TÓMOS ai: Improving CNN performance on reduced tomography datasets

George Prounis

Gabriel M Santos E

Felipe Caballero

TÓMOS ai

Mission To develop ML products that...

- Perform on limited medical imaging data
- Can **adapt** to novel challenges

COVID-19

Normal

Products for the **frontlines**...

- At early stages of disease discovery
- Using widely available imaging tech (e.g., x-ray tomography)

COVID-19 cases, January 2020

...July 2020

Presentation Outline

- Motivation
- Data overview
- Objective
- Models
 - Baseline: Resnet50
 - Experimental A: Transfer Learning (COVID-19 lung tomography)
 - Experimental B: Semi-supervised Labelling
- Results
- Conclusion & Future Directions

Motivation

Optical Coherence Tomography (OCT)

- 30 million scans/year
- \$1B/year market
- High prevalence:
 - Choroidal neovascularization (CNV): 1.2% adult pop.
 - Diabetic macular edema (DME): 6.6%
 - Drusen: 93% any, 55% medium, 15% large

Machine Learning solutions

- Large amounts of unlabeled data
- Cost-efficient & rapid diagnosis, globally

OCT: Dataset review

- 4 conditions
- Data
 - Total files: 84,484
 - Duplicated files: 7,357
 - Usable files: 77,127
 - We created a pd.dataframe for easier manipulation

Goals and Objectives

Goal

Improve performance on reduced dataset

How?

- Use similar images to pre-train Covid CT Transfer Learning
- Generate more labels with semi-supervised learning Label Spreading
- Combine **both**

OCT: Model Selection

- 4% of data extracted
- Validation accuracy chosen as target for model selection and tuning
- Best
 - Model = Resnet50
 - Optimizer = Adam
 - Learning rate = **0.01**
 - Batch_size = **16**
 - Val_Acc = **0.84**

Model	Val_acc	Val_loss	f1_score
Resnet5001_Adam_8	0.8396	0.4423	0.734184
Inception_V301_Adam_8	0.8108	0.5646	0.788707
 VGG1601_Adam_8	0.8234	0.5583	0.825868
Resnet5001_SGD_8	0.8126	0.5229	0.769536
Resnet5001_Adagrad_8	0.8126	0.5756	0.774433
Resnet501_Adam_8	0.8342	3.7931	0.779204
Resnet50001_Adam_8	0.836	0.4436	0.806301
Resnet5001_Adam_2	0.836	0.5089	0.767981
Resnet5001_Adam_16	0.8414	0.5441	0.770273
Resnet5001_Adam_32	0.8342	0.5345	0.773052
Resnet50v201_Adam_16	0.8378	0.4695	0.770538

OCT: Baselines - Resnet50

- Default architecture (177 layers)
- Trainable
- Added last dense layer (4 neurons)
- Data
 - Test set 5%
 - Train set 95% 20% for validation / training on the rest

OCT: Baselines - Resnet50

- Data augmentation
- Pre processing
- 30 epochs
- Saved best & last model

Model (best in 30 epochs)	Accuracy	Precision	Recall	F1
Resnet 50 / 100% of train set / All trainable	95.38%	95.53%	95.38%	95.40%
Resnet 50 / 5% of train set / All trainable	89.78%	89.85%	89.78%	89.37%
Resnet 50 / 5% of train set / Last 34 layers trainable	92.01%	91.84%	92.01%	91.81%

Experiment A, Transfer Learning / COVID-CTscan Baseline - Resnet50

X-ray scans of COVID-19 vs. Normal Lungs

- COVID-19: 2,155 images / 95 patients
- Normal: 9,466 images / 282 patients

Resnet50 baseline model

- Added last dense layer (2 neurons)
- Data
 - 11,621 images
 - 5% test, 20% validation
- Performance
 - 94% testing accuracy

Normal

Experiment A COVID-CTscan → OCT Model

Transferred weights from COVID-19
Baseline ResNet to all layers of a OCT
ResNet model.

All but last 34 layers are frozen.

Experiment B

OCT: Semi-Supervised (approach)

- Create unlabelled data set
- Predict new labels

Use new labelled data for training

Labelled data probability vector mapping

Unlabelled data probability vector mapping

Experiment B

OCT: Semi-Supervised (results)

Results

F1 Weighted Average between models

Models

Demo time

(try it in this IP: 35.86.237.154)

Classification and heatmaps

Conclusions / Future directions

We improved performance on a limited (5%) labeled dataset with a semi-supervised learning approach (+0.9% F1)

Future directions

- Do co-training
- Reduce data further
- Try VGG16
- Experimenting with which layers get frozen during transfer learning

What did we learn?

We learned how to take a specific Dataset, run it through a Machine Learning pipeline specific to that data and improve the performance catering the pipeline to the data.

Questions?

TÓMOS ai

Felipe Caballero felipe@caballero.co

George Prounis
george.prounis@gmail.com

Gabriel Santos-Elizondo g.santose4@gmail.com

Backslides

OCT: Dataset review

- Two datasets: *Kaggle* and *Mendeley*
- We use the *Mendeley* one
- Data
 - Total files: 84.484
 - Duplicated files: 7.357
 (duplicates are considered when md5 and condition are the same)
 - Usable files: 77.127
 - We created a pd.dataframe for easier manipulation

OCT: Dataset review, image description

TOMOS ar

Baseline - Resnet 50 / 100% of train set / All trainable

Baseline - Resnet 50 / 5% of train set / All trainable

Baseline - Resnet 50 / 5% of train set / Last 34 layers trainable

COVID-OCT-Resnet 50 / 5% of train set / Last 34 layers trainable

