

Data Converter Circuits

- Sample-and-Hold (SAH)
- Discrete-time Quantizers

- A pulse train for sampling
 - Could be a smoother waveform in practice
- A sampling capacitor (C_s)
- A switch (SW)
- Two-phase operation:
 - Sampling: SW = ON
 - Holding SW = OFF

- Sampling Phase (SW:ON)
 - Slow-moving (**low-frequency**) input signal

Sampling Phase (SW:ON)

- Slow-moving (low-frequency) input signal
- Switch ON-resistance
- Delay in sampling: $\tau = R_{on}C_s$

Sampling Phase (SW:ON)

 fast-moving (high-frequency) input signal

Ideal switch $(R_{on} = 0)$

Practical switch $(R_{on} \neq 0)$

- Sampling Phase (SW:ON)
 - fast-moving (high-frequency) input signal
 - Sampling error
 - Limitation on the maximum input frequency (sampling bandwidth)

Pause and Ponder 1

 What is the highest acceptable input frequency for keeping the sampling error below V_{LSB} in an N-bit ADC?

$$f_{s,max} = f_{Nyquist} = 2f_{in,max}$$

$$v_c(t) = V_{fs} (1 - e^{-(t-t_1)/\tau}) u(t - t_1)$$

$$\delta_S = V_{fS} - v_c(t_2) = V_{fS}e^{-(t_2 - t_1)/\tau} = V_{fS}e^{-T_S/2\tau}$$

$$\delta_s \le V_{LSB} \approx \frac{V_{fs}}{2^N}$$
 $T_{s,min} = 2N(\ln 2)\tau$

Pause and Ponder 1

 What is the highest acceptable input frequency for keeping the sampling error below V_{LSB} in an N-bit ADC?

$$f_{s,max} = f_{Nyquist} = 2f_{in,max}$$

$$T_{s,min} = 2N(\ln 2)\tau \qquad \Longrightarrow \qquad f_{s,max} = \frac{1}{2N(\ln 2)\tau}$$

$$f_{in,max} = \frac{1}{4N(\ln 2)\tau}$$

Example:
$$\tau = 20 \text{ ps}$$
, $f_{in} = 2 \text{ GHz}$
 $\Rightarrow N_{max} = 9$

- Sampling Phase Nonidealities:
 - Clock feedthrough
 - Caused by parasitic capacitors
 - Clock harmonics
 - DR degradation, output glitches
 - Nonlinearities
 - Input-dependent delay
 - → code-dependent sampling error
 - Input-dependent feedthrough

Holding Phase (SW:OFF)

- Ideal switch (open-circuit)
- Sampling capacitor preserves its charge

Holding Phase (SW:OFF)

- Parasitic resistance (leakage current)
- R_p partially discharges C_S
- $\tau = R_p C_S$

Pause and Ponder 2

• We are oversampling the signal $v_a = 2\cos(2\pi \times 10^7 t)$ with a 100 MHz pulse. How many digital codes are lost because of a leaky S/H circuit with $C_S = 1$ pF and $R_n = 20 \text{ k}\Omega$ if we use a 10-bit quantizer?

$$v_c(t) = V_{fs}e^{-(t-t_1)/\tau}u(t-t_1)$$
 $\tau = R_pC_s = 20 \text{ ns}$ $V_{LSB} = \frac{V_{fs}}{2N-1} = 1.96 \text{ mV}$

$$V_{LSB} = \frac{V_{fs}}{2^N - 1} = 1.96 \text{ mV}$$

$$\delta_H = V_{fs} - v_c(t_2) = V_{fs} (1 - e^{-(t_2 - t_1)/\tau}) = V_{fs} (1 - e^{-T_s/2\tau}) = 0.442 \text{ V}$$

$$2^{N_{eff}} = \frac{V_{fs} - \delta_H}{V_{LSB}} \approx 795$$
 \longrightarrow $\begin{cases} D_{lost} = 1023 - 795 \approx 228 \\ N_{eff} = 9.63 \end{cases}$

Flash ADC

Analog comparator

$$D_{out} = \begin{cases} 1 & ; V_{in} \ge V_{ref} \\ 0 & ; V_{in} < V_{ref} \end{cases} \qquad V_{in} - V_{ref} - V$$

- Reference voltage generation
 - Resistor ladder
- Fast conversion
 - All bits ready in just a single clock cycle
- Power inefficient and bulky
 - 2^N resistors and 2^N-1 comparators

Flash ADC – Example

Successive Approximation ADC

- An example of a multiple-cycle ADCs
 - Complete conversion takes *N* clock cycles
- Bit-by-bit approximation
- Power efficient and easy to scale for higher resolution
- SAR ADC in the literature

•
$$N = 5$$
, $V_{fs} = 1 V$

•
$$N = 5$$
, $V_{fs} = 1 V$

•
$$N = 5$$
, $V_{fs} = 1 V$

•
$$N = 5$$
, $V_{fs} = 1 V$

•
$$N = 5$$
, $V_{fs} = 1 V$

