DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI MINOR TEST II 2015-2016 FIRST SEMESTER MTL 107/MAL 230 (NUMERICAL METHODS AND COMPUTATION)

Time: 1 hour

Max. Marks: 25

** Answer to each question should begin on a new page **

1a. The interpolating polynomial for the function f(x) on the set of distinct points x_0, x_1, \ldots, x_n is given as $P_n(x) = \sum_{k=0}^n l_k(x) f(x_k)$. Find an explicit expression for $\sum_{k=0}^n l_k(0) x_k^{n+1}$. (2)

1b. A function f(x) is defined on [0,1] and $|f^{(m)}(x)| \le m!$ for $m=1,2,\ldots$ Let $P_n(x)$ be the interpolating polynomial of f(x) at the points $1,q,q^2,\ldots,q^n$ where 0 < q < 1. Then prove or disprove that $\lim_{n\to\infty} P_n(0) = f(0)$.

2a. Suppose $f^* = \sum_{j=0}^{j=n} c_j^* \Phi_j$ be the least squares approximation to a given function f. Then prove or disprove $\|f - f^*\|_2^2 = \|f\|_2^2 - \|f^*\|_2^2$. (2)

Approximate $f(x) = \sqrt[3]{x}$ by a straight line in the interval [0,1], in the least square sense with the weight function w(x) = 1. Also find the norm of the error function for the best approximation.

Find a polynomial of second degree which is the best approximation in maximum norm to \sqrt{x} on the point set $\{0, \frac{1}{9}, \frac{4}{9}, 1\}$.

S. For the method

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(\xi), \quad x_0 < \xi < x_2$$

determine the optimum value of h, using the criteria $\mid RE \mid = \mid TE \mid$. Using this method and the value of h obtained from the criteria $\mid RE \mid = \mid TE \mid$, determine an approximate value of f'(2.0) from the following tabulated values of $f(x) = \log x$

×	2.0	2.01	2.02	2.06	2.12
f(x)	0.69315	0.69813	0.70310	0.72271	0.75142

given that the maximum roundoff error in function evaluation is 5×10^{-6} . (4)

4a. Find the number of subintervals n and the step size h so that the error for the composite Simpson's $\frac{1}{3}$ rd rule is less than 5×10^{-9} for the approximation $\int_2^7 \frac{dx}{x}$. (3)

4b. Compute

 $I = \int_0^1 e^{2x} dx$

by Romberg integration method correct to three decimal places, using Trapezoidal rule. (4)