Testability Measures

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology,

IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Testability Measures

- Origins
- Controllability and observability
- SCOAP measures
 - Sources of correlation error
 - Combinational circuit example
 - Sequential circuit example
- Test vector length prediction
- High-Level testability measures
- Summary

Purpose

- Need approximate measure of:
 - Difficulty of setting internal circuit lines to 0 or 1 by setting primary circuit inputs
 - Difficulty of observing internal circuit lines by observing primary outputs

Uses:

- Analysis of difficulty of testing internal circuit parts redesign or add special test hardware
- Guidance for algorithms computing test patterns avoid using hard-to-control lines
- Estimation of fault coverage
- Estimation of test vector length

Origins

- Control theory
- Rutman 1972 -- First definition of controllability
- Goldstein 1979 -- SCOAP
 - First definition of observability
 - First elegant formulation
 - First efficient algorithm to compute controllability and observability
- Parker & McCluskey 1975
 - Definition of Probabilistic Controllability
- Brglez 1984 -- COP
 - 1st probabilistic measures
- Seth, Pan & Agrawal 1985 PREDICT
 - 1st exact probabilistic measures

Testability Analysis

- Involves Circuit Topological analysis, but no test vectors and no search algorithm
 - Static analysis
- Linear computational complexity
 - Otherwise, is pointless might as well use automatic test-pattern generation and calculate:
 - Exact fault coverage
 - Exact test vectors

Types of Measures

- SCOAP Sandia Controllability and Observability Analysis Program
- Combinational measures:
 - CC0 Difficulty of setting circuit line to logic 0
 - CC1 Difficulty of setting circuit line to logic 1
 - CO Difficulty of observing a circuit line
- Sequential measures analogous:
 - **SC0**
 - **SC1**
 - **SO**

Range of SCOAP Measures

- Controllabilities 1 (easiest) to infinity (hardest)
- Observabilities 0 (easiest) to infinity (hardest)
- Combinational measures:
 - Roughly proportional to # circuit lines that must be set to control or observe given line
- Sequential measures:
 - Roughly proportional to # times a flip-flop must be clocked to control or observe given line

Goldstein's SCOAP Measures

AND gate O/P 0 controllability:output_controllability = min (input_controllabilities)+ 1

- AND gate O/P 1 controllability:
 output_controllability = Σ (input_controllabilities)
 + 1
- Fanout Stem observability:
 Σ or min (some or all fanout branch observabilities)

Controllability Examples

More Controllability Examples

Observability Examples

To observe a gate input:

Observe output and make other input values non-controlling

$$CO(a) = CO(z) + CC1(b) + 1$$

$$CO(b) = CO(z) + CC1(a) + 1$$

$$CO(a) = CO(z) + CCO(b) + 1$$

$$CO(b) = CO(z) + CCO(a) + 1$$

$$CO(a) = CO(z) + min(CCO(b), CC1(b)) + 1 a$$

$$CO(b) = CO(z) + min(CCO(a), CC1(a)) + 1 b-$$

$$CO(a) = CO(z) + CC1(b) + 1$$

$$CO(b) = CO(z) + CC1(a) + 1$$

More Observability Examples

To observe a fanout stem:

Observe it through branch with best

$$CO(b) = CO(z) + CCO(a) + 1$$

$$CO(a) = CO(z) + min(CCO(b), CC1(b)) + 1 a -$$

$$CO(b) = CO(z) + min(CCO(a), CC1(a)) + 1 b_{---}$$

$$CO(a) = CO(z) + 1$$

$$CO(a) = min(CO(z1), CO(z2), ..., CO(zn))$$

Sequential Measure Differences

- Combinational
 - Increment CC0, CC1, CO whenever you pass through a gate, either forwards or backwards
- Sequential
 - Increment SCO, SC1, SO only when you pass through a flip-flop, either forwards or backwards, to Q, Q, D, C, SET, or RESET
- Both
 - Must iterate on feedback loops until controllabilities stabilize

D Flip-Flop Equations

- Assume a synchronous RESET line.
- CC1(Q) = CC1(D) + CC1(C) + CC0(C) + CC0(RESET)
- SC1(Q) = SC1(D) + SC1(C) + SC0(C) + SC0(RESET) + 1
- CCO(Q) = min[CC1(RESET) + CC1(C) + CCO(C),CCO(D) + CC1(C) + CCO(C)]
- SCO(Q) is analogous
- CO(D) = CO(Q) + CC1(C) + CCO(C) + CC
- SO(D) is analogous

D Flip-Flop Clock and Reset

- CO(RESET) = CO(Q) + CC1(Q) + CC1(D) + CC1(C) + CCO(C)
- SO (RESET) is analogous
- Three ways to observe the clock line:
 - 1. Set Q to 1 and clock in a 0 from D
 - 2. Set the flip-flop and then reset it
 - 3. Reset the flip-flop and clock in a 1 from D

•
$$CO(C) = min [CO(Q) + CC1(Q) + CC0(D) + CC1(C) + CC0(C),$$

 $CO(Q) + CC1(Q) + CC1(RESET) + CC1(C) + CC0(C),$
 $CO(Q) + CC0(Q) + CC0(RESET) + CC1(D) + CC1(C) + CC0(C)]$

SO (C) is analogous

Algorithm for Testability Computation

- 1. For all Pls, CC0 = CC1 = 1 and SC0 = SC1 = 0
- 2. For all other nodes, $CC0 = CC1 = SC0 = SC1 = \infty$
- 3. Go from Pls to POS, using *CC* and *SC* equations to get controllabilities -- Iterate on loops until *SC* stabilizes -- convergence guaranteed
- 4. For all POs, set CO = SO = 0, for other nodes
- 5. Work from POs to Pls, Use *CO*, *SO*, and controllabilities to get observabilities
- 6. Fanout stem (CO, SO) = min branch (CO, SO)
- 7. If a CC or SC (CO or SO) is , that node is uncontrollable (unobservable)

Sequential Example

High Level Testability

- Build data path control graph (DPCG) for circuit
- Compute sequential depth -- # arcs along path between Pls, registers, and POs
- Improve Register Transfer Level Testability with redesign

Improved RTL Design

- (a) Untestable implementation.
- (b) DFG of untestable implementation.

(c) Testable implementation.

(d) DFG of testable implementation.

Probability based testability measures

- Used to analyze the random testability of the circuit
 - C0(s): probability-based 0-controllability of s
 - C1(s): probability-based 1-controllability of s
 - O(s): probability-based observability of s
- □ Range between 0 and 1
- \Box C0(s) + C1(s) = 1

Probability based controllability calculation rules

	0-controllability (Primary input, output, branch)	1-controllability (Primary input, output, branch)
Primary Input	p_0	$p_1 = 1 - p_0$
AND	1 – (output 1-controllability)	Π (input 1-controllabilities)
OR	Π (input 0-controllabilities)	1 – (output 0-controllability)
NOT	Input 1-controllability	Input 0-controllability
NAND	Π (input 1-controllabilities)	1 – (output 0-controllability)
NOR	1 – (output 1-controllability)	Π (input 0-controllabilities)
BUFFER	Input 0-controllability	Input 1-controllability
XOR	1 – 1-controllabilty	Σ (C1(a) \times C0(b), C0(a) \times C1(b))
XNOR	1 – 1-controllability	Σ (C0(a) \times C0(b), C1(a) \times C1(b))
Branch	Stem 0-controllability	Stem 1-controllability

Probability based observability calculation rules

	Observability (Primary output, input, stem)	
Primary Output	1	
AND / NAND	Π (output observability, 1-controllabilities of other inputs)	
OR / NOR	∏ (output observability, 0-controllabilities of other inputs)	
NOT / BUFFER	Output observability	
XOR / XNOR	$a: \Pi$ (output observability, max {0-controllability of b , 1-controllability of b }) $b: \Pi$ (output observability, max {0-controllability of a , 1-controllability of a })	
Stem	max {branch observabilities}	

a, b: inputs of an XOR or XNOR gate

Difference between SCOAP abd Probability based testability measures

(a) SCOAP combinational measures

(b) Probability-based measures

v1/v2/v3 represents the signal's 0-controllability (v1), 1-controllability (v2), and observability (v3)

Summary

- Testability approximately measures:
 - Difficulty of setting circuit lines to 0 or 1
 - Difficulty of observing internal circuit lines
- Uses:
 - Analysis of difficulty of testing internal circuit parts
 - Redesign circuit hardware or add special test hardware where measures show bad controllability or observability
 - Guidance for algorithms computing test patterns avoid using hard-to-control lines

Questions?

