Mahir Kaya

github.com/mhk-code2005 | 781-975-4131 | mahirkaya@utexas.edu

EDUCATION

The University of Texas at Austin, Austin, TX

May 2026

Bachelor of Science in Computer Science, GPA 3.9075

Relevant Coursework Data Structures, Computer Organization and Architecture, Discrete Mathematics, Machine Learning from Coursera, Intro to Probability and Statistics, Linear Algebra

EXPERIENCE

Student Researcher for Spark Research Lab with Dr. Mohit Tiwari

March 2024 - Present

• Involved in **Cybersecurity** and **ML** research on the utilization of Reinforcement Learning to generate algorithms to identify eviction sets for different randomized caches such as 4 set, 2 way caches and training existing RL models for **40>** epochs to test the current methods

Research Assistant at UT Austin for Henkelman Group

August 2023 - October 2023

- Researched partitioning an A100 GPU Node for concurrent VASP calculations.
- Implemented a **VASP** Force Field Machine Learning Algorithm and gathered data of Bayesian and Root Mean Squared Error of Forces for several compound molecules such as **H4_3H2O**, **4H2O**, and **3H2O**

Software Engineer at FAIK.AI

May 2023 - August 2023

- Developed a HIPAA compliant Android app which diagnoses glaucoma from a USB microscope.
- Implemented a frontend with Kotlin and Firebase and backend with Python and Docker.
- Implemented computer vision algorithms and trained object detection models in order to track eye movement and detect user error as well as created datasets and labeled around **500** images for object detection models.

Student Researcher at UT Austin HSRA

June 2022 - July 2022

- Developed a modified gradient descent algorithm to discover the optimum catalyst by converging on the combination of atoms that has minimum binding energy with hydrogen with **Python**
- Used binding energies found by chemical calculations to calculate 2 gradient matrices for 3 binding atoms and 76 atoms

PROJECTS

- Systems Emulator: Developed a software emulation of a 5-stage CPU with simple two level memory hierarchy and integrated cache that can run the charm-v3 instruction subset of ARM Assembly code. Implemented multi-stage pipelines and LRU algorithm for evicting a cache line to increase performance as well as programmed an ALU (Arithmetic Logical Unit) which was integrated into the pipeline using C
- JP Morgan Chase Virtual Engineering Program: Fixed broken files in the repository to make web application output correctly and used JPMorgan Chase's open source library called Perspective to generate a live graph that displays a data feed in a clear and visually appealing way for traders to monitor.
- **Memory Manager Program:** Built and optimized a dynamic storage allocator for **C** programs that has up to **85%** space utilization and an average throughout over **1400** by partitioning memory blocks gotten from the **OS** and sharing them with the user accordingly. The program semantics matches the standard *malloc* and *free* routines.
- Huffman Compressor: Implemented the Huffman Coding Compression Algorithm to compress large files with 40% compression rate for text files without any data loss using OOP techniques
- Minesweeper Al Agent: Constructed a knowledge-based Al agent able to take actions and make inferences based on a knowledge base consisting of previous moves to play Minesweeper game using **Python**

TECHNICAL SKILLS

Languages and Technologies: Python, Java, C, Arm Assembly, Octave, Kotlin/Matlab, HTML, Prolog, YOLOv8, Firebase, VASP,
Docker, Git, Linux, Numpy, Matplotlib, Tensorflow