INTERROGATION N. 3

NOM: PRÉNOM:

Exercice 1 - Soit un groupe (G,*). Soient $x,y \in G$. On suppose que x et y sont d'ordre fini et que l'ordre (noté m) de x est premier à l'ordre (noté n) de y.

- (1) Démontrer que $\langle x \rangle \cap \langle y \rangle = \{e\}.$
- (2) On suppose que x * y = y * x. Déterminer l'ordre de x * y.

Exercice 2 - Soit f un homomorphisme surjectif d'un groupe abélien (G, +) dans un groupe (H, *). Démontrer que H est un groupe abélien.

- <x>n <y> est sous-groupe de 6 comme intersection de sous-groupes de G, $(x) \cap (y) \subseteq (x)$ et $(x) \cap (y) \subseteq (y)$.

<x>n(y) est sous-groupe de <x> et de <y>.

Le théonème de Lagrange s'applique:

Cand (<x>n<y>) | Card(<x>)=m et Card(<x>n<y>) | Card(<y>)=m.

Or 19cd (m, m) = 1. Done Cord (cx>n(y)) = 1.

<x>n <y>= e

(2) Soit $l \in IN$, si $y^{\ell} * x = x * y^{\ell}$ along $y^{\ell+1} * x = y * y^{\ell} *$

Aimoi, une récurrence sur l'EIN démontre que

Soit lein, in (xxy) = x + y e alono $= x^{l+1} * y^{l+1}$. Une récurrence sur $l \ge 0$ démontre donc que $(x*y)^l = x^l * y^l$. En particulier $(x*y)^{mm} = x^{mm} + y^{mm} = (x^m)^m + (y^n)^m = e^m + e^m = e$ Om mote d l'ordre de xxy. Donc d/mm. 6m a e = (x + y) = x + y d. Done $x^{-d} = y^d \in \langle x \rangle \cap \langle y \rangle = \{e\}$. Done mild et mild. Gr 1gcd (m, m) = 1. Done mmld. Donc l'ordre de xxy est mm. 2) Soient h, k e H; somme feot surjectif, il existe g, g'e G tels que flg) = h et flg') = k; alons $h \star k = f(g) \star f(g')$ (fear um homomorphisme) = f(g*g') (G est abélien) = f(g * g)(of est un homomorphisme) = f(g') * f(g)

= k * h.

Donc Heat abélien