(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年4 月11 日 (11.04.2002)

PCT

(10) 国際公開番号 WO 02/28894 A1

(51) 国際特許分類⁷: C07K 14/47, C12N 15/09, C07K 16/18, C12N 1/15, 1/19, 1/21, 5/10, C12P 21/02, 21/08, A61K 45/00, 31/711, A61P 43/00, 35/00 // (C12P 21/02, C12R 1:91) (C12N 5/10, C12R 1:91)

(21) 国際出願番号: PCT/JP01/08112

(22) 国際出願日: 2001年9月18日(18.09.2001)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2000-303441 2000年10月3日(03.10.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 萬有製薬 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都中央区日本橋本町2丁目2番3号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 駒谷秀也 (KOMATANI, Hideya) [JP/JP]. 原 芳和 (HARA, Yoshikazu) [JP/JP]. 小谷秀仁 (KOTANI, Hidehito) [JP/JP]. 中川理奈子 (NAKAGAWA, Rinako) [JP/JP]; 〒 300-2611 茨城県つくば市大久保3番地 萬有製薬株式 会社 つくば研究所内 Ibaraki (JP).
- (74) 代理人: 加藤朝道(KATO, Asamichi); 〒222-0033 神奈 川県横浜市港北区新横浜3丁目20番12号 望星ビル7 階 加藤内外特許事務所 Kanagawa (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

/続葉有/

(54) Title: GENE RELATING TO DRUG TOLERANCE AND UTILIZATION THEREOF

(54) 発明の名称: 薬剤耐性関連遺伝子及びその使用

(57) Abstract: By using an anticancer agent having a unique structure which is never been reported as being transported by a known transporter protein capable of imparting tolerance to cancer cells, a cell line tolerant to this anticancer agent is established. Then a cDNA encoding a protein which is expressed at a high level in this tolerant strain is successfully isolated. Use of this gene together with the an anticancer agent and to select an anticancer agent which can be administered to patients with cancer. Moreover, a candidate compound for an inhibitor of the transporter can be screened thereby. By using a combination of the inhibitor thus obtained with the above-described anticancer agent, the sensitivity of cancer cells tolerant to the anticancer agent can be enhanced.

(57) 要約:

癌細胞に耐性を付与する既知の輸送体タンパク質によっては輸送されるという報告のない独自構造の抗癌剤を用いて、該抗癌剤に耐性な細胞株を樹立し、該耐性株に高度に発現しているタンパク質をコードする c DNAを単離することに成功した。この遺伝子とタンパク質を利用することにより、抗癌剤耐性細胞の検出及び癌患者に投与できる抗癌剤の選択が可能となる。更に、該輸送体に対する阻害候補化合物のスクリーニングが可能となり、得られた阻害剤を該抗癌剤と併用することにより抗癌剤耐性癌細胞の感受性を増強することができる。

WO 02/28894 A1

LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

薬剤耐性関連遺伝子及びその使用

技術分野

本発明は医薬の分野で有用であり、より具体的には癌化学療法剤を排出し細胞に耐性を付与する新規タンパク質、それをコードするDNA、癌化学療法剤耐性細胞の検出方法、患者における癌化学療法剤の選択指標および癌化学療法剤耐性を克服する為の阻害剤のスクリーニング方法等に関するものである。

背景技術

癌化学療法剤に対する耐性は、従来の細胞毒性薬剤による癌治療における主要な問題である。腫瘍は最初は化学療法剤に良く反応するが、後には様々な薬剤に対しても耐性になり再発がおこる。このような化学療法剤耐性の主要な原因として、薬剤排出による細胞内薬剤濃度の減少があげられる。これは癌細胞において化学療法薬剤を細胞外へ排出する輸送体の発現に依存した機構であり、該輸送体の代表例としてMDR1遺伝子にコードされるP-糖タンパク質(以下、P-g pと称する)及びMRP遺伝子にコードされる多薬剤耐性関連タンパク質(以下、MRPと称する)が報告されている。P-g p は多くの腫瘍タイプの多剤耐性に関係するとして古くから知られた分子ポンプであり、またMRPは最初に肺癌における多剤耐性に関係することから判明し、後に他の癌タイプでも発現することが判明した(Cole, S. P. C. et al., Science 258, 1650-1654 (1992)) (Slovak, M. L. et al., Cancer Res. 53, 3221-3225 (1993)) 輸送体である。

これらの遺伝子はいずれもABC輸送体スーパーファミリー(ATP-binding cassette transporter superfamily)の一員であり、細胞膜に局在しATPの加水分解を利用して基質を輸送する一群の分子である。

近年、新たなABCファミリー分子が次々と発見され、P-gpやMRPの他

にも薬剤耐性への関与が示唆される分子ポンプが明らかになりつつある。このような分子の一つとして、ABCG2(BCRP/MXR/ABCP)と称されるサブファミリーがある。このサブファミリーには胎盤特異的に発現する遺伝子としてABCP(Allikmets, R. et al., CancerR es. 58, 5337-5339 (1998))、アドリアマイシンで選択した耐性細胞株から取得された遺伝子としてBCRP(Doyle, A. et al., Proc. Natl. Acad. Sci. U.S.A. 95, 15665-15670 (1998))、及びミトキサントロンで選択した耐性細胞株から取得された遺伝子としてMXR(Miyake, K. et al., CancerRes.59, 8-13 (1999))が各々報告された。これら3種の遺伝子は各遺伝子間で塩基置換に由来する1ないし4アミノ酸の相違がみとめられる。

BCRPとして報告された配列をMCF-7細胞に導入、発現させた細胞株の解析から、この遺伝子の発現がミトキサントロンやアドリアマイシンに耐性を付与することが示され、新たな多剤耐性因子として注目されている(Doyle, A. et al., Proc. Natl. Acad. Sci. U. S. A. 95, 15665-15670 (1998))(WO99/40110)。

しかしながら、それらの報告ではアドリアマイシン、ダウノルビシン及びミトキサントロン等のアンスラキノン骨格を持つ抗癌化学療法剤と該遺伝子との関連についてのみ開示されているだけである。さらに、該遺伝子のアミノ酸置換と基質特異性との関連については何の開示も示唆もなされていない。

最近、ABCG2サブファミリー(BCRP/MXR/ABCP)の発現と前記アンスラキノン骨格を有さないトポテカンに対する耐性現象との相関が示唆される報告(Maliepaard, M.etal., CancerRes.59, 4559-4563 (1999))がなされたが明確な証明はなされていない。

一方、下記の一般式(I)

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{H} \bigcap_{X^{2}} \bigcap_{G} \bigcap_{M} \bigcap_{H} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{H} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M$$

[式中、 X^1 および X^2 はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す]で表される化合物(以下、インドロカルバゾール系化合物と称する)に対する薬剤耐性機構に関しては、化合物-A(前記一般式(I)において、 X^1 は1-ヒドロキシ基、 X^2 は11-ヒドロキシ基、Rはホルミルアミノ基、Gは β -Dーグルコピラノシル基を示す。)において、種々の細胞に対する細胞生育阻害効果と、その細胞内での該化合物-Aの蓄積量との相関が報告(Yoshinari, T. et al., Cancer Res. 55, 1310-1315 (1995) および、Kanzawa,F. et al., Cancer Res. 55, 2806-2813 (1995)) されている。

しかしながら、該報告では細胞内蓄積量の変化による耐性が前記P-gpとは 関係無い作用によって起こることが開示されているにすぎず、上記の全ての報告 を含め、過去に該インドロカルバゾール系化合物の細胞内蓄積量若しくは薬剤耐 性に関与する因子を明らかにした報告は無い。

発明の課題

アンスラキノン骨格を持つ癌化学療法剤(アドリアマイシン、ドキソルビシン 及びミトキサントロン等)に関しては、前記P-gp、前記MRP及び前記BC RPによる耐性が考えられるので好ましい癌化学療法剤とはいえない。このよう な状況下において、P-gp等で輸送されない特徴をもつ抗癌剤の開発が望まれ ている。

上述したインドロカルバゾール骨格を有する化合物は、前記P-gp、前記MRP及び前記BCRPによる耐性が報告されておらず、トポイソメラーゼ阻害剤である化合物-A(Yoshinari, T. et al., CancerRes.55, 1310-1315 (1995))、化合物-B(前記一般式(I)において、 X^1 は2-ヒドロキシ基、 X^2 は10-ヒドロキシ基、Rは(1-ヒドロキシメチル-2-ヒドロキシ)エチルアミノ基、Gは β -D-グルコピラノシル基を示す。)(Yoshinari, T. et al., Cancer Res.59, 4271-4275 (1999))及びタンパク燐酸化酵素阻害剤であるUCN-01(Akinaga,, S. et al., Cancer Res.51, 4888-4892 (1991))が新規な抗癌剤の候補として期待されている。しかしながら、前記Yoshinariの開示からインドロカルバゾール系化合物の細胞内蓄積量変化が何によって起こるかを究明することは重要である。

従って、本発明は、インドロカルバゾール系化合物の細胞内蓄積に関連するタンパク質とそれをコードするポリヌクレオチドを提供することを課題とする。また、本発明はこのタンパク質をコードするポリヌクレオチドや該タンパク質の抗体を用いて癌細胞や癌患者における当該遺伝子の発現の検出方法を提供することを課題とする。さらに、本発明は該遺伝子及びタンパク質を利用した抗癌剤耐性克服剤のスクリーニング方法を提供することを課題とする。

発明の開示

本発明者らは上記の課題を解決するために鋭意研究を行った。まず、本発明者

等は前記化合物-Aに耐性となる細胞株の樹立を行った。これは具体的にはマウスLY細胞株、ヒトHCT116細胞株、ヒトPC-13細胞株を長期間化合物-A存在下に培養することにより達成した。得られた化合物-A耐性細胞株、すなわちLY/NR2,HCT116/NR1,PC-13/NR13,または自然耐性株HeLa#7ではいずれにおいても化合物-A等のインドロカルバゾール系化合物に対し50~数千倍の耐性を示す一方、カンプトテシン、アドリアマイシン、ミトキサントロンなどの他の抗癌剤にはせいぜい20倍程度の交差耐性しか示さなかった為、これらの耐性細胞株においてインドロカルバゾール系化合物特異的な耐性メカニズムの存在が考えられた。またこれらの耐性細胞株において化合物-A等のインドロカルバゾール系化合物の細胞内蓄積が低下していることを見出したことから、耐性株においてインドロカルバゾール系化合物の細胞内濃度を下げ、耐性をもたらしてる因子の存在が予想された。

次に、本発明者はDNAチップを用いてマウス化合物-A耐性細胞株LY/NR2と親株LY細胞における全既知遺伝子転写産物の発現の比較を行い、その結果最も耐性株特異的に発現が上昇している遺伝子として、ABCトランスポーターの一員であるABCG2サブファミリーと高いホモロジーを有する遺伝子配列(本発明のABCG2)を見出した。

ノーザン解析により該遺伝子がマウスLY/NR2細胞のみならず、取得されたすべてのヒト由来耐性細胞でも過剰発現しているのが見出された。従って、すべての化合物-A耐性細胞で本発明のABCG2遺伝子が高発現しているという事実と、前記BCRP等が抗癌剤排出に関与しているという従来の知見から、本発明の遺伝子産物がインドロカルバゾール系化合物に対する耐性を付与する因子であることが強く示唆された。

そこで本発明者等はヒト自然耐性細胞株HeLa#7より従来のヒトABCG 2の配列をもとにデザインしたプライマーを用いてRT-PCR法により本発明 の全長cDNAを単離し、塩基配列の解析から、本発明の遺伝子の配列がこれま で報告されてきたどのABCG2の配列とも異なる新規なものであるということ を発見した。即ち本発明の遺伝子はBCRPとして報告されているアミノ酸配列 の482番目のスレオニンをコードしているコドン配列が一塩基置換によりアル

ギニンをコードする配列に変化していた。さらに本発明者は、ヒト正常組織、すなわち胎盤および腎臓由来のcDNAから本発明者の得たABCG2配列と既存のABCG2配列、即ちBCRP、MXRと異なる配列を示す部分に注目して塩基配列を決定したところ、ヒト正常組織では本発明者がHeLa#7から得た配列と同じアミノ酸配列のタンパク質が発現していることが明かとなった。

本発明者等は、本発明の遺伝子がインドロカルバゾール系化合物に対する耐性を細胞に付与する能力があるかどうかを検討した。即ち、HeLa#7から単離した全長遺伝子を発現ベクターに繋ぎ、PC-13細胞で強制発現させた安定形質発現株を作成した。その結果、本発明のABCG2を強制発現させた細胞では化合物-A等のインドロカルバゾール系化合物に対し約10~20倍耐性となったことから、本発明の遺伝子がインドロカルバゾール系化合物に対する耐性因子であることが判明した。同時に、本発明者は本発明の遺伝子発現細胞が前記BCRPで報告されたミトキサントロン耐性及びアドリアマイシン耐性にはならないことを見出し、本発明の一アミノ酸異なる遺伝子が新規な活性をもつ、新しいタイプの遺伝子であることを証明した。

さらに本発明者等は本発明のABCG2とBCRPとして報告されている配列 (Doyle, A. et al., Proc. Natl. Acad. Sci. U. S. A. 95, 15665-15670 (1998)) (WO99/40110) との間にみられる、-アミノ酸の違いと各薬剤に対する耐性の関係を明らかにするために、本発明のABCG2と、アミノ酸置換の導入によりBCRPとして報告されているコドン482番目がスレオニンをコードするようになったABCG2 (ABCG2-482T) をそれぞれMCF-7細胞に導入して、性質を比較した。

その結果、ABCG2-482Tを導入した細胞はインドロカルバゾール系化合物である化合物-Bの他にミトキサントロンやアドリアマイシンに対して耐性を示したのに対して、本発明のABCG2を導入したものは化合物-Bのみに強い耐性を示し、インドロカルバゾール化合物に選択的な耐性を示すことが明らかとなった。また細胞内へのこれらの化合物の蓄積に関しても、同様な選択性の違いが認められ、本発明のABCG2がもたらすインドロカルバゾール選択的耐性

がこの分子の基質特異的な輸送によるものであることが示唆された。これにより、かつてBCRPとして報告されていたABCG2と本発明のABCG2の性質に関して明確な違いが見いだされ、またその違いがコドン482の1アミノ酸の違いに基づいたものであることが示された。

従って、本発明者等は本発明のABCG2遺伝子がインドロカルバゾール系化合物選択的な耐性を細胞に付与するという証明から、本発明の遺伝子、タンパク及びそれらの断片、或いは抗体が、癌患者での該遺伝子の発現検出や、がん患者がインドロカルバゾール系化合物に対して選択的に耐性であるか否かの予測等に応用可能であり、更には、該遺伝子の発現調節物質若しくは該遺伝子産物であるタンパク質の活性を調節するような物質のスクリーニング及びこれらの物質による薬剤耐性克服等へ応用しうることを見出した。

すなわち本発明は、哺乳動物細胞に癌化学療法剤に対する耐性を付与するヒトABCG2タンパク質(以下本発明のABCG2と呼ぶ)及びそのタンパク質をコードするポリヌクレオチド、並びにそれらの製造および用途に関し、より具体的には、

- (1) 下記(A) または(B) に記載のアミノ酸配列からなり、かつ哺乳動物 細胞に癌化学療法剤耐性を付与するタンパク質:
 - (A) 配列番号:2記載のアミノ酸配列、
- (B)配列番号:2記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失若しくは付加したアミノ酸配列、
- (2) 前記癌化学療法剤が、下記一般式(I)で表される化合物であることを 特徴とする(1)に記載のタンパク質:

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M}$$

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す、

- (3) (1) または(2) に記載のタンパク質の部分ペプチド、
- (4) (1)から(3)のいずれかに記載のタンパク質もしくは部分ペプチドをコードするポリヌクレオチド、または該ポリヌクレオチドに相補的な配列からなるポリヌクレオチド、
- (5) 前記ポリヌクレオチドのDNA配列が、配列番号:1に表されるDNA 配列のコード領域またはその相補的な配列の、少なくとも一部分からなることを 特徴とする(4)に記載のポリヌクレオチド、
- (6) 上記一般式(I)で表される化合物に対する耐性を有する哺乳動物細胞を検出するために用いる、(4)または(5)に記載のポリヌクレオチド、
- (7) 配列番号:1で表されるDNA配列において1489番目の塩基(G) を含む15~100の連続したDNA配列またはその相補的な配列からなるポリヌクレオチド、
- (8) (4) または(5) に記載のポリヌクレオチドを含有することを特徴と

する組換えベクター、

(9) (8) に記載の組換えベクターを保持する形質転換体、

- (10) (9)に記載の形質転換体を培養し、該形質転換体またはその培養上 清から発現させたタンパク質または部分ペプチドを回収する工程を含む、(1) から(3)のいずれかに記載のタンパク質または部分ペプチドの製造方法、
- (11) (1)から(3)のいずれかに記載のタンパク質または部分ペプチド に特異的に結合する抗体、
- (12) 上記一般式(I)で表される化合物に対して耐性を有する哺乳動物細胞を検出するために用いる、(11)記載の抗体、
- (13) (1) または(2) 記載のタンパク質の発現を抑制するアンチセンス ヌクレオチド、
- (14) (1) または(2) 記載のタンパク質の発現を指標とすることにより 癌患者の化学療法剤に対する耐性を予測する方法、
- (15) 前記癌化学療法剤が、上記一般式(I)で表される化合物である(14)に記載の方法、
- (16) (1) または(2) 記載のタンパク質の機能を阻害する物質をスクリーニングする方法であって、
- (a) 前記タンパク質と、癌化学療法剤と、候補化合物とを接触させる工程、 及び
- (b) 前記タンパク質の活性を抑制する候補化合物を選択する工程、 を含むことを特徴とする阻害剤のスクリーニング方法、
- (17) 前記タンパク質の活性が、前記癌化学療法剤を基質として、該基質との結合活性、該基質結合時のATP分解活性、または該基質の膜輸送活性である(16) に記載のスクリーニング方法、
- (18) (1) または(2) 記載のタンパク質の機能を阻害する物質をスクリーニングする方法であって、
- (a) (1) または(2) 記載のタンパク質を発現する哺乳動物細胞に、癌化学療法剤、及び候補化合物を接触させる工程、及び
 - (b) 前記癌化学療法剤が有する前記哺乳動物細胞に対する毒性を増強する候

補化合物を選択する工程、

を含むことを特徴とする阻害剤のスクリーニング方法、

(19) (16)から(18)いずれかに記載の方法によって得られる阻害剤、

- (20) (19)記載の阻害剤により、(1)記載のタンパク質の機能を阻害する方法、
- (21) (11) または(12) 記載の抗体により、(1) 記載のタンパク質の機能を阻害する方法、
- (22) (13)記載のアンチセンスヌクレオチドにより、(1)記載のタンパク質の発現を阻害する方法、
- (23) (20)から(22)のいずれかの方法により(1)に記載のタンパク質の機能または発現を阻害することを特徴とする、癌患者の化学療法剤に対する感受性を高める方法、
- (24) (23)記載の化学療法剤が上記一般式(I)で表される化合物であることを特徴とする方法、に関する。

図面の簡単な説明

図1は、化合物-A耐性細胞株における本願ABCG2遺伝子の転写産物の発現を示す。

図2は、本願ABCG2遺伝子を導入したPC-13細胞株におけるABCG2転写産物の発現を示す。

図3は、本願ABCG2遺伝子を導入したPC-13細胞株における化合物-Bの蓄積を示す。

図4は、二段階PCRを用いたABCG2遺伝子へのアミノ酸置換の導入方法を示す。(a):塩基置換部位のプライマー設計。(b):二段階PCRの概略。

図 5 は、本願ABCG 2 若しくはABCG 2 -482 Tを導入したMCF -7 細胞における各ABCG 2 転写物の発現を示す。図中、「ベクター」はベクターのみを導入したMCF -7 を、「T 8」はABCG 2 -482 Tを導入したMCF -7 (MCF -7 / T 8) を、「R 7」は本願のABCG 2 を導入したMCF

-7 (MCF-7/R7) をそれぞれ示す。

図 6 は、本願ABCG 2 若しくはABCG 2 -482 Tを導入したMCF -7 細胞の各種抗癌剤に対する相対耐性度を示す。図中、「T8」はABCG 2 -482 Tを導入したMCF -7 (MCF -7 / T8)を、「R7」は本願のABCG 2 を導入したMCF -7 (MCF -7 / R7)をそれぞれ示す。

図7は、本願ABCG2若しくはABCG2-482Tを導入したMCF-7 細胞における各種薬剤の蓄積量を示す。図中、「ベクター」はベクターのみを導入したMCF-7を、「T8」はABCG2-482Tを導入したMCF-7(MCCF-7/T8)を、「R7」は本願のABCG2を導入したMCF-7 (MCF-7/R7)をそれぞれ示す。

発明の実施の形態

本発明は、新規な薬剤耐性関連遺伝子とその遺伝子産物に関する。本発明者らにより単離された哺乳動物細胞に癌化学療法剤耐性を付与するタンパク質「本発明のABCG2」(ヒトABCG2)のcDNAの塩基配列を配列番号:1に、該cDNAによりコードされる「本発明のABCG2」タンパク質のアミノ酸配列を配列番号:2に示す。本発明のABCG2のcDNA配列はインドロカルバゾール系化合物の一種である化合物ーA耐性細胞で高発現している遺伝子のスクリーニングを基に見出されたものであり、ABC輸送体スーパーファミリーに属する前記ABCG2サブファミリーのうちBCRPとして開示された遺伝子配列と2塩基違いの配列を有する。それに伴い、本発明のABCG2のcDNAは該BCRPと1アミノ酸違いのタンパク質を形成する新規アミノ酸配列をコードしている。

しかしながら、本発明の課題解決の過程において、本発明のABCG2若しくはBCRPとして開示された遺伝子を形質導入した細胞株では、種々の薬剤に対する耐性度や細胞内薬剤蓄積量が異なる事が確認され、本発明のABCG2を過剰発現若しくは形質導入した細胞株では、インドロカルバゾール系化合物に対し選択的に耐性を示すことが見出された。すなわち、本発明のABCG2は1アミノ酸異なることにより上記BCRPとは異なる性質を有するタンパク質をコード

する新規な薬剤耐性関連遺伝子であることが判明した。

本発明において「哺乳動物細胞」とは哺乳類に属する動物の生体を構成している組織、細胞、又はそれらの細胞を体外培養したものを意味する。

本発明において「癌化学療法剤」とは癌の治療の目的で用いられる薬剤を意味 し、合成化合物、植物若しくは微生物由来の天然化合物、または前記天然化合物 をもとに合成される半合成化合物が含まれる。好ましくは、下記一般式(I)

[式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す]で表される化合物(以下、インドロカルバゾール系化合物と総称する)を意味し、さらに好ましくは該一般式(I)において、[式中、X¹およびX²はそれぞれ独立に、ハロゲン原子又はヒドロキシ基を示し、Rは水素原子、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gはアミノ基によって置換を有されてもよい六炭糖基を

示す] で表される化合物を意味する。上記のインドロカルバゾール系化合物の製造方法等については、先の特許出願・特許(ヨーロッパ特許公開公報 0528 030A1、米国特許第5591842号明細書、米国特許第5668271号明細書、米国特許第5804564号明細書、WO95/30682、WO96 / 04293、WO98/07433、特開平10-245390)で開示されている。

「癌化学療法剤耐性」とは前記癌化学療法剤の治療効果に動物細胞が抵抗性を示すことを意味し、癌細胞の、該癌化学療法剤の細胞外排出の亢進による耐性、標的酵素の変異による耐性、体内で活性化を受けて薬効を発揮する薬剤についての薬剤活性化機構の低下による耐性、または障害修復機構の亢進による耐性等のうちいずれをも意味するが、好ましくは癌細胞の該癌化学療法剤排出の亢進によって細胞内薬剤濃度が低下することに起因する耐性を意味する。

「癌化学療法剤に対する耐性を哺乳動物細胞に付与する」とは、前記癌化学療法剤の細胞外排出能力亢進を哺乳動物細胞に付与することを意味し、好ましくはこの細胞外排出能力の亢進が、ABCトランスポータースーパーファミリー(ATP結合カセットスーパーファミリー:Higgin, C.F. (1992) Annu.Rev.Cell.Biol.8.,67-113)に属しABCG2サブファミリーに属する本発明のABCG2遺伝子の増加、本発明のABCG2遺伝子の転写産物の増加、または本発明のABCG2遺伝子の翻訳産物の過剰発現により付与されることを意味する。さらに「癌化学療法剤に対する耐性を哺乳動物細胞に付与する」とは、本発明のABCG2遺伝子産物の作用により、哺乳動物細胞内に取り込まれた該癌化学療法剤が細胞外に排出され結果的に該癌化学療法剤の細胞内の濃度が減少することにより該癌化学療法剤に対する耐性を哺乳動物細胞に付与することを意味する。

本発明の「ABCG2タンパク質」は、天然のタンパク質の他、遺伝子組み換え技術を利用した組換えタンパク質として調製したものをも含む。天然のタンパク質は、例えば、本発明のヒト「ABCG2」タンパク質が発現していると考えられる胎盤など組織の抽出液に対し、後述する「抗ABCG2抗体」を用いたアフィニティークロマトグラフィーを行う方法により調製することが可能である。

一方、組換えタンパク質は、後述するように本発明のヒトABCG2タンパク質 をコードするDNAで形質転換した細胞を培養することにより調製することが可 能である。また、当業者であれば、公知の方法を用いて本発明のヒトABCG2 タンパク質(配列番号:2)中のアミノ酸の置換などの修飾を行い、本発明のタ ンパク質と同等の機能、すなわちインドロカルバゾール系化合物との結合活性ま たはインドロカルバゾール系化合物の輸送活性等を有する改変タンパク質を調製 することが可能である。また、タンパク質のアミノ酸の変異は天然においても生 じうる。このようにアミノ酸の置換、欠失、付加などにより天然型のタンパク質 に対してアミノ酸配列が変異した変異体であって、天然型のタンパク質と同等の 機能を有するタンパク質も本発明のABCG2タンパク質に含まれる。当業者に 公知のアミノ酸を改変する方法としては、例えば、Kunkel法(Kunke 1, T. A. et al., Methods Enzymol. 15 4, 367-382 (1987))、ダブルプライマー法(Zoller, M. and Smith, M., Methods Enzymol. J. 1 54, 329-350 (1987))、カセット変異法(Wells, t al., Gene 34, 315-23 (1985)), $\forall \vec{n}$ マー法(Sarkar, G. and Sommer, S. S., Bi otechniques 8, 404-407 (1990))が挙げられる。 タンパク質におけるアミノ酸の変異数や変異部位はその機能が保持される限り制 限はないが、機能的に同等なタンパク質におけるアミノ酸の変異数は、通常、全 アミノ酸の10%以内、好ましくは10アミノ酸以内、さらに好ましくは本発明 のタンパク質のアミノ酸配列において482番目のアミノ酸がアルギニンであり 且つ変異数が3アミノ酸以内(例えば、1アミノ酸)である。

また、本発明は、上記本発明のヒトABCG2タンパク質の部分ペプチドを包含する。本発明の部分ペプチドとしては、例えば、本発明のABCG2タンパク質のATP結合領域を含む部分ペプチド(アミノ酸61-270)、本発明のタンパク質のアミノ酸配列において482番目のアミノ酸であるアルギニンを含む部分ペプチド、インドロカルバゾール系化合物との結合活性を有する部分ペプチド及び細胞表面に発現させた場合にインドロカルバゾール系化合物を細胞外へ排

出する活性を有する部分ペプチド等が挙げられるがこれに限定されない。これら部分ペプチドは上記の本発明のABCG2タンパク質同様、例えば抗体の調製または後述する医薬品候補化合物のスクリーニングもしくはインドロカルバゾール系化合物で表される化合物の治療効果を高める物質のスクリーニングに利用することができる。また、インドロカルバゾール系化合物との結合活性を有するが細胞外への薬剤排出活性を有しない部分ペプチドは、本発明のABCG2タンパク質の競合阻害剤になり得る。このような本発明の部分ポリペプチドは、少なくとも15アミノ酸、好ましくは20アミノ酸以上の鎖長を有すると考えられる。本発明の部分ペプチドは、例えば、遺伝子工学的手法、公知のペプチド合成法、或いは本発明のタンパク質を適当なペプチダーゼで切断する事によって作成することができる。

また、本発明は、上記本発明のタンパク質又はその部分ペプチドをコードするポリヌクレオチドに関する。本発明で使用する「ポリヌクレオチド」とは一般に、ポリリボヌクレオチドまたはポリデオキシリボヌクレオチドのいずれをもいい、それらは非修飾RNAまたはDNA、あるいは修飾RNAまたはDNAであってもよく、例えばDNA、cDNA、ゲノムDNA、mRNA、未プロセッシングRNAおよびそれらの断片などが挙げられ、それらの長さは特に限定しない。

「タンパク質もしくは部分ペプチドをコードするポリヌクレオチド」とは本発明のABCG2タンパク質やその部分ペプチドをコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するポリヌクレオチドが含まれ、該ポリヌクレオチドとしては、例えば、本発明のABCG2タンパク質やその部分ペプチドをコードするDNA、mRNA等のRNAであり、二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA:RNAのハイブリッドでもよい。本発明のABCG2タンパク質やその部分ペプチドをコードするDNAとしては、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNAライブラリー又は合成DNAのいずれでもよい。

本発明のヒトABCG2タンパク質をコードするcDNAは、例えば、配列番号: 1に記載のcDNAあるいはその断片、それらに相補的なRNA、または該

c DNAの配列の一部を含む合成オリゴヌクレオチドを³²Pなどで標識し、本発 明のABCG2タンパク質が発現している組織(例えば、胎盤)由来のcDNA ライブラリーにハイブリダイズさせることによりスクリーニングすることができ る。あるいは、これらcDNAの塩基配列に対応するオリゴヌクレオチドを合成 し、適当な組織(例えば、胎盤)由来のCDNAを鋳型にポリメラーゼ連鎖反応 により増幅し、クローニングすることもできる。ゲノムDNAは、例えば、配列 番号:1に記載のcDNAあるいはその断片、それらに相補的なRNA、または 該cDNAの配列の一部を含む合成オリゴヌクレオチドを32Pなどで標識し、ゲ ノムDNAライブラリーにハイブリダイズさせることによりスクリーニングする ことができる。あるいは、これらcDNAの塩基配列に対応するオリゴヌクレオ チドを合成し、ゲノムDNAを鋳型にポリメラーゼ連鎖反応により増幅し、クロ ーニングすることもできる。一方、合成DNAは、例えば、配列番号:1に記載 のcDNAの部分配列を持つオリゴヌクレオチドを化学合成し、アニーリングさ せて二本鎖にし、DNAリガーゼで結合させることにより調製することができる (Khorana, H. G. et al., J. Biol. Che m. 251, 565-570 (1976); Goeddel D. V. e al., Proc. Natl. Acad. Sci. USA 76, $106-10 \quad (1979)$.

また、本発明のポリヌクレオチドは、前記の一般式(I)で表される化合物に対する耐性を有する哺乳動物細胞を検出するために用いることができる。すなわち、検体となる哺乳動物細胞のmRNAを一般的な方法で抽出し、本発明のポリヌクレオチドをプローブとしたノーザンハイブリダイゼーションによって、或いは、抽出RNAを本発明のポリヌクレオチドの配列上にハイブリダイズする事ができるをプライマーセットを用いてRT-PCRを行う等、何らかの方法により該ABCG2mRNA量を測定し、mRNA量の過剰発現を指標として前記の一般式(I)で表される化合物に対する耐性を有する哺乳動物細胞を検出することができる。

また、本発明のABCG2タンパク質に特徴的なmRNAまたはゲノムDNA を検出するために、ABCG2タンパク質の482番目のアルギニン残基のコド

ンに対応する多型を検出することができる。このような多型を検出する方法には、例えば、配列番号:1に表される塩基配列において、1489番目の塩基(G、多型部位)を含む15~100の連続したDNA配列またはその相補的な配列からなるポリヌクレオチドを固定化したDNAチップ等を用いて、特定の癌細胞から抽出したmRNA等とハイブリダイズさせ上記多型部位の塩基配列を検出することができる。

本発明のDNAは、組換えタンパク質の生産に有用である。即ち、上記本発明のABCG2タンパク質をコードするDNA(例えば、配列番号:1に記載のCDNA)を適当な発現ベクターに挿入し、該ベクターを適当な細胞に導入して得た形質転換体を培養し、発現させたタンパク質を精製することにより本発明のヒト由来ABCG2タンパク質を組換えタンパク質として調製することが可能である。

また、本発明は、本発明のポリヌクレオチドを含有するこことを特徴とする組 換えベクターに関する。「組換えベクター」とは外来性DNAを組み込み、宿主 細胞で増えることのできるDNAを指し、これらは自己複製能のあるプラスミド、 ファージ、ウイルスなどを改良して作られる。本発明の組換えベクターを作製す るために用いるプラスミド等としては、挿入したポリヌクレオチドを安定に保持 するもので有れば特に制限されず、例えば、宿主が大腸菌エシェリシア・コリ(E scherichia coli) の場合、プラスミドベクターpET-3 (R osenberg, A. H. et al., Gene 56, 125 -35 (1987)), pGEX-1 (Smith, D. B. and J ohnson, K. S., Gene 67, 31-40 (1988)) などが用いられる。宿主が分裂酵母シゾサッカロマイセス・ポンベ(Schiz osaccharomyces pombe) の場合には、プラスミドベクター pESP-1 (Lu, Q. et al., Gene 200, 135-144 (1997))などが用いられる。宿主が昆虫細胞の場合には、バキュ ロウイルスベクターpBacPAK8/9 (クロンテク社) などが用いられる。 一方、宿主が哺乳動物細胞、例えば、チャイニーズハムスター卵巣由来細胞CH O、ヒトHeLa細胞などの場合、pMSG(アマシャム・ファルマシア社)、

pcDNA(インビトロジェン社)などのベクターが用いられる。

また、本発明は、本発明の組換えベクターを保持する形質転換体に関する。「形 質転換体」とは組換えベクターにより宿主細胞に外来DNAが組み込まれた細胞 であり、本発明の組換えベクターが導入される宿主細胞は原核細胞であっても真 核細胞であっても良く、例えば細菌、酵母細胞、昆虫細胞、動物細胞など本発明 の目的で使用できるならいずれの細胞であっても良い。具体的には次のような方 法で組換えベクターを宿主細胞に導入し、形質転換体を得ることができる。大腸 菌の形質転換は、Hanahan法 (Hanahan, D., J. Mol. Biol. 166, 557-580 (1983))、電気穿孔法(Dow er, W. J. et al., Nucl. Acids Res. 1 6, 6127-6145 (1988)) などで行う。酵母の形質転換は、例 えば、スフェロプラスト法(Beach, D. and Nurse, P., Nature 290, 140 (1981))、酢酸リチウム法(Okaz aki, K. et al., Nucleic Acids Res. 18, 6485-6489 (1990)) などにより行われる。昆虫細胞の形質転換 は、例えば、バイオ/テクノロジー(Bio/Technology), 6, 4 7-55 (1980)) などに記載の方法に従って行うことができる。哺乳動物 細胞への組換えDNAの導入は、リン酸カルシウム法(Graham, F. L. and van derEb, A. J., Virology 52, 45 6-467 (1973))、DEAE-デキストラン法(Sussman, D. J. and Milman, G., Mol. Cell. Biol. 4, 1641-1643 (1984))、リポフェクション法(Felgner, P. L. etal., Proc. Natl. Acad. Sci. U S A 84, 7413-7417 (1987))、電気穿孔法(Neumann, E. et al., EMBO J. 1, 841-845 (1982)) など で行われる。

また、本発明は、本発明の形質転換体を用いた、本発明のタンパク質又はその部分ペプチドの製造方法に関する。形質転換体において発現させた組換えタンパク質は、該形質転換体又はその培養上清からこの分野の標準的な方法に従い単離

することができる。ここで言う標準の方法とは、硫酸アンモニウム沈殿、カラムクロマトグラフィー(例えば、イオン交換、ゲル濾過、アフィニティークロマトグラフィーなど)、電気泳動などを包含する。また、例えば、N末端にヒスチジン残基のタグ、グルタチオンSトランスフェラーゼ(GST)などを結合した融合タンパク質の形で合成し、金属キレート樹脂、GST親和性レジンに結合させることにより精製することができる(Smith, M. C. et al., J. Biol. Chem. 263, 7211-7215 (1988))。例えば、ベクターとしてpESP-1を用いた場合、目的のタンパク質は、グルタチオンSトランスフェラーゼ(GST)との融合タンパク質として合成されるため、GST親和性レジンに結合させることより組換えタンパク質を精製できる。融合タンパク質から目的タンパク質を分離するには、例えば、トロンビン、血液凝固因子Xaなどで切断する。

また、本発明は、本発明のヒトABCG2タンパク質に結合する抗体に関する。 本発明のタンパク質に結合する抗体は、当業者に公知の方法(例えば、「新生化 学実験講座1, タンパク質 I, 389-406, 東京化学同人」参照) により調 製することが可能である。ポリクローナル抗体の調製は、例えば、以下の如く行 う。ウサギ、モルモット、マウス、ニワトリなどの免疫動物に適量の本発明のヒ トABCG2タンパク質もしくはその部分ペプチドを投与する。投与は、抗体産 生を促進するアジュバント(FIAやFCA)と共に行ってもよい。投与は、通 常、数週間ごとに行う。免疫を複数回行うことにより、抗体価を上昇させること ができる。最終免疫後、免疫動物から採血を行うことにより抗血清が得られる。 この抗血清に対し、例えば、硫酸アンモニウム沈殿や陰イオンクロマトグラフィ ーによる分画、プロテインAや固定化抗原を用いたアフィニティー精製を行うこ とにより、ポリクローナル抗体を調製することができる。一方、モノクローナル 抗体の調製は、例えば、以下の如く行う。本発明のABCG2タンパク質もしく はその部分ペプチドを、上記と同様に免疫動物に免疫し、最終免疫後、この免疫 動物から脾臓またはリンパ節を採取する。この脾臓またはリンパ節に含まれる抗 体産生細胞とミエローマ細胞とをポリエチレングリコールなどを用いて融合し、 ハイブリドーマを調製する。目的のハイブリドーマをスクリーニングし、これを

培養し、その培養上清からモノクローナル抗体を調製することができる。モノクローナル抗体の精製は、例えば、硫酸アンモニウム沈殿や陰イオンクロマトグラフィーによる分画、プロテインAや固定化抗原を用いたアフィニティー精製により行うことができる。これにより調製された抗体は、本発明のヒトABCG2タンパク質のアフィニティー精製のために用いられる他、本発明のヒトABCG2タンパク質の発現量の検出などに利用することが可能である。また、該抗体により哺乳動物細胞での該ヒトABCG2タンパク質の発現量を検出し、その過剰発現を指標として前記の一般式(I)で表される化合物に対する耐性を有する哺乳動物細胞を検出することができる。また、この抗体による癌細胞や癌患者におけるヒトABCG2タンパク質の検出は該タンパク質の過剰発現に起因する疾患や薬剤耐性の診断に利用でき、更にこの抗体はそれらの疾患や薬剤耐性に対する抗体治療にも利用することが可能である。

抗体治療に用いる場合、ヒト型抗体もしくはヒト抗体であることが好ましい。ヒト型抗体は、例えば、マウス・ヒトキメラ抗体であれば、本発明のABCG2タンパク質に対する抗体を産生するマウス細胞から抗体遺伝子を単離し、そのH鎖定常部をヒトIgE H鎖定常部遺伝子に組換え、マウス骨髄腫細胞J558Lに導入することにより調製できる(Neuberger, M. S. et al., Nature 314, 268-270 (1985))。また、ヒト抗体は、免疫系をヒトと入れ換えたマウスに本発明のABCG2タンパク質を免疫することにより調製することが可能である。

また、本発明は、本発明のタンパク質の発現を抑制するアンチセンスヌクレオチドに関する。本発明の「アンチセンスヌクレオチド」は本発明のABCG2タンパク質およびその部分ペプチドをコードするmRNAの任意の部分、或いは、mRNAの5'または3'非翻訳領域の任意の部分と特異的にハイブリダイズし、mRNAの翻訳を防止できる配列を有するものである。アンチセンスヌクレオチドは本発明のABCG2タンパク質およびその部分ペプチドをコードするcDNA配列の任意の部分と特異的にハイブリダイズしうる配列を有し得る。具体的には、配列番号:1に示すヌクレオチド配列に基づいてアンチセンスヌクレオチドをデザインすることができる。示した配列のコード領域または非翻訳領域の任意

の部分の配列に対して相補的な配列を有するアンチセンスヌクレオチドをデザインすることができる。本発明のアンチセンスヌクレオチドはRNA、DNA、あるいは修飾された核酸(RNA、DNA)であっても良く、修飾された糖、塩基、結合を含有していて良い。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体などが挙げられるが、それに限定されるものではない。

アンチセンスヌクレオチドの阻害活性は、本発明の形質転換体、ABCG2タ ンパク質の生体内や生体外の遺伝子発現系、あるいはABCG2タンパク質の生 体内や生体外の翻訳系を用いて調べることができる。該アンチセンスヌクレオチ ド自体は公知の各種の方法で細胞に適用できる。例えば、該アンチセンスヌクレ オチドはリポソーム、ミクロスフェアのような特殊な形態で供与されたり、リン 酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞 膜との相互作用を高めたり核酸の取込みを増大せしめるような脂質(例えば、ホ スホリピド、コレステロールなど)といった疎水性のものを付加された形態で与 えられることができ、培養細胞だけに限らず遺伝子治療にも適用可能である。ま た、該アンチセンスヌクレオチドは、オリゴヌクレオチドを上記のように外から 投与する方法に限らず、生体内で該アンチセンスヌクレオチドを発現させる事が 可能であるベクターなどを投与する方法でも良い。特表平11-511965で は多剤耐性関連タンパク質をコードするヒトMDR1およびMRP遺伝子の発現 を抑制するアンチセンスオリゴヌクレオチドによる、多剤耐性細胞の薬剤に対す る感受性増加が示されている。また、該先行技術中に記載されている方法に準じ て好ましい標的部位を選択し本発明のアンチセンスヌクレオチドの配列を設計す ることができる。本発明のアンチセンスヌクレオチドは本発明のABCG2タン パク質を高発現している薬剤耐性癌細胞および癌患者に投与することにより、そ れらのインドロカルバゾール系化合物に対する感受性を増強するために用いるこ とができる。

また、本発明は、本発明のタンパク質の発現を指標にすることにより、癌患者の化学療法剤に対する耐性を予測する方法に関する。「発現を指標とすること」という表現における「発現」とは、DNAがmRNAに転写され、更にポリペプチド又はタンパク質に翻訳されるいずれのプロセスをも含む。

「タンパク質の発現を指標とする」とは、被検体中に存在する該タンパク質の mRNA量または該タンパク質(ポリペプチド)自体の量を周囲正常組織のそれ や、既知の耐性度が明らかとなっている細胞株におけるそれと比較して、どの程 度の量の発現が認められるかを指標にすることを意味する。mRNA量で比較を 行う場合は、具体的には哺乳動物細胞、癌患者の癌細胞、組織標本、組織検体な どから一般的な方法でRNAを抽出し、本発明のABCG2タンパク質をコード するポリヌクレオチドの部分配列からなるDNA断片をプローブとし、実施例4 に示すごとくノーザンハイブリダイゼーションによって測定を行う。或いは、上 記の抽出RNAを、本発明のABCG2タンパク質をコードするポリヌクレオチ ドの配列上にハイブリダイズすることができるプライマーセットを用い、文献(N oonan, K. E., et. al, Proc. Natl. Ac ad. Sci. USA (1990) 87, 7160 - 4 及び F utscher, B. W., et. al, Anal Biochem (1 993) 213, 414 - 21) に準じてRT-PCRを行うことによ って、該タンパク質のmRNA量の測定を行うが、該mRNA量の測定方法はこ れらに限らない。

また、該タンパク質(ポリペプチド)自体の量で測定および比較を行う場合は、 先に述べた「抗体」を用い、文献(Beck, W. T., et. al, C ancer Res. (1996) 56, 3010 - 20)に準じた 方法で哺乳動物細胞、癌患者の癌細胞あるいは組織切片などの免疫組織化学染色 法によってコントロールとの比較を行うか、あるいは被検体のタンパク成分を抽 出したものについて、一般的な方法でウエスタンブロッティングを行っても良い が、これらの方法に限定されない。

上記および上記以外のいずれの方法によっても、コントロールに比較し被検体において該タンパク質の「過剰発現」が認められた場合、その検体の由来する細胞或いは患者は化学療法剤耐性を有すると判断する。

また、本発明は、本発明のABCG2タンパク質の作用に対する阻害剤をスクリーニングする方法をも包含し、これは次の何れかの活性をもつ物質を探索することからなる方法である。(イ)本発明のABCG2タンパク質とその基質化合

物の結合を阻害する物質。(ロ)本発明のABCG2タンパク質が有するATP ase活性の基質化合物による活性化を阻害する物質。(ハ)本発明のABCG 2タンパク質による基質化合物の膜輸送を阻害する物質。(二)本発明のABC G2タンパク質の基質化合物が有する細胞毒性を増強する物質。

(イ)の物質を探索することからなる本発明のスクリーニング方法は、(a) 候補化合物の存在下で本発明のABCG2タンパク質またはその部分ペプチドに 基質化合物を接触させ、該タンパク質またはその部分ペプチドと基質化合物との 結合活性を検出する工程、および(b)工程(a)で検出された結合活性を、該 候補化合物非存在下での結合活性と比較し、本発明のABCG2タンパク質もし くはその部分ペプチドと基質化合物との結合活性を低下させる物質を選択する工 程を含む。該候補化合物としては、タンパク質、ペプチド、非ペプチド性化合物、 人工的に合成された化合物、組織や細胞の抽出液、血清などが挙げられるが、こ れらに制限されない。スクリーニングに用いる本発明のABCG2タンパク質ま たはその部分ペプチドは精製された状態のみならず、例えば、アフィニティーカ ラムに結合した形態、該タンパク質もしくはその部分ペプチドを細胞膜に発現し た所望の細胞(該タンパク質を発現するように処理した形質転換体を含む)の膜 小胞(Leier I.ら、Journal of Biological C hemistry. 269(45):27807-10,19940方法に 準じて調製できる)、あるいは精製した該タンパク質またはその部分ペプチドを リポソーム上に再構成した形態(Anbudkar, S. V.ら、Proc. Natl. Acad. Sci. USA(1992) 89: 8472 -8476の方法に準じて調製できる)などであってもよい。スクリーニングに利 用する基質化合物は特に限定しないが、好ましくはインドロカルバゾール系化合 物、例えば化合物-Aが用いられ、これらは必要に応じて適宜標識して用いられ る。標識としては、例えば、放射標識、蛍光標識、光親和性標識などが挙げられ るが、これらに制限されない。本発明のヒトABCG2タンパク質と基質化合物 との結合活性は、本発明のABCG2タンパク質に結合した化合物に付された標 識により検出(例えば、結合量を放射活性や蛍光強度により検出する)すること ができるほか、光親和性標識の場合は文献(Cornwell MM.ら、P

roc. Natl. Acad. Sci. USA. 83:3847-50, 1986)の方法に準じ、該タンパクまたはその部分ペプチドと光親和性標識化合物が共有結合したものをSDSポリアクリルアミドゲル等で分離し、オートラジオグラフィで光親和性標識化合物の放射活性を測定することによって検出することもできる。検出の結果、該候補化合物の存在下における結合活性が、該候補化合物の非存在下における結合活性(対照)より低い値を示した場合には、該候補化合物は、本発明のABCG2タンパク質またはその部分ペプチドと基質化合物との結合を阻害する活性を有すると判定される。

(ロ)の物質を探索することからなる本発明のスクリーニング方法は、(a) 候補化合物の存在下で本発明のABCG2タンパク質またはその部分ペプチドに 基質化合物を接触させた時に生じるATPase活性を測定する工程、および (b) 工程(a) で検出されたATPase活性を、該候補化合物非存在下での ATPase活性と比較し、本発明のABCG2タンパク質が有するATPas e 活性の基質化合物による活性化を阻害する物質を選択する工程を含む。該候補 化合物としては、タンパク質、ペプチド、非ペプチド性化合物、人工的に合成さ れた化合物、組織や細胞の抽出液、血清などが挙げられるが、これらに制限され ない。スクリーニングに用いる本発明のABCG2タンパク質またはその部分ペ プチドは該タンパク質もしくはその部分ペプチドを細胞膜に発現した所望の細胞 (該タンパク質を発現するように処理した形質転換体を含む) の膜小胞、あるい は精製した該タンパク質またはその部分ペプチドをリポソーム上に再構成した形 態などであってもよい。スクリーニングに利用する基質化合物は特に限定しない が、好ましくはインドロカルバゾール系化合物、例えば化合物-Aが用いられる。 ATPase活性は一般的な方法、例えばATPの加水分解によって生じる無機 リン酸の量を比色定量する(Adam B. Shapiroら、 Journa l of Biological Chemistry. 269:3745-3754, 1994参照)方法などにより測定することができる。該候補化合物 の存在下におけるATPase活性が、該候補化合物の非存在下におけるATP ase活性(対照)より低い値を示した場合には、該候補化合物は本発明のAB CG2タンパク質が有するATPase活性の基質化合物による活性化を阻害す

る活性をもつと判定する。

(ハ)の物質を探索することからなる本発明のスクリーニング方法は、大きく 3つの方法に分けられる。

第一の方法は本発明のABCG2タンパク質またはその部分ペプチドを細胞膜 に発現した所望の細胞(該タンパク質を発現するように処理した形質転換体を含 む)の膜小胞、あるいは精製した該タンパク質またはその部分ペプチドをリポソ ーム上に再構成した小胞を用い、(a) 候補化合物の存在下でこれらの小胞に該 タンパク質の基質化合物を接触させ、小胞中に輸送された該基質化合物量を測定 する工程、および(b)工程(a)で測定された小胞中に輸送された該基質化合 物量を、該候補化合物非存在下での輸送された該基質化合物量と比較し、本発明 のABCG2タンパク質またはその部分ペプチドによる該基質化合物の膜輸送活 性を阻害する物質を選択する工程を含む。具体的には、例えば J. Biol. C hem. 269. 27807-10(1994)の記載に準じた方法によって実 施することが可能である。スクリーニングに利用する基質化合物は特に限定しな いが、好ましくはインドロカルバゾール系化合物、例えば化合物-Aが用いられ、 これらは必要に応じて適宜標識して用いられる。標識としては、例えば、放射標 識、蛍光標識などが挙げられ、小胞内に輸送された基質化合物量は、これらの標 識により検出(例えば、放射活性や蛍光強度により検出)する。検出の結果、該 候補化合物存在下における小胞内の該基質化合物量が、該候補化合物の非存在下 における小胞内の該基質化合物量(対照)より低い値を示した場合に、該候補化 合物は、本発明のABCG2タンパク質またはその部分ペプチドによる該基質化 合物の膜輸送活性を阻害する活性を有すると判定される。

第二の方法は本発明のABCG2タンパク質またはその部分ペプチドを細胞膜に発現した所望の細胞(該タンパク質を発現するように処理した形質転換体を含む)を用い、(a)候補化合物の存在下これらの細胞に該タンパク質の基質化合物を一定時間接触させたのち、細胞内に蓄積された該基質化合物量を測定する工程、および(b)工程(a)で測定された細胞中に蓄積された該基質化合物量を、該候補化合物非存在下で細胞中に蓄積された該基質化合物量と比較し、本発明のABCG2タンパク質もしくはその部分ペプチドによる細胞外への膜輸送(排

出)活性を低下させる物質を選択する工程を含む。

第三の方法は本発明のABCG2タンパク質またはその部分ペプチドを細胞膜 に発現した所望の細胞(該タンパク質を発現するように処理した形質転換体を含 む)を用い、(a)細胞に該タンパク質の基質化合物を接触させ、細胞内に基質 化合物を蓄積させる工程、(b)候補化合物の存在下、工程(a)で得られた細 胞を一定時間培養し細胞内に残留している該基質化合物量を測定する工程、およ び(c)工程(b)で測定された細胞内残留該基質化合物量を、該候補化合物非 存在下での培養後の細胞内残留該基質化合物量と比較し、本発明のABCG2タ ンパク質もしくはその部分ペプチドによる細胞外への膜輸送(排出)活性を低下 させる物質を選択する工程を含む。第二、第三の方法は、Bruin、 Cancer. Let. 146. 117-26 (1999) の記載に準じて実施 することが可能である。第二、第三のいずれの方法においても、利用する基質化 合物は特に限定しないが、細胞内に透過しなおかつ本発明のABCG2タンパク 質によって輸送され得る蛍光物質、あるいはインドロカルバゾール系化合物、例 えば化合物-Aが用いられ、これらは必要に応じて適宜標識して用いられる。標 識としては、例えば、放射標識、蛍光標識などが挙げられ、細胞内に蓄積又は残 留した基質化合物量はこれらの標識により検出(放射標識の場合は放射活性量を 測定し、蛍光標識の場合は蛍光強度をフローサイトメトリー、蛍光顕微鏡および 蛍光光度計などで測定)することができる。検出の結果、該候補化合物の存在下 における該基質化合物の細胞内蓄積又は残留量が、該候補化合物の非存在下にお ける細胞内蓄積量又は残留量(対照)より高い値を示した場合に、該候補化合物 は、本発明のABCG2タンパク質またはその部分ペプチドによる該基質化合物 の膜輸送活性を阻害する活性を有すると判定される。また、第一、第二、第三の いずれのスクリーニング方法においても、該候補化合物として、タンパク質、ペ プチド、非ペプチド性化合物、人工的に合成された化合物、組織や細胞の抽出液、 血清などが挙げられるが、これらに制限されない。

(二)の物質を探索することからなる本発明のスクリーニング方法は、本発明のABCG2タンパク質またはその部分ペプチドを細胞膜に発現した所望の細胞(該タンパク質を発現するように処理した形質転換体を含む)を用い、(a)該

細胞を候補化合物の存在下で該タンパク質の基質化合物と一定時間培養し生存細胞数を測定する工程、および(b)工程(a)で測定された生存細胞数を、該候補化合物非存在下で該基質化合物と一定時間培養した場合の生存細胞数と比較し、本発明のABCG2タンパク質の該基質化合物が有する細胞毒性効果を増強する物質を選択する工程を含む。該候補化合物としては、タンパク質、ペプチド、非ペプチド性化合物、人工的に合成された化合物、組織や細胞の抽出液、血清などが挙げられるが、これらに制限されない。スクリーニングに利用する基質化合物は特に限定しないが、好ましくはインドロカルバゾール系化合物、例えば化合物ーAなどの細胞毒性効果を有するものが用いられる。生存細胞数の測定は、それらのタンパク質量あるいはミトコンドリアにおける還元酵素の活性の測定などに置き換えられることは当業者であれば公知の事実である。

以上に示したような、本発明のスクリーニング方法によって得られた阻害剤は、薬剤が本発明のABCG2タンパク質によって細胞外へ排出されることによって生じる該薬剤に対する耐性を有する細胞や患者に対し、該薬剤への耐性を抑制する、つまり感受性増強剤として有用である。また、これらの化合物は、本発明のABCG2タンパク質が関与する細胞膜を通した物質輸送に起因する疾患の治療などのための医薬組成物として有用である。

本発明のスクリーニング方法を用いて得られる阻害剤は、本発明のABCG2タンパク質の活性を阻害する化合物であり、具体的には、このABCG2タンパク質に高い親和性で結合し、競合的に、または非競合的にこの分子による基質の輸送を阻害するものである。該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。このような化合物を、このABCG2タンパク質を発現している細胞に対してABCG2タンパク質の基質となる抗癌剤と同時に投与することにより、この抗癌剤の効果を増強することができる。このような方法は、このABCG2タンパク質を発現することにより抗癌剤に対して耐性になったような癌に対して特に有効であり、耐性克服のための医薬品として有効である。

実施例

以下に実施例及び参考例を挙げて本発明をより具体的に説明するが、本発明は これらによって何ら限定されるものではない。

[実施例1]化合物-A耐性細胞株の樹立:

複数の独立した細胞株から化合物-A耐性細胞株を樹立するために、以下のようにマウス繊維芽細胞株LY細胞、ヒト肺大細胞癌細胞株PC-13細胞、ヒト 大腸癌細胞株HCT116細胞の合計3細胞株を化合物-A存在下で長期間培養することにより樹立した。

(実施例1-1) マウス化合物-A耐性細胞株LY/NR1細胞株の樹立:

LY細胞を初め $0.1 \mu M$ 化合物 - A存在下で 2 週間培養したのち、更に $0.3 \mu M$ 化合物 - A存在下で 3 週間培養した。この条件下で生育してきたコロニーをクローニングリング(旭テクノグラス社)を用いてを単離し、LY/NR 1 と名づけた。

(実施例1-2) マウス化合物-A耐性細胞株LY/NR 2細胞株の樹立:

L Y細胞を初め $0.1 \mu M$ 化合物 - A存在下で $2 週間培養したのち、更に <math>0.3 \mu M$ 化合物 - A存在下で 5 週間培養し、生育してきたコロニーを前記同様単離し、LY/NR <math>2 と名づけた。

(実施例1-3) ヒト化合物-A耐性細胞株PC-13/NR13細胞株の樹立:

PC-13細胞を1. 1μ Mの化合物-A存在下で5週間培養して単離された耐性細胞細胞株PC-13X13を、さらに 20μ Mの化合物-A存在下で4週間培養し、生育してきたコロニーを単離し、PC-13/NR13と名づけた。

(実施例1-4) ヒト化合物-A耐性細胞株HCT116/NR1細胞株の樹立:

HCT116細胞を1. 1μ Mの化合物-A存在下で5週間培養して単離された耐性細胞細胞株HCT116X13を、さらに 20μ Mの化合物-A存在下で4週間培養し、生育してきたコロニーを単離し、HCT116/NR1と名づけた。

(実施例1-5) 化合物-A自然耐性細胞株の取得:

化合物-Aに自然耐性を示すHeLa細胞(子宮頸癌細胞)から限界希釈法によりシングルクローンを得、HeLa#7細胞株と名づけた。また、同じHeLa a細胞から派生したとされる既存のHeLaS3細胞株を化合物-A感受性の細胞としてHeLa#7との比較実験に用いた。

[実施例2]化合物-A耐性細胞株の各種抗癌剤に対する薬剤感受性の測定:

樹立された化合物-A耐性細胞株の化合物-A、化合物-Bおよび各種抗癌剤に対する感受性をSRB法を用いて以下のように測定した。

対数増殖期の細胞を 1×10^3 個/we11となるように96穴プレートに播き、24時間 CO_2 インキュベータ中で培養後、段階希釈した薬剤を細胞に加えた。さらに72時間培養したのち、細胞をTCAで固定し、細胞中のタンパク質を0.4%スルホローダミン-B溶液で染色した。これを10mMのTris-C1で1時間溶出し、SPECTRAmax250吸光度計(モレキュラー・デバイス社)にて測定波長560nm、対象波長450nmで測定した。 IC_{50} は細胞の増殖を50%阻害する薬剤濃度として定義し、相対耐性度(Re1ativeResistance)はある薬剤の耐性細胞株に対する IC_{50} 値をその薬剤の親細胞株に対する IC_{50} 値で除することによって求めた。

この結果ヒト由来の化合物-A耐性細胞株はいずれも化合物-Aと化合物-Bに百倍以上の高度耐性を示した(表1)。またマウス由来のLY/NR1細胞株は化合物-Aに対し12倍、化合物-Bに対し17倍と中程度の耐性を示し、LY/NR2細胞株は化合物-Aに対し64倍、化合物-Bに対し210倍と高度耐性を示した(表2)。

表1. ヒト化合物-A耐性細胞株の各種抗癌剤に対する感受性

	HCT116	HCT116/	6/NR1	PC13	PC13,	PC13/NR13	HeLaS3	HeLa#7	a#7
薬剤	IC50(μM)	IC50(μM)	相対耐性度	$IC50(\mu M)$	IC50(µM)	相対耐性度	IC50(μM)	IC50(µM)	相対耐性度
化合物一A	0.13	300	2400	0.23	> 1000	> 4300	0.89	290	330
化合物一B	0.0034	0.78	230	0.013	1.8	140	0.015	200	13000
Camptothecin	0.0094	0.017	1.8	0.038	0.029	0.76	0.014	0.038	2.7
Topotecan	0.034	0.14	4.1	0.075	1.1	15	0.063	0.36	5.7
Etoposide	1.1	3.4	3.1	1.2	3.0	2.5	1.2	0.93	0.79
Doxorubicin	0.025	0.059	2.3	0.028	0.070	2.5	0.035	0.029	0.81
Vincristine	0.0020	0.0093	4.7	0.013	0.0070	0.56	0.00070	0.0069	6.6
Paclitaxel	0.0011	0.0021	1.9	0.0020	0.0018	0.92	0.0010	0.0042	4.2
Mitoxantrone	0.0070	0.067	9.6	0.033	0.16	4.9	0.0044	0.027	6.1

表 2.	マウス化合物ー	Δ耐性細胞株の	各種抗癌剤に対する感受性
12 4.	· ソクロロ10 =		

	LY	LY/NR1		LY/NR2		
薬剤	IC50(μM)	IC50(μM)	相対耐性度	IC50(μM)	相対耐性度	
化合物-A	0.12	1.4	12	7.7	64	
化合物-B	0.0017	0.029	. 17	0.36	210	
Camptothecin	0.046	0.058	1.3	0.38	8.2	
Topotecan	0.069	0.25	1.8	2.9	20	
Etoposide	0.28	0.52	2.1	2.0	4.7	
Doxorubicin	0.043	0.067	1.6	0.19	4.5	
Vincristine	0.015	0.011	0.77	0.025	1.7	
Paclitaxel	0.041	0.057	1.4	0.081	2.0	
Mitoxantrone	0.0033	0.0071	1.5	0.057	17	

[実施例3]

(実施例3-1) LY、LY/NR1、LY/NR2からのRNAの調製:

LY、LY/NR1、LY/NR2からのRNAの調製は以下の方法で行った。 約 1×10^7 の細胞をトリプシン処理によってはく離、遠心操作によって回収した。その後、細胞をQIAshredder(キアゲン社)によってホモジナイズし、RNeasy(キアゲン社)により Total RNAを調製した。

(実施例3-2)cRNAの調製:

Total RNA画分32 μ gにプライマーとしてT7-(dT) $_{24}$ (配列番号:3/GGCCAGTGAATTGTAATACGACTCACTATAGGGGAGGCGG-(dT) $_{24}$)を加え、SUPERSCRIPT IIの逆転写酵素(BRL社)により、添付バッファーを用いて相補DNAを合成した。反応後の産物は大腸菌DNA Ligase(BRL社)、大腸菌DNA Polymerase I(BRL社)、大腸菌RNaseH(BRL社)を添加後、添付のバッファーを用いて2時間16 $\mathbb C$ で反応を行った後、T4 DNAPolymerase(BRL社)を添加し2本鎖DNAを合成した。この反応液はフェノール:クロロホルム(1:1)で処理し、エタノール沈殿を行った後、12 μ 1の蒸留水に溶解した。cDNA画分2.5 μ 1にT7 Polymerase(ENZO社)、ビオチン化したUTP、CTP(ENZO社)を添加する事によってcRNAを合成し、酸処理によって断片化を行った。

(実施例3-3) DNAマイクロアレーへのハイブリダイゼーション、洗浄及び

染色:

この c R N A 1 5 μ g を 1 0 0 m M ME S、1 M [N a +]、2 0 m M E D T A、0.01% Tween 2 0 を含むバッファーに溶解しジーンチップM u 1 1 K S u b A、S u b B、M u 1 9 K S u b A、S u b B、S u b C の D N A マイクロアレー(アフィメトリックス社)に16時間、45℃においてハイブリダイゼーションを行った。D N A マイクロアレーの洗浄はD N A マイクロアレーで定められたフルイディックスステーション(アフィメトリックス社)の条件にしたがって行った。その後各々のD N A マイクロアレーは抗体蛍光増幅法によって染色を行った。まず、D N A マイクロアレーにS t reptavidinによって修飾された P hycoerythrin(モレキュラープローブ社)を加え1次染色を行いその後ヤギ I g G(シグマ社)、ビオチン化されたヤギ抗S t reptavidin抗体(ベクターラボラトリー社)と反応を行いる t reptavidinによって修飾された P hycoerythrinによって再度染色を行った。

(実施例3-4) DNAマイクロアレーデータの解析:

ハイブリダイゼーション、洗浄及び染色後のDNAマイクロアレーはジーンチップスキャナー(ヒューレットパッカード社)によって蛍光強度の測定を行った。スキャンニングは2度行い、その平均によって結果を画像データーとして保存した。発現量の定量化及び比較の解析はジーンチップ発現解析ソフトウェア(アフィメトリックス社)によって画像データの解析をすることによって行った。発現量の比較は上記ソフトウェアのComparison解析によって行いLYとLY/NR2、LYとLY/NR1の発現量を比較して行った。

その結果、発現を解析した約30000種類の遺伝子の中でLYと比較したときに、最もLY/NR2細胞選択的に発現が上昇していたのがABCトランスポーターファミリーのABCG2遺伝子であり、親株のLY細胞に比べ31倍の発現上昇を示した(表3)。各細胞の化合物-A耐性度とこの遺伝子の発現上昇に相関があることが示唆された。

表3. マウス化合物-A耐性細胞において選択的に発現が 上昇している遺伝子のDNAチップによる解析

	耐性株における発現上昇 ^a (倍)		
遺伝子名	LY/NR2	LY/NR1	
ABCG2	31.2	6.0	
af070537 Full Length w/o function	15.5	13.4	
ATP Synthetase A chain	6.2	NC ^b	
Interferon Activatable protein	5.2	NC	
Interferon Activatable protein	4.7	2.3	
3-beta hydroxylstroid dehydrogease	4.6	NC	
Interferon Activatable Protein	4.5	4.7	
EST	4.5	NC	
Y13275, Meta-associ tetraspan molecul	4.3	3.8	
19kD Glycoprotein Autoantigen	4.2	3.2	
Lipocortin, x07486	4.1	NC	
Ig heavy chain precursor	4.0	NC	
Y-box transcription factor	4.0	-1.6	

a LY/NR2 とLY細胞の比較において、LY/NR2で4倍以上発現上昇が 見られた遺伝子について、その発現上昇の高いものから順に表記した。 またそれらの遺伝子のうち、LY/NR1において発現量に変化がみられた 遺伝子に関して、そのLY細胞に対する発現上昇の価をLY/NR1 のカラムに記した。

[実施例4]ノーザンブロット解析:

DNAマイクロアレーによって検出されたABCG2のLY/NR1、 LY /NR2耐性細胞株選択的発現を確認するためにマウスABCG2のcDNA断片をプローブとして、またヒト由来化合物-A耐性細胞おけるヒトABCG2の発現を検出するために、本発明のヒトABCG2のcDNA断片をプローブとしてノーザン解析を行った。

(実施例4-1) ブロットの作成:

LY、LY/NR1、LY/NR2、HeLaS3、HeLa#7、HCT1 16、HCT116/NR1、PC-13、及びPC-13/NR13細胞から ISOGEN試薬 (ニッポンジーン社) を用いグアニジンイソチオシアネート法 により Total RNAを調製した。続いて得られたTotalRNAから ファストトラック2. 0キット(インビトロジェン社)を用いてポリ(A)+R

b 親株と比較して発現量に変化が無い遺伝子に関して、NCと表記した。

NAを精製した。得られた各細胞由来のポリ(A)+RNA0.8 μ gをホルムアルデヒドアガロース変性ゲルで泳動した。泳動後、ゲルからHybond N+メンブレン(アマシャム・ファルマシア社)に20×SSCバッファーを介して一晩転写した。転写後、メンブレンを風乾したのちメンブレン上の核酸をSTRATALINKER(ストラタジーン社)にてUV固定した。

(実施例4-2) プローブの調製とハイブリダイゼーション:

マウスABCG2の検出においては、プローブとして用いるマウスABCG2 のCDNA断片を得るために以下の操作を行った。実施例3で調製されたLY/ NR2のcDNA 2μ1を鋳型として使用し、マウスABCG2のDNA配列 をもとに合成した上流DNAプライマー(配列番号:4/CTCATTTAAA AACTTGCTCGGGAACC) と下流DNAプライマー(配列番号:5/ CAAGAGGCCAGAAAAGAGCATCATAA) を用いてPCRによ る増幅を行った。反応液の組成は、合成DNAプライマー各200nM、0.1 mM dNTPs、Ex Taq DNApolymerase (宝酒造株式会 社) 0.5μ 1および酵素に付属のバッファー 5μ 1で、総反応溶液量は 50μ 1とした。 増幅のためのサイクルはサーマルサイクラー (パーキン・エルマー社) を用い、95 \mathbb{C} · 30 \mathbb{W} · 60 \mathbb{C} · 1 \mathbb{W} · 2 \mathbb{W} の \mathbb{W} · 2 \mathbb{W} · 2 · 2 \mathbb{W} · 2 返した。次に、得られた増幅産物を希釈した後に、この増幅産物の配列にアニー ルする上流DNAプライマー(配列番号:6/TACTGGGGCTTATTA TTGGTG)と下流DNAプライマー(配列番号:7/AAAAGCGATT GTCATGAGAAGTGT) を用いてさらにPCRによる増幅を行った。増 幅のためのサイクルは95℃・30秒、62℃・30秒、72℃・2分のサイク ルを35回繰り返した。増幅産物の確認は1%アガロースゲル電気泳動およびエ チジウムブロミド染色によって行った。このマウスABCG2 cDNA断片を キアクイックPCRピューリフィケイションキット(キアゲン社)で精製の後、 マルチプライム・ラベリングキット (アマシャム・ファルマシア社) を用いて [α -32P] dCTPで標識し、プローブとした。

一方、ヒトABCG2の検出においては実施例5に示した本発明のヒトABCG2全長cDNAを含むプラスミドを鋳型に、上流DNAプライマー(配列番号:

8/CAAAAAGCTTAAGACCGAGCTCTATTAAGC)と下流 DNAプライマー(配列番号: 9/ATCCTCTAGACCAGGTTTCA TGATCCCATTG)を用いてPCRによる増幅後、マウスの場合と同様の 方法で標識し、プローブとした。これら各々のプローブとサケ精子DNA1mg をQuikHyb ハイブリダイゼーション・ソリューション (ストラタジーン 社)中で65℃、30分プレハイブリダイズさせたメンブレンに添加し、65℃、 一時間ハイブリダイゼーションを行った。その後、0.1%SDSを含む2×S SCで室温30分、0.1%SDSを含む0.1×SSCで室温で15分洗浄を 行った後、最終的に0.1%SDSを含む0.1×SSCで65℃10分洗浄を 行った。洗浄したメンブレンの放射活性をBAS5000イメージアナライザー (富士写真フイルム)で測定、画像化した。また、各サンプルRNAがほぼ等量 泳動されていることを示すために、各ブロットをさらにGAPDH(グリセルア ルデヒド3リン酸デヒドロゲナーゼ)プローブでハイブリダイズした。即ち、A BCG2プローブをハイブリダイズしたメンブレンを沸騰させたり、5%SDS 溶液中に1分浸しそのまま室温まで放置することによりメンブレン上のプローブ を剥がした。この後、ヒトGAPDH断片をプローブとして、ABCG2プロー ブの時と同じ条件でハイブリダイゼーション及び洗浄を行い、測定を行った。

この結果、まずマウスLY、LY/NR1、LY/NR2細胞ではDNAチップの解析で見られたように、耐性度の上昇と相関するようなABCG2の発現上昇が認められた。また、HCT116/NR1、PC-13/NR13、HeLa#7の全てのヒト化合物-A耐性株でABCG2遺伝子が選択的に過剰発現しているのが認められ、本発明の遺伝子が化合物-A及び化合物-B耐性に関与しているのが強く示唆された[図1]。

[実施例5] HeLa#7細胞からのヒトABCG2全長cDNAの単離:

(実施例 5-1)既存のABCG 2配列をもとにした合成DNAプライマー配列の作製:

ABCPのmRNAとして報告されている配列(Genbank:AF103796)をもとに開始コドンと終始コドンをはさむようにPCR用の合成DNAプライマー配列を作製した。

5 プライマー(配列番号: 8 / CAAAAAGCTTAAGACCGAGCT CTATTAAGC)

- 3 プライマー(配列番号: 10/GAATTAAGGGGGAAATTTAAGAT)
- 5 プライマーはABCPの配列に加えて5 末端に制限酵素Hind III による切断に必要な配列を8 塩基付加した。

(実施例5-2) HeLa#7細胞からのTotal RNA画分の調製および cDNAの合成:

ヒト培養細胞株HeLa#7細胞よりISOGEN試薬(ニッポンジーン社)を用いグアニジンイソチオシアネート法により Total RNAを調製した。次にTotal RNA画分2. 5μ gにプライマーとして18塩基長のoligo dTを加え、SUPERSCRIPT IIの逆転写酵素(BRL社)により、添付バッファーを用いて相補DNAを合成した。

(実施例5-3) HeLa#7細胞由来cDNAを用いたPCR法によるABCG2遺伝子の増幅と塩基配列の決定:

(実施例5-4) PCR産物のプラスミドベクターへのサブクローニングおよび 挿入cDNA部分の塩基配列の決定:

AはrTaq DNA polymeraseにより3'末端にAを付加した後、Eukaryotic TOPO TAクローニングキット(インビトロジェン社)の処方に従い、プラスミドベクターpcDNA3.1/V5ーHisーTOPOへサブクローニングした。これを大腸菌TOP10 competent cell(インビトロジェン社)に導入して形質転換したのち、cDNA挿入断片を持つクローンをアンピシリンを含むLB寒天培地中で選択した。出現したコロニーを滅菌した妻楊枝を用いて分離し、個々のクローンについてプラスミドベクターのマルチクローニングサイトをはさむプライマーセットによるPCRを行い、予想される大きさのPCR産物が挿入されたクローンを選択した。目的とするPCR産物が挿入されたクローンをアンピシリンを含むLB培地で一晩培養し、QIAprep 8 Turbo miniprep kit (キアゲン社)を用いてプラスミドDNAを調製した。塩基配列の決定のための反応は DyeDeoxy Terminator Cycle Sequencing Kit (ABI社)を用いて行い、蛍光式自動シーケンサーを用いて解読した。

これらの結果、HeLa#7細胞より単離したABCG2の完全長cDNAの配列はこれまでに報告されたものとほぼ一致したが、幾つかの重要な違いが認められた。

本発明のヒトABCG2の塩基配列を配列番号:1に示し、この完全長cDNAをクローニングした大腸菌株(「E.coli HELabcg2」と表記)を、下記の通り寄託した。

(イ) 寄託機関の名称・あて名

名称:独立行政法人産業技術総合研究所 特許生物寄託センター (旧通商産業省工業技術院生命工学工業技術研究所)

あて名:日本国茨城県つくば市東1丁目1番地1 中央第6 (郵便番号305-8566)

- (口) 寄託日(原寄託日):平成12年9月25日
- (ハ)寄託番号:生命研菌寄託第18053号(FERM P-18053)
- (二) 国際寄託への移管日:平成13年9月5日
- (ホ)国際寄託についての受託番号:FERM BP-7726

これまで全長の配列が報告されているABCG2遺伝子は2種類で、ABCPとして報告されたものとBCRPとして報告されたものがあるが、その中で両者の配列に違いが見られる。その違いは、アミノ酸置換を伴うものに限定すると、24番目のアミノ酸をコードする部分(ABCPはバリン、BCRPはアラニンをコード)、166番目のアミノ酸をコードする部分(BCRPはグルタミン、ABCPはグルタミン酸をコード)、208番目のアミノ酸をコードする部分(BCRPはフェニルアラニン、ABCPはセリンをコード)、482番目のアミノ酸をコードする部分(BCRPはスレオニン、ABCPはアルギニンをコード)である。

本発明者等の得た配列は、24番目、166番目、208番目のアミノ酸をコードする部分についてはBCRPと同じ、即ち、それぞれアラニン、グルタミン、フェニルアラニンをコードし、逆に482番目のアミノ酸をコードする部分についてのみABCPと同じアルギニンをコードしているというものであった。言い換えると、本発明者等の得た配列はBCRPとして報告されている配列と482番目のアミノ酸について一アミノ酸異なる配列である。

[実施例 6] ヒト正常組織由来 c DNAを用いたPCR法によるABCG 2遺伝子 c DNAの増幅と塩基配列の決定:

HeLa#7細胞から得られたABCG2遺伝子の配列がABCPあるいはBCRPの配列と異なる部分について、ヒト正常組織由来のABCG2 cDNAの配列を直接塩基配列決定法によって決定した。

Human MTCTM Panel I (クローンテック社) に含まれる胎盤 および腎臓由来のcDNA 2.5 μ 1 (\sim 0.5 ng) を鋳型として使用し、合成DNAプライマー(配列番号:8/CAAAAAGCTTAAGACCGA GCTCTATTAAGC、配列番号:11/AGAGATCGATGCCCT GCTTTACCA) を用いてPCRによる増幅を行った。反応液の組成は、合成DNAプライマー(配列番号:8および配列番号:11)各200 nM、0.4 mM dNTPs、LA Taq DNApolymerase 0.5 μ 1 および酵素に付属のバッファー5 μ 1で、総反応溶液量は50 μ 1とした。増幅のためのサイクルはサーマルサイクラー(パーキン・エルマー社)を用い、94 $\mathbb C$ ・

1分の処理後、94 ℃・30 秒、55 ℃・1 分、72 ℃・3 分のサイクルを35 回繰り返した。増幅産物の確認は1 %アガロースゲル電気泳動およびエチジウム ブロミド染色によって行った。PCR産物はQIAquick PCR Purification Kit (キアゲン社)を用いて精製した後、直接塩基配列の決定に用いた。塩基配列の決定のための反応は(実施例5-4)と同様に DyeDeoxy Terminator Cycle Sequencing Kit (ABI社)を用いて行い、蛍光式自動シーケンサーを用いて解読した。

これらの結果、ヒト胎盤および腎臓由来のABCG2 cDNAにおいて、24番目、166番目、208番目及び482番目アミノ酸をコードする部分について、それぞれ、アラニン、グルタミン、フェニルアラニン、アルギニンをコードしていることが明かとなり、本発明者等がHeLa#7細胞から得た配列と同じ配列がヒト正常組織においても発現していることが示唆された。

[実施例7] ヒトABCG2発現細胞の作製:

実施例5に示したように、HeLa#7細胞から得たヒトABCG2の全長 c DNAを動物細胞発現用プラスミドpcDNA3. 1/V5-His-TOPO (インビトロジェン社)へ組み込んだ。このABCG2発現プラスミドをPC-13細胞にエフェクテン・トランスフェクション・リエージェント(キアゲン社) を用いて遺伝子導入した。実験操作は添付のマニュアルに従った。また対照とし て、ABCG2配列を含まないベクターのみの導入も行い、以後平行して実験を 行った。トランスフェクション操作の2日後にジェネティシン(GIBCO B RL社) 0.2mg/mlを含む選択培地と交換し、以後この条件で長期間培養 することにより、プラスミドが導入された安定形質導入細胞株を選抜した。導入 2週間後に出現してきたコロニーを単離し、ノーザンブロット解析によりABC G2の発現を調べた。ABCG2を高レベルで発現しているクローンPC-13 /ABCG2-2、PC-13/ABCG2-3等の数種類を選び、以後の解析 に用いた。ノーザンブロットは、各細胞からRNeasy mini kit(キ アゲン社)により調製したtotal RNA 8μgを実施例4と同様にホル ムアルデヒドアガロース変性ゲルで分離した後、本発明のヒトABCG2のcD NA断片をプローブとして解析を行った。

この結果、クローンPC-13/ABCG2-2とPC-13/ABCG2-3において本発明のABCG2の転写産物の高発現が認められ、その発現量はクローンPC-13/ABCG2-2において耐性細胞株PC-13/NR13の約35%、クローンPC-13/ABCG2-3において、耐性細胞株PC-13/NR13の約20%であった [図2]。

[実施例8]ヒトABCG2発現細胞の各種化学療法剤に対する感受性の測定:

PC-13細胞にABCG2発現プラスミドを導入した安定形質発現細胞の薬剤感受性を実施例2に記載したSRB法で行った。

この結果、ベクターのみを導入したPC-13細胞はこの2つの化合物に対し て耐性を示さなかった。これに対し、導入ABCG2の発現量の最も高かったク ローンであるPC-13/ABCG2-2は、ベクターのみを導入したPC-13細胞に比べ化合物-Aに対し22倍、化合物-Bに対し17倍の耐性度を示し、 また、次に発現量の高かったクローンPC-13/ABCG2-3はベクターの みを導入したPC-13細胞に比べ化合物-Aに対し9倍、化合物-Bに対し1 1. 7倍の耐性度を示し、ABCG2の過剰発現によってこれらインドロカルバ ゾール系化合物に耐性が付与されることが強く示唆された。また、これらのAB CG2を導入したPC-13細胞株は他の薬剤、すなわちカンプトテシン、トポ テカン、ミトキサントロン、エトポシドには顕著な耐性を示さなかった(表4)。 ミトキサントロンに対するPC-13/ABCG2-2とPC-13/ABCG 2-3の耐性度はそれぞれ0.42倍と、0.60倍であり、これはBCRPを MCF-7に導入発現したときに約30倍耐性になるという報告(Dovle、 A. et al., Proc. Natl. Acad. Sci. U. S. A. 95、 15665-15670 (1998))とは大きく異なるもの である。

表4. ABCG2発現ベクターを導入したPC-13細胞株の薬剤感受性

	PC-13/ベクター	PC-13/ABCG2-2	,G2-2	PC-13/ABCG2-3	23
薬剤	IC50 (μ M)	IC50 (m M)	相対耐性度	IC50 (μM) 相対	相対耐性度
化合物一A	+1	+1	22.0	+1	9.0
化合物 — B	+1	+1	17	+1	11.7
Camptothecin	+1	+1	0.67	+1	1.2
Mitoxantrone	+1	+1	0.42	+1	0.60
Topotecan	0.21 ± 0.040	0.19 ± 0.05	0.00	0.096 ± 0.022	0.46
Etoposide	+1	+1	0.46	+1	1.1

各データは3回の独立した実験の平均値±標準誤差で示した。 BC-13/ABCG2-2,FC-13/ABCG2-3の相対耐性度はそれぞれの細胞におけるIC50値をベクター細胞のIC50値で除して得た。

[実施例9] 本発明のABCG2発現細胞内でのインドロカルバゾール系化合物の蓄積の解析:

PC-13細胞にABCG2発現プラスミドを導入した安定形質発現細胞における化合物-Bの細胞内蓄積量を以下の方法で測定した。

まず、細胞を 25 cm^2 培養フラスコに 1.5×10^6 個を播き込み一晩培養した。翌日に $50 \mu \text{M}$ の $[^{14}\text{C}]$ 化合物-Bを含む培地と交換し、37 C、 CO_2 インキュベーター中で120 分培養し、ラベル体を細胞中に取り込ませた。120 分経過後細胞を直ちに氷上に起き、PBSで細胞を洗浄した後に2.5%トリプシンで細胞を剥離し $400 \times \text{g}$ 、4%で3分遠心して細胞を回収した。再度細胞をPBSに懸濁し、細胞数を計測した後に同じ条件で遠心して細胞を再び回収した。この細胞をTriton X-100に溶解させ、 $2000 \times \text{g}$ 、4%で15分遠心して膜及び細胞質画分を上清として回収し、沈殿した核画分を<math>0.2%NのNaOHに溶解した。得られた上清サンプルと核画分サンプルそれぞれにクリアゾルI(半井化学社)を加えて液体シンチレーション測定機、TRICARB2300(パッカード社)で測定し、上清サンプルと核画分サンプルの値を合計したものを細胞内蓄積量とした [図3]。

この解析の結果、ABCG2発現プラスミドを導入したPC-13/ABCG2-2細胞における化合物-Bの蓄積量は化合物-A耐性細胞PC-13/NR13株とほぼ同様の値を示し、ベクターのみを導入した細胞の約1/4であった。この結果から本発明者等が得た配列をもつABCG2が発現している細胞において化合物-Bの蓄積が顕著に低下していた。これにより本願遺伝子によるインドロカルバゾール系化合物の排出が強く示唆された。

[実施例10] 塩基置換導入によるABCG2-482T配列の作製:

482番目のコドンがアルギニンをコードする本発明のABCG2(配列番号:1)と、前述のDoyle等の報告による482番目のコドンがスレオニンをコードするBCRPとして報告されているものとの活性の違いを明らかにするために、実施例5にてクローニングされたABCG2遺伝子のcDNA配列をもとに、以下のように1塩基置換を導入してBCRP型の全長ABCG2・cDNAを作成しABCG2-482Tとした(配列番号:12)。なお、この配列は

アミノ酸配列に関してははBCRPとして登録されているものと同じであるが、 塩基配列に関して、アミノ酸置換を伴わない 1 塩基の違いがもう一カ所存在する。 (実施例 10-1) ABCG 2-482 T配列に変換するための塩基置換を導入 した合成DNAプライマー配列の作製:

まず、本発明のABCG2遺伝子のcDNA配列をもとに、ABCG2の48 2番目のコドンの塩基配列をBCRPとして報告されている塩基配列の相同部分 に置き換えた配列を持ち、ABCG2・cDNAの相補的なそれぞれの鎖にアニ ールする2つのPCR用DNAプライマーを合成した[図4-(a)参照]。な おそれぞれのプライマー配列中の小文字は、置換を導入した塩基を示す。

5'プライマー(配列番号:14/CCATGAcGATGTTACCAAGTATT)

3'プライマー(配列番号:15/AACATCgTCATGGGTAATA AATC)

(実施例10-2)2段階のPCRによる塩基置換の導入:

次に、実施例 5 にて作製したABCG 2 遺伝子 c DNAをもつプラスミドを鋳型とし、変異を導入する部分を含めた上流側のc DNA断片と、下流側のc DNA断片をそれぞれPCRにて作製した。

上流側のcDNA断片は5'プライマー(配列番号:16/CATTCATC AGCCTCGATATTCCA)と実施例10-1にて作製した3'プライマー(配列番号:15/AACATCgTCATGGGTAATAAATC)を用いてPCR増幅した。下流側のcDNA断片は実施例10-1にて作製した5'プライマー(配列番号:14/CCATGAcGATGTTACCAAGTATT)と3'プライマー(配列番号:17/ACCACGATGTTGCTGACCTGCTGCTAC)を用いてPCR増幅した[図4-(b)、1st.PCR]。

物は1%のアガロースゲルを用いて分離し、バンドの部分をカミソリで切り出し た後、QIAquick Gel Extraction Kit(キアゲン社) を用いてDNAを回収した。回収したDNAはrTag DNA polyme raseにより3'末端にAを付加した後、TOPO TAクローニングキット (インビトロゲン社)の処方に従い、プラスミドベクターpCR2.1-TOP Oへサブクローニングした。これを大腸菌TOP10 competent c e 1 1 (インビトロゲン社) に導入して形質転換したのち、cDNA挿入断片を 持つクローンをアンピシリンを含むLB寒天培地中で選択した。出現したコロニ ーを滅菌した爪楊枝を用いて分離し、個々のクローンについてプラスミドベクタ 一のマルチクローニングサイトをはさむプライマーセットによるPCRを行い、 予想される大きさのPCR産物が挿入されたクローンを選択した。目的とするP CR産物が挿入されたクローンをアンピシリンを含むLB培地で一晩培養し、Q IAprep 8 Turbo miniprep kit (キアゲン社)を用 いてプラスミドDNAを調製した。塩基配列の決定のための反応は DyeDe oxy Terminator Cycle Sequencing Kit (ABI社)を用いて行い、蛍光式自動シーケンサーを用いて解読して塩基置換 が導入されていることを確認した。

(実施例10-3)全長ABCG2-482T・cDNAの作成とその動物発現プラスミドへの組み込み:

実施例10-2にて作製した塩基置換を導入したc DNA断片をその内部を切断する二つの制限酵素、P v u II、N c o Iを用いて切断し、塩基置換を導入した領域を含む断片を切り出した。この断片を、実施例5にてクローニングしたABCG2遺伝子c DNAをP v u II、N c o Iを用いて切断したものと連結することによって、コドン482部分を含む領域が、変異の導入された断片と置き換わったABCG2遺伝子の全長c DNAが得られ、これをABCG2-482 Tとした。

このABCG2-482TcDNAをプラスミドベクターpcDNA3. 1/Myc-Hisに挿入し、動物細胞発現プラスミドを作製した。これを大腸菌TOP10 competent cell (インビトロゲン社) に導入して形質

転換したのち、cDNA挿入断片を持つクローンをアンピシリンを含むLB寒天 培地中で選択した。出現したコロニーを滅菌した爪楊枝を用いて分離し、個々のクローンについてプラスミドベクターのマルチクローニングサイトをはさむプライマーセットによるPCRを行い、予想される大きさのPCR産物が挿入されたクローンを選択した。目的とするPCR産物が挿入されたクローンをアンピシリンを含むLB培地で一晩培養し、QIAprep 8 Turbo miniprep kit (キアゲン社)を用いてプラスミドDNAを調製した。塩基配列の決定のための反応は DyeDeoxy Terminator Cycle Sequencing Kit (ABI社)を用いて行い、蛍光式自動シーケンサーを用いて解読しABCG2-482Tの配列であることを確認した。

[実施例11] 本発明のABCG2若しくはABCG2-482Tを発現するMCF-7細胞の作成:

実施例 5 で調製した本発明のヒトABCG2の全長 c DNA、若しくは実施例 10 で調製したABCG2-482 T c DNAをそれぞれ組み込んだ動物細胞発 現プラスミドをヒト乳癌細胞であるMCF-7細胞にエフェクテン・トランスフェクション・リエージェント(キアゲン社)を用いて遺伝子導入した。実験操作は添付のマニュアルに従った。また対照として、ABCG2配列を含まないベクターのみの導入も行い、以後平行して実験を行った。トランスフェクション操作の2日後にジェネティシン(GIBCO BRL社)900μg/mlを含む選択培地と交換し、以後この条件で長期間培養することにより、プラスミドが導入された安定形質導入細胞株を選抜した。導入2~3週間後に出現してきたコロニーを単離し、ノーザンブロット解析によりABCG2の発現を調べた。ノーザンブロットは、各細胞からRNeasy mini kit(キアゲン社)により調製したtotal RNA 8μgを実施例4と同様にホルムアルデヒドアガロース変性ゲルで分離した後、本発明のヒトABCG2のcDNA断片をプローブとして解析を行った。

その結果、本発明のABCG2を導入した細胞クローンからはMCF-7/R 7が、アミノ酸置換体であるABCG2-482Tを導入した細胞クローンからはMCF-7/T8がそれぞれ導入遺伝子を高レベルで発現しており、以後これ

らを解析に用いた。またこの2つの細胞株におけるABCG2発現量はほぼ同程度であった(図5)。

[実施例12] 本発明のABCG2若しくはABCG2-482Tを発現するMCF-7細胞の各種化学療法剤に対する感受性の測定:

MCF-7細胞に、ABCG2発現プラスミド若しくはABCG2-482T発現プラスミドを導入した安定形質発現細胞の薬剤感受性を実施例2に記載したSRB法で測定し、各導入細胞株の薬剤に対する感受性を、ベクターのみの導入細胞株に対する相対耐性度として表した「図6]。

この結果、ABCG2-482Tを導入したMCF-7/T8は化合物-Bに対して12倍の耐性を示した以外に、ミトキサントロン、アドリアマイシン及びダウノルビシンにそれぞれ、25倍、9.6倍、5.1倍と、種々の化合物に対して耐性を示した。即ち、以前にBCRPとして報告された通り、482番目のコドンがスレオニンをコードするタイプの遺伝子を発現させた細胞は、インドロカルバゾールの他に、様々な化合物に対して耐性を示す多剤耐性因子的な性質を持つことが示された。

これに対し、本発明のABCG2を導入したMCF-7/R7は、化合物-Bに22倍と高い耐性を示した以外には、ミトキサントロンに対してわずか3.8倍の耐性を示すのみで、アドリアマイシン及びダウノルビシンに対しては全く耐性にならなかった。即ち、482番目のコドンがアルギニンをコードしている本発明のABCG2発現細胞は化合物-Bに選択的に耐性となることが示された。

以上よりBCRPとして報告されていたタイプのABCG2が広い範囲の化学療法剤に対し耐性を与えるのに対し、それと一アミノ酸異なる本発明のABCG2がインドロカルバゾール選択的な耐性を付与することが示された。

[実施例13] 本発明のABCG2若しくはABCG2-482Tを発現するMCF-7細胞におけるインドロカルバゾール系化合物の蓄積の解析:

MCF-7細胞に本発明のABCG2、若しくはABCG2-482Tを導入した安定形質発現細胞における化合物-Bの細胞内蓄積量を以下の方法で測定した。

まず、6ウェル培養プレートに細胞を8×10⁵個/we11播き込み一晩培

養した。翌日に 7μ Mの [14 C] 化合物 $^{-}$ Bを含む培地と交換し、37C、CO $_2$ インキュベーター中で180分培養し、ラベル体を細胞中に取り込ませた。180分経過後細胞を直ちに氷上に起き、 $^{-}$ PBSで細胞を $^{-}$ 3回洗浄した後に、この細胞に $^{-}$ 2NのNaOHを加え、 $^{-}$ 40°Cで $^{-}$ 60分震盪して溶解させた。得られたサンプルの一部をブラッドフォード法にてタンパク定量をし、溶液のタンパク質濃度を求めた。残りのサンプルにハイオニックフロー(パッカード社)を加えて液体シンチレーション測定機、 $^{-}$ 7RICARB $^{-}$ 2500(パッカード社)で測定し、細胞内蓄積量とした [$^{-}$ 27- $^{-}$ 20]。

この解析の結果、ABCG2-482Tを導入したMCF-7/T8と、本発明のABCG2を導入したMCF-7/R7において化合物-Bの蓄積量は共に低下していた。これにより、ABCG2-482Tを導入した細胞でも、本願遺伝子を導入した細胞においても、インドロカルバゾール系化合物を能動的に排出していることが証明された。

[実施例14] 本発明のABCG2若しくはABCG2-482Tを発現するMCF-7細胞におけるミトキサントロン、及びローダミンの蓄積の解析:

MCF-7細胞に本発明のABCG2、若しくはABCG2-482Tを導入した安定形質発現細胞におけるミトキサントロンの細胞内蓄積量を以下の方法で測定した。

まず、6ウェル培養プレートに細胞を 1.0×10^6 個/we11播き込み一 晩培養した。翌日に 20μ Mのミトキサントロンを含む培地と交換し、37℃、 CO_2 インキュベーター中で90分培養し、化合物を細胞中に取り込ませた。90分経過後細胞を直ちに氷上に起き、PBSで細胞を1回洗浄した後に、2.5%トリプシンで細胞を剥離し $400\times g$ 、4℃で3分遠心して細胞を回収した。細胞を1%BSAを含むHank's Balanced Salt Solutionsに懸濁し、フローサイトメーター、Epics Elite(コールター社)で化合物の蛍光量を測定し、細胞内蓄積量とした E07 - (b)]。

また、MCF-7細胞に本発明のABCG2、及びABCG2-482Tを導入した安定形質発現細胞におけるローダミンの細胞内蓄積量は以下の方法で測定した。

まず、6ウェル培養プレートに細胞を 1.0×10^6 個/we11播き込み一晩培養した。翌日に 5μ g $/\mu$ 1のローダミンを含む培地と交換し、37C、CO $_2$ インキュベーター中で30分培養し、化合物を細胞中に取り込ませた。30分経過後細胞を直ちに氷上に起き、PBSで細胞を1回洗浄した後に、2.5%トリプシンで細胞を剥離し $400\times$ g、4Cで3分遠心して細胞を回収した。細胞を1%BSAを含むHank's Balanced Salt Solutionsに懸濁し、フローサイトメーター、Facs Calibur(ベクトンディッキンソン社)で化合物の蛍光量を測定し、細胞内蓄積量とした[図7-(c) 1

この解析の結果、MCF-7/T8細胞では、ミトキサントロンの蓄積量がベクターのみを導入した細胞の約20%程度にまで減少し、ミトキサントロンが強く排出されているが、MCF-7/R7細胞においては、約50%程度までしか減少しておらず、それほど排出されていないことが明らかになった。また、MCF-7/T8細胞のローダミンの蓄積量は、ベクターのみを導入した細胞の約50%にまで減少するが、MCF-7/R7細胞では、ベクターのみを導入した細胞と同程度の蓄積量であり、ローダミンは全く排出されないことが明らかになった。

以上のことから、本発明のABCG2とABCG2-482Tは、1アミノ酸 異なることにより基質選択性が異なることが示された。

産業上の利用の可能性

本発明により、インドロカルバゾール系化合物を選択的に細胞外へ輸送するタンパク質及びその遺伝子が提供された。これにより該輸送体タンパク質およびそれをコードする遺伝子を利用した阻害剤のスクリーニングやどのような抗癌剤が投与するのに適当かを判断することが可能となった。さらに、得られる阻害剤を使用すれば、癌細胞の感受性を増強出来るので治療への利用が期待出来る。

請求の範囲

1. 下記(A) または(B) に記載のアミノ酸配列からなり、かつ哺乳動物細胞に癌化学療法剤耐性を付与するタンパク質:

(A) 配列番号: 2記載のアミノ酸配列。

(B)配列番号:2記載のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失若しくは付加したアミノ酸配列。

2. 前記癌化学療法剤が、下記一般式(I)で表される化合物であることを特徴とする請求の範囲1に記載のタンパク質:

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M}$$

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す。

- 3. 請求の範囲1または2に記載のタンパク質の部分ペプチド。
- 4. 請求の範囲1から3のいずれかに記載のタンパク質もしくは部分ペプチドをコードするポリヌクレオチド、または該ポリヌクレオチドに相補的な配列からなるポリヌクレオチド。
- 5. 前記ポリヌクレオチドのDNA配列が、配列番号:1に表されるDNA配列のコード領域またはその相補的な配列の、少なくとも一部分からなることを特徴とする請求の範囲4に記載のポリヌクレオチド。
- 6. 下記一般式(I)で表される化合物に対する耐性を有する哺乳動物細胞を 検出するために用いることを特徴とする請求の範囲4または5に記載のポリヌク レオチド:

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を

有されてもよい五炭糖基若しくは六炭糖基を示す。

7. 配列番号:1で表されるDNA配列において1489番目の塩基(G)を含む $15\sim100$ の連続したDNA配列またはその相補的な配列からなるポリヌクレオチド。

- 8. 請求の範囲4または5に記載のポリヌクレオチドを含有することを特徴とする組換えベクター。
- 9. 請求の範囲8に記載の組換えベクターを保持する形質転換体。
- 10. 請求の範囲9に記載の形質転換体を培養し、該形質転換体またはその培養上清から発現させたタンパク質または部分ペプチドを回収する工程を含む、請求の範囲1から3のいずれかに記載のタンパク質または部分ペプチドの製造方法。
- 11. 請求の範囲1から3のいずれかに記載のタンパク質または部分ペプチドに特異的に結合する抗体。
- 12. 下記一般式(I)で表される化合物に対して耐性を有する哺乳動物細胞を検出するために用いる、請求の範囲11記載の抗体。

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M}$$

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す。

- 13. 請求の範囲1または2記載のタンパク質の発現を抑制するアンチセンスヌクレオチド。
- 14. 請求の範囲1または2記載のタンパク質の発現を指標とすることにより 癌患者の癌化学療法剤に対する耐性を予測する方法。
- 15. 前記癌化学療法剤が、下記一般式(I)で表される化合物であることを特徴とする請求の範囲14記載の方法。

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M$$

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す。

- 16. 請求の範囲1または2記載のタンパク質の機能を阻害する物質をスクリーニングする方法であって、
- (a) 前記タンパク質と、癌化学療法剤と、候補化合物とを接触させる工程、 及び
- (b) 前記タンパク質の活性を抑制する候補化合物を選択する工程、 を含むことを特徴とする阻害剤のスクリーニング方法。
- 17. 前記タンパク質の活性が、前記癌化学療法剤を基質として、該基質との 結合活性、該基質結合時のATP分解活性、または該基質の膜輸送活性である請 求の範囲16に記載のスクリーニング方法。
- 18. 請求の範囲1または2記載のタンパク質の機能を阻害する物質をスクリ

- ーニングする方法であって、
- (a) 請求の範囲1または2記載のタンパク質を発現する哺乳動物細胞に、癌化学療法剤、及び候補化合物を接触させる工程、及び
- (b) 前記癌化学療法剤が有する前記哺乳動物細胞に対する毒性を増強する候補 化合物を選択する工程、

を含むことを特徴とする阻害剤のスクリーニング方法。

- 19. 請求の範囲16から18のいずれかに記載の方法によって得られる阻害剤。
- 20. 請求の範囲19に記載の阻害剤により、請求の範囲1に記載のタンパク質の機能を阻害する方法。
- 21. 請求の範囲11または12に記載の抗体により、請求の範囲1に記載のタンパク質の機能を阻害する方法。
- 22. 請求の範囲13記載のアンチセンスヌクレオチドにより、請求の範囲1に記載のタンパク質の発現を阻害する方法。
- 23. 請求の範囲20から22のいずれかに記載の方法により請求の範囲1に記載のタンパク質の機能または発現を阻害することを特徴とする、癌患者の化学療法剤に対する感受性を高める方法。
- 24. 前記癌化学療法剤が、下記一般式(I)で表される化合物であることを特徴とする請求の範囲23に記載の方法。

$$\bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{X^{2}} \bigcap_{M} \bigcap_{M$$

式中、X¹およびX²はそれぞれ独立に水素原子、ハロゲン原子、又はヒドロキシ基を示し、Rは水素原子、アミノ基、ホルミルアミノ基、又は1ないし3個のヒドロキシ基、置換基を有していてもよいピリジル基および置換基を有していてもよいチエニル基からなる群から選ばれる置換基によって置換されてもよい低級アルキルアミノ基であり、Gは五炭糖基、六炭糖基、又はアミノ基によって置換を有されてもよい五炭糖基若しくは六炭糖基を示す。

図 2

図4

(a) 塩基置換部位のプライマー設計

(b) 2段階PCR

図 5

図 7

(b) Mitoxantrone

「配列表」

SEQUENCE LISTING

<110> BANYU PHARMACEUTICAL CO., LTD

<120> Drug resistance gene and use thereof

<130> P2678PCT-GN

<140>

<141>

<150> JP P2000-303441

<151> 2000-10-03

<160> 17

<170> PatentIn Ver. 2.1

<210> 1

<211> 2027

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (45).. (2009)

<223> human ABCG2

<4	N	$\langle 0 \rangle$	1
/1	v	U/	

ttaagaccga gctctattaa gctgaaaaga taaaaactct ccag atg tct tcc agt 56 Met Ser Ser Ser

1

- aat gtc gaa gtt ttt atc cca gtg tca caa gga aac acc aat ggc ttc 104 Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly Asn Thr Asn Gly Phe 5 10 15 20
- ccc gcg aca gct tcc aat gac ctg aag gca ttt act gaa gga gct gtg 152
 Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala Phe Thr Glu Gly Ala Val
 25 30 35
- tta agt ttt cat aac atc tgc tat cga gta aaa ctg aag agt ggc ttt 200 Leu Ser Phe His Asn Ile Cys Tyr Arg Val Lys Leu Lys Ser Gly Phe
 40 45 50
- cta cct tgt cga aaa cca gtt gag aaa gaa ata tta tcg aat atc aat 248 Leu Pro Cys Arg Lys Pro Val Glu Lys Glu Ile Leu Ser Asn Ile Asn 55 60 65
- ggg atc atg aaa cct ggt ctc aac gcc atc ctg gga ccc aca ggt gga 296 Gly Ile Met Lys Pro Gly Leu Asn Ala Ile Leu Gly Pro Thr Gly Gly
- ggc aaa tot tog tta tta gat gto tta got goa agg aaa gat coa agt 344 Gly Lys Ser Ser Leu Leu Asp Val Leu Ala Ala Arg Lys Asp Pro Ser

85					90					95					100	
a a a	++0	tot	or or o	ora t	at t	a t a	o t o	a a t	a a a	gro o	225	age	a a t	gra a	o o t	202
	tta															392
Gly	Leu	Ser	Gly	Asp	Val	Leu	He	Asn	Gly	Ala	Pro	Arg	Pro	Ala	Asn	
				105					110					115		
ttc	aaa	tgt	aat	tca	ggt	tac	gtg	gta	caa	gat	gat	gtt	gtg	atg	ggc	440
Phe	Lys	Cys	Asn	Ser	Gly	Tyr	Val	Val	Gln	Asp	Asp	Val	Val	Met	Gly	
			120					125					130			
act	ctg	acg	gtg	aga	gaa	aac	tta	cag	ttc	tca	gca	gct	ctt	cgg	ctt	488
	Leu															
	Dou	135	, 41	111.6	oru.	11011	140	GIII	1110	501	mu	145	Dou	111.0	Бси	
		100					140					140				
		. 1	. 1			1									,	500
	aca															536
Ala	Thr	Thr	Met	Thr	Asn	His	Glu	Lys	Asn	Glu	Arg	He	Asn	Arg	Val	
	150					155					160					
att	caa	gag	tta	ggt	ctg	gat	aaa	gtg	gca	gac	tcc	aag	gtt	gga	act	584
He	Gln	Glu	Leu	Gly	Leu	Asp	Lys	Val	Ala	Asp	Ser	Lys	Val	Gly	Thr	
165					170					175					180	
cag	ttt	atc	cgt	ggt	gtg	tet	gga	ឧធម	ថ្នូងង	ลฐล	ลลล	ឧଟ୍ଟ	act	agt	ata	632
	Phe															004
UIII	TIIC	110	MIS		vai	261	uly	OIA		ni 8	Гуо	nig	1111		116	
				185					190					195		
gga	atg	gag	ctt	atc	act	gat	cct	tcc	atc	ttg	ttc	ttg	gat	gag	cct	680

Gly Met Glu Leu Ile Thr Asp Pro Ser Ile Leu Phe Leu Asp Glu Pro

200 205 210

aca act ggc tta gac tca agc aca gca aat gct gtc ctt ttg ctc ctg 728 Thr Thr Gly Leu Asp Ser Ser Thr Ala Asn Ala Val Leu Leu Leu Leu 215 220 225 aaa agg atg tot aag cag gga cga aca atc atc ttc toc att cat cag 776 Lys Arg Met Ser Lys Gln Gly Arg Thr Ile Ile Phe Ser Ile His Gln 230 235240 cct cga tat tcc atc ttc aag ttg ttt gat agc ctc acc tta ttg gcc 824 Pro Arg Tyr Ser Ile Phe Lys Leu Phe Asp Ser Leu Thr Leu Leu Ala 245 250 255 260 tca gga aga ctt atg ttc cac ggg cct gct cag gag gcc ttg gga tac 872 Ser Gly Arg Leu Met Phe His Gly Pro Ala Gln Glu Ala Leu Gly Tyr 265 270 275 ttt gaa tca gct ggt tat cac tgt gag gcc tat aat aac cct gca gac 920 Phe Glu Ser Ala Gly Tyr His Cys Glu Ala Tyr Asn Asn Pro Ala Asp 280 285 290 ttc ttc ttg gac atc att aat gga gat tcc act gct gtg gca tta aac 968 Phe Phe Leu Asp Ile Ile Asn Gly Asp Ser Thr Ala Val Ala Leu Asn 295 300 305

aga gaa gaa gac ttt aaa gcc aca gag atc ata gag cct tcc aag cag 1016 Arg Glu Glu Asp Phe Lys Ala Thr Glu Ile Ile Glu Pro Ser Lys Gln

310 315 320

gat aag cca ctc ata gaa aaa tta gcg gag att tat gtc aac tcc tcc 1064
Asp Lys Pro Leu Ile Glu Lys Leu Ala Glu Ile Tyr Val Asn Ser Ser
325 330 335 340

ttc tac aaa gag aca aaa gct gaa tta cat caa ctt tcc ggg ggt gag 1112 Phe Tyr Lys Glu Thr Lys Ala Glu Leu His Gln Leu Ser Gly Gly Glu 345 350 355

aag aag aag aag atc aca gtc ttc aag gag atc agc tac acc tcc 1160 Lys Lys Lys Ile Thr Val Phe Lys Glu Ile Ser Tyr Thr Thr Ser 360 365 370

ttc tgt cat caa ctc aga tgg gtt tcc aag cgt tca ttc aaa aac ttg 1208 Phe Cys His Gln Leu Arg Trp Val Ser Lys Arg Ser Phe Lys Asn Leu 375 380 385

ctg ggt aat ccc cag gcc tct ata gct cag atc att gtc aca gtc gta 1256 Leu Gly Asn Pro Gln Ala Ser Ile Ala Gln Ile Ile Val Thr Val Val 390 395 400

ctg gga ctg gtt ata ggt gcc att tac ttt ggg cta aaa aat gat tct 1304 Leu Gly Leu Val Ile Gly Ala Ile Tyr Phe Gly Leu Lys Asn Asp Ser 405 410 415 420

act gga atc cag aac aga gct ggg gtt ctc ttc ttc ctg acg acc aac 1352 Thr Gly Ile Gln Asn Arg Ala Gly Val Leu Phe Phe Leu Thr Thr Asn

425 430 435

cag tgt ttc agc agt gtt tca gcc gtg gaa ctc ttt gtg gta gag aag 1400 Gln Cys Phe Ser Ser Val Ser Ala Val Glu Leu Phe Val Val Glu Lys 440 445 450

aag ctc ttc ata cat gaa tac atc agc gga tac tac aga gtg tca tct 1448 Lys Leu Phe Ile His Glu Tyr Ile Ser Gly Tyr Tyr Arg Val Ser Ser 455 460 465

tat ttc ctt gga aaa ctg tta tct gat tta tca ccc atg agg atg tta 1496 Tyr Phe Leu Gly Lys Leu Leu Ser Asp Leu Leu Pro Met Arg Met Leu 470 475 480

cca agt att ata ttt acc tgt ata gtg tac ttc atg tta gga ttg aag 1544
Pro Ser Ile Ile Phe Thr Cys Ile Val Tyr Phe Met Leu Gly Leu Lys
485 490 495 500

cca aag gca gat gcc ttc ttc gtt atg atg ttt acc ctt atg atg gtg 1592
Pro Lys Ala Asp Ala Phe Phe Val Met Met Phe Thr Leu Met Met Val
505 510 515

gct tat tca gcc agt tcc atg gca ctg gcc ata gca gca ggt cag agt 1640 Ala Tyr Ser Ala Ser Ser Met Ala Leu Ala Ile Ala Ala Gly Gln Ser 520 525 530

gtg gtt tct gta gca aca ctt ctc atg acc atc tgt ttt gtg ttt atg 1688 Val Val Ser Val Ala Thr Leu Leu Met Thr Ile Cys Phe Val Phe Met

535 540 545

atg att ttt tca ggt ctg ttg gtc aat ctc aca acc att gca tct tgg 1736 Met Ile Phe Ser Gly Leu Leu Val Asn Leu Thr Thr Ile Ala Ser Trp 550 555 560

ctg tca tgg ctt cag tac ttc agc att cca cga tat gga ttt acg gct 1784 Leu Ser Trp Leu Gln Tyr Phe Ser Ile Pro Arg Tyr Gly Phe Thr Ala 565 570 575 580

ttg cag cat aat gaa ttt ttg gga caa aac ttc tgc cca gga ctc aat 1832 Leu Gln His Asn Glu Phe Leu Gly Gln Asn Phe Cys Pro Gly Leu Asn 585 590 595

gca aca gga aac aat cct tgt aac tat gca aca tgt act ggc gaa gaa 1880 Ala Thr Gly Asn Asn Pro Cys Asn Tyr Ala Thr Cys Thr Gly Glu Glu 600 605 610

tat ttg gta aag cag ggc atc gat ctc tca ccc tgg ggc ttg tgg aag 1928

Tyr Leu Val Lys Gln Gly Ile Asp Leu Ser Pro Trp Gly Leu Trp Lys
615 620 625

aat cac gtg gcc ttg gct tgt atg att gtt att ttc ctc aca att gcc 1976 Asn His Val Ala Leu Ala Cys Met Ile Val Ile Phe Leu Thr Ile Ala 630 635 640

tac ctg aaa ttg tta ttt ctt aaa aaa tat tct taaatttccc cttaattc 2027 Tyr Leu Lys Leu Phe Leu Lys Lys Tyr Ser

645 650 655

<210> 2

<211> 655

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Ser Ser Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly Asn
1 5 10 15

Thr Asn Gly Phe Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala Phe Thr
20 25 30

Glu Gly Ala Val Leu Ser Phe His Asn Ile Cys Tyr Arg Val Lys Leu 35 40 45

Lys Ser Gly Phe Leu Pro Cys Arg Lys Pro Val Glu Lys Glu Ile Leu 50 55 60

Ser Asn Ile Asn Gly Ile Met Lys Pro Gly Leu Asn Ala Ile Leu Gly 65 70 75 80

Pro Thr Gly Gly Lys Ser Ser Leu Leu Asp Val Leu Ala Ala Arg
85 90 95

Lys Asp Pro Ser Gly Leu Ser Gly Asp Val Leu Ile Asn Gly Ala Pro

100 105 110

Arg Pro Ala Asn Phe Lys Cys Asn Ser Gly Tyr Val Val Gln Asp Asp 115 120 125

Val Val Met Gly Thr Leu Thr Val Arg Glu Asn Leu Gln Phe Ser Ala 130 135 140

Ala Leu Arg Leu Ala Thr Thr Met Thr Asn His Glu Lys Asn Glu Arg 145 150 155 160

Ile Asn Arg Val Ile Gln Glu Leu Gly Leu Asp Lys Val Ala Asp Ser 165 170 175

Lys Val Gly Thr Gln Phe Ile Arg Gly Val Ser Gly Gly Glu Arg Lys
180 185 190

Arg Thr Ser Ile Gly Met Glu Leu Ile Thr Asp Pro Ser Ile Leu Phe 195 200 205

Leu Asp Glu Pro Thr Thr Gly Leu Asp Ser Ser Thr Ala Asn Ala Val 210 215 220

Leu Leu Leu Lys Arg Met Ser Lys Gln Gly Arg Thr Ile Ile Phe 225 230 235 240

Ser Ile His Gln Pro Arg Tyr Ser Ile Phe Lys Leu Phe Asp Ser Leu 245 250 255

Thr Leu Leu Ala Ser Gly Arg Leu Met Phe His Gly Pro Ala Gln Glu 260 265 270

Ala Leu Gly Tyr Phe Glu Ser Ala Gly Tyr His Cys Glu Ala Tyr Asn 275 280 285

Asn Pro Ala Asp Phe Phe Leu Asp Ile Ile Asn Gly Asp Ser Thr Ala 290 295 300

Val Ala Leu Asn Arg Glu Glu Asp Phe Lys Ala Thr Glu IIe IIe Glu 305 310 315 320

Pro Ser Lys Gln Asp Lys Pro Leu Ile Glu Lys Leu Ala Glu Ile Tyr 325 330 335

Val Asn Ser Ser Phe Tyr Lys Glu Thr Lys Ala Glu Leu His Gln Leu 340 345 350

Ser Gly Gly Glu Lys Lys Lys Ile Thr Val Phe Lys Glu Ile Ser 355 360 365

Tyr Thr Thr Ser Phe Cys His Gln Leu Arg Trp Val Ser Lys Arg Ser 370 375 380

Phe Lys Asn Leu Leu Gly Asn Pro Gln Ala Ser Ile Ala Gln Ile Ile 385 390 395 400

Val Thr Val Val Leu Gly Leu Val Ile Gly Ala Ile Tyr Phe Gly Leu
405 410 415

Lys Asn Asp Ser Thr Gly Ile Gln Asn Arg Ala Gly Val Leu Phe Phe
420 425 430

Leu Thr Thr Asn Gln Cys Phe Ser Ser Val Ser Ala Val Glu Leu Phe
435
440
445

Val Val Glu Lys Lys Leu Phe Ile His Glu Tyr Ile Ser Gly Tyr Tyr
450 455 460

Arg Val Ser Ser Tyr Phe Leu Gly Lys Leu Leu Ser Asp Leu Leu Pro 465 470 475 480

Met Arg Met Leu Pro Ser Ile Ile Phe Thr Cys Ile Val Tyr Phe Met
485 490 495

Leu Gly Leu Lys Pro Lys Ala Asp Ala Phe Phe Val Met Met Phe Thr
500 505 510

Leu Met Met Val Ala Tyr Ser Ala Ser Ser Met Ala Leu Ala Ile Ala 515 520 525

Ala Gly Gln Ser Val Val Ser Val Ala Thr Leu Leu Met Thr Ile Cys
530 535 540

Phe Val Phe Met Met Ile Phe Ser Gly Leu Leu Val Asn Leu Thr Thr

545 550 555 560

Ile Ala Ser Trp Leu Ser Trp Leu Gln Tyr Phe Ser Ile Pro Arg Tyr
565 570 575

Gly Phe Thr Ala Leu Gln His Asn Glu Phe Leu Gly Gln Asn Phe Cys
580 585 590

Pro Gly Leu Asn Ala Thr Gly Asn Asn Pro Cys Asn Tyr Ala Thr Cys
595 600 605

Thr Gly Glu Glu Tyr Leu Val Lys Gln Gly Ile Asp Leu Ser Pro Trp 610 615 620

Gly Leu Trp Lys Asn His Val Ala Leu Ala Cys Met Ile Val Ile Phe 625 630 635 640

Leu Thr Ile Ala Tyr Leu Lys Leu Leu Phe Leu Lys Lys Tyr Ser 645 650 655

<210> 3

<211> 63

<212> DNA

<213> Artificial Sequence

<220>

<223>	Description	of A	\rti	ficial	Sequence:artificially
	synthesized	prin	ner	sequenc	ce

⟨400⟩ 3

<210> 4

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially
 synthesized primer sequence

<400> 4

ctcatttaaa aacttgctcg ggaacc

26

<210> 5

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially

synthesized primer sequence

<400> 5

caagaggcca gaaaagagca tcataa

26

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: artificially
 synthesized primer sequence

<400> 6

tactggggct tattattggt g

21

<210> 7

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially
 synthesized primer sequence

⟨400⟩ 7

aaaagcgatt gtcatgagaa gtgt

24

<210> 8

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially
 synthesized primer sequence

<400> 8

caaaaagctt aagaccgagc tctattaagc

30

<210> 9

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially
 synthesized primer sequence

<400> 9

atcctctaga ccaggtttca tgatcccatt g

31

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially
 synthesized primer sequence

<400> 10

gaattaaggg gaaatttaag aat

23

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:artificially synthesized primer sequence

<400> 11

agagatcgat gccctgcttt acca

24

<210> 12

<211> 2053

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: ABCG2-482T

<220>

<221> CDS

<222> (32).. (1999)

<400> 12

ctattaaget gaaaagataa aaacteteea g atg tet tee agt aat gte gaa 52 Met Ser Ser Ser Asn Val Glu

1

5

gtt ttt atc cca gtg tca caa gga aac acc aat ggc ttc ccc gcg aca 100 Val Phe Ile Pro Val Ser Gln Gly Asn Thr Asn Gly Phe Pro Ala Thr 10 15 20

gct tcc aat gac ctg aag gca ttt act gaa gga gct gtg tta agt ttt 148 Ala Ser Asn Asp Leu Lys Ala Phe Thr Glu Gly Ala Val Leu Ser Phe 25 30 35

cat aac atc. tgc tat cga gta aaa ctg aag agt ggc ttt cta cct tgt 196
His Asn Ile Cys Tyr Arg Val Lys Leu Lys Ser Gly Phe Leu Pro Cys
40 45 50 55

cga	aaa	cca	gtt	gag	aaa	gaa	ata	tta	tcg	aat	atc	aat	ggg	atc	atg	244
Arg	Lys	Pro	Val	Glu	Lys	Glu	Ile	Leu	Ser	Asn	Ile	Asn	Gly	Ile	Met	
				60					65					70		
aaa	cct	ggt	ctc	aac	gcc	atc	ctg	gga	ccc	aca	ggt	gga	ggc	aaa	tct	292
Lys	Pro	Gly	Leu	Asn	Ala	He	Leu	Gly	Pro	Thr	Gly	Gly	Gly	Lys	Ser	
			75					80					85			
tcg	tta	tta	gat	gtc	tta	gct	gca	agg	aaa	gat	cca	agt	gga	tta	tct	340
Ser	Leu	Leu	Asp	Val	Leu	Ala	Ala	Arg	Lys	Asp	Pro	Ser	Gly	Leu	Ser	
		90					95					100				
gga	gat	gtt	ctg	ata	aat	gga	gca	ccg	cga	cct	gcc	aat	ttc	aaa	tgt	388
Gly	Asp	Val	Leu	Ile	Asn	Gly	Ala	Pro	Arg	Pro	Ala	Asn	Phe	Lys	Cys	
	105					110					115					
aat	tca	ggt	tac	gtg	gta	caa	gat	gat	gtt	gtg	atg	ggc	act	ctg	acg	436
Asn	Ser	Gly	Tyr	Val	Val	Gln	Asp	Asp	Val	Val	Met	Gly	Thr	Leu	Thr	
120					125					130					135	
gtg	aga	gaa	aac	tta	cag	ttc	tca	gca	gct	ctt	cgg	ctt	gca	aca	act	484
Val	Arg	Glu	Asn	Leu	Gln	Phe	Ser	Ala	Ala	Leu	Arg	Leu	Ala	Thr	Thr	
				140					145					150		
atg	acg	aat	cat	gaa	aaa	aac	gaa	cgg	att	aac	agg	gtc	att	caa	gag	532
Met	Thr	Asn	His	Glu	Lys	Asn	Glu	Arg	Ile	Asn	Arg	Val	Ile	Gln	Glu	
			155					160					165			

tta	ggt	ctg	gat	aaa	gtg	gca	gac	tcc	aag	gtt	gga	act	cag	ttt	atc	580
Leu	Gly	Leu	Asp	Lys	Val	Ala	Asp	Ser	Lys	Val	Gly	Thr	Gln	Phe	Ile	
		170					175					180				
cgt	ggt	gtg	tct	gga	gga	gaa	aga	aaa	agg	act	agt	ata	gga	atg	gag	628
Arg	Gly	Val	Ser	Gly	Gly	Glu	Arg	Lys	Arg	Thr	Ser	Ile	Gly	Met	Glu	
	185					190					195					
ctt	atc	ac t	gat	cct	tcc	atc	ttg	ttc	ttg	gat	gag	cct	aca	ac t	ggc	676
Leu	Ile	Thr	Asp	Pro	Ser	Ile	Leu	Phe	Leu	Asp	Glu	Pro	Thr	Thr	Gly	
200					205					210					215	
tta	gac	tca	agc	aca	gca	aat	gct	gtc	ctt	ttg	ctc	ctg	aaa	agg	atg	724
Leu	Asp	Ser	Ser	Thr	Ala	Asn	Ala	Val	Leu	Leu	Leu	Leu	Lys	Arg	Met	
				220					225					230		
tct	aag	cag	gga	cga	aca	atc	atc	ttc	tcc	att	cat	cag	cct	cga	tat	772
Ser	Lys	Gln	Gly	Arg	Thr	Ile	Ile	Phe	Ser	Ile	His	Gln	Pro	Arg	Tyr	
			235					240					245			
tcc	atc	ttc	aag	ttg	ttt	gat	agc	ctc	acc	tta	ttg	gcc	tca	gga	aga	820
Ser	Ile	Phe	Lys	Leu	Phe	Asp	Ser	Leu	Thr	Leu	Leu	Ala	Ser	Gly	Arg	
		250					255					260				
ctt	atg	ttc	cac	ggg	cct	gct	cag	gag	gcc	ttg	gga	tac	ttt	gaa	tca	868
Leu	Met	Phe	His	Gly	Pro	Ala	Gln	Glu	Ala	Leu	Gly	Tyr	Phe	Glu	Ser	
	265					270					275					

gct	ggt	tat	cac	tgt	gag	gcc	tat	aat	aac	cct	gca	gac	ttc	ttc	ttg	916
Ala	Gly	Tyr	His	Cys	Glu	Ala	Tyr	Asn	Asn	Pro	Ala	Asp	Phe	Phe	Leu	
280					285					290					295	
gac	atc	att	aat	gga	gat	tcc	act	gct	gtg	gca	tta	aac	aga	gaa	gaa	964
Asp	Ile	Ile	Asn	Gly	Asp	Ser	Thr	Ala	Val	Ala	Leu	Asn	Arg	Glu	Glu	
				300					305					310		
gac	ttt	aaa	gcc	aca	gag	atc	ata	gag	cct	tcc	aag	cag	gat	aag	cca	1012
Asp	Phe	Lys	Ala	Thr	Glu	Ile	Ile	Glu	Pro	Ser	Lys	Gln	Asp	Lys	Pro	
			315					320					325			
ctc	ata	gaa	aaa	tta	gcg	gag	att	tat	gtc	aac	tcc	tcc	ttc	tac	aaa	1060
Leu	Ile	Glu	Lys	Leu	Ala	Glu	Ile	Tyr	Val	Asn	Ser	Ser	Phe	Tyr	Lys	
		330					335					340				
gag	aca	aaa	gct	gaa	tta	cat	caa	ctt	tcc	ggg	ggt	gag	aag	aag	aag	1108
Glu	Thr	Lys	Ala	Glu	Leu	His	Gln	Leu	Ser	Gly	Gly	Glu	Lys	Lys	Lys	
	345					350					355					
aag	atc	aca	gtc	ttc	aag	gag	atc	agc	tac	acc	acc	tcc	ttc	tgt	cat	1156
Lys	Ile	Thr	Val	Phe	Lys	Glu	He	Ser	Tyr	Thr	Thr	Ser	Phe	Cys	His	
360					365					370					375	
caa	ctc	aga	tgg	gtt	tcc	aag	cgt	tca	ttc	aaa	aac	ttg	ctg	ggt	aat	1204
Gln	Leu	Arg	Trp	Val	Ser	Lys	Arg	Ser	Phe	Lys	Asn	Leu	Leu	Gly	Asn	
				380					385					390		

ccc	cag	gcc	tct	ata	gct	cag	atc	att	gtc	aca	gtc	gta	ctg	gga	ctg	1252
Pro	Gln	Ala	Ser	He	Ala	Gln	Ile	Ile	Val	Thr	Val	Val	Leu	Gly	Leu	
			395					400					405			
gtt	ata	ggt	gcc	att	tac	ttt	ggg	cta	aaa	aat	gat	tct	act	gga	atc	1300
Val	Ile	Gly	Ala	Ile	Tyr	Phe	Gly	Leu	Lys	Asn	Asp	Ser	Thr	Gly	Ile	
		410					415					420				
cag	aac	aga	gct	ggg	gtt	ctc	ttc	ttc	ctg	acg	acc	aac	cag	tgt	ttc	1348
Gln	Asn	Arg	Ala	Gly	Val	Leu	Phe	Phe	Leu	Thr	Thr	Asn	Gln	Cys	Phe	
	425					430					435					
agc	agt	gtt	tca	gcc	gtg	gaa	ctc	ttt	gtg	gta	gag	aag	aag	ctc	ttc	1396
Ser	Ser	Val	Ser	Ala	Val	Glu	Leu	Phe	Val	Val	Glu	Lys	Lys	Leu	Phe	
440		!			445					450					455	
ata	cat	gaa	tac	atc	agc	gga	tac	tac	aga	gtg	tca	tct	tat	ttc	ctt	1444
Ile	His	Glu	Tyr	Ile	Ser	Gly	Tyr	Tyr	Arg	Val	Ser	Ser	Tyr	Phe	Leu	
				460					465					470		
gga	aaa	ctg	tta	tct	gat	tta	tta	ccc	atg	acg	atg	tta	cca	agt	att	1492
Gly	Lys	Leu	Leu	Ser	Asp	Leu	Leu	Pro	Met	Thr	Met	Leu	Pro	Ser	Ile	
			475					480					485			
																٠
ata	ttt	acc	tgt	ata	gtg	tac	ttc	atg	tta	gga	ttg	aag	cca	aag	gca	1540
He	Phe	Thr	Cys	Ile	Val	Tyr	Phe	Met	Leu	Gly	Leu	Lys	Pro	Lys	Ala	
		490					495					500				

gat	gcc	ttc	ttc	gtt	atg	atg	ttt	acc	ctt	atg	atg	gtg	gct	tat	tca	1588
Asp	Ala	Phe	Phe	Val	Met	Met	Phe	Thr	Leu	Met	Met	Val	Ala	Tyr	Ser	
	505					510					515					
gcc	agt	tcc	atg	gca	ctg	gcc	ata	gca	gca	ggt	cag	agt	gtg	gtt	tct	1636
Ala	Ser	Ser	Met	Ala	Leu	Ala	Ile	Ala	Ala	Gly	Gln	Ser	Val	Val	Ser	
520					525					530					535	
gta	gca	aca	ctt	ctc	atg	acc	atc	tgt	ttt	gtg	ttt	atg	atg	att	ttt	1684
Val	Ala	Thr	Leu	Leu	Met	Thr	Ile	Cys	Phe	Val	Phe	Met	Met	Ile	Phe	
				540					545					550		
tca	ggt	ctg	ttg	gtc	aat	ctc	aca	acc	att	gca	tct	tgg	ctg	tca	tgg	1732
Ser	Gly	Leu	Leu	Val	Asn	Leu	Thr	Thr	Ile	Ala	Ser	Trp	Leu	Ser	Trp	
			555					560					565			
ctt	cag	tac	ttc	agc	att	cca	cga	tat	gga	ttt	acg	gct	ttg	cag	cat	1780
Leu	Gln	Tyr	Phe	Ser	Ile	Pro	Arg	Tyr	Gly	Phe	Thr	Ala	Leu	Gln	His	
		570					575					580				
aat	gaa	ttt	ttg	gga	caa	aac	ttc	tgc	cca	gga	ctc	aat	gca	aca	gga	1828
Asn	G1u	Phe	Leu	Gly	Gln	Asn	Phe	Cys	Pro	Gly	Leu	Asn	Ala	Thr	Gly	
	585					590					595					
aac	aat	cct	tgt	aac	tat	gca	aca	tgt	act	ggc	gaa	gaa	tat	ttg	gta	1876
Asn	Asn	Pro	Cys	Asn	Tyr	Ala	Thr	Cys	Thr	Gly	Glu	Glu	Tyr	Leu	Val	
600					605					610					615	

aag cag ggc atc gat ctc tca ccc tgg ggc ttg tgg aag aat cac gtg 1924 Lys Gln Gly Ile Asp Leu Ser Pro Trp Gly Leu Trp Lys Asn His Val 620 625 630 gcc ttg gct tgt atg att gtt att ttc ctc aca att gcc tac ctg aaa 1972 Ala Leu Ala Cys Met Ile Val Ile Phe Leu Thr Ile Ala Tyr Leu Lys 635 640 645ttg tta ttt ctt aaa aaa tat tct taa atttcccctt aattcaaggg 2019 Leu Leu Phe Leu Lys Lys Tyr Ser 650 655 2053 caattctgca gatatccagc acagtggcgg ccgc <210> 13

<211> 655

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: ABCG2-482T

<400> 13

Met Ser Ser Ser Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly Asn
1 5 10 15

Thr Asn Gly Phe Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala Phe Thr

20 25 30

Glu Gly Ala Val Leu Ser Phe His Asn Ile Cys Tyr Arg Val Lys Leu

		35					40	•				45			
Lys	Ser	Gly	Phe	Leu	Pro	Cys	Arg	Lys	Pro	Val	Glu	Lys	Glu	Ile	Leu
	50					55					60				
Ser	Asn	Ile	Asn	Gly	Ile	Me t	Lys	Pro	Gly	Leu	Asn	Ala	Ile	Leu	Gly
65					70					75					80
Pro	Thr	Gly	Gly	Gly	Lys	Ser	Ser	Leu	Leu	Asp	Val	Leu	Ala	Ala	Arg
				85					90					95	
Lys	Asp	Pro	Ser	Gly	Leu	Ser	Gly	Asp	Val	Leu	Ile	Asn	Gly	Ala	Pro
			100					105					110		
Arg	Pro	Ala	Asn	Phe	Lys	Cys	Asn	Ser	Gly	Tyr	Val	Val	Gln	Asp	Asp
		115					120					125			
Val	Val	Met	Gly	Thr	Leu	Thr	Val	Arg	Glu	Asn	Leu	Gln	Phe	Ser	Ala
	130					135					140				
Ala	Leu	Arg	Leu	Ala	Thr	Thr	Met	Thr	Asn	His	Glu	Lys	Asn	Glu	Arg
145					150					155					160
Ile	Asn	Arg	Val	Ile	Gln	Glu	Leu	Gly	Leu	Asp	Lys	Val	Ala	Asp	Ser
				165					170					175	
Lys	Val	Gly	Thr	Gln	Phe	Ile	Arg	Gly	Val	Ser	Gly	Gly	Glu	Arg	Lys
			180					185				•	190		
Arg	Thr	Ser	Ile	Gly	Met	Glu	Leu	Ile	Thr	Asp	Pro	Ser	Ile	Leu	Phe
		195					200					205			
Leu	Asp	Glu	Pro	Thr	Thr	Gly	Leu	Asp	Ser	Ser	Thr	Ala	Asn	Ala	Val
	210					215					220				
Leu	Leu	Leu	Leu	Lys	Arg	Met	Ser	Lys	Gln	Gly	Arg	Thr	Ile	Ile	Phe
225					230					235					240
Ser	Ile	His	Gln	Pro	Arg	Tyr	Ser	Ile	Phe	Lys	Leu	Phe	Asp	Ser	Leu
				245					250					255	
Thr	Leu	Leu	Ala	Ser	Gly	Arg	Leu	Met	Phe	His	Gly	Pro	Ala	Gln	Glu

			260					265					270	•	
Ala	Leu	Gly	Tyr	Phe	Glu	Ser	Ala	Gly	Tyr	His	Cys	Glu	Ala	Tyr	Asn
		275					280					285			
Asn	Pro	Ala	Asp	Phe	Phe	Leu	Asp	Ile	Ile	Asn	Gly	Asp	Ser	Thr	Ala
	290					295					300				
Val	Ala	Leu	Asn	Arg	G1u	Glu	Asp	Phe	Lys	Ala	Thr	Glu	Ile	Ile	Glu
305					310					315					320
Pro	Ser	Lys	Gln	Asp	Lys	Pro	Leu	Ile	Glu	Lys	Leu	Ala	G1u	Ile	Tyr
				325					330					335	
Val	Asn	Ser	Ser	Phe	Tyr	Lys	Glu	Thr	Lys	Ala	Glu	Leu	His	Gln	Leu
		,	340					345					350		
Ser	Gly	Gly	Glu	Lys	Lys	Lys	Lys	Ile	Thr	Val	Phe	Lys	Glu	Ile	Ser
		355					360					365			
Tyr	Thr	Thr	Ser	Phe	Cys	His	Gln	Leu	Arg	Trp	Val	Ser	Lys	Arg	Ser
	370					375					380				
Phe	Lys	Asn	Leu	Leu	Gly	Asn	Pro	Gln	Ala	Ser	Ile	Ala	Gln	Ile	Ile
385					390					395			•		400
Val	Thr	Val	Val	Leu	Gly	Leu	Val	Ile	Gly	Ala	Ile	Tyr	Phe	Gly	Leu
				405					410					415	
Lys	Asn	Asp	Ser	Thr	Gly	Ile	Gln	Asn	Arg	Ala	Gly	Val	Leu	Phe	Phe
			420					425					430		
Leu	Thr	Thr	Asn	Gln	Cys	Phe	Ser	Ser	Val	Ser	Ala	Val	Glu	Leu	Phe
	•	435					440					445			
Val	Val	Glu	Lys	Lys	Leu	Phe	Ile	His	Glu	Tyr	Ile	Ser	Gly	Tyr	Tyr
	450					455					460				
Arg	Val	Ser	Ser	Tyr	Phe	Leu	Gly	Lys	Leu	Leu	Ser	Asp	Leu	Leu	Pro
465					470					475					480
Met	Thr	Met	Leu	Pro	Ser	Ile	Ile	Phe	Thr	Cys	Ile	Val	Tyr	Phe	Met

				485					490					495	
Leu	Gly	Leu	Lys	Pro	Lys	Ala	Asp	Ala	Phe	Phe	Val	Met	Met	Phe	Thr
			500					505					510		
Leu	Met	Met	Val	Ala	Tyr	Ser	Ala	Ser	Ser	Met	Ala	Leu	Ala	He	Ala
		515					520					525			
Ala	Gly	Gln	Ser	Val	Val	Ser	Val	Ala	Thr	Leu	Leu	Met	Thr	Ile	Cys
	530					535					540				
Phe	Val	Phe	Met	Met	Ile	Phe	Ser	Gly	Leu	Leu	Val	Asn	Leu	Thr	Thr
545					550					555					560
Ile	Ala	Ser	Trp	Leu	Ser	Trp	Leu	Gln	Tyr	Phe	Ser	Ile	Pro	Arg	Tyr
				565					570					575	
Gly	Phe	Thr	Ala	Leu	Gln	His	Asn	Glu	Phe	Leu	Gly	Gln	Asn	Phe	Cys
			580					585					590		
Pro	Gly	Leu	Asn	Ala	Thr	Gly	Asn	Asn	Pro	Cys	Asn	Tyr	Ala	Thr	Cys
		595					600					605			
Thr	Gly	Glu	Glu	Tyr	Leu	Val	Lys	Gln	Gly	Ile	Asp	Leu	Ser	Pro	Trp
	610					615					620				
Gly	Leu	Trp	Lys	Asn	His	Val	Ala	Leu	Ala	Cys	Met	Ile	Val	Ile	Phe
625					630					635					640
Leu	Thr	Ile	Ala	Tyr	Leu	Lys	Leu	Leu	Phe	Leu	Lys	Lys	Tyr	Ser	
				645					650					655	

<210> 14

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
 synthesized primer sequence

<400> 14

ccatgacgat gttaccaagt att

23

<210> 15

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
 synthesized primer sequence

<400> 15

aacatcgtca tgggtaataa atc

23

<210> 16

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Artificially
 synthesized primer sequence

<400> 16

cattcatcag cctcgatatt cca

23

<210> 17

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Artificially synthesized primer sequence

<400> 17

accacactct gacctgctgc ta

22

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08112

	Int.	C12N5/10, C12P21/02, C12P2 A61P35/00 // (C12P21/02, C	1/08, A61K45/00, A61K31/ C12R1:91), (C12N5/10, C1	711, A61P43/00,
		o International Patent Classification (IPC) or to both nat	nonal classification and IPC	
Mini	mum do Int.	S SEARCHED ocumentation searched (classification system followed lead of Cl ⁷ C07K14/47, C12N15/09, C07K12N5/10, C12P21/02, C12P2A61P35/00	K16/18, C12N1/15, C12N1/ 1/08, A61K45/00, A61K31/	711, A61P43/00,
		on searched other than minimum documentation to the		
Elec		ata base consulted during the international search (name STN), MEDLINE (STN), Genbank/EMF		rch terms used)
C.	DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Cate	gory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
P	, X , Y	Hideya KOMATANI, et al., "Identif Resistant Protein/Mitoxantrone/ ATP-Binding Cassette Transporte NB-506 and J-107088, Topoisomera Indolocarbazole Structure", Can 01 April, 2001, Vol.61, pages 2	Fication of Breast Cancer Placenta-Specific, er as a Transporter of ase I Inhibitors with an acer Research,	1-10, 11-13,16-18, 20-22
	X Y	Rando ALLIKMETS, et al., "A Hum ATP-Binding Cassette Gene(ABCP) is Involved in Multidrug Resist 1 December 1998, Vol.58, p.5337	on Chromosome 4q22 that ance", Cancer Research,	1,3-5,8-11, 13,16-18,20-22 2,6,7,12
	X Y A	L. Austin DOYLE, et al., "F Transporter from Human MCF-7 Bre Natl. Acad. Sci. USA, December, 1 to 15670	ast Cancer Cells", Proc.	1,3-5,8-11, 13,16-18,20-22 2,6 7,12
	Y	Hiroharu ARAKAWA, et al., "In viv a Novel Indolocarbazole Compound Human Tumors Transplanted into Mi	, J-107088, on Murine and	2,6,7,12
		October, 1999, Vol.90, pages 11	163 to 1170	
\boxtimes	Further	r documents are listed in the continuation of Box C.	See patent family annex.	
* "A" "E" "L" "O" "P"	docume conside earlier of date docume cited to special docume means docume than the	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is e establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed	"T" later document published after the inte priority date and not in conflict with the understand the principle or theory and document of particular relevance; the considered novel or cannot be considered to the document is taken alone document of particular relevance; the considered to involve an inventive step when the document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent.	ne application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be claimed invention cannot be p when the document is a documents, such a skilled in the art family
	16 N	actual completion of the international search Iovember, 2001 (16.11.01)	Date of mailing of the international sear 04 December, 2001 ((
Nan	ne and m Japa	nailing address of the ISA/ nnese Patent Office	Authorized officer	
Facs	simile N	0.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08112

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X Y A	WO 99/40110 A (University of Maryland, Baltimore), 12 August, 1999 (12.08.99), & EP 1054894 A	1,3-5,8-11,13 16-18,20-22 2,6,12 7
X A	WO 98/55416 A (Genetics Inst. Inc.), 10 December, 1998 (10.12.98), & EP 1003855 A	1,3-5,7-11, 13,21,22 2,6,12
A	& EP 1003855 A	2,6,12
:		
	•	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08112

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	[
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following	reasons:
1. Claims Nos.: 14,15,23,24	ļ
1. Claims Nos.: 14,15,23,24 because they relate to subject matter not required to be searched by this Authority, namely:	
The inventions as set forth in the above claims pertain to meth	
for treatment of the human body by therapy, as well as diagnostic method	
and thus relate to a subject matter which this International Search Authority is not required to search.	.ng
Authority is not required to search.	•
2. Claims Nos.: 19	
because they relate to parts of the international application that do not comply with the prescribed requirements t extent that no meaningful international search can be carried out, specifically:	such an
Concerning the "inhibitor" as described in the above claim, description merely discloses a method generally employed in isolating s	
a substance by using the protein according to the invention. Namely	
particular inhibitor is disclosed therein. Such being the case, it is unknown	own
what substances are involved in the scope of the "inhibitor" as descri-	bed
above. Thus, no meaningful search can be practiced on the above cla	im.
3. Claims Nos.:	
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule	5.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
This international scatching Admortly found multiple inventions in this international application, as follows.	
1. As all required additional search fees were timely paid by the applicant, this international search report covers al	searchable
claims.	Scarcinatic
	-
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invit	payment
of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this international search re only those claims for which fees were paid, specifically claims Nos.:	port covers
only those claims for which lees were paid, specificanty claims ros	ĺ
	ľ
4. No required additional search fees were timely paid by the applicant. Consequently, this international	
search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
· · · · · · · · · · · · · · · · · · ·	
Demonstron Protect The additional search fees were accommonied by the applicant's protect	
Remark on Protest	

国際調査報告

発明の属する分野の分類(国際特許分類(IPC)) A.

Int. C1° C07K14/47, C12N15/09, C07K16/18, C12N1/15, C12N1/19, C12N1/21, C12N5/10, C12P21/02, C12P21/08 A61K45/00, A61K31/711, A61P43/00, A61P35/00 // (C12P21/02, C12R1:91) (C12N5/10, C12R1:91)

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 C07K14/47, C12N15/09, C07K16/18, C12N1/15, C12N1/19, C12N1/21, C12N5/10, C12P21/02, C12P21/08 A61K45/00, A61K31/711, A61P43/00, A61P35/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA(STN) MEDLINE(STN) Genbank/EMBL/DDBJ/GeneSeq

 C. 関連すると認められる文献			
引用文献の		関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
<u>Р, Х</u> Р, Ү	Hideya KOMATANI., et al., Identification of Breast Cancer Resistant Protein/Mitoxantrone/Placenta-Specific, ATP-binding Cassette Transporter as a Transporter of NB-506 and J-107088, Topoisomerase I Inhibitors with an Indolocarbazole Structure, CANCER RESEARCH, 1 April 2001, Vol. 61, p. 2827-2832	1-10 11-13, 16-18, 20-22	
🗓 C 燗の締まにも文献が列挙されている □ パテントファミリーに関する別紙を参照			

|X| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 国際調査を完了した日 16.11.01 9359 特許庁審査官(権限のある職員) 4 B 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 光本 美奈子 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3448

国際調査報告

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
<u>X</u> <u>Y</u>	Rando ALLIKMETS., et al., A Human Placenta-specific ATP-Binding Cassette Gene (ABCP) on Chromosome 4q22 That is Involved in Multidrug Resistance, CANCER RESEARCH, 1 December 1998, Vol. 58, p. 5337-5339	1, 3-5, 8-11, 13, 16-18, 20-22 2, 6, 7, 12
$\frac{X}{Y}$	L. Austin DOYLE, et al., A multidrug resistance transporter from human MCF-7 breast cancer cells, Proc. Natl. Acad. Sci. USA December 1998, Vol. 95, p. 15665-15670	1, 3-5, 8-11, 13, 16-18, 20-22 2, 6 7, 12
Υ	Hiroharu ARAKAWA., et al., <i>In vivo</i> Anti-tumor Activity of a Novel Indolocarbazole Compound, J-107088, on Murine and Human Tumors Transplanted into Mice, Jpn. J. Cancer Res., October 199 9Vol. 90, p. 1163-1170	2, 6, 7, 12
$\frac{X}{Y}$	WO 9940110 A (Univ Maryland Baltimore) 12.8月.1999 (12.08.9 9) & EP 1054894 A	1, 3-5, 8-11, 13, 16-18, 20-22 2, 6, 12 ·7
<u>X</u> A	WO 9855416 A (Genetics Inst Inc) 10.12月.1998 (10.12.98) & EP 1003855 A	1, 3-5, 7-11, 13, 21-22 2, 6, 12

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)			
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。				
1. 🗵	請求の範囲 14,15,23,24 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、			
×	前記請求の範囲に記載された発明は、人の身体の治療による処置及び診断方法に係る 発明であるから、国際調査を要しないものである。			
2. 🗵	請求の範囲 19 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい			
	ない国際出願の部分に係るものである。つまり、 前記請求の範囲の「阻害剤」について、明細書には、本発明の蛋白質を用いて、上記のよう な物質を単離する一般的な方法が記載されているのみであり、具体的な阻害剤については何ら 記載されていない。してみると、上記「阻害剤」には具体的にどのような物質が包含されてい るのかが不明であるから、前記請求の範囲については、有意義な調査をすることができない。			
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。			
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)			
次に対	並べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。			
r				
1. []	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。			
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。			
з. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。			
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。			
追加調	査手数料の異議の申立てに関する注意 - 追加調査手数料の納付と共に出願人から異議申立てがあった。			
[追加調査手数料の納付と共に出願人から異議申立てがなかった。			