Application of Derivative in Analyzing the Properties of Functions

- f'(x) indicates if the function is: **Increasing** when f'(x) > 0; **Decreasing** when f'(x) < 0
- f''(x) indicates if the function is: Concave up when f''(x) > 0; Concave down when f''(x) < 0

- **Critical Point** c is where f'(c) = 0 (tangent line is horizontal \longrightarrow);
- Inflection Point: where f''(x) = 0 or where the function changes concavity, No Min and no Max
- If the sign of f'(c) changes from + to -, then there is a **local Maximum**
- If the sign of f'(c) changes from to +, then there is a **local Minimum**
- If f'(c) = 0 but there is no sign change for f'(c), then there is no local extreme, it is an **Inflection Point** (concavity changes)

Example: Analyze the function $f(x) = 3x^5 - 20x^3$

$$f(x) = 3x^5 - 20x^3$$

I) Using the First Derivative:

•Step 1: Locate the **critical points** where the derivative is = 0:

$$f'(x) = 15x^4 - 60x^2$$

 $f'(x) = 0$ then $15x^2(x^2 - 4) = 0$.
Solve for x and you will find:
 $x = -2$, $x = 0$ and $x = 2$ as the critical points

•Step 2: Divide f'(x) into intervals using the critical points found in the previous step, then choose a **test points**:

•Step 3: Find the derivative for the function in each test point:

	(-3)	2 (-1)	$0 \qquad \qquad (1)$	2 (3)
$f'(x) = 15x^4 - 60x^2$	f'(-3)= 675	f'(-1)= - 45	f'(1)= - 45	f'(3)= 675
Sign	+++++			+++++
Shape	Increasing	Decreasing	Decreasing	Increasing
Intervals	x < -2	-2 < x < 0	0 < x < 2	x > 2

•Step 4: Look at both sides of each critical point:

Local Maximum at x = -2, Maximum = $f(-2) = 3(-2)^5 - 20(-2)^3 = 64$; or Max (-2, 64)

Minimum = $f(2) = 3(2)^5 - 20(2)^3 = -64$; or **Min** (2, -64) Local Minimum at x = 2,

II) Using the Second Derivative:

•Step 5: Locate the **inflection points** by making the second derivative is = 0:

We found
$$f'(x) = 15x^4 - 60x^2$$
 then $f''(x) = 60x^3 - 120x = 60x(x^2 - 2)$ $f''(x) = 0$ then $60x(x^2 - 2) = 0$.
Solve for x and you will find $x = 0$, $x = \pm \sqrt{2} = -1.414, +1.414$

•Step 6: Divide f''(x) into intervals using the inflection points found in the previous step, then choose a **test point**:

(-2) -1.4	14 (-1)	0 (1) 1	.414 (2)
			$\overline{}$

•Step 7: Find the second derivative for the function in each test point:

	(-2) -1.4	14 (-1)	0 (1) 1	.414 (2)
$f''(x) = 60x^3 - 120x$	f"(-2)= -	f ''(-1) = +	f "(1) = -	f''(2) = +
Sign		++++++		+++++
Shape	Concave Down	Concave Up	Concave Down	Concave Up
Intervals	x < -1.414	-1.414 < x < 0	0 < x < 1.414	x > 1.414

• Step 8: Summarize all results in the following table:

Increasing in the intervals	x < -2 and $x > 2$	
Decreasing in the intervals	-2 < x < 2	
Local Max. points and Max values:	Max. at $x = -2$, Max (-2, 64)	
Local Min. points and Min values:	Min. at $x = 2$, Max (2, -64)	
Inflection points at:	(-1.414, 39.6), (0, 0), (-1.414, -39.6)	
Concave Up in the intervals:	-1.414 < x < 0 and $x > 1.414$	
Concave Down in the intervals:	x < -1.414 and $0 < x < 1.414$	

• **Step 9**: Sketch the graph:

