施密特正交化

基本原理

如图所示,其中 $\vec{\alpha}$ 为从点 O 到点 A 的向量, $\vec{\beta}$ 为从点 O 到点 B 的 向量,它们的夹角为 θ

施密特正交化的原理就是提取向量 $\vec{\beta}$ 与 $\vec{\alpha}$ 相**正交**的分量 $\overrightarrow{A'B}$,而舍 去**平行**分量 $\overrightarrow{OA'}$,从而简化向量组的构成。

$$\overrightarrow{A'B} \ = \ \overrightarrow{OB} - \overrightarrow{OA'}$$

其中向量 $\overrightarrow{OA'}$ 是向量 $\vec{\beta}$ 在向量 $\vec{\alpha}$ 方向上的**投影** ,因为我们知道

$$ec{lpha} \cdot ec{eta} = |ec{lpha}| |ec{eta}| \cos heta$$

因此向量 $\overrightarrow{OA'}$ 的**长度**可写作

$$\left|\overrightarrow{\mathrm{OA'}}\right| \; = \; |\vec{eta}|\cos{ heta} = rac{ec{lpha}\cdotec{eta}}{|ec{lpha}|}$$

然后再考虑向量 $\overrightarrow{\mathrm{OA'}}$ 的**方向**,只需要乘上一个 $\vec{\alpha}$ 的单位向量 \vec{e} 即可,即

$$\vec{e} = rac{ec{lpha}}{|ec{lpha}|}$$

 $\overrightarrow{\text{MUD}}$ 所以向量 $\overrightarrow{\text{OA}}'$ 可以由原来的两个向量 $\vec{\alpha}$ 和 $\vec{\beta}$ 唯一确定:

$$\overrightarrow{\mathrm{OA'}} = \left| \overrightarrow{\mathrm{OA'}} \right| \vec{e} = \left| \overrightarrow{\alpha} \cdot \vec{\beta} \right| \overrightarrow{\alpha} = \left| \overrightarrow{\alpha} \cdot \vec{\beta} \right| \times \vec{\alpha}$$

因此我们待求的向量 $\mathbf{A}'\mathbf{B}$,现在记作 $\boldsymbol{\beta}_{\perp}$,可以写作

$$\overrightarrow{eta_{\perp}} = \overrightarrow{eta} - rac{ec{lpha} \cdot ec{eta}}{ec{lpha} \cdot ec{lpha}} imes ec{lpha}$$

可以验证 $\overrightarrow{\beta_{\perp}} \perp \vec{\alpha}$,此时已经完成了**正交化**,为了进一步简化向量组,需要将正交化后的向量组进行**单位化**,即使其**模**缩放为1

$$\overrightarrow{eta'} = rac{\overrightarrow{eta_{\perp}}}{|eta_{\perp}|}$$

这里我只介绍了二维空间向量组的正交化,即将**两个**向量正交化,如果在三维空间,就有三个两两正交的向量作为**基向量**,最典型的就是我们高中数学空间解析几何中的 $\{\vec{i},\vec{j},\vec{k}\}$ 了。

$$ec{i} = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad ec{j} = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \qquad ec{k} = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

将它们构成一个3阶方阵,正好是一个单位矩阵,是一个最简单的正交 矩阵。

总而言之,施密特正交化就是将一"线性无关的向量组"标准化为"其中向量两两正交的向量组",从平面几何上理解,就是将一个平行四边形(扭曲的正方形)拉伸为一个边长为1的标准正方形。