Grant Proposal Mark

Mark Rozanov

October 2019

1 Multithreading Cascade Algorithm for Protein Threading

1.1 Inputs:

- cryo-EM map of resolution 6 Åand better
- Sequences of all chains

1.2 Output:

Full atomic model - location and rotamer angles of all amino acids.

1.3 Preprocessing and Neural Networks

- AAnchor finds position, type and confidence of an amino acid in a cryo EM map
- $NextPos(Type_0, Type_1)$. Finds position (and confidence) of an amino acids of $Type_1$, given that the previous amino acid in chain is of $Type_0$. Number of pretrained deep networks for each pair $(Type_0, Type_1)$.
- DeepRot(Type) Finds rotamer angles for a given residue type, cryo-EM map , and C_{α} location.

1.4 Procedure (assume one big chain with amino acids $a_1 \dots a_M$)

Denote by:

- $B_{n,m}^k$ candidate location and folding of amino acids $a_n, a_{n+1}, \ldots, a_m$. k is a candidate number.
- $B_{n,m}^k = \{\overline{x}_n^k, \overline{x}_{n+1}^k, \overline{x}_m^k, \}$, where x_j^i is the *i*-st candidate for the position of the C_{α} of an amino acid number j.
- $P(B_{n,m}^k)$ probability of the path $B_{n,m}^k$

Initialize Path Calculate $B_{i,i}^k$ and $P(B_{i,i}^k)$ by running AAnchor.

Step For each k, candidate $B_{n,m}^k$ and $P(B_{n,m}^k)$, calculate $B_{n,m+1}^k$ and $P(B_{n,m+1}^k)$

- 1. Find 3D coordinates and probability of next amino acid $B_{m+1,m+1}^k = \{\overline{x}_{m+1}^k\}$, $P(B_{m+1,m+1}^k)$ using deep NN $NextPos(a_m,a_{m+1})$
- 2. Calculate folding energy of the new path $G(B_{n,m+1}^k)$ use Rosette Energy function
- 3. update probility: $P(B_{n,m+1}^k) = f(P(B_{n,m}^k), P(B_{m+1,m+1}^k), G(B_{n,m+1}^k))$

Branch If in the step there is more then one candidate from $NextPos(a_m, a_{m+1})$ initiate new path $B_{n,m+1}^{k+1}$

End Given two thresholds: P_{low} and P_{high} . For each path $B_{i,j}^k$ in the memory

- Delete $B_{i,j}^k$ if $P(B_{i,j}^k < P_{low})$
- Save local path $B_{i,j}^k$ if $P(B_{i,j}^k > P_{high})$

Refine

• Run DeepRot(Type) and obtain rotamer angles

1.5 Highlights

- We can achieve full modelling for resolutions up to 5 Å.
- While the results of $NextPos(a_m, a_{m+1})$ and AAnchor could be of low confidence, using multyhypothesis approach will enable high precision threading
- In calculation of propabilities $P(B_{n,m}^k)$ evolutionary, SSE and other data can be considered
- The precision of NNs : AAnchor, NextPos, DeepRot can be improved be retraining on homolog molecules with simulated cryo-EM maps