MTH101: Symmetry Problem Set 1

Problem 1. Let S denote the set $\mathbb{R}\setminus\{-1\}$. We define a binary operation on S by setting a*b=a+b+ab. Does S become a group with this binary operation? (Note: $\mathbb{R}\setminus\{-1\}$ means the set of all real numbers except -1.)

Problem 2. Let S and T be two sets such that there exists a 1-1 correspondence from S to T. Prove that the groups Perm(S) and Perm(T) are isomorphic.

Problem 3. Let G be a group. Let h be an element of G. Define the function $f: G \to G$ by the formula $f(g) = hgh^{-1}$. Prove that f is a group isomorphism.

Problem 4. Show that the set $\{5, 15, 25, 35\}$ is a group under multiplication modulo 40. What is the identity element of this group?

Problem 5. Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all a and b in G.

Problem 6. Find an integer x such that $20x \equiv 1 \mod 37$.

Problem 7. Find integers a and b such that 31a + 101b = 1.

Problem 8. Is the group U(27) cyclic? If the answer to this question is "yes", find all of its generators. If the answer is "no", prove that it is not cyclic.

Problem 9. Let S_n denote the group of permutations of the set $\{1, 2, \ldots, n\}$. Let

$$H = {\sigma | \sigma \in S_n \text{ such that } \sigma(1) = 1}.$$

Is H a normal subgroup of S_n ?

Problem 10. Does $\mathbb{Z}/100\mathbb{Z}$ have a subgroup of order 20? If the answer is "yes", find all such subgroups. If the answer is "no", explain why not.

Problem 11. Consider the subgroup $\langle \overline{35} \rangle$ of $\mathbb{Z}/50\mathbb{Z}$. Find all generators of this subgroup. (Recall the notation: $\overline{35}$ is our shorthand notation for the coset $35 + 50\mathbb{Z}$ which is an element of the group $\mathbb{Z}/50\mathbb{Z}$.)

Problem 12. Find all generators for the subgroup $\langle \overline{12}, \overline{15} \rangle$ of $\mathbb{Z}/20\mathbb{Z}$.

Problem 13. Let G be a group and let H be a subgroup of G. Let N(H) be defined as

$$N(H) = \{g | g \in G \text{ such that } gHg^{-1} = H\}.$$

- 1. Prove that N(H) is a subgroup of G.
- 2. Prove that H is a normal subgroup of N(H).

Problem 14. Let G be a group of order at least 2. Prove that G has an element whose order is a prime number. (Hint: It is enough to prove this for cyclic groups. Do you see why?)

Problem 15. Let G be a group and let S be any subset of G. The *centralizer* of S, denoted by C(S) is defined as

$$C(S) = \{g | g \in G \text{ such that } gs = sg \text{ for all } s \in S\}.$$

Prove that C(S) is a subgroup of G.