Definition

If A is an $n \times n$ matrix and $1 \le i, j \le n$ then the ij-cofactor of A is the number

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$

Example.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

$$C_{23} = (-1)^{2+3} \cdot \det A_{23}$$

= $(-1)^{2+3} \cdot \det \begin{bmatrix} 1 & 2 \\ 7 & 8 \end{bmatrix}$
= $(-1) \cdot (1 \cdot 8 - 2 \cdot 7) = 6$

Note. By the definition of the determinant we have:

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \ldots + a_{1n}C_{1n}$$

Theorem

Let A be an $n \times n$ matrix.

1) For any $1 \le i \le n$ we have

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

(cofactor expansion across the i^{th} row).

2) For any $1 \le j \le n$ we have

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$$

(cofactor expansion down the j^{th} column).

Example.

$$A = \begin{bmatrix} 1 & 3 & 0 & 4 \\ 0 & 4 & 6 & 1 \\ 2 & 1 & 0 & 3 \\ 0 & 5 & 0 & 0 \end{bmatrix} Cofactor expansion down the 3th column;
$$A = \begin{bmatrix} 1 & 3 & 0 & 4 \\ 0 & 4 & 6 & 1 \\ 2 & 1 & 0 & 3 \\ 0 & 5 & 0 & 0 \end{bmatrix} Act A = 0 \cdot C_{13} + 6 \cdot C_{23} + 0 \cdot C_{43} + 0 \cdot C_{43}$$

$$C_{23} = (-1)^{2+3} \cdot \det \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 3 \\ 0 & 5 & 0 \end{bmatrix} = 3$$

$$= (-1) (1 \cdot 1 \cdot 0 + 3 \cdot 3 \cdot 0 + 4 \cdot 2 \cdot 5 - 3 \cdot 2 \cdot 0)$$

$$= (-1) \cdot (40 - 15) = -25$$
This gives: $\det A = 6 \cdot (-25) = -150$$$

Example. Compute the determinant of the following matrix:

Γ(⁻	i)-	0	0	3	0	0	2	0	3	0	0	0	0	e	0	0	0	3	0	0	-0 -1
	5	(2)) 0 -	-0	π	0	-	0	- 6 -	0	- 0	5	6	0	_ 2	- 0	7	0	0	- 0	<u> </u>
)	ď	<u>(Å</u>).	0	<u> </u>	0_	Ů.	0	11	0	0_	0	0	0		0	, A	0	0	0_	ا ۋ
	,	ď		$\left(-\frac{1}{2}\right)$	0		0	0		0	0	2		4			0	<u> </u>	0	- 0 -	ا ۾
		ď	X.		_	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	י	y	¥.	X	0	U	_	•	-	_	·	·	-	•	_	_	•	-		_	
	י	y	¥	X	Ų	-1	0	0	0	0	9	0	0	0	2	1	2	3	4	0	0
\)	y	Ψ	Ч	Ч	0	3	1	0	0	-1	0	0	0	0	0	5	0	0	0	0
()	Q	φ	φ	Ø	0	2	1	0	0	0	0	0	0	12	0	0	0	0	0	0
()	Q	φ	P	0	0	0	0	2	0	0	0	0	0	0	– 1	0	0	4	0	0
()	Q	ф	0	0	0	0	0	0	3	0	0	2	7	0	-4	0	0	3	0	0
()	Q	ф	þ	0	0	0	0	0	0	1	0	0	0	0	3	0	0	2	0	0
()	0	ф	0	ø	0	0	0	0	0	0	2	0	0	0	0	0	0	0	6	0
()	0	ø	0	ø	0	0	0	0	0	0	0	$\frac{1}{4}$	0	0	0	0	0	0	0	0
()	0	•	ø	ø	0	0	0	0	0	0	0	Ŏ	$\frac{1}{5}$	0	1	0	4	3	2	1
()	0	ф	ø	ø	0	0	0	0	0	0	0	0	Ŏ	1	0	0	0	0	0	0
()	0	ф	•	0	0	0	0	0	0	0	0	0	0	0	1	0	0	8	7	7
()	•	0	ø	ø	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
)	0	d	d	d	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1	0
()		d	d	d	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
()	6	d	ď	Ь	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	,	ď	ď	Ĭ.	(2)-	- 8 -	a	0	3	3	2	<u>5</u>	6	3	- 8	9 -	2	Ġ	<u> </u>	` _	<u> </u>
L	V	9	Y	Ψ			- 3	U	J	J		J	U	J	U	9	_	U	_	_	' _

Definition

An square matrix is upper triangular is all its entries below the main diagonal are 0.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

Proposition

If A is an upper triangular matrix as above then

$$\det A = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Example:

$$A = \begin{bmatrix} 4 & 2 & 3 & 4 \\ 0 & 3 & 6 & 7 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

$$det A = 4 \cdot (-1)^{14} \cdot det \begin{bmatrix} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

$$cofactor exp. down 1st cdumn$$

$$= 4 \cdot (3 \cdot (-1)^{14} \cdot det \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}$$

$$cofactor exp. down 1st cdumn$$

$$= 4 \cdot 3 \cdot (2 \cdot 5 + 1 \cdot 0) = 4 \cdot 3 \cdot 2 \cdot 5$$
127