

Mark Scheme (Pre-Standardisation) Summer 2007

GCE

GCE Mathematics (6663/01)

June 2007 6663 Core Mathematics C1 Mark Scheme

Question number		Scheme	Ma	arks
1.		$x^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$	M1	
	= <u>4</u>		A1	(2) 2
		ny correct, unsimplified expression		
	$(\sqrt{5})$) ² instead of 5 is OK		
	Expa	ansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0		

Question number	Scheme	Marks	
2.	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$	M1	
	= <u>16</u>	A1	(2)
	$= \underline{16}$ (b) $5x^{\frac{1}{3}}$ 5, $x^{\frac{1}{3}}$	B1, B1	(2)
			4
(a)	M1 for: 2 or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$		
	A1 for 16 only		
SC	If they get $\sqrt[3]{8} = \alpha$ and then attempt α^4 , $\alpha \neq 2$, this scores M1A0		
(b)	1 st B1 for 5		
	$2^{\text{nd}} B1 \text{ for } x^{\frac{1}{3}}$		

Question number	Scheme	Marks	
3.	(a) $\left(\frac{dy}{dx}\right) = 6x + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$	M1 A1	(2)
	(b) $6-x^{-\frac{3}{2}}$	M1 A1ft	(2)
	(a) $\left(\frac{dy}{dx}\right) = 6x + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$ (b) $\frac{6 - x^{-\frac{3}{2}}}{(3)^{\frac{3}{2}}}$ Or $\left(6x + 2x^{-\frac{1}{2}}\right)$ (c) $x^3 + \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} + C$ A1: x^3 or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ A1: both and $+ C$	M1 A1 A1	(3)
			7
(a)	M1 for <u>some</u> attempt to differentiate: $x^n \to x^{n-1}$ Condone missing $\frac{dy}{dx}$ or $y = \dots$		
	A1 for both terms correct, as written or better.		
(b)	M1 for some attempt to differentiate again. Follow through their $\frac{dy}{dx}$		
	A1f.t. as written or better, follow through must have 2 terms and simplify e.g. $\frac{4}{4}$	= 1	
(c)	M1 for some attempt to integrate: $x^n \to x^{n+1}$		
	1 st A1 for either x^3 or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ (or better)		
	$2^{\text{nd}} \text{ A1 for } \underline{\text{both}} \ x^3 \text{ and } \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} \underline{\text{and}} \ +C.$		
	Obviously $\frac{8}{3}x^{\frac{3}{2}}$ or $\frac{8}{3}x\sqrt{x}$ etc is acceptable (but not <u>required</u>) for either A1.		

Question number		Scheme		Marks
4.	(a) Idea	ntify $a = 5$ and $d = 2$	(May be implied)	B1
	$(u_{20}$	$a_{00} = a + 199d (= 5 + 199 \times 2)$		M1
		= <u>403(p)</u> or (£) <u>4.03</u>		A1 (3)
	(b)	$(S_{200} =) \frac{200}{2} [2a + 199d]$ or $\frac{200}{2} (a + 199d)$	a + "their 403")	M1
		$= \frac{200}{2} [10 + 199 \times 2] \text{or} \frac{200}{2}$	-(5 + "their 403")	A1
		= 40800 or £408		A1 (3)
				6
(a)		for use of <i>n</i> th term formula with $n =$	200. Follow through their a and d .	
		Must be 199 not 200.	- (- ' 1)	
ND		for 403 or 4.03 (i.e. condone missing		5:4 landa 4a 402
N.B.		Answer only of 403 (or 4.03) scores	$40 \frac{\text{BUT}}{\text{BUT}} 3 + 200 \times 2 \text{ is B1M1 and A1 if}$	it leads to 403.
		7 mswer only of 403 (of 4.03) scores	. 5/ 5.	
(b)	M1	for use of correct sum formula with	n = 200. Follow through their a and d	and their 403.
	1 st A1	for any correct expression (i.e. must	have $a = 5$ and $d = 2$) but can f.t. their	403 still.
	$2^{nd}A1$	for 40800 or £408 (i.e. the £ sign is	required before we accept 408 this time	e).

Question number	Scheme	Marks	
5.	Translation parallel to x-axis Top branch intersects +ve y-axis Lower branch has no intersections No obvious overlap $\left(0,\frac{3}{2}\right) \text{ or } \frac{3}{2} \text{ marked on } y\text{- axis}$	M1 A1 B1	(3)
S.C.	(b) $x = -2$, $y = 0$ [Allow ft on first B1 for $x = 2$ when translated "the wrong way" but must be compatible with their sketch.]		(2)
(a)	M1 for a horizontal translation – one branch should cut <i>y</i> – axis A1 for a horizontal translation to left. Ignore any figures on axes for this mark B1 for correct intersection on positive <i>y</i> -axis. More than 1 intersection is B0.		
(b)	1^{st} B1 for $x = -2$. Can accept $x = +2$ if this is compatible with their sketch. Usually they will have M1A0 in part (a) (and usually B0 too) 2^{nd} B1 for $y = 0$.		

Question number	Scheme	Marks	
6.	(a) $2x^2 - x(x-4) = 8$	M1	
	$x^2 + 4x - 8 = 0 \tag{*}$	Alcso	(2)
	(b) $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 1 \times -8)}}{2}$ or $(x+2)^2 \pm 4 - 8 = 0$	M1	
	$x = -2 \pm \dots$	A1	
	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$	B1	
	$y = (-2 \pm 2\sqrt{3}) - 4$ M: Attempt at least one y value	M1	
	$x = -2 + 2\sqrt{3}, y = -6 + 2\sqrt{3}$ $x = -2 - 2\sqrt{3}, y = -6 - 2\sqrt{3}$	A1	(5)
			7
(b)	1^{st} M1 for use of correct formula. If formula is not quoted then a fully correct subrequired. Condone missing $x = \text{for M1}$. For completing the square must have as printed or better.	ostitution is	
	1 st A1 for $x = -2 \pm $ any correct expression		
	B1 for simplifying the surd e.g. $\sqrt{48} = 4\sqrt{3}$. Must reduce to $b\sqrt{3}$		
	2 nd M1 for attempting to find at least one y value.		
	2 nd A1 for both correct pairs of answers		

Question number	Scheme		Marks	
7.	(a) Attempt to use discriminant $b^2 - 4ac$		M1	
	$k^2 - 4(k+3) > 0 \implies k^2 - 4k - 12 > 0$ (3)	*)	Alcso	(2)
	(b) $k^2 - 4k - 12 = 0 \implies$			
	$(k \pm a)(k \pm b)$, with $ab = 12$ or $(k =)\frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or $(k-2)^2 \pm 2^2 - 4 \times 12$	12	M1	
	k = -2 and 6		A1	
	$\underline{k < -2, k > 6}$ M: choosing "or	ıtside'	M1 A1ft	(4)
				6
(a) (b)	M1 for use of $b^2 - 4ac$, one of b or c must be correct. Or full attempt using completing the square that leads to a 3TQ in k e.g. $\left[\left[x + \frac{k}{2}\right]^2 = \right] \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that b^2 incorrect working seen. 1st M1 for attempting to find critical regions. Factors, formula or co 1st A1 for $k = 6$ or -2 only 2^{nd} M1 for choosing the outside regions as printed or f.t. their (non identical) critical values $6 < k < -2$ is M1A0 but ignore if it follows a correct version $-2 < k < 6$ is M0A0 whatever their diagram looks like			

Question number	Scheme	Marks	
8.	(a) $(a_2 =)3k + 5$	B1	(1)
	(a) $(a_2 =)3k + 5$ (b) $(a_3 =)3(3k + 5) + 5$	M1	
	$=\underline{9k+20}\tag{*}$	Alcso	(2)
	(c)(i) $a_4 = 3(9k + 20) + 5 (= 27k + 65)$	M1	
	$\sum_{k=1}^{4} a_{k} = k + (3k+5) + (9k+20) + (27k+65)$	M1	
	(ii) = 40k + 90	A1	
	$= \underline{10(4k+9)} $ (or explain why divisible by 10)	A1ft	(4) 7
(b)	M1 for attempting to find a_3 , follow through their $a_2 \neq k$.		
	A1cso for simplifying to printed result with no incorrect working seen.		
(c)	$1^{\text{st}} M1$ for attempting to find a_4		
	2 nd M1 for attempting sum of 4 relevant terms		
	1 st A1 for simplifying to $40k + 90$ or better		
	2 nd A1ft for taking out a factor of 10 or an explanation in words.		
	Follow through their sum of 4 terms provided that both Ms are scored and their sum is divisible by 10.		
	scored and their sum is divisible by 10.		

Question number	Scheme		Marks	S
9.	(a) $f(x) = \frac{6x^3}{3} - \frac{10x^2}{2} - 12x \ (+C)$		M1 A1	
	x = 5: $250 - 125 - 60 + C = 65$ $C = 0$		M1 A1	(4)
	(b) $x(2x^2 - 5x - 12)$ or $(2x^2 + 3x)(x - 4)$ or $(2x + 3)(x^2 - 4x)$		M1	
	= x(2x+3)(x-4) (*	')	A1cso	(2)
	Shape Through origin		B1 B1	
	$\left(-\frac{3}{2},0\right)$ and (4,0)	0)	B1	(3)
				9
(a)	1 st M1 for attempting to integrate, $x^n \rightarrow x^{n+1}$			
	1^{st} A1 for all x terms correct, need not be simplified. Ignore + C here.			
	2^{nd} M1 for some use of $x = 5$ and $f(5)=65$ to form an equation in C . No $+C$ is	s M0.		
	2^{nd} A1 for $C = 0$. This mark cannot be scored unless a suitable equation is so	een.		
(b)	M1 for attempting to take out a correct factor. Allow usual errors on sign A1cso for proceeding to printed answer with no incorrect working seen.	ıs.		
(c)	1^{st} B1 for positive x^3 shaped curve (with a max and a min) positioned anyw	here.		
	2 nd B1 for any curve that passes through the origin			
	3^{rd} B1 for the two points given or values marked in appropriate places on x and x	axis.		

Question number	Scheme	Marks
10.	(a) $x = 1$: $y = -5 + 4 = -1$, $x = 2$: $y = -16 + 2 = -14$	B1, B1
	$PQ = \sqrt{(2-1)^2 + (-14 - (-1))^2} = \sqrt{170}$ (*)	M1 A1cso (4)
	(b) $y = x^3 - 6x^2 + 4x^{-1}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x - 4x^{-2}$	M1 A1
	$x = 1$: $\frac{dy}{dx} = 3 - 12 - 4 = -13$ M: Evaluate at one of the points	M1
	$x = 2$: $\frac{dy}{dx} = 12 - 24 - 1 = -13$: Parallel A: Both correct + conclusion	A1 (5)
	(c) Finding gradient of normal $\left(m = \frac{1}{13}\right)$	M1
	$y1 = \frac{1}{13}(x - 1)$	M1 A1ft
	x - 13y - 14 = 0 o.e.	A1 (4)
		13
(a)	M1 for attempting PQ or PQ^2 using their P and their Q . A1cso for proceeding to the correct answer with no incorrect working seen.	
(b)	1^{st} M1 for multiplying by x^2 , the x^3 or $-6x^2$ must be correct. 2^{nd} M1 for some correct differentiation, at least one term must be correct as printed 1^{st} A1 for a fully correct derivative. 3^{rd} M1 for attempting to substitute $x = 1$ or $x = 2$ in their derivative. Substituting is 2^{nd} A1 for -13 from both substitutions and a brief comment.	
(c)	1^{st} M1 for use of the perpendicular gradient rule. Follow through their – 1 for full method to find the equation of the normal. If formula is quo substitution, otherwise a correct substitution is required. 1^{st} A1ft for a correct expression. Follow through their – 1 and their m if different for a correct equation with = 0 and integer coefficients.	oted allow slips in

Question number	Scheme	Marks	
11.	(a) $y = -\frac{3}{2}x(+4)$ Gradient = $-\frac{3}{2}$	M1 A1	(2)
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x =, \frac{4}{9}$	M1, A1	
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3} \left(= 3\frac{1}{3}\right)$	A1	(3)
	(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these	M1 A1	
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1	
	$= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$	A1	(4)
			9
(a)	M1 for an attempt to write in the form $y = mx + c$ or a full method that leads to 2 points, and attempt gradient using $\frac{y_2 - y_1}{x_2 - x_1}$ A1 for $m = -\frac{3}{2}$ (can ignore the $+c$)	m =, e.g find	
(b)	M1 for forming a suitable equation in one variable and attempting to solve lead	ling to $x = \dots$	
	1^{st} A1 for any exact correct value for x 2^{nd} A1 for any exact correct value for y		
(c)	1 st M1 for attempting the x coordinate of A or B 1 st A1 for $x_A = -\frac{1}{3}$ and $x_B = 2$ 2 nd M1 for a full method for the area of the triangle e.g. determinant approach $\frac{1}{2} \begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2 \\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2} 2 - \dots - (-\frac{1}{3} \dots) $ 2 nd A1 for $\frac{49}{18}$ or an exact equivalent.		