STATS 701 – Theory of Reinforcement Learning Markov Decision Processes, part 2

Ambuj Tewari

 $\label{eq:Associate Professor, Department of Statistics, University of Michigan \\ tewaria@umich.edu$

https://ambujtewari.github.io/stats701-winter2021/

Slide Credits: Prof. M. Vidyasagar @ IIT Hyderabad, India

Winter 2021

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

Value of a Policy by Iteration

Each policy $\pi \in \Pi_d$ results in a Markov process with state transition matrix A^{π} and reward function R_{π} .

Define the vector \mathbf{v}_{π} by

$$\mathbf{v}_{\pi} = [V_{\pi}(x_1) \dots V_{\pi}(x_n)],$$

and the reward vector \mathbf{r}_{π} by

$$\mathbf{r}_{\pi} = [R_{\pi}(x_1) \ldots R_{\pi}(x_n)].$$

Then \mathbf{v}_{π} satisfies the familiar relation

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma A^{\pi} \mathbf{v}_{\pi}.$$

This equation can be solved by iteration, as before.

| □ → ∢ ₱ → ∢ ≣ → ↑ Q (~

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

Acton-Value Function

Definition

The action-value function $Q: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ is defined by

$$Q_{\pi}(x_i, u_k) := E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R_{\pi}(X_t) | X_0 = x_i, U_0 = u_k \right].$$

Note: In the definition of $Q_{\pi}(x_i, u_k)$, at the first instant t = 0 we choose the action u_k as we wish, not necessarily as $u_k = \pi(x_i)$.

But for $t \geq 1$, we choose $U_t = \pi(X_t)$.

Q can be viewed as a real vector of dimension $|\mathcal{X}| \cdot |\mathcal{U}|$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (^)

Recursive Relationshop of Action-Value Function

Theorem

The function Q satisfies the recursive relationship

$$Q_{\pi}(x_i, u_k) = R(x_i, u_k) + \gamma \sum_{j=1}^n a_{ij}^{u_k} Q_{\pi}(x_j, \pi(x_j)).$$

Proof in the notes.

Relationship Between Action-Value and Value Functions

Theorem

The functions V_{π} and Q_{π} are related via

$$V_{\pi}(x_i) = Q_{\pi}(x_i, \pi(x_i)).$$

In view of this theorem, the recursive equation for Q_{π} , namely

$$Q_{\pi}(x_i, u_k) = R(x_i, u_k) + \gamma \sum_{j=1}^n a_{ij}^{u_k} Q_{\pi}(x_j, \pi(x_j)).$$

can be rewritten as

$$Q_{\pi}(x_i, u_k) = R(x_i, u_k) + \gamma \sum_{j=1}^{n} a_{ij}^{u_k} V_{\pi}(x_j).$$

- 4ロト 4個ト 4 差ト 4 差ト 差 めくぐ

9 / 28

Ambuj Tewari (UMich) STATS 701: MDPs, part 2 Winter 2021

Optimal Value Function and Optimal Policy

Let $V^*(x_i)$ denote the maximum value of the discounted future reward, over all policies $\pi \in \Pi_d$:

$$V^*(x_i) := \max_{\pi \in \Pi_d} V_{\pi}(x_i).$$

Note that, though the set Π_d may be huge, it is nevertheless a finite set. Therefore the maximum above exists. Also define

$$\pi^* = \underset{\pi \in \Pi_d}{\operatorname{arg max}} V_{\pi}(x_i).$$

Thus π^* is any policy such that $V_{\pi^*} = V^*$.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

Bellman Optimality Equation

Theorem

Define $V^*(x_i)$ as above. Then $V^*(x_i)$ satisfies the reursive relationship

$$V^*(x_i) = \max_{u_k \in \mathcal{U}} \left[R(x_i, u_k) + \gamma \sum_{j \in [n]} a_{ij}^{u_k} V^*(x_j) \right].$$

This is known as the Bellman optimality equation. Note that it does not help us to find the function V^* ; it just a characterization of V^* .

Rationalization of the Bellman Optimality Equation

Suppose that we have somehow determined the maximum possible value $V^*(1,x_j)$ at time t=1 for each state $x_j \in \mathcal{X}$. Now at time t=0, suppose the state $X_0=x_i$. Then each action $u_k \in \mathcal{U}$ leads to the value

$$R(x_i, u_k) + \gamma \sum_{j \in [n]} a_{ij}^{u_k} V^*(1, x_j).$$

So the maximum value at time t = 0, state $X_0 = x_i$ is given by

$$V^*(0,x_i) = \max_{u_k \in \mathcal{U}} \left[R(x_i, u_k) + \gamma \sum_{j \in [n]} a_{ij}^{u_k} V^*(1,x_j) \right].$$

However, since both the MDP and policy are time-invariant, we must have that $V(1, x_i) = V(0, x_i)$ for each $x_i \in \mathcal{X}$.

40140140101000

Ambui Tewari (UMich) STATS 701: MDPs, part 2 Winter 2021 12 / 28

Recursive Relationship for Optimal Action-Value Function

Theorem

Define

$$Q^*(x_i, u_k) = R(x_i, u_k) + \gamma \sum_{j=1}^n a_{ij}^{u_k} V^*(x_j).$$

Then $Q^*(\cdot,\cdot)$ satisfies the relationship

$$Q^*(x_i, u_k) = R(x_i, u_k) + \gamma \sum_{j=1}^n a_{ij}^{u_k} \max_{w_l \in \mathcal{U}} Q^*(x_j, w_l).$$

Note that the maximum w.r.t. $u_k \in \mathcal{U}$ is in a different place compared to the Bellman equation. This is crucial.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

Advantage of Optimal Action-Value Function

Theorem

Once $Q^*(\cdot,\cdot)$ is determined, we have that

$$V^*(x_i) = \max_{u_k \in \mathcal{U}} Q^*(x_i, u_k),$$

$$\pi^*(x_i) = \arg \max_{u_k \in \mathcal{U}} Q^*(x_i, u_k),$$

Moreover, it is easier to "learn" $Q^*(\cdot,\cdot)$ than to "learn" $V^*(\cdot)$, as we shall see.

4□ > 4□ > 4 = > 4 = > = 90

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

Ambuj Tewari (UMich)

Value Update Map

Define the optimal value vector \mathbf{v}^* as

$$\mathbf{v}^* = [V^*(x_1) \cdots V^*(x_n)].$$

Next, define a "value update" map $T: \mathbb{R}^n \to \mathbb{R}^n$, as follows:

$$(T\mathbf{v})_i := \max_{u \in \mathcal{U}} \left[R(x_i, u) + \gamma \sum_{j \in [n]} a^u_{ij} v_j \right].$$

One can think of \mathbf{v} as the current guess for the vector \mathbf{v}^* , and of $T\mathbf{v}$ as an updated guess. The next theorem shows that this intuition is valid.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Value Iteration

Theorem

The map T is both monotone and a contraction. As a result, for all $\mathbf{v}_0 \in \mathbb{R}^n$, the sequence of iterations $\{T^k \mathbf{v}_0\}$ approaches \mathbf{v}^* as $k \to \infty$.

Value Iteration Proof

Monotonicity is easy to prove, hence focus on contraction

$$\begin{split} &|(T\mathbf{w})_{i} - (T\mathbf{v})_{i}| \\ &= |\max_{u}[R(x_{i}, u) + \gamma \sum_{j} a_{ij}^{u} w_{j}] - \max_{u}[R(x_{i}, u) + \gamma \sum_{j} a_{ij}^{u} v_{j}]| \\ &\leq \max_{u} |\gamma \sum_{j} a_{ij}^{u} w_{j} - \gamma \sum_{j} a_{ij}^{u} v_{j}| \\ &= \gamma \max_{u} |(A^{u}w)_{i} - (A^{u}v)_{i}| \leq \gamma \max_{u} \|A^{u}\mathbf{w} - A^{u}\mathbf{v}\|_{\infty} \\ &\leq \gamma \max_{u} \|A^{u}\|_{\infty \to \infty} \|\mathbf{w} - \mathbf{v}\|_{\infty} \\ &\leq \gamma \|\mathbf{w} - \mathbf{v}\|_{\infty} \end{split}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

18 / 28

Action-Value Iteration

Define $\mathbf{q} \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ as the vector $[Q(x_i, u_k), x_i \in \mathcal{X}, u_k \in \mathcal{U}]$. Define $F \cdot \mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|} \to \mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$ by

$$(F\mathbf{q})(x_i,u_k):=R(x_i,u_k)+\gamma\sum_{j=1}^n a_{ij}^{u_k}\max_{w_l\in\mathcal{U}}Q(x_j,w_l).$$

Theorem

The map F is monotone and is a contraction. Therefore for all $\mathbf{q}_0 \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{U}|}$, the sequence of iterations $\{T^k(\mathbf{q}_0)\}$ converges to \mathbf{q}^* .

Determining Optimal Policy from Optimal Value Function

Determining the optimal policy π^* from the optimal value function is easy.

Theorem

Suppose the optimal value vector \mathbf{v}^* is known, and define, for each $x_i \in \mathcal{X}$, the policy $\pi^* : \mathcal{X} \to \mathcal{U}$ via

$$\pi^*(x_i) = rg \max_{u_k \in \mathcal{U}} \left[R(x_i, u) + \gamma \sum_{j \in [n]} a_{ij}^{u_k} V^*(x_j) \right].$$

But this requires knowledge of the optimal value function \mathbf{v}^* .

Is there another way? Yes, to update policy along with value iteration.

Policy Iteration

Set iteration counter k=0 and choose some initial policy π_0 . Then at iteration k,

- Compute the value vector \mathbf{v}_{π_k} such that $\mathbf{v}_{\pi_k} = T_{\pi_k} \mathbf{v}_{\pi_k}$. Note that computing \mathbf{v}_{π_k} by value iteration would require infinitely many applications of the map T_{π_k} to some arbitrary initial vector.
- Use this value vector \mathbf{v}_{π_k} to compute an updated policy π_{k+1} , via

$$\pi_{k+1}(x_i) = rg \max_{u_k \in \mathcal{U}} \left[R(x_i, u_k) + \gamma \sum_{j \in [n]} a_{ij}^{u_k}(\mathbf{v}_{\pi_k})_j \right].$$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

21 / 28

Policy Iteration (Cont'd)

Note that the above equation implies that

$$T_{\pi_{k+1}}\mathbf{v}_{\pi_k} = T\mathbf{v}_{\pi_k} \geq T_{\pi_k}\mathbf{v}_{\pi_k} = \mathbf{v}_{\pi_k}$$

where the last eq. is because v_{π_k} is the value function of π_k Since the map $T_{\pi_{k+1}}$ is monotone, we can keep applying it to get

$$orall \ell \geq 1, \, T_{\pi_{k+1}}^{\ell} \mathbf{v}_{\pi_k} \geq \mathbf{v}_{\pi_k}$$

Note: LHS converges to $\mathbf{v}_{\pi_{k+1}}$ as $\ell \to \infty$

Ambuj Tewari (UMich)

STATS 701: MDPs, part 2

Convergence of Policy Iteration

Suppose policy iteration doesn't improve the policy, i.e. $\pi_{k+1} = \pi_k$ and the inequality $T\mathbf{v}_{\pi_k} \geq \mathbf{v}_{\pi_k}$ is equality. Then we have

$$T\mathbf{v}_{\pi_k}=\mathbf{v}_{\pi_k}$$

So \mathbf{v}_{π_k} must be the optimal value function and the corresponding greedy policy $\pi_{k+1} = \pi_k$ must be the optimal policy.

Theorem

We have that

$$\mathbf{v}_{\pi_{k+1}} \geq \mathbf{v}_{\pi_k},$$

where the dominance is componentwise. Consequently, there exists a finite integer k_0 such that $\mathbf{v}_{\pi_{\nu}} = \mathbf{v}^*$ for all $k \geq k_0$.

- Markov Decision Processes: Solution Methodologies
 - Value of a Policy by Iteration
 - Action-Value Function and the Bellman Optimality Equation
 - Value and Policy Iterations
 - Linear Programming Formulation

Ambuj Tewari (UMich)

LP: Primal

Let **d** be any distribution over states

s.t.
$$\mathbf{v} \geq T\mathbf{v}$$

It is clear that \mathbf{v}^{\star} is feasible and therefore the minimum is at most $\mathbf{d}^{\top}\mathbf{v}^{\star}$

Claim: the minimum above is equal to $\mathbf{d}^{\top}\mathbf{v}^{\star}$

Why?
$$\mathbf{v} \geq T\mathbf{v}$$
 implies $\mathbf{v} \geq T^{\ell}\mathbf{v} \Rightarrow \mathbf{v} \geq \mathbf{v}^{\star} \Rightarrow \mathbf{d}^{\top}\mathbf{v} \geq \mathbf{d}^{\top}\mathbf{v}^{\star}$

LP: equivalent form

$$\min_{\mathbf{v}} \sum_{x_i \in \mathcal{X}} d(x_i) V(x_i)$$

s.t.
$$\forall x_i \in \mathcal{X}, \quad V(x_i) \ge \max_{u_k \in \mathcal{U}} R(x_i, u_k) + \gamma \sum_{x_i \in \mathcal{X}} a_{ij}^{u_k} V(x_j)$$

STATS 701: MDPs, part 2 Winter 2021 26 / 28

LP: equivalent form

$$\min_{\mathbf{v}} \sum_{x_i \in \mathcal{X}} d(x_i) V(x_i)$$

s.t.
$$\forall x_i \in \mathcal{X}, u_k \in \mathcal{U}, \quad V(x_i) \ge R(x_i, u_k) + \gamma \sum_{x_j \in \mathcal{X}} a_{ij}^{u_k} V(x_j)$$

This LP has n unconstrained variables and mn inequality constraints Dual LP will have mn non-negative variables and n equality constraints

27 / 28

Ambuj Tewari (UMich) STATS 701: MDPs, part 2 Winter 2021

LP: Dual

$$\max_{\boldsymbol{\mu}} \sum_{\mathbf{x}_i \in \mathcal{X}, u_k \in \mathcal{U}} \mu(\mathbf{x}_i, u_k) R(\mathbf{x}_i, u_k)$$

s.t.
$$\forall x_i \in \mathcal{X}, \sum_{u_k \in \mathcal{U}} \mu(x_i, u_k) = d(x_i) + \gamma \sum_{x_j \in \mathcal{X}} \sum_{u_k \in \mathcal{U}} A_{ij}^{u_k} \mu(x_j, u_k)$$

Interpretation of μ : discounted state-action visitation frequencies

$$\mu(x_j, u_k) = \sum_{t=0}^{\infty} \gamma^t P(X_t = x_j, U_t = u_k)$$

Solution directly encodes optimal policy: $\pi^*(x_j) = \arg \max_{u_k} \mu^*(x_j, u_k)$

◆□▶ ◆御▶ ◆注▶ ◆注▶ 注 りへぐ

Ambuj Tewari (UMich) STATS 701: MDPs, part 2 Winter 2021 28 / 28