Cálculo I

Darvid

October 30, 2021

Números reales

Existe un conjunto llamado conjunto de los números reales, denotado por \mathbb{R} . A los elementos de este conjunto los llamaremos números reales. Este conjunto está dotado con dos operaciones binarias:

Suma +:
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(m, n) \mapsto m + n$

Multiplicación
$$\cdot$$
: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$
 $(m, n) \mapsto m \cdot n$

Las cuales satisfacen los siguientes axiomas.

Axiomas de campo

- **A1.** La suma es conmutativa. Esto significa que para cualesquiera números reales m y n se verifica que: m + n = n + m.
- **A2.** La suma es asociativa. Esto significa que para cualesquiera números reales m, n y l se verifica que: m + (n + l) = (m + n) + l.
- **A3.** Elemento neutro para la suma. Existe un número real llamado elemento neutro para la suma o cero, denotado por 0, el cual satisface la siguiente condición: $m + 0 = m, \forall m \in \mathbb{R}$.
- **A4.** Inverso aditivo. Para cada número real m existe un número real llamado inverso aditivo de m, denotado por -m (menos m); la propiedad que caracteriza a este elemento es: m+(-m)=0.
- **A5.** La multiplicación es conmutativa. Esto significa que para cualesquiera números reales m y n se verifica que: $m \cdot n = n \cdot m$.
- **A6.** La multiplicación es asociativa. Esto significa que para cualesquiera números reales m, n y l se verifica que: $m \cdot (n \cdot l) = (m \cdot n) \cdot l$.
- **A7.** Elemento identidad para la multiplicación. Existe un número real distinto de cero, llamado elemento identidad para la multiplicación o uno, denotado por 1, que satisface la siguiente condición: $m \cdot 1 = m, \forall m \in \mathbb{R}$.
- **A8.** Inverso multiplicativo. Para cada número real m distinto de cero existe un número real llamado inverso multiplicativo de m, denotado por m^{-1} , este elemento tiene la siguiente propiedad: $m \cdot m^{-1} = 1$.
- **A9.** Distribución de la multiplicación sobre la suma. Para cualesquiera números reales m, n y l se verifica que: $m \cdot (n + l) = m \cdot n + m \cdot l$.

Lista de ejercicios 1 (LE1)

- a) Demuestre que el elemento neutro para la suma es único.
- b) Demuestre que el elemento identidad para la multiplicación es único.
- c) Sea m un número real arbitrario pero fijo, demuestre que el inverso aditivo de m es único.
- d) Sea m un número real distinto de cero, demuestre que el inverso multiplicativo de m es único.
- e) Demuestre que -0 = 0.
- f) Sea m un número real arbitrario pero fijo, demuestre que $m \cdot 0 = 0$.
- g) Si m y n son números reales tales que $m \cdot n = 0$, demuestre que m = 0 o n = 0.
- h) Sea m un número real arbitrario pero fijo, demuestre que: $(-1) \cdot m = -m$.
- i) Sean m y n números reales, demuestre que: $(-m) \cdot n = -(m \cdot n)$.
- j) Sea m un número real arbitrario pero fijo, demuestre que: -(-m) = m.
- **k)** Sean m y n números reales, demuestre que: $(-m) \cdot (-n) = m \cdot n$.
- 1) Sea m un número real arbitrario pero fijo, demuestre que: $(-1) \cdot (-m) = m$.
- m) Sea m un número real distinto de cero; demuestre que: $(m^{-1})^{-1} = m$.
- n) Sean m y n números reales distintos de cero, demuestre que: $(m \cdot n)^{-1} = m^{-1} \cdot n^{-1}$.

Demostración:

a) Supongamos que existen 0 y $\tilde{0}$ números reales tales que m+0=m y $m+\tilde{0}=m$. Notemos que:

0 = m + (-m)	Por A4
$= (m + \tilde{0}) + (-m)$	Por hipótesis
$= \left(\tilde{0} + m\right) + \left(-m\right)$	Por A1
$= \tilde{0} + \left(m + (-m)\right)$	Por A2
$=\tilde{0}+0$	Por A4
$=$ $\tilde{0}$	Por A3

b) Supongamos que existen 1 y $\tilde{1}$ números reales tales que $m \cdot 1 = m$ y $m \cdot \tilde{1} = m$. Notemos que:

$$1 = m \cdot m^{-1}$$
 Por A8
$$= (m \cdot \tilde{1}) \cdot m^{-1}$$
 Por hipótesis
$$= (\tilde{1} \cdot m) \cdot m^{-1}$$
 Por A5
$$= \tilde{1} \cdot (m \cdot m^{-1})$$
 Por A6
$$= \tilde{1} \cdot 1$$
 Por A8
$$= \tilde{1}$$

c) Supongamos que existen -m y $-\tilde{m}$ números reales tales que m+(-m)=0 y $m+(-\tilde{m})=0$. Notemos que:

-m = -m + 0	Por A3	
= 0 + (-m)	Por A1	
$= (m + (-\tilde{m})) + (-m)$	Por (2)	
$= ((-\tilde{m}) + m) + (-m)$	Por A1	
$= (-\tilde{m}) + (m + (-m))$	Por A2	
$= (-\tilde{m}) + 0$	Por A8	
$=- ilde{m}$	Por A3	

d) Supongamos que existen m^{-1} y \tilde{m}^{-1} números reales, distintos de cero, tales que $m \cdot m^{-1} = 1$ y $m \cdot \tilde{m}^{-1} = 1$. Notemos que:

$$m^{-1} = m^{-1} \cdot 1$$
 Por A7
$$= m^{-1} \cdot (m \cdot \tilde{m}^{-1})$$
 Por hipótesis
$$= (m^{-1} \cdot m) \cdot \tilde{m}^{-1}$$
 Por A6
$$= (m \cdot m^{-1}) \cdot \tilde{m}^{-1}$$
 Por A5
$$= 1 \cdot \tilde{m}^{-1}$$
 Por hipótesis
$$= \tilde{m}^{-1} \cdot 1$$
 Por A5
$$= \tilde{m}^{-1} \cdot 1$$
 Por A7

- e) Por A3 se verifica que 0+0=0, y por A4 que 0+(-0)=0. Además, por (c) de LE1, tenemos que el inverso aditivo de cada número real es único, entonces debe ser el caso que -0=0. \square
- f) Notemos que:

$$m \cdot 0 = m \cdot 0 + 0$$
 Por A3
 $= m \cdot 0 + (m + (-m))$ Por A4
 $= m \cdot 0 + (m \cdot 1 + (-m))$ Por A7
 $= (m \cdot 0 + m \cdot 1) + (-m)$ Por A2
 $= (m \cdot (0+1)) + (-m)$ Por A9
 $= m \cdot 1 + (-m)$ Por A3
 $= m + (-m)$ Por A4

g) Supongamos que m es distinto de 0. Notemos que:

$$n = n \cdot 1$$
 Por A7
 $= n \cdot (m \cdot m^{-1})$ Por A8
 $= (n \cdot m) \cdot m^{-1}$ Por A6
 $= (m \cdot n) \cdot m^{-1}$ Por A5
 $= 0 \cdot m^{-1}$ Por hipótesis
 $= m^{-1} \cdot 0$ Por A5
 $= 0$ Por (f) de LE1

h) Notemos que:

$$-m = -m + 0$$
 Por A3
$$= -m + m \cdot 0$$
 Por (f) de LE1
$$= -m + m \cdot (1 + (-1))$$
 Por A4
$$= -m + (m \cdot 1 + m \cdot (-1))$$
 Por A9
$$= -m + (m + m \cdot (-1))$$
 Por A8
$$= (-m + m) + m \cdot (-1)$$
 Por A2
$$= m + (-m) + m \cdot (-1)$$
 Por A1
$$= 0 + m \cdot (-1)$$
 Por A4
$$= m \cdot (-1) + 0$$
 Por A1
$$= m \cdot (-1)$$
 Por A3
$$= (-1) \cdot m$$

i) Notemos que:

$$(-m) \cdot n = ((-1) \cdot m) \cdot n$$
 Por (h) de LE1
= $(-1) \cdot (m \cdot n)$ Por A6
= $-(m \cdot n)$ Por (h) de LE1

j) Sea m un número real arbitrario pero fijo. Por A4 se verifica que m + (-m) = 0, y por A1 tenemos que (-m) + m = 0, de esta igualdad se sigue que m es inverso aditivo de (-m). Por A4 se verifica que (-m) + (-(-m)) = 0, y por (c) de LE1, sabemos que el inverso aditivo de cada número real es único. Entonces, debe ser el caso que -(-m) = m.

k) Notemos que:

$$(-m) \cdot (-n) = (-m) \cdot ((-1) \cdot n)$$
 Por (h) de LE1
$$= ((-m) \cdot (-1)) \cdot n$$
 Por A6
$$= ((-1) \cdot (-m)) \cdot n$$
 Por A5
$$= -(-m) \cdot n$$
 Por (h) de LE1
$$= m \cdot n$$
 Por (j) de LE1

1) Notemos que:

$$(-1) \cdot (-m) = 1 \cdot m$$
 Por (k) de LE1
= $m \cdot 1$ Por A5
= m Por A7

m) Sea m un número real distinto de cero. Por A8 sabemos que $m \cdot m^{-1} = 1$, y por A5 tenemos que $m^{-1} \cdot m = 1$, de esta igualdad se sigue que m es inverso multiplicativo de m^{-1} . Por A8 se verifica que $m^{-1} \cdot \left(m^{-1}\right)^{-1} = 1$, y por (d) de LE1, sabemos que el inverso multiplicativo de cada número real es único. Entonces, debe ser el caso que $\left(m^{-1}\right)^{-1} = m$.

n) Sean m y n números reales distintos de cero. Notemos que:

$$\begin{array}{ll} (m \cdot n) \cdot \left(m^{-1} \cdot n^{-1}\right) = \left((m \cdot n) \cdot m^{-1}\right) \cdot n^{-1} & \text{Por A6} \\ & = \left((n \cdot m) \cdot m^{-1}\right) \cdot n^{-1} & \text{Por A5} \\ & = \left(n \cdot \left(m \cdot m^{-1}\right)\right) \cdot n^{-1} & \text{Por A6} \\ & = (n \cdot 1) \cdot n^{-1} & \text{Por A8} \\ & = n \cdot n^{-1} & \text{Por A7} \\ & = 1 & \text{Por A8} \end{array}$$

De la igualdad anterior, sigue que $(m^{-1} \cdot n^{-1})$ es inverso multiplicativo de $(m \cdot n)$. Además, por (d) de LE1, sabemos que el inverso multiplicativo de cada número real es único. Entonces, debe ser el caso que $(m^{-1} \cdot n^{-1}) = (m \cdot n)^{-1}$

Notación:

- Si m y n son números reales, representaremos con el símbolo m-n a la suma: m+(-n).
- Si m y n son números reales y n es distinto de cero, representaremos con el símbolo $\frac{m}{n}$ al número $m \cdot n^{-1}$.
- Si m_1 , m_2 y m_3 son números reales, representaremos con el símbolo $m_1 + m_2 + m_3$ a cualquiera de las sumas $m_1 + (m_2 + m_3)$ o $(m_1 + m_2) + m_3$.

Lista de ejercicios 2 (LE2)

Sean a, b, c y d números reales, demuestre lo siguiente:

a)
$$a \cdot \frac{c}{b} = \frac{ac}{b}$$
, si $b \neq 0$

b)
$$\frac{a}{b} = \frac{ac}{bc}$$
, si $b, c \neq 0$

c)
$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$
, si $b, d \neq 0$

d)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
, si $b, d \neq 0$

e)
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$
, si $b, c, d \neq 0$

Demostración

a) Notemos que:

$$a \cdot \frac{c}{b} = a \cdot \left(c \cdot b^{-1}\right)$$
 Por notación
$$= (a \cdot c) \cdot b^{-1}$$
 Por A6
$$= \frac{ac}{b}$$
 Por notación

b) Notemos que:

$$\begin{array}{ll} \frac{ac}{bc} = a \cdot c \cdot (bc)^{-1} & \text{Por notación} \\ = a \cdot c \cdot b^{-1} \cdot c^{-1} & \text{Por (m) de LE1} \\ = a \cdot b^{-1} \cdot c \cdot c^{-1} & \text{Por A5} \\ = a \cdot b^{-1} \cdot 1 & \text{Por A8} \\ = a \cdot b^{-1} & \text{Por A7} \\ = \frac{a}{b} & \text{Por notación} \end{array}$$

c) Notemos que:

$$\frac{a}{b} \pm \frac{c}{d} = a \cdot b^{-1} \pm c \cdot d^{-1}$$
 Por notación
$$= (a \cdot 1) \cdot b^{-1} \pm (c \cdot 1) \cdot d^{-1}$$
 Por A7
$$= \left(a \cdot (d \cdot d^{-1})\right) \cdot b^{-1} \pm \left(c \cdot (b \cdot b^{-1})\right) \cdot d^{-1}$$
 Por A8
$$= \left((a \cdot d) \cdot d^{-1}\right) \cdot b^{-1} \pm \left((c \cdot b) \cdot b^{-1}\right) \cdot d^{-1}$$
 Por A6
$$= (a \cdot d) \cdot (d^{-1} \cdot b^{-1}) \pm (c \cdot b) \cdot (b^{-1} \cdot d^{-1})$$
 Por A6
$$= (a \cdot d) \cdot (b^{-1} \cdot d^{-1}) \pm (c \cdot b) \cdot (b^{-1} \cdot d^{-1})$$
 Por A5
$$= (b^{-1} \cdot d^{-1}) \cdot (a \cdot d \pm c \cdot b)$$
 Por A9
$$= (a \cdot d \pm c \cdot b) \cdot (b^{-1} \cdot d^{-1})$$
 Por A5
$$= (a \cdot d \pm c \cdot b) \cdot (b \cdot d)^{-1}$$
 Por (m) de LE1
$$= (a \cdot d \pm b \cdot c) \cdot (b \cdot d)^{-1}$$
 Por A5
$$= \frac{ad \pm bc}{bd}$$
 Por notación

d) Notemos que

$$\frac{a}{b} \cdot \frac{c}{d} = (a \cdot b^{-1}) \cdot (c \cdot d^{-1})$$
 Por notación
$$= a \cdot (b^{-1} \cdot (c \cdot d^{-1}))$$
 Por A6
$$= a \cdot (c \cdot (b^{-1} \cdot d^{-1}))$$
 Por A5
$$= (a \cdot c) \cdot (b^{-1} \cdot d^{-1})$$
 Por A6
$$= (a \cdot c) \cdot (b \cdot d)^{-1}$$
 Por (m) de LE1
$$= \frac{ac}{bd}$$
 Por notación

e) Notemos que:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{\left(a \cdot b^{-1}\right)}{\left(c \cdot d^{-1}\right)}$$
Por notación
$$= \left(a \cdot b^{-1}\right) \cdot \left(c \cdot d^{-1}\right)^{-1}$$
Por notación
$$= \left(a \cdot b^{-1}\right) \cdot \left(c^{-1} \cdot \left(d^{-1}\right)^{-1}\right)$$
Por (m) de LE1
$$= \left(a \cdot b^{-1}\right) \cdot \left(c^{-1} \cdot d\right)$$
Por (l) de LE1
$$= \left(a \cdot b^{-1}\right) \cdot \left(d \cdot c^{-1}\right)$$
Por A5
$$= \frac{a}{b} \cdot \frac{d}{c}$$
Por notación
$$= \frac{ad}{bc}$$
Por (d) de LE2

Axiomas de orden del conjunto de los números reales

Existe un subconjunto del conjunto de los números reales llamado conjunto de los números reales positivos, denotado con el símbolo \mathbb{R}^+ . A los elementos de este conjunto los llamaremos números reales positivos.

El conjunto \mathbb{R}^+ satisface los siguientes axiomas:

- **O1)** Si $m, n \in \mathbb{R}^+$, entonces $m + n \in \mathbb{R}^+$.
- **O2)** Si $m, n \in \mathbb{R}^+$, entonces $m \cdot n \in \mathbb{R}^+$.
- $\mathbf{O3}$) Para cada número real m se cumple una y sólo una de las siguientes condiciones:
 - i) $m \in \mathbb{R}^+$.
 - ii) m = 0.
 - iii) $-m \in \mathbb{R}^+$.

Definición: Sean a y b números reales, decimos que:

- **1.** a es menor que b o que b es mayor que a y escribimos a < b o b > a, si $b a \in \mathbb{R}^+$.
- **2.** a es menor que o igual que b o que b es mayor o igual que a, y escribimos $a \le b$ o $b \ge a$, si $b a \in \mathbb{R}^+$ o a = b.

Notación: Sean a, b y c números reales, utilizaremos la notación a < b < c para indicar que a < b y b < c.

Lista de Ejercicios 3 (LE3)

Sean a, b, c y d números reales, demuestre lo siguiente:

- a) $1 \in \mathbb{R}^+$.
- **b)** $a \in \mathbb{R}^+$ si y solo si a > 0.
- c) -1 < 0.
- d) Si a < b y $c \le d$, entonces a + c < b + d.
- e) Si a < b y 0 < c, entonces ac < bc.
- f) Si $a < b \ v \ c < 0$, entonces ac > bc.
- g) $a \in \mathbb{R}^+$ si y solo si -a < 0.
- h) a < b si y solo si -a > -b.
- i) Si a > 0, entonces $\frac{1}{a} > 0$.
- j) Si a < b y b < c, entonces a < c.
- k) Si $0 \le a \le b$ y $0 \le c \le d$, entonces $ac \le bd$.
- 1) Si a < b y ab > 0, entonces $\frac{1}{b} < \frac{1}{a}$.
- **m)** Si a < 1 y 0 < b, entonces ab < b.
- n) Si a < b demuestre que $a < \frac{a+b}{2} < b$.
- o) $a^2 \ge 0$.
- **p)** Si $0 \le a < \varepsilon$ para toda $\varepsilon > 0$, entonces a = 0.
- **q**) Si $a \le b + \varepsilon$ para toda $\varepsilon > 0$, entonces $a \le b$.

Demostración

- a) Supongamos que $1 \notin \mathbb{R}^+$. Por (A7), (ii) de (O3) no se cumple. Si $-1 \in \mathbb{R}^+$, por (O2) se verifica que $-1 \cdot -1 \in \mathbb{R}^+$, lo cual por (h) de LE1 implica que $-(-1) \in \mathbb{R}^+$, pero esto contradice a (iii) de (O3). Por tanto, 1 es un número real positivo.
- b) i) Supongamos que $a \in \mathbb{R}^+$. Por A3 sabemos que a = a + 0, y por (e) de LE1 sigue que a = a 0, entonces $a 0 \in \mathbb{R}^+$, lo que por definición implica que a > 0.
 - ii) Supongamos que a>0. Por definición, $a-0\in\mathbb{R}^+$, y por (e) de LE1 sigue que a-0=a+0, lo que por A3 implica que a+0=a. Así $a\in\mathbb{R}^+$.

- c) Supongamos que $-1 \ge 0$
 - i) Si -1 = 0. Notemos que:

$$0 = 1 - 1$$
 Por A4
= 1 + 0 Por hipótesis
= 1 Por A3

Pero la igualdad anterior contradice a A7.

ii) Si -1 > 0, por (b) de LE3 tenemos que $-1 \in \mathbb{R}^+$, pero esto contradice a O3, ya que por (a) de LE3 sabemos que $1 \in \mathbb{R}^+$.

Por tanto
$$-1 < 0$$

- **d)** Por definición $b a \in \mathbb{R}^+$.
 - i) Si c < d, entonces $d c \in \mathbb{R}^+$. Por (O1) se verifica que $(b a) + (d c) \in \mathbb{R}^+$. Notemos que:

$$\begin{array}{ll} b-a+d-c=b+d-a-c & {\rm Por\ A1} \\ =b+d+(-a)+(-c) & {\rm Por\ notaci\'on} \\ =b+d+(-1)a+(-1)c & {\rm Por\ (h)\ de\ LE1} \\ =b+d+(-1)(a+c) & {\rm Por\ A9} \\ =b+d+b-(a+c)) & {\rm Por\ (h)\ de\ LE1} \\ =b+d-(a+c) & {\rm Por\ notaci\'on} \end{array}$$

De este modo, $b + d - (a + c) \in \mathbb{R}^+$, es decir, a + c < b + d.

ii) Si c = d. Notemos que

$$b-a=b-a+0 \qquad \qquad \text{Por A3}$$

$$=b-a+c-c \qquad \qquad \text{Por A4}$$

$$=b+c-a-c \qquad \qquad \text{Por A1}$$

$$=b+c+(-a)+(-c) \qquad \qquad \text{Por notación}$$

$$=b+c+(-1)a+(-1)c \qquad \qquad \text{Por (h) de LE1}$$

$$=b+c-(a+c) \qquad \qquad \text{Por A9}$$

$$=b+d-(a+c) \qquad \qquad \text{Por (h) de LE1}$$
Por hipótesis

De este modo, $b + d - (a + c) \in \mathbb{R}^+$, es decir, a + c < b + d.

En cualquier caso, a + c < b + d.

- e) Por definición $b-a \in \mathbb{R}^+$, y por (b) de LE3 $c \in \mathbb{R}^+$. Luego, por O2 se verifica que $c(b-a) \in \mathbb{R}^+$. Por A9 sigue que c(b-a) = cb ca y por A5 tenemos que cb ca = bc ac. De este modo, $bc ac \in \mathbb{R}^+$, es decir, ac < bc.
- f) Por definición $b-a\in\mathbb{R}^+$ y $0-c\in\mathbb{R}^+$, por A3 sigue que $-c\in\mathbb{R}^+$. Luego, por O2 $-c(b-a)\in\mathbb{R}^+$. Notemos que:

$$-c(b-a) = -c\left(b + (-a)\right)$$
 Por notación

$$= (-c) \cdot b + (-c) \cdot (-a)$$
 Por A9

$$= (-c) \cdot b + c \cdot a$$
 Por (k) de LE1

$$= -(c \cdot b) + c \cdot a$$
 Por (i) de LE1

$$= ca - (cb)$$
 Por A1

$$= ac - (bc)$$
 Por A5

Entonces $ac - bc \in \mathbb{R}^+$, es decir, ac > bc.

g) i) Supongamos que $a \in \mathbb{R}^+$. Notemos que:

$$a>0$$
 Por (b) de LE3
$$a\cdot (-1)<0\cdot (-1)$$
 Por (c) y (f) de LE3
$$-a<0$$
 Por (h) y (f) de LE1

ii) Supongamos que -a < 0. Notemos que:

$$-a \cdot (-1) > 0 \cdot (-1)$$
 Por (b) y (f) de LE3
 $a > 0$ Por (l) y (f) de LE1

Entonces, $a \in \mathbb{R}^+$, por (b) de LE3.

- h) Notemos que:
 - i) Si a < b, por (b) y (f) de LE3 tenemos que $a \cdot (-1) > b \cdot (-1)$, y por (h) de LE1 obtenemos que -a > -b.
 - ii) Si -a > -b, por por (b) y (f) de LE3 tenemos que $-a \cdot (-1) < -b \cdot (-1)$, y por (k) de LE1 obtenemos que a < b.
- i) Sea a>0. Supongamos que $\frac{1}{a}\leq 0$. Notemos que:

$$\frac{1}{a} \cdot a \le 0 \cdot a$$
 Por (e) de LE3
 $1 \le 0$ Por A8 y (f) de LE1

Pero por (a) de LE3 y (b) de LE3 tenemos que 1 > 0. Por tanto, $\frac{1}{a} > 0$.

j) Por definición $b-a \in \mathbb{R}^+$ y $c-b \in \mathbb{R}^+$. Por O1 $(b-a)+(c-b) \in \mathbb{R}^+$. Notemos que:

$$(b-a)+(c-b)=b-a+c-b$$
 Por notación
 $=b-a-b+c$ Por A1
 $=b-b-a+c$ Por A1
 $=0-a+c$ Por A4
 $=-a+c$ Por A3
 $=c-a$ Por A1

Entonces $c - a \in \mathbb{R}^+$, es decir, a < c.

- k) i) Si a = 0 o c = 0, por (g) de LE1 se verifica que ac = 0. Luego, por (j) de LE3, se verifica que 0 < b y 0 < d. Así, ac < bd.
 - ii) Si a>0 y c>0. Por hipótesis, a< b, y por (e) de LE3, sigue que ac< bc. También, tenemos que c< d, y por (e) de LE3, sigue que bc< db. Finalmente, por (j) de LE3, se verifica que ac< bd.

1) Notemos que:

$$a < b$$
 Por hipótesis
$$a - a < b - a$$
 Por (d) de LE3
$$0 < b - a$$
 Por A4
$$0 \cdot \frac{1}{ab} < (b - a) \cdot \frac{1}{ab}$$
 Por (h) y (e) de LE3
$$0 < \frac{b - a}{ab}$$
 Por (f) de LE1 y (a) de LE2
$$0 < \frac{1}{a} - \frac{1}{b}$$
 Por (c) de LE2
$$\frac{1}{b} < \frac{1}{a}$$
 Por (d) de LE3

- m) Dado que 0 < b, por (b) de LE3 se cumple que $b \in \mathbb{R}^+$, y por definición $1 a \in \mathbb{R}^+$. Por O2 se verifica que $b(1 a) \in \mathbb{R}^+$, es decir, $b ab \in \mathbb{R}^+$, lo cual implica que ab < b.
- n) Por (a) de LE3 sabemos que $1 \in \mathbb{R}^+$, y por O1 se cumple que $1 + 1 \in \mathbb{R}^+$, es decir $2 \in \mathbb{R}^+$. Por (b) de LE3 se verifica que 0 < 2 y por (i) de LE3 tenemos que $0 < \frac{1}{2}$. Notemos que:

$$a < b$$
 Por hipótesis $a + a < b + a$ Por (d) de LE3 $2a < b + a$ Por definición $2a \cdot \frac{1}{2} < (b + a) \cdot \frac{1}{2}$ Por (e) de LE3 $\frac{2a}{2} < \frac{b + a}{2}$ Por (a) de LE2 $a < \frac{b + a}{2}$ Por A8

Similarmente,

$$a < b \qquad \qquad \text{Por hipótesis} \\ a + b < b + b \qquad \qquad \text{Por (d) de LE3} \\ a + b < 2b \qquad \qquad \text{Por definición} \\ (a + b) \cdot \frac{1}{2} < 2b \cdot \frac{1}{2} \qquad \qquad \text{Por (e) de LE3} \\ \frac{a + b}{2} < \frac{2b}{2} \qquad \qquad \text{Por (a) de LE2} \\ \frac{a + b}{2} < b \qquad \qquad \text{Por A8} \\ \text{Finalmente, por notación, } a < \frac{a + b}{2} < b.$$

- o) Si $0 \le a, \ 0 \cdot a \le a \cdot a,$ osea, $0 \le a^2$. Si $a < 0, \ 0 \cdot a < a \cdot a,$ osea, $0 \le a^2$. En cualquier caso $a \ge 0$.
- **p)** Supongamos que 0 < a, sigue que $0 < \frac{a}{2} < a$. Elegimos $\varepsilon = \frac{a}{2}$, entonces $\varepsilon < a$, pero esto contradice nuestra hipótesis de que $a < \varepsilon$ para toda $\varepsilon > 0$. Por tanto, a = 0.
- q) Sean $a \ y \ b$ números reales tales que $a \le b + \varepsilon$, $\forall \varepsilon > 0$. Supongamos que a > b. Luego, a b > 0. Notemos que $(a b) \cdot \frac{1}{2} > 0 \cdot \frac{1}{2}$, es decir $\frac{(a b)}{2} > 0$. Sea $\varepsilon = \frac{(a b)}{2}$, sigue que $a = 2\varepsilon + b$. Además, $2\varepsilon > \varepsilon$, de donde obtenemos $2\varepsilon + b > \varepsilon + b$. De este modo, $a > b + \varepsilon$, pero esto contradice nuestra hipótesis. Por tanto, $a \le b$.

Definición: Sea a un número real, definimos el valor absoluto de a, denotado por |a| como sigue:

$$|a| = \begin{cases} a, & \text{si } a \ge 0 \\ -a, & \text{si } a < 0 \end{cases}$$

Observación. $|a| \geq 0, \ \forall a \in \mathbb{R}.$

Lista de Ejercicios 4 (LE4)

Sean a, b, c números reales, demuestre lo siguiente:

- a) $|a| \ge \pm a$.
- **b)** |ab| = |a||b|.
- c) |a| = |-a|.
- d) $|a+b| \le |a| + |b|$.
- e) Si $b \neq 0$, entonces $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.
- f) |a| < b si y solo si -c < b < c.
- **g)** ||a| |b|| < |a b|
- **h**) $|a|^2 = a^2$.

Demostración

- a) i) Si $a \ge 0$, entonces |a| = a, así, $|a| \ge a$. Luego, $-a \le 0$, de donde sigue que $a \ge -a$. Finalmente, $|a| \ge -a$.
 - ii) Si a < 0, entonces |a| = -a, así, $|a| \ge -a$. Luego, -a > 0, de donde sigue que -a > a. Finalmente, |a| > a.

En cualquier caso, $|a| \ge \pm a$.

- b) i) Si a > 0 y b > 0, entonces |a| = a y |b| = b. Luego, ab > 0 por lo que |ab| = ab. De este modo, |ab| = |a||b|.
 - ii) Si a > 0 y b < 0, entonces |a| = a y |b| = -b. Luego, ab < 0 por lo que |ab| = -ab. De este modo, |ab| = |a||b|.
 - iii) Si a < 0 y b < 0, entonces |a| = -a y |b| = -b. Luego, ab > 0 por lo que |ab| = ab. De este modo, |ab| = |a||b|.
- c) i) Si $a \ge 0$, entonces |a| = a. Luego, $-a \le 0$. Si -a < 0, |-a| = a y si -a = 0, |-a| = a. De este modo, |a| = |-a|.
 - ii) Si a < 0, entonces |a| = -a. Luego, -a > 0 por lo que |-a| = -a. De este modo, |a| = |-a|.
- d) i) Si $0 \le a+b$, entonces |a+b|=a+b. Además, $a \le |a|$ y $b \le |b|$. Luego, $a+b \le |a|+|b|$. Así, $|a+b| \le |a|+|b|$.
 - ii) Si 0 > a + b, entonces |a + b| = -a b. Además, $-a \le |a|$ y $-b \le |b|$. Luego, $-a b \le |a| + |b|$. Así, $|a + b| \le |a| + |b|$.

- e) i) Si $a \ge 0$ y b > 0, entonces |a| = a y |b| = b. Además, $\frac{1}{b} > 0$, de donde sigue que $\frac{a}{b} \ge 0$ por lo que $\left|\frac{a}{b}\right| = \frac{a}{b}$. De este modo, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.
 - ii) Si $a \ge 0$ y b < 0, entonces |a| = a y |b| = -b. Además, $\frac{1}{b} < 0$, de donde sigue que $\frac{a}{b} \le 0$, por lo que $\left|\frac{a}{b}\right| = -\frac{a}{b}$. De este modo, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.
 - iii) Si a < 0 y b > 0, entonces |a| = -a y |b| = b. Además, $\frac{1}{b} > 0$, de donde sigue que $\frac{a}{b} < 0$, por lo que $\left| \frac{a}{b} \right| = -\frac{a}{b}$. De este modo, $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.
 - iv) Si a < 0 y b < 0, entonces |a| = -a y |b| = -b. Además, $\frac{1}{b} < 0$, de donde sigue que $\frac{a}{b} > 0$ por lo que $\left| \frac{a}{b} \right| = \frac{a}{b}$. De este modo, $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.
- f) i) Supongamos que |b| < c. Por (a) de LE4, $\pm b \le |b|$, de donde sigue que -b < c y b < c. Luego, -c < b. De este modo, -c < b < c.
 - ii) Supongamos que -c < b < c. Luego,
 - 1) Si $b \ge 0$, entonces |b| = b. Por lo que |b| < c.
 - 2) Si b < 0, entonces |b| = -b. Por hipótesis, -c < b, por lo que -b < c. Así |b| < c.
- g) Por la desigualdad del triángulo,

$$|(a-b)+b| \le |a-b|+|b|$$

 $|a| \le |a-b|+|b|$
 $|a|-|b| \le |a-b|$ (1)

Similarmente,

$$|(b-a) + a| \le |b-a| + |a|$$

 $|b| \le |b-a| + |a|$
 $|b| - |a| \le |b-a|$
 $-|b-a| \le |a| - |b|$ (2)

Luego, aplicando (f) de LE4 en (1) y (2), $\big||a|-|b|\big| \leq |a-b|$.

h) Por (o) de LE3, $a^2 \ge 0$, por lo que

$$a^2 = |a^2|$$

 $= |a \cdot a|$
 $= |a| \cdot |a|$ Por (b) de LE4
 $= |a|^2$

Definición. Sea $a \in \mathbb{R}$ y $\varepsilon > 0$. El vecindario- ε de a es el conjunto $V_{\varepsilon}(a) := \{x \in \mathbb{R} : |x - a| < \varepsilon\}$.

Lista de Ejercicios 5 (LE5)

Sean $a, b \in \mathbb{R}$. Demuestre lo siguiente:

- a) Si $x \in V_{\varepsilon}(a)$ para toda $\varepsilon > 0$, entonces x = a.
- b) Sea $U := \{x : 0 < x < 1\}$. Si $a \in U$, sea ε el menor de los números a y 1-a. Demuestre que $V_{\varepsilon}(a) \subseteq U$.
- c) Demuestre que si $a \neq b$, entonces existen $U_{\varepsilon}(a)$ y $V_{\varepsilon}(b)$ tales que $U \cap V = \emptyset$.

Demostración.

- a) Si $x \in V_{\varepsilon}(a)$ tenemos que $|x-a| < \varepsilon$. Además, $0 \le |x-a|$, por definición. Así, $0 \le |x-a| < \varepsilon$. Como esta desigualdad se cumple para toda $\varepsilon > 0$, por (p) de LE3, sigue que |x-a| = 0. Si $x-a \ge 0$, |x-a| = x-a y x-a = 0. Si x-a < 0, |x-a| = -x+a y -x+a = 0. En cualquier caso, x = a.
- b) i) Si a > 1 a, tenememos $\varepsilon = 1 a$. Sea $y \in V_{\varepsilon}(a)$, entonces |y a| < 1 a. De (f) de LE4 sigue que a 1 < y a < 1 a (*). Tomando el lado derecho de (*) obtenemos y < 1. Luego, de la hipótesis sigue que 2a > 1, osea 2a 1 > 0. Del lado izquierdo de la desigualdad (*), tenemos 2 1 < y, por lo que 0 < y.
 - ii) Si 1-a>a, tenemos $\varepsilon=a$. Sea $y\in V_{\varepsilon}(a)$, entonces |y-a|< a. De (f) de LE4 sigue que -a< y-a< a (**). Tomando el lado derecho de (**) tenemos y<2a. Luego, de la hipótesis sigue que 1>2a, por esto y<1. Finalmente, tomando el lado izquierdo de (**) obtenemos 0< y.

En cualquier caso, 0 < y < 1, lo que implica que $V_{\varepsilon}(a) \subseteq U$.

c) Supongamos que $U \cap V \neq \emptyset$.

Definición: Sea A un subconjunto del conjunto de los números reales, decimos que A es un conjunto inductivo si se cumplen las siguientes condiciones:

- **1.** $1 \in A$.
- **2.** Si $n \in A$ entonces se verifica que $n+1 \in A$.

Lista de Ejercicios 6 (LE6)

- 1) ¿El conjunto de los números reales es un conjunto inductivo?
- 2) \mathbb{R}^+ es un conjunto inductivo?
- 3) Sea $A := \{B \subseteq B : B \text{ es un conjunto inductivo}\}$. Demuestre que $A \neq \emptyset$ y que $C = \bigcap B$ es un conjunto inductivo.

Respuesta

- 1) Sí, ya que $1 \in \mathbb{R}$, y si n es un número real, $n+1 \in \mathbb{R}$ por la cerradura de la suma en \mathbb{R} .
- 2) Sí, pues $1 \in \mathbb{R}^+$ y y si n es un número real positivo, $n+1 \in \mathbb{R}^+$ por el axioma de orden 1.
- 3) Claramente $A \neq \emptyset$, pues $\mathbb{R}, \mathbb{R}^+ \subseteq A$.

Luego, por hipótesis, $\forall B \in A$ tenemos que $B \subseteq \mathbb{R}$ por lo que $C \subseteq \mathbb{R}$. Además, $\forall B \in A$, se verifica que $1 \in B$. Consecuentemente, $1 \in C$. Por otra parte, si $n \in B$ para todo $B \in A$, tendremos que $n + 1 \in B$, por lo que $n + 1 \in C$. Por tanto, C es un conjunto inductivo.

Definición. Al conjunto C de (3) de LE6 lo llamaremos conjunto de los números naturales y lo denotaremos con el símbolo \mathbb{N} .

Lista de ejercicios 7 (LE7)

Demuestre lo siguiente:

- a) La suma de números naturales es un número natural.
- b) La multiplicación de números naturales es un número natural.
- c) Demuestre que $n \geq 1, \forall n \in \mathbb{N}$.
- **d)** Demuestre que $\forall n \in \mathbb{N}$ con n > 1 se verifica que $n 1 \in \mathbb{N}$.
- e) Sean m y n números naturales tales que m > n, demuestre que $m n \in \mathbb{N}$.
- f) Sea $x \in \mathbb{R}^+$. Si $n \in \mathbb{N}$ y $x + n \in \mathbb{N}$, desmuestre que $x \in \mathbb{N}$.
- g) Sea $x \in \mathbb{R}$, si $n \in \mathbb{N}$ y n-1 < x < n, demuestre que x no es un número natural.

Demostración.

a) Sea $m \in \mathbb{N}$ arbitrario pero fijo. Definimos $A = \{n \in \mathbb{N} : m + n \in \mathbb{N}\}$. Por definición, $1 \in \mathbb{N}$ y $m + 1 \in \mathbb{N}$, entonces $1 \in A$, es decir, $A \neq \emptyset$.

Por otra parte, si $n \in A$ debe ser el caso que $n \in \mathbb{N}$ y $m+n \in \mathbb{N}$. Como \mathbb{N} es un conjunto inductivo, $n+1 \in \mathbb{N}$ y $(m+n)+1 \in \mathbb{N}$, luego, por la asociatividad de la suma, $m+(n+1) \in \mathbb{N}$. Por la condición de A, se cumple que $n+1 \in A$, por lo que A es un conjunto inductivo. De esto se concluye que $\mathbb{N} \subseteq A$ y como $A \subseteq \mathbb{N}$, $A = \mathbb{N}$. En otras palabras, la suma de números naturales es un número natural.

b) Sea $m \in \mathbb{N}$ arbitrario pero fijo. Definimos $A = \{n \in \mathbb{N} : m \cdot n \in \mathbb{N}\}$. Por definición, $1 \in \mathbb{N}$. Adenás, $m \cdot 1 \in \mathbb{N}$, entonces $1 \in A$, es decir $A \neq \emptyset$.

Luego, si $n \in A$ debe ser el caso que $n \in \mathbb{N}$ y $m \cdot n \in \mathbb{N}$. Por (a) de LE7 se verifica que $(m \cdot n) + m \in \mathbb{N}$. Notemos que $(m \cdot n) + m = m \cdot (n+1)$, osea, $m \cdot (n+1) \in \mathbb{N}$. Como \mathbb{N} es un conjunto inductivo, tenemos que $n+1 \in \mathbb{N}$. De este modo, $n+1 \in A$. Lo que implica que A es un conjunto inductivo. De esto se concluye que $\mathbb{N} \subseteq A$ y como $A \subseteq \mathbb{N}$, $A = \mathbb{N}$. En otras palabras, la multiplicación de números naturales es un número natural.

c) Sea $A := \{n \in \mathbb{N} : n \ge 1\}$. Como $1 \in \mathbb{N}$ y $1 \ge 1$, tenemos que $1 \in A$.

Si $n \in A$ debe ser el caso que $n \in \mathbb{N}$ y $1 \le n$. Además, por (a) de LE7, $n+1 \in \mathbb{N}$. Luego, notemos que $0 \le 1$ de donde sigue que $n \le n+1$. Por transitividad, $1 \le n+1$, por lo que $n+1 \in A$, lo que implica que A es un conjunto inductivo, es decir, $\mathbb{N} \subseteq A$ y como $A \subseteq \mathbb{N}$, A = N. En otras palabras, $n \ge 1, \forall n \in \mathbb{N}$.

d) Sea $A := \{ n \in \mathbb{N} \mid n > 1, n - 1 \in \mathbb{N} \}$. Si $n \in A$ debe ser porque n > 1 y $n - 1 \in \mathbb{N}$. Como $n \in \mathbb{N}$ y \mathbb{N} es un conjunto inductivo, se verifica $n + 1 \in \mathbb{N}$. Notemos que

$$(n+1) - 1 = n + (1-1)$$

= $n + 0$
= n

Entonces, $(n+1)-1 \in \mathbb{N}$. También, n>1 implica que n>0 y n+1>1, por lo que $n+1 \in A$. De este modo, A es un conjunto inductivo, con lo que $\mathbb{N} \subseteq A$, y como $A\subseteq \mathbb{N}$, $A=\mathbb{N}$. Por tanto $\forall n\in \mathbb{N}$ con n>1 se verifica que $n-1\in \mathbb{N}$.

e) Sea $A := \{ n \in \mathbb{N} \mid n < m, m - n \in \mathbb{N} \text{ con } m \in \mathbb{N} \}$. Por definición, $1 \in \mathbb{N} \text{ y } 1 + 1 \in \mathbb{N}$. Por (a) y (b) de LE3, 1 > 0, de donde sigue que 1 + 1 > 1. Por (d) de LE7, se verifica que $(1 + 1) - 1 \in \mathbb{N}$, por lo que $1 \in A$.

Si $n \in A$ debe ser porque $m - n \in \mathbb{N}$ y m > n, de donde obtenemos m + 1 > n + 1. Como $m, n \in \mathbb{N}$ y \mathbb{N} es un conjunto inductivo, $n + 1 \in \mathbb{N}$ y $m + 1 \in \mathbb{N}$. Notemos que m + 1 - (n + 1) = m - n, por lo que $n + 1 \in A$. De este modo, A es un conjunto inductivo, con lo que $\mathbb{N} \subseteq A$, y como $A \subseteq \mathbb{N}$, $A = \mathbb{N}$.

- f) Por (b) de LE3, x > 0, por lo que x + n > n. Por hipótesis, $x + n, n \in \mathbb{N}$, y por (e) de LE7 $(x + n) n \in \mathbb{N}$, osea, $x \in \mathbb{N}$.
- g) Supongamos que $x \in \mathbb{N}$. Por hipótesis tenemos que x < n y x > n 1. Notemos que

$$x < n$$

$$x - n < n - n$$

$$x - n < 0$$

$$x - n + 1 < 1$$

Del mismo modo,

$$n-1 < x$$

 $n-1 - (n-1) < x - (n-1)$
 $0 < x - n + 1$
 $n < x + 1$

Como \mathbb{N} es un conjunto inductivo, $x+1 \in \mathbb{N}$, y como x+1 > n, con $n \in \mathbb{N}$, por (e) de LE7, $x+1-n \in \mathbb{N}$, y por (c) de LE7, $x+1-n \geq 1$. Pero tenemos que x-n+1 < 1, osea 1 < x+1-n < 1, lo cual es una contradicción. Por tanto, x no es un número natural. \square

Principio del buen orden

Teorema. Todo subconjunto no vacío del conjunto de los números naturales tiene elemento mínimo. Esto significa que si $A \subseteq \mathbb{N}$ y $A \neq \emptyset$, entonces $\exists c \in A$ tal que $c \leq b, \forall b \in A$.

Demostración

Supongamos que $A \subseteq \mathbb{N}$ con $A \neq \emptyset$ y A no tiene elemento mínimo, es decir, suponemos que $\forall a_0 \in A, \exists a \in A \text{ tal que } a_0 > a.$

Definimos el conjunto $S := \{ n \in \mathbb{N} : n < a, \forall a \in A \}$. Si $1 \notin S$, tendríamos que $\exists a_0 \in A$ tal que $a_0 \leq 1$, y como $a_0 \in \mathbb{N}$, sigue que $1 \leq a_0$, osea $1 \leq a_0 \leq 1$, y así $a_0 = 1$, pero $1 \leq n, \forall n \in \mathbb{N}$ y en consecuencia, $1 \leq a, \forall a \in A$, lo que contradiría nuestro supuesto inicial. Entonces, debe ser el caso que $1 \in S$.

Si $m \in S$, tendríamos que $m < a, \forall a \in A$. Luego, si $m+1 \notin S$, entonces $\exists a_0 \in A$ tal que $a_0 \leq m+1$, con lo que obtenemos que $m < a_0 \leq m+1$, y por (g) de LE7, no puede ser el caso que $m < a_0 < m$, entonces $a_0 = m+1$, de lo que se concluye que $m+1 \leq a, \forall a \in A$, pero esto contradice nuestro supuesto inicial, por lo que $m+1 \in S$. De este modo, S es un conjunto inductivo, y, por definición, $\mathbb{N} \subseteq S$ y $S \subseteq \mathbb{N}$, lo que implica que $S = \mathbb{N}$. Dado que $A \neq \emptyset$, entonces $\exists a_0 \in A$ tal que $a_0 > n, \forall n \in S$, y como $A \subseteq S$, podemos elegir $n = a_0$, pero de esto obtenemos que $a_0 < a_0$, lo cual es una contradicción. Por tanto, $\forall A \subseteq \mathbb{N}$ con $A \neq \emptyset$, se cumple que A tiene elemento mínimo. \square

Definción.

- Al conjunto $\mathbb{N} \cup 0 \cup -n : n \in \mathbb{N}$ lo llamaremos conjunto de los números enteros y lo representaremos con el símbolo \mathbb{Z} .
- Al conjunto $-n: n \in \mathbb{N}$ lo llamaremos conjunto de los números enteros negativos y lo representaremos con el símbolo \mathbb{Z}^- .
- Al conjunto \mathbb{N} también lo llamaremos conjunto de los números enteros positivos y lo representaremos con el símbolo \mathbb{Z}^+ .

Observación. Los conjuntos \mathbb{N} , $0, -n : n \in \mathbb{N}$ son disjuntos por pares.

Definición. Sea E un subconjunto no vacío de \mathbb{R} , decimos que E está acotado:

- Superiormente si existe un número real m tal que $b \leq m, \forall b \in E$. En este caso decimos que E es cota superior de E.
- Inferiormente si existe un número real l tal que $l \leq b, \forall b \in E$. En este caso, decimos que l es cota inferior de E.
- Si existe un número real m tal que $|b| \le m, \forall b \in E$. En este caso decimos que m es una cota de E.

Definición. Sea A un subconjunto no vacío del conjunto de los números reales, acotado superiormente, decimos que un número real M es supremo de A si M satisface las siguientes condiciones:

- M es cota superior de A.
- Si K es una cota superior de A, entonces $M \leq K$, es decir, M es la cota superior más pequeña de A.

En este caso escribimos $M = \sup A$.

Definición. Sea A un subconjunto no vacío del conjunto de los números reales, acotado inferiormente, decimos que un número real L es ínfimo de A si L satisface las siguientes condiciones:

- L es cota inferior de A.
- Si K es una cota inferior de A, entonces $K \leq L$, es decir, L es la cota inferior más grande de A.

En este caso escribimos $M = \inf A$.

Lista de ejercicios 8 (LE8)

Falso o verdadero:

- 1. Si E es un subconjunto de \mathbb{R} acotado superiormente, entonces E es un conjunto acotado.
- 2. Si E es un subconjunto acotado de \mathbb{R} , entonces E está acotado superiormente e Inferiormente.

Demuestre lo siguiente:

- 3. Sea A un subconjunto no vacío de \mathbb{R} , si A tiene supremo, este es único.
- **4.** Sea A un subconjunto no vacío de \mathbb{R} , si A tiene ínfimo, este es único.
- **5.** Una cota superior M de un conjunto no vacío S de \mathbb{R} es el supremo de S si y solo si para toda $\varepsilon > 0$ existe una $s_{\varepsilon} \in S$ tal que $M \varepsilon < s_{\varepsilon}$.

Respuesta

- 1. Falso. Consideremos el conjunto $\mathbb{R}\backslash\mathbb{R}^+$, el cual es un subconjunto de \mathbb{R} , y es no vacío, pues $-1 \in \mathbb{R}\backslash\mathbb{R}^+$. Además, $b \leq 0, \forall b \in \mathbb{R}\backslash\mathbb{R}^+$, por lo que el conjunto está acotado superiormente. Supongamos que el conjunto propuesto está acotado. Es decir, suponemos que $\exists m$ tal que $|b| \leq m, \forall b \in \mathbb{R}\backslash\mathbb{R}^+$. Por (f) de LE4, $-m \leq b$ y, por transitividad, $-m \leq 0$, de donde sigue que $-m-1 \leq -1$, pero -1 < 0, entonces -m-1 < 0, lo que implica que $-m-1 \in \mathbb{R}\backslash\mathbb{R}^+$, por lo que $|-m-1| \leq m$. Luego, notemos que |-m-1| = -(-m-1), es decir, tenemos que $m+1 \leq m$, pero de esto se concluye que $1 \leq 0$, lo cual es una contradicción. Por tanto, aunque $\mathbb{R}\backslash\mathbb{R}^+$ está acotado superiormente, no está acotado.
- **2.** Verdadero. Sea E un subconjunto no vacío de \mathbb{R} . Si E está acotado, entonces $\exists m$ tal que $|b| \leq m, \forall b \in E$. Por (f) de LE4, $-m \leq b \leq m$, por lo que el conjunto está acotado superiormente e inferiormente.

Demostración

- **3.** Supongamos que s_1 y s_2 son supremos de A. Como s_1 es una cota superior de A y s_2 es elemento supremo, entonces $s_2 \le s_1$. Similarmente, $s_1 \le s_2$. Por tanto, $s_1 = s_2$.
- **4.** Supongamos que m_1 y m_2 son ínfimos de A. Como m_1 es una cota superior de A y m_2 es elemento ínfimo, entonces $m_1 \le m_2$. Similarmente, $m_2 \le m_1$. Por tanto, $m_1 = m_2$.
- 5. i) Sea M una cota superior de S tal que $\forall \varepsilon > 0, \exists s_{\varepsilon}$ tal que $M \varepsilon < s_{\varepsilon}$. Si M no es el supremo de S, tendríamos que $\exists V$ tal que $s_{@}a \leq V < M$. Elegimos $\varepsilon = M V$, con lo que $V < s_{\varepsilon}$, lo que contradice nuestra hipótesis. Por tanto, M es el supremo de S.
 - ii) Sea M el supremo de S y $\varepsilon > 0$. Como $M < M + \varepsilon$, entonces $M \varepsilon$ no es una cota superior de S, por lo que $\exists s_{\varepsilon}$ tal que $s_{\varepsilon} > M \varepsilon$.

Axioma del supremo

Todo subconjunto no vacío del conjunto de los números reales que sea acotado superiormente tiene supremo.

Teorema. El conjunto de los números naturales no está acotado superiormente.

Demostración.

supongamos que el conjunto de los números naturales está acotado superiormente. Entonces existe un número real M tal que $n \leq M, \forall n \in \mathbb{N}$. Como el conjunto de los números naturales es no vacío, entonces, por el axioma del supremo, N tiene supremo.

Sea $L := \sup(\mathbb{N})$. Como L-1 no es cota superior de \mathbb{N} , —ya que de ser así, tendríamos que L-1 es cota superior de \mathbb{N} y L-1 < L lo cual contradice la minimalidad de L— existe un núero natural n_0 tal que $n_0 > L-1$, lo cual implica que $n_0 + 1 < L$, pero esto contradice la hipótesis de que L es supremo de \mathbb{N} . Por tanto, el conjunto de los números naturales no está acotado superiormente.

Lista de Ejercicios # (LE#)

Sean a y b números reales, demuestre lo siguiente:

- a) $0 \le a^{2n} \, \forall n \in \mathbb{N}$.
- **b)** Si $0 \le a$, entonces $0 \le a^n$, $\forall n \in \mathbb{N}$.
- c) Si $0 \le a < b$, entonces $a^n < b^n$, $\forall n \in \mathbb{N}$.
- **d)** Si $0 \le a < b$, entonces $a^n \le ab^n < b^n \forall n \in \mathbb{N}$.
- e) Si 0 < a < 1, entonces $a^n < a \, \forall n \in \mathbb{N}$.
- **f)** Si 1 < a, entonces $a < a^n \forall n \in \mathbb{N}$.

Demostración

- a) Pendiente
- b) Por inducción matemática.
 - i) Verificamos que se cumple para n=1.

$$0 \le a^1$$
$$0 < a$$

ii) Suponemos que se cumple para n=k, para algún $k\in\mathbb{N}$. Es decir, suponemos que

$$0 < a^k$$

iii) Probaremos a partir de (ii) que $0 \le a^{k+1}$. En efecto, por hipótesis de inducción

$$0 \le a^k$$
$$0 \cdot a \le a^k \cdot a$$
$$0 \le a^{k+1}$$

- c) Por inducción matemática.
 - i) Verificamos que se cumple para n = 1.

$$a^1 < b^1$$
$$a < b$$

ii) Suponemos que se cumple para n=k, para algún $k\in\mathbb{N}$. Es decir, suponemos que

$$a^k < b^k$$

iii) Probaremos, a partir de (ii) que $a^{k+1} < b^{k+1}$. En efecto, por (c) de LE5, garantizamos que $0 \le a^k$, lo que nos permite, por (a) de LE5, afirmar que

$$a^k \cdot a < b^k \cdot b$$
$$a^{k+1} < b^{k+1}$$

- d) Tenemos que a < b, como $0 \le a < b$, sigue que 0 < b, entonces $a \cdot b < b \cdot b$, osea $ab < b^2$. Luego, $a \cdot a \le ab$. Finalmente, $a^2 \le ab < b^2$.
- e) Pendiente
- f) Pendiente