

Projet IMAGE Edition du genre d'un portrait

Première évaluation

Etat de l'art

Méthode traditionnelle

Morphing facial

Passage d'un visage d'un genre à un autre par morphing

4 étapes nécessaires à cette méthode :

Définition de points caractéristiques

4

Triangulation de Delaunay

Calcul du "visage moyen"

Changement de genre

Illustration de points caractéristiques sur le visage de George Clooney (Source : https://inst.eecs.berkeley.ed u/~cs194-26/fa18/upload/file s/proj4/cs194-26-adu/jose_ chavez_proj4/)

Etat de l'art

Méthode par apprentissage

Réseaux génératifs antagonistes (GAN)

• Réseaux adversaires : générateur VS discriminateur

> Supervisé : Pix2Pix Image -> Image Paires nécessaires

Non supervisé : CycleGAN
Domaine -> domaine
Pas de paires nécessaires
2 générateurs/discriminateurs

Auto-encodeur variationnel (VAE)

Image d'origine

Représentation latente

Représentation latente modifiée

Nouvelle image

Modèles de diffusion

Génération d'une image cible pixel par pixel en prenant en compte :

- Les pixels déjà générés
- L'image source donnée

Notre avancée

Côté méthode traditionnelle

Morphing facial

Implémentation de :

- La détection des points caractéristiques
- La triangulation de Delaunay

Résultat obtenu pour la détection de points caractéristiques

Résultat obtenu pour la triangulation de Delaunay

Notre avancée

Côté méthode traditionnelle

Morphing facial

Une perspective possible de notre méthode de morphing

Notre avancée

Côté méthode par apprentissage

Réseaux génératifs antagonistes (GAN): CycleGAN

Mise en place de notre modèle

Schéma du principe dy CycleGAN (Source : <u>Jun-Yan Zhu</u>, <u>Taesung Park</u>, <u>Phillip Isola</u>, <u>Alexei A. Efros</u>, *Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks*)

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**