

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/11, 15/82, 15/52, 15/54, 15/55, 15/56, 15/57, 15/63, 9/10, 9/14, C07K 14/415, A01H 5/00

(11) International Publication Number:

WO 97/27295

(43) International Publication Date:

31 July 1997 (31.07.97)

(21) International Application Number:

PCT/GB97/00178

A1

(22) International Filing Date:

21 January 1997 (21.01.97)

(30) Priority Data:

9601330.5

23 January 1996 (23.01.96) GB

9618742.2

9 September 1996 (09.09.96) GB

(71) Applicant (for all designated States except US): HORTICUL-TURE RESEARCH INTERNATIONAL [GB/GB]; Wellesbourne, Warwick CV35 9EF (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MANNING, Kenneth [GB/GB]; Horticulture Research International, Wellesbourne, Warwick CV35 9EF (GB).

(74) Agent: RUFFLES, Graham, Keith; Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FRUIT RIPENING-RELATED GENES

(57) Abstract

vector for in use genetic transformation of strawberry cells comprises promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region, or a fragment of at least 10 bases thereof, of a strawberry protein selected from O-methyl transferase, acyl carrier protein (ACP), elongation factor, auxin-induced cysteine(thiol) proteinase, cellulase, starch phosphorylase, pyruvate decarboxylase, chalcone reductase. protein kinase, auxin-related gene, transporter, meristem pattern gene, or selected from a strawberry protein with homology to transcribed sequence accession T45086. transcribed sequence accession number L36159 or transcribed sequence accession number T45902, or selected from a strawberry protein of unknown homology encoded by one of the StrawRipe sequences A to K.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
88	Barbados	GR	Greece	NL	Netherlands
BE ·	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	· iE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
2					

FRUIT RIPENING-RELATED GENES

This invention relates generally to the modification of a plant phenotype by the regulation of plant gene expression. More specifically it relates to the control of fruit ripening by control of one or more than one gene which is known to be implicated in that process.

BACKGROUND OF THE INVENTION

Two principal methods for the control of expression are known. These are referred to in the art as "antisense downregulation" and "sense downregulation" or "cosuppression". Both of these methods lead to an inhibition of expression of the target gene. Overexpression is achieved by insertion of one or more than one extra copies of the selected gene. Other lesser used methods involve modification of the genetic control elements, the promoter and control sequences, to achieve greater or lesser expression of an inserted gene.

In antisense downregulation, a DNA which is complementary to all or part of the target gene is inserted into the genome in reverse orientation and without its translation initiation signal. The simplest theory is that such an antisense gene, which is transcribable but not translatable, produces mRNA which is complementary in sequence to mRNA product transcribed from the endogenous gene: that antisense mRNA then binds with the naturally produced "sense" mRNA to form a duplex which inhibits translation of the natural mRNA to protein. It is not necessary that the inserted antisense gene be equal in length to the endogenous gene sequence: a fragment is

sufficient. The size of the fragment does not appear to be particularly important. Fragments as small as 40 or so nucleotides have been reported to be effective. Generally somewhere in the region of 50 nucleotides is accepted as sufficient to obtain the inhibitory effect. However, it has to be said that fewer nucleotides may very well work: a greater number, up to the equivalent of full length, will certainly work. It is usual simply to use a fragment length for which there is a convenient restriction enzyme cleavage site somewhere downstream of fifty nucleotides. The fact that only a fragment of the gene is required means that not all of the gene need be sequenced. It also means that commonly a cDNA will suffice, obviating the need to isolate the full genomic sequence.

The antisense fragment does not have to be precisely the same as the endogenous complementary strand of the target gene. There simply has to be sufficient sequence similarity to achieve inhibition of the target gene. This is an important feature of antisense technology as it permits the use of a sequence which has been derived from one plant species to be effective in another and obviates the need to construct antisense vectors for each individual species of interest. Although sequences isolated from one species may be effective in another, it is not infrequent to find exceptions where the degree of sequence similarity between one species and the other is insufficient for the effect to be obtained. In such cases, it may be necessary to isolate the species-specific homologue.

Antisense downregulation technology is well-established in the art. It is the subject of several textbooks and many hundreds of journal publications. The principal patent reference is European Patent No. 240,208 in the name of Calgene Inc. There is no reason to doubt the operability of antisense technology. It is well-established, used routinely in laboratories around the world and products in which it is used are on the market.

Both overexpression and downregulation are achieved by "sense" technology. If a full length copy of the target gene is inserted into the genome then a range of phenotypes is obtained, some overexpressing the target gene, some underexpressing. A population of plants produced by this method may then be screened and individual phenotypes isolated. As with antisense, the inserted sequence is lacking in a translation initiation signal. Another similarity with antisense is that the inserted sequence need not be a full length copy. Indeed, it has been found that the distribution of over-and under-expressing phenotypes is skewed in favour of underexpression and this is advantageous when gene inhibition is the desired effect. For overexpression, it is preferable that the inserted copy gene retain its translation initiation codon. The principal patent reference on cosuppression is European Patent 465,572 in the name of DNA Plant Technology Inc. There is no reason to doubt the operability of sense/cosuppression technology. It is well established, used routinely in laboratories around the world and products in which it is used are on the market.

Sense and antisense gene regulation is reviewed by Bird and Ray in

Biotechnology and Genetic Engineering Reviews 9: 207-227 (1991). The use of these techniques to control selected genes in tomato has been described by Gray et al., Plant Molecular Biology, 19: 69-87 (1992).

Gene control by any of the methods described requires insertion of the sense or antisense sequence, with appropriate promoters and termination sequences containing polyadenylation signals, into the genome of the target plant species by transformation, follow by regeneration of the transformants into whole plants. It is probably fair to say that transformation methods exist for most plant species or can be obtained by adaptation of available methods.

For dicotyledonous plants the most widely used method is Agrobacteriummediated transformation. This is the best known, most widely studied and, therefore, best understood of all transformation methods. The rhizobacterium Agrobacterium tumefaciens, or the related Agrobacterium rhizogenes, contain certain plasmids which, in nature, cause the formation of disease symptoms, crown gall or hairy root tumours, in plants which are infected by the bacterium. Part of the mechanism employed by Agrobacterium in pathogenesis is that a section of plasmid DNA which is bounded by right and left border regions is transferred stably into the genome of the infected plant. Therefore, if foreign DNA is inserted into the so-called "transfer" region (T-region) in substitution for the genes normally present therein, that foreign gene will be transferred into the plant genome. There are many hundreds of references in the journal literature, in textbooks and in patents and the methodology is well-established. Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria x ananassa Duch. is described in Plant Science, 69, 79-94 (1990).

The effectiveness of Agrobacterium is restricted to the host range of the microorganism and is thus restricted more or less to dicotyledonous plant species. In
general monocotyledonous species, which include the important cereal crops, are not
amenable to transformation by the Agrobacterium method. Various methods for the
direct insertion of DNA into the nucleus of monocotyledon cells are known.

In the ballistic method, microparticles of dense material, usually gold or tungsten, are fired at high velocity at the target cells where they penetrate the cells, opening an aperture in the cell wall through which DNA may enter. The DNA may be coated on to the microparticles or may be added to the culture medium.

In microinjection, the DNA is inserted by injection into individual cells via an ultrafine hollow needle.

Another method, applicable to both monocotyledons and dicotyledons, involves creating a suspension of the target cells in a liquid, adding microscopic needle-like material, such as silicon carbide or silicon nitride " whiskers", and agitating so that the cells and whiskers collide and DNA present in the liquid enters the cell.

In summary, then, the requirements for both sense and antisense technology are known and the methods by which the required sequences may be introduced are known. What remains, then is to identify genes whose regulation will be expected to have a desired effect, isolate them or isolate a fragment of sufficiently effective length, construct a chimeric gene in which the effective fragment is inserted between promoter and termination signals, and insert the construct into cells of the target plant species by transformation. Whole plants may then be regenerated from the transformed cells.

This invention is concerned with the control of ripening in fruit, and the particular interest here is in strawberries.

The interest in controlling the ripening process is to improve the flavour and/or texture of the fruit, both characters being largely affected by the ripening process.

Sugars are the most important soluble component of the flavour. Some 99% of the soluble sugars in strawberry are accounted for by sucrose, glucose and fructose, the amount of these sugars being affected by the season but their relative proportions are largely unaffected.

There is little information in the literature on the metabolic pathways involved in the synthesis of sugars in strawberry. It is known, however that sugars are synthesised during the ripening of the fruit.

The changes in gene expression during strawberry fruit ripening and their regulation by auxin have been described in Planta 194: 62-68 (1994)

OBJECT OF THE INVENTION

An object of the present invention is to provide DNA sequences enabling the construction of vectors suitable for genetic transformation of strawberry plants, with a view to control of the ripening process in strawberry fruit.

SUMMARY OF THE INVENTION

According to the present invention there is provided a vector for use in the genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region, or a fragment of at least 10 bases thereof, of a strawberry protein selected from O-methyl transferase, acyl carrier protein (ACP), elongation factor, auxin-induced gene, cysteine(thiol) proteinase, cellulase, starch phosphorylase, pyruvate decarboxylase, chalcone reductase, protein kinase, auxin-related gene, sucrose transporter, meristem pattern gene, or selected from a strawberry protein with homology to transcribed sequence accession number T45086, transcribed sequence accession number L36159 or transcribed sequence accession number T45902, or selected from a strawberry protein of unknown homology encoded by one of the StrawRipe sequences A to K.

The gene regulation sequence may be in the same or antisense orientation as the endogenous target gene. It may also be of partial or full sequence length. The invention further contemplates the overexpression of one or more of the genes by inserting into the strawberry genome one or more than one extra copy thereof.

The invention also provides a gene regulation sequence which comprises the coding region, or a fragment of at least 10 bases thereof, of a strawberry protein selected from O-methyl transferase, acyl carrier protein (ACP), elongation factor, auxin-induced gene, cysteine(thiol) proteinase, cellulase, starch phosphorylase, pyruvate decarboxylase, chalcone reductase, protein kinase, auxin-related gene, sucrose

transporter, meristem pattern gene, or selected from a strawberry protein with homology to transcribed sequence accession number T45086, transcribed sequence accession number L36159 or transcribed sequence accession number T45902, or selected from a strawberry protein of unknown homology encoded by one of the StrawRipe sequences A to K.

The sequences of this invention can also be used as probes for isolation of similar sequences from the strawberry genome:

The invention also provides a strawberry plant and propagating material thereof which contains a vector of this invention.

Further according to the invention, there is provided a method for altering the phenotype of strawberry plants, with the aim of controlling the ripening of strawberry fruit, comprising inserting into the genome of the cell of a strawberry plant a gene regulation vector of this invention.

In this way, the invention further provides genetically modified strawberry plants, propagation material and strawberry fruit.

PREFERRED EMBODIMENTS

In the present invention, the regulation sequence comprises the coding region, or a fragment of at least 10 bases thereof, of a strawberry protein. The strawberry protein is selected from O-methyl transferase, acyl carrier protein (ACP), elongation factor, auxin-induced gene, cysteine(thiol) proteinase, cellulase, starch phosphorylase, pyruvate decarboxylase, chalcone reductase, protein kinase, auxin-related gene, sucrose transporter, meristem pattern gene, or selected from a strawberry protein with homology to transcribed sequence accession number T45086, transcribed sequence

accession number L36159 or transcribed sequence accession number T45902, or selected from a strawberry protein of unknown homology encoded by one of the StrawRipe sequences A to K.

Examples of suitable regulation sequences are SEQ ID NO:1: to SEQ ID NO:27:, also referred to herein as Sequences 1 to 27. Related sequences taken from the priority documents of the present PCT application are given in SEQ ID NO:28: to SEQ ID NO:38:.

The gene regulation sequences of the invention may be synthesised from the sequence information given or may be isolated from a library. To assist isolation Zeneca Limited have deposited with the National Collection of Industrial & Marine Bacteria, St. Machar Drive, Aberdeen, UK, a cDNA library of strawberry ripening genes. The library was deposited on 15th November 1994 under the Budapest Treaty and has the Accession Number NCIMB 40690.

Thus, this invention is based on the identification of genes which encode proteins implicated in strawberry ripening-related processes. DNA sequences which encode these proteins have been cloned and some have been characterised. The DNA sequences may be used to modify plants with the goal of modifying the ripening characteristics of fruit.

By virtue of this invention strawberry plants can be generated which, amongst other phenotypic modifications, may have one or more of the following fruit characteristics:

improved resistance to damage during harvest, packaging and transportation due to slowing of the ripening and over-ripening processes;

longer shelf life and better storage characteristics due to reduced activity of degradative pathways (e.g. cell wall hydrolysis).

improved processing characteristics due to changed activity of proteins/enzymes contributing to factors such as: viscosity, solids, pH, elasticity;

improved flavour and aroma at the point of sale due to modification of the sugar/acid balance and other flavour and aroma components responsible for characteristics of the ripe fruit;

modified colour due to changes in activity of enzymes involved in the pathways of pigment biosynthesis (e.g. lycopene, β-carotene, chalcones and anthocyanins), increased resistance to post-harvest pathogens such as fungi.

The activity of the ripening-related proteins may be either increased or reduced depending on the characteristics desired for the modified plant part (fruit, leaf, flower, etc). The levels of protein may be increased; for example, by incorporation of additional genes. The additional genes may be designed to give either the same or different spatial and temporal patterns of expression in the fruit. "Antisense" or "partial sense" or other techniques may be used to reduce the expression of ripening-related protein.

The activity of each ripening-related protein or enzyme may be modified either individually or in combination with modification of the activity of one or more other ripening-related proteins/enzymes. In addition, the activities of the ripening-related proteins/enzymes may be modified in combination with modification of the activity of other enzymes involved in fruit ripening or related processes.

DNA constructs according to the invention may comprise a base sequence at least 10 bases (preferably at least 35 bases) in length for transcription into RNA.

There is no theoretical upper limit to the base sequence - it may be as long as the relevant mRNA produced by the cell - but for convenience it will generally be found suitable to use sequences between 100 and 1000 bases in length. The preparation of such constructs is described in more detail below.

As a source of the DNA base sequence for transcription, a suitable cDNA or genomic DNA or synthetic polynucleotide may be used. The isolation of suitable ripening-related sequences is described above; it is convenient to use DNA sequences derived from the ripening-related clones deposited at NCIMB in Aberdeen. Sequences coding for the whole, or substantially the whole, of the appropriate ripening-related protein may thus be obtained. Suitable lengths of this DNA sequence may be cut out for use by means of restriction enzymes. When using genomic DNA as the source of a base sequence for transcription it is possible to use either intron or exon regions or a combination of both.

In a variation of the vector of this invention the regulation sequence varies from Sequences 1 to 27 but retains sufficient similarity to be effective in gene regulation. Thus, the regulatory gene may be a homologue of a gene of Sequence 1 to 27 which has been obtained from a strawberry plant.

To obtain constructs suitable for expression of the appropriate ripening-related sequence in plant cells, the cDNA sequence as found in one of the strawberry plasmids or the gene sequence as found in the chromosome of the strawberry plant may be used. Recombinant DNA constructs may be made using standard techniques. For example, the DNA sequence for transcription may be obtained by treating a vector containing said sequence with restriction enzymes to cut out the appropriate segment. The DNA sequence for transcription may also be generated by annealing and ligating synthetic oligonucleotides or by using synthetic oligonucleotides in a polymerase chain reaction (PCR) to give suitable restriction sites at each end. The DNA sequence is then cloned into a vector containing upstream promoter and downstream terminator sequences. If

antisense DNA is required, the cloning is carried out so that the cut DNA sequence is inverted with respect to its orientation in the strand from which it was cut.

Promoters suitable for use in constructs of the invention may be any suitable promoters which are known to be effective in driving expression of foreign genes in plants, for example the promoters may be those which are isolatable from the genomic version of the cDNAs of the invention.

In a construct expressing antisense RNA, the strand that was formerly the template strand becomes the coding strand, and vice versa. The construct will thus encode RNA in a base sequence which is complementary to part or all of the sequence of the ripening-related RNA. Thus the two RNA strands are complementary not only in their base sequence but also in their orientations (5' to 3')

In a construct expressing sense RNA, the template and coding strands retain the assignments and orientations of the original plant gene. Constructs expressing sense, RNA encode RNA with a base sequence which is homologous to part or all of the sequence of the mRNA. In constructs which express the functional ripening-related protein, the whole of the coding region of the gene is linked to transcriptional control sequences capable of expression in plants.

For example, constructs according to the present invention may be made as follows. A suitable vector containing the desired base sequence for transcription is treated with restriction enzymes to cut the sequence out. The DNA strand so obtained is cloned (if desired, in reverse orientation) into a second vector containing the desired promoter sequence and the desired terminator sequence. Suitable promoters include the 35S cauliflower mosaic virus promoter, the polyubiquitin promoter and the tomato polygalacturonase gene promoter sequence (Bird et al. 1988, Plant Molecular Biology, 11:651-662) or other developmentally regulated fruit promoters. Suitable terminator

sequences include that of the Agrobacterium tumefaciens nopaline synthase gene (the nos 3' end).

The transcriptional initiation region (or promoter) operative in plants may be a constitutive promoter (such as the 35S cauliflower mosaic virus promoter) or an inducible or developmentally regulated promoter (such as fruit-specific promoters), as circumstances require. For example, it may be desirable to modify ripening-related protein activity only during fruit development and/or ripening. Use of a constitutive promoter will tend to affect ripening-related protein levels and functions in all parts of the plant, while use of a tissue specific promoter allows more selective control of gene expression and affected functions. Thus in applying the invention it may be found convenient to use a promoter that will give expression during fruit development and/or ripening. Thus the antisense or sense RNA is produced only in the organ in which its action is required and/or only at the time required. Fruit development and/or ripening-specific promoters that could be used include the ripening-enhanced polygacturonase promoter (PCT/WO 92/08798), the E8 promoter (Diekman & Fischer, 1988, EMBO, 7:3315-3320), the fruit specific 2AII promoter (Pear et al, 1989, Plant Molecular Biology, 13:639-651), the histidine decarboxylase promoter (HDC, Sibia) and the phytoene synthase promoter.

Ripening-related protein or enzyme activity (and hence ripening-related processes and fruit ripening characteristics) may be modified to a greater or lesser extent by controlling the degree of the appropriate ripening-related protein's sense or antisense mRNA production in the plant cells. This may be done by suitable choice of promoter sequences, or by selecting the number of copies or the site of integration of the DNA sequences that are introduced into the plant genome. For example, the DNA construct may include more than one DNA sequence encoding the ripening-related protein or more than one recombinant construct may be transformed into each plant cell.

Ţ

The activity of each ripening-related protein may be separately modified by transformation with a suitable DNA construct comprising a ripening-related sequence. In addition, the activity of two or more ripening-related proteins may be simultaneously modified by transforming a cell with two or more separate constructs. Alternatively, a plant cell may be transformed with a single DNA construct comprising both a first ripening-related sequence and a second ripening-related sequence.

It is also possible to modify the activity of the ripening-related protein(s) while also modifying the activity of one or more other enzymes. The other enzymes may be involved in cell metabolism or in fruit development and ripening. Cell wall metabolising enzymes that may be modified in combination with a ripening-related protein include but are not limited to: pectin esterase, polygalacturonase, β-galactanase, β-glucanase. Other enzymes involved in fruit development and ripening that may be modified in combination with a ripening-related protein include but are not limited to: ethylene biosynthetic enzymes, carotenoid biosynthetic enzymes including phytoene synthase, carbohydrate metabolism enzymes including invertase.

Several methods are available for modification of the activity of the ripening-related protein(s) in combination with other enzymes. For example, a first plant may be individually transformed with a ripening-related gene construct and then crossed with a second plant which has been individually transformed with a construct encoding another enzyme. As a further example, plants may be either consecutively or co-transformed with ripening-related constructs and with appropriate constructs for modification of the activity of the other enzyme(s). An alternative example is plant transformation with a ripening-related construct which itself contains an additional gene for modification of the activity of the other enzyme(s). The ripening-related gene constructs may contain sequences of DNA for regulation of the expression of the other enzyme(s) located adjacent to the ripening-related sequences. These additional sequences may be in either sense or antisense orientation as described in PCT/WO 93/23551 (single construct having distinct DNA regions homologous to different target

genes) By using such methods, the benefits of modifying the activity of the ripening-related proteins may be combined with the benefits of modifying the activity of other enzymes:

A DNA construct of the invention is transformed into a target plant cell. The target plant cell may be part of a whole plant or may be an isolated cell or part of a tissue which may be regenerated into a whole plant. For any particular plant cell, the ripening-related sequence used in the transformation construct may be derived from the same plant species, or may be derived from any other plant species (as there will be sufficient sequence similarity to allow modification of related isoenzyme gene expression).

Transgenic plants and their progeny may be used in standard breeding programmes, resulting in improved plant lines having the desired characteristics For example, fruit-bearing plants expressing a ripening-related construct according to the invention may be incorporated into a breeding programme to alter fruit-ripening characteristics and/or fruit quality. Such altered fruit may be easily derived from elite lines which already possess a range of advantageous traits after a substantial breeding programme: these elite lines may be further improved by modifying the expression of a single targeted ripening-related protein/enzyme to give the fruit a specific desired property.

By transforming plants with DNA constructs according to the invention, it is possible to produce plants having an altered (increased or reduced) level of expression of one or more ripening-related proteins, resulting from the presence in the plant genome of DNA capable of generating sense or antisense RNA homologous or complementary to the RNA that generates such ripening-related proteins. For fruit-bearing plants, fruit may be obtained by growing and cropping using conventional methods. Seeds may be obtained from such fruit by conventional methods (for example, tomato seeds are separated from the pulp of the ripe fruit and dried, following

which they may be stored for one or more seasons). Fertile seed derived from the genetically modified fruit may be grown to produce further similar modified plants and fruit.

The fruit derived from genetically modified plants and their progeny may be sold for immediate consumption, raw or cooked, or processed by canning or conversion to soup, sauce or paste. Equally, they may be used to provide seeds according to the invention.

The genetically modified plants (transformed plants and their progeny) may be heterozygous for the ripening-related DNA constructs. The seeds obtained from self fertilisation of such plants are a population in which the DNA constructs behave like single Mendelian genes and are distributed according to Mendelian principles: e.g., where such a plant contains only one copy of the construct, 25% of the seeds contain two copies of the construct, 50% contain one copy and 25% contain no copy at all. Thus not all the offspring of selfed plants produce fruit and seeds according to the present invention, and those which do may themselves be either heterozygous or homozygous for the defining trait. It is convenient to maintain a stock of seed which is homozygous for the ripening-related DNA construct. All crosses of such seed stock will contain at least one copy of the construct, and self-fertilized progeny will contain two copies, i.e. be homozygous in respect of the character. Such homozygous seed stock may be conventionally used as one parent in Fl crosses to produce heterozygous seed for marketing. Such seed, and fruit derived from it, form further aspects of our invention. We further provide a method of producing FI hybrid plants expressing a ripening-related DNA sequence which comprises crossing two parent lines, at least one of which is homozygous for a ripening-related DNA construct. A process of producing FI hybrid seed comprises producing a plant capable of bearing genetically modified fruit homozygous for a ripening-related DNA construct, crossing such a plant with a second homozygous variety, and recovering Fl hybrid seed. It is possible according to our invention to transform two or more plants with different ripening-related DNA

constructs and to cross the progeny of the resulting lines, so as to obtain seed of plants which contain two or more constructs leading to reduced expression of two or more fruit-ripening-related proteins.

EXAMPLES OF THE INVENTION

The invention will now be described, by way of illustration, by the following Examples. In the Examples, reference is made to Figure 1.

THE DRAWING

Figure 1 is a diagrammatic map of plasmid pBINCEL.

EXAMPLE 1

Construction of a cDNA library of ripening genes

1.1 Isolation of messenger RNA

Total RNA was isolated from ripe fruit tissue (the receptacle with the achenes removed) of strawberry (*Fragaria* x *ananassa* Duch. cv. Brighton) as described by Manning K. Analytical Biochemistry 195, 45-50 (1991). Messenger RNA was isolated from total RNA by oligo(dT)-cellulose chromatography according to Bantle et al., Analytical Biochemistry 72, 413-427 (1976).

1.2 Synthesis of cDNA

The first and second strands of the cDNAs were synthesised from messenger RNAs using a commercial cDNA synthesis kit (RPN.1256Y: Amersham Life Sciences. Amersham, Bucks., UK), priming the first strand cDNA synthesis with oligo-dT.

1.3 Cloning into vector

Double stranded cDNAs were cloned into the \(\lambda\)gt10 vector using the BRL cloning system (8287SA: Bethseda Research Laboratories, Paisley, Renfrewshire, UK) essentially as follows. Internal EcoRI sites of the cDNAs were methylated using EcoRI methylase. The DNA termini were repaired with T4 DNA polymerase and phosphorylated EcoRI linkers ligated to the cDNA with T4 ligase. Excess linkers were digested and removed by column chromatography on DEAE-Sephadex. The purified double stranded cDNAs with EcoRI termini were ligated into \(\lambda\)gt10 vector DNA digested with EcoRI and dephosphorylated. Vector DNA was then packaged using an in vitro packaging extract (Promega Corporation, Southampton, UK). Recombinant bacteriophage were mixed with plating bacteria (E. coli C600 hflA 150) as described in the BRL protocol to determine titre, for library screening and subsequent amplification.

1.4 Screening of the cDNA library from ripe strawberry

The unamplified cDNA library from ripe strawberry was differentially screened using cDNA from fruit receptacle tissue at the ripe and white stages of ripeness. A proportion of the library was plated at low density and duplicate plaque lifts made on to Hybond N nylon filters (Amersham) according to the manufacturer's instructions. One filter was hybridised to ripe cDNA from white fruit and the duplicate filter hybridised to ripe cDNA. Hybridisations were at high stringency using digoxigenin as a non-radioactive label (Boehringer Mannheim, Lewes, Sussex, UK). Plaques hybridising preferentially to ripe cDNA were picked and replated at low density for a second round of selection by differential screening. Single plaques from the second screening were picked and numbered as ripening-enhanced clones.

1.5 Characterisation of the ripe cDNA library and ripening-enhanced clones

The ripe cDNA library was prepared with an efficiency of 3.03x 106 plaque-forming units per microgram of cDNA. The size of the cDNA inserts in this library ranged from approximately 0.24 to 6 kbp with a mean insert size of approximately 1.4 kbp.

From the 1343 plaques used in the first screen, 83 putative ripening clones were obtained. Of these, 48 were pure clones with single inserts, the remainder being impure and having multiple inserts.

The 48 clones with single inserts were partially sequenced using the DyeDeoxy (Trade Mark) Terminator Cycle Sequencing Kit (Applied Biosystems, Warrington, Cheshire, UK) with forward and reverse primers specific for the λ gt10 vector. Improved sequence data were obtained for clones with multiple inserts and clones with single inserts that did not produce good sequence data by subcloning into the phagemid vector pBK-CMV (Stratagene) vector for sequencing. From the sequenced clones, the following twenty-seven ripening-related clones were selected. Comparison of these sequences with sequences in the EMBL database using GCG ("Winconsin") software has identified homologies for the clones of sequences 1 to 16 listed in the following table 1.

Sequence ID	Homology/Identity	Clone number
NO		
. 1	O-methyl transferase	1
2	acyl carrier protein (ACP)	3
3	elongation factor	33a
4	auxin-induced gene	33b
5	cysteine(thiol) proteinase	93c
6	cellulase	97
7	starch phosphorylase	6ab

8	pyruvate decarboxylase	16bc
9	chalcone reductase	31c
10	protein kinase	75b
11	auxin-related gene	6lc
12	sucrose transporter	110ab
13	meristem pattern gene	26
14	transcribed sequence, T45086	13
- 15	transcribed sequence, L36159	56
16	transcribed sequence, T45902	61b
17	StrawRipe A	10
18	StrawRipe B	40
19	StrawRipe C	48
20	StrawRipe D	54
21	StrawRipe E	62
22	StrawRipe F	81
23	StrawRipe G	90
24	StrawRipe H	92
25	StrawRipe I	99
26	StrawRipe J	106b
27	StrawRipe K	106c

1.6 Expression of ripening enhanced clones

RNA was extracted from strawberry fruit during normal development and analysed by Northern blotting using standard procedures. The level of messenger RNA corresponding to the expression of O-methyl transferase, cysteine proteinase, acyl carrier protein and auxin induced gene were monitored in the receptacle at various time points between pollination and the overripe stage, between Day 1 and Day 19, and then at the stages of Turning, Orange, Ripe and Overripe. Messenger RNA for O-methyl transferase appeared at Day 19,

through to Overripe and was highest at Orange and Ripe. The messenger RNA for cysteine proteinase was low up to day 19, and then increased between the Turning and Overripe stages. The messenger RNA for Acyl carrier protein was low up to Day 19, and increased for Turning, Orange and Ripe. The messenger RNA for Auxin induced gene appeared around Day 16, and was highest between the Turning and Overripe Stages.

The data provide evidence that O-methyl transferase, cysteine proteinase, acyl carrier protein and auxin induced gene are involved in the ripening process in normal fruit development.

EXAMPLE 2

Construction of antisense RNA vectors with the CaMV35S promoter

A vector is constructed using the sequences corresponding to a fragment of one of the sequences 1 to 38, more especially one of the sequences 1 to 27. This fragment is synthesised by the polymerase chain reaction using synthetic primers. The ends of the fragment are made flush with T4 polymerase and it is cloned into a derivative of the pBINPLUS vector (van Engelen et al., Transgenic Research 4, 288-290 (1995)) containing the cauliflower mosaic virus (CaMV) 35S promoter-nopaline synthase (nos) 3' terminator cassette inserted into the HindIII/EcoRI site. For example, in this way, the plasmid pBINCEL is obtained which is derived from pBINPLUS and which contains cellulase cDNA in either the sense or antisense orientation. A diagrammatic map of the plasmid pBINCEL is given in Figure 1. In one particular experiment, an antisense extended sequence comprising the cellulase of SEQ ID:6: with the addition of a polyA tail of 17 bases was inserted to give a pBINCEL antisense cellulase vector.

Alternatively a vector is constructed using a restriction fragment obtained from a strawberry ripening-related clone. The fragment is blunt ended with T4 polymerase and is cloned into a derivative of the pBINPLUS vector.

After synthesis of the vector, the structure and orientation of the sequences are confirmed by DNA sequence analysis.

EXAMPLE 3

Construction of antisense RNA vectors with a fruit enhanced promoter.

The fragment of the ripening-related cDNA that was described in Example 2 is also cloned into the vector pJR3 pJR3 is a Bin 19 based vector, which permits the expression of the antisense RNA under the control of the tomato polygalacturonase (PG) promoter. This vector includes approximately 5 kb of promoter sequence and 1.8 kb of 3' sequence from the PG promoter separated by a multiple cloning site

After synthesis, vectors with the correct orientation of the ripening-related sequences are identified by DNA sequence analysis.

Alternative fruit enhanced promoters (E8, 2A11 or any strawberry promoter) are substituted for the polygalactonurase promoter in pJR3 or for the CaMV 35S promoter in the modified pBINPLUS vector described in Example 2 to give alternative patterns of expression.

EXAMPLE 4

Construction of truncated sense RNA vectors with the CaMV 35S promoter

The fragment of the ripening-related cDNA that was described in Example 2 is also cloned into the vectors described in Example 2 in the sense orientation.

After synthesis, the vectors with the sense orientation of the phytoene synthase sequence are identified by DNA sequence analysis.

EXAMPLE 5

Construction of truncated sense RNA vectors with fruit-enhanced promoter.

The fragment of the ripening-related cDNA that was described in Example 3 is, also cloned into the vectors described in Example 3 in the sense orientation.

After synthesis, the vectors with the sense orientation of the ripening-related sequence are identified by DNA sequence analysis.

EXAMPLE 6

Construction of an over-expression vector using the CaMV35S promoter

The complete sequence of a ripening-related cDNA containing a full open-reading frame is inserted into the vectors described in Example 2.

EXAMPLE 7

Construction of an over-expression vector using a fruit-enhanced promoter

The complete sequence of a ripening-related cDNA containing a full open-reading frame is inserted into the vectors described in Example 3 (pJR3 or alternatives with different promoters).

EXAMPLE 8

Generation of transformed plants

Vectors are transferred to Agrobacterium tumefaciens EHA105 (a kanamycin sensitive strain of an organism widely available to plant biotechnologists. Hood et al., Transgenic Research 2, 208-218 (1990)) and are used to transform strawberry plants. Strawberry explants infected with Agrobacterium are grown on regeneration medium normally containing 100 mg/l kanamycin. After three weeks, the explants are transferred to regeneration medium without kanamycin. At 4 to 6 weeks, putatively transformed shoots are cultured on propagation medium for two weeks and then transformants are selected on medium containing 25 mg/l kanamycin. Regenerated plants containing the transgene are selected and grown to maturity. Ripening fruit are analyzed for modifications to their ripening characteristics.

For example, transformed plants were produced in this way using the pBINCEL antisense cellulase fragment of Example 2. The presence of the transgene in the putative strawberry transformant was verified by PCR using genomic DNA from the transformant as template and primers from the 35S promoter and from the cellulase strand. The PCR products were separated by agarose gel electrophoresis and a fragment of ~1400 base pairs was obtained that was identical in size to the PCR product obtained using the pBINCEL antisense cellulase vector DNA as template.

The following sequences have been edited to remove vector bases and polyA regions, as appropriate

SEQUENCE LISTING

(1)	GENERAL INFORMATION	
(i)	APPLICANT	
(A)	NAME:	Horticulture Research International
(B)	STREET:	-
(C)	CITY:	Stratford-upon-Avon
(D)	STATE OR PROVINCE:	Warwick
(E)	COUNTRY:	United Kingdom
(F)	POSTAL CODE:	CV35 9EF
(ii)	TITLE OF INVENTION:	Fruit Ripening-Related Genes
(iii)	NUMBER OF SEQUENCES:	38
		•
(iv)	COMPUTER-READABLE FORM:	
(A)	MEDIUM TYPE:	1.44 MB Diskette
(B)	COMPUTER:	DELL Pentium
(C)	OPERATING SYSTEM:	Windows
(D)	SOFTWARE	Word
	·.	
(2)	INFORMATION FOR SEQ ID NO:1	
(i)	SEQUENCE CHARACTERISTICS:	
(A)	LENGTH:	549
(B)	TYPE:	cDNA
(C)	STRANDEDNESS:	Single
(D)	TOPOLOGY:	Linear

(ix)	FEATURES	
(D)	OTHER INFORMATION:	O-methyl transferase
(vi)	SECUENCE DESCRIPTIO	N: SEO ID:1:

()					
CCNCCNNCTC	AATNINNNNC	ATCATNTNTN	NGGGGGTTGG	GGNTCTNGAA	050
GGCAAAAGAT	TCGGTCAGGA	CAAGGTCCTC	GTCGAGAGCT	GGTATCATTT	100
GANGGATGCA	GTTCTTGATG	GTGGGATTCC	ATTTAACAAG	GNCTATGGCA	150
TGACTGCATT	TGATTACCAT	GGNAACTGAC	CCTAGCATTC	AACAAGGTCT	200
TCAACAAGGG	AATGGCTGAC	CACTCCACCA	TTACCATGCA	NGTAAAATCC	250
TTGTAGTACT	TACAAAGGCT	TCGAGGGCCT	CAAATCCATC	GTTGTATGTC	300
GGTGGCGGNA	CCNGAGCTGT	GGNGGAACAT	NATCGCTTCC	CNAGTINCCC	350
TTCGCATCAA	GGGTCATCAN	CCTTTCGACT	TGCCCTCAAT	CTTANTCGAA	400
NGCATTCCTC	CNTCAATTAT	CCTNNNTGTT	TCCANCCANG	TTGGGATGNG	450
GGGANAATCT	TCTGGCNANN	TCTTACCCAA	TINNGGNANN	CTTCCATTCT	500
TTCCCATTIN	AGTTCNTNTT	TTNCTCAACC	TAACTTGNCG	NTCCNTCGN	549

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 661
 (B) TYPE: cDNA
 (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (ix) FEATURES
- (D) OTHER INFORMATION: Acyl carrier protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID:2:

GGTTTTAGAA	CTATCCTCGA	TCGCATCAAT	GGCCGCCACC	ACAGGAGCTG	050
CTTCTTCGAT	CTCACTCCGC	TCTCGCCTTC	ACCAGAATCT	TGCATCGTCC	100
AGGGTCAATG	GTCTTAAGCC	AGTTTTACTG	TCTGGTAATG	GAAGAAGTTC	150
TCTTTCTTTC	GGGTTACAGA	AGCGTTCAGC	ACGGCTTCAG	ATTTACTGCG	200
CAGCCAAACC	AGAGACAATG	GACAAGGTGT	GCCAGATAGT	TAGAAAGCAA	250
CTTGCATTAC	CAGATGACTC	GGCAGTTTCT	GGAGAGTCAA	AATTTTCTGC	300
ACTTGGAGCT	GATTCTCTTG	ATACGGTTGA	GATCGTGATG	GGACTTGAGG	350
AGGAATTTGG	TTTTAGCGTG	GAAGAGGAGA	GTGCTCAGAG	CATTGCAACC	400
GTTCAGGATG	CTGCGGATCT	TATCGAGAAG	CTCATTGAGA	AGAACAATGC	450
TTAGAAGAAG	AAATGAGAAA	ACAAGAGTCA	ATCCTAGCCT	GCTTTAGATA	500
ATTATTTGGT	TGGTAGACTG	GTTATGTATG	CAGTCATTIT	GTGTGAAATT	550
TGAACCTGAT	AGTGGCTTGA	GTGTTAAATT	ATGAATGTAT	GGATTTGAGT	600
TTGTGTGGTC	AAGCTCCTTT	CTTTCCTATA	TTTCTGATGA	AATAGAGAAT	650
GCCTTACAA	T	•			661 [.]
					_

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1026

(B) TYPE: cDNA

(C) STRANDEDNESS: Linear

(D) TOPOLOGY: Single

(ix) FEATURES

(D) OTHER INFORMATION: Elongation factor

(xi) SEQUENCE DESCRIPTION: SEQ ID:3:

GGGCCCATGT TGACAAAGCT CAATGTCACT ATGAAGAGTG ATGAAAAAGA 050 ACTTATGGGA AAGGCATTGA TGAAGAGGGT CATGCAGAAC TGGCTTCCAG 100

CCAGCACTGC	CCTATTGGAA	ATGATGATCT	TTCACCTTCC	CTCTCCACAC	150
ACAGCTCAAA	AGTACCGTGT	TGAGAATTTG	TACGAGGGTC	CCCTGGATGA	200
CCAATATGCT	AATGCTATCA	GAAACTGTGA	TCCAGATGGT	CCGCTTATGC	250
TTGTATTGTA	TCTAAGATGA	TTCCGGCATC	TTGACAAGGG	TNAGATTCTT	300
TGGTTTTGGG	TCGTGTTGTT	TGGCTGGTAG	GGGTCCCAAA	CTGGTTTGGA	350
NGGGTTAAGG	AATTATGGGG	ACCCAAACTA	TIGTTCCTGG	GGAAAAGAGG	400
GATCTTTATG	TCAAGAATTG	TACAGNGGGA	CTTGNNATCT	TGGATGGGGA	450
AAAGAAACAA	NGAAACTGTT	GAGGATGTTC	CCCTGTGGTA	AAAACTTGTN	500
CCCTTGGTTG	GTCTGGGAAN	AAGTTCAATC	CACCCAAGAA	TGCTACCTTG	550
ACCAAATGAG	AGGGNAACAA	GATGCTCCCC	CCATTCGTGC	AATGAAGTTC	600
TCCTGTCTCA	ACCCTGTTGT	GCGTGTTGCT	GTTCAANCGT	AAGGNTGCTT	650
CITGATCCIT	CCCCAAGCTT	GTTGAAGGGC	TGAAACGTCT	GGCTAAGACC	700
CGATCCCTAT	GGGTGTCTGT	ACCATTGÁGG	AGTCTGGAGA	GCACATCATT	750
GCTGGAGCTG	GTGAACTTCA	CCTTGAGATC	TNCNTGANGG	ATCTNCAAGA	800
TGATTTTATG	GGTGGAGCGG	AAATTGTAAA	ATCTGATCCT	GTTGTGTCCT	850
NCCGTGAGAC	AGTCCTTGAG	AAGNCCTNCC	GTACTGTGAT	GAGCAAGTCT	900
CCCAACAAGC	ACAACCGTCT	GTACATGGAA	GCACNCCCGT	TGGAGGAAGG	950
TCTTCCTGAG	NCCATTGATG	ATGGTCGTAT	TGGNCCAAGG	GATGATCCTA	1000
AAATCCGCTC	AAAGATCTTG	NCTGAG			1026

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	957
(B)	TYPE:	. cDNA
(C)	STRANDEDNESS	Single
(D)	TOPOLOGY:	Linear

......

· ...

29

(ix) F	EA	TU	RE	ΞS

(D) OTHER INFORMATION:

Auxin-induced mRNA

(xi) SEQUENCE DESCRIPTION: SEQ ID:4:

GGCACCAGT	G CITCATATCT	CGCCCITTGC	AGTITCACAT	ATCAAAGTAG	050
CATCTCAAA	r cacatcaatg	GCAGACGAGG	TTGTCTTGTT	GGACTTCTGG	100
CCAAGCCCA	r tigggatgag	GCTGAGGATC	GCTCTGGCCG	AGAAAGGCGT	150
CAAGTACGA	G TACAAGGACG	AGGACCTGAG	GAACAAGAGC	CCGCTGTTGC	200
TTCAGTCGA	A CCCGGTTCAC	AAGAAGGATC	CCGGTTCTCA	TTCACAACGG	250
CAAACTGTC	TGCGAGTCTT	GTCATTGCTC	TTCAAGTACA	TTGACGAGGT	300
CTTGGACTT	ACAAAGCCAC	TATTGNCCTC	CCGACCCCTT	ACCTCAGGAT	350
CCCCAGGCC	GGGTCTTGGG	CCGACTTCCG	NGGACAAAGA	AGATNTTTTG	-400
	GGNAAGACAA				• •
	GGGATTCTTC				_
	CTTTCTTTGG				
	TTCTATTCCT	·		•	_
•	GCCAGAGTGC				
	AGAGTGTGTC				
	GCCGAGATGA				750
•	TTGATCATGT				800
	TTGTATTTTT		•		850
	GGAAGCACTC				900
	NINTGCAGCT				950
TNGCCAA					
			•		957

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	518	•
(B)	TYPE:	cDNA	
(C)	STRANDEDNESS	Single	
(D)	TOPOLOGY	Linear	
(ix)	FEATURES		
(D)	OTHER INFORMATION Cystei	ne (thiol) proteinase	
(xi)	SEQUENCE DESCRIPTION: SEQ	ID:5:	
ATCI	ecréer ecrerere errere	rce rerecreege egregeere	CC 050
ACCG	TAACCG ACGCCGGCGA TCCTCTC	ATA CGACAAGTCG TACCGGGC	C 100
GGCC	GAGGAT GACGAGCTCC TCCACGC	GGA GCGTCACTTC TCGAACTTC	Ä 150
AAGO	CACGTT CGGAAAGAGC TACGCGA	GCC AGGAGGAGCA CGACTACAG	G 200
TTCC	GGCGTA TTCAAGGNCA ACTCCGC	CGG GCGAAGAGGC ACCAGGGG	T 250
TGGA	CCCCAC CGCCGTGCAC GGTGTCA	ACG AAATCTCCGA TCTCACTC	CC 300
AAGG	AGTTTC GNCGGGAATT TCCTCGG	GCT TAAGAAGGGG TCGGANTTC	CG 350
GGT	ACCGGC CGACGGTTAA AAAAGGG	GCC NGATNCCTNC CGGANGAAT	TT 400
ANCI	TCCCCA CCCANTTTTG GNNTTGG	GGN GAAAAAAGGN GCCCGNCNA	AA 450
GNC	GNGGAA NGGNCAAGGG GGAAATN	GGG TNNAATTNGG NCNGGTTNA	AN 500
NGN	GGCCCG NAGAANTT		518
(2)	INFORMATION FOR SEQ ID NO	:6:	
(i)	SEQUENCE CHARACTERISTICS	:	
(A)	LENGTH:	1766	•
(B)	TYPE	cDNA	
(C)	STRANDEDNESS:	Single	
(D)	TOPOLOGY	Linear	
, — ,			

- (ix) FEATURES
- (D) OTHER INFORMATION:

Cellulase (endo-(1,4)beta-n-glucanase

(xi) SEQUENCE DESCRIPTION: SEQ ID:6:

ACCGGGAAAT GCTCCCGCAT TTCGCGCAAC ACTCGTCCTC TCGCTGCTCC 100 TGCTTCTCCA GCCAATCCGC GCCGGCCACG ACTACCACGA CGCCCTCCGC 150 AAGAGCATCC TCTTCTTCGA AGGCCAGCGC TCCGGCAAGC TCCCGCCCGA 200 TCAACGCCTC AAATGGCGCC GCGACTCCGC ATTGCACGAC GGCTCCACCG 250 CCGGCGTAGA CTTAACCGGC GGCTACTACG ACGCCGGCGA CAACGTGAAG 300 TTCGGGTTTC CGATGGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 350 AGACTTCGGG AGGGTCATGG GGACGAGCA GAGGAACGCG GTCAAGGCGT *400 TACGGTGGGG GACAGACTAC CTCCTGAACG GCACGGGGG TCAAGGCGT *400			-			
TGCTTCTCCA GCCAATCCGC GCCGGCCACG ACTACCACGA CGCCCTCCGC 150 AAGAGCATCC TCTTCTTCGA AGGCCAGCGC TCCGGCAAGC TCCCGCCCGA 200 TCAACGCCTC AAATGCCGC GCGACTCCGC ATTGCACGAC GCCTCCACCG 250 CCCGGCGTAGA CTTAACCGGC GCTACTACG ACGCCGGCGA CAACGTGAAG 300 TTCGGGTTTC CGATGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 350 AGACTTCGGG AGGGTCATGG GGACGACCAC CTGCTGGCGT GGAGCATTAT 350 AGACTTCGGG AGGGTCATGG GGACGAGCA GAGGAACGCG GTCAAGGCGT *400 TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 450 GCCGGAAGAC ATGGACACAC CCCCATACTCC GATCACAACT GCTGGGAGAA *550 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCCT CGCCGCCCC \$600 TCCATCGTTT TCAGGTCACG TGACCCCCGCT TACTCGAGAC TGCTTCTCAA \$650 TCCATCGTTT TCAGGTCACG TGACCCCCGCT TACTCGAGAC TGCTTCTCAA \$650 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCCGTCAACACGC CGCCGCCACGC TCCCAGCACG TACACAGCC TTCCAGGAT ACGCACAGC AACACAGCA ACACAGACACA ACACAGACACA ACACAGACACA ACACAGACACA ACACAGACACA ACACAGACACA ACACAGACACA ACACAGCAC TCCCACCGC GGCCGCTACA *700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCCGTCGAG 800 AAGGCCGCAG TACAGAGAAT ACATAGTGAG AAACCAGCA TTTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TTCTTGAA 950 AATATTCTCA TTTCTAAGGA AGTGCTTATT GGAAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCC TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TTACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250	GGCAGCAAA	A ACGAGAGAGA	AAAAAAAT	G GCGCGAAATG	GCCTTTGCT	r 050
AAGAGCATCC TCTTCTTCGA AGGCCAGCGC TCCGGCAAGC TCCCGCCCGA 200 TCAACGCCTC AAATGCCGC GCGACTCCGC ATTGCACGAC GGCTCCACCG 250 CCGGCGTAGA CTTAACCGGC GCGACTCCGC ATTGCACGAC CAACGTGAAG 300 TTCCGGGTTTC CGATGGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 350 AGACTTCGGG AGGGTCATGG GGACGAGCAC GAGGAACGCG GTCAAGGCGT "400 TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 450 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA "5500 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 550 ACCCGGGATC CGACGTGCCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 3600 TCCATCGTTT TCAGGTCACG TGACCCCCGCT TACTCGAGAC TGCTTCTCAA 3650 TCCAGCCGT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA "7000 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCCGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTCGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGC TGTAACTTCG CTATCGTTC TGCTTGGAC 1100 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCC TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTTAACG CCAGGTGGAT 1200	ACCGGGAAA	r gcrcccgcat	TTCGCGCAA	ACTCGTCCTC	TCGCTGCTCC	100
TCAACGCCTC AAATGGCGCC GCGACTCCGC ATTGCACGAC GGCTCCACCG 25 CCGGCGTAGA CTTAACCGGC GGCTACTACG ACGCCGGCGA CAACGTGAAG 30 CTTCGGGTTC CGATGGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 35 CAGACTTCCGG AGGGTCATGG GGACGGAGCA GAGGAACGCG GTCAAGGCGT *400 AGACTTCCGG GACGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 45 CACGGTGGGAGA CTCCTGGCGGA CCCATACTCC GATCACAACT GCTGGGAGAA *55 00 ACCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 55 00 ACCCGGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 55 00 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 46 00 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 46 00 ACCCGGGATC CGACGTGTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 56 50 ACCCAGGCCGT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 75 00 ACCCAGGCGT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 75 00 ACCCGGCGCGC TACAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 75 00 ACCCGGCGCGC TACAAAACGCC GTGTGCCCTT TTTACTGCAA AGGCGTCGAG 80 00 ACCGGGGAGATAC ACATAGTGAG AAACGAGGT ATTTTGAGAG 85 00 ACCTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 90 00 ACCTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 90 00 ACCTGGAGATAC CAAAAACGCA ATGGTTTATT ATGCTCTGTT TTGCCTGGAC 100 00 ACCTGTTCCAAG CAAAATGCAG ATGATTTAT ATGCTCTGTT TTGCCTGGAC 100 00 ACCTTTCAAGCAC ACCCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 105 00 ACCTTCCAAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 105 00 ACCTTCCAAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 105 00 ACCTTCCAAC CCCGGCCCTC CCAAAACAAT TGGCTAAACG CCAAGTGGAT 115 00 ACCTTCCGCCCC CCCGGCCTC CTCAAACAAT TGGCTAAACG CCAAGTGGAT 120 00 ACCTTCCGCCCC CCCGGCCTC CTCAAACAAT TGGCTAAACG CCAAGTGCG TTGGATATGG CCCCCCGCCCCG	TGCTTCTCC	A GCCAATCCGC	GCCGGCCAC	ACTACCACGA	CGCCCTCCGC	150
CCGGCGTAGA CTTAACCGGC GGCTACTACG ACGCCGGCGA CAACGTGAAG 30.00 TTCGGGTTTC CGATGGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 35.00 AGACTTCGGG AGGGTCATGG GGACGAGCA GAGGAACGCG GTCAAGGCGT "40.00 TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 45.00 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA "55.00 ACCCGGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 55.00 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 46.00 TCCATCGTTT TCAGGTCACG TGACCCCCGCT TACTCGAGAC TGCTTCTCAA 36.50 TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA "70.00 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 75.00 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 80.00 AAGGCCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 85.00 AAGGCCGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 85.00 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAAGCA TGCTGGGATT 90.00 AATATTCTCA CCAAGTCCAA TATTCTCCAG GTGGTTTGAT TTGCCTGGAC 10.00 TTGCCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 10.50 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTC TGCTTTTGAC 11.00 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 11.50 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 12.00 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATTGG 12.50	AAGAGCATC	TCTTCTTCGA	AGGCCAGCGC	TCCGGCAAGC	TCCCGCCCGA	200
TTCGGGTTTC CGATGGCGTT CACGACCACT CTGCTGGCGT GGAGCATTAT 35.0 AGACTTCGGG AGGGTCATGG GGACGAGCA GAGGAACGCG GTCAAGGCGT *40.0 TACCGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 45.0 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA \$5.00 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 55.0 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 66.00 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 65.0 GCTCCAGCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA *70.0 GCTCCAGGCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 75.0 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 80.0 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 85.0 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 90.0 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 95.0 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 10.00 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 10.50 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTC TGCTTTTGAC 11.00 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 11.50 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 12.00 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTAACATGG TTGGATATTGG 12.50	TCAACGCCTC	AAATGGCGCC	GCGACTCCGC	ATTGCACGAC	GGCTCCACCG	250
AGACTTCGGG AGGGTCATGG GGACGGAGCA GAGGAACGCG GTCAAGGCGT "400 TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 450 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA \$500 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 550 ACCCGGGAGAC GGCGGAAACCG CAGCCGGCGT CGCCGCCGCC \$600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA \$650 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA \$650 TCCACGCGT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA \$700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TCCCAGGAT ACGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCGA TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGAATAC CATTAACGAG TTTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAAATCC ATTTAAGAATG TCTTACATGG TTGGATATGG 1250 TACACATTTGG TTGAACTTTCG TTTGAACCTT TTGCCTCGCAT 1100 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG TTGGATATGG 1250 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG TTGGATATGG 1250 CCTCCCGCCTC CTCAAACAAT TGGCTAAACG TTGGATATGG 1250 CCTCCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG TTGGATATGG 1250 CCTCCCGCCTC CTCAAACAAT TGGCTAAACGG TTGGATATGG 1250 CCTCCCGCCTC CTCAAACAAT TGGCTAACTGG TTGGATATGG 1250 CCTCCCGCCTC CTCAAACAAT TGGCTAAACGC TTGGATATGG 1250 CCTCCCGCCTC CTCAAACAAT TGGCTAAACGC TTGAACTTCG CCTCAAACA	CCGGCGTAGA	CTTAACCGGC	GGCTACTACG	ACGCCGGCGA	CAACGTGAAG	300
TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 450 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA \$500 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAAATC GACCACAACA 550 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 6600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 650 TCGAGCCGT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA 7700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAAGGTGGAT 1200	TTCGGGTTTC	CGATGGCGTT	CACGACCACT	CTGCTGGCGT	GGAGCATTAT	350
TACGGTGGGG GACAGACTAC CTCCTGAAGG CCACGGCGGT TCCTGGCGTC 450 GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA \$500 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAAATC GACCACAACA 550 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 6600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 650 TCGAGCCGT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA 7700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAAGGTGGAT 1200	AGACTTCGGG	AGGGTCATGG	GGACGGAGCA	GAGGAACGCG	GTCAAGGCGT	**400
GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGAA \$500 GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 550 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC \$600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA \$650 TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGCTACA \$700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200		•				
GCCGGAAGAC ATGGACACAC GCCGCACGGT GTACAAAATC GACCACAACA 550 ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 4600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 2650 TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA 4700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTTACATGG TTGGATATGG 1250	GTCTTCGTCC	AAGTCGGCGA	CCCATACTCC	GATCACAACT	GCTGGGAGAA	\$500
ACCCGGGATC CGACGTGGCA GGCGAAACCG CAGCCGCGCT CGCCGCCGCC 6600 TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA 650 TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA 7000 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						_
TCCATCGTTT TCAGGTCACG TGACCCCGCT TACTCGAGAC TGCTTCTCAA \$650 TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA \$700 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATTGG 1250						
TCGAGCCGTT AAGGTTTTCG AGTTCGCTGA TACCCACCGC GGCGCGTACA 7000 GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 7500 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 8000 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 8500 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 9000 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 9500 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 10000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 10500 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 11000 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 11500 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACCG CCAGGTGGAT 12000 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTTACATGG TTGGATATGG 12500						
GCTCCAGCCT CAAAAACGCC GTGTGCCCTT TTTACTGCGA CGTCAACGGC 750 TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 850 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
TTCCAGGATG AGTTACTGTG GGGAGCAGCG TGGTTGCACA AGGCGTCGAG 800 AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTTTGAGAG 950 CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGGAATG TCTTACATGG TTGGATATGG 1250						
AAGGCGGCAG TACAGAGAAT ACATAGTGAG AAACGAGGTC ATTITGAGAG 850 CTGGAGATAC CATTAACGAG TITGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGGAATG TCTTACATGG TTGGATATGG 1250		•				
CTGGAGATAC CATTAACGAG TTTGGTTGGG ATAACAAGCA TGCTGGGATT 900 AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
AATATTCTCA TTTCTAAGGA AGTGCTTATG GGAAAAGCAG ATTATTTCGA 950 ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
ATCTTTCAAG CAAAATGCAG ATGGATTTAT ATGCTCTGTT TTGCCTGGAC 1000 TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
TTGCCCATAC CCAAGTCCAA TATTCTCCAG GTGGTTTGAT CTTCAAGCCT 1050 GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250	•					
GGAGGGAGTA ACATGCAGCA TGTAACTTCG CTATCGTTCC TGCTTTGAC 1100 TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
TTATTCCAAC TATCTAAGCC ACGCCAATAA GAACGTGCCG TGTGGCATGA 1150 CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
CCTCCGCCTC CCCGGCCTTC CTCAAACAAT TGGCTAAACG CCAGGTGGAT 1200 TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
TACATTTTGG GTGACAATCC ATTAAGAATG TCTTACATGG TTGGATATGG 1250						
===						

TGCAGGCCCA	TCCGGCCCGT	ATCGGATGCA	AAGCCGGTTC	TCATTATTTT	1350
CTGAGTCCGA	ATCCAAACCC	GAATAAATTA	GTCGGGGCTG	TTGTGGGCGG	1400
ACCCAATAGC	TCGGATGCAT	TTCCGGACTC	GAGGCCTTAC	TTTCAAGAGT	1450
CTGAGCCCAC	GACGTACATA	AATGCGCCTC	TTGTGGGCCT	ACTITCGTAT	1500
TTTGCAGCCC	ATTACTAATT	CTCGAAGTGT	AAACAGTGAT	TGAGAATTTG	1550
TTGTGGTGCG	CCAATACTCA	CCCACCAATC	CCCCACACTA	CCAATTGTTG	1600
TTACTTTTGG	AAAGTTCTAA	ATTTAAGAAA	TTGTTAAGAA	AGAAAATGGC	1650
CCAAGCTTAG	TTATGGAATT	TAGTCTCAAA	AGCCCTACTG	TTGTGCTTTT	1700
GAAATGTTCT	AGCTGTAACA	TAATTTCTAT	CAATGAATAA	AGAAAATGGG	1750
CCAAGCCTAA	ATGTGG	٠			1766

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 585

(B) TYPE cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(ix) FEATURES

(D) OTHER INFORMATION: Starch phosphorylase

(xi) SEQUENCE DESCRIPTION: SEQ ID:7:

AATCCTGGGG GGNTTNCCCA CCCTTAANTT GGCNGNNGAT NTTTTGATA 50
CTCNTCGGGG GGGCGGAANC CTATGGGGAG AANNGGCAAC CAAAGGNGCC 100
TTTTNTAGGG TTGCCTGGCN TATTTACTGG CCTGGTNCTN AACATGTNCT 150
TTCCTGCGAT ATCCCCTGAT TCTGNGGATA ANCCGTATNA CNCGCCNNTG 200
AGTGAGGCTG ATACCGCTNC ACCGCATCCG ACCGACCGAT CGCAGCGAGT 250
CAGTGAGCGA GGAAGCGGAA GAGCGCCCAA TACGCAAGCC ACCTCTCNCC 300

GCGCGTTGGC	CGATTCATTA	ATGCAGCTGG	CACGACAGGT	TTCCCGACTG	350
GAAAGCGGGC	AGTGAGCGCA	ACGCAATTAA	TGTGAGTTAG	CTCACTCATT	400
AGNCACCCCA	GGCTTTACAC	TITATGCTTC	CGGCTCGTAT	GTTGTGTGGA	450
ATTGTGAGCG	GATAACAATT	TCACACAGGA	AACANCTATG	ACCATGATNA	500
CNCCAAGCTA	TTTAGCTGAC	ACTANAGCAT	ACTCAAGCTT	GNATGCCTAC	550
AGNTCGACTC	TAGAGGATCC	ACCGGGTACC	GAGCT		585

(2) INFORMATION FOR SEQ ID NO:8:

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 693

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(ix) FEATURES

(D) OTHER INFORMATION: Pyruvate decarboxylase

(xi) SEQUENCE DESCRIPTION: SEQ ID:8:

CATCITITCA	CTCGAAGTCT	CAATCTTTCA	TCACAAACAT	TCCCATTTGA	050
TCACAAAAA	GTTTCAACCT	TTAAACCTCC	ATGGACACCA	AGATTGGCTC	100
CATCGACGTC	TGCAAAACCG	AGAACCACGA	CGTCGGTTGT	TTACCAAACA	150
GCGCCACCTC	CACCGTTCAA	AACTCAGTCC	CTTCGACCTC	CCTCAGCTCC	200
GCCGACGCCA	CCCTCGGCCG	CCACCTGGCA	CGCCGCCTCG	TTCAAATCGG	250
CGTCACCGAC	GTCTTCACCG	TCCCCGGCGA	CTTCAACTTG	ACCCTTCTCG	300
ACCACCTCAT	CGCCGAGCCC	GGCCTCACCA	ACATTGGCTG	CTGCAACGAG	350
CTCAACGCCG	GGTACGCCGC	CGACGGCTAC	GCGCGGTCGC	GTGGCGTCGG	400
CGCCGTTGCG.	TGGTGACTTT	CACTGTTGGT	GGACTGAGTG	TGCTGAACGC	450
GATCGCCGGC	GCGTTATAGT	GAGAATTTGC	CCCTCATTTC	Ա Ջ <u>Առեւ Շահու</u> հուտ	500

TITGCTTGAA	TACNGCAATT	TTCAATNGCN	TTNGAAANAA	AAC	693
ACTTGCTTTT	CAGGCTGTGG	GTGAATAATT	CITGGAAGAA	TGCACATGAA	650
ATTGGGTTGC	CGGACTTCAN	TTCAAGAACT	CCGGTGGTTT	CAAGAACNTG	600
GGGCCCCAAC	TTCTAATGAT	TATGGGACTA	ACCGGATTCT	TCACCATACT	550

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 693

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

- (ix) FEATURES
- (D) OTHER INFORMATION: Chalcone reductase
- (xi) SEQUENCE DESCRIPTION: SEQ ID:9:

CCCAAATCCC	AGAAGTGGTT	CTTGAATCCT	CCAACGGCCG	CAGAACCATG	050
CCTGTGCTTG	GATTCGGCAC	AGCATCCAAC	AATTTACAAC	CGGAGGTTTT	100
GATAGAAGCT	GTTCTTGAGG	CCATCAAGCT	TGGTTACCGA	CACTTCGACA	150
CTGCTTCCAT	TTACGGCTCC	GAGCAGACTC	TAGGAGTAGC	CATTGCCCAA	200
GCGCTCAAAC	TCGGCCTCGT	GGCTTCTCGT	GACGAGCTCT	TCATCACTTC	250
CAAGCTTTGG	CCTAATGATG	GTCACCCCAA	CCTGGTTATT	CCTGCTCTCA	300
AGAAAATCGC	TTCAGAATCT	TGAGTTGGAG	TACCTTGATT	TGTATCTGAT	350
ACACTGGCCC	ATCAGTGCCA	AGCCTGGGAA	AGTTGAGTCA	CGCACTAGAG	400
GGAGAAGGAC	CAAATGCCGA	TGGACTTCAA	GGGTGTGTGG	GCAGACATGG	450
AGGAAGCTCA	GAGACTTGGC	CTCACCAAAT	CCATTGGGAA	TCAGCAATTT	500
CTCTACCAAA	AAGACTCAGA	ATTTGCTCTC	CTTTGGCTAC	TATTCCTCCG	550
TCAGTCAATC	AANTTTAANA	TGANTCCATT	TTGGCAACAG	AAGAACCTCA	600

500

550

600

650

700

35

AAAA	ACTTCTG CAAGGCCAGT GGTATAAT	TT GTGACTGGCT	TCTCCCCATT	650
GGGI	rgccatn ngaaccantt gggggcac	CA ATCATGTTCT	CNA	693
(2)	INFORMATION FOR SEQ ID NO:1	0:		
	,			
(i)	SEQUENCE CHARACTERISTICS:			
(A)	LENGTH:	763		
(B)	TYPE:	cDNA		
(C)	STRANDEDNESS	Single		
(D)	TOPOLOGY:	Linear		
				
(ix)	FEATURES			
(D)	OTHER INFORMATION:	Protein kinase		
	<i>,</i>			
(xi)	SEQUENCE DESCRIPTION: SEQ II	D :10:		
GCANA	ANCGTG TTGTGGGAAC TGGGTCATI		TCCANGCGAA	050
	ITGGAA ACTGGTGAGA CTGTGGCCA			-1:00
	GTATAA GAACAGGGAA CTTCAATTG			150
	IGATTT GTTTGAAGCA TTGTTTCTT			200
	FITCIC AATTIGGTTA TGGAATATG			250
	AAAGCA TTACAGCAAT GCAAACCAG			
	TTACA TGTNCCACAT TTTCAGAGG			300
	GAGTT TGCCATANAN ATTTGAANC			350
	TATTCA CCANGTCAAG CTTTGTTGA			400
	= ===== 0:1104	- TITGGWWGIG	CCAAAATGCN	450

GGTGAAAGGN GAAACAAACA TANCATACCT ATGTTTCACG TTTCTATCNG

GCTCCNCGAA ACTAATITTT TGGTGCCNCC NGATTATACC ACTTCCCATT

GATATCTGGT CNGCTGGCTG TGTCCTAANC AAAACTTCCT TTTGGGCCCC

CCTTTGTTTC CCTGGAAAAA AATGCCATNG AACCACCTGT TAAAAATCNT

TCCNGGTTCN GGGGAACACC NCNCCNTTCA AAAAATCCCC NTTTTGAATC

-0**0**

36

CCCAN	TINTA CCAAATICCC GGTTICCNC	C GAAAAAANCC CNCCCTTTGG	750
NNNAA	GGTTT TCC		763
(2)	INFORMATION FOR SEQ ID NO:11	:	
(i)	SEQUENCE CHARACTERISTICS:		
(A)	LENGTH:	772	
(B)	TYPE:	cDNA	
(C)	STRANDEDNESS:	Single	
(D)	TOPOLOGY:	Linear	
(ix)	FEATURES		
(D)	OTHER INFORMATION:	Auxin-related gene	
(xi)	SEQUENCE DESCRIPTION: SEQ I	D:11:	
GGTG	AAACTT TACTTTTGCA ATACACCGT	'C TAACAATGGC TGCAGCTCCA	050
AGTGA	AGTCCA TACCCTCTGT AAATAAGGC	C TGGGTCTATT CAGAGTATGG	100
AAAA	ACTICI GAIGITCICA AGITIGATO	CC AAGTGTGGCT GTTCCTGAAA	150
TTAA	AGAGGA TCAGGTGCTG ATCAAGGT	TG TTGCTGCTTC TCTTAACCCA	200
GTTG	ATTITA AGAGGGCTCT TGGTTACT	C AAGGACACTG ACTCTCCCCI	250
ACCT	ACAATT CCAGGGTATG ATGTANCTO	G TGTGGTGGTA AAGGTAGGAA	300
GCCA	AGTAAC CAAGTTTAAG GTGGGGGA	G AAGTGTATGG GGATCTCAAT	350
GAAG	ACAGCA TTGGTGAACC CAACAAGG	TT TGGGTCTTTG GCANANTACA	400
CTGC	IGCAGA TGAAAGANTA TTGGCTCA	CA AACCCAAAAA CCTGAGCTTT	450
ATTG	AAGCTG CTANCCTTCC CTTGGCTA	TT GAAACTGCCC NTGAANGGCI	500
TGAA	AGAACT GAACTITCTG CTGGTAAA	C CGTCCTTGTT TTGGGAAGC	550
CTGG	GGGTGT TGGAACACAN ATTATTCA	GC TGCAAAGCAT GTTTTTGGT	600
		A A A A A A COMPLETA TO THE COMPLETA C A 7	CEC

CNTTGGGNGC TGATTTGGCT ATCGATTACA CCAAGGAGAA NTTNGAGGAC

CTGCCAGAGA	AATTTGATGT	AGTGTATGAT	GCAGTTGGGG	AGACAGATAA	750
GGCTGTGAAG	GCGGTGAAAG	AAGGCGGGAA	GGTTGTAACA	ATAGTAGGTC	800
CAGCAACGCC	ACCGGCTATC	CTITTTGTGC	TTACCTCTAA	AGGGTCTGTG	850
TTGGAGAAAC	TGAAGCCTTA	CTTGGAGAGT	GGGAAGGTGA	AGCCAGTTCT	900
TGATCCCACA	AGTCCATATC	CCTTTACTAA	AGTTGTTGAA	GCATTTGGTT	950
ACCTTGAGAG	TTCCAGAGCT	ACCGGAAAGG	TGGTTGTGTA	TCCCATCCCA	1000
TGAGGTTGAG	AGTGTATGTG	TGAATGATCT	ATGAGACTAT	GATTGTGTAG	1050
AGTCCATTTC	CTTCCTCTTG	TATGTGTGTA	GCAGTATATT	TTAATCTTGA	1100
AGCCTTGTAA	TAATGAATAA	GATTGAGTCC	TTAATAAATT	GTCATTACAT	1150
G .					1151

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1167
- (B) TYPE: cDNA
- (C) STRANDEDNESS Single
- (D) TOPOLOGY: Linear
- (ix) FEATURES
- (D) OTHER INFORMATION: Sucrose transporter
- (xi) SEQUENCE DESCRIPTION: SEQ ID:12:

CCATTGGCGA	TCACGTACAG	TGTTCCATAT	GCCTTGATTT	CTTCTCGTAT	050
CGAGTCTTTG	GGACTTGGCC	AAGGCTTATC	AATGGGTGTA	CTGAATCTGG	100
CAATCGTAGT	ACCACAGGTG	CTGGTATCCC	TGGGAAGTGG	ACCATGGGAT	150
CAGCTATTGG	TGGTGGAAAC	TCTCCAGGGT	TTGCGGTTGC	AGGAGTTGGA	200
GCCTTAGCAA	GTGGGCTGGT	GGCCAATCTT	GGCTATTCCA	CGTTCTATTC	250
CACAGAAGCC	TANATCTTTC	ACATGAGGTA	TTTTGTTGTA	ماحالمالمالمال كالمال	300

ACCCAACTTT	GTCACAGAAA	TACAAAACCT	CCATAGATAG	TGAGAATTTG	350
гааататстт	TTGTTACGTG	TTAGCTATTT	CTCAATACAC	TCATTTACCA	400
GAGGTTTCTT	TAGTTCTGGA	AATTTCTCTC	TTTCCCTTTT	TGTCGTTTTA	450
GATGCTTTAA	TAAAGAAAGG	CCTGGCAGCG	ATTATATCAA	AGTTGANCTG	500
AATATCTGTG	TTGAAGTGCT	TCCGTTCAAC	AATTTATAGT	TCTCAATTTC	550
TACAATATTT	TAAATCAGAA	CTGTCACCTG	GTGGACTCTT	ATGGAATCCA	600
TATGTTGGAA	CCATAATCTC	AATTAGGCAT	CGTGCCTCAA	TTCCACAATG	650
GTGTTTTCAG	AAGTGTGATG	AAACAAGTTA	GTCAAGAAAG	TGATGGTGTT	700
TTCACAAATG	CTGGCTACGC	AACGATATTG	ATGTGGGTAC	GCAAATTGAT	750
TGATGTAGTA	GCCATCACTA	AGTTCCTGGT	TAGACAAGTT	ATCTACAATT	800
AGTGGANAAT	TTCTTGAATG	AAAATCAGTC	CCATCTGGTG	GATTGTGGCA	850
AATTGCTACG	GAAAAGTAGG	TGAAGCCTCA	GCTGTAGGAT	TTGGAAATTA	900
CTTGAAGAGT	AGTTCCCTAC	CAACCAGGAT	ATGTTTCTGC	TTTTCGAGAA	950
TITGTCCTCC	TGAAAATATC	GTTTTTCTT	TTGGCAAAGT	TGATTTTGAC	1000
TTAGTGGTTT	AATCATGAGG	TATTGGAATC	TCATGCGTTT	TGTGCATGTA	1050
TITGTANTAT	GAATGTGGTG	AAATGTGCTT	GGTGGCCAAC	AGTGAATATA	1100
TGAAATGTAC	TGATTGAAAC	CTTGATGGAN	ACATCCCTTT	TAATTGCTGT	1150
TTTGGAAGCT	TGGGTCC				1167

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 476
- (B) TYPE: cDNA
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (ix) FEATURES
- (D) OTHER INFORMATION: meristem pattern gene

(xi) SEQUENCE DESCRIPTION: SEQ ID:13:	
CCTCANNAAT CTCTATATTT TTTGGGGGCG TGGGTGGTCT AANAATATGT	050
TCTTGGCTTC AAAACCCTCA TCAGATGGAG AGCACCGACT CGTCTTCCGG	100
CTCGCAGGCG CCGCCGCAGC CAAACCTACC TCCGGGATTC CGCTTCCACC	150
CCACCGATGA GGAGCTAGTC GTTCATTACC TCAAGAAAAA GGCCTCCTCG	200
GCTCCCCTCC CCATTGTCAT CATCGNCGAA GTCGACCTCT ACAAATTTGA	250
TCCATGGNAG CTCCCAGAAA AGGCGACGTT CGGAGAGCAA GAGTGGTACT	300
TTTTCAGTCC TAGAGACCGG AAAGTACCCN AACGGAGCAC GGNCTAATAG	350
AGNAGGGACT TCAGGNTTTT GGTAGGGGAA CCGTANTGAA AAGCCCTTTT	400
GGGTTGNACT ATTANGAGGN NGGGGGGNTCT CCCAAANTTG NGGTNAAAAN	450
GNANTINITT NITTNANGGG ACNNCC	_~ 476
(2) INFORMATION FOR SEQ ID NO:14:	
· '	•••
(i) SEQUENCE CHARACTERISTICS:	er Er
(A) LENGTH: 497	
(B) TYPE: cDNA	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(ix) FEATURES	
(D) OTHER INFORMATION: transcribed sequence, T45086	
(xi) SEQUENCE DESCRIPTION: SEQ ID:14:	
TNAATTAANG GCAGCCNATT CGGTGAATTT CCTTCATTCG ATCCTGCAAA	050
CATGCCTTAT GGNAACGCTT GAAGTCCTTC TGGTTGGGGN CAAAGACCTT	100
GNAGACCATG ATTITITCGG TAAAATGGAT CCCTATGTCC TTITATCATT	150
AAGGACCCAA GAGAAGAAGA GCACTGTGGC ATCAGGACAA GGATCTGCAC	200

CAGNANTGGN	AATGAAACTT	TTCAATTCAC	AGTCTCATCA	GATGATGTTA	250
CCGAACTCAG	CTTAAAAATC	TATGACAAAG	ATACCTTCAC	CCCAGATGAA	300
TTTCTTGGAG	GAAGCAACCA	TTCCTTTAGN	AAACAGTGTT	CATGGGAAGG	350
AAGCACTGAA	CCGACTAAAT	ACAATGTCGT	CAATGAGAAT	AATGAATATC	400
ATGGAGGATA	TTACAGTTGG	ACTCACTITC	ACCCGTGAAG	CGAACCGGCT	450
CTCGTGCGGG	NGGNTNTGAT	GAAGAAAGAA	CAA		483

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 488
- (B) TYPE: cDNA
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
 - (ix) FEATURES
 - (D) OTHER INFORMATION: transcribed sequence L36159
 - (xi) SEQUENCE DESCRIPTION: SEQ ID:15:

AGGATATGTT	GATTAGAACT	CATGTAACCT	CATATTACAC	ATCTTAATAT	050
CTCCAATTAC	ATGAACGTAA	AATAAAACCC	CTAACTTCCA	CAAAGCATCA	100
ATCANACACG	GGGNACGTCC	GCGAATGCTA	AGCAACTTGA	CATCATCGAT	150
CACCGGACCA	CACAGAGAGC	CGGAGTGATC	GCTCGTCATG	GTGTACATTG	200
TGCTCAGAAA	CATGACACGC	GTGCGCGGCG	NACACGGNGG	TGNAAGAAGA	250
GCCTGGCCTT	CTTGNAACCC	TCCTTTGCCT	TTGGACTCAT	AAGGAACCIT	300
CACAGTCTCC	TTGCCGGCAA	ATGCCTCGAT	AAAGAGGGAG	CCTTCGCAGT	350
CGTTGGTTCC	CGTCGNCGAC	AGAGAATNTN	AGGCCTAGC	GCCTNNCGGG	400
NTTGGTGAAG	ACCACTTGAG	CCAATGNGCT	CTCTTTTCCC	GGCAACGAGC	450
TCGNTNGGTN	TTAGGCCTCC	NGGANGGGAA	GTGTGGNG		488

(2)	INFORMATION FOR SEQ ID NO:1	6:		
(i)	SEQUENCE CHARACTERISTICS:			
(A)	LENGTH:	460		
(B)	TYPE	cDNA		
(C)	STRANDEDNESS:	Single		
(D)	TOPOLOGY:	Linear		
(ix)	FEATURES			
(D)	OTHER INFORMATION: transcrib	ed sequence, T459	902	
(xi)	SEQUENCE DESCRIPTION: SEQ II	D:16:		
GTTT	GTCCTC GGTTCCTAAA GAGAGAGAC	A CCCAGAATTT	GNTTCAGAAA	050
	AGATTA AGTTCCTGAA CCAAGTTCA			100
	CCACAA GGACGTGGAC CATATNCTG			150
	CTGGA ATGGGCAGGC CTGGACTGA			
	CAAGA TATATGTGNA TCCCANAAC			250
	GAGCA CATCININGN AGGGGCCNIC			
	CAGGA GATTTGGNGC AATTTGGGG			350
- 1	AAATG GGGCAAANGN TNNGGTTTN			400
	NAANG GGGNGCCATG NGGGTITCT			450
	NAATT			460
(2)	INFORMATION FOR SEQ ID NO:17:			

SEQUENCE CHARACTERISTICS:

(i) (A)

LENGTH:

(B)	TYPE:	cDNA	
(C)	STRANDEDNESS	Single	
(D)	TOPOLOGY:	Linear	
(xi)	SEQUENCE DESCRIPTION: SE	Q ID:17:	
NTGG	GTTCCA TGACACTTCC TAAAGA	GCTT CCCACCATCA ATTTCTCCC	T 050
CCAAC	GACTTG AAGCCTGGCT CAAGCT	CCTG GACTTCCACC TGCAAACAA	AG 100
TCCG	CAATGC ACTCGAAGAA TATGGT	IGCT TTGTGGCATT GTNCCCAC	LA 150
GTCT	CCCAAG AGCTCATGGA CAGTAT	CTTC GGNCAATCCA GGGATCTG	TT 200
CGAG	GTTCCC CTCGAGAACA AGGTCA	AGAA CACCAGCGAG GAGCCITA	CC 250
GTGGI	NTATAT CGGACCAAAC CCCCTC	TTGC CACTCTATGA AGGCATTGO	GC 300
ATTG	ACAACG TCACATCCCA ACAAGA	AACT CAGAAAGTIC AGGGACCIC	CA 350
TGTG	GCTAA TNGAAAGACC CAATTC	IGTG AAAATCACAG ATCITGTI	NG 400
GCAN	STNGCT CGGGGAGTTN GGAAAA	CACT GTGGAAANGA TGNTNTTNO	CG 450
NAAG'	TTACGG GNTACCTCTT GGGGAN	NTNA	480
(2)	INFORMATION FOR SEQ ID NO	D:18:	
(2)	INFORMATION FOR SEQ ID N	D:18:	
(2) (i)	INFORMATION FOR SEQ ID NO SEQUENCE CHARACTERISTIC		
,			
(i)	SEQUENCE CHARACTERISTIC	CS:	
(i) (A)	SEQUENCE CHARACTERISTIC	CS: 673	
(i) (A) (B)	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS:	CS: 673 cDNA	
(i) (A) (B) (C)	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS:	673 cDNA Single	
(i) (A) (B) (C)	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS:	673 cDNA Single Linear	
(i) (A) (B) (C) (D) (xi)	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS: TOPOLOGY: SEQUENCE DESCRIPTION: SE	673 cDNA Single Linear	CA 050
(i) (A) (B) (C) (D) (xi) GATT	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS: TOPOLOGY: SEQUENCE DESCRIPTION: SECUENCE CANTIACAGE ACCAGE	673 cDNA Single Linear	
(i) (A) (B) (C) (D) (xi) GATT GTAT	SEQUENCE CHARACTERISTIC LENGTH: TYPE: STRANDEDNESS: TOPOLOGY: SEQUENCE DESCRIPTION: SE CGGGTA CANTTACAGT ACCAGA ATNGCA CGTCTTCTTC	CS: 673 cDNA Single Linear EQ ID:18: TATC AATATCAATA CTAGATAA	GT 100

CAGCACTTTT	CAAACAATAG	CAACTCAGTA	GTCTTTACCC	TCAGTAGTGA	250
TTAAAAACTA	CTGCGTCGTC	ACTCCACAAG	AGCTTGTATT	ACCACNTAGA	300
TGGCCTCATT	GCGCTCTCTC	GCATTCCAGG	TGAATCACTT	CGAGCTGCAA	350
CTTATAACGC	CGGCAAAGNC	AACACCGCTC	GAAATGAAGC	TGTTGGTCGA	400
ATATCGACGG	ACCAGCAATG	CCTCAGGTCT	CATGTTCCCC	ATTCATCATG	450
TCTTACAAGA	ACAATCAATC	AATACTGTCG	GAAACCAAAC	GACCCGNNGG	500
AGGTGGATTA	GGGGATGCGC	TGAGCAAGGG	ACTGCAGTTT	TACTACCCCT	550
TGGGTGGTNG	GTTCANGGNG	GGGCCTAACA	AAAGGNTATG	GNGGACTGAA	600
CCGNGAAGGA	ACTTGGTCGN	TGGGGGAACG	CCGAGGCAAA	NCGAGGACTC	650
GGGNTGAACC	CANCGCCNGG	CCA			673

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 749

(B) TYPE cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID:19:

AAATTGAGGT	CAGTATAAAT	TCCAAACACA	CCATCAAACC	ATCAACTTCC	050
TCTACACCAC	TTCAGCCTTA	CAAGCTTACC	CTCCTGGACC	AGCTCACTCC	100
TCCGGCGTAT	GTCCCCATCG	TATTCTTCTA	CCCCATTACT	GACCATGTCT	150
TCAATCTTCC	TCAAACCCTA	GCTGACTTAA	GACAAGCCCT	TTCGGAGACT	200
CTCACTTTGT	ACTATCCACT	CTCTGGAAGG	GTCAAAAACA	ACCTATACAT	250
CGATGATTTT	GAAGAAGGTG	TCCCATACCT	TGAGGCTCGA	GTGAATTGTG	300
ACATGACTGA	TTTTCTAAGG	CTTCGGAAAA	TCGAGTGCCT	TAATGAGTTT	350
GTTCCAATAA	AACCATTTAG	TATGGAAGCA	ATATCTGATG	AGCGTTACCC	400
CTTGCTTGGA	GTTCAAGTCA	ACGTTTTCGA	ΤΤΟΤΟΘΑΔΤΑ	GCA ATCCCTC	450

TCTCCCGTCT	CTCACAAGCT	CCATCGATGG	AGGAACGGCA	GAATGTTTTC	500
TCAAGTCCTG	GGGTGCTGTT	TTTCCGAAGG	TTGTCCGTGA	AAATATCATA	550
CATCCCTAAT	CTCTCTTGAA	AGCCAGCATT	GCTTTTCCCC	ACCGAAAANA	600
TGACTTGCCT	GAAAAGTTAT	GCCGATCAGA	TGGAAGGGTT	ATGGTTTGCC	650
CGGAAAAAA	TTGCTACAAG	GAAATTTGTA	TTTGGTGTNA	AAACCATATC	700
TCCATTCCAG	AAGAAACGAA	AACGANTCCG	TGCCCAAGCC	ATCACAATT	749

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 218

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID:20:

TCGGGCAGAG AAATCTTTGA GATTGGCAGA CTCGAGAGCA TCCAGACTTC 050
GAGAAAGAGT AGAGGAGCTT ACCTGTCAAC TGGAAGAATT TGAAAATCGG 100
GAGGACTTAA GGAGAGGCCT GGGTGGACCT AGATATGTAT GTTGGCCCTG 150
GCAGTGGCTT GGGCTGGACT TTGTAGGGTT CAGTCGCTCT GATACAGAAC 200
AACAGAATAG TTCAAACG 218

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 437
- (B) TYPE: cDNA
- (C) STRANDEDNESS: Single

(D)	TOPOL	OGY:		Linear		
(xi)	SEQUE	NCE DESCRIP	TION: SEQ ID	:21:		
CGCTG	CITGT	CTCGCTGCCT	ACTATCACTA	CTACCATGGG	TTGGTCCCCT	050
TTCCT	TCAGA	ATCGGACATG	TTTTGGGACG	TTCAGATTCC	ATCTATGCCG	100
CTGTT	GAAGT	ACGATGAGGT	ACCCAGCTTC	TTGTACCCTA	CTAGTCCTTA	150
CCCGT	TTTTG	AGGAGGGCCA	TTTTGGGACA	ATACGGGAAC	TTGGAGAAGC	200
CCTTC	TGTAT	ATTGATGGAC	ACTTTCCAAG	AACTCGAGAG	CGAGATCATC	250
GAGTA	CATGG	TTCGTTTGGT	GCCCCATCAA	NGTTGTTGGT	TCCCCCTTCT	300
TTCAA	AGAAC	CCCAAAAGCC	CAAAANCGCT	NTTCCCCCGG	GGGATTTCCA	350
TNAGG	GCCGA	CGNANTTCAN	CCANCCGGTT	NGTTTCGGAA	ACNAAAACNN	400
AACAN	NTTTC	GNGGNTTTTT	NACACCCANG	NTNNCGG		437
(2)	INFORM	IATION FOR S	EQ ID NO:22:			
-	. •					
(i) S	SEQUEN	NCE CHARACT	TERISTICS			2.
(A) . I	LENGTH	I :	2	32	1	₹
(B) 1	ΓΥΡΕ:		cl	DNA		
(C) S	STRANE	DEDNESS	. S	ingle		
(D) 1	OPOLO	GY:	L	inear		
(xi) S	SEQUEN	ICE DESCRIPT	ION: SEQ ID:2	22:		
AAGAAA	AGGAG T	CTCGTCAAT .	AAAGGATTTG	TGAGAATCAA	ATAACGTTCT	050
CTGTTT	TATTA A	ATTTGTAACA	GTAGTTTGAT	CGAGTCTGTG	AGTAAGTGAT	100
CGAGTA	AGAG A	ATGTACTCTA	CTGTGTGTGT	GTCAATCATG	TTCGTGTTCT	150
TTGGTA	GCCA 1	GTAATGTTC	TCCATCTGGT	CATTATCTGT	GGCCTTGTGA	200
•		CAATGAAAC				232

(2)	INFORMATION FOR SEQ ID	NO:23:
-----	------------------------	--------

(1)	SEQUENCE CHARACTERISTICS:	
(A)	LENGTH.	469

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID:23:

GATCGGTCCG	ATGACCGGAA	AAGTCATGAT	TTTGAGGTGA	GGAGCGANTT	050
GGGTTTCGCC	NGAAATGTNC	AAAGCCCTGT	GCTTTCGGAG	CATGTGGTTG	100
AGAATTTGGN	GAAAGGCAAA	GTGGGTGTCC	AAGAAATTGG	NGAANTTGGN	150
AGCTTTGATA	AGGATTTGGG	ATAANTTCTN	GTTTGATTCC	CGCCNGAGAA	200
AGCTCGNTCT	TCTTTTGAAA	TTTGACAANG	AGGAGGGTT	CANCNCNAGT	250
CCAACAANNG	AATCAAGGGA	GGANANACTC	ANCTINAGAC	TCANCGTTCG	300
CNCAGANGNA	GNAANNTAAA	AACTGNGGCG	AAAACCGNCT	NNCGAGGTGA	350
TAATTAANNT	CCACCITCIT	TNTTNCACGG	TCCCCCCCCT	ANTITITINIA	400
GCTTTTCTC	CNTCAANGCN	AATTCCCGTT	NGNTNTTCTT	NTTNTGCCNA	450
NNCTAATNON	CTINATTCC				469

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 178

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi)	SEQU	ENCE DESCRI	PTION: SEQ ID	24:		
AAC	CAGATAT	NAAGCGATTI	TCGATATTC	ATAACATTC	TCTTTAACTG	050
TTC	AGGTGC	TCAGGAGCCC	AACGCTCAGG	GTAATCGGCC	AAAGTGAATN	100
TTG	GNTNGAC	ATTAGNAACO	AGCCAGACCA	ATAGCCGTTC	GAACAGCTGA	150
CGT	TCGGCGC	GCCCAACCGG	TGGNGCAA			178
					·	
(2)	INFOR	MATION FOR	SEQ ID NO:25:			
(i)	SEQUE	ENCE CHARAC	TERISTICS:			
(A)	LENGT	Γ H :	2	244		
(B)	TYPE:		c	DNA		Commercial
(C)	STRAN	IDEDNESS:	S	Single		
(D)	TOPOL	OGY:	I	inear		v - ·
		·				
(xi)		NCE DESCRIP				Ne Lota
TTC	AAGTTAA	CCTCTCAAAC	CCGACACAGA	GAGCATAAAT	GGGTTCCGAA	<u></u> 2050
TCAT	TGGTTC	ATGTTTTCTT	GGTTTCCTTC	ATCGGCCAAG	GCCATGTGAA	-:100
CCCA	CTCCTC	CGNCTCGGNA	AGCGCCTCGC	TGNCAAAGGT	CTCCTCGTCA	150
CCTI	CTGCAC	CGTCGAATGC	GTCGGTAAGG	AAATGCGNAA	GTCCAACGGC	200
ATCA	CCGACG	AGCCCAAACC	AGTTGGAGAT	GGATTCATCC	GCTT	244
				•		
(2)	INFORM	MATION FOR S	EQ ID NO:26:			
				•		
(i)		NCE CHARACT	ERISTICS:			
(A)	LENGTI	H:	. 68	35		
(B)	TYPE:	_	c C	DNA		
(C)		DEDNESS:	Si	ngle		
(D)	TOPOLO	OGY:	Li	near		

(xi)	SEQUE	NCE DESCRIPT	TION: SEQ ID:	26:		
CCAA	TTCGGT	CGCCGTAAAA	CATGGTTAAT	CAAACGGTGA	ACGGAAGCCA	050
ATCA	AGTAGC	GGAACCCAAA	AGCTCAATGC	TTCAAGCAAC	ACCAAGAGGG	100
ATTT	TGAGGC	TGTGAGTGAG	TCCATGCACT	CTGCAATTTC	AATGAGTAAA	150
ACAG	AAGTCT	TGGATTCTGT	GCTGAGTGAT	TTCTCTGAGG	GATATTITAG	200
CCTT	TGCTAT	GAGAATCGTC	GAAAATTGCT	TGTGCAACTT	GCCAAAGAGT	250
ATGA	TCTTAA	CAGGACNCAG	GTTCGCGATT	TGATAAAGCA	GTATITGGGA	300
CTTG	AGCTTC	CTGGAACTGG	AAGTGACAAT	GCTGACTCAG	AAAGAGGAGG	350
CATC	TCTTTC	TGCTTTCTAC	CGCATTGANA	GGAACTTGAA	GACNTGCTCT	400
CNAG	CCCATG	TATGAANTGC	TATTTGAGCG	GCTTAATACG	CNTCCCGGAG	450
GGTT	GAAGTT	CTTGTCTATT	CTTTCGAGCT	GATATCTTTA	TCCATTCTCG	500
CANA	AAAATA	ATCTGGCGTC	TTTGCNAACA	TTGGATTCCC	CATTCAAAGG	550
AGAA	ACITAN	TNCGTTGGTT	AATCCCCCTG	CCTTANNAGC	TCCNCCCCCA	600
TCNC	TCGGAT	GATTCTTCCT	CCCTTTGCTG	GGAAAAAATT	GTNGCTTACT	650
AAGG	CCGTGC	TTCCCATCCA	NCTATTCTTC	TNGAT		685

(2) INFORMATION FOR SEQ ID NO:27

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 668
(B) TYPE: cDNA
(C) STRANDEDNESS: Single
(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID:27:

AAGTTCACCC	AAGTATAAAG	TCTATCTTAT	TATATATACG	TTTTCTACAA	050
TGTTTGACTA	TTACTGATAT	TANAANATCA	GCTTAAGGAG	CAACAAACAT	100
א ידיידא ידיידא ריא ידי	TATA ATCACA	אראכידאראידי	CATAATCACT	דדררים רידים ידם	150

GAAAACAACA	AAATTAAAAG	TGTGGACACA	TCCGTTATTA	CATTGCTACC	200
CGGCTATTCT	GTTGTATTTT	GAGGTTCCTT	CAGTGGCTCA	ACGTAACGGG	250
AAAGTACATT	AAAANTATGG	ATATGCCCTG	TNCTGAAATA	TGACTGAAAA	300
TAATCTTCAA	TGTTGCCCAA	TCTGTAAACA	TAGTTCACCA	TGATACCTCC	350
ACTITGATNA	AGGCCTTTAT	CTGATCGATC	AGCCATCCNA	TTAATTCTCT	400
CAACCATTGC	TCCATTCTGT	NAGTTGAAAA	TTTGCAACAG	AATCCANAAC	450
TITGCCTCTC	TITITCTCTT	GCAAAAANGT	ANCTGGCACA	CAATCCCATT	500
AAAAAGGGGT	TTTTAGAACT	GAAAACCAAT	TTATCANAAC	TTTGTTCCCT	550
CCCGGGTTTG	CTGAANTTCC	GTAAATTGAN	CATCCCTCCA	TGCCGTTTTT	600
TCCCCNTGGG	TGAATTCAAA	AAACCTNCTC	TTUTUAAAAU	TCTAAAACNG	650
GCGCGGGGCC	ATNCATTT				668

- (2) INFORMATION FOR SEQ ID NO.28:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 522
- (B) TYPE cDNA
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (ix) FEATURES
- (D) OTHER INFORMATION O-methyl transferase
- (XI) SEQUENCE DESCRIPTION: SEQ ID:28

 NTINIGGGGT TGGGGNTCTN GAAGGCAAAA GATTCGGTCA GGACAAGGTC 50

 CTCGTCGAGA GCTGGTATCA TTTGANGGAT GCAGTTCTTG ATGGTGGGAT 100

 TCCATTTAAC AAGGNCTATG GCATGACTGC ATTTGATTAC CATGGNAACT 150

 GACCCTAGCA TTCAACAAGG TCTTCAACAA GGGAATGGCT GACCACTCCA 200

 CCATTACCAT GCANGTAAAA TCCTTGTAGT ACTTACAAAG GCTTCGAGGG 250

CCTCAAATCC	ATCGTTGTAT	GTCGGTGGGC	G GNACCNGAGO	TGTGGNGGAA	300
CATNATCGCT	TCCCNAGTIN	CCCTTCGCAT	CAAGGGTCAT	CANCCTTTCG	350
ACTTGCCCTC	AATCTTANTC	GAANGCATTC	CTCCNTCAAT	TATCCTNNNT	400
GTTTCCANCC	ANGTTGGGAT	GNGGGGANAA	TCTTCTGGCN	ANNTCTTACC	450
CAATINNGGN	ANNCTTCCAT	TCTTTCCCAT	TTNAGTTCNT	NTTTTNCTCA	500
ACCTAACTTG	NCGNTCCNTC	GN			522

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 445

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

- (ix) FEATURES
- (D) OTHER INFORMATION: Acyl carrier protein
- SEQUENCE DESCRIPTION: SEQ ID:29: (xi) ATGGCCACCA CCACAGGAGC TGCTTCTTCG ATCTCACTCC GCTCTCGCCT 50 TCACCAGAAT CTTGCATTGT CCAGGGTCAA TGGTCTTAAG CCAGTTTCAC 100 TGTCTGGTAA TGGAAGAAGT TCTCTTTCTT TCGGGTTACA GCAGCGTTCA 150 GTACGGCTTC AGATTTGCTG CGCGGCCAAA CCAGAGACAG TGGACAAGGT 200 GTGCCAGATA GTTAGAAAGC AACTTGCATT ACCAGATGAC TCAGCAGTTT 250 CTGGAGAGTC AAAATTTTCT GCACTTGGAG CTGATTCTCT TGATACGGNN 300 GGAGATIGIG ATGGGACIIG AGGAGGAATI GGGTATTAGI GIGGNNGAGG 350 AGAGTGCTCA GAGCATTGAA CTINTNCAAG NTGCTGGGGT CTITTCNANA 400 AGNNCNATNG NAAGACCAGG NTTIGGAGGA GGANTNANAA ACAAG 445

(2)	INFORMATION FOR SEQ ID NO.	30:
(i)	SEQUENCE CHARACTERISTICS:	
(A)	LENGTH:	562
(B)	TYPE:	cDNA
(C)	STRANDEDNESS:	Linear
(D)	TOPOLOGY:	Single
(ix)	FEATURES	
(D)	OTHER INFORMATION:	Elongation factor 2
(xi)	SEQUENCE DESCRIPTION: SEQ	D:30:
GGAT	CATCCC TIGGNCCAAT ACGACCAT	CA TCAATGGNCT CAGGAAGACC 5
TTC	CTCCAAC GGGNGTGCTT CCATGTAC	AG ACGGTTGTGC TTGTTGGGAG 10
ACT	TGCTCAT CACAGTACGG NAGGNCTT	T CAAGGACTGT CTCACGGNAG 150
GACA	ACAACAG GATCAGATIT TACAATIT	CC GCTCCACCCA TAAAATCATC 200
	VAGATCC NTCANGNAGA TCTCAAGGT	
	TGTGCTC TCCAGACTCC TCAATGGT	
	AGCCAG ACGTTTCAGC CCTTCAAC	
	ICCTTAC GNTTGAACAG CAACACGCA	
	CATTGC ACGAATGGGG GGAGCATCT	
	AGCATT CTTGGGTGGA TTGAACTTN	
	TITITA CCACAGGGGA ACATCCTCA	A CAGTITCNTT GTTTCTTTC 550
CCCA	TCCAGG TT	. 562
(2)	DIFORMATION FOR ONE OF THE	
(2)	INFORMATION FOR SEQ ID NO:31	:
(i)	SECUENCE CHARACTERISTICS	
(1) (A)	SEQUENCE CHARACTERISTICS: LENGTH:	
(Δ)	LENGIA.	490

(B)	TYPE:	cDNA
(C)	STRANDEDNESS:	Single
(D)	TOPOLOGY:	Linear
		•
(ix)	FEATURES	
(D)	OTHER INFORMATION:	Auxin-induced mRNA
		•
(xi)	SEQUENCE DESCRIPTION: SEQ II	D:31:
ATCG	ACTGCA TTAAGTTGCT AGAAGTGGA	G CTTGGTGACA AGCCTTTCTT 50
TGGC	EGTGAG ACCCTCGGAT TTGTGGACG	T GACGCTCGNT CCTTTCTATT 100
CCTG	GITCIC TGTGTATGAG AAATACGGC	A ACTTCAGCAT TGCGCCAGAG 150
TGCC	CAAAGT NCATGGCTTG GGTTAAGAG	G TGTATGGAGA AGGAGAGTGT 200
GTCA	AAGTCT CTTCCTGACC AGGACAAGG	T CTGTGGCTTN GTTGCCGAGA 250
TGAN	GAAGAA GCTTGGAGTT GAGTAGATG	T GATCAATGTC ATNTTGATCA 300
TGTC	TTTGTT TTAGCCCCAA GATTCANCC	T CGTTTTGGGT TGCTTGTATT 350
TTTC	AATAAA ATTGGGGGAC TTGGACCAA	G CCCTCCAATA GTAGGAAGCA 400
CTCT	TTCNGT GCCTCTTGGT CCNGT1TT	C TTCNGNTAAN CCTNTNTGCA 450
GCTA	AAATTC ACCGNATINC TGNTTTCCI	T NTATNGCCAA 490
(2)	INFORMATION FOR SEQ ID NO:32	2 :
(i)	SEQUENCE CHARACTERISTICS	
(A)	LENGTH:	483
(B)	TYPE:	cDNA
(C)	STRANDEDNESS:	Single
(D)	TOPOLOGY:	Linear
(ix)	FEATURES	•

OTHER INFORMATION: Cysteine (thiol) proteinase

(D)

(xi) SEQUENCE DESCRIPTION: SEQ ID:32:	
GGATCTCCTC CTCCTCTCTC TCCTTCTCCT CCTCTCCTCC	50
CCACCGTAAC CGACGCCGGC GATCCTCTCA TACGACAAGT CGTACCGGGC	100
GCGGCCGAGG ATGACGAGCT CCTCCACGCG GAGCGTCACT TCTCGAACTT	150
CAAAGCCACG TTCGGAAAGA GCTACGCGAG CCAGGAGGAG CACGACTACA	200
GGTTCCGGCG TATTCAAGGN CAACTCCGCC GGGCGAAGAG GCACCAGGGG	250
CITGGACCCC ACCGCCGTGC ACGGTGTCAA CGAAATCTCC GATCTCACTC	300
CCAAGGAGTT TCGNCGGGAA TTTCCTCGGG CTTAAGAAGG GGTCGGANTT	350
CGGGTTACCG GCCGACGGTT AAAAAAGGGG CCNGATNCCT NCCGGANGAA	400
TTANCTTCCC CACCCANTTT TGGNNTTGGG GNGAAAAAAG GNGCCCGNCN	450
AAGNCGGNGG AANGGNCAAG GGGGAAATNG GGT	483
	4
	¹ m
(2) INFORMATION FOR SEQ ID NO:33:	
	· **
(i) SEQUENCE CHARACTERISTICS:	70°
(A) LENGTH: 520	.m.
(B) TYPE: cDNA	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	•
(ix) FEATURES	
(D) OTHER INFORMATION: Cellulase (endo-(1,4)beta-n-glucanas	se
(xi) SEQUENCE DESCRIPTION: SEQ ID:33:	
ACGGTGGGGG GACAGACTAC CTCCTGAAGG CCACGGGGGT TCCTGGCGTC	50
GTCTTCGTCC AAGTCGGCGA CCCATACTCC GATCACAACT GCTGGGAGGA	100
GGCCGGAAGT ACATGGTACA CACGCCGCAC GGTGTACAAA ATCGACCACA	150
ACAACCCGGG ATCCGACGTG GNAGGTGTAA ACCGCAGTTC GTGCTCGCCG	200

TCGCCTCTAT	CGTTTTCAGG	TCACGTGACC	CCGCTTACTC	GNAGNACTGC	250
TTCTCAATCG	GAGCCGTTAA	GGTTT1CGAG	TTCGCTGATA	CCCACCGTGG	300
TGTGTTCAGA	TCCAGCCTCA	AAAACGCCGT	TGTGCCCCTT	TTTTACTGTG	350
NAANGTCAAA	CGGNTTTCCA	GGGATNAATT	TACINTINGG	GGAGGNAGCG	400
TTTGTTTGGN	ACAAAGGTGG	TCTATTNGGC	NGGAGTACAA	GTAGTATTNT	450
CATTGTGNTN	AATCGGANGN	CTATTTTGGG	GGAGNITTNA	GGNTNCCMT	500
TAANGAANTT	TGNNTGGGCT			•	520

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 695

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

- (ix) FEATURES
- (D) OTHER INFORMATION: Pyruvate decarboxylase
- (xi) SEQUENCE DESCRIPTION: SEQ ID:34:

GGCATCTTTT	CACTCGAAGT	CTCAATCTTT	CATCACAAAC	ATTCCCATTT	50
GATCACAAAA	AAGTTTCAAC	CTTTAAACCT	CCATGGACAC	CAAGATTGGC	100
TCCATCGACG	TCTGCAAAAC	CGAGAACCAC	GACGTCGGTT	GTTTACCAAA	150
CAGCGCCACC	TCCACCGTTC	AAAACTCAGT	CCCTTCGACC	TCCCTCAGCT	200
CCGCCGACGC	CACCCTCGGC	CGCCACCTGG	CACGCCGCCT	CGTTCAAATC	250
GGCGTCACCG	ACGTCTTCAC	CGTCCCCGGC	GACTTCAACT	TGACCCTTCT	300
CGACCACCTC	ATCGCCGAGC	CCGGCCTCAC	CAACATTGGC	TGCTGCAACG	350
AGCTCAACGC	CGGGTACGCC	GCCGACGGCT	ACGCGCGGTC	GCGTGGCGTC	400
GGCGCCGTTG	CGTGGTGACT	TTCACTGTTG	GTGGACTGAG	TGTGCTGAAC	450

. ;.

GCGATCGCCG	GCGCGTTATA	GTGAGAATTT	GCCGGTGATT	TGTATTGTTG	500
GTGGGCCCCA	ACTTCTAATG	ATTATGGGAC	TAACCGGATT	CTTCACCATA	550
CTATTGGGTT	GCCGGACTTC	ANTTCAAGAA	CTCCGGTGGT	TTCAAGAACN	600
TGACTTGCTT	TTCAGGCTGT	GGGTGAATAA	TTCTTGGAAG	AATGCACATG	650
AATTTGCTTG	AATACNGCAA	TTTTCAATNG	CNTTNGAAAN	AAAAC	695

(2) INFORMATION FOR SEQ ID NO:35:

(i)	SEQUENCE	CHARACT	FRISTICS
(* /	224051405	CILLICACI	

(A) LENGTH: 695

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(ix) FEATURES

(D) OTHER INFORMATION: Chalcone reductase

(xi) SEQUENCE DESCRIPTION: SEQ ID:35:

GGCCCAAAT	C CCAGAAGTGG	TTCTTGAATC	CTCCAACGGC	CGCAGAACCA	50
TGCCTGTGCT	TGGATTCGGC	ACAGCATCCA	ACAATTTACA	ACCGGAGGTT	100
TTGATAGAA	CTGTTCTTGA	GGCCATCAAG	CTTGGTTACC	GACACTTCGA	150
CACTGCTTCC	ATTTACGGCT	CCGAGCAGAC	TCTAGGAGTA	GCCATTGCCC	200
AAGCGCTCAA	ACTCGGCCTC	GTGGCTTCTC	GTGACGAGCT	CTTCATCACT	250
TCCAAGCTTI	GGCCTAATGA	TGGTCACCCC	AACCTGGTTA	TTCCTGCTCT	300
CAAGAAAATC	GCTTCAGAAT	CTTGAGTTGG	AGTACCTTGA	TITGTATCTG	350
ATACACTGGC	CCATCAGTGC	CAAGCCTGGG	AAAGTTGAGT	CACGCACTAG	400
AGGGAGAAGG	ACCAAATGCC	GATGGACTTC	AAGGGTGTGT	GGGCAGACAT	450
GGAGGAAGCT	CAGAGACTTG	GCCTCACCAA	ATCCATTGGG	AATCAGCAAT	500
TTCTCTACCA	AAAAGACTCA	GAATTTGCTC	TCCTTTCCCT	A CT A TT C CT C	E E A

CGTCAGTCAA	TCAANTTTAA	NATGANTCCA	TTTTGGCAAC	AGAAGAACCT	600
CAAAAACTTC	TGCAAGGCCA	GTGGTATAAT	TTGTGACTGG	CTTCTCCCCA	650
TTGGGTGCCA	TNNGAACCAN	TTGGGGGCAC	CAATCATGTT	CTCNA	695

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH 765
- (B) TYPE: cDNA
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY Linear
- (ix) FEATURES
- (D) OTHER INFORMATION: Protein kinase
- (xi) SEQUENCE DESCRIPTION: SEQ ID:36:

GGGCANANCG	TGTTGTGGGA	ACTGGGTCAT	TTGGAATTGT	ATTCCANGCG	50
AAATGCTTGG	AAACTGGTGA	GACTGTGGCC	ATAAAGAAGG	TTTTACAGGA	100.
CAGAAGGTAT	AAGAACAGGG	AACITCAATT	GATGCGCGTA	ATGGATCATC	150
CAAATGTGAT	TTGTTTGAAG	CATTGTTTCT	TCTCTACAAC	AAGCAAAAAT	200
GAGCTTTTTC	TCAATTTGGT	TATGGAATAT	GTTCCGGAAA	CTATGTATCG	250
GGTTATAAAG	CATTACAGCA	ATGCAAACCA	GAAAATGCCC	CTTGTCTATG	300
TCAAACTTTA	CATGTNCCAC	ATTTTCAGAG	GGCTGGCTTA	CATACACACC	350
GTTCCTGGAG	TTTGCCATAN	ANATTIGAAN	CCTCCAAATT	TATTGGTTGA	400
TCCTCTTATT	CACCANGTCA	AGCTTTGTTG	ATTTTGGAAG	TGCCAAAATG	.450
CNGGTGAAAG	GNGAAACAAA	CATANCATAC	CTATGTTTCA	CGTTTCTATC	500
NGGCTCCNCG	AAACTAATTT	TTTGGTGCCN	CCNGATTATA	CCACTTCCCA	550
TTGATATCTG	GTCNGCTGGC	TGTGTCCTAA	NCAAAACTTC	CTTTTGGGCC	600
CCCCTTGTT	TCCCTGGAAA	AAAATGCCAT	NGAACCACCT	GTTAAAAATC	650

NTT	CNGGTT CNGGG	GAACA CCNCNC	CNTT CAAAAAA	TCC CCNTTTTGAA	700
TCCC	CANTIN TACCA	AATTC CCGGTT	TCCN CCGAAAA	AAN CCCNCCCTTT	750
GGNN	NAAGGT TTTCC	•			765
(2)	INFORMATION	N FOR SEQ ID N	O:37:		
(i)	SEQUENCE CH	IARACTERISTIC	CS:		
(A)	LENGTH:		772		
(B)	TYPE:		cDNA		
(C)	STRANDEDNE	SS:	Single		
(D)	TOPOLOGY:		Linear		
				•	
(ix)	FEATURES				
(D)	OTHER INFORM	MATION:	Auxin-related	gene	
•					
(xi)	SEQUENCE DE	SCRIPTION: SE	Q ID:37:	ភ្នំ	
GGAG	AAACCT CTGCC	CTTTA AACTTT	ACTT TTGCAATA	CA CCGTCTAACA	50
ATGG	CTGCAG CTCCA	GTGA GTCCAT	ACCC TCTGTAAA	TA AGGCCTGGGT	100
CTAT	CAGAG TATGG	AAAA CTGCTG	TGT TCTCAAGT	TT GATCCAAGTG	150
TGGC	GTTCC TGAAAT	TAAA GAGGATO	CAGG TGCTGATC	AA GGTTGTTGCT	200
GCTT	TCTTA ACCCAC	TTGA TTTTAAC	AGG GCTCTTGG	IT ACITCAAGGA	250
CACTO	SACTOT CCCCTA	CCTA CAATTCC	AGG GTATGATG	TA GCTGGTGTGG	300
TGGT	AAGGT AGGAAG	CCAA GTAACCA	AGT TTAAGGTG	GG GGATGAAGTG	350
TATGO	GGATC TCAATG	AAGA CAGCATI	GGT GAAACCCA	AC AAGGTTTGGG	400
TCTTT	GGCAG AGTACA	CTGC TGCAGAT	GAA AGANTATTO	G CTCACAAACC	450
CAAAA	ACCIG AGCITI	ATTG AAGCTGC	TAA CCTTCCCT	rg gctattgaaa	500
CTGCC	CATGA AGGGCT	TGAA AGAACTG	AAC TTTCTGCTC	G TAAATCCGTC	550
CTTGT	TTTGG GAAGCG	CTGG GGGINIT	GGA ACACATAT	TA TCANCTTGCC	600
AAAGC	ATGTT TTTGGT	GCTT CCCAANT	AAC NNCTACTGO	CA ANCACTAAAA	650

AACCGGAATT	TGTTGAAAAA	CCTGGGTNCT	GATTTGGCTA	CCAATTACCC	700
CANGAAAACT	TCCAAGAACT	GCCCAAAAA	TTGAATTTTN	TTTTTNANGC	750
CNTTNGGGAA	ANNAANAAGG	GT			772

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 773

(B) TYPE: cDNA

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

- (ix) FEATURES
- (D) OTHER INFORMATION: Sucrose transporter
- (xi) SEQUENCE DESCRIPTION: SEQ ID:38:

CATTGGCGAT	CACGTACAGT	GTTCCATATG	CCTTGATTTC	TTCTCGTATC	50
GAGTCTTTGG	GACTTGGCCA	AGGCTTATCA	ATGGGTGTAC	TGAATCTGGC	100
AATCGTAGTA	CCACAGGTGC	TGGTATCCCT	GGGAAGTGGA	CCATGGGATC	150
AGCTATTTGG	TGGTGGAAAC	TCTCCAGCCT	TTGCGGTTGC	AGCAGTTGCA	200
GCCTTAGCAA	GTGGGCTGGT	GGCCATCTTG	GCTATTCCAC	GTTCTATTCC	250
ACAGAAGCCT	ANATCTTTCA	CATGAGGTAT	TTTGTTGTAT	CTACTTTTTA	300
CCCAACTTTG	TCACAGAAAT	ACAAAACCTC	CATAGATAGT	GAGAATTTGT	350
AAATATCTTT	TGTTACGTGT	TAGCTATTTC	TCAATACACT	CATTTACCAG	400
AGGTTTCTTT	AGTTCTGGAA	ATTTCTCTCT	TTCCCTTTTT	GTCGTTTTAG	450
ATGCTTTAAT	AAAGAAAGGC	CTGGCAGCGA	TTATATCAAA	GTTGANCTGA	500
ATATCTGTGT	TGAAGTGCTT	CCGTTCAACA	ATTTATAGTT	CTCAATTTCT	550
ACAATATTTT	AAATCAGAAC	TGTCCCCTGG	TTGGACCCTA	ATGGAATCCA	600
TATGTTGGAA	CCATAATCTC	AATTANGCAT	CCTGCCTCAA	TTCCNCAATG	650

GIGITITCAN	AANTGTTGAN	GAAACNANTT	NNTCCAAAAA	GTTGATGGTG	700
TTTTTCCCAA	ATGCCNGGCT	ACNCCACCAA	NNTTGANGTT	NGGTACNCCA	750
AATTGAATNA	AGTTATTACC	CAC			773

CLAIMS

- A vector for use in the genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region, or a fragment of at least 10 bases thereof, of a strawberry protein selected from O-methyl transferase, acyl carrier protein (ACP), elongation factor, auxin-induced gene, cysteine(thiol) proteinase, cellulase, starch phosphorylase, pyruvate decarboxylase, chalcone reductase, protein kinase, auxin-related gene, sucrose transporter, meristem pattern gene, or selected from a strawberry protein with homology to transcribed sequence, T45086, transcribed sequence accession number L36159 or transcribed sequence accession number T45902, or selected from a strawberry protein of unknown homology encoded by one of the StrawRipe sequences A to K.
- 2. A vector according to claim 1, wherein the regulation sequence comprises a sequence selected from SEQ ID NO:1: to SEQ ID NO:38:, and fragments thereof with at least 10 bases.
- 3. A vector according to claim 1 or 2, wherein the regulation sequence is aligned for antisense expression.
- A vector according to claim 1 or 2, wherein the regulation sequence is aligned for sense expression.
- 5. A vector according to any preceding claim, wherein the regulation sequence fragment comprises at least 35 bases.
- 6. A method for genetic modification of a strawberry comprising inserting a vector as claimed in any preceding claim into the genome of a strawberry plant.

- Propagation material for a strawberry plant which plant is progeny of a strawberry plant which has been modified by a method according to claim 6.
- 8. Strawberry fruit of a strawberry plant grown from propagating material according to claim 7.
- 9. Strawberry fruit according to claim 8, with regulated ripening in comparison with unmodified fruit.
- 10. A gene regulation sequence selected from SEQ ID NO:1: to SEQ ID NO:38:, and fragments thereof with at least 10 bases.

lacZ

INTER TIONAL SEARCH REPORT

					/GB 9//001/8
A. CLASS IPC 6	C12N15/11 C12N15/11 C12N15/56 C07K14/415	C12N15/82 C12N15/57	C12N15/52 C12N15/63	C12N15/54 C12N9/10	C12N15/55 C12N9/14
According	to International Patent Clas	•	oonesileesil lanoitan die	and IPC	
	S SEARCHED			alo II C	
IPC 6	documentation searched (cl C12N	assification system follo	wed by classification sym	abols)	
Documenta	tion searched other than mu	rumum documentation	to the extent that such do	cuments are included in	the fields searched
Electronic o	data base consulted during t	he international search (name of data base and, v	where practical, search to	erms used)
C. DOCUM	ENTS CONSIDERED TO	BE RELEVANT		•	
Category *	Citation of document, with	h indication, where app	ropriate, of the relevant p	aczages	Relevant to claim No.
Y	pages 62-68, MANNING K.: during straw regulation be cited in the see the whol PLANT MOLECU vol. 6, no. pages 1097-1 WILKINSON J. mRNAs with e strawberry reaction dif	berry fruit y auxin" application e document LAR BIOLOGY, 27, 1995, DO 108, XP00067 Q. ET AL.: nhanced exprefruit using ferential di	gene express ripening and RDRECHT NL, 0213 "Identification in ripersolymerase characters	on of	1-10
	see the whol	e document	-/		
X Furth	er documents are listed in th	ne continuation of box (:. Х г	Patent family members a	re listed in annex.
A' document consider to filing da L' document which is citation of document other me by document later that	It which may throw doubts of cited to establish the public or other special reason (as s it referring to an oral disclo- tans t published prior to the inte- in the priority date claimed	r after the international on priority claim(s) or cation date of another pecified) sure, use, exhibition or mational filing date but	'X' documents of the carm involved occuments occuments occuments on the carm occuments occurred to the carmonic occurred occu	to understand the princi- tion ment of particular releva- of be considered novel o ve an inventive step whe ment of particular releva- of be considered to involute ment is combined with s, such combination beir s, such combination beir	r the international filing date onflict with the application but inple or theory underlying the ince; the claimed invention or cannot be considered to in the document is taken alone ince; the claimed invention we an inventive step when the or more other such docuing obvious to a person skilled in patent family
	tual completion of the inter	national search	Date (of mailing of the internal	nonal search report
16	April 1997			24	.06.1997
ame and ma	aling address of the ISA European Patent Office, I NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, 7 Facc (+31-70) 340-3016		•	Panzica, G	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/GB 97/00178

1995 see the whole document WO 92 12249 A (MONSANTO CO.; US) 23 July 1992 WO 91 16440 A (IMPERIAL CHEMICAL INDUSTRIES PLC; GB) 31 October 1991	ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
WO 91 16440 A (IMPERIAL CHEMICAL INDUSTRIES PLC; GB) 31 October 1991 HORTICULTURAL REVIEWS, vol. 17, 1995, NEW YORK US, pages 267-297, XP000197328 PERKINS-VEAZIE P.: "Growth and ripening of strawberry fruit"	′	1995	2-10	
INDUSTRIES PLC; GB) 31 October 1991 HORTICULTURAL REVIEWS, vol. 17, 1995, NEW YORK US, pages 267-297, XP000197328 PERKINS-VEAZIE P.: "Growth and ripening of strawberry fruit"	١	WO 92 12249 A (MONSANTO CO.; US) 23 July 1992		
vol. 17, 1995, NEW YORK US, pages 267-297, XP000197328 PERKINS-VEAZIE P.: "Growth and ripening of strawberry fruit"	١	WO 91 16440 A (IMPERIAL CHEMICAL INDUSTRIES PLC; GB) 31 October 1991	·	
	1	vol. 17, 1995, NEW YORK US, pages 267-297, XP000197328 PERKINS-VEAZIE P.: "Growth and ripening		
	. ·			
· ·				

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1-10 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: Claims 1-10 of invention 1 have been searched keeping Seq.Id.No. 1 and 28 as subject matter, since the concept defined as "0-methyl-transferase" is vague and too broad.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
27 inventions * see continuation-sheets PCT/ISA/210 *
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-10 (partially)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No. PCT/GB 97/00178

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

- 1. Claims 1-10 (partially):

 A vectorfor use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry 0-methyl-transferase and its use.
- 2. Claims 1-10 (partially): A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry acyl-carrier protein (ACP) and its use.
- 3. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry elongation factor and its use.
- 4. Claims 1-10 (partially): A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry auxin-induced gene and its use.
- 5. Claims 1-10 (partially):
 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry cysteine(thiol) proteinase and its use.
- 6. Claims 1-10 (partially): A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry cellulase and its use.
- 7. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry starch phosphorylase and its use.
- 8. Claims I-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding
 region or a fragment thereof, of a strawberry pyruvate decarboxylase and
 its use.

FURTHER INFORMATION CONTINUED FR M PCT/ISA/210

- 9. Claims 1-10 (partially):
 - A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry chalcone reductase and its use.
- 10. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry protein kinase and its use.

11. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment therof, of a strawberry auxin-related general its use.

12. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry sucrose transporter and its use.

13. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the coding region or a fragment thereof, of a strawberry meristem pattern gene and its use.

14. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein with homology to transcribed sequence accession number T45086 and its use.

15. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein with homology to transcribed sequence accession number L36159 and its use.

16. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein with homology to transcribed sequence accession number T45902 and its use.

FURTHER INFORMATION C NTINUED FROM PCT/SA/210

- 17. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence A and its use.
- 18. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence B and its use.
- 19. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence C and its use.
- 20. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence D and its use.
- 21. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcriptio termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence E and its use.
- 22. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence F and its use.
- 23. Claims 1-10 (partially):

 A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment therof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence G and its use.
- 24. Claims 1-10 (partially):

 A vector for use in genetic transformati n of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment th reof, selected from a strawberry protein of unknown homol gy encoded by the StrawRipe Sequence H and its use.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/GB 97/00178

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

25. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence I and its use.

26. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence J and its use.

27. Claims 1-10 (partially):

A vector for use in genetic transformation of strawberry cells, comprising a promoter sequence, a regulation sequence and a transcription termination sequence, in which the regulation sequence comprises the sequence or a fragment thereof, selected from a strawberry protein of unknown homology encoded by the StrawRipe Sequence K and its use.

INTERNATIONAL SEARCH REPORT

formation on patent family members

inal Application No PCT/GB 97/00178

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9510622 A	20-04-95	AU 7817894 A EP 0724640 A	04-05-95 07-08-96
WO 9212249 A	23-07-92	AU 9113791 A BR 9107191 A CA 2096637 A EP 0564524 A JP 6504668 T US 5512466 A	17-08-92 14-06-94 27-06-92 13-10-93 02-06-94 30-04-96
WO 9116440 A	31-10-91	AU 652362 B AU 7677091 A CA 2081454 A EP 0528826 A	25-08-94 11-11-91 26-10-91 03-03-93