Teesside University MSc Data Science

Machine Learning ICA

INTRODUCTION

Machine Learning Application for Bank Customer Churn Prediction

The dataset used in this project was gotten from https://www.kaggle.com/code/kmalit/bank-customerchurn-prediction/data

The aims of this work are:

- 1. Identify which factors contribute to customer churn using visualization packages.
- 2. Build a prediction model that will Classify if a customer is going to churn or not.

Importing Required Libraries

```
In [451...
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          %matplotlib inline
          import seaborn as sns
          from sklearn.preprocessing import PolynomialFeatures
          from sklearn.ensemble import ExtraTreesClassifier
          from sklearn.linear_model import LogisticRegression
          from sklearn.ensemble import RandomForestClassifier
          from xgboost import XGBClassifier
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import roc_auc_score, confusion_matrix, roc_curve
          from sklearn.metrics import classification_report,accuracy_score
```

Exploratory Data Analysis¶

Reading the data from the .csv dataset using pandas library

```
dataFrame=pd.read_csv("Churn_Modelling.csv")
In [452...
           dataFrame.head(20)
```

Out[452]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProdu
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
	5	6	15574012	Chu	645	Spain	Male	44	8	113755.78	
	6	7	15592531	Bartlett	822	France	Male	50	7	0.00	
	7	8	15656148	Obinna	376	Germany	Female	29	4	115046.74	
	8	9	15792365	Не	501	France	Male	44	4	142051.07	
	9	10	15592389	H?	684	France	Male	27	2	134603.88	
	10	11	15767821	Bearce	528	France	Male	31	6	102016.72	
	11	12	15737173	Andrews	497	Spain	Male	24	3	0.00	
	12	13	15632264	Kay	476	France	Female	34	10	0.00	
	13	14	15691483	Chin	549	France	Female	25	5	0.00	
	14	15	15600882	Scott	635	Spain	Female	35	7	0.00	
	15	16	15643966	Goforth	616	Germany	Male	45	3	143129.41	
	16	17	15737452	Romeo	653	Germany	Male	58	1	132602.88	
	17	18	15788218	Henderson	549	Spain	Female	24	9	0.00	
	18	19	15661507	Muldrow	587	Spain	Male	45	6	0.00	
	19	20	15568982	Нао	726	France	Female	24	6	0.00	

Basic insight from the dataset

In [453... # getting the dimension of the dataFrame dataFrame.shape

Out[453]: (10000, 14)

The data frame has 10,000 rows with 14 columns.

```
In [ ]:
In [454...
          dataFrame.dtypes # checking data type of the culumns
          RowNumber
                               int64
Out[454]:
          CustomerId
                               int64
          Surname
                              object
          CreditScore
                               int64
          Geography
                              object
          Gender
                              object
          Age
                               int64
          Tenure
                               int64
```

Geography object
Gender object
Age int64
Tenure int64
Balance float64
NumOfProducts int64
HasCrCard int64
IsActiveMember int64
EstimatedSalary float64
dtype: object

In []:

In [455... # checking for missing values from each column
dataFrame.isnull().sum()

```
CustomerId
                                0
           Surname
                                0
           CreditScore
                               0
           Geography
           Gender
                               0
                               0
           Age
           Tenure
                                0
           Balance
                               0
           NumOfProducts
                               0
           HasCrCard
                                0
           {\tt IsActive Member}
                               0
           EstimatedSalary
                                0
           Exited
                               0
           dtype: int64
           # unique value count of each column
In [456...
           dataFrame.nunique()
                               10000
           RowNumber
Out[456]:
           CustomerId
                                10000
           Surname
                                 2932
           CreditScore
                                  460
           Geography
                                    3
                                    2
           Gender
                                   70
           Age
           Tenure
                                   11
           Balance
                                 6382
           NumOfProducts
                                    4
                                    2
           HasCrCard
                                    2
           IsActiveMember
           EstimatedSalary
                                 9999
           Exited
                                    2
           dtype: int64
           We will be dropping the columns that are irrelevant and will not be contributing to the model development
```

the following columns will be dropped

0

RowNumber

Out[455]:

- RowNumber
- Customerld
- Surname

```
In [457... dataFrame = dataFrame.drop(["RowNumber", "CustomerId", "Surname"], axis = 1)
# First row display of whats left
dataFrame.head(1)
```

Out [457]: CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estimat

Out [457]: 0 619 France Female 42 2 0.0 1 1 1 1 1 1

```
In [458... # Re-checking for unique count of new columns
dataFrame.nunique()
```

CreditScore 460 Out[458]: Geography 3 Gender 2 70 Age Tenure 11 Balance 6382 NumOfProducts 4 HasCrCard 2 IsActiveMember 2 EstimatedSalary 9999 Exited 2 dtype: int64

Visualization

```
In [459... sns.pairplot(dataFrame)
```

Out[459]: <seaborn.axisgrid.PairGrid at 0x155ac40a488>

Heat map showing Correlation

Checking the percentage of churn and retain customer in the dataset

```
In [461...
          sizes = [dataFrame.Exited[dataFrame['Exited']==1].count(),
                   dataFrame.Exited[dataFrame['Exited']==0].count()
          colors=['chocolate','darksalmon']
          explode = (0, 0.1)
          wp = { 'linewidth' : 2, 'edgecolor' : "green" }
          plt.figure(figsize = (8, 8))
          plt.pie(sizes, labels = ['churned', 'Retained'], autopct = '%.2f%%',
                  explode=explode,
                  colors=['red','orange'],
                  shadow=True,
                  startangle= -45,
                  wedgeprops = wp,
                  textprops = {'size' : 'x-large', 'fontweight' : 'bold', 'color' : 'b',}
          plt.legend()
          plt.title("percentage of customers who have churned and those who are retained", fontsize = 16)
          plt.show()
```

percentage of customers who have churned and those who are retained

From the pie chart above, 20.37% of customers actually churn and 79.63% are retained Our focus will be on predicting on a higher Accuracy this percentage of customers will will churn

Visualizing categorical variables' impact on the target variable

Out[462]: <AxesSubplot:xlabel='count', ylabel='Geography'>

Although the majority of consumers are from France, the number of churned customers cannot be determined solely on their region.

Out[463]: <AxesSubplot:xlabel='count', ylabel='IsActiveMember'>

The Active Members have lower churn while the Inactive Members have a greater churn.

There is a reason for consern as the number of Inactive Members is very large. the bank needs to look into it.

Out[464]: <AxesSubplot:xlabel='count', ylabel='HasCrCard'>

The majority of churned consumers are ones that uses credit cards.

Out[465]: <AxesSubplot:xlabel='count', ylabel='Gender'>

The number of female clients who are churning outnumbers the number of male consumers.

checking the effect of continuous variable on target variable

```
In [466... #plot CreditScore variable on exited
sns.catplot(y='CreditScore',x = 'Exited', hue = 'Exited',kind="boxen",data = dataFrame)
```

Out[466]: <seaborn.axisgrid.FacetGrid at 0x155bce90448>


```
In [ ]:
```

There is no discernible variation in the credit score distribution between retained and churned customers.

```
In [467... #plot Age variable on exited
sns.catplot(y='Age',x = 'Exited', hue = 'Exited',kind="boxen",data = dataFrame)
```

Out[467]: <seaborn.axisgrid.FacetGrid at 0x155bd2534c8>

The older customers are churning more than the younger customers

```
In [468... #plot Tenure variable on exited
sns.catplot(y='Tenure',x = 'Exited',kind="boxen", hue = 'Exited',data = dataFrame)
```

Out[468]: <seaborn.axisgrid.FacetGrid at 0x155bd24cac8>

The customers on either extreme end are more likely to churn compared to those that are of average tenure.

```
In [469... #plot Balance variable on exited
sns.catplot(y='Balance',x = 'Exited', kind = 'boxen',data = dataFrame)
```

Out[469]: <seaborn.axisgrid.FacetGrid at 0x155c6501348>

Customers with high balance are chuning.

```
In [470... # plot NumOfProducts variable on exited
sns.catplot(y='NumOfProducts',x = 'Exited', kind = 'boxen',data = dataFrame)
```

Out[470]: <seaborn.axisgrid.FacetGrid at 0x155c76e4408>

Customers with 3 products are churning.

```
In [471... #plot EstimatedSalary variable on exited
sns.catplot(y='EstimatedSalary',x = 'Exited', kind = 'boxen',data = dataFrame)
```

Out[471]: <seaborn.axisgrid.FacetGrid at 0x155c76ec4c8>

salary has no significant effect on target variable.

Feature engineering

Divide the data into two sets: training and testing.

```
In [472... # Split Train, test data
    df_train = dataFrame.sample(frac=0.8,random_state=200)
    df_test = dataFrame.drop(df_train.index)
    print("Train Dataset:",df_train.shape)
    print("Test Dataset:",df_test.shape)

Train Dataset: (8000, 11)
    Test Dataset: (2000, 11)

In [473... import matplotlib.pyplot as plt
    df_train['BalanceSalaryRatio'] = df_train.Balance/df_train.EstimatedSalary
    sns.catplot(y='BalanceSalaryRatio',x = 'Exited', kind = 'boxen',data = df_train)
```

Out[473]: <seaborn.axisgrid.FacetGrid at 0x155c77fc608>

Customer departure is unaffected by salary ratio.

```
# Given that tenure is a 'function' of age, we create a new column aiming to standardize tenure df_train['TenureByAge'] = df_train.Tenure/(df_train.Age)
In [474...
             sns.catplot(y='TenureByAge',x = 'Exited', kind = 'boxen',data = df_train)
             #plt.ylim(-1, 5)
```

plt.show()

In []:

Customer with low tenure are churning

we create a column to capture credit score given age to take into account credit behaviour In [475... df_train['CreditScoreGivenAge'] = df_train.CreditScore/(df_train.Age)

Cheking the dataframe In [476...

df_train.head(2) Out[476

76]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Est
	8159	461	Spain	Female	25	6	0.00	2	1	1	
	6332	619	France	Female	35	4	90413.12	1	1	1	

Data preparation¶

Out[477]:		Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	BalanceSalaryRatio	TenureE
	8159	0	461	25	6	0.00	2	15306.29	0.000000	0.2
	6332	0	619	35	4	90413.12	1	20555.21	4.398550	0.1
	8895	0	699	40	8	122038.34	1	102085.35	1.195454	0.2
	5351	0	558	41	2	124227.14	1	111184.67	1.117305	0.0
	4314	0	638	34	5	133501.36	1	155643.04	0.857741	0.1

```
In [478... #For the one hot variables, we convert 0 to -1
    df_train.loc[df_train.HasCrCard == 0, 'HasCrCard'] = -1
    df_train.loc[df_train.IsActiveMember == 0, 'IsActiveMember'] = -1
    df_train.head()
```

Exited CreditScore Age Tenure Out[478]: Balance NumOfProducts EstimatedSalary BalanceSalaryRatio TenureI 8159 0 461 25 6 0.00 15306.29 0.000000 0.2 6332 90413.12 20555.21 4.398550 619 0.1 8895 122038.34 102085.35 1.195454 0 699 40 8 0.2 5351 558 2 124227.14 111184.67 1.117305 0 41 1 0.0 4314 0 638 34 5 133501.36 155643.04 0.857741 0.1

C:\Users\HP\Desktop\pyprog\data_sc_env\lib\site-packages\ipykernel_launcher.py:5: DeprecationWa rning: `np.str` is a deprecated alias for the builtin `str`. To silence this warning, use `str` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.str_` here.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.2 0.0-notes.html#deprecations

C:\Users\HP\Desktop\pyprog\data_sc_env\lib\site-packages\ipykernel_launcher.py:5: DeprecationWa rning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.2 0.0-notes.html#deprecations

Out[479]:		Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	BalanceSalaryRatio	TenureE
	8159	0	461	25	6	0.00	2	15306.29	0.000000	0.2
	6332	0	619	35	4	90413.12	1	20555.21	4.398550	0.1
	8895	0	699	40	8	122038.34	1	102085.35	1.195454	0.2
	5351	0	558	41	2	124227.14	1	111184.67	1.117305	0.0
	4314	0	638	34	5	133501.36	1	155643.04	0.857741	0.1

Data normalization

```
In [480... # create a minimum and Maximum scale for the continuous variables
minVec = df_train[continuous_cols].min().copy()
maxVec = df_train[continuous_cols].max().copy()
df_train[continuous_cols] = (df_train[continuous_cols]-minVec)/(maxVec-minVec)
df_train.head()
```

Out[480]:		Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	BalanceSalaryRatio	Tenı
	8159	0	0.222	0.094595	0.6	0.000000	0.333333	0.076118	0.000000	
	6332	0	0.538	0.229730	0.4	0.360358	0.000000	0.102376	0.003317	
	8895	0	0.698	0.297297	0.8	0.486406	0.000000	0.510225	0.000901	
	5351	0	0.416	0.310811	0.2	0.495130	0.000000	0.555744	0.000843	
	4314	0	0.576	0.216216	0.5	0.532094	0.000000	0.778145	0.000647	

Data preparation pipeline for test dataset

```
In [481...
           def DfPrepPipeline(df_predict,df_train_Cols,minVec,maxVec):
               # this section adds new features
               df_predict['BalanceSalaryRatio'] = df_predict.Balance/df_predict.EstimatedSalary
               df_predict['TenureByAge'] = df_predict.Tenure/(df_predict.Age - 18)
df_predict['CreditScoreGivenAge'] = df_predict.CreditScore/(df_predict.Age - 18)
               # Reordering of the columns
               cont_cols = ['CreditScore', 'Age', 'Tenure', 'Balance',
                              'NumOfProducts', 'EstimatedSalary', 'BalanceSalaryRatio', 'TenureByAge', 'CreditScoreGivenAge'
               cat cols = ['HasCrCard','IsActiveMember',"Geography", "Gender"]
               df_predict = df_predict[['Exited'] + cont_cols + cat_cols]
               # Changing the '0's in categorical variables to '-1's
               df_predict.loc[df_predict.HasCrCard == 0, 'HasCrCard'] = -1
               df_predict.loc[df_predict.IsActiveMember == 0, 'IsActiveMember'] = -1
               # performing one-hot-encoding to th categorical variables
               lst = ["Geography", "Gender"]
               remove = list()
               for x in lst:
                    for y in df_predict[x].unique():
                        df_predict[x+'_'+y] = np.where(df_predict[x] == y,1,-1)
                    remove.append(x)
               df_predict = df_predict.drop(remove, axis=1)
               # making sure all one-hot-encoded variables in the train data appears in the subsequent data
               L = list(set(df_train_Cols) - set(df_predict.columns))
               for 1 in L:
                    df_predict[str(1)] = -1
               # MinMax scaling coontinuous variables based on min and max from the train data
               df_predict[cont_cols] = (df_predict[cont_cols]-minVec)/(maxVec-minVec)
               # Ensure that The variables are ordered in the same way as was ordered in the train set
               df_predict = df_predict[df_train_Cols]
               return df_predict
```

Model Fitting

models

I will be working with the following models

- Logistic regression
- Random Forest
- Ensemble models(XGboost)
- KNN

Splitting train and test dataset into x and y

```
In [483... #Splitting train dataset into x and y
    x_train=df_train.loc[:, df_train.columns != 'Exited']
    y_train=df_train.Exited
    #Splitting test dataset into x and y
    x_test=df_test.loc[:, df_test.columns != 'Exited']
    y_test=df_test.Exited
```

Fine tuning to get right value of k using test dataset

```
In [484... # try K=1 through K=20 and record testing accuracy
k_range = range(1, 20)

# We can create Python dictionary using [] or dict()
scores = []

# We use a Loop through the range 1 to 26

# We append the scores in the dictionary
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(df_train.loc[:, df_train.columns != 'Exited'],df_train.Exited)
    y_pred = knn.predict(x_test)
    scores.append(accuracy_score(df_test.Exited, y_pred))
```

[0.7905811623246493, 0.814629258517034, 0.8166332665330661, 0.8151302605210421, 0.8181362725450 901, 0.8176352705410822, 0.8221442885771543, 0.8186372745490982, 0.8221442885771543, 0.81763527 05410822, 0.8191382765531062, 0.8181362725450901, 0.8176352705410822, 0.8171342685370742, 0.818 6372745490982, 0.814128256513026, 0.8151302605210421, 0.8156312625250501, 0.8161322645290581]

```
In [485... # plot the relationship between K and testing accuracy
# plt.plot(x_axis, y_axis)
plt.plot(k_range, scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Testing Accuracy')
```

Out[485]: Text(0, 0.5, 'Testing Accuracy')

From the above chart, the K value with the highest value of accuracy is 7

KNeighborsClassifier

```
In [486... knn_model = KNeighborsClassifier(n_neighbors=7)
knn_model.fit(x_train,y_train)
```

```
Out[486]: KNeighborsClassifier(n_neighbors=7)
```

KNN model Training Results

```
In [502... train_preds = knn_model.predict(x_train)
    print(classification_report(y_train,train_preds))
```

	precision	recall	f1-score	support
0	0.86	0.97	0.91	6353
1	0.77	0.41	0.53	1647
accuracy			0.85	8000
macro avg	0.82	0.69	0.72	8000
weighted avg	0.84	0.85	0.84	8000

KNN model Test Results

```
In [504... test_preds_knn = knn_model.predict(x_test)
    print(classification_report(y_test,test_preds))
```

	precision	recall	f1-score	support
0	0.83 0.70	0.98 0.15	0.90 0.25	1607 389
accuracy macro avg weighted avg	0.76 0.80	0.57 0.82	0.82 0.57 0.77	1996 1996 1996

KNN test confusion matrix

logistic regression with pol 2 kernel

```
In [487... # Fit logistic regression with pol 2 kernel
poly2 = PolynomialFeatures(degree=2)
    df_train_pol2 = poly2.fit_transform(x_train)
    log_pol2 = LogisticRegression(solver='liblinear')
    log_pol2.fit(df_train_pol2,y_train)
```

Out[487]: LogisticRegression(solver='liblinear')

Logistic regression model Training Results

In [506... print(classification_report(y_train, log_pol2.predict(df_train_pol2)))

	precision	recall	f1-score	support
0	0.86	0.98	0.91	6353
1	0.80	0.38	0.52	1647
accuracy			0.85	8000
macro avg	0.83	0.68	0.72	8000
weighted avg	0.85	0.85	0.83	8000

Logistic Regression model Test Results

```
In [507... poly2 = PolynomialFeatures(degree=2)
    df_test_pol2 = poly2.fit_transform(x_test)

pol2_prob=log_pol2.predict(df_test_pol2)
    print(classification_report(y_test, log_pol2.predict(df_test_pol2)))
```

precision	recall	f1-score	support
0.05	0.07	0.06	1607
0.85	0.87	0.86	1607
0.42	0.39	0.40	389
		0.78	1996
0.64	0.63	0.63	1996
0.77	0.78	0.77	1996
	0.64	0.85 0.87 0.42 0.39 0.64 0.63	0.85 0.87 0.86 0.42 0.39 0.40 0.78 0.64 0.63 0.63

```
In [ ]:
```

RandomForestClassifier

```
In [488...
          # Fit Random Forest classifier
          RF = RandomForestClassifier(n_estimators=1000,min_samples_leaf=4, min_samples_split=2,max_featur
          RF.fit(x_train,y_train)
          RandomForestClassifier(max_features=16, min_samples_leaf=4, n_estimators=1000)
Out[488]:
          Random Forest model Training Results
In [509...
          print(classification_report(y_train, RF.predict(x_train)))
                         precision
                                      recall f1-score
                                                         support
                     0
                              0.94
                                        0.99
                                                  0.96
                                                            6353
```

0.83

0.94

0.89

0.93

1647

8000

8000

8000

Random Forest model Test Results

0.94

0.94

0.94

0.74

0.86

0.94

1

accuracy

macro avg

weighted avg

```
In [510... rf_prob=RF.predict(x_test)
print(classification_report(y_test, RF.predict(x_test)))
```

	precision	recall	f1-score	support
	0.00		0.00	4.607
0	0.88	0.95	0.92	1607
1	0.71	0.49	0.58	389
accuracy			0.86	1996
macro avg	0.80	0.72	0.75	1996
weighted avg	0.85	0.86	0.85	1996

Random Forest test Confusion matrix

[[1530 77] [199 190]]

XGBClassifier

```
In [489... # Extreme Gradient Boost Classifier
XGB = XGBClassifier(gamma=0.01, learning_rate=0.08555,eval_metric="logloss")
XGB.fit(x_train,y_train)
```

C:\Users\HP\Desktop\pyprog\data_sc_env\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future releas e. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

Out[489]:

XGboost model Training Results

```
In [493... print(classification_report(y_train, XGB.predict(x_train)))
```

	precision	recall	f1-score	support
0	0.90	0.98	0.94	6353
1	0.88	0.60	0.71	1647
accuracy	0.00	. =0	0.90	8000
macro avg	0.89	0.79	0.83	8000
weighted avg	0.90	0.90	0.89	8000

From the classification reports of models above, the best model that gives a decent balance of the recall and precision is the random forest where According to the fit on the training set, with a precision score on 1's of 0.94, out of all customers that the model thinks would churn, 94 percent do indeed churn, and with a recall score on 1's of 0.74, the model is able to highlight 74 percent of all those that churned.

XGboost model Test Results

```
In [499... xgb_prob= XGB.predict(x_test)
print(classification_report(y_test, XGB.predict(x_test)))
```

	precision	recall	f1-score	support
0	0.89	0.97	0.92	1607
1	0.77	0.49	0.60	389
accuracy			0.87	1996
macro avg	0.83	0.73	0.76	1996
weighted avg	0.86	0.87	0.86	1996

The XGBoost ensembles method, with an overall accuracy of 87 percent and a precision score of 77 percent on 1's, and a recall score of 49 percent on 1's, is the best model that gives the highest overall accuracy with a decent balance of recall and precision, according to the classification reports of models above.

XGboost Test Confusion matrix


```
In [ ]:
```

```
In [501...
          accuracy_lr = roc_auc_score(y_test,test_preds_knn)
          fpr_lr, tpr_lr, thresholds_lr = roc_curve(y_test,test_preds_knn)
          accuracy_pol = roc_auc_score(y_test,pol2_prob)
          fpr_pol, tpr_pol, thresholds_pol = roc_curve(y_test,pol2_prob)
          accuracy_rf = roc_auc_score(y_test,rf_prob)
          fpr_rf, tpr_rf, thresholds_rf = roc_curve(y_test,rf_prob)
          accuracy_xgb = roc_auc_score(y_test,xgb_prob)
          fpr_xgb, tpr_xgb, thresholds_xgb = roc_curve(y_test,xgb_prob)
          plt.figure(figsize=(12, 7))
          plt.plot(fpr_lr, tpr_lr, label=f'AUC (KNN) = {accuracy_lr:.2f}')
          plt.plot(fpr_pol, tpr_pol, label=f'AUC (Logistic Regression POL2) = {accuracy_pol:.2f}')
          plt.plot(fpr_rf, tpr_rf, label=f'AUC ( RANDOM FOREST) = {accuracy_rf:.2f}')
          plt.plot(fpr_xgb, tpr_xgb, label=f'AUC (XGBoost) = {accuracy_xgb:.2f}')
          plt.plot([0, 1], [0, 1], color='blue', linestyle='--', label='Baseline')
          plt.title('ROC Curve', size=20)
          plt.xlabel('False Positive Rate', size=14)
          plt.ylabel('True Positive Rate', size=14)
          plt.legend();
```


Conclusion

In []:

On the test dataset, the model's f1-score for predicting churned customers is slightly higher. Even while the model is very accurate, it still misses 40% of those who end up churning. However, it is in our best interests to predict which clients are likely to churn so that a plan may be put in place to prevent it. Retraining the model with more data over time, while working with the model to save the 60% percent that may have churned, could enhance the accuracy.

```
In [ ]:
```