Aprendizaje automatizado

MODELOS DE MEZCLAS

Gibran Fuentes Pineda Abril 2023

Modelando con variables latentes

- En muchos fenómenos las observaciones (variables observadas) dependen de variables no directamente visibles (variables latentes)
- Un modelo con variables no visibles se conoce como modelo de variable latente (MVL)
- Ventajas
 - 1. Son modelos más compactos en general
 - Es posible aprender ciertas estructuras en los datos sin supervisión

Modelos de variables latentes (MVL)

 Sea x una observación muestreada aleatoriamente de una distribución no conocida, se presupone que

$$\mathbf{x} \sim P_{\boldsymbol{\theta}}(\mathbf{x}) \approx P_{real}(\mathbf{x}).$$

• Los modelos de variables latentes representan la distribución $P_{\theta}(\mathbf{x})$ usando variables observadas \mathbf{x} y variables latentes \mathbf{z}

$$P_{\theta}(x) = \int P_{\theta}(x, z) dz.$$

· La distribución conjunta comúnmente se factoriza como

$$P_{\theta}(x, z) = P_{\theta}(x|z) \cdot P_{\theta}(z).$$

· La probabilidad a posteriori está dada por

$$P_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{P_{\theta}(\mathbf{x}, \mathbf{z})}{P_{\theta}(\mathbf{x})}.$$

Dependencia local en MVLs

- Suposición: relación entre variables observadas se da únicamente a través de variables latentes
- Ejemplo (de Lazarsfeld and Henry): 1000 personas fueron encuestadas sobre si leen la revista A y B.

	Leyó A	No leyó A	Total
Leyó B	260	140	400
No leyó B	240	360	600
Total	500	500	1000

Dependencia local en MVLs

- Suposición: relación entre variables observadas se da únicamente a través de variables latentes
- Ejemplo (de Lazarsfeld and Henry): 1000 personas fueron encuestadas sobre si leen la revista A y B.

High education	Read A	Did not read A	Total
Read B	240	60	300
Did not read B	160	40	200
Total	400	100	500
Low education	Read A	Did not read A	Total
Read B	20	80	100
Did not read B	80	320	400
Total	100	400	500

Tipos de MVLs

• Los modelos de variables latentes se pueden clasificar por la naturaleza de sus variables latentes y observadas

	V. observadas		
V. latentes	Continua	Categórica	
Continua	Análisis de factores	Teoría de la	
		respuesta al reactivo	
Discreta	Modelo de mezclas	Análisis de clases	
Discreta		latentes	

Modelos de mezclas

• Variable latente discreta $z \in \{1, ..., K\}$

$$z \sim Cat(\pi)$$

• *K* distribuciones base $P(\mathbf{x}|z=k)=f_k(\mathbf{x})$

$$\mathbf{x}|z \sim f_k(\mathbf{x})$$

· Distribución de **x** se puede expresar como

$$P(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{x})$$

 ¿Qué distribución podríamos presuponer para los siguientes datos?

 ¿Qué distribución podríamos presuponer para los siguientes datos?

 ¿Qué distribución podríamos presuponer para los siguientes datos?

• ¿Qué distribución podríamos presuponer para los siguientes datos?

· ¿Cómo estimamos los parámetros?

Mezclas gaussianas

• K distribuciones base $f_k(\mathbf{x})$ gaussianas

$$\mathbf{x}|\mathbf{z} \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \Rightarrow P(\mathbf{x}) = \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

· La verosimilitud logarítmica está dada por

$$\log \{P(\mathcal{D}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})\} = \sum_{i=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(i)}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

 No hay solución cerrada analítica, necesitamos usar algoritmos de optimización iterativa.

Esperanza-Maximización

- Algoritmo para estimar parámetros por máxima verosimilitud o máximo a posteriori en problemas con datos faltantes y modelos de variables latentes
- · Procedimiento general
 - 1. **Paso E**: inferir valores faltantes o de variales latentes
 - 2. Paso M: optimizar parámetros usando datos inferidos

EM para estimación por máxima verosimilitud

- Considera que el conjunto de ejemplos está dado por los valores tanto de las variables observadas como las variables latentes {D, Z}
- Busca encontrar los valores de los parámetros $m{ heta}$ que maximicen la verosimilitud logarítmica de $\{\mathcal{D},\mathbf{Z}\}$

$$oldsymbol{ heta} = rg \max_{oldsymbol{ heta}} \log \left\{ \sum_{oldsymbol{Z}} P(\mathcal{D}, oldsymbol{Z} | oldsymbol{ heta})
ight\}$$

Esperanza: paso E

 Como los valores de las variables latentes Z no se conocen, se calcula la distribución a posteriori P(Z|D, θ^{viejo}) con los parámetros actuales θ^{viejo}

$$P(\mathbf{Z}|\mathcal{D}, \boldsymbol{\theta}^{viejo}) = \frac{P(\mathcal{D}|\mathbf{Z}, \boldsymbol{\theta}^{viejo})P(\mathbf{Z}|\boldsymbol{\theta}^{viejo})}{P(\mathcal{D}|\boldsymbol{\theta}^{viejo})}$$

Maximización: paso M

• Se asignan parámetros que maximizan la esperanza de la verosimilitud logarítmica usando $P(\mathbf{Z}|\mathcal{D}, \boldsymbol{\theta}^{viejo})$

$$\begin{split} \boldsymbol{\theta}^{nuevo} &= \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{viejo}) \\ &= \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{Z}|\mathcal{D}, \boldsymbol{\theta}^{viejo}} \left[\log \left\{ \sum_{\mathbf{Z}} P(\mathcal{D}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \right] \\ &= \sum_{\mathbf{Z}} P(\mathbf{Z}|\mathcal{D}, \boldsymbol{\theta}^{viejo}) \log \left\{ P(\mathcal{D}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \end{split}$$

EM general

- 1. Initializa parámetros $oldsymbol{ heta}$
- 2. **Paso E:** Evaluar $P(\mathbf{Z}|\mathcal{D}, \boldsymbol{\theta}^{\text{viejo}})$
- 3. Paso M: Re-estimar parámetros

$$oldsymbol{ heta}^{ ext{nuevo}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{viejo}})$$

4. Repetir 2 y 3 hasta que se cumpla el criterio de convergencia

Distribución a posteriori para modelo de mezclas gaussianas

• Probabilidad a posteriori $P(z = k | \mathbf{x}^{(i)})$ (responsabilidad) está dada por

$$P(Z^{(i)} = k | \mathbf{X}^{(i)}) = \gamma(Z_{ik}) = \frac{\pi_k \mathcal{N}(\mathbf{X}^{(i)} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{X}^{(i)} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$
(c)

Imagen tomada de Bishop, PRML 2007

0.5

0.5

EM para modelos de mezclas gaussianas

- 1. Inicializa μ_k , Σ_k y π_k
- 2. Paso E: Evalúa responsabilidades con parámetros actuales

$$\gamma(\mathbf{Z}_{ik}) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(i)}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(i)}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

3. **Paso M**: Recalcula parámetros μ_k , Σ_k y π_k a partir de $\gamma(z_{nk})$

$$n_k = \sum_{i=1}^n \gamma(z_{ik})$$

$$\boldsymbol{\mu}_k^{nuevo} = \frac{1}{n_k} \sum_{i=1}^n \gamma(z_{ik}) \cdot \mathbf{x}^{(i)}$$

$$\boldsymbol{\Sigma}_k^{nuevo} = \frac{1}{n_k} \sum_{i=1}^n \gamma(z_{ik}) \cdot (\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{nuevo}) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{nuevo})^T$$

$$\boldsymbol{\pi}_k^{nuevo} = \frac{n_k}{n}$$

4. Evalúa verosimilitud logarítmica

$$\log\left\{\textit{P}(\mathcal{D}|\boldsymbol{\mu}^{\textit{nuevo}},\boldsymbol{\Sigma}^{\textit{nuevo}},\boldsymbol{\pi}^{\textit{nuevo}})\right\}$$

Modelo de mezclas gaussianas y EM en acción

Imagen tomada de Bishop, PRML 2007

Modelo de mezclas de Bernoulli (análisis de clases latentes)

• Ejemplos con d variables binarias $\mathbf{x}^{(i)} = \{x_1, \dots, x_d\}$

$$P(\mathbf{x}^{(i)}|\mathbf{q}) = \prod_{j=1}^{d} q_j^{x_j^{(i)}} \left(1 - q_j^{x_j^{(i)}}\right)^{\left(1 - x_j^{(i)}\right)}$$

· Mezcla de K de estas distribuciones

$$P(\mathbf{x}^{(i)}|\mathbf{Q}, \boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_k \cdot \left[\prod_{j=1}^{d} q_{kj}^{x_j^{(i)}} \left(1 - q_{kj}^{x_j^{(i)}} \right)^{\left(1 - x_j^{(i)} \right)} \right]$$

donde $Q = \{q_1, ..., q_K\}$ y $\pi = \{\pi_1, ..., \pi_K\}$

EM para modelo de mezclas de Bernoulli

- 1. Inicializa q_k y π_k
- 2. Paso E: Evalúa responsabilidades con parámetros actuales

$$\gamma(z_{ik}) = \frac{\pi_k \cdot \left[\prod_{j=1}^d q_{kj}^{x_j^{(i)}} \left(1 - q_{kj}^{x_j^{(i)}} \right)^{\left(1 - x_j^{(i)} \right)} \right]}{\sum_{l=1}^K \pi_l \cdot \left[\prod_{j=1}^d q_{lj}^{x_j^{(i)}} \left(1 - \mu_{lj}^{x_j^{(i)}} \right)^{\left(1 - x_j^{(i)} \right)} \right]}$$

3. Paso M: Re-estima parámetros μ_k y π_k a partir de $\gamma(z_{nk})$

$$\mu_k = \sum_{i=1}^n \gamma(z_{ik}) \mathbf{x}^{(i)}$$

$$\pi_k = \frac{n_k}{n}$$

$$n_k = \sum_{i=1}^n \gamma(z_{ik})$$

4. Evalúa verosimilitud logarítmica $\log P(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{\pi})$

Desventajas de EMV en MMG

• Cuando una media es exactamente igual a un ejemplo $\mathbf{x}^{(i)} = \boldsymbol{\mu}_k$, la verosimilitud logarítmica se vuelve infinita ya que $\sigma_k \to 0$ y $\mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{0}$. 1

Figura tomada de Bishop, PRML 2007

¹A esto se le conoce como el problema del colapso de la varianza.

Desventajas de EMV en MMG

- Singularidades
 - Cuando una media es exactamente igual a un ejemplo $\mathbf{x}^{(i)} = \boldsymbol{\mu}_k$, la verosimilitud logarítmica se vuelve infinita ya que $\sigma_k \to 0$ y $\mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}}e^{0.2}$
- No identificabilidad
 - Existen K! soluciones equivalentes.

²A esto se le conoce como el problema del colapso de la varianza.