1 Introduction

The algebraic descriptions of vector addition and scalar multiplication for vectors in a plane yield the following properties:

- 1. For all vectors x and y, x + y = y + x.
- 2. For all vectors x, y, and z, (x + y) + z = x + (y + z).
- 3. There exists a vector denoted θ such that $x + \theta = x$ for each vector x.
- 4. For each vector x there is a vector y such that x + y = 0.
- 5. For each vector x, 1x = x.
- 6. For each pair of real numbers a and b and each vector x, (ab)x = a(bx).
- 7. For each real number a and each pair of vectors x and y, a(x+y) = ax + ay.
- 8. For each pair of real numbers a and b and each vector x, (a + b)x = ax + bx.

Any mathematical structure possessing these eight properties is called a vector space.

2 Vector Spaces

Definition. A vector space (or linear space) \mathbf{V} over a field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in \mathbf{V} there is a unique element x + y in \mathbf{V} , and for each element a in \mathbf{F} and each element a in \mathbf{V} there is a unique element a in \mathbf{V} , such that the following conditions hold:

- (VS 1) For all x, y in \mathbf{V} , x + y = y + x (commutativity of addition).
- (VS 2) For all x, y, z in \mathbf{V} , (x+y)+z=x+(y+z) (associativity of addition).
- (VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x in V.
- (VS 4) For each element x in V there exists and element y in V such that x + y = 0.
- (VS 5) For each element x in \mathbf{V} , 1x = x.
- (VS 6) For each pair of elements a, b in F and each element x in \mathbf{V} , (ab)x = a(bx).
- (VS 7) For each element a in F and each pair of elements x, y in \mathbf{V} , a(x+y)=ax+ay.
- (VS 8) For each pair of elements a, b in F and each element x in \mathbf{V} , (a+b)x = ax + bx.

The elements x + y and ax are called the **sum** of x and y and the **product** of a and x, respectively.

The elements of the field F are called **scalars** and the elements of the vector space \mathbf{V} are called **vectors**.

An object of the form $(a_1, a_2, ..., a_n)$ where the entries $a_1, a_2, ..., a_n$ are elements of a field F, is called an n-tuple with entries from F. The elements $a_1, a_2, ..., a_n$ are called the **entries** or **components** of the n-tuple. Two n-tuples $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ are called **equal** if $a_i = b_i$ for i = 1, 2, ..., n.

An $m \times n$ matrix with entries from a field F is a rectangular array of the form

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

where each entry a_{ij} is an element of F. We call the entries a_{ij} with i = j the **diagonal entries** of the matrix.

The $m \times n$ matrix in which each entry equals zero is called the **zero matrix** and is denoted by O.

If the number of rows and columns of a matrix are equal, the matrix is called square.

A **polynomial** with coefficients from a field F is an expression of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where n is a nonnegative integer and each a_k , called the **coefficient** of x^k , is in F. If f(x) = 0, then f(x) is called the **zero polynomial** and, for convenience, its degree is defined to be -1; otherwise, the **degree** of a polynomial is defined to be the largest exponent of x that appears in the representation with a nonzero coefficient.

Theorem 1 (Cancellation Law for Vector Addition). If x, y, and z are vectors in a vector space \mathbf{V} such that x + z = y + z then x = y.

The vector θ in (VS 3) is called the **zero vector** of **V**, and the vector y in (VS 4) is called the **additive inverse** of x and is denoted by -x.

Theorem 2. In any vector space **V**, the following statements are true:

- (a) 0x = 0 for each $x \in \mathbf{V}$.
- (b) (-a)x = -(ax) = a(-x) for each $a \in F$ and each $x \in V$.
- (c) a0 = 0 for each $a \in F$.

Exercises

- 1. Label the following statements as true or false.
- (a) Every vector space contains a zero vector **True**. It is included in the definition of a vector space (VS 3).
- (b) A vector space may have more than one zero vector **False**. Suppose there were two such vectors, x and y, and one nonzero vector z. Then x+z=z=y+z, and x+(z+(-z))=x=y+(z+(-z))=y.
- (c) In any vector space, ax = bx implies that a = b False. Consider x = 0 but $a \neq b$.
- (d) In any vector space, ax=ay implies that x=y False. Consider a=0 but $x\neq y$.
- (e) A vector in F^n may be regarded as a matrix in $M_{n\times 1}(F)$ **True**.
- (f) An $m \times n$ matrix has m columns and n rows False. An $m \times n$ matrix has m rows and n columns.
- (g) In P(F), only polynomials of the same degree may be added **False**. Not true based on the definition of addition in P(F).
- (h) If f and g are polynomials of degree n, then f+g is a polynomial of degree n False. Consider x and -x.
- (i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n True.
 Follows from definition of scalar multiplication in P(F).
- (j) A nonzero scalar of F may be considered to be a polynomial in P(F) having degree zero **True**.

If a is a nonzero scalar, it can be expressed as ax^0 .

(k) Two functions in $\mathcal{F}(S,F)$ are equal if and only if the have the same value at each element of S - **True**.

By definition, two functions f, g in $\mathcal{F}(S, F)$ are equal when f(x) = g(x) for each x in F.

2. Write the zero vector of $M_{3\times 4}(F)$.

8. In any vector space V, show that (a+b)(x+y)=ax+ay+bx+by for any $x,y\in \mathbf{V}$ and any $a,b\in F$.

$$(a+b)(x+y) = (a+b)x + (a+b)y = ax + bx + ay + by.$$

9. Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2(c).

Corollary. The vector 0 described in (VS 3) is unique.

Proof. Suppose that there are vectors
$$x, y, z \in \mathbf{V}$$
 such that $x + z = y + z = z$. Then $x = x + 0 = x + (z + (-z)) = (x + z) + (-z) = (y + z) + (-z) = y + (z + (-z)) = y + 0 = y$. □

Corollary. The vector y described in (VS 4) is unique.

Proof. Suppose that there are vectors
$$x, y, z \in \mathbf{V}$$
 such that $x + y = x + z = 0$. Then $y = 0 + y = x + (-x) + y = (x + y) + (-x) = (x + z) + (-x) = x + (-x) + z = 0 + z = z$.

11. Let $V = \{0\}$ consist of a single vector θ and define $\theta + \theta = \theta$ nad $c\theta = \theta$ for each scalar c in F. Prove that V is a vector space over F. (V is called the zero vector space.)

Proof. For any $x, y, z \in \mathbf{V}$ and $a, b \in F$:

1.
$$x + y = 0 + 0 = y + x$$
 (VS 1)

2.
$$(x+y) + z = (0+0) + 0 = 0 + (0+0) = x + (y+z)$$
 (VS 2)

3.
$$x + 0 = 0 + 0 = 0 = x$$
 (VS 3)

4.
$$x + y = 0 + 0 = 0$$
 (VS 4)

5.
$$1x = 1 \times 0 = 0 = x$$
 (VS 5)

6.
$$(ab)x = (ab) \times 0 = 0 = a(b \times 0) = a(bx)$$
 (VS 6)

7.
$$a(x+y) = a(0+0) = 0 + 0 = a \times 0 + a \times 0 = ax + ay$$
 (VS 7)

8.
$$(a+b)x = (a+b) \times 0 = 0 = 0 + 0 = a \times 0 + b \times 0 = ax + bx$$
 (VS 8)

Therefore V satisfies all conditions necessary for it to be a vector space.

13. Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in R$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$$

and

$$c(a_1, a_2) = (ca_1, a_2).$$

Is V a a vector space over R with these operations?

Proof. Let $(x_1, x_2) \in \mathbf{V}$ and $a, b \in R$. Then

$$(a+b)(x_1,x_2) = ((a+b)x_1,x_2) = (ax_1+bx_1,x_2)$$

and

$$a(x_1, x_2) + b(x_1, x_2) = (ax_1, x_2) + (bx_1, x_2) = (ax_1 + bx_1, x_2)$$

so

$$(a+b)(x_1,x_2) \neq a(x_1,x_2) + b(x_1,x_2)$$

so V is not a vector space over R.

14. Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in C \text{ for } i = 1, 2, \dots, n\}$; so V is a vector space over C by Example 1. Is V a vector space over the field of real numbers with the operations of coordinatewise addition and multiplication?

Proof. Notice that any number $x \in R$ can be expressed as x + 0i in C, so if **V** is a vector space over C, it is also a vector space over R.

15. Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in R \text{ for } i = 1, 2, \dots, n\}$; so V is a vector space over R by Example 1. Is V a vector space over the field of complex numbers with the operations of coordinatewise addition and scalar multiplication?

Proof. Consider c = x + yi and $a = (a_1)$ with $y, a_1 \neq 0$. Then $ca = (x + yi)(a_1) = (xa_1 + ya_1i)$, so the entries of ca aren't in R, so V is not a vector space over C.

17. Let $V = \{(a_1, a_2) : a_1, a_2 \in F\}$, where F is a field. Define the addition of elements of V coordinatewise, and for $c \in F$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (a_1, 0).$$

Is V a vector space over F with these operations?

Proof. Consider $(a_1, a_2) \in \mathbf{V}$ with $a_2 \neq 0$. Then $1(a_1, a_2) = (a_1, 0)$, so $1(a_1, a_2) \neq (a_1, a_2)$, therefore \mathbf{V} is not a vector space over F.

18. Let $V = \{(a_1, a_2) : a_1, a_2 \in R\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in R$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$$
 and $c(a_1, a_2) = (ca_1, ca_2)$.

Is V a vector space over R with these operations?

Proof. Consider $(a_1, a_2) = (1, 1)$ and $(b_1, b_2) = (2, 2)$. Then $(a_1, a_2) + (b_1, b_2) = (5, 7)$ and $(b_1, b_2) + (a_1, a_2) = (4, 5)$, so $(a_1, a_2) + (b_1, b_2) \neq (b_1, b_2) + (a_1, a_2)$, therefore **V** is not a vector space over R.

21. Let V and W be vector spaces over a field F. Let

$$\mathbf{Z} = \{(v, w) : v \in \mathbf{V} \text{ and } w \in \mathbf{W}\}.$$

Prove that Z is a vector space over F with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

Proof. For $(v_1, w_1), (v_2, w_2), (v_3, w_3) \in \mathbf{Z}$ and $a, b \in F$

1.
$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2 + w_1) = (v_2, w_2) + (v_1, w_1)$$
 (VS 1)

2.
$$((v_1, w_1) + (v_2, w_2)) + (v_3, w_3) = (v_1 + v_2, w_1 + w_2) + (v_3, w_3) = (v_1 + v_2 + v_3, w_1 + w_2 + w_3) = (v_1, w_1) + (v_2 + v_3, w_2 + w_3) = (v_1, w_1) + ((v_2, w_2) + (v_3, w_3))$$
 (VS 2)

3.
$$(v_1, w_1) + 0 = (v_1, w_1) + (0, 0) = (v_1 + 0, w_1 + 0) = (v_1, w_1)$$
 (VS 3)

4.
$$(v_1, w_1) + (-v_1, -w_1) = (v_1 - v_1, w_1 - w_1) = (0, 0)$$
 (VS 4)

5.
$$1(v_1, w_1) = (1v_1, 1w_1) = (v_1, w_1)$$
 (VS 5)

6.
$$(ab)(v_1, w_1) = (abv_1, abw_1) = a(bv_1, bw_1) = a(b(v_1, w_1))$$
 (VS 6)

7.
$$a((v_1, w_1) + (v_2, w_2)) = a(v_1 + v_2, w_1 + w_2) = (av_1 + av_2, aw_1 + aw_2) = (av_1, aw_1) + (av_2, aw_2) = a(v_1, w_1) + a(v_2, w_2)$$
 (VS 7)

8.
$$(a+b)(v_1, w_1) = ((a+b)v_1, (a+b)w_1) = (av_1 + bv_1, aw_1 + bw_1) = (av_1, aw_1) + (bv_1, bw_1) = a(v_1, w_1) + b(v_1, w_1)$$
 (VS 8)

3 Subspaces

Definition. A subset W of a vector space V over a field F is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem 3. Let **V** be a vector space and **W** a subset of **V**. Then **W** is a subspace of **V** if and only if the following three conditions hold for the operations defined in **V**.

- 1. $0 \in \mathbf{W}$.
- 2. $x + y \in \mathbf{W}$ whenever $x \in \mathbf{W}$ and $y \in \mathbf{W}$.
- 3. $cx \in \mathbf{W}$ whenever $c \in F$ and $x \in \mathbf{W}$.

The **transpose** A^t of an $m \times n$ matrix A is the $n \times m$ matrix obtained from A by interchanging the rows with the columns; that is $(A^t)_{ij} = A_{ii}$.

A symmetric matrix is a matrix A such that $A^t = A$.

An $m \times n$ matrix A is called **upper triangular** if all its entries lying below the diagonal entries are zero, that is, $A_{ij} = 0$ whenever i > j. An $n \times n$ matrix M is called a **diagonal matrix** if $M_{ij} = 0$ whenever $i \neq j$, that is, if all its nondiagonal entries are zero.

The trace of an $n \times n$ matrix M, denoted tr(M), is the sum of diagonal entries of M; that is

$$tr(M) = M_{11} + M_{22} + \dots + M_{nn}$$

Theorem 4. Any intersection of subspaces of a vector space **V** is a subspace of **V**.

Definition. If S_1 and S_2 are nonempty subsets of a vector space V, then the **sum** of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Definition. A vector space V is called the **direct sum** of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = 0$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \bigoplus W_2$.

Exercises

- 1. Label the following statements as true or false.
 - (a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V True

This is the definition of a subspace.

- (b) The empty set is a subspace of every vector space **False**.

 The empty set does not contain 0, which is necessary for it to be a subspace.
- (c) If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$ True.

The zero subspace fulfills this condition.

- (d) The intersection of any two subsets of **V** is a subspace of **V False**. If neither subset contains 0, then their intersection can not be a subspace.
- (e) An $n \times n$ diagonal matrix can never have more than n nonzero entries **True**. All non-diagonal entries of a diagonal matrix are always 0, and an $n \times n$ matrix has n diagonal entries.
- (f) The trace of a square matrix is the product of its diagonal entries **False**. The trace of a square matrix is the sum of its diagonal entries.
- (g) Let **W** be the xy-plane in R^3 ; that is, **W** = $\{(a_1, a_2, 0) : a_1, a_2 \in R\}$. Then **W** = R^2 **False**. $R^2 = \{(a_1, a_2) : a_1, a_2 \in R\}$, so **W** $\neq R^2$.
- 3. Prove that $(aA + bB)^t = aA^t + bB^t$ for any $A, B \in \mathbf{M}_{n \times n}(F)$ and any $a, b \in F$.

 Proof.

$$(aA^{t} + bB^{t})_{ij} = aA^{t}_{ij} + bB^{t}_{ij} = aA_{ji} + bB_{ji} = (aA + bB)_{ji} = (aA + bB)^{t}_{ij},$$

so $(aA^{t} + bB^{t}) = (aA + bB)^{t}.$

4. Prove that $(A^t)^t = A$ for each $A \in \mathbf{M}_{m \times n}(F)$.

Proof.

$$(A^t)_{ij}^t = A_{ji}^t = A_{ij} \text{ so } (A^t)^t = A.$$

5. Prove that $A + A^t$ is symmetric for any square matrix	κ A.
--	------

Proof. Let A be an $n \times n$ square matrix. Then

$$A_{ij} + A^{t}_{ij} = A_{ij} + A_{ji} = A_{ji} + A_{ij} = A_{ji} + A^{t}_{ji},$$

so
$$(A + A^t)_{ij} = (A + A^t)_{ji} = (A + A^t)_{ij}^t$$
, therefore $A + A^t$ is symmetric.

6. Prove that tr(aA + bB) = atr(A) + btr(B) for any $A, B \in \mathbf{M}_{n \times n}(F)$.

Proof. For any
$$i \le n$$
, $(aA + bB)_{ii} = (aA)_{ii} + (bB)_{ii} = a(A_{ii}) + b(B_{ii})$, so $tr(aA + bB) = atr(A) + btr(B)$.

7. Prove that diagonal matrices are symmetric matrices.

Proof. Let A be an
$$n \times n$$
 diagonal matrix. Then for any $i, j \leq n$ such that $i \neq j$, $A_{ij} = 0 = A_{ji} = A^t_{ij}$. If $i = j$, then $A_{ij} = A_{ji} = A^t_{ij}$, so the matrix is symmetric.

- 8. Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers
 - (a) $W_1 = \{(a_1, a_2, a_3) \in R^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}.$ 0 is in W_1 . Let $x = (3x_2, x_2, -x_2)$ and $y = (3y_2, y_2, -y_2)$. Then $x + y = (3x_2 + 3y_2, x_2 + y_2, -x_2 - y_2) = (3(x_2 + y_2), x_2 + y_2, -(x_2 + y_2))$, so $x + y \in W_1$. Finally let $c \in R$. Then $cx = (3cx_2, cx_2, -cx_2)$, so $cx \in W_1$, therefore W_1 is a subspace of R^3 .
 - (b) $W_2 = \{(a_1, a_2, a_3) \in R^3 : a_1 = a_3 + 2\}.$ $0 \notin W_2$, so W_2 is not a subspace of R^3 .
 - (c) $W_3 = \{(a_1, a_2, a_3) \in R^3 : 2a_1 7a_2 + a_3 = 0\}$ $0 \in W_3$. Let $x = (x_1, x_2, 7x_2 - 2x_1)$ and $y = (y_1, y_2, 7y_2 - 2y_1)$. Then $x + y = (x_1 + y_1, x_2 + y_2, 7x_2 - 2x_1 + 7y_2 - 2y_1) = (x_1 + y_1, x_2 + y_2, 7(x_2 + y_2) - 2(x_1 + y_1))$, so $x + y \in W_3$. Finally, let $c \in R$. Then $cx = (cx_1, cx_2, c(7x_2 - 2x_1)) = (cx_1, cx_2, 7cx_2 - 2cx_1) \in W_3$, so W_3 is a subspace of R^3 .
 - (d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 4a_2 a_3 = 0\}$ $0 \in W_4$. Let $x = (4x_2 + x_3, x_2, x_3)$ and $y = (4y_2 + y_3, y_2, y_3)$. Then $x + y = (4x_2 + x_3 + 4y_2 + y_3, x_2 + y_2, x_3 + y_3) = (4(x_2 + y_2) + (x_3 + y_3), x_2 + y_2, x_3 + y_3) \in W_4$. Finally let $c \in \mathbb{R}$. Then $cx = (c(4x_2 + x_3), cx_2, cx_3) = (4cx_2 + cx_3, cx_2, cx_3) \in W_4$, so W_4 is a subspace of \mathbb{R}^3 .
 - (e) $W_5 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 3a_3 = 1\}$ $0 \notin W_5$, so W_5 is not a subspace of \mathbb{R}^3 .
 - (f) $W_6 = \left\{ (a_1, a_2, a_3) \in R^3 : 5a_1^2 3a_2^2 + 6a_3^2 = 0 \right\}$ Let $x = \left(\sqrt{\frac{3}{5}x_2^2 - \frac{6}{5}x_3^2}, x_2, x_3 \right)$ and $c \in R$. Then $cx = \left(c\sqrt{\frac{3}{5}x_2^2 - \frac{6}{5}x_3^2}, cx_2, cx_3 \right) = (\sqrt{\frac{3}{5}c^2x_2^2 - \frac{6}{5}c^2x_3^2}) \notin W_6$, so W_6 is not a subspace of R^3 .

9. Let W_1, W_3 and W_4 be as in exercise 8. Describe $W_1 \cap W_3$, $W_1 \cap W_4$, and $W_3 \cap W_4$, and observe that each is a subspace of R^3 .

Proof. $W_1 \cap W_3 = \{(a_1, a_2, a_3) \in R^3 : a_1 = 3a_2, a_2 = \frac{1}{4}a_1, \text{ and } a_3 = 7a_2 - 2a_1\}$. We have $a_1 = 3a_2$ and $4a_2 = a_1$, so $a_1 = a_2 = 0$ always holds. Then $a_3 = 7a_2 - 2a_1 = 0$, so $W_1 \cap W_3$ is the zero subspace of R^3 .

 $W_1 \cap W_4 = \{(a_1, a_2, a_3) \in R^3 : a_1 = 4a_2 - a_3, a_2 = \frac{1}{3}a_1, \text{ and } a_3 = -a_2\}.$ We have $a_2 = \frac{1}{3}a_1 = \frac{4}{3}a_2 - \frac{1}{3}a_3$, so $0 = \frac{1}{3}(a_2 - a_3)$, and thus $a_3 = a_2$. Since $a_3 = a_2$ and $a_3 = -a_2$, $a_3 = 0 = a_2$, and then $a_1 = 4a_2 - a_3 = 0$, so $W_1 \cap W_4$ is the zero subspace of R^3 .

 $W_3 \cap W_4 = \left\{ (a_1, a_2, a_3) \in R^3 : 2a_1 - 7a_2 + a_3 = 0 \text{ and } a_1 - 4a_2 - a_3 = 0 \right\}. \text{ We then have } a_1 = \frac{11}{3}a_2 \text{ and } a_3 = 7a_2 - 2a_1 = 7a_2 - \frac{22}{3}a_2 = -\frac{1}{3}a_2. \text{ Then } 0 \in W_3 \cap W_4. \text{ Let } x = \left(\frac{11}{2}x_2, x_2, -\frac{1}{3}x_2\right) \text{ and } y = \left(\frac{11}{3}y_2, y_2, -\frac{1}{3}y_2\right). \text{ Then } x + y = \left(\frac{11}{3}(x_2 + y_2), x_2 + y_2, -\frac{1}{3}(x_2 + y_2)\right) \in W_3 \cap W_4. \text{ Let } c \in R. \text{ Then } cx = \left(\frac{11}{3}cx_2, cx_2, -\frac{1}{3}cx_2\right) \in W_3 \cap W_4, \text{ so } W_3 \cap W_4 \text{ is a subspace of } R^3.$

11. Is the set $W=\{f(x)\in P(F): f(x)=0 \text{ or } f(x) \text{ has degree } n\}$ a subspace of P(F) if $n\geq 1$? Justify your answer.

Proof. Let $f(x) = x^2 + x$ and $g(x) = -x^2 + x$. Then n = 2, and f(x) + g(x) = 2x, so W is not closed under addition, and therefore it is not a subspace of P(F).

12. Prove that the set of $m \times n$ upper triangular matrices is a subspace of $M_{m \times n}(F)$.

Proof. Let W be the set of $m \times n$ upper triangular matrices. Then $0 \in W$. Let $x, y \in W$. Then $x + y \in W$, since for all i, j such that i > j, $(x + y)_{ij} = 0 + 0 = 0$. Let $c \in F$. Then $cx \in W$, since for all i, j such that i > j, $(cx)_{ij} = c \cdot 0 = 0$, so W is a subspace of $M_{m \times n}(F)$.

17. Prove that a subset W of a vector space V is a subspace of V if and only if $W \neq \emptyset$ and, whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$.

Proof. Suppose that W is a subset of a vector space V. If W is a subspace of V, then it must contain 0, so $W \neq \emptyset$, and for $a \in F$ and $x, y \in W$, $x + y \in W$ and $ax \in W$ is true by theorem 1.3. For the converse, suppose that $W \neq \emptyset$, and for $a \in F$ and $x, y \in W$, $x + y \in W$ and $ax \in W$. Then for a = 0, $ax = 0 \in W$, so W satisfies all conditions necessary for it to be a subspace of V.

18. Prove that a subset W of a vector space V is a subspace of V if and only if $0 \in W$ and $ax + y \in W$ whenever $a \in F$ and $x, y \in W$.

Proof. Let W be a subset of a vector space V. If W is a subspace of V, then it has to contain 0, and for $a \in F$ and $x, y \in W$, $ax \in W$ and $x + y \in W$. If z = ax, then $z + y \in W$ has to be true.

For the converse, suppose that $0 \in W$ and for $a \in F$ and $x, y \in W$, $ax + y \in W$. If y = 0, then $ax + y = ax \in W$. Since $ax \in W$, let z = ax, so $z + y \in W$, which means that W is a subspace of V.

20. Prove that if W is a subspace of a vector space V and w_1, w_2, \ldots, w_n are in W, then $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$ for any scalars a_1, a_2, \ldots, a_n .

Proof. Let n=1. Then $a_1w_1 \in W$ by the definition of a subspace. Next, suppose that for some $n \geq 2$, $a_1w_1 + a_2w_2 + \cdots + a_{n-1}w_{n-1} \in W$. Then

$$a_1w_1 + a_2w_2 + \dots + a_nw_n = (a_1w_1 + a_2w_2 + \dots + a_{n-1}w_{n-1}) + a_nw_n.$$

Since $(a_1w_1 + a_2w_2 + \cdots + a_{n-1}w_{n-1}) \in W$ and $a_nw_n \in W$ and subspaces are closed under addition, $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$.

23. Let W_1 and W_2 be subspaces of a vector space V.

- (a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 . Assume, without loss of generality that x is a vector in W_1 . Then, since W_2 contains 0, $x + 0 = x \in W_1 + W_2$.
- (b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$. Let W_3 be a subspace of V, such that it contains both W_1 and W_2 . Since subspaces are closed under addition, for any $x \in W_1$ and $y \in W_2$, $x + y \in W_3$, so W_3 must contain $W_1 + W_2$.

24. Show that F^n is the direct sum of the subspaces

$$W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_n = 0\}$$

and

$$W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}.$$

Proof. Let $x = (x_1, x_2, ..., x_n) \in W_1$ and $y = (y_1, y_2, ..., y_n) \in W_2$. Then

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) = (x_1 + 0, x_2 + 0, \dots, x_{n-1} + 0, 0 + y_n) = (x_1, x_2, \dots, y_n),$$

where $x_1, x_2, \dots, x_{n-1}, y_n \in F$, so $F^n = W_1 + W_2$.

Next,

$$W_1 \cap W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_n = 0\} = \{0\},\$$

so
$$F^n = W_1 \bigoplus W_2$$
.

27. Let V denote the vector space of all upper triangular $n \times n$ matrices, and let W_1 denote the subspace of V consisting of all diagonal matrices. Define

$$W_2 = \{A \in V : A_{ij} = 0 \text{ whenever } i \geq j\}.$$

Show that $V = W_1 \bigoplus W_2$.

Proof. Let $A \in W_1$ and $B \in W_2$. Then

$$A+B=\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} + \begin{bmatrix} 0 & b_{12} & \dots & b_{1n} \\ 0 & 0 & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & b_{12} & \dots & b_{1n} \\ 0 & a_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix},$$

so $V = W_1 + W_2$.

Next,

$$W_1 \cap W_2 = \{A \in V : A_{ij} = 0 \text{ whenever } i \ge j \text{ or } i \ne j\} = \{0\},\$$

so
$$V = W_1 \bigoplus W_2$$
.

28. A matrix M is called skew-symmetric if $M^t = -M$. Clearly, a skew-symmetric matrix is square. Let F be a field. Prove that the set W_1 of all skew-symmetric $n \times n$ matrices with entries from F is a subspace of $M_{n \times n}(F)$. Now assume that F is not of characteristic two, and let W_2 be the subspace of $M_{n \times n}(F)$ consisting of all symmetric $n \times n$ matrices. Prove that $M_{n \times n}(F) = W_1 \bigoplus W_2$.

Proof. $0 \in W_1$, since $0^t = 0 = -0$. Let $A, B \in W_1$. Then

$$(A+B)^t = A^t + B^t = -A + (-B) = -(A+B),$$

so $A + B \in W_1$. Now let $a \in F$. Then $(aA)^t = aA^t = -aA$, so $aA \in W_1$, and thus W_1 is a subspace of $M_{n \times n}(F)$.

Let A be any square $n \times n$ matrix. Then if B is an $n \times n$ square matrix, such that $B_{ij} = A_{ij}$ whenever i = j, $B_{ij} = A_{ij} + \frac{1}{2}(A_{ji} - A_{ij})$ whenever i < j and $B_{ij} = B_{ji}$ whenever i > j, then B is a symmetric matrix, so $B \in W_2$, and if C is an $n \times n$ square matrix, such that $C_{ij} = 0$ whenever i = j, $C_{ij} = \frac{1}{2}(A_{ji} - A_{ij})$ whenever i > j and $C_{ij} = -C_{ji}$ whenever i < j, then C is skew-symmetric, so $C \in W_1$. Then:

1. If
$$i = j$$

$$B_{ij} + C_{ij} = A_{ij} + 0 = A_{ij}$$

2. If i < j

$$B_{ij} + C_{ij} = A_{ij} + \frac{1}{2}(A_{ji} - A_{ij}) - \frac{1}{2}(A_{ji} - A_{ij}) = A_{ij}$$

3. If i > i

$$B_{ij} + C_{ij} = A_{ji} + \frac{1}{2}(A_{ij} - A_{ji}) + \frac{1}{2}(A_{ij} - A_{ji}) = A_{ji} + A_{ij} - A_{ji} = A_{ij},$$

so A = B + C, and thus $M_{n \times n}(F) = W_1 + W_2$.

$$W_1 \cap W_2 = \{ A \in M_{n \times n}(F) : A^t = -A \text{ and } A^t = A \} = \{ 0 \},$$

so
$$M_{n\times n}(F)=W_1 \bigoplus W_2$$
.

30. Let W_1 and W_2 be subspaces of a vector space V. Prove that V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely written as $x_1 + x_2$ where $x_1 \in W_1$ and $x_2 \in W_2$.

Proof. Suppose that V is the direct sum of W_1 and W_2 , and that there exist some $x_1, x_1' \in W_1$ and $x_2, x_2' \in W_2$, such that $x_1 + x_2 = x_1' + x_2' \in V$. Then $x_1 - x_1' = x_2' - x_2 \in W_1 \cap W_2 = \{0\}$, so $x_1 - x_1' = 0 = x_2' - x_2$, and $x_1 = x_1'$ and $x_2 = x_2'$.

For the converse, suppose that any vector in V can be represented uniquely as $x_1 + x_2$, for $x_1 \in W_1$ and $x_2 \in W_2$. Then $V = W_1 + W_2$. Let $y \in W_1 \cap W_2$. Then y = y + 0 = 0 + y, and since it is unique, y = 0, so $W_1 \cap W_2 = \{0\}$.

4 Linear combinations and systems of linear equations

Definition. Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a linear combination of vectors of S if there exist a finite number of vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n in F such that $v = a_1u_1 + a_2u_2 + \cdots + a_nu_n$. In this case we also say that v is a linear combination of u_1, u_2, \ldots, u_n and call a_1, a_2, \ldots, a_n the coefficients of the linear combination.

Definition. Let S be a nonempty subset of a vector space V. The **span** of S, denoted span(S), is the set consisting of all linear combinations of the vectors in S. For convenience, we define $span(\emptyset) = \{0\}$.

Theorem 5. The span of any subset S of a vector space V is a subspace of V that contains S. Moreover, any subspace of V that contains S must also contain the span of S.

Definition. A subset S of a vector space V generates (or spans) V if span(S) = V. In this case, we also say that the vectors of S generate (or span) V.

Exercises

1. Label the following statements as true or false

- (a) The zero vector is a linear combination of any nonempty set of vectors **True**. For any vectors v_1, v_2, \ldots, v_n , $0 = 0v_1 + 0v_2 + \cdots + 0v_n$.
- (b) The span of \emptyset is \emptyset **False**. span(\emptyset) is defined to be $\{0\}$.
- (c) If S is a subset of a vector space V, then span(S) equals the intersection of all subspaces of V that contain S **True**.

It follows from theorem 1.5.

(d) In solving a system of linear equations, it is permissible to multiply an equation by any constant - False

It is permissible to multiply an equation by any nonzero constant.

- (e) In solving a system of linear equations, it is permissible to add any multiple of one equation to another **True**.
- (f) Every system of linear equations has a solution False. Any system of linear equations that, while solving, produces a system containing 0 = c, where c is nonzero, does not have a solution.
- 7. In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that e_1, e_2, \ldots, e_n generates F^n .

Proof. Let a be a vector in F^n , so $a = (a_1, a_2, \ldots, a_n)$. Then

$$(a_1, a_2, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n = (a_1, 0, \dots, 0) + (0, a_2, \dots, 0) + \dots + (0, 0, \dots, a_n)$$

8. Show that $P_n(F)$ is generated by $\{1, x, \dots, x^n\}$.

Proof. Let a be a vector in $P^n(F)$. Then $a = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 * 1$, so $P_n(F)$ is generated by $\{1, x, \dots, x^n\}$

9. Show that the matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

generate $M_{2\times 2}(F)$.

Proof. Let $A \in M_{2\times 2}(F)$. Then

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + a_{21} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

10. Show that if

$$M_1=egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}, M_2=egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$$
 , and $M_3=egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$,

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.

Proof. Let A be a symmetric 2×2 matrix. Then

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix} = aM_1 + bM_3 + cM_2$$

11. Prove that $span(\{x\}) = \{ax : a \in F\}$ for any vector x in a vector space. Interpret this result geometrically in R^3 .

Proof. Let x be a vector in some vector space over a field F, and let $y \in \text{span}(\{x\})$. Then y is a linear combination of x, so y = ax for some $a \in F$. Let $z \in \{ax : a \in F\}$. Then z = ax, so z is a linear combination of x, so $z \in \text{span}(\{x\})$. span($\{x\}$) in R^3 is a line going through x and the origin.

12. Show that a subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W) = W$.

Proof. Let W be a subset of a vector space V, and that $\operatorname{span}(W) = W$. Then $0 \in W$, since 0x = 0 for any $x \in W$. Let x and y be elements of W. Then $x + y \in \operatorname{span}(W)$, since its a linear combination of elements of W, and therefore $x + y \in W$. For any scalar c, $cx \in \operatorname{span}(W)$, so $cx \in W$, which means that W is a subspace of V.

Now suppose that W is a subspace of V. Then for vectors $x_1, x_2, \ldots, x_n \in W$, and scalars $a_1, a_2, \ldots, a_n, a_1x_1 + a_2x_2 + \cdots + a_nx_n \in W$, so $W = \operatorname{span}(W)$.

13. Show that if S_1 and S_2 are subsets of a vector space V such that $S_1 \subseteq S_2$ then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$. In particular, if $S_1 \subseteq S_2$ and $\operatorname{span}(S_1) = V$, deduce that $\operatorname{span}(S_2) = V$.

Proof. Let S_1 and S_2 be subsets of a vector space V, such that $S_1 \subseteq S_2$. Then for all elements $x_1, x_2, \ldots, x_n \in S_1$, we know that $x_1, x_2, \ldots, x_n \in S_2$, so $\operatorname{span}(S_2)$ contains all linear combinations $a_1x_1, a_2x_2, \ldots, a_nx_n$, with a_1, a_2, \ldots, a_n being scalars, that is $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.

Now suppose that $S_1 \subseteq S_2$ and $\operatorname{span}(S_1) = V$. Then $\operatorname{span}(S_1) = V \subseteq \operatorname{span}(S_2)$. Suppose that $\operatorname{span}(S_2) \neq V$, that is, there exists some element $x \in \operatorname{span}(S_2)$ such that $x \notin V$. Then x is a linear combination of elements of S_2 , and since S_2 is a subset of V, x is a linear combination of some elements of V. Since V is a subspace, this implies that $x \in V$, which leads to a contradiction. \square

14. Show that if S_1 and S_2 are arbitrary subsets of a vector space V, then span $(S_1 \cup S_2) = \text{span}(S_1) + \text{span}(S_2)$.

Proof. Let S_1 and S_2 be arbitrary subsets of a vector space V. For a vector $v \in \text{span}(S_1 \cup S_2)$, we have $v = a_1x_1 + a_2x_2 + \dots + a_nx_n + b_1y_1 + \dots + b_my_m$, with $x_1, x_2, \dots, x_n \in S_1, y_1, y_2, \dots, y_m \in S_2$ and scalars a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_m . Then

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \in \text{span}(S_1)$$
 and $b_1y_1 + b_2y_2 + \dots + b_my_m \in \text{span}(S_2)$,

so for $x = a_1x_1 + a_2x_2 + ... + a_nx_n$ and $y = b_1y_1 + b_2y_2 + ... + b_mx_m$, we have

$$v = x + y$$
, where $x \in \text{span}(S_1), y \in \text{span}(S_2)$,

so $v \in \text{span}(S_1) + \text{span}(S_2)$.

Now let $v \in \text{span}(S_1) + \text{span}(S_2)$. Then v = x + y, with $x \in \text{span}(S_1)$ and $y \in \text{span}(S_2)$. Then

$$x = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$
 with $x_1, x_2, \dots, x_n \in S_1$

and

$$y = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$
 with $y_1, y_2, \dots, y_m \in S_2$.

Then v is a linear combination of vectors in S_1 and vectors in S_2 , which means its a linear combination of vector in $S_1 \cup S_2$, so $v \in \text{span}(S_1 \cup S_2)$.

16. Let V be a vector space and S a subset of V with the property that whenever $v_1, v_2, \ldots, v_n \in S$ and $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$, then $a_1 = a_2 = \cdots = a_n = 0$. Prove that every vector in the span of S can be uniquely written as a linear combination of vectors of S.

Proof. Suppose that for a vector $x \in \text{span}(S)$, x can be written as two different linear combinations of vectors of S, that is, for $x_1, x_2, \ldots, x_n \in S$ and for scalars $a_1, b_1, a_2, b_2, \ldots, a_n, b_n$,

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b_1x_1 + b_2x_2 + \dots + b_nx_n$$
 and $a_i \neq b_i$ for $1 \leq i \leq n$.

Then

$$a_1x_1 + a_2x_2 + \dots + a_nx_n - b_1x_1 - b_2x_2 - \dots + b_nx_n = (a_1 - b_1)x_1 + (a_2 - b_2)x_2 + \dots + (a_n - b_n)x_n = 0,$$

so
$$(a_1 - b_1) = (a_2 - b_2) = \dots = (a_n - b_n) = 0$$
, so $a_i = b_i$, for $1 \le i \le n$.

5 Linear Dependence and Linear Independence

Definition. A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n not all zero, such that

$$a_1 u_1 + a_2 u_2 + \dots + a_n u_n = 0$$

In this case we also say that the vectors of S are linearly dependent.

If for any vectors u_1, u_2, \ldots, u_n we have $a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$ if $a_1 = a_2 = \cdots = a_n = 0$, we call this the **trivial representation** of 0 as a linear combination of u_1, u_2, \ldots, u_n .

Definition. A subset S of a vector space that is not linearly dependent is called **linearly independent**. As before, we also say that the vectors of S are linearly independent.

Theorem 6. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem 7. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

Exercises

1. Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear combination of other vectors in S - False.

At least one vector in S is a linear combination of other vectors in S.

- (b) Any set containing the zero vector is linearly dependent **True**. $0 = 0v_1 + 0v_2 + \cdots + 0v_n$, so 0 is a linear combination of other vectors.
- (c) The empty set is linearly dependent False. Linearly dependent sets must be nonempty.
- (d) Subsets of linearly dependent sets are linearly dependent **False**. Consider $S_1 = \{(1,0), (0,1), (0,2)\}$ and $S_2 = \{(1,0), (0,1)\}$. Then S_1 is linearly dependent, $S_2 \subset S_1$, and S_2 is linearly independent.
- (e) Subsets of linearly independent sets are linearly dependent **True**. Follows from theorem 1.6.
- (f) If $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ and x_1, x_2, \ldots, x_n are linearly independent, then all the scalars a_i are zero **True**.

4. In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \dots, e_n\}$ is linearly independent.

Proof.

$$a_1e_1 + a_2e_2 + \cdots + a_ne_n = (a_1, a_2, \dots, a_n),$$

so it is equal 0 only when $a_1 = a_2 = \cdots = a_n = 0$, which means $\{e_1, e_2, \ldots, e_n\}$ is linearly independent.

5. Show that the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent in $P_n(F)$.

Proof. If

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

for some scalars a_0, a_1, \ldots, a_n , then this is the unique 0 vector in $P_n(F)$, so $a_0 = a_1 = \cdots = a_n = 0$.

6. In $M_{3\times 2}(F)$, prove that the set

$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

is linearly dependent.

Proof.

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = 0$$

so the set is linearly dependent.

- **8.** Let $S = \{(1,1,0), (1,0,1), (0,1,1)\}$ be a subset of the vector space F^3 .
 - (a) Prove that if $F = \mathbb{R}$, then S is linearly independent.

Proof. If

$$a_1(1,1,0) + a_2(1,0,1) + a_3(0,1,1) = 0$$

then

$$a_1 + a_2 = 0$$

$$a_1 + a_3 = 0$$

$$a_2 + a_3 = 0$$

so $a_1 = a_2 = a_3 = 0$.

(b) Prove that if F has characteristic two, then S is linearly dependent.

Proof. If F has characteristic two, then

$$(1,1,0) + (1,0,1) + (0,1,1) = (1+1,1+1,1+1) = 0$$

so S is linearly dependent.

9. Let u and v be distinct vectors in a vector space V. Show that $\{u,v\}$ is linearly dependent if and only if u or v is a multiple of the other.

Proof. Suppose that $\{u, v\}$ is linearly dependent. Then for some scalars a_1, a_2 not both 0,

$$a_1u + a_2v = 0,$$

so $a_1u = -a_2v$. Suppose without loss of generality that $a_1 \neq 0$. Then

$$u = -\frac{a_2}{a_1}v,$$

so v is a multiple of u.

For the converse, suppose without loss of generality that v is a multiple of u. Then for some scalar a, u = av, so u - av = 0, which means that $\{u, v\}$ is linearly dependent.

10. Give an example of three linearly dependent vectors in \mathbb{R}^3 such that none of the three is a multiple of another.

12. Prove Theorem 1.6 and its corollary.

Proof. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$, and suppose that S_1 is linearly dependent. That means, there exists a vector $x_0 \in S_1$ that can be represented as a linear combination of some other vectors in S_1 : x_1, x_2, \ldots, x_n . So

$$x_0 = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
.

Then since x_0, x_1, \ldots, x_n are all in S_2 , there exists a vector in S_2 that can be represented as a linear combination of some other vectors in S_2 , so S_2 is linearly dependent.

Corollary. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then S_1 is linearly independent.

Proof. This is just the contraposition of Theorem 1.6.

14. Prove that a set S is linearly dependent if and only if $S = \{0\}$ or there exist distinct vectors v, u_1, u_2, \ldots, u_n such that v is a linear combination of u_1, u_2, \ldots, u_n .

Proof. Let $S = \{0\}$. Then S is linearly dependent, because $0 = a \cdot 0$ for any non-zero scalar a. Suppose that there exist distinct vectors v, u_1, u_2, \ldots, u_n such that v is a linear combination of u_1, u_2, \ldots, u_n , so

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$
.

Then

$$0 = a_1 u_1 + a_2 u_2 + \dots a_n u_n - v,$$

so S is linearly dependent.

For the converse, suppose that $S \neq \{0\}$ and that there are no distinct vectors v, u_1, u_2, \ldots, u_n such that v is a linear combination of u_1, u_2, \ldots, u_n . Suppose that S is linearly dependent. Then there exist scalars a_0, a_1, \ldots, a_n not all 0 such that

$$0 = a_0v + a_1u_1 + a_2u_2 + \dots + a_nu_n.$$

Then at least 1 scalar is not 0, say a_0 . Then

$$-a_0v = a_1u_1 + a_2u_2 + \dots + a_nu_n,$$

so

$$v = -\frac{1}{a_0}(a_1u_1 + a_2u_2 + \dots + a_nu_n)$$

which contradicts the original assumption, so S has to be linearly independent.

15. Let $S = \{u_1.u_2, \ldots, u_n\}$ be a finite set of vectors. Prove that S is linearly dependent if and only if $u_1 = 0$ or $u_{k+1} \in \text{span}(\{u_1, u_2, \ldots, u_k\})$ for some k $(1 \le k < n)$.

Proof. Let $S = \{u_1, u_2, \dots, u_n\}$ be a finite set of vectors. If $u_1 = 0$ then

$$0 = au_1 + 0u_2 + 0u_3 + \dots + 0u_n$$

with a nonzero, so S is linearly dependent. Suppose that for some $k, 1 \le k < n, u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$. Then there exist some scalars a_1, a_2, \dots, a_k such that

$$u_{k+1} = a_1 u_1 + a_2 u_2 + \dots + a_k u_k,$$

SO

$$0 = a_1 u_1 + a_2 u_2 + \dots + a_k u_k - u_{k+1}$$

so S is linearly dependent.

For the converse, suppose that $u_1 \neq 0$ and that there is no k such that $1 \leq k < n$ and $u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$. Suppose that S is linearly dependent. Then

$$0 = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

with scalars a_1, a_2, \ldots, a_n not all 0. Then there exists a nonzero scalar such that the scalars after it in the above sum are all 0, say that scalar is a_n . Then

$$u_n = -\frac{1}{a_n}(a_1u_1 + a_2u_2 + \dots + a_{n-1}u_{n-1}).$$

So $u_n \in \text{span}(\{u_1, u_2, \dots, u_{n-1}\})$ which contradicts the original assumption, so S has to be linearly independent.

16. Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.

Proof. Suppose that a set S of vectors is linearly independent. Then it follows from the corollary of Theorem 1.6 that any finite subset of S has to be linearly independent.

For the converse, suppose that each finite subset of S is linearly independent. Then there is no finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n not all zero, such that

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = 0,$$

which is the definition of linear independence.

20. Let $f, g \in F(\mathbb{R}, \mathbb{R})$ be the functions defined by $f(t) = e^{rt}$ and $g(t) = e^{st}$, where $r \neq s$. Prove that f and g are linearly independent in $F(\mathbb{R}, \mathbb{R})$.

Proof. Suppose that f and g are linearly dependent. Then f = ig for some i. So $f(0) = i \cdot g(0)$, and $1 = i \cdot 1$, so i = 1. We then have f(1) = g(1), so $e^r = e^s$, and r = s which contradicts $r \neq s$.

21. Let S_1 and S_2 be disjoint linearly independent subsets of V. Prove that $S_1 \cup S_2$ is linearly dependent if and only if $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) \neq \{0\}$.

Proof. Suppose that $S_1 \cup S_2$ is linearly dependent. Then there exist vectors $u_1, u_2, \ldots, u_n \in S_1$, and $v_1, v_2, \ldots, v_m \in S_2$ and scalars $a_1, \ldots, a_n, b_1, \ldots, b_m$ not all zero such that

$$a_1u_1 + a_2u_2 + \dots + a_nu_n + b_1v_1 + b_2v_2 + \dots + b_mv_m = 0.$$

Then

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = -b_1v_1 - b_2v_2 - \dots - b_mv_m$$

and since S_1 and S_2 are linearly independent, we know these are not equal to 0, so it is a non-zero element of span $(S_1) \cap \text{span}(S_2)$.

For the converse, suppose that $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) \neq \{0\}$. Then there exists a non-zero element

$$x = a_1u_1 + a_2u_2 + \dots + a_nu_n = b_1v_1 + b_2v_2 + \dots + b_mv_m$$

for some vectors $u_1, u_2, \ldots, u_n \in S_1$ and $v_1, v_2, \ldots, v_m \in S_2$ and vectors $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m$. Then

$$a_1u_1 + a_2u_2 + \dots + a_nu_n - b_1v_1 - b_2v_2 - \dots - b_mv_m = 0,$$

so $S_1 \cup S_2$ is linearly dependent.

6 Bases and Dimension

Definition. A basis β for a vector space \mathbf{V} is a linearly independent subset of \mathbf{V} that generates \mathbf{V} . If β is a basis for \mathbf{V} , we also say that the vectors of β form a basis for \mathbf{V} .

Theorem 8. Let V be a vector space and u_1, u_2, \ldots, u_n be distinct vectors in V. Then $\beta = \{u_1, u_2, \ldots, u_n\}$ is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$v = a_1u_1 + a_2u_2 + \dots + a_nu_n$$

for unique scalars a_1, a_2, \ldots, a_n .

Theorem 9. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem 10. (Replacement Theorem.) Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \le n$ and there exists a subset H of G containing exactly n-m vectors such that $L \cup H$ generates V.

Corollary. Let V be a vector space having a finite basis. Then all bases for V are finite, and every basis for V contains the same number of vectors.

Definition. A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors. The unique integer n such that every basis for \mathbf{V} contains exactly n elements is called the **dimension** of \mathbf{V} and is denoted by $\dim(\mathbf{V})$. A vector space that is not finite-dimensional is called **infinite-dimensional**.

Corollary. Let V be a vector space with dimension n.

- (a) Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- (b) Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- (c) Every linearly independent subset of V can be extended to a basis for V, that is, if L is a linearly independent subset of V, then there is a basis β of V such that $L \subseteq \beta$.

Theorem 11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $dim(W) \leq dim(V)$. Moreover, if dim(W) = dim(V), then V = W.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

6.1 Exercises

1. Label the following statements as true or false

- (a) The zero vector space has no basis False.The basis for the zero vector space is Ø.
- (b) Every vector space that is generated by a finite set has a basis True.
- (c) Every vector space has a finite basis **False**. Consider P(F) for which the basis is $\{1, x, x^2, \dots\}$.
- (d) A vector space cannot have more than one basis **False**. Consider R where both $\{1\}$ and $\{-1\}$ are a basis.
- (e) If a vector space has a finite basis, then the number of vectors in every basis is the same **True**.

It follows from corollary 1 of the replacement theorem.

- (f) The dimension of $P_n(F)$ is n False. The dimension of $P_n(F)$ is n + 1.
- (g) The dimension of $M_{m\times n}(F)$ is m+n False. The dimension of $M_{m\times n}(F)$ is $m\times n$.
- (h) Suppose that V is a finite-dimensional vector space, that S_1 is a linearly independent subset of V, and that S_2 is a subset of V that generates V. Then S_1 cannot contain more vectors than S_2 **True**.

This is stated in the replacement theorem.

(i) If S generates the vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way - False.

This is only true if S is linearly independent.

- (j) Every subspace of a finite-dimensional space is finite-dimensional **True**. It follows from theorem 1.11.
- (k) If V is a vector space having dimension n, then V has exactly one subspace with dimension 0 and exactly one subspace with dimension n **True**.

It follows from theorem 1.11.

(1) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly independent if and only if S spans V - **True**.

It follows from corollary 2 of the replacement theorem.

6. Give three different bases for F^2 and $M_{2\times 2}(F)$

Let $a \in F$ and $a \neq 0$. Then $A = \{(a,0), (0,a)\}, B = \{(-a,0), (0,-a)\}$ and $C\{(a,0), (0,-a)\}$ are all bases for F^2

bases for
$$F^2$$
.

Then $D = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ a & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} \right\}, E = \left\{ \begin{bmatrix} -a & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -a \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -a & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -a \end{bmatrix} \right\},$
and $F = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -a & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -a \end{bmatrix} \right\}$ are all bases for $M_{2\times 2}(F)$.

9. The vectors $u_1 = (1,1,1,1), u_2 = (0,1,1,1), u_3 = (0,0,1,1)$ and $u_4 = (0,0,0,1)$ form a basis for F^4 . Find the unique representation of an arbitrary vector (a_1,a_2,a_3,a_4) in F^4 as a linear combination of u_1,u_2,u_3,u_4 .

$$a_1(1,1,1,1) + (a_2 - a_1)(0,1,1,1) + (a_3 - a_2)(0,0,1,1) + (a_4 - a_3)(0,0,0,1)$$

$$= (a_1, a_1 + a_2 - a_1, a_1 + a_2 - a_1 + a_3 - a_2, a_1 + a_2 - a_1 + a_3 - a_2 + a_4 - a_3)$$

$$= (a_1, a_2, a_3, a_4)$$

11. Let u and v be distinct vectors of a vector space V. Show that if $\{u,v\}$ is a basis for V and a and b are nonzero scalars, then both $\{u+v,au\}$ and $\{au,bv\}$ are also bases for V.

Proof. Let w be a vector in V. Then w = xu + yv for some scalars x and y. Then

$$xu + yv = yu + yv + xu - yu = y(u + v) + \frac{x - y}{a}(au),$$

so $A = \{u + v, au\}$ generates V.

Additionally,

$$xu + yv = \frac{x}{a}au + \frac{y}{b}bv,$$

so $B = \{au, bv\}$ also generates V.

Since dim(V) = 2 and both A and B are generating sets for V, each with 2 vectors, they are both a basis for V.

15. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?

Proof. If i, j > 0 and $i, j \le n$, and E_{ij} is a matrix with 1 in the (i, j)-th entry, and 0 for all other entries, then a basis for W is $\{E_{ij}|i \ne j\} \cup \{E_{11} - E_{ii}|1 < i \le n\}$. W is $n^2 - 1$ dimensional. \square

16. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?

Proof. If i, j > 0 and $i, j \le n$, and E_{ij} is a matrix with 1 in the (i, j)-th entry, and 0 for all other entries, then a basis for W is $\{E_{ij}|i \le j\}$. W has dimension $n + (n+1) + \cdots + 1 = \frac{n(n+1)}{2}$.

17. The set of all skew-symmetric $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?

Proof. If i, j > 0 and $i, j \le n$, then a basis for W is the set of matrices, such that the entry (i, j) is equal to 1, (j, i) is equal to -1, and i < j. W has dimension $(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}$. \square

19. Complete the proof of Theorem 1.8.

Proof. In the chapter, it is already proven that if $\beta = \{u_1, u_2, \dots, u_n\}$ is a basis for V, then each $v \in V$ can be uniquely expressed as a linear combination of vectors of β . Now it remains to prove that the converse of this statement is also true.

Suppose that each $v \in V$ can be uniquely expressed as a linear combination of vectors in β . Then $\operatorname{span}(\beta) = V$. Since it is a unique combination, and $0 \in V$,

$$0 = 0u_1 + 0u_2 + \dots 0u_n$$

is a unique combination, so β is linearly independent. Since β spans V and is linearly independent, it is a basis for V.

- 20. Let V be a vector space having dimension n, and let S be a subset of V that generates V.
- (a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite)

Proof. We consider two cases: S is finite, or S is inifinite. If S is finite, then by theorem 1.9, we know that there exists a subset of S that is a basis for V, therefore it remains to prove the statement for when S is infinite.

If V has dimension 0, then $\beta = \emptyset$ is a basis for V, and $\beta \subset S$. Otherwise, S contains a non-zero element u_1 , and $\{u_1\}$ is a linearly independent set. We can continue choosing elements $u_2, \ldots, u_k \in S$ such that $\{u_1, \ldots, u_k\}$ is an independent set, until there are no more elements that can be added, without making the set linearly dependent. Then by the replacement theorem, the process will have to terminate with a linearly independent set $\beta = \{u_1, \ldots, u_k\}$, such that $k \leq n$. Let v be a vector in S. If $v \in \beta$ then $v \in \operatorname{span}(\beta)$. If $v \notin \beta$ then $\beta \cup \{v\}$ is a linearly dependent set, so $v \in \operatorname{span}(\beta)$. Then $S \subset \operatorname{span}(\beta)$, and therefore β generates V. Since it is also linearly independent, β is a basis for V.

(b) Prove that S contains at least n vectors.

Proof. If V has dimension n, then by definition, any basis for V has exactly n vectors, and thus S has to contain at least n vectors.

21. Prove that a vector space is infinite-dimensional if and only if it contains an infinite linearly independent subset.

Lemma. If a vector space V has no infinite linearly independent subset, then there exists a finite generating set for V.

Suppose that a vector space V has no finite generating set. Then any generating set S for V has to be infinite. We can then create a subset B of S, by first taking any non-zero element from S, and then adding each element of S that can not be represented as a linear combination of all previous elements in B. This process can't terminate, because if it did, B would be a finite generating set for V, contradicting our initial assumption. Then B is an infinite linearly independent subset of V.

Proof. Let V be a vector space, and suppose that V does not contain an infinite linearly independent subset. Then there exists a finite generating set for V, and therefore a subset of that generating set would be a finite basis for V, so V is finite-dimensional.

Now suppose that V contains an infinite linearly independent subset. Then if it was finite-dimensional, it would contradict the replacement theorem by containing a linearly independent subset with more elements than its dimension, so V has to be infinite-dimensional.

25. Let V, W, and Z be as in exercise 21 of Section 1.2. If V and W are vector spaces over F of dimensions m and n, determine the dimension of Z.

Proof. The dimension of Z is m + n. If β_V and β_W are a basis for V and W respectively, a basis β for Z could be constructed as

$$\beta = \{(v,0) \mid v \in \beta_v\} \cup \{(0,w) \mid w \in \beta_w\}$$

29.

(a) Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace W_1+W_2 is finite dimensional, and $\dim(W_1+W_2)=\dim(W_1)+\dim(W_2)-\dim(W_1\cap W_2)$. Hint: Start with a basis $\{u_1,u_2,\ldots,u_k\}$ for $W_1\cap W_2$ and extend this set to a basis $\{u_1,u_2,\ldots,u_k,v_1,v_2,\ldots,v_m\}$ for W_1 and to a basis $\{u_1,u_2,\ldots,u_k,w_1,w_2,\ldots,w_p\}$ for W_2 .

Proof. Suppose that W_1 and W_2 are finite dimensional subspaces of a vector space V. Let x be the dimension of W_1 and y be the dimension of W_2 . We can take a basis for $W_1 \cap W_2$, $\beta_{W_1 \cap W_2} = \{u_1, u_2, \ldots, u_k\}$. Then $k \leq x, \ k \leq y$ and all elements of $\beta_{W_1 \cap W_2}$ are also in the basis β_{W_1} of W_1 , and in the basis β_{W_2} of W_2 . So $\beta_{W_1} = \{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$ and $\beta_{W_2} = \{u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_p\}$. Then x = k + m and y = k + p. The set $\beta = \{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_k\}$ spans $W_1 + W_2$, since it contains both the basis for W_1 and the basis for W_2 , so any element in the form of a + b where $a \in W_1$ and $b \in W_2$ can be represented as a linear combination of vectors in β . The sets β_{W_1} and β_{W_2} are linearly independent, and the set β also has to be linearly independent, because if any of the elements belonging to β_{W_1} could be represented as a linear combination of the other elements of this set,

that element would belong to $W_1 \cap W_2$, and therefore β_{W_1} itself would be linearly dependent, which would contradict it being a basis. The same argument follows for elements of β_{W_2} . The basis β for $W_1 + W_2$ then has k + m + p elements, so $W_1 + W_2$ is finite-dimensional, and

$$k + m + p = k + m + k + p - k = x + y - k$$

so
$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$
.

(b) Let W_1 and W_2 be finite-dimensional subspaces of a vector space V, and let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if $\dim(V) = \dim(W_1) + \dim(W_2)$.

Proof. Suppose that V is the direct sum of W_1 and W_2 . Then $W_1 \cap W_2 = \{0\}$, and

$$\dim(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2) - 0 = \dim(W_1) + \dim(W_2).$$

Now, suppose that V is not the direct sum of W_1 and W_2 . Then $\dim(W_1 \cap W_2) \neq 0$, and so

$$\dim(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) \neq \dim(W_1) + \dim(W_2)$$

- 31. Let W_1 and W_2 be subspaces of a vector space V having dimensions m and n respectively, where $m \ge n$.
 - (a) Prove that $\dim(W_1 \cap W_2) \leq n$.

Proof. Let $\beta_{W_1 \cap W_2} = \{u_1, u_2, \dots, u_k\}$ be a basis for $W_1 \cap W_2$, and let $\beta_{W_1} = \{u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_l\}$ and $\beta_{W_2} = \{u_1, u_2, \dots, u_k, w_1, w_2, \dots, w_p\}$ be a basis for W_1 and W_2 respectively. Then $\dim(W_1 \cap W_2) = k$, $\dim(W_1) = k + l$ and $\dim(W_2) = k + p$. Then $k \leq k + p \leq k + l$ since neither p nor l can be negative, so

$$\dim(W_1 \cap W_2) \le \dim(W_2) \le \dim(W_1).$$

(b) Prove that $\dim(W_1 + W_2) \leq m + n$.

Proof.

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) \le \dim(W_1) + \dim(W_2)$$

- 32. Find examples of subspaces W_1 and W_2 of R^3 such that $\dim(W_1) > \dim(W_2) > 0$ and
 - (a) $\dim(W_1 \cap W_2) = \dim(W_2)$ This could be W_1 generated by $\{(1,0,0),(0,1,0)\}$ and W_2 generated by $\{(1,0,0)\}$.
 - (b) $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2)$ This could be W_1 generated by $\{(1, 0, 0), (0, 1, 0)\}$ and W_2 generated by $\{(0, 0, 1)\}$.
 - (c) $\dim(W_1 + W_2) < \dim(W_1) + \dim(W_2)$ This could be the same example as (a).

33.

(a) Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 \bigoplus W_2$. If β_1 and β_2 are bases for W_1 and W_2 respectively, show that $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a basis for V.

Proof. Since $V = W_1 \bigoplus W_2$, it follows that $W_1 \cap W_2 = \{0\}$. Suppose that $\beta_1 \cap \beta_2 \neq \emptyset$. Then there exists a vector v that is present in both β_1 and β_2 . But then any vector in the form of xv where x is a scalar would be present in both W_1 and W_2 , contradicting the fact that $W_1 \cap W_2 = \{0\}$.

The set $\beta_1 \cup \beta_2$ is linearly independent, since both β_1 and β_2 are linearly independent, and if any element of β_1 could be represented as a linear combination of the other elements of this set, that element would belong to $W_1 \cap W_2$, contradicting the fact that $W_1 \cap W_2 = \{0\}$. The same argument follows for elements of β_2 . Now, any element of the form $w_1 + w_2$ where $w_1 \in W_1$ and $w_2 \in W_2$ can be represented as a linear combination of elemens in β_1 and β_2 , so $\beta_1 \cup \beta_2$ generates V. Since $\beta_1 \cup \beta_2$ is linearly independent and is a generating set for V, it is a basis for V.

(b) Conversely, let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 respectively, of a vector space V. Prove that if $\beta_1 \cup \beta_2$ is a basis for V, then $V = W_1 \bigoplus W_2$.

Proof. Suppose that $\beta_1 \cup \beta_2$ is a basis for V. Then $\beta_1 \cup \beta_2$ generates $W_1 + W_2$, so $V = W_1 + W_2$. Additionally, $\beta_1 \cup \beta_2$ is linearly independent, and since the sets are disjoint, no element of β_1 can be represented as a linear combination of elements of β_2 , and similarly, no element of β_2 can be represented as a linear combination of elements of β_1 , so $W_1 \cap W_2 = \{0\}$, so $V = W_1 \bigoplus W_2$. \square

34.

(a) Prove that if W_1 is any subspace of a finite-dimensional vector space V, then there exists a subspace W_2 of V such that $V = W_1 \bigoplus W_2$.

Proof. Let n be the dimension of V, and let $\beta_1 = \{u_1, u_2, \ldots, u_k\}$ be a basis for W_1 . Then $k \leq n$ and we can take a basis $\beta = \{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$ for V, so k + m = n. Then we can take the subspace W_2 generated by $\beta_2 = \beta - \beta_1$. Then $\beta_1 \cup \beta_2$ is a basis for V, so $V = W_1 \bigoplus W_2$.

(b) Let $V = R^2$ and $W_1 = \{(a_1, 0) : a_1 \in R\}$. Give examples of two different subspaces W_2 and W_2' such that $V = W_1 \bigoplus W_2$ and $V = W_1 \bigoplus W_2'$.

 $W_2 = \{(0, a_2) : a_2 \in R\} \text{ and } W_2' = \{(a_3, a_3) : a_3 \in R\}.$