

DeepMend: Learning Occupancy Functions to Represent Shape for Repair

Nikolas Lamb, Sean Banerjee, Natasha Kholgade Banerjee

{lambne, sbanerje, nbanerje}@clarkson.edu

Terascale All-sensing Research Studio (TARS), Clarkson University, Potsdam NY, USA https://github.com/Terascale-All-sensing-Research-Studio/DeepMend

Motivation

Problem: Shape Repair

Many common household objects are fractured during normal use.

Solution: DeepMend

 We present DeepMend, an implicit shape based approach to automatically generate restorations to repair fractured shapes.

DeepMend Repair Fractured Shape

Fracture Dataset

 We generate synthetic fractures using shapes from ShapeNet [4].

Metrics

Chamfer Distance (CD)

 Measure of bulk shape similarity. Lower is better.

Non-Fracture Region Error (NFRE)

 Measure of artifacts that occur on the surface of the fractured shape. Lower is better.

Generating Shapes for Restoration

Our Approach

- Input a novel fractured shape in need of restoration.
- Deconstruct the fractured shape into a break code and complete code.
- Reconstruct the restoration shape using the estimated complete and break codes.

Shape Representation

- We learn occupancy for a break shape and complete shape.
- We compute the fractured shape and restoration shape using the predicted break and complete occupancy, i.e.

During testing we optimize the following loss to obtain codes,

$$\mathcal{L}_{infaug} = \mathcal{L}_F + \lambda_{ner} \mathcal{L}_{ner} + \lambda_{prox} \mathcal{L}_{prox} + \lambda_{reg} \mathcal{L}_{reg}$$

where the loss terms are given as

Qualitative Results

Quantitative Results

Approach	Metric	airplanes	bottles	cars	chairs	jars	mugs	sofas	tables	Mean
MendNet	CD	0.091	0.08	0.025	0.171	0.129	0.109	0.19	0.208	0.126
	NFRE	0.07	0.045	0.017	0.143	0.028	800.0	0.085	0.203	0.075
3D-	CD	0.173	0.146	-	0.184	0.262	-	0.32	0.333	0.237
ORGAN	NFRE	0.192	0.07	-	0.588	0.041	-	0.2	0.138	0.205
Sub-Occ	CD	0.05	0.041	0.024	0.112	0.119	0.035	0.066	0.122	0.071
	NFRE	0.099	0.076	0.142	0.262	0.183	0.07	0.17	0.175	0.147
Sub-Lamb	CD	0.075	0.039	0.05	0.086	0.082	0.1	0.053	0.093	0.072
	NFRE	0.302	0.12	0.272	0.33	0.289	0.452	0.192	0.204	0.27
DeepMend	CD	0.037	0.022	0.108	0.088	0.065	0.035	0.057	0.129	0.068
	NFRE	0.009	0.012	0.017	0.009	0.007	0.008	0.012	0.012	0.011

Chamfer distance (CD) and NFRE for MendNet, 3D-ORGAN, Sub-Occ, Sub-Lamb, and DeepMend. Bold values correspond to the lowest value within a class.

- MendNet [1]: Prior implicit
- repair approach. 3D-ORGAN: 32³ voxelbased approach.

Baselines

- Sub-Occ: DeepSDF [2] complete + subtraction in occupancy space.
- Sub-Lamb: DeepSDF complete + subtraction in occupancy space + cleaning using Lamb et al. [3].

Architecture

Network Architecture

- We use the autodecoder architecture introduced by DeepSDF [2] as a backbone for DeepMend.
- The complete network f_{Θ} and break network $g_{\mathbf{\Phi}}$ take a code and a point as input and predict complete occupancy o_C and break o_B occupancy.
- We compute fractured o_F and restoration occupancy o_R using the complete o_C and break o_B occupancies.

Conclusion

- We compute restoration and fractured shape occupancy by predicting complete and break shape occupancy.
- We contribute two novel loss functions that penalize voluminous or empty restorations respectively.
- Our work outperforms existing shape repair approaches and baselines based on complete prediction and subtraction.

Citations

[1] Lamb, et al. "MendNet: Restoration of Fractured Shapes Using Learned Occupancy Functions." TOG 2022. [2] Park, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." CVPR 2019. [3] Lamb, et al. "Automated reconstruction of smoothly joining 3D printed restorations to fix broken objects." Symposium on Computational Fabrication 2019. [4] Chang, et al. "Shapenet: An information-rich 3d model repository." arXiv:1512.03012 2015.