

Penalaran Non Monoton

- Ingat kembali penalaran induktif:
- Contoh:

 Premis-1
 : Ikan mujair bernafas dengan insang.

 Premis-2
 : Ikan mas koki bernafas dengan insang.

 Premis-3
 : Ikan bawal bernafas dengan insang.

Konklusi : Ikan adalah hewan yang bernafas dengan insang.

- Munculnya premis baru bisa mengakibatkan gugurnya konklusi yang sudah diperoleh.
- Misal ada premis baru

Premis-4 : Ikan paus bernafas dengan paru-paru.

- Premis tersebut, menyebabkan konklusi: "Ikan adalah hewan yang bernafas dengan insang", tidak lagi 100% benar.
- Apabila kita menggunakan penalaran induktif, sangat dimungkinkan adanya ketidakpastian.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Penalaran Non Monoton

- Suatu penalaran dimana adanya penambahan fakta baru mengakibatkan ketidakkonsistenan disebut dengan "Penalaran Non Monotonis".
- Ciri-ciri dari Penalaran Non Monotonis adalah:
- Mengandung ketidakpastian;
- Adanya perubahan pada pengetahuan.
- Adanya penambahan fakta baru dapat mengubah konklusi yang sudah terbentuk.
- Misalkan S adalah konklusi dari D, bisa jadi S tidak dibutuhkan sebagai konklusi D + fakta-fakta baru.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Probabilitas & Theorema Bayes

- Diketahui 10 orang yang lulus matakuliah Kecerdasan Buatan dengan nilai A dan B.
- Berapakah:
- P(A) ?
- P(B) ?

No	Nilai A	Nilai B	
1	$\sqrt{}$		
2	$\sqrt{}$		
3		$\sqrt{}$	
4	√		
5	$\sqrt{}$		
6		$\sqrt{}$	
7	$\sqrt{}$		
8		\checkmark	
9	V		
10	√		

Probabilitas & Theorema Bayes

- Diketahui 10 orang yang lulus matakuliah Kecerdasan Buatan dengan nilai A dan B.
- Berapakah:
- P(Laki2) ?
- P(Perempuan)?
- P(A) ?
- P(B) ?
- P(A|Laki2) ?
- P(Laki2|A) ?

	E				
No	Laki-laki		Perempuan		
No	Α	В	Α	В	
1	V				
2					
3				\checkmark	
4					
5			√		84
6				1	
7	\checkmark				
8				\checkmark	
9					2
10					h

Contoh ...

Si Ani mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Si Ani terkena:

- Cacar, dengan:
- Probabilitas munculnya bintik-bintik di wajah, jika Si Ani terkena cacar; p(Bintik2|Cacar) = 0,8.
- Probabilitas cacar; p(Cacar) = 0,4.
- Alergi, dengan
 - Probabilitas munculnya bintik-bintik di wajah, jika Si Ani alergi; p(Bintik2|Alergi) = 0,3.
 - Probabilitas alergi; p(Alergi) = 0,7.
- Jerawat, dengan
- Probabilitas munculnya bintik-bintik di wajah, jika Si Ani jerawatan; p(Bintik2|Jerawatan) = 0,9.
- Probabilitas jerawatan; p(Jerawatan) = 0,5.

Probabilitas & Theorema Bayes

Bentuk Th. Bayes:

$$p(H_i \mid E) = \frac{p(E \mid H_i) * p(H_i)}{\sum_{k=1}^{n} p(E \mid H_k) * p(H_k)}$$

dengan:

 $p(H_i|E)$ = probabilitas hiposesis H_i benar jika diberikan evidence E.

 $p(E|H_i)$ = probabilitas munculnya evidence E, jika diketahui hipotesis H_i benar.

p(H_i) = probabilitas hipotesis H_i (menurut hasil sebelumnya) tanpa memandang evidence apapun.

jumlah hipotesis yang mungkin.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

- Maka
 - Probabilitas Si Ani terkena cacar karena ada bintik-bintik di wajahnya adalah:

 $p(Cacar \mid B \ int \ ik2) = \frac{p(B \ int \ ik2 \mid Cacar) * p(Cacar)}{p(B \ int \ ik2 \mid Cacar) * p(Cacar) + p(B \ int \ ik2 \mid Alergi) * p(Alergi) + p(B \ int \ ik2 \mid Jerawat) * p(Jerawat)}$

$$p(Cacar \mid Bintik2) = \frac{(0,8)*(0,4)}{(0,8)*(0,4)+(0,3)*(0,7)+(0,9)*P(0,5)} = \frac{0,32}{0,98} = 0,327$$

 Probabilitas Si Ani terkena alergi karena ada bintik-bintik di wajahnya adalah:

 $p(Alergi \mid B \text{ int ik2}) = \frac{p(B \text{ int ik2} \mid Alergi) * p(Alergi)}{p(B \text{ int ik2} \mid Cacar) * p(Cacar) + p(B \text{ int ik2} \mid Alergi) * p(Alergi) + p(B \text{ int ik2} \mid Jerawat) * p(Jerawat)}$

$$p(Alergi \mid Bintik2) = \frac{(0,3)*(0,7)}{(0,8)*(0,4)+(0,3)*(0,7)+(0,9)*P(0,5)} = \frac{0,21}{0,98} = 0,21$$

• Probabilitas Si Ani jerawatan karena ada bintik-bintik di wajahnya adalah:

 $p(Jerawat \mid B \text{ int } ik2) = \frac{p(B \text{ int } ik2 \mid Jerawat) * p(Jerawat)}{p(B \text{ int } ik2 \mid Cacar) * p(Cacar) + p(B \text{ int } ik2 \mid Alergi) * p(Alergi) * p(Alergi) + p(B \text{ int } ik2 \mid Jerawat) * p(Jerawat)}$

 $p(Jerawat \mid Bintik2) = \frac{(0.9)*(0.5)}{(0.8)*(0.4) + (0.3)*(0.7) + (0.9)*P(0.5)} = \frac{0.45}{0.98} = 0.459$

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

- Bintik-bintik di wajah merupakan gejala bahwa seseorang terkena cacar.
- Observasi baru menunjukkan bahwa selain adanya bintik-bintik di wajah, panas badan juga merupakan gejala orang terkena cacar.
- Antara munculnya bintik-bintik di wajah dan panas badan juga memiliki keterkaitan satu sama lain.

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

Jika setelah dilakukan pengujian terhadap hipotesis, muncul satu atau lebih evidence atau observasi baru, maka:

$$p(H \mid E, e) = p(H \mid E) * \frac{p(e \mid E, H)}{p(e \mid E)}$$

e = evidence lama.

E = evidence atau observasi baru.

p(H|E,e) = probabilitas hipotesis H benar jika muncul

evidence baru E dari evidence lama e.

(H|E) = probabilitas hipotesis H benar jika diberikan evidence E.

p(e|E,H) = kaitan antara e dan E jika hipotesis H benar. p(e|E) = kaitan antara e dan E tanpa memandang

hipotesis apapun.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Contoh ...

- Si Ani mengalami gejala ada bintik-bintik di wajahnya.
- Dokter menduga bahwa Si Ani terkena cacar dengan probabilitas terkena cacar apabila ada bintik-bintik di wajah, p(Cacar|Bintik2), adalah 0.8.
- Ada observasi bahwa orang yang terkena cacar pasti mengalami panas badan.
- Jika diketahui bahwa:
- probabilitas orang terkena cacar apabila panas badan, p(Cacar|Panas), adalah 0.5:
- keterkaitan antara adanya bintik-bintik di wajah dan panas badan apabila seseorang terkena cacar, p(Bintik2|Panas,Cacar), adalah 0,4;
- keterkaitan antara adanya bintik-bintik di wajah dan panas badan, p(Bintik2|Panas), adalah 0.6,

Atribut	Prob	Keterangan
p(Pengangguran PHK,Gelandangan)	0,95	Keterkaitan antara pengangguran & PHK, jika muncul gelandangan.
p(Pengangguran PHK,¬Gelandangan)	0,20	Keterkaitan antara pengangguran & PHK, jika tidak ada gelandangan.
p(Pengangguran ¬PHK,Gelandangan)	0,75	Keterkaitan antara pengangguran & tidak ada yang diPHK, jika muncul gelandangan.
p(Pengangguran ¬PHK, ¬Gelandangan)	0,40	Keterkaitan antara pengangguran & tidak ada yang diPHK, jika tidak ada gelandangan.
p(PHK Krismon)	0,50	Probabilitas orang diPHK jika terjadi krismon.
p(PHK ¬Krismon)	0,10	Probabilitas orang diPHK jika tidak terjadi krismon.
p(Pengangguran Krismon)	0,90	Probabilitas muncul pengangguran jika terjadi krismon.
p(Pengangguran ¬Krismon)	0,30	Probabilitas muncul pengangguran jika tidak terjadi krismon.
P(Krismon)	0,80	

Contoh ...

 Pada pertengahan tahun 2002, ada indikasi bahwa turunnya devisa Indonesia disebabkan oleh permasalahan TKI di Malaysia. Apabila diketahui: MB[DevisaTurun,TKI] = 0,8 dan MD[DevisaTurun,TKI] = 0,3; maka carilah berapa CF[DevisaTurun,TKI]?

CF[DevisaTurun,TKI] = MB[DevisaTurun,TKI]-MD[DevisaTurun,TKI] = 0,8 - 0,3 = 0,5.

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

- MB[DevisaTurun,TKI ∧ EksporTurun]
 - = MB[DevisaTurun,TKI] + MB[DevisaTurun,EksporTurun]*(1-MB[DevisaTurun,TKI])
 - = 0.8 + 0.75 * (1-0.8)
 - = 0.95
- MD[DevisaTurun,TKI \(\times \) EksporTurun]
 - = MD[DevisaTurun,TKI] +
 - MD[DevisaTurun,EksporTurun]*(1-MD[DevisaTurun,TKI])
 - = 0.3 + 0.1 * (1-0.3)
 - = 0.37
- CF[DevisaTurun,TKI ∧ EksporTurun]
 - = MB[DevisaTurun,TKI ∧ EksporTurun] MD[DevisaTurun,TKI ∧ EksporTurun]
 - = 0.95 0.37
 - = 0,58

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

- Ternyata pada akhir September 2002, kemarau yang berkepanjangan mengakibatkan gagal panen yang cukup serius, hal ini ternyata juga berdampak pada turunnya ekspor Indonesia. Apabila diketahui:

 MB[DevisaTurun,EksporTurun] = 0,75 dan
 MD[DevisaTurun,EksporTurun] = 0,1; maka carilah berapa CF[DevisaTurun,EksporTurun] dan berapa CF[DevisaTurun,TKI ∧ EksporTurun]?
 - CF[DevisaTurun,EksporTurun] =
 - MB[DevisaTurun,EksporTurun] –MD[DevisaTurun,EksporTurun]
 - = 0.75 0.1
 - = 0.65.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

- Isu terorisme di Indonesia pasca peristiwa Bom Bali pada tanggal 12 Oktober 2002 ternyata juga ikut mempengaruhi turunnya devisa Indonesia sebagai akibat berkurangnya wisatawan asing. Apabila diketahui: MB[DevisaTurun,BomBali] = 0,5 dan MD[DevisaTurun,BomBali] = 0,3; maka carilah berapa CF[DevisaTurun,BomBali] dan berapa CF[DevisaTurun,TKI ∧ EksporTurun ∧ BomBali]?
 - CF[DevisaTurun,BobBali] =
 - = MB[DevisaTurun,BomBali] MD[DevisaTurun,BomBali]
 - = 0.5 0.3
 - = 0,2.

MD[DevisaTurun,TKI ∧ EksporTurun ∧ BomBali]
 = MD[DevisaTurun,TKI ∧ EksporTurun] + MD[DevisaTurun,BomBali]*
 (1-MD[DevisaTurun, TKI ∧ EksporTurun])
 = 0,37 + 0,3 * (1-0,37) = 0,559

= 0.95 + 0.5 * (1-0.95) = 0.975

CF[DevisaTurun,TKI ∧ EksporTurun ∧ BomBali]
 MB[DevisaTurun,TKI ∧ EksporTurun ∧ BomBali]
 MD[DevisaTurun,TKI ∧ EksporTurun ∧ BomBali]
 0,975 - 0,559 = 0,416

Jurusan Teknik Informatika Fakultas Teknologi Industri, Universitas Islam Indonesia Si Ani menderita bintik-bintik di wajahnya. Dokter memperkirakan Si Ani terkena cacar dengan kepercayaan, MB[Cacar,Bintik2] = 0,80 dan MD[Cacar,Bintik2] = 0,01. Maka: CF[Cacar,Bintik2] = 0,80 − 0,01 = 0,79. Jika observasi tersebut juga memberikan kepercayaan bahwa Si Ani mungkin juga terkena alergi dengan kepercayaan, MB[Alergi,Bintik2] = 0,4 dan MD[Alergi,Bintik2] = 0,3; Maka: CF[Alergi,Bintik2] = 0,4 − 0,3 = 0,1. Untuk mencari CF[Cacar ∧ Alergi, Bintik2] dapat diperoleh dari: MB[Cacar ∧ Alergi, Bintik2] = min(0,8; 0,4) = 0,4 MD[Cacar ∧ Alergi, Bintik2] = min(0,01; 0,3) = 0,01 CF[Cacar ∧ Alergi, Bintik2] = 0,4 − 0,01 = 0,39 Untuk mencari CF[Cacar ∨ Alergi, Bintik2] = max(0,8; 0,4) = 0,8 MD[Cacar ∨ Alergi, Bintik2] = max(0,8; 0,4) = 0,8 MD[Cacar ∨ Alergi, Bintik2] = max(0,01; 0,3) = 0,3 CF[Cacar ∨ Alergi, Bintik2] = max(0,01; 0,3) = 0,3

Jurusan Teknik Informatika Fakultas Teknologi Industri, Universitas Islam Indonesia • CF dihitung dari kombinasi beberapa hipotesis (b). • Jika h1 dan h2 adalah hipotesis, maka: $MB[h_1 \wedge h_2, e] = min(MB[h_1, e], MB[h_2, e])$ $MB[h_1 \vee h_2, e] = max(MB[h_1, e], MB[h_2, e])$ $MD[h_1 \wedge h_2, e] = min(MD[h_1, e], MD[h_2, e])$ $MD[h_1 \vee h_2, e] = max(MD[h_1, e], MD[h_2, e])$

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

- Semula faktor kepercayaan bahwa Si Ani terkena cacar dari gejala munculnya bintik-bintik di wajah adalah 0,79.
- Faktor kepercayaan bahwa Si Ani terkena alergi dari gejala munculnya bintik-bintik di wajah adalah 0,1.
- Dengan adanya gejala yang sama mempengaruhi 2 hipotesis yang berbeda ini, memberikan faktor kepercayaan bahwa:
- Si Ani menderita cacar dan alergi = 0,39.
- Si Ani menderita cacar atau alergi = 0,5

 Beberapa aturan saling bergandengan, ketidakpastian dari suatu aturan menjadi input untuk aturan yang lainnya (c), maka:

MB[h,s] = MB'[h,s] * max(0,CF[s,e])

dengan MB'[h,s] adalah ukuran kepercayaan h berdasarkan keyakinan penuh terhadap validitas s.

Teori Dempster-Shafer

- Secara umum Teori Dempster-Shafer ditulis dalam suatu interval: [Belief,Plausibility]
- Belief (Bel) adalah ukuran kekuatan evidence dalam mendukung suatu himpunan proposisi. Jika bernilai 0 maka mengindikasikan bahwa tidak ada evidence, dan jika bernilai 1 menunjukkan adanya kepastian.
- Plausibility (PI) dinotasikan sebagai:

$$PI(s) = 1 - BeI(\neg s)$$

Plausibility juga bernilai 0 sampai 1. Jika kita yakin akan ¬s, maka dapat dikatakan bahwa Bel(¬s)=1, dan Pl(¬s)=0.

Teori Dempster-Shafer

- Pada teori Dempster-Shafer dikenal adanya frame of discernment yang dinotasikan dengan θ. Frame ini merupakan semesta pembicaraan dari sekumpulan hipotesis.
- Tujuan kita adalah mengkaitkan ukuran kepercayaan elemen-elemen θ.
- Tidak semua evidence secara langsung mendukung tiap-tiap elemen.

Teori Dempster-Shafer

- Misalkan: $\theta = \{A, F, D, B\}$ dengan:
 - A = Alergi;
 - F = Flu; D = Demam;
 - B = Bronkitis.
- Sebagai contoh, panas mungkin hanya mendukung {F,D,B}.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Teori Dempster-Shafer

- Andaikan tidak ada informasi apapun untuk memilih keempat hipotesis tersebut, maka nilai: m{θ} = 1,0
- Jika kemudian diketahui bahwa panas merupakan gejala dari flue, demam, dan bronkitis dengan m = 0,8, maka:

$$m{F,D,B} = 0.8$$

 $m{\theta} = 1 - 0.8 = 0.2$

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Teori Dempster-Shafer

- Untuk itu perlu adanya probabilitas fungsi densitas (m).
- Nilai m tidak hanya mendefinisikan elemenelemen θ saja, namun juga semua subset-nya.
- Sehingga jika θ berisi n elemen, maka subset dari θ semuanya berjumlah 2ⁿ.
- Kita harus menunjukkan bahwa jumlah semua m dalam subset θ sama dengan 1.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

Teori Dempster-Shafer

Andaikan diketahui X adalah subset dari θ, dengan m₁ sebagai fungsi densitasnya, dan Y juga merupakan subset dari θ dengan m₂ sebagai fungsi densitasnya, maka kita dapat membentuk fungsi kombinasi m₁ dan m₂ sebagai m₃, yaitu:

$$m_3(z) = \frac{\sum_{X \cap Y = Z} m_1(x).m_2(Y)}{1 - \sum_{X \cap Y = \emptyset} m_1(x).m_2(Y)}$$

Contoh ...

- Si Ani mengalami gejala panas badan. Dari diagnosa dokter, penyakit yang mungkin diderita oleh Si Ani adalah flue, demam, atau bronkitis.
 - Gejala-1: panas

Apabila diketahui nilai kepercayaan setelah dilakukan observasi panas sebagai gejala dari penyakit flue, demam, dan bronkitis adalah:

$$m_1\{F,D,B\} = 0.8$$

 $m_1\{\theta\} = 1 - 0.8 = 0.2$

 Sehari kemudian, Si Ani datang lagi dengan gejala yang baru, yaitu hidungnya buntu.

Jurusan **Teknik Informatika**Fakultas Teknologi Industri, Universitas Islam Indonesia

$$m_3\{F,D\} = \frac{0,72}{1-0} = 0,72$$

$$m_3{A,F,D} = {0,18 \over 1-0} = 0,18$$

$$m_3\{F, D, B\} = \frac{0.08}{1-0} = 0.08$$

$$m_3\{\theta\} = \frac{0.02}{1-0} = 0.02$$

Jurusan **Teknik Informatika** Fakultas Teknologi Industri, Universitas Islam Indonesia

∘ Gejala-3: piknik

Jika diketahui nilai kepercayaan setelah dilakukan observasi terhadap piknik sebagai gejala dari alergi adalah:

$$m_4\{A\}\ =\ 0.6$$

$$m_4\{\theta\} = 1 - 0.6 = 0.4$$

maka dapat dicari aturan kombinasi dengan nilai kepercayaan m

5		{A}	(0,6)	θ	(0,4)
{F,D}	(0,72)	Æ	(0,432)	{F,D}	(0,288)
{A,F,D}	(0,18)	{A}	(0,108)	{A,F,D}	(0,072)
{F,D,B}	(80,0)	Æ	(0,048)	{F,D,B}	(0,032)
θ	(0,02)	{A}	(0,012)	θ	(0,008)
			8-110		Land

$$m_5\{A\} = \frac{0,108 + 0,012}{1 - (0,432 + 0,048)} = 0,231$$

$$m_{5}\{F,D\} = \frac{0,288}{1 - (0,432 + 0,048)} = 0,554$$

$$m_{5}\{A,F,D\} = \frac{0,072}{1 - (0,432 + 0,048)} = 0,138$$

$$m_5{F, D, B} = \frac{0,032}{1 - (0,432 + 0,048)} = 0,062$$

$$m_5\{\theta\} = \frac{0,008}{1 - (0,432 + 0,048)} = 0,015$$