Estruturas de Dados - Árvore Binária de Busca 03

• Exemplo: remover um nó desta BST

- Remoção de um nó v de uma BST:
 - ullet se v for uma folha (duas sub-árvores vazias), basta removermos v
 - caso trivial de se resolver!
 - se v tiver apenas uma sub-árvore não vazia, sua sub-árvore deve se tornar sub-árvore do pai de v após a remoção
 - caso simples de se resolver!
 - se v tiver duas sub-árvores não vazias, devemos selecionar o sucessor de v e torná-lo a nova raiz, tomando a posição de v
 - caso mais complexo de se resolver!

- Remoção de um nó v de uma BST:
 - se v for uma folha (duas sub-árvores vazias), basta removermos v
 - caso trivial de se resolver!
 - se v tiver apenas uma sub-árvore não vazia, sua sub-árvore deve se tornar sub-árvore do pai de v após a remoção
 - caso simples de se resolver!
 - se v tiver duas sub-árvores não vazias, devemos selecionar o sucessor de v e torná-lo a nova raiz, tomando a posição de v
 - o caso mais complexo de se resolver!
- Note que a ideia de substituir uma sub-árvore pela outra se repete
- Ideia inicial: criar uma função que substitui, na BST, uma sub-árvore de raiz v por uma sub-árvore de raiz u

Árvore binária de busca: substituir

```
Algoritmo: Substitui(r, v, u)
  Entrada: nós r (raiz), v e u da BST
  Saída: raiz da BST completa (com a sub-árvore de raiz v substituída pela
           sub-árvore de raiz u)
1 se v \rightarrow p == \lambda então
r = u
3 senão se v == v \rightarrow p \rightarrow esq então
4 v \rightarrow p \rightarrow esq = u
5 senão
6 v \rightarrow p \rightarrow dir = u
```

8 $u \rightarrow p = v \rightarrow p$ 9 **retorne** r

7 se $u \neq \lambda$ então

Complexidade: O(1)

```
Algoritmo: RemoverBST(r, v)
   Entrada: nó raiz r da BST, nó v a ser removido
   Saída: raiz da BST completa
1 se v \rightarrow esq == \lambda então
2 r = Substitui(r, v, v \rightarrow dir)
3 senão se v \rightarrow dir == \lambda então
   r = Substitui(r, v, v \rightarrow esq)
5 senão
        s = MinimoBST(v \rightarrow dir) //ou s = SucessorBST(v)
        se s \rightarrow p \neq v (ou v \rightarrow dir \neq s) então
             r = \mathsf{Substitui}(r, s, s \rightarrow dir)
         s \rightarrow dir = v \rightarrow dir
            s \rightarrow dir \rightarrow p = s
10
        r = Substitui(r, v, s)
11
12
        s \rightarrow esq = v \rightarrow esq
13
        s \rightarrow esq \rightarrow p = s
14 retorne r
```

Complexidade: proporcional à altura da BST - O(h)

```
Algoritmo: RemoverBST(r, v)
  Entrada: nó raiz r da BST, nó v a ser removido
  Saída: raiz da BST completa
1 se v \rightarrow esq == \lambda então
       r = Substitui(r, v, v \rightarrow dir)
3 senão se v \rightarrow dir == \lambda então
       r = Substitui(r, v, v \rightarrow esq)
5 senão
       s = MinimoBST(v \rightarrow dir) //ou s = SucessorBST(v)
       se s \rightarrow p \neq v (ou v \rightarrow dir \neq s) então
            r = Substitui(r, s, s \rightarrow dir)
            s \rightarrow dir = v \rightarrow dir
9
            s \rightarrow dir \rightarrow p = s
0
       r = Substitui(r, v, s)
       s \rightarrow esq = v \rightarrow esq
       s \rightarrow esq \rightarrow p = s
4 retorne r
```

Caso 1:
$$v \rightarrow esq = \lambda$$
 e $v \rightarrow dir = \lambda$
Exemplo: remover 31

40

40

40

30

18

Algoritmo: RemoverBST(r, v)

Entrada: nó raiz r da BST, nó v a ser removido

Saída: raiz da BST completa

1 se $v \rightarrow esq == \lambda$ então

 $r = Substitui(r, v, v \rightarrow dir)$

3 senão se $v \rightarrow dir == \lambda$ então

 $r = \mathsf{Substitui}(r, v, v \rightarrow esq)$

5 senão

9

0

 $s = \text{MinimoBST}(v \rightarrow dir) //\text{ou } s = \text{SucessorBST}(v)$ $\text{se } s \rightarrow p \neq v \text{ (ou } v \rightarrow dir \neq s \text{) então}$

 $r = \text{Substitui}(r, s, s \rightarrow dir)$

 $s \rightarrow dir = v \rightarrow dir$

 $s{
ightarrow}dir{
ightarrow}p=s$

 $r = \mathsf{Substitui}(r, v, s)$

 $s{
ightarrow}esq=v{
ightarrow}esq$

 $s \rightarrow esq \rightarrow p = s$

4 retorne r

Complexidade: proporcional à altura da BST - O(h)

Caso 2: $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir = \lambda$ Exemplo: remover 40

Algoritmo: RemoverBST(r, v)

Entrada: nó raiz r da BST, nó v a ser removido

Saída: raiz da BST completa

1 se $v \rightarrow esq == \lambda$ então

 $r = \mathsf{Substitui}(r, v, v \rightarrow dir)$

3 senão se $v{
ightarrow}dir==\lambda$ então

 $r = \mathsf{Substitui}(r, v, v \rightarrow esq)$

5 senão

9

0

 $s = \text{MinimoBST}(v \rightarrow dir) //\text{ou } s = \text{SucessorBST}(v)$ $\text{se } s \rightarrow p \neq v \text{ (ou } v \rightarrow dir \neq s) \text{ então}$

 $r = \text{Substitui}(r, s, s \rightarrow dir)$

 $s \rightarrow dir = v \rightarrow dir$

 $s \rightarrow dir \rightarrow p = s$

 $r = \mathsf{Substitui}(r, v, s)$

 $s{
ightarrow}esq=v{
ightarrow}esq$

 $s \rightarrow esq \rightarrow p = s$

4 retorne r

Complexidade: proporcional à altura da BST - O(h)

Caso 3:
$$v \rightarrow esq = \lambda$$
 e $v \rightarrow dir \neq \lambda$
Exemplo: remover 71


```
Algoritmo: RemoverBST(r, v)
  Entrada: nó raiz r da BST, nó v a ser removido
  Saída: raiz da BST completa
1 se v \rightarrow esq == \lambda então
       r = Substitui(r, v, v \rightarrow dir)
3 senão se v \rightarrow dir == \lambda então
       r = Substitui(r, v, v \rightarrow esq)
5 senão
       s = MinimoBST(v \rightarrow dir) //ou s = SucessorBST(v)
       se s \rightarrow p \neq v (ou v \rightarrow dir \neq s) então
            r = \mathsf{Substitui}(r, s, s \rightarrow dir)
            s \rightarrow dir = v \rightarrow dir
          s \rightarrow dir \rightarrow p = s
       r = Substitui(r, v, s)
       s \rightarrow esq = v \rightarrow esq
       s \rightarrow esq \rightarrow p = s
4 retorne r
```

Complexidade: proporcional à altura da BST - O(h)

8

0

Caso 4: $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir \neq \lambda$ e $v = s \rightarrow p \text{ (ou } v \rightarrow dir = s)$ Exemplo: remover 75


```
Algoritmo: RemoverBST(r, v)
  Entrada: nó raiz r da BST, nó v a ser removido
  Saída: raiz da BST completa
1 se v \rightarrow esq == \lambda então
       r = Substitui(r, v, v \rightarrow dir)
3 senão se v \rightarrow dir == \lambda então
       r = Substitui(r, v, v \rightarrow esq)
5 senão
       s = MinimoBST(v \rightarrow dir) //ou s = SucessorBST(v)
       se s \rightarrow p \neq v (ou v \rightarrow dir \neq s) então
            r = \mathsf{Substitui}(r, s, s \rightarrow dir)
            s \rightarrow dir = v \rightarrow dir
            s \rightarrow dir \rightarrow p = s
       r = Substitui(r, v, s)
       s \rightarrow esq = v \rightarrow esq
        s \rightarrow esq \rightarrow p = s
4 retorne r
```

8 9

0

Complexidade: proporcional à altura da BST - O(h)

Caso 5: $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir \neq \lambda$ e $v \neq s \rightarrow p \text{ (ou } v \rightarrow dir \neq s)$ Exemplo: remover 50

Casos possíveis:

- 1 $v \rightarrow esq = \lambda e v \rightarrow dir = \lambda$
 - basta remover o nó
- 2 $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir = \lambda$
 - substituímos v por $v{
 ightarrow}esq$
- 3 $v \rightarrow esq = \lambda e v \rightarrow dir \neq \lambda$
 - substituímos v por $v \rightarrow dir$
- 4 $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir \neq \lambda$ e $v = s \rightarrow p$ (ou $v \rightarrow dir = s$)
 - substituímos v por s diretamente, sem necessidade de mexer mais
- ? E se $v \rightarrow esq \neq \lambda$ e $v \rightarrow dir \neq \lambda$, mas v não tiver sucessor?
 - se $v \rightarrow dir \neq \lambda$, então existe um sucessor de v
 - v não tem sucessor se e somente se $v \rightarrow dir = \lambda$
 - ou seja, esse não é um caso possível

