DIY Deep Learning for Vision: a Hands-On Tutorial with Caffe

Maximally accurate	Maximally specific	
espresso		2.23192
coffee		2.19914
beverage		1.93214
liquid		1.89367
fluid		1.85519

Evan Shelhamer, Jeff Donahue, Yangqing Jia, Ross Girshick

caffe.berkeleyvision.org

github.com/BVLC/caffe

Look for further details in the outline notes

Why Deep Learning? The Unreasonable Effectiveness of Deep Features

Low-level: Pool₁

High-level: FC6

Classes separate in the deep representations and transfer to many tasks. [DeCAF] [Zeiler-Fergus]

Why Deep Learning? The Unreasonable Effectiveness of Deep Features

Maximal activations of pool, units

[R-CNN]

conv₅ DeConv visualization

[Zeiler-Fergus]

Rich visual structure of features deep in hierarchy.

What is Deep Learning?

Compositional Models Learned End-to-End

What is Deep Learning?

Vast space of models!

slide credit Marc'aurelio Ranzato, CVPR '14 tutorial.

Convolutional Neural Nets (CNNs): 1989

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeNet]

Convolutional Neural Nets (CNNs): 2012

AlexNet: a layered model composed of convolution, subsampling, and further operations followed by a holistic representation and all-in-all a landmark classifier on ILSVRC12. [AlexNet]

- + data
- + gpu
- + non-saturating nonlinearity
- + regularization

Frameworks

- Torch7
 - NYU
 - scientific computing framework in Lua
 - supported by Facebook
- Theano/Pylearn2
 - U. Montreal
 - scientific computing framework in Python
 - symbolic computation and automatic differentiation
- Cuda-Convnet2
 - Alex Krizhevsky
 - Very fast on state-of-the-art GPUs with Multi-GPU parallelism
 - C++ / CUDA library

Framework Comparison

- More alike than different
 - All express deep models
 - o All are nicely open-source
 - All include scripting for hacking and prototyping
- No strict winners experiment and choose the framework that best fits your work
- We like to brew our deep networks with Caffe

Why Caffe? In one sip...

- **Expression**: models + optimizations are plaintext schemas, not code.
- Speed: for state-of-the-art models and massive data.
- Modularity: to extend to new tasks and settings.
- Openness: common code and reference models for reproducibility.
- Community: joint discussion and development through BSD-2 licensing.

So what is Caffe?

- Pure C++ / CUDA architecture for deep learning
 - o command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU
 - o Caffe::set_mode(Caffe::GPU);

Training

Deployment

All with essentially the same code!

Caffe is a Community

project pulse

Reference Models

Caffe offers the

- model definitions
- optimization settings
- pre-trained weights
 so you can start right away.

Architectures

DAGs multi-input multi-task

Weight Sharing Recurrent (RNNs) Sequences

[Sutskever13]

Siamese Nets Distances

Define your own model from our catalogue of layers types and start learning.

Brewing by the Numbers...

- Speed with Krizhevsky's 2012 model:
 - K40 / Titan: 2 ms / image, K20: 2.6ms
 - 40 million images / day
 - Caffe + <u>cuDNN</u>: 1.17ms / image on K40
 - 8-core CPU: ~20 ms/image
- ~ 9K lines of C/C++ code
 - with unit test: ~20k
 - C++ 84.2%

Python 10.5%

Cuda 3.9%

Other 1.4%

^{*} Not counting image I/O time. Details at http://caffe.berkeleyvision.org/performance_hardware.html

CAFFE INTRO

Net

 A network is a set of layers connected as a DAG:

```
name: "dummy-net"
layers { name: "data" ...}
layers { name: "conv" ...}
layers { name: "pool" ...}
    ... more layers ...
layers { name: "loss" ...}
```

- Caffe creates and checks the net from the definition.
- Data and derivatives flow through the net as blobs – a an array interface

Forward / Backward the essential Net computations

Forward: $f_W(x)$

"espresso"

+ loss

 $abla f_W(x)$ Backward: learning

Caffe models are complete machine learning systems for inference and learning. The computation follows from the model definition. Define the model and run.

Layer

```
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param
    num_output: 20
    kernel size: 5
    stride: 1
    weight_filler
        type: "xavier"
```

name, type, and the connection structure (input blobs and output blobs)

layer-specific parameters

- Every layer type defines
- Setup
- Forward
- Backward

* Nets + Layers are defined by protobuf schema

Layer Protocol

Setup: run once for initialization.

Forward: make output given input.

Backward: make gradient of output

- w.r.t. bottom
- w.r.t. parameters (if needed)

Model Composition
The Net forward and backward passes are the composition the layers'.

Layer Development Checklist

Blob

Blobs are 4-D arrays for storing and communicating information.

- hold data, derivatives, and parameters
- lazily allocate memory
- shuttle between CPU and GPU

Data

Number x K Channel x Height x Width 256 x 3 x 227 x 227 for ImageNet train input

Parameter: Convolution Weight N Output x K Input x Height x Width

96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Blas 96 x 1 x 1 x 1 for CaffeNet conv1 name: "conv1"

type: CONVOLUTION

bottom: "data"
top: "conv1"
... definition ...

Blob

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)

- declare dimensions
- make SyncedMem -- but only lazily allocate

cpu_data(), mutable_cpu_data()

- host memory for CPU mode
- gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()

- derivative counterparts to data methods
- easy access to data + diff in forward / backward

Solving: Training a Net

Optimization like model definition is configuration.

```
train_net: "lenet_train.prototxt"
base 1r: 0.01
momentum: 0.9
weight decay: 0.0005
max iter: 10000
snapshot_prefix: "lenet_snapshot"
solver mode: GPU
                                           All you need to run
                                           things on the GPU.
```

> caffe train -solver lenet_solver.prototxt

Stochastic Gradient Descent (SGD) + momentum - Adaptive Gradient (ADAGRAD) - Nesterov's Accelerated Gradient (NAG)

End to End Recipe...

- Convert the data to Caffe-format
 - o Imdb, leveldb, hdf5 / .mat, list of images, etc.
- Define the Net
- Configure the Solver
- caffe train -solver solver.prototxt -gpu 0
- Examples are your friends
 - o caffe/examples/mnist,cifar10,imagenet
 - o caffe/build/tools/*

(Examples) Logistic Regression Learn LeNet on MNIST

FINE-TUNING

Fine-tuning Transferring learned weights to kick-start models

• Take a pre-trained model and fine-tune to new tasks [DeCAF] [Zeiler-Fergus] [OverFeat]

Style Recognition

Dogs vs.
Cats
top 10 in
10 minutes

From ImageNet to Style

Simply change a few lines in the layer definition

```
layers
                                                 layers
 name: "data"
                                                   name: "data"
                                                                                                      Input:
                                                                                                                      A different source
    source: "ilsvrc12 train leveldb"
                                                     source: "style leveldb"
   mean file: "../../data/ilsvrc12"
                                                     mean file: "../../data/ilsvrc12"
                                                 lavers
                                                                          new name = new params
                                                  blobs lr: 1
 blobs lr: 1
 blobs lr: 2
                                                   blobs lr: 2
                                                                                                      Last Layer:
 weight decay: 1
                                                  weight decay: 1
                                                                                                                      A different classifier
 weight_decay: 0
                                                  weight_decay: 0
 inner product param
                                                  inner product param
   num_output: 1000
                                                    num_output: 20
```

From ImageNet to Style

```
Under the hood (loosely speaking):
  net = new Caffe::Net(
        "style_solver.prototxt");
  net.CopyTrainedNetFrom(
        pretrained_model);
  solver.Solve(net);
```


HDR

(Example) Fine-tuning from ImageNet to Style

LOSS

What kind of model is this?

What kind of model is this?

Classification
SOFTMAX_LOSS
HINGE_LOSS
Linear Regression
EUCLIDEAN_LOSS
Attributes / Multiclassification
SIGNOID_FRONS_ENTROPY_LOSS
Others...
New Task
NEW_LOSS

Who knows! Need a loss function.

- Loss function determines the learning task.
- Given data D, a Net typically minimizes:

$$L(W) = \frac{1}{|D|} \sum_{i}^{|D|} f_{W}\left(X^{(i)}\right) + \lambda r(W)$$

Data term: error averaged over instances

Regularization term: penalize large weights to improve generalization

- The data error term $f_W(X^{(i)})$ is computed by Net::Forward
- Loss is computed as the output of Layers
- Pick the loss to suit the task many different losses for different needs

Softmax Loss Layer

 Multinomial logistic regression: used for predicting a single class of K mutually exclusive classes

```
layers { \hat{p}_{nk} = \exp(x_{nk})/\left[\sum_{k'} \exp(x_{nk'})\right] name: "loss" type: SOFTMAX_LOSS bottom: "pred" E = \frac{-1}{N} \sum_{n=1}^{N} \log(\hat{p}_{n,l_n}), bottom: "label" top: "loss" }
```

Sigmoid Cross-Entropy Loss

 Binary logistic regression: used for predicting K independent probability values in [0, 1]

```
layers { y = (1 + \exp(-x))^{-1} name: "loss" type: SIGMOID_CROSS_ENTROPY_LOSS bottom: "pred" E = \frac{-1}{n} \sum_{n=1}^{N} \left[ p_n \log \hat{p}_n + (1-p_n) \log (1-\hat{p}_n) \right] top: "loss" }
```

Euclidean Loss

 A loss for regressing to real-valued labels [inf, inf]

```
layers {
  name: "loss"
  type: EUCLIDEAN_LOSS
  bottom: "pred"
  bottom: "label"
  top: "loss"
}
```

$$E = \frac{1}{2N} \sum_{n=1}^{N} ||\hat{y}_n - y_n||_2^2$$

Multiple loss layers

- Your network can contain as many loss functions as you want
- Reconstruction and Classification:

```
E = \frac{1}{2N} \sum_{n=1}^{N} ||\hat{y}_n - y_n||_2^2 + \frac{-1}{N} \sum_{n=1}^{N} \log(\hat{p}_{n,l_n}),
```

```
layers {
  name: "recon-loss"
  type: EUCLIDEAN_LOSS
  bottom: "reconstructions"
  bottom: "data"
  top: "recon-loss"
}

layers {
  name: "class-loss"
  type: SOFTMAX_LOSS
  bottom: "class-preds"
  bottom: "class-labels"
  top: "class-loss"
}
```

Multiple loss layers

"*_LOSS" layers have a default loss weight of 1

```
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "pred"
  bottom: "label"
  top: "loss"
}

layers {
   name: "loss"
  type: SOFTMAX_LOSS
  bottom: "pred"
  bottom: "label"
  top: "loss"
  loss_weight: 1.0
}
```

Multiple loss layers

- Give each loss its own weight
- E.g. give higher priority to classification error

```
E = \frac{1}{2N} \sum_{n=1}^{N} ||\hat{y}_n - y_n||_2^2 + 100^* \sum_{n=1}^{N} \log(\hat{p}_{n,l_n}),
```

```
layers {
  name: "recon-loss"
  type: EUCLIDEAN_LOSS
 bottom: "reconstructions"
  bottom: "data"
  top: "recon-loss"
layers {
 name: "class-loss"
  type: SOFTMAX_LOSS
  bottom: "class-preds"
  bottom: "class-labels"
  top: "class-loss"
 oss_weight: 100.0
```

Any layer can produce a loss!

 Just add loss_weight: 1.0 to have a layer's output be incorporated into the loss

```
E = || pred - label ||^2 / (2N)
                                       diff = pred - label
                                                              E = || diff ||^2 / (2N)
                                      layers {
                                                             layers {
                                        name: "diff"
                                                               name: "loss"
                                        type: ELTWISE
                                                               type: POWER
 layers {
                                       bottom: "pred"
                                                               bottom: "diff"
   name: "loss"
                                       bottom: "label"
                                                               top: "euclidean loss"
   type: EUCLIDEAN_LOSS
                                        top: "diff"
                                                               power param {
   bottom: "pred"
                                        eltwise param {
                                                                 power: 2
   bottom: "label"
                                          op: SUM
   top: "euclidean loss"
                                          coeff: 1
                                                               # = 1/(2N)
   loss weight: 1.0
                                                               loss weight: 0.0078125
                                          coeff: -1
```

SOLVER

Solver

 Solver optimizes the network weights W to minimize the loss L(W) over the data D

$$L(W) = \frac{1}{|D|} \sum_{i}^{|D|} f_{W}\left(X^{(i)}\right) + \lambda r(W)$$

 Coordinates forward / backward, weight updates, and scoring.

Solver

- ullet Computes parameter update ΔW , formed from
 - $_{\circ}$ The stochastic error gradient ∇f_{W}
 - \circ The regularization gradient $\nabla r(W)$
 - Particulars to each solving rue unod

$$L(W) \approx \frac{1}{N} \sum_{i}^{N} f_{W} \left(\boldsymbol{X}^{(i)} \right) + \lambda r(W)$$

SGD Solver

- Stochastic gradient descent, with momentum
- solver_type: SGD

$$V_{t+1} = \mu V_t - \alpha \nabla L(W_t)$$

$$W_{t+1} = W_t + V_{t+1}$$

SGD Solver

- "AlexNet" [1] training strategy:
 - Use momentum 0.9
 - Initialize learning rate at 0.01
 - Periodically drop learning rate by a factor of 10
- Just a few lines of Caffe solver specification:

```
"step"
gamma: 0.1
stepsize: 100000max_iter:
350000
momentum: 0.9
```

NAG Solver

- Nesterov's accelerated gradient [1]
- solver_type: NESTEROV
- Proven to have optimal convergence rate $O(1/t^2)$ for convex problems

$$\begin{split} V_{t+1} &= \mu V_t - \alpha \nabla L(W_t + \mu V_t) \\ W_{t+1} &= W_t + V_{t+1} \end{split}$$

AdaGrad Solver

- Adaptive gradient (Duchi et al. [1])
- solver_type: ADAGRAD
- Attempts to automatically scale gradients based on historical gradients

$$(W_{t+1})_i = (W_t)_i - \alpha \frac{(\nabla L(W_t))_i}{\sqrt{\sum_{t'=1}^t (\nabla L(W_{t'}))_i^2}}$$

Solver Showdown: MNIST Autoencoder

44-0--4

```
SGD
I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627
10901 13:36:30.007922 24952 solver.cpp:251| Iteration 65000, Testing net (#0) # train set
I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217
                                                  Test net output #0: cross entropy loss = 63.217 (* 1 = 63.217 loss)
I0901 13:36:33.019356 24952 solver.cpp:302]
I0901 13:36:33.019773 24952 solver.cpp:302]
                                                  Test net output #1: 12 error = 2.40951
I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498
I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301
I0901 13:35:22.780138 20072 solver.cpp:302]
                                        Test net output #0: cross entropy loss = 60.8301 (* 1 = 60.8301 loss)
I0901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: 12 error = 2.02321
I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389
I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663
I0901 13:36:55.068410 22488 solver.cpp:302]
                                                 Test net output #0: cross entropy loss = 59.3663 (* 1 = 59.3663 loss)
I0901 13:36:55.068418 22488 solver.cpp:302]
                                                 Test net output #1: 12 error = 1.79998
```

DAG

Nets are DAGs

 Modern deep learning approaches to vision have a mostly linear structure

Nets are DAGs

- Modern deep learning approaches to vision have a mostly linear structure
- But Caffe nets can have any arbitrary directed acyclic graph (DAG) structure

Nets are DAGs

WEIGHT SHARING

Weight sharing

 Parameters can be shared and reused across Layers throughout the Net

Applications:

- Convolution at multiple scales / pyramids
- Recurrent Neural Networks (RNNs)
- Siamese nets for distance learning

Weight sharing

- Just give the parameter blobs explicit names using the param field
- Layers specifying the same param name will share that parameter, accumulating gradients accordingly

```
lavers:
  name: 'innerproduct1'
  type: INNER_PRODUCT
  inner product param
    num_output: 10
    bias_term: false
    weight_filler
      type: 'qaussian'
      std: 10
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct1'
layers:
  name: 'innerproduct2'
  type: INNER_PRODUCT
  inner_product_param
    num output: 10
    bias term: false
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct2'
```

EXAMPLES

Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org
demo code open-source and bundled

Maximally accurate	Maximally specific	
cat		1.80727
domestic cat		(1.74727)
feline		1.72787
tabby		0.99133
domestic animal		0.78542

Feature Visualization

The first layer filters, conv1

In [8]: # the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
 vis square(filters.transpose(0, 2, 3, 1))

The first layer output, conv1 (rectified responses of the filters above, first 36 only)

In [9]: feat = net.blobs('convl').data[4, :36]
vis_square(feat, padval=1)

The fifth layer output, conv5 (rectified, all 256 channels)

The fifth layer after pooling, pool5

In [15]: feat = net.blobs['pool5'].data[4]
 vis_square(feat, padval=1)

The second fully connected layer, 507 (rectified)

```
In [17]: feat = met.hlobs('fo7').data($)
pit.osbplot(2, 1, 1)
pit.osbplot(2, 1, 1)
pit.osbplot(met.flat)

= pit.hist(feat.flat)

= pit.hist(feat.flat)

- pit.hist(feat.flat)
```



```
In [18]: feat = net.blobs['prob'].data[4]
plt.plot(feat.flat)
```

Out[18]: [<matplotlib.lines.Line2D at 0x12b260710>]

Fully-convolutional Models

Transform fixed-input models into any-size models by translating inner products to convolutions.

The computation exploits a natural efficiency of convolutional neural network (CNN) structure by dynamic programming in the forward pass from shallow to deep layers and analogously in backward.

Net surgery in Caffe

how to transform models:

- make fully-convolutional
- set custom weights

[OverFeat]

Object Detection

R-CNN: Regions with Convolutional Neural Networks

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at

https://github.com/rbgirshick/rcnn

Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR14.

Thanks to the Caffe crew

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev Jonathan Long, Ross Girshick, Sergio Guadarrama

...plus the cold-brew

Acknowledgements

Thank you to the Berkeley Vision and Learning Center Sponsors.

Thank you to NVIDIA for collaboration on cuDNN and GPU donation.

Thank you to our 30+ open source contributors and vibrant community.

References

[DeCAF] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.

[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.

[Zeiler-Fergus] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.

[LeNet] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 1998.

[AlexNet] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.

[OverFeat] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2014.

[Image-Style] <u>S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller.</u> Recognizing Image Style. BMVC, 2014.

[Karpathy14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. CVPR, 2014.

[Sutskever13] I. Sutskever. Training Recurrent Neural Networks.

PhD thesis, University of Toronto, 2013.

[Chopra05] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. CVPR, 2005.