Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-530 (Canceled).

531. (Currently amended) A method of treating an angiogenic disease or condition in an animal comprising administering to the animal an effective amount of a metal-binding peptide which does not have a metal ion bound to it the sequence of the peptide being:

$$P_1 - P_2$$

wherein:

P₁ is:

Xaa₁ Xaa₂ His or

Xaa₁ Xaa₂ His Xaa₃,

the P₁ portion of the peptide being linear;

 P_2 is $(Xaa_4)_n$;

Xaa₁ is the N-terminal amino acid of the peptide, the only substituents on the α -amino group of Xaa₁ are hydrogen has an unsubstituted α -amino group, and Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₂ is glycine, alanine, β -alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and

n is 0-100;

or a physiologically-acceptable salt thereof.

532. (Previously presented) The method of Claim 531 wherein:

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine, and

Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, glutamine, cysteine, methionine, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine.

- 533. (Previously presented) The method of Claim 531 wherein Xaa_1 is aspartic acid, glutamic acid, arginine, threonine or α -hydroxymethylserine.
- 534. (Previously presented) The method of Claim 531 wherein Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine.
 - 535. (Previously presented) The method of Claim 531 wherein Xaa, is lysine.
 - 536. (Previously presented) The method of Claim 531 wherein:

Xaa₁ is aspartic acid, glutamic acid, arginine, lysine, threonine, serine or α -hydroxymethylserine,

 Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and

Xaa₃, when present, is lysine.

- 537. (Previously presented) The method of Claim 536 wherein Xaa_1 is aspartic acid or glutamic acid and Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine or α -hydroxymethylserine.
- 538. (Previously presented) The method of Claim 537 wherein Xaa₂ is glycine, alanine, valine, leucine or isoleucine.
- 539. (Previously presented) The method of Claim 538 wherein P₁ is Asp Ala His or Asp Ala His Lys.
 - 540. (Previously presented) The method of Claim 539 wherein P_1 is Asp Ala His Lys.

- 541. (Previously presented) The method of Claim 536 wherein Xaa_1 is arginine, lysine, threonine, serine or α -hydroxymethylserine, and Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine or α -hydroxymethylserine.
- 542. (Previously presented) The method of Claim 541 wherein P₁ is Thr Leu His, HMS HMS His or Arg Thr His.
 - 543. (Previously presented) The method of Claim 531 wherein n is 0-10.
 - 544. (Previously presented) The method of Claim 543 wherein n is 0-5.
 - 545. (Previously presented) The method of Claim 544 wherein n is 0.
- 546. (Previously presented) The method of Claim 531 wherein P₂ comprises a metal-binding sequence.
- 547. (Previously presented) The method of Claim 546 wherein P₂ comprises one of the following sequences:

 $(Xaa_4)_m$ Xaa_3 His Xaa_2 Xaa_5 , $(Xaa_4)_m$ His Xaa_2 Xaa_5 , $(Xaa_4)_m$ Xaa_5 Xaa_2 His Xaa_3 , or $(Xaa_4)_m$ Xaa_5 Xaa_2 His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

- 548. (Previously presented) The method of Claim 547 wherein Xaa₅ is Orn or Lys.
- 549. (Previously presented) The method of Claim 546 wherein P₂ comprises one of the following sequences:

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

[(Xaa₄)_mXaa₅Xaa₂His]_r,

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃(Xaa₄)_mXaa₅Xaa₂His]_r, or

[(Xaa₄)_mXaa₅Xaa₂His(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂, m is 0-5 and r is 2-100.

550. (Previously presented) The method of Claim 546 wherein P₂ comprises a sequence which binds Cu(I).

551. (Previously presented) The method of Claim 550 wherein P₂ comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys,

Cys Xaa₄ Cys,

Cys Xaa4 Xaa4 Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly.

- 552. (Previously presented) The method of Claim 551 wherein P₂ is Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9].
- 553. (Previously presented) The method of Claim 531 wherein P₂ comprises a sequence which enhances the ability of the peptide to penetrate cell membranes, reach target tissues, or both.
- 554. (Previously presented) The method of Claim 553 wherein P₂ is hydrophobic or an arginine oligomer.
- 555. (Previously presented) The method of Claim 531 wherein at least one of the amino acids of P_1 other than β -alanine, when present, is a D-amino acid.
- 556. (Previously presented) The method of Claim 555 wherein Xaa₁ is a D-amino acid or His is a D-amino acid, or both Xaa₁ and His are D-amino acids.
- 557. (Previously presented) The method of Claim 555 wherein all of the amino acids of P_1 other than β -alanine, when present, are D-amino acids.
- 558. (Previously presented) The method of Claim 555 wherein at least 50% of the amino acids of P_2 are D-amino acids.

559. (Previously presented) The method of Claim 531 wherein at least one amino acid of P_1 or at least one amino acid of P_2 , or at least one amino acid of P_1 and at least one amino acid of P_2 is substituted with (a) a substituent that increases the lipophilicity of the peptide without altering the ability of P_1 to bind metal ions, (b) a substituent that protects the peptide from proteolytic enzymes without altering the ability of P_1 to bind metal ions, or (c) a substituent which is a non-peptide, metal-binding functional group that improves the ability of the peptide to bind metal ions.

560. (Previously presented) The method of Claim 559 wherein the terminal -COOH of P_1 - P_2 is substituted to produce -COR₂, wherein R_2 is -NH₂, -NHR₁, -N(R_1)₂, -OR₁, or -R₁, wherein R_1 is an alkyl, aryl or heteroaryl.

561. (Currently amended) The method of Claim 559 wherein n is 0 and P_1 has one of the following formulas:

wherein:

R₁ is an alkyl, aryl, or heteroaryl;

 R_2 is -NH₂, -NHR₁, -N(R_1)₂, -OR₁, or -R₁; and

R₃ is H, a non-peptide, metal-binding functional group or the two R₃ groups together

form a non-peptide, metal-binding functional group.

- 562. (Previously presented) The method of Claim 561 wherein R₂ is -NH₂.
- 563. (Previously presented) The method of Claim 531 wherein the method further comprises administering an effective amount of another metal-binding compound in combination with the peptide.
- 564. (Previously presented) The method of Claim 563 wherein the metal-binding compound binds iron.
- 565. (Previously presented) The method of Claim 564 wherein the iron-binding compound is deferoxamine mesylate.
- 566. (Previously presented) The method of Claim 563 wherein the metal-binding compound binds Cu(I).
- 567. (Previously presented) The method of Claim 566 wherein the Cu(I)-binding compound is a peptide.
- 568. (Previously presented) The method of Claim 567 wherein the Cu(I)-binding peptide comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa4 Xaa4 Met,

Cys Cys

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly,

wherein Xaa4 is any amino acid.

569. (Previously presented) The method of any one of Claims 531-568 wherein the

angiogenic disease or condition is a neoplastic disease, a connective tissue disorder, psoriasis, an ocular angiogenic disease, a cardiovascular disease, a cerebral vascular disease, hemophiliac joints, an immune disorder, a benign tumor, hypertrophy, endometriosis, polyposis, or obesity.

- 570. (Previously presented) The method of Claim 569 wherein the angiogenic disease or condition is a neoplastic disease.
- 571. (Previously presented) The method of Claim 570 wherein the neoplastic disease is a tumor.
- 572. (Previously presented) The method of Claim 571 wherein the tumor is located in the bladder, brain, breast, kidney, liver, pancreas, lung, cervix, ovary, prostate, stomach, intestines, colon, rectum, or uterus.
- 573. (Previously presented) The method of Claim 570 wherein the neoplastic disease is tumor metastasis.
- 574. (Previously presented) The method of Claim 569 wherein the angiogenic disease or condition is psoriasis.
- 575. (Previously presented) The method of Claim 569 wherein the angiogenic disease or condition is an ocular angiogenic disease.
- 576. (Previously presented) The method of Claim 575 wherein the ocular angiogenic disease is macular degeneration.