

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 03-01-16

 TIME : 09:00 AM TO 12: 00 Noon
 2013_P1 MODEL
 MAX MARKS : 180

KEY & SOLUTIONS

PHYSICS

1	C	2	A	3	A	4	C	5	В	6	A
7	В	8	C	9	В	10	A	11	C	12	ACD
13	BD	14	AC	15	AB	16	5	17	7	18	3
19	2	20	2					100			

CHEMISTRY

21	В	22	D	23	В	24	C	25	A	26	A
27	В	28	D	29	D	30	A	31	ACD	32	ACD
33	В	34	ABC	35	AB	36	2	37	2	38	1
39	5	40	2	À							

MATHEMATICS

41	D	42	C	43	В	44	C	45	A	46	D
47	В	48	D	49	C	50	A	51	CD	52	ABCD
53	BD	54	ABD	55	ABC	56	4	57	2	58	3
59	4	60	6								

Sec: Sr.IPLCO Page 1

PHYSICS

1.

From figure
$$BC \cos i = \frac{R}{2}$$

$$\therefore OC = \frac{R}{\sqrt{3}} & x = R - \frac{R}{\sqrt{3}}$$

2. Taking
$$PV^x = \text{constant}$$

$$x = 3/2$$

$$C = \frac{3R}{2} + \frac{R}{1-r} = \frac{-R}{2}$$

3.

$$Pe^{\alpha V} = P_0$$

or
$$PV = P_0 V e^{-\alpha V} = nRT$$

$$T = \frac{P_0}{nR} \left[V e^{-\alpha V} \right], \frac{dT}{dV} = \frac{P_0}{nR} \left[e^{-\alpha V} + V e^{-\alpha V} \left(-\alpha \right) \right]$$

or
$$\alpha = \frac{1}{V}$$

$$\therefore T = \frac{P_0}{nR} = \frac{e^{-1}}{\alpha} = \frac{P_0}{neR\alpha}$$

$$\frac{d^2T}{dV^2} = \frac{P_0}{nR} \left[-\alpha e^{-\alpha R} + (1 - \alpha V) e^{-\alpha V} \left(-\alpha \right) \right]$$
$$= -\frac{P_0}{nR} e^{-\alpha V} \left[2 - \alpha V \right]$$

$$\left(\frac{d^2T}{dV^2}\right)_{\alpha=\frac{1}{2}} = -\frac{P_0\alpha}{nR}e^{-1}$$

5.
$$I = 4I_0 \cos^2 \frac{\varphi}{2}$$

$$\frac{dI}{dt} = -4I_0 \sin \varphi \cdot \frac{d}{dt} \left[\frac{2\pi}{\lambda} (d \tan \theta) \right]$$

$$= -4\sin\left[\frac{d\lambda}{D}\right]\frac{d}{dt}\left[\frac{2\pi}{\lambda}.\frac{d\lambda}{D}\right]$$

$$= -4 \left[\frac{2x10^{-3}}{12} x5x10^{-10} \right] \frac{2\pi}{D} \cdot \frac{d}{dt}(d)$$

Sec: Sr.IPLCO

$$=\frac{-4x10^{-12}}{21}.\frac{2\pi}{12}$$

$$= \frac{\pi}{18} x 10^{-12}$$

6. Principal axis for L_1 is 0.5 cm below x- axis and 0.5 cm above for L_2

$$v = 100 \text{ cm}$$

$$m = -1$$

For L₂

$$v = 175/6$$
 and $m = 5/12$

7.
$$Q = \sigma (T_1^4 - T_3^4)$$

= $\sigma (T_3^4 - T_4^4)$

$$= \sigma \left(T_3 - T_4 \right)$$
$$= \sigma \left(T_4^4 - T_2^4 \right)$$

$$3Q = \sigma \left(T_1^4 - T_2^4 \right) = Q_0$$

CHEMISTRY

21. Dissociation leads to lower molecular weight.

22.
$$m = \frac{2.4}{6.0} \times \frac{1000}{100} = 0.4 m (urea)$$

$$0.1m Hg_2(NO_3)_2 \Rightarrow 3 \times 0.1m = 0.3m(particles)$$

$$\frac{2.4}{6.0} \times \frac{1000}{90} \Longrightarrow m > (0.4m)$$

 $Hg_2(NO_3)_2$ 0.24 m urea solutions suffer depression in freezing point than 0.2 m NaCl.

- 23. Nernest Equation based.
- 24. Fact.
- 25. Common ion effect on HCOOH by HCOONa and NH₄OH by NH₄Cl.
- 26. Fact.
- 27. Change in Vanthoff Factor. After ppt is removed.
- 28. Boiling point of pure water 373K. Hence Ethanol water azoetrope is a low boiling azoetrope.

29.
$$10^{-2} F \Rightarrow \lceil H^+ \rceil = 10^{-2} \text{ (to be developed)}$$

$$Formed [H^+] = 5 \times 10^{-3}$$

:. efficiency =
$$\frac{5 \times 10^{-3}}{10^{-2}} \times 100 = 50\%$$

Sec: Sr.IPLCO