DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 ELEMENTS OF GREEDY STRATEGY

AGENDA

- Elements of greedy strategy
- Huffman codes

ELEMENTS OF GREEDY STRATEGY

- **Greedy-choice** property
 - Assemble a globally optimal solution by making locally optimal (greedy) choices.
- Optimal substructure
 - Required, four steps to discover

GREEDY-CHOICE PROPERTY

- Make the choice that *looks best in the current problem*, without considering results from subproblems.
 - The choice may depend on choices so far, but it cannot depend on any future choices.

i	1	2	3	4	5	6	7	8	9	10	11
			0								
f_i	4	5	6	7	9	9	10	11	12	14	16

GREEDY-CHOICE PROPERTY PROOF

- Prove the optimality of the greedy choice at each step.
 - Start by examining the globally optimal solution to some subproblem.
 - Examine A_k , where $a_i \in A_k$ is with the earliest finish time.
 - Shows how to modify the solution to substitute the greedy choice for some other choice.
 - Substitute a_m for a_i to construct $A'_k = (A_k \{a_i\}) \cup \{a_m\}$
 - The resulting solution is one similar, but smaller subproblem.

DYNAMIC PROGRAMMING VS GREEDY STRATEGY

- Dynamic programming
 - Key ingredients
 - Optimal substructure
 - Overlapping subproblems
 - Algorithms
 - Top-down and bottom-up
 - Solve subproblems first
 - Making a choice
 - Depend on solutions to subproblems

- Greedy strategy
 - Key ingredients
 - Optimal substructure
 - Greedy choice property
 - Algorithms
 - **Top-down** (recursive and/or iterative)
 - Solve the current problem first
 - Making a choice
 - Depend on the choices made so far

DP VS GREEDY THE KNAPSACK PROBLEM

- A thief has broken into a jewelry store trying to take some gemstones.
- He finds three beautiful gemstones, weigh 60 *lbs*, in the store's collection, but he is only able to carry 50 *lbs*.
 - Considering that he needs to carry the tools to commit the break-in.

THE KNAPSACK PROBLEM THE GREEDY THIEF

- The thief now is facing a problem: the three stones weigh differently, they have different values, and he is only able to take up to 50 lbs.
 - The table shows the weights of the three stones and their respective values.

Stone	1	2	3
Value	\$60	\$100	\$120
Weight	10 <i>lbs</i>	20 <i>lbs</i>	30 <i>lbs</i>
V/W	\$6 per <i>lbs</i>	\$5 per <i>lbs</i>	\$4 per <i>lbs</i>

• Intuitively, the thief wants to see which item (stone) has the **greatest value per pound** as he would like to make a worthy "adventure."

THE 0-1 KNAPSACK PROBLEM

- The thief can only choose to take an item or not take it. (Take it or leave it)
 - Keep in mind that the thief can only take up to 50 lbs of stone.
- Given the information below, a greedy thief would choose the item that seems the best at the moment as it has the greatest value per pound.

Stone	1	2	3
Value	\$60	\$100	\$120
Weight	10 <i>lbs</i>	20 <i>lbs</i>	30 <i>lbs</i>
V/W	\$6 per <i>lbs</i>	\$5 per <i>lbs</i>	\$4 per <i>lbs</i>

Would this first greedy choice lead to an optimal solution?

THE 0-1 KNAPSACK PROBLEM SOLUTION CHART

- The chart on the right shows all combinations of items that the thief can take.
- Obviously, taking item 1 is *not included* in the optimal solution.

Stone	1	2	3
Value	\$60	\$100	\$120
Weight	10 <i>lbs</i>	20 <i>lbs</i>	30 <i>lbs</i>
V/W	\$6 per <i>lbs</i>	\$5 per <i>lbs</i>	\$4 per <i>lbs</i>
·			

- The optimal solution is taking item 2 and 3.
- The greedy-choice property does not hold for 0-1 Knapsack.

SOLVING THE 0-1 KNAPSACK PROBLEM

- The problem definition
 - Given a set of n items. The ith item, $1 \le i \le n$ is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers.

		2				
v_i	v_1	$v_2 \ w_2$	•••	v_i	 v_{j}	v_n
w_i	w_1	w_2	•••	w_i	 W_j	w_n

We want to find a maximum-value subset (the most valuable load) of items that weighs at most
 W pounds.

- **Step I**:A solution to the problem consists of making a choice.
- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - Two cases
 - Case I: **Suppose** that we are given the information that item I up to *i* is included in the optimal load.
 - Case 2: **Suppose** that we are given the information that item *i* is NOT included in the optimal load.

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
 - Case I: Suppose that we are given the information that item i is included in the optimal load.
 - Let m[i, W] be the **maximum-value** knapsack with item i being considered.
 - The subproblem can be characterized as finding a maximum-value knapsack (the most valuable load) of items excluding i that weighs at most $w w_i$ pounds.
 - $m[i, W] = m[i-1, W-w_i] + v_i$

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
 - Case 2: **Suppose** that we are given the information that item i is **NOT** included in the optimal load.
 - Let m[i, W] be the **maximum-value** knapsack with item i being considered.
 - The subproblem can be characterized as finding a maximum-value knapsack (the most valuable load) of items excluding i that weighs at most _____ pounds.
 - m[i, W] = m[i-1, W] +

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
 - Taking into account both cases

$$m[i, W] = \begin{cases} 0 & \text{if } i = 0, \\ \max_{1 \le i \le n} \{m[i-1, W - w_i] + v_i, m[i-1, W] \} & \text{if } i \ne 0. \end{cases}$$

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
 - Case I: $m[i, W] = m[i 1, W w_i] + v_i$
 - i. Assume that $m[i-1, W-w_i]$ is NOT the optimal value of subproblem $W-w_i$.
 - **ii.** There exist an optimal solution, c that is the optimal load obtainable from the items excluding item i, yielding $c \ge m[i-1, W-w_i]$.
 - iii. We can construct a new solution whose optimal value $m^*[i, W] = m[i, W]$, contradiction.
 - iv. Therefore, $m[i-1, W-w_i]$ is the optimal value of subproblem $W-w_i$
 - Similarly, we can prove case 2.

THE FRACTIONAL KNAPSACK PROBLEM

- The set up is the same, but the thief (may be more professional) can take fractions of items.
 - Rather than having to make a binary (0-1) choice for each item.
- Here we go again, we have the items, their values, and their weights, and *value per pound* value for each item.

Stone	1	2	3
Value	\$60	\$100	\$120
Weight	10 <i>lbs</i>	20 <i>lbs</i>	30 <i>lbs</i>
V/W	\$6 per <i>lbs</i>	\$5 per <i>lbs</i>	\$4 per <i>lbs</i>

Would this first greedy choice lead to an optimal solution?

THE FRACTIONAL KNAPSACK GREEDY SOLUTION

• The greedy strategy works as follows.

to greedy strategy works as follows:	Value	\$60	\$100	\$120	
- Step I:The thief takes item I and put it in his knapsack.	Weight	10 <i>lbs</i>	20 <i>lbs</i>	30 <i>lbs</i>	
		\$6 per <i>lbs</i>		\$4 per <i>lbs</i>	

Stone

- Now he can take up to 50 10 = 40 lbs
- Step 2:The thief puts item 2 in his knapsack.
 - Now he can take up to 40 20 = 20 *lbs*
- Step 3:The thief cuts item 3 into 1/3 and 2/3 fractions, then he puts 2/3 of item 3 in his knapsack.
 - Now he can take up to $20 30 \times \frac{2}{3} = 0$ *lbs*.
- In the end, the thief walks away with \$240 worth of gems.

SOLVING THE FRACTIONAL KNAPSACK PROBLEM

- The problem definition
 - Given a set of n items. The ith item, $1 \le i \le n$ is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers.
 - The items are solved in monotonically increasing order by their value per pound value

•
$$\frac{v_i}{w_i} \ge \frac{v_j}{w_j}$$
 for $1 \le i \le j \le n$

$$\frac{i}{v_i} \frac{1}{v_1} \frac{2}{v_2} \frac{...}{...} \frac{i}{v_i} \frac{...}{v_j} \frac{j}{v_n} \frac{n}{v_n}$$

$$\frac{v_i}{w_i} \frac{v_1}{w_1} \frac{v_2}{w_2} \frac{...}{...} \frac{v_i}{w_i} \frac{...}{...} \frac{v_j}{w_n} \frac{v_n}{v_n}$$

We want to find a maximum-value subset (the most valuable load) of items that weighs at most
 W pounds.

SOLVING THE FRACTIONAL KNAPSACK PROBLEM

- Iteratively go through the items starting at I.
- Pick each item until item i such that $W' = \sum_{k=1}^{i} w_i + v_{i+1} \ge W$.
- Take a fraction, $\frac{W-W'}{W} \cdot w_{i+1}$ of item i+1 to fill the knapsack up to W lbs.

NEXTUP HUFFMAN CODES

DATA ENCODING

- Consider a 100,000-character file that contains only the following 6 different characters: a, b, c, d, e, and f.
- From our programming background, we know that each character can be encoded by 8-bit ASCII code or 16-bit UTF-8/16 code
- If we store the 100,000-character file as it is, how much storage space do we need?
 - 8 bits/character \times 100,000 characters = 800,000 bits = 781.24 KiB

DATA ENCODING STORING THE CODEWORDS

- If we want to store the 100,000-character compactly, we can take advantage of the fact that the file contains ONLY a, b, c, d, e, and f.
 - Suppose that we pre-define a fixed-length binary pattern for each one of the SIX characters.
 - We would need a ____3__-bit pattern to represent one character.
 - The table shows the coding of the characters

Character	a	b	С	d	е	f
Fixed-length codeword	000	001	010	011	100	101

FIXED-LENGTH CODING

• The code used in this scheme is called a **fixed-length code**.

Character	a	b	С	d	е	f
Fixed-length codeword	000	001	010	011	100	101

- Each binary string (sequence) is called a **codeword**.
- How much storage space do we need to store the compressed file?
 - 3 bits/character \times 100,000 characters = 300,000 bits \approx 292.97 KiB < 781.24 KiB

USING THE FREQUENCY

• Suppose that we are given the frequencies of the characters in the file.

Character	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

- This table show the number of occurrence (in thousands) of each character.
 - Character a occurs 45,000 times out of the 100,000 characters.
- We can **take advantage of the frequency** information to optimize our coding strategy by using **shorter binary string to represent more frequently occurring character**.

VARIABLE-LENGTH CODING

Characters and their binary codes.

Character	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Variable-length codeword	0	101	100	111	1101	1100

- This strategy is called variable-length coding.
 - The binary string to represent each character is referred to as a variable-length codeword.

VARIABLE-LENGTH CODING STORAGE SPACE

Characters and their binary codes.

Character	a	b	C	d	е	f	
Frequency (in thousands)	45	13	12	16	9	5	
Variable-length codeword	0	101	100	111	1101	1100	

How much storage space do we need to store the compressed file?

```
1 bit/a \times 45 thou. occr + 3 bits/b \times 13 thou. occr + 3 bits/c \times 12 thou. occr + 3 bits/d \times 16 thou. occr + 3 bits/e \times 9 thou. occr + 4 bits/f \times 5 thou. occr + 224 thou. bits = 218.75 kib < 292.97 kib < 781.24 kib
```

VARIABLE-LENGTH CODING COMPRESSION RATE

- From the example, we can see that given the frequency information, we can use **variable-length codes** to represent characters to **achieve a greater compressing rate**.
 - Note that this is not always the case.
- We need to determine the number of bits to represent individual character.

PREFIX CODES

- We consider here only **prefix codes**, meaning that no codeword is also a prefix of some other codeword.
 - Prefix codes are unambiguous as a codeword CANNOT be a prefix of another character.
 - Always achieve optimal data compression
 - The codeword that begins an encoded file is also unambiguous.

ENCODING BINARY CHARACTER CODES

- Here, we consider the problem of designing a binary character code.
 - To encode binary character code, we just <u>concatenate</u> the codewords representing each character of the file.

Example

- Given the table of variable-length codewords for each character

	a	b	C	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

- $0 \cdot 101 \cdot 100$ represents abc, where "·" denotes concatenation.

REPRESENTING PREFIX CODES BY A BINARY TREE

• A binary tree whose leaves are the characters offers a convenient representation for the prefix

code.

Note that this is NOT a binary search tree.

• The key of an internal node is the total occurrences (sometimes normalized) of the characters in the subtree rooted at that internal node.

REPRESENTING PREFIX CODES BY A BINARY TREE

• A binary tree whose leaves are the characters offers a convenient representation for the prefix

code.

• We interpret the binary codeword for a character as the simple path from the root to that character. 45 + 13 + 12 + 16 = 86

A number on an edge (a tree branch) indicates a choice

- "0" means go to the left child
- "I" means go to the right child

REPRESENTING PREFIX CODES BY A BINARY TREE

- Consider tree (a) and tree (b) shown below.

 - In (b), the codeword of character a is $\underline{}$, d $\underline{}$ 111 , and f $\underline{}$ 1100 .
- Obviously, (a) corresponds to a fixed-length coding scheme, while (b) corresponds to a variable-length coding scheme.

USING FULL BINARY TREE FOR OPTIMAL CODES

- An optimal code for a file is always represented by a full binary tree.
 - A full binary tree is a tree where every non-leaf node has two children.
 - The tree (b) shown below is a *full* binary tree corresponding to an optimal set of prefix codes.
- If C is the alphabet from which the characters are drawn and all character frequencies are positive, then the tree of an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and exactly |C| 1 internal nodes.

USING FULL BINARY TREE FOR OPTIMAL CODES (CONT'D)

- We can easily see the number of bits to encode a character from the optimal tree.
 - Character a's optimal prefix code has _____ bit(s)
 - Character e's optimal prefix code has _____ bit(s)
- The number of bits (or length of codeword) required to encode a character is the same as the depth of the leaf node representing that character.

THE COST OF AN OPTIMAL-CODE BINARY TREE

• Given a tree T corresponding to a prefix code, we can easily compute the number of bits

required to encode a file.

For each character c in the alphabet C

- Let **attribute** *c*. *freq* denote **the frequency** of *c* in the file
- Let $d_T(c)$ denote the depth of c's leaf in the tree
 - Note that $d_T(c)$ is also the length of the codeword for character c.
- The number of bits required to encode a file is thus

$$B(T) = \sum c. freq \cdot d_T(c),$$

which we define as the **cost** of the tree T.

Cost of the tree (b)?

HUFFMAN CODES

- **Huffman code** is an optimal prefix code that is constructed by a greedy algorithm invented by David A. Huffman.
 - Surprise! Huffman was born in Ohio in August 1925.

THE HUFFMAN ALGORITHM

- Input
 - An alphabet denoted by C
 - *C* is **a set of** *n* characters
 - Each character $c \in C$ is an object with an attribute c. freq.
- Like a normal greedy algorithm,

 HUFFMAN algorithm builds

 an optimal prefix code in a bottom-up manner.

```
HUFFMAN (C)

|n| = |C|
|2Q| = C

3for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN (Q)

6 z.right = y = EXTRACT-MIN (Q)

7 z.freq = x.freq + y.freq

8 INSERT (Q, z)

9 return EXTRACT-MIN (Q) // return the root of the tree
```

DATA STRUCTURE USED BY THE HUFFMAN ALGORITHM

- The algorithm uses a min-priority
 queue Q, keyed on the freq attribute
 to identify the two least-frequent object.
 - A queue is a first-in-first-out (FIFO)
 data structure.
 - In addition to being a regular queue, each element of a min-priority queue has a "priority" associated with it.

```
HUFFMAN (C)

1n = |C|

2Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN <math>(Q)

6 z.right = y = EXTRACT-MIN <math>(Q)

7 z.freq = x.freq + y.freq

8 INSERT (Q, z)

9 return EXTRACT-MIN (Q)// return the root of the tree
```

MERGING TWO OBJECTS IN THE QUEUE

- When the algorithm identifies the two characters with the least frequencies, it "merges" the two objects.
 - The result is a new object whose frequency is the sum of the frequencies of the two objects that were merged.

HUFFMAN (C)
n = C
2Q = C
3 for $i = 1$ to $n - 1$
4 allocate a new node z
5 $z.left = x = EXTRACT-MIN(Q)$
6 $z.right = y = EXTRACT-MIN(Q)$
z.freq = x.freq + y.freq
8 INSERT (Q, z)
9 return EXTRACT-MIN (Q) // return the root of the tree

	a	b	С	d	е	f
Freq.	45	13	12	16	9	5

	a	b	С	d	merge(e,f)
Freq.	45	13	12	16	14

THE HUFFMAN ALGORITHM INITIALIZATION

- Suppose the Q is implemented by a MIN-HEAP
 - Modify the BUILD-MAX-HEAP and MAX-HEAPIFY pseudocodes to allow the building of a MIN-HEAP.
 - Follow the procedure of building a MIN-HEAP.
- Min-priority queue $\mathbf{Q} = \{f, e, c, b, d, a\}$
 - Iteration $i = 3, Q = \{a, b, f, d, e, c\}$
 - Iteration i = 2, $\mathbf{Q} = \{a, e, f, d, b, c\}$
 - Iteration $i = 1, Q = \{f, e, c, d, b, a\}$

	a	b	C	d	е	f	
Freq.	45	13	12	16	9	5	

BUI	LD-MIN-HEAP (A)
I	A.heap-size = $A.length$
2	for $i = [A. length/2]$ downto 1
3	MIN-HEAPIFY (A, i)

MII	N-HEAPIFY (A, i)
I	l = LEFT(i)
2	r = RIGHT(i)
3	if $l \leq A$. leap-size and $A[l] < A[i]$
4	smallest = l
5	else $smallest = i$
6	if $r \le A$. heap-size and $A[r] < A[smallest]$
7	smallest = r
8	if smallest ≠ i
9	exchange $A[i]$ with $A[smallest]$
10	MIN-HEAPIFY (A, smallest)

THE HUFFMAN ALGORITHM IN ACTION i=1

	a	b	С	d	ef
Freq.	45	13	12	16	9 5

- Min-priority queue $Q = \{f, e, c, d, b, a\}$
- After two extractions (each involves a MIN-HEAPIFY), min-priority queue $\mathbf{Q} = \{c, d, b, a\}$
- Insert z (process involves a MIN-HEAPIFY) min-priority queue $Q = \{c, b, d, z, a\}$
- Visualization

```
HUFFMAN (\mathcal{C})

|n| = |\mathcal{C}|

2\mathcal{Q} = \mathcal{C}

3for i = 1 to n - 1

4 allocate a new node \mathbf{Z}

5 \mathbf{Z}.left = \mathbf{X} = \mathsf{EXTRACT-MIN}(\mathcal{Q})

6 \mathbf{Z}.right = \mathbf{y} = \mathsf{EXTRACT-MIN}(\mathcal{Q})

7 \mathbf{Z}.freq = \mathbf{x}.freq + \mathbf{y}.freq

8 INSERT (\mathcal{Q}, \mathbf{Z})

9 return EXTRACT-MIN (\mathcal{Q}) // return the root of the tree
```


THE HUFFMAN ALGORITHM IN ACTION i=2

- Min-priority queue $Q = \{a, b, d, 14, a\}$
- After two extractions (each involves a MIN-HEAPIFY), min-priority queue $Q = \{14, d, a\}$
- Insert z (process involves a MIN-HEAPIFY) min-priority queue $Q = \{14, z, d, a\}$
- Visualization

```
HUFFMAN (C)
|n = |C|
2Q = C
3 \text{for } i = 1 \text{ to } n - 1
4 \quad \text{allocate a new node } \mathbf{z}
5 \quad z. left = x = \text{EXTRACT-MIN } (Q)
6 \quad z. right = y = \text{EXTRACT-MIN } (Q)
7 \quad z. freq = x. freq + y. freq
8 \quad \text{INSERT } (Q, \mathbf{z})
9 \text{return EXTRACT-MIN } (Q) \text{ // return the root of the tree}
```


THE HUFFMAN ALGORITHM IN ACTION i = 3

- Min-priority queue $Q = \{14, 25, d, a\}$
- After two extractions min-priority queue $Q = \{25, a\}$
- Insert z, min-priority queue $Q = \{25, z, a\}$
- Visualization

```
HUFFMAN (\mathcal{C})

|n| = |\mathcal{C}|

2\mathcal{Q} = \mathcal{C}

3for i = 1 to n - 1

4 allocate a new node \mathbf{Z}

5 \mathbf{Z}.left = \mathbf{X} = \mathsf{EXTRACT-MIN}(\mathcal{Q})

6 \mathbf{Z}.right = \mathbf{y} = \mathsf{EXTRACT-MIN}(\mathcal{Q})

7 \mathbf{Z}.freq = \mathbf{x}.freq + \mathbf{y}.freq

8 INSERT (\mathcal{Q}, \mathbf{Z})

9 return EXTRACT-MIN (\mathcal{Q}) // return the root of the tree
```


THE HUFFMAN ALGORITHM IN ACTION i = 4

- Min-priority queue $Q = \{25, 30, a\}$
- After two extractions min-priority queue $Q = \{a\}$
- Insert z, min-priority queue $Q = \{a, z\}$
- Visualization

THE HUFFMAN ALGORITHM IN ACTION i = 5

- Min-priority queue $Q = \{\alpha, 55\}$
- After two extractions min-priority queue $Q = \emptyset$
- Insert z, min-priority queue $Q = \{z\}$


```
HUFFMAN (C)

|n| = |C|

|2Q| = C

|3for i| = 1 \text{ to } n - 1

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4|

|4
```

THE HUFFMAN ALGORITHM IN ACTION TERMINATION

- Min-priority queue $Q = \{100\}$
- Return **100**

HUFFMAN (C)
n = C
2Q = C
3for $i = 1$ to $n - 1$
4 allocate a new node z
5 $z.left = x = EXTRACT-MIN(Q)$
6 $z.right = y = EXTRACT-MIN(Q)$
7 z.freq = x.freq + y.freq
8 INSERT (Q, z)
9 return EXTRACT-MIN (Q) // return the root of the tree

THE HUFFMAN ALGORITHM RUNNING TIME

• The process can be abstracted as

Cost	Time
f(C)	1
$\Theta(1)$	n
g(Q)	n-1
g(Q)	n-1
s(Q)	n-1
g(Q)	1
	$\begin{array}{c} \Theta(1) \\ g(Q) \\ g(Q) \\ s(Q) \end{array}$

HUFFMAN (C)
In = C
2Q = C
3 for $i = 1$ to $n - 1$
4 allocate a new node z
5 $z.left = x = EXTRACT-MIN(Q)$
6 $z.right = y = EXTRACT-MIN(Q)$
7 z.freq = x.freq + y.freq
8 INSERT (Q, z)
9return EXTRACT-MIN (Q) // return the root of the tree

The running time function of HUFFMAN

$$T(|C|) = f(|C|) + \Theta(n) + \Theta(n \cdot g(|C|)) + \Theta(n \cdot s(|Q|))$$

, where f, g, and s are the cost of building a **min-priority queue** Q, extracting the min of Q, and inserting a node to the **min-priority queue** Q, respectively.

THE HUFFMAN ALGORITHM RUNNING TIME (CONT'D)

- The running time function of HUFFMAN depends on the implementation of the min-priority queue Q.
- Implementing the *min-priority queue* using a MIN-HEAP (similar to MAX-HEAP)
 - Suppose |C| = n

```
HUFFMAN (\mathcal{C})

|n| = |\mathcal{C}|

|2\mathcal{Q}| = \mathcal{C}

3for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{EXTRACT-MIN }(\mathcal{Q})

6 z.right = y = \text{EXTRACT-MIN }(\mathcal{Q})

7 z.freq = x.freq + y.freq

8 INSERT (\mathcal{Q}, z)

6return EXTRACT-MIN (\mathcal{Q}) // return the root of the tree
```

$$- T(|C|) = f(|C|) + \Theta(n) + \Theta(n \cdot g(|C|)) + \Theta(n \cdot s(|Q|))$$

$$= \underbrace{O(n \lg n)}_{\text{Cost of building a MIN-HEAP}} + \Theta(n) + \Theta(n \cdot \underbrace{O(\lg n)}_{\text{Cost of extracting the min of MIN-HEAP}}) + \Theta(n \cdot \underbrace{O(\lg n)}_{\text{Cost of inserting a node to a MIN-HEAP}}) = \underline{T(n)}.$$

- Consider a file containing letters drawn from an alphabet $C = \{a, b, c, d\}$. (See the frequencies in the table).
- Follow the HUFFMAN algorithm and fill the table.
 - Draw the corresponding tree while completing the table,
 - The Q (implemented as a MIN-HEAP) column contains the min-priority queue at the end of the iteration.
 - Use z. freq as the element after z is inserted in Q.

Iteration	z.left	z.right	Q

		a	b	С	d
	Freq.%	26	19	34	21
HUFFMA	AN (C)				
$ n = 0 \rangle$	C				
2Q = C	7				
3 for <i>i</i> :	= 1 to n -	1			
4	allocate a n	ew no	de z		
5	z.left =	x = E	XTRA	CT-MII	N(Q)
6	z.right =	y = E	XTRA	CT-MII	V(Q)
7	z.freq =	x.fre	q + y.	freq	
8	INSERT (Q	,z)			
9retur	n EXTRAC	T-MIN	(Q)		

- Consider a file containing letters drawn from an alphabet $C = \{a, b, c, d\}$. (See the frequencies in the table).
- Follow the HUFFMAN algorithm and fill the table.
 - Draw the corresponding tree while completing the table,
 - The Q (implemented as a MIN-HEAP) column contains the min-priority queue at the end of the iteration.
 - Use z. freq as the element after z is inserted in Q.

Iteration	z.left	z.right	Q
i = 1	Ь	d	$\{a, 40, c\}$
i = 2	a	С	{40,60}
i = 3	40	60	{100}

			a	b	С	<u>d</u>	
	Fre	eq.%	26	19	34	21	
HU	FFMAN (\mathcal{C}					
١r	n = C						
2(Q = C						
3f	3for $i = 1$ to $n - 1$						
4	4 allocate a new node z						
5	5 $z.left = x = EXTRACT-MIN(Q)$						
6							
7	z.freq = x.freq + y.freq						
8	INSE	RT (Q	,z)				
9r	9return EXTRACT-MIN (Q)						

- Consider a file containing letters drawn from an alphabet $C = \{a, b, c, d\}$. (See the frequencies in the table).
- Show the tree corresponding to the HUFFMAN codes
- Compute the cost B(T). Show your work. Arrange the addition terms in alphabetical order.

$$B(T) =$$

Show the code word of each letter by completing the table.

	a	b	C	d
Freq.%	26	19	34	21
Codeword				

		a	b	С	d	
	Freq.%	26	19	34	21	
HUFFMA	4N (C)					
n = 0	C					
2Q = C	,					
3 for <i>i</i> :	= 1 to n -	1				
4	allocate a n	ew no	de z			
5	5 $z.left = x = EXTRACT-MIN(Q)$					
6	z.right =	y = E	XTRA	CT-MII	V (Q)	
7	z.freq = 1	x.fre	$\overline{q+y}$.	freq		
8	INSERT (Q	,z)				
9return EXTRACT-MIN (Q)						

- Consider a file containing letters drawn from an alphabet $C = \{a, b, c, d\}$. (See the frequencies in the table).
- Show the tree corresponding to the HUFFMAN codes
- Compute the cost B(T). Show your work. Arrange the addition terms in alphabetical order.

$$B(T) = 26 \times 2 + 19 \times 2 + 34 \times 2 + 21 \times 2 = 200$$

Show the code word of each letter by completing the table.

	a	b	C	d
Freq.%	26	19	34	21
Codeword	10	00	11	01

		a	b	С	<u>d</u>	
	Freq.%	26	19	34	21	
HUFFMA	AN (C)					
	\mathcal{I}					
2Q = C						
3 for $i =$	= 1 to <i>n</i> –	1				
4	4 allocate a new node z					
5	5 $z.left = x = EXTRACT-MIN(Q)$					
6	6 $z.right = y = EXTRACT-MIN(Q)$					
z.freq = x.freq + y.freq						
8	INSERT $(Q$,z)				
9return EXTRACT-MIN (Q)						

NEXT UP ELEMENTARY GRAPH ALGORITHMS

REFERENCE

- https://www.netclipart.com/isee/hRwxRh_kids-clipart-nurse-cute-female-doctor-cartoon/
- https://listposts.com/lera-kiryakova-celebrities-cartoon-characters/
- https://www.computerhope.com/people/david_huffman.htm