Introduction to Logic Assignment 5

Problem 1

Suppose ϕ is the formula $\neg(r \leftrightarrow \neg(p \land \neg q))$.

- 1.1 Find a formula that is logically equivalent to ϕ but contains none of the operators: $\land, \rightarrow, \leftrightarrow$.
- 1.2 Find a formula that is logically equivalent to ϕ but contains none of the operators: $\neg, \wedge, \vee, \leftrightarrow$.

Problem 2

The NOR operator, often denoted by \downarrow , is a binary truth-functional logical operator described by the following truth table

A	В	$A \downarrow B$
F	\mathbf{F}	T
F	${f T}$	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	${f T}$	\mathbf{F}

Suppose ϕ is the formula $\neg((p \lor \neg q) \land r)$. Find a formula that is logically equivalent to ϕ but contains no operators other than \downarrow (i.e. <u>none</u> of the following symbols: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \top , \bot occurs).

Problem 3

Draw reduced OBDDs for the formulas ϕ and ψ below and determine from the reduced OBDDs whether the two formulas are logically equivalent or not.

$$\phi = (p \land q) \to r$$

$$\psi = (\neg r) \to (q \to \neg p)$$

Problem 4

The XOR operator, often denoted by \oplus , is a binary truth-functional logical operator described by the following truth table

A	B	$A \oplus B$		
\mathbf{F}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	${f T}$	\mathbf{T}		
\mathbf{T}	\mathbf{F}	${f T}$		
\mathbf{T}	${f T}$	\mathbf{F}		

Draw reduced OBDDs for the formulas ϕ and ψ below and determine from the reduced OBDDs whether the two formulas are logically equivalent or not.

$$\phi = p \oplus \neg (q \oplus \neg (r \oplus \neg (s \oplus \neg p)))$$
$$\psi = (p \leftrightarrow r) \leftrightarrow ((p \leftrightarrow q) \leftrightarrow s)$$

Let f be a Boolean function with 5 arguments such that $f(x_1, x_2, x_3, x_4, x_5) = 1$ when exactly two of the variables $x_1, ..., x_5$ are 1. For example, f(1, 1, 0, 0, 0) = f(0, 0, 1, 0, 1) = 1, but f(0, 0, 0, 0, 0) = f(1, 0, 0, 0, 0) = f(0, 1, 1, 0, 1) = 0.

Draw a reduced OBDD for the Boolean function f.

Problem 6

Suppose A, B, C, and D are the sets given by:

$$\begin{split} A &= \{-1,0,1\} \\ B &= \{-6,1,2,7,9\} \\ C &= \{x \in \mathbb{Z} \,|\, 0 \leq x < 20 \text{ and } x \text{ is odd} \} \\ D &= \{x \in \mathbb{Z} \,|\, x = y + z \text{ for some y and z in B} \} \\ E &= \{x^2 \in \mathbb{Z} \,|\, 2x \in B\} \end{split}$$

List all members in each of the following sets.

- $6.1 A \cup B$
- 6.2 B C
- 6.3 $\wp(A)$
- 6.4 D
- $6.5~A \times E$
- 6.6 $\wp(\wp(A \cap B))$

1.2

Suppose ϕ is the formula $\neg(r \leftrightarrow \neg(p \land \neg q))$.

- 1.1 Find a formula that is logically equivalent to ϕ but contains none of the operators: $\wedge, \rightarrow, \leftrightarrow$.
- 1.2 Find a formula that is logically equivalent to ϕ but contains none of the operators: $\neg, \wedge, \vee, \leftrightarrow$.

1.1 Pind a formula that is logically equivalent to
$$\phi$$
 but contains none of the operators: \neg, \land, \lor, \lor

1.1 $\neg (r \leftrightarrow \neg (p \land \neg q)) \equiv \neg (r \leftrightarrow \neg p \lor q)$
 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

$$\equiv \gamma(r \rightarrow (1pvq) \land (1pvq) \rightarrow r) \quad p \rightarrow q \equiv \gamma p \lor q$$

$$\equiv \gamma((1r \lor 1p \lor q) \land (1(pvq) \lor r))$$

$$= (r \leftrightarrow (1pvq)) \lor (1(pvq)) \lor)$$

$$= (r \leftrightarrow (1pvq)) \Rightarrow (r \leftrightarrow (1pvq)) \Rightarrow (r \leftrightarrow (1pvq))$$

$$\equiv \neg (r \leftrightarrow (\neg p \lor q_1)) \qquad \neg p \lor q_1 \equiv p \rightarrow q_2$$

$$\equiv \neg (r \leftrightarrow (p \rightarrow q_1)) \qquad p \leftrightarrow q_2 \equiv (p \rightarrow q_1) \land (q_2 \rightarrow p_1)$$

$$\equiv \neg (r \leftrightarrow (\rho \rightarrow q)) \qquad \rho \leftrightarrow q \equiv (\rho \rightarrow q) \land (q)$$

$$\equiv \neg ((r \rightarrow (\rho \rightarrow q)) \land ((\rho \rightarrow q) \rightarrow r))$$

$$\equiv \neg((r \rightarrow (p \rightarrow q)) \land ((p \rightarrow q) \rightarrow r))$$

$$\equiv \neg(r \rightarrow (p \rightarrow q)) \lor \neg((p \rightarrow q) \rightarrow r) \neg p \lor q = p \rightarrow q$$

$$\equiv (\mathbf{r} \rightarrow (\mathbf{p} \rightarrow \mathbf{q})) \rightarrow \mathbf{r}((\mathbf{p} \rightarrow \mathbf{q}) \rightarrow \mathbf{r}) \qquad \mathbf{r} \phi \equiv \phi \rightarrow \bot$$

$$\equiv (r \to (\rho \to q)) \to \neg((\rho \to q) \to r) \to \bot$$

$$\equiv (r \to (\rho \to q)) \to (((\rho \to q) \to r) \to \bot)_{\#}$$

1 Solution

The NOR operator, often denoted by ↓, is a binary truth-functional logical operator described by the following truth table

A	B	$A \downarrow B$	= 1(A v B) =	וי א אַי
F	F	T	T	T
F	т	\mathbf{F}	F	F
Т	F	\mathbf{F}	F	F
\mathbf{T}	Т	F	F	F

Suppose ϕ is the formula $\neg((p \lor \neg q) \land r)$. Find a formula that is logically equivalent to ϕ but contains no operators other than \downarrow (i.e. <u>none</u> of the following symbols: \neg , \land , \lor , \rightarrow , \leftrightarrow , \top , \bot occurs).

	AJ	A ≡ ¬A		AΛ	B = ((A↓A)↓ ((BTB)		1B ≡ B↓B 1A ≡ A↓A		
	Α	A V A		Α	В	A V B	٦A	18	ר ע ⊿ר ו	= (A↓A) ↓ (B↓B)	= A A B
				Ţ	Т	T	F	F	Т	T	Т
	Т	F		Т	F	F	F	Т	F	F	F
				F	Т	F	T	F	F	F	F
	F	<u> </u>		F	F	F	T	Т	E	F	F
4	AVB -	(A + B) +	(A ↓ B)								

1	Α	8	A ↓ B	7(A ↓ B)	≡ (A ↓ B) ↓ (A ↓ B)	E AVB
	Ţ	Т	Т	F	F	F
	1	F	F	Т	Т	Ţ
	F	Т	F	Т	Т	1
	F	F	F	T	Т	T

ו((pv י g,) Ar)

ו ((p v י g) א r)

T	7	A v B ≡ (A ↓ B)
		A ↓ B ≡ ¬(A
=	7(pv1q) v 1r	$7A \equiv A \downarrow A$
Ξ	マ(pv(gyg)) v (ryr	r) ¬(A∨B) ≅ A↓B

$$\equiv ((p \downarrow p) \land p) \lor (r \downarrow r) \land A \land B = (A \downarrow A) \lor (B \downarrow B)$$

$$\equiv [((p \downarrow p) \lor (p \downarrow p)) \lor (g \downarrow q)] \lor (r \lor r) \land A \lor B = (A \downarrow B) \lor (A \downarrow B)$$

= (10 10 V V 71 7A = A V A

$$\equiv \left[\left[((p \downarrow p) \downarrow (p \downarrow p)) \downarrow (q \downarrow q) \right] \downarrow (r \downarrow r) \right] \downarrow \left[\left[((p \downarrow p) \downarrow (p \downarrow p)) \downarrow (q \downarrow q) \right] \downarrow (r \downarrow r) \right]_{\mathcal{L}}$$

7(A v B) = 7A ∧ 7B

Draw reduced OBDDs for the formulas ϕ and ψ below and determine from the reduced OBDDs whether the two formulas are logically equivalent or not.

$$\phi = (p \land q) \to r$$

$$\psi = (\neg r) \to (q \to \neg p)$$

$$\bot \Rightarrow A = T$$
 $A \Rightarrow T = T$
 $T \Rightarrow A = A$ $A \Rightarrow \bot = \gamma A$

Logically equivalent

The XOR operator, often denoted by \oplus , is a binary truth-functional logical operator described by the following truth table

A	Ð	T	7	T⊕ A	Ξ	¬ A
А	(4)	1	š	TO A LODA	ξ	Α
				T ↔ A		
Α	3	1	=	1 - ^		

Draw reduced OBDDs for the formulas ϕ and ψ below and determine from the reduced OBDDs whether the two formulas are logically equivalent or not.

$$\phi = p \oplus \neg (q \oplus \neg (r \oplus \neg (s \oplus \neg p)))$$
$$\psi = (p \leftrightarrow r) \leftrightarrow ((p \leftrightarrow q) \leftrightarrow s)$$

order pagaras (TH) H((THQ) 45) = r ↔ (q, ↔ S) 7r () (1 (>) re (THS) 78475 r+>75 1075 THS =S 145 T+75 白白 0 田 0 S 75 15 P Ø and W are logically equivalent. 向 11) 0

Let f be a Boolean function with 5 arguments such that $f(x_1, x_2, x_3, x_4, x_5) = 1$ when exactly two of the variables $x_1, ..., x_5$ are 1. For example, f(1, 1, 0, 0, 0) = f(0, 0, 1, 0, 1) = 1, but f(0, 0, 0, 0, 0) = f(1, 0, 0, 0, 0) = f(0, 1, 1, 0, 1) = 0.

Draw a reduced OBDD for the Boolean function f.

Suppose A, B, C, and D are the sets given by:

$$A = \{-1, 0, 1\}$$

$$B = \{-6, 1, 2, 7, 9\}$$

$$C = \{x \in \mathbb{Z} \mid 0 \le x < 20 \text{ and } x \text{ is odd}\}$$

$$D = \{x \in \mathbb{Z} \mid x = y + z \text{ for some y and z in B}\}$$

$$E = \{x^2 \in \mathbb{Z} \mid 2x \in B\}$$

