

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 August 2003 (07.08.2003)

PCT

(10) International Publication Number
WO 03/064411 A1

(51) International Patent Classification⁷: C07D 403/06, 401/06, 207/09, 211/26, 409/06, 409/14, 405/06, 405/14, A61K 31/4025, 31/40, 31/445, 31/4523, A61P 3/00, 37/00, 25/28

(21) International Application Number: PCT/DK03/00048

(22) International Filing Date: 27 January 2003 (27.01.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PA 2002 00160 1 February 2002 (01.02.2002) DK
PA 2002 01501 7 October 2002 (07.10.2002) DK

(71) Applicants: NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK). BOEHRINGER INGELHEIM INTERNATIONAL GMBH [DE/DE]; 55216 Ingelheim am Rhein (DE).

(72) Inventors: PESCHKE, Bernd; Eskebjerggård 56, 2tv, DK-2760 Målev (DK). PETTERSSON, Ingrid; Grundtvigsvej 18, 2th, DK-1864 Frederiksberg (DK).

(74) Common Representative: NOVO NORDISK A/S; Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

74
74
14/2

WO 03/064411 A1

(54) Title: AMIDES OF AMINOALKYL-SUBSTITUTED AZETIDINES, PYRROLIDINES, PIPERIDINES AND AZEPANES

(57) Abstract: Novel amides of aminoalkyl-substituted azetidines, pyrrolidines, piperidines and azepanes, use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds, and a method of treatment employing these compounds and compositions. The compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.

AMIDES OF AMINOALKYL-SUBSTITUTED AZETIDINES, PYRROLIDINES, PIPERIDINES AND AZEPANES

FIELD OF THE INVENTION

The present invention relates to novel amides of aminoalkyl-substituted azetidines, pyrrolidines, piperidines and azepanes, to the use of these compounds as pharmaceutical compositions, to pharmaceutical compositions comprising the compounds, and to a method of treatment employing these compounds and compositions. The present compounds show a high and selective binding affinity to the histamine H3 receptor indicating histamine H3 receptor antagonistic, inverse agonistic or agonistic activity. As a result, the compounds are useful for the treatment of diseases and disorders related to the histamine H3 receptor.

BACKGROUND OF THE INVENTION

The existence of the histamine H3 receptor has been known for several years and the receptor is of current interest for the development of new medicaments. Recently, the human histamine H3 receptor has been cloned. The histamine H3 receptor is a presynaptic autoreceptor located both in the central and the peripheral nervous system, the skin and in organs such as the lung, the intestine, probably the spleen and the gastrointestinal tract. Recent evidence suggests that the H3 receptor shows intrinsic, constitutive activity, *in vitro* as well as *in vivo* (i.e. it is active in the absence of an agonist). Compounds acting as inverse agonists can inhibit this activity. The histamine H3 receptor has been demonstrated to regulate the release of histamine and also of other neurotransmitters such as serotonin and acetylcholine. A histamine H3 receptor antagonist or inverse agonist would therefore be expected to increase the release of these neurotransmitters in the brain. A histamine H3 receptor agonist, on the contrary, leads to an inhibition of the biosynthesis of histamine and an inhibition of the release of histamine and also of other neurotransmitters such as serotonin and acetylcholine.

These findings suggest that histamine H3 receptor agonists, inverse agonists and antagonists could be important mediators of neuronal activity. Accordingly, the histamine H3 receptor is an important target for new therapeutics.

Compounds similar to the compounds of the present invention have previously been prepared, and their biological properties have been investigated, cf. WO 00/59880, WO 00/39081. However, these references neither disclose nor suggest that these compounds may have a histamine H3 receptor antagonistic or agonistic activity. Several publications disclose the preparation and use of histamine H3 agonists and antagonists. Most of these are imidazole derivatives. However, recently some imidazole-free ligands

of the histamine H3 receptor have been described (see e.g. Linney et al., *J. Med. Chem.* 2000, 43, 2362-2370; US 6,316,475, WO 01/66534 and WO 01/74810). However, these compounds differ structurally from the present compounds.

In view of the art's interest in histamine H3 receptor agonists, inverse agonists and antagonists, novel compounds which interact with the histamine H3 receptor would be a highly desirable contribution to the art. The present invention provides such a contribution to the art being based on the finding that a novel class of amides of aminoalkyl-substituted azetidines,

pyrrolidines, piperidines and azepanes has a high and specific affinity to the histamine H3 receptor.

Due to their interaction with the histamine H3 receptor, the present compounds are useful in the treatment of a wide range of conditions and disorders in which an interaction with the histamine H3 receptor is beneficial. Thus, the compounds may find use e.g. in the treatment of diseases of the central nervous system, the peripheral nervous system, the cardiovascular system, the pulmonary system, the gastrointestinal system and the endocrinological system.

15 DEFINITIONS

In the structural formulae given herein and throughout the present specification, the following terms have the indicated meaning:

The term "halogen" means F, Cl, Br or I.

The term " C_{1-6} -alkyl" as used herein represents a saturated, branched or straight hydrocarbon group having from 1 to 6 carbon atoms. Typical C_{1-6} -alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, isohexyl and the like.

The term " C_{2-6} -alkenyl" as used herein represents a branched or straight hydrocarbon group having from 2 to 6 carbon atoms and at least one double bond. Examples of such groups include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, isopropenyl, 1,3-butadienyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2-hexenyl and the like.

The term " C_{2-6} -alkynyl" as used herein represents a branched or straight hydrocarbon group having from 2 to 6 carbon atoms and at least one triple bond. Examples of such groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentyne, 2-pentyne, 1-hexyne, 2-hexyne and the like.

The term " C_{3-6} -alkylene" as used herein represent a saturated, divalent, branched or straight hydrocarbon group having from 3 to 6 carbon atoms. Typical C_{3-6} -alkylene groups include, but are not limited to, 1,2-propylene, 1,3-propylene, butylene, isobutylidene, pentylene, hexylene and the like.

The term "C₃₋₆-alkenylene" as used herein represent a divalent, branched or straight hydrocarbon group having from 3 to 6 carbon atoms and at least one double bond. Typical C₃₋₆-alkenylene groups include, but are not limited to, n-propenylene, butenylene, pentenylene, hexenylene and the like.

- 5 The term "C₁₋₆-alkoxy" as used herein refers to the radical -O-C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are methoxy, ethoxy, n-propoxy, isopropoxy, butoxy, sec-butoxy, *tert*-butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.
- The term "C₁₋₆-alkylthio" as used herein refers to the radical -S-C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are methylthio, ethylthio, isopropylthio, n-10 propylthio, butylthio, pentylthio and the like.
- The term "C₁₋₆-alkylsulfinyl" as used herein refers to the radical -S(=O)-C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are methylsulfinyl, ethylsulfinyl, isopropylsulfinyl, n-propylsulfinyl, butylsulfinyl, pentylsulfinyl and the like.
- The term "C₁₋₆-alkylsulfonyl" as used herein refers to the radical -S(=O)₂-C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are methylsulfonyl, ethylsulfonyl, isopropylsulfonyl, n-propylsulfonyl, butylsulfonyl, pentylsulfonyl and the like.
- 15 The term "C₁₋₇-alkanoyl" as used herein refers to the radical -C(=O)H or -C(=O)C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are formyl, acetyl, propionyl, butanoyl, pentanoyl, hexanoyl, heptanoyl and the like.
- The term "C₁₋₆-alkylcarbamoyl" as used herein refers to the radical -C(=O)NH-C₁₋₆-alkyl, wherein C₁₋₆-alkyl is as defined above. Representative examples are methylcarbamoyl, ethylcarbamoyl, isopropylcarbamoyl, n-propylcarbamoyl, butylcarbamoyl, pentylcarbamoyl, hexylcarbamoyl and the like.
- 20 The term "di-C₁₋₆-alkylcarbamoyl" as used herein refers to the radical -C(=O)N(C₁₋₆-alkyl)₂, wherein C₁₋₆-alkyl is as defined above. It should be understood that the C₁₋₆-alkyl groups may be the same or different. Representative examples are dimethylcarbamoyl, methylethylcarbamoyl, diethylcarbamoyl, diisopropylcarbamoyl, di-n-propylcarbamoyl, dibutylcarbamoyl, dipentylcarbamoyl, dihexylcarbamoyl and the like.
- 25 The term "C₃₋₈-cycloalkyl" as used herein represents a monocyclic, carbocyclic group having from 3 to 8 carbon atoms. Representative examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
- 30 The term "C₅₋₈-cycloalkenyl" as used herein represents a monocyclic, carbocyclic, non-aromatic group having from 5 to 8 carbon atoms and at least one double bond. Representative examples are cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like.

- The term "C₃₋₈-cycloalkanoyl" as used herein refers to the radical -C(=O)-C₃₋₈-cycloalkyl, wherein C₃₋₈-cycloalkyl is as defined above. Representative examples are cyclopropanoyl, cyclobutanoyl, cyclopentanoyl, cyclohexanoyl, cycloheptanoyl, cyclooctanoyl, and the like.
- The term "C₃₋₈-cycloalkylcarbamoyl" as used herein refers to the radical
- 5 -C(=O)NH-C₃₋₈-cycloalkyl, wherein C₃₋₈-cycloalkyl is as defined above. Representative examples are cyclopropylcarbamoyl, cyclobutylcarbamoyl, cyclopentylcarbamoyl, cyclohexylcarbamoyl, cycloheptylcarbamoyl, cyclooctylcarbamoyl, and the like.
- The term "C₃₋₈-cycloalkyl-oxygen carbonyl" as used herein refers to the radical
- C(=O)-O-C₃₋₈-cycloalkyl, wherein C₃₋₈-cycloalkyl is as defined above. Representative
- 10 examples are cyclopropyloxycarbonyl, cyclobutyloxycarbonyl, cyclopentyloxycarbonyl, cyclohexyloxycarbonyl, cycloheptyloxycarbonyl, cyclooctyloxycarbonyl, and the like.
- The term "aryl" as used herein is intended to include carbocyclic aromatic ring systems such as phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pentalenyl, azulenyl and the like. Aryl is also intended to include the partially hydrogenated derivatives of the
- 15 carbocyclic systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 1,2,3,4-tetrahydronaphthyl, 1,4-dihydronaphthyl and the like.
- The term "aryloxy" as used herein refers to the radical -O-aryl, wherein aryl is as defined above. Non-limiting examples are phenoxy, naphthoxy, anthracenyloxy, phenantrenyloxy, fluorenyloxy, indenyloxy and the like.
- 20 The term "aroyl" as used herein refers to the radical -C(=O)-aryl, wherein aryl is as defined above. Non-limiting examples are benzoyl, naphthoyl, anthracenylcarbonyl, phenantrenylcarbonyl, fluorenylcarbonyl, indenylcarbonyl and the like.
- The term "arylthio" as used herein refers to the radical -S-aryl, wherein aryl is as defined above. Non-limiting examples are phenoxy, naphthoxy, anthracenylthio, phenantrenylthio,
- 25 fluorenylthio, indenylthio and the like.
- The term "arylsulfinyl" as used herein refers to the radical -S(=O)-aryl, wherein aryl is as defined above. Non-limiting examples are phenylsulfinyl, naphthylsulfinyl, anthracenylsulfinyl, phenantrenylsulfinyl, fluorenylsulfinyl, indenylsulfinyl and the like.
- The term "arylsulfonyl" as used herein refers to the radical -S(=O)₂-aryl, wherein aryl is as
- 30 defined above. Non-limiting examples are phenylsulfonyl, naphthylsulfonyl, anthracenylsulfonyl, phenantrenylsulfonyl, fluorenylsulfonyl, indenylsulfonyl and the like.
- The term "heteroaryl" as used herein is intended to include heterocyclic aromatic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulfur such as furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1,2,3-triazolyl,
- 35 1,2,4-triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl,

- 1,3,5-triazinyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoxazolyl, benzisoxazolyl, purinyl, quinazolinyl, quinolizinyl, quinolinyl, isoquinolinyl, quinoxaliny, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, diazepinyl, acridinyl and the like. Heteroaryl is also intended to include the partially hydrogenated derivatives of the heterocyclic systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 2,3-dihydrobenzofuranyl, pyrrolinyl, pyrazolinyl, indanyl, indolinyl, oxazolidinyl, oxazolinyl, oxazepinyl and the like.
- 10 The term "heteroaroyl" as used herein refers to the radical $-C(=O)-$ heteroaryl, wherein heteroaryl is as defined above.
- The term "heteroaryloxy" as used herein refers to the radical $-O-$ heteroaryl; wherein heteroaryl is as defined above.
- Certain of the above defined terms may occur more than once in the structural formulae, and
- 15 upon such occurrence each term shall be defined independently of the other.
- The term "optionally substituted" as used herein means that the groups in question are either unsubstituted or substituted with one or more of the substituents specified. When the groups in question are substituted with more than one substituent the substituents may be the same or different.
- 20 The term "treatment" as used herein means the management and care of a patient for the purpose of combating a disease, disorder or condition. The term is intended to include the delaying of the progression of the disease, disorder or condition, the alleviation or relief of symptoms and complications, and/or the cure or elimination of the disease, disorder or condition. The patient to be treated is preferably a mammal, in particular a human being.

25 DESCRIPTION OF THE INVENTION

The present invention relates to a compound of the general formula (I):

wherein

m is 1, 2 or 3,

n is 0, 1, 2 or 3,

5.

R¹ and R² independently are

hydrogen,

10 C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

15.

or R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

R¹¹ and R¹² independently are

20.

hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

25

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

X is

or

$R^3, R^4, R^5, R^6, R^7, R^8, R^9$ and R^{10} independently are

- hydrogen, halogen, cyano, $-NR^{15}R^{16}$, hydroxyl, carbamoyl, carboxyl, $-CF_3$, $-OCF_3$, carboxyl, amidino, guanidino or nitro, or

• C₁₋₆-alkoxy, C₁₋₆-alkyl, C₁₋₇-alkanoyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkyloxycarbonyl, C₁₋₆-alkylthio, C₁₋₆-alkylsulfinyl, C₁₋₆-alkylsulfonyl, aryl, aroyl, aryloxy, aryloxycarbonyl, arylthio, arylsulfinyl or arylsulfonyl,

5 which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano and -NR¹⁵R¹⁶,

R¹⁵ and R¹⁶ independently are

10 hydrogen or carbamoyl,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino, or

15 C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl or C₁₋₆-alkyloxycarbonyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

20 or R¹⁵ and R¹⁶ together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

25 or two or more of R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, R⁶ and R⁷, R⁷ and R⁸, R⁸ and R⁹, R⁹ and R⁶, and R⁸ and R¹⁰ together form a bridge selected from -OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂CH₂O- and C₃₋₅-alkylene,

or R¹¹ and R³, R¹¹ and R⁷, or R¹¹ and R¹⁰ together form a bridge selected from -O-, -S-, -CH₂-, -C(=O)-, -CH(OH)-, -NR¹³-, -OCH₂- and -CH₂O-,

30 R¹³ is
hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more

- 5 substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

-Y- is -CH₂-, -C(=O)-, -NR¹⁴-, -O-, -S-, -CH₂O-, -OCH₂- or -CH(OH)-,

- 10 R¹⁴ is

hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from

- 15 C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano and amino,

- 20 R¹⁷ is hydrogen, C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

R¹⁸ and R¹⁹ independently are hydrogen, halogen, hydroxyl, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

- 25 as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

In one embodiment R¹⁷, R¹⁸ and R¹⁹ are all hydrogen.

- 30 In another embodiment m is 1.

In still another embodiment n is 1.

- 35 In yet another embodiment R¹ and R² together form a C₃₋₆-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl.

In one embodiment R¹ and R² together form a C₄-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl.

- 5 In a further embodiment R¹ and R² together form a C₄-alkylene bridge.

In still a further embodiment R¹¹ is hydrogen.

In yet a further embodiment R¹² is hydrogen.

10

In another embodiment X is

- 15 wherein R³, R⁴, R⁵, R⁶ and R⁷ are as defined for formula (I).

In one embodiment R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from hydrogen, halogen, -CF₃ and C₁₋₆-alkoxy.

- 20 In a further embodiment four of the substituents R³, R⁴, R⁵, R⁶ and R⁷ are hydrogen and the remaining substituent is selected from halogen, -CF₃ and C₁₋₆-alkoxy.

It should be understood that when n is 2 or 3, the R¹⁹ groups may be the same or different.

- 25 In another aspect the invention provides compounds of the general formula (II):

wherein

5 m is 1, 2 or 3,

n is 0, 1, 2 or 3,

R¹ and R² independently are

10 hydrogen,

C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

15

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

20

or R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

25 R¹¹ and R¹² independently are

hydrogen,

25

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

30

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

X is

or

R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ independently are

- hydrogen, halogen, cyano, -NR¹⁵R¹⁶, hydroxyl, carbamoyl, carboxyl, -CF₃, -OCF₃, carboxyl, amidino, guanidino or nitro, or

5

- C₁₋₆-alkoxy, C₁₋₆-alkyl, C₁₋₇-alkanoyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkyloxycarbonyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkanoyl, C₃₋₈-cycloalkylcarbamoyl, C₃₋₈-cycloalkyl-oxycarbonyl, C₁₋₆-alkylthio, C₁₋₆-alkylsulfinyl, C₁₋₆-alkylsulfonyl, C₁₋₆-alkylsulfonyl-O-, aryl, aroyl, aryloxy, aryloxycarbonyl, arylthio, arylsulfanyl, aryl-

10

sulfanyl, heteroaryl, heteroaroyl, or heteroaryloxy which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano and -NR¹⁵R¹⁶,

R¹⁵ and R¹⁶ independently are

15

hydrogen or carbamoyl,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl,

20

cyano and amino, or

C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl or C₁₋₆-alkyloxycarbonyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

25

or R¹⁵ and R¹⁶ together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

30

or two or more of R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, R⁶ and R⁷, R⁷ and R⁸, R⁸ and R⁹, R⁹ and R⁶, and R⁸ and R¹⁰ together form a bridge selected from -OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂CH₂O- and C₃₋₅-alkylene,

or R¹¹ and R³, R¹¹ and R⁷, or R¹¹ and R¹⁰ together form a bridge selected from -O-, -S-, -CH₂-, -C(=O)-, -CH(OH)-, -NR¹³-, -OCH₂- and -CH₂O-,

R¹³ is

5

hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

10

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

15 -Y- is -CH₂-, -C(=O)-, -NR¹⁴-, -O-, -S-, -CH₂O-, -OCH₂- or -CH(OH)-,

R¹⁴ is

hydrogen,

20

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more

25 substituents selected from halogen, hydroxyl, cyano and amino,

R¹⁷ is hydrogen, C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl,

R¹⁸ and R¹⁹ independently are hydrogen, halogen, hydroxyl, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl or

30 C₂₋₆-alkynyl,

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

35 In another embodiment R¹ is

hydrogen,

C₁₋₆-alkyl optionally substituted with one or more substituents selected from C₃₋₈-cycloalkyl,

5 C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

10 In another embodiment R¹ is

C₁₋₆-alkyl, or

R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may op-

15 tionally be substituted with one or more substituents selected from halogen and hydroxyl

In another embodiment R¹ is

C₁₋₆-alkyl, or

20

R¹ and R² together form a C₃₋₆-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

In another embodiment R¹ is

25

C₁₋₆-alkyl, or

R¹ and R² together form a C₄₋₅-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

30

In another embodiment R¹ is

C₁₋₆-alkyl, or

35 R¹ and R² together form a C₄₋₅-alkylene bridge

In another embodiment R¹ and R² together form a C₄₋₅-alkylene bridge

In another embodiment R¹ and R² together form a C₄-alkylene bridge

5

In another embodiment R¹ and R² together form a C₅-alkylene bridge

In another embodiment m is 1

10 In another embodiment n is 1 or 2

In another embodiment n is 1

In another embodiment X is

15

wherein R³, R⁴, R⁵, R⁶ and R⁷ are as defined in claim 1

In another embodiment -Y- is -O- or -S-

20 In another embodiment -Y- is -O-

In another embodiment X is

wherein R³, R⁴, R⁵, R⁶ and R⁷ are as defined in claim 1

25

In another embodiment R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from

•hydrogen, halogen, cyano, -NR¹⁵R¹⁶, -CF₃, -OCF₃, or nitro, wherein R¹⁵ and R¹⁶ are as defined in claim 1

- 5 •C₁₋₆-alkoxy, C₃₋₆-cycloalkyl-carbonyl, aryl, heteroaryl, C₃₋₈-cycloalkanoyl, C₁₋₆-alkylsulfonyl, or C₁₋₆-alkylsulfonyl-O- which may optionally be substituted with one or more halogen
- 10 or R⁴ and R⁵ together form a -OCH₂O- bridge,
or R¹¹ and R³ together form a bridge selected from -O- or -S-

In another embodiment R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from

- 15 •hydrogen, halogen, cyano, -CF₃, or -OCF₃
- C₁₋₆-alkoxy, 1,2,4-triazolyl, cyclopropanoyl or C₁₋₆-alkylsulfonyl-O- which may optionally be substituted with one or more halogen
or R⁴ and R⁵ together form a -OCH₂O- bridge,
or R¹¹ and R³ together form a bridge selected from -O- or -S-

- 20 In another embodiment R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from

- hydrogen, halogen, cyano, -CF₃, or -OCF₃
- 25 •-O-CH₃, 1,2,4-triazolyl, -O-CH₂CH₃, or CH₃-sulfonyl-O- which may optionally be substituted with one or more halogen
or R¹¹ and R³ together form a bridge selected from -O- or -S-

- 30 In another embodiment R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from
- hydrogen, halogen, cyano, -CF₃, or -OCF₃

•-O-CH₃, -O-CH₂CH₃, or CH₃-sulfonyl-O- or CF₃-sulfonyl-O-

or R¹¹ and R³ together form a bridge selected from -O- or -S-

In another embodiment R¹¹ is hydrogen

- 5 In another embodiment R¹² is hydrogen or C₁₋₆-alkyl

In another embodiment R¹² is hydrogen or methyl

In another embodiment R¹⁵ is hydrogen

10

In another embodiment R¹⁶ is hydrogen

In another embodiment R¹⁷, R¹⁸ and R¹⁹ are all hydrogen

- 15 The compounds of the present invention may be chiral, and it is intended that any enantiomers, as separated, pure or partially purified enantiomers or racemic mixtures thereof are included within the scope of the invention.

Furthermore, when a double bond or a fully or partially saturated ring system or more than one center of asymmetry or a bond with restricted rotatability is present in the molecule di-

- 20 astereomers may be formed. It is intended that any diastereomers, as separated, pure or partially purified diastereomers or mixtures thereof are included within the scope of the invention.

Furthermore, some of the compounds of the present invention may exist in different tautomeric forms and it is intended that any tautomeric forms, which the compounds are able to

- 25 form, are included within the scope of the present invention.

The present invention also encompasses pharmaceutically acceptable salts of the present compounds. Such salts include pharmaceutically acceptable acid addition salts, pharma-

- 30 ceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic,

- 35 gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic,

benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methylammonium, di-methylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethyl-ammonium, butylammonium, tetramethylammonium salts and the like.

Also intended as pharmaceutically acceptable acid addition salts are the hydrates, which the present compounds are able to form.

10 The acid addition salts may be obtained as the direct products of compound synthesis. In the alternative, the free base may be dissolved in a suitable solvent containing the appropriate acid, and the salt isolated by evaporating the solvent or otherwise separating the salt and solvent.

15 The compounds of the present invention may form solvates with standard low molecular weight solvents using methods well known to the person skilled in the art. Such solvates are also contemplated as being within the scope of the present invention.

The invention also encompasses prodrugs of the present compounds, which on administration undergo chemical conversion by metabolic processes before becoming active pharmaceutical substances. In general, such prodrugs will be functional derivatives of the present 20 compounds, which are readily convertible *in vivo* into the required compound of the formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.

The invention also encompasses active metabolites of the present compounds.

25 The compounds of the present invention interact with the histamine H3 receptor and are accordingly useful for the treatment of a wide variety of conditions and disorders in which histamine H3 receptor interactions are beneficial.

Accordingly, in another aspect the present invention relates to a compound of the general formula (I) as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof for use as a pharmaceutical 30 composition.

The invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound of the formula (I) or any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable carriers or diluents.

Furthermore, the invention relates to the use of a compound of the general formula (I) as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of disorders and diseases related to the histamine H3 receptor.

- 5 In still another aspect, the invention relates to a method for the treatment of diseases and disorders related to the histamine H3 receptor the method comprising administering to a subject in need thereof an effective amount of a compound of the formula (I) or any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same.
- 10 In one aspect the invention relates to compounds with histamine H3 receptor antagonistic activity or inverse agonistic activity which may accordingly be useful in the treatment of a wide range of conditions and disorders in which histamine H3 receptor blockade is beneficial. In another aspect the invention relates to compounds with histamine H3 receptor agonistic activity and which may accordingly be useful in the treatment of a wide range of conditions
- 15 and disorders in which histamine H3 receptor activation is beneficial.
In a preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the reduction of weight.
In a preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the treatment of overweight or obesity.
- 20 In another preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the suppression of appetite or satiety induction.
In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the prevention and/or treatment of disorders
- 25 and diseases related to overweight or obesity such as atherosclerosis, hypertension, IGT (impaired glucose tolerance), diabetes, especially type 2 diabetes (NIDDM (non-insulin dependent diabetes mellitus)), dyslipidaemia, coronary heart disease, gallbladder disease, osteoarthritis and various types of cancer such as endometrial, breast, prostate and colon cancers.
- 30 In yet a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the prevention and/or treatment of eating disorders such as bulimia and binge eating.
In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the treatment of IGT.

- In a further preferred embodiment of the invention the present compounds are used for the preparation of a pharmaceutical composition for the treatment of type 2 diabetes. Such treatment includes inter alia treatment for the purpose of delaying or prevention of the progression from IGT to type 2 diabetes as well as delaying or prevention of the progression 5 from non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes.
- The compounds of the present invention may also be used for the treatment of airway disorders such as asthma, as anti-diarrhoeals and for the modulation of gastric acid secretion. Furthermore, the compounds of the present invention may be used for the treatment of diseases associated with the regulation of sleep and wakefulness and for the treatment of nar- 10 colepsy and attention deficit disorders.
- Moreover, the compounds of the invention may be used as CNS stimulants or as sedatives. The present compounds may also be used for the treatment of conditions associated with epilepsy. Additionally, the present compounds may be used for the treatment of motion sickness and vertigo. Furthermore, they may be useful as regulators of hypothalamo- 15 hypophyseal secretion, antidepressants, modulators of cerebral circulation, and in the treatment of irritable bowel syndrome.
- Further, the compounds of the present invention may be used for the treatment of dementia and Alzheimer's disease.
- The compounds of the present invention may also be useful for the treatment of allergic rhini- 20 tis, ulcer or anorexia.
- The compounds of the present invention may furthermore be useful for the treatment of mi- graine, see McLeod et al., *The Journal of Pharmacology and Experimental Therapeutics* 287 (1998), 43-50, and for the treatment of myocardial infarction, see Mackins et al., *Expert Opin- ion on Investigational Drugs* 9 (2000), 2537-2542.
- 25 In a further aspect of the invention treatment of a patient with the present compounds is combined with diet and/or exercise.
- In a further aspect of the invention the present compounds are administered in combination with one or more further active substances in any suitable ratio(s). Such further active agents may be selected from antiobesity agents, antidiabetics, antidyslipidemic agents, antihyper- 30 tensive agents, agents for the treatment of complications resulting from or associated with diabetes and agents for the treatment of complications and disorders resulting from or associated with obesity.
- Thus, in a further aspect of the invention the present compounds are administered in combi- nation with one or more antiobesity agents or appetite regulating agents.

Such agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melanocortin 4) agonists, MC3 (melanocortin 3) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β 3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors such as fluoxetine, seroxat or citalopram, serotonin and noradrenaline re-uptake inhibitors, mixed serotonin and noradrenergic compounds, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists; growth hormone, growth factors such as prolactin or placental lactogen, growth hormone releasing compounds, TRH (thyrotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA agonists (bromocriptin, doprexin), lipase/amylase inhibitors, PPAR (peroxisome proliferator-activated receptor) modulators, RXR (retinoid X receptor) modulators, TR β agonists, AGRP (Agouti related protein) inhibitors, opioid antagonists (such as naltrexone), exendin-4, GLP-1 and ciliary neurotrophic factor.

- In one embodiment of the invention the antiobesity agent is leptin.
- In another embodiment the antiobesity agent is dexamphetamine or amphetamine.
- In another embodiment the antiobesity agent is fenfluramine or dexfenfluramine.
- 20 In still another embodiment the antiobesity agent is sibutramine.
- In a further embodiment the antiobesity agent is orlistat.
- In another embodiment the antiobesity agent is mazindol or phentermine.
- In still another embodiment the antiobesity agent is phendimetrazine, diethylpropion, fluoxetine, bupropion, topiramate or ecopipam.
- 25 In yet a further aspect the present compounds are administered in combination with one or more antidiabetic agents.
- Relevant antidiabetic agents include insulin, insulin analogues and derivatives such as those disclosed in EP 0 792 290 (Novo Nordisk A/S), e.g. N^{B29} -tetradecanoyl des (B30) human insulin; EP 0 214 826 and EP 0 705 275 (Novo Nordisk A/S), e.g. Asp^{B28} human insulin, US 30 5,504,188 (Eli Lilly), e.g. Lys^{B28} Pro^{B29} human insulin, EP 0 368 187 (Aventis), e.g. Lantus®, which are all incorporated herein by reference, GLP-1 derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycaemic agents.
- The orally active hypoglycaemic agents preferably comprise imidazolines, sulfonylureas, 35 biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, α -

- glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the β -cells e.g. potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, or mitiglinide, or a potassium channel blocker, such as BTS-67582, nateglinide, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, GSK-3 (glycogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antilipidemic agents, compounds lowering food intake, PPAR (peroxisome proliferator-activated receptor) and RXR (retinoid X receptor) agonists, such as ALRT-268, LG-1268 or LG-1069.
- In one embodiment of the invention the present compounds are administered in combination with insulin or an insulin analogue or derivative, such as N^{B29}-tetradecanoyl des (B30) human insulin, Asp^{B28} human insulin, Lys^{B28} Pro^{B29} human insulin, Lantus®, or a mix-preparation comprising one or more of these.
- In a further embodiment of the invention the present compounds are administered in combination with a sulfonylurea e.g. tolbutamide, chlorpropamide, tolazamide, glibenclamide, glipizide, glimepiride, glicazide or glyburide.
- In another embodiment of the invention the present compounds are administered in combination with a biguanide e.g. metformin.
- In yet another embodiment of the invention the present compounds are administered in combination with a meglitinide e.g. repaglinide or nateglinide.
- In still another embodiment of the invention the present compounds are administered in combination with a thiazolidinedione insulin sensitizer e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/CI-1037 or T 174 or the compounds disclosed in WO 97/41097, WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292 (Dr. Reddy's Research Foundation), which are incorporated herein by reference.
- In still another embodiment of the invention the present compounds may be administered in combination with an insulin sensitizer e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313, WO 00/50414,

WO 00/63191, WO 00/63192, WO 00/63193 (Dr. Reddy's Research Foundation) and WO 00/23425, WO 00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189 (Novo Nordisk A/S), which are incorporated herein by reference.

- 5 In a further embodiment of the invention the present compounds are administered in combination with an α -glucosidase inhibitor e.g. voglibose, emiglitate, miglitol or acarbose.
In another embodiment of the invention the present compounds are administered in combination with an agent acting on the ATP-dependent potassium channel of the β -cells e.g. tolbutamide, glibenclamide, glipizide, glicazide, BTS-67582 or repaglinide.
- 10 In yet another embodiment of the invention the present compounds may be administered in combination with nateglinide.
In still another embodiment of the invention the present compounds are administered in combination with an antilipidemic agent e.g. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
- 15 In another aspect of the invention, the present compounds are administered in combination with more than one of the above-mentioned compounds e.g. in combination with metformin and a sulfonylurea such as glyburide; a sulfonylurea and acarbose; nateglinide and metformin; acarbose and metformin; a sulfonylurea, metformin and troglitazone; insulin and a sulfonylurea; insulin and metformin; insulin, metformin and a sulfonylurea; insulin and troglitazone; insulin and lovastatin; etc.
Furthermore, the present compounds may be administered in combination with one or more antihypertensive agents. Examples of antihypertensive agents are β -blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and α -blockers such as doxazosin, urapidil, prazosin and terazosin. Further reference can be made to Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
- 25 It should be understood that any suitable combination of the compounds according to the invention with diet and/or exercise, one or more of the above-mentioned compounds and optionally one or more other active substances are considered to be within the scope of the present invention.

PHARMACEUTICAL COMPOSITIONS

- The compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or excipients, in either single or multiple doses. The pharmaceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
- The pharmaceutical compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, pulmonary, topical (including buccal and sublingual), transdermal, intracisternal, intraperitoneal, vaginal and parenteral (including subcutaneous, intramuscular, intrathecal, intravenous and intradermal) route, the oral route being preferred. It will be appreciated that the preferred route will depend on the general condition and age of the subject to be treated, the nature of the condition to be treated and the active ingredient chosen.
- 15 Pharmaceutical compositions for oral administration include solid dosage forms such as capsules, tablets, dragees, pills, lozenges, powders and granules. Where appropriate, they can be prepared with coatings such as enteric coatings or they can be formulated so as to provide controlled release of the active ingredient such as sustained or prolonged release according to methods well known in the art.
- 20 Liquid dosage forms for oral administration include solutions, emulsions, suspensions, syrups and elixirs.
- Pharmaceutical compositions for parenteral administration include sterile aqueous and non-aqueous injectable solutions, dispersions, suspensions or emulsions as well as sterile powders to be reconstituted in sterile injectable solutions or dispersions prior to use. Depot injectable formulations are also contemplated as being within the scope of the present invention.
- 25 Other suitable administration forms include suppositories, sprays, ointments, cremes, gels, inhalants, dermal patches, implants etc.
- A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.

The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain of from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.

- 5 For parenteral routes, such as intravenous, intrathecal, intramuscular and similar administration, typically doses are in the order of about half the dose employed for oral administration. The compounds of this invention are generally utilized as the free substance or as a pharmaceutically acceptable salt thereof. One example is an acid addition salt of a compound having the utility of a free base. When a compound of the formula (I) contains a free base such salts are prepared in a conventional manner by treating a solution or suspension of a free base of the formula (I) with a chemical equivalent of a pharmaceutically acceptable acid, for example, inorganic and organic acids. Representative examples are mentioned above. Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as sodium or ammonium ion.
- 10 15 For parenteral administration, solutions of the novel compounds of the formula (I) in sterile aqueous solution, aqueous propylene glycol or sesame or peanut oil may be employed. Such aqueous solutions should be suitable buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. The aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. The 20 sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.
- Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents. Examples of solid carriers are lactose, terra alba, sucrose, cyclodextrin, talc, gelatine, agar, pectin, acacia, magnesium stearate, stearic acid or lower 25 alkyl ethers of cellulose. Examples of liquid carriers are syrup, peanut oil, olive oil, phospholipids, fatty acids, fatty acid amines, polyoxyethylene or water. Similarly, the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. The pharmaceutical compositions formed by combining the novel compounds of the formula (I) and the pharmaceutically acceptable 30 carriers are then readily administered in a variety of dosage forms suitable for the disclosed routes of administration. The formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient. These formulations may be in 35

the form of powder or granules, as a solution or suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion.

If a solid carrier is used for oral administration, the preparation may be tabletted, placed in a hard gelatine capsule in powder or pellet form or it can be in the form of a troche or lozenge.

- 5 The amount of solid carrier will vary widely but will usually be from about 25 mg to about 1 g.
If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatine capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.

A typical tablet, which may be prepared by conventional tabletting techniques, may contain:

10 Core:

Active compound (as free compound or salt thereof)	5.0 mg
Lactosum Ph. Eur.	67.8 mg
Cellulose, microcryst. (Avicel)	31.4 mg
Amberlite® IRP88*	1.0 mg
15 Magnesii stearas Ph. Eur.	q.s.

Coating:

Hydroxypropyl methylcellulose	approx.	9 mg
Mywacett 9-40 T**	approx.	0.9 mg

20

* Polacrillin potassium NF, tablet disintegrant, Rohm and Haas.

** Acylated monoglyceride used as plasticizer for film coating.

- If desired, the pharmaceutical composition of the invention may comprise the compound of
25 the formula (I) in combination with further pharmacologically active substances such as those described in the foregoing.

EXAMPLES

NMR spectra were recorded on Bruker 300 MHz and 400 MHz instruments. HPLC-MS was performed on a Perkin Elmer instrument (API 100).

30 **HPLC (Method A)**

The reverse phase analysis was performed using UV detections at 214 and 254 nm on a 218TP54 4.6 mm x 150 mm C-18 silica column, which was eluted at 1 ml/min at 42 °C. The column was equilibrated with 5% acetonitrile, 85% water and 10% of a solution of 0.5%

trifluoroacetic acid in water and eluted by a linear gradient from 5% acetonitrile, 85% water and 10% of a solution of 0.5% trifluoroacetic acid to 90% acetonitrile and 10% of a solution of 0.5% trifluoroacetic acid over 15 min.

5 HPLC (Method B)

- The RP-analyses was performed using a Alliance Waters 2695 system fitted with a Waters 2487 dualband detector. UV detections were collected using a Symmetry C18 , 3.5 µm, 3.0 mm x 100 mm column. Eluted with a linear gradient of 5-90% acetonitrile, 90-0% water, and 10. 5% trifluoroacetic acid (1.0%) in water over 8 minutes at a flow-rate of 1.0 min/min.

General procedure (A)

The compounds of formula (I) according to the invention may be prepared by the general procedure (A):

Step A:

The compounds of the general formula (I) are prepared from an *N*-protected amino alcohol of the general formula (II). The protective group may be chosen from the protective groups known in the art and described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc., New York, 1991). The amino alcohol of the general formula (II) is oxidized by a suitable method known in the art, e.g. using oxalyl chloride and dimethylsulphoxide or dicyclohexylcarbodiimide and dimethylsulphoxide to yield an aldehyde of the general formula (III).

Step B:

- 10 The aldehyde of the general formula (III) is reacted with an amine of the general formula (IV) under acidic or neutral conditions with a reduction reagent such as e.g. sodium acetoxyborohydride or sodium cyanoborohydride to give an amine of the general formula (V).

Step C:

- 15 The protective group is removed by a method known in the art and described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991) to give an amine of the general formula (VI) either as free base or as a salt.

Step D:

- 20 The amine of the general formula (VI) - either as a free base or as a salt – is reacted with an acid of formula (VII) and a coupling reagent such as e.g. a combination of 1-hydroxy-7-azabenzotriazole and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt or a combination of 3-hydroxy-1,2,3-benzotriazin-4(3H)-one and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt, optionally in the presence of an amine base such as e.g. triethylamine or ethyldiisopropylamine, or with an activated derivative of the acid of the
25 formula (VII) such as e.g. an acid chloride, acid imidazolide or a phenolic ester to give a compound of the general formula (I).

General procedure (B)

The compounds of formula (I) according to the invention may also be prepared by the general procedure (B):

Step A:

The compounds of the general formula (I) are synthesized from a *N*-protected amino acid of the general formula (VIII). The protective group may be chosen from the protective groups known in the art and described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective

10 groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991).

An amine of the general formula (IV) - either as a free base or as a salt - is reacted with a *N*-protected amino acid of the general formula (VIII) and a coupling reagent such as e.g. a combination of 1-hydroxy-7-azabenzotriazole and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt or a combination of 3-hydroxy-1,2,3-benzotriazin-4(3*H*)-one and 1-

(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt, optionally in the presence of an amine base such as e.g. triethylamine or ethyldiisopropylamine, or an activated derivative of the acid of the general formula (VIII) such as e.g. an acid chloride, acid imidazolide or a phenolic ester to give an amide of the general formula (IX).

5. Step B:

The amide (IX) is reduced with an appropriate reduction reagent such as e.g. borane, a combination of sodium borohydride and iodine or a combination of sodium borohydride and sulfuric acid to give an amine of the general formula (V).

Step C and Step D:

- 10 These steps are identical to steps C and D of general procedure (A).

General Procedure (C)

5

Step A

This step is identical to step A of general procedure (B),

Step B

10

The protection group of the amine is removed by a method known in the art (e.g. T. W. Greene, P. G. Wuts, *Protective groups in organic synthesis*, 2nd edition, John Wiley & Sons

Inc. New York, 1991) to give an amide of the general formula (X) either as free base or as a salt.

Step C:

- 5 The amide (X) is reduced with an appropriate reduction reagent such as e.g. lithium aluminum hydride, yielding an amine of the general formula (VI).

Step D:

This step is identical to step D of general procedure (A).

General Procedure (D)

5

Step A

A metalation directing group DG (e.g. a 2-tetrahydropyranyl group) is attached to a phenol of type (XI) as known for a person trained in the art or described in the literature (e.g. T. W.

Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991) to give a compound of type (XII)

Step B

- 5 The compound of type (XII) is treated with an alkylmetal reagent such as *n*-butyllithium sec.-butyllithium or *tert*-butyllithium with or without a chelating reagent such as *N,N,N',N'*-tetramethylethylenediamine at appropriate temperature such as a temperature between -78°C and room temperature for an appropriate time (5 min-16 h). A suitable electrophile such as *N,N*-dimethylformamide is added. The directing group is either removed during work up or during a step using a method known for a person trained in the art or described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991) to give an aldehyde of type (XIII).
- 10

Step C:

- 15 The aldehyde of type (XIII) is reacted with a suitable 2-haloester such as e.g. diethyl bromomalonate in the presence of an appropriate base such as potassium carbonate in an appropriate solvent such as ethyl methyl ketone at an appropriate temperature (e.g. between 0°C and 200°C) to give the ester of type (XIV).

20

Step D:

- The ester of type (XIV) is saponified with a method known for a person trained in the art or described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991), e.g. potassium hydroxide in methanol or lithium hydroxide in a mixture of dioxane and water to give an acid of type (XV).
- 25

Step E:

This step is identical to step D of general procedure (A).

30

General Procedure (E)

5

Step A

A suitable halogenarene such as a bromine or iodine compound of the general structure (XVI) is reacted with an alkyl acrylate of the general structure (XVII) in the presence of a

- 10 suitable catalyst such as e.g. a palladium catalyst such as e.g. palladium(II) acetate in the presence of a suitable ligand such as triphenylphosphine and a suitable base such as e.g. an amine-base such as e.g. triethylamine or ethyldiisopropylamine, to yield an alkyl acrylate of the general structure (XVIII).

- 15 **Step B**

The ester of type (XVIII) is saponified with a method known for a person trained in the art or described in the literature (e.g. T. W. Greene, P. G. Wuts, Protective groups in organic synthesis, 2nd edition, John Wiley & Sons Inc. New York, 1991), e.g. potassium hydroxide in methanol or lithium hydroxide in a mixture of dioxane and water to give an acid of type (XIX).

5

Step C:

This step is identical to step D of general procedure (A) yielding a compound of the general structure (Ib).

10

15

Example 1 (General procedure (A))

(E)-3-(4-Bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

20 Step A: (S)-2-Formylpyrrolidine-1-carboxylic acid *tert*-butyl ester

At -78 °C, a solution of dimethylsulphoxide (7.06 ml, 0.099 mol) in dichloromethane (10 ml) was added dropwise to a solution of oxalyl chloride (6.40 ml, 0.075 mol) in dichloromethane

(15 ml). The reaction mixture was stirred for 20 min at -78 °C. A solution of (S)-1-(*tert*-butoxycarbonyl)-2-pyrrolidinemethanol (10 g, 0.050 mol) in dichloromethane (50 ml) was added. The reaction mixture was stirred for 20 min at -78 °C. Triethylamine (27.7 ml, 0.199 mol) was added. The reaction mixture was stirred for 10 min at -78 °C and then warmed to 5 room temperature. It was washed with a 10% aqueous solution of sodium hydrogen sulphate (60 ml). The aqueous phase was extracted with dichloromethane (30 ml). The combined organic layers were washed with a saturated aqueous solution of sodium hydrogen carbonate (100 ml) and dried over magnesium sulphate. The solvent was removed *in vacuo*, to give 10 11.2 g of crude (S)-2-formylpyrrolidine-1-carboxylic acid *tert*-butyl ester, which was used for the next step without purification.

¹H NMR (CDCl₃, 2 sets of signals) δ 1.50 (m, 9 H); 1.75-2.20 (m, 4 H); 3.20-4.00 (m, 3 H); 4.05 and 4.20 (both t, together 1 H); 9.50 and 9.60 (both s, together 1 H).

Step B: (S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester

15 Sodium triacetoxyborohydride (35.7 g, 0.168 mol) was added to a mixture of crude (S)-2-formylpyrrolidine-1-carboxylic acid *tert*-butyl ester (11.2 g, 0.056 mol), pyrrolidine (5.16 ml, 0.062 mol) and mol sieves (10 g) in dichloromethane (100 ml). Acetic acid (6.42 g, 0.112 mol) was added. The reaction mixture was stirred for 16 hours at room temperature. The precipitation was removed by filtration. The filtrate was diluted with a 1 N aqueous solution of 20 sodium hydroxide (100 ml) and *tert*-butyl methyl ether (100 ml). The phases were separated. The aqueous phase was extracted with *tert*-butyl methyl ether (3 x 80 ml). The combined organic layers were dried over magnesium sulphate. The solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica (90 g), using ethyl acetate/heptane/triethylamine (1:1, 5%) as eluent, to give 9.23 g of (S)-2-((pyrrolidin-1-yl)methyl)-25 pyrrolidine-1-carboxylic acid *tert*-butyl ester.

¹H NMR (CDCl₃, 2 sets of signals) δ 1.45 (s, 9 H); 1.80-2.10 (m, 8 H); 2.50-3.70 (m, 8 H); 3.90 and 4.00 (both m, together 1 H); HPLC (method A): elution at 10.70 min; MS: Calc. for [M+H]⁺: 255; Found: 255.

Step C: (S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidine

A 3.2 M solution of hydrogen chloride in ethyl acetate (470 ml, 1.5 mol) was added to a solution of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester (9.23 g,

- 5 0.036 mol) in ethyl acetate (100 ml). The reaction mixture was stirred for 45 min at room temperature. The solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (200 ml). The solvent was removed *in vacuo*, to give 10.30 g of the dihydrochloride salt of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.
- 10 ¹H NMR (DMSO-*d*₆) δ 1.60-2.30 (m, 8 H); 3.10 (m, 2 H); 3.25 (m, 2 H); 3.55 (m, 1 H); 3.70 (m, 3 H); 3.90 (m, 1 H); 9.80 (br, 2 H); 11.20 (br, 1 H).

Step D:

At 0 °C, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt was added to a solution of (*E*)-4-bromocinnamic acid (0.50 g, 2.20 mmol) and 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (0.36 g, 2.20 mmol) in a mixture of dichloromethane (6 ml) and *N,N*-

- 15 dimethylformamide (6 ml). The reaction mixture was stirred for 20 min at 0 °C. A solution of the dihydrochloride salt of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine (0.50 g, 2.20 mmol) in *N,N*-dimethylformamide (8 ml) was added. The reaction mixture was stirred for 16 hours, while it was warming up to room temperature. It was diluted with ethyl acetate (100 ml), washed with brine (100 ml), and dried over magnesium sulphate. The solvent was removed
- 20 *in vacuo*. The crude product was purified by flash chromatography on silica (40 g), using dichloromethane/methanol/25% aqueous ammonia as eluent, to give 340 mg of the title compound.

- 25 ¹H NMR (CDCl₃, 2 sets of signals) δ 1.70-2.20 (m, 8 H); 2.45-2.80 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.20 and 4.40 (both m, together 1 H); 7.70 and 7.90 (both d, together 1 H); 7.40 (m, 2 H); 7.50 (m, 2 H); 7.65 (d, 1 H); HPLC (method A): elution at 9.19 min; MS: Calc. for [M+H]⁺: 363; Found: 363.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Calcd.: C 47.64; H 6.66; N 6.17;

5 Found: C 47.41; H 6.68; N 7.39.

Example 2 (General procedure (A))

(*E*)-3-(5-Bromo-2-ethoxyphenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

300 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-

10 ((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-5-bromo-2-ethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid.

¹H NMR (CDCl₃, 2 sets of signals) δ 1.45 (t, 3 H); 1.80-2.20 (m, 8 H); 2.45-2.80 (m, 6 H); 1.60 and 1.70 (both m, together 2 H); 4.05 (q, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 (d, 1 H); 6.85 and 6.95 (both d, together 1 H); 7.35 (d, 1 H); 7.60 (dd, 1 H); 7.85 and 7.95 (both

15 d, together 1 H); HPLC (method A): elution at 9.89 min; MS: Calc. for [M+H]⁺: 407; Found: 407.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was

20 removed *in vacuo*.

Calcd.: C 52.02; H 6.55; N 6.07;

Found: C 51.55; H 6.42; N 6.60.

Example 3 (General procedure (A))

(E)-3-(4-Chlorophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

- 5 310 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-4-chlorocinnamic acid instead of (E)-4-bromocinnamic acid.

HPLC (method A): elution at 9.04 min; MS: Calc. for $[M+H]^+$: 319; Found: 319.

- 10 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

- 15 ^1H NMR (DMSO- d_6 , 2 sets of signals) δ 1.80-2.15 (m, 8 H); 3.10, 3.20, 3.30, 3.45, and 3.55-3.85 (m, together 8 H); 4.40 and 4.75 (both m, together 1 H); 7.05 and 7.15 (both d, together 1 H); 7.50 (m, 3 H); 7.80 and 7.90 (both d, together 2 H); 10.2 (br, 1 H).

Example 4 (General procedure (A))

(E)-1-((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)propanone

- 20 160 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-4-(trifluoromethyl)cinnamic acid instead of (E)-4-bromocinnamic acid.

HPLC (method A): elution at 9.58 min; MS: Calc. for $[M+H]^+$: 353; Found: 353.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

- 5 ¹H NMR (DMSO-d₆, 2 sets of signals) δ 1.80-2.15 (m, 8 H); 3.10, 3.25, 3.30, 3.45, and 3.55-3.80 (all m, together 8 H); 4.40 and 4.80 (both m, together 1 H); 7.20 and 7.30 (both d, together 1 H); 7.70 and 7.75 (both d, together 1 H); 7.75 and 7.80 (both d, together 2 H); 7.95 and 8.10 (both d, together 2 H); 10.25 (br, 1 H).

Example 5 (General procedure (A))

- 10 (E)-3-(3-Bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

290 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (E)-3-bromocinnamic acid instead of (E)-4-bromocinnamic acid.

- 15 ¹H NMR (CDCl₃, 2 sets of signals) δ 1.70-1.85 (m, 4 H); 1.90-2.20 (m, 5 H); 2.40-2.75 (m, 6 H); 3.60 (t, 1 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.95 (both d, together 1 H); 7.45 (m, 2 H); 7.60 (d, 1 H); 7.80 (t, 1 H); HPLC (method A): elution at 9.10 min; MS: Calc. for [M+H]⁺: 363; Found: 363.

- The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 6 (General procedure (A))

(E)-3-(2-Bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

250 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-

- 5 ((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-2-bromocinnamic acid instead of (E)-4-bromocinnamic acid.

10 ^1H NMR (CDCl_3 , 2 sets of signals) δ 1.50-1.90 (m, 4 H); 1.90-2.20 (m, 4 H); 2.50-2.85 (m, 6 H); 3.55-3.80 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.65 and 6.85 (both d, together 1 H); 7.10-7.40 (m, 2 H); 7.50-7.70 (m, 2 H); 8.05 (d, 1 H); HPLC (method A): elution at 8.89 min; MS: Calc. for $[\text{M}+\text{H}]^+$: 363; Found: 363.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15 **Example 7 (General procedure (A))**

(E)-3-(4-Methoxyphenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

340 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-4-methoxycinnamic acid

- 20 instead of (E)-4-bromocinnamic acid.

^1H NMR (CDCl_3 ; 2 sets of signals) δ 1.80 (m, 4 H); 1.90-2.10 (m, 3 H); 2.20 (m, 2 H); 2.45-2.80 (m, 5 H); 3.60 and 3.70 (both m, together 2 H); 3.85 (s, 3 H); 4.15 and 4.40 (both m, together 1 H); 6.60 and 6.75 (both d, together 1 H); 6.90 (m, 2 H); 7.48 (d, 2 H); 7.64 and 7.65

(both d, together 1 H); HPLC (method A): elution at 7.91 min; MS: Calc. for $[M+H]^+$: 315; Found: 315.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
 5 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 8 (General procedure (A))

(E)-3-(3-Methoxyphenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

10 420 mg of the title compound were synthesized as described for *(E)*-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using *(E)*-3-methoxycinnamic acid instead of *(E)*-4-bromocinnamic acid.

^1H NMR (CDCl_3 ; 2 sets of signals) δ 1.80 (m, 4 H); 1.90-2.20 (m, 5 H); 2.45-2.80 (m, 5 H); 3.60 and 3.70 (both m, together 2 H); 3.85 (s, 3 H); 4.15 and 4.40 (both m, together 1 H);

15 6.70 and 6.85 (both d, together 1 H); 6.90 (dd, 1 H); 7.05 (s, 1 H); 7.15 (d, 1 H); 7.30 (m, 1 H); 7.70 (d, 1 H); HPLC (method A): elution at 7.99 min; MS: Calc. for $[M+H]^+$: 315; Found: 315.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

20 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 9 (General procedure (A))

(E)-3-(4-Bromophenyl)-1-((R)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

520 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*R*)-1-(*tert*-butoxycarbonyl)-2-pyrrolidinemethanol instead of (*S*)-1-(*tert*-butoxycarbonyl)-2-pyrrolidinemethanol.

- 5 ^1H NMR (CDCl₃, 2 sets of signals) δ 1.70-2.20 (m, 8 H); 2.45-2.80 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 7.70 and 7.90 (both d, together 1 H); 7.40 (m, 2 H); 7.50 (m, 2 H); 7.65 (d, 1 H); HPLC (method A): elution at 9.05 min; MS: Calc. for [M+H]⁺: 363; Found: 363.

10 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 10 (General procedure (A))

(*E*)-1-((*R*)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-trifluoromethylphenyl)propanone

- 15 352 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*R*)-1-(*tert*-butoxycarbonyl)-2-pyrrolidinemethanol instead of (*S*)-1-(*tert*-butoxycarbonyl)-2-pyrrolidinemethanol and (*E*)-4-trifluoromethylcinnamic acid instead of (*E*)-4-bromocinnamic acid.

20 ^1H NMR (CDCl₃, 2 sets of signals) δ 1.80 (m, 4 H); 1.90-2.20 (m, 4 H); 2.45-1.85 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.00 (both d, together 1 H); 7.65 (AB, 4 H); 7.70 (d, 1 H); HPLC (method A): elution at 9.33 min; MS: Calc. for [M+H]⁺: 353; Found: 353.

25 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 11 (General procedure (A))

(E)-3-(3-Chlorophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

5

340 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-3-chlorocinnamic acid instead of (E)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.15 (m, 4 H); 2.40-2.75 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 6.90 (both d, together 1 H); 7.20-7.40 (m, 3 H); 7.50 (s, 1 H); 7.65 (d, 1 H).

HPLC method A: elution at 8.82 min.

15

MS: calc. for [M+H]⁺: 319; found: 319.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
20 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 12 (General procedure (A))

(E)-3-(3-Fluorophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

25

210 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-fluorocinnamic acid instead of (*E*)-4-bromocinnamic acid.

5

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.90-2.10 (m, 4 H); 2.45-2.75 (m, 7 H); 3.60 and 3.67 (t and d, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.05 (dt, 1 H); 7.20 (d, 1 H); 7.25-7.40 (m, 2 H); 7.65 (d, 1 H).

10 HPLC method A: elution at 8.07 min.

MS: calc. for [M+H]⁺: 303; found: 303.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

15 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 13 (General procedure (A))

20 (*E*)-3-(4-Fluorophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

280 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-

25 ((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-fluorocinnamic acid instead of (*E*)-4-bromocinnamic acid.

30 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.80 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.65 and 6.80 (both d, together 1

H); 7.05 (m, 2 H); 7.50 (m, 2 H); 7.65 (d, 1 H).

HPLC method A: elution at 8.05 min.

MS: calc. for $[M+H]^+$: 303; found: 303.

5

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10

Example 14 (General procedure (A))

(*E*)-3-(Benzo[1,3]dioxol-5-yl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

15

340 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(benzo[1,3]dioxol-5-yl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

20

$^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.80 (m, 4 H); 1.90-2.30 (m, 4 H); 2.45-2.80 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15-4.40 (both m, together 1 H); 6.00 (s, 2 H); 6.55 and 6.70 (both d, together 1 H); 6.80 (dd, 1 H); 7.00 (d, 1 H), 7.02 (s, 1 H); 7.60 (d, 1 H).

25 HPLC method A: elution at 7.86 min.

MS: calc. for $[M+H]^+$: 329; found: 329.

30 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 15 (General procedure (A))

5 (*E*)-3-(3,4-Dimethoxyphenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

240 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
10 ((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3,4-dimethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid.

15 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.45-2.75 (m, 6 H); 3.55-3.75 (m, 2 H); 3.90 (s, 6 H); 4.15 and 4.40 (both m, together 1 H); 6.55 and 6.70 (both d, together 1 H); 6.85 (dd, 1 H); 7.05 (d, 1 H); 7.10 (dd, 1 H); 7.55 (d, 1 H).

HPLC method A: elution at 7.60.

MS: calc. for [M+H]⁺: 345; found: 345.

20 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

25

Example 16 (General procedure (A))

(*E*)-3-(2,4-Dimethoxyphenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

320 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-

- 5 ((2S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (E)-2,4-dimethoxycinnamic acid instead of (E)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.45-2.75 (m, 6 H); 3.50-3.75 (m, 2 H); 3.82 (s, 3 H); 3.85 (s, 3 H); 4.15 and 4.40 (both m, together 1 H); 6.45 (m, 10 2 H); 6.75 and 6.90 (both d, together 1 H); 7.45 (dd, 1 H); 7.85 and 7.90 (both d, together 1 H).

HPLC method A: elution at 8.47 min.

- 15 MS: calc. for [M+H]⁺: 345; found: 345.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was 20 removed *in vacuo*.

Example 17 (General procedure (A))

(E)-3-(4-Bromo-2-fluorophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

390 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-4-bromo-2-fluorocinnamic acid instead of (*E*)-4-bromocinnamic acid.

5

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.35-2.75 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.85 and 7.05 (both d, together 1 H); 7.25-7.45 (m, 3 H); 7.65 and 7.70 (both d, together 1 H).

10 HPLC method A: elution at 9.27 min.

MS: calc. for [M+H]⁺: 381; found: 381.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
 15 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
 removed *in vacuo*.

Example 18 (General procedure (A))

20 (*E*)-1-((*S*)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethoxy)phenyl)propanone

25 98 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((2*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-4-trifluoromethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.80 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.80 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.85 (both d, together 1 H); 7.20 (d, 2 H); 7.55 (d, 2 H); 7.65 (d, 1 H).

5 HPLC method A: elution at 9.75 min.

MS: calc. for [M+H]⁺: 369; found: 369.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
 10 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
 removed *in vacuo*.

Example 19 (General procedure (A))

15 (*E*)-3-(4-(Dimethylamino)phenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

20 74 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-4-(dimethylamino)cinnamic acid instead of (*E*)-4-bromocinnamic acid.

25 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.50-2.15 (m, 8 H); 2.45-2.80 (m, 6 H); 3.00 (s, 6 H); 3.60 and 3.65 (both m, together 2 H); 4.15 and 4.45 (both m, together 1 H); 6.50 and 6.65 (both d, together 1 H); 6.67 (m, 2 H); 7.40 (d, 2 H); 7.65 (d, 1 H).

HPLC method A: elution at 7.23 min.

MS: calc. for [M+H]⁺: 328; found: 328.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
5 removed *in vacuo*.

Example 20 (General procedure (A))

(E)-3-(4-Bromophenyl)-1-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

Step 1:

1-((S)-Pyrrolidin-2-yl)methyl)piperidine

15

8.3 g of 1-((S)-piperidin-2-yl)methyl)piperidine were synthesized as described for (S)-2-((piperidin-1-yl)methyl)pyrrolidone, using piperidine instead of pyrrolidine.

20

1H-NMR (CDCl₃, free base) δ 1.30 (m, 1 H); 1.40 (m, 2 H); 1.55 (m, 4 H); 1.75 (m, 2 H); 1.90 (m, 1 H); 2.30 (m, 2 H); 2.35 (m, 2 H); 2.50 (m, 2 H); 2.65 (br, 1 H); 2.90 (m, 1 H); 3.00 (m, 1 H); 3.25 (m, 1 H).

25 Step 2:

520 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-(((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

5 1H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 2.85-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.95 (both d, together 1 H); 7.40 (d, 2 H); 7.50 (d, 2 H); 7.60 (d, 1 H).

HPLC method A: elution at 9.48 min.

10

MS: calc. for [M+H]⁺: calcd. 377; found: 377.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
15 was removed in vacuo. The residue was dissolved in ethanol (50 ml). The solvent was removed in vacuo.

Example 21 (General procedure (A))

(*E*)-3-(4-Chlorophenyl)-1-((S)-((2-piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

20

220 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-(((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-4-chlorocinnamic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.35 (d, 2 H); 7.45 (d, 2 H); 7.65 (d, 1 H).

5 HPLC method A: elution at 9.37 min.

MS: calc. for [M+H]⁺: 333; found: 333.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 22 (General procedure (A))

15 (*E*)-1-((S)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)propenone

130 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-(((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-4-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid.

25 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 (m, 2 H); 1.55 (m, 4 H); 1.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.05 (both d, together 1 H); 7.60 (m, 4 H); 7.70 (d, 1 H).

HPLC method A: elution at 9.87 min.

MS: calc. for $[M+H]^+$: 367; found: 367.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

- 5 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 23 (General procedure (A))

- 10 (*E*)-3-(3-Bromophenyl)-1-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propanone

- 15 140 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using 1-((*S*)-2-((pyrrolidin-1-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-3-bromocinnamic acid instead of (*E*)-4-bromocinnamic acid.

- 20 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.45 (m, 2 H); 1.60 (m, 4 H); 1.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.95 (both d, together 1 H); 7.25 (m, 1 H); 7.45 (m, 1 H); 7.60 and 7.61 (both d, together 1 H); 7.70 (m, 1 H).

- 25 HPLC method A: elution at 9.60 min.

MS: calc. for $[M+H]^+$: 377; found: 377.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

- 30 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 24 (General procedure (A))

- 5 (*E*)-3-(4-Methoxyphenyl)-1-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

10 160 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-(((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-4-methoxycinnamic acid instead of (*E*)-4-bromocinnamic acid.

15 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.85-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.55-3.75 (m, 2 H); 3.85 (s, 3 H); 4.15 and 4.40 (both m, together 1 H); 6.60 and 6.75 (both d, together 1 H); 6.90 (m, 2 H); 7.50 (d, 2 H); 7.65 (d, 1 H).

HPLC method A: elution at 8.61 min.

20 MS: calc. for $[\text{M}+\text{H}]^+$: 329; found: 329.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 25 (General procedure (A))

(E)-3-(3,4-Dimethoxyphenyl)-1-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

5

190 mg of the title compound were synthesized as described for *(E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and *(E*)-3,4-

- 10 dimethoxycinnamic acid instead of *(E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 (m, 2 H); 1.55 (m, 4 H); 1.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 3.90 (s, 6 H); 4.15 and 4.40 (both m, together 1 H); 6.55 and 6.75 (both d, together 1 H); 6.85 (m, 1 H); 7.10 (AB, 2 H); 7.65 (d, 1 H).

15

HPLC method A: elution at 8.00 min.

MS: calc. for [M+H]⁺: 359; found. 359.

- 20 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

25

Example 26 (General procedure (A))

(E)-3-(4-Chloro-3-nitrophenyl)-1-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

200 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
5 (*(S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-((*(S*)-pyrrolidin-2-
yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-4-chloro-3-
nitrocinnamic acid instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.85-2.10 (m, 4 H); 2.15-
2.70 (m, 6 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 7.05 (both
d, together 1 H); 7.50-7.70 (m, 2 H); 8.00 and 8.05 (both s, together 1 H).

15 HPLC method A: elution at 9.19 min.
MS: calc. for [M+H]⁺: 377; found: 377.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
(5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
20 removed *in vacuo*.

Example 27(General procedure (A))

(*E*)-1-((*S*)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethoxy)phenyl)propenone

370 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-

- 5 ((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-4-(trifluoromethoxy)cinnamic acid instead of (*E*)-4-bromocinnamic acid.

- 10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.85-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.20 (d, 2 H); 7.55 (d, 2 H); 7.65 (d, 1 H).

HPLC method A: elution at 10.11 min.

- 15 MS: calc. for [M+H]⁺: 383; found: 383.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was

- 20 removed *in vacuo*.

Example 28(General procedure (A))

(*E*)-3-(Biphenyl-4-yl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

180 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
5 ((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(biphenyl-4-yl)acrylic
acid instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.70-2.20 (m, 8 H); 2.45-2.80 (m, 6 H); 3.60 and 3.70 (t
and m, together 2 H); 4.20 and 4.40 (both m, together 1 H); 6.75 and 6.90 (both d, together 1
H); 7.30-7.50 (m, 3 H); 7.60 (m, 6 H); 7.75 (d, 1 H).

HPLC method A: elution at 10.26 min.

15 MS: calc. for [M+H]⁺: 361; found: 361.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
(5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
removed *in vacuo*.

20

Example 29(General procedure (A))

4-[(*E*)-3-Oxo-3-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

180 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
 5 ((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-cyanocinnamic acid instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H);
 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.00 (both d, together 1
 10 H); 7.55-7.70 (m, 5 H).

HPLC method A: elution at 7.46 min.

MS: calc. for [M+H]⁺: 310; found: 310.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 30(General procedure (A))

(3-Chlorobenzo[b]thien-2-yl)-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)methanone

130 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
5 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 3-chlorobenzo[b]thiophene-2-
carboxylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 11.35-2.15 (m, 8 H); 2.20-3.00 (m, 6 H); 3.30-3.80 (m, 2
H); 4.5-4.55 (m, 1 H); 7.45 (m, 2 H); 7.80 (m, 2 H).

10

HPLC method A: elution at 8.82 min.

MS: calc. for [M+H]⁺: 349; found: 349.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20 **Example 31(General procedure (A))**

(3-Methoxybenzo[b]thien-2-yl)-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)methanone

310 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-

- 5 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 3-methoxybenzo[b]thiophene-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40-2.95 (m, 14 H); 3.45-3.75 (m, 2 H); 4.05 (s, 3 H); 4.25-4.55 (m, 1 H); 7.40 (m, 2 H); 7.75 (m, 2 H).

10

HPLC method A: elution at 8.55 min.

MS: calc. for [M+H]⁺: 345; found: 345.

- 15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20 **Example 32(General procedure (A))**

(Benzo[b]thien-2-yl)-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)methanone

- 130 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
 5 ((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using benzo[b]thiophene-2-
 carboxylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.55-1.85 (m, 4 H); 1.85-2.15 (m, 4 H); 2.60 (m, 5 H);
 2.80 (m, 1 H); 3.85 (m, 2 H); 4.55 (m, 1 H); 7.40 (m, 2 H); 7.70 (m, 1 H); 7.85 (m, 2 H).

10

HPLC method A: elution at 8.35 min.

MS: calc. for [M+H]⁺: 315; found: 315.

- 15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20 Example 33(General procedure (A))

(5-Chlorobenzofuran-2-yl)-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)methanone

400 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 5-chlorobenzo[b]furane-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.70 (m, 4 H); 1.85-2.90 (m, 10 H); 3.65-4.10 (m, 2 H); 4.50 and 4.85 (both m, together 1 H); 7.30-7.50 (m, 3 H); 7.65 (s, 1 H).

15 10 HPLC method A: elution at 8.62 min.

MS: calc. for [M+H]⁺: 333; found: 333.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 34(General procedure (A))

20

(7-(Ethoxy)benzofuran-2-yl)-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)methanone

25 340 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 7-(ethoxy)benzo[b]furane-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.50 (t, 3 H); 1.60-1.85 (m, 4 H); 1.85-2.15 (m, 4 H); 2.15-2.90 (m, 6 H); 3.70 (m, 1 H); 3.90 and 4.05 (both m, together 1 H); 4.20 (m, 2 H); 4.50 and 5.00 (both m, together 1 H); 6.85 (d, 1 H); 7.10-7.30 (m, 2 H); 7.30-7.55 (m, 1 H).

5 HPLC method A: elution at 8.67 min.

MS: calc. for [M+H]⁺: 343; found: 343.

10 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 35(General procedure (A))

15

(E)-3-(4-(Methylsulfonyl)phenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

20 Step 1:

(E)-3-(4-(Methylsulfonyl)phenyl)acrylic acid ethyl ester

Potassium tert-butoxide (10.96 g, 98 mmol) in tetrahydrofuran (60 ml) was added portionwise to a solution of triethyl phosphonoacetate (21.91 g, 98 mmol) in tetrahydrofuran (150 ml).

The reaction mixture was stirred for 40 min at room temp. A solution of 4-

5 (methylsulfonyl)benzaldehyde (Acros no.: 42490-0025; 10.0 g, 54 mmol) in tetrahydrofuran (60 ml) was added dropwise. The reaction mixture was stirred for 1 h at room temp. It was diluted with ethyl acetate (500 ml) and washed with 1 N hydrochloric acid (300 ml). The aqueous phase was extracted with ethyl acetate (2 x 100 ml). The combined organic layers were dried over magnesium sulphate. The solvent was removed *in vacuo*. The crude product 10 was purified by crystallization from ethyl acetate/heptane to give 4.3 g of (*E*)-3-(4-(methylsulfonyl)phenyl)acrylic acid ethyl ester.

¹H-NMR (CDCl₃) δ 1.35 (t, 3 H); 3.10 (s, 3 H); 4.30 (q, 2 H); 6.55 (d, 1 H); 7.70 (m, 3 H); 7.95 (d 2 H).

15

Step 2:

(*E*)-4-Methylsulfonylcinnamic acid

20

A solution of (*E*)-3-(4-(methylsulfonyl)phenyl)acrylic acid ethyl ester and lithium hydroxide in dioxane/water (100 ml/100 ml) was stirred for 16 h at room temp. It was washed with tert.-

25 butyl methyl ether (200 ml). The aqueous phase was acidified with a 10% aqueous solution of sodium hydrogensulfate until pH 2. The precipitation was isolated by filtration and dried *in vacuo*. The residue was suspended in ethanol (100 ml). The solvent was removed. The latter procedure was repeated once to give 2.74 g of crude (*E*)-4-methylsulfonylcinnamic acid which was used in the next step without further purification.

30

¹H-NMR (DMSO-d₆) δ 3.25 (s, 3 H); 6.70 (d, 1 H); 7.65 (d, 1 H); 7.95 (AB, 4 H); 12.60 (br, 1 H).

5 Step 3

340 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-methylsulfonylcinnamic acid instead of (*E*)-4-bromocinnamic acid.

10

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.45-2.80 (m, 6 H); 3.05 (s, 3 H); 3.55-3.80 (m, 2 H); 4.10 and 4.40 (both m, together 1 H); 6.85 and 7.05 (both d, together 1 H); 7.65 (m, 3 H); 7.95 (d, 1 H).

15 HPLC method A: elution at 6.58 min.

MS: calc. for [M+H]⁺: 363; found: 363.

20 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 36(General procedure (A))

25

(*E*)-3-(4-Chlorophenyl)-1-(2-((pyrrolidin-1-yl)methyl)piperidin-1-yl)propenone

140 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-chlorocinnamic acid instead of (*E*)-4-bromocinnamic acid and 2-formylpiperidine-1-carboxylic acid tert-butyl ester 5 instead of (*S*)-2-formylpyrrolidine-1-carboxylic acid tert-butyl ester.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.35-1.95 (m, 10 H); 2.40-2.90 and 3.20 (both m, together 7 H); 3.90 and 4.25 (both m, together 1 H); 4.60 and 5.05 (both m, together 1 H); 6.90 (d, 1 H); 7.35 (d, 2 H); 7.45 (d, 2 H); 7.55 (d, 1 H).

10

HPLC method A: elution at 12.39 min.

MS: calc. for [M+H]⁺: 333, found: 333.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20 Example 37(General procedure (A))

(*E*)-3-(4-Bromophenyl)-1-(2-((pyrrolidin-1-yl)methyl)piperidin-1-yl)propenone

25

90 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 2-formylpiperidine-1-carboxylic acid tert-butyl ester instead of (*S*)-2-formylpyrrolidine-1-carboxylic acid tert-butyl ester.

¹H-NMR (CDCl₃, 2 sets of signals) 1.35-1.90 (m, 10 H); 2.40-2.90 (m, 7 H); 3.90 and 4.25 (both m, together 1 H); 4.60 and 5.05 (both m, together 1 H); 6.95 (d, 1 H); 7.35 (d, 2 H); 7.45-7.65 (m, 3 H).

5 HPLC method B: elution at 4.28 min.

MS: calc. for [M+H]⁺: 377; found: 377.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent 10 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 38(General procedure (A))

15

(*E*)-1-(2-((Pyrrolidin-1-yl)methyl)piperidin-1-yl)-3-(4-(trifluoromethyl)phenyl)propenone

20

130 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid and formylpiperidine-1-carboxylic acid tert-butyl ester instead of (*S*)-2-formylpyrrolidine-1-carboxylic acid tert-butyl ester.

25

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40-1.95 (m, 10 H); 2.45-2.85 (m, 7 H); 3.90-4.25 (both m, together 1 H); 4.60 and 5.00 (both m, together 1 H); 7.00 (d, 1 H); 7.55-7.65 (m, 5 H).

HPLC method B: elution at 4.44 min.

MS: calc. for $[M+H]^+$: 367; found. 367.

- 5 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10 Example 39(General procedure (A))

(*E*)-3-(4-Methoxyphenyl)-1-(2-((pyrrolidin-1-yl)methyl)piperidin-1-yl)propanone

15

100 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-4-chlorocinnamic acid instead of (*E*)-4-bromocinnamic acid and 2-formylpiperidine-1-carboxylic acid tert-butyl ester instead of (S)-2-formylpyrrolidine-1-carboxylic acid tert-butyl ester.

20

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.30-1.95 (m, 10 H); 2.40-3.20 (m, 7 H); 3.85 (s, 3 H); 4.00 and 4.25 (both m, together 1 H); 4.60 and 5.00 (both m, together 1 H); 6.80 (d, 1 H); 6.90 (d, 2 H); 7.45 (d, 2 H); 7.60 (d, 1 H).

25 HPLC method B: elution at 3.79 min.

MS: calc. for $[M+H]^+$: 329; found: 329.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

5

Example 40(General procedure (A))

(*E*)-1-((S)-((2-Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(thien-2-yl)propenone

10

160 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(thien-2-yl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

15

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.80 (m, 4 H); 1.85-2.15 (m, 4 H); 2.35-2.75 (m, 6 H); 3.50-3.70 (m, 2 H); 4.10 and 4.35 (both m, together 1 H); 6.52 and 6.65 (both d, together 1 H); 7.05 (m, 1 H); 7.20 (m, 1 H); 7.30 (m, 1 H); 7.80 (d, 1 H).

20 HPLC method A: elution at 7.34 min.

MS: calc. for [M+H]⁺: 291; found: 291.

25 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 41(General procedure (A))

(*E*)-1-((*S*)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(thien-3-yl)propenone

5

100 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-3-(thien-3-yl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

10

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.80 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.55 and 6.70 (both d, together 1 H); 7.20-7.35 (m, 2 H); 7.45 (m, 1 H); 7.70 (dd, 1 H).

15

HPLC method A: elution at 7.32 min.

MS: calc. for [M+H]⁺: 291; found: 291.

20 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 42(General procedure (A))

25

(*E*)-3-(Furan-2-yl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone

78 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-5 2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(furan-2-yl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.70 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.80 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.45 (m, 1 H); 6.55 (m, 1 H); 6.65 10 and 6.75 (both d, together 1 H); 7.45 (m, 2 H).

HPLC method A: elution at 6.78 min.

MS: calc. for [M+H]⁺: 275; found: 275.

15

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 43(General procedure (A))

(*E*)-3-(Furan-3-yl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

190 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(furan-3-yl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

5

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H); 3.45-3.70 (m, 2 H); 4.10 and 4.35 (both m, together 1 H); 6.45 and 6.55 (d and m, together 2 H); 7.40 (s, 1 H); 7.55-7.65 (m, together 2 H).

10 HPLC method A: elution at 6.66 min.

MS: calc. for [M+H]⁺: 275; found: 275.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 44(General procedure (A))

20

Methanesulfonic acid 4-[(*E*)-3-oxo-3-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]phenyl ester

25

Step 1: Methanesulfonic acid 4-formylphenyl ester

At 0 °C, methanesulfonyl chloride (9.51 ml, 0.123 mol) was added to a solution of 4-hydroxybenzaldehyde (15 g, 0.123 mol) in pyridine (12.91 ml, 0.160 mol). The reaction mixture was stirred at 0 °C for 3 h and left at room temperature for 16 h. It was given onto conc. hydrochloric acid/ice (200 ml/200 ml). The mixture was extracted with ethyl acetate (4 x 300 ml). The combined organic layers were washed with a 5% aqueous solution of sodium hydrogen carbonate (3 x 200 ml) and brine (100 ml). They were dried over magnesium sulphate. The solvent was removed *in vacuo* to give 22.87 g of crude methanesulfonic acid 4-formylphenyl ester, which was used in the next step without further purification.

¹H-NMR (CDCl₃) δ 13.22 (s, 3 H); 7.45 (d, 2 H); 8.00 (d, 2 H); 10.02 (s, 1 H).

15 Step 2:

(E)-3-(4-(Methanesulfonyloxy)phenyl)acrylic acid

20

Malonic acid (7.80 g, 74.92 mmol) was added to a solution of the crude methanesulfonic acid 4-formylphenyl ester (10 g, 49.95 mmol), which was synthesized in the preceding step, and piperidine (0.7 ml, 7.09 mmol) in pyridine (50 ml). The reaction mixture was heated to 90 °C

for 2.5 h. It was cooled to room temperature. Concentrated hydrochloric acid/ice (400 ml/100 ml) was added. The precipitation was filtered off and washed with a 10% aqueous solution of acetic acid (200 ml). It was dried *in vacuo* to give 6.95 g of (*E*)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid.

5

¹H-NMR (DMSO-d₆) δ 3.40 (s, 3 H); 6.55 (d, 1 H); 7.40 (d, 2 H); 7.60 (d, 1 H); 7.80 (d, 2 H).

Step 3:

10

150 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

15

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.80 (m, 5 H); 3.15 (s, 3 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (m, 1 H); 6.70 and 6.85 (both d, together 1 H); 7.30 (m, 2 H); 7.55 (d, 2 H); 7.65 (d, 1 H).

20 HPLC method A: elution at 7.50 min.

MS: calc. for [M+H]⁺: 379; found: 379.

25 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 45(General procedure (A))

30

Trifluoromethanesulfonic acid 4-[*(E*)-3-oxo-3-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]phenyl ester

Step 1:

- 5 (E)-3-(4-(Trifluoromethylsulfonyloxy)phenyl)acrylic acid

13.4 g of (E)-3-(4-(trifluoromethylsulfonyloxy)phenyl)acrylic acid was synthesized as described for (E)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid using trifluoromethansulfonic acid anhydride methanesulfonyl chloride.

10

¹H-NMR (DMSO-d₆) δ 6.60 (d, 1 H); 7.55 (d, 2 H); 7.65 (d, 1 H); 7.90 (d, 2 H).

Step 2:

15

130 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-3-(4-(trifluoromethylsulfonyloxy)phenyl)acrylic acid instead of (E)-4-bromocinnamic acid.

20

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.15 (m, 4 H); 2.40-2.80 (m, 5 H); 3.55-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.30 (d, 2 H); 7.60 (d, 2 H); 7.65 (d, 1 H).

HPLC method A: elution at 9.97 min.

25

MS: calc. for [M+H]⁺: 433; found: 433.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

5

Example 46(General procedure (A))

3-[(*E*)-3-Oxo-3-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

10

Step 1:

(*E*)-3-(3-Cyanophenyl)acrylic acid

15

11.3 g of (*E*)-3-(3-cyanophenyl)acrylic acid were synthesized as described for (*E*)-3-(4-methanesulfonyloxy)phenyl)acrylic acid, using 3-cyanobenzaldehyde (commercially available at Aldrich) instead of methanesulfonic acid 4-formylphenyl ester.

20 ¹H-NMR (DMSO-d₆) δ 6.70 (d, 1 H); 7.60 (m, 2 H); 7.85 (d, 1 H); 8.05 (d, 1 H); 8.25 (s, 1 H); 12.50 (br, 1 H).

Step 2:

25 220 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-3-(3-cyanophenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (as trifluoroacetic acid salt, CDCl₃) δ 1.90 (m, 1 H); 2.00-2.30 (m, 7 H); 3.05-3.20 (m, 2 H); 3.25 (m, 1 H); 3.65 (m, 1 H); 3.70-3.90 (m, 3 H); 4.15 (m, 1 H); 4.50 (m, 1 H); 6.75 (d, 1 H); 7.55 (t, 1 H); 7.65 (d, 1 H); 7.70 (d, 1 H); 7.75 (d, 1 H); 7.85 (s, 1 H).

5 HPLC method A: elution at 7.37 min.

MS: calc. for [M+H]⁺: 310; found: 310.

10 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 47(General procedure (A))

15

(*E*)-1-((S)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(3-trifluoromethylphenyl)propenone

20

310 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 1-((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine and (*E*)-3-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid.

25

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 (m, 2 H); 1.55 (m, 4 H); 1.80-2.15 (m, 4 H); 2.15-2.70 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 30 6.80 and 7.05 (both d, together 1 H); 7.45-7.85 (m, together 5 H).

HPLC method A: elution at 9.73 min.

MS: calc. for $[M+H]^+$: 367; found: 367.

5

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10

Example 48(General procedure (A))

3-[(*E*)-3-Oxo-3-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

15

370 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-3-(3-cyanophenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid and 1-(((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870

MS: calc. for $[M+H]^+$: 324; found: 324.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

5 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 49(General procedure (A))

10

4-[(*E*)-3-Oxo-3-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

15

150 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-cyanocinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-(((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

20

$^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.30-1.65 (m, 6 H); 1.95-2.15 (m, 4 H); 2.15-2.70 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.05 (both d, together 1 H); 7.50-7.70 (m, 5 H).

25 HPLC method B: elution at 3.05 min.

MS: calc. for $[M+H]^+$: 324; found: 324.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

5

Example 50(General procedure (A))

(*E*)-3-(4-(Methylsulfonyl)phenyl)-1-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

10

190 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-methylsulfonylcinnamic acid instead of (*E*)-4-bromocinnamic acid 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of 15 (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.50-1.70 (m, 4 H); 1.85-2.15 (m, 4 H); 2.15-2.70 (m, 6 H); 3.10 (s, 3 H); 3.65 and 3.75 (both m, together 2 H); 4.20 and 4.40 (both m, together 1 H); 6.85 and 7.10 (both d, together 1 H); 7.70 (m, 3 H); 7.95 (d, 2 H).

20

HPLC method B: elution at 2.60 min.

MS: calc. for [M+H]⁺: 377; found: 377.

25 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 51(General procedure (A))

Methanesulfonic acid 4-[(*E*)-3-oxo-3-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-

5 yl)propenyl]phenyl ester

230 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
 10 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-
 (methanesulfonyloxy)phenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid and 1-((S)-
 pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

15 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.70-2.15 (m, 4 H); 2.15-
 2.70 (m, 6 H); 3.15 (s, 3 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.35 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.30 (d, 2 H); 7.55 (d, 2 H); 7.65 (d, 1 H).

HPLC method B: elution at 3.17 min.

20

MS: calc. for $[\text{M}+\text{H}]^+$: 393, found: 393.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
 25 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
 removed *in vacuo*.

Example 52(General procedure (A))

Trifluoromethanesulfonic acid 4-[*(E*)-3-oxo-3-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]phenyl ester

5

190 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-3-(4-

10 (trifluoromethylsulfonyloxy)phenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.30-2.70 (m, 16 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.95 (both d, together 1 H); 7.30 (d, 2 H);

15 7.60 (d, 2 H); 7.65 (d, 1 H).

HPLC method B: elution 4.45 min.

MS: calc. for [M+H]⁺: 447; found: 447.

20

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

25

Example 53(General procedure (A))

2-Fluoro-5-[(*E*)-3-oxo-3-((*S*)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

5 Step 1:

(E)-3-(3-Cyano-4-fluorophenyl)acrylic acid

10

5.52 g of (*E*)-3-(3-cyano-4-fluorophenyl)acrylic acid was synthesized as described for (*E*)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid, using 4-fluoro-3-cyanobenzaldehyde (commercially available at Aldrich) instead of methanesulfonic acid 4-formylphenyl ester.

15 ¹H-NMR (DMSO-d₆) δ 6.60 (d, 1 H); 7.55 (m, 2 H); 8.15 (m, 1 H); 8.35 (dd, 1 H); 12.50 (br, 1 H).

Step 2:

20 300 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(3-cyano-4-fluorophenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid and 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

25 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 2.85-2.10 (m, 4 H); 2.15-2.55 (m, 5 H); 2.65 (m, 1 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m,

together 1 H); 6.70 and 7.00 (both d, together 1 H); 7.20 (m, 1 H); 7.60 (dd, 1 H); 7.70 (m, 1 H); 7.80 (m, 1 H).

HPLC method B: elution

5

MS: calc. for $[M+H]^+$: 342; found: 342.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent 10 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 54(General procedure (A))

15 (*E*)-3-(2-Fluoro-4-trifluoromethylphenyl)-1-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propanone

20 Step 1:

(*E*)-2-Fluoro-4-(trifluoromethyl)cinnamic acid

5.12 g of (*E*)-2-Fluoro-4-(trifluoromethyl)cinnamic acid were synthesized as described for (*E*)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid using 2-fluoro-4-trifluoromethylbenzaldehyde (commercially available from Aldrich) instead of methanesulfonic acid 4-formylphenyl ster.

- 5 ¹H-NMR (DMSO-d₆) δ 6.70 (d, 1 H); 7.65 (m, 2 H); 7.80 (d, 1 H); 8.10 (t, 1 H). 12.00 (br, 1 H).

Step 2:

220 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-
10 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-2-fluoro-4-
- (trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-((S)-pyrrolidin-2-
y1)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

- 15 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 (m, 2 H); 1.55 (m, 4 H); 1.75-2.15 (m, 4 H); 2.15-
2.70 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H);
6.95 and 7.15 (both d, together 1 H); 7.30-7.45 (m, 2 H); 7.60 m, 1 H); 7.65-7.80 (m, 2 H).

HPLC method B: elution at 4.54 min.

- 20 MS: calc. for [M+H]⁺: 385; found: 385.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
25 removed *in vacuo*.

Example 55(General procedure (A))

- (General procedure (C)): (*E*)-3-(2-Fluoro-4-trifluoromethylphenyl)-1-((S)-2-((pyrrolidin-1-
30 y1)methyl)pyrrolidin-1-yl)propenone

Step 1:

5

(S)-2-(Pyrrolidin-1-ylcarbonyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester

- 10 Ar 0 °C, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride salt (17.81 g, 93 mmol) was added to a solution of (S)-1-(*tert*-butoxycarbonyl)pyrrolidine-1-carboxylic acid (20.0 g, 93 mmol) and 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (15.2 g, 93 mmol) in a mixture of dichloromethane (150 ml) and *N,N*-dimethylformamide (150 ml). The reaction mixture was stirred for 20 min at 0°C. Pyrrolidine (7.76 ml, 93 mmol) and triethylamine (91 ml, 650 mmol)
- 15 were added successively. The reaction mixture was stirred for 16 h, while it was warming up to room temperature. It was diluted with ethyl acetate (500 ml) and washed with a mixture of water and a saturated aqueous solution of sodium hydrogencarbonate (250 ml/250 ml). The aqueous solution was dried over magnesium sulphate. The solvent was removed in vacuo. The crude product was purified by flash chromatography on silica (90 g), using dichloro-
- 20 methane/methanol/25% aqueous ammonia (100:10:1) as eluent, to give 5.9 g of (S)-2-(pyrrolidin-1-ylcarbonyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 and 1.45 (both s, together 9 H); 1.75-2.25 (m, 8 H); 3.35-3.80 (m, 6 H); 4.35 and 4.50 (both dd, together 1 H).

HPLC method A: elution at 9.35 min.

5

MS: calc. for [M+H]⁺: 269; found: 269.

Step 2:

10

(Pyrrolidin-1-yl)-((S)-pyrrolidin-2-yl)methanone

- 15 (S)-2-(Pyrrolidin-1-ylcarbonyl)pyrrolidine-1-carboxylic acid *tert*-butyl ester (5.90 g, 22 mmol) was dissolved in dichloromethane (50 ml). Trifluoroacetic acid (30 ml) was added. The reaction mixture was stirred for 50 min at room temperature. The solvent was removed *in vacuo*. The residue was dissolved in a saturated aqueous solution of potassium carbonate (200 ml). It was extracted with dichloromethane (3 x 100 ml). The aqueous phase was saturated with
- 20 sodium chloride and extracted with dichloromethane (3 x 200 ml). The combined organic layers were dried over magnesium sulphate. The solvent was removed in vacuo to give 4.89 g of the crude (pyrrolidin-1-yl)-((S)-pyrrolidin-2-yl)methanone, which was used in the next step without further purification.
- 25 ¹H-NMR (CDCl₃) δ 1.90 (m, 7 H); 2.25 (m, 1 H); 3.10-3.70 (m, 6 H); 4.10 (m, 1 H); 4.60 br, 1 H).

Step 3

30 (S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidine

A 1.0 M solution of lithium aluminium hydride in tetrahydrofuran (87 ml, 87 mmol) was added dropwise to a solution of the crude (pyrrolidin-1-yl)-((S)-pyrrolidin-2-yl)methanone (4.89 g, 29 mmol) in tetrahydrofuran (90 ml). The reaction mixture was heated to reflux for 6 h. It was cooled to room temperature. Water (3.6 ml) was added carefully. A 1 N solution of sodium hydroxide (3.6 ml, 3.6 mmol) was added carefully. Water (10.7 ml) was added. The mixture was stirred for 1 h at room temperature. The precipitation was filtered off. The solvent was removed in vacuo to give 2.67 g of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

10

¹H-NMR (CDCl₃) δ 1.25-2.00 (m, 8 H); 2.30-2.70 (m, 6 H); 2.85 (m, 1 H); 3.00 (m, 1 H); 3.20 (m, 1 H).

15

Step 4:

220 mg of the title compound were synthesized as described in step 4 for the preparation of (E)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (E)-2-fluoro-4-(trifluoromethyl)cinnamic acid instead of (E)-4-bromocinnamic acid.

20

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45-1.85 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.95 and 7.15 (both d, together 1 H); 7.40 (m, 2 H); 7.60 (m, 1 H); 7.75 (m, 1 H).

25

HPLC method B: elution at 4.31 min.

MS: calc. for [M+H]⁺: 371; found: 371.

30

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 56(General procedure (A))

5

2-Fluoro-5-[(*E*)-3-oxo-3-((*S*)2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenyl]benzonitrile

10 250 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (*E*)-3-(3-cyano-4-fluorophenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

15 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.55-2.15 (m, 8 H); 2.40-2.75 (m, 6 H); 3.65 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.95 (both d, together 1 H); 7.25 (t, 1 H); 7.60 (d, 1 H); 7.70 (m, 1 H); 7.80 (m, 1 H).

HPLC method B: elution at 3.59 min.

20 MS: calc. for [M+H]⁺: 328; found: 328.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 57(General procedure (A))

(*E*)-1-((*S*)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(3-(trifluoromethyl)phenyl)propenone

5

320 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid.

10

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.25 (m, 4 H); 2.45-2.80 (m, 6 H); 3.60 and 3.75 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.00 (both d, together 1 H); 7.45-7.80 (m, 5 H).

15 HPLC method B: elution at 4.16 min.

MS: calc. for [M+H]⁺: 353; found: 353.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
20 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was re-
moved *in vacuo*.

25 **Example 58(General procedure (A))**

(*E*)-3-(4-tert-Butylphenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

340 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-tert-butylcinnamic acid (commercially available at e.g. Emkachem) instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.40 (s, 9 H); 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.85 (both d, together 1 H); 7.40 (m, 2 H); 7.50 (d, 2 H); 7.70 (d, 1 H).

10

HPLC method B: elution at 4.76 min.

MS: calc. for [M+H]⁺: 341; found: 341.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 59(General procedure (A))

(*E*)-1-((*S*)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(3-(trifluoromethoxy)phenyl)propenone

340 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-

5 (*E*)-3-(trifluoromethoxy)cinnamic acid (commercially available at e.g. Lancaster) instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.80 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.80 (m, 6 H); 3.65 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 6.90 (both d, together 1 H); 7.20 (m, 1 H); 7.40 (m, 2 H); 7.65 (d, 1 H).

HPLC method B: elution at 4.30 min.

MS: calc. for [M+H]⁺: 369; found: 369.

15

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 60(General procedure (A))

25 (*E*)-3-(4-Chloro-3-trifluoromethylphenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

210 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-chloro-3-

5 (trifluoromethyl)cinnamic acid (commercially available at e.g. Interchim, France) instead of (*E*)-4-bromocinnamic acid.

10 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.20 (m, 4 H); 2.40-2.75 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 6.95 (both d, together 1 H); 74.5-7.60 (m, 2 H); 7.65 (d, 1 H); 7.85 (m, 1 H).

HPLC method B: elution at 4.50 min.

MS: calc. for $[\text{M}+\text{H}]^+$: 387; found: 387.

15

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 61(General procedure (A))

(*E*)-3-(3-Fluoro-5-(trifluoromethyl)phenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-

25 yl)propenone

290 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-fluoro-5-

5 (trifluoromethyl)cinnamic acid (commercially available at e.g. Interchim, France) instead of (*E*)-4-bromocinnamic acid.

10 ¹H-NMR (CDCl₃, 2 sets of signals) δ 1.75 (m, 4 H); 1.85-2.15 (m, 4 H); 2.45-2.75 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 7.80 and 7.00

10 (both d, together 1 H); 7.30 (d, 1 H); 7.40 (d, 1 H); 7.55 (m, 1 H); 7.65 (dd, 1 H).

HPLC method B: elution at 4.29 min.

MS: calc. for [M+H]⁺: 371; found: 371.

15

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20

Example 62 (General procedure (C))

(*E*)-1-((*S*)-2-(Diethylaminomethyl)pyrrolidin-1-yl)-3-(4-(trifluoromethoxy)phenyl)propenone

Step 1: *N,N*-Diethyl-*N*-((*S*)-pyrrolidin-2-yl)methyl)amine

5

N,N-Diethyl-*N*-((*S*)-pyrrolidin-2-yl)methyl)amine was synthesized as described for (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine starting with *N,N*-diethylamine instead of pyrrolidine.

10

¹H-NMR (CDCl₃) δ 1.00 (t, 6 H); 1.35 (m, 1 H); 1.75 (m, 2 H); 1.85 (m, 1 H); 2.35 (m, 2 H); 2.55 (m, 4 H); 2.85 (m, 1 H); 3.00 (m, 1 H); 3.20 (m, 1 H).

15 Step 2

170 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-trifluoromethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid and *N,N*-diethyl-*N*-((*S*)-pyrrolidin-2-yl)methyl)amine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

20

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.05 (m, 6 H); 1.85-2.15 (m, 4 H); 2.15-2.80 (m, 6 H); 3.50-3.75 (m, 2 H); 4.10 and 4.30 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.20 (d, 2 H); 7.55 (d, 2 H); 7.65 and 7.66 (both d, together 1 H).

100

HPLC method B: elution at 4.54 min.

MS: calc. for $[M+H]^+$: 371; found: 371.

5

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10

Example 63 (General procedure (C))

(*E*)-1-((S)-2-(Diethylaminomethyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)propenone

15

310 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-trifluoromethylcinnamic acid instead of (*E*)-4-bromocinnamic acid and *N,N*-diethyl-*N*-((S)-pyrrolidin-2-

20 yl)methyl)amine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

$^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.00 (m, 6 H); 1.85-2.15 (m, 4 H); 2.20-2.80 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.10 and 4.30 (both m, together 1 H); 6.80 and 7.00 (both d, together 1 H); 7.60 (AB, 2 H); 7.70 and 7.71 (both d, together 1 H).

25

HPLC method B: elution at 4.39 min.

MS: calc. for $[M+H]^+$: 355; found: 355.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
5 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was re-
moved *in vacuo*.

Example 64 (General procedure (C))

10 (*E*)-1-((S)-2-(Diethylaminomethyl)pyrrolidin-1-yl)-3-(3,4-dimethoxyphenyl)propenone

15 190 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3,4-dimethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid and *N,N*-diethyl-*N*-((S)-pyrrolidin-2-yl)methyl)amine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

20 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.05 (m, 6 H); 1.85-2.15 (m, 4 H); 2.15-2.80 (m, 6 H);
3.60 and 3.75 (both m, together 2 H); 3.90 (s, 6 H); 4.10 and 4.35 (both m, together 1 H);
6.60 and 6.75 (both d, together 1 H); 6.85 (d, 1 H); 7.03 and 7.05 (both s, together 1 H); 7.10
(d, 1 H); 7.65 and 7.66 (both d, together 1 H).

25 HPLC method B: elution at 3.47 min.
MS: calc. for $[M+H]^+$: 347; found: 347.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

5

Example 65 (General procedure (C))

(*E*)-1-((*R*)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethoxy)phenyl)propenone

10

Step 1:

1-((*R*)-Pyrrolidin-2-yl)methyl)piperidine

15

1-((*R*)-Pyrrolidin-2-yl)methyl)piperidine was synthesized as described for (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine starting with (*R*)-1-(*tert*-butoxycarbonyl)pyrrolidine-1-carboxylic acid instead of (*S*)-1-(*tert*-butoxycarbonyl)pyrrolidine-1-carboxylic acid.

¹H-NMR (CDCl₃) δ 1.30 (m, 1 H); 1.40 (m, 2 H); 1.55 (m, 4 H); 1.70 (m, 3 H); 1.85 (m, 1 H); 2.25-2.60 (m, 6 H); 2.80 (m, 1 H); 3.00 (m, 1 H); 3.25 (m, 1 H).

Step 2

- 5 185 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-trifluoromethoxycinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-(((*R*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.
- 10 $^1\text{H-NMR}$ (CDCl_3 , 2 sets of signals) δ 1.45 (m, 2 H); 1.60 (m, 4 H); 1.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.70 and 6.90 (both d, together 1 H); 7.20 (d, 2 H); 7.55 (d, 2 H); 7.65 (d, 1 H).

HPLC method B: elution at 4.61 min.

- 15 MS: calc. for $[\text{M}+\text{H}]^+$: 383; found: 383.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent 20 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 66 (General procedure (C))

- 25 (*E*)-1-((*R*)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)propenone

479 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-trifluoromethylcinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-(((*R*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

5

¹H-NMR (CDCl₃, 2 sets of signals) δ 1.45 (m, 2 H); 1.55 (m, 4 H); 1.85-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 3.50-3.75 (m, 2 H); 4.15 and 4.40 (both m, together 1 H); 6.80 and 7.05 (both d, together 1 H); 7.65 (AB, 4 H); 7.70 (d, 1 H).

10 HPLC method B: elution at 4.44 min.

MS: calc. for [M+H]⁺: 367; found: 367.

15 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

20 Example 67 (General procedure (D))

((*S*)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-(5-(trifluoromethyl)benzofuran-2-yl)methanone

25 Step 1: 2-(4-(Trifluoromethyl)phenoxy)tetrahydropyran

a solution of 4-(trifluoromethyl)phenol (2.44 g, 15 mmol) in dichloromethane (5 ml) was added to a solution of 3,4-dihydro-2H-pyran (4.10 ml, 45 mmol) and a 3.6 M solution of hydrogen chloride in ethyl acetate (0.015 ml, 0.05 mmol) in dichloromethane (10 ml). The reaction mixture was stirred at room temperature for 16 h. It was diluted with ethyl acetate (100 ml) and washed with a saturated aqueous solution of sodium hydrogencarbonate (100 ml). The aqueous phase was extracted with ethyl acetate (2 x 30 ml). The combined organic layers were dried over magnesium sulphate. The solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica (90 g), using ethyl acetate/heptane 1:10 as eluent to give 3.09 g of 2-(4-(trifluoromethyl)phenoxy)tetrahydropyran.

¹H-NMR (CDCl₃) δ 1.65 (m, 3 H); 1.85 (m, 2 H); 2.00 (m, 1 H); 3.60 (m, 1 H); 3.85 (m, 1 H); 5.45 (t, 1 H); 7.15 (d, 2 H); 7.55 (d, 2 H).

15

Step 2: 2-Hydroxy-5-(trifluoromethyl)benzaldehyde

20

At -15°C, an 1.6 N solution of *n*-butyllithium in hexanes (7.20 ml, 11.5 mmol) was added to *N,N,N',N'*-tetramethylethylenediamine (1.72 ml, 11.4 mmol). The reaction mixture was stirred for 10 min at -10°C. 2-(4-(trifluoromethyl)phenoxy)tetrahydropyran (2.0 g, 8.12 mmol) was

added. The reaction mixture was stirred for 2 h at -10°C. *N,N*-Dimethylformamide (0.88 ml, 11.4 mmol) was added. The reaction mixture was stirred for 15 min at -10°C. It was given onto a 6 M hydrochloric acid. This mixture was stirred at room temperature for 16 h. The organic layer was isolated and dried. The solvent was removed *in vacuo*. 659 mg of 2-hydroxy-
5 5-(trifluoromethyl)benzaldehyde were isolated from the crude mixture by flash chromatography on silica (90 g), using ethyl acetate/heptane 1:10 as eluent.

¹H-NMR (CDCl₃) δ 7.10 (d, 1 H); 7.80 (d, 1 H); 7.90 (s, 1 H); 9.90 (s, 1 H); 11.30 (s, 1 H).

10

Step 3: 5-(Trifluoromethyl)benzofuran-2-carboxylic acid ethyl ester

15 A mixture of potassium carbonate (4.00 g, 8.6 mmol) diethyl bromomalonate (1.43 ml, 8.4 mmol), 2-hydroxy-5-(trifluoromethyl)benzaldehyde (638 mg, 3.40 mmol) and methyl ethyl ketone (15 ml) was heated to reflux for 16 h. It was cooled to room temperature. The solid was filtered off and washed with acetone. The solvent was removed from the filtrate. The crude product was purified by flash chromatography on silica (40 g), using ethyl acetate/heptane
20 1:5 as eluent, to give 747 mg of 5-(trifluoromethyl)benzofuran-2-carboxylic acid ethyl ester.

¹H-NMR (CDCl₃) δ 1.45 (t, 3 H); 4.50 (q, 2 H); 7.60 (s, 1 H); 7.70 (s, 2 H); 8.00 (s, 1 H).

25 Step 4: 5-(Trifluoromethyl)benzofuran-2-carboxylic acid

A solution of lithium hydroxide (78 mg, 3.7 mmol) in water (6 ml) was added to a solution of 5-(trifluoromethyl)benzofuran-2-carboxylic acid ethyl ester (705 mg, 2.73 mmol) in 1,4-dioxane (6 ml). 1,4-Dioxane was added until a clear solution was obtained. The reaction mixture was stirred for 16 h at room temperature. It was diluted with an 1 N aqueous solution of sodium hydroxide and washed with tert-butyl methyl ether (2 x 30 ml). The aqueous solution was acidified with a 10% aqueous solution of sodium hydrogen sulphate until pH 3 was obtained. It was extracted with ethyl acetate (3 x 40 ml). The combined ethyl acetate layers were dried over magnesium sulphate. The solvent was removed in vacuo to give crude 5-(trifluoromethyl)benzofuran-2-carboxylic acid which was used in the next step without further purification.

¹H-NMR (DMSO-d₆) δ 7.80 (s, 1 H); 7.85 (d, 1 H); 7.95 (d, 1 H); 8.25 (s, 1 H); 13.80 (br, 1 H).

15

180 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 5-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid and 1-((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

20

¹H-NMR (CDCl₃) δ 1.40-1.80 (br, 6 H); 2.00 (br, 2 H); 2.30 (br, 2 H); 2.55 (br, 2 H); 3.60-4.10 (br, 2 H); 4.50 and 4.85 (both br, together 1 H); 7.35-7.70 (br, 3 H); 8.00 (s, 1 H).

HPLC method A: elution at 9.55 min.

25

MS: calc. for [M+H]⁺: 381; found: 381.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 68 (General procedure (E))

(*E*)-3-(4-(Cyclopropanecarbonyl)phenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone

5

Step 1

10 (*E*)-3-(4-(Cyclopropanecarbonyl)phenyl)acrylic acid methyl ester

A mixture of (4-bromophenyl)-(cyclopropyl)methanone (0.450 g, 2.00 mmol), palladium acetate 15 49 mg, 0.220 mmol), triphenylphosphine (55 mg, 0.21 mmol), methyl acrylate (0.43 g, 2.50 mmol) and triethylamine (10 ml, 72 mmol) was heated to 100°C for 48 in a closed reaction vial. The reaction mixture was cooled to room temperature. The solid was removed by filtration. A mixture of ice and 1 N hydrochloric acid was added to the liquid. The mixture was stirred for 1 h at room temperature. It was extracted with ethyl acetate (2 x 150 ml). The combined organic layers were washed with a saturated aqueous solution of sodium hydrogencarbonate (100 ml) and dried over magnesium sulphate. The solvent was removed in vacuo. The crude product was purified by flash chromatography on silica (40 g) using a mixture of dichloromethane/ethyl acetate/heptane (1:1:1) as eluent, to give 217 mg of (*E*)-3-(4-(cyclopropanecarbonyl)phenyl)acrylic acid methyl ester.

¹H-NMR (CDCl₃) δ 1.05 (m, 2 H); 1.25 (m, 2 H); 2.65 (m, 1 H); 3.85 (s, 3 H); 6.55 (d, 1 H); 7.62 (d, 2 H); 7.75 (d, 1 H); 8.05 (d, 2 H).

5 Step 2:

(E)-3-(4-(Cyclopropanecarbonyl)phenyl)acrylic acid

10 A solution of lithium hydroxide (27 mg, 1.1 mmol) in water (2.00 ml) was added to a solution of (E)-3-(4-(cyclopropanecarbonyl)phenyl)acrylic acid methyl ester (217 mg, 0.94 mmol) in 1,4-dioxane (2.00 ml). 1,4-Dioxane was added until a clear solution was obtained. The reaction mixture was stirred for 16 h at room temperature. It was diluted with an 1 N aqueous solution of sodium hydroxide (50 ml) and washed with tert-butyl methyl ether (2 x 40 ml). The aqueous solution was acidified with a 10% aqueous solution of sodium hydrogensulphate until pH 3 was obtained. It was extracted with ethyl acetate (3 x 100 ml). The combined organic layers were dried over magnesium sulphate. The solvent was removed in vacuo to give 170 mg of crude (E)-3-(4-(cyclopropanecarbonyl)phenyl)acrylic acid which was used in the next step without further purification.

15

20

¹H-NMR (DMSO-d₆) δ 1.05 (m, 4 H); 2.95 (m, 1 H); 6.70 (d, 1 H); 7.65 (d, 1 H); 7.85 (d, 2 H); 8.05 (d, 2 H); 12.60 (br, 1 H).

25

Step 3

30 130 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propanone, using (E)-3-(4-(cyclopropanecarbonyl)phenyl)acrylic acid instead of (E)-4-bromocinnamic acid.

1 ¹H-NMR (CDCl₃, two sets of signals, broad signals) δ 1.05 (m, 2 H); 1.25 (m, 2 H); 1.80 (m, 4 H); 1.90-2.15 (m, 4 H); 2.40-2.80 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.85 and 7.00 (both d, together 1 H); 7.40 (d, 2 H); 7.75 (d, 1 H);
5 8.00 (m, 2 H).

HPLC method A: elution at 8.48 min.

MS: calc. for [M+H]⁺: 353; found: 353.

10

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15

Example 69 (General procedure (D))

((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-(5-(trifluoromethoxy)benzofuran-2-yl)methanone

20

Step1:

25 5-(Trifluoromethoxy)benzofuran-2-carboxylic acid

93 mg of 5-(trifluoromethoxy)benzofuran-2-carboxylic acid were prepared as described for 5-
5 (trifluoromethyl)benzofuran-2-carboxylic acid, using 4-(trifluoromethoxy)phenol instead of 4-
(trifluoromethyl)phenol.

¹H-NMR (DMSO-d₆) δ 7.50 (d, 1 H); 7.70 (s, 1 H); 7.85 (m, 2 H); 13.80 (br, 1 H).

10 69 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((S)-
2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 5-(trifluoromethoxy)benzofuran-2-
carboxylic acid instead of (E)-4-bromocinnamic acid.

15 ¹H-NMR (CDCl₃, two sets of signals, broad signals) δ 1.75 (m, 5 H); 1.90-2.30 (m, 5 H); 2.30-
2.90 (m, 6 H); 3.60-4.10 (m, 2 H); 4.50 and 4.85 (both m, together 1 H); 7.30 (m, 1 H); 7.35-
7.60 (m, 2 H).

HPLC method A: elution at 9.51 min.

20 MS: calc. for [M+H]⁺: 383; found: 383.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate
(5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent
25 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was
removed *in vacuo*.

Example 70 (General procedure (D))

((S)-2-((Diethylamino)methyl)pyrrolidin-1-yl)-(6-(trifluoromethyl)benzofuran-2-yl)methanone

5

Step1: 6-(Trifluoromethyl)benzofuran-2-carboxylic acid

10

93 mg of 6-(trifluoromethyl)benzofuran-2-carboxylic acid were prepared as described for 5-(trifluoromethyl)benzofuran-2-carboxylic acid, using 3-(trifluoromethyl)phenol instead of 4-(trifluoromethyl)phenol.

15

¹H-NMR (DMSO-d₆) δ 7.70 (d, 1 H); 7.80 (s, 1 H); 8.05 (d, 1 H); 8.20 (s, 1 H); 13.90 (br, 1 H).

20

220 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 6-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (E)-4-bromocinnamic acid and N,N-diethyl-N-((S)-pyrrolidin-2-yl)methylamine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, two sets of signals) δ 0.90 and 1.05 (both m, together 6 H); 1.90-2.15 (m, 4 H); 2.20-2.90 (m, 6 H); 3.75, 3.90, and 4.05 (all m, together 2 H); 4.50 and 4.85 (both m, together 1 H); 7.40-7.60 (m, 2 H); 7.70-7.85 (m, 2 H).

5 HPLC method A: elution at 10.18 min.

MS: calc. for [M+H]⁺: 369; found: 369.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

10 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15 Example 71 (General procedure (D))

((S)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-(6-(trifluoromethyl)benzofuran-2-yl)methanone

20

71 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 6-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid and 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, two sets of signals) δ 1.20-1.70 (m, 6 H); 1.90-2.20 (m, 4 H); 2.20-2.85 (m, 6 H); 3.60-3.95 and 3.95-4.15 (both m, together 2 H); 4.55 and 4.85 (both m, together 1 H); 7.40-7.60 (m, 2 H); 7.65-7.90 (m, 2 H).

5

HPLC method A: elution at 9.74 min.

MS: calc. for [M+H]⁺: 381; found: 381.

- 10 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15

Example 72(General procedure (D))

((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-(6-(trifluoromethyl)benzofuran-2-yl)methanone

20

150 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 6-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid.

25

¹H-NMR (CDCl₃, two sets of signals) δ 1.70 (m, 4 H); 1.90-2.20 (m, 4 H); 2.20-2.90 (m, 6 H); 3.60-4.10 (m, 2 H); 4.55 and 4.85 (both m, together 1 H); 7.40-7.60 (m, 2 H); 7.70-7.90 (m, 2 H).

5 HPLC method A: elution at 9.39 min.

MS: calc. for [M+H]⁺: 367; found: 367.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

10 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15

Example 73 (General procedure (C))

(*E*)-3-(4-Chloro-3-trifluoromethylphenyl)-1-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

20

220 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-

25 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-4-chloro-3-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, two sets of signals) δ 1.30-1.70 (m, 6 H); 1.80-2.15 (m, 4 H); 2.15-2.75 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 7.00 (both d, together 1 H); 7.45-7.70 (m, 3 H); 7.80 and 7.85 (both s, together 1 H).

5 HPLC method A: elution at 10.41 min.

MS: calc. for [M+H]⁺: 401; found: 401.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate

10 (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 74 (General procedure (C))

15 (*E*)-3-(3-Fluoro-5-(trifluoromethyl)phenyl)-1-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)propenone

20

210 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-fluoro-5-(trifluoromethyl)cinnamic acid instead of (*E*)-4-bromocinnamic acid and 1-((S)-pyrrolidin-2-yl)methyl)piperidine instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

25

¹H-NMR (CDCl₃, two sets of signals) δ 1.25-1.70 (m, 6 H); 1.80-2.15 (m, 4 H); 2.15-2.70 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.15 and 4.40 (both m, together 1 H); 6.75 and 7.05 (both d, together 1 H); 7.20-7.45 (m, 2 H); 7.45-7.70 (m, 2 H).

5 HPLC method A: elution at 9.74 min.

MS: calc. for [M+H]⁺: 385; found: 385.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

15

Example 75 (General procedure (D))

((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-(5-(trifluoromethyl)benzofuran-2-yl)methanone

20

210 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 5-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid.

¹H-NMR (CDCl₃, two sets of signals) δ 1.

HPLC method A: elution at

MS: calc. for $[M+H]^+$:

5

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10

Example 76 (General procedure (D))

15 ((S)-2-(Diethylaminomethyl)pyrrolidin-1-yl)-(5-(trifluoromethyl)benzofuran-2-yl)methanone

20 110 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using 5-(trifluoromethyl)benzofuran-2-carboxylic acid instead of (*E*)-4-bromocinnamic acid and *N,N*-diethyl-*N*-(*(S)*-pyrrolidin-2-yl)methyl)amine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

25 $^1\text{H-NMR}$ (CDCl_3 , two sets of signals, broad signals) δ 0.80-1.20 (m, 6 H); 1.65 and 2.00 (both m, together 4 H); 2.20-2.90 (m, 6 H); 3.75, 3.90, and 4.05 (all m, together 2 H); 4.45 and 4.80 (both m, together 1 H); 7.40-7.70 (m, 3 H); 8.00 (s, 1 H).

HPLC method A: elution at 9.31 min.

MS: calc. for $[M+H]^+$: 369; found: 369.

- 5 The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

10 **Example 77 (General procedure (A))**

(E)-1-(((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)but-2-en-1-one

15

Step 1:

(E)-3-(4-(Trifluoromethyl)phenyl)but-2-enoic acid

20

2.85 g of (*E*)-3-(4-(trifluoromethyl)phenyl)but-2-enoic acid were prepared as described for (*E*)-4-methylsulfonylcinnamic acid, using 1-(4-(trifluoromethyl)phenyl)ethanone instead of 4-(methylsulfonyl)benzaldehyde..

5 ¹H-NMR (DMSO-d₆) δ 2.50 (s, 3 H); 6.20 (s, 1 H); 7.80 (s, 4 H).

Step 2

10 240 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-(trifluoromethyl)phenyl)but-2-enoic acid instead of (*E*)-4-bromocinnamic acid.

15 ¹H-NMR (CDCl₃, two sets of signals, broad signals) δ 1.65-1.85 (m, 4 H); 1.85-2.15 (m, 4 H); 2.35-2.80 (m, 6 H); 2.50 (s, 3 H); 3.40-3.70 (m, 2 H); 4.05 and 4.40 (both m, together 1 H); 6.25 and 6.50 (both s, together 1 H); 7.55 (m, 2 H); 7.65 (d, 2 H).

HPLC method A: elution at 10. 43 min.

20 MS: calc. for [M+H]⁺: 367; found: 367.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent 25 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 78 (General procedure (A))

(E)-1-((S)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(trifluoromethyl)phenyl)but-2-en-1-one

110 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-trifluoromethylphenyl)but-2-enoic acid instead of (*E*)-4-bromocinnamic acid and 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

¹H-NMR (CDCl₃, two sets of signals, broad signals) δ 1.30-1.65 (m, 6 H); 2.80-2.10 (m, 4 H); 2.15-2.70 (m, 6 H); 2.45 (s, 3 H); 3.40-3.70 (m, 2 H); 4.00 and 4.35 (both m, together 1 H); 6.25 and 6.50 (both s, together 1 H); 7.50-7.65 (m, 4 H).

HPLC method A: elution at 10.69 min.

MS: calc. for [M+H]⁺: 381; found: 381.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 79 (General procedure (A))

(*E*)-3-(4-(Isobutyl)phenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)but-2-en-1-one

Step 1:

5 (E)-3-(4-(Isobutyl)phenyl)but-2-enoic acid

0.91 g of (E)-3-(4-(isobutyl)phenyl)but-2-enoic acid were prepared as described for (E)-4-methylsulfonylcinnamic acid, using 1-(4-(isopropyl)phenyl)ethanone instead of
10 4-(methylsulfonyl)benzaldehyde.

¹H-NMR (DMSO-d₆) δ 0.90 (d, 6 H); 1.85 (m, 1 H); 2.50 (m, 5 H); 6.10 (s, 1 H); 7.20 (d, 2 H); 7.45 (d, 2 H); 12.15 (br, 1 H).

15 Step 2

250 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (E)-3-(4-(isobutyl)phenyl)but-2-enoic acid instead of (E)-4-bromocinnamic acid.

20

¹H-NMR (CDCl₃, two sets of signals, broad signals) δ 0.95 (d, 6 H); 1.65-1.80 (m, 4 H); 1.80-2.15 (m, 5 H); 2.40-2.80 (m, 6 H); 2.45 (s, 3 H); 2.50 (d, 2 H), 3.45-3.60 (m, 2 H); 4.05 and 4.40 (both m, together 1 H); 6.25 and 6.45 (both s, together 1 H); 7.15 (d, 2 H); 7.40 (m, 2 H).

25

HPLC method A: elution at 11.19 min.

MS: calc. for $[M+H]^+$: 355; found: 355.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent

- 5 was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

Example 80 (General procedure (A))

- 10 (E)-3-(4-(Isobutyl)phenyl)-1-((S)-2-((piperidin-1-yl)methyl)pyrrolidin-1-yl)but-2-en-1-one

130 mg of the title compound were synthesized as described for (E)-3-(4-bromophenyl)-1-
15 ((S)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (E)-3-(4-(Isobutyl)phenyl)but-
2-enoic acid instead of (E)-4-bromocinnamic acid and 1-((S)-pyrrolidin-2-yl)methyl)piperidine
instead of (S)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

- 20 $^1\text{H-NMR}$ (CDCl_3 , two sets of signals, broad signals) δ 0.90 (d, 6 H); 1.30-1.65 (m, 6 H); 1.70-
2.10 (m, 5 H); 2.10-2.70 (m, 6 H); 2.45 (s, 3 H); 2.50 (d, 2 H); 3.35-3.65 (m, 2 H); 4.05 and
4.40 (both m, together 1 H); 6.25 and 6.45 (both s, together 1 H); 7.15 (d, 2 H); 7.35 and 7.45
(both d, together 2 H).

- 25 HPLC method A: elution at 11.63 min.

MS: calc. for $[M+H]^+$: 369; found: 369.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

5

Example 81 (General procedure (A))

(*E*)-1-((S)-2-((Pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(1,2,4-triazol-1-yl)phenyl)propenone

10

Step 1:

15 (*E*)-3-(4-(1,2,4-Triazol-1-yl)phenyl)acrylic acid

20 1.9 g of (*E*)-3-(4-(1,2,4-triazol-1-yl)phenyl)acrylic acid were prepared as described for (*E*)-3-(4-(methanesulfonyloxy)phenyl)acrylic acid, using 4-(1,2,4-triazol-1-yl)benzaldehyde instead of methanesulfonic acid 4-formylphenyl ester.

125

¹H-NMR (DMSO-d₆) δ 6.60 (d, 1 H); 7.65 (d, 1 H); 7.90 (AB, 4 H); 8.30 (s, 1 H); 9.40 (s, 1 H); 12.50 (br, 1 H).

Step 2

5

74 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-(1,2,4-triazol-1-yl)phenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid.

10

¹H-NMR (CDCl₃, two sets of signals) δ 1.80 (m, 4 H); 1.85-2.20 (m, 4 H); 2.45-2.80 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.20 and 4.40 (both m, together 1 H); 6.80 and 6.95 (both m, together 1 H); 7.70 (m, 5 H); 8.10 (s, 1 H); 8.60 (s, 1 H).

15 HPLC method A: elution at 2.96 min.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was

20 removed *in vacuo*.

Example 82 (General procedure (A))

25 (*E*)-1-((*S*)-2-((Piperidin-1-yl)methyl)pyrrolidin-1-yl)-3-(4-(1,2,4-triazol-1-yl)phenyl)propenone

165 mg of the title compound were synthesized as described for (*E*)-3-(4-bromophenyl)-1-((*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidin-1-yl)propenone, using (*E*)-3-(4-(1,2,4-triazol-1-yl)phenyl)acrylic acid instead of (*E*)-4-bromocinnamic acid and and 1-((*S*)-pyrrolidin-2-yl)methyl)piperidine instead of (*S*)-2-((pyrrolidin-1-yl)methyl)pyrrolidine.

5

¹H-NMR (CDCl₃, two sets of signals) δ 1.40 (m, 2 H); 1.55 (m, 4 H); 1.80-2.15 (m, 4 H); 2.15-2.70 (m, 6 H); 3.60 and 3.70 (both m, together 2 H); 4.20 and 4.40 (both m, together 1 H); 6.75 and 7.00 (both d, together 1 H); 7.70 (m, 5 H); 8.10 (s, 1 H); 8.60 (s, 1 H).

10 HPLC method A: elution at 3.15 min.

The title compound was transferred into its hydrochloride salt, by dissolving it in ethyl acetate (5 ml). A 3.2 M solution of hydrogen chloride in ethyl acetate (5 ml) was added. The solvent was removed *in vacuo*. The residue was dissolved in ethanol (50 ml). The solvent was removed *in vacuo*.

The ability of the compounds to interact with the histamine H3 receptor can be determined by the following *in vitro* binding assays.

20 **Binding assay I**

Rat cerebral cortex is homogenized in ice cold K-Hepes, 5 mM MgCl₂ pH 7.1 buffer. After two differential centrifugations the last pellet is resuspended in fresh Hepes buffer containing 1 mg/ml bacitracin. Aliquots of the membrane suspension (400 µg/ml) are incubated for 60 min at 25°C with 30 pM [¹²⁵I]-iodoproxifan, a known histamine H3 receptor antagonist, and the test compound at various concentrations. The incubation is stopped by dilution with ice-cold medium, followed by rapid filtration through Whatman GF/B filters pretreated for 1 hour with 0.5% polyethyleneimine. The radioactivity retained on the filters is counted using a Cobra II auto gamma counter. The radioactivity of the filters is indirectly proportional to the binding affinity of the tested compound. The results are analyzed by nonlinear regression analysis.

25 **Binding assay II**

The H3-receptor agonist ligand R- α -methyl[³H]histamine (RAMHA) is incubated with isolated rat cortex cell-membranes at 25 °C for 1 hour, followed by a filtration of the incubate through Whatman GF/B filters. Radioactivity retained on the filters is measured using a beta counter.

Male Wistar rats (150-200 g) are decapitated and cerebral cortex is quickly dissected out and frozen immediately on dry ice. Tissue is kept at -80 °C until membrane preparation. During the membrane preparation the tissue is kept on ice all the time. Rat cerebral cortex is homogenized in 10 volumes (w/w) ice-cold Hepes buffer (20 mM Hepes, 5 mM MgCl₂ pH 7.1

- 5 (KOH) + 1 mg/ml bacitracin) using an Ultra-Turrax homogenizer for 30 seconds. The homogenate is centrifuged at 140 g in 10 min. The supernatant is transferred to a new test tube and centrifuged for 30 min at 23 000 g. Pellet is resuspended in 5-10 ml Hepes buffer, homogenized and centrifuged for 10 min at 23 000 g. This short centrifugation step is repeated twice. After the last centrifugation the pellet is resuspended in 2-4 ml Hepes buffer and the
- 10 protein concentration is determined. The membranes are diluted to a protein concentration of 5 mg/ml using Hepes buffer, aliquoted and stored at -80 °C until use.

- 50 µl test-compound, 100 µl membrane (200 µg/ml), 300 µl Hepes buffer and 50 µl R-α-methyl[³H]histamine (1 nM) are mixed in a test tube. The compounds to be tested are dissolved in DMSO and further diluted in H₂O to the desired concentrations. Radioligand and
15 membranes are diluted in Hepes buffer + 1 mg/ml bacitracin. The mixture is incubated for 60 min at 25 °C. Incubation is terminated by adding 5 ml ice-cold 0.9% NaCl, followed by rapid filtration through Whatman GF/B filters pre-treated for 1hour with 0.5% polyethyleneimine. The filters are washed with 2 x 5 ml ice-cold NaCl. To each filter a 3 ml scintillation cocktail is added and the radioactivity retained is measured with a Packard Tri-Carb beta counter.
20 IC₅₀ values are calculated by non-linear regression analysis of binding curves (6 points minimum) using the windows program GraphPad Prism, GraphPad software, USA.

Binding assay III

- The human H3 receptor is cloned by PCR and subcloned into the pcDNA3 expression vector. Cells stably expressing the H3 receptor are generated by transfecting the H3-expression vectors into HEK 293 cells and using G418 to select for H3 clones. The human H3-HEK 293 clones are cultured in DMEM (GIBCO-BRL) with glutamax, 10% foetal calf serum, 1% penicillin/streptavidin and 1 mg/ml G 418 at 37 °C and 5% CO₂. Before harvesting, the confluent cells are rinsed with PBS and incubated with Versene (proteinase, GIBCO-BRL) for approximately 5 min. The cells are flushed with PBS and DMEM and the cell suspension collected in
25 a tube and centrifuged for 5-10 min at 1500 rpm in a Heraeus Sepatech Megafuge 1.0. The pellet is resuspended in 10-20 vol. Hepes buffer (20 mM Hepes, 5 mM MgCl₂, pH 7.1 (KOH)) and homogenized for 10-20 seconds using an Ultra-Turrax homogenizer. The homogenate is centrifuged for 30 min at 23 000 g. The pellet is resuspended in 5-10 ml Hepes buffer, homogenized 5-10 seconds with the Ultra-Turrax and centrifuged for 10 min at 23 000 g. Fol-

lowing this centrifugation step, the membrane pellet is resuspended in 2-4 ml Hepes buffer, homogenized with a syringe or Teflon homogenizer, and the protein concentration determined. The membranes are diluted to a protein concentration of 1-5 mg/ml in Hepes buffer, aliquoted and kept at -80 °C until use.

- 5 Aliquots of the membrane suspension are incubated for 60 min at 25 °C with 30 pM [¹²⁵I]-iodoproxifan, a known compound with high affinity for the H3 receptor, and the test compound at various concentrations. The incubation is stopped by dilution with ice-cold medium, followed by rapid filtration through Whatman GF/B filters pretreated for 1 hour with 0.5% polyethyleneimine. The radioactivity retained on the filters is counted using a Cobra II auto
10 gamma counter. The radioactivity of the filters is indirectly proportional to the binding affinity of the tested compound. The results are analysed by nonlinear regression analysis.
When tested, the present compounds of the formula (I) generally show a high binding affinity to the histamine H3 receptor.
Preferably, the compounds according to the invention have an IC₅₀ value as determined by
15 one or more of the assays of less than 10 µM, more preferred of less than 1 µM, and even more preferred of less than 500 nM, such as of less than 100 nM.

Functional assay I

- The ability of the compounds to interact with the histamine H3 receptor as agonists, inverse agonists and/or antagonists, is determined by an *in vitro* functional assay utilizing membranes from HEK 293 cell expressing the human H3 receptors.
20

The H3 receptor is cloned by PCR and subcloned into the pcDNA3 expression vector. Cells stably expressing the H3 receptor are generated by transfecting the H3-expression vectors into HEK 293 cells and using G418 to select for H3 clones. The human H3-HEK 293 clones are cultured in DMEM with glutamax, 10% foetal calf serum, 1% penicillin/streptavidin and 1
25 mg/ml G 418 at 37 °C and 5% CO₂.

The H3 receptor expressing cells are washed once with phosphate buffered saline (PBS) and harvested using versene (GIBCO-BRL). PBS is added and the cells are centrifuged for 5 min at 188 g. The cell pellet is resuspended in stimulation buffer to a concentration of 1 x 10⁶ cells/ml. cAMP accumulation is measured using the Flash Plate® cAMP assay (NEN™ Life
30 Science Products). The assay is generally performed as described by the manufacturer.

Briefly, 50 µl cell suspension is added to each well of the Flashplate which also contained 25 µl 40 µM isoprenaline, to stimulate cAMP generation, and 25 µl of test compound (either agonists or inverse agonists alone, or agonist and antagonist in combination). The assay can be run in "agonist-mode" which means that the test compound is added, in increasing con-

centration, on its own, to the cells, and cAMP is measured. If cAMP goes up, it is an inverse agonist; if cAMP does not change, it is a neutral antagonist, and if cAMP goes down, it is an agonist. The assay can also be run in the "antagonist-mode" which means that a test compound is added, in increasing concentrations, together with increasing concentrations of a known H3 agonist (e.g. RAMHA). If the compound is an antagonist, increasing concentrations of it cause a right-ward shift in the H3-agonist's dose-response curves. The final volume in each well is 100 µl. Test compounds are dissolved in DMSO and diluted in H₂O. The mixture is shaken for 5 min, and allowed to stand for 25 min at room temperature. The reaction is stopped with 100 µl "Detection Mix" per well. The plates are then sealed with plastic, shaken for 30 min, allowed to stand overnight, and finally the radioactivity is counted in the Cobra II auto gamma topcounter. EC₅₀ values are calculated by non-linear regression analysis of dose response curves (6 points minimum) using GraphPad Prism. Kb values are calculated by Schild plot analysis.

Functional assay II

The ability of the compounds to bind and interact with the human H3 receptor as agonists, inverse agonists and/or antagonists, is determined by a functional assay, named [³⁵S] GTPγS assay. The assay measures the activation of G proteins by catalyzing the exchange of guanosine 5'-diphosphate (GDP) by guanosine 5'-triphosphate (GTP) at the α-subunit. The GTP-bounded G proteins dissociate into two subunits, Gα_{GTP} and Gβγ, which in turn regulate intracellular enzymes and ion channels. GTP is rapidly hydrolysed by the Gα-subunit (GTPases) and the G protein is deactivated and ready for a new GTP exchange cycle. To study the function of ligand induced G protein coupled receptor (GPCR) activation by an increase in guanine nucleotide exchange at the G proteins, the binding of [³⁵S]-guanosine-5'-O-(3-thio) triphosphate [³⁵S] GTPγS, a non-hydrolysed analogue of GTP, is determined. This process can be monitored *in vitro* by incubating cell membranes containing the G protein coupled receptor H3 with GDP and [³⁵S] GTPγS. Cell membranes are obtained from CHO cells stably expressing the human H3 receptor. The cells are washed twice in PBS, harvested with PBS+1 mM EDTA, pH 7.4 and centrifuged at 1000 rpm for 5 min. The cell pellet is homogenized in 10 ml ice-cold Hepes buffer (20 mM Hepes, 10 mM EDTA pH 7.4 (NaOH)) using an Ultra-Turrax homogenizer for 30 seconds and centrifuged for 15 min at 20.000 rpm. Following this centrifugation step, the membrane pellet is resuspended in 10 ml ice-cold Hepes buffer (20 mM Hepes, 0.1 mM EDTA pH 7.4 (NaOH)) and homogenized as described above. This procedure is repeated twice except for the last homogenization step, the protein

concentration is determined and membranes are diluted to a protein concentration at 2 mg/ml, aliquoted and kept at -80 °C until use.

In order to study the presence and the potency of an inverse agonist/antagonist the H3-receptor agonist ligand R- α -methyl histamine (RAMHA) is added. The ability of the test com-

5 pound to counteract the effect of RAMHA is measured. When studying the effect of an ago-
nist RAMHA is not added to the assay medium. The test compound is diluted in the assay
buffer (20 mM HEPES, 120 mM NaCl, 10 mM MgCl₂ pH 7.4 (NaOH)) at various concentra-
tions followed by addition of 10⁻⁸ nM RAMHA (only in the case where an inverse ago-
nist/antagonist is examined), 3 μ M GDP, 2.5 μ g membranes, 0.5 mg SPA beads and 0.1 nM
10 [³⁵S] GTP γ S and incubated for 2 hours by slightly shaking at room temperature. The plates
are centrifuged at 1500 rpm for 10 min and the radioactivity is measured using a Top-
counter. The results are analyzed by non linear regression and the IC₅₀ value is determined.
RAMHA and other H3 agonists stimulate the binding of [³⁵S] GTP γ S to membranes express-
ing the H3 receptor. In the antagonist/inverse agonist test, the ability of increasing amounts
15 of test compound to inhibit the increased [³⁵S] GTP γ S binding by 10⁻⁸ M RAMHA is measured
as a decrease in radioactivity signal. The IC₅₀ value determined for an antagonist is the ability
of this compound to inhibit the effect of 10⁻⁸ M RAMHA by 50%. In the agonist test, the ability
of increasing amounts of test compound is measured as an increase in radioactivity signal.
The EC₅₀ value determined for an agonist, is the ability of this compound to increase the sig-
20 nal by 50% of the maximal signal that is obtained by 10⁻⁵ M RAMHA.

Preferably, the antagonists and agonists according to the invention have an IC₅₀/EC₅₀ value
as determined by one or more of the assays of less than 10 μ M, more preferred of less than
1 μ M, and even more preferred of less than 500 nM, such as of less than 100 nM.

The open cage Schedule-fed rat model

25 The ability of the present compounds to reduce weight is determined using the *in vivo* open
cage Schedule-fed rat model.
Sprague-Dawley (SD) male rats of an age of about 1½ to 2 months and a weight of about
30 200-250 g are purchased from Møllegård Breeding and Research Centre A/S (Denmark). On
arrival they are allowed some days of acclimatisation before being placed in individual open
plastic cages. They are habituated to the presence of food (Altromin pelleted rat chow) in
their home cage only during 7 hours in the morning from 07.30 to 14.30 all days a week. Wa-
ter is present ad libitum. As the consumption of food has stabilised after 7 to 9 days, the ani-
mals are ready for use.

Each animal is used only once to avoid carry-over effects between treatments. During the test sessions, the test compound is administered intraperitoneally or orally 30 min before the start of the sessions. One group of animals is administered the test compound at different doses and a control group of animals is given a vehicle. Food and water intake are monitored
5 at 1, 2 and 3 hours post administration.

Any side effects may rapidly be discovered (barrel-rolling, bushy fur etc.) since the animals are kept in transparent plastic cages to enable continuous monitoring.

CLAIMS

1. A compound of the general formula (II):

5 wherein

m is 1, 2 or 3,

n is 0, 1, 2 or 3,

10 R¹ and R² independently are

hydrogen,

15 C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

20 or R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

R¹¹ and R¹² independently are

25 hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

X is

or

R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ independently are

- hydrogen, halogen, cyano, -NR¹⁵R¹⁶, hydroxyl, carbamoyl, carboxyl, -CF₃, -OCF₃, carboxyl, amidino, guanidino or nitro, or

5

- C₁₋₆-alkoxy, C₁₋₆-alkyl, C₁₋₇-alkanoyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkyloxycarbonyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkanoyl, C₃₋₈-cycloalkylcarbamoyl, C₃₋₈-cycloalkyl-oxy carbonyl, C₁₋₆-alkylthio, C₁₋₆-alkylsulfinyl, C₁₋₆-alkylsulfonyl, C₁₋₆-alkylsulfonyl-O-, aryl, aroyl, aryloxy, aryloxycarbonyl, arylthio, arylsulfanyl, aryl-

10

sulfanyl, heteroaryl, heteroaroyl, or heteroaryloxy which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano and -NR¹⁵R¹⁶,

R¹⁵ and R¹⁶ independently are

15

hydrogen or carbamoyl,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino, or

20

C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, C₁₋₆-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl or C₁₋₆-alkyloxycarbonyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

25

or R¹⁵ and R¹⁶ together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl,

30

or two or more of R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, R⁸ and R⁷, R⁷ and R⁸, R⁸ and R⁹, R⁹ and R⁶, and R⁸ and R¹⁰ together form a bridge selected from -OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂CH₂O- and C₃₋₅-alkylene,

or R¹¹ and R³, R¹¹ and R⁷, or R¹¹ and R¹⁰ together form a bridge selected from -O-, -S-, -CH₂-, -C(=O)-, -CH(OH)-, -NR¹³-, -OCH₂- and -CH₂O-,

R¹³ is

5

hydrogen,

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

10

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl and C₂₋₆-alkynyl,

15

-Y- is -CH₂-, -C(=O)-, -NR¹⁴-, -O-, -S-, -CH₂O-, -OCH₂- or -CH(OH)-,

R¹⁴ is

hydrogen,

20

C₁₋₆-alkyl, which may optionally be substituted with one or more substituents selected from C₃₋₈-cycloalkyl, C₅₋₈-cycloalkenyl, halogen, hydroxyl, cyano and amino,

25

C₃₋₈-cycloalkyl or C₅₋₈-cycloalkenyl, which may optionally be substituted with one or more substituents selected from halogen, hydroxyl, cyano and amino,

R¹⁷ is hydrogen, C₁₋₆-alkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl;

R¹⁸ and R¹⁹ independently are hydrogen, halogen, hydroxyl, amino, C₁₋₆-alkyl, C₂₋₆-alkenyl or

30

C₂₋₆-alkynyl,

as well as any diastereomer or enantiomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof.

35

2. A compound according to claim 1 wherein R¹ is

hydrogen,

C₁₋₆-alkyl optionally substituted with one or more substituents selected from C₃₋₈-cycloalkyl,

5 C₅₋₈-cycloalkenyl, halogen and hydroxyl, or

R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

3. A compound according to claim 2 wherein R¹ is

10

C₁₋₆-alkyl, or

R¹ and R² together form a C₃₋₆-alkylene bridge or a C₃₋₆-alkenylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

15

4. A compound according to claim 3 wherein R¹ is

C₁₋₆-alkyl, or

20 R¹ and R² together form a C₃₋₆-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

5. A compound according to claim 4 wherein R¹ is

25 C₁₋₆-alkyl, or

R¹ and R² together form a C₄₋₅-alkylene bridge, which may optionally be substituted with one or more substituents selected from halogen and hydroxyl

30 6. A compound according to claim 5 wherein R¹ is

C₁₋₆-alkyl, or

R¹ and R² together form a C₄₋₅-alkylene bridge

7. A compound according to claim 6 wherein R¹ and R² together form a C₄₋₅-alkylene bridge
8. A compound according to claim 7 wherein R¹ and R² together form a C₄-alkylene bridge
- 5 9. A compound according to claim 7 wherein R¹ and R² together form a C₅-alkylene bridge
10. A compound according to any one of the claims 1 to 9 wherein m is 1
11. A compound according to any one of the claims 1 to 10 wherein n is 1 or 2
- 10 12. A compound according to claim 11 wherein n is 1

13. A compound according to any one of the claims 1 to 12 wherein X is

- 15 15. wherein R³, R⁴, R⁵, R⁶ and R⁷ are as defined in claim 1
14. A compound according to any one of the claims 1 to 13 wherein -Y- is -O- or -S-
15. A compound according to claim 14 wherein -Y- is -O-
- 20 16. A compound according to claim 13 wherein X is

- wherein R³, R⁴, R⁵, R⁶ and R⁷ are as defined in claim 1
- 25 17. A compound according to any one of the claims 1 to 16 wherein R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from

- hydrogen, halogen, cyano, -NR¹⁵R¹⁶, -CF₃, -OCF₃, or nitro, wherein R¹⁵ and R¹⁶ are as defined in claim 1
- 5 • C₁₋₆-alkoxy, C₃₋₆-cycloalkyl-carbonyl, aryl, heteroaryl, C₃₋₈-cycloalkanoyl, C₁₋₆-alkylsulfonyl, or C₁₋₆-alkylsulfonyl-O- which may optionally be substituted with one or more halogen
- 10 or R⁴ and R⁵ together form a -OCH₂O- bridge,
or R¹¹ and R³ together form a bridge selected from -O- or -S-
18. A compound according to claim 17 wherein R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from
- 15 • hydrogen, halogen, cyano, -CF₃, or -OCF₃
- C₁₋₆-alkoxy, 1,2,4-triazolyl, cyclopropanoyl or C₁₋₆-alkylsulfonyl-O- which may optionally be substituted with one or more halogen
or R⁴ and R⁵ together form a -OCH₂O- bridge,
20 or R¹¹ and R³ together form a bridge selected from -O- or -S-
19. A compound according to claim 18 wherein R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from
- 25 • hydrogen, halogen, cyano, -CF₃, or -OCF₃
- -O-CH₃, 1,2,4-triazolyl, -O-CH₂CH₃, or CH₃-sulfonyl-O- which may optionally be substituted with one or more halogen
- 30 or R¹¹ and R³ together form a bridge selected from -O- or -S-
20. A compound according to claim 19 wherein R³, R⁴, R⁵, R⁶ and R⁷ are independently selected from
- 35 • hydrogen, halogen, cyano, -CF₃, or -OCF₃

•-O-CH₃, -O-CH₂CH₃, or CH₃-sulfonyl-O- or CF₃-sulfonyl-O-

or R¹¹ and R³ together form a bridge selected from -O- or -S-

5

21. A compound according to any one of the claims 1 to 20 wherein R¹¹ is hydrogen
22. A compound according to any one of the claims 1 to 21 wherein R¹² is hydrogen or C₁₋₆-alkyl
- 10 23. A compound according to claim 22 wherein R¹² is hydrogen or methyl
24. A compound according to any one of the claims 1 to 23 wherein R¹⁵ is hydrogen
25. A compound according to any one of the claims 1 to 24 wherein R¹⁶ is hydrogen
- 15 26. A compound according to any one of the claims 1 to 25 wherein R¹⁷, R¹⁸ and R¹⁹ are all hydrogen
27. Use of a compound according to any one of the preceding claims 1 to 26 as a pharmaceutical composition.
- 20 28. A pharmaceutical composition comprising, as an active ingredient, at least one compound according to any one of the claims 1 to 26 together with one or more pharmaceutically acceptable carriers or excipients.
- 25 29. A pharmaceutical composition according to claim 28 in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and especially preferred from about 0.5 mg to about 200 mg of the compound according to any one of the claims 1 to 25.
- 30 30. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of disorders and diseases related to the histamine H3 receptor.

31. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of diseases and disorders in which an inhibition of the H3 histamine receptor has a beneficial effect.
- 5 32. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition having histamine H3 antagonistic activity or histamine H3 inverse agonistic activity.
- 10 33. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the reduction of weight.
34. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of overweight or obesity.
- 15 35. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the suppression of appetite or for satiety induction.
36. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the prevention and/or treatment of disorders and diseases related to overweight or obesity.
- 20 37. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the prevention and/or treatment of eating disorders such as bulimia and binge eating.
- 25 38. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of IGT.
- 30 39. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of type 2 diabetes.
40. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the delaying or prevention of the progression from IGT to type 2 diabetes.

41. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the delaying or prevention of the progression from non-insulin requiring type 2 diabetes to insulin requiring type 2 diabetes.
- 5 42. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of diseases and disorders in which a stimulation of the H3 histamine receptor has a beneficial effect.
- 10 43. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition having histamine H3 agonistic activity.
44. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of allergic rhinitis, ulcer or anorexia.
- 15 45. Use of a compound according to any one of the claims 1 to 26 for the preparation of a pharmaceutical composition for the treatment of Alzheimer's disease, narcolepsy or attention deficit disorders.
46. A method for the treatment of disorders or diseases related to the H3 histamine receptor
20 the method comprising administering to a subject in need thereof an effective amount of a compound according to any one of the claims 1 to 26 or a pharmaceutical composition according to claim 28 or 29.
47. The method according to claim 46 wherein the effective amount of the compound is in
25 the range of from about 0.05 mg to about 2000 mg, preferably from about 0.1 mg to about 1000 mg and especially preferred from about 0.5 mg to about 500 mg per day.

International Application No
PCT/DK 03/00048

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	C07D403/06	C07D401/06	C07D207/09	C07D211/26
	C07D409/14	C07D405/06	C07D405/14	A61K31/4025
	A61K31/445	A61K31/4523	A61P3/00	A61P37/00
				A61P25/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1 X	WO 01 94353 A (LUZZIO MICHAEL JOSEPH ;MARX MATTHEW ARNOLD (US); YANG BINGWEI VERA) 13 December 2001 (2001-12-13) the whole document ---	1-32,39, 46,47
1 X	US 2001/039286 A1 (ELLIOTT JASON MATTHEW ET AL) 8 November 2001 (2001-11-08) the whole document ---	1-30, 42-44, 46,47
1 P,X	US 2002/042420 A1 (FUCHS KLAUS ET AL) 11 April 2002 (2002-04-11) the whole document ---	1-30,42, 43,45-47
1 P,X	WO 02 34718 A (FARKAS SANDOR ;NAGY JOZSEF (HU); BORZA ISTVAN (HU); DOMANY GYOERGY) 2 May 2002 (2002-05-02) the whole document ---	1-30,42, 43,45-47
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

27 May 2003

Date of mailing of the international search report

13. 06. 2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

VIVECA NORÉN /EÖ

1

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 46-47 because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: 30-32, 36, 42-43, 46-47 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Claims Nos.: 46-47

Claims 46-47 relate to methods of treatment of the human or animal body by surgery or by therapy/diagnostic methods practised on the human or animal body/Rule. 39.1.(iv). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.

Continuation of Box I.2

Claims Nos.: 30-32,36,42-43,46-47

The expressions "disorders and diseases related to the histamine H3 receptor" (claims 30 and 46), "diseases and disorders in which an inhibition of the H3 histamine receptor has a beneficial effect" (claim 31), "disorders and diseases related to overweight and obesity" (claim 36) and "diseases and disorders in which a stimulation of the H3 histamine receptor has a beneficial effect" (claim 42) may relate to a number of different disorders and conditions which are not clearly defined by these expressions. Likewise does the expressions "pharmaceutical composition having histamine H3 antagonistic activity" (claim 32) and "pharmaceutical composition having histamine H3 agonistic activity" (claim 43) not define the use of the compounds in satisfactory way. The pharmaceutical use of a compound should be defined in terms of actual diseases or conditions and not by reference to an underlying mechanism. Hence the claims can not be considered to be clear and concise within the meaning of Article 6 PCT and a meaningful search of the claims 30-32, 36, 42-43 and 46-47 can not be performed.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1 A	WO 01 44191 A (MOINET CHRISTOPHE ; THURIEAU CHRISTOPHE (FR); GONZALEZ JEROME (FR);) 21 June 2001 (2001-06-21) the whole document ---	1-47
1 A	WO 00 39081 A (ABBOTT LAB) 6 July 2000 (2000-07-06) the whole document ---	1-47
1 A	WO 97 40051 A (SHIBOUTA YUMIKO ; SUGIYAMA YASUO (JP); TAKATANI MUNEO (JP); KAWAMOT) 30 October 1997 (1997-10-30) the whole document ---	1-47
1 A	WO 97 43282 A (REITER FRIEDEMANN ; SCHEMAINDA ISABEL (DE); SEIBEL KLAUS (DE); EISE) 20 November 1997 (1997-11-20) the whole document -----	1-47
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internati...	Application No
PCT/DK	03/00048

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0194353	A	13-12-2001	AU EP WO US	5246301 A 1287001 A1 0194353 A1 2002042409 A1		17-12-2001 05-03-2003 13-12-2001 11-04-2002
US 2001039286	A1	08-11-2001		NONE		
US 2002042420	A1	11-04-2002	DE AU WO EP	10040016 A1 1042502 A 0214313 A2 1311508 A2		28-02-2002 25-02-2002 21-02-2002 21-05-2003
WO 0234718	A	02-05-2002	HU AU WO	0004123 A2 1078202 A 0234718 A1		28-10-2002 06-05-2002 02-05-2002
WO 0144191	A	21-06-2001	FR AU CA CN EP WO	2802206 A1 2856001 A 2394086 A1 1409703 T 1286966 A1 0144191 A1		15-06-2001 25-06-2001 21-06-2001 09-04-2003 05-03-2003 21-06-2001
WO 0039081	A	06-07-2000	US AU BG CA CN CZ EE EP HR HU JP NO PL SK WO	6110922 A 2220300 A 105732 A 2356320 A1 1350520 T 20012412 A3 200100355 A 1140814 A2 20010512 A1 0200222 A2 2002533434 T 20013241 A 350786 A1 9402001 A3 0039081 A2		29-08-2000 31-07-2000 28-02-2002 06-07-2000 22-05-2002 17-04-2002 15-10-2002 10-10-2001 31-08-2002 29-06-2002 08-10-2002 28-08-2001 10-02-2003 07-01-2002 06-07-2000
WO 9740051	A	30-10-1997	AU CA EP WO JP US ZA	2404897 A 2251625 A1 0915888 A1 9740051 A1 10226689 A 6235731 B1 9703493 A		12-11-1997 30-10-1997 19-05-1999 30-10-1997 25-08-1998 22-05-2001 23-10-1998
WO 9743282	A	20-11-1997	DE AU WO	19618999 A1 3026497 A 9743282 A2		13-11-1997 05-12-1997 20-11-1997

