Discrete trait models

Comparing models and correlating traits

- Always plot your data!
- Check for nestedness of trait!
- Transitions are the effective sample size for these analyses

Continuous-Time Markov Chains (CTMC)

$${X(t), t \ge 0}$$

Stochastic models that follow change in time with an associated probability

X(t)= phenotype (trait) value at time t

t= millions of years or expected number of substitutions

Discrete models of evolution

X(t)= phenotype (trait) value at time t

$$X(t)$$
= Insect (0), Wind (1)

We use conditional probabilities. For example:

$$P(X(t) = 1|X(0) = 0)$$

Drawing the FULL model

Full-model

(0 1)

(20)

Tet Muin R model 401 is parameter 410 is parameter Estimation: Full model

ALE

901 = 0.05 Change per Lineage per 1 (Events) E/L/1my 910 = 0.13 Estimates MLE = Maximum Likelihood Estimate

Log Like: -47.78

Log arithm of the Rikelihood

(natural)

Drawing a Reduced model

$$Q = \begin{pmatrix} -q & q \\ q & -q \end{pmatrix}$$

Hure is no destrence between rates (a.k.a rates are al)

redoced-model

(0 1)

9 mle = 0.05 EIL/My

bog like = -49.08

Comparing nested models

Likelihood Ratio Test

• Test statistic:
$$LRT = -2 \times \log(\frac{Likelihood (Reduced model)}{Likelihood (Full model)})$$

• $LTR \sim \chi^2$ with degrees of freedom k= #parameters full model- #parameters reduced model

 χ^2 distribution with k degrees of freedom

LTP= 2.76 Test statistic value

Biologically what are we testing?

Dollo's law of irreversibility: An organism never returns exactly to a former state, even if it finds itself placed in conditions of existence identical to those which it has previously lived (Louis Dollo (1893)

Biologically what are we testing?

Dollo's law of irreversibility: An organism never returns exactly to a former state, even if it finds itself placed in conditions of existence identical to those which it has previously lived (Louis Dollo (1893)

non-diving

foot diving

non-diving

non-diving

wing diving

foot diving

(b)

(a)

Secondary adaptation to aquatic environments (Farina and Silvestro, 2023)

Waterbirds diving
Tyler and Younger, 2022