[UFMG] Summergimurne?

Bruno Monteiro, Emanuel Silva e Bernardo Amorim

Índice			1.16 Split-Merge Set	
			1.17 Treap	17
1	Estruturas	5	1.18 Treap Persistent Implicita	18
	1.1 DSU	5	1.19 SQRT-decomposition	19
	1.2 BIT	5	1.20 RMQ $\langle O(n), O(1) \rangle$ - cartesian tree	20
	1.3 SQRT Tree	6	1.21 MergeSort Tree	20
	1.4 Min queue - stack	6	1.22 Split-Merge Set - Lazy	22
	1.5 Sparse Table	7	1.23 SegTree 2D Iterativa	25
	1.6 BIT com update em range	7	1.24 SegTree PA	25
	1.7 Splay Tree	8	1.25 SegTree Esparsa - Lazy	27
	1.8 Treap Implicita	9	1.26 SegTree Esparsa - O(q) memoria	28
	1.9 Range color	10	1.27 SegTree Iterativa com Lazy Propagation	29
	1.10 Li-Chao Tree	11	1.28 SegTree Colorida	30
	1.11 BIT 2D	11	1.29 SegTree Iterativa	31
	1.12 Order Statistic Set	12	1.30 SegTree Beats	31
	1.13 Splay Tree Implicita	12	1.31 SegTree Persistente	33
	1.14 Sparse Table Disjunta	14	1.32 SegTree	34
	1.15 Min queue - deque	15	1.33 DSU Persistente	35

	1.34 RMQ $<$ O(n), O(1) $>$ - min queue	36		2.21 MinCostMaxFlow	51
	1.35 Wavelet Tree	36		2.22 Algoritmo de Kuhn	53
0		0.7		2.23 Functional Graph	53
2	Grafos	37		2.24 Euler Path / Euler Cycle	55
	2.1 Dinic	37		2.25 Dominator Tree - Kawakami	56
	2.2 Kruskal	38		2.26 Line Tree	57
	2.3 Sack (DSU em arvores)	38		2.27 Isomorfismo de arvores	57
	2.4 Block-Cut Tree	39		2.28 Link-cut Tree - vertice	58
	2.5 Topological Sort	40		2.29 Link-cut Tree - aresta	59
	2.6 Max flow com lower bound	40		2.30 Link-cut Tree	61
	2.7 Prufer code	40		2.31 Centro de arvore	62
	2.8 Tarjan para SCC	41		2.32 Kosaraju	62
	2.9 Dijkstra	42		2.33 Euler Tour Tree	63
	2.10 Floyd-Warshall	42		2.34 Centroid	65
	2.11 Virtual Tree	42		2.35 Vertex cover	65
	2.12 Bellman-Ford	43		2.36 Centroid decomposition	66
	2.13 AGM Direcionada	44		2.50 Controla accomposition	00
	2.14 Blossom - matching maximo em grafo geral	45	3	Problemas	67
	2.15 LCA com RMQ	46		3.1 Inversion Count	67
	2.16 Heavy-Light Decomposition sem Update	47		3.2 Gray Code	67
	2.17 Heavy-Light Decomposition - aresta	47		3.3 Points Inside Polygon	68
	2.18 LCA com binary lifting	48		3.4 Sweep Direction	68
	2.19 Heavy-Light Decomposition - vertice	49		3.5 Area da Uniao de Retangulos	69
	2.20 LCA com HLD	50		3.6 LIS - Longest Increasing Subsequence	70

3.7	Distinct Range Query - Persistent Segtree	71		3.30 Distinct Range Query com Update	86
3.8	Coloração de Grafo de Intervalo	71	$oxed{4}$	Matematica	87
3.9	MO - DSU	72	4		
3.10	Distancia maxima entre dois pontos	73		4.1 Division Trick	87
	Conectividade Dinamica	73		4.2 Produto de dois long long mod m	88
				4.3 Avaliação de Interpolação	88
3.12	Arpa's Trick	74		4.4 Equação Diofantina Linear	88
3.13	Simple Polygon	74		4.5 Divisao de Polinomios	89
3.14	Algoritmo MO - queries em caminhos de arvore	75		4.6 Fast Walsh Hadamard Transform	89
3.15	Area Maxima de Histograma	76			
3 16	LIS2 - Longest Increasing Subsequence	77		4.7 Logaritmo Discreto	89
	•			4.8 2-SAT	90
	Mininum Enclosing Circle	77		4.9 Variacoes do crivo de Eratosthenes	91
3.18	Conj. Indep. Maximo com Peso em Grafo de Intervalo	77		4.10 Algoritmo de Euclides estendido	93
3.19	Conectividade Dinamica 2	78		4.11 Karatsuba	93
3.20	Mo - numero de distintos em range	80		4.12 Exponenciacao rapida	93
3.21	Algoritmo Hungaro	81		4.13 Inverso Modular	94
3.22	Dominator Points	81		4.14 FFT	94
3.23	Min fixed range	82		4.15 Simplex	94
3.24	Binomial modular	82		4.16 Binomial Distribution	95
3.25	Triangulos em Grafos	84		4.17 Miller-Rabin	96
3.26	Closest pair of points	84		4.18 Deteccao de ciclo - Tortoise and Hare	96
3.27	Segment Intersection	85		4.19 Totiente	97
3.28	Distinct Range Query - Wavelet	85		4.20 Eliminacao Gaussiana	97
3.29	RMQ com Divide and Conquer	86		4.21 Teorema Chines do Resto	98

	4.22	Ordem de elemento do grupo	98		6.11	Aho-corasick	114
	4.23	Pollard's Rho Alg	98		6.12	Suffix Array - $O(n \ log \ n)$	114
	4.24	Eliminacao Gaussiana Z2	99		6.13	Algoritmo Z	115
	4.25	Algoritmo de Euclides	100		6.14	Automato de Sufixo	116
5	DP		100	7	Pri	mitivas	116
	5.1	SOS DP	100		7.1	Aritmetica Modular	116
	5.2	Longest Common Subsequence	100		7.2	Primitivas Geometricas Inteiras	117
	5.3	Divide and Conquer DP	101		7.3	Primitivas de Polinomios	120
	5.4	Mochila	102		7.4	Primitivas de matriz - exponenciacao	128
	5.5	Convex Hull Trick Dinamico	102		7.5	Big Integer	129
	5.6	Convex Hull Trick (Rafael)	103		7.6	Complex	132
o	a.		100		7.7	Primitivas de fracao	133
b	Stri		103		7.8	Primitivas Geometricas	133
	6.1	Aho-corasick - Automato			7.9	Primitivas Geometricas 3D	137
	6.2	Min/max suffix/cyclic shift	104				
	6.3	String hashing - modulo $2^61 - 1 \dots \dots$	105	8	Ext	ra	138
	6.4	Manacher	106		8.1	fastIO.cpp	138
	6.5	Trie	106		8.2	vimrc	138
	6.6	String hashing	107		8.3	rand.cpp	138
	6.7	eertree	108		8.4	template.cpp	139
	6.8	Suffix Array Dinamico	108		8.5	debug.cpp	139
	6.9	KMP	111		8.6	stress.sh	139
	6.10	Suffix Array - $O(n)$	111		8.7	makefile	139

1 Estruturas

1.1 DSU

```
// Une dois conjuntos e acha a qual conjunto um elemento
   pertence por seu id
// dsu_build: 0(n)
// find e unite: O(a(n)) \sim = O(1) amortizado
int id[MAX], sz[MAX];
void dsu_build(int n) { for(int i=0; i<n; i++) sz[i] = 1,</pre>
   id[i] = i; }
int find(int a) { return id[a] = a == id[a] ? a :
   find(id[a]): }
void unite(int a, int b) {
    a = find(a), b = find(b);
    if(a == b) return;
    if(sz[a] < sz[b]) swap(a,b);
    sz[a] += sz[b];
    id[b] = a;
}
```

1.2 BIT

```
// BIT de soma 1-based, v 0-based
// Para mudar o valor da posicao p para x,
// faca: poe(x - query(p, p), p)
// l_bound(x) retorna o menor p tal que
// query(1, p+1) > x (0 based!)
//
// Complexidades:
// build - O(n)
// poe - O(log(n))
// query - O(log(n))
```

```
// l_bound - O(log(n))
int n;
int bit[MAX];
int v[MAX];
void build() {
    bit[0] = 0;
    for (int i = 1; i <= n; i++) bit[i] = v[i - 1];</pre>
    for (int i = 1; i <= n; i++) {
        int j = i + (i \& -i);
       if (j <= n) bit[j] += bit[i];</pre>
    }
}
// soma x na posicao p
void poe(int x, int p) {
    for (; p <= n; p += p & -p) bit[p] += x;
// soma [1, p]
int pref(int p) {
   int ret = 0;
   for (; p; p -= p & -p) ret += bit[p];
    return ret;
}
// soma [a, b]
int query(int a, int b) {
   return pref(b) - pref(a - 1);
int l_bound(ll x) {
   int p = 0;
    for (int i = MAX2; i+1; i--) if (p + (1 << i) <= n
        and bit [p + (1 << i)] <= x) x -= bit <math>[p += (1 << i)];
    return p;
}
```

1.3 SQRT Tree

```
// RMQ em O(log log n) com O(n log log n) pra buildar
// Funciona com qualquer operacao associativa
// Tao rapido quanto a sparse table, mas usa menos memoria
// (log log (1e9) < 5, entao a query eh praticamente O(1))
//
// build - O(n log log n)
// query - O(log log n)
namespace sqrtTree {
    int n, *v;
    int pref[4][MAX], sulf[4][MAX], getl[4][MAX],
       entre [4] [MAX], sz [4];
    int op(int a, int b) { return min(a, b); }
    inline int getblk(int p, int i) { return
       (i-getl[p][i])/sz[p]; }
    void build(int p, int l, int r) {
        if (1+1 >= r) return;
        for (int i = 1; i <= r; i++) getl[p][i] = 1;</pre>
        for (int L = 1; L <= r; L += sz[p]) {
            int R = min(L+sz[p]-1, r);
            pref[p][L] = v[L], sulf[p][R] = v[R];
            for (int i = L+1; i <= R; i++) pref[p][i] =</pre>
                op(pref[p][i-1], v[i]);
            for (int i = R-1; i >= L; i--) sulf[p][i] =
                op(v[i], sulf[p][i+1]);
            build(p+1, L, R);
        for (int i = 0; i <= sz[p]; i++) {</pre>
            int at = entre[p][1+i*sz[p]+i] =
                sulf[p][l+i*sz[p]];
            for (int j = i+1; j <= sz[p]; j++)</pre>
                entre[p][1+i*sz[p]+j] = at =
                     op(at, sulf[p][l+j*sz[p]]);
        }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        for (int p = 0; p < 4; p++) sz[p] = n2 = sqrt(n2);
        build(0, 0, n-1);
```

```
}
    int query(int 1, int r) {
        if (l+1 >= r) return l == r ? v[l] : op(v[l], v[r]);
        while (getblk(p, 1) == getblk(p, r)) p++;
        int ans = sulf[p][1], a = getblk(p, 1)+1, b =
           getblk(p, r)-1;
        if (a \le b) ans = op(ans,
           entre[p][getl[p][1]+a*sz[p]+b]);
        return op(ans, pref[p][r]);
    }
}
1.4 Min queue - stack
// Tudo O(1) amortizado
template < class T> struct minstack {
    stack<pair<T, T>> s;
    void push(T x) {
        if (!s.size()) s.push({x, x});
        else s.push({x, std::min(s.top().second, x)});
    T top() { return s.top().first; }
    T pop() {
        T ans = s.top().first;
        s.pop();
        return ans;
    T size() { return s.size(); }
    T min() { return s.top().second; }
};
template < class T> struct minqueue {
    minstack <T> s1, s2;
    void push(T x) { s1.push(x); }
    void move() {
        if (s2.size()) return;
```

```
while (s1.size()) {
    T x = s1.pop();
    s2.push(x);
}

T front() { return move(), s2.top(); }
T pop() { return move(), s2.pop(); }
T size() { return s1.size()+s2.size(); }
T min() {
    if (!s1.size()) return s2.min();
    else if (!s2.size()) return s1.min();
    return std::min(s1.min(), s2.min());
}
};
```

1.5 Sparse Table

```
// Resolve RMQ
// MAX2 = log(MAX)
// Complexidades:
// build - O(n log(n))
// query - 0(1)
namespace sparse {
    int m[MAX2][MAX], n;
    void build(int n2, int* v) {
        n = n2:
        for (int i = 0; i < n; i++) m[0][i] = v[i];</pre>
        for (int j = 1; (1<<j) <= n; j++) for (int i = 0;
           i+(1<<j) <= n; i++)
            m[j][i] = min(m[j-1][i], m[j-1][i+(1<<(j-1))]);
    int query(int a, int b) {
        int j = __builtin_clz(1) - __builtin_clz(b-a+1);
        return min(m[j][a], m[j][b-(1<<j)+1]);</pre>
}
```

1.6 BIT com update em range

```
// Operacoes 0-based
// query(1, r) retorna a soma de v[1..r]
// update(l, r, x) soma x em v[l..r]
// Complexidades:
// build - O(n)
// query - 0(log(n))
// update - O(log(n))
namespace bit {
    11 bit[2][MAX+2];
    int n;
    void build(int n2, int* v) {
        n = n2:
        for (int i = 1; i <= n; i++)
            bit [1] [min(n+1, i+(i\&-i))] += bit [1][i] +=
                v[i-1];
    }
    11 get(int x, int i) {
        11 \text{ ret} = 0;
        for (; i; i -= i&-i) ret += bit[x][i];
        return ret;
    }
    void add(int x, int i, ll val) {
        for (; i <= n; i += i&-i) bit[x][i] += val;</pre>
    }
    11 get2(int p) {
        return get(0, p) * p + get(1, p);
    }
    11 query(int 1, int r) {
        return get2(r+1) - get2(1);
    }
    void update(int 1, int r, ll x) {
        add(0, 1+1, x), add(0, r+2, -x);
        add(1, 1+1, -x*1), add(1, r+2, x*(r+1));
    }
};
```

1.7 Splay Tree

```
// SEMPRE QUE DESCER NA ARVORE, DAR SPLAY NO
// NODE MAIS PROFUNDO VISITADO
// Todas as operacoes sao O(log(n)) amortizado
// Se quiser colocar mais informação no node,
// mudar em 'update'
template < typename T > struct splaytree {
    struct node {
        node *ch[2], *p;
        int sz;
        T val;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            val = v;
        void update() {
            sz = 1;
            for (int i = 0; i < 2; i++) if (ch[i]) {
                sz += ch[i]->sz;
            }
        }
    };
    node* root;
    splaytree() { root = NULL; }
    splaytree(const splaytree& t) {
        throw logic_error("Nao copiar a splaytree!");
    \simsplaytree() {
        vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->ch[0]), q.push_back(x->ch[1]);
            delete x;
        }
    }
```

```
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp -> ch[pp -> ch[1] == p] = x;
    bool d = p -> ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x - p = pp, p - p = x;
    p->update(), x->update();
}
node* splay(node* x) {
    if (!x) return x;
    root = x;
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
    return x;
}
node* insert(T v, bool lb=0) {
    if (!root) return lb ? NULL : root = new node(v);
    node *x = root, *last = NULL;;
    while (1) {
        bool d = x -> val < v;
        if (!d) last = x;
        if (x->val == v) break;
        if (x->ch[d]) x = x->ch[d];
        else {
            if (lb) break;
            x - ch[d] = new node(v);
            x - ch[d] - p = x;
            x = x -  ch[d]:
            break:
        }
    }
    splay(x);
    return lb ? splay(last) : x;
int size() { return root ? root->sz : 0; }
int count(T v) { return insert(v, 1) and root->val == v;
```

```
}
node* lower_bound(T v) { return insert(v, 1); }
void erase(T v) {
    if (!count(v)) return;
    node *x = root, *1 = x -> ch[0];
    if (!1) {
        root = x -> ch[1];
        if (root) root->p = NULL;
        return delete x;
    }
    root = 1, 1->p = NULL;
    while (1->ch[1]) 1 = 1->ch[1];
    splay(1);
    1 - ch[1] = x - ch[1];
    if (1->ch[1]) 1->ch[1]->p = 1;
    delete x;
    1->update();
int order_of_key(T v) {
    if (!lower_bound(v)) return root ? root->sz : 0;
    return root->ch[0] ? root->ch[0]->sz : 0;
node* find_by_order(int k) {
    if (k >= size()) return NULL;
    node* x = root;
    while (1) {
        if (x->ch[0] \text{ and } x->ch[0]->sz >= k+1) x =
           x - > ch[0];
        else {
            if (x->ch[0]) k -= x->ch[0]->sz;
            if (!k) return splay(x);
            k--, x = x->ch[1];
        }
    }
}
T min() {
    node* x = root;
    while (x->ch[0]) x = x->ch[0]; // max -> ch[1]
    return splay(x)->val;
}
```

};

1.8 Treap Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        node *1. *r:
        int p, sz;
        T val, sub, lazy;
        bool rev;
        node(T \ v) : l(NULL), r(NULL), p(rng()), sz(1),
            val(v), sub(v), lazy(0), rev(0) {}
        void prop() {
            if (lazy) {
                 val += lazy, sub += lazy*sz;
                 if (1) 1->lazy += lazy;
                 if (r) r->lazy += lazy;
            if (rev) {
                 swap(l, r);
                 if (1) 1->rev ^= 1;
                 if (r) r->rev ^= 1;
            }
            lazy = 0, rev = 0;
        }
        void update() {
             sz = 1, sub = val;
            if (1) 1->prop(), sz += 1->sz, sub += 1->sub;
            if (r) r \rightarrow prop(), sz += r \rightarrow sz, sub += r \rightarrow sub;
        }
    };
    node* root;
    treap() { root = NULL; }
    treap(const treap& t) {
        throw logic_error("Nao copiar a treap!");
    }
```

```
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!1 or !r) return void(i = 1 ? 1 : r);
    1->prop(), r->prop();
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r->1, r->1), i = r;
    i->update();
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
    if (!i) return void(r = l = NULL);
    i->prop();
    if (key + size(i->1) < v) split(i->r, i->r, r, v,
       key+size(i->1)+1), l = i;
    else split(i \rightarrow 1, l, i \rightarrow 1, v, key), r = i;
    i->update();
}
void push_back(T v) {
    node* i = new node(v);
    join(root, i, root);
}
T query(int 1, int r) {
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    T ans = M->sub;
    join(L, M, M), join(M, R, root);
    return ans;
void update(int 1, int r, T s) {
    node *L, *M, *R;
```

```
split(root, M, R, r+1), split(M, L, M, 1);
    M->lazy += s;
    join(L, M, M), join(M, R, root);
}
void reverse(int 1, int r) {
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    M->rev ^= 1;
    join(L, M, M), join(M, R, root);
}
};
```

1.9 Range color

```
// update(l, r, c) colore o range [l, r] com a cor c,
// e retorna os ranges que foram coloridos {1, r, cor}
// query(i) returna a cor da posicao i
//
// Complexidades (para q operacoes):
// update - O(log(q)) amortizado
// query - 0(log(q))
template < typename T> struct color {
    set < tuple < int , int , T >> se;
    vector<tuple<int, int, T>> update(int 1, int r, T val) {
        auto it = se.upper_bound({r, INF, val});
        if (it != se.begin() and get<1>(*prev(it)) > r) {
            auto [L, R, V] = *--it;
            se.erase(it):
            se.emplace(L, r, V), se.emplace(r+1, R, V);
        it = se.lower_bound({1, -INF, val});
        if (it != se.begin() and get<1>(*prev(it)) >= 1) {
            auto [L, R, V] = *--it;
            se.erase(it);
            se.emplace(L, 1-1, V), it = se.emplace(1, R,
               V).first;
        vector<tuple<int, int, T>> ret;
```

```
for (; it != se.end() and get<0>(*it) <= r; it =</pre>
            se.erase(it))
            ret.push_back(*it);
        se.emplace(1, r, val);
        return ret;
    T query(int i) {
        auto it = se.upper_bound({i, INF, T()});
        if (it == se.begin() or get<1>(*--it) < i) return</pre>
            -1; // nao tem
        return get <2>(*it);
    }
};
```

1.10 Li-Chao Tree

```
// Adiciona retas (ax+b), e computa o minimo entre as retas
// em um dado 'x'
// Cuidado com overflow!
// Se tiver overflow, tenta comprimir o 'x' ou usar
// convex hull trick
//
// O(log(MA-MI)), O(n) de memoria
template \langle 11 \text{ MI} = 11(-1e9), 11 \text{ MA} = 11(1e9) \rangle struct lichao {
    struct line {
        ll a, b;
        array < int, 2 > ch;
        line(ll a_{-} = 0, ll b_{-} = LINF):
             a(a_{-}), b(b_{-}), ch(\{-1, -1\})  {}
        11 operator ()(11 x) { return a*x + b; }
    };
    vector < line > ln;
    int ch(int p, int d) {
         if (ln[p].ch[d] == -1) {
             ln[p].ch[d] = ln.size();
             ln.emplace_back();
        }
        return ln[p].ch[d];
```

```
}
    lichao() { ln.emplace_back(); }
    void add(line s, ll l=MI, ll r=MA, int p=0) {
        11 m = (1+r)/2;
        bool L = s(1) < ln[p](1);
        bool M = s(m) < ln[p](m);
        bool R = s(r) < ln[p](r);
        if (M) swap(ln[p], s), swap(ln[p].ch, s.ch);
        if (s.b == LINF) return;
        if (L != M) add(s, l, m-1, ch(p, 0));
        else if (R != M) add(s, m+1, r, ch(p, 1));
    }
    11 query(int x, 11 1=MI, 11 r=MA, int p=0) {
        11 m = (1+r)/2, ret = ln[p](x);
        if (ret == LINF) return ret;
        if (x < m) return min(ret, query(x, 1, m-1, ch(p,
           0)));
        return min(ret, query(x, m+1, r, ch(p, 1));
    }
};
```

BIT 2D 1.11

```
// BIT de soma 1-based
// Para mudar o valor da posicao (x, y) para k,
// faca: poe(x, y, k - sum(x, y, x, y))
//
// Complexidades:
// poe - O(log^2(n))
// \text{ query - } O(\log^2(n))
int n;
int bit[MAX][MAX];
void poe(int x, int y, int k) {
    for (int y2 = y; x \le n; x += x & -x)
        for (y = y2; y \le n; y += y & -y)
             bit[x][y] += k;
}
```

```
int sum(int x, int y) {
   int ret = 0;
   for (int y2 = y; x; x -= x & -x)
        for (y = y2; y; y -= y & -y)
        ret += bit[x][y];

return ret;
}
int query(int x, int y, int z, int w) {
   return sum(z, w) - sum(x-1, w)
        - sum(z, y-1) + sum(x-1, y-1);
}
```

1.12 Order Statistic Set

```
// Funciona do C++11 pra cima
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
// para declarar:
ord_set < int > s;
// coisas do set normal funcionam:
for (auto i : s) cout << i << endl;</pre>
cout << s.size() << endl;</pre>
// k-esimo maior elemento O(log|s|):
// k=0: menor elemento
cout << *s.find_by_order(k) << endl;</pre>
// quantos sao menores do que k O(log|s|):
cout << s.order_of_key(k) << endl;</pre>
// Para fazer um multiset, tem que
// usar ord_set<pair<int, int>> com o
// segundo parametro sendo algo para diferenciar
```

```
// os ementos iguais.
// s.order_of_key({k, -INF}) vai retornar o
// numero de elementos < k</pre>
```

1.13 Splay Tree Implicita

```
// vector da NASA
// Um pouco mais rapido q a treap
// O construtor a partir do vector
// eh linear, todas as outras operacoes
// custam O(log(n)) amortizado
template < typename T > struct splay {
    struct node {
        node *ch[2], *p;
        int sz;
        T val, sub, lazy;
        bool rev;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            sub = val = v;
            lazy = 0;
            rev = false;
        void prop() {
            if (lazy) {
                val += lazy, sub += lazy*sz;
                if (ch[0]) ch[0]->lazy += lazy;
                if (ch[1]) ch[1]->lazy += lazy;
            }
            if (rev) {
                swap(ch[0], ch[1]);
                if (ch[0]) ch[0]->rev ^= 1;
                if (ch[1]) ch[1]->rev ^= 1;
            lazy = 0, rev = 0;
        void update() {
            sz = 1, sub = val;
```

```
for (int i = 0; i < 2; i++) if (ch[i]) {
            ch[i]->prop();
            sz += ch[i]->sz;
            sub += ch[i]->sub;
        }
    }
};
node* root;
splay() { root = NULL; }
splay(node* x) {
    root = x;
    if (root) root->p = NULL;
splay(vector < T > v) { // O(n)}
    root = NULL;
    for (T i : v) {
        node* x = new node(i);
        x - ch[0] = root;
        if (root) root->p = x;
        root = x;
        root ->update();
    }
}
splay(const splay& t) {
    throw logic_error("Nao copiar a splay!");
\simsplay() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp - ch[pp - ch[1] == p] = x;
```

```
bool d = p -> ch[0] == x;
    p->ch[!d] = x->ch[d], x->ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
}
node* splaya(node* x) {
    if (!x) return x;
    root = x, x->update();
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
             rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    return x;
}
node* find(int v) {
    if (!root) return NULL;
    node *x = root;
    int key = 0;
    while (1) {
        x->prop();
        bool d = key + size(x->ch[0]) < v;
        if (\text{key} + \text{size}(x->\text{ch}[0]) != v \text{ and } x->\text{ch}[d]) {
            if (d) key += size(x->ch[0])+1;
             x = x - > ch[d];
        } else break;
    return splaya(x);
}
int size() { return root ? root->sz : 0; }
void join(splay<T>& 1) { // assume que l < *this</pre>
    if (!size()) swap(root, l.root);
    if (!size() or !l.size()) return;
    node* x = 1.root:
    while (1) {
        x->prop();
        if (!x->ch[1]) break;
        x = x -> ch[1];
    }
```

```
1.splaya(x), root->prop(), root->update();
    x - ch[1] = root, x - ch[1] - p = x;
    root = 1.root, 1.root = NULL;
    root ->update();
}
node* split(int v) { // retorna os elementos < v</pre>
    if (v <= 0) return NULL;</pre>
    if (v >= size()) {
        node* ret = root;
        root = NULL;
        ret->update();
        return ret;
    }
    find(v);
    node*1 = root -> ch[0];
    root -> ch [0] = NULL;
    if (1) 1->p = NULL;
    root ->update();
    return 1;
T& operator [](int i) {
    find(i);
    return root -> val;
void push_back(T v) { // 0(1)
    node* r = new node(v);
    r \rightarrow ch[0] = root;
    if (root) root->p = r;
    root = r, root->update();
}
T query(int 1, int r) {
    splay <T > M(split(r+1));
    splay <T> L(M.split(1));
    T ans = M.root->sub;
    M.join(L), join(M);
    return ans;
}
void update(int 1, int r, T s) {
    splay <T> M(split(r+1));
    splay <T> L(M.split(1));
    M.root->lazy += s;
    M. join(L), join(M);
```

```
    void reverse(int l, int r) {
        splay < T > M(split(r+1));
        splay < T > L(M.split(l));
        M.root -> rev ^= 1;
        M.join(L), join(M);
}

void erase(int l, int r) {
        splay < T > M(split(r+1));
        splay < T > L(M.split(l));
        join(L);
}
};
```

1.14 Sparse Table Disjunta

```
// Resolve qualquer operacao associativa
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - O(1)
namespace sparse {
    int m[MAX2][2*MAX], n, v[2*MAX];
    int op(int a, int b) { return min(a, b); }
    void build(int n2, int* v2) {
        n = n2;
        for (int i = 0; i < n; i++) v[i] = v2[i];
        while (n&(n-1)) n++;
        for (int j = 0; (1<<j) < n; j++) {
            int len = 1<<j;</pre>
            for (int c = len; c < n; c += 2*len) {
                m[i][c] = v[c], m[i][c-1] = v[c-1];
                for (int i = c+1; i < c+len; i++) m[j][i] =</pre>
                    op(m[j][i-1], v[i]);
                for (int i = c-2; i >= c-len; i--) m[j][i] =
                    op(v[i], m[j][i+1]);
        }
```

```
}
int query(int 1, int r) {
    if (1 == r) return v[1];
    int j = __builtin_clz(1) - __builtin_clz(1^r);
    return op(m[j][1], m[j][r]);
}

1.15 Min queue - deque

// Tudo O(1) amortizado

template < class T> struct minqueue {
```

```
template < class T > struct minqueue {
    deque < pair < T, int >> q;

    void push(T x) {
        int ct = 1;
        while (q.size() and x < q.front().first)
            ct += q.front().second, q.pop_front();
        q.push_front({x, ct});
    }

    void pop() {
        if (q.back().second > 1) q.back().second--;
        else q.pop_back();
    }
    T min() { return q.back().first; }
};
```

1.16 Split-Merge Set

```
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge, que custa O(log(N)) amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set

template < typename T, bool MULTI = false, typename SIZE_T = int > struct sms {
```

```
struct node {
    node *1, *r;
    SIZE_T cnt;
    node() : 1(NULL), r(NULL), cnt(0) {}
    void update() {
        cnt = 0;
        if (1) cnt += 1->cnt;
        if (r) cnt += r->cnt;
    }
};
node* root;
T N;
sms() : root(NULL), N(0) {}
sms(T v) : sms() { while (v >= N) N = 2*N+1; }
sms(const sms& t) : root(NULL), N(t.N) {
    for (SIZE_T i = 0; i < t.size(); i++) {</pre>
        T at = t[i];
        SIZE_T qt = t.count(at);
        insert(at, qt);
        i += qt-1;
    }
}
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i); }
\simsms() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
}
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
```

```
return *this:
}
SIZE_T size() const { return root ? root->cnt : 0; }
SIZE_T count(node* x) const { return x ? x->cnt : 0; }
void clear() {
    sms tmp;
    swap(*this, tmp);
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
       root ->update();
    }
}
node* insert(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) at = new node();
    if (1 == r) {
        at->cnt += qt;
       if (!MULTI) at->cnt = 1;
        return at;
    }
    T m = 1 + (r-1)/2;
    if (idx \le m) at->1 = insert(at->1, idx, qt, 1, m);
    else at->r = insert(at->r, idx, qt, m+1, r);
    return at ->update(), at;
}
void insert(T v, SIZE_T qt=1) { // insere 'qt'
   ocorrencias de 'v'
    if (qt <= 0) return erase(v, -qt);</pre>
    assert(v >= 0);
    expand(v):
    root = insert(root, v, qt, 0, N);
}
node* erase(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) return at;
    if (1 == r) at->cnt = at->cnt < qt ? 0 : at->cnt -
       qt;
    else {
```

```
T m = 1 + (r-1)/2:
        if (idx \le m) at->1 = erase(at->1, idx, qt, 1,
        else at->r = erase(at->r, idx, qt, m+1, r);
        at->update();
    if (!at->cnt) delete at, at = NULL;
    return at;
}
void erase(T v, SIZE_T qt=1) { // remove 'qt'
   ocorrencias de 'v'
    if (v < 0 \text{ or } v > N \text{ or } !qt) \text{ return};
    if (qt < 0) insert(v, -qt);</pre>
    root = erase(root, v, qt, 0, N);
}
void erase_all(T v) { // remove todos os 'v'
    if (v < 0 \text{ or } v > N) return:
    root = erase(root, v, numeric_limits < SIZE_T >:: max(),
       0, N);
}
SIZE_T count(node* at, T a, T b, T l, T r) const {
    if (!at or b < l or r < a) return 0;
    if (a <= l and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
}
SIZE_T count(T v) const { return count(root, v, v, 0,
   N): }
SIZE_T order_of_key(T v) { return count(root, 0, v-1, 0,
SIZE_T lower_bound(T v) { return order_of_key(v); }
const T operator [](SIZE_T i) const { // i-esimo menor
   elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root:
    T 1 = 0, r = N;
    while (1 < r) {
        T m = 1 + (r-1)/2;
        if (count(at->1) > i) at = at->1, r = m;
```

```
else {
            i -= count(at->1);
            at = at->r; 1 = m+1;
        }
    }
    return 1;
node* merge(node* 1, node* r) {
    if (!1 or !r) return 1 ? 1 : r;
    if (!1->1 \text{ and } !1->r) \{ // \text{ folha} \}
        if (MULTI) 1->cnt += r->cnt;
        delete r;
        return 1;
    }
   1->1 = merge(1->1, r->1), 1->r = merge(1->r, r->r);
    1->update(), delete r;
    return 1;
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root);
    s.root = NULL;
}
node* split(node*& x, SIZE_T k) {
    if (k <= 0 or !x) return NULL;</pre>
    node* ret = new node();
    if (!x->1 \text{ and } !x->r) x->cnt -= k, ret->cnt += k;
    else {
        if (k \le count(x->1)) ret->1 = split(x->1, k);
        else {
            ret->r = split(x->r, k - count(x->1));
             swap(x->1, ret->1);
        ret ->update(), x->update();
    }
    if (!x->cnt) delete x, x = NULL;
    return ret;
}
void split(SIZE_T k, sms& s) { // pega os 'k' menores
```

```
s.clear();
        s.root = split(root, min(k, size()));
        s.N = N;
    }
    // pega os menores que 'k'
    void split_val(T k, sms& s) { split(order_of_key(k), s);
};
1.17 Treap
// Todas as operacoes custam
// O(log(n)) com alta probabilidade, exceto meld
// meld custa O(log^2 n) amortizado com alta prob.,
// e permite unir duas treaps sem restricao adicional
// Na pratica, esse meld tem constante muito boa e
// o pior caso eh meio estranho de acontecer
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T> struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, mi;
        node(T v) : l(NULL), r(NULL), p(rng()), sz(1),
           val(v), mi(v) {}
        void update() {
            sz = 1;
            mi = val;
            if (1) sz += 1->sz, mi = min(mi, 1->mi);
            if (r) sz += r->sz, mi = min(mi, r->mi);
        }
    };
    node* root;
```

treap() { root = NULL; }

treap(const treap& t) {

```
throw logic_error("Nao copiar a treap!");
}
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
    if (!1 or !r) return void(i = 1 ? 1 : r);
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r->1, r->1), i = r;
    i->update();
}
void split(node* i, node*& l, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i\rightarrow val < v) split(i\rightarrow r, i\rightarrow r, r, v), l = i;
    else split(i->1, 1, i->1, v), r = i;
    i->update();
}
int count(node* i, T v) {
    if (!i) return 0;
    if (i->val == v) return 1;
    if (v < i->val) return count(i->1, v);
    return count(i->r, v);
}
void index_split(node* i, node*& 1, node*& r, int v, int
   key = 0) {
    if (!i) return void(r = 1 = NULL);
    if (key + size(i->1) < v) index_split(i->r, i->r, r,
       v, key+size(i->1)+1), l = i;
    else index_split(i->1, 1, i->1, v, key), r = i;
    i->update();
}
int count(T v) {
```

```
return count(root, v);
    }
    void insert(T v) {
        if (count(v)) return;
        node *L, *R;
        split(root, L, R, v);
        node* at = new node(v);
        join(L, at, L);
        join(L, R, root);
    }
    void erase(T v) {
        node *L, *M, *R;
        split(root, M, R, v+1), split(M, L, M, v);
        if (M) delete M;
        M = NULL;
        join(L, R, root);
    }
    void meld(treap& t) { // segmented merge
        node *L = root, *R = t.root;
        root = NULL;
        while (L or R) {
            if (!L or (L and R and L->mi > R->mi))
               std::swap(L, R);
            if (!R) join(root, L, root), L = NULL;
            else if (L->mi == R->mi) {
                node* LL;
                split(L, LL, L, R->mi+1);
                delete LL;
            } else {
                node* LL;
                split(L, LL, L, R->mi);
                join(root, LL, root);
            }
        t.root = NULL;
   }
};
```

1.18 Treap Persistent Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
mt19937_64 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct node {
    node *1, *r;
    ll sz, val, sub;
    node(11 v) : 1(NULL), r(NULL), sz(1), val(v), sub(v) {}
    node(node* x) : l(x->l), r(x->r), sz(x->sz),
       val(x->val), sub(x->sub) {}
    void update() {
        sz = 1, sub = val;
        if (1) sz += 1->sz, sub += 1->sub;
        if (r) sz += r->sz, sub += r->sub;
        sub %= MOD;
    }
};
11 size(node* x) { return x ? x->sz : 0; }
void update(node* x) { if (x) x->update(); }
node* copy(node* x) { return x ? new node(x) : NULL; }
node* join(node* 1, node* r) {
    if (!1 or !r) return 1 ? copy(1) : copy(r);
    node* ret;
    if (rng() % (size(l) + size(r)) < size(l)) {</pre>
        ret = copy(1);
        ret->r = join(ret->r, r);
    } else {
        ret = copy(r);
        ret->1 = join(1, ret->1);
    }
    return update(ret), ret;
}
void split(node* x, node*& 1, node*& r, 11 v, 11 key = 0) {
    if (!x) return void(l = r = NULL);
    if (key + size(x->1) < v) {
        1 = copy(x);
        split(1->r, 1->r, r, v, key+size(1->1)+1);
```

```
} else {
    r = copy(x);
    split(r->1, 1, r->1, v, key);
}
update(1), update(r);
}

vector<node*> treap;

void init(const vector<11>& v) {
    treap = {NULL};
    for (auto i : v) treap[0] = join(treap[0], new node(i));
}
```

1.19 SQRT-decomposition

```
// Resolve RMQ
// 0-indexed
// MAX2 = sqrt(MAX)
// O bloco da posicao x eh
// sempre x/q
//
// Complexidades:
// build - O(n)
// query - 0(sqrt(n))
int n, q;
int v[MAX];
int bl[MAX2];
void build() {
    q = (int) sqrt(n);
     // computa cada bloco
   for (int i = 0; i <= q; i++) {</pre>
        bl[i] = INF;
        for (int j = 0; j < q and q * i + j < n; j++)
            bl[i] = min(bl[i], v[q * i + j]);
    }
```

```
}
int query(int a, int b) {
    int ret = INF;
    // linear no bloco de a
    for (; a <= b and a % q; a++) ret = min(ret, v[a]);</pre>
    // bloco por bloco
    for (; a + q <= b; a += q) ret = min(ret, bl[a / q]);</pre>
    // linear no bloco de b
    for (; a <= b; a++) ret = min(ret, v[a]);</pre>
    return ret;
}
1.20 RMQ \langle O(n), O(1) \rangle - cartesian tree
// O(n) pra buildar, query O(1)
// Para retornar o indice, basta
// trocar v[...] para ... na query
template < typename T > struct rmq {
    vector <T> v;
    int n, b;
    vector < int > id, st;
    vector < vector < int >> table;
    vector < vector < int >>> entre;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    rmq(vector < T > & v_) {
        v = v_{-}, n = v.size();
        b = (\_builtin\_clz(1) - \_builtin\_clz(n) + 1)/4 + 1;
        id.resize(n);
        table.assign(4*b, vector<int>((n+b-1)/b));
        entre.assign(1<<b<<b, vector<vector<int>>(b,
            vector < int > (b, -1)));
        for (int i = 0; i < n; i += b) {</pre>
```

int at = 0, 1 = min(n, i+b);

```
st.clear():
            for (int j = i; j < 1; j++) {</pre>
                while (st.size() and op(st.back(), j) == j)
                   st.pop_back(), at *= 2;
                st.push_back(j), at = 2*at+1;
            for (int j = i; j < l; j++) id[j] = at;
            if (entre[at][0][0] == -1) for (int x = 0; x <</pre>
               1-i; x++) {
                entre[at][x][x] = x;
                for (int y = x+1; y < 1-i; y++)
                    entre[at][x][y] =
                        op(i+entre[at][x][y-1], i+y) - i;
            table [0][i/b] = i+entre[at][0][1-i-1];
        for (int j = 1; (1<<j) <= (n+b-1)/b; j++)
            for (int i = 0; i+(1<<j) <= (n+b-1)/b; i++)
                table[j][i] = op(table[j-1][i],
                   table [j-1][i+(1<<(j-1))]);
    }
    T query(int i, int j) {
        if (i/b == j/b) return
           v[i/b*b+entre[id[i]][i%b][j%b]];
        int x = i/b+1, y = j/b-1, ans = i;
        if (x <= y) {
            int t = __builtin_clz(1) - __builtin_clz(y-x+1);
            ans = op(ans, op(table[t][x],
               table[t][y-(1<<t)+1]));
        ans = op(ans, op(i/b*b+entre[id[i]][i\%b][b-1],
           j/b*b+entre[id[j]][0][j%b]));
        return v[ans];
   }
};
1.21 MergeSort Tree
// Se for construida sobre um array:
```

count(i, j, a, b) retorna quantos

```
//
        elementos de v[i..j] pertencem a [a, b]
        report(i, j, a, b) retorna os indices dos
//
        elementos de v[i..j] que pertencem a [a, b]
//
//
        retorna o vetor ordenado
// Se for construida sobre pontos (x, y):
//
        count(x1, x2, y1, x2) retorna quantos pontos
        pertencem ao retangulo (x1, y1), (x2, y2)
//
        report(x1, x2, y1, y2) retorna os indices dos pontos
//
   que
//
        pertencem ao retangulo (x1, y1), (x2, y2)
        retorna os pontos ordenados lexicograficamente
//
//
        (assume x1 \le x2, y1 \le y2)
//
// kth(y1, y2, k) retorna o indice do ponto com k-esimo menor
// x dentre os pontos que possuem y em [y1, y2] (0 based)
// Se quiser usar para achar k-esimo valor em range,
   construir
// com ms_tree t(v, true), e chamar kth(1, r, k)
// Usa O(n log(n)) de memoria
//
// Complexidades:
// construir - O(n log(n))
// count - O(log(n))
// report - O(log(n) + k) para k indices retornados
// kth - O(log(n))
template <typename T = int> struct ms_tree {
    vector < tuple < T, T, int >> v;
    int n;
    vector < vector < tuple < T, T, int >>> t; // {v, idx, left}
    vector <T> vy;
    ms_tree(vector<pair<T, T>>& vv) : n(vv.size()), t(4*n),
       vy(n) {
        for (int i = 0; i < n; i++)</pre>
           v.push_back({vv[i].first, vv[i].second, i});
        sort(v.begin(), v.end());
        build(1, 0, n-1);
        for (int i = 0; i < n; i++) vy[i] =</pre>
           get <0>(t[1][i+1]);
    }
```

```
ms_tree(vector<T>& vv, bool inv = false) { // inv:
   inverte indice e valor
    vector<pair<T, T>> v2;
    for (int i = 0; i < vv.size(); i++)</pre>
        inv ? v2.push_back({vv[i], i}) :
            v2.push_back({i, vv[i]});
    *this = ms_tree(v2);
}
void build(int p, int 1, int r) {
    t[p].push_back({get<0>(v[1]), get<0>(v[r]), 0}); //
       {min_x, max_x, 0}
    if (1 == r) return t[p].push_back({get<1>(v[1]),
       get <2>(v[1]), 0});
    int m = (1+r)/2;
    build (2*p, 1, m), build (2*p+1, m+1, r);
    int L = 0, R = 0;
    while (t[p].size() \le r-l+1) {
        int left = get <2>(t[p].back());
        if (L > m-1 \text{ or } (R+m+1 \le r \text{ and } t[2*p+1][1+R] \le
            t[2*p][1+L])) {
            t[p].push_back(t[2*p+1][1 + R++]);
            get <2 > (t[p].back()) = left;
             continue;
        }
        t[p].push_back(t[2*p][1 + L++]);
        get < 2 > (t[p].back()) = left+1;
    }
}
int get_l(T y) { return lower_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int get_r(T y) { return upper_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int count(T x1, T x2, T y1, T y2) {
    function < int (int, int, int) > dfs = [&] (int p, int l,
       int r) {
        if (1 == r \text{ or } x2 < get < 0 > (t[p][0]) \text{ or }
            get<1>(t[p][0]) < x1) return 0;
        if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) \le
            x2) return r-1;
```

```
int nl = get < 2 > (t[p][1]), nr = get < 2 > (t[p][r]);
        return dfs(2*p, nl, nr) + dfs(2*p+1, l-nl, r-nr);
    };
    return dfs(1, get_l(y1), get_r(y2));
}
vector<int> report(T x1, T x2, T y1, T y2) {
    vector < int > ret;
    function < void(int, int, int) > dfs = [&](int p, int
       1, int r) {
        if (1 == r \text{ or } x2 < get < 0 > (t[p][0]) \text{ or }
            get <1>(t[p][0]) < x1) return;</pre>
        if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) <=
            x2) {
            for (int i = 1; i < r; i++)
                ret.push_back(get<1>(t[p][i+1]));
            return;
        }
        int nl = get < 2 > (t[p][1]), nr = get < 2 > (t[p][r]);
        dfs(2*p, nl, nr), dfs(2*p+1, l-nl, r-nr);
    };
    dfs(1, get_l(y1), get_r(y2));
    return ret;
int kth(T y1, T y2, int k) {
    function < int (int, int, int) > dfs = [&](int p, int 1,
       int r) {
        if (k >= r-1) {
            k = r-1;
            return -1;
        }
        if (r-l == 1) return get<1>(t[p][l+1]);
        int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
        int left = dfs(2*p, nl, nr);
        if (left != -1) return left;
        return dfs(2*p+1, l-nl, r-nr);
    return dfs(1, get_l(y1), get_r(y2));
}
```

};

1.22 Split-Merge Set - Lazy

```
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge e o insert_range, que custa O(log(N))
   amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
template < typename T > struct sms {
    struct node {
        node *1, *r;
        int cnt;
        bool flip;
        node() : 1(NULL), r(NULL), cnt(0), flip(0) {}
        void update() {
             cnt = 0;
            if (1) cnt += 1->cnt;
            if (r) cnt += r->cnt;
        }
    };
    void prop(node* x, int size) {
        if (!x or !x->flip) return;
        x - > flip = 0;
        x \rightarrow cnt = size - x \rightarrow cnt;
        if (size > 1) {
            if (!x->1) x->1 = new node();
            if (!x->r) x->r = new node();
            x - > 1 - > flip ^= 1;
            x->r->flip ^= 1;
        }
    }
    node* root;
    T N;
    sms() : root(NULL), N(0) {}
    sms(T v) : sms() { while (v >= N) N = 2*N+1; }
    sms(sms& t) : root(NULL), N(t.N) {
        for (int i = 0; i < t.size(); i++) insert(t[i]);</pre>
```

```
}
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i); }
void destroy(node* r) {
    vector < node *> q = {r};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
~sms() { destroy(root); }
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
}
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
    return *this;
}
int count(node* x, T size) {
    if (!x) return 0;
    prop(x, size);
    return x->cnt;
}
int size() { return count(root, N+1); }
void clear() {
    sms tmp;
    swap(*this, tmp);
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        prop(root, N+1);
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
        root ->update();
    }
}
```

```
node* insert(node* at, T idx, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (1 == r) {
        at -> cnt = 1;
        return at;
    T m = 1 + (r-1)/2;
    if (idx \le m) at->1 = insert(at->1, idx, 1, m);
    else at->r = insert(at->r, idx, m+1, r);
    return at->update(), at;
}
void insert(T v) {
    assert(v >= 0);
    expand(v);
    root = insert(root, v, 0, N);
}
node* erase(node* at, T idx, T l, T r) {
    if (!at) return at;
    prop(at, r-l+1);
    if (1 == r) at->cnt = 0;
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, 1, m);
        else at->r = erase(at->r, idx, m+1, r);
        at->update();
    return at;
}
void erase(T v) {
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, 0, N);
}
int count(node* at, T a, T b, T l, T r) {
    if (!at or b < l or r < a) return 0;</pre>
    prop(at, r-l+1);
    if (a <= l and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
```

```
}
int count(T v) { return count(root, v, v, 0, N); }
int order_of_key(T v) { return count(root, 0, v-1, 0,
   N); }
int lower_bound(T v) { return order_of_key(v); }
const T operator [](int i) { // i-esimo menor elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root:
    T 1 = 0, r = N;
    while (1 < r) {
        prop(at, r-l+1);
        T m = 1 + (r-1)/2;
        if (count(at->1, m-1+1) > i) at = at->1, r = m;
            i -= count(at->1, r-m);
            at = at->r; l = m+1;
        }
    }
    return 1;
}
node* merge(node* a, node* b, T tam) {
    if (!a or !b) return a ? a : b;
    prop(a, tam), prop(b, tam);
    if (b \rightarrow cnt == tam) swap(a, b);
    if (tam == 1 or a \rightarrow cnt == tam) {
        destroy(b);
        return a;
    a - > 1 = merge(a - > 1, b - > 1, tam > > 1), a - > r = merge(a - > r,
       b->r, tam>>1);
    a->update(), delete b;
    return a;
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root, N+1);
    s.root = NULL;
}
```

```
node* split(node*& x, int k, T tam) {
    if (k <= 0 or !x) return NULL;</pre>
    prop(x, tam);
    node* ret = new node();
    if (tam == 1) x->cnt = 0, ret->cnt = 1;
    else {
        if (k \le count(x->1, tam>>1)) ret->1 =
            split(x->1, k, tam>>1);
        else {
            ret->r = split(x->r, k - count(x->1,
                tam>>1), tam>>1);
            swap(x->1, ret->1);
        }
        ret->update(), x->update();
    }
    return ret;
}
void split(int k, sms& s) { // pega os 'k' menores
    s.clear();
    s.root = split(root, min(k, size()), N+1);
    s.N = N;
}
// pega os menores que 'k'
void split_val(T k, sms& s) { split(order_of_key(k), s);
   }
void flip(node*& at, T a, T b, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (a <= 1 and r <= b) {
        at ->flip ^= 1;
        prop(at, r-l+1);
        return;
    }
    if (r < a or b < 1) return;</pre>
    T m = 1 + (r-1)/2;
    flip(at->1, a, b, 1, m), flip(at->r, a, b, m+1, r);
    at->update();
}
void flip(T l, T r) { // flipa os valores em [l, r]
    assert(1 \ge 0 \text{ and } 1 \le r);
    expand(r);
```

```
flip(root, 1, r, 0, N);
}
// complemento considerando que o universo eh [0, lim]
void complement(T lim) {
    assert(lim >= 0);
    if (lim > N) expand(lim);
    flip(root, 0, lim, 0, N);
    sms tmp;
    split_val(lim+1, tmp);
    swap(*this, tmp);
}
void insert_range(T l, T r) { // insere todo os valores
    em [l, r]
    sms tmp;
    tmp.flip(l, r);
    merge(tmp);
}
};
```

1.23 SegTree 2D Iterativa

```
// Consultas 0-based
// Um valor inicial em (x, y) deve ser colocado em
   seg[x+n][y+n]
// Query: soma do retangulo ((x1, y1), (x2, y2))
// Update: muda o valor da posicao (x, y) para val
// Nao pergunte como que essa coisa funciona
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
// Se for de min/max, pode tirar os if's da 'query', e fazer
// sempre as 4 operacoes. Fica mais rapido
//
// Complexidades:
// build - O(n^2)
// query - O(log^2(n))
// update - O(\log^2(n))
```

```
int seg[2*MAX][2*MAX], n;
void build() {
    for (int x = 2*n; x; x--) for (int y = 2*n; y; y--) {
         if (x < n) seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         if (y < n) seg[x][y] = seg[x][2*y] + seg[x][2*y+1];
    }
}
int query(int x1, int y1, int x2, int y2) {
    int ret = 0, y3 = y1 + n, y4 = y2 + n;
     for (x1 += n, x2 += n; x1 <= x2; ++x1 /= 2, --x2 /= 2)
         for (y1 = y3, y2 = y4; y1 \le y2; ++y1 /= 2, --y2 /=
             2) {
             if (x1\%2 == 1 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x1][y1];
             if (x1\%2 == 1 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x1][y2];
             if (x2\%2 == 0 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x2][y1];
             if (x2\%2 == 0 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x2][y2];
         }
     return ret;
}
void update(int x, int y, int val) {
    int y2 = y += n;
    for (x += n; x; x /= 2, y = y2) {
         if (x \ge n) seg[x][y] = val;
         else seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         while (y /= 2) seg[x][y] = seg[x][2*y] +
             seg[x][2*y+1];
    }
}
1.24 SegTree PA
// Segtree de PA
// update_set(l, r, A, R) seta [l, r] para PA(A, R),
// update_add soma PA(A, R) em [1, r]
// query(l, r) retorna a soma de [1, r]
```

```
//
// PA(A, R) eh a PA: [A+R, A+2R, A+3R, ...]
// Complexidades:
// construir - O(n)
// update_set, update_add, query - O(log(n))
struct seg_pa {
    struct Data {
        ll sum;
        ll set_a, set_r, add_a, add_r;
        Data() : sum(0), set_a(LINF), set_r(0), add_a(0),
           add r(0) {}
    };
    vector < Data > seg;
    int n;
    seg_pa(int n_) {
        n = n_{\cdot};
        seg = vector < Data > (4*n);
    }
    void prop(int p, int l, int r) {
        int tam = r-l+1;
        11 &sum = seg[p].sum, &set_a = seg[p].set_a, &set_r
           = seg[p].set_r,
            &add_a = seg[p].add_a, &add_r = seg[p].add_r;
        if (set_a != LINF) {
            set_a += add_a, set_r += add_r;
            sum = set_a*tam + set_r*tam*(tam+1)/2;
            if (1 != r) {
                int m = (1+r)/2;
                seg[2*p].set_a = set_a;
                seg[2*p].set_r = set_r;
                seg[2*p].add_a = seg[2*p].add_r = 0;
                seg[2*p+1].set_a = set_a + set_r * (m-l+1);
                seg[2*p+1].set_r = set_r;
                 seg[2*p+1].add_a = seg[2*p+1].add_r = 0;
            }
```

```
set_a = LINF, set_r = 0;
        add_a = add_r = 0;
    } else if (add_a or add_r) {
        sum += add_a*tam + add_r*tam*(tam+1)/2;
        if (1 != r) {
            int m = (1+r)/2;
            seg[2*p].add_a += add_a;
            seg[2*p].add_r += add_r;
            seg[2*p+1].add_a += add_a + add_r * (m-l+1);
            seg[2*p+1].add_r += add_r;
        }
        add_a = add_r = 0;
    }
}
int inter(pair<int, int> a, pair<int, int> b) {
    if (a.first > b.first) swap(a, b);
    return max(0, min(a.second, b.second) - b.first + 1);
}
ll set(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r);
    if (b < l or r < a) return seg[p].sum;</pre>
    if (a <= 1 and r <= b) {</pre>
        seg[p].set_a = aa;
        seg[p].set_r = rr;
        prop(p, 1, r);
        return seg[p].sum;
    }
    int m = (1+r)/2;
    int tam_l = inter({1, m}, {a, b});
    return seg[p].sum = set(a, b, aa, rr, 2*p, 1, m) +
        set(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
}
void update_set(int 1, int r, 11 aa, 11 rr) {
    set(1, r, aa, rr, 1, 0, n-1);
}
11 add(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r);
    if (b < l or r < a) return seg[p].sum;</pre>
    if (a \le 1 \text{ and } r \le b) {
```

```
seg[p].add_a += aa;
            seg[p].add_r += rr;
            prop(p, 1, r);
            return seg[p].sum;
        }
        int m = (1+r)/2;
        int tam_l = inter({1, m}, {a, b});
        return seg[p].sum = add(a, b, aa, rr, 2*p, 1, m) +
            add(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
    void update_add(int 1, int r, ll aa, ll rr) {
        add(1, r, aa, rr, 1, 0, n-1);
    }
    11 query(int a, int b, int p, int l, int r) {
        prop(p, 1, r);
        if (b < l or r < a) return 0;
        if (a <= l and r <= b) return seg[p].sum;</pre>
        int m = (1+r)/2;
        return query(a, b, 2*p, 1, m) + query(a, b, 2*p+1,
           m+1, r);
    }
    11 query(int 1, int r) { return query(1, r, 1, 0, n-1); }
};
```

1.25 SegTree Esparsa - Lazy

```
// Query: soma do range [a, b]
// Update: flipa os valores de [a, b]
// O MAX tem q ser Q log N para Q updates
//
// Complexidades:
// build - O(1)
// query - O(log(n))
// update - O(log(n))

namespace seg {
   int seg[MAX], lazy[MAX], R[MAX], L[MAX], ptr;
   int get_l(int i){
      if (L[i] == 0) L[i] = ptr++;
      return L[i];
```

```
}
    int get_r(int i){
        if (R[i] == 0) R[i] = ptr++;
        return R[i];
    }
    void build() { ptr = 2; }
    void prop(int p, int 1, int r) {
        if (!lazy[p]) return;
        seg[p] = r-l+1 - seg[p];
        if (1 != r) lazy[get_l(p)]^=lazy[p],
           lazy[get_r(p)]^=lazy[p];
        lazy[p] = 0;
    }
    int query(int a, int b, int p=1, int 1=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 or r < a) return 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, get_l(p), l, m)+query(a, b,
           get_r(p), m+1, r);
    }
    int update(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < l or r < a) return seg[p];</pre>
        if (a \le 1 \text{ and } r \le b)
            lazy[p] ^= 1;
            prop(p, 1, r);
            return seg[p];
        int m = (1+r)/2;
        return seg[p] = update(a, b, get_l(p), l,
           m)+update(a, b, get_r(p), m+1, r);
    }
};
```

1.26 SegTree Esparsa - O(q) memoria

```
// Query: min do range [a, b]
// Update: troca o valor de uma posicao
// Usa O(q) de memoria para q updates
//
// Complexidades:
// query - O(log(n))
// update - 0(log(n))
template < typename T > struct seg {
    struct node {
        node* ch[2];
        char d;
        T v;
        T mi;
        node(int d_, T v_, T val) : d(d_), v(v_) {
            ch[0] = ch[1] = NULL;
            mi = val;
        node(node* x) : d(x->d), v(x->v), mi(x->mi) {
            ch[0] = x -> ch[0], ch[1] = x -> ch[1];
        void update() {
            mi = numeric_limits <T>::max();
            for (int i = 0; i < 2; i++) if (ch[i])</pre>
                mi = min(mi, ch[i]->mi);
        }
    };
    node* root;
    char n;
    seg() : root(NULL), n(0) {}
    \simseg() {
        std::vector<node*> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->ch[0]), q.push_back(x->ch[1]);
```

```
delete x:
    }
}
char msb(T v, char l, char r) { // msb in range (l, r]
    for (char i = r; i > 1; i--) if (v>>i&1) return i;
    return -1;
}
void cut(node* at, T v, char i) {
    char d = msb(v ^a at -> v, at -> d, i);
    if (d == -1) return; // no need to split
    node* nxt = new node(at);
    at -> ch[v>> d&1] = NULL;
    at - ch[!(v > d\&1)] = nxt;
    at -> d = d:
}
node* update(node* at, T idx, T val, char i) {
    if (!at) return new node(-1, idx, val);
    cut(at, idx, i);
    if (at -> d == -1) { // leaf}
        at->mi = val;
        return at;
    bool dir = idx>>at->d&1;
    at->ch[dir] = update(at->ch[dir], idx, val, at->d-1);
    at ->update();
    return at;
}
void update(T idx, T val) {
    while (idx>>n) n++;
    root = update(root, idx, val, n-1);
}
T query(node* at, T a, T b, T l, T r, char i) {
    if (!at or b < l or r < a) return
       numeric_limits <T>::max();
    if (a <= l and r <= b) return at->mi;
    T m = 1 + (r-1)/2;
    if (at->d < i) {</pre>
        if ((at->v>>i\&1) == 0) return query(at, a, b, 1,
           m, i-1);
```

1.27 SegTree Iterativa com Lazy Propagation

```
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Para mudar, mudar as funcoes junta, poe e query
// LOG = ceil(log2(MAX))
//
// Complexidades:
// build - O(n)
// query - 0(log(n))
// update - O(log(n))
namespace seg {
    11 seg[2*MAX], lazy[2*MAX];
    int n;
    ll junta(ll a, ll b) {
        return a+b;
    }
    // soma x na posicao p de tamanho tam
    void poe(int p, ll x, int tam, bool prop=1) {
        seg[p] += x*tam;
        if (prop and p < n) lazy[p] += x;</pre>
    }
    // atualiza todos os pais da folha p
    void sobe(int p) {
        for (int tam = 2; p /= 2; tam *= 2) {
            seg[p] = junta(seg[2*p], seg[2*p+1]);
            poe(p, lazy[p], tam, 0);
```

```
}
// propaga o caminho da raiz ate a folha p
void prop(int p) {
    int tam = 1 << (LOG-1);</pre>
    for (int s = LOG; s; s--, tam /= 2) {
        int i = p >> s;
        if (lazy[i]) {
            poe(2*i, lazy[i], tam);
            poe(2*i+1, lazy[i], tam);
            lazy[i] = 0;
        }
    }
}
void build(int n2, int* v) {
    n = n2;
    for (int i = 0; i < n; i++) seg[n+i] = v[i];
    for (int i = n-1; i; i--) seg[i] = junta(seg[2*i],
       seg[2*i+1]);
    for (int i = 0; i < 2*n; i++) lazy[i] = 0;</pre>
}
11 query(int a, int b) {
    11 \text{ ret} = 0;
    for (prop(a+=n), prop(b+=n); a \le b; ++a/=2, --b/=2)
        if (a%2 == 1) ret = junta(ret, seg[a]);
        if (b%2 == 0) ret = junta(ret, seg[b]);
    }
    return ret;
}
void update(int a, int b, int x) {
    int a2 = a += n, b2 = b += n, tam = 1;
    for (; a <= b; ++a/=2, --b/=2, tam *= 2) {
        if (a\%2 == 1) poe(a, x, tam);
        if (b\%2 == 0) poe(b, x, tam);
    sobe(a2), sobe(b2);
}
```

};

1.28 SegTree Colorida

```
// Cada posicao tem um valor e uma cor
// O construtor receve um vector de {valor, cor}
// e o numero de cores (as cores devem estar em [0, c-1])
// query(c, a, b) retorna a soma dos valores
// de todo mundo em [a, b] que tem cor c
// update(c, a, b, x) soma x em todo mundo em
// [a, b] que tem cor c
// paint(c1, c2, a, b) faz com que todo mundo
// em [a, b] que tem cor c1 passe a ter cor c2
//
// Complexidades:
// construir - O(n log(n)) espaco e tempo
// query - O(log(n))
// update - O(log(n))
// paint - O(log(n)) amortizado
struct seg_color {
    struct node {
        node *1, *r;
        int cnt;
        11 val, lazy;
        node(): 1(NULL), r(NULL), cnt(0), val(0), lazy(0) {}
        void update() {
            cnt = 0, val = 0;
            for (auto i : {1, r}) if (i) {
                i->prop();
                cnt += i->cnt, val += i->val;
            }
        }
        void prop() {
            if (!lazy) return;
            val += lazy*(ll)cnt;
            for (auto i : {1, r}) if (i) i->lazy += lazy;
            lazy = 0;
        }
    };
```

```
int n;
vector < node *> seg;
seg_color(vector<pair<int, int>>& v, int c) :
   n(v.size()), seg(c, NULL) {
    for (int i = 0; i < n; i++)</pre>
        seg[v[i].second] = insert(seg[v[i].second], i,
           v[i].first, 0, n-1);
}
\simseg_color() {
    queue < node *> q;
    for (auto i : seg) q.push(i);
    while (q.size()) {
        auto i = q.front(); q.pop();
        if (!i) continue;
        q.push(i->1), q.push(i->r);
        delete i;
   }
}
node* insert(node* at, int idx, int val, int l, int r) {
    if (!at) at = new node();
    if (1 == r) return at->cnt = 1, at->val = val, at;
    int m = (1+r)/2;
    if (idx <= m) at->l = insert(at->l, idx, val, l, m);
    else at->r = insert(at->r, idx, val, m+1, r);
    return at ->update(), at;
}
ll query(node* at, int a, int b, int l, int r) {
    if (!at or b < 1 or r < a) return 0;
    at->prop();
    if (a <= l and r <= b) return at->val;
    int m = (1+r)/2:
    return query(at->1, a, b, 1, m) + query(at->r, a, b,
       m+1, r);
}
11 query(int c, int a, int b) { return query(seg[c], a,
   b, 0, n-1); }
void update(node* at, int a, int b, int x, int l, int r)
    if (!at or b < l or r < a) return;</pre>
```

```
at->prop();
    if (a <= 1 and r <= b) {
        at -> lazy += x;
        return void(at->prop());
   }
    int m = (1+r)/2;
    update(at->1, a, b, x, 1, m), update(at->r, a, b, x,
    at ->update();
void update(int c, int a, int b, int x) { update(seg[c],
   a, b, x, 0, n-1); }
void paint(node*& from, node*& to, int a, int b, int l,
   int r) {
    if (to == from or !from or b < l or r < a) return;</pre>
    from ->prop();
    if (to) to->prop();
    if (a <= 1 and r <= b) {
        if (!to) {
            to = from;
            from = NULL;
            return;
        int m = (1+r)/2;
        paint(from->1, to->1, a, b, 1, m),
           paint(from->r, to->r, a, b, m+1, r);
        to->update();
        delete from;
        from = NULL;
        return;
    if (!to) to = new node();
    int m = (1+r)/2;
    paint(from->1, to->1, a, b, 1, m), paint(from->r,
       to->r, a, b, m+1, r);
    from ->update(), to ->update();
void paint(int c1, int c2, int a, int b) {
   paint(seg[c1], seg[c2], a, b, 0, n-1); }
```

};

1.29 SegTree Iterativa

```
// Consultas 0-based
// Valores iniciais devem estar em (seg[n], ..., seg[2*n-1])
// Query: soma do range [a, b]
// Update: muda o valor da posicao p para x
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
int seg[2 * MAX];
int n;
void build() {
    for (int i = n - 1; i; i--) seg[i] = seg[2*i] +
       seg[2*i+1];
}
int query(int a, int b) {
    int ret = 0;
    for (a += n, b += n; a <= b; ++a /= 2, --b /= 2)
        if (a % 2 == 1) ret += seg[a];
        if (b \% 2 == 0) ret += seg[b];
    }
    return ret;
}
void update(int p, int x) {
    seg[p += n] = x;
    while (p /= 2) seg[p] = seg[2*p] + seg[2*p+1];
}
```

1.30 SegTree Beats

```
// query(a, b) - {{min(v[a..b]), max(v[a..b])}, sum(v[a..b])}
// updatemin(a, b, x) faz com que v[i] <- min(v[i], x),
// para i em [a, b]
// updatemax faz o mesmo com max, e updatesum soma x</pre>
```

```
// em todo mundo do intervalo [a, b]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(\log^2(n)) amortizado
// (se nao usar updatesum, fica log(n) amortizado)
#define f first
#define s second
namespace beats {
    struct node {
        int tam;
        ll sum, lazy; // lazy pra soma
        ll mi1, mi2, mi; // mi = #mi1
        ll ma1, ma2, ma; // ma = #ma1
        node(11 x = 0) {
            sum = mi1 = ma1 = x;
            mi2 = LINF, ma2 = -LINF;
            mi = ma = tam = 1;
            lazv = 0;
        node(const node& 1, const node& r) {
            sum = 1.sum + r.sum, tam = 1.tam + r.tam;
            lazv = 0;
            if (1.mi1 > r.mi1) {
                mi1 = r.mi1, mi = r.mi;
                mi2 = min(1.mi1, r.mi2);
            } else if (l.mi1 < r.mi1) {</pre>
                mi1 = 1.mi1, mi = 1.mi;
                mi2 = min(r.mi1, l.mi2);
            } else {
                mi1 = 1.mi1, mi = 1.mi+r.mi;
                mi2 = min(1.mi2, r.mi2);
            }
            if (1.ma1 < r.ma1) {</pre>
                ma1 = r.ma1, ma = r.ma;
                ma2 = max(1.ma1, r.ma2);
            } else if (1.ma1 > r.ma1) {
                ma1 = l.ma1, ma = l.ma;
```

```
ma2 = max(r.ma1, 1.ma2):
        } else {
            ma1 = 1.ma1, ma = 1.ma+r.ma;
            ma2 = max(1.ma2, r.ma2);
        }
    void setmin(ll x) {
        if (x >= ma1) return;
        sum += (x - ma1)*ma;
        if (mi1 == ma1) mi1 = x;
        if (mi2 == ma1) mi2 = x;
        ma1 = x;
    }
    void setmax(ll x) {
        if (x <= mi1) return;</pre>
        sum += (x - mi1)*mi;
       if (ma1 == mi1) ma1 = x;
        if (ma2 == mi1) ma2 = x;
        mi1 = x;
    void setsum(ll x) {
        mi1 += x, mi2 += x, ma1 += x, ma2 += x;
        sum += x*tam;
        lazy += x;
   }
};
node seg[4*MAX];
int n, *v;
node build(int p=1, int l=0, int r=n-1) {
    if (1 == r) return seg[p] = {v[1]};
   int m = (1+r)/2;
    return seg[p] = \{build(2*p, 1, m), build(2*p+1, m+1,
       r)}:
void build(int n2, int* v2) {
    n = n2, v = v2;
    build();
void prop(int p, int l, int r) {
    if (1 == r) return:
```

```
for (int k = 0; k < 2; k++) {
        if (seg[p].lazy) seg[2*p+k].setsum(seg[p].lazy);
        seg[2*p+k].setmin(seg[p].ma1);
        seg[2*p+k].setmax(seg[p].mi1);
    }
    seg[p].lazy = 0;
pair <pair <11, 11>, 11> query (int a, int b, int p=1, int
   l=0, int r=n-1) {
   if (b < 1 or r < a) return {{LINF, -LINF}, 0};</pre>
    if (a <= 1 and r <= b) return {{seg[p].mi1,</pre>
       seg[p].ma1}, seg[p].sum};
    prop(p, 1, r);
    int m = (1+r)/2;
    auto L = query(a, b, 2*p, 1, m), R = query(a, b,
       2*p+1, m+1, r);
    return {{min(L.f.f, R.f.f), max(L.f.s, R.f.s)},
       L.s+R.s;
node updatemin(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p].ma1 <= x) return seg[p];</pre>
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].ma2 < x) {
        seg[p].setmin(x);
        return seg[p];
    }
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemin(a, b, x, 2*p, 1, m),
                     updatemin(a, b, x, 2*p+1, m+1, r)};
node updatemax(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p].mi1 >= x) return seg[p];
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].mi2 > x) {
        seg[p].setmax(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemax(a, b, x, 2*p, 1, m),
                     updatemax(a, b, x, 2*p+1, m+1, r)};
```

1.31 SegTree Persistente

```
// SegTree de soma, update de somar numa posicao
//
// query(a, b, t) retorna a query de [a, b] na versao t
// update(a, x, t) faz um update v[a]+=x a partir da
// versao de t, criando uma nova versao e retornando seu id
// Por default, faz o update a partir da ultima versao
//
// build - O(n)
// query - O(log(n))
// update - O(log(n))
const int MAX = 3e4+10, UPD = 2e5+10, LOG = 20;
const int MAXS = 4*MAX+UPD*LOG;
namespace perseg {
    11 seg[MAXS];
    int rt[UPD], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = v[1];
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
```

```
return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        if (b < 1 or r < a) return 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    ll query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    }
    ll update(int a, int x, int lp, int p, int l, int r) {
        if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a <= m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt++, m+1, r);
    }
    int update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
        return t;
   }
};
1.32 SegTree
// Recursiva com Lazy Propagation
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
//
// Complexidades:
```

```
// build - O(n)
// query - 0(log(n))
// update - O(log(n))
namespace seg {
    11 \text{ seg}[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    ll query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return 0;
        int m = (1+r)/2;
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1, m)
           m+1, r);
    }
    ll update(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        }
        if (b < l or r < a) return seg[p];</pre>
```

```
int m = (1+r)/2:
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
    }
};
// Se tiver uma seg de max, da pra descobrir em O(\log(n))
// o primeiro e ultimo elemento >= val numa range:
// primeira posicao >= val em [a, b] (ou -1 se nao tem)
int get_left(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p] < val) return -1;
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_left(a, b, val, 2*p, 1, m);
    if (x != -1) return x;
    return get_left(a, b, val, 2*p+1, m+1, r);
}
// ultima posicao >= val em [a, b] (ou -1 se nao tem)
int get_right(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_right(a, b, val, 2*p+1, m+1, r);
    if (x != -1) return x;
    return get_right(a, b, val, 2*p, 1, m);
}
// Se tiver uma seg de soma sobre um array nao negativo v,
   da pra
// descobrir em O(\log(n)) o maior j tal que
   v[i]+v[i+1]+...+v[j-1] < val
int lower_bound(int i, 11& val, int p, int 1, int r) {
    if (r < i) return n;</pre>
    if (i <= l and seg[p] < val) {</pre>
        val -= seg[p];
        return n;
    }
```

```
if (1 == r) return 1;
   int m = (1+r)/2;
   int x = lower_bound(i, val, 2*p, 1, m);
   if (x != n) return x;
    return lower_bound(i, val, 2*p+1, m+1, r);
}
1.33 DSU Persistente
```

```
// Persistencia parcial, ou seja, tem que ir
// incrementando o 't' no une
//
// Complexidades:
// build - O(n)
// find - O(log(n))
// une - O(log(n))
int n, p[MAX], sz[MAX], ti[MAX];
void build() {
    for (int i = 0; i < n; i++) {
        p[i] = i;
        sz[i] = 1;
        ti[i] = -INF;
   }
}
int find(int k, int t) {
    if (p[k] == k or ti[k] > t) return k;
   return find(p[k], t);
}
void une(int a, int b, int t) {
    a = find(a, t); b = find(b, t);
    if (a == b) return;
    if (sz[a] > sz[b]) swap(a, b);
    sz[b] += sz[a];
    p[a] = b;
    ti[a] = t;
```

}

1.34 RMQ $\langle O(n), O(1) \rangle$ - min queue

```
// O(n) pra buildar, query O(1)
// Se tiver varios minimos, retorna
// o de menor indice
template < typename T > struct rmq {
    vector <T> v:
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] \le v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    rmq() {}
    rmq(const vector <T>& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
            at = (at << 1) &((1 << b) -1);
            while (at and op(i-msb(at&-at), i) == i) at ^=
                at&-at:
        }
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<<j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    int index_query(int 1, int r) {
        if (r-1+1 \le b) return small(r, r-1+1);
        int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(1+b-1), op(t[n/b*j+x],
           t[n/b*j+y-(1<<j)+1]));
        return op(ans, small(r));
```

```
}
T query(int 1, int r) { return v[index_query(1, r)]; }
};
```

1.35 Wavelet Tree

```
// Usa O(sigma + n log(sigma)) de memoria,
// onde sigma = MAXN - MINN
// Depois do build, o v fica ordenado
// count(i, j, x, y) retorna o numero de elementos de
// v[i, j) que pertencem a [x, y]
// kth(i, j, k) retorna o elemento que estaria
// na poscicao k-1 de v[i, j), se ele fosse ordenado
// sum(i, j, x, y) retorna a soma dos elementos de
// v[i, j) que pertencem a [x, y]
// sumk(i, j, k) retorna a soma dos k-esimos menores
// elementos de v[i, j) (sum(i, j, 1) retorna o menor)
//
// Complexidades:
// build - O(n log(sigma))
// count - O(log(sigma))
// kth - O(log(sigma))
// sum - O(log(sigma))
// sumk - O(log(sigma))
int n, v[MAX];
vector < int > esq[4*(MAXN-MINN)], pref[4*(MAXN-MINN)];
void build(int b = 0, int e = n, int p = 1, int l = MINN,
   int r = MAXN) {
    int m = (1+r)/2; esq[p].push_back(0);
       pref[p].push_back(0);
    for (int i = b; i < e; i++) {
        esq[p].push_back(esq[p].back()+(v[i]<=m));</pre>
        pref[p].push_back(pref[p].back()+v[i]);
    if (1 == r) return;
    int m2 = stable_partition(v+b, v+e, [=](int i){return i
       <= m;}) - v;
    build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
```

```
}
int count(int i, int j, int x, int y, int p = 1, int l =
   MINN, int r = MAXN) {
    if (y < 1 \text{ or } r < x) \text{ return } 0;
    if (x <= 1 and r <= y) return j-i;</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei, j-ej,
       x, y, 2*p+1, m+1, r);
}
int kth(int i, int j, int k, int p=1, int l = MINN, int r =
   MAXN) {
    if (1 == r) return 1;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return kth(ei, ej, k, 2*p, 1, m);</pre>
    return kth(i-ei, j-ej, k-(ej-ei), 2*p+1, m+1, r);
}
int sum(int i, int j, int x, int y, int p = 1, int l = MINN,
   int r = MAXN) {
    if (y < 1 \text{ or } r < x) \text{ return } 0;
    if (x <= l and r <= y) return pref[p][j]-pref[p][i];</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return sum(ei, ej, x, y, 2*p, 1, m) + sum(i-ei, j-ej, x,
       y, 2*p+1, m+1, r);
}
int sumk(int i, int j, int k, int p = 1, int l = MINN, int r
   = MAXN)
    if (l == r) return l*k;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return sumk(ei, ej, k, 2*p, 1, m);</pre>
    return pref[2*p][ej]-pref[2*p][ei]+sumk(i-ei, j-ej,
       k-(ej-ei), 2*p+1, m+1, r);
}
```

2 Grafos

2.1 Dinic

```
// O(min(m * max_flow, n^2 m))
// Grafo com capacidades 1 -> O(sqrt(n)*m)
struct dinic {
    const bool scaling = false; // com scaling -> 0(nm
       log(MAXCAP)),
                                 // com constante alta
    int lim;
    struct edge {
        int to, cap, rev, flow; // para, capacidade, id da
           reversa, fluxo
        bool res; // se a aresta eh residual
        edge(int to_, int cap_, int rev_, bool res_)
            : to(to_), cap(cap_), rev(rev_), flow(0),
               res(res_) {}
    };
    vector < vector < edge >> g;
    vector < int > lev, beg;
    11 F;
    dinic(int n) : g(n), F(0) {}
    void add(int a, int b, int c) { // de a pra b com cap. c
        g[a].push_back(edge(b, c, g[b].size(), false));
        g[b].push_back(edge(a, 0, g[a].size()-1, true));
    }
    bool bfs(int s, int t) {
        lev = vector<int>(g.size(), -1); lev[s] = 0;
        beg = vector<int>(g.size(), 0);
        queue < int > q; q.push(s);
        while (q.size()) {
            int u = q.front(); q.pop();
            for (auto& i : g[u]) {
                if (lev[i.to] != -1 or (i.flow == i.cap))
                   continue;
                if (scaling and i.cap - i.flow < lim)</pre>
                   continue;
                lev[i.to] = lev[u] + 1;
```

```
q.push(i.to);
        }
    }
    return lev[t] != -1;
}
int dfs(int v, int s, int f = INF){
    if (!f or v == s) return f;
    for (int& i = beg[v]; i < g[v].size(); i++) {</pre>
        auto& e = g[v][i];
        if (lev[e.to] != lev[v] + 1) continue;
        int foi = dfs(e.to, s, min(f, e.cap - e.flow));
        if (!foi) continue;
        e.flow += foi, g[e.to][e.rev].flow -= foi;
        return foi;
    }
    return 0;
}
11 max_flow(int s, int t) {
    for (\lim = \text{scaling} ? (1 << 30) : 1; \lim; \lim /= 2)
        while (bfs(s, t)) while (int ff = dfs(s, t)) F
           += ff;
    return F;
}
vector<pair<int, int> > get_cut(int s, int t) {
    max_flow(s, t);
    vector<pair<int, int> > cut;
    vector<int> vis(g.size(), 0), st = {s};
    vis[s] = 1;
    while (st.size()) {
        int u = st.back(); st.pop_back();
        for (auto e : g[u]) if (!vis[e.to] and e.flow <</pre>
           e.cap)
            vis[e.to] = 1, st.push_back(e.to);
    for (int i = 0; i < g.size(); i++) for (auto e:
       g[i])
        if (vis[i] and !vis[e.to] and !e.res)
           cut.push_back({i, e.to});
    return cut;
```

};

2.2 Kruskal

```
// Gera e retorna uma AGM e seu custo total a partir do
   vetor de arestas (edg)
// do grafo
//
// O(m log(m) + m a(m))
vector<tuple<int, int, int>> edg; // {peso,[x,y]}
// DSU em O(a(n))
void dsu_build();
int find(int a);
void unite(int a, int b);
pair<11, vector<tuple<int, int, int>>> kruskal(int n) {
    dsu_build(n);
    sort(edg.begin(), edg.end());
    11 cost = 0;
    vector<tuple<int, int, int>> mst;
    for (auto [w,x,y] : edg) if (find(x) != find(y)) {
        mst.push_back({w,x,y});
        cost += w;
        unite(x,y);
    }
    return {cost,mst};
}
2.3 Sack (DSU em arvores)
// Responde queries de todas as sub-arvores
// offline
//
// O(n log(n))
int sz[MAX], cor[MAX], cnt[MAX];
vector < int > g[MAX];
void build(int k, int d=0) {
```

```
sz[k] = 1;
    for (auto& i : g[k]) {
        build(i, d+1); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
}
void compute(int k, int x, bool dont=1) {
    cnt[cor[k]] += x;
    for (int i = dont; i < g[k].size(); i++)</pre>
        compute(g[k][i], x, 0);
}
void solve(int k, bool keep=0) {
    for (int i = int(g[k].size())-1; i >= 0; i--)
        solve(g[k][i], !i);
    compute(k, 1);
        // agora cnt[i] tem quantas vezes a cor
        // i aparece na sub-arvore do k
    if (!keep) compute(k, -1, 0);
}
```

2.4 Block-Cut Tree

```
// Cria a block-cut tree, uma arvore com os blocos
// e os pontos de articulacao
// Blocos sao componentes 2-vertice-conexos maximais
// Uma 2-coloracao da arvore eh tal que uma cor sao
// os blocos, e a outra cor sao os pontos de art.
// art[i] responde se i eh ponto de articulacao
// Funciona pra grafo nao conexo, e ja limpa tudo
//
// O(n+m)

vector<int> g[MAX];
stack<int> s;
int id[MAX], art[MAX], pos[MAX];
vector<vector<int>> blocks, tree;
```

```
int dfs(int i, int &t, int p = -1) {
    int lo = id[i] = t++;
    s.push(i);
    for (int j : g[i]) if (j != p) {
        if (id[i] == -1) {
            int val = dfs(j, t, i);
            lo = min(lo, val);
            if (val >= id[i]) {
                art[i]++;
                blocks.emplace_back(1, i);
                while (blocks.back().back() != j)
                    blocks.back().push_back(s.top()),
                        s.pop();
            }
            // if (val > id[i]) aresta i-j eh ponte
        else lo = min(lo, id[j]);
    }
    if (p == -1 and art[i]) art[i]--;
    return lo;
}
void build(int n) {
    for (int i = 0; i < n; i++) id[i] = -1, art[i] = 0;</pre>
    blocks.clear(), tree.clear();
    while (s.size()) s.pop();
    int t = 0;
    for (int i = 0; i < n; i++) if (id[i] == -1) dfs(i, t,
       -1);
    tree.resize(blocks.size()); // no maximo 2*n
    for (int i = 0; i < n; i++) if (art[i])</pre>
        pos[i] = tree.size(), tree.emplace_back();
    for (int i = 0; i < blocks.size(); i++) for (int j :</pre>
       blocks[i]) {
        if (!art[j]) pos[j] = i;
        else tree[i].push_back(pos[j]),
           tree[pos[j]].push_back(i);
```

```
.
```

2.5 Topological Sort

```
// Retorna uma ordenacaoo topologica de g
// Se g nao for DAG retorna um vetor vazio
// O(n + m)
vector < int > g[MAX];
vector<int> topo_sort(int n) {
    vector < int > ret(n,-1), vis(n,0);
    int pos = n-1, dag = 1;
    function < void(int) > dfs = [&] (int v) {
        vis[v] = 1;
        for (auto u : g[v]) {
            if (vis[u] == 1) dag = 0;
            else if (!vis[u]) dfs(u);
        ret[pos--] = v, vis[v] = 2;
    };
    for (int i=0; i<n; i++) if (!vis[i]) dfs(i);
    if (!dag) ret.clear();
    return ret;
}
```

2.6 Max flow com lower bound

```
// Manda passar pelo menos 'lb' de fluxo
// em cada aresta
//
// O(dinic)
```

```
struct lb_max_flow : dinic {
    vector < int > d;
    vector < int > e;
    lb_max_flow(int n):dinic(n + 2), d(n, 0)
    void add(int a, int b, int c, int lb = 0){
        c = lb;
        d[a] -= lb;
        d[b] += lb;
        dinic::add(a, b, c);
    }
    bool check_flow(int src, int snk, int F){
        int n = d.size();
        d[src] += F;
        d[snk] -= F;
        for (int i = 0; i < n; i++){</pre>
            if (d[i] > 0){
                dinic::add(n, i, d[i]);
            } else if (d[i] < 0){</pre>
                 dinic::add(i, n+1, -d[i]);
            }
        }
        int f = max_flow(n, n+1);
        return (f == F);
    }
};
    Prufer code
```

```
// Traduz de lista de arestas para prufer code
// e vice-versa
// Os vertices tem label de 0 a n-1
// Todo array com n-2 posicoes e valores de
// 0 a n-1 sao prufer codes validos
//
// O(n)

vector<int> to_prufer(vector<pair<int, int>> tree) {
   int n = tree.size()+1;
```

```
vector < int > d(n, 0);
    vector < vector < int >> g(n);
    for (auto [a, b] : tree) d[a]++, d[b]++,
        g[a].push_back(b), g[b].push_back(a);
    vector < int > pai(n, -1);
    queue < int > q; q.push(n-1);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int v : g[u]) if (v != pai[u])
            pai[v] = u, q.push(v);
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<int> ret;
    for (int i = 0; i < n-2; i++) {
        int y = pai[x];
        ret.push_back(y);
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
            d.begin();
    return ret;
}
vector<pair<int, int>> from_prufer(vector<int> p) {
    int n = p.size()+2;
    vector < int > d(n, 1);
    for (int i : p) d[i]++;
    p.push_back(n-1);
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<pair<int, int>> ret;
    for (int y : p) {
        ret.push_back({x, y});
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
            d.begin();
    }
    return ret;
```

2.8 Tarjan para SCC

```
// O(n + m)
vector < int > g[MAX];
stack<int> s;
int vis[MAX], comp[MAX];
int id[MAX];
// se quiser comprimir ciclo ou achar ponte em grafo nao
   direcionado.
// colocar um if na dfs para nao voltar pro pai da DFS tree
int dfs(int i, int& t) {
    int lo = id[i] = t++;
    s.push(i);
    vis[i] = 2;
   for (int j : g[i]) {
        if (!vis[j]) lo = min(lo, dfs(j, t));
        else if (vis[j] == 2) lo = min(lo, id[j]);
    }
    // aresta de i pro pai eh uma ponte (no caso nao
       direcionado)
    if (lo == id[i]) while (1) {
        int u = s.top(); s.pop();
        vis[u] = 1, comp[u] = i;
        if (u == i) break;
    }
    return lo;
}
void tarjan(int n) {
    int t = 0;
    for (int i = 0; i < n; i++) vis[i] = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i, t);</pre>
}
```

2.9 Dijkstra

```
// encontra menor distancia de x
// para todos os vertices
// se ao final do algoritmo d[i] = LINF,
// entao x nao alcanca i
// O(m log(n))
11 d[MAX];
vector<pair<int,int>> g[MAX]; // {vizinho, peso}
int n;
void dijkstra(int x) {
    for (int i=0; i < n; i++) d[i] = LINF;</pre>
    d[x] = 0;
    priority_queue < pair < ll, int >> pq;
    pq.push({0,x});
    while (pq.size()) {
        auto [ndist,u] = pq.top(); pq.pop();
        if (-ndist > d[u]) continue;
        for (auto [idx,w] : g[u]) if (d[idx] > d[u] + w) {
            d[idx] = d[u] + w;
            pq.push({-d[idx], idx});
        }
    }
}
```

2.10 Floyd-Warshall

```
// encontra o menor caminho entre todo
// par de vertices e detecta ciclo negativo
// returna 1 sse ha ciclo negativo
// d[i][i] deve ser 0
// para i != j, d[i][j] deve ser w se ha uma aresta
// (i, j) de peso w, INF caso contrario
//
```

```
int n;
int d[MAX][MAX];
bool floyd_warshall() {
    for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)</pre>
    for (int j = 0; j < n; j++)
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    for (int i = 0; i < n; i++)
        if (d[i][i] < 0) return 1;</pre>
    return 0;
}
2.11 Virtual Tree
// Comprime uma arvore dado um conjunto S de vertices, de
   forma que
// o conjunto de vertices da arvore comprimida contenha S e
// minimal e fechado sobre a operacao de LCA
// Se |S| = k, a arvore comprimida tem O(k) vertices
//
// O(k log(k))
template < typename T> struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    rmq() {}
    rmq(const \ vector < T > \& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
```

 $// O(n^3)$

```
at = (at << 1) &((1 << b) -1):
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] =</pre>
           b*i+b-1-msb(mask[b*i+b-1]);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< i) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    T query(int 1, int r) {
        if (r-l+1 \le b) return small(r, r-l+1);
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x \le y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
               t[n/b*j+y-(1<<j)+1]));
        }
        return ans;
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq<int> RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    void build(int n, int root) {
        t = 0;
        dfs(root);
```

```
RMQ = rmq < int > (vector < int > (dep, dep + 2*n-1));
    }
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    }
    int dist(int a, int b) {
        return dep[pos[a]] + dep[pos[b]] - 2*dep[pos[lca(a,
           b)]];
    }
}
vector < int > virt[MAX];
#warning lembrar de buildar o LCA antes
int build_virt(vector<int> v) {
    auto cmp = [&](int i, int j) { return lca::pos[i] <</pre>
       lca::pos[j]; };
    sort(v.begin(), v.end(), cmp);
    for (int i = v.size()-1; i; i--)
       v.push_back(lca::lca(v[i], v[i-1]));
    sort(v.begin(), v.end(), cmp);
    v.erase(unique(v.begin(), v.end()), v.end());
    for (int i : v) virt[i].clear();
    for (int i = 1; i < v.size(); i++) {</pre>
#warning soh to colocando aresta descendo
        virt[lca::lca(v[i-1], v[i])].push_back(v[i]);
    }
    return v[0];
}
2.12 Bellman-Ford
// Calcula a menor distancia
// entre a e todos os vertices e
// detecta ciclo negativo
```

// Nao precisa representar o graf
// soh armazenar as arestas
//

```
// O(nm)
int n, m;
int d[MAX];
vector<pair<int, int>> ar; // vetor de arestas
vector < int > w;
                            // peso das arestas
bool bellman_ford(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0;
    for (int i = 0; i <= n; i++)</pre>
        for (int j = 0; j < m; j++) {</pre>
            if (d[ar[j].second] > d[ar[j].first] + w[j]) {
                 if (i == n) return 1;
                 d[ar[j].second] = d[ar[j].first] + w[j];
            }
        }
    return 0;
}
```

2.13 AGM Direcionada

```
// Fala o menor custo para selecionar arestas tal que
// o vertice 'r' alcance todos
// Se nao tem como, retorna LINF
//
// O(m log(n))

struct node {
   pair<ll, int> val;
   ll lazy;
   node *l, *r;
   node() {}
   node(pair<int, int> v) : val(v), lazy(0), l(NULL),
        r(NULL) {}

   void prop() {
```

```
val.first += lazy;
        if (1) 1->lazy += lazy;
        if (r) r->lazy += lazy;
        lazv = 0;
    }
};
void merge(node*& a, node* b) {
    if (!a) swap(a, b);
    if (!b) return;
    a->prop(), b->prop();
    if (a->val > b->val) swap(a, b);
    merge(rand()%2 ? a->1 : a->r, b);
}
pair<11, int> pop(node*& R) {
    R->prop();
    auto ret = R->val;
    node* tmp = R;
    merge(R->1, R->r);
    R = R -> 1;
    if (R) R->lazy -= ret.first;
    delete tmp;
    return ret;
void apaga(node* R) { if (R) apaga(R->1), apaga(R->r),
   delete R; }
11 dmst(int n, int r, vector<pair<pair<int, int>, int>>& ar)
    vector < int > p(n); iota(p.begin(), p.end(), 0);
    function < int(int) > find = [&](int k) { return
       p[k] == k?k:p[k] = find(p[k]); };
    vector < node *> h(n);
    for (auto e : ar) merge(h[e.first.second], new
       node({e.second, e.first.first}));
    vector<int> pai(n, -1), path(n);
    pai[r] = r;
    11 \text{ ans} = 0;
    for (int i = 0; i < n; i++) { // vai conectando todo
       mundo
        int u = i, at = 0;
        while (pai[u] == -1) {
```

```
if (!h[u]) { // nao tem
                for (auto i : h) apaga(i);
                return LINF;
            }
            path[at++] = u, pai[u] = i;
            auto [mi, v] = pop(h[u]);
            ans += mi;
            if (pai[u = find(v)] == i) { // ciclo
                while (find(v = path[--at]) != u)
                    merge(h[u], h[v]), h[v] = NULL,
                       p[find(v)] = u;
                pai[u] = -1;
            }
        }
    for (auto i : h) apaga(i);
    return ans;
}
```

2.14 Blossom - matching maximo em grafo geral

```
// O(n^3)
// Se for bipartido, nao precisa da funcao
// 'contract', e roda em O(nm)
vector < int > g[MAX];
int match[MAX]; // match[i] = com quem i esta matchzado ou -1
int n, pai[MAX], base[MAX], vis[MAX];
queue < int > q;
void contract(int u, int v, bool first = 1) {
    static vector < bool > bloss;
    static int 1;
    if (first) {
        bloss = vector <bool > (n, 0);
        vector < bool > teve(n, 0);
        int k = u; l = v;
        while (1) {
            teve[k = base[k]] = 1;
```

```
if (match[k] == -1) break;
            k = pai[match[k]];
        while (!teve[1 = base[1]]) 1 = pai[match[1]];
    }
    while (base[u] != 1) {
        bloss[base[u]] = bloss[base[match[u]]] = 1;
        pai[u] = v;
        v = match[u];
        u = pai[match[u]];
    }
    if (!first) return;
    contract(v, u, 0);
    for (int i = 0; i < n; i++) if (bloss[base[i]]) {</pre>
        base[i] = 1;
        if (!vis[i]) q.push(i);
        vis[i] = 1;
   }
}
int getpath(int s) {
    for (int i = 0; i < n; i++) base[i] = i, pai[i] = -1,
       vis[i] = 0;
    vis[s] = 1; q = queue < int > (); q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i : g[u]) {
            if (base[i] == base[u] or match[u] == i)
               continue:
            if (i == s or (match[i] != -1 and pai[match[i]]
                ! = -1))
                contract(u, i);
            else if (pai[i] == -1) {
                pai[i] = u;
                if (match[i] == -1) return i;
                i = match[i];
                vis[i] = 1; q.push(i);
            }
        }
    }
    return -1;
}
```

```
int blossom() {
    int ans = 0;
    memset(match, -1, sizeof(match));
    for (int i = 0; i < n; i++) if (match[i] == -1)</pre>
        for (int j : g[i]) if (match[j] == -1) {
            match[i] = j;
            match[j] = i;
            ans++;
            break;
        }
    for (int i = 0; i < n; i++) if (match[i] == -1) {</pre>
        int j = getpath(i);
        if (j == -1) continue;
        ans++;
        while (j != -1) {
            int p = pai[j], pp = match[p];
            match[p] = j;
            match[j] = p;
            j = pp;
        }
    return ans;
}
```

2.15 LCA com RMQ

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// dist(a, b) retorna a distancia entre a e b
//
// Complexidades:
// build - O(n)
// lca - O(1)
// dist - O(1)

template < typename T > struct rmq {
    vector < T > v;
    int n; static const int b = 30;
    vector < int > mask, t;
```

```
int op(int x, int y) { return v[x] < v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
            at = (at << 1) &((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        for (int i = 0; i < n/b; i++) t[i] =</pre>
           b*i+b-1-msb(mask[b*i+b-1]);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<<j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
                t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    T query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x \le y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
                t[n/b*j+y-(1<<j)+1]));
        }
        return ans;
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t:
    rmq<int> RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
```

```
for (int j : g[i]) if (j != p) {
        dfs(j, d+1, i);
        v[t] = i, dep[t++] = d;
    }
}
void build(int n, int root) {
    t = 0;
    dfs(root);
    RMQ = rmq < int > (vector < int > (dep, dep + 2*n - 1));
int lca(int a, int b) {
    a = pos[a], b = pos[b];
    return v[RMQ.query(min(a, b), max(a, b))];
int dist(int a, int b) {
    return dep[pos[a]] + dep[pos[b]] - 2*dep[pos[lca(a,
       b)]];
}
```

Heavy-Light Decomposition sem Update

}

```
// query de min do caminho
//
// Complexidades:
// build - O(n)
// query_path - O(log(n))
#define f first
#define s second
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    int men[MAX], seg[2*MAX];
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
```

```
for (auto& i : g[k]) if (i.first != p) {
            sobe[i.first] = i.second; pai[i.first] = k;
            h[i.first] = (i == g[k][0] ? h[k] : i.first);
            men[i.first] = (i == g[k][0] ? min(men[k],
               i.second) : i.second);
            build_hld(i.first, k, f); sz[k] += sz[i.first];
            if (sz[i.first] > sz[g[k][0].first] or
               g[k][0].first == p)
                swap(i, g[k][0]);
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    }
    void build(int root = 0) {
        t = 0:
        build_hld(root);
        for (int i = 0; i < t; i++) seg[i+t] = v[i];</pre>
        for (int i = t-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    }
    int query_path(int a, int b) {
        if (a == b) return INF;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] != h[b]) return min(men[a],
           query_path(pai[h[a]], b));
        int ans = INF, x = pos[b]+1+t, y = pos[a]+t;
        for (; x \le y; ++x/=2, --y/=2) ans = min({ans,
           seg[x], seg[y]});
        return ans;
   }
};
      Heavy-Light Decomposition - aresta
```

```
// SegTree de soma
// query / update de soma das arestas
// Complexidades:
// build - O(n)
```

```
// \text{ query_path - } O(\log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
namespace seg { ... }
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.first != p) {
            auto [u, w] = i;
            sobe[u] = w; pai[u] = k;
            h[u] = (i == g[k][0] ? h[k] : u);
            build_hld(u, k, f); sz[k] += sz[u];
            if (sz[u] > sz[g[k][0].first] or g[k][0].first
               == g)
                swap(i, g[k][0]);
        }
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        seg::build(t, v);
    ll query_path(int a, int b) {
        if (a == b) return 0;
        if (pos[a] < pos[b]) swap(a, b);
        if (h[a] == h[b]) return seg::query(pos[b]+1,
           pos[a]);
        return seg::query(pos[h[a]], pos[a]) +
           query_path(pai[h[a]], b);
    }
    void update_path(int a, int b, int x) {
```

```
if (a == b) return;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return (void)seg::update(pos[b]+1,
           pos[a], x);
        seg::update(pos[h[a]], pos[a], x);
           update_path(pai[h[a]], b, x);
    }
    ll query_subtree(int a) {
        if (sz[a] == 1) return 0;
        return seg::query(pos[a]+1, pos[a]+sz[a]-1);
    }
    void update_subtree(int a, int x) {
        if (sz[a] == 1) return;
        seg::update(pos[a]+1, pos[a]+sz[a]-1, x);
    }
    int lca(int a, int b) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
        return h[a] == h[b] ? b : lca(pai[h[a]], b);
    }
}
```

2.18 LCA com binary lifting

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// MAX2 = ceil(log(MAX))
//
// Complexidades:
// build - O(n log(n))
// lca - O(log(n))

vector<vector<int> > g(MAX);
int n, p;
int pai[MAX2][MAX];
int in[MAX], out[MAX];

void dfs(int k) {
  in[k] = p++;
  for (int i = 0; i < (int) g[k].size(); i++)</pre>
```

```
if (in[g[k][i]] == -1) {
            pai[0][g[k][i]] = k;
            dfs(g[k][i]);
        }
    out[k] = p++;
}
void build(int raiz) {
    for (int i = 0; i < n; i++) pai[0][i] = i;</pre>
    p = 0, memset(in, -1, sizeof in);
    dfs(raiz);
    // pd dos pais
    for (int k = 1; k < MAX2; k++) for (int i = 0; i < n;
        pai[k][i] = pai[k - 1][pai[k - 1][i]];
}
bool anc(int a, int b) { // se a eh ancestral de b
    return in[a] <= in[b] and out[a] >= out[b];
}
int lca(int a, int b) {
    if (anc(a, b)) return a;
    if (anc(b, a)) return b;
    // sobe a
    for (int k = MAX2 - 1; k >= 0; k--)
        if (!anc(pai[k][a], b)) a = pai[k][a];
    return pai[0][a];
}
// Alternativamente:
// 'binary lifting' gastando O(n) de memoria
// Da pra add folhas e fazer queries online
// 3 vezes o tempo do binary lifting normal
//
// build - O(n)
// kth, lca, dist - O(log(n))
int d[MAX], p[MAX], pp[MAX];
```

```
void set_root(int i) { p[i] = pp[i] = i, d[i] = 0; }
void add_leaf(int i, int u) {
    p[i] = u, d[i] = d[u]+1;
   pp[i] = 2*d[pp[u]] == d[pp[pp[u]]]+d[u] ? pp[pp[u]] : u;
}
int kth(int i, int k) {
    int dd = max(0, d[i]-k);
    while (d[i] > dd) i = d[pp[i]] >= dd ? pp[i] : p[i];
    return i;
}
int lca(int a, int b) {
    if (d[a] < d[b]) swap(a, b);</pre>
    while (d[a] > d[b]) a = d[pp[a]] >= d[b] ? pp[a] : p[a];
    while (a != b) {
        if (pp[a] != pp[b]) a = pp[a], b = pp[b];
        else a = p[a], b = p[b];
    }
    return a;
}
int dist(int a, int b) { return d[a]+d[b]-2*d[lca(a,b)]; }
vector < int > g[MAX];
void build(int i, int pai=-1) {
    if (pai == -1) set_root(i);
    for (int j : g[i]) if (j != pai) {
        add_leaf(j, i);
        build(j, i);
    }
}
2.19 Heavy-Light Decomposition - vertice
// SegTree de soma
```

// query / update de soma dos vertices

```
//
// Complexidades:
// build - O(n)
// \text{ query_path - } O(\log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
namespace seg { ... }
namespace hld {
    vector < int > g[MAX];
    int pos[MAX], sz[MAX];
    int peso[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = peso[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i != p) {
            pai[i] = k;
            h[i] = (i == g[k][0] ? h[k] : i);
            build_hld(i, k, f); sz[k] += sz[i];
            if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
                g[k][0]);
        }
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        seg::build(t, v);
    }
    11 query_path(int a, int b) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return seg::query(pos[b], pos[a]);
        return seg::query(pos[h[a]], pos[a]) +
            query_path(pai[h[a]], b);
    void update_path(int a, int b, int x) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
```

2.20 LCA com HLD

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Para buildar pasta chamar build(root)
// anc(a, b) responde se 'a' eh ancestral de 'b'
//
// Complexidades:
// build - O(n)
// lca - O(log(n))
// anc - 0(1)
vector < int > g[MAX];
int pos[MAX], h[MAX], sz[MAX];
int pai[MAX], t;
void build(int k, int p = -1, int f = 1) {
    pos[k] = t++; sz[k] = 1;
   for (int& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build(i, k, f); sz[k] += sz[i];
```

2.21 MinCostMaxFlow

```
// min_cost_flow(s, t, f) computa o par (fluxo, custo)
// com max(fluxo) <= f que tenha min(custo)</pre>
// min_cost_flow(s, t) -> Fluxo maximo de custo minimo de s
   pra t
// Se for um dag, da pra substituir o SPFA por uma DP pra nao
// para O(nm) no comeco
// Se nao tiver aresta com custo negativo, nao precisa do
   SPFA
//
// O(nm + f * m log n)
template < typename T > struct mcmf {
    struct edge {
        int to, rev, flow, cap; // para, id da reversa,
           fluxo, capacidade
        bool res; // se eh reversa
        T cost; // custo da unidade de fluxo
        edge(): to(0), rev(0), flow(0), cap(0), cost(0),
           res(false) {}
        edge(int to_, int rev_, int flow_, int cap_, T
           cost_, bool res_)
            : to(to_), rev(rev_), flow(flow_), cap(cap_),
```

```
res(res_), cost(cost_) {}
};
vector < vector < edge >> g;
vector<int> par_idx, par;
T inf;
vector<T> dist;
mcmf(int n) : g(n), par_idx(n), par(n),
   inf(numeric_limits <T>::max()/3) {}
void add(int u, int v, int w, T cost) { // de u pra v
   com cap w e custo cost
    edge a = edge(v, g[v].size(), 0, w, cost, false);
    edge b = edge(u, g[u].size(), 0, 0, -cost, true);
    g[u].push_back(a);
    g[v].push_back(b);
}
vector<T> spfa(int s) { // nao precisa se nao tiver
   custo negativo
    deque < int > q;
    vector < bool > is_inside(g.size(), 0);
    dist = vector <T>(g.size(), inf);
    dist[s] = 0;
    q.push_back(s);
    is_inside[s] = true;
    while (!q.empty()) {
        int v = q.front();
        q.pop_front();
        is_inside[v] = false;
        for (int i = 0; i < g[v].size(); i++) {</pre>
            auto [to, rev, flow, cap, res, cost] =
                g[v][i];
            if (flow < cap and dist[v] + cost <</pre>
                dist[to]) {
                dist[to] = dist[v] + cost;
```

```
if (is_inside[to]) continue;
                 if (!q.empty() and dist[to] >
                    dist[q.front()]) q.push_back(to);
                 else q.push_front(to);
                 is_inside[to] = true;
            }
        }
    }
    return dist;
bool dijkstra(int s, int t, vector<T>& pot) {
    priority_queue < pair < T, int > , vector < pair < T, int > > ,
       greater<>> q;
    dist = vector <T>(g.size(), inf);
    dist[s] = 0;
    q.emplace(0, s);
    while (q.size()) {
        auto [d, v] = q.top();
        q.pop();
        if (dist[v] < d) continue;</pre>
        for (int i = 0; i < g[v].size(); i++) {</pre>
             auto [to, rev, flow, cap, res, cost] =
                g[v][i];
             cost += pot[v] - pot[to];
            if (flow < cap and dist[v] + cost <</pre>
                dist[to]) {
                 dist[to] = dist[v] + cost;
                 q.emplace(dist[to], to);
                 par_idx[to] = i, par[to] = v;
            }
        }
    return dist[t] < inf;</pre>
}
pair < int , T > min_cost_flow(int s, int t, int flow = INF)
    vector <T> pot(g.size(), 0);
    pot = spfa(s); // mudar algoritmo de caminho minimo
       aqui
    int f = 0;
```

```
T ret = 0:
    while (f < flow and dijkstra(s, t, pot)) {</pre>
        for (int i = 0; i < g.size(); i++)</pre>
            if (dist[i] < inf) pot[i] += dist[i];</pre>
        int mn_flow = flow - f, u = t;
        while (u != s){
            mn_flow = min(mn_flow,
                g[par[u]][par_idx[u]].cap -
                    g[par[u]][par_idx[u]].flow);
            u = par[u];
        }
        ret += pot[t] * mn_flow;
        u = t;
        while (u != s) {
            g[par[u]][par_idx[u]].flow += mn_flow;
            g[u][g[par[u]][par_idx[u]].rev].flow -=
                mn_flow;
            u = par[u];
        f += mn_flow;
    return make_pair(f, ret);
}
// Opcional: retorna as arestas originais por onde passa
   flow = cap
vector<pair<int,int>> recover() {
    vector<pair<int,int>> used;
    for (int i = 0; i < g.size(); i++) for (edge e:
       g[i])
        if(e.flow == e.cap && !e.res) used.push_back({i,
    return used;
}
```

};

2.22 Algoritmo de Kuhn

```
// Computa matching maximo em grafo bipartido
// 'n' e 'm' sao quantos vertices tem em cada particao
// chamar add(i, j) para add aresta entre o cara i
// da particao A, e o cara j da particao B
// (entao i < n, j < m)
// Para recuperar o matching, basta olhar 'ma' e 'mb'
// recover() recupera o min vertex cover como um par de
// {caras da particao A, caras da particao B}
//
// O(|V| * |E|)
// Na pratica, parece rodar tao rapido quanto o Dinic
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct kuhn {
    int n, m;
    vector < vector < int >> g;
    vector < int > vis, ma, mb;
    kuhn(int n_, int m_) : n(n_), m(m_), g(n),
        vis(n+m), ma(n, -1), mb(m, -1) {}
    void add(int a, int b) { g[a].push_back(b); }
    bool dfs(int i) {
        vis[i] = 1;
        for (int j : g[i]) if (!vis[n+j]) {
            vis[n+j] = 1;
            if (mb[j] == -1 or dfs(mb[j])) {
                ma[i] = j, mb[j] = i;
                return true;
            }
        return false;
    int matching() {
        int ret = 0, aum = 1;
        for (auto& i : g) shuffle(i.begin(), i.end(), rng);
        while (aum) {
```

```
for (int j = 0; j < m; j++) vis[n+j] = 0;
             aum = 0;
             for (int i = 0; i < n; i++)</pre>
                 if (ma[i] == -1 and dfs(i)) ret++, aum = 1;
        return ret;
    pair < vector < int > , vector < int >> recover() {
         matching();
        for (int i = 0; i < n+m; i++) vis[i] = 0;
        for (int i = 0; i < n; i++) if (ma[i] == -1) dfs(i);</pre>
        vector < int > ca, cb;
        for (int i = 0; i < n; i++) if (!vis[i])</pre>
            ca.push_back(i);
        for (int i = 0; i < m; i++) if (vis[n+i])
            cb.push_back(i);
        return {ca, cb};
    }
};
```

2.23 Functional Graph

```
// rt[i] fala o ID da raiz associada ao vertice i
// d[i] fala a profundidade (0 sse ta no ciclo)
// pos[i] fala a posicao de i no array que eh a concat. dos
   ciclos
// build(f, val) recebe a funcao f e o custo de ir de
// i para f[i] (por default, val = f)
// f_k(i, k) fala onde i vai parar se seguir k arestas
// path(i, k) fala o custo (soma) seguir k arestas a partir
   de i
// Se quiser outra operacao, da pra alterar facil o codigo
// Codigo um pouco louco, tenho que admitir
//
// build - O(n)
// f_k - O(log(min(n, k)))
// path - O(\log(\min(n, k)))
namespace func_graph {
    int n;
```

```
int f[MAX], vis[MAX], d[MAX];
int p[MAX], pp[MAX], rt[MAX], pos[MAX];
int sz[MAX], comp;
vector < vector < int >> ciclo;
11 val[MAX], jmp[MAX], seg[2*MAX];
11 op(11 a, 11 b) { return a+b; }; // mudar a operacao
   aqui
void dfs(int i, int t = 2) {
    vis[i] = t;
    if (vis[f[i]] >= 2) \{ // comeca ciclo - f[i] eh o
       d[i] = 0, rt[i] = comp;
        sz[comp] = t - vis[f[i]] + 1;
        p[i] = pp[i] = i, jmp[i] = val[i];
        ciclo.emplace_back();
        ciclo.back().push_back(i);
    } else {
        if (!vis[f[i]]) dfs(f[i], t+1);
        rt[i] = rt[f[i]];
        if (sz[comp]+1) { // to no ciclo
            d[i] = 0;
            p[i] = pp[i] = i, jmp[i] = val[i];
            ciclo.back().push_back(i);
        } else { // nao to no ciclo
            d[i] = d[f[i]]+1, p[i] = f[i];
            pp[i] = 2*d[pp[f[i]]] ==
               d[pp[pp[f[i]]]+d[f[i]] ? pp[pp[f[i]]] :
               f[i];
            jmp[i] = pp[i] == f[i] ? val[i] : op(val[i],
               op(jmp[f[i]], jmp[pp[f[i]]]));
        }
    }
    if (f[ciclo[rt[i]][0]] == i) comp++; // fim do ciclo
   vis[i] = 1;
void build(vector<int> f_, vector<int> val_ = {}) {
    n = f_size(), comp = 0;
    if (!val_.size()) val_ = f_;
    for (int i = 0; i < n; i++)</pre>
       f[i] = f_[i], val[i] = val_[i], vis[i] = 0,
           sz[i] = -1;
```

```
ciclo.clear();
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
    int t = 0;
    for (auto& c : ciclo) {
        reverse(c.begin(), c.end());
        for (int j : c) {
            pos[j] = t;
            seg[n+t] = val[j];
            t++;
        }
    }
    for (int i = n-1; i; i--) seg[i] = op(seg[2*i],
       seg[2*i+1]);
}
int f_k(int i, ll k) {
    while (d[i] and k) {
        int big = d[i] - d[pp[i]];
        if (big <= k) k -= big, i = pp[i];</pre>
        else k--, i = p[i];
    }
    if (!k) return i;
    return ciclo[rt[i]][(pos[i] - pos[ciclo[rt[i]][0]] +
       k) % sz[rt[i]]];
}
ll path(int i, ll k) {
    auto query = [&](int 1, int r) {
        11 q = 0;
        for (1 += n, r += n; 1 <= r; ++1/=2, --r/=2) {
            if (1\%2 == 1) q = op(q, seg[1]);
            if (r\%2 == 0) q = op(q, seg[r]);
        }
        return q;
    };
    ll ret = 0;
    while (d[i] and k) {
        int big = d[i] - d[pp[i]];
        if (big <= k) k -= big, ret = op(ret, jmp[i]), i</pre>
           = pp[i];
        else k--, ret = op(ret, val[i]), i = p[i];
    }
```

2.24 Euler Path / Euler Cycle

```
// Para declarar: 'euler < true > E(n); ' se quiser
// direcionado e com 'n' vertices
// As funcoes retornam um par com um booleano
// indicando se possui o cycle/path que voce pediu,
// e um vector de {vertice, id da aresta para chegar no
   vertice}
// Se for get_path, na primeira posicao o id vai ser -1
// get_path(src) tenta achar um caminho ou ciclo euleriano
// comecando no vertice 'src'.
// Se achar um ciclo, o primeiro e ultimo vertice serao
   'src'.
// Se for um P3, um possiveo retorno seria [0, 1, 2, 0]
// get_cycle() acha um ciclo euleriano se o grafo for
   euleriano.
// Se for um P3, um possivel retorno seria [0, 1, 2]
// (vertie inicial nao repete)
// O(n+m)
template < bool directed = false > struct euler {
    int n;
```

```
vector < vector < pair < int , int >>> g;
    vector < int > used;
    euler(int n_) : n(n_), g(n) {}
    void add(int a, int b) {
        int at = used.size();
        used.push_back(0);
        g[a].push_back({b, at});
        if (!directed) g[b].push_back({a, at});
    }
#warning chamar para o src certo!
    pair < bool, vector < pair < int, int >>> get_path(int src) {
        if (!used.size()) return {true, {}};
        vector<int> beg(n, 0);
        for (int& i : used) i = 0:
        // {{vertice, anterior}, label}
        vector<pair<pair<int, int>, int>> ret, st = {{{src,
            -1}, -1}};
        while (st.size()) {
            int at = st.back().first.first;
            int& it = beg[at];
            while (it < g[at].size() and
               used[g[at][it].second]) it++;
            if (it == g[at].size()) {
                if (ret.size() and ret.back().first.second
                    != at)
                    return {false, {}};
                ret.push_back(st.back()), st.pop_back();
            } else {
                st.push_back({{g[at][it].first, at},
                    g[at][it].second});
                used[g[at][it].second] = 1;
            }
        }
        if (ret.size() != used.size()+1) return {false, {}};
        vector < pair < int , int >> ans;
        for (auto i : ret) ans.push_back({i.first.first,
           i.second}):
        reverse(ans.begin(), ans.end());
        return {true, ans};
    }
    pair < bool, vector < pair < int, int >>> get_cycle() {
```

2.25 Dominator Tree - Kawakami

```
// Se vira pra usar ai
// build - O(n)
// dominates - O(1)
int n;
namespace DTree {
    vector < int > g[MAX];
    // The dominator tree
    vector<int> tree[MAX];
    int dfs_1[MAX], dfs_r[MAX];
    // Auxiliary data
    vector < int > rg[MAX], bucket[MAX];
    int idom[MAX], sdom[MAX], prv[MAX], pre[MAX];
    int ancestor[MAX], label[MAX];
    vector<int> preorder;
    void dfs(int v) {
        static int t = 0;
        pre[v] = ++t;
        sdom[v] = label[v] = v;
        preorder.push_back(v);
```

```
for (int nxt: g[v]) {
        if (sdom[nxt] == -1) {
            prv[nxt] = v;
            dfs(nxt);
        }
        rg[nxt].push_back(v);
}
int eval(int v) {
    if (ancestor[v] == -1) return v;
    if (ancestor[ancestor[v]] == -1) return label[v];
    int u = eval(ancestor[v]);
    if (pre[sdom[u]] < pre[sdom[label[v]]]) label[v] = u;</pre>
    ancestor[v] = ancestor[u];
    return label[v]:
}
void dfs2(int v) {
    static int t = 0;
    dfs_1[v] = t++;
    for (int nxt: tree[v]) dfs2(nxt);
    dfs_r[v] = t++;
}
void build(int s) {
    for (int i = 0; i < n; i++) {</pre>
        sdom[i] = pre[i] = ancestor[i] = -1;
        rg[i].clear();
        tree[i].clear();
        bucket[i].clear();
    }
    preorder.clear();
    dfs(s);
    if (preorder.size() == 1) return;
    for (int i = int(preorder.size()) - 1; i >= 1; i--) {
        int w = preorder[i];
        for (int v: rg[w]) {
            int u = eval(v);
            if (pre[sdom[u]] < pre[sdom[w]]) sdom[w] =</pre>
                sdom[u];
        bucket[sdom[w]].push_back(w);
        ancestor[w] = prv[w];
        for (int v: bucket[prv[w]]) {
```

```
int u = eval(v);
                idom[v] = (u == v) ? sdom[v] : u;
            bucket[prv[w]].clear();
        }
        for (int i = 1; i < preorder.size(); i++) {</pre>
            int w = preorder[i];
            if (idom[w] != sdom[w]) idom[w] = idom[idom[w]];
            tree[idom[w]].push_back(w);
        idom[s] = sdom[s] = -1;
        dfs2(s);
    }
    // Whether every path from s to v passes through u
    bool dominates(int u, int v) {
        if (pre[v] == -1) return 1; // vacuously true
        return dfs_l[u] <= dfs_l[v] && dfs_r[v] <= dfs_r[u];</pre>
    }
};
```

2.26 Line Tree

```
// Reduz min-query em arvore para RMQ
// Se o grafo nao for uma arvore, as queries
// sao sobre a arvore geradora maxima
// Queries de minimo
//
// build - O(n log(n))
// query - O(log(n))

int n;

namespace linetree {
   int id[MAX], seg[2*MAX], pos[MAX];
   vector<int> v[MAX], val[MAX];
   vector<pair<int, pair<int, int> >> ar;

void add(int a, int b, int p) { ar.push_back({p, {a, b}}); }
```

```
void build() {
        sort(ar.rbegin(), ar.rend());
        for (int i = 0; i < n; i++) id[i] = i, v[i] = {i},</pre>
           val[i].clear();
        for (auto i : ar) {
            int a = id[i.second.first], b =
               id[i.second.second];
            if (a == b) continue;
            if (v[a].size() < v[b].size()) swap(a, b);</pre>
            for (auto j : v[b]) id[j] = a, v[a].push_back(j);
            val[a].push_back(i.first);
            for (auto j : val[b]) val[a].push_back(j);
            v[b].clear(), val[b].clear();
        }
        vector < int > vv:
        for (int i = 0; i < n; i++) for (int j = 0; j <
           v[i].size(); j++) {
            pos[v[i][j]] = vv.size();
            if (j + 1 < v[i].size()) vv.push_back(val[i][j]);</pre>
            else vv.push_back(0);
        }
        for (int i = n; i < 2*n; i++) seg[i] = vv[i-n];
        for (int i = n-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    }
    int query(int a, int b) {
        if (id[a] != id[b]) return 0; // nao estao conectados
        a = pos[a], b = pos[b];
        if (a > b) swap(a, b);
        b--:
        int ans = INF;
        for (a += n, b += n; a <= b; ++a/=2, --b/=2) ans =
           min({ans, seg[a], seg[b]});
        return ans:
   }
};
```

2.27 Isomorfismo de arvores

// thash() retorna o hash da arvore (usando centroids como

```
vertices especiais).
// Duas arvores sao isomorfas sse seu hash eh o mesmo
// O(|V|.log(|V|))
map < vector < int > , int > mphash;
struct tree {
    int n:
    vector < vector < int >> g;
    vector < int > sz, cs;
    tree(int n_{-}): n(n_{-}), g(n_{-}), sz(n_{-}) {}
    void dfs_centroid(int v, int p) {
        sz[v] = 1:
        bool cent = true:
        for (int u : g[v]) if (u != p) {
            dfs_centroid(u, v), sz[v] += sz[u];
            if(sz[u] > n/2) cent = false;
        }
        if (cent and n - sz[v] \le n/2) cs.push_back(v);
    int fhash(int v, int p) {
        vector < int > h;
        for (int u : g[v]) if (u != p) h.push_back(fhash(u,
           v));
        sort(h.begin(), h.end());
        if (!mphash.count(h)) mphash[h] = mphash.size();
        return mphash[h];
    }
    11 thash() {
        cs.clear();
        dfs_centroid(0, -1);
        if (cs.size() == 1) return fhash(cs[0], -1);
        11 h1 = fhash(cs[0], cs[1]), h2 = fhash(cs[1],
            cs[0]):
        return (min(h1, h2) << 30) + max(h1, h2);
    }
};
```

2.28 Link-cut Tree - vertice

```
// Valores nos vertices
// make_tree(v, w) cria uma nova arvore com um
// vertice soh com valor 'w'
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nos vertices do caminho v--w
// Todas as operacoes sao O(log(n)) amortizado
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz;
        ll lazv;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0), sz(1),
           lazy(0) {
            ch[0] = ch[1] = -1;
        }
    };
    node t[MAX];
    void prop(int x) {
        if (t[x].lazy) {
            t[x].val += t[x].lazy, t[x].sub +=
               t[x].lazy*t[x].sz;
            if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
               t[x].lazy;
            if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
               t[x].lazy;
        }
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        }
        t[x].lazy = 0, t[x].rev = 0;
```

```
}
void update(int x) {
    t[x].sz = 1, t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
        prop(t[x].ch[i]);
        t[x].sz += t[t[x].ch[i]].sz;
       t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1:
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w) { t[v] = node(w); }
int find root(int v) {
```

```
access(v), prop(v);
        while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
        return splay(v);
    }
    bool connected(int v, int w) {
        access(v), access(w);
        return v == w ? true : t[v].p != -1;
    }
    void rootify(int v) {
        access(v);
        t[v].rev ^= 1;
    }
    11 query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
    }
    void update(int v, int w, int x) {
        rootify(w), access(v);
        t[v].lazy += x;
    }
    void link(int v, int w) {
        rootify(w);
        t[w].p = v;
    }
    void cut(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
    int lca(int v, int w) {
        access(v);
        return access(w);
    }
}
```

2.29 Link-cut Tree - aresta

```
// Valores nas arestas
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nas arestas do caminho v--w
```

```
//
// Todas as operacoes sao O(log(n)) amortizado
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz, ar;
        ll lazy;
        node() {}
        node(int v, int ar_) :
        p(-1), val(v), sub(v), rev(0), sz(ar_), ar(ar_),
           lazy(0) {
            ch[0] = ch[1] = -1;
        }
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<pair<int, int>, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].lazy) {
            if (t[x].ar) t[x].val += t[x].lazy;
            t[x].sub += t[x].lazy*t[x].sz;
            if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
               t[x].lazv;
            if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
               t[x].lazy;
        }
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].lazy = 0, t[x].rev = 0;
    void update(int x) {
        t[x].sz = t[x].ar, t[x].sub = t[x].val;
        for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {</pre>
            prop(t[x].ch[i]);
```

```
t[x].sz += t[t[x].ch[i]].sz:
        t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last:
void make_tree(int v, int w=0, int ar=0) { t[v] =
   node(w, ar); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
```

```
bool conn(int v, int w) {
        access(v), access(w);
        return v == w ? true : t[v].p != -1;
    void rootify(int v) {
        access(v);
        t[v].rev ^= 1;
    11 query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
    void update(int v, int w, int x) {
        rootify(w), access(v);
        t[v].lazy += x;
    void link_(int v, int w) {
        rootify(w);
        t[w].p = v;
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x, 1);
        link_(v, id), link_(id, w);
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
    int lca(int v, int w) {
        access(v):
        return access(w);
}
```

2.30 Link-cut Tree

```
// Link-cut tree padrao
//
// Todas as operacoes sao O(log(n)) amortizado
namespace lct {
    struct node {
        int p, ch[2];
       node() { p = ch[0] = ch[1] = -1; }
    };
    node t[MAX];
    bool is_root(int x) {
        return t[x].p == -1 or (t[t[x].p].ch[0] != x and
           t[t[x].p].ch[1] != x);
    }
    void rotate(int x) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
        bool d = t[p].ch[0] == x;
        t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
        if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
        t[x].p = pp, t[p].p = x;
    }
    void splay(int x) {
        while (!is_root(x)) {
            int p = t[x].p, pp = t[p].p;
            if (!is_root(p)) rotate((t[pp].ch[0] ==
               p)^{(t[p].ch[0] == x)} ? x : p);
            rotate(x):
        }
    }
    int access(int v) {
        int last = -1;
        for (int w = v; w+1; last = w, splay(v), w = t[v].p)
            splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
        return last;
    }
    int find_root(int v) {
        access(v);
```

```
while (t[v].ch[0]+1) v = t[v].ch[0];
    return splay(v), v;
}

void link(int v, int w) { // v deve ser raiz
    access(v);
    t[v].p = w;
}

void cut(int v) { // remove aresta de v pro pai
    access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
}
int lca(int v, int w) {
    return access(v), access(w);
}
```

2.31 Centro de arvore

```
// Retorna o diametro e o(s) centro(s) da arvore
// Uma arvore tem sempre um ou dois centros e estes estao no
   meio do diametro
//
// O(n)
vector < int > g[MAX];
int d[MAX], par[MAX];
pair<int, vector<int>> center() {
    int f. df:
    function < void(int) > dfs = [&] (int v) {
        if(d[v] > df) f = v, df = d[v];
        for(int u : g[v]) if(u != par[v])
            d[u] = d[v] + 1, par[u] = v, dfs(u);
    };
   f = df = par[0] = -1, d[0] = 0;
    dfs(0);
    int root = f;
    f = df = par[root] = -1, d[root] = 0;
    dfs(root);
```

```
vector < int > c;
while (f != -1) {
    if (d[f] == df/2 or d[f] == (df+1)/2) c.push_back(f);
    f = par[f];
}
return {df, c};
}
```

2.32 Kosaraju

```
// \Omega(n + m)
int n;
vector < int > g[MAX];
vector<int> gi[MAX]; // grafo invertido
int vis[MAX];
stack<int> S;
int comp[MAX]; // componente conexo de cada vertice
void dfs(int k) {
    vis[k] = 1;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (!vis[g[k][i]]) dfs(g[k][i]);
    S.push(k);
void scc(int k, int c) {
    vis[k] = 1;
    comp[k] = c;
    for (int i = 0; i < (int) gi[k].size(); i++)</pre>
        if (!vis[gi[k][i]]) scc(gi[k][i], c);
}
void kosaraju() {
    for (int i = 0; i < n; i++) vis[i] = 0;</pre>
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
```

```
for (int i = 0; i < n; i++) vis[i] = 0;
while (S.size()) {
   int u = S.top();
   S.pop();
   if (!vis[u]) scc(u, u);
}</pre>
```

2.33 Euler Tour Tree

```
// Mantem uma floresta enraizada dinamicamente
// e permite queries/updates em sub-arvore
//
// Chamar ETT E(n, v), passando n = numero de vertices
// e v = vector com os valores de cada vertice (se for vazio,
// constroi tudo com 0
//
// link(v, u) cria uma aresta de v pra u, de forma que u se
   torna
// o pai de v (eh preciso que v seja raiz anteriormente)
// cut(v) corta a resta de v para o pai
// query(v) retorna a soma dos valores da sub-arvore de v
// update(v, val) soma val em todos os vertices da
   sub-arvore de v
// update_v(v, val) muda o valor do vertice v para val
// is_in_subtree(v, u) responde se o vertice u esta na
   sub-arvore de v
//
// Tudo O(log(n)) com alta probabilidade
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct ETT {
    // treap
    struct node {
        node *1, *r, *p;
        int pr, sz;
        T val, sub, lazy;
        int id;
```

```
bool f; // se eh o 'first'
    int qt_f; // numero de firsts na subarvore
    node(int id_, T v, bool f_ = 0) : l(NULL), r(NULL),
       p(NULL), pr(rng()),
         sz(1), val(v), sub(v), lazy(), id(id_), f(f_),
            qt_f(f_) {}
    void prop() {
        if (lazy != T()) {
             if (f) val += lazy;
             sub += lazy*sz;
             if (1) 1->lazy += lazy;
             if (r) r->lazy += lazy;
         }
         lazy = T();
    void update() {
         sz = 1, sub = val, qt_f = f;
         if (1) 1 - \text{prop}(), sz += 1 - \text{sz}, sub += 1 - \text{sub},
            qt_f += 1->qt_f;
         if (r) r \rightarrow prop(), sz += r \rightarrow sz, sub += r \rightarrow sub,
            qt_f += r->qt_f;
    }
};
node* root;
int size(node* x) { return x ? x->sz : 0; }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!l or !r) return void(i = 1 ? l : r);
    1->prop(), r->prop();
    if (1->pr > r->pr) join(1->r, r, 1->r), 1->r->p = i
    else join(1, r->1, r->1), r->1->p = i = r;
    i->update();
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
    if (!i) return void(r = 1 = NULL);
    i->prop();
    if (key + size(i->1) < v) {
         split(i\rightarrow r, i\rightarrow r, r, v, key+size(i\rightarrow l)+1), l = i;
```

```
if (r) r -> p = NULL:
        if (i->r) i->r->p = i;
    } else {
        split(i->1, 1, i->1, v, key), r = i;
        if (1) 1->p = NULL;
        if (i->1) i->1->p = i;
    }
    i->update();
}
int get_idx(node* i) {
    int ret = size(i->1);
    for (; i->p; i = i->p) {
        node* pai = i->p;
        if (i != pai->l) ret += size(pai->l) + 1;
    }
    return ret;
}
node* get_min(node* i) {
    if (!i) return NULL;
    return i->l ? get_min(i->l) : i;
}
node* get_max(node* i) {
    if (!i) return NULL;
    return i->r ? get_max(i->r) : i;
}
// fim da treap
vector < node *> first, last;
ETT(int n, vector<T> v = {}) : root(NULL), first(n),
   last(n) {
    if (!v.size()) v = vector<T>(n);
    for (int i = 0; i < n; i++) {</pre>
        first[i] = last[i] = new node(i, v[i], 1);
        join(root, first[i], root);
    }
}
ETT(const ETT& t) { throw logic_error("Nao copiar a
   ETT!"); }
\simETT() {
    vector < node *> q = {root};
    while (q.size()) {
```

```
node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
   }
}
pair<int, int> get_range(int i) {
    return {get_idx(first[i]), get_idx(last[i])};
void link(int v, int u) { // 'v' tem que ser raiz
    auto [lv, rv] = get_range(v);
    int ru = get_idx(last[u]);
    node* V;
    node *L, *M, *R;
    split(root, M, R, rv+1), split(M, L, M, lv);
    V = M;
    join(L, R, root);
    split(root, L, R, ru+1);
    join(L, V, L);
    join(L, last[u] = new node(u, T() /* elemento neutro
       */), L);
    join(L, R, root);
}
void cut(int v) {
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    node *LL = get_max(L), *RR = get_min(R);
    if (LL and RR and LL->id == RR->id) { // remove
       duplicata
         if (last[RR->id] == RR) last[RR->id] = LL;
         node *A, *B;
         split(R, A, B, 1);
         delete A;
         R = B;
    join(L, R, root);
    join(root, M, root);
```

```
}
    T query(int v) {
        auto [1, r] = get_range(v);
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        T ans = M->sub;
        join(L, M, M), join(M, R, root);
        return ans;
    }
    void update(int v, T val) { // soma val em todo mundo da
        auto [1, r] = get_range(v);
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M->lazy += val;
        join(L, M, M), join(M, R, root);
    }
    void update_v(int v, T val) { // muda o valor de v pra
       val
        int 1 = get_idx(first[v]);
        node *L, *M, *R;
        split(root, M, R, l+1), split(M, L, M, 1);
        M \rightarrow val = M \rightarrow sub = val;
        join(L, M, M), join(M, R, root);
    }
    bool is_in_subtree(int v, int u) { // se u ta na subtree
       de v
        auto [lv, rv] = get_range(v);
        auto [lu, ru] = get_range(u);
        return lv <= lu and ru <= rv;</pre>
    }
    void print(node* i) {
        if (!i) return;
        print(i->1);
        cout << i->id+1 << " ";
        print(i->r);
    void print() { print(root); cout << endl; }</pre>
};
```

2.34 Centroid

```
// Computa os 2 centroids da arvore
// O(n)
int n, subsize[MAX];
vector < int > g[MAX];
void dfs(int k, int p=-1) {
    subsize[k] = 1;
    for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
   }
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
   for (int i : g[k]) if (i != p) if (subsize[i] > size/2)
        return centroid(i, k, size);
    return k;
}
pair < int , int > centroids(int k=0) {
    dfs(k):
    int i = centroid(k), i2 = i;
    for (int j : g[i]) if (2*subsize[j] == subsize[k]) i2 =
       j;
    return {i, i2};
}
```

2.35 Vertex cover

```
// Encontra o tamanho do vertex cover minimo
// Da pra alterar facil pra achar os vertices
// Parece rodar com < 2 s pra N = 90
//
// O(n * 1.38^n)</pre>
```

```
namespace cover {
    const int MAX = 96;
    vector < int > g[MAX];
    bitset < MAX > bs[MAX];
    int n;
    void add(int i, int j) {
        if (i == j) return;
        n = max({n, i+1, j+1});
        bs[i][j] = bs[j][i] = 1;
    }
    int rec(bitset < MAX > m) {
        int ans = 0:
        for (int x = 0; x < n; x++) if (m[x]) {
            bitset < MAX > comp;
            function < void(int) > dfs = [&](int i) {
                 comp[i] = 1, m[i] = 0;
                for (int j : g[i]) if (m[j]) dfs(j);
            };
            dfs(x);
            int ma, deg = -1, cyc = 1;
            for (int i = 0; i < n; i++) if (comp[i]) {</pre>
                int d = (bs[i]&comp).count();
                if (d <= 1) cvc = 0;
                if (d > deg) deg = d, ma = i;
            if (deg <= 2) { // caminho ou ciclo</pre>
                 ans += (comp.count() + cyc) / 2;
                 continue;
            }
            comp[ma] = 0;
            // ou ta no cover, ou nao ta no cover
            ans += min(1 + rec(comp), deg + rec(comp & ~
                bs[ma]));
        return ans;
    int solve() {
```

2.36 Centroid decomposition

```
// Computa pai[i] = pai de i na arv. da centroid
// Descomentar o codigo comentado para computar
// dist[i][x] = distancia na arv. original entre o i e
// o x-esimo ancestral na arv. da centroid
//
// O(n log(n))
int n;
vector < int > g[MAX];
int subsize[MAX];
int rem[MAX];
int pai[MAX];
void dfs(int k, int last) {
    subsize[k] = 1;
    for (int i : g[k])
        if (i != last and !rem[i]) {
            dfs(i, k);
            subsize[k] += subsize[i];
}
int centroid(int k, int last, int size) {
    for (int i : g[k]) {
        if (rem[i] or i == last) continue;
        if (subsize[i] > size / 2)
            return centroid(i, k, size);
    }
```

```
// k eh o centroid
    return k;
}
//vector<int> dist[MAX];
//void dfs_dist(int k, int last, int d=0) {
      dist[k].push_back(d);
//
      for (int j : g[k]) if (j != last and !rem[j])
          dfs_dist(j, k, d+1);
//}
void decomp(int k, int last = -1) {
    dfs(k, k);
    // acha e tira o centroid
    int c = centroid(k, k, subsize[k]);
    rem[c] = 1;
    pai[c] = last;
    //dfs_dist(c, c);
    // decompoe as sub-arvores
    for (int i : g[c]) if (!rem[i]) decomp(i, c);
}
void build() {
    memset(rem, 0, sizeof rem);
    decomp(0);
    //for (int i = 0; i < n; i++) reverse(dist[i].begin(),</pre>
       dist[i].end());
}
```

3 Problemas

3.1 Inversion Count

```
// Computa o numero de inversoes para transformar
// l em r (se nao tem como, retorna -1)
//
// O(n log(n))
```

```
template < typename T > 11 inv_count(vector < T > 1, vector < T > r =
   {}) {
    if (!r.size()) {
        r = 1:
        sort(r.begin(), r.end());
    int n = 1.size();
    vector < int > v(n), bit(n);
    vector<pair<T, int>> w;
    for (int i = 0; i < n; i++) w.push_back({r[i], i+1});
    sort(w.begin(), w.end());
    for (int i = 0; i < n; i++) {</pre>
        auto it = lower_bound(w.begin(), w.end(),
            make_pair(l[i], 0));
        if (it == w.end() or it->first != l[i]) return -1;
           // nao da
        v[i] = it->second;
        it->second = -1;
    }
    11 \text{ ans} = 0;
    for (int i = n-1; i >= 0; i--) {
        for (int j = v[i]-1; j; j -= j&-j) ans += bit[j];
        for (int j = v[i]; j < n; j += j\&-j) bit[j]++;
    }
    return ans;
    Gray Code
// Gera uma permutacao de 0 a 2^n-1, de forma que
// duas posicoes adjacentes diferem em exatamente 1 bit
//
// 0(2^n)
vector<int> gray_code(int n) {
    vector < int > ret(1 << n);</pre>
    for (int i = 0; i < (1 << n); i++) ret[i] = i^{(i>>1)};
    return ret;
```

}

3.3 Points Inside Polygon

```
// Encontra quais pontos estao
// dentro de um poligono simples nao convexo
// o poligono tem lados paralelos aos eixos
// Pontos na borda estao dentro
// Pontos podem estar em ordem horaria ou anti-horaria
//
// O(n log(n))
typedef long long 11;
const 11 N = 1e9+10;
const int MAX = 1e5+10;
int ta[MAX];
namespace seg {
    unordered_map<11, int> seg;
    int query(int a, int b, ll p, ll l, ll r) {
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= l and r <= b) return seg[p];</pre>
        11 m = (1+r)/2;
        return query(a, b, 2*p, 1, m)+query(a, b, 2*p+1,
           m+1, r);
    }
    int query(ll p) {
        return query(0, p+N, 1, 0, 2*N);
    int update(ll i, int x, ll p, ll l, ll r) {
        if (i < l or r < i) return seg[p];</pre>
        if (l == r) return seg[p] += x;
        11 m = (1+r)/2;
        return seg[p] = update(i, x, 2*p, 1, m)+update(i, x,
            2*p+1, m+1, r);
    }
    void update(ll a, ll b, int x) {
        if (a > b) return;
        update(a+N, x, 1, 0, 2*N);
```

```
update(b+N+1, -x, 1, 0, 2*N);
};
void pointsInsidePol(vector<pair<int, int>>& pol,
   vector < pair < int , int >>& v) {
    vector<pair<int, pair<int, int>> > ev; //
       {x, {tipo, {a, b}}}
   // -1: poe ; id: query ; 1e9: tira
   for (int i = 0; i < v.size(); i++)</pre>
        ev.pb({v[i].first, {i, {v[i].second, v[i].second}}});
    for (int i = 0; i < pol.size(); i++) {</pre>
        pair < int , int > u = pol[i] , v = pol[(i+1)%pol.size()];
        if (u.second == v.second) {
            ev.pb({min(u.first, v.first), {-1, {u.second,
               u.second}}});
            ev.pb({max(u.first, v.first), {N, {u.second,
               u.second}}});
            continue;
        int t = N;
        if (u.second > v.second) t = -1;
        ev.pb({u.first, {t, {min(u.second, v.second)+1,
           max(u.second, v.second)}});
    }
    sort(ev.begin(), ev.end());
   for (int i = 0; i < v.size(); i++) ta[i] = 0;</pre>
    for (auto i : ev) {
        pair<int, pair<int, int>> j = i.second;
        if (j.first == -1) seg::update(j.second.first,
           j.second.second, 1);
        else if (j.first == N) seg::update(j.second.first,
           j.second.second, -1);
        else if (seg::query(j.second.first)) ta[j.first] =
           1: // ta dentro
   }
```

3.4 Sweep Direction

```
// Passa por todas as ordenacoes dos pontos definitas por
   "direcoes"
// Assume que nao existem pontos coincidentes
// O(n^2 \log n)
void sweep_direction(vector<pt> v) {
    int n = v.size();
    sort(v.begin(), v.end(), [](pt a, pt b) {
        if (a.x != b.x) return a.x < b.x;</pre>
        return a.y > b.y;
    }):
    vector < int > at(n);
    iota(at.begin(), at.end(), 0);
    vector < pair < int , int >> swapp;
    for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++)
        swapp.push_back({i, j}), swapp.push_back({j, i});
    sort(swapp.begin(), swapp.end(), [&](auto a, auto b) {
        pt A = rotate90(v[a.first] - v[a.second]);
        pt B = rotate90(v[b.first] - v[b.second]);
        if (quad(A) == quad(B) \text{ and } !sarea2(pt(0, 0), A, B))
           return a < b;</pre>
        return compare_angle(A, B);
    });
    for (auto par : swapp) {
        assert(abs(at[par.first] - at[par.second]) == 1);
        int 1 = min(at[par.first], at[par.second]),
            r = n-1 - max(at[par.first], at[par.second]);
        // l e r sao quantos caras tem de cada lado do par
           de pontos
        // (cada par eh visitado duas vezes)
        swap(v[at[par.first]], v[at[par.second]]);
        swap(at[par.first], at[par.second]);
    }
}
```

Area da Uniao de Retangulos

```
// O(n log(n))
```

```
const int MAX = 1e5+10;
namespace seg {
    pair < int , ll > seg[4*MAX];
   11 lazy[4*MAX], *v;
   int n;
    pair < int , ll > merge(pair < int , ll > l , pair < int , ll > r) {
        if (l.second == r.second) return {l.first+r.first,
           1.second);
        else if (l.second < r.second) return l;</pre>
        else return r;
   }
    pair < int, ll > build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = {1, v[1]};
        int m = (1+r)/2;
        return seg[p] = merge(build(2*p, 1, m), build(2*p+1,
           m+1, r));
   }
    void build(int n2, l1* v2) {
        n = n2, v = v2;
        build();
   }
    void prop(int p, int l, int r) {
        seg[p].second += lazy[p];
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
   }
   pair < int, 11 > query (int a, int b, int p=1, int 1=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return {0, LINF};</pre>
        int m = (1+r)/2;
        return merge(query(a, b, 2*p, 1, m), query(a, b,
           2*p+1, m+1, r));
    pair < int , ll > update(int a, int b, int x, int p=1, int
       1=0, int r=n-1) {
```

```
prop(p, 1, r);
        if (a <= 1 and r <= b) {
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        }
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = merge(update(a, b, x, 2*p, 1, m),
                update(a, b, x, 2*p+1, m+1, r));
    }
};
11 seg_vec[MAX];
11 area_sq(vector<pair<pair<int, int>, pair<int, int>>> &sq){
    vector<pair<int, int>, pair<int, int>>> up;
    for (auto it : sq){
        int x1, y1, x2, y2;
        tie(x1, y1) = it.first;
        tie(x2, y2) = it.second;
        up.push_back({{x1+1, 1}, {y1, y2}});
        up.push_back(\{\{x2+1, -1\}, \{y1, y2\}\}\});
    sort(up.begin(), up.end());
    memset(seg_vec, 0, sizeof seg_vec);
    11 H_MAX = MAX;
    seg::build(H_MAX-1, seg_vec);
    auto it = up.begin();
    11 \text{ ans} = 0;
    while (it != up.end()){
        11 L = (*it).first.first;
        while (it != up.end() && (*it).first.first == L){
            int x, inc, y1, y2;
            tie(x, inc) = it->first;
            tie(y1, y2) = it->second;
            seg::update(y1+1, y2, inc);
            it++;
        }
        if (it == up.end()) break;
        11 R = (*it).first.first;
```

```
11 W = R-L;
    auto jt = seg::query(0, H_MAX-1);
    11 H = H_MAX - 1;
    if (jt.second == 0) H -= jt.first;
    ans += W*H;
}
return ans;
}
```

3.6 LIS - Longest Increasing Subsequence

```
// Calcula e retorna uma LIS
//
// O(n.log(n))
template < typename T> vector <T> lis(vector <T>& v) {
    int n = v.size(), m = -1;
    vector <T> d(n+1, INF);
    vector < int > l(n);
    d[0] = -INF;
    for (int i = 0; i < n; i++) {</pre>
        // Para non-decreasing use upper_bound()
        int t = lower_bound(d.begin(), d.end(), v[i]) -
           d.begin();
        d[t] = v[i], l[i] = t, m = max(m, t);
    }
    int p = n;
    vector<T> ret:
    while (p--) if (l[p] == m) {
        ret.push_back(v[p]);
        m - - ;
    reverse(ret.begin(),ret.end());
    return ret;
}
```

3.7 Distinct Range Query - Persistent Segtree

```
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
const int MAX = 3e4+10, LOG = 20;
const int MAXS = 4*MAX+MAX*LOG;
namespace perseg {
    11 seg[MAXS];
    int rt[MAX], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = 0;
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    void build(int n2) {
        n = n2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    11 query(int a, int b, int p, int l, int r) {
        if (b < l or r < a) return 0;
        if (a <= l and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    11 query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    }
    11 update(int a, int x, int lp, int p, int l, int r) {
        if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a \le m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
```

```
return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt++, m+1, r);
    }
    void update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
    }
};
int qt[MAX];
void build(vector<int>& v) {
    int n = v.size();
    perseg::build(n);
    map<int, int> last;
    int at = 0;
    for (int i = 0; i < n; i++) {
        if (last.count(v[i])) {
            perseg::update(last[v[i]], -1);
            at++;
        perseg::update(i, 1);
        qt[i] = ++at;
        last[v[i]] = i;
    }
}
int query(int 1, int r) {
    return perseg::query(1, r, qt[r]);
}
     Coloração de Grafo de Intervalo
// Colore os intervalos com o numero minimo
// de cores de tal forma que dois intervalos
// que se interceptam tem cores diferentes
// As cores vao de 1 ate n
// O(n log(n))
```

vector<int> coloring(vector<pair<int, int>>& v) {

```
int n = v.size();
vector<pair<int, pair<int, int>>> ev;
for (int i = 0; i < n; i++) {
        ev.push_back({v[i].first, {1, i}});
        ev.push_back({v[i].second, {0, i}});
}
sort(ev.begin(), ev.end());
vector<int> ans(n), avl(n);
for (int i = 0; i < n; i++) avl.push_back(n-i);
for (auto i : ev) {
        if (i.second.first == 1) {
            ans[i.second.second] = avl.back();
            avl.pop_back();
        } else avl.push_back(ans[i.second.second]);
}
return ans;
}</pre>
```

3.9 MO - DSU

```
// Dado uma lista de arestas de um grafo, responde
// para cada query(1, r), quantos componentes conexos
// o grafo tem se soh considerar as arestas 1, 1+1, ..., r
// Da pra adaptar pra usar MO com qualquer estrutura
   rollbackavel
//
// O(m sqrt(q) log(n))
struct dsu {
    int n, ans;
    vector < int > p, sz;
    stack < int > S;
    dsu(int n_{-}) : n(n_{-}), ans(n), p(n), sz(n) {
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
```

```
void add(pair<int, int> x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() { return ans; }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
    }
};
int n;
vector<pair<int, int>> ar; // vetor com as arestas
vector<int> MO(vector<pair<int, int>> &q) {
    int SQ = ar.size() / sqrt(q.size()) + 1;
    int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
           q[l].first < q[r].first;
        return q[1].second < q[r].second;</pre>
    });
    vector < int > ret(m);
    for (int i = 0; i < m; i++) {</pre>
        dsu D(n):
        int fim = q[ord[i]].first/SQ*SQ + SQ - 1;
        int last_r = fim;
        int j = i-1;
        while (j+1 < m and q[ord[j+1]].first / SQ ==</pre>
           q[ord[i]].first / SQ) {
```

3.10 Distancia maxima entre dois pontos

```
// max_dist2(v) - O(n log(n))
// max_dist_manhattan - O(n)
// Quadrado da Distancia Euclidiana (precisa copiar
   convex_hull, ccw e pt)
11 max_dist2(vector<pt> v) {
    v = convex_hull(v);
    if (v.size() <= 2) return dist2(v[0], v[1%v.size()]);</pre>
    11 \text{ ans} = 0;
    int n = v.size(), j = 0;
    for (int i = 0; i < n; i++) {</pre>
        while (!ccw(v[(i+1)%n]-v[i], pt(0, 0),
            v[(j+1)\%n]-v[j])) j = (j+1)\%n;
        ans = \max(\{ans, dist2(v[i], v[j]), dist2(v[(i+1)%n],
            v[j])});
    }
    return ans;
```

```
// Distancia de Manhattan
template < typename T > T max_dist_manhattan(vector < pair < T, T >> v) {
    T min_sum, max_sum, min_dif, max_dif;
    min_sum = max_sum = v[0].first + v[0].second;
    min_dif = max_dif = v[0].first - v[0].second;
    for (auto [x, y] : v) {
        min_sum = min(min_sum, x+y);
        max_sum = max(max_sum, x+y);
        max_sum = max(max_sum, x+y);
        max_dif = min(min_dif, x-y);
        max_dif = max(max_dif, x-y);
    }
    return max(max_sum - min_sum, max_dif - min_dif);
}
```

3.11 Conectividade Dinamica

```
// Offline com Divide and Conquer e
// DSU com rollback
// O(n log^2(n))
typedef pair<int, int> T;
namespace data {
    int n, ans;
    int p[MAX], sz[MAX];
    stack<int> S;
    void build(int n2) {
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
        ans = n;
    }
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(T x) {
```

```
int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() {
        return ans;
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return:
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
    }
};
int ponta[MAX]; // outra ponta do intervalo ou -1 se for
   query
int ans[MAX], n, q;
T qu[MAX];
void solve(int l = 0, int r = q-1) {
    if (1 >= r) {
        ans[1] = data::query(); // agora a estrutura ta certa
        return;
    }
    int m = (1+r)/2, qnt = 1;
    for (int i = m+1; i <= r; i++) if (ponta[i]+1 and
       ponta[i] < 1)
        data::add(qu[i]), qnt++;
    solve(1, m);
    while (--qnt) data::rollback();
    for (int i = 1; i <= m; i++) if (ponta[i]+1 and ponta[i]</pre>
       > r)
        data::add(qu[i]), qnt++;
    solve(m+1, r);
    while (qnt--) data::rollback();
```

3.12 Arpa's Trick

}

```
// Responde RMQ em O((n+q)log(n)) offline
// Adicionar as queries usando arpa::add(a, b)
// A resposta vai ta em ans[], na ordem que foram colocadas
int n, v[MAX], ans[MAX];
namespace arpa {
    int p[MAX], cnt;
    stack<int> s;
    vector < pair < int , int >> 1[MAX];
    int find(int k) { return p[k] == k ? k : p[k] =
       find(p[k]); }
    void add(int a, int b) { l[b].push_back({a, cnt++}); }
    void solve() {
        for (int i = 0; (p[i]=i) < n; s.push(i++)) {
            while (s.size() and v[s.top()] >= v[i])
               p[s.top()] = i, s.pop();
            for (auto q : l[i]) ans[q.second] =
               v[find(q.first)];
        }
    }
```

3.13 Simple Polygon

```
return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
bool simple(vector<pt> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
        if ((a.second+1)%v.size() == b.second or
            (b.second+1)%v.size() == a.second) return false;
        return interseg(a.first, b.first);
    };
    vector<line> seg;
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        pt at = v[i], nxt = v[(i+1)%v.size()];
        if (nxt < at) swap(at, nxt);</pre>
        seg.push_back(line(at, nxt));
        w.push_back({at, {0, i}});
        w.push_back({nxt, {1, i}});
        // casos degenerados estranhos
        if (isinseg(v[(i+2)%v.size()], line(at, nxt)))
           return 0;
        if (isinseg(v[(i+v.size()-1)%v.size()], line(at,
           nxt))) return 0;
    }
    sort(w.begin(), w.end());
    set < pair < line, int >> se;
    for (auto i : w) {
        line at = seg[i.second.second];
        if (i.second.first == 0) {
            auto nxt = se.lower_bound({at, i.second.second});
            if (nxt != se.end() and intersects(*nxt, {at,
               i.second.second})) return 0;
            if (nxt != se.begin() and intersects(*(--nxt),
               {at, i.second.second})) return 0;
            se.insert({at, i.second.second});
        } else {
            auto nxt = se.upper_bound({at,
               i.second.second}), cur = nxt, prev = --cur;
            if (nxt != se.end() and prev != se.begin()
                and intersects(*nxt, *(--prev))) return 0;
            se.erase(cur):
```

```
}
return 1;
```

3.14 Algoritmo MO - queries em caminhos de arvore

```
// Problema que resolve: https://www.spoj.com/problems/COT2/
//
// Complexidade sendo c = O(update) e SQ = sqrt(n):
// O((n + q) * sqrt(n) * c)
const int MAX = 40010, SQ = 400;
vector < int > g[MAX];
namespace LCA { ... }
int in[MAX], out[MAX], vtx[2 * MAX];
bool on[MAX];
int dif, freq[MAX];
vector < int > w;
void dfs(int v, int p, int &t) {
    vtx[t] = v, in[v] = t++;
    for (int u : g[v]) if (u != p) {
        dfs(u, v, t);
    }
    vtx[t] = v, out[v] = t++;
}
void update(int p) { // faca alteracoes aqui
    int v = vtx[p];
    if (not on[v]) { // insere vtx v
        dif += (freq[w[v]] == 0);
        freq[w[v]]++;
    }
    else { // retira o vertice v
        dif -= (freq[w[v]] == 1);
```

```
freq[w[v]]--;
    on[v] = not on[v];
}
vector<tuple<int, int, int>> build_queries(const
   vector<pair<int, int>>& q) {
    LCA::build(0);
    vector<tuple<int, int, int>> ret;
    for (auto [1, r] : q){
        if (in[r] < in[l]) swap(l, r);</pre>
        int p = LCA::lca(1, r);
        int init = (p == 1) ? in[1] : out[1];
        ret.emplace_back(init, in[r], in[p]);
    }
    return ret;
}
vector<int> mo_tree(const vector<pair<int, int>>& vq){
    int t = 0;
    dfs(0, -1, t);
    auto q = build_queries(vq);
    vector < int > ord(q.size());
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&] (int 1, int r) {
        int bl = get<0>(q[1]) / SQ, br = <math>get<0>(q[r]) / SQ;
        if (bl != br) return bl < br;</pre>
        else if (bl % 2 == 1) return get<1>(q[1]) <</pre>
            get <1>(q[r]);
        else return get<1>(q[1]) > get<1>(q[r]);
    });
    memset(freq, 0, sizeof freq);
    dif = 0;
    vector<int> ret(q.size());
    int l = 0, r = -1;
    for (int i : ord) {
        auto [ql, qr, qp] = q[i];
        while (r < qr) update(++r);</pre>
```

```
while (1 > q1) update(--1);
    while (1 < q1) update(1++);
    while (r > qr) update(r--);

if (qp < 1 or qp > r) { // se LCA estab entre as
        pontas
            update(qp);
            ret[i] = dif;
            update(qp);
        }
        else ret[i] = dif;
}
return ret;
}
```

3.15 Area Maxima de Histograma

```
// Assume que todas as barras tem largura 1,
// e altura dada no vetor v
//
// O(n)
11 area(vector<int> v) {
    ll ret = 0;
    stack<int> s;
   // valores iniciais pra dar tudo certo
    v.insert(v.begin(), -1);
    v.insert(v.end(), -1);
    s.push(0);
    for(int i = 0; i < (int) v.size(); i++) {</pre>
        while (v[s.top()] > v[i]) {
            11 h = v[s.top()]; s.pop();
            ret = max(ret, h * (i - s.top() - 1));
        s.push(i);
    }
    return ret;
}
```

3.16 LIS2 - Longest Increasing Subsequence

```
// Calcula o tamanho da LIS
//
// O(n.log(n))

template < typename T > int lis(vector < T > &v){
    vector < T > ans;
    for (T t : v){
        // Para non-decreasing use upper_bound()
        auto it = lower_bound(ans.begin(), ans.end(), t);
        if (it == ans.end()) ans.push_back(t);
        else *it = t;
    }
    return ans.size();
}
```

3.17 Minimum Enclosing Circle

```
// O(n) com alta probabilidade
const double EPS = 1e-12;
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct pt {
    double x, y;
    pt(double x_{=} = 0, double y_{=} = 0) : x(x_{=}), y(y_{=}) {}
    pt operator + (const pt& p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt& p) const { return pt(x-p.x,
    pt operator * (double c) const { return pt(x*c, y*c); }
    pt operator / (double c) const { return pt(x/c, y/c); }
};
double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
double dist(pt p, pt q) { return sqrt(dot(p-q, p-q)); }
```

```
pt center(pt p, pt q, pt r) {
    pt a = p-r, b = q-r;
   pt c = pt(dot(a, p+r)/2, dot(b, q+r)/2);
   return pt(cross(c, pt(a.y, b.y)), cross(pt(a.x, b.x),
       c)) / cross(a, b);
}
struct circle {
    pt cen;
    double r;
    circle(pt cen_, double r_) : cen(cen_), r(r_) {}
    circle(pt a, pt b, pt c) {
        cen = center(a, b, c);
        r = dist(cen, a);
    bool inside(pt p) { return dist(p, cen) < r+EPS; }</pre>
};
circle minCirc(vector<pt> v) {
    shuffle(v.begin(), v.end(), rng);
    circle ret = circle(pt(0, 0), 0);
    for (int i = 0; i < v.size(); i++) if</pre>
       (!ret.inside(v[i])) {
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!ret.inside(v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for (int k = 0; k < j; k++) if
                (!ret.inside(v[k]))
                ret = circle(v[i], v[j], v[k]);
        }
    }
    return ret;
}
```

3.18 Conj. Indep. Maximo com Peso em Grafo de Intervalo

```
// Retorna os indices ordenados dos
// intervalos selecionados
```

```
// Se tiver empate, retorna o que minimiza o comprimento
   total
//
// O(n log(n))
vector < int > ind_set(vector < tuple < int, int, int >>& v) {
    vector<tuple<int, int, int>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        w.push_back(tuple(get<0>(v[i]), 0, i));
        w.push_back(tuple(get<1>(v[i]), 1, i));
    sort(w.begin(), w.end());
    vector < int > nxt(v.size());
    vector < pair < ll, int >> dp(v.size());
    int last = -1;
    for (auto [fim, t, i] : w) {
        if (t == 0) {
            nxt[i] = last;
            continue;
        }
        dp[i] = \{0, 0\};
        if (last != -1) dp[i] = max(dp[i], dp[last]);
        pair<11, int> pega = {get<2>(v[i]), -(get<1>(v[i]) -
            get<0>(v[i]) + 1);
        if (nxt[i] != -1) pega.first += dp[nxt[i]].first,
           pega.second += dp[nxt[i]].second;
        if (pega > dp[i]) dp[i] = pega;
        else nxt[i] = last;
        last = i;
    pair<11, int > ans = \{0, 0\};
    int idx = -1;
    for (int i = 0; i < v.size(); i++) if (dp[i] > ans) ans
       = dp[i], idx = i;
    vector<int> ret:
    while (idx != -1) {
        if (get < 2 > (v[idx]) > 0 and
            (nxt[idx] == -1 or get<1>(v[nxt[idx]]) <</pre>
                get <0>(v[idx]))) ret.push_back(idx);
        idx = nxt[idx];
    }
```

```
sort(ret.begin(), ret.end());
return ret;
}
```

3.19 Conectividade Dinamica 2

```
// Offline com link-cut trees
// O(n log(n))
namespace lct {
    struct node {
        int p, ch[2];
        int val, sub;
        bool rev;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0) { ch[0]}
           = ch[1] = -1; }
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<pair<int, int>, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        }
        t[x].rev = 0;
    }
    void update(int x) {
        t[x].sub = t[x].val;
        for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
            prop(t[x].ch[i]);
            t[x].sub = min(t[x].sub, t[t[x].ch[i]].sub);
        }
    }
    bool is_root(int x) {
        return t[x].p == -1 or (t[t[x].p].ch[0] != x and
```

```
t[t[x].p].ch[1] != x);
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
       if (!is_root(p)) prop(pp);
        prop(p), prop(x);
       if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0]} == x) ? x : p);
        rotate(x);
    }
    return prop(x), x;
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
       t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
}
void make_tree(int v, int w=INF) { t[v] = node(w); }
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
int query(int v, int w) {
    rootify(w), access(v);
    return t[v].sub;
}
```

```
void link_(int v, int w) {
        rootify(w);
        t[w].p = v;
    }
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x);
        link_(v, id), link_(id, w);
   }
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
   void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
   }
}
void dyn_conn() {
    int n, q; cin >> n >> q;
    vector < int > p(2*q, -1); // outra ponta do intervalo
    for (int i = 0; i < n; i++) lct::make_tree(i);</pre>
    vector<pair<int, int>> qu(q);
    map<pair<int, int>, int> m;
    for (int i = 0; i < q; i++) {
        char c; cin >> c;
        if (c == '?') continue;
        int a, b; cin >> a >> b; a--, b--;
        if (a > b) swap(a, b);
        qu[i] = \{a, b\};
        if (c == '+') {
            p[i] = i+q, p[i+q] = i;
            m[make_pair(a, b)] = i;
        } else {
            int j = m[make_pair(a, b)];
            p[i] = j, p[j] = i;
        }
    }
    int ans = n;
    for (int i = 0; i < q; i++) {
```

```
if (p[i] == -1) {
            cout << ans << endl; // numero de comp conexos</pre>
            continue;
        }
        int a = qu[i].first, b = qu[i].second;
        if (p[i] > i) { // +
            if (lct::conn(a, b)) {
                int mi = lct::query(a, b);
                if (p[i] < mi) {</pre>
                     p[p[i]] = p[i];
                     continue;
                lct::cut(qu[p[mi]].first, qu[p[mi]].second),
                    ans++:
                p[mi] = mi;
            lct::link(a, b, p[i]), ans--;
        } else if (p[i] != i) lct::cut(a, b), ans++; // -
    }
}
```

3.20 Mo - numero de distintos em range

```
// Para ter o bound abaixo, escolher
// SQ = n / sqrt(q)
//
// O(n * sqrt(q))

const int MAX = 3e4+10;
const int SQ = sqrt(MAX);
int v[MAX];

int ans, freq[MAX];

inline void insert(int p) {
   int o = v[p];
   freq[o]++;
   ans += (freq[o] == 1);
}
```

```
inline void erase(int p) {
    int o = v[p];
    ans -= (freq[o] == 1);
    freq[o]--;
}
inline ll hilbert(int x, int y) {
    static int N = (1 << 20);</pre>
   int rx, ry, s;
   11 d = 0;
    for (s = N/2; s>0; s /= 2) {
        rx = (x \& s) > 0;
        ry = (y \& s) > 0;
        d += s * 11(s) * ((3 * rx) ^ ry);
        if (ry == 0) {
            if (rx == 1) {
                x = N-1 - x;
                y = N-1 - y;
            swap(x, y);
        }
    }
    return d;
}
#define HILBERT true
vector<int> MO(vector<pair<int, int>> &q) {
    ans = 0;
   int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
#if HILBERT
    vector<ll> h(m);
    for (int i = 0; i < m; i++) h[i] = hilbert(q[i].first,</pre>
       q[i].second);
    sort(ord.begin(), ord.end(), [&](int 1, int r) { return
       h[l] < h[r]; });
#else
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
           q[l].first < q[r].first;
        if ((q[1].first / SQ) % 2) return q[1].second >
```

```
q[r].second;
        return q[1].second < q[r].second;</pre>
    });
#endif
    vector < int > ret(m);
    int 1 = 0, r = -1;
    for (int i : ord) {
        int ql, qr;
        tie(ql, qr) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);</pre>
        while (r > qr) erase(r--);
        ret[i] = ans:
    return ret;
}
```

Algoritmo Hungaro 3.21

```
// Resolve o problema de assignment (matriz n x n)
// Colocar os valores da matriz em 'a' (pode < 0)</pre>
// assignment() retorna um par com o valor do
// assignment minimo, e a coluna escolhida por cada linha
//
// O(n^3)
template < typename T > struct hungarian {
    int n:
    vector < vector < T >> a;
    vector<T> u, v;
    vector < int > p, way;
    T inf;
    hungarian(int n_{-}): n(n_{-}), u(n+1), v(n+1), p(n+1),
        wav(n+1) {
        a = vector < vector < T >> (n, vector < T > (n));
        inf = numeric_limits <T>::max();
    }
```

```
pair <T, vector <int >> assignment() {
        for (int i = 1; i <= n; i++) {</pre>
            p[0] = i;
            int j0 = 0;
            vector <T> minv(n+1, inf);
            vector < int > used(n+1, 0);
            do {
                 used[j0] = true;
                 int i0 = p[j0], j1 = -1;
                 T delta = inf;
                 for (int j = 1; j <= n; j++) if (!used[j]) {
                     T cur = a[i0-1][j-1] - u[i0] - v[j];
                     if (cur < minv[j]) minv[j] = cur, way[j]</pre>
                        = j0;
                     if (minv[j] < delta) delta = minv[j], j1</pre>
                 }
                 for (int j = 0; j <= n; j++)
                     if (used[i]) u[p[i]] += delta, v[i] -=
                        delta;
                     else minv[j] -= delta;
                 j0 = j1;
            } while (p[j0] != 0);
            do {
                int j1 = way[j0];
                p[j0] = p[j1];
                j0 = j1;
            } while (j0);
        vector < int > ans(n);
        for (int j = 1; j \le n; j++) ans [p[j]-1] = j-1;
        return make_pair(-v[0], ans);
    }
}:
      Dominator Points
// Se um ponto A tem ambas as coordenadas >= B, dizemos
```

3.22

```
// que A domina B
// is_dominated(p) fala se existe algum ponto no conjunto
```

```
// que domina p
// insert(p) insere p no conjunto
// (se p for dominado por alguem, nao vai inserir)
// o multiset 'quina' guarda informacao sobre os pontos
// nao dominados por um elemento do conjunto que nao dominam
// outro ponto nao dominado por um elemento do conjunto
// No caso, armazena os valores de x+y esses pontos
//
// Complexidades:
// is_dominated - O(log(n))
// insert - O(log(n)) amortizado
// query - 0(1)
struct dominator_points {
    set < pair < int , int >> se;
    multiset < int > quina;
    bool is_dominated(pair<int, int> p) {
        auto it = se.lower_bound(p);
        if (it == se.end()) return 0;
        return it->second >= p.second;
    void mid(pair<int, int> a, pair<int, int> b, bool rem) {
        pair<int, int> m = {a.first+1, b.second+1};
        int val = m.first + m.second;
        if (!rem) quina.insert(val);
        else quina.erase(quina.find(val));
    bool insert(pair<int, int> p) {
        if (is_dominated(p)) return 0;
        auto it = se.lower_bound(p);
        if (it != se.begin() and it != se.end())
            mid(*prev(it), *it, 1);
        while (it != se.begin()) {
            it--:
            if (it->second > p.second) break;
            if (it != se.begin()) mid(*prev(it), *it, 1);
            it = se.erase(it);
        }
        it = se.insert(p).first;
        if (it != se.begin()) mid(*prev(it), *it, 0);
        if (next(it) != se.end()) mid(*it, *next(it), 0);
```

```
return 1;
}
int query() {
   if (!quina.size()) return INF;
    return *quina.begin();
};
```

3.23 Min fixed range

```
// https://codeforces.com/contest/1195/problem/E
//
// O(n)
// ans[i] = min_{0} <= j < k v[i+j]
vector<int> min_k(vector<int> &v, int k){
    int n = v.size();
    deque < int > d;
    auto put = [&](int i){
        while (!d.empty() && v[d.back()] > v[i])
            d.pop_back();
        d.push_back(i);
    }:
    for (int i = 0; i < k-1; i++)
        put(i);
    vector < int > ans (n-k+1);
    for (int i = 0; i < n-k+1; i++) {
        put(i+k-1);
        while (i > d.front()) d.pop_front();
        ans[i] = v[d.front()];
    }
    return ans;
}
```

3.24 Binomial modular

```
// Computa C(n, k) mod m em O(m + log(m) log(n))
// = O(rapido)
```

```
11 divi[MAX];
ll expo(ll a, ll b, ll m) {
    if (!b) return 1;
    ll ans = expo(a*a\%m, b/2, m);
    if (b\%2) ans *= a;
    return ans%m;
}
ll inv(ll a, ll b){
    return 1<a ? b - inv(b%a,a)*b/a : 1;
}
11 gcde(ll a, ll b, ll& x, ll& y) {
    if (!a) {
        x = 0:
        y = 1;
        return b;
    }
    11 X, Y;
    ll g = gcde(b \% a, a, X, Y);
    x = Y - (b / a) * X;
    y = X;
    return g;
}
struct crt {
    ll a, m;
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        11 x, y;
        ll g = gcde(m, C.m, x, y);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
```

```
};
pair<11, 11> divide_show(11 n, int p, int k, int pak) {
    if (n == 0) return {0, 1};
    11 blocos = n/pak, falta = n%pak;
    ll periodo = divi[pak], resto = divi[falta];
    ll r = expo(periodo, blocos, pak)*resto%pak;
    auto rec = divide_show(n/p, p, k, pak);
    11 y = n/p + rec.first;
    r = r*rec.second % pak;
    return {y, r};
}
ll solve_pak(ll n, ll x, int p, int k, int pak) {
    divi[0] = 1:
    for (int i = 1; i <= pak; i++) {</pre>
        divi[i] = divi[i-1];
        if (i%p) divi[i] = divi[i] * i % pak;
    }
    auto dn = divide_show(n, p, k, pak), dx = divide_show(x,
       p, k, pak),
         dnx = divide_show(n-x, p, k, pak);
    11 y = dn.first-dx.first-dnx.first, r =
        (dn.second*inv(dx.second, pak)%pak)*inv(dnx.second,
           pak)%pak;
    return expo(p, y, pak) * r % pak;
}
ll solve(ll n, ll x, int mod) {
    vector < pair < int , int >> f;
    int mod2 = mod;
    for (int i = 2; i*i <= mod2; i++) if (mod2%i==0) {</pre>
        int c = 0:
        while (mod2\%i==0) mod2 /= i, c++;
        f.push_back({i, c});
    }
    if (mod2 > 1) f.push_back({mod2, 1});
    crt ans(0, 1);
    for (int i = 0; i < f.size(); i++) {</pre>
```

```
int pak = 1;
    for (int j = 0; j < f[i].second; j++) pak *=
        f[i].first;
    ans = ans * crt(solve_pak(n, x, f[i].first,
            f[i].second, pak), pak);
}
    return ans.a;
}</pre>
```

3.25 Triangulos em Grafos

```
// get_triangles(i) encontra todos os triangulos ijk no grafo
// Custo nas arestas
// retorna {custo do triangulo, {j, k}}
// O(m sqrt(m) log(n)) se chamar para todos os vertices
vector<pair<int, int>> g[MAX]; // {para, peso}
#warning o 'g' deve estar ordenado
vector<pair<int, pair<int, int>>> get_triangles(int i) {
    vector < pair < int , pair < int , int >>> tri;
    for (pair<int, int> j : g[i]) {
        int a = i, b = j.first;
        if (g[a].size() > g[b].size()) swap(a, b);
        for (pair<int, int> c : g[a]) if (c.first != b and
           c.first > j.first) {
            auto it = lower_bound(g[b].begin(), g[b].end(),
               make_pair(c.first, -INF));
            if (it == g[b].end() or it->first != c.first)
               continue;
            tri.push_back({j.second+c.second+it->second, {a
               == i ? b : a, c.first}});
        }
    return tri;
}
```

3.26 Closest pair of points

```
// O(nlogn)
pair < pt , pt > closest_pair_of_points(vector < pt > &v) {
    #warning changes v order
    int n = v.size();
    sort(v.begin(), v.end());
    for (int i = 1; i < n; i++){</pre>
        if (v[i] == v[i-1]){
            return make_pair(v[i-1], v[i]);
        }
    }
    auto cmp_y = [&](const pt &1, const pt &r){
        if (1.y != r.y) return 1.y < r.y;</pre>
        return l.x < r.x;</pre>
    };
    set < pt, decltype(cmp_y) > s(cmp_y);
    int 1 = 0, r = -1;
    11 d2_min = numeric_limits < l1 >:: max();
    pt pl, pr;
    const int magic = 5;
    while (r+1 < n)
        auto it = s.insert(v[++r]).first;
        int cnt = magic/2;
        while (cnt-- && it != s.begin())
             it--;
        cnt = 0;
        while (cnt++ < magic && it != s.end()){</pre>
             if (!((*it) == v[r])){
                 11 d2 = dist2(*it, v[r]);
                 if (d2_min > d2){
                     d2_min = d2;
                     pl = *it;
                     pr = v[r];
             }
             it++;
        while (1 < r \&\& sq(v[1].x-v[r].x) > d2_min)
             s.erase(v[1++]);
    }
```

```
return make_pair(pl, pr);
}
```

3.27 Segment Intersection

```
// Verifica, dado n segmentos, se existe algum par de
   segmentos
// que se intersecta
// O(n log n)
bool operator < (const line& a, const line& b) { //
   comparador pro sweepline
    if (a.p == b.p) return ccw(a.p, a.q, b.q);
   if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
       return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
bool has_intersection(vector<line> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
        return interseg(a.first, b.first);
   };
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (v[i].q < v[i].p) swap(v[i].p, v[i].q);</pre>
        w.push_back({v[i].p, {0, i}});
        w.push_back({v[i].q, {1, i}});
    }
    sort(w.begin(), w.end());
    set < pair < line , int >> se;
    for (auto i : w) {
        line at = v[i.second.second];
        if (i.second.first == 0) {
            auto nxt = se.lower_bound({at, i.second.second});
            if (nxt != se.end() and intersects(*nxt, {at,
               i.second.second})) return 1;
            if (nxt != se.begin() and intersects(*(--nxt),
```

```
{at, i.second.second})) return 1;
    se.insert({at, i.second.second});
} else {
    auto nxt = se.upper_bound({at,
        i.second.second}), cur = nxt, prev = --cur;
    if (nxt != se.end() and prev != se.begin()
        and intersects(*nxt, *(--prev))) return 1;
    se.erase(cur);
}
return 0;
}
```

3.28 Distinct Range Query - Wavelet

```
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
int v[MAX], n, nxt[MAX];
namespace wav {
    vector < int > esq[4*(1+MAXN-MINN)];
    void build(int b = 0, int e = n, int p = 1, int l =
       MINN, int r = MAXN) {
        if (1 == r) return;
        int m = (1+r)/2; esq[p].push_back(0);
        for (int i = b; i < e; i++)</pre>
            esq[p].push_back(esq[p].back()+(nxt[i]<=m));</pre>
        int m2 = stable_partition(nxt+b, nxt+e, [=](int
            i) { return i <= m; }) - nxt;
        build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
    }
    int count(int i, int j, int x, int y, int p = 1, int l =
       MINN, int r = MAXN) {
        if (y < 1 \text{ or } r < x) \text{ return } 0;
        if (x <= l and r <= y) return j-i;</pre>
        int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
        return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei,
```

3.29 RMQ com Divide and Conquer

```
// Responde todas as queries em
// O(n log(n))

typedef pair < pair < int, int >, int > iii;
#define f first
#define s second

int n, q, v[MAX];
iii qu[MAX];
iit ans[MAX], pref[MAX], sulf[MAX];

void solve(int l=0, int r=n-1, int ql=0, int qr=q-1) {
    if (1 > r or ql > qr) return;
    int m = (1+r)/2;
    int qL = partition(qu+ql, qu+qr+1, [=](iii x){return x.f.s < m;}) - qu;
    int qR = partition(qu+qL, qu+qr+1, [=](iii x){return x.f.f <=m;}) - qu;</pre>
```

```
pref[m] = sulf[m] = v[m];
    for (int i = m-1; i >= 1; i--) pref[i] = min(v[i],
       pref[i+1]);
   for (int i = m+1; i <= r; i++) sulf[i] = min(v[i],</pre>
       sulf[i-1]);
    for (int i = qL; i < qR; i++)</pre>
        ans[qu[i].s] = min(pref[qu[i].f.f], sulf[qu[i].f.s]);
    solve(l, m-1, ql, qL-1), solve(m+1, r, qR, qr);
}
3.30 Distinct Range Query com Update
// build - O(n log(n))
// query - O(log^2(n))
// update - 0(log^2(n))
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
int v[MAX], n, nxt[MAX], prv[MAX];
map<int, set<int> > ocor;
namespace bit {
    ord_set < pair < int , int >> bit [MAX];
    void build() {
        for (int i = 1; i <= n; i++)
           bit[i].insert({nxt[i-1], i-1});
        for (int i = 1; i <= n; i++) {
            int j = i + (i\&-i);
            if (j <= n) for (auto x : bit[i])</pre>
               bit[j].insert(x);
```

}

```
}
    int pref(int p, int x) {
        int ret = 0;
        for (; p; p -= p\&-p) ret += bit[p].order_of_key({x,}
            -INF}):
        return ret;
    }
    int query(int 1, int r, int x) {
        return pref(r+1, x) - pref(1, x);
    void update(int p, int x) {
        int p2 = p;
        for (p++; p \le n; p += p\&-p) {
            bit[p].erase({nxt[p2], p2});
            bit[p].insert({x, p2});
        }
    }
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = INF;</pre>
    for (int i = 0; i < n; i++) prv[i] = -INF;</pre>
    vector<pair<int, int>> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n; i++) {</pre>
        if (i and t[i].first == t[i-1].first)
             prv[t[i].second] = t[i-1].second;
        if (i+1 < n \text{ and } t[i].first == t[i+1].first)
            nxt[t[i].second] = t[i+1].second;
    }
    for (int i = 0; i < n; i++) ocor[v[i]].insert(i);</pre>
    bit::build();
}
void muda(int p, int x) {
    bit::update(p, x);
    nxt[p] = x;
}
```

```
int querv(int a, int b) {
    return b-a+1 - bit::query(a, b, b+1);
}
void update(int p, int x) { // mudar valor na pos. p para x
    if (prv[p] > -INF) muda(prv[p], nxt[p]);
    if (nxt[p] < INF) prv[nxt[p]] = prv[p];</pre>
    ocor[v[p]].erase(p);
    if (!ocor[x].size()) {
        muda(p, INF);
        prv[p] = -INF;
    } else if (*ocor[x].rbegin() < p) {</pre>
        int i = *ocor[x].rbegin();
        prv[p] = i;
        muda(p, INF);
        muda(i, p);
    } else {
        int i = *ocor[x].lower_bound(p);
        if (prv[i] > -INF) {
            muda(prv[i], p);
            prv[p] = prv[i];
        } else prv[p] = -INF;
        prv[i] = p;
        muda(p, i);
    }
    v[p] = x; ocor[x].insert(p);
}
```

4 Matematica

4.1 Division Trick

```
// Gera o conjunto n/i, pra todo i, em O(sqrt(n))
// copiei do github do tfg50

for(int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / 1);
    // n / i has the same value for l <= i <= r</pre>
```

```
}
```

4.2 Produto de dois long long mod m

4.3 Avaliação de Interpolação

```
// Dado 'n' pontos (i, y[i]), i \in [0, n),
// avalia o polinomio de grau n-1 que passa
// por esses pontos em 'x'
// Tudo modular, precisa do mint
//
// O(n log n)
mint evaluate_interpolation(int x, vector<mint> y) {
    int n = y.size();
    vector \leq mint \geq sulf(n+1, 1), fat(n, 1);
    for (int i = n-1; i >= 0; i--) sulf[i] = sulf[i+1] * (x
       - i):
    for (int i = 1; i < n; i++) fat[i] = fat[i-1] * i;</pre>
    mint pref = 1, ans = 0;
    for (int i = 0; i < n; pref *= (x - i++)) {</pre>
        mint num = pref * sulf[i+1];
        mint den = fat[i] * fat[n-1 - i];
        if ((n-1 - i)\%2) den *= -1;
        ans += y[i] * num / den;
```

```
}
return ans;
}
```

4.4 Equação Diofantina Linear

```
// Encontra o numero de solucoes de a*x + b*y = c,
// em que x \in [lx, rx] e y \in [ly, ry]
// Usar o comentario para recuperar as solucoes
// (note que o b ao final eh b/gcd(a, b))
// Cuidado com overflow! Tem que caber o quadrado dos valores
// O(log(min(a, b)))
template < typename T> tuple < 11, T, T> ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd < T > (b\%a, a);
    return {g, y - b/a*x, x};
}
// numero de solucoes de a*[lx, rx] + b*[ly, ry] = c
template < typename T = 11> // usar __int128 se for ate 1e18
ll diophantine(ll a, ll b, ll c, ll lx, ll rx, ll ly, ll ry)
    if (lx > rx or ly > ry) return 0;
    if (a == 0 \text{ and } b == 0) \text{ return } c ? 0 :
       (rx-lx+1)*(ry-ly+1);
    auto [g, x, y] = ext_gcd < T > (abs(a), abs(b));
    if (c % g != 0) return 0;
    if (a == 0) return (rx-lx+1)*(ly <= c/b and c/b <= ry);
    if (b == 0) return (ry-ly+1)*(lx <= c/a and c/a <= rx);
    x *= a/abs(a) * c/g, y *= b/abs(b) * c/g, a /= g, b /= g;
    auto shift = [\&](T qt) \{ x += qt*b, y -= qt*a; \};
    auto test = [&](T& k, ll mi, ll ma, ll coef, int t) {
        shift((mi - k)*t / coef);
        if (k < mi) shift(coef > 0 ? t : -t);
        if (k > ma) return pair<T, T>(rx+2, rx+1);
        T x1 = x;
        shift((ma - k)*t / coef);
```

```
if (k > ma) shift(coef > 0 ? -t : t);
    return pair < T, T > (x1, x);
};

auto [l1, r1] = test(x, lx, rx, b, 1);
auto [l2, r2] = test(y, ly, ry, a, -1);
if (l2 > r2) swap(l2, r2);
T l = max(l1, l2), r = min(r1, r2);
if (l > r) return 0;
ll k = (r-l) / abs(b) + 1;
return k; // solucces: x = l + [0, k)*|b|
}
```

4.5 Divisao de Polinomios

```
// Divide p1 por p2
// Retorna um par com o quociente e o resto
// Os coeficientes devem estar em ordem
// decrescente pelo grau. Ex:
// 3x^2 + 2x - 1 \rightarrow [3, 2, -1]
// O(nm), onde n e m sao os tamanhos dos
// polinomios
typedef vector < int > vi;
pair < vi , vi > div(vi p1, vi p2) {
    vi quoc, resto;
    int a = p1.size(), b = p2.size();
    for (int i = 0; i <= a - b; i++) {
        int k = p1[i] / p2[0];
        quoc.push_back(k);
        for (int j = i; j < i + b; j++)</pre>
            p1[j] -= k * p2[j - i];
    }
    for (int i = a - b + 1; i < a; i++)
        resto.push_back(p1[i]);
    return mp(quoc, resto);
```

```
4.6 Fast Walsh Hadamard Transform
```

```
// FWHT<'|'>(f) eh SOS DP
// FWHT<'%'>(f) eh soma de superset DP
// Se chamar com ^, usar tamanho potencia de 2!!
// O(n log(n))
template < char op, bool inv = false, class T> vector < T>
   FWHT(vector<T> f) {
   int n = f.size();
   for (int k = 0; (n-1) >> k; k++) for (int i = 0; i < n;
       i++) if (i>>k&1) {
       int j = i^(1 << k);
        if (op == '\cap',') f[j] += f[i], f[i] = f[j] - 2*f[i];
        if (op == '|') f[i] += (inv ? -1 : 1) * f[i];
        if (op == '&') f[j] += (inv ? -1 : 1) * f[i];
    }
    if (op == ', and inv) for (auto& i : f) i /= n;
    return f;
}
```

4.7 Logaritmo Discreto

```
// Resolve logaritmo discreto com o algoritmo baby step
    giant step
// Encontra o menor x tal que a^x = b (mod m)
// Se nao tem, retorna -1
//
// O(sqrt(m) * log(sqrt(m))

int dlog(int b, int a, int m) {
    if (a == 0) return b ? -1 : 1; // caso nao definido

    a %= m, b %= m;
    int k = 1, shift = 0;
```

}

```
while (1) {
        int g = gcd(a, m);
        if (g == 1) break;
        if (b == k) return shift;
        if (b % g) return -1;
        b /= g, m /= g, shift++;
        k = (11) k * a / g % m;
    }
    int sq = sqrt(m)+1, giant = 1;
    for (int i = 0; i < sq; i++) giant = (11) giant * a % m;</pre>
    vector<pair<int, int>> baby;
    for (int i = 0, cur = b; i <= sq; i++) {
        baby.emplace_back(cur, i);
        cur = (11) cur * a % m;
    sort(baby.begin(), baby.end());
    for (int j = 1, cur = k; j <= sq; j++) {
        cur = (11) cur * giant % m;
        auto it = lower_bound(baby.begin(), baby.end(),
           pair(cur, INF));
        if (it != baby.begin() and (--it)->first == cur)
            return sq * j - it->second + shift;
    }
    return -1;
}
4.8 2-SAT
// solve(n) Retorna se eh possivel atribuir valores
// pras 'n' variaveis
// ans[i] fala se a variavel 'i' eh verdadeira
// Pra chamar o negado da variavel 'i', usar ~i
// O(|V|+|E|)
```

```
namespace doisSAT {
#warning limpar o grafo
    vector < int > g[2*MAX];
    int vis[2*MAX], comp[2*MAX], id[2*MAX];
    stack<int> s;
    int ans[MAX];
    int dfs(int i, int& t) {
        int lo = id[i] = t++;
        s.push(i), vis[i] = 2;
        for (int j : g[i]) {
            if (!vis[j]) lo = min(lo, dfs(j, t));
            else if (vis[j] == 2) lo = min(lo, id[j]);
        if (lo == id[i]) while (1) {
            int u = s.top(); s.pop();
            vis[u] = 1, comp[u] = i;
            if (ans[u>1] == -1) ans[u>1] = \sim u\&1;
            if (u == i) break;
        return lo;
    }
    void tarjan(int n) {
        int t = 0;
        for (int i = 0; i < 2*n; i++) vis[i] = 0;
        for (int i = 0; i < 2*n; i++) if (!vis[i]) dfs(i, t);</pre>
    }
    void add_impl(int x, int y) { // x -> y = !x ou y
        x = x >= 0 ? 2*x : -2*x-1;
        y = y >= 0 ? 2*y : -2*y-1;
        g[x].push_back(y);
        g[y^1].push_back(x^1);
    void add_cl(int x, int y) { // x ou y
        add_impl(\sim x, y);
    }
    void add_xor(int x, int y) { // x xor y
        add_cl(x, y), add_cl(\simx, \simy);
    void add_eq(int x, int y) { // x = y
```

```
add_xor(~x, y);
}
void add_true(int x) { // x = T
    add_impl(~x, x);
}

bool solve(int n) {
    for (int i = 0; i < n; i++) ans[i] = -1;
        tarjan(n);
    for (int i = 0; i < n; i++)
        if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
}</pre>
```

4.9 Variacoes do crivo de Eratosthenes

```
// "O" crivo
// Encontra maior divisor primo
// Um numero eh primo sse divi[x] == x
// fact fatora um numero <= lim
// A fatoração sai ordenada
// crivo - O(n log(log(n)))
// fact - O(log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++) if (divi[i] == 1)</pre>
        for (int j = i; j <= lim; j += i) divi[j] = i;</pre>
}
void fact(vector<int>& v, int n) {
    if (n != divi[n]) fact(v, n/divi[n]);
    v.push_back(divi[n]);
}
```

```
// Crivo linear
// Mesma coisa que o de cima, mas tambem
// calcula a lista de primos
//
// O(n)
int divi[MAX];
vector<int> primes;
void crivo(int lim) {
    divi[1] = 1:
    for (int i = 2; i <= lim; i++) {</pre>
        if (divi[i] == 0) divi[i] = i, primes.push_back(i);
        for (int j : primes) {
            if (j > divi[i] or i*j > lim) break;
            divi[i*j] = j;
        }
    }
}
// Crivo de divisores
// Encontra numero de divisores
// ou soma dos divisores
// O(n log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++)</pre>
        for (int j = i; j <= lim; j += i) {</pre>
            // para numero de divisores
            divi[j]++;
            // para soma dos divisores
            divi[i] += i;
        }
}
```

```
// Crivo de totiente
// Encontra o valor da funcao
// totiente de Euler
// O(n log(log(n)))
int tot[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) tot[i] = i;</pre>
    for (int i = 2; i <= lim; i++) if (tot[i] == i)</pre>
        for (int j = i; j <= lim; j += i)</pre>
            tot[j] -= tot[j] / i;
}
// Crivo de funcao de mobius
// O(n log(log(n)))
char meb[MAX];
void crivo(int lim) {
    for (int i = 2; i <= lim; i++) meb[i] = 2;</pre>
    meb[1] = 1;
    for (int i = 2; i <= lim; i++) if (meb[i] == 2)</pre>
        for (int j = i; j <= lim; j += i) if (meb[j]) {</pre>
            if (meb[j] == 2) meb[j] = 1;
            meb[j] *= j/i\%i ? -1 : 0;
}
// Crivo linear de funcao multiplicativa
// Computa f(i) para todo 1 <= i <= n, sendo f
// uma funcao multiplicativa (se gcd(a,b) = 1,
// entao f(a*b) = f(a)*f(b)
// f_prime tem que computar f de um primo, e
// add_prime tem que computar f(p^{(k+1)}) dado f(p^k) e p
// Se quiser computar f(p^k) dado p \in k, usar os comentarios
```

```
//
// O(n)
vector<int> primes;
int f[MAX], pot[MAX];
//int expo[MAX];
void sieve(int lim) {
    // Funcoes para soma dos divisores:
    auto f_prime = [](int p) { return p+1; };
    auto add_prime = [](int fpak, int p) { return fpak*p+1;
    //auto f_pak = [](int p, int k) {};
    f[1] = 1;
   for (int i = 2; i <= lim; i++) {</pre>
        if (!pot[i]) {
            primes.push_back(i);
            f[i] = f_prime(i), pot[i] = i;
            //\exp[i] = 1;
        }
        for (int p : primes) {
            if (i*p > lim) break;
            if (i%p == 0) {
                f[i*p] = f[i / pot[i]] *
                   add_prime(f[pot[i]], p);
                // se for descomentar, tirar a linha de cima
                   tambem
                //f[i*p] = f[i / pot[i]] * f_pak(p,
                   expo[i]+1);
                //\exp[i*p] = \exp[i]+1;
                pot[i*p] = pot[i] * p;
                break;
            } else {
                f[i*p] = f[i] * f[p];
                pot[i*p] = p;
                //\exp [i*p] = 1;
            }
       }
    }
}
```

4.10 Algoritmo de Euclides estendido

```
// Acha x e y tal que ax + by = mdc(a, b) (nao eh unico)
// Assume a, b >= 0
//
// O(log(min(a, b)))

tuple<11, 11, 11> ext_gcd(ll a, ll b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b%a, a);
    return {g, y - b/a*x, x};
}
```

4.11 Karatsuba

```
// Os pragmas podem ajudar
// Para n \sim 2e5, roda em < 1 s
//
// O(n^1.58)
//#pragma GCC optimize("Ofast")
//#pragma GCC target ("avx,avx2")
template < typename T > void kar(T* a, T* b, int n, T* r, T*
   tmp) {
    if (n <= 64) {
        for (int i = 0; i < n; i++) for (int j = 0; j < n;
            r[i+j] += a[i] * b[j];
        return;
    }
    int mid = n/2;
    T * atmp = tmp, * btmp = tmp + mid, *E = tmp + n;
    memset(E, 0, sizeof(E[0])*n);
    for (int i = 0; i < mid; i++) {</pre>
        atmp[i] = a[i] + a[i+mid];
        btmp[i] = b[i] + b[i+mid];
    }
    kar(atmp, btmp, mid, E, tmp+2*n);
    kar(a, b, mid, r, tmp+2*n);
    kar(a+mid, b+mid, mid, r+n, tmp+2*n);
```

```
for (int i = 0; i < mid; i++) {
    T temp = r[i+mid];
    r[i+mid] += E[i] - r[i] - r[i+2*mid];
    r[i+2*mid] += E[i+mid] - temp - r[i+3*mid];
}

template < typename T > vector < T > karatsuba (vector < T > a,
    vector < T > b) {
    int n = max(a.size(), b.size());
    while (n&(n-1)) n++;
    a.resize(n), b.resize(n);
    vector < T > ret(2*n), tmp(4*n);
    kar(&a[0], &b[0], n, &ret[0], &tmp[0]);
    return ret;
}
```

4.12 Exponenciacao rapida

```
// (x^y mod m) em O(log(y))
typedef long long int 11;
ll pow(ll x, ll y, ll m) { // iterativo
    11 \text{ ret} = 1;
    while (y) {
        if (y & 1) ret = (ret * x) % m;
        y >>= 1;
        x = (x * x) % m;
    }
    return ret;
}
ll pow(ll x, ll y, ll m) { // recursivo
    if (!y) return 1;
    ll ans = pow(x*x\%m, y/2, m);
    return y%2 ? x*ans%m : ans;
}
```

4.13 Inverso Modular

```
// Computa o inverso de a modulo b
// Se b eh primo, basta fazer
// a^{(b-2)}
11 inv(ll a, ll b) {
    return a > 1? b - inv(b\%a, a)*b/a : 1;
}
// computa o inverso modular de 1..MAX-1 modulo um primo
ll inv[MAX]:
inv[1] = 1;
for (int i = 2; i < MAX; i++) inv[i] = MOD -</pre>
   MOD/i*inv[MOD%i]%MOD;
```

4.14 FFT

```
// chamar com vector < cplx > para FFT, ou vector < mint > para NTT
// O(n log(n))
template < typename T > void fft(vector < T > &a, bool f, int N,
   vector < int > &rev) {
    for (int i = 0; i < N; i++)</pre>
        if (i < rev[i])</pre>
             swap(a[i], a[rev[i]]);
    int 1, r, m;
    vector<T> roots(N):
    for (int n = 2; n \le N; n *= 2) {
        T \text{ root} = T :: rt(f, n, N);
        roots[0] = 1;
        for (int i = 1; i < n/2; i++)
             roots[i] = roots[i-1]*root;
        for (int pos = 0; pos < N; pos += n) {
             1 = pos+0, r = pos+n/2, m = 0;
             while (m < n/2) {
                 auto t = roots[m]*a[r];
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
```

```
l++: r++: m++:
        }
    }
    if (f) {
        auto invN = T(1)/N;
        for(int i = 0; i < N; i++) a[i] = a[i]*invN;</pre>
    }
}
template < typename T > vector <T > convolution(vector <T > &a,
   vector <T> &b) {
    vector <T> l(a.begin(), a.end());
    vector <T> r(b.begin(), b.end());
    int ln = l.size(), rn = r.size();
    int N = ln+rn+1;
    int n = 1, log_n = 0;
    while (n <= N) { n <<= 1; log_n++; }</pre>
    vector < int > rev(n);
    for (int i = 0; i < n; ++i){
        rev[i] = 0;
        for (int j = 0; j < log_n; ++j)</pre>
            if (i & (1<<j))
                rev[i] = 1 << (log_n-1-j);
    }
    assert(N <= n);
    l.resize(n);
    r.resize(n);
    fft(1, false, n, rev);
    fft(r, false, n, rev);
    for (int i = 0; i < n; i++)
        l[i] *= r[i];
    fft(1, true, n, rev);
    return 1;
}
4.15 Simplex
// Maximiza c^T x s.t. Ax <= b, x >= 0
```

```
// O(2^n), porem executa em O(n^3) no caso medio
const double eps = 1e-7;
namespace Simplex {
    vector < int > B;
    vector < vector < double >> T;
    int n, m;
    void pivot(int x, int y) {
        B[x] = y;
        for (int i = 0; i <= m; i++) if (i != y) T[x][i] /=
           T[x][y];
        T[x][y] = 1/T[x][y];
        for (int i = 0; i <= n; i++) if (i != x and
            abs(T[i][y]) > eps) {
            for (int j = 0; j <= m; j++) if (j != y) T[i][j]
                -= T[i][y] * T[x][j];
            T[i][y] = -T[i][y] * T[x][y];
        }
    }
    // Retorna o par (valor maximo, vetor solucao)
    pair < double , vector < double >> simplex(
            vector < vector < double >> A, vector < double >> b,
                vector < double > c) {
        n = b.size(), m = c.size();
        B = vector < int > (n + 1, -1);
        T = vector(n + 1, vector < double > (m + 1));
        for (int i = 0; i < m; i++) T[0][i] = -c[i];</pre>
        for (int i = 0; i < n; i++) {</pre>
            for (int j = 0; j < m; j++) T[i+1][j] = A[i][j];
            T[i+1][m] = b[i];
        while (true) {
            int x = -1, y = -1;
            double mn = -eps;
            for (int i = 1; i <= n; i++) if(T[i][m] < mn) mn
               = T[i][m], x = i;
            if(x < 0) break;
            for (int i = 0; i < m; i++) if (T[x][i] < -eps) {
                y = i; break; }
```

```
if (y < 0) return {-1e18, {}}; // sem solucao
               para Ax <= b
            pivot(x, y);
        while (true) {
            int x = -1, y = -1;
            double mn = -eps;
            for (int i = 0; i < m; i++) if (T[0][i] < mn) mn</pre>
                = T[0][i], y = i;
            if (y < 0) break;
            mn = 1e200;
            for (int i = 1; i <= n; i++) if (T[i][y] > eps
                and T[i][m] / T[i][y] < mn)</pre>
                mn = T[i][m] / T[i][y], x = i;
            if (x < 0) return {1e18, {}}; // c^T x eh
                ilimitado
            pivot(x, y);
        vector < double > r(m);
        for (int i = 1; i <= n; i++) if (B[i] != -1) r[B[i]]
           = T[i][m];
        return {T[0][m], r};
    }
}
```

4.16 Binomial Distribution

```
// binom(n, k, p) retorna a probabilidade de k sucessos
// numa binomial(n, p)

mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());

double logfact[MAX];
void calc(){
    logfact[0] = 0;
    for (int i = 1; i < MAX; i++)
        logfact[i] = logfact[i-1] + log(i);</pre>
```

```
}
double binom(int n, int k, double p){
    return exp(logfact[n] - logfact[k] - logfact[n-k] + k *
       log(p) + (n-k) * log(1 - p));
}
int main(){//if you want to sample from a bin(n, p)
    calc():
    int n; double p;
    cin >> n >> p;
    binomial_distribution < int > distribution (n, p);
    int IT = 1e5;
    vector<int> freq(n+1, 0);
    for (int i = 0; i < IT; i++){</pre>
        int v = distribution(rng);
        //P(v == k) = (n \text{ choose } k)p^k (1-p)^(n-k) = binom(n,
           k, p)
        freq[v]++;
    cout << fixed << setprecision(5);</pre>
    for (int i = 0; i <= n; i++)</pre>
        cout << double(freq[i])/IT << " ~= " << binom(n, i,
            p) << endl;</pre>
}
```

4.17 Miller-Rabin

```
// Testa se n eh primo, n <= 3 * 10^18
//
// O(log(n)), considerando multiplicacao
// e exponenciacao constantes

// multiplicacao modular

ll mul(ll a, ll b, ll m) {
    ll ret = a*b - ll((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;
}</pre>
```

```
ll pow(ll x, ll y, ll m) {
    if (!y) return 1;
    ll ans = pow(mul(x, x, m), y/2, m);
    return y%2 ? mul(x, ans, m) : ans;
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;
    if (n % 2 == 0) return 0;
    ll r = \__builtin\_ctzll(n - 1), d = n >> r;
    // com esses primos, o teste funciona garantido para n
       <= 2^64
    // funciona para n <= 3*10^24 com os primos ate 41
    for (int a: {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
        ll x = pow(a, d, n);
        if (x == 1 \text{ or } x == n - 1 \text{ or a } \% n == 0) continue;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) break;
        if (x != n - 1) return 0;
    }
    return 1;
```

4.18 Deteccao de ciclo - Tortoise and Hare

```
// Linear no tanto que tem que andar pra ciclar,
// O(1) de memoria
// Retorna um par com o tanto que tem que andar
// do fO ate o inicio do ciclo e o tam do ciclo

pair<11, 11> find_cycle() {
    ll tort = f(f0);
    ll hare = f(f(f0));
    ll t = 0;
```

```
while (tort != hare) {
    tort = f(tort);
    hare = f(f(hare));
    t++:
}
11 st = 0;
tort = f0;
while (tort != hare) {
    tort = f(tort):
    hare = f(hare);
    st++;
}
11 len = 1;
hare = f(tort);
while (tort != hare) {
    hare = f(hare);
    len ++;
return {st, len};
```

4.19 Totiente

}

```
// O(sqrt(n))
int tot(int n){
   int ret = n;

   for (int i = 2; i*i <= n; i++) if (n % i == 0) {
      while (n % i == 0) n /= i;
      ret -= ret / i;
   }
   if (n > 1) ret -= ret / n;

return ret;
}
```

4.20 Eliminacao Gaussiana

```
// Resolve sistema linear
// Retornar um par com o numero de solucoes
// e alguma solucao, caso exista
// O(n^2 * m)
template < typename T>
pair < int , vector < T >> gauss (vector < vector < T >> a , vector < T > b)
    const double eps = 1e-6;
    int n = a.size(), m = a[0].size();
    for (int i = 0; i < n; i++) a[i].push_back(b[i]);</pre>
    vector<int> where(m, -1);
    for (int col = 0, row = 0; col < m and row < n; col++) {
        int sel = row;
        for (int i=row; i<n; ++i)</pre>
             if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
        if (abs(a[sel][col]) < eps) continue;</pre>
        for (int i = col; i <= m; i++)</pre>
             swap(a[sel][i], a[row][i]);
        where [col] = row;
        for (int i = 0; i < n; i++) if (i != row) {
             T c = a[i][col] / a[row][col];
            for (int j = col; j <= m; j++)</pre>
                 a[i][j] -= a[row][j] * c;
        }
        row++;
    }
    vector <T> ans(m, 0);
    for (int i = 0; i < m; i++) if (where[i] != -1)</pre>
        ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i = 0; i < n; i++) {</pre>
        T sum = 0;
        for (int j = 0; j < m; j++)
             sum += ans[j] * a[i][j];
        if (abs(sum - a[i][m]) > eps)
             return pair(0, vector<T>());
```

```
for (int i = 0; i < m; i++) if (where[i] == -1)
    return pair(INF, ans);
return pair(1, ans);
}</pre>
```

4.21 Teorema Chines do Resto

```
// Combina equacoes modulares lineares: x = a (mod m)
// O m final eh o lcm dos m's, e a resposta eh unica mod o
// Os m nao precisam ser coprimos
// Se nao tiver solucao, o 'a' vai ser -1
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b%a, a);
    return \{g, y - b/a*x, x\};
}
struct crt {
    ll a, m;
    crt() : a(0), m(1) {}
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        auto [g, x, y] = ext_gcd(m, C.m);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 or C.a == -1) return crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
};
```

4.22 Ordem de elemento do grupo

```
// Calcula a ordem de a em Z n
// O grupo Zn eh ciclico sse n =
// 1, 2, 4, p^k ou 2 p^k, p primo impar
// Retorna -1 se nao achar
//
// O(sqrt(n) log(n))
int tot(int n); // totiente em O(sqrt(n))
int expo(int a, int b, int m); // (a^b)%m em O(log(b))
// acha todos os divisores ordenados em O(sqrt(n))
vector<int> div(int n) {
    vector<int> ret1. ret2:
    for (int i = 1; i*i <= n; i++) if (n % i == 0) {
        ret1.push_back(i);
        if (i*i != n) ret2.push_back(n/i);
    }
    for (int i = ret2.size()-1; i+1; i--)
        ret1.push_back(ret2[i]);
    return ret1;
}
int ordem(int a, int n) {
    vector < int > v = div(tot(n));
    for (int i : v) if (expo(a, i, n) == 1) return i;
    return -1;
}
4.23 Pollard's Rho Alg
// Usa o algoritmo de deteccao de ciclo de Floyd
// com uma otimizacao na qual o gcd eh acumulado
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
// Complexidades (considerando mul constante):
// rho - esperado O(n^{(1/4)}) no pior caso
// fact - esperado menos que O(n^{(1/4)} \log(n)) no pior caso
```

```
ll mul(ll a, ll b, ll m) {
    ll ret = a*b - ll((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;</pre>
}
ll pow(ll x, ll y, ll m) {
    if (!y) return 1;
    11 ans = pow(mul(x, x, m), y/2, m);
    return y%2 ? mul(x, ans, m) : ans;
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;</pre>
    if (n % 2 == 0) return 0;
    ll r = \_builtin\_ctzll(n - 1), d = n >> r;
    for (int a: {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
        ll x = pow(a, d, n);
        if (x == 1 or x == n - 1 or a % n == 0) continue;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) break;
        if (x != n - 1) return 0;
    return 1;
}
11 rho(11 n) {
    if (n == 1 or prime(n)) return n;
    auto f = [n](11 x) \{ return mul(x, x, n) + 1; \};
    11 x = 0, y = 0, t = 30, prd = 2, x0 = 1, q;
    while (t % 40 != 0 or gcd(prd, n) == 1) {
        if (x==y) x = ++x0, y = f(x);
        q = mul(prd, abs(x-y), n);
        if (q != 0) prd = q;
        x = f(x), y = f(f(y)), t++;
```

```
}
    return gcd(prd, n);

vector<ll> fact(ll n) {
    if (n == 1) return {};
    if (prime(n)) return {n};
    ll d = rho(n);
    vector<ll> l = fact(d), r = fact(n / d);
    l.insert(l.end(), r.begin(), r.end());
    return l;
}
```

4.24 Eliminacao Gaussiana Z2

```
// D eh dimensao do espaco vetorial
// add(v) - adiciona o vetor v na base (retorna se ele jah
   pertencia ao span da base)
// coord(v) - retorna as coordenadas (c) de v na base atual
   (basis^T.c = v)
// recover(v) - retorna as coordenadas de v nos vetores na
   ordem em que foram inseridos
// coord(v).first e recover(v).first - se v pertence ao span
//
// Complexidade:
// add, coord, recover: O(D^2 / 64)
template < int D > struct Gauss_z2 {
    bitset <D> basis[D], keep[D];
    int rk, in;
    vector < int > id;
    Gauss_z2 () : rk(0), in(-1), id(D, -1) {};
    bool add(bitset <D> v) {
        in++;
        bitset <D> k;
        for (int i = D - 1; i >= 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], k ^= keep[i];
            else {
```

```
k[i] = true, id[i] = in, keep[i] = k;
                 basis[i] = v, rk++;
                 return true;
            }
        }
        return false;
    pair < bool, bitset < D >> coord(bitset < D > v) {
        bitset <D> c;
        for (int i = D - 1; i >= 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], c[i] = true;
            else return {false, bitset <D>()};
        }
        return {true, c};
    pair < bool, vector < int >> recover(bitset < D > v) {
        auto [span, bc] = coord(v);
        if (not span) return {false, {}};
        bitset < D > aux;
        for (int i = D - 1; i \ge 0; i--) if (bc[i]) aux ^=
           keep[i];
        vector<int> oc;
        for (int i = D - 1; i >= 0; i--) if (aux[i])
            oc.push_back(id[i]);
        return {true, oc};
};
```

4.25 Algoritmo de Euclides

```
// O(log(min(a, b)))
int mdc(int a, int b) {
    return !b ? a : mdc(b, a % b);
}
```

5 DP

5.1 SOS DP

```
//\Omega(n 2^n)
// soma de sub-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1 << N) == f.size());
    for (int i = 0; i < N; i++) for (int mask = 0; mask <
       (1 << N); mask++)
        if (mask>>i&1) f[mask] += f[mask^(1<<ii)];</pre>
    return f;
}
// soma de super-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1<<N) == f.size());
    for (int i = 0; i < N; i++) for (int mask = 0; mask <
       (1 << N); mask++)
        if (\sim mask >> i\&1) f[mask] += f[mask^(1<<ii)];
    return f;
}
```

5.2 Longest Common Subsequence

```
// Computa a LCS entre dois arrays usando
// o algoritmo de Hirschberg para recuperar
//
// O(n*m), O(n+m) de memoria
int lcs_s[MAX], lcs_t[MAX];
int dp[2][MAX];
// dp[0][j] = max lcs(s[li...ri], t[lj, lj+j])
```

```
void dp_top(int li, int ri, int lj, int rj) {
    memset(dp[0], 0, (rj-lj+1)*sizeof(dp[0][0]));
    for (int i = li; i <= ri; i++) {</pre>
        for (int j = rj; j >= lj; j--)
            dp[0][j-1j] = max(dp[0][j-1j],
            (lcs_s[i] == lcs_t[j]) + (j > lj ? dp[0][j-1 -
               li]: 0));
        for (int j = lj+1; j <= rj; j++)</pre>
            dp[0][j-1j] = max(dp[0][j-1j], dp[0][j-1
                -lj]);
    }
}
// dp[1][j] = max lcs(s[li...ri], t[lj+j, rj])
void dp_bottom(int li, int ri, int lj, int rj) {
    memset(dp[1], 0, (rj-lj+1)*sizeof(dp[1][0]));
    for (int i = ri; i >= li; i--) {
        for (int j = lj; j <= rj; j++)</pre>
            dp[1][i - li] = max(dp[1][i - li],
            (lcs_s[i] == lcs_t[j]) + (j < rj ? dp[1][j+1 -
               li] : 0));
        for (int j = rj-1; j >= lj; j--)
            dp[1][j-1j] = max(dp[1][j-1j], dp[1][j+1-
               lj]);
}
void solve(vector<int>& ans, int li, int ri, int lj, int rj)
   {
    if (li == ri){
        for (int j = lj; j <= rj; j++)</pre>
            if (lcs_s[li] == lcs_t[j]){
                ans.push_back(lcs_t[j]);
                break:
            }
        return;
    }
    if (lj == rj){
        for (int i = li; i <= ri; i++){</pre>
            if (lcs_s[i] == lcs_t[lj]){
                ans.push_back(lcs_s[i]);
                break:
```

```
}
        return;
    }
    int mi = (li+ri)/2;
    dp_top(li, mi, lj, rj), dp_bottom(mi+1, ri, lj, rj);
    int j_{-} = 0, mx = -1;
    for (int j = lj-1; j <= rj; j++) {
        int val = 0;
        if (j \ge 1j) val += dp[0][j - 1j];
        if (j < rj) val += dp[1][j+1 - lj];
        if (val >= mx) mx = val, j_ = j;
    }
    if (mx == -1) return;
    solve(ans, li, mi, lj, j_), solve(ans, mi+1, ri, j_+1,
       rj);
vector<int> lcs(const vector<int>& s, const vector<int>& t) {
    for (int i = 0; i < s.size(); i++) lcs_s[i] = s[i];</pre>
    for (int i = 0; i < t.size(); i++) lcs_t[i] = t[i];</pre>
    vector<int> ans;
    solve(ans, 0, s.size()-1, 0, t.size()-1);
    return ans;
```

5.3 Divide and Conquer DP

```
// Particiona o array em k subarrays
// minimizando o somatorio das queries
//
// O(k n log n), assumindo quer query(l, r) eh O(1)

11 dp[MAX][2];

void solve(int k, int l, int r, int lk, int rk) {
   if (l > r) return;
```

```
int m = (l+r)/2, p = -1;
auto& ans = dp[m][k&1] = LINF;
for (int i = max(m, lk); i <= rk; i++) {
    int at = dp[i+1][~k&1] + query(m, i);
    if (at < ans) ans = at, p = i;
}
solve(k, l, m-1, lk, p), solve(k, m+1, r, p, rk);
}

11 DC(int n, int k) {
    dp[n][0] = dp[n][1] = 0;
    for (int i = 0; i < n; i++) dp[i][0] = LINF;
    for (int i = 1; i <= k; i++) solve(i, 0, n-i, 0, n-i);
    return dp[0][k&1];
}</pre>
```

5.4 Mochila

```
// Resolve mochila, recuperando a resposta
// O(n * cap), O(n + cap) de memoria
int v[MAX], w[MAX]; // valor e peso
int dp[2][MAX_CAP];
// DP usando os itens [1, r], com capacidade = cap
void get_dp(int x, int 1, int r, int cap) {
    memset(dp[x], 0, (cap+1)*sizeof(dp[x][0]));
    for (int i = 1; i \le r; i++) for (int j = cap; j \ge 0;
       i - - )
        if (j - w[i] >= 0) dp[x][j] = max(dp[x][j], v[i] +
           dp[x][i - w[i]]);
}
void solve(vector<int>& ans, int 1, int r, int cap) {
    if (1 == r) {
        if (w[1] <= cap) ans.push_back(1);</pre>
        return;
    int m = (1+r)/2;
```

```
get_dp(0, 1, m, cap), get_dp(1, m+1, r, cap);
int left_cap = -1, opt = -INF;
for (int j = 0; j <= cap; j++)
    if (int at = dp[0][j] + dp[1][cap - j]; at > opt)
        opt = at, left_cap = j;
solve(ans, 1, m, left_cap), solve(ans, m+1, r, cap -
        left_cap);
}

vector<int> knapsack(int n, int cap) {
    vector<int> ans;
    solve(ans, 0, n-1, cap);
    return ans;
}
```

5.5 Convex Hull Trick Dinamico

```
// para double, use LINF = 1/.0, div(a, b) = a/b
// update(x) atualiza o ponto de intersecao da reta x
// overlap(x) verifica se a reta x sobrepoe a proxima
// add(a, b) adiciona reta da forma ax + b
// query(x) computa maximo de ax + b para entre as retas
//
// O(log(n)) amortizado por insercao
// O(log(n)) por query
struct Line {
    mutable ll a, b, p;
    bool operator < (const Line& o) const { return a < o.a; }</pre>
    bool operator<(ll x) const { return p < x; }</pre>
};
struct dynamic_hull : multiset <Line, less <>> {
    11 div(ll a, ll b) {
        return a / b - ((a ^ b) < 0 and a % b);
    void update(iterator x) {
        if (next(x) == end()) x->p = LINF;
        else if (x->a == next(x)->a) x->p = x->b >=
```

```
next(x)->b ? LINF : -LINF;
         else x \rightarrow p = div(next(x) \rightarrow b - x \rightarrow b, x \rightarrow a -
            next(x) -> a);
    }
    bool overlap(iterator x) {
        update(x);
         if (next(x) == end()) return 0;
         if (x->a == next(x)->a) return x->b >= next(x)->b;
        return x - p >= next(x) - p;
    }
    void add(ll a, ll b) {
         auto x = insert({a, b, 0});
        while (overlap(x)) erase(next(x)), update(x);
        if (x != begin() and !overlap(prev(x))) x = prev(x),
            update(x);
         while (x != begin() and overlap(prev(x)))
             x = prev(x), erase(next(x)), update(x);
    }
    11 query(ll x) {
         assert(!empty());
         auto 1 = *lower_bound(x);
        return 1.a * x + 1.b;
};
```

5.6 Convex Hull Trick (Rafael)

```
// linear

struct CHT {
    int it;
    vector<ll> a, b;
    CHT():it(0){}
    ll eval(int i, ll x){
        return a[i]*x + b[i];
    }
    bool useless(){
```

```
int sz = a.size();
        int r = sz-1, m = sz-2, 1 = sz-3;
        return (b[1] - b[r])*(a[m] - a[1]) <
            (b[1] - b[m])*(a[r] - a[1]);
    }
    void add(ll A, ll B){
        a.push_back(A); b.push_back(B);
        while (!a.empty()){
            if ((a.size() < 3) || !useless()) break;</pre>
            a.erase(a.end() - 2);
            b.erase(b.end() - 2);
        }
    }
    ll get(ll x){
        it = min(it, int(a.size()) - 1);
        while (it+1 < a.size()){</pre>
            if (eval(it+1, x) > eval(it, x)) it++;
            else break;
        return eval(it, x);
    }
};
```

6 Strings

6.1 Aho-corasick - Automato

```
void fix(char &c){
        int acc = 0;
        for (auto p : vt){
            if (p.first <= c && c <= p.second){</pre>
                c = c - p.first + acc;
                return;
            acc += p.second - p.first + 1;
        }
    }
    void unfix(char &c){
        int acc = 0:
        for (auto p : vt){
            int next_acc = acc + p.second - p.first;
            if (acc <= c && c <= next_acc){</pre>
                c = p.first + c - acc;
                return;
            acc = next_acc + 1;
        }
    void fix(string &s){ for (char &c : s) fix(c); }
    void unfix(string &s){ for (char &c : s) unfix(c); }
    const int SIGMA = 70; //fix(vt.back().second) + 1;
    const int MAXN = 1e5+10;
    int to[MAXN][SIGMA];
    int link[MAXN], end[MAXN];
    int idx;
    void init(){
#warning dont forget to init before inserting strings
        memset(to, 0, sizeof to);
        idx = 1;
    void insert(string &s){
        fix(s);
        int v = 0;
        for (char c : s){
            int \&w = to[v][c]:
```

```
if (!w) w = idx++:
            v = w;
        end[v] = 1;
    }
    void build(){
#warning dont forget to build after inserting strings
        queue < int > q;
        q.push(0);
        while (!q.empty()){
            int cur = q.front(); q.pop();
            int 1 = link[cur];
            end[cur] |= end[1];
            for (int i = 0; i < SIGMA; i++){</pre>
                int &w = to[cur][i];
                if (w){
                     link[w] = ((cur != 0) ? to[1][i] : 0);
                     q.push(w);
                else w = to[l][i];
            }
        }
    }
    int query(string &s){
        fix(s);
        int v = 0;
        int counter = 0;
        for (char c : s){
            v = to[v][c];
            if (end[v]) {
                counter++;
                v = 0;
            }
        return counter;
    }
}
```

6.2 Min/max suffix/cyclic shift

```
// Computa o indice do menor/maior sufixo/cyclic shift
// da string, lexicograficamente
// O(n)
template < typename T > int max_suffix(T s, bool mi = false) {
    s.push_back(*min_element(s.begin(), s.end())-1);
    int ans = 0;
    for (int i = 1; i < s.size(); i++) {</pre>
        int j = 0;
        while (ans+j < i and s[i+j] == s[ans+j]) j++;
        if (s[i+j] > s[ans+j]) {
            if (!mi or i != s.size()-2) ans = i;
        } else if (j) i += j-1;
    }
    return ans;
}
template < typename T > int min_suffix(T s) {
    for (auto& i : s) i *= -1;
    s.push_back(*max_element(s.begin(), s.end())+1);
    return max_suffix(s, true);
}
template < typename T > int max_cyclic_shift(T s) {
    int n = s.size();
    for (int i = 0; i < n; i++) s.push_back(s[i]);</pre>
    return max_suffix(s);
}
template < typename T > int min_cyclic_shift(T s) {
    for (auto& i : s) i *= -1;
    return max_cyclic_shift(s);
}
     String hashing - modulo 2<sup>61</sup> - 1
// Usa modulo 2^61 - 1 \sim 2e18
// Eh quase duas vezes mais lento
```

```
// Complexidades:
// build - O(|s|)
// operator() - 0(1)
const ll MOD = (111 << 61) -1;</pre>
ll mulmod(ll a, ll b) {
    const static 11 LOWER = (111<<30)-1, GET31 = (111<<31)-1;
    11 \ 11 = a\&LOWER, h1 = a>>30, 12 = b\&LOWER, h2 = b>>30;
    11 m = 11*h2 + 12*h1, h = h1*h2;
    ll ans = 11*12 + (h>>1) + ((h&1)<<60) + (m>>31) +
       ((m\&GET31) << 30) + 1;
    ans = (ans\&MOD) + (ans >> 61);
    ans = (ans\&MOD) + (ans >> 61);
    return ans-1;
}
mt19937_64
   rng(chrono::steady_clock::now().time_since_epoch().count());
ll uniform(ll l, ll r) {
    uniform_int_distribution < ll > uid(l, r);
    return uid(rng);
}
struct str_hash {
    static 11 P;
    int n;
    string s;
    vector<ll> h, power;
    str_hash(string s_) : n(s_.size()), s(s_), h(n),
       power(n) {
        power[0] = 1;
        for (int i = 1; i < n; i++) power[i] =</pre>
           mulmod(power[i-1], P);
        h[0] = s[0];
        for (int i = 1; i < n; i++) h[i] = (mulmod(h[i-1],</pre>
           P) + s[i]) % MOD;
    ll operator()(int i, int j) { // retorna hash da
       substring s[i..j]
        if (!i) return h[j];
```

```
ll ret = h[j] - mulmod(h[i-1], power[j-i+1]);
    return ret < 0 ? ret+MOD : ret;
}
};
ll str_hash::P = uniform(27, MOD-1);
// primeiro parametro deve ser maior que o tamanho do alfabeto</pre>
```

6.4 Manacher

```
// manacher recebe um vetor de T e retorna o vetor com
   tamanho dos palindromos
// ret[2*i] = tamanho do maior palindromo centrado em i
// ret[2*i+1] = tamanho maior palindromo centrado em i e i+1
// Complexidades:
// manacher - O(n)
// palindrome - <0(n), 0(1)>
// pal_end - O(n)
template < typename T> vector < int > manacher (const T& s) {
    int l = 0, r = -1, n = s.size();
    vector < int > d1(n), d2(n);
    for (int i = 0; i < n; i++) {</pre>
        int k = i > r ? 1 : min(d1[l+r-i], r-i);
        while (i+k < n \&\& i-k >= 0 \&\& s[i+k] == s[i-k]) k++;
        d1[i] = k--;
        if (i+k > r) l = i-k, r = i+k;
    }
    1 = 0, r = -1;
    for (int i = 0; i < n; i++) {</pre>
        int k = i > r ? 0 : min(d2[1+r-i+1], r-i+1); k++;
        while (i+k \le n \&\& i-k \ge 0 \&\& s[i+k-1] == s[i-k])
           k++;
        d2[i] = --k;
        if (i+k-1 > r) l = i-k, r = i+k-1;
    }
    vector<int> ret(2*n-1);
    for (int i = 0; i < n; i++) ret[2*i] = 2*d1[i]-1;
    for (int i = 0; i < n-1; i++) ret[2*i+1] = 2*d2[i+1];
```

```
return ret:
}
// verifica se a string s[i..j] eh palindromo
template < typename T > struct palindrome {
    vector < int > man;
    palindrome(const T& s) : man(manacher(s)) {}
    bool query(int i, int j) {
        return man[i+j] >= j-i+1;
    }
};
// tamanho do maior palindromo que termina em cada posicao
template < typename T> vector < int > pal_end(const T& s) {
    vector<int> ret(s.size());
    palindrome <T> p(s);
    ret[0] = 1;
    for (int i = 1; i < s.size(); i++) {</pre>
        ret[i] = min(ret[i-1]+2, i+1);
        while (!p.query(i-ret[i]+1, i)) ret[i]--;
    }
    return ret;
}
6.5 Trie
// trie T() constroi uma trie para o alfabeto das letras
   minusculas
// trie T(tamanho do alfabeto, menor caracter) tambem pode
   ser usado
// T.insert(s) - O(|s|*sigma)
// T.erase(s) - O(|s|)
// T.find(s) retorna a posicao, O se nao achar - O(|s|)
// T.count_pref(s) numero de strings que possuem s como
   prefixo - O(|s|)
//
// Nao funciona para string vazia
```

```
struct trie {
    vector < vector < int >> to;
    vector<int> end, pref;
    int sigma; char norm;
    trie(int sigma_=26, char norm_='a') : sigma(sigma_),
       norm(norm_) {
        to = {vector < int > (sigma)};
        end = \{0\}, pref = \{0\};
    }
    void insert(string s) {
        int x = 0:
        for(auto c : s) {
            int &nxt = to[x][c-norm];
            if(!nxt) {
                nxt = to.size();
                to.push_back(vector<int>(sigma));
                end.push_back(0), pref.push_back(0);
            }
            x = nxt, pref[x]++;
        }
        end[x]++;
    void erase(string s) {
        int x = 0;
        for(char c : s) {
            int &nxt = to[x][c-norm];
            x = nxt, pref[x] --;
            if(!pref[x]) nxt = 0;
        }
        end[x]--;
    int find(string s) {
        int x = 0;
        for(auto c : s) {
            x = to[x][c-norm]:
            if(!x) return 0;
        }
        return x;
    }
    int count_pref(string s) {
        return pref[find(s)];
    }
```

6.6 String hashing

};

```
// Para evitar colisao: testar mais de um
// mod; so comparar strings do mesmo tamanho
// ex : str_hash < 1e9 + 7 > h(s);
        11 \text{ val} = h(10, 20);
//
// Complexidades:
// build - O(|s|)
// operator() - 0(1)
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r) {
    uniform_int_distribution < int > uid(1, r);
    return uid(rng);
}
template < int MOD> struct str_hash {
    static int P;
    int n;
    string s;
    vector<ll> h, power;
    str_hash(string s_) : n(s_.size()), s(s_), h(n),
       power(n) {
        power[0] = 1;
        for (int i = 1; i < n; i++) power[i] = power[i-1]*P</pre>
           % MOD:
        h[0] = s[0];
        for (int i = 1; i < n; i++) h[i] = (h[i-1]*P + s[i])
           % MOD;
    ll operator()(int i, int j) { // retorna hash da
       substring s[i..j]
        if (!i) return h[j];
        ll ret = h[j] - h[i-1]*power[j-i+1] % MOD;
        return ret < 0 ? ret+MOD : ret;</pre>
```

```
}
};
template < int MOD > int str_hash < MOD > :: P = uniform(27, MOD - 1);
// primeiro parametro deve ser maior que o tamanho do
    alfabeto
```

6.7 eertree

```
// Constroi a eertree, caractere a caractere
// Inicializar com a quantidade de caracteres maxima
// size() retorna a quantidade de substrings pal. distintas
// depois de chamar propagate(), cada substring palindromica
// ocorre qt[i] vezes. O propagate() retorna o numero de
// substrings pal. com repeticao
// O(n) amortizado, considerando alfabeto O(1)
struct eertree {
    vector < vector < int >> t;
    int n, last, sz;
    vector < int > s, len, link, qt;
    eertree(int N) {
        t = vector(N+2, vector(26, int()));
        s = len = link = qt = vector < int > (N+2);
        s[0] = -1;
        link[0] = 1, len[0] = 0, link[1] = 1, len[1] = -1;
        sz = 2, last = 0, n = 1;
    }
    void add(char c) {
        s[n++] = c -= 'a';
        while (s[n-len[last]-2] != c) last = link[last];
        if (!t[last][c]) {
            int prev = link[last];
            while (s[n-len[prev]-2] != c) prev = link[prev];
            link[sz] = t[prev][c];
            len[sz] = len[last]+2;
            t[last][c] = sz++;
        }
```

```
qt[last = t[last][c]]++;
}
int size() { return sz-2; }
ll propagate() {
    ll ret = 0;
    for (int i = n; i > 1; i--) {
        qt[link[i]] += qt[i];
        ret += qt[i];
    }
    return ret;
}
```

6.8 Suffix Array Dinamico

```
// Mantem o suffix array, lcp e rank de uma string,
// premitindo push_front e pop_front
// O operador [i] return um par com sa[i] e lcp[i]
// lcp[i] tem o lcp entre sa[i] e sa[i-1] (lcp[0] = 0)
//
// Complexidades:
// Construir sobre uma string de tamanho n: O(n log n)
// push_front e pop_front: O(log n) amortizado
struct dyn_sa {
    struct node {
        int sa, lcp;
        node *1, *r, *p;
        int sz. mi:
        node(int sa_, int lcp_, node* p_) : sa(sa_),
           lcp(lcp_),
            1(NULL), r(NULL), p(p_), sz(1), mi(lcp) {}
        void update() {
            sz = 1, mi = lcp;
            if (1) sz += 1->sz, mi = min(mi, 1->mi);
            if (r) sz += r->sz, mi = min(mi, r->mi);
       }
    };
    node* root;
```

```
vector<ll> tag; // tag of a suffix (reversed id)
string s; // reversed
dyn_sa() : root(NULL) {}
dyn_sa(string s_) : dyn_sa() {
    reverse(s_.begin(), s_.end());
    for (char c : s_) push_front(c);
\simdyn_sa() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x:
    }
}
int size(node* x) { return x ? x->sz : 0; }
int mirror(int i) { return s.size()-1 - i; }
bool cmp(int i, int j) {
    if (s[i] != s[j]) return s[i] < s[j];</pre>
    if (i == 0 or j == 0) return i < j;</pre>
    return tag[i-1] < tag[j-1];</pre>
}
void fix_path(node* x) { while (x) x->update(), x =
   x - p;  }
void flatten(vector<node*>& v, node* x) {
    if (!x) return;
    flatten(v, x->1);
    v.push_back(x);
    flatten(v, x->r);
}
void build(vector < node *> & v, node * & x, node * p, int L,
   int R, 11 1, 11 r) {
    if (L > R) return void(x = NULL);
    int M = (L+R)/2;
    11 m = (1+r)/2;
    x = v[M];
    x - p = p;
    tag[x->sa] = m;
    build(v, x->1, x, L, M-1, 1, m-1), build(v, x->r, x,
```

```
M+1, R, m+1, r);
    x->update();
}
void fix(node*& x, node* p, ll l, ll r) {
    if (3*max(size(x->1), size(x->r)) \le 2*size(x))
       return x->update();
    vector < node *> v;
    flatten(v, x);
    build(v, x, p, 0, v.size()-1, 1, r);
}
node* next(node* x) {
    if (x->r) {
        x = x - > r;
        while (x->1) x = x->1;
        return x;
    while (x-p) and x-p-r == x) x = x-p;
    return x->p;
}
node* prev(node* x) {
    if (x->1) {
        x = x -> 1;
        while (x->r) x = x->r;
        return x;
    while (x->p \text{ and } x->p->l == x) x = x->p;
    return x->p;
}
int get_lcp(node* x, node* y) {
    if (!x or !y) return 0; // change defaut value here
    if (s[x->sa] != s[y->sa]) return 0;
    if (x->sa == 0 \text{ or } y->sa == 0) return 1;
    return 1 + query(mirror(x->sa-1), mirror(y->sa-1));
}
void add_suf(node*& x, node* p, int id, ll l, ll r) {
    if (!x) {
        x = new node(id, 0, p);
        node *prv = prev(x), *nxt = next(x);
        int lcp_cur = get_lcp(prv, x), lcp_nxt =
            get_lcp(x, nxt);
        if (nxt) nxt->lcp = lcp_nxt, fix_path(nxt);
```

```
x \rightarrow 1cp = 1cp cur:
        tag[id] = (1+r)/2;
        x->update();
        return;
    }
    if (cmp(id, x->sa)) add_suf(x->1, x, id, 1,
       tag[x->sa]-1);
    else add_suf(x->r, x, id, tag[x->sa]+1, r);
    fix(x, p, 1, r);
void push_front(char c) {
    s += c;
    tag.push_back(-1);
    add_suf(root, NULL, s.size() - 1, 0, 1e18);
}
void rem_suf(node*& x, int id) {
    if (x->sa != id) {
        if (tag[id] < tag[x->sa]) return rem_suf(x->1,
        return rem_suf(x->r, id);
    }
    node* nxt = next(x);
    if (nxt) nxt -> lcp = min(nxt -> lcp, x -> lcp),
       fix_path(nxt);
    node *p = x - p, *tmp = x;
    if (!x->1 \text{ or } !x->r) {
        x = x->1 ? x->1 : x->r;
        if (x) x->p = p;
    } else {
        for (tmp = x->1, p = x; tmp->r; tmp = tmp->r) p
           = tmp;
        x->sa = tmp->sa, x->lcp = tmp->lcp;
        if (tmp->1) tmp->1->p = p;
        if (p->1 == tmp) p->1 = tmp->1;
        else p - r = tmp - 1;
    }
    fix_path(p);
    delete tmp;
}
void pop_front() {
```

```
if (!s.size()) return;
    s.pop_back();
    rem_suf(root, s.size());
    tag.pop_back();
}
int query(node* x, ll l, ll r, ll a, ll b) {
    if (!x \text{ or } tag[x->sa] == -1 \text{ or } r < a \text{ or } b < 1) \text{ return}
       s.size():
    if (a <= 1 and r <= b) return x->mi;
    int ans = s.size();
    if (a \le tag[x->sa]  and tag[x->sa] \le b) ans =
       min(ans, x->lcp);
    ans = min(ans, query(x->1, 1, tag[x->sa]-1, a, b));
    ans = min(ans, query(x->r, tag[x->sa]+1, r, a, b));
    return ans:
}
int query(int i, int j) { // lcp(s[i..], s[j..])
    if (i == j) return s.size() - i;
    ll a = tag[mirror(i)], b = tag[mirror(j)];
    int ret = query(root, 0, 1e18, min(a, b)+1, max(a,
       b));
    return ret;
}
// optional: get rank[i], sa[i] and lcp[i]
int rank(int i) {
    i = mirror(i);
    node* x = root;
    int ret = 0;
    while (x) {
        if (tag[x->sa] < tag[i]) {</pre>
            ret += size(x->1)+1;
            x = x - > r;
        } else x = x - > 1;
    }
    return ret;
}
pair < int , int > operator[](int i) {
    node* x = root;
    while (1) {
        if (i < size(x->1)) x = x->1;
         else {
```

```
i = size(x->1);
                 if (!i) return {mirror(x->sa), x->lcp};
                 i--, x = x->r;
            }
        }
};
6.9 KMP
// mathcing(s, t) retorna os indices das ocorrencias
// de s em t
// autKMP constroi o automato do KMP
//
// Complexidades:
// pi - O(n)
// match - O(n + m)
// construir o automato - O(|sigma|*n)
// n = |padrao| e m = |texto|
template < typename T > vector < int > pi(T s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {</pre>
        while (j \text{ and } s[j] != s[i]) j = p[j-1];
        if (s[j] == s[i]) j++;
        p[i] = j;
    }
    return p;
}
template < typename T> vector < int> matching(T& s, T& t) {
    vector < int > p = pi(s), match;
    for (int i = 0, j = 0; i < t.size(); i++) {</pre>
        while (j \text{ and } s[j] != t[i]) j = p[j-1];
        if (s[j] == t[i]) j++;
        if (j == s.size()) match.push_back(i-j+1), j =
            p[j-1];
    }
```

return match;

}

```
struct KMPaut : vector<vector<int>> {
    KMPaut(){}
    KMPaut (string& s) : vector < vector < int >> (26,
        vector < int > (s.size()+1)) {
        vector<int> p = pi(s);
        auto& aut = *this;
        aut[s[0]-'a'][0] = 1;
        for (char c = 0; c < 26; c++)
            for (int i = 1; i <= s.size(); i++)</pre>
                 aut[c][i] = s[i] - 'a' == c ? i+1 :
                    aut[c][p[i-1]];
    }
};
6.10 Suffix Array - O(n)
// Rapidao
// Computa o suffix array em 'sa', o rank em 'rnk'
// e o lcp em 'lcp'
// query(i, j) retorna o LCP entre s[i..n-1] e s[j..n-1]
//
// Complexidades
// O(n) para construir
// query - 0(1)
template < typename T> struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] \le v[y] ? x : y; }
    int msb(int x) { return
        __builtin_clz(1)-__builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1));}
    rmq() {}
    rmq(const \ vector < T > \& \ v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
```

```
at = (at << 1) & ((1 << b) -1);
            while (at and op(i-msb(at&-at), i) == i) at ^=
                at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< i) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    int index_query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(1+b-1), op(t[n/b*j+x],
           t[n/b*j+y-(1<<j)+1]));
        return op(ans, small(r));
    T query(int 1, int r) { return v[index_query(1, r)]; }
};
struct suffix_array {
    string s;
    int n;
    vector < int > sa, cnt, rnk, lcp;
    rmq<int> RMQ;
    bool cmp(int a1, int b1, int a2, int b2, int a3=0, int
       b3=0) {
        return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3
           < b3);
    }
    template < typename T > void radix(int* fr, int* to, T* r,
       int N, int k) {
        cnt = vector < int > (k+1, 0);
        for (int i = 0; i < N; i++) cnt[r[fr[i]]]++;</pre>
        for (int i = 1; i <= k; i++) cnt[i] += cnt[i-1];</pre>
        for (int i = N-1; i+1; i--) to[--cnt[r[fr[i]]]] =
           fr[i];
    }
    void rec(vector<int>& v, int k) {
```

```
auto &tmp = rnk, &m0 = lcp;
int N = v.size()-3, sz = (N+2)/3, sz2 = sz+N/3;
vector < int > R(sz2+3);
for (int i = 1, j = 0; j < sz2; i += i%3) R[j++] = i;</pre>
radix(&R[0], &tmp[0], &v[0]+2, sz2, k);
radix(&tmp[0], &R[0], &v[0]+1, sz2, k);
radix(&R[0], &tmp[0], &v[0]+0, sz2, k);
int dif = 0;
int 10 = -1, 11 = -1, 12 = -1;
for (int i = 0; i < sz2; i++) {</pre>
    if (v[tmp[i]] != 10 or v[tmp[i]+1] != 11 or
       v[tmp[i]+2] != 12)
        10 = v[tmp[i]], 11 = v[tmp[i]+1], 12 =
            v[tmp[i]+2], dif++;
    if (tmp[i]%3 == 1) R[tmp[i]/3] = dif;
    else R[tmp[i]/3+sz] = dif;
}
if (dif < sz2) {</pre>
    rec(R, dif);
    for (int i = 0; i < sz2; i++) R[sa[i]] = i+1;</pre>
} else for (int i = 0; i < sz2; i++) sa[R[i]-1] = i;</pre>
for (int i = 0, j = 0; j < sz2; i++) if (sa[i] < sz)
   tmp[j++] = 3*sa[i];
radix(&tmp[0], &m0[0], &v[0], sz, k);
for (int i = 0; i < sz2; i++)</pre>
    sa[i] = sa[i] < sz ? 3*sa[i]+1 : 3*(sa[i]-sz)+2;
int at = sz2+sz-1, p = sz-1, p2 = sz2-1;
while (p \ge 0 \text{ and } p2 \ge 0) {
    if ((sa[p2]%3==1 and cmp(v[m0[p]], v[sa[p2]],
       R[m0[p]/3],
        R[sa[p2]/3+sz])) or (sa[p2]%3==2 and
            cmp(v[m0[p]], v[sa[p2]],
        v[m0[p]+1], v[sa[p2]+1], R[m0[p]/3+sz],
           R[sa[p2]/3+1]))
        sa[at--] = sa[p2--];
    else sa[at--] = m0[p--];
}
```

```
while (p >= 0) sa[at--] = m0[p--];
    if (N\%3==1) for (int i = 0; i < N; i++) sa[i] =
       sa[i+1];
}
suffix_array(const string& s_) : s(s_), n(s.size()),
   sa(n+3),
        cnt(n+1), rnk(n), lcp(n-1) {
    vector < int > v(n+3);
    for (int i = 0; i < n; i++) v[i] = i;
    radix(&v[0], &rnk[0], &s[0], n, 256);
    int dif = 1;
    for (int i = 0; i < n; i++)</pre>
        v[rnk[i]] = dif += (i and s[rnk[i]] !=
           s[rnk[i-1]]);
    if (n \ge 2) rec(v, dif);
    sa.resize(n);
    for (int i = 0; i < n; i++) rnk[sa[i]] = i;</pre>
    for (int i = 0, k = 0; i < n; i++, k -= !!k) {
        if (rnk[i] == n-1) {
            k = 0;
             continue;
        }
        int j = sa[rnk[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k])
           k++;
        lcp[rnk[i]] = k;
    }
    RMQ = rmq<int>(lcp);
}
int query(int i, int j) {
    if (i == j) return n-i;
    i = rnk[i], j = rnk[j];
    return RMQ.query(min(i, j), max(i, j)-1);
}
pair<int, int> next(int L, int R, int i, char c) {
    int 1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n or s[i+sa[m]] < c) l = m+1;</pre>
```

```
else r = m:
    if (1 == R+1 \text{ or } s[i+sa[1]] > c) \text{ return } \{-1, -1\};
    L = 1;
    1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
       if (i+sa[m] >= n or s[i+sa[m]] <= c) l = m+1;</pre>
        else r = m;
    }
    R = 1-1;
    return {L, R};
}
// quantas vezes 't' ocorre em 's' - O(|t| log n)
int count_substr(string& t) {
    int L = 0, R = n-1;
    for (int i = 0; i < t.size(); i++) {</pre>
        tie(L, R) = next(L, R, i, t[i]);
        if (L == -1) return 0;
    }
    return R-L+1;
}
// exemplo de f que resolve o problema
//
   https://codeforces.com/edu/course/2/lesson/2/5/practice/com
ll f(ll k) { return k*(k+1)/2; }
ll dfs(int L, int R, int p) { // dfs na suffix tree
   chamado em pre ordem
    int ext = L != R ? RMQ.query(L, R-1) : n - sa[L];
    // Tem 'ext - p' substrings diferentes que ocorrem
       'R-L+1' vezes
    // O LCP de todas elas eh 'ext'
    ll ans = (ext-p)*f(R-L+1);
    // L eh terminal, e folha sse L == R
    if (sa[L]+ext == n) L++;
    /* se for um SA de varias strings separadas como
```

```
s#t$u&, usar no lugar do if de cima
            (separadores < 'a', diferentes e inclusive no
        while (L \leq R && (sa[L]+ext == n || s[sa[L]+ext] \leq
           'a')) {
           L++;
        } */
        while (L <= R) {
            int idx = L != R ? RMQ.index_query(L, R-1) : -1;
            if (idx == -1 or lcp[idx] != ext) idx = R;
            ans += dfs(L, idx, ext);
            L = idx+1;
        }
        return ans;
    }
    // sum over substrings: computa, para toda substring t
       distinta de s,
    // \sum f(# ocorrencias de t em s) - 0 (n)
    ll sos() { return dfs(0, n-1, 0); }
};
```

6.11 Aho-corasick

```
// query retorna o somatorio do numero de matches de
// todas as stringuinhas na stringona
//
// insert - O(|s| * log(SIGMA))
// build - O(n * SIGMA), onde n = somatorio dos tamanhos das strings
// query - O(|s|)

namespace aho {
   map<char, int> to[MAX];
   int link[MAX], idx, term[MAX], exit[MAX], sobe[MAX];

   void insert(string& s) {
      int at = 0;
```

```
for (char c : s) {
            auto it = to[at].find(c);
            if (it == to[at].end()) at = to[at][c] = ++idx;
            else at = it->second;
        term[at]++, sobe[at]++;
#warning nao esquece de chamar build() depois de inserir
    void build() {
        queue < int > q;
        q.push(0);
        link[0] = exit[0] = -1;
        while (q.size()) {
            int i = q.front(); q.pop();
            for (auto [c, j] : to[i]) {
                int 1 = link[i];
                while (l != -1 \text{ and } !to[l].count(c)) l =
                    link[1];
                link[j] = 1 == -1 ? 0 : to[1][c];
                exit[j] = term[link[j]] ? link[j] :
                    exit[link[j]];
                if (exit[j]+1) sobe[j] += sobe[exit[j]];
                q.push(j);
        }
    }
    int query(string& s) {
        int at = 0, ans = 0;
        for (char c : s){
            while (at != -1 and !to[at].count(c)) at =
               link[at];
            at = at == -1 ? 0 : to[at][c];
            ans += sobe[at];
        }
        return ans;
    }
}
```

6.12 Suffix Array - O(n log n)

```
// kasai recebe o suffix array e calcula lcp[i],
// o lcp entre s[sa[i],...,n-1] e s[sa[i+1],...,n-1]
// Complexidades:
// suffix_array - O(n log(n))
// kasai - O(n)
vector<int> suffix_array(string s) {
    s += "$":
    int n = s.size(), N = max(n, 260);
    vector < int > sa(n), ra(n);
    for (int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];
    for(int k = 0; k < n; k ? k *= 2 : k++) {
        vector < int > nsa(sa), nra(n), cnt(N);
        for (int i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n,
            cnt[ra[i]]++;
        for(int i = 1; i < N; i++) cnt[i] += cnt[i-1];</pre>
        for(int i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] =
            nsa[i];
        for(int i = 1, r = 0; i < n; i++) nra[sa[i]] = r +=
            ra[sa[i]] !=
            ra[sa[i-1]] or ra[(sa[i]+k)%n] !=
                ra[(sa[i-1]+k)%n];
        ra = nra;
        if (ra[sa[n-1]] == n-1) break;
    }
    return vector < int > (sa.begin() + 1, sa.end());
}
vector<int> kasai(string s, vector<int> sa) {
    int n = s.size(), k = 0;
    vector < int > ra(n), lcp(n);
    for (int i = 0; i < n; i++) ra[sa[i]] = i;</pre>
    for (int i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        int j = sa[ra[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
```

```
return lcp;
}
6.13 Algoritmo Z
// Complexidades:
// z - O(|s|)
// \text{ match } - O(|s| + |p|)
vector<int> get_z(string s) {
    int n = s.size();
    vector < int > z(n, 0);
    // intervalo da ultima substring valida
    int 1 = 0, r = 0;
    for (int i = 1; i < n; i++) {
        // estimativa pra z[i]
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        // calcula valor correto
        while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]])
            z[i]++:
        // atualiza [l, r]
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
// quantas vezes p aparece em s
int match(string s, string p) {
    int n = s.size(), m = p.size();
    vector < int > z = get_z(p + s);
    int ret = 0:
    for (int i = m; i < n + m; i++)</pre>
        if (z[i] >= m) ret++;
    return ret;
```

}

6.14 Automato de Sufixo

```
// Automato que aceita os sufixos de uma string
// Todas as funcoes sao lineares
namespace sam {
    int cur, sz, len[2*MAX], link[2*MAX], acc[2*MAX];
    int nxt[2*MAX][26];
    void add(int c) {
        int at = cur:
        len[sz] = len[cur]+1, cur = sz++;
        while (at != -1 and !nxt[at][c]) nxt[at][c] = cur,
           at = link[at];
        if (at == -1) { link[cur] = 0; return; }
        int q = nxt[at][c];
        if (len[q] == len[at]+1) { link[cur] = q; return; }
        int qq = sz++;
        len[qq] = len[at]+1, link[qq] = link[q];
        for (int i = 0; i < 26; i++) nxt[qq][i] = nxt[q][i];</pre>
        while (at != -1 and nxt[at][c] == q) nxt[at][c] =
           qq, at = link[at];
        link[cur] = link[q] = qq;
    void build(string& s) {
        cur = 0, sz = 0, len[0] = 0, link[0] = -1, sz++;
        for (auto i : s) add(i-'a');
        int at = cur;
        while (at) acc[at] = 1, at = link[at];
   }
    // coisas que da pra fazer:
    11 distinct_substrings() {
        11 \text{ ans} = 0;
        for (int i = 1; i < sz; i++) ans += len[i] -
           len[link[i]];
        return ans;
    string longest_common_substring(string& S, string& T) {
        build(S);
        int at = 0, 1 = 0, ans = 0, pos = -1;
        for (int i = 0; i < T.size(); i++) {</pre>
```

```
while (at and !nxt[at][T[i]-'a']) at = link[at],
               l = len[at];
            if (nxt[at][T[i]-'a']) at = nxt[at][T[i]-'a'],
            else at = 0, 1 = 0;
            if (1 > ans) ans = 1, pos = i;
        return T.substr(pos-ans+1, ans);
    }
    11 dp[2*MAX];
    11 paths(int i) {
        auto& x = dp[i];
        if (x) return x;
        x = 1;
        for (int j = 0; j < 26; j++) if (nxt[i][j]) x +=
           paths(nxt[i][j]);
        return x;
    }
    void kth_substring(int k, int at=0) { // k=1 : menor
       substring lexicog.
        for (int i = 0; i < 26; i++) if (k and nxt[at][i]) {
            if (paths(nxt[at][i]) >= k) {
                cout << char('a'+i);</pre>
                kth_substring(k-1, nxt[at][i]);
                return;
            }
            k -= paths(nxt[at][i]);
   }
};
```

7 Primitivas

7.1 Aritmetica Modular

```
// O mod tem q ser primo
template < int p > struct mod_int {
    ll pow(ll b, ll e) {
```

```
if (e == 0) return 1;
    ll r = pow(b*b%p, e/2);
    if (e\%2 == 1) r = (r*b)\%p;
    return r;
11 inv(11 b) { return pow(b, p-2); }
using m = mod_int;
int v;
mod_int() : v(0) {}
mod_int(ll v_) {
    if (v_ >= p || v_ <= -p) v_ %= p;</pre>
    if (v_{-} < 0) v_{-} += p;
    v = v_{-};
}
m& operator+=(const m &a) {
    v += a.v;
    if (v >= p) v -= p;
    return *this;
m& operator -= (const m &a) {
   v -= a.v;
    if (v < 0) v += p;
    return *this;
}
m& operator*=(const m &a) {
    v = (v*ll(a.v))%p;
    return *this;
}
m& operator/=(const m &a) {
    v = (v*inv(a.v))%p;
    return *this;
}
m operator-() { return m(-v); }
m& operator^=(ll e) {
    if (e < 0){
        v = inv(v):
        e = -e;
    }
    v = pow(v, e\%(p-1));
    return *this;
}
```

```
bool operator == (const m &a) { return v == a.v; }
    bool operator!=(const m &a) { return v != a.v; }
    friend istream &operator>>(istream &in, m& a) {
        11 val; in >> val;
        a = m(val);
        return in;
    }
    friend ostream &operator << (ostream &out, m a) {</pre>
        return out << a.v;</pre>
    friend m operator+(m a, m b) { return a+=b; }
    friend m operator-(m a, m b) { return a-=b; }
   friend m operator*(m a, m b) { return a*=b; }
    friend m operator/(m a, m b) { return a/=b; }
    friend m operator^(m a, ll e) { return a^=e; }
    static m rt(bool f, int n, int N){
        if (p == 998244353) {
            m r(102292); // an element of order N
            int ord = (1 << 23);
            while (ord != N){
                r = r*r;
                ord /= 2;
            }
            if (f) r = r^{(-1)};
            return r^(N/n);
        return -1;
   }
};
typedef mod_int < (int) 1e9+7 > mint;
     Primitivas Geometricas Inteiras
```

```
#define sq(x) ((x)*(11)(x))
struct pt { // ponto
   int x, y;
```

```
pt(int x_{-} = 0, int y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (x != p.x) return x < p.x;
        return y < p.y;</pre>
    }
    bool operator == (const pt p) const {
        return x == p.x and y == p.y;
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const int c) const { return pt(x*c, y*c);
    11 operator * (const pt p) const { return x*(11)p.x +
       y*(11)p.y; }
    11 operator ^ (const pt p) const { return x*(11)p.y -
       y*(11)p.x; }
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
};
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
};
// PONTO & VETOR
11 dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
ll sarea2(pt p, pt q, pt r) { // 2 * area com sinal
    return (q-p)^(r-q);
}
```

```
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return sarea2(p, q, r) == 0;
int paral(pt u, pt v) { // se u e v sao paralelos
   if (u^v) return 0;
   if ((u.x > 0) == (v.x > 0) and (u.y > 0) == (v.y > 0))
   return -1:
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
   return sarea2(p, q, r) > 0;
}
int quad(pt p) { // quadrante de um ponto
   return (p.x<0)^3*(p.y<0);
}
bool compare_angle(pt p, pt q) { // retorna se ang(p) <</pre>
   ang(q)
    if (quad(p) != quad(q)) return quad(p) < quad(q);</pre>
   return ccw(q, pt(0, 0), p);
}
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.y, p.x);
// RETA
bool paraline(line r, line s) { // se r e s sao paralelas
    return paral(r.p - r.q, s.p - s.q);
}
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    if (p == r.p or p == r.q) return 1;
   return paral(p - r.p, p - r.q) == -1;
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
```

```
if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
int segpoints(line r) { // numero de pontos inteiros no
   segmento
    return 1 + _{-gcd}(abs(r.p.x - r.q.x), abs(r.p.y - r.q.y));
}
double get_t(pt v, line r) { // retorna t tal que t*v
   pertence a reta r
    return (r.p^r.q) / (double) ((r.p-r.q)^v);
}
// POLIGONO
// quadrado da distancia entre os retangulos a e b (lados
   paralelos aos eixos)
// assume que ta representado (inferior esquerdo, superior
   direito)
11 dist2_rect(pair<pt, pt> a, pair<pt, pt> b) {
    int hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -</pre>
       b.second.x;
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.y;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.y;
    return sq(hor) + sq(vert);
}
11 polarea2(vector<pt> v) { // 2 * area do poligono
    11 \text{ ret} = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea2(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret);
}
```

```
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
int inpol(vector < pt > & v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)\%v.size();
        if (p.y == v[i].y and p.y == v[j].y) {
             if ((v[i]-p)*(v[j]-p) <= 0) return 2;</pre>
             continue;
        bool baixo = v[i].y < p.y;</pre>
        if (baixo == (v[j].y < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (!t) return 2;
        if (baixo == (t > 0)) qt += baixo ? 1 : -1;
    }
    return qt != 0;
}
vector < pt > convex_hull(vector < pt > v) { // convex hull - O(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector<pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (l.size() > 1 and !ccw(l[l.size()-2],
           1.back(), v[i]))
            1.pop_back();
        l.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 \text{ and } !ccw(u[u.size()-2],
            u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1;
}
```

```
11 interior_points(vector<pt> v) { // pontos inteiros dentro
   de um poligono simples
   11 b = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        b += segpoints(line(v[i], v[(i+1)\%v.size()])) - 1;
    return (polarea2(v) - b) / 2 + 1;
}
struct convex_pol {
    vector<pt> pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(\log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) 1 = m+1;
            else r = m;
        }
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (1 == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
};
bool operator <(const line& a, const line& b) { //
   comparador pra reta
    // assume que as retas tem p < q
    pt v1 = a.q - a.p, v2 = b.q - b.p;
    bool b1 = compare_angle(v1, v2), b2 = compare_angle(v2,
       v1):
    if (b1 or b2) return b1;
    return ccw(a.p, a.q, b.p); // mesmo angulo
bool operator == (const line& a, const line& b) {
    return !(a < b) and !(b < a);</pre>
}
// comparador pro set pra fazer sweep line com segmentos
struct cmp_sweepline {
```

7.3 Primitivas de Polinomios

```
#include <bits/stdc++.h>
using namespace std;
namespace algebra {
    const int inf = 1e9;
    const int magic = 500; // threshold for sizes to run the
       naive algo
    namespace fft {
        const int maxn = 1 << 18;</pre>
        typedef double ftype;
        typedef complex <ftype > point;
        point w[maxn];
        const ftype pi = acos(-1);
        bool initiated = 0;
        void init() {
            if(!initiated) {
                 for(int i = 1; i < maxn; i *= 2) {</pre>
```

```
for(int i = 0: i < i: i++) {
                 w[i + j] = polar(ftype(1), pi * j /
                    i);
            }
        }
        initiated = 1;
    }
}
template < typename T >
    void fft(T *in, point *out, int n, int k = 1) {
        if(n == 1) {
            *out = *in;
        } else {
            n /= 2;
            fft(in, out, n, 2 * k);
            fft(in + k, out + n, n, 2 * k);
            for(int i = 0; i < n; i++) {</pre>
                 auto t = out[i + n] * w[i + n];
                 out[i + n] = out[i] - t;
                out[i] += t;
            }
        }
    }
template < typename T >
    void mul_slow(vector<T> &a, const vector<T> &b) {
        vector<T> res(a.size() + b.size() - 1);
        for(size_t i = 0; i < a.size(); i++) {</pre>
            for(size_t j = 0; j < b.size(); j++) {</pre>
                res[i + j] += a[i] * b[j];
            }
        }
        a = res;
    }
template < typename T>
    void mul(vector<T> &a, const vector<T> &b) {
        if(min(a.size(), b.size()) < magic) {</pre>
             mul_slow(a, b);
            return:
        }
```

```
init():
static const int shift = 15, mask = (1 <<</pre>
   shift) - 1;
size_t n = a.size() + b.size() - 1;
while(__builtin_popcount(n) != 1) {
    n++;
}
a.resize(n);
static point A[maxn], B[maxn];
static point C[maxn], D[maxn];
for(size_t i = 0; i < n; i++) {</pre>
    A[i] = point(a[i] & mask, a[i] >> shift);
    if(i < b.size()) {</pre>
        B[i] = point(b[i] & mask, b[i] >>
            shift):
    } else {
        B[i] = 0;
    }
fft(A, C, n); fft(B, D, n);
for(size_t i = 0; i < n; i++) {</pre>
    point c0 = C[i] + conj(C[(n - i) \% n]);
    point c1 = C[i] - conj(C[(n - i) \% n]);
    point d0 = D[i] + conj(D[(n - i) \% n]);
    point d1 = D[i] - conj(D[(n - i) \% n]);
    A[i] = c0 * d0 - point(0, 1) * c1 * d1;
    B[i] = c0 * d1 + d0 * c1;
fft(A, C, n); fft(B, D, n);
reverse (C + 1, C + n);
reverse (D + 1, D + n);
int t = 4 * n;
for(size_t i = 0; i < n; i++) {</pre>
    int64_t A0 = llround(real(C[i]) / t);
    T A1 = llround(imag(D[i]) / t);
    T A2 = llround(imag(C[i]) / t);
    a[i] = A0 + (A1 << shift) + (A2 << 2 *
       shift):
}
return;
```

}

}

```
template < typename T>
   T bpow(T x, size_t n) {
        return n ? n % 2 ? x * bpow(x, n - 1) : bpow(x *
           x, n / 2) : T(1);
   }
template < typename T>
   T bpow(T x, size_t n, T m) {
       return n ? n % 2 ? x * bpow(x, n - 1, m) % m :
           bpow(x * x \% m, n / 2, m) : T(1);
template < typename T>
   T gcd(const T &a, const T &b) {
        return b == T(0) ? a : gcd(b, a % b);
template < typename T>
    T nCr(T n, int r) { // runs in O(r) }
       T res(1):
        for(int i = 0; i < r; i++) {</pre>
            res *= (n - T(i));
            res /= (i + 1);
       }
       return res;
   }
template < int m>
    struct modular {
        int64_t r;
        modular() : r(0) {}
        modular(int64_t rr) : r(rr) \{if(abs(r) >= m) r
           %= m; if(r < 0) r += m;}
        modular inv() const {return bpow(*this, m - 2);}
        modular operator * (const modular &t) const
           {return (r * t.r) % m;}
        modular operator / (const modular &t) const
           {return *this * t.inv():}
        modular operator += (const modular &t) {r +=
           t.r; if(r >= m) r -= m; return *this;}
        modular operator -= (const modular &t) {r -=
           t.r; if (r < 0) r += m; return *this;}
        modular operator + (const modular &t) const
           {return modular(*this) += t;}
        modular operator - (const modular &t) const
```

```
{return modular(*this) -= t:}
        modular operator *= (const modular &t) {return
           *this = *this * t;}
        modular operator /= (const modular &t) {return
           *this = *this / t;}
        bool operator == (const modular &t) const
           {return r == t.r;}
        bool operator != (const modular &t) const
           {return r != t.r;}
        operator int64_t() const {return r;}
   };
template < int T>
   istream& operator >> (istream &in, modular <T> &x) {
        return in >> x.r;
   }
template < typename T>
   struct poly {
        vector <T> a;
        void normalize() { // get rid of leading zeroes
            while(!a.empty() && a.back() == T(0)) {
                a.pop_back();
        }
        poly(){}
        poly(T a0) : a{a0}{normalize();}
        poly(vector <T> t) : a(t) {normalize();}
        poly operator += (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
            for(size_t i = 0; i < t.a.size(); i++) {</pre>
                a[i] += t.a[i];
            normalize();
            return *this;
        poly operator -= (const poly &t) {
```

```
a.resize(max(a.size(), t.a.size()));
    for(size_t i = 0; i < t.a.size(); i++) {</pre>
        a[i] -= t.a[i];
    normalize();
    return *this;
poly operator + (const poly &t) const {return
   poly(*this) += t;}
poly operator - (const poly &t) const {return
   poly(*this) -= t;}
poly mod_xk(size_t k) const { // get same
   polynomial mod x^k
    k = min(k, a.size());
    return vector<T>(begin(a), begin(a) + k);
}
poly mul_xk(size_t k) const { // multiply by x^k
    poly res(*this);
    res.a.insert(begin(res.a), k, 0);
    return res;
poly div_xk(size_t k) const { // divide by x^k,
   dropping coefficients
    k = min(k, a.size());
    return vector <T > (begin(a) + k, end(a));
poly substr(size_t l, size_t r) const { //
   return mod_xk(r).div_xk(1)
    1 = min(1, a.size());
    r = min(r, a.size());
    return vector<T>(begin(a) + 1, begin(a) + r);
}
poly inv(size_t n) const { // get inverse series
   mod x^n
    assert(!is_zero());
    poly ans = a[0].inv();
    size_t a = 1;
    while (a < n) {
        poly C = (ans * mod_xk(2 * a)).substr(a,
           2 * a);
        ans -= (ans * C).mod_xk(a).mul_xk(a);
```

```
a *= 2:
    return ans.mod_xk(n);
poly operator *= (const poly &t) {fft::mul(a,
   t.a); normalize(); return *this;}
poly operator * (const poly &t) const {return
   poly(*this) *= t;}
poly reverse(size_t n, bool rev = 0) const { //
   reverses and leaves only n terms
    poly res(*this);
    if(rev) { // If rev = 1 then tail goes to
        res.a.resize(max(n, res.a.size()));
    std::reverse(res.a.begin(), res.a.end());
    return res.mod_xk(n);
}
pair < poly , poly > divmod_slow(const poly &b)
   const { // when divisor or quotient is small
    vector <T> A(a);
    vector <T> res;
    while(A.size() >= b.a.size()) {
        res.push_back(A.back() / b.a.back());
        if(res.back() != T(0)) {
            for(size_t i = 0; i < b.a.size();</pre>
               i++) {
                A[A.size() - i - 1] -=
                   res.back() * b.a[b.a.size() -
                   i - 1]:
            }
        }
        A.pop_back();
    std::reverse(begin(res), end(res));
    return {res, A};
pair < poly, poly > divmod(const poly &b) const {
```

```
// returns quotiend and remainder of a mod b
   if(deg() < b.deg()) {
        return {poly{0}, *this};
    int d = deg() - b.deg();
    if(min(d, b.deg()) < magic) {</pre>
        return divmod_slow(b);
    poly D = (reverse(d + 1) * b.reverse(d +
       1).inv(d + 1)).mod_xk(d + 1).reverse(d +
       1, 1);
    return {D, *this - D * b};
}
poly operator / (const poly &t) const {return
   divmod(t).first;}
poly operator % (const poly &t) const {return
   divmod(t).second;}
poly operator /= (const poly &t) {return *this =
   divmod(t).first;}
poly operator %= (const poly &t) {return *this =
   divmod(t).second;}
poly operator *= (const T &x) {
    for(auto &it: a) {
        it *= x;
    normalize();
    return *this;
poly operator /= (const T &x) {
    for(auto &it: a) {
        it /= x;
    normalize():
    return *this;
poly operator * (const T &x) const {return
   poly(*this) *= x;}
poly operator / (const T &x) const {return
   poly(*this) /= x;}
void print() const {
```

```
for(auto it: a) {
        cout << it << ', ';
    cout << endl;</pre>
T eval(T x) const { // evaluates in single point
    T res(0);
    for(int i = int(a.size()) - 1; i >= 0; i--) {
        res *= x;
        res += a[i];
    return res;
}
T& lead() { // leading coefficient
    return a.back();
int deg() const { // degree
    return a.empty() ? -inf : a.size() - 1;
}
bool is_zero() const { // is polynomial zero
    return a.empty();
T operator [](int idx) const {
    return idx >= (int)a.size() || idx < 0 ?</pre>
       T(0) : a[idx];
}
T& coef(size_t idx) { // mutable reference at
   coefficient
    return a[idx];
bool operator == (const poly &t) const {return a
   == t.a:}
bool operator != (const poly &t) const {return a
   != t.a;}
poly deriv() { // calculate derivative
    vector <T> res;
    for(int i = 1; i <= deg(); i++) {</pre>
        res.push_back(T(i) * a[i]);
```

```
}
    return res;
poly integr() { // calculate integral with C = 0
    vector < T > res = \{0\};
    for(int i = 0; i <= deg(); i++) {</pre>
        res.push_back(a[i] / T(i + 1));
    }
    return res;
size_t leading_xk() const { // Let p(x) = x^k *
   t(x), return k
    if(is_zero()) {
        return inf;
    }
    int res = 0;
    while (a[res] == T(0)) {
        res++;
    }
    return res;
}
poly log(size_t n) { // calculate log p(x) mod
   x^n
    assert(a[0] == T(1));
    return (deriv().mod_xk(n) *
       inv(n)).integr().mod_xk(n);
poly exp(size_t n) { // calculate exp p(x) mod
   x^n
    if(is_zero()) {
        return T(1);
    assert(a[0] == T(0));
    poly ans = T(1);
    size_t a = 1;
    while (a < n) {
        poly C = ans.log(2 * a).div_xk(a) -
           substr(a, 2 * a);
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2;
    return ans.mod_xk(n);
```

```
poly pow_slow(size_t k, size_t n) { // if k is
   small
    return k ? k % 2 ? (*this * pow_slow(k - 1,
       n)).mod_xk(n): (*this *
       *this).mod_xk(n).pow_slow(k / 2, n):
       T(1);
}
poly pow(size_t k, size_t n) { // calculate
   p^k(n) mod x^n
    if(is_zero()) {
        return *this;
    if(k < magic) {</pre>
        return pow_slow(k, n);
    }
    int i = leading_xk();
    T j = a[i];
    poly t = div_xk(i) / j;
    return bpow(j, k) * (t.log(n) *
       T(k) .exp(n).mul_xk(i * k).mod_xk(n);
poly mulx(T x) { // component-wise
   multiplication with x^k
    T cur = 1;
    poly res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= cur;
        cur *= x;
    }
    return res;
}
poly mulx_sq(T x) { // component-wise
   multiplication with x^{k^2}
    T cur = x;
    T \text{ total} = 1;
    T xx = x * x;
    poly res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= total;
        total *= cur;
```

```
cur *= xx:
    }
    return res;
}
vector<T> chirpz_even(T z, int n) { // P(1),
   P(z^2), P(z^4), ..., P(z^2(n-1))
    int m = deg();
    if(is_zero()) {
         return vector <T>(n, 0);
    vector < T > vv(m + n):
    T zi = z.inv():
    T zz = zi * zi;
    T cur = zi;
    T \text{ total} = 1:
    for (int i = 0; i \le max(n - 1, m); i++) {
        if(i <= m) {vv[m - i] = total;}</pre>
        if(i < n) \{vv[m + i] = total:\}
        total *= cur;
         cur *= zz;
    }
    poly w = (mulx_sq(z) * vv).substr(m, m +
        n).mulx_sq(z);
    vector<T> res(n);
    for(int i = 0; i < n; i++) {</pre>
        res[i] = w[i];
    }
    return res;
vector\langle T \rangle chirpz(T z, int n) \{ // P(1), P(z), 
   P(z^2), ..., P(z^{(n-1)})
    auto even = chirpz_even(z, (n + 1) / 2);
    auto odd = mulx(z).chirpz_even(z, n / 2);
    vector < T > ans(n):
    for(int i = 0; i < n / 2; i++) {</pre>
         ans [2 * i] = even[i]:
         ans [2 * i + 1] = odd[i];
    }
    if(n % 2 == 1) {
         ans [n - 1] = even.back();
    return ans;
```

```
}
template < typename iter >
    vector<T> eval(vector<poly> &tree, int v,
       iter 1, iter r) { // auxiliary evaluation
       function
       if(r - 1 == 1) {
            return {eval(*1)};
        } else {
            auto m = 1 + (r - 1) / 2;
            auto A = (*this % tree[2 *
               v]).eval(tree, 2 * v, 1, m);
            auto B = (*this \% tree[2 * v +
               1]).eval(tree, 2 * v + 1, m, r);
            A.insert(end(A), begin(B), end(B));
            return A:
        }
    }
vector <T> eval(vector <T> x) { // evaluate
   polynomial in (x1, ..., xn)
   int n = x.size();
   if(is_zero()) {
        return vector <T>(n, T(0));
    vector < poly > tree(4 * n);
    build(tree, 1, begin(x), end(x));
    return eval(tree, 1, begin(x), end(x));
template < typename iter >
    poly inter(vector<poly> &tree, int v, iter
       1, iter r, iter ly, iter ry) { //
       auxiliary interpolation function
        if(r - 1 == 1) {
            return {*ly / a[0]};
        } else {
            auto m = 1 + (r - 1) / 2:
            auto my = ly + (ry - ly) / 2;
            auto A = (*this % tree[2 *
               v]).inter(tree, 2 * v, 1, m, ly,
               my);
            auto B = (*this \% tree[2 * v +
               1]).inter(tree, 2 * v + 1, m, r,
               my, ry);
```

```
return A * tree[2 * v + 1] + B *
                        tree[2 * v];
                }
            }
    };
template < typename T>
    poly<T> operator * (const T& a, const poly<T>& b) {
        return b * a;
    }
template < typename T>
    poly<T> xk(int k) { // return x^k
        return poly<T>{1}.mul_xk(k);
    }
template < typename T>
    T resultant(poly<T> a, poly<T> b) { // computes
       resultant of a and b
        if(b.is_zero()) {
            return 0;
        } else if(b.deg() == 0) {
            return bpow(b.lead(), a.deg());
        } else {
            int pw = a.deg();
            a %= b;
            pw -= a.deg();
            T \text{ mul} = bpow(b.lead(), pw) * T((b.deg() &
                a.deg() & 1) ? -1 : 1);
            T ans = resultant(b, a);
            return ans * mul;
        }
template < typename iter >
    poly<typename iter::value_type> kmul(iter L, iter R)
       \{ // \text{ computes } (x-a1)(x-a2)...(x-an) \text{ without } 
       building tree
        if(R - L == 1) {
            return vector < typename
                iter::value_type>{-*L, 1};
        } else {
            iter M = L + (R - L) / 2;
            return kmul(L, M) * kmul(M, R);
```

```
}
    template < typename T, typename iter >
        poly<T> build(vector<poly<T>> &res, int v, iter L,
           iter R) { // builds evaluation tree for
           (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = vector<T>{-*L, 1};
            } else {
                iter M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) *
                    build(res, 2 * v + 1, M, R);
            }
    template < typename T>
        poly<T> inter(vector<T> x, vector<T> y) { //
           interpolates minimum polynomial from (xi, yi)
           pairs
            int n = x.size();
            vector<poly<T>> tree(4 * n);
            return build(tree, 1, begin(x),
                end(x)).deriv().inter(tree, 1, begin(x),
                end(x), begin(y), end(y));
        }
};
using namespace algebra;
const int mod = 1e9 + 7;
typedef modular < mod > base;
typedef poly < base > polyn;
using namespace algebra;
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n = 100000;
    polyn a;
    vector < base > x;
    for(int i = 0; i <= n; i++) {
        a.a.push_back(1 + rand() % 100);
```

```
x.push_back(1 + rand() % (2 * n));
}
sort(begin(x), end(x));
x.erase(unique(begin(x), end(x)), end(x));
auto b = a.eval(x);
cout << clock() / double(CLOCKS_PER_SEC) << endl;
auto c = inter(x, b);
polyn md = kmul(begin(x), end(x));
cout << clock() / double(CLOCKS_PER_SEC) << endl;
assert(c == a % md);
return 0;
}</pre>
```

7.4 Primitivas de matriz - exponenciacao

```
#define MODULAR false
template < typename T> struct matrix : vector < T>> {
    int n, m;
    void print() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) cout <<</pre>
                (*this)[i][j] << " ";
             cout << endl;</pre>
        }
    }
    matrix(int n_, int m_, bool ident = false) :
             vector < vector < T >> (n_, vector < T > (m_, 0)), n(n_),
                m(m) {
        if (ident) {
             assert(n == m);
             for (int i = 0; i < n; i++) (*this)[i][i] = 1;
        }
    matrix(const vector < vector < T >> & c) :
       vector < vector < T >> (c),
        n(c.size()), m(c[0].size()) {}
    matrix(const initializer_list<initializer_list<T>>& c) {
        vector < vector < T >> val;
```

```
for (auto& i : c) val.push_back(i);
        *this = matrix(val);
    }
    matrix<T> operator*(matrix<T>& r) {
        assert(m == r.n);
        matrix <T> M(n, r.m);
        for (int i = 0; i < n; i++) for (int k = 0; k < m;
           k++)
            for (int j = 0; j < r.m; j++) {
                T add = (*this)[i][k] * r[k][j];
#if MODULAR
#warning Usar matrix<11> e soh colocar valores em [0, MOD)
   na matriz!
                M[i][j] += add%MOD;
                if (M[i][j] >= MOD) M[i][j] -= MOD;
#else
                M[i][i] += add;
#endif
            }
        return M;
    }
    matrix<T> operator^(ll e){
        matrix<T> M(n, n, true), at = *this;
        while (e) {
            if (e\&1) M = M*at;
            e >>= 1;
            at = at*at;
        return M;
    }
    void apply_transform(matrix M, ll e){
        auto& v = *this;
        while (e) {
            if (e\&1) v = M*v;
            e >>= 1;
            M = M * M:
        }
   }
};
```

7.5 Big Integer

```
// Complexidades: (para n digitos)
// Soma, subtracao, comparacao - O(n)
// Multiplicacao - O(n log(n))
// Divisao, resto - O(n^2)
struct bint {
    static const int BASE = 1e9;
    vector<int> v;
    bool neg;
    bint() : neg(0) {}
    bint(int val) : bint() { *this = val; }
    bint(long long val) : bint() { *this = val; }
    void trim() {
        while (v.size() and v.back() == 0) v.pop_back();
        if (!v.size()) neg = 0;
    }
    // converter de/para string | cin/cout
    bint(const char* s) : bint() { from_string(string(s)); }
    bint(const string& s) : bint() { from_string(s); }
    void from_string(const string& s) {
        v.clear(), neg = 0;
        int ini = 0;
        while (ini < s.size() and (s[ini] == '-' or s[ini]
           == '+' or s[ini] == '0'))
            if (s[ini++] == '-') neg = 1;
        for (int i = s.size()-1; i >= ini; i -= 9) {
            int at = 0;
            for (int j = max(ini, i - 8); j \le i; j++) at =
               10*at + (s[j]-'0');
            v.push_back(at);
        if (!v.size()) neg = 0;
    string to_string() const {
        if (!v.size()) return "0";
        string ret;
        if (neg) ret += '-';
```

```
for (int i = v.size()-1; i >= 0; i--) {
        string at = ::to_string(v[i]);
        int add = 9 - at.size();
        if (i+1 < v.size()) for (int j = 0; j < add;
           j++) ret += '0';
        ret += at;
    return ret;
}
friend istream& operator>>(istream& in, bint& val) {
    string s; in >> s;
    val = s;
    return in;
friend ostream& operator << (ostream& out, const bint&</pre>
    string s = val.to_string();
    out << s;
    return out;
}
// operators
friend bint abs(bint val) {
    val.neg = 0;
    return val;
}
friend bint operator - (bint val) {
    if (val != 0) val.neg ^= 1;
    return val;
}
bint& operator=(const bint& val) { v = val.v, neg =
   val.neg; return *this; }
bint& operator=(long long val) {
    v.clear(), neg = 0;
    if (val < 0) neg = 1, val *= -1;</pre>
    for (; val; val /= BASE) v.push_back(val % BASE);
    return *this;
}
int cmp(const bint& r) const { // menor: -1 | igual: 0 |
   maior: 1
    if (neg != r.neg) return neg ? -1 : 1;
    if (v.size() != r.v.size()) {
```

```
int ret = v.size() < r.v.size() ? -1 : 1;</pre>
        return neg ? -ret : ret;
    for (int i = int(v.size())-1; i >= 0; i--) {
        if (v[i] != r.v[i]) {
            int ret = v[i] < r.v[i] ? -1 : 1;</pre>
            return neg ? -ret : ret;
    }
    return 0;
friend bool operator < (const bint& 1, const bint& r) {
   return 1.cmp(r) == -1; }
friend bool operator>(const bint& 1, const bint& r) {
   return 1.cmp(r) == 1; }
friend bool operator <= (const bint& 1, const bint& r) {</pre>
   return 1.cmp(r) <= 0; }</pre>
friend bool operator >= (const bint& 1, const bint& r) {
   return 1.cmp(r) >= 0;}
friend bool operator == (const bint& 1, const bint& r) {
   return 1.cmp(r) == 0; }
friend bool operator!=(const bint& 1, const bint& r) {
   return 1.cmp(r) != 0; }
bint& operator +=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this -= -r;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {</pre>
        if (i == v.size()) v.push_back(0);
        v[i] += c + (i < r.v.size() ? r.v[i] : 0);
        if ((c = v[i] >= BASE)) v[i] -= BASE;
    return *this;
friend bint operator+(bint a, const bint& b) { return a
   += b: }
bint& operator -=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this += -r;
    if ((!neg and *this < r) or (neg and r < *this)) {
        *this = r - *this;
        neg ^= 1;
```

```
return *this;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {</pre>
        v[i] = c + (i < r.v.size() ? r.v[i] : 0);
        if ((c = v[i] < 0)) v[i] += BASE;</pre>
    trim();
    return *this;
}
friend bint operator-(bint a, const bint& b) { return a
   -= b; }
// operators de * / %
bint& operator *=(int val) {
    if (val < 0) val *= -1, neg ^= 1;</pre>
    for (int i = 0, c = 0; i < v.size() or c; i++) {</pre>
        if (i == v.size()) v.push_back(0);
        long long at = (long long) v[i] * val + c;
        v[i] = at % BASE;
        c = at / BASE;
    }
    trim();
    return *this;
}
friend bint operator *(bint a, int b) { return a *= b; }
friend bint operator *(int a, bint b) { return b *= a; }
using cplx = complex < double >;
void fft(vector < cplx > & a, bool f, int N, vector < int > &
   rev) const {
    for (int i = 0; i < N; i++) if (i < rev[i])</pre>
       swap(a[i], a[rev[i]]);
    vector < cplx > roots(N);
    for (int n = 2; n <= N; n *= 2) {</pre>
        const static double PI = acos(-1);
        for (int i = 0; i < n/2; i++) {</pre>
            double alpha = (2*PI*i)/n;
            if (f) alpha = -alpha;
            roots[i] = cplx(cos(alpha), sin(alpha));
        for (int pos = 0; pos < N; pos += n)</pre>
            for (int l = pos, r = pos+n/2, m = 0; m <
                n/2; 1++, r++, m++) {
```

```
auto t = roots[m]*a[r]:
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
            }
    }
    if (!f) return;
    auto invN = cplx(1)/cplx(N);
    for (int i = 0; i < N; i++) a[i] *= invN;</pre>
}
vector<long long> convolution(const vector<int>& a,
   const vector < int > & b) const {
    vector < cplx > l(a.begin(), a.end()), r(b.begin(),
       b.end());
    int ln = l.size(), rn = r.size(), N = ln+rn+1, n =
       1, \log_n = 0;
    while (n \le N) n \le 1, \log_n + 1;
    vector < int > rev(n);
    for (int i = 0; i < n; i++) {</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; j++) if (i >> j & 1)
            rev[i] = 1 << (log_n-1-j);
    }
    l.resize(n), r.resize(n);
    fft(1, false, n, rev), fft(r, false, n, rev);
    for (int i = 0; i < n; i++) l[i] *= r[i];</pre>
    fft(1, true, n, rev);
    vector<long long> ret;
    for (auto& i : 1) ret.push_back(round(i.real()));
    return ret;
vector < int > convert_base (const vector < int > & a, int from,
   int to) const {
    static vector < long long > pot(10, 1);
    if (pot[1] == 1) for (int i = 1; i < 10; i++) pot[i]
       = 10*pot[i-1];
    vector<int> ret;
    long long at = 0;
    int digits = 0;
    for (int i : a) {
        at += i * pot[digits];
        digits += from;
        while (digits >= to) {
```

```
ret.push_back(at % pot[to]);
            at /= pot[to];
            digits -= to;
        }
    }
    ret.push_back(at);
    while (ret.size() and ret.back() == 0)
       ret.pop_back();
    return ret;
}
bint operator*(const bint& r) const { // O(n log(n))
    ret.neg = neg ^ r.neg;
    auto conv = convolution(convert_base(v, 9, 4),
       convert_base(r.v, 9, 4));
    long long c = 0;
    for (auto i : conv) {
        long long at = i+c;
        ret.v.push_back(at % 10000);
        c = at / 10000;
    }
    for (; c; c /= 10000) ret.v.push_back(c%10000);
    ret.v = convert_base(ret.v, 4, 9);
    if (!ret.v.size()) ret.neg = 0;
    return ret;
}
bint& operator*=(const bint& r) { return *this = *this *
   r; };
bint& operator/=(int val) {
    if (val < 0) neg ^{-} 1, val *= -1;
    for (int i = int(v.size())-1, c = 0; i >= 0; i--) {
        long long at = v[i] + c * (long long) BASE;
        v[i] = at / val;
        c = at % val;
    }
    trim();
    return *this;
friend bint operator/(bint a, int b) { return a /= b; }
int operator %=(int val) {
    if (val < 0) val *= -1;</pre>
    long long at = 0;
```

```
for (int i = int(v.size())-1; i >= 0; i--)
        at = (BASE * at + v[i]) \% val;
    if (neg) at *= -1;
    return at;
}
friend int operator%(bint a, int b) { return a %= b; }
friend pair <bint, bint > divmod(const bint& a_, const
   bint& b_) { // O(n^2)
    if (a_ == 0) return {0, 0};
    int norm = BASE / (b_.v.back() + 1);
    bint a = abs(a_) * norm;
    bint b = abs(b_) * norm;
    bint q, r;
    for (int i = a.v.size() - 1; i >= 0; i--) {
        r *= BASE, r += a.v[i];
        long long upper = b.v.size() < r.v.size() ?</pre>
           r.v[b.v.size()] : 0;
        int lower = b.v.size() - 1 < r.v.size() ?</pre>
           r.v[b.v.size() - 1] : 0;
        int d = (upper * BASE + lower) / b.v.back();
        r \rightarrow b*d;
        while (r < 0) r += b, d--; // roda 0(1) vezes
        q.v.push_back(d);
    reverse(q.v.begin(), q.v.end());
    q.neg = a_.neg ^ b_.neg;
    r.neg = a_.neg;
    q.trim(), r.trim();
    return {q, r / norm};
bint operator/(const bint& val) { return divmod(*this,
   val).first: }
bint& operator/=(const bint& val) { return *this = *this
   / val: }
bint operator%(const bint& val) { return divmod(*this,
   val).second: }
bint& operator%=(const bint& val) { return *this = *this
   % val: }
```

};

7.6 Complex

```
struct cplx{
    double r, i;
    cplx(complex < double > c):r(c.real()), i(c.imag()){}
    cplx() : r(0), i(0){}
    cplx(double r_{-}, double i_{-} = 0):r(r_{-}), i(i_{-})
    double abs(){ return hypot(r, i); }
    double abs2(){ return r*r + i*i; }
    cplx inv() { return cplx(r/abs2(), i/abs2()); }
    cplx& operator+=(cplx a){
        r += a.r; i += a.i;
        return *this;
    }
    cplx& operator -=(cplx a){
        r -= a.r; i -= a.i;
        return *this;
    }
    cplx& operator*=(cplx a){
        double r_{-} = r*a.r - i*a.i;
        double i_ = r*a.i + i*a.r;
        r = r_{:}
        i = i_{-};
        return *this;
    }
    cplx conj(){
        return cplx(r, -i);
    cplx& operator/=(cplx a){
        auto a_ = a.inv();
        return (*this)*=a_;
    }
    cplx operator-() { return cplx(-r, -i); }
    cplx& operator = (double e) {
        return *this = pow(complex < double > (r, i), e);
    }
    friend ostream &operator << (ostream &out, cplx a){</pre>
        return out << a.r << " + " << a.i << "i";
    }
    friend cplx operator+(cplx a, cplx b){ return a+=b; }
    friend cplx operator-(cplx a, cplx b){ return a-=b; }
    friend cplx operator*(cplx a, cplx b){ return a*=b; }
```

```
friend cplx operator/(cplx a, cplx b){ return a/=b; }
friend cplx operator^(cplx a, double e){ return a^=e; }

//fft
static int fft_len(int N){
   int n = 1, log_n = 0;
   while (n <= N) { n <<= 1; log_n++; }
   return log_n;
}
static cplx rt(bool f, int n, int N){
   const static double PI = acos(-1);
   double alpha = (2*PI)/n;
   if (f) alpha = -alpha;
   return cplx(cos(alpha), sin(alpha));
}
};</pre>
```

7.7 Primitivas de fração

```
// Funciona com o Big Int
template < typename T = int > struct frac {
    T num, den;
    template < class U> frac(U num_ = 0, U den_ = 1) :
       num(num_), den(den_) {
        assert(den != 0);
        if (den < 0) num *= -1, den *= -1;
        T g = gcd(abs(num), den);
        num /= g, den /= g;
    }
    friend bool operator < (const frac& 1, const frac& r) {</pre>
        return l.num * r.den < r.num * l.den;</pre>
    friend frac operator+(const frac& 1, const frac& r) {
        return {1.num*r.den + 1.den*r.num, 1.den*r.den};
    }
    friend frac operator-(const frac& 1, const frac& r) {
        return {1.num*r.den - 1.den*r.num, 1.den*r.den};
    }
```

```
friend frac operator*(const frac& 1, const frac& r) {
    return {l.num*r.num, l.den*r.den};
}
friend frac operator/(const frac& 1, const frac& r) {
    return {l.num*r.den, l.den*r.num};
}
friend ostream& operator<<(ostream& out, frac f) {
    out << f.num << '/' << f.den;
    return out;
}
};</pre>
```

7.8 Primitivas Geometricas

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
#define sq(x) ((x)*(x))
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, y;
    pt(1d x_{-} = 0, 1d y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;
        return 0:
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y);
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
```

```
pt operator * (const ld c) const { return pt(x*c , y*c
       ); }
    pt operator / (const 1d c) const { return pt(x/c , y/c
    ld operator * (const pt p) const { return x*p.x + y*p.y;
    ld operator ^ (const pt p) const { return x*p.y - y*p.x;
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
}:
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
};
// PONTO & VETOR
ld dist(pt p, pt q) { // distancia
    return hypot(p.y - q.y, p.x - q.x);
}
ld dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
ld norm(pt v) { // norma do vetor
    return dist(pt(0, 0), v);
}
ld angle(pt v) { // angulo do vetor com o eixo x
    ld ang = atan2(v.y, v.x);
    if (ang < 0) ang += 2*pi;</pre>
    return ang;
}
```

```
ld sarea(pt p, pt q, pt r) { // area com sinal
   return ((q-p)^(r-q))/2;
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
   return eq(sarea(p, q, r), 0);
}
int paral(pt u, pt v) { // se u e v sao paralelos
   if (!eq(u^v, 0)) return 0;
   if ((u.x > eps) == (v.x > eps) and (u.y > eps) == (v.y >
       return 1;
   return -1:
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
   return sarea(p, q, r) > eps;
}
pt rotate(pt p, ld th) { // rotaciona o ponto th radianos
   return pt(p.x * cos(th) - p.y * sin(th),
           p.x * sin(th) + p.y * cos(th));
}
pt rotate90(pt p) { // rotaciona 90 graus
   return pt(-p.y, p.x);
// RETA
bool isvert(line r) { // se r eh vertical
   return eq(r.p.x, r.q.x);
}
bool paraline(line r, line s) { // se r e s sao paralelas
   return paral(r.p - r.q, s.p - s.q);
}
bool isinseg(pt p, line r) { // se p pertence ao seg de r
   if (p == r.p or p == r.q) return 1;
   return paral(p - r.p, p - r.q) == -1;
```

```
}
ld get_t(pt v, line r) { // retorna t tal que t*v pertence a
   reta r
    return (r.p^r.q) / ((r.p-r.q)^v);
}
pt proj(pt p, line r) { // projecao do ponto p na reta r
    if (r.p == r.q) return r.p;
   r.q = r.q - r.p; p = p - r.p;
    pt proj = r.q * ((p*r.q) / (r.q*r.q));
    return proj + r.p;
}
pt inter(line r, line s) { // r inter s
    if (paraline(r, s)) return pt(DINF, DINF);
    r.q = r.q - r.p, s.p = s.p - r.p, s.q = s.q - r.p;
    return r.q * get_t(r.q, s) + r.p;
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
    if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
           ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
ld disttoline(pt p, line r) { // distancia do ponto a reta
    return 2 * abs(sarea(p, r.p, r.q)) / dist(r.p, r.q);
}
ld disttoseg(pt p, line r) { // distancia do ponto ao seg
    if ((r.q - r.p)*(p - r.p) < 0) return dist(r.p, p);
    if ((r.p - r.q)*(p - r.q) < 0) return dist(r.q, p);
    return disttoline(p, r);
}
ld distseg(line a, line b) { // distancia entre seg
    if (interseg(a, b)) return 0;
```

```
ld ret = DINF;
    ret = min(ret, disttoseg(a.p, b));
    ret = min(ret, disttoseg(a.q, b));
    ret = min(ret, disttoseg(b.p, a));
    ret = min(ret, disttoseg(b.q, a));
    return ret;
}
// POLIGONO
// distancia entre os retangulos a e b (lados paralelos aos
   eixos)
// assume que ta representado (inferior esquerdo, superior
ld dist_rect(pair<pt, pt> a, pair<pt, pt> b) {
    ld hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -</pre>
       b.second.x;
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.v;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.y;
    return dist(pt(0, 0), pt(hor, vert));
}
ld polarea(vector<pt> v) { // area do poligono
    1d ret = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea(pt(0, 0), v[i], v[(i + 1) \% v.size()]);
    return abs(ret):
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
int inpol(vector<pt>& v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)%v.size();
        if (eq(p.y, v[i].y) and eq(p.y, v[j].y)) {
```

```
if ((v[i]-p)*(v[j]-p) < eps) return 2;
            continue;
        }
        bool baixo = v[i].y+eps < p.y;</pre>
        if (baixo == (v[j].y+eps < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (eq(t, 0)) return 2;
        if (baixo == (t > eps)) qt += baixo ? 1 : -1;
    }
    return qt != 0;
}
bool interpol(vector<pt> v1, vector<pt> v2) { // se dois
   poligonos se intersectam - O(n*m)
    int n = v1.size(), m = v2.size();
    for (int i = 0; i < n; i++) if (inpol(v2, v1[i])) return</pre>
       1:
    for (int i = 0; i < n; i++) if (inpol(v1, v2[i])) return</pre>
       1;
    for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
        if (interseg(line(v1[i], v1[(i+1)%n]), line(v2[j],
           v2[(j+1)%m]))) return 1;
    return 0;
}
ld distpol(vector<pt> v1, vector<pt> v2) { // distancia
   entre poligonos
    if (interpol(v1, v2)) return 0;
    ld ret = DINF;
    for (int i = 0; i < v1.size(); i++) for (int j = 0; j <
       v2.size(); j++)
        ret = min(ret, distseg(line(v1[i], v1[(i + 1) %
           v1.size()]),
                    line(v2[j], v2[(j + 1) % v2.size()])));
    return ret:
}
vector<pt> convex_hull(vector<pt> v) { // convex hull - 0(n
   log(n))
    if (v.size() <= 1) return v;</pre>
```

```
vector<pt> 1. u:
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (1.size() > 1 and !ccw(1[1.size()-2],
           1.back(), v[i]))
           1.pop_back();
        1.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 and !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1:
}
struct convex_pol {
    vector < pt > pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) 1 = m+1;
            else r = m;
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (1 == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
   }
};
// CIRCUNFERENCIA
pt getcenter(pt a, pt b, pt c) { // centro da circunf dado 3
   pontos
```

```
b = (a + b) / 2:
    c = (a + c) / 2;
    return inter(line(b, b + rotate90(a - b)),
            line(c, c + rotate90(a - c)));
}
vector<pt> circ_line_inter(pt a, pt b, pt c, ld r) { //
   intersecao da circunf (c, r) e reta ab
    vector<pt> ret;
    b = b-a, a = a-c;
    1d A = b*b;
    1d B = a*b:
    1d C = a*a - r*r;
    1d D = B*B - A*C;
    if (D < -eps) return ret;</pre>
    ret.push_back(c+a+b*(-B+sqrt(D+eps))/A);
    if (D > eps) ret.push_back(c+a+b*(-B-sqrt(D))/A);
    return ret;
}
vector<pt> circ_inter(pt a, pt b, ld r, ld R) { //
   intersecao da circunf (a, r) e (b, R)
    vector<pt> ret;
    1d d = dist(a, b);
    if (d > r+R or d+min(r, R) < max(r, R)) return ret;</pre>
    1d x = (d*d-R*R+r*r)/(2*d);
    1d v = sqrt(r*r-x*x);
    pt v = (b-a)/d;
    ret.push_back(a+v*x + rotate90(v)*y);
    if (y > 0) ret.push_back(a+v*x - rotate90(v)*y);
    return ret;
}
bool operator <(const line& a, const line& b) { //
   comparador pra reta
    // assume que as retas tem p < q
    pt v1 = a.q - a.p, v2 = b.q - b.p;
    if (!eq(angle(v1), angle(v2))) return angle(v1) <</pre>
       angle(v2);
    return ccw(a.p, a.q, b.p); // mesmo angulo
}
bool operator ==(const line& a, const line& b) {
```

```
return !(a < b) and !(b < a);
}
// comparador pro set pra fazer sweep line com segmentos
struct cmp_sweepline {
    bool operator () (const line& a, const line& b) const {
        // assume que os segmentos tem p < q</pre>
        if (a.p == b.p) return ccw(a.p, a.q, b.q);
        if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or
           a.p.x+eps < b.p.x)
            return ccw(a.p, a.q, b.p);
        return ccw(a.p, b.q, b.p);
   }
};
// comparador pro set pra fazer sweep angle com segmentos
pt dir:
struct cmp_sweepangle {
    bool operator () (const line& a, const line& b) const {
        return get_t(dir, a) + eps < get_t(dir, b);</pre>
   }
};
```

7.9 Primitivas Geometricas 3D

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;

#define sq(x) ((x)*(x))

bool eq(ld a, ld b) {
    return abs(a - b) <= eps;
}

struct pt { // ponto
    ld x, y, z;
    pt(ld x_ = 0, ld y_ = 0, ld z_ = 0) : x(x_), y(y_),
        z(z_) {}</pre>
```

```
bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;</pre>
        if (!eq(z, p.z)) return z < p.z;</pre>
        return 0;
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y) and eq(z, p.z);
    }
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y, z+p.z); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y, z-p.z); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       , z*c ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       , z/c ); }
    ld operator * (const pt p) const { return x*p.x + y*p.y
       + z*p.z; }
    pt operator ^ (const pt p) const { return pt(y*p.z -
       z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); }
};
// converte de coordenadas polares para cartesianas
// (angulos devem estar em radianos)
pt convert(ld rho, ld th, ld phi) {
    return pt(sin(phi) * cos(th), sin(phi) * sin(th),
       cos(phi)) * rho;
}
// distancia
ld dist(pt a, pt b) {
    return sqrt(sq(a.x-b.x) + sq(a.y-b.y) + sq(a.z-b.z));
}
// rotaciona p ao redor do eixo u por um angulo a
pt rotate(pt p, pt u, ld a) {
    u = u / dist(u, pt());
    return u * (u * p) + (u ^ p ^ u) * cos(a) + (u ^ p) *
       sin(a);
}
```

8 Extra

8.1 fastIO.cpp

```
int read_int() {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (1) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true:
    else result = ch-'0';
    while (1) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result *10 + (ch - '0');
    }
    if (minus) return -result;
    else return result;
}
```

8.2 vimrc

set ts=4 si ai sw=4 number mouse=a
syntax on

8.3 rand.cpp

```
mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r){
    uniform_int_distribution<int> uid(1, r);
```

```
return uid(rng);
}
8.4 template.cpp
#include <bits/stdc++.h>
using namespace std;
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
typedef long long 11;
const int INF = 0x3f3f3f3f;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f11;
int main() {
    exit(0);
}
     debug.cpp
8.5
void debug_out(string s, int line) { cerr << endl; }</pre>
template < typename H, typename... T>
void debug_out(string s, int line, H h, T... t) {
    if (s[0] != ',') cerr << "Line(" << line << ") ";</pre>
    do { cerr << s[0]; s = s.substr(1);</pre>
    } while (s.size() and s[0] != ',');
    cerr << " = " << h;
    debug_out(s, line, t...);
#ifdef DEBUG
#define debug(...) debug_out(#__VA_ARGS__, __LINE__,
   __VA_ARGS__)
```

#else

#endif

#define debug(...)

8.6 stress.sh

```
make a a2 gen || exit 1
for ((i = 1; ; i++)) do
    ./gen $i > in
    ./a < in > out
    ./a2 < in > out2
    if (! cmp -s out out2) then
        echo "--> entrada:"
        cat in
        echo "--> saida1:"
        cat out
        echo "--> saida2:"
        cat out2
        break;
    fi
    echo $i
done
```

8.7 makefile

```
CXX = g++
CXXFLAGS = -fsanitize=address,undefined
  -fno-omit-frame-pointer -g -Wall -Wshadow -std=c++17
  -Wno-unused-result -Wno-sign-compare -Wno-char-subscripts
#-fuse-ld=gold
```