UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa Cálculo III

26 de Agosto de 20	016
--------------------	-----

1	
2	
3	
4	
5	
6	
Total	

Aluno(a):.....

- (1) Dada a função $r(t)=(2\cos(t),\ \sin(2t),2t),\ \text{calcule}\ r'(t)$ e $\int r(t)\ dt.$
- (2) Calcule, se existir, $\lim_{(x,y)\to(0,0)} f(x,y)$, onde

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

A função f(x,y) é contínua em (0,0)? Justifique.

- (3) Se $z = y + f(x^2 y^2)$, utilize a regra da cadeia para mostrar que $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = x$.
- (4) Utilizando o método dos multiplicadores de Lagrange, encontre o ponto da esfera $x^2+y^2+z^2=4$ que é mais próximo do ponto (3,1,-1).
- (5) Encontre, se existir, os pontos de máximo, mínimo e sela da função $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$.
- (6) Linearize a função $f(x,y) = 1 + x \ln(xy 5)$ no ponto (2,3).

Boa Prova!