word2vec

Jay Alammar The Illustrated Word2vec

Word2Vec illustrated

● 성격 임베딩의 예제

Openness to experience 79	out	of	100
Agreeableness 75	out	of	100
Conscientiousness 42	out	of	100
Negative emotionality 50	out	of	100
Extraversion 58	out	of	100

• 내성적인지 외향적인지?

Extraversion

Introversion

● 내성적인지 외향적인지? (표준화)

Extraversion

Introversion

● 여러 특성이 있으면 벡터로 표시할 때 더 잘 표현할 수 있다.

● 벡터로 표시하면 비교하기 더 쉽다.

● 유사도를 구할 수 있다.

cosine_similarity(
$$\begin{bmatrix} Jay \\ -0.4 \end{bmatrix}$$
, $\begin{bmatrix} Jay \\ -0.3 \end{bmatrix}$, $\begin{bmatrix} Jay \\ -0.5 \end{bmatrix}$) = 0.87 $\begin{bmatrix} Jay \\ -0.5 \end{bmatrix}$

● 사람의 성격을 벡터로 표시할 수 있고, 유사도를 구할 수 있다.

1- We can represent things (and people) as vectors of numbers (Which is great for machines!)

Jay

-0.4 0.8 0.5 -0.2 0.3

We can easily calculate how similar vectors are to each other

The people most similar to Jay are:

cosine_similarity ▼

Person #1 0.86

Person #2 0.5

Person #3 -0.20

Word Embedding

- 사전학습된 word-vector 예 (word-embedding이라고도 불린다)
- 예를 들면 "king" (GloVe vector trained on Wikipedia)은 다음과 같이 표현된다.

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , - 0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , - 0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , - 1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

- 이는 50개의 숫자 리스트이다. 알아보기 힘들지만, 다른 단어벡터와 비교하기 위해 시각화할 수 있다.

Word Embedding

Word Embedding

Analogies

```
[('queen', 0.8523603677749634),
('throne', 0.7664333581924438),
('prince', 0.7592144012451172),
('daughter', 0.7473883032798767),
('elizabeth', 0.7460219860076904),
('princess', 0.7424570322036743),
('kingdom', 0.7337411642074585),
('monarch', 0.721449077129364),
('eldest', 0.7184862494468689),
('widow', 0.7099430561065674)]
     king — man + woman ~= queen
                 king
                  man
               woman
 king-man+woman
               queen
```

model.most similar(positive=["king", "woman"], negative=["man"])

● 다음 단어 예측(Next-word prediction)

input/feature #1

input/feature #2

output/label

Thou shalt

● 다음 단어 예측(Next-word prediction)

Thou shalt not make a machine in the likeness of a human mind

Sliding window across running text

thou	shalt	not	make	а	machine	in	the	
tilou	Silait	1101	manc	а	macmin	""	uic	

input 1	input 2	output

● 다음 단어 예측(Next-word prediction)

Thou shalt not make a machine in the likeness of a human mind

Sliding window across running text

thou	shalt	not	make	а	machine	in	the	
------	-------	-----	------	---	---------	----	-----	--

input 1	input 2	output
thou	shalt	not

● 다음 단어 예측(Next-word prediction)

Thou shalt not make a machine in the likeness of a human mind

Sliding window across running text

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

input 1	input 2	output
thou	shalt	not
shalt	not	make

● 다음 단어 예측(Next-word prediction)

Thou shalt not make a machine in the likeness of a human mind

Sliding window across running text

					_

thou shalt make machine the not а in shalt make machine thou not in the а thou shalt make machine not in the shalt thou make machine the not in shalt make machine thou in the not

input 1	input 2	output
thou	shalt	not
shalt	not	make
not	make	а
make	а	machine
а	machine	in

● 양방향으로 볼 필요가 있다. (Look both ways)

Jay was hit by a _____

Jay was hit by a _____ bus

● 양방향으로 볼 필요가 있다. (Look both ways)

●연속 단어주머니 (CBOW: Continuous Bag of Words) :이전 두 단어만 보는 것이 아니라 다음 두 단어도 본다.

Jay was hit by a _____ bus in...

● 스킵 그램 학습 Skip gram

Thou shalt not make a machine in the likeness of a human mind

input word	target word

● 스킵 그램 학습 Skip gram

Thou shalt not make a machine in the likeness of a human mind

input word	target word
not	thou
not	shalt
not	make
not	а

● 스킵 그램 학습 Skip gram

Thou shalt not make a machine h the likeness of a human mind

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

input word	target word		
not	thou		
not	shalt		
not	make		
not	а		
make	shalt		
make	not		
make	а		
make	machine		

● 스킵 그램 학습 Skip gram

Thou shalt not make a machine in the likeness of a human mind

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

input word	target word		
not	thou		
not	shalt		
not	make		
not	a		
make	shalt		
make	not		
make	a		
make	machine		
a	not		
a	make		
a	machine		
a	in		
machine	make		
machine	a		
machine	in		
machine	the		
in	a		
in	machine		
in	the		
in	likeness		

학습 프로세스

● 스킵 그램 학습 Skip gram

input word	target word			
not	thou			
not	shalt			
not	make			
not	a			
make	shalt			
make	not			
make	a			
make	machine			
а	not			
a	make			
а	machine			
a	in			
machine	make			
machine	a			
machine	in			
machine	the			
in	а			
in	machine			
in	the			
in	likeness			

학습 프로세스

학습 프로세스

Actual Target

O

0

0

. . .

0

1

...

0

Model Prediction

0 aardvark

0

aarhus

0.001

aaron

. . .

0.4

taco

0.001

thou

...

0.0001

zyzzyva

학습 프로세스

Actual Target

0

0

0

...

0

1

...

0

Model Prediction

0 aardvark

0 aarhus

0.001 aaron

0.4 taco

0.001 thou

...

. . .

0.0001 zyzzyva

Error

0

0

-0.001

...

-0.4

0.999

. .

-0.0001

학습 프로세스

● 단어집의 모든 단어에 대해서 오차를 계산해야 하는 이 방식은 계산비용이 큼

1) Look up embeddings

2) Calculate prediction

3) Project to output vocabulary

[Computationally Intensive]

● 작업을 좀 바꿔보자: 신경망 -> 로지스틱 회귀로

Change Task from

● 작업을 좀 바꿔보자: 신경망 -> 로지스틱 회귀로

To:

• 이웃에 있는 단어에 대해서 1

input word	target word
not	thou
not	shalt
not	make
not	а
make	shalt
make	not
make	а
make	machine

input word	output word	target
not	thou	1
not	shalt	1
not	make	1
not	а	1
make	shalt	1
make	not	1
make	а	1
make	machine	1

● 이웃이 아닌 단어에 대해서 0를 할당

input word	output word	target
not	thou	1
not		0
not		0
not	shalt	1
not	make	1

Negative examples

- 이웃이 아닌 단어에 대해서 0를 할당
- 이웃이 아닌 단어를 단어집에서 랜덤추출

Pick randomly from vocabulary (random sampling)

부정 샘플링 (Negative Sampling) Skipgram (SGNS)

● 부정 샘플링 + 스킵그램

Skipgram

shalt	not	make		а	machine
input				out	out
make			shalt		
	make		not		ot
	make		а		l
make			macl	nine	

Negative Sampling

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

● 2개의 임베딩 행렬을 생성한다. embedding_size는 일반적으로 300

• 시작은 랜덤넘버로 시작

dataset

input word output word target thou not not aaron 0 taco not shalt not 0 not mango finglonger 0 not make not plumbus 0 not . . .

model

● 임베딩 행렬에서 입력단어 1개, 콘텍스트 행렬에서 타겟단어 3개 추출

● 유사도를 측정하기 위해 점곱을 계산 (코사인유사도를 상기하라.)

input word output word		target	input • output
not	thou	1	0.2
not	aaron	0	-1.11
not	taco	0	0.74

- 유사도 결과에 시그모이드를 적용해 확률을 계산하고, 다음 오차를 계산한다.
- 오차는 타겟 시그모이드이다.

input word	output word	target	input • output	sigmoid()
not	thou	1	0.2	0.55
not	aaron	0	-1.11	0.25
not	taco	0	0.74	0.68

● 오차를 최소화하기 위해 선택된 단어들의 임베딩을 조정한다.

input word	output word	target	input • output	sigmoid()	Error
not	thou	1	0.2	0.55	0.45
not	aaron	0	-1.11	0.25	-0.25
not	taco	0	0.74	0.68	-0.68

● 다음 단어셋(not shalt mango, finglonger)에 대해서 이 프로세스를 반복한다.

dataset model

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0

윈도우 크기와 부정 샘플링 갯수

- 중요한 하이퍼 파라미터가 윈도우크기와 부정 샘플링 갯수이다.
- 윈도우 크기 (5-15) 15-50도 사용하지만, 젠심은 5을 기본으로 한다.
 윈도우 크기가 작으면 인접 단어가 교환가능한 단어(동의어 뿐 아니라 반대말도) 찾게 되며, 큰 윈도우는 관련언어를 찾게 된다.

Window size: 5

Window size: 15

위도우 크기와 부정 샘플링 갯수

● 부정 샘플링 갯수 (5-20) 하지만 2-5도 나쁘지 않으며 Gensim은 5를 기본으로 한다.

Negative samples: 2

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0

Negative samples: 5

input word	output word	target
make	shalt	1
make	aaron	0
make	taco	0
make	finglonger	0
make	plumbus	0
make	mango	0

참고문헌

- Distributed Representations of Words and Phrases and their Compositionality [pdf]
- Efficient Estimation of Word Representations in Vector Space [pdf]
- A Neural Probabilistic Language Model [pdf]
- •Speech and Language Processing by Dan Jurafsky and James H. Martin is a leading resource for NLP. Word2vec is tackled in Chapter 6.
- •Neural Network Methods in Natural Language Processing by Yoav Goldberg is a great read for neural NLP topics.
- •<u>Chris McCormick</u> has written some great blog posts about Word2vec. He also just released <u>The Inner Workings of word2vec</u>, an E-book focused on the internals of word2vec.
- •Want to read the code? Here are two options:
 - Gensim's <u>python implementation</u> of word2vec
 - Mikolov's original <u>implementation in C</u> better yet, this <u>version with detailed comments</u> from Chris McCormick.
- •Evaluating distributional models of compositional semantics
- On word embeddings, part 2
- •Dune