Package 'mcauchyd'

December 23, 2024

December 23, 2024
Title Multivariate Cauchy Distribution; Kullback-Leibler Divergence
Version 1.3.3
Maintainer Pierre Santagostini <pre><pre></pre></pre>
Description Distance between multivariate Cauchy distributions, as presented by N. Bouhlel and D. Rousseau (2022) <doi:10.3390 e24060838="">. Manipulation of multivariate Cauchy distributions.</doi:10.3390>
License GPL (>= 3)
<pre>URL https://forgemia.inra.fr/imhorphen/mcauchyd</pre>
<pre>BugReports https://forgemia.inra.fr/imhorphen/mcauchyd/-/issues Encoding UTF-8</pre>
RoxygenNote 7.3.2
Imports rgl, MASS, lifecycle, data.table
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Pierre Santagostini [aut, cre], Nizar Bouhlel [aut]
Repository CRAN
Date/Publication 2024-12-23 00:20:01 UTC
Contents
mcauchyd-package
dmcd
plotmed
rmcd

12

Index

2 contourmed

mcauchyd-package

Tools for Multivariate Cauchy Distributions

Description

This package provides tools for multivariate Cauchy distributions (MCD):

- Calculation of distances/divergences between MCD:
 - Kullback-Leibler divergence: kldcauchy
- Tools for MCD:
 - Probability density: dmcd
 - Simulation from a MCD: rmcd
 - Plot of the density of a MCD with 2 variables: plotmcd, contourmcd

Author(s)

Pierre Santagostini pierre.santagostini@agrocampus-ouest.fr, Nizar Bouhlel nizar.bouhlel@agrocampus-ouest.fr

References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Divergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/e24060838 #' @keywords internal

See Also

Useful links:

- https://forgemia.inra.fr/imhorphen/mcauchyd
- Report bugs at https://forgemia.inra.fr/imhorphen/mcauchyd/-/issues

contourmcd

Contour Plot of the Bivariate Cauchy Density

Description

Draws the contour plot of the probability density of the multivariate Cauchy distribution with 2 variables with location parameter mu and scatter matrix Sigma.

contourmed 3

Usage

Arguments

mu	length 2 numeric vector.
Sigma	symmetric, positive-definite square matrix of order 2. The scatter matrix.
xlim, ylim	x-and y- limits.
zlim	z- limits. If NULL, it is the range of the values of the density on the x and y values within $x = x$ and $y = x$.
npt	number of points for the discretisation.
nx, ny	number of points for the discretisation among the x- and y- axes.
main, sub	main and sub title, as for title.
nlevels, levels	arguments to be passed to the contour function.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see dmcd.
• • •	additional arguments to plot.window, title, Axis and box, typically graphical parameters such as cex.axis.

Value

Returns invisibly the probability density function.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Divergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/e24060838

See Also

```
dmcd: probability density of a multivariate Cauchy density plotmcd: 3D plot of a bivariate Cauchy density.
```

4 dmcd

Examples

```
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
contourmcd(mu, Sigma)
```

dmcd

Density of a Multivariate Cauchy Distribution

Description

Density of the multivariate (p variables) Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma.

Usage

```
dmcd(x, mu, Sigma, tol = 1e-6)
```

Arguments

x length p numeric vector.

mu length p numeric vector. The location parameter.

Sigma symmetric, positive-definite square matrix of order p. The scatter matrix.

tol tolerance (relative to largest eigenvalue) for numerical lack of positive-definiteness

in Sigma.

Details

The density function of a multivariate Cauchy distribution is given by:

$$f(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{\Gamma\left(\frac{1+p}{2}\right)}{\pi^{p/2}\Gamma\left(\frac{1}{2}\right)|\boldsymbol{\Sigma}|^{\frac{1}{2}}\left[1+(\mathbf{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]^{\frac{1+p}{2}}}$$

Value

The value of the density.

Author(s)

Pierre Santagostini, Nizar Bouhlel

See Also

rmcd: random generation from a MCD.

plotmcd, contourmcd: plot of a bivariate Cauchy density.

kldcauchy 5

Examples

```
mu <- c(0, 1, 4)

sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)

dmcd(c(0, 1, 4), mu, sigma)

dmcd(c(1, 2, 3), mu, sigma)
```

kldcauchy

Kullback-Leibler Divergence between Centered Multivariate Cauchy Distributions

Description

Computes the Kullback-Leibler divergence between two random vectors distributed according to multivariate Cauchy distributions (MCD) with zero location vector.

Usage

```
kldcauchy(Sigma1, Sigma2, eps = 1e-06)
```

Arguments

Sigma1	symmetric, positive-definite matrix. The scatter matrix of the first distribution.
Sigma2	symmetric, positive-definite matrix. The scatter matrix of the second distribution.
eps	numeric. Precision for the computation of the partial derivative of the Lauricella <i>D</i> -hypergeometric function (see Details). Default: 1e-06.

Details

Given X_1 , a random vector of \mathbb{R}^p distributed according to the MCD with parameters $(0, \Sigma_1)$ and X_2 , a random vector of \mathbb{R}^p distributed according to the MCD with parameters $(0, \Sigma_2)$.

Let $\lambda_1, \ldots, \lambda_p$ the eigenvalues of the square matrix $\Sigma_1 \Sigma_2^{-1}$ sorted in increasing order:

$$\lambda_1 < \dots < \lambda_{p-1} < \lambda_p$$

Depending on the values of these eigenvalues, the computation of the Kullback-Leibler divergence of X_1 from X_2 is given by:

• if
$$\lambda_1 < 1$$
 and $\lambda_p > 1$:
$$KL(X_1||X_2) = -\frac{1}{2} \ln \prod_{i=1}^p \lambda_i + \frac{1+p}{2} \left(\ln \lambda_p - \frac{\partial}{\partial a} \left\{ F_D^{(p)} \left(a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}, a + \frac{1}{2}}_{p}; a + \frac{1+p}{2}; 1 - \frac{\lambda_1}{\lambda_p}, \dots, 1 - \frac{\lambda_{p-1}}{\lambda_p}, 1 - \frac{1}{\lambda_p} \right) \right\} \Big|_{a=0} \right)$$

6 kldcauchy

• if
$$\lambda_p < 1$$
:
$$KL(X_1||X_2) = -\frac{1}{2} \ln \prod_{i=1}^p \lambda_i - \frac{1+p}{2} \frac{\partial}{\partial a} \left\{ F_D^{(p)} \left(a, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_{p}; a + \frac{1+p}{2}; 1 - \lambda_1, \dots, 1 - \lambda_p \right) \right\} \Big|_{a=0}$$

• if
$$\lambda_1 > 1$$
:
$$KL(X_1||X_2) = -\frac{1}{2} \ln \prod_{i=1}^p \lambda_i - \frac{1+p}{2} \prod_{i=1}^p \frac{1}{\sqrt{\lambda_i}}$$

$$\times \frac{\partial}{\partial a} \left\{ F_D^{(p)} \left(\frac{1+p}{2}, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_{p}; a + \frac{1+p}{2}; 1 - \frac{1}{\lambda_1}, \dots, 1 - \frac{1}{\lambda_p} \right) \right\} \Big|_{a=0}$$

where ${\cal F}_D^{(p)}$ is the Lauricella D-hypergeometric function defined for p variables:

$$F_D^{(p)}(a;b_1,...,b_p;g;x_1,...,x_p) = \sum_{m_1 \ge 0} ... \sum_{m_p \ge 0} \frac{(a)_{m_1 + ... + m_p}(b_1)_{m_1} ...(b_p)_{m_p}}{(g)_{m_1 + ... + m_p}} \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!}$$

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes attr(, "epsilon") (precision of the partial derivative of the Lauricella *D*-hypergeometric function, see Details) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Divergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/e24060838

Examples

```
Sigma1 <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)
kldcauchy(Sigma1, Sigma2)
kldcauchy(Sigma2, Sigma1)

Sigma1 <- matrix(c(0.5, 0, 0, 0, 0.4, 0, 0, 0.3), nrow = 3)
Sigma2 <- diag(1, 3)
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are < 1
kldcauchy(Sigma1, Sigma2)
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are > 1
kldcauchy(Sigma2, Sigma1)
```

Inpochhammer 7

1npochhammer

Logarithm of the Pochhammer Symbol

Description

Computes the logarithm of the Pochhammer symbol.

Usage

```
lnpochhammer(x, n)
```

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = x(x+1)...(x+n-1)$$

So, if n > 0:

$$log((x)_n) = log(x) + log(x+1) + \dots + log(x+n-1)$$

If
$$n = 0$$
, $log((x)_n) = log(1) = 0$

Value

Numeric value. The logarithm of the Pochhammer symbol.

Author(s)

Pierre Santagostini, Nizar Bouhlel

See Also

pochhammer()

Examples

lnpochhammer(2, 0)

lnpochhammer(2, 1)

lnpochhammer(2, 3)

8 plotmed

n	1	^	+	m	С	Ч
ν	т	U	ι	Ш	C	u

Plot of the Bivariate Cauchy Density

Description

Plots the probability density of the multivariate Cauchy distribution with 2 variables with location parameter mu and scatter matrix Sigma.

Usage

Arguments

mu	length 2 numeric vector.
Sigma	symmetric, positive-definite square matrix of order 2. The scatter matrix.
xlim, ylim	x-and y- limits.
n	A one or two element vector giving the number of steps in the x and y grid, passed to plot3d.function.
xvals, yvals	The values at which to evaluate \boldsymbol{x} and \boldsymbol{y} . If used, \boldsymbol{x} lim and/or \boldsymbol{y} lim are ignored.
xlab, ylab, zlab	The axis labels.
col	The color to use for the plot. See plot3d.function.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see $dmcd$.
	Additional arguments to pass to plot3d. function.

Value

Returns invisibly the probability density function.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Divergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/e24060838

pochhammer 9

See Also

```
dmcd: probability density of a multivariate Cauchy density contourmcd: contour plot of a bivariate Cauchy density. plot3d. function: plot a function of two variables.
```

Examples

```
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
plotmcd(mu, Sigma)
```

pochhammer

Pochhammer Symbol

Description

Computes the Pochhammer symbol.

Usage

```
pochhammer(x, n)
```

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = x(x+1)...(x+n-1)$$

Value

Numeric value. The value of the Pochhammer symbol.

Author(s)

Pierre Santagostini, Nizar Bouhlel

Examples

```
pochhammer(2, 0)
pochhammer(2, 1)
pochhammer(2, 3)
```

10 rmcd

rmcd

Simulate from a Multivariate Cauchy Distribution

Description

Produces one or more samples from the multivariate (p variables) Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma.

Usage

```
rmcd(n, mu, Sigma, tol = 1e-6)
```

Arguments

n integer. Number of observations.

mu length p numeric vector. The location parameter.

Sigma symmetric, positive-definite square matrix of order p. The scatter matrix.

tol tolerance for numerical lack of positive-definiteness in Sigma (for myrnorm, see

Details).

Details

A sample from a MCD with parameters μ and Σ can be generated using:

$$\mathbf{X} = \boldsymbol{\mu} + \frac{\mathbf{Y}}{\sqrt{u}}$$

where \mathbf{Y} is a random vector distributed among a centered Gaussian density with covariance matrix Σ (generated using mvrnorm) and u is distributed among a Chi-squared distribution with 1 degree of freedom.

Value

A matrix with p columns and n rows.

Author(s)

Pierre Santagostini, Nizar Bouhlel

See Also

dmcd: probability density of a MCD.

rmcd 11

Examples

Index

```
Axis, 3
box, 3
contour, 3
\mathtt{contourmcd}, 2, 2, 4, 9
dmcd, 2, 3, 4, 8-10
graphical parameters, 3
kldcauchy, 2, 5
1npochhammer, 7
{\it mcauchyd (mcauchyd-package)},\,2
mcauchyd-package, 2
mvrnorm, 10
plot.window, 3
plot3d.function, 8, 9
plotmcd, 2-4, 8
pochhammer, 9
pochhammer(), 7
rmcd, 2, 4, 10
title, 3
```