Section 10.3, 10.4 Calculus in Polar Coordinates

1. Polar Coordinates

(1) Realationship between Cartesian and Polar Coordinates.

$$x = rcos\theta$$
, $y = rsin\theta$, $r^2 = x^2 + y^2$

- (2) Polar Curves
 - A. Circle

$$r = 2asin\theta$$
 or $r = 2acos\theta$

B. Coardiod

$$r = a(1 \pm sin\theta) \text{ or } r = a(1 \pm cos\theta)$$

C. N-leaved Rose
$$r = acos(n\theta)$$
 or $r = asin(n\theta)$

2. Calculus in Polar Coordinates

For a curve described in polar coordinates, $r = f(\theta)$, we know that it's parametric equation can be described as:

$$x = rcos\theta = f(\theta)cos\theta$$
 and $y = rsin\theta = f(\theta)sin\theta$

Then, the slope can be determined by:

$$m = \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f'(\theta)sin\theta + f(\theta)cos\theta}{f'(\theta)cos\theta - f(\theta)sin\theta}$$

- (1) Categories of tangents
 - A. Horizontal tangents: $\frac{dy}{d\theta} = 0$, $\frac{dx}{d\theta} \neq 0$
 - B. Vertical tangents: $\frac{dx}{d\theta} = 0$, $\frac{dy}{d\theta} \neq 0$
 - C. Tangent line at pole: $m = tan\theta$
- (2) Area

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

(3) Arc Length

$$L = \int_{a}^{b} \sqrt{r^2 + (\frac{dr}{d\theta})^2}$$

- (4) Surface Area
 - A. Rotate about the polar axis: $S = \int_a^b 2\pi (r sin\theta) \sqrt{r^2 + (\frac{dr}{d\theta})^2}$
 - B. Rotate about the line $\theta = \frac{\pi}{2}$: $S = \int_a^b 2\pi (rcos\theta) \sqrt{r^2 + (\frac{dr}{d\theta})^2}$

Example 1

Example 3

Find the points on the curve $r=1+\cos\theta$ where the Find the exact length of the polar curve $r=\theta^2$, tangent line is horizontal or vertical. $0 \le \theta \le 2\pi$

Example 2

Sketch the curve $r=2+2cos\theta$ and find the area that it encloses.