```
[Matrix] c^T c = ||c||^2 = c_1^2 + \dots + c_k^2, cc^T is k \times k matrix with (i, j)th element as c_i c_j,
[Max, Min] \max(a,b) = \frac{1}{2}(a+b+|a-b|), \min(a,b) = \frac{1}{2}(a+b-|a-b|)
Probability
[Deduce X = 0] If X \ge 0 a.s. and EX = 0 then X = 0 a.s.
Variance, Covariance Var(X) = E[(X - EX)(X - EX)^T], Cov(X, Y) = E[(X - EX)(Y - EY)^T], Corr(X, Y) = Cov(X, Y)/(\sigma_X \sigma_Y),
E(a^TX) = a^TEX, Var(a^TX) = a^TVar(X)a
 [\overrightarrow{\text{CHF}}] \phi_X(t) = E \left[ exp(\sqrt{-1}t^TX) \right] = E \left[ \cos(t^TX) + \sqrt{-1}\sin(t^TX) \right] \ \forall \ t \in \mathcal{R}^d, \text{ well defined with } |\phi_X| \le 1 
[MGF] \psi_X(t) = E\left[exp(t^T X)\right] \ \forall \ t \in \mathcal{R}^d,
[MGF properties] \psi_{-X}(t) = \psi_X(-t), if \psi(t) < \infty \ \forall \ ||t|| < \delta \Rightarrow E|X|^a < \infty \ \forall \ a > 1 and \phi_X(t) = \psi_X(\sqrt{-1}t)
[Conditional Exp] f_{X|Y}(x|Y=y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{Y|X}(y|X=x)f_X(x)}{f_Y(y)}
[MCT] 0 \le f_1 \le f_2 \le \cdots \le f_n and \lim_n f_n = f a.e. \Rightarrow \int \lim_n f_n d\nu = \lim_n \int f_n d\nu
Fatou f_n \ge 0 \Rightarrow \int \liminf_n f_n d\nu \le \liminf_n \int f_n d\nu
[DCT] \lim_{n\to\infty} f_n = f and |f_n| \le g a.e. \lim_{n\to\infty} \int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu. \lim_{n\to\infty} f_n = f and \lim_{n\to\infty} f_n = f
Interchange Diff and Int] ① \partial f(\omega,\theta)/\partial \theta exists in (a,b) ② |\partial f(\omega,\theta/\partial \theta)| \leq g(\omega) a.e. \Rightarrow
① \partial f(\omega,\theta)/\partial \theta integrable in (a,b) ② \frac{d}{d\theta}\int f(\omega,\theta)d\nu(\omega) = \int \frac{\partial f(\omega,\theta)}{\partial \theta}d\nu(\omega)
[Change of Var] Y = g(X), X = g^{-1}(Y) = h(Y) and A_i disjoint, f_Y(y) = \sum_{j:1 \le j \le m, y \in g(A_j)} \left| \det \left( \frac{\partial h_j(y)}{\partial y} \right) \right| f_X(h_j(y)). Simple version:
f_Y(y) = |det(\partial h(y)/\partial y)| f_X(h(y))
Inequalities
[Cauchy-Schewarz] Cov(X,Y)^2 \leq Var(X)Var(Y), and E^2[XY] \leq EX^2EY^2
Jensen \varphi is convex \Rightarrow \varphi(EX) \leq E\varphi(X) e.g. (EX)^{-1} < E(X^{-1}) and E(logX) < log(EX)
[Chebyshev] If \varphi(-x) = \varphi(x), and \varphi non-decreasing on [0, \infty) \Rightarrow \varphi(t)P(|X| \ge t) \le \int_{\{|X| > t\}} \varphi(X)dP \le E\varphi(X) \forall t \ge 0. e.g. P(|X - \mu| \ge t)
P(|X| \geq t) \leq \frac{\sigma_X^2}{t^2} and P(|X| \geq t) \leq \frac{E|X|}{t}
[Young] ab \le \frac{a^p}{p} + \frac{b^q}{q}, equality \Leftrightarrow a^p = b^q
[Minkowski] p \ge 1, (E|X+Y|^p)^{1/p} \le (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}
[Lyapunov] for 0 < s < t, (E|X|^s)^{1/2} \le (E|X|^t)^{1/t}
[KL] K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)} = \int \log \left(\frac{f_0(x)}{f_1(x)}\right) f_0(x) d\nu(x) \ge 0 equality \Leftrightarrow f_1(\omega) = f_0(\omega)
Convergence [a.s] X_n \xrightarrow{\text{a.s.}} X if P(\lim_{n\to\infty} X_n = X) = 1. Can show \forall \epsilon > 0, \sum_{i=1}^{\infty} P(|X_n - X| > \epsilon) < \infty via BC lemma
Infinity often \{A_n \ i.o.\} = \bigcap_{n\geq 1} \bigcup_{j\geq n} A_j := \limsup_{n\to\infty} A_n
Borel-Cantelli lemmas (First BC) If \sum_{n=1}^{\infty} P(A_n) < \infty, then P(A_n \ i.o.) = 0 (Second BC) Given pairwisely independent events \{A_n\}_{n=1}^{\infty}, if \sum_{n=1}^{\infty} P(A_n) = \infty, then P(A_n \ i.o.) = 1
[L^p] X_n \xrightarrow{L_p} X if \lim_{n\to\infty} E|X_n - X|^p = 0, given p > 0, E|X|^p < \infty and E|X_n|^p < \infty
Probability X_n \xrightarrow{P} X if \forall \epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0. Can show E(X_n) = X, \lim_{n \to \infty} Var(X_n) = 0
Distribution X_n \xrightarrow{D} X if \lim_{n \to \infty} F_n(x) = F(x) for every x \in \mathcal{R} at which F is continuous
[Relationships between convergence]
Continuous mapping If g: \mathbb{R}^k \to \mathbb{R} is continuous and X_n \stackrel{*}{\to} X, then g(X_n) \stackrel{*}{\to} g(X), where * is either (a) a.s. (b) P \odot D.
[Convengence properties]
① Unique in limit: X = Y if X_n \to X and X_n \to Y for ⓐ a.s., ⓑ P, ⓒ L^p. ⓓ If F_n \to F and F_n \to G, then F(t) = G(t) \ \forall \ t
② Concatenation: (X_n, Y_n) \to (X, Y) when ⓐ P ⓑ a.s. ⓒ (X_n, Y_n) \xrightarrow{D} (X, c) only when c is constant. ③ Linearity: (aX_n + bY_n) \to aX + bY when ⓐ a.s. ⓑ P ⓒ L^p ⓓ NOT for distribution. ④ Cramér-Wold device: for k-random vectors, X_n \xrightarrow{D} X \Leftrightarrow c^T X_n \xrightarrow{D} c^T X for every c \in \mathcal{R}^k
[Lévy continuity] X_n \xrightarrow{D} X \Leftrightarrow \phi_{X_n} \to \phi_X pointwise
[Scheffés theorem] If \lim_{n\to\infty} f_n(x) = f(x) \Rightarrow \lim_{n\to\infty} \int |f_n(x)-f(x)| d\nu = 0 and P_{f_n} \to P_f. Useful to check pdf converge in distribution.
[Slutsky's theorem] If X_n \xrightarrow{D} X and Y_n \xrightarrow{D} c for constant c. Then X_n + Y_n \xrightarrow{D} X + c, X_n Y_n \xrightarrow{D} cX, X_n / Y_n \xrightarrow{D} X / c if c \neq 0
[Skorohod's theorem] If X_n \xrightarrow{D} X, then \exists Y, Y_1, Y_2, \cdots s.t. P_{Y_n} = P_{X_n}, P_Y = P_X and Y_n \xrightarrow{\text{a.s.}} Y
[\delta-method - first order] If \{a_n\} > 0 and \lim_{n \to \infty} a_n = \infty and a_n(X_n - c) \xrightarrow{D} Y and c \in \mathcal{R} and g'(c) exists at c, then a_n[g(X_n) - g(c)] \xrightarrow{D} Y
[\delta-method - higher order] If g^{(j)}(c) = 0 for all 1 \le j \le m-1 and g^{(m)}(c) \ne 0. Then a_n^m[g(X_n) - g(c)] \xrightarrow{D} \frac{1}{m!}g^{(m)}(c)Y^m
[\delta-method - multivariate] If X_i, Y are k-vectors rvs and c \in \mathcal{R}^k and a_n[g(X_n) - g(c)] \xrightarrow{D} \nabla g(c)^T Y
[Stochastic order - Real] for a constant c > 0 and all n, ① a_n = O(b_n) \Leftrightarrow |a_n| \le c|b_n| ② a_n = o(b_n) \Leftrightarrow \lim_{n \to \infty} a_n/b_n = 0
[Stochastic order - RV] ① X_n = O_{\text{a.s.}}(Y_n) \Leftrightarrow P\{|X_n| = O(|Y_n|)\} = 1 ② X_n = o_{\text{a.s.}}(Y_n) \Leftrightarrow X_n/Y_n \xrightarrow{\text{a.s.}} 0, ③ \forall \epsilon > 0, \exists C_{\epsilon} > 0, n_{\epsilon} \in \mathcal{N}s.t.
X_n = O_P(Y_n) \Leftrightarrow \sup_{n \geq n_{\epsilon}} P\left(\{\omega \in \Omega : |X_n(\omega)| \geq C_{\epsilon}|Y_n(\omega)|\}\right) < \epsilon \text{ (4) If } X_n = O_P(1), \{X_n\} \text{ is bounded in probability. (5) } X_n = o_P(Y_n) \Leftrightarrow 0
X_n/Y_n \xrightarrow{P} 0
Stochastic Order Properties ① If X_n \xrightarrow{\text{a.s.}} X, then \{\sup_{n \geq k} |X_n|\}_k is O_p(1). ② If X_n \xrightarrow{D} X for a rvs, then X_n = O_P(1) (tightness).
③ If E|X_n| = O(a_n), then X_n = O_P(a_n) ④ If E|X_n| = o(a_n), then X_n = o_P(a_n) [SLLN, iid] E|X_1| < \infty \Leftrightarrow \frac{1}{n} \sum_{i=1}^n X_1 \xrightarrow{\text{a.s.}} EX_1
[SLLN, non-idential but independent] If \exists p \in [1,2] s.t. \sum_{i=1}^{\infty} \frac{E|X_i|^p}{i^p} < \infty, then \frac{1}{n} \sum_{i=1}^{n} (X_i - EX_i) \xrightarrow{\text{a.s.}} 0
```

Analysis

```
[USLLN, idd] Suppose ① U(x, \theta) is continuous in \theta for any fixed x ② for each \theta, \mu(\theta) = EU(X, \theta) is finite ③ Θ is compact ④ There exists function M(x) s.t. EM(X) < \infty and |U(x, \theta) \le M(x)| for all x, \theta. Then P\left\{\lim_{n \to \infty} \sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} U(X_j, \theta) - \mu(\theta) \right| = 0\right\} = 1 [WLLN, idd] a_n = E(X_1I_{\{|X_1| \le n\}}) \in [-n, n] \ nP(|X_1| > n) \to 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} X_i - a_n \xrightarrow{P} 0 [WLLN, non-identical but independent] If \exists p \in [1, 2] s.t. \lim_{n \to \infty} \frac{1}{n^p} \sum_{i=1}^n E|X_i|^p = 0, then \frac{1}{n} \sum_{i=1}^n (X_i - EX_i) \xrightarrow{P} 0 [Weak Convergency] \int f d\nu_n \to \int f d\nu for every bounded and continous real function f. X_n \xrightarrow{D} X \Leftrightarrow E[h(X_n)] \to E[h(X)] [CLT, iid] Suppose \Sigma = VarX_1 < \infty, then \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - EX_i) \xrightarrow{D} N(0, \Sigma) [CLT, non-identical but independent] Suppose ① k_n \to \infty as n \to \infty ② (Lindeberg's condition) 0 < \sigma_n^2 = Var\left(\sum_{j=1}^{k_n} X_{nj}\right) < \infty. ③ If for any \epsilon > 0, \frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} E\left\{(X_{nj} - EX_{nj})^2 I_{\{|X_{nj} - EX_{nj}| > \epsilon \sigma_n\}}\right\} \to 0. Then \frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} (X_{nj} - EX_{nj}) \xrightarrow{D} N(0, 1) [Check Lindeberg condition] Option ① (Lyapunov condition) \frac{1}{\sigma_n^{2+\delta}} \sum_{j=1}^{k_n} Var(X_{nj}) \to \infty [Feller's condition] Ensures Lindeberg's condition is sufficient and necessary (else only sufficient). \lim_{n \to \infty} \max_{j \le k_n} \frac{Var(X_{nj})}{\sigma_n^2} = 0
```

[Feller's condition] Ensures Lindeberg's condition is sufficient and necessary (else only sufficient). $\lim_{n\to\infty} \max_{j\leq k_n} \frac{Var(X_{nj})}{\sigma_n^2} = 0$ Exponential Families
[NEF] $f_{\eta}(X) = \exp\left\{\eta^T T(X) - C(\eta)\right\} h(x)$, where $\eta = \eta(\theta)$ and $C(\eta) = \log\left\{\int_{\Omega} \exp\left\{\eta^T T(X)\right\} h(X) dX\right\}$. NEF is full rank if Ξ contains open set in \mathcal{R}^p , $\Xi = \{\eta(\theta) : \theta \in \Theta\} \subset \mathcal{R}^p$. Suppose $X_i \sim f_i$ independently with f_i Exp Fam, then joint distribution X is also Exp Fam.

Showing non Exp Fam For an exp fam P_{θ} , there is nonzero measure λ s.t. $\frac{dP_{\theta}}{d\lambda}(\omega) > 0$ λ -a.e. and for all θ . Consider $f = \frac{dP_{\theta}}{d\lambda}I_{(t,\infty)}(x)$, $\int f d\lambda = 0, f \geq 0 \Rightarrow f = 0$. Since $\frac{dP_{\theta}}{d\lambda} > 0$ by assumption, then $I_{(t,\infty)}(x) = 0 \Rightarrow v([t,\infty)) = 0$. Since t is arbitary, consider $v(\mathcal{R}) = 0$ (contradiction)

[NEF MGF] Suppose η_0 is interior point on Ξ , then $\psi_{\eta_0}(t) = \exp\{\mathcal{C}(\eta_0 + t) - \mathcal{C}(\eta_0)\}$ and is finite in neighborhood of t = 0.

[NEF MGF] Suppose η_0 is interior point on Ξ , then $\psi_{\eta_0}(t) = \exp\left\{\mathcal{C}(\eta_0 + t) - \mathcal{C}(\eta_0)\right\}$ and is finite in neighborhood of t = 0. [NEF Moments] Let $A(\theta) = \mathcal{C}(\eta_0(\theta))$, $\frac{dA(\theta)}{d\theta} = \frac{d\mathcal{C}(\eta_0(\theta))}{d\eta_0(\theta)} \cdot \frac{d\eta_0(\theta)}{d\theta}$, $T(x) = \frac{\partial \mathcal{C}(\eta)}{\partial \eta}$ (a) $E_{\eta_0}T = \frac{d\psi_{\eta_0}}{dt}|_{t=0} = \frac{d\mathcal{C}}{d\eta_0} = \frac{A'(\theta)}{\eta'_0(\theta)}$, (b) $E_{\eta_0}T^2 = \mathcal{C}''(\eta_0) + \mathcal{C}'(\eta_0)^2$, (c) $Var(T) = \mathcal{C}''(\eta_0) = \frac{A''(\theta)}{[\eta_0(\theta)]^2} - \frac{\eta_0(\theta)''A'(\theta)}{[\eta_0(\theta)']^3} = \frac{\partial^2 \mathcal{C}(\eta)}{\partial \eta \partial \eta^T}$ [NEF Differential] $G(\eta) := E_{\eta}(g) = \int g(\omega) \exp\left\{\eta^T T(\omega) - \mathcal{C}(\eta)\right\} h(\omega) d\nu(\omega)$ for η in interior of Ξ_g (1) G is continuous and has continuous

where Ξ_g is set η such that $\int |g(\omega)| \exp\left\{\eta^T T(\omega) - \mathcal{C}(\eta)\right\} h(\omega) d\nu(\omega) < \infty$ [NEF Min Suff] ① If there exists $\Theta_0 = \{\theta_0, \theta_1, \cdots, \theta_p\} \subset \Theta$ s.t. vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0), i \in [1, p]$ are linearly independent in \mathcal{R}^p , then T is also minimal sufficient. Check $det([\eta_1, \cdots, \eta_p])$ is non-zero ② $\Xi = \{\eta(\theta) : \theta \in \Theta\}$ contains (p+1) points that do not lie on the same hyperplane ③ Ξ is full rank.

NEF complete and sufficient If \mathcal{P} is NEF of full rank then T(X) is complete and sufficient for $\eta \in \Xi$

derivatives of all orders. ② Derivatives can be computed by differentiation under the integral sign. $\frac{dG(\eta)}{d\eta} = E_{\eta} \left[g(\omega) \left(T(\omega) - \frac{\partial}{\partial \eta} \xi(\eta) \right) \right]$

NEF MLE] $\hat{\theta} = \eta^{-1}(\hat{\eta})$ or solution of $\frac{\partial \eta(\theta)}{\partial \theta} T(x) = \frac{\partial \xi(\theta)}{\partial \theta}$ NEF Fisher Info] If $\underline{I}(\eta)$ is fisher info natural parameter η , then $Var(T) = \underline{I}(\eta)$. Let $\psi = E[T(X)]$. Suppose $\overline{I}(\psi)$ is fisher info matrix for parameter ψ , then $Var(T) = [\overline{I}(\psi)]^{-1}$

[Sufficiency] T(X) is sufficient for $P \in \mathcal{P} \Leftrightarrow P_X(x|Y=y)$ is known and does not depend on P. T sufficient for \mathcal{P}_0 but not necessarily \mathcal{P}_1 , $\mathcal{P}_0 \subset \mathcal{P} \subset \mathcal{P}_1$.

[Factorization theorem] T(X) is sufficient for $P \in \mathcal{P} \Leftrightarrow$ there are non-negative Borel functions h with (1) h(x) does not depend on P (2)

[Minimal sufficiency] T is minimal sufficient $\Leftrightarrow T = \psi(S)$ for any other sufficient statistics S[Min Suff-Method 1] (Theorem A) Suppose $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s. If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$ (Theorem B) Suppose \mathcal{P} contains PDFs f_0, f_1, \cdots w.r.t a σ -finite measure. (a) Define $f_\infty(x) = \sum_{i=0}^\infty c_i f_i(x)$ and $T_i(x) = f_i(x)/f_\infty(x)$, then $T(X) = (T_0(X), T_1(X), \cdots)$ is minimal sufficient for \mathcal{P} . Where $c_i > 0, \sum_{i=0}^\infty c_i = 1, f_\infty(x) > 0$. (b) If $\{x : f_i(x) > 0\} \subset \{x : f_0(x) > 0\}$ for all i, then $T(X) = (f_1(x)/f_0(x), f_2(x)/f_0(x), \cdots$ is minimal

Then T(X) is minimal sufficient for \mathcal{P} [Ancillary statistics] A statistics V(X) is ancillary for \mathcal{P} if its distribution does not depend on population $P \in \mathcal{P}$ (First-order ancillary) if $E_P[V(X)]$ does not depend on $P \in \mathcal{P}$

[Min Suff-Method 2] (Theorem C) If (a) T(X) is sufficient, and (b) $\exists \phi$ s.t. for $\forall x, y$. $f_P(x) = f_P(y)\phi(x,y) \ \forall \ P \in \mathcal{P} \Rightarrow T(x) = T(y)$.

[Completeness] T(X) is complete for $P \in \mathcal{P} \Leftrightarrow$ for any Borel function g, $E_P g(T) = 0$ implies g(T) = 0, boundedly complete $\Leftrightarrow g$ is bounded. Completeness + Sufficiency \Rightarrow Minimal Sufficiency
[Basu's theorem] If V is ancillary and T is boundedly complete and sufficient, then V and T are independent w.r.t any $P \in \mathcal{P}$

Fisher information $I(\theta) = E\left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^2 = \int \left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^2 f_{\theta}(X)d\nu(x) = E\left\{\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right\}^T$

[Parameterization] If $\theta = \psi(\eta)$ and ψ' exists, $\tilde{I}(\eta) = \psi'(\eta)^2 I(\psi(\eta))$ [Twice differentiable] Suppose f_{θ} is twice differentiable in θ and $\int_{\tilde{\tau}} dt$

 $g_P(t)$ which depends on P s.t. $\frac{dP}{d\nu}(x) = g_P(T(x))h(x)$

[Twice differentiable] Suppose f_{θ} is twice differentiable in θ and $\int \frac{\partial^2}{\partial \theta^2} f_{\theta}(x) I_{f_{\theta}(x) > 0} d\nu = 0$, then $I(\theta) = -E \left[\frac{\partial^2}{\partial \theta \partial \theta^T} \log f_{\theta}(X) \right]$ [Independent samples] If $\int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$ holds, then $I_{(X,Y)}(\theta) = I_X(\theta) + I_Y(\theta)$, and $I_{(X_1,\dots,X_n)}(\theta) = nI_{X_1}(\theta)$

Comparing decision rules [Compare decision rules] (a) as good as if $R_{T_1}(P) \leq P_{T_2}(P)$. $\forall P \in \mathcal{P}$ (b) better if $R_{T_1}(P) < R_{T_2}(P)$ for some $P \in \mathcal{P}$ (and T_2 is

dominated by T_1). \bigcirc equivalent if $R_{T_2}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$ [Optimal] T_* is \mathcal{J} -optimal if T_* is as good as any other rule in \mathcal{J} ,

[Admissibility] $T \in \mathcal{J}$ is \mathcal{J} -admissible if no $S \in \mathcal{J}$ is better than T in terms of the risk. [Minimaxity] $T_* \in \mathcal{J}$ is \mathcal{J} -minimax if $\sup_{P \subset \mathcal{P}} R_{T_*}(P) \leq \sup_{P \subset \mathcal{P}} R_T(P)$ for any $T \in \mathcal{J}$

Bayes Risk] A form of averaging $R_T(P)$ over $P \in \mathcal{P}$. Bayes risk $r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P)$, $R_T(\Pi)$ is Bayes risk of T wrt a known probability measure Π .

Bayes rule T_* is \mathcal{J} -Bayes rule wrt Π if $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathcal{J}$.

[Finding Bayes rule] Let $\tilde{\theta} \sim \pi$, $X|\tilde{\theta} \sim P_{\tilde{\theta}}$, then $r_{\pi}(T) = E\left[L(\tilde{\theta}, T(X))\right] = E\left[E\left[L(\tilde{\theta}, T(X))\right]|X\right]$ where E is taken jointly over $(\tilde{\theta}, X)$.

Then find $T_*(x)$ that minimises the conditional risk. [Rao-Blackwell] (a) Suppose L(P,a) is convex and T is sufficient and S_0 is decision rule satisfying $E_P|||S_0|| < \infty$ for all $P \in \mathcal{P}$. Let $S_1 = E[S_0(X)|T]$, then $R_{S_1}(P) \leq R_{S_0}(P)$. (b) If L(P,a) is strictly convex in a, and S_0 is not a function of T, then S_0 is inadmissible and dominated by S_1 .

MLE

[MLE Consistency] Suppose ① Θ is compact ② $f(x|\theta)$ is continuous in θ for all x ③ There exists a function M(x) s.t. $E_{\theta_0}[M(X)] < \infty$ and $|\log f(x|\theta) - \log f(x|\theta_0)| \le M(x)$ for all x, θ ④ identifiability holds $f(x|\theta) = f(x|\theta_0)$ ν -a.e. $\Rightarrow \theta = \theta_0$. Then MLE estimate $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta_0$ [RLE Consistency]
[RLE Asymptotic normality]
[Unbiased Estimators

Unbiased Estimators
[UMVUE] T(X) is UMVUE for $\theta \Leftrightarrow Var(T(X) \leq Var(U(X))$ for any $P \in \mathcal{P}$ and any other unbiased estimator U(X) of θ [Lehmann-Scheffé] If T(X) is sufficient and complete for θ . If θ is estimable, then there is a unique unbiased estimator of θ that is of

Lehmann-Scheffé] If T(X) is sufficient and complete for θ . If θ is estimable, then there is a unique unbiased estimator of θ that is of the form h(T).

[UMVUE method1] Using Lehmann-Scheffé, suppose T is sufficient and complete manipulate $E(h(T)) = \theta$ to get $\hat{\theta}$.

[UMVUE method2] Using Rao-Blackwellization. Find ① unbiased estimator of $\theta = U(X)$ ② sufficient and complete statistics T(X) ③ then E(U|T) is the UMVUE of θ by Lehmann-Scheffé.

[UMVUE method2] Using Rao-Blackwellization. Find ① unbiased estimator of $\theta = U(X)$ ② sufficient and complete statistics T(X) ③ then E(U|T) is the UMVUE of θ by Lehmann-Scheffé.
[UMVUE method3] Useful when no complete and sufficient statistics. Can use to find UMVUE, check if estimator is UMVUE, show nonexistence of UMVUE. T(X) is UMVUE $\Leftrightarrow E[T(X)U(X)] = 0$ (a) T is unbiased estimator of η with finite variance, \mathcal{U} is set of all unbiased estimators of 0 with finite variances. (b) T = h(S), where S

[Using method3] ① Find U(x) via E[U(x)] = 0 ② Construct T = h(S) s.t. T is unbiased ③ Find T via E[TU] = 0 [Corollary] If T_j is UMVUE of η_j with finite variances, then $T = \sum_{j=1}^k c_j T_j$ is UMVUE of $\eta = \sum_{j=1}^k c_j \eta_j$. If T_1, T_2 are UMVUE of η with finite variances, then $T_1 = T_2$ a.s. $P, P \in \mathcal{P}$ [Cramér-Rao Lower Bound] Suppose ① Θ is an open set and P_{θ} has pdf f_{θ} ② f_{θ} is differentiable and $\frac{\partial}{\partial \theta} \int f_{\theta}(x) d\nu = \int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$.

③ $g(\theta)$ is differentiable and T(X) is unbiased estimator of $g(\theta)$ s.t. $g'(\theta) = \frac{\partial}{\partial \theta} \int T(x) f_{\theta}(x) d\nu = \int T(x) \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu, \theta \in \Theta$. Then

 $Var(T(X)) \geq \frac{g'(\theta)^2}{I(\theta)} = \left[\frac{\partial}{\partial \theta}g(\theta)\right]^T \left[I(\theta)\right]^{-1} \frac{\partial}{\partial \theta}g(\theta)$ [CR LB for biasd estimator] $Var(T) \geq \frac{[g'(\theta) + b'(\theta)]^2}{I(\theta)}$ [CR LB iff] CR achieve equality (a) $\Leftrightarrow T = \left[\frac{g'(\theta)}{I(\theta)}\right] \frac{\partial}{\partial \theta} \log f_{\theta}(X) + g(\theta)$ (b) $\Leftrightarrow f_{\theta}(X) = \exp(\eta(\theta)T(x) - \xi(\theta))h(x)$, s.t. $\xi'(\theta) = g(\theta)\eta'(\theta)$ and $I(\theta) = \eta'(\theta)g'(\theta)$

Asymptotics [Consistency of point estimators] $X = (X_1, \dots, X_n)$ is sample from $P \in \mathcal{P}$ and $T_n(X)$ be estimator of θ for P. (consistent) $\Leftrightarrow T_n(X) \to^P \theta$ (strongly consistent) $\Leftrightarrow T_n(X) \to^{\text{a.s.}} \theta$ (a_n -consistent) $\Leftrightarrow a_n(T_n(X) - \theta) = O_P(1)$, $\{a_n\} > 0$ and diverge to ∞ (L_r -consistent) $T_n(X) \to^{L^P} \theta$ for some fixed r > 0 A combination of LLN, CLT, Slustky's, continuous mapping, δ-method are used. If T_n is (strongly) consistent for θ and g is continuous at θ then $g(T_n)$ is (strongly) consistent for $g(\theta)$

[Affine estimator] Consider $T_n = \sum_{i=1}^n c_{ni} X_i$ (1) If $c_{ni} = c_i/n$ satisfy (1) $\frac{1}{n} \sum_{i=1}^n c_i \to 1$ and $\sup_i |c_i| < \infty$ then T_n is strongly consistent. (2) If population variance is finite, then T_n is consistent in mse $\Leftrightarrow \sum_{i=1}^n c_{ni} \to 1$ and $\sum_{i=1}^n c_{ni}^2 \to 0$ [Asymptotics bias, variance, MSE] (Approximate unbiased) Estimator $T_n(X)$ for θ is approximately unbiased if $b_{T_n}(P) \to 0$ as $n \to \infty$, $b_{T_n}(P) := ET_n(X) - \theta$ When estimator's expectations or second moment are not well defined, we need asymptotic behaviours. (Asymptotic statistics conditions) $\{a_n\} > 0$ and either (a) $a_n \to \infty$ or (b) $a_n \to a > 0$. If

 $a_n(T_n-\theta)\to^D Y$

(Asymptotic expectation) If
$$a_n \xi_n \to^D \xi$$
, $E|\xi| < \infty$, then asymptotic expectation of ξ_n is $E\xi/a_n$ (Asymptotic bias) $\tilde{b}_{T_n} = EY/a_n$, asymptotically unbiased if $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$ for any $P \in \mathcal{P}$. (Asymptotic MSE) amse is the asymptotic expectation of $(T_n - \theta)^2$ or $\operatorname{amse}_{T_n}(P) = EY^2/a_n^2$ (Asymptotic Variance) $\sigma_{T_n}^2(P) = Var(Y)/a_n^2$ (Remark) $EY^2 \leq \liminf_{n\to\infty} E[a_n^2(T_n - v)^2]$ (amse is no greater

is sufficient and h is Borel function, \mathcal{U}_S is subset of \mathcal{U} consisting of Borel functions of S.

[δ -method corollary] If $a_n \to \infty$, g is differentiable at θ , $U_n = g(T_n)$. Then amse of U_n is $[g'(\theta)^2 EY^2]/a_n^2$, asym var of U_n is $[g'(\theta)^2 Var(Y)]/a_n^2$. [Properties of MOM] θ_n is unique if h^{-1} exists. Strongly consistent if h^{-1} is continuous via SLLN and continuous mapping. If h^{-1} is differentiable and $E|X_1|^{2k} < \infty$ then by CLT and δ -method. V_μ is $k \times k$ with $(i,j) = \mu_{i+j} - \mu_i \mu_j \sqrt{n}(\hat{\theta}_n - \theta) \to_D N(0, [\nabla g]^T V_\mu \nabla g)$

[Asym Relative Efficiency] $e_{T_{1n},T_{2n}} = amse_{T_{2n}(P)}/amse_{T_{1n}(P)}$. Note efficiency of estimator T refers to $1/[I(\theta)MSE_T(\theta)]$

MOM is \sqrt{n} -consistent, and if k = 1 $amse_{\hat{\theta}_n}(\theta) = g'(\mu_1)^2 \sigma^2/n$, $\sigma^2 = \mu_2 - \mu_1^2$ [Asym Properties of UMVUE] Typically consistent, exactly unbiased, ratio of mse over Cramér-Rao LB converges to 1 (asym they are the same).

[Asym sample quantiles] X_1, X_2, \cdots iid rvs with CDF $F, \gamma \in (0,1), \hat{\theta}_n := \lfloor \gamma n \rfloor$ -th order statistics. Suppose $F(\theta) = \gamma$ and $F'(\theta) > 0$ and exists. $\sqrt{n}(\hat{\theta}_n - \theta) \to^D N\left(0, \frac{\gamma(1-\gamma)}{[F'(\theta)]^2}\right)$

and exists. $\sqrt{n}(\theta_n - \theta) \to^D N\left(0, \frac{\gamma(1-\gamma)}{[F'(\theta)]^2}\right)$ [Cons and Asym eff MLEs, RLEs]
[Continuous in θ] Suppose (1) θ is compact (2) $f(x|\theta)$ is continuous in θ for all x (3) there exists a function M(x) s.t. $E_{\theta_0}|M(X)| < \infty$

[Continuous in θ] Suppose (1) Θ is compact (2) $f(x|\theta)$ is continuous in θ for all x (3) there exists a function M(x) s.t. $E_{\theta_0}|M(X)| < \infty$ and $|\log f(x|\theta) - \log f(x|\theta_0)| \le M(x)$ for all x and θ (4) identifiable $f(x|\theta) = f(x|\theta_0)$ ν -a.e. $\Rightarrow \theta = \theta_0$. Then for any sequence of MLE $\hat{\theta}_n \to_{\text{a.s.}} \theta_0$

[Upper semi-continuous (usc)] $\lim_{\rho \to 0} \left\{ \sup_{||\theta'-\theta|| < \rho} f(x|\theta') \right\} = f(x|\theta)$ [USC in θ] Suppose (1) Θ is compact with metric $d(\cdot, \cdot)$ (2) $f(x|\theta)$ is usc in θ and for all x (3) there exists a function M(x) s.t. $E_{\theta_0}|M(X)| < \infty$ and $\log f(x|\theta) - \log f(x|\theta_0) \le M(x)$ for all x and x and x and x and sufficiency small x and x suppose x is x and x are x and x and x and x are x and x and x are x and x are x and x are x are x and x are x and x are x and x are x and x are x are x and x are x and x are x are x are x are x and x are x are x and x are x are x and x are x are x are x are x are x are x and x are x a

measurable in x (5) identifiable $f(x|\theta) = f(x|\theta_0)$ ν -a.e. $\Rightarrow \theta = \theta_0$. Then $d(\hat{\theta}_n, \theta_0) \rightarrow_{\text{a.s.}} 0$ [M-estimators] General method to find $\hat{\theta}_n$ maximises criterion function $S_{\theta}(x)$, for MLE $s_{\theta}(x) = \log f(x|\theta)$. $E_{\theta_0} s_{\theta}(X) < E_{\theta_0} s_{\theta_0}(X) \forall \theta \neq \theta_0$. $\theta \mapsto S_n(\theta) = \frac{1}{n} \sum_{i=1}^n s_{\theta}(X_i)$

[Consistency of M-estimators] $S_n(\theta)$ is random function while $S(\theta)$ is fixed s.t. $\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)| \to_P 0$ and for every $\rho > 0$ $\sup_{\theta : d(\theta, \theta_0) > \rho} S(\theta) < S(\theta_0)$. Then any sequence of estimators $\hat{\theta}_n$ with $S_n(\hat{\theta}_n) \geq S_n(\theta_0) - o_P(1)$ converges in probability to θ_0

[RLE] [Roots of the Likelihood Equation] θ that solves $\frac{\partial}{\partial \theta} \log L_n(\theta) = 0$ Basic Regularity conditions Suppose (1) Θ is open subset of \mathcal{R}^k (2) $f(x|\theta)$ is twice continuously differentiable in θ for all x, and $\frac{\partial}{\partial \theta} \int f(x|\theta) d\nu = \int \frac{\partial}{\partial \theta} f(x|\theta) d\nu, \quad \frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta^T} f(x|\theta) d\nu = \int \frac{\partial^2}{\partial \theta \partial \theta^T} f(x|\theta) d\nu. \quad (3) \quad \Psi(x,\theta) = \frac{\partial^2}{\partial \theta \partial \theta^T} \log f(x|\theta), \text{ there exists a constant } c \text{ and nonnegative function } H \text{ s.t. } EH(X) < \infty \text{ and } \sup_{||\theta - \theta_*|| < c} ||\Psi(x,\theta)|| \le H(x). \quad (4) \text{ Identifiable}$ [Consistency of RLEs] Under basic regularity conditions, there exists a sequence of $\hat{\theta}_n$ s.t. $\frac{\partial}{\partial \theta} \log L_n(\hat{\theta}_n) = 0$ and $\hat{\theta}_n \to_{\text{a.s.}} \theta_*$. More

useful if likelihood is concave or unique. [Asymptotic Normality of RLEs] Assume basic regularity conditions, and $I(\theta) = \int \frac{\partial}{\partial \theta} \log f(x|\theta) \left[\frac{\partial}{\partial \theta} \log f(x|\theta) \right]^T d\nu(x)$ is positive definite

and $\theta = \theta_*$. Then any consistent sequence $\{\tilde{\theta_n}\}$ of RLE it holds $\sqrt{n}(\tilde{\theta_n} - \theta_*) \to_D N\left(0, \frac{1}{I(\theta_n)}\right)$ [NEF RLEs] Basic regularity condition (1, 2, 3, 4) holds due to proposition 3.2 and theorem 2.1, and result for (3). Only need to check condition on Fisher Info, then when n is large, there exists $\hat{\eta}_n$ s.t. $g(\hat{\eta}_n) = \hat{\mu}_n$ and $\hat{\eta}_n \to_{\text{a.s.}} \eta \sqrt{n}(\hat{\eta}_n - \eta) \to_D N\left(0, \left[\frac{\partial^2}{\partial \eta \partial \eta^T} \mathcal{C}(\eta)\right]^{-1}\right)$

Where $g(\eta) = \frac{\partial \mathcal{C}(\eta)}{\partial \eta}$ and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n T(X_i)$

Hypo testing

others need to check.

Asym Covariance Matrix $V_n(\theta)$ is $k \times k$ positive definite matrix called asym covariance matrix. $V_n(\theta)$ is usually in form of $n^{-\delta}V(\theta)$. higher δ means faster convergence. $[V_n(\theta)]^{-1/2}(\hat{\theta}_n - \theta) \to_D N_k(0, I_k)$ [Information Inequalities] $A \preceq B$ means B - A is positive semi-definite. Suppose two estimators $\hat{\theta}_{1n}$, $\hat{\theta}_{2n}$ satisfy asym covariance matrix with $V_{1n}(\theta), V_{2n}(\theta)$. $\hat{\theta}_{1n}$ is asym more efficient thant $\hat{\theta}_{2n}$ if (1) $V_{1n}(\theta) \leq V_{2n}(\theta)$ for all $\theta \in \Theta$ and all large n (2) $V_{1n}(\theta) \prec V_{2n}(\theta)$ for at

least one $\theta \in \Theta$ But note $\hat{\theta}_n$ is asym unbiased but CR LB might not hold even if regularity condition is satisfied. [Hodges' estimator] $X_i \sim N(\theta, 1)$, $\hat{\theta}_n = \bar{X}_n$ if $\bar{X}_n \geq n^{-1/4}$ and $t\bar{X}_n$ otherwise. $V_n(\theta) = 1/n$ if $\theta \neq 0$ and t^2/n otherwise. if $\theta \neq 0$: $\sqrt{n}(\hat{\theta} - \theta) = \sqrt{n}(\bar{X}_n - \theta) - (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{\theta}_n| < n^{-1/4}} \text{ if } \theta = 0 : = t\sqrt{n}(\bar{X}_n - \theta) + (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{X}_n| \ge n^{-1/4}}$

[Super-efficiency] Point where UMVUE failed Hodeges' estiamtor in information inequality (2). But under the basic regularity condition and if Fisher Information is positive definite at $\theta = \theta_*$, if $\hat{\theta}_n$ satisfies Asym covariance matrix, then there is a $\Theta_0 \subset \Theta$ with Lebesgue measure 0 s.t. information inequality (2) holds for any $\theta \notin \Theta_0$ Asym efficiency Assume Fisher Info $I_n(\theta)$ is well-defined and positive definite for every n, seq of estimators $\{\hat{\theta}_n\}$ satisfies asym cov

matrix is asym efficient or asym optimal if and only if $V_n(\theta) = [I_n(\theta)]^{-1}$. One-step MLE Often asym efficient, useful to adjust an non asym efficient estimators provided $\hat{\theta}_n^{(0)}$ is \sqrt{n} -consistent. $\hat{\theta}_n^{(1)} = \hat{\theta}_n^{(0)}$ $\left[\nabla s_n(\hat{\theta}_n^{(0)})\right]^{-1} s_n(\hat{\theta}_n^{(0)})$

[0-1 loss] Common loss function for hypo test, L(P,j)=0 for $P\in\mathcal{P}_j$ and =1 for $P\in\mathcal{P}_{1-j}, j\in\{0,1\}$ Risk $R_T(P)=P(T(X)=1)=0$ $P(X \in C)$ if $P \in \mathcal{P}_0$ or $P(T(X) = 0) = P(X \notin C)$ if $P \in \mathcal{P}_1$ Type I and II errors Type I: H_0 is rejected when H_0 is true. Error rate: $\alpha_T(P) = P(T(X) = 1), P \in \mathcal{P}_0$ Type II: H_0 is accepted when

[Hypothesis tests] Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}, \mathcal{P}_1 = \mathcal{P} \setminus \mathcal{P}_0$. Hypothesis testing decides between $H_0: P \in \mathcal{P}_0, H_1: P \in \mathcal{P}_1$. Action space $\mathcal{A} = \{0,1\}$, decision rule is called a test $T: \mathcal{X} \to \{0,1\} \Rightarrow T(X) = I_C(X)$ for some $C \subset \mathcal{X}$. C is called the region/critical

Power function of $T \mid \alpha_T(P)$, Type I and Type II error rates cannot be minimized simultaneously. [Significance level] Under Neyman-Pearson framework, assign pre-specified bound α (significance level of test): $\sup_{P \in \mathcal{P}_0} P(T(X) = 1) \le$

[size of test] α' is the size of the test $\sup_{P \subset \mathcal{P}_0} P(T(X) = 1) = \alpha'$ **NP** Test (Steps) (1) Find joint distribution $f(X_1, \dots, X_n)$ - MLR/NEF (2) Hypothesis H_0, H_1 - simple/composite, must be θ and

[Monoton Likelihood] $\theta_2 > \theta_2$, increasing likelihood ratio in Y if $g(Y) = \frac{f_{\theta_2}(Y)}{f_{\theta_1}(Y)} > 1$ or g'(Y) > 0. For NEF, check $\eta'(\theta) > 0$.

not $f(\theta)$ (3) Form N-P test structure T_* (4) Find test dist, rejection/acceptance region. (Type I error) reject H_0 when H_0 is correct.

 $\beta_T(\theta_0) = E_{H_0}(T) \le \alpha$ (within controlled with size α) (Type II error) do not reject H_0 when H_1 is correct. $1 - \beta_T(\theta)$ for $\theta \in \Theta_1$ (N-P lemma) NP test has non-trival power $\alpha < \beta_{H_1}(T)$ unless $P_0 = P_1$, and is unique up to γ (randomised test) (Show T_* is UMP) UMP when $E_1[T_*] - E_1[T] \ge 0$, key equation: $(T_* - T)(f_1 - cf_0) \ge 0$. $\Rightarrow \int (T_* - T)(f_1 - cf_0) = \beta_{H_1}(T_*) - \beta_{H_1}(T) \ge 0$. (Composite hypothesis) Simple \Rightarrow Composite when $\beta_T(\theta_0) \geq \beta_T(\theta \in H_0)$ and/or $\beta_T(\theta_0) \leq \beta_T(\theta \in H_1)$ (or does not depend on θ . For MLR this is satisfied,

[UMP] (1) $H_0: P = p_0 \ H_1: P = p_1 \Rightarrow T(X) = I(p_1(X) > cp_0(X)), \ \beta_T(p_0) = \alpha \ (2) \ H_0: \theta \leq \theta_0 \ H_1: \theta > \theta_0 \Rightarrow T(Y) = I(Y > c),$ $\beta_T(\theta_0) = \alpha \ (3) \ H_0: \theta \leq \theta_1 \text{ or } \theta \geq \theta_2 \ H_1: \theta_1 < \theta < \theta_2, \Rightarrow T(Y) = I(c_1 < Y < c_2), \ \beta_T(\theta_1) = \beta_T(\theta_2) = \alpha \ (\text{No UMP}) \ H_0: \theta = \theta_1, H_1: \theta_1 < \theta < \theta_2, \Rightarrow T(Y) = I(c_1 < Y < c_2), \ \beta_T(\theta_1) = \beta_T(\theta_2) = \alpha \ (\text{No UMP}) \ H_0: \theta = \theta_1, H_1: \theta = \theta_1, H_1: \theta = \theta_1, H_2: \theta =$ $\theta \neq \theta_1$ and $H_0: \theta \in (\theta_1, \theta_2)$ $H_1: \theta \notin (\theta_1, \theta_2)$

[UMP Exp fam] $(\eta(\theta) \text{ increasing}, H_0: \theta \leq \theta_0)$ $(\eta(\theta) \text{ decreasing}, H_0: \theta \geq \theta_0)$ Same UMP T(Y) = I(Y < c) $(\eta(\theta) \text{ increasing}, H_0: \theta \geq \theta_0)$ $(\eta(\theta) \text{ decreasing}, H_0: \theta \leq \theta_0)$ Reverse inequalities T(Y) = I(Y > c)[Normal results] $X_i \sim N(\mu, \sigma^2)$, under $H_0: \sigma^2 = \sigma_0^2$, note $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ independent to \bar{X} $V = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

 $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \ t = \frac{\sqrt{n}(\bar{X} - \mu)/\sigma}{\sqrt{V/(n-1)}} = \frac{Z}{\sqrt{V/(n-1)}} \sim t_{(n-1)} \ [\text{(only if } X_i \sim N]$ Simultaneous (Bonferroni) adjust each paramter level to $\alpha_t = \alpha/k$ (Bootstrap) Monte Carlo percentile estimate

 H_0 is false. Error rate: $1 - \alpha_T(P) = P(T(X) = 1), P \in \mathcal{P}_1$

[UMPU NEF $\eta(\theta) = \theta$] Require: (1) suff stat Y for θ (2) suff and complete U for φ (2a) U complete when φ to be full-rank (1) $H_0: \theta \leq \theta_1$

or $\theta \ge \theta_2 \ H_1 : \theta_1 < \theta < \theta_2 \Rightarrow T(Y,U) = I(c_1(U) < Y < c_2(U)), \ E_{\theta_1}[T(Y,U)|U=u] = E_{\theta_2}[T(Y,U)|U=u] = \alpha \ (2) \ H_0 : \theta_1 \le \theta \le \theta_2$ $H_1: \theta < \theta_1 \text{ or } \theta > \theta_2 \Rightarrow T(Y,U) = I(Y < c_1(U) \text{ or } Y > c_2(U)), \ E_{\theta_1}[T(Y,U)|U=u] = E_{\theta_2}[T(Y,U)|U=u] = \alpha \ (3) \ H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0 \Rightarrow T(Y,U) = I(Y < c_1(U) \text{ or } Y > c_2(U)), \ E_{\theta_0}[T_*(Y,U)|U = u] = \alpha \text{ and } E_{\theta_0}[T_*(Y,U)Y|U = u] = \alpha E_{\theta_0}(Y|U = u)$ (4) $H_0: \theta \le \theta_0 \ H_1: \theta > \theta_0 \Rightarrow T(Y, U) = I(Y > c(U)), \ E_{\theta_0}[T(Y, U)|U = u] = \alpha$ [UMPU Normal] Assume V(Y,U) independent of U under H_0 (1) $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ $H_1: \theta_1 < \theta < \theta_2$ Require V to be increasing

in Y. $\Rightarrow T(V) = I(c_1 < V < c_2)$, $E_{\theta_1}[T(V)] = E_{\theta_2}[T(V)] = \alpha$ (2) $H_0: \theta_1 \le \theta \le \theta_2$ $H_1: \theta < \theta_1$ or $\theta > \theta_2$ Require V to be increasing in Y. $\Rightarrow T(V) = I(V < c_1 \text{ or } V > c_2), E_{\theta_1}[T(V)] = E_{\theta_2}[T(V)] = \alpha \ (3) \ H_0 : \theta = \theta_0 \ H_1 : \theta \neq \theta_0 \text{ Require } V(Y,U) = a(u)Y + bU$

 $\Rightarrow T(V) = I(V < c_1 \text{ or } V > c_2), \ E_{\theta_0}[T(V)] = \alpha, \ E_{\theta_0}[T(V)V] = \alpha E_{\theta_0}(V) \ (4) \ H_0 : \theta \le \theta_0 \ H_1 : \theta > \theta_0 \ \text{Require } V \text{ to be increasing in } Y.$ $\Rightarrow T(V) = I(V > c), E_{\theta_0}[T(V)] = \alpha$

LR test $\lambda(X) = \frac{\sup_{\theta \in \theta_0} \ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)}$ Rejects $H_0 \Leftrightarrow \lambda(X) < c \in [0,1]$. 1-param Exp Fam LR test is also UMP.

Asym test Assume MLE regularity condition, under H_0 , $-2\log\lambda(X)\to \chi_r^2$, where $r:=\dim(\theta)$ $T(X)=I\left[\lambda(X)<\exp(-\chi_{r,1-\alpha}^2/2)\right]$ where $\chi_{r,1-\alpha}^2$ is the $(1-\alpha)$ th quantile of χ_r^2 .

[Asymptotic Tests] $H_0: R(\theta)=0$, $\lim_{n\to\infty}W_n, Q_n\sim\chi_r^2$, $T(X)=I(W_n>\chi_{r,1-\alpha}^2)$ or $I(Q_n>\chi_{r,1-\alpha}^2)$ (Wald's test) $W_n=R(\hat{\theta})^T\{C(\hat{\theta})^TI_n^{-1}(\hat{\theta})C(\hat{\theta})\}^{-1}R(\hat{\theta})$ $C(\theta)=\partial R(\theta)/\partial \theta$, $I_n(\theta)$ is fisher info for $X_1,\cdots,X_n,\hat{\theta}$ is unrestricted MLE/RLE of θ . if $H_0:\theta=\theta_0\Rightarrow R(\theta)=\theta-\theta_0$, and $W_n=(\hat{\theta}-\theta_0)^TI_n(\hat{\theta})(\hat{\theta}-\theta_0)$ (Rao's score test) $Q_n=s_n(\tilde{\theta})^TI_n^{-1}(\hat{\theta})s_n(\hat{\theta})$. $s_n(\theta)=\partial\log\ell(\theta)/\partial\theta$ is score function, $\tilde{\theta}$ is MLE/RLE of θ under $H_0:R(\theta)=0$ (under H_0).

Non-param tests

[Sign test] $X_i\sim^{iid}F$, u is fixed constant, p=F(u), $\Delta_i=I(X_i-u\leq 0)$, $P(\Delta_i=1)=p$, $p_0\in(0,1)$ $H_0:p\leq p_0$ $H_1:p>p_0\Rightarrow T(Y)=I(Y>m)$, $Y=\sum_{i=1}^n\Delta_i\sim Bin(n,p)$, m,γ s.t. $\alpha=E_{p_0}[T(Y)]$ $H_0:p=p_0$ $H_1:p\neq p_0\Rightarrow T(Y)=I(Y< c_1 \text{ or }Y>c_2)$, $E_{p_0}[T]=\alpha$ and $E_{p_0}[TY]=\alpha np_0$ [Permutation test] $X_{i1},\cdots,X_{in_i}\sim^{iid}F_i$, i=1,2 $H_0:F_1=F_2$ $H_1:F_1\neq F_2$, $\Rightarrow T(X)$ with $\frac{1}{n!}\sum_{z\in\pi(x)}T(z)=\alpha$ $\pi(x)$ is set of n!

Permutation test] $X_{i1}, \dots, X_{in_i} \sim^{iid} F_i$, $i = 1, 2 \ H_0 : F_1 = F_2 \ H_1 : F_1 \neq F_2, \Rightarrow T(X)$ with $\frac{1}{n!} \sum_{z \in \pi(x)} T(z) = \alpha \ \pi(x)$ is set of n! points obtained from x by permuting components of x E.g. $T(X) = I(h(X) > h_m)$, $h_m := (m+1)^{th}$ largest $\{h(z : z \in \pi(x))\}$ e.g $h(X) = |\bar{X}_1 - \bar{X}_2|$ or $|S_1 - S_2|$ [Rank test] $X_i \sim^{iid} F$, $Rank(X_i) = \#\{X_j : X_j \leq X_i\}$, $H_0 : F$ symm and $0, H_1 : H_0$ false, R_+^o vector of ordered R_+ . (Wilcoxon) $T(X) = I[W(R_+^o) < c_1 \text{ or } W(R_+^o > c_2)]$, $W(R_+^o) = J(R_{+1}^o/n) + \dots + J(R_{+n_s}^o/n) c_1, c_2$ are $(m+1)^{th}$ smallest/largest of $\{W(y) : y \in \mathcal{Y}\}$,

 $T(X) = I[W(R_+^c) < c_1 \text{ or } W(R_+^c) > c_2)], W(R_+^c) = J(R_{+1}^c/n) + \dots + J(R_{+n_*}^c/n) c_1, c_2 \text{ are } (m+1)^m \text{ smallest/largest of } \{W(y) : y \in \mathcal{Y}\}, \gamma = \alpha 2^n/2 - m$ [KS test] $X_i \sim^{iid} F H_0 : F = F_0, H_1 : F \neq F_0, \Rightarrow T(X) = I(D_n(F_0) > c), D_n(F) = \sup_{x \in \mathcal{R}} |F_n(x) - F(x)| \text{ With } F_n \text{ Emp CDF, and for any } d, n > 0, P(D_n(F) > d) \leq 2 \exp(-2nd^2),$ [Cramer-von test] Modified KS with $T(X) = I(C_n(F_0) > c), C_n(F) = \int \{F_n(x) - F(x)\}^2 dF(x) nC_n(F_0) \xrightarrow{D} \sum_{j=1}^{\infty} \lambda_j \chi_{1j}^2, \text{ with } \chi_{1j}^2 \sim \chi_1^2$

and $\lambda_{i} = i^{-2}\pi^{-2}$

 $C(x) = [\mu_*(x) - cz_{1-\alpha/2}, \ \mu_*(x) + cz_{1-\alpha/2}].$

Empirical LR] $X_i \sim^{iid} F$, $H_0: \Lambda(F) = t_0$ $H_1: \Lambda(F) \neq t_0$, $\Rightarrow T(X) = I(ELR_n(X) < c)$ $ELR_n(X) = \frac{\ell(\hat{F}_0)}{\ell(\hat{F})}$, $\ell(G) = \prod_{i=1}^n P_G(\{x_i\})$, $G \in \mathcal{F}$. (\mathcal{F} := collection of CDFs, P_G := measure induced by CDF G)

Confidence set $C(X): X \to \mathcal{B}(\Theta)$, Require $\inf_{P \in \mathcal{P}} P(\theta \in C(X)) \geq 1 - \alpha$. Conf coeff more than level (via pivotal qty) $C(X) = \{\theta : c_1 \leq \mathcal{R}(X, \theta) \leq c_2\}$, not dependent on P, common pivotal qty: $(X_i - \mu)/\sigma$ (invert accept region) $C(X) = \{\theta : x \in A(\theta)\}$, Acceptance region $A(\theta) = \{x : T_{\theta_0}(x) \neq 1\}$. $H_0: \theta = \theta_0$, H_1 any

region $A(\theta) = \{x : T_{\theta_0}(x) \neq 1\}$. $H_0 : \theta = \theta_0$, H_1 any [Shortest CI] (unimodal) $f'(x_0) = 0$ f'(x) < 0, $x < x_0$ and f'(X) > 0, $x > x_0$ (Pivotal $(T - \theta)/U$, f unimodal at x_0) $[T - b_*U, T - a_*U]$, shortest when $f(a_*) = f(b_*) > 0$ $a_* \le x_0 \le b_*$ (Pivotal T/θ , $x^2 f(x)$ unimodal at x_0) $[b_*^{-1}T, a_*^{-1}T_*]$ shortest when $a_*^2 f(a_*) = b_*^2 f(b_*) > 0$ $a_* \le x_0 \le b_*$ (General) Suppose f > 0, integrable, unimodal at x_0 , want: min b - a s.t. $\int_a^b f(x) dx$ and $a \le b$ sol: a_*, b_* satisfy (1) $a_* \le x_0 \le b_*$ (2) $f(a_*) = f(b_*) > 0$ (3) $\int_{a_*}^{b_*} f(x) dx = 1 - \alpha$

[asym] require $\lim_{n\to} P(\theta \in C(X)) \ge 1 - \alpha$, (asym pivotal) $\mathcal{R}_n(X,\theta) = \hat{V}_n^{-1/2}(\hat{\theta}_n - \theta)$ does not depend on P in limit (LR) $C(X) = \left\{\theta : \ell(\theta,\hat{\varphi}) \ge \exp(-\chi_{r,1-\alpha}^2 - \alpha/2)\ell(\hat{\theta})\right\}$ (Wald) $C(X) = \left\{\theta : (\hat{\theta} - \theta)^T \left[C^T \left(I_n(\hat{\theta})\right)^{-1}C\right]^{-1}(\hat{\theta} - \theta) \le \chi_{r,1-\alpha}^2\right\}$ (Rao) $C(X) = \left\{\theta : [s_n(\theta, \varphi)] \ge \exp(-\chi_{r,1-\alpha}^2 - \alpha/2)\ell(\hat{\theta})\right\}$ (Bayesian

[Method] (Bayes formula) $\frac{dP_{\theta|X}}{d\Pi} = \frac{f_{\theta}(X)}{m(X)}$. (Bayes action $\delta(x)$) arg min_a $E[L(\theta, a)|X = x]$, when $L(\theta, a) = (\theta - a)^2$, $\delta(x) = E(\theta|X = x)$. (Generalised Bayes action) arg min_a $\int_{\Theta} L(\theta, a) f_{\theta}(x) d\Pi$, works for improper prior where $\Pi(\Theta) \neq 1$ (Interval estimation - Credible sets) $P_{\theta|x}(\theta \in C) = \int_{C} p_{x}(\theta) d\lambda \geq 1 - \alpha$ (HPD (highest posterior density)) $C(x) = \{\theta : p_{x}(\theta) \geq c_{\alpha}\}$, often shortest length credible set. Is a horizontal line in the posterior density plot. Might not have confidence level $1 - \alpha$. (Hierachical Bayes) With hyper-priors as

hyper-parameters on the priors. [Empirical Bayes] Estimate hyper-parameter via data using MoM (no MLE as not independent). $X_i \sim N(\mu, \sigma^2), \ \mu | \xi \sim N(\mu_0, \sigma_0^2), \ \sigma^2$ known, $\xi = (\mu_0, \sigma_0^2), \ \text{Using MoM} \ E_{\xi}(X|\xi) = E_{\xi}(E[X|\mu, \xi]) = E_{\xi}(\mu | \xi) = \mu_0 \approx \bar{X}, \ E_{\xi}(X^2|\xi) = E_{\xi}(\mu^2 + \sigma^2 | \xi) = \sigma^2 + \mu_0^2 + \sigma_0^2 \approx \frac{1}{n} \sum X_i^2 \approx \sigma_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \sigma^2$ [Normal posterior] Normal posterior with prior unknown μ and known $\sigma^2 \ N(\mu_*(x), c^2)$: $\mu_*(x) = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \mu_0 + \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2} \bar{x}, \ c^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$

admissible. (Bias) Under squared error loss, $\delta(X)$ is biased unless $r_{\delta}(\Pi) = 0$. No applicable to improper priors. (Minimax) If T is (unique) Bayes estimator under Π and $R_T(\theta) = \sup_{\theta'} R_T(\theta') \pi$ -a.e., then T is (unique) minimax. Limit of Bayes estimators If T has constant risk and $\liminf_j r_j \geq R_T$, then T is minimax.

[Simul est] Simultaneous estimate vector-valued \mathcal{V} with e.g. squared loss $L(\theta, a) = ||a - \theta||^2 = \sum_{i=1}^p (a_i - \theta_i)^2$ [Asymptotic] (Posterior Consistency) $X \sim P_{\theta_0}$ and $\Pi(U|X_n) \xrightarrow{P_{\theta_0}} 1$ for all open U containing θ_0 . (Wald type consistency) Assume

[Decision theory] (Admissibility) (1) $\delta(X)$ unique \Rightarrow admissible, (2, 3) $r_{\delta}(\Pi) < \infty$, $\Pi(\theta) > 0$ for all θ and δ is Bayes action with respect to $\Pi \Rightarrow$ admissible. Not true for improper priors, Improper priors require excessive risk ignorable, take limit and observe if risk is

 $p_{\theta}(x)$ is continuous, measurable, θ_* is unique maximizer then MLE converge to true parameter θ^* P_* a.s. Furthermore, if $\hat{\theta}^*$ is in the support of the prior, then posterior converges to θ^* in probability. (Posterior Robustness) all priors that lead to consistent posteriors are equivalent.

[BM] Bernstein-von Mises: assume regularity conditions, posterior $T_n = \sqrt{n}(\hat{\theta_n} - \hat{\theta_n}) \sim \mathcal{N}(\hat{\theta}_n, V^*/n)$ asymptotically. (Well-specified)

 $V^* = E_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \text{ (same as MLE, with } \theta^* \text{ as true parameter, CI = CR) (Mis-specified) } V^* = \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta_*}(Y) \right]^{-1} = \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \text{ Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \text{ (differ from MLE, with } \theta_* \text{ the projection of } P_* \text{ to parameter space)}$ $(\text{Result}) \sqrt{n} \left(\hat{\theta}_n - E_{\theta}[\theta | X_1, \cdots, X_n] \right) \xrightarrow{P} 0 \text{ (If MLE has asym normality, so is posterior mean)}$

Linear Model [Linear Model] $X = Z\beta + \epsilon$ (or $X_i = Z_i^T\beta + \epsilon_i$) Estimate with $b = \min_b ||X - Zb||^2 = ||X - Z\hat{\beta}||^2$, (solution = normal equation) $Z^Zb = Z^TX$ (Full rank): $\hat{\beta} = (Z^TZ)^{-1}Z^TX$ (Non-full rank): $\hat{\beta} = (Z^TZ)^{-2}Z^TX$ (A1 Gaussian noise) $\epsilon \sim N_n(0, \sigma^2 I_n)$ (A2 homoscedastic noise) $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2 I_n$ (A3 general noise) $E(\epsilon) = 0$, $Var(\epsilon) = \Sigma$

Inference Estimate linear combination of coefficient (General) Necce and Suff condition: ℓ $inR(Z) = R(Z^TZ)$ (A3) LSE $\ell^T\hat{\beta}$ is unique and unbiased (A1) if $\ell \notin R(Z)$, $\ell^T\beta$ not estimable

Z (iii) $\ell \hat{\beta}$ and $\hat{\sigma}^2$ are independent, $\ell^T \hat{\beta} \sim N(\ell^T \beta, \sigma^2 \ell^T (Z^T Z) - \ell)$, $(n-r)\hat{\sigma}/\sigma^2 \sim \chi_{n-r}^2$ (A2) LSE $\ell^T \hat{\beta}$ is BLUE (Best Linear Unbiased Estimator, best as in min var) [A3] Following are equivalent: (a) $\ell^T \hat{\beta}$ is BLUE for $\ell^T \beta$ (also UMVUE), (b) $E[\ell^T \hat{\eta}^T X) = 0$], any η is s.t. $E[\eta^T X] = 0$ (c) $Z^T var(\epsilon)U = 0$, for U s.t. $Z^T U = 0$, $R(U^T) + R(Z^T) = R^n$ (d) $Var(\epsilon) = Z\Lambda_1 Z^T + U\Lambda_2 U^T$, for some Λ_1, Λ_2, U s.t. $Z^TU = 0$, $R(U^T) + R(Z^T) = R^n$ (e) $Z(Z^TZ) - Z^TVar(\epsilon)$ is symmetric [Asymptotic] $\lambda_{+}[A]$ is the largest eigenvalue of $A_n = (Z^T Z)^{-}$. (Consistency) Suppose $\sup_n \lambda_{+}[Var\epsilon) < \infty$ and $\lim_{n \to \infty} \lambda_{+}[A_n] = 0$, $\ell^T \hat{\beta}$ is consistent in MSE. (Asym Normality) $\ell^T (\hat{\beta} - \beta) / \sqrt{Var(\ell^T \hat{\beta})} \rightarrow_d N(0, 1)$ suff cond: $\lambda_+[A_n] \rightarrow 0$, $Z_n^T A_n Z_n \rightarrow 0$ as $n \rightarrow \infty$, and there exist $\{a_n\}$ s.t. $a_n \to \infty$, $a_n/a_{n+1} \to 1$, $Z^T Z/a_n$ converge to positive definite matrix. Testing Under A1, $\ell \in R(Z)$, θ_0 fixed constant, (Hypothesis testing) (simple) $\ell \in R(Z)$, $H_0: \ell^T \beta \leq \theta_0$, $H_1: \ell^T \beta > \theta_0$, or $H_0: \ell^T \beta = \theta_0$, $H_1: \ell^T \beta \neq \theta_0, \ t(X) = \frac{\ell^T \hat{\beta} - \theta_0}{\sqrt{\ell^T (Z^T Z)^{-\ell} \sqrt{SSR/(n-r)}}} \sim t_{n-r} \text{ under } H_0, \text{ UMPU reject } t(X) > t_{n-r,\alpha} \text{ or } |t(X)| > t_{n-r,\alpha/2} \text{ (multiple)}$ $L_{s\times p},\ s\leq r\ \text{and all rows}=\ell_{j}\in R(Z)\ H_{0}: L\beta=0,\ H_{1}: L\beta\neq 0\ W=\frac{(\|X-Z\hat{\beta}_{0}\|^{2}-\|X-Z\hat{\beta}\|^{2})/s}{\|X-Z\hat{\beta}\|^{2}/(n-r)}\sim F_{s,n-r}\ \text{with non-central param}$ $\sigma^{-2}\|Z\beta-\Pi_{0}Z\beta\|^{2},\ \text{reject}\ W>F_{s,n-r,1-\alpha}\ \text{(Confidence set) Pivotal qty:}\ \mathcal{R}(X,\beta)=\frac{(\hat{\beta}-\beta)^{T}Z^{T}Z(\hat{\beta}-\beta)/p}{\|X-Z\hat{\beta}\|^{2}/(n-p)}\sim F_{p,n-p},\ \hat{\beta}\ \text{is LSE of}\ \beta,$

Properties Require $\ell \in R(Z) = R(Z^T Z)$ (A1) (i) LSE $\ell^T \hat{\beta}$ is UMVUE of $\ell^T \beta$, (ii) UMVUE of $\hat{\sigma}^2 = (n-r)^{-1} ||X - Z\hat{\beta}||^2$, r is rank of

$$\sigma^{-2}\|Z\beta - \Pi_0 Z\beta\|^2, \text{ reject } W > F_{s,n-r,1-\alpha} \text{ (Confidence set) Pivotal qty: } \mathcal{R}(X,\beta) = \frac{(\hat{\beta}-\beta)^T Z^T Z(\hat{\beta}-\beta)/p}{\|X-Z\hat{\beta}\|^2/(n-p)} \sim F_{p,n-p}, \ \hat{\beta} \text{ is LSE of } \beta,$$

$$C(X) = \{\beta : \mathcal{R}(X,\beta) \leq F_{p,n-p,1-\alpha}\}$$
Sufficiency [Factorization] $T(X)$ is sufficient for $\theta \Leftrightarrow \exists h(x), g_P(t) \text{ s.t. } f(x|\theta) = g_P(T(x))h(x)$
[Min. Sufficient] T is min sufficient \Leftrightarrow for any other stat $S, T = \psi(S)$. Min suff is unique and usually exist.
[Method 1] (A) If $P_0 \subset P$ and P_0 a.s. implies P a.s., if T is suff for P and min suff for P_0 , then T is min suff for P . (B1) $T(X) = \{f_i(x)/f_{i-r}(x)\}$ is min suff for P where $f_{i-r}(x) = \sum_{i=1}^{\infty} c_i f_i(x) | f_{i-r}(x)| = \{f_i(x)/f_{i-r}(x)\}$ is min suff for P .

 $\{f_i(x)/f_{\infty}(x)\}\$ is min suff for P, where $f_{\infty}(x) = \sum_{i=0}^{\infty} c_i f_i(x), c_i > 0, \sum_{i=0}^{\infty} c_i = 1 \text{ (B2) } T(X) = \{f_i(x)/f_0(x)\}\$ is min suff for P, if ${x: f_i(x) > 0} \subset {x: f_0(x) > 0}$

[Method 2] (C) T(X) is suff, $\exists \phi$ s.t. $f_P(x) = f_P(y)\phi(x,y) \implies T(x) = T(y)$ Then T(X) is min suff. **Exp Fam** T is suff, $\exists \Theta_0 \subset \Theta$ s.t. $\eta_i = \eta(\theta_i) - \eta(\theta_0), i = 1, \dots, p$ are linear indep, then T is min suff. e.g. Θ Full rank.

Completeness T is complete for θ if $E_{\theta}[g(T)] = 0 \implies f(T) = 0$ a.s. Suff + bounded complete \implies min suff. **Exp Fam** if η is full-rank in NEF, then T is complete and suff.

[Varying Support] $\int_0^\theta g(x)x^{n-1}dx = 0 \implies g(\theta)\theta^{n-1} = 0, \implies g(\theta) = g(X_{(n)}) = 0$ and thus $X_{(n)}$ is complete. Basu If V is ancillary and T is boundedly complete and sufficient, then V and T are indep. Estimation [MoM] $\mu_j = E_{\theta} X^j = h_j(\theta), \implies \hat{\theta} = h_j^{-1}(\hat{\mu}_j).$ Provided h_j^{-1} exists and $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$. [MLE] $\hat{\theta} = \arg \max_{\theta} L(\theta)$. Consider (a) boundary opint (b) $\partial L(\theta)/\partial \theta = 0$ and $\partial^2 L(\theta)/\partial \theta^2 < 0$, MLE may not exist (Asym Normality

of RLEs) If $I(\theta)$ positive definite at θ , then $\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{D} N(0, I(\theta)^{-1})$ **Decision Rule** (Loss) $L: P \times \mathcal{A} \to [0, \infty]$, (Risk) $R_T(P) = E_P[L(P, T(X)]]$. T_2 dominated by T_1 if $R_{T_1}(P) < R_{T_2}(P)$ (Bayes Risk) $r_T(\Pi) = \int_P R_T(P) d\Pi(P)$, find via min $E[L(\theta, T)|X]$

[Decision] (Optimal) T is optimal if $\forall T'$, $R_T(P) \leq R_{T'}(P)$, or as good as any other rule. (Admissibility) T is admissible if no T' s.t. $R_T(P) > R_{T'}(P) \forall P$, or not dominated by any other rule. (MiniMax) T is mini-max if $\sup_{\theta \in \Theta} R_T(P) \leq \sup_{\theta \in \Theta} R_{T'}(P)$ for any T'. (Bayes Rule) $r_T(\Pi) \leq r'_T(\Pi)$ for any T'.

[Rao-Blackwell] Consider rule S_0 and $S_1 = E[S_0(X)|T]$. If L(P,a) convex in a then $R_{S_1}(P) \leq R_{S_0}(P)$. If L is strictly convex, and S_0 is not function of T, then S_0 is inadmissible and dominated by S_1 [UMVUE] T is unbiased and $Var(T) \leq Var(S)$ for any unbiased S. [Method 1] (Lehmann-Scheffe) if T is suff and complete, UNVUE is in form h(T) and is unique. \implies UMVUE $\theta = E[h(T)]$

[Method 2] Find unbiased estimator U, find suff and complete T, UNVUE is E[U|T]. Method 3 When no complete and suff stat, let T be unbiased estimator and \mathcal{U} be unbiased estimator of 0. If S is UMVUE $\Leftrightarrow E[SU] = 0$ for any U and P, if S = h(T) then E[SU(T)] = 0, T is suff stat. Useful to find UMVUE, check if S is UMVUE, show non-existence of UMVUE. e.g. find UMVUE of $X \sim Unif(0,\theta), \Theta = [1,\infty)$

Fisher Info $I(\theta) = E\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right)^2$, provided $\frac{\partial f_{\theta}(x)}{\partial \theta}$ exists. Note if $\theta = \psi(\eta)$, $\tilde{I}(\eta) = \psi'(\eta)^2 I(\psi(\eta))$. Suppose f_{θ} is twice differentiable, and $\int \frac{\partial^2}{\partial \theta^2} f_{\theta}(x) d\nu = 0$, then $I(\theta) = -E[\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(X)]$ Suppose $\int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$, $I_{X+Y}(\theta) = I_X(\theta) + I_Y(\theta)$

[Cramer-Rao LB] LB $Var(T) \geq \frac{g'(\theta)^2}{I(\theta)}$, where T is unbiased estimator of $g(\theta)$, s.t. $g'(\theta) = \frac{\partial}{\partial \theta} \int T f_{\theta}(x) d\nu = \int T(x) \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu$. Require f_{θ} differentiable and $0 = \frac{\partial}{\partial \theta} \int f_{\theta}(x) d\nu = \int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu$ [Convergence] (a.s.) $P(\lim_{n\to\infty} X_n = X) = 1$. $(L^p) \lim_{n\to\infty} E|X_n - X|^p = 0$. (Prob) $\forall \epsilon > 0$, $\lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$. (Dist)

 $\lim_{n\to\infty} F_n(x) = F(x).$ Showing a.s.] (1st Borel-Cantelli) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup A_n) = 0$. (or A_n occurs finitely often) (2nd BC) If A_n are pairwise indep and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup A_n) = 1$. (Thm) If $\sum_{n=1}^{\infty} P(A_n(\epsilon)) < \infty \ \forall \epsilon > 0$, then $X_n \xrightarrow{a.s.} X$

[Dist with chf] (Levy continuity) $X_n \xrightarrow{D} X \Leftrightarrow \phi_{X_n}(t) \to \psi_X(t)$ where $\phi_X(t)$ is chf. [Continuous mapping] If $X_n \xrightarrow{a.s.} X$, then $g(X_n) \xrightarrow{a.s.} g(X)$. If $X_n \xrightarrow{P} X$, then $g(X_n) \xrightarrow{P} g(X)$. If $X_n \xrightarrow{D} X$, then $g(X_n) \xrightarrow{D} g(X)$.

[Slutsky's thm]

If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, then $X_n + Y_n \xrightarrow{D} X + c$, $X_n Y_n \xrightarrow{D} cX$, $X_n / Y_n \xrightarrow{D} X / c$ if $c \neq 0$. [δ -method] Suppose $a_n(X_n-c) \xrightarrow{D} Y$, then $a_n[g(X_n)-g(c) \xrightarrow{D} g'(c)Y$. $a_n^m[g(X_n)-g(c)] \xrightarrow{D} \frac{1}{m!}g^{(m)}(c)Y^m$ [SLLN] (iid) If $E|X| < \infty$, then $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu$. (non ident) if $\exists p \in [1,2] \text{ s.t. } \sum_{i=1}^{\infty} \frac{E|X_i|^p}{i^p} < \infty$, then $\frac{1}{n} \sum_{i=1}^{n} (X_i - EX_i) \xrightarrow{a.s.} 0$

[WLLN] (iid) If $nP(|X_1| > n) \to 0$, then $\frac{1}{n} \sum_{i=1}^n X_i - E[X_1 I_{|X| \le n}] \xrightarrow{P} 0$ (non ident) If $\exists p \in [1, 2]$ s.t. $\lim_{n \to \infty} \frac{1}{n^p} \sum_{i=1}^n E|X_i|^p = 0$, then $\frac{1}{n}\sum_{i=1}^{n}(X_i-EX_i)\stackrel{P}{\longrightarrow}0$

[CLT] (iid) If $\Sigma = Var(X_1) < \infty$, then $\frac{\sum_{i=1}^{n} (X_i - EX_i)}{\sqrt{n}} \xrightarrow{D} N(0, \Sigma)$ (non ident - Lindeberg's CLT) For each n, let $\{X_{nj}\}$ with $j = 1, \dots, k_n$

Suppose $k_n \to \infty$ as $n \to \infty$ and $0 < \sigma_n^2 = Var\left(\sum_{j=1}^{k_n} X_{nj}\right) < \infty$. If for any $\epsilon > 0$, $\frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} E\left\{(X_{nj} - EX_{nj})^2 I_{\{|X_{nj} - EX_{nj}| > \epsilon \sigma_n\}}\right\} \to 0$, then $\frac{1}{\sigma_n} \sum_{i=1}^{k_n} (X_{nj} - EX_{nj}) \xrightarrow{D} N(0,1)$ [Consistency] (Consistent) $T_n(X) \xrightarrow{P} \theta$ (Strongly Consistent) $T_n(X) \xrightarrow{a.s.} \theta$ (a_n -consistent) $a_n(T_n(X) - \theta) = O_p(1)$ (L_r -consistent)

 $T_n(X) \xrightarrow{L^r} \theta$ (Proving consistency) LLN + CLT + Slustsky's thm + continuous mapping thm + δ -method

```
Asymptotic] (Approx unbiased) b_{T_n}(P) := ET_n(X) - \theta \to 0 as n \to \infty (Asym Expectation) a_n \xi_n \overset{D}{\to} \xi, E|\xi| < \infty, then E\xi/a_n is asym. expect of \xi_n [Asym Bias) Asym. expect \tilde{b}_{T_n} = T_n - \theta (Asym unbiase) if \lim_{n \to \infty} \tilde{b}_{T_n}(P) = 0 (Asym MSE) Suppose a_n(T_n - \theta) \overset{D}{\to} Y, amse is EY^2/a_n^2 (Asym var) \sigma_{T_n}^2(P) = Var(Y)/a_n^2 (Asym relative efficiency) e_{T_n}^*T_n(P) = amse_{T_n}/amse_{T_n}^* (note the order) [Hypo Test] (UMP) Satisfy (1) pre-set size \alpha = E_{H_0}(T) (2) max power \beta_T(P) = E_{H_1}(T) (Neyman-Pearson) T(X) = I(f_1(X) > cf_0(X)) + \gamma I(f_1(X) = cf_0(X)) (unique up to randomised test) [MLR] (Monotone Likelihood ratio in Y(X)) for any \theta_1 < \theta_2, f_{\theta_2}(x)/f_{\theta_1}(x) nondecreasing in Y(x). [MLR for one-param exp fam] y(x) nondecreasing in \theta_n [Simply NP test] y(x) = I(Y(X) > c) + \gamma I(Y(X) = c) (increasing MLR, y(x) = I(x) = I
```

 $[H_0:\theta \leq \theta_1 \text{ or } \theta \geq \theta_0, H_1:\theta_1 < \theta < \theta_2] \ T(V) = I(c_1 < V < c_2), \text{ and } E_{\theta_1}(T) = E_{\theta_2}(T) = \alpha \ [H_0:\theta_1 \leq \theta \leq \theta_2, H_1:\theta < \theta_1 \text{ or } \theta > \theta_2]$ $T(V) = I(V < c_1 \text{ or } V > c_2) \text{ and } E_{\theta_1}(T) = E_{\theta_2}(T) = \alpha \ [H_0:\theta \leq \theta_0, H_1:\theta > \theta_0] \ T(V) = I(V > c) \text{ and } E_{\theta_0}(T) = \alpha$ $[LRT] \text{ (Likelihood Ratio Test) Reject } H_0 \text{ if } \lambda(X) < c, c \in [0,1] \ \lambda(X) = \frac{\sup_{\theta \in \Theta_0} \ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)}. \text{ [Asym Dist] Under } H_0 - 2\log \lambda(X) \to \chi_r^2 \text{ (r is dim of } \Theta) \text{ (Rejection region) } \lambda(X) < \exp(-\chi_{r,1-\alpha}^2/2), \text{ same for other asym test}$

[Wald's test] $H_0: R(\theta) = 0$, reject large $W_n = R(\hat{\theta})^T [C(\hat{\theta})^T I_n^{-1}(\hat{\theta}) C(\hat{\theta})]^{-1} R(\hat{\theta})$. $C(\theta) = \partial R(\theta) / \partial \theta$, $I_n(\theta)$ fisher info, $\hat{\theta}$ is MLE.

Rao's score test $H_0: R(\theta) = 0$, reject large $Q_n = s_n(\tilde{\theta})^T I_n^{-1}(\tilde{\theta}) s_n(\tilde{\theta})$. $s_n(\theta) = \partial \log \ell(\theta) / \partial \theta$, $\tilde{\theta}$ is MLE in $H_0: R(\theta) = 0$

[Confidence Set] C(X) confidence set for θ (Pivotal quantity) $\mathcal{R}(X,\theta)$ does not depend on P (Invert accept region) accept region of $H_0: \theta = \theta_0$ (Bonferroni's method) Simultaneous test simply α/r

[Shortest CI] (Pivot $(T-\theta)/U$) f(x) unimodal at x_0 , $f(a_*) = f(b_*) > 0$, $C = \{[T-bU, T-aU] : \int_a^b f(x) dx = 1-\alpha\}$ (Pivotal T/θ) $x^2 f(x)$ unimodal at x_0 , $a_*^2 f(a_*) = b_*^2 f(b_*) > 0$, $C = \{[T/b, T/a] : \int_a^b f(x) dx = 1-\alpha\}$ (General) f unimodal at x_0 , $\min b - a$ s.t. $\int_a^b f(x) dx = A$ at $a_* \le x_0 \le b_*$ and $f(a_*) = f(b_*) > 0$ and $\int_{a_*}^{b_*} f(x) dx = A$

[Bayes action] (Bayes Action) $\min_a E[L(\theta, a)|X = x]$ (Generalised) $\min_a \int_{\Theta} L(\theta, a) f_{\theta}(x) d\Pi$ (improper prior)

[Admissibility] $\delta(X)$ is a Bayes rule with prior Π , δ is admissible if (1) if $\tilde{\delta}$ is unique (2) If Θ is countable, $\Pi(\theta) > 0 \ \forall \Theta$. Note, not true for generalised Bayes rules unless limit is Bayes rule.

Minimaxity If T is Bayes estimator and $R_T(\theta) = \sup_{\theta'} R_T(\theta')$, then T is minimax. If T is unique, it is unique minimax.

Bernstein-von Mises (asymp normality) $\tilde{\theta}_n$ posterior $\hat{\theta}_n$ MLE, $T_n = \sqrt{n}(\tilde{\theta}_n - \hat{\theta}_n) \xrightarrow{D} N(\hat{\theta}_n, V^*/n)$, θ^* is true value. (assume MLE is asymnormal) (well-specified) $V^* = E_*[-\nabla^2_{\theta} \log p_{\theta^*}(Y)]^{-1}$ (mis-specified) $V^* = E_*[-\nabla^2_{\theta} \log p_{\theta^*}(Y)]^{-1}Var_*(\nabla \log p_{\theta^*}(Y))E_*[-\nabla^2_{\theta} \log_{p_{\theta^*}}(Y)]^{-1}$ Linear models (Normal equation) $Z^TZb = Z^TX$ (LSE) $\hat{\beta} = (Z^TZ)^-Z^TX$ (Generalised inverse) Moore-Penrose inverse $A^+AA^+ = A^+$,

 $A = (Z^T Z)$ (Projection matrix) $P_Z = Z(Z^T Z)^- Z^T$, $P_Z^2 = P_Z$, $P_Z Z = Z$, $rank(P_Z) = tr(P_Z) = r$ [Assumptions] (A1 Gaussian noise) $\epsilon \sim N_n(0, \sigma^2 I_n)$ (A2 homoscedastic noise) $E(\epsilon) = 0$, $Var(\epsilon) = \Sigma$

Estimable Estimate $\nu = \ell^T \beta$ for some $\ell \in \mathcal{R}^p$. (Necc Suff) $\ell \in \mathcal{R}(\mathcal{Z}) = \mathcal{R}(Z^T Z)$ (linear subspace) (A3 + above) LSE $\ell^T \hat{\beta}$ unique and unbiased (A1 + not cond) $\ell^T \beta$ not estimable

[asym] (Asym Norm) $\ell^T(\hat{\beta} - \beta) / \sqrt{Var(\ell^T \hat{\beta} \xrightarrow{d} N(0, 1))}$

[Hypo test - one] $(H_0: \ell^T \beta \leq \theta_0, H_1: \ell^T \beta > \theta_0)$ $(H_0: \ell^T \beta = \theta_0, H_1: \ell^T \beta \neq \theta_0)$ $t(X) = \frac{\ell^T \hat{\beta} - \theta_0}{\sqrt{\ell^T (Z^T Z)^{-\ell} \sqrt{SSR/(n-r)}}} \sim t_{n-r}$ under H_0

[Hypo test - multi] $(H_0: L\beta = 0, H_1: L\beta \neq 0)$ $W = \frac{(||X - Z\hat{\beta}||^2 - ||X - Z\hat{\beta}||^2)/s}{||X - Z\hat{\beta}||^2/(n-r)} \sim F_{s,n-r}$ under H_0