Grundlagen der Systemsoftware (GSS)

Prof. Dr. Winfried Lamersdorf 1) [System-SW]

sowie

Prof. Dr. Hannes Federrath ²⁾ [Sicherheit]

- 1) Verteilte Systeme (VSYS)
- 2) Sicherheit in Verteilten Systemen (SVS)

Fachbereich Informatik, MIN-Fakultät, Universität Hamburg

Folien zu System-SW basieren z.T. auf Vorlagen von Prof. Dr. B.E. Wolfinger

INHALT:

B.Sc.-Modul "Grundlagen der Systemsoftware"

Systemsoftware: W. Lamersdorf

- Grundkonzepte, Grundbausteine und Architekturen von Systemsoftware – inkl. (kurz) Verteilten Systemen
- Grundlagen und Grundkonzepte von Betriebssystemen
- Grundkonzepte Nebenläufigkeit und Verteilung
- Grundkonzepte Kommunikation und Vernetzung
- Grundkonzepte (Multi-) Agententechnologie

abgebildet auf Hauptbereiche

- A Einführung
- B Betriebssysteme
- C Nebenläufigkeit und Verteilung
- D Rechnernetze
- E Agententechnologie

INHALT:

B.Sc.-Modul "Grundlagen der Systemsoftware"

Sicherheit: H. Federrath

- Einführung in die IT-Sicherheit
- Rechner- und Betriebssystem-Sicherheit
- Einführung in die Kryptographie
- Public Key Infrastructures (PKI)

Lernziele

- Schutzziele in IT-Systemen verstehen und definieren können
- Anforderungen an Identifikations-, Zugangs- und Zugriffskonrollsysteme aufstellen und auswählen
- Gemeinsamkeiten und Unterschiede verschiedener Verschlüsselungs- und Authentifikationssysteme verstehen und diese anwenden können

Prüfungsmodalitäten für GSS

(in Bachelor-Studiengängen)

Bachelor-Modul 'Grundlagen der Systemsoftware', SoSe 16

- Umfang 3 SWS Vorlesung + 1 SWS Übungen
- Erfolgreiche Teilnahme an den Übungen ist Voraussetzung für die GSS-Prüfung
- Art der Prüfung: schriftliche <u>Klausur</u>

Klausur direkt nach Ende des SoSe (d.h. ab ca. Mitte Juli)

Zu aktuellen Klausurterminen siehe Web-Seiten des FB Informatik der UniHH.

Aktuelle Informationen zu Vorlesung+Übungen GSS siehe

http://vsis-www.informatik.uni-hamburg.de/teaching/ss-16/gss/

vorab: Organisatorisches

Vorlesung: 3 SWS → W. Lamersdorf (2) & H. Federrath (1)

Mo, 10-12 Uhr; Erzwiss.-H wöchentlich sowie Fr, 10-12 Uhr; Erzwiss.-H ca. 14-tägig – d.h. konkret am Fr. dem 22.04., 13.05., 03.06., 17.06., 08.07. 2016

Übungen: 14-tägig, je 2-SWS (d.h. je 90 min)

- Beginn in der 1. Semesterwoche (Mo. 4.4. Gruppeneinteilung!), weiterer Übungsbetrieb dann ab der 2. Sem.woche (Mo., 11.4. Ausgabe 1. Aufgabe) und dann jede weitere 2. Woche (genaue Termine siehe https://vsis-www.informatik.uni-hamburg.de/vsis/teaching)
 - Gleichmäßige Aufteilung auf angebotene Übungsgruppen (d.h. max. 15-20 TeilnehmerInnen pro ÜG)
 - Übungsaufgaben sollen generell in Teams von 3-4 Studierenden bearbeitet werden; Ergebnispräsentation ist Teil der Aufgabe
- Achtung: Übungen sind (auch für die Klausur) wichtig und formal ist die erfolgreiche Teilnahme daran Voraussetzung für die Teilnahme an der Klausur!
- > hinreichende Anforderung für den Übungsschein:
 - regelmäßige aktive Teilnahme d.h. maximal 1-mal fehlen!
 - ≥ 50 % korrekt bearbeitete Aufgaben im gesamten Semester

INHALT:

B.Sc.-Modul "Grundlagen der Systemsoftware"

Α	A Grundkonzepte, Grundbausteine und Architekturen von			
	Systemsoftware – inkl. Übersicht Verteilte Systeme			
В	Grundlagen und Grundkonzepte von Betriebssystemen			
С	Grundkonzepte Nebenläufigkeit und Verteilung			
D	Grundkonzepte Kommunikation und Vernetzung			
Е	Einführung in die Agententechnologie			
	System-SW: W. Lamersdorf			
F	Einführung in die IT-Sicherheit			
G	Rechner- und Betriebssystem-Sicherheit			
Н	Einführung in die Kryptographie			
I	Public Key Infrastructures (PKI) Sicherheit: H. Federrath			

INHALT System-SW (1):

A A1 A2	Einführung Überblick über die Vorlesung Verteilte Systemsoftware	Teil I: W. Lamersdorf
B B1 B2 B3 B4 B5	Betriebssysteme Einführung und Motivation Prozesse: Scheduling und Betriebsmittelz Speicherverwaltung Dateisysteme Ein-/Ausgabe	uteilung
C C1 C2 C3 C4	Nebenläufigkeit und Verteilung Grundkonzepte Prozesssychronisation und -kommunikation Prozesse & Threads Deadlocks	on

INHALT System-SW (2):

D	Kommunikation und Rechnernetze	Teil I: W. Lamersdorf	
D1	Einführung und Motivation		
D2	Architekturen		
D3	Lokale Rechnernetze		
D4	Gemeinsamkeiten von Betriebssystemen und Rechnernetzen		
E E1 E2	Agentenbasierte Systemtechnologie (Multi-) Agentensysteme: Grundlagen (Multi-) Agententechnologie: Vertiefung		
	(while-) Agententechnologie, vertierung		

Literatur (1): Betriebssysteme

- [NeS01] J. Nehmer, P. Sturm: Systemsoftware Grundlagen moderner Betriebssysteme, 2. Auflage, dpunkt-Verlag, 2001
- [SGG02] A. Silberschatz, P. Galvin, G. Gagne: Operating System Concepts, J. Wiley, 2002
- [SiB06] H.-J. Siegert, U. Baumgarten: Betriebssysteme Eine Einführung, 6. Auflage, Oldenbourg-Verlag, 2006, 405 S.
- * [Sta03] W. Stallings: Operating Systems: Internals and Design Principles, 6th Ed., Pearson International, 2009 (*ältere dt. Ausgabe*: Betriebssysteme Prinzipien und Umsetzung, 4. Auflage, Pearson-Studium, 2002/5, 896 S.)
- * [Tan08] A. S. Tanenbaum: Modern Operating Systems, 3rd ed., Pearson, 2008, 1076 S.; (deutsche Übersetzung (2nd Ed.!): Moderne Betriebssysteme, 3. aktualisierte Auflage, Pearson, 2009, 1221 S.)
- [TaW06] A. S. Tanenbaum, A. S. Woodhull: Operating Systems: Design and Implementation, 3rd Ed., Pearson 2006, 1080 S.
- [HaB03] T. Harris, J. Bacon: Operating Systems: Concurrent and Distributed Software Design, Pearson International, 2003

Literatur (2): Rechnernetze

- [Com04a] D. Comer, Computernetzwerke und Internets, 3. Auflage, Prentice-Hall, 2004, 688 S.
- [Com04b] D. Comer, Computer Networks and Internets with Internet Applications, 7th Ed., Prentice-Hall, 2004
- [KuR08] J. F. Kurose, K.W. Ross: Computer Networking A Top-Down Approach, 4th Ed., Pearson/ Addison-Wesley, 2008, 852 S.
- * [PeD08] L. L. Peterson, B. S. Davie: Computernetze, 4. Auflage, Lehrbuch, dpunkt-Verlag, 2008, 858 S. (engl. Original: Elsevier-Verlag, USA)
- [Pro02] W. Proebster: Rechnernetze Technik, Protokolle, Systeme, Anwendungen, 2. Auflage, Oldenbourg-Verlag, 2002
- [Sta07] W. Stallings: Data & Computer Communications, 8th Ed., Prentice-Hall, 2007
- [Tan03] A. S. Tanenbaum (& D. Wetherall): Computernetzwerke, 4. aktual. Auflage, Prentice-Hall 2003, 960 S. (engl. Original: Computer Networks, 5th Ed., Prentice-Hall, 2010)

Literatur (3): Verteilte Systeme, (Multi-) Agentensysteme, etc.

- * [CoDoKi05] G. Coulouris, J. Dolimore, T. Kindberg: Distributed Systems: Concepts and Design, Pearson International, 5th Edition, 2012 (dt. Verteilte Systeme: Konzepte und Design, 3.(!) überarb. Aufl. 2002)
- [TavS07] A. Tanenbaum, M. van Steen: Distributed Systems: Principles and Paradigms, 2nd Edition, Pearson International, 2007, 704 pp. (dt.: Verteilte Systeme: Grundlagen und Paradigmen, Pearson Studium, 2003)
- [Wool01] M.J. Wooldridge: An Introduction to Multi-Agent Systems, 2nd Ed. Wiley, 2009
- [JW98] N.R. Jennings, M.J. Wooldridge (Hrsg.): Agent Technology, Springer-Verlag, 1998
- [Maes94] P. Maes: Designing Autonomous Agents, MIT/Elsevier, 1994
- [BZWS98] W. Brenner, R. Zarnekow, H. Wittig: Intelligente Software Agenten, Springer-Verlag, 1998
- [Faerb01] J. Ferber (dt. St. Kirn): Multiagentensysteme, Addison-Wesley, 2001

