Classical discrete laws

Name	Notation	Law	Expectation	Variance	Interpretation
Bernoulli parameter $p \in [0, 1]$	Ber(p)	$\mathbb{P}(X=1) = p$ $\mathbb{P}(X=0) = 1 - p$	p	p(1-p)	Experiment with a success probability p
Binomial parameters $n \ge 1, p \in [0, 1]$	B(n,p) or $Bin(n,p)$	$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$ $0 \le k \le n$	np	np(1-p)	Number of successes for n experiments as above
Geometric parameter $p \in (0, 1]$	$\mathcal{G}(p)$	$\mathbb{P}(X = k) = p(1 - p)^{k-1}$ $k \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	Number of trials when the first success happens
Poisson parameter $\lambda > 0$	$\mathcal{P}(\lambda)$	$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $k \ge 0$	λ	λ	Models the number of occurrences of a rare event

Classical continuous laws

 \star If X has density p on $\mathbb{R}_+,$ then

$$\mathbb{E}[X] = \int_0^\infty p(x) dx \in \mathbb{R}_+ \cup \{+\infty\}$$

is always well defined.

 \star If X has density p on \mathbb{R} , then $\mathbb{E}[X] \in \mathbb{R}$ is well defined when X is integrable, meaning that

$$\mathbb{E}\left[|X|\right] = \int_{\mathbb{R}} |x| p(x) \mathrm{d}x < \infty,$$

and then

$$\mathbb{E}\left[X\right] = \int_{\mathbb{R}} x p(x) \mathrm{d}x.$$

Name	Notation	Density	Expectation	Variance	Interpretation
Uniform on $[a, b]$	$\mathcal{U}[a,b]$	$\frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	Choosing a number uniformly at random
Exponential parameter $\lambda > 0$	$\mathcal{E}(\lambda)$	$\lambda e^{-\lambda x} \mathbb{1}_{[0,\infty)}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Memoryless property
$\begin{array}{c} \text{Gaussian} \\ \text{parameters } m \in \mathbb{R} \text{ and } \sigma^2 > 0 \end{array}$	$\mathcal{N}(m, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	Models fluctuations around a value

