Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Garcke, Penn-Karras, Tröltzsch SoSe 09 20. Juli 2009

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt 1	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Recher	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				*		
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 9 Punkte

Gegeben Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 - x + xy^2$. Bestimmen Sie alle lokalen Extrema von f. Bestimmen Sie auch die Art der lokalen Extrema (lokales Maximum oder lokales Minimum).

2. Aufgabe 10 Punkte

Sei die Funktion $f(x,y) = x^2 - 4y$ auf $D = \{(x,y)^T \in \mathbb{R}^2 | x^2 + y^2 \le 4\}$ gegeben. Begründen Sie, dass f auf D einen kleinsten und einen größten Funktionswert annimmt und ermitteln Sie diese beiden Werte.

3. Aufgabe 5 Punkte

Gegeben sei das Vektorfeld

$$\vec{v}: \mathbb{R}^2 \to \mathbb{R}^2, \quad \vec{v}(x,y) = \begin{pmatrix} x^2 - y \\ x \end{pmatrix}.$$

Bestimmen Sie das Kurvenintegral $\int_{\gamma} \vec{v} \cdot d\vec{s}$. Dabei sei γ der Rand des Einheitskreises (mit Mittelpunkt $\vec{0}$), der entgegen dem Uhrzeigersinn (also mathematisch positiv) durchlaufen wird.

4. Aufgabe 7 Punkte

Gegeben seien die Fläche S mit der Parametrisierung

$$\vec{x}(u,v) = \begin{pmatrix} u\cos(v) \\ u\sin(v) \\ v \end{pmatrix}, \quad 0 \le u \le 1, 0 \le v \le 2\pi,$$

und das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (2y,-2x,z)^T$. Berechnen Sie das Flussintegral $\iint_S \vec{v} \cdot d\vec{O}$.

5. Aufgabe 9 Punkte

Berechnen Sie den Fluss des Vektorfeldes $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$,

$$\vec{v}(x, y, z) = \begin{pmatrix} x^3 + \cos(y) \\ y^3 \\ -\frac{1}{3} (2 - z)^3 \end{pmatrix},$$

durch die gesamte Oberfläche des kompakten Körpers, der durch die xy-Ebene und die Fläche $\left\{(x,y,z)^T\in\mathbb{R}^3\middle|\sqrt{x^2+y^2}=2-z\right\}$ begrenzt wird.

Hinweis: Verwenden Sie einen geeigneten Integralsatz und Zylinderkoordinaten.