- Any arrival-counting process in which arrivals occur one-at-a-time and has independent and stationary increments must be a Poisson process
 - If you can justify your system having independent and stationary increments, then you can assume that interarrival times are exponentially distributed
 - o This is a very deep and powerful result

5 Why does the memoryless property hold?

- The memoryless property allows us to ignore when we start observing the Poisson process, since forward-recurrence times and interarrival times are distributed in the same way
- "Memoryless" ←→ how much time has passed doesn't matter
- Why is this true for Poisson processes?
- Let's consider G_n , the interarrival time between the (n-1)th and nth arrival (between T_{n-1} and T_n)
 - Recall that G_n ~ Exponential(λ)
- Pick some t between T_{n-1} and T_n
- We want to show that the forward-recurrence time $R_t \sim \text{Exponential}(\lambda)$
 - Equivalently, we show $F_{R_t}(a) = \Pr\{R_t \le a\} = 1 e^{-\lambda a}$

• Therefore:

$$\begin{split} \Pr\{R_{t} > a\} &= \Pr\{G_{n} > t - T_{n-1} + a \mid G_{n} > t - T_{n-1}\} \quad \text{(from the diagram)} \\ &= \frac{\Pr\{G_{n} > t - T_{n-1} + a \text{ and } G_{n} > t - T_{n-1}\}}{\Pr\{G_{n} > t - T_{n-1}\}} \quad \text{(def. of conditional pub.)} \\ &= \frac{\Pr\{G_{n} > t - T_{n-1} + a\}}{\Pr\{G_{n} > t - T_{n-1}\}} \quad \text{($t - T_{n-1} + a$ > $t - T_{n-1}$)} \\ &= \frac{e^{-\lambda(t - T_{n-1} + a)}}{e^{-\lambda(t - T_{n-1})}} = e^{-\lambda a} \quad \text{($G_{n} \sim \text{Exp($\lambda$)}$)} \end{split}$$

- \Rightarrow $\Pr\{R_t \le a\} = 1 e^{-\lambda a}$
- Note: This "proof" is rough and sketchy we actually need to condition on T_{n-1} and Y_t
 - Repeated use of the law of total probability
- The independent-increments and stationary-increments properties follow from the memoryless property and the fundamental relationship between Y_t and T_n (see Nelson pp. 110-111)