Teoría, Práctica y Aplicaciones de los Elementos Finitos Proyecto (Práctico) Final

Daniel Castañón Quiroz*1

¹Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Cd. de México, México

May 16, 2023

1 Problemas en Matlab

1.1 Instrucciones

Todo los problemas se deberán entregar en archivos diferentes con extensión .m. Por ejemplo el problema 1 deberá estar estar en el archivo Problema_1.m, etc. Dentro de cada archivo se deberá poner el nombre del estudiante y su correo eléctronico. Utiliza comentarios cuando sea necesario. Todos los programas deberán correr y tener solamente el output que se específica utilizando el comando disp. Por ejemplo si se piden tablas de convergencia, el output del programa deber ser una tabla de la forma:

donde h_vec es el vector que contiene en cada entrada el h de la malla para cada problema, L2_err_norm el vector que contiene en cada entrada el error en la norma L^2 , L2_err_rate el vector que contiene en cada entrada la tasa de convergencia de la norma L^2 , y así similarmente para los vectores H1_err_norm y H1_err_rate.

Resolver los problemas que sean necesarios para obtener un mínimo de 3 puntos en total.

1. (1 punto) Aproximar numéricamente utilizando los elementos finitos de **Lagrange de segundo orden** la solución débil del siguiente problema con valores en la frontera:

$$-\nabla \cdot (k(\mathbf{x})\nabla u) = f(\mathbf{x}) \quad \text{en} \quad \Omega := (0,1) \times (0,1), \tag{1a}$$

$$u = 0$$
 en $\partial \Omega$, (1b)

donde

$$f(\mathbf{x}) = 8\pi \sin(4\pi x_2) \left(4\pi x_1^2 \sin(4\pi x_1) + 4\pi \sin(4\pi x_1) - x_1 \cos(4\pi x_1) \right),$$

y $k(\mathbf{x}) = 1 + x_1^2$. Verificar que $u(\mathbf{x}) = \sin(4\pi x_1)\sin(4\pi x_2)$ es la solución del problema (3). Obtener entonces la tasa de convergencia para el error $e := u_h - u$ en las normas $L^2(\Omega)$ y $H^1(\Omega)$ para la familia de mallas proporcionada en la página del curso.

2. (1 punto) Resolver el problema 1. utilizando los elementos finitos de **Crouzeix–Raviart de primer orden**.

^{*}daniel.castanon@iimas.unam.mx

3. (1 punto) Aproximar numéricamente utilizando los elementos finitos de **Lagrange de primer orden** la solución débil del problema estacionario de *Allen-Chan* con valores en la frontera:

$$-\Delta u + u^3 - u = f(x)$$
 en $\Omega := (0, 1) \times (0, 1),$ (2a)

$$u = 0$$
 en $\partial \Omega$. (2b)

Usando $u(x) = \sin(4\pi x_1)\sin(4\pi x_2)$ como solución, entonces calcular f(x) utilizando (2a). Observar que el problema (2) es una EDP no lineal, por lo tanto se tendrá que resolver un sistema no-lineal discreto, para ello entonces utilizar el algoritmo de Newton (ver libro de Burden-Faires sección 10.2). Obtener entonces la tasa de convergencia para el error $e := u_h - u$ en las normas $L^2(\Omega)$ y $H^1(\Omega)$ para la familia de mallas proporcionada en la página del curso.

4. (2 puntos) Aproximar numéricamente la solución débil del problema de Stokes con valores en la frontera:

$$-\Delta u + \nabla p = f(x) \quad \text{en} \quad \Omega := (0, 1) \times (0, 1), \tag{3a}$$

$$\nabla \cdot u = 0$$
 en Ω , (3b)

$$u = \mathbf{g}$$
 en $\partial \Omega$, (3c)

utilizando el par estable Taylor–Hood $\mathbb{P}^2/\mathbb{P}^1$.

- (a) Para $\boldsymbol{u}(\boldsymbol{x}) = \left[\sin^2(\pi x_1)\sin(2\pi x_2), -\sin(2\pi x_1)\sin^2(\pi x_2)\right]^t$ y $p(x_1, x_2) = x_2\cos(\pi x_1)$, verificar que $\nabla \cdot \boldsymbol{u} = 0$ y calcular $\boldsymbol{f}(\boldsymbol{x})$ y \boldsymbol{g} . Obtener entonces la tasas de convergencia para el error $\boldsymbol{e}_u \coloneqq \boldsymbol{u}_h \boldsymbol{u}$ en las normas $L^2(\Omega)$ y $H^1(\Omega)$, la tasa de convergencia de $\nabla \cdot \boldsymbol{u}_h$ en la norma $L^2(\Omega)$, y la tasa de convergencia para el error $\boldsymbol{e}_p \coloneqq p_h p$ en la norma $L^2(\Omega)$ para la familia de mallas proporcionada en la página del curso. Recordar que se demostró en clase que la tasas de convergencia para \boldsymbol{e}_u en la norma H^1 es 2, y para la norma H^2 es 3. La tasa de convergencia para \boldsymbol{e}_p en la norma L^2 es 2.
- 5. (2 puntos) Resolver el problema 4 utilizando el par estable Crouzeix-Raviart $\mathbb{P}^1/\mathbb{P}^0$. Para el inciso (a) es posible demostrar que la tasas de convergencia para e_u en la norma H^1 es 1, y para la norma L^2 es 2. La tasa de convergencia para e_p en la norma L^2 es 1.