Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №3 Дисциплина: Телекоммуникационные технологии Тема: Апериодические сигналы

Выполнил студент гр. 3530901/80201

В.А. Пучкина

Преподаватель:

Н.В. Богач

Содержание

1	Упражнение 3.1	5
2	Упражнение 3.2	10
3	Упражнение 3.3	12
4	Упражнение 3.4	14
5	Упражнение 3.5	16
6	Упражнение 3.6	18
7	Выводы	22

Список иллюстраций

1	Изучение и проверка примеров (Chirp)
2	Изучение и проверка примеров (Влияние использования окон на утечку)
3	Изучение и проверка примеров (Спектрограмма)
4	Спектр, полученный с помощью окна bartlett
5	Спектр, полученный с помощью окна blackman
6	Спектрограмма полученного сигнала
7	Спектр полученного сигнала
8	Спектрограмма звука глиссандо
9	Спектрограмма итогового сигнала
10	Спектрограмма серии гласных звуков
11	Спектр звука «А»
12	Спектр звука «Э»
13	Спектр звука «И»
14	Спектр звука «О»
15	Спектр звука «V»

Листинги

1	Создание сигнала и получение спектра с использованием bartlett.	1
2	Получение спектра с использованием blackman	7
3	Создание класса SawtoothChirp.	10
4	Создание и работа с сигналом	10
5	Создание и вывод спектрограммы	10
6	Создание сигнала, получение wave и аудио	12
7	Создание и вывод спектра	12
8	Считывание и воспроизведение файла	14
9	Работа с сегментом	14
10	Получение спекограммы.	14
11	Kласс TromboneGliss	16
12	Создание сигнала глиссандо от C3 до F3	16
13	Создание сигнала глиссандо от F3 до C3	16
14	Создание итогового сигнала и получение его спектрограммы	16
15	Формирование нужного сгемента и вывод спектрограммы	18
16	Вывод спектра звука «А»	18
17	Вывод спектра звука «Э»	19
18	Вывод спектра звука «И»	20
19	Вывод спектра звука «О»	20
20	Вывод спектра звука «У»	20

В этому упражнении необходимо загрузить файл chap03. ipynb, изучить его, просмотреть пояснения и запустить примеры. Кроме того, в примере с утечкой предлагается заменить окно Хэмминга на любое другое, предоставляемое NumPy.

Итак, изучим примеры.

Here's what the waveform looks like near the beginning.

And near the end.

Рис. 1: Изучение и проверка примеров (Chirp).

```
spectrum = wave.make_spectrum()
spectrum.plot(high=880)
decorate(xlabel='Frequency (Hz)')
 350
 300
 250
 200
 150
 100
  50
   0
                  200
                              400
                                          600
                                                      800
                            Frequency (Hz)
```

Windowing helps (but notice that it reduces the total energy).

Рис. 2: Изучение и проверка примеров (Влияние использования окон на утечку).

A spectrogram is a visualization of a short-time DFT that lets you see how the spectrum varies over time.

```
def plot_spectrogram(wave, seg_length):
    """
    spectrogram = wave.make_spectrogram(seg_length)
    print('Time resolution (s)', spectrogram.time_res)
    print('Frequency resolution (Hz)', spectrogram.freq_res)
    spectrogram.plot(high=700)
    decorate(xlabel='Time(s)', ylabel='Frequency (Hz)')
```

```
signal = Chirp(start=220, end=440)
wave = signal.make_wave(duration=1, framerate=11025)
plot_spectrogram(wave, 512)
```

Time resolution (s) 0.046439909297052155 Frequency resolution (Hz) 21.533203125

Рис. 3: Изучение и проверка примеров (Спектрограмма).

Все примеры были изучены и запущены. Теперь попробуем использовать другие окна в примере с Хэммингом. Для этого сначала создадим аналогичный сигнал, получим его wave и вычислим спектр с использованием окна Бартлетта.

```
signal = SinSignal(freq=440)
wave = signal.make_wave(signal.period * 30.25)
wave.window(numpy.bartlett(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880)
decorate(xlabel='Frequency (Hz)')
```

Листинг 1: Создание сигнала и получение спектра с использованием bartlett.

Теперь получим спектр, используя окно Блэкмана.

```
wave.window(numpy.blackman(len(wave)))
spectrum = wave.make_spectrum()
spectrum.plot(high=880)
decorate(xlabel='Frequency (Hz)')
```

Листинг 2: Получение спектра с использованием blackman.

Рис. 4: Спектр, полученный с помощью окна bartlett.

Рис. 5: Спектр, полученный с помощью окна blackman.

Если сравнить полученные спектры со спектром, полученным без использования оконных функций (Рис.2, верхний график), можно заметить, что утечки действительно уменьшились. Однако, при сравнении этих результатов с результатом после использования окна Хэмминга (Рис.2, нижний график) видно, что общая энергия становится ещё ниже. Это связано с тем, что окно Хэмминга - это

окно-«вездеход», а вот окна Бартлетта и Блэкмана являются оптимальными для некоторых случаев.

В ходе выполнения данного упражнения были получены знания работе с Chirp, утечками и оконными функциями. Также были рассмотрены спектрограммы и их возможности. Кроме того, были сравнены результаты применения различных оконных функций для получения спектра. Был сделан вывод, что окна Бартлетта и Блэкмана оптимальны в некоторых случаях, а окно Хэмминга является универсальным.

Bo втором упражнении необходимо написать класс SawtoothChirp, расширяющий Chirp и переопределяющий evaluate для генерации пилообразного сигнала с линейно увеличивающейся (или уменьшающейся) частотой.

Итак, начнём с написания класса SawtoothChirp.

Листинг 3: Создание класса SawtoothChirp.

Данный класс расширяет класс Chirp и переопределяет его метод evaluate.

Теперь проверим работу нашего класса, создав пилообразный chirp. Затем преобразуем его к wave и получим аудио.

```
sawtooth_signal = SawtoothChirp(start=900, end=350)
sawtooth_wave = sawtooth_signal.make_wave(duration=1, framerate=4000)
sawtooth_wave.apodize()
sawtooth_wave.make_audio()
```

Листинг 4: Создание и работа с сигналом.

Звук очень необычный и похож на включенный задом наперёд звук сирены. Теперь построим спектрограмму нашего сигнала.

```
spectrogram = sawtooth_wave.make_spectrogram(200)
spectrogram.plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 5: Создание и вывод спектрограммы.

На полученной спектрограмме хорошо видно, как гармоники с наложенными частотами отражаются от частоты заворота. Именно так на спектрограмме можно увидеть эффект биений. Кроме того, если вслушаться в полученный звук, то биения можно услышать как фоновое шипение.

Рис. 6: Спектрограмма полученного сигнала.

В ходе выполнения данного задания был описан класс SawtoothChirp, генерирующий пилообразный сигнал с линейно увеличивающейся (или уменьшающейся) частотой. С помощью этого класса был создан сигнал, после чего была получена его спектрограмма. На спектрограмме хорошо виден эффект биений.

В третьем упражнении необходимо создать пилообразный chirp с частотой, меняющейся от 2500 до 3000 Гц. Затем на основе этого сигнала сгенерировать сигнал длительностью 1 с и частотой кадров 20 кГц. После этого необходимо предположить, каким будет его спектр, и сравнить предположения с самим спектром.

Итак, создадим пилообразный chirp с требуемой частотой и сгенерируем сигнал длительностью 1 с и частотой кадров 20 кГц. Тут же прослушаем его.

```
sawtooth_signal = SawtoothChirp(start=2500, end=3000)
sawtooth_wave = sawtooth_signal.make_wave(duration=1, framerate=20000)
sawtooth_wave.make_audio()
```

Листинг 6: Создание сигнала, получение wave и аудио.

Звук этого сигнала сильно режет слух и кажется слишком резким и пищащим.

Предположим, какой спектр будет иметь этот сигнал. Так как частота изменяется от 2500 до 3000 Гц, то в этом диапазоне ожидается увидеть всплеск. Кроме того, мы помним, что пилообразный сигнал имеет и чётные, и нечётные гармоники. Первая гармоника ожидается в диапазоне от 5000 до 6000 Гц, однако она должна быть поменьше предыдущего всплеска. Вторая гармоника тогда должна быть ещё меньше находиться в диапазоне от 7500 до 9000 Гц. Следующие гармоники накладываются друг на друга, а потому на всех остальных частотах должны быть небольшие колебания.

Теперь, наконец, получим спектр нашего сигнала и сравним его с ожидаемым спектром.

```
sawtooth_wave.make_spectrum().plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 7: Создание и вывод спектра.

Как видно из Рис. 7 наши ожидания совпали с реальным спектром.

Рис. 7: Спектр полученного сигнала.

В ходе выполнения данного упражнения был создан пилообразный chirp с частотой, меняющейся от 2500 до 3000 Гц. После этого был сгенерированы его аудио и wave. Полученный сигнал режет слух и кажется очень неприятным и пищащим. Далее было сделано предположение о том, как будет выглядеть его спектр. После чего был получен спектр и сравнён с ожиданиями. Наше ожидания совпали с самим спектром.

В этом упражнении происходит работа с глиссандо. Глиссандо - это нота, меняющаяся от одной высоты до другой, т.е. своеобразный chirp. Необходимо найти звук глиссандо и изучить спектрограмму его нескольких секунд.

Итак, была выбрана эта запись глиссандо скрипки. Теперь считаем файл и выведем аудио.

```
wave = read_wave('resources/Sounds/task4_violin_glissando.wav')
wave.make_audio()
```

Листинг 8: Считывание и воспроизведение файла.

Теперь выделим небольшой сегмент и получим его аудио.

```
segment = wave.segment(start=0.17, duration=1)
segment.make_audio()
```

Листинг 9: Работа с сегментом.

И наконец, получим спектрограмму этого сегмента.

```
segment.make_spectrogram().plot()
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 10: Получение спекограммы.

Рис. 8: Спектрограмма звука глиссандо.

Полученная спектрограмма выглядит очень интересно, на ней хорошо заметно глиссандо.

В ходе выполнения данного упражнения была получена спектрограмма глиссандо скрипки.

В этом упражнении необходимо написать класс TromboneGliss, расширяющий Chirp и переопределяющий evaluate. Затем необходимо создать сигнал, имитирующий глиссандо на тромбоне от C3 (262 Гц) до F3 (349 Гц) и обратно до C3. После этого нужно изучить спектрограмму полученного сигнала.

Итак, сначала напишем класс TromboneGliss.

Листинг 11: Класс TromboneGliss.

Этот класс расширяет Chirp и переопределяет evaluate. Теперь создадим первую половину сигнала: глиссандо от С3 (262 Гц) до F3 (349 Гц). Тут же прослушаем его.

```
signal_up = TromboneGliss(262, 349)
wave_up = signal_up.make_wave(duration=1)
wave_up.make_audio()
```

Листинг 12: Создание сигнала глиссандо от C3 до F3.

Полученный звук действительно напоминает глиссандо. Теперь создадим сигнал глиссандо от F3 до C3 и прослушаем его.

```
signal_down = TromboneGliss(349, 262)
wave_down = signal_down.make_wave(duration=1)
wave_down.make_audio()
```

Листинг 13: Создание сигнала глиссандо от F3 до C3.

Осталось только склеить оба этих сигнала, вывести спектрограмму и прослушать результат.

```
wave_up_down = wave_up | wave_down
spectrogram = wave_up_down.make_spectrogram(1024)
spectrogram.plot(high=1000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
wave_up_down.make_audio()
```

Листинг 14: Создание итогового сигнала и получение его спектрограммы.

Рис. 9: Спектрограмма итогового сигнала.

Как видно из спектрограммы (Рис.9), полученный сигнал больше похож на линейный chirp. Его же звук действительно напоминает глиссандо от С3 до F3 и обратно в С3.

В ходе выполнения данного упражнения был написан класс TromboneGliss, генерирующий сигнал глиссандо на тромбоне. С помощью этого класса был создан сигнал, имитирующий глиссандо на тромбоне от C3 до F3 и обратно до C3. У этого сигнала была получена спектрограмма, изучив которую, был сделан вывод, что этот сигнал больше похож на линейный chirp.

В этом упражнении необходимо найти запись серии гласных звуков и посмотреть на их спектрограмму. Эксперимент заключается в попытке определения различных гласных звуков на спектрограмме.

Был выбран первый отрывок гласных из этой записи. На этом отрывке ребёнок произносит звуки «А», «Э», «И», «О» и «У». Теперь считаем файл, получим необходимый сегмент, прослушаем его и вывеем спектрограмму.

```
w = read_wave('resources/Sounds/task6_vowels.wav')
wave = w.segment(start=0, duration=4.4)
wave.make_spectrogram(1024).plot(high=1000)
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
wave.make_audio()
```

Листинг 15: Формирование нужного сгемента и вывод спектрограммы.

Рис. 10: Спектрограмма серии гласных звуков.

Итак, мы получили спектрограмму гласных звуков. Догадаться, какой именно звук представлен на спектрограмме, я могу только по порядку. Также из спектрограммы видно, что звук «И» имеет самую малую частоту, остальные же звуки на спектрограмме очень похожи.

Теперь получим сегмент со звуком «А» и изучим его спектр.

```
segment_a = wave.segment(start=0.25, duration=0.7)
segment_a.make_spectrum().plot(high=1000)
segment_a.make_audio()
```

Листинг 16: Вывод спектра звука «А».

Рис. 11: Спектр звука «А».

Из спектра видно, что самая высокоамплитудная частота находится примерно на 300 Гц. Теперь получим сегмент со звуком «Э» и изучим его спектр.

```
segment_e = wave.segment(start=0.85, duration=0.7)
segment_e.make_spectrum().plot(high=1000)
segment_e.make_audio()
```

Листинг 17: Вывод спектра звука «Э».

Рис. 12: Спектр звука «Э».

Сегмент «Э» имеет самые высокие пики примерно на 700 и 350 Гц. Теперь

получим сегмент со звуком «И» и изучим его спектр.

```
segment_i = wave.segment(start=1.8, duration=0.7)
segment_i.make_spectrum().plot(high=1000)
segment_i.make_audio()
```

Листинг 18: Вывод спектра звука «И».

Рис. 13: Спектр звука «И».

Сегмент «И» имеет высокие пики примерно на 300 и 600 Гц. Теперь получим сегмент со звуком «О» и изучим его спектр.

```
segment_o = wave.segment(start=2.6, duration=0.7)
segment_o.make_spectrum().plot(high=1000)
segment_o.make_audio()
```

Листинг 19: Вывод спектра звука «О».

Сегмент «О» имеет высокий пик примерно на 750 Гц. Теперь получим сегмент со звуком «У» и изучим его спектр.

```
segment_u = wave.segment(start=3.7, duration=0.5)
segment_u.make_spectrum().plot(high=1000)
segment_u.make_audio()
```

Листинг 20: Вывод спектра звука «У».

Рис. 14: Спектр звука «О».

Рис. 15: Спектр звука «У».

Сегмент «У» имеет самые высокие пики на 400 и 800 Гц.

В ходе этого упражнения была найдена и проанализирована запись серии гласных звуков, а также изучена её спектрограмма. Кроме того, были изучены спектры отдельных гласных звуков.

7 Выводы

В ходе выполнения данной лабораторной работы были изучены спектры, спектрограммы, сhirp и глиссандо. Был создан класс SawtoothChrip, генерирующий пилообразный сигнал с линейно увеличивающейся (или уменьшающейся) частотой, после чего этот класс был протестирован. Также был создан и протестирован класс TromboneGliss, генерирующий сигнал глиссандо на тромбоне. Кроме того, были изучены эффект утечек и оконные функции, сформирована и изучена спектрограмма гласных звуков и спектры отдельных звуков.