An Eigenspace Update Algorithm

for Image Analysis

B. S. Manjunath[†], S. Chandrasekaran[†], and Y. F. Wang[‡]

‡ Department of Computer Science † Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 93106 manj@ece.ucsb.edu, shiv@ece.ucsb.edu, yfwang@cs.ucsb.edu

Outline

- Introduction
- Mathematical Framework
- Experimental Results
- Conclusion

Introduction

- Eigen space representations
 - An *object*-centered basis expansion
 - A compact representation of the input image ensemble
 - Image space or feature (e.g., wavelet) space
 - Applications:
 - * face recognition (Sirovich & Kirby, 1982, Turk & Pentland, 1991)
 - * multi-spectrum image and video coding (Murakami & Kumar, 1982, Murase & Lindenbaum, 1995)
 - * pose estimation (Murase & Nayar, 1993)
 - Deterministic: SVD
 - Statistic: Karhunen-Loeve transform (KLT)

Accomplishments

- A comparative study of SVD/KLT techniques
- Introducing an SVD update algorithm (Gu & Eisenstat, 1994)
 - Numerical stability
 - Computational efficiency
 - Adaptive refinement

Mathematical Framework

 A_i : row-scanned column image $(m \times 1 \text{ vector})$

 B_i : $[A_1A_2\cdots A_i]$ (image ensemble matrix)

k: ϵ -rank of B_i (number of singular values of $B_i > \epsilon$)

We have:

$$B_i pprox [U_i *] \left[egin{array}{cc} \Sigma_i & 0 \\ 0 & [\epsilon] \end{array} \right] \left[egin{array}{cc} V_i^T \\ * \end{array} \right]$$

or

$$||B_i - U_i \Sigma_i V_i^T|| \le \epsilon$$

where

 U_i : $m \times k$ matrix

 Σ_i : $k \times k$ matrix

 V_i : $i \times k$ matrix

The ϵ -rank is usually much lower than i

Find a *compact* set of basis vectors (images) to represent the image ensemble

$$A_j = U_i \Sigma_i V_{i_j}^T$$

$$V_{i_j} : \text{ the } j\text{-row of } V_i$$

Computational Requirements

- Compute $\{U_i, \Sigma_i, V_i\}$ efficiently
- Alternatives:
 - Standard SVD $(O(mi^2))$
 - $-B_i^T B_i (O(mi^2), \text{ numerical stability})$
 - Adaptive $B_i^T B_i$ (O(mki), numerical stability)
 - Adaptive B_i (O(mki))

Comparison of Algorithms

Authors	Method	Updat	e
Murakami and Kumar (1982)	B^TB	yes	
Kirby and Sirkovich (1990)	BB^T	no	
Turk and Pentland (1991)	B^TB	no	
Murase and Lindenbaum (1995)	iterative	no	
	(BB^T)		
This paper	GES (1994)	yes	

Summary of

Adaptive SVD Algorithm

Given, at step i:

$$[B_i]_{m \times i} = [U_i]_{m \times k} \quad [\Sigma_i]_{k \times k} \quad [V_i^T]_{k \times i}$$

Compute incrementally, at step i + 1:

$$[B_i A_{i+1}]_{m \times (i+1)} =$$

$$[U_{i+1}]_{m \times (k+1)} [\Sigma_{i+1}]_{(k+1) \times (k+1)} [V_{i+1}^T]_{(k+1) \times (i+1)}$$

Major Steps in Adaptive SVD

 \bullet O(mk)

$$\hat{A}_{i+1} = \frac{(I - U_i U_i^T) A_{i+1}}{||(I - U_i U_i^T) A_{i+1}||}$$

 \bullet O(m)

$$X = \hat{A}_{i+1}^T A_{i+1}$$

• SVD of

$$\left[\begin{array}{cc} \Sigma_i & U_i^T A_{i+1} \\ 0 & X \end{array}\right]$$

- Brute force $O(12k^3)$
- Clever use of broken arrowhead matrix structure $O(6k^3)$
- $\text{ GES } O(100k^2)$

Major Steps in Adaptive SVD (cont.)

• O(mk) (with GES)

$$U_{i+1} = L^T \hat{U} = [U_i \ \hat{A}_{i+1}] \ \hat{U}$$

$$\Sigma_{i+1} = \hat{\Sigma}$$

• O(mk) (with GES)

$$V_{i+1} = R\hat{V} = \begin{bmatrix} V_i & 0 \\ 0 & 1 \end{bmatrix} \hat{V}$$

Adaptive Eigenspace

Update Algorithm

$$U = A_1/||A_1||, \quad V = 1, \quad \Sigma = ||A_1||$$

For i = 2 to N

$$\begin{bmatrix} U\Sigma V^T & A_i \end{bmatrix} = U'\Sigma'V'^T$$

Find k such that $\sigma'_k > \delta \geq \sigma'_{k+1}$

Let U be the first k columns of U'

Let V be the first k columns of V'

Let Σ be the leading $k \times k$ principal submatrix of Σ

End

 δ : approximation accuracy ϵ/N (number of images)

Experimental Results

- Demonstrate visual learning to select meaningful views
- Procedures:
 - Place test objects on a rotation stage
 - One picture every 10^{o} of rotation
 - Iteratively:
 - * Estimate reconstruction error using current basis set
 - * If error is large, update the basis set with the current image

Conclusions

- Adaptive update improves efficiency
- SVD improves numerical stability
- Possible applications:
 - Active exploration
 - Pose alignment
 - Browsing of large image databases