A short discussion of stochastic rewards in RL environment

By Harvey Huang

Stochastic rewards in RL environments

- Noises on rewards (Strens, 2000):
 - "This greedy policy fails when rewards are uncertain; the system can converge to a local minimum where the greedy behavior is sub-optimal because its decisions are based on maximum likelihood estimates (e.g. averages) which are not equal to the true parameters."
 - Strens (2000) proposed a Bayesian approach.
 - The noises on rewards are assumed to be gaussian.
- Noises on rewards (Moreno et al., 2006)
 - Moving (sample) average method.
 - The noises on rewards are gaussian or impulsive.

Stochastic rewards in RL environments

- Corrupted rewards (Everitt et al., 2017)
 - Observed reward is drawn from a "corruption" function given the true reward and state
 - reward = C(s, true_reward)
- Corrupted and stochastic rewards (Romoff et al., 2018)
 - Gaussian noises on rewards
 - Uniform noises on rewards
 - Sparse rewards
 - They used sample average
 - "Sample avg does not improve performance much if rewards are delayed (e.g. board game)"

Stochastic rewards in RL environments

- Perturbed rewards (Wang et al. 2020)
 - Reward DGP falls into the same category: gaussian.
 - They realized it is better to use unbiased estimator for true reward.
 - However, they used a complicated approach adopted from supervised learning.
- In a nutshell
 - We need to find an approximation of the true reward function.
 - Many existing approaches: approximate reward function -> find mean -> learn the optimal policy.
 - I think this is somehow influence by the model-based RL research in CS.
 - However, to find optimal policy we need only the mean reward.
 - Find the mean (a reward function is not necessary) -> learn the optimal policy

Robust RL to stochastic rewards

- Many existing approaches to tackle robustness focus on reducing the second moment (variance).
 - In theory/proofs
 - In standard games/environment simulations as well.
- Analysis/proof of convergence requires strict and tight assumptions
 - E.g. uniform/gaussian rewards
- What about other environments where we have no idea what the reward generating process is (particularly if rewards are note gaussian)?
 - And what is the best way to get the "unbiased (and efficient) estimates"
- This is the issue we intend to raise (and to provide elegant solutions).

Risk-sensitive RL (Vadori et al., 2020)

- Risk-sensitive RL commonly uses variance as a measure of risk.
- The common goal is to consider the distribution of the cumulative rewards in order to learn a variety of policies, usually parameterized by a risk parameter such as the mean-variance trade-off, the CVaR percentile or an upper bound on variance.
- However, this could be problematic.
- E.g. Often the learned policies typically lead to the distribution of cumulative rewards having lower mean but also lower variance.

Risk-sensitive RL (Vadori et al., 2020)

- In a stochastic environment where the reward process is also stochastic, one should separate the randomness in the reward:
 - "predictable part": where the reward randomness is due to state transition
 - "chaotic part": where the reward randomness is due to the randomness nature of the reward process itself. If the chaotic part is 0, then the reward process is deterministic.
- Approach: doob decomposition method to separate the two.
- This is also an important message we want to deliver
 - We should separate the randomness due to different sources.
- Our approach: distributional RL combined with efficient statistics.

Motivation example environment

	S0	S1
A0	2	10
A1	$4 + \sigma h_t$	$8 + \sigma h_t$

- $P(S_{t+1}|S_t) = 50\%$
- $\sigma \ge 0 \ (meta = 0.16)$
- $h_t \sim N(0,1)$
- A0: risk-free investment
- A1: risky investment
- Optimal policy: (S0, A1) (S1, A0)

Portfolio optimization example environment

	Brain, Mind
	and Markets
m'e'nt	Laboratory

	LowVol	MediumVol	HighVol
Action pair: (q_t^{RF}, q_t^R)	$\mu = 0.2$, $\sigma = 0.5$	$\mu=0.6$, $\sigma=1$	$\mu = 1$, $\sigma = 1.5$

- $R_{t+1} = R_{t+1}^{RF} + R_{t+1}^{R}$
 - Risk-free reward: $R_{t+1}^{RF} = q_t^{RF} \mu(s_t)$
- $q_t^{RF}, q_t^R \ge 0, q_t^{RF}, q_t^R \in Z$
- Budget constraint: $q_t^{RF} + q_t^R \le q_{max} = 5$
- \Rightarrow 21 possible actions

State transition matrix is designed such that the more we invest in the risky asset, the more likely we are to reach a higher volatility state.

• Risky reward: $R_{t+1}^R = q_t^R(\mu(s_t) + \sigma(s_t)h_{t+1})$ Table 2: Section 5.2 Portfolio Optimization: state transition matrix as a function of the chosen action (quantity q_t^R invested in the risky asset)

$q_t^R = 5$	LowVol	MediumVol	HighVol	$2 < q_t^R < 5$	LowVol	MediumVol	HighVol
LowVol MediumVol HighVol	0.05 0.05 0.05	0.25 0.25 0.25	0.7 0.7 0.7	Low Vol Medium Vol High Vol	0.1 0.1 0.1	0.45 0.45 0.45	0.45 0.45 0.45
$0 < q_t^R \le 2$	LowVol	MediumVol	HighVol	$q_t^R = 0$	LowVol	MediumVol	HighVol
$0 < q_t^R \le 2$ $LowVol$ $MediumVol$	LowVol 1/3 1/3	MediumVol	HighVol 1/3 1/3	$q_t^R = 0$ $Low Vol$ $Medium Vol$	LowVol 0.5 0.5	MediumVol 0.45 0.45	HighVol 0.05 0.05

Combine everything together

- In a stochastic environment with stochastic rewards, regardless of the reward DGP (specifically, not limited to gaussian/uniform distribution), how do agent perform well?
 - By finding the optimal policy (optimal action in a particular state).
- i.e. agents need to find out, *on average*, which action is better in a state.
 - **→** find <u>unbiased</u> mean reward <u>efficiently</u>.
 - There are solutions from statistics to deal with all kinds of stochastic reward distributions. One doesn't need to build sophisticated and specially designed approaches.
- Approach that we use: you can use statistic tools to improve the robustness of RL agents.
 - We should find unbiased and efficient mean reward to handle reward uncertainty.