

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 2

Aufgabe 1 (Gesetz für die doppelte Verneinung, Kontrapositionsgesetz)

Zeigen Sie mittels Wahrheitstafeln die allgemeine Gültigkeit der folgenden Äquivalenzaussagen. Seien \mathcal{A}, \mathcal{B} Aussagen. Dann gilt:

- (i) $\neg(A \land B) \Leftrightarrow \neg A \lor \neg B \text{ und } \neg(A \lor B) \Leftrightarrow \neg A \land \neg B \quad (De\text{-Morgan-Regeln})$
- $(ii) \ \neg (\neg \mathcal{A}) \Leftrightarrow \mathcal{A} \quad (\mathit{Gesetz} \ \mathit{f\"{u}r} \ \mathit{die} \ \mathit{doppelte} \ \mathit{Verneinung})$
- (iii) $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (Kontrapositionsgesetz)

Lösung Wir beweisen dies mittels Wahrheitstafel:

(i) (De-Morgan-Regeln)

ſ	\mathcal{A}	\mathcal{B}	$\mathcal{A} \wedge \mathcal{B}$	$\neg(\mathcal{A}\wedge\mathcal{B})$	$\neg \mathcal{A}$	$\neg \mathcal{B}$	$\neg \mathcal{A} \lor \neg \mathcal{B}$	$\neg(\mathcal{A} \land \mathcal{B}) \Leftrightarrow \neg\mathcal{A} \lor \neg\mathcal{B}$
	w	w	w	f	f	f	f	w
ſ	w	f	f	w	f	w	w	w
ſ	f	w	f	w	w	f	w	w
	f	f	f	w	w	w	\overline{w}	w

\mathcal{A}	\mathcal{B}	$\mathcal{A} \lor \mathcal{B}$	$\neg(\mathcal{A}\lor\mathcal{B})$	$\neg \mathcal{A}$	$\neg \mathcal{B}$	$\neg \mathcal{A} \wedge \neg \mathcal{B}$	$\neg(\mathcal{A}\vee\mathcal{B})\Leftrightarrow \neg\mathcal{A}\wedge\neg\mathcal{B}$
w	w	w	f	f	f	f	w
w	f	w	f	f	w	f	w
f	w	\overline{w}	f	w	f	f	\overline{w}
f	f	f	w	w	w	w	\overline{w}

(ii) (Gesetz für die doppelte Verneinung)

\mathcal{A}	$\neg \mathcal{A}$	$\neg(\neg\mathcal{A})$	$\mathcal{A} \Leftrightarrow \neg(\neg \mathcal{A})$
w	f	w	w
f	w	f	w

(iii) (Kontrapositionsgesetz)

\mathcal{A}	\mathcal{B}	$\mathcal{A}\Rightarrow\mathcal{B}$	$\neg \mathcal{B}$	$\neg \mathcal{A}$	$\neg \mathcal{B} \Rightarrow \neg \mathcal{A}$	$(\mathcal{A} \Rightarrow \mathcal{B}) \Leftrightarrow (\neg \mathcal{B} \Rightarrow \neg \mathcal{A})$
w	w	w	f	f	w	w
w	f	f	w	f	f	w
f	w	w	f	w	w	w
\overline{f}	f	w	w	w	w	w

Aufgabe 2 (Implikationen)

Zeigen Sie mittels Wahrheitstafeln die allgemeine Gültigkeit der folgenden Aussagen. Seien $\mathcal{A}, \mathcal{B}, \mathcal{C}$ Aussagen. Dann gilt:

(i)
$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

(ii)
$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

Lösing

(i)

\mathcal{A}	\mathcal{B}	\mathcal{C}	$\mathcal{A}\Rightarrow\mathcal{B}$	$\mathcal{B}\Rightarrow\mathcal{C}$	$(\mathcal{A}\Rightarrow\mathcal{B})\wedge(\mathcal{B}\Rightarrow\mathcal{C})$	$\mathcal{A}\Rightarrow\mathcal{C}$	
w	w	w	w	w	w	w	w
w	w	f	w	f	f	f	w
w	f	w	f	w	f	w	w
w	f	f	f	w	f	f	w
f	w	w	w	w	w	w	w
f	w	f	w	f	f	w	w
f	f	w	w	w	w	w	w
f	f	f	w	w	w	w	w

(ii)

\mathcal{A}	\mathcal{B}	\mathcal{C}	$\mathcal{A} \Leftrightarrow \mathcal{B}$	$\mathcal{B} \Leftrightarrow \mathcal{C}$	$(\mathcal{A} \Leftrightarrow \mathcal{B}) \wedge (\mathcal{B} \Leftrightarrow \mathcal{C})$	$\mathcal{A} \Leftrightarrow \mathcal{C}$	$(\mathcal{A} \Leftrightarrow \mathcal{B}) \land (\mathcal{B} \Leftrightarrow \mathcal{C}) \Rightarrow (\mathcal{A} \Leftrightarrow \mathcal{C})$
w	w	w	w	w	w	w	w
w	w	f	\overline{w}	f	f	f	w
w	f	w	f	f	f	w	w
w	f	f	f	w	f	f	w
f	w	\overline{w}	f	w	f	f	w
f	w	f	f	f	f	f	w
f	f	w	w	f	f	f	w
f	f	f	w	w	\overline{w}	w	w

Aufgabe 3 (Arithmetische Reihen)

(i) Für die Summe der ersten n natürlichen Zahlen gilt die Gaußsche Summenformel:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

(ii) Für die Summe der ersten n ungeraden Zahlen gilt:

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

Lösung

(i) For n=1, L.H.S. =1, R.H.S. $=\frac{1(1+1)}{2}=1$. Assume $\sum_{k=1}^n k=\frac{n(n+1)}{2}$. Now, $\sum_{k=1}^{n+1} k=\sum_{k=1}^n k+(n+1)=\frac{n(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right)=(n+1)\frac{n+2}{2}$.

(ii) For
$$n = 1$$
, L.H.S. $= 2 \cdot 1 - 1 = 1$, R.H.S. $= 1^2 = 1$. Assume $\sum_{k=1}^{n} (2k - 1) = n^2$. Now, $\sum_{k=1}^{n+1} (2k - 1) = \sum_{k=1}^{n} (2k - 1) + (2(n+1) - 1) = n^2 + (2n+1) = (n+1)^2$.

Aufgabe 4 (Reihen)

(i) Für die Summe der ersten n Quadratzahlen gilt:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

(ii) Für die alternierende Summe gilt:

$$\sum_{k=1}^{n} (-1)^{k} k = \frac{1}{4} ((-1)^{n} (2n+1) - 1).$$

Lösung

- (i) For n=1, L.H.S. = $1^2=1$, R.H.S. = $\frac{1\cdot 2\cdot 3}{6}=1$. Assume $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$. Now, $\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^n k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1)\left(\frac{n(2n+1)}{6} + n + 1\right) = (n+1)\left(\frac{2n^2+n}{6} + \frac{6(n+1)}{6}\right) = \frac{n+1}{6}(2n^2+7n+6) = \frac{n+1}{6}(2n^2+4n+3n+6) = \frac{n+1}{6}(2n(n+2)+3(n+2)) = \frac{n+1}{6}(2n+3)(n+2) = \frac{1}{6}(n+1)((n+1)+1)(2(n+1)+1).$
- (ii) For n = 1, L.H.S. $= (-1)^1 \cdot 1 = -1$, R.H.S. $= \frac{1}{4} \left((-1)^1 (2 \cdot 1 + 1) 1 \right) = \frac{1}{4} \left(-3 1 \right) = -1$. Assume $\sum_{k=1}^{n} (-1)^k k = \frac{1}{4} \left((-1)^n (2n+1) 1 \right)$. Now,

$$\sum_{k=1}^{n+1} (-1)^k k = \sum_{k=1}^n (-1)^k k + (-1)^{n+1} (n+1)$$

$$= \frac{1}{4} \Big((-1)^n (2n+1) - 1 \Big) + (-1)^{n+1} (n+1)$$

$$= \frac{1}{4} \Big[(-1)^n (2n+1) - 1 + 4(-1)^{n+1} (n+1) \Big]$$

$$= \frac{1}{4} \Big[-(-1)^{n+1} (2n+1) - 1 + 4(-1)^{n+1} (n+1) \Big]$$

$$= \frac{1}{4} \Big[(-1)^{n+1} (4(n+1) - (2n+1)) - 1 \Big]$$

$$= \frac{1}{4} \Big[(-1)^{n+1} (2n+3) - 1 \Big]$$

$$= \frac{1}{4} \Big[(-1)^{n+1} (2(n+1) + 1) - 1 \Big].$$