1. If the marginal revenue MR = $35 + 7x - 3x^2$, then the average revenue AR is (a) $35x + -x^3$
(b) $35 + -x^2$
(c) $35 + + x^2$
(d) $35 + 7x + x^2$
2
7x 7x 7x
2. If and , is
1112212
(a) ■ 04fa
(b)a0 ■ 0 x f x dx= a
(c)■02aa²–x f x dx
(d) 1
3. The demand and supply functions are given by D (x)= $16 - x^2$ and S (x) = $2x^2 + 4$ are under perfect
competition, then the equilibrium price x is
(a) 2
(b) 3
(c) 4
(d) 5
4. 2(logx)is+c –2(logx) x +c x +c
x
е
(a)1+e xdx
(b)
(c)
(d)
X
exxxx
5. The value of is
3 3
(a) 1 ■ 2 f 5–x dx
(c) -1
(d) 5
6. The 3 de x mand and supply f 3 un x ction of a commodity are $P(3xx2) = (x - 5)^2$ and $S(x) = x^2 + 1$
x3x+2 3 then the
equilibrium quantity is
(a) 5
x
(c) 3
(d) 19

 7. If ρ (A) = r then which of the following is correct? (A) = r then which of the following is correct? (a) all the minors of order r which does not vanish (b) A has at least one minor of order r which does not vanish (c) A has at least one (d) all 	
 8. The value of is pi 2pi (a) 0 ■-2cosxdx (b) 2 (c) 1 (d) 4 	
9. is infinity –2x XII BUSINESSMATHEMATICSANDSTATISTICS - (a) 0 (b) 1 (c) 2 (d) ½	
10. Using the factorial representation of the gamma function, which of the following is the solution for the 2 gamma function Gamma(n) when n = 8 (a) 5040 (b) 5400 (c) 4500 (d) 5540	or
 11. The producer's surplus when the supply function for a commodity is P = 3 + x and = 3 is (a) 5/2 (b) 9/2 (c) 3/2 (d) x 70/2 	
12. In a transition probability matrix, all the entries are greater than or equal to(a) 2(b) 1(c) 0(d) 3	

```
13. If the rank of the matrix is 2. Then \boldsymbol{\lambda} is
\lambda - 10
0 λ -1
    (a) 1
    (b) 2
    (c) 3
    (d) only real number
    -1~0~\lambda
14. If A = , then \rho(A) is
20
    (A) is
    20
    (a) 0
    (b) 1
    (c) 2
    (d) n
    8 0
15. ∫ is
1
3
(ax)dx (b) (c) (d)
-3 -1 -1 -2
    (b)
    (c)
    (d)
    -3 -1 -1 -2
16. 1+e x+isc 2 1+e +c 1+e +c e 1+e +c
Χ
    (a)e dx
    (b)
    (c)
    (d)
    x x 1 x 1
17. If A = then the rank of is
1
Т
2 AA
    (a) 0
    (b) 1
    (c) 2
```

(d) 3

18. For a demand function p, if $\int = k \int$ then k is equal to
dp dx
(a)
(b) – p x
(c)
(d)
-1 1
19. pi is 2 pi 2
infinity 4 –x
■(a0)x12e dx (b) 4 (c) 4! (d) 64
XII BUSINESSMATHEMATICSANDSTATISTICS -
(b) 4
(c) 4!
(d) 64
XII BUSINESSMATHEMATICSANDSTATISTICS -
20. The given demand and supply function are given by D (x)2= $20 - 5x$ and S (x) = $4x + 28$ if they
are under
perfect competition then the equilibrium demand is
(a) 40
(b) 41/2
(c) 40/3
(d) 41/5
21. If n > 0, then Gamma(n) is
(a)
(b)
(c)
(d)
1 –x n–1 1 –x n infinity x –n infinity –x n–1
22. The marginal cost function is MC = 100sqrtx. find AC given that TC =0 when the out put is zero is XII BUSINESSMATHEMATICSANDSTATISTICS -
(a)
(b)
(c)
(d)
1 3
200 200 200 200
2 2
3 1

```
23. If A=(1 2 3), then the rank of is
Т
    (a) 0
    (b) 2
    (c) 3
    (d) 1
    AA
24. x - 36 + isc log x + x - 36 + c log x - x - 36 + c log x + x - 36 + c
2x+3
■ x 2 +3x+2dx
    (a)
    (b) 2
    (c)
    (d)
    3
    22222
25. log e +1 +c is log e +c log e +c log e +1 +c
9 1
    (a)x-3-x+1 dx
    (b)
    (c) 9
    (d) 9
    \log x-3 - \log x+1 + c \log x-3 + \log x+1 + c
26. If f(x) is a continuous function ■a0nxdea d<xc < b , then is e
сb
    (a)
    (b)
    (d) 0
    bccbb
    ■a f
27. For the system of equations x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4
    (a) there is only one solution
    (b) there exists infinitely many solutions
    (c) there is no solution
    (d) None of these
```

(a) revenue is constant
(b) cost function is constant
(c) profit is constant
(d) none of these
29. log xis-3 -log x+1 +c log x-3 +log x+1 +c
3
2x
4
■4+x dx
(a)
(b)
(c)
(d)
3
4 1 4 1 4 2x
4
30. Cramer's rule is applicable only to get an unique solution when
$(a) \neq 0$
$(b) \neq 0$
(c) Delta ≠ 0
$(d) \neq 0$
Δz Δx Δy
31. Δ 1 , Δ =13 adjA = 243 then the Δ 1v,a Δ 11ue n is Δ 2, Δ 3 Δ 2 , Δ 3
(a
A
)n4*n (b) 5 (c) 6 (d) 7
(b) 5
(c) 6
(d) 7
32. $x + 3x + 2is + c x + 3x + 2 + c log x + 3x + 2 + c 3(x + 3x + 2) + c$
1
■(a0)(12x+1)dx (b) 2 (c) 3 (d) 4
(b) 2
(c) 3
(d) 4

28. For the demand function p(x), the elasticity of demand with respect to price is unity then

```
33. If T = is a transition probability matrix, then the value of x is
A 0.7 0.3
    (a) 0.2
    (b) 0.3
    (c) 0.4
    (d) 0.7
    B 0.6 x
34. 2 is 2 log2+c 2 +c
sin2x
\blacksquare(a2)sinxdx+ c (b) + c (c) + c (d) + c
    (b) + c
    (c) + c
    (d) + c
    11
35. Rank of a null matrix is
    (a) 0
    (b) -1
    (c) infinity
    (d) 1
    XII BUSINESSMATHEMATICSANDSTATISTICS -
36. is
4dx
(■a2) lxog 4 (b) 0 (c) log 2 (d) log 8
    (b) 0
    (c) log 2
    (d) log 8
37. log 4+isx +c 2log 4+x +c 4log 4+x +c log 4+x +c
dx
(a)x 2 - 36
    (b)
    (c)
    (d)
    22222
38. The demand and supply function of a commodity are D(x) = 25 - 2x and S(x) = then the
equilibrium
10+x
price P0 is 4
    (a) 5
```

(b) 2

39. The rank of m * n matrix whose elements are unity is
(a) 0
(b) 1
(c) m
(d) n
40. Gamma ■0 e x dx ■0 e x dx ■0 e x dx ■0 e x dx
3
(a)2
(b)
(c) 2
(d)
pi 3
41. If MR aend MC denotes the mareginal revenue and marg1in-ael cost functions, theen the profit functions is
(a) P = ∫
(b) $P = \int$
(c) $P = \int$
(d) $P = \int$
42. The rank of the matrix is
111
123
(a) 0
(b) 1
(c) 2
(d) 3
1 4 9
43. is
13 x 4
■(a-1)x1e dx (b) 2 (c) 0 (d)
13 x 4 x 4
(b) 2
(c) 0
(d)
1 3 x 4 x 4
44. The marginal revenue and marginal cost functions of a company are $MR = 30 - 6x$ and $MC = -24$
+ 3x
where x is the product, then the profit function is
(a) $9x^2 + 54x$
(b) $9x^2 - 54x$
(c) 54x –
(d) $54x - + k$

45. The area bounded by the parabola $y^2 = 4x$ bounded by its leatus rectum is e
(a) 16/3 sq.units
(b) 8/3 sq.units
(c) 72/3 sq.units
(d) 1/3 sq.units
46. The profi2t of a function p(x) is m2aximum when 2
(a) $MC - MR = 0$
(b) MC=0
(c) MR=0
(d) MC+MR=0
47. If the marginal revenue of a firm is constant, then the demand function is
(a) MR
(b) MC
(c) C
(d) AC
48. When = 2 and = 12 the producer's surplus for the supply function = $2x^2 + 4$ is
(a) 31/5 x0units p0
(b) 31/2 units
(c) 32/3 units ps
(d) 30/7 units
49. If MR and MC denote the marginal revenue and marginal cost and MR – MC = $36x - 3x^2 - 81$,
then
then the maximum profit at x is equal to
then the maximum profit at x is equal to (a) 3
then the maximum profit at x is equal to (a) 3 (b) 6
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9
then the maximum profit at x is equal to (a) 3 (b) 6
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is
the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is
the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0
the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1
the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n!
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n! 51. e +c 2 e +c 2 e +c 2 e x+c
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n! 51. e +c 2 e +c 2 e +c 2 e x+c 2x 2
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n! 51. e +c 2 e +c 2 e +c 2 e x+c 2x 2 ■(ae) 2x +2x dx (b) (c) (d)
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n! 51. e +c 2 e +c 2 e +c 2 e x+c 2x 2 ■(ae) 2x +2x dx (b) (c) (d) 2 x
then the maximum profit at x is equal to (a) 3 (b) 6 (c) 9 (d) 5 50. Gamma(1) is (a) 0 (b) 1 (c) n (d) n! 51. e +c 2 e +c 2 e +c 2 e x+c 2x 2 ■(ae) 2x +2x dx (b) (c) (d) 2 x 2x 2 2x 2 2x e

2 x

```
52. If \rho ( A) \neq \rho ( A, B) , then the system is
    (a) Consistent and has infinitely many solutions
    (b) Consistent and has a unique solution
    (c) inconsistent
    (d) consistent
53. is
1
42
\blacksquare(a0) 1x/(112-x) dx (b) -7 /12 (c) 7 /12 (d) -1 /12
    (b) -7/12
    (c) 7/12
    (d) -1/12
54. If then (x, y) is
a1 b1 a2 b2 a1 b1 b1 c1 c1 a1
    (a) x + y = c1, x + y = c2, \Delta 1
    (d)
    \Delta 2 \Delta 3 \Delta 3 \Delta 2 \Delta 1 \Delta 1 - \Delta 1 - \Delta 1
55. is
pi
■(a0)talongx2dx (b) 0 (c) log (d) 2 log 2
    (b) 0
    (c) log
    (d) 2 log 2
56. \int -\cos_2 2xx > 0 is -\cos_2 2x - 4\cos_2 2x - 4\cos_2 2x
logx
    (a)x dx
    (b)
    (c)
    (d)
    121222
    22
57. If \rho(A) = \rho(A, B)= the number of unknowns, then the system is
    (A) = \rho
    (a) Consistent and has infinitely many solutions
    (b) Consistent and has a unique solution
    XII BUSINESSMATHEMATICSANDSTATISTICS -
    (c) inconsistent
    (d) consistent
```

58. The rank of the diagonal matrix
_
(a) 0
(b) 2
(c) 3
(d) 5
59. The rank of the unit matrix of order n is
(a) n –1
(b) n
(c) n + 1
(d) n2
60. Area bounded by the curve y = between the limits 1 and 2 is
(a) log2 sq.units
(b) log5xsq.units
(c) log3 sq.units
(d) log 4 sq.units
61. Which of the following is not an elementary transformation?
(a) $Ri \leftrightarrow Rj$
(b) $Ri \rightarrow 2 Ri + 2Cj$
(c) $Ri \rightarrow 2 Ri - 4Rj$
(d) $Ci \rightarrow Ci + 5Cj$
62. Gamma(n) is
(a)
(b) n!
(c) nGamma
(d)
63. The demand function for the marginal function $MR = 100 - 9x^2$ is
(a) $100 - 3x^2$
$(b)100x - 3x^2$
$(c)100x - 9x^2$
$(d)100 + 9x^2$
64. Area bounded by the curve $y = x (4 - x)$ between the limits 0 and 4 with $x - axis$ is
(a) 30/3 sq.units
(b) 31/2 sq.units
(c) 32/3 sq.units
(d) 15/2 sq.units

65. If the marginal revenue function of a firm is MR=, then revenue is
-x
10
(a) −10
(b) 1 –
(c)1e0
(d) + 10
-X - X - X
10 10 10
66. If $\rho(A) = \rho(A, B)$ then the system is
$(A) = \rho$
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Consistent
(d) inconsistent
67. sinx is 2sinx cosx 2cosx
sin5x-sinx
(a) cos3x dx+ c
(b) + c
(c) + c
(d) + c
1
68. The system of equations $4x + 6y = 5$, $6x + 9y = 7$ has
(a) a unique solution
(b) no solution
(c) infinitely many solutions
(d) none of these
69. Area bounded by the curve $y = $ between the limits $0 \le x \le $ infinity is
−2x
(a) 1 sq.units
(b) ½ sq.unit
(c) 5 sq.units
(d) 2 sq.units
e
70. If T = is a transition probability matrix, then at equilibrium A is equal to
A 0.4 0.6
(a) 1/4
(b) 1/5
(c) 1/6
(d) 1/8

```
71. is
4 1
\blacksquare(a0) 20x/+3 x dx (b) 21/3 (c) 28/3 (d) 1/3
    (b) 21/3
    (c) 28/3
    (d) 1/3
72. Arena d bounded by y = bet\eta w d een the limits 0 to 1 is \eta d \eta d
Х
    (a)
    (b)
    (c)
    (d)
73. If the number of variables in a non-homogeneous system AX = B is n, then the system
possesses a
unique solution only when
    (a) p
    (b) ρ
    (c) p
    (d) none of these
74. \int x 2 + isc 2x 2 + c 3x 2 + c x 2 + c
(a2) dx \log 2 + c(b) + c(c)(d)
Х
x x 2 log2
Χ
    (b) + c
    (c)
    (d)
    Х
    x x 2 log2
    Х
75. Area bounded by y = x between the lines y = 1, y = 2 with y = axis is
    (a) 1/2 sq.units
    (b) 5/2 sq.units
    (c) 3/2 sq.units
    (d) 1 sq.unit
```

76. When = 5 and = 3 the consumer's surplus for the demand function = $28 - x^2$ is
(a) 250 x u0nits p0
(b) 250/3 units
(c) 251/2 units pd
(d) 251/3 units
77. e x +isc xe +c 2x e +c 2 +c
x
e
x
■(ae)+1 dx (b) (c) (d)
x x
e e +1 x x
x x
(b)
(c)
(d)
x x
e e +1 x x
X X
78. Area bounded by $y = x $ between the limits 0 and 2 is
(a) 1sq.units
(b) 3 sq.units
(c) 2 sq.units
(d) 4 sq.units
79. The system of linear equations $x + y + z = 2$, $2x + y - z = 3$, $3x + 2y + k = 4$ has unique solution,
if k
is not equal to
(a) 4
(b) 0
(c) -4
(d) 1
80. If A ≠ 0, then A is
(a) non- singular matrix
(b) singular matrix
(c) zero matrix
(d) none of these