Departamento de Análisis Matemático, Universidad de Granada

Prueba intermedia de Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Ejercicio 1. (**3 puntos**) Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos convergente a $w\in\mathbb{C}$. Para cada $n\in\mathbb{N}$ definimos la función $f_n\in\mathcal{H}(\mathbb{C}\setminus\{a_n\})$ por $f_n(z)=\frac{1}{z-a_n}$. Dado el conjunto compacto $K=\{a_n:n\in\mathbb{N}\}\cup\{w\}$, probar que la serie de funciones $\sum_{n\geqslant 1}\frac{f_n(z)}{n^2}$ converge absolutamente en todo punto del dominio $\Omega=\mathbb{C}\setminus K$ y uniformemente en cada subconjunto compacto contenido en Ω .

Ejercicio 2. (3 puntos) Estudiar la derivabilidad de las funciones $f,g:\mathbb{C}\to\mathbb{C}$ dadas por

$$f(z) = \operatorname{sen}(\overline{z})$$
 $g(z) = z(z-1)f(z)$ $(z \in \mathbb{C}).$

Ejercicio 3. Sea $\Omega \subset \mathbb{C}$ un abierto verificando $\overline{D}(0,1) \subset \Omega$ y sea $f \in \mathcal{H}(\Omega)$.

a) (1 punto) Justificar que para cada $z_0 \in D(0,1)$ se tiene

$$|f(z_0)| \le \max\{|f(z)|: z \in C(0,1)^*\}.$$

b) (1.5 puntos) Demostrar que

$$\max\{|f(z)|: z \in \overline{D}(0,1)\} = \max\{|f(z)|: z \in C(0,1)^*\}.$$

c) (1.5 puntos) Supongamos que existe $z_0 \in D(0,1)$ tal que $|f(z_0)| = \max\{|f(z)| : z \in \overline{D}(0,1)\}$. Dado r > 0 con $\overline{D}(z_0,r) \subset D(0,1)$, probar que existe $\lambda \in \mathbb{C}$ de modo que $f_{|\overline{D}(z_0,r)} \equiv \lambda$. (Extra: 1 punto) Probar que, de hecho, $f_{|\overline{D}(0,1)} \equiv \lambda$.