Math 453 Abstract Algebra sample 2 with solutions to some problems

Groups

- 1. Show that if $f: G \to H$ is a surjective homomorphism and $K \triangleleft G$ then $f(K) \triangleleft H$.
- 2. Show that intersection $H_1 \cap H_2$ of two subgroups $H_1, H_2 \leq G$. Show that if $H_1 \triangleleft G$ then $H_1 \cap H_2 \triangleleft H_2$.
- 3. If r is a divisor of m and s is a divisor of n, find a subgroup of $\mathbb{Z}_m \oplus \mathbb{Z}_n$ that is isomorphic to $\mathbb{Z}_r \oplus \mathbb{Z}_s$.
- 4. (a) Prove that $\mathbb{R} \oplus \mathbb{R}$ under addition in each component is isomorphic to \mathbb{C} .
 - (b) Prove that $\mathbb{R}^* \oplus \mathbb{R}^*$ under multiplication in each component is not isomorphic to \mathbb{C}^* .
 - (c) Show that there is no isomorphism from $\mathbb{Z}_8 \oplus \mathbb{Z}_2 \to Z_4 \oplus Z_4$.
 - Soln: (a) $\phi : \mathbb{R} \oplus \mathbb{R} \to \mathbb{C}$, $\phi(a,b) \to a+ib$ is an isomorphism. For, $\phi((a,b)+(a',b')) = a+a'+i(b+b') = \phi((a,b)+\phi(a',b'))$ ϕ is bijective: the inverse $\phi^{-1} : \mathbb{C} \to \mathbb{R} \oplus \mathbb{R}$ is given by $\phi^{-1}(a+ib) = (a,b)$.
 - (b) If $a \in \mathbb{R}^*$ then the order of a is infinite if the absolute value $|a| \neq 1$ and if a = -1 the order is 2 and if a = 1 the order is 1. Then the order of (a, b) is the lcm of the orders |a|, |b|. Thus it can be 1, 2 on ∞ . On the other hand \mathbb{C}^* contains the element i of order 4. Thus the groups $\mathbb{R}^* \oplus \mathbb{R}^*$ and \mathbb{C}^* are not isomorphic.
 - (c) Similarly as before $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ contain an element of order 8, and $Z_4 \oplus Z_4$ does not..
- 5. Prove that if $H \leq G$ and |G:H| = 2, then H is normal.

Soln: G is a union of its disjoint left cosets and right cosets. If $g \notin H$ then : $G = H \cup gH = H \cup Hg$. Thus $gH = G \setminus H = Hg$. If $g \in H$ then gH = Hg. In any case gH = Hg for $g \in G$. Thus H is normal in G.

- 6. Let $G = \mathbb{Z}_4 \oplus \mathbb{Z}_2$, $H = \langle (2,1) \rangle$ and $K = \langle (2,0) \rangle$. Show that G/H is not isomorphic to G/K. Soln: The group G/H contains 4 = 8/2 elements. Moreover $G/H = \{H, (1,0) + H, (2,0) + H, (3,0) + H\}$ is cyclic generated by (1,0) + H of order 4. Similarly the group G/K contains 4 = 8/2 elements. But $G/K = \{K, (1,0) + K, (0,1) + K, (1,1) + K\}$, with all nonzero elements having order 2. Thus the groups are not isomorphic.
- 7. Let G be a finite group, and H be a normal subgroup of G.
 - (a) Show that the order of aH in G/H must divide the order of a in G.
 - (b) Show that it is possible that aH = bH, but $|a| \neq |b|$.
 - Soln: (a) Let |a| = n then $a^n = e$, and $(aH)^n = a^nH = H$. Thus the order of aH divides n = |a|.

- (b) If $a \in H$ and $a \neq e$ then $|a| \neq 1 = |e|$, but the order aH = H is the same as the order of eH = H.
- 8. Suppose that $N \triangleleft G$ and |G/N| = m, show that $x^m \in N$ for all $x \in G$. Soln: The order of $xN \in G/N$ divides |G/N| = m, and thus $(xN)^m = x^mN = eN = N$. The latter implies that $x^m \in N$.
- 9. For each pair of positive integer m and n, show that the map ϕ from $\mathbb{Z} \to \mathbb{Z}_m \oplus \mathbb{Z}_n$ defined by $x \mapsto (x \mod m, x \mod n)$ is a homorphism. Find its kernel. Soln:

 $\phi(x+y) = (x+y \bmod m, x+y \bmod n) = (x \bmod m, x \bmod n) + (y \bmod m, y \bmod n) = \phi(x) + \phi(y)$

If $x \in \mathbb{Z}$ is in the kernel of ϕ iff $x \mod m = 0$, $x \mod n = 0$ iff m divides x and n divides x. The latter is equivalent the fact that x is a multiple of lcm(m,n). Thus $Ker(\phi) = lcm(m,n) \cdot \mathbb{Z}$.

which shows that ϕ is a homomoerphism.

10. How many (group) homomorphisms are there from \mathbb{Z}_{20} onto (surjective to) \mathbb{Z}_8 . How many are there to \mathbb{Z}_8 ? Soln: If $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_8$ is onto then there is $a \in \mathbb{Z}_{20}$, such that $\phi(a) = 1 \in \mathbb{Z}_8$. This implies that the order $|\phi(a)|$ is 8 and divides order of a. But the order of a divides 20. This implies 8 divides 20, which is a contradiction. There is no homomorphism from \mathbb{Z}_{20} onto \mathbb{Z}_8 .

If $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_8$ is a homomorphism then the order of $\phi(1)$ divides gcd(8,20) = 4 so $\phi(1)$ is in a unique subgroup of order 4 which is $2\mathbb{Z}_8$. Thus possible homomorphisms are of the form $x \to 2i \cdot x$ where i = 0, 1, 2, 3. One can easily see (please check) that all the functions define homomorphisms, and thus there are 4 homomorphisms.

- 11. Prove that $\phi: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ by $\phi(a,b) = a b$ is a homomorphism. Determine the kernel. Soln: $\phi((a,b)+(a',b')) = a+a'-(b+b') = \phi(a,b)+\phi(a',b')$, and thus ϕ is a homomorphism. The kernel of ϕ is given by $\{(a,b) \mid \phi(a,b) = 0\} = \{(a,b) \mid a-b=0\} = \{(a,a) \mid a \in \mathbb{Z}\}$.
- 12. (a) Let G be the group of nonzero real numbers under multiplication. Suppose r is a positive integer. Show that $x \mapsto x^r$ is a homomorphism. Determine the kernel, and determine r so that the map is an isomorphism.
 - (b) Let G be the group of polynomial in x with real coefficients. Define the map $p(x) \mapsto P(x) = \int p(x)$ such that P(0) = 0. Show that f is an homomorphism, and determine its kernel.

Soln: (a) $\phi_r(xy) = (xy)^r = x^r y^r = \phi_r(x)\phi_r(y)$, and thus ϕ is a homomorphism.

$$Ker(\phi_r) = \{x \mid \phi_r(x) = 1\} = \{x \mid x^r = 1\}$$

The equation $x^r = 1$ has one solution x = 1 if r is odd, and two solns x = 1 or x = -1 if $r \neq 0$ is even. Finally If r = 0 the $x^r = 1$ for all $x \in \mathbb{Z}$. Consequently $Ker(\phi_r) = 1$ is trivial if r is odd $Ker(\phi_r) = \{-1, 1\}$ if $r \neq 0$ is even, and $Ker(\phi_r) = \mathbb{Z}$ if r = 0. Also if r is odd then ϕ_r is bijective with inverse given by $x \mapsto \sqrt[r]{x}$. This implies that ϕ_r is an isomorphism if r is odd.

(b) $p(x) \mapsto P(x) = \int p(x)$ such that P(0) = 0, and $p_1(x) \mapsto P_1(x) = \int p_1(x)$ such that $P_1(0) = 0$. $p(x) + p_1(x) \mapsto \overline{P(x)} = \int (p(x) + p_1(x))$ such that $\overline{P}(0) = 0$. Then we have equality (up to constant) of the indefinite integrals $\overline{P(x)} + c = \int (p(x) + p_1(x)) = \int p(x) + \int p_1(x) = P(x) + P_1(x)$. But $\overline{P(0)} + c = 0 + c = P(0) + P_1(0) = 0 + 0$ which implies c = 0 and $\overline{P(x)} = P(x) + P_1(x)$. The latter means that $p(x) \mapsto P(x)$ is a homomorphism.

If p(x) is in the kernel of the given homomorphism then P(x) = 0, and consequently p(x) = P'(x) = 0. This implies that the kernel is trivial.

- 13. (a) Determine all (group) homomorphisms from \mathbb{Z}_n to itself
 - (b) Determine all (group) homomorphisms from \mathbb{Z}_{30} to itself with kernel $3\mathbb{Z}_{30}$.

Soln: (a) Let $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ be a homorphism. Denote $a := \phi(1) \in \mathbb{Z}_n$. Then the homomorphism ϕ is given by $\phi(x) = ax$. Conversely (please check) for any $a \in \mathbb{Z}_n$ the function $x \mapsto ax$ defines a homomorphism,

(b) Let $\phi: \mathbb{Z}_{30} \to \mathbb{Z}_{30}$ be a homomorphism, $\phi(x) = ax$. If $3\mathbb{Z}_{30} \subset Ker(\phi)$ then $\phi(3) = 3a = 0 \in \mathbb{Z}_{30}$. Thus 30|3a, and 10|a. This means a = 10, 20, 0.

If a = 0 then $Ker(\phi) = \mathbb{Z}_{30}$.

If a = 10, then $x \in Ker(\phi)$ iff 30|ax iff 3|x iff $x \in 3\mathbb{Z}_{30}$.

If a = 20, then $x \in Ker(\phi)$ iff 30|20x iff 3|2x iff 3|x iff $x \in 3\mathbb{Z}_{30}$.

Thus if a = 10, 20 then $Ker(\phi) = 3\mathbb{Z}_{30}$.

Rings

- 14. Find all the ring homomorphisms: a) $\mathbb{Z}_5 \to \mathbb{Z}_{10}$, b) $\mathbb{Z}_{10} \to \mathbb{Z}_{10}$.
- 15. Let R be a ring.
 - (a) Suppose $a \in R$. Shown that $S = \{x \in R : ax = xa\}$ is a subring.
 - (b) Show that the center of R defined by $Z(R) = \{x \in R : ax = xa \text{ for all } a \in R\}$ is a subring.
- 16. Let R be a ring.
 - (a) Prove that R is commutative if and only if $a^2 b^2 = (a + b)(a b)$ for all $a, b \in R$.
 - (b) Prove that R is commutative if $a^2 = a$ for all $a \in R$.
- 17. Show that every nonzero element of \mathbb{Z}_n is a unit (element with multiplicative inverse) or a zero-divisor.
- 18. Find the characteristic of $Z_n \oplus Z_m$.
- 19. An element a of a ring R is nilpotent if $a^n = 0$ for some $n \in \mathbb{N}$.
 - (a) Show that if a and b are nilpotent elements of a commutative ring, then a + b is also nilpotent.
 - (b) Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution of $x^2 = 0$ in R.
 - (c) Show that the set of all nilpotent elements of a communitative ring is an ideal.
- 20. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be a ring homomorphism such that $\phi(R) \neq \{0'\}$.
 - (a) Show that if R_1 has unity and R_2 has no zero-divisors, then $\phi(1)$ is a unity of R_2 .
 - (b) Show that the conclusion in (a) may fail if R_2 has zero-divisors.
- 21. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be a ring homomorphism.
 - (a) Show that if A is an ideal of R_1 , then $\phi(A)$ is an ideal of $\phi(R_1)$.
 - (b) Give an example to show that $\phi(A)$ may not be an ideal of R_2 .
 - (c) Show that if B is an ideal of R_2 , then $\phi^{-1}(B)$ is an ideal of R_1 .
- 22. Let D be an integral domain.

Show that a nonconstant polynomial in D[x] has no multiplicative inverse.

- 23. Solve the equations in Z_7 : (a) $x^2 = 2$, (b) 3x = 4
- 24. Show that $I = \{a_0 + \cdots + a_n x^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n = 0\}$ is an ideal. Show that $A = \{a_0 + \cdots + a_n x^n : a_i \in \mathbb{Q}, a_0 + \cdots + a_n \in \mathbb{Z}\}$ is an subring of $\mathbb{Q}[x]$.