COMS 4236: Computational Complexity (Fall 2018) Problem Set #3

Wenbo Gao - wg2313@columbia.edu

December 21, 2018

Problem 1

Problem 11.5.18 on page 275 of CC: Show that, if $NP \subseteq BPP$, then RP = NP. (That is, if SAT can be solved by randomized machine, then it can be solved by randomized machines with no false positives, presumably by computing a satisfying truth as in Example 10.3.)

Goal. Prove SAT \in NP-complete \subseteq NP \subseteq RP.

Proof.

Let A be a machine in BPP that decides SAT, L(A) = SAT,

Given.

$$\forall x \in SAT \Rightarrow \Pr_{y \in \{0,1\}^{q(n)}}[D(x,y) = 1] \ge \frac{2}{3}$$
$$\forall x \notin SAT \Rightarrow \Pr_{y \in \{0,1\}^{q(n)}}[D(x,y) = 1] \le \frac{1}{3}$$

 $\forall w \in SAT$, where w is binary encoding of a boolean formula Φ , where $w = \langle \lambda x_1, x_2, \dots, x_n.\Phi(x_1, x_2, \dots, x_n) \rangle$, construct a DTM, D, as the following,

- 1. Initialize counter i = 1
- 2. Simulate both $\lambda x_{i+1}, \ldots, x_n \cdot \Phi(x_1, \ldots, True, x_{i+1}, \ldots, x_n)$ and $\lambda x_{i+1}, \ldots, x_n \cdot \Phi(x_1, \ldots, False, x_{i+1}, \ldots, x_n)$ on A
- 3. If $(A(\Phi(x_1,\ldots,T,x_{i+1},\ldots,x_n)), A(\Phi(x_1,\ldots,F,x_{i+1},\ldots,x_n))$
 - $\bullet = (0,0)$, then reject
 - = (1,0), then keep $x_i = True$, increment counter i = i + 1, and repeat step 2
 - $\bullet \ = (0,1),$ then keep $x_i = False$, increment counter i=i+1, and repeat step 2
 - = (1,1), then keep $x_i = True$ (or $x_i = False$, the choice doesn't matter), increment counter i = i + 1, and repeat step 2.
- 4. Once we have an assignment of Φ , verify the assignment

- If $\Phi(x_1, x_2, \dots, x_n) = 1$, then accept;
- otherwise, reject.

This way we guarantee that if $w \notin SAT$, our machine D always rejects. If $w \in SAT$, there is $\geq (\frac{2}{3})^n$ chance that the machine A is correct in all n iterations. We can amplify this probability to be $\geq \frac{1}{2}$ by repeating this experiment polynomial times. Therefore, $L(D) = \text{SAT } \wedge L(D) \in \text{RP}$, and thus $\text{SAT} \in \text{RP}$.

Problem 2

Let $0 < \epsilon_1 < \epsilon_2 < 1$ denote two constants. Let $D(\cdot, \cdot)$ be a deterministic polynomial-time computable Boolean function, and let L be a language (the setting so far is exactly the same as the definition of BPP.) D and L satisfy the following property: Given any $x \in \{0, 1\}^n$, if y is sampled uniformly at random from $\{0, 1\}^m$ for some m polynomial in n, then

$$x \in L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \ge \epsilon_2 \text{ and } x \notin L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \le \epsilon_1.$$

Show that $L \in BPP$. (Note that ϵ_2 can be smaller than 1/2. Use the Chernoff bound.)

Proof. Construct a DTM, D', which independently draws k instances from $\{0,1\}^m$, $\{y_1, y_2, \ldots, y_k\}$, $\forall x \notin L$,

$$E[\sum_{i=1}^{k} D(x, y_i)] = k \cdot \epsilon_1$$

By Chernoff bound, $\Delta = k \cdot (\frac{\epsilon_1 + \epsilon_2}{2} - \epsilon_1) = k \cdot \frac{\epsilon_2 - \epsilon_1}{2}$,

$$Pr[D'(x, y_1, y_2, \dots, y_k) = 1] = Pr[\sum_{i=1}^k D(x, y_i) \ge k \cdot \frac{\epsilon_1 + \epsilon_2}{2}] \le e^{\frac{-2(k \cdot \frac{\epsilon_2 - \epsilon_1}{2})^2}{k}} = e^{-\Omega(k)}$$

Therefore, $L = L(D') \in \text{Strong BPP}$, and thus $L \in \text{BPP}$.

Problem 3

Problem. Similar to P/poly, one can define P/log n, where the advice string is of length only $O(\log n)$ for input size n. Show that, if SAT \in P/log n, then P = NP. (Hint: Self-reducibility.)

Proof. Since advice string is of $O(\log n)$, it's able to enumerate all $2^{O(\log n)} = O(n)$ advice strings in poly-time and, $\forall x \in \{0,1\}^n$, if at least one advice string accepts then accept; otherwise, reject.

This way we can determinitically decide SAT in poly-time. Therefore, P = NP.

Problem 4

Show that, if PSPACE \subseteq P/poly, then PSPACE = Σ_2^P . (Hint: Use self-reducibility to "implicitly" build a winning strategy for the existential player in the TQBF game.)

Proof. PSPACE \subseteq P/poly \Rightarrow there exists a poly-size circuit sequence $\{C_m\}$ where C_m decides TQBF instances of size m.

For a TQBF instance of size m, $Q_1X_1.Q_2X_2...Q_nX_n.\Phi(X_1,...,X_n)$, use \exists quantifier of Σ_2^p to non-deterministically guess the circuit sequence,

- 1. initialize counter i = 1
- 2. for \exists -player's turn, $\exists X_i$, check $C_k(Q_{i+1}X_{i+1}...Q_nX_n.\Phi(X_1,...,True,X_{i+1},...,X_n))$ and $C_k(Q_{i+1}X_{i+1}...Q_nX_n.\Phi(X_1,...,False,X_{i+1},...,X_n))$, where $k \leq m$,
 - if both = 0, then reject
 - Otherwise, keep the assignment of X_i which leads to $C_k(...) = 1$, increment counter i = i + 1, and repeat step 2 3
- 3. for \forall -player's turn, use \forall quantifier of Σ_2^p

Therefore, TQBF $\in \Sigma_2^P$ and thus PSPACE $= \Sigma_2^P$.