Linear Algebra

[KOMS119602] - 2022/2023

12.2 - Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 7-11 February 2022

Learning objectives

Basic Matrix Transformations in \mathbb{R}^2 and \mathbb{R}^3

(page 259 of Elementary LA Applications book)

1. Reflection

Reflection operators on \mathbb{R}^2

Reflection operators are operators on \mathbb{R}^2 (or \mathbb{R}^3) that maps each point into its symmetric image about a fixed line or a fixed plane that contains the origin.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the <i>x</i> -axis T(x, y) = (x, -y)	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	(-x, y) = (x, y) $T(x)$ x	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	T(x) = x $(y, x) y = x$ $(x, y) x$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection operators on $\ensuremath{\mathbb{R}}^3$

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the xy-plane $T(x, y, z) = (x, y, -z)$	$T(\mathbf{x}) = \begin{bmatrix} x & y & y \\ y & y & y \\ y & y & y \\ y & y &$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane $T(x, y, z) = (-x, y, z)$	$T(\mathbf{x}) = \begin{cases} (-x, y, z) \\ (x, y, z) \end{cases}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6 / 55

2. Projection

Projection operators on \mathbb{R}^2

Projection operators or orthogonal projection operators are matrix operators on \mathbb{R}^2 (or \mathbb{R}^3) that map each point into its orthogonal projection onto a fixed line or plane through the origin.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the x-axis $T(x, y) = (x, 0)$	(x, y) $T(x)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	(0, y) $T(x)$ x x	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Projection operators on \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy-plane $T(x, y, z) = (x, y, 0)$	x x ₁ (x, y, z) y y (x, y, 0)	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz-plane $T(x, y, z) = (x, 0, z)$	(x, 0, z) $T(x)$ x y x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane $T(x, y, z) = (0, y, z)$	$ \begin{array}{c} z \\ T(x) \end{array} $ $ \begin{array}{c} (0, y, z) \\ x \end{array} $	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3. Rotation

Rotation operators for \mathbb{R}^2

Rotation operators are matrix operators on \mathbb{R}^2 or \mathbb{R}^3 that move points along arcs of circles centered at the origin.

How to find the standard matrix for the rotation operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that moves points counterclockwise about the origin through a positive angle θ ?

 $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$ The standard transformation matrix for T is:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Review on "angle"

Conversion from o to rad

Rotation operators for \mathbb{R}^2 (cont.)

The matrix:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is called the rotation matrix for \mathbb{R}^2 .

Let $\mathbf{x} = (x, y) \in \mathbb{R}^2$ and $\mathbf{w} = (w_1, w_2)$ be its image under the rotation. Then:

$$\mathbf{w} = R_{\theta}\mathbf{x}$$

with:

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Example: a rotation operator

Find the image of $\mathbf{x}=(1,1)$ under a rotation of $\pi/6$ rad $(=30^{o})$ about the origin.

Solution:

We know that: $\sin(\pi/6) = \frac{1}{2}$ and $\cos(\pi/6) = \frac{\sqrt{3}}{2}$.

By the previous formula:

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

Rotations in \mathbb{R}^3

Rotations in \mathbb{R}^3 is commonly described as axis of rotation and a unit vector \mathbf{u} along that line.

Right-hand rule is used to establish a sign for the angle for rotation.

- If the axes are the axis x, y, or z, then take the unit vectors i, j, and k respectively.
- An angle of rotation will be positive if it is counterclockwise looking toward the origin along the positive coordinate axis and will be negative if it is clockwise.

Rotations in \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	y x	$w_1 = x$ $w_2 = y\cos\theta - z\sin\theta$ $w_3 = y\sin\theta + z\cos\theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive z -axis through an angle θ	x w	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

4. Dilation and contraction

Dilation & contraction

Let $k \in \mathbb{R}, k \geq 0$. The operator:

$$T(\mathbf{x}) = k\mathbf{x}$$

on \mathbb{R}^2 or \mathbb{R}^3 defines the increment or decrement of the length of vector \mathbf{x} by a factor of k.

- If k > 1, it is called a dilation with factor k;
- If $0 \le k \le 1$, it is called a contraction with factor k.

Dilation & contraction on \mathbb{R}^2

Operator	Illustration $T(x, y) = (kx, ky)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x}) = \begin{cases} \mathbf{x} & (x, y) \\ (kx, ky) & x \end{cases}$	(0,1)	[<i>k</i> 0]
Dilation with factor k in R^2 $(k > 1)$	$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$(0,1) \qquad (0,k) \qquad \uparrow \uparrow \qquad \vdots \qquad$	[0 k]

Dilation & contraction on \mathbb{R}^3

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	z $T(x) = (kx, ky, kz)$ x	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 $(k > 1)$	$z \qquad (kx, ky, kz)$ $T(x) \qquad x \qquad (x, y, z)$	[0 0 k]

5. Expansion and compression

Expansion and compression

In a dilation or contraction of \mathbb{R}^2 or \mathbb{R}^3 , all coordinates are multiplied by a non-negative factor k.

Now what if **only one coordinate** is multiplied by k?

- If k > 1, it is called the expansion with factor k in the direction of a coordinate axis (x, y, or z);
- If $0 \le k \le 1$, it is called compression

Expansion and compression in \mathbb{R}^2 (in x-direction)

Operator	Illustration $T(x, y) = (kx, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x -direction with factor k in R^2 $(0 \le k < 1)$	$ \begin{array}{c} y \\ (kx, y) \\ T(x) \\ x \end{array} $	(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)	$\begin{bmatrix} k & 0 \end{bmatrix}$
Expansion in the x -direction with factor k in R^2 $(k > 1)$	(x, y) (kx, y)	(0, 1) (0, 1) (k, 0)	[0 1]

Expansion and compression in \mathbb{R}^2 (in *y*-direction)

Operator	Illustration $T(x, y) = (x, ky)$	Effect on the Unit Square	Standard Matrix
Compression in the y-direction with factor k in R^2 $(0 \le k < 1)$	(x, y) (x, ky) $T(x)$	(0,1) $(0,k)$ $(1,0)$	[1 0]
Expansion in the y-direction with factor k in R^2 $(k > 1)$	T(x) X X X X X	(0, 1) (0, k) 11	[0 k]

6. Shear

Shear

A matrix operator of the form:

$$T(x,y) = (x + ky, y)$$

translates a point (x, y) in the xy-plane parallel to the x-axis by an amount ky that is proportional to the y-coordinate of the point.

This is called shear in the x-direction by a factor k.

Similarly, a matrix operator:

$$T(x,y) = (x, y + kx)$$

is called shear in the y-direction by a factor k.

When k > 0, then the shear is in the positive direction. When k < 0, it is in the negative direction.

Shear

Operator	Effect on the Unit Square	Standard Matrix
Shear in the x -direction by a factor k in R^2 $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \clip (k,1) \$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear in the y-direction by a factor k in R^2 $T(x, y) = (x, y + kx)$	$(0,1) \qquad (0,1) \qquad (0,1$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Example

Describe the matrix operator whose standard matrix is as follows:

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solution:

From the tables on the previous slides, we can see that:

- A₁ corresponds to a shear in the x-direction by a factor 2;
- A₂ corresponds to a shear in the x-direction by a factor -2;
- A₃ corresponds to a dilation with factor 2;
- A_4 corresponds to an expansion in the x-direction with factor 2.

Example (cont.)

Describe geometrically the result of the transformation:

Exercise

Properties of Matrix Transformations

(page 270 of Elementary LA Applications book)

Compositions of matrix transformation

Let:

- T_A : a matrix transformation from \mathbb{R}^n to \mathbb{R}^k
- T_B : a matrix transformation from \mathbb{R}^k to \mathbb{R}^m

Let $\mathbf{x} \in \mathbb{R}^n$, and defines transformation:

$$\mathbf{x} \xrightarrow{T_A} T_A(\mathbf{x}) \xrightarrow{T_B} T_B(T_A(\mathbf{x}))$$

defines the transformation from \mathbb{R}^n to \mathbb{R}^m .

It is called the composition of T_B with T_A and is denoted by $T_B \circ T_A$. So:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$

Compositions of matrix transformation

The composition is a matrix transformation, since:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x})) = B(T_A(\mathbf{x})) = B(A\mathbf{x}) = (BA)\mathbf{x}$$

meaning that the result of the composition to \mathbf{x} is obtained by multiplying \mathbf{x} with BA on the left.

This is denoted by:

$$T_A$$
 T_B
 T_B
 $T_B(T_A(\mathbf{x}))$
 $T_B \circ T_A$

 $T_{R} \circ T_{\Delta} = T_{R\Delta}$

Composition of three transformations

Compositions can be defined for any finite succession of matrix transformations whose domains and ranges have the appropriate dimensions. For instance, given:

$$T_A: \mathbb{R}^n \to \mathbb{R}^k, \ T_B: \mathbb{R}^k \to \mathbb{R}^\ell, T_C: \mathbb{R}^\ell \to \mathbb{R}^m$$

we can define the composition:

$$(T_C \circ T_B \circ T_A) : \mathbb{R}^n \to \mathbb{R}^m$$

by:

$$(T_C \circ T_B \circ T_A)(\mathbf{x}) = T_C(T_B(T_A(\mathbf{x})))$$

It can be shown that this is a matrix transformation with standard matrix *CBA*, and:

$$T_C \circ T_B \circ T_A = T_{CBA}$$

Notation

We can write the standard matrix for transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ without specifying the name of the standard matrix.

It is often written as [T].

For instance,

- $T(\mathbf{x}) = [T]\mathbf{x}$
- $[T_2 \circ T_1] = [T_2][T_1]$
- $[T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$

Composition is not commutative

Example

Let:

- $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the line y = x;
- $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto the y-axis.

Geometrically, both transformations have different effect on x

Composition is not commutative (cont.)

Algebraically, we can compute:

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$[T_2 \circ T_1] = [T_2][T_1] = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Clearly, $[T_1 \circ T_2] \neq [T_2 \circ T_1]$.

Composition of rotation is commutative

Example

Given:

$$\mathcal{T}_1:\mathbb{R}^2 o \mathbb{R}^2$$
 and $\mathcal{T}_2:\mathbb{R}^2 o \mathbb{R}^2$

the matrix operators that rotate vectors about the origin through the angles θ_1 and θ_2 respectively.

So, the operation:

$$T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

first rotates x through the angle θ_1 , then rotates $T_1(\mathbf{x})$ through the angle θ_2 .

Hence, $(T_2 \circ T_1)(\mathbf{x})$ defines rotation of \mathbf{x} through the angle $\theta_1 + \theta_2$.

Composition of rotation is commutative (cont.)

In this case, we have:

$$[T_1] = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \text{ and } [T_2] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

We show that: $[T_2 \circ T_1] = [T_1][T_1]$

$$[T_2 \circ T_1] = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Furthermore:

$$\begin{split} [T_2][T_1] &= \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta_2\cos\theta_1 - \sin\theta_2\sin\theta_1 & -(\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\theta_1) \\ \sin\theta_2\cos\theta_1 + \cos\theta_2\sin\theta_1 & -\sin\theta_2\sin\theta_1 + \cos\theta_2\cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix} \\ &= [T_2 \circ T_1] \end{split}$$

It can be easily seen that $[T_2 \circ T_1] = [T_1 \circ T_2]$ (hence, commutative).

Read Example 3 and Example 4 (page 272-273)

One-to-one matrix transformation

A matrix transformation $T_A\mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if T_A maps distinct vectors (points) in $\mathbb{R}6n$ into distinct vectors (points) in \mathbb{R}^m .

Equivalent statements:

- T_A is one-to-one if $\forall \mathbf{b}$ in the range of A, there is exactly one vector $\mathbf{x} \in \mathbb{R}^n$, s.t. $T_A \mathbf{x} = \mathbf{b}$.
- T_A is one-to-one if the equality $T_A(\mathbf{u}) = T_A(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$.

Examples: one-to-one and not one-to-one transformations

Rotation operators on \mathbb{R}^2 are one-to-one.

since distinct vectors that are rotated through the same angle have distinct images.

The orthogonal projection of \mathbb{R}^2 onto the x-axis is not one-to-one.

since it maps distinct points on the same vertical line into the same point.

▲ Figure 4.10.6 Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

▲ Figure 4.10.7 The distinct points P and Q are mapped into the same point M.

Kernel and range

If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, then the set of all vectors in RR^n that T_A maps into 0 is called the kernel of T_A and is denoted by $\ker(T_A)$, i.e.:

$$\ker(T_A) = \{\mathbf{x} \in \mathbb{R}^n \text{ s.t. } A\mathbf{x} = \mathbf{0}\}$$

The set of all vectors in \mathbb{R}^m that are images under this transformation of at least one vector in \mathbb{R}^n is called the range of T_A and is denoted by $R(T_A)$, i.e.:

$$R(T_A) = \{ \mathbf{b} \in \mathbb{R}^m \text{ s.t. } \exists \mathbf{x} \in \mathbb{R}^n, \text{ where } A\mathbf{x} = \mathbf{b} \}$$

In brief:

$$ker(T_A) = null \text{ space of } A$$

 $R(T_A) = \text{ column space of } A$

Matrix - linear system - transformation

Let A be an $(m \times n)$ matrix.

Three ways of viewing the same subspace of \mathbb{R}^n :

- Matrix view: the null space of A
- **System view:** the solution space of Ax = 0
- Transformation view: the kernel of T_A

Three ways of viewing the same subspace of \mathbb{R}^m :

- Matrix view: the column space of A
- **System view:** all $\mathbf{b} \in \mathbb{R}^m$ for which $A\mathbf{x} = \mathbf{b}$ is consistent
- Transformation view: the range of T_A

Read Example 5 and Example 6 on page 275.

One-to-one matrix operator

Let $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one matrix operator. So, A is invertible.

The inverse operator or the inverse of T_A is defined as:

$$T_{A^{-1}}: \mathbb{R}^n \to \mathbb{R}^n$$

In this case:

$$T_A(T_{A^{-1}}(\mathbf{x})) = AA^{-1}\mathbf{x} = I\mathbf{x} = \mathbf{x}$$
 or, equivalently $T_A \circ T_{A^{-1}} = T_{AA^{-1}} = T_I$
 $T_{A^{-1}}(T_A(\mathbf{x})) = A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$ or, equivalently $T_{A^{-1}} \circ T_A = T_{A^{-1}A} = T_I$

 T_A maps $\mathbf x$ to $\mathbf w$ and $T_{A^{-1}}$ maps $\mathbf w$ back to $\mathbf x$, i.e., $T_{A^{-1}}(\mathbf w) = T_{A^{-1}}(T_A(\mathbf x)) = \mathbf x$

Read Example 7 and Example 8 on page 276.

Conclusion

THEOREM 4.10.2 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (1) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is $\{0\}$.
- (r) The kernel of T_A is $\{0\}$.
- (s) The range of T_A is \mathbb{R}^n .
- (t) T_A is one-to-one.

Geometry of Matrix Operators on \mathbb{R}^2

(page 280 of Elementary LA Applications book)

to be continued...

Rotated

Sheared horizontally

Compressed horizontally

Given a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which is multiplication by an invertible matrix. Determine the image of:

- 1. A straight line
- 2. A line through the origin
- 3. Parallel lines
- 4. The line segment joining points P and Q
- 5. Three points lie on a line

Task:

Divide yourselves into 5 groups, and examine each of the question!

Question 1

Given a transformation matrix:

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

Find the image of line y = 2x + 1 under the transformation.

Question 2

Given a transformation matrix:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$

Find the image of the unit square on the *first quadrant* under the transformation.

Determine the image of the unit square under the following transformation:

- Reflection about the y-axis
- Reflection about the x-axis
- Reflection about the line y = x
- Rotation about the origin through a positive angle θ
- Compression in the x-direction with factor k with 0 < k < 1
- Compression in the y-direction with factor k with 0 < k < 1
- Expansion in the x-direction with factor k with k > 1
- Expansion in the y-direction with factor k with k > 1
- Shear in the x-direction with factor k with k > 0
- Shear in the x-direction with factor k with k < 0
- Shear in the y-direction with factor k with k > 0
- Shear in the y-direction with factor k with k < 0

This is the end of slide...