Predicate functions

- We like to give names to predicates and parameterize them, in other words, we like to write predicates into functions from a set of variables to a Boolean value. These functions are called predicate functions.
 - One reason for using predicate functions is that it can simplify our program, so it is easier to read.
 - For example, in our program we need to check "whether integer x is the square of integer r" constantly. Then we can write a predicate " $x \ge 0 \land r * r = x$ ". If we define $isSq(x,r) \equiv x \ge 0 \land r * r = x$, then we can simply call isSq(x,r) whenever we need to check.
 - o Another reason is that predicate functions help us to handle expressions with expanded domains of variables.
 - For example, if we define $L(x,y) \equiv "x$ loves y", where the domain of x and y are all people, then we can express "Everyone loves someone" as $\forall x. \exists y. L(x,y)$.
- 1. Define predicate functions as required.
 - a. Define function isZero(b, n) so that it returns True if and only if the first n numbers in array b are all 0. You may assume that n is no larger than the size of the array b.
 - One attempt is to write the function as $isZero(b,n) \equiv b[0] = 0 \land b[1] = 0 \land b[2] = 0 \land ... \land b[n-1] = 0$. This is not correct, since "..." is not understandable. Instead, we should write:

$$isZero(b, n) \equiv \forall 0 \le i < n. b[i] = 0$$

b. Define function isSorted(b, m, n) so that it returns Ture if and only if subarray b between index m to n (including m and n) is sorted. You may assume that m and n are both valid index in array b and n > m. For example, isSorted((1, 3, 5, 4), 0, 2) = True.

$$isSorted(b, m, n) \equiv \forall i. m \le i \le n - 1 \rightarrow b[i] \le b[i + 1]$$

Types, Arrays, Expressions in Our Programming Language

• From here on, we will spend several lectures to clarify some definitions, notations, and grammar in our simple programming language.

(Data types)

- Primitive data types are: int (integers) and bool (Boolean).
- Composite types: (multi-dimensional) Arrays of primitive types of values, with integer indices.
 - Our purpose is to learn about program verification, so we keep the programming language as simple as possible.

(Expressions)

- Expressions in our programming language are "pieces of code" who have primitive type values. For example, you can consider a predicate as an expression with Boolean value. Expressions in our programming language can be built from:
 - \circ Constants: Integers (0, 1, -1 ...) and Boolean constants (T and F).
 - Variables of primitive types
 - Functions that return primitive type values

Operations:

- On integers: +, -, *, /, %, =, \neq , <, \leq , >, \geq , sqrt()...
 - Note that, / and sqrt() round toward 0 to an integer. For example, 13/3 = 4, 13/(-3) = -4, and sqrt(17) = 4.
 - ❖ Division and mod by 0 and sqrt of negative values generate runtime errors.
- On Booleans: \neg , Λ , V, \rightarrow , \leftrightarrow , =, \neq ...
- On arrays: size() and array element selection. For example, b = (0,3,4), then size(b) = 3.

o Arrays:

- As usual, b[e] is array element selection. Note that, e is an expression evaluates to an integer.
- size(b) gives the length of b.
- In a multi-dimension array, $b[e_0][e_1] \dots [e_{n-1}]$ is selecting the element with index e_0 in the first dimension, e_1 in the second dimension $\dots e_{n-1}$ in the n^{th} dimension. Note that, n is not a variable but an integer constant here. ("…" is not understandable). For example, b = ((6,3), (2,5,8)), then b[1][2] = 8.
- Note that, we can never have an array appear by itself in an expression, it is always wrapped in some function, or we are selecting some element in the array.

o Conditional: if B then e_1 else e_2 fi

- Semantically, if B evaluates to true, then evaluate e_1 ; if B evaluates to false, then evaluate e_2 .
- Note that, e_1 and e_2 are expression and we require them to have the same type.

Note that:

- We don't explicitly declare variables; we assume that we can infer the types. The default type is integer. For example: to have expression $p \lor x > 0$, we don't need something like "create variable x of type int".
- O An expression must evaluate to a primitive type of value, so it cannot evaluate to an array. For example: (assuming a and b are two arrays) **if** b **then** a **else** b **fi**[0] is illegal. But **if** b **then** a[0] **else** b[0] **fi** is legal.
- o Functions who return primitive type of values are allowed in an expression, but an expression cannot yield a function. For example: **if** B **then** f(x) **else** g(x) **fi** is legal; but **if** B **then** f **else** g **fi** (x) is not.

2. Are the following expressions legal?

a.	x/y	Yes
b.	a[0:2]	No
C.	if $x < 0$ then $x * x$ else $sqrt(x)$ fi + y	Yes

d. if i < 0 then b[0] else $i \ge size(b)$ then b[size(b) - 1] else b[i] fi Yes, in our programing language, "if - else if - else" is "if B_1 then e_1 else B_2 then e_2 else e_3 ".

(Notations)

• Most commonly, c and d are constants; e and s are general expressions; e and e are Boolean expressions; e and e are array names; and e0, e1, e2, etc. are variables. Greek letters like e2 and e3 stand for semantic values.

(Evaluate an expression)

• With a proper state, an expression can be evaluated to a value.

- ο For example: $\sigma = \{x = 5, y = 2\}$, then $\sigma(x * y) = 10$. Here, x * y is an expression that we want to evaluate, and σ is a state that's proper for x * y.
- As an aside, here we have a question, when we evaluate an expression, how does something "syntactic" become something "semantic"? In other words, how is a programming language compiled into something meaningful to us? In this small section, to make this clear, I will use highlight to show values that are semantic.
- 3. Let $z \equiv 2 + 3$, evaluate $\sigma(z)$.
 - Since $z \equiv 2 + 3$, so we evaluate $\sigma(2 + 3)$, using the knowledge about "state as function" we discussed in lecture 3, we will evaluate $\sigma(2) + \sigma(3)$.
 - o 2 and 3 are constants, we don't need any bindings in σ to find their values, thus $\sigma(2) + \sigma(3) = 2 + 3 = 2 + 3 = 5$
- In general, the value of $\sigma(e)$ depends on what kind of expression e is, so we use recursion on the structure of e (the base cases are variables and constants, and we recursively evaluate sub-expressions).
 - o $\sigma(x)$ = the value that σ binds variable x to. For example, if $\sigma = \{x = 5\}$, then $\sigma(x) = 5$
 - $\sigma(c) = \text{the value of the constant } c$. For example, $\sigma(5) = \frac{5}{5}$. (σ is irrelevant here.)
 - o $\sigma(e_1 + e_2) = \frac{1}{1}$ the value of $\sigma(e_1)$ plus the value of $\sigma(e_2)$ [and similar for -, *, / etc.].
 - o $\sigma(e_1 < e_2) = T$ iff the value of $\sigma(e_1)$ is less than the value of $\sigma(e_2)$ [similar for \leq , =, etc].
 - $\circ \quad \sigma(e_1 \land e_2) = \frac{T}{1} \text{ iff the value of } \sigma(e_1) \quad \text{and the value of } \sigma(e_2) \quad \text{are both } \frac{T}{1} \quad \text{[similar for V, } \to etc].$
 - o $\sigma(\mathbf{if}\ B\ \mathbf{then}\ e_1\ \mathbf{else}\ e_2\ \mathbf{fi}) = \sigma(e_1)\ \mathrm{if}\ \frac{\mathbf{the}\ value\ \mathrm{of}\ \sigma(B)}{\mathbf{the}\ value\ \mathrm{of}\ \sigma(B)} = T;$ it $= \sigma(e_2)\ \mathrm{if}\ \frac{\mathbf{the}\ value\ \mathrm{of}\ \sigma(B)}{\mathbf{the}\ value\ \mathrm{of}\ \sigma(B)} = F.$
- 4. Let $\sigma = \{x = 1\}$, let $\tau = \sigma \cup \{y = 1\}$, and let $e \equiv (x = \text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi})$, evaluate $\tau(e)$. $\tau(x = \text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi}) = (\tau(x) = \tau(\text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi})) = (1 = \tau(\text{if } 1 > 0 \text{ then } 17 \text{ else } y \text{ fi})) = (1 = \tau(17)) = (1 = 17) = F$

(Arrays and their values)

5. How to write the following state τ in our language?

- o $\tau = \{b[0] = 1, b[1] = 5, b[2] = 9, x = 5\}$ We take the **value of an array** to be a **function** from index values to stored values.
- o $\tau = \{b = \beta, x = 5\}$ where $\beta(0) = 1$, $\beta(1) = 5$, $\beta(2) = 9$ If we give the function a name β (which is semantic), then we can write τ like this.
- o $\tau = \{b = \beta, x = 5\}$ where $\beta = \{(0, 1), (1, 5), (2, 9)\}$ The function β can also be expressed as tuples (index, stored value).

o $\tau = \{b = \beta, x = 5\}$ where $\beta = (1, 5, 9)$ The function β can also be simplified to a sequence of values.

$$\circ$$
 $\tau = \{b = (3, 5, 9), x = 5\}$

6. Let
$$\sigma = \{x = 1, b = \beta\}$$
 where $\beta = (2, 0, 4)$, evaluate $\sigma(b[x+1]-2)$.
$$\sigma(b[x+1]-2) = \sigma(b[x+1]) - \sigma(2)$$
$$= \sigma(b)(\sigma(x+1)) - 2$$
$$= \sigma(b)(\sigma(x) + \sigma(1)) - 2$$
$$= \sigma(b)(1+1) - 2$$
$$= \beta(2) - 2$$
$$= 4 - 2 = 2$$

Updating a State

- For any state σ , variable x, and value α , the "update" of σ at x with α , written $\sigma[x \mapsto \alpha]$, is the state that is a copy of σ except that it binds variable x to value α .
 - Note that, we are not really updating σ itself (although that is the traditional way to call this operation), that's why we quote the word "update": $\sigma [x \mapsto \alpha]$ is a new state and σ is not changed.
- We can give $\sigma[x \mapsto \alpha]$ a new name but we don't have to. We read $\sigma[x \mapsto \alpha](v)$ left-to-right we're taking the function $\sigma[x \mapsto \alpha]$ and applying it to variable v.
- 7. Let $\sigma = \{x = 1, y = 2\}$, answer the following questions about state τ .
 - a. Let $\tau = \sigma[x \mapsto 3]$, then $\tau = \{x = 3, y = 2\}$.
 - b. Let $\tau = \sigma[z \mapsto 3]$, then $\tau = \{x = 1, \ y = 2, \ z = 3\}$. $\sigma(z)$ doesn't need to be defined (z is bind with a v
 - c. Let $\tau = \sigma[x \mapsto 1]$, then $\tau = \{x = 1, \ y = 2\} = \sigma$. τ and σ are consist of the same bindings, they are not syntactically equivalent though (they are not the same state).