ALGU7 188) (1) K.-Köyee R. .. Valering mit I work K = { 9 | p, 9 & 12, 9 # 0} 22: K'... Unterkörper von K KCK, da p, qER, q = 0 => p, qEK => q 1 eK => p. q 1 = FEK. Rist kommitativ, da K kommitativ ist. Doi REK existeren fir per 1803 p Tek. P,q,r,seR, q+0+s bel. q+ = ps+rq = ps+rq = R, qs=R=K = qs+0 g = pr preR, qseR1803 => K'. abguilleren bzyl. + cud. O= O= EK' 1= JEK' => O, 1EK' $\frac{P}{q} + \left(\frac{P}{q}\right) = \frac{Pq - pq}{q^2} = \frac{P - P}{q} = \frac{Q}{q} = 0 \in \mathbb{R} \Rightarrow -\left(\frac{P}{q}\right) = \frac{P}{q}$ 9 + 0 EK => p + 0 9 . 9 = pg = 1 = 1 EK => (2) = 9 = alges obsses 6 zgl - vil-⇒ K'. Unterkorper work (2) ZZ: VK"... Undekörper won K mit REK": K'EK" Sei p, q &R, 9 #0 lel. 9 EK' p, q EK", da R EK" => 9 EK", da K" Kovper und q = 0. => p. q EK", da K" abgischlassen bzgl. . => q EK" => K'EK" (3) K. Onotie to kouper von R C= K=K' (E) K. Kommadiriser Ring mit 1: klan i: R > K ... isomorphe Enbetting con Rals Ring mit 1 nach K: i(r) = 1 EK=K Vr∈ R(303: ((n) € K ((n) = (=)) = = = = K=K Se Q. kommeletier Ring mid 1; i'R > Q; VreR & O]: (L'(v)) existiat $\varphi \circ \iota(r) = \varphi(\frac{r}{4}) = \iota'(r) \qquad \varphi(\frac{q}{q}) = \iota'(q) \quad \iota'(q)^{-1}$ $\varphi\left(\frac{a}{b}\right) + \varphi\left(\frac{c}{d}\right) = \iota\left(a\right)\iota\left(b\right)^{-1} + \iota\left(c\right)\iota\left(a\right)^{-1}$ $\varphi(\frac{a}{b} + \frac{c}{d}) = \varphi(\frac{ad+bc}{bd}) = c'(ad+bc)c'(bd)^{-1} = (c'(a)c'(d)+c'(b)c'(c))(c'(d)^{-1}c'(b)^{-1})$ = \(\(\alpha\)\(\cdot\)\(\dot\)\(\dot\)\(\dot\) $\varphi(a) \varphi(a) = ((a) \cdot (b)^{-1} \cdot ((a) \cdot ((a))^{-1} = ((ac) \cdot (bd)^{-1} = \varphi(ac)^{-1} \cdot (bd)^{-1} \cdot (bd)^{-1} \cdot (bd)^{-1} = \varphi(ac)^{-1} \cdot (bd)^{-1} \cdot (bd)^{-1} \cdot (bd)^{-1} = \varphi(ac)^{-1} \cdot (bd)^{-1} \cdot (bd)^{ \varphi(-\frac{\alpha}{6}) = \iota'(-\alpha)\iota'(6)^{-1} = -\iota'(\alpha)\iota'(6)^{-1} = -\varphi(\frac{\alpha}{6}); \varphi(\frac{\alpha}{6}) = \iota'(6)\iota'(\alpha)^{-1} = \varphi(\frac{\alpha}{6})^{-1}$ Sei & E K' mit \(g(\frac{1}{6}) = 0 \text{ hel.} \) \(= \gamma(\frac{1}{6}) = \cup(\frac{1}{6}) = \cup(\frac{1}{6}) \tau'(\frac{1}{6}) \tau'(\frac{1}{6}) \tau' \), da \(6 \neq 0 \rightarrow \cup(\frac{1}{6}) \neq 0 \) => c(a) c(b) => c(a)=0 => a=0 => 6=0 => 0 ... Scomorphismus

-00	12	illia .	939	7)		2)		V	(2)		1.	Le		24			R	,	ŀ	201	0	K								
/	•	0) K	1	2 K	<	h	la	n	, 0	la	b	1	()	-K	1:	J,	0,9	ie	R;	9=	t0	:].	۱ =	- 9	7						
		Da	f	2	9	K		=)	P,	g e	e K	_)	29						/											
		K	C	K	1		Se	^	ke	EK	′	be	l.		1																
		1) on	ł	\	. 0	no	lia	Len.	lis.	pe	- 1		(K	=	R	13	20		Ď.	ÖV]										
					Α,																										
		2																												7.1	
	7																						4					Y			
																			Z											v	
		4	4			Vi,		· V			/	_					7														
			9							(7															
								Y Y Y	0						1															V.	
				2.4		A								1									7		1						
		1								Y																					N V
										Ū																					
		Y																													
		1																													
																<i>y</i> (1)															
			3											Y.																	
			3						j).			¥.,																			
			U =		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																										
																							-13		1 72			-			