Sequenciamento em uma máquina minimizando o atraso

utilizando Algoritmos Genéticos

Claudio Busatto
Guilherme Severo

Definição

- * *n* processos devem ser processados sem interrupção em uma máquina.
- * cada processo possui um tempo de processamento, um peso e um prazo.
- * um processo é completo em um tempo Cj.
- * o seu atraso é $T_j = max(C_j d_j, 0)$.
- * o problema consiste em encontrar uma ordem de processamento com atraso total ponderado mínimo.

Exemplo

O conjunto de processos abaixo, possui uma solução ótima 2-1-4-5-3-6-7, com um atraso total de 454.

j	1	2	3	4	5	6	7
рj	12	13	14	16	26	31	32
dj	42	33	51	48	63	88	146
wj	7	9	5	14	10	11	8

Formulação

$$min \sum_{i \in N} w_i T_i$$

s.a.

$$T_i \ge C_i - d_i$$
 $\forall i \in N$ (R1)

$$T_i \ge 0$$
 $\forall i \in N$ (R2)

$$\sum_{i \in \mathcal{N} \cup \{0\}, \ i \neq j} x_{ij} = 1, \qquad \forall j \in \mathcal{N} \cup \{0\}$$
 (S1)

$$\sum_{j \in \mathcal{N} \cup \{0\}, j \neq i} x_{ij} = 1, \qquad \forall i \in \mathcal{N} \cup \{0\}$$
 (S2)

$$C_j \ge C_i - M + (p_j + M)x_{ij} \qquad \forall i \in N \cup \{0\}, \forall j \in N$$
 (S3)

$$C_i \ge 0$$
 $\forall i \in N, C_o = 0$ (S4)

$$x_{ij} \in \{0,1\}$$
 $\forall i \in N \cup \{0\}, \ \forall j \in N \cup \{0\}$ (S5)

Resultados GLPK

Instância	Melhor valor conhecido	Valor obtido no GLPK após 4h
Wt100/1	5988	58713
Wt100/2	6170	66092
Wt100/3	4267	51986
Wt100/5	5283	43650
Wt100/7	50972	197790
Wt100/11	181649	429880
Wt100/13	178840	473290
Wt100/17	332804	692306
Wt100/19	477684	867564
Wt100/23	539716	1097539

Algoritmos Genéticos

O Algoritmo Genético é uma meta-heurística baseada no processo de evolução natural utilizada para solucionar problemas de otimização com técnicas como a herança de indivíduos, mutação, seleção e recombinação. Soluções candidatas que formam uma população são representadas como cadeia de caracteres denominadas cromossomos. Em cada geração, o valor da função de avaliação do indivíduo é calculado e, baseado nesses valores, os melhores indivíduos são selecionados para gerar a próxima geração.

Algoritmos Genéticos

- 1. Gerar uma população inicial
- 2. Avaliar a população e parar se critério de parada satisfeito
 - 3. Repetir até indivíduos suficientes
 - 1. Selecionar pais
 - 2. Recombinar pais para gerar filhos
 - 3. Aplicar mutação nos filhos
 - 4. Selecionar nova população entre pais e filhos e voltar para 2.

Representação do Problema

Cross-Over (Pai)

Cross-Over (Pai, Mãe)

Mutação (n)

- A mutação acontece sorteando dois genes para trocarem de lugar no cromossomo em questão.
- A mutação ocorre com probabilidade 1/n.
- Em nosso algoritmo n equivale ao número de indivíduos na população global, ou seja, a probabilidade de ocorrer mutação decai com o crescimento da população.

População e Iterações

- População Inicial: 25
- 2. Tamanho da Elite: 25
- 3. Tamanho máximo da população: 200
- 4. Tempo mínimo de execução do algoritmo: 1 minuto
- 5. Critério de parada: tempo de execução

A população inicial é gerada randomicamente com o cromossomo semente que tem as tarefas na ordem em que estão no arquivo de entrada.

A população vai crescendo até chegar ao limite (200). Quando isto acontece, guardamos a população elite e geramos uma nova população.

População e Iterações

A cada iteração geramos quatro filhos de maneiras diferentes.

- Filho gerado a partir do cross-over(Pai, Mae). Onde o pai é sorteado na população elite e a mãe é sorteada na população global e elite.
- 2. Filho gerado a partir do cross-over(Pai). Onde o pai é sorteado na popualção global.
- 3. Filho gerado a partir da mutação da melhor solução conhecida até o momento.
- 4. Filho gerado randômicamente.

Testes e Resultados

- Em geral nosso algoritmo obteve em média resultados 3% maior do que o melhor valor conhecido para este problema.
- Em praticamente todas instâncias obtivemos pelo menos uma vez a melhor solução conhecida no tempo de 1 minuto.
- Para cada instância executamos o algoritmo no mínimo 3 vezes.
- O aumento do tempo e/ou população praticamente não melhorou o algoritmo.

Testes e Resultados

Entrada	Tempo (minutos)	Valor Encontrado	Melhor Conhecido	Diferença (%)	Média
WT100/1	1	6077	5988	1,49%	3,34%
WT100/1	1	6066	5988	1,30%	
WT100/1	1	5988	5988	0,00%	
WT100/1	1	5988	5988	0,00%	
WT100/1	1	6294	5988	5,11%	
WT100/1	15	5988	5988	0,00%	
WT100/1	15	6076	5988	1,47%	
WT100/1	15	5988	5988	0,00%	
WT100/1	15	6187	5988	3,32%	
WT100/1	15	6076	5988	1,47%	
WT100/1	30	6076	5988	1,47%	
WT100/1	30	6253	5988	4,43%	
WT100/1	30	6076	5988	1,47%	
WT100/1	30	6076	5988	1,47%	
WT100/1	30	6077	5988	1,49%	
WT50/1	1	2346	2134	9,93%	
WT50/1	1	2184	2134	2,34%	
WT50/1	1	2184	2134	2,34%	
WT50/1	1	2134	2134	0,00%	
WT50/1	1	2345	2134	9,89%	
WT50/1	15	2345	2134	9,89%	
WT50/1	15	2134	2134	0,00%	
WT50/1	15	2184	2134	2,34%	
WT50/1	15	2346	2134	9,93%	
WT50/1	15	2395	2134	12,23%	
WT50/1	30	2184	2134	2,34%	
WT50/1	30	2345	2134	9,89%	
WT50/1	30	2184	2134	2,34%	
WT50/1	30	2184	2134	2,34%	
WT50/1	30	2134	2134	0,00%	

Testes e Resultados

WT100/1 WT100/1 WT100/1 WT100/2 WT100/2 WT100/2 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT100/4 WT50/1 WT50/1	6077 6066	5988	1,49%			
WT100/1 WT100/2 WT100/2 WT100/2 WT100/3 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT100/4 WT50/1	6066		1,49%	1,95%		
WT100/2 WT100/2 WT100/2 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT50/1 WT50/1	0000	5988	1,30%			
WT100/2 WT100/2 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT50/1	5988	5988	0,00%			
WT100/2 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT50/1	6308	6170	2,24%			
WT100/3 WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT50/1	6476	6170	4,96%			
WT100/3 WT100/3 WT100/4 WT100/4 WT100/4 WT50/1	6314	6170	2,33%			
WT100/3 WT100/4 WT100/4 WT100/4 WT50/1	4267	4267	0,00%			
WT100/4 WT100/4 WT100/4 WT50/1	4530	4267	6,16%			
WT100/4 WT100/4 WT50/1 WT50/1	4286	4267	0,45%			
WT100/4 WT50/1 WT50/1	5011	5011	0,00%			
WT50/1 WT50/1	5150	5011	2,77%			
WT50/1	5150	5011	2,77%			
	2184	2134	2,34%			
WT50/1	2134	2134	0,00%			
	2345	2134	9,89%			
WT50/2	2011	1996	0,75%			
WT50/2	2011	1996	0,75%			
WT50/2	1998	1996	0,10%			
WT50/3	2619	2593	1,00%			
WT50/3	2691	2593	3,78%			
WT50/3	2691	2593	3,78%			
WT50/4	2691	2691	0,00%			
WT50/4	2691	2691	0,00%			
WT50/4	2691	2691	0,00%			
Testes realizados com tempo máximo de 1 minuto.						

Testes e Comparativo

		GLF	PK	Algoritmo Genético				
Instância	Melhor valor conhecido	Valor obtido	Tempo(min)	Solução Inicial	Solução Final	Desvio SF - SI	Desvio SF – SO	Tempo(min)
WT100/1	5988	58713	240	14251	5988	-137,99%	0,0000%	1
WT100/1	5988	58713	240	14251	6066	-134,93%	1,2859%	1
WT100/2	6170	66092	240	14995	6308	-137,71%	2,1877%	1
WT100/2	6170	66092	240	14995	6314	-137,49%	2,2806%	1
WT100/3	4267	51986	240	9509	4267	-122,85%	0,0000%	1
WT100/3	4267	51986	240	9509	4286	-121,86%	0,4433%	1
WT100/5	5283	43650	240	10852	5283	-105,41%	0,0000%	1
WT100/5	5283	43650	240	10852	5283	-105,41%	0,0000%	1
WT100/7	50972	197790	240	73447	51256	-43,29%	0,5541%	1
WT100/7	50972	197790	240	73447	51293	-43,19%	0,6258%	1
WT100/11	181649	429880	240	214390	181715	-17,98%	0,0363%	1
WT100/11	181649	429880	240	214390	182034	-17,77%	0,2115%	1
WT100/13	178840	473290	240	213154	179539	-18,72%	0,3893%	1
WT100/13	178840	473290	240	213154	180872	-17,85%	1,1234%	1
WT100/17	332804	692306	240	364058	333795	-9,07%	0,2969%	1
WT100/17	332804	692306	240	364058	334020	-8,99%	0,3641%	1
WT100/19	477684	867564	240	507535	477965	-6,19%	0,0588%	1
WT100/19	477684	867564	240	507535	478174	-6,14%	0,1025%	1
WT100/23	539716	1097539	240	545743	539716	-1,12%	0,0000%	1
WT100/23	539716	1097539	240	545743	539720	-1,12%	0,0007%	1

Conclusões

- Problema com complexidade muito alta.
- Meta-heurística
 rápida;
 resultados satisfatórios;
- Solver

 lento;
 resultados para tempos "pequenos",
 insatisfatório

Referências

- http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html
- http://en.wikipedia.org/wiki/Genetic_algorithm
- SOUZA, Marcone J. F., Otimização combinatória
- Ning LIU, M. ABDELRAHMAN e Srini RAMASWAMY., A Genetic Algorithm for Single Machine Total Weighted Tardinesse Scheduling Problem,
- KHOWALA, K., KEKA, A., FOWLER, J. A Comparison of different formulation for the non-preemptive single machine total weighted tardiness scheduling problem.

Muito Obrigado

Perguntas?