Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-1: Linear Algebra & Vector Calculus for ML/DL Probability Theory

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Eigenvectors

- When a matrix hits a vector, the vector gets transformed into a new vector (it strays from its path). The vector may also get scaled (elongated or shortened) in the process.
- For a given square matrix A, there exist special vectors which refuse to stray from their path. These vectors are called eigenvectors.

Eigen Decomposition

- Eigen decomposition is decomposing a matrix into a set of eigenvalues and eigenvectors
- Eigenvalues of a square matrix ${\bf A}$ are scalars λ and eigenvectors are non-zero vectors ${\bf v}$ that satisfy ${\bf A}{\bf v}=\lambda {\bf v}$
- Eigenvalues are found by solving the following equation

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

- Eigenvalues and eigenvectors are only for square matrices.
- Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.
- We do not consider the zero vector to be an eigenvector: since A0=0= λ 0 for every scalar λ , the associated eigenvalue would be undefined.
- Several properties of matrices can be analyzed based on their eigenvalues
- The eigenvectors of a matrix $A \in \mathbb{R}^{n \times n}$ having distinct eigenvalues are linearly independent.
- The eigenvectors of a square symmetric matrix are orthogonal.

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Eigen Decomposition

• If a matrix ${\bf A}$ has n linearly independent eigenvectors $\{{\bf v}^1,\dots,{\bf v}^n\}$ with corresponding eigenvalues $\{\lambda_1,\dots,\lambda_n\}$, the eigen decomposition of ${\bf A}$ is given by

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$

- Columns of the matrix **V** are the eigenvectors, i.e., $\mathbf{V} = [\mathbf{v}^1, ..., \mathbf{v}^n]$
- Λ is a diagonal matrix of the eigenvalues, i.e., $\Lambda=\mathrm{diag}(\lambda)$, where $\lambda=[\lambda_1,\ldots,\lambda_n]$
- To find the inverse of the matrix A, we can use ${f A}^{-1}={f V}{f \Lambda}^{-1}{f V}^{-1}$
 - This involves simply finding the inverse $\ensuremath{\Lambda^{-1}}$ of a diagonal matrix

Eigen Decomposition

- Decomposing a matrix into eigenvalues and eigenvectors allows to analyze certain properties
 of the matrix
 - If all eigenvalues are positive, the matrix is positive definite
 - If all eigenvalues are positive or zero-valued, the matrix is positive semidefinite
 - If all eigenvalues are negative or zero-values, the matrix is negative semidefinite
 - Positive semidefinite matrices are interesting because they guarantee that $\forall \mathbf{x}, \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$
- · Eigen decomposition can also simplify many linear-algebraic computations
 - The determinant of A can be calculated as

$$\det(\mathbf{A}) = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$$

- If any of the eigenvalues are zero, the matrix is singular (it does not have an inverse)
- However, not every matrix can be decomposed into eigenvalues and eigenvectors
 - Also, in some cases the decomposition may involve complex numbers
 - Still, every real symmetric matrix is guaranteed to have an eigen decomposition according to $A = V\Lambda V^{-1}$, where V is an orthogonal matrix

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Singular Value Decomposition

- Singular value decomposition (SVD) provides another way to factorize a matrix, into singular vectors and singular values
 - SVD is more generally applicable than eigen decomposition
 - Every real matrix has an SVD, but the same is not true of the eigen decomposition
 - · E.g., if a matrix is not square, the eigen decomposition is not defined, and we must use SVD
- SVD of an $m \times n$ matrix **A** is given by

$$A = UDV^T$$

- **U** is an $m \times m$ matrix, **D** is an $m \times n$ matrix, and **V** is an $n \times n$ matrix
- The elements along the diagonal of D are known as the singular values of A
- The columns of **U** are known as the left-singular vectors
- The columns of V are known as the right-singular vectors
- For a non-square matrix **A**, the squares of the singular values σ_i are the eigenvalues λ_i of $\mathbf{A}^T\mathbf{A}$, i.e., $\sigma_i^2=\lambda_i$ for i=1,2,...,n

Vector Calculus

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Differential Calculus

• For a function $f: \mathbb{R} \to \mathbb{R}$, the **derivative** of f is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- If f'(a) exists, f is said to be differentiable at a
- If f'(c) exits for $\forall c \in [a, b]$, then f is differentiable on this interval
 - We can also interpret the derivative f'(x) as the instantaneous rate of change of f(x) with respect to x
 - I.e., for a small change in x, what is the rate of change of f(x)
- Given y = f(x), where x is an independent variable and y is a dependent variable, the following expressions are equivalent:

$$f'(x) = f' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

• The symbols $\frac{d}{dx}$, D, and D_x are differentiation operators that indicate operation of differentiation

Differential Calculus

- The following rules are used for computing the derivatives of explicit functions
 - Derivative of constants. $\frac{d}{dx}c=0$.
 - Derivative of linear functions. $\frac{d}{dx}(ax) = a$.
 - Power rule. $\frac{d}{dx}x^n = nx^{n-1}$.
 - Derivative of exponentials. $\frac{d}{dx}e^x = e^x$.
 - Derivative of the logarithm. $\frac{d}{dx}\log(x) = \frac{1}{x}$.
 - Sum rule. $\frac{d}{dx}\left(g(x)+h(x)\right)=\frac{dg(x)}{dx}+\frac{dh(x)}{dx}$.
 - Product rule. $\frac{d}{dx}(g(x) \cdot h(x)) = g(x)\frac{dh(x)}{dx} + \frac{dg(x)}{dx}h(x)$.
 - Chain rule. $\frac{d}{dx}g(h(x)) = \frac{dg(h(x))}{dh} \cdot \frac{dh(x)}{dx}$.

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Matrix Calculus

- Let y = Ax then $\frac{\partial y}{\partial z} = A \frac{\partial x}{\partial z}$
- Let $\alpha = \mathbf{y}^T \mathbf{x}$ then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$
- Let $\alpha = \mathbf{y}^T \mathbf{A} \mathbf{x}$ then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T \mathbf{A}^T \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^T \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$
- Let $\alpha = x^T A x$ then $\frac{\partial \alpha}{\partial z} = x^T (A^T + A) \frac{\partial x}{\partial z}$
- Let A be symmetric and $\alpha = x^T A x$ then $\frac{\partial \alpha}{\partial z} = 2x^T A \frac{\partial x}{\partial z}$

Higher Order Derivatives

• The derivative of the first derivative of a function f(x) is the **second derivative** of f(x)

$$\frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx} \right)$$

- The second derivative quantifies how the rate of change of f(x) is changing
 - E.g., in physics, if the function describes the displacement of an object, the first derivative gives the velocity of the object (i.e., the rate of change of the position)
 - The second derivative gives the acceleration of the object (i.e., the rate of change of the velocity)
- If we apply the differentiation operation any number of times, we obtain the n-th derivative of f(x)

$$f^{(n)}(x) = \frac{d^n f}{dx^n} = \left(\frac{d}{dx}\right)^n f(x)$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Partial Derivatives

- Functions that depend on many variables are called multivariate functions
- Let $y = f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ be a multivariate function with n variables
 - The input is an *n*-dimensional vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ and the output is a scalar y
 - The mapping is $f: \mathbb{R}^n \to \mathbb{R}$
- The *partial derivative* of y with respect to its i^{th} parameter x_i is

$$\frac{\partial y}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_i + h, \dots, x_n) - f(x_1, x_2, \dots, x_i, \dots, x_n)}{h}$$

- To calculate $\frac{\partial y}{\partial x_i}$ (∂ pronounced "del" or we can just say "partial derivative"), we can treat $x_1, x_2, \dots, x_{i-1}, x_{i+1} \dots, x_n$ as constants and calculate the derivative of y only with respect to x_i
- For notation of partial derivatives, the following are equivalent:

$$\frac{\partial y}{\partial x_i} = \frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} f(\mathbf{x}) = f_{x_i} = f_i = D_i f = D_{x_i} f$$

Gradient

- We can concatenate partial derivatives of a multivariate function with respect to all its input variables to obtain the gradient vector of the function
- The gradient of the multivariate function $f(\mathbf{x})$ with respect to the n-dimensional input vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T$, is a vector of n partial derivatives

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n} \right]^T$$

- When there is no ambiguity, the notations $\nabla f(\mathbf{x})$ or $\nabla_{\mathbf{x}} f$ are often used for the gradient instead of $\nabla_{\mathbf{x}} f(\mathbf{x})$
 - The symbol for the gradient is the Greek letter ∇ (pronounced "nabla"), although $\nabla_{\!\mathbf{x}} f(\mathbf{x})$ is more often it is pronounced "gradient of f with respect to \mathbf{x} "
- In ML, the gradient descent algorithm relies on the opposite direction of the gradient of the loss function \mathcal{L} with respect to the model parameters θ ($\nabla_{\theta}\mathcal{L}$) for minimizing the loss function
 - Adversarial examples can be created by adding perturbation in the direction of the gradient of the loss \mathcal{L} with respect to input examples x ($\nabla_{\!x}\mathcal{L}$) for maximizing the loss function

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Hessian Matrix

- To calculate the second-order partial derivatives of multivariate functions, we need to calculate the derivatives for all combination of input variables
- That is, for a function $f(\mathbf{x})$ with an n-dimensional input vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T$, there are n^2 second partial derivatives for any choice of i and j

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

• The second partial derivatives are assembled in a matrix called the *Hessian*

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \end{bmatrix}$$

- Computing and storing the Hessian matrix for functions with high-dimensional inputs can be computationally prohibitive
 - $-\,$ E.g., the loss function for a ResNet50 model with approximately 23 million parameters, has a Hessian of 23 M \times 23 M = 529 T (trillion) parameters

Jacobian Matrix

- The concept of derivatives can be further generalized to vector-valued functions (or, vector fields) $f: \mathbb{R}^n \to \mathbb{R}^m$
- For an n-dimensional input vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^n$, the vector of functions is given as $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_m(\mathbf{x})]^T \in \mathbb{R}^m$
- The matrix of first-order partial derivates of the vector-valued function $\mathbf{f}(\mathbf{x})$ is an $m \times n$ matrix called a *Jacobian*

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

 For example, in robotics a robot Jacobian matrix gives the partial derivatives of the translational and angular velocities of the robot end-effector with respect to the joints (i.e., axes) velocities

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbac

Integral Calculus

 For a function f(x) defined on the domain [a, b], the definite integral of the function is denoted

$$\int_{a}^{b} f(x) dx$$

- Geometric interpretation of the integral is the area between the horizontal axis and the graph of f(x) between the points a and b
 - In this figure, the integral is the sum of blue areas (where f(x) > 0) minus the pink area (where f(x) < 0)

Probability Theory

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Probability

- Intuition:
 - In a process, several outcomes are possible
 - When the process is repeated a large number of times, each outcome occurs with a *relative frequency*, or *probability*
 - If a particular outcome occurs more often, we say it is more probable
- Probability arises in two contexts
 - In actual repeated experiments
 - Example: You record the color of 1,000 cars driving by. 57 of them are green. You estimate the probability of a car being green as 57/1,000 = 0.057.
 - In idealized conceptions of a repeated process
 - Example: You consider the behavior of an unbiased six-sided die. The expected probability of rolling a 5 is 1/6 = 0.1667.
 - Example: You need a model for how people's heights are distributed. You choose a normal distribution to represent the expected relative probabilities.

Probability

- Solving machine learning problems requires to deal with uncertain quantities, as well as with stochastic (non-deterministic) quantities
 - Probability theory provides a mathematical framework for representing and quantifying uncertain quantities
- There are different sources of uncertainty:
 - Inherent stochasticity in the system being modeled
 - For example, most interpretations of quantum mechanics describe the dynamics of subatomic particles as being probabilistic
 - Incomplete observability
 - Even deterministic systems can appear stochastic when we cannot observe all of the variables that drive the behavior of the system
 - Incomplete modeling
 - When we use a model that must discard some of the information we have observed, the discarded information results in uncertainty in the model's predictions
 - E.g., discretization of real-numbered values, dimensionality reduction, etc.

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Axioms of probability

- The probability of an event \mathcal{A} in the given sample space \mathcal{S} , denoted as $P(\mathcal{A})$, must satisfies the following properties:
 - Non-negativity
 - For any event $A \in S$, $P(A) \ge 0$
 - All possible outcomes
 - Probability of the entire sample space is 1, P(S) = 1
 - Additivity of disjoint events
 - For all events $\mathcal{A}_1, \mathcal{A}_2 \in \mathcal{S}$ that are mutually exclusive $(\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset)$, the probability that both events happen is equal to the sum of their individual probabilities, $P(\mathcal{A}_1 \cup \mathcal{A}_2) = P(\mathcal{A}_1) + P(\mathcal{A}_2)$

Random variables

- A *random variable X* is a variable that can take on different values
 - Example: X = rolling a die
 - Possible values of *X* comprise the **sample space**, or **outcome space**, $S = \{1, 2, 3, 4, 5, 6\}$
 - We denote the event of "seeing a 5" as $\{X = 5\}$ or X = 5
 - The probability of the event is $P({X = 5})$ or P(X = 5)
 - Also, P(5) can be used to denote the probability that X takes the value of 5
- The probability of a random variable P(X) must obey the axioms of probability over the possible values in the sample space S
- A probability distribution is a description of how likely a random variable is to take on each of its possible states
 - A compact notation is common, where P(X) is the probability distribution over the random variable X
 - Also, the notation $X \sim P(X)$ can be used to denote that the random variable X has probability distribution P(X)
- · Random variables can be discrete or continuous
 - Discrete random variables have finite number of states: e.g., the sides of a die
 - Continuous random variables have infinite number of states: e.g., the height of a person

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Discrete Variables

- A probability distribution over discrete variables may be described using a probability mass function (PMF)
 - E.g., sum of two dice
- A probability distribution over continuous variables may be described using a probability density function (PDF)
 - A PDF gives the probability of an infinitesimal region with volume δX
 - To find the probability over an interval [a, b], we can integrate the PDF as follows:

$$P(X \in [a, b]) = \int_a^b P(X) dX$$

Multivariate Random Variables

- We may need to consider several random variables at a time
 - If several random processes occur in parallel or in sequence
 - E.g., to model the relationship between several diseases and symptoms
 - E.g., to process images with millions of pixels (each pixel is one random variable)
- Probability distributions defined over multiple random variables
 - These include joint and conditional probability distributions
- The individual random variables can also be grouped together into a random vector, because they represent different properties of an individual statistical unit
- A *multivariate random variable* is a vector of multiple random variables

$$\mathbf{X} = [X_1, X_2, \dots, X_n]^T$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Joint Probability Distribution

- Probability distribution that acts on many variables at the same time is known as a joint probability distribution
- Given any values x and y of two random variables X and Y, what is the probability that X = x and Y = y simultaneously?
 - P(X = x, Y = y) denotes the joint probability
 - We may also write P(x, y) for brevity

Marginal Probability Distribution

- Marginal probability distribution is the probability distribution of a single variable
 - It is calculated based on the joint probability distribution P(X,Y)
 - I.e., using the sum rule:

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

 For continuous random variables, the summation is replaced with integration,

$$P(X = x) = \int P(X = x, Y = y) \, dy$$

This process is called marginalization

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbae

Conditional Probability Distribution

- Conditional probability distribution is the probability distribution of one variable provided that another variable has taken a certain value
 - Denoted P(X = x | Y = y)
- Note that:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Exercise

- 1. Suppose $f(x) = sin^3(x)$. Then, f'(x) = ?
 - A. $f'(x) = \cos^3(x)$
 - B. $f'(x) = 3\cos^2(x)$
 - C. $f'(x) = 3\sin^2(x)$
 - D. $f'(x) = 3\sin^2(x)\cos(x)$
- 2. Suppose f(x) = (x+2)(3x-3).

Then,
$$f'(x) = ?$$

- A. $f'^{(x)} = 3$
- B. $f'^{(x)} = 3x + 6$
- C. $f'^{(x)} = 6x + 3$
- ${\tt D.}\ {\it None}\ of\ these$

- 3. If $f(x, y) = x^3y + x + 2y$. Then the Hessian matrix would be of dimension:
 - A. 2×2
 - B. 2×1
 - C. 4×4
 - D. 1×2
- 4. If $f(x, y) = x^3y + x + 2y$. Then the Hessian matrix would be:

?

5. Suppose $f(x, y) = [x^2 - y^2, 2xy]^T$. Then J(x, y) = [J(x, y) indicates Jacobian of f(x, y)]

?

