Division of Integers - Restoring Method

- Fimilar to the multiplication algorithm, we also have a method for division called as the restoring method of division for binary numbers.
- Here also we have the registers namely 'A', 'M', 'Q' and count to store the result, dividend, divisor and count respectively.
- In this case, we shift the segisters

 A and Q to their left and then check

 whether the value in 'A' is greater

 than the divisor or not.

- To find out whether it is

 greater or not, we check that the

 result is positive or not.
- If yes, then we put 11' in the LSB of the Q register, which was initially left blank while shifting.
- He LSB of the Q register and add the divisor back to the value of register 'A' or RESTORE the previous value of register 'A', hence the name "Restoring Division Method"
- The count is decremented and the above process is repeated until the count is not equal to zero.

Q.1. Divide 13/5 using the RESTORING method of division and give the values of all the registers after each step Sol: A & M Action 00000 01101 00101 Initialize 00000 1101- 00101 Shift Left Here A-M = A+ (-M) = At 2's complement of M 2's complement of M= [10] : 0000D [[0]D 0010] + 11011 11011 Negative, hence put a 0 on the LSB of Q. 11011 + 00101 11010 DO101 Count --00000 First Cycle

	A	8	M	Action	Count
	00000	11010	00 (0)		4
	00001	1010_	10100	Shift Left	
+ +	11011	10100	00101	Q. E D A E A + M	
	0000	2nd	Cycle		
	0000	10100	00(0)		3
	11000	0100_	00101	Shift lest	
	[[]]	01000	00101	Q 0 ← 0 A ← A+M	
	0000	01000 3rd	00101 Cycle		
	11000	01000	00101		2
4	00110	1000_	00101	Shift Lest	
	00001	1000	00101	$Q_o \leftarrow 1$	
4th Cycle					

00001 10001 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101

Last Cycle

Count = D

Final Answer

Quotient =
$$(00010)_2 = (2)_{10}$$

Remainder = $(00011)_2 = (3)_{10}$

1.2. Explain how to divide 13 by 3 in the register and show how the quotient and the remainder is placed after the division (All are 5bit registers).

Q.3. Perform division of the following numbers using Restoring Division

Dividend Q = 17Divisor M = 03

Q'4' Perform division of the following numbers using restoring division algo.

A > 1100

B -> 0100