Note on a product formula for unitary groups

by Vincent CACHIA¹

Abstract: For any nonnegative self-adjoint operators A and B in a separable Hilbert space, we show that the Trotter-type formula $[(e^{i2tA/n} + e^{i2tB/n})/2]^n$ converges strongly in $\overline{\text{dom}(A^{1/2}) \cap \text{dom}(B^{1/2})}$ for some subsequence and for almost every $t \in \mathbb{R}$. This result extends to the degenerate case and to Katofunctions following the method of Kato [6].

In a famous paper [6], T. Kato proved that for any nonnegative self-adjoint operators A and B in a Hilbert space \mathcal{H} , the Trotter product formula $(e^{-tA/n}e^{-tB/n})^n$ converges strongly to the (degenerate) semigroup generated by the form-sum A + B for any t with Re t > 0. He also extended the result to a class of so-called Kato-functions, and to degenerate semigroups. However the convergence on the boundary $i\mathbb{R}$ remains an unclear problem in this generality [1, 3]. For Kato-functions f such that Im $f \leq 0$ (for example $f(s) = (1+is)^{-1}$), Lapidus found such an extension [7]. For the case of the Trotter product formula with projector $(e^{itA/n}P)^n$, Exner and Ichinose obtained recently a interesting result [4].

1 Statement of the result

Since this note is closely related to Kato's paper [6], it is convenient to use similar notations. A and B denote nonnegative self-adjoint operators defined in closed subspaces M_A and M_B of a separable Hilbert space \mathcal{H} , and P_A , P_B denote the orthogonal projections on M_A and M_B . Let $\mathcal{D}' = \text{dom}(A^{1/2}) \cap \text{dom}(B^{1/2})$, let \mathcal{H}' be the closure of \mathcal{D}' , and let P' be the orthogonal projector on \mathcal{H}' . The formsum $C = A \dot{+} B$ is defined as the self-adjoint operator in \mathcal{H}' associated with the nonnegative, closed quadratic form $u \mapsto ||A^{1/2}u||^2 + ||B^{1/2}u||^2$, $u \in \mathcal{D}'$. We consider Trotter-type product formulae $F(t/n)^n$ based on the arithmetic mean

$$F(t) = \frac{f(2tA)P_A + g(2tB)P_B}{2}. (1)$$

The Kato-functions f and g are assumed here to be bounded, holomorphic functions in $\{t \in \mathbb{C} : \text{Re } t > 0\}$ with:

$$|f(t)| \le 1, \ f(0) = 1, \ f'(+0) = \lim_{t \to 0, \text{Re } t > 0} \frac{f(t) - 1}{t} = -1,$$
 (2)

and $0 \le f(s) \le 1$ if s > 0, and the same conditions for g. By the functional calculus for normal operators, F(t) is well defined for Re $t \ge 0$ and bounded by 1.

¹Department of Theoretical Physics, quai Ernest-Ansermet 24, CH-1211 GENEVA 4 SWITZERLAND. email: Vincent.Cachia@physics.unige.ch

Theorem 1 Let \mathcal{H} be a separable Hilbert space. Let A, M_A , P_A , B, M_B , P_B , C, \mathcal{H}' , P', f, g, and F be as defined above. For any $u \in \mathcal{H}$ one has

$$\lim_{n \to \infty} \int_{-\infty}^{+\infty} \phi(t) F(it/n)^n u dt = \int_{-\infty}^{+\infty} \phi(t) e^{-itC} P' u dt, \ \phi \in L^1(\mathbb{R}).$$
 (3)

Moreover there exists a set $L \subset \mathbb{R}$ with zero Lebesgue measure and an increasing function $\varphi : \mathbb{N} \to \mathbb{N}$, such that:

$$\forall u \in \mathcal{H}', \quad F(it/\varphi(n))^{\varphi(n)}u \longrightarrow e^{-itC}P'u, \ t \in \mathbb{R} \setminus L,$$
 (4)

whereas for $u \in M_A^{\perp} + M_B^{\perp}$, $\lim_{n \to \infty} F(it/n)^n u = 0$, for each $t \in \mathbb{R}$.

One sees that the strong convergence, valid in the open right half-plane, cannot extend exactly to the boundary $i\mathbb{R}$, as already remarked in [3, 4]: the strong convergence on the boundary is restricted to the subspace $\mathcal{H}' + M_A^{\perp} + M_B^{\perp}$. However the weaker convergence (3) was already observed [1, 5].

2 Proof

Let us consider for Re $t \ge 0$ and $\tau > 0$:

$$S_{t,\tau} = \tau^{-1}(I - F(t\tau)) \tag{5}$$

which is a holomorphic operator-valued function of t in the open right half-plane. The main step of the proof is to show that the strong convergence:

$$s - \lim_{\tau \to 0} (I + S_{t,\tau})^{-1} = (I + tC)^{-1} P'$$
(6)

holds for Re t > 0, and remains true for almost all $t \in i\mathbb{R}$ and on some subsequence. This will give the announced result (4) for $u \in \mathcal{H}'$ by Chernoff's lemma (see below). The convergence on the boundary is obtained by a useful result of Feldman [5, Th 5.1], which we state here in a slightly more general form:

Lemma 2 Let $\{\Psi_{\tau}: 0 < \tau < 1\}$ be a uniformly bounded family of bounded holomorphic \mathcal{H} -valued function defined in the open right half-plane. Suppose that $\Psi_{\tau}(z) \xrightarrow{\tau \to 0} \Psi(z)$, for each z with $\operatorname{Re} z > 0$. Then for each $v \in L^{1}(\mathbb{R}, \mathcal{H})$

$$\int_{\mathbb{R}} (v(t), \Psi_{\tau}(it)) dt \xrightarrow{\tau \to 0} \int_{\mathbb{R}} (v(t), \Psi(it)) dt.$$
 (7)

Moreover for each (numerical) $\phi \in L^1(\mathbb{R})$:

$$s - \lim_{\tau \to 0} \int_{\mathbb{R}} \phi(t) \Psi_{\tau}(it) dt = \int_{\mathbb{R}} \phi(t) \Psi(it) dt.$$
 (8)

Proof: The two results (7) and (8) follow from very similar arguments, so we present only the first one. The bounded holomorphic functions Ψ_{τ} have boundary values for almost every $is \in i\mathbb{R}$, and for any t > 0 and $s \in \mathbb{R}$,

$$\Psi_{\tau}(t+is) = \int_{-\infty}^{+\infty} \frac{t/\pi}{t^2 + (s-s')^2} \Psi_{\tau}(is') ds' = P_t * \Psi_{\tau}(i\cdot).$$

The kernel P_t is in fact an approximate identity: $P_t * \phi \xrightarrow{L^1} \phi$ as $t \to 0$. Then we have:

$$\begin{split} \int_{\mathbb{R}} (v(s), [\Psi_{\tau}(is) - \Psi(is)]) ds &= \int_{\mathbb{R}} (v(s), [\Psi_{\tau}(t+is) - \Psi(t+is)]) ds + \\ &+ \int_{\mathbb{R}} ([v(s) - (P_t * v)(s)], [\Psi_{\tau}(is) - \Psi(is)]) ds, \end{split}$$

where we have used:

$$\int_{\mathbb{R}} (v(s), [P_t * h](s)) ds = \int_{\mathbb{R}} ([P_t * v](s), h(s)) ds.$$

This leads to

$$\left| \int_{\mathbb{R}} (v(s), [\Psi_{\tau}(is) - \Psi(is)]) ds \right| \leq \int_{\mathbb{R}} \|v(s)\| \|\Psi_{\tau}(t+is) - \Psi(t+is)\| ds \qquad (9)$$

$$+ \int_{\mathbb{R}} \|v(s) - (P_t * v)(s)\| \|\Psi_{\tau}(is) - \Psi(is)\| ds. \qquad (10)$$

The last term (10) can be made arbitrary small by choosing t sufficiently small, and for any t the integral in the right hand side of (9) tends to 0 as $\tau \to 0$ by Lebesgue's theorem.

Remark: It can also be shown that (8) implies (7).

It is convenient to introduce the following bounded accretive operators, for Re $t \ge 0$ and $\tau > 0$:

$$A_{t,\tau} = \tau^{-1}[I - f(t\tau A)P_A], \text{ and } B_{t,\tau} = \tau^{-1}[I - g(t\tau B)P_B].$$
 (11)

Lemma 3 For any t with $\operatorname{Re} t > 0$, $s - \lim_{\tau \to 0} (I + S_{t,\tau})^{-1} = (I + tC)^{-1}P'$. Moreover for any $v \in L^1(\mathbb{R}, \mathcal{H})$, $u \in \mathcal{H}$ and $t \in \mathbb{R}$, one has

$$\lim_{\tau \to 0} \int_{\mathbb{R}} (v(t), (I + S_{it,\tau})^{-1} u) dt = \int_{\mathbb{R}} (v(t), (I + itC)^{-1} P' u) dt.$$
 (12)

Proof: Since $S_{t,\tau} = A_{t,2\tau} + B_{t,2\tau}$, the strong convergence of $(I + S_{t,\tau})^{-1}$ for t > 0 follows from [6, Lem. 2.2 and 2.3]. Then it extends to the open right half-plane by the theorem of Vitali: for any $\tau > 0$, $(I + S_{t,\tau})^{-1}$ is a holomorphic function of t, and is bounded by 1.

The convergence on the boundary (12) follows from Lemma 2.

For any fixed $u \in \mathcal{H}$ and $t \in \mathbb{R}$ we set $w_{t,\tau} = (I + S_{it,\tau})^{-1}u$, $\tau > 0$. Then one finds

$$(u, w_{t,\tau}) = ||w_{t,\tau}||^2 + (A_{it,2\tau}w_{t,\tau}, w_{t,\tau}) + (B_{it,2\tau}w_{t,\tau}, w_{t,\tau})$$
(13)

with $\operatorname{Re}(A_{it,2\tau}w_{t,\tau}, w_{t,\tau}) \geq 0$ and $\operatorname{Re}(B_{it,2\tau}w_{t,\tau}, w_{t,\tau}) \geq 0$. Therefore

$$||w_{t,\tau}||^2 \le \text{Re}(u, w_{t,\tau}) \le |(u, w_{t,\tau})| \le ||u|| ||w_{t,\tau}|| \tag{14}$$

and thus $||w_{t,\tau}|| \le ||u||, \ \tau > 0.$

Lemma 4 Let α_n be any sequence of positive numbers with limit zero. There exists a set $L \subset \mathbb{R}$ of zero Lebesgue measure and a subsequence τ_n of α_n , such that for each $t \in \mathbb{R} \setminus L$, $s - \lim_{n \to \infty} (I + S_{it,\tau_n})^{-1} = (I + itC)^{-1}P'$.

Proof: It follows from Lemma 3 that: $\int_{\mathbb{R}} (1+t^2)^{-1}(u, w_{t,\tau})dt \to \int_{\mathbb{R}} (1+t^2)^{-1}(u, w_t)dt$ with $w_t = (I+itC)^{-1}P'u$. Thus the same is true for the real part, and we have by (13):

$$\operatorname{Re}(u, w_{t,\tau}) = \|w_{t,\tau}\|^2 + \|(\operatorname{Re} A_{it,2\tau})^{1/2} w_{t,\tau}\|^2 + \|(\operatorname{Re} B_{it,2\tau})^{1/2} w_{t,\tau}\|^2$$

We observe that $\operatorname{Re}(u, w_t) = \operatorname{Re}((I + itC)w_t, w_t) = ||w_t||^2$, and that

$$\int_{\mathbb{R}} \operatorname{Re} \left(w_{t,\tau}, w_t \right) \frac{dt}{1 + t^2} \xrightarrow{\tau \to 0} \int_{\mathbb{R}} \| w_t \|^2 \frac{dt}{1 + t^2}.$$

Then one finds

$$\int_{\mathbb{R}} \left(\|w_{t,\tau} - w_t\|^2 + \|(\operatorname{Re} A_{it,2\tau})^{1/2} w_{t,\tau}\|^2 + \|(\operatorname{Re} B_{it,2\tau})^{1/2} w_{t,\tau}\|^2 \right) \frac{dt}{1 + t^2} \xrightarrow{\tau \to 0} 0,$$

in particular $\int_{\mathbb{R}} \|w_{t,\tau} - w_t\|^2 (1+t^2)^{-1} dt \xrightarrow{\tau \to 0} 0$. This means that the functions $t \mapsto \|w_{t,\tau} - w_t\|$ converge to 0 in $L^2(\mathbb{R}, \mu)$ as $\tau \to 0$, with the finite measure $d\mu = (1+t^2)^{-1} dt$. Let $(e_m)_{m \in \mathbb{N}}$ be a basis of the separable Hilbert space \mathcal{H} . For $u = e_1$ the above L^2 -convergence implies that there exists $L_1 \subset \mathbb{R}$ with $\mu(L_1) = 0$ and some increasing function $\varphi_1 : \mathbb{N} \to \mathbb{N}$ such that $(I + S_{it,\alpha_{\varphi_1(n)}})^{-1}e_1 \to (I+itC)^{-1}P'e_1$ as $n \to \infty$, for any $t \in \mathbb{R} \setminus L_1$. Then for $u = e_2$ there $\exp(L_1) = 0$ with $\mu(L_2) = 0$ and an increasing function $\varphi_2 : \mathbb{N} \to \mathbb{N}$, such that $(I + S_{it,\alpha_{\varphi_1\circ\varphi_2(n)}})^{-1}e_2 \to (I+itC)^{-1}P'e_2$ as $n \to \infty$, for any $t \in \mathbb{R} \setminus L_2$, and so on for each $m \in \mathbb{N}$. Finally by the diagonal procedure we consider the sequence $\tau_n = \alpha_{\varphi_1 \circ \cdots \circ \varphi_n(n)}$ and find that convergence holds for each vector e_m of the basis and for each $t \in \mathbb{R} \setminus L$, where $L = \bigcup_{m \in \mathbb{N}} L_m$. We have $\mu(L) = 0$ and thus L has also zero Lebesgue measure. Since the operators $(I + S_{it,\tau})^{-1}$ are uniformly bounded, this implies the strong convergence for any vector $u \in \mathcal{H}$.

Proof of the theorem: We consider $Z_{t,n} = (n/t)[F(it/n) - I] = -t^{-1}S_{it,1/n}$ and $\alpha_n = 1/n$. Let L be as in Lemma 4 and let $t \in \mathbb{R} \setminus L$, $t \neq 0$. By [2, Th. 3.17] and Lemma 4 one obtains for some increasing function $\varphi : \mathbb{N} \to \mathbb{N}$:

$$\lim_{n \to \infty} e^{sZ_{t,\varphi(n)}} u = e^{-isC} P' u, \quad u \in \mathcal{H}', \ s \in \mathbb{R}.$$
 (15)

By Chernoff's Lemma [2, Lem. 3.27 and 3.29], one has

$$\lim_{n \to \infty} \|F(it/\varphi(n))^{\varphi(n)}u - e^{\varphi(n)(F(it/\varphi(n)) - I)}u\| = 0, \quad u \in \mathcal{H}'.$$
 (16)

Thus we obtain the convergence (4) in \mathcal{H}' . If $u \in M_A^{\perp} + M_B^{\perp}$, the convergence to 0 is clear because $F(it/n)^n$ reduces to $f(2it/n)^n P_A/2^n$ or $g(2it/n)^n P_B/2^n$. The $\sigma(L^{\infty}, L^1)$ convergence (3) follows by using Kato's result for Re t > 0 and Lemma 2.

Remark: the subsequence appearing in the theorem makes the result somewhat unsatisfactory. In fact this restriction is not necessary if we assume that the functions $t \mapsto (I + S_{it,\tau})^{-1}u$ are equicontinuous with respect to τ , at some point $t_0 \neq 0$. In this case Lemma 4 can be improved in the following way:

$$s - \lim_{\tau \to 0} (I + S_{it_0,\tau})^{-1} = (I + it_0 C)^{-1} P'.$$
(17)

For the proof, let us consider an approximate identity $\rho_n : \mathbb{R} \mapsto \mathbb{R}_+$. By Lemma 3 one has $\lim_{\tau \to 0} [\rho_n * (u, w_{\cdot,\tau})](t_0) = [\rho_n * (u, w_{\cdot})](t_0)$ for each $n = 1, 2, \ldots$, and by the equicontinuity of the functions $t \mapsto (u, w_{t,\tau})$ at t_0 , $\lim_{n \to \infty} [\rho_n * (u, w_{\cdot,\tau})](t_0) = (u, w_{t_0,\tau})$ uniformly in τ . Then in the proof of the theorem we consider $Z_{t,n} = -t_0^{-1}S_{it_0,t/nt_0}$ for any $t \in \mathbb{R}$. By (17) one has $s - \lim_{n \to \infty} (t_0^{-1} - Z_{t,n})^{-1} = (t_0^{-1} + iC)^{-1}P'$, which leads to the result of the theorem without subsequence (the exceptional set L has also disappeared). Concerning the equicontinuity condition, we recall that in our first result the function $t \mapsto F(it)$ ($t \in \mathbb{R}$) is not necessarily continuous (whereas it is continuous for example if f and g are the exponential function).

References

- [1] Chernoff P.R.: Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators, *Mem. Amer. Math. Soc.* **140**, Providence R.I. 1974.
- [2] Davies E.B.: One parameter semigroups, Academic Press, London 1980.
- [3] EXNER P.: Open Quantum Systems and Feynman Integrals, D. Reidel Publ. Co., Dordrecht 1985.
- [4] EXNER P., ICHINOSE T.:Product formula related to quantum Zeno dynamics, preprint 2003.
- [5] Feldman J.: On the Schrödinger and heat equations for nonnegative potentials, *Trans. Amer. Math. Soc.* **108** (1963) 251-264.
- [6] KATO T.: Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroup, in *Topics in functional Analysis (M. Kac ed.)*, Academic Press, New-York 1978, pp.185-195.
- [7] LAPIDUS M.: Formule de moyenne et de produit pour les résolvantes imaginaires d'opérateurs auto-adjoints, C.R. Acad. Sc. Paris série A, 291 (1980) 451-454.