Optimized Sampling for Monte Carlo simulations via Dimension Reduction

Presenter: Amrutha Varshini Ramesh

Department of Electrical & Computer Engineering University of Illinois at Chicago

CS531, Detection and Estimation Theory
Class presentation

Introduction

Preliminaries

Monte Carlo

Past Works

Main idea

Algorithm

Problem at hand - Optimize Monte Carlo Estimator

Problem at hand

Estimate E(f(U))

- *U* vector of 'd' independent Random Variables
- f does not depend equally on all its arguments
- Present an algorithm to obtain a lower-variance unbiased estimator than the standard Monte Carlo method.

Introduction

Preliminaries

Monte Carlo
Past Works

Main idea

Algorithm

Monte Carlo

ullet Consider a Random variable X with with pdf $\mathbb{f}_X(x)$. What is E(g(X)) ?

$$E(g(X)) = \int_{x} g(x) f_X(x)$$

- How to find E(g(X)) when the pdf of X, $f_X(x)$ is not known?
- There comes Monte Carlo!

Definition

Monte Carlo is the art of approximating an expectation by the sample mean of a function of simulated random variables.

• Take n samples of X's $(x_1, x_2, x_3, \ldots, x_n)$ and compute sample mean. That would be the MC estimate of E(g(X))

$$\widetilde{g_n}(x) = \frac{1}{n} \sum_{i=1}^n g(x_i)$$

Monte Carlo

Recall: Desirable properties in an estimator

- Unbiasedness
- Minimal Variance
- Monte carlo estimator is asymptotically unbiased.

$$E(\widetilde{g_n}(x)) = E\left(\frac{1}{n}\sum_{i=1}^n g(x_i)\right) = \frac{1}{n}\sum_{i=1}^n E(g(x_i)) = E(g(X))$$

 Now improving the efficiency of the estimator means reducing the variance

Note

Monte Carlo relies on repeated Sampling

 Any change in the variance of the estimator can be made only by change in Sampling.

Past Works

- Standard Monte-Carlo : Sampling is random.
 - \circ $\it Sample Complexity: O(d\epsilon^{-2})$ to achieve variance ϵ^2 for a $\it d$ -dimensional input vector.
- Quasi Monte Carlo method : Sampling is done at predetermined deterministic sequence of points
- ullet Quasi Monte Carlo method is effective for a class of functions where the importance of U_i decreases with i.

Recall

We are estimating E(f(U)), where U is a vector of d independent random variables $(U_i,...U_{i+d-1})$, where i = 1 to d.

• Multilevel Monte Carlo(MLMC) : Low dimensional approximation of $f(U) \Rightarrow$ reduction in computational cost.

Introduction

Preliminaries

Monte Carlo

Past Works

Main idea

Algorithm

Main Idea

Main Contribution

Presenting an unbiased algorithm to estimate E[f(U)] by optimizing tradeoff between the statistical error and the total running time. That is T* Variance(Estimator) is upper bounded by T* Variance(MC), but in its best case it can be much lesser than that.

- Recollect that we are trying to estimate E[f(U)], where $U \in \mathbb{R}^d$.
- ullet Paper notes that the importance of the component U_i decreases with increasing i.

Key Idea

- As f depends on it's first few components, only those set of arguments of f needs to be simulated at each iteration.
- The remaining arguments are carried over.

Introduction

Preliminaries Monte Carlo Past Works

Main idea

Algorithm

Algorithm

Algorithm

- 1. First iteration. Simulate a vector $V^{(1)}$ that has the same distribution as U and calculate f(V(1)).
- 2. Loop. In iteration k+1, where $1 \le k \le n-1$, let $V^{(k+1)}$ be the vector obtained from $V^{(k)}$ by redrawing the first N_k components of $V^{(k)}$, and keeping the remaining components unchanged. Calculate f(V(k+1)).
- 3. Output $f_n \triangleq \frac{f(V(1)),...,\overline{f(V(n))}}{n}$, where f_n is an unbiased estimator of E[f(U)]

Algorithm

Algorithm

- 1. First iteration. Simulate a vector $V^{(1)}$ that has the same distribution as U and calculate f(V(1)).
- 2. Loop. In iteration k+1, where $1 \le k \le n-1$, let $V^{(k+1)}$ be the vector obtained from $V^{(k)}$ by redrawing the first N_k components of $V^{(k)}$, and keeping the remaining components unchanged. Calculate f(V(k+1)).
- 3. Output $f_n \triangleq \frac{f(V(1)), \dots, f(V(n))}{n}$, where f_n is an unbiased estimator of E[f(U)]
 - In step 2, N_k is a random integer in [1,d], chosen according a prob. distribution $q_i, 0 \le i \le d-1$. A decreasing sequence with i with $q_1 = 0$.
 - q_i and N_k are related as $\Pr(N_k > i) = q_i$.

Introduction

Preliminaries

Monte Carlo

Past Works

Main idea

Algorithm

Analysis

Standard Monte Carlo algorithm:

$$T_{MC} Variance(f_n) = \tau Variance(f(U))$$

where τ be the expected time needed to simulate U $T_{MC} = n\tau$ is the expected total running time of the standard MC scheme in n iterations

Optimized Sampling via Reduced Dimension:

$$\mathsf{Variance}(f_n)T \leq 2 \bigg(\sum_{i=0}^{d-1} \frac{C(i) - C(i+1)}{q_i} \bigg) \bigg(\sum_{i=0}^{d-1} q_i (T_{i+1} - T_i) \bigg)$$

where $C(i) \triangleq \mathsf{Variance}(E(f(U)|(U_{i+1},...,U_d))$ $T = (n-1)\sum_{i=0}^{d-1}q_i(T_{i+1}-T_i)$

$$T = (n-1) \sum_{i=0}^{d-1} q_i (T_{i+1} - T_i)$$

and q_i decreases with increasing i

 In the special case of Linearly decreasing probabilities, the paper improves upon the standard Monte Carlo algorithm by a factor of $\Theta(d/\ln(d))$