0.1 点集间的距离

定义 0.1

设 $x \in \mathbb{R}^n$. $E \in \mathbb{R}^n$ 中的非空点集, 称

$$d(x, E) = \inf\{|x - y| : y \in E\}$$

为点 x 到 E 的**距离**; 若 E_1, E_2 是 \mathbb{R}^n 中的非空点集, 称

$$d(E_1, E_2) = \inf\{|x - y| : x \in E_1, y \in E_2\}$$

为 E_1 与 E_2 之间的距离. 也可等价地定义为

inf{
$$d(x, E_2)$$
 : $x ∈ E_1$ } $\overset{\bullet}{\bowtie}$ inf{ $d(E_1, y)$: $y ∈ E_2$ }.

例题 0.1 在 \mathbb{R}^2 中作点集

$$E_1=\{x=(\xi,\eta): -\infty<\xi<+\infty, \eta=0\},$$

$$E_2 = \{ y = (\xi, \eta) : \xi \cdot \eta = 1 \},$$

则 $d(E_1, E_2) = 0$.

证明 事实上, 当我们取 $x = (\xi, 0) \in E_1$ 且 $y = (\xi, \eta) \in E_2$ 时, 由

$$d(E_1, E_2) \leqslant d(x, y) = |\eta| = \frac{1}{|\xi|}$$

可知, 对任给的 $\varepsilon > 0$, 只需 $|\xi|$ 充分大, 就有 $d(E_1, E_2) < \varepsilon$. 由此得

$$d(E_1, E_2) = 0.$$

显然, 若 $x \in E$, 则 d(x, E) = 0. 但反之, 若 d(x, E) = 0, 则 x 不一定属于 E. 不过在 $x \notin E$ 时, 必有 $x \in E'$.

定理 0.1

若 $F \subset \mathbb{R}^n$ 是非空闭集, 且 $x_0 \in \mathbb{R}^n$, 则存在 $y_0 \in F$, 有

$$|x_0 - y_0| = d(x_0, F).$$

证明 作闭球 $\overline{B} = \overline{B}(x_0, \delta)$, 使得 $\overline{B} \cap F$ 不是空集. 显然

$$d(x_0, F) = d(x_0, \overline{B} \cap F).$$

 $\overline{B} \cap F$ 是有界闭集, 而 $|x_0 - y|$ 看作定义在 $\overline{B} \cap F$ 上的 y 的函数是连续的, 故它在 $\overline{B} \cap F$ 上达到最小值, 即存在 $y_0 \in \overline{B} \cap F$, 使得

$$|x_0 - y_0| = \inf\{|x_0 - y| : y \in \overline{B} \cap F\},\$$

从而有 $|x_0 - y_0| = d(x_0, F)$.

定理 0.2

若 $E \neq \mathbb{R}^n$ 中非空点集,则 d(x,E) 作为 x 的函数在 \mathbb{R}^n 上是一致连续的.

证明 考虑 \mathbb{R}^n 中的两点 x, y. 根据 d(y, E) 的定义, 对任给的 $\varepsilon > 0$, 必存在 $z \in E$, 使得 $|y - z| < d(y, E) + \varepsilon$, 从而有

$$d(x, E) \le |x - z| \le |x - y| + |y - z|$$
$$< |x - y| + d(y, E) + \varepsilon.$$

由 ε 的任意性可知

$$d(x, E) - d(y, E) \leqslant |x - y|.$$

同理可证 $d(y, E) - d(x, E) \leq |x - y|$. 这说明

$$|d(x, E) - d(y, E)| \le |x - y|.$$

推论 0.1

若 F_1, F_2 是 \mathbb{R}^n 中的两个非空闭集且其中至少有一个是有界的,则存在 $x_1 \in F_1, x_2 \in F_2$,使得

$$|x_1 - x_2| = d(F_1, F_2).$$

引理 0.1

若 F_1, F_2 是 \mathbb{R}^n 中两个互不相交的非空闭集,则存在 \mathbb{R}^n 上的连续函数 f(x),使得

(i) $0 \leqslant f(x) \leqslant 1 \ (x \in \mathbb{R}^n)$;

(ii)
$$F_1 = \{x : f(x) = 1\}, F_2 = \{x : f(x) = 0\}.$$

证明 构造函数 f(x):

$$f(x) = \frac{d(x, F_2)}{d(x, F_1) + d(x, F_2)}, \quad x \in \mathbb{R}^n,$$

它就是所求的函数.

定理 0.3 (连续延拓定理)

若 F 是 \mathbb{R}^n 中的闭集, f(x) 是定义在 F 上的连续函数, 且 $|f(x)| \leq M$ $(x \in F)$, 则存在 \mathbb{R}^n 上的连续函数 g(x) 满足

$$|g(x)| \le M$$
, $g(x) = f(x)$, $x \in F$.

注 1. 上述定理在 f(x) 无界时也成立(研究 arctan f(x)).

 $2. \mathbb{R}^2$ 中存在由某些有理点构成的稠密集, 其中任意两点的距离为无理数.

证明 把 F 分成三个点集:

$$A = \left\{ x \in F : \frac{M}{3} \leqslant f(x) \leqslant M \right\},$$

$$B = \left\{ x \in F : -M \leqslant f(x) \leqslant \frac{-M}{3} \right\},$$

$$C = \left\{ x \in F : \frac{-M}{3} < f(x) < \frac{M}{3} \right\},$$

并作函数

$$g_1(x) = \frac{M}{3} \cdot \frac{d(x,B) - d(x,A)}{d(x,B) + d(x,A)}, \quad x \in \mathbb{R}^n.$$

因为 A 与 B 是互不相交的闭集, 所以 $g_1(x)$ 处处有定义且在 \mathbb{R}^n 上处处连续. 此外, 还有

$$|g_1(x)| \leqslant \frac{M}{3}, \quad x \in \mathbb{R}^n,$$

 $|f(x) - g_1(x)| \leqslant \frac{2}{3}M, \quad x \in F.$

再在F上来考查 $f(x)-g_1(x)$ (相当于上述之f(x)),并用类似的方法作 \mathbb{R}^n 上的连续函数 $g_2(x)$. 此时由于 $f(x)-g_1(x)$ 的界是2M/3,故 $g_2(x)$ 应满足

$$|g_2(x)| \leqslant \frac{1}{3} \cdot \frac{2M}{3}, \quad x \in \mathbb{R}^n,$$

$$|(f(x) - g_1(x)) - g_2(x)| \le \frac{2}{3} \cdot \frac{2M}{3} = \left(\frac{2}{3}\right)^2 M, \quad x \in F.$$

继续这一过程,可得在 \mathbb{R}^n 上的连续函数列 $\{g_k(x)\}$,使得

$$|g_k(x)| \leqslant \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{k-1} M, \quad x \in \mathbb{R}^n \quad (k = 1, 2, \dots),$$
$$\left| f(x) - \sum_{i=1}^k g_i(x) \right| \leqslant \left(\frac{2}{3}\right)^k M, \quad x \in F \quad (k = 1, 2, \dots).$$

上面的第一式表明 $\sum_{k=1}^{\infty} g_k(x)$ 是一致收敛的. 若记其和函数为 g(x), 则 g(x) 是 \mathbb{R}^n 上的连续函数. 上面的第二式表明

$$g(x) = \sum_{k=1}^{\infty} g_k(x) = f(x), \quad x \in F.$$

最后,对于任意的 $x \in \mathbb{R}^n$,得到

$$|g(x)| \leqslant \sum_{k=1}^{\infty} |g_k(x)| \leqslant \frac{M}{3} \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \cdots \right)$$

$$\leqslant \frac{M}{3} \cdot \frac{1}{1 - \frac{2}{3}} = M.$$