Printed Page	e 1 of 2					S	ub (Cod	e:K	EC3	01
Paper Id:	130321	Roll No:									

B. TECH (SEM-III) THEORY EXAMINATION 2019-20 ELECTRONIC DEVICES

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q.	Question	Marks	CO
no.	_ ·		
a.	What is base width modulation?	2	4
b.	What is difference between Direct and Indirect semiconductors?	2	1
c.	Differentiate EMOSFET with DMOSFET.	2	5
d.	Brief the Avalanche breakdown mechanism.	2	4
e.	In which mode BJT can be used as switch and amplifier?	2	4
f.	What is fluorescence?	2	3
g.	What do you mean by effective mass of carriers?	2	2
h.	How does direct recombination lifetime differ from Indirect recombination lifetime?	2	2
i.	Write difference between Drift and diffusion.	2	3
j.	Define sheet resistance.	2	2.

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q.	Question	Marks	C
no.	The state of the s	*·	0
a.	Differentiate between direct and indirect band gap semiconductor. Also discuss the variation of energy band with alloy composition.	10	1
b.	Calculate the Fermi level position in Si containing 10 ¹⁶ Phosphorus atoms/cm ³ at 100°K assuming 50% of the impurities are ionized at this temperature. Also calculate the equilibrium electrons and holes concentrations.	10	2
c.	Define mobility of a charge carrier. Show that μ/D=e/kT.	10	3
d.	Explain the single stage MOS amplifier and MOS capacitances.	10	5
e.	Explain the working principle and V-I characteristics of Zener diode	10	4

SECTION ©

3. Attempt any one part of the following:

 $1 \times 10 = 10$

Q.	Question	Marks.	C
no.			0
a.	Derive the expression for Schrodinger Wave Equation.	10	1
b.	What is the principle of Heisenberg uncertainty and why is it important? Write	10	1
<u></u>	its applications.		

4. Attempt any one part of the following: $1 \times 10 = 10$

Q.	Question	Marks	C
no.	·		0
a.	What do you mean by Fermi level? Discuss the effect of temperature & doping on mobility.	10	2
b.	Draw the schematic band diagram of Fermi level, density of states, Fermi- Dirac distribution function, and carrier concentrations for intrinsic and extrinsic semiconductor.		2

Printed Page 2 of 2

Paper Id: 130321

				8	ub	Cod	e:K	EC3	01
Roll No:									

5. Attempt any one part of the following: $1 \times 10 = 10$

Q. no.	Question	Marks	CO
a.	Explain and draw the small signal models of MOS transistor.	10	5
b.	Explain the working principle and characteristics of following:	10	5
	(i) LED (ii) Solar cell		

6. Attempt any *one* part of the following: $1 \times 10 = 10$

Q. no.	Question	Marks	CO.
a.	Explain Ebers-Molt model.	10	4
b.	Explain Schottky diode in detail and also write its applications.	10	4

7. Attempt any *one* part of the following: $1 \times 10 = 10$

Q. no.	Question	Marks	co
a.	Using the concept of diffusion and drift of carriers derive the continuity equation and diffusion length.	10	3
b.	Derive an expression for diode current in PN junction diode.	10	3