Rudimenti di Complessità

Corso di Programmazione II Prof. Dario Catalano

Analisi di Complessità

- Costo di un algoritmo è in funzione di n (dimensione dei dati in input):
 - tempo = numero di operazioni RAM eseguite
 - spazio = numero di celle di memoria occupate (escluse quelle per contenere l'input)

Caso pessimo e caso medio

- Complessità o costo computazionale f(n) in tempo e in spazio di un problema Π :
- caso pessimo o peggiore = costo max tra tutte le istanze di Π aventi dimensioni dei dati pari a n
- caso medio = costo mediato tra tutte le istanze di Π aventi dimensioni pari a n

IF (guardia) {blocco 1} else {blocco 2}
costo(guardia)+max{costo(blocco 1),costo(blocco 2)}

while (guardia) {corpo}
do {corpo} while (guardia)

$$\sum_{i=0}^{m} (t'_i + t_i)$$

$$t'_i = \text{costo di } \text{guardia } \text{all'iterazione i}$$

$$t_i = \text{costo di } \text{corpo all'iterazione i}$$

- Il costo di una funzione è dato dal costo del suo corpo (più il passaggio dei parametri)
 - Per le funzioni ricorsive le cose sono più complicate

 Il costo di una sequenza di istruzioni è la somma dei costi delle istruzioni nella sequenza

Funzione esponenziale

$$f(n)=b^n$$

Regole

- (ba)c=bac
- ba bc=ba+c
- $b^a/b^c=b^{a-c}$

Somma Geometrica

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \quad (a > 1)$$

Funzione costante

Funzione logaritmica

$$f(n) = \log_b n \qquad (b>1)$$

1.
$$x = log_b(n) \Leftrightarrow b^x = n$$

2.
$$\log_{b}(1)=0$$

Funzione lineare

f(n)=cn c costante (c non nulla)

Funzione nlog n

f(n)=n log n

Funzione quadratica

```
f(n)=c n^2
for (i=0;i<n;i++)
   for (j=0; j<n; j++)
     do something
               for (i=1;i<=n;i++)
                 for (j=1; j<=i; j++)
                   do something
```

Funzione cubica

```
f(n)=c n³

for (i=0;i<n;i++)
  for(j=0;j<n;j++)
    for(k=0;k<n;k++)
    do something</pre>
```

Sommatorie

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \dots + f(b)$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Sommatorie – II

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Esempio

```
for (i=1;i<=n;i++)
  for (j=1;j<=i;j++)
    for (k=1;k<=j;k++)
     do something</pre>
```

Funzione polinomiale

$$f(n)=a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$$

il grado è il valore della potenza più grande con a_d diverso da 0

Notazione Asintotica

Notazione asintotica al crescere di n:

$$g(n) = O(f(n))$$
 sse esistono $c, n_0 > 0$:
 $g(n) \le c f(n)$ per ogni $n > n_0$

$$g(n) = \Omega(f(n))$$
 sse esistono c,n₀>0 :
 $g(n) \ge c f(n)$ per infiniti valori di n>n₀

$$g(n) = \Theta(f(n))$$
 sse $g(n) = O(f(n))$ e $f(n) = O(g(n))$

Limiti Superiori e Inferiori

- Per un dato problema Π consideriamo un algoritmo A che lo risolve
- Se A prende tempo t(n) diremo che O(t(n)) è un limite superiore.
- Se riusciamo a provare che nessun algoritmo può far meglio di t(n) diremo che Ω(t(n)) è un limite inferiore.
- A è ottimo se i due limiti coincidono
 - In tal caso la complessità computazionale del problema è $\Theta(t(n))$.

Problemi intrattabili

 Supponiamo di avere un algoritmo il cui tempo di calcolo sia O(2ⁿ) (es 2ⁿ -1) (1 operaz/sec)

n	5	10	15	20	25	30	35	40
tempo	31 s	17 m	9 h	12 g	1 a	34 a	1089 a	34865 a

- Migliorare di un fattore moltiplicativo N (N operaz/ sec) migliora le prestazioni solo di + log N
- Se con una macchina da 1 op/sec riesco a processare input di dimensione X input in tempo T, con una da 1000 op/sec posso arrivare a X+10 in tempo T)

Problemi trattabili

 Supponiamo di avere un algoritmo il cui tempo di calcolo sia O(n²) (es n²) (1 operaz/sec)

n	5	10	15	20	25	30	35	40
tempo	25 s	100 s	225 s	7 m	11 m	15 m	21 m	27 m

- Migliorare di un fattore moltiplicativo N (N operaz/sec) migliora le prestazioni di un fattore moltiplicativo V N
- Se con una macchina da 1 op/sec riesco a processare input di dimensione X input in tempo T, con una da 1000 op/sec posso arrivare a 10X in tempo T)

Esempio: calcolo di potenze

Versione ricorsiva

```
power(x,n) = \begin{cases} 1 & se n=0 \\ x*power(x,n-1) & altrimenti \end{cases}
```

```
power(x,n)
if (n=0) return 1;
else return x*power(x,n-1)
```

- n chiamate ricorsive
 - tempo e spazio O(n)

Esempio: calcolo di potenze

Versione ricorsiva

```
se n=0
  power(x,n) = \begin{cases} x*power(x,(n-1)/2)^2 \\ power(x,n/2)^2 \end{cases}
                                        se n è dispari
                                        se n è pari
                             log n chiamate ricorsive
power(x,n)
                          • tempo e spazio O(log n)
   if (n dispari)
   { y=power(x, (n-1)/2);
      return x*y*y;
   else { y=power(x,n/2);
              return y*y; }
```

Esempio: Segmenti di Somma Massima

- Segmento: sequenza di elementi consecutivi in un array a
 - a array di n interi
 - -a[i,j] segmento se $0 \le i \le j \le n-1$
- Determinare il segmento di somma massima
 - Banale se gli elementi sono tutti positivi (o tutti negativi)
 - A parità di somma si predilige il segmento più corto

Prima Soluzione

```
SommaMassima1 (a) // a contiene n elementi, almeno 1 positivo
   max = 0;
   For (i = 0; i < n; i = i+1) {
       For (j = i; j < n; j = j+1) {
           somma = 0;
           For (k = i; k \le j; k = k+1)
              somma = somma + a[k];
           if (somma > max) max = somma;
   return max;
```

Seconda Soluzione: Idee

- Una volta calcolata somma(a[i,j-1]) evitiamo di ripartire da capo per somma(a[i,j])
- Utlizziamo il fatto che

```
somma(a[i,j])=somma(a[i,j-1]) + a[j]
```

- Questo ci permette di risparmiare un ciclo for
 - Dunque otteniamo una soluzione quadratica

Seconda Soluzione

```
SommaMassima2 (a) // a contiene n elementi, almeno 1
                            positivo
   max = 0;
   For (i = 0; i < n; i = i+1)
      somma = 0;
      For (j = i; j < n; j = j+1) {
         somma = somma + a[j];
         if (somma > max) max = somma;
   return max;
```

Terza Soluzione

- Sfruttiamo meglio la struttura combinatoria del problema
- Abbiamo O(n²) possibili segmenti
- Tra i segmenti di eguale lunghezza solo uno può avere somma massima
 - I potenziali candidati sono quindi O(n)
 - Inoltre tali candidati sono tutti disgiunti.

Terza Soluzione

- Un segmento di somma massima a[i,j] deve avere le seguenti caratteristiche
- Ogni prefisso di a[i,j] ha somma positiva (per ogni i ≤ k < j)
- 2. Il segmento a[i,j] non può essere esteso a sinistra
 - Somma(a[k,i-1]) ≤ 0 per ogni $0 \le k \le i-1$

Terza Soluzione

```
SommaMassima3 (a) // a contiene n elementi, almeno 1 positivo
   max = 0;
   somma= max;
   For (j = 0; j < n; j = j+1) {
      if (somma > 0) {
          somma = somma + a[j];
      } else {
          somma = a[j];
      if (somma > max) max = somma;
   return max;
```

Commenti

- La soluzione proposta ha complessità O(n)
- Tale complessità è asintoticamente ottima (sia in termini di spazio che di tempo)
 - L'algoritmo deve poter leggere l'input
 - L'algoritmo utilizza solo un numero costante di locazioni per le variabili di appoggio.

Crescita Esponenziale e Crescita Lineare

Supponiamo di voler investire 100 euro

Banca Lineare: Al capitale inizialmente investito vengono aggiunti 200 euro l'anno

100+200k

Banca degli Interessi: Il capitale investito viene aumentato del 20% ogni anno.

I anno: 100 + 20% (100) = 100 + 20 = 100 * 1,2

II anno: (100*1,2) + 20% (100*1,2)= (100*1,2)*1,2

100*(1,2)k

Rendimenti

	1	2	3	4	5	10	20	30 anni	40 anni	50 anni
	anno	anni	anni	anni	anni	anni	anni			
B. Lineare	300	500	700	900	1100	2100	4100	6100	8100	10100
B. degli Interessi	120	144	173	207	619	3833	23738	23738	146977	910044