

SEQUENCE LISTING

<110> Perez-Villar, Juan J.

Chang, Han

Yang, Wen-Pin

Wu, Yuli

Whitney, Gena S.

Kanner, Steven B.

<120> Identification and Cloning of a Full-length Human Clnk-related Gene, MIST (Mast Cell Immunoreceptor Signal Transducer)

<130> 3053-4113US1

<140> US/09/966,955

<141> 2001-09-28

<150> 60/237030

<151> 2000-09-29

<160> 52

<170> PatentIn Ver. 2.1

<210> 1

<211> 1851

<212> DNA

<213> HUMAN

COPY OF PAPERS
ORIGINALLY FILED

<220>

<223> HUMAN FULL-LENGTH MIST cDNA CLONE #8 - NUCLEIC ACID SEQUENCE

<400> 1

cctagagcca gcagagtcca ggctgctgtt aacaacttca tgtcccggt ggttagcaggc 60
aggtgctct gtctgatctg gctctccttg accactgtac tcataaataa gaccaagatc 120
cccagagtcc aagatcctta caagggggcc agaaaggat gagcttctg aagaagcact 180
gatgtaaaat accaggaatt ttgacatcga agaagatttt tgtgtatggca gctgggattt 240
ggccataatc tagaagacac atggtaataa cagttgcaag tcatttagtc atatttcttg 300
ctaaattgt gtgttcaa tggctgaatt gaagatccct cttacccgcc aggtgc当地 360
aactatgaac aggccaggca atagaaagac aactaaagaa ggatccaacg atttgaattt 420
ccagaacttc agtctgccaa aaaacaggc atggcctcgc atcaatagtg ccacaggcca 480
gtaccagagg atgaacaagc ctttctaga ctgggaaaga aactttgtc cagtcctgga 540
tggagcaaaa ggccacagtg atgatgacta tgatgaccct gagcttcggaa tggagagac 600
atggcagtcg attaaaattt taccagcccg gcctataaag gaatctgaat atgcagatac 660
acactatttc aagttgcaa tggacactcc cttccgtta gacaccagga cctcttatctc 720
cattggacac ccgacactgga acacacagac gaggttggaa agatggaca aaccatattc 780
caaggacgtc agaagccaaa acattaaagg agatgcattt gtaagaaaga acaagattcc 840
tttaccacct cctcggcctc tcataaacact tccgaagaag taccacccct tgccccctga 900
gccggagagc agcaggccac ctttatctca gagacacacc tttccagaag tccagagaat 960
gcccgatcag ataagcttaa gggacttaag tgaggtccctt gaagcagaaaa aagttccctca 1020
taaccagagg aagctgaat caactcatct gtttagaaaaac caaaaatactc aagagattcc 1080
acttgccatt agcagttctt cattcacgac aagcaaccac agtgtgcaaa acagagatca 1140
tagaggaggc atgcagccct gttctcctca gagatgccag cctccagcca gctgcagccc 1200
tcacgaaaat atactgcctt ataaatacac aagctggaga ccaccttcc ccaaaaaggc 1260
tgatagaaaag gatgtccagc acaatgaatg gtacattgga gaatacagcc gccaggcagt 1320

ggaagaggca ttcatgaagg agaacaagga tggtagttc ttggtccgag attgttccac 1380
aaaatccaag gaagagccct atgtttggc tgtgtttat gagaacaaag tctacaatgt 1440
aaaaatccgc ttccctggaga ggaatcagca gtttgcctg gggacaggac tcagaggaga 1500
tgagaagttt gattcagtag aagacatcat cgaacactac aagaatttc ccattatact 1560
aattgatggg aaagataaaa ctgggtcca cagggaaacag tgtcaccta ctcagccact 1620
ccctctcacc agacacctct tgcctctgt gcctggtctt tgtgttatct ttggttact 1680
ggattcagcg ctccattgt tttcattgtat tttttctgt gccttcaagg 1740
gacaacttt ttaactttgg agaaaagaaa aacactctat aacagagagt ggaaaatcac 1800
tcacggttt gaaagttcaa accacagaga aaatattt aacatgcaaa a 1851

<210> 2
<211> 443
<212> PRT
<213> HUMAN

<220>
<223> HUMAN FULL-LENGTH MIST cDNA CLONE #8, TRANSLATED
AMINO ACID SEQUENCE

<400> 2
Met Ala Glu Leu Lys Ile Pro Leu Thr Arg Gln Val Pro Arg Thr Met
1 5 10 15

Asn Arg Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn Asp Leu
20 25 30

Lys Phe Gln Asn Phe Ser Leu Pro Lys Asn Arg Ser Trp Pro Arg Ile
35 40 45

Asn Ser Ala Thr Gly Gln Tyr Gln Arg Met Asn Lys Pro Leu Leu Asp
50 55 60

Trp Glu Arg Asn Phe Ala Ala Val Leu Asp Gly Ala Lys Gly His Ser
65 70 75 80

Asp Asp Asp Tyr Asp Asp Pro Glu Leu Arg Met Glu Glu Thr Trp Gln
85 90 95

Ser Ile Lys Ile Leu Pro Ala Arg Pro Ile Lys Glu Ser Glu Tyr Ala
100 105 110

Asp Thr His Tyr Phe Lys Val Ala Met Asp Thr Pro Leu Pro Leu Asp
115 120 125

Thr Arg Thr Ser Ile Ser Ile Gly Gln Pro Thr Trp Asn Thr Gln Thr
130 135 140

Arg Leu Glu Arg Val Asp Lys Pro Ile Ser Lys Asp Val Arg Ser Gln
145 150 155 160

Asn Ile Lys Gly Asp Ala Ser Val Arg Lys Asn Lys Ile Pro Leu Pro
165 170 175

Pro Pro Arg Pro Leu Ile Thr Leu Pro Lys Lys Tyr Gln Pro Leu Pro
180 185 190

Pro Glu Pro Glu Ser Ser Arg Pro Pro Leu Ser Gln Arg His Thr Phe
 195 200 205
 Pro Glu Val Gln Arg Met Pro Ser Gln Ile Ser Leu Arg Asp Leu Ser
 210 215 220
 Glu Val Leu Glu Ala Glu Lys Val Pro His Asn Gln Arg Lys Pro Glu
 225 230 235 240
 Ser Thr His Leu Leu Glu Asn Gln Asn Thr Gln Glu Ile Pro Leu Ala
 245 250 255
 Ile Ser Ser Ser Phe Thr Thr Ser Asn His Ser Val Gln Asn Arg
 260 265 270
 Asp His Arg Gly Gly Met Gln Pro Cys Ser Pro Gln Arg Cys Gln Pro
 275 280 285
 Pro Ala Ser Cys Ser Pro His Glu Asn Ile Leu Pro Tyr Lys Tyr Thr
 290 295 300
 Ser Trp Arg Pro Pro Phe Pro Lys Arg Ser Asp Arg Lys Asp Val Gln
 305 310 315 320
 His Asn Glu Trp Tyr Ile Gly Glu Tyr Ser Arg Gln Ala Val Glu Glu
 325 330 335
 Ala Phe Met Lys Glu Asn Lys Asp Gly Ser Phe Leu Val Arg Asp Cys
 340 345 350
 Ser Thr Lys Ser Lys Glu Glu Pro Tyr Val Leu Ala Val Phe Tyr Glu
 355 360 365
 Asn Lys Val Tyr Asn Val Lys Ile Arg Phe Leu Glu Arg Asn Gln Gln
 370 375 380
 Phe Ala Leu Gly Thr Gly Leu Arg Gly Asp Glu Lys Phe Asp Ser Val
 385 390 395 400
 Glu Asp Ile Ile Glu His Tyr Lys Asn Phe Pro Ile Ile Leu Ile Asp
 405 410 415
 Gly Lys Asp Lys Thr Gly Val His Arg Lys Gln Cys His Leu Thr Gln
 420 425 430
 Pro Leu Pro Leu Thr Arg His Leu Leu Pro Leu
 435 440

<210> 3
 <211> 2335
 <212> DNA
 <213> HUMAN

<220>
 <223> HUMAN MIST SPLICE VARIANT cDNA CLONE #7, NUCLEIC
 ACID SEQUENCE

<400> 3

gtcagacctc tcaggtctgt ggctgcattt cacagggaaac caagtctaaa acggacctat 60
caggaggttt tctgctgaag ggcactgctt agcatcgaga agaattcaac ccaccgcctt 120
actaatttcc agtgccccaa ggtctctgca ctgccgcccc tcctcacagg agacggacac 180
ctcagcttag atcccttggg gctctccacg ctgttcaggc tgaattgaag atcccttta 240
cccgccaggt gccaagaact atgaacaggc agggcaataag aaagacaact aaagaaggat 300
ccaacgattt gaaattccag aacttcagtc tgccaaaaaa caggtcatgg cctcgcatca 360
atagtgccac aggccagttc cagaggatga acaaggctct tctagactgg gaaagaaact 420
ttgctgcagt cctggatgga gcaaaaaggcc acagtgtatga tgactatgtat gaccctgagc 480
ttcggatgga agagacatgg cagtgcatta aaattttacc agccggcct ataaagaat 540
ctgaatatgc agatacacac tatttcaagg ttgcaatgga cactcccctt ccgttagaca 600
ccaggacctc tatctccatt ggacagccga ccttggAACAC acagacgagg ttggaaagag 660
tggacaaacc catttccaag gacgtcgaaa gccaaaacat taaaggagat gcatccgtaa 720
gaaagaacaa gattccttta ccacccctc ggctctcat aacacttccg aagaagtacc 780
aacccttgcc ccctgagccg gagagcagca ggccacctt atctcagaga cacacccccc 840
cagaagtcca gagaatgccc agtcagataa gcttaaggga cttaagttag gtccttgaag 900
cagaaaaagt tcctcataac cagaggaagc ctgaatcaac tcatctgtt gaaaacccaa 960
atactcaaga gattccactt gccattagca gttcttcatt cacgacaagc aaccacagt 1020
tgcaaaacag agatcataga ggaggcatgc agccctgtt tcctcagaga tgccagccctc 1080
cagccagctg cagccctcac gaaaatatac tgccctataa atacacaagc tggagaccac 1140
ctttcccaa aaggctgtat agaaaggatg tccagcaca tgaatggatc attggagaat 1200
acagccgcca ggcagtggaa gaggcattca tgaaggagaa caaggatgtt agtttcttgg 1260
tccgagattt ttccacaaaaa tccaaggaag agccctatgt tttggctgtt ttttatgaga 1320
acaaagtcta caatgtaaaaa atccgcttcc tggagagggaa tcagcagttt gccctggga 1380
caggactcag aggagatgag aagtttgatt cagtagaaga catcatcgaa cactacaaga 1440
atttcccat tatactaatt gatggaaag ataaaactgg ggtccacagg aaacagtgtc 1500
acctcactca gccactccct ctcaccagac acctcttgc tctgtacgc ggtcttgg 1560
ttatcttgg ttactggat tcagcgcttc cattgttttc attgatttca aaagtttatt 1620
ttctgtgcct tcaagggaca actttttaa ctttggagaa aagaaaaaca ctctataaca 1680
gagagtggaa aatcactcac gttttgaaa gttcaaacca cagagaaaat atttataaca 1740
tgcaaaaaat aaaaacattc tagtaactgg ccactggaaa ataaataaaa ataaaaacta 1800
gggttttaaa agtatcttct aaaaacaaac aacaaaaaat actataaaca tagccattat 1860
gctcatgata caggcgagca gcaaaggca ccagaagctg ttgcttaat gtttgcagtc 1920
agtcaagac aagtctatgg gaaattccca aatctgtgt cttaacagga cactgcgtc 1980
cctttatgtc agttgttggg ctttacatata atacaatgtg tggatgattt cttacactaa 2040
agatgctggg ctgggtgcgg tgcctcatgc ctgtaatccc agcactttgg gaggctgagg 2100
tggacagatc acgaggtcag gagatcaaga ccattctggc taacatgggaa aaccccccatt 2160
tctactaaaaa atacaaaaaaa tcagctgggc gtgggtggg gtgcctgtt gcccagctac 2220
tcggggaggct gaggcaggag aatgggtgtt aacccggggagg cgagctgc agtgagccga 2280
aatcgcgcca ctgcactcca atccagcctg gggacagaga gactccgtct caaaa 2335

<210> 4

<211> 428

<212> PRT

<213> HUMAN

<220>

<223> HUMAN MIST SPLICE VARIANT CLONE #7, AMINO ACID
SEQUENCE

<400> 4

Met Asn Arg Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn Asp
1 5 10 15

Leu Lys Phe Gln Asn Phe Ser Leu Pro Lys Asn Arg Ser Trp Pro Arg

20	25	30
Ile Asn Ser Ala Thr Gly Gln Tyr Gln Arg Met Asn Lys Pro Leu Leu		
35	40	45
Asp Trp Glu Arg Asn Phe Ala Ala Val Leu Asp Gly Ala Lys Gly His		
50	55	60
Ser Asp Asp Asp Tyr Asp Asp Pro Glu Leu Arg Met Glu Glu Thr Trp		
65	70	75
Gln Ser Ile Lys Ile Leu Pro Ala Arg Pro Ile Lys Glu Ser Glu Tyr		
85	90	95
Ala Asp Thr His Tyr Phe Lys Val Ala Met Asp Thr Pro Leu Pro Leu		
100	105	110
Asp Thr Arg Thr Ser Ile Ser Ile Gly Gln Pro Thr Trp Asn Thr Gln		
115	120	125
Thr Arg Leu Glu Arg Val Asp Lys Pro Ile Ser Lys Asp Val Arg Ser		
130	135	140
Gln Asn Ile Lys Gly Asp Ala Ser Val Arg Lys Asn Lys Ile Pro Leu		
145	150	155
160		
Pro Pro Pro Arg Pro Leu Ile Thr Leu Pro Lys Lys Tyr Gln Pro Leu		
165	170	175
Pro Pro Glu Pro Glu Ser Ser Arg Pro Pro Leu Ser Gln Arg His Thr		
180	185	190
Phe Pro Glu Val Gln Arg Met Pro Ser Gln Ile Ser Leu Arg Asp Leu		
195	200	205
Ser Glu Val Leu Glu Ala Glu Lys Val Pro His Asn Gln Arg Lys Pro		
210	215	220
Glu Ser Thr His Leu Leu Glu Asn Gln Asn Thr Gln Glu Ile Pro Leu		
225	230	235
240		
Ala Ile Ser Ser Ser Ser Phe Thr Thr Ser Asn His Ser Val Gln Asn		
245	250	255
Arg Asp His Arg Gly Gly Met Gln Pro Cys Ser Pro Gln Arg Cys Gln		
260	265	270
Pro Pro Ala Ser Cys Ser Pro His Glu Asn Ile Leu Pro Tyr Lys Tyr		
275	280	285
Thr Ser Trp Arg Pro Pro Phe Pro Lys Arg Ser Asp Arg Lys Asp Val		
290	295	300
Gln His Asn Glu Trp Tyr Ile Gly Glu Tyr Ser Arg Gln Ala Val Glu		
305	310	315
320		
Glu Ala Phe Met Lys Glu Asn Lys Asp Gly Ser Phe Leu Val Arg Asp		

325

330

335

Cys Ser Thr Lys Ser Lys Glu Glu Pro Tyr Val Leu Ala Val Phe Tyr
340 345 350

Glu Asn Lys Val Tyr Asn Val Lys Ile Arg Phe Leu Glu Arg Asn Gln
355 360 365

Gln Phe Ala Leu Gly Thr Gly Leu Arg Gly Asp Glu Lys Phe Asp Ser
370 375 380

Val Glu Asp Ile Ile Glu His Tyr Lys Asn Phe Pro Ile Ile Leu Ile
385 390 395 400

Asp Gly Lys Asp Lys Thr Gly Val His Arg Lys Gln Cys His Leu Thr
405 410 415

Gln Pro Leu Pro Leu Thr Arg His Leu Leu Pro Leu
420 425

<210> 5

<211> 2540

<212> DNA

<213> HUMAN

<220>

<223> HUMAN MIST FULL-LENGTH cDNA SEQUENCE OF SPLICE
VARIANT CLONE #12, NUCLEIC ACID SEQUENCE

<400> 5

ggctgctgtt aacaacttca tgcgtccgtg ggttagcaggc aggtgcttct gtctgatctg 60
gctctcccttg accactgtac tcatcaaata gaccaagatc cccagagtcc aagatcctta 120
caaggggggcc agaaaaggat gagctttctg aagaaggact gatgtaaaat accaggaatt 180
ttgacatcga aagaagattt tgcgtatggca gctgggattt gccataatc tagaagacac 240
atggtaata cagttgcaag tcatttagtc atatttcttg ctaaaattgtc gtgtcttcaa 300
tggggcaata gaaagacaac taaaagaagga tccaaacgatt tgaaattcca gaacttcagt 360
ctgccaaaaaa acaggtcatg gcctcgatc aatagtgcga caggccagta ccagaggatg 420
aacaagcctc ttctagactg gatttggcag cttgaccatt tattatcgca cagtggatgc 480
aatcagaagt ctgggcacag catggctcaa cttagtcccc tgttctgggt ctcacaagac 540
tgaaagcaac atgctggcag ggctgcattc tcctccaggg gctctgaaga ggaacttgct 600
tccagattct ttcagggaaag aaactttgtc gcagtcctgg atggagcaaa aggccacagt 660
gatgatgact atgatgaccc tgagttcgg atgaaagaga catggcagtc gattaaaatt 720
ttaccagccc ggctataaaa ggaatctgaa tatgcagata cacactatt caaggttgca 780
atggacactc cccttccgtt agacaccagg acctctatct ccattggaca gccgacctgg 840
aacacacaga cgagggttggaa aagagtggac aaacccatct ccaaggacgt cagaagccaa 900
aacattaaag gagatgcattt cgtaaagaaag aacaagatcc ctttaccacc tcctcgccct 960
ctcataaacac ttccgaagaa gtaccaaccc ttgcgtccctg agccggagag cagcaggcca 1020
cctttatctc agagacacac ctttccagaa gtccagagaa tgccctgtca gataagctta 1080
agggacttaa gtgaggtcct tgaagcagaa aaagttcctc ataaccagag gaagcctgaa 1140
tcaactcattc tgtagaaaaa ccaaaaatactt caagagatcc cactgtccat tagcagtct 1200
tcattcacga caagcaacca cagtgtgcaa aacagagatc atagaggagg catgcagccc 1260
tggtctcctc agagatgcca gcctccagcc agctgcagcc ctacgaaaaa tataactgcc 1320
tataaataca caagctggag accaccttc cccaaaaggt ctgatagaaaa ggatgtccag 1380
cacaatgaat ggtacattgg agaatacagc cggccaggcag tggaagaggc attcatgaag 1440
gagaacaagg atgtagttt ctgggtccga gattgttcca caaaatccaa ggaagagccc 1500
tatgttttgg ctgtgtttta tgagaacaaa gtctacaatg taaaaatccg cttcctggag 1560

aggaatcagc agtttgcctt gggcacagga ctcagaggag atgagaagtt tgattcagta 1620
gaagacatca tgcacacta caagaatttt cccattatac taattgtatgg gaaagataaa 1680
actgggtcc acaggaaaca gtgtcacctc actcagccac tccctctcac cagacacctc 1740
ttgcctctgt agcctggct ttgtgttac tttggttac tggattcagc gcttccattg 1800
tttcattga ttcaaaaagt ttatcccgtg tgccttcaag ggacaactt tttaacttg 1860
gagaaaagaa aaacactcta taacagagag tggaaaatca ctcacggtt tgaaagttca 1920
aaccacagag aaaatattta taacatgcaa aaaataaaaaa cattctagta actggccact 1980
ggaaaataaa taaaaataaa aactagggtt taaaaatgtat cttctaaaaa acaacaacaa 2040
aaaatactat aaacatagcc attatgtca tgatacaggc gagcagcaaa gggcaccaga 2100
agctgttgct taaatgtttc cagtcagtgc aagacaagtc tatggaaat tcccaaatct 2160
gtgctttta caggacactg cgctgcctt atgtcagtgc ttggcctta catatataca 2220
atgtgtggat gatttcttac actaaagatg ctgggctggg tgccgtgcct catgcctgta 2280
atcccagcac ttgggaggg tgaggtggac agatcacgag gtcaggagat caagaccatc 2340
ctggctaaca tggtaaacccatgtctac taaaaataca aaaaatcagc tggcggtgg 2400
gggggtgcc tggtagtccccatgtctac gctactcggg aggctgagggc aggagaatgg tggtaacccg 2460
ggaggcggag ctggcagtga gccgaaatcg cgccactgca ctccaatcca gcctgggac 2520
agagagactc cgtctaaaaa 2540

<210> 6

<211> 353

<212> PRT

<213> HUMAN

<220>

<223> HUMAN MIST SPLICE VARIANT CLONE #12, TRANSLATED
AMINO ACID SEQUENCE

<400> 6

Met Glu Glu Thr Trp Gln Ser Ile Lys Ile Leu Pro Ala Arg Pro Ile
1 5 10 15

Lys Glu Ser Glu Tyr Ala Asp Thr His Tyr Phe Lys Val Ala Met Asp
20 25 30

Thr Pro Leu Pro Leu Asp Thr Arg Thr Ser Ile Ser Ile Gly Gln Pro
35 40 45

Thr Trp Asn Thr Gln Thr Arg Leu Glu Arg Val Asp Lys Pro Ile Ser
50 55 60

Lys Asp Val Arg Ser Gln Asn Ile Lys Gly Asp Ala Ser Val Arg Lys
65 70 75 80

Asn Lys Ile Pro Leu Pro Pro Arg Pro Leu Ile Thr Leu Pro Lys
85 90 95

Lys Tyr Gln Pro Leu Pro Pro Glu Pro Glu Ser Ser Arg Pro Pro Leu
100 105 110

Ser Gln Arg His Thr Phe Pro Glu Val Gln Arg Met Pro Ser Gln Ile
115 120 125

Ser Leu Arg Asp Leu Ser Glu Val Leu Glu Ala Glu Lys Val Pro His
130 135 140

Asn Gln Arg Lys Pro Glu Ser Thr His Leu Leu Glu Asn Gln Asn Thr

145	150	155	160
Gln Glu Ile Pro Leu Ala Ile Ser Ser Ser Ser Phe Thr Thr Ser Asn			
165	170	175	
His Ser Val Gln Asn Arg Asp His Arg Gly Gly Met Gln Pro Cys Ser			
180	185	190	
Pro Gln Arg Cys Gln Pro Pro Ala Ser Cys Ser Pro His Glu Asn Ile			
195	200	205	
Leu Pro Tyr Lys Tyr Thr Ser Trp Arg Pro Pro Phe Pro Lys Arg Ser			
210	215	220	
Asp Arg Lys Asp Val Gln His Asn Glu Trp Tyr Ile Gly Glu Tyr Ser			
225	230	235	240
Arg Gln Ala Val Glu Glu Ala Phe Met Lys Glu Asn Lys Asp Gly Ser			
245	250	255	
Phe Leu Val Arg Asp Cys Ser Thr Lys Ser Lys Glu Glu Pro Tyr Val			
260	265	270	
Leu Ala Val Phe Tyr Glu Asn Lys Val Tyr Asn Val Lys Ile Arg Phe			
275	280	285	
Leu Glu Arg Asn Gln Gln Phe Ala Leu Gly Thr Gly Leu Arg Gly Asp			
290	295	300	
Glu Lys Phe Asp Ser Val Glu Asp Ile Ile Glu His Tyr Lys Asn Phe			
305	310	315	320
Pro Ile Ile Leu Ile Asp Gly Lys Asp Lys Thr Gly Val His Arg Lys			
325	330	335	
Gln Cys His Leu Thr Gln Pro Leu Pro Leu Thr Arg His Leu Leu Pro			
340	345	350	

Leu

```

<210> 7
<211> 8
<212> PRT
<213> HUMAN

```

```

<220>
<223> PHOSPHOPEPTIDE DERIVED FROM THE SEQUENCE OF HUMAN
      SLP-76

```

```

<220>
<221> MOD_RES
<222> (3)
<223> PHOSPHORYLATION; TYR IN POSITION #3 IS
      PHOSPHORYLATED.

```

<400> 7
Asp Asp Tyr Glu Ser Pro Asn Asp
1 5

<210> 8
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY474

<400> 8
tggcacattg gagaatacag

20

<210> 9
<211> 19
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY475

<400> 9
gctgattcct ctccaggaa

19

<210> 10
<211> 30
<212> DNA
<213> HUMAN

<220>
<223> OLIGO PY471

<400> 10
gttggaaagg cattcatgaa ggagaacaag

30

<210> 11
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY641

<400> 11
gttggatct tggactctgg

20

<210> 12
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY642

<400> 12
ctccatccag gactgcagca 20

<210> 13
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY643

<400> 13
ggtgaataca gttgcaagtc 20

<210> 14
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY644

<400> 14
gagcttcgga tggaaagagac 20

<210> 15
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY645

<400> 15
tacatgtgcc atgctggtgc 20

<210> 16
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY646

<400> 16
ctggaggctg gcatctctga 20

<210> 17

<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY647

<400> 17
agtggctgag tgaggtgaca 20

<210> 18
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY648

<400> 18
acttgtcttg cactgactgc 20

<210> 19
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY649

<400> 19
cactgagtga gctgatatgg 20

<210> 20
<211> 21
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY650

<400> 20
aggcagtgga agaggcattc a 21

<210> 21
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY651

<400> 21
ttgcctctgt agcctggtct 20

<210> 22
<211> 20
<212> DNA
<213> HUMAN

<220>
<223> PRIMER PY652

<400> 22
tacaggacac tgcgctgcct

20

<210> 23
<211> 18
<212> PRT
<213> HUMAN

<400> 23
Val Leu Asp Gly Ala Lys Gly His Ser Asp Asp Asp Tyr Asp Asp Pro
1 5 10 15

Glu Leu

<210> 24
<211> 18
<212> PRT
<213> HUMAN

<400> 24
Lys Ile Leu Pro Ala Arg Pro Ile Lys Glu Ser Glu Tyr Ala Asp Thr
1 5 10 15

His Tyr

<210> 25
<211> 17
<212> PRT
<213> HUMAN

<400> 25
Arg Asp Cys Ser Thr Lys Ser Lys Glu Glu Pro Tyr Val Leu Ala Val
1 5 10 15

Phe

<210> 26
<211> 13
<212> PRT
<213> HUMAN

<400> 26
Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn Asp
1 5 10

<210> 27
<211> 13
<212> PRT
<213> HUMAN

<400> 27
Glu Glu Thr Trp Gln Ser Ile Lys Ile Leu Pro Ala Arg
1 5 10

<210> 28
<211> 13
<212> PRT
<213> HUMAN

<400> 28
Ile Lys Gly Asp Ala Ser Val Arg Lys Asn Lys Ile Pro
1 5 10

<210> 29
<211> 13
<212> PRT
<213> HUMAN

<400> 29
Pro Pro Glu Pro Glu Ser Ser Arg Pro Pro Leu Ser Gln
1 5 10

<210> 30
<211> 13
<212> PRT
<213> HUMAN

<400> 30
Ser Arg Pro Pro Leu Ser Gln Arg His Thr Phe Pro Glu
1 5 10

<210> 31
<211> 13
<212> PRT
<213> HUMAN

<400> 31
Pro Tyr Lys Tyr Thr Ser Trp Arg Pro Pro Phe Pro Lys
1 5 10

<210> 32

<211> 13
<212> PRT
<213> HUMAN

<400> 32
Pro Phe Pro Lys Arg Ser Asp Arg Lys Asp Val Gln His
1 5 10

<210> 33
<211> 13
<212> PRT
<213> HUMAN

<400> 33
Leu Val Arg Asp Cys Ser Thr Lys Ser Lys Glu Glu Pro
1 5 10

<210> 34
<211> 14
<212> PRT
<213> HUMAN

<400> 34
Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn Asp Leu
1 5 10

<210> 35
<211> 14
<212> PRT
<213> HUMAN

<400> 35
Gly Ala Lys Gly His Ser Asp Asp Asp Tyr Asp Asp Pro Glu
1 5 10

<210> 36
<211> 14
<212> PRT
<213> HUMAN

<400> 36
Thr Trp Asn Thr Gln Thr Arg Leu Glu Arg Val Asp Lys Pro
1 5 10

<210> 37
<211> 14
<212> PRT
<213> HUMAN

<400> 37
Leu Ser Gln Arg His Thr Phe Pro Glu Val Gln Arg Met Pro
1 5 10

<210> 38
<211> 14
<212> PRT
<213> HUMAN

<400> 38
Met Pro Ser Gln Ile Ser Leu Arg Asp Leu Ser Glu Val Leu
1 5 10

<210> 39
<211> 14
<212> PRT
<213> HUMAN

<400> 39
Pro Pro Ala Ser Cys Ser Pro His Glu Asn Ile Leu Pro Tyr
1 5 10

<210> 40
<211> 14
<212> PRT
<213> HUMAN

<400> 40
Asp Cys Ser Thr Lys Ser Lys Glu Glu Pro Tyr Val Leu Ala
1 5 10

<210> 41
<211> 14
<212> PRT
<213> HUMAN

<400> 41
Asp Glu Lys Phe Asp Ser Val Glu Asp Ile Ile Glu His Tyr
1 5 10

<210> 42
<211> 14
<212> PRT
<213> HUMAN

<400> 42
Asn Arg Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn
1 5 10

<210> 43
<211> 14
<212> PRT
<213> HUMAN

<400> 43

Asp Leu Lys Phe Gln Asn Phe Ser Leu Pro Lys Asn Arg Ser
1 5 10

<210> 44

<211> 14

<212> PRT

<213> HUMAN

<400> 44

Phe Ser Leu Pro Lys Asn Arg Ser Trp Pro Arg Ile Asn Ser
1 5 10

<210> 45

<211> 14

<212> PRT

<213> HUMAN

<400> 45

Ser Phe Thr Thr Ser Asn His Ser Val Gln Asn Arg Asp His
1 5 10

<210> 46

<211> 16

<212> PRT

<213> HUMAN

<400> 46

Thr Met Asn Arg Gln Gly Asn Arg Lys Thr Thr Lys Glu Gly Ser Asn
1 5 10 15

<210> 47

<211> 16

<212> PRT

<213> HUMAN

<400> 47

Arg Asp His Arg Gly Gly Met Gln Pro Cys Ser Pro Gln Arg C: Gln
1 5 10 15

<210> 48

<211> 13

<212> PRT

<213> HUMAN

<400> 48

Leu Gly Thr Gly Leu Arg Gly Asp Glu Lys Phe Asp Ser
1 5 10

<210> 49

<211> 38

<212> DNA
<213> HUMAN

<400> 49
gcagcagcgg ccgcgactat gatgaccctg agcttcgg 38

<210> 50
<211> 36
<212> DNA
<213> HUMAN

<400> 50
gcagcagtgc accagaggca agaggtgtct ggttag 36

<210> 51
<211> 36
<212> DNA
<213> HUMAN

<400> 51
gcagcagcgg ccgcattggct gaattgaaga tccctc 36

<210> 52
<211> 36
<212> DNA
<213> HUMAN

<400> 52
gcagcagtgc acttcattgt gctggacatc ctttct 36