Neural Networks & AIMichaël Faivre1. Linear Discrimnant Analysis4. Naive BayesianStarted: 22/02/20172. Support Vector Machine5. Logistic Regression3. Random Forest6. Neural Network with backpropagationpage 1/7

Project Linear & Non-Linear Models for Classification and Regression

Table of contents

1. Project Profile	1
2. Interestination	1
2. Introduction2.1 Project Summary	
2.2 Data set description	
DS1.1 Exporatory statistics	
DS1.1 Exporatory statistics	
DS1.2 variable reduirdancy assessment	2
PART.1 : Classification	
3. Regression OLS	
č	
4 Linear Discriminant Analysis	
·	
3. Random Forest	3
3.1 Code	4
3.2 Results	4
4. Naive Bayesian	4
4.1 Code	4
4.2 Results	4
PART.2 : Regression	
5. Logistic Regression	
5.1 Code	
5.2 Results	4
	_
6. Neural Network	
6.1 Code	
6.2 Results	4

Model ranking

What additional information or insights are brought by the Non-linear models?

1. Project Profile

Project Package overview for documentation and codes:

Neural Networks & AI	Michaël Faivre			
Linear Discrimnant Analysis Support Vector Machine	4. Naive Bayesian 5. Logistic Regression	Started: 22/02/2017		
3. Random Forest	6 .Neural Network with backpropagation	page 2/7		

- Title: Non-Linear Models for Classification and Prediction

- Project platform: Rstudio

Submitted to: Dr. Amir NakibDeveloped by: Michaël Faivre

2. Introduction

2.1 Project Summary

The project encompasses both aspects of (I) testing linear models (ii) testing non-linear models and (iii) comparing the performances of all models. This is a stimulating project as it involves the use of various techniques in linear and non-linear modeling. I decided to implement the algorithm of analysis in R due to quickly accessible references and faster in coding compared with Python. However, I will code again the project in Python with sklearn package.

As the time is quite limited, my aim in the study is to assess and quantify in terms of train/test accuracy how non-linear model(s) improve the classification vs the linear model.

I am plainly conscious of making use of a tiny use of the proficient course we were , but at the current status, I can not do much better.

NB: All, many online references used are acknowledged in the codes.

2.2 Purpose

This document describes the framework and analytical choices made to solve the problem of classification from multivariate analysis. I am interested in having a predictive tool to in regards of several explanatory variables.

PART.1: Classification

Dataset: Boston area housing real estate price

DS1.1 Dataset description

Neural Networks & AI	Michaël Faivre				
,	=,	Started: 22/02/2017			
11	Logistic Regression Neural Network with backpropagation	page 3/7			

```
$ rm
         : num
               6.58 6.42 7.18 7 7.15 ...
                65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
 age
         : num
 dis
                4.09 4.97 4.97 6.06 6.06 ...
         : num
$ rad
         : int
                1 2 2 3 3 3 5 5 5 5 ...
                296 242 242 222 222 222 311 311 311 311 ...
$ tax
         : num
                15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
 ptratio: num
                397 397 393 395 397 ...
$ black
        : num
               4.98 9.14 4.03 2.94 5.33 ...
$ 1stat
        : num
         : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
$ medv
```


Note on variable distributions: exponential, uniform, normal-like distributions Kernel Density Estimation is applied in the code: PROJET_exploratory_data_analysis.

DS1.2 Pre-processing operations

Table.1 List of preprocessing and basic tests

Any missing values ?	Checked with is.na filter				
Variable selection and Dim reduction	PCA: 9+ variables required to have a cumulated variance greater than 80%. So, no obvious varialbe selection Not applied Not applied				
Homoscedasticity					
Gaussianity					
Kernel Density Estimation (Parzen-Rosenblatt)	Tested for a couple of variables in PROJET_exploratory_data_analysis.Rmd				
Classes building in uniform distribution from continuous response variable	Yes applied with 6 classes fitting min-max medv range				

Neural Networks & AI

- 1. Linear Discrimnant Analysis
- 2. Support Vector Machine
- 3. Random Forest

Michaël Faivre

- 4. Naive Bayesian
- 5. Logistic Regression
- 6 .Neural Network with backpropagation

Started: 22/02/2017

page 4/7

Box plot dispersion separated for each

One can notice quite significant dependencies of some explanatory variables with respect to response = 'medv'.

Methods explored:

- Linear Classifiers: OLS, Generalized Linear Model, Random Forest, Naive Bayesian
- Non-Linear Classifiers: Knn,

DS2.2 Random Forest on discretized response

Case 1. 10 uniformly distributed classes: bin.mdev

house.bin.rf.pred

ι.μ	ıı Eu									
-	1	2	3	4	5	6	7	8	9	10
1	15	4	4	0	1	0	0	0	0	1
2	3	9	2	1	0	0	1	1	0	1
3	0	4	4	2	2	0	0	1	0	0
4	0	0	1	4	4	4	1	0	0	0
5	0	0	1	6	3	2	1	1	0	0
6	0	0	1	0	3	1	2	1	0	0
7	0	0	0	1	1	5	0	4	0	0
8	0	0	0	1	1	1	8	8	3	0
9	0	0	0	0	0	0	1	0	8	3
10	0	0	0	0	0	1	0	0	3	11

So, with 10 classes (quasi-uniform distribution out of the Gaussian like distribution of continuous variable 'mdev') corresponding to the bin.mdev variable does not give satisfactory classification. In peculiar, classes n° 5, 6, 7 perform quite poorly.

Neural Networks & AI	Michaël Faivre				
 Linear Discrimnant Analysis Support Vector Machine 	4. Naive Bayesian 5. Logistic Regression	Started: 22/02/2017			
1 **	6 .Neural Network with backpropagation	page 5/7			

Detailed Confusion matrices for each method are provided in the 16 pages document of the **folder.** Here is only provided the list of method and accuracy (on test set).

DS2.1 Linear Discriminant Analysis on discretized response DS2.4 Naive Bayesian on discretized response

Accuracy (average): 0.5071 Accuracy (average): 0.4966

DS2.2 Multinomial Regression on discretized response DS2.5 Tree Bagged on discretized response

Accuracy (average): 0.5202 Accuracy (average): 0.5678

DS2.3 Support Vector Machine on discretized response DS2.6 Random Forest on discretized response

Accuracy (average): 0.5782 Accuracy (average): 0.5476

Model Comparison

Models are ranked fom lowest performance (top) to highest one (bottom). Random Forest is the most performant model in this study.

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference Lower diagonal: p-value for HO: difference = 0

Accuracy

	1da	multinomial	svm	knn	nb	bagging	rf
1da		-0.034063	-0.038168	0.020978	0.005545	-0.054442	-0.069240
multinomial	0.1335807		-0.004105	0.055042	0.039608	-0.020378	-0.035177
svm	0.0214000	1.0000000		0.059147	0.043713	-0.016273	-0.031071
knn	0.8188253	0.0200346	0.0011525		-0.015433	-0.075420	-0.090218
nb	1.0000000	0.0174729	0.0032755	1.0000000		-0.059987	-0.074785
bagging	0.0003694	1.0000000	1.0000000	3.651e-05	0.0015108		-0.014798
rf	5.452e-08	0.1257553	0.0518518	2.243e-07	2.395e-07	1.0000000	
Карра							
	1da	multinomial	svm	knn	nb	bagging	rf
1da		-0.041037	-0.046479	0.024300	0.007075	-0.064419	-0.082502
multinomial	0.1105625		-0.005442	0.065337	0.048112	-0.023383	-0.041465
svm	0.0173491	1.0000000		0.070779	0.053554	-0.017940	-0.036023
knn	0.8536219	0.0155059	0.0008664		-0.017225	-0.088720	-0.106802
nb	1.0000000	0.0101977	0.0023335	1.0000000		-0.071494	-0.089577
bagging	0.0005107	1.0000000	1.0000000	3.649e-05	0.0016697		-0.018083
rf	5.231e-08			1.727e-07			

Neural Networks & AIMichaël Faivre1. Linear Discrimnant Analysis4. Naive BayesianStarted: 22/02/20172. Support Vector Machine5. Logistic Regression3. Random Forest6. Neural Network with backpropagationpage 6/7

Random Forest gives the best result here (6 uniform classes)

PART.2: Regression

Neural Network

Following results are fom R code: PROJET NeuralNetwork Housing.Rmd

Neural Network setup from the R code:

```
#=== 3.a) prepare data

```{r}

maxs <- apply(dataHouseOrig, 2, max)

mins <- apply(dataHouseOrig, 2, min)

scaled <- as.data.frame(scale(dataHouseOrig, center = mins, scale = maxs - mins))

scale.train_ <- scaled[index,]

scale.test_ <- scaled[-index,]

...
```

#### #=== 3.d) build the neural network (NN) for response = medv

house.mdev.net <- neuralnet(formula.nn, data=scale.train\_, hidden=c(10,8), learningrate = 0.01,act.fct = "logistic",linear.output=T,algorithm="rprop+",lifesign = "minimal")

**Result : training.ratio = 55%** 

#### **Neural Networks & AI**

- 1. Linear Discrimnant Analysis
- 2. Support Vector Machine
- 3. Random Forest

#### Michaël Faivre

- 4. Naive Bayesian
- 5. Logistic Regression
- 6 .Neural Network with backpropagation

Started: 22/02/2017

page 7/7

# Linear Logistic Regression on the 1 Class for House Median Value

# Neural Network setup for 1 target continuous regression!



Neural Network brings here a clear and strong improvement compared to Logistic Regresion! To quantify the achieved improvement, let use here the RMSE:

Mean Square Error for Logistic Regression = 21.4 vs MSE for NeuralNetwork = 13.6

## Cross-validation for both Linear and Neural Network performance

Cross-validation result for the neuralnetwork tunned with 90% training, number of units in 2 hidden layers = (5,2) results in a MSE of 10.3 for neural network vs 13.5 for Logistic Regression.

#### **APPENDIX: Boston correlogram**

