CS F222: Discrete Structures for Computer Science

Tutorial - 2 (Proof Methods)

1. Prove that if n is an integer and n^2 is odd, then n is odd. First try to use the direct proof and if you cannot conclude the proof, then use proof of contraposition.

Solution:

Direct proof: Suppose that n is an integer and n^2 is odd. From the definition of an odd integer, there exists an integer k such that $n^2 = 2k + 1$, this implies $n = \pm \sqrt{2k + 1}$ which is not terribly useful.

Proof by contraposition: Let n is not odd. Because every integer is odd or even, this means that n is even. Thus, there exists an integer k such that n = 2k. This implies, $n^2 = 4k^2 = 2(2k^2)$, which implies that n^2 is also even. We have proved that if n is an integer and n^2 is odd, then n is odd.

2. Prove that for all real numbers x and y, if $x + y \ge 100$, then $x \ge 50$ or $y \ge 50$.

Solution: We use proof of contraposition. Let $p = x + y \ge 100$ and $q = x \ge 50$ or $y \ge 50$. Instead of showing $p \to q$, we show that $\neg q \to \neg p$.

Let $\neg q$ is true i.e, it is not the case that $x \ge 50$ or $y \ge 50$. This implies, both x and y are less than 50 i.e., x < 50 and y < 50. Thus, x + y < 50 + 50 = 100. Therefore, $\neg p$ is true

3. If p is a prime number grater than 3, then p^2 has the form 12k+1, where k is an integer.

Solution: (Direct Proof) Let p be a prime number greater than 3. Hence, p is a odd number. Thus, p^2 is odd (You can prove that if n is an odd integer then n^2 is odd.) note that $p^2 - 1 = (p+1)(p-1)$, thus $p^2 - 1$ is divisible by 4. We now show that $p^2 - 1$ is also divisible by 3. We know that one of any three consecutive integer is divisible by 3. Thus, one among p-1, p, p+1 is divisible by three. Since p is greater than 3, it must be the case that either p-1 or p+1 is divisible by 3. Thus, p^2-1 is divisible by 3. Now, p^2-1 is divisible by both 3 and 4, and gcd(3,4)=1, thus p^2-1 is also divisible by 12. Therefore, $p^2-1=12k$ for some integer. This gives us, $p^2=12k+1$.

4. Show that $\sqrt{3}$ is irrational.

Solution: Assume that $\sqrt{3}$ is not an irrational number, thus $\sqrt{3}$ is rational. Let $\sqrt{3} = a/b$ where a and $b \neq 0$ are two integers such that gcd(a,b) = 1. We have, $a^2 = 3b^2$. Here, a^2 is a multiple of 3 and hence, a is also multiple of 3 (If a is not a multiple of 3, then a is of the form either 3k+1 or 3k+2. Thus, a^2 is of the form either $9k^2+6k+1$ or $9k^2+12k+4$, which is a contradiction to our assumption that a^2 is a multiple of 3.)

So, assume that a=3k, for some kN. Thus, $a^2=3b^2$ this implies $9k^2=3b^2 \implies 3k^2=b^2$, thus b^2 is also a multiple of 3 and hence, b is also multiple of three. In this case $gcd(a,b) \geq 3$, which is a contradiction.

5. Show that $\log_2 3$ is irrational.

Solution: The proof proceeds by contradiction. Assume that log_23 is rational. By definition, there exist two numbers $p, q \in \mathbb{Z}$, with $q \neq 0$, such that $log_23 = \frac{p}{q}$, which means that $2^{\frac{p}{q}} = 3$. Thus, 2p = 3q.

We can assume that p,q>0. (Indeed, if p/q>0 then we can just work with |p| and |q|, and if $p/q\leq 0$ we reach a contradiction of the form $3=2^{p/q}\leq 2^0=1$.) Now, any positive integer power of 2 is even, because it has 2 as a divisor, so 2^p , is even. On the other hand, a positive integer power of 3 is odd, as we've seen previously. We have reached a contradiction.

6. Show that the sum of a rational number and an irrational number is an irrational number.

Solution: The proof proceeds by contradiction. Assume that the sum of a rational number and an irrational number results in a rational number. Let us denote the irrational number by x and the other two rational numbers as a/b and c/d respectively, where a, b, c, d are integers and $b, d \neq 0$. Now, from our assumption

$$a/b + x = c/d$$

or, $x = c/d - a/b$
or, $x = \frac{cb-ad}{bd}$

which is rational. But this contradicts our assumption that x is irrational. This completes the proof.

7. Prove that if x and y are real numbers, then $\max(x,y) + \min(x,y) = x + y$. (Hint: Use a proof of cases, x = y, x > y and x < y.)

Solution: We use proof by cases, by considering the three cases (i)x = y (ii) x > y and (iii) x < y.

Case (i). Let x = y. Then, $\min(x, y) = \max(x, y) = x$ (and $\min(x, y) = \max(x, y) = y$). Further, x + y = 2x (resp. x + y = 2y). Thus, $\max(x, y) + \min(x, y) = x + y$.

Case (ii). Suppose, x > y. In this case, $\min(x, y) = y$ and $\max(x, y) = x$. Thus, $\max(x, y) + \min(x, y) = x + y$.

Case (iii). Suppose, x < y. In this case, $\min(x, y) = x$ and $\max(x, y) = y$. Thus, $\max(x, y) + \min(x, y) = x + y$.

8. Let $f(x) = x^3 + x - 5$ be a function. Show that there exists a real number c such that f'(c) = 7.

Solution: We give a constructive existence proof. The derivative of f is $f'(x) = 3x^2 + 1$. Our goal is to find a positive number c such that f'(c) = 7.

2

Thus,
$$3c^2 + 1 = 7 \implies c^2 = 2 \implies c = \pm \sqrt{2}$$
. Then, $c = \sqrt{2}$.