

Voltage Regulator

IFX1117

Data Sheet

Features

- Output voltage 3.3 V or adjustable
- 1.0 A output current
- Low drop voltage < 1.2 V @ 800 mA
- · Short circuit protected
- Overtemperature protected
- Operating range up to 15 V
- Industrial type
- Green Product (RoHS compliant)

For automotive and transportation applications, please refer to the Infineon TLE and TLF voltage regulator series.

Functional Description

The IFX1117 is a monolithic integrated fixed NPN type voltage regulator that can supply loads up to 1.0 A. The device is housed in the small surface mounted SOT223 package. The IC is equipped with additional protection against overload, short circuit and overtemperature.

The IFX1117ME V33 supplies a regulated output voltage of 3.3 V ($\pm 2\%$). The IFX1117ME V supplies an output voltage with $\pm 2\%$ precision adjustable via an external voltage divider. The input voltage for the IFX1117ME V33 ranges from 4.5 V (= $V_{\rm Q}+V_{\rm DR}$) to 15 V for a load current of 800 mA, for the maximum load current of 1.0 A a minimum input voltage of 4.7 V is required. The drop voltage $V_{\rm DR}$ ranges from 1.1 V to 1.4 V depending on the load current level.

The device operates in the temperature range of $T_i = 0$ to 125 °C.

Туре	Package	Marking
IFX1117ME V33	PG-SOT223	111733
IFX1117ME V	PG-SOT223	1117V

Data Sheet 1 Rev. 1.0, 2011-02-24

Figure 1 Block Diagram for Fixed Output Voltage IFX1117ME V33

Data Sheet 2 Rev. 1.0, 2011-02-24

Figure 2 Pin Configuration IFX1117ME V33 (top view)

Table 1 Pin Definitions and Functions IFX1117ME V33

Pin No.	Symbol	Function
1	GND	Ground
2	Q	Output; Connect output pin to GND via a capacitor $C_Q \ge 10 \ \mu\text{F}$ with ESR $\le 20 \ \Omega$ (see also graph "Region of Stability")
3	I	Input
4 (TAB)	Q	Output; Connect to pin 2 and heatsink area on PCB

Data Sheet 3 Rev. 1.0, 2011-02-24

Figure 3 Pin Configuration IFX1117ME V (top view)

Table 2 Pin Definitions and Functions IFX1117ME V

Pin No.	Symbol	Function
1	ADJ	Adjust ; defines output voltage level by external voltage divider between Q, ADJ and GND.
2	Q	Output; Connect output pin to GND via a capacitor $C_{\rm Q} \ge 10~\mu{\rm F}$ with ESR $\le 20~\Omega$ (see also graph "Region of Stability").
3	I	Input
4 (TAB)	Q	Output; Connect to pin 2 and heatsink area on PCB

Data Sheet 4 Rev. 1.0, 2011-02-24

Table 3 Absolute Maximum Ratings

Parameter	Symbol	Lim	it Values	Unit	Test Condition
		Min.	Max.		
Input - Output Voltag	e Differen	ce (varia	ble device	only)	
Voltage	V_{I} - V_{Q}	-0.3	20	٧	_
Input Voltage (fixed v	oltage ve	rsion on	ly)		
Voltage	V_{l}	-0.3	20	٧	_
Output					
Voltage	V_{Q}	-0.3	20	٧	_
Current	I_{Q}	_	_	-	Internally limited
ESD Rating					
Electrostatic discharge voltage	V_{ESD}	-2	2	kV	Human Body Model
Temperature	•	•	·		
Storage temperature	T_{stg}	-50	150	°C	_
Junction temperature	T_{i}	-40	150	°C	_

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4 Operating Range

Parameter	Symbol	Limit '	Values	Unit	Remarks
		Min.	Max.		
Input Voltage	V_{l}	V_{Q} + V_{DR}	15	٧	-
Junction temperature	$T_{\rm j}$	0	125	°C	-
Table 5 Thermal	Resistan	ce			
Junction ambient	$R_{\rm thja}$	-	164	K/W	PG-SOT223, footprint only.
		-	81	K/W	PG-SOT223, 300 mm² heat sink area
Junction case	R_{thjc}	_	4	K/W	-

Note: In the operating range, the functions given in the circuit description are fulfilled.

Data Sheet 5 Rev. 1.0, 2011-02-24

Characteristics 3.3 V Fixed Output Voltage Device IFX1117ME V33

0 °C < $T_{\rm i}$ < 125 °C; $V_{\rm i}$ = 5 V, $I_{\rm Q}$ = 10 mA; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Measuring Conditions
		min.	typ.	max.		
Output voltage	V_{Q}	3.23 5	3.300	3.36 5	٧	$0 \text{ mA} \le I_{\text{Q}} \le 800 \text{ mA} 4.7 \text{ V} \le V_{\text{I}} \le 10 \text{ V}$
Output voltage	V_{Q}	_	3.300	_	V	0 mA $\leq I_{\rm Q} \leq$ 1000 mA; 4.7 V $\leq V_{\rm I} \leq$ 15V
Line regulation	ΔV_{Q}	_	1	6	mV	$4.7 \text{ V} \le V_1 \le 15 \text{V}$
Load regulation	ΔV_{Q}	_	1	10	mV	$0 \text{ mA} \le I_Q \le 800 \text{ mA};^{1)}$
		_	2	_	mV	$0 \text{ mA} \le I_{Q} \le 1.0 \text{ A}^{1)}$
Drop voltage	V_{DR}	_	1.00	1.10	V	$I_{\rm Q}$ = 100 mA ²⁾
Drop voltage	V_{DR}	_	1.05	1.15	٧	$I_{\rm Q}$ = 500 mA ²⁾
Drop voltage	V_{DR}	_	1.10	1.20	V	$I_{\rm Q}$ = 800 mA ²⁾
Drop voltage	V_{DR}	_	1.30	1.40	V	$I_{\rm Q}$ = 1.0 A ²⁾
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	5	10	mA	$I_{\rm Q}$ = 10 mA
Temperature stability	ΔV_{Q}	_	16.5	_	mV	3)
Long Term Stability	_	_	0.3	_	%	3)
Current limit	I_{Qmax}	1100	_	2250	mA	$V_{\rm Q} = 0.5 \; {\rm V}$
RMS Output Noise	_	_	30	_	ppm	ppm of $V_{\rm Q}$, $T_{\rm j}$ = 25 °C 10 Hz \leq f \leq 10 kHz ³⁾
Power Supply Ripple Rejection	PSRR	60	65	_	dB	$f_{\rm r}$ = 120 Hz, $V_{\rm r}$ = 1 $V_{\rm PP}^{3)}$

¹⁾ Measured at constant junction temperature

Data Sheet 6 Rev. 1.0, 2011-02-24

²⁾ Drop voltage measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_{\rm I} = 5.0$ V.

³⁾ Specified by design; not subject to production test.

Characteristics Adjustable Output Voltage Device IFX1117ME V 0 °C < $T_{\rm i}$ < 125 °C; $V_{\rm i}$ = 5 V, $I_{\rm Q}$ = 10 mA; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Measuring Conditions
		min.	typ.	max.		
Reference voltage	V_Q	1.22 5	1.250	1.27 0	٧	10 mA $\leq I_{\rm Q} \leq$ 800 mA; 1.4 V \leq ($V_{\rm l}$ - $V_{\rm Q}$) \leq 10 V
Output voltage	V_Q	_	1.250	_	٧	10 mA $\leq I_{\rm Q} \leq$ 1000 mA; 2.65 V $\leq V_{\rm I} \leq$ 15 V
Line regulation	ΔV_Q	_	0.035	0.2	% ¹⁾	$1.5 \text{ V} \le (V_{\text{I}} - V_{\text{Q}}) \le 13.75 \text{ V}$
Load regulation	ΔV_Q	_	0.2	0.4	% ¹⁾	10 mA $\leq I_Q \leq$ 800 mA; ²⁾
		_	0.25	_	% ¹⁾	10 mA \leq $I_{\rm Q}$ \leq 1.0 A $^{2)}$
Drop voltage	V_{DR}	_	1.00	1.10	٧	$I_{\rm Q}$ = 100 mA ³⁾
Drop voltage	V_{DR}	_	1.05	1.15	٧	$I_{\rm Q}$ = 500 mA ³⁾
Drop voltage	V_{DR}	_	1.10	1.20	٧	$I_{\rm Q}$ = 800 mA ³⁾
Drop voltage	V_{DR}	_	1.30	1.40	٧	$I_{\rm Q}$ = 1.0 A $^{3)}$
Minimum Load Current ⁴⁾	I_q	_	1.7	5.0	mA	V _I = 15 V
Adjust Current	I_{ADJ}	_	100	120	μΑ	$I_{\rm Q}$ = 10 mA
Adjust Current Change	ΔI_{ADJ}	_	2	5	μΑ	1.4 V \leq ($V_{\rm l}$ - $V_{\rm Q}$) \leq 13.6 V; 10 mA \leq $I_{\rm Q}$ \leq 800 mA
Temperature stability	ΔV_Q	_	0.5	_	% ¹⁾	5)
Long Term Stability	_	_	0.3	_	% ¹⁾	5)
Current limit	I_{Qmax}	1100	_	2250	mA	$V_{\rm Q} = 0.5 \; {\rm V}$
RMS Output Noise	_	_	30	_	ppm	ppm of $V_{\rm Q}$, $T_{\rm j}$ = 25 °C 10 Hz \leq f \leq 10 kHz $^{5)}$
Power Supply Ripple Rejection	PSRR	65	70	_	dB	$f_{\rm r}$ = 120 Hz, $V_{\rm r}$ = 1 $V_{\rm PP}$ ⁵⁾

¹⁾ Related to $V_{\rm O}$

Data Sheet 7 Rev. 1.0, 2011-02-24

²⁾ Measured at constant junction temperature

³⁾ Drop voltage measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 5.0 V.

⁴⁾ Minimum load current required to maintain regulation

⁵⁾ Specified by design; not subject to production test.

Figure 4 Measuring Circuit

Application Information

Figure 5 Typical Application Circuit IFX1117ME V33

Data Sheet 8 Rev. 1.0, 2011-02-24

Output

The IFX1117 requires a 10 μ F output capacitor with ESR \leq 20 Ω for the stability of the regulation loop. The use of a tantalum output capacitor is recommended.

For the adjustable device IFX1117ME V the output voltage level can be defined by a voltage divider between Q, ADJ and GND.

The output voltage calculates:

$$V_{Q} = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) + I_{ADJ} \times R_2 \tag{1}$$

At the input of the regulator a capacitor is recommended to compensate line influences. As a minimum a 100 nF ceramic input capacitor should be used. If the regulator is used in an environment with long input lines an input capacitance of 10 μ F is suggested.

Figure 6 Typical Application Circuit IFX1117ME V

Data Sheet 9 Rev. 1.0, 2011-02-24

Typical Performance Characteristics

Output Voltage $V_{\rm Q}$ versus Junction Temperature $T_{\rm i}$

Dropout Voltage V_{dr} versus Output Current I_{O}

Dropout Voltage $V_{ m dr}$ versus Junction Temperature $T_{ m i}$

Typical Performance Characteristics

Adjust Pin Current I_{ADJ} versus Junction Temperature T_{i}

Power Supply Ripple Rejection PSRR versus Frequency f

Region of Stability Version ME V33

Region of Stability Version ME V

Typical Performance Characteristics

Load Transient Response Version ME V33

Line Transient Response Version ME V33

Load Transient Response Version ME V

Line Transient Response Version ME V

Package Outline

Figure 7 Outline and footprint PG-SOT223

Green Product (RoHS-Compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Revision History

Version	Date	Changes
Rev. 1.0	2011-02-24	Data Sheet

Edition 2011-02-24
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infine on Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.