Gráficas

24 de abril de 2015

IMPORTANTE: Siempre $\lambda=0.01$ y dim(NEAR)=6 dim(FAR)=10. A menos que se especifique lo contrario.

- Gráfica 1: $P \times t$ para el modelo de la figura 2 (la linea).
- Gráfica 2: $P \times \gamma$ para el modelo de la figura 2 (la linea) variando γ . Planeamos agregar a esta grafica mas lineas correspondientes a cuando se hacen mas conexiones dentro de los ambientes.
- Gráfica 3: $log_{10}(1-P) \times \lambda$ para un modelo con 6 conexiones entre el near y el far.
- Gráfica 4-1: $P \times \gamma$ variando el numero de conexiones ν entre ambientes.
- Gráfica 4-2: $P \times \gamma$ Para cada linea se usa la gamma escalada $\gamma' = \frac{\gamma}{\sqrt{\gamma}}$. Planeamos que una parte de esta grafica puede ser el inset de la gráfica 4-3.
- Gráfica 4-3: $P \times t$ variando el numero de conexiones ν entre ambientes. Se usa la gamma escalada $\gamma' = \frac{0.8}{\sqrt{\gamma}}$
- Gráfica 5: $P \times \gamma$ para el modelo de la figura 2 (la linea). Variando la dimension de los ambientes $dim(NEAR) = A \ dim(FAR) = B$
- Gráfica 6: $log_{10}(1-P) \times \gamma$ para el modelo de conexiones completas (Cada spin del near se conecta con todos los del far). Variando la λ .