In the Claims

- 1. (currently amended) A coating composition comprising
- a1) [[a]]physically drying film forming binder resin or resins;
- a2) [[a]]thermally cross linking film forming binder resin or binder resins;
- a3) [[a]]radiation curable film forming binder resin or binder resins;
- a4) [[an]]autoxidatively drying film forming binder resin or resins; or
- a5) a combination of binder resins with at least two different crosslinking mechanisms selected from a1), a2), a3) ander a4);
- b) a polymer or copolymer levelling agent of formula (I)

$$ln-[(M)_{x}-(E)_{y}]_{n}$$
 (I)

obtained by nitroxyl mediated controlled free radical polymerization wherein

In is the initiator fragment starting the <u>polymerization</u> reaction;

is at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid (C_1 - C_{22})alkyl esters, acrylic acid (C_1 - C_{22})hydroxyalkyl esters, methacrylic acid (C_1 - C_{22})alkyl esters or methacrylic acid (C_1 - C_{22})hydroxyalkyl esters, acrylic acid (C_1 - C_{22})alkyl esters or methacrylic acid (C_1 - C_{22})alkyl esters which are substituted by amino, (C_1 - C_{22})alkylamino, (C_1 - C_{22})dialkylamino, - C_1 - C_2 0, alkyl esters which are substituted by amino, (C_1 - C_2 0)alkylamino, (C_1 - C_2 0)alkyl esters, acrylamide and methacrylamide, N-mono(C_1 - C_2 0)alkyl acrylamide, N,N-di(C_1 - C_2 0)alkyl acrylamide, and a multifunctional monomer with two or more ethylenically unsaturated bonds; provided that the amount of unsubstituted acrylic acid (C_1 - C_2 0)alkyl esters or/and methacrylic acid (C_1 - C_2 0)alkyl esters is more than 30 % by weight based on the weight of the total monomer mixture;

is a group bearing at least one stable free nitroxyl radical, which is bound via the oxygen atom to the polymer or copolymer; or a group which results from a substitution or elimination reaction of the attached stable free nitroxyl radical;

- x is the total number of monomer units, which is a number between 5 and 5000;
- y is a number 1 or greater than 1 indicating the average number of end groups E attached to the monomer sequence (M)_x;

nais a number from 1 to 20; and

- c) optionally water or/and one or more organic solvents.
- 2. (currently amended) A coating composition according to claim 1, comprising a2) a thermally cross linking film forming binder resin or binder resins; or a3) a radiation curable film forming binder resin or binder resins.
- **3.** (currently amended) A coating composition according to claim 1, comprising a2) a thermally cross linking film forming binder resin or-binder resins.
- **4.** (currently amended) A coating composition according to claim 1, comprising a2) a thermally cross linking film forming binder resin or binder resins without water and organic solvent, which is in the form of a solid powder.
- **5.** (currently amended) A coating composition according to claim 1, wherein the polymer or copolymer levelling agent of formula (I)[[,]] is obtained by
- b1) polymerization in the presence of an alkoxyamine initiator/regulator having the structural element

$$N-O-X$$
; or by

b2) polymerization in the presence of a stable nitroxyl free radical having the structural element

6. (currently amended) A coating composition according to claim 5, wherein the structural element

$$N-O-X$$
 is a structural element of formula (II) and the structural element $N-O$ • is a

structural element of formula (II')

$$G_{6}$$

$$G_{5}$$

$$G_{1}$$

$$G_{2}$$

$$X$$

$$X$$

$$X$$

$$X$$

$$G_{5}$$

$$G_{1}$$

$$G_{2}$$

$$G_{4}$$

$$G_{2}$$

$$G_{4}$$

$$G_{2}$$

$$G_{4}$$

$$G_{5}$$

$$G_{1}$$

$$G_{2}$$

$$G_{4}$$

$$G_{4}$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

$$G_{4}$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

wherein

i.

 G_1 , G_2 , G_3 , G_4 are independently C_1 - C_6 alkyl or G_1 and G_2 or G_3 and G_4 , or G_1 and G_2 and G_3 and G_4 together form a C_5 - C_{12} cycloalkyl group;

G₅, G₆ independently are H, C₁-C₁₈alkyl, phenyl, naphthyl or a group COOC₁-C₁₈alkyl;

X is selected from the group consisting of

-CH₂-phenyl, CH₃CH-phenyl, (CH₃)₂C-phenyl, (C₅-C₆cycloalkyl)₂CCN, (CH₃)₂CCN,

 $C(O)-(C_1-C_4)alkoxy, (C_1-C_4)alkyl-CR_{20}-C(O)-(C_1-C_4)alkyl, (C_1-C_4)alkyl-CR_{20}-C(O)-N-di(C_1-C_4)alkyl, (C_1-C_4)alkyl-CR_{20}-C(O)-NH(C_1-C_4)alkyl[[,]] \\ \underline{and} (C_1-C_4)alkyl-CR_{20}-C(O)-NH_2, \text{ wherein } \\ R_{20} \text{ is hydrogen or } (C_1-C_4)alkyl \text{ and } \\ C_1-C_4)alkyl-CR_{20}-C(O)-NH_2, \\ \underline{and} (C_1-C_4)alkyl-CR_{20}-C(O)-NH_2, \\ \underline{and} (C_1-C_4)alkyl-CR_2, \\ \underline{a$

* denotes a valence.

7. (currently amended) A coating composition according to claim [[6]]5, wherein the <u>leveling agent</u> of formula (I) is obtained by

11

<u>b1) polymerization in the presence of an alkoxyamine initiator/regulator</u> <u>structural element of formula</u> (II) is a compound of formula (O1)

- **8.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), has a polydispersity of between 1.0 and 2.0.
- **9.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), has a glass transition temperature between 20° C and 200° C.
- **10.** (currently amended) A coating composition according to claim **1**, wherein the levelling agent, component b), is composed of at least 30 % by weight of tert-butylacrylate and/or tert-butylmethacrylate, based on the weight of total monomers.
- **11.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), is a linear polymer or copolymer, where in formula (I) n is 1.
- **12.** (currently amended) A coating composition according to claim **1**, wherein in formula (I), component b), y is 1.

Her

- **13.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), has a <u>number average</u> molecular weight of between 3000 to 50000 g/mol (Dalton).
- **14.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), is composed of at least 30 % by weight of tert-butylacrylate and/or tert-butylmethacrylate, and 0.5 to 50 % of a functional monomer which is selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid (C_1 - C_6)hydroxyalkyl esters, methacrylic acid (C_1 - C_6)hydroxyalkyl esters, acrylic acid (C_1 - C_6)alkyl esters and methacrylic acid (C_1 - C_6)alkyl esters which are substituted by amino, (C_1 - C_6)alkylamino, (C_1 - C_6)dialkylamino, epoxy, fluoro, perfluoro or siloxane groups.
- **15.** (currently amended) A coating composition according to claim 1, wherein the levelling agent, component b), is composed of at least 50 % by weight of tert-butylacrylate and/or tert-butylmethacrylate and is a solid at room temperature.
- **16.** (currently amended) A coating composition according to claim **1**, wherein the levelling agent, component b), is present in an amount of 0.1 to 15% by weight, based on the weight of the film forming binder resin or resins, component a).
- 17. (currently amended) A process for improving the levelling of a coating composition according to claim 1, which process comprises the steps of applying the coating composition to a substrate and exposing it to thermal energy or electromagnetic radiation in order to obtain a homogenous solid coating.

18-20. (canceled)