

Text Summarization

Mentor: Mr. Narendra Kumar

Intern: Mohan Krishna G R

Group: 4

Introduction

Problem Statement & Planning

Introduction Problem Statement

- Developing an automated text summarization system that can accurately and efficiently condense large bodies of text into concise summaries is essential for enhancing business operations.
- This project aims to deploy NLP techniques to create a robust text summarization tool
 capable of handling various types of documents across different domains.
- The system should deliver high-quality summaries that retain the core information and contextual meaning of the original text.

INTENDED PLAN

Literature Review & Findings

Literature Review

S. No	Use-Case	Paper Title	Year	Method	Dataset	Results	Limitations
1	General text summarizatio n	Text Summarization Using Deep Learning Techniques: A Review	2023	Deep Learning (Seq2Seq, Attention, Transformers)	CNN/Daily Mail, XSum	Improved performanc e in capturing semantic relationship s, better coherence	Computatio nally expensive, requires large datasets

[1] Saiyyad, M.M.; Patil, N.N. "Text Summarization Using Deep Learning Techniques: A Review". Eng. Proc. 2023, 59, 194.

Literature Review

S. No	Use-Case	Paper Title	Year	Method	Dataset	Results	Limitations
2.	Implementati on of the Transformer architecture	Attention is all you need	2023	Transformer	WMT 2014 English- German, WMT 2014 English- French	Introduced the Transformer architecture, significantly improving the performance of text summarizati on tasks.	Requires large datasets and computatio nal resources for training.

[2] A. Vaswani, L. Jones, N. Shazeer, N. Parmar, A. N. Gomez, J. Uszkoreit, Ł. Kaiser, and I. Polosukhin, "Attention Is All You Need," arXiv:1706.03762v7 [cs.CL], Aug. 2, 2023.

Literature Review

S. No	Use-Case	Paper Title	Year	Method	Dataset	Results	Limitations
3.	Multi- document summarizatio n	Surveying the Landscape of Text Summarization with Deep Learning	2023	Deep learning methods. Various techniques like RBMs and fuzzy logic employed for summarization.	CNN/Daily Mail	Incorporati ng transfer learning enhances summary quality and reduces data demand.	Complex models, high computatio nal resources

[3] G. Wang and W. Wu, "Surveying the Landscape of Text Summarization with Deep Learning: A Comprehensive Review," arXiv:2310.09411v1 [cs.CL], Oct. 13, 2023.

Literature Review

S. No	U4se-Case	Paper Title	Year	Method	Dataset	Results	Limitations
4.	Abstractive summarization	Pegasus: Pre- training with gap- sentences for abstractive summarization	2020	Transformer (Pegasus)	XSum, CNN/Daily Mail, and Reddit TIFU	Significant improveme nts in abstractive summarizat ion quality	Resource- intensive

[4] J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, "PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization," arXiv:1912.08777v3 [cs.CL], Jul. 10, 2020.

Literature Review

S. No	Use-Case	Paper Title	Year	Method	Dataset	Results	Limitations
5.	Extractive summarizatio n	Text Summarization with Pretrained Encoders	2019	Intersentence Transformer layers for summarizatio n	CNN/Daily Mail, NYT, Xsum, DailyMail	BERT-based models outperform ed other approaches in abstractive summarizat ion.	High computatio nal resources required

[5] Y. Liu and M. Lapata, "Text Summarization with Pretrained Encoders," arXiv:1908.08345v2 [cs.CL], Sep. 5, 2019.

Research Selected Architecture

[2] Fig. :Transformer architecture:

Implementation methods:

- From Scratch
 - Build Model
 - NN
 - Initialize normalized W&B
 - Train model with extensive data
 - Hence,
 - Computationally Intensive
 - Sub-Optimal usage of resources
 - Out-of-scope
- Using Pre-trained model
 - Load Model & its parameters
 - Re-Train with specific dataset
 - Evaluate
 - Hence,
 - Innovation can be done at intended tasks
 - Optimal utilization of resources

Proposal Workflow

Fig.: Proposed Workflow

Dataset

- Merged selective dataset from
 - CNN, Daily Mail: News,
 - BillSum: Legal,
 - ArXiv : Scientific
 - Dialoguesum : Conversations.
- Completed data preprocessing
 - Removed
 - NULL records, punctation, stop-words
 - Lowercasing, lemmatization.

	text	summary
0	section 1 liability business entity providing	shield business entity civil liability relatin
1	section 1 short title act may cited human righ	human right information act requires certain f
2	section 1 short title act may cited jackie rob	jackie robinson commemorative coin act directs
3	section 1 nonrecognition gain rollover small b	amends internal revenue code provide temporari
4	section 1 short title act may cited native ame	native american energy act sec 3 amends energy
62702	person1 excuse mr green manchester arent perso	tan ling pick mr green easily recognized white
62703	person1 mister ewing said show conference cent	person1 person2 plan take underground together
62704	person1 help today person2 would like rent car	person2 rent small car 5 day help person1
62705	person1 look bit unhappy today whats person2 w	person2s mom lost job person2 hope mom wont fe
62706	person1 mom im flying visit uncle lee family n	person1 asks person2s idea packing bag visitin

62707	rows	×	2 co	lumns	
-------	------	---	------	-------	--

count	62707.000000
mean	5211.270975
std	7794.860686
min	83.000000
25%	1275.000000
50%	3176.000000
75%	5684.500000
max	323742.000000
NI	A A

Name: text, dtype: float64

	lext
30000 -	-
25000 -	
- 20000 -	
Feduency 15000 -	
10000 -	
5000 -	
0 -	0 50000 100000 150000 200000 250000 300000 Text length

count	62707.000000	
mean	448.081937	
std	459.087443	
min	16.000000	
25%	154.000000	
50%	255.000000	
75%	618.000000	
max	6014.000000	
	1.0	

* In characters.

https://drive.google.com/drive/folders/1yH89iZmARdc-R7QY6pwfE8tbOJI_n9K8?usp=sharing

<u>Infosys_Text-Summarization/src/data_preprocessing.ipynb at main · MohanKrishnaGR/Infosys_Text-Summarization (github.com)</u>

ProposalModel Training

Fig.: Fine-Tunning Overview

- Proposed implementation Two 2 Methods
 - Method 1 Native PyTorch Method
 - Method 2 Trainer Class Method

Model Training (Method 1)

- Load pre-trained transformer
 - Facebook's Bart Large
- OOP implementation of Dataset
 - Feature, Target
 - Tokenize
 - Padding, Truncate
 - Convert to Tensor
 - Pass to: DataLoader with batch size
- Training Loop
 - Adam optimizer
 - Forward pass & compute loss
 - Backward pass
 - Update params compute gradient
 - Update LR
 - Zero the gradients
 - Update total loss

Fig. : Screenshot

- Only minimal train loss of 1.3280.
 - But, produced inconsistent results.
 - Cannot be pushed into production.
- Raises the need for optimized training and eval loop for Transformer.

Model Training (Method 2)

- Trainer Method
- Implemented in src/bart.ipynb.
- A function was implemented for the dataset, to convert text data into model inputs and targets.
- Trainer class from transformer package was utilized for training and evaluation. Tainer is a simple but feature-complete training and eval loop for PyTorch, optimized for transformers.
- The model was trained with whole dataset for 10 epochs for 26:24:22 (HH:MM:SS) in 125420 steps.
- Training Loss = 17.4700
- Considered the performance metrics of the models trained by the forementioned methods. After the due analysis, the model trained using 'Method 2' was selected.

28-06-2024 GR M O H A N K R I S H N A 17

Model Validation

- Performance metrics ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - Overlap between generated summary and reference summary.
 - Best suited : evaluating 'Text Summarization' tasks.
 - Other options : BLEU.
- ROUGE-N: Measures the overlap of n-grams (contiguous sequences of n items) between the candidate summary and the reference summaries.
 - ROUGE-1:
 - Overlap of unigrams (single words).
 - ROUGE-2:
 - Overlap of bigrams (two-word sequences).
 - ROUGE-L:
 - Measures the longest common subsequence (LCS) between the candidate and reference summaries.
 - ROUGE-LSUM
 - (LCS Summary) variant of the ROUGE-L metric, specifically designed to evaluate the quality of summaries.
- Aimed to: implement custom evaluation function, using ROUGE based on model's inference.

<u>Infosys Text-Summarization/src/evaluation.ipynb at main · MohanKrishnaGR/Infosys Text-Summarization (github.com)</u>
<u>Infosys Text-Summarization/src/rogue.ipynb at main · MohanKrishnaGR/Infosys Text-Summarization (github.com)</u>

Comparative Analysis

- Analysis of the transformer's performance metrics before and after Fine-Tuning.
- The transformer model shows significant improvements across all ROUGE metrics after fine-tuning.
- The most substantial gains observed in ROUGE-2 scores. (F1-score=61.32)
- This indicates that the fine-tuning process has notably enhanced the model's ability to generate more accurate and relevant summaries.
- The model is now more proficient at generating summaries that are precise, comprehensive, and contextually accurate.
- Will act as a powerful tool for a variety of Business applications that require efficient and effective text summarization.

28-06-2024 GRMOHAN KRISHNA 19

Proposal Testing

- Simple interface for the Deep Learning model, developed using Gradio.
- Gradio is an open-source
 Python package that
 allows us to quickly build a
 demo web-application
 for the trained models.
- Enables us to test and even deploy the trained model.

Infosys Text-Summarization/src/interface.ipynb at main · MohanKrishnaGR/Infosys Text-Summarization (github.com)

Proposal Deployment

Proposal Deployment

- Implemented extractor modules for text extraction from URL, PDF, docx.
- Defined the API endpoints. (FastAPI)
 - Accepts: Text, URL, Files (PDF, docx)
 - Returns:
 - Abstractive & Extractive Summary
- Utilized 'jQuery' for a dynamic webpage.
- Containerized the entire application along with the deep-learning models.
 - Built the image & Pushed into docker hub.

- Deployed the docker image using AWS EC2
- Integrated with GitHub actions CI/CD pipeline
- Drawback = Less computation for free-tier plan (t2.micro)
- Deployed the docker image using Azure Container Instance
- Integrated with GitHub actions CI/CD pipeline
- Advantage = 4 CPU cores for Free Trail

Deployment - Ref. Links

mohankrishnagr/infosys text-summarization - Docker Image | Docker Hub

- <u>Text-Summarizer</u>
 - http://54.168.82.95/

- <u>Text-Summarizer</u>
 - http://mohankrishnagr.centralindia.azurecontainer.io:8000/
 - http://20.219.203.134:8000/

Proposal Deployment - Result

Fig. : Screenshot of the deployed application.