	Logisticregression on UCI repository malware dataset. Prakhar Khanduri (19BCE0486) Malware Detection
In [25]:	<pre>import Libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd</pre>
In [26]:	<pre>Importing the dataset(Malware Dataset) dataset = pd.read_csv('/content/Malware dataset.csv') dataset2 = dataset.copy() dataset2 = dataset.drop(['classification'], axis=1) X = dataset2.iloc[:,1:].values y = dataset.iloc[:, 2].values</pre>
	print (X) print(y) [[0
In [26]:	['malware' 'malware' 'malware' 'malware' 'malware' 'malware'] New Section Label Encoding(Converting Categorical Data to Numbers So that can work on them. Here converting Malware and Bening)
In [27]: Out[27]:	dataset.head() hash millisecond classification state usage_counter prio static_prio normal_prio poli 0 42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914 0 malware 0 0 3069378560 14274 0
	1 42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914 1 malware 0 0 3069378560 14274 0 2 42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914 2 malware 0 0 3069378560 14274 0 3 42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914 3 malware 0 0 3069378560 14274 0 4 42fb5e2ec009a05ff5143227297074f1e9c6c3ebb9c914 4 malware 0 0 3069378560 14274 0 5 rows × 35 columns
In [28]: Out[28]:	dataset.describe() millisecond state usage_counter prio static_prio normal_prio policy vm_pgoff vm_truncate_count task_size count 100000.000000 1.000000e+05 100000.0 100000.000000 100000.0 1000000.0 1000000.0 100000.0
	mean 499.500000 1.577683e+05 0.0 3.069706e+09 18183.900070 0.0 0.0 0.0 15312.739510 0 std 288.676434 9.361726e+05 0.0 2.963061e+05 4609.792765 0.0 0.0 0.0 3256.475008 0 min 0.000000 0.000000e+00 0.0 3.069190e+09 13988.000000 0.0 0.0 0.0 9695.000000 0 25% 249.750000 0.000000e+00 0.0 3.069446e+09 14352.000000 0.0 0.0 0.0 12648.000000 0 50% 499.500000 0.000000e+00 0.0 3.069698e+09 16159.000000 0.0 0.0 0.0 15245.000000 0 75% 749.250000 4.096000e+03 0.0 3.069957e+09 22182.000000 0.0 0.0 0.0 17663.000000 0 max 999.000000 4.326605e+07 0.0 3.070222e+09 31855.000000 0.0 0.0 0.0 27157.000000 0
In [29]: Out[29]:	dataset.isna().sum() hash
In [30]:	<pre>from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) print (y) [1 1 1 1 1 1]</pre>
In [31]:	<pre>Splitting the dataset into the Training set and Test set. (75% data is for traing and 25% Testing data) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) print(X_train)</pre>
	[[606 12288
	<pre>print(y_train) [0 1 0 0 0 1] print(X_test) [[582</pre>
Tn [25].	[[582
In [36]:	[1 0 0 1 0 0] Feature Scaling (Scaling down the data using funtcion StandardScaler()) 19BCE0486 from sklearn.preprocessing import StandardScaler
In [37]:	<pre>sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) X_train after scaling down print(X_train)</pre>
	[[0.36731703 -0.15969785
In [38]:	<pre>print(X_test) [[0.28424496 -0.1731242</pre>
	[0.29462897 -0.16864875
In [39]:	Training Model on the Training set(That is traing the Model on 75% of the data set malware detection) Using Logisticregression Traing my model.
Out[39]:	classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) LogisticRegression(random_state=0) Predicting the Test set results(Prediction of the trained model on the 25% test data)
In [40]:	<pre>y_pred = classifier.predict(X_test) print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1)) [[1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0]</pre>
In [41]:	<pre>Confusion Matrix and Accuracy(Finding out the accuracy of the model using confusion matrix) from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_pred) print("Confusion Matrix\n",cm) Confusion Matrix [[11590 938] [560 11912]]</pre>
In [47]:	<pre>print("Final Results") print("Logisticregression Malware Data set") print("Accuracy:",metrics.accuracy_score(y_test,y_pred)) print("Precision",metrics.precision_score(y_test,y_pred)) print("Recall:",metrics.recall_score(y_test,y_pred)) Final Results Logisticregression Malware Data set Accuracy: 0.94008 Precision 0.9270038910505837 Recall: 0.9550994227068633</pre>
In [46]:	<pre>from sklearn.metrics import roc_curve logit_roc_auc = roc_auc_score(y_test, y_pred) fpr, tpr, thresholds = roc_curve(y_test,y_pred) plt.figure() plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc) plt.plot([0, 1], [0, 1], 'r') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.savefig('Log_ROC') plt.show()</pre> <pre> Receiver operating characteristic</pre>
	0.8 - 0.6 - 0.6 - 0.2 - Cogistic Regression (area = 0.94)
	Logistic Regression (area = 0.94) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate