

Las Americas Institute of Technology

Nombres de estudiantes:

Jesus Alberto Beato Pimentel.

Matriculas:

2023-1283.

Institución académica:

Instituto Tecnológico de las Américas (ITLA).

Materia:

Circuitos Eléctricos II

Profesor:

Ing. Omar De Los Santos Bueno

Tema del trabajo:

Ejercicios pautados del cap. 8 & 9.

Fecha:

09/06/2024

Ejercicios capítulo 8.

- **8.2**) Características y definiciones del voltaje de ca senoidal 1. Para la forma de onda senoidal de la figura 8.82:
- a) ¿Cuál es el valor pico?
- b) ¿Cuál es el valor instantáneo a 1 ms y 7 ms.
- c) ¿Cuál es el valor pico a pico de la forma de onda?
- d) ¿Cuál es el periodo de la forma de onda?
- e) ¿Cuántos ciclos se muestran?

FIG. 8.82 Problema 2.

Ejoricios del capita	0 8.		
2) Respuestas:		2 44 2 2 2 3	1766
a) 200 MA			
b) 2.5 ps - 200 pa;	6.5 µs :- 200	PA	
C) 400 PA			
e) 2,5 Cabo			

- 8.3) Para la forma de onda cuadrada periódica de la figura 8.83:
- a) ¿Cuál es el valor pico?
- b) ¿Cuál es el valor instantáneo a 15 ms y 5.1 ms?
- c) ¿Cuál es el valor pico a pico de la forma de onda?
- d) ¿Cuál es el periodo de la forma de onda?
- e) ¿Cuántos ciclos se muestran?

29) Escriba la expresión analítica para la forma de onda de la figura 8.87 con el ángulo de fase en grados.

30) Escriba la expresión analítica para la forma de onda de la figura 8.88 con el ángulo de fase en radianes.

33) Determine la relación de fase entre las siguientes formas de onda:

$$v = 2 \cos(\omega t = 30^\circ)$$

$$i = 5 \operatorname{sen}(\omega t + 60^{\circ})$$

33)	V= 2008 (wt -30)	
r= 2 cos (wt -30°)	(= 5 Sen (w+ +60°)	
Cos(w+ -20°)	Has ondes están en laso	
Sen ((w+ -30°) +90°)		
V = 2 Sen (W++60°)		

42) Determine el valor promedio de la forma de onda periódica de la figura 8.95 a lo largo de un ciclo completo.

- 13) Determine la velocidad angular de una forma de onda con una frecuencia de
 - a) 100 Hz.
 - b) 0.25 kHz.
 - c) 2 kHz.
 - d) 0.004 MHz

	(0)	
2)	13)	
3)	A) w = 2T x 100 Hz b) w = 2T = 250 Hz	
3)		
3)		
3)	W = 628.32 rad/s W = 1570.8 rad/s ≠ 1.57 x 10 rad/s	
3)		
3)	() 1/1 · 1000 n2	
3	0) - 700 11 (5015	
(10)	0 - 700	
	W = 3030001	
F (0)	\$ 12.56 x 103 rad/8 W= 25/32.8 rad/8	
	# 25.13 x 10 rad/s	
100	Sav J	7

18) Trace 6 sen 754t con la abscisa

- a) ángulo en grados.
- b) ángulo en radianes.
- c) tiempo en segundos

22) Dado y 20 sen a, determine y con a 1.2p.

25) Trace sen (377t + 60°) con la abscisa

- a) ángulo en grados.
- b) ángulo en radianes.
- c) tiempo en segundos.

26) Trace las siguientes formas de onda:

- a) 50 sen (vt + 0°)
- b) 5 sen (vt 120°)

Ejercicio Capitulo 9.

30) Un circuito disipa 100 W (potencia promedio) a 150 V (voltaje de entrada eficaz) y 2 A (corriente de entrada eficaz). ¿Cuál es el factor de potencia? Repita si la potencia es de 0 W; 300 W.

- 39. Convierta los siguientes números de la forma polar a la forma rectangular:
 - **a.** 6 ∠40°
- **b.** 12 /120°
- **c.** 2000 /−90°□
- e. 48 <u>/2°</u>
- **d.** $0.0064 \neq +200^{\circ}$ **f.** $5 \times 10^{-4} \neq -20^{\circ}$

- 46. Realice las siguientes divisiones en forma polar:
 - **a.** (42 ∠10°)/(7 ∠60°)
 - **b.** $(0.006 \angle 120^{\circ})/(30 \angle +60^{\circ})$
 - **c.** (4360 ∠ −20°)/(40 ∠ −210°)

- La corriente que fluye a través de un resistor de 7 kΩ es como se indica. Determine la expresión senoidal para el voltaje. Además, trace las formas de onda senoidales v e i en el mismo eje.
 - a. 0.1 sen 1000t
 - **b.** $2 \times 10^{-3} \text{ sen}(400t 120^{\circ})$

