Partea a 2 a

Diana - Florina ŞOTROPA
Facultatea de Matematică și Informatică
Universitatea Babeș-Bolyai
http://www.cs.ubbcluj.ro/~diana.sotropa

Formatul adresei MAC

ID atribuit companiei pro-]
ducătoare de interfețe de	
rețea	

Numărul serial al interfeței

	24 biţi		24 biţi		
00	FC	42	3E	34	99

TIPURI DE ADRESE MAC

Adresa unicast:

□ identifică un singur destinatar (EX: 00.10.A7.22.FE.63);

Adresa broadcast:

 folosită pentru a identifica toate calculatoarele din reţea (EX: FF.FF.FF.FF.FF);

Adresa multicast:

- primii 3 octeți ai adresei MAC destinație au valoarea 01-00-5E;
- □ ultimii 3 octeți ai adresei MAC se obțin prin aplicarea măștii 7F-FF-FF peste ultimii 3 octeți ai adresei IP destinație. De exemplu, dacă adresa IP destinație este 231.1.2.3 atunci adresa MAC destinatie este 01-00-5E-01-02-03.

TIPURI DE ADRESE IPV4

Format

Adresa IPv4 este formată din 4 octeți:

141 . 85 . 241 . 139 10001101 . 01010101 . 11110001 . 10001011

Adresa IPv4 este compusă din două părți:

partea de rețea + partea de host;

ADRESA IPV4

- dispozitivele ce au partea de rețea comună sunt situate în aceeași rețea și pot comunica fără să aibă nevoie de un ruter;
- părțile de rețea şi de host se determină folosind: masca de rețea;

MASCA DE REȚEA

- o adresă IP specială formată dintr-un șir continuu de 1 urmat de un şir continuu de 0; $11111111.1111111111.111111111.00000000 \equiv /24$
- /24 poartă numele de prefixul rețelei şi reprezintă numărul de 1 din masca rețelei;
- astfel, reprezentarea completă a unui IP de stație împreună cu rețeaua din care face parte devine:

141.85.241.139/24

ADRESA DE REȚEA

INTRODUCERE

prin aplicarea operației AND pe biți între masca de rețea și adresa IP se obține adresa de rețea;

de	reţea	partea de host
85 .	241 .	139
01010101 .	11110001 .	10001011
		AND
111111111 .	11111111 .	0000000
85 .	241 .	0
01010101 .	11110001 .	0000000
	85 . 01010101 . 111111111 . 85 .	85 . 241 . 01010101 . 111110001 . 11111111 . 11111111

- Adresele de rețea au toți biții din partea de host setați pe 0;
- Adresa de rețea este folosită de stații pentru a determina dacă să trimită direct destinației sau gateway-ului pachetul;

ADRESA DE BROADCAST

INTRODUCERE

prin aplicarea operației **OR** pe biți între inversa măștii de rețea și adresa IP se obține adresa de broadcast; nartea parton do host

partea	ae	reţea	partea de nost	
141	85	241	139	
10001101	01010101	11110001	10001011	
			OR	
0000000	0000000	0000000	11111111	
141	85	241	255	
10001101	01010101	11110001	11111111	

- Adresele de broadcast au toți biții din partea de host setați pe 1;
- Adresa de broadcast este folosită ca adresă destinație în pachete ce vrem să ajungă la toate dispozitivele din respectiva retea;

ADRESE PUBLICE ŞI PRIVATE

- trei spaţii de adrese private:
 - \square 10.0.0/8
 - □ 172.16.0.0/16 ... 172.31.255.255/16 $\implies 172.16.0.0/12$
 - □ 192.168.0.0/24 ... 192.168.255.255/24 \implies 192.168.0.0/16
- Pentru a conecta o stație cu adresă privată la Internet aceasta trebuie translatată la o adresă publică, proces numit NAT(Network Address Translation)

CLASE DE ADRESE

INTRODUCERE

- 5 clase de adrese (A, B, C, D, E), fiecare cu o mască specifică;
- clasele sunt identificate dupa primii biţi ai primului octet;

Clasa	Primul octet	Gama de adrese	Mască / Scop
A	0	0.0.0.0 - 127.255.255.255	/8
В	10	128.0.0.0 - 191.255.255.255	/16
C	110	192.0.0.0 - 223.255.255.255	/24
D	1110	224.0.0.0 - 239.255.255.255	Multicast
E	1111	240.0.0.0 - 255.255.255.255	Experimental

Subrețele

- împărțirea unei rețele mai mari în mai multe rețele ce respectă un set de cerințe
- ~diana.sotropa/files/RC/netmask-tree/?ip=192.168.0.0&netmask start=16&netmask end=24

Subrețele

- 3 subrețele ale spațiului de adrese: 192.168.10.0/24 astfel încât cele 3 rețele să fie egale ca dimensiune. Rețelele au: 60, 30, respectiv 15 stații.
- Sunt suficient de mari subreţelele obţinute? Cât de multe adrese IP de staţii au fost risipite?

Subrețele

- 3 subrețele ale spațiului de adrese: 192.168.10.0/24. Rețelele au: 60, 30, respectiv 15 stații. Împărțirea în subrețele trebuie să risipească un număr minim de adrese.
- Sunt suficient de mari subreţelele obţinute? Cât de multe adrese IP de staţii au fost risipite?

INTRODUCERE

Exercițiu

Să se subneteze optim spațiul de adrese 172.18.240.0/23 astfel încât să fie acomodate cerințele:

- o retea cu 200 de host-uri;
- o retea cu 90 de host-uri;
- două rețele cu 20 de host-uri;
- o rețea cu 6 host-uri;
- trei rețele cu 4 de host-uri;

