機器與深度學習基礎知識初探 -Loss Function

黄志勝 Chih-Sheng (Tommy) Huang

義隆電子人工智慧研發部

國立陽明交通大學AI學院合聘助理教授

Introduction

• In learning algorithm, there is an assumption, which may accompany with an object function.

K-mean: minimizing the mean of square error between data and centers.

PCA: maximizing the variance of project data.

SVM: maximizing the margin.

Regression: minimizing the mean square errors (MSE)

Sometimes the same model but different object function can lead different results. (Linear regression and ridge regression)

Introduction

1. Regression

MSE, MAE, Huber Loss

2. Classification

Cross entropy, Focal loss

3. Triple loss

Residual

· Residual: predicted value v.s. target value.

Regression:

$$y - \hat{y}$$

Classification (error):

$$sign(\hat{y}, y) = \begin{cases} 1 & \hat{y} = \hat{y} \\ 0 & \hat{y} \neq \hat{y} \end{cases}$$

$$error \ rate = \frac{1}{n} \sum_{i=1}^{n} sign(\hat{y}_i, y_i)$$

MSE & MAE

Mean Square Error (MSE)

Mean Absolute Error (MAE)

Why square or absolute?

Target value: $y_1 = 0$, $y_2 = 1$

Predicted value: $\hat{y}_1 = 100$, $\hat{y}_2 = 99$

Residual $1=y_1 - \hat{y}_1 = 0 - 100 = -100$

Residual $2=y_2 - \hat{y}_2 = 1 - (-99) = 100$

Residual 1+ Residual 2 = -100 + 100 = 0

MSE & MAE

Mean Square Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

MSE & MAE

Trend of residual (target value =0)

With a fair baseline, RMSE (root MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Change ID5 with a outliner

ID	residual	residual	residual ²					
1	-10	10	100					
2	-5	5	25					
3	0	0	0					
4	5	5	25					
5	10	10	100					
	MAE=6, RMSE=7.07							

ID	residual	residual	residual ²					
1	-10	10	100					
2	-5	5	25					
3	0	0	0					
4	5	5	25					
5 100		100	10000					
N	MAE=24, RMSE=45.06							

Problem of MSE: more outlier sensitivity.

- Problem of MAE: same gradient value.
- When loss is small, it's difficult to reach the optimal target.

$$f_1(x) = x^2, f'_1(x) = 2x$$

 $f_2(x) = |x|, f'_2(x) = \frac{x}{|x|}$

Gradient update:

$$x^{t+1} \rightarrow x^t + rf'(x)$$

Suppose: $x^0 = 2$, r = 0.3

	f(x))=x ²	f(x)= x				
t	x t	f'(x)	x **1	t	x t	f'(x)	x *+1
1	2	4	0.8	1	2	1	1.7
2	0.8	1.6	0.32	2	1.7	1	1.4
3	0.32	0.64	0.128	3	1.4	1	1.1
4	0.128	0.256	0.0512	4	1.1	1	0.8
5	0.0512	0.1024	0.02048	5	0.8	1	0.5
6	0.02048	0.04096	0.008192	6	0.5	1	0.2
7	0.008192	0.016384	0.003277	7	0.2	1	-0.1
8	0.003277	0.006554	0.001311	8	-0.1	-1	0.2
9	0.001311	0.002621	0.000524	9	0.2	1	-0.1
10	0.000524	0.001049	0.00021	10	-0.1	-1	0.20
11	0.000210	0.000419	0.000084	11	0.20	1	-0.1
12	0.000084	0.000168	0.000034	12	-0.10	-1	0.20
13	0.000034	0.000067	0.000013	13	0.20	1	-0.10
14	0.000013	0.000027	0.000005	14	-0.10	-1	0.20
15	0.000005	0.000011	0.000002	15	0.20	1	-0.10
16	0.000002	0.000004	0.000001	16	-0.10	-1	0.20
17	0.000001	0.000002	0.0000000	17	0.20	1	-0.10
18	0.000000	0.000001	0.0000000	18	-0.10	-1	0.20
19	0.000000	0.000000	0.0000000	19	0.20	1	-0.10
20	0.000000	0.0000000	0.000000	20	-0.10	-1	0.20

Huber Loss

Huber loss:

$$Loss(y, \hat{y})$$

$$=\begin{cases} \frac{1}{2}(y - \hat{y})^2, & |y - \hat{y}| \le \delta \\ \delta(|y - \hat{y}| - \frac{1}{2}\delta), & 0.W \end{cases}$$

 δ : parameter of Huber loss.

MAE, MSE & Huber Loss

ID	residual	residual	residual ²	Huber (δ =1)	Huber (δ=10)
1	-10	10	100	9.5	50
2	-5	5	25	4.5	12.5
3	0	0	0	0	0
4	5	5	25	4.5	12.5
5	10	10	100	9.5	50

MAE=6, RMSE=7.07 MeanHuber(δ =1)=5.6, MeanHuber(δ =10)=25

ID	residual	residual	residual residual ²		Huber (δ=10)
1	-10	10	100	9.5	50
2	-5	5	25	4.5	12.5
3	0	0	0	0	0
4	5	5	25	4.5	12.5
5	100	100	10000	99.5	950

MAE=24, RMSE=45.06 MeanHuber(δ=1)=23.6, MeanHuber(δ=10)=205

Classification

Classification:

$$sign(\hat{y}, y) = \begin{cases} 1 & y = \hat{y} \\ 0 & y \neq \hat{y} \end{cases}$$

$$error\ rate = 1 - \frac{1}{n} \sum_{i=1}^{n} sign(\hat{y}_i, y_i)$$

We hope less error rate more better in classification.

Can we use the classification error rate/accuracy as loss function?

Classification

		Model 1 (輸出)				Model 2 (輸出)			
		機率輸出		判斷	機率輸出			Met Hidde	
	Target (Label)	男生	女生	其他	ナリ 岡	男生	女生	其他	判斷
data 1	男生	0.4	0.3	0.3	男生 (正確)	0.7	0.1	0.2	男生 (正確)
data 2	女生	0.3	0.4	0.3	女生(正確)	0.1	0.8	0.1	女生 (正確)
data 3	男生	0.5	0.2	0.3	男生 (正確)	0.9	0.1	0	男生 (正確)
data 4	其他	0.8	0.1	0.1	男生 (錯誤)	0.4	0.3	0.3	男生 (錯誤)
		模型1錯誤率: 1/4=0.25				模型2錯誤率: 1/4=0.25			

Can we observe any difference between model 1 & 2 from <u>error rate</u>? NO...

BUT we can observe that model 2 has better probability outputs than model 1.

Error rate cannot as learning object for learning updating, it's just a metric for evaluating model performance.

Classification

- How do we make decision for a new sample in classification model?
- ANS: posterior probability.

Cross-entropy

- Cross-entropy is usually used in classification loss.
- **Entropy**: the average of information which is produced by a stochastic source of data.
- **Information gain**: (suppose *X* is a random variable)

$$I(x) = -log_2(p(x))$$

Information gain

A is stupid, and his grades usually are around 50 marks.

B is smart, and his grades usually are almost 100 marks.

Probability to pass the exam for A: $p(x_A) = 0.4$

$$I(x_A) = -log_2(p(x_A)) = 1.322$$

Probability to pass the exam for B: $p(x_B) = 0.99$

$$I(x_B) = -log_2(p(x_B)) = 0.014$$

Entropy: the average of information which is produced by a stochastic source of data.

In information theory,

Entropy = Shannon entropy

$$H(X) = \sum_{i} -p_{i}log_{2}(p_{i})$$

Generally, entropy refers to uncertainty for the random variable X.

$$p(x_A = pass) = 0.4,$$
 $p(x_A = fail) = 0.6$ $p(x_B = pass) = 0.99,$ $p(x_B = fail) = 0.01$

$$H(X) = \sum_{i} -p_{i} \log_{2}(p_{i})$$

$$H(X_{A}) = -0.4 \log(0.4) - 0.6 \log(0.6) = 0.971$$

$$H(X_{B}) = -0.99 \log(0.99) - 0.01 \log(0.01) = 0.081$$

Same conclusion for information gain.

$$I(x_A) = -log_2(p(x_A)) = 1.322$$

 $I(x_B) = -log_2(p(x_B)) = 0.014$

When p=0.5 has the largest entropy.

$$p(X_A) = \begin{cases} 0.1 & x = 1 \\ 0.15 & x = 2 \\ 0.5 & x = 3 \\ 0.15 & x = 4 \\ 0.1 & x = 5 \end{cases} \quad p(X_A) = \begin{cases} 0.01 & x = 1 \\ 0.09 & x = 2 \\ 0.8 & x = 3 \\ 0.09 & x = 4 \\ 0.01 & x = 5 \end{cases} \quad p(X_B) = \begin{cases} 0.2 & x = 1 \\ 0.2 & x = 2 \\ 0.2 & x = 3 \\ 0.2 & x = 4 \\ 0.2 & x = 5 \end{cases}$$

$$H(X_A) = 1.985 \qquad H(X_A) = 1.016 \qquad H(X_B) = 2.322$$

Cross-entropy

Formula of cross- entropy:

$$H = \sum_{i=1}^{n} \sum_{c=1}^{c} -y_{c,i} log_2(p_{c,i})$$

C: number of class (male, female, other)

n: number of data

 $y_{c,i}$: binary indicator (0 or 1) from one hot encode (*i*-th data assigns to *c*-class)

 $p_{c,i}$: probability of *i*-th data assigns to *c*-class

One hot encode (Dummy variable)

Data 1	Male
Data 2	Female
Data 3	Male
Data 4	Other

Male Female Other

	Male	Female	Other
Data 1	1	0	0
Data 2	0	1	0
Data 3	1	0	0
Data 4	0	0	1

Cross-entropy
$$H = \sum_{i=1}^{n} \sum_{c=1}^{s} -y_{c,i} log_2(p_{c,i})$$

		Model 1 (輸出)							
		村	幾率輸出	H	實際O	ne-hot	encode		
	Target (Label)	男生	女生	其他	男生	女生	其他		
data 1	男生	0.4	0.3	0.3	1	0	0		
data 2	女生	0.3	0.4	0.3	0	1	0		
data 3	男生	0.5	0.2	0.3	1	0	0		
data 4	其他	0.8	0.1	0.1	0	0	1		
			-		率: 1/4= copy=6.				

SO less probability data has larger loss function (entropy value)→learning target.

Data 1:

$$\sum_{c=1}^{C} -y_{c,1}log_2(p_{c,1})$$

$$= -1 * log(0.4) - 0 * log(0.3) - 0$$

$$* log(0.3) = 1.322$$
Data 4:

$$\sum_{c=1}^{C} -y_{c,4}log_2(p_{c,4})$$

$$\sum_{c=1}^{c} -y_{c,4}log_2(p_{c,4})$$

$$= -0 * log(0.8) - 0 * log(0.1) - 1$$

$$* log(0.1) = 3.3219$$

Cross-entropy for evaluating the model performance

		Model 1 (輸出)							
		榜	幾率輸出	<u> </u>	實際One-hot encode				
	Target (Label)	男生	女生	其他	男生	女生	其他		
data 1	男生	0.4	0.3	0.3	1	0	0		
data 2	女生	0.3	0.4	0.3	0	1	0		
data 3	男生	0.5	0.2	0.3	1	0	0		
data 4	其他	0.8	0.8 0.1 0.1 0 0 1						
			模型1錯誤率: 1/4=0.25						
			Cro	ss-enti	ropy=6.	966			

		Model 2 (輸出)							
		₽ P	幾率輸出		實際One-hot encode				
	Target (Label)	男生	女生	其他	男生	女生	其他		
data 1	男生	0.7	0.1	0.2	1	0	0		
data 2	女生	0.1	0.8	0.1	0	1	0		
data 3	男生	0.9	0.1	0	1	0	0		
data 4	其他	0.4	0.3	0.3	0	0	1		
		模型1錯誤率: 1/4=0.25							
			Cro	ss-entr	copy=2	.310			

Cross-entropy for loss function

Focal loss (1/3)

Cross-entropy (CE) for $y \in \{\pm 1\}$

$$CE(p,y) = \begin{cases} -\log(p), & if \ y = 1 \\ -\log(1-p), & if \ y = -1 \end{cases}$$

$$CE(p,y) = CE(p_t) = -\log(p_t), \qquad p_t = \begin{cases} p, & if \ y = 1 \\ 1-p, & if \ y = -1 \end{cases}$$

Focal loss (2/3)

 α -balanced cross-entropy:

$$CE(p_t) = -\alpha \log(p_t)$$

BUT it's not effect for larger class unbalance problem.

Modulating factor:

$$(1-p_t)^r$$

r: focusing parameter, $r \ge 0$.

Focal loss:

$$FL(p_t) = -(1 - p_t)^r \log(p_t)$$

α-balanced focal loss:

$$FL(p_t) = -\alpha (1 - p_t)^r \log(p_t)$$

Focal loss (3/3)

Triple

Anchor: a randomly training data with label c

Positive: training data in label c

Negative: training data in other labels

Anchor: x_i^a Encoder network: f(x)

Positive: x_i^p Anchor: $f(x_i^a)$

Negative: x_i^n Positive: $f(x_i^p)$

Negative: $f(x_i^n)$

triple loss aims to

$$dist(f(x_i^a),(x_i^p)) \downarrow$$

$$dist(f(x_i^a),(x_i^n)) \uparrow$$

$$dist(f(x_i^a), f(x_i^p)) + \alpha < dist(f(x_i^a), f(x_i^n))$$

$$\Rightarrow \|f(x_i^a) - f(x_i^p)\|_2^2 + \alpha < \|f(x_i^a) - f(x_i^n)\|_2^2$$

$$\arg\min\{\sum_{i}\left(\left\|f(x_{i}^{a})-f(x_{i}^{p})\right\|_{2}^{2}+\alpha-\left\|f(x_{i}^{a})-f(x_{i}^{n})\right\|_{2}^{2}\right)\}$$

$$\arg\min\sum_{i} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} + \alpha - \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2} \right]_{+}$$

$$[d_{p} - d_{n} + \alpha]_{+} = \begin{cases} d_{p} - d_{n} + \alpha & d_{p} - d_{n} + \alpha > 0 \\ 0 & d_{p} - d_{n} + \alpha < 0 \end{cases}$$

Conclusion

Negative

MSE, MAE, Huber loss, triple loss do the same thing.

Similarity measurement.

Cosine loss

Can MSE be a loss for classification?