A comparative study of the corporate environmental impacts of the six representative countries of six continents

 $https://github.com/yw448/QiuWangXu_ENV872_EDA_FinalProject.git$

Ina, Qiu, Lehe, Xu, Yunting, Wang

Contents

1	Rationale and Research Questions	5
2	Dataset Information	6
3	Exploratory Analysis	7
4	Analysis 4.1 Question 1: <is any="" better="" countries="" off="" others?="" than="" there=""></is>	10 12 12
5	Summary and Conclusions	14
6	References	15

List of Tables

1	Raw Data Structure	6
2	Data Exploration of Six Countries	7

List of Figures

1	Company Environmental Impact Intensity Comparison	8
2	Company Environmental Impact Intensity Comparison	9
3	2019 Average Company Environmental Impact Intensity	13

1 Rationale and Research Questions

As ESG performance became more and more important for investors to measure a corporation's competitiveness, evaluating environmental impacts of companies becomes an essential topic. Therefore, Harvard Business School developed a methodology to monetize corporations' environmental impacts. With the monetized impacts, we can measure the overall environmental impacts of the corporations in a country.

Due to the different stages countries are in their industrial transition path, different countries' corporations have different environmental intensity. Therefore, by comparing the environmental intensity of the representative countries in six continents, we can see which country's corporations took the leading position in their way of industrial transition. Since each country is the representative of its continent, we can have an overview of the industrial transition status of the world. The environmental intensity disparities of countries is also a reminder for the laggards to perform better in the future.

Key Questions: Is there any countries better off than others 2019? Which countries are better-off than others in 2019?

2 Dataset Information

1. Dataset Information

The dataset we choose is from Harvard Business School's study of corporate environmental impact. They develop a methodology to estimate monetized environmental impact by "applying characterization pathways and monetization factors to organization level environmental outputs, including carbon emissions, water use, and other emission types". Their monetization factors are from "the Environmental Priority Strategies (EPS) Database, Available WAter REmaining (AWARE) Model, and Waterfund, along with organization level data of environmental outputs, such as carbon emissions, nitrous oxide, sulfur oxide, VOC, PM 2.5, and water withdrawal and discharge, sourced from Bloomberg and Thomson Reuters".

The monetized dataset includes Year, Company Name, Country, Industry, Environmental Intensity (Sales), Environmental Intensity (Op Inc), Total Environmental Cost, Capacity for each means of production, and the monetized impact on each selected SDG goal. A total of 14516 rows are in the dataset. The factor-environmental intensity (Sales) is the scaled calculations for total organizational environmental impact by sales as a proxy for organization size. The monetized damage to the environment is minus, whereas the monetized benefits to the environment is plus. The most recent year of data is 2019.

Table 1: Raw Data Structure

Year	Company Name	Country	Industry (Exiobase)	Environmental Intensity (Sales)
Min. :2010	Length:14515	Japan :2401	Length:14515	Min. :-1.99279
1st Qu.:201	Class 3 :character	United States :2397	Class :character	1st Qu.:-0.09345
Median :2015		United Kingdom:1691	Mode :character	Median: -0.02033
Mean :2015	NA	Taiwan :1024	NA	Mean :-0.11301
3rd Qu.:201	NA 7	Australia : 584	NA	3rd Qu.:-0.00679
Max. :2019	NA	France: 565	NA	Max.: 1.90360
NA	NA	(Other) :5853	NA	NA

3 Exploratory Analysis

2. Data Wrangling Our key research question is to compare the corporate environmental impacts of the six representative countries of six continents in 2019, because the data of 2019 is the most recent data we have. The six representative countries are chosen for the countries with the most environmental impacts data in their continents. Finally, the US, UK, Japan, Australia, Mexico, and South Africa, these six countries was selected.

The main effect variable we want to discuss is "Environmental Intensity (Sales)", so we deleted all the irrelevant variables, and only left "Year", "Company", "Country", and "Environmental Intensity (Sales)"-these four columns.

To make the graph easier to read, we multiplied "Environmental Intensity (Sales)" by "-1", so that the larger the number is, the larger negative impacts the environment are suffered.

3. Data Exploration

[1] 7793 4

Table 2: Data Exploration of Six Countries

Year	Company	Country	Index
2017:895	3M COMPANY : 10	Japan :2401	Min. :-1.390194
2016:888	ABSA GROUP LTD: 10	United States :2397	1st Qu.: 0.006238
2018:830	ADELAIDE BRIGHTON	United	Median:
	LIMITED: 10	Kingdom:1691	0.017521
2019:815	ADVANTEST	Australia: 584	Mean: 0.107617
	CORPORATION: 10		
2015:804	AEON MALL COMPANY	South Africa: 527	3rd Qu.:
	LIMITED: 10		0.074098
2014:795	AGC INC: 10	Mexico: 193	Max. : 1.992787
(Other):2766	(Other):7733	(Other): 0	NA

Figure 1: Company Environmental Impact Intensity Comparison

Figure 2: Company Environmental Impact Intensity Comparison

4 Analysis

```
##
   Shapiro-Wilk normality test
##
##
## data: Year2019$Index[Year2019$Country == "Australia"]
## W = 0.5764, p-value = 6.644e-13
##
   Shapiro-Wilk normality test
##
##
## data: Year2019$Index[Year2019$Country == "Japan"]
## W = 0.42944, p-value < 2.2e-16
##
   Shapiro-Wilk normality test
##
##
## data: Year2019$Index[Year2019$Country == "South Africa"]
## W = 0.56954, p-value = 4.133e-11
##
##
   Shapiro-Wilk normality test
##
## data: Year2019$Index[Year2019$Country == "United Kingdom"]
## W = 0.45052, p-value < 2.2e-16
##
##
   Shapiro-Wilk normality test
##
## data: Year2019$Index[Year2019$Country == "United States"]
## W = 0.60069, p-value < 2.2e-16
##
   Shapiro-Wilk normality test
##
##
## data: Year2019$Index[Year2019$Country == "Mexico"]
## W = 0.52411, p-value = 2.986e-08
```

Normal Q-Q Plot


```
##
  Bartlett test of homogeneity of variances
##
## data: Year2019$Index by Year2019$Country
## Bartlett's K-squared = 213.26, df = 5, p-value < 2.2e-16
               Df Sum Sq Mean Sq F value Pr(>F)
##
## Country
                5
                    2.79 0.5578
                                   7.373 9e-07 ***
## Residuals
              809 61.21 0.0757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## $statistics
##
       MSerror Df
                        Mean
    0.07565801 809 0.1153906 238.373
##
##
## $parameters
##
     test name.t ntr StudentizedRange alpha
    Tukey Country
                    6
                              4.039786 0.05
##
##
## $means
##
                      Index
                                  std
                                        r
                                                   Min
                                                             Max
```

Q25

```
## Australia
                  0.19612327 0.3483305 70 -0.001497662 1.5583389 0.014773036
                  0.07270127 0.1741734 234 -0.143046024 1.7091834 0.007539765
## Japan
## Mexico
                  0.13254267 0.2769682 27 -0.024868665 1.1622471 0.004186873
## South Africa
                  0.20834417 0.3903786 52 0.001405651 1.8321458 0.016665110
## United Kingdom 0.04403163 0.1576510 178 -1.207315335 0.8622585 0.002090376
## United States 0.16162368 0.3534198 254 -1.350964518 1.6380528 0.007599951
                          Q50
                                     Q75
## Australia
                  0.068164944 0.17916116
## Japan
                  0.016284642 0.04954285
## Mexico
                  0.033507035 0.11986662
## South Africa
                  0.038476424 0.16808371
## United Kingdom 0.007530084 0.02637540
## United States 0.024853952 0.13522728
##
## $comparison
## NULL
##
## $groups
##
                       Index groups
## South Africa
                  0.20834417
                                  а
## Australia
                  0.19612327
## United States 0.16162368
                                  а
## Mexico
                  0.13254267
                                 ab
## Japan
                  0.07270127
                                  b
## United Kingdom 0.04403163
                                  b
## attr(,"class")
## [1] "group"
```

- 4.1 Question 1: <Is there any countries better off than others? >
- 4.2 Question 2: <Which countries are better-off than others?>

Figure 3: 2019 Average Company Environmental Impact Intensity

5 Summary and Conclusions

`summarise()` has grouped output by 'industry'. You can override using the
`.groups` argument.

6 References

< Freiberg, et. al. 2020, Corporate Environmental Impact: Measurement, Data, and Information, Harvard Business School, Impact-Weighted Accounts Project Research Report. Retrieved from: https://www.hbs.edu/impact-weighted-accounts/Documents/corporate-environmental-impact.pdf>