偏微分方程式論 レポート 1月12日発表分

05-210520 司馬博文

2023年1月30日

問題 1.1. p > 0 について, \mathbb{R} 上の関数を

$$g(x) := e^{-x^p} \mathbf{1}_{\{x>0\}}.$$

と定める.

(1) ある定数 $\theta \in \mathbb{R}$ が存在し、任意の y > 0, $\alpha \in \mathbb{N}$ について、

$$|g^{(k)}(y)|\leqslant rac{k!}{(heta y)^k} \mathrm{e}^{-rac{y^{-p}}{2}}.$$

(2) ある定数 $C, r \in \mathbb{R}$ が存在し、任意の $x \in \mathbb{R}, \alpha \in \mathbb{N}$ について、

$$|g^{(k)}(x)| \leq C(k!)^{1+\frac{1}{p}}r^{-k}.$$

注 1.2 (Gervey class). Cauchy の積分公式がヒント. $g \in C^{\infty}(\Omega)$ が次を満たすとき、**Gervey class** σ であるという:任意の $\Omega' \subseteq \Omega$ に対して、ある $M, r \in \mathbb{R}$ が存在して、任意の $y \in \Omega', \beta \in \mathbb{N}^N$ について $|D^{\beta}g(y)| \leq M(|\beta|!)^{\sigma}r^{-|\beta|}$. g が解析的であることと、Gervey class 1 であることは同値であることが知られていいる.