# IC 555 and ADC (0804) Exbt. 2

Aim: To understand the working of the IC 555 and ADC

Used for generating CLOCK (Square wave)

Valtages to delun digital values (biung) for converting

## 555 Timer

- for Timer applications -> as a multivibrator - a very popular integrated Circuit (IC)
- Oscillator - Multivibrator
  - Square wave out but (or rectangular) one that gives
- Astable Multivibrator -> Continuous square wave Sinusoidal O/P
- Monostable Multividrator produces ONE bulle (ONE bulen triggered (ONE stade)
- (when triggered Toggles between the two) Multivibrator -> Two stalle states Bistalle





| 20           | rator<br>  (=R) |   | Ya (my Mode | 8 | 18 | SWITCH | & Switch Action   |
|--------------|-----------------|---|-------------|---|----|--------|-------------------|
| 41 Vcc       | 0               | - | SET         | - | 0  |        | OPEN C Charging   |
| 3-Kec Veczue | 0               | 0 | HOLD        | - | 0  | OPEN   | O OPEN C Charging |
| >2 Vcc       | _               | 0 | Reser       | 0 | _  | CLOSEJ | closed c dischar. |
| Juc cucz Ve  | 0               | 0 | HOLD        | 0 | _  | crose  | closes a discha-  |
| 4 / Vcc      | 0               | _ | SET         | - | 0  | OPEN   | OPEN C Changing   |
|              |                 |   |             |   |    |        |                   |



The "clock" signal is provided by a SSS timer circuit.





Analog to Digital Converter

$$x_{25} \times x_{24} \times x_{23} \times x_{2}^{2} \times x_{2}^{1} = 32 + 0 + 8 + 4 + 0 + 1$$

$$= 45$$

$$= 45$$

$$= 45$$

$$= 45$$

$$|0||0|| = 45$$

N bits => 2" binary numbers

Analog to digital conversion

Why digital ?

\* easier design

\* easy to stone

\* things can be programmed!

less vulnerable to noise (see next page)

\* can integrate large number of functions (on a chip)





\* We may want to display a temperature



\* Control application

- It is easy to implement control algorithms using DSP chips - DSP chips can be re-programmed if we want to change the algorithm.

### A to D examples

\* Full scale measurement range: 0 to 101

ADC resolution: 12 bits -> 2 12 4096 quantization levels

ADC voltage resolution =  $\frac{10V-0V}{4096} = 2.44 \text{ mV}$  LSB  $2^{0}$ 

0000 0000 0001 -> 2.44 mV

1111 1111 1111 -> 10 V - 2.44mv

\* Some ADCs allow negative voltages, e.g., -10 V to +10 V. [= 10 V × (4095)]



Convert each "sample" from analog to digital.

Say, we have 8 bits to represent each signa sample.

Bandwidth = 8 × sampling rate

This is allowed by compression algorithms MP3: 128 kbps, sampling rate = 44 kHz ~ 3 bits per sample ?!

GSM: 13 kbps, fs = 8 kHz









Data Sheet August 2002 FN3094.4

### 8-Bit, Microprocessor-Compatible, A/D Converters

The ADC080X family are CMOS 8-Bit, successiveapproximation A/D converters which use a modified potentiometric ladder and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, and hence no interfacing logic is required.

The differential analog voltage input has good commonmode-rejection and permits offsetting the analog zero-inputvoltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

### Typical Application Schematic



### Features

- 80C48 and 80C80/85 Bus Compatible No Interfacing Logic Required
- Conversion Time <100
- · Easy Interface to Most Microprocessors
- · Will Operate in a "Stand Alone" Mode
- · Differential Analog Voltage Inputs
- · Works with Bandgap Voltage References
- · TTL Compatible Inputs and Outputs
- · On-Chip Clock Generator
- · No Zero-Adjust Required
- 80C48 and 80C80/85 Bus Compatible No Interfacing Logic Required

### Pinout



### Ordering Information

| PART NUMBER | ERROR    | EXTERNAL CONDITIONS                                            | TEMP, RANGE (°C) | PACKAGE    | PKG, NO |
|-------------|----------|----------------------------------------------------------------|------------------|------------|---------|
| ADC0803LCN  | 11/2 LSB | V <sub>REF</sub> /2 Adjusted for Correct Full Scale<br>Reading | 0 to 70          | 20 Ld PDIP | E20 3   |
| ADC0804LCN  | 11 LSB   | V <sub>REF</sub> /2 = 2 500V <sub>DC</sub> (No Adjustments)    | 0 to 70          | 20 Ld PDIP | E20.3   |



FIGURE 10A. START CONVERSION

6 intersil



Cs - Chip select

RD - Read

WR - Write

ADC conversion initiated by pressing switch sw1 (making wr='o')

Connected to and