

Anàlisi Matemàtica 1 (AM1) GEMiF

E4.2 Exercicis: Sèries de Taylor

- 1. Trobeu el polinomi de Taylor de les funcions f per els valors donats d'a i n i trobeu la forma de Lagrange del residu:
 - a) $f(x) = \sqrt{x}$, a = 4, n = 3
 - b) $f(x) = \cos x$, $a = \pi/3$, n = 4
 - c) $f(x) = \sin x$, $a = \pi/4$, n = 4
 - d) $f(x) = \ln x$, a = 1, n = 5
- 2. Utilitzeu la forma de Lagrange del residu per a demostrar que l'aproximació

$$\sin x \approx x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

té una precisió de quatre decimals per a valors $0 \le x \le \pi/4$.

- 3. Expandeix $g(x) = x^2 \ln x$ en potències de x 1
- 4. Utilitza el desenvolupament en sèrie de Taylor-Maclaurin de e^x per a calcular el desenvolupament en sèrie de Taylor de $g(x) = e^{x/2}$ al voltant de x = 3, sense calcular derivades.
- 5. Verifica que l'interval de convergència de la següent sèrie és (-1,1]

$$g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$$

6. Quants termes de la sèrie de Taylor-Maclaurin de la funció e^x fan falta per a calcular e amb 8 xifres decimals correctes?