Wrocław, dn. 4 stycznia 2017

Daniel Rupek, indeks: 218143

Grzegorz Suszka, indeks: 218292

Technologie sieciowe 2 - projekt

Rok akad. 2016/2017, kierunek: INF

Prowadzący:

dr inż. Marcin Markowski

Spis treści

1	Eta	p 1	3
	1.1	Wstęp	3
	1.2	Inwentaryzacja zasobów, sprzętu, aplikacji, zasobów ludzkich	4
	1.3	Analiza potrzeb użytkowników - wymagania zamawiającego	6
	1.4	Założenia projektowe	10
2	Eta	p II	11
	2.1	Projekt logiczny sieci wraz z opisem koncepcji rozwiązania i uzasadnienem	11
	2.2	Wybór urządzeń sieciowych	13
3	$\mathbf{A}\mathbf{d}\mathbf{n}$	resacja IP	14
4	Pro	jekt konfiguracji urządzeń	16
\mathbf{S}_{i}	\mathbf{pis}	tablic	
	1	Rozstawienie urządzeń w budynkach	4
	2	Rozstawienie punktów dystrybucyjnych	4
	3	Transfer serwerów lokalnych i drukarek	5
	4	Transfer serwerów WWW i FTP	5
	5	Transfer Internetu w aplikacjach	5
	6	Transfer serwerów w budynku pierwszym	6
	7	Transfer serwerów w budynku drugim	7
	8	Łączny transfer serwerów WWW i FTP	7
	9	Łączny transfer sieci lokalnej	8
	10	Transfer używanych przez biuro aplikacji w budynku 1	8
	11	Transfer używanych przez biuro aplikacji w budynku 2	8
	12	Suma transferu używanych przez biuro aplikacji	9
	13	Wymagany transfer	9
	14	Liczba punktów abonenckich podłączonych do punktów dystrybucyjnych	11
	15	Wykaz urządzeń	13

1 Etap 1

1.1 Wstęp

Celem projektu jest zaprojektowanie sieci komputerowej dla biura projektowego *Agusto*. Firma zajmuje się tworzeniem kompleksowych projektów budynków (zarówno użytkowych, jak i mieszkalnych) dostosowanych do indywidualnych potrzeb klientów. W związku z szybkim rozwojem firmy nastąpiła potrzeba zmiany siedziby z powodu zbyt dużej liczby pracowników. Wcześniejsza siedziba firmy znajdowała się w obszarze mieszkalnym, tak więc znalezienie pobliskiego budynku z wolną przestrzenią było niemożliwe. Zdecydowano, że nowa siedziba firmy mieścić będzie się w Wrocławiu, w dwóch budynkach oddalonych od siebie o 100 metrów.

Projekt sieci komputerowej powinien uwzględnić następujące potrzeby biura projektowego Agusto

- a) możliwość zarządzania większymi projektami dzięki systemowi kontroli wersji
- b) możliwość prowadzenia wideokonferencji ze zleceniodawcami w celu konsultacji postępów dokonanych w realizacji projektu, bądź też konferencji wewnątrzprojektowych poprzez komunikator Skype for Business, w celu sprawniejszej realizacji zadań składających się na projekt
- c) możliwość komunikacji z podwykonawcami poprzez e-mail, VoIP, bądź komunikator Skype for Business

1.2 Inwentaryzacja zasobów, sprzętu, aplikacji, zasobów ludzkich

	Liczba użytkowników (komputerów)						
		Budynek 1	Budynek 2				
Grupa robocza	Piętro 1	Piętro 2	Piętro 3	Piętro 1	Piętro 2		
Konstruktorzy	12	5	4	9	7		
Architekci	14	20	32	32	18		
Projektanci	5	1	35	21	15		
Zarząd	14	2	28	1	5		
Praktykanci	17 11		29	15	16		
	Liczba dr	ukarek					
	2	3	2	2	1		
	Liczba pı	ınktów dos	stępowych	Wi-Fi			
	0	1	0	3			
	Liczba ur	ządzeń be	zprzewodo	wych			
	0	16	0	0	9		

Tablica 1: Rozstawienie urządzeń w budynkach

Punkty dystrybucyjne							
Oznaczenie	Lokalizacja						
MDE	Bud. 1	Bud. 1					
MDF	Piętro 1	Piętro 1					
IDF1	Bud. 1	Bud. 1					
IDFI	Piętro 2	Piętro 2, 3					
IDE0	Bud. 2	D J -0					
IDF2	Piętro 2	Bud. 2					

Tablica 2: Rozstawienie punktów dystrybucyjnych

	Serwer (download/upload) [kbps]						
Grupa rob.	Serwer 1	Serwer 2	Drukarka				
Konstruktorzy	350/650	590/950	10/120				
Architekci	300/150	100/850	10/200				
Projektanci	500/950	650/100	10/180				
Zarząd	450/500	700/700	10/180				
Praktykanci	150/650	400/850	10/190				
Wi-Fi	100/200	0/0	10/150				

Tablica 3: Transfer serwerów lokalnych i drukarek

	Transfer do/z	Internetu na	jedną sesję (internautę) [kbps]
Serwery internetowe	Do Internetu Z Internetu		Liczba jednoczesnych sesji
Serwer WWW	120	15	34
Serwer FTP	220	60	17

Tablica 4: Transfer serwerów WWW i FTP

		Transfer z/do Internetu (download/upload) [kbps]									
Grupa rob.	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	Praca w chmurze					
Konstruktorzy	58/10	40/40	20/20	55/11	0/0	0/0					
Architekci	0/0	40/40	20/20	0/0	0/0	0/0					
Projektanci	61/10	40/40	20/20	95/12	0/0	31/50					
Zarząd	0/0	40/40	0/0	0/0	15/15	57/43					
Praktykanci	49/10	0/0	0/0	0/0	15/15	25/21					
Wi-Fi	0/0	40/40	20/20	89/12	15/15	0/0					

Tablica 5: Transfer Internetu w aplikacjach

Na podstawie podanych przez Prowadzącego danych można wywnioskować, że potrzeby poszczególnych grup roboczych są zróżnicowane. Z przeglądarki korzystają w podobnym stopniu wszyscy oprócz architektów oraz zarządu, co generuje relatywnie wysoki transfer danych. Podobnie, z wideokonferencji korzystają prawie wszystkie grupy, wyjątkiem są praktykanci, którym nie biorą udziału w kontakcie ze zleceniodawcą. Korzystanie z technologii VoIP generuje stosunkowo niski transfer danych. Klient FTP powoduje wysoki download danych, jednak korzystają z niego głównie konstruktorzy oraz projektanci. Z komunikatora korzystają grupy robocze, które nie korzystają z technologii VoIP. Do pracy w chmurze wykorzystywany jest średni transfer, przy czym w większości generowany jest on przez zarząd, który sprawuje kontrolę nad poprawnością wykonania projektu.

Grupa WiFi, która oznacza w tym przypadku prywatne, bądź służbowe urządzenia pracowników, którzy łączą się z siecią w sposób bezprzewodowy, generuje transfer głównie przy pobieraniu danych z FTP.

1.3 Analiza potrzeb użytkowników - wymagania zamawiającego

• Ruch w sieci lokalnej:

		Budynek 1							
	Serwe	er 1	Serwe	er 2					
Grupa robocza	download [kbps]	upload [kbps]	download [kbps]	upload [kbps]					
	Piętro 1								
Konstruktorzy	4200	7800	7800	11400					
Architekci	4200	2100	1400	11900					
Projektanci	2500	4750	3250	500					
Zarząd	6300	7000	9800	9800					
Praktykanci	2550	11050	6800	14450					
Suma	19750	32700	29050	48050					
		Piętro 2							
Konstruktorzy	1750	3250	3250	4750					
Architekci	6000	3000	2000	17000					
Projektanci	500	950	650	100					
Zarząd	900	1000	1400	1400					
Praktykanci	1650	7150	4400	9350					
$\underline{\mathbf{Suma}}$	10800	15350	11700	32600					
		Piętro 3							
Konstruktorzy	1400	2600	2600	3800					
Architekci	9600	4800	3200	27200					
Projektanci	17500	33250	22750	3500					
Zarząd	12600	14000	19600	19600					
Praktykanci	4350	18850	11600	24650					
Suma	45450	73500	59750	78750					

Tablica 6: Transfer serwerów w budynku pierwszym

Budynek 2									
	Serwe	er 1	Serwer 2						
Grupa robocza	download [kbps]	upload [kbps]	download [kbps]	upload [kbps]					
		Piętro 1							
Konstruktorzy	3150	5850	5850	8550					
Architekci	9600	4800	3200	27200					
Projektanci	10500	19950	13650	2100					
Zarząd	450	500	700	700					
Praktykanci	2250	9750	6000	12750					
Suma	25950	40850	29400	51300					
		Piętro 2							
Konstruktorzy	2450	4550	4550	6650					
Architekci	5400	2700	1800	15300					
Projektanci	7500	14250	9750	1500					
Zarząd	2250	2500	3500	3500					
Praktykanci	2400	10400	6400	13600					
Suma	20000	34400	26000	40550					

Tablica 7: Transfer serwerów w budynku drugim

Przykładowe obliczenia dla tablicy 6 i 7:

Dla bud. 1, piętra 1, serwera 1, grupy rob.: konstruktorzy:

 $liczba_konstruktorw_na_pitrze_1 \ (tab.\ 1) \ \cdot \ download_serwera_1 \ (tab.\ 3) = 12 \ \cdot \ 350 \ kbps = 4200 \ kbps$

	Do internetu	Z internetu
Serwer WWW	4080	510
Serwer FTP	3740	1020
Suma [kbps]	7820	1530
Suma [Mbps]	7,64	1,49

Tablica 8: Łączny transfer serwerów WWW i FTP

Przykładowe obliczenia dla tab. 8:

Dla serwera WWW, do Internetu:

 $liczba_jednoczesnych_sesji_WWW~(tab.~4)~\cdot~transfer_WWW_do_Internetu~(tab.~4) = 34~\cdot~120~kbps = 120~kbps = 12$

	Download [kbps]	Upload [kbps]	Download [Mbps]	Upload [Mbps]
Serwer 1	121950	196800	119,09	192,19
Serwer 2	155900	251250	152,25	245,36
Drukarki	100	2000	0,10	1,95
Suma	277050	452050	271,44	439,50

Tablica 9: Łączny transfer sieci lokalnej

Przykładowe obliczenia dla tab. 9:

Dla serwera 1, download [Mbps]

$$\frac{suma_transferu_down_serwer_1\ tab.\ (6\ i\ 7)}{1024} = \frac{19750 + 10800 + 45450 + 25950 + 20000\ kbps}{1024} = 119,09\ Mbps$$

• Wykorzystanie sieci Internet:

Budynek	1

		Download [kbps]						Upload [kbps]				
Grupa robocza	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	Praca_w_chmurze	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	Praca w chmurze
Konstruktorzy	1218	840	420	1155	0	0	210	840	420	231	0	0
Architekci	0	2640	1320	0	0	0	0	2640	1320	0	0	0
Projektanci	2501	1640	820	3895	0	1271	410	1640	820	492	0	2050
Zarząd	0	1760	0	0	660	2508	0	1760	0	0	660	1892
Praktykanci	2793	0	0	0	855	1425	570	0	0	0	855	1197
Wi-Fi	0	640	320	1424	240	0	0	640	320	192	240	0
Suma	6512	7520	2880	6474	1755	5204	1190	7520	2880	915	1755	5139

Tablica 10: Transfer używanych przez biuro aplikacji w budynku 1

Budynek 2

	Download [kbps]					Upload [kbps]						
Grupa robocza	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	Praca_w_chmurze	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	Praca w chmurze
Konstruktorzy	928	640	320	880	0	0	160	640	320	176	0	0
Architekci	0	2000	1000	0	0	0	0	2000	1000	0	0	0
Projektanci	2196	1440	720	3420	0	1116	360	1440	720	432	0	1800
Zarząd	0	240	0	0	90	342	0	240	0	0	90	258
Praktykanci	1519	0	0	0	465	775	310	0	0	0	465	651
Wi-Fi	0	360	180	801	135	0	0	360	180	108	135	0
Suma	4643	4680	2220	5101	690	2233	830	4680	2220	716	690	2709

Tablica 11: Transfer używanych przez biuro aplikacji w budynku 2

Przykładowe obliczenia dla tab. 10 i 11:

Dla przeglądarki, download, grupa rob.: konstruktorzy:

 $laczna_liczba_konstruktorow~(tab.~1)~\cdot~transfer_przegladarki~(tab.~5) = 37~\cdot~58~kbps = 2146~kbps$

	Download [Mbps]	Upload [Mbps]
Budynek 1	29,63	18,94
Budynek 2	19,11	11,57
Suma	48,74	30,53

Tablica 12: Suma transferu używanych przez biuro aplikacji

Przykładowe obliczenia dla tab. 12:

Dla budynku 1, download [Mbps]:

$$\frac{suma_download_aplikacji_bud_1\ (tab.\ 10)}{1024} = \frac{6512 + 7520 + 2880 + 6474 + 1755 + 5204\ Mbps}{1024} = 29,63\ Mbps$$

	Download [Mbps]	Upload [Mbps]	Wymagany transfer aktualnie (40% maks.)	Wymagany transfer z uwzgl. rozwoju (120%)
Suma transferu w sieci lokalnej	271,44	439,50	175,80	210,96
Suma transferu do i z Internetu	50,24	38,15	20,09	24,11

Tablica 13: Wymagany transfer

Przykładowe obliczenia dla tab. 13:

Dla sumy transferów w sieci lokalnej, wymagany transfer aktualnie [Mbps] $transfer_sieci_lokalnej~(tab.~9)~\cdot~40\% = 271,44~Mbps~\cdot~40\% = 175,80~Mbps$

Z opracowanych przez nas danych możemy wywnioskować, że większość ruchu w sieci lokalnej generowana jest przez upload, zarówno na pierwszym, jak i drugim serwerze. Przepływy generowane z i do internetu przedstawiają odwrotny rezultat – większość ruchu generowana jest przez download. Zarówno drukarki, jak i serwery WWW oraz FTP generują stosunkowo niski transfer danych w porównaniu do aplikacji bądź ruchu lokalnego generowanego przez grupy robocze. Porównując transfer w sieci lokalnej do transferu do/z internetu, jest on w stosunku mniej więcej 90/10.

Na podstawie Tabeli 7. można dokonać krótkiego podsumowania transferu do danego serwera z obu budynków:

- Z budynku pierwszego do serwera pierwszego: 76000/121550 [kb/s, download/upload]
- Z budynku pierwszego do serwera drugiego: 100500/159400 [kb/s, download/upload]
- Z budynku drugiego do serwera pierwszego: 45950/75250 [kb/s, download/upload]
- Z budynku drugiego do serwera drugiego: 55400/91850 [kb/s, download/upload]

Jak łatwo można zauważyć, ruch generowany przez pracowników znajdujących się w pierwszym budynku jest większy zarówno do pierwszego, jak i drugiego serwera. Z tego powodu zdecydowaliśmy się umieścić w pierwszym budynku oba serwery, by zminimalizować transfer danych przez łącze znajdujące się między budynkami. Transfer między budynkami (a więc i wymaganą przepustowość łącza między budynkami) można policzyć w następujący sposób:

$$(transferwsiecilokalnej + transferaplikacji) * nadmiar * 0.4$$

Powyższy wzór zakłada rozwój firmy (20% na przestrzeni lat), oraz fakt, że łącze nie będzie przez cały czas obciążone maksymalnym możliwym transferem generowanym przez pracowników. Podstawiając wartości numeryczne otrzymamy:

$$(262, 1582031 + 30, 68) * 1.2 * 0.4[Mb/s] = 292, 83 * 0.48 = 140, 56[Mb/s]$$

1.4 Założenia projektowe

Projekt zakłada utworzenie sieci komputerowej dla biura mieszczącego się w dwóch budynkach. Odległość między budynkami wynosi 237 metrów. Do połączenia między budynkami zastosowano łącze optyczne wielomodowe, które pozwala na szybkie przesyłanie danych. Projekt sieci zakłada trzy punkty dystrybucyjne. Główny punkt dystrybucyjny znajdować się będzie w pierwszym budynku, na pierwszym piętrze, zapewniając połączenie dla punktów abonenckich z tego piętra, zaś pozostałe punkty dystrybucyjne odpowiednio w pierwszym budynku na drugim piętrze (punkty abonenckie dla drugiego i trzeciego piętra), oraz w drugim budynku na drugim piętrze (punkty abonenckie dla całego drugiego budynku). Punkty abonenckie zostaną rozmieszczone w ten sposób, aby na każde 10 m2 budynku przypadał przynajmniej jeden punkt abonencki. Drukarki podłączone będą bezpośrednio do punktów dystrybucyjnych, mogą korzystać też z połączenia bezprzewodowego poprzez Wi-Fi, jeśli zaistnieje taka potrzeba.

W siedzibie biura zastosowane zostanie okablowanie kategorii 6, zarówno do połączenia między MDF i IDF, jak i do połączenia IDF z punktami abonenckimi. Odległość stacji roboczych od punktów dystrybucyjnych nie przekracza 100 metrów. Zakupione przez biuro komputery pozwolą na wykorzystanie w siedzibie firmy technologii 1000Base-T, która zapewnia przepustowość 1Gb/s, która z nadmiarem zaspokaja potrzeby biura projektowego. Taka technologia zostanie zastosowana do połączenia między głównym punktem dystrybucyjnym, a niezależnymi punktami dystrybucyjnymi, natomiast między IDF, a stacjami roboczymi zastosowana zostanie technologia 100Base-TX.

W każdym z budynków umieszczony zostanie jeden router, przy czym przy głównym punkcie dystrybucyjnym umieszczony zostanie jeden dodatkowy router zapewniający połączenie z siecią zewnętrzną. W celu zapewnienia zwiększonego bezpieczeństwa danych, projekt zakłada utworzenie strefy zdemilitaryzowanej (DMZ). Do głównego punktu dystrybucyjnego MDF podłączone będą serwery WWW oraz FTP, oraz niezależne punkty dystry-

bucyjne IDF. W razie ataku na serwery WWW lub FTP, wrażliwe dane w sieci lokalnej pozostaną poza strefą zagrożenia. Projekt zakłada również istnienie czterech punktów dostępowych Wi-Fi dla gości oraz pracowników (dla różnych grup zostaną utworzone osobne lokalne sieci wirtualne).

Grupa robocza	MDF	IDF 1	IDF 2
Konstruktorzy	12	9	16
Architekci	14	52	50
Projektanci	5	36	36
Zarząd	14	30	6
Praktykanci	17	40	31
Suma (aktualna)	17	40	31
Suma (docelowa)	75	201	167

Tablica 14: Liczba punktów abonenckich podłączonych do punktów dystrybucyjnych

Przykładowe obliczenia dla tab. 14:

Dla MDF, suma (docelowa):

 $\lceil suma_gniazd_abonenckich_w_MDF \cdot 120\% \rceil = \lceil (12 + 14 + 5 + 14 + 17) \cdot 120\% \rceil = 75$

2 Etap II

2.1 Projekt logiczny sieci wraz z opisem koncepcji rozwiązania i uzasadnienem

Projekt logiczny został przedstawiony na rysunku poniżej. Zakłada podział sieci wewnętrznej na 5 sieci wirtualnych (VLAN), z których każda jest przypisana do innej grupy roboczej.

Do budynku 1 została podpięta sieć Internet oraz router główny R1. W tym samym budynku znajdują się wszystkie serwery, z których SerwerWWW oraz SerwerFTP są w strefie zdemilitaryzowanej (DMZ), czyli obszarze wydzielonem na zaporze ogniowej, nie znajdującym się w sieci wewnętrznej i zewnętrznej. W punktach dystrybucyjnych zostały umieszczone przełączniki warstwy 3, co umożliwia wydajny routing pakietów w obrębie domeny rozgłoszeniowej. Punkty dostępowe umożliwiające bezprzewodowe korzystanie z sieci lokalnej oraz drukarki podłączone są bezpośrednio do punktów dystrybucyjnych.

Nazwa urzadzenia	Typ urządzenia		
SW2B1P1[1-2]			
SW2B1P2[1-2]			
SW2B1P3[1-4]	switch warstwy 2.		
SW2B2P1[1-2]			
SW2B2P2[1-2]			
SW3B1D1	switch warstwy 3.		
SW3B1D2			
SW3B2D1			
PCB1V1[1-21]			
PCB2V1[22-37]			
PCB1V2[1-66]			
PCB2V2[67-116]			
PCB1V3[1-41]			
PCB2V3[42-77]	stacje robocze		
PCB1V4[1-44]			
PCB2V4[45-50]			
PCB1V5[1-57]			
PCB2V5[58-88]			
R1	router		
B1D[1-7]	drukarki		
B2D[1-3]			
FW[1-2]	firewall		
Serwer[1-2]	serwery		
SerwerWWW			
SerwerFTP			
B1AP1	numbers doctors and M. D.		
B2AP[1-3]	punkty dostępowe Wi-Fi		

Tablica 15: Wykaz urządzeń

2.2 Wybór urządzeń sieciowych

Urządzenia wybrane do stworzenia sieci komputerowej:

- 1. przełącznik warstwy 2.
 - Cisco SF200-48 48-Port 10 100 Smart Switch
 - Cisco SF200-24 24-Port 10 100 Smart Switch
- 2. przełącznik warstwy 3
 - Cisco SG 300-20 20-port Gigabit Managed Switch
- 3. firewall
 - ASA 5505 Appliance with SW, UL Users, 8 ports, 3DES/AES
- 4. router
 - Cisco RV325-K9-G5 Dual Gigabit WAN VPN Router
- 5. serwer
 - DELL PowerEdge T130
- 6. punkt dostępowy
 - Cisco WAP4410N-G5
- 7. drukarka
 - Brother HL-1212WE WIFI

3 Adresacja IP

Jako, że w zaprojektowanej przez nas sieci planujemy podział na pięć vlan-ów, tak więc na każdy vlan należy przeznaczyć osobną pulę adresów IP. Dla ułatwienia oraz biorąc pod uwagę przyszły rozwój sieci, każdy vlan będzie miał swoją pulę z maską sieci 255.255.255.0. Adresy IP zostaną przydzielone w następujący sposób:

- vlan10 pula adresów 10.0.0.0 /24 (kostruktorzy)
- vlan20 pula adresów 10.0.0.1 /24(architekci)
- vlan30 pula adresów 10.0.0.2 /24(projektanci)
- vlan40 pula adresów 10.0.0.3 /24(zarząd)
- vlan50 pula adresów 10.0.0.4 /24(praktykanci)

Sieci vlan stworzone w ten sposób będą łatwe w utrzymaniu oraz biorąc pod uwagę rozwój firmy nie będą sprawiać problemów przy zatrudnianiu nowych pracowników.

Przy zastosowaniu powyższej puli adresów, adresy przydzielone poszczególnym stacjom roboczym na konkretnych piętrach przedstawiać się będą następująco:

- budynek pierwszy, piętro pierwsze:
 - PCB1V11 PCB1V112 10.0.0.1 10.0.0.12
 - PCB1V21 PCB1V214 10.0.1.1 10.0.1.14
 - PCB1V31 PCB1V35 10.0.2.1 10.0.2.5
 - PCB1V41 PCB1V414 10.0.3.1 10.0.3.14
 - PCB1V51 PCB1V517 10.0.4.1 10.0.4.17
- budynek pierwszy, piętro drugie:
 - PCB1V113 PCB1V117 10.0.0.13 10.0.0.17
 - PCB1V15 PCB1V234 10.0.1.15 10.0.1.34
 - PCB1V36 10.0.2.6
 - PCB1V415 PCB1V416 10.0.3.15 10.0.3.16
 - PCB1V518 PCB1V528 10.0.4.18 10.0.4.28
- budynek pierwszy, piętro trzecie:
 - PCB1V118 PCB1V121 10.0.0.18 10.0.0.21
 - PCB1V235 PCB1V266 10.0.1.35 10.0.1.66
 - PCB1V37 PCB1V341 10.0.2.7 10.0.2.41
 - PCB1V417 PCB1V444 10.0.3.17 10.0.3.44
 - PCB1V529 PCB1V557 10.0.4.29 10.0.4.57
- budynek drugi, piętro pierwsze:
 - PCB1V122 PCB1V130 10.0.0.22 10.0.0.30
 - PCB1V267 PCB1V298 10.0.1.67 10.0.1.98
 - PCB1V342 PCB1V362 10.0.2.6
 - PCB1V445 10.0.3.45

- PCB1V558 PCB1V572 10.0.4.58 10.0.4.72
- budynek drugi, piętro drugie:
 - PCB1V131 PCB1V137 10.0.0.31 10.0.0.37
 - PCB1V299 PCB1V2116 10.0.1.99 10.0.1.116
 - PCB1V63 PCB1V377 10.0.2.63 10.0.2.77
 - PCB1V446 PCB1V450 10.0.3.46 10.0.3.50
 - PCB1V573 PCB1V588 10.0.4.58 10.0.4.72

4 Projekt konfiguracji urządzeń

Stworzone przez nas vlany oparte będą o standard 802.1q. Aby poprawnie skonfigurować interfejsy na przełącznikach, trzeba wiedzieć, do których portów podłączone będą komputery na poszczególnych przełącznikach, oraz które porty służyć będą do utworzenia łącz trunkingowych. Stacje robocze zostaną podłączone do przerzutników w następujący sposób:

• SW2B1P11:

- porty 1 12 PCB1V11 PCB1V112, vlan10
- porty 13 26 PCB1V21 PCB1V214, vlan20
- porty 27 31 PCB1V31 PCB1V35, vlan30
- port 48 trunk

• SW2B1P12:

- porty 1 14 PCB1V41 PCB1V414, vlan40
- porty 15 31 PCB1V51 PCB1V517, vlan50
- port 48 trunk

• SW2B1P21:

- porty 1 5 PCB1V113 PCB1V117 vlan10
- porty 6 25 PCB1V15 PCB1V234 vlan20
- port 26 PCB1V36 vlan30
- port 48 trunk

• SW2B1P22:

- porty 1 2 PCB1V415 PCB1V416 vlan40
- porty 3 13 PCB1V518 PCB1V528 vlan50
- port 48 trunk

• SW2B1P31:

- porty 1 4 PCB1V118 PCB1V121 vlan10
- porty 4 32 PCB1V417 PCB1V444 vlan40
- port 48 trunk

• SW2B1P32:

- porty 1 32 PCB1V235 PCB1V266 vlan20
- port 48 trunk

• SW2B1P33:

- porty 1 35 PCB1V37 PCB1V341 vlan30
- port 48 trunk

• SW2B1P34:

- porty 1 29 PCB1V529 PCB1V557 vlan50
- port 48 trunk

• SW2B2P11:

- porty 1 9 PCB1V122 PCB1V130 vlan10
- porty 10 41 PCB1V267 PCB1V298 vlan20
- -port 42 PCB1V445 vlan
40
- port 48 trunk

• SW2B2P12:

- porty 1 21 PCB1V342 PCB1V362 vlan30
- -porty 22 36 PCB1V558 PCB1V558 vlan
50

- port 48 trunk

• SW2B2P21:

- -porty 1 7 PCB1V131 PCB1V137 vlan
10
- $-\,$ porty 8 25 PCB1V299 PCB1V2116 vlan
20
- porty 26 42 PCB1V63 PCB1V377 vlan30
- port 48 trunk

• SW2B2P22:

- porty 1 5 PCB1V446 PCB1V450 vlan40
- $-\,$ porty 6 21 PCB1V573 PCB1V588 vlan
50
- port 48 trunk