SSD1322

Product Preview

480 x 128, Dot Matrix High Power OLED/PLED Segment/Common Driver with Controller

CONTENTS

1	GL	NERAL DESCRIPTION	C
2	FE	ATURES	6
3	OR	DERING INFORMATION	6
4	BL	OCK DIAGRAM	7
5	DIE	E PAD FLOOR PLAN	8
6		ARRANGEMENT	
6.		1322UR1 PIN ASSIGNMENT	
7		DESCRIPTIONS	
8		NCTIONAL BLOCK DESCRIPTIONS	
8.		J Interface	
	8.1.1 M	ICU Parallel 6800-series Interface	17
	8.1.2 M	ICU Parallel 8080-series Interface	18
	8.1.3 M	ICU Serial Interface (4-wire SPI)	
	8.1.4 M	ICU Serial Interface (3-wire SPI)	20
8.		ET CIRCUIT.	
8.		DRAM	
ć	8.3.1 G	DDRAM structure in Gray Scale mode	21
ć	8.3.2 D	ata bus to RAM mapping	21
8.	.4 Com	MAND DECODER	22
8.	.5 Osci	ILLATOR & TIMING GENERATOR	22
8.	.6 SEG	/COM Driving Block	23
8.		/ COM Driver	
_	9 Cp.	Y SCALE DECODER	25
8.			
8.	9 Pow	ER ON AND OFF SEQUENCE.	29
8.	.9 Pow .10 V	ER ON AND OFF SEQUENCE	29
8. 8.	.9 Pow .10 V	ER ON AND OFF SEQUENCE	29
8. 8. 9	.9 Pow .10 V	ER ON AND OFF SEQUENCE	29
8. 8. 9 10	.9 Pow .10 V	ER ON AND OFF SEQUENCE	30 31
8. 8. 9 10	9 Pow 10 V CO	ER ON AND OFF SEQUENCE	31 35
8. 8. 9 10	9 Pow 10 V CO CO	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE MMAND Enable Gray Scale Table (00h)	31 35 35
8. 8. 9 10	9 Pow 10 V CO CO 10.1.1 10.1.2	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h). Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh)	3135353535
8. 8. 9 10	9 Pow V CO CO 10.1.1 10.1.2 10.1.3	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h). Set Column Address (15h) Write RAM Command (5Ch)	3135353535
8. 8. 9 10	9 Pow V CO CO 10.1.1 10.1.2 10.1.3 10.1.4	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h). Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh)	313535353535
8. 8. 9 10	9 Pow V CO CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h)	3135353536363636363636
8. 8. 9 10	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h)	313535353636363636363636
8. 8. 99 110	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h)	
8. 8. 9 110	9 Pow 10 V CO CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h)	
8. 8. 9 10	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11	ER ON AND OFF SEQUENCE. DD REGULATOR MMAND TABLE. Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h) Exit Partial Display (A9h)	
8. 8. 9 110	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12	ER ON AND OFF SEQUENCE DD REGULATOR MMAND Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h) Exit Partial Display (A9h) Set Function selection (ABh)	
8. 8. 9 110	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12	ER ON AND OFF SEQUENCE DD REGULATOR. MMAND TABLE Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h) Exit Partial Display (A9h) Set Function selection (ABh) Set Display ON/OFF (AEh / AFh)	
8. 8. 99 110	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14	ER ON AND OFF SEQUENCE DD REGULATOR MMAND TABLE Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h) Exit Partial Display (A9h) Set Function selection (ABh) Set Display ON/OFF (AEh / AFh) Set Phase Length (B1h)	29 30 31 35 35 35 36 36 40 41 42 43 43 43
8. 8. 99 110	9 Pow 10 V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15	ER ON AND OFF SEQUENCE DD REGULATOR MMAND TABLE. MMAND Enable Gray Scale Table (00h) Set Column Address (15h) Write RAM Command (5Ch) Read RAM Command (5Dh) Set Row Address (75h) Set Re-map & Dual COM Line Mode (A0h) Set Display Start Line (A1h) Set Display Offset (A2h) Set Display Mode (A4h ~ A7h) Enable Partial Display (A8h) Exit Partial Display (A9h) Set Function selection (ABh) Set Phase Length (B1h) Set Front Clock Divider / Oscillator Frequency (B3h)	29 30 31 35 35 36 36 37 40 41 42 43 43 43 43
8. 8. 99 110	9 Pow V CO CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16	ER ON AND OFF SEQUENCE	29 30 31 31 35 35 35 36 36 37 40 41 42 43 43 43 43 43
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.14 10.1.15 10.1.16 10.1.17	ER ON AND OFF SEQUENCE	29 30 30 31 35 35 35 36 36 37 40 41 42 43 43 43 43 43
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18	ER ON AND OFF SEQUENCE	29 30 31 31 35 35 35 35 36 37 40 41 42 43 43 43 43 44 44
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.18 10.1.19	ER ON AND OFF SEQUENCE	29 30 30 31 31 35 35 35 36 37 40 41 42 43 43 43 44 44 44
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.17 10.1.18 10.1.17 10.1.18	ER ON AND OFF SEQUENCE	29 30 30 31 31 35 35 35 36 37 40 41 42 43 43 43 44 44 44
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.17 10.1.18 10.1.17 10.1.18 10.1.19 10.1.20 10.1.21	ER ON AND OFF SEQUENCE	29 30 30 31 31 35 35 35 36 37 40 41 42 43 43 43 44 44 44 44 44
8. 8. 99 110	9 Pow V CO 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.17 10.1.18 10.1.17 10.1.18	ER ON AND OFF SEQUENCE	29 30 30 31 31 35 35 35 36 37 40 41 42 43 43 43 44 44 44 44 44 44 44

Ī	10.1.24	Set Multiplex Ratio (CAh)	45
Ì	10.1.25	Set Multiplex Ratio (CAh) Set Command Lock (FDh)	45
11	MA	AXIMUM RATINGS	46
12	DC	CHARACTERISTICS	47
13	AC	CHARACTERISTICS	48
14	AP	PLICATION EXAMPLES	53
15	PA	CKAGE INFORMATION	55
14	5.1 S	SSD1322LIR1 DETAIL DIMENSION	55

SSD1322 | Rev 0.10 | P 3/56 | Apr 2008 | **Solomon Systech**

TABLES

Table 3-1: Ordering Information	6
TABLE 5-1: SSD1322Z BUMP DIE PAD COORDINATES	9
TABLE 6-1: SSD1322UR1 PIN ASSIGNMENT TABLE	13
TABLE 7-1: SSD1352 PIN DESCRIPTION.	14
TABLE 7-2: BUS INTERFACE SELECTION	14
TABLE 8-1: MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE	17
TABLE 8-2: CONTROL PINS OF 6800 INTERFACE.	17
TABLE 8-3: CONTROL PINS OF 8080 INTERFACE (FORM 1)	19
TABLE 8-4: CONTROL PINS OF 4-WIRE SERIAL INTERFACE.	19
TABLE 8-5: CONTROL PINS OF 3-WIRE SERIAL INTERFACE.	20
TABLE 8-6: GDDRAM IN GRAY SCALE MODE (RESET)	21
Table 8-7: Data bus usage	21
TABLE 9-1: COMMAND TABLE	31
TABLE 11-1: MAXIMUM RATINGS	46
TABLE 12-1: DC CHARACTERISTICS	
TABLE 13-1: AC CHARACTERISTICS	
TABLE 13-2: 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS.	
TABLE 13-3: 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS.	
TABLE 13-4: SERIAL INTERFACE TIMING CHARACTERISTICS (4-WIRE SPI)	
TABLE 13-5: SERIAL INTERFACE TIMING CHARACTERISTICS (3-WIRE SPI)	52
confidential to the terminal tracking the confidential tracking tracking the confidential tracking	

SSD1322 | Rev 0.10 | P 4/56 | Apr 2008 | Solomon Systech

FIGURES

Figure 4-1 : SSD1322 Block Diagram	7
Figure 5-1: SSD1322Z Die Drawing	8
FIGURE 5-2: SSD1322Z ALIGNMENT MARK DIMENSION	8
FIGURE 6-1: SSD1322UR1 PIN ASSIGNMENT	
FIGURE 8-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	
FIGURE 8-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE	
FIGURE 8-3: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE	
FIGURE 8-4: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	
FIGURE 8-5 : WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE	20
FIGURE 8-6: WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE.	20
Figure 8-7 : Oscillator Circuit	22
FIGURE 8-8 : I _{ref} Current Setting by Resistor Value	
FIGURE 8-9 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM – SINGLE COM MODE	24
FIGURE 8-10 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM – DUAL COM MODE	25
FIGURE 8-11 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM	26
FIGURE 8-12 : GRAY SCALE CONTROL BY PWM IN SEGMENT	27
FIGURE 8-13: RELATION BETWEEN GDDRAM CONTENT AND GRAY SCALE TABLE ENTRY (UNDER COMMAND B9H	
Enable Linear Gray Scale Table)	28
FIGURE 8-14: THE POWER ON SEQUENCE.	29
FIGURE 8-15 : THE POWER OFF SEQUENCE	
Figure 8-16 V_{CI} > 2.6V, V_{DD} regulator enable pin connection scheme	30
FIGURE 8-17 V _{DD} REGULATOR DISABLE PIN CONNECTION SCHEME	
FIGURE 10-110-2: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT (GRAY SCALE MODE)	
FIGURE 10-3: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE	
FIGURE 10-4: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE	37
FIGURE 10-5: GDDRAM IN GRAY SCALE MODE WITH OR WITHOUT COLUMN ADDRESS (A[1]) & NIBBLE REMAPPING	
(A[2])	
FIGURE 10-6 : COM PINS HARDWARE CONFIGURATION – 1 (MUX RATIO: 128)	
FIGURE 10-7 : COM PINS HARDWARE CONFIGURATION – 2 (MUX RATIO: 64).	
FIGURE 10-8: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP	
FIGURE 10-9: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP	
FIGURE 10-10 : EXAMPLE OF NORMAL DISPLAY	
FIGURE 10-11 : EXAMPLE OF ENTIRE DISPLAY ON	
FIGURE 10-12 : EXAMPLE OF ENTIRE DISPLAY OFF	
FIGURE 10-13: EXAMPLE OF INVERSE DISPLAY	
FIGURE 10-14: EXAMPLE OF PARTIAL MODE DISPLAY	
FIGURE 10-15: EXAMPLE OF GAMMA CORRECTION BY GAMMA LOOK UP TABLE SETTING	
FIGURE 13-1: 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS.	
FIGURE 13-2: 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS	
FIGURE 13-3: SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)	51
FIGURE 13-4: SERIAL INTERFACE CHARACTERISTICS (3-WIRE SPI)	52
FIGURE 14-1: SSD1322 APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE MODE (INTERNAL REGULATED	
V _{DD})	53
FIGURE 14-2 : SSD1322 APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE, DUAL COM MODE (INTERNAL	<i>-</i> 4
V _{DD})	54
FIGURE 15-1: SSD1322UR1 DETAIL DIMENSION	>5

SSD1322 Rev 0.10 P 5/56 Apr 2008 **Solomon Systech**

GENERAL DESCRIPTION

SSD1322 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 480 segments and 128 commons. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1322 displays data directly from its internal 480 x 128 x 4 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface. This driver IC has a 256 steps contrast control and can be widely used in many applications such as automotive and industrial control panel.

2 **FEATURES**

- Resolution: 480 x 128 dot matrix panel
- Power supply

 $V_{DD} = 2.4V - 2.6V$ (Core V_{DD} power supply, can be regulated from V_{CI})

 $V_{DDIO} = 1.65 V - V_{CL}$ (MCU interface logic level) $V_{CI} = 2.4V - 3.5V$ (Low voltage power supply) \circ $V_{CC} = 10.0V - 20.0V$ (Panel driving power supply)

- When V_{CI} is lower than 2.6V, V_{DD} should be supplied by external power source
- For matrix display
 - o OLED driving output voltage, 20V maximum
 - o Segment maximum source current: 300uA
 - o Common maximum sink current: 80mA
 - 256 step contrast brightness current control, 16 step master current control
- 16 gray scale levels supported by embedded 480 x 128 x 4 bit SRAM display buffer
- Selectable MCU Interfaces:
- echnolo 8-bit 6800/8080-series parallel interface
 - 3/4-wire Serial Peripheral Interface
- Selectable Common current sinking mode:
 - o Dual COM mode
 - Single COM mode
- 8-bit programmable Gray Scale Look Up Table
- **High Power Protection**
- Programmable Frame Rate and Multiplexing Ratio
- Row re-mapping and Column re-mapping
- Sleep mode current <10uA with ram data kept
- Operating temperature range -40°C to 85°C.

ORDERING INFORMATION 3

Table 3-1: Ordering Information

Ordering Part Number	SEG	COM	Package Form	Reference	Remark
SSD1322Z	480	128	Gold bump Die	Page 8	 Min SEG pitch: 25um Min COM pitch: 35um Die thickness: 300 +/- 25um
SSD1322UR1	256	64 (dual COM)	COF	Page 12, 55	 70mm film, 4 SPH 8-bit 80/68/SPI interfaces SEG, COM lead pitch 0.12mm x 0.999 = 0.11988mm Also support 128 MUX (single COM) Die thickness: 457 +/- 25um

Rev 0.10 P 6/56 Apr 2008 SSD1322 Solomon Systech

4 BLOCK DIAGRAM

 V_{CI} BGGND-V_{DD} Regulator V_{DD} RES# Common Drivers COM126 COM124 CS#-D/C#-(even) R/W# (WR#) Gray Scale Decoder E(RD#) BS0 GDDRAM COM2 BS1-COM0 MCU Interface D7 **∢** D6**◆** D5 **←** D4**∢** Segment Drivers D3 **←** SEG0 SEG1 D2**◆** D1 ◀ D0 **◆** $\begin{matrix} V_{DDIO} \\ V_{CC} \\ V_{CI} \end{matrix}$ SEG478 SEG479 V_{DD1} V_{SS} $\begin{matrix} V_{LSS} \\ V_{SL} \end{matrix}$ SEG/COM Driving Block Common Drivers Display Timing Generator COM1 Oscillator (ppo) COM3 Command Decoder GPIO0 ◀ GPIO1 ◀ COM125 COM127 CLS DOF# V_{COMH} FR #S/W $I_{\rm REF}$

Figure 4-1: SSD1322 Block Diagram

SSD1322 | Rev 0.10 | P 7/56 | Apr 2008 | **Solomon Systech**

5 DIE PAD FLOOR PLAN

Figure 5-1: SSD1322Z Die Drawing

Die size	12.4 mm x 1.53 mm
Die thickness	300 +/- 25um
Min I/O pad pitch	70um
Min SEG pad pitch	25um
Min COM pad pitch	35um
Bump height	Nominal 15um

Bump size		
Pad#	X[um]	Y[um]
1-48, 146-193	26	60
195-216, 706-727	60	26
49-145	45	90
194, 728	60	50
217, 705	50	50
218, 704	50	94
219-703	16	94

Alignment mark	Position	Size
+ shape	(5583.95,200.78)	75um x 75um
+ shape	(-5634.61,-309.88)	75um x 75um
SSL Logo	(-5682.11,-258.98)	-

(For details dimension please see Figure 5-2)

Pad 1,2,3,...->728 Gold Bumps face up

Figure 5-2: SSD1322Z alignment mark dimension

SSD1322 Rev 0.10 P 8/56 Apr 2008 **Solomon Systech**

Table 5-1: SSD1322Z Bump Die Pad Coordinates

Pad no.	Pin name	X-pos															
1			Y-pos	L	Pad no.	Pin name	X-pos	Y-pos	Pad no.	Pin name	X-pos	Y-pos		Pad no.	Pin name	X-pos	Y-pos
	LVSS	-5833.06	-669.15	-	81	RES#	-1381.06	-654.15	161	COM50	4708.06	-669.15		241	SEG22	5500	687.81
3	LVSS COM84	-5798.06	-669.15	H	82 83	CS# D/C#	-1311.06 -1241.06	-654.15 -654.15	162	COM49	4743.06	-669.15		242	SEG23 SEG24	5475 5450	687.81 687.81
4	COM84 COM85	-5758.06 -5723.06	-669.15 -669.15	 -	84	VSS	-1241.06	-654.15	164	COM48 COM47	4778.06 4813.06	-669.15 -669.15		243	SEG24 SEG25	5425	687.81
5	COM86	-5688.06	-669.15	F	85	BS1	-1101.06	-654.15	165	COM46	4848.06	-669.15		245	SEG25	5400	687.81
6	COM87	-5653.06	-669.15	 	86	VDDIO	-1031.06	-654.15	166	COM45	4883.06	-669.15		246	SEG27	5375	687.81
7	COM88	-5618.06	-669.15	-	87	BS0	-961.06	-654.15	167	COM44	4918.06	-669.15		247	SEG28	5350	687.81
8	COM89	-5583.06	-669.15	F	88	VSS	-891.06	-654.15	168	COM43	4953.06	-669.15		248	SEG29	5325	687.81
9	COM90	-5548.06	-669.15	F	89	R/W#(WR#)	-821.06	-654.15	169	COM42	4988.06	-669.15		249	SEG30	5300	687.81
10	COM91	-5513.06	-669.15		90	E(RD#)	-751.06	-654.15	170	COM41	5023.06	-669.15		250	SEG31	5275	687.81
11	COM92	-5478.06	-669.15		91	VDDIO	-681.06	-654.15	171	COM40	5058.06	-669.15		251	SEG32	5250	687.81
12	COM93	-5443.06	-669.15		92	VDD1	-528.06	-654.15	172	COM39	5093.06	-669.15		252	SEG33	5225	687.81
13	COM94	-5408.06	-669.15		93	VDD1	-458.06	-654.15	173	COM38	5128.06	-669.15		253	SEG34	5200	687.81
14	COM95	-5373.06	-669.15		94	VDD1	-388.06	-654.15	174	COM37	5163.06	-669.15		254	SEG35	5175	687.81
15	COM96	-5338.06	-669.15	L	95	VDD	-290.06	-654.15	175	COM36	5198.06	-669.15		255	SEG36	5150	687.81
16	COM97	-5303.06	-669.15	_	96	VDD	-220.06	-654.15	176	COM35	5233.06	-669.15		256	SEG37	5125	687.81
17	COM98	-5268.06	-669.15	L	97	VDD	-150.06	-654.15	177	COM34	5268.06	-669.15		257	SEG38	5100	687.81
18	COM99	-5233.06	-669.15	-	98	NC	-36.06	-654.15	178	COM33	5303.06	-669.15		258	SEG39	5075	687.81
19	COM100	-5198.06	-669.15	ŀ	99 100	NC	33.94 103.94	-654.15	179	COM32	5338.06	-669.15		259	SEG40	5050 5025	687.81
20	COM101 COM102	-5163.06 -5128.06	-669.15 -669.15	H	100	NC VCI	217.94	-654.15 -654.15	180	COM31 COM30	5373.06 5408.06	-669.15 -669.15		260 261	SEG41 SEG42	5000	687.81 687.81
22	COM102 COM103	-5128.06	-669.15	F	102	D0	309.94	-654.15	182	COM29	5443.06	-669.15		262	SEG42 SEG43	4975	687.81
23	COM103 COM104	-5058.06	-669.15	 -	102	D0	395.94	-654.15	183	COM29 COM28	5478.06	-669.15		263	SEG43 SEG44	49/5	687.81
24	COM104 COM105	-5023.06	-669.15	 -	103	D2	505.94	-654.15	184	COM27	5513.06	-669.15		264	SEG44 SEG45	4930	687.81
25	COM105	-4988.06	-669.15	 	105	D3	591.94	-654.15	185	COM26	5548.06	-669.15		265	SEG46	4900	687.81
26	COM107	-4953.06	-669.15		106	D4	701.94	-654.15	186	COM25	5583.06	-669.15		266	SEG47	4875	687.81
27	COM108	-4918.06	-669.15	 	107	D5	787.94	-654.15	187	COM24	5618.06	-669.15		267	SEG48	4850	687.81
28	COM109	-4883.06	-669.15		108	D6	897.94	-654.15	188	COM23	5653.06	-669.15		268	SEG49	4825	687.81
29	COM110	-4848.06	-669.15		109	D7	983.94	-654.15	189	COM22	5688.06	-669.15		269	SEG50	4800	687.81
30	COM111	-4813.06	-669.15		110	DN0	1093.94	-654.15	190	COM21	5723.06	-669.15		270	SEG51	4775	687.81
31	COM112	-4778.06	-669.15		111	DN1	1179.94	-654.15	191	COM20	5758.06	-669.15		271	SEG52	4750	687.81
32	COM113	-4743.06	-669.15	L	112	DN2	1289.94	-654.15	192	LVSS	5793.06	-669.15		272	SEG53	4725	687.81
33	COM114	-4708.06	-669.15	L	113	DN3	1375.94	-654.15	193	LVSS	5828.06	-669.15		273	SEG54	4700	687.81
34	COM115	-4673.06	-669.15	_	114	DN4	1485.94	-654.15	194	LVSS	6092.34	-674.15		274	SEG55	4675	687.81
35	COM116	-4638.06	-669.15	L	115	DN5	1571.94	-654.15	195	COM19	6092.34	-627.15		275	SEG56	4650	687.81
36	COM117	-4603.06	-669.15	F	116	DN6	1681.94	-654.15	196	COM18	6092.34	-592.15		276	SEG57	4625	687.81
37 38	COM118	-4568.06	-669.15	ŀ	117	DN7 DN8	1767.94	-654.15	197	COM17	6092.34	-557.15		277	SEG58	4600	687.81
39	COM119 COM120	-4533.06 -4498.06	-669.15 -669.15	 -	118 119	DN9	1877.94 1963.94	-654.15 -654.15	198	COM16 COM15	6092.34 6092.34	-522.15 -487.15		279	SEG59 SEG60	4575 4550	687.81 687.81
40	COM120	-4463.06	-669.15	H	120	VSS	2055.94	-654.15	200	COM13	6092.34	-452.15	4	280	SEG61	4525	687.81
41	COM121	-4428.06	-669.15	-	121	BGGND	2125.94	-654.15	200	COM14 COM13	6092.34	-432.15		281	SEG62	4523	687.81
42	COM123	-4393.06	-669.15		122	MS	2195.94	-654.15	202	COM12	6092.34	-382.15	٧,	282	SEG63	4475	687.81
43	COM124	-4358.06	-669.15		123	CLS	2265.94	-654.15	203	COM11	6092.34	-347.15		283	SEG64	4450	687.81
44	COM125	-4323.06	-669.15		124	VSL	2335.94	-654.15	204	COM10	6092.34	-312.15		284	SEG65	4425	687.81
45	COM126	-4288.06	-669.15		125	VSL	2405.94	-654.15	205	COM9	6092.34	-277.15		285	SEG66	4400	687.81
46	COM127	-4253.06	-669.15		126	VCI	2475.94	-654.15	206	COM8	6092.34	-242.15		286	SEG67	4375	687.81
47	LVSS	-4218.06	-669.15		127	VDDIO	2628.94	-654.15	207	COM7	6092.34	-207.15		287	SEG68	4350	687.81
48	LVSS	-4183.06	-669.15		128	VDDIO	2698.94	-654.15	208	COM6	6092.34	-172.15		288	SEG69	4325	687.81
49	VSS	-4033.06	-654.15		129	VDD	2768.94	-654.15	209	COM5	6092.34	-137.15		289	SEG70	4300	687.81
50	VSS	-3963.06	-654.15	L	130	NC	2878.94	-654.15	210	COM4	6092.34	-102.15		290	SEG71	4275	687.81
51	VCC	-3874.06	-654.15	L	131	VSS	2948.94	-654.15	211	COM3	6092.34	-67.15		291	SEG72	4250	687.81
52	VCC	-3804.06	-654.15	 -	132	VSS	3018.94	-654.15	212	COM2	6092.34	-32.15		292	SEG73	4225	687.81
53	VCOMH	-3697.06	-654.15		133	LVSS	3088.94	-654.15	213	COM1	6092.34	2.85		293	SEG74	4200	687.81
54	VCOMH	-3627.06	-654.15	-	134	LVSS	3158.94	-654.15 -654.15	214	COM0	6092.34	37.85		294	SEG75	4175	687.81
55	LVSS	-3557.06	-654.15 -654.15	-	135	VCOMH	3228.94 3298.94		215	LVSS	6092.34	73.29 108.29		295	SEG76	4150	687.81
56 57	LVSS VSS	-3487.06 -3417.06	-654.15 -654.15	H	136	VCOMH VCC	3405.94	-654.15 -654.15	216 217	LVSS VSL	6092.34	311.09		296 297	SEG77 SEG78	4125 4100	687.81 687.81
58	VSS	-3417.06	-654.15		137	VCC	3405.94	-654.15	217	VCC	6097.34	687.81		297	SEG78 SEG79	4075	687.81
59	VSL	-3277.06	-654.15		139	VSS	3572.94	-654.15	219	SEG0	6050	687.81		299	SEG80	4050	687.81
60	VSL	-3207.06	-654.15	 	140	VSS	3642.94	-654.15	220	SEG1	6025	687.81		300	SEG81	4025	687.81
61	VCI	-3137.06	-654.15		141	VSS	3712.94	-654.15	221	SEG2	6000	687.81		301	SEG82	4000	687.81
62	VCI	-3067.06	-654.15		142	VSS	3782.94	-654.15	222	SEG3	5975	687.81		302	SEG83	3975	687.81
63	VDD1	-2914.06	-654.15		143	VSS	3852.94	-654.15	223	SEG4	5950	687.81		303	SEG84	3950	687.81
64	VDD1	-2844.06	-654.15		144	VSS	3922.94	-654.15	224	SEG5	5925	687.81		304	SEG85	3925	687.81
65	VDD	-2746.06	-654.15		145	VSS	3992.94	-654.15	225	SEG6	5900	687.81		305	SEG86	3900	687.81
66	VDD	-2676.06	-654.15	L	146	LVSS	4183.06	-669.15	226	SEG7	5875	687.81		306	SEG87	3875	687.81
67	VDD	-2606.06	-654.15	L	147	LVSS	4218.06	-669.15	227	SEG8	5850	687.81		307	SEG88	3850	687.81
68	VDDIO	-2453.06	-654.15	L	148	COM63	4253.06	-669.15	228	SEG9	5825	687.81		308	SEG89	3825	687.81
69	VDDIO	-2383.06	-654.15		149	COM62	4288.06	-669.15	229	SEG10	5800	687.81		309	SEG90	3800	687.81
70	VDD	-2313.06	-654.15		150	COM61	4323.06	-669.15	230	SEG11	5775	687.81		310	SEG91	3775	687.81
71	LVSS	-2243.06	-654.15	-	151	COM60	4358.06	-669.15	231	SEG12	5750	687.81		311	SEG92	3750	687.81
72	GPIO0	-2151.06	-654.15	-	152	COM59	4393.06	-669.15	232	SEG14	5725	687.81		312	SEG93	3725	687.81
73	GPIO1	-2065.06	-654.15	-	153	COM58	4428.06	-669.15	233	SEG14	5700	687.81		313	SEG94	3700	687.81
74	IREF	-1973.06	-654.15	-	154	COM56	4463.06	-669.15	234	SEG15	5675	687.81		314	SEG95	3675	687.81
75 76	FR CL	-1881.06 -1795.06	-654.15 -654.15	-	155 156	COM56 COM55	4498.06 4533.06	-669.15 -669.15	235	SEG16 SEG17	5650 5625	687.81 687.81		315 316	SEG96 SEG97	3650 3625	687.81 687.81
76	VSS	-1795.06 -1703.06	-654.15 -654.15	 -	156	COM55 COM54	4533.06 4568.06	-669.15	236	SEG17 SEG18	5625	687.81		316	SEG97 SEG98	3625	687.81
78	DOF#	-1611.06	-654.15	 -	157	COM54 COM53	4603.06	-669.15	238	SEG18 SEG19	5575	687.81		317	SEG98 SEG99	3575	687.81
79	NC	-1521.06	-654.15	 -	159	COM52	4638.06	-669.15	239	SEG20	5550	687.81		319	SEG100	3550	687.81
	VSS	-1451.06	-654.15	 	160	COM51	4673.06	-669.15	240	SEG20	5525	687.81		320	SEG100	3525	687.81
80																	•

SSD1322 Rev 0.10 P 9/56 Apr 2008 **Solomon Systech**

Pad no.	Pin name	X-pos	Y-pos
321	SEG102	3500	687.81
322	SEG103	3475	687.81
323	SEG104	3450	687.81
324 325	SEG105 SEG106	3425 3400	687.81 687.81
326	SEG100 SEG107	3375	687.81
327	SEG107 SEG108	3350	687.81
328	SEG109	3325	687.81
329	SEG110	3300	687.81
330	SEG111	3275	687.81
331	SEG112	3250	687.81
332	SEG113 SEG114	3225 3200	687.81 687.81
334	SEG115	3175	687.81
335	SEG116	3150	687.81
336	SEG117	3125	687.81
337	SEG118	3100	687.81
338	SEG119	3075	687.81
339	SEG120	3050	687.81
340 341	SEG121 SEG122	3025 3000	687.81 687.81
342	SEG122 SEG123	2975	687.81
343	SEG124	2950	687.81
344	SEG125	2925	687.81
345	SEG126	2900	687.81
346	SEG127	2875	687.81
347	SEG128	2850	687.81
348	SEG129	2825	687.81
349	SEG130	2800 2775	687.81
350 351	SEG131 SEG132	27/5	687.81 687.81
352	SEG132 SEG133	2725	687.81
353	SEG134	2700	687.81
354	SEG135	2675	687.81
355	SEG136	2650	687.81
356	SEG137	2625	687.81
357	SEG138	2600	687.81
358	SEG139	2575	687.81
359 360	SEG140 SEG141	2550 2525	687.81 687.81
361	SEG141 SEG142	2500	687.81
362	SEG143	2475	687.81
363	SEG144	2450	687.81
364	SEG145	2425	687.81
365	SEG146	2400	687.81
366	SEG147	2375	687.81
367 368	SEG148 SEG149	2350 2325	687.81 687.81
369	SEG150	2300	687.81
370	SEG151	2275	687.81
371	SEG152	2250	687.81
372	SEG153	2225	687.81
373	SEG154	2200	687.81
374	SEG155	2175	687.81
375	SEG156	2150	687.81
376 377	SEG157 SEG158	2125 2100	687.81 687.81
378	SEG159	2075	687.81
379	SEG160	2050	687.81
380	SEG161	2025	687.81
381	SEG162	2000	687.81
382	SEG163	1975	687.81
383	SEG164	1950	687.81
384 385	SEG165 SEG166	1925 1900	687.81 687.81
386	SEG167	1875	687.81
387	SEG168	1850	687.81
388	SEG169	1825	687.81
389	SEG170	1800	687.81
390	SEG171	1775	687.81
391	SEG172	1750	687.81
392	SEG173	1725	687.81
393	SEG174	1700	687.81
394 395	SEG175 SEG176	1675 1650	687.81 687.81
396	SEG176 SEG177	1625	687.81
397	SEG177	1600	687.81
398	SEG179	1575	687.81
399	SEG180	1550	687.81

Pad no.	Pin name	X-pos	Y-pos
401	SEG182	1500	687.81
402	SEG183	1475	687.81
403	SEG184 SEG185	1450 1425	687.81
404	SEG185 SEG186	1425	687.81 687.81
406	SEG180 SEG187	1375	687.81
407	SEG187	1350	687.81
408	SEG189	1325	687.81
409	SEG190	1300	687.81
410	SEG191	1275	687.81
411	SEG192	1250	687.81
412	SEG193	1225	687.81
413	SEG194	1200	687.81
414	SEG195	1175	687.81
415	SEG196	1150	687.81
416	SEG197	1125	687.81
417	SEG198	1100	687.81
418	SEG199	1075	687.81
419	SEG200	1050	687.81
420	SEG201	1025	687.81
421	SEG202	1000	687.81
422	SEG203	975	687.81
423	SEG204	950	687.81
424	SEG205	925	687.81
425	SEG206	900	687.81
426	SEG207	875	687.81
427	SEG208	850	687.81
428 429	SEG209 SEG210	825 800	687.81 687.81
429		000	687.81
430	SEG211 SEG212	775 750	687.81
431	SEG212 SEG213	725	687.81
432	SEG213 SEG214	700	687.81
434	SEG214 SEG215	675	687.81
435	SEG216	650	687.81
436	SEG217	625	687.81
437	SEG218	600	687.81
438	SEG219	575	687.81
439	SEG220	550	687.81
440	SEG221	525	687.81
441	SEG222	500	687.81
442	SEG223	475	687.81
443	SEG224	450	687.81
444	SEG225	425	687.81
445	SEG226	400	687.81
446	SEG227	375	687.81
447	SEG228	350	687.81
448	SEG229	325	687.81
449	SEG230	300	687.81
450	SEG231	275	687.81
451 452	SEG232 SEG233	250 225	687.81
452	SEG233 SEG234	200	687.81 687.81
453	SEG234 SEG235	175	687.81
455	SEG235 SEG236	150	687.81
456	SEG230	125	687.81
457	SEG238	100	687.81
458	SEG239	75	687.81
459	VCC	50	687.81
460	VCC	25	687.81
461	VCC	0	687.81
462	VCC	-25	687.81
463	VCC	-50	687.81
464	SEG240	-75	687.81
465	SEG241	-100	687.81
466	SEG242	-125	687.81
467	SEG243	-150	687.81
468	SEG244	-175	687.81
469	SEG245	-200	687.81
470	SEG246	-225	687.81
471	SEG247	-250	687.81
472	SEG248	-275	687.81
473	SEG249	-300	687.81
474	SEG250	-325	687.81
475	SEG251	-350 276	687.81
476	SEG252	-375 400	687.81
477 478	SEG253 SEG254	-400 -425	687.81 687.81
479	SEG254 SEG255	-423 -450	687.81
+17	000233	~+.50	007.01

Pad no.	Pin name	X-pos	Y-pos
481	SEG257	-500	687.81
482	SEG258	-525	687.81
483	SEG259	-550	687.81
484	SEG260	-575	687.81
485	SEG261	-600	687.81
486	SEG262	-625	687.81
487	SEG263	-650	687.81
488	SEG264	-675	687.81
489	SEG265	-700	687.81
490	SEG266	-725	687.81
491	SEG267	-750	687.81
492	SEG268	-775	687.81
493 494	SEG269	-800	687.81
494	SEG270 SEG271	-825 -850	687.81 687.81
496	SEG271 SEG272	-875	687.81
497	SEG273	-900	687.81
498	SEG274	-925	687.81
499	SEG275	-950	687.81
500	SEG276	-975	687.81
501	SEG277	-1000	687.81
502	SEG278	-1025	687.81
503	SEG279	-1050	687.81
504	SEG280	-1075	687.81
505	SEG281	-1100	687.81
506	SEG282	-1125	687.81
507	SEG283	-1150	687.81
508	SEG284	-1175	687.81
509	SEG285	-1200	687.81
510	SEG286 SEG287	-1225 -1250	687.81 687.81
512	SEG287 SEG288	-1250	687.81
513	SEG289	-1300	687.81
514	SEG290	-1325	687.81
515	SEG291	-1350	687.81
516	SEG292	-1375	687.81
517	SEG293	-1400	687.81
518	SEG294	-1425	687.81
519	SEG295	-1450	687.81
520	SEG296	-1475	687.81
521	SEG297	-1500	687.81
522	SEG298	-1525	687.81
523	SEG299	-1550	687.81
524	SEG300	-1575	687.81
525	SEG301	-1600	687.81
526	SEC303	1625	607 01
526	SEG302 SEG303	-1625 -1650	687.81
527	SEG303	-1650	687.81
	SEG303 SEG304		
527 528	SEG303	-1650 -1675	687.81 687.81
527 528 529	SEG303 SEG304 SEG305	-1650 -1675 -1700	687.81 687.81 687.81
527 528 529 530	SEG303 SEG304 SEG305 SEG306	-1650 -1675 -1700 -1725	687.81 687.81 687.81 687.81
527 528 529 530 531	SEG303 SEG304 SEG305 SEG306 SEG307	-1650 -1675 -1700 -1725 -1750	687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308	-1650 -1675 -1700 -1725 -1750 -1775	687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850 -1875	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850 -1875 -1900	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850 -1875 -1900 -1925	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG310 SEG311 SEG311 SEG312 SEG313 SEG314 SEG315	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850 -1875 -1900 -1925 -1950	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG310 SEG311 SEG312 SEG313 SEG314 SEG314 SEG315 SEG316	-1650 -1675 -1700 -1725 -1750 -1775 -1805 -1825 -1825 -1875 -1900 -1925 -1950 -1975	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG316 SEG316	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1875 -1900 -1925 -1950 -1975 -2000	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG316	-1650 -1675 -1700 -1725 -1750 -1725 -1870 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG316 SEG316 SEG317	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1855 -1900 -1925 -1950 -1970 -2000 -2025 -2050	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG316	-1650 -1675 -1700 -1725 -1750 -1725 -1870 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544	\$EG303 \$EG304 \$EG305 \$EG305 \$EG306 \$EG307 \$EG308 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG317 \$EG318 \$EG319 \$EG319	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1855 -1990 -1925 -1950 -1975 -2000 -2025 -2050 -2075	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG318 SEG319 SEG319 SEG319 SEG319 SEG320 SEG320	-1650 -1675 -1705 -1725 -1750 -1775 -1800 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG318 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319 SEG319	-1650 -1675 -1705 -1725 -1750 -1775 -1800 -1825 -1875 -1900 -1925 -1900 -2025 -2000 -2025 -2075 -2100 -2125	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545 546 547	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG318 SEG319 SEG320 SEG320 SEG320 SEG321 SEG322 SEG322	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1850 -1925 -1900 -1925 -1900 -2025 -2050 -2050 -2010 -2125 -2150	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 533 534 535 536 537 538 539 540 541 542 543 544 545 544	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG317 \$EG318 \$EG319 \$EG320 \$EG321 \$EG322 \$EG322 \$EG322	-1650 -1675 -1700 -1725 -1750 -1775 -1800 -1825 -1875 -1900 -1925 -1975 -2000 -2025 -2050 -2125 -2150 -2150 -2150 -2125 -2150 -2125 -2150 -2125 -2200 -2225	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 540 541 542 543 544 545 546 547 548 549	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG316 SEG317 SEG318 SEG319 SEG323 SEG323 SEG322 SEG323 SEG324 SEG324	-1650 -1675 -1705 -1775 -1800 -1825 -1850 -1875 -1990 -1925 -1950 -2000 -2025 -2050 -2075 -2100 -2125 -2150 -2175 -2200	687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81 687.81
527 528 529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG317 \$EG318 \$EG320 \$EG321 \$EG322 \$EG323 \$EG324 \$EG322 \$EG323 \$EG324 \$EG325 \$EG324 \$EG325 \$EG326 \$EG327 \$EG327	-1650 -1675 -1705 -1775 -1775 -1870 -1875 -1885 -1875 -1985 -1995 -1995 -1995 -2005 -2075 -2100 -2175 -2150 -2175 -2205 -2255 -2255 -2255 -2255 -2255	687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 550	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG316 \$EG317 \$EG318 \$EG316 \$EG317 \$EG318 \$EG320 \$EG321 \$EG322	-1650 -1675 -1705 -1775 -1775 -1800 -1825 -1850 -1875 -1900 -1925 -1950 -2000 -2025 -2075 -2100 -2125 -2150 -2175 -2200 -2225 -2250 -2275 -2300	687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG318 SEG319 SEG323 SEG323 SEG322 SEG323 SEG323 SEG323 SEG324 SEG325 SEG324 SEG327 SEG325 SEG327 SEG328 SEG327 SEG328 SEG329 SEG329 SEG329 SEG329	-1650 -1675 -1705 -1775 -1800 -1875 -1850 -1875 -1850 -1875 -1990 -1925 -2000 -2025 -2050 -2010 -2125 -2150 -2225 -2250 -2225 -2250 -2300 -2325	687.81 687.81
\$27 \$28 \$29 \$30 \$31 \$32 \$33 \$34 \$35 \$36 \$37 \$38 \$39 \$40 \$41 \$42 \$43 \$44 \$45 \$46 \$47 \$48 \$54 \$54 \$55 \$56 \$57 \$57 \$58 \$58 \$58 \$58 \$58 \$58 \$58 \$58	SEG303 SEG304 SEG305 SEG306 SEG307 SEG308 SEG309 SEG310 SEG311 SEG312 SEG313 SEG314 SEG315 SEG316 SEG317 SEG318 SEG319 SEG320 SEG321 SEG322 SEG322 SEG322 SEG323 SEG324 SEG325 SEG326 SEG327 SEG328 SEG327 SEG328 SEG328 SEG329 SEG330 SEG331	-1650 -1675 -1706 -1775 -1750 -1775 -1800 -1825 -1875 -1900 -1925 -1975 -2000 -2025 -2050 -2150 -2150 -2150 -2150 -2150 -2250 -2250 -2250 -2250 -2250 -2250 -2350	687.81 687.81
\$27 \$28 \$29 \$30 \$31 \$32 \$33 \$34 \$35 \$35 \$37 \$38 \$39 \$41 \$42 \$43 \$44 \$45 \$45 \$46 \$47 \$48 \$54 \$55 \$55 \$55 \$55 \$55 \$55 \$55	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG317 \$EG318 \$EG320 \$EG320 \$EG320 \$EG321 \$EG322 \$EG322 \$EG322 \$EG323 \$EG324 \$EG325 \$EG325 \$EG325 \$EG325 \$EG325 \$EG325 \$EG326 \$EG327 \$EG328 \$EG329 \$EG329 \$EG329 \$EG320 \$EG321 \$EG325 \$EG326 \$EG327 \$EG328 \$EG327 \$EG328 \$EG329 \$EG330 \$EG331 \$EG331	-1650 -1675 -1705 -1775 -1775 -1870 -1875 -1885 -1875 -1985 -1995 -1995 -1995 -2005 -2075 -2100 -2175 -2150 -2175 -2205 -2255 -2255 -2255 -2255 -2255 -2255 -2255 -2350 -2355 -2350 -2375	687.81 687.81
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG316 \$EG317 \$EG318 \$EG316 \$EG317 \$EG318 \$EG320 \$EG320 \$EG320 \$EG320 \$EG320 \$EG320 \$EG320 \$EG322 \$EG322 \$EG322 \$EG323 \$EG324 \$EG325 \$EG325 \$EG325 \$EG326 \$EG327 \$EG328 \$EG329 \$EG330 \$EG331 \$EG331	-1650 -1675 -1705 -1775 -1750 -1775 -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2075 -2100 -2125 -2150 -2175 -2200 -2225 -2250 -2250 -2325 -2330 -2325 -23375 -2400	687.81 687.81
\$27 \$28 \$29 \$30 \$31 \$32 \$33 \$34 \$35 \$35 \$37 \$38 \$39 \$41 \$42 \$43 \$44 \$45 \$45 \$46 \$47 \$48 \$54 \$55 \$55 \$55 \$55 \$55 \$55 \$55	\$EG303 \$EG304 \$EG305 \$EG306 \$EG307 \$EG308 \$EG309 \$EG309 \$EG310 \$EG311 \$EG312 \$EG313 \$EG314 \$EG315 \$EG316 \$EG317 \$EG318 \$EG320 \$EG320 \$EG320 \$EG321 \$EG322 \$EG322 \$EG322 \$EG323 \$EG324 \$EG325 \$EG325 \$EG325 \$EG325 \$EG325 \$EG325 \$EG326 \$EG327 \$EG328 \$EG329 \$EG329 \$EG329 \$EG320 \$EG321 \$EG325 \$EG326 \$EG327 \$EG328 \$EG327 \$EG328 \$EG329 \$EG330 \$EG331 \$EG331	-1650 -1675 -1705 -1775 -1775 -1870 -1875 -1885 -1875 -1985 -1995 -1995 -1995 -2005 -2075 -2100 -2175 -2150 -2175 -2205 -2255 -2255 -2255 -2255 -2255 -2255 -2255 -2350 -2355 -2350 -2375	687.81 687.81

Pad no.	Pin name	X-pos	Y-pos
561	SEG337	-2500	687.81
562	SEG338	-2525	687.81
563	SEG339	-2550	687.81
_			
564	SEG340	-2575	687.81
565	SEG341	-2600	687.81
566	SEG342	-2625	687.81
567	SEG343	-2650	687.81
568	SEG344	-2675	687.81
_			
569	SEG345	-2700	687.81
570	SEG346	-2725	687.81
571	SEG347	-2750	687.81
572	SEG348	-2775	687.81
573	SEG349	-2800	687.81
574	SEG350	-2825	687.81
575	SEG351	-2850	687.81
			687.81
576	SEG352	-2875	
577	SEG353	-2900	687.81
578	SEG354	-2925	687.81
579	SEG355	-2950	687.81
580	SEG356	-2975	687.81
581	SEG357	-3000	687.81
582	SEG358	-3025	687.81
583	SEG359	-3050	687.81
584	SEG360	-3075	687.81
585	SEG361	-3100	687.81
586	SEG362	-3125	687.81
587	SEG363	-3150	687.81
588	SEG364	-3175	687.81
589			
	SEG365	-3200	687.81
590	SEG366	-3225	687.81
591	SEG367	-3250	687.81
592	SEG368	-3275	687.81
593	SEG369	-3300	687.81
594	SEG370	-3325	687.81
595	SEG371	-3350	687.81
596			
	SEG372	-3375	687.81
597	SEG373	-3400	687.81
598	SEG374	-3425	687.81
599	SEG375	-3450	687.81
600	SEG376	-3475	687.81
601	SEG377	-3500	687.81
602	SEG378	-3525	687.81
603	SEG379		
		-3550	687.81
604	SEG380	-3575	687.81
605	SEG381	-3600	687.81
606	SEG382	-3625	687.81
607	SEG383	-3650	687.81
608	SEG384	-3675	687.81
609	SEG385	-3700	687.81
610	SEG386	-3725	687.81
	SEG387		
611		-3750	687.81
612	SEG388	-3775	687.81
613	SEG389	-3800	687.81
614	SEG390	-3825	687.81
615	SEG391	-3850	687.81
616	SEG392	-3875	687.81
617	SEG393	-3900	687.81
618	SEG394	-3925	687.81
619	SEG394 SEG395	-3923	687.81
620	SEG396	-3975	687.81
621	SEG397	-4000	687.81
622	SEG398	-4025	687.81
623	SEG399	-4050	687.81
624	SEG400	-4075	687.81
625	SEG401	-4100	687.81
626	SEG402	-4125	687.81
	SEG402 SEG403		
627		-4150	687.81
628	SEG404	-4175	687.81
629	SEG405	-4200	687.81
630	SEG406	-4225	687.81
631	SEG407	-4250	687.81
632	SEG408	-4275	687.81
633	SEG409	-4300	687.81
634	SEG409 SEG410	-4325	687.81
635	SEG411	-4350	687.81
636	SEG412	-4375	687.81
			687.81
637	SEG413	-4400	007.01
	SEG413 SEG414	-4400 -4425	687.81
637			
637 638	SEG414	-4425	687.81

 SSD1322
 Rev 0.10
 P 10/56
 Apr 2008
 Solomon Systech

Pad no.	Pin name	X-pos	Y-pos		
641	SEG417	-4500	687.81		
642	SEG418 SEG419	-4525 -4550	687.81 687.81		
644	SEG419 SEG420	-4575	687.81		
645	SEG421	-4600	687.81		
646	SEG422	-4625	687.81		
647	SEG423	-4650	687.81		
648 649	SEG424 SEG425	-4675 -4700	687.81 687.81		
650	SEG426	-4725	687.81		
651	SEG427	-4750	687.81		
652	SEG428	-4775	687.81		
653 654	SEG429 SEG430	-4800 -4825	687.81 687.81		
655	SEG431	-4850	687.81		
656	SEG432	-4875	687.81		
657	SEG433	-4900	687.81		
658	SEG434	-4925 -4950	687.81		
659 660	SEG435 SEG436	-4975	687.81 687.81		
661	SEG437	-5000	687.81		
662	SEG438	-5025	687.81		
663	SEG439	-5050	687.81		
664	SEG440 SEG441	-5075 -5100	687.81 687.81		
666	SEG441 SEG442	-5125	687.81		
667	SEG443	-5150	687.81		
668	SEG444	-5175	687.81		
669 670	SEG445 SEG446	-5200 -5225	687.81 687.81		
671	SEG446 SEG447	-5225 -5250	687.81		
672	SEG448	-5275	687.81		
673	SEG449	-5300	687.81		
674	SEG450	-5325	687.81		
675 676	SEG451 SEG452	-5350 -5375	687.81 687.81		
677	SEG453	-5400	687.81		
678	SEG454	-5425	687.81		
679	SEG455	-5450	687.81		
680 681	SEG456 SEG457	-5475 -5500	687.81 687.81		
682	SEG458	-5525	687.81		
683	SEG459	-5550	687.81		
684	SEG460	-5575	687.81		
685 686	SEG461 SEG462	-5600 -5625	687.81 687.81		
687	SEG462 SEG463	-5650	687.81		
688	SEG464	-5675	687.81		
689	SEG465	-5700	687.81		
690 691	SEG466 SEG467	-5725 -5750	687.81 687.81		
692	SEG467 SEG468	-5775	687.81		
693	SEG469	-5800	687.81		
694	SEG470	-5825	687.81		
695	SEG471	-5850 5875	687.81		
696 697	SEG472 SEG473	-5875 -5900	687.81 687.81		
698	SEG474	-5925	687.81		
699	SEG475	-5950	687.81		
700 701	SEG476	-5975 6000	687.81		
701	SEG477 SEG478	-6000 -6025	687.81 687.81		
703	SEG479	-6050	687.81		
704	VCC	-6097.34	687.81		
705	VSL	-6097.34	311.09		
706 707	LVSS LVSS	-6092.34 -6092.34	73.29		
708	COM64	-6092.34	37.85		
709	COM65	-6092.34	2.85		
710	COM66	-6092.34	-32.15		
711 712	COM67 COM68	-6092.34 -6092.34	-67.15 -102.15		
713	COM69	-6092.34	-137.15		
714	COM70	-6092.34	-172.15		
715	COM71	-6092.34	-207.15		
716 717	COM72 COM73	-6092.34 -6092.34	-242.15		
717	COM74	-6092.34	-277.15 -312.15		
719	COM75	-6092.34	-347.15		
720	COM76	-6092.34	-382.15		

Pad no.	Pin name	X-pos	Y-pos
721	COM77	-6092.34	-417.15
722	COM78	-6092.34	-452.15
723	COM79	-6092.34	-487.15
724	COM80	-6092.34	-522.15
725	COM81	-6092.34	-557.15
726	COM82	-6092.34	-592.15
727	COM83	-6092.34	-627.15
728	LVSS	-6092.34	-674.15

2.60 7.81 687.81 587.81 77.81 7.81 11

SSD1322 Rev 0.10 P 11/56 Apr 2008 **Solomon Systech**

PIN ARRANGEMENT 6

6.1 SSD1322UR1 pin assignment

Figure 6-1: SSD1322UR1 Pin Assignment

SSD1322 Rev 0.10 P 12/56 Apr 2008 Solomon Systech

Note: (1) COM sequence is listed in terms of dual COM mode; refer to Table 9-1 for details.

Table 6-1: SSD1322UR1 Pin Assignment Table

Pad no.	Pin name	P	ad no.	Pin name		Pad no.	Pin name	Pad no.	Pin name	Pad no.	Pin name	Pad no.	Pin name
1	NC		81	COMB15		161	SEG206	241	NC	321	SEG64	401	COMA0
2	VSS		82	COMB14		162	SEG205	242	NC	322	SEG63	402	COMA1
-		—											
3	VCC	<u> </u>	83	COMB13		163	SEG204	243	NC	323	SEG62	403	COMA2
4	VCOMH	_	84	COMB12		164	SEG203	244	NC	324	SEG61	404	COMA3
5	VLSS		85	COMB11		165	SEG202	245	NC	325	SEG60	405	COMA4
6	D7		86	COMB10		166	SEG201	246	NC	326	SEG59	406	COMA5
7	D6		87	COMB9		167	SEG200	247	NC	327	SEG58	407	COMA6
8	D5		88	COMB8		168	SEG199	248	NC	328	SEG57	408	COMA7
9	D4		89	COMB7		169	SEG198	249	NC	329	SEG56	409	COMA8
10	D3	—	90	COMB6		170	SEG197	250	NC	330	SEG55	410	COMA9
$\overline{}$		—											
11	D2	<u> </u>	91	COMB5		171	SEG196	251	NC	331	SEG54	411	COMA10
12	D1		92	COMB4		172	SEG195	252	NC	332	SEG53	412	COMA11
13	D0		93	COMB3		173	SEG194	253	NC	333	SEG52	413	COMA12
14	E/RD#		94	COMB2		174	SEG193	254	NC	334	SEG51	414	COMA13
15	RW#		95	COMB1		175	SEG192	255	NC	335	SEG50	415	COMA14
16	BS0		96	COMB0		176	SEG191	256	NC	336	SEG49	416	COMA15
17	BS1		97	NC		177	SEG190	257	NC	337	SEG48	417	COMA16
18	DC#		98	NC		178	SEG189	258	SEG127	338	SEG47	418	COMA17
19	CS#		99	NC		179	SEG189	259	SEG127 SEG126	339	SEG46	419	COMA18
-		<u> </u>											
20	RES#		100	NC		180	SEG187	260	SEG125	340	SEG45	420	COMA19
21	FR		101	NC		181	SEG186	261	SEG124	341	SEG44	421	COMA20
22	IREF		102	NC		182	SEG185	262	SEG123	342	SEG43	422	COMA21
23	NC		103	NC		183	SEG184	263	SEG122	343	SEG42	423	COMA22
24	VDDIO		104	NC		184	SEG183	264	SEG121	344	SEG41	424	COMA23
25	VDD		105	NC		185	SEG182	265	SEG120	345	SEG40	425	COMA24
26	VCI	⊢	106	NC		186	SEG182	266	SEG120 SEG119	346	SEG39	426	COMA25
27	VSL	⊢	106	NC NC		186	SEG181 SEG180		SEG119 SEG118				COMA26
-		⊢						267		347	SEG38	427	
28	VLSS	∣	108	NC		188	SEG179	268	SEG117	348	SEG37	428	COMA27
29	VCC	L	109	NC		189	SEG178	269	SEG116	349	SEG36	429	COMA28
30	NC		110	NC		190	SEG177	270	SEG115	350	SEG35	430	COMA29
31	NC		111	NC		191	SEG176	271	SEG114	351	SEG34	431	COMA30
32	NC		112	SEG255		192	SEG175	272	SEG113	352	SEG33	432	COMA31
33	COMB63		113	SEG254		193	SEG174	273	SEG112	353	SEG32	433	COMA32
34	COMB62		114	SEG253		194	SEG174 SEG173	274	SEG112 SEG111	354	SEG31	434	COMA33
		—				_							
35	COMB61		115	SEG252		195	SEG172	275	SEG110	355	SEG30	435	COMA34
36	COMB60		116	SEG251		196	SEG171	276	SEG109	356	SEG29	436	COMA35
37	COMB59		117	SEG250		197	SEG170	277	SEG108	357	SEG28	437	COMA36
38	COMB58		118	SEG249		198	SEG169	278	SEG107	358	SEG27	438	COMA37
39	COMB57		119	SEG248		199	SEG168	279	SEG106	359	SEG26	439	COMA38
40	COMB56		120	SEG247		200	SEG167	280	SEG105	360	SEG25	440	COMA39
41	COMB55		121	SEG246		201	SEG166	281	SEG104	361	SEG24	441	COMA40
42	COMB54	—	122	SEG245		202	SEG165	282	SEG104	362	SEG23	442	COMA41
43	COMB53		123	SEG244		203	SEG164	283	SEG102	363	SEG22	443	COMA42
44	COMB52		124	SEG243		204	SEG163	284	SEG101	364	SEG21	444	COMA43
45	COMB51		125	SEG242		205	SEG162	285	SEG100	365	SEG20	445	COMA44
46	COMB50		126	SEG241		206	SEG161	286	SEG99	366	SEG19	446	COMA45
47	COMB49		127	SEG240		207	SEG160	287	SEG98	367	SEG18	447	COMA46
48	COMB48		128	SEG239		208	SEG159	288	SEG97	368	SEG17	448	COMA47
49	COMB47		129	SEG238		209	SEG158	289	SEG96	369	SEG16	449	COMA48
50	COMB46		130	SEG237		210	SEG157	290	SEG95	370	SEG15	450	COMA49
51	COMB45	-		SEG236				291	SEG94	371			COMA50
-			131			211	SEG156				SEG14	451	
52	COMB44	 	132	SEG235	1	212	SEG155	292	SEG93	372	SEG13	452	COMA51
53	COMB43	∣	133	SEG234		213	SEG154	293	SEG92	373	SEG12	453	COMA52
54	COMB42	∣	134	SEG233	1/	214	SEG153	294	SEG91	374	SEG11	454	COMA53
55	COMB41		135	SEG232		215	SEG152	295	SEG90	375	SEG10	455	COMA54
56	COMB40		136	SEG231		216	SEG151	296	SEG89	376	SEG9	456	COMA55
57	COMB39		137	SEG230		217	SEG150	297	SEG88	377	SEG8	457	COMA56
58	COMB38		138	SEG229		218	SEG149	298	SEG87	378	SEG7	458	COMA57
59	COMB37		139	SEG228		219	SEG148	299	SEG86	379	SEG6	459	COMA58
60	COMB36	ı⊢	140	SEG227		220	SEG148	300	SEG85	380	SEG5	460	COMA59
-		ı ⊩	140				SEG147 SEG146	300		380			COMA59 COMA60
61	COMB35	⊢		SEG226		221			SEG84		SEG4	461	
62	COMB34	ı ⊩	142	SEG225		222	SEG145	302	SEG83	382	SEG3	462	COMA61
63	COMB33		143	SEG224		223	SEG144	303	SEG82	383	SEG2	463	COMA62
64	COMB32	L	144	SEG223		224	SEG143	304	SEG81	384	SEG1	464	COMA63
65	COMB31		145	SEG222		225	SEG142	305	SEG80	385	SEG0	465	NC
66	COMB30		146	SEG221		226	SEG141	306	SEG79	386	NC	466	NC
67	COMB29	ı⊢	147	SEG220		227	SEG140	307	SEG78	387	NC		
_		⊢		SEG220 SEG219				307					
68	COMB28	 -	148			228	SEG139		SEG77	388	NC NG		
69	COMB27	│ 	149	SEG218		229	SEG138	309	SEG76	389	NC		
70	COMB26	L	150	SEG217		230	SEG137	310	SEG75	390	NC		
71	COMB25		151	SEG216		231	SEG136	311	SEG74	391	NC		
72	COMB24		152	SEG215		232	SEG135	312	SEG73	392	NC		
73	COMB23		153	SEG214		233	SEG134	313	SEG72	393	NC		
74	COMB22		154	SEG213		234	SEG133	314	SEG71	394	NC		
75	COMB22 COMB21	⊢	155	SEG212		235	SEG133	315	SEG70	394	NC NC		
		 —											
76	COMB20	⊢	156	SEG211		236	SEG131	316	SEG69	396	NC		
77	COMB19	│	157	SEG210		237	SEG130	317	SEG68	397	NC		
78	COMB18		158	SEG209		238	SEG129	318	SEG67	398	NC		
79	COMB17		159	SEG208	Ì	239	SEG128	319	SEG66	399	NC		
80	COMB16		160	SEG207		240	NC	320	SEG65	400	NC		

SSD1322 Rev 0.10 P 13/56 Apr 2008 **Solomon Systech**

7 PIN DESCRIPTIONS

Key:

I = Input	NC = Not Connected
O =Output	Pull LOW= connect to Ground
IO = Bi-directional (input/output)	Pull HIGH= connect to V _{DDIO}
P = Power pin	

Table 7-1: SSD1352 Pin Description

Pin Name	Pin Type	Description							
V_{DD}	P	Power supply pin for core logic operation. A capacitor is required to connect betwee this pin and $V_{\rm SS}$. Refer to Section 8.10 for details.							
V_{DDIO}	Р	Power supply for interface logic level. It should be matched with the MCU interface voltage level. Refer to Section 8.10 for details.							
V_{CI}	P	Low voltage power supply. V_{CI} must always be equal to or higher than V_{DD} and V_{DDIO} . Refer to Section 8.10 for details.							
V_{CC}	Р	Power supply for panel driving voltage. This is also the most positive power voltage supply pin.							
V_{DD1}	P	Power supply and it should be connected to V_{DD} .							
V_{SS}	P	Ground pin.							
V_{LSS}	P	Analog system ground pin.							
V _{COMH}	Р	COM signal deselected voltage level. A capacitor should be connected between this pin and $V_{\rm SS}$.							
BGGND	P	It should be connected to ground.							
GPIO0	IO	This is a reserved pin. It should be kept NC.							
GPIO1	IO	This is a reserved pin. It should be kept NC.							
$ m V_{SL}$	P	This is segment voltage reference pin. When external V_{SL} is used, connect with resistor and diode to ground (details depend on application).							
BS[1:0]	I	MCU bus interface selection pins. Select appropriate logic setting as described in the following table. Table 7-2: Bus Interface selection							
		$\begin{array}{c c} \textbf{BS[1:0]} & \textbf{Bus Interface Selection} \\ \hline 00 & 4 \text{ line SPI} \\ \hline 01 & 3 \text{ line SPI} \\ \hline 10 & 8\text{-bit } 8080 \text{ parallel} \\ \hline 11 & 8\text{-bit } 6800 \text{ parallel} \\ \hline \\ \textbf{Note} \\ \end{array}$							

Pin Name	Pin Type	Description
I_{REF}	I	This pin is the segment output current reference pin. A resistor should be connected between this pin and V_{SS} to maintain the current around 10uA. Please refer to section 8.6 for the formula of resistor value from I_{REF} .
M/S#	I	This pin must be connected to $V_{\rm DDIO}$ to enable the chip.
CL	IO	External clock input pin.
		When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground. When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external clock source input pin.
CLS	I	Internal clock selection pin. When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL.
CS#	I	This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
RES#	I	This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.
D/C#	I	This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the content at D[7:0] will be interpreted as data. When the pin is pulled LOW, the content at D[7:0] will be interpreted as command.
R/W# (WR#)	I	This pin is read / write control input pin connecting to the MCU interface.
		When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW.
		When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.
		When serial interface is selected, this pin R/W (WR#) must be connected to V_{SS} .
E (RD#)	I	This pin is MCU interface input.
		When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected.
		When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected.
		When serial interface is selected, this pin $E(RD\#)$ must be connected to V_{SS} .
D[7:0]	IO	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)
		Refer to Section 8.1 for different bus interface connection.
DN[9:0]	IO	These are reserved pins and should be connected to V_{SS} .

SSD1322 Rev 0.10 P 15/56 Apr 2008 **Solomon Systech**

Pin Name	Pin Type	Description
FR		This pin is No Connection pins. Nothing should be connected to this pin. This pin should be left open individually.
DOF#		This pin is No Connection pins. Nothing should be connected to this pin. This pin should be left open individually.
SEG[479:0]	О	These pins provide the OLED segment driving signals. These pins are V_{SS} state when display is OFF.
COM[127:0]	О	These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.

SSD1322 | Rev 0.10 | P 16/56 | Apr 2008 | **Solomon Systech**

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MCU Interface

SSD1322 MCU interface consist of 8 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[1:0] pins (refer to Table 7-2 for BS[1:0] pins setting)

Table 8-1: MCU interface assignment under different bus interface mode

Pin Name Bus	Data/C	Data/Command Interface								Control Signal					
Interface	D 7	D6	D5	D4	D3	D2	D1	D0	E	R/W#	CS#	D/C#	RES#		
8-bit 8080		D[7:0]							RD#	WR#	CS#	D/C#	RES#		
8-bit 6800		D[7:0]							Е	R/W#	CS#	D/C#	RES#		
3-wire SPI	Tie LO	W				NC	SDIN	SCLK	Tie L	OW	CS#	Tie LOW	RES#		
4-wire SPI	Tie LO	W				NC	SDIN	SCLK	Tie L	OW	CS#	D/C#	RES#		

8.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 8-2: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	1	Н	L	L
Write data	1	L	L	Н
Read data	\downarrow	Н	L	Н

Note

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1.

SSD1322 | Rev 0.10 | P 17/56 | Apr 2008 | Solomon Systech

^{(1) ↓} stands for falling edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

Figure 8-1: Data read back procedure - insertion of dummy read

8.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 8-2: Example of Write procedure in 8080 parallel interface mode

Figure 8-3: Example of Read procedure in 8080 parallel interface mode

SSD1322 Rev 0.10 P 18/56 Apr 2008 **Solomon Systech**

Table 8-3: Control pins of 8080 interface (Form 1)

Function	RD#	WR#	CS#	D/C#
Write command	Н	1	L	L
Read status	1	Н	L	L
Write data	Н	1	L	Н
Read data	1	Н	L	Н

Note

- (1) ↑ stands for rising edge of signal
- (2) H stands for HIGH in signal
- (3) L stands for LOW in signal

Figure 13-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4.

Figure 8-4: Display data read back procedure - insertion of dummy read

8.1.3 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground.

Table 8-4: Control pins of 4-wire Serial interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0
Write command	Tie LOW	Tie LOW	L	L	↑
Write data	Tie LOW	Tie LOW	L	Н	1

Note

- (1) H stands for HIGH in signal
- (2) L stands for LOW in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

⁽⁴⁾ Refer to

Under serial mode, only write operations are allowed.

Figure 8-5: Write procedure in 4-wire Serial interface mode

8.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 8-5: Control pins of 3-wire Serial interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0	
Write command	Tie LOW	Tie LOW	L	Tie LOW	↑	Note
Write data	Tie LOW	Tie LOW	L	Tie LOW	1	(1) L stands for LOW in signal

Figure 8-6: Write procedure in 3-wire Serial interface mode

SSD1322 | Rev 0.10 | P 20/56 | Apr 2008 | Solomon Systech

8.2 Reset Circuit

When RES# input is pulled LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 MUX Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Contrast control register is set at 7Fh

8.3 GDDRAM

8.3.1 GDDRAM structure in Gray Scale mode

The GDDRAM address map in Table 8-6 shows the GDDRAM in Gray Scale mode. Since in Gray Scale mode, there are 16 gray levels. Therefore four bits (one nibble) are allocated for each pixel. For example D30480[3:0] in Table 8-6 corresponds to the pixel located in (COM127, SEG2). So the lower nibble and higher nibble of D0, D1, D2, ..., D30717, D30718, D30719 in Table 8-6 represent the 480x128 data nibbles in the GDDRAM.

Table 8-6: GDDRAM in Gray Scale mode (RESET)

		SEG0	SEG1	SEG2	SEG3		SEG476	SEG477	SEG478	SEG479	SEG Outputs
		0	0	00			7	7	7	RAM Column address (HEX)	
COM0	00	D1[3:0]	D1[7:4]	D0[3:0]	D0[7:4]		D239[3:0]	D239[7:4]	D238[3:0]	D238[7:4]	
COM1	01	D241[3:0]	D241[7:4]	D240[3:0]	D240[7:4]		D479[3:0]	D479[7:4]	D478[3:0]	D478[7:4]	
1	1					+					
COM126	7E 🔻	D30241[3:0]	D30241[7:4]	D30240[3:0]	D30240[7:4]		D30479[3:0]	D30479[7:4]	D30478[3:0]	D30478[7:4	.]
COM127	7F	D30481[3:0]	D30481[7:4]	D30480[3:0]	D30480[7:4]		D30719[3:0]	D30719[7:4]	D30718[3:0]	D30718[7:4	.]
COM Outputs	RAM Row Address (HEX)			15	Corresp	oor	nding to one	pixel			_

8.3.2 Data bus to RAM mapping

Table 8-7: Data bus usage

SSD1322 | Rev 0.10 | P 21/56 | Apr 2008 | Solomon Systech

8.4 Command Decoder

This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.

If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D7 are interpreted as a Command and it will be decoded and be written to the corresponding command register.

8.5 Oscillator & Timing Generator

Figure 8-7: Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry (Figure 8-7). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator F_{OSC} can be programmed by command B3h.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 1024 by command B3h.

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula:

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 1024.
- K is the number of display clocks per row. The value is derived by K = Phase 1 period + Phase 2 period + X
 X = DCLKs in current drive period. Default X = constant + GS15 = 10 +112 = 122
 Default K is 9 + 7 + 122 = 138
- Number of multiplex ratio is set by command A8h. The reset value is 127 (i.e. 128MUX).
- F_{osc} is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

8.6 SEG/COM Driving Block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current source for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor *2 in which the contrast (0~255) is set by Set Contrast command (C1h); and the scale factor (1 ~ 16) is set by Master Current Control command (C7h).
```

For example, in order to achieve $I_{SEG} = 300 uA$ at maximum contrast 255, I_{REF} is set to around 10uA. This current value is obtained by connecting an appropriate resistor from I_{REF} pin to V_{SS} as shown in Figure 8-8.

Recommended $I_{REF} = 10uA$

Figure 8-8 : I_{REF} Current Setting by Resistor Value

SSD1322

Since the voltage at I_{REF} pin is $V_{CC} - 6V$, the value of resistor R1 can be found as below:

For
$$I_{REF}$$
 = 10uA, V_{CC} = 18V:
R1 = (Voltage at $I_{REF} - V_{SS}$) / I_{REF}
= (18 - 6) / 10uA
 \approx 1.2M Ω

SSD1322 | Rev 0.10 | P 23/56 | Apr 2008 | Solomon Systech

8.7 SEG/COM Driver

Segment drivers consist of 480 current sources to drive OLED panel. The driving current can be adjusted from 0 to 300uA with 8 bits, 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 8-9: Segment and Common Driver Block Diagram - Single COM mode

SSD1322 | Rev 0.10 | P 24/56 | Apr 2008 | **Solomon Systech**

 $I_{SEG} \\$ Current Drive Reset **OLED Pixel Segment Driver** $V_{\text{COMH}} \\$ V_{COMH} Non-selected Non-selected Row Row Selected Selected Row Row **Common** Common V_{LSS} **Driver Driver COMA COMB**

Figure 8-10: Segment and Common Driver Block Diagram - Dual COM mode

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 8-11.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

SSD1322 Rev 0.10 P 25/56 Apr 2008 **Solomon Systech**

One Frame Period Non-selected Row COM₀ $V_{COMH} \\$ V_{LSS} Selected Row COM1 V_{COMH} V_{LSS} **COM** This row is selected to Voltage turn on V_{COMH} $V_{LSS} \\$ Time Segment Voltage Waveform for ON V_P Waveform for OFF V_{LSS} Time

Figure 8-11: Segment and Common Driver Signal Waveform

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{LSS} in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

SSD1322 Rev 0.10 P 26/56 Apr 2008 **Solomon Systech**

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{LSS} . The amplitude of V_P can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting (the wider pulse widths) in the current drive stage results in brighter pixels and vice versa (details refer to Section 8.8). This is shown in the following figure.

Figure 8-12: Gray Scale Control by PWM in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h or B9h. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

SSD1322 | Rev 0.10 | P 27/56 | Apr 2008 | Solomon Systech

8.8 Gray Scale Decoder

The gray scale effect is generated by controlling the pulse width (PW) of current drive phase, except GS0 there is no pre-charge (phase 2, 3) and current drive (phase 4). The driving period is controlled by the gray scale settings (setting $0 \sim \text{setting } 180$). The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding gray scale setting of the 16 gray scale levels (GS0 \sim GS15) through the software commands B8h or B9h.

As shown in Figure 8-13, GDDRAM data has 4 bits, represent the 16 gray scale levels from GS0 to GS15. Note that the frame frequency is affected by GS15 setting.

Figure 8-13 : Relation between GDDRAM content and Gray Scale table entry (under command B9h Enable Linear Gray Scale Table)

GDDRAM data (4 bits)	Gray Scale Table	Default Gamma Setting (Command B9h)				
0000	GS0	Setting 0				
0001	GS1 ⁽¹⁾	Setting 0				
0010	GS2	Setting 8				
0011	GS3	Setting 16				
:	:	:				
:	:					
1101	GS13	Setting 96				
1110	GS14	Setting 104				
1111	GS15	Setting 112				

Note:

SSD1322 | Rev 0.10 | P 28/56 | Apr 2008 | **Solomon Systech**

⁽¹⁾ Both GS0 and GS1 have no 2nd pre-charge (phase 3) and current drive (phase 4), however GS1 has 1st pre-charge (phase 2).

8.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1322 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).

Power ON sequence:

- 1. Power ON V_{CI}, V_{DDIO}.
- 2. After V_{CI} , V_{DDIO} become stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 100us (t_1) (4) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us (t_2). Then Power ON V_{CC} .
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (t_{AF}) .

Figure 8-14: The Power ON sequence.

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF V_{CC} . (1), (2)
- 3. Wait for t_{OFF} . Power OFF V_{CI} , V_{DDIO} (where Minimum t_{OFF} =0ms $^{(3)}$, Typical t_{OFF} =100ms)

Figure 8-15: The Power OFF sequence

Note:

(1) Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 8-14 and Figure 8-15.

SSD1322 | Rev 0.10 | P 29/56 | Apr 2008 | **Solomon Systech**

⁽²⁾ V_{CC} should be kept float (disable) when it is OFF.

 $^{^{(3)}}$ V_{CI} , V_{DDIO} should not be Power OFF before V_{CC} Power OFF.

⁽⁴⁾ The register values are reset after t_1 .

⁽⁵⁾ Power pins (V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.

8.10 V_{DD} Regulator

In SSD1322, the power supply pin for core logic operation, V_{DD} , can be supplied by external source or internally regulated through the V_{DD} regulator.

The internal V_{DD} regulator is enabled by setting bit A[0] to 1b in command ABh "Function Selection". V_{CI} should be larger than 2.6V when using the internal V_{DD} regulator. The typical regulated V_{DD} is about 2.5V

It should be notice that, no matter V_{DD} is supplied by external source or internally regulated; V_{CI} must always be set equivalent to or higher than V_{DD} and V_{DDIO} .

The following figure shows the V_{DD} regulator pin connection scheme:

Figure 8-16 V_{CI} > 2.6V, V_{DD} regulator enable pin connection scheme

Figure 8-17 V_{DD} regulator disable pin connection scheme

SSD1322 | Rev 0.10 | P 30/56 | Apr 2008 | **Solomon Systech**

9 COMMAND TABLE

Table 9-1: Command table

(D/C#=0, R/W#(WR#) = 0, E(RD#)=1) unless specific setting is stated)

Fundamental Command Table

D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	00	0	0	0	0	0	0	0	0	Enable Gray Scale table	This command is sent to enable the Gray Scale table setting (command B8h)
0 1 1	15 A[6:0] B[6:0]	0 *	0 A ₆ B ₆	0 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A_1 B_1	1 A ₀ B ₀	Set Column Address	Set Column start and end address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=119] Range from 0 to 119
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM Command	Enable MCU to read Data from RAM
0	75 A[6:0]	0	1 A ₆	1 A ₅	1 A ₄	0 A ₃	1 A ₂	0 A ₁	1 A ₀	Set Row	Set Row start and end address A[6:0]: Start Address. [reset=0]
1	B[6:0]	*	B_6	\mathbf{B}_{5}	B ₄	B_3	B ₂	B ₁	B_0	Address	B[6:0]: End Address. [reset=127] Range from 0 to 127
0	A0 A[7:0]	1 0	0	1 A ₅	0 A ₄	0	0 A ₂	0 A ₁	0 A_0	40	A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment
1	B[4]	*	*	0	B ₄	0	0	0	1	46	A[1]=0b, Disable Column Address Re-map [reset] A[1]=1b, Enable Column Address Re-map
										on	A[2]=0b, Disable Nibble Re-map [reset] A[2]=1b, Enable Nibble Re-map
						\mathbf{U}				Set Re-map and	A[4]=0b, Scan from COM0 to COM[N-1] [reset] A[4]=1b, Scan from COM[N-1] to COM0, where N is the Multiplex ratio
										Dual COM Line mode	
											B[4], Enable / disable Dual COM Line mode 00b, Disable Dual COM mode [reset] 01b, Enable Dual COM mode (MUX ≤ 63)
											Note (1] COM Split Odd Even mode must be disabled (A[5]=0b) when enabling the Dual COM mode (B[4]=1b)
											Details refer to Section 10.1.6
0	A1	1	0	1	0	0	0	0	1	Set Display	Set display RAM display start line register from 0-127
1	A[6:0]	*	A ₆	A ₅	A ₄	A ₃	A_2	A_1	A_0	Start Line	Display start line register is reset to 00h after RESET

SSD1322 Rev 0.10 P 31/56 Apr 2008 **Solomon Systech**

D/C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	A2	1	0	1	0	0	0	1	0	Set Display	Set vertical scroll by COM from 0-127
1	A[6:0]	*	A_6	A ₅	A_4	A ₃	A_2	A_1	A_0	Offset	The value is reset to 00H after RESET
0	A4~A7	1	0	1	0	0	X_2	X_1	X_0		A4h = Entire Display OFF, all pixels turns OFF in GS level 0
											A5h = Entire Display ON, all pixels turns ON in GS level 15
										Set Display Mode	A6h = Normal Display [reset]
											A7h = Inverse Display (GS0 \rightarrow GS15, GS1 \rightarrow GS14, GS2 \rightarrow GS13,)
0	A8	1	0	1	0	1	0	0	0		This command turns ON partial mode. The partial mode
1	A[6:0]	0	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_1	A_0	Englis Destin	display area is defined by the following two parameters,
1	B[6:0]	0	B_6	B_5	B_4	B_3	B_2	B_1	B_0	Enable Partial Display	A[6:0]: Address of start row in the display area
											B[6:0]: Address of end row in the display area, where B[6:0] must be \geq A[6:0]
											where B[0.0] must be 2 A[0.0]
0	A9	1	0	1	0	1	0	0	1	Exit Partial	This command is sent to exit the Partial Display mode
										Display	
0	AB	1	0	1	0	1	0	1	1	Function	A[0]=0b, Select external V _{DD}
1	A[0]	0	0	0	0	0	0	0	A_0	Selection	A[0]=1b, Enable internal V_{DD} regulator [reset]
0	AE~AF	1	0	1	0	1	1	1	X_0	G 4 G1 1 -	AFI Glover de ON (Birele OFF)
								G	2) 21	ON/OFF	AEh = Sleep mode ON (Display OFF) AFh = Sleep mode OFF (Display ON)
0	B1	1	0	1	1	0	0	0	1		A[3:0] Phase 1 period (reset phase length) of 5~31 DCLK(s)
0	A[7:0]	1 A ₇	A_6	A_5	1 A ₄	A_3	A_2	A_1	$\begin{vmatrix} 1 \\ A_0 \end{vmatrix}$		clocks as follow:
										76	A[3:0] Phase 1 period
											0000 invalid
									$\simeq 1$		0001 invalid
											0010 5 DCLKs
											0011 7 DCLKs 0100 9 DCLKs [reset]
											· · · · · ·
											1111 31 DCLKs
										Set Phase	A[7:4] Phase 2 period (first pre-charge phase length) of
										Length	3~15 DCLK(s) clocks as follow:
											A[7:4] Phase 2 period
											0000 invalid
											0001 invalid
											0010 invalid
											0011 3 DCLKs
											0111 7 DCLKs [reset]
											1111 15 DCLKs
		l		<u> </u>	<u> </u>	l	l	l	<u> </u>	J	

SSD1322 Rev 0.10 P 32/56 Apr 2008 **Solomon Systech**

D/C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
0	В3	1	0	1	1	0	0	1	1	00111111111	A[3:0] [reset=0], divide by DIVSET where
											rigs.og [reset og, divide by BivBE1 where
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[3:0] DIVSET
											0000 divide by 1
											0001 divide by 2
											0010 divide by 4
											0011 divide by 8
										Set Front Clock	0100 divide by 16
										Divider /	0101 divide by 32
										Oscillator	0110 divide by 64
										Frequency	0111 divide by 128
											1000 divide by 256
											1001 divide by 512
											1010 divide by 1024
											>=1011 invalid
											A [7, 4] O - ill - 4 - C C
											A[7:4] Oscillator frequency, frequency increases as level increases [reset=1100b]
0	B5	1	0	1	1	0	1	0	1		A[1:0] GPIO0: 00 pin HiZ, Input disabled
1	A[3:0]	*	*	*	*	A_3	A_2	\mathbf{A}_1	A_0		01 pin HiZ, Input enabled
1	A[J,0]					713	11 2	I	710		10 pin output LOW [reset]
											11 pin output HIGH
										Set GPIO	A[2.2] CD[0]: 00 air H27 In a 4 Part 1
										400	A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled
											10 pin output LOW [reset]
										4.0	11 pin output HIGH
								U		40	(19)1
0	В6	1	0	1	1	0	1	1	0		A[3:0] Second Pre-charge period
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		0000b 0 dclk
										Set Second	0001b 1 dclk
										Precharge Period	1000b 8 dclks [reset]
										Teriod	t j
									$\preceq \setminus$		1111b 15 delks
									2		
0	В8	1	0	1	1	1	0	0	0		The next 15 data bytes define Gray Scale (GS) Table by
1	A1[7:0]	A1 ₇	A1 ₆	A1 ₅	$A1_4$	A1 ₃	$A1_2$	Al_1	$A1_0$		setting the gray scale pulse width in unit of DCLK's
1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A2 ₄	A2 ₃	A2 ₂	A2 ₁	A2 ₀		(ranges from 0d ~ 180d)
1										Set Grav Scale	A1[7:0]: Gamma Setting for GS1,
1							.			Table	A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2,
1	,										: : : : : : : : : : : : : : : : : : :
1	A14[7:0]	A14 ₇	A146	A145	A144	A143	A142	A14 ₁	A14 ₀		A14[7:0]: Gamma Setting for GS14,
1	A15[7:0]							-	A15 ₀		A15[7:0]: Gamma Setting for GS15
1	A13[7.0]	A137	A136	A135	A134	A133	A132	AIJ	A130		
											N. J. J.
											Note (1) $0 \le \text{Setting of GS} 1 < \text{Setting of GS} 2 < \text{Setting of GS} 3$
											Setting of GS1 < Setting of GS2 < Setting of GS3
											Seeming of Golf Comming of Golf
											Refer to Section 8.8 for details
											(2] The setting must be followed by the Enable Gray Scale
											Table command (00h)

SSD1322 Rev 0.10 P 33/56 Apr 2008 **Solomon Systech**

D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	B9	1	0	1	1	1	0	0	1	Select Default Linear Gray Scale table	The default Linear Gray Scale table is set in unit of DCLK's as follow GS0 level pulse width = 0; GS1 level pulse width = 0; GS2 level pulse width = 8; GS3 level pulse width = 16; : GS14 level pulse width = 104; GS15 level pulse width = 112 Refer to Section 8.8 for details
0	BB	1	0	1	1	1	0	1	1		Set pre-charge voltage level.[reset = 17h]
1	A[4:0]	*	*	*	A_4	A_3	A_2	\mathbf{A}_1	A_0	Set Pre-charge voltage	A[5:1] Hex code pre-charge voltage 00000 00h 0.20 x V _{CC} : : : 11111 3Eh 0.60 x V _{CC}
0	BE	1	0	1	1	1	1	1	0		Set COM deselect voltage level [reset = 04h]
1	A[3:0]	*	*	*	*	A_3	A ₂	A ₁	A ₀	Set V _{COMH}	$ \begin{aligned} \mathbf{A[3:0]} &= \\ & & \frac{\mathbf{A[2:0]} \ \ \mathbf{Hex\ code} \ \ \mathbf{V_{COMH}}}{0000 \ \ 00h \ \ 0.72\ x\ \mathbf{V_{CC}}} \\ & & \vdots \ \ \vdots \ \ \vdots \\ & & \vdots \ \ \vdots \ \ \vdots \\ & & \vdots \ \ \vdots \ \ \vdots \ \ \vdots \\ & & \vdots \ \ \vdots \ \ \vdots \ \ \vdots \ \ \vdots \\ & & \vdots \ \ \vdots \ $
0	C1	1	1	0	0	0	0	0	1	+0	A[7:0]: Contrast current value, range:00h~FFh,
0	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set Contrast Current	i.e. 256 steps for I _{SEG} current [reset = 7Fh]
0	C7	1	I	0	0	0	1	1	1	40	A[3:0] =
1	A[3:0]	*	*	*	*	A_3	A ₂	A ₁	A ₀	Master Contrast Current Control	
0	CA	1	1	0	0	1	0	1	0		A[6:0]: Set MUX ratio from 16MUX ~ 128MUX
1	A[6:0]	*	A_6	A ₅	A_4	A_3	A ₂	A_1	A_0	Set MUX Ratio	A[6:0] = 15d represents 16MUX : A[6:0] = 127d represents 128MUX [reset]
0	FD	1	1	1	1	1	1	0	1		A[2]: MCU protection status [reset = 12h]
1	A[2]	0	0	0	1	0	A_2	1	0	Set Command Lock	A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [reset] A[2] = 1b, Lock OLED driver IC MCU interface from entering command Note
	Note										(1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command

Note
(1) "*" stands for "Don't care".

Rev 0.10 P 34/56 Apr 2008 SSD1322 Solomon Systech

10 COMMAND

10.1.1 Enable Gray Scale Table (00h)

This command is sent to enable the Gray Scale Table setting (command B8h).

10.1.2 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.1.3 Write RAM Command (5Ch)

After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data ion Techn into RAM.

10.1.4 Read RAM Command (5Dh)

After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

Rev 0.10 P 35/56 Apr 2008 SSD1322 Solomon Systech

10.1.5 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The diagram below shows the way of column and row address pointer movement through the example: column start address is set to 1 and column end address is set to 118, row start address is set to 2 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 1 to column 118 and from row 1 to row 126 only. In addition, the column and row address pointers are set to 1 and 2, respectively. After finishing read/write four pixels of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in Figure 10-1*). Whenever the column address pointer finishes accessing the end column 118, it is reset back to column 1 and row address is automatically increased by 1 (*solid line in Figure 10-1*). While the end row 126 and end column 118 RAM location is accessed, the row address is reset back to 2 and the column address is reset back to 1 (*dotted line in Figure 10-1*).

119 118 Column address SEG Outputs SEG478 SEG472 SEG475 SEG477 SEG1 SEG2 SEG4 SEG5 Row 0 Row 1 Row 2 ı Row 125 Row 126 Row 127

Figure 10-110-2: Example of Column and Row Address Pointer Movement (Gray Scale Mode)

SSD1322 Rev 0.10 P 36/56 Apr 2008 **Solomon Systech**

10.1.6 Set Re-map & Dual COM Line Mode (A0h)

This command has multiple configurations and each bit setting is described as follows:

• Address increment mode (A[0])

When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-3.

	Col 0	Col 1		Col 118	Col 119
Row 0					
Row 1	+				\rightarrow
:	+	:	:	·	•
Row 126	+				-
Row 127	4				

Figure 10-3: Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-4.

Figure 10-4: Address Pointer Movement of Vertical Address Increment Mode

	Co	ol 0	Co	11		Col	118	Col	119
Row 0			7		./				
Row 1					<i></i>				
:		/			: /				
Row 126		1	λV						
Row 127						•	7	•	7

• Column Address Remap (A[1])

This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 10-5.

A[1] = 0 (reset): RAM Column $0 \sim 119$ maps to SEG0-SEG3 \sim SEG476-SEG479

A[1] = 1: RAM Column $0 \sim 119$ maps to SEG476-SEG479 \sim SEG0-SEG3

• Nibble Remap (A[2])

A[2] = 0 (reset): Data bits direct mapping is performed

A[2] = 1: The four nibbles of the data bus for RAM access are re-mapped

The effects are demonstrated in Figure 10-5.

Figure 10-5: GDDRAM in Gray Scale mode with or without Column Address (A[1]) & Nibble remapping (A[2])

	Normal, = 0 & A[2]	= 0	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7					SEG472	SEG473	SEG474	SEG475	SEG476	SEG477	SEG478	SEG479	
	Remap, = 1 & A[2]	=0	SEG479	SEG478	SEG477	SEG476	SEG475	SEG474	SEG473	SEG472			:		SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	SEG
A[1] =	Remap, = 0 & A[2]	= 1	SEG3	SEG2	SEG1	SEG0	SEG7	SEG6	SEG5	SEG4			:		SEG475	SEG474	SEG473	SEG472	SEG479	SEG478	SEG477	SEG476	Outputs
	Normal, = 1 & A[2]	= 1	SEG476	SEG477	SEG478	SEG479	SEG472	SEG473	SEG474	SEG475			:	:	SEG4	SEG5	SEG6	SEG7	$_{ m SEG0}$	SEG1	SEG2	SEG3	
Normal, A[4] = 0	Remap, A[4] = 1			()			1								7	6			7	7		RAM / Column address (HEX)
COM0	COM127	0	D1[3:0]	D1[7:4]	D0[3:0]	D0[7:4]	D3[3:0]	D3[7:4]	D2[3:0]	D2[7:4]					D237[3:0]	D237[7:4]	D236[3:0]	D236[7:4]	D239[3:0]	D239[7:4]	D238[3:0]	D238[7:4]	
COM1	COM126	1	D241[3:0]	D241[7:4]	D240[3:0]	D240[7:4]	D243[3:0]	D243[7:4]	D242[3:0]	D242[7:4]					D477[3:0]	D477[7:4]	D476[3:0]	D476[7:4]	D479[3:0]	D479[7:4]	D478[3:0]	D478[7:4]	i
:	:	:						1	8	0				_		ı	ı				C	,*	
COM126	COM1	7E	D30241[3:0]	D30241[7:4]	D30240[3:0]	D30240[7:4]	D30243[3:0]	D30243[7:4]	D30242[3:0]	D30242[7:4]					D30477[3:0]	D30477[7:4]	D30476[3:0]	D30476[7:4]	D30479[3:0]	D30479[7:4]	D30478[3:0]	D30478[7:4]	
COM127	СОМО	7F	D30481[3:0]	D30481[7:4]	D30480[3:0]	D30480[7:4]	D30483[3:0]	D30483[7:4]	D30482[3:0]	D30482[7:4]		C			D30717[3:0]	D30717[7:4]	D30716[3:0]	D30716[7:4]	D30719[3:0]	D30719[7:4]	D30718[3:0]	D30718[7:4]	
СОМ (Outputs	RAM / Row address (HEX)				1	3		\ (Corre	espo	ndiı	ng to	o on	e pi	xel	1	1		1			

COM scan direction Remap (A[4])

This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

A[1] = 0 (reset): Scan from up to down

A[1] = 1: Scan from bottom to up

Details of pin arrangement can be found in Figure 10-5.

Odd even split of COM pins (A[5])

This command bit can set the odd even arrangement of COM pins.

A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 10-6.

Rev 0.10 P 38/56 Apr 2008

• Set Dual COM mode (B[4])

This command bit can set the dual COM mode.

B[4] = 0 (reset): Disable the dual COM mode, as shown on Figure 10-6

B[4] = 1: Enable the dual COM mode, details of pin arrangement can be found in Figure 10-7 Notice that Odd even split of COM pins must be disabled (A[5]=0) and MUX must be set equating to or smaller than 63 (MUX \leq 63) when dual COM mode is enabled (B[4]=1).

Figure 10-6: COM Pins Hardware Configuration – 1 (MUX ratio: 128)

SSD1322 | Rev 0.10 | P 39/56 | Apr 2008 | Solomon Systech

10.1.7 Set Display Start Line (A1h)

This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-8 shows an example of using this command when MUX ratio = 128 and MUX ratio = 90 and Display Start Line = 40. In there, "Row" means the graphic display data RAM row.

Figure 10-8: Example of Set Display Start Line with no Remap

		MUX ratio (CAh) = 128		MUX ratio (CAh) = 90
COM Pir	Display Start Line (A1h)			
	=0	= 40	=0	= 40
COM0	ROW0	ROW40	ROW0	ROW40
COM1	ROW1	ROW41	ROW1	ROW41
COM2	ROW2	ROW42	ROW2	ROW42
COM3	ROW3	ROW43	ROW3	ROW43
:	:	:	:	:
: COM48	ROW48	ROW88	ROW48	ROW88
	ROW49	ROW89	ROW49	ROW89
	ROW50	ROW90	ROW50	ROW90
COM51	ROW51	ROW91	ROW51	ROW91
:	:			:
COM86	ROW86	ROW126	ROW86	ROW126
COM87	ROW87	ROW127	ROW87	ROW127
COM88	ROW88	ROW0	ROW88	ROW0
COM89	ROW89	ROW1	ROW89	ROW1
COM90	ROW90	ROW2	-	-
COM91	ROW91	ROW3		
:				
:		:		:
COM124	ROW124	ROW36	-	-
COM125	ROW125	ROW37		-
COM126	ROW126	ROW38		-
COM127	ROW127	ROW39	-	-
		101		
Display				
Example		SOLOMON		SOLOMON
		SYSTECH		SYSTECH
	SOLOMON	JIJILUII	COLOBION	JIJILUII
	SYSTECH			
	31312311			

SSD1322 | Rev 0.10 | P 40/56 | Apr 2008 | **Solomon Systech**

10.1.8 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM39 towards the COM0 direction for 40 lines, the 7-bit data in the second command should be given by 0101000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 10-9: Example of Set Display Offset with no Remap

	MUX ratio (CAh) = 128	MUX ratio (CAh) = 128	MUX ratio (CAh) = 90	MUX ratio (CAh) = 90
COM Pin	Display Offset (A2h)=0	Display Offset (A2h)=40	Display Offset (A2h)=0	Display Offset (A2h)=40
COM0	ROW0	ROW40	ROW0	ROW40
COM1	ROW1	ROW41	ROW1	ROW41
COM2	ROW2	ROW42	ROW2	ROW42
COM3	ROW3	ROW43	ROW3	ROW43
:	:		:	:
:	:	:	:	:
COM48	ROW48	ROW88	ROW48	ROW88
COM49	ROW49	ROW89	ROW49	ROW89
COM50	ROW50	ROW90	ROW50	-
COM51	ROW51	ROW91	ROW51	-
:	:		:	:
:	:		:	:
COM86	ROW86	ROW126	ROW86	-
COM87	ROW87	ROW127	ROW87	-
COM88	ROW88	ROW0	ROW88	ROW0
COM89	ROW89	ROW1	ROW89	ROW1
COM90	ROW90	ROW2	-	R0W2
COM91	ROW91	ROW3	-	ROW3
		: 60		
:				
COM124	ROW124	ROW36	- 400	ROW36
COM125	ROW125	ROW37		ROW37
COM126	ROW126	ROW38		ROW38
COM127	ROW127	ROW39		ROW39
Display				
Example		SOLOMON		COLOMON
		SYSTECH		
	SOLOMON	этэтесп	COLOBION	
	SYSTECH			

SSD1322 | Rev 0.10 | P 41/56 | Apr 2008 | **Solomon Systech**

10.1.9 Set Display Mode (A4h \sim A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

Normal Display (A4h) Reset the above effect and turn the data to ON at the corresponding gray level. Figure 10-10 shows an example of Normal Display.

Figure 10-10: Example of Normal Display

Display

Set Entire Display ON (A5h) Force the entire display to be at gray scale "GS15" regardless of the contents of the display data RAM as shown in Figure 10-11.

Figure 10-11: Example of Entire Display ON

Display

eli Iuc.

Set Entire Display OFF (A6h) Force the entire display to be at gray scale level "GSO" regardless of the contents of the display data RAM as shown in Figure.

Figure 10-12: Example of Entire Display OFF

GDDRAM

Display

Inverse Display (A7h) The gray level of display data are swapped such that "GS0" \leftrightarrow "GS15", "GS1" \leftrightarrow "GS14", ... Figure 10-13 shows an example of inverse display.

Figure 10-13: Example of Inverse Display

Display

SSD1322 Rev 0.10 | P 42/56 | Apr 2008 Solomon Systech

10.1.10Enable Partial Display (A8h)

The partial mode display area is defined this triple byte command. Figure 10-14 shows an example of enabling the partial mode display with start row address A[6:0] = 20h and end start row address B[6:0] = 5Fh at MUX ratio = 128.

Figure 10-14: Example of Partial Mode Display

Display

Iuc.

10.1.11Exit Partial Display (A9h)

This single byte command is sent to exit the partial mode display area (command A8h).

10.1.12Set Function selection (ABh)

This double byte command is used to enable or disable the VDD regulator.

Internal VDD regulator is selected when the bit A[0] is set to 0b, while external VDD is selected when A[0] is set to 1b.

10.1.13 Set Display ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON (command AFh), the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF (command AEh), those circuits will be turned off, the segment is in V_{SS} state and common is in high impedance state.

10.1.14 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 5 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 3 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P.

10.1.15 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to Section 8.5 for the detail relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency settings being available.

10.1.16 Set GPIO (B5h)

This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 9-1 for details.

SSD1322 | Rev 0.10 | P 43/56 | Apr 2008 | **Solomon Systech**

10.1.17 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 0 to 15 DCLK's. Please refer to Table 9-1 for the detail information.

10.1.18 Set Gray Scale Table (B8h)

This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2, ..., GS14, GS15 one by one in sequence. Refer to Section 8.8 for details.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 10-15) can compensate this effect.

Figure 10-15: Example of Gamma correction by Gamma Look Up table setting

10.1.19 Select Default Linear Gray Scale Table (B9h)

This single byte command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, ... GS14 = Gamma Setting 104, GS14 = Gamma Setting 112. Refer to Section 8.8 for details.

10.1.20 Set Pre-charge voltage (BBh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to V_{CC} . Refer to Table 9-1 for details.

10.1.21 Set V_{COMH} Voltage (BEh)

This double byte command sets the high voltage level of common pins, V_{COMH} . The level of V_{COMH} is programmed with reference to V_{CC} . Refer to Table 9-1 for details.

10.1.22Set Contrast Current (C1h)

This double byte command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter display.

SSD1322 | Rev 0.10 | P 44/56 | Apr 2008 | Solomon Systech

10.1.23Master Current Control (C7h)

This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set.

For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA.

10.1.24Set Multiplex Ratio (CAh)

This double byte command switches default 1:128 multiplex mode to any multiplex mode from 16 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 10-8 and Figure 10-9 show examples of setting the multiplex ratio through command CAh.

10.1.25 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

SSD1322 Rev 0.10 P 45/56 Apr 2008 **Solomon Systech**

11 MAXIMUM RATINGS

Table 11-1: Maximum Ratings

(Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
$V_{ m DD}$		-0.5 to 2.75	V
V_{CC}	Cumple Valtage	-0.5 to 21.0	V
$V_{ m DDIO}$	Supply Voltage	-0.5 to $V_{\rm CI}$	V
V_{CI}		-0.3 to 4.0	V
V_{SEG}	SEG output voltage	0 to V _{CC}	V
V_{COM}	COM output voltage	0 to 0.9*V _{CC}	V
V _{in}	Input voltage	Vss-0.3 to V_{DDIO} +0.3	V
T _A	Operating Temperature	-40 to +85	°C
$T_{\rm stg}$	Storage Temperature Range	-65 to +150	°C
	confide	nila	ınG.
	Confile	0 1093	
		hnolo	
		eci	
	ision		
	Our.		

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

Rev 0.10 P 46/56 Apr 2008 SSD1322 Solomon Systech

^{*}This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

12 DC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} V_{DD} = 2.4 to 2.6V V_{CI} = 2.4 to 3.5V (V_{CI} must be larger than or equal to V_{DD}) T_A = 25°C

Table 12-1: DC Characteristics

Symbol	Parameter	Test Conditi	on	Min.	Тур.	Max.	Unit
V_{CC}	Operating Voltage	-		10	-	20	V
V_{DD}	Logic Supply Voltage	-		2.4	-	2.6	V
V _{CI}	Low voltage power supply	-		2.4	-	3.5	V
$V_{\rm DDIO}$	Power Supply for I/O pins	-		1.65	_	V_{CI}	V
V_{OH}	High Logic Output Level	Iout = 100uA		0.9*V _{DDIO}	-	$V_{\rm DDIO}$	V
V _{OL}	Low Logic Output Level	Iout = 100uA		0	-	$0.1*V_{\rm DDIO}$	V
V _{IH}	High Logic Input Level	-		$0.8*V_{DDIO}$	-	$V_{\rm DDIO}$	V
$V_{\rm IL}$	Low Logic Input Level	-		0	-	$0.2*V_{DDIO}$	V
I_{SLP_VDD}	V _{DD} Sleep mode Current	$V_{CI} = V_{DDIO} = 2.8V$, $V_{CC} = 0$ $V_{DD}(external) = 2.5V$, Disp No panel attached	olay OFF,		•	10	uA
I _{SLP_VDDIO}	V _{DDIO} Sleep mode Current	V _{CC} =OFF	External $V_{DD} = 2.5V$	-	-	10	uA uA
		No panel attached	nternal V _{DD}				
			External V _{DD} = 2.5V		1	10	uA
I _{SLP_VCI}	V _{CI} Sleep mode Current	$V_{\text{CI}} = V_{\text{DDIO}} = 2.8 \text{ V},$ $V_{} = \text{OFF}$	Enable Internal V _{DD} during Sleep mode	10		40	uA
-		No panel attached	Disable nternal V _{DD} during Sleep node	10/	-	10	uA
I_{DD}	V _{DD} Supply Current	V_{CI} = 3.3V, V_{CC} = 18V, 2.5V, External V_{DD} = 2.0 ON, No panel attached,	V _{DDIO} = 5V, Display	-	TBD	TBD	uA
т	V _{DDIO} Supply Current	$V_{CI} = 3.3V, V_{CC} = 18V, V_{DDIO} = 2.5V, Display$	External $V_{DD} = 2.5V$	-	TBD	TBD	uA
I_{DDIO}	V DDIO Supply Current	ON, No panel attached, contrast = FF	Internal $V_{DD} = 2.5V$	-	TBD	TBD	uA
т	V _{CI} Supply Current	$V_{CI} = 3.3V, V_{CC} = 18V, V_{DDIO} = 2.5V, Display$	External $V_{DD} = 2.5V$	-	TBD	TBD	uA
I_{CI}	V _{CI} Suppry Current	ON, No panel attached, contrast = FF	Internal $V_{DD} = 2.5V$	-	TBD	TBD	uA
т	V _{CC} Supply Current	$V_{CI} = 3.3V$, $V_{CC} = 18V$, $V_{DDIO} = 2.5V$, Display	External $V_{DD} = 2.5V$	-	TBD	TBD	mA
I_{CC}	V _{CC} Supply Current	ON, No panel attached, contrast = FF	Internal $V_{DD} = 2.5V$	-	TBD	TBD	mA
· <u> </u>	Segment Output Current	Contrast = FF	<u> </u>	-	TBD	TBD	uA
I_{SEG}	Setting Setting	Contrast = 7F		_	TBD	TBD	uA
SEC	V_{CC} =18V, I_{REF} =10uA	$\frac{\text{Contrast}}{\text{Contrast}} = 3F$		-	TBD	TBD	uA
Dev	Segment output current uniformity	$\begin{aligned} &\text{Dev} = (I_{\text{SEG}} - I_{\text{MID}}) / I_{\text{MII}} \\ &I_{\text{MID}} = (I_{\text{MAX}} + I_{\text{MIN}}) / 2 \\ &I_{\text{SEG}} = \text{Segment current a} \end{aligned}$		-3	-	3	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	Adj Dev = $(I[n]-I[n+1]$ (I[n]+I[n+1])		-2	-	2	%

SSD1322 Rev 0.10 P 47/56 Apr 2008 **Solomon Systech**

13 AC CHARACTERISTICS

Conditions:

Voltage referenced to V_{SS} $V_{DD} = 2.4 \text{ to } 2.6 \text{ V}$ $T_A = 25$ °C

Table 13-1: AC Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Fosc (1)	Oscillation Frequency of Display Timing Generator	$V_{DD} = 2.5V$	TBD	TBD	TBD	MHz
FFRM	Frame Frequency for 128 MUX Mode	480x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	F _{OSC} * 1 / (D * K * 128) ⁽²⁾	-	Hz
t_{RES}	Reset low pulse width (RES#)	-	2000	-	-	ns

Note $^{(1)}F_{OSC}$ stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value.

(2) D: divide ratio

K: Phase 1 period + Phase 2 period + X

X: DCLKs in current drive period.

Default K is 9 + 7 + 122 = 138

SSD1322 Rev 0.10 P 48/56 Apr 2008 **Solomon Systech**

Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6V, V_{DDIO} = 1.6V, V_{CI} = 3.3V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
$t_{\rm cycle}$	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
$t_{\rm DHR}$	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
DW	Chip Select Low Pulse Width (read)	120			na
PW_{CSL}	Chip Select Low Pulse Width (write)	60	-	-	ns
PW_{CSH}	Chip Select High Pulse Width (read)	60			na
r w csh	Chip Select High Pulse Width (write)	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-1: 6800-series MCU parallel interface characteristics

SSD1322 Rev 0.10 P 49/56 Apr 2008 **Solomon Systech**

Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	7	-	ı	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-		15	ns
$t_{\rm F}$	Fall Time	-		15	ns
t_{CS}	Chip select setup time	0	-	-	ns
t_{CSH}	Chip select hold time to read signal	0	-	-	ns
t_{CSF}	Chip select hold time	20	-	-	ns

Figure 13-2: 8080-series MCU parallel interface characteristics

SSD1322 Rev 0.10 P 50/56 Apr 2008 **Solomon Systech**

Table 13-4: Serial Interface Timing Characteristics (4-wire SPI)

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
$t_{\rm CSS}$	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-3: Serial interface characteristics (4-wire SPI)

SSD1322 Rev 0.10 P 51/56 Apr 2008 **Solomon Systech**

Table 13-5: Serial Interface Timing Characteristics (3-wire SPI)

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-4: Serial interface characteristics (3-wire SPI)

SSD1322 Rev 0.10 P 52/56 Apr 2008 **Solomon Systech**

14 APPLICATION EXAMPLES

Figure 14-1 : SSD1322 application example for 8-bit 6800-parallel interface mode (Internal regulated V_{DD})

SSD1322 | Rev 0.10 | P 53/56 | Apr 2008 | **Solomon Systech**

Figure 14-2: SSD1322 application example for 8-bit 6800-parallel interface, dual COM mode (Internal V_{DD})

SSD1322 | Rev 0.10 | P 54/56 | Apr 2008 | Solomon Systech

15 PACKAGE INFORMATION

15.1 SSD1322UR1 detail dimension

TAPE UN-WINDING DIRECTION 69.950±0.200 63.949±0.050 60.000±0.100(Cutline) 59.060(Alignment Mark) 58.142±0.030 29.530±0.200(S/R) 29.530±0.200(S/R) 26.900 (Alignment Mark) 26.900 (Alignment Mark) P0.120x(218-1)x0.999=26.014±0.013(W0.070±0.013) P0.120X(218-1)×0.999=26.014±0.013(W0.070±0.013) 21.500±0.100(Cutline) SPH CENTER) P0.50x(30-1)=14.500±0.020(W0.30±0.020) 2-Ø1.000(PI HOLE)

15.500±0.100(Cutline)

40.000±0.050(Alignment Hole)

Figure 15-1: SSD1322UR1 Detail Dimension

NOTE:

1. GENERAL TOLERANCE: ±0.05mm

2. MATERIAL PI: 38±4um CU: 8±2um SR: 15±10um

(OTHER TOLERANCE: ±0.200mm) 3. Sn PLATING 0.16±0.050um

4. TAPSITE: 5 SPH, 23.75mm

MIRROR DESIGN

Rev 0.10 P 55/56 Apr 2008 SSD1322 Solomon Systech Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the

http://www.solomon-systech.com

part.

SSD1322 | Rev 0.10 | P 56/56 | Apr 2008 | **Solomon Systech**