Caratterizzazione di un rivelatore gamma 4π per lo studio della reazione $^{14}N(p,\gamma)^{15}O$

Paolo Pusterla

Università degli Studi di Torino

Novembre 2024

Outline

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione

 Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)
- Per capire se la composizione sia uniforme in funzione della profondità, si studia il flusso di neutrini del CNO, combinato con le sezioni d'urto di alcune reazioni (14 N(p, γ) 15 O)

- Costruire il modello standard solare (SSM) richiede conoscenze sulla composizione chimica del Sole
- Analisi spettroscopiche costruiscono due modelli in contraddizione tra loro: LZ (fotosfera 3D) e HZ (fotosfera 1D)
- Per capire se la composizione sia uniforme in funzione della profondità, si studia il flusso di neutrini del CNO, combinato con le sezioni d'urto di alcune reazioni (14 N(p, γ) 15 O)
- Energie solari molto basse (15-50 keV), si studia nel range 50-370 keV

• Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

• Con una $\sigma \approx 10^{-12}$ barn si ha un reaction rate $(N_{reaz}/\Delta t)$ che vale appena $1\div 10$ conteggi al giorno

- Nelle stelle, le reazioni di fusione avvengono ad energie molto inferiori rispetto alla barriera coulombiana
- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

• Con una $\sigma \approx 10^{-12}$ barn si ha un reaction rate $(N_{reaz}/\Delta t)$ che vale appena $1\div 10$ conteggi al giorno

LUNA 400 kV

Figure: L'acceleratore LUNA.

 Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.

 Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.

- Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Il bersaglio solido è TiN

- Il rivelatore è in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Il bersaglio solido è TiN

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione

Obiettivi della tesi

• L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore...

Obiettivi della tesi

- L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore..
- L'analisi dei dati viene confrontata con delle simulazioni in GEANT4.

Table of Contents

- Introduzione
- Obiettivi della tesi
- 3 Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione

Calibrazione in energia

 Viene effettuata con due sorgenti radioattive, ¹³⁷Cs e ⁶⁰Co, ad attività nota

Calibrazione in energia

 Viene effettuata con due sorgenti radioattive, ¹³⁷Cs e ⁶⁰Co, ad attività nota

Calibrazione in energia

 Viene effettuata con due sorgenti radioattive, ¹³⁷Cs e ⁶⁰Co, ad attività nota

Energy calibration: a + b*CHN

Canale	Conversione [keV/CHN]
CHN1	1.1863 ± 0.0009
CHN2	1.1659 ± 0.0013
CHN3	1.3550 ± 0.0019
CHN4	1.2676 ± 0.0006
CHN5	1.2574 ± 0.0010
CHN6	1.1388 ± 0.0014

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può calcolare dall'espressione:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può calcolare dall'espressione:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

14 / 45

• L'attività è calcolata al momento della misurazione (sorgenti radioattive di attività nota con precisione dello 0.7%

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può calcolare dall'espressione:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

 L'attività è calcolata al momento della misurazione (sorgenti radioattive di attività nota con precisione dello 0.7%

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può calcolare dall'espressione:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

• L'attività è calcolata al momento della misurazione (sorgenti radioattive di attività nota con precisione dello 0.7%

Tempo morto

- Il pulser serve per stimare il tempo morto dell'elettronica
- Il pulser è mandato in ogni spicchio del BGo, nota la frequenza di questo si confronta con quella misurata in ogni rivelatore
- Il tempo morto è ricavato dal TTree delle coincidenze, ossia dove lo spicchio del BGO registra i fotoni del pulser nello spettro dei canali

15 / 45

P. Pusterla (UniTo) Short Title

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusione

Simulazioni

- Il setup sperimentale e la reazione $^{14}N(p,\gamma)^{15}O$ sono stati simulati in **GEANT4**
- Gli spettri ottenuti con queste simulazioni sono a risoluzione energetica infinita
- Ho analizzato gli spettri simulati applicando la risoluzione energetica degli spettri sperimentali

Short Title 17 / 45

Risoluzione energetica

Energy spectrum - channel 4

Risoluzione energetica

Energy spectrum - channel 4

• Per trovare la risoluzione energetica si fitta la funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Risoluzione energetica

• Per trovare la risoluzione energetica si fitta la funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Simulazioni

P. Pusterla (UniTo)

Table of Contents

- Introduzione
- Obiettivi della tesi
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusione

Conclusione

• Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione 14 N(p, γ) 15 O

P. Pusterla (UniTo) Short Title 21 / 45

Conclusione

- Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione $^{14}N(p, \gamma)^{15}O$
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza

Short Title 21 / 45

Conclusione

- Durante la tesi ci è occupato della calibrazione di uno strumento per lo studio della reazione 14 N(p, γ) 15 O
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza
- Si sono analizzate le simulazioni Monte Carlo, per poi confrontarle coi dati sperimentali

P. Pusterla (UniTo) Short Title 21 / 45

Fine

Grazie per l'attenzione.

P. Pusterla (UniTo) Short Title 22 / 45

Backup

Slide di backup

P. Pusterla (UniTo) Short Title 23 / 45

L'esperimento

• L'esperimento LUNA (Laboratory for Underground Nuclear Astrophysics) ricrea i processi nucleari che sono avvenuti durante la nucleosintesi primordiale e che avvengono tutt'ora nelle stelle.

P. Pusterla (UniTo) Short Title 24 / 45

L'esperimento

- L'esperimento LUNA (Laboratory for Underground Nuclear Astrophysics) ricrea i processi nucleari che sono avvenuti durante la nucleosintesi primordiale e che avvengono tutt'ora nelle stelle.
- Essendo processi molto rari, un laboratorio sulla superficie terrestre non è adatto per le misure sperimentali di questi, poiché i raggi cosmici maschererebbero il segnale debole atteso.

P. Pusterla (UniTo) Short Title 24 / 45

• I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.

P. Pusterla (UniTo) Short Title 25 / 45

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.

P. Pusterla (UniTo) Short Title 25 / 45

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione $^{14}N(p, \gamma)^{15}O$ è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.

P. Pusterla (UniTo) Short Title 25 / 45

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione $^{14}N(p, \gamma)^{15}O$ è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

P. Pusterla (UniTo) Short Title 25 / 45

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, γ) 15 O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- La tesi ha come obiettivo contribuire alla determinazione della sezione d'urto ad energie 50-370 keV.

P. Pusterla (UniTo) Short Title 25 / 45

Proposta dell'esperimento

• A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

P. Pusterla (UniTo) Short Title 26 / 45

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.

P. Pusterla (UniTo) Short Title 26 / 45

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.
- Il progetto ha come obiettivo determinare la sezione d'urto ad energie 50-370 keV.

Short Title 26 / 45

Reaction rate

ullet II $reaction\ rate\ (N_{reaz}/\Delta t)$ vale quindi appena $1\div 10$ conteggi al giorno

P. Pusterla (UniTo) Short Title 27 / 45

Reaction rate

- Il reaction rate $(N_{reaz}/\Delta t)$ vale quindi appena $1 \div 10$ conteggi al giorno
- Basta pochissimo rumore per nascondere i segnali che rivelano le reazioni

Short Title 27 / 45

Reaction rate

- Il reaction rate $(N_{reaz}/\Delta t)$ vale quindi appena $1 \div 10$ conteggi al giorno
- Basta pochissimo rumore per nascondere i segnali che rivelano le reazioni
- La soluzione è cercare di minimizzare il rumore di fondo

P. Pusterla (UniTo) Short Title 27 / 45

Località

 I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.

tenere immagine

Radiazione LNGS/superficie

Muoni 10-6 Neutroni 10-3

Località

- I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.
- Ciò fa sì che il fondo di raggi cosmici sia fortemente soppresso

tenere immagine

Radiazione LNGS/superficie

Muoni 10-6 Neutroni 10-3

Short Title

Località

- I Laboratori Nazionali del Gran Sasso, situati nella frazione di Assergi, sono schermati dai 1400 m di roccia del Monte Aquila.
- Ciò fa sì che il fondo di raggi cosmici sia fortemente soppresso
- Qui è collocato l'acceleratore LUNA2 a 400 kV, che permette di concentrare fasci ionici molto intensi e stabili.

tenere immagine

Radiazione LNGS/superficie

Muoni 10-6 Neutroni 10-3

Il rivelatore 4π

- Si tratta di un rivelatore in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Si tratta di uno scintillatore, ossia uno strumento che quando eccitato da radiazione ionizzante, ne assorbe l'energia depositata e la riemette sotto forma di fotoni

Figure: Rappresentazione 3D del rivelatore BGO.

P. Pusterla (UniTo) Short Title 29 / 45

Il rivelatore 4π

 Il cristallo, a simmetria cilindrica, è otticamente separato in 6 spicchi uguali.

P. Pusterla (UniTo) Short Title 30 / 45

Efficienza

 L'efficienza di uno scintillatore è il rapporto tra il numero di conteggi prodotti da esso e il numero di conteggi prodotti dalla sorgente:

$$\varepsilon = \frac{N_{\gamma}}{N_{int}} \tag{3}$$

- Si tratta pertanto di quanti fotoni lo strumento "vede" rispetto al totale
- Invertendo l'equazione possiamo ricavare N_{int}, per poi trovare la sezione d'urto

P. Pusterla (UniTo) Short Title 31 / 45

Tempo vivo/morto

- Ogni strumento è elettronicamente vincolato a processare il segnale in ingresso
- Questo può richiedere fino a ns
- Un fotone in arrivo durante questo intervallo di tempo non può essere quindi rilevato
- Alla fine della misura verrano osservati meno fotoni di quelli effettivamente giunti allo strumento, perché quest'ultimo è attivo solo per una parte di tempo rispetto al totale della misura.
- L'intervallo in cui lo strumento è attivo e pronto a ricevere nuovi segnali è il *tempo vivo*.

P. Pusterla (UniTo) Short Title 32 / 45

Risultati del fit

Canale	Conversione [keV/CHN]
CHN1	1.1863 ± 0.0009
CHN2	1.1659 ± 0.0013
CHN3	1.3550 ± 0.0019
CHN4	1.2676 ± 0.0006
CHN5	1.2574 ± 0.0010
CHN6	1.1388 ± 0.0014

P. Pusterla (UniTo) Short Title 33 /

Caratterizzazione in energia

 La caratterizzazione in energia è effettuata utilizzando due sorgenti radioattive: ⁶⁰Co e ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 34 / 45

⁶⁰Co

• II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 35 / 45

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 35 / 45

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.
- Trova applicazione nella radioterapia del cancro.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 35 / 45

^{137}Cs

• II 137 Cs decade sempre tramite decadimento β^- .

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 36 / 45

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.

Figure: Schema di decadimento del ¹³⁷Cs.

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.
- Questo stato eccitato emette l'85% delle volte raggi gamma di 661.7 keV decadendo nello stato fondamentale del ¹³⁷Ba (tutti i raggi gamma provenienti dal ¹³⁷Cs sono prodotti così).

Figure: Schema di decadimento del ¹³⁷Cs.

R.OOT

- L'analisi dati dell'esperimento è compiuta in ROOT
- Il vantaggio di utilizzarlo è una discreta ottimizzazione per quanto riguarda l'analisi di grandi moli di dati grazie al formato file .root
- Si utilizza principalmente in ambito di fisica delle particelle

Short Title 37 / 45

Struttura dei dati

- I dati ricavati sono contenuti in file .root
- Ogni file .root contiene 8 istogrammi, con indici da 0 a 7, di conteggi
- L'istogramma 0 contiene il pulser, utilizzato per calcolare il tempo vivo dello scintillatore
- Gli istogrammi da 1 a 6 sono i singoli spicchi del BGO
- L'istogramma 7 è la corrente del fascio incidente sul BGO

P. Pusterla (UniTo) Short Title 38 / 45

Picco somma

- Può accadere che lo strumento riveli due fotoni emessi dallo stesso evento contemporaneamente
- In tal caso, viene registrato come un unico fotone, ma con energia pari alla somma delle energie dei fotoni

Short Title 39 / 45

Residui

 I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta

P. Pusterla (UniTo) Short Title 40 / 45

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione

40 / 45

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione
- In generale una calibrazione è buona se i residui non superano la decina di keV

P. Pusterla (UniTo) Short Title 40 / 45

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

P. Pusterla (UniTo) Short Title 41 / 45

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

P. Pusterla (UniTo) Short Title 41 / 45

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

Parametrico

- Metodo che sfrutta i parametri del fit
- Il coefficiente di normalizzazione del picco gaussiano è il numero di conteggi nel picco
- Adatto per cesio e cobalto

P. Pusterla (UniTo) Short Title 41 / 45

Efficienza

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto

P. Pusterla (UniTo) Short Title 42 / 45

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{4}$$

P. Pusterla (UniTo) Short Title 42 / 45

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{4}$$

L'attività è calcolata al momento della misurazione.

Short Title 42 / 45

P. Pusterla (UniTo) Short Title 4

Calcolo della calibrazione

- La calibrazione viene effettuata sul file run1775_coinc.root, con entrambe le sorgenti.
- Calibrare uno scintillatore significa trovare il fattore di conversione da canali a energia.
- Per ogni spicchio del BGO si esegue un fit per trovare il valore dei picchi caratteristici e del picco somma in canali.

P. Pusterla (UniTo) Short Title

Risoluzione energetica

- Le simulazioni contengono picchi di energia ideali, a cui non è stata applicata la risoluzione dello strumento
- Questa si può trovare eseguendo fit gaussiani sugli istogrammi in energia, anziché canali
- La risoluzione è il rapporto tra la deviazione standard del picco e la corrispondente energia nota
- Le risoluzioni si mettono su un grafico contro le corrispettive energie note, fittandovi una funzione:

$$f(E) = a + \frac{b}{\sqrt{E}}$$

Short Title 45 / 45