Hornet Killer Projet d'électronique

Salma AGHRIZEN Bastien BRIAT

SOMMAIRE

- 1. Introduction
- 2. Software
- 3. Hardware
- 4. Conclusion

Introduction

Problèmatique

Envahissement en France depuis 2003
Destruction des ruches
Les coûts de destruction sont environs 13M d'euros

Dispositif intelligente et autonome pour protéger les abeilles

Cahier des charges

Elimination de frelons

Trouver une solution permettant d'éliminer les frelons, quand ceux-ci s'approchent trop prés de ruche. Cette solution ne doit pas mettre en dangers, ni les abeilles, ni leur environment

Simple à déployer

Ce dispositif ce doit être autonome (minimum 72h autonomie), et être simple à installer. Le changement de batterie doit pouvoir se faire en quelques minutes.

2. Software

Software

Carte ESP-32 Wrover

 2 cartes à notre disposition, une seule qui sauvegarde les images dans la carte SD

Carte ESP32 Al-Thinker

- Test sur le code de la carte
- Changement de la version d'une bibliothèque

pour son fonctionnement

 Ne peut pas être utilisé pour le projet: pas des pins

pour les autres composants

Moteur

- Test du code
- Correction des valeurs (tu expliques oralement comment tu les a calculé/ changé et pourquoi)
- Tests sur le calcul des angles

Reconnaissance d'images

- Apprendre connaissance sur le modèle
- Utilisé pour des différentes applications (classification des images, analyse des signaux, détection des objets...)

Fin du training

La probabilité de présence dans l'espace

✓ Le backround est détecté automatiquement par défaut

Mobile NetV2 SSD FPN-Lite

- Détection jusqu'à 10 objets dans une seule image
- La taille du modèle est environs 3,7MB
- RGB avec taille de 320x320px
- La sortie = un box pour chaque objet sélectionné

FOMO (Faster Objects, More Objects)

- Version V2.0.1 de Mobile NetV2 SSD
- Découpe l'image en grille
- La taille du modèle est <100KB
- Support des images avec un niveau du gris et avec RGB
- Utilise un coefficient alpha de 0,1 qui augmente bien la précision

FOMO v2.0.35

- Version V2.0.35 de Mobile NetV2 SSD
- Basé sur un coefficient de alpha de 0,35 donc plus large que celui de 0,1 => il a plus de capacité pour capturer des caractéristiques complexes
- Un modèle également compacte de taille de 100KB

- ✓ Des multiples versions de tests
- ✓ Une version finale qui détecte bien le frelon mais pas toujours l'abeille (pas assez de base de données)
- ✓ Intégration du code moteur, et du code qui envoie un signal au laser est fait.

Sélection des objets à détecter

Algorithme du traitement

```
"version": 1,
         "type": "bounding-box-labels",
         "boundingBoxes": {
             "new_image0.png": [
                     "label": "hornet",
                     "x": 641,
 9
                      "y": 139,
                      "width": 220,
10
                      "height": 254
11
12
13
                     "label": "hornet",
14
                     "x": 641,
15
16
                      "y": 608,
                     "width": 258,
17
                      "height": 266
18
19
```

3. Hardware

Hardware

Carte ESP32-Wrover

Nous avons soudé des pins pour le laser (tu expliques et tu parles de pk il faut la refaire 'alimentation de laser etc)

Laser

- Test d'une solution pour le contrôle de son allumage
- Soudage de la carte
- Test de validation

Ventilateur

- ✓ Soudage d'un câble manquant
- ✓ Tests et validation

L'emplacement des composants

Conclusion

Annexe

- Dépôt GitHub : https://github.com/aghrizen/HornetProject23/tree/main/Avancement_Du_Projet
- Dépôt GitHub de l'ancien groupe : <u>https://github.com/superneyluj/hornetkiller/blob/main/carte_electronique/software/testMoteur.ino</u>
- Datasheet du transistor utilisé: https://www.mouser.fr/datasheet/2/196/Infineon_BSS131_DS_v02_06_en-1226437.pdf
- Vidéo expliquant l'utilisation de Edge Impulse : https://www.youtube.com/watch?v=HDRvZ_BYd08&ab_channel=DroneBotWorkshop
- Datasheet expliquant le fonctionnement du moteur : https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/