PRÁCTICA 9 - APROXIMACIONES LOCALES A FUNCIONES MEDIANTE POLINOMIOS-

- 1. Hallar el polinomio de Maclaurin de orden 4 de f y estimar f(0.23) para las siguientes functiones:
 - (a) $f(x) = e^x$
- (b) $f(x) = e^{-3x}$
- (c) $f(x) = \sqrt{1+x}$
- (d) $f(x) = \operatorname{sen}(ax), a \in \mathbb{R}$
- 2. Considerar, en cada caso, la función f, el valor n y el punto x_0 :
 - (a) $f(x) = x^3 + 2x^2 + 5x 2$, n = 3, $x_0 = 1$ (b) $f(x) = \frac{1}{x}$, n = 3, $x_0 = 1$
 - (c) f(x) = sen(x), n = 4, $x_0 = \frac{\pi}{2}$
- (d) $f(x) = e^x$, n = 3, $x_0 = 0$
- (e) $f(x) = \ln(x), \quad n = 4, \quad x_0 = 1$

- (f) $f(x) = \sqrt{x}$, n = 3, $x_0 = 1$
- (I) Hallar el polinomio de Taylor de orden $n \in de f$ alrededor del punto x_0 .
- (II) Utilizar los polinomios adecuados para estimar sen $(\frac{7\pi}{10})$, e, ln(1.1) y \sqrt{e} .
- 3. Dada $f(x) = \frac{1}{1 x}$
 - (a) Hallar una expresión general para el polinomio de Maclaurin de orden $n \in \mathbb{N}$ para f.
 - (b) Usar el polinomio de orden n = 4 para aproximar f(0.1), f(0.5), f(0.9) y f(2).
 - (c) Comparar los resultados obtenidos con el valor verdadero. Qué observa en este ejemplo?
- 4. Calcular el polinomio de Taylor de orden 3 alrededor de $x_0 = -1$ de h(x) = f(x)g(x)sabiendo que $P(x) = -2x^3 - 4x^2 - x + 4$ y $Q(x) = x^3 + 4x^2 + 5x + 4$ son los polinomios de Taylor de orden 3 de f y g, respectivamente, alrededor de $x_0 = -1$.
- 5. Calcular el polinomio de Taylor de orden 2 alrededor de $x_0 = 2$ de $h(x) = \ln(f^2(x))$ sabiendo que $P(x) = 3x^2 - 9x + 7$ es el polinomio de Taylor de orden 2 de f alrededor de $x_0 = 2$.
- 6. Hallar los valores de k y b de modo que $p(x) = 1 + bx 6x^2$ sea el polinomio de orden 2 de Maclaurin de la función $f(x) = \sqrt[4]{kx+1}$.
- 7. Sea $P(x) = -x^3 + 3x + 4$ el polinomio de Taylor de orden 4 de f alrededor de $x_0 = -1$. Probar que f tiene un mínimo local en x = -1 y calcular f(-1) y $f^{(4)}(-1)$. Sugerencia: usar el criterio de la derivada segunda.
- 8. Calcular los siguientes límites usando la fórmula de Maclaurin de orden apropiado para las funciones sen (x) y $\cos(x)$, según corresponda.
 - (a) $\lim_{x\to 0} \frac{6 \operatorname{sen}(x) 6x + x^3}{6x^5}$,
- (b) $\lim_{x\to 0} \frac{24\cos(x) 24 + 12x^2 x^4}{24x^6}$
- 9. Hallar los polinomios de Maclaurin de orden 2 de las siguientes funciones:
 - (a) $f(x) = \int_0^{2x} \sqrt{1 + u^4} du$
- (b) $g(x) = \int_0^{\sin^2(x)} e^u (1-u)^{-1} du$

Acotación del error

10. Para cada caso,

(a) a partir delgráfico dar valores estimados de los errores que se cometen al aproximar f(x) para $x \in [a,b]$ por los polinomios de Taylor de grado 1,2 y 3 $(T_1(x),T_2(x))$ y $T_3(x)$, respectivamente) alrededor del punto x_0 .

(b) para cada polinomio $T_i(x)$, i = 1, 2, 3, indicar en el gráfico un intervalo $[c_i, d_i]$ alrededor de x_0 de modo de cometer un error menor a 0.5 al aproximar f(x) con $T_i(x)$: $|f(x) - T_i(x)| < 0.5 \ \forall x \in [c_i, d_i] \ \text{con } i = 1, 2, 3.$

 $f_1(x) = \frac{x^3}{4} - 4x$

 $f_2(x) = e^x$

 $x_0 = 3, [a, b] = [2, 4]$

$$x_0 = 1, [a, b] = [0, 2]$$

11. En cada caso hallar una fórmula para el resto del polinomio de Taylor de orden 6, $R_6(x)$, alrededor de x_0 y obtener una cota para $R_6(0.5)$.

2

- (a) $\ln(1+x)$, $x_0 = 0$ (b) $\sin x$, $x_0 = 1$ (c) e^{-x} , $x_0 = 0$ (c) $\frac{1}{x-2}$, $x_0 = 1$

12. Hallar el polinomio de Maclaurin de orden 3 y una cota del error en los siguientes casos

(a)
$$(1+x)^{3/2}$$
, $x \in \left[-\frac{1}{10}, 0\right]$

(b)
$$(1+x)^{-1/2}$$
, $x \in \left[-\frac{5}{100}, \frac{5}{100} \right]$

13. Hallar el polinomio de Maclaurin de orden 4 de $\ln\left(\frac{1+x}{1-x}\right)$ y una cota para el error en $\left[-\frac{5}{10}, \frac{5}{10}\right]$.

Ejercicios adicionales

14. Hallar el polinomio de Maclaurin de orden 4 de f y estimar f(0.23) para

(a)
$$f(x) = e^{2x}$$

(b)
$$f(x) = x^3 + 2x^2 + 5x - 2$$

- 15. Calcular el polinomio de Taylor de orden 2 alrededor de $x_0 = 1$ de la función h(x) definida como h(x) = f(2x - 5) sabiendo que $P(x) = 2x^2 - 5x + 5$ es el polinomio de Taylor de orden 3 de f alrededor de $x_0 = -3$.
- 16. Hallar el polinomio de Taylor de orden 2 alrededor de $x_0 = -2$ de $f(x) = x \cdot g(3x + 7)$ sabiendo que el polinomio de Taylor de orden 2 de g alrededor de $x_0 = 1$ es $p(x) = 1 - x + x^2$.
- 17. Justificar las siguientes aproximaciones y acotar el error cometido:

(a)
$$\sqrt{1+x} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2$$
, $|x| < 0,5$ (b) $e \approx 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$

(b)
$$e \approx 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$$

(c)
$$\sqrt[3]{1+x} \approx 1 + \frac{1}{3}x - \frac{1}{9}x^2$$
, $|x| < 0, 5$

(c)
$$\sqrt[3]{1+x} \approx 1 + \frac{1}{3}x - \frac{1}{9}x^2$$
, $|x| < 0, 5$ (d) $(a-x)e^{\frac{2x}{a}} \approx a+x$, $a > 0$, $|x| < a$

- 18. Un hilo pesado, bajo la acción de la gravedad, se comba formando la curva $y = a \cosh(\frac{x}{a})$ (catenaria). Mostrar que si |x| es chico, la forma del hilo puede representarse aproximadamente por la parábola $y = a + \frac{x^2}{2a}$.
- 19. Utilizar el desarrollo de Taylor de la función sen (x) para probar que

$$|\text{sen}(a+h) - \text{sen}(a) - h\text{cos}(a)| \le \frac{1}{2}h^2.$$

20. Sea

$$f(x) = 3x + \int_{4}^{\sqrt{4x+12}} t\sqrt{25 - t^2} dt.$$

Encontrar P el polinomio de Taylor de orden 2 de f centrado $x_0 = 1$. Usar P para estimar el valor de f(1,2) y acotar el error de estimación.

21. Sea $p(x) = 1 + x - 3x^2$ es el polinomio de Taylor de segundo orden de una función infinitamente derivable $f: \mathbb{R} \to \mathbb{R}$ alrededor de $x_0 = 1$. Construir el polinomio de Maclaurin de primer orden de la función

$$g(x) = f(x^2 - x + 1) + \int_{1}^{x^3 + 2x + 1} f(t)dt$$

22. Sea P_n el polinomio de Maclaurin de e^x . Determinar el orden n que debe tener el polinomio para estimar el número e alrededor de $x_0 = 1$ con un error menor que $5 \cdot 10^{-6}$.