Problem 1: Maximal Rising Subsequence

(Medium)

I have an array of N integers, A.

A rising subsequence of A is a subsequence S (not necessarily contiguous) of A such that the elements of S are **strictly increasing**. Formally, a sequence S that contains integers $A[i_1], A[i_2], \ldots, A[i_k]$ where $i_1 < i_2 < \cdots < i_k$ for some integer k is a rising subsequence if $A[i_1] < A[i_2] < \cdots < A[i_k]$.

Find the length of the longest rising subsequence of the array A.

Input Format

The first line of input contains the number N, representing the size of the array A.

The next N lines of input contain an integer A_i , representing the ith element of the array A.

Constraints

- $1 \le N \le 1000$
- $-10^6 \le A_i \le 10^6$

The time limit for this problem is 2 seconds.

Output Format

The only line of output should be an integer, representing the length of the longest rising subsequence of A.

Sample Input

16

0

8

4

12

2

10

6

14

1

9

5

13

3

11

Sample Output

6

Explanation

The **bolded** elements in the list form one possible longest rising subarray.

Other possible solutions are:

Hint

Ybatrfg Vapernfvat Fhofrdhrapr.