Versuch V703: Geiger-Müller-Zählrohr

Martin Bieker Julian Surmann

Durchgeführt am 27.05.2014 TU Dortmund

1 Einleitung

Das Geiger-Müller-Zählrohr ist ein einfaches Messinstrument zur Messung der Intensität von ionisierender Strahlung. In diesem Versuch werden einige Kenndaten dieer Aperatur ermittelt.

2 Theorie

- 2.1 Aufbau und Funktion
- 2.2 Totzeit und Nachtentladungen
- 2.3 Charektersitik

3 Durchführung

- 3.1 Aufnahme der Charakteristik
- 3.2 Oszillographische Messung der Totzeit
- 3.3 Bestimmung der Totzeit mit der Zwei-Quellen-Methode
- 3.4 Messung der pro Teilchen freigesetzten Ladungsmenge

4 Auswertung

5 Quellen

[1] Entnommen der Praktikumsanleitung der TU Dortmund.
Download am 01.06.14 unter:
http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V703.pdf

6 Anhang

- Tabellen
- Auszug aus dem Messheft

U[V]	N	t[s]	$I\left[\frac{1}{s}\right]$	$\sigma_{I,rel}[\%]$
300.0	0.0	100.0	0	nan
320.0	13617.0	250.0	54.5 ± 0.5	0.86
340.0	11192.0	200.0	56.0 ± 0.5	0.95
360.0	11231.0	200.0	56.2 ± 0.5	0.94
380.0	11601.0	200.0	58.0 ± 0.5	0.93
400.0	11410.0	200.0	57.0 ± 0.5	0.94
420.0	11459.0	200.0	57.3 ± 0.5	0.93
440.0	11496.0	200.0	57.5 ± 0.5	0.93
460.0	11433.0	200.0	57.2 ± 0.5	0.94
480.0	11379.0	200.0	56.9 ± 0.5	0.94
500.0	11457.0	200.0	57.3 ± 0.5	0.93
520.0	11437.0	200.0	57.2 ± 0.5	0.94
540.0	11376.0	200.0	56.9 ± 0.5	0.94
560.0	11564.0	200.0	57.8 ± 0.5	0.93
580.0	11620.0	200.0	58.1 ± 0.5	0.93
600.0	11333.0	200.0	56.7 ± 0.5	0.94
620.0	11382.0	200.0	56.9 ± 0.5	0.94
640.0	11449.0	200.0	57.2 ± 0.5	0.93
660.0	11414.0	200.0	57.1 ± 0.5	0.94
680.0	11507.0	200.0	57.5 ± 0.5	0.93
700.0	11642.0	200.0	58.2 ± 0.5	0.93

Tabelle 1: Messdaten und Fehlerangabe

N	t[s]	$I\left[\frac{1}{s}\right]$	$\sigma_{I,rel} [\%]$
17483.0	200.0	87.4 ± 0.7	0.76
20229.0	200.0	101.1 ± 0.7	0.70
13280.0	1000.0	13.28 ± 0.12	0.87

Tabelle 2: