Diagonalizability, Triangularization, Invariant and Nilpotent Subspaces

Problem 1: Let F be a field and $A \in M_{n \times n}(F)$. Show that L_A (left multiplication by A) is diagonalizable over F if and only if there exist an invertble matrix $Q \in M_{n \times n}(F)$ such that QAQ^{-1} is diagonal.

Proof. First, we prove the forward implication. So suppose A is diagonalizable. Thus, we can pick a basis of A such that A is a diagonal matrix of eigenvectors in the basis.

Let
$$\beta = \{v_1, ..., v_n\}$$
 with corresponding eigenvalues $\{\lambda_1, ..., \lambda_n\}$

We can create a matrix Q made up of the n eigenvectors viewed as column vectors. Since, the eigenvectors are in a basis, they are linearly independent and thus Q^{-1} exists.

Let D be a diagonal matrix made up of the eigenvalues of A. We will prove that QD = AQ.

Consider each column of the equation. The i^{th} column of QD is $\lambda_i v_i$. The same holds for AQ since the i^{th} column of Q is an eigenvector, and by definition, $Av_i = \lambda_i v_i$.

Since QD=AQ, multiply both sides by Q^{-1} which we know exists, and we get $D=Q^{-1}AQ$ as wanted.

To prove the backward implication, suppose the matrix $Q^{-1}AQ = D$ where D is diagonal. Let $\beta = \{e_1, ..., e_n\}$ denote the standard basis. Note, $QQ^{-1}AQ = IAQ = QD$.

$$QDe_i = QD_{ii}e_i = D_{ii}Qe_i = D_{ii}q_i$$
 (where q_i is the i^{th} column vector of Q.)
 $\Rightarrow AQe_i = D_{ii}q_i$ (since AQ = QD)
 $\Rightarrow Aq_i = D_{ii}q_i$

Thus, q_i is an eigenvector, since $D_{ii} \in \mathcal{F}$. Since $i \in [1, n]$ is arbitrary, we can see that q_i is an eigenvector for all i. But since Q is invertible, q_i are all linearly independent. Thus, we can form a basis made up of the column vectors of Q such that $Aq_i = \lambda_i q_i$. Thus, A is diagonalizable.

Problem 2: Let V be a vector space over \mathbb{C} . Then, V can also be considered as a vector space over \mathbb{R} . Show that if $\{v_1, ..., v_n\}$ is a basis of V over \mathbb{C} then $\{v_1, ..., v_n, iv_1, ..., iv_n\}$ is a basis of V over \mathbb{R} .

Proof. We want to show that $\{v_1, iv_1, ..., v_n, iv_n\}$ is a basis for V over \mathbb{R} . First, we show linear independence:

$$c_1v_1 + d_1iv_1 + \dots + c_nv_n + d_niv_n = 0$$
 (for some $c, d \in \mathbb{R}$)
 $(c_1 + d_1i)v_1 + \dots + (c_n + d_ni)v_n = 0$

But $c + di \in \mathbb{C}$ and $\{v_1, ..., v_n\}$ forms a linearly independent basis for V over \mathbb{C} . Thus, $c_j + d_j i = 0 \Rightarrow c_j = d_j = 0 \ \forall j \in [1, n]$ which is the definition of linear independence.

Now we want to prove that $\{v_1, iv_1, ..., v_n, iv_n\}$ spans V. Well, let $v \in V$. Since V is a vector space over \mathbb{C} there exists $(c+di) \in \mathbb{C}$ such that:

$$(c_1 + d_1 i)v_1 + \dots + (c_n + d_n i)v_n = v$$

$$c_1 v_1 + d_1 i v_1 + \dots + c_n v_n + d_n i v_n = v$$

But c_j , $d_j \in \mathbb{R}, \forall j \in [1, n]$.

Thus, since any $v \in V$ can be expressed as a linear combination of $\{v_1, iv_1, ..., v_n, iv_n\}$ with scalars in \mathbb{R} , span $(\{v_1, iv_1, ..., v_n, iv_n\}) = V$.

Therefore, $\{v_1, iv_1, ..., v_n, iv_n\}$ forms a basis for V over \mathbb{R} .

Problem 3: Let V be a finite-dimensional subspace and W a non-zero proper T-invariant subspace. Let f(t), g(t), h(t) be the characteristic polynomials of T, T_W , \overline{T} respectively. Show that f(t) = g(t)h(t)

Proof. First we will show that $\overline{T}: V \setminus W \to V \setminus W$ where $\overline{T}(v+W) = T(v) + W$ is well defined and linear. Suppose v+W=v'+W

$$\Rightarrow v + W - (v' - W) = \vec{0} + W$$

$$(v - v') + W = \vec{0} + W$$

$$v - v \sim \vec{0}$$

$$\Rightarrow (v - v') \in W$$

$$\Rightarrow T(v - v') \in W \qquad \text{(since W is T-invariant)}$$

$$\Rightarrow T(v) - T(v') \in W$$

$$\Rightarrow T(v) + W - (T(v') + W) = \vec{0} + W$$

$$T(v) + W = T(v') + W$$

$$T(v + W) = T(v' + W) \qquad \text{(thus, } T \text{ is well-defined.)}$$

Now, let $\beta = \{v_1, ..., v_k\}$ be a basis for W. Extend it to get $\gamma = \{v_1, ..., v_k, ... v_n\}$ a basis for V (guaranteed to not be equal to β since W is a proper subset of V). From exercise 35, we know $\delta = \{v_{k+1} + W, ..., v_n + W\}$ forms a basis for V/W.

Now, let
$$w \in W$$
, $u \in V/W$. $[w]\gamma = \begin{pmatrix} a_1 \\ \vdots \\ a_k \\ 0_{k+1} \\ \vdots \\ 0_n \end{pmatrix}$.

Notice $[T]_{\gamma}[w]_{\gamma} = ([T_W]_{\beta}[w]_{\beta} \quad 0_{k+1} \quad \dots \quad 0_n)$ since W is T-invariant. Also, $[T]_{\gamma}([u]_{\gamma} + W) = (0_1 \quad \dots \quad 0_k \quad [\overline{T}]_{\delta}[u]_{\delta})$ since the first k vectors are mapped to $\vec{0}$ in the quotient space.

Thus, $[T]_{\gamma} = \begin{pmatrix} [T_W]_{\beta} & C \\ 0 & [\overline{T}]_{\delta} \end{pmatrix}$ where each component are a square matrices.

Characteristic polynomial of $[T]_{\gamma}$:

$$f(t) = \det([T]_{\gamma} - tI) = \det([T_W]_{\beta} - tI) \det([\overline{T}]_{\delta} - tI) = g(t)h(t)$$

as wanted. \Box

Problem 4: Let V be an n-dimensional vector space over field F and $T: V \to V$ be a linear map whose characteristic polynomial splits over F. Show that there exist a basis β of V such that $[T]_{\beta}$ is upper-triangular.

Proof. We will prove the statement "If f(t) splits, $\exists \beta$ of V such that $[T]_{\beta}$ is upper triangular" with induction on $\dim(V)$.

Base Case: If $\dim(V) = 1$, pick any basis β and will $[T]_{\beta}$ will be upper-triangular trivially.

Now suppose the statement is true for $\dim(V) = n$. We will prove it for $\dim(V) = n + 1$

Suppose f(t) splits into $c(t - \lambda_1)...(t - \lambda_n)(t - \lambda_{n+1})$. λ_1 is an eigenvalue with at least one eigenvector w. Let span($\{w\}$) = W. Define $T_W: W \to W$, $T_W(w) = T(w)$. We know this is possible since $T(w) = \lambda_1 w \in W$. Thus, W is T-invariant.

Then, define $\overline{T}: V/W: V/W$ such that $\overline{T}(v+W) = T(v) + W$. The characteristic polynomial of \overline{T} also splits $(h(t) = c(t - \lambda_2)...(t - \lambda_{n+1}))$ by the result in Problem 3.

By Induction Hypothesis, $\exists \beta$ such that $[\overline{T}]_{\beta}$ is upper triangular. Also, we know that $[\overline{T}]_{\beta} \in M_{n \times n}$ since $\dim(V/W) = \dim(V) - \dim(W) = n + 1 - 1 = n$. Also, w is linearly independent of all vectors in β .

By the result in Problem 3, $[T]_{\{w\}\cup\beta} = \begin{pmatrix} [T_W]_{\{w\}} & C \\ 0 & [\overline{T}]_{\beta} \end{pmatrix}$ for some β basis of V/W.

Since $[\overline{T}]_{\beta}$ is upper triangular, $\{w\} \cup \beta$ is a basis at which [T] is upper-triangular. \square

Problem 5:

- (a) Let V be a finite-dimensional vector space and $T: V \to V$ be a linear map such that for every $v \in V$ there exist an integer $k \geq 1$ (possibly depending on v) such that $T^{(k)}(v) = 0$. Show T is nilpotent.
- (b) Let $\dim(V) = n$ and $T: V \to V$ be a nilpotent linear map. Show that if λ is an eigenvalue of T, then $\lambda = 0$

Proof.

- (a) Let $\mathbb{K} = \{k_1, ..., k_n\}$ be the set such that $T^{k_i}(v_i) = 0$. Well, choose $k' = \max \mathbb{K}$. Since T is linear, for any $v_i \in V$, $T^{k'}(v_i) = T^{(k'-k_i)}T^{k_i}(v_i) = T^{(k'-k_i)}(\vec{0}) = \vec{0}$. Thus, T is nilpotent.
- (b) Consider $T(v) = \lambda v$ where $v \neq \vec{0}$, which we know to exist since λ is an eigenvalue of T. Since T(v) is nilpotent, $\exists k \in \mathbb{N}$. With the fact that $v \neq \vec{0}$, we have that

$$\vec{0} = T^k(v) = \lambda^k(v) \Rightarrow \lambda = 0$$

Thus all eigenvalues of T is 0.

Since $0 \in F$ for any F, T contains all it's eigenvalues. Thus, the characteristic polynomial splits and $f(t) = (-1)^n (t - \lambda)^n = (-1)^n (t)^n$.

Problem 6: Let T and S be linear operators on a vector space V such that TS = ST. Show that the kernel and image of S are T-invariant.

Proof. We want to show that $\ker(S)$ is T-invariant. That is, $v \in \ker(S) \Rightarrow T(v) \in \ker(S)$.

So, suppose $v \in \ker(S)$. Thus, S(v) = 0. Applying T to both sides of the equation:

$$T(S(v)) = 0 \Rightarrow S(T(v)) = 0 \Rightarrow T(v) \in \ker(S)$$

as wanted.

Now, we want to show that Im(S) is T-invariant. That is, $w \in \text{Im}(S) \Rightarrow T(w) \in \text{Im}(S)$.

So suppose $w \in \text{Im}(S)$. Thus, $\exists u \in V \text{ s.t. } S(u) = w$. Well,

$$T(w) = T(S(u)) = S(T(u)) \in Im(S)$$

completing the proof.

Problem 7: Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V. Suppose the nilpotency index of T is k. Show that if $0 \le i < k$, then $Im(T^i + 1) \subsetneq Im(T^i)$ and $\ker(T^i) \subsetneq \ker(T^i + 1)$.

Proof. Let's prove $Im(T^{i+1}) \subseteq Im(T^i)$.

Clearly, T commutes with T^i . Thus, by Q1, $\operatorname{Im}(T^i)$ is T-invariant. In other words, $T(\operatorname{Im}(T^i)) = \operatorname{Im}(T^{i+1}) \subset \operatorname{Im}(T^i)$

To show $\text{Im}(T^{i+1}) \neq \text{Im}(T^i)$, suppose for sake of contradiction otherwise. Notice that

$$\operatorname{Im}(T^{i+1}) = \operatorname{Im}(T^i) \Rightarrow \operatorname{Im}(T^{i+2}) = \operatorname{Im}(T^{i+1}) = \operatorname{Im}(T^i)$$

is an immediate result of $T(\operatorname{Im}(T^i)) = \operatorname{Im}(T^{i+1})$.

Apply T k-times in the equation, and we get the result $\text{Im}(T^i) = \text{Im}(T^{k+i}) = 0$, but by the minimality of k, $i < k \Rightarrow \text{Im}(T^i) \neq 0$ which is a contradiction.

Therefore $\operatorname{Im}(T^{i+1}) \subsetneq \operatorname{Im}(T^i)$.

Now let's prove $ker(T^i) \subseteq ker(T^{i+1})$.

Let $v \in \ker(T^i)$. Thus, $T^{i+1}(v) = T(T^i(v)) = T(0) = 0$. Thus, $v \in \ker(T^{i+1})$ and it follows that $\ker(T^i) \subset \ker(T^{i+1})$.

Now we only need to prove $\ker(T^i) \neq \ker(T^{i+1})$. Well, by dimension theorem,

$$N(T^i) + R(T^i) = \dim V = N(T^{i+1}) + R(T^{i+1})$$

Since $\operatorname{Im}(T^{i+1}) \subsetneq \operatorname{Im}(T^i)$, $R(T^i) - R(T^{i+1}) \neq 0$ (Rank is defined as dimension of it's image). We then get $N(T^{i+1}) - N(T^i) \neq 0$. Thus, the dimension of their kernels are different and therefore $\ker(T^i) \neq \ker(T^{i+1})$ completing the proof.

Problem 8: Let V be a nonzero finite-dimensional vector space over \mathbb{C} . Denote the identity map on V by I. Let T be a linear operator on V such that $T^k = I$ for some positive integer k. Show that T is diagonalizable.

Proof. Let the number of distinct eigenvectors of T be n. We know that the characteristic polynomial of T splits over \mathbb{C} and so the minimal polynomial of T,

$$m(t) = \prod_{i=1}^{n} (t - \lambda_i)^{d_i}$$

since the minimal polynomial have the same zeros as the characteristic. All that's left to show is $d_i = 1$ for all $i \in [1, n] \cap \mathbb{N}$.

Consider the polynomial $p(t) = t^k - 1$. Over \mathbb{C} , p(t) splits. The roots of $(t^k - 1)$ are $e^{i2n\pi/k} \ \forall n \in \mathbb{Z}$. Considering that $|\mathbb{Z}_k| = k$ (where \mathbb{Z}_k is the set of integers modulo k), the set $\{\frac{2\pi n}{k} \mod 2\pi \mid n \in \mathbb{Z}\}$ has cardinality k. So, $(t^k - 1)$ has k unique roots - the maximal number by the fundamental theorem of algebra, and thus no root is repeated.

Since
$$\deg p(t) = k$$
, $p(t) = \prod_{i=1}^{k} (t - r_i)$ where r_i is a unique root of $p(t)$.

We can see that $p(T) = T^k - I = 0$ and thus $m(t)|(t^k - 1)$. But the multiplicities of the linear products of p(t) are all 1. So, the same must go for m(t) (or else, m(t) won't divide p(t)), completing our proof that $d_i = 1$ for all $i \in [1, n] \cap \mathbb{N}$.

Problem 9: Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator on T. Let W be a T-invariant subspace of V. Show that T_W (the restriction of T to W) is diagonalizable.

Proof. Since T is diagonalisable, its characteristic polynomial splits. Let m(t) be the the minimal polynomial of $T|_W$. By the same reasoning in Q2, we need only prove that m(t) splits and has no repeated factors.

Well, we know that $P_{T|W}(t)|P_T(t)$. So $P_{T|W}(t)$ must also be made up solely of linear factors. Thus the minimal polynomial m(t) must also split.

Now let $\mu(t)$ be the minimal polynomial of T. Since $\mu(T) = 0$, it follows that $0 = \mu(T)|_W = \mu(T|_W)$. So, by the property of minimal polynomials, m(t) must divide $\mu(t)$. But the linear factors of $\mu(t)$ all have multiplicities of 1 since T is diagonalisable. So, m(t) must also have no repeated factors, completing our proof.

Problem 10: Let V be a nonzero finite-dimensional vector space. Let S be a collection of diagonalizable linear operators on V such that any two maps in S commute with each other. Show that the maps in S can be simultaneously diagonalized. That is, show that there exists a basis β of V such that for every $T \in S$, the matrix $[T]_{\beta}$ is diagonal.

Proof. We will prove the statement via strong induction on $\dim V$.

Base case: If dim V=1, then every $T\in\mathcal{S}$ is diagonalisable regardless of basis.

Inductive Hypothesis: Suppose that you can simultaneously diagonalise any commuting set of diagonalisable matrices on vector spaces of degree < n. We will prove the result holds for dim V = n.

Case 1: Suppose each $T \in \mathcal{S}$ only has 1 eigenvector.

Since any T is diagonalisable, then every T is in the form λI regardless of basis. Done.

Case 2: Suppose there exists $T \in \mathcal{S}$ with k > 1 eigenvalues.

Decompose $V = \bigoplus_{i=1}^k E_{\lambda_i}$. We can do this since T is diagonalisable. Pick an arbitrary E_{λ_i} and let $T|_{\lambda_i}$ be the restriction of T to subspace E_{λ_i} .

First, we will show that E_{λ_i} is S-invariant for any arbitrary $S \in \mathcal{S}$. So let $v \in E_{\lambda_i}$. We need to show $S(v) \in E_{\lambda_i}$. Indeed, $T(Sv) = STv = S\lambda_i v = \lambda_i(Sv) \Rightarrow S(v) \in E_{\lambda_i}$.

Thus, E_{λ_i} is S-invariant for any $S \in \mathcal{S}$. We can then restrict any S to E_{λ_i} . From Q3, we know that $S|_{\lambda_i}$ is diagonalisable (for S is diagonalisable). And since dim $S|_{\lambda_i} < n$ $(E_{\lambda_i} \subsetneq V)$, there exists a basis where all $S|_{\lambda_i}$ are simultaneously diagonalisable by the induction hypothesis.

We can repeat this for all the eigenspaces of T whose sum is directly V. We can then combine each basis that simultaneously diagonalise S. That set is indeed a basis for V because it is a basis that diagonalises T. Each S would look like

$$\begin{pmatrix} [S|_{\lambda_1}] & 0 & & 0 \\ 0 & [S|_{\lambda_2}] & & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & & [S|_{\lambda_k}] \end{pmatrix}$$

where each $[S|_{\lambda_i}]$ is diagonal. And hence we're done.