1}), (x_{i2}, x_{j2}), \dots, (x_{iN}, x_{jN})$.

We reformulate the problems to be considered a bivariate normal distribution. Let $\mathbf{x}_1^*, \dots, \mathbf{x}_N^*$ be observation from

$$\mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1\sigma_2\rho \\ \sigma_1\sigma_2\rho & \sigma_2^2 \end{bmatrix}\right), \quad \text{where} -1 < \rho < 1.$$

We shall consider the sample correlation coefficient

$$r = \frac{a_{12}}{\sqrt{a_{11}}\sqrt{a_{22}}}$$

where

$$a_{ij} = \sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j), \qquad \bar{x}_i = \frac{1}{N} \sum_{\alpha=1}^{N} x_{i\alpha}$$

and $x_{i\alpha}$ is the *i*-th component of \mathbf{x}_{α}^* .

Let n = N - 1. We see that a_{ii} are distributed like

$$a_{ij} = \sum_{\alpha=1}^{n} z_{i\alpha} z_{j\alpha}$$

where

$$\begin{bmatrix} z_{1\alpha} \\ z_{2\alpha} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix} \right).$$

and the pair $(z_{12}, z_{22}), \ldots, (z_{1N}, z_{2N})$ are independent.

Define the *n*-component vectors $\mathbf{v}_i = [z_{i1}, \dots, z_{in}]^{\top}$ for i = 1, 2.

1 The correlation coefficient between \mathbf{v}_1 and \mathbf{v}_2 is the cosine of the angle, say θ , between \mathbf{v}_1 and \mathbf{v}_2 , that is

$$\cos\theta = \frac{\mathbf{v}_1^{\top}\mathbf{v}_2}{\left\|\mathbf{v}_1\right\|_2\left\|\mathbf{v}_2\right\|_2}.$$

② If we let $b = \mathbf{v}_2^{\top} \mathbf{v}_1 / (\mathbf{v}_1^{\top} \mathbf{v}_1)$ then $\mathbf{v}_2 - b \mathbf{v}_1$ is orthogonal to \mathbf{v}_1 and

$$\cot \theta = \frac{b \left\| \mathbf{v}_1 \right\|_2}{\left\| \mathbf{v}_2 - b \mathbf{v}_1 \right\|_2}.$$

③ We shall show that $\cot \theta$ is proportional to a *t*-variable when $\rho = 0$.

Theorem 1

If the pairs $(z_{11},z_{21}),\ldots,(z_{1n},z_{2n})$ are independent and each pair are distributed according to

$$\begin{bmatrix} \mathbf{z}_{1\alpha} \\ \mathbf{z}_{2\alpha} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix} \right), \quad \text{where } \alpha = 1, \dots, \mathbf{n},$$

then given $z_{11}, z_{12}, \ldots, z_{1n}$, the conditional distributions of

$$b = \frac{\sum_{\alpha=1}^{n} z_{2\alpha} z_{1\alpha}}{\sum_{i=1}^{n} z_{1\alpha}^2} \quad \text{and} \quad \frac{u}{\sigma^2} = \sum_{\alpha=1}^{n} \frac{(z_{2\alpha} - bz_{1\alpha})^2}{\sigma^2}$$

are $\mathcal{N}\left(\beta,\sigma^2/c^2\right)$ and χ^2 -distribution with n-1 degrees of freedom, respectively; and b and u are independent, where

$$eta = rac{
ho\sigma_2}{\sigma_1}, \quad \sigma^2 = \sigma_2^2(1-
ho^2) \quad ext{and} \quad c^2 = \sum_{i=1}^n z_{1lpha}^2.$$

《비계《배계《문계《문》 본 */)역(()

We can write

$$\cot \theta = \frac{b \left\| \mathbf{v}_1 \right\|_2}{\left\| \mathbf{v}_2 - b \mathbf{v}_1 \right\|_2} = \frac{cb/\sigma}{\sqrt{u/\sigma^2}}$$

If $\rho = 0$, then $\beta = 0$, and $b \sim \mathcal{N}(0, \sigma^2/c^2)$, and

$$rac{cb/\sigma}{\sqrt{rac{u/\sigma^2}{n-1}}} \sim rac{\mathcal{N}(0,1)}{\sqrt{rac{\chi^2(n-1)}{n-1}}}$$

has a conditional *t*-distribution with n-1 degrees of freedom.

We require the following lemma.

Lemma 1

If y_1, \ldots, y_N are independently distributed, if

$$\mathbf{y}_lpha = egin{bmatrix} \mathbf{y}_lpha^{(1)} \ \mathbf{y}_lpha^{(2)} \end{bmatrix}$$

has the density $f(\mathbf{y}_{\alpha})$ and if the conditional density of $\mathbf{y}_{\alpha}^{(2)}$ given $\mathbf{y}_{\alpha}^{(1)}$ is $f(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)})$ for $\alpha = 1, \ldots, n$. Then in the conditional distribution of $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ given $\mathbf{y}_{1}^{(1)}, \ldots, \mathbf{y}_{N}^{(1)}$, the random vectors $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ are independent and the density of $\mathbf{y}_{\alpha}^{(2)}$ is $f(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)})$.

We also use the following lemma with $x_{\alpha} = z_{2\alpha}$ and matrix **C** whose the first row is \mathbf{v}_{1}^{\top}/c , where $c = \|\mathbf{v}_{1}\|_{2}$.

Lemma 2

Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, where $\mathbf{x}_\alpha \sim \mathcal{N}_p(\boldsymbol{\mu}_\alpha, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{\gamma=1}^{N} c_{lpha\gamma} \mathbf{x}_{\gamma} \sim \mathcal{N}_{m{
ho}}(m{
u}_{lpha}, m{\Sigma}),$$

where $\nu_{\alpha} = \sum_{\gamma=1}^{N} c_{\alpha\gamma} \mu_{\gamma}$ for $\alpha = 1, ..., N$ and $\mathbf{y}_{1}, ..., \mathbf{y}_{N}$ are independent.

Theorem 2

if x and y are independently distributed, x having the distribution $\mathcal{N}(0,1)$ and y having the χ^2 -distribution with m degrees of freedom, then

$$t = \frac{x}{\sqrt{y/m}}$$

has the density of t-distribution such that

$$f(t;m) = \frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m\pi}\,\Gamma\left(\frac{m}{2}\right)}\left(1 + \frac{t^2}{m}\right)^{-\frac{m+1}{2}}.$$

Recall that $a_{ij} = \sum_{\alpha=1}^n z_{i\alpha} z_{j\alpha}$ and $\mathbf{v}_i = [z_{i1}, \dots, z_{in}]^\top$ for i = 1, 2, then

$$b = \frac{\sum_{\alpha=1}^{n} z_{2\alpha} z_{1\alpha}}{\sum_{i=1}^{n} z_{1\alpha}^{2}} = \frac{a_{12}}{a_{11}}, \quad c^{2} = \sum_{i=1}^{n} z_{1\alpha}^{2} = a_{11}$$

$$u = \sum_{\alpha=1}^{n} (z_{2\alpha} - bz_{1\alpha})^{2} = \sum_{\alpha=1}^{n} (z_{2\alpha}^{2} - b^{2}z_{1\alpha}^{2}) = a_{22} - \frac{a_{12}^{2}}{a_{11}}.$$

Hence, we can write the above conditional t-distributed random variable with n-1 degrees of freedom as

$$\frac{cb/\sigma}{\sqrt{\frac{u/\sigma^2}{n-1}}} = \sqrt{n-1} \cdot \frac{cb}{\sqrt{u}}$$

$$= \sqrt{n-1} \cdot \frac{a_{12}/\sqrt{a_{11}a_{22}}}{\sqrt{1-a_{12}^2/(a_{11}a_{22})}}$$

$$= \sqrt{n-1} \cdot \frac{r}{\sqrt{1-r^2}}.$$

The conditional density of

$$t = \frac{cb/\sigma}{\sqrt{\frac{u/\sigma^2}{n-1}}} = \sqrt{n-1} \cdot \frac{r}{\sqrt{1-r^2}}$$

given \mathbf{v}_1 is

$$\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{(n-1)\pi}\,\Gamma\left(\frac{n-1}{2}\right)}\left(1+\frac{t^2}{n-1}\right)^{-\frac{n}{2}}.$$

Then the conditional density of r given \mathbf{v}_1 is

$$k_{N}(r)=rac{\Gammaig(rac{N-1}{2}ig)}{\sqrt{\pi}\,\Gammaig(rac{N-2}{2}ig)}(1-r^2ig)^{rac{N-4}{2}}, \quad ext{where} \quad N=n+1.$$

Note that $k_N(r)$ does not depend on \mathbf{v}_1 .

- 1 The Distribution of the Sample Correlation Coefficient
- Tests for the Hypothesis of Lack of Correlation
- The Asymptotic Distribution of Sample Correlation
- 4 Partial Correlation Coefficients

Tests for the Hypothesis of Lack of Correlation

Consider the hypothesis $H: \rho_{ij} = 0$ for some particular pair (i,j).

• For testing H against alternatives $\rho_{ij} > 0$, we reject H if $r_{ij} > r_0$ for some positive r_0 . The probability of rejecting H when H is true is

$$\int_{r_0}^1 k_N(r) \, \mathrm{d}r.$$

- ② For testing H against alternatives $r_{ij} < 0$, we reject H if $r_{ij} < -r_0$.
- **3** For testing H against alternatives $r_{ij} \neq 0$, we reject H if $r_{ij} > r_1$ or $r_{ij} < -r_1$ for some positive r_1 . The probability of rejection when H is true is

$$\int_{-1}^{-r_1} k_N(r) \, \mathrm{d}r + \int_{r_1}^1 k_N(r) \, \mathrm{d}r.$$

Tests for the Hypothesis of Lack of Correlation

We have shown that

$$\sqrt{N-2} \cdot \frac{r_{ij}}{\sqrt{1-r_{ij}^2}}$$

has the *t*-distribution with N-2 degrees of freedom.

We can also use *t*-tables. For $\rho_{ij} \neq 0$, reject *H* if

$$\sqrt{N-2}\cdot\frac{|r_{ij}|}{\sqrt{1-r_{ij}^2}}>t_{N-2}(\alpha),$$

where $t_{N-2}(\alpha)$ is the two-tailed significance point of the t-statistic with N-2 degrees of freedom for significance level α .

The Distribution in the Case of $\rho \neq 0$

Conditional on \mathbf{v}_1 held fixed, the random variables

$$b = \frac{a_{12}}{a_{11}}$$
 and $\frac{u}{\sigma^2} = \frac{a_{22} - a_{12}^2/a_{11}}{\sigma^2}$,

which are distributed independently according to $\mathcal{N}(\beta, \sigma^2/c^2)$ and χ^2 -distribution with n-1 degrees of freedom, respectively.

Theorem 3

The correlation coefficient in a sample of N from a bivariate normal distribution with correlation ρ is distributed with density

$$\frac{2^{n-2}(1-\rho^2)^{\frac{n}{2}}(1-r^2)^{\frac{n-3}{2}}}{(n-2)!\pi}\sum_{\alpha=0}^{\infty}\frac{(2\rho r)^{\alpha}}{\alpha!}\Gamma^2\left(\frac{n+\alpha}{2}\right),$$

where -1 < r < 1 and n = N - 1.

The Distribution in the Case of $\rho \neq 0$

It should be pointed out that any test based on r is invariant under transformations of location and scale, that is,

$$x_{i\alpha}^* = b_i x_{i\alpha} + c_i,$$

for $b_i \neq 0$ and i = 1, 2.

Recall that

$$r = \frac{a_{12}}{\sqrt{a_{11}}\sqrt{a_{22}}}$$
 and $a_{ij} = \sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j).$

The likelihood ratio criterion:

- Let $L(\mathbf{x}, \theta)$ be the likelihood function of the observation \mathbf{x} and the parameter vector $\theta \in \Omega$.
- 2 Let a null hypothesis be defined by a proper subset ω of Ω , such that $\rho=\rho_0$. The likelihood ratio criterion is

$$\lambda(\mathbf{x}) = \frac{\sup_{\boldsymbol{\theta} \in \omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Omega} L(\mathbf{x}, \boldsymbol{\theta})}.$$

3 The likelihood ratio test is the procedure of rejecting the null hypothesis when $\lambda(\mathbf{x})$ is less than a predetermined constant.

Let us consider the likelihood ratio test of the hypothesis that $\rho=\rho_0$ based on a sample $\mathbf{x}_1,\ldots,\mathbf{x}_N$ from the bivariate normal distribution

$$\mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_1\sigma_2\rho \\ \sigma_1\sigma_2\rho & \sigma_2^2 \end{bmatrix}\right).$$

The set Ω consists of $\mu_1, \mu_2, \sigma_1, \sigma_2$ and ρ such that

$$\sigma_1>0,\quad \sigma_2>0\quad \text{and} -1<\rho<1$$

and the set ω is the subset for which $\rho = \rho_0$.

The likelihood ratio criterion is

$$\frac{\sup_{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup_{\Omega} L(\mathbf{x}, \boldsymbol{\theta})} = \left(\frac{(1 - \rho_0^2)(1 - r^2)}{(1 - \rho_0 r)^2}\right)^{\frac{N}{2}}.$$

The likelihood ratio criterion is

$$\frac{\sup_{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup_{\Omega} L(\mathbf{x}, \boldsymbol{\theta})} = \left(\frac{(1 - \rho_0^2)(1 - r^2)}{(1 - \rho_0 r)^2}\right)^{\frac{N}{2}}.$$

The likelihood ratio test is

$$\frac{(1-\rho_0^2)(1-r^2)}{(1-\rho_0r)^2} \le c$$

where c is chosen by the prescribed significance level.

The critical region can be written equivalently as

$$(\rho_0^2c-\rho_0^2+1)r^2-2\rho_0cr+c-1+\rho_0^2\geq 0,$$

that is,

$$r > rac{
ho_0 c + (1 -
ho_0^2) \sqrt{1 - c}}{
ho_0^2 c -
ho_0^2 + 1}$$
 and $r < rac{
ho_0 c - (1 -
ho_0^2) \sqrt{1 - c}}{
ho_0^2 c -
ho_0^2 + 1}.$

Thus the likelihood ratio test of $H: \rho = \rho_0$ against alternatives $\rho \neq \rho_0$ has a rejection region of the form $r > r_1$ and $r < r_2$ (not chosen so that the probability of each inequality is $\alpha/2$ when H is true).

- The Distribution of the Sample Correlation Coefficient
- 2 Tests for the Hypothesis of Lack of Correlation
- 3 The Asymptotic Distribution of Sample Correlation
- 4 Partial Correlation Coefficients

For a sample $\mathbf{x}_1, \dots, \mathbf{x}_N$ from a normal distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we are interested in the sample correlation coefficient

$$r(n) = \frac{a_{ij}(n)}{\sqrt{a_{ii}(n)}\sqrt{a_{jj}(n)}}$$

where n = N - 1,

$$a_{ij}(n) = \sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j) \sim \sum_{\alpha=1}^{n} \begin{bmatrix} z_{i\alpha} \\ z_{j\alpha} \end{bmatrix} \begin{bmatrix} z_{i\alpha} & z_{j\alpha} \end{bmatrix}$$

with

$$\begin{bmatrix} z_{i\alpha} \\ z_{j\alpha} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{ii} & \sigma_{ij} \\ \sigma_{ji} & \sigma_{jj} \end{bmatrix} \right) \quad \text{and} \quad \bar{x}_i = \frac{1}{N} \sum_{\alpha=1}^N x_{i\alpha}.$$

We can also write

$$r(n) = \frac{c_{ij}(n)}{\sqrt{c_{ii}(n)}\sqrt{c_{jj}(n)}},$$

with

$$c_{ii}(n) = \frac{a_{ii}(n)}{\sigma_{ii}}, \quad c_{ij}(n) = \frac{a_{ij}(n)}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}}} \quad \text{and} \quad c_{jj}(n) = \frac{a_{ii}(n)}{\sigma_{jj}}.$$

Then we have

$$c_{ij}(n) = \sum_{\alpha=1}^{n} \begin{bmatrix} z_{i\alpha}^* \\ z_{i\alpha}^* \end{bmatrix} \begin{bmatrix} z_{i\alpha}^* & z_{j\alpha}^* \end{bmatrix}$$

with

$$\begin{bmatrix} z_{i\alpha}^* \\ z_{j\alpha}^* \end{bmatrix} = \begin{bmatrix} \frac{z_{i\alpha}}{\sqrt{\sigma_{ii}}} \\ \frac{z_{j\alpha}}{\sqrt{\sigma_{ij}}} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right) \quad \text{and} \quad \rho = \frac{\sigma_{ij}}{\sqrt{\sigma_{ij}} \sqrt{\sigma_{jj}}}.$$

Apply the following theorem with $\mathbf{A}(n) = \mathbf{C}(n)$ and $\mathbf{\Sigma} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$.

Theorem 4

Let

$$\mathbf{A}(n) = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N})^{\top},$$

where $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independently distributed according to $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ and n = N - 1. Then the limiting distribution of

$$\mathbf{B}(n) = \frac{1}{\sqrt{n}} (\mathbf{A}(n) - n\mathbf{\Sigma})$$

is normal with mean $\mathbf{0}$ and covariance $\mathbb{E}\big[b_{ij}(n)b_{kl}(n)\big] = \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}$.

Let

$$\mathbf{u}(n) = \frac{1}{n} \begin{bmatrix} c_{ii}(n) \\ c_{jj}(n) \\ c_{ij}(n) \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ \rho \end{bmatrix}$

The vector

$$\sqrt{n}(\mathbf{u}(n) - \mathbf{b}) = \frac{1}{\sqrt{n}} \left(\begin{bmatrix} c_{ii}(n) \\ c_{jj}(n) \\ c_{ij}(n) \end{bmatrix} - n\mathbf{b} \right)$$

has a limiting normal distribution with mean ${\bf 0}$ and covariance matrix

$$\begin{bmatrix} 2 & 2\rho^2 & 2\rho \\ 2\rho^2 & 2 & 2\rho \\ 2\rho & 2\rho & 1+\rho^2 \end{bmatrix}.$$

The sample correlation coefficient can be written as $r = \frac{u_3}{\sqrt{u_1}\sqrt{u_2}}$.

Theorem 5 [Serfling (1980), Section 3.3]

Let $\{\mathbf{u}(n)\}$ be a sequence of m-component random vectors and \mathbf{b} a fixed vector such that

$$\lim_{n\to\infty}\sqrt{n}(\mathbf{u}(n)-\mathbf{b})\sim\mathcal{N}(\mathbf{0},\mathbf{T}).$$

Let $f(\mathbf{u})$ be a vector-valued function of \mathbf{u} such that each component $f_j(\mathbf{u})$ has a nonzero differential at $\mathbf{u} = \mathbf{b}$, and let

$$\frac{\partial f_j(\mathbf{u})}{\partial u_i}\Big|_{\mathbf{u}=\mathbf{b}}$$

be the (i,j)-th component of $\Phi_{\mathbf{b}}$. Then $\sqrt{n}(\mathbf{f}(\mathbf{u}(n)) - f(\mathbf{b}))$ has the limiting distribution $\mathcal{N}(\mathbf{0}, \Phi_{\mathbf{b}}^{\top} \mathbf{T} \Phi_{\mathbf{b}})$.

Applying Theorem 5 with $r = f(\mathbf{u}) = u_3 u_1^{-\frac{1}{2}} u_2^{-\frac{1}{2}}$, we have $f(\mathbf{b}) = \rho$ and

$$\mathbf{\Phi}_{\mathbf{b}} = \begin{bmatrix} \frac{\partial r}{\partial u_{1}} \Big|_{\mathbf{u} = \mathbf{b}} \\ \frac{\partial r}{\partial u_{2}} \Big|_{\mathbf{u} = \mathbf{b}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}u_{3}u_{1}^{-\frac{3}{2}}u_{2}^{-\frac{1}{2}} \Big|_{\mathbf{u} = \mathbf{b}} \\ -\frac{1}{2}u_{3}u_{1}^{-\frac{1}{2}}u_{2}^{-\frac{3}{2}} \Big|_{\mathbf{u} = \mathbf{b}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\rho \\ -\frac{1}{2}\rho \\ 1 \end{bmatrix}.$$

Thus, the covariance of the limiting distribution of $\sqrt{n}(r(n) - \rho)$ is

$$\begin{bmatrix} -\frac{1}{2}\rho & -\frac{1}{2}\rho & 1 \end{bmatrix} \begin{bmatrix} 2 & 2\rho^2 & 2\rho \\ 2\rho^2 & 2 & 2\rho \\ 2\rho & 2\rho & 1+\rho^2 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}\rho \\ -\frac{1}{2}\rho \\ 1 \end{bmatrix} = (1-\rho^2)^2$$

and we have $\lim_{n \to \infty} \frac{\sqrt{n}(r(n) - \rho)}{1 - \rho^2} \sim \mathcal{N}(0, 1).$

If f(x) is differentiable at $x = \rho$ with non-zero differential, then

$$\sqrt{n}(f(r)-f(\rho))$$

is asymptotically normally distributed with mean zero and variance

$$\left(\frac{\partial f}{\partial x}\Big|_{x=\rho}\right)^2 \left(1-\rho^2\right)^2.$$

Theorem 6 [Fisher's z]

Let

$$z = \frac{1}{2} \log \frac{1+r}{1-r}$$
 and $\zeta = \frac{1}{2} \log \frac{1+\rho}{1-\rho}$

where r is the correlation coefficient of a sample of N=n+1 from a bivariate normal distribution with correlation ρ . Then $\sqrt{n}(z-\zeta)$ has a limiting normal distribution with mean 0 and variance 1.

Fisher's z approaches to normality much more rapid than for r. We have

$$\mathbb{E}[z] \simeq \zeta + rac{
ho}{2n}$$
 and $\mathbb{E}\left[z - \zeta - rac{
ho}{2n}
ight]^2 \simeq rac{1}{n-2}.$

See "Hotelling, H. (1953). New light on the correlation coefficient and its transforms. *Journal of the Royal Statistical Society. Series B (Methodological)*, 15(2), 193-232."

We wish to test the hypothesis $\rho = \rho_0$ on the basis of a sample of N against the alternatives $\rho \neq \rho_0$.

- ① We compute r and $z = \frac{1}{2} \log \frac{1+r}{1-r}$.
- **2** Let $\zeta_0 = \frac{1}{2} \log \frac{1+\rho_0}{1-\rho_0}$.
- $oldsymbol{\circ}$ Then a region of rejection at the 5% significance interval is

$$\sqrt{N-3}\left|z-\zeta_0-\frac{\rho_0}{2(N-1)}\right|>1.96.$$

- The Distribution of the Sample Correlation Coefficient
- Tests for the Hypothesis of Lack of Correlation
- The Asymptotic Distribution of Sample Correlation
- Partial Correlation Coefficients

Partial Correlation Coefficients

Consider the normal distribution $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \quad \text{and} \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix},$$

then the conditional distribution of $\mathbf{x}^{(1)}$ given $\mathbf{x}^{(2)}$ is

$$\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(1)} + \mathbf{B}\big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\big), \boldsymbol{\Sigma}_{11.2}\right),$$

where

$$\textbf{B} = \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \quad \text{and} \quad \boldsymbol{\Sigma}_{11.2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}.$$

Partial Correlation Coefficient

The partial correlations of $\mathbf{x}^{(1)}$ given $\mathbf{x}^{(2)}$ are the correlations calculated in the usual way from $\Sigma_{11.2}$.

Suppose $\mathbf{x}^{(1)}$ has q components and let

$$\mathbf{\Sigma}_{11.2} = \begin{bmatrix} \sigma_{11\cdot q+1,\dots,p} & \sigma_{12\cdot q+1,\dots,p} & \dots & \sigma_{1q\cdot q+1,\dots,p} \\ \sigma_{21\cdot q+1,\dots,p} & \sigma_{22\cdot q+1,\dots,p} & \dots & \sigma_{2q\cdot q+1,\dots,p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{q1\cdot q+1,\dots,p} & \sigma_{q2\cdot q+1,\dots,p} & \dots & \sigma_{qq\cdot q+1,\dots,p} \end{bmatrix} \in \mathbb{R}^{q \times q}.$$

We define

$$\rho_{ij\cdot q+1,\dots,p} = \frac{\sigma_{ij\cdot q+1,\dots,p}}{\sqrt{\sigma_{ii\cdot q+1,\dots,p}}\sqrt{\sigma_{jj\cdot q+1,\dots,p}}}$$

as the partial correlation between x_i and x_j holding x_{q+1}, \ldots, x_p fixed.

Partial Correlation Coefficient

Corollary 1

If on the basis of a given sample $\hat{\theta}_1,\ldots,\hat{\theta}_m$ are maximum likelihood estimators of the parameters θ_1,\ldots,θ_m of a distribution, then $\phi_1(\hat{\theta}_1,\ldots,\hat{\theta}_m),\ldots,\phi_m(\hat{\theta}_1,\ldots,\hat{\theta}_m)$ are maximum likelihood estimator of $\phi_1(\theta_1,\ldots,\theta_m),\ldots,\phi_m(\theta_1,\ldots,\theta_m)$ if the transformation from θ_1,\ldots,θ_m to ϕ_1,\ldots,ϕ_m is one-to-one. If the estimators of θ_1,\ldots,θ_m are unique, then the estimators of θ_1,\ldots,θ_m are unique.

Theorem 6

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ and partition the variables as

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \quad \text{and} \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}.$$

Define $\mathbf{B} = \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}$,

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{\mathbf{x}}^{(1)} \\ \bar{\mathbf{x}}^{(2)} \end{bmatrix} = \frac{1}{N} \sum_{\alpha=1}^{N} \begin{bmatrix} \mathbf{x}_{\alpha}^{(1)} \\ \mathbf{x}_{\alpha}^{(2)} \end{bmatrix} \quad \text{and} \quad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Then the maximum likelihood estimators of $\Sigma_{11.2}$ is

$$\hat{\mathbf{\Sigma}}_{11.2} = \frac{1}{N} (\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}).$$

Then the maximum likelihood estimators of the partial correlation coefficients are

$$\hat{\rho}_{ij\cdot q+1,\dots,p} = \frac{\hat{\sigma}_{ij\cdot q+1,\dots,p}}{\sqrt{\hat{\sigma}_{ii\cdot q+1,\dots,p}}\sqrt{\hat{\sigma}_{ij\cdot q+1,\dots,p}}},$$

where $\hat{\sigma}_{ij\cdot q+1,...,p}$ is the (i,j)-th element of $\hat{\Sigma}_{11.2}$.

We can also write

$$\hat{\rho}_{ij\cdot q+1,\dots,p} = \frac{a_{ij\cdot q+1,\dots,p}}{\sqrt{a_{ii\cdot q+1,\dots,p}}\sqrt{a_{ij\cdot q+1,\dots,p}}},$$

where $a_{ij \cdot q+1,...,p}$ is the (i,j)-th element of $\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}$.

To obtain the distribution of ρ_{ij} we showed that **A** was distributed as

$$\mathbf{A} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

where \mathbf{z}_{α} are distributed independently according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

Here we want to show that $A_{11,2}$ is distributed as

$$\mathbf{A}_{11.2} = \sum_{lpha=1}^{N-1-(p-q)} \mathbf{u}_lpha \mathbf{u}_lpha^ op$$

where \mathbf{u}_{α} are distributed independently according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{11.2})$.

Theorem 7

Suppose $\mathbf{y}_1,\ldots,\mathbf{y}_m$ are independent with \mathbf{y}_α distributed according to $\mathcal{N}(\mathbf{\Gamma}\mathbf{w}_\alpha,\mathbf{\Phi})$, where \mathbf{w}_α is an r-component vector. Let $\mathbf{H} = \sum_{\alpha=1}^m \mathbf{w}_\alpha \mathbf{w}_\alpha^\top$ assumed non-singular, $\mathbf{G} = \sum_{\alpha=1}^m \mathbf{y}_\alpha \mathbf{w}_\alpha^\top \mathbf{H}^{-1}$ and

$$\mathbf{C} = \sum_{lpha=1}^m (\mathbf{y}_lpha - \mathbf{G}\mathbf{w}_lpha) (\mathbf{y}_lpha - \mathbf{G}\mathbf{w}_lpha)^ op = \sum_{lpha=1}^m \mathbf{y}_lpha \mathbf{y}_lpha^ op - \mathbf{G}\mathbf{H}\mathbf{G}^ op.$$

Then **C** is distributed as $\sum_{\alpha=1}^{m-r} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$ and where $\mathbf{u}_1, \dots, \mathbf{u}_{m-r}$ are independently distributed according to $\mathcal{N}(\mathbf{0}, \mathbf{\Phi})$ independently of **G**.

Corollary 2

If $\Gamma=\mathbf{0}$, the matrix \mathbf{GHG}^{\top} defined in Theorem 7 is distributed as $\sum_{\alpha=m-r+1}^{m}\mathbf{u}_{\alpha}\mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_{m-r+1},\ldots,\mathbf{u}_{m}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0},\mathbf{\Phi})$.

We can write $\mathbf{A} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_1, \dots, \mathbf{z}_{N-1}$ are independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

Let \mathbf{z}_{α} be partitioned into two subvectors of q and p-q components, that is $\mathbf{z}_{\alpha}^{\top} = \left[\left(\mathbf{z}_{\alpha}^{(1)} \right)^{\top}, \left(\mathbf{z}_{\alpha}^{(2)} \right)^{\top} \right]$. Then $\mathbf{A}_{ij} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{(i)} \left(\mathbf{z}_{\alpha}^{(j)} \right)^{\top}$.

Given $\mathbf{z}_1^{(2)},\dots,\mathbf{z}_{N-1}^{(2)}$, the random vectors $\mathbf{z}_1^{(1)},\dots,\mathbf{z}_{N-1}^{(1)}$ are independently distributed, with $\mathbf{z}_{\alpha}^{(1)}\sim\mathcal{N}\big(\mathbf{B}\mathbf{z}_{\alpha}^{(2)},\boldsymbol{\Sigma}_{11.2}\big)$, where $\mathbf{B}=\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}$ and $\boldsymbol{\Sigma}_{11.2}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$.

Now we apply Theorem 7 with $\mathbf{y}_{\alpha}=\mathbf{z}_{\alpha}^{(1)}$, $\mathbf{w}_{\alpha}=\mathbf{z}_{\alpha}^{(2)}$, m=N-1, r=p-q, $\mathbf{\Gamma}=\mathbf{B}$, $\mathbf{\Phi}=\mathbf{\Sigma}_{11.2}$, $\sum_{\alpha=1}^{m}\mathbf{y}_{\alpha}\mathbf{y}_{\alpha}^{\mathsf{T}}=\mathbf{A}_{11}$, $\mathbf{G}=\mathbf{A}_{12}\mathbf{A}_{22}^{-1}$, $\mathbf{H}=\mathbf{A}_{22}$, then the conditional distribution of

$$\mathbf{A}_{11.2} = \mathbf{A}_{11} - (\mathbf{A}_{12}\mathbf{A}_{22}^{-1})\mathbf{A}_{22}(\mathbf{A}_{12}\mathbf{A}_{22}^{-1})^{\top}$$

given $\mathbf{z}_1^{(2)},\dots,\mathbf{z}_{N-1}^{(2)}$ is distributed as $\sum_{\alpha=1}^{N-1-(p-q)}\mathbf{u}_{\alpha}\mathbf{u}_{\alpha}^{\top}$ and where $\mathbf{u}_1,\dots,\mathbf{u}_{N-1-(p-q)}$ are independent, each with distribution $\mathcal{N}(\mathbf{0},\mathbf{\Sigma}_{11.2})$.

Since the distribution of $\mathbf{A}_{11.2} = \sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$ does not depend on $\mathbf{z}_{\alpha}^{(2)}$, we obtain the following theorem:

Theorem 8

The matrix $\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22} \mathbf{A}_{12}^{\top}$ is distributed as $\sum_{\alpha=1}^{N-1-(\rho-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_1, \dots, \mathbf{u}_{N-1-(\rho-q)}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{11.2})$, and independently of \mathbf{A}_{12} and \mathbf{A}_{22} .

Corollary 3

If $\mathbf{\Sigma}_{12}=\mathbf{0}$ (or $\mathbf{B}=\mathbf{0}$), the matrix $\mathbf{A}_{11.2}$ is distributed as $\sum_{\alpha=1}^{N-1-(p-q)}\mathbf{u}_{\alpha}\mathbf{u}_{\alpha}^{\top}$ and the matrix $\mathbf{A}_{12}\mathbf{A}_{22}\mathbf{A}_{12}^{\top}$ is distributed as $\sum_{\alpha=N-(p-q)}^{N-1}\mathbf{u}_{\alpha}\mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_{1},\ldots,\mathbf{u}_{N-1}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0},\mathbf{\Phi})$.

The distribution of $r_{ij.q+l,...,p}$ and the related tests of hypotheses based on N observations is the same as that of a simple correlation coefficient based on N-(p-q) observations with a corresponding population correlation value of $r_{ij.q+l,...,p}$.