선분의 내분점과 외분점

$$\overline{AP} : \overline{BP} = 3 : 2$$

$$\overline{AP}: \overline{BP} = 3:2$$

$$A \qquad P_1$$

$$B \qquad P_1$$

$$A \qquad B$$

$$P_1$$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를

► Home ► Start ► End

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

(1) 내분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m:n으로

(1) 내분하는 점
$$P_1\left(\frac{mx_2+nx_1}{m+n}\right)$$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)(m\neq n)$

Theorem

좌표평면 위의

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

좌표평면 위의 두 점 $A(x_1, y_1), B(x_2, y_2)$ 에 대하여

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

좌표평면 위의 두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 에 대하여 \overline{AB} 를 m: n 으로

(1) 내분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

(1) 내분하는 점
$$P_1\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)$$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2+nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
- (2) 외분하는 점

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}\right)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}\right) (m \neq n)$

Theorem

수직선 위의 두 점 $A(x_1)$, $B(x_2)$ 에 대하여 \overline{AB} 를 m: n 으로

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}\right)$ $(m \neq n)$

Theorem

- (1) 내분하는 점 $P_1\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$
- (2) 외분하는 점 $P_2\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}\right) (m \neq n)$

Github:

https://min7014.github.io/math20210506001.html

Click or paste URL into the URL search bar, and you can see a picture moving.