Data Structure Project 1

Deadline: Apr 28, 23:59

This project requires students to compare five sorting algorithms, which are "Bubble Sort", "Insertion Sort", "Merge Sort", "Quick Sort", and "Heap Sort" in the aspect of time complexity, best&worst case scenario.

Requirement:

1. Implement the five sorting algorithms based on the skeleton code provided.

2. Compare the running time of five sorting algorithms, and fill the following table:

t	3	4	5	6	 14	15	16	17
Bubble	0	0	0	0	0.8	3.336	14.56	42.82
Insertion	0	0	0	0	0.245	0.814	2.85	9.924
Merge	0	0	0	0	0.018	0.026	0.084	0.153
Quick	0	0	0	0	0.009	0.02	0.05	0.13
Неар	0	0	0	0	0.002	0.008	0.02	0.03

where each cell in the table denotes the running time (recorded by C++ timer) given the input size (number of elements in the list to be sorted) 2^t. For example, at column "17", each soring algorithm should sort the list containing 2¹⁷ random integers. Note: in order to be fairness to all the sorting algorithms, the input random integer list should be the same.

- 3. Use "t" as X-axis and running time (value in each cell in above table) as Y-axis, plot all the points and sketch the curve (You may do this by Excel) for each sorting algorithms. Draw all five curves in one X-Y coordinate plane. Compare the five curves and explain the reason.
- **4.** Describe the best/worst case and the corresponding time complexity of each sorting algorithm. You may fill the tables below:

	Best case description	Best case example	Best case time complexity
Bubble	sorted in increasing order	1 123 45	0 (N)
Insertion	sorted in increasing orde	12345	0(N)
Merge	no need to mergesort	(123), (456)	O(NlogN)
Quick	partition is perfectly balanced pivot is always in middle	12345	D(NlogN)
Неар	Least nodes sorted in	\$ 3	O(NlogN)
	VVII.	9	,
	Worst case	Worst case	Worst case time

	Worst case description	Worst case example	Worst case time complexity
Bubble	sorted in reverse order	54321	0(N ²)
Insertion	sorted in reverse order	54321	$O(N^2)$
Merge	mergesort to sort noum!	ers (246),(135)	ocNlogN)
Quick	The pivot is the smallest elem	ient 12345	$O(N^2)$
Неар	most nodes sorted in a reverse order	66	O (NlogN)
and the same	i a feeta videi	9 9 8 0	