Word Vectors (Part 1)

CS114B Lab 6

Kenneth Lai

March 10, 2022

- "You shall know a word by the company it keeps." (Firth 1957)
- "It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles 1991) (emphasis mine)

- "You shall know a word by the company it keeps." (Firth 1957)
- "It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris 1951)
- ► "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles 1991) (emphasis mine)
- Words can be represented by (abstractions over) their contexts

► Representations of (contexts of) words as embeddings in some vector space

- Representations of (contexts of) words as embeddings in some vector space
- ► Two approaches to distributed, distributional representations (Baroni et al. 2014):

- Representations of (contexts of) words as embeddings in some vector space
- ► Two approaches to distributed, distributional representations (Baroni et al. 2014):
 - Count-based

- Representations of (contexts of) words as embeddings in some vector space
- ► Two approaches to distributed, distributional representations (Baroni et al. 2014):
 - Count-based
 - Count occurrences of words in contexts, optionally followed by some mathematical transformation (e.g. tf-idf, PPMI, SVD)

- Representations of (contexts of) words as embeddings in some vector space
- ► Two approaches to distributed, distributional representations (Baroni et al. 2014):
 - Count-based
 - Count occurrences of words in contexts, optionally followed by some mathematical transformation (e.g. tf-idf, PPMI, SVD)
 - Prediction-based

- Representations of (contexts of) words as embeddings in some vector space
- ► Two approaches to distributed, distributional representations (Baroni et al. 2014):
 - Count-based
 - Count occurrences of words in contexts, optionally followed by some mathematical transformation (e.g. tf-idf, PPMI, SVD)
 - Prediction-based
 - Given some context vector(s) c, predict some word x (or vice versa)
 - a.k.a. language modeling-based

Count-Based Word Vectors

What are contexts?

Count-Based Word Vectors

- What are contexts?
 - Contexts are documents
 - ► Term-document matrices

Count-Based Word Vectors

- What are contexts?
 - Contexts are documents
 - ► Term-document matrices
 - Contexts are words (within some window)
 - ► Term-term matrices

Term-Document Matrices

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	П	O	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red boxes show that each document is represented as a column vector of length four.

▶ Document vectors: coordinates are counts of each word in the document

Term-Document Matrices

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13)
good fool	114	80	62	89)
fool	36	58	1	4)
wit	20	15	2	3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red boxes show that each word is represented as a row vector of length four.

Word vectors: coordinates are counts of the word in each document

Term-Term Matrices

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions (hand-picked for pedagogical purposes). The vector for *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

 Word vectors: coordinates are counts of times the row (target) word and the column (context) word co-occur in some context in some training corpus

Term-Term Matrices

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions (hand-picked for pedagogical purposes). The vector for *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

- Word vectors: coordinates are counts of times the row (target) word and the column (context) word co-occur in some context in some training corpus
 - e.g., in a 4 word window (4 words to the left and 4 words to the right)

▶ Words that occur frequently in some contexts are important

- ▶ Words that occur frequently in some contexts are important
 - But words that occur frequently in every context are not!

- Words that occur frequently in some contexts are important
 - But words that occur frequently in every context are not!
- Term frequency-inverse document frequency (tf-idf)
 - Words that occur in most/all documents are less important
 - More useful for document vectors

- Words that occur frequently in some contexts are important
 - But words that occur frequently in every context are not!
- Term frequency-inverse document frequency (tf-idf)
 - Words that occur in most/all documents are less important
 - More useful for document vectors
- ► Positive pointwise mutual information (PPMI)
 - ► How often do two words co-occur in some context, compared with what we would expect by chance?

- "You shall know a word by the company it keeps." (Firth 1957)
- "It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles 1991) (emphasis mine)
- Similar words should have similar contexts.

- "You shall know a word by the company it keeps." (Firth 1957)
- "It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles 1991) (emphasis mine)
- Similar words should have similar vectors

- "You shall know a word by the company it keeps." (Firth 1957)
- "It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles 1991) (emphasis mine)
- Similar words should have similar vectors
 - How to measure similarity (or distance) between vectors?

► A normed vector space is a vector space with a norm

- ► A normed vector space is a vector space with a norm
 - ► A norm generalizes the notion of "length"

- ► A normed vector space is a vector space with a norm
 - A norm generalizes the notion of "length"
- ▶ On a real coordinate space, we can define the Euclidean norm

$$||\mathbf{x}|| = \sqrt{\sum_{j=1}^{n} x_j^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

- A normed vector space is a vector space with a norm
 - A norm generalizes the notion of "length"
- ▶ On a real coordinate space, we can define the Euclidean norm

$$||\mathbf{x}|| = \sqrt{\sum_{j=1}^{n} x_j^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

► A norm induces a distance (induced metric)

- ► A normed vector space is a vector space with a norm
 - A norm generalizes the notion of "length"
- ▶ On a real coordinate space, we can define the Euclidean norm

$$||\mathbf{x}|| = \sqrt{\sum_{j=1}^{n} x_j^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

- A norm induces a distance (induced metric)
- ► Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{y} - \mathbf{x}|| = \sqrt{\sum_{j=1}^{n} (y_j - x_j)^2}$$

► Euclidean distance favors long vectors

► Euclidean distance favors frequent words

- Euclidean distance favors frequent words
- ► Consider the "angle" between two vectors, rather than distance

- Euclidean distance favors frequent words
- Consider the "angle" between two vectors, rather than distance
- ► Cosine similarity

$$\cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| \ ||\mathbf{y}||}$$

Sparse and Dense Vectors

► tf-idf and PPMI vectors are long and sparse

Sparse and Dense Vectors

- ▶ tf-idf and PPMI vectors are long and sparse
- ▶ We want to learn vectors that are short and dense

► Idea: Given a matrix X (where rows are vectors), apply a linear map V

$$\textbf{T} = \textbf{X} \cdot \textbf{V}$$

► Idea: Given a matrix X (where rows are vectors), apply a linear map V

$$\mathbf{T} = \mathbf{X} \cdot \mathbf{V}$$

▶ If we choose **V** correctly, then **T** is a projection of **X** onto a new coordinate space, where the first coordinate (called the first principal component) has the greatest variance, the second coordinate has the second greatest variance, etc.

► Idea: Given a matrix X (where rows are vectors), apply a linear map V

$$\mathbf{T} = \mathbf{X} \cdot \mathbf{V}$$

- ▶ If we choose **V** correctly, then **T** is a projection of **X** onto a new coordinate space, where the first coordinate (called the first principal component) has the greatest variance, the second coordinate has the second greatest variance, etc.
 - ightharpoonup (Specifically, the columns of $m {f V}$ are the eigenvectors of $m {f X}^T \cdot {f X}$)

► Then we can truncate our new vectors (rows of **T**) to dimension *L* by keeping only the first *L* principal components

$$\mathbf{T}_L = \mathbf{X} \cdot \mathbf{V}_L$$

► Then we can truncate our new vectors (rows of T) to dimension L by keeping only the first L principal components

$$\mathbf{T}_L = \mathbf{X} \cdot \mathbf{V}_L$$

ightharpoonup Our new vectors (rows of T_L) are short and dense, but retain much of the variance in the original vectors

Singular Value Decomposition

As it turns out, we can get V (technically V^T) from the singular value decomposition (SVD) of X

$$\boldsymbol{X} = \boldsymbol{U} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{V}^{\mathcal{T}}$$

References

- Baroni, Marco, Georgiana Dinu, and Germán Kruszewski. "Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors." Proceedings of ACL. 2014.
- ► Firth, John R. "A synopsis of linguistic theory, 1930-1955." Studies in linguistic analysis (1957).
- ► Harris, Zellig S. Methods in structural linguistics. 1951.
- Miller, George A., and Walter G. Charles. "Contextual correlates of semantic similarity." Language and cognitive processes 6.1 (1991): 1-28.