Network Structure Hung-yi Lee 李宏毅

Three Steps for Deep Learning

- Step 1. A neural network is a function composed of simple functions (neurons)
 - Usually we design the network structure, and let machine find parameters from data
- Step 2. Cost function evaluates how good a set of parameters is
 - ➤ We design the cost function based on the task
- Step 3. Find the best function set (e.g. gradient descent)

Outline

- Basic structure (3/03)
 - Fully Connected Layer
 - Recurrent Structure
 - Convolutional/Pooling Layer
- Special Structure (3/17)
 - Spatial Transformation Layer
 - Highway Network / Grid LSTM
 - Recursive Structure
 - Batch Normalization
 - Sequence-to-sequence / Attention (3/24)

Prerequisite

- Brief Introduction of Deep Learning
 - https://youtu.be/Dr-WRIEFefw?list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49
- Convolutional Neural Network
 - https://youtu.be/FrKWiRv254g?list=PLJV_el3uVTsPy9oC RY30oBPNLCo89yu49
- Recurrent Neural Network (Part I)
 - https://youtu.be/xCGidAeyS4M?list=PLJV_el3uVTsPy9oC RY30oBPNLCo89yu49
- Recurrent Neural Network (Part II)
 - https://www.youtube.com/watch?v=rTqmWlnwz_0&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=25

Basic Structure: Fully Connected Layer

Layer l-1 N_{l-1} nodes

Layer l-1 N_{l-1} nodes

Layer l N_i nodes

Basic Structure: Recurrent Structure

Simplify the network by using the same function again and again

Reference

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, J. Schmidhuber, "LSTM: A Search Space Odyssey," in *IEEE Transactions on Neural Networks and Learning Systems*, 2016

Rafal Józefowicz, Wojciech Zaremba, Ilya Sutskever, "An Empirical Exploration of Recurrent Network Architectures," in ICML, 2015

> https://www.cs.toronto.ed u/~graves/preprint.pdf

Recurrent Neural Network

• Given function f: h', y = f(h, x)

h and h' are vectors with the same dimension

No matter how long the input/output sequence is, we only need one function f

Deep RNN
$$h', y = f_1(h, x)$$
 $b', c = f_2(b, y)$...

$$b^0 \longrightarrow f_2 \longrightarrow b^1 \longrightarrow f_2 \longrightarrow b^2 \longrightarrow f_2 \longrightarrow b^3 \longrightarrow h^0 \longrightarrow f_1 \longrightarrow h^1 \longrightarrow f_1 \longrightarrow h^2 \longrightarrow f_1 \longrightarrow h^3 \longrightarrow h^3 \longrightarrow h^0 \longrightarrow f_1 \longrightarrow h^1 \longrightarrow f_1 \longrightarrow h^2 \longrightarrow f_1 \longrightarrow h^3 \longrightarrow h^3 \longrightarrow h^0 \longrightarrow h^1 \longrightarrow h^2 \longrightarrow h^2 \longrightarrow h^3 \longrightarrow h^3$$

Bidirectional RNN

$$h', a = f_1(h, x)$$
 $b', c = f_2(b, x)$

Pyramidal RNN

Reducing the number of time steps

W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," ICASSP, 2016

Naïve RNN

• Given function f: h', y = f(h, x)

c change slowly ct is ct-1 added by something

h change faster h^t and h^{t-1} can be very different

ct-1

 Z^{O}

 \mathbf{x}^{t}

$$z^{f} = \sigma(\frac{W^{f}}{h^{t-1}})$$

$$z^{\circ} = \sigma(\boxed{W^{\circ}} \frac{x^{t}}{h^{t-1}})$$

GRU $h^t = z \odot h^t + (1 - z) \odot h'$ GRU h^{t-1} c^{t-1} tanh update reset h' \mathbf{x}^{t}

Example Task

 (Simplified) Speech Recognition: Frame classification on TIMIT

Target Delay

Only for unidirectional RNN

Target

Bidirectional Output

Learning Curves for Three Architectures

LSTM: A Search Space Odyssey

- 1. No Input Gate (NIG)
- 2. No Forget Gate (NFG)
- 3. No Output Gate (NOG)
- 4. No Input Activation Function (NIAF)
- 5. No Output Activation Function (NOAF)
- 6. No Peepholes (NP)
- 7. Coupled Input and Forget Gate (CIFG)
- 8. Full Gate Recurrence (FGR)

Standard LSTM works well

Simply LSTM: coupling input and forget gate, removing peephole Forget gate is critical for performance

Output gate activation function is critical

An Empirical Exploration of Recurrent Network Architectures

Arch.	Arith.	XML	PTB
Tanh	0.29493	0.32050	0.08782
LSTM	0.89228	0.42470	0.08912
LSTM-f	0.29292	0.23356	0.08808
LSTM-i	0.75109	0.41371	0.08662
LSTM-o	0.86747	0.42117	0.08933
LSTM-b	0.90163	0.44434	0.08952
GRU	0.89565	0.45963	0.09069
MUT1	0.92135	0.47483	0.08968
MUT2	0.89735	0.47324	0.09036
MUT3	0.90728	0.46478	0.09161

LSTM-f/i/o: removing forget/input/output gates

LSTM-b: large bias

Importance: forget > input > output

Large bias for forget gate is helpful

An Empirical Exploration of Recurrent Network Architectures

MUT1:

$$z = \operatorname{sigm}(W_{xz}x_t + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

Armand Joulin, Tomas Mikolov, Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets, arXiv Pre-Print, 2015

Basic Structure: Convolutional / Pooing Layer

Simplify the neural network (based on prior knowledge of the task)

Convolutional Layer

Sparse Connectivity

Each neural only connects to part of the output of the previous layer

Convolutional Layer

Sparse Connectivity

Each neural only connects to part of the output of the previous layer

Parameter Sharing

The neurons with different receptive fields can use the same set of parameters.

Less parameters then fully connected layer

Convolutional Layer

Considering neuron 1 and 3 as "filter 1" (kernel 1)

filter (kernel) size: size of the receptive field of a neuron

Stride = 2

Considering neuron 2 and 4 as "filter 2" (kernel 2)

Kernel size, no. of filter, stride are all designed by the developers.

Example – 1D Signal + Single Channel

Classification, Predict the future ...

Audio Signal, Stock Value ...

Example – 1D Signal + Multiple Channel

A document: each word is a vector

Example – 2D Signal + Single Channel

Size of Receptive field is 3x3, Stride is 1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

6 x 6 black & white picture image

Example – 2D Signal + Multiple Channel

Size of Receptive field is 3x3x3, Stride is 1

6 x 6 colorful image

Pooling Layer

Layer l-1 N nodes

N/k nodes

k outputs in layer l-1 are grouped together

Each output in layer l "summarizes" k inputs

Average Pooling:

$$a_1^l = \frac{1}{k} \sum_{j=1}^k a_j^{l-1}$$

Max Pooling:

$$a_1^l = \max(a_1^{l-1}, a_2^{l-1}, \dots, a_k^{l-1})$$

L2 Pooling:

$$a_1^l = \frac{1}{k} \sqrt{\sum_{j=1}^k (a_j^{l-1})^2}$$

Pooling Layer

Which outputs should be grouped together?

Pooling Layer

Which outputs should be grouped together?

Group the neurons with the same receptive field

Combination of Different Basic Layers

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, Oriol Vinyals, "Learning the Speech Front-end With Raw Waveform CLDNNs," In *INTERPSEECH 2015*

output targets

DNN

Combination of Different Basic Layers

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, Oriol Vinyals, "Learning the Speech Front-endWith Raw Waveform CLDNNs," In *INTERPSEECH 2015*

Next Time

- 3/10: TAs will teach TensorFlow
 - TensorFlow for regression
 - TensorFlow for word vector
 - word vector: https://www.youtube.com/watch?v=X7PH3NuYW0Q
 - TensorFlow for CNN
- If you want to learn Theano
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
 5_2/Lecture/Theano%20DNN.ecm.mp4/index.html
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201 5_2/Lecture/Theano%20RNN.ecm.mp4/index.html