Task-based optimization of 3D breast x-ray imaging using mathematical observers

Zhijin LI 06 Oct 2017

Thesis advisors

Agnès Desolneux

Ann-Katherine Carton

CNRS, CMLA - ENS Paris Saclay
GE Healthcare France

X-ray breast imaging

Key x-ray imaging modalities for breast cancer detection & diagnosis

Thesis → focus on 3D
Clinical performance assessment of 3D DBT vs 2D FFDM

Virtual clinical trials (VCT)

Clinical Trials

PATIENT IMAGING SYSTEM RADIOLOGIST

CLINICAL PROTOCOL

FASTER

- Image acquisition
- Image review
- Ground truth

COST SAVING

- No patient recruitment
- No radiologists involved
- No patient monitoring
- No legal contracts

MORE ACCURATE

 Full knowledge of breast model & pathology

Thesis objectives

µcalc detection performance assessment in 3D DBT vs 2D FFDM & S2D using VCT

Development & validation of VCT tools

- A new 3D mathematical breast texture model
- A new 3D a contrario observer for µcalc detection

Models for x-ray breast image simulation

State-of-the-art approaches

3D mathematical random field breast texture models

Power-law Gaussian random field

$$S(f)(\nu) \propto 1/|\nu|^{\beta}$$

 Clustered lumpy background (shot-noise random field)

$$f(x) = \sum_{i} g(x - y_i; m_i)$$

st

Anthropomorphic breast phantoms

Model-based

Empirical data-based

Hybrid

3D Random field breast textures

3D power-law Gaussian random field

Volume slice

Projection

 $3.5 \times 3.5 \text{ cm}^2$

3D clustered lumpy background

Clinical images

Characteristics

Mathematical traceability
Some statistics match clinical images

Visual realism

Morphological variability vs clinical images

Antropomorphic breast phantoms

Characteristics

- Visual realism

Morphological variability vs clinical images

Mathematical traceability

GOAL

Develop a new 3D breast texture model that shares the advantages of random field textures & anthropomorphic breast phantoms

Input: clinical breast CT data

Re-projection of segmented breast CT (bCT) data

Idea: model tissue morphology & distribution as in bCT

Medium scale

Intra-glandular adipose compartments → Random ellipsoids

Small scale

Adipose compartments boundary irregularity → Voronoi diagram

3D breast texture sampling algorithm

Simulation results

- Empirically determined parameters
- Simulated using a calibrated virtual x-ray imaging simulator (no compression)

Simulation results

ROI size: 3.5 cm x 3.5 cm

Simulation results: micro-textures

Without Voronoi cells (similar to Mahr et al.)

ROI size: 2 cm x 2 cm

Simulation results: micro-textures

With Voronoi cells (our model)

ROI size: 2 cm x 2 cm

Psycho-visual validation of model realism

Two-alternative forced choice experiment

- Darkened room
- ≈ 40cm observer-to-image distance
- Display with 100% images resolution

Task
Image on the right: from clinical bCT?

→ Yes OR No

Psychophysical validation of model realism

Experimental result

Percentage of correct answers (0.5 = observer random guess)

- Almost entirely adipose breast images
 - √ Fairly realistic
- « Block artifacts » mostly in dense images

Statistical inference of model parameters

GOAL

Objectively infer medium scale model parameters from segmented clinical bCT volumes of interest

Clinical segmented bCT volumes of interests (VOIs) w/ diff. density

Medium scale parameters

Seed point process

Ellipsoid parameters

Problem statement

Medium scale model as a marked point process (MPP)

$$Y = \{\Phi_s, \theta\}$$

- Φ_s : ellipsoid centers point process $\sim P_s$.
- θ : ellipsoid parameters (marks) $\sim \mathbf{P}_{\theta}$.

Input bCT VOIs: binary volume

$$D(x) = \begin{cases} 1, & \text{if } x \in \text{fibroglandular} \\ 0, & \text{if } x \in \text{adipose} \end{cases}$$

✓ Focus on medium scale: 3.5 x 3.5 x 3.5 cm³

Inference is ill-posed⊗ Ellipsoid centers NOT observable

OR

Classical MPP parameter inference approach

Minimum contrast estimator

$$\hat{\boldsymbol{\Theta}} = \operatorname{argmin}_{\boldsymbol{\Theta}} \mathcal{C}(\mathcal{D}, \boldsymbol{\Theta})$$

O: joint model parameter vector

C: contrast function

Often

$$C(\mathcal{D}, \mathbf{\Theta}) = \iint_{Y \times Y} \left(S(y_1, y_2; \mathbf{\Theta}) - \hat{S}(y_1, y_2; \mathcal{D}) \right)^2 dy_1 dy_2$$

- Analytical 2nd order statistics
 Empirically measured (f.e. pair-correlation function)
 - conter-part of S

Challenges

- S necessitates a priori model
- ullet Analytical derivation of S: difficult when MPP is complex

Inference from reconstruction

Two-step approach

1.Reconstruction step: simulate ellipsoidal approximation

2.Inference step: using reconstructed ellipsoids

Advantages

- Ellipsoid centers observable after reconstruction → facilitate inference
- Reconstruted ellipsoid → intuitions to determine model type

The reconstruction step

GOAL: find an optimal ellipsoidal approximation of input data

Hypothesis

Y: a marked point process with Gibbs density

$$f_{\mathbf{Y}}(\mathbf{u}) = \frac{1}{Z} \exp\left(-\frac{1}{T}U(\mathbf{u})\right)$$

With energy
$$U(\mathbf{u}) = \mathcal{L}(\mathbf{u}, \mathcal{D}) + \mathcal{P}(\mathbf{u})$$

The data term

 How a configuration of ellipsoids deviates from input data

The prior term

 Constraint on the overlap percentage btw ellipsoids

The optimal ellipsoidal configuration u*

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} \left(\mathcal{L}(\mathbf{u}, \mathcal{D}) + \mathcal{P}(\mathbf{u}) \right)$$

Multiple births, deaths & shifts

- Initialization: $n=1, \boldsymbol{u}^0$, intensity \boldsymbol{v}^0 , ellipsoidal distribution f_{θ} , temperature T^0 , $\delta \in (0,1)$.
- **Iteration:** at interation *n*
 - Multiple births:

Generate ellipsoids
$$\mathbf{u}_b \sim (v^n, f_\theta)$$

 $\mathbf{u}^n = \mathbf{u}^{n-1} \cup \mathbf{u}_b.$

• Deaths / Shifts

For each ellipsoid $u_i \in \mathbf{u}^n$, compute *

$$r = \frac{\alpha v^n}{1 + \alpha v^n}$$

Where

$$\alpha = \exp\left(\frac{U(u^n) - U(u^n \setminus u_i)}{T^{n-1}}\right)$$

Draw $p \sim \text{Unif}(0,1)$.

if
$$p < r$$

• **Death:** remove ellipsoid u_i

else:

- Shift: $u_i \rightarrow \mathcal{L}(u_i)$
- Update:

$$n \rightarrow n+1$$
, T^{n+1} , $v^{n+1} \rightarrow \delta T^n$, δv^n

Convergence: energy variation in 10 consecutive runs $< \epsilon$

 $\mathcal{L}(u_i)$: Legendre ellipsoid: The optimal ellipsoid for the covered adipose region

Reconstruction result

- Focus on medium scale: not small scale
- Projection: sum of the volume in one direction
 - → no x-ray noise

Reconstruction result

The inference step

GOAL: recon. ellipsoids → center point process, axis lengths & orientation

Reconstructed ellipsoids centers

Analysis of pair-correlation function (PCF)

$$PCF(x,y) = \frac{\rho^{(2)}(x,y)}{\lambda(x)\lambda(y)} \quad \text{with} \quad \int_{B_1 \times B_2} \rho^{(2)}(x,y) \, dx dy = \sum_{x,y \in \Phi}^{x \neq y} \mathbb{E} \left(\mathbb{1}(\{x,y\} \in B_1 \times B_2) \right)$$

• Stationary & isotropic process: PCF(x, y) = PCF(r), r = ||x - y||

Fit a Matern cluster point process $\Phi_{\mathcal{M}}(R, \lambda_P, \lambda_C)$ using minimum contrast estimator.

The inference step

GOAL: recon. ellipsoids → center point process, axis lengths & orientation Reconstructed ellipsoids axis lengths & orientation angles

Analysis of empirical histograms

Simulation results using inferred parameters

- Small scale parameter as in the empirical model
- Simulated using a calibrated virtual x-ray imaging simulator (no compression)

Simulation results using inferred parameters

Image size: 3.5 cm x 3.5 cm

Model observer for lesion detection task

Channelized Hotelling observer

CHO: one of the state-of-the-art for linear model observers

- Based on linear discriminant analysis
- Extendible to 3D volumetric & multi-slice cases

Training phase: compute template \mathbf{w}_{CHO}

Test phase: compute decision variable λ

m test images

29

- Myers et al. "Addition of a channel mechanism to the ideal observer model". JOSA (1987)
- Platiša, L. et al. "Channelized Hotelling observers for the assessment of volumetric imaging data sets". JOSA. (2009)

A contrario observer

Principles of a contrario detection *

- Based on statistical test
- Quantify the significance of an observed / measured event in a statistically random image.

Detection of spot in white noise image*

Naive model

• The null-hypothesis H₀: noise / background model

Measurements $\{M_i\}_i$

- Local characteristics related to the event of interest
- F.e. local contrast

Number of false alarms (NFA) $\{NFA_i\}_i$

 Quantifies how a measurement deviates from the naive model

Thresholding on NFA

• Global false positive control $E(|\{NFA_i < \varepsilon\}_i| | H_0) < \varepsilon$

Desolneux, A., Moisan, L., and Morel, J.-M. From gestalt theory to image analysis: a probabilistic approach. Springer Science & Business Media

Motivations & goals

A new a contrario observer

- Focus on µcalc detection performance in 3D x-ray breast imaging
 - 2D FFDM vs 3D DBT: results from clinical studies → non-consistent
 - µcal detection performance in S2D vs FFDM: limited research done

Design of a new a contrario model observer

1. For pixel x: local naive model

Local naive model

- White Gaussian noise
- μ , σ : empirically estimated from neighborhood

[·] Bochud et al. "Estimation of the noisy component of anatomical backgrounds". Medical physics (1999)

Zhang et al. "Adaptive detection mechanisms in globally statistically nonstationary-oriented noise". JOSA (2006)

Design of a new a contrario model observer

2. For pixel x: multi-scale NFA

To consider multiple ucalc size & extent

- Multiple-scale neighborhood
- Each scale
 - \rightarrow Measurement: g(x)
 - → compute the NFA

Design of a new a contrario model observer

3. For the whole image: decision variable image λ

Scan through all pixels

Take min NFA of all scales for each pixel

$$\lambda(\mathbf{x}) = N_T \min_{c \in C} \Phi(\frac{g(x) - \mu_c}{\sigma_c})$$

Extension to location known exactly detection in 3D DBT slices

- Size of μcalcs (typically < 1mm) < distance btw two DBT slices (1mm)
- Adjacent DBT slices: weak spatial correlation

Validation of the new a contrario observer

Theoretical proof of false positive control

Experimental validation

200 Scattered fibroglandular dense textures

Validation of the new a contrario observer

Experimental results

The proposed a contrario observer allows for a global control of false positive detections

Comparison of µcalc detectability in FFDM, DBT & S2D

Application of developed texture model & a contrario observer in a complete VCT study

- Comparison of a contrario observer vs CHO
- Comparison of a contrario observer & CHO vs human observer

Simulated images

 $2.5~\text{cm} \times 2.5~\text{cm}$ ROIs, $400\mu\text{m}$ μCalc highest attenuation

Simulated images

 $2.5~cm \times 2.5~cm$ ROIs, $200\mu m \mu Calc$ highest attenuation

VCT experimental set-up

Task

- Rating scale task
- Signal-known-statistically & locationknown-exactly

Observers

- 1 Human observer
- A contrario
- 2D & 3D CHO*

Analysis

- Receiver operator characteristics analysis (ROC)
- Area under the ROC curve (AUC) as figure-of-merit

Image review

2.5 cm
Report confidence for ucalc
presence at the center of the image

CHO versus a contrario

FFDM heterogeneously dense background

A contrario observer vs CHO

Model observers vs human observer

- Uniform background
- **△** Scattered fibroglandular dense
- Heterogeneously dense

DBT vs FFDM vs S2D (200 µm µcalcs, highest attenuation)

Analysis of results

- No clear conclusion on ranking btw modalities: result varies with experimental condition.
- Further set-up refinement needed
- CHO outperforms ACO in all conditions.
- CHO & ACO: tend to be positively correlated to human.
- Demonstration of potential of using developed tools for more elaborated VCT experiments

Main results & contributions

Tools

A new 3D breast texture model

- ✓ Mathematical traceability → stochastic geometric characterization
- ✓ High Realism

A new a contrario observer

- ✓ For µcalc detection in 2D breast images & 3D DBT slices
- ✓ An alternative to state-of-the-art models

<u>Methodology</u>

Stochastic geometry

✓ Modeling of breast anatomical structures

Inference from reconstruction

- ✓ Medium scale texture model parameters obtained from clinical bCT data
- ✓ Improve texture model morphological variability

Application

Complete VCT experiment assessing µcalc detectability in FFDM, DBT & S2D

✓ Demonstrate potential & utility of developed tools

Directions for future research

3D breast texture model

- Statistical validation
- Model other anatomical structures (such as ductal network)

Inference from reconstruction

- Theory study of inference accuracy
- Effect of algorithm initialization
- Correlation btw ellipsoid parameters & center positions
- Unify model to diff. glandular densities
- Statistical & psycho-physical validation

3D a contrario observer

- Correlation between DBT slices
- Extension to more complex naive models
- Extension to cluster detection

Thank you!

This study was funded by the French Ministry of Research (ANRT), under CIFRE n° 2013/1052.

