А.В. Ганичева, А.В. Ганичев

Тверская государственная сельскохозяйственная академия, г. Тверь Тверской государственный технический университет, г. Тверь

ГРАФОВЫЙ МЕТОД АНАЛИЗА ТЕКСТОВ GRAPH METHOD OF TEXT ANALYSIS

Ключевые слова: научный текст, структура текста, информационный граф, дерево, вершины, дуги (ребра), сегмент текста, матрица смежности, контур, петля, путь в графе

Keywords: scientific text, structure of text, information graph, tree, point or node, oriented edge, text fragment, adjacency matrix, directed circuit, loop, graph path

Введение

Автоматическое распознавание текста является одним из наиболее быстро развивающихся направлений искусственного интеллекта. Возможные направления использования систем автоматического анализа текстов для решения различных задач приведены в статье (Ганичева, 2016).

В системах автоматического анализа текстов часто применяются методы теории графов. Привлечение графовых моделей в системах автоматического анализа текстов вызвано необходимостью такой формы описания текста, которая была бы компактной, строго формализованной, наглядной. Перечислим некоторые примеры применения графовых моделей. В статье (Голубев, 2011) для распознавания соответствия документа эталонному документу производится сравнение модельного графа и графа, изображению документа. В статье (Целых, полученного по предлагается использовать нечеткий граф для изучения коммуникаций в социальной среде. Графовая модель используется в работе (Карпенко 2011) релевантности проверяемого документа образцам онтологической базы знаний. В статье (Тревгода, 2009) графовая модель используется для реферирования текста.

Особенности анализа структуры научных статей

Научный внутреннюю организацию текст строгую имеет частей. Текст составляющих его логико-смысловых состоящим из отдельных сегментов, между которыми установлены связи (отношения). В графовой модели сегменты можно считать вершинами графа, а связи между сегментами – ребрами (дугами) графа. Поэтому текст можно представить соответствующим графом, что позволяет формализовать процесс анализа текста и использовать хорошо развитый математический аппарат теории графов.

Под структурой текста понимается его внутренняя организация. Единицами внутренней структуры текста являются: набор слов, предложение или совокупность предложений, логически объединенных в единый сегмент. Единицы текста находятся в логической взаимосвязи и связаны различными отношениями: подчинения, несовместимости, наследования и т.д.

Структура научных статей обычно состоит из восьми частей: заголовок, перечень авторов, ключевые слова, (аннотация) реферат, введение, основная часть, заключение, список литературы.

Во введении можно выделить следующие части: актуальность проблемы, известные варианты решения проблемы (аналоги), достоинства и недостатки известных методов, цель и задачи исследования.

Основная часть может содержать: описание предлагаемого варианта решения проблемы, оценку новизны предлагаемого метода, определение места исследования в системе знаний, перечень используемых технических средств и оборудования, метод исследования, результаты экспериментальной проверки разработанных методов.

Заключение может включать: перечень полученных результатов, выводы, преимущества предложенного варианта решения проблемы по сравнению с аналогами, рекомендации по использованию и применению разработанного метода.

Отдельные части научной статьи, а также составляющие этих частей будем называть сегментами текста.

Анализ информационного графа по матрице смежности

Для исследования передачи и преобразования информации в сложных системах применяются информационные графы (Ганичева, 2005). Вершины информационного графа соответствуют этапам или ключевым моментам обработки информации (например, исходные или начальные данные, промежуточные и окончательные результаты обработки информации). Дуги графа указывают на порядок взаимодействия вершин в направлении информации. передачи преобразования Матрицы смежности информационных графов используются при анализе схем потоков информации в сложных системах.

Рассмотрим применение информационного графа для анализа текста на простом примере. Пусть текст содержит следующие сегменты; основная цель текста; задачи, раскрывающие основную цель; основная часть текста; заключение.

Такую структуру текста можно представить информационным графом, изображенным на рис. 1.

Рис. 1. Информационный граф текста.

На рис. 1 вершина x_1 соответствует основной цели текста, x_2 , x_3 , x_4 — задачам, раскрывающим основную цель, x_5 , x_6 — сегментам основной части текста, x_7 — заключению.

Между вершинами информационного графа существует отношение порядка, оно разбивает весь процесс движения информации от начала до заключения на такты (этапы), в результате которых формируются вершины графа. В информационном графе для формирования любой вершины x_i необходимо, чтобы информация поступала в эту вершину по всем путям, ведущим из исходных данных в x_i .

Порядком вершины x_i информационного графа является число, равное максимальной из длин путей, ведущих в вершину x_i из начальной вершины. Так, в рассмотренном примере порядок вершин x_2 , x_3 , x_4 равен 1, порядок x_5 , x_6 равен 2. В этом случае говорят, что вершины x_2 , x_3 , x_4 формируются в результате первого такта, а x_5 , x_6 — на втором такте. Порядком информационного графа называется максимальное числи тактов обработки информации, необходимое для достижения конечного результата. Порядок информационного графа равен наивысшему из порядков вершин, отвечающих окончательным результатам. В примере информационный граф имеет порядок 3, так как максимальное число тактов в движении информации, необходимое для получения заключения x_7 , равно 3.

Построим матрицу смежности данного графа и найдем 2-ю, 3-ю и 4-ю степень матрицы смежности:

Рассмотрим, какую информацию о структуре текста можно получить из анализа этой матрицы смежности и ее степеней.

Если j-ый столбец состоит из одних нулей, то вершина x_j — начальные данные (основная цель текста в примере), если i-ая строка состоит из одних нулей, то x_i — заключение.

Порядок вершины x_j равен наивысшему показателю k (k меньше порядка матрицы) такому, что в матрице $A^k = A \cdot A \cdot ... \cdot A$ (справа стоит k сомножителей A) в столбце с номером j имеется хотя бы один отличный от нуля элемент. Порядок вершины позволяет определить номер того такта (этапа), после которого тот или иной сегмент текста перестает учитываться в последующей обработке информации. А именно: номер такта, после которого сегмент x_i может не учитываться при анализе текста, равен максимальному из порядков вершин, отвечающих отличным от нуля элементам i-ой строки матрицы смежности A.

Матрицы $A \neq 0$, $A^2 \neq 0$, $A^3 \neq 0$, а матрица $A^4 = 0$. Следовательно порядок графа равен 3, что согласуется с полученным ранее результатом.

В рассматриваемом примере отличным от нуля элементам столбцов матрицы A^2 отвечают вершины x_5 , x_6 . Следовательно, порядки этих вершин равны 2. Таким образом, после второго такта задача x_3 не анализируется в тексте. Порядок вершины x_7 будет равен 3, т.к. в матрице A^3 в 7-м столбце есть отличный от 0 элемент.

Для дальнейшего анализа строится матрица $B = A + A^2 + ... + A^n$ (где n– порядок A):

Элементы этой матрицы указывают число возможных путей в информационном графе. Элемент $b_{17}=4$ указывает, что в графе имеется 4 пути, ведущих из x_1 в x_7 ; из x_3 в x_7 ведут два пути, т.к. $b_{37}=2$; а из x_1 в x_5 и x_6 ведут два пути, т.к. $b_{16}=b_{15}=2$; из x_2 в x_6 путей нет, поскольку $b_{26}=0$ и т.д. Отличные от нуля элементы, стоящие в j-ом столбце матрицы B, указывают на результаты, участвующие в формировании результата x_j , а именно: порядковые номера отличных от нуля элементов j-ого столбца равны номерам результатов, из которых формируется результат x_j . Для рассмотренного примера в формировании, например, x_2 участвует x_1 ; в формировании x_7 участвуют x_1 , x_2 , x_3 , x_4 , x_5 , x_6 и т.д. На практике эти сведения используют, когда обнаружено нарушение логической связи в получении некоторого сегмента.

Отличные от нуля элементы матрицы B, стоящие в i-ой строке, перечисляют все результаты, при формировании которых использовался результат x_i , а именно: номера отличных от нуля элементов i-ой строки

равны номерам результатов, в формировании которых участвовал результат x_i . В примере в формировании результатов x_5 , x_6 , x_7 участвовал результат x_3 , а в формировании x_7 — только сегмент x_5 .

Описанную методику анализа информационного графа целесообразно использовать для распознавания структуры текста.

Графовый метод определения структурированности текстов

Основными конструктивными признаками текста являются целостность и связность. Они отражают содержательную и структурную сущность текста. Рассмотрим как на основе матрицы смежности графа определить целостность и связность текста.

При анализе текстов особое значение имеет выделение сегментов, соответствующих изолированным, висячим и тупиковым вершинам графа. Изолированные вершины не инцидентны ни одному из ребер (дуг) графа, что может свидетельствовать о том, что данный сегмент графа не связан с другими сегментами. Висячие вершины соответствуют сегментам, в которые нельзя попасть из других сегментов. Тупиковые вершины показывают, что из данных сегментов нельзя попасть в другие сегменты текста.

Отыскать на графе изолированные, висячие и тупиковые вершины можно по матрице смежности графа $A = \|a_{ij}\|$, по которой для каждой вершины k ($k = \overline{1,n}$, n – число вершин в графе) определяется вектор $a(k) = (a_k, a^k)$ с компонентами:

$$a_k = \sum_{j=1}^n a_{kj}, \ a^k = \sum_{i=1}^n a_{ij}$$
 , где a_k - сумма элементов k -ой строки, a^k - k -го столбца матрицы смежности.

Величина a_k определяет число дуг, выходящих из вершины k, а a^k число дуг, входящих в нее. Когда $a_k = a^k = 0$, вершина k будет изолированной, если $a_k = 0$ — тупиковый, а при $a^k = 0$ — висячей.

Наличие в графе изолированных вершин обычно свидетельствует о не связанности (отсутствии целостности) текста.

Висячие вершины должны соответствовать заключительным положениям текста, а тупиковой вершиной может быть только сегмент, соответствующей центральной идее текста.

В приведенном примере информационного графа текста на основе анализа матрицы смежности можно сделать вывод, что в данном графе нет изолированных, тупиковых и висячих вершин.

Исследование особенностей связей между сегментами текста направлено, прежде всего, на выявление в соответствующем графе петель, контуров и сильно связанных подграфов. Петля интерпретируется как наличие связи между входом и выходом одного и того же сегмента, т.е. замкнутость рассуждений в данном сегменте. Контур образует путь — чередующуюся последовательность ребер (дуг) и вершин, в котором начальная и конечная вершина совпадают. Данное обстоятельство говорит о

возврате к одним и тем же рассуждениям, т.е. отсутствию причинно – следственных связей в тексте.

Подграф является сильно связным, если все входящие в него вершины достижимы, когда из любой вершины подграфа можно попасть в любую другую его вершину, т.е. все сегменты текста достижимы из других сегментов. Такая структура не свойственна научным текстам.

Наличие петли, контура и сильно связанных подграфов так же возможно определить на основе матрицы смежности. Так о наличии петли будет свидетельствовать ненулевой элемент матрицы смежности. О наличии контуров свидетельствует равенство $a_{ij} = a_{ji} = 1$. Главный определитель матрицы $\|a_{ij}\|$ характеризует число замкнутых циклов так, что каждое его слагаемое за исключением диагональных соответствует одному их циклов. Слагаемые диагонального минора M_{ij}^{n-1} матрицы $\|a_{ij}\|$ характеризуют число и характер замкнутых циклов, остающихся в структуре после исключения i-го элемента.

Для анализа связности (целостности) текста понятие связности графа мало подходит. Удобнее для анализа связности графа использовать показатель α , характеризующий относительную разность числа связей R, имеющихся в данном тексте, и числа связей R_{min} , минимально необходимого для связности (целостности) графа текста. Показатель α может интерпретироваться как мера избыточности текста по связям (ссылкам).

Если граф содержит n — вершин, то R_{min} =n-1 независимо от того, является граф ориентированным или нет (т.е. граф имеет древовидную структуру). Следовательно, α =(R- R_{min})/ R_{min} =R/(n-1)-1.

Значение R определяется по матрице смежности для ориентированных и неориентированных графов по-разному. В ориентированном графе каждой дуге (i,j) соответствует единственный элемент матрицы смежности $a_{ij}=1$, а в неориентированном графе таких элементов будет два: $a_{ij}=a_{ji}=1$. Поэтому для ориентированного и неориентированного графов, соответственно, имеем:

$$R = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}; \ R = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}.$$

Для не избыточных текстов значение α должно быть мало. Для рассматриваемого в примере ориентированного графа R=9, n=7, поэтому $\alpha=0.5$. Таким образом, структура текста в рассмотренном примере является не избыточной (имеется только одна лишняя связь).

Заключение

Описание и использование информационного графа с помощью матрицы смежности упрощает анализ текста, а в ряде случаев является пока единственно возможным методом такого анализа.

Литература

- 1. Ганичева А.В., Ганичев А.В. Дискурсный метод распознавания структурированности текстов // Мир лингвистики и коммуникации: электронный научный журнал. № 2, 2016. С. 31 38. Режим доступа: tverlingua.ru
- 2. Голубев С.В. Распознавание структурированных документов на основе машинного обучения // Бизнес-информатика. № 2 (16), 2011. С. 48 55.
- 3. Целых Ю.А. Теоретико-графовые методы анализа нечетких социальных сетей // Программные продукты и системы. № 2, 2008. С. 48 50.
- 4. Карпенко А.П. Методика оценки релевантности документов онтологической базы знаний // Информационные технологии. № 4,2011. С. 13 23.
- 5. Тревгода С.А. Методы и алгоритмы автоматического реферирования текста на основе анализа функциональных отношений: автореф. дис. ... канд. техн. наук. СПб., 2009. 18 с.
- 6. Ганичева, А.В. Математика для психологов / А.В. Ганичева, В.П. Козлов. М.: Аспект-Пресс, 2005. 239 с.

(0,4 п.л.)