DecisionTreeClassifier

January 13, 2022

0.1 DecisionTreeClassifier

Import libraries

```
[60]: import pandas as pd
  from sklearn.tree import DecisionTreeClassifier
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import accuracy_score
  import matplotlib.pyplot as plt
```

Load data

```
[61]: music_data = pd.read_csv("./Music/music.csv")
music_data
```

```
[61]:
          age
                gender
                             genre
            20
                            НірНор
                     1
      1
            23
                     1
                            НірНор
      2
            25
                     1
                            НірНор
      3
           26
                     1
                              Jazz
      4
            29
                     1
                              Jazz
      5
            30
                     1
                              Jazz
      6
                        Classical
            31
      7
            33
                     1
                        Classical
      8
            37
                     1
                        Classical
      9
                     0
            20
                             Dance
      10
           21
                     0
                             Dance
           25
                     0
                             Dance
      11
      12
           26
                     0
                          Acoustic
      13
                          Acoustic
           27
      14
           30
                     0
                         Acoustic
      15
           31
                     0 Classical
      16
           34
                     0 Classical
      17
            35
                     0 Classical
```

Get dummies to go from categorical to numeric

[62]:		age	gender	genre_Classical	genre_Dance	genre_HipHop	genre_Jazz
	0	20	1	0	0	1	0
	1	23	1	0	0	1	0
	2	25	1	0	0	1	0
	3	26	1	0	0	0	1
	4	29	1	0	0	0	1
	5	30	1	0	0	0	1
	6	31	1	1	0	0	0
	7	33	1	1	0	0	0
	8	37	1	1	0	0	0
	9	20	0	0	1	0	0
	10	21	0	0	1	0	0
	11	25	0	0	1	0	0
	12	26	0	0	0	0	0
	13	27	0	0	0	0	0
	14	30	0	0	0	0	0
	15	31	0	1	0	0	0
	16	34	0	1	0	0	0
	17	35	0	1	0	0	0

Check for missing values

```
[63]: music_data_dummies.isnull().sum()
```

Training a model

```
history = model.fit(X_train,y_train)
history
predictions = model.predict(X_test)
score = accuracy_score(y_test,predictions)
score
```

[64]: 1.0