

Miejsce na identyfikację szkoły

ARKUSZ PRÓBNEJ MATURY

Z OPERONEM MATEMATYKA

POZIOM ROZSZERZONY

Czas pracy: 180 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1.–18.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. W zadaniach zamknietych (1.–5.) zaznacz jedną poprawną odpowiedź.
- 4. W zadaniach kodowanych (6.-8.) wpisz w tabelę wyniku trzy cyfry wymagane w poleceniu.
- 5. W rozwiązaniach zadań otwartych (9.–18.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 6. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Zapisy w brudnopisie nie będą oceniane.
- 9. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów.

LISTOPAD 2016

Życzymy powodzenia!

Wpisuje zdający przed rozpoczęciem prac											
PESEL ZDAJACEGO											

KOD ZDAJĄCEGO

ZADANIA ZAMKNIĘTE

W zadaniach 1.-5. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0-1)

Zbiorem rozwiązań nierówności ||x+3|-5| < 2 jest:

$$\mathbf{A} \cdot (-10, -6) \cup (0, 4)$$

B.
$$(0,4)$$

$$C.(-10,4)$$

D.
$$(6,10) \cup (0,4)$$

Zadanie 2. (0-1)

Liczba tg 22,5° + $\frac{1}{\text{tg }22,5^{\circ}}$ jest równa:

A.
$$2\sqrt{2}$$

B.
$$\sqrt{2}$$

C.
$$\frac{\sqrt{2}}{2}$$

D.
$$\frac{\sqrt{2}}{4}$$

Zadanie 3. (0-1)

Dany jest trójkąt o bokach 10 i 6 i kącie między nimi 120°. Promień okręgu opisanego na tym trójkącie jest równy:

C.
$$\frac{14\sqrt{3}}{3}$$

D.
$$\frac{28\sqrt{3}}{3}$$

Zadanie 4. (0-1)

Wielomian określony wzorem $W(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3$:

A. nie ma ekstremum lokalnego

B. ma jedno ekstremum lokalne

C. ma dwa ekstrema lokalne

D. ma trzy ekstrema lokalne

Zadanie 5. (0-1)

Liczba $\log_6 5 + 2\log_{36} 3$ jest równa:

$$\mathbf{A.} \log_6 8$$

$$\mathbf{B} \cdot \log_9 8$$

BRUDNOPIS (nie podlega ocenie)

ZADANIA OTWARTE

W zadaniach 6.–8. zakoduj wynik w kratkach zamieszczonych pod poleceniem. W zadaniach 9.–18. rozwiązania należy zapisać w wyznaczonych miejscach pod treścią.

Zadanie 6. (0–2)

Oblicz granicę $\lim_{n\to\infty} \left(\frac{3n^2-5n-7}{5n^2+3n+2} - \left(\frac{2n-1}{3n+1} \right)^3 \right)$. Zakoduj cyfrę jedności i dwie początkowe cyfry

rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 7. (0-2)

Wyznacz największą liczbę spełniającą równanie $x^3 + x^2 - 7x + 5 = 0$. Zakoduj cyfrę jedności i dwie początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 8. (0-2)

Dany jest trapez prostokątny opisany na okręgu. Punkt styczności okręgu z dłuższym ramieniem trapezu dzieli to ramię na odcinki długości 8 i 11. Oblicz obwód trapezu. Zakoduj cyfrę dziesiątek, jedności i jedną początkową cyfrę po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 9. (0–2)

Wyznacz dziedzinę wyrażenia $W = \sqrt{\frac{x-5}{4-x^2}}$.

Odpowiedź:

Zadanie 10. (0-3)

Dana jest funkcja f określona wzorem $f(x) = \frac{3}{x^4 + x^2 - 75}$. Wyznacz równanie stycznej do wykresu funkcji f poprowadzonej w punkcie $P = \left(-3, \frac{1}{5}\right)$.

Odpowiedź:

Zadanie 11. (0-3)

Wykaż, że jeśli liczby a i b są dodatnie, to $\frac{a^2}{b^2} + \frac{b^2}{a^2} + 3\left(\frac{a}{b} + \frac{b}{a}\right) \ge 8$.

Zadanie 12. (0-3)

Dany jest nieskończony ciąg geometryczny. Suma wszystkich wyrazów tego ciągu jest równa 40, a suma wszystkich wyrazów o numerach nieparzystych jest równa 32. Oblicz iloraz i pierwszy wyraz tego ciągu.

Zadanie 13. (0-4)

Wykaż, że jeśli α i β są kątami trójkąta takimi, że $\sin^2\alpha - \sin^2\beta = \sin(\alpha - \beta)$, to trójkąt jest równoramienny lub prostokątny.

Zadanie 14. (0-4)

Na płaszczyźnie dany jest punkt A = (8,4). Prosta AB jest nachylona do osi OX pod kątem $\alpha = 60^{\circ}$. Wyznacz współrzędne punktu B, wiedząc, że |AB| = 22.

Zadanie 15. (0-4)

Dany jest trapez ABCD. Punkt E jest punktem przecięcia się przekątnych trapezu. Ramiona trapezu przedłużono do przecięcia w punkcie F. Wykaż, że prosta EF dzieli dłuższą podstawę AB trapezu na połowy.

Zadanie 16. (0-4)

W urnie jest 5 kul białych i 7 czarnych. Wyjmujemy losowo z tej urny dwie kule i odkładamy na bok. Następnie wyjmujemy z tej urny jedną kulę. Oblicz prawdopodobieństwo, że będzie to kula biała.

Zadanie 17. (0-5)

Dany jest trójmian kwadratowy $f(x) = (m+1)x^2 - (2m-2)x - 2(m-1)$. Oblicz, dla jakich wartości parametru m suma odwrotności sześcianów dwóch różnych pierwiastków tego trójmianu jest mniejsza od 2.

Zadanie 18. (0-7)

Punkt P o dodatnich współrzędnych należy do wykresu funkcji określonej wzorem $f(x) = \frac{2}{x}$. Wyznacz odciętą punktu P tak, aby jego odległość od prostej o równaniu $y = -\frac{4}{3}x - 2$ była najmniejsza. Oblicz tę najmniejszą odległość.

Odpowiedź:

BRUDNOPIS (nie podlega ocenie)

