

Design example 2: Figures of merit

Last example: Single number (V_{OS}) dominant.

Often many numbers contribute:

Define a Figure of merit for the component

Figure of merit is a function of all significant contributions of the component to the total system error.

Figure of merit changes **monotonically** with the overall error due to the component

The total error contributed by the component is clearly a good choice

Example 2: Integrate-and-Hold

If S1 connects to V_{in} circuit is an integrator $V_{out} = -\int \frac{V_{in}}{RC} dt$

If S1 connects to 0V circuit is a memory $V_{out} = constant$

Error Analysis

Important parameter is drift during "Memory"

Error Analysis (2)

Timeconstant is fixed: $\tau = RC$: one free parameter (R)

$$\left| \frac{dV_{\text{out}}}{dt} \right| = \frac{1}{C} \left(I_B + \frac{V_{OS}}{R} \right) = \frac{1}{\tau} \left(I_B R + V_{OS} \right)$$

Optimisation: make R as small as possible

Practical limits on R:

MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE

If R too small, Input Voltage range is too small

Also:

- Supply current
- Power dissipation
- Thermal drift
- V across PCB
- Available C values

R≥2kΩ

Error Analysis (4)

Naïve circuit (τ =10s)

No good 4700μ F capacitors

$$\left| \frac{dV_{\text{out}}}{dt} \right| = \frac{1}{\tau} (I_B R + V_{OS}) = \frac{1}{10s} \cdot (200 \, pA \cdot 2M\Omega + 10mV) = 1.04 \, mV \cdot s^{-1}$$

How large is a 4700µF Polypropylene Capacitor?

(Wima DC-LINK MKP 6 HP 4920µF 600V)

