Texture features

- Visual characteristics and appearance of objects
- Powerful discriminating feature for identifying visual patterns
- Properties of structural homogeneity beyond colour or intensity
- Especially used for texture classification

https://arxiv.org/abs/1801.10324

- Array of statistical descriptors of image patterns
- Capture spatial relationship between neighbouring pixels
- Step 1: Construct the gray-level co-occurrence matrix (GLCM) representing the frequency of pixel intensity pairs occurring at a specific offset and direction
- Step 2: Compute the Haralick feature descriptors from the GLCM that summarises texture information (how pixel intensities are spatially related)

https://doi.org/10.1109/TSMC.1973.4309314

- Step 1: Construct the GLCMs
 - Given distance d and orientation angle a
 - Compute co-occurrence count $p_{(d,a)}(i_1,i_2)$ of going from gray level i_1 to i_2 at d and a
 - Construct matrix $P_{(d,a)}(i_1,i_2)$ with elements (i_1,i_2) being $p_{(d,a)}(i_1,i_2)$
 - If an image has L distinct gray levels, the matrix size is $L \times L$

Example image:

$$L = 4$$

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0

- Step 1: Construct the GLCMs
 - For computational efficiency L can be reduced by binning (similar to histogram binning) Example: L = 256/n for a constant factor n
 - Different co-occurrence matrices can be constructed by using various combinations of distance d and angular orientation a
 - On their own these co-occurrence matrices do not provide any measure of texture that can be easily used as texture descriptors
 - The information in the co-occurrence matrices needs to be further extracted as a set of feature values such as the Haralick descriptors

- Step 2: Compute the Haralick descriptors from the GLCMs
 - One set of Haralick descriptors for each GLCM for a given d and a

No	Features	Formula
1	Angular Second Moment	$\Sigma i \Sigma j p(i,j)^2$
2	Contrast	$\sum_{n=0}^{Ng-1} n^2 \left\{ \sum_{i=1}^{Ng} \sum_{j=1}^{Ng} p(i,j) \right\}, i-j = n$
3	Correlation	$\Sigma i \Sigma j(ij) p(i,j) - \mu_x \mu_y$
4	Sum of Squares: Variance	$\Sigma_i \Sigma_j (i - \mu)^2 p(i, j)$
5	Inverse Difference Moment	$\Sigma_{i}\Sigma_{j}(i-\mu)^{2}p(i,j)$ $\Sigma_{i}\Sigma_{j}\frac{1}{1+(i-j)^{2}}p(i,j)$
6	Sum Average	$\sum_{i=2}^{2N_g} i p_{x+y}(i)$
7	Sum Variance	$\sum_{i=2}^{2N_g} (i - f_{8})^2 p_{x+y}(i)$
8	Sum Entropy	$-\sum_{i=2}^{2N_g} p_{x+y}(i) \log\{p_{x+y}(i)\} = f_8$
9	Entropy	$-\Sigma_i \Sigma_j p(i,j) \log(p(i,j))$
10	Difference Variance	$\sum_{n=0}^{Ng-1} i^2 p_{x-y}(i)$
11	Difference Entropy	$-\sum_{n=0}^{Ng-1} p_{x-y}(i) \log\{p_{x-y}(i)\}$
12	Info. Measure of Collection 1	$\frac{HXY - HXY1}{\max\{HX, HY\}}$
13	Info. Measure of Collection 2	$(1 - \exp[-2(HXY2 - HXY)])^{\frac{1}{2}}$
14	Max. Correlation Coefficient	The square root of the second largest eigenvalue of Q, where $Q(i,j) = \sum_k \frac{p(i,k)p(j,k)}{p_x(i)p_y(k)}$

- Example:
 - Often used in medical imaging studies due to their simplicity and interpretability

- 1. Preprocess the MRI images
- Extract Haralick, run-length, and histogram features
- 3. Apply feature selection
- Classify using machine learning algorithms

Yang et al., Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma, Medical Physics, 2015.

- Describe the spatial structure of local image texture
 - Divide the image into cells of $N \times N$ pixels (for example N = 16 or 32)
 - Compare each pixel in a given cell to each of its 8 neighbouring pixels
 - If the centre pixel value is greater than the neighbour value, write 0, otherwise write 1
 - This gives an 8-digit binary pattern per pixel, representing a value in the range 0...255

Example:

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0

11110000

240

- Describe the spatial structure of local image texture
 - Count the number of times each 8-digit binary number occurs in the cell
 - This gives a 256-bin histogram (also known as the LBP feature vector)
 - Combine the histograms of all cells of the given image
 - This gives the image-level LBP feature descriptor

Example:

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0

- Describe the spatial structure of local image texture
 - Count the number of times each 8-digit binary number occurs in the cell
 - This gives a 256-bin histogram (also known as the LBP feature vector)
 - Combine the histograms of all cells of the given image
 - This gives the image-level LBP feature descriptor

- LBP can be multiresolution and rotation-invariant
 - Multiresolution: vary the distance between the centre pixel and neighbouring pixels and vary the number of neighbouring pixels

T. Ojala, M. Pietikainen, T. Maenpaa (2002) https://doi.org/10.1109/TPAMI.2002.1017623
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987

- LBP can be multiresolution and rotation-invariant
 - Rotation-invariant: vary the way of constructing the 8-digit binary number by performing bitwise shift to derive the smallest number

```
Example: 11110000 = 240

11100001 = 225

11000011 = 195

10000111 = 135

0001111 = 15

00011110 = 30

01111000 = 60

01111000 = 120
```

Note: not all patterns have 8 shifted variants (e.g. 11001100 has only 4)

- LBP can be multiresolution and rotation-invariant
 - Rotation-invariant: vary the way of constructing the 8-digit binary number by performing bitwise shift to derive the smallest number

This reduces the LBP feature dimension from 256 to 36

Example application of LBP

Texture classification

$P_{i}R$	$LBP_{P,R}$				
-,	BINS	RESULT			
8,1	10	88.2			
16,2	18	98.5			
24,3	26	99.1			
8,1+16,2	10+18	99.0			
8,1+24,3	10+26	99.6			
16,2+24,3	18+26	99.0			
8,1+16,2+24,3	10+18+26	99.1			

https://doi.org/10.1109/TPAMI.2002.1017623