CLOSURE OF THE CONE OF SUMS OF 2d-POWERS IN REAL TOPOLOGICAL ALGEBRAS

MEHDI GHASEMI¹, SALMA KUHLMANN²

ABSTRACT. Let R be a unitary commutative \mathbb{R} -algebra and $K \subseteq \mathcal{X}_R := \operatorname{Hom}(R,\mathbb{R})$, closed with respect to the product topology. We consider R endowed with the topology \mathcal{T}_K , induced by the family of seminorms $\rho_{\alpha}(a) := |\alpha(a)|$, for $\alpha \in K$ and $a \in R$. In case K is compact, we also consider the topology induced by $\|a\|_K := \sup_{\alpha \in K} |\alpha(a)|$ for $a \in R$. If K is Zariski dense, then those topologies are Hausdorff. In this paper we prove that the closure of the cone of sums of 2d-powers, $\sum R^{2d}$, with respect to those two topologies is equal to $\operatorname{Psd}(K) := \{a \in R : \alpha(a) \geq 0, \text{ for all } \alpha \in K\}$. In particular, any continuous linear functional L on the polynomial ring $R = \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$ with $L(h^{2d}) \geq 0$ for each $h \in \mathbb{R}[\underline{X}]$ is integration with respect to a positive Borel measure supported on K. Finally we give necessary and sufficient conditions to ensure the continuity of a linear functional with respect to those two topologies.

1. Introduction

The (real) multidimensional K-moment problem for a given closed set $K \subseteq \mathbb{R}^n$, is the question of when a real valued linear functional L, defined on the real algebra of polynomials $\mathbb{R}[\underline{X}]$, is representable as integration with respect to a positive Borel measure on K. A subset C of $\mathbb{R}[\underline{X}]$ is called a cone, if $C + C \subseteq C$ and $\mathbb{R}^+C \subseteq C$, where \mathbb{R}^+ denotes the non-negative real numbers. Let us denote the cone of non-negative polynomials on K by $\mathrm{Psd}(K)$. If L is representable by a measure then clearly, for any polynomial $f \in \mathrm{Psd}(K)$, $L(f) \geq 0$ (i.e. $L(\mathrm{Psd}(K)) \subseteq \mathbb{R}^+$). Haviland [10, 11], proved that this necessary condition is also sufficient. However, $\mathrm{Psd}(K)$ is seldom finitely generated [19, Proposition 6.1]. So in general, there is no practical

Date: March 23, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 13J30, 14P10, 44A60; Secondary 12D15, 43A35, 46B99.

Key words and phrases. Positive polynomials, sums of squares, cone of sums of 2d-powers, semialgebraic sets, locally convex topologies, positive semidefinite continuous linear functionals, moment problem.

decision procedure for the membership problem for $\operatorname{Psd}(K)$, and a fortiori for $L(\operatorname{Psd}(K)) \subseteq \mathbb{R}^+$.

We are mainly interested in the solutions of

(1)
$$\operatorname{Psd}(K) \subseteq \overline{C}^{\tau},$$

where C is a cone, K is a closed subset of \mathbb{R}^n and \overline{C}^{τ} denotes the closure of C with respect to a locally convex topology τ on $\mathbb{R}[\underline{X}]$. It is proved in [8, Proposition 3.1] that (1) holds if and only if for every τ -continuous linear functional L, nonnegative on C, there exists a positive Borel measure μ supported on K, such that

$$L(f) = \int_K f \ d\mu, \quad \forall f \in \mathbb{R}[\underline{X}].$$

Clearly, if the functional L is representable by a measure, then L has to be positive semidefinite, i.e., $L(p^2) \geq 0$ for all $p \in \mathbb{R}[\underline{X}]$. So in (1), the simplest cone to consider is $C = \sum \mathbb{R}[\underline{X}]^2$. If τ is the finest locally convex topology φ on $\mathbb{R}[\underline{X}]$, then any given linear functional is φ -continuous [4]. In this setting, Schmüdgen in [20, Theorem 3.1] and Berg, Christensen and Jensen in [2, Theorem 3] prove that $\overline{\sum \mathbb{R}[\underline{X}]^{2^{\varphi}}} = \sum \mathbb{R}[\underline{X}]^2$. Later, in [3, Theorem 9.1] Berg, Christensen and Ressel prove that taking $C = \sum \mathbb{R}[\underline{X}]^2$ and τ to be the ℓ_1 -norm topology, then $K = [-1,1]^n$ solves (1), i.e., $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_1} = \operatorname{Psd}([-1,1]^n)$. This was further generalized in [4] and [5] to include commutative semigroup-rings and topologies induced by absolute values. These results has been revisited in [16] with a different approach, and were recently generalized in [8] to weighted ℓ_p -norms, $p \geq 1$. In [9] it is shown that the general result in [5] carries to the even smaller cone of sums of 2d-powers, $\sum \mathbb{R}[\underline{X}]^{2d} \subseteq \sum \mathbb{R}[\underline{X}]^2$, where $d \geq 1$ is an integer. In particular, $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|_1} = \operatorname{Psd}([-1,1]^n)$.

We now discuss (1) for other special cones. A set $T \subseteq \mathbb{R}[\underline{X}]$ is called a preordering, if $T+T\subseteq T$, $T\cdot T\subseteq T$ and $\sum \mathbb{R}[\underline{X}]^2\subseteq T$. For $S\subseteq \mathbb{R}[\underline{X}]$, we denote the smallest preordering, containing S by T_S . A preordering T is said to be finitely generated, if $T=T_S$ for some finite set $S\subseteq \mathbb{R}[\underline{X}]$. The smallest preordering of $\mathbb{R}[\underline{X}]$ is $\sum \mathbb{R}[\underline{X}]^2$, as considered above. A subset $M\subseteq \mathbb{R}[\underline{X}]$ is a $\sum \mathbb{R}[\underline{X}]^{2d}$ -module if $1\in M$, $M+M\subseteq M$ and $\sum \mathbb{R}[\underline{X}]^{2d}\cdot M\subseteq M$. If d=1, M is said to be a quadratic module. M is said to be finitely generated, if $M=M_S$ for some finite set $S\subseteq \mathbb{R}[\underline{X}]$, and Archimedean if for every $f\in \mathbb{R}[\underline{X}]$ there exists $n\in \mathbb{N}$ such that $n\pm f\in M$. The non-negativity set of a subset $S\subseteq \mathbb{R}[\underline{X}]$ will be denoted by K_S , and is defined by $K_S:=\{x\in \mathbb{R}^n: \forall f\in S \mid f(x)\geq 0\}$. If S is finite, K_S is called a basic closed semialgebraic set.

In [21] Schmüdgen proves that for a finite S, if K_S is compact, then K_S solves (1) for $C = T_S$ and $\tau = \varphi$, i.e., $\overline{T_S}^{\varphi} = \operatorname{Psd}(K_S)$. Jacobi proved [12] that if M is an Archimedean $\sum \mathbb{R}[\underline{X}]^{2d}$ -module then $\overline{M}^{\varphi} = \operatorname{Psd}(K_M)$ (see [18, Theorem 1.3 and 1.4] for d = 1). In [15], Lasserre proves that for a specific fixed norm $\|\cdot\|_w$, and any finite S, $\overline{M_S}^{\|\cdot\|_w} = \overline{T_S}^{\|\cdot\|_w} = \operatorname{Psd}(K_S)$. In particular, if $S = \emptyset$, $\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_w} = \operatorname{Psd}(\mathbb{R}^n)$. It is worth noting that the latter equality could be derived by suitable modifications of Schmüdgen [20, Lemma 6.1 and Lemma 6.4].

Throughout the paper the algebras under consideration are unitary and commutative. In this paper, we study (1) in a more general context. In Section 2, we recall some standard notations and elementary material which will be needed in the following sections. We consider a $\mathbb{Z}[\frac{1}{2}]$ -algebra R and a $K \subseteq \mathcal{X}_R := \operatorname{Hom}(R, \mathbb{R})$, closed with respect to the product topology.

In Section 3, we associate to K a topology \mathcal{T}_K on R, making all homomorphisms in K continuous. When K is compact we define a seminorm $\|\cdot\|_K$ on R, which induces a strictly finer topology than \mathcal{T}_K . If K is Zariski dense, then those topologies are Hausdorff.

In section 4, we study (1) in terms of the two topologies \mathcal{T}_K , $\|\cdot\|_K$ for the cone $C = \sum R^{2d}$ of sums of 2d-powers. The two main results are Theorems 4.2 and 4.5: we prove that for K as above, the closure of $\sum R^{2d}$ with respect to \mathcal{T}_K is $\mathrm{Psd}(K)$. Here $\mathrm{Psd}(K) \coloneqq \{a \in R : \alpha(a) \geq 0, \text{ for all } \alpha \in K\}$. When K is compact, we use Stone-Weierstrass to prove that the closure of $\sum R^{2d}$ with respect to the $\|\cdot\|_K$ -topology is again $\mathrm{Psd}(K)$. In case $R = \mathbb{R}[\underline{X}]$, $K = \mathbb{R}^n$ and d = 1, the first result is a special case of Schmüdgen's result for locally multiplicatively convex topologies [20, Proposition 6.2], and the second result is straightforward, as noted in [2, Remark 3.2].

Finally, we apply our results to obtain representation of continuous functionals by measures (Corollaries 4.3 and 4.6).

In Section 5, we study the case when R is an \mathbb{R} -algebra. We define $\sum R^{2d}$ -modules and archimedean modules exactly as we did for $R = \mathbb{R}[\underline{X}]$. We prove that the closure of $\sum R^{2d}$ with respect to any sub-multiplicative norm is $\operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$, where $\mathcal{K}_{\|\cdot\|}$ is the Gelfand spectrum of $(R, \|\cdot\|)$ (see Theorem 5.3). Our proof is algebraic and uses a result of T. Jacobi [12, Theorem 4]. Again, we get representation of continuous functionals by measures (Corollary 5.4).

Next, we study the case where the cone is a $\sum R^{2d}$ -module $M \subseteq R$. We define $\mathcal{K}_M = \{\alpha \in \mathcal{X}_R : \alpha(a) \geq 0 \quad \forall a \in M\}$. We show that $\overline{M}^{\mathcal{T}_{\mathcal{X}_R}}$, the closure of M with respect to $\mathcal{T}_{\mathcal{X}_R}$, is $\mathrm{Psd}(\mathcal{K}_M)$ (see Theorem 5.5).

In Section 6, we apply all these results to the ring of polynomials $\mathbb{R}[\underline{X}]$. Moreover, we study the case when K is not necessarily Zariski-dense. We show that if K is contained in a variety, a locally convex and Hausdorff topology τ_K can still be defined, as the limit of an inverse family of topologies on $\mathbb{R}[\underline{X}]$. We show that $\overline{\sum \mathbb{R}[\underline{X}]^{2d^{T_K}}} = \tilde{\mathrm{Psd}}(K)$, where $\tilde{\mathrm{Psd}}(K)$ is the set of polynomials which are nonnegative on some open set containing K. Finally, we compare the topologies $\|\cdot\|_K$ and \mathcal{T}_K on $\mathbb{R}[\underline{X}]$ to sub-multiplicative norm topologies, and to the Lasserre's topology $\|\cdot\|_W$, considered on [15].

2. Preliminaries on topological vector spaces and rings.

In the following, all vector spaces are over the field of real numbers (unless otherwise specified). A topological vector space is a vector space X equipped with a topology such that the vector space operations (i.e. scalar multiplication and vector summation) are continuous. A subset $A \subseteq X$ is said to be convex if for every $x, y \in A$ and $\lambda \in [0,1]$, $\lambda x + (1-\lambda)y \in A$. A locally convex (lc for short) topology is a topology which admits a neighborhood basis of convex open sets at each point.

Suppose that in addition X is an \mathbb{R} -algebra. A subset $U \subseteq X$ is called a multiplicative set, an m-set for short, if $U \cdot U \subseteq U$. A locally convex topology on X is said to be locally multiplicatively convex (or lmc for short) if there exists a fundamental system of neighborhoods for 0 consisting of m-sets. It is immediate from the definition that the multiplication is continuous in a lmc-topology.

Definition 2.1. A function $\rho: X \to \mathbb{R}^{\geq 0}$ is called a seminorm, if

- (i) $\forall x, y \in X \quad \rho(x+y) \le \rho(x) + \rho(y)$,
- (ii) $\forall x \in X \ \forall r \in \mathbb{R} \ \rho(rx) = |r|\rho(x)$.

 ρ is called a multiplicative seminorm, if in addition ρ satisfies the following

(iii)
$$\forall x, y \in X \quad \rho(x \cdot y) \le \rho(x)\rho(y)$$
.

Definition 2.2. Let \mathcal{F} be a nonempty family of seminorms on X. The topology generated by \mathcal{F} on X is the coarsest topology on X making all seminorms in \mathcal{F} continuous. It is a locally convex topology on X. The family of sets of the form

$$U^{\epsilon}_{\rho_1,\ldots,\rho_k}(x)\coloneqq\{y\in X\ :\ \rho_i(x-y)\leq\epsilon,\ i=1,\ldots,k\}$$

where $\epsilon > 0$ and $\rho_1 \dots, \rho_k \in \mathcal{F}$, forms a basis for this topology.

We have the following characterization of lc and lmc spaces.

Theorem 2.3. Let X be an algebra and τ a topology on X. Then

- (1) τ is lc if and only if it is generated by a family of seminorms on X.
- (2) τ is lmc if and only if it is generated by a family of multiplicative seminorms on X.

Proof. See [13, Theorem 6.5.1] for (1) and [1, 4.3-2] for (2). \Box

Let R be a commutative ring with 1 and $\frac{1}{2} \in R$. We always assume that $\mathcal{X}_R = \operatorname{Hom}(R, \mathbb{R})$, the set of unitary homomorphisms, is nontrivial. Clearly, $\mathcal{X}_R \subset \mathbb{R}^R$, therefore, it carries a topology as subspace of \mathbb{R}^R with the product topology which is Hausdorff. For any $a \in R$ let $U(a) := \{\alpha \in \mathcal{X}_R : \alpha(a) < 0\}$. The family $\{U(a) : a \in R\}$ forms a subbasis for the subspace topology on \mathcal{X}_R which is the coarsest topology making all projection functions $\hat{a} : \mathcal{X}_R \to \mathbb{R}$ continuous where for $a \in R$, \hat{a} is defined by $\hat{a}(\alpha) = \alpha(a)$. \mathcal{X}_R also can be embedded in Sper(R) equipped with spectral topology [17, Theorem 5.2.5 and Lemma 5.2.6]. Since all projections are continuous, the topology of \mathcal{X}_R coincides with the subspace topology inherited from \mathbb{R}^R equipped with product topology. For K be a subset of \mathcal{X}_R we denote by C(K) the algebra of continuous real valued functions on K.

Definition 2.4. To any subset S of R we associate a subset $\mathcal{Z}(S)$ of \mathcal{X}_R , called the zeros of S or the variety of S by $\mathcal{Z}(S) := \{\alpha \in \mathcal{X}_R : \alpha(S) = \{0\}\}$. Denote by $\langle S \rangle$ the ideal generated by S. Then $\mathcal{Z}(S) = \mathcal{Z}(\langle S \rangle)$, and the family $\{\mathcal{X}_R \setminus \mathcal{Z}(S) : S \subseteq R\}$ forms a sub-basis for a topology called the Z ariski topology on \mathcal{X}_R .

Now Suppose that the map (defined in Lemma 3.1 with $K = \mathcal{X}_R$, $a \mapsto \hat{a}$ is injective, then a subset K of \mathcal{X}_R is dense in \mathcal{X}_R with respect to the Zariski topology (Zariski dense) if and only if $K \notin \mathcal{Z}(I)$ for any proper I ideal of R.

Example 2.5. Suppose that $K \subseteq \mathbb{R}^n$ has nonempty interior, then clearly K is Zariski dense in \mathbb{R}^n . Let K be a basic closed semialgebraic set, i.e., $K := \{x \in \mathbb{R}^n : f_i(x) \geq 0, i = 1, \ldots, m\}$ where $f_i \in \mathbb{R}[\underline{X}], i = 1, \ldots, m$. We show that if K has an empty interior then K is contained in $\mathcal{Z}(g)$, where $g = f_1 \ldots f_m$. For each $x \in K$, $f_i(x) = 0$ for some $1 \leq i \leq m$. Otherwise, $f_i(x) > 0$ for each $i = 1, \ldots, m$, the continuity of polynomials implies that $f_i(y) > 0$, $i = 1, \ldots, m$ for g sufficiently close to g and hence g is an interior point which is impossible. Therefore g(x) = 0 and hence g is an interior point which semialgebraic set g. Note that any closed semialgebraic set g.

Theorem 2.7.2] i.e., $K = \bigcup_{i=1}^{l} K_i$. If K has an empty interior, then each K_i is so and hence $K \subseteq \mathcal{Z}(g_1 \dots g_l)$, where each g_i is the product of generators of K_i .

Remark 2.6. In general, the conclusion of the above example is false. For example, let $R = \mathbb{Z}_3 \times \mathbb{R}[\underline{X}]$ with component wise addition and multiplication. R is a $\mathbb{Z}[\frac{1}{2}]$ -module where $\frac{1}{2}(1,r) = (2,\frac{r}{2})$ and $\frac{1}{2}(2,r) = (1,\frac{r}{2})$. Also $\mathcal{X}_R = \mathbb{R}^n$ is non-trivial. $I = \mathbb{Z}_3 \times \{0\}$ is a proper ideal of R and $\mathcal{Z}(I) = \mathbb{R}^n$. Hence, every semialgebraic set is contained in $\mathcal{Z}(I)$.

Definition 2.7. If R is a ring, a function $N: R \to \mathbb{R}^+$ is called a *ring-seminorm* if the following conditions hold for all $x, y \in R$:

- (i) N(0) = 0,
- (ii) $N(x+y) \le N(x) + N(y)$,
- (iii) N(-x) = N(x),
- (iv) $N(xy) \leq N(x)N(y)$.

N is called a ring-norm, if in addition

(v) N(x) = 0 only if x = 0.

We close this section by stating a general version of Haviland's Theorem.

Theorem 2.8. Suppose R is an \mathbb{R} -algebra, X is a Hausdorff space, and $\hat{}: R \to C(X)$ is an \mathbb{R} -algebra homomorphism such that for some $p \in R$, $\hat{p} \geq 0$ on X and the set $X_i = \hat{p}^{-1}([0,i])$ is compact for each $i = 1, 2, \ldots$. Then for every linear functional $L: R \to \mathbb{R}$ satisfying

$$L(\{a \in R : \hat{a} \ge 0 \text{ on } X\}) \subseteq \mathbb{R}^+,$$

there exists a Borel measure μ on X such that $\forall a \in R$ $L(a) = \int_X \hat{a} \ d\mu$.

Proof. See [17, Theorem 3.2.2].

3. The topologies \mathcal{T}_K and $\|.\|_K$.

Throughout we assume that the map $\hat{}: R \to C(\mathcal{X}_R)$, defined by $\hat{a}(\alpha) = \alpha(a)$ is injective.

Lemma 3.1. Let K be a subset of \mathcal{X}_R , then

- (1) The map $\Phi: R \to C(K)$ defined by $\Phi(a) = \hat{a}|_K$ is a homomorphism.
- (2) $Im(\Phi)$ contains a copy of $\mathbb{Z}[\frac{1}{2}]$.

Proof. (1) This is clear. Let $a, b \in R$, then for each $\alpha \in K$ we have

$$\Phi(a+b)(\alpha) = \widehat{(a+b)}|_K(\alpha)$$

$$= \alpha(a+b)$$

$$= \alpha(a) + \alpha(b)$$

$$= \widehat{a}|_K(\alpha) + \widehat{b}|_K(\alpha)$$

$$= \Phi(a)(\alpha) + \Phi(b)(\alpha).$$

Similarly $\Phi(a \cdot b) = \Phi(a) \cdot \Phi(b)$.

(2) Since \mathcal{X}_R consists of unitary homomorphisms, $\hat{1}(\alpha) = \alpha(1) = 1$, so the constant function $1 \in \Phi(R)$. Moreover for each $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, $\frac{m}{2^n} \in R$ and $\frac{\hat{m}}{2^n}$ is the constant function $\frac{m}{2^n}$ which belongs to $Im(\Phi)$, so $\mathbb{Z}[\frac{1}{2}] \subseteq Im(\Phi)$.

The topology \mathcal{T}_K . Let $K \subseteq \mathcal{X}_R$. To any $\alpha \in K$ we associate a seminorm ρ_{α} on C(K) by defining $\rho_{\alpha}(f) \coloneqq |f(\alpha)|$ for $f \in C(K)$. Note that $\rho_{\alpha}(fg) = \rho_{\alpha}(f)\rho_{\alpha}(g)$, so ρ_{α} is a multiplicative seminorm. The family of seminorms $\mathcal{F}_K = \{\rho_{\alpha} : \alpha \in K\}$ thus induces an lmc-topology on C(K).

Similarly, The restriction of ρ_{α} to $\Phi(R)$ induces a multiplicative ringseminorm on R by defining $\rho_{\alpha}(a) := |\hat{a}(\alpha)| = |\alpha(a)|$ for $a \in R$. Thus family of ring-seminorms \mathcal{F}_K induces a topology \mathcal{T}_K on R.

To ease the notation we shall denote the neighborhoods by

$$U^{\epsilon}_{\rho_{\alpha_1},\dots,\rho_{\alpha_m}}(a) \coloneqq U^{\epsilon}_{\alpha_1,\dots,\alpha_m}(a)$$
.

Remark 3.2. \mathcal{T}_K is the coarsest topology on R for which all $\alpha \in K$ are continuous. \mathcal{T}_K is also the coarsest topology on R, for which Φ is continuous. This is clear, because $\rho_{\alpha}(a) = \rho_{\alpha}(\Phi(a))$ for each $a \in R$.

We note for future reference that the topology generated by \mathcal{F}_K on C(K) is Hausdorff [4, Proposition 1.8].

Theorem 3.3. Let $K \subseteq \mathcal{X}_R$ and $\Phi : R \to C(K)$ be the map defined in Lemma 3.1. The following are equivalent:

- (1) K is Zariski dense,
- (2) $\ker \Phi = \{0\},\$
- (3) \mathcal{T}_K is a Hausdorff topology.

Proof. (1) \Rightarrow (2) In contrary, suppose that $\ker \Phi \neq \{0\}$ and let $0 \neq a \in \ker \Phi$. Then by definition, $\hat{a}(\alpha) = 0$ for all $\alpha \in K$. This implies $K \subseteq \mathcal{Z}(a)$ which contradicts the assumption that K is Zariski dense.

(2) \Rightarrow (3) Since Φ is injective, by Remark 3.2, Φ is a topological embedding. This implies that \mathcal{T}_K is Hausdorff as well.

(3) \Rightarrow (1) Suppose that K is not Zariski dense. Than $K \subseteq \mathcal{Z}(I)$ for a nontrivial ideal of R. Take $a, b \in I$, $a \neq b$ and let U be an open set in \mathcal{T}_K , containing a. By definition, there exist $\alpha_1, \ldots, \alpha_m \in K$ and $\epsilon > 0$ such that

$$U^{\epsilon}_{\alpha_1,\ldots,\alpha_m}(a) \subseteq U.$$

For each i = 1, ..., m, $\rho_{\alpha_i}(a - b) = |\alpha_i(b - a)| = 0$, therefore $b \in U^{\epsilon}_{\alpha_1, ..., \alpha_m}(a)$ and hence $b \in U$. This shows that \mathcal{T}_K is not Hausdorff, a contradiction. \square

The topology $\|.\|_K$. Assume now that K is compact. In this case, C(K) carries a natural norm topology, the norm defined by $\|f\|_K = \sup_{\alpha \in K} |f(\alpha)|$. The inequalities $\|f + g\|_K \le \|f\|_K + \|g\|_K$ and $\|fg\|_K \le \|f\|_K \|g\|_K$ implies the continuity of addition and multiplication on $(C(K), \|\cdot\|_K)$.

Lemma 3.4. If $K \subseteq \mathcal{X}_R$ is compact, then $\Phi(R)$ is dense in $(C(K), \|\cdot\|_K)$.

Proof. Let $\mathcal{A} = \overline{\Phi(R)}$. We make use of Stone-Weierstrass Theorem to show that $\mathcal{A} = C(K)$. K is compact and Hausdorff, so once we show that \mathcal{A} is an \mathbb{R} -algebra which contains all constant functions and separates points of K, we are done (See [22, Theorem 44.7]). Note that \mathcal{A} contains all constant functions because $\mathbb{Z}[\frac{1}{2}] \subset \Phi(R)$ which is dense in \mathbb{R} . Since addition and multiplication are continuous, they extend continuously to \mathcal{A} , therefore, \mathcal{A} is also closed under addition and multiplication. Moreover, \mathcal{A} separates points of K, because $\Phi(R)$ does. Hence, by Stone-Weierstrass Theorem $\mathcal{A} = C(K)$.

Remark 3.5.

- 1. Corresponding to Remark 3.2, defining the ring-norm $\|\cdot\|_K$ on R by $\|a\|_K = \|\hat{a}\|_K$ induces a topology which is the coarsest topology such that Φ is continuous. But $\|\cdot\|_K$ is not necessarily a norm, unless when Φ is injective which by Theorem 3.3 is equivalent to K being Zariski dense.
- 2. For any $\alpha \in K$, the evaluation map at α , over $C(K, \|\cdot\|_K)$ satisfies the inequality $|f(\alpha)| = \rho_{\alpha}(f) \leq \|f\|_K$, so it is continuous for each $\alpha \in K$. This observation shows that each \mathcal{T}_K -open set is also $\|\cdot\|_K$ -open, i.e., $\|\cdot\|_K$ -topology is finer than \mathcal{T}_K . We show that if K is infinite, then $\|\cdot\|_K$ -topology is strictly finer than \mathcal{T}_K .

Proposition 3.6. If K is an infinite, compact subset of \mathcal{X}_R , then $\|\cdot\|_{K^-}$ topology is strictly finer than \mathcal{T}_K .

Proof. Let $\alpha_1, \ldots, \alpha_m \in K$ and $0 < \epsilon < 1$. We claim that there exists $a \in R$ such that $a \in U^{\epsilon}_{\alpha_1, \ldots, \alpha_m}(0)$ and $\|a\|_K > \epsilon$. Note that \mathcal{X}_R is Hausdorff and so is K. Compactness of K implies that K is a normal space. Take $A = \{\alpha_1, \ldots, \alpha_m\}$ and $B = \{\beta\}$, where $\beta \in K \setminus A$. By Urysohn's lemma, there exists a continuous function $f: K \to [0,1]$ such that f(A) = 0 and $f(\beta) = 1$. For $\delta < \min\{\epsilon, 1 - \epsilon\}$, there exists $a \in R$ such that $\|f - a\|_K < \delta$ by Lemma 3.4. Clearly $a \in U^{\epsilon}_{\alpha_1, \ldots, \alpha_m}(0)$ and $|\hat{a}(\beta)| > \epsilon$ which implies that $\|a\|_K > \epsilon$ which completes the proof of the claim.

Let $N_{\epsilon}(0) = \{a \in R : \|a\|_{K} < \epsilon\}$ be an open ball around 0 in $\|\cdot\|_{K}$ for $0 < \epsilon < 1$. We show that $N_{\epsilon}(0)$ does not contain any open neighborhood of 0 in \mathcal{T}_{K} . In contrary, suppose that $0 \in U^{\delta}_{\alpha_{1},...,\alpha_{m}}(0) \subseteq N_{\epsilon}(0)$. Obviously $\delta \leq \epsilon$ and so there exists $a \in U^{\delta}_{\alpha_{1},...,\alpha_{m}}(0)$ such that $a \notin N_{\epsilon}(0)$ which is a contradiction. So, $N_{\epsilon}(0)$ is not open in \mathcal{T}_{K} and hence, $\|\cdot\|_{K}$ -topology is strictly finer that \mathcal{T}_{K} .

4. Closures of
$$\sum R^{2d}$$
 in \mathcal{T}_K and $\|\cdot\|_K$

In this section, we compute the closure $\sum R^{2d}$ in the two topologies defined in the previous section. In particular, for compact $K \subseteq \mathcal{X}_R$, we show that

$$\overline{\sum R^{2d}}^{\|\cdot\|_K} = \overline{\sum R^{2d}}^{\mathcal{T}_K},$$

although for infinite K, the $\|\cdot\|_{K}$ -topology is strictly finer than \mathcal{T}_{K} on R by Proposition 3.6. Let

$$C^+(K) := \{ f : K \to \mathbb{R} : f \text{ is continuous and } \forall \alpha \in K \quad f(\alpha) \ge 0 \},$$

denote the set of nonnegative real valued continuous functions over K and

$$\mathrm{Psd}(K) \coloneqq \{ a \in R : \hat{a} \in C^+(K) \} .$$

Proposition 4.1. Psd(K) is closed in \mathcal{T}_K . If K is compact, then Psd(K) is also closed in $\|\cdot\|_K$ -topology.

Proof. For each $\alpha \in K$, let $e_{\alpha}(f) = f(\alpha)$ be the evaluation map. Then $e_{\alpha}^{-1}([0,\infty))$ is closed, by continuity of e_{α} in \mathcal{T}_{K} . Therefore $\operatorname{Psd}(K) = \bigcap_{\alpha \in K} e_{\alpha}^{-1}([0,\infty))$ is closed. If K is compact, then, again e_{α} is $\|\cdot\|_{K}$ -continuous. Therefore $\operatorname{Psd}(K)$ is also closed with respect to $\|\cdot\|_{K}$.

Theorem 4.2. For any compact set $K \subseteq \mathcal{X}_R$ and integer $d \ge 1$, $\overline{\sum R^{2d}}^{\|\cdot\|_K} = Psd(K)$.

Proof. Since $\sum R^{2d} \subseteq \operatorname{Psd}(K)$ and $\operatorname{Psd}(K)$ is closed, clearly $\overline{\sum} R^{2d}^{\|\cdot\|_K} \subseteq \operatorname{Psd}(K)$. To show the reverse inclusion, let $a \in \operatorname{Psd}(K)$ and $\epsilon > 0$ be given. Since $\hat{a} \geq 0$ on K, $\sqrt[2d]{\hat{a}} \in C(K)$. Continuity of multiplication implies the continuity of the map $f \mapsto f^{2d}$. Therefore, there exists $\delta > 0$ such that $\|\sqrt[2d]{\hat{a}} - f\|_K < \delta$ implies $\|\hat{a} - f^{2d}\|_K < \epsilon$. Using Lemma 3.4, there is $b \in R$ such that $\|\sqrt[2d]{\hat{a}} - \hat{b}\|_K < \delta$ and so $\|\hat{a} - \hat{b}^{2d}\|_K < \epsilon$. By definition, $\hat{a} - \hat{b}^{2d} = \Phi(a - b^{2d})$ and hence $\|a - b^{2d}\|_K < \epsilon$. Therefore, any neighborhood of a has nonempty intersection with $\sum R^{2d}$ which proves the reverse inclusion $\operatorname{Psd}(K) \subseteq \overline{\sum} R^{2d}^{\|\cdot\|_K}$.

Corollary 4.3. Let K be a compact subset of \mathcal{X}_R , $d \ge 1$ an integer. Assume that $L: R \to \mathbb{R}$ is $\|\cdot\|_K$ -continuous, $\mathbb{Z}\left[\frac{1}{2}\right]$ -linear map, such that $L(a^{2d}) \ge 0$ for all $a \in R$, then there exists a Borel Measure μ on K such that $\forall a \in R$ $L(a) = \int_K \hat{a} \ d\mu$.

Proof. Let $\hat{R} := \{\hat{a} : a \in R\}$ and define $\bar{L} : \hat{R} \to \mathbb{R}$ by $\bar{L}(\hat{a}) = L(a)$.

We prove if $\hat{a} \geq 0$, then $L(a) \geq 0$. To see this, let $\epsilon > 0$ be given and find $\delta > 0$ such that $||a - b||_K < \delta$ implies $|L(a) - L(b)| < \epsilon$. Take $c_{\epsilon} \in R$ such that $||a - c_{\epsilon}^{2d}||_K < \delta$. Then

$$L(c_{\epsilon}^{2d}) - \epsilon < L(a) < L(c_{\epsilon}) + \epsilon,$$

let $\epsilon \to 0$, yields $L(a) \ge 0$.

Note that \bar{L} is well-defined, since $\hat{a}=0$, implies $\hat{a}\geq 0$ and $-\hat{a}\geq 0$, so $\bar{L}(\hat{a})\geq 0$ and $\bar{L}(-\hat{a})\geq 0$, simultaneously and hence $\bar{L}(\hat{a})=0$. $\|\cdot\|_K$ -continuity of L on R, implies $\|\cdot\|_K$ -continuity of \bar{L} on \hat{R} . Let A be the \mathbb{R} -subalgebra of C(K), generated by \hat{R} . Elements of A are of the form $r_1\hat{a}_1+\dots+r_k\hat{a}_k$, where $r_i\in\mathbb{R}$ and $a_i\in R$, for $i=1\dots,k$ and $k\geq 1$. \bar{L} is continuously extensible to A by $\bar{L}(r\hat{a})\coloneqq r\bar{L}(\hat{a})$. By Lemma 3.4, \hat{R} and hence A is dense in $(C(X),\|\cdot\|_K)$. Hahn-Banach Theorem gives a continuous extension of \bar{L} to C(X). Denoting the extension again by \bar{L} , an easy verification shows that $\bar{L}(C^+(K))\subseteq\mathbb{R}^+$. Applying Riesz Representation Theorem, the result follows.

Remark 4.4. For the special case $K = \mathbb{R}^n$ and $R = \mathbb{R}[\underline{X}]$, it follows from [20, Proposition 6.2] that the closure of $\sum \mathbb{R}[\underline{X}]^2$ with respect to the finest lmc topology η_0 on $\mathbb{R}[\underline{X}]$ is equal to $\operatorname{Psd}(\mathbb{R}^n)$. Since $\mathcal{T}_{\mathbb{R}^n}$ is lmc and $\operatorname{Psd}(\mathbb{R}^n)$ is closed in $\mathcal{T}_{\mathbb{R}^n}$ we get

$$\operatorname{Psd}(\mathbb{R}^n) = \overline{\sum \mathbb{R}[\underline{X}]^2}^{\eta_0} \subseteq \overline{\sum \mathbb{R}[\underline{X}]^2}^{\mathcal{T}_{\mathbb{R}^n}} \subseteq \overline{\operatorname{Psd}(\mathbb{R}^n)}^{\mathcal{T}_{\mathbb{R}^n}} = \operatorname{Psd}(\mathbb{R}^n).$$

In the next theorem, we show that a similar result holds for arbitrary K and the smaller set of sums of 2d-powers $\sum R^{2d} \subset \sum R^2$.

Theorem 4.5. Let $K \subseteq \mathcal{X}_R$ be a closed set and $d \ge 1$, then $\overline{\sum R^{2d}}^{\mathcal{T}_K} = Psd(K)$.

Proof. Since $\sum R^{2d} \subseteq \operatorname{Psd}(K)$ and by Proposition 4.1, $\operatorname{Psd}(K)$ is closed, we have $\overline{\sum R^{2d}}^{\mathcal{T}_K} \subseteq \operatorname{Psd}(K)$.

To get the reverse inclusion, let $a \in \operatorname{Psd}(K)$ be given. We show that any neighborhood of a in \mathcal{T}_K has a nonempty intersection with $\sum R^{2d}$.

Claim. If $\hat{a} > 0$ on K then $a \in \overline{\sum R^{2d}}^{T_K}$.

To prove this, let U be an open set, containing a. There exist $\alpha_1,\ldots,\alpha_n\in K$ and $\epsilon>0$ such that $a\in U^\epsilon_{\alpha_1,\ldots,\alpha_n}(a)\subseteq U$. Chose $m\in\mathbb{N}$ such that $\max_{1\leq i\leq n}\alpha_i(a)<2^{2dm}$. Now for $b=\frac{a}{2^{2dm}}$ we have $0<\alpha_i(b)<1$. By continuity of $f(t)=t^{2d}$, for each $i=1,\ldots,n$ there exists $\delta_i>0$ such that for any t, if $|t-\alpha_i(b)^{1/2d}|<\delta_i$, then $|t^{2d}-\alpha_i(b)|<\frac{\epsilon}{2^{2dm}}$. Take $\delta=\min_{1\leq i\leq n}\delta_i$. Let $p(t)=\sum_{j=0}^N\lambda_jt^j$ be the real polynomial satisfying $p(\alpha_i(b))=2^d\sqrt{\alpha_i(b)}$ for $i=1,\ldots,n$. Since $\mathbb{Z}[\frac{1}{2}]$ is dense in \mathbb{R} one can choose $\tilde{\lambda}_j\in\mathbb{Z}[\frac{1}{2}]$, such that $|\sum_{j=1}^N\lambda_j\alpha_i(b)^j-\sum_{j=1}^N\tilde{\lambda}_j\alpha_i(b)^j|<\delta$, for $i=1,\ldots,n$. Let $c=\sum_{j=1}^N\tilde{\lambda}_jb^j\in R$. Then $|\alpha_i(b)-\alpha_i(c)^{2d}|<\frac{\epsilon}{2^{2dm}}$. Multiplying by 2^{2dm} , $|\alpha_i(a)-\alpha_i(2^mc)^{2d}|<\epsilon$ i.e. $\rho_{\alpha_i}(a-(2^mc)^{2d})<\epsilon$ for $i=1,\ldots,n$. Therefore $U^\epsilon_{\alpha_1,\ldots,\alpha_n}(a)\cap \sum R^{2d}\neq \emptyset$ and hence $a\in\overline{\sum R^{2d}}^{T_K}$ which completes the proof of the claim.

For an arbitrary $a \in \operatorname{Psd}(K)$, and each $k \in \mathbb{N}$, $(a + \frac{1}{2^k}) > 0$ on K, so $\forall k \in \mathbb{N}, \ a + \frac{1}{2^k} \in \overline{\sum R^{2d}}^{\mathcal{T}_K}$. Letting $k \to \infty$, $\rho_{\alpha}(a + \frac{1}{2^k}) \to \rho_{\alpha}(a)$, we get $a \in \overline{\sum R^{2d}}^{\mathcal{T}_K}$ and hence $\operatorname{Psd}(K) \subseteq \overline{\sum R^{2d}}^{\mathcal{T}_K}$ as desired.

Corollary 4.6. Let K be a closed subset of \mathcal{X}_R and $d \ge 1$ an integer. Assume that there exists $p \in R$, such that $\hat{p} \ge 0$ on K, $K_i = \hat{p}^{-1}([0,i])$ is compact for each i and $L: R \to \mathbb{R}$ is \mathcal{T}_K -continuous, $\mathbb{Z}[\frac{1}{2}]$ -linear map, and $L(a^{2d}) \ge 0$ for all $a \in R$, then there exists a Borel Measure μ on K such that $\forall a \in R$ $L(a) = \int_K \hat{a} \ d\mu$.

Proof. Following the argument in the proof of Corollary 4.3, the map $\bar{L}: \hat{R} \to \mathbb{R}$ is well-defined and has a \mathcal{F}_K -continuous extension to the \mathbb{R} -subalgebra A of C(K), generated by \hat{R} . Applying Theorem 2.8 to \bar{L} , \hat{p} and A, the result follows.

5. Results for \mathbb{R} -Algebras

In this section we assume that R is an \mathbb{R} -algebra. First we consider closure of $\sum R^{2d}$ with respect to any sub-multiplicative norm $\|\cdot\|$ on R. We prove that the closure of $\sum R^{2d}$ with respect to the norm is equal to nonnegative elements over the global spectrum $\mathcal{K}_{\|\cdot\|}$ of $(R, \|\cdot\|)$. Recall that the global spectrum of a topological \mathbb{R} -algebra, also known as the Gelfand spectrum, is the set of all continuous elements of \mathcal{X}_R .

Furthermore, in the case of \mathbb{R} -algebras, we generalize the conclusion of Theorem 4.5 to an arbitrary $\sum R^{2d}$ -module M.

Normed \mathbb{R} -Algebras. Suppose that $(R, \|\cdot\|)$ is a normed \mathbb{R} -algebra, i.e., the norm satisfies the sub-multiplicativity condition $\|xy\| \leq \|x\| \|y\|$ for all $x, y \in R$.

Lemma 5.1. If $\alpha \in \mathcal{K}_{\|\cdot\|}$ then $|\alpha(x)| \leq ||x||$, for all $x \in R$.

Proof. In contrary suppose that $\exists x \in R$ such that $|\alpha(x)| > ||x||$. Then for $n \ge 1$,

$$||x^n|| \le ||x||^n \le |\alpha(x)|^n = |\alpha(x^n)|.$$

Therefore $\frac{|\alpha(x)|^n}{\|x\|^n} \le \frac{|\alpha(x^n)|}{\|x^n\|}$. Since $\frac{|\alpha(x)|}{\|x\|} > 1$, $\frac{|\alpha(x^n)|}{\|x^n\|} \to \infty$ as $n \to \infty$. This contradicts the fact that α is $\|\cdot\|$ -continuous. So

$$\forall x \in R \quad |\alpha(x)| \le ||x||.$$

Lemma 5.2. Let $d \ge 1$ be an integer, $a \in R$ and r > ||a||. Then $(r \pm a)^{\frac{1}{2d}} \in \tilde{R}$, where \tilde{R} is the completion of $(R, ||\cdot||)$.

Proof. Let $\sum_{i=0}^{\infty} \lambda_i t^i$ be the power series expansion on $(r \pm t)^{\frac{1}{2d}}$ about t = 0. The series has the radius of convergence r. Therefore, it converges for every t with |t| < r. Since r > ||a||, $\sum_{i=0}^{\infty} \lambda_i ||a||^i < \infty$. Note that $||a^i|| \le ||a||^i$ for each $i = 0, 1, 2, \dots$, assuming $a^0 = 1$, so

$$\begin{aligned} \| \sum_{i=0}^{\infty} \lambda_i a^i \| & \leq & \sum_{i=0}^{\infty} \lambda_i \| a^i \| \\ & \leq & \sum_{i=0}^{\infty} \lambda_i \| a \|^i \\ & < & \infty. \end{aligned}$$

This implies that $(1 \pm a)^{\frac{1}{2d}} = \sum_{i=0}^{\infty} \lambda_i a^i \in \tilde{R}$.

Let $A_{\|\cdot\|} := \{\|x\| \pm x : x \in R\}$ and M_{2d} be the $\sum R^{2d}$ -module generated by $A_{\|\cdot\|}$. Clearly, M_{2d} is archimedean and hence $\mathcal{K}_{M_{2d}}$ is compact. Note that

$$\alpha \in \mathcal{K}_{M_{2d}} \quad \Leftrightarrow \quad \alpha(a) \geq 0 \quad \forall a \in M_{2d}$$

$$\Leftrightarrow \quad \|x\| \pm \alpha(x) \geq 0 \quad \forall x \in R$$

$$\Leftrightarrow \quad |\alpha(x)| \leq \|x\| \quad \forall x \in R$$

$$\Leftrightarrow \quad \alpha \text{ is } \| \cdot \| \text{-continuous.}$$

Therefore $\mathcal{K}_{M_{2d}}$ is nothing but global spectrum of $(R, \|\cdot\|)$.

Theorem 5.3 is the analogue of [9, Theorem 4.3] for normed algebras. Note that the fact that the Gelfand spectrum $\mathcal{K}_{\|\cdot\|}$ is compact is well-known (under additional assumptions)(see [14, Theorem 2.2.3]). However our proof is algebraic and based on the following result of T. Jacobi.

Theorem. Suppose $M \subseteq R$ is an archimedean $\sum R^{2d}$ -module of R for some integer $d \ge 1$. Then, $\forall a \in R$,

$$\hat{a} > 0$$
 on $\mathcal{K}_M \implies a \in M$.

Proof. See [12, Theorem 4] for every $d \ge 1$ or [18, Theorem 1.4] for d = 1. \square

Theorem 5.3. Let $(R, \|\cdot\|)$ be a normed \mathbb{R} -algebra and $d \geq 1$ an integer. Then $\mathcal{K}_{\|\cdot\|}$ is compact and $\overline{\sum R^{2d}^{\|\cdot\|}} = Psd(\mathcal{K}_{\|\cdot\|})$.

Proof. Since each $\alpha \in \mathcal{K}_{\|\cdot\|}$ is continuous and $\operatorname{Psd}(\mathcal{K}_{\|\cdot\|}) = \bigcap_{\alpha \in \mathcal{K}_{\|\cdot\|}} \alpha^{-1}([0,\infty))$, $\operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$ is $\|\cdot\|$ -closed. Clearly $\sum R^{2d} \subseteq \operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$, therefore $\overline{\sum R^{2d}}^{\|\cdot\|} \subseteq \operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$.

For the reverse inclusion we have to show that if $a \in \operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$ and $\epsilon > 0$ are given, then $\exists b \in \sum R^{2d}$ with $\|a-b\| \leq \epsilon$. Note that $\hat{a} + \frac{\epsilon}{2}$ is strictly positive on $\mathcal{K}_{\|\cdot\|}$. Since $\mathcal{K}_{\|\cdot\|} = \mathcal{K}_{M_{2d}}$ and M_{2d} is archimedean, $\mathcal{K}_{M_{2d}}$ is compact. By Jacobi's Theorem, $a + \frac{\epsilon}{2} \in M_{2d}$. So $a + \frac{\epsilon}{2} = \sum_{i=0}^k \sigma_i s_i$, where $\sigma_i \in \sum R^{2d}$, $i = 0, \ldots, k$, $s_0 = 1$ and $s_i \in A_{\|\cdot\|}$, $i = 1, \ldots, k$. Choose $\delta > 0$ satisfying $(\sum_{i=0}^k \|\sigma_i\|)\delta \leq \frac{\epsilon}{2}$. By Lemma 5.2 and continuity of the function $x \mapsto x^{2d}$ on \tilde{R} , there exists $r_i \in R$ such that $\|\frac{\delta}{2} + s_i - r_i^{2d}\| \leq \frac{\delta}{2}$, i.e., $\|s_i - r_i^{2d}\| \leq \delta$, $i = 1, \ldots, k$. Take $b = \sigma_0 + \sum_{i=1}^k \sigma_i r_i^{2d} \in \sum R^{2d}$. Then

$$||a - b|| = ||\sum_{i=1}^{k} \sigma_{i} s_{i} - \sum_{i=1}^{k} \sigma_{i} r_{i}^{2d} - \frac{\epsilon}{2}||$$

$$\leq \sum_{i=1}^{k} ||\sigma_{i}|| \cdot ||s_{i} - r_{i}^{2d}|| + \frac{\epsilon}{2}$$

$$\leq \epsilon.$$

This completes the proof.

Corollary 5.4. Let $(R, \|\cdot\|)$ be a normed \mathbb{R} -algebra, $d \geq 1$ an integer and $L: R \longrightarrow \mathbb{R}$ a $\|\cdot\|$ -continuous linear functional. If for each $a \in R$, $L(r^{2d}) \geq 0$, then there exists a Borel measure μ on $\mathcal{K}_{\|\cdot\|}$ such that

$$L(a) = \int_{\mathcal{K}_{\|.\|}} \hat{a} \ d\mu \quad \forall a \in R.$$

Proof. Since $\mathcal{K}_{\|\cdot\|}$ is compact by Theorem 5.3, the conclusion follows by applying Theorem 2.8 for $X = \mathcal{K}_{\|\cdot\|}$ and p = 1.

Closures of $\sum R^{2d}$ -modules in $\mathcal{T}_{\mathcal{X}_R}$.

Theorem 5.5. Let $M \subseteq R$ be a $\sum R^{2d}$ -module of \mathbb{R} -algebra R and $d \ge 1$ an integer. Then $\overline{M}^{\mathcal{T}_{\mathcal{X}_R}} = Psd(\mathcal{K}_M)$.

Proof. Since for each $m \in M$, $\hat{m} \ge 0$ on \mathcal{K}_M , we have $M \subseteq \operatorname{Psd}(\mathcal{K}_M)$. Each homomorphism $\alpha \in \mathcal{X}_R$ is continuous, so

$$\operatorname{Psd}(\mathcal{K}_M) = \bigcap_{\alpha \in \mathcal{K}_M} \alpha^{-1}([0, \infty)),$$

is closed in $\mathcal{T}_{\mathcal{X}_R}$. Therefore $\overline{M}^{\mathcal{T}_{\mathcal{X}_R}} \subseteq \operatorname{Psd}(\mathcal{K}_M)$. For the reverse inclusion, we show that for each $a \in \operatorname{Psd}(\mathcal{K}_M)$ and any open set U containing $a, U \cap M \neq \emptyset$. Hence $a \in \overline{M}^{\mathcal{T}_{\mathcal{X}_R}}$.

For $a \in \operatorname{Psd}(\mathcal{K}_M)$ and an open set U containing a, there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{X}_R$ and $\epsilon > 0$ such that $U^{\epsilon}_{\alpha_1, \ldots, \alpha_n}(a) \subseteq U$, where

$$U_{\alpha_1,\ldots,\alpha_n}^{\epsilon}(a) = \{b \in R : \rho_{\alpha_i}(a-b) < \epsilon, i = 1,\ldots,n\}$$

is a typical basic open set in $\mathcal{T}_{\mathcal{X}_R}$.

Claim. For each i = 1, ..., n there exists $t_i \in M$, $\alpha_i(a) = \alpha_i(t_i)$.

For each $i=1,\ldots,n$, either $\alpha_i(a)\geq 0$, or $\alpha_i(a)<0$. If $\alpha_i(a)\geq 0$, take $t_i=\alpha_i(a)\cdot 1_R$, which belonges to M. Suppose that $\alpha_i(a)<0$. There exists $s_i\in M$ such that $\alpha_i(s_i)<0$. Otherwise, $\alpha_i\in\mathcal{K}_M$ and hence $\alpha_i(a)\geq 0$ which is a contradiction. So $\frac{\alpha_i(a)}{\alpha_i(s_i)}>0$ and hence $t_i=\frac{\alpha_i(a)}{\alpha_i(s_i)}s_i\in M$. This completes the proof of the Claim.

For each $1 \le i, l \le n$ set

$$p_{il} \coloneqq \prod_{\alpha_i(t_l) \neq \alpha_j(t_l)} \frac{t_l - \alpha_j(t_l) \cdot 1}{\alpha_i(t_l) - \alpha_j(t_l)},$$

if $\alpha_i(t_l) \neq \alpha_j(t_l)$ for some $1 \leq j \leq n$, and $p_{il} = 1$, if there is no such j. Then take $p_i = \prod_{l=1}^n p_{il}$. Note that for each $1 \leq k \leq n$,

$$\alpha_k(p_i) = \begin{cases} 0 & \text{if } \exists l \in \{1, \dots, n\} \\ 1 & \text{Otherwise.} \end{cases}$$

Let λ_i be the number of elements $k \in \{1, \ldots, n\}$ such that $\alpha_i(t_l) = \alpha_k(t_l)$, for all $1 \le l \le n$. Take $p = \sum_{j=1}^n \frac{1}{\lambda_j} p_j^{2d} t_j$ which belonges to M. We have $\alpha_i(p) = \alpha_i(a)$ for $i = 1, \ldots, n$ and hence $p \in U^{\epsilon}_{\alpha_1, \ldots, \alpha_n}(a)$. Therefore $M \cap U^{\epsilon}_{\alpha_1, \ldots, \alpha_n}(a) \neq \emptyset$, so $a \in \overline{M}^{\mathcal{T}_{\mathcal{X}_R}}$, which proves the reverse inclusion and hence $\overline{M}^{\mathcal{T}_{\mathcal{X}_R}} = \operatorname{Psd}(\mathcal{K}_M)$.

6. Application to $R := \mathbb{R}[\underline{X}]$

We are mainly interested in the special case of real polynomials. In this case, $\mathbb{R}[\underline{X}]$ is a free finitely generated commutative \mathbb{R} -algebra and hence every $\alpha \in \mathcal{X}_{\mathbb{R}[\underline{X}]}$ is completely determined by $\alpha(X_i)$, $i = 1, \ldots, n$. So, $\mathcal{X}_{\mathbb{R}[\underline{X}]} = \mathbb{R}^n$ with the usual euclidean topology.

Corollary 6.1. Let K be a closed Zariski dense subset of \mathbb{R}^n ,

- (1) The family of multiplicative seminorms \mathcal{F}_K induces a lmc Hausdorff topology \mathcal{T}_K on $\mathbb{R}[\underline{X}]$ such that $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\mathcal{T}_K} = Psd(K)$.
- (2) If K is compact subset then $||f||_K = \sup_{x \in K} |f(x)|$ induces a norm on $\mathbb{R}[\underline{X}]$ such that $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{||\cdot||_K} = Psd(K)$.

Proof. Apply theorems 4.5 and 4.2 to get the asserted equalities. The fact that \mathcal{T}_K is Hausdorff and $\|\cdot\|_K$ is actually a norm, follows from Theorem 3.3 and Remark 3.5 respectively.

Remark 6.2.

(i) According to [8, Theorem 3.1], the equality $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|_K} = \operatorname{Psd}(K)$ is equivalent to the following: If L is a linear functional on $\mathbb{R}[\underline{X}]$ satisfying $L(h^{2d}) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ and $\forall f \in \mathbb{R}[\underline{X}] |L(f)| \leq C \|f\|_K$ for some real C > 0, then there exists a positive Borel measure μ on K, representing L:

$$\forall f \in \mathbb{R}[\underline{X}] \quad L(f) = \int_K f \ d\mu.$$

(ii) Reinterpreting the equation $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\mathcal{T}_K} = \operatorname{Psd}(K)$, we have the following: If L be a linear functional on $\mathbb{R}[\underline{X}]$, satisfying $L(h^{2d}) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ and for every $x \in K$, $\exists C_x > 0$ such that $|L(f)| \leq C_x |f(x)|$, then there exists a positive Borel measure μ on K representing L:

$$\forall f \in \mathbb{R}[\underline{X}] \quad L(f) = \int_K f \ d\mu.$$

We now discuss the case when K is not Zariski dense. By Theorem 3.3, Φ is not injective and hence the topology \mathcal{T}_K (or when K is compact the topology induced by $||a||_K = \sup_{\alpha \in K} |\hat{a}(\alpha)|$) will not be Hausdorff. Let $K \subseteq \mathbb{R}^n$ be given, then for $\epsilon > 0$ the set $K^{(\epsilon)} := \overline{\bigcup_{x \in K} N_{\epsilon}(x)}$ has nonempty

interior, in fact $K \subseteq (K^{(\epsilon)})^{\circ}$ and hence $K^{(\epsilon)}$ is Zariski dense in \mathbb{R}^n . If $0 < \epsilon_1 \le \epsilon_2$, then $K^{\epsilon_1} \subseteq K^{\epsilon_2}$ and the identity map

$$id_{\epsilon_2,\epsilon_1}: (\mathbb{R}[\underline{X}], \mathcal{T}_{K^{\epsilon_2}}) \to (\mathbb{R}[\underline{X}], \mathcal{T}_{K^{\epsilon_1}})$$

is continuous. Therefore the family $\{(\mathbb{R}[\underline{X}], \mathcal{T}_{K^{(\epsilon)}})_{\epsilon>0}, (id_{\epsilon\delta})_{\delta\leq\epsilon}\}$ is an inverse system of lc and Hausdorff vector spaces. The inverse limit of this system exists and is a lc and Hausdorff space [13, Section 2.6]. Let $(V, \tau_K) = \lim_{\epsilon>0} (\mathbb{R}[\underline{X}], \mathcal{T}_{K^{(\epsilon)}})$. Then $V = \mathbb{R}[\underline{X}]$ and τ_K is a lc and Hausdorff topology.

Theorem 6.3. For any closed $K \subseteq \mathbb{R}^n$ and integer $d \ge 1$, $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\tau_K}$ is the cone $\widetilde{Psd}(K)$, consisting of those polynomials which are non-negative over some open set, containing K.

Proof. Since $\tau_K = \varprojlim_{\epsilon > 0} \mathcal{T}_{K(\epsilon)}$, we have

$$\overline{\sum \mathbb{R}[\underline{X}]^{2d^{\tau_K}}} = \varprojlim \overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|_{K^{(\epsilon)}}} = \bigcap_{\epsilon} \mathrm{Psd}(K^{(\epsilon)})$$

(See [7, §4.4]) and $\bigcap_{\epsilon} \operatorname{Psd}(K^{(\epsilon)}) = \widetilde{\operatorname{Psd}}(K)$ by definition.

Remark 6.4. Assuming K is compact implies the compactness of each $K^{(\epsilon)}$. Therefore $\|\cdot\|_{K^{(\epsilon)}}$ is defined and is a norm. Moreover, for $0 < \epsilon_1 \le \epsilon_2$, the identity map

$$id_{\epsilon_2,\epsilon_1}: \left(\mathbb{R}[\underline{X}], \|\cdot\|_{K^{(\epsilon_2)}}\right) \to \left(\mathbb{R}[\underline{X}], \|\cdot\|_{K^{(\epsilon_1)}}\right)$$

is continuous by $\|\cdot\|_{K^{(\epsilon_1)}} \leq \|\cdot\|_{K^{(\epsilon_2)}}$. So $\{(\mathbb{R}[\underline{X}], \|\cdot\|_{K^{(\epsilon)}}), (id_{\epsilon\delta})_{\delta<\epsilon}\}$ is an inverse limit of normed spaces. The inverse limit topology $\tau_K = \lim_{\epsilon > 0} \|\cdot\|_{K^{(\epsilon)}}$ exists and is a lc Hausdorff topology on $\mathbb{R}[\underline{X}]$. The equality $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\tau_K} = \widetilde{\operatorname{Psd}}(K)$ can be verified similar to Theorem 6.3.

6.1. Comparison with sub-multiplicative norm topologies. Now, let $\|\cdot\|$ be a sub-multiplicative norm on $\mathbb{R}[\underline{X}]$, i.e.

$$||f \cdot g|| \le ||f|| \cdot ||g|| \quad \forall f, g \in \mathbb{R}[\underline{X}].$$

Proposition 6.5. The $\|\cdot\|$ -topology is finer than $\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}$ -topology and

$$\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|} = \overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}} = Psd(\mathcal{K}_{\|\cdot\|}),$$

for every integer $d \ge 1$.

Proof. To prove that $\|\cdot\|$ -topology is finer than $\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}$ -topology, we show $\|f\|_{\mathcal{K}_{\|\cdot\|}} \leq \|f\|$. Note that $\mathcal{K}_{\|\cdot\|}$ is compact by 5.3, so $\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}$ is defined and by Lemma 5.1,

$$||f||_{\mathcal{K}_{\|\cdot\|}} = \sup_{x \in \mathcal{K}_{\|\cdot\|}} |f(x)| \le \sup_{x \in \mathcal{K}_{\|\cdot\|}} ||f|| = ||f||.$$

Therefore, the identity map $id: (\mathbb{R}[\underline{X}], \|\cdot\|) \to (\mathbb{R}[\underline{X}], \|\cdot\|_{\mathcal{K}_{\|\cdot\|}})$ is continuous and hence $\|\cdot\|$ -topology is finer than $\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}$ -topology. Moreover, $\overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\|\cdot\|_{\mathcal{K}_{\|\cdot\|}}} = \operatorname{Psd}(\mathcal{K}_{\|\cdot\|})$ by Corollary 6.1.

Definition 6.6.

(i) A function $\phi: \mathbb{N}^n \to \mathbb{R}^+$ is called an absolute value if

$$\phi(\underline{0}) = 1$$
 and $\forall s, t \in \mathbb{N}^n \ \phi(s+t) \le \phi(s)\phi(t)$.

(ii) For a polynomial $f = \sum_{s \in \mathbb{N}^n} f_s \underline{X}^s$, let $||f||_{\phi} := \sum_{s \in \mathbb{N}^n} |f_s| \phi(s)$.

If $\phi > 0$ on \mathbb{N}^n , then $\|\cdot\|_{\phi}$ defines a norm on $\mathbb{R}[\underline{X}]$. Berg and Maserick [4, 5] show that the closure of $\sum \mathbb{R}[\underline{X}]^2$ with respect to the $\|\cdot\|_{\phi}$ -topology is $\operatorname{Psd}(\mathcal{K}_{\phi})$, where $\mathcal{K}_{\phi} := \{x \in \mathbb{R}^n : |x^s| \leq \phi(s), \ \forall s \in \mathbb{N}^n\} = \mathcal{K}_{\|\cdot\|_{\phi}}$, the Gelfand spectrum of $(\mathbb{R}[\underline{X}], \|\cdot\|_{\phi})$.

If $\phi > 0$ then \mathcal{K}_{ϕ} has non-empty interior, and hence is Zariski dense. By [9], \mathcal{K}_{ϕ} is compact. Hence $\|\cdot\|_{\mathcal{K}_{\phi}}$ is defined and is a norm by Remark 3.5(1).

The following corollary to Proposition 6.5 generalizes the result of Berg and Maserick [4, Theorem 4.2.5] to the closure of $\sum \mathbb{R}[\underline{X}]^{2d}$.

Corollary 6.7. The $\|\cdot\|_{\phi}$ -topology is finer than $\|\cdot\|_{\mathcal{K}_{\phi}}$ -topology and

$$\overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_{\phi}} = \overline{\sum \mathbb{R}[\underline{X}]^2}^{\|\cdot\|_{\mathcal{K}_{\phi}}} = Psd(\mathcal{K}_{\phi}).$$

6.2. Comparison with Lasserre's topology. Recently, Lasserre [15] considered the following $\|\cdot\|_w$ on $\mathbb{R}[\underline{X}]$:

$$\|\sum_{s\in\mathbb{N}^n}f_s\underline{X}^s\|_w=\sum_{s\in\mathbb{N}^n}|f_s|w(s),$$

where $w(s) = (2\lceil |s|/2\rceil)!$ and $|s| = |(s_1, \ldots, s_n)| = s_1 + \cdots + s_n$. He proved that for any basic semi-algebraic set $K \subseteq \mathbb{R}^n$, defined by a finite set of polynomials S, the closure of the quadratic module M_S and the preordering T_S with respect to $\|\cdot\|_w$ are equal to $\operatorname{Psd}(K)$.

Proposition 6.8. Let $K_S \subseteq \mathbb{R}^n$ be a basic closed semi-algebraic set and $d \ge 1$ an integer.

(1) If K_S is compact, then the $\|\cdot\|_w$ -topology is finer than $\|\cdot\|_{K_S}$ -topology and

$$\overline{M_S}^{\|\cdot\|_w} = \overline{T_S}^{\|\cdot\|_w} = \overline{\sum} \mathbb{R}[\underline{X}]^{2d}^{\|\cdot\|_{K_S}} = Psd(K_S).$$

(2) $\|\cdot\|_{w}$ -topology is finer than $\mathcal{T}_{K_{S}}$ and

$$\overline{M_S}^{\|\cdot\|_w} = \overline{T_S}^{\|\cdot\|_w} = \overline{\sum \mathbb{R}[\underline{X}]^{2d}}^{\mathcal{T}_{K_S}} = Psd(K_S).$$

Proof. (1) To show that $\|\cdot\|_w$ -topology is finer than $\|\cdot\|_{K_S}$ -topology, it suffices to prove that the formal identity map

$$id: (\mathbb{R}[\underline{X}], \|\cdot\|_w) \longrightarrow (\mathbb{R}[\underline{X}], \|\cdot\|_{K_S})$$

is continuous. Let $p_i:\mathbb{R}^n\to\mathbb{R}$ be the projection on i-th coordinate and

$$M = \max_{1 \le i \le n} \{ |p_i(x)| : x \in K_S \}.$$

So, for each $s \in \mathbb{N}^n$ we have $\|\underline{X}^s\|_{K_S} \leq M^{|s|}$. Also $w(s) \geq |s|!$ for all $s \in \mathbb{N}^n$. By Stirling's formula $|s|! \sim \sqrt{2\pi}e^{(|s|+\frac{1}{2})\ln|s|-|s|}$, we see that

$$\begin{array}{cccc} \frac{\|\underline{X}^s\|_{K_S}}{\|\underline{X}^s\|_w} & \leq & \frac{M^{|s|}}{|s|!} \\ & \sim & \frac{1}{\sqrt{2\pi}} e^{|s|(\ln M - \ln |s| + 1) - \frac{1}{2} \ln |s|} & \xrightarrow{|s| \to \infty} & 0. \end{array}$$

Therefore for some $N \in \mathbb{N}$, if |s| > N then $\frac{\|\underline{X}^s\|_{K_S}}{\|\underline{X}^s\|_w} < 1$, which shows that id is bounded and hence continuous. The asserted equality follows from Corollary 4.2 and [15, Theorem 3.3].

(2) It suffices to show that for any $x \in K_S$, the evaluation map $e_x(f) = f(x)$ is $\|\cdot\|_w$ -continuous. Since $\frac{|x^s|}{|s|!} \xrightarrow{|s| \to \infty} 0$, we deduce that $\sup_{f \in \mathbb{R}[\underline{X}]} \frac{|f(x)|}{\|f\|_w}$ is bounded. So, e_x and hence ρ_x is $\|\cdot\|_w$ -continuous. Therefore any basic open set in \mathcal{T}_{K_S} is $\|\cdot\|_w$ -open. The asserted equality follows from Theorem 4.5 and [15, Theorem 3.3].

References

- [1] E. Beckenstein, L. Narici and C. Suffel, *Topological Algebras*, North-Holland Math. Stud., 24,. Elsevier Sci. Publ., Amsterdam, (1977).
- [2] C. Berg, J. P. R. Christensen, C. U. Jensen, A remark on the multidimensional moment problem, Math. Ann. 243, 163-169, (1979).
- [3] C. Berg, J.P.R. Christensen, P. Ressel, Positive definite functions on abelian semigroups, Math. Ann. 223, 253-272, (1976).
- [4] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups, Theory of Positive Definite and Related Functions, Springer-Verlag, (1984).
- [5] C. Berg, P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28, 162-179, (1984).

- [6] J. Bochnak, M. Coste, M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. 12, Springer, 1987. Real algebraic geometry, Ergeb. Math. 36, Springer, 1998.
- [7] N. Bourbaki, General Topology, Springer, (1989).
- [8] M. Ghasemi, S. Kuhlmann, E. Samei, Moment problem for continuous positive semi-definite linear functionals, arXiv:1010.2796v3 [math.AG], submitted.
- [9] M. Ghasemi, M. Marshall, S. Wagner, Closure results for the cone of sums of 2dpowers, arXiv:1109.0048v1 [math.AC], submitted.
- [10] E. K. Haviland, On the momentum problem for distribution functions in more than one dimension, Amer. J. Math. 57, 562-572, (1935).
- [11] E. K. Haviland, On the momentum problem for distribution functions in more than one dimension II, Amer. J. Math. 58, 164-168, (1936).
- [12] T. Jacobi, A representation theorem for certain partially ordered commutative rings, Math. Z. 237, 259-273, (2001).
- [13] H. Jarchow, Locally convex spaces, B.G. Teubner Stuttgart, (1981).
- [14] E. Kaniuth, A Course in Commutative Banach Algebras, Springer, GTM 246, (2009).
- [15] J. B. Lasserre, *The K-Moment problem for continuous linear functionals*, arXiv:1102.5763v2 [math.AG]. To appear in Trans. Amer. Math. Soc.
- [16] J. B. Lasserre, T. Netzer, SOS Approximation of Nonnegative Polynomials Via Simple High Degree Perturbations, Math. Z. 256, 99-112, (2006).
- [17] M. Marshall, Positive Polynomials and Sum of Squares, Mathematical Surveys and Monographs, Vol. 146, (2007).
- [18] M. Putinar, Positive Polynomials on Compact Semi-algebraic Sets, Indiana Univ. Math. J. 42, no. 3, 969984, (1993).
- [19] C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. AMS 352, 1030-1069, (1999).
- [20] K. Schmüdgen, *Positive cones in enveloping algebras*, Reports on Mathematical Physics, vol. 14, issue 3, 385-404, (1978).
- [21] K. Schmüdgen, The K-moment problem for compact semialgebraic sets, Math. Ann. 289, 203-206, (1991).
- [22] S. Willard, General Topology, Addison-Wesley, (1970).

¹Department of Mathematics and Statistics,

UNIVERSITY OF SASKATCHEWAN,

SASKATOON, SK. S7N 5E6, CANADA

²FACHBEREICH MATHEMATIK UND STATISTIK,

Universität Konstanz

78457 Konstanz, Germany

E-mail address : mehdi.ghasemi@usask.ca, salma.kuhlmann@uni-konstanz.de