CREACION DE UN MODELO PREENTRENADO QUE DETECTE TRANSACCIONES FRAUDULENTAS DE UN NEGOCIO TIPO ECOMMERCE

Metodología KDD (Knowledge Discovery in Database)

Metodología desarrollada dentro un proceso iterativo que explora grandes cantidades de datos para determinar las relaciones entre estos, con la finalidad de encontrar información útil dentro de los repositorios de datos de una empresa.

EL proceso lo podremos describir en 6 pasos:

1.- Selección de datos

Consiste en determinar los datos a utilizar, como también las fuentes de información de donde se realiza la extracción de los datos.

Fuente de los datos: Utilizamos un repositorio de kaggle donde estos datos tienen más de 20 millones de transacciones generadas a partir de una simulación de mundo virtual multiagente realizada por IBM.

"Los datos aquí casi no tienen ofuscación y se proporcionan en un archivo CSV cuyo esquema se describe en la primera fila. Los datos cubren 2000 consumidores (sintéticos) residentes en los Estados Unidos, pero que viajan por el mundo. Los datos también cubren décadas de compras e incluyen múltiples tarjetas de muchos de los consumidores." (Kaggle.com)

2.- Preprocesamiento.

Herramientas utilizadas: Python, SQL Server, Power BI, Visual Studio 2022

Donde se realiza todos los procesos de limpieza de los datos ya extraídos. Generalmente es aquí donde algunos datos sufren transformaciones para que su posterior tratamiento sea más fácil de procesar, esta etapa es también llamada ETL.

2.1.- Extracción: La base de datos seleccionada contaba un número muy grande de transacciones por lo que se extrajo una muestra aleatoria de 2 millones de transacciones con un script de Python, de las cuales apenas 0.13% son transacciones fraudulentas, luego se seleccionan las variables críticas para un nuevo análisis.

https://www.kaggle.com/datasets/ealtman2019/credit-card-transactions/data

Descripción de los datos Extraídos

Descripción de la tabla de datos MuestraTransacciones		
Columna Tipo de dato Descripción		Descripción
User	Int	ID de los usuarios registrados
Card	Int	Número de tarjetas que posee un usuario
Year	Int	Año de Transacción (2006-2020)
Month	Int	Mes de la Transacción (1-12)
Day	Int	Día de la Transacción (1-31)
Time	Time	Hora de la transacción

Amount	Money	Monto de la transacción
Use_Chip	VarChar(50)	Tipo de transacción
MerchantName	VarChar(50)	ID de tienda o comercio
Merchan_City	VarChar(50)	Ciudad de ubicación del comercio
Merchant_State	VarChar(50)	Siglas del Estado ubicación del comercio
Zip	VarChar(50)	Código ZIP de la ubicación del comercio
MCC	VarChar(50)	Código categoría de mercado
Errors	VarChar(50)	Tipo de error detectado en la transacción
Is_Fraud	VarChar(50)	Si la transacción es un fraude o no
TransaccionID	Int	ID de las transacciones registradas (Primary key)

Tabla 1 -descripción de la tabla MuestraTransacciones

Descripción de la tabla Tarjetas		
Columna Tipo de dato		Descripción
User	Int	ID de los usuarios registrados
Card_index	int	Index de las tarjetas que posee un usuario
BancoCredito	VarChar(50)	Nombre de empresa crediticia
TipoTarjeta	VarChar(50)	Tipo de tarjeta
NumeroTarjeta	Bigint	Número de tarjeta (Primay Key)
Expires	VarChar(50)	Fecha de expiración de la tarjeta
CVV	Int	Código CVV del reverso de la tarjeta
Has_Chip	VarChar(50)	Tipo de transacción
Cards_Issued	Int	Número de tarjetas emitidas
LimiteCredito	Money	Límite de crédito en tarjeta
Acct_Open_Date	VarChar(50)	Fecha apertura de cuenta
Year_PIN_last_Changued	Int	Fecha del último cambio del PIN
Card_on_Dark_web	VarChar(50)	SI la tarjeta se encuentra reportada en la DarkWeb

Tabla 2 - Descripción tabla Tarjetas

Descripción de la tabla Usuarios		
Columna	Tipo de dato	Descripción
Person	VarChar(50)	Nombre del Cliente
Current_Age	Int	Edad del cliente
Retirement_Age	Int	Edad de retiro del cliente
Brith_Year	Int	Año de nacimiento
Brith_Month	Int	Mes de nacimiento
Brith_Day	Int	Día de Nacimiento
Gender	VarChar(50)	Genero
Dirección	VarChar(50)	Dirección
Apartment	VarChar(50)	Numero de apartamento
Ciudad	VarChar(50)	Ciudad de residencia
State	VarChar(50)	Estado de residencia
Zipcode	Int	Código ZIP Dirección cliente
Latitude	Float	Latitud GPS
Longitude	Float	Longitud GPS
IngresoPerCapita	Money	Ingreso Per Capita
IngresoAnual	Money	Total Ingreso anual

DebitoTotal	Money	Total de débitos anuales	
FICO_Score	Int	Calificación FICO de score crediticio	
NumeroTarjetasCredito	Int	Cantidad de tarjetas que posee el usuario	
UserID	Int	ID de los usuarios registrados (Primay Key)	

Tabla 3 - Descripción tabal Usuarios

Ilustración 1-Diagrama de base datos original

2.2.- Transformación: Los datos son transformados en formato que se pueda cargar en la base de datos, la observación, sondeo y cambio del tipo de datos de cada columna y el procesamiento de datos nulos y erróneos usando SQL Server.

2.3.- Carga de los datos:

los datos son replicados en un nuevo almacén de datos FraudulentECoommerce agrupados en 4 tablas Dimensionales (DIM_USUARIO_DEST, DIM_TARJETA_DEST, DIM_TIEMPO_DEST, DIM_COMERCIO_DEST) y una tabla de Hechos (H_TRANSACCION_DEST), ya se puede hacer diversas gráficas para visualizar tendencias y relaciones entre variables, el modelo ETL permite hacer consultas más complejas y con más detalle, como los que se presentan más adelante.

Descripción de los datos cargados

Descripción de la tabla DIM_USUARIO_DEST		
Columna Tipo de dato		Descripción
UserID	Int	ID de los usuarios registrados (Primay Key)
Person	VarChar(50)	Nombre del Cliente
Gender	VarChar(50)	Genero
Direccion	VarChar(50)	Dirección
Ciudad	VarChar(50)	Ciudad de residencia
IngresoPerCapita	Money	Ingreso Per Capita
IngresoAnual	Money	Total Ingreso anual
DebitoTotal	Money	Total de débitos anuales
FICO_Score	Int	Calificación FICO de score crediticio

Tabla 4 - Descripción de la tabla Dimensional Usuario

Descripción de la tabla DIM_TARJETA_DEST			
Columna Tipo de dato Descripción			
Número de tarjeta	Bigint	Número de tarjeta (Primay Key)	
BancoCredito	VarChar(50)	Nombre de empresa crediticia	
TipoTarjeta	VarChar(50)	Tipo de tarjeta	
Has_Chip	VarChar(50)	Tipo de transacción	
LimiteCredito	Money	Límite de crédito en tarjeta	

Tabla 5 - Descripción de la tabla dimensional Tarjeta

Descripción de la tabla DIM_TIEMPO_DEST			
Columna Tipo de dato Descripción			
TiempoID	Int	Índice de los registros de tiempo (Primay Key)	
Year	Int	Año de Transacción (2006-2020)	
Month	Int	Mes de la Transacción (1-12)	
Day	Int	Día de la Transacción (1-31)	
Time	Time	Hora de la transacción	
Dia Semana	VarChar(20)	Día de la semana registrada en la transacción	

Tabla 6 - Descripción de la tabla dimensional Tiempo

Descripción de la tabla DIM_COMERCIO_DEST			
Columna Tipo de dato Descripción			
ComercioID	Int	Índice de los Comercio registrados (Primary Key)	
MerchantName	VarChar(50)	ID de tienda o comercio	
Merchan_City	VarChar(50)	Ciudad de ubicación del comercio	
Merchant_State	VarChar(50)	Siglas del Estado ubicación del comercio	
Zip	VarChar(50)	Código ZIP de la ubicación del comercio	

Tabla 7 - Descripción de la tabla dimensiona Comercio

Descripción de la tabla H_TRANSACCION_DEST			
Columna Tipo de dato Descripción			
UserID	Int	ID de los usuarios registrados (Primay Key)	
Número de tarjeta Bigint Número de tarjeta (Primay Key)			
TiempoID	Int	Índice de los registros de tiempo (Primay Key)	

ComercioID	Int	Índice de los Comercio registrados (Primary Key)
Amount	Money	Monto de la transacción
Errors	VarChar(50)	Tipo de error detectado en la transacción
Is_Fraud	VarChar(50)	Si la transacción es un fraude o no

Ilustración 2- Modelo Estrella de la base de datos FraudulentECommece

Adicionalmente en este paso se hizo un chequeo exploratorio de algunas variables y sus incidencias en relación a la variable objetivo

Según el muestreo se puede observar relaciones muy evidentes en relación a los meses, días y picos de actividad en ciertas horas del día, datos que pueden servir para optimizar recursos en el monitoreo de transacciones en los tiempos determinados.

Ilustración 3 - Análisis Gráficos, diseños en Power BI

3.- Transformación

Herramientas utilizadas: Python, Google Colab

todos los cambios que no se realizaron en el paso anterior son llevados a cabo en esta etapa, donde el dato se prepara finalmente para poder ser procesado por algún algoritmo de minería de datos. Las operaciones más comunes realizadas son de agregación de datos o normalización.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1999899 entries, 0 to 1999898
Data columns (total 22 columns):
 # Column
                                 Dtype
0 Amount int64
1 Errors object
2 Is_Fraud int64
3 Gender object
4 Direccion object
5 Ciudad object
 5 Ciudad
                                  object
 6 IngresoPerCapita int64
6 IngresoPerCapita int64
7 IngresoAnual int64
8 DebitoTotal int64
9 FICO_Score int64
10 Year int64
11 Month int64
12 Day int64
13 Dia_Semana object
14 Time object
15 BancoCredito object
16 TipoTarjeta object
17 LimiteCredito int64
 17 LimiteCredito int64
                                 int64
 18 Merchant Name
 19 Merchant_City
                                   object
 20 Merchant_State
                                   object
 21 Zip
                                   int64
dtypes: int64(12), object(10)
memory usage: 335.7+ MB
```

Ilustración 4 - Información de las variables utilizadas en la tabla de datos

3.1.- Eliminación de columnas innecesarias:

Las columnas que no tomaremos en cuenta para el entrenamiento del modelo de predicción serán en primera instancia los datos geográficos y Gender, ya que, aunque en el análisis exploratorio se detectó lugares donde existe mayor incidencia de actividades fraudulentas, no creemos que será relevante para identificar su legitimidad, además de la columna día por ser un numero ordinal entre 1 y 31 que podría causar confusión en el entrenamiento

Columnas eliminadas	Tipo de dato
Dirección	Object
Day	Int
Merchant_Name	Object
Merchant_city	Object
Merchant_State	Object
Zip	Int
Ciudad	Object
Gender	Object

Tabla 8 - Columnas eliminadas del Data Frame

3.2.- transformación de los datos

Procedemos con la transformación de datos de las variables categóricas de tipo object que no van a ser reconocidas en el entrenamiento como son: Errors, Dia_Semana, Time, BancoCredito, TipoTarjeta. Las transformaciones serán de tipo Encoding OHE (One Hot Encodig), lo que hace es crear nuevas columnas iguales a cada categoría de las variables a transformar dándoles valores binarios, esto además de darle valores numéricos a las variables también aumenta la dimensión de la Data Frame.

Columnas	Tipo de dato	Tipo	Columnas creadas
Transformadas		Transformación	
			SIN ERROR, Insufficient Balance,
Frrors	Object	OHE	Technical Glitch, Bad PIN,
EIIOIS	is Object	OHE	Bad Card Number, Bad CVV, Bad
			Expiration, Bad Zipcode
BancoCredito	Object	OHE	Amex, Mastercard, Visa, Discover
TipoTarjeta	Object	OHE	Credit, Debit, Debit (Prepaid)
Dia Camana	Ohioat	OHF	Miércoles, Domingo, Martes, Lunes,
Dia_Semana	Object	OHE	Sábado, Jueves, Viernes
Time	Object	Label_encoder	Time

Tabla 9 - Columnas transformadas

4.- Minería de datos

corresponde al modelo propiamente tal, en donde los algoritmos son aplicados con el objetivo de encontrar las relaciones que puedan existir

Para el caso probamos algunos algoritmos, para comparar y ver cual se adapta mejor a las propiedades de los datos y al desbalance que existe entre las clases de la columna Es_Fraude

4.1.- Regresión Logística:

Modelo de análisis de regresión utilizada en estadística y aprendizaje automático para predecir la probabilidad de que un evento ocurra, como está basado en la función sigmoide es utilizada principalmente para problemas de clasificación binaria, lo que nos viene bien para nuestro problema

Los resultados muestran que el modelo tiene dificultades para identificar correctamente la clase minoritaria (fraude). Esto es evidente por la baja precisión y F1-Score en la clase 1. Aunque el Sensibilidad para la clase 1 no es muy bajo (0.55), la precisión es extremadamente baja, lo que significa que hay muchos falsos positivos.

[[437263 [326		8] 4]]			
		precision	recall	f1-score	support
	0	1.00	0.77	0.87	568781
	1	0.00	0.55	0.01	720
accui	racy			0.77	569501
macro	avg	0.50	0.66	0.44	569501
weighted	avg	1.00	0.77	0.87	569501

Ilustración 5- Evaluación del Modelo de Regresión Logística

4.2.- Random forest:

Es un método de aprendizaje supervisado utilizado tanto para clasificación como para regresión. Se basa en la construcción de múltiples árboles de decisión durante el entrenamiento y la combinación de sus resultados para mejorar la precisión y controlar el sobreajuste.

El modelo está funcionando casi perfectamente para la clase mayoritaria (No fraude), con una precisión y recall muy altos para esa clase. Sin embargo, está fallando significativamente en la clase minoritaria (Fraude):

[[568767 [713	14] 7]] precision	recall	f1-score	support
0 1	1.00 0.33	1.00 0.01	1.00 0.02	568781 720
accuracy macro avg weighted avg	0.67 1.00	0.50 1.00	1.00 0.51 1.00	569501 569501 569501

Ilustración 6- Evaluación Modelo Random Forest

4.3.- Naive Bayes:

Es un clasificador probabilístico basado en el teorema de Bayes con una suposición fuerte de independencia de las características. A pesar de esta suposición, Naive Bayes ha demostrado ser muy efectivo para ciertas tareas de clasificación

La precisión y el recall para la clase fraude es extremadamente baja (0.01) y (0.15) respectivamente, lo que indica que el modelo está prediciendo incorrectamente muchos casos de fraude como no fraude, la precisión 0.98 es engañosa por el desbalanceo de las clases.

[[558576 [615	1020 10	5] 5]]			
	١	precision	recall	f1-score	support
	0	1.00	0.98	0.99	568781
	1	0.01	0.15	0.02	720
accur	acy			0.98	569501
macro	avg	0.50	0.56	0.50	569501
weighted	avg	1.00	0.98	0.99	569501

Ilustración 7 - Evaluación del modelo Naive Bayes

4.4.- XGBoost:

Es un algoritmo de aprendizaje supervisado basado en árboles de decisión que es conocido por su eficiencia, flexibilidad y capacidad para manejar grandes conjuntos de datos. Es especialmente útil para problemas de clasificación y regresión, incluyendo aquellos con conjuntos de datos desbalanceados.

Las métricas ponderadas reflejan principalmente el rendimiento de la clase mayoritaria debido a la disparidad en el número de ejemplos entre las dos clases. Por lo tanto, es importante

considerar métricas como el recall y el F1-score para la clase minoritaria para evaluar correctamente el modelo, sin embargo y pese a la disparidad el modelo puede identificar más del 50% de los casos de fraude

	276] 885]] precision	recall	f1-score	support
	p		. 2 220. 2	zappa. c
0	1.00	0.94	0.97	568781
1	0.01	0.53	0.02	720
accuracy			0.94	569501
macro avg	0.51	0.74	0.49	569501
weighted avg	1.00	0.94	0.97	569501

Ilustración 8 - Evaluación del modelo XGBoost

4.5.- XGBoost + Hiperparámetros.

XGBoost hasta ahora es el algoritmo que mejores resultados nos ha dado, para intentar refinar un poco la efectividad del modelo aplicamos variaciones de Hiperparámetros, para ello utilizamos RandomizedSearchCV que prueba aleatoriamente un conjunto de parámetros predefinidos dentro de un rango especifico, luego se entrena el modelo con las variables ajustadas que mejor resultados se obtuvo

Parametros:

```
subsample= 0.7
scale_pos_weight= ratio
n_estimators= 200
max_depth= 6
learning_rate= 0.22749999999998
colsample_bytree= 1
use_label_encoder=False
eval_metric='logloss'
```

Aunque las métricas generales mejoraron un poco, el problema sigue siendo la clase minoritaria, la sensibilidad bajó al 39% por lo que la detección de transacciones fraudulentas va a ser menos eficiente que el entrenamiento anterior que fue del 53%

[[553072 [438	157 2	09] 82]] precision	recall	f1-score	support
	0	1.00	0.97	0.99	568781
	1	0.02	0.39	0.03	720
accur	асу			0.97	569501
macro	avg	0.51	0.68	0.51	569501
weighted	avg	1.00	0.97	0.98	569501

Ilustración 9- Evaluación del modelo XKBoost + Hiperparámetros modificados

5.- Interpretación

finalmente, se identifican los patrones encontrados en la etapa anterior que puedan ser de utilidad. Todo esto bajo métricas de evaluación que deben ser consistente al objetivo de búsqueda.

	Métricas Generales							
Algoritmo	Error	Precisión		Sensibilidad		Exactitud		
Algoritmo	EIIOI	0	1	0	1	0	1	
Regresión Logística	23.15%	1.00	0.00	0.77	0.55	0.87	0.01	
Regresion Logistica	23.15%	0.5	0.50 0.6		.66	0	0.44	
Random Forest	0.12%	1.00	0.33	1.00	0.01	1.00	0.02	
Random Forest	0.12%	0.64		0.50		0.51		
Naive Bayes	1.90%	1.00	0.01	0.98	0.15	0.99	0.02	
Naive Bayes	1.90%	0.5	50	0.	0.56		0.50	
XGBoost	6.25%	1	0.01	0.94	0.53	0.97	0.02	
Adboost	0.23%	0.51		0.74		0.49		
XGBoost +	2.83%	1	0.02	0.97	0.39	0.99	0.03	
Hiperparametros	2.05%	0.8	37	0.	.68	0.	.97	

Tabla 10 - Métricas de los algoritmos implementados

Para problemas de detección de fraudes, donde la clase de fraude es la minoritaria y es crítica detectarla correctamente, es importante centrarse en mejorar la **sensibilidad (recall)** y la **precisión** de la clase minoritaria (fraude), incluso si esto reduce la precisión general o la exactitud.

Para nuestro problema en particular el algoritmo que mejores estadísticas nos ofrece es XGBoost, sacrificamos un poco la precisión, pero la detección efectiva de la clase minoritaria es la que nos interesa con la aplicación de este modelo podemos asegurar al menos la detección del 53% de las transacciones fraudulentas.

6.- Evaluación

Para poner a prueba el modelo tenemos un conjunto de datos que no se han utilizado en el conjunto de entrenamiento ni en los test, de esta manera podemos observar cómo se comporta el modelo, este conjunto de datos de prueba contiene 10 transacciones 5 fraudulentas y 5 que no lo son, los resultados de cada modelo se adjuntan en la tabla 10

	Clase 0 (No F	raude)	Clase 1 (No	Fraude)	Aciertos Datos	
Algoritmo	Verdaderos	Falsos	Falsos	Verdaderos	de Prueba	
Algoritino	Negativos	positivos	Negativos	positivos	ue Prueba	
Regresión	437263	131518	326	394	6/10	
Logística	437203	131310	320	394	0/10	
Random Forest	568767	14	713	7	5/10	
Naive Bayes	558576	10205	615	105	5/10	
XGBoost	533505	35276	335	385	8/10	
XGBoost +	553072	15709	438	282	8/10	
Hiperparametros	333072	15/09	438	262	0/10	

Regresión Logística y **Naive Bayes** tienen dificultades para identificar correctamente los fraudes, con una alta cantidad de FP o FN.

Random Forest muestra una exactitud muy alta pero no detecta casi fraudes, lo cual es problemático.

XGBoost, especialmente con ajuste de hiperparámetros, muestra el mejor rendimiento en términos de detección de fraudes, El ajuste de hiperparámetros mejora la precisión del modelo en términos de reducir los FP, aunque a expensas de un leve aumento en los FN. Este modelo muestra un buen compromiso entre precisión y sensibilidad.

Tomando en cuenta el desbalance de los datos, el modelo recomendado para implementar es el XGBoost hiperparatrizado