1 Unseen questions

Recall that one can define the real numbers \mathbb{R} as an ordered field that has the **least upper bound** property and contains \mathbb{Q} (the rationals). The fact that such a field exists is not obvious.

In the following series of exercises we will construct \mathbb{R} and show it has the least upper bound property.

1.0.1 Definitions

• An totally ordered set is a set S with a binary relation < that is transitive and $\forall x, y \in S$, exactly one of the following is true

$$x < y, \ x = y, \ y < x.$$

For example, \mathbb{Q} is ordered if we say x < y whenever y - x is a positive rational number.

- Let (S, <) be an ordered set and $E \subseteq S$ a subset. We say E is **bounded above** (in S) if $\exists \beta \in S$ such that $x \leq \beta \ \forall x \in E$. We call β an **upper bound** of E. Lower bounds are defined similarly.
- Let (S, <) be an ordered set and $E \subseteq S$ a subset. We say $\alpha \in S$ is a **least upper bound/supremum** of E, and write $\alpha = \sup(E)$, if α is an upper bound of E and $\forall \gamma \in S$ such that $\gamma < \alpha$, γ is not an upper bound of E. Intuitively this definition means exactly what it says; α is an upper bound and it is the smallest possible upper bound. We can define greatest lower bounds/infimums similarly.
- Let (S, <) be an ordered set. We say (S, <) has the **least upper bound property** if for any subset $E \subseteq S$ such that $E \neq \emptyset$ and E is bounded above (i.e. E has an upper bound), then $\exists \sup(E) \in S$, i.e. E has a least upper bound.

The reason why we don't go into detail about greatest lower bounds is that a set has the least upper bound property if and only if it has the greatest lower bound property. You can prove this yourself if you want a warm-up exercise.

1.0.2 Problems

- 1. In this question we construct the reals using Dedekind cuts. A reference for this section is the first chapter of Principals of Mathematical Analysis by Walter Rudin (3^{rd} edition). All the answers are in there so don't look unless you want spoilers.
 - (a) A subset $\alpha \subseteq \mathbb{Q}$ is called a **cut** if (i) $\alpha \neq \emptyset, \mathbb{Q}$, (ii) if $p \in \alpha, q \in \mathbb{Q}$ and q < p then $q \in \alpha$, and (iii) if $p \in \alpha$ then p < r for some $r \in \alpha$. Give an example of a cut. Prove that if $p \in \alpha, q \notin \alpha$, then p < q. Prove if $r \notin \alpha$ and r < s then $s \notin \alpha$.
 - (b) Define $\alpha < \beta$ if α is a strict subset of β . Show this is an total ordering on cuts.
 - (c) Define \mathbb{R} (as a set) as the set of all cuts. Prove this set has the least upper bound property.
 - (d) Define a binary relation $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and show it satisfies the desired properties of addition. What is the identity element $0_{\mathbb{R}}$? Once you've done this, show that if $\alpha, \beta, \gamma \in \mathbb{R}$ and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.
 - (e) Multiplication is a bit harder so we start by defining it on the positive reals $\mathbb{R}_{>0}$ (what does this mean? the set of cuts such that $0_{\mathbb{R}} < \alpha$). Define a binary relation $\tilde{\times} : \mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ and show it satisfies the desired properties of multiplication. What is the identity element $1_{\mathbb{R}}$?
 - (f) Extend your multiplication map to a map $\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and show it satisfies the desired properties. Prove the distributive law: $\alpha \times (\beta + \gamma) = \alpha \times \beta + \alpha \times \gamma$. Hint: split your definition into cases, same with the proofs.

- (g) Conclude that at this point we have shown \mathbb{R} is an totally ordered field (c.f. definition 1.17 in chapter 1 of Rudin) that has the least upper bound property.
- (h) For each $r \in \mathbb{Q}$, define the cut $\alpha_r = \{x \in \mathbb{Q} : x < r\}$ (convince yourself this is a cut). Prove that $\alpha_p + \alpha_q = \alpha_{p+q}, \ \alpha_p \times \alpha_q = \alpha_{pq}, \ \text{and} \ \alpha_p < \alpha_q \ \text{if and only if} \ p < q.$ Conclude that $\tilde{\mathbb{Q}} = \{\alpha_r : r \in \mathbb{Q}\}$ is an ordered subfield of \mathbb{R} .
- (i) Convince yourself that there is an isomorphism of ordered fields $\mathbb{Q} \xrightarrow{\sim} \tilde{\mathbb{Q}}$ of ordered fields. Conclude that \mathbb{Q} embeds as an ordered subfield of \mathbb{R} .
- 2. Recall that a sequence (a_n) is Cauchy if it satisfies the following condition:

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall m, n \geq N, |a_n - a_m| < \epsilon$$

We can use this to construct the real numbers. The idea is that every Cauchy sequence of rational numbers converges to a real number, and any real number has at least one Cauchy sequence that converges to it. Lets define $S := \{(a_n) : \forall n \in \mathbb{N}, a_n \in \mathbb{Q}\}$

- (a) First we need to define an equivalence relation on S, so that $(a_n) \sim (b_n)$ if and only if (a_n) and (a'_n) converge to the same limit c. But c may be in \mathbb{R} , so we can't use it in the definition of \sim . How can we define \sim ? Make sure this is an equivalence relation.
- (b) Come up with a definition of + on S, and make sure that if $(a_n) \sim (a'_n)$ and $(b_n) \sim (b'_n)$, then $(a_n) + (b_n) \sim (a'_n) + (b'_n)$.
- (c) Do the same for \times
- (d) Now let us define R to be the set of equivalence classes $\{[(a_n)]_{\sim} : (a_n) \in S\}$. We have shown that + and \times is compatible with \sim , and it follows easily that R satisfies the axioms of + and \times over the reals. How can we define < over R? Then prove that R is totally ordered.
- (e) Now show that R satisfies the least upper bound property. Hint: for any $q \in \mathbb{Q}$, the equivalence class of the sequence (q, q, q, \cdots) is in R. We can abuse notation by writing $q \in R$. First show that for any $\alpha \in R$ there exist $l, u \in \mathbb{Q}$ such that $l < \alpha < u$. We can then construct a sequence of upper bounds (u_n) , and "not upper bounds" (l_n) such that $(u_n) \sim (l_n)$. The equivalence class of this will be our least upper bound.
- 3. Using the completeness of the reals, show that for d > 0, \sqrt{d} exists.