Introduction to Spark

Dr. Rajiv Misra Associate Professor

Dept. of Computer Science & Engg. Indian Institute of Technology Patna rajivm@iitp.ac.in

Preface

Content of this Lecture:

 In this lecture, we will discuss the 'framework of spark', Resilient Distributed Datasets (RDDs) and also discuss some of its applications such as: Page rank and GraphX.

 Apache Spark is a big data analytics framework that was originally developed at the University of California, Berkeley's AMPLab, in 2012. Since then, it has gained a lot of attraction both in academia and in industry.

It is an another system for big data analytics

- Isn't MapReduce good enough?
 - Simplifies batch processing on large commodity clusters

- MapReduce can be expensive for some applications e.g.,
 - Iterative
 - Interactive

- Lacks efficient data sharing
- Specialized frameworks did evolve for different programming models
 - Bulk Synchronous Processing (Pregel)
 - Iterative MapReduce (Hadoop)

Solution: Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs)

- Immutable, partitioned collection of records
- Built through coarse grained transformations (map, join ...)
- Can be cached for efficient reuse

Solution: Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs)

- Immutable, partitioned collection of records
- Built through coarse grained transformations (map, join ...)

Fault Recovery?

- Lineage!
 - Log the coarse grained operation applied to a partitioned dataset
 - Simply recompute the lost partition if failure occurs!
 - No cost if no failure

What can you do with Spark?

RDD operations

- Transformations e.g., filter, join, map, group-by ...
- Actions e.g., count, print ...

Control

- Partitioning: Spark also gives you control over how you can partition your RDDs.
- Persistence: Allows you to choose whether you want to persist RDD onto disk or not.

Partitioning: PageRank

- Joins take place repeatedly
- Good partitioning reduces shuffles

Example: PageRank

- Give pages ranks (scores) based on links to them
- Links from many pages

Links from a high-rank page high rank

- **Step-1** Start each page at a rank of 1
- Step-2 On each iteration, have page p contribute rankp/ | neighborsp | to its neighbors
- Step-3 Set each page's rank to 0.15 + 0.85 x contributions

- **Step-1** Start each page at a rank of 1
- Step-2 On each iteration, have page p contribute rankp/ | neighborsp | to its neighbors
- Step-3 Set each page's rank to 0.15 + 0.85 x contributions

- **Step-1** Start each page at a rank of 1
- Step-2 On each iteration, have page p contribute rankp/ | neighborsp | to its neighbors
- Step-3 Set each page's rank to 0.15 + 0.85 x contributions

- **Step-1** Start each page at a rank of 1
- Step-2 On each iteration, have page p contribute rankp/ | neighborsp | to its neighbors
- Step-3 Set each page's rank to 0.15 + 0.85 x contributions

- **Step-1** Start each page at a rank of 1
- Step-2 On each iteration, have page p contribute rankp/ | neighborsp | to its neighbors
- Step-3 Set each page's rank to 0.15 + 0.85 x contributions

Spark Program

```
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
     case (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
   ranks = contribs.reduceByKey ( + )
                   .mapValues (0.15 + 0.85 * _)
 ranks.saveAsTextFile(...)
```

PageRank Performance

Generality

- RDDs allow unification of different programming models
 - Stream Processing
 - Graph Processing
 - Machine Learning

Vertices	Neighbors
А	В
А	С
В	С
D	С

Graph Represented In a Table

Triplets

Group-By A

Apply

The GraphX API

Graphs Property

Creating a Graph (Scala)

```
type VertexId = Long
val vertices: RDD[(VertexId, String)] =
  sc.parallelize(List(
    (1L, "Alice"),
    (2L, "Bob"),
    (3L, "Charlie")))
class Edge[ED](
  val srcId: VertexId,
  val dstId: VertexId,
  val attr: ED)
val edges: RDD[Edge[String]] =
  sc.parallelize(List(
    Edge(1L, 2L, "coworker"),
    Edge(2L, 3L, "friend")))
val graph = Graph(vertices, edges)
```


Graph Operations (Scala)

```
class Graph[VD, ED] {
    // Table Views -------
    def vertices: RDD[(VertexId, VD)]
    def edges: RDD[Edge[ED]]
    def triplets: RDD[EdgeTriplet[VD, ED]]
    // Transformations
    def mapVertices[VD2](f: (VertexId, VD) => VD2): Graph[VD2, ED]
    def mapEdges[ED2](f: Edge[ED] => ED2): Graph[VD2, ED]
    def reverse: Graph[VD, ED]
    def subgraph(epred: EdgeTriplet[VD, ED] => Boolean,
                 vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
    // Joins --
    def outerJoinVertices[U, VD2]
        (tbl: RDD[(VertexId, U)])
        (f: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]
    // Computation
    def aggregateMessages[A](
        sendMsg: EdgeContext[VD, ED, A] => Unit,
        mergeMsg: (A, A) => A): RDD[(VertexId, A)]
```

Built-in Algorithms (Scala)

```
// Continued from previous slide
def pageRank(tol: Double): Graph[Double, Double]
def triangleCount(): Graph[Int, ED]
def connectedComponents(): Graph[VertexId, ED]
// ...and more: org.apache.spark.graphx.lib
}
```


The triplets view

```
class Graph[VD, ED] {
  def triplets: RDD[EdgeTriplet[VD, ED]]
}

class EdgeTriplet[VD, ED](
  val srcId: VertexId, val dstId: VertexId, val attr: ED,
  val srcAttr: VD, val dstAttr: VD)
```


RDD		
dstAttr	attr	
coworker	Bob	
friend	Charlie	
	dstAttr coworker	

The subgraph transformation

The subgraph transformation

Computation with aggregateMessages

```
class Graph[VD, ED] {
  def aggregateMessages[A](
    sendMsg: EdgeContext[VD, ED, A] => Unit,
    mergeMsg: (A, A) => A): RDD[(VertexId, A)]
class EdgeContext[VD, ED, A](
    val srcId: VertexId, val dstId: VertexId, val attr: ED,
    val srcAttr: VD, val dstAttr: VD) {
  def sendToSrc(msg: A)
 def sendToDst(msg: A)
graph.aggregateMessages(
  ctx => {
   ctx.sendToSrc(1)
    ctx.sendToDst(1)
```

Computation with aggregateMessages

aggregateMessages

RDD	
vertex id	degree
Alice	2
Bob	2
Charlie	3
David	

Example: Graph Coarsening

How GraphX Works

Storing Graphs as Tables

Property Graph

Simple Operations

Reuse vertices or edges across multiple graphs

Implementing triplets

Implementing triplets

Implementing aggregateMessages

Future of GraphX

1. Language support

- a) Java API
- b) Python API: collaborating with Intel, SPARK-3789

2. More algorithms

- a) LDA (topic modeling)
- b) Correlation clustering

3. Research

- a) Local graphs
- b) Streaming/time-varying graphs
- c) Graph database-like queries

Other Spark Applications

- i. Twitter spam classification
- ii. EM algorithm for traffic prediction
- iii. K-means clustering
- iv. Alternating Least Squares matrix factorization
- v. In-memory OLAP aggregation on Hive data
- vi. SQL on Spark

Reading Material

 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica

"Spark: Cluster Computing with Working Sets"

Matei Zaharia, Mosharaf Chowdhury et al.

"Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing"

https://spark.apache.org/

Conclusion

- RDDs (Resilient Distributed Datasets (RDDs) provide a simple and efficient programming model
- Generalized to a broad set of applications
- Leverages coarse-grained nature of parallel algorithms for failure recovery