The Effect of the Amount of Corn Used for Ethanol Production on Value Added to the United States Economy by Farmers

Zach Becker

I did not give, receive, or us any unauthorized assistance on this project -Zach Becker

Research Question

What is the effect of the percent of corn use for ethanol production on the total value added to the US economy by farmers?

Introduction

In the recent centuries, ethanol use has skyrocketed in popularity and corn is essential to producing this commodity. Concluding results on if the amount of corn used matters to GDP of farmers opens up insights into future decisions on renewable energy and ethanol use. Ethanol is a renewable energy used for manufacturing and biological purposes. If an increase in ethanol use is bolstering profits for farmers, an increase in ethanol production may have many benefits to all constituents involved. My question attempts to answer if the mechanism behind an increase in overall GDP produced by farmers can be attributed to ethanol production.

Linear Model

 $ValueAddedToTheEconomy = \beta_1 PercentCornUsedToProduceEthanol + \beta_2 AverageClosingPriceofCorn + \beta_3 AverageTemperatureUnitedStates + u_i$

ValueAddedtoTheEconomy

This variable captures the total amount of money contributed annually to gross domestic product in the United States by grain crops. This is the category that corn is produced under

PercentCornUsedToProduceEthanol

This variable is simply the annual percent of corn produced used for ethanol production, converted to a number. I expect this to be positive because if more value is being added by corn, increased ethanol production may be a clear indicator as to why it is going up

AverageClosingPriceofCorn

This variable represents the average closing price of a bushel of corn of a year's time span. I expected this variable to be positive because if corn is being used for ethanol, a higher premium may be given to the crop in the market.

<u>AverageTemperatureUnitedStates</u>

This variable represents the average temperature throughout the whole United States annually. I expect this variable to be positive because higher temperatures make for better growing seasons.

Data Description

The two data sets used were both downloaded from the United States Department of Agriculture website. I then merged them both into my own excel sheet to create my data set for Gretl. The first variable, percent of corn used for ethanol production annually, is measured by percent. The other variable, value added to the economy by farmers annually, is measured in dollars. To input the data into gretl I made the percent values into numbers and kept the other variable the same.

% of corn used to make ethanol:	Value added to the economy:	Average Closing Price of a Bushel of	Average Temperature in the
ethanor.	economy.	Corn	United States
Mean 0.15710	Mean 10492000	Mean 3.2145	Mean 53.019
Minimum 0.0050000	Minimum 9721800	Minimum 1.73	Minimum 51.26
Maximum 0.41900	Maximum 19292000	Maximum 6.91	Maximum 55.32
Standard Deviation 0.14796	Standard Deviation 3464400	Standard Deviation 1.2114	Standard Deviation .96888

Estimation of Linear Model

Model	β	SE(β)	P-value
1.(constant)	7772790	450637	1.45e-019
PercentCornUsedToProduceEthanol	16718400	1891880	1.14e-06
2.(constant)	1844710	797364	0.0264
PercentCornUsedToProduceEthanol	2559490	2293010	0.2715
AverageClosingPriceofCorn	2586760	319350	1.02e-09
3.(constant)	37464700	9384190	0.0003
PercentCornUsedToProduceEthanol	4927400	1660490	0.0053
AverageClosingPriceofCorn	2418010	223510	7.29e-013
AverageTemperatureUnitedStates	-668239	174766	0.0005

Interpretation of Linear Models

First, when examining the first model where the only regressor was PercentCornUsedToProduceEthanol the coefficient on the beta value is 7,772,790. This means that for every 1% increase in the use of corn to produce ethanol there is \$7,772,790 of additional money added to the total gross domestic product for grain farmers. The P-value for this model is under .05 which means this is statically significant in a 95% confidence interval. When the regressor AverageClosingPriceofCorn is added the GDP added per 1% increase in the use of corn for ethanol decreases to \$2,559,490. This model also displays that for every 1% increase in AverageClosingPriceofCorn there is a \$2,586,760 increase in money added to the total gross domestic product for grain farmers. The P-value for PercentCornUsedToProduceEthanol is above .05 which means this is not statically significant in this model, while AverageClosingPriceofCorn has a Pvalue below .05 which shows this regressor is statically significant. Lastly, the AverageTemperatureUnitedStates regressor is added and its coefficient shows that for every 1% increase in the United States Temperature there is a 668,239 decrease in ValueAddedToTheEconomy. The P-value for this regressor is under .05 which means this regressor is statically significant. When this regressor is added PercentCornUsedToProduceEthanol increases from model 2 to \$4,927,400 in model 3. AverageClosingPriceofCorn decreases from model 2 to 2,418,010 in model 3. These 3 models represent that the average closing price of corn is positively associated with ValueAddedToTheEconomy and the average temperature is negatively associated with ValueAddedToTheEconomy.

Nonlinear Model Estimation

Model	β	SE(β)	P-value	SER
(constant)	25547100	27420900	0.3579	1.613360
PercentCornUsedToProduceEthanol	4974100	1729910	0.0068	
AverageClosingPriceofCorn	6150656	7300110	0.4052	
AverageTemperatureUnitedStates	-447346	505209	0.3819	
Interaction between	-68851.8	133010	0.6080	
AverageTemperatureUnitedStates				
and AverageClosingPriceofCorn				

R²: 0.930326

Interpretation of Nonlinear Model

For this model, the regressor the interaction term between AverageClosingPriceofCorn and AverageTemperatureUnitedStates was added to test if these two regressors have a more powerful combined effect. The resulting coefficients shows that a 1% increase in the interaction term causes a decrease of \$68,851.8 in ValueAddedToTheEconomy. This means that the two regressors have a weaker combined effect than if they were separate.

Summary

Model 1 shows that the percent corn used to produce ethanol does have a large effect on grain farmers contributed gross domestic product. This is also shown through model 2,3 and the nonlinear model where the coefficient on PercentCornUsedToProduceEthanol continues to stay positive. There were many limitations to my models and studies that could be improved upon in further studies. First, I only used forty years' worth of data because ethanol production did not pick up speed until the 2000's. Adding more years would make the exponential leap in ethanol production seem like a larger effect. Second, the regressor AverageTemperatureUnitedStates was taken across the entirety of the United States. More specific temperature data for states that are the main producers of corn would be a better variable because

a lot of states do not grow corn and therefore, their average temperatures would be irrelevant to the model. Next, ValueAddedToTheEconomy is based on gross domestic product created by grain farmers. This is a problem because grain farmers produce many more crops besides corn. To make this data better I would focus on the states that grow the most amount of corn.

Bibliography

https://data.ers.usda.gov/reports.aspx?ID=17830

https://www.ers.usda.gov/data-products/us-bioenergy-statistics/ - TABLE 5

https://www.ncdc.noaa.gov/cag/national/time-series/110/tavg/12/9/1980-2020?base_prd=true&begbaseyear=1901&endbaseyear=2000

https://www.macrotrends.net/2532/corn-prices-historical-chart-data

Appendix

All regressions were run through Gretl using heteroskedastic errors.

Summary statistics, using the observations 1980 - 2019

for the variable 'ofCornusedtomakeehtanol' (40 valid observations)

Mean 0.15710

Median 0.062500

Minimum 0.0050000

Maximum 0.41900

Standard deviation 0.14796

C.V. 0.94183

Skewness 0.70264

Ex. kurtosis -1.2618

5% percentile 0.012350

95% percentile 0.40020

Interquartile range 0.29825

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'AverageTemparatureinUnitedS' (40 valid observations)

Mean 53.019

Median 52.905

Minimum 51.260

Maximum 55.320

Standard deviation 0.96888

C.V. 0.018274

Skewness 0.49971

Ex. kurtosis -0.070027

5% percentile 51.394

95% percentile 55.059

Interquartile range 1.2950

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'AverageClosingPriceofCorn' (40 valid observations)

Mean 3.2145

Median 2.7800

Minimum 1.7300

Maximum 6.9100

Standard deviation 1.2114

C.V. 0.37686

Skewness 1.5799

Ex. kurtosis 2.2273

5% percentile 2.0150

95% percentile 6.7445

Interquartile range 1.3300

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'Valueaddedtotheeconomybyf' (40 valid observations)

Mean 1.0492e+007

Median 9.7218e+006

Minimum 5.7234e+006

Maximum 1.9292e+007

Standard deviation 3.4644e+006

C.V. 0.33021

Skewness 0.85684

Ex. kurtosis -0.028539

5% percentile 5.8199e+006

95% percentile 1.7724e+007

Interquartile range 3.9979e+006

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'ofCornusedtomakeehtanol' (40 valid observations)

Mean 0.15710

Median 0.062500

Minimum 0.0050000

Maximum 0.41900

Standard deviation 0.14796

C.V. 0.94183

Skewness 0.70264

Ex. kurtosis -1.2618

5% percentile 0.012350

95% percentile 0.40020

Interquartile range 0.29825

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'AverageTemparatureinUnitedS' (40 valid observations)

Mean 53.019

Median 52.905

Minimum 51.260

Maximum 55.320

Standard deviation 0.96888

C.V. 0.018274

Skewness 0.49971

Ex. kurtosis -0.070027

5% percentile 51.394

95% percentile 55.059

Interquartile range 1.2950

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'AverageClosingPriceofCorn' (40 valid observations)

Mean 3.2145

Median 2.7800

Minimum 1.7300

Maximum 6.9100

Standard deviation 1.2114

C.V. 0.37686

Skewness 1.5799

Ex. kurtosis 2.2273

5% percentile 2.0150

95% percentile 6.7445

Interquartile range 1.3300

Missing obs. 0

Summary statistics, using the observations 1980 - 2019

for the variable 'Valueaddedtotheeconomybyf' (40 valid observations)

Mean 1.0492e+007

Median 9.7218e+006

Minimum 5.7234e+006

Maximum 1.9292e+007

Standard deviation 3.4644e+006

Skewness 0.85684

Ex. kurtosis -0.028539

5% percentile 5.8199e+006

95% percentile 1.7724e+007

Interquartile range 3.9979e+006

F(2, 37)

rho

Log-likelihood

Schwarz criterion

Missing obs. 0

Model 2: Heteroskedasticity-corrected, using observations 1980-2019 (T = 40) Dependent variable: Valueaddedtotheeconomybyf

	Coefficient	Std. Err	or t-re	atio	p-value	
const	7.77279e+06	45063	7 17	.25	< 0.0001	***
ofCornusedtomakee	1.67184e+07	2.89188e	+06 5.7	781	< 0.0001	***
htanol						
	Ctatiatica la		مل المعملة أميين	.4		
			weighted da			
Sum squared resid	89.7	72621	S.E. of regres	ssion	1.5	536625
R-squared	0.46	57949	Adjusted R-s	quared	0.4	153948
F(1, 38)	33.4	12174	P-value(F)		1.	14e-06
Log-likelihood	-72.9	91521	Akaike criter	rion	14	9.8304
Schwarz criterion	153	.2082	Hannan-Quir	nn	15	1.0517
rho	0.72	27499	Durbin-Wats	on	0.5	515425
	Statistics 1	basad on th	e original dat	to:		
M 1 1 .			_		2	164420
Mean dependent var	10491558		S.D. dependent var			164439
Sum squared resid	1.90e+14		S.E. of regression		22	233376

Model 3: Heteroskedasticity-corrected, using observations 1980-2019 (T = 40)

Dependent variable: Valueaddedtotheeconomybyf

	Coefficient	Std. Error	t-ratio	p-value	
const	1.84471e+06	797364	2.314	0.0264	**
ofCornusedtomakee	2.55949e+06	2.29301e+0	6 1.116	0.2715	
htanol					
AverageClosingPric	2.58676e+06	319350	8.100	< 0.0001	***
eofCorn					
	Statistics b	ased on the w	eighted data:		
Sum squared resid	133.	.2086 S.I	E. of regression	1.8	397428
R-squared	0.81	.6327 Ad	justed R-squared	0.0	306398

P-value(F)

Akaike criterion

Hannan-Quinn

Durbin-Watson

2.43e-14

167.6365

169.4685

1.345442

82.22234

172.7032

0.321457

-80.81827

Statistics based on the original data:

Mean dependent var	10491558	S.D. dependent var	3464439
Sum squared resid	7.22e + 13	S.E. of regression	1396767

Model 4: Heteroskedasticity-corrected, using observations 1980-2019 (T=40) Dependent variable: Valueaddedtotheeconomybyf

	Coefficient	Std. E	Error	t-ratio	p-value	
const	3.74647e+07	9.3841	9e+06	3.992	0.0003	***
ofCornusedtomakee	4.92741e+06	1.6604	9e+06	2.967	0.0053	***
htanol						
AverageClosingPric	2.41801e+06	2235	510	10.82	< 0.0001	***
eofCorn						
AverageTemparature	-668239	1747	766	-3.824	0.0005	***
inUnitedS						
	Statistics b	ased on	the weig	hted data:		
Sum squared resid	99.62024			f regression	1.6	563499
R-squared	0.91	2157	Adjus	ted R-squared	0.9	904837
F(3, 36)	124	.6079	P-valu	ıe(F)	4.	54e-19
Log-likelihood	-75.00726		Akaike criterion		15	8.0145
Schwarz criterion	164	.7700	Hanna	ın-Quinn	16	0.4571
rho	0.26	58966	Durbi	n-Watson	1.4	433504
	Statistics l	pased on	the orig	inal data:		
Mean dependent var	1049	91558	S.D. d	lependent var	34	464439
Sum squared resid	6.02	2e+13	S.E. o	f regression	12	292944

Model 5: Heteroskedasticity-corrected, using observations 1980-2019 (T=40) Dependent variable: Valueaddedtotheeconomybyf

const	Coefficient 2.55471e+07	Std. Erro 2.74209e-		<i>p-value</i> 0.3579	
ofCornusedtomakee	4.97410e+06	1.72991e-	+06 2.875	0.0068	***
htanol					
AverageClosingPric	6.15065e+06	7.30011e-	+06 0.8425	0.4052	
eofCorn AverageTemparature	-447346	505209	0.8855	0.3819	
inUnitedS	447340	303203	0.8833	0.3619	
Interaction	-68851.8	133010	-0.5176	0.6080	
	Statistics b	ased on the	weighted data:		
Sum squared resid	91.1	10257	S.E. of regression	1.6	13360
R-squared	0.93	30326	Adjusted R-squared	0.9	22364
F(4, 35)	116	.8357	P-value(F)	9.8	30e-20
Log-likelihood	-73.2	21967	Akaike criterion	150	5.4393
Schwarz criterion	164	.8837	Hannan-Quinn	159	9.4926
rho	0.21	14453	Durbin-Watson	1.5	33140

Statistics based on the original data:

Mean dependent var10491558S.D. dependent var3464439Sum squared resid6.24e+13S.E. of regression1334786