T. Números I

U.D.

A Modular

MCD

R. Cuadráticos

Teoría de Números I

U.D. Computación

DSIC - UPV

Contenidos del tema

T. Números I

U.D. omputación

A. Modulai

. Cuadráticos

- 1 Aritmética Modular
- 2 Máximo común divisor
- 3 Resíduos cuadráticos

Bibliografía

T. Números I

U.D. Computación

A. Modular MCD

R Cuadrático

- Handbook of applied crytography. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. CRC Press. 1996.

 (Capítulo 2)
- Introduction to algorithms. *C. E. Leiserson, C. Stein, R. Rivest and T. H. Cormen.* The MIT Press (3rd edition) 2009.

(Capítulo 31)

T. Números I

U.D.

omputación

A. Modular

MCD

R Cuadráticos

Aritmética Modular

Aritmética Modular: Grupo

T. Números I

U.D. omputación

A. Modular

ИCD

R. Cuadráticos

- Grupo $\langle G, \otimes \rangle$
 - ⊗ es de composición interna
 - ⊗ es asociativa
 - Existe un elemento neutro en *G*
 - Todo $a \in G$ tiene inverso respecto \otimes

T. Números I

U.D.

A. Modular

иср

R. Cuadráticos

$$\blacksquare \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

T. Números I

U.D.

A. Modular

MCD

. Cuadráticos

$$\square \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

■ Congruencia módulo *n*:

$$a \equiv b \pmod{n} \iff a - b = kn, \ k \in \mathbb{Z}$$

T. Números I

U.D.

A. Modular

MCD

R. Cuadráticos

$$\blacksquare \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

■ Congruencia módulo *n*:

$$a \equiv b \pmod{n} \iff a - b = kn, \ k \in \mathbb{Z}$$

■ Reducción módulo n:

a mód n

T. Números I

U.D. omputación

A. Modular

MCD

. Cuadráticos

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

■ Congruencia módulo *n*:

$$a \equiv b \pmod{n} \iff a - b = kn, \ k \in \mathbb{Z}$$

■ Reducción módulo n:

a mód n

■ Relación de equivalencia.

Aritmética Modular

T. Números I

U.D.

A. Modular

MCD

. Cuadrático:

La suma y el producto son compatibles con la congruencia.

Dados
$$a \equiv a' \pmod{n}$$
 y $b \equiv b' \pmod{n}$:

$$a+b \equiv a'+b' \pmod{n}$$

$$ab \equiv a'b' \pmod{n}$$

Definimos en \mathbb{Z}_n :

$$[a]_{\equiv_n} + [b]_{\equiv_n} = [a+b]_{\equiv_n}$$

$$\blacksquare [a]_{\equiv_n}[b]_{\equiv_n} = [ab]_{\equiv_n}$$

Aritmética Modular

T. Números I

U.D. omputaciór

A. Modular

. Cuadrático

 $(\mathbb{Z}_n,+,\cdot)$ posea estructura de anillo conmutativo.

- Son operaciones cerradas y conmutativas.
- $(\mathbb{Z}_n, +)$ es un grupo (la operación es asociativa, tiene elemento neutro e inverso para todo valor en \mathbb{Z}_n).
- $(\mathbb{Z}_n,.)$ es un semigrupo (la operación es asociativa y tiene elemento neutro).
- El producto distribuye respecto la suma.

Aritmética Modular

Cálculo de inversos para el producto

T. Números I

U.D. omputación

A. Modular

Teorema (de congruencia lineal): $\overline{ax \equiv b \pmod{n}} \text{ tiene una única solución sii } mcd(a, n)$ divide b.

- \blacksquare a es invertible si mcd(a, m) = 1.
- Si mcd(a, m) = 1 entonces a y m son relativamente primos

T. Números I

U.D.

omputación

A. Modula

MCD

R. Cuadráticos

Máximo común divisor

Divisores: Propiedades

T. Números I

U.D.

A. Modula

MCD

R Cuadráticos

lack d|a y d|b implica que $\forall x,y\in\mathbb{Z}$, se cumple que d|xa+yb

■ a|b implica que $|a| \le |b| \lor b = 0$

 \blacksquare a|b y b|a implica que $a=\pm b$

Divisores: Propiedades

T. Números I

U.D. omputación

A. Modula

MCD

R. Cuadráticos

■ <u>Teorema:</u> mcd(a, b) es el menor entero estrictamente positivo del conjunto $\{xa + yb : x, y \in \mathbb{Z}\}$ (combinaciones lineales de a y b)

■ Corolario: d|a y d|b implica que d|mcd(a,b)

■ Teorema: $mcd(a, b) = mcd(b, a \mod b)$

Cálculo del mcd: Implementación

T. Números I

U.D.

Λ Mad.da

MCD

R. Cuadráticos

```
Algoritmo de Euclides:
```

```
Euclides(a, b):

if b = 0 then

Return(a)

else

Return(Euclides(b, a mod b))

end if
```

Cálculo del mcd: Implementación

T. Números I

U.D. Computació:

A Modulai

MCD

R. Cuadrático

```
Algoritmo de Euclides:
```

```
Euclides(a, b):

if b = 0 then

Return(a)

else

Return(Euclides(b, a mod b))

end if
```

- Coste del algoritmo: $\mathcal{O}(\log b)$
- Ejemplo: Euclides(30, 21) = Euclides(21, 9) = Euclides(9, 3) = Euclides(3, 0) = 3

Cálculo del mcd: Implementación

T. Números I

U.D. omputaciór

Λ Mad..la.

MCD

R. Cuadráticos

Para el cálculo de inversos del producto, es interesante obtener el mcd(a, b) como combinación lineal de a y b.

Cálculo del mcd: Implementación

T. Números I

U.D. Computación

A Modular

MCD

R. Cuadráticos

Para el cálculo de inversos del producto, es interesante obtener el mcd(a, b) como combinación lineal de a y b.

$$mcd(a, n) = 1$$
 $\Rightarrow xa + yn = 1 \Rightarrow$
 $\Rightarrow xa \equiv 1 \pmod{n} \Rightarrow$
 $\Rightarrow a \equiv x^{-1} \pmod{n}$

Cálculo del mcd: Implementación

T. Números I

U.D. Computación

A. Modular

MCD

R. Cuadrático

```
Para el cálculo de inversos del producto, es interesante obtener el mcd(a,b) como combinación lineal de a y b.
```

```
EuclidesExt(a, b):

if b = 0 then

Return(a, 1, 0)

else

(d', x', y') = EuclidesExt(b, a mód b))

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

Return(d, x, y)

end if
```

Cálculo del mcd: Ejemplo

T. Números I

U.D. omputació

A. Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	у
8	5					

Cálculo del mcd: Ejemplo

T. Números I

U.D. omputación

A Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	у
8	5					
5	3					

Cálculo del mcd: Ejemplo

T. Números I

U.D. omputación

A. Modula

MCD

R. Cuadráticos

а	b	(d',x',y')	$\lfloor a/b \rfloor$	d	Х	у
8	5					
5	3					
3	2					

Cálculo del mcd: Ejemplo

T. Números I

U.D.

A. Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	y
8	5					
5	3					
3	2					
2	1					

Cálculo del mcd: Ejemplo

T. Números I

U.D. omputaciór

A Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	у
8	5					
5	3					
3	2					
2	1					
1	0					

Cálculo del mcd: Ejemplo

T. Números I

U.D. omputaciór

A Modulai

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	y
8	5					
5	3					
3	2					
2	1	(1, 1, 0)				
1	0	, ,				

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	y
8	5					
5	3					
3	2					
2	1	(1, 1, 0)	2	1	0	1
1	0	,				

$$(d,x,y) = (d',y',x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modulai

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	y
8	5					
5	3					
3	2	(1, 0, 1)				
2	1	(1, 1, 0)	2	1	0	1
1	0					

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

а	Ь	(d',x',y')	$\lfloor a/b \rfloor$	d	X	y
8	5					
5	3					
3	2	(1, 0, 1)	1	1	1	-1
2	1	(1, 1, 0)	2	1	0	1
1	0	,				

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modulai

MCD

R. Cuadráticos

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

$$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$$

Cálculo del mcd: Ejemplo

T. Números I

U.D. Computación

A Modula

MCD

R. Cuadráticos

■ Ejemplo:

а	b	(d',x',y')	$\lfloor a/b \rfloor$	d	Х	у
8	5	(1,-1,2)	1	1	2	-3
5	3	(1, 1, -1)	1	1	-1	2
3	2	(1, 0, 1)	1	1	1	-1
2	1	(1, 1, 0)	2	1	0	1
1	0					

Por lo que el algoritmo devuelve (1,2,-3), esto es: $mcd(8,5)=1=2\cdot 8-3\cdot 5$ $5^{-1}\equiv 5\pmod 8$

Complejidad del cálculo del mcd

T. Números I

U.D. Computación

A. Modula

R. Cuadrático

Dados a y b, el algoritmo extendido de Euclides realiza $\mathcal{O}(\log b)$ llamadas recursivas (consideramos la talla de b como su representación binaria).

Otra forma de analizar el coste es considerar que, si $a>b\geq 1$ y b<Fibonacci(k), entonces el algoritmo realiza k-1 llamadas recursivas

T. Números I

U.D.

mputación

A. Modula

MCD

R. Cuadráticos

Resíduos cuadráticos

Resíduos cuadráticos Definición

T. Números I

U.D.

A. Modula

MCD

R. Cuadráticos

 $a \in \mathbb{Z}_n^*$ es resíduo cuadrático módulo n si existe un $x \in \mathbb{Z}_n^*$ tal que $x^2 \equiv a \pmod{n}$. En caso de existir, x se comoce como raíz (de a) módulo n.

Resíduos cuadráticos

Cálculo de resíduos cuadráticos

T. Números I

U.D. Computación

A. Modular

R. Cuadráticos

Dado un entero impar n y un entero 0 < a < n, determinar si a es un resíduo cuadrático módulo n puede reducirse al problema de factorizar el entero n.

Si el valor modular es primo, existe un algoritmo probabilista que obtiene (con cierta seguridad) las raíces de un número a con complejidad $\mathcal{O}(|a|^4)$. No se conoce algoritmo polinómico para este problema.

T. Números I

U.D.

mputación

A Modular

MCD

R. Cuadráticos

