CS4246 / CS5446

Tutorial Week 11

Muhammad Rizki Maulana

rizki@u.nus.edu

First

Noisy sensor:

• Correct : 0.9

Noisy sensor:

• Correct : 0.9

Noisy sensor:

• Correct : 0.9

• Wrong : 0.1

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Question

1/9

Detect adjacent wall

Noisy sensor:

Correct: 0.9

Wrong: 0.1

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

0.1

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

Correct: 0.9

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

Correct: 0.9

0.1

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

• Correct : 0.9

$$P(x'|Left, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

0.8

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

- Correct : 0.9
- Wrong: 0.1

$$P(x'|\hat{L}eft, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

- Correct : 0.9
- Wrong: 0.1

$$P(x'|\hat{L}eft, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

0.2	$\frac{1}{9}$	$\frac{0.2}{9}$	0
$\frac{1}{9}$	×	$\frac{1}{9}$	$\frac{0.1}{9}$
0.2	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{0.1}{9}$

0.8

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

Correct : 0.9

• Wrong: 0.1

$$P(x'|\hat{L}eft, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

0.2	$\frac{1}{9}$	$\frac{0.2}{9}$	0
$\frac{1}{9}$	×	$\frac{1}{9}$	$\frac{0.1}{9}$
0.2	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{0.1}{9}$

Now, we update these estimates with the sensor data, which says there is one adjacent wall (i.e., multiply by P(z = '1 adjacent wall'|x')):

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

1 adj wall

$$P(x'|Left, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

0.2	$\frac{1}{9}$	$\frac{0.2}{9}$	0
$\frac{1}{9}$	X	$\frac{1}{9}$	$\frac{0.1}{9}$
0.2	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{0.1}{9}$

Noisy sensor:

Detect adjacent wall

Correct : 0.9

Wrong: 0.1

Now, we update these estimates with the sensor data, which says there is one adjacent wall (i.e., multiply by P(z = 1 adjacent wall'|x')):

		_	_
0.1×0.2	$0.1 \times \frac{1}{9}$	$0.9 \times \frac{0.2}{9}$	0
$0.1 \times \frac{1}{9}$	×	$0.9 \times \frac{1}{9}$	$0.9 \times \frac{0.1}{9}$
0.1×0.2	$0.1 \times \frac{1}{9}$	$0.9 \times \frac{1}{9}$	$0.1 \times \frac{0.1}{9}$
	9	g	9

2 adj wall

Noisy sensor:

Correct: 0.9 Wrong: 0.1

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

$$P(x'|\hat{L}eft, b_0) = \sum_x P(x'|Left, x)b_0(x)$$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

0.2	$\frac{1}{9}$	0.2	0
$\frac{1}{9}$	X	1/9	0.1
0.2	1	1 0	0.1

Now, we update these estimates with the sensor data, which says there is one adjacent wall (i.e., multiply by P(z=`1 adjacent wall'|x')):

$0.1 \times 0.2 \mid 0.1 \times \frac{1}{9}$	$0.9 \times \frac{0.2}{9}$	0
$0.1 \times \frac{1}{9}$ ×	$0.9 \times \frac{1}{9}$	$0.9 \times \frac{0.1}{9}$
$0.1 \times 0.2 \mid 0.1 \times \frac{1}{9}$	$0.9 \times \frac{1}{9}$	$0.1 \times \frac{0.1}{9}$

2 adj wall

and renormalize to get b_1 :

1 adj wall

	0.06569	0.03650	0.06569	0
9	0.03650	×	0.32847	0.03285
8	0.06569	0.03650	0.32847	0.00365

Calculate the exact belief state b_1 (rounded off to 5 decimal places) after the agent moves Left and its sensor reports 1 adjacent wall.

Detect adjacent wall

Noisy sensor:

• Correct : 0.9

Wrong: 0.1

-	
$P(x' Left,b_0)$	$=\sum_{x} P(x' Left,x)b_0(x)$

$$0.9(1/9) + 0.8(1/9) + 0.1(1/9) = 0.2$$

0.2	$\frac{1}{9}$	$\frac{0.2}{9}$	0
$\frac{1}{9}$	X	$\frac{1}{9}$	$\frac{0.1}{9}$
0.2	$\frac{1}{0}$	$\frac{1}{0}$	$\frac{0.1}{0}$

Now, we update these estimates with the sensor data, which says there is one adjacent wall (i.e., multiply by P(z = 1 adjacent wall'|x')):

0.1×0.2	$0.1 \times \frac{1}{9}$	$0.9 \times \frac{0.2}{9}$	0
$0.1 \times \frac{1}{9}$	×	$0.9 \times \frac{1}{9}$	$0.9 \times \frac{0.1}{9}$
0.1×0.2	$0.1 \times \frac{1}{9}$	$0.9 \times \frac{1}{9}$	$0.1 \times \frac{0.1}{9}$
<u> </u>	1,000		

2 adj wall

and renormalize to get b_1 :

1 adj wall

	0.06569	0.03650	0.06569	0
9	0.03650	×	0.32847	0.03285
8	0.06569	0.03650	0.32847	0.00365

Second

$$lpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')lpha_{p.e'}(s')]$$

$$egin{aligned} lpha_p(s) &= \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')lpha_{p.e'}(s')] \ lpha_p(s) &= \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma lpha_{p'}(s')] \end{aligned}$$

$$ax b \cdot \alpha$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\gamma = [\alpha, \beta], \text{ p's subplan}$$

$$V(b) = \max_{p} b \cdot \alpha_p$$
 conditional plans

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{s'} P(s'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\gamma = [\alpha, \beta], \text{ p' subplan}$$

$$\gamma = [\alpha, \beta], \text{ p' subplan}$$

$$\gamma = [\alpha, \beta], \text{ p' subplan}$$
 Sensorless Vacuum Cleaner World

Sensorless Vacuum Cleaner World

s1

•

[Modified from RN 3e 17.14] What is the time complexity of d steps of POMDP value iteration for a sensorless environment? Give an upper bound on the number of α -vectors generated in the process.

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\gamma = [a, p'], \text{ p' subplan}$$

$$V(b) = \max_{p} b \cdot \alpha_p$$
 conditional plans

Sensorless Vacuum Cleaner World

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\uparrow$$

$$V(b) = \max_p b \cdot \alpha_p$$

$$p = [a, p'], p' \text{ subplan}$$
 conditional plans

Sensorless Vacuum Cleaner World

2²

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\uparrow$$

$$V(b) = \max_p b \cdot \alpha_p$$

$$p = [a, p'], p' \text{ subplan}$$
 conditional plans

Sensorless Vacuum Cleaner World

2³

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$\gamma = [a, p'], \text{ p' subplan}$$

$$\gamma = [a, p'], \text{ p' subplan}$$
 conditional plans

Sensorless Vacuum Cleaner World

depth=2

depth=3

depth=d, |A| actions

2²

2³

 $|A|^d$

$$lpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{e'} P(e'|s')lpha_{p.e'}(s')]$$
 $lpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma lpha_{p'}(s')]$
 $V(b) = \max_{p} b \cdot lpha_p$
 $p = [lpha, p'], p' \text{ subplan}$
 $conditional plans$

Sensorless Vacuum Cleaner World

Number of alpha vectors at depth d

|A| actions

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \sum_{s'} P(e'|s')\alpha_{p.e'}(s')]$$

$$\alpha_p(s) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \alpha_{p'}(s')]$$

$$P = [a,p'], \text{ p' subplan}$$

$$Conditional plans$$

Sensorless Vacuum Cleaner World

Number of alpha vectors at depth d

$$\sum_d |A|^d = O(|A|^d)$$

depth=2

$$\sum_d |A|^d = O(|A|^d)$$

depth=d.

|A| actions

Third

(p)

(1-p) (p)

(a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

Question

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

right

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - i. How many two-step conditional plans that starts with action a_3 are there?

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - ii. There is only one non-dominated two-step conditional plan: draw (or clearly describe) the non-dominated two step conditional plan.

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - ii. There is only one non-dominated two-step conditional plan: draw (or clearly describe) the non-dominated two step conditional plan.

Question

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - ii. There is only one non-dominated two-step conditional plan: draw (or clearly describe) the non-dominated two step conditional plan.

- (a) The value of a one-step plan taken in state s is simply the reward of taking the action a in state s: R(s,a). Going left or right are terminal actions while asking the Keeper is non-terminal. Hence, two-step conditional plans can only start with the non-terminal action of asking the Keeper (a_3) followed by an observation and ends with taking another action.
 - ii. There is only one non-dominated two-step conditional plan: draw (or clearly describe) the non-dominated two step conditional plan.

(b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.

- (b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
 - i. Give the three α -vectors corresponding to the three non-dominated plans. Assume that the discount factor is $\gamma = 1$ (not discounted).

Question

 $\alpha_l(s_2) = R(s_2, a_1) = -100$

- (b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
 - i. Give the three α -vectors corresponding to the three non-dominated plans. Assume that the discount factor is $\gamma=1$ (not discounted).

- (b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
- i. Give the three α -vectors corresponding to the three non-dominated plans. Assume that the discount factor is $\gamma = 1$ (not discounted).

Action right: $\alpha_r(s_1) = R(s_1, a_2) = -100$

 $\alpha_l(s_2) = R(s_2, a_2) = 100$

Action left: $\alpha_l(s_1) = R(s_1, a_1) = 100$,

 $\alpha_{I}(s_{2}) = R(s_{2}, a_{1}) = -100$

- b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
- i. Give the three α -vectors corresponding to the three non-dominated plans. Assume that the discount factor is $\gamma = 1$ (not discounted).

a3

a3

- The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
- i. Give the three α -vectors corresponding to the three non-dominated plans. Assume that the discount factor is $\gamma = 1$ (not discounted).

 $\alpha_l(s_2) = R(s_2, a_1) = -100$

Action right: $\alpha_r(s_1) = R(s_1, a_2) = -100$

 $\alpha_l(s_2) = R(s_2, a_2) = 100$

Two-step plan:

 $\alpha_p(s_1) = \alpha_p(s_2) = -10 + 100 = 90$

(b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.

- (b) The one-step plan consisting of asking the Keeper cannot be optimal. Hence there can be at most two non-dominated one-step plans. From part (a) of this question, we know that there is only one non-dominated two-step conditional plan, giving a total of 3 non-dominated one and two step plans.
 - ii. Partition the beliefs into regions where each plan is optimal. Describe the regions.

Question

$$E[\alpha_l] \ge E[\alpha_p]$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1-p) \times 100 \ge 90$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1 - p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1 - p) \times 100 \ge 90$$

$$-100p + 100 - 100p \ge 90$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1-p) \times 100 \ge 90$$

$$-100p + 100 - 100p \ge 90$$

$$-200p \ge -10$$

Left is optimal:

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1-p) \times 100 \ge 90$$

$$-100p + 100 - 100p \ge 90$$

$$-200p \ge -10$$

$$p \le \frac{1}{20}$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

Two-step is optimal:

$$\frac{1}{20} \le p \le \frac{19}{20}$$
$$0.05 \le p \le 0.95$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1-p) \times 100 \ge 90$$

$$-100p + 100 - 100p \ge 90$$

$$-200p \ge -10$$

$$p \le \frac{1}{20}$$

$$E[\alpha_l] \ge E[\alpha_p]$$

$$p \times \alpha_l(s_1) + (1-p) \times \alpha_l(s_2) \ge 90$$

$$p \times 100 + (1-p) \times -100 \ge 90$$

$$100p - 100 + 100p \ge 90$$

$$200p \ge 190$$

$$p \ge \frac{19}{20}$$

Two-step is optimal:

$$\frac{1}{20} \le p \le \frac{19}{20}$$
$$0.05 \le p \le 0.95$$

$$E[\alpha_r] \ge E[\alpha_p]$$

$$p \times \alpha_r(s_1) + (1-p) \times \alpha_r(s_2) \ge 90$$

$$p \times -100 + (1-p) \times 100 \ge 90$$

$$-100p + 100 - 100p \ge 90$$

$$-200p \ge -10$$

$$p \le \frac{1}{20}$$

Question?

<EOF>

Credits

Images are taken from pixabay.com