### Cloud Computing Applications and Services

(Aplicações e Serviços de Computação em Nuvem)

Virtualization (Part I)



### Virtualization

#### Definition and examples

Technique that allows creating a software-based virtual device or resource that, in practice, is an abstraction provided on top of existing hardware or software resources

#### • Examples:

- Virtual Machines (VMs)
- Virtual Networks
- Virtual Memory
- Logical Storage Volumes

**>** 



### Virtualization in Practice

#### Virtual Desktop Infrastructures (VDIs)

 User desktop environments (terminals) are provided by a central service (e.g., VMs running on a cluster of servers)



Examples: VMWare Horizon 7, Amazon WorkSpaces

### Virtualization in Practice

#### Simplified Cloud Deployment



Examples: Amazon EC2, Google Compute Engine, ...

# Advantages Heterogeneity

- Hardware devices (physical resources) are highly heterogeneous
  - Different models of the same hardware type (e.g., CPU, GPU, RAM, disk, network models) may have different interfaces, drivers, ...
- Virtualization can be used to abstract this heterogeneity and provide unified virtual resources
  - E.g., virtual CPUs, virtual disks, virtual networks, ...
  - Virtual resources present a single (unified) interface, independently from the underlying hardware model being virtualized

# Advantages Transparency

- User interaction with virtual resources is similar to the interaction with a physical one
  - E.g., when you connect through ssh to a remote machine, the interaction is identical if you are using a VM or a bare-metal server
- Transparency in this context means that users do not need to change their approach (e.g., commands, programs, scripts, ...) when using virtual resources

## Advantages Isolation

Virtual resources sharing a physical resource must be isolated

#### Security

 We don't want the VM of one user accessing/modifying the memory of VMs from other users. Such could lead to nasty attacks and memory corruption

#### Performance

 The VM of one user should not compromise the performance of other VMs sharing the same physical resources (e.g., CPU, memory, disk, network)

#### Failures

The failure of one VM should not lead to the failure of other VMs at the host

## Advantages Consolidation and management

- Consolidation of physical resources allows lowering costs and making better use of available hardware
  - A single server can be virtualized to, for example, run multiple operating systems (with VMs)
- Managing virtual resources is typically easier and more flexible than managing physical ones
  - ► E.g., VMs are easier/quicker to set up, destroy, migrate, ...

# Disadvantages Performance and Over provisioning

- Virtualization often adds a performance penalty to applications/services, when compared to directly using the physical resources
  - The mechanisms used to abstract the physical hardware must perform additional tasks when mediating virtual requests into the actual hardware
- Increasing the number of virtual resources being served by the same hardware may lead to over provisioning and performance degradation (i.e., saturation of physical resources)
  - E.g., when multiple VMs, running in the same server, require more than the available amount of CPU cores, memory, disk/network bandwidth, ...

# Disadvantages Security and Dependability

- If isolation is not properly addressed or, a malicious user has privileged access to the physical resources, the security of all virtualized resources may be compromised
  - E.g., a system administrator, with root access to a server, may compromise all VMs running there
- The failure of a single physical resource may compromise the dependability of several virtual resources using it
  - E.g., the failure of a server will lead to the failure of all VMs running there

## Summary

- Note that the advantages and disadvantages discussed previously apply to different types of virtualization
  - Most of the previous examples use VMs but the same properties hold true for memory, network, and storage virtualization, for instance
  - Homework: Check that the previous properties also apply to other types of virtualization

Now let's talk a bit more about Virtual Machines!

#### Context and motivation

- IBM mainframe systems (from about 45 years ago) allowed applications to use isolated portions of a given system's resources
- Virtualization became mainstream in the early 2000's with the X86 server architecture due to
  - Infrastructure costs (i.e., servers were expensive...)
  - Under-utilized resources (i.e., servers were not being used to their maximum capacity)
- Further, changing an application / service to run on different Operating Systems (OSs) is a costly and hard task

#### Definition and architecture

- Virtual Machines (VMs) allow running multiple OS flavors on top of the same server (simplistic definition)
- Guest OS (i.e., VM) instructions are intercepted, translated, and executed on the Host's OS and hardware

**VM** 

- CPU
- RAM
- Disk
- Network



#### Hypervisor

Hypervisor Xen, KVM, VMware, VirtualBox

- Also known as <u>Virtual Machine Monitor (VMM)</u>
  - Xen, KVM, VMware, and VirtualBox are examples of hypervisors
- The hypervisor controls the low-level interaction between VMs and the underlying host's OS and hardware
  - Provides access to the host's CPU, RAM, disk and network hardware
- But, how are physical resources shared and accessed by the VMs?

## Virtual Machines Host's CPU

- Time slicing processing requests are sliced up and shared across VMs
- Similar to running multiple processes in the host OS
  - Remember the Operating Systems classes?
- © Caution! Overcommitting vCPUs may lead to poor performance

# Virtual Machines Host's RAM and Persistent Storage

- Each VM allocates a specific portion of the host's RAM (memory) and persistent storage (e.g., SSD, HDD) capacity
- Memory management mostly uses traditional OS mechanisms
  - Paging, Translation Lookaside Buffer (TLB), ...
- Persistent storage is shared across VMs
  - must handle multiple writers/readers efficiently
  - can be allocated as required (i.e., thin-provisioning)

#### Host's Network

- VMs share the host's network bandwidth and can be configured with different network setups
  - Host-only: Shares the host's networking namespace. The VM only has access
    to the host
  - Nat: Masks network activity as if it is done by the host (single network identity). The VM has access to external resources
  - Bridge: Uses the hypervisor to assign a specific IP to the VM. The VM is seen as another node in the physical network

### Virtualization Modes

#### **Full Virtualization**

- Guest OS is fully abstracted from the underlying host's hardware (e.g., VirtualBox)
- Advantage: No modifications to the guest OS means higher range of supported OS flavors, and easier migration/portability of VMs
- Disadvantage: all guest OS instructions must be translated by the hypervisor leading to potentially lower I/O and CPU performance
  - Hardware-assisted virtualization leverages specific hardware to reduce the performance penalty of instruction translation (e.g., Intel VT-x, AMD-V)

### Virtualization Modes

#### Paravirtualization

- Requires hooks/modifications at the guest OS to bypass the translation of costly OS instructions (e.g., Xen)
- Advantage: Better CPU and I/O performance as the guest OS (i.e., cost of request translation is reduced)
- Disadvantage: Guest OS must be modified, which is worst for maintainability and portability (i.e., one must use modified OS images to run VMs)

## Virtualization Types Type 1 - Bare Metal Hypervisor

- The hypervisor does not require a general-purpose OS at the host server (e.g., VMware ESX)
  - The hypervisor is deployed directly on hardware as a "small operating system"
- Good performance (the small OS is optimized for virtualization purposes!) but it usually requires specific virtualization support at the hardware level

# Virtualization Types Type 2 - Hosted Hypervisor

- The hypervisor is deployed on top of a general-purpose OS (e.g., VirtualBox, KVM, XEN)
  - Note: many of these hypervisors still require installing specific kernel modules on top of general-purpose OSs
- Worst performance... The OS is not optimized for virtualization purposes

## Further Reading

- S. Alapati. Modern Linux Administration: How to Become a Cutting-edge Linux Administrator. O'Reilly, 2016
- Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Operating Systems, 2003.



## Questions?