ABE 6933 SML, Fall 2020 Supplementary Materials for SVD/PCA

Instructor: Dr. Nikolay Bliznyuk

11 November, 2020

Singular Value Decomposition (SVD)

Let X be any $n \times p$ matrix where $n \geq p$.

The SVD of X is the representation $X = UDV^T = \sum_{i=1}^p d_i U_i V_i^T$

$$X = [U_1, \dots, U_p] \left[egin{array}{ccc} d_1 & & & 0 \\ & & \ddots & \\ 0 & & & d_p \end{array}
ight] \left[egin{array}{c} V_1^T \\ dots \\ V_p^T \end{array}
ight], ext{ where}$$

- U is a $n \times p$ matrix with columns U_1, \ldots, U_p such that $U^T U = I_n$.
- V is a $p \times p$ matrix with columns V_1, \dots, V_p such that $V^T V = I_p$.
- D is a $p \times p$ diagonal matrix such that $D_{ii} = d_i$ and $d_1 \geq d_2 \geq \ldots \geq d_p \geq 0$ are singular values. $D_{ij} = 0$ if $i \neq j$.
- If there is r < p such $d_r > 0$ and $d_{r+1} = 0$, then $r = \operatorname{rank}(X)$.
- $\widetilde{X} = \sum_{i=1}^m d_j U_j V_j^T$ is the best rank-m approximation of X that minimizes $\|X \widetilde{X}\|_F^2 = \sum_{i,j} (X_{ij} \widetilde{X}_{ij})^2$ over all rank-m matrices.

Relationship between the SVD and PCA, I

- SVD is the algorithm for obtaining PC vectors and scores.
- \bullet Here, X is the design matrix without the column of ones.
- As a pre-processing step for PCA, it is customary to center the columns of X, as well as (in most cases) scale the columns of X so that they have unit variance (this will correspond to the "correlation" version of the PCA, rather than the "covariance" version). Then the SVD is applied to the pre-processed X.
- PC vectors of loadings are given by the columns of V, i.e., V_j is the jth PC loading vector (ϕ_j in the ISLR notation)
- The matrix of PC scores Z is obtained as $Z=XV=UDV^TV=UDI_p=UD$; i.e., $(UD)_{ij}$ is the jth PC score for the ith observation, and $Z_j=d_jU_j$ is the vector of the jth PC scores for the entire dataset.

Relationship between the SVD and PCA, II

- $Z_j = d_j U_j$ is the vector of the jth PC scores for the entire dataset.
- Columns of Z are orthogonal, i.e., $Z_j^T Z_k = d_j d_k U_j^T U_k = 0$ if $j \neq k$ and $Z_j^T Z_j = d_j^2$.
- Since the columns of X have been centered, the columns of Z are also centered (automatically). Hence
- $Var(Z_j) = \frac{1}{n} \sum_{i=1}^n (Z_{ij} \bar{Z}_j)^2 = \frac{1}{n} \sum_{i=1}^n Z_{ij}^2 = \frac{1}{n} Z_j^T Z_j = d_j^2/n.$
- $Cov(Z_j, Z_k) = \frac{1}{n} \sum_{i=1}^n (Z_{ij} \bar{Z}_j)(Z_{ik} \bar{Z}_k) = \frac{1}{n} \sum_{i=1}^n Z_{ij} Z_{ik} = \frac{1}{n} Z_j^T Z_k = 0 \text{ if } j \neq k.$

Relationship between the SVD and PCA, III

- $S = \frac{1}{n} X^T X$ is the (sample) covariance matrix for the rows of X.
- The overall variability associated with predictors in X is $\sum_{j=1}^{p} Var(X_j) = tr(S)$.
- For a square matrix A, the trace of A is $tr(A) = \sum_{j=1}^{p} A_{jj}$.
- Notice that if A is $n \times p$ and B is $p \times n$, then tr(AB) = tr(BA).
- Hence $tr(S) = tr(X^TX/n) = \frac{1}{n}tr(VD^TU^TUDV^T) = \frac{1}{n}tr(VDDV^T) = \frac{1}{n}tr(DDV^TV) = \frac{1}{n}tr(DDI_p) = \sum_{j=1}^p d_j^2/n = \sum_{j=1}^p Var(Z_j).$

PCA/SVD and the Spectral Decomposition

- Recall $S = \frac{1}{n}X^TX$ is the covariance matrix for the rows of X.
- Plug in $X=UDV^T$ and simplify $S=\tfrac{1}{n}VD^TU^TUDV^T=V\Lambda V^T \text{ is the spectral decomposition of } S\text{, where } \Lambda=(\tfrac{1}{n}DD) \text{ is diagonal.}$
- Suppose W is a random vector with the covariance matrix S, e.g., $W \sim Mult.Normal(0,S)$. Then $Var(a^TW) = a^TSa$ is variation of W in the direction a whenever $||a||_2 = 1$.
- Specifically, $Var(V_j^TW) = V_j^TV^T\Lambda V^TV = \Lambda_{jj} = d_j^2/n$ is the variation of W along the direction of the j PC vector V_j .
- $\bullet \ \ \text{Notice} \ Cov(V_j^TW,V_k^TW) = V_j^TV\Lambda V^TV_k = 0 \ \text{if} \ j \neq k.$
- Hence PCA decomposes the overall variation in W additively into the variation along the orthogonal directions given by the PC vectors V_1, \ldots, V_p .