Exploring Weather Trends

Steps

SQL

Initialy we needed to extract the csv files needed for visualization & interpretation.

Thus, I extracted the global data simply as:

```
SELECT * FROM global data
```

Then I needed to choose my country only, thus I used the below SQL statement:

```
SELECT * FROM city_data
where city = 'Cairo'
```

Then I downloaded the csv files & took a look at them manually to just make sure everything is in place.

Python (Pandas & Matplotlib)

After that, I used pandas to read the csv files for interpretation & matplotlib for visualization.

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
```

Out[2]:

		year	city	country	avg_temp
-	0	1849	Abidjan	Côte D'Ivoire	25.58
	1	1850	Abidjan	Côte D'Ivoire	25.52
	2	1851	Abidjan	Côte D'Ivoire	25.67
	3	1852	Abidjan	Côte D'Ivoire	NaN
	4	1853	Abidjan	Côte D'Ivoire	NaN

Out[3]:

	year	avg_temp
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47

In [4]: glb_df.info()

	year	city	country	avg_temp
12578	1808	Cairo	Egypt	17.11
12579	1809	Cairo	Egypt	19.87
12580	1810	Cairo	Egypt	19.93
12581	1811	Cairo	Egypt	20.00
12582	1812	Cairo	Egypt	19.93

Moving Average

- The average was calculated by the trailing years, 1, 2, 3 etc. We used the cumsum for cummulative sum & just divided by the trailing years using range.
- Moreover, the other method was used using a window of 5 years.

```
In [6]: def rolling_avg(df):
    df_cumsum = df['avg_temp'].cumsum()
    df_cumsum = df_cumsum / range(1, df.shape[0] + 1)
    return df_cumsum
```

```
In [21]: plt.xlabel('Years')
    plt.ylabel('Average Temperature (Celisus)')
    plt.title('Global & Cairo Average Temperatures')
    plt.plot(cairo_df['year'], cairo_df.rolling(5)['avg_temp'].mean())
    plt.plot(glb_df['year'], glb_df.rolling(5)['avg_temp'].mean())
    plt.legend(['Cairo', 'Global'])
```

Out[21]: <matplotlib.legend.Legend at 0x1f9619ed4e0>


```
In [22]: plt.xlabel('Years')
    plt.ylabel('Average Temperature')
    plt.title('Cairo Average Temperature (Celisus)')
    plt.plot(cairo_df['year'], rolling_avg(cairo_df))
```

Out[22]: [<matplotlib.lines.Line2D at 0x1f961a43898>]


```
plt.xlabel('Years')
plt.ylabel('Average Temperature (Celisus)')
plt.title('Global Average Temperature')
plt.plot(glb_df['year'], rolling_avg(glb_df))
```

Out[23]: [<matplotlib.lines.Line2D at 0x1f961aa36d8>]

Interpretations

As shown in the above figures that:

- Cairo is much hotter the average of the global temperatures with a difference in the range of 12 to 14 °C.
- Other than the initial spikes in both the global & Cairo's metrics, the difference is constant.
- The trend is that the world is getting hotter and hotter (Global Warming).

- Cairo's weather started to take an increasing trend after the 1800, while the global measure had some fluctuations.
- Cairo's Temperature data was not recorded from the beginning of 1750 as the global metrics