2025년 가상공학플랫폼 구축사업 수혜기업 모집 공고

DYETEC(다이텍)연구원이 수행하는 『가상공학플랫폼 구축사업』의 일환으로 섬유 소재·부품 개발 기간 및 비용의 획기적인 절감을 도모하고자 시뮬레이션 기술 지원 서비스를 필요로 하는 수혜기업을 발굴하고자 하오니 많은 관심과 참여 부탁드립니다.

2025년 06월 02일

DYETEC(다이텍)연구원장

1

지원 개요

- **지원 목적**: 가상공학플랫폼* 서비스 분야 중 시뮬레이션 기술 지원 을 통한 국내 기업의 섬유소재·부품 개발 경쟁력 확보 지원
 - * 가상공학플랫폼: 데이터/AI/시뮬레이션 기술을 활용하여 가상의 공간에서 제품 설계·공 정 평가·물성 예측 등을 수행하는 미래형 R&D 인프라
- **지원 대상**: 섬유 소재·부품 개발 관련 기업

재생 섬유소재 기반 부직포 제품

[중점 지원 대상군]

○ **지원 방식**: 직접적인 예산 지원은 없으며, <u>가상공학플랫폼 인프라</u> (시뮬레이션 S/W 및 전문가 풀) 활용 컨설팅·기술 지원 제공

지원 유형	지원 내용	지원 건수
컨설팅 지원 (1단계)	- 가상공학 활용 기술 지원을 위한 사전 문제 검토 및 기술 애 로 상담	20
기술 지원 (2단계)	- 가상공학플랫폼이 보유한 시뮬레이션 S/W을 활용한 섬유소재· 부품 설계/해석 기술 지원	10

[지원 사례 및 시뮬레이션 S/W 구축 현황] -

A 기업 (소재 기업)

- 방사 구금 안정성 및 흐름성 해석 지원

B 기업 (소재 기업)

- 여과 소재의 3D 모델링 기반 미세 구조 분석 및 성능 예측

C 기업 (부품 기업)

- 기존 소재 대체 CFRP 기반 부품 성형 해석

장비명	제품(S/W)명	용도		
섬유 미세구조 모델링·해석 S/W	GeoDict	- 미세구조 기반 3D 형상 모델링, 분석 및 물성 예측		
복합재료 모델링 S/W	Digimat	- 장섬유·단섬유 기반 복합재료의 비선형 물성 모델링		
복합재료 성형공정해석 S/W	Moldex	- 사출, 압축 및 RTM 등 성형 공정성 예측		
범용 유한요소 해석 S/W	Simulia(Abaqus)	- 유한요소법 기반 부품·제품 거동 예측		
범용 유한요소 해석 S/W	Ansys Mechanical	- 유한요소법 기반 부품·제품 거동 예측		
범용 전산 유체 역학 S/W	Ansys Fluent	- 유체 유동, 열 및 질량 전달, 화학 반응 등 모델링		
복합소재 수지물성 예측 S/W	BIOVIA Materials Studio	- 분자 모델링 & 시뮬레이션		
무요소 해석 S/W	Midas Mesh-Free	- 무요소법 기반 부품·제품 거동 예측		

П

신청 기간 및 방법 등

○ **신청 기간**: 2025년 6월 1일 ~ 7월 31일

○ 신청 방식 : ① 담당자 이메일 접수 (신청서) 또는 ② 가상공학플랫

폼 온라인 접수 (www.vepotex.or.kr)

[온라인 접수 방식]

○ 추진 일정

추진 절차	수행 주체	일정(안)
신청 접수 : 컨설팅(1단계)	수혜기업 → 가상공학플랫폼	'25년 6월~7월
사전검토	가상공학플랫폼	'25년 6월~7월
컨설팅 수행(현장 방문)	가상공학플랫폼 → 수혜기업	'25년 6월~8월
신청 접수 : 기술 지원(2단계)*	수혜기업 → 가상공학플랫폼	'25년 8월
기술 지원 수행 및 만족도 조사	가상공학플랫폼 → 수혜기업	'25년 8월~10월

* 컨설팅(1단계)을 받은 수혜기업 중 시뮬레이션 S/W을 활용한 기술 애로 해결이 필요한 기업

Ш

관련 문의처

기관명	담당자명	전화번호	전자메일
DYETEC연구원	권 기 환	053-350-3859	nankkh@dyetec.or.k
DYETEC연구원	강 유 정	053-350-3749	coldplaymt@dyetec.or.kr

기업 컨설팅 신청서 (시뮬레이션)

기업 정보	기	업	명			사업자등록번호		
	주		소					
	업		종			주요 생산품		
	기 업 유	, - -	□ 중소기업	□ 중견기업	사 업 영 역	□ 소재 분야	□ 부품 분야	
		Ηπ	ਜ 영	□ 대기업	□ 비영리단체	W B S H	□ 완제품 분야	□ 연구/서비스/기타
신 청 인	담	당	자			부서 / 직위		
	연	락	처			전 자 메 일		
신 청 개 요	프로	2젝트	명	* 지원 요청 사항을 개조식으로 작성 (예시) 개발 부직포 소재의 구조 분석 및 성능 예측				
	요	청 분	Oŧ	│ │ □ 소재 설계·ā	해석 □	공정 설계·해석	□ 부품・	제품 해석
	형	상 모	델	□ 있음	□ 없음	재 료 물 성	□ 있음	□ 없음
	활용	희망	S/W	* 공고문 2쪽의 '시뮬레이션 S/W 구축 현황' 참고				
				* 기업에 당면한 기	기술 애로 현황 요약	<i>투, 가상공학(시뮬레이신</i>	년)을 활용한 해결 방	안 및 목표 등 기재
및								
내								
ф	요	청 사	항					
	사기이 가이 기사고된 됨요/기무게이션〉 가스 기사들은 기를린기로							
상기와 같이 가상공학 활용(시뮬레이션) 기술 컨설팅을 신청합니다. 2025 년 00 월 00 일								