- ©Jan Schmidt 2011
 Katedra číslicového návrhu
 Fakulta informačních technologií
 České vysoké učení technické v Praze
- Zimní semestr 2013/14

DO VAŠÍ BUDOUCNOSTI

MI-PAA

7. Lokální metody

- Princip lokálních metod
- Stavový prostor (state space) a jeho graf
- · Strategie pohybu stavovým prostorem
- Prostor prohledávání (search space)
- Exaktní metody
- · Základní heuristické metody

Problém batohu

Jsou dána přirozená čísla n, M, c_1 , c_2 , ..., c_n , w_1 , w_2 , ..., w_n . Nalezněte čísla x_1 , x_2 , ..., x_n z množiny $\{0,1\}$ tak, aby

$$\sum_{j=1}^n x_j w_j \leq M \qquad \sum_{j=1}^n x_j c_j = \max.$$

Je dáno *n* věcí, *i*-tá věc má váhu *w_i* a cenu *c_i*, dále batoh s nosností *M*. Nalezněte takovou sestavu věcí v batohu, aby nebyl přetížen a cena věcí byla maximální.

Instance a konfigurace

instance n = 3, M = 6, $C = \{10, 20, 30\}$, $W = \{2, 3, 5\}$ všechny konfigurace

^ 1	~2	^3			* <i>[</i>
0	0	0	0	0	triviální
0	0	1	30	5	VV
0	1	0	20	3	V
0	1	1	50	8	
1	0	0	10	2	V
1	0	1	40	7	
1	1	0	30	5	VV
1	1	1	60	10	\(\)

řešení 🏏

optimální řešení

Dílčí instance při řešení instance problému batohu dynamickým programováním

instance n = 3, M = 6, $C = \{10, 20, 30\}$, $W = \{2, 3, 5\}$

Řešení zadané instance konstruujeme z řešení dílčích instancí

Princip globálních metod

Konfigurace instance problému batohu při řešení hladovým algoritmem

Věnujeme se jedné (aktuální) konfiguraci a vybíráme příští z jejích sousedů Princip lokálních metod

přidej věc 1
--- přidej věc 2
přidej věc 3

Stavový prostor (state space) a strategie pohybu v něm

- · Stavový prostor, graf
- Strategie pohybu stavovým prostorem
- Prostor prohledávání

Průchod hladovým algoritmem

Hodnocení konfigurací

Vlastnosti grafu

- Vloženou věc nelze vyjmout
- V grafu nelze zabloudit
- Následník každé konfigurace, pokud existuje, má větší celkovou váhu i cenu
- Následník každé nepřípustné konfigurace je nepřípustná konfigurace
- Odráží charakteristiky problému i <u>algoritmu</u>, který jej řeší

Stavový prostor state space

Typicky: učící se algoritmy

Definice: stav

Nechť $X = \{x_1, x_2, ..., x_n\}$ jsou konfigurační proměnné problému Π . Nechť $Z = \{z_1, z_2, ..., z_m\}$ jsou vnitřní proměnné algoritmu A řešícího instanci I problému Π . Pak každé ohodnocení s proměnných $X \cup Z$ je stav algoritmu A řešícího I.

Definice: stavový prostor

Nechť $S = \{s_i\}$ je množina všech stavů algoritmu A řešícího I. Nechť $Q = \{q_j\}$ je množina operátorů $S \rightarrow S$ takových, že $q_j(s_i) \neq s_i$ pro všechna s_i, q_j . Pak dvojici (S,Q) nazveme <u>stavovým prostorem</u> algoritmu A řešícího I.

Graf stavového prostoru

- Formální obrat, který dovolí přenést grafovou terminologii a algoritmy na stavový prostor
- Definice: akce alternativně: tah operace Nechť $s \in S$ je (jeden konkrétní) stav a $q \in Q$ operátor. Pak aplikace q na s se nazývá akce.
- Nechť (S,Q) je stavový prostor algoritmu řešícího instanci problému. Pak orientovaný graf H=(S, E), kde hrana (e_i , e_j) $\in E$ odpovídá akci s_j =q(s_i) pro q $\in Q$ se nazývá grafem stavového prostoru algoritmu.

Okolí stavu, sousední stav

kam se dostanu jedním krokem

- Definice:
 - okolí stavu $s \in S$ je množina stavů, dosažitelných z s aplikací některé operace $q \in Q$.
- Definice: kam se dostanu nejvýše k kroky
 k-okolí stavu s∈S je množina stavů, dosažitelných z s aplikací nejméně jedné

Definice:

a nejvýše k operací $q \in Q$.

stavy z okolí stavu $\underline{s \in S}$ se nazývají <u>sousední stavy</u> (sousedé) stavu \underline{s} .

Inverzní operátory

- · libovolnou vloženou věc lze vyjmout
- ·v grafu lze libovolně dlouho bloudit
- · o následníku daného stavu nelze nic říci

Výměny

Stavový prostor je nesouvislý a proto bez doplnění dalšími operátory neužitečný.

Problém obchodního cestujícího (TSP)

Dána množina n měst $C=\{c_1,c_2,...,c_n\}$. Pro každá dvě města c_i,c_j je dána vzdálenost $d(c_i,c_j)>0$. Nalezněte uzavřenou túru, která prochází každým městem právě jednou a má nejmenší délku.

Dán graf G=(V, E). Každá hrana (v_i, v_j) je ohodnocena vzdáleností $d(v_i, v_j)$. Nalezněte Hamiltonovu kružnici s minimálním součtem ohodnocení hran.

Stavový prostor TSP

- Konfigurace:
 obecně podgraf grafu G (v závislosti na algoritmu kružnice, H. kružnice, cesta...)
- Uzel stavového grafu = podgraf G
- Operátor: např. dvojzáměna na hranách

<u>Hrana stavového grafu = dvojzáměna nad G</u>

Stavový prostor TSP

Hrana stavového grafu

Uzel stavového grafu

Uzel stavového grafu

Stav nebo cesta?

- · Dosud probrané pojmy: úkolem je nalézt stav, který odpovídá (optimálnímu) řešení
- · Některé úlohy (zejména UI): úkolem je nalézt cestu ke stavu (např. robotická manipulace scény)
- Množina stavů je tedy množina posloupností akcí
- Operace nad stavem typu "přidej na konec"
- Graf stavového prostoru potom "vypadá stejně" jako graf možných manipulací

BI-GRA 11snímek 5

· Typický příklad této situace: Stavový prostor 8-problému

Strategie pohybu stavovým prostorem

- úplná, systematická
- do hloubky, do šířky, nejlepší nejdříve
- metoda větví a hranic (branch and bound)

nepřipadá Vám to povědomé?

Pohyb stavovým prostorem

- Aktuální stav, konfigurace příslušející aktuálnímu stavu
- Transformace aktuálního stavu pomocí operátorů (→pohyb)
- Transformace nutno řídit → → strategie prohledávání
- · Charakteristika algoritmu
 - stavový prostor
 - strategie prohledávání a ukončení
 - strategie prořezávání

Strategie

 Úplná strategie: navštívit všechny stavy kromě těch, o kterých víme, že nedávají (optimální) řešení

Do not leave any stone unturned, unless you are sure there is nothing under it (Pearl)

 Systematická strategie: úplná, navštívit každý stav nejvýše jednou

Do not turn any stone more than once (Pearl)

{počáteční stav} → open $\emptyset \rightarrow \mathsf{closed}$ $\emptyset \rightarrow \mathsf{best}$ open.empty() ano ne state=open.get() state ∈ closed? ano / state.solution() and state.better (best) ano state→best best= \emptyset ? $\forall q$ open.put (q (state)) ano closed.put (state) řešení

Typická systematická strategie

- open, closed: množiny stavů
- open: neprozkoumaní sousedé, o kterých víme
- closed: prozkoumané stavy
- best, state: stavy, Ø znamená "žádný stav"
- metoda better srovnává optimalizační kritéria; každý stav je lepší než Ø
- zajímá nás cena stavu, nikoli cesty k němu – na rozdíl od prohledávání uspořádaným výběrem

BI-GRA 11snímek 9

řešení je best

neexistuje

Sémantika

disciplína struktury open:

- fronta: do šířky
- zásobník: do hloubky (jako rekurzivní formulace)
- prioritní fronta: nejlepší

pořadí ovlivní průměrný čas

graf stavového prostoru je strom → není třeba closed

Vlastnosti systematických strategií

- Nejhorší případ roven hrubé síle
- · V případě neexistujícího řešení tento případ nastane
- · Naleznou řešení, existuje-li
- Naleznou optimální řešení

Prořezávání

ve stavu *s* není řešení a cena <30, stop této větvi ...proč?

111: není řešení, cena 60

110: je řešení, cena 30, stop této větvi, návrat

011: není řešení, cena 50>30, pokračuj

010: je řešení, cena 20<30, stop této větvi, návrat

Prořezávání

- Na základě
 - dosud dosažené hodnoty optimalizačního kritéria
 - splnění omezujících podmínek
 - znalostí optimalizačního kritéria a omezujících podmínek
- můžeme vyloučit (prořezat) určité oblasti stavového prostoru (větve hledání)
- Odhady dolní/horní meze optimalizačního kritéria mohou pocházet i z jiných metod

Lokální heuristické metody

$\{počáteční stav\} \rightarrow state$ $\emptyset \rightarrow \mathsf{best}$ Když struktura *open* má jen jednu položku state = \emptyset ? Liší se navzájem: stop ()? stavovým ne , ano prostorem $\cdot \Rightarrow \mathsf{okolim}$ state.solution() and výběrem z okolí state.better (best) zastavením ne ano state→best best= \emptyset ? ne ano state ← try (state) řešení řešení je neexistuje best nebo je neznáme

Metoda pouze nejlepší (best only)

try (state)

Metoda pouze nejlepší

- celá heuristika se zastaví, jestliže v nějakém stavu neexistuje zlepšující tah
- pokud better() používá jiné hodnocení než optimalizační kritérium, solution() může chybět
- jiné názvy: metoda nejrychlejšího sestupu/vzestupu, horolezecký algoritmus
- na pořadí prohledávání okolí nezáleží

Metoda prvé zlepšení (first improvement)

- celá heuristika se zastaví, jestliže v nějakém stavu neexistuje zlepšující tah
- pokud better() používá jiné hodnocení než optimalizační kritérium, solution() může chybět

Návrh heuristiky a jejího stavového prostoru

Okolí heuristik Kernighan-Lin

aplikuj opakovaně danou transformaci až do stop podmínky bez ohledu na optimalizační kritérium nebo heuristickou funkci

Prostor prohledávání (search space)

Postupné ohodnocování proměnných

Vztah ke stavovému prostoru

Pohyb v prohledávacím prostoru

- Typické strategie nebývají úplné, natož systematické
- Typický krok prohledávání:
 - vyber proměnnou
 - vyber hodnotu proměnné
- Prořezávání se vztahuje na oblast stavového prostoru
- Možnost odvolat nastavení proměnné (backtracking)

Příklad: problém diskrétního rozmístění a jeho heuristiky

A takhle se kdysi navrhovaly integrované obvody...

Problém diskrétního rozmístění

· Dáno:

- množina n modulů $K=\{k_1, ..., k_n\}$
- množina *m* pozic $P=\{p_1, ..., p_m\}, m \ge n$
- <mark>propojení</mark> modulů jako hypergraf *G (K, N*), kde *N* je množina spojů *n*
- cenová funkce W(R, n), která pro každé přiřazení $R: K \rightarrow P$ odhadne cenu realizace spoje n.

Nalézt:

- prosté přiřazení $R: K \rightarrow P$ (rozmístění), které minimalizuje součet ohodnocení W(R, n) přes všechny spoje.

Strategie

- Reprezentace *R*:
 - zobrazení R můžeme chápat jako
 - jednu proměnnou, s triviální hodnotou Ø, kterou měníme, až splní omezení (prosté zobrazení)
 - pro každý modul $k_i \in K$ jednu proměnnou r_i a jednu proměnnou z_i , která udává, zda r_i má platnou hodnotu (modul je rozmístěn)
 - pro každý modul k_i ∈ K jednu proměnnou r_i
 v prohledávacím prostoru

Strategie:

- na začátku není rozmístěno nic
- vybereme modul
- vybereme pro něj nejlepší pozici
- opakujeme, dokud nejsou rozmístěny všechny moduly

Algoritmus max konjunkce min disjunkce

- Nechť H (G, k₁, k₂) je heuristická funkce, která na základě grafu G odhadne stupeň vazby modulů k₁ a k₂.
- Nechť K+(R) označuje množinu modulů, které jsou právě rozmístěny (mají dvojici v R), K-(R) množinu právě nerozmístěných modulů.
- · Obdobně definujeme množinu obsazených pozic $P^+(R)$ a volných pozic $P^-(R)$.
- $R \leftarrow (k_i, p_j)$, buď ze zadání nebo pomocnou heuristikou.

Algoritmus max konjunkce min disjunkce

1. Vyber modul $k \in K^-(R)$ takový, že $\sum_{l \in K^+(R)} H(G, k, l) = \max.$

- max. přidrátovaný k rozmístěným modulům
- 2. Je-li jich více, vyber z nich modul k takový, že

$$\sum_{l \in K(R)} H(G, k, l) = \min.$$

min. přidrátovaný k nerozmístěným modulům

3. Najdi pozici $p \in P(R)$ takovou, že

$$\sum_{n} W(R \cup (k, p), n) = \min.$$

pozice pro nejlevnější dráty

kde suma je přes všechny spoje incidentní s k.

- 4. $R \leftarrow R \cup (k,p)$
- 5. Opakuj 1., dokud *K*⁻(*R*) není prázdná.

Okolí

- · Krok: dáme nerozmístěný prvek na volnou pozici.
- · Vezmeme $K^{-}(R)$, najdeme nejlepší prvek podle heuristické funkce.
- · Vezmeme P(R), najdeme nejlepší prvek podle optimalizačního kritéria.
- "Šidíme" tak hledání nejlepšího prvku (k,p)∈K⁻(R)×P(R) (nepotřebovali bychom heuristickou funkci!).

Stavový prostor je acyklický. Algoritmus se zastaví po n krocích.

Konstruktivní heuristika

- · Začali jsme ze (skoro) triviální konfigurace
- Dopracovali jsme se k řešení (konfiguraci, která vyhovuje omezením – zde prosté zobrazení R)
- → konstruktivní heuristika

Iterativní zlepšování

- 1. Najít pozice p_1 a p_2 takové, že vzájemným prohozením jejich "obsahu" (modul nebo nic) se nejvíce zlepší hodnota optimalizačního kritéria.
- 2. Není taková \Rightarrow stop.
- 3. Provést záměnu, opakovat 1.

Stavový prostor je acyklický (nemohu provést záměnu, která by nezlepšila optimalizační kritérium – nemohu se vrátit)

Okolí

- Vezmu P×P, najdeme nejlepší prvek podle optimalizačního kritéria
- · Můžeme to "šidit":
 - najdeme pozici p₁, která "toho má nejvíc zapotřebí" (heuristická funkce)
 - najdeme pozici p_2 , kde je zlepšení největší
- Jiná možnost: hledáme v P×P, ale spokojíme se s první záměnou, která zlepší optimalizační kritérium

Iterativní heuristika

- · Začali jsme z řešení
- · Dopracovali jsme se k lepšímu řešení
- → iterativní heuristika

Dvojfázové heuristiky

- Prvá fáze
 - konstruktivní
 - náhodná, více náhodných řešení (viz GSAT)
- Druhá fáze iterativní

Problém lokálních extrémů

Lokální minimum

hodnota optimalizačního kritéria

kroky iterativní heuristiky

Správný průběh iterativní heuristiky

hodnota optimalizačního kritéria

Uváznutí v lokálních minimech

hodnota optimalizačního kritéria

kroky iterativní heuristiky

Problém lokálních extrémů

- Heuristiky, které neřeší uváznutí v lokálním extrému (pouze nejlepší, první zlepšení a jim podobné) se zastaví v lokálním minimu
- Projev: závislost výsledného řešení na počátečním, tzv. nedostatečná iterační síla
- · Centrální problém lokálních heuristik

Řešení

- · Zvětšení okolí
- · Více náhodných počátečních řešení (GSAT)
 - odstranění následků, ne příčiny
 - závisí na možnosti generovat náhodná řešení
- Návraty
 - odvolání rozhodnutí, které vedly do slepé uličky
- Únik
 - kroky, které připustí zhoršení aktuálního stavu
 - nutnost dokonalejšího řízení algoritmu (bloudění)
 - nutnost řízení ochoty k horšímu řešení

Zvětšení okolí

k-okolí o *m* operátorech má *m*^k stavů!

Čemu teď rozumíme

Na čem jsou založeny lokální a globální metody

Z čeho se konstruuje stavový prostor

Jaké jeho vlastnosti jsou významné

Rozdíl mezi stavem algoritmu a stavem např. manipulované scény, rozdíly v pojetí termínu stav

Kostra systematických strategií pohybu stavovým prostorem

Rozdíl mezi stavovým prostorem a prostorem prohledávání

Čemu teď rozumíme

Jak ze systematické strategie můžeme odvodit heuristiku

Jak fungují metody "pouze nejlepší" a "prvé zlepšení"

Jak funguje heuristika Kernighan-Lin

Proč je problém uváznutí v lokálních minimech důležitý pro lokální heuristiky

Jak se tento problém projeví v práci heuristiky

Jaké jsou základní způsoby jeho potlačení

Jaké pojmy k tomu potřebujeme

stav

operátor, akce

stavový prostor

strategie prohledávání, prořezávání, ukončení

strategie úplná, systematická

prořezávání

prostor prohledávání

problém diskrétního rozmístění

formulace prostoru prohledávání