Problème : Étude d'une série alternée.

posé au concours blanc 2022

L'objectif de ce problème est l'étude de la série

$$\sum (-1)^n \frac{\ln(n)}{n}$$

- 1. Pour $n \in \mathbb{N}^*$, on pose $v_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$.
 - (a) Montrer que $v_{n+1} v_n \underset{n \to +\infty}{\sim} -\frac{1}{2n^2}$.
 - (b) En déduire que la série $\sum (v_{n+1} v_n)$ converge , puis que la suite (v_n) converge. On notera γ sa limite.
- 2. Pour $n \in \mathbb{N}^*$, on pose $w_n = \sum_{k=1}^n \frac{\ln(k)}{k} \frac{(\ln(n))^2}{2}$.
 - (a) Étudier les variations de la fonction $g: t \longmapsto \frac{\ln(t)}{t}$ sur $]0, +\infty[$.

 On précisera ses limites aux bornes de son ensemble de définition et on tracera l'allure de sa courbe représentative.
 - (b) Montrer que pour tout entier $n \geq 3$, on a

$$\frac{\ln(n+1)}{n+1} \le \int_n^{n+1} \frac{\ln(t)}{t} dt \le \frac{\ln(n)}{n}.$$

- (c) En déduire que la suite (w_n) est décroissante à partir du rang 3.
- (d) Montrer que la suite (w_n) converge.

- 3. (a) Justifier que $\sum (-1)^n \frac{\ln(n)}{n}$ est une série convergente.
 - (b) Justifier que $\sum (-1)^n \frac{\ln(n)}{n}$ n'est pas absolument convergente.
- 4. Dans cette question, pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n (-1)^k \frac{\ln(k)}{k}$.
 - (a) Montrer que pour tout entier $n \geq 1$,

$$S_{2n} = 2\sum_{k=1}^{n} \frac{\ln(2k)}{2k} - \sum_{k=1}^{2n} \frac{\ln(k)}{k},$$

(b) En vous aidant de ce qui précède, exprimer en fonction de γ et de $\ln 2$ la valeur de la somme

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln(n)}{n}.$$

(c) Justifier que $\sum_{k=1}^{999} (-1)^k \frac{\ln(k)}{k}$ est une approximation exacte à 10^{-2} près de la somme calculée à la question précédente