Deep Learning

Bootcamp de Big Data & Machine Learning - Keep Coding

Índice

- 1. Introducción
- 2. Presentación
- 3. Contenido de la asignatura
- 4. Calendario
- 5. Herramientas
- 6. Evaluación

1. Introducción

- Bienvenidos a la asignatura de **Deep Learning** del Bootcamp de Big Data & Machine Learning
- A lo largo de este módulo veremos desde lo más básico necesario para entender cómo funcionan las
 Deep Neural Networks hasta ejemplos complejos de aplicaciones
- El único material necesario es una conexión a internet y acceso a Google Colab
- **8 sesiones de 4 horas** (descanso de 15-20 minutos a mitad y últimos minutos de cada sesión reservados para **dudas**)
- Clases **muy dinámicas**: yo iré programando desde 0 todo lo que tengamos que hacer (excepto bloques predefinidos de código) y al día siguiente subiré la solución. **Mejor que sigáis la clase** que que escribáis lo mismo que yo → tendréis el **notebook solucionado** al día siguiente
- **Preguntad** en cuanto os surja una duda y **NO TENGÁIS MIEDO A INTERRUMPIR**. ¡No puedo estar hablando 4 horas del tirón! ;-)

2. Presentación

Sobre mi:

- PhD en Machine Learning (Universidad Politécnica de Valencia, 2018)
 "A system for modeling social traits in realistic faces with artificial intelligence"
- Investigador en PlayFusion Ltd (Cambridge, UK)
- Experiencia en docencia (EDEM, Universidad Internacional de Valencia, KeepCoding)
- Linkedln: https://www.linkedin.com/in/felixfuentesh/

Líneas de investigación:

- Aprendizaje débilmente supervisado (weakly supervised learning)
- Aprendizaje no supervisado
- Redes generativas (Generative Adversarial Networks)
- Investigación aplicada: detección de objetos en videos, clasificación de imágenes, segmentación y regresión, etc.

3. Contenido de la asignatura

- Sesión 1 Introducción al Deep Learning
 - Intro, Tensores, Descenso del Gradiente, Google Colab y Tensorflow, casos prácticos sencillos
- Sesión 2 Redes neuronales 101
 - Intro, cómo aprenden (forward y back-propagation), gradient descent en TF
- Sesión 3 Redes neuronales avanzadas
 - Teoría de optimización, hiper-parámetros, funciones de pérdidas y de activación, pesos
- Sesión 4 Redes neuronales convolucionales 101
 - La convolución, CNNs, extensiones al GD, overfitting y regularización
- Sesión 5 Redes neuronales convolucionales avanzadas
 - Arquitecturas comunes, activaciones y filtros, transfer learning y fine tuning, data augmentation
- Sesión 6 Optimización de hiper-parámetros
 - Grid search, métodos estadísticos, algoritmos genéticos
- Sesión 7 Redes neuronales recurrentes
- Sesión 8 Aplicaciones

4. Calendario

Today < > June 2020					Q ② 🕸 Ma	enth • III BEAUTY
MON Jun 1	TUE 2	WED 3	THU 4	FRI 5	SAT 6	SUN 7
Sesión 1	Sesión 2	Sesión 3	Sesión 4	12	13	14
Sesión 5	Sesión 6	Sesión 7	Sesión 8	19	20	21
22	23	24	25	26	27	Entrega práctica final
29	30	Jul 1	2	3	4	5

Herramientas

- Material de la asignatura: https://gitlab.keepcoding.io/keepcoding-bootcamps/full-stack-big-data-y-ml-v/deep-learning
- Python 3
- Jupyter notebook
- Google Colab https://colab.research.google.com/
- http://www.pyimagesearch.com
- https://machinelearningmastery.com/blog/
- https://towardsdatascience.com/data-science/home
- https://datascience.stackexchange.com/
- Libro Deep Learning: https://www.deeplearningbook.org/

Evaluación

- Participación en clase
- Práctica final
- Nota APTO/NO APTO