Cross-lingual approach

LING575

Fei Xia

Week 9: 3/4/08

Papers

(Hana et al., 2004) J. Hana, A. Feldman, and C. Brew. A resource-light approach to Russian morphology: Tagging Russian using Czech resources.

• <u>(Feldman et al., 2006)</u> A. Feldman, J. Hana, and C. Brew. Experiments in morphological annotation transfer.

(Hana et al., 2004)

Main ideas

- Use a trigram model for POS tagging
- Borrow transition model from a closely related language.
- Use a morphological analyzer to create a "lexicon".
- Use the lexicon to create "uniform" emission probability

The Setting

Input:

- Labeled data of Czech
- Unlabeled data of Russian
- A morphological analyzer for Russian

Output:

A Russian POS tagger

Russian and Czech

- The languages share many linguistic properties:
 - Both are Slavic languages
 - Both have extensive morphology
 - Both have free word order
 - The word order in both is very similar.
- => One can borrow transition probability from Czech and use it for Russian

The Russian morphological analyzer

Using about 80 paradigms

 Given a word, find all possible pref + stem + suf decompositions

- Reducing ambiguity by some heuristics
 - Longest ending filtering (LEF)
 - Relations between words: e.g., talking, talked

Morphological analysis results

LEF	no	no	no	yes	yes	yes
Lexicon based on	0	100K	1M	0	100K	1M
recall	95.4	94	93.1	84.4	88.3	90.4
avg ambig (tag/word)	10.9	7.0	4.7	4.1	3.5	3.1
Tagging – accuracy	50.7	62.1	67.5	62.1	66.8	69.4

- → The analyzer provides a (word, tag) lexicon
- → The two methods reduce the average number of tags/word from 10.9 to 3.1

Further improvement

- Transition probability: to make Czech more like Russian through preprocessing
 - Applying simple russification rules
 - Results: accuracy improves from 68% to 69.4%.

 Handling a large tagset: to train subtaggers and combine their results

The tagset for the two languages

No.	Description	Abbr.	No. of values	
			Cz	Ru
1	POS	P	12	12
2	SubPOS – detailed POS	S	75	32
3	Gender	g	11	5
4	Number	n	6	4
5	Case	С	9	8
6	Possessor's Gender	G	5	4
7	Possessor's Number	N	3	3
8	Person	p	5	5
9	Tense	t	5	5
10	Degree of comparison	d	4	4
11	Negation	а	3	3
12	Voice	V	3	3
13	Unused		1	1
14	Unused		1	1
15	Variant, Style	V	10	2

Handling a large tagset

 Build subtaggers, which are trained and tested on reduced tagsets.

 Combine the results of subtaggers by choosing the tag that agrees the most with the subtaggers.

Summary

- Model: trigram model
 - Transition probability borrowed from another language
 - Emission probability requires a lexicon, which can be created by a morphological analyzer
- Improvement:
 - Two methods to reduce (word, tag) ambiguity:
 - Baseline (random pick): 33.6%
 - HMM: 69.4%
 - Russification to improve transition probability: 69.4% to 72.6%
 - Train subtaggers and combine their results, as a way to deal with a large tagset: 72.6% to 73.5%

(Feldman et al., 2006)

Main ideas

 To test the effect of using borrowed transition probability and uniform emission probability

To improve transition probability

 To improve the emission probability by identifying cognates.

The effect of different transition probabilities

Different ways to get transition probability (Results are from Table 2):

From Czech labeled data: 78.6

From Czech and Polish labeled data

Merging the data: 79.7

Interpolating the two models: 79.1

From Russian labeled data: 81.2

The effect of different emission probabilities

Same transition probability (from Czech data), but different emission probability:

Uniform emission probability (based on the lexicon): 78.6

 Russian emission probability (using labeled Russian data): 95.6

Using cognates

Identify cognates in Czech and Russian

 Use the cognates to set the emission probability for Russian

This approach provides decent improvement.