Assignment 11

Surbhi Agarwal

Abstract—This document illustrates linear transformation matrices with respect to a set of linearly independent eigenvectors.

1 Problem

Let $\mathbf{S}: \mathbb{R}^n \to \mathbb{R}^n$ be given by $\mathbf{S}(\mathbf{v}) = \alpha \mathbf{v}$, for a fixed $\alpha \in \mathbb{R}, \alpha \neq 0$. Let $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $\mathbf{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a set of linearly independent eigenvectors of \mathbf{T} . Then

- 1) The matrix of **T** with respect to **B** is diagonal
- 2) The matrix of (T S) with respect to **B** is diagonal
- 3) The matrix of **T** with respect to **B** is not necessarily diagonal, but is upper triangular
- 4) The matrix of T with respect to B is diagonal but the matrix of (T S) with respect to B is not diagonal.

2 Solution

Given that $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and B represents a set of linearly independent eigenvectors of T given as follows

$$\mathbf{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \tag{2.0.1}$$

So,

$$\mathbf{T}\mathbf{v}_i = \lambda_i \mathbf{v}_i \tag{2.0.2}$$

where λ_i represents the eigenvalue λ_i corresponding to \mathbf{v}_i . Hence, the matrix \mathbf{T} with respect to \mathbf{B} can be represented as

$$\mathbf{T} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \ddots & & \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 (2.0.3)

And,

$$(\mathbf{T} - \mathbf{S})\mathbf{v}_i = \mathbf{T}(\mathbf{v}_i) - \mathbf{S}(\mathbf{v}_i) \tag{2.0.4}$$

$$= \lambda_i \mathbf{v}_i - \alpha \mathbf{v}_i \tag{2.0.5}$$

$$= (\lambda_i - \alpha) \mathbf{v}_i \tag{2.0.6}$$

Hence, matrix of $\mathbf{T} - \mathbf{S}$ with respect to \mathbf{B} can be represented as

$$\mathbf{T} - \mathbf{S} = \begin{pmatrix} \lambda_1 - \alpha & 0 & \dots & 0 \\ 0 & \lambda_2 - \alpha & \dots & 0 \\ \vdots & \ddots & & & \\ 0 & \dots & 0 & \lambda_n - \alpha \end{pmatrix}$$
 (2.0.7)

1. The matrix of T w.r.t to B is diagonal	True, as seen from (2.0.3)
2. The matrix of (T – S) w.r.t B is diagonal	True, as seen from (2.0.7)
3. The matrix of T with respect to B is not necessarily diagonal but is upper triangular	False, as already proved T is diagonal
4. The matrix of T with respect to B is diagonal but the matrix of (T – S) with respect to B is not diagonal	False, as already proved T – S is diagonal

TABLE 1: Verifying the given options