Example

Example

The signal $x(t) = \sum_{n=-\infty}^{\infty} \mathrm{rect}(t-1/2-2n)$ is passed through a filter with frequency response $H(\omega) = 3 \, \mathrm{rect}(\omega/\pi)$. Determine the output signal y(t).

(Selected from Midterm Exam 2 of Summer 2014)

Solution

 $T_0=2$ so $\omega_0=\pi$, so the harmonics of x(t) are at multiples of π . All frequency components above $\pi/2$ are eliminated by this filter, so only the DC component passes through. $c_0=1/2$. Thus

$$y(t) = c_0 H(0) = 3/2.$$

 $H(\omega)$ and $H(j\omega)$ are interchangeable notation

$$H(\omega) = H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt$$

Example

Example

Consider the following cascade of LTI systems:

$$x(t)
ightharpoonup h_1(t)
ightharpoonup h_2(t)
ightharpoonup y(t),$$

where $h_1(t) = e^{-t}u(t)$ and $h_2(t) = e^{-3t}u(t)$.

- Find the frequency response of the overall system.
- Find the linear constant coefficient differential equation that describes this system.

(Selected from Midterm Exam 2 of Summer 2014)

Solution

The overall frequency response is

$$H(\omega) = \frac{1}{j\omega + 1} \frac{1}{j\omega + 3}$$

The linear constant coefficient differential equation

$$H(\omega) = \frac{1}{(j\omega+1)(j\omega+3)} = \frac{1}{(j\omega)^2 + 4j\omega + 3}$$

so

$$3y(t) + 4\frac{\mathrm{d}}{\mathrm{d}t}y(t) + \frac{d^2}{dt^2}y(t) = x(t)$$