FIG. 1A





## FIG. 1B



FIG. 2



FIG. 3

## ELECTRODE OVERLAPPING LENGTH



FIG. 4

| SPECIMEN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADDITIVE                                        | ν)]»qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1AIN COI<br>1n1/3NI<br>(x+y- | /3Nb <sub>2</sub> $/3$ $/x$ T $(x+y+z=1)$ | MAIN COMPONENT $Pb_{\alpha}[(Mn_{1}\nearrow_{3}Nb_{2}\nearrow_{3})_{x}Ti_{y}Zr_{z}]O_{3}$ $(x+y+z=1)$ | ELECTRIC<br>PROPERTIES | MECHANICAL<br>STRENGTH | HEAT RESISTING AL- PROPERTIES CONTAINING | AL-<br>CONTAINING |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------------------------|-------------------|
| Š        | Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Al <sub>2</sub> O <sub>3</sub> SiO <sub>2</sub> | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                            | À                                         |                                                                                                       | Q <sub>max</sub>       | $\sigma_{b3}$          | AF <sub>0</sub>                          | PHASE             |
|          | (wt%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (wt%)                                           | (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mol)                        | (mol)                                     | (low)                                                                                                 |                        | $(N/mm^2)$             | (%)                                      |                   |
| -        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |                                                                                                       | 120                    | 155                    | 0.11                                     | ×                 |
| 2        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 24 (24                                    |                                                                                                       | 135                    | 172                    | 0.07                                     | 0                 |
| 3        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                            | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                         | 0.53                                      | 0.37                                                                                                  | 136                    | 179                    | 0.08                                     | 0                 |
| 4        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 2. Am                                     |                                                                                                       | 130                    | 192                    | 0.07                                     | 0                 |
| 5        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |                                                                                                       | 133                    | 192                    | 0.07                                     | 0                 |
|          | The second secon |                                                 | The state of the s |                              |                                           |                                                                                                       | -                      |                        |                                          |                   |

FIG. 5



FIG. 6

| SPECIMEN ADDITIVE( $\beta$ ) Pb $_{\alpha}$ [(Mn <sub>1/3</sub> Nb <sub>2/3</sub> ) $_{x}$ Ti $_{y}$ Zr $_{z}$ ]O $_{3}$ No. | ) Pb <sub>a</sub> [ | 닌                                       | MA<br>(Mr                              | MAIN COMPON<br>(Mn <sub>1/3</sub> Nb <sub>2/3</sub><br>(x+y+z=1) | OMPONENT<br>Nb <sub>2/3</sub> ) <sub>x</sub> Ti <sub>y</sub> ;<br>+y+z=1) | VT<br>i <sub>y</sub> Zr <sub>z</sub> ]O <sub>3</sub> | ELECTRIC<br>PROPERTIES | HEAT<br>RESISTING<br>PROPERTIES | TEMPEI                  | TEMPERATURE<br>CHARACTERISTICS   |
|------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------------------------|---------------------------------|-------------------------|----------------------------------|
| $Al_2O_3$ $SiO_2$ $\alpha$ $x$ (wt%) (wt%) (mol) (mol) (n                                                                    | (mol) (mol)         | x<br>(lom)                              |                                        | 5                                                                | y<br>(mol)                                                                | z<br>(mol)                                           | Q <sub>max</sub>       | \[ \lambda \kappa_{15} \] (%)   | AF <sub>0</sub> (-40°C) | \(\Delta\) F <sub>0</sub> (85°C) |
| 0.01                                                                                                                         |                     |                                         | ······································ |                                                                  |                                                                           |                                                      | 135                    | 3.9                             | 0.18                    | 0.08                             |
| 0.02                                                                                                                         |                     |                                         |                                        |                                                                  |                                                                           |                                                      | 125                    | 3.0                             | 0.16                    | 0.05                             |
| 0.10 0.998 0                                                                                                                 |                     |                                         | 0                                      | 0                                                                | 0.51                                                                      | 0.39                                                 | 128                    | 2.9                             | 0.21                    | 0.10                             |
| 0.50                                                                                                                         |                     |                                         | <del></del>                            |                                                                  |                                                                           |                                                      | 145                    | 1.9                             | 0.27                    | 0.14                             |
| 1.00                                                                                                                         |                     |                                         |                                        |                                                                  |                                                                           |                                                      | 110                    | 3.0                             | 0.33                    | 0.19                             |
| 0.10                                                                                                                         |                     |                                         | <del></del>                            |                                                                  |                                                                           |                                                      | 121                    | 2.3                             | 0.09                    | 0.05                             |
| 0.30                                                                                                                         |                     | Ç                                       |                                        |                                                                  |                                                                           |                                                      | 135                    | 2.3                             | 0.04                    | 0.03                             |
|                                                                                                                              |                     | 2                                       | 2                                      |                                                                  |                                                                           |                                                      | 136                    | 2.4                             | 0.04                    | 0.07                             |
| 0.70                                                                                                                         |                     |                                         |                                        |                                                                  |                                                                           |                                                      | 121                    | 2.3                             | 0.03                    | 0.10                             |
| 0.990 0                                                                                                                      |                     |                                         | 0                                      | 0                                                                | 0.53                                                                      | 0.37                                                 | 133                    | 2.2                             | 0.04                    | 0.07                             |
| 1.50                                                                                                                         |                     | *************************************** | ······································ |                                                                  | ***************************************                                   |                                                      | 122                    | 2.2                             | 0.02                    | 90.0                             |
| 2.00                                                                                                                         |                     |                                         | ······································ |                                                                  |                                                                           |                                                      | 121                    | 2.1                             | 0.02                    | 0.10                             |
| 3.00                                                                                                                         |                     |                                         |                                        |                                                                  |                                                                           |                                                      | 104                    | 2.4                             | 0.00                    | 60.0                             |
| 10.00                                                                                                                        |                     |                                         |                                        | 1                                                                |                                                                           |                                                      | 73                     | 2.8                             | 0.01                    | 0.13                             |

FIG. 7

| SPECI-<br>MEN No. | ADD                                     | ITIVE                     | $Pb_{\alpha}[($ | Mn <sub>1∕3</sub> l | MPONENT $Nb_{2/3}$ , $Ti_yZr_z$ $x+y+z=1$ ) |            | ELECTRIC<br>PROPER-<br>TIES | HEAT<br>RESISTING<br>PROPERTIES |                         | RATURE<br>FERISTICS    |
|-------------------|-----------------------------------------|---------------------------|-----------------|---------------------|---------------------------------------------|------------|-----------------------------|---------------------------------|-------------------------|------------------------|
|                   | Al <sub>2</sub> O <sub>3</sub><br>(wt%) | SiO <sub>2</sub><br>(wt%) | α<br>(mol)      | x<br>(mol)          | y<br>(mol)                                  | z<br>(mol) | Q <sub>max</sub>            | Δk <sub>15</sub>  <br>(%)       | ΔF <sub>0</sub> (-40°C) | ΔF <sub>0</sub> (85°C) |
| 20 *              |                                         |                           |                 | 0.02                | 0.56                                        | 0.42       | 29                          | 1.1                             | 0.24                    | 0.14                   |
| 21                |                                         |                           |                 |                     | 0.58                                        | 0.38       | 81                          | 0.9                             | 0.11                    | 0.14                   |
| 22                |                                         |                           |                 | 0.04                | 0.56                                        | 0.40       | 85                          | 1.0                             | 0.25                    | 0.02                   |
| 23                |                                         |                           |                 | 0.04                | 0.55                                        | 0.41       | 117                         | 1.4                             | 0.29                    | 0.09                   |
| 24 *              |                                         |                           |                 |                     | 0.54                                        | 0.42       | 108                         | 1,4                             | 0.54                    | 0.19                   |
| 25                |                                         |                           |                 | 0.06                | 0.56                                        | 0.38       | 95                          | 1.1                             | 0.09                    | 0.04                   |
| 26 *              |                                         |                           |                 | 0.00                | 0.52                                        | 0.42       | 177                         | 1.5                             | 1.10                    | 0.77                   |
| 27 *              |                                         |                           |                 | 0.08                | 0.59                                        | 0.33       | 98                          | 1.5                             | 0.28                    | 0.41                   |
| 28                |                                         |                           |                 | 0.08                | 0.54                                        | 0.38       | 112                         | 1.7                             | 0.11                    | 0.02                   |
| 29                |                                         |                           |                 |                     | 0.55                                        | 0.36       | 114                         | 1.8                             | 0.03                    | 0.19                   |
| 30                |                                         |                           |                 | 0.09                | 0.54                                        | 0.37       | 119                         | 1.8                             | 0.05                    | 0.11                   |
| 31                |                                         |                           |                 | 0.09                | 0.53                                        | 0.38       | 124                         | 1.5                             | 0.13                    | 0.03                   |
| 32                |                                         |                           | 0.990           |                     | 0.52                                        | 0.39       | 154                         | 1.8                             | 0.24                    | 0.07                   |
| 33                |                                         |                           |                 |                     | 0.58                                        | 0.32       | 81                          | 1.7                             | 0.23                    | 0.30                   |
| 34                | 0.5                                     | 0.02                      |                 |                     | 0.54                                        | 0.36       | 147                         | 2.1                             | 0.02                    | 0.14                   |
| 35                |                                         |                           |                 | 0.10                | 0.53                                        | 0.37       | 146                         | 1.8                             | 0.05                    | 0.06                   |
| 36                |                                         |                           |                 |                     | 0.52                                        | 0.38       | 158                         | 1.7                             | 0.14                    | 0.02                   |
| 37                | 9                                       | É.                        |                 |                     | 0.51                                        | 0.39       | 183                         | 1.6                             | 0.25                    | 0.13                   |
| 38                |                                         |                           |                 |                     | 0.53                                        | 0.36       | 135                         | 2.7                             | 0.00                    | 0.09                   |
| 39                |                                         |                           |                 | 0.11                | 0.52                                        | 0.37       | 127                         | 1.9                             | 0.07                    | 0.00                   |
| 40                |                                         |                           |                 | 0.11                | 0.51                                        | 0.38       | 163                         | 2.0                             | 0.16                    | 0.10                   |
| 41                |                                         |                           |                 |                     | 0.50                                        | 0.39       | 170                         | 2.0                             | 0.27                    | 0.22                   |
| 42                |                                         |                           |                 | 0.12                | 0.58                                        | 0.30       | 80                          | 2.2                             | 0.29                    | 0.40                   |
| 43                |                                         |                           |                 |                     | 0.56                                        | 0.32       | 98                          | 2.3                             | 0.20                    | 0.28                   |
| 44                |                                         |                           |                 | ľ                   | 0.50                                        | 0.38       | 177                         | 2.6                             | 0.13                    | 0.15                   |
| 45                |                                         |                           |                 |                     | 0.55                                        | 0.36       | 128                         | 1.3                             | 0.00                    | 0.17                   |
| 46                |                                         |                           | 0.995           | 0.09                | 0.54                                        | 0.37       | 131                         | 1.6                             | 0.08                    | 0.08                   |
| 47                |                                         |                           | 0.550           | 0.09                | 0.53                                        | 0.38       | 129                         | 1.2                             | 0.14                    | 0.02                   |
| 48                |                                         | -1                        | 111,000         |                     | 0.52                                        | 0.39       | 154                         | 0.8                             | 0.26                    | 0.10                   |

FIG. 8

|                                                                                                     |                                                                                                  | T     | 1     | 1     | 7     | 1       |       | 1     | _     | 7     | 7        |         | -        |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|----------|---------|----------|
| TEMPERATURE<br>CHARACTERISTICS                                                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                            | 0.25  | 0.23  | 0.07  | 0:30  | 0.17    | 0.09  | 0.12  | 0.17  | 0.15  | 0.13     | 0.04    | 0.13     |
| TEMPE                                                                                               | \DF <sub>0</sub> (-40°C)                                                                         | 0.40  | 0.35  | 0.12  | 0.15  | 0.03    | 0.05  | 0.25  | 0.30  | 0.25  | 0.15     | 0.09    | 0.16     |
| HEAT<br>RESISTING<br>PROPERTIES                                                                     |                                                                                                  | 2.2   | 2.0   | 2.7   | 2.8   | 1.9     | 1.6   | 2.9   | 2.7   | 2.2   | 4.5      | 4.7     | 4.2      |
| MAIN COMPONENT $Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})_{x}Ti_{y}Zr_{z}]O_{3} PROPER-(x+v+z=1)$ TIFS         | Q max                                                                                            | 141   | 145   | 166   | 107   | 119     | 140   | 147   | 138   | 131   | 81       | 129     | 120      |
| IT<br>yZr <sub>z</sub> ]0 <sub>3</sub>                                                              | z (mol)                                                                                          | 0.39  | 0.39  | 0.39  | 0.36  | 0.38    | 0.39  | 0.39  | 0.39  | 0.39  | 0.39     | 0.39    | 0.39     |
| 4PONEN<br>2/3) xTi<br>z=1)                                                                          | y (lom)                                                                                          | 0.51  | 0.51  | 0.51  | 0.55  | 0.53    | 0.52  | 0.51  | 0.51  | 0.51  | 0.51     | 0.51    | 0.51     |
| MAIN COMPONENT<br>Mn <sub>1/3</sub> Nb <sub>2/3</sub> ) <sub>x</sub> Ti <sub>y</sub> ;<br>(x+y+z=1) | × (lom)                                                                                          | 0.10  | 0.10  | 0.10  | 0.09  | 0.09    | 0.09  | 0.10  | 0.10  | 0.10  | 0.10     | 0.10    | 0.10     |
| M<br>Pb <sub>α</sub> [(N                                                                            | a (mol)                                                                                          | 1.000 | 1.000 | 1.000 | 0.995 | 0.995   | 0.995 | 0.990 | 0.990 | 0.990 | 1.000    | 1.000   | 1.000    |
|                                                                                                     | SiO <sub>2</sub><br>(wt%)                                                                        |       | 244   |       |       | <b></b> | 5     | 0.02  |       |       | <b>L</b> | <b></b> | <b>h</b> |
|                                                                                                     | 3<br>(wt%)                                                                                       | 1     | 1     | l     | 1     | 1       | 1     | 1     | 1     | L     | 0.20     | 0.30    | 0.50     |
| Щ                                                                                                   | $In_2O_3$ (wt%).                                                                                 | -     | 1     | 1     | 1     | ı       |       | 1     | 1     | 0.05  | ı        | li i    | 1        |
| ADDITIVE                                                                                            | Sc <sub>2</sub> O <sub>3</sub><br>(wt%)                                                          | 1     |       | 1     | 1     | -       | 1     | 0.02  | 0.10  | ı     | ſ        | 1       | ı        |
|                                                                                                     | Ta <sub>2</sub> O <sub>5</sub><br>(wt%)                                                          | 1     | ı     | 0.50  | 0.50  | 0.50    | 0.50  | 1     | 1     | ı     | 1        | `1      | ı        |
|                                                                                                     | $Al_2O_3 \mid Ga_2O_3 \mid Ta_2O_5 \mid Sc_2O_3 \mid (wt\%) \mid (wt\%) \mid (wt\%) \mid (wt\%)$ | 0.02  | 0.10  | 1     | 1     | 1       | 1     | 1     | ı     | 1     | 1        | ı       | 1        |
| · · · · · · · · · · · · · · · · · · ·                                                               | Al <sub>2</sub> O <sub>3</sub> (wt%)                                                             | l     | ı     | ı     | 1     | ı       | 1     | ı     |       | 0.45  | ı        | 1       | 1        |
| SPECI-                                                                                              |                                                                                                  | 49    | 20    | 21    | 52    | 53      | 54    | 55    | 56    | 57    | 58*      | 59      | *09      |