

Unit Vector Notation

$$\vec{V} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\vec{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \vec{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \vec{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \vec{V} + \vec{D} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \vec{V} + \vec{D} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \qquad \vec{V} + \vec{D} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$

Source: Unit vectors intro (video) | Vectors | Khan Academy

Vector Representation

What is a Vector?

A vector is a quantity with both:

- Magnitude (how much)
- Direction (which way)

Unit Vector Notation 1

We can **visualize** it as an arrow ::

- Length of the arrow = magnitude
- Arrow direction = vector direction

Example

A vector v that moves:

- 2 units right [(horizontal)
- 3 units up (vertical)

Can be written as:

Column vector:

$$ec{v} = egin{bmatrix} 2 \ 3 \end{bmatrix}$$

• Tuple notation:

$$ec{v}=(2,3)$$

Unit Vectors: The Lego Bricks of Vector World

ODES Definition

Unit vectors are the "building blocks" of direction. They have:

- Length = 1
- Point in a coordinate direction (horizontal or vertical)

We use a hat (^) to denote unit vectors.

@ 2D Unit Vectors

Name	Symbol	Vector Form	Meaning
Horizontal unit	$\hat{m{i}}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	Right (x-direction)
Vertical unit	\hat{j}	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	Up (y-direction)

Expressing Vectors with Unit Vectors

Idea

Any 2D vector can be written as a **linear combination** of \hat{i} and \hat{j} .

Service Example

Given
$$ec{v} = egin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 , we write:

$$ec{v}=2\hat{i}+3\hat{j}$$

This means:

- Move 2 units in the \hat{i} direction \blacksquare
- Move 3 units in the \hat{j} direction 🚹
- Think of this like assembling a custom vector using pre-made blocks:
- riangleq 2 blocks of \hat{i} + riangleq 3 blocks of \hat{j}

Westor Addition with Unit Vectors

6 Given

- $\vec{v}=2\hat{i}+3\hat{j}$
- $ec{b}=-1\hat{i}+4\hat{j}$

+ Adding

$$ec{v} + ec{b} = (2 + (-1))\hat{i} + (3 + 4)\hat{j} = \hat{i} + 7\hat{j}$$

Or as a column vector:

$$ec{v}+ec{b}=egin{bmatrix}1\7\end{bmatrix}$$

Geometric Intuition

You're stacking arrows tip-to-tail:

- First move like vector $\vec{v} \longrightarrow \Box$
- Then from that end, move like vector $\vec{b} \longrightarrow \Box$
- Resulting vector connects the start to the final point **

Key Takeaways

Concept	Description	
Vector	A quantity with magnitude + direction	
Unit Vectors	Basic direction vectors: $\hat{i} = [1,0]$, $\hat{j} = [0,1]$	
Vector Representation	Can use tuples, columns, or unit vector notation	
Vector Addition	Add corresponding components (horizontal with horizontal, etc.)	
Vector Construction	Any vector in 2D is just a sum of scaled unit vectors (a linear combination)	

o Final Thoughts

Unit vectors are like the X and Y axes' personal agents—they define **pure direction**. Think of \hat{i} and \hat{j} like the **north-south and east-west tiles** of a vector GPS system. Every vector is just a clever remix of them \bowtie ;

Once you're comfy with this idea, scaling to **3D** is just adding a third buddy: \hat{k} for the Z-axis \bigcirc .

Unit Vector Notation 5