(19) 日本国特許庁(JP)

(51) Int. CI. 7

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-246948 (P2004-246948A)

(43) 公開日 平成16年9月2日 (2004.9.2)

(51) Int.Cl. ⁷	F 1			テーマコード	(参考)
G 1 1 B 20/10	G11B	20/10 :	311	5D044	
G11B 7/0045	G11B	7/0045	Α	5D090	
G11B 7/007	G11B	7/0045	D	5D789	
G 1 1 B 7/125	G11B	7/007	,		
G 1 1 B 20/12	G11B	7/125	С		
	審査請求 オ	1末間 末間5	質の数 7 〇L	(全 18 頁) ;	最終頁に続く
(21) 出願番号 (22) 出願日	特願2003-33889 (P2003-33889) 平成15年2月12日 (2003.2.12)	(71) 出願人	000001889 三洋電機株式会社 大阪府守口市京阪本通2丁目5番5号		
	·	(74) 代理人	100111383		- ; ·
			弁理士 芝野	正雅	
	•	(72) 発明者	白石 卓也		
	· ·		大阪府守口市京阪本通2丁目5番5号 三		

(72) 発明者

Fターム(参考) 5D044 BC04 CC06 DE12 DE37 DE44

DE49 GK12 GM02

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

洋電機株式会社内

富澤 眞一郎

最終頁に続く

(54) 【発明の名称】データ記録制御装置

(57)【要約】

【課題】ディスク位置情報が互いに異なる記録フォーマ ットにて記録された複数のディスク媒体に対しデータを 記録する装置の回路規模を好適に抑制する。

【解決手段】8-16変調回路140にて変調されたデ ータは、DVD-R/RW用ライトストラテジ回路15 0又はDVD+R/RW用ライトストラテジ回路155 によって記録パルスに変換される。光学ヘッド10では 、この記録パルスに基づいてその出力の制御された記録 レーザを光ディスク1に照射する。光ディスク1がDV D-R/RWであるかDVD+R/RWであるかに応じ て、光ディスクのレーザの照射位置を示すアドレス信号 であるLPPアドレス又はADIPアドレスがLPPア ドレスデコーダ110かADIPアドレスデコーダ11 5によって生成される。これらLPPアドレスかADI Pアドレスに基づいて、タイミング制御回路130では 、記録動作を制御する。

【特許請求の範囲】

【請求項1】

所定のデータフォーマットに対応したディスク位置情報 が互いに異なる記録フォーマットにて記録された複数種 類のディスク媒体に対するデータの記録動作を制御する データ記録制御装置であって、

ディスク媒体からの再生信号をデコードして、前記複数 種類のディスク媒体のそれぞれに応じた前記ディスク位 置情報を生成する複数のアドレスデコーダと、

該複数のアドレスデコーダの出力を選択するセレクタ と、

前記セレクタで選択された前記ディスク位置情報に基づ き、各ディスク媒体へのデータの書き込みタイミングを 制御するタイミング制御回路とを備えることを特徴とす るデータ記録制御装置。

【請求項2】

請求項1記載のデータ記録制御装置において、

記録するデータに所定の変調処理を施して変調データを 生成する変調回路と、前記変調データに基づいて当該デ ィスク媒体に対する記録レーザの出力を制御する記録パ 20 ルスを前記複数種類のディスク媒体毎にそれぞれ生成す る複数のライトストラテジ回路と、

前記複数のライトストラテジ回路の出力を選択する第2 のセレクタとを更に備えることを特徴とするデータ記録 制御装置。

【請求項3】

請求項1記載のデータ記録制御装置において、

記録するデータに所定の変調処理を施して変調データを 生成する変調回路と、前記変調データに基づいて前記複 数種類のディスク媒体のそれぞれに対応する記録レーザ に応じた記録パルスを生成するライトストラテジ回路と を更に備えることを特徴とするデータ記録制御装置。

【請求項4】

請求項3記載のデータ記録制御装置において、

前記ライトストラテジ回路は、前記変調データに基づい て前記記録パルスを生成するパルス生成部と、

前記複数種類のディスク媒体の種類に応じて前記パルス 生成部での前記記録パルスの生成態様を設定するテーブ ルデータを格納するレジスタとを備えることを特徴とす るデータ記録制御装置。

【請求項5】

請求項2~4のいずれかに記載のデータ記録制御装置に おいて、

前記記録パルスを取り込み、前記タイミング制御回路の 指示に従って取り込んだ記録パルスを出力するゲート回 路を更に備えることを特徴とするデータ記録制御装置。

【請求項6】

請求項1~5のいずれかに記載のデータ記録制御装置に おいて、

のディスク媒体のそれぞれに応じたクロックを生成する クロック生成回路を更に備えることを特徴とするデータ 記録制御装置。

【請求項7】

請求項1~6のいずれかに記載のデータ記録制御装置に おいて、

前記互いに異なる記録フォーマットにてディスク位置情 報が記録された複数種類のディスク媒体は、当該ディス ク媒体の記録トラックの所定間隔毎に形成されたランド 10 プリピットに前記ディスク位置情報が記録される第1の ディスク媒体と、当該ディスク媒体の記録トラックに形 成された蛇行成分に前記ディスク位置情報が記録される 第2のディスク媒体とであることを特徴とするデータ記 録制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、所定のデータフォーマットに対応したディス ク位置情報が互いに異なる記録フォーマットにて記録さ れた複数種類のディスク媒体に対するデータの記録動作 を制御するデータ記録制御装置に関する。

[0002]

【従来の技術】

近年、記録媒体として光ディスク等、ディスク媒体が普 及してきている。こうした状況下、ディスク媒体に記録 されるデータのフォーマットを共通としつつもディスク 媒体に形成されているディスク位置情報の記録フォーマ ットが互いに異なるものも市場に出回りつつある。

[0003]

例えば、DVD-R (Digital Versati le Disc-Recordable) 及びDVD-RW (Digital Versatile Disc -Rewritable) と、DVD+R (Digit al Versatile Disc+Recorda ble) 及びDVD+RW (Digital Vers atile Disc+Rewritable)とがそ れである。これらDVD-R及びDVD-RW(以下、 DVD-R/RW) とDVD+R及びDVD+RW (以 下、DVD+R/RW)とは、図3に示す互いに共通し たデータフォーマットに従ったデータを記録すべく規格 化されたディスク媒体である。

[0004]

図3に示すデータである上記各ディスク媒体への記録対 象となるDVDデータは、8ビットのデータが16ビッ トのデータに変調され、更に同期信号等が付与されたも のである。詳しくは、32ビットの同期信号(図中、 「シンク」と表記)と、1456ビットの変調されたデ ータとからなる。すなわち、728ビット分のデータが

8-16変調されることで1456ビットのデータとな

ディスク媒体からの再生信号に基づいて、前記複数種類 50 り、これら各変調された1456ピットのデータ毎に、

その先頭に32ビットの同期信号(シンク)が付与され て1フレーム分の記録データが生成されている。 DVD では、この1フレーム分の記録データが26個で1セク タとして取り扱われる。この図3には、DVDにおける 1セクタ分の記録データの構造が示されている。

[0005]

このような所定のフォーマットを有するDVDデータを 記録する上記各ディスク媒体は、それぞれ以下のような 記録フォーマットにてそのディスク位置情報を記録す

[0006]

上記DVD-R/RWは、ディスクの平坦面 (ランド) に形成されるグルーブとよばれる溝によって構成される トラックを備えている。このグループはわずかに蛇行 (ウォブル) して形成されており、この蛇行から、所定 の周期を有するウォブル信号が取り出される。このウォ ブルは、上記データフォーマットの2フレーム分のデー タ記録領域に16周期の割合で形成されている。

[0007]

また、このディスク媒体には、ウォブルに加えてランド 20 プリピット(LPP)とよばれるディスク位置情報を含 む領域が、トラック上に所定の間隔で設けられている。 詳しくは、このLPPは、上記データフォーマットの2 フレームに対応したデータの記録領域毎に設けられてい る。そして、上記データフォーマットの各16セクタ分 の記録領域に設けられるLPPの集合によって、そのデ ィスク位置情報が示されるものとなっている。

[0008]

一方、DVD+R/RWも、ディスクの平坦面(ラン ド)に形成されるグループとよばれる溝によって構成さ れるトラックを備えている。また、このグルーブもわず かに蛇行(ウォブル)して形成されており、この蛇行か ら、所定の周期を有するウォブル信号が取り出される。

[0009]

ただし、このウォブルは、上記データフォーマットの2 フレーム分の記録領域に93周期で形成されている。ま た、DVD+R/RWには、上記ディスク位置情報を含 むLPPが形成されていない。これに代えて、上記グル ーブは、上記ウォブル信号に上記所定の周期に対しAD IP (ADdress In Pregroove) と 40 呼ばれるディスク位置情報に応じた位相変調が施される ようにして形成されている。詳しくは、このウォブルに は、上記データフォーマットの2フレームのデータの記 録領域毎に1度位相変調がなされている。そして、上記 データフォーマットの各4セクタ分の記録領域から得ら れるADIPによって、そのディスク位置情報が示され るものとなっている。

[0010]

このように、ディスク媒体としてのDVD-R/RWと

オーマットが異なるために、これらに対しデータを記録 する装置は、DVD-R/RWとDVD+R/RWとで 各別の回路を備えることとなる。すなわち、例えば図4 に示すような構成が考えられる。この図4は、これらD VD-R/RWとDVD+R/RWとをディスク媒体と してこれにデータを記録する装置の構成例を、それらに データを記録する際の信号の流れと共に例示したもので ある。

[0011]

10 まず、図4に示す光ディスク301をDVD-R又はD VD-RWとしてこれにデータを書き込む場合、まず、 光学ヘッド310により光ディスク301からピックア ップされた信号がLPP検出回路320に入力される。 この入力を受けて、LPP検出回路320はLPP信号 を出力する。そして、このLPP信号を入力として、L PPアドレスデコーダ321は上記ディスク位置情報 (LPPアドレス) を取り出す。

[0012]

こうして読み取られたLPPアドレスは、タイミング制 御回路322に入力される。そして、8-16変調回路 323は、このタイミング制御回路322からの指令を 受けて、外部から送られてきた記録対象のデータに変調 処理を行い、これをDVD-R/RW用ライトストラテ ジ回路324に出力する。DVD-R/RW用ライトス トラテジ回路324は、変調されたデータを、ディスク に記録するレーザの出力を制御する記録パルスに変換し て出力する。このDVD-R/RW用ライトストラテジ 回路324から出力された記録パルスは、ライトシグナ ルゲート325に送出される。ライトシグナルゲート3 25はタイミング制御回路322の指示に従って記録パ ルスを光学ヘッド310へ出力する。このライトシグナ ルゲート325から出力された記録パルスは、切替制御 信号により入力信号を選択的に出力するセレクタ340 を介して、光学ヘッド310に取り込まれる。これによ り、DVD-R/RWに対するデータの書き込みが行わ れることとなる。

[0013]

一方、図4に示す光ディスク301をDVD+R又はD VD+RWとしてこれにデータを書き込む場合にも、ま ず、光学ヘッド310により光ディスク301からピッ クアップされた信号がウォブル検出回路330に入力さ れる。この入力を受けて、ウォブル検出回路330はウ オブル信号を出力する。そして、このウォブル信号を入 カとして、ADIPアドレス331デコーダはディスク 位置情報(ADIPアドレス)を取り出す。

[0014]

こうして読み取られたADIPアドレスは、タイミング 制御回路332に入力される。そして、8-16変調回 路333は、このタイミング制御回路332からの指令 DVD+R/RWとは、そのディスク位置情報の記録フ 50 を受けて、外部から送られてきた記録対象のデータに変 5

調処理を行い、これをDVD+R/RW用ライトストラテジ回路334に出力する。DVD+R/RW用ライトストラテジ回路334は、変調されたデータをDVD+R/RW用の記録パルスに変換して出力する。このDVD+R/RW用ライトストラテジ回路334から出力された記録パルスは、ライトシグナルゲート335に送出される。ライトシグナルゲート325はタイミング制御回路332の指示に従って記録パルスを光学へッド310に出力する。このライトシグナルゲート335から出力された記録パルスは、切替制御信号により入力信号を選択的に出力するセレクタ340を介して、光学へッド310に取り込まれる。これにより、DVD+R/RWに対するデータの書き込みが行われることとなる。

[0015]

【発明が解決しようとする課題】

上述のように、DVD-R/RWとDVD+R/RWとをディスク媒体としてこれにデータを記録する装置を構成する場合、これら各ディスクに応じた各別の回路を備えることとなる。その結果、こうした装置では、回路規模の増大が無視できないものとなる。

[0016]

なお、上記DVD-R/RWとDVD+R/RWとに限らず、所定のデータフォーマットに対応したディスク位置情報が互いに異なる記録フォーマットにて記録されている複数のディスク媒体に対しデータを記録する装置にあっては、その回路規模が増大するこうした実情も概ね共通したものになっている。

[0017]

本発明は上記実情に鑑みてなされたものであり、その目的は、ディスク位置情報が互いに異なる記録フォーマットにて記録された複数のディスク媒体に対しデータを記録する場合において、その回路規模を好適に抑制することのできるデータ記録制御装置を提供することにある。

[0018]

【課題を解決するための手段】

この発明は、所定のデータフォーマットに対応したディスク位置情報が互いに異なる記録フォーマットにて記録された複数種類のディスク媒体に対するデータの記録動作を制御するデータ記録制御装置であって、ディスク媒体からの再生信号をデコードして、前記複数種類のディスク媒体のそれぞれに応じた前記ディスク位置情報を生成する複数のアドレスデコーダと、該複数のアドレスデコーダの出力を選択するセレクタと、前記セレクタで選択された前記ディスク位置情報に基づき、各ディスク媒体へのデータの書き込みタイミングを制御するタイミング制御回路とを備えることで、ディスク位置情報が互いに異なる記録フォーマットにて記録された複数のディスク媒体に対しデータを記録する場合において、その回路規模を好適に抑制することを可能とする。

[0019]

【発明の実施の形態】

(第1の実施形態)

以下、本発明にかかるデータ記録制御装置をDVD-R /RWとDVD+R/RWとをディスク媒体としてこれ にデータを記録するための制御を行うデータ記録制御装 置に適用した第1の実施形態について、図面を参照しつ つ説明する。

6

[0020]

図1は、本実施形態のデータ記録制御装置を備えるデータ記録装置について、当該データ記録制御装置及びその 周辺の構成を、それらにデータを記録する際のデータの 流れと共に示すブロック図である。

[0021]

ここで、光ディスク1は、DVD-R/RW又はDVD+R/RWである。また、本実施形態にかかるデータ記録制御装置100は、図示しないバッファメモリ等からデータを取り込み、これに対応した記録パルスを生成して光学ヘッド10に出力する装置である。また、光学ヘッド10は、光ディスク1に照射する再生用のレーザや記録用のレーザの反射光を受光する機能を有し、この反射光に基づいて光ディスク1に記録されているデータ等の再生信号を生成する。

[0022]

一方、LPP検出回路20は、上記光ディスク1がDV D-R/RWである場合に、光学ヘッド10により光ディスク1からピックアップされた信号を取り込んで、これからLPP信号を生成出力する回路である。

[0023]

これに対し、ウォブル検出回路30は、光学ヘッド10により光ディスク1からピックアップされた信号を取り込んで、これからウォブル信号を生成出力する回路である。すなわち、上記光ディスク1がDVD-R/RWである場合、同DVD-R/RWに形成されているウォブルに基づいたウォブル信号を生成する回路である。また、上記光ディスク1がDVD+R/RWである場合、同DVD+R/RWに形成されているウォブルに基づいたウォブル信号を生成する回路である。

[0024]

ここで、上記データ記録制御装置100について更に説 10 明する。

[0025]

このデータ記録制御装置100は、光ディスク1がDVDーR/RWである場合、上記LPP検出回路20から出力されるLPP信号に基づいて光ディスク1に対するレーザの照射位置を把握する機能を有する。詳しくは、上記LPP信号は、LPPアドレスデコーダ110に取り込まれ、ここでデコードされる。これにより、上記フレーム単位のデータが記録される領域に対応した同期信号や、光ディスク1上の上記セクタ単位のデータ記録領

50 域を示すアドレス信号 (LPPアドレス) が生成され

る。そして、光ディスク1がDVD-R/RWである場 合、このLPPアドレスが、光ディスク1に対するレー ザの照射位置を把握するための信号となる。

[0026]

更に、データ記録制御装置100は、光ディスク1がD VD+R/RWである場合、上記ウォブル検出回路30 から出力されるウォブル信号に基づいて光ディスク1に 対するレーザの照射位置を把握する機能を有する。詳し くは、上記ウォブル信号は、ADIPアドレスデコーダ 115に取り込まれ、ここでデコードされる。これによ 10 り、上記フレーム単位のデータが記録される領域に対応 した同期信号や、光ディスク1上の上記セクタ単位のデ ータ記録領域を示すアドレス信号 (ADIPアドレス) が生成される。そして、光ディスク1がDVD+R/R Wである場合、このADIPアドレスが、光ディスク1 に対するレーザの照射位置を把握するための信号とな る。

[0027]

これらLPPアドレスデコーダ110にて生成されるL PPアドレスやADIPアドレスデコーダ115にて生 成されるADIPアドレスは、基本的に同一のデータフ ォーマットに従ったアドレスデータである。すなわち、 DVD-R/RWとDVD+R/RWとは、先の図3に 示したデータフォーマットに対応したアドレスデータ (ディスク位置情報) が互いに異なる記録フォーマット にて記録されているものであるため、この記録されたデ ータがデコードされたものは互いに共通のデータとする ことができる。なお、これらLPPアドレスやADIP アドレスは、切替制御信号により入力信号を選択的に出 力するセレクタ120を介してタイミング制御回路13 0に出力される。

[0028]

このタイミング制御回路130は、上記LPPアドレス 又はADIPアドレスに基づいて把握される光ディスク 1に対するレーザの照射位置に基づいて、当該データ記 録制御にかかる動作タイミングを制御する回路である。

[0029]

次に、このタイミング制御回路130にてその動作タイ ミングが制御されるデータ記録制御装置100内の回路 について説明する。

[0030]

8-16変調回路140は、入力されるデータを先の図 3に示したフォーマットのデータに変調する回路であ る。すなわち、光ディスク1がDVD-R/RW又はD VD+R/RWのいずれである場合であれ、DVDのフ オーマットに符号化されたデータを光ディスク1に実際 に記録するデータとなる変調データに変調する回路であ る。

[0031]

は、上記8-16変調回路140から出力される変調デ ータに所定のパルス変換処理を施すことでDVD-R/ RWにとって適切なレーザの強度や照射時間にレーザを 制御するための記録パルスを生成する回路である。

R

[0032]

また、DVD+R/RW用ライトストラテジ回路155 は、上記8-16変調回路140から出力される変調デ ータに所定のパルス変換処理を施すことでDVD+R/ RWにとって適切なレーザの強度や照射時間にレーザを 制御するための記録パルスを生成する回路である。

[0033]

これらの回路としては、例えば特開平6-313329 号公報や特開2000-57571号公報に記載されて いるライトストラテジ回路を適用することができる。

[0034]

20

そして、これらDVD-R/RW用ライトストラテジ回 路150や、DVD+R/RW用ライトストラテジ回路 155から出力される記録パルスは、切替制御信号によ り入力信号を選択的に出力するセレクタ160を介して ライトシグナルゲート165に取り込まれる。このライ トシグナルゲート165は、記録パルスを外部へ (ここ では光学ヘッド10个)出力するか否かを制御する回路 である。そして、ライトシグナルゲート165から記録 パルスが出力されると、上記光学ヘッド10では、入力 される記録パルスに応じてレーザを生成し、これを光デ ィスク1へ照射する。

[0035]

なお、当該データ記録制御装置100内の各回路は、D VD-R/RW用クロック生成回路170又はDVD+ R/RW用クロック生成回路175の生成するクロック CLKを動作クロックとして動作する。

[0036]

ここで、DVD-R/RW用クロック生成回路170 は、上記ウォブル検出回路30から出力されるウォブル 信号に基づいてDVD-R/RWに適したクロックCL Kを生成する。すなわち、DVD-R/RWの場合、上 記データフォーマットの2フレーム分のデータ記録領域 に16周期の割合でウォブルが形成されていることか ら、ウォブル信号の1周期あたり例えば「186」クロ ックとなるように動作クロックを生成する。これによ り、光ディスク1に対するレーザの照射位置が1ビット 分のデータ記録領域だけ変位する時間を1クロックとす る動作クロックが生成される。

[0037]

一方、DVD+R/RW用クロック生成回路175は、 上記ウォブル検出回路30から出力されるウォブル信号 に基づいてDVD+R/RWに適したクロックCLKを 生成する。すなわち、DVD+R/RWの場合、上記デ ータフォーマットの2フレーム分のデータ記録領域に9 一方、DVD-R/RW用ライトストラテジ回路150 50 3周期の割合でウォブルが形成されていることから、ウ

9

オブル信号の1周期あたり例えば「32」クロックとなるように動作クロックを生成する。これにより、光ディスク1に対するレーザの照射位置が1ビット分のデータ記録領域だけ変位する時間を1クロックとする動作クロックが生成される。

[0038]

そして、これらDVD-R/RW用クロック生成回路170やDVD+R/RW用クロック生成回路175の生成するクロックは、切替制御信号に応じて入力信号を選択的に出力するセレクタに取り込まれる。これにより、当該データ記録制御装置内の各回路は、上記DVD-R/RW用クロック生成回路170やDVD+R/RW用クロック生成回路175の生成するクロックを動作クロックとすることで、回転制御される光ディスク1の動作に対応して動作するものとなる。

[0039].

ここで、光ディスク1がDVD-Rである場合の当該データ記録制御装置100による記録制御について説明する。なお、光ディスク1がDVD-RWである場合も同様であるため、この場合の制御については説明を割愛する。

[0040]

この場合、セレクタ180によって、DVD-R/RW 用クロック生成回路170の生成するクロックの出力が 選択的に出力される。そして、回転制御される光ディスク1にレーザを照射することで得られる再生信号から生成される上記LPP信号がLPPアドレスデコーダ110に取り込まれ、ここでLPPアドレスが生成される。そして、この場合、セレクタ120によって、このLPPアドレスが選択的にタイミング制御回路130に出力 30 される。

[0041]

一方、タイミング制御回路130に対しては、記録を開 始するデータのアドレス情報や、この記録対象のデータ を光ディスク1上のどの位置から記録するかを示すアド レス情報(ディスクのアドレス)が外部から指示され る。そして、これにより、タイミング制御回路130 は、上記8-16変調回路140や、DVD-R/RW 用ライトストラテジ回路150、ライトシグナルゲート 165の動作を制御する。詳しくは、まず、レーザの照 射位置が記録の開始を所望する位置となるタイミングに 対して変調に要する時間及び記録パルスの生成に要する 時間に所定時間を加算した時間だけ前となるタイミング で変調を開始するよう変調回路140に指令する。更 に、レーザの照射位置が記録の開始を所望する位置とな るタイミングまで記録パルスのうちの実際に記録を所望 するパルスをDVD-R/RW用ライトストラテジ回路 150にて保持しつつ待機するよう8-16変調回路1 40及びDVD-R/RW用ライトストラテジ回路15 0に指令する。

[0042]

これにより、変調回路140における変調処理やDVD ーR/RW用ライトストラテジ回路150による変調データの記録パルスへの変換処理の終了時において、レーザの照射位置は、記録を所望する位置よりも前の位置となる。そして、レーザの照射位置が所望の位置となるタイミングで、変調回路140及びDVD-R/RW用ライトストラテジ回路150及びライトシグナルゲート165を起動する。この際、セレクタ160はDVD-R/RW用ライトストラテジ回路150の出力を選択的にライトシグナルゲート165に出力するよう切替制御信号によって選択されている。

10

[0043]

なお、DVD-R/RW用ライトストラテジ回路150 によって生成される記録パルスの途中からデータの記録 を開始する場合には、同生成された記録パルスのうち記録を所望しない記録パルスは、ライトシグナルゲート165に出力される。しかし、この時点では、タイミング制御回路130からの指示によってライトシグナルゲート165は出力を禁じられているために、この記録を所望しないデータが光ディスク1に書き込まれることはない。

[0044]

20

次に、光ディスク1がDVD+Rである場合の当該データ記録制御装置100による記録制御について説明する。なお、光ディスク1がDVD+RWである場合も同様であるため、この場合の制御については説明を割愛する。

[0045]

この場合、セレクタ180によって、DVD+R/RW 用クロック生成回路175の生成するクロックの出力が 選択的に出力される。そして、回転制御される光ディス ク1にレーザを照射することで得られる再生信号から生 成される上記ウォブル信号がADIPアドレスデコーダ 115に取り込まれ、ここでADIPアドレスが生成さ れる。そして、この場合、セレクタ120によって、こ のADIPアドレスが選択的にタイミング制御回路13 0に出力される。

[0046]

40 一方、タイミング制御回路130は、記録を開始するデータのアドレス情報等が外部から指示されることで、上記8-16変調回路140や、DVD+R/RW用ライトストラテジ回路155、ライトシグナルゲート165の動作を、上述した制御に準じた態様にて制御する。

[0047]

このように本実施形態では、タイミング制御回路130をDVD-R/RWとDVD+R/RWとで共有化することで、回路規模の低減を図ることができる。

[0048]

50 以上説明した本実施形態によれば、以下の効果が得られ

11

るようになる。

[0049]

(1) LPPアドレスデコーダ110の出力するLPPアドレスとADIPアドレスデコーダ115の出力するADIPアドレスとのいずれかを選択的にタイミング制御回路130に出力するセレクタ120を備えた。これにより、光ディスク1がDVD-R/RWである場合とDVD+R/RWである場合とで、タイミング制御回路130を共有化することができ、ひいては、当該データ記録制御装置100の回路規模を低減することができるようになる。

[0050]

(2) DVD-R/RW用ライトストラテジ回路150 の出力する記録パルスとDVD+R/RW用ライトストラテジ回路155の出力する記録パルスとのいずれかを選択的にライトシグナルゲート165に出力するセレクタ160を備えた。これにより、光ディスク1がDVD-R/RWである場合とDVD+R/RWである場合とで、ライトシグナルゲート165を共有化することができ、ひいては、当該データ記録制御装置100の回路規模を低減することができるようになる。

[0051]

(第2の実施形態)

以下、本発明にかかるデータ記録制御装置をDVD-R /RWとDVD+R/RWとをディスク媒体としてこれ にデータを記録するための制御を行うデータ記録制御装 置に適用した第2の実施形態について、上記第1の実施 形態との相違点を中心に図面を参照しつつ説明する。

[0052]

図2は、本実施形態のデータ記録制御装置を備えるデー 30 タ記録装置について、当該データ記録制御装置及びその 周辺の構成を、それらにデータを記録する際のデータの 流れと共に示すブロック図である。なお、図2では、先の図1に示した部材と同一の部材については便宜上同一の符号を付した。

[0053]

上記第1の実施形態では、DVD-R/RW用ライトストラテジ回路150とDVD+R/RW用ライトストラテジ回路155とを各別に備え、これらいずれかの出力する記録パルスをセレクタ160によって選択的にライトシグナルゲート165に出力する構成とした。これに対し、本実施形態では、DVD-R/RWに適した記録パルスとDVD+R/RWに適した記録パルスとを生成する単一のライトストラテジ回路250を備える。

[0054]

詳しくは、ライトストラテジ回路250は、上記変調されたデータに基づいて記録パルスを生成するパルス生成部252と、DVD-R/RWとDVD+R/RWとに応じて上記パルス生成部252による記録パルスの生成態様を設定するテーブルデータを格納するレジスタ25

4とを備えている。

[0055]

・ここで、パルス生成部252は、変調されたデータの各パルス毎に、これを1又は複数のパルスからなる記録パルスにパルス変調する回路である。そして、この各記録パルスについて、その構成する各パルスのパルス幅、パルスのエッジ、パルス波高値、パルス数は、それぞれ変調データに応じて決定される可変パラメータとなる。

12

[0056]

10 一方、上記レジスタ254は、光ディスク1の種類に応じて、上記変調されたデータから記録パルスへのパルス変調態様を設定するテーブルデータを、換言すれば変調されたデータに対応して上記各可変パラメータを決定するテーブルデータを格納している。このテーブルデータは光ディスク1の種類に応じて、例えば当該データ記録装置の各部の制御を統括するマイクロコンピュータ(図示略)からレジスタ254に書き込まれる。そして、これにより、パルス生成部252では、レジスタ254に格納されているテーブルデータと入力される変調されたプータとに基づいて記録パルス生成のための演算を行い、この演算処理の結果生成される記録パルスを出力する。

[0057]

更に、本実施形態では、DVD-R/RWとDVD+R/RWとにデータを記録する際に用いる各クロックを生成する単一のクロック生成回路270を備える。詳しくは、このクロック生成回路270は、入力されるウォルブ信号に基づいてクロックを生成するPLL回路272と、外部から入力される切替信号に応じて同PLL回路272のクロックの生成態様を切り替える切替回路274とを備えている。

[0058]

すなわち、切替信号によりDVD-R/RW用のクロックが指定された場合、入力されるウォブル信号の1ウォブルあたり例えば「186」クロックとなるようにPLL回路272を制御する。一方、切替信号によりDVD+R/RW用のクロックが指定された場合、入力されるウォブル信号の1ウォブルあたり例えば「32」クロックとなるようにPLL回路272を制御する。いずれにせよ、こうした切替制御によって、光ディスク1に対するレーザの照射位置が1ビット分のデータ記録領域だけ変位する時間を1クロックとする動作クロックが生成される。

[0059]

以上説明した本実施形態によれば、以下の効果が得られるようになる。

[0060]

(3)変調されたデータに基づいて記録パルスを生成するパルス生成部252と、DVD-R/RWとDVD+ 50 R/RWとに応じて上記パルス生成部252による記録

パルスの生成態様を設定するテーブルデータを格納する レジスタ254とを備えるライトストラテジ回路250 を設けた。これにより、DVD-R/RWとDVD+R /RWとで上記パルス生成部252を共有化することが でき、ひいては、当該データ記録制御装置200の回路 規模を低減することができるようになる。

[0061]

(4) 本実施形態では、DVD-R/RWとDVD+R /RWとにデータを記録する際に用いる各クロックを生 成する単一のクロック生成回路270を備えることで、 当該データ記録制御装置200の回路規模を低減するこ とができるようになる。

[0062]

なお、上記各実施形態は、以下のように変更して実施し てもよい。

[0063]

・動作クロックは、ウォブル信号から生成するものに限 らない。例えばDVD-R/RWへのデータ記録制御に 対しては、LPP信号から生成してもよい。また、回転 制御される光ディスク1に照射されるレーザの反射信号 に基づいて生成するクロックにも限らず、例えば水晶発 振子等の発振器によって生成されたクロックでもよく、 この場合、光ディスク1の回転動作を同水晶発振子に対 応するように制御すればよい。

[0064]

・上記第2の実施形態では、DVD-R/RWとDVD +R/RWとで、記録パルスのパルス幅とパルス波高値 との両方を生成するパルス生成部252を共有化した が、これに限らない。例えばパルス幅及びパルス波高値 のいずれか一方の生成にかかる回路のみをDVD-R/ 30 RWとDVD+R/RWとで共有してもよい。

[0065]

・上記各実施形態では、タイミング制御回路の制御対象 が変調回路及びライトストラテジ回路及びライトシグナ ルゲートであったがこれに限らない。例えば当該データ 記録制御装置がライトシグナルゲート (ゲート回路) を 備えない場合、変調回路及びライトストラテジ回路を制 御対象としてもよい。また、変調回路が当該データ記録 制御装置内に備えられていない場合、タイミング制御回 路の制御対象は、例えばライトストラテジ回路であって 40 もよく、また、ライトストラテジ回路及びライトシグナ ルゲート(ゲート回路)であってもよい。

[0066]

14

・データ記録制御装置の構成は、上記各実施形態やそれ らの変形例で例示したものに限らず、光ディスク1がD VD-R/RWである場合とDVD+R/RWである場 合とで、タイミング制御回路を共有化することができる **範囲で適宜変更してよい。**

[0067]

・光ディスクとしては、DVD-R/RWやDVD+R /RWに限らない。要は、所定のデータフォーマットに 従ったデータのアドレス情報に対応したディスク位置情 報が互いに異なる記録フォーマットにて記録されている 第1のディスク媒体と第2のディスク媒体とであれば、 これらに対してタイミング制御回路を共有化することは 有効である。

[0068]

【発明の効果】

本願によれば、複数のディスク媒体に対してタイミング 制御回路を共有化することができ、回路規模を低減する ことができるようになる。

【図面の簡単な説明】

【図1】第1の実施形態にかかるデータ記録制御装置及 びその周辺回路の構成を示すブロック図。

【図2】第2の実施形態にかかるデータ記録制御装置及 びその周辺回路の構成を示すブロック図。

【図3】 DVDにおいて変調されたデータのフォーマッ トを示す図。

【図4】DVD-R/RWとDVD+R/RWとにデー タを記録する従来のデータ記録装置の構成を例示する 図。

【符号の説明】

1…光ディスク、10…光学ヘッド、20…LPP検出 回路、30…ウォブル検出回路、100…データ記録制 御装置、110…LPPアドレスデコーダ、115…A DIPアドレスデコーダ、120…セレクタ、130… タイミング制御回路、140…8-16変調回路、15 0…DVD-R/RW用ライトストラテジ回路、155 …DVD+R/RW用ライトストラテジ回路、160… セレクタ、165…ライトシグナルゲート、170…D VD-R/RW用クロック生成回路、175…DVD+ R/RW用クロック生成回路、180…セレクタ、20 0…データ記録制御装置、250…ライトストラテジ回 路、252…パルス生成部、254…レジスタ、270 …クロック生成回路、272…PLL回路、274…切 替回路。

【図1】

【図2】

[図3]

[図4]

【手続補正書】

【提出日】平成16年1月16日(2004.1.1 6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正の内容】

[0013]

一方、図4に示す光ディスク301をDVD+R又はDVD+RWとしてこれにデータを書き込む場合にも、まず、光学ヘッド310により光ディスク301からピックアップされた信号がウォブル検出回路330に入力される。この入力を受けて、ウォブル検出回路330はウォブル信号を出力する。そして、このウォブル信号を入力として、ADIPアドレスデューダ331はディスク位置情報(ADIPアドレス)を取り出す。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正の内容】

[0014]

こうして読み取られたADIPアドレスは、タイミング 制御回路332に入力される。そして、8-16変調回 路333は、このタイミング制御回路332からの指令 を受けて、外部から送られてきた記録対象のデータに変 調処理を行い、これをDVD+R/RW用ライトストラ テジ回路334に出力する。DVD+R/RW用ライト ストラテジ回路334は、変調されたデータをDVD+ R/RW用の記録パルスに変換して出力する。このDV D+R/RW用ライトストラテジ回路334から出力さ れた記録パルスは、ライトシグナルゲート335に送出 される。ライトシグナルゲート335はタイミング制御 回路332の指示に従って記録パルスを光学ヘッド31 0に出力する。このライトシグナルゲート335から出 力された記録パルスは、切替制御信号により入力信号を 選択的に出力するセレクタ340を介して、光学ヘッド 310に取り込まれる。これにより、DVD+R/RW に対するデータの書き込みが行われることとなる。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0027

【補正方法】変更 【補正の内容】

[0027]

これらLPPアドレスデューダ110にて生成されるL PPアドレスやADIPアドレスデューダ115にて生成されるADIPアドレスは、基本的に同一のデータフォーマットに従ったアドレスデータである。すなわち、DVD-R/RWとDVD+R/RWとは、先の図3に示したデータフォーマットに対応したアドレスデータ(ディスク位置情報)が互いに異なる記録フォーマットにて記録されているものであるが、この記録されたデータがデコードされたものは互いに共通のデータとするこ とができる。なお、これらLPPアドレスやADIPアドレスは、切替制御信号により入力信号を選択的に出力するセレクタ120を介してタイミング制御回路130に出力される。

【手続補正4】

【補正対象書類名】図面 【補正対象項目名】図1

【補正方法】変更

【補正の内容】

【図1】

【手続補正5】 【補正対象費類名】図面 【補正対象項目名】図2 【補正方法】変更

【補正の内容】 【図2】

【手続補正6】 【補正対象書類名】図面 【補正対象項目名】図4 【補正方法】変更 【補正の内容】 【図4】

フロントページの続き

(51) Int. Cl. 7

FΙ

テーマコード (参考)

G11B 20/14

G 1 1 B 20/12

G 1 1 B 20/14

351A

Fターム(参考) 5D090 AA01 BB03 BB04 CC01 CC12 CC14 CC18 DD03 FF08 GG03

GG33 KK03

5D789 AA23 AA41 BA01 BB02 BB04 DA01 HA21 HA25 HA28 HA47

HA60 HA68