Contents

1	\mathbf{Sign}	ture of a Permutation	1
	1.1	$\operatorname{gn}(\sigma) = \pm 1 \forall \sigma \in S(n) \dots \dots$	1
	1.2	$\operatorname{gn}(\tau\sigma) = \operatorname{sgn}(\tau)\operatorname{sgn}(\sigma)$	1

1 Signature of a Permutation

Define the signature $sgn(\sigma)$ to be

$$\mathrm{sgn}(\sigma) = \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

1.1
$$\operatorname{sgn}(\sigma) = \pm 1 \quad \forall \sigma \in S(n)$$

By swapping the arbitrary symbols i, j we see

$$\begin{split} \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j} &= \prod_{j < i} \frac{\sigma(j) - \sigma(i)}{j - i} \\ &= \prod_{j < i} \frac{\sigma(j) - \sigma(i)}{j - i} \\ &= \prod_{j < i} \frac{\sigma(i) - \sigma(j)}{i - j} \\ &\Rightarrow (\operatorname{sgn}(\sigma))^2 = \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j} \prod_{j < i} \frac{\sigma(i) - \sigma(j)}{i - j} \\ &= \prod_{i \neq j} \frac{\sigma(i) - \sigma(j)}{i - j} \end{split}$$
 multiply prev line by (-1/-1)

Expanding this out gives us all possible combos i, j, so $sgn(\sigma)^2 = 1$.

1.2 $\operatorname{sgn}(\tau\sigma) = \operatorname{sgn}(\tau)\operatorname{sgn}(\sigma)$

Let $N(\sigma) = \{(i,j) \mid i < j, \sigma(i) > \sigma(j)\}$, and $n(\sigma) = |N(\sigma)|$. Thus $n(\sigma)$ counts the number of inversions in the set $D = \{(i,j) \mid i < j\}$. By the proposition above,

$$\operatorname{sgn}(\sigma) = (-1)^{n(\sigma)}$$

Let $\sigma D = \{(\sigma(i), \sigma(j)) \mid i < j\}$, then for all k < l, either (k, l) or $(l, k) \in \sigma D$.

Now apply $\tau \sigma D$ which contains either $(\tau k, \tau l)$ or $(\tau l, \tau k)$. Thus τ inverts $n(\tau)$ pairs, and so $D \to \sigma D \to \tau \sigma D$ has inverted $n(\sigma) + n(\tau)$ pairs.

But $D \to (\tau \sigma) D$ has inverted $n(\tau \sigma)$ pairs.

We also see $(i,j) \in N(\tau\sigma) \Leftrightarrow (i,j) \in N(\sigma)$ or $(\sigma(i),\sigma(j)) \in N(\tau)$. And there is no pair $(i,j) \in N(\tau\sigma) : (i,j) \in N(\sigma)$ and $(\sigma(i),\sigma(j)) \in N(\tau)$ so it follows

$$n(\tau\sigma) = n(\tau) + n(\sigma)$$