Code: 21P03601 SR21 SET-3

SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC – Autonomous Institution

III B.Tech II Semester I MID Examinations, MAY – 2025 ARTIFICIAL INTELLIGENCE & MACHINE LEARNING MECH

Time : 20 Mins	Mins Max. Marks:20		Date: 01-05-2025
Roll No:	Sign of the Student:		Marks Obtained:
Name:	Sign of invigilator:		Sign of Valuator:
СО	CO 3	CO 4	Marks Obtained:
UNIT	III	IV	Total Marks:

1. Which method is commonly used for time-series forecasting?	[]
A) Decision Trees B) ARIMA C) Naïve Bayes D) Support Vector Machines		
2. Which of the following deep learning models is commonly used for sequence modeling?	ee []
A) Convolutional Neural Networks (CNNs) B) Recurrent Neural Networks (RNNs) C) Random Forest D) K-Means Clustering		
3. What is a Deep Boltzmann Machine (DBM) primarily used for?	[]
A) Supervised learning tasksB) Feature learning and representation learningC) ClusteringD) Decision Trees		
4. What is the main purpose of autoencoders?	[]
 A) To classify data B) To reconstruct input data by learning compressed representations C) To cluster data D) To generate decision trees 		

5. Which component is used in autoencoders to compress data into a lower-differm?	imensio	ona]
A) Decoder B) Encoder C) Activation Function D) Loss Function		
6. How do deep generative models differ from traditional machine learning n	nodels? [,]
A) They rely solely on labeled data B) They generate new data similar to the training data C) They only perform classification tasks D) They require supervised learning		
7. Which of the following is a deep generative model?	[]
A) Logistic Regression B) Variational Autoencoder (VAE) C) Random Forest D) Decision Tree		
8. What is the primary application of deep networks in Natural Language Pr (NLP)?	ocessin [ı g]
A) Image classificationB) Sentiment analysis and machine translationC) ClusteringD) Time-series forecasting		
9. In deep learning, which of the following is an application of Convolutional Networks (CNNs)?	Neural	l
A) Time-series forecastingB) Image recognition and object detectionC) Sentiment analysisD) Dimensionality reduction		
10. What is a major advantage of using deep learning in healthcare application	ons? []
A) It reduces the need for domain expertiseB) It automatically learns features from medical images and dataC) It replaces all doctorsD) It only works with structured data		

11. What is the goal of clustering in machine learning?	[]
A) To classify data based on prior labelsB) To partition data into meaningful groups based on similarityC) To maximize classification accuracyD) To remove outliers		
12. Which of the following is NOT a clustering algorithm?	[]
A) K-Means B) Hierarchical Clustering C) Decision Trees D) DBSCAN		
13. What is the main drawback of K-Means clustering?	[]
A) It is very slowB) It is sensitive to the choice of initial cluster centersC) It requires labeled dataD) It can only cluster numerical data		
14. In K-Means clustering, what does the 'K' represent?	[]
A) Number of iterations B) Number of clusters C) Number of dimensions in data D) Number of training examples		
15. What is dimensionality reduction used for in machine learning?	[]
A) To increase the number of featuresB) To improve model interpretability and reduce computationC) To generate more training dataD) To remove important information from data		
16. Which of the following is NOT a dimensionality reduction technique?	[]
A) Principal Component Analysis (PCA) B) t-SNE C) K-Means Clustering D) Singular Value Decomposition (SVD)		
17. What does PCA aim to do?	[]
A) Find the best linear separation between two classesB) Transform data into a new set of orthogonal variables (principal components)C) Reduce data size by removing missing valuesD) Increase the number of features		

18. What is the main limitation of PCA?	[]
A) It works only for classification problems		
B) It assumes linear relationships in the data		
C) It requires a very large dataset		
D) It cannot be used for dimensionality reduction		
19. Which of the following is true about kernel PCA?	[]
A) It is an extension of PCA that allows for non-linear transformations		
B) It requires labeled data		
C) It is a supervised learning method		
D) It is not useful for image processing		
20. In which scenario would you use Kernel PCA instead of standard PCA?	[]
A) When data has a non-linear structure		
B) When there are too many missing values		
C) When the dataset is very large		
D) When labels are available for classification		