# Otimização não linear

### Isabel Espírito Santo

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

iapinho@dps.uminho.pt

http://www.norg.uminho.pt/iapinho/

# Problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv \max\{(x_1 - 1)^2, x_1^2 + 4(x_2 - 1)^2\}$$



# Problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv \sum_{i=1}^2 \min\{|x_i|, |x_1|\}$$



# Problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv \max\{x_1^2, x_2^2\}$$



#### Problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv |x_1 - 1| + |x_1 - x_2|$$



### Método de Nelder-Mead

#### sendo

- X<sub>1</sub> o melhor vértice
- X<sub>n</sub> o segundo pior vértice
- $X_{n+1}$  o pior vértice

Por exemplo, em  $\mathbb{R}^2$ , o simplex formado pelos n+1(=3) pontos define um triângulo. Em  $\mathbb{R}^3$ , um simplex é um tetraedro.

**Nota:** Um simplex diz-se regular se as suas arestas são iguais. Em  $\mathbb{R}^2$ , um simplex regular é um triângulo equilátero.

#### Método de Nelder-Mead

O método de Nelder-Mead (NM) é iterativo e define em cada iteração um **simplex** - poliedro.

Em  $\mathbb{R}^n$ , sejam  $x_1, x_2, \ldots, x_n, x_{n+1} - n + 1$  pontos – os vértices do simplex de dimensão n.

#### Notação:

$$S_k = \langle X_1, X_2, \dots, X_n, X_{n+1} \rangle$$

representa o simplex da iteração k em que os vértices já estão ordenados por ordem crescente dos valores da função objectivo, isto é,  $f(X_1) \le f(X_2) \le \cdots \le f(X_n) \le f(X_{n+1})$ ;

### Método de Nelder-Mead



Em cada iteração, definem-se pontos auxiliares - candidatos a vértices de um novo simplex - que serão aceites ou rejeitados comparando os correspondentes valores da função com  $f(X_1)$ ,  $f(X_n)$  e  $f(X_{n+1})$ .

Operações básicas na construção dos pontos auxiliares:

refletir

contrair

expandir

encolher

### Método de Nelder-Mead

Seja

$$S_1 = \langle X_1, X_2, \dots, X_{n+1} \rangle$$

o simplex inicial já ordenado (k = 1).

Em cada iteração, começa-se por calcular o **centróide** do simplex, que é o ponto médio do hiperplano definido por

$$X_1, X_2, \ldots, X_n$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$$



### Método de Nelder-Mead

- $\bigstar$  Se  $x_r$  for muito bom  $(f(x_r) < f(X_1))$  faz-se uma expansão do simplex:
- cálculo do **vértice expandido** (com  $\gamma = 2$ )

$$x_e = \gamma x_r + (1 - \gamma) \, \bar{x}$$



#### Método de Nelder-Mead

De seguida, calcula-se o **vértice refletido** (com  $\alpha = 1$ )

$$x_r = (1 + \alpha)\,\bar{x} - \alpha X_{n+1}$$



 $\bigstar$  Se  $x_r$  for bom  $(f(X_1) \leq f(x_r) < f(X_n))$  aceita-se  $x_r$  e  $S_{k+1} = \langle X_1, X_2, \dots, X_n, x_r \rangle$  é o simplex para a iteração seguinte.

#### Método de Nelder-Mead

- Se  $x_e$  for muito bom  $(f(x_e) < f(X_1))$  aceita-se  $x_e$  e  $S_{k+1} = \langle X_1, X_2, \dots, X_n, x_e \rangle$
- Senão aceita-se  $x_r$  e  $S_{k+1} = \langle X_1, X_2, \dots, X_n, x_r \rangle$
- $\bigstar$  Se  $x_r$  for fraco  $(f(X_n) \le f(x_r) < f(X_{n+1}))$  faz-se uma contração para o exterior:

#### Método de Nelder-Mead

- cálculo do **vértice contraído para o exterior** (com  $\beta = 1/2$ )

$$\hat{x}_c = \beta x_r + (1 - \beta) \, \bar{x}$$



- Se  $\hat{x}_c$  for bom  $(f(\hat{x}_c) < f(X_n))$  aceita-se  $\hat{x}_c$  e  $S_{k+1} = \langle X_1, X_2, \dots, X_n, \hat{x}_c \rangle$
- Senão encolhe-se o simplex.

### Método de Nelder-Mead

• Senão encolhe-se o simplex. **Encolher o simplex** consiste em substituir cada um dos vértices  $X_i,\ i=2,...,n+1$ , pelo ponto médio do segmento que une esse  $X_i$  a  $X_1$ , i.e.,

$$x_i = \frac{X_i + X_1}{2}$$

e 
$$S_{k+1} = \langle X_1, x_2, \dots, x_n, x_{n+1} \rangle$$
.



#### Método de Nelder-Mead

- ★ Se  $x_r$  for muito fraco  $(f(x_r) \ge f(X_{n+1}))$  faz-se uma **contração** para o interior:
- cálculo do vértice contraído para o interior (com  $\beta = 1/2$ )

$$x_c = \beta X_{n+1} + (1 - \beta) \,\bar{x}$$



• Se  $x_c$  for bom  $(f(x_c) < f(X_n))$  aceita-se  $x_c$  e  $S_{k+1} = \langle X_1, X_2, \dots, X_n, x_c \rangle$ 

# Critério de paragem - NM

O **critério de paragem** consiste em verificar se o tamanho relativo do simplex já é inferior ou igual a uma quantidade pequena,  $\varepsilon>0~(\approx0)$ , i.e., o processo iterativo para se

$$\frac{1}{\Delta} \max_{2 \le i \le n+1} \left\| X_i - X_1 \right\|_2 \le \varepsilon,$$

 $\mathsf{com}\ \Delta = \max(1, \|X_1\|_2).$ 

**Nota:** Para verificar o critério de paragem é necessário que o simplex esteja **ordenado**.

# Melhor aproximação - NM

Se o critério de paragem é verificado, o processo iterativo termina e o vértice do simplex com menor valor da função objetivo,  $X_1$ , é considerado como a melhor aproximação calculada à solução.

Senão, o processo iterativo continua.

**Nota:** Diferentes implementações do método podem ter condições diferentes no critério de paragem.