LAPORAN AKHIR PROYEK MACHINE LEARNING

klasifikasi kehadiran mahasiswa deteksi kehadiran aktif/pasif berdasarkan data kehadiran mingguan

Dosen Pengampu: BAYU SULISTIYANTO IPUNG SUTEJO, S.Kom., M.Kom

Kelompok 15

Eko Nurcahyo (20230801169)

Dwi Abdul Kholiq (20230801214)

Program Studi: Teknik Informatika

Fakultas: Ilmu Komputer

Esa Unggul Tangerang

2025

1. Pendahuluan

1.1 Latar Belakang

Kehadiran mahasiswa dalam perkuliahan merupakan salah satu indikator penting dalam menilai keterlibatan dan keaktifan mereka selama proses belajar mengajar. Di era digital ini, pencatatan kehadiran dapat diolah untuk menghasilkan informasi yang berguna, seperti mengklasifikasikan keaktifan mahasiswa secara objektif. Dengan adanya klasifikasi ini, pihak pengajar dapat memberikan perhatian khusus pada mahasiswa yang tergolong pasif. Oleh karena itu, diperlukan suatu sistem yang mampu melakukan klasifikasi kehadiran mahasiswa berdasarkan data mingguan yang telah dikumpulkan.

1.2 Rumusan Masalah

Bagaimana caranya mengklasifikasikan mahasiswa ke dalam kategori **aktif** atau **pasif** berdasarkan data kehadiran mingguan yang tersedia secara otomatis?

1.3 Tujuan

- Mengolah data kehadiran mingguan mahasiswa.
- Menentukan status kehadiran mahasiswa (aktif/pasif) secara otomatis.
- Menyajikan hasil klasifikasi dalam bentuk visualisasi untuk memudahkan analisis.
- Memberikan fitur pencarian data berdasarkan NIM mahasiswa.

2. Metodologi

2.1 Pengumpulan Data

Data yang digunakan merupakan data kehadiran mahasiswa dalam format CSV, terdiri dari:

- NIM, Nama, dan kehadiran selama 14 minggu (M1–M14).
- Data ini tidak memiliki label status keaktifan dan diolah secara otomatis.

2.2 Pra-pemrosesan Data

- Menghapus kolom yang tidak diperlukan (jika ada).
- Menghitung total kehadiran mahasiswa dari minggu 1 sampai 14.
- Menghitung persentase kehadiran dengan rumus:

Presentasi Kehadiran = (Total Hadir / 14) x 100

- Menentukan status:
 - o **Aktif**: jika hadir ≥ 11 kali.
 - o Pasif: jika hadir < 11 kali.
- Menambahkan kolom nomor urut untuk pencocokan data dengan file Excel.
- Menyimpan kembali file dengan kolom baru ke dalam file CSV.

2.3 Metode Sistem

Sistem klasifikasi berbasis **rule-based classification**, yaitu aturan sederhana berbasis (IF- ELSE / IF -THEN) untuk menghitung jumlah kehadiran:

- Digunakan untuk fungsi apply() pada kolom Total_Hadir untuk menentukan status.
- Sistem ini juga dikembangkan menggunakan antarmuka grafis berbasis *Tkinter*, yang menyediakan:
 - o Tabel data dinamis yang dapat ditampilkan dalam jendela aplikasi.
 - Fitur pencarian mahasiswa tidak hanya berdasarkan NIM, tetapi juga berdasarkan Nama.
 - Visualisasi grafik persentase kehadiran hingga 50 mahasiswa pertama dalam dataset.
- Visualisasi grafik diintegrasikan dengan Tkinter melalui pustaka matplotlib.backends.backend_tkagg.

2.4 Evaluasi

- Evaluasi dilakukan secara **deskriptif visual** melalui grafik batang yang menunjukkan **persentase kehadiran mahasiswa urutan 1-10**.
- Validasi manual dilakukan melalui pencarian berdasarkan NIM untuk melihat keakuratan status mahasiswa.

3. Hasil dan Pembahasan

3.1 Hasil Sistem

• Sistem berhasil mengklasifikasikan seluruh mahasiswa ke dalam dua kategori: Aktif dan Pasif.

- Setiap mahasiswa memiliki total kehadiran dan persentase kehadiran yang dihitung secara otomatis.
- File CSV berhasil diperbarui dengan informasi baru.
- Aplikasi GUI berhasil dibangun sehingga pengguna dapat:
 - o Menampilkan tabel data klasifikasi.
 - o Mencari mahasiswa berdasarkan NIM maupun Nama.
 - o Menampilkan grafik batang interaktif langsung di jendela aplikasi.
- Sistem menunjukkan informasi mingguan kehadiran setiap mahasiswa dalam jendela pop-up hasil pencarian.

3.2 Evaluasi

- Berdasarkan grafik batang, mayoritas mahasiswa memiliki persentase kehadiran yang tinggi (>78%), namun ada sebagian yang berada di bawah ambang batas.
- Sistem pencarian berdasarkan NIM berfungsi dengan baik, menampilkan detail kehadiran dan status mahasiswa yang dimaksud.
- Evaluasi penggunaan antarmuka menunjukkan sistem lebih mudah dioperasikan dibandingkan versi berbasis terminal.
- Fitur pencarian Nama mempermudah identifikasi cepat jika pengguna hanya mengingat sebagian nama mahasiswa.

3.3 Pembahasan

- Metode klasifikasi sederhana ini cukup efektif untuk memberikan insight awal mengenai keaktifan mahasiswa.
- Namun, untuk aplikasi skala besar atau otomatisasi sistem penilaian, metode klasifikasi berbasis machine learning dapat dijadikan pengembangan selanjutnya.

4. Kesimpulan dan Saran

4.1 Kesimpulan

- Sistem berbasis Python di Jupyter Notebook mampu mengolah data kehadiran dan mengklasifikasikan keaktifan mahasiswa secara otomatis.
- Visualisasi memberikan gambaran umum mengenai distribusi keaktifan mahasiswa.

• Fitur pencarian berdasarkan NIM sangat membantu untuk verifikasi data individual.

4.2 Saran

- Perlu dilakukan pengembangan ke sistem berbasis web agar dapat diakses lebih mudah.
- Penambahan fitur statistik seperti rata-rata kehadiran per minggu dan kategori kelas (aktif dominan, pasif dominan, dll) akan meningkatkan analisis.
- Pengembangan selanjutnya dapat dilakukan dengan menyimpan histori pencarian dan menyediakan fitur ekspor hasil pencarian dalam format PDF atau Excel.
- Disarankan untuk menambahkan autentikasi pengguna agar akses data lebih aman.

5. Daftar Pustaka

Berikut jurnal yang relevan terkait klasifikasi kehadiran dan sistem:

- 1. Rule-based Classification (Li & Liu, n.d.)
- 2. Student Attendance Pattern Detection and Prediction (Muzaferija et al., 2021)
- 3. Framework for automatically suggesting remedial actions to help students at risk based on explainable ML and rule-based models (Albreiki, 2022)

6. Lampiran

6.1 Source Code Lengkap

```
import pandas as pd
import matplotlib.pyplot as plt
import tkinter as tk
import tkinter as tk
from tkinter import messagebox
from tkinter import ttk
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
         fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(top_10['No'], top_10['Persentase_Kehadiran'], color='black')
ax.set_xlabel('Nomor Urut Mahasiswa')
ax.set_xlabe('Persentase Kehadiran (%)')
ax.set_title('Persentase Kehadiran Mahasiswa Urutan 1-10')
# Membuat jendela utama
window = tk.Tk()
window.title("GUI Kehadiran Mahasiswa")
window.geometry("1920x800")
nim_label = tk.Label(frame_input, text="Masukan NIM:")
nim_label.pack(side=tk.LEFT, padx=10)
# Tombol untuk menampilkan tabel
tabel_button = tk.Button(window, text="Tampilkan Table Data Kehadiran", command=tampilkan_tabel)
tabel_button_pack(pady=10
# Tabel menggunakan Treeview untuk menampilkan data
tree = ttk.Treeview(frame_tabel, columns=("No", "NIM", "Nama", "Total_Hadir", "Persentase_Kehadiran", "Status"), show="headings")
tree.pack(fill=tk.80TH, expand=True)
tree.heading("No", text-"No")
tree.heading("NIP", text-"NIP")
tree.heading("Nnaa", text-"Nima")
tree.heading("Nnaa", text-"Nima")
tree.heading("Total Jisdii", text-"Total Hadir")
tree.heading("Status", text-"Status")
tree.heading("Status", text-"Status")
```

6.2 Output yang ditampilkan

	No	NIM	Nama	Total_Hadir	Persentase Kehadiran	Status
0	2	5022	Nina	13	92,857143	Aktif
1	3	2419	Rika	12	85.714286	Aktif
2	4	5569	Joko	13	92,857143	Aktif
3	5	8385	Gita	9	64.285714	Pasif
4	6	4995	Nana	13	92,857143	Aktif
5	7	8613	Lukman	10	71,428571	Pasif
6	8	7209	Dewi	11	78.571429	Aktif
7	9	6511	Hendra	12	85.714286	Aktif
8	10	1470	Tono	13	92.857143	Aktif
9	11	9098	Andi	14	100.000000	Aktif
10	12	6325	Eko	9	64.285714	Pasif
11	13	3979	Wawan	8	57.142857	Pasif
12	14	8988	Bima	14	100.000000	Aktif
13	15	4475	Lia	14	100.000000	Aktif
14	16	6813	Dodi	14	100.000000	Aktif
15	17	5232	Ika	9	64.285714	Pasif
16	18	6576	Vina	9	64.285714	Pasif
17	19	5581	Aditya	14	100.000000	Aktif
18	20	5526	Ivan	9	64.285714	Pasif
19	21	1166	Ari	12	85.714286	Aktif
20	22	9464	Ayu	9	64.285714	Pasif
21	23	4130	Sari	8	57.142857	Pasif
22	24	2402	Linda	14	100.000000	Aktif
23	25	4954	Salsa	12	85.714286	Aktif
24	26	7658	Fahmi	8	57.142857	Pasif
25	27	9004	Tini	10	71.428571	Pasif
26	28	4937	Selvi	10	71.428571	Pasif
27	29	8800	Agus	11	78.571429	Aktif
28	30	9041	Vera	9	64.285714	Pasif
29	31	8342	Mira	14	100.000000	Aktif
30	32	1282	Maya	9	64.285714	Pasif
31	33	2524	Yudi	14	100.000000	Aktif
32	34	5820	Citra	14	100.000000	Aktif
33	35	4630	Farhan	14	100.000000	Aktif
34	36	7625	Tari	14	100.000000	Aktif
35	37	4986	Reza	14	100.000000	Aktif
36	38	6016	Rio	12	85.714286	Aktif
37	39	7046	Rudi	8	57.142857	Pasif
38	40	8753	Dian	8	57.142857	Pasif
39	41	9698	Gilang	11	78.571429	Aktif
40	42	6632	Rina	9	64.285714	Pasif
41	43	7971	Taufik	10	71.428571	Pasif
42	44	6419	Budi	12	85.714286	Aktif
43	45	6764	Siti	10	71.428571	Pasif
44	46	8434	Rizky	12	85.714286	Aktif
45	47	5438	Fajar	8	57.142857	Pasif
46	48	6023	Wulan	14	100.000000	Aktif
47	49	5118	Putri	11	78.571429	Aktif
48	50	4777	Cindy	11	78.571429	Aktif
49	51	2976	Desi	13	92.857143	Aktif

File dengan status dan persentase kehadiran sudah diperbarui: data_kehadiran.csv

Masukkan NIM (4 angka): 6325

Nomor urut di file Excel: 12

Data Mahasiswa:

	10
No	12
NO	NaN
NIM	6325
Nama	Eko
M1	1
M2	1
M3	1
M4	1
M5	1
M6	0
M7	0
M8	1
M9	0
M10	0
M11	1
M12	1
M13	1
M14	0
Total_Hadir	9
Status	Pasif
Persentase_Kehadiran	64.285714

6.3 GUI Program

