Einführung in die Künstliche Intelligenz

4. Übungsblatt (16.06.2009)

Aufgabe 4.1 Vorwärts-, Rückwartsplanen

Gegeben Sei folgende Weltbeschreibung:

Anfangssituation: f_2 Zielsituation: f_4 ,

action: a_1 action: a_2 action: a_3

preconditions: f_1, f_3 preconditions: f_2 preconditions: f_3 add: f_4 add: f_4, f_3 add: f_5 delete: f_1 delete: f_1

- a) Suchen Sie mittels Vorwärtsplanen (Progression) einen Plan.
- b) Geben Sie den kompletten Suchbaum an (d.h. hören Sie nicht nach der ersten gefundenen Lösung auf), der beim Rückwärtsplanen (*Regression*) entsteht. Basierend auf diesem Suchbaum, geben Sie alle gefundenen Pläne an, die das Problem lösen.

Aufgabe 4.2 Partial-Order Planning

action:

Wir betrachten wieder eine Situation aus der Blocksworld:

beschrieben durch die Ausgangssituation: on(a,table), on(b,table), on(c,a), clear(b), clear(c),

handempty, block(a), block(b), block(c)

und die Zielbeschreibung: on(b,a), on(c,b)

Gegeben seien die folgenden Aktionen aus der Vorlesung:

unstack(X,Y)		action:	stack(X,Y)	
preconditions:	handempty,		preconditions:	holding(X),
	block(X),			block(X),
	block(Y),			block(Y),
	clear(X),			clear(Y)
	on(X,Y)		add:	handempty
add:	holding(X)			clear(X),
	clear(Y)			on(X,Y)
delete:	handempty,		delete:	holding(X),
	clear(X),			clear(Y)
	on(X,Y)			

action: putdown(X) action: pickup(X)

clear(X),

preconditions: holding(X) preconditions: handempty, add: handempty, block(X),

block(X), clear(X), on(X,table)

 $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ \text{delete:} & & & & & & \\ \text{holding(X)} & & & & & \\ \text{add:} & & & & \\ \text{holding(X)} & & & \\ \end{array}$

delete: handempty, clear(X),

clear(X), on(X,table)

a) Erzeugen sie einen Plan mittels Partial Order Planning.

b) Wenn Sie diesen Plan ausführen wollen, welche Möglichkeiten der Abarbeitung gibt es?

Aufgabe 4.3 Wahrscheinlichkeiten

Gegeben seien die unbedingten Wahrscheinlichkeiten P(A) = 0.4 und P(B) = 0.3 und $P(A \lor B) = 0.5$.

a) Berechnen Sie die gemeinsame Wahrscheinlichkeitsverteilung P(A, B). Dokumentieren Sie Ihren Lösungsweg.

b) Berechnen Sie mit Hilfe von P(A,B) die bedingten Wahrscheinlichkeiten $P(A \land B | A \lor B)$ und $P(A|A \to B)$. Dokumentieren Sie Ihren Lösungsweg.

c) Leiten Sie $P(C) = P(C \land D) + P(C \land \neg D)$ aus den Axiomen der Wahrscheinlichkeit und den Äquivalenzen der Aussagenlogik her.