

Evaluación de Bachillerato para Acceder a Estudios Universitarios Castilla y León

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

EXAMEN

Nº Páginas: 2 y tabla

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA.

CRITERIOS GENERALES DE EVALUACIÓN

Cada pregunta de la 1 a la 3 se puntuará sobre un máximo de 3 puntos. La pregunta 4 se puntuará sobre un máximo de 1 punto. La calificación final se obtiene sumando las puntuaciones de las cuatro preguntas. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos. Salvo que se especifique lo contrario, los apartados que figuran en los distintos problemas son equipuntuables.

Opción A

- **1A-** Un comerciante dispone de 350000 € para comprar dos modelos de lámparas. El modelo A tiene un coste de 150 € y produce, por cada unidad que se vende, un beneficio de 15 €. El modelo B tiene un coste de 100 € y produce, por cada unidad que se vende, un beneficio de 11 €. Por experiencia sabe que sólo puede almacenar 3000 lámparas como máximo y que puede vender como máximo 2000 lámparas del modelo A. Determina, utilizando técnicas de programación lineal, cuántas lámparas de cada modelo debe comprar para maximizar el beneficio conseguido en las ventas. Calcula ese beneficio máximo.
- **2A** Representa gráficamente la función $y = -ax^3 bx + c$, sabiendo que pasa por el origen de coordenadas y que tiene un mínimo relativo en el punto (x, y) = (1, -1). Justifica brevemente la representación gráfica obtenida.
- **3A-** Una multinacional farmacéutica elabora un test para la detección precoz de la enfermedad producida por el virus del Ébola. El test da positivo en el 86% de las personas que son portadoras del virus y da negativo en el 92% de las personas que no son portadoras del virus. Además, en una cierta zona geográfica el 2% de la población es portadora del virus. Se elige al azar una persona de esa zona geográfica y se la somete al test. Calcula razonadamente la probabilidad de que sea portadora del virus sabiendo que el test ha dado positivo.
- **4A** Supongamos que tenemos una moneda de 2 euros trucada de manera que la probabilidad de que al lanzarla al aire salga cara es el triple de que salga cruz. Calcula razonadamente la probabilidad de que al lanzarla una vez al aire salga cruz.

1B- Se considera el sistema de ecuaciones:

$$\begin{cases} x + y - (1 - a^2)z = 0\\ 2x + 4y + 6z = 0\\ 2x + 5y + z = 0 \end{cases}$$

Calcula razonadamente los valores del parámetro a para que el sistema tenga soluciones distintas de la solución trivial (0, 0, 0).

- **2B-** Un alumno asiste a una clase que dura 60 minutos. Se estima que la capacidad de atención de un alumno en cada instante de tiempo t viene dada por la función $f(t) = -2t^2 + 120t + 5$, con $t \in [0,60]$.
- a) Calcula la capacidad de atención cuando lleva una hora de clase. (1 punto)
- b) Halla el instante de tiempo t (en minutos) en el que la capacidad de atención es máxima. ¿Cuál es la capacidad de atención máxima? (2 puntos)
- **3B-** Se sabe que el tiempo de resolución de los exámenes propuestos por un profesor universitario sigue una distribución normal de media 74 minutos.
- a) Si en el primer examen de este curso la desviación típica poblacional σ del tiempo de resolución fue 8 minutos, ¿cuál es la probabilidad de haber necesitado para resolver el examen más de los 90 minutos disponibles?
- b) En el segundo examen la desviación típica poblacional σ del tiempo de resolución fue de 9 minutos. Si se presentaron 36 alumnos a este segundo examen, determina la probabilidad de que el tiempo medio de resolución de esos alumnos fuera inferior a 77 minutos.
- **4B-** Se consideran dos sucesos independientes A y B. Si la probabilidad de que ocurra A es $\frac{1}{2}$ y la probabilidad de que ocurran ambos a la vez es $\frac{1}{3}$, calcula la probabilidad de que no ocurra A y no ocurra B.

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
	,*-	,	,	,	,	,	,	,	,	,