

HOCHSCHULE HANNOVER

Fakultät I Elektro- und Informationstechnik

Programmieren in Python: Dokumentation eines Rechnerprogramms (EDR)

Prof. Dr. Forgber

Verfasser:

Fedi Boukhris (1535241)

Anis Doudech (1484190)

Rihab Bedhiafi (1353539)

Inhaltsverzeichnis

1.	Auf	gabenbeschreibung	1	
2.	Beso	chreibung des Programmaufbaus	1	
	2.1.	GUI_main	1	
	2.2.	GUI_support	1	
	2.3.	Check_konfiguration	1	
	2.4.	Plot_messdaten	1	
	2.5.	Error_message	2	
	2.6.	Bode_diagramm_Exceptions	2	
3.	Bed	ienungsanleitung für das Programm	2	
4.	Beso	chreibung aller Konfigurationsdaten und des Aufbaus der Konfigurationsdatei	4	
5.	Beso	chreibung eines Testlaufs inkl. Testdaten und Testergebnisse	8	
	5.1.	Testlauf eines unsinnigen Parameters in der Konfigurationsdatei	8	
	5.2	Plot von Messdatenreihe	10	
	5.3	Plot von Funktion f(x)	11	
	5.4	Plot von mehreren Funktionen	11	
	5.5	Plot von Parametrischer Funktion	12	
	5.6.	Plot von 2-Dimensionalen Funktion f(x,y) in 3D-Graph	12	
	5.7	Plot von Übertragungsfunktion G(s)	13	
6.	Eige	nständigkeitserklärung	13	
7.	Abbildungsverzeichnis			
8.	Tabellenverzeichnis			

1. Aufgabenbeschreibung

Es wird ein Programm erstellt, das mit Hilfe des Pakets Matplotlib grafische Darstellungen von Funktionen und Messdaten erzeugen kann. Wobei werden die Funktionen durch eine Konfigurationsdatei eingestellt, die mit den notwendigen Parametern versorgt werden soll.

In diesem Programm werden zudem folgende Punkte betrachtet:

- Das Programm kann mehrere Funktionen in einem Bild darstellen.
- Das Programm kann die Funktionen als Gleichung, aber auch als Messdatentabelle aus einer Textdatei verarbeiten können
- Das Programm kann parametrische Funktionen darstellen
- Das Programm kann Bodediagramm anhand einer Übertragungsfunktion G(s) darstellen
- Das Programm kann auch Funktionen f(x,y) in 3D-Graph darstellen
- Das Programm wird über ein GUI ausgeführt, über das die Konfigurationsdatei geändert und geladen, die Funktion dargestellt und Figuren gespeichert werden können
- Die Software wird objektorientiert erstellt.

2. Beschreibung des Programmaufbaus

Das Programm wurde Objektorientiert erstellt und besteht aus 6 Klassen.

2.1. GUI main

GUI_main stellt die Main-Klasse dar und erstellt die Programm-Oberfläche basierend auf das Tkinter-Modul. In dieser Klasse wird gezeigt, welche Elemente hat das Programm, wo diese platziert sein sollen und welche Funktion sie besitzen. Da diese etwa schwer für Python Anfänger auffallen, wird ein GUI-Designer für das Platzieren der Elemente als Hilfsmittel verwendet. Diese GUI-builder heißt "PAGE". Es ist eine frei verfügbare Software. Es ermöglicht dem Designer das Anordnen von Elementen in dem GUI mittels Drag and Drop.

2.2. GUI support

In diesem Modul werden die Funktionalitäten aller Elementen des GUI erstellt.

2.3. Check konfiguration

In dieser Klasse werden alle benötigten Konfigurationsdaten aus der Konfigurationsdatei ausgesucht bzw. angepasst und in einem Dictionary fürs Plotten vorbereitet.

2.4. Plot messdaten

in diesem Modul werden Plot-Klassen entsprechend dem Funktionstyp deklariert und die demensprechend Plot-Methoden erstellt.

Fakultät 1: Elektro- und

2.5. Error_message

Klasse zeigt eine Fehlermeldung Fenster bei falsch eingegebenem Parameter.

2.6. Bode_diagramm_Exceptions

Klasse prüft die Eingabe der Übertragungsfunktion und zeigt ein Tkinter Fehlermeldung bei falscher Eingabe.

3. Bedienungsanleitung für das Programm

Vor dem Starten des Programms soll zunächst die nicht von Python vorinstallierten Bibliotheken installiert werden: PIL, numpy, matplotlib, os, re.

Abbildung 1: Programm GUI

Nachdem das Programm über die Main-Klasse gestartet wird, wird die Programm-Oberfläche angezeigt (vgl. Abbildung 1). Nach dem Einstellen von der Konfigurationsdatei (File -> Konfigurationsdatei Einstellen), soll die Datei über das Button "Parameter Laden" geladen werden, und dann kann die Funktion über das Button "Plot Figur" geplottet werden. Sollte ein unsinniger Parameter in der Konfigurationsdatei antreten, wird eine Fehlermeldung angezeigt. Die Richtigkeit der Eingabe von Konfigurationsdaten werden im Absatz 4 gut beschrieben. Die Konfigurationsdatei kann jederzeit wieder geändert und geladen werden, sobald das GUI noch nicht geschlossen wird. Man kann verschiedene weitere Funktionaltäten nebenbei ausführen. Diese lassen sich gut im folgenden Ablaufdiagramm erkennen (vgl. Abbildung 2).

Fakultät 1: Elektro- und

Abbildung 2: Ablaufdiagramm vom Programm

4. Beschreibung aller Konfigurationsdaten und des Aufbaus der Konfigurationsdatei

Um die Bedienung des Programms zu gewährleisten, ist es notwendig, ein geeignetes Textdokument einzuführen, da das Hauptprogramm die für den Plot notwendigen Konfigurationen aus einer Textdatei entnimmt.

Die Textdatei besteht aus insgesamt vier verschiedenen Funktionen mit eigenen Parametern, nämlich Funktionsgleichung, parametrische Funktion, mehrdimensionale Funktion und Übertragungsfunktion, zusätzlich kann der Nutzer auch eine Reihe von Messungen eingeben.

Je nach Bedarf des Nutzers ist es möglich, die Art der Funktion zu wählen, dazu ist einfach den gewünschten Funktionstyp neben dem Schlüsselwort "Check" ganz oben in der Textdatei anzugeben.

Es gibt für jede Art von Plot ein Schlüsselwort, dass man angeben muss, diese lauten wie folgt:

SchlüsselwortFunktionsartMessdatenEingabe von MessdatenFunktionsgleichungEingabe von maximal 3 Funktionen f(x)Parametrische FunktionEingabe von einer f(x,a,b) FunktionMehredimensionalefunktionEingabe von einer mehrdimensionalen Funktion

Tabelle 1: Erlaubte Funktionsarten

Zum Beispiel kann man auf Wunsch eine Übertragungsfunktion plotten, während die Parameter der anderen Funktionstypen in der Textdatei verbleiben, dazu muss der Benutzer nur 'Uebertragungsfunktion' neben dem Schlüsselwort 'Check' ganz oben im Inhalt der Textdatei angeben (siehe folgende Abbildung).

Abbildung 3: Wählen von "Übertragungsfunktion"

Fakultät 1: Elektro- und

Uebertragungsfunktion

Programmieren in Python

Eingabe von einer Übertragungsfunktion g(s)

Jeder Funktionstyp hat eigene Parameter, die die Eigenschaften des jeweiligen Funktionstyps berücksichtigen. So ist es zum Beispiel bei einer Übertragungsfunktion sinnvoller, keine Schritte einzuführen, da der Plot eines Bodediagramms alle möglichen Frequenzen zwischen der Start- und der Endfrequenz benötigt.

Die Parameter der einzelnen Funktionstypen sind in den folgenden Tabellen dargestellt:

Tabelle 2: Parameter der einzelnen Funktionstypen

Funktionstyp: Messdaten							
Schlüssel	Beispiel von Inhalt	Beschreibung	Bemerkung				
x_Reihe	1,3,4,5,6	Werte an der X-Axe	Die Elemente müssen unbedingt mit einem Komma getrennt sein.				
y_Reihe	2,4,6,10,12	y Reihe	Ganzzahlserie				
color	blue	Farbe	Matplotlib.colors				
Grid	Nein	Gitter	Ja wenn gewünscht				
linewidth	2	Linienbreite	Ganzzahl				
linestyle		Linienstil	'', '- ', '-', ':				
title	Any	Title vom Plot	Alles ist möglich				
x_Label	Any	x Axe Label	Alles ist möglich				
y_Label	Any	y Axe Label	Alles ist möglich				
	Funktionstyp: Funktionsgleichung						
Schlüssel	Beispiel von Inhalt	Beschreibung	Bemerkung				
f_1(x) f_2(x) f_3(x)	x**2	eine x abhängige Funktion	kann je nach Wahl zwischen 1 und 3 Funktionen eingegeben				
x_start	1	x Anfang	nur Ganzzahlen				
x end	24	y Ende					
x_step	2	Schritt					
title	Any	Title vom Plot	Alles ist möglich				
x Label	Any	x Axe Label	Alles ist möglich				
y_Label	Any	y Axe label	Alles ist möglich				
grid	Ja oder Nein	Gitter	Ja wenn gewünscht				
color_1	blue	Farbe für jede einzelne Funktion	Matplotlib.colors				
color_2							
color_3							
linewidth_1	2	Linienbreite für jede	Ganzzahl				
linewidth_2		einzelne Funktion					
linewidth_3							
linestyle_1		Linienstil für jede einzelne Funktion	11, 11, 1-1, 1-1				
linestyle_2							
linestyle_3							
title	Any	Title vom Plot	Alles ist möglich				

Fakultät 1: Elektro- und

x_Label	Any	x Axe Label	Alles ist möglich				
y_Label	Any	y Axe label	Alles ist möglich				
Legend	Nein	Legende	Ja wenn gewünscht ist				
	Funktionstyp: Parametrische Funktion						
Schlüssel	Beispiel von Inhalt	Beschreibung	Bemerkung				
f_parametriert (x,a,b)	(x+2+a)+b	eine x, a und b abhängige Funktion	a und b müssen angegeben werden				
а	2.2	a Parameter	Ganzzahl				
b	2.4	b Parameter	Ganzzahl				
color	blue	Farbe	Matplotlib.colors				
x_start	1	x Anfangswert	nur Ganzzahlen				
x_end	24	y Endwert					
x_step	2	Schritt					
Grid	Nein	Gitter	Ja wenn gewünscht				
linewidth	2	Linienbreite	Ganzzahl				
linestyle	-	Linienstil	'' , '', '-', oder ':'				
title	Any	Titel vom Plot	Alles ist möglich				
x_Label	Any	x Axe Label	Alles ist möglich				
y_Label	Any	y Axe Label	Alles ist möglich				
	Funktionstyp: Meh	rdimensionalefunktion					
Schlüssel	Beispiel von Inhalt	Beschreibung	Bemerkung				
f_3D(x,y)	x**2+y**2	eine x und y abhängige Funktion	Funktion muss gültig sein				
color	blue	Farbe	Matplotlib.colors				
start	1	x und y Anfangswert	nur Ganzzahlen				
end	24	x und y Endwert					
step	2	Schritt					
Grid	Nein	Gitter	Ja wenn gewünscht				
linewidth	2	Linienbreite	Ganzzahl				
linestyle	-	Linienstil	Soll in diesem Bereich sein ['', '-', '-', ':']				
title	Any	Title vom Plot	Alles ist möglich				
x_Label	Any	x Axe Label	Alles ist möglich				
y_Label	Any	y Axe Label	Alles ist möglich				
z_Label	Any	z Axe Label	Alles ist möglich				

Fakultät 1: Elektro- und

Programmieren in Python

Funktionstyp: Uebertragungsfunktion					
Schlüssel	Beispiel von Inhalt	Beschreibung	Bemerkung		
G(s)	(s+1)/(s+1)	eine s abhängige Funktion	muss eine gültige G(s) eingegeben werden		
color	blue	Farbe	Matplotlib.colors		
f_start	0.00001	Anfangsfrequenz	nur Ganzzahlen müssen sinnvolle Frequenzen eingegeben werden		
f_end	100000	End frequenz			
Grid	Nein	Gitter	Ja wenn gewünscht		
linewidth	2	Linienbreite	Ganzzahl		
linestyle	-	Linienstil	'', '', '-', ':'		
title	Any	Title vom Plot	Alles ist möglich		

Ausnahmeregelung:

Es ist wichtig, dass der Benutzer sicherstellt, dass er die richtigen Werte für jeden Parameter angibt. Es ist jedoch möglich, dass der Benutzer vergisst, einen Parameter auszufüllen oder eine falsche Eingabe macht z. B. einen Buchstaben anstelle einer ganzen Zahl für den Parameter linewidth, step, oder x_Reihe angibt (siehe folgende Abbildung). In diesem Fall wird das Programm den Benutzer mit Hilfe einer Tkinter-Meldebox über seinen Fehler informieren, dies gilt für absolut alle Parameter, die eine ganze Zahl erhalten sollen.

Abbildung 4: Fehler beim Parameter "x_Reihe"

Bei den Parametern für Linienstil, Linienfarbe oder Grid ist eine falsche Eingabe in keinem Fall fatal für das Funktionieren des Programms, da in diesem Fall ein Standardwert zugewiesen wird.

Ein weiterer häufiger Fehler ist es, den Parameter G(s) für Übertragungsfunktion falsch einzugeben, da der Benutzer dies mit einer einfachen Funktion verwechseln kann. In diesem Fall erscheint ein Tkinter-

Fakultät 1: Elektro- und

Fenster, in dem der Benutzer die korrekte Übertragungsfunktion eingeben kann (vgl. Abbildung 5). Nach der Korrektur soll das Button "Plot Figur" nochmal geklickt.

Abbildung 5: G(s) korrigieren

5. Beschreibung eines Testlaufs inkl. Testdaten und Testergebnisse

5.1. Testlauf eines unsinnigen Parameters in der Konfigurationsdatei

Zunächst wird die Konfigurationsdatei über das GUI geöffnet (vgl. Abbildung 6 und Abbildung 7), und dann werden die Konfigurationsdaten eingegeben (vgl. Abbildung 8). Nach dem Ändern und Speichern der Konfigurationsdatei, soll sie über die GUI geladen (Button "Parameter Laden" drücken). Nachdem das Button "Plot Funktion" gedrückt wird, wird eine Fehlermeldung in einem Messagebox angezeigt (vgl. Abbildung 9).

Abbildung 6: Konfig-Datei ändern

Fakultät 1: Elektro- und

Abbildung 7: Konfig-Datei öffnen

Abbildung 8: Konfigurationsdaten ändern

Abbildung 9: Anzeige von Fehlermeldung

Fakultät 1: Elektro- und

Programmieren in Python

5.2 Plot von Messdatenreihe

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Messdatenreihe").

Abbildung 10: Messdatenreihe

5.3 Plot von Funktion f(x)

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Funktionsgleichung").

Abbildung 11: Funktion f(x)

5.4 Plot von mehreren Funktionen

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Funktionsgleichung"). Dann können die Schlüssel $f_1(x)$, $f_2(x)$ und $f_3(x)$ mit den zu plottenden Funktionen ausgefüllt werden.

Abbildung 12: mehrere Funktionen plotten

Fakultät 1: Elektro- und

Programmieren in Python

5.5 Plot von Parametrischer Funktion

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Parametrische Funktion").

Abbildung 13: Parametrische Funktion plotten

5.6. Plot von 2-Dimensionalen Funktion f(x,y) in 3D-Graph

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Mehredimensionalefunktion").

Abbildung 14: 3D-Plot

Fakultät 1: Elektro- und

Programmieren in Python

5.7 Plot von Übertragungsfunktion G(s)

Wichtig ist hier, neben dem Schlüssel "Check" in der Konfigurationsdatei den richtigen Funktionstyp einzugeben ("Uebertragungsfunktion").

Abbildung 15: Bodediagramm von Übertragungsfunktion plotten

6. Eigenständigkeitserklärung

Hiermit erklären wird, dass die Dokumentation, wenn Quellen es nicht anders belegen, von uns selbst verfasst wurde.

Anis DH Hannover, den 02.01.2022

Hannover, den 02.01.2022

7. Abbildungsverzeichnis

Abbildung 1: Programm GUI	2
Abbildung 2: Ablaufdiagramm vom Programm	
Abbildung 3: Wählen von "Übertragungsfunktion"	
Abbildung 4: Fehler beim Parameter "x_Reihe"	7
Abbildung 5: G(s) korrigieren	8
Abbildung 6: Konfig-Datei ändern	8
Abbildung 7: Konfig-Datei öffnen	9
Abbildung 8: Konfigurationsdaten ändern	9
Abbildung 9: Anzeige von Fehlermeldung	9
Abbildung 10: Messdatenreihe	10
Abbildung 11: Funktion f(x)	
Abbildung 12: mehrere Funktionen plotten	
Abbildung 13: Parametrische Funktion plotten	12
Abbildung 14: 3D-Plot	12
Abbildung 15: Bodediagramm von Übertragungsfunktion plotten	13
8. Tabellenverzeichnis	
Tabelle 1: Erlaubte Funktionsarten	4
Tabelle 2: Parameter der einzelnen Funktionstypen	5

Fakultät 1: Elektro- und