Inequalities Notes

Abror Maksudov

Last Updated: May 22, 2025

Contents

1	Intr	oduction	2			
2	Definitions 2					
	2.1	Majorization	2			
	2.2	Convex Function	2			
	2.3	Cyclic Sum	2			
	2.4	Symmetric Sum	3			
	2.5	Elementary Symmetric Polynomials	3			
	2.6	Elementary Symmetric Mean	4			
3	Inequalities 4					
	3.1	AM-GM Inequality	4			
	3.2	Weighted AM-GM Inequality	4			
	3.3	Power Mean Inequality	5			
	3.4	Weighted Power Mean Inequality	5			
	3.5	HM-GM-AM-QM Inequalities	6			
	3.6	Bernoulli's Inequality	6			
	3.7	Jensen's Inequality	6			
	3.8	Karamata's Inequality	7			
	3.9	Popoviciu's Inequality	7			
	3.10	Newton's Inequality	7			
	3.11	Maclaurin's Inequality	7			
	3.12	Cauchy–Schwarz Inequality	8			
		Titu's Lemma/Sedrakyan's Inequality/Engel's Form	8			
	3.14	Hölder's Inequality	8			
	3.15	Minkowski Inequality	9			
	3.16	Generalized Minkowski Inequality	9			
		Young's Inequality	10			
	3.18	Rearrangement Inequality	10			
		Chebyshev's Sum Inequality	10			
		Schur's Inequality	11			
	3.21	Muirhead's Inequality	11			
	3.22	Nesbitt's Inequality	11			
	3.23	Aczel's Inequality	11			
	3.24	Huygens Inequality	12			
	3.25	Heinz Mean Inequality	12			
	3.26	Mildorf's Inequality	12			
4	Sele	ected Inequalities	12			

5	Sele	ected Problems	13
6	Pro	ofs	13
	6.1	Proof of AM-GM Inequality using Induction	13
	6.2	Proof of AM-GM Inequality using Cauchy Induction	14
	6.3	Proof of AM-GM Inequality using Jensen's Method	15

1 Introduction

2 Definitions

2.1 Majorization

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be non-increasing sequences of real numbers. Then x is said to majorize y, denoted $x \succ y$, if the following conditions are satisfied:

1.
$$x_1 \ge x_2 \ge \cdots \ge x_n$$
 and $y_1 \ge y_2 \ge \cdots \ge y_n$;

2.
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i;$$

3.
$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i$$
 for all $k = 1, 2, \dots, n-1$.

Example: $(3,1,0) \succ (2,1,1), (12,0,0) \succ (4,4,4).$

2.2 Convex Function

A function $f:[a,b]\to\mathbb{R}$ is called *convex* (concave up) on [a,b] if and only if for all $x,y\in[a,b]$ and all $\lambda\in[0,1]$, the following inequality holds:

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$$

A function is called *concave* (concave down) if the inequality is flipped.

Additionally, convexity (concavity) can be determined by checking if $f''(x) \ge 0$ ($f''(x) \le 0$) holds for all $x \in [a, b]$.

Note that f is convex if and only if -f is concave.

Example (convex): x^2, e^x . Example (concave): $\ln x, \sqrt{x}$.

2.3 Cyclic Sum

The $cyclic \ sum$ of a function f over n variables is the sum over $all \ cyclic \ permutations$ of its arguments:

$$\sum_{\text{cyc}} f(a_1, a_2, \dots, a_n) = f(a_1, a_2, \dots, a_n) + f(a_2, a_3, \dots, a_n) + \dots + f(a_n, a_1, \dots, a_{n-1}).$$

The number of terms is equal to the number of variables: n.

Example: $f(a, b, c) = a^2b \implies \sum_{cvc} = a^2b + b^2c + c^2a$.

2.4 Symmetric Sum

The symmetric sum of a function f over n variables is the sum over all possible permutations of its arguments:

$$\sum_{\text{sym}} f(a_1, a_2, \dots, a_n) = \sum_{\sigma \in S_n} f(a_{\sigma(1)}, a_{\sigma(2)}, \dots, a_{\sigma(n)}),$$

where S_n is the set of all permutations of $\{1, 2, ..., n\}$.

The number of terms equals to the number of all permutations of the variables = n!.

Example: $f(a, b, c) = a^2b \implies \sum_{\text{sym}} = a^2b + a^2c + b^2a + b^2c + c^2a + c^2b$.

2.5 Elementary Symmetric Polynomials

Let t be a variable and x_1, x_2, \ldots, x_n be real numbers. Define:

$$P(x) = \prod_{i=1}^{n} (t+x_i) = (t+x_1)(t+x_2)\dots(t+x_n)$$

$$= t^n + (x_1 + \dots + x_n)t^{n-1} + (x_1x_2 + x_1x_3 + \dots)t^{n-2} + \dots$$

$$+ (x_2x_3 \dots x_n + x_1x_3 \dots x_n + \dots)t + x_1x_2x_3 \dots x_n$$

$$= 1 \cdot t^n + \left(\sum_{1 \le i \le n} x_i\right)t^{n-1} + \left(\sum_{1 \le i < j \le n} x_ix_j\right)t^{n-2} + \dots$$

$$+ \left(\sum_{1 \le i_1 < \dots < i_{n-1} \le n} x_{i_1}x_{i_2} \dots x_{i_{n-1}}\right)t + \prod_{i=1}^{n} x_i.$$

In other words,

$$P(x) = \prod_{i=1}^{n} (t + x_i) = c_0 t^n + c_1 t^{n-1} + c_2 t^{n-2} + \dots + c_{n-1} t + c_n,$$

where the coefficient c_k is the k-th elementary symmetric sum:

$$c_0 = 1,$$

$$c_1 = \sum_{1 \le i \le n} x_i,$$

$$c_2 = \sum_{1 \le i < j \le n} x_i x_j,$$

$$c_3 = \sum_{1 \le i < j < k \le n} x_i x_j x_k,$$

$$\dots,$$

$$c_n = \prod_{i=1}^n x_i.$$

In general, for $0 \le k \le n$

$$c_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \dots x_{i_k}.$$

Example: $x_1 = 1, x_2 = 2, x_3 = 3 \implies (x+1)(x+2)(x+3) = x^3 + (1+2+3)x^2 + (1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1)x + 1 \cdot 2 \cdot 3 = x^3 + 6x^2 + 11x + 6.$

2.6 Elementary Symmetric Mean

Let x_1, x_2, \ldots, x_n be real numbers. The k-th elementary symmetric mean is defined as:

$$d_k = \frac{c_k}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{1 < i_1 < i_2 < \dots < i_k < n} x_{i_1} x_{i_2} \dots x_{i_k}.$$

Example: $x_1 = 1, x_2 = 2, x_3 = 3 \implies d_2 = \frac{c_2}{\binom{3}{2}} = \frac{11}{3}$.

3 Inequalities

3.1 AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the following inequality holds:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n},$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$. More precisely,

$$\frac{1}{n}\sum_{i=1}^{n}a_{i} \geq \sqrt[n]{\prod_{i=1}^{n}a_{i}}.$$

Example: $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$.

3.2 Weighted AM-GM Inequality

Let $a_1, a_2, \ldots, a_n > 0$ and w_1, w_2, \ldots, w_n be positive integers. Then, by AM-GM we have:

$$\underbrace{\frac{a_1+a_1+\cdots+a_1}{w_1} + \underbrace{a_2+a_2+\cdots+a_2}_{w_2} + \cdots + \underbrace{a_n+a_n+\cdots+a_n}_{w_n}}_{w_1+w_2+\cdots+w_n}$$

$$\geq \left(\underbrace{a_1a_1\dots a_1}_{w_1}\underbrace{a_2a_2\dots a_2}_{w_2}\dots\underbrace{a_na_n\dots a_n}_{w_n}\right)^{\frac{1}{w_1+w_2+\cdots+w_n}}.$$

The above is equivalent to the following

$$\frac{w_1 a_1 + w_2 a_2 + \dots + w_n a_n}{w_1 + w_2 + \dots + w_n} \ge (a_1^{w_1} a_2^{w_2} \dots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \dots + w_n}}$$

More precisely,

$$\frac{\sum_{i=1}^{n} w_{i} a_{i}}{\sum_{i=1}^{n} w_{i}} \ge \left(\prod_{i=1}^{n} a_{i}^{w_{i}}\right)^{\frac{1}{\sum_{i=1}^{n} w_{i}}}$$

If we let $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$, we have:

$$w_1a_1 + w_2a_2 + \dots + w_na_n \ge a_1^{w_1}a_2^{w_2}\dots a_n^{w_n},$$

or, more precisely,

$$\sum_{i=1}^{n} w_i a_i \ge \prod_{i=1}^{n} a_i^{w_i}.$$

Example: $\frac{3a+2b+c}{6} \ge \sqrt[6]{a^3b^2c}$.

3.3 Power Mean Inequality

Let $a_1, a_2, \ldots, a_n > 0$. Then, the r-th power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} \left(\frac{a_1^r + \dots + a_n^r}{n}\right)^{1/r} & r \neq 0, \\ \sqrt[n]{a_1 a_2 \dots a_n} & r = 0. \end{cases}$$

Example:

•
$$r = -1$$
:
$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{n}{\sum_{i=1}^n \frac{1}{a_i}}$$
 (Harmonic Mean)

•
$$r = 0$$
:
$$\sqrt[n]{a_1 a_2 \dots a_n} = \left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}}$$
 (Geomteric Mean)

•
$$r = 1$$
:
$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^n a_i$$
 (Arithmetic Mean)

•
$$r=2$$
:
$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} = \sqrt{\frac{\sum_{i=1}^n a_i^2}{n}}$$
 (Quadratic Mean)

If r > s, then

$$\mathcal{P}(r) > \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example: $\mathcal{P}(2) \ge \mathcal{P}(1) \iff \sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2}$.

3.4 Weighted Power Mean Inequality

Let $a_1, a_2, \ldots a_n > 0$ and $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$. Then, the r-th weighted power mean is defined as:

$$\mathcal{P}(r) = \begin{cases} (w_1 a_1^r + w_2 a_2^r + \dots + w_n a_n^r)^{1/r} & r \neq 0, \\ a_1^{w_1} a_2^{w_2} \dots a_n^{w_n} & r = 0. \end{cases}$$

Similarly, if r > s, then

$$\mathcal{P}(r) \ge \mathcal{P}(s)$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

Example: $(\frac{1}{6}a^3 + \frac{1}{3}b^3 + \frac{1}{2}c^3)^{1/3} \ge a^{1/6}b^{1/3}c^{1/2}$.

3.5 HM-GM-AM-QM Inequalities

Let $a_1, a_2, ..., a_n > 0$. Then:

$$0 < HM \le GM \le AM \le QM$$

$$0 < \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

More precisely,

$$0 < \frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}} \le \sqrt[n]{\prod_{i=1}^{n} a_i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \le \sqrt{\frac{\sum_{i=1}^{n} a_i^2}{n}}.$$

Example: $\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$.

3.6 Bernoulli's Inequality

For all $x \ge -1$ and $r \ge 1$:

$$(1+x)^r \ge 1 + rx.$$

Example: $(1+x)^5 \ge 1 + 5x$.

3.7 Jensen's Inequality

If f is convex, then:

$$\frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} \ge f\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

with equality if and only if f is linear or $a_1 = a_2 = \cdots = a_n$.

If we let $w_1, w_2, \ldots, w_n \ge 0$ with $w_1 + w_2 + \cdots + w_n = 1$, we have:

$$w_1 f(a_1) + w_2 f(a_2) + \dots + w_n f(a_n) \ge f(w_1 a_1 + w_2 a_2 + \dots + w_n a_n),$$

or, more precisely,

$$\sum_{i=1}^{n} w_i f(a_i) \ge f\left(\sum_{i=1}^{n} w_i a_i\right).$$

The inequality is reversed if f is concave.

Example: $\sqrt{\frac{x+y}{2}} \ge \frac{\sqrt{x}+\sqrt{y}}{2}$.

3.8 Karamata's Inequality

If f is convex, and (a_i) majorizes (b_i) , then:

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge f(b_1) + f(b_2) + \dots + f(b_n),$$

or, more precisely,

$$\sum_{i=1}^{n} f(a_i) \ge \sum_{i=1}^{n} f(b_i).$$

The inequality is reversed if f is concave.

Example: $f(x) = x^2 \implies (4)^2 + (1)^2 \ge (2.5)^2 + (2.5)^2 \implies 17 \ge 12.5$.

3.9 Popoviciu's Inequality

If f is convex, and a, b, c > 0, then:

$$af(x) + bf(y) + cf(z) + (a+b+c)f\left(\frac{ax + by + cz}{a+b+c}\right) \ge$$

$$(a+b)f\left(\frac{ax + by}{a+b}\right) + (b+c)f\left(\frac{by + cz}{b+c}\right) + (c+a)f\left(\frac{cz + ax}{c+a}\right)$$

Particularly, if a = b = c = 1, we have:

$$\frac{f(x)+f(y)+f(c)}{3}+f\left(\frac{x+y+z}{3}\right)\geq \frac{2}{3}\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right].$$

Equality holds if and only if f is linear or x = y = z.

Example:
$$f(x) = x^2 \implies \frac{(1)^2 + (2)^2 + (3)^2}{3} + \left(\frac{1+2+3}{3}\right)^2 \ge \frac{2}{3} \left[\left(\frac{1+2}{2}\right)^2 + \left(\frac{2+3}{2}\right)^2 + \left(\frac{3+1}{2}\right)^2 \right] \implies \frac{26}{3} \ge \frac{25}{3}.$$

3.10 Newton's Inequality

For $x_1, x_2, ..., x_n > 0$ and k = 1, 2, ..., n - 1, we have:

$$d_i^2 > d_{i-1}d_{i+1}$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$.

Example:
$$x=1,y=2,z=3 \implies (\frac{xy+yz+zx}{3})^2 \ge (\frac{x+y+z}{3}) \cdot xyz$$

$$\implies \left(\frac{1\cdot 2+2\cdot 3+3\cdot 1}{3}\right)^2 \geq \frac{1+2+3}{3}(1\cdot 2\cdot 3) \implies \left(\frac{11}{3}\right)^2 \geq 2\cdot 6 \implies 13.444 \geq 12.$$

3.11 Maclaurin's Inequality

For $x_1, x_2, ..., x_n > 0$, we have:

$$d_1 \ge \sqrt[2]{d_2} \ge \sqrt[3]{d_3} \ge \dots \ge \sqrt[n]{d_n}$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$.

Equivalently, it can be written as:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt{\frac{\sum_{1 \le i < j \le n} x_i x_j}{\binom{n}{2}}} \ge \sqrt[3]{\frac{\sum_{1 \le i < j < k \le n} x_i x_j x_k}{\binom{n}{3}}} \ge \dots \ge \sqrt[n]{x_1 x_2 \dots x_n}.$$

Example:
$$x = 1, y = 2, z = 3 \implies \frac{x+y+z}{3} \ge \sqrt{\frac{xy+yz+zx}{3}} \ge \sqrt[3]{xyz}$$

$$\implies \frac{1+2+3}{3} \ge \sqrt{\frac{1\cdot 2+2\cdot 3+3\cdot 1}{3}} \ge \sqrt[3]{1\cdot 2\cdot 3} \implies 2 \ge \frac{11}{3} \ge \sqrt[3]{6} \implies 2 \ge 1.915 \ge 1.817.$$

3.12 Cauchy-Schwarz Inequality

Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be real numbers. Then:

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2,$$

with equality if and only if there is a contant $\lambda \in \mathbb{R}$ such that $a_i = \lambda b_i$ for all $1 \le i \le n$. That is, if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n} = \lambda$.

More precisely,

$$\left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) \ge \left(\sum_{i=1}^n a_i b_i\right)^2.$$

Example: $(a^2 + b^2)(x^2 + y^2) \ge (ax + by)^2 \implies (2^2 + 3^2)(4^2 + 5^2) \ge (2 \cdot 4 + 3 \cdot 5)^2$

 $\implies 13 \cdot 41 \ge 23^2 \implies 533 \ge 529.$

3.13 Titu's Lemma/Sedrakyan's Inequality/Engel's Form

Let $a_1, a_2, ..., a_n \ge 0$ and $b_1, b_2, ..., b_n > 0$. Then:

$$\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{b_1 + b_2 + \dots + b_n}.$$

Example: $\frac{a^2}{x} + \frac{b^2}{y} \ge \frac{(a+b)^2}{x+y}$.

3.14 Hölder's Inequality

Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, \ldots, z_1, z_2, \ldots, z_n$ be positive real numbers, and let $\lambda_a, \lambda_b, \ldots, \lambda_z$ be positive reals with $\lambda_a + \lambda_b + \cdots + \lambda_z = 1$. Then:

$$(a_1+\cdots+a_n)^{\lambda_a}(b_1+\cdots+b_n)^{\lambda_b}\dots(z_1+\cdots+z_n)^{\lambda_z}\geq a_1^{\lambda_a}b_1^{\lambda_b}\dots z_1^{\lambda_z}+\cdots+a_n^{\lambda_a}b_n^{\lambda_b}\dots z_n^{\lambda_z},$$

or, more precisely,

$$\underbrace{\left(\sum_{i=1}^{n} a_{i}\right)^{\lambda_{a}} \left(\sum_{i=1}^{n} b_{i}\right)^{\lambda_{b}} \dots \left(\sum_{i=1}^{n} z_{i}\right)^{\lambda_{z}}}_{m \text{ factors}} \ge \sum_{i=1}^{n} \underbrace{\left(\underbrace{a_{i}^{\lambda_{a}} b_{i}^{\lambda_{b}} \dots z_{i}^{\lambda_{z}}}_{m \text{ variables}}\right)}_{m \text{ factors}}$$

$$\prod_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \right)^{\lambda_j} \ge \sum_{i=1}^{n} \left(\prod_{j=1}^{m} a_{ij}^{\lambda_j} \right).$$

Example: $m = 3, n = 2, \lambda_a = 0.5, \lambda_b = 0.3, \lambda_c = 0.2, (a) = (1,3), (b) = (2,4), (c) = (5,6)$

$$\implies (a_1 + a_2)^{0.5} (b_1 + b_2)^{0.3} (c_1 + c_2)^{0.2} \ge a_1^{0.5} b_1^{0.3} c_1^{0.2} + a_2^{0.5} b_2^{0.3} c_2^{0.2}$$

$$\implies (1+3)^{0.5}(2+4)^{0.3}(5+6)^{0.2} \ge 1^{0.5}2^{0.3}5^{0.2} + 3^{0.5}4^{0.3}6^{0.2} \implies 5.53 \ge 5.45.$$

3.15 Minkowski Inequality

Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be positive real numbers and p > 1. Then:

$$(a_1^p + a_2^p + \dots + a_n^p)^{\frac{1}{p}} + (b_1^p + b_2^p + \dots + b_n^p)^{\frac{1}{p}} \ge ((a_1 + b_1)^p + (a_2 + b_2)^p + \dots + (a_n + b_n)^p)^{\frac{1}{p}},$$

or, more precisely,

$$\left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}}$$

Example: p = 2, a = (3, 4), b = (6, 8)

$$\implies \sqrt{a_1^2 + a_2^2} + \sqrt{b_1^2 + b_2^2} \ge \sqrt{(a_1 + b_1)^2 + (a_2 + b_2)^2}$$

$$\implies \sqrt{3^2+4^2}+\sqrt{6^2+8^2} \ge \sqrt{(3+6)^2+(4+8)^2}$$

$$\implies \sqrt{25} + \sqrt{100} \ge \sqrt{225} \implies 15 \ge 15$$
. (equal. why?)

3.16 Generalized Minkowski Inequality

Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, \ldots, z_1, z_2, \ldots, z_n$ be positive real numbers, and p > 1. Then:

$$\underbrace{\left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}} + \dots + \left(\sum_{i=1}^{n} z_i^p\right)^{\frac{1}{p}}}_{m \text{ terms}} \ge \left(\sum_{i=1}^{n} \underbrace{\left(a_i + b_i + \dots + z_i\right)^p}_{m \text{ terms}}\right)^{\frac{1}{p}}.$$

More precisely,

$$\sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij}^{p} \right)^{\frac{1}{p}} \ge \left[\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} \right)^{p} \right]^{\frac{1}{p}}$$

3.17 Young's Inequality

Let $a, b \ge 0$ and p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then:

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab$$

with equality if and only if $a^p = b^q$.

Moreover, for increasing functions

$$\int_{0}^{a} f(x) \, dx + \int_{0}^{b} f^{-1}(x) \, dx \ge ab$$

with equality if and only if f(a) = b.

Example: $a = 2, b = 3, p = 3, q = \frac{3}{2} \implies \frac{2^3}{3} + \frac{3^{3/2}}{3/2} \ge 2 \cdot 3 \implies 6.13 \ge 6.$

3.18 Rearrangement Inequality

Let $a_1 \leq a_2 \leq \cdots \leq a_n$, $b_1 \leq b_2 \leq \cdots \leq b_n$ be two sequences that are both increasing (or both decreasing). Then:

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \ge a_1b_{\sigma(1)} + a_1b_{\sigma(2)} + \dots + a_1b_{\sigma(n)} \ge a_1b_n + a_2b_{n-1} + \dots + a_nb_1$$

where σ is a permutation function, which sends each of 1, 2, ..., n to a different value in $\{1, 2, ..., n\}$.

More precisely,

$$\sum_{i=1}^{n} a_i b_i \ge \sum_{i=1}^{n} a_i b_{\sigma(i)} \ge \sum_{i=1}^{n} a_i b_{n+1-i}.$$

In other words, the sum is *maximized* when both sequences are ordered *similarly* (both increasing or both decreasing), and is *minimazied* when both sequences are ordered *oppositely* (one increasing, the other decreasing).

Example: $a^2 + b^2 + c^2 \ge ab + bc + ca$;

$$\begin{array}{ll} a = (1,3,5), & b = (2,4,6) \implies 1 \cdot 2 + 3 \cdot 4 + 5 \cdot 6 \geq 1 \cdot 4 + 3 \cdot 6 + 5 \cdot 2 \geq 1 \cdot 6 + 3 \cdot 4 + 5 \cdot 2 \implies 44 \geq 32 \geq 28. \end{array}$$

3.19 Chebyshev's Sum Inequality

Let $a_1 \leq a_2 \leq \cdots \leq a_n$, $b_1 \leq b_2 \leq \cdots \leq b_n$ be two sequences that are both increasing (or both decreasing). Then:

$$\frac{a_1b_1+\cdots+a_nb_n}{n} \ge \frac{a_1+\cdots+a_n}{n} \cdot \frac{b_1+\cdots+b_n}{n} \ge \frac{a_1b_n+\cdots+a_nb_1}{n},$$

or, more precisely,

$$\frac{\sum_{i=1}^{n} a_i b_i}{n} \ge \frac{\sum_{i=1}^{n} a_i}{n} \times \frac{\sum_{i=1}^{n} b_i}{n} \ge \frac{\sum_{i=1}^{n} a_i b_{n+1-i}}{n}.$$

Example: $a_1 \le a_2 \le a_3$, $b_1 \le b_2 \le b_3 \implies a_1b_1 + a_2b_2 + a_3b_3 \ge \frac{1}{3}(a_1 + a_2 + a_3)(b_1 + b_2 + b_3)$.

3.20 Schur's Inequality

Let $a, b, c \ge 0$ and r > 0. Then:

$$a^{r}(a-b)(a-c) + b^{r}(b-c)(b-a) + c^{r}(c-a)(c-b) > 0$$

with equality if and only if a = b = c or two of them are equal and the other is zero.

Example:
$$r = 1 \implies a^3 + b^3 + c^3 + 3abc \ge a^2(b+c) + b^2(c+a) + c^2(a+b)$$
.

3.21 Muirhead's Inequality

Let $a_1, a_2, \ldots, a_n \geq 0$ and suppose that (x_n) majorizes $(y_n), x \succ y$. Then:

$$\sum_{\text{sym}} a_1^{x_1} a_2^{x_2} \dots a_n^{x_n} \ge \sum_{\text{sym}} a_1^{y_1} a_2^{y_2} \dots a_n^{y_n}.$$

Example: $(5,0) \succ (3,2) \implies x^5 + y^5 \ge x^3y^2 + x^2y^3$.

3.22 Nesbitt's Inequality

Let a, b, c > 0. Then:

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

with equality if and only if a = b = c.

Example: $a = 1, b = 2, c = 3 \implies \frac{1}{2+3} + \frac{2}{3+1} + \frac{3}{1+2} \ge \frac{3}{2} \implies \frac{1}{5} + \frac{2}{4} + \frac{3}{3} \ge \frac{3}{2} \implies 1.7 \ge 1.5.$

3.23 Aczel's Inequality

Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be positive real numbers. If $a_1^2 \geq a_2^2 + \cdots + a_n^2$ and $b_1^2 \geq b_2^2 + \cdots + b_n^2$, then:

$$(a_1b_1 - a_2b_2 - \dots - a_nb_n)^2 \ge (a_1^2 - a_2^2 - \dots a_n^2)(b_1^2 - b_2^2 - \dots b_n^2)$$

with equality if and only if the sequences are proportional.

More precisely,

$$\left(a_1b_1 - \sum_{i=2}^n a_ib_i\right)^2 \ge \left(a_1^2 - \sum_{i=2}^n a_i^2\right) \left(b_1^2 - \sum_{i=2}^n b_i^2\right).$$

Example: (a) = (6, 3, 2), (b) = (5, 4, 1)

$$\implies (6 \cdot 5 - 3 \cdot 4 - 2 \cdot 1)^2 \ge (6^2 - 3^2 - 2^2)(5^2 - 4^2 - 1^2) \implies 16^2 \ge 23 \cdot 8 \implies 256 \ge 184.$$

3.24 Huygens Inequality

Let $a_1, \ldots, a_n, b_1, \ldots, b_n, w_1, \ldots, w_n$ be positive real numbers with $w_1 + \cdots + w_n = 1$. Then:

$$\prod_{i=1}^{n} (a_i + b_i)^{w_i} \ge \prod_{i=1}^{n} a_i^{w_i} + \prod_{i=1}^{n} b_i^{w_i}.$$

Example: $(a_i) = (6, 11), (b_i) = (13, 2), (w_i) = (3/4, 1/4)$

$$\implies (6+13)^{3/4}(11+2)^{1/4} \ge 6^{3/4}11^{1/4} + 13^{3/4}2^{1/4} \implies 17.280 \ge 15.123.$$

3.25 Heinz Mean Inequality

Let a, b > 0 and $0 \le \nu \le 1$. Then:

$$\sqrt{ab} \le \frac{a^{\nu}b^{1-\nu} + a^{1-\nu}b^{\nu}}{2} \le \frac{a+b}{2}.$$

Example: $a = 9, b = 7, \nu = 0.3$

$$\implies \sqrt{4 \cdot 17} \le \frac{4^{0.3}17^{0.7} + 4^{0.7}17^{0.3}}{2} \le \frac{4+17}{2} \implies 8.246 \le 8.593 \le 10.5.$$

3.26 Mildorf's Inequality

Let $k \ge -1$ be an integer and a, b > 0. Then:

$$\frac{(1+k)(a-b)^2 + 8ab}{4(a+b)} \ge \sqrt[k]{\frac{a^k + b^k}{2}}$$

with equality if and only if a = b or $k \in \{-1, 1\}$, where the power mean k = 0 is interpreted as the geometric mean \sqrt{ab} . Moreover, the inequality is flipped if k < -1.

Example: a = 22, b = 13, k = 5

$$\implies \frac{(1+5)(22-13)^2+8\cdot 22\cdot 13}{4(22+13)} \geq \sqrt[5]{\frac{22^5+13^5}{2}} \implies \frac{6\cdot 9^2+2,288}{4\cdot 35} \geq \sqrt[5]{\frac{5,153,632+371,293}{2}}$$

$$\implies \frac{2774}{140} \ge \sqrt[5]{2,762,462.5} \implies 19.814 \ge 19.420.$$

4 Selected Inequalities

$$(a+b)(b+c)(c+a) \ge 8abc \tag{1}$$

$$\sqrt{1+\sqrt{a}} + \sqrt{1+\sqrt{a+\sqrt{a^2}}} + \ldots + \sqrt{1+\sqrt{a+\ldots+\sqrt{a^n}}} < na, \quad n \ge 2, a \ge 2, n \in \mathbb{N} \quad (2)$$

$$(n!)^2 \ge n^n, \quad n \in \mathbb{N} \tag{3}$$

$$\frac{1}{3} + \frac{2}{3 \cdot 5} + \frac{3}{3 \cdot 5 \cdot 7} + \dots + \frac{n}{3 \cdot 5 \dots (2n+1)} < \frac{1}{2}, \quad n \in \mathbb{N}$$

$$\sum_{k=1}^{n} \frac{k}{\prod_{j=1}^{k} (2j+1)} < \frac{1}{2}, \quad n \in \mathbb{N}$$
(4)

$$\frac{2^{3}+1}{2^{3}-1} \cdot \frac{3^{3}+1}{3^{3}-1} \cdot \dots \cdot \frac{n^{3}+1}{n^{3}-1} < \frac{3}{2}, \quad n \ge 2, n \in \mathbb{N}$$

$$\prod_{k=2}^{n} \frac{k^{3}+1}{k^{3}-1} < \frac{3}{2}, \quad n \ge 2, n \in \mathbb{N}$$
(5)

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! < (n+1)!, \quad n \in \mathbb{N}$$

$$\sum_{k=1}^{n} k \cdot k! < (n+1)!, \quad n \in \mathbb{N}$$
(6)

5 Selected Problems

6 Proofs

6.1 Proof of AM-GM Inequality using Induction

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

i. Base case is true (n = 2).

ii. n is true $\implies n+1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + \dots + a_n + a_{n+1}}{n+1} = \frac{n \frac{a_1 + \dots + a_n}{n} + a_{n+1}}{n+1}$$

$$\ge \left(\frac{a_1 + \dots + a_n}{n}\right)^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$\ge (\sqrt[n]{a_1 \dots a_n})^{\frac{n}{n+1}} (a_{n+1})^{\frac{1}{n+1}}$$

$$= \sqrt[n+1]{a_1 \dots a_n a_{n+1}}$$

6.2 Proof of AM-GM Inequality using Cauchy Induction

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

i. Base case is true (n=2).

ii. n is true $\implies 2n$ is true.

iii. n is true $\implies n-1$ is true.

Proof:

Step 1:

$$\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2} \implies (\sqrt{a_1})^2 - 2\sqrt{a_1 a_2} + (\sqrt{a_2})^2 = (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0.$$

Step 2:

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \Longrightarrow$$

$$\frac{a_1 + a_2 + \dots + a_{2n}}{2n} = \frac{1}{2} \left(\frac{a_1 + a_2 + \dots + a_n}{n} + \frac{a_{n+1} + a_{n+2} + \dots + a_{2n}}{n} \right)$$

$$\ge \frac{\sqrt[n]{a_1 a_2 \dots a_n} + \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}}{2}$$

$$\ge \sqrt[n]{\sqrt[n]{a_1 a_2 \dots a_n} \cdot \sqrt[n]{a_{n+1} a_{n+2} \dots a_{2n}}}$$

$$= \sqrt[n]{a_1 a_2 \dots a_{2n}}$$

Step 3:
$$\frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n} \Longrightarrow$$

$$\frac{a_1 + a_2 + \dots + a_{n-1} + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1}} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\frac{(n-1)(a_1 + a_2 + \dots + a_{n-1}) + (a_1 + \dots + a_{n-1})}{n \cdot (n-1)} = \frac{(n-1+1)(a_1 + a_2 + \dots + a_{n-1})}{n \cdot (n-1)}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1}} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^n \ge a_1 a_2 \dots a_{n-1} \cdot \frac{a_1 + \dots + a_{n-1}}{n-1}$$

$$\left(\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}\right)^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

$$\frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

6.3 Proof of AM-GM Inequality using Jensen's Method

Let $a_1, a_2, \ldots, a_n > 0$ and $f(x) = \ln x$ be a *concave* function on $(0, \infty)$. By Jensen's Inequality we have:

$$f\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right) \geq \frac{1}{n}\sum_{i=1}^{n}f(a_{i})$$

$$\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) \geq \frac{\ln\left(a_{1}\right)+\ln\left(a_{2}\right)+\cdots+\ln\left(a_{n}\right)}{n}$$

$$=\frac{\ln\left(a_{1}a_{2}\dots a_{n}\right)}{n}$$

$$=\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)$$

$$e^{\ln\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)} \geq e^{\ln\left(\sqrt[n]{a_{1}a_{2}\dots a_{n}}\right)}$$

$$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1}a_{2}\dots a_{n}}$$