Introduction to Student Projects

Computational Visual Design (CVD-Lab), DIA, "Roma Tre" University, Rome, Italy

Biomedical Informatics - March 14, 2013

Towards web modeling of geometric data

 New problems in science and technology require solid modeling and multiphysics simulation on big data sets,

- New problems in science and technology require solid modeling and multiphysics simulation on big data sets,
- using the computational infrastructure provided by web-as-a-platform and platform-as-a-service paradigms

- New problems in science and technology require solid modeling and multiphysics simulation on big data sets,
- using the computational infrastructure provided by web-as-a-platform and platform-as-a-service paradigms
- Most of the methodologies underlying solid and physical modeling to be rethought from scratch

- New problems in science and technology require solid modeling and multiphysics simulation on big data sets,
- using the computational infrastructure provided by web-as-a-platform and platform-as-a-service paradigms
- Most of the methodologies underlying solid and physical modeling to be rethought from scratch
- Going towards the availability of simple, general-purpose, dimension-independent geometric data structures and computational methods

Today, the ICT world is changing at a furious pace

Today, the ICT world is changing at a furious pace but the most used software tools in the PLM industry still follow the basic approach established twenty years ago:

non-manifold topology,

- non-manifold topology,
- boundary representation,

- non-manifold topology,
- boundary representation,
- NURBS curves and surfaces,

- non-manifold topology,
- boundary representation,
- NURBS curves and surfaces,

Today, the ICT world is changing at a furious pace

but the most used software tools in the PLM industry still follow the basic approach established twenty years ago:

- non-manifold topology,
- boundary representation,
- NURBS curves and surfaces,

and therefore requiring

▶ pre-processors (Delaunay triangulations) towards PDE solvers

Today, the ICT world is changing at a furious pace

but the most used software tools in the PLM industry still follow the basic approach established twenty years ago:

- non-manifold topology,
- boundary representation,
- NURBS curves and surfaces,

and therefore requiring

- ▶ pre-processors (Delaunay triangulations) towards PDE solvers
- post-processors towards graphics renderers and user interfaces

are posed by old and new application fields, namely

material science

are posed by old and new application fields, namely

material science

engineered surfaces,

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

biomedicine

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

biomedicine

where modeling and simulation issues range from the molecular/protein level to multiscale modeling of

subcellular organelles,

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

biomedicine

- subcellular organelles,
- cellular structures,

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

biomedicine

- subcellular organelles,
- cellular structures,
- tissues and

are posed by old and new application fields, namely

material science

- engineered surfaces,
- nanomaterials and
- metamaterials

biomedicine

- subcellular organelles,
- cellular structures,
- tissues and
- organs.

► Technological advances have made it possible to acquire large sets of biomedical data at a fast rate with affordable costs.

Technological advances have made it possible to acquire large sets of biomedical data at a fast rate with affordable costs.

The ease of producing and collecting data over the Internet is causing a shift of paradigm in the approach to science and technology:

► Technological advances have made it possible to acquire large sets of biomedical data at a fast rate with affordable costs.

- The ease of producing and collecting data over the Internet is causing a shift of paradigm in the approach to science and technology:
- from physical prototyping and testing

Technological advances have made it possible to acquire large sets of biomedical data at a fast rate with affordable costs.

- The ease of producing and collecting data over the Internet is causing a shift of paradigm in the approach to science and technology:
- from physical prototyping and testing
- to virtual prototyping and mathematical modeling

► Technological advances have made it possible to acquire large sets of biomedical data at a fast rate with affordable costs.

- The ease of producing and collecting data over the Internet is causing a shift of paradigm in the approach to science and technology:
- from physical prototyping and testing
- to virtual prototyping and mathematical modeling
- to simulate and predict behavior and performance

Towards novel solid and physical modeling

Conventional geometric modeling

Conventional geometric modeling is rather limited in scope,

being typically restricted to certain classes of triangulations or tensor-product domains in 2D or 3D, and most often confined to boundary representations.

Contrariwise, we need out-of-the-box computational representations and methods that support geometrical and physical computations on meshes of any sort.

Modeling inside boundaries: cellular complexes

All meshes—partitioning either the boundary or the interior of the model domain—and all physical quantities associated with them, may be properly represented by chain/cochain complexes.

A chain complex is a sequence of linear spaces of d-chains, $0 \le d \le n$, together with a sequence of linear boundary operators ∂ , each mapping the space of d-chains into the space of (d-1)-chains.

Cochain complexes are dual to chain complexes; the coboundary operators δ , mapping the spaces of d-cochains into the spaces of (d+1)-cochains are dual to the boundary operators partial.