Stable Simplicies of *p*-adic Representations in Bruhat-Tits Buildings

Xu Gao

November 22, 2021

UC Santa Cruz

p-adic representations and stable lattices

p-adic representations

Let G be a group and p a prime number. A p-adic representation of G is a group homomorphism

$$\rho \colon G \longrightarrow \mathsf{GL}_K(V),$$

from G to the group of K-linear automorphisms of a finite-dimensional vector space V over a local field K with residue characteristic p.

ho-adic representations

Example

Let D_8 be the dihedral group of order 8:

$$D_8 = \langle r, s \mid r^4 = s^2 = (rs)^2 = 1 \rangle.$$

Then the following gives an irreducible p-adic representation in $V=K^2$ (with K be any local field with residue characteristic p)

tenless chark = 2
$$r \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad s \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

ho-adic representations

Notations:

```
K a non-Archimedean local field; C.g. C.g. val the valuation on K; K^{\circ} the ring of integers \{x \in K \mid \operatorname{val}(x) \geqslant 0\}; K^{\circ\circ} the maximal ideal \{x \in K \mid \operatorname{val}(x) > 0\}; \varpi a uniformizer, namely K^{\circ\circ} = \varpi K^{\circ}; \kappa the residue field K^{\circ}/K^{\circ\circ}.
```

$$V = Ke_1 + Ke_2$$

 $L = K^0e_1 + K^0e_2$

For V a finite-dimensional vector space V over K, a **lattice** in V is a finitely generated K° -submodule L of V spanning the entire V.

Given a p-adic representation $\rho \colon G \to GL_K(V)$, a **stable lattice** in V is a lattice which is stable under the action of G.

Given a stable lattice L, one can obtain a representative over the residue filed κ by reduction:

$$L \to L \otimes_{\kappa^{\circ} \kappa}.$$

$$\to \bar{\rho} : G \to GL_{\mathcal{K}}(L \otimes_{\kappa^{\circ}}^{k})$$

Example

Let D_8 be the dihedral group of order 8 with generators r and s as before. Let ρ be the representation

$$r \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad s \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$\sum_{\mathbf{p} \in \mathbf{q}_1} \mathbf{e}_{\mathbf{p}} \mathbf{e}_{\mathbf{k}}$$

Then the lattice $K^{\circ}e_1 + K^{\circ}e_2$ (where (e_1, e_2) is the standard basis of K^2) is a stable lattice. Its reduction is irreducible if $p \neq 2$, but if p = 2, it has a stable subspace $\kappa(\overline{e_1} + \overline{e_2})$.

Two lattices L and L' are **homothetic** if there is some $x \in K^{\times}$ such that

$$L' = xL$$
.

Therefore it is reasonable to consider the set

$$S(\rho)^0 = \{\text{stable lattices of } \rho\}/_{\text{homothety}}$$

Its cardinality $h(\rho) = |S(\rho)^0|$ is called the **class number** of ρ .

However, it is difficult to compute $h(\rho)$ in general.

Question

How $h(\rho)$ behaves along a totally ramified extensions E/K?

Difficulty: unlike the ideal class group of K, the homothety class set $S(\rho)^0$ is merely a set, not a group!

Known results

 ρ has stable lattice if and only if it is **precompact** (the image of ρ has compact closure). Im (ρ) \subset $GL_{k}^{1}(v):=\{gGGL_{k}(v): val(del(g))=0\}$

When ρ is precompact, it is said to has **regular reduction** if for some stable lattice L, the Jordan-Hölder constituents of the reduction of $L \otimes_{K^{\circ}} \kappa$ are pairwise inequivalent. Otherwise, ρ has **irregular reduction**.

Example

Let D_8 be the dihedral group of order 8 with generators r and s as before. Let ρ be the representation

$$\stackrel{r}{\longrightarrow} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \stackrel{s}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then ρ has regular reduction if $p \neq 2$ and irregular reduction if p = 2.

Known results

Junecue Suh, "Stable lattices in p-adic representations I. Regular reduction and Schur algebra", Journal of Algebra, vol.575, 2021, pp.192-219.

Theorem 1.2

If ρ has regular reduction, the class number of the base change $\rho \otimes_K E$ in totally ramified extensions E/K is a polynomial of [E:K].

Junecue Suh, "Stable lattices in p-adic representations II. Irregularity and entropy", Journal of Algebra, vol.591, 2022, pp.379-409.

Theorem |. |

If ρ has irregular reduction, the growth of the class number along a tower of finite totally ramified extensions is at least the exponential of the degree.

Stable simplices

Bruhat-Tits building of GL(V)

utrametric

A **norm** on V is a map $\alpha: V \to \mathbb{R} \cup \{\infty\}$ such that for any $x, y \in V$ and any $t \in K$,

- (a) $\alpha(tx) = \text{val}(t) + \alpha(x)$;
- (b) $\alpha(x+y) \ge \inf{\{\alpha(x), \alpha(y)\}};$
- (c) $\alpha(x) = \infty$ if and only if x = 0.

The set of norms on V is denoted by $\mathcal{N}(V)$.

If α is a norm, then so is $\alpha + c$ for any $c \in \mathbb{R}$. Such a norm is said to be **homothetic** to α . The set of homothety classes of norms on V is denoted by $\mathcal{X}(V)$.

Bruhat-Tits building of GL(V)

The **Bruhat-Tits building of** GL(V) is the set $\mathcal{X}(V)$ equipped with a natural simplicial structure.

Any lattice L in V defines a norm: "distance between x and L^T .

$$x \in K^{\times} \longmapsto \sup \{ \operatorname{val}(t) \mid t \in K^{\times}, x \in tL \}.$$

Two homothetic lattices defines two homothetic norms. Moreover, the points in $\mathcal{X}(V)$ arising from this way are precisely the vertices (0-simplices) in the simplicial structure of $\mathcal{X}(V)$.

$$L' = \chi L$$

$$d_{L'} = d_L + vol(\chi)$$

The simplicial set of fixed points

Theorem

Let $S(\rho)$ denote the set of fixed points:

$$S(\rho) = \{x \in \mathcal{X}(V) \mid g.x = x \text{ for all } g \in G\}.$$

Then

$$x,y \in S(p) \Rightarrow [xy] \in S(p)$$
 $geodise \rightarrow \pi \in S(p) \Rightarrow \forall simplex F e.f.$

- (i) $S(\rho)$ is a convex and simplicial subset.
- (ii) Its set of vertices (0-simplices) is $S(\rho)^0$.
- (iii) $S(\rho)$ is compact if and only if $h(\rho)$ is finite if and only if ρ is irreducible.
- (iv) Maximal simplices in $S(\rho)$ has dimension $r(\rho)-1$ where $r(\rho)$ is the length of any composition series of the reduction $L\otimes_{K^{\circ}}\kappa$ of any stable lattice L

$$L_{r}^{0} = W_{0} > W_{1} > \cdots > W_{r}$$

$$Carise from a (r-1)-simplex [Lo, Lo, --, Lr]$$

imples F & S(P)

The simplicial set of fixed points

The main idea is to compare the image of $S(\rho)$ under the natural embedding

$$\mathfrak{X}(V) \hookrightarrow \mathfrak{X}(V \otimes_K E)$$

and the simplicial subset $S(\rho \otimes_K E)$.

In the regular reduction, they coincide. In the irregular case, the set $S(\rho \otimes_K E)$ will grow along the tower of finite totally ramified extensions. To control its growth, one needs to know how the simplicial ball grows.

Generalization

Bruhat-Tits buildings

$$\rho \longrightarrow \rho \oplus \rho^*$$
 on $V \oplus V^*$

$$\rho \oplus \rho^* \colon G \longrightarrow Sp(V \oplus V^*)$$

It is often the case that a p-adic representation $\rho \colon G \to GL_K(V)$ actually lands in a nice subgroup of $GL_K(V)$.

Example

The vector space has a non-degenerate symplectic form and the action of G respects this form. Then ρ lands in Sp(V).

In general, we can consider nice subgroups of $GL_K(V)$ arising as groups of K-rational points of **reductive groups**.

Bruhat-Tits buildings

Any reductive group admits a **Bruhat-Tits building**, which is a metric space with a polysimplicial structure on it. The points in it has concrete interpretation for particular reductive groups.

Example

- (a) The Bruhat-Tits building of GL(V) consists of homothety classes of norms.
- (b) The Bruhat-Tits building of Sp(V) consists of self-dual norms.

Stable simplices

Theorem

Suppose the representation ρ factors through (the group of K-rational points of) a reductive group whose Bruhat-Tits building is ${\mathcal B}$.

Let $S(\rho)$ denote the set of fixed points:

$$S(\rho) = \{x \in \mathcal{B} \mid g.x = x \text{ for all } g \in G\}.$$

Then

- (i) $S(\rho)$ is a convex and simplicial subset.
- (ii) $S(\rho)$ is compact if and only if ρ is has no non-trivial subrepresentation of the same type.
 - p: G -> Sp(V) V has no non-trial G-stable symplectic subspace.
- e.g p: G-> Gl (v) -> paper is not irr but S(paper) is compace.

It is reasonable to study the subset $S(\rho)$ in general. In particular, the number $h(\rho)$ of vertices in $S(\rho)$.

Conjecture (work in-progress)

If ρ has "regular" reduction, then $h(\rho)$ grows as a polynomial along totally ramified extensions. If ρ has "irregular" reduction, then $h(\rho)$ grows at least exponentially along totally ramified extensions.

Remark: The meaning of "regular" / "irregular" reduction in this conjecture is different from the GL(V) case.

In Sp(V) cace, regular means the followy: L stable laubine symplectic form take integers value on & and indua non-deg form on LOgok.

G -> Sp(LOgok) Wo > W1> - > Wy trtally isotropic stable.

1

Thanks!