MANAGEMENT STRATEGIES FOR FEBRILE NEUTROPENIA

SECTION 1:

OVERVIEW OF FEBRILE NEUTROPENIA

DEFINITION OF FEBRILE NEUTROPENIA

DEFINITION¹

FN is described by clinical practice guidelines as neutropenia with a single oral or tympanic temperature > 101°F (38.3°C) or > 100.4°F (38°C) for at least one hour.

SIGNIFICANCE IN PATIENTS WITH CANCER^{2,3}

FN, a common complication of cancer chemotherapy leads to:

- Delays and dose reductions in chemotherapy
- Compromised efficacy of treatment
- Prolonged hospitalization
- Increased healthcare utilization and costs

BURDEN OF FEBRILE NEUTROPENIA

Incidence in Asia:

10-20%, depending on the type of cancer, chemotherapy regimen, and patient risk factors¹ Indians are at a

higher risk

of developing FN (OR = 1.88), as compared to the Chinese¹

Indians are more likely to develop

multiple episodes

of FN during treatment¹

Prevalence of FN in India:

2-21%²

EPIDEMIOLOGY OF GRAM-NEGATIVE INFECTIONS ASSOCIATED WITH FEBRILE NEUTROPENIA

Mumbai, Maharashtra

Prevalence of Gram-negative bacteria in blood cultures: **72%**

Most prevalent organism: E. coli¹

Bengaluru, Karnataka

Prevalence of Gram-negative bacteria in blood cultures: **58%**

Most prevalent organism: E. coli²

New Delhi

Prevalence of Gram-negative bacteria in blood cultures: **93%**

Most prevalent organism: Klebsiella pneumoniae³

Kolkata, West Bengal

Most prevalent organism: Klebsiella oxytoca⁴

Gram-negative infections continue to be the predominant cause of FN in Indian patients.1

ETIOPATHOGENESIS OF CANCER-RELATED FEBRILE NEUTROPENIA

DISEASE-ASSOCIATED FACTORS¹

Cancer's direct interference with hematopoiesis as in leukemia or metastatic replacement of the bone marrow → Decline in patient's ANC

TREATMENT-ASSOCIATED FACTORS

Outpatient chemotherapy regimens: The highest reduction in ANC occurs 5-10 days after the last dose¹

Inpatient chemotherapy regimens (especially for the treatment of hematologic malignancies): Produce a neutropenia of greater depth and duration, both of which amplifythe risk¹

Risk related to the intensity of the chemotherapy regimen:²

High-risk FN → Risk > 20%

Intermediate-risk FN → Risk 10-20%

Low-risk FN → Risk < 10%

FEBRILE NEUTROPENIA: RISK FACTORS AND PREDISPOSING CONDITIONS

RISK ASSESSMENT OF PATIENTS WITH FEBRILE NEUTROPENIA

LOW RISK (no high-risk factors and most of the following)

- MASCC risk index score of ≥ 21
- Outpatient status at the time of development of fever
- No concomitant acute comorbid illness
- Anticipated short duration of severe neutropenia
- (≤ 100 cells/µL for fewer than seven days)
- Good performance status (ECOG 0-1)
- No hepatic or renal insufficiency

HIGH RISK (any factor listed below)

- MASCC risk index score < 21
- Inpatient status at fever onset
- · Clinically unstable or significant comorbidities
- Allogeneic HSCT
- Prolonged severe neutropenia (ANC ≤ 100 for ≥ 7 days)
- Hepatic insufficiency (5 × ULN for aminotransferases)
- Renal insufficiency (CrCl < 30 mL/min)
- Uncontrolled or progressive cancer
- Pneumonia or other complex infections
- Treatment with Alemtuzumab
- Mucositis grades 3-4

DIAGNOSIS OF FEBRILE NEUTROPENIA

Prompt diagnosis is crucial—empirical antibiotic therapy should be initiated within 1 hour of presentation.1

RISK STRATIFICATION TOOLS:²

Assessment of risk for complications of severe infection

LABORATORY TESTS:²

CBC with differential leukocyte count and platelet count; measurement of serum levels of creatinine and blood urea nitrogen; and measurement of electrolytes, hepatic transaminase enzymes, and total bilirubin

BLOOD CULTURES:²

At least 2 sets of blood cultures are recommended, with a set collected simultaneously from each lumen of an existing CVC, if present, and from a peripheral vein site

CULTURE SPECIMENS:²

From other sites of suspected infection

CHEST RADIOGRAPH:2

Is indicated for patients with respiratory signs or symptoms

MASCC-score index:

- ≥ 21 → Low risk → Candidates for oral and/or outpatient therapy
- < 21 → High risk → Patient should be admitted to the hospital

ANC of < 500 cells/mm³ or an ANC that is expected to decrease to < 500 cells/mm³ during the next 48 hours.

SECTION 2:

MANAGEMENT OF FEBRILE NEUTROPENIA

INITIAL ASSESSMENT AND WORKUP FOR CHEMOTHERAPY -INDUCED FEBRILE NEUTROPENIA: EXPERT OPINION

INITIAL ASSESSMENT AND WORKUP FOR CHEMOTHERAPY -INDUCED FEBRILE NEUTROPENIA: EXPERT OPINION

RISK-BASED RECOMMENDATIONS FOR FEBRILE NEUTROPENIA

FN risk 10-20% & FN risk <10%

FN risk ≥ 20%

- Start Pegfilgrastim or short-acting G-CSF from cycle 1
- Continue through all chemo cycles
 Evidence level I, 100% consensus

 Presence of additional risk factors raises overall FN risk to ≥ 20% → give G-CSF
 Evidence level V. 100% consensus

- G-CSF use should be a shared decision between the patient and the physician.
- Once initiated, G-CSF should be continued throughout all chemotherapy cycles.
- Consider patient-, disease-, and treatment-related factors when deciding on G-CSF use.
- Do not withhold G-CSF solely based on a low risk of treatment-related FN.

ROLE AND TIMING OF ANTIBIOTICS

Initiate antibiotics immediately after obtaining blood cultures and before completion of other investigations. Antimicrobial therapy should be administered within 60 minutes of presentation.

LOW-RISK PATIENTS²

- Maybe given oral antibiotics
- Can be considered for outpatient antibiotics if:
 Closely monitored and live near a hospital for quick access

If fever persists beyond 48 hours, broaden antibiotics and admit the patient to the hospital.

First-line options include:

Moxifloxacin or Ciprofloxacin in combination with

Amoxicillin/Clavulanic acid

OR Clindamycin in place of Amoxicillin/Clavulanic acid in patients allergic to

Penicillin.

HIGH-RISK PATIENTS²

- Inpatient admission and IV antibiotics are indicated
- Institutional susceptibility patterns should be considered when selecting therapy.

If no response to initial therapy, broaden antimicrobial coverage to include resistant pathogens, anaerobes, and fungi.

High-risk patients will need to receive an antipseudomonal β-lactam agent such as:

- → Cefepime
- → Piperacillin-Tazobactam
- → Meropenem
- → Imipenem/Cilastatin

In all cases, continue treatment until the ANC is > 500 cells/mm³ and the patient is afebrile for at least 48 hours.

ANTIBIOTIC DECISION TREE: HIGH-RISK FEBRILE NEUTROPENIA

High-risk patients

- Need to be hospitalized
- Institutional susceptibility patterns should be considered
- Pseudomonas is the main target during initial empiric therapy
- Antipseudomonal β-lactam agent required

Vancomycin is recommended as an empiric treatment for specific indications, including skin/soft tissue infections, pneumonia, catheter-related infections, or patients who are hemodynamically unstable.

Treatment options for resistant pathogens:

MRSA: Vancomycin, Linezolid, and

Daptomycin

VRSA: Linezolid and Daptomycin

ESBL: Carbapenems (Meropenem)

KPC: Colistin, Tigecycline

ANTIBIOTIC DECISION TREE: LOW-RISK FEBRILE NEUTROPENIA

Low-risk patients

- Carefully selected for outpatient antibiotics, BUT
- Monitor closely for clinical deterioration
- Must be located within a reasonable distance to a hospital

If a patient remains febrile for 48 hours, antibiotic coverage should be broadened, and the patient will need to be admitted to the hospital.

First-line options →

Fluoroquinolone monotherapy (Moxifloxacin or Ciprofloxacin + Amoxicillin/Clavulanic acid)

Patients with penicillin allergies →

Use Clindamycin

ALGORITHM TO DECIDE PRIMARY PROPHYLACTIC G-CSF USAGE

MANAGEMENT OF FEBRILE NEUTROPENIA: ICMR 2022 GUIDELINES

Empirical Antimicrobial Agents

Piperacillin-Tazobactam + Amikacin

Alternate Antimicrobial Agents

- First-line: Piperacillin-Tazobactam + Amikacin
- Second-line:
 Meropenem + Teicoplanin/Vancomycin
- Third-line or if patient is in septic shock:

Meropenem + Colistin/Polymyxin B

- * Teicoplanin/Vancomycin + Caspofungin
- * Fosfomycin/Tigecycline

OUTPATIENT EMPIRIC THERAPY IN FEBRILE NEUTROPENIA: IDSA GUIDELINES

What antimicrobials are recommended for outpatient empirical therapy in patients with FN?

01

RECOMMENDATION FOR ORAL EMPIRICAL THERAPY:

Fluoroquinolone (Ciprofloxacin or Levofloxacin) plus Amoxicillin/Clavulanate (or Clindamycin for patients allergic to Penicillin) 02

In a high prevalence setting of ESBL-PRODUCING GRAM-NEGATIVE BACILLI OR FLUOROQUINOLONE RESISTANCE:

Hospital admission and consider initial empirical antibacterial treatment with a carbapenem

03

MRSA, VRE, concern for specific active infection or CRBSI:

Hospital admission and consider targeted therapy

APPROACH TO NEW-ONSET FEVER AFTER 48 HOURS OR PERSISTENT FEVER IN FEBRILE NEUTROPENIA

SECTION 3:

ROLE OF BL/BLIs IN FEBRILE NEUTROPENIA

ROLE OF BL/BLIs AS EMPIRIC THERAPY IN FEBRILE NEUTROPENIA

01

ECIL-10 RECOMMENDATIONS (2024):

- Piperacillin-Tazobactam (a BL/BLI) is listed as a first-line empiric antibiotic option for patients with FN.
- Other BL/BLIs such as Ticarcillin-Clavulanate and Cefoperazone-Sulbactam are also mentioned as possible empiric options.

02

GUIDELINES EMPHASIZE USING BL/BLIs IN:

- Uncomplicated presentation
- · No known colonization with resistant bacteria
- No previous infection with resistant bacteria
- In centers where infections due to resistant pathogens are rarely seen at the onset of FN

These findings favor the use of BL/BLIs in the empiric treatment of FN.

LOCAL ANTIBIOGRAM DATA SUPPORTING BL/BLI USE

Retrospective analysis of patients presenting with FN to a tertiary care oncology hospital in India

93% of patients treated with third-generation cephalosporin/BLI, with aminoglycoside or fluoroquinolone.

Bacterial isolates identified in blood

Predominant cause of FN: Gram-negative bacteremia

Antibiotic sensitivity of isolates

Most commonly used antibiotic combination: CFS

AN INDIAN STUDY ON THE PREVALENCE OF CARBEPENEM-RESISTANT INFECTIONS IN PATIENTS WITH FEBRILE NEUTROPENIA

The bacterial spectrum and prevalence of antimicrobial resistance in bloodstream infections in adult patients with FN having hematolymphoid malignancies in a tertiary oncology center in India.

patients with hematolymphoid malignancies had FN

Microbiologically confirmed

bloodstream

infections: 24.1%

Most common organism:

E. coli (36.4%)

Carbapenemresistant Gram-

negative

bloodstream

infections: 38.2%

Mortality rate: 32.6%

Use of BL/BLIs as carbapenem-sparing alternatives may be useful to avoid the spread of CRE. This strategy may prove useful in limiting the spread of carbapenem resistance.

EMPIRIC USE OF CEFOPERAZONE-SULBACTAM IN FEBRILE NEUTROPENIA

A meta-analysis assessed the clinical efficacy and safety of Cefoperazone-Sulbactam for treating FN.

Treatment success rate:

57.9%

Similar to

comparators*

Similar treatment success rate →

Piperacillin-Tazobactam and carbapenems

All-cause mortality:

6% Similar to comparators*

Most common adverse events:

Rash and nausea/vomiting Similar to comparators*

The clinical efficacy and tolerability of Cefoperazone-Sulbactam are comparable to comparator drugs in the treatment of FN.

PIPERACILLIN-TAZOBACTAM VS. CEFOPERAZONE-SULBACTAM IN FEBRILE NEUTROPENIA

A study compared the efficacy of PTZ and CFS in adult patients with hematological malignancies in FN

Study design -

Sample size:

157 patients, 200 episodes of FN

Patient characteristics:

- > 18 years old
- ANC < 500/mm³
- Oral body temperature > 38.3°C at a single measurement or 38°C after 1-h monitoring

Results	
44.5%	Microbiologically documented infections
61%	Overall success rate with CFS → Similar to PTZ (41%)
26.8%	Success rate without modification (CFS) → Similar to PTZ (22.9%); similar trend observed with success rate with modification
14%	Mortality rate with CFS → Similar to PTZ (16.9%)

PTZ and CFS are equally effective and safe for the empirical treatment of patients with FN.

REAL-WORLD EVIDENCE

Objective: To compare the effectiveness of β -lactam empiric therapy in patients with FN.

Study details -

Study design:

Systematic review and meta-analysis

Patients:

Adult and pediatric patients with FN undergoing chemotherapy for either solid tumors or hematological malignancies

Analysis:

1275 articles, 50 studies, 10872 patients

Results

Cefoperazone-Sulbactam:

Highest odds for treatment success followed by Imipenem/Cilastatin and Piperacillin-Tazobactam

Treatment success without modification

Cefoperazone-Sulbactam: An effective alternative in the empiric treatment of FN.

SECTION 4:

CASE DISCUSSION

CASE 1: FEBRILE NEUTROPENIA IN A PEDIATRIC CANCER PATIENT

Patient profile

- Age: 20-year-old male
- Chief complaint: Episodic fevers
- Medical history:
- → Burkitt leukemia
- → Previously hospitalized (3 weeks prior to current presentation) for similar symptoms, reduced ANC, which recovered with supportive care
- → After discharge: Normal complete blood counts (taken weekly)

History of present illness

- Regular episodic fevers for the past 6 months
- Frequency of episodic fevers: 4-6 weeks (but has been increasing in frequency in the past 2 months)
- Duration of episodic fevers: 3 days
- Temperature: 103°F
- Additional symptoms: Muscle pain and occasionally sore throat, chills, night sweats, decreased appetite, and unintended weight loss of 5-10 kg

How to proceed with the medical management of this patient?

Points for discussion: 1. Choice of antibiotic 2. Role of BL/BLI - dosage, duration of therapy 3. Escalation/de-escalation of antibiotics

CASE 2: FEBRILE NEUTROPENIA IN AN IMMUNOCOMPROMISED ADULT PATIENT

Patient profile

Age: 68-year-old male

Chief complaint: Persistent daily fever

Medical history: Stage IVB diffuse large B-cell

lymphoma (DLBCL)

Clinical examination:

- 9 × 3 cm sized hematoma on the left upper extremity at the site of IV infiltration from a previous hospitalization
- Healing Stage II decubitus ulcer
- Temperature: 102.9°F

Investigations

- · Hemoglobin: 7.4 g/dL
- Leukocyte count: 0.4x109/L
- Platelet count: 12x109/L
- · Alkaline phosphatase: 275 U/L
- Creatinine: 0.6 mg/dL
- · Lactate dehydrogenase: 229 U/L
- Normal levels of:
- Aspartate aminotransferase
- Alanine aminotransferase
- Total bilirubin

How to proceed with the medical management of this patient?

Points for discussion: 1. Choice of antibiotic 2. Role of BL/BLI - dosage, duration of therapy 3. Escalation/de-escalation of antibiotics

SUMMARY AND KEY TAKEAWAYS

KEY TAKEAWAYS

Gram-negative infections predominantly cause FN in Indian patients.

The growing threat of carbapenem resistance highlights the role of BL/BLIs as an effective alternative.

Prompt diagnosis is essential and risk assessment tools are critical for guiding appropriate treatment decisions.

Cefoperazone-Sulbactam offers comparable effectiveness and tolerability to standard treatments for FN.

Timely administration of antibiotics—ideally within 1 hour of presentation—is vital in the management of FN.

THANKYOU!