

Métodos Numéricos

Trabajo práctico 3

Hay que poner un poquito más de esfuerzo...

Resumen

Integrante	LU	Correo electrónico
Danós, Alejandro	381/10	adp007@gmail.com
Gandini, Luciano	207/10	gl.gandini@gmail.com
Russo, Christian Sebastián	679/10	christian.russo@gmail.com

Palabras claves:

Cuadrados Minimos, Factorizacion QR, Heuristica, Ecuaciones Normales, Futbol de Robots

$\mathbf{\acute{I}ndice}$

1.	Intr	oduccion Teorica	3		
	1.1.	Factorizacion QR	3		
		1.1.1. Given	3		
		1.1.2. Householder	3		
	1.2.	Ecuaciones Normales??	3		
2.	Desarrollo				
	2.1.	Archivo de entrada	4		
		2.1.1. Explicacion	4		
	2.2.	Archivo de salida	4		
		2.2.1. Explicacion	4		
	2.3.	Método Uno: Usando Cuadrados Mínimos	4		
		2.3.1. Cuadrados Mínimos: General	4		
		2.3.2. Cuadrados Mínimos: Específico a nuestro trabajo	5		
		2.3.3. Resolver Cuadrados Mínimos usando QR	5		
		2.3.4. Pseudocodigo	6		
	2.4.	Demostraciones	7		
3.	Exp	xperimentacion			
	3.1.	Generador de Tests	8		
4.	\mathbf{Res}	sultados 8			
5.	Ape	ndice	9		
	5.1.	Método de compilación	9		
		5.1.1. Método 1	9		
		5.1.2. Método 2	9		
	5.2.	Equipo de pruebas	9		
	5.3	Referencies hibliográfices	a		

1. Introduccion Teorica

1.1. Factorizacion QR

Definicion: Se dice que una matriz tiene **factorizacion** $\mathbf{Q}\mathbf{R}$ si puede ser expresada de la forma

$$A = Q*R$$

El algoritmo para llevar a una matriz a su forma QR tiene costo $O(n^3)$. Tiene la misma ventaja que la factorizacion LU de permitir resolver un sistema de ecuaciones en orden $O(n^2)$, pero con la ventaja que toda matriz tiene factorizacion QR

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{Q}\mathbf{R} \ \mathbf{x} = \mathbf{b}$
 $\mathbf{Q}^t \ \mathbf{Q} \ \mathbf{R} \ \mathbf{x} = \mathbf{Q}^t \ \mathbf{b}$
 $\mathbf{R} \ \mathbf{x} = \mathbf{Q}^t \ \mathbf{b}$

con Rx un sistema triangular superior

Para poder calcular la matriz R se pueden aplicar los metodos de Givens o Householder

1.1.1. Given

Para eliminar el elemento en la posicion (i,j) aplicamos la siguiente matriz:

$$G(i,j,\theta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & -s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Figura 1: Matriz de Givens

con c = cos(θ) y s = sen(θ). Luego aplicando G(i,j, θ) * A queda en 0 el elemento (i,j). Entonces aplicamos sucesivamente este procedimiento para todos los elementos que queremos poner en 0 obteniendo asi nuestra matriz R. Luego $Q^t = \prod_{i=n}^1 G_i$

1.1.2. Householder

Con este metodo vamos e limando los 0 de abajo de la diagonal columna a columna. Sea x = $col_i(A)$, y = ($||x||_2$, 0 ,. . . 0) y sea u=x - y. Definimos $H_i=\mathrm{I}$ - $\frac{2uu^t}{u^tu^t}$. Luego aplicando H_i * A queda triangulada la columna i de A. Aplicamos este procedimiento iterativamente sobre $A^{(i)}$ hasta dejar triangulada la matriz. Quedando $Q^t=\prod_{i=n}^1 H_i$

1.2. Ecuaciones Normales??

2. Desarrollo

En esta sección describiremos los métodos usados para resolver el problema, cada uno con sus ventajas y desventajas.

2.1. Archivo de entrada

2.1.1. Explicacion

El ejecutable toma tres parámetros por línea de comando, que serán el *path* del archivo de entrada, el *path* del archivo de salida y la estrategia que utilizaremos con el arquero.

El archivo de entrada seguirá el siguiente formato:

- La primera línea contendrá la posición inicial del arquero en y, luego las coordenadas que defininen los límietes del arco, también sobre el eye y. Se asume que la posición en x del arquero y de la línea de gol son las mismas: x = 125. Finalmente estará μ , la cota sobre el máximo desplazamiento que puede realizar el arquero en un instante de tiempo.
- Luego se muestra la secuencia de posiciones en \mathbb{R}^2 , una por lína, que toma la pelota para los instantes de tiempo $0, 1, \ldots, T$, siendo T el tiempo final.

En un primer lugar, leeremos la primera línea del archivo de entrada para setear los valores correctos de la posición en y del arquero, las posiciones de los palos y el μ . Luego, dado que se asume que no podemos saber qué pasará más allá del tiempo actual, iremos leyendo la entrada a medida que hagamos hecho los cálculos para el tiempo anterior.

2.2. Archivo de salida

2.2.1. Explicacion

El archivo de salida especificado como parámetro será creado en caso de que no exista y reemplazado por uno nuevo en caso de que ya exista. Este nuevo archivo contendrá una instrucción por línea, correspondiente a la acción que realiza el arquero en el instante $0 \le t \le T$, siendo T el instante final.

Este archivo luego podrá ser usado junto con el archivo de entrada para analizar qué sucede con el visualizador proporcionado por la cátedra.

2.3. Método Uno: Usando Cuadrados Mínimos

Nuestro primer enfoque fue mirar al problema como si fuera uno de analizar los datos obtenidos en un experimento y tratásemos de describir la distribución de estos mediante una función.

En esta perspectiva, nuestra entrada sería el tiempo y la salida la posición en la cancha de la pelota. Además, como las variaciones en las coordenadas x e y de la pelota son independientes podemos dividir al problema en una entrada y dos salidas. De esta forma, deberíamos resolver dos problemas de cuadrados mínimos.

2.3.1. Cuadrados Mínimos: General

El estudio de Cuadrados Mínimos nació al querer describir el comportamiento de datos con funciones polinómicas. Normalmente, las mediciones traen inherentemente una cuota de ruido y si

se sospecha que éstas siguen un crecimiento de un polinomio de grado como máximo n, es díficil encontrar los coeficientes de este polinomio dado que el ruido afecta a los puntos. Cuadrados Mínimos trata de solucionar este problema.

Más formalmente, si se tiene m entradas y para cada una de ellas una salida asociada, x_i e y_i respectivamente, y se los quiere describir con un polinomio $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ de grado máximo fijo n, entonces la técnica de Cuadrados Mínimos busca a los n+1 coeficientes $a_i \ \forall i = 0 \cdots n$ resolviendo el problema buscar el vector a tal que minimice a la norma de $A \times a - b$ al cuadrado, con $A \in \mathbb{R}^{m \times (n+1)}$, $a \in \mathbb{R}^m$ y $b \in \mathbb{R}^n$ los siguientes:

$$A = \begin{pmatrix} x_0^n & x_0^{n-1} & \cdots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_m^n & x_m^{n-1} & \cdots & x_m^1 & 1 \end{pmatrix}, a = \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_1 \\ a_0 \end{pmatrix} y b = \begin{pmatrix} y_m \\ y_{m-1} \\ \vdots \\ y_1 \\ y_0 \end{pmatrix}$$

La diferencia entre resolver directamente el sistema $A \times a = b$ y minimizar a $||A \times a - b||$ consta en que el primero busca a los coeficientes tal que el polinimio pasa exactamente por los puntos y_i , es decir, $P(x_i) = y_i \ \forall i = 0..m$, mientras que el segundo trata de buscar los coeficientes que minimicen a $\sum_{i=0}^{m} (P(x_i) - y_i)^2$, o la suma de los errores al cuadrado.

2.3.2. Cuadrados Mínimos: Específico a nuestro trabajo

En nuestro caso, deberíamos resolver dos problemas de Cuadrados Mínimos dado que para cada tiempo t_i tenemos dos coordenadas independientes: x_i e y_i . Si seguimos la notación anterior, la matriz A no cambiaría entre una coordenada y otra aunque sí el vector b sí tendría dos casos a parte, que llamaremos b_x y b_y .

Para resolver esta minimización se pueden usar por lo menos 3 métodos distintos: resolver mediante una factorización QR, mediante funciones normales o también factorizando usando descomposición en valores singulares. En las siguientes secciones explicaremos los métodos de QR y de funciones normales.

2.3.3. Resolver Cuadrados Mínimos usando QR

Sea A=Q*R la factorización QR de la matriz A mencionada en las secciones anteriores. Entonces,

$$\min_{x \in \mathbb{R}^{(n+1)}} \|Ax - b\|^2 = \min_{x \in \mathbb{R}^{(n+1)}} \|Q^t Ax - Q^t b\|^2 = \min_{x \in \mathbb{R}^{(n+1)}} \|Rx - Q^t b\|^2$$

Como A tiene columnas independientes¹, entonces $R_{i,i} \neq 0 \ \forall i = 1, \dots, n+1$ y además $R_{i,j} = 0 \ \forall i = 1, \dots, m; \ j = 1, \dots, i-1$. La multiplicación matriz-vector Rx entonces sería:

$$Rx = \begin{pmatrix} R_1x \\ 0 \end{pmatrix}$$
 con $R_1 \in \mathbb{R}^{(n+1) \times (n+1)}$ la parte por arriba de la diagonal de R .

Además, si reescribimos a Q^tb como:

$$\begin{split} Q^t b &= \begin{pmatrix} c \\ d \end{pmatrix} \text{ con } c \in \mathbb{R}^{(n+1)\times(n+1)} \text{ y } d \in \mathbb{R}^{m-(n+1)}, \text{ problema se reduce a:} \\ \min_{x \in \mathbb{R}^{(n+1)}} \|Rx - Q^t b\|^2 &= \|(R_1 x, 0)^t - (c, d)^t\|^2 = \min_{x \in \mathbb{R}^{(n+1)}} \|R_1 x - c\|^2 + \|d\|^2 \\ &\to \min_{x \in \mathbb{R}^{(n+1)}} \|R_1 x - c\|^2 \to x/R_1 x = c \end{split}$$

¹Para más información, referirse a la sección demostraciones

$$R = \left[\begin{array}{c} \hat{R} \\ 0 \end{array} \right] = \left[\begin{array}{ccc} \hat{r}_{11} & \hat{r}_{12} & \hat{r}_{13} \\ 0 & \hat{r}_{22} & \hat{r}_{23} \\ 0 & 0 & \hat{r}_{33} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \quad c = \left[\begin{array}{c} \hat{c} \\ d \end{array} \right] = \left[\begin{array}{c} \hat{c}_1 \\ \hat{c}_2 \\ \hat{c}_3 \\ d_1 \\ d_2 \\ d_3 \end{array} \right]$$

Figura 7: Ejemplo de rango completo.

El sistema $R_1x = b$ tiene solución dado que R_1 es triangular superior con elementos no nulos en la diagonal. Si encontramos el x que sea solución para ese sistema, será el mismo x solución para el problema de Cuadrados Mínimos.

2.3.4. Pseudocodigo

Algorithm 1 FactorizacionQR(Matrix $A \in \mathbb{R}^{n \times m}$)

```
Matriz R \leftarrow A

Matriz Q \leftarrow Matriz Identidad \in \mathbb{R}^{n \times n}

Matriz Qt \leftarrow Matriz Identidad \in \mathbb{R}^{n \times n}

for i = 0 hasta m do

if (n - i) > 1 then

Matrix tmp \leftarrow Matriz Identidad \in \mathbb{R}^{n \times n}

Matrix subQt \leftarrow Matriz Identidad \in \mathbb{R}^{(n-i) \times (n-i)}

Matrix subR \leftarrow generarSubMatriz(R, i) \in \mathbb{R}^{(n-i) \times (m-i)}

(subR, subQt) \leftarrow triangularColumna(subR, subQt)

R \leftarrow agregarSubMatrix(subR, R, i)

tmp \leftarrow agregarSubMatrix(subQt, tmp, i)

end if

Qt \leftarrow tmp * Qt

end for

return (Qt, R)
```

$\overline{\mathbf{Algorithm}} \ \mathbf{2} \ \mathrm{generar} \mathrm{SubMatrix}(\mathrm{Matrix} \ A \in \mathbb{R}^{n \times m}, \ \mathrm{int} \ i)$

```
Matriz res \leftarrow \text{Matriz} \in \mathbb{R}^{(n-i)\times(m-i)}

res_{k,l} \leftarrow A_{i+k,i+l} \quad \forall k = 0, \dots, (n-i) \text{ y } l = 0, \dots, (m-i)

return res
```

Algorithm 3 triangularColumna(Matrix $sub \in \mathbb{R}^{n \times m}$, Matrix $subQt \in \mathbb{R}^{n \times m}$)

```
Vector \mathbf{x} \leftarrow \text{Vector de Ceros} \in \mathbb{R}^n
Vector y \leftarrow Vector de Ceros \in \mathbb{R}^n
Vector \mathbf{u} \leftarrow \text{Vector de Ceros} \in \mathbb{R}^n
for i = 0 hasta x.n do
   x_i \leftarrow sub_i
end for
y_0 \leftarrow ||x||
u \leftarrow x - y
Vector uTranspuesto \leftarrow u^t \in \mathbb{R}^{1 \times n}
Vector aux \leftarrow Vector\ uTranspuesto * sub \in \mathbb{R}^n
Matriz aux2 \leftarrow \text{Matriz } u * aux \in \mathbb{R}^{n \times m}
int coeficiente \leftarrow 2/\|u\|^2
sub \leftarrow sub - (aux2 * coeficiente)
aux \leftarrow uTranspuesto * subQt
aux2 \leftarrow u * aux
subQt \leftarrow subQt - (aux2 * coeficiente)
return (sub, subQt)
```

Algorithm 4 agregarSubMatrix(Matrix $sub \in \mathbb{R}^{(n-i)\times(m-i)}$, Matrix $A \in \mathbb{R}^{n\times m}$, int i)

```
A_{i+k,i+l} \leftarrow sub_{k,l} \ \ \forall k=0,\ldots,(n-i) \ \ y \ l=0,\ldots,(m-i)return Matriz A modificada
```

2.4. Demostraciones

En esta sección daremos demostraciones de los supuestos considerados en los algoritmos usados en el trabajo.

Sean $A \in \mathbb{R}^{m \times (n+1)}$ con:

$$A = \begin{pmatrix} x_0^n & x_0^{n-1} & \cdots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_m^n & x_m^{n-1} & \cdots & x_m^1 & 1 \end{pmatrix}, a = \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_1 \\ a_0 \end{pmatrix} y b = \begin{pmatrix} y_m \\ y_{m-1} \\ \vdots \\ y_1 \\ y_0 \end{pmatrix}$$

Lema Si m>n+1, entonces A tiene rango de columnas máximo.

Prueba: $A = (C_1, C_2, \dots, C_n, C_{n+1})$ si la miramos como columnas. Asumamos que no tiene rango máximo. Eso es equivalente a que:

 $\alpha_1 C_1 + \alpha_2 C_2 + \ldots + \alpha_n C_n + \alpha_{n+1} C_{n+1} = 0$ con $\alpha_i \in R$ y $\alpha_i \neq 0$ para algún i, que es equivalente a que $A * \alpha = 0$. O sea, que el polinomio P(x) de grado n tendría m>n+1 raíces dado que cada fila sería una evaluación en un punto distinta del polinomio dado que los x_i son distintos. Absurdo.

3. Experimentacion

3.1. Generador de Tests

Para generar Tests realizamos un algoritmo en Python en el cual generamos instancias lineales tomando como parametros el mu, la posicion del arquero y la ubicacion de los arcos. De la misma forma generamos instancias polinomicas. Para ambos casos tuvimos en cuenta el punto inicial, es decir donde empieza la trayectoria de la pelota y el punto final, es decir la posicion de la pelota dentro del arco. Para tests mas complejos utilizamos un script en C++ en donde para generar las curvas utilizamos la funcion spline de la libreria boots con la cual le agregamos los puntos por donde queriamos que pase la pelota e interpolatebamos para conseguir una curva que pase por ese lugar tomando esa curva como el tests.

4. Resultados

5. Apendice

5.1. Método de compilación

5.1.1. Método 1

Parados en la carpeta /src del proyecto ejecutar

\$ make

De esta forma se limpia y compila. Para compilar por separado se puede hacer: **make data.o**, **make functions.o**, **make Matrix.o**, **make main.o**. O tambien se puede borrar haciendo **make clean**. Por defecto al ejecutar **make** el nombre del ejecutable es **yoAtajo**

5.1.2. Método 2

Parados en la carpeta donde se encuentra el tp (donde se encuentra el archivo run.py)

\$ python run.py < input tiro > < metodo > < velocidad >

Donde METODO puede ser

- **0**:
- **1**:

Donde INPUT TIRO puede ser

- Path a una carpeta: ejecuta todos los tests que contiene dicha carpeta.
- Path a un archivo: ejecuta el tests que corresponde a esta ruta.

Donde VELOCIDAD puede ser

- 0: Para correr el visualizador rapido (no se muestra el tiro)
- 1: Para correr el visualziador en modo lento (se muestra el tiro)

5.2. Equipo de pruebas

5.3. Referencias bibliográficas

Referencias

[1] Richard L. Burden and J. Douglas Faires Numerical Analysis. 2005.