

Usage Funnels with Warby Parker

Learn SQL from Scratch Anirudh Sapru June 15, 2018

Example Table of Contents

- 1. Get familiar with Warby Parker
- 2. What is the Quiz Funnel
- 3. A/B Testing with Home Try-On Funnel

1. Get familiar with Warby

Parker

Q1: reviewing survey table

The first question ask us to pull the first 10 rows from all columns and to identify all the columns in the table called **survey**. Using the query on the right, we see that there are three columns

- question
- user_id
- response
- An illustration of the first 4 rows is shown below

question	user_id	response		
1. What are you looking for?	005e7f99-d48c-4fce-b605- 10506c85aaf7	Women's Styles		
2. What's your fit?	005e7f99-d48c-4fce-b605- 10506c85aaf7	Medium		
3. Which shapes do you like?	00a556ed-f13e-4c67-8704- 27e3573684cd	Round		
4. Which colors do you like?	00a556ed-f13e-4c67-8704- 27e3573684cd	Two-Tone		

select *
from survey
limit 10;

2. What is the Quiz Funnel

Q2: identifying the number of responses for each survey question

The second question asks to find the number of responses for each survey question. Using the query on the right, we find the following number of responses for each question

question	num_responses				
1. What are you looking for?	500				
2. What's your fit?	475				
3. Which shapes do you like?	380				
4. Which colors do you like?	361				
5. When was your last eye exam?	270				

select question, count(distinct
user_id) as 'num_responses'
from survey
group by question;

Q3: calculating the completion rate for each survey question

The third question asks us to calculate the completion rate of each question (i.e. the number respondents who answered a question divided by the number of respondents who answered the previous question). We pull the data from the previous query into excel and calculate the completion rate accordingly.

The results indicate the question 4 &5 have the lowest completion rate. The lower completion may be due to the fact that respondents may not be sure of their favorite shape or when they had their last eye exam.

question	num_responses	completion rate		
1. What are you looking for?	500	100%		
2. What's your fit?	475	95%		
3. Which shapes do you like?	380	80%		
4. Which colors do you like?	361	95%		
5. When was your last eye exam?	270	75%		

3. A/B Testing with Home Try-On Funnel

Q4: reviewing the quiz, home_try_on, and purchase table

The fourth question asks us to pull all the column names from the following tables: **quiz, home_try_on, purchase**. Using the query on the right, we pull this information and present it below:

Quiz

- question
- user_id
- style
- Fit
- Shape
- Color

Home_try_on

- User id
- Number_of_pairs
- address

Purchase

- User id
- Product id
- Style
- Model name
- Color

select *
from quiz
limit 5;

select *
from home_try_on
limit 5;

select *
from purchase
limit 5;

Q5: combing all three tables to pull insights

The fifth question asks us to create a new table with the following columns: user_id, is_home_try_on, number_of_pairs, is_purchase

- If the user has any entries in home_try_on, then is_home_try_on will be 'True'.
- number_of_pairs comes from home_try_on table
- If the user has any entries in is_purchase, then is_purchase will be 'True' Using the query on the right, we pull the first 10 rows of the table. Below are the first 3 rows

user_id	is_home_try_on	number_of_pairs	is_purchase
4e8118dc-bb3d- 49bf-85fc- cca8d83232ac	1	3 pairs	0
291f1cca-e507- 48be-b063- 002b14906468	1	3 pairs	1
75122300-0736- 4087-b6d8- c0c5373a1a04	0		0

Q6: combing all three tables to pull insights

Finally, we run some analytics to understand how successful our trial program is in convincing people to buy a pair of glasses. Some of the analytics we ran are:

- How many guiz takers went on to participate in a a home try on trial?
- How many of those who participated in the trial went on to purchase a pair?
- Did having 3 vs 5 pairs to trial make a difference in the likelihood of purchase?
- Running the code shown on the right, we created a table in SQL that allowed us to answer the questions above (next slide)

```
with funnels as (
 select distinct q.user id, h.user id is not null as 'is home try on', h.number of pairs, p.user id is not null as 'is purchase',
  case
  when h.number of pairs = "3 pairs" then 1 else 0
  end as 'three pairs',
  case
  when h.number of pairs = "5 pairs" then 1 else 0
  end as 'five pairs',
  case
  when (h.number of pairs = "3 pairs" and p.user id is not null) then 1 else 0
  end as 'three pairs purchase',
  case
  when (h.number of pairs = "5 pairs" and p.user id is not null) then 1 else 0
  end as 'five pairs purchase'
from quiz q
left join home try on h on q.user id = h.user id
left join purchase p on p.user id = q.user id )
select count(distinct user id) as 'quiz takers', sum(is home try on) as 'num trial users',
1.0*sum(is home try on) / count (user id) as 'quiz to trial rate',
sum(is purchase) as 'num purchase',
1.0*sum(is purchase) / sum(is home try on) as 'trial to purchase',
sum(three pairs) as 'three pairs trial users',
sum(three pairs purchase) as 'three pairs purchase',
1.0*sum(three pairs purchase) / sum(three pairs) "three pair purchase rate",
sum(five pairs) as 'five pairs trial users',
sum(five pairs purchase) as 'five pairs purchase',
1.0 * sum(five pairs purchase) / sum(five pairs) as "five pairs purchase rate"
from funnels:
```

Q6: combing all three tables to pull insights

The table below provides key insights into our trial users

- Of the 1000 people that took our quiz, 750 (75%) went on to participate in our trial they were split into two groups: one group receiving three pairs (379) and the other receiving five pairs (371)
- Of those 750 that participated in the trial, 495 (66%) went on to purchase a pair of glasses those who trialed 5 pairs were more likely to purchase a pair of glasses (294/371 = 79%) than those who trialed three pairs (201/379 = 53%)
- Our recommendation is move forward with 5 pair trials as they appear to lead to a higher likelihood of an eventual purchase

Quiz_takers	num_trial_ users	quiz_to_tria l_rate	num_purch ase	trial_to_pur chase	three_pairs _trial_users	three_pairs _purchase	three_pair_ purchase_r ate	five_pairs_t rial_users	five_pairs_ purchase	five_pairs_ purchase_r ate
1000	0.75	75%	495	0.66	379	201	0.53	371	294	0.79