Методы оптимизации. Задание 1: Субградиентный спуск

Сергей Володин, 374 гр.

задано 2016.02.09

Задача 1

Делаем проекцию при $k \in K$. $Q \ni x^* = \underset{x \in Q}{\operatorname{arg\,min}} f(x)$. Рассмотрим k+1-ю итерацию:

- 1. Пусть $k+1 \in K$. Тогда $x_{k+1} \stackrel{\text{def}}{=} \pi_Q(x_k \alpha_k g^k)$
- 2. Иначе $x_{k+1} = x_k \alpha_k g^k$.

Здесь $g^k \in \partial f(x_k)$. В первом случае $||x_{k+1} - x^*|| = ||\pi_Q(x_k - \alpha_k g^k) - x^*|| \leqslant ||x_k - \alpha_k g^k - x^*||$ по свойству проекции (расстояние до $x^* \in Q$ не увеличивается при проектировании на Q).

Тогда в обоих случаях $||x_{k+1}-x^*||^2 \leqslant ||x_k-\alpha_k g^k-x^*||^2 = ||x_k^2-x^*||^2 + \alpha_k^2||g^k||^2 - 2\alpha_k(g^k,x_k-x^*) \stackrel{g\in\partial f(x_k)}{\leqslant} ||x_k-x^*||^2 + \alpha_k^2||g^k||^2$ $\alpha_k^2 ||g^k||^2 - 2\alpha_k (f(x_k) - f(x^*)).$

Последовательно подставим (индукция) оценку разности для x_k , ..., x_1 в x_{k+1} , получим такую же оценку, как и для обычного метода градиентного спуска, т.е. $f_{\text{best}} - f_* \leqslant \frac{\kappa L}{\sqrt{k}}$

Оценка в худшем случае (равенство) не изменится.

Задача 2

Ответ: да, верно, да, может. Приведем пример $f: \mathbb{R}^n \to \mathbb{R}$ — выпуклая, $x_0 \in \mathbb{R}^n, a \in \partial f(x_0), x_0$ — не точка минимума f, -a — не направление убывания f.

$$f(\left|\left|\begin{array}{c} x_1 \\ x_2 \end{array}\right|\right|) \stackrel{\text{def}}{=} |x_1| + |x_2| \colon \mathbb{R}^2 \to \mathbb{R}$$
. Точка $x_0 \stackrel{\text{def}}{=} \left|\left|\begin{array}{cc} 1 & 0 \end{array}\right|\right|^T$ Тогда

- 1. f выпуклая: пусть $t_1, t_2 \in \mathbb{R}_+, x, y \in \mathbb{R}^2$. $f(t_1x + t_2y) = |t_1x_1 + t_2y_1| + |t_1x_2 + t_2y_2| \leqslant t_1|x_1| + t_2|y_1| + t_1|x_2| + t_2|y_2| = t_1|x_1| + t_2|x_2| + t_2|x_2| + t_1|x_2| + t_2|x_2| + t_2|x_2| + t_2|x_2| + t_1|x_2| + t_2|x_2| +$ $t_1(|x_1|+|x_2|)+t_2(|y_1|+|y_2|)=t_1f(x)+t_2f(y).$ Возьмем $t_1\in[0,1],\,t_2=1-t_1,$ получим определение выпуклой функции.
- 2. Пусть $a = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Докажем, что $a \in \partial f(x_0)$. Фиксируем $x \in \mathbb{R}^2$. $f(x) f(x_0) = |x_1| + |x_2| 1 = 1 \cdot (|x_1| 1) + 1 \cdot (|x_2|) \equiv (a, x x_0)$. То есть, верно:

 $\forall x \in \mathbb{R}^2 \hookrightarrow f(x) - f(x_0) \geqslant (a, x - x_0)$

To есть, a — субградиент.

3. -a — не направление убывания в x_0 . Пусть $t \in (0,1)$. Рассмотрим $f(x_0 - ta) = |1 - t| + |-t| = 1 - t + t = 1$. Получаем $\forall t \in (0,1) \hookrightarrow f(x_0 - ta) = f(x_0)$. Получаем,

$$\forall t_0 > 0 \,\exists t \stackrel{\text{def}}{=} \min\{1/2, t_0/2\} < t_0 \colon f(x_0 - ta) \geqslant f(x_0)$$

Это отрицания определения направления убывания.

4. x_0 — не точка минимума f: $f(x_0) = |1| + |0| = 1$, $f(0) = 0 < 1 = f(x_0)$.

Задача 3

Пусть $f(x_1,x_2)\colon \mathbb{R}^{n_1+n_2} \to \mathbb{R}, \ g\colon \mathbb{R}^{n_1} \to \mathbb{R}, \ h\colon \mathbb{R}^{n_2} \to \mathbb{R}, \ \forall x_1,x_2 \hookrightarrow f(x_1,x_2) = g(x_1) + h(x_2), \ f,g,h$ — выпуклые и непрерывно дифференцируемые.

Пусть g достигает минимума в x_1^* , h — в x_2^* . Тогда $f(x_1,x_2)=g(x_1)+h(x_2)\geqslant g(x_1^*)+h(x_1^*)=f(x_1^*,x_2^*)$, т.е. (x_1^*,x_2^*) также минимум f.

Пусть (x_1^0, x_2^0) — точка старта алгоритма.

Пусть
$$||g'_{x_1}|| \le R_1$$
, $||h'_{x_2}|| \le R_2$, $||x_1^0 - x_1^*|| \le L_1$, $||x_2^0 - x_2^*|| \le L_2$.
Тогда $||f'_{x_1,x_2}|| = ||(g'(x_1),h'(x_2))|| = \sqrt{R_1^2 + R_2^2}$, $||x^0 - x^*|| = ||(x_1^0 - x_1^*,x_2^0 - x_2^*))|| = \sqrt{L_1^2 + L_2^2}$.

Алгоритм, минимизирующий f целиком, сделает (в худшем случае) $k=\frac{R^2L^2}{\varepsilon^2}$ шагов. На каждом шаге он вычисляет g, h, g', h', т.е. он сделает $a = 4k = 4\frac{R^2L^2}{s^2}$ операций

Алгоритм, минимизирующий только g, сделает (в худшем случае) $k_1 = \frac{R_1^2 L_1^2}{\varepsilon^2/4}$ шагов (берем $\varepsilon/2$, чтобы в сумме с такой же погрешностью h дало ε). На каждой итерации вычисляется g, g', т.е. каждый шаг требует двух операций: $a_1 = 2\frac{R_1^2 L_1^2}{\varepsilon^2/4}$.

Аналогично $a_2 = 2 \frac{R_2^2 L_2^2}{\varepsilon^2/4}$

Вычитаем, получаем выигрыш: $a-a_1-a_2=4\frac{(R_2^2-R_1^2)(L_1^2-L_2^2)}{\varepsilon^2}>0$ при $\begin{cases} L_1>L_2\\ R_2>R_1 \end{cases}$ или $\begin{cases} L_1< L_2\\ R_2< R_1 \end{cases}$