Elliptic curves: homework 8

Mastermath / DIAMANT, Spring 2019 Martin Bright and Marco Streng

- 1. Show that being isogenous is an equivalence relation on the set of complex tori, and that there are uncountably many isogeny classes of complex tori.
- **2.** The multiplier ring of a lattice Λ is defined as

$$\mathcal{O}(\Lambda) = \{ \alpha \in \mathbb{C} \mid \alpha \Lambda \subset \Lambda \}.$$

- (a) Show that $\mathcal{O}(\Lambda)$ is a subring of \mathbb{C} isomorphic to the endomorphism ring $\operatorname{End}(\mathbb{C}/\Lambda)$ of the torus \mathbb{C}/Λ , that is, the ring of isogenies from \mathbb{C}/Λ to itself.
- (b) Show that we have $\mathcal{O}(\Lambda) = \mathbb{Z}$ unless Λ is homothetic to a lattice of the form $\mathbb{Z} + \mathbb{Z} \lambda$, with $\lambda \in \mathbb{C} \setminus \mathbb{R}$ a zero of an irreducible quadratic polynomial $aX^2 + bX + c \in \mathbb{Z}[X]$, and that in this exceptional case we have $\mathcal{O}(\Lambda) = \mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right]$ with $D = b^2 4ac < 0$.

[In the exceptional case, we say that \mathbb{C}/Λ has complex multiplication by $\mathcal{O}(\Lambda)$.]

3. (a) For $\Lambda = \mathbb{Z} + i\mathbb{Z}$, show

$$\wp_{\Lambda}(iz) = -\wp_{\Lambda}(z), \qquad \wp'_{\Lambda}(iz) = i\wp_{\Lambda}(z), \qquad G_k(\Lambda) = 0$$

for $k \geq 3$ not divisible by 4.

- (b) Give the analogous results for $\Lambda=\mathbb{Z}+\rho\mathbb{Z}$ where $\rho=\exp(2\pi i/3)=\frac{i\sqrt{3}-1}{2}$.
- **4.** Show that the subrings of \mathbb{C} that are lattices correspond bijectively to the set of negative integers D satisfying $D \equiv 0, 1 \pmod{4}$ under the association $D \mapsto \mathcal{O}(D) = \mathbb{Z}\big[\frac{D+\sqrt{D}}{2}\big]$. Show that there exists a ring homomorphism $\mathcal{O}(D_1) \to \mathcal{O}(D_2)$ if and only if D_1/D_2 is a square in \mathbb{Z} .
- **5.** Compute the structure of the group $\operatorname{Hom}(\mathbb{C}/\Lambda_1,\mathbb{C}/\Lambda_2)$ for each of the following choices of Λ_1 and Λ_2 :
 - (a) $\Lambda_1 = \Lambda_2 = \mathbb{Z} + \mathbb{Z}i$;
 - (b) $\Lambda_1 = \mathbb{Z} + \mathbb{Z}i$ and $\Lambda_2 = \mathbb{Z} + \mathbb{Z}2i$;
 - (c) $\Lambda_1 = \mathbb{Z} + \mathbb{Z}i$ and $\Lambda_2 = \mathbb{Z} + \mathbb{Z}\sqrt{-2}$.
- **6.** See also Exercise 6.6 of [Silverman] Define the j-invariant of a lattice Λ by

$$j(\Lambda) = 1728 \frac{g_2(\Lambda)^3}{g_2(\Lambda)^3 - 27g_3(\Lambda)^2}.$$

Prove that, if Λ and Λ' are homothetic lattices, then $j(\Lambda) = j(\Lambda')$.

- 7. For $\tau \in \mathbb{C}$ with $\Im(\tau) > 0$, define $j(\tau) := j(\mathbb{Z} + \mathbb{Z}\tau)$.
 - (a) Prove that j is a holomorphic function of τ .
 - $\begin{array}{l} \text{(b) Show } j(\frac{a\tau+b}{c\tau+d})=j(\tau) \text{ for all } \binom{a\ b}{c\ d}\in \mathrm{SL}_2(\mathbb{Z}). \\ \text{(c) Compute } j(i) \text{ and } j(\rho) \text{ for } \rho \text{ as in Problem 3.} \end{array}$