Machine Learning

```
In [ ]: import matplotlib.pyplot as plt
        import numpy as np
        import seaborn as sns
        import pandas as pd
        import statsmodels.api as sm
In [ ]: file_path = 'slr.csv'
        df = pd.read_csv(file_path)
        df.head()
Out[ ]:
           Exam GPA
        0 1714 2.40
        1 1664 2.52
        2 1760 2.54
        3 1685 2.74
        4 1693 2.83
In [ ]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 84 entries, 0 to 83
        Data columns (total 2 columns):
             Column Non-Null Count Dtype
             Exam 84 non-null
                                    int64
             GPA
                    84 non-null
                                    float64
        dtypes: float64(1), int64(1)
        memory usage: 1.4 KB
In [ ]: # define independent and dependent variable
                                                         # step 2
```

```
x1=df['Exam'] #independent
        y=df['GPA']
                      #dependent
In [ ]:
        sns.set()
        plt.scatter(x1,y)
        plt.show()
         3.8
         3.6
         3.4
         3.2
         3.0
         2.8
         2.6
         2.4
                       1700
                                      1800
                                                    1900
                                                                   2000
In [ ]: sns.set()
                          # easy to understand background grid lines
        plt.scatter(x1,y) # show scatter
```

<matplotlib.collections.PathCollection at 0x7df6c8f1c400>

Out[]:


```
In []: import statsmodels.api as sm
In []: x = sm.add_constant(x1) # create to constant value (1)
x
```

Out[]:		const	Exam
		0	1.0	1714
		1	1.0	1664
		2	1.0	1760
		3	1.0	1685
		4	1.0	1693
		•••		
		79	1.0	1936
		80	1.0	1810
		81	1.0	1987
		82	1.0	1962
		83	1.0	2050

84 rows × 2 columns

```
In [ ]: model=sm.OLS(y,x) # creating a model by using independent and dependent through OLS Methode
  result=model.fit() # traing the model
```

```
In [ ]: result.summary()
```

Out[]:

OLS Regression Results

De	p. Variab	ariable:		GPA	R-squared:		0.406
Model:			OLS Adj		R-squared:	0.399	
	Method:		Least S	Least Squares		F-statistic:	
	Date: Wed		d, 24 Ap	, 24 Apr 2024		Prob (F-statistic):	
Time:		04	04:22:50		Log-Likelihood:		
No. Observations:			84		AIC:	-21.34	
Df Residuals:			82		BIC:	-16.48	
Df Model:				1			
Covariance Type:			non	robust			
	coef	std err	t	P> t	[0.025	0.975]	
const	0.2750	0.409	0.673	0.503	-0.538	1.088	
Exam	0.0017	0.000	7.487	0.000	0.001	0.002	
	Omnibus:	12.83	9 D u	rbin-Wa	atson:	0.950	
Prob(0	Omnibus):	0.00	2 Jarq	ue-Bera	a (JB):	16.155	
	Skew	: -0.72	2	Pro	b(JB):	0.000310	
	Kurtosis:	4.590)	Con	d. No.	3.29e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Formula for linear line (or) Straight line Y = c + mx

Y --> Dependent

```
x --> Independent
        c --> intercept (starting point)
        m --> slope (line)
In [ ]: yhat=0.275+0.0017*x1 # y=c+mx
        yhat
              3.1888
Out[]:
              3.1038
         2
              3.2670
              3.1395
         4
              3.1531
               . . .
         79
              3.5662
        80
              3.3520
              3.6529
         81
              3.6104
        82
        83
              3.7600
        Name: Exam, Length: 84, dtype: float64
In [ ]:
        result.params
                  0.275040
         const
Out[]:
         Exam
                  0.001656
        dtype: float64
In [ ]: # predicting (if mark is 1987 means what is the output)
         y = mx + c
         c = 0.275
         m = 0017
         x = 1987
         1.1.1
         0.275+0.0017*1987 # c + m*x
        3.6529
Out[ ]:
         plt.scatter(x1,y)
In [ ]:
         plt.plot(x1,yhat,color="green") # Here yhat is dependent value
         plt.show()
```


In []: plt.plot(x1,yhat,color="green")

Out[]: [<matplotlib.lines.Line2D at 0x7df6c8dccfa0>]


```
In [ ]: # for understanding 'm' value changed
        yhat1=0.275+0.0018*x1 # y=mx+c
        yhat1
              3.3602
Out[]:
              3.2702
              3.4430
              3.3080
              3.3224
               . . .
        79
              3.7598
        80
              3.5330
        81
              3.8516
        82
              3.8066
        83
              3.9650
        Name: Exam, Length: 84, dtype: float64
```

```
In [ ]: plt.scatter(x1,y)
    plt.plot(x1,yhat,color="green")
    plt.plot(x1,yhat1,color="red")
    plt.show()
```



```
In []: result.params
Out[]: const   0.275040
Exam    0.001656
dtype: float64
In []: result.summary()
```

De	Dep. Variable:		GPA		R-squared:		0.406
Model:		del:	OLS		Adj. R-squared:		0.399
	Method:		Least Squares		F-statistic:		56.05
	Da	i te: Wed	Wed, 24 Apr 2024		Prob (F-statistic):		7.20e-11
	Time:		04:22:52		Log-Likelihood:		12.672
No. Ol	oservatio	ns:		84		AIC:	-21.34
D	f Residua	als:		82		BIC:	-16.48
	Df Mod	lel:		1			
Covariance Type:		pe:	non	robust			
	coef	std err	t	P> t	[0.025	0.975]	
const	0.2750	0.409	0.673	0.503	-0.538	1.088	
Exam	0.0017	0.000	7.487	0.000	0.001	0.002	
	Omnibus	: 12.839	9 D u	rbin-Wa	atson:	0.950	

Prob(Omnibus): 0.002 **Jarque-Bera (JB):**

Skew: -0.722

Kurtosis: 4.590

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB): 0.000310

Cond. No. 3.29e+04

16.155

[2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [ ]: # ploting real value (other values are rounded off value)
    result.params[0],result.params
```

```
(0.27504029966028876,
Out[ ]:
         0.0016556880500928112,
         const
                  0.275040
         Exam
                  0.001656
         dtype: float64)
        result.params
In [ ]:
                 0.275040
        const
Out[ ]:
        Exam
                 0.001656
        dtype: float64
In [ ]: yhat_org=result.params[0]+result.params[1]*x1
In [ ]: # best fit line
        plt.scatter(x1,y)
        plt.plot(x1,yhat,color="green")
        plt.plot(x1,yhat1,color="red")
        plt.plot(x1,yhat_org,color="blue") # best fit line
        plt.show()
```


In []:

Regression Formulas

1. SST/TSS - Sum of squares of Total / Total Sum of Squares:

- 1. The difference between the actual point and the mean(average) point.
- 2. We are squaring the result to avoid the negative result.
- 3. To measure the total variability of the data set. (Mathematician perspective)

2. SSR/ESS - Sum of Squares of Regression / Explained Sum of Squares:

- 1. The difference between the predicted and the mean.
- 2. To measure the explained variability based on the line(best fit line) (Mathematician perspective)

3. SSE/RSS - Sum of Squares of Error / Residual Sum of Squares / Remaining Sum of Squares:

- 1. The difference between the actual and the predicted point.
- 2. To measure the unexplained variability by the equation. (Mathematician perspective)

Important:

SST = SSR + SSE

- If SSE is too low then it is advisable.
- If actual and predictor are same then SSE is zero.

In []:

R-square = SSR / SST

R-square = 1, if SSR=SST Since SST = SSR + SSE, if SSE = 0 then SST = SSR Therfore, SST > SSR **R-square value will be always in the range of 0** and 1. If the R-sqr value is towards 0 then it is more of error. If the R-sqr value if towards 1 then it is of very less error.