Lecture 6

Generating Sets and Bases

Let V be the vector space \mathbb{R}^2 and consider the vectors (1,0),(0,1). Then, every vector $(x,y) \in \mathbb{R}^2$ can be written as a combination of those vectors. That is:

$$(x,y) = x(1,0) + y(0,1).$$

Similarly, the two vectors (1,1) and (1,2) do not belong to the same line, and every vector in \mathbb{R}^2 can be written as a combination of those two vectors.

6.1 Introduction

In particular:

$$(x,y) = a(1,1) + (1,2)$$

gives us two equations

$$a+b=x$$
 and $a+2b=y$

Thus, by substituting the first equation to the second, we get

$$b = -x + y$$

Inserting this into the first equation we get

$$a = 2x - y$$

Take for example the point (4,3). Then:

$$(4,3) = 5(1,1) + (-1)(1,2)$$

= 5(1,1) - (1,2)

We have similar situation for \mathbb{R}^3 and all of the spaces \mathbb{R}^n .

In the case of \mathbb{R}^3 , for example, every vector can be written as combinations of (1,0,0),(0,1,0) and (0,0,1), i.e.,

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

Or, as a combination of (1,-1,0), (1,1,1) and (0,1,-1), that is:

$$(x, y, z) = a(1, -1, 0) + b(1, 1, 1) + c(0, 1, -1).$$

The latter gives three equation:

$$a + b = x$$
 (1)
 $-a + b + c = y$ (2)
 $b - c = z$ (3).

$$(2) + (3)$$
 gives:

$$-a + 2b = y + z \quad (4)$$

$$(4) + (1)$$
 gives:

$$3b = x + y + z \text{ or } b = \frac{x+y+z}{3}.$$

Then (1) gives:

$$a = x - b$$

$$= x - \frac{x + y + z}{3}$$

$$= \frac{2x - y - z}{3}.$$

Finally, (3) gives:

$$c = b - z = \frac{x + y - 2z}{3}$$

Hence, we get:

$$(x,y,z) = \frac{2x-y-z}{3}(1,-1,0) + \frac{x+y+z}{3}(1,1,1) + \frac{x+y-2z}{3}(0,1,-1).$$

37

6.2 In general

Notice that we get only one solution, so there is only <u>one</u> way that we can write a vector in \mathbb{R}^3 as a combination of those vectors. In general, if we have k vectors in \mathbb{R}^3 , then the equation:

$$x = (x_1, x_2, ..., x_n) = c_1 v_1 + c_2 v_2 + ... + c_k v_k$$
 (*)

gives *n*-equations involving the *n*-coordinates of $v_1, v_2, ..., v_k$ and the unknowns $c_1, c_2, ..., c_k$. There are three possibilities:

6.3 Possibilities

- A The equation(*) has <u>no</u> solution. Thus, x can <u>not</u> be written as a combination of the vectors $v_1, v_2, ..., v_k$.
- B The equation (*) has only <u>one</u> solution, so x can be written in exactly <u>one</u> way as a combination of $v_1, v_2, ..., v_k$.
- C The system of equations has infinitely many solutions, so there are more than one way to write x as a combination of $v_1, v_2, ..., v_k$.

6.3.1 Case C

Let us look at the last case a little closer. If we write x in two different ways:

$$x = c_1v_1 + c_2v_2 + \dots + c_kv_k$$

$$x = d_1v_1 + d_2v_2 + \dots + d_kv_k$$

Then, by subtracting, we get:

$$0 = (c_1 - d_1)v_1 + (c_2 - d_2)v_2 + \dots + (c_k - d_k)v_k$$

where some of the numbers $c_i - d_i$ are non-zero.

Similarly, since we can write:

$$0 = a_1 v_1 + a_2 v_2 + \dots + a_k v_k$$

and

$$x = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

then we also have:

$$x = (c_1 + a_1)v_1 + (c_2 + a_2)v_2 + \dots + (c_k + a_k)v_k.$$

Thus, we can write x as a combination of the vectors $v_1, v_2, ..., v_k$ in several different ways (in fact ∞ -many ways).

6.4 Definitions

We will now use this as a motivation for the following definitions.

Definition. Let V be a vector space and $v_1, v_2, ..., v_n \in V$.

- 1. Let $W \subseteq V$ be a subspace. We say that W is <u>spanned</u> by the vectors $v_1, v_2, ..., v_n$ if every vector in W can be written as a linear combination of $v_1, v_2, ..., v_n$. Thus, if $w \in W$, then there exist numbers $c_1, c_2, ..., c_n \in \mathbb{R}$ such that $w = c_1v_1 + c_2v_2 + ... + c_nv_n$.
- 2. The set of vectors $v_1, v_2, ..., v_n$ is linearly dependent if there exist $c_1, c_2, ..., c_n$, not all equal to zero, such that $\overline{c_1v_1 + c_2v_2 + ... + c_nv_n} = 0$.
- **Definition.** 1. The set of vectors $v_1, v_2, ..., v_n$ is <u>linearly independent</u> if the set is not linearly dependent (if and only if we can only write $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ with all $c_i = 0$).
 - 2. The set of vectors $v_1, v_2, ..., v_n$ is a <u>basis</u> for W, if $v_1, v_2, ..., v_n$ is linearly independent and spans W.

Before we show some examples, let us make the following observations:

Lemma. Let V be a vector space with an inner product (.,.). Assume that $v_1, v_2, ..., v_n$ is an orthogonal subset of vectors in V (thus $(v_i, v_j) = 0$ if $i \neq j$). If $v = c_1v_1 + c_2v_2 + ... + c_nv_n$, then $c_i = \frac{(v_iv_i)}{\|v_i\|^2}$, i = 1, ..., n.

Proof. Assume that $v = c_1v_1 + c_2v_2 + ... + c_nv_n$. Take the inner product with v_1 in both sides of the equation. The LHS is (v, v_1) . The RHS is:

$$(c_1v_1 + c_2v_2 + \dots + c_nv_n, v_1) = c_1(v_1, v_1) + c_2(v_2, v_1) + \dots + c_n(v_n, v_1) = c_1(v_1, v_1) = c_1 ||v_1||^2.$$

Thus,
$$(v, v_1) = c_1 \|v_1\|^2$$
, or $c_1 = \frac{(v, v_1)}{\|v_1\|^2}$. Repeat this for $v_2, ..., v_n$.

Corollary. If the vectors $v_1, v_2, ..., v_n$ are orthogonal, then they are linearly independent.

6.5. EXAMPLES 39

6.5 Examples

Example. Let $V=\mathbb{R}^2$. The vectors (1,2) and (-2,-4) are linearly dependent because:

$$(-2)(1,2) + 1(-2,-4) = 0.$$

The vectors (1,2),(1,1) are linearly independent. In fact, (1,2),(1,1) is a basis for \mathbb{R}^2 .

Indeed, let $(x,y) \in \mathbb{R}^2$. Then,

$$(x,y) = c_1(1,2) + c_2(1,1)$$

= $(c_1 + c_2, 2c_1 + c_2)$.

Thus,

$$x = c_1 + c_2$$
$$y = 2c_1 + c_2.$$

Subtracting we get: $x - y = -c_1$, or $c_1 = y - x$. Plugging this into the first equation we get:

$$c_2 = x - c_1 = x - (y - x) = 2x - y.$$

Thus, we can write any vector in \mathbb{R}^2 as a combination of those two. In particular, for (0,0) we get $c_1 = c_2 = 0$. The vectors (1,2), (-2,1) are orthogonal and hence linearly independent, and in fact a basis. Hence,

$$(x,y) = c_1(1,2) + c_2(-2,1).$$

Taking the inner product we get: $c_1 = \frac{x+2y}{\|v_1\|^2} = \frac{x+2y}{5}$ and $c_2 = \frac{-2x+y}{5}$.

Example. Let $V = \mathbb{R}^3$. One vector can only generate a line, two vectors can at most span a plane, so we need at least three vectors to span \mathbb{R}^3 . The vectors (1,2,1),(1,-1,1) are orthogonal but <u>not</u> a basis. In fact, those two vectors span the plane:

$$W = (x, y, z) \in \mathbb{R}^3 : x - z = 0$$

(explain why).

On the other hand, the vectors: (1, 2, 1), (1, -1, 1) and (1, 0, -1) are orthogonal, and hence a basis.

We have, for example:

$$(4,3,1) = c_1(1,2,1) + c_2(1,-1,1) + c_3(1,0,-1)$$

with

$$c_1 = \frac{4+6+1}{1+4+1}$$

$$c_2 = \frac{4-3+1}{3}$$

$$c_3 = \frac{4-1}{2}$$

In general, we have:

$$(x,y,z) = \frac{x+2y+z}{6}(1,2,1) + \frac{x-y+z}{3}(1,-1,1) + \frac{x-z}{2}(1,0,-1)$$

Let us now discuss some spaces of functions:

a) Let $v_0(x)=1, v_1(x)=x$ and $v_2(x)=x^2$. Then, v_o,v_1 and v_2 are linearly independent.

$$0 = c_0 v_0(x) + c_1 v_1(x) + c_2 v_2(x)$$
 for all x
= $c_0 + c_1 x + c_2 x^2$

Take x = 0, then we get $c_0 = 0$

Differentiate both sides to get:

$$0 = c_1 + 2c_2x$$

Take again x=0 to find $c_1=0$. Differentiate one more time to get that $c_2=0$. Notice that the span of v_0, v_1, v_2 is in the space of polynomials of degree ≤ 2 . Hence, the functions $1, x, x^2$ form a basis for this space. Notice that the functions $1+x, 1-2x, x^2$ are also a basis.

b) Are the functions $v_0(x) = x, v_1(x) = xe^x$ linearly independent/dependent on \mathbb{R} ? Answer: No.

Assume that $0 = c_0 x + c_1 x e^x$. It does <u>not</u> help to put x = 0 now, but let us first differentiate both sides and get:

$$0 = c_0 + c_1 e^x + c_1 x e^x$$

Now, x = 0 gives:

$$0 = c_0 + c_1$$
 (1)

6.5. EXAMPLES 41

Differentiating again, we get: $0 = c_1 e^x + c_1 e^x + c_1 x e^x$. Now, x = 0 gives $0 = 2c_1$, or $c_1 = 0$. Hence, (1) gives $c_1 = 0$.

c) The functions $\chi_{[0,\frac12)},\chi_{[\frac12,1)}$ are orthogonal and hence linearly independent. Let us show this directly. Assume that

$$0 = c_1 \chi_{[0,\frac{1}{2})} + c_2 \chi_{[\frac{1}{2},1)}.$$

An equation like this means that every x we put into the function on the RHS, the result is always 0.

Let us take $x = \frac{1}{4}$. Then: $\chi_{[0,\frac{1}{2})}(\frac{1}{4}) = 1$, but $\chi_{[\frac{1}{2},1)}(\frac{1}{4}) = 0$. Hence, $0 = c_1 \cdot 1 + c_2 \cdot 0$, or $c_1 = 0$. Taking $x = \frac{3}{4}$ shows that $c_2 = 0$.

d) The functions $\chi_{[0,\frac{1}{2})}, \chi_{[0,1)}$ are not orthogonal, but linearly independent.

$$0 = c_1 \chi_{[0,1)} + c_2 \chi_{[0,\frac{1}{2})}.$$

Take x so that $\chi_{[0,\frac{1}{2})}(x) = 0$ but $\chi_{[0,1)}(x) = 1$. Thus, any $x \in [0,1) \setminus [0,\frac{1}{2}) = [\frac{1}{2},1)$ will do the job. So, take $x = \frac{3}{4}$. Then, we see that:

$$0 = c_1 \cdot 1 + c_2 \cdot 0$$
, or $c_1 = 0$.

Then take $x = \frac{1}{4}$ to see that $c_2 = 0$.