## **Problèmes**





# Manipulation des tableaux numpy

### Problème (Pivot de Gauss):

Le but de ce problème est la programmation du pivot de Gauss pour la résolution des systèmes linéaires et pour le calcul de la matrice inverse.

#### Question1:

Étant donnée une matrice A et un indice j, écrire la fonction  $pivot\_index(A,j)$  qui renvoie l'indice  $p \ge j$  tels que  $a_{pj}$  est non nul.

#### Question 2:

Pour minimiser les erreurs d'arrondi, il faut choisir un pivot maximal en valeur absolue (dans une ligne non encore traitée). On aura besoin de |x|=math.fabs(x) avec le module math importé.

Étant donnée une matrice A et un indice j, écrire la fonction **pivot\_index\_partiel(A,j)** qui renvoie l'indice  $p \ge j$  tels que  $|a_{pj}|$  est maximal.

#### Question 3:

Ecrire une fonction **swap\_lines(A,i,j)** qui prend en argument une matrice A, un indice i et un indice j et qui modifie la matrice A en permutant la ligne d'indice i avec la ligne d'indice j.

#### Question4:

Ecrire une fonction  $transvection\_lines(A, i1, i2, lamda)$  qui réalise l'opération de transvection. Les arguments seront une matrice A, deux indices i1et i2, et un coefficient lamda. L'opération sera : L  $_{i1} \leftarrow L_{i1} + \lambda L_{i2}$  .

### Question5:

Ecrire une fonction *triangulaire\_sup(A, b)* qui par opérations élémentaires sur les lignes des matrices A et b, réalise l'étape de descente de la méthode du pivot de Gauss.

#### Question 6:

Étant donnés une matrice A triangulaire supérieure, et un vecteur b. Ecrire une fonction *gauss(A0, b0)* qui prend en argument une matrice A0 inversible et un vecteur b0 et renvoie le vecteur X : la solution du système linéaire A0 X = b0. Vérifier le résultat obtenu avec la fonction *numpy.linalg.solve(A0,b0)*.

#### Question 7:

La méthode du pivot conduit à passer de la matrice A à la matrice  $I_n$  par une succession d'opérations élémentaires sur les lignes. En appliquant la même succession d'opérations sur la matrice  $I_n$  on obtient la matrice inverse  $A^{-1}$ 

Ecrire une fonction *inverse(A)* qui calcule l'inverse de la matrice A par la méthode du pivot. On travaillera sur une copie de A pour ne pas modifier cette dernière. Vérifier le résultat obtenu avec la fonction *numpy.linalg.inv(A0)*