Universidade Federal do Rio de Janeiro

Departamento de Engenharia Eletrônica e de Computação

EEL350 - Sistemas Lineares I

2015/2 Lista 2

Data de Expedição: 22/01/2016

Limite de Tempo: 1 Semana - Data de Entrega: 29/11/2016

Tabela de Pontos (favor não preencher)

Questão	1	2	3	4	5	6	7	8	Total
Pontos	10	10	10	10	10	10	10	10	80
Pontos Extra	0	0	0	0	0	0	0	0	0
Resultado									

Diagrama de Pólos e Zeros

Questão 1 (10 pontos)

Para cada uma das funções de Transferência abaixo, desenhe o diagrama de Pólos e Zeros

(a)
$$H(s) = \frac{1}{s+1} + \frac{1}{s+3}$$

(b)
$$H(s) = \frac{s+1}{s^2-1}$$

(c)
$$H(s) = \frac{s^3 - 1}{s^2 + s + 1}$$

Propriedade da Transformada de Laplace

Questão 2 (10 pontos)

Supondo que x(t) possua como transformada de Laplace X(s), represente (em função de X(s)), a transformada de cada um dos sinais abaixo:

(a)
$$x(t-1)$$

(b)
$$\frac{\partial^3 x(t)}{\partial t^3}$$

(c)
$$\int_{0+}^{+\infty} x(t)dt$$

Questão 3 (10 pontos)

Prove que a transformada de Laplace do sinal $x(t) = cos(\omega_0 t)u(t)$ é igual a $X(s) = \frac{s}{s^2 + \omega_0^2}$

Resposta em Frequências

Questão 4 (10 pontos)

Para um sistema com Função de Transferência $H(s) = \frac{s+2}{s^2+5s+4}$, encontre a resposta para as seguintes entradas:

- (a) $x(t) = 5 \cdot \cos(2t + 30^{\circ})$
- (b) $x(t) = 10 \cdot sen(2t + 45^{\circ})$
- (c) $x(t) = 10 \cdot cos(4t + 40^{\circ})$

Questão 5 (10 pontos)

Para um sistema com Função de Transferência $H(s) = \frac{(10-s)}{s+10}$, encontre a resposta para as seguintes entradas:

- (a) $x(t) = cos(\omega t + \theta)$
- (b) x(t) = cos(t)
- (c) x(t) = sen(2t)
- (d) x(t) = cos(10t)
- (e) x(t) = cos(100t)

Questão 6 (10 pontos)

Avalie cada uma das afirmativas abaixo como **POSSÍVEL** ou **IMPOSSÍVEL**, supondo um sistema linear invariante no tempo, **Justificando!!!**

- (a) a saída $y(t) = sen(100\pi t)u(t)$ foi obtida quando aplicada a entrada $x(t) = cos(100\pi t)u(t)$
- (b) a saída $y(t) = sen(100\pi t)u(t)$ foi obtida quando aplicada a entrada $x(t) = cos(50\pi t)u(t)$
- (c) a saída $y(t) = sen(100\pi t)u(t)$ foi obtida quando aplicada a entrada $x(t) = sen(100\pi t)u(t)$

Diagrama de Bode

Questão 7 (10 pontos)

Plote os diagramas de módulo e de fase (Diagrama de Bode) para os sistemas descritos pelos funções de transferências abaixo:

(a)
$$H(s) = \frac{s(s+100)}{(s+2)(s+20)}$$

(b)
$$H(s) = \frac{(s+10)(s+20)}{s^2(s+100)}$$

(c)
$$H(s) = \frac{(s+10)(s+200)}{(s+20)^2(s+1000)}$$

(d)
$$H(s) = \frac{s^2}{(s+1)(s^2+4s+16)}$$

Questão 8 (10 pontos)

Dados os Diagramas de Bode (figuras de 1 a 3), determine qual a função de transferência que os originou. **Justificando!!!**

Funções de transferência possíveis

(a)
$$H(s) = \frac{s^2+1}{s^3+s+1000}$$

(b)
$$H(t) = \frac{(s^2 + 1000s + 100)}{s^3 + 20s^2 + 10000s}$$

(b)
$$H(t) = \frac{(s^2 + 1000s + 100)}{s^3 + 20s^2 + 10000s}$$

(c) $H(s) = \frac{s^2 + 1000s + 100}{s^2 + 10010s + 10000}$
(d) $H(t) = \frac{1}{s^3 + 160s^2 + 10000s}$

(d)
$$H(t) = \frac{1}{s^3 + 160s^2 + 10000s}$$

Figura 1: Diagrama de Bode 1

Figura 2: Diagrama de Bode 2

Figura 3: Diagrama de Bode 3