Hw3

1. (a)
$$C_{0x} = \frac{\mathcal{E}_{si}}{t_{0x}} = \frac{3.45 \times 10^{-11}}{4 \times 10^{-4}} = 8.625 \times 10^{-3} F/m^{2}$$

 $Kn' = \mu n \cdot C_{0x} = 450 \times 8.625 \times 10^{-9} = 388 \mu A / v^{2} = 450 \times 10^{-9}$

(b)
$$K_n = K_n \cdot \frac{W}{U} = 388 \times 10^{-3} \times \frac{2.4 \times 10^{-9}}{0.18 \times 10^{-4}} = 5175 \mu A/V^2$$

$$\Rightarrow V_{0V}^{2} = \frac{2I_{0}}{kn} = \frac{2\times0.1\times10^{-3}}{5105\times10^{-6}}$$

$$\Rightarrow V_{0V}^{2} = \frac{50 \times 10^{-6}}{10^{-3}} = 0.05$$

4	
7.	

	V s	V _G	V _D	V_{sG}	$ V_{ov} $	V _{SD}	Region of operation
a	+2	+2	0	0	0	2	Cut-off (VGS=D)
b	+2	+1	0	1	0	2	cut-off/saturation (Vsp=Vsg-Vt)
c	+2	0	0	2	1	Z	Saturation (Vso>Vsg-Vt)
d	+2	0	+1	2	1	1	Triode/saturation (Vso=IVovI)
e	+2	0	+1.5	Z	1	0.5	Triode (VsosVsg-Vc)
f	+2	0	+2	2	1	0	Triode (VSD &VSG-Vt)

$$V_{DD} = 1.8 \text{ V}$$

$$Q_2$$

$$Q_2$$

$$Q_1$$

(a)
$$Io = \frac{1}{2} \cdot kn' \cdot \frac{W_1}{L_1} (Vas - Veh)^2$$

 $100 \times 10^{-6} = \frac{1}{2} \cdot 4 \cdot 10^{-3} \cdot \frac{1.8}{0.36} (Vas - 0.5)^2$
 $\Rightarrow Vas = 0.8162V = 816.2mV$
 $Ib = \frac{Voo - Vos}{R}$
 $\Rightarrow 10^{-6} = \frac{1.8 - 0.8162}{R}$
 $\Rightarrow R = 9.837 k \Omega *$

(b)
$$Vosz = Vos - Ve$$

 $= 0.8162 - 0.5$
 $= 0.3162 V$
 $Iref = \frac{Voo - Vosz}{Rz}$
 $\Rightarrow 0.5 \times 10^{-3} = \frac{1.8 - 0.3162}{Rz}$
 $\Rightarrow Rz = 2.9676k \cdot Cz$
 $\Rightarrow \frac{Iref}{I} = \frac{Wz}{W_{I}}$
 $\Rightarrow \frac{0.5}{100 \times 10^{-3}} = \frac{Wz}{1.8 \mu m}$
 $\Rightarrow Wz = 9 \mu m *$