MATH 264A: Homework

Due on Nov 2, 2024 at 23:59pm

 $Professor\ Warnke$

Ray Tsai

A16848188

Problem 1

(a) Let G = (V, E) be an *n*-vertex graph and suppose that each vertex $v \in V$ is associated with a list S(v) of colors of size at least 4r, where r is a positive integer. Suppose also that for each $v \in V$ and each $c \in S(v)$, there are at most r neighbors u of v such that $c \in S(u)$. Using induction, prove that there are at least $(2r)^n$ proper colorings of G under which each vertex v receives a color from its list S(v).

Remark: a proof using the classical Lovász Local Lemma (LLL) requires $2er \approx 5.44r$ instead of 4r.

Proof. For $S \subseteq V$, define N_S as the number of proper colorings of G under which v receives a color from its list S(v) for all $v \in S$. It suffices to show that for all $T \subseteq V$ and $x \in T$, $N_T/N_{T\setminus\{x\}} \ge 2r$. We proceed by induction on |T|. When $T = \{x\}$, $N_T = S(x)$ and $N_{T\setminus\{x\}} = N_\emptyset = 1$, we have $N_T/N_{T\setminus\{x\}} \ge 4r \ge 2r$. Suppose |T| > 2. Then,

$$|S(x)| \cdot N_{T \setminus \{x\}} = N_T + B,$$

where B is the number of improper colorings of T which becomes proper if we ignore the color of x. Notice that any element counted by B contains a vertex u which is a neighbor of v that shares the same color c as x and a proper coloring of $T \setminus \{u, x\}$. This yields the upper bound

$$B \leq |S(x)| \cdot (\#\text{choice of vertex } u) \cdot N_{T \setminus \{u,x\}} \leq 4r \cdot r \cdot N_{T \setminus \{u,x\}}.$$

By induction, $N_{T\setminus\{u,x\}} \leq \frac{1}{2r} \cdot N_{T\setminus\{x\}}$, and thus

$$N_T = |S(x)| \cdot N_{T \setminus \{x\}} - B \ge 4r N_{T \setminus \{x\}} - 4r \cdot r \cdot \frac{1}{2r} \cdot N_{T \setminus \{x\}} = 2r N_{T \setminus \{x\}},$$

and this completes the induction.

(b) A k-SAT formula is an expression such as

$$(x_1 \text{ OR } x_4 \text{ OR } \overline{x_6}) \text{ AND } (x_1 \text{ OR } \overline{x_2} \text{ OR } x_5),$$

where the variables x_i take values true or false, $\overline{x_i}$ means not x_i , and k distinct variables or their negations are OR-ed together in each clause. A formula is called satisfiable if there is an assignment of values to the variables making the expression true. Suppose that in a given k-SAT formula Φ no variable lies in more than $2^k/(ek)$ clauses. Using induction, prove that Φ has at least $(2-2/k)^n$ many satisfying assignments (which in fact remains true if we relax the assumed $2^k/(ek)$ upper bound to $2^k/k \cdot (1-1/k)^{k-1}$).

Proof. Let Φ_i denote the k-SAT formula which AND's together all the clauses of Φ that involve only the first i variables. Define N_i as the number of satisfying assignments of Φ_i . We show that $N_i \geq (2-2/k)^i$ by induction on $i \geq k$.

(c) Let \mathcal{A} be an alphabet, and let \mathcal{F} be a set of forbidden strings. Assume that there exists $\beta > 0$ such that

$$|\mathcal{A}| - \sum_{f \in \mathcal{F}} \beta^{1-|f|} \ge \beta.$$

Using induction, prove that there exists at least β^n words of length n over alphabet \mathcal{A} that avoid all the substrings in \mathcal{F} .

Proof. Define N_k to be the set of words of length n over alphabet \mathcal{A} that avoid all the substrings in \mathcal{F} . We show that $|N_k|/|N_{k-1}| \geq \beta$ by induciton on $k \geq 1$. Since $|N_0| = 1$,

$$\frac{|N_1|}{|N_0|} = |N_1| \ge |\mathcal{A}| - |\{f \in F \mid |f| = 1\}| \ge \beta,$$

as $|\{f \in F \mid |f| = 1\}| \le \sum_{f \in \mathcal{F}} \beta^{1-|f|}$. Hence, the base case holds. Suppose k > 1. Let B denote the set of words over \mathcal{A} of the form $a_1 \dots a_k$ that contains some substring in F, with $a_1 \dots a_{k-1} \in N_{k-1}$. Then

$$|\mathcal{A}| \cdot |N_{k-1}| = |N_k| + |B|.$$

By construction, any word in B consists of a forbidden string f at the end and some word in $N_{k-|f|}$ at the beginning. Summing over all f, we have the bound

$$|B| \le \sum_{f \in \mathcal{F}} N_{k-|f|}.$$

By induction, $N_{k-|f|} \leq \beta^{1-|f|} \cdot |N_{k-1}|$, and thus

$$|B| \le |N_{k-1}| \sum_{f \in \mathcal{F}} \beta^{1-|f|}.$$

Therefore,

$$|N_k| = |\mathcal{A}| \cdot |N_{k-1}| - B \ge |N_{k-1}| \left(|\mathcal{A}| - \sum_{f \in \mathcal{F}} \beta^{1-|f|} \right) \ge \beta |N_{k-1}|,$$

and this completes the induction. It now follows that

$$|N_n| = \frac{|N_n|}{|N_{n-1}|} \cdot \frac{|N_{n-1}|}{|N_{n-2}|} \cdots \frac{|N_1|}{|N_0|} \ge \beta^n.$$

Problem 2

In the inductive proof of the 'almost all triangle-free graphs are 2-colorable' result, we defined the following sets (using $\Gamma(v)$ and $\Gamma(S)$ to denote the set of neighbors of a vertex v or set of vertices S):

- $Col_2(n)$ is the set of all 2-colorable graphs on n vertices.
- $\mathcal{T}(n)$ is the set of all triangle-free graphs on n vertices.
- $\mathcal{A}(n) \subseteq \mathcal{T}(n)$ is the subset of graphs containing a vertex v such that $|\Gamma(v)| \leq \log_2 n$.
- $\mathcal{B}(n) \subseteq \mathcal{T}(n)$ is the subset of graphs containing a vertex set Q of size $|Q| = \log_2 n$, such that $|\Gamma(Q)| \le (1/2 1/1000)n$.
- $\mathcal{D}(n) \subseteq \mathcal{T}(n) \setminus (\mathcal{A}(n) \cup \mathcal{B}(n))$ is the subset of graphs containing an edge $\{x,y\}$ and vertex sets $Q_x \subseteq \Gamma(x)$ and $Q_y \subseteq \Gamma(y)$, such that $|Q_x| = \log_2 n$, $|Q_y| = \log_2 n$, and $|\Gamma(Q_x) \cap \Gamma(Q_y)| \ge n/100$.
- (a) Prove that $|\mathcal{D}(n)|/|\mathcal{T}(n-2)| \leq 2^{(1-1/2000)n}$ for all sufficiently large $n \geq n_0$.

Proof. To generate a graph in $\mathcal{D}(n)$, we first pick two vertices x,y to be adjacent and then place a triangle free graph on the remaining n-2 vertices. Lastly, we pick two subsets from the n-2 vertices to be x and y's neighbors respectively. Since the graph is not in $\mathcal{A}(n)$, $|\Gamma(x)|$, $|\Gamma(y)| > \log_2 n$. But then the graph is also not in $\mathcal{B}(n)$, so $\Gamma(\Gamma(x))$, $\Gamma(\Gamma(y))$ each have size greater than (1/2 - 1/1000)n. Since the graph is triangle-free, x cannot be adjacent to any vertex in $\Gamma(\Gamma(x))$ and similarly for y, and thus $|\Gamma(x)|$, $|\Gamma(y)| \le (1/2 + 1/1000)n$. This yields the bound

$$B(n) \le \binom{n}{2} \cdot |\mathcal{T}(n-2)| \cdot 2^{(1/2-1/1000)n} \cdot 2^{(1/2-1/1000)n} \le 2^{(1-1/2000)n+1} \cdot |\mathcal{T}(n-2)|,$$

(b) Prove that $|\mathcal{C}ol_2(n)|/|\mathcal{C}ol_2(n-1)| \geq 2^{\frac{1}{2}(n-1)}$ for all sufficiently large $n \geq n_0$.

Proof. Each graph in $Col_2(n)$ consists of vertex n, a graph $H \in Col_2(n-1)$, and edges between n and H. Since H is bipartite, H contains an independent set I_H of size at least $2^{\frac{1}{2}(n-1)}$. By picking a graph H from $Col_2(n-1)$ and adding some edges between n and I_H , we may uniquely generate a graph in $Col_2(n)$. Therefore,

$$|\mathcal{C}ol_2(n)| \ge |\mathcal{C}ol_2(n-1)| \cdot 2^{\frac{1}{2}(n-1)},$$

and the result now follows.

Problem 3

In this problem we discuss in more detail one calculation in the proof of the Bregman's Theorem from class. Given a bipartite graph $G = (L \cup R, E)$ with |L| = |R| = n, fix a perfect matching M of G. For each vertex $i \in L$, there thus is a unique vertex X_i such that $\{i, X_i\} \in M$ is a matching edge. Now write R_i for the set of $j \in L$ for which $\{j, X_j\} \in M$ and $\{i, X_j\} \in E$, i.e., the set of vertices $j \in L$ for which there is a matching edge in M that contains j and a neighbor of i. By construction, we have $|R_i| = \deg_G(i)$. Using a (permutation) counting argument, show that for each vertex $i \in L$ and $1 \le j \le \deg_G(i)$ we have

 $\mathbb{P}(\text{vertex } i \text{ appears in } \pi \text{ in the } j \text{th position among the vertices in } R_i) = \frac{1}{\deg_G(i)}.$

Proof.

$$\mathbb{P}(\text{vertex } i \text{ in the } j \text{th position among the vertices in } R_i \text{ in } \pi)$$

$$= \frac{\#\{\text{permutations of } R_i \text{ with } i \text{ appearing in the } j \text{th position}\}}{\#\{\text{permutations of } R_i\}}$$

$$= \frac{\#\{\text{permutations of } R_i \setminus \{i\}\}}{\#\{\text{permutations of } R_i\}}$$

$$= \frac{(|R_i| - 1)!}{|R_i|!} = \frac{1}{\deg_G(i)}.$$