

## National University of Computer & Emerging Sciences, Karachi Fall 2023



## School of Computing Midterm-II Examination 8th November 2023, 11:30 am – 12:30 pm

| Course Code: CS4053 / AI4006           | Course Name | Recommender Systems |  |
|----------------------------------------|-------------|---------------------|--|
| Course Instructor: Syed Zain Ul Hassan |             |                     |  |
| Student ID:                            |             | Section:            |  |

## **Instructions:**

- Return the question paper after exam.
- There are 4 questions on 1 page with 2 sides.
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.

**Time**: 60 minutes Max Marks: 30 Points

Question 1 (CLO: 1, estimated time: 15 minutes) 10 points

Consider the given data:

|        | Item 1 | Item 2 | Item 3 | Item 4 |
|--------|--------|--------|--------|--------|
| User 1 | 1      | 1      | 1      | 1      |
| User 2 | 2      | 2      | 2      | 1      |
| User 3 | 2      | ?      | 1      | 2      |

Find the posterior  $P(r_{i2} = 1 \mid X)$  (the probability of Item 2 being rated as 1) using Naïve Bayes user-based Collaborative Filtering.

**Note:** The possible ratings in the system are 1 and 2. Assume  $\alpha$ = 0.01 and  $\beta$ = 0.02.

Question 2 (CLO: 1, estimated time: 10 minutes) 5 points

Consider the given table depicting the features of mobile phones available for purchase.

|            | Is New? | Price (in millions) | Area (sq yd) |
|------------|---------|---------------------|--------------|
| Property 1 | Yes     | 8.5                 | 125          |
| Property 2 | No      | 8.1                 | 125          |

Use case-based knowledge driven technique to recommend the most suitable property for the given user requirements.

...Continued on Page 2

| Feature     | Is New? | Price (in millions) | Area (sq yd) |
|-------------|---------|---------------------|--------------|
| Requirement | Yes     | 7.0                 | 120          |
| Weight      | 1       | 2                   | 1.5          |

| <b>Question 3</b> (CLO: 3, estimated time: <i>10 minutes</i> ) (2.5 + 2.5) <b>5</b> g |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

Consider the given 4x4 interaction matrix and its two factors:

| 5 | 3 | 5 | 3 |
|---|---|---|---|
|   | 2 |   | 3 |
| 5 | 4 | 1 |   |
| 3 |   | 2 |   |

| 1 | 0   |
|---|-----|
| 0 | 2   |
| 5 | 5   |
| 3 | 4.5 |

| 5 | 3   | 5   | 3 |
|---|-----|-----|---|
| 2 | 0.5 | 0.5 | 1 |

- a) Do the given factors accurately represent the interactions provided in this matrix? Justify your answer.
- b) Does Matrix Factorization suffer from cold-start user problem? Justify your answer.

Consider the neural network given below:



Initial weights are w1 = w2 = w10 = w11 = 0.5; w3 = w4 = w12 = w13 = 0.6; w5 = w6 = w14 = w15 = 0.7; w7 = w8 = w16 = w17 = 0.8; and w9 = w18 = 0.9. We can also assume that the sum of output values produced by this linear network need not be 1 and the possible ratings (class labels) are 1 (:01), 2 (:02) and 3 (:03).

Run a single forward-pass and determine the rating (label) produced by this model.

## Good luck!