WHAT IS CLAIMED IS:

1. A composition for a bottom anti-reflective coating material, comprising a polymer compound having a structure represented by the following formula (I) or (II) on the side chain:

$$Y = C$$

$$(Z_1)_n$$

$$(Z_2)_m$$

$$-W-N = (Z_1)_n$$

wherein W represents a linking group to the polymer main chain, Y represents an oxygen atom, a sulfur atom or =N-V, Z_1 and Z_2 , which may be the same or different, each represents an electron donating group, m and n represent an integer of from 0 to 2 and from 0 to 3, respectively, and when m and n each is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different, and V represents -OH, -NH₂, a linear, branched or cyclic alkyl group having from 1 to 20 carbon

atoms where the alkyl group may have a substituent, an aromatic or heteroaromatic ring group having from 5 to 14 carbon atoms, which may have a substituent, or an alkoxy group having from 1 to 20 carbon atoms.

2. A composition for a bottom anti-reflective coating material, comprising a polymer compound having a structure represented by the following formula (III) or (IV) as a part of the repeating unit on the main or side chain:

$$(Z_1)_n$$

$$C$$

$$Y$$

$$(Z_2)_m$$

$$(Z_1)_n$$

$$(Z_1)_n$$

$$(IV)$$

wherein Y represents an oxygen atom, a sulfur atom or =N-V, Z_1 and Z_2 , which may be the same or different, each represents an electron donating group, m and n represent an

integer of from 0 to 2 and from 0 to 3, respectively, and when m and n each is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different, and V represents -OH, -NH₂, a linear, branched or cyclic alkyl group having from 1 to 20 carbon atoms wherein the alkyl group may have a substituent, an aromatic or neteroaromatic ring group having from 5 to 14 carbon atoms, which may have a substituent, or an alkoxy group having from 1 to 20 carbon atoms.

3. A composition for a bottom anti-reflective coating material, domprising a polymer compound having a repeating unit of the structure represented by formula (V) or (VI):

96

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R^1 \\ \end{array} \\ \begin{array}{c} X \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\$$

wherein R^1 represents a hydrogen atom, a methyl group, a chlorine atom, a bromine atom or a cyano group, X represents a divalent linking group, Y, Z_1 , Z_2 , m and n have the same meanings as defined in claim 1, and when m and n each is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different.

- 4. A composition for a bottom anti-reflective coating material as claimed in claim 3, wherein in formula (V) or (VI), Z_1 and Z_2 each R_2 a group selected from -OH, R_2 0R⁴, -NR⁵R⁶ and -SR wherein R_2 4 represents a hydrocarbon group having from 1 to 20 carbon atoms, and R_2 5 and R_2 6, which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having from 1 to 20 carbon atoms.
- 5. A composition for a bottom anti-reflective coating material, comprising the following components (a) and (b):
- (a) a polymer compound having a structure represented by formula (I) or (II) described in claim 1; and
- (b) a melamine, guanamine, glycoluril or urea compound substituted by at least one substituent selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group.
- 6. A composition for a_bottom anti-reflective coating material as claimed in claim 5, wherein in formula

 (I) or (II), W is a single bond or a linking group containing

a group selected from an alkylene group which may have a substituent, an arylene group which may have a substituent and an aralkylene group which may have a substituent wherein W may have one or more of $-CO_2-$, -CONH-, -O-, -CO- and $-SO_2-$ in the middle thereof, and Z_1 and Z_2 each is a group selected from -OH, $-OR^4$, $-SR^4$ and $-NR^5R^6$ wherein R^4 represents a hydrocarbon group having from 1 to 20 carbon atoms, and R^5 and R^6 , which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having from 1 to 20 carbon atoms, and when m and n each is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different.

- 7. A composition for a bottom anti-reflective coating material comprising the following components (a) and (c):
- (a) a polymer compound having a structure represented by formula (I) or (II) described in claim 1; and
- (c) a phenol, naphthol or hydroxyanthracene compound substituted by two or more groups selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group.
- 8. A composition for a bottom anti-reflective coating material as claimed in claim 7, wherein in formula (I) or (II), W is a single bond_or a linking group containing a group selected from an alkylene group which may have a substituent

and an aralkylene group which may have a substituent wherein W may have one or more of $-CO_2-$, -CONH-, -O-, -CO- and $-SO_2-$ in the middle thereof, and Z_1 and Z_2 each is a group selected from -OH, $-OR^4$, $-SR^4$ and $-NR^5R^6$ wherein R^4 represents a hydrocarbon group having from 1 to 20 carbon atoms, and R^5 and R^6 , which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having from 1 to 20 carbon atoms, and when m and peach is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different.

9. A composition for a bottom anti-reflective coating material as claimed in claim 1, wherein the polymer compound having a structure represented by formula (I) or (II) contains from 2 to 50 wt% of a repeating structural unit represented by the following formula (VII):

$$\begin{array}{c|c}
R_2 \\
\hline
-(CH_2-C) \\
A
\end{array}$$
(VII)

wherein R^2 represents a hydrogen atom, a methyl group, a chlorine atom, a brom ne atom or a cyano group, and A represents an organic functional group having a -CH₂OH, - CH_2OR^4 or -CH₂OCOCH₃ terminal group wherein R^4 represents a hydrocarbon group having from 1 to 20 carbon atoms.

10. A composition for a bottom anti-reflective coating material as claimed in claim 9, wherein A in formula (VII) is a group resulting from the reaction of -CONHCH2OH,

-CONHCH₂OCH₃, -C₆H₄CH₂OH, -C₆H₄CH₂OCH₃ or -CONHC(CH₃)₂CHCOCH₃ with formalin.

11. A composition for a bottom anti-reflective coating material as claimed in claim 1, wherein the polymer compound having a structure represented by formula (I) or (II) contains from 2 to 30 wt% of a repeating structural unit represented by the following formula (VIII):

$$\begin{array}{c|c}
R_2 \\
 \hline
 (CH_2-C) \\
 B
\end{array}$$
(VIII)

wherein R^2 has the same meaning as R^2 in claim 9, and B represents an organic functional group having an epoxy terminal group.

12. A bottom anti-reflective coating material composition comprising a polymer light absorbent having at least one group represented by the following formula (IX), (XI), (XII), (XIII), (XIV) or (XV) on the side chain:

$$-W'-C(X_2)=C(X_1)$$

$$(Z_2)_m$$
(IX)

$$(X_1)(X_2)C = C$$

$$(Z_1)_n$$

$$(X)$$

$$(X_3)(X_2)C = C(X_1)$$

$$(Z_1)_n$$

$$(X_1)$$

$$(X_3)(X_2)C = C(X_1)$$

$$-W' = A_1$$

$$(Z_2)_m$$

$$(Z_1)_n$$

$$(Z_2)_m$$

$$(Z_1)_n$$

$$(Z_2)_m$$

$$(Z_1)_n$$

$$(XIII)$$

$$(XXIV)$$

$$(XV)$$

$$(XV)$$

$$(XV)$$

wherein W' represents a divalent linking group, X1 to X3, which may be the same or different, each represents a hydrogen atom, a halogen atom, A cyano group or $-(X_4)_n-R$ wherein R represents an alkyl/group having from 1 to 20 carbon atoms, an aryl group /having from 6 to 20 carbon toms or an aralkyl group having/from 7 to 20 carbon atoms, which may have a substituent, $\frac{1}{4}$ represents a single bond, $-CO_2-$, -CONH-, -O-, -CO-, an alkylene group having from 2 to 4 carbon atoms or -SO₂-, p représents an integer of from 1 to 10, Z₁ and Z_2 , which may be the same or different, each represents an electron donating group, m and n represent an integer of from 0 to 2 and from 0 to 3, respectively, and when m is 2 or m and n each is 2/ or 3, the Z_1 groups or the Z_2 groups may be the same or different, A1 represents a divalent aromatic ring or heteroaromat/ic ring group having from 5 to 14 carbon atoms, which may have a substituent, and A2 represents an aromatic ring or heteroaromatic ring group having from 5 to 14 carbon atoms, which may have a substituent.

13. A bottom anti-reflective coating material composition comprising a polymer light absorbent having at least one structure represented by the following formula (XVI), (XVII), (XVIII), (XIX), (XXI), (XXII) or (XXIII) as at least a part of the repeating unit on the main or side chain:

$$(X_{1})(X_{2}) = C(X_{1})$$

$$(Z_{2})_{n}$$

$$(Z_{2})_{n}$$

$$(Z_{2})_{n}$$

$$(XX)$$

$$(Z_{2})_{m}$$

$$(XX)$$

$$(XX)$$

wherein X_1 to X_3 , Z_1 , Z_2 , A_1 , A_2 , n and m each has the same meaning as defined in claim 12.

14. A bottom anti-reflective coating material composition comprising a polymer light absorbent having at least one repeating structural unit represented by the following formula (XXIV) (XXV) or (XXVI):

FT. 17

wherein R^1 represents a hydrogen atom, a methyl group, a chlorine atom, a bromine atom or a cyano group, Y' represents a divalent linking group, X_1 , X_2 , Z_1 , Z_2 , Z_1 , Z_2 ,

- 15. A bottom anti-reflective coating material composition as claimed in claim 14, wherein Y' is a single bond, an alkylene, arylene or aralkylene group which may partially have one or more of $-CO_2-$, -CONH-, -O-, -CO- and $-SO_2-$, or a group represented by $-CO_2-E-$, -CONH-E-, -O-E-, -CO-E- or $-SO_2-E-$ group wherein E represents a single bond or an aromatic ring group having from 6 to 14 carbon atoms, which may have a substituent.
- 16. A bottom anti-reflective coating material composition as claimed in claim 12, wherein Z_1 and Z_2 , which may be the same or different, each represents -OH, -OR⁴, NR⁵R⁶ or -SR⁴ wherein R⁴ represents a hydrocarbon group having from 1 to 20 carbon atoms, and R⁵ and R⁶ each represents a hydrogen atom or a hydrocarbon group having from 1 to 20 carbon atoms.
- 17. A bottom anti-reflective coating material composition as claimed in claim 12, wherein A_1 and A_2 each represents a divalent or monovalent group of benzene, naphthalene, anthracene, phenanthrene or thiophene ring, which may have a substituent.
 - 18. A bottom anti-reflective coating material

composition as claimed in claim 12, wherein said polymer light absorbent contains from 2 to 50 wt% of the repeating structural unit represented by the following formula (XXVII):

$$\begin{array}{c|c} R_2 \\ | \\ \hline - (CH_2-C) \hline \\ | \\ B_1 \end{array}$$
 (XXVII)

wherein R^2 represents a hydrogen atom, a methyl group, a chlorine atom, a bromine atom or a cyano group, and B_1 represents an organic functional group having $-CH_2OH$, $-CH_2OR^7$ or $-CH_2OCOCH_3$ at the terminal wherein R^7 represents a hydrocarbon group having from 1 to 20 carbon atoms.

- 19. A bottom anti-reflective coating material composition as claimed in claim 12, wherein said polymer light absorbent contains from 2 to 50 wt% of a repeating structural unit represented by formula (XIX) of claim 18 where B₁ is a group obtained by the reaction of a group represented by -CONHCH₂OH, -CONHCH₂OCH₃, -CH₂OCOCH₃, -C₆H₄(OH)CH₂OH, -C₆H₄(OH)CH₂OCH₃ or -CONHC(CH₃)₂CH₂COCH₃, with formalin.
- 20. A bottom anti-reflective coating material composition as claimed in claim 12, wherein said polymer light absorbent contains from 2 to 30 wt% of a repeating structural unit represented by the following formula (XXVIII):

wherein R^2 represents a hydrogen atom, a methyl group, a chlorine atom, a bromine atom or a cyano group, and B_2 represents an organic functional group having an epoxy terminal group.

- 21. A bottom anti-reflective coating material composition comprising the following components (a) and (b):
- (a) a polymer light absorbent claimed in claim

 12; and
- (b) a melamine, guanamine, glycoluril or urea compound substituted by at least one substituent selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group.
- 22. A bottom anti-reflective coating material composition comprising the following components (a) and (c):
- (a) polymer light absorbent claimed in claim
- (c) a phenol, naphthol or hydroxyanthracene compound substituted by at least one substituent selected from a methylol group, an alkoxymethyl group and an acyloxymethyl group.
- 23. A method for forming a resist pattern, which uses a bottom anti-reflective coating material composition

claimed in claim.

24. A method for forming a resist pattern, which uses a bottom anti-reflective coating material composition claimed in claim 12.

- 111 -