1 Borel-Weil-Bott

Let G/k be a split connected reductive group. Let $T \subset \overline{B} \subset G$ be a split maximal torus and \overline{B} a borel containing it. Let $X^*(T) = \text{Hom } (T, \mathbb{G}_m)$. Let $X^*(T)^+$ be the cone of dominant characters which is

$$\{\lambda : \langle \lambda, \alpha^{\vee} \rangle \ge 0\}$$

where α^{\vee} are coroots for the Borel B opposite to \overline{B} (for example this means that $P_{\alpha} = B$ for the dynamical thing). Write B = TN where N is the unipotent radical of B.

Theorem 1.0.1 (Highest Weight). Suppose k has characteristic zero. Let W be an irreducible finite dimensional algebraic representation of G. Then $\dim_k W^N = 1$ and $T \subset W^N$ by some $\chi_W \in X^{\bullet}(T)^+$

(a) the association $W \mapsto \chi_W$ induces a bijection,

{irred. fin dim reps}/isom
$$\xrightarrow{\sim} X^{\bullet}(T)^+$$

(b) The category of algebraic finite dimensional reps of G is semisimple.

Borel-Weil-Bott gives an explicit way to construct these highest-weight representations algebraically.

Let $X = G/\overline{B}$ be the flag variety. A \overline{B} -representation E induces a vector bundle \mathcal{L}_E on X where,

$$\Gamma(U, \mathcal{L}_E) = \{ f : \pi^{-1}(U) \to E \mid \forall g \in \overline{B} : f(gb) = b^{-1}f(g) \}$$

Theorem 1.0.2 (Borel-Weil). For any $\lambda \in X^{\bullet}(T)$ consider \mathcal{L}_{λ} by induction to \overline{B} $H^{0}(\lambda) := H^{0}(G/B, \mathcal{L}_{\lambda})$ is either:

- (a) the irreducible of heighest weight λ if $\lambda \in X^{\bullet}(T)^+$
- (b) 0 otherwise.

Theorem 1.0.3 (Bott). First for $w \in W := N(T)/T$ consider the action on $X^{\bullet}(T)$ by $w \bullet \lambda = w(\lambda + \rho) - \rho$ where,

$$\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$$

Then $H^{i+\ell(w)}(G/B, \mathcal{L}_{w \bullet \lambda}) \cong H^i(G/B, \mathcal{L}_{\lambda})$ where $\ell(w)$ is the number of simple reflections needed to write w. In particular $H^i(G/B, \mathcal{L}_{\ell}) = 0$ unless $i = i(\lambda)$ where $i(\lambda)$ is the minimal length of a w such that $\lambda = w \bullet \mu$ for $\mu \in X^{\bullet}(T)^+$.

Remark. $\mathcal{L}_{-2\rho} = \omega_{G/B}$.

1.1 Proof of Borel-Weil

First recall the Bruhat decomposition,

$$G = \bigcup_{w \in W} \overline{N}wB$$

and codim $(\overline{N}wB) = \ell(w)$. Therefore, $\overline{N}B$ is an open subset which is rational.

Work over \mathbb{C} .

Consider $H^0(\lambda) := H^0(G/B, \mathcal{L}_{\lambda}) = \{ f : G \to \mathbb{C} \mid f(gb) = \lambda(b)^{-1} f(b) \}$. If B = TN so $\overline{B} = T\overline{N}$ then,

$$H^{0}(\lambda)^{N} = \{ f : G \to \mathbb{C} \mid f(gb) = \lambda(b^{-1})f(g) \text{ and } f(ab) = f(b) \}$$

For any $f \in H^0(\lambda)$ it is determined on the open cell $\overline{N}B \subset G$ of the Bruhat decomposition via $f(nb) = \lambda(b)^{-1}f(1)$ therefore $\dim_{\mathbb{C}} H^0(\lambda)^N \leq 1$ determined by f. If $g \in H^0(\lambda)^N$ such that g(1) = 1 note that if $t \in T$ then $(t \cdot f)(1) = f(t^{-1}) = \lambda(t)f(1) = \lambda(t)$ so $T \subset H^0(\lambda)^N$ by the character χ_W . Therefore, if $H^0(\lambda)^N \neq 0$ then $\lambda \in X(T)^+$ by the theorem of highest weight. For this we used that G/B is proper so $H^0(\lambda)$ is a finite-dimensional algebraic representation. Moreover, we need to show that if λ is dominant then $H^0(\lambda)^N \neq 0$.

To construct nonzero $f \in H^0(\lambda)^N$ we need to satisfy $f(gb) = \lambda(b)^{-1}f(g)$ and f(ng) = f(g). Using the second equation and f(1) = 1 we get a well-defined function on the open cell. We need to show this extends to G. Consider,

$$S = \overline{N}B \cup \overline{N}s_{\alpha}B = RB$$

where s_{α} is a simple reflection and R is the root subgroup associated to α and \overline{N} . Idea: R has some Levi L, by passing to the universal cover of L and by pulling back, one reduces to the case $G = \operatorname{SL}_2$. On SL_2 we immediately check that for the characters,

$$\lambda_n: \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$

that the function

$$f: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto d^n f(1)$$

is a holomorphic function satisfying the required properties.

Matt's suggestion: shouldn't the order of vanishing along some divisor be governed by $\langle \lambda, \alpha^{\vee} \rangle$ and these are nonnegative by the definition of dominant.

1.2 Bott

The main theorem follows from iterating the following result.

Theorem 1.2.1. If α is a simple root and $\lambda \in X^{\bullet}(T)$ with $\langle \lambda + \rho, \alpha^{\vee} \rangle \geq 0$. Then there exists a G-equivariant isomorphism,

$$H^i(G/B, \mathcal{L}_{\lambda}) = H^{i+1}(G/B, \mathcal{L}_{\alpha \bullet \lambda})$$

Proof. Let P_{α} be a parabolic containing \overline{B} and the root subgroup generated by α . Construct a P_{α} -rep V_{α}^{λ} such that as a T-module it is the direct sum of characters: $\lambda, \lambda - \alpha, \dots, s_{\alpha}(\lambda)$. One way to do this is $H^{0}(P_{\alpha}/B, \mathcal{L}_{\alpha})$. If $\langle \lambda, \alpha^{\vee} \rangle \geq$ then there are two short exact sequence,

$$0 \, \longrightarrow \, K \, \longrightarrow \, V_{\alpha}^{\lambda} \, \longrightarrow \, (\lambda) \, \longrightarrow \, 0$$

$$0 \longrightarrow s_{\alpha}(\lambda) \longrightarrow K \longrightarrow V_{\alpha}^{\lambda \bullet \alpha} \longrightarrow 0$$

Reindexing, we get

$$0 \longrightarrow K \longrightarrow V_{\alpha}^{\lambda+\rho} \otimes (-\rho) \longrightarrow (\lambda) \longrightarrow 0$$

$$0 \longrightarrow s_{\alpha} \bullet \lambda \longrightarrow K \otimes (-\rho) \longrightarrow V_{\alpha}^{\lambda+\rho-\alpha} \otimes (-\rho) \longrightarrow 0$$

Claim,

$$R\Gamma(X, V_{\alpha}^{\lambda+\rho} \otimes (-\rho)) = R\Gamma(X, K \otimes (-\rho)) = 0$$

Consider the projection:

$$G/B \to G/P_{\alpha}$$

which is a \mathbb{P}^1 -bundle. Then $V_{\alpha}^{\lambda+\rho}$ and V_{α}^{λ} are P_{α} -reps so in fact on fibers are trivial. But $\langle -\rho, \alpha^{\vee} \rangle = -1$ so $V_{\alpha}^{\lambda+\rho\otimes(-\rho)}$ restricted to any fiber of Π_{α} vas vanishing cohomology since it restricts to $\mathcal{O}_{\mathbb{P}^1}(-1)$. Then by the Leray spectral sequence,

$$R\Pi_{\alpha*}V_{\alpha}^{\lambda+\rho}\otimes(-\rho)=0$$

implies the vanishing. Then taking the two connecting maps,

$$H^{i}(G/B, \mathcal{L}_{\lambda} \to H^{i+1}(G/B, K \otimes (-\rho)) \to H^{i}(G/B, \mathcal{L}_{s_{\alpha} \bullet \lambda})$$

these maps are isomorphisms by the vanishing in the long exact sequences. The composition of these isomorphisms gives the result.