

General Description

The SUD40N10-25-E3 use advanced SGT MOSFET technology to provide low RDS(ON), low gate charge,

fast switching and excellent avalanche characteristics.

This device is specially designed to get better ruggedness.

General Features

 $V_{DS} = 100V I_{D} = 40 A$

 $R_{DS(ON)}$ < 23m Ω @ V_{GS} =10 V

Applications

Consumer electronic power supply Motor control Synchronous-rectification Isolated DC

Synchronous-rectification applications

N-SGT MOSFET

Package Marking and Ordering Information

Product ID	Pack	Brand	Qty(PCS)
SUD40N10-25-E3	TO-252-2L	HXY MOSFET	2500

Absolute Maximum Ratings at T_j=25°C unless otherwise noted

Symbol	Parameter	Value	Unit
VDS	Drain source voltage	100	V
VGS	Gate source voltage	±20	V
ID	Continuous drain current¹), T _C =25 °C	40	Α
ID, pulse	Pulsed drain current ²⁾ , T _C =25 °C	100	А
P _D	Power dissipation ³⁾ , T _C =25 °C	27	W
EAS	Single pulsed avalanche energy ⁵⁾	16	mJ
Tstg, Tj	Operation and storage temperature	-55 to 150	°C
RθJC	Thermal resistance, junction-case	4.65	°C/W
RθJA	Thermal resistance, junction-ambient ⁴⁾	62	°C/W

Electrical Characteristics at T_j=25 °C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Charact	Off Characteristic						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	100	-	-	V	
I _{DSS}	Drain-Source Leakage Current	V _{DS} = 80V, V _{GS} = 0V	-	-	1	μA	
Igss	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
On Charact	eristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.8	2.6	V	
П	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 15A	-	20	23	mΩ	
$R_{DS(on)}$		V _{GS} = 4.5V, I _D = 10A	-	-	33	mΩ	
g fs	Forward Threshold Voltage	V _{DS} = 10V, I _D = 20A	-	22	-	S	
Rg	Gate Resistance	$V_{DS} = V_{GS} = 0V$, $f = 1.0MHz$	-	1.62	-	Ω	
Dynamic C	haracteristics						
Ciss	Input Capacitance		-	822	-	pF	
Coss	Output Capacitance	V _{DS} = 50V, V _{GS} = 0V, f = 1.0MHz	-	310	-	pF	
Crss	Reverse Transfer Capacitance		-	23.5	-	pF	
Switching (Characteristics						
Qg	Total Gate Charge	V 50V I 00A	-	22.7	-		
Q _{gs}	Gate-Source Charge	V _{DS} = 50V, I _D = 20A, V _{GS} = 10V	-	6.2	-	nC	
Q _{gd}	Gate-Drain("Miller") Charge		-	5.3	-		
t _{d(on)}	Turn-On Delay Time	V 50V I 00A	-	15	-		
t _r	Turn-On Rise Time	$V_{DS} = 50V, I_{D} = 20A,$ $R_{G} = 3\Omega, V_{GS} = 10V$	-	3.2	-	ns	
$t_{d(off)}$	Turn-Off Delay Time		-	30	-		
t _f	Turn-Off Fall Time		-	7.6	-		
Diode Char	acteristics						
ls	Continuous Source Current		-	-	40	Α	
V _{SD}	Diode Forward Voltage	I _S =20A . V _{GS} = 0V	-	0.88	1.0	V	
t _{rr}	Reverse Recovery Time	I _{SD} =20A,	-	45	-	ns	
Qrr	Reverse Recovery Charge	dl _{SD} /dt=100A/µs	-	59	-	nC	

Notes:

- 1. The value of $R_{\theta JC}$ is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 4. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is V_{DS} =50V, V_{GS} =10V,L=0.5mH

Electrical Characteristics Diagrams

Figure 1. Output Characteristics

Figure 3. Drain-to-Source On Resistance
vs Drain Current

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

Figure 6. Gate Charge Characteristics

Figure 7. Normalized Breakdown Voltage vs Junction Temperature

Figure 9. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Drain-to-Source On Resistance vs Gate

Figure 8. Normalized On Resistance vs

Junction Temperature

Figure 10. Maximum Power Dissipation vs Case Temperature

Figure 12. Maximum Safe Operating Area

Figure 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO-252-2L Package Information

Comple at	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	0.483	0.483 TYP.		0.190 TYP.	
Е	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900	2.900 TYP.		0.114 TYP.	
L2	1.400	1.700	0.055	0.067	
L3	1.600	TYP.	0.063 TYP.		
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350	TYP.	0.211 TYP.		

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.