# 5. Obecné vlastnosti pružného materiálu a pružného tělesa

## 5.1. Závislost mezi deformací, napjatostí a energií

#### 5.1.1. Silově deformační závislost

A F W<sub>A</sub> W<sub>F</sub> silové x deformační charakteristiky



- a) lineárně pružný materiál
- b) materiál zpevňuje
- c) materiál změkčuje

### 5.1.2. Konstitutivní vztahy

napjatost x deformace  $(T_{\sigma} \times T_{\varepsilon})$ 



pružná deformace tělesa = vratná deformace závislost mezi  $T_\sigma$  a  $T_\varepsilon$  nelineární



ocel ⇒ lineární závislost v pružném oboru materiál lineárně pružný

# Obecný Hookův zákon

Charakteristikou lineárně pružného materiálu je lineární závislost každé složky tenzoru napětí (přetvoření ) na všech složkách tenzoru přetvoření (napětí).

jednoosá napjatost, izotropní materiál (mechanické vlastnosti nezávislé na směru)

$$\sigma_x = E \cdot \varepsilon_x$$

smyková napjatost

$$\tau = G \cdot \gamma$$
 
$$G = \frac{E}{2(1+\mu)} \qquad \text{modul pružnosti ve smyku}$$

E Youngův modul pružnosti (modul pružnosti v tahu)

μ Poissonovo číslo (součinitel příčné kontrakce)

### 5.1.3. Práce síly při deformaci tělesa

$$A_F = \int\limits_u \vec{F} \mathrm{d}\vec{u}_A =$$

 $\overrightarrow{du}_{A}$   $\overrightarrow{du}_{F}$ 

 $\mathrm{d}\vec{u}_A$ ... elementární posuv působiště síly  $\mathrm{d}u_F$ ... průmět tohoto vektoru do směru síly.





práce síly  $\vec{F}$  vlivem změn jiných sil (a sama se přitom nemění)

$$A_F = \int_{0}^{w_{F_K}} F_K \mathrm{d}w_F =$$



### 5.1.4. Práce a energie

zatížení tělesa  $\Rightarrow$  napjatost v tělese – popsána pomocí vnitřních sil konzervativní síly  $\Rightarrow$  možný popis pomocí **energie** pružný materiál – pružné vnitřní síly – konzervativní síly  $\Rightarrow$  pružná (elastická) energie – **energie napjatosti** W



$$A_F = \Delta W + W_Q$$

pružné chování

$$A_F = \Delta W$$

měrná energie napjatosti

$$\Lambda = \frac{\mathrm{d}\,W}{\mathrm{d}\,V}$$

### 5.2. Lineární a nelineární pružnost

Lineární (nelineární) pružnost vyšetřuje napjatost a deformaci těles pro případ, že závislost mezi vnějšími silami, parametry napjatosti a deformace těles je lineární (nelineární).

Úlohy lineární – jednodušší řešení, praktická použitelnost omezená.

#### Nutné podmínky pro lineárnost úlohy:

 lineárně pružný materiál,konstitutivní vztahy popisující vazbu mezi napětími a deformacemi jsou popsány Hookeovým zákonem,



- složky  $T_{\varepsilon}$  malé,<br/>maximálně do 5%,
- malé deformační posuvy těles, posuvy u,v,w jsou malé z hlediska vlivu na změnu geometrie tělesa a tím na platnost rovnic rovnováhy, které byly sestaveny pro původní, nedeformovanou geometrii



– lineární okrajové podmínky, nemění se charakter nebo poloha vazeb a zatížení při změně deformace (kontaktní nelinearita)





### 5.3. Obecné věty lineární pružnosti

### 5.3.1. Věta o superpozici napjatosti a deformace



Napjatost a deformace tělesa zatíženého silovou soustavou je v lineární PP rovna součtu napjatostí a deformací způsobených jednotlivými silami této soustavy.

<sup>\*5.2 [</sup>PPI, 37, 202, 233]

<sup>\*5.3 [</sup>PPI, 38 - 43]