## Proprietà di chiusura dei linguaggi regolari

**Teorema** Se  $\mathfrak{L}$  è un linguaggio regolare, allora anche la sua chiusura  $\overline{\mathfrak{L}} = \Sigma^* \setminus \mathfrak{L}$  è regolare.

**Dimostrazione** Basta costruire un automa a stati finiti  $\overline{M}=< Q, \Sigma, \delta, Q \backslash F, q_0>$  che legge  $\mathfrak L ->$  gli stati finali sono opposti a quelli di M.

**Corollario**  $\mathfrak{L}_1 + \mathfrak{L}_2$  e  $\mathfrak{L}_1 \cap \mathfrak{L}_2 = \overline{\overline{\mathfrak{L}_1} \cup \overline{\mathfrak{L}_2}}$  sono regolari.

## Partizione di un insieme

Una partizione S è, dato un insieme X, una divisione di X in sottoinsiemi, dette classi della partizione, che "coprono" X senza sovrapporsi.

**Definizione formale:** Una partizione  $S = S_1 \cup ... \cup S_n$  è una collezione di sottoinsiemi tali che:

- I sottoinsiemi non sono vuoti;
- L'unione di tutti i sottoinsiemi è l'insieme di partenza;
- Dati due sottoinsiemi (distinti) qualsiasi, questi sono disgiunti.

Una classe di equivalenza è una qualsiasi classe di S. Se  $a \in S_i$ , allora si può indicare la classe di equivalenza  $S_i$  con  $[a]_R$ . Se il numero di classi è finito, si dice che R è di indice finito. Date due equazioni di equivalenza  $R_1$  ed  $R_2$ 0,  $R_1$  raffina  $R_2$  se  $\forall a[a]_{R_1} \subseteq [a]_{R_2}$ .

**Teorema** Valgono le seguenti proprietà:

- 1. Dati un linguaggio  $\mathfrak{L} \subseteq \Sigma^*$  e la funzione  $R_{\mathfrak{L}} \subseteq \Sigma^* x \Sigma^*$ , vale che  $x R_{\mathfrak{L}} y$  se e solo se  $(\forall z \in \Sigma^*)$   $(xz \in \mathfrak{L} \longleftrightarrow yz \in \mathfrak{L})$ ;
- 2. Dati  $M = \langle Q, \Sigma, \delta, q_0, F \rangle$  e la funzione  $R_M \subseteq \Sigma^* x \Sigma^*$ , vale che  $x R_M y$  se e solo se  $\hat{\delta}(q_0, x) < \hat{\delta}(q_0, y)$ .

Entrambe le proprietà sono quindi invarianti destre, in quanto  $xRy \rightarrow \forall zxzRyz$ .

## Invarianza destra

**Dimostrazione per proprietà 1** Siano  $x,y\in \Sigma^*$  con  $xR_Ly$  se e solo se  $(\forall z)$   $(xz\in \mathfrak{L}\longleftrightarrow yz\in \mathfrak{L})$  e sia  $z\in \Sigma^*$ . Dobbiamo dimostrare che  $xzR_Lyz$ .

La dimostrazione si fa per assurdo: Supponiamo che esiste w tale che  $xzw \in \mathcal{L}$  e  $yzw \notin \mathcal{L}$ . Ma se poniamo zw=z allora abbiamo  $xz \in \mathcal{L}$  e  $yz \notin \mathcal{L}$ . Questo però è l'opposto di quanto supposto sopra, quindi si ha un assurdo.

Dimostrazione per proprietà 2 Per questa dimostrazione basta fare delle prove sul seguente automa:



Il seguente teorema è un risultato molto importante, infatti afferma che esiste un unico automa minimo in grado di riconoscere un linguaggio, e ci da anche una procedura per costruirlo. Questa esistenza di minimizzazione non sarà possibile per le grammatiche CF e per le macchine di Turing.

Teorema Myhill - Nerode Le seguenti affermazioni sono equivalenti:

- 1.  $L \in \Sigma^*$  è regolare;
- 2. L è l'unione di classi di equivalenza su  $\Sigma^*$  indotte da una relazione invariante destra di indice finito;
- 3.  $R_L$  è di indice finito;

**Dimostrazione** (1)  $\rightarrow$  (2) L'obiettivo è dimostrare che  $R_M$  è la relazione che soddisfa (2). Se  $\mathfrak{L}$  è regolare esiste un automa a stati finiti tale che  $\mathfrak{L} = \mathfrak{L}(M)$ . Abbiamo quindi  $\mathfrak{L} = \bigcup_{a \in F} \{x \in \Sigma^* : x \in \Sigma^* : x$  $\hat{\delta}(q_0, x) = q\}.$ 

Per definizione  $xR_My \longleftrightarrow \hat{\delta}(q_0,x) = \hat{\delta}(q_0,y)$  è invariante destra e di indice finito in quanto Q è finito. Quindi gli insiemi  $\mathfrak{L}_q=\{x\in\Sigma^*:\hat{\delta}(q_0,x)=q\}$  costituiscono le classi di equivalenza della partizione indotta da  $R_M$  e il linguaggio  $\mathfrak{L}=\bigcup_{q\in F}\mathfrak{L}_q$  è l'unione di queste classi di equivalenza. Pertanto  $\mathfrak{L}=\bigcup_{q\in F}\mathfrak{L}_q$  è un unione di classi di equivalenza indotte da una relazione invariante destra di contra finita di contra di

ordine finito come volevamo dimostrare.

**Dimostrazione** (2)  $\Rightarrow$  (3) L'obiettivo è dimostrare che R raffina  $R_{\mathfrak{L}}$ , ossia che  $(\forall x \in \Sigma^*)([x]_R \subseteq [x]_{R_{\mathfrak{L}}})$ . Dato che R è una relazione di indice finito per (2), allora lo sarà anche  $R_L$ .

**Dimostrazione** (3)  $\Rightarrow$  (1) Costruiamo un  $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$  dove:

- $Q' = \{ [x]_{R_L} : x \in \Sigma^* \}$
- $q_0 = [\varepsilon]_{R_L}$
- $\delta'([x]_{R_L}, a) = [xa]_{R_L}, a \in \Sigma^*$
- $F' = \{ [x]_{R_L} : x \in L \}$

Si dimostra per induzione su  $|y| \ge 0$  che  $\hat{\delta}'([x]_{R_L}, y) = [xy]_{R_L}$ . Quindi

$$\hat{\delta}'(q_0', x) = \hat{\delta}'([\varepsilon]_{R_L}, x) = [\varepsilon x]_{R_L} = [x]_{R_L}$$

e pertanto

$$x \in L(M') \iff \hat{\delta}'(q'_0, x) \in F' \iff [x]_{R_L} \in F' \iff x \in L$$