MHF3202 HW2

Oliver Deng

February 7, 2025

Question 1

1. P: Aliens abduct cows

Q: Aliens give cows pats

Translation: $P \wedge Q$

2. P: I know Jack

Q: I know John

R: I know Ralph

S: I know Jacob

Translation: $P \wedge Q \wedge R \wedge (\neg S)$

3. P: I am surly in the morning

Q: I get caffeine

Translation: $Q \implies (\neg P)$

Question 2

Looking at the 2 truth tables below, the 2 statements are equivalent.

1. Truth table for $\neg (P \land Q)$:

P	Q	$P \wedge Q$	$\neg (P \land Q)$
\overline{T}	Т	Т	F
Τ	F	F	${ m T}$
\mathbf{F}	Τ	F	${ m T}$
F	F	F	${ m T}$

2. Truth table for $Q \implies (\neg P)$

Question 3

Let P(x) be the statement "x is a rational number" or $x \in \mathbb{Q}$. Then the translation of that statement into symbolic logic is:

$$P(x) \iff P(5x)$$

This statement is true, since if $x \in \mathbb{Q}$, then $x = \frac{p}{q}, p, q \in \mathbb{Z}, q \neq 0$, and $5x = \frac{5p}{q}$, which is still a rational number since the integers are closed under multiplication.

Also, if $5x \in \mathbb{Q}$, then $5x = \frac{p}{q}$, $p, q \in \mathbb{Z}$, $q \neq 0$, and $x = \frac{p}{5q}$, which is still a rational number since again the integers are closed under multiplication, and $5q \neq 0$ since $q \neq 0$.

Question 4

$$\forall x \forall y, x, y \in \mathbb{R} \text{ s.t. } x * y = 0 \implies (x = 0) \lor (y = 0)$$

1

Question 5

Looking at the two truth tables below, the statements are **not** equivalent.

1. Truth table for $P \wedge (Q \vee R)$:

P	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$
\overline{T}	Т	Т	Т	T
Τ	Γ	F	Т	$^{\mathrm{T}}$
Τ	F	Т	Т	${ m T}$
Τ	F	F	F	F
F	Т	Γ	Т	F
F	Т	F	Т	F
F	F	Т	Т	F
F	F	F	F	F

2. Truth table for $(P \wedge Q) \vee R$

P	Q	R	$P \wedge Q$	$(P \wedge Q) \vee R$
\overline{T}	Т	Т	Т	T
${ m T}$	Т	F	Т	T
${f T}$	F	Т	F	T
${\rm T}$	F	F	F	F
\mathbf{F}	Т	Т	F	T
\mathbf{F}	Т	F	F	F
\mathbf{F}	F	Т	F	T
\mathbf{F}	F	F	F	F

Question 6

Let H(x) mean that "x goes to Heaven and let N(x) mean that "x goes to Nirvana." Also, let D(x) mean that "x is a dog", and let C(x) mean that "x is a cat."

1.

$$(\forall x (D(x) \implies H(x)) \land (\exists y (C(y) \land N(y)))$$

2. There is a dog that doesn't go to Heaven, or there are no cats that go to Nirvana.

3.

$$(\exists x (D(x) \land \neg H(x))) \lor (\forall y (C(y) \implies \neg N(y)))$$

Question 7

- 1. If P and Q are true, then it is not true that either R is true or that S is false.
- 2. Either Q is false or R is true if and only if P is true.
- 3. For any rational number x, there is an integer q such that x multiplied by q is a natural number.
- 4. (Didn't we translate this from English already? In that case I'll generalize the statements.) Either there exists an x such that D(x) is true and H(x) is false, or if for all y, C(y) is true, then N(y) is false.

Question 8

- 1. No Jedi have clairvoyance.
- 2. Either there is someone who is mortal or no one is gullible.
- 3. Either there is an even number not divisible by two, or all primes are not divisible by two.