CANOPEN指令解析

COB_ID

COB_ID	范围	说明
0x0000		NMT设备控制报文 只有主站 能发
0x0080		SYNC同步报文
0x0700+Node_ID	0x0701~0x077F	NMT节点报文
0x0600+Node_ID	0x0601 ~0x067F	SDO命令报文
0x0580+Node_ID	0x0581~0x05FF	SDO命令反馈报文
0x0200+Node_ID 0x0500+Node_ID	0x0201~0x027F 0x0501 ~0x057F	PDO命令报文 (第1~4组)
0x0180+Node_ID 0x0480+Node_ID	0x0181~0x01FF 0x0481 ~0x04FF	PDO节点状态报文 (第1~4组)

数据

1.NMT命令数据(COB_ID: 0x0000)

数据组成:

命令字	节点ID
00	00

命令字内容含义:

命令字	功能用法
0x01	启动节点
0x02	停止节点
0x80	进入预操作状态
0x81	重置节点
0x82	重置通信

例:

COB_ID	数据	说明
0x0000	81 01	

2.SYNC同步报文数据(COB_ID: 0x0080)

也叫做同步帧·没有数据部分。他是使用同步通信模式时的触发器·即节点执行PDO命令并上传驱动当前状态 (执行这上个周期的控制器命令·上传驱动当前状态)。

3.NMT节点报文数据(COB_ID: 0x0700+Node_ID)

数据部分只有一个字节,含义如下:

数值	状态
0x00	初始化
0x01	断线
0x02	连接
0x03	预备
0x04	停止
0x05	可使用 (可使用PDO通信)
0x7F	预使用 (可使用SDO通信,但不可使用PDO通信)

4.SDO报文数据(COB_ID: 0x0600+Node_ID 和 0x0580+Node_ID)

命令字	对象索引	(16位)	子索引		数据	(32位)	
加女子	0-7位	8-15位	」系コ	0-7位	8-15位	16-23位	24-33位
CS	IX0	IX1	SU	D0	D1	D2	D3
00	00	00	00	00	00	00	00

数据标准样式

数据长度	SDO 读命令	SDO 写命令
8位	40 IX0 IX1 SU	2F IX0 IX1 SU D0
回复	4F IX0 IX1 SU D0	60 IX0 IX1 SU 00 00 00 00
16位	40 IX0 IX1 SU	2B IX0 IX1 SU D0 D1
回复	4B IX0 IX1 SU D0 D1	60 IX0 IX1 SU 00 00 00 00
32位	40 IX0 IX1 SU	23 IX0 IX1 SU D0 D1 D2 D3
回复	43 IX0 IX1 SU D0 D1 D2 D3	60 IX0 IX1 SU 00 00 00 00
出现错误回复	80 IX0 IX1 SU D0 D1 D2 D3	(数据是终止上传代码)

错误代码

终止代码 描述

终止代码	描述
0503 0000h	切换位补偿
0504 0000h	SDO 协议超时
0504 0001h	命令说明符无效
0504 0002h	块大小无效(仅适用于块模式·请参阅 DS301)
0504 0003h	序列号无效(仅适用于块模式·请参阅 DS301)
0504 0004h	CRC 错误(仅适用于块模式·请参阅 DS301)
0504 0005h	内存不足
0602 0002h	尝试写一个只读对象
0602 0000h	对象在对象字典中不存在
0604 0001h	对象不能映射到 PDO
0604 0002h	要映射的对象的数量和长度超过 PDO 长度
0604 0003h	一般参数不兼容的原因
0604 0007h	一般在设备内部不兼容
0606 0000h	由于硬件错误,访问失败
0607 0010h	数据类型不匹配,服务参数长度不匹配
0607 0012h	数据类型不匹配,服务参数的长度太长
0607 0013h	数据类型不匹配,服务参数的长度太短
0609 0011h	字索引不存在
0609 0030h	超出参数值范围(仅限写访问)
0609 0031h	参数值过大
0609 0032h	参数值过小
0609 0036h	最大值小于最小值
0800 0000h	一般错误
0800 0020h	数据不能传输或存储到应用程序
0800 0021h	由于本地控制,数据不能传输或存储到应用程序中
0800 0022h	由于当前设备状态,数据无法传输或存储到应用程序
0800 0023h	对象字典的动态生成失败或者不存在对象字典(发生文件和文件错误的对象字典加载)

5.PDO报文数据(COB_ID: 0x02(2~5)00+Node_ID 和 0x01(1~4)80+Node_ID)

PDO报文的数据全部都是用来传递实时数据·各个数据代表的3意义是在PDO配置时提前约定好的·我们先介绍一下PDO的配置命令组成:

命令字	通道	索引	海港 乙壶己	通道子索引 参数大小(长度)	参数子地址	配置参数	
삐소구	0-7位	8-15位				0-7位	8-15位
CS	IX0	IX1	SU	LE	ZZ	SS0	SS1
23	00	00	00	00	00	00	00

PDO参数配置

1.PDO通讯参数 ("XXh"中"h"代表16进制数)

(1) PDO 通讯参数 ("XXh" 中 "h" 代表 16 进制数)

索引	子索引	描述	数据类型
	00h	参数条目数量	Unsigned 8
	01h	发送/接收这个 PDO 的帧 ID	Unsigned 32
		发送类型	
		00h:非循环同步	
	02h	01h:循环同步	
RPDO: 1400h ~ 15FFh		FCh:远程同步	Unsigned 8
TPDO: 1800h ~ 19FFh		FDh:远程异步	
		FEh: 异步・制造商特定事件	
		FFh:异步·设备子协议特定事件	
	03h	生产率禁止上界时间(1/10ms)	Unsigned 16
	05h	事件定时器触发的时间(单位 ms)	Unsigned 16
	06h	同步起始值	Unsigned 8

示例 PDO 帧

0x180 04 01 00 00 80

帧解析

字节	数据	解析
ID	0x180	TPDO1 (1800h)
Byte 0	04	发送类型(同步传输)
Byte 1-3	01 00 00	PDO 传输 ID(0x000001)

Byte 4 80	事件触发,异步传输
-----------	-----------

该 PDO 帧表示 **TPDO1**(**1800h**) · 使用 **同步传输模式**(04h), PDO ID 0x00 00 01 · 且支持 **异步事件触发**(**80h**)。

2.PDO映射参数 ("XXh"中"h"代表16进制数)

索引	子索引	描述	数据类型
	00h	参数条目数量(通道配置参数个数)	Unsigned 8
RPDO: 1600h ~ 17FFh	01h	第一个参数相关参数(数据地址、子地址、长度)	Unsigned 32
TPDO: 1A00h ~ 1BFFh			
	08h	第八个参数相关参数(数据地址、子地址、长度)	Unsigned 32

注: 配置命令见 2.(5) PDO 报文数据·一组 PDO 最多能映射 64 位数据 (4 个 Word)。

配置一个通道的协议:

帧 ID	长度	数据	说明			
配置第	配置第一组接收 RPDO(对驱动设备是接收,是上位机发送的命令)					
601	8	2F 00 16 00 00 00 00 00	将 RPDO 映射清空			
581	8	60 00 16 00 00 00 00 00	清空命令执行成功			
601	8	23 00 16 01 10 00 CD AB	配置第一个映射 ABCD_00 长度 16 位			
581	8	60 00 16 01 00 00 00 00	配置 ABCD_00 成功			
601	8	23 00 16 02 20 00 GH EF	配置第二个映射 EFGH_00 长度 32 位			
581	8	60 00 16 02 00 00 00 00	配置 EFGH_00 成功			
配置第	配置第一组发送 TPDO(对驱动设备是发送,回馈给上位机的信息)					
601	8	2F 00 1A 00 00 00 00 00	将 TPDO 映射清空			
581	8	60 00 1A 00 00 00 00 00	清空命令执行成功			
601	8	23 00 1A 01 10 00 KL IJ	配置第一个映射 IJKL_00 长度 16 位			
581	8	60 00 1A 01 00 00 00	配置 IJKL_00 成功			

		00		
601	8	23 00 1A 02 10 00 OP MN	配置第二个映射 MNOP_00 长度 16 位	
581	8	60 00 1A 02 00 00 00 00	配置 MNOP_00 成功	
601	8	23 00 1A 03 20 00 ST QR	配置第三个映射 QRST_00 长度 32 位	
581	8	60 00 1A 03 00 00 00 00	配置 QRST_00 成功	
同步命令 & PDO 通信				
080	0 同步命令帧		同步命令帧	
201	6	00 00 00 00 00 00	发送命令 ABCD_00 为 00 00, EFGH_00 为 00 00 00 00	
181	8	70 82 00 00 00 00 00 00	00 00 从站上传 IJKL_00 为 82 70, MNOP_00 为 00 00, QRST_00 为 00 00 00 00 00	

初始化配置

设置PDO通道(按照顺序)

关闭不需要的PDO通道

关闭默认PDO通道(使用SDO进行配置)

 $User_pdo_1801_01[8] = \{0x23,0x01,0x18,0x01,0x81,0x02,0x00,0x80\}$

示例帧: ID=0x601, Data=23 01 18 01 81 02 00 80

命令字: 0x23 → SDO写请求 **对象地址**: 0x1801 → TPDO1通信参数(0x01 18小端模式) **子索引**: 0x01 → 传输类型 **数据**: 0x8002 → 禁用TPDO1(传输类型设为无效)

防止默认PDO干扰,确保自定义映射生效

0x1401 - 0x1403 RPDO1-3通信参数 0x1801 - 0x1803 TPDO1-3通信参数

配置 TPDO 映射(状态反馈)

 $User_pdo_1A00_01[8] = \{0x23,0x00,0x1A,0x01,0x10,0x00,0x41,0x60\}$

示例帧: ID=0x601, Data=23 00 1A 01 10 00 41 60

命令字: 0x23 → SDO写请求 **对象地址**: 0x1A00 → TPDO1映射参数 **子索引**: 0x01 → 映射条目1 **数据**: 0x60410010 → 映射状态字6041h(16位数据)

0x1A00 子索引0 → 映射条目数(如3条映射需写0x03) 每条映射格式: [**对象地址**][**子索引][数据长度](小端模式)**

配置RPDO映射(控制指令)

 $User_pdo_1600_01[8] = \{0x23,0x00,0x16,0x01,0x10,0x00,0x40,0x60\}$

示例帧: ID=0x601, Data=23 00 16 01 10 00 40 60

命令字: 0x23 → SDO写请求 **对象地址**: 0x1600 → RPDO1映射参数 **子索引**: 0x01 → 映射条目1 **数据**: 0x60400010 → 映射控制字6040h(16位数据)

0x6040(控制字) 0x6071(目标电流) 0x607A(目标位置)

设置心跳协议

$\{0x2B,0x17,0x10,0x00,0xC8,0x00,0x00,0x00\}$

示例帧:ID=0x601, Data=2B 17 10 00 C8 00 00 00

命令字: 0x2B → SDO写请求 (加速传输) **对象地址**: 0x1017 → 心跳生产者时间 **子索引**: 0x00 → 主参数 **数据**: 0xC800 → 心跳间隔200ms (0xC8=200)

作用:主站检测节点在线状态

响应机制: 节点定期发送心跳帧 (ID=0x700 + 节点ID)

模式设置

设置工作模式(6060h)

$\{0x2F,0x60,0x60,0x00,0x01,0x00,0x00,0x00\}$

示例帧: ID=0x601, Data=2F 60 60 00 01 00 00 00

命令字: 0x2F → SDO写请求(分段传输) **对象地址**: 0x6060 → 模式选择 **子索引**: 0x00 → 主模式 **数据**: 0x01 → 位置模式(1=位置・3=速度・A=电流)

运动参数配置

示例帧:ID=0x601, Data=23 83 60 00 88 13 00 00

命令字: 0x23 → SDO写请求 **对象地址**: 0x6083 → 加速度参数 **子索引**: 0x00 → 主参数 **数据**: 0x1388 → 加速度值 5000 (实际50 RPM/S・需×100)

0x6083:加速度 0x6084:减速度 0x6081:轮廓速度

状态机控制

步骤1:准备使能(控制字=0x0006)

ID=0x601, Data=2B 40 60 00 06 00 00 **对象地址**: 0x6040, 数据: 0x0006

步骤2:使能激活(控制字=0x0007)

ID=0x601, Data=2B 40 60 00 07 00 00 00

步骤3: 启动运动(控制字=0x000F)

ID=0x601, Data=2B 40 60 00 0F 00 00 00

实时控制

通过PDO写入目标的状态和位置

示例帧: ID=0x201, Data=0F 00 00 40 00 00 00 00

ID=**0x201** → RPDO1的CAN ID(0x200+节点ID) 数据解析:

• 控制字: 0x000F → 启动

• 目标位置: 0x4000 → 16384cnt (90°)

SDO与PDO分工

	类型	方向	作用	典型ID ————————————————————————————————————
	SDO	双向	配置参数、读取状态	0x600+节点ID
-	TPDO	从机→主机	实时状态反馈(位置/电流)	0x180+节点ID
	RPDO	主机→从机	实时控制指令(目标位置)	0x200+节点ID

同步传输(SYNC帧)

示例帧:ID=0x80, Data=空

作用:触发所有节点同步发送TPDO 配置关键点:

- TPDO传输类型设置为1-240(同步窗口编号)
- RPDO可配置为同步响应模式

错误处理

示例帧: ID=0x581, Data=4B 3F 60 00 01 00 00 00

对象地址: 0x603F → 错误寄存器 数据: 0x0001 → 过压故障 处理流程: **1.** 读取错误代码(0x603F) **2.** 发送控制字0x0080(故障复位) **3.** 重新使能