

# BPI NB-IoT Linaro 96Boars BC95 User Manual

- 1. Hardware introduction
- 2. Software introduction
- 3. How to setup and start



# Hardware introduction

There are two major components on the board,namely NB-IoT module and MCU, their specs are below:

#### 1. NB-IoT module:

NB-IoT module: Quectel BC95-B5/8/20 or BC95-G

#### Model and Frequency band:

| Model     | BC95-B20                      | BC95-B5  | BC95-B8             | BC95-G         |
|-----------|-------------------------------|----------|---------------------|----------------|
| Fraguancy | Frequency 800MHz 850MHz 900MH | 0001447  | B1/B3/B5/B8/B20/B28 |                |
| riequency |                               | 650IVITZ | 900101112           | @FDD-LTE (TBD) |

#### SIM card:

1).Micro SD SIM Slot

2).e-SIM optional(footprint reserved on the board)

Antenna: IPEX antenna connector

## 2. MCU:

|           | BC95-B5/8/20                     | BC95-G        |
|-----------|----------------------------------|---------------|
| SoC       | STM32F103RCT6                    | STM32F103RBT6 |
| CPU       | ARM 32-bit Cortex™-M3 CPU @72MHz |               |
| FLASH     | 256KB                            | 128KB         |
| RAM       | 48KB                             | 20KB          |
| Functions | UART、I2C、SPI、PWM                 |               |



## 3. Development board:

#### Hardware Specification of BPi BC95-LINARO

Soc STM32F103RBT6

CPU ARM 32-bit Cortex™-M3 CPU @72MHz

SDRAM size 20 KB

Flash size 128KB

Power 5V/2A via MicroUSB / 2PIN Battery Connector

**Features** 

On board SIM

40 Pins Header (2.0mm Pitch), 32×GPIOs,

Low-level
Some of which can be used for specific functions including UART, I2C, SPI,

peripherals

**PWM** 

On board Network Quectel BC95

MicroSD SIM Slot

eSIM(option)

USB 1 USB 2.0 host

Buttons Reset button, User button

Leds 1 Power status Led and 5 other Leds

Sizes 60 mm × 30mm

Weight 10g



# Pictures of the board:







# Dimensions:





# **GPIO** specification

Banana Pi 40-pin GPIO(2.0mm pitch)

Following is the Banana Pi GPIO Pin-out:

## **BPI-BC95 40PIN GPIO (CON1)**

| GPIO Pin Name | Default            | Function2: |
|---------------|--------------------|------------|
|               | Function           | GPIO       |
| CON1-P01      | GND                |            |
| CON1-P02      | GND                |            |
| CON1-P03      | MCU_USART2_<br>RTS | PA1        |
| CON1-P04      | GPIO_PC6           | PC6        |
| CON1-P05      | MCU_USART2_<br>RX  | PA3        |
| CON1-P06      | RST_BTN            |            |
| CON1-P07      | MCU_USART2_<br>TX  | PA2        |
| CON1-P08      | SPI1_SCK           | PA5        |
| CON1-P09      | MCU_USART2_<br>CTS | PA0        |
| CON1-P10      | SPI1_MISO          | PA6        |
| CON1-P11      | GPIO_PB8           | PB8        |
| CON1-P12      | SPI1_NSS           | PA4        |
| CON1-P13      | GPIO_PB9           | PB9        |
| CON1-P14      | SPI1_MOSI          | PA7        |
| CON1-P15      | I2C1_SCL           | PB6        |
| CON1-P16      | GPIO_PC13          | PC13       |
| CON1-P17      | I2C1_SDA           | PB7        |
| CON1-P18      | GPIO_PA15          | PA15       |
| CON1-P19      | I2C2_SCL           | PB10       |
| CON1-P20      | GPIO_PB0           | PB0        |
| CON1-P21      | I2C2_SDA           | PB11       |
| CON1-P22      | GPIO_PB1           | PB1        |
| CON1-P23      | USART1_CK          | PA8        |
| CON1-P24      | SPI2_NSS           | PB12       |
| CON1-P25      | USART1_TX          | PA9        |
| CON1-P26      | SPI2_SCK           | PB13       |
| CON1-P27      | USART1_RX          | PA10       |
| CON1-P28      | SPI2_MISO          | PB14       |
| CON1-P29      | USART5_CK          | PB5        |
| CON1-P30      | SPI2_MOSI          | PB15       |



| CON1-P31 | USART5_TX | PB3  |
|----------|-----------|------|
| CON1-P32 | USART4_RX | PC11 |
| CON1-P33 | USART5_RX | PB4  |
| CON1-P34 | USART4_TX | PC10 |
| CON1-P35 | VCC_1.8V  |      |
| CON1-P36 | NC        |      |
| CON1-P37 | VCC_5V    |      |
| CON1-P38 | NC        |      |
| CON1-P39 | GND       |      |
| CON1-P40 | GND       |      |

## SWD(CN1)

| CSI Pin Name | Default  | Function2: |
|--------------|----------|------------|
|              | Function | GPIO       |
| CN1-P1       | VCC      |            |
| CN1-P2       | GND      |            |
| CN1-P3       | SWCLK    | PA14       |
| CN1-P4       | SWDIO    | PA13       |
| CN1-P5       | RESET-ST |            |

# Debug UART(CON2)

| CON2-P1 | GND       |      |
|---------|-----------|------|
| CON2-P2 | USART1_RX | PA9  |
| CON2-P3 | USART1_TX | PA10 |









# Software introduction

## 1. Lite OS brief

Huawei LiteOS is a lightweight open-source IoT OS and a smart hardware development platform. It simplifies IoT device development and device connectivity, makes services smarter, delivers superb user experience, and provides better data protection. Huawei LiteOS is designed for smart homes, wearables, IoV, and intelligent manufacturing applications.

For more about Lite OS please refer to: http://developer.huawei.com/ict/en/site-iot/product/liteos

IDE: recommended development environment is MDK521 + STM32F1xxx library

#### 2. BC95 software brief:

#### Command format:

| Test Command | AT+ <cmd>=? Check possible sub-</cmd>        |  |
|--------------|----------------------------------------------|--|
| rest Command | parameter values                             |  |
| Read         | AT+ <cmd>? Check current sub-parameter</cmd> |  |
| Command      | values                                       |  |
| Set Command  | AT+ <cmd>=p1[,p2[,p3[]]] Set</cmd>           |  |
| Set Command  | command                                      |  |
| Execution    | AT+ <cmd> Execution command</cmd>            |  |
| Command      |                                              |  |

# Searching network steps:

AT+NBAND? //Query Band

AT+CFUN? //value :1

AT+CIMI //Query IMSI number

AT+CSQ /Query the signal strength

AT+NUESTATS //Query module status

AT+CGATT? // Back + CGATT: 1 indicates that the attachment is

successful, with a delay of about 30s

AT+CEREG? // Search for network status, 1 for Internet, 2 for Network

AT+CSCON? // Query the connection status, 1 CONNECT, 0 IDLE



#### Manually configure network if fails to register network automatically:

#### AT+CFUN=1

**AT+CIMI** // Execute CFUN = 1, wait for 4 seconds to query IMSI, if it can be found that the card has been identified; If not, please check the card is inserted and confirm whether it is a USIM card.

AT+NBAND? // Query frequency band information.

**AT+CEREG=1** // Set to automatically register network registration status, when the module registered on the network, will report URC. **AT+CGDCONT=1,"IP","APN"** // The APN is configured locally (or not configured) for local access.

AT+COPS=1,2,"46000" // Specify PLMN search, PLMN configuration.

AT+CSQ // Query signal strength.

AT+NUESTATS // Query module status

AT+CGATT? // Back + CGATT: 1 indicates that the attachment is successful, with a delay of about 30s

AT+CEREG? // Search for network status, 1 for Internet, 2 for Network

AT+CSCON? // Query the connection status, 1 CONNECT, 0 IDLE

#### Network connectivity status chart:

1. Connect status (+ CSCON: 0, 1, the module is in this state after network injection), the duration of this state is configured by the base station, and from

From time to time to control the device, the range of 1-3600s, the default 20s.

2. Idle state (+ CSCON: 0,0), this state lasts the time to dispose by the key network, by Active timer (T3324) Come

Control, the range of 0-11160s, the default 10s.

3. PSM state (Judgment by power consumption, the maximum power consumption 5uA), the duration of the state by the core network configuration, set by the TAU

Timer (T3412) to control the range of Oh-310h, the default 24h.







# 三 How to setup and start to use

# 1. Hardware preparation:

BPI OPEN DEBUGGER or J-Link DEBUGGER \*1

BPI BC95-Linaro development board \*1

Micro USB cable \*2

Dupont lines (female female) \*4

## 2. Hardware hookup

There are two ways to flash by either BPI OPEN DEBUGGER or J-Link DEBUGGER:

#### 1) BPI OPEN DEBUGGER:

Using Dupont lines to connect BPI OPEN DEBUGGER with BPI BC95-Linaro SWD port, the connection are below:





| BPI OPEN DEBUGGER | BPI NB-IoT Linaro SWD |
|-------------------|-----------------------|
| 3V3               | VCC                   |
| GND               | GND                   |
| DIO               | DIO                   |
| CLK               | CLK                   |

#### 2) J-Link DEBUGGER:





The corresponding connection between JLink and BPI BC95 are the following:



| J-link                 | BPI NB-IoT Linaro SWD |
|------------------------|-----------------------|
| 3V3 (Pin1)             | VCC                   |
| GND (Pin4.6.8.10)      | GND                   |
| SWDIO (Pin7)           | DIO                   |
| SWCLK (Pin9)           | CLK                   |
| nJTRST (Pin3) optional | RST (optional)        |

# 3. Software debugging setting:

#### MDK5 setting:

Create a project choosing the right chip, and set the Options of Target as follows:







## 4. Software sample cases:

There are two samples in BPI forum, please refer to the following links:

1. https://github.com/yelvlab/BPI NB-

IoT Linaro 96Boards/tree/master/example/Debugger USART

2. https://github.com/yelvlab/BPI NB-

IoT Linaro 96Boards/tree/master/example/Debugger Virtual USB

3. And there are some more information about the development board on github:

https://github.com/yelvlab/BPI NB-IoT Linaro 96Boards

#### 5. Github code:

#### **HUAWEI LiteOS:**

https://github.com/LITEOS/LiteOS\_Partner\_Development\_Kits/tree/master/LiteOS\_BPI\_Development\_Kit