1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

FIND-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x

For each attribute constraint ai in h

If the constraint a_i is satisfied by x

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

Training Examples:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Program:

```
import csv
a = []
with open('enjoysport.csv', 'r') as csvfile:
    for row in csv.reader(csvfile):
        a.append(row)
    print(a)
print("\n The total number of training instances are : ",len(a))
num attribute = len(a[0])-1
print("\n The initial hypothesis is : ")
hypothesis = ['0']*num attribute
print(hypothesis)
for i in range(0, len(a)):
    if a[i][num attribute] == 'yes':
        for j in range(0, num attribute):
            if hypothesis[j] == '0' or hypothesis[j] == a[i][j]:
                hypothesis[j] = a[i][j]
            else:
                hypothesis[j] = '?'
    print("\n The hypothesis for the training instance {} is :
\n" .format(i+1), hypothesis)
print("\n The Maximally specific hypothesis for the training
instance is ")
print(hypothesis)
```

Data Set:

sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

Output:

```
The Given Training Data Set
['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes']
['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes']
['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no']
['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']
The total number of training instances are: 4
The initial hypothesis is:
['0', '0', '0', '0', '0', '0']
The hypothesis for the training instance 1 is:
 ['sunny', 'warm', 'normal', 'strong', 'warm', 'same']
The hypothesis for the training instance 2 is:
['sunny', 'warm', '?', 'strong', 'warm', 'same']
The hypothesis for the training instance 3 is:
['sunny', 'warm', '?', 'strong', 'warm', 'same']
The hypothesis for the training instance 4 is:
 ['sunny', 'warm', '?', 'strong', '?', '?']
The Maximally specific hypothesis for the training instance is
 ['sunny', 'warm', '?', 'strong', '?', '?']
```