Problem Set 7

This problem set is due at 10:00 am on Tuesday, April 18th.

Problem 7-1: Reductions

In SAT(10) the input is a Boolean formula φ in which each variable appears in at most 10 clauses. The problem is to decide whether φ is satisfiable. Show a polynomial-time reduction from 3SAT to SAT(10).

Solution:

Reduction:

Given 3 CNF boolean formula S.

Let $C = \{c_1, c_2, c_3, \dots, c_n\}$ be the set of clauses in S.

Let $X = \{x_1, x_2, x_3, \dots x_n\}$ be the set of variables in S.

Each clause c_i is of the form $(t_1 \lor t_2 \lor t_3)$ where $t_i \in \{x_j, \neg x_j\}$

Let $X' = \{x'_i \in X | |\{c_i \in C | c_i \ni x'_i\}| > 10\}$ be the set of all variables in X that appear in more than 10 clauses.

Let S' = S. Let all changes to the boolean formula described below now be performed on S'.

For each variable x_i' in X' take all clauses (except the first 6) in which x_i' appears and replace it with a newly introduced variable x_{n+j} . Let j start at 1 and increment for each new variable created. Add two additional clauses $(\neg x_i' \lor x_{n+j}) \land (x_i' \lor \neg x_{n+j})$. If x_{n+j} is contained in more than 10 clauses in S', add x_{n+j} to X', and make sure not to replace the clauses of the form $(\neg A \lor B) \land (A \lor \neg B)$

S' is now in SAT(10) form.

S is satisfiable $\iff S'$ is satisfiable:

S is satisfiable \Rightarrow S' is satisfiable.

Given a satisfiable assignment of each element of X^S to boolean values, there is a satisfying assignment of all elements of $X^{S'}$.

First assign all corresponding variables of X^S to $X^{S'}$ such that $x_i^s = x_i^{s'}$.

For all remaining variables, find all clauses of the form $(\neg A \lor B) \land (A \lor \neg B)$. Consider the clauses with B unassigned and A assigned. Assign to B the same boolean value of A. S' is now satisfied.

For clauses that were unchanged from S to S': they are satisfied because x_i^s was assigned to $x_i^{s'}$.

For clauses in which the variables were replaced with a new variable: they are satisfied because the two variables were assigned the same value.

For the added clauses: they are satisfied because they are of the form $(\neg A \lor B) \land (A \lor \neg B)$ which has the following truth table:

A	B	$(\neg A \lor B) \land (A \lor \neg B)$
0	0	1
0	1	0
1	0	0
1	1	1

Thus as long as A and B have the same value, they are satisfied.

S is satisfiable $\Leftarrow S'$ is satisfiable.

Given a satisfiable assignment of each element of $X^{S'}$ to boolean values, there is a satisfying assignment of all elements of X^S .

Assign all corresponding variables of $X^{S'}$ to X^S such that $x_i^s = x_i^{s'}$.

S is now satisfied by a similar argument as the case above.

This reduction takes polynomial time because

- 1. finding the variables that appear in more than 10 clauses takes linear time with respect to the number of clauses
- 2. replacing a variable takes linear time. (Need to iterate through the clauses in which to replace).
- 3. The number of times a variable is replaced is bounded by the square of number of times the variable appears in a clause.
- 4. The number of times the variable appears in a clause is bounded the number of clauses. (We do not replace the additional clauses we created.)
- $pprox O(N^3)$ where N is the number of clauses

Problem Set 7

Problem 7-2: Reductions and algorithms

Suppose that one can decide 3SAT in polynomial time. Show that given a Boolean formula φ one can find the satisfying assignment for φ , if such exists, in polynomial time. If φ is unsatisfiable, the algorithm should declare so.

Hint: Given a Boolean formula and a variable, consider the formula where the variable is substituted TRUE and another formula where the same variable is substituted FALSE. Solution:

Let $SAT(\varphi)$ be an algorithm that determines if φ is satisfiable. Let x_1, x_2, \ldots, x_n be the variables in φ . In this algorithm, 0 will indicate false and 1 will indicate true. To determine the assignment that satisfies φ , first call $SAT(\varphi)$. If $SAT(\varphi) = 0$, then φ is not satisfiable, so declare it so.

Otherwise, φ is satisfiable. Compute φ_1^1 , substituting 1 for all x_1 in φ . This means that every clause containing x_1 reduces to 1, and can therefore be eliminated from the set of clauses. If there are no other clauses, then the $\varphi_1^1 = 1$.

Also compute φ_1^0 , substituting 0 for all x_1 in φ . This means that every clause containing x_1 can simply remove x_1 from the clause. If the clause has no more variables, then the whole clause can be set to 0, and $\varphi_1^0 = 0$.

Next, call $SAT(\varphi_1^1)$ and $SAT(\varphi_1^0)$. Note that one of these must return 1, because φ itself is satisfiable. If $SAT(\varphi_1^1)$ is 1, then set $\varphi_1 = \varphi_1^1$, and assign $x_1 = 1$. Similarly, if $SAT(\varphi_1^0) = 1$, then set $\varphi_1 = \varphi_1^0$, and assign $x_1 = 0$.

Continue making assignments to x_k by computing φ_k^1 and φ_k^0 by substituting 1 and 0 respectively for x_k into φ_{k-1} , until all x_k are assigned. This will be a valid assignment for the x_n s to satisfy φ .

If $SAT(\varphi)$ takes $O(n^{O(1)})$, each iteration of the algorithm takes $O(n^{O(1)})$ time; this implies the entire algorithm runs in $O(n \times n^{O(1)}) = O(n^O(1))$ time.