

Multivariate statistics for market research

AY 2024/2025 - Gloria Peggiani

Agenda

- Introduction
- Principal component analysis
- Cluster analysis

Multivariate Statistics

Multivariate statistics refers to a branch of statistics that involves the application of statistical methods that **simultaneously analyze multiple variables**. This is in contrast to univariate statistics, which involves the analysis of a single variable. In multivariate statistics, the goal is often to understand the relationships among variables, identify patterns, and make predictions.

Traditional classification of multivariate statistical methods revolves around the idea of **dependency between variables** (Kendall 1957):

-Dependence multivariate methods-

analyze the associations between **two sets of variables**, where one set represents the dependent variable (or variables) and the other set several independent variables.

Interdependence multivariate methods-

explore the mutual association across all variables **without distinguishing** between variable types.

Multivariate Statistics

These methods can be used to either confirm a priori established theories or identify data patterns and relationships. Specifically, they are **confirmatory** when testing the hypotheses of existing theories and concepts, and **exploratory** when they search for patterns in the data in case there is no or only little prior knowledge on how the variables are related.

Common techniques used in multivariate statistics include:

	Primarily Exploratory	Primarily Confirmatory Techniques
Dependence Multivariate Methods	e.g., Partial Least Square Structural Equation Modeling	e.g., MANOVA, Multiple Regressions, Covariance-based Structural Equation Modeling
Interdependence Multivariate Methods	e.g., Cluster Analysis, RFM Analysis, Exploratory Factor Analysis, Principal Component Analysis	e.g., Confirmatory Factor Analysis

Principal Component Analysis

Principal Component Analysis (PCA)

- Principal Component Analysis, commonly known as PCA, is a technique for reducing the dimensionality of large datasets. It accomplishes this by converting a substantial set of variables into a more compact one while retaining the majority of information from the original dataset.
- Important note: principal components analysis is conceptually different from factor analysis. However, the two terms are often used interchangeably in several disciplines.

Data analysis process

Objectives Definition Data Gathering & Integration Data Exploration & **Data Preparation** Model **Development & Model Evaluation** Prediction and/or Interpretation

Data analysis process

Objectives Definition Data Gathering & Integration Data Exploration & **Data Preparation** Model **Development & Model Evaluation** Prediction and/or Interpretation

17/10/2024

Data exploration

WillingnessToPay	
Mean	30,68364662
Standard Error	0,196944788
Median	30,6
Mode	29,6
Standard Deviation	4,542556198
Sample Variance	20,63481681
Kurtosis	25,06914004
Skewness	2,297700036
Range	61
Minimum	19
Maximum	80
Sum	16323,7
Count	532

		Count
Age group	18-20	58
	21-30	173
	31-40	166
	40+	135
Total		532

9

Data preparation

Data Validation

To identify and remove anomalies and inconsistencies

Data Transformation

To improve the accuracy and efficiency of algorithms

Data Size Reduction

Data preparation

Data Validation

- Incompleteness
- → Elimination
- → Inspection
- → Identification
- → Substitution
- Noise
- → Outliers detection
- → Outliers elimination
- Inconsistencies
- Imbalanced data
- → Downsampling

Data Transformation

To improve the accuracy and efficiency of algorithms

Data Size Reduction

Data preparation

Data Validation

To identify and remove anomalies and inconsistencies

Data Transformation

To improve the accuracy and efficiency of algorithms

Data Size Reduction

Data preparation

Data Validation

To identify and remove anomalies and inconsistencies

Data Transformation

- Data Standardization
- Conversion of Categorical Variables
- → Dummy Variables Creation

Data Size Reduction

Data preparation

Data Validation

To identify and remove anomalies and inconsistencies

Data Transformation

To improve the accuracy and efficiency of algorithms

Data Size Reduction

Data preparation

Data Validation

To identify and remove anomalies and inconsistencies

Data Transformation

To improve the accuracy and efficiency of algorithms

Data Size Reduction

- Records Reduction by Sampling
- Variables Reduction by Selection
- Variables Reduction by Projection
- Values Reduction by Aggregation

Data preparation

Data Size Reduction

- Records Reduction by Sampling
- Variables Reduction by Selection
- Variables Reduction by Projection
- Values Reduction by Aggregation

When and Why is PCA needed

- Removing superfluous/unrelated variables: If one component only loads on one variable, this could be an indication that this variable is not related to the other variables in your data set and might not be measuring anything of importance to your particular study (i.e., it is measuring some other construct or measure).
- Reducing redundancy in a set of variables: If you have measured many variables and you
 believe that some of the variables are measuring the same underlying construct, you might
 have variables that are highly correlated.
- Removing multicollinearity: If you have two or more variables that are highly correlated,
 PCA can reduce the highlighted correlated variables into principal components.

PCA - Intuition

Dataset: 36,876 observations, recorded for 3 variables x, y, and z.

PCA - Intuition

INFORMATION: VARIATION (VARIABILITY)

The more spread out the data points are in a particular direction, the higher the amount of information contained in that direction.

- A(x,y), B(x,y), and C(x,y) are scattered around (0,0) and are distinguishable.
- var(x) >0

PCA - Intuition

INFORMATION: VARIATION (VARIABILITY)

The more spread out the data points are in a particular direction, the higher the amount of information contained in that direction.

Population

Sample

Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N} \qquad S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

PCA - Intuition

INFORMATION: VARIATION (VARIABILITY)

The more spread out the data points are in a particular direction, the higher the amount of information contained in that direction.

- A(x,y), B(x,y), and C(x,y) overlap on (0,0) and are indistinguishable
- No variability among the coordinates → no information that allows to distinguish the three points.

PCA - Intuition

INFORMATION: VARIATION (VARIABILITY)

The more spread out the data points are in a particular direction, the higher the amount of information contained in that direction.

- A(x,y), B(x,y), and C(x,y) overlap on (0,0) and are indistinguishable
- No variability among the coordinates → no information that allows to distinguish the three points.

PCA - From intuition to optimization

PCA - From intuition to optimization

Three points A(1,1), B(2,2), and C(3,3) in the reference system xOy are aligned along the θ =45° direction.

- var(x)=1var(y)=1

PCA - From intuition to optimization

New coordinate system x'Oy' : by rotating the coordinates by Θ =45 \circ counterclockwise

- var(x') = 2
- var(y') = 0
- \rightarrow The variance is maximized along the x' direction.

PCA - From intuition to optimization

The total variance is conserved: var(x) + var(y) = var(x') + var(y') = 2.

PCA - From intuition to optimization

PCA - From intuition to optimization

Principal Components Analysis (PCA) starts extracting the maximum variance and puts them
into the first component. After that, it removes that variance explained by the first component
and then starts extracting maximum variance for the second component. This process goes to
the last component.

 Technically, PCA is an orthogonal linear transformation that reorients the data to a novel coordinate system where the most significant variance, as determined by a scalar projection, aligns with the first coordinate (referred to as the first principal component). Subsequently, the second greatest variance aligns with the second coordinate, and this pattern continues for all the subsequent components.

PCA - From intuition to optimization

$$\begin{bmatrix} \text{Cov } (x,x) & \text{Cov } (x,y) \\ \text{Cov } (y,x) & \text{Cov } (y,y) \end{bmatrix}$$

The eigenvector associated with the largest eigenvalue indicates the direction in which the data has the most variance.

Principal Component Analysis

- New variables are uncorrelated
- Most of the information is contained in the first component

17/10/2024

Marketing Analytics - 2024/2025

Dataset: Young People Survey

A large-scale survey was conducted among young people on many aspects of their lives, such as:

- Self perception
- Likes and fears
- Lifestyle
- Preferences in music, movie, etc.
- Some demographic information

In particular, the music preference was measured in a series of questions:

- I enjoy listening to music (Likert scale, 1 Not at all 5 Very much)
- I prefer slow or fast songs (1 Slow 5 Fast)
- I like the following music genres (1 Not at all 5 Very much) 17 genres
 - Dance, disco, funk
 - Folk
 - Country
 - Classical
 - Musicals
 - Pop

- Rock
- Metal, hard rock
- Punk
- Hip hop, rap
- Reggae, Ska
- Swing, jazz

- Rock n Roll
- Alternative
- Latin
- Techno, Trance
- Opera

Likert Scales

• A Likert scale is a unidimensional **measurement tool** employed to gather the attitudes and opinions of respondents. This psychometric scale is frequently utilized to assess perspectives and sentiments regarding a brand, product, or target market.

- These scales facilitate the assessment of respondents' degrees of agreement or disagreement.
- The Likert scale assumes that the strength and intensity of experiences are linear. This implies a belief in the
 measurability of the variable along this continuum.

Dataset: Young People Survey

Dataset: Young People Survey

- Dance, disco, funk
- Folk
- Country
- Classical
- Musicals
- Pop
- Rock
- Metal, hard rock
- Punk
- Hip hop, rap
- Reggae, Ska
- Swing, jazz
- Rock'n Roll
- Alternative
- Latin
- Techno, Trance
- Opera

Summarizing the information in the original variables with a (substantially) lower number of components

Component 2

Component 3

• ...

PCA: Assumptions

Assumption #1: You have multiple variables that are measured at the continuous level (although ordinal data is very frequently used).

Typologies of data

- Categorical / Nominal
- Ordinal
- Continuous / Scale

Typologies of data

Categorical / Nominal

Customer ID	Gender	Type of account	Free account	Basic account	Premium account	Nationality	Hair color
C1	Male	Free	Yes	No	No	Italian	Black
C2	Female	Basic	No	Yes	No	French	Brown
C3	Female	Basic	No	Yes	No	German	Blonde
C4	Male	Premium	No	No	Yes	Spanish	Brown

Customer ID	Gender	Type of account	Free account	Basic account	Premium account	Nationality	Hair color
C1	1	1	1	0	0	52	1
C2	0	2	0	1	0	23	2
C3	0	2	0	1	0	44	3
C4	1	3	0	0	1	79	2

Typologies of data

Categorical / Nominal

- > The numerical values only represent distinctive groups and do not carry any numerical meaning (sum, average, etc. do not have meaning!)
- > The groups could be labeled with completely different numbers (but you need to keep track of the labeling)
- ➤ Dummy variable (Free account, Basic account, and Premium account in the example) takes the value of 0 or 1 to indicate the absence or presence of the given category. To include variable with more than two categories in certain analysis, it needs to be transformed into dummy variables first.

Typologies of data

Ordinal

Typologies of data

Ordinal

- ➤ There is certain order implied, for example: young old, lower education higher education, less satisfied more satisfied
- > The difference in number, however, does not represent the meaning of distance between different levels in the order
- > The numerical value could be arbitrarily assigned: you should keep track of the labeling

Typologies of data

• Continuous / Scale

Customer ID	Age	Height (cm)	ВМІ	Annual income (€)	Month since 1° purchase	Total spending (€)	Log-in per week
C1	16	168	20,1	5.000	3	50	27
C2	23	165	16,4	22.300	14	320	25
C3	31	173	26,7	38.000	22	760	12
C4	38	182	32,2	36.500	19	510	5
					:		

Typologies of data

Continuous / Scale

- > There is an order implied
- ➤ The numbers and the difference between the numbers have actual measurable meanings, such as: 2 years younger, 10cm taller, spend 300€ more.

PCA: Assumptions

Assumption #1: You have multiple variables that are measured at the continuous level (although ordinal data is very frequently used).

Assumption #2: There should be a linear relationship between all variables.

PCA: Assumptions

Assumption #1: You have multiple variables that are measured at the continuous level (although ordinal data is very frequently used).

Assumption #2: There should be a linear relationship between all variables.

Assumption #3: There should be no outliers.

PCA: Assumptions

Assumption #1: You have multiple variables that are measured at the continuous level (although ordinal data is very frequently used).

Assumption #2: There should be a linear relationship between all variables.

Assumption #3: There should be no outliers.

Assumption #4: There should be large sample sizes for a principal components analysis to produce a reliable result.

PCA: Steps

- 1. Variables selection
- 2. Rotation method identification
- 3. Number of principal component definition
- 4. Results interpretation

PCA: Variables Selection

Objective: to identify music preferences.

PCA: Rotation method identification

PCA loadings are the coefficients of the linear combination of the original variables from which the principal components (PCs) are constructed.

PCA: Rotation method identification

The goal of rotation is to improve the interpretability of the component solution by reaching simple structure.

In this case, loadings are the coefficients of the linear combination of the original variables from which the **rotated** principal components (PCs) are constructed.

	Componente						
	1	2	3	4	5		
Dance	,006	-,115	,455	,681	,063		
Folk	,671	-,001	,059	,043	,116		
Country	,514	,167	,149	,071	,056		
Classical music	,790	,109	-,083	-,068	,082		
Musical	,518	,013	517	-,203	,078		
Pop	-,087	-,064	,793	,243	-,087		
Rock	,091	,837	,106	-,133	,060		
Metal or Hardrock	,124	,763	-,261	-,017	-,059		
Punk	-,047	,775	-,133	-,001	,163		
Hiphop, Rap	-,272	-,222	,224	,513	,373		
Reggae, Ska	-,034	,154	,059	,142	,794		
Swing, Jazz	,466	,126	,040	-,073	,637		
Rock n roll	,268	,554	,187	-,149	,398		
Alternative	,234	,411	-,327	-,054	,408		
Latino	,297	-,142	,585	,045	,310		
Techno	,051	-,021	-,067	,880	-,038		
Opera	,788	,036	-,036	-,071	-,033		

Componente

PCA: Rotation method identification

The goal of component rotation is to improve the interpretability of the factor solution by reaching simple structure

Orthogonal rotation (Varimax):

assumes that components are independent or uncorrelated with each other;

Oblique rotation (Oblimin):

assumes that components are not independent and are correlated

PCA: Number of principal component definition

As an unsupervised technique, the number of component is usually not known in advance; the «correct» number of components practically does not exist.

Though, some statistical indicators could help to define the number of components:

Factors with Eigen-value >1: the component explains more variances than a single variable

Scree plot: cut off at the «elbow» point, the value added by additional components is small

PCA: Number of principal component definition

Total Variance Explained

	Initial Eigenvalues			Extraction	Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	3,811	22,415	22,415	3,811	22,415	22,415		
2	2,663	15,667	38,082	2,663	15,667	38,082		
3	1,852	10,894	48,976	1,852	10,894	48,976		
4	1.000	6.440	55 205	1.000	6.410	55 205		
5	1,025	6,032	61,418	1,025	6,032	61,418		
ь	,957	5,631	67,049					
7	,846	4,977	72,026					
8	,668	3,930	75,955					
9	,649	3,816	79,772					
10	,576	3,389	83,161					
11	,520	3,059	86,220					
12	,447	2,629	88,849					
13	,431	2,538	91,387					
14	,403	2,372	93,759					
15	,384	2,260	96,019					
16	,348	2,045	98,064					
17	,329	1,936	100,000					

Extraction Method: Principal Component Analysis.

(Kaiser, 1960)

PCA: Scree plot

PCA: Number of principal component definition

PCA: Number of principal component definition

4-Factor solution

Rotated Component Matrix^a

	Component					
	1	2	3	4		
Classicalmusic	,788					
Opera	,769					
Folk	,678					
SwingJazz	,562					
Country	,502					
Rock		,779				
Punk		,769				
Rocknroll		,668				
MetalorHardrock		,660				
Alternative		,553				
ReggaeSka		,478	,431			
Techno			,779			
HiphopRap			,666			
Dance			,665			
Pop				,738		
Latino				,626		
Musical	,512			,533		

Extraction Method: Dringing Companent Analysis

5-Factor solution

Rotated Component Matrix^a

		Component							
	1	2	3	4	5				
Classicalmusic	,790								
Opera	,788								
Folk	,671								
Musical	,518		,517						
Country	,514								
Rock		,837							
Punk		,775							
MetalorHardrock		,763							
Rocknroll		,554							
Alternative		,411			,408				
Pop			,793						
Latino			,585						
Techno				,880					
Dance			,455	,681					
HiphopRap				,513					
ReggaeSka					,794				
SwingJazz	,466				,637				

PCA: Results interpretation

5-Factor solution

Rotated Component Matrix^a

Classy

Rocky

Dancy

Disco

Jazzy

	Component						
	1	2	3	4	5		
Classicalmusic	,790						
Opera	,788						
Folk	,671						
Musical	,518		,517				
Country	,514						
Rock		,837					
Punk		,775					
MetalorHardrock		,763					
Rocknroll		,554					
Alternative		,411			,408		
Pop			,793				
Latino			,585				
Techno				,880			
Dance			,455	,681			
HiphopRap				,513			
ReggaeSka					,794		
SwingJazz	,466				,637		

Cluster Analysis

Cluster Analysis

Subdivide the records of a dataset into **homogeneous groups of observations**, called clusters, so that observations belonging to one group are similar to one another and dissimilar from observations included in other groups.

Taxonomy of clustering methods

Clustering methods can be classified into a few main types based on the **logic** used for deriving the clusters:

- Partition methods
- Hierarchical methods
- Density based methods
- Grid methods

Partition methods

Partitioning methods divide the data into a **predefined number of clusters** by optimizing a given criterion (such as minimizing the distance between data points within the same cluster). They are characterized by:

- Fixed number of clusters
- Flat structure
- Iterative optimization

Hierarchical methods

Hierarchical clustering builds a hierarchy or tree-like structure of clusters (represented in a **dendrogram**) showing how clusters are formed at different levels of granularity. These methods are characterized by:

- No need to specify the number of clusters upfront
- Hierarchical structure
- Agglomerative vs. divisive approach

Clustering methods: K-Means

- Clustering objects into homogeneous groups based on variables with continuous/scale variables (e.g. age, height).
- It classifies objects by computing the **distance** among the objects. Variables with very different scales should be standardized to avoid the clustering being dominated by the measurement scale of a large range.
- The **number of clusters** has to be imposed before computation: several K-Means cluster analyses could be performed to choose the best solution
- It is fast and easy to perform on a large dataset
- It cannot classify subjects with missing values

Clustering methods: K-Means

K-Means clustering: Steps

- 1. Variables selection
- 2. Number of clusters identification
- 3. Convergence assessment
- 4. Robustness assessment
- 5. Results interpretation

Clustering methods: K-Means

Step 1: Choose the number of clusters *k*

Step 2: Select k random centroids

Step 3: Assign all the points to the closest

cluster centroid

Step 4: Recompute the centroids of newly

formed clusters

Stop If:

- Centroids of newly formed clusters do not change
- Points remain in the same cluster
- Maximum number of iterations are reached

Dataset: Young People Survey

A large-scale survey was conducted among young people on many aspects of their lives, such as:

- Self perception
- Likes and fears
- Lifestyle
- Preferences in music, movie, etc.
- Some demographic information

In particular, the music preference was measured in a series of questions:

- I enjoy listening to music (Likert scale, 1 Not at all 5 Very much)
- I prefer slow or fast songs (1 Slow 5 Fast)
- I like the following music genres (1 Not at all 5 Very much) 17 genres
 - Dance, disco, funk
 - Folk
 - Country
 - Classical
 - Musicals
 - Pop

- Rock
- Metal, hard rock
- Punk
- Hip hop, rap
- Reggae, Ska
- Swing, jazz

- Rock n Roll
- Alternative
- Latin
- Techno, Trance
- Opera

K-Means clustering: Variables selection

Not all the variables in a dataset should be put together in a cluster analysis. You should consider the relationships between the input variables

K-Means: Defining k

K-Means clustering: Convergence assessment

Iteration Historya

Change in Cluster Centers

Iteration	1	2
1	2,994	3,275
2	,087	,126
3	,074	,095
4	,059	,068
5	,035	,039
6	,035	,039
7	,040	,045
8	,037	,042
9	,047	,053
10	,062	,071
11	,077	,093
12	,073	,087
13	,063	,077
14	,040	,048
15	,039	,045
16	,043	,049
17	,026	,030
18	,031	,035
		200
20	,034	,039

lteration History^a

Change	in Cluster	Centers
2	3	4

Iteration	1	2	3	4	5	
1	1,932	2,589	1,944	2,057	2,361	
2	,192	,404	,157	,177	,461	
3	,153	,225	,113	,200	,289	
4	,119	,165	,096	,127	,152	
5	,096	,115	,116	,178	,121	
6	,053	,092	,117	,139	,055	
7	,067	,097	,082	,080,	,037	
8	,064	,079	,071	,097	,065	
9	,054	,082	,115	,151	,075	
10	,026	,051	,099	,130	,149	
11	,051	,046	,064	,050	,068	
12	,021	,027	,023	,040	,055	
14	,000	,000	,000	,000	,000	

K-Means clustering: Robustness assessment

ANOVA

	Cluste	r	Error			
	Mean Square	df	Mean Square	df	F	Sig.
Classy	87,237	4	,593	848	147,056	,000
Rocky	59,897	4	,722	848	82,940	,000
Dancy	71,404	4	,668	848	106,907	,000
Disco	120,142	4	,438	848	274,292	,000
Jazzy	72,332	4	,664	848	109,011	,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

K-Means clustering: Robustness & Interpretability of the Results

Number of Cases in each Cluster

Cluster	1	176,000
	2	147,000
	3	191,000
	4	212,000
	5	127,000
Valid		853,000

K-Means clustering: Interpretability of the Results

K-Means clustering: Results interpretation

Which solution to choose?

• Statistically, the best solution can be suggested by indicator of distinctiveness among the clusters

17/10/2024

Silohuette coefficient

$$S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i): The average distance from the ith point to the other points in th same cluster.

b(i): The minimum average distance from the ith point to points in a different cluster, minimized over clusters.

K-Means clustering: Results interpretation

Which solution to choose?

- Statistically, the best solution can be suggested by indicator of distinctiveness among the clusters
- For marketing application, it is more important to consider:
 - Whether the clusters provide you relevant and actionable insights
 - Whether these insights are consistent with your business
 - Whether it satisfies the crieteria of 'good segmentation'

K-Means clustering: Results interpretation

From experience, there could be some general consideration when it comes to selecting the right clustering solution:

- Solution with too few clusters may not adequately capture the diversity (for example, the 2-cluster solution of music preference only found substantial difference regarding classical music, while the preferences for all other types remain average)
- Solution with too many clusters will be increasingly difficult to interpret and to manage implementation of eventual applications

Gloria Peggiani

AY 2024/2025