Análisis de Sensibilidad

ILI-292, Investigación de Operaciones I

Segundo período académico 2009

Carlos Castro
Departamento de Informática
UTFSM

Agosto de 2009

Análisis de sensibilidad

- Todo modelo es una simplificación
- Parámetros tienen algún grado de incertidumbre
- Variaciones pueden corresponder a cambios en el proceso tecnológico o información considerada
- Conveniencia de cuantificar incidencia de variaciones en parámetros

Idea: Determinar rangos en los cuales puedan variar los parámetros manteniendo la base óptima y la solución posible

Debido a dificultades de analizar cambios simultáneos en parámetros es usual reduci este análisis a variaciones en cada parámetro individual manteniendo los otros fijos.

- No afectan la región de soluciones posibles
- No afectan factibilidad de la solución óptima
- Puede cambiar naturaleza de una restricción (limitante/no limitante)
- Puede verse afectada optimalidad de la solución

Idea: Analizar tasas $c_j - z_j$ y determinar condiciones bajo las cuales no cambia la Sea

 x_j : Variable correspondiente a la columna j

 c_j : Coeficiente original de x_j en función objetivo

 c'_j : Nuevo coeficiente de x_j en función objetivo

 Δc_j : Variación en coeficiente de x_j

Por lo tanto

$$\Delta c_j = c'_j - c_j$$

$$c'_j = c_j + \Delta c_j$$

		x_1	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	10	9	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

- Coeficiente de variable no-básica en la función objetivo no tiene influencia en el valor de la solución óptima pues el valor de la variable no-básica es cero
- Solución óptima se ve afectada cuando una variable no-básica se vuelve básica

Idea: Analizar condiciones bajo las cuales una variable no-básica ingresa en la base

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	10	9	0	0	0	0	$b_{\pmb{i}}$
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
$\overline{z_j}$		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

- Variable no-básica x_j ingresa si $c'_j z_j > 0$
- No afecta la solución óptima si

$$c'_j - z_j \leq 0$$

$$c'_j \leq z_j$$

• Rango de insignificancia:

$$-\infty < c_j' \le z_j$$

• Variaciones dentro de este rango no alteran la solución óptima

- Cuando el coeficiente sale del rango de insignificancia, evidentemente sobrepasando el límite superior del rango, se obtendrá un valor positivo en la fil de evaluación neta $c_j z_j$
- Esto implica realizar iteraciones adicionales para encontrar la nueva solución óptima
- Este cambio provoca simplemente el desplazamiento a otro punto extremo, de ninguna manera se afecta la factibilidad de la solución.

• Cambios en coeficientes en la función objetivo de variables básicas afectan la solución óptima pues la variable tiene un valor distinto de cero

• Casos:

- La base óptima se mantiene pero el valor de la solución cambia
- Desplazamiento a otro punto extremo donde la variable permanece en la bas óptima aumentando su valor en desmedro de la disminución del valor de alguna otra variable
- Desplazamiento a otro punto extremo donde la variable sale de la base permitiendo el ingreso de una nueva variable

		Variación	en	coeficiente d	le va	riable básica		
	_			_		U	s_4	
Base	c_{j}	$10 + \Delta c_1$	9	0	0	0	0	b_i
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	$10 + \Delta c_1$	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
	z_{j}	$10 + \Delta c_1$	9	$\frac{70}{16} - \frac{20\Delta c_1}{16}$	0	$\frac{111}{16} + \frac{30\Delta c_1}{16}$	0	$7.668 + 540\Delta$
$c_{\dot{\cdot}}$	z_j-z_j	0	0	$\frac{-70}{16} + \frac{20\Delta c_1}{16}$	0	$\frac{-111}{16} - \frac{30\Delta c_1}{16}$	0	

• La solución permanece óptima si:

$$\frac{-70}{16} + \frac{20}{16}\Delta c_1 \leq 0 \Rightarrow \Delta c_1 \leq \frac{70}{20}$$

$$\frac{-111}{16} - \frac{30}{16}\Delta c_1 \leq 0 \Rightarrow \Delta c_1 \geq \frac{-111}{30}$$
Por lo tanto
$$-3, 7 \leq \Delta c_1 \leq 3, 5$$

- Rango de optimalidad: Como $c_1' = 10 + \Delta c_1 \rightarrow 6, 3 \le c_1' \le 13, 5$
- Variaciones dentro de este rango
 - No afectan el punto óptimo
 - Afectan el valor de la solución óptima

Rango de optimalidad para la variable básica asociada con la columna j y fila i:

• Para cada variable no-básica k:

$$(c_k - z_k) - a_{ik} \Delta c_j \le 0$$

Así, cada variable no-básica impone un límite superior o inferior sobre Δc_j

- A partir de:
 - $-\alpha$: límite inferior más restrictivo
 - $-\beta$: límite superior más restrictivo

se determina

$$\alpha \leq \Delta c_j \leq \beta$$

• Rango de optimalidad para variable básica x_j :

$$c_j + \alpha \le c_j' \le c_j + \beta$$

Rango de optimalidad del coeficiente de x_2

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	$10 + \Delta c_1$	9	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	$10 + \Delta c_1$	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
	z_{j}	$10 + \Delta c_1$	9	$\frac{70}{16} - \frac{20\Delta c_1}{16}$	0	$\frac{111}{16} + \frac{30\Delta c_1}{16}$	0	$7.668 + 540 \Delta$
c_{\cdot}	$_j-z_j$	0	0	$\frac{-70}{16} + \frac{20\Delta c_1}{16}$	0	$\frac{-111}{16} - \frac{30\Delta c_1}{16}$	0	

- Considerando la variable no-básica s_1 : $\frac{-70}{16} \frac{30}{16}\Delta c_2 \leq 0 \Rightarrow \Delta c_2 \geq \frac{7}{3}$
- Considerando la variable no-básica s_3 : $\frac{-111}{16} + \frac{21}{16}\Delta c_2 \leq 0 \Rightarrow \Delta c_2 \leq \frac{111}{21}$

Por lo tanto

$$\frac{7}{3} \le \Delta c_2 \le \frac{111}{21}$$

Como
$$\Delta c_2 = c_2' - c_2$$
 y $c_2 = 9 \rightarrow \frac{34}{3} = 9 + \frac{7}{3} \le c_2' \le 9 + \frac{111}{21} = \frac{300}{21}$

- ullet Todo coeficiente de x_1 entre 6, 3 y 13, 5 deja la solución actual como óptima
- Se puede calcular fácilmente el valor de la función objetivo
- Considerando un coeficiente $c_1 = 12$:

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	12	9	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	12	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		12	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	8.748
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

• Considerando un aumento de 4 unidades en el coeficiente c_1 :

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	14	9	0	0	0	0	b_i
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	14	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		14	9	$\frac{70}{16} - \frac{20 \times 4}{16}$	0	$\frac{111}{16} + \frac{30 \times 4}{16}$	0	$7.668 + 540 \times 4$
c_j –	z_{j}	0	0	$\frac{10}{16}$	0	$\frac{-231}{16}$	0	

- Esto implica realizar iteraciones adicionales para calcular la nueva solución óptima
- Ingresa s_1 y sale x_2

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	14	9	0	0	0	0	$b_{\it i}$
s_1	0	0	$\frac{16}{30}$	1	0	$\frac{-7}{10}$	0	134, 4
s_2	0	0	$\frac{1}{2}$	0	1	$\frac{-1}{2}$	0	246
x_1	14	1	$\frac{2}{3}$	0	0	1	0	708
s_4	0	0	$\frac{22}{120}$	0	0	$\frac{-1}{10}$	1	64, 2
$\overline{z_j}$		10	$\frac{28}{3}$	0	0	10	0	9.828
$c_j - z_j$		0	$-\frac{1}{3}$	0	0	-10	0	

• El método vuelve a visitar un punto extremo

• Considerando una disminución de 4 unidades en el coeficiente de x_1

		$ x_1 $	x_2	s_1	s_2	s_3	s_4		
Base	c_{j}	6	9	0	0	0	0	$b_{\it i}$	$\frac{b_i}{a_{ij}}$
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252	_
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120	768
x_1	6	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540	288
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18	128
z_{j}		6	9	$\frac{70}{16} + \frac{20 \times 4}{16}$	0	$\frac{111}{16} - \frac{30 \times 4}{16}$	0	$7.668 - 540 \times 4$	
c_j –	z_{j}	9	0	$\frac{-150}{16}$	0	$\frac{9}{16}$	0		

- Esto implica realizar iteraciones adicionales para calcular la nueva solución óptima
- Ingresa s_3 y sale s_4

		x_1	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	6	9	0	0	0	0	b_i
x_2	9	0	1	$\frac{-4}{3}$	0	0	$\frac{21}{16}$	420
s_2	0	0	0	$\frac{-5}{9}$	1	0	$\frac{-5}{32}$	100
x_1	6	1	0	$\frac{10}{3}$	0	0	$\frac{-30}{16}$	300
s_3	0	0	0	$\frac{-22}{9}$	0	1	1	128
z_{j}		6	9	$\frac{-36}{3} + \frac{60}{3}$	0	0	$\frac{189}{16} - \frac{180}{16}$	5.580
c_j –	z_{j}	0	0	-8	0	0	$\frac{-9}{16}$	

• El método visita un nuevo punto extremo

- Situaciones analizadas implican desplazamiento del punto óptimo a un vértice adyacente lo cual requiere una sóla iteración del método simplex
- En general, la reoptimización puede implicar más de una iteración.
- Considerando el tableau final y una disminución de 7 unidades en el coeficiente de x_1 :

		x_1	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	10 - 7	9	0	0	0	0	$b_{\pmb{i}}$
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10 - 7	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
,	z_{j}	10 - 7	9	$\frac{70}{16} + \frac{140}{16}$	0	$\frac{111}{16} - \frac{210}{16}$	0	$7.668 - 540 \times 7$
c_{j}	$-z_j$	0	0	$-\frac{210}{16}$	0	$\frac{99}{16}$	0	

• Ingresando s_3 en reemplazo s_4

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	$c_{m{j}}$	3	9	0	0	0	0	$b_{\it i}$
x_2	9	0	1	$\frac{-4}{3}$	0	0	$\frac{21}{16}$	420
s_2	0	0	0	$\frac{-5}{9}$	1	0	$\frac{-5}{32}$	100
x_1	3	1	0	$\frac{10}{3}$	0	0	$\frac{-30}{16}$	300
s_4	0	0	0	$\frac{-22}{9}$	0	1	1	128
z_{j}		3	9	-2	0	0	$\frac{99}{16}$	4.680
c_j –	z_{j}	0	0	2	0	0	$\frac{-99}{16}$	

- Tableau actual no es óptimo
- s_1 debe entrar en reemplazo de x_1

		x_1	x_2	s_1	s_2	s_3	s_4	
Base	$c_{m{j}}$	3	9	0	0	0	0	b_i
x_2	9	<u>2</u> 5	1	0	0	0	$\frac{9}{16}$	540
s_2	0	$\frac{1}{6}$	0	0	1	0	$\frac{-15}{32}$	150
s_1	0	$\frac{3}{10}$	0	1	0	0	$\frac{-9}{16}$	90
s_3	0	$\frac{11}{15}$	0	0	0	1	$\frac{-3}{8}$	348
z_{j}		$\frac{18}{5}$	9	0	0	0	$\frac{81}{16}$	4.860
c_j-z_j		$\frac{-3}{5}$	0	0	0	0	$\frac{-81}{16}$	

17

Cambios en el valor de alguno de los elementos de la columna b_i de un programa lineal

- Pueden afectar la forma de la región de soluciones posibles
- Puede cambiar naturaleza de una restricción (limitante/no limitante/redundante)
- Pueden afectar factibilidad de la solución óptima
- Puede verse afectada optimalidad de la solución

Idea:

- Analizar efecto en la función objetivo
- Verificar no-negatividad de variables

(c_j-z_j) :

- En variables de holgura, representa aumento en función objetivo por unidad del recurso que es ingresada en la solución
- En restricciones limitantes, en el tableau final, es negativa:
 - Ingresando una unidad de la variable en la solución (se crea holgura) el valor de la función objetivo disminuye en $(c_j z_j)$
 - Valor de una unidad adicional del recurso es $(c_j z_j)$
- Razonamiento inverso:
 - Aumento en una unidad del recurso restringido genera aumento de $-(c_j z_j)$ en el valor de la función objetivo
 - Válido si cambio en recursos no mueve a una solución básica imposible (se tenga tantas unidades del recurso tal que dicho recurso no restrinja el problema y, por lo tanto, no determine la solución óptima)

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	$c_{m{j}}$	10	9	0	0	0	0	b_{i}
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
<i>S</i> 4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
$\overline{z_j}$		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

Recurso	Aumento en la función objetivo
1	$\frac{70}{16}$
2	0
3	$\frac{111}{16}$
4	0

- Precio sombra: Precio máximo a pagar por unidad adicional del recurso
- Precio sombra = 0: no conviene pagar para aumentar capacidad ociosa

		x_1	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	10	9	0	0	0	0	b_i
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
S_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

Ingresando una unidad de s_1 :	Aumentar b_1 , disminuir s_1 :
x_2 disminuye en $\frac{30}{16}$	x_2 aumenta en $\frac{30}{16}$
s_2 disminuye en $\frac{-15}{16}$ (o aumenta en $\frac{15}{16}$)	s_2 aumenta en $\frac{-15}{16}$ (o disminuye en $\frac{15}{16}$)
x_1 disminuye en $\frac{-20}{16}$ (o aumenta en $\frac{20}{16}$)	x_1 aumenta en $\frac{-20}{16}$ (o disminuye en $\frac{20}{16}$)
s_4 disminuye en $\frac{-11}{32}$ (o aumenta en $\frac{11}{32}$)	s_4 aumenta en $\frac{-11}{32}$ (o disminuye en $\frac{11}{32}$)

Suponiendo que b_1 aumenta de 630 a 631:

- Valor óptimo de la función objetivo: 7.668 + 4,375 = 7.672,375
- Columna b_i :

$$\begin{bmatrix} x_2 \\ s_2 \\ x_1 \\ s_4 \end{bmatrix} = \begin{bmatrix} 252 \\ 120 \\ 540 \\ 18 \end{bmatrix} + \begin{bmatrix} \frac{30}{16} \\ \frac{-15}{16} \\ \frac{-20}{16} \\ \frac{-11}{32} \end{bmatrix} = \begin{bmatrix} 253\frac{14}{16} \\ 119\frac{1}{16} \\ 538\frac{12}{16} \\ 17\frac{21}{32} \end{bmatrix}$$

• Nuevo tableau final:

leau final:		x_1	x_2	s_1	s_2	s_3	s_4	
Base	$c_{m{j}}$	10	9	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	$253\frac{14}{16}$
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	$119\frac{1}{16}$
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	$538\frac{12}{16}$
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	$17\frac{21}{32}$
z_{j}		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	$7.672\frac{6}{16}$
c_j –	z_{j}	0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

• Nuevos valores deben verificar_no-negatividad:

$$\begin{bmatrix} x_2 \\ s_2 \\ x_1 \\ s_4 \end{bmatrix} = \begin{bmatrix} 252 \\ 120 \\ 540 \\ 18 \end{bmatrix} + \Delta b_1 \begin{bmatrix} \frac{30}{16} \\ -\frac{15}{16} \\ -\frac{20}{16} \\ \frac{-11}{32} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$252 + \frac{30}{16} \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \ge \frac{-252}{\frac{30}{16}} = -134,40$$

$$120 + \frac{-15}{16} \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \le \frac{120}{\frac{15}{16}} = 128,00$$

$$540 + \frac{-20}{16} \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \le \frac{540}{\frac{20}{16}} = 432,00$$

$$18 + \frac{-11}{32} \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \le \frac{18}{\frac{11}{32}} = 52,36$$

- Rango de factibilidad: $-134, 40 \le \Delta b_1 \le 52, 36$
- En este rango
 - La base se mantiene óptima
 - Cambia el valor de las variables básicas
 - Cambia el valor de la función objetivo

Rango de factibilidad

Restricciones \leq :

$$\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} + \Delta b_i \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} \ge \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Donde

- $b_1 \dots b_m$: columna b_i de la solución actual
- $a_{1j} \dots a_{mj}$: columna j del tableau final correspondiente a la variable de holgura asociada a la restricción i

Rango de factibilidad

Restricciones \geq :

$$\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} - \Delta b_i \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} \ge \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Donde

- $b_1 \dots b_m$: columna b_i de la solución actual
- $a_{1j} \dots a_{mj}$: columna j del tableau final correspondiente a la variable de exceso asociada a la restricción i

Rango de factibilidad

Restricciones =:

$$\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} + \Delta b_i \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} \ge \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Donde

- $b_1 \dots b_m$: columna b_i de la solución actual
- $a_{1j} \dots a_{mj}$: columna j del tableau final correspondiente a la variable artificial asociada a la restricción i

Vari	acióı	n en	los	valore	$\mathbf{s} \mathbf{de}$	l lado	dere	echo
		x_1	x_2	s_1	s_2	s_3	s_4	
Base	c_{j}	10	9	0	0	0	0	$b_{\pmb{i}}$
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
c_j –	z_{j}	0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

- \bullet Cambio entre -134,40 y 52,36 en recursos de restricción 1 no modifica la base
- Fácilmente se calcula valor de solución óptima
- Considerando un aumento de 16 unidades:

$$\begin{bmatrix} x_2^* \\ s_2^* \\ x_1^* \\ s_4^* \end{bmatrix} = \begin{bmatrix} 252 \\ 120 \\ 540 \\ 18 \end{bmatrix} + 16 \begin{bmatrix} \frac{30}{16} \\ \frac{-15}{16} \\ \frac{-20}{16} \\ \frac{-11}{32} \end{bmatrix} = \begin{bmatrix} 282 \\ 105 \\ 520 \\ \frac{25}{2} \end{bmatrix}$$

• Función objetivo:

$$z^* = 7.668 + 16 \times \frac{70}{16} = 7.738$$

 $z^* = 10 \times 520 + 9 \times 282 = 7.738$

Considerando un aumento de 64 unidades en los recursos de la primera restricción provoca la no factibilidad de la solución actual:

- Considerar un aumento de 52, 36 unidades en los recursos de la primera restricción, lo cual llevará a alguna variable básica a tomar el valor cero.
- Teniendo en la base una variable con valor cero es posible intercambiarla con la variable de holgura asociada a la primera restricción (actualmente no-básica). Esto se hace dejando un vector unitario en la columna asociada a la variable entrante.
- Finalmente, ahora que la variable de holgura está en la base su valor puede ser incrementado. Como la idea era incrementar en 64 los recursos de la primera restricción y ya se consideró un aumento de 52, 36, sólo falta incrementar en las 11,64 unidades restantes dichos recursos.

Variación en coeficientes de restricciones

Análisis cualitativo de cambios en algún a_{ij} para una variable básica x_j :

Restricciones \leq :

- Si
 - $-a_{ij}$ aumenta
 - la restricción i es limitante
 - $-x_j > 0$ (no es degenerada)

entonces

- $-x_j$ debe disminuir
- la función objetivo debe disminuir
- Si
 - $-a_{ij}$ disminuye
 - la restricción i es limitante
 - $-x_{j} > 0$

entonces

- $-x_j$ debe aumentar
- la función objetivo debe aumentar

Variación en coeficientes de restricciones

Análisis cualitativo de cambios en algún a_{ij} para una variable básica x_j :

Restricciones \geq :

- Si
 - $-a_{ij}$ aumenta
 - la restricción es limitante

entonces

- la función objetivo aumenta
- Si
 - $-a_{ij}$ disminuye
 - la restricción es limitante

entonces

la función objetivo disminuye

Variación en coeficientes de restricciones

Análisis cualitativo de cambios en algún a_{ij} para una variable básica x_j :

Restricciones =:

Se requiere análisis adicional

La regla del 100%

- Analiza variaciones simultaneas en coeficientes de la función objetivo
- Analiza variaciones simultaneas en valores del lado derecho de las restricciones

Variaciones en coeficientes de variables no-básicas:

- Si cada coeficiente está dentro de su rango de insignificancia (calculado suponiendo que sólo un coeficiente varía):
 - La base actual permanece óptima
 - Valor de las variables básicas no cambia
 - Valor de la función objetivo no cambia
- Si algún coeficiente sale de su rango de insignificancia:
 - La base actual deja de ser óptima

Variaciones en coeficientes de variables básicas Sea

 c_j : coeficiente original de x_j en la función objetivo

 Δc_j : variación en el coeficiente c_j

 I_j : incremento máximo en c_j manteniendo la base óptima cuando se analiza una sóla variación

 D_j : decremento máximo en c_j manteniendo la base óptima cuando se analiza una sóla variación

Para cada variable x_j :

- Si $\Delta c_j > 0$ entonces $r_j = \frac{\Delta c_j}{I_j}$
- Si $\Delta c_j < 0$ entonces $r_j = \frac{-\Delta c_j}{D_j}$
- Si $\Delta c_j = 0$ entonces $r_j = 0$

 r_j : tasa de cambio real en c_j con respecto al cambio máximo permitido en c_j tal qu se mantenga la base óptima

Variaciones en coeficientes de variables básicas

- Si sólo un coeficiente c_j sufre variaciones, la base permanece óptima cuando $r_j \leq 1$ (en términos porcentuales, $r_j \leq 100\%$)
- Regla del 100% es generalización de esta idea
- Si

$$\sum_{j=1}^{n} r_j \le 1$$

- La base permanece óptima
- Valores de variables no cambian
- Valor de función objetivo podría cambiar
- Si

$$\sum_{j=1}^{n} r_j > 1$$

la base podría como no podría mantenerse óptima, nada se puede asegurar

Variación en los valores del lado derecho de restricciones no limitantes

- Si cada valor del lado derecho está dentro de su rango de factibilidad (calculado suponiendo que sólo un valor varía):
 - La base actual permanece óptima
 - Valor de variables de decisión no cambia
 - Valor de la función objetivo no cambia
- Si algún valor del lado derecho sale de su rango de factibilidad:
 - La base actual deja de ser óptima

Variación en los valores del lado derecho de restricciones limitantes Sea

 b_j : valor del lado derecho de la restricción j

 Δb_j : variación en el valor de b_j

 I_j : incremento máximo en b_j manteniendo la base óptima cuando se analiza una sóla variación

 D_j : decremento máximo para b_j manteniendo la base óptima cuando se analiza una sóla variación

Para cada restricción:

- Si $\Delta b_j > 0$ entonces $r_j = \frac{\Delta b_j}{I_j}$
- Si $\Delta b_j < 0$ entonces $r_j = \frac{-\Delta b_j}{D_j}$
- Si $\Delta b_j = 0$ entonces $r_j = 0$

 r_j : tasa de cambio real en b_j con respecto al cambio máximo permitido en b_j tal qu se mantenga la base óptima

Variación en los valores del lado derecho de restricciones limitantes

- Si sólo la j-ésima restricción sufre variaciones, la base permanece óptima cuand $r_j \leq 1$ (en términos porcentuales, $r_j \leq 100\%$)
- Regla del 100% es generalización de esta idea
- Si

$$\sum_{j=1}^{n} r_j \le 1$$

- La base permanece óptima
- Valores de variables básicas podrían cambiar
- Valor de función objetivo podría cambiar
- Si

$$\sum_{j=1}^{n} r_j > 1$$

- La base podría como no podría mantenerse óptima, nada se puede asegurar

- Una restricción adicional sólo puede eliminar soluciones posibles pero no puede agregar soluciones posibles
- Verificar si la solución óptima satisface la restricción adicional:
 - Si la solución óptima satisface la restricción adicional todavía es la solución óptima
 - Si la solución óptima no satisface la restricción adicional se debe calcular la nueva solución óptima

$$Max \quad z = 10x_1 + 9x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

Sujeto a

$$\frac{7}{10}x_1 + 1x_2 + 1s_1 = 630$$

$$\frac{1}{2}x_1 + \frac{5}{6}x_2 + 1s_2 = 600$$

$$1x_1 + \frac{2}{3}x_2 + 1s_3 = 708$$

$$\frac{1}{10}x_1 + \frac{1}{4}x_2 + 1s_4 = 135$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	
Base	$c_{m{j}}$	10	9	0	0	0	0	b_i
x_2	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	18
z_{j}		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	7.668
c_j-z_j		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	

• Considerando la restricción adicional:

$$x_1 + x_2 \le 800$$

• Evaluando la restricción en el punto óptimo $x_1^* = 540$ y $x_2^* = 252$:

$$540 + 252 = 792 \le 800$$

Por lo tanto, la restricción es satisfecha

• Se puede representar la restricción en forma estándar agregando la variable de holgura s_5 :

$$x_1 + x_2 + s_5 = 800$$

Así, la evaluación de la restricción en el punto óptimo entrega el valor de la variable de holgura s_5 :

$$540 + 252 + s_5 = 800 \rightarrow s_5 = 8$$

Agregando la restricción en forma estándar al tableau final:

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	s_5	
Base	c_{j}	10	9	0	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	0	18
		1	1	0	0	0	0	1	800
$\overline{z_j}$		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0		7.668
c_j –	z_{j}	0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0		-

Ingresando s_5 en la base:

		$ x_1 $	x_2	s_1	s_2	s_3	s_4	s_5	
Base	c_{j}	10	9	0	0	0	0	0	b_i
$\overline{x_2}$	9	0	1	$\frac{30}{16}$	0	$\frac{-21}{16}$	0	0	252
s_2	0	0	0	$\frac{-15}{16}$	1	$\frac{5}{32}$	0	0	120
x_1	10	1	0	$\frac{-20}{16}$	0	$\frac{30}{16}$	0	0	540
s_4	0	0	0	$\frac{-11}{32}$	0	$\frac{9}{64}$	1	0	18
s_5	0	0	0		0		0	1	
$\overline{z_j}$		10	9	$\frac{70}{16}$	0	$\frac{111}{16}$	0	0	7.668
$c_j - z_j$		0	0	$\frac{-70}{16}$	0	$\frac{-111}{16}$	0	0	

- Si la nueva restricción elimina la solución óptima actual y se quiere encontrar la nueva solución, se introduce la restricción al tableau simplex final (como una fila adicional) como si fuera el tableau inicial
- Se designa la variable adecuada (holgura o artificial) como la variable básica qu corresponde a la nueva ecuación
- Como esta ecuación tal vez tenga coeficientes distintos de cero para algunas otras variables básicas, se debe aplicar operaciones fila para obtener la forma y tableau y aplicar el método simplex.