

MTH101: Linear Algebra (2023-24)

Tutorial 01 (August 31, 2023)

1. Let
$$u = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $v = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, and $w = \begin{pmatrix} 2\sin(\pi/2) \\ \cos(\pi/3) \end{pmatrix}$ be vectors in \mathbb{R}^2 .

(a) Calculate the following:

- (i). u+v
- (iii). *u.v*

(v). u - 2v + 3w

- (ii). v 2w
- (iv). $(u v) \cdot (u w)$ (vi). $(u \cdot w)u + (v \cdot w)u$
- (b) Are there real numbers $\alpha, \beta \in \mathbb{R}$ for which $w = \alpha u + \beta v$?
- (c) Fixing a coordinate frame of perpendicular x-axis and y-axis, plot u, u + v and u + v + w on the plane.
- (d) If we rotate u by an angle of $\pi/2$ to reach another vector u', then what will be the coordinates of u'?
- 2. Using the idea of rotations, convince yourself that

(a).
$$\sin(-\theta) = -\sin(\theta)$$

(b).
$$cos(-\theta) = cos(\theta)$$

- 3. Think about it. Take two distinct vectors $u, v \in \mathbb{R}^2$. The set $\{(1 \alpha)u + \alpha v : \alpha \in \mathbb{R}\}$ is called then *line* joining u and v. Why should this set be named line?
- 4. A fun task. Look at the following rectangle.

Its red corner corresponds to the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. If you flip this rectangle about the blue diagonal as shown in the image above, then what vector will correspond to the new location of the red corner?