DAIT Project

Trajectory Preduiction for Human-Human Interaction

Rodolphe Farrando, Romain Gratier 23.05.2018

EPFL

Table of contents

- 1. Introduction
- 2. Data
- 3. Models
- 4. Results
- 5. Representation

Introduction

• Trajectory prediction is crucial for improving autonomous vehicles behaviour

1

Introduction

- Trajectory prediction is crucial for improving autonomous vehicles behaviour
- Could avoid situations seen in the ethical lectures

1

Previous work Social LSTM : Human Trajectory Prediction in Crowded Spaces

In their project, they used different components to make the structure:

- One LSTM per pedestrian
- Social Pooling
- Prediction per frame

Previous work Social LSTM : Human Trajectory Prediction in Crowded Spaces

In their project, they used different components to make the structure:

- One LSTM per pedestrian
- Social Pooling
- Prediction per frame

In our project we only use:

- One CNN, or one LSTM
- Prediction per pedestrian

Data

The preprocessing is divided in 4 steps:

1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y
- 4. For each frame, if there is a interacting pedestrian we add its coordinates and speed otherwise zeros are added

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y
- 4. For each frame, if there is a interacting pedestrian we add its coordinates and speed otherwise zeros are added
- 5. Data augmentation (flip and add noise) cf. last slide

Data

We have a file with:

- Pedestrians ID
- Frame number
- Twenty sets of x and y coordinates per pedestrian

Frame Number	ID	X	у	$V_{\scriptscriptstyle X}$	V_y
:	:	:	:	:	:

Data

We have a file with:

- Pedestrians ID
- Frame number
- Twenty sets of x and y coordinates per pedestrian

We want:

- Train on the 10 first coordinates
- Predict the next 10

Frame Number	ID	X	у	$V_{\scriptscriptstyle X}$	V_y
•					
:	:	:	:	:	:

Example of trajectory to predict

Outputs structure

Finally our inputs have the following shape: $[10, N, 4 * N_{inter}]$, with

- 10: sequence length
- N: The number of data
- $4 * N_{inter}$: 4 (being the x and y coordinates and V_x and V_y velocities) times the number of pedestrians interacting with the one of interest.

The four different cases are:

- 1. Predict coordinates with loss defines as $L_1 = (X X_{pred})^2$ with X = [x, y]
- 2. Predict speeds with loss defines as $L_2 = (V V_{pred})^2$ with $V = [V_x, V_y]$
- 3. Predict both coordinates and speeds with loss defines as $L=L_1+L_2$
- 4. Predict both coordinates and speeds with loss defines as $L=L_1+L_2+L_3$, with $L_3=(X-X_{t-1}+V_t*0.4)^2$

The fourth case ensure that coordinates and speeds are not predicted independently.

5

Models

CNN

Inputs: sequence of coordinates and velocities of the pedestrians **Outputs:** sequence of predicted coordinates and velocities for a trajectory of interest

Inputs: sequence of coordinates and velocities of the trajectory of interest and of the interacting trajectories

Outputs: sequence of predicted coordinates and velocities for the trajectory of interest

7

Results

Results: Introduction

To calculate the correctness of the prediction two indicators are used:

- 1. The final displacement error: $e_{fin} = \sqrt{(X_n X_{pred,n})^2}$
- 2. The mean displacement error: $e_{\mathit{fin}} = \sqrt{\frac{\sum_{i=0}^{n} (X_{\mathsf{gt},i} X_{\mathit{pred},i})^2}{(n)}}$

Depending on the inputs two ways are possible to find the predicted coordinates:

- 1. If the coordinates are predicted: directly use them
- 2. If the velocities are predicted: $X_t = X_{t-1} + V_t \cdot 0.4$, with 0.4 the time between two frames in seconds

Results for both models:

- 3 Types of trajectory defined: Static, linear and non-linear trajectories
- Mean and Final displacements

Results

Linear prediction results:

• Type 1: *Mean* = 0.141, *Final* = 0.322

• Type 2: Mean = 0.541, Final = 0.93

• Type 3: Mean = 0.651, Final = 1.457

 \bullet Total: Mean = 0.512, Final = 0.982

			CNN				LSTM			
			Type 1	Type 2	Type 3	Total	Type 1	Type 2	Type 3	Total
Γ	Coord.	Mean	4.696	5.144	4.674	4.176	1.16	0.768	0.817	0.837
		Final	10.246	7.009	10.501	5.602	1.269	0.911	1.087	1.011
ıſ	Speed	Mean	0.567	5.133	1.911	4.17	0.742	0.397	0.448	0.461
1		Final	0.77	6.971	3.882	5.587	1.433	0.716	0.874	0.863
ſ	2 Loss	Mean	1.269 3	5.134	1.762	4.163	0.519	0.484	0.568	0.511
		Final	2.727	6.978	3.546	5.57	0.979	0.871	1.093	0.946
	3 Loss	Mean	0.549	5.135	3.829	4.163	0.537	0.473	0.576	0.51
		Final	0.758	6.983	4.962	5.573	0.992	0.86	1.125	0.95
_										

Results

Discussion

Representation

Dynamic Representation

Discussion