Mathematical Statistics I Assignment 2 - Questions

Due by March 13, 2024

- 1. Let X_1, \ldots, X_n be a random sample from the beta distribution B(a, b),
 - (i) Show that $(\Pi X_i, \Pi (1 X_i))$ is a sufficient statistic for (a, b).
 - (ii) Determine the sufficient statistic when a = b.
- 2. Let X_1, \ldots, X_n be a random sample from a population with density $f_{\theta}(x) = a(\theta)h(x)I_{(\theta_1,\theta_2)}(x)$, where $h(x) \geq 0, \theta = (\theta_1, \theta_2)$ with $-\infty < \theta_1 \leq \theta_2 < \infty$, and $a(\theta) = \left[\int_{\theta_1}^{\theta_2} h(x)dx\right]^{-1}$ is assumed to exist. Find a two-dimensional sufficient statistic for θ and apply your result to the $U(\theta_1, \theta_2)$ family of distributions.
- 3. Let X_1, \ldots, X_n be a random sample from rectangular distribution $R(\theta_1, \theta_2), \theta_1 < \theta_2$.
 - (i) Apply the Factorization Theorem to prove that $X_{(1)}$ and $X_{(n)}$ are sufficient statistics.
 - (ii) Derive the conditional density of $\mathbf{X} = (X_1, \dots, X_n)$ given $(X_{(1)}, X_{(n)})$.
- 4. Suppose that X_1, \ldots, X_n be a random sample from a location-scale family with distribution function F((x-a)/b). A statistic T(X) is said to be ancillary if its distribution does not depend on parameters of the model
 - (i) If b is known, show that the differences $(X_1 X_i)/b, i = 2, ..., n$, are ancillary.
 - (ii) If a is known, show that the ratios $(X_1 a) / (X_i a)$, i = 2, ..., n, are ancillary.
 - (iii) If neither a or b are known, show that the quantities $(X_1 X_i) / (X_2 X_i)$, i = 3, ..., n, are ancillary.
- 5. (i) Let X_1, \ldots, X_n be a random sample from the uniform distribution $U(0,\theta)$, $0 < \theta < \infty$, and let $T = \max(X_1, \ldots, X_n)$. Show that T is sufficient, once by using the definition of sufficiency and once by using the factorization criterion. Compare your answer with the results obtained from question 2.
 - (ii) Let X_1, \ldots, X_n be a sample from the exponential distribution E(a, b) with density $(1/b)e^{-(x-a)/b}$ when $x \ge a$ $(-\infty < a < \infty, 0 < b)$. Use the factorization criterion to prove that $(X_{(1)}, \sum_{i=1}^n X_i)$ is sufficient for a, b.