EXAME 2023/02

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 02 Questão 03

EXAME 2023/02 Álgebra Linear

Prof. Paulo F. C. Tilles

Departamento de Matemática

13 de dezembro de 2023

Questões

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01

Questão 02

Questão 01 | Valor 3.0

Expresse o polinômio P(x) como uma combinação linear da base $S = \{\bar{p}_0, \bar{p}_1, \bar{p}_2, \bar{p}_3\}$.

O polinômio e a base estão definidos na TABELA I.

Questão 02 | Valor 4.0

Dada a matriz A, determine as matrizes $P \in P^{-1}$ responsáveis pela transformação $D = P^{-1}AP$, onde D é a matriz diagonal similar à matriz A.

As matrizes estão definidas na TABELA II.

Questões

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01

Questão 02

Questão 03 | Valor 3.0

Considere o conjunto de vetores linearmente independentes $X = \{x_1, x_2, x_3, x_4\}$.

Parte I. Utilize o método de Gram-Schmidt sobre os vetores de X para obter uma base ortonormal $U = {\hat{\mathbf{u}}_1, \hat{\mathbf{u}}_2, \hat{\mathbf{u}}_3, \hat{\mathbf{u}}_4}$.

Parte II. Dado o vetor \mathbf{z} , determine o seu vetor de coordenadas em relação à base U.

O conjunto *X* e o vetor **z** estão definidos na TABELA III.

 $\overline{p}_2 = 2x^2 - x^3$

LUIS FERNANDO DA CRUZ ANTUNES

 $P(x) = -5x^3 + x^2 + 4x - 4$

 $\overline{p}_2 = -5x^3 - x^2 - 2x + 1$

 $\overline{p}_0 = -4x^2 + 5x - 4$

ARTHUR SA SAYDELLES $P(x) = 2x^{3} - 2x - 5$ $\overline{p}_{0} = -5x^{3} - x^{2} + 4x + 2$ $\overline{p}_{2} = 4x^{3} - 3x^{2} - 1$	$\overline{p}_1 = 4x^3 + 2x^2 - 4x - 2$ $\overline{p}_3 = 4x^3 + 4x^2 + 3x - 3$	BRUNO DOS SANTOS UMP $P(x) = 2x^3 - 3x^2 + 4x + 4$ $\overline{p}_0 = 2x^3 - 4x^2 + 5x + 4$ $\overline{p}_2 = -x^3 + 4x^2 - x$	TERRE $ \overline{p}_1 = 2x^2 + 3x + 3 $ $ \overline{p}_3 = -5x - 2 $
EMANUELE GRIEBLER $P(x) = 5x^{3} + 3x + 5$ $\overline{p}_{0} = -4x^{3} + 3x^{2} - 5x + 4$ $\overline{p}_{2} = 2x^{3} - 2x^{2} + 3x - 5$	$\overline{p}_1 = x^3 - 4x + 3$ $\overline{p}_3 = x^3 - 1$	GABRIEL PORTO DE FREIT $P(x) = -6x^3 + 2x^2 + 5x + 1$ $\overline{p}_0 = 3x^3 - 2x + 4$ $\overline{p}_2 = 3x^3 - x^2 - 4x + 2$	
GABRIEL SILVA PETTERIN $P(x) = 6x^3 - 6x^2 - 6x + 6$ $\overline{p}_0 = -5x^3 - 2x^2 + x - 1$ $\overline{p}_2 = 3x^3 - 3x^2 + 4$	-	GUSTAVO DA SILVA REIS $P(x) = -4x^3 + 5x^2 - 6x - 6$ $\overline{p}_0 = 2x^3 - 5x + 4$ $\overline{p}_2 = -x^3 - 1$	$\overline{p}_1 = x^3 - 2x^2 + 3x + 2$ $\overline{p}_3 = -2x^3 - x^2 - x - 2$
GUSTAVO MONTAGNER D $P(x) = -2x^3 - 3x^2 + 4$ $\overline{p}_0 = 5x^2 - 2x - 1$ $\overline{p}_2 = 2x^3 - 5x + 4$	Fig. 1. Fig.	HECTOR VINICIUS BAIOTO $P(x) = 2x^3 - 4x^2 - 2x + 1$ $\overline{p}_0 = -x^3 - 4x^2 + x + 4$ $\overline{p}_2 = -x^3 - 2x^2 - 3x - 3$	$\overline{p}_1 = -5x^3 + x^2 + 5x - 3$ $\overline{p}_3 = 2x^3 - x^2 - 5x - 2$
KAUAN MARUIAMA $P(x) = -x^2 + 2x + 2$ $\overline{p}_0 = -5x^3 - 3x^2 - 5x$ $\overline{p}_2 = 3x^3 + x^2 + 4x + 2$	$\overline{p}_1 = -3x^3 - x^2 - 2$ $\overline{p}_3 = 5x + 1$	LARISSA RODRIGUES SILV $P(x) = x^3 - 6x^2 - x + 5$ $\overline{p}_0 = 2x^3 + x^2 - 5x + 2$ $\overline{p}_2 = 2x - 2$	
LEANDRO BRUM DA SILV. $P(x) = -5x^3 - 6x^2 + x - 3$ $\overline{p}_0 = 4x^2 - x - 1$	A LACORTE $\overline{p}_1 = 4x^3 + 2x + 1$	LEONARDO ROESE RAUPF $P(x) = 4x^3 + 2x^2 - 2x - 2$ $\overline{p}_0 = -x - 1$	$\overline{p}_1 = 2x^2 - x - 2$

 $\overline{p}_2 = 4x^3 + 2x^2 - 5$

 $P(x) = x^3 + 4x^2 - 4x - 2$

MARIA EDUARDA LINO VELEDA

 $\overline{p}_0 = -2x^3 + 3x^2 + x + 1$ $\overline{p}_1 = x^3 + x^2 - 5x + 5$

 $\overline{p}_2 = -3x^3 - 5x^2 + 5x - 3$ $\overline{p}_3 = 3x^2 + 3x - 4$

 $\overline{p}_2 = 2x^3 + 2x$

 $\overline{p}_1 = -4x^3$

 $\overline{p}_2 = -x^3 + 5x^2 + x + 1$

TABELA I

 $\overline{p}_2 = 5x^3 - x^2 + 3x$

Distribuição | Questão 02

	TABELA II	
ARTHUR SA SAYDELLES $A = \begin{pmatrix} -3 & 0 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 1 & -8 & 3 & 0 \\ 6 & -1 & -4 & 6 \end{pmatrix}$	BRUNO DOS SANTOS UMPIERRE $A = \begin{pmatrix} 2 & 9 & -3 & -3 \\ 0 & 1 & -7 & 4 \\ 0 & 0 & -4 & 3 \\ 0 & 0 & 0 & -5 \end{pmatrix}$	EMANUELE GRIEBLER $A = \begin{pmatrix} -9 & -6 & 4 & -5 \\ 0 & -8 & -6 & -3 \\ 0 & 0 & -4 & 3 \\ 0 & 0 & 0 & 8 \end{pmatrix}$
GABRIEL PORTO DE FREITAS $A = \begin{pmatrix} 6 & 3 & 0 & -2 \\ 0 & 8 & 1 & -4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 4 \end{pmatrix}$	$A = \begin{pmatrix} 9 & -1 & 6 & -9 \\ 0 & -5 & 0 & -9 \\ 0 & -5 & 0 & -9 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & -6 \end{pmatrix}$	GUSTAVO DA SILVA REIS $A = \begin{pmatrix} 6 & 0 & 0 & 0 \\ -1 & 7 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 9 & -1 & -2 & 8 \end{pmatrix}$
$A = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 9 & -3 & -7 & 0 \\ -8 & 9 & -1 & 5 \end{pmatrix}$	$A = \begin{pmatrix} 9 & 7 & -1 & -7 \\ 0 & 4 & 8 & 9 \\ 0 & 0 & -6 & -2 \\ 0 & 0 & 0 & -3 \end{pmatrix}$	KAUAN MARUIAMA $A = \begin{pmatrix} 9 & 0 & 0 & 0 \\ -6 & -2 & 0 & 0 \\ -9 & -7 & -1 & 0 \\ -9 & -6 & 9 & -4 \end{pmatrix}$
LARISSA RODRIGUES SILVEIRA	LEANDRO BRUM DA SILVA LACORTE	LEONARDO ROESE RAUPP
$A = \begin{pmatrix} 8 & 4 & 3 & -9 \\ 0 & 3 & -3 & -1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & 0 & 4 \end{pmatrix}$	$A = \begin{pmatrix} 2 & 8 & -5 & -1 \\ 0 & 3 & -1 & -4 \\ 0 & 0 & 8 & 3 \\ 0 & 0 & 0 & 6 \end{pmatrix}$	$A = \begin{pmatrix} 6 & 0 & 0 & 0 \\ -7 & -7 & 0 & 0 \\ 6 & 2 & 5 & 0 \\ -3 & 1 & 6 & 9 \end{pmatrix}$
LUIS FERNANDO DA CRUZ ANTUNES $A = \begin{pmatrix} 8 & 0 & 0 & 0 \\ 1 & -8 & 0 & 0 \\ 1 & 6 & 7 & 0 \\ 1 & -6 & -9 & 3 \end{pmatrix}$	MARIA EDUARDA LINO VELEDA $A = \begin{pmatrix} -4 & -5 & -5 & 8\\ 0 & 3 & -4 & 2\\ 0 & 0 & -3 & 4\\ 0 & 0 & 0 & 4 \end{pmatrix}$	

EXAME 2023/02

rof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01 Questão 02

EXA	ME	20	23/	02

Prof. Paulo F. C. Tilles

Questoes

Distribuição

Questão 02 Questão 03

TABELA III					
ARTHUR SA SAYDELLI $\mathbf{z} = (4, 3, 2, 4)$ $\mathbf{x}_1 = (-1, -1, 0, 1)$ $\mathbf{x}_3 = (3, -1, 3, -1)$	ES $\mathbf{x}_2 = (-1, -3, -2, -1)$ $\mathbf{x}_4 = (1, -3, -3, -2)$	BRUNO DOS SANTOS $\mathbf{z} = (3, 3, 1, 1)$ $\mathbf{x}_1 = (1, 1, 1, -1)$ $\mathbf{x}_3 = (3, 1, 2, 2)$	UMPIERRE $\mathbf{x}_2 = (1, -2, 2, -1)$ $\mathbf{x}_4 = (1, -3, 0, -1)$		
EMANUELE GRIEBLER $\mathbf{z} = (4, -4, -5, 0)$ $\mathbf{x}_1 = (1, 3, -2, -1)$ $\mathbf{x}_3 = (1, -3, 3, 1)$	$\mathbf{x}_2 = (1, 1, 3, 3)$ $\mathbf{x}_4 = (-1, 1, 1, 3)$	GABRIEL PORTO DE I $\mathbf{z} = (1, 1, 0, -2)$ $\mathbf{x}_1 = (0, -2, 0, 2)$ $\mathbf{x}_3 = (-1, 1, -1, 3)$	FREITAS $\mathbf{x}_2 = (-1, -3, 2, -1)$ $\mathbf{x}_4 = (2, 3, 0, -2)$		
GABRIEL SILVA PETTE $\mathbf{z} = (-3, 3, 3, 2)$ $\mathbf{x}_1 = (-2, 2, -2, 1)$ $\mathbf{x}_3 = (1, 2, 2, -1)$	RINE $\mathbf{x}_2 = (-3, 1, 0, -3)$ $\mathbf{x}_4 = (1, 0, 1, 1)$	GUSTAVO DA SILVA R $\mathbf{z} = (4, -5, -5, -2)$ $\mathbf{x}_1 = (2, -3, 0, 0)$ $\mathbf{x}_3 = (0, -1, 0, -2)$	REIS $\mathbf{x}_2 = (-1, -2, -1, -1$ $\mathbf{x}_4 = (-1, 1, -2, 3)$		
GUSTAVO MONTAGNER DOS SANTOS $\mathbf{z} = (3, -5, -4, 5)$ $\mathbf{x}_1 = (1, 1, 3, 1)$ $\mathbf{x}_2 = (0, -2, -2, -1)$ $\mathbf{x}_3 = (2, -2, -1, 2)$ $\mathbf{x}_4 = (-2, -2, -1, -2)$		$\label{eq:controller} \begin{array}{ll} \text{HECTOR VINICIUS BAIOTO DA ROSA} \\ \textbf{z} = (0,0,-1,1) \\ \textbf{x}_1 = (1,0,3,1) \\ \textbf{x}_3 = (2,2,1,-3) \\ \textbf{x}_4 = (-2,0,3,3) \end{array}$			
KAUAN MARUIAMA $\mathbf{z} = (-5, 0, -4, 5)$ $\mathbf{x}_1 = (3, 1, -1, 3)$ $\mathbf{x}_3 = (1, 3, 2, 1)$	$\mathbf{x}_2 = (-3, 1, 2, -3)$ $\mathbf{x}_4 = (1, 0, 0, -1)$	LARISSA RODRIGUES $\mathbf{z} = (4, -3, -2, -1)$ $\mathbf{x}_1 = (0, 3, -2, 1)$ $\mathbf{x}_3 = (-2, 2, 3, 2)$	S SILVEIRA $\mathbf{x}_2 = (1, 2, -1, -1)$ $\mathbf{x}_4 = (1, 3, 3, -1)$		
		LEONARDO ROESE RAUPP $ \begin{aligned} \mathbf{z} &= (0,4,0,3) \\ \mathbf{x}_1 &= (1,0,1,-1) \\ \mathbf{x}_3 &= (-2,3,-2,-2) \end{aligned} \qquad \mathbf{x}_2 = (-1,-2,-1,2) \\ \mathbf{x}_4 &= (-1,1,0,2) \end{aligned}$			
LUIS FERNANDO DA CRUZ ANTUNES $ \begin{aligned} \mathbf{z} &= (-1,3,-2,3) \\ \mathbf{x}_1 &= (-3,0,2,1) \\ \mathbf{x}_3 &= (0,-2,-1,-1) \end{aligned} \qquad \mathbf{x}_2 &= (-2,3,3,1) \\ \mathbf{x}_4 &= (2,-3,-3,2) \end{aligned} $		MARIA EDUARDA LIN $\mathbf{z} = (-1, -2, 3, -2)$ $\mathbf{x}_1 = (3, -2, -1, -3)$ $\mathbf{x}_3 = (1, -1, 3, 3)$	NO VELEDA $\mathbf{x}_2 = (-1, 2, -3, -3)$ $\mathbf{x}_4 = (-1, 2, 0, 1)$		