Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 18

Gegenstand der Übung

Pulsamplitudenmodulation

Name:	Leon Ablinger	
Jahrgang:	4AHEL	
Gruppe Nr.:	A1	
Übung am:	21.04.2021	

Anwesend: Leon Ablinger, Felix Fürst

Inhalt

1	Inventar	liste	3
2	Einleitun	ng	3
3	Übungso	durchführung	4
3	.1 Erze	eugung eines pulsamplitudenmodulierten Signals	4
	3.1.1	Beschreibung des Messvorgangs	4
	3.1.2	Schaltung	4
	3.1.3	Kennlinie	4
	3.1.4	Erkenntnis / Schlussfolgerung	4
	3.1.5	Übungsrelevante Fragen	4
3	.2 Fred	quenzspektrum des pulsamplitudenmodulierten Signals	5
	3.2.1	Beschreibung des Messvorgangs	5
	3.2.2	Schaltung	5
	3.2.3	Kennlinie	5
	3.2.4	Erkenntnis / Schlussfolgerung	5
	3.2.5	Übungsrelevante Fragen	5
3	.3 Erkl	ärung des Abtasttheorems	6
	3.3.1	Beschreibung des Messvorgangs	6
	3.3.2	Schaltung	6
	3.3.3	Kennlinien	7
	3.3.4	Erkenntnis / Schlussfolgerung	8
3	.4 Zeit	multiplexverfahren	8
	3.4.1	Beschreibung des Messvorgangs	8
	3.4.2	Schaltung	8
	3.4.3	Kennlinie	8
	3.4.4	Erkenntnis / Schlussfolgerung	8
	3.4.5	Übungsrelevante Fragen	8
3	.5 Vers	suche am Pulscodemodulator 1	9
	3.5.1	Beschreibung des Messvorgangs	9
	3.5.2	Schaltung	9
	3.5.3	Tabelle	9
	3.5.4	Kennlinie	9
	3.5.5	Erkenntnis / Schlussfolgerung	LO
	3.5.6	Übungsrelevante Fragen	ΙO
3	.6 Vers	suche am Pulscodemodulator 21	ΙO
	3.6.1	Beschreibung des Messvorgangs	LO

Pulsamplituden modulation

3.	.6.2	Schaltung	. 10
3.	.6.3	Kennlinie	. 10
3.	.6.4	Erkenntnis / Schlussfolgerung	. 11
3.	.6.5	Übungsrelevante Fragen	. 11
3.7	PC	M-Multiplexing	. 11
3.	.7.1	Beschreibung des Messvorgangs	. 11
3.	.7.2	Schaltung	. 11
3.	.7.3	Kennlinie	. 11
3.	.7.4	Erkenntnis / Schlussfolgerung	. 12
3.	.7.5	Übungsrelevante Fragen	. 12

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Keysight DSO-X 2014A	MY52161251	Spannungsverlauf
Modulation Board		
Demodulation Board		

2 Einleitung

Nach erfolgreicher Durchführung der Übung ist man in der Lage, die Pulsmodulation und ihre Eigenschaften zu erkennen und beurteilen.

3 Übungsdurchführung

3.1 Erzeugung eines pulsamplitudenmodulierten Signals

3.1.1 Beschreibung des Messvorgangs

Hier soll ein einfaches pulsamplitudenmoduliertes Signal erzeugt und alle Spannungsverläufe gemessen werden.

3.1.2 Schaltung

Abbildung 1: Schaltung zu Erzeugung eines pulsamplitudenmodulierten Signals

3.1.3 Kennlinie

Abbildung 2: Spannungsverlauf zu Erzeugung eines pulsamplitudenmodulierten Signals

3.1.4 Erkenntnis / Schlussfolgerung

In Abb. 2 sind die Eingangssignale (Kanal 1 & 2) sowie das erzeugte pulsamplitudenmodulierte Signal (Kanal 3) zu erkennen.

3.1.5 Übungsrelevante Fragen

1. Wie ist die Schaltung in Abb. 6.2.3 zu erweitern, damit ein unipolares PAM-Signal entsteht? Durch Erweitern der Schaltung mit einer Gleichspannung.

3.2 Frequenzspektrum des pulsamplitudenmodulierten Signals

3.2.1 Beschreibung des Messvorgangs

Nun soll das Frequenzspektrum des bereits erzeugten Signals untersucht werden.

3.2.2 Schaltung

Abbildung 3: Schaltung zu Frequenzspektrum des pulsamplitudenmodulierten Signals

3.2.3 Kennlinie

Abbildung 4: Frequenzspektrum zu Frequenzspektrum des pulsamplitudenmodulierten Signals

3.2.4 Erkenntnis / Schlussfolgerung

In Abb. 4 ist ein typisches Frequenzspektrum eines pulsamplitudenmodulierten Signals zu erkennen.

3.2.5 Übungsrelevante Fragen

- Bei welcher Frequenz ist das erste Minimum in der Amplitude der Spektrallinien zu beobachten?
 Bei 63 kHz.
- Stimmt das messtechnisch ermittelte Minimum mit dem rechnerischen Wert f = 1/tau überein?
 Um 3 kHz genau.
- 3. In welchem Frequenzabstand folgen die Spektrallinien, wenn nur der Abtastimpuls analysiert wird?
 In 8 kHz Abständen.

- 4. Wie unterscheidet sich das Spektrum einer unipolaren und dem einer bipolaren PAM? Gar nicht, lediglich die Amplitude verringert sich.
- 5. Wie kann ein PAM-Signal demoduliert werden? Mittels eines Tiefpasses.

3.3 Erklärung des Abtasttheorems

3.3.1 Beschreibung des Messvorgangs

Bei dieser Aufgabe wird eine unipolare PAM erzeugt und diese bei unterschiedlichen Informationsund Abtastfrequenzen untersucht.

3.3.2 Schaltung

Abbildung 5: Schaltung zu Erklärung des Abtasttheorems

Pulsamplitudenmodulation

3.3.3 Kennlinien

Abbildung 6: Spannungsverlauf mit 1kHz & 8kHz TTL

Abbildung 8: Spannungsverlauf mit 2kHz & 8kHz TTL

Abbildung 10: Spannungsverlauf mit 1kHz & 4kHz TTL

Abbildung 12: Spannungsverlauf mit 2kHz & 4kHz TTL

Abbildung 7: Frequenzspektrum mit 1kHz & 8kHz TTL

Abbildung 9: Frequenzspektrum mit 2kHz & 8kHz TTL

Abbildung 11: Frequenzspektrum mit 1kHz & 4kHz TTL

Abbildung 13: Frequenzspektrum mit 2kHz & 4kHz TTL

3.3.4 Erkenntnis / Schlussfolgerung

In den Abb. 6 bis 13 sind die Ergebnisse der Messungen bei den verschiedenen Einstellwerten zu erkennen.

3.4 Zeitmultiplexverfahren

3.4.1 Beschreibung des Messvorgangs

Hier soll ein PAM-Zeitmultiplexsignal erzeugt und untersucht werden.

3.4.2 Schaltung

Abbildung 14: Schaltung zu Zeitmultiplexverfahren

3.4.3 Kennlinie

Abbildung 15: Spannungsverlauf zu Zeitmultiplexverfahren

Abbildung 16: Frequenzspektrum zu Zeitmultiplexverfahren

3.4.4 Erkenntnis / Schlussfolgerung

In Abb. 4 ist ein typisches Frequenzspektrum eines pulsamplitudenmodulierten Signals zu erkennen.

3.4.5 Übungsrelevante Fragen

- 1. Handelt es sich bei der Spannung UPAM um eine unipolare oder um eine bipolare PAM? Bipolar.
- 2. Wieviel Kanäle könnte man theoretisch unter Beibehaltung der 8-kHz-Abtastfrequenz bei 15 us Impulsbreite übertragen?
 - 8. (Tsync/15us)
- 3. Weshalb wird die PAM-Multiplextechnik nicht auf Übertragungsstrecken verwendet? Aufgrund hoher Störempfindlichkeit.

3.5 Versuche am Pulscodemodulator 1

3.5.1 Beschreibung des Messvorgangs

In diesem Kapitel wird die Pulscodemodulator betrachtet und die Kennlinie des AD-Wandlers soll ermittelt werden.

3.5.2 Schaltung

Abbildung 17: Schaltung zu Versuche am Pulscodemodulator 1

3.5.3 Tabelle

UE V	Code bin	Dezimal
-3.0	00000000	0
-2.4	0000001	1
-2.0	00011000	24
-1.5	00110001	49
-1.0	01001011	75
-0.5	01100101	101
0.0	10000000	128
0.5	10011001	153
1.0	10110101	181
1.5	11001111	207
2.0	11101001	233
2.5	11111111	255

3.5.4 Kennlinie

AD-Wandler Quantisierung

3.5.5 Erkenntnis / Schlussfolgerung

In der Kennlinie ist die Quantisierung des AD-Wandlers des Modulation Boards zu erkennen.

3.5.6 Übungsrelevante Fragen

- Ist die Quantisierungskennlinie linear oder nichtlinear?
 Linear.
- 2. Welcher Amplitudenbereich kann gewandelt werden? ±2,5V.
- Wie groß ist ein Quantisierungsintervall? 19mV. (Uspsp/255)
- 4. Kann am digitalen Codewort die Polarität des ursprünglichen Signals abgelesen werden? Durchaus. Werte unter 127 sind negativ, während alle größeren Werte ein positives Signal bedeuten.

3.6 Versuche am Pulscodemodulator 2

3.6.1 Beschreibung des Messvorgangs

Nun soll der Spannungsverlauf des Pulscodemodulators dargestellt werden.

3.6.2 Schaltung

Abbildung 18: Schaltung zu Versuche am Pulscodemodulator 2

3.6.3 Kennlinie

Abbildung 19: Spannungsverlauf zu Versuche am Pulscodemodulator 2

3.6.4 Erkenntnis / Schlussfolgerung

In Abb. 19 sind die Spannungsverläufe zu erkennen. Die Eingangssignale (Kanal 1 & 2), der analoge Ausgang (Kanal 3), der die Bits stufenweise analog überträgt, und der digitale Ausgang (Kanal 4), welcher die Bits seriell überträgt.

3.6.5 Übungsrelevante Fragen

- 1. Mit welcher Abtastfrequenz wid das Informationssignal abgetastet? 16kHz.
- 2. Stimmt das codierte PCM-Signal mit der Spannung US/H zeitlich überein? Nein. Die Daten werden um eine Taktperiode verschoben übertragen.
- 3. In welcher Reihenfolge werden die Bits gesendet? Das LSB ist das erste übertragene Bit.

3.7 PCM-Multiplexing

3.7.1 Beschreibung des Messvorgangs

In diesem Kapitel wird die Pulscodemodulator betrachtet und die Kennlinie des AD-Wandlers soll ermittelt werden.

3.7.2 Schaltung

Abbildung 20: Schaltung zu PCM-Multiplexing

3.7.3 Kennlinie

Abbildung 21: Spannungsverlauf zu PCM-Multiplexing, Übersicht

Abbildung 22: Spannungsverlauf zu PCM-Multiplexing, 1-Periode

3.7.4 Erkenntnis / Schlussfolgerung

In den Abb. 21 & 22 ist die gemessene Pulscodemodulation zu erkennen, in der Übersicht und in einer Periode. Der Eingang (Kanal 1), die Ausgänge (Kanal 2 & 4), sowie das Sync-Signal (Kanal 3) ist dargestellt.

3.7.5 Übungsrelevante Fragen

- 1. Welche Frequenz und welche Dauer hat der Synchronimpuls? Eine Frequenz von 8 kHz & eine Impulsbreite von 14,4 us.
- 2. Wie erkennt man, welches Bitwort von welchem Eingangskanal stammt? Zwischen zwei Synchronimpulsen finden insgesamt 16 Übertragungen statt. Stellt man die Gleichspannung auf -2,5V (0), so werden die ersten 8 übertragenen Bits auf 0 gestellt. D.h. die ersten 8 stammen vom 2. Eingang, die letzten 8 vom 1.

Dukamalitudanmaduktian		
Pulsamplituden modulation		

<u>Datum:</u>	Note:	Punkte:	<u>Unterschrift:</u>

Unterschrift: Leon Ablinger