

Q: Why is the Turing Test significant in Al?

- A. It measures the speed of algorithms.
- B. It assesses whether machines can behave intelligently like humans.
- C. It evaluates the hardware capacity of AI systems.
- D. It rates the efficiency of chatbots.
- E. It assesses whether machines are smarter than humans.

CPSC 100

Computational Thinking

Artificial Intelligence

Instructor: Parsa Rajabi

Department of Computer Science

University of British Columbia

Agenda

- Course Admin
- Ethics
 - Impact of AI on Society
- Class Activity:
 - NLP

Learning Goals

Learning Goals

After this lecture, you should be able to:

- Explain the dilemma of the Trolly Problem
 - Describe the relevance of the problem to Al Ethics
- Identify and explain the traditional steps of Natural Language Processing
- Apply a traditional NLP algorithm to a given input

Course Admin

Post-Class Quiz

- First post-class quiz to be released next week (Monday)
 - To be completed individually via Canvas, 60 mins, 1 attempt
 - Due on Sunday, Jan 26
- Based on concepts discussed thus far
 - Algorithms
 - Artificial Intelligence

133

NLP Recap

How does NLP work?

Traditional NLP Steps

- 1. **Recognize speech** (typically chatbots receive ASCII versions of the questions)
- 2. **Syntax analysis, or parsing**: inferring parts of speech and sentence structure, using a lexicon and grammar
- 3. **Semantic analysis**: inferring meaning using syntax and semantic rules
- 4. Pragmatics: inferring meaning from contextual information

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

A

(3) Grammar:

Sentence → NounPhrase, VerbPhrase

VerbPhrase → Verb, NounPhrase

NounPhrase → Article, Noun

NounPhrase → Noun

Sentence

(4) Output: A parse tree:

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	,
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	(START OF TEXT)	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	i e
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	T.
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

ASCII TABLE

Decimal	Нех	Char	Decimal	Нех	Char	Decimal	Hex	Char	Decimal	Hex	Char
						64	40	@	96	60	,
1	1					65	41	Α	97	61	a
2			34	22		66	42	В	98	62	b
3					#	67	43	С	99	63	c
4						68	44	D	100	64	d
			37			69	45	E	101	65	e
6					&	70	46	F	102	66	f
7			39			71	47	G	103	67	g
			40			72	48	H	104	68	h
			41			73	49	1	105	69	1
			42		*	74	4A	J	106	6A	j
11			43		+	75	4B	K	107	6B	k
12			44			76	4C	L	108	6C	1
13			45			77	4D	M	109	6D	m
14						78	4E	N	110	6E	n
15			47			79	4F	0	111	6F	0
16			48			80	50	P	112	70	р
17			49		1	81	51	Q	113	71	q
					2	82	52	R	114	72	r
			51			83	53	S	115	73	S
	14				4	84	54	T	116	74	t
					5	85	55	U	117	75	u
22			54		6	86	56	V	118	76	v
					7	87	57	w	119	77	w
24						88	58	X	120	78	x
			57		9	89	59	Υ	121	79	v
						90	5A	Z	122	7A	ž
27			59			91	5B	[123	7B	{
					<	92	5C	N.	124	7C	Ĭ
						93	5D	1	125	7D	}
					>	94	5E	^	126	7E	~
					?	95	5F		127	7F	[DEL]
						,	٥.	-			[022]

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:
Sentence → NounPhrase, VerbPhrase

"The dog barked."

- Noun Phrase (NP): "The dog"
- Verb Phrase (VP): "barked"

"A cat is sleeping."

- Noun Phrase (NP): "A cat"
- Verb Phrase (VP): "is sleeping"

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar: Sentence → NounPhrase, VerbPhrase

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:

Sentence → NounPhrase, VerbPhrase

VerbPhrase → Verb, NounPhrase

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:

Sentence → NounPhrase, VerbPhrase

VerbPhrase → Verb, NounPhrase

NounPhrase → Article, Noun

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:

Sentence → NounPhrase, VerbPhrase

VerbPhrase → Verb, NounPhrase

NounPhrase → Article, Noun

NounPhrase → Noun

(2) Lexicon:

rat	Noun
cheese	Noun
ate	Verb
The	Article

(3) Grammar:

Sentence → NounPhrase, VerbPhrase

VerbPhrase → Verb, NounPhrase

NounPhrase → Article, Noun

NounPhrase → Noun

Sentence

(4) Output: A parse tree:

Class Activity

Class Activity: Parsing!

Parse "time flies like an arrow". Make a tree structure

and write down your algorithm in steps.

http://tiny.cc/100-W2C

Grammar

Sentence → NounPhrase, VerbPhrase	
NounPhrase -> Article, Adjective, Noun	
NounPhrase → Article, Noun	
NounPhrase -> Noun, Noun	
NounPhrase -> Noun	
VerbPhrase → Verb, Article, NounPhrase	
VerbPhrase → Verb, NounPhrase	
VerbPhrase → Verb, PrepPhrase	
PrepPhrase → Preposition, NounPhrase	

Word	Category
a / an	article
arrow	noun
banana	noun
flies	noun
flies	verb
fruit	noun
fruit	adjective
like	preposition
like	verb
time	noun
time	verb

Lexicon

Q: What parts of speech did you come up with?

- A. Noun Noun Verb Article Noun
- B. Verb Noun Verb Article Noun
- C. Noun Verb Preposition Article Noun
- D. Noun Verb Verb Article Noun
- E. None of the above

Wrap up

Wrap Up

- Complete group contract by Jan 24
 - Find group members in your lab

Take Home Slides

NLP: Semantic Analysis Processes

- Word Sense Disambiguation: Identifying the correct meaning of words with multiple interpretations in a given context.
- **Semantic Role Labeling**: Assigning roles (e.g., agent, patient) to elements in a sentence to understand their relationships.
- Named Entity Recognition: Identifying and categorizing named entities like names, locations, and organizations in text.
- Semantic Parsing: Converting natural language into a formal representation of meaning, aiding in understanding user queries or commands.
- Sentiment Analysis: Determining the sentiment expressed in text (positive, negative, or neutral).
- Semantic Similarity: Measuring the likeness or relatedness of text based on its meaning.

Limitations of traditional NLP

- Natural language is structurally **ambiguous**, so parsing alone cannot lead to understanding.
- Synonyms for words can't be used interchangeably in every context, e.g., "minister of agriculture" isn't "priest of farming."
- Natural languages have many exceptions to grammatical rules; there's no agreed-upon grammar for all uses of a language.

Tradition vs. Modern

- **Parsing**: While traditional parsing involves breaking down and analyzing the structure of language (like sentence structure and grammar), ChatGPT's transformer architecture processes text through a series of layers that capture different aspects of language, including some structural elements.
- Semantic Analysis: ChatGPT performs semantic analysis through its deep learning model, which understands the meanings and relationships of words and phrases in context. This is essential for generating coherent and contextually relevant responses.