Computer Science Examples

Experimental Design: Comparison of *Method-1* and *Method-2*

- A computer scientists wants to compare the running time of two sorting algorithms. He tells Joe to implement *Method-1* and Steve to implement *Method-2*. Joe's program runs in 4.1 seconds while Steve's program runs in 2.3 seconds.
- Is Method-2 faster than Method-1?
- What are extraneous variables that influence the running time of a program?

Experimental Design

- This finding would be meaningless if, for example, Joe programmed the algorithm in Java and ran the program on an old Windows computer while Steve programmed the algorithm in C++ and ran it on a new MacBook Pro.
- How should we design this experiment to accurately compare the two algorithms?

Is the sample representative of the population?

- A sorting algorithm tested on random data does not necessarily tell you anything about its performance on nearly sorted data, or nearly reverse-sorted data.
- If one method performs better than another when implemented in C++, will it also be more efficient if implemented in Java?
- A Bing vs. Google study taken only (or mostly) by CS students does not necessarily tell you anything about the preferences of all college students, or all adults, etc.

The wording of the question matters...

- These are all potentially different questions with different answers:
 - Which search engine results do you prefer?
 - What search engine results are the most visually appealing?
 - Which search engine returns results most relevant to your query?

... as does the variable being measured

- These are all potentially different questions with different answers:
 - What is the optimal traffic light strategy for a city (not clear what optimal means)?
 - What traffic light strategy maximizes a vehicle's average velocity?
 - What traffic light strategy minimizes the average time of a person's commute.
 - What traffic light strategy minimizes the variation of a person's commute