УДК 621.313

АЛГОРИТМ РАСЧЕТА ПАРАМЕТРОВ ДВИГАТЕЛЯ-СЕПАРАТОРА АКСИАЛЬНОЙ КОНСТРУКЦИИ

ALGORITHM FOR CALCULATING THE PARAMETERS OF THE AXIAL DESIGN ENGINE-SEPARATOR

Самородов Александр Валерьевич

кандидат технических наук, доцент, доцент кафедры электротехники и электрических машин, Кубанский государственный технологический университет alex.samorodoff@gmail.com

Артенян Корюн Завенович

студент 4 курса кафедры электротехники и электрических машин, Кубанский государственный технологический университет zevs4998@mail.ru

Войнов Александр Владимирович

студент 4 курса кафедры электротехники и электрических машин, Кубанский государственный технологический университет trapasha@mail.ru

Аннотация. Данная статья посвящена рассмотрению алгоритму расчета параметров двигателя-сепаратора аксиальной конструкции.

Ключевые слова: центробежный сепаратор, алгоритм, расчет параметров, аксиальный статор.

Samorodov Alexander Valerevich

Candidate of technical sciences. Associate Professor, Associate Professor of the Department of Electrical Engineering and Electrical Machines, Kuban state technological university alex.samorodoff@gmail.com

Artenyan Koryun Zavenovich

4th year student Department of Electrical Engineering and Electrical Machines, Kuban state technological university zevs4998@mail.ru

Voinov Alexander Vladimirovich

4th year student Department of Electrical Engineering and Electrical Machines. Kuban state technological university trapasha@mail.ru

Annotation. His article is devoted to the consideration of the algorithm for calculating the parameters of the axial design motor-separa-

Keywords: centrifugal separator, algorithm, calculation of parameters, axial stator.

ходе работ по созданию перспективной энерго- и ресурсосберегающей установки для переработки нефти на базе электромеханических преобразователей энергии совмещенной конструкции [1-4] на кафедре электротехники и электрических машин ФГБОУ ВО «Кубанский государственный технологический университет» был разработан сепаратор для полидисперсных жидких систем [5]. Для оценки энергоэффективности нового вида энергосберегающих электромеханических преобразователей энергии совмещенной конструкции для переработки нефти двигателя-сепаратора аксиального типа необходимо знать параметры электромагнитной системы двигателя-сепаратора, для вычисления которых следует произвести расчет конструкционных параметров двигателя-сепаратора.

Известные методики проектирования «классических» асинхронных электродвигателей [6–7], а также электрических машин (ЭМ) с массивными роторами [8-10] направлены на получение максимальных массогабаритных характеристик за счет ориентации на минимальные значения радиусов ротора и статора для каждого значения мощности, поэтому они не применимы для расчета энергосберегающего двигателя-сепаратора аксиального типа в котором ротор-барабан, кроме функции ротора электрической машины, выполняет роль рабочего органа в котором происходит процесс сепарирования нефти.

В расчете конструктивных элементов двигателя-сепаратора использованы рекомендации из [6–10] по выбору конструкционных, механических, электромеханических и электромагнитных параметров будущих эклектических машин.

На основании анализа методик из [6-10] был принят следующий алгоритм расчета конструкционных параметров статора и ротора двигателя-сепаратора аксиального типа:

- определение внешнего радиуса ротора;
- расчет объема активной стали магнитопровода статора и параметров его обмотки на примере эквивалентной цилиндрической электрической машины;
 - определение параметров аксиального статора.

СБОРНИК СТАТЕЙ - 2020

На рисунках 1 и 2 представлены результаты расчета конструкционных параметров статора сепаратора совмещенной конструкции.

Рисунок 1 – Фрагмент аксиального магнитопровода сепаратора совмещенной конструкции (вид сверху)

Рисунок 2 – Аксиальный статор сепаратора совмещенной конструкции

Активное сопротивление обмотки статора находим по [6-7]:

$$r_1 = K_r \cdot \rho_{115} \cdot \frac{L_1}{q_{30} \cdot a},\tag{1}$$

 L_1 — длина проводников фазы обмотки; ρ_{115} — удельное сопротивление при расчетной температуре $v_{\rm pacu}=115^{\circ}$ С, для медных проводников по [22–23]: $\rho=10^{-6}/41\,$ Ом · м.

$$r_1 = \frac{1590,4 \cdot 10^{-6}}{0,3312 \cdot 10^{-6} \cdot 1 \cdot 41} = 105 \text{ Ом}.$$

Относительное значение:

$$r_{1^*} = r_1 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM}}},$$
 (2)

 $I_{
m 1_{HOM}}$ – номинальный фазный ток, $U_{
m 1_{HOM}}$ – номинальное фазное напряжение. где

$$r_{1^*} = 105 \cdot \frac{3,38}{220} = 1,61.$$

Активное сопротивление массивного ротора находим по [8-10]:

$$r_2 = \frac{5.6 \cdot 10^{-3} \cdot K_T \cdot K_R \cdot m \cdot (w_1 \cdot K_{w1})^2}{p \cdot q_1} \cdot \sqrt{\frac{\mu_r \cdot f}{\gamma}},\tag{3}$$

 K_T – коэффициент торцов K_T = 1,05; K_R – коэффициент учета нелинейности и неоднозначности где K_T — коэффициент торцов K_T = 1,05, K_R — коэффициент учета пелипейности и поодности посиления $\mu(H)$ внутри проводящей среды для активного сопротивления $K_R = \sqrt{2} = 1,41; K_{w1}$ — обмоточный коэффициент статора в случае асинхронного двигателя с массивным ротором $K_{w1} = 1; \mu_r$ — относительная магнитная проницаемость на поверхности ротора $\mu_r = \frac{B}{H} = \frac{1,2}{5000} = 0,00024; \gamma$ — глубина проникновения электромагнитной волны $\gamma = \sqrt{\frac{2}{\omega \mu f}} = \sqrt{\frac{2}{314\cdot0,00024\cdot50}} = 0,728; q_1$ — линейный коэффициент $q_1 = \frac{\tau}{ls} = 8,72.$

$$r_2 = \frac{5,6 \cdot 10^{-3} \cdot 1,05 \cdot 1,41 \cdot 3 \cdot (1120 \cdot 1)^2}{1 \cdot 8,72} \cdot \sqrt{\frac{0,00024 \cdot 50}{0,728}} = 459,37 \text{ Ом.}$$

Относительное значение:

$$r'_{2^*} = r'_2 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM}}},$$

$$r'_{2^*} = 459,37 \cdot \frac{3,38}{220} = 7,057.$$
(4)

Индуктивное сопротивление фазы обмотки статора находим по [6-7]:

$$x_1 = 15.8 \cdot \frac{f}{100} \cdot \left(\frac{w_1}{100}\right)^2 \cdot \frac{l_{\delta}}{p \cdot q} \cdot \left(\lambda_{\pi 1} + \lambda_{\pi 1} + \lambda_{\pi 1}\right), \tag{5}$$

где $\lambda_{\pi 1}$ – коэффициент магнитной проводимости пазового рассеяния; $\lambda_{\pi 1}$ – коэффициент магнитной проводимости лобового рассеяния; $\lambda_{\pi 1}$ – коэффициент магнитной проводимости дифференциального рассеяния:

$$x_1 = 15.8 \cdot \frac{50}{100} \cdot \left(\frac{1120}{100}\right)^2 \cdot \frac{0.072}{1 \cdot 10} \cdot (1.072 + 0.582 + 0.942) = 18.52 \text{ Om.}$$

Относительное значение:

$$x_{1^*} = x_1 \frac{I_{1\text{HOM}}}{U_{1\text{HOM}}},$$

$$x_{1^*} = 18,52 \cdot \frac{3,38}{220} = 0,285.$$
(6)

Индуктивное сопротивление массивного ротора находим по [8-10]:

$$x_2 = \frac{3.4 \cdot 10^{-3} \cdot K_T \cdot K_X \cdot m \cdot (w_1 \cdot K_{w1})^2}{p \cdot q_1} \cdot \sqrt{\frac{\mu_r \cdot f}{\gamma}},$$
(7)

где K_X – коэффициент учета нелинейности и неоднозначности $\mu(H)$ внутри проводящей среды для индуктивного сопротивления $K_X=0.6\sqrt{2}=0.85$.

$$x_2 = \frac{3,4 \cdot 10^{-3} \cdot 1,05 \cdot 0,85 \cdot 3 \cdot (1120 \cdot 1)^2}{1 \cdot 8,72} \cdot \sqrt{\frac{0,00024 \cdot 50}{0,728}} = 168,133 \text{ Om}.$$

Относительное значение:

$$x_{2^*} = x_2 \cdot \frac{I_{1\text{HOM}}}{U_{1\text{HOM}}},$$

$$x_{1^*} = 168,133 \cdot \frac{3,38}{220} = 2,583.$$
(8)

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований и Администрации Краснодарского края в рамках научного проекта № 19-48-230010 р_а.

Литература

- 1. Гайтов Б.Х. Разработка нового вида энергосберегающей установки для переработки нефти / Б.Х. Гайтов, Я.М. Кашин, Л.Е. Копелевич, А.В. Самородов, В.А. Ким // Вестник Адыгейского государственного университета. Серия: Естественно-математические и технические науки. Майкоп : Изд-во АГУ, 2019. Вып. 3 (246). С. 103–108.
- 2. Гайтов Б.Х. Энергосберегающая установка для сепарирования нефти и определения ее параметров / Б.Х. Гайтов, Я.М. Кашин, Л.Е. Копелевич, А.В. Самородов, В.А. Ким // Энергосбережение и водоподготовка. 2019. № 4 (120) С. 58—62
- 3. Kopelevich L.E., Kim V.A., Artenyan K.Z. «Mathematical Model for Diagnosing Rotor-Drum of Resource Saving Unit for Oil Refining», 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2019, pp. 1–5. doi: 10.1109/FarEastCon.2019.8933837.
- 4. Gaytov B.Kh., Kim V.A., Artenyan K.Z. «Adjustment Characteristics of Resource Saving Unit for Oil Refining», 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2019, pp. 1-5. doi: 10.1109/FarEastCon. 2019.8934816.

- 5. Пат. 2706320 Российская Федерация, МПК7 В04В 9/00, В04В 9/02, В04В 9/04, В04В 14/00. Сепаратор для полидисперсных жидких систем / Я.М. Кашин, Л.Е. Копелевич, А.В. Самородов, В.А. Ким; заявитель и патентообладатель ФГБОУ ВО «Кубанский государственный технологический университет». № 2019111177. заявл. 12.04.2019. Опубл. 15.11.19. Бюл. № 32.
- 6. Проектирование электрических машин : учебник для вузов / под ред. И.П. Копылова. М. : Издательство Юрайт, 2011. 4-е изд., перераб. и доп. 767 с.
- 7. Гольдберг О.Д., Макаров Л.Н., Хелемская С.П. Инженерное проектирование электрических машин. М. : ИД «БАСТЕТ», 2016. 528 с.: ил. (Высшее проф. образование: бакалавриат, магистратура).
- 8. Куцевалов В.М. Вопросы теории и расчета асинхронных машин с массивными роторами. М. : Энергия, 1966. 302 с.
 - 9. Куцевалов В.М. Асинхронные и синхронные машины с массивным ротором. М.: Энергия, 1979. 160 с.
- 10. Конструктивно-интегрированный частотно-управляемый электропривод : монография / Б.Х. Гайтов. Краснодар : Изд-во филиал ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина», 2011. 355 с.

References

- 1. Gaitov B.H. Development of a new type of the energy-saving installation for oil processing / B.H. Gaitov, Ya.M. Kashin, L.E. Kopelevich, A.V. Samorodov, V.A. Kim // Vestnik of Adygeya State University College. Series: Natural-mathematical and technical sciences. Maykop: ASU Publishing House, 2019. Episode 3 (246). P. 103–108.
- 2. Gaitov B.H. Energy saving installation for oil separation and determination of its parameters / B.H. Gaitov, Ya.M. Kashin, L.E. Kopelevich, A.V. Samorodov, V.A. Kim // Energy saving and water treatment. 2019. № 4 (120). P. 58–62.
- 3. Kopelevich L.E., Kim V.A., Artenyan K.Z. «Mathematical Model for Diagnosing Rotor-Drum of Resource Saving Unit for Oil Refining», 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2019, pp. 1–5. doi: 10.1109/FarEastCon.2019.8933837.
- 4. Gaytov B.Kh., Kim V.A., Artenyan K.Z. «Adjustment Characteristics of Resource Saving Unit for Oil Refining», 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladi-vostok, Russia, 2019, pp. 1–5. doi: 10.1109/FarEastCon. 2019.8934816.
- 5. Pat. 2706320 Russian Federation, MPK7 B04B 9/00, B04B 9/02, B04B 9/04, B04B 14/00. Separator for polydisperse liquid systems / Ya.M. Kashin, L.E. Kopelevich, A.V. Samorodov, V.A. Kim; applicant and patentee of FSBOU VPO «Kuban State Technological University». –№ 2019111177. a-vowel. 12.04.2019. Obl. 15.11.19. Bul. № 32.
- 6. Design of electric machines: a textbook for universities / edited by I.P. Kopylov. M.: Publisher Yureit, 2011. 4th ed., transcript and additional 767 p.
- 7. Goldberg O.D., Makarov L.N., Chelemskaya S. . Engineering design of electrical machines. M. : ID «BASTET», 2016. 528 p.: silt. (Higher professional education: bachelor's degree, master's degree).
- 8. Kutsevalov V.M. Voprosy of theory and calculation of asynchronous machines with massive rotors. M.: Energia, 1966. 302 p.
 - 9. Kutsevalov V.M. Asynchronous and Synchronous Machines with Massive Rotors. M.: Energia, 1979. 160 p.
- 10. Structurally Integrated Frequency-controlled Electric Drive: Monograph / B.H. Gaitov. Krasnodar: News in the branch of the VUNC Air Force «VBA named after Prof. N.E. Zhukovsky and Y.A. Gagarin», 2011. 355 p.