MC-202 Noções de Eficiência de Algoritmos

Marcelo S. Reis msreis@ic.unicamp.br

Universidade Estadual de Campinas

Segundo semestre de 2023

Quantos segundos demora para executar a seguinte função?

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Depende...

- do computador onde ele for rodado
 - computador rápido vs lento
- da posição de x no vetor
 - no melhor caso, a linha 4 é executada 1 vez
 - no pior caso, a linha 4 é executada n vezes
- do valor de n
 - -n = 10 vs n = 10.000

Queremos analisar algoritmos:

- Independentemente do computador onde ele for rodado
- Em função do valor de n (a quantidade de dados)

Em geral, queremos analisar o pior caso do algoritmo

- A análise do melhor caso pode ser interesse, mas é rara
- A análise do caso médio é mais difícil
 - Normalmente é uma análise probabilística
 - Precisamos fazer suposições sobre os dados de entrada

```
1 int busca(int *v, int n, int x) {
2   int i;
3   for (i = 0; i < n; i++)
4    if (v[i] == x)
5     return i;
6   return -1;
7 }</pre>
```

Consumo de tempo por linha no pior caso:

- Linha 2: tempo c_2 (declaração de variável)
- Linha 3: tempo c_3 (atribuições, acessos e comparação)
 - No pior caso, essa linha é executada n+1 vezes
- Linha 4: tempo c_4 (acessos, comparação e if)
 - No pior caso, essa linha é executada n vezes
- Linha 5: tempo c_5 (acesso e return)
- Linha 6: tempo c₆ (return)

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

O tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6$$

Cada c_i não depende de n, depende apenas do computador

• Leva um tempo constante

Sejam
$$\mathbf{a} := c_2 + c_3 + c_5 + c_6$$
, $\mathbf{b} := c_3 + c_4$ e $\mathbf{d} := a + b$

Se $n \ge 1$, temos que o tempo de execução é menor ou igual a

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = c_2 + c_3 + c_5 + c_6 + (c_3 + c_4) \cdot n$$

= $\frac{\mathbf{a} + \mathbf{b} \cdot n}{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{b}} = \frac{\mathbf{d} \cdot \mathbf{n}}{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{b}}$

Isto é, o crescimento do tempo é linear em n

• Se n dobra, o tempo de execução praticamente dobra

Notação Assintótica

Como vimos, existe uma constante d tal que, para $n \ge 1$,

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 \le \frac{dn}{dn}$$

d não interessa tanto, depende apenas do computador...

• Estamos preocupados em estimar

O tempo do algoritmo é da ordem de n

• A ordem de crescimento do tempo é igual a de f(n) = n

Dizemos que

$$c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 = O(n)$$

Veremos uma definição formal de O(⋅) em breve...

Busca Binária

```
1 int busca_binaria(int *dados, int 1, int r, int x) {
2   int m = (1 + r) / 2;
3   if (1 > r)
4     return -1;
5   if (dados[m] == x)
6     return m;
7   else if (dados[m] < x)
8     return busca_binaria(dados, m + 1, r, x);
9   else
10     return busca_binaria(dados, 1, m - 1, x);
11 }</pre>
```

Se realizarmos t chamadas, quanto vale t?

- primeiro chamamos para n
- depois para n/2, n/4, n/8, ..., $n/2^{t-1}$
- no pior caso, só paramos quando $n/2^t < 1 \le n/2^{t-1}$
 - Ou seja, $t \le 1 + \lg n$
- gastamos um tempo constante c em cada chamada
 operações aritméticas, comparações e return

Para $n \ge 2$, o consumo de tempo é no máximo:

•
$$ct \le c + c \lg n \le 2c \lg n = O(\lg n)$$

Objetivos

Temos dois objetivos para analisar algoritmo

- Entender o tempo de execução de um algoritmo
 - Exemplo: busca linear é O(n)
 - Vamos dizer que o algoritmo é O(f(n))
- Comparar dois algoritmos
 - Busca linear é O(n) e busca binária é $O(\lg n)$
 - Veremos que um algoritmo $O(\lg n)$ é melhor que um O(n)
 - Prova formal que um algoritmo é melhor que o outro

Comparando funções

Queremos comparar duas funções f e g

- ullet Queremos entender a velocidade de crescimento de f
- ullet Queremos dizer que f cresce mais lentamente ou igual a g

f pode ser o tempo de execução do algoritmo e g uma função mais simples de entender

- $f(n) = c_2 + c_3 \cdot (n+1) + c_4 \cdot n + c_5 + c_6 e g(n) = n$
- $f(n) = 3n^2 + 10 \lg n \in g(n) = n^2$

f e g podem ser os tempos de execução de dois algoritmos

•
$$f(n) = dn$$
 e $g(n) = c + c \lg n$

Primeira Ideia

Comparar funções verificando se $f(n) \leq g(n)$ para todo n

Problema: $10n > n^2$ para n < 10

Solução: Ao invés de comparar todo n, comparar apenas para n suficientemente grande

• Para todo $n \ge n_0$ para algum n_0

Segunda Ideia

Comparar funções verificando se $f(n) \leq g(n)$ para $n \geq n_0$

Problema: n + 5 > n para todo n

- Mas a velocidade de crescimento das funções é a mesma
- Constantes dependem da máquina onde executamos
- Vamos ignorar constantes e termos menos importantes

Solução: Ao invés de comparar f com g, comparar com $c \cdot g$, onde c é uma constante

11

Notação Assintótica

Dizemos que uma função f(n) = O(g(n)) se

- existe uma constante c
- existe uma constante n_0

tal que

$$f(n) \le c \cdot g(n)$$
, para todo $n \ge n_0$

 $f(n) = \mathrm{O}(g(n))$ se, para todo n suficientemente grande, f(n) é menor ou igual a um múltiplo de g(n)

Exemplo: 2n + 120 = O(n)

Basta escolher, por exemplo, c=10 e $n_0=15$

Exemplo: $3n^2 + n + 5 = O(n^2)$

Basta escolher, por exemplo, c=4 e $n_0=4$

Outros exemplos

$$1 = O(1)$$

$$1.000.000 = O(1)$$

$$5n + 2 = O(n)$$

$$5n^{2} + 5n + 2 = O(n^{2})$$

$$\log_{2} n = O(\log_{10} n)$$

$$\log_{10} n = O(\log_{2} n)$$

Nomenclatura e consumo de tempo

- O(1): tempo constante
 - não depende de n
 - Ex: atribuição e leitura de uma variável
 - Ex: operações aritméticas: +, -, *, /
 - Ex: comparações (<, <=, ==, >=, >, !=)
 - Ex: operadores booleanos (&&, &, ||, |, !)
 - Ex: acesso a uma posição de um vetor
- $O(\lg n)$: logarítmico
 - lg indica \log_2
 - quando n dobra, o tempo aumenta em uma constante
 - Ex: Busca binária
 - Outros exemplos durante o curso

Nomenclatura e consumo de tempo

- O(n): linear
 - quando n dobra, o tempo dobra
 - Ex: Busca linear
 - Ex: Encontrar o máximo/mínimo de um vetor
 - Ex: Produto interno de dois vetores
- $O(n \lg n)$:
 - quando n dobra, o tempo um pouco mais que dobra
 - Ex: algoritmos de ordenação que veremos
- $O(n^2)$: quadrático
 - quando n dobra, o tempo quadruplica
 - Ex: BubbleSort, SelectionSort e InsertionSort
- $O(n^3)$: cúbico
 - quando n dobra, o tempo octuplica
 - Ex: multiplicação de matrizes $n \times n$

Um cuidado

O que significa dizer que o tempo de um algoritmo é $O(n^3)$?

- Para instâncias grandes $(n \ge n_0)$
- O tempo é menor ou igual a um múltiplo de n^3

Pode ser que o tempo do algoritmo seja $2n^2$...

- $2n^2 = O(n^3)$, mas...
- $2n^2 = \mathcal{O}(n^2)$

Ou seja, podemos ter feito uma análise "folgada"

• achamos que o algoritmo é muito pior do que é realmente

No curso, não faremos análises "folgadas"

- existe uma maneira formal de lidar com isso (notação ⊖)
- mas não precisamos desse formalismo em MC202

Exercício

- 1. Mostre que $n + \lg n = O(n)$
- 2. Mostre que $15n = O(n \lg n)$ mas que $n \lg n \neq O(n)$
 - Essa análise é folgada, já que 15n = O(n)
- 3. Mostre que $42n = O(n^2)$ mas que $n^2 \neq O(42n)$
 - Essa análise é folgada, já que $42n = \mathrm{O}(n)$