

PREFACE TO THE SECOND EDITION INTRODUCTION xxiii

XX

CHAPTER • 1 Financial Derivatives A Brief Introduction

9 Exercises

viii

111			ر
CHAPTER · 2 A Primer on the Arbitrage Theorem	n the Arbitrage	Theorem	
1 Introduction 1.	13		
2 Notation 14			
2.1 Asset Prices 15			
2.2 States of the World	15		
2.3 Returns and Payoffs	16		
2.4 Portfolio 17		· · · · · · · · · · · · · · · · · · ·	
3 A Basic Example of Asset Pricing	Asset Pricing	17	
3.1 A First Glance at the Arbitrage Theorem	rbitrage Theorem	19	
3.2 Relevance of the Arbitrage Theorem	age Theorem 20	e e e e e e	
3.3 The Use of Synthetic Probabilities	obabilities 21	e-cano k	
3.4 Martingales and Submartingales	tingales 24		
3.5 Normalization 24			
3.6 Equalization of Rates of Return	Return 25		
3.7 The No-Arbitrage Condition	ition 26	e—•ko•€ec	
4 A Numerical Example	le 27		
4.1 Case 1: Arbitrage Possibilities	ilities 27		
4.2 Case 2: Arbitrage-Free Prices	rices 28		
4.3 An Indeterminacy	29	er e-thyr	
5 An Application: Lattice Models		29	
6 Payouts and Foreign Currencies		32	`
6.1 The Case with Dividends	ls 32		
6.2 The Case with Foreign Currencies	Surrencies 34		
7 Some Generalizations	s 36		
7.1 Time Index 36			
7.2 States of the World	36	e e e e e e e e e e e e e e e e e e e	
7.3 Discounting 37			
8 Conclusions: A Methodology for Pricing	hodology for Pricin	gr	
Assets 37			
9 References 38			
:: Gene	ation of the Arbitt	age.	
Theorem			
11 Exercises 40			

Contents

.≿

Calculus in Deterministic and	Stochastic Environments
CHAPTER · 3	

			47													2			
	46	or 46	rd Calculus		48	49	it 52				65	99		29	89	rtions 72			
n 45		ndom Behavi	s of Standar	47		Functions	ce and Lim	ve 53	Rule 57	. 65	y Parts	ivatives	29		Expansion	ferential Equa	13	74	74
1 Introduction	1.1 Information Flows	1.2 Modeling Random Behavior	2 Some Tools of Standard Calculus	3 Functions	3.1 Random Functions	3.2 Examples of Functions	4 Convergence and Limit	4.1 The Derivative	4.2 The Chain Rule	4.3 The Integral	4.4 Integration by Parts	5 Partial Derivatives	5.1 Example	5.2 Total Differentials	5.3 Taylor Series Expansion	5.4 Ordinary Differential Equations	6 Conclusions	7 References	8 Exercises
1	1.1	1.7	2	3	3.1	3.2	4	4	4.2	4	4.	īΟ	5.1	5.7	5.	5.4	9	2	œ

CHAPTER • 4 Pricing Derivatives Models and Notation

				\$						
	78			cing Method			98			
77		78	80	Another Pric	85	98	Ito's Lemma	88	88	68
1 Introduction	2 Pricing Functions	2.1 Forwards	2.2 Options	3 Application: Another Pricing Method	3.1 Example	4 The Problem	4.1 A First Look at Ito's Lemma	4.2 Conclusions	5 References	6 Exercises
Т	7	2.	2,	33	κ,	4	4	4	Ŋ	9

(

CHAPTER • 5 Tools in Probability Theory	4 Relev
	Mode
2 Describility 01	4.1 An E
5	5 Prope
	6 Exam
2.2 Kandom Variable 93	6.1 Exam
<u></u>	6.2 Exam
44	6.3 Exam
5	6.4 Exam
itions	7 The
	7.1 An A
Properties of Conditional Expectation	7.2 An E
	8 Mart
I ni nv	8.1 An E
roper	8.2 Doob
5,3 Moments 102	9 The
5.4 The Normal Distribution 103	9.1 Appli
5.5 The Poisson Distribution 106	10 Marti
6 Markov Processes and Their Relevance 108	11 A Pr
6.1 The Relevance 109	11.1 A He
6.2 The Vector Case 110	11.2 Time
7 Convergence of Random Variables 112	11.3 Norm
7.1 Types of Convergence and Their Uses 112	11.4 A Su
7.2 Weak Convergence 113	12 Conc
8 Conclusions 116	13 Refer
9 References 116	14 Exerc
10 Exercises 117	
CHAPTER 6 Martingales and Martingale	CHAPTER · 7
Representations	1 Intro
1 Introduction 119	2 Motiv
2 Definitions 120	3 A Fr
2.1 Notation 120	Diffe
2.2 Continuous-Time Martingales 121	4 The
3 The Use of Martingales in Asset Pricing 122	5 One

.X

4 Relevance of Martingales in Stochastic	Stochastic
Modeling 124	
4.1 An Example 126	
5 Properties of Martingale Trajectories	ijectories 127
6 Examples of Martingales	130
6.1 Example 1: Brownian Motion 1.	130
6.2 Example 2: A Squared Process	132
6.3 Example 3: An Exponential Process	ss 133
6.4 Example 4: Right Continuous Martingales	rtingales 134
7 The Simplest Martingale	134
7.1 An Application 135	
7.2 An Example 136	
8 Martingale Representations	137
8.1 An Example 137	
8.2 Doob-Meyer Decomposition 14	140
9 The First Stochastic Integral	1 143
9.1 Application to Finance: Trading Gains	Jains 144
10 Martingale Methods and Pricing	cing 145
11 A Pricing Methodology 1	146
11.1 A Hedge 147	
11.2 Time Dynamics 147	
11.3 Normalization and Risk-Neutral Probability	robability 150
11.4 A Summary 152	
12 Conclusions 152	
13 References 153	
14 Exercises 154	
PTER • 7 Differentiation in Stochastic	Stochastic
1 Introduction 156	
2 Motivation 157	
3 A Framework for Discussing	20
Differentiation 161	
4 The "Size" of Incremental Errors	Errors 164
5 One Implication 167	

Contents	

XII

Contents

xiii

6 Putting the Results Together	Together 169	•
6.1 Stochastic Differentials	170	
7 Conclusions 1'	171	
8 References 171	1	
9 Exercises 171		
CHAPTER • 8 The Wiener Process and Rare	Process and F	lare
Events in Fi	Events in Financial Markets	ts
1 Introduction 1	173	
1.1 Relevance of the Discussion	ion 174	
2 Two Generic Models	175	
2.1 The Wiener Process	176	
2.2 The Poisson Process	178	
2.3 Examples 180		
2.4 Back to Rare Events	182	
3 SDE in Discrete Intervals, Again	ervals, Again	183
4 Characterizing Rare and Normal Events	and Normal Events	184
4.1 Normal Events 187	4	
4.2 Rare Events 189		erec est
5 A Model for Rare Events	/ents 190	
6 Moments That Matter	er 193	2-11-2-11-2
7 Conclusions 19	195	
8 Rare and Normal Events in Practice	ents in Practice	196
8.1 The Binomial Model	961	
8.2 Normal Events 197	7	V-21-20-14
8.3 Rare Events 198		The second of
8.4 The Behavior of Accumulated Changes		199
9 References 202	2	
10 Exercises 203		

CHAPTER • 9 Integration in Stochastic Environments
The Ito Integral

204

1 Introduction

207	211		220	226			
 1.1 The Ito Integral and SDEs 206 1.2 The Practical Relevance of the Ito Integral 2 The Ito Integral 208 	2.1 The Riemann–Stieltjes Integral2.2 Stochastic Integration and Riemann Sums	2.3 Definition: The Ito Integral2.4 An Expository Example2.4 An Expository Example	3 Properties of the Ito Integral 22 3.1 The Ito Integral Is a Martingale 220	3.2 Pathwise Integrals4 Other Properties of the Ito Integral	4.1 Existence 226	4.2 Correlation Properties 226	4.3 Addition 227

CHAPTER · 10 Ito's Lemma

227

5 Integrals with Respect to Jump Processes

228

228 228

6 Conclusions 7 References 8 Exercises

2	
2 Types of Derivatives 231	
2.1 Example 232	
3 Ito's Lemma 232	
3.1 The Notion of "Size" in Stochastic Calculus 235	5
3.2 First-Order Terms 237	
3.3 Second-Order Terms 2.38	
3.4 Terms Involving Cross Products 239	
3.5 Terms in the Remainder 240	
4 The Ito Formula 240	
5 Uses of Ito's Lemma 241	
5.1 Ito's Formula as a Chain Rule 241	
5.2 Ito's Formula as an Integration Tool 242	
6 Integral Form of Ito's Lemma 244	
7 Ito's Formula in More Complex Settings	245

282

3.1 An Interpretation

245

7.1 Multivariate Case

×i×

Contents

7.2 Ito's Formula and Jumps 248	4 Partial Differential Equations 282
8 Conclusions 250	4.1 Why Is the PDE an "Equation"? 283
9 References 251	4.2 What Is the Boundary Condition? 283
10 Exercises 251	5 Classification of PDEs 284
	5.1 Example 1: Lincar, First-Order PDE 284
CHAPTER • 11 The Dynamics of Derivative Prices	5.2 Example 2: Lineat, Second-Order PDE 286
Stochastic Differential I	6 A Reminder: Bivariate, Second-Degree
1 Introduction 252	Equations 289
a, and o	
2 A Geometric Description of Paths Implied by	ři.
SDEs 254	2
3 Solution of SDEs 255	292
3.1 What Does a Solution Mean? 255	767
3.2 Types of Solutions 256	bolic PI
3.3 Which Solution Is to Be Preferred? 258	S.
3.4 A Discussion of Strong Solutions 258	ge.
3.5 Verification of Solutions to SDEs 261	10 Exercises 294
3.6 An Important Example 262	
4 Major Models of SDEs 265	CHAPTER • 13 The Black-Scholes PDE
4.1 Linear Constant Coefficient SDEs 266	An Application
4.2 Geometric SDEs 267	1 Introduction 296
500	2 The Black-Scholes PDE 296
270	2.1 A Geometric Look at the Black-Scholes Formula
5 Ornstein-Uhlenbeck Process	3 PDEs in Asset Pricing 299
olatilit	8
v <u>s</u>	
SS.	4.1 Lookback Options 301
6 Exercises 2/3	4.2 Ladder Options 301
	4.3 Trigger or Knock-in Options 302
CHALLER' 12 Fricing Derivative Froducts	4.4 Knock-out Options 302
Partial Differential Equations	4.5 Other Exotics 302
1 Introduction 275	The Relevant PDEs 303
olios	5 Solving PDEs in Practice 304
3 Accuracy of the Method 280	5.1 Closed-Form Solutions 304

367

X

306

5.2 Numerical Solutions

xvii

3.1 Determining P

Contents

353

4 Application: The Black–Scholes Formula	4.1 Calculation 356 5 Comparing Martingale and PDE	Approaches 358 5.1 Equivalence of the Two Approaches 359	5.2 Critical Steps of the Derivation 363 5.3 Integral Form of the Ito Formula 364	6 Conclusions 365 7 References 366	60	CHAPTER · 16 New Results and Tools for	Interest-Sensitive Securities	1 Introduction 368		Deriva		Ħ	5. Conclusions 377	6 References 378	7 Exercises 378	CHADTED 17 A Mitenay Theorem in a New		Normalization and Random Interest R	1 Introduction 379	2 A Model for New Instruments 381	2.1 The New Environment 383	2.2 Normalization 389	2.3 Some Undesirable Properties 392	ion	2.5 Some Implications 399	
6 Conclusions 309 7 References 310	8 Exercises 310	PTER • 14 Pricing Derivative Products Equivalent Martingale Measures	1 Translations of Probabilities 312	1.1 Probability as "Measure" 312 2 Changing Means 316	2.1 Method 1: Operating on Possible Values 317 2.2 Method 2: Operating on Probabilities 321	3 The Girsanov Theorem 322		3.3 The Radon-Nikodym Derivative 327	3.4 Equivalent Measures 328	32	he G	332	o which Frobabilities: 334 7 A Method for Generating Equivalent	Probabilities 337	346	8 Conclusions 342 9 References 342	Ę	•	FIER • 15 Equivalent Martingale Measures	Applications	1 Introduction 345	2 A Martingale Measure 346	2.1 The Moment-Generating Function 346	348	3 Converting Asset Prices into Martingales 349	

Normalization and Random Interest Rates

xviii

3 Concl	Conclusions	404			3.3 Interpretati	rpretatí
4 References	ences	404			3.4 The r, in d	r, in d
5 Exercises		404			3.5 Another Ac	rther A
					3.6 Market Pra	ket Pra
CHAPTER • 18	Modelin	g Term 5	18 Modeling Term Structure and		4 How to Fi	v to F
	Related	Related Concents			4.1 Monte Carl	ite Carl
1	1	403 A		-,	4.2 Tree Model	: Model
1 Introc	Introduction	407			4.3 Closed-Forn	ed-For
	prs	40 2		,	5 Conclusio	clusio
	Three Curves	409		***************************************	. 6 Reference	rence
2.2 Mover	Movements on the Yield Curve A Rand Pricing Fountier	field Curve Fauation	412 414		7 Exercises	cises
3.1 Consta	Constant Spot Rate	414	-			7
	Stochastic Spot Rates	s 416		-\a	CHAP1EK · 20 C	フ -
	Moving to Continuous Time	us Time	417	ng di antoning		<u>%</u>
3.4 Yields	Yields and Spot Rates	s 418			1 Introducti	oducti
	Forward Rates and Bond Prices	d Bond Pri	ces 419	-africate	2 The I	The Fram
4.1 Discret	Discrete Time	419			3 Market Pr	ket P1
4.2 Movin	Moving to Continuous Time	us Time	420		4 Derivation	vation
	Conclusions: Relevance of the	evance of the	he	Morphil	4.1 A Comparis	ompari
Relati	Relationships	423		The sale of the	5 Closed-Fo	ed-Fo
6 References	saces	424			5.1 Case 1: A I	1: A I
		424			5.2 Casc 2: A N	2: A 1
					5.3 Case 3: Mor	; 3: Mo
CHAPTER · 19	Classica	and HII	19 Classical and HIM Approaches to	to	6 Conclusion	clusio
	Fixed Income	, emos	1		7 Reference	rence
1 Introd	Introduction	426		ing order	8 Exercises	cises
2 The C	Jassical Ap	proach	2 The Classical Approach 427		CHAPTED . 21 D.	Ď
2.1 Examp	te 1 428			Aleger	17. VIII 1711	
2.2 Examp	de 2 429					3
2.3 The G	eneral Casc	429		- degrees eve	1 Introducti	oducti
2.4 Using 1	the Spot Rate	Model ,	132	a consecutive	2 From Con	n Con
2.5 Compa	arison with the	Black-Schole	s World 434		2.1 Case 1: Cor	: Coi
3 The H	IJM Approa	ch to Term		435	2.2 Case 2: Bor	2: Bor
3.1 Which	Which Forward Rate?	? 436		e les in a	2.3 Case 3: A (3: A (
	Arbitrage-Free Dynamics in HJM	nics in HJM	437		2.4 Some Clarif	e Clari

хіх 444 443 How to Fit r, to Initial Term Structure Another Advantage of the HJM Approach 447 The r, in the HJM Approach 447 447 445 446 Closed-Form Solutions Market Practice 3.3 Interpretation Conclusions Monte Carlo Tree Models References Contents

CHAPTER • 20 Classical PDE Analysis for Interest Rate Derivatives 1 Introduction 451

448

		k 455			E 460						
	4	Rate Risl	457		the PDI	460	461	464			
171	ork 454	of Interest	the PDE	459	Solutions of	rministic r_t	n-Reverting r,	complex Forms	465	465	465
THEODER	2 The Framework	3 Market Price of Interest Rate Risk	4 Derivation of the PDE	4.1 A Comparison	5 Closed-Form Solutions of the PDE	5.1 Case 1: A Deterministic r_t	5.2 Case 2: A Mean-Reverting r _t	5.3 Case 3: More Complex Forms	6 Conclusions	7 References	8 Exercises
-	7	3	4	4,	Ŋ	7,	5.	ζ.	9	7	00

CHAPTER • 21 Relating Conditional Expectations

		469				
		PDE_{s}	469			
to PDEs	467	rpectations to		472	475	475
	1 Introduction 4	2 From Conditional Expectations to PDEs	2.1 Case 1: Constant Discount Factors	2.2 Case 2: Bond Pricing	2.3 Case 3: A Generalization	2.4 Some Clarifications
	1	2 F	2.1	2.2	2.3	2.4

476

2.5 Which Drift?

56
×

2.6 Another Bond Price Formula	477
2.7 Which Formula? 479	
3 From PDEs to Conditional Expectations	Expectations 479
4 Generators, Feynman-Kac Formula, and Other	Formula, and Other
Tools 482	
4.1 Ito Diffusions 482	
4.2 Markov Property 483	
4.3 Generator of an Ito Diffusion	483
4.4 A Representation for A 48	484
4.5 Kolmogorov's Backward Equation	n 485
5 Feynman-Kac Formula	487
6 Conclusions 487	
7 References 487	
8 Exercises 487	

CHAPTER · 22 Stopping Times and American-Type Securities

491	
1 Introduction 489 2 Why Study Stopping Times? 3 Stopping Times 492 4 Uses of Stopping Times 493 5 A Simplified Setting 494 5.1 The Model 494 6 A Simple Example 499 7 Stopping Times and Martingales 7.1 Martingales 504 7.2 Dynkin's Formula 504 8 Conclusions 505 9 References 505	10 Exercises 505

PREFACE THE SECOND EDITION

This edition is divided into two parts. The first part is essentially the revised and expanded version of the first edition and consists of 15 chapters. The second part is entirely new and is made of 7 chapters on more recent and more complex material.

Overall, the additions amount to nearly doubling the content of the first edition. The first 15 chapters are revised for typos and other crrors and are supplemented by several new sections. The major novelty, however, is in the 7 chapters contained in the second part of the book. These chapters use a similar approach adopted in the first part and deal with mathematical tools for fixed-income sector and interest rate products. The last chapter is a brief introduction to stopping times and American-style instruments.

The other major addition to this edition are the Exercises added at the ends of the chapters. Solutions will appear in a separate solutions manual.

Several people provided comments and helped during the process of revising the first part and with writing the seven new chapters. I thank Don Chance, Xiangrong Jin, Christina Yunzal, and the four anonymous referees who provided very useful comments. The comments that I received from numerous readers during the past three years are also greatly appreciated.

509

BIBLIOGRAPHY

513

INDEX