Follow the gradient

An introduction to mathematical optimisation

Gianluca Campanella 27th April 2018

Contents

Optimisation

Linear programming

Convex programming

Follow the gradient

Optimisation

What is optimisation?

Have An objective function, e.g. $f: \mathbb{R}^p \to \mathbb{R}$ **Want** The optimal \mathbf{x}^* that minimises (or maximises) f

Why?

- f represents some goal, e.g. error to be minimised
- Want the 'best' element from some set of available alternatives

Optimisation in ML

- Many ML methods are defined in terms of a loss function
- $\rightarrow \ \text{Really optimisation problems!}$

Optimisation in ML

- Many ML methods are defined in terms of a loss function
- → Really optimisation problems!

Linear regression

$$MSE(\hat{\beta} | \mathbf{X}, \mathbf{y}) = \frac{1}{n} \sum_{i} (\hat{y}_{i} - y_{i})^{2}$$
$$\hat{y}_{i} = \mathbf{x}_{i} \hat{\beta}$$

Optimisation in ML

- Many ML methods are defined in terms of a loss function
- → Really optimisation problems!

Logistic regression

$$\begin{split} \operatorname{LogLoss} \left(\hat{\beta} \, \middle| \, \mathbf{X}, \mathbf{y} \right) &= - \sum_{i} \left[y_{i} \log \hat{p}_{i} + (1 - y_{i}) \log (1 - \hat{p}_{i}) \right] \\ \hat{p}_{i} &= \operatorname{logit}^{-1} (\mathbf{x}_{i} \hat{\beta}) \end{split}$$

Types of optimisation problems

$$f_1(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \mathbb{R}^{100}$$
 $f_2(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \mathbb{R}^{100}, \quad \mathbf{1}^\top \mathbf{x} = 1$
 $f_3(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \{0, 1\}^{100}$

Question

Which is 'harder' to optimise, and why?

Standard form

$$\begin{aligned} & \underset{\mathbf{x}}{\min} \quad f(\mathbf{x}) \\ & \text{s.t.} \quad g_j(\mathbf{x}) \leq 0, \quad j = 1, \dots, m \\ & \quad h_k(\mathbf{x}) = 0, \quad k = 1, \dots, n \\ & \quad l_i \leq x_i \leq u_i, \quad i = 1, \dots, p \end{aligned}$$

- x can be continuous or discrete
- f can be linear or nonlinear, explicit or implicit

Combinatorial optimisation

- \bullet Combinatorial problems like optimising f_3 are intrinsically hard
- \rightarrow Need to try all $2^{100} \approx 1.27 \times 10^{30}$ combinations

Side note

- Solving for $x \in [0,1]^{100}$ is easier (assuming h is continuous)
- → Approximate solution (relaxation)

Continuous optimisation

Continuous optimisation

From G. Venter (originally from G. N. Vanderplaats)

Continuous optimisation

Convex functions

Function is convex

 \downarrow

Any local minimum is also a global minimum

Linear programming

Linear programs

$$\max_{\mathbf{x}} \quad \mathbf{c}^{\top} \mathbf{x}$$

$$s.t. \quad \mathbf{A} \mathbf{x} \le \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

Properties

- Linear objective
- Linear constraints

Types of solution

- Optimal
- Infeasible
- Unbounded

Graphical solution

$$\max_{\mathbf{x}} \quad 3x_1 + 4x_2$$
s.t. $x_1 + 2x_2 \le 14$

$$3x_1 - x_2 \ge 0$$

$$x_1 - x_2 \le 2$$

LAD regression problem

We can rewrite the LAD (robust) regression problem

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{1} = \sum_{i} |\varepsilon_{i}|$$

as the linear program

$$\begin{aligned} & \underset{\beta, \, \mathbf{t}}{\min} & \mathbf{1}_n^\top \mathbf{t} & & \underset{\beta, \, \mathbf{u}, \, \mathbf{v}}{\min} & \mathbf{1}_n^\top \mathbf{u} + \mathbf{1}_n^\top \mathbf{v} \\ & s.t. & -\mathbf{t} \leq \mathbf{X}\beta - \mathbf{y} \leq \mathbf{t} & & s.t. & \mathbf{X}\beta + \mathbf{u} - \mathbf{v} = \mathbf{y} \\ & & \mathbf{t} \in \mathbb{R}^n & & & \mathbf{u}, \mathbf{v} \geq \mathbf{0} \end{aligned}$$

$au^{ m th}$ quantile regression problem

$$\min_{\boldsymbol{\beta}, \mathbf{u}, \mathbf{v}} \quad \boldsymbol{\tau} \mathbf{1}_{n}^{\mathsf{T}} \mathbf{u} + (\mathbf{1} - \boldsymbol{\tau}) \mathbf{1}_{n}^{\mathsf{T}} \mathbf{v}, \quad \boldsymbol{\tau} \in [0, 1]$$

$$s.t. \quad \boldsymbol{X} \boldsymbol{\beta} + \mathbf{u} - \mathbf{v} = \mathbf{y}$$

$$\mathbf{u}, \mathbf{v} \ge \mathbf{0}$$

- $\tau = 0.5$ recovers the LAD regression problem
- Very efficient (custom) algorithms exist

Convex programming

Convex quadratic programs

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

$$s.t. \quad \mathbf{A} \mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq \mathbf{0}$$

Properties

- Quadratic objective
- Quadratic constraints

Question

Does quadratic imply convex?

OLS regression problem

We can rewrite the OLS regression problem

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2} = \sum_{i} \varepsilon_{i}^{2}$$

as the convex quadratic objective

$$f(\boldsymbol{\beta}) = \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta} + \mathbf{y}^{\top} \mathbf{y}$$

OLS regression problem

Setting the gradient to 0 and solving for β ...

$$\nabla f = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = 0$$
$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Ridge regularisation

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}, \quad \lambda \geq 0$$

The objective becomes...

$$f(\boldsymbol{\beta}) = \boldsymbol{\beta}^{\top} \left(\mathbf{X}^{\top} \mathbf{X} + \frac{\lambda \mathbf{I}_{p}}{\rho} \right) \boldsymbol{\beta} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta} + \mathbf{y}^{\top} \mathbf{y}$$

Constraints on β

Condition	Useful for
$eta \geq 0$	Intensities or rates
$1 \le \beta \le u$	Knowledge of permissible values
$eta \geq 0 \wedge 1_p^ op eta = 1$	Proportions and probability distributions

Follow the gradient

Why follow the gradient?

From G. Venter (originally from G. N. Vanderplaats)

Karush-Kuhn-Tucker conditions

- 1. x^* is feasible
- 2. The gradient of the Lagrangian vanishes at x^*

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^m \lambda_j \nabla g_j(\mathbf{x}^*) + \sum_{k=1}^n \lambda_{m+k} \nabla h_k(\mathbf{x}^*) = \mathbf{0}, \quad \lambda_j \ge 0, \quad \lambda_{m+k} \in \mathbb{R}$$

3. For each inequality constraint,

$$\lambda_j g_j(\mathbf{x}^*) = 0, \quad j = 1, \dots, m$$

General idea

$$\mathbf{x} \mapsto \mathbf{x} + \alpha^{\star} \mathbf{s}$$

- 1. Find a search direction s in which to move
- 2. Take the optimal step size α^* in this direction

General idea

$$x \mapsto x + \alpha^* s$$

- 1. Find a search direction s in which to move
- 2. Take the optimal step size α^* in this direction

Gradient calculation

- Pen and paper
- Finite differences
- Automatic differentiation

Finite differences

Good

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- One function call
- Error: *O*(*h*)

Better

$$f'(x) \approx \frac{f(x+h/2) - f(x-h/2)}{h}$$

- Two function calls
- Error: $O(h^2)$

Automatic differentiation

The derivative of the composition

$$f \circ g \circ h(x) = f(g(h(x)))$$

is given by the chain rule

$$\frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx} = \left[\frac{df}{dg}\left(\frac{dg}{dh}\frac{dh}{dx}\right)\right] = \left[\left(\frac{df}{dg}\frac{dg}{dh}\right)\frac{dh}{dx}\right]$$

Automatic differentiation

The derivative of the composition

$$f\circ g\circ h(x)=f(g(h(x)))$$

is given by the chain rule

$$\frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx} = \left[\frac{df}{dg}\left(\frac{dg}{dh}\frac{dh}{dx}\right)\right] = \left[\left(\frac{df}{dg}\frac{dg}{dh}\right)\frac{dh}{dx}\right]$$

Forward-mode differentiation

$$f(x,y) = 3x^2 + xy$$

$$\frac{\partial f}{\partial x} = 6x + y \qquad \qquad \frac{\partial f}{\partial y} = x$$

$$x = ?$$

$$y = ?$$

$$a = x^{2}$$

$$b = 3 \times a$$

$$c = x \times y$$

$$f = b + c$$

$$\begin{aligned}
\partial x/\partial \square &= ? \\
\partial y/\partial \square &= ? \\
\partial a/\partial \square &= 2x \times \partial x/\partial \square \\
\partial b/\partial \square &= 3 \times \partial a/\partial \square \\
\partial c/\partial \square &= y \times \partial x/\partial \square + x \times \partial y/\partial \square \\
\partial f/\partial \square &= \partial b/\partial \square + \partial c/\partial \square
\end{aligned}$$

Forward-mode differentiation

$$f(x,y) = 3x^2 + xy$$
 $\frac{\partial f}{\partial x} = 6x + y$ $\frac{\partial f}{\partial y} = x$

$$\frac{\partial x}{\partial x} = 1$$

$$\frac{\partial y}{\partial x} = 0$$

$$\frac{\partial a}{\partial x} = 2x \times \frac{\partial x}{\partial x} = 2x$$

$$\frac{\partial b}{\partial x} = 3 \times \frac{\partial a}{\partial x} = 6x$$

$$\frac{\partial c}{\partial x} = y \times \frac{\partial x}{\partial x} + x \times \frac{\partial y}{\partial x} = y$$

$$\frac{\partial f}{\partial x} = \frac{\partial b}{\partial x} + \frac{\partial c}{\partial x} = \frac{6x + y}{2}$$

$$\frac{\partial x}{\partial y} = 0$$

$$\frac{\partial y}{\partial y} = 1$$

$$\frac{\partial a}{\partial y} = 2x \times \frac{\partial x}{\partial y} = 0$$

$$\frac{\partial b}{\partial y} = 3 \times \frac{\partial a}{\partial y} = 0$$

$$\frac{\partial c}{\partial y} = y \times \frac{\partial x}{\partial y} + x \times \frac{\partial y}{\partial y} = x$$

$$\frac{\partial f}{\partial y} = \frac{\partial b}{\partial y} + \frac{\partial c}{\partial y} = \frac{x}{2}$$

Reverse-mode differentiation

$$f(x,y) = 3x^2 + xy$$

$$\frac{\partial f}{\partial x} = 6x + y \qquad \qquad \frac{\partial f}{\partial y} = x$$

$$\begin{aligned}
\partial x/\partial \square &= ? \\
\partial y/\partial \square &= ? \\
\partial a/\partial \square &= 2x \times \partial x/\partial \square \\
\partial b/\partial \square &= 3 \times \partial a/\partial \square \\
\partial c/\partial \square &= y \times \partial x/\partial \square + x \times \partial y/\partial \square \\
\partial f/\partial \square &= \partial b/\partial \square + \partial c/\partial \square
\end{aligned}$$

$$\partial \diamondsuit / \partial f = ?$$

$$\partial \diamondsuit / \partial c = \partial \diamondsuit / \partial f$$

$$\partial \diamondsuit / \partial b = \partial \diamondsuit / \partial f$$

$$\partial \diamondsuit / \partial a = 3 \times \partial \diamondsuit / \partial b$$

$$\partial \diamondsuit / \partial y = x \times \partial \diamondsuit / \partial f$$

$$\partial \diamondsuit / \partial x = 2x \times \partial \diamondsuit / \partial a + y \times \partial \diamondsuit / \partial c$$

Reverse-mode differentiation

$$f(x,y) = 3x^2 + xy \qquad \frac{\partial f}{\partial x} = 6x + y \qquad \frac{\partial f}{\partial y} = x$$

$$\frac{\partial f}{\partial x} = 6x + y \qquad \frac{\partial f}{\partial y} = x$$

$$\frac{\partial f}{\partial x} = 1$$

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial f} = 1$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial f} = 1$$

$$\frac{\partial f}{\partial a} = 3 \times \frac{\partial f}{\partial b} = 3$$

$$\frac{\partial f}{\partial y} = x \times \frac{\partial f}{\partial f} = x$$

$$\frac{\partial f}{\partial x} = 2x \times \frac{\partial f}{\partial a} + y \times \frac{\partial f}{\partial c} = 6x + y$$

Newton's method

f can be approximated about an initial guess x_0 as

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top H(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

Newton's method

We want to find $\delta = \mathbf{x}^* - \mathbf{x}_0$ such that $\nabla f(\mathbf{x}^*) = \mathbf{0}$

$$\begin{split} \nabla_{\!\delta} \tilde{f} &= \nabla f(\mathbf{x}_0) + H(\mathbf{x}_0) \, \delta = \mathbf{0} \\ \delta &= -H^{-1}(\mathbf{x}_0) \, \nabla f(\mathbf{x}_0) \end{split}$$

This gives the update

$$\mathbf{x} \mapsto \mathbf{x} + \delta = \mathbf{x} - H^{-1}(\mathbf{x}) \, \nabla f(\mathbf{x})$$

Quasi-Newton methods

- $H^{-1}(\mathbf{x})$ may be large and expensive to compute
- → Use an approximation

Gradient descent

Forget about it

 $H^{-1}(\mathbf{x}) \approx \mathbf{I}_p$

BFGS and L-BFGS

Update iteratively

$$B_i \delta = -\nabla f(\mathbf{x}_i)$$

Stochastic gradient descent

Many ML methods are sum-minimisation problems

$$\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \sum_i f_i(\boldsymbol{\theta})$$

This means the update $\theta \mapsto \theta - \alpha^* \nabla f(\theta)$ is actually

$$\boldsymbol{\theta} \mapsto \boldsymbol{\theta} - \boldsymbol{\alpha}^\star \sum_i \nabla f_i(\boldsymbol{\theta})$$

Stochastic gradient descent

- 1. Shuffle observations
- 2. $\theta \mapsto \theta \alpha^* \nabla f_i(\theta)$ for each observation $i \to \text{one pass}$
- 3. Repeat until convergence

How do we choose α^* ?

Large $\alpha \rightarrow$ Divergence **Small** $\alpha \rightarrow$ Slow convergence

- Decrease α in later iterations
- Use a linear combination with the previous update (momentum)
- Average θ over iterations
- Use per-parameter step sizes