Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Querétaro

12/Junio/2018

Nombre: Gerardo Naranjo Interconexión de Redes

Tarea #4

Enrique Posada

Mat: <u>A01209499 | A01700</u>711

1. El administrador de la red del **CIR** (Consorcio Inter Rectorias) se ha percatado que al diseñar un esquema de direccionamiento con 5 bits prestados para crear 32 subredes no es la mejor estrategia para cumplir las restricciones de conectividad impuestas en cada red local (las redes que cuelgan de las interfaces **Fast Ethernet** de cada router).

Por tal motivo nos ha solicitado diseñemos un esquema de direccionamiento de máscaras de longitud variable (VLSM) que minimice el desperdicio de direcciones IP de la subred 0 y del bloque broadcast.

La topología del CIR y las necesidades conectividad están representadas en la siguiente gráfica.

Observa que el número de hosts requeridos por LAN están-indicados en la gráfica anterior. Por ejemplo: la red local que depende de la interfase F1 del Router C requiere de 5 conexiones disponibles mientras que la red que depende de la interfase F0 del Router E necesita de 60 direcciones IP.

La dirección IP asignada al CIR es 207. 169. 10. 0

- a) Escribe sobre la gráfica el prefijo de la máscara de longitud variable que será utilizado en cada subred de este nuevo esquema de direccionamiento.
- b) Diseña el esquema de direccionamiento con máscaras de longitud variable <u>rescatando las direcciones de la subred 0 y de la subred broadcast</u> y completa la tabla con la información que se solicita escribiendo en cada renglón (exclusivamente notación punto decimal) las direcciones **IP** de cada una de las subredes y la **VLSM** que darán servicio a este nuevo esquema de direccionamiento.

	F0	F1	S0	S1	S2
Router A	207.169.10.208	No se usa	64. 25. 129. 136	207.169.10.224	207.169.10.228
	245.255.255.248	No se usa	255. 255. 255. 252	255.255.255.252	255.255.255.252
Router B	207.169.10.176	No se usa	207.169.10.229	207.169.10.232	207.169.10.236
	255.255.255.240	No se usa	155.255.255.252	255.255.255.252	255.255.255.252
Router C	No se usa	207.169.10.200	207.169.10.228	207.169.10.240	267.169.10.244
	No se usa	255.255.255.248	255.255.255.252	255.255.255.252	255.255.255.252
Router D	207.169.16.69	207.169.10.192	207.169.10.232	No se usa	No se usa
	255.255.255.224	255.255.255.248	255.255.255.252	No se usa	No se usa
Router E	207.169.10.0	No se usa	207.169.10.236	No se usa	No se usa
	265.265.265.192	No se usa	255.255.255.252	No se usa	No se usa
Router F	209.169.10.96	207.169.10.160	209.169.16.240	No se usa	No se usa
	255.255.255.224	255.255.255.240	255.255.755.252	No se usa	No se usa
Router G	207.169.10.216	209.169.10.128	207.169.10.244	No se usa	No se usa
	255.255.255.248	255.255.265.224	255.255.265.252	No se usa	No se usa