Yanick Ouellet

Claude-Guy Quimper

9 avril 2021

Université Laval

Motivation

Motivation

Motivation

MIP

$$S_1+p_1\leq S_2$$

MIP

 $S_1 + p_1 \leq S_2$

PPC

MinCumul(S, p, h, d)

MIP

$$S_1+p_1\leq S_2$$

SAT

$$[\![S_1=2]\!] \vee [\![S_2=2]\!]$$

PPC

MinCumul(S, p, h, d)

MIP	PPC
$S_1+p_1\leq S_2$	MinCumul(S, p, h, d)
SAT	Méta-heuristiques
$[\![S_1=2]\!] \vee [\![S_2=2]\!]$	def $lns(S, p, h, d)$:

Programmation par contraintes

Programmation par contraintes

Programmation par contraintes

Exemple d'un modèle

Problème

Assigner un quart de travail à Robert, Nancy et Monique.

Exemple d'un modèle

Problème

Assigner un quart de travail à Robert, Nancy et Monique.

Variables

- $R \in \{AM, PM\}$
- $\bullet \ \ \textit{N} \in \{\texttt{AM}, \texttt{PM}\}$
- $M \in \{\text{AM}, \text{PM}\}$

Exemple d'un modèle

Problème

Assigner un quart de travail à Robert, Nancy et Monique.

Variables

- $R \in \{AM, PM\}$
- $N \in \{AM, PM\}$
- $M \in \{\mathtt{AM},\mathtt{PM}\}$

Contraintes

- Au moins deux quarts en AM
- Au moins un quart en PM
- Robert ne peut pas travailler avec Monique $(R \neq M)$

Fonctionnement d'un solveur

Principe

• Construit un arbre de recherche

Fonctionnement d'un solveur

Principe

• Construit un arbre de recherche

Heuristique de branchement

• Choisis une variable et une valeur à assigner

Fonctionnement d'un solveur

Principe

• Construit un arbre de recherche

Heuristique de branchement

• Choisis une variable et une valeur à assigner

Contraintes

- Algorithme de vérification
- Algorithme de filtrage

 $R \in \{\mathtt{AM},\mathtt{PM}\}$ $N \in \{\mathtt{AM},\mathtt{PM}\}$ $M \in \{\mathtt{AM},\mathtt{PM}\}$

```
R \in \{AM, PM\}
N \in \{AM, PM\}
M \in \{AM, PM\}
R = AM
N \in \{AM, PM\}
M \in \{AM, PM\}
```

```
R \in \{\text{AM}, \text{PM}\}
N \in \{\text{AM}, \text{PM}\}
M \in \{\text{AM}, \text{PM}\}
R = \text{AM}
N \in \{\text{AM}, \text{PM}\}
M \in \{\text{AM}, \text{PM}\}
```

```
R \in \{AM, PM\}
N \in \{AM, PM\}
M \in \{AM, PM\}
R = AM
N \in \{AM, PM\}
M = PM
```


Définition d'une tâche

Notation

• est : Earliest Starting Time

• lct : Lastest Completion Time

• *p* : Processing time

• h : Height

Définition

MinCumulative(S, p, h, d)

Variables et paramètres

ullet : Ensemble des tâches

Définition

MinCumulative(S, p, h, d)

- ullet : Ensemble des tâches
- T : Ensemble des instants

Définition

MinCumulative(S, p, h, d)

- ullet : Ensemble des tâches
- T : Ensemble des instants
- $S_i \in [\operatorname{est}_i, \operatorname{lct}_i p_i]$: Dates de début de $i \in \mathcal{I}$

Définition

MinCumulative(S, p, h, d)

- ullet : Ensemble des tâches
- T : Ensemble des instants
- $S_i \in [\operatorname{est}_i, \operatorname{lct}_i p_i]$: Dates de début de $i \in \mathcal{I}$
- p_i : Temps de traitement de $i \in \mathcal{I}$

Définition

MinCumulative(S, p, h, d)

- ullet : Ensemble des tâches
- T : Ensemble des instants
- $S_i \in [\operatorname{est}_i, \operatorname{lct}_i p_i]$: Dates de début de $i \in \mathcal{I}$
- p_i : Temps de traitement de $i \in \mathcal{I}$
- h_i : Hauteur de $i \in \mathcal{I}$

Définition

MinCumulative(S, p, h, d)

- ullet : Ensemble des tâches
- T : Ensemble des instants
- $S_i \in [\operatorname{est}_i, \operatorname{lct}_i p_i]$: Dates de début de $i \in \mathcal{I}$
- p_i : Temps de traitement de $i \in \mathcal{I}$
- h_i : Hauteur de $i \in \mathcal{I}$
- d_t : Demande à l'instant $t \in T$

Définition

MinCumulative(S, p, h, d)

Décomposition

$$\sum_{i \in \mathcal{I} | S_i \le t < S_i + p_i} h_i \ge d_t \ \forall t \in \mathcal{T}$$

Définition

MinCumulative(S, p, h, d)

Décomposition

$$\sum_{i \in \mathcal{I} | S_i \le t < S_i + p_i} h_i \ge d_t \ \forall t \in \mathcal{T}$$

Objectif

Développer un algorithme de vérification et de filtrage

Nature de la contrainte

NP-Complet

Décider si la contrainte admet une solution est NP-Complet.

Nature de la contrainte

NP-Complet

Décider si la contrainte admet une solution est NP-Complet.

Conséquence

Il faut utiliser une relaxation pour détecter l'incohérence et faire du filtrage.

Relaxation

• Énergie : Aire de la tâche $(p \cdot h)$

Relaxation

• Énergie : Aire de la tâche $(p \cdot h)$

Relaxation

- Énergie : Aire de la tâche $(p \cdot h)$
- On peut placer l'énergie n'importe où dans [est, lct)
 - Préemption possible

Relaxation

- Énergie : Aire de la tâche $(p \cdot h)$
- On peut placer l'énergie n'importe où dans [est, lct)
 - Préemption possible
 - Possible de dépasser la hauteur

- Utiliser la relaxation complètement élastique
- Trouver une façon de couvrir la demande avec l'énergie

- Utiliser la relaxation complètement élastique
- Trouver une façon de couvrir la demande avec l'énergie

Intuition

- Utiliser la relaxation complètement élastique
- Trouver une façon de couvrir la demande avec l'énergie

Demande : $2 \forall t \in [0, 10)$

- Utiliser la relaxation complètement élastique
- Trouver une façon de couvrir la demande avec l'énergie

Algorithme

1. Trier les tâches par ${\it lct}$

- 1. Trier les tâches par ${\it lct}$
- 2. Traiter chaque tâche i

- 1. Trier les tâches par lct
- 2. Traiter chaque tâche i
 - Céduler son énergie le plus tôt possible

- 1. Trier les tâches par lct
- 2. Traiter chaque tâche i
 - Céduler son énergie le plus tôt possible
 - ullet Sans dépasser la demande ni son lct_i

- 1. Trier les tâches par lct
- 2. Traiter chaque tâche i
 - Céduler son énergie le plus tôt possible
 - Sans dépasser la demande ni son *lcti*
- 3. Si la demande n'est pas entièrement satisfaite, retourner un échec

Algorithme

- 1. Trier les tâches par lct
- 2. Traiter chaque tâche i
 - Céduler son énergie le plus tôt possible
 - Sans dépasser la demande ni son *lcti*
- 3. Si la demande n'est pas entièrement satisfaite, retourner un échec

Complexité

• Linéaire (plus le tri)

Algorithme

- 1. Trier les tâches par lct
- 2. Traiter chaque tâche i
 - Céduler son énergie le plus tôt possible
 - Sans dépasser la demande ni son *lct*_i
- 3. Si la demande n'est pas entièrement satisfaite, retourner un échec

Complexité

- Linéaire (plus le tri)
 - Grâce aux ensembles disjoints

est lct e 1 0 4 2 2 1 10 10 3 4 8 8

est lct e 1 0 4 2 3 4 8 8 2 1 10 10

Tâches

#	est	lct	е
1	0	4	2
3	4	8	8
2	1	10	10

Tâches

#	est	lct	е
1	0	4	2
3	4	8	8
2	1	10	10

Tâches

#	est	lct	е
1	0	4	2
3	4	8	8
2	1	10	10

Tâches # est lct e 1 0 4 2 3 4 8 8 2 1 10 10

Tâches # est lct e 1 0 4 2 3 4 8 8 2 1 10 10

Tâches # est lct e 1 0 4 2 3 4 8 8 2 1 10 10

Intuition

• Pour chaque tâche i

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$
 - 5. Recommencer jusqu'à ce que l'algorithme de vérification retourne un succès

Intuition

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$
 - Recommencer jusqu'à ce que l'algorithme de vérification retourne un succès

Vérification par la bande

Vider le domaine d'une tâche ⇒ échec

Intuition

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$
 - 5. Recommencer jusqu'à ce que l'algorithme de vérification retourne un succès

Vérification par la bande

- Vider le domaine d'une tâche ⇒ échec
- Plus fort que l'algorithme de vérification seul

Intuition

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$
 - Recommencer jusqu'à ce que l'algorithme de vérification retourne un succès

Vérification par la bande

- Vider le domaine d'une tâche ⇒ échec
- Plus fort que l'algorithme de vérification seul
 - Pas préemption pour i

Intuition

- Pour chaque tâche i
 - 1. Fixer la tâche à son est_i
 - 2. Exécuter l'algorithme de vérification
 - 3. Si l'algorithme échoue, i ne peut pas être cédulée à est_i
 - 4. Filtrer S_i à $est_i + 1$
 - Recommencer jusqu'à ce que l'algorithme de vérification retourne un succès

Vérification par la bande

- Vider le domaine d'une tâche ⇒ échec
- Plus fort que l'algorithme de vérification seul
 - Pas préemption pour i
 - Peut quand même dépasser sa hauteur

Tâches

#	est	lct	е
1	0	4	2
2	1	6	10
3	4	8	8

Tâches

#	est	lct	е
1	0	4	2
2	1	6	10
3	4	8	8

Tâches # est lct e 1 0 4 2 2 1 6 10 3 4 8 8

Algorithme naïf

• Complexité dépend du nombre d'instants dans l'horizon

Algorithme naïf

- Complexité dépend du nombre d'instants dans l'horizon
- En pire cas, $\Theta(n^2 \cdot |T|)$

Algorithme naïf

- Complexité dépend du nombre d'instants dans l'horizon
- En pire cas, $\Theta(n^2 \cdot |T|)$

Algorithme intelligent

- Utilise l'overflow pour filtrer de plus qu'une unité
 - Détails dans l'article

Algorithme naïf

- Complexité dépend du nombre d'instants dans l'horizon
- En pire cas, $\Theta(n^2 \cdot |T|)$

Algorithme intelligent

- Utilise l'overflow pour filtrer de plus qu'une unité
 - Détails dans l'article
- Même pire cas, mais plus efficace en pratique

Expérimentations - Problème

Problème

Céduler des quarts de travail

Expérimentations - Problème

Problème

Céduler des quarts de travail

Employé

- Intervalle d'heures total à travailler
- Un quart maximum par jour
- 5 jours consécutifs maximum
- Entre 4 et 6 heures par quart

Expérimentations - Problème

Problème

Céduler des quarts de travail

Employé

- Intervalle d'heures total à travailler
- Un quart maximum par jour
- 5 jours consécutifs maximum
- Entre 4 et 6 heures par quart

Demande

Possiblement différente pour chaque tranche de 15 minutes

Concurrents

- Décomposition (en programmation par contraintes)
- Modèle MIP

Concurrents

- Décomposition (en programmation par contraintes)
- Modèle MIP

Objectif

- Avec un modèle « simple », trouver des solutions aux instances difficiles
- Être plus efficace que les autres méthodes exactes

Choix d'algorithme

- Vérification seulement
- Filtrage naïf
- Filtrage intelligent

Choix d'algorithme

- Vérification seulement
- Filtrage naïf
- Filtrage intelligent

Modélisation

- Une seule MinCumulative pour tout le problème
- Une MinCumulative par paire de jours
 - Un quart de travail qui commence au jour d doit terminer au plus au jour d + 1
 - Plus petit *n* pour chaque contrainte

Expérimentations

Méthodologie

- Modélisation en Minizinc
- Solveur de contraintes : Chuffed
- Solveur MIP : CPlex
- Limite de 20 minutes

Instances aléatoires

- 400 instances générées pour comparer le comportement sur des instances faciles
- Paramètres générés aléatoirement avec un petit nombre de jours

Résultats - Instances aléatoires

Configuration	# Trouvée	# Meilleure
Décomposition	400	81
MIP	347	168
Vérification - Unique	398	94
Vérification - Multiple	400	236
Naïf - Unique	400	129
Naïf - Multiple	400	249
Intelligent - Unique	400	131
Intelligent - Multiple	400	257

- Trouvée : Instances pour lesquelles au moins une solution a été trouvée
- Meilleure : Instances pour lesquelles la meilleure solution a été trouvée

Description

• 225 instances de Curtois et al.

- 225 instances de Curtois et al.
- Version simplifiée du banc d'essai original

- 225 instances de Curtois et al.
- Version simplifiée du banc d'essai original
- Très difficile pour une méthode exacte

- 225 instances de Curtois et al.
- Version simplifiée du banc d'essai original
- Très difficile pour une méthode exacte
- Même trouver une seule solution est difficile

Résultats - Véritables instances

Configuration	# Trouvée	# Meilleure
Décomposition	0	0
MIP	0	0
Vérification - Unique	8	6
Vérification - Multiple	0	0
Naïf - Unique	4	0
Naïf - Multiple	1	1
Intelligent - Unique	4	1
Intelligent - Multiple	1	0

- Trouvée : Instances pour lesquelles au moins une solution a été trouvée
- Meilleure : Instances pour lesquelles la meilleure solution a été trouvée

Conclusion

- Introduction de la contrainte MinCumulative
- Algorithme de vérification linéaire
- Algorithme de filtrage quadratique
- Efficace en pratique