Introdução à Química-Física

P3 - Aula prática de Introdução à Química-Física

Preparação dos trabalhos P4 e P5

Nesta aula pretende-se que os alunos contactem com material de vidro utilizado rotineiramente no laboratório e que sejam preparadas as soluções das sessões P4 e P5.

Reagentes e Material				
Por aula:	Por grupo:			
Reagentes: Violeta de Cristal Oxalato de Malaquite Verde HCl concentrado NaOH (pastilhas)	1 Pipetas graduada de 10 ml e 1 pipeta volumétricas de 10 ml 1 Pompette 3 Funis de vidro e varetas 4 Copos de vidro de pequeno volume para			
Material: Balanças analíticas Balões volumétricos de 1 litro (8 por aula) Frasco para armazenamento de soluções (8 por aula)	serem utilizados nas pesagens 2 copos de vidro largos para as titulações 1 espátula 1 Medidor de pH 1 bureta Indicador Fenolftaleína, esguicho de água destilada			

Parte 1 - Material de vidro

Apresentação de material de vidro.

Parte 2 - Preparação de soluções

Todas as quantidades de reagentes a estimar devem ser calculadas para a preparação **de 1 litro de solução final**. Complete a tabela com o volume a medir, no caso de reagentes líquidos, ou de massa a pesar, no caso de reagentes sólidos. **Atenção:** A preparação da solução de ácido clorídrico deve ser realizada na hotte (ver Figura 1).

Para o cálculo das quantidades a medir/pesar deverá ter em conta os dados da tabela 1.

Fig. 1 – Preparação de solução na hotte

Introdução à Química-Física

Tabela 1 – Características dos reagentes					
Reagente Referência CAS	Massa molecular g/mol	Concentração pretendida	Dados adicionais	Volume a medir /massa a pesar	
Violeta de Cristal CAS: 548-62-9	407,99	5x 10 ⁻⁵ M	Composto no estado cristalino (pó)		
Oxalato de Malaquite Verde CAS: 2437-29-8	463,50	5x 10 ⁻⁵ M	Composto no estado cristalino (pó)		
Hydrochloric Acid Code Code Code Code Code Code Code Cod	36,46	0,1 M	Solução a 37% (massa/massa) ρ_{25}^{0} c = 1,2 g/ml		
Hidróxido de sódio CAS: 1310-73-2	40,00	0,1 M	Composto sólido (pastilhas)		

No caso dos reagentes sólidos, dissolva previamente no copo onde efectuou a pesagem com água destilada e depois transfira para o balão de 1 litro com auxílio do funil e vareta de vidro. Arraste toda a quantidade de solução voltando a adicionar água destilada. Perfaça o volume final até que a base do menisco esteja alinhada com o traço do balão volumétrico.

No caso dos reagentes líquidos, transfira directamente o volume para o balão volumétrico e afira com água destilada até que a base do menisco esteja alinhada com o traço do balão volumétrico.

Introdução à Química-Física

Parte 3 – Aferição da solução de NaOH por titulação

Pipete 10 ml da solução que preparou de NaOH para o copo de vidro largo. Adicione 10 ml de água destilada e 2 gotas do indicador fenolftaleína.

Encha a bureta com o ácido clorídrico que preparou. Utilize o funil. Coloque um pouco de solução a exceder os 25 ml de forma a **garantir que a ponta da bureta fica preenchida de líquido**. Faça descer o líquido na bureta até que a base do menisco esteja alinhada com o traço de 0 ml da bureta. Faça descer a ponta da bureta até ao cimo do copo de vidro que contém a solução de NaOH.

Após calibração do eléctrodo de pH, insira-o na solução anterior que contém NaOH de forma que permita também inserir a ponta da bureta (ver figura 2).

Fig. 2 – Montagem para a titulação potenciométrica com inserção simultânea do eléctrodo de pH e da bureta. (Fotografia retirada de http://www.academia.edu/5985714/Relat%C3%B 3rio_Bio química)

Inicie a titulação fazendo adições de 1 em 1 ml. Registe o valor de pH após cada adição de solução de HCI. Próximo do ponto de equivalência diminua o volume adicionado para 0.2 ml. Registe ainda o volume ao qual a fenolftaleína mudou de cor (volume da titulação colorimétrica).

Determine o ponto de equivalência por análise do gráfico pH vs Volume HCl (volume da titulação potenciométrica).

Com base nos dois valores de volumes estimados, determine a concentração da solução de NaOH.