Classifying Charged Particles from High Energy Collisions at the Large Hadron Collider

Justin Anguiano, Margaret Lazarovits

University of Kansas

May 11, 2020

Introduction

Overall project goal:

Classify particles better to assist with search for particle darkmatter

Specific focus:

- Discrminate low momentum true muons($\mu^\pm)$ from particles imitating muons in reconstruction

Motivation

KU CMS analysis in progress – searching for particle dark matter via compressed SUSY models

- Protons P_1 , P_2 collide producing SUSY $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$
- SUSY $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$ decays to D.M. $\tilde{\chi}_1^0$ and known particles W^{\pm} , Z
- W^{\pm},Z immediately decay into charged particles (μ^{\pm}) that we see in the detector

A compressed scenario implies $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$ and $\tilde{\chi}_1^0$ are very close in rest mass

With compression the decay products of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$ are soft (low momentum), including ending charged particles

The current CMS detector is less optimized for correctly identifying soft μ^{\pm}

If we can optimize soft charged particle classification, we have a better chance of discovering compressed $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2$, and $\tilde{\chi}_1^0$

Anatomy of an Event

The "physics workflow"

- An event consists of colliding protons which produces particles showering outward(transverse)
- We measure the energy and momentum of all the visible particles in the event
- There are 100s of charged particles per event
- Reconstruct intermediate or invisible particles through momentum and energy conservation

Charged Particle Reconstruction

Charged particles bend in Mag. field and create "tracks"

Tracks are connecting the dots: "hits" that are fit with a curve

Main particle of interest is the $Muon(\mu^{\pm})$

- at high energies $\boldsymbol{\mu}$ is easily correctly identified
 - low energies leaves room for ambiguity

Sometimes other particles can be reconstructed incorrectly as a muon

- Common fakes: $\mathsf{Pion}(\pi^{\pm})$, $\mathsf{Electron}(e^{\pm})$, $\mathsf{Kaon}(K^{\pm})$, $\mathsf{Proton}(p)$, or non physical junk particles
 - created from punch through
- junk particles are a result of hit combinatorics

ML Model Introduction

- Deep Neural Network
- Use fully simulated processes to get collections of reconstructed muons
- Reconstructed muons contains both true(Gen.) muons and fakes.
 - This generator information will be our truth, or label, for the network
 - Some particles cant be matched because they are junk this is unmatched label
- Utilize two types of classification
 - 1. ID true muons against everything else [Unmatched, π , K, p] binary classification
 - 2. ID every particle simultaneously 5 classes logistic
- Network inputs are measured quantities and track quality metrics

Data Preparation & Network Input

Data Preparation

- Taking data from ROOT trees and converted it to pandas DataFrames
- Evenly sampled among classes from different MC generated processes
 - Each process produces kinematically different muons with different origins
- One-hot encoded the classes for categorical output
- Normalized data

Network Inputs

- Minimal model: variables that can ID a good muon (cut-based benchmark)
- Complex model: energy, position, track information (MVA benchmark)
- Custom: combination of the two
- Evaluate performance with accuracy and loss values and efficiency, purity, and ROC plots

Network Architecture & Training Stats

Architecture

- 4 hidden layers
- 128 neurons/layer
- ReLU activation
- Softmax activation on last layer
- Adam optimizer
- Categorical cross entropy loss

Training

- 35/65 test/training split
- 10/90 validation/training split
- 100 epochs
- 256 batch size

Results: Binary Classifier

Network statistics

Training

Accuracy: 0.9593

Loss: 0.1060

Validation

Accuracy: 0.9299

Loss: 0.2374

Test

Accuracy: 0.9244

Loss: 0.2728

Results: Binary Classifier

Muon Classification

- Efficiency: 95.274%
 - Purity: 91.540%

Efficiency =
$$\frac{TP}{TP+FN}$$

$$\mathsf{Purity} = \tfrac{\mathit{TP}}{\mathit{TP} + \mathit{FP}}$$

Results: Binary Classifier

Network statistics

Training

Accuracy: 0.6854

Loss: 0.7739

Validation

Accuracy: 0.5323

Loss: 1.2388

Test

Accuracy: 0.5330

Loss: 1.2864

Muon Classification

■ Efficiency: 84.032%

■ Purity: 87.322%

Pion Classification

■ Efficiency: 17.401%

Purity: 41.398%

Kaon Classification

Efficiency: 21.601%

■ Purity: 33.932%

Proton Classification

■ Efficiency: 11.496%

Purity: 4.088%

Efficiency =
$$\frac{TP}{TP+FN}$$

Purity = $\frac{TP}{TP+FP}$

Results: Efficiencies

 $\epsilon=\#$ true muons that pass ID/# true muons

Results: Purities

Purity = # true muons that pass ID/ #reconstructed muons

Benchmark Model

Current techniques to identify low momentum muons are a cut-based ID and a multi-variate analysis (MVA) that uses a gradient boosted regression forest

- Cut-based ID uses cuts on a few key variables
- MVA more complex, uses energy and track information

Evaluation Statistics

- Efficiency $\epsilon = \#$ true muons that pass ID/# true muons
- Purity = # true muons that pass ID/ #reconstructed muons

Benchmark Model: Efficiency

 $\epsilon = \#$ true muons that pass ID/# true muons

Results: Efficiencies

 $\epsilon=\#$ true muons that pass ID/# true muons

Benchmark Model: Purity

Purity = # true muons that pass ID/ #reconstructed muons

Results: Purities

Purity = # true muons that pass ID/ #reconstructed muons

Summary

Goal: correctly classify low momentum muons from proton-proton collisions at the LHC with a neural network

Results

- binary classifier more successful at classifying electrons than multiclass output
 - higher efficiency and purity
- both models competitive with current classification techniques in efficiency
- both models have similar or higher purity than current classification techniques

Future work: integrate classifier into searches for Supersymmetry to find Dark Matter candidates

Project Repository: https://github.com/Jphsx/KUSoftMVA

Thank You!

Questions?

Backup

Binary Classifier: Loss

Multiclass Classifier: Loss

Benchmark Model Performances

 $\epsilon=\#$ true muons that pass ID/# true muons

