Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Klasse NP

Definition

NP ist die Klasse der Sprachen, die polynomiell verifizierbar sind.

Satz

P ist eine Teilmenge von NP.

Millenium-Problem

Ist P = NP? (Clay Mathematics Institute)

Polynomielle Reduktion

Definition

Sei Σ ein Alphabet. Eine Funktion $f: \Sigma^* \to \Sigma^*$ heißt polynomiell berechenbar, wenn es eine DTM M mit polynomieller Laufzeit gibt, die f berechnet.

Definition

Seien A, B zwei Sprachen. A heißt auf B polynomiell reduzierbar, wenn es eine polynomiell berechenbare Funktion f gibt mit:

$$w \text{ in } A \Leftrightarrow f(w) \text{ in B}$$

Die Funktion f wird polynomielle Reduktion genannt und man schreibt

$$A \leq_P B$$

Polynomielle Reduktion – Eigenschaften

Satz

Seien A, B zwei Sprachen. Gilt $A \leq_P B$ und B ist in P, so ist auch A in P.

Lemma

Die Relation \leq_P ist transitiv.

Definition

Eine Sprache *L* heißt *NP*-vollständig, wenn sie die folgenden Bedingungen erfüllt:

- L ist in NP
- Für jede Sprache L' aus NP gilt: $L' \leq_P L$

Satz

Ist L NP-vollständig und in P, so gilt P = NP.

Satz

Ist L in NP und gilt $L' \leq_P L$ für eine Sprache L', die NP-vollständig ist, so ist auch L NP-vollständig.

- Satz von Cook-Levin	
SAT ist NP-vollständig.	

Satz von Cook-Levin	
3SAT ist NP-vollständig.	

3. Komplexität

Definition

 $Clique := \{(G, k) | G \text{ ist ein ungerichteter Graph mit einer } k-Clique\}$

Definition

 $3SAT := \{ \varphi \mid \varphi \text{ ist eine erfüllbare } 3\text{-KNF Formel} \}$

Satz

Clique ist NP-vollständig.

Satz

3SAT ist auf Clique polynomiell reduzierbar.

Satz

SubsetSum ist NP-vollständig.

$$SubsetSum \coloneqq \left\{ \begin{aligned} &(S,t) \mid S = \{s_1, \dots, s_n\}, \text{wobei } s_1, \dots, s_n, t \text{ natürliche Zahlen} \\ &\text{und es gibt eine Teilmenge } T \text{ aus } \{1, \dots, n\} \text{ mit } \sum_i s_i = t \end{aligned} \right\}$$

3. Komplexität

$$\varphi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3)$$

	x_1	x_2	x_3	c_1	c_2
y_1	1	0	0	1	0
z_1	1	0	0	0	1
y_2	0	1	0	1	1
z_2	0	1	0	0	0
y_3	0	0	1	0	1
Z_3	0	0	1	1	0
g_1	0	0	0	1	0
h_1	0	0	0	1	0
g_2	0	0	0	0	1
h_2	0	0	0	0	1
t	1	1	1	3	3

3. Komplexität

$$\varphi = (x_1 \vee x_2) \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_2) \vee (x_3)$$

	x_1	x_2	x_3	c_1	c_2
y_1	1	0	0	1	0
z_1	1	0	0	0	1
y_2	0	1	0	1	1
z_2	0	1	0	0	0
y_3	0	0	1	0	1
z_3	0	0	1	1	0
g_1	0	0	0	1	0
h_1	0	0	0	1	0
g_2	0	0	0	0	1
h_2	0	0	0	0	1
t	1	1	1	3	3

$$x_1 = 0$$

 $x_2 = 1$
 $x_3 = 1$

Graphen und Knotenüberdeckung

Satz

Knotenüberdeckung ist NP-vollständig.

Definition

G = (V, E) ist ein ungerichteter Graph.

Eine Teilmenge U von V heißt Knotenüberdeckung, wenn für alle Kanten $\{u,v\}$ aus E gilt $|\{u,v\}\cap U|\neq 0$.

U heißt k-Knotenüberdeckung, wenn U Knotenüberdeckung und |U| = k.

Knotenüberdeckung $\coloneqq \{(G, k) \mid G \text{ besitzt eine } k\text{-Knotenüberdeckung}\}$

Knotenüberdeckung

Reduktion 3SAT auf Knotenüberdeckung

$$\varphi = (x_1 \lor x_2 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_2) \land (\overline{x_1} \lor \overline{x_1} \lor \overline{x_2})$$

Satz

SubsetSum ist polynomiell reduzierbar auf RS_{ent} .

Satz

RS_{ent} ist NP-vollständig.

Definition

$$RS_{ent} \coloneqq \begin{cases} (G, W, g, w) \mid G = \{g_1, ..., g_n\}, W = \{w_1, ..., w_n\} \text{ und es gibt eine } \\ \text{Teilmenge } S \text{ aus } \{1, ..., n\} \text{ mit } \sum_i g_i \leq g \text{ und } \sum_i w_i \geq w \end{cases}$$