CLAIMS

What is claimed is:

l	1. A system for suppressing radio frequency radiation, comprising:
2	a ferrite material inductively coupled to a signal carrier, the signal carrier
3	having current at a first frequency and a second frequency;
4	means for reducing saturation of the ferrite material at the first frequency,
5	thereby allowing the ferrite material to suppress current at the second frequency,
5	where the second frequency is higher than the first frequency.
I	2. The system of claim 1, wherein the means for reducing saturation
2	further comprises means for varying the inductance of the signal carrier.
l	3. The system of claim 2, wherein the inductance varying means is
2 .	mechanical.
1	4. The system of claim 2, wherein the inductance varying means is
2	electro-mechanical.
ì	5. The system of claim 2, wherein the inductance varying means is an
2	electronic control signal.

The system of claim 1, wherein the means for reducing saturation 6. 1 further comprises means for inductively coupling the signal carrier to a means for 2 varying the resistance of the signal carrier. 3 7. The system of claim 6, wherein the resistance varying means 1 comprises a mechanically variable resistor. 2 8. The system of claim 6, wherein the resistance varying means 1 comprises an electro-mechanically variable resistor. 2 9. The system of claim 6, wherein the resistance varying means l comprises a variable resistor controlled by an electronic circuit. 2 10. The system of claim 1, wherein means for reducing saturation reduces 1 the current in the signal carrier at the first frequency. 2 A method for suppressing radio frequency radiation, comprising: 11. 1 2 inductively coupling a ferrite material to a signal carrier, the signal carrier having current at a first frequency and a second frequency; 3 reducing saturation of the ferrite material at the first frequency, thereby 4 allowing the ferrite material to suppress current at the second frequency, where the 5

second frequency is higher than the first frequency.

6

1	12.	The method of claim 11, further comprising varying the inductance of	
2	the signal car	rrier.	
1	13.	The method of claim 12, further comprising mechanically varying the	
2	inductance of the signal carrier.		
	•		
1	14.	The method of claim 12, further comprising electro-mechanically	
2	varying the i	nductance of the signal carrier.	
	•		
1	15.	The method of claim 12, further comprising electronically varying the	
2	inductance o	f the signal carrier.	
	-		
1	16.	The method of claim 11, further comprising inductively coupling the	
2	signal carrier to a variable resistance.		
1	17.	The method of claim 16, further comprising mechanically varying the	
2 ,	resistance to adjust the inductance of the signal carrier.		
1	18.	The method of claim 16, further comprising electro-mechanically	
2	varying the r	esistance to adjust the inductance of the signal carrier.	
1	19.	The method of claim 16, further comprising electronically varying the	
2	resistance to	adjust the inductance of the signal carrier.	

- 1 20. The method of claim 11, wherein reducing saturation of the ferrite 2 material reduces the current in the signal carrier at the first frequency.
- 21. A variable filter for suppressing radio frequency emission, comprising:
 2 a ferrite material inductively coupled to a signal carrier, the signal carrier
 3 having current at a first frequency and a second frequency, wherein the signal carrier
 4 has a variable inductance for adjusting the electrical characteristics of the signal
 5 carrier for reducing saturation of the ferrite material at the first frequency, thereby
 6 allowing the ferrite material to suppress current at the second frequency, where the
 7 second frequency is higher than the first frequency.
- The filter of claim 21, further comprising an adjustable resistance inductively coupled to the signal carrier, the adjustable resistance configured to vary the electrical characteristics of the signal carrier.
- 1 23. The system of claim 21, wherein the variable inductance reduces the current in the signal conductor at the first frequency.