DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC

A/ TÓM TẮC KIẾN THỰC

1. Dạng lượng giác của số phức

Số phức dạng: $z = r(\cos\varphi + i\sin\varphi)$, trong đó r > 0 là số thực, φ là góc lượng giác có số đo bằng rađian được gọi là dạng lượng giác của số phức. Số r là modun của z, φ là một acgument của z, còn số phức z=a+bi được gọi là dạng đại số của số phức.

2. Cách đưa số phức từ dạng đại số sang dạng lượng giác

Đưa số phức z=a+bi về dạng lượng giác $z=r(cos\varphi+isin\varphi)$ thì $r=\sqrt{a^2+b^2}$, φ là một acgument của z thì φ là một số thực sao cho $\cos\varphi=\frac{a}{r}$, $sin\varphi=\frac{b}{r}$. Só φ chính là số đo của góc lượng giác mà tia đầu là Ox, tia cuối là OM, trong đó M(a;b) là điểm biểu diễn số phức z=a+bi trên mặt phẳng phức.

3. Nhân và chia số phức dạng lượng giác.

Nếu
$$z_1=r_1(cos\varphi_1+isin\varphi_1), \ z_2=r_2(cos\varphi_2+isin\varphi_2)$$

thì $z_1z_2=r_1r_2[cos(\varphi_1+\varphi_2)+isin(\varphi_1+\varphi_2)]$

$$\frac{z_1}{z_2}=\frac{r_1}{r_2}[cos(\varphi_1-\varphi_2)+isin(\varphi_1-\varphi_2)$$

4. Công thức Moa-vrơ

$$[r(cos\varphi+isin\varphi)]^n=r^n(cosn\varphi+isinn\varphi)$$

với r=1 thì

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi$$

Ứng dụng vào lượng giác: Để tìm công thức biểu diễn $cosn\varphi$, $sinn\varphi$ qua các lũy thừa của $cos\varphi$ và $sin\varphi$, ta sử dụng khai triển Niu-tơn cho $(cos\varphi + isin\varphi)^n$ rồi đồng nhất phần thực với phần thực, phần ảo với phần ảo.

5. Căn bậc hai của số phức dưới dạng lượng giác

Số phức $r(\cos\varphi + i\sin\varphi)$ có hai căn bậc hai là

$$\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right) v a \sqrt{r}\left(\cos(\frac{\varphi}{2} + \pi) + i\sin(\frac{\varphi}{2} + \pi)\right)$$

1. Hãy tìm dạng lượng giác của các số phức: \overline{z} ; -z; $\frac{1}{\overline{z}}$; kz $(k \in R^*)$ trong mỗi trường hợp sau:

a)
$$z=r(\cos\varphi+i\sin\varphi)$$

b)
$$z = 1 + i\sqrt{3}$$

2. Viết các số phức sau dưới dạng lượng giác

a)
$$1 - i\sqrt{3}$$
; $1 + i$; $(1 + i\sqrt{3})(1 + i)$; $\frac{1 - i\sqrt{3}}{1 + i}$

3. Cho các số phức
$$\omega=\frac{\sqrt{2}}{2}(1+i)$$
 và $\epsilon=\frac{1}{2}(-1+i\sqrt{3})$ chứng minh rằng: $z_0=\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}$, $z_1=z_0\epsilon$, $z_2=z_0\epsilon^2$ là các nghiệm của phương trình $z^3-\omega=0$

4. Tính:
$$\left(\sqrt{3} - i\right)^6$$
; $\left(\frac{i}{1+i}\right)^{2004}$; $\left(\frac{5+3i\sqrt{3}}{1-2i\sqrt{3}}\right)^{21}$

5. Cho các số phức
$$\omega=-\frac{1}{2}\big(1+i\sqrt{3}\big)$$
. Tìm các số nguyên dương n để ω^n là số thực

6. Viết dạng lượng giác của số phức z và các căm bậc hai của z cho mỗi trường hợp sau:

a)
$$|z| = 3$$
 và một acgument của iz là $\frac{5\pi}{4}$

b)
$$|z| = \frac{1}{3}$$
 và một acgument của $\frac{\overline{z}}{1+i}$ là $-\frac{3\pi}{4}$

7. Viết dạng lượng giác của các số phức:

a)
$$1 - itan \frac{\pi}{5}$$

b)
$$tan \frac{5\pi}{8} + i$$