Algorithme de la classification ascendante hiérarchique

Phase préalable : Calcul des dissimilarités des objets 2 à 2

Entrées : n(n-1)/2 dissimilarités

Regroupement des 2 éléments les plus proches

jusqu'au regroupement de tous les objets en un seul groupe: (n-1) étapes

Calcul d'une nouvelle matrice de dissimilarités entre les éléments (objets isolés ou groupes) restants

Stratégie d'agrégation

1ère étape :

si d est une dissimilarité, on choisit e_i et $e_{i'}$ tels que d (e_i , $e_{i'}$) minimum $\Rightarrow G_1 = \{e_i, e_{i'}\}$

2ème étape:

nouveau tableau de dissimilarités $(n-1)\times(n-1)$

⇒ nécessité de définir une *méthode d'agrégation* entre un individu et un groupe d'individus ou entre deux groupes d'individus.

Méthodes d'agrégation

Lien minimum

$$\delta(A, B) = \min\{d(a, b), a \in A, b \in B\}$$

Lien maximum

$$\delta(A, B) = \max\{d(a, b), a \in A, b \in B\}$$

Distance des centres de gravité

$$\delta(A, B) = d(g_a, g_b)$$

• • •

Exemple

Agrégation selon le lien minimum

	а	b	С	d	e
a	0	23	35	43	50
b	23	0	21	32	45
С	35	21	0	11	25
d	43	32	11	0	17
e	50	45	25	17	0

$$G_1 = \{c, d\} \implies$$

	а	b	e	G_1
a	0	23	50	35
b	23	0	45	21
e	50	45	0	17
G_1	35	21	17	0

Tableau des dissimilarités

$$G_2 = \{e, G_1\} \implies$$

	а	b	G_2
а	0	23	35
b	23	0	21
G_2	35	21	0

$$G_3 = \{b, G_2\} \implies \begin{vmatrix} a & G_3 \\ a & 0 & 23 \\ G_2 & 23 & 0 \end{vmatrix}$$

Exemple (suite)

Agrégation selon le lien maximum

	а	b	С	d	e
a	0	23	35	43	50
b	23	0	21	32	45
С	35	21	0	11	25
d	43	32	11	0	17
e	50	45	25	17	0

$$G_1 = \{c, d\} =$$

	а	b	e	G_{l}
а	0	23	50	43
b	23	0	45	32
e	50	45	0	25
G_1	43	32	25	0

Tableau des dissimilarités

$$G_2 = \{a, b\}$$
 \Rightarrow $\begin{vmatrix} e & G_1 \\ e & 0 & 25 \\ \hline G_1 & 25 & 0 \\ \hline G_2 & 50 & 43 \end{vmatrix}$

$$G_3 = \{e, G_1\} \implies \begin{vmatrix} G_2 & G_3 \\ G_2 & 0 & 50 \\ G_3 & 50 & 0 \end{vmatrix}$$

Classification dans un espace euclidien Inerties interclasse et intraclasse

Soit une classification en k groupes d'effectifs n_1, \ldots, n_k , les individus étant des points d'un espace euclidien. Notons les groupes G_1, \ldots, G_k , et g_1, \ldots, g_k leurs centres de gravité (g est le centre de gravité du nuage).

Inertie totale:
$$I_{tot} = \frac{1}{n} \sum_{i=1}^{n} d^{2}(e_{i}, g)$$

Inertie interclasse:
$$I_{inter} = \frac{1}{n} \sum_{i=1}^{k} n_i \cdot d^2(g_i, g)$$

Inertie intraclasse:
$$I_{intra} = \frac{1}{n} \sum_{i=1}^{k} \sum_{e \in G_i} d^2(e, g_i)$$

Critère d'agrégation selon l'inertie

Théorème de Huygens :

Inertie totale = Inertie inter-classe + Inertie intra-classe

Au fur et à mesure que les regroupements sont effectués, l'inertie intra-classe augmente et l'inertie interclasse diminue, car leur somme est une constante liée aux données analysées.