Noni i Cognonis.	Nom i Cognoms:	POSSIBLE SOLUC	IÓ
------------------	----------------	----------------	----

1) Volem configurar un PIC18F45K22 de tal manera que sigui capaç de gestionar les interrupcions provinents de la interrupció externa 2 i del CCP1 configurat en mode Compare quan es produeix una igualtat amb el valor del temporitzador associat al CCP1.

La interrupció externa 2 ha de ser d'alta prioritat i s'ha de disparar per flanc de pujada. La interrupció del CCP1 ha de ser de baixa prioritat.

Indica en la llista els registres què creus que has d'escriure i indica el valor del bits que creus que has de modificar (només els bits que calgui modificar) (1.5 Punts)

Nom del registre	Bits a modificar del registre 0/1		
	RCOI	N 1XXXXXXX (IPEN A 1 PRIORITATS)	
	INTC	CON 11XXXXXX (ENABLE INT I ENABLE H. F	PRI)
	INTC	CON2 XXX1XXXX (INT2 EDGE UP)	
	INTC	CON3 1XX1XXOX (ENABLE INT2 HIGH PRIO))
	PIE1	XXXXX1XX (ENABLE INT CCP1)	
	IPR1	XXXXX0XX (PRIORITAT BAIXA CCP1)	

2) Tenim un PIC18F45K22 funcionant amb un oscil·lador a **10MHz**. Hem configurat el Timer2 de manera que el registre T2CON te el valor 0bx01001111 (valor en binari) i el registre PR2 és igual a 231. Indica exactament el temps que trigarà el Timer2 a provocar que el flag TMR2IF s'activi. (1.5 Punts)

Com que el timer 2 s'incrementa cada 4 tics de l'oscil·lador tenim que el timer s'incrementarà cada 0,4 microsegons. Multipliquem aquest temps pel valor del preescaler i del post escaler que segons la configuració de T2CON es correspon a 16 i 10 respectivament. Com que el flag s'activarà quan el comparador detecti la igualtat entre PR2 i TMR2 tenim que això es produirà al cap de

```
0,4 microsegons * 10 * 16 * (231+1) = 14,848 milisegons
```

3) Volem utilitzar el mòdul CCP1 del PIC18F45K22 funcionant amb un oscil·lador a **8MHz** per generar un senyal PWM de període 0,25 ms i un *duty cicle* del 20,25%. Hem configurat el PIC per tal de que el Timer2 funcioni como a *timer* associat al CCP1.- Quin és el valor amb el que hem de inicialitzar el registres PR2 i CCPR1L i els bits extres DC1B1-DC1B0 per tal d'obtenir aquest senyal amb la màxima precisió possible? (2 Punts) (Respon l'exercici darrera)

El timer2 s'incrementa a ¼ de la freqüència de l'oscil·lador principal, per tant a 2MHz o cada 0,5 microsegons. Per fixar el període del senyal del PWM hem de fixar el valor del CCPR1L a 0,25 ms / 0,5 microS = 500. Com que 500 es superior al 2^8 necessitem fixar un prescaler de 4 (el mínim valor del prescaler garanteix la màxima precisió) al Timer2 i fixar el valor de PR2 a (500 / 4) - 1 = 124

Per fixar el valor de CCPR1L i DC1B1 i DC1B0 Aplicant la formula:

Cicle Treball = ([CCPR1L;CCP2CON[5..4])/(4 * PR2 + 1)

Nom i Cognoms: _____POSSIBLE SOLUCIÓ_____

```
Per tant

0,2025 = (valor que volem trobar en 10 bits) /(4 * 125)

Valor = 101,25

En binari 0001100101

El dos últims bits pertanyen es guarden a DC1B1 i DC1B0 respectivament. Els 8 mes als a CCPR1L

Per tant CCPR1L = 00011001

i

DC1B1 = 0

DC1B0 = 1
```

4) Si **Fosc=20MHz**, quina és la freqüència més baixa a la que podem rebre interrupcions del Timer0? Indica els càlculs realitzats. (1p)

```
Fosc = 20 MHz -> Fcycle = 5 MHz
El prescaler més gran és de 256, Fpre = 5MHz / 256 = 19531,25 Hz
Finalment ens queda el TimerO configurat a 16 bits i sense valor de precàrrega farà una
interrupció cada cop que es desbordi (65536 tics), per tant:
Fint = Fpre/65536=0,298Hz
```

5) Com sabeu, la unitat de CCP pot tenir tres modes diferents i dins d'algun d'ells fer diferents funcions. Indica per cadascun dels modes i funcions indicats quin valor ha de tenir el bit TRIS_CPP (0/1/X = no importa) (1 punt)

CCP1	Mode Compare per generar so.	TRIS_CCP1 = 0 (OUT)
CCP2	Mode Capture d'un senyal extern.	TRIS_CCP2 = 1 (IN)
CCP3	Mode PWM per controlar un motor.	TRIS_CCP3 = 0 (OUT)
CCP4	Mode PWM pel llum de la GLCD.	TRIS_CCP4 = 0 (OUT)
CCP5	Mode Compare per generar una interrupció.	TRIS_CCP5 = X (No afecta el port d'E/S)

- 6) Volem programar una funció bloquejant *DelayCCP (int micros)* que utilitzi la unitat de CCP per fer-ho amb la màxima precisió possible.
- 6.1 Quin mode de CCP triaries per aquesta tasca? Quin valor posaries a quin registre per configurar-ho així? (0,5p)
 - El mode compare, que compara un timer amb un valor, i d'entre els compare, el millor és el que posa el IF a 1 i no afecta els pins (ja que no cal). Per tant CCP1CON=xxxx1010
- 6.2 Tria un Timer per associar-lo a la unitat de CCP. Indica quin valor posaries a quin registre. (0,5p)

Serveix qualsevol timer (dels associats a CCP, no el 0). Triem per exemple el Timer 1 modificant el resgistre de selecció. CCPTMRS0 = xxxxxxx00.

Nom i Cognoms: POSSIBLE SOLUCIÓ	
---------------------------------	--

6.3 Si treballem amb un oscil·lador de **16MHz**, com configuraries el Timer triat perquè la seva base de temps sigui de 1 us (1 microsegon)? (0,5 p)

En aquest cas voldrem que el Timer1 compti microsegons. La única combinació possible amb un Fosc de 16MHz és triar Fosc/4 com a base i posar un prescaler de 4. De passada, el posem a 16 bits per tenir més rang.

T1CON = 00100x10

6.4 Escriu (al darrera) el codi de la funció *DelayCCP* (*int micros*) que no surti fins que hagi passat el temps indicat a *micros* (no volem utilitzar interrupcions per això). (1,5p)

Com que el Timer compta microsegons i la unitat de CCP en mode compare compara el valor del Timer amb el registre CCPR1, és tan fàcil com:

Si considerem que micros pot ser un valor gran (major que int), caldrà comptar diversos blocs de CCPIF (per la divisió i el residu).