Exercice 1:

Soit I = [0, 1]. On définit une suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définie sur I par :

$$\forall x \in I, \ f_0(x) = 1 \text{ et } \forall (n, x) \in \mathbb{N} \times I, \ f_{n+1}(x) = 2 \int_0^x \sqrt{f_n(t)} dt.$$

- 1. Pour $x \in I$, déterminer $f_1(x)$ et $f_2(x)$.
- 2. Montrer:

$$\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{R}^2_+, \ \forall x \in I, \ f_n(x) = a_n x^{b_n}.$$

On vérifiera au cours du raisonnement que, pour tout entier naturel n, on a $a_{n+1} = \frac{4\sqrt{a_n}}{b_n+2}$ et $b_{n+1} = \frac{1}{2}b_n + 1$.

- 3. Écrire une fonction Python prenant n en entrée qui calcule et affiche les n+1 premiers termes de ces suites.
- 4. Déterminer b_n en fonction de n et en déduire sa limite.
- 5. Montrer: $\forall n \in \mathbb{N}, a_n \geqslant 1$.
- 6. On pose $w_n = 2^n \ln(a_n)$. Montrer que $\lim (w_{n+1} w_n) = 1$.
- 7. En déduire : $\exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, w_{n_0} \leqslant w_n \leqslant 2(n-n_0) + w_{n_0}$. En déduire la limite de (a_n) .

Exercice 2:

On définit f par : $\forall x \in \mathbb{R}, f(x) = \frac{4}{3}x^3 + \frac{1}{6}$.

- 1. Montrer que $\left[0,\frac{1}{2}\right]$ est un intervalle stable par f.
- 2. Linéariser $\sin^3 x$ puis montrer que $\sin\left(\frac{\pi}{18}\right)$ est l'unique solution, dans l'intervalle $\left[0,\frac{1}{2}\right]$, de l'équation $x=\frac{4}{3}x^3+\frac{1}{6}$.
- 3. Soit la suite (u_n) définie par $u_0=0$ et, pour tout entier naturel $n, u_{n+1}=\frac{4}{3}u_n^3+\frac{1}{6}$. Montrer que (u_n) converge vers $\sin\left(\frac{\pi}{18}\right)$.
- 4. En déduire un programme Python calculant une valeur approchée de sin $\left(\frac{\pi}{18}\right)$ à 10^{-6} près.

Exercice 3:

Pour tout entier naturel n et tout réel x, on pose $P_n(x) = x^3 + nx - 1$.

- 1. Soit $n \in \mathbb{N}$. Montrer que le polynôme P_n admet une unique racine réelle que l'on notera x_n .
- 2. Montrer que : $\forall n \in \mathbb{N}, 0 < x_n \leq 1$.
- 3. Montrer que la suite est strictement $(x_n)_{n\in\mathbb{N}}$ est strictement décroissante. En déduire qu'elle converge. Par la suite, on se propose de calculer la limite de $(x_n)_{n\in\mathbb{N}}$ de deux façons différentes.
- 4. (a) Soit $n \in \mathbb{N}^*$. Calculer $P_n\left(\frac{1}{n}\right)$. En déduire un encadrement de x_n puis sa limite quand n tend vers $+\infty$.
 - (b) Retrouver la limite de $(x_n)_{n\in\mathbb{N}}$ en raisonnant par l'absurde.
- 5. Montrer: $x_n \sim \frac{1}{n}$.
- 6. Écrire une fonction Python permettant d'obtenir une approximation de x_n à ε près où ε est un réel strictement positif choisi par l'utilisateur.

Cette fonction prendra en entrée le réel ε .

Indication : on pourra utiliser l'algorithme de dichotomie rappelé dans la question 2) a) de l'exercice 14 de la liste d'exercices sur les suites.