The solubility product constant K_{sp} is a useful parameter for calculating the aqueous solubility of sparingly soluble compounds under various conditions. It may be determined by direct measurement or calculated from the standard Gibbs energies of formation $\Delta_{\rm f} G^{\circ}$ of the species involved at their standard states. Thus if $K_{sp} = [{\rm M}^+]^m [{\rm A}^-]^n$ is the equilibrium constant for the reaction

$$M_m A_n(s) \rightleftharpoons mM^+(aq) + nA^-(aq)$$

where $M_m A_n$ is the slightly soluble substance and M^+ and A^- are the ions produced in solution by the dissociation of MmAn, then the Gibbs energy change is

$$\Delta G^{\circ} = m\Delta_{\mathbf{f}}G^{\circ}(\mathbf{M}^{+}(\mathbf{aq})) + n\Delta_{\mathbf{f}}G^{\circ}(\mathbf{A}^{-}(\mathbf{aq})) - \Delta_{\mathbf{f}}G^{\circ}(\mathbf{M}_{m}\mathbf{A}_{n}(\mathbf{s}))$$

The solubility product constant is calculated from the equation

$$\ln K_{sp} = \frac{-\Delta G^{\oplus}}{RT}$$

The table gives selected values of K_{sp} at 25 °C. The above formulation is not convenient for treating sulfides because the S⁻² ion is usually not present in significant concentrations. This is due to the hydrolysis reaction S⁻² + H₂O \Longrightarrow HS⁻ + OH⁻ which is strongly shifted to the right except in very basic solutions. Furthermore, the equilibrium constant for this reaction, which depends on the second ionization constant of H₂S, is poorly known. Therefore it is more useful in the case of sulfides to define a different solubility product K_{spa} based on the reaction

$$M_m S_n(s) + 2 H^+(aq) \rightleftharpoons mM^+(aq) + nH_2 S(aq)$$

Reference: Rumble, J. $CRC\ Handbook\ of\ Chemistry\ and\ Physics,$ 98th Edition, CRC Press LLC, 2017.

Formula	K_{sp}	K_{spa}
$Ag_2C_2O_4$	5.40×10^{-12}	
Ag_2CO_3	8.46×10^{-12}	
$\mathrm{Ag_2CrO_4}$	1.12×10^{-12}	
Ag_2SO_3	1.50×10^{-14}	
Ag_2SO_4	1.20×10^{-5}	
Ag_2S		6×10^{-30}
Ag_3AsO_4	1.03×10^{-22}	
Ag_3PO_4	8.89×10^{-17}	
$AgBrO_3$	5.38×10^{-5}	
AgBr	5.35×10^{-13}	
$\mathrm{AgC_2H_3O_2}$	1.94×10^{-3}	
AgCN	5.97×10^{-17}	
AgCl	1.77×10^{-10}	
$AgIO_3$	3.17×10^{-8}	
AgI	8.52×10^{-17}	
AgSCN	1.03×10^{-12}	
$AlPO_4$	9.84×10^{-21}	
$Ba(BrO_3)_2$	2.43×10^{-4}	
$Ba(IO_3)_2 \cdot H_2O$	1.67×10^{-9}	
$Ba(IO_3)_2$	4.01×10^{-9}	
$Ba(OH)_2 \cdot 8H_2O$	2.55×10^{-4}	
$BaCO_3$	2.58×10^{-9}	
$\mathrm{BaCrO_4}$	1.17×10^{-10}	
BaF_2	1.84×10^{-7}	
${\rm BaMoO_4}$	3.54×10^{-8}	
$BaSO_3$	5.0×10^{-10}	

Formula	K_{sp}	K_{spa}
		N_{spa}
BaSO ₄	1.08×10^{-10}	
BaSeO ₄	3.40×10^{-8}	
Be(OH) ₂ (α)	6.92×10^{-22}	
BiAsO ₄	4.43×10^{-10} 7.71×10^{-19}	
BiI_3	7.71×10^{-7} 7.10×10^{-7}	
$Ca(IO_3)_2 \cdot 6 H_2O$ $Ca(IO_3)_2$	6.47×10^{-6}	
$Ca(OH)_2$	5.02×10^{-6}	
$Ca(OH)_2$ $Ca_3(PO_4)_2$	2.07×10^{-33}	
$CaC_2O_4 \cdot H_2O$	2.32×10^{-9}	
$CaC_{2}O_{4} \cdot H_{2}O$ $CaCO_{3}$ (calcite)	3.36×10^{-9}	
CaF ₂	3.45×10^{-11}	
CaMoO ₄	1.46×10^{-8}	
$CaSO_3 \cdot 0.5 H_2O$	3.1×10^{-7}	
$CaSO_4 \cdot 2H_2O$	3.14×10^{-5}	
$CaSO_4$	4.93×10^{-5}	
$Cd(IO_3)_2$	2.5×10^{-8}	
$Cd(OH)_2$	7.2×10^{-15}	
$Cd_3(AsO_4)_2$	2.2×10^{-33}	
$Cd_3(PO_4)_2$	2.53×10^{-33}	
$CdC_2O_4 \cdot 3H_2O$	1.42×10^{-8}	
$CdCO_3$	1.0×10^{-12}	
CdF_2	6.44×10^{-3}	
CdS		8×10^{-7}
$Co(IO_3)_2 \cdot 2 H_2O$	1.21×10^{-2}	
$Co(OH)_2$	5.92×10^{-15}	
$Co_3(AsO_4)_2$	6.80×10^{-29}	
$Co_3(PO_4)_2$	2.05×10^{-35}	
$CsClO_4$	3.95×10^{-3}	
$CsIO_4$	5.16×10^{-6}	
$Cu(IO_3)_2 \cdot H_2O$	6.94×10^{-8}	
$Cu_3(AsO_4)_2$	7.95×10^{-36}	
$\mathrm{Cu}_3(\mathrm{PO}_4)_2$	1.40×10^{-37}	
CuBr	6.27×10^{-9}	
CuC_2O_4	4.43×10^{-10}	
CuCN	3.47×10^{-20}	
CuCl	1.72×10^{-7}	
CuI	1.27×10^{-12}	
CuSCN	1.77×10^{-13}	10
CuS	0.7	6×10^{-16}
$Eu(OH)_3$	9.38×10^{-27}	
$Fe(OH)_2$	4.87×10^{-17}	
$Fe(OH)_3$	2.79×10^{-39}	
FeCO ₃	3.13×10^{-11}	
FeF_2	2.36×10^{-6}	
$FePO_4 \cdot 2H_2O$	9.91×10^{-16}	0 102
FeS	7.00 10-36	6×10^2
$Ga(OH)_3$	7.28×10^{-36}	
$Hg_2(SCN)_2$	3.2×10^{-20}	
Hg_2Br_2	6.40×10^{-23}	
$Hg_2C_2O_4$	1.75×10^{-13} 3.6×10^{-17}	
Hg_2CO_3	3.0 × 10	

Formula	K_{sp}	K_{spa}
Hg ₂ Cl ₂	1.43×10^{-18}	
Hg_2F_2	3.10×10^{-6}	
$\mathrm{Hg}_{2}\mathrm{I}_{2}$	5.2×10^{-29}	
Hg_2SO_4	6.5×10^{-7}	
$HgBr_2$	6.2×10^{-20}	
HgI_2 (red)	2.9×10^{-29}	
HgS (black)	2.5 × 10	2×10^{-32}
HgS (red)		4×10^{-33}
K_2PtCl_6	7.48×10^{-6}	4 × 10
	1.05×10^{-2}	
KClO ₄ KIO ₄	3.71×10^{-4}	
=	5.71×10 7.50×10^{-12}	
$La(IO_3)_3$		
Li ₂ CO ₃	8.15×10^{-4}	
Li ₃ PO ₄	2.37×10^{-11}	
LiF	1.84×10^{-3}	
$Mg(OH)_2$	5.61×10^{-12}	
$Mg_3(PO_4)_2$	1.04×10^{-24}	
$MgC_2O_4 \cdot 2H_2O$	4.83×10^{-6}	
$MgCO_3 \cdot 3H_2O$	2.38×10^{-6}	
$MgCO_3 \cdot 5 H_2O$	3.79×10^{-6}	
$MgCO_3$	6.82×10^{-6}	
MgF_2	5.16×10^{-11}	
$Mn(IO_3)_2$	4.37×10^{-7}	
$\mathrm{MnC_2O_4} \cdot 2\mathrm{H_2O}$	1.70×10^{-7}	
$MnCO_3$	2.24×10^{-11}	
$MnS(\alpha)$		3×10^7
$Nd_2(CO_3)_3$	1.08×10^{-33}	
$Ni(IO_3)_2$	4.71×10^{-5}	
$Ni(OH)_2$	5.48×10^{-16}	
$Ni_3(PO_4)_2$	4.74×10^{-32}	
$NiCO_3$	1.42×10^{-7}	
$Pb(IO_3)_2$	3.69×10^{-13}	
$Pb(OH)_2$	1.43×10^{-20}	
$PbBr_2$	6.60×10^{-6}	
$PbCO_3$	7.40×10^{-14}	
$PbCl_2$	1.70×10^{-5}	
PbF_2	3.3×10^{-8}	
PbI_2	9.8×10^{-9}	
$PbSO_4$	2.53×10^{-8}	
$PbSeO_4$	1.37×10^{-7}	
PbS		3×10^{-7}
$Pd(SCN)_2$	4.39×10^{-23}	0 / 10
$Pr(OH)_3$	3.39×10^{-24}	
$Ra(IO_3)_2$	1.16×10^{-9}	
$RaSO_4$	3.66×10^{-11}	
RbClO ₄	3.00×10^{-3}	
$Sc(OH)_3$	2.22×10^{-31}	
ScF_3	5.81×10^{-24}	
	5.45×10^{-27}	
$Sn(OH)_2$ SnS	0.40 A 10	1×10^{-5}
	4.55×10^{-7}	1 \ 10
$Sr(IO_3)_2 \cdot 6H_2O$	4.55×10^{-7} 3.77×10^{-7}	
$Sr(IO_3)_2 \cdot H_2O$	5.11 × 10	

Formula	K_{sp}	K_{spa}
$Sr(IO_3)_2$	1.14×10^{-7}	
$Sr_3(AsO_4)_2$	4.29×10^{-19}	
$SrCO_3$	5.60×10^{-10}	
SrF_2	4.33×10^{-9}	
$SrSO_4$	3.44×10^{-7}	
$Tl(OH)_3$	1.68×10^{-44}	
Tl_2CrO_4	8.67×10^{-13}	
$TlBrO_3$	1.10×10^{-4}	
TlBr	3.71×10^{-6}	
TlCl	1.86×10^{-4}	
$TlIO_3$	3.12×10^{-6}	
TlI	5.54×10^{-8}	
TISCN	1.57×10^{-4}	
$Y(IO_3)_3$	1.12×10^{-10}	
$Y(OH)_3$	1.00×10^{-22}	
$Y_2(CO_3)_3$	1.03×10^{-31}	
YF_3	8.62×10^{-21}	
$\operatorname{Zn}(\operatorname{IO}_3)_2 \cdot 2\operatorname{H}_2\operatorname{O}$	4.1×10^{-6}	
$Zn(OH)_2$	3×10^{-17}	
$Zn_3(AsO_4)_2$	2.8×10^{-28}	
$ZnC_2O_4 \cdot 2H_2O$	1.38×10^{-9}	
$ZnCO_3 \cdot H_2O$	5.42×10^{-11}	
$ZnCO_3$	1.46×10^{-10}	
ZnF_2	3.04×10^{-2}	
$ZnSeO_3 \cdot H_2O$	1.59×10^{-7}	
ZnSe	3.6×10^{-26}	
ZnS (spharelite)		2×10
ZnS (wurtzite)		3×10