AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

 (Currently amended) A lighting apparatus for emitting white light comprising:

a semiconductor light source emitting radiation having a peak emission in the UV; and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Sr,Ba,Ca)_2SiO_4$:Eu, one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,T,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce, and at least one of phosphor selected from the group consisting of $(Sr,Mg,Ca,Ba,Zn)_2P_2O_7$:Eu,Mn; $(Ca,Sr,Ba,Mg)_5(PO_4)_3(Cl,F,OH)$:Eu,Mn; $(Sr,Ba,Ca)MgAl_{10}O_{17}$:Eu,Mn; and/or Mg_4FGeO_6 :Mn⁴⁺.

- (Original) The lighting apparatus of claim 1, wherein the light source is an LED.
- 3. (Original) The lighting apparatus of claim 2, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.
- 4. (Original) The lighting apparatus of claim 1, wherein the light source is an organic emissive structure.
- (Original) The lighting apparatus of claim 1, wherein the phosphor composition is coated on the surface of the light source.
- 6. (Original) The lighting apparatus of claim 1, further comprising an encapsulant surrounding the light source and the phosphor composition.

- 7. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is dispersed in the encapsulant.
- 8. (Original) The lighting apparatus of claim 1, further comprising a reflector cup.
- 9. (Original) The lighting apparatus of claim 1, wherein said phosphor composition comprises $(Sr_{0.95}Ba_{0.025}Eu_{0.025})_2SiO_4$.
- 10. (Original) The lighting apparatus of claim 1, wherein said phosphor composition comprises (Sr_{0.58}Ca_{0.36}Eu_{0.06})₂SiO₄.
- 11. (Original) The lighting apparatus of claim 10, wherein said apparatus has a color point with a ccx value of 0.5286 and a ccy value of 0.4604.
- (Original) The lighting apparatus of claim 1, wherein said phosphor composition further comprises one or more additional phosphor.
- The lighting apparatus of claim 12, wherein said (Previously presented) 13. one or more additional phosphors are selected from the group consisting of (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; 2SrO*0.84P₂O₅*0.16B₂O₃:Eu²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+};$ $Sr_2Si_3O_{8^22}SrCl_2$: Eu^{2^+} ; $Ba_3MgSi_2O_8$: Eu^{2^+} ; $Sr_4Al_{14}O_{25}$: Eu^{2^+} ; $BaAl_8O_{13}$: Eu^{2^+} ; $2SrO_{12}$: Eu^{2^+} ; $2SrO_{13}$: $0.84P_2O_{5\text{-}0.16}B_2O_3:Eu^{2^+}; \ (Ba,Sr,Ca)Al_2O_4:Eu^{2^+}; \ (Y,Gd,Lu,Sc,La)BO_3:Ce^{3^+},Tb^{3^+};$ (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; $(Ba,Sr,Ca)_2(Mg,Zn)Si_2O_7:Eu^{2+};$ $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2$: (Y,Gd,Tb,La,Sm,Pr,Lu)₃(Al,Ga)₅O₁₂:Ce³⁺; $Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; $Eu^{2+}.Mn^{2+}$: $(Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+};$ $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH):$ $(Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ Eu²⁺,Mn²⁺: $(Gd,Y,Lu,La)VO_4:Eu^{3+},Bi^{3+}; (Ca,Sr)S:Eu^{2+}; SrY_2S_4:Eu^{2+}; CaLa_2S_4:Ce^{3+};$ $(Ca,Sr)S:Eu^{2+}; 3.5MgO*0.5MgF_2*GeO_2:Mn^{4+}; (Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+};$ $(Y,Lu)_2WO_6$:Eu³+, Mo⁶⁺; (Ba,Sr,Ca)_xSi_yN_z:Eu²⁺.

- 14. (Previously presented) A lighting apparatus for emitting white light comprising:
 - a UV light source emitting radiation having a peak emission in the UV range; and
 - a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Sr,Ba,Ca)_2SiO_4$:Eu, one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,T,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce and a magnesium fluorogermanate phosphor having the formula Mg_4FGeO_6 : Mn^{4+} .
- 15. (Original) The lighting apparatus of claim 14, wherein the light source is a semiconductor LED.
- 16. (Original) The lighting apparatus of claim 14, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.
- 17. (Original) he lighting apparatus of claim 14, wherein said light source is an organic emissive structure.
- 18. (Original) The lighting apparatus of claim 14, wherein the phosphor composition is coated on the surface of the light source.
- 19. (Original) The lighting apparatus of claim 14, further comprising an encapsulant surrounding the light source and the phosphor composition.
- (Original) The lighting apparatus of claim 14, wherein the phosphor composition is dispersed in the encapsulant.
- 21. (Original) The lighting apparatus of claim 14, further comprising a reflector cup.

- 22. (previously presented) The lighting apparatus of claim 14, wherein said (Sr,Ba,Ca)₂SiO₄:Eu phosphor comprises (Sr_{0.95}Ba_{0.025}Eu_{0.025})₂SiO₄.
- 23. (Original) The lighting apparatus of claim 14, wherein said phosphor composition comprises (Sr_{0.58}Ca_{0.36}Eu_{0.06})₂SiO₄.
- 24. (Original) The lighting apparatus of claim 23, wherein said apparatus has a color point with a ccx value of 0.5286 and a ccy value of 0.4604.
- 25. (Original) The lighting apparatus of claim 14, wherein said phosphor composition further comprises one or more additional phosphors.
- The lighting apparatus of claim 25, wherein said (Previously Presented) 26. one or more additional phosphors are selected from the group consisting of (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺; $(Ba,Sr,Ca)MgAl_{10}O_{17}:Eu^{2+},Mn^{2+};$ 2SrO*0.84P₂O₅*0.16B₂O₃:Eu²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+};$ Sr₂Si₃O_{8*2}SrCl₂:Eu²⁺; Ba₃MgSi₂O₈:Eu²⁺; Sr₄Al₁₄O₂₅:Eu²⁺; BaAl₈O₁₃:Eu²⁺; 2SrO- $0.84P_2O_{5-0.16}B_2O_3$: Eu^{2+} ; (Ba,Sr,Ca)Al₂O₄: Eu^{2+} ; (Y,Gd,Lu,Sc,La)BO₃: Ce^{3+} ,Tb³⁺; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Ba,Sr,Ca)₂(Mq,Zn)Si₂O₇:Eu²⁺; (Y,Gd,Tb,La,Sm,Pr,Lu)₃(Al,Ga)₅O₁₂:Ce³+; $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2$: $Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; $Eu^{2+}.Mn^{2+}$: $(Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+};$ $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH):$ $Eu^{2+},Mn^{2+};$ $(Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ $(Gd,Y,Lu,La)_2O_2S:Eu^{3+},Bi^{3+};$ (Gd,Y,Lu,La)VO₄:Eu³⁺,Bi³⁺; (Ca,Sr)S:Eu²⁺; SrY₂S₄:Eu²⁺; CaLa₂S₄:Ce³⁺; $(Ca,Sr)S:Eu^{2+}; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; (Ba,Sr,Ca)MgP₂O₇:Eu²⁺,Mn²⁺;$ $(Y,Lu)_2WO_6$: Eu^3+ , Mo^{6+} ; $(Ba,Sr,Ca)_xSi_yN_z$: Eu^{2+} .
- 27. (Currently amended) A lighting apparatus for emitting white light comprising:
 - a semiconductor light source emitting radiation having a peak emission in the UV range; and
 - a phosphor composition radiationally coupled to the light source, the phosphor composition comprising (Sr,Ba,Ca)₂SiO₄:Eu, and <u>one or more</u>

- 28. (Original) The lighting apparatus of claim 27, wherein the light source is a semiconductor LED.
- 29. (Original) The lighting apparatus of claim 27, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.
- 30. (Original) The lighting apparatus of claim 27, wherein said light source is an organic emissive structure.
- 31. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is coated on the surface of the light source.
- 32. (Original) The lighting apparatus of claim 27, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 33. (Original) The lighting apparatus of claim 27, wherein the phosphor composition is dispersed in the encapsulant.
- 34. (Original) The lighting apparatus of claim 27, further comprising a reflector cup.
- 35. (Canceled)
- 36. (Canceled)
- 37. (Currently amended) The lighting apparatus of claim <u>27</u> 36, wherein said apparatus has a color point with a ccx value of 0.5286 and a ccy value of 0.4604.

- 38. (Currently amended) The lighting apparatus of claim 27, wherein said phosphor composition comprises one or more of (Sr,Mg,Ca,Ba,Zn)₂P₂O₇:Eu,Mn; (Ca,Sr,Ba,Mg)₅(PO₄)₃(Cl,F,OH):Eu,Mn; (Sr,Ba,Ca)MgAl₁₀O₁₇:Eu,Mn; and Mg₄FGeO₆:Mn⁴⁺ further comprises one or more additional phosphors.
- The lighting apparatus of claim 27 38, wherein said (Currently amended) 39. one or more additional phosphors are selected from the group consisting of (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺: (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; 2SrO*0.84P₂O₅*0.16B₂O₃:Eu²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+};$ $0.84P_2O_{5-0.16}B_2O_3$: Eu²⁺; (Ba,Sr,Ca)Al₂O₄: Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃: Ce³⁺,Tb³⁺; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2$: (Y,Gd,Tb,La,Sm,Pr,Lu)₃(Al,Ga)₅O₁₂:Ce³⁺; $Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; $Eu^{2+}.Mn^{2+}$: $(Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+};$ $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,Cl,Br,OH):$ (Gd,Y,Lu,La)₂O₃:Eu³⁺,Bi³⁺; (Gd,Y,Lu,La)₂O₂S:Eu³⁺,Bi³⁺; Eu²⁺.Mn²⁺: $(Gd,Y,Lu,La)VO_4:Eu^{3+},Bi^{3+};$ $(Ca,Sr)S:Eu^{2+};$ $SrY_2S_4:Eu^{2+};$ $CaLa_2S_4:Ce^{3+};$ $(Ca,Sr)S:Eu^{2+}; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; (Ba,Sr,Ca)MgP₂O₇:Eu²⁺,Mn²⁺;$ $(Y,Lu)_2WO_6$: Eu^3+ , Mo^{6+} ; $(Ba,Sr,Ca)_xSi_vN_z$: Eu^{2+} .
- 40. (Original) A phosphor blend including (Sr,Ba,Ca)₂SiO₄:Eu and at least one of (Sr,Mg,Ca,Ba,Zn)₂P₂O₇:Eu,Mn; (Ca,Sr,Ba,Mg)₅(PO₄)₃(Cl,F,OH):Eu,Mn; (Sr,Ba,Ca)MgAl₁₀O₁₇:Eu,Mn; Mg₄FGeO₆:Mn⁴⁺; and one or more garnet phosphors having the general formula (Y,Gd,La,Lu,T,Pr,Sm)₃(Al,Ga,In)₅O₁₂:Ce.
- 41. (Original) The phosphor blend of claim 40 comprising $(Sr_{0.95}Ba_{0.025}Eu_{0.025})_2SiO_4$.
- 42. (Original) The phosphor blend of claim 40 comprising $(Sr_{0.58}Ca_{0.36}Eu_{0.06})_2SiO_4.$

- 43. (Previously Presented) The phosphor blend of claim 40, wherein said phosphor blend is capable of absorbing the radiation emitted by a light source having a peak emission in the UV range and emitting radiation that, when combined with said radiation from said light source, produces white light.
- 44. (Canceled)
- 45. (previously presented) The lighting apparatus of claim 1, wherein said semiconductor light source has a peak emission at about 405 nm.
- 46. (New) A lighting apparatus for emitting white light comprising:

a semiconductor light source emitting radiation having a peak emission in the UV; and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Sr,Ba,Ca)_2SiO_4$: Eu, one or more garnet phosphors having the general formula $(Y,Gd,La,Lu,T,Pr,Sm)_3(Al,Ga,In)_5O_{12}$:Ce, and at least one phosphor selected from the group consisting of $(Sr,Mg,Ca,Ba,Zn)_2P_2O_7$:Eu,Mn; $(Ca,Sr,Ba,Mg)_5(PO_4)_3(Cl,F,OH)$:Eu,Mn; and $(Sr,Ba,Ca)MgAl_{10}O_{17}$:Eu,Mn.