Работа 2.2.1

Исследование взаимной диффузии газов

Малиновский Владимир

galqiwi@galqiwi.ru

Цель работы: 1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений

В работе используются: измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

Описание работы

В этой работе измеряется зависимость разности концентрации гелия в двух сосудах V_1 и V_2 от времени с помощью датчиков теплопроводности D_1 и D_2 в этих сосудах. Эта зависимость должна быть экспоненциальной:

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$

из чего можно найти $\tau = 1/A$.

Также известно, что τ зависит от коэффициента диффузии D, как

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD},$$

где S – площадь сечения, L – длина канала между V_1 и V_2 .

В свою очередь, $D \sim 1/P$, где P — давление внутри сосуда. Эту закономерность нам предстоит проверить.

Ход работы, результаты и обработка

1-3

Откроем кран K_4 , включим насос и откачаем установку до давления ~ 0.1 торр, оставив насос работать на 3 минуты.

4

Сбалансируем мост.

Напустим воздух до рабочего давления ~ 40 торр, а потом будем менять сопротивление в мосту так, чтобы показания гальванометра были около нуля.

5

Когда мост сбалансирован – можно приступать к основной работе.

- 1. Откачаем установку до ~ 0.1 торр
- 2. Закроем краны K_2 и K_3 , изолируя объем V_2 .
- 3. Пустим немного гелия до давления порядка 10% от рабочего.
- 4. Откроем кран K_2 и закроем K_1 , изолируя объем V_1
- 5. Заполним объем V_2 до давления $\sim 1.5 P_{\rm pa6}$
- 6. Откроем кран K_1 для того, чтобы воздух проник в объем V_1

6

Откроем кран K_3 и начнем измерять зависимость показаний гальванометра от времени

7

Повторим пункты 3-6 для других рабочих давлений

8

Построим зависимость $ln(V/V_0)$ – логарифма напряжения на гальванометре ($V_0 = 1$ мВ) от t. Эти графики линейные, что соответствует теории. Из МНК найдем A – их графики наклона, из которых вычислим D.

$P_{\rm pa6}$, к Π а	$A, \kappa c^{-1}$	$10\mathrm{к\Pi a}/P_\mathrm{pa6}$	$\Delta 10 \mathrm{к} \Pi \mathrm{a}/P_{\mathrm{pa6}}$	$D, cm^2/c$	$\Delta D, \text{cm}^2/\text{c}$
5.4	3.945	1.86	0.08	7	1
11.3	2.041	0.89	0.02	3.9	0.5
18.6	1.464	0.537	0.007	2.8	0.4
22.1	1.200	0.454	0.005	2.3	0.3
28.4	0.865	0.352	0.003	1.6	0.2
33.8	0.871	0.296	0.002	1.6	0.2
39.2	0.779	0.2551	0.0016	1.5	0.2

$$\Delta P_{\text{pa6}} = 0.25 \text{ kHa}, \ \Delta A = 0.001 \text{ kc}^{-1}.$$

$$V_1=V_2=V=(420\pm 10)\,{
m m}$$
л, $l/S=(9.0\pm 0.1)\,1/{
m cm}$

погрешности

$$\delta D = \delta \tau + \delta (l/S) + \delta V$$
$$\delta (1/P) = \delta P$$

9

Если построить график зависимости D от $1/P_{\rm pa6}$, то он получается линейным, что согласуется с теорией. Из МНК следует, что при $10\,{\rm k\Pi a}/P=0.1,$

$$D_{\text{atm}} = (0.91 \pm 0.08) \text{cm}^2/\text{c}.$$

Посчитаем полную погрешность:

$$\Delta D = \sqrt{\Delta D_{\text{ctat}}^2 + \langle \Delta D \rangle^2}$$

$$D_{\text{atm}} = (0.9 \pm 0.4) \text{cm}^2/\text{c}.$$

Табличное значение

$$D_{
m magn} = 0.83 {
m cm}^2/{
m c}$$

10

Из значений D, можно найти $\lambda=\frac{3D}{\sqrt{3RT/\mu}}$ и $\sigma=\frac{\sqrt{\frac{3RT}{\mu}}}{3\frac{p}{RT}D}\frac{1}{N_a}$ ($T=300{\rm K}$ (вообще, нет, но у D большая погрешность, так что неточность T незначительна)):

$$\lambda = (200 \pm 90)$$
HM, $\sigma = (0.21 \pm 0.09)$ HM²,

что похоже на правду.

Вывод

Мы научились измерять разницу концентраций в процессе диффузии газов от времени. Благодаря этому, мы получили зависимость D от P с величинами, близкими к табличным. К сожалению, погрешность D была высока (так как погрешность l/S была 1/9), и не получилось получить точное значение D при комнатной температуре. Полученное значение все же сходится с табличным, учитывая погрешность. Полученные из D значения λ и σ при атмосферном давлении похожи на правду, и сходятся с табичными ровно настолько, насколько с табличными значениями сходится D.