GEL10280: Communications numériques 2003 Examen Partiel

Mercredi le 12 mars 2003; Durée: 10h30 à 12h20 Une feuille documentation permise; une calculatrice permise

Problème 1 (20 points sur 100)

Université Laval

Professeur: Leslie A. Rusch

Suppose we have a signal with infinite time duration, that is

$$s(t) = \begin{cases} e^{-t} & t \ge 0 \\ 0 & ailleurs \end{cases}$$

Further suppose that the channel is ideal with infinite bandwidth. The noise n(t) is additive, white and Gaussian (AWGN) with PSD= $N_0/2$.

- A. (5 points) Sketch the optimal receiver for this system using BPSK modulation.
- B. (10 points) Suppose we use the same form for the receiver, but instead our observation window (time between samples) has a 1 second duration. Give the probability of error as a function of N_0 .
- C. (5 points) What is the loss in dB of the sub optimal receiver in part B, as compared with the optimal receiver of part A?

GEL64486: Communications numériques 2002 Examen Partiel

Problème 2 (20 points sur 100)

We are going to compare the performance of rectangular 16QAM and non-coherent 16FSK with minimal separation between carriers. The bit rate is R_b =9600 bits/s and the symbol rate is R_s =2400 symbols/sec. Suppose the pulses are rectangular with symbol interval T_s =1/ R_s . Use the null-to-null bandwidth for this pulse.

- A. (6 points) Sketch the spectrum for 16QAM and for 16FSK.
- B. (6 points) Give the bandwidth efficiency for 16QAM et de 16FSK (show your work)
- C. (8 points) Give the asymptotic loss in dB for 16QAM and for 16FSK relative to QPSK. (show your work)

GEL64486: Communications numériques

2002 Examen Partiel

Problème 3 (30 points sur 100)

ř –	0 !! (! .	D': (((
Symbol	Coordinates in I/Q space	Distance to the origin
Α	$\left(-1,2\sqrt{3}\right)$	√13
В	(1,2√3)	
С	$(2,\sqrt{3})$	
D	(1,0)	
E	(-1,0)	
F		
G		
Н		
I		
J		
K		
L		
M		
N		
0	$(5,0)$ $(4,\sqrt{3})$	
Р	$\left(4,\sqrt{3}\right)$	

Consider the hexagonal constellation for 16QAM given in the following diagram.

- A. (5 points) What are the coordinates for symbols F-N in I/Q space? Complete the table and place it in the blue exam book.
- B. (10 points) Find the minimal distance in signal space a s function of the average energy per symbol E_s .
- C. (10 points) Find the probability of error using the union bound approximation.
- D. (5 points) Does this constellation have an asymptotically better error probability than rectangular 16QAM with $D_{min} = 2\sqrt{E_s/10}$? Justify your answer

GEL64486: Communications numériques **2002 Examen Partiel**

Problème 4 (30 points sur 100)

- A. (10 points) Give the motivation for use of DPSK instead of BPSK. Give the receiver for DPSK and explain how it functions.
- B. (10 points) What is the difference between a MAP and a MLE receiver? Give a simple example.
- C. (5 points) What is the advantage to using orthogonal modulation?

D. (5 points) What Nyquist pulse has minimal bandwidth?