Atty Dkt. No. 32301WD190

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Brigitte BATHE, et al.

Serial No.: New

Group Art Unit: Unassigned

Filed:

August 30, 2001

Examiner: Unassigned

For:

NUCLEOTIDE SEQUENCES CODING FOR THE sigD GENE

CLAIM FOR FOREIGN PRIORITY TRANSMITTAL

ATTENTION: BOX MISSING PARTS Asst. Commissioner for Patents

Washington, D.C. 20231

Sir:

Under the provisions of 35 U.S.C. § 119, Applicants hereby claim the benefit of the filing date of German Patent Appln. No. 100 43 331.6, filed in Germany on September 2, 2000.

In support of this priority claim, Applicants submit herewith a certified copy of the priority application.

Respectfully submitted,

SMITH, GAMBRELL & RUSSELL, LLP

By:

Robert G. Weilacher, Reg. No. 20,531 1850 M Street, N.W. (Suite 800)

Washington, D.C. 20036

Telephone: (202) 659-2811

Fax: (202) 263-4329

August 30, 2001

RUNDESKELOBLIV DECISCULAIND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 43 331.6

Anmeldetag:

02. September 2000

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Erstanmelder: Degussa-Hüls Aktiengesellschaft,

Frankfurt am Main/DE

Bezeichnung:

Neue für das sigD-Gen kodierende

Nukleotidsequenzen

IPC:

C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 21. Juni 2001

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Faus

Neue für das sigD-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das sigD-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das sigD-Gen verstärkt wird.

Stand der Technik

10

L-Aminosäuren finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser

Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren produzieren.

30 Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium

eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

Aufgabe der Erfindung

5 Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

25

Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt,

sind damit eine oder mehrere Aminosäuren einschließlich
ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, LThreonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, LCystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, LTyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan
und L-Arginin gemeint. Besonders bevorzugt ist Lysin.

Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das sigD-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

- 20 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 30 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des Sigma-Faktors D aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
 - (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenzhybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).
- 15 Weitere Gegenstände sind

5

- ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid
 20 kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2
 dargestellt, enthält;
 - ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und
- coryneforme Bakterien, die den Vektor enthalten oder in denen das sigD-Gen verstärkt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

- Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für den Sigma-Faktor D kodieren, oder um solche
- Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des sigD-Gens aufweisen.

15

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für den Sigma-Faktor D kodieren.

Solche als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

25 "Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein
Polynukleotid gemäß SEQ ID No. 1 oder ein daraus
hergestelltes Fragment und auch solche ein, die zu
wenigstens 70%, bevorzugt zu wenigstens 80% und besonders
zu wenigstens 90% bis 95% identisch sind mit dem

Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragments.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des Sigma-Faktors D und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

10

Die Erfindung betrifft weiterhin ein Verfahren zur fermermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das sigD-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder

25 mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

5

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme.

Den Erfindern gelang es, das neue, für das Enzym Sigma-Faktor D kodierende sigD-Gen von C. glutamicum zu isolieren.

Zur Isolierung des sigD-Gens oder auch anderer Gene von
C. glutamicum wird zunächst eine Genbank dieses

Mikroorganismus in Escherichia coli (E. coli) angelegt.

Das Anlegen von Genbanken ist in allgemein bekannten
Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel
seien das Lehrbuch von Winnacker: Gene und Klone, Eine
Einführung in die Gentechnologie (Verlag Chemie, Weinheim,

Deutschland, 1990), oder das Handbuch von Sambrook et al.:
Molecular Cloning, A Laboratory Manual (Cold Spring Harbor
Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank
ist die des E. coli K-12 Stammes W3110, die von Kohara et

al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.

Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)).

10

25

1977) beschrieben ist.

Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5amcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649)

20 beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of the National Academy

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.

of Sciences of the United States of America, 74:5463-5467,

Auf diese Weise wurde die neue für das Gen sigD kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des sigD-Genproduktes dargestellt.

Kodierende DNA-Sequenzen, die sich aus SEO ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind 10 DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als 15 "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar 20 stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 25 6:1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1

30 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der
Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der
Erfindung, die durch die Polymerase-Kettenreaktion (PCR)
unter Verwendung von Primern hergestellt werden, die sich
aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben

typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. 5 (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% 10 identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflußt bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ 15 niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50 - 68°C 20 eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise 25 durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50 - 68°C eingestellt wird. Es ist 30 qegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50 auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder 35 mindestens 90% bis 95% Identität zur Sequenz der

eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

5

10

werden.

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Bei der Arbeit an der vorliegenden Erfindung konnte festgestellt werden, daß coryneforme Bakterien nach Überexpression des sigD-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer 25 der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom 30 integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung 10 WO 96/15246, bei Malumbres et al. (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides 15 (Microbiological Reviews 60:512-538 (1996)) und in

bekannten Lehrbüchern der Genetik und Molekularbiologie.

Zur Verstärkung wurde das erfindungsgemäße sigD-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur

30

35

verwendet werden.

Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 10 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al., 1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird 15 anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) 20 beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology

beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben.

25 Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, neben dem sigD-Gen eines oder mehrere

30 Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

So kann beispielsweise für die Herstellung von L-Aminosäuren zusätzlich zur Verstärkung des sigD-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
 - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

5

25

- das für die Triosephosphat Isomerase kodierende Gen tpi 10 (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf (JP-A-09224661),
- das für die Pyruvat Carboxylase kodierende Gen pyc (DE-A-198 31 609),
 - das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Accession No.P26512),
 - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
 - das für die Homoserin-Dehydrogenase kodierende Gen hom (EP-A 0131171),
 - das für die Threonin-Dehydratase kodierende Gen ilvA
 (Möckel et al., Journal of Bacteriology (1992) 8065-8072)) oder das für eine "feed back resistente" Threonin-

Dehydratase kodierende Allel ilvA(Fbr) (Möckel et al., (1994) Molecular Microbiology 13: 833-842),

- das für die Acetohydroxysäure-Synthase kodierenden Gen ilvBN (EP-B 0356739),
- das für die Dihydroxysäuredehydratase kodierende Gen ilvD (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979),
 - das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115)
- 10 verstärkt, insbesondere überexprimiert werden.

Weiterhin kann es für die Produktion von L-Aminosäuren vorteilhaft sein, zusätzlich zur Verstärkung des sigD-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende 15 Gen pck (DE 199 50 409.1; DSM 13047),
 - das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
 - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114),
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)

abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosauren vorteilhaft sein, neben der Überexpression des sigD-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

5

10

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
entsprechenden Natrium haltigen Salze verwendet werden. Das
Kulturmedium muß weiterhin Salze von Metallen enthalten wie
z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
notwendig sind. Schließlich können essentielle Wuchsstoffe
wie Aminosäuren und Vitamine zusätzlich zu den oben
genannten Stoffen eingesetzt werden. Dem Kulturmedium
können überdies geeignete Vorstufen zugesetzt werden. Die
genannten Einsatzstoffe können zur Kultur in Form eines
einmaligen Ansatzes hinzugegeben oder in geeigneter Weise
während der Kultivierung zugefüttert werden.

5

10

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.

- Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem
- Medium geeignete selektiv wirkende Stoffe wie z.B.

 Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise
- bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
- 30 Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie 35 kann durch reversed phase HPLC erfolgen, so wie bei

Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren.

5 Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al.

10 (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY15 Medium kann ebenfalls dem Handbuch von Sambrook et al.
entnommen werden.

Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus 20 Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33:168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland,

25 Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl

30 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma

Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.

Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten.

- Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit
- Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

Isolierung und Sequenzierung des sigD-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

- Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland,
- Produktbeschreibung BamHI, Product No. 27-0868-04)
 gespalten. Die Ligation der Cosmidfragmente in den
 Sequenziervektor pZero-1 wurde wie von Sambrook et al.
 (1989, Molecular Cloning: A Laboratory Manual, Cold Spring
 Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit
- T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS
- 25 Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

30

Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems

35 (Product No. 403044, Weiterstadt, Deutschland) verwendet.

Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

5

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die

10 Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1

dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 567 Basenpaaren, welches als sigDGen bezeichnet wurde. Das sigD-Gen kodiert für ein Protein von 188 Aminosäuren.

```
SEQUENZPROTOKOLL
      <110> Degussa-Hüls AG
  5
      <120> Neue für das sigD-Gen kodierende Nukleotidsequenzen
      <130> bbbbbb BT
      <140>
 10
      <141>
      <160> 2
      <170> PatentIn Ver. 2.1
 15
      <210> 1
      <211> 1129
      <212> DNA
      <213> Corynebacterium glutamicum
.20
      <220>
      <221> CDS
      <222> (301)..(864)
      <223> sigD-Gen
 25
      <400> 1
      catatgcagg cgaactcctg ctagtacgcc cgttctgacc tgcggttatg tgtcqaqqtq 60
      aatctccggt gaattcttat agataacttg tttttgcagg tcaggacggg gttaagggga 120
 30
      tgggtgttat ctgtcagtat gtgaggagat caaggtgttg ggggttctag ttgctaagat 180
      ggtgaaaacc cgtgaggcca aaatccaact gggtgaatta cccctgcata aatgcatgag 240
 35
      ggctttatac ttgtcttatt attaaacttt tagggttttg atgcaggaag gtgcgagaac 300
      ttg gct gat act gag cgc gag ctc gct gac ctg gta ccg cag gca acg
                                                                         348
      Met Ala Asp Thr Glu Arg Glu Leu Ala Asp Leu Val Pro Gln Ala Thr
 40
      gcg ggc gat cgt cgg gca ttg caa aga ata atg gag att att cac ccc
                                                                         396
      Ala Gly Asp Arg Arg Ala Leu Gln Arg Ile Met Glu Ile Ile His Pro
                   20
 45
      att gtt ttg cgt tat gct cgc gct cgt att gga ggt gga cgc cag cca
      Ile Val Leu Arg Tyr Ala Arg Ala Arg Ile Gly Gly Arg Gln Pro
               35
      acg gca gaa gac gtt gct caa gaa atc tgc ctg gcg gta gcc acc tcc
                                                                         492
 50
      Thr Ala Glu Asp Val Ala Gln Glu Ile Cys Leu Ala Val Ala Thr Ser
                               55
      att agg aac ttt gtc gac cag ggt agg ccg ttc atg gcg ttt gtc tac
                                                                         540
      Ile Arg Asn Phe Val Asp Gln Gly Arg Pro Phe Met Ala Phe Val Tyr
 55
      ggc att gca tct aac aag gtc gca gat gct cac agg gcg atg tcg agg
                                                                         588
      Gly Ile Ala Ser Asn Lys Val Ala Asp Ala His Arg Ala Met Ser Arg
```

85

		gat aaa tcg act cct att gag gaa gtc cca gaa act tca cca gat act 63 Asp Lys Ser Thr Pro Ile Glu Glu Val Pro Glu Thr Ser Pro Asp Thr 100 105 110	6
	5	ttt acc ccc gaa gac ttt gcg ctg gtc agc gat gga agt aac aga gtt Phe Thr Pro Glu Asp Phe Ala Leu Val Ser Asp Gly Ser Asn Arg Val 115 120 125	4
	10	agg gaa ctt ctc gat cta ctg agt gaa aag gca cgc gac att ctt atc Arg Glu Leu Leu Asp Leu Leu Ser Glu Lys Ala Arg Asp Ile Leu Ile 130 135 140	2
· .	15	ttg aga gtt atc gtt ggt ctt tcc gca gaa gaa act gca gag atg gtg Leu Arg Val Ile Val Gly Leu Ser Ala Glu Glu Thr Ala Glu Met Val 145 150 155 160	0
· !	20	ggc agc acc cca ggt gct gta cga gtt gcc caa cac agg gca ctc acg 82 Gly Ser Thr Pro Gly Ala Val Arg Val Ala Gln His Arg Ala Leu Thr 165 170 175	:8
		aca ctt cga agc aca ctt gag cag cag gag aac aag taatgactcg 87 Thr Leu Arg Ser Thr Leu Glu Gln Gln Glu Asn Lys 180 185	74
•	25	acgtetacat ggtggtgage aggatggeea ggaacaegtt aaaggaeage taaageaget 93	34
		gttcgacgac gacgcgttct tgactgacct gtcccgcggc gttgatccct cagagggcga 99	94
	30	tgacgccctc gctggcctcc tcctcgattt aacaaaggaa gctcaggagc cgccggcaac 10)5 <i>i</i>
		aatgeeggat tggtetaett tgeteeetgg aattttggat eaggateagg atttgeeagt 1	
	35		12
Ait	40	<210> 2 <211> 188 <212> PRT <213> Corynebacterium glutamicum	
		<400> 2 Met Ala Asp Thr Glu Arg Glu Leu Ala Asp Leu Val Pro Gln Ala Thr 1 5 10 15	•
	45	Ala Gly Asp Arg Arg Ala Leu Gln Arg Ile Met Glu Ile Ile His Pro 20 25 30	
٠	50	Ile Val Leu Arg Tyr Ala Arg Ala Arg Ile Gly Gly Gly Arg Gln Pro 35 40 45	
		Thr Ala Glu Asp Val Ala Gln Glu Ile Cys Leu Ala Val Ala Thr Ser 50 55 60	
	55	Ile Arg Asn Phe Val Asp Gln Gly Arg Pro Phe Met Ala Phe Val Tyr 65 70 75 80	
	٠.	Gly Ile Ala Ser Asn Lys Val Ala Asp Ala His Arg Ala Met Ser Arg	

	Asp	Lys	Ser	Thr 100	Pro	Ile	Glu	Glu	Val 105	Pro	Glu	Thr	Ser	Pro 110	Asp	Thr
5	Phe	Thr	Pro 115	Glu	Asp	Phe	Ala	Leu 120	Val	Ser	Asp	Gly	Ser 125	Asn	Arg	Val
10	Arg	Glu 130	Leu	Leu	Asp	Leu	Leu 135	Ser	Gľu	Lys	Ala	Arg 140	Asp	Ile	Leu	Ile
	Leu 145	Arg	Val	Ile	Val	Gly 150	Leu	Ser	Ala	Glu	Glu 155	Thr	Ala	Glu	Met	Val 160
15	Gly	Ser	Thr	Pro	Gly 165	Ala	Val	Arg	Val	Ala 170	Gln	His	Arg	Ala	Leu 175	Thr
	Thr	Leu	Arg	Ser 180	Thr	Leu	Glu	Gln	Gln 185	Glu	Asn	Lys	•			
20									•							

Patentansprüche

15

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das sigD-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des Sigma-20 Faktors D aufweist.

- 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
- 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz
 (i) oder (ii) komplementären Sequenz hybridisiert,
 und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
- 6. Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung von Sequenz (iii) unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
 - 7. Polynukleotidsequenz gemäß Anspruch 2, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das sigD-Gen verstärkt, insbesondere überexprimiert wird.
- Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere Lysin,
 dadurch gekennzeichnet,
 daß man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das sigD-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.

25

10. Verfahren gemäß Anspruch 9,30 dadurch gekennzeichnet,

daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

- 11. Verfahren gemäß Anspruch 9,
- dad urch gekennzeichnet,
 daß man Bakterien einsetzt, in denen die
 Stoffwechselwege zumindest teilweise ausgeschaltet
 sind, die die Bildung der gewünschten L-Aminosäure
 verringern.
- 10 12. Verfahren gemäß Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man einen mit einem Plasmidvektor transformierten
 Stamm einsetzt, und der Plasmidvektor die für das sigDGen kodierende Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man die Expression des (der) Polynukleotides (e),
 das (die) für das sigD-Gen kodiert (kodieren)
 verstärkt, insbesondere überexprimiert.
- 20 14. Verfahren gemäß Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man die regulatorischen Eigenschaften des
 Polypetids (Enzymprotein) erhöht, für das das
 Polynukleotid sigD kodiert.
- 25 15. Verfahren gemäß Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man zur Herstellung von L-Aminosäuren coryneforme
 Mikroorganismen fermentiert, in denen man gleichzeitig
 eines oder mehrere der Gene, ausgewählt aus der Gruppe
- 30 15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,

	15.2	das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
	15.3	das für die Triosephosphat Isomerase kodierende Gen tpi,
5	15.4	das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,
	15.5	das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf,
10	15.6	das für die Pyruvat Carboxylase kodierende Gen pyc,
	15.7	das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo,
	15.8	das für eine feed-back resistente Aspartatkinase kodierende Gen lysC,
15	15.9	das für den Lysin-Export kodierende Gen lysE,
	15.10	das für die Homoserin-Dehydrogenase kodierende Gen hom,
20	15.11	<pre>das für die Theonin-Dehydratase kodierende Gen ilvA oder das für eine feed back resistente Threonin-Dehydratase kodierende Allel ilvA(Fbr),</pre>
	15.12	das für die Acetohydroxysäure-Synthase kodierende Gen ilvBN,
25	15.13	das für die Dihydroxysäuredehydratase kodierende Gen ilvD,
	15.14	das für das Zwal-Protein kodierende Gen zwal
		verstärkt bzw. überexprimiert.

16. Verfahren gemäß Anspruch 9,
d a d u r c h g e k e n n z e i c h n e t,
daß man zur Herstellung von L-Aminosäuren coryneforme
Mikroorganismen fermentiert, in denen man gleichzeitig
eines oder mehrere der Gene, ausgewählt aus der Gruppe

5

- 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
- 16.2 das für die Glucose-6-Phosphat Isomerase
 kodierende Gen pgi,
- 10 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB
 - 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
 - 17. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
- 18. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet,
 daß man Mikroorganismen der Gattung Corynebacterium einsetzt.
- 20 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für den Sigma-Faktor D kodieren oder eine hohe Ähnlichkeit mit der Sequenz des sigD-Gens aufweisen.
- daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.

Zusammenfassung

20

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das sigD-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.