

<u>+</u>

NOV 07, 2022

WORKS FOR ME 1

© Cyanobacteria Total Lipid Extraction from Polycarbonate Filters
Prorked from Cyanobacteria Total Lipid Extraction

DOI

dx.doi.org/10.17504/protocols.io.byxtpxnn

Robbie Martin¹, Steven W Wilhelm¹, Katarina A. Jones¹, Hector Castro¹, Shawn Campagna¹

¹University of Tennessee, Knoxville

The Aquatic Microbial Ecology Research Group - AMERG (The Buchan, Zinser and Wilhelm labs) CyanoHABs <u>1 more workspa</u>

ABSTRACT

This protocol is designed/used for extraction of total cellular lipids from cyanobacteria samples (either lab cultures or field samples) collected on polycarbonate filters for use in lipid analysis and quantification *via* mass spectrometry.

Please contact Dr. Steven Wilhelm (wilhelm@utk.edu) or Robbie M. Martin (rmarti49@vols.utk.edu) for additional information regarding this protocol.

Modified from Guan, X. L., Riezman, I., Wenk, M. R., & Riezman, H. (2010). Yeast lipid analysis and quantification by mass spectrometry. *Methods in Enzymology*, *470*, 369-391.

DOI

dx.doi.org/10.17504/protocols.io.byxtpxnn

PROTOCOL CITATION

Robbie Martin, Steven W Wilhelm, Katarina A. Jones, Hector Castro, Shawn Campagna 2022. Cyanobacteria Total Lipic Extraction from Polycarbonate Filters. **protocols.io** https://dx.doi.org/10.17504/protocols.io.byxtpxnn

 ${\bf MANUSCRIPT\ CITATION\ please\ remember\ to\ cite\ the\ following\ publication\ along\ with\ this\ protocol\ pro$

Guan, X. L., Riezman, I., Wenk, M. R., & Riezman, H. (2010). Yeast lipid analysis and quantification by mass spectrometry. Methods in Enzymology, 47 369-391.

FORK NOTE

1

Citation: Robbie Martin, Steven W Wilhelm, Katarina A. Jones, Hector Castro, Shawn Campagna Cyanobacteria Total Lipid Extraction from Polycarbonate Filters https://dx.doi.org/10.17504/protocols.io.byxtpxnn

This is an open access protocol distributed under the terms of the **Creative Commons Attribution License** (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

FORK FROM

Forked from Cyanobacteria Total Lipid Extraction, Steven W Wilhelm

KEYWORDS

cyanobacteria, lipids, extraction

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Oct 11, 2021

LAST MODIFIED

Nov 07, 2022

PROTOCOL INTEGER ID

53971

- 1 Prepare the three separate solutions needed for this extraction protocol as follows:
 - lipid extraction solvent: a 15:15:5:1:0.18 ratio by volume of 95% ethanol, water, diethyl ether, pyridine, and 4.2 N ammonium hydroxide, respectively.
 - water-saturated butanol: a 1:1 ratio of butanol and Milli-Q water
 - purified lab water: (Milli-Q water)
- 2 Unfold polycarbonate filter and place into a 2-mL centrifuge tube with cell side of filter facing outwards.

Note: Appropriate volume of lab culture or field samples to filter and extract depends on cell concentration. As a guideline, we have been successful filtering 10-25 mL of lab cultures of *Microcystis aeruginosa* and ~50 mL of either raw lake water or mesocosm samples.

- 3 Add 1 mL of extraction solvent, \sim 100 μ L of glass beads, and vortex \sim 5 s.
- 4 Incubate sample in 60 °C water bath for 20 min.
- 5 Centrifuge sample at 10,000 x g for 10 min.
- Remove supernatant and place into a 1-dram glass vial (dram vial #1). The first two extractions from a sample will be placed in this vial (#1).
- 7 Repeat steps 3-6, except DO NOT ADD more glass beads.

8	Dry the collected supernatant in dram vial #1 under a stream of nitrogen.
9	Re-suspend dried sample in 300 μL of water-saturated butanol and 150 μL of Milli-Q water.
10	Vortex and transfer to a 2-mL centrifuge tube.
11	Centrifuge at 10,000 x g for 2 min.
12	Remove top butanol phase and place into a NEW 1-dram glass vial (dram vial #2).
13	Wash original dram vial (#1) with 300 µL saturated butanol and transfer to residual aqueous phase in 2-mL centrifuge tube from step 10. Vortex.
14	Centrifuge at 10,000 x g for 2 min. Remove top butanol phase and place into dram vial #2.
15	Dry the collected butanol phase in dram vial #2 under a stream of nitrogen.
16	Re-suspend dried sample in 300 μL of 9:1 methanol:chloroform.
17	The samples are now ready for analysis <i>via</i> LC/MS.