Matemáticas discretas II: Teoría de Grafos I

Universidad del Valle EISC

Febrero 2022

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Contenido

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Problema de los puentes de Königsberg (1.736)

¿Es posible salir desde cualquier punto de la ciudad (A,B,C o D) y llegar al mismo punto recorriendo exactamente una vez cada puente?

Que es un Grafo

Un *grafo* es un par G=(V,E) de conjuntos que satisfacen $E\subseteq [V]^2$ así, los elementos de E son subconjuntos de 2-elementos de V en la cual los elementos de E son aristas y los elementos de V son vértices. Tácitamente $E\cap V=\emptyset$. Saen $V=\{1,\ldots,7\}$ y $E=\{\{1,2\},\{1,5\},\{2,5\},\{3,4\},\{5,7\}\}$.

- Un **grafo vacío** (\emptyset, \emptyset) se escribe simplemente como \emptyset .
- lacksquare El número de vértices de un grafo G es su orden, y se escribe |G|.
- Un grafo puede ser finito o infinito según su orden. Un grafo de orden 0 o de orden 1 es llamado el grafo trivial.

Grafo simple

Un **grafo simple** G=(V,E) es un grafo en el cual cada arista conecta dos diferentes vértices y donde dos aristas no conectan el mismo par de vértices. No tiene ni aristas paralelas ni bucles.

Multigrafo

Un **multigrafo** G=(V,E) consta de un conjunto de vértices V, un conjunto E de aristas y una función f de E en $\{\{u,v\}/u,v\in V,u\neq v\}$. Se dice que las aristas e_1 y e_2 son aristas múltiples o paralelas si $f(e_1)=f(e_2)$.

Pseudografo

Un **pseudografo** G=(V,E) consta de un conjunto de vértices V, un conjunto E de aristas y una función f de E en $\{\{u,v\}/u,v\in V\}$. Una arista e es un bucle o lazo si $f(e)=\{u,u\}=\{u\}$ para algún $u\in V$.

- Los grafos simples no permiten aristas paralelas.
- Los multigrafos no permiten bucles.

Grafo Dirigido

Un **Grafo dirigido** G=(V,E) consta de un conjunto de vértices V, un conjunto E de aristas que son pares ordenados de V. Usamos una flecha apuntando de u a v para indicar la dirección de la arista (u,v)

Multigrafo dirigido

Un **multigrafo dirigido** G=(V,E) consta de un conjunto de vértices V, un conjunto E de aristas y una función f de E en $\{(u,v)/u,v\in V\}$. Se dice que las aristas e_1 y e_2 son aristas múltiples o paralelas si $f(e_1)=f(e_2)$.

Fig 4. grafo dirigido

multigrafo dirigido

Tipos	Aristas	¿aristas múlti- ples?	¿bucles?
Grafo simple	no dirigidas	no	no
Multigrafo	no dirigidas	SÍ	no
Pseudografo	no dirigidas	SÍ	SÍ
Grafo dirigido	dirigidas	No	SÍ
Multigrafo dirigido	dirigidas	SÍ	SÍ

Determinar el tipo de grafo no dirigido (¿Grafo simple, multigrafo o pseudografo)

Determinar el tipo de grafo (¿Grafo dirigido o multigrafo dirigido?)

Contenido

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Adyacencia

Se dice que dos vértices u y v de un grafo no dirigido G son adyacentes (o vecinos) en G si $\{u,v\}$ es una arista de G. Si $e=\{u,v\}$, se dice que la arista e es incidente con los vértices u y v. También se dice que la arista e conecta e u y e0. Se dice que los vértices e1 y e2 son extremos de la arista e3.

Fig 7. vertices y aristas adyacentes

- Dos aristas son adyacentes si tiene un vértice en común, por ejemplo en la fig 7. e_1 y e_2 son adyacentes.
- La vecindad de un vértice x, denotado como N(x), está dado por todos los vértices adyacentes a x. $N(u) = \{v, w\}$

El grado de un vértice

El grado de un vértice de un grafo no dirigido es el número de aristas incidentes con él, exceptuando los bucles, que contribuye con dos unidades al grado del vértice. El grado del vértice se denota por $\delta(v)$.

Los grados del grafo G son: $\delta(A_1) = 3$, $\delta(A_2) = 5$, $\delta(A_3) = 4$, $\delta(A_4) = 5$, $\delta(A_5) = 4$, $\delta(A_6) = 0$, $\delta(A_7) = 1$.

Teorema de Handshaking

Sea G = (V, E) un grafo no dirigido con e aristas. Entonces,

$$2e = \sum_{v \in V} \delta(v)$$

- Incluso si hay aristas múltiples y bucles en el grafo.
- Podemos determinar el número de aristas del grafo G, es decir 2e=18, e=9
- La suma de los grados de un grafo no dirigido es par.

Cuál es el número de aristas de H? **Ejemplo:** Cuántas aristas hay en un grafo con diez vértices, cada uno de los cuales tiene grado seis?

Teorema

Todo grafo no dirigido tiene un número par de vértices de grado impar.

Dem. Sea V_1 : conjunto de vértices de grado par y V_2 : conjunto de vértices de grado impar de un grafo G=(V,E), entonces

$$2e = \sum_{v \in V} \delta(v) = \sum_{v \in V_1} \delta(v) + \sum_{v \in V_2} \delta(v)$$

Como $\delta(v)$ si $v\in V_1$ es par y $\sum_{v\in V}\delta(v)$ es par al despejar $\sum_{v\in V_2}\delta(v)$ el resultado es par.

Aplicación del Teorema de Handshaking

¿Se puede dibujar un grafo simple de 15 vértices cada uno de grado 5?

Bucle

Si (u,v) es una arista del grafo dirigido G, se dice que u es adyacente a v y que v es adyacente desde u. Al vértice u se le llama **vértice inicial** de (u,v) y a v se le llama **vértice final** o terminal de (u,v). los vértices inicial y final de un **bucle** coinciden.

Grado en un grafo dirigido

En un grafo dirigido, *el grado de entrada de un vértice* v, denotado por $\delta^-(v)$, es el número de aristas que tienen a v como **vértice final**. *El grado de salida de un vértice* v, de notado por $\delta^+(v)$, es el número de aristas que tienen a v como **vértice inicial**.

Teorema

Sea G = (V, E) un grafo dirigido. Entonces,

$$\sum_{v \in V} \delta^-(v) = \sum_{v \in V} \delta^+(v) = |E|$$

Ejemplo

Hallar los grados de entrada y de salida de cada vértice para el siguiente grafo.

$$\delta^{-}(a) = 2, \, \delta^{+}(a) = 4$$

$$\delta^{-}(b) = 2, \, \delta^{+}(b) = 1$$

$$\delta^-(c) = 3, \, \delta^+(c) = 2$$

$$\delta^{-}(e) = 3, \, \delta^{+}(e) = 3$$

$$\delta^{-}(d) = 2, \, \delta^{+}(d) = 2$$

$$\delta^{-}(f) = 0, \delta^{+}(f) = 0$$

Entonces
$$\sum_{v \in V} \delta^-(v) = \sum_{v \in V} \delta^+(v) = |E| = 12$$

Grafos simples, multigrafos y Pseudografos

- ¿Existe algún grafo simple de cinco vértices con los grados siguientes?. si es así dibujar el grafo.
 - 1 3,3,3,3,2; 1,2,3,4,4
 - 2 0,1,2,2,3; 1,2,3,4,5
 - 3,4,3,4,3; 1,1,1,1,1
- ¿Cuántas aristas tiene un grafo si los grados de sus vértices son 5,2,2,2,2,1?
- ¿Cuántos vértices tiene un grafo regular de grado 4 con 10 aristas?
- **4** Encontrar $\delta^-(v)$ y $\delta^+(v)$ para $\forall v \in V$ en los siguientes grafos:

Contenido

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Grafo Completo

El grafo completo de n vértices, que se denota por K_n , es el grafo simple que contiene exactamente una arista entre cada par de vértices distintos.

Ejemplo 1. sean Los K_n para n = 1, 2, 3, 4, 5, 6

Familias de grafos simples

Ciclo

El Ciclo C_n , $n \ge 3$, consta de n vértices v_1, v_2, \ldots, v_n y aristas

$$\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\} \quad y \quad \{v_n, v_1\}$$

En la siguiente figura se muestran los ciclos C_3, C_4, C_5 .

Familias de grafos simples

Rueda

Obtenemos una **rueda** W_n cuando añadimos un **vértice** adicional al ciclo C_n , para $n \geq 3$, y conectamos a este nuevo **vértice** con cada uno de los n vértices de C_n mediante una nueva arista. ver W_3, W_4, W_5

Contenido

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Grafo Bipartito o bigrafo

Se dice que un grafo simple G es **bipartito** si su conjunto de vértices V se puede dividir en dos conjuntos disjuntos V_1 y V_2 tales que cada arista del grafo conecta un vértice V_1 con un vértice de V_2 (de manera que no haya ninguna arista que conecte entre sí dos vértices de V_1 ni tampoco dos vértices de V_2).

El ciclo C₆ es bipartito

El grafo C_6 es bipartito donde $V_1 = \{v_1, v_3, v_5\}$ y $V_2 = \{v_2, v_4, v_6\}$ entre v_1, v_3, v_5 no existen aristas que los comunique.

Ejemplo. Determinar si el siguiente grafo G es bipartito?

Es bipartito por que podemos encontrar dos subconjuntos disjuntos V_1 y V_2 tale que $V_1=\{c,e,g,f\}$ y $V_2=\{a,b,d\}$

Ejemplo. Determinar si el siguiente grafo H es bipartito?

El grafo H no es bipartito.

Se puede justificar un grafo que no sea bipartito definiendo un máximo de vértices para V_1 y V_2 y encontrando un contraejemplo. Sea el grafo:

- Sean los conjuntos $V_1 = \{f\}$ y $V_2 = \{a,c\}$, entonces existen dos aristas adyacentes $\{f,a\}$ y $\{f,c\}$, en f no se pueden adicionar vértices por que todos los vértices son adyacentes con f
- Con un contraejemplo demostramos que el grafo no es bipartito, sean $V_1 = \{f\}$ y $V_2 = \{a,c\}$ y el vértice b, entonces cualquier arista incidente con b; $\{f,b\}$ y $\{a,b\}$ debe tener vértices en V_1 y V_2 . Por tanto b no puede estar ni en V_1 ni en V_2 .

Por ejemplo, ${\cal K}_3$ no es bipartito y ${\cal C}_6$ si lo es, para que otros valores de $n,\,{\cal C}_n$ es bipartito.

 K_n solamente es bipartito cuando n=2.

Porque los grafos rueda no son bipartitos:

Sea k_3 un grafo completo no bipartito y sea k_3 un subgrafo contenido en los grafos rueda W_n .

Grafo Bipartito Completo

El grafo bipartito completo $K_{m,n}$ es el grafo cuyo conjunto de vértices está formado por dos subconjuntos con m y n vértices, respectivamente, y hay una arista entre dos vértices si, y sólo si, un vértice está en el **primer subconjunto** y el otro vértice está en el **segundo subconjunto**.

Algunos grafos bipartitos son bipartitos completos

Grafo bipartito que no es bipartito completo

Contenido

- 1 Introducción
- 2 Terminología
- 3 Familias de grafos simples
- 4 Grafos bipartitos
- 5 Topologías y subgrafos

Topologías para redes de área local: ESTRELLA, ANILLO E HÍBRIDA y un arreglo lineal de 6 procesadores

¿Cuántos vértices y cuántas aristas tiene cada uno de los grafos? K_n, C_n, W_n y $K_{n,m}$.

Por ejemplo para K_n el número de vértices es n. El número de aristas según el teorema del apretón de manos (handshaking) es $2e = \sum_{v \in V} \delta(v)$, entonces e = (n(n-1))/2 donde n-1 es el número de aristas incidentes para cada n vértices.

Secuencia de grado

Se puede encontrar la secuencia del grado de un grafo G=(V,E) que es la secuencia de los grados de los vértices del grafo en orden decreciente.

Las secuencias de grado de

$$K_4=3,3,3,3,C_4=2,2,2,W_4=4,3,3,3,3$$
 y $K_{2,3}=3,3,2,2,2$

■ Cuál es la secuencia de grado de K_n , donde n es un entero positivo. Cada uno de los n vértices es adyacente a cada uno de los otros n-1 vértices, así la secuencia del grado es $n-1, n-1, \ldots, n-1$ (n términos)

La secuencia de grados de cualquier C_n es $2, 2, 2, \ldots, 2$ (n términos)

La secuencia de grado de cualquier W_n es $n,\underbrace{3,3,3,\ldots,3}_{\text{(n-términos)}}$

la secuencia de grado para cualquier $K_{m,n}$

Subgrafo

Si G=(V,E) es un grafo (dirigido o no), $G_1=(V_1,E_1)$ entonces es un subgrafo de G, si $V_1\subseteq V$ y $E_1\subseteq E$

En esta figura G_2 y G_3 son subgrafos de G_1 y en el grafo derecho G_5 es subgrafo de G_4 .

Dibujar todos los grafos del siguiente grafo:

Dibujar los 17 subgrafos de K_3 con al menos un vértice.

Subgrafo recubridor.

Dado un grafo (dirigido o no) G=(V,E), sea $G_1=(V_1,E_1)$ un subgrafo de G. Si $V_1=V$, entonces G_1 es un subgrafo recubridor de G.

En esta figura G_1 y G_2 son subgrafos recubridores de G y en el grafo derecho G_4 y G_5 son subgrafos recubridores de $G^{'}$

Subgrafo inducido

Para cualquier subconjunto W de vértices de un grafo G=(V,E), llamaremos subgrafo inducido por W, y lo notaremos $\langle W \rangle$, al subgrafo de G que se obtiene tomando los vértices de W y las aristas de G que son incidentes con ellos.

 H_1 es un subgrafo inducido ya que $W = \{v_1, v_2, v_3, v_5\}$, el subgrafo H_1 contiene todas las aristas de G incidentes con los vértices de W, pero H_2 no lo es ya que faltan las aristas $\{v_1, v_6\}$, $\{v_3, v_4\}$ y $\{v_5, v_6\}$.

Eliminación de aristas y vértices

- Sea un arista e del grafo G=(V,E), entonces el subgrafo $G-\{e\}$ es el grafo que se obtiene de G eliminando la arista e. En general, escribimos $G-\{e_1,e_2,\ldots,e_k\}$ para determinar el subgrafo que se obtiene de G eliminando las aristas $\{e_1,e_2,\ldots,e_k\}$ $(V=V_1)$.
- Si v es un vértice del grafo G, entonces $G \{v\}$ es el subgrafo obtenido del G eliminando el vértice v junto con todas las aristas incidentes. En general, se escribe $G \{v_1, v_2, \ldots, v_k\}$ para notar el grafo obtenido eliminando los vértices $\{v_1, v_2, \ldots, v_k\}$ en G y todas las aristas incidentes con cualquiera de ellos.

¿Cuál es el grafo inducido sobre G?

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011. Chapter 10. Graphs.