Multidimensional Databases

Conceptual Design
Peter Scheuermann

ER Model vs. Multidimensional Model

- Why don't we use the ER model in data warehousing?
- ER model: a data model for general purposes
 - All types of data are "equal", difficult to identify the data that is important for business analysis
 - No difference between:
 - What is important
 - What just describes the important
 - Normalized databases spread information
 - When analyzing data, the information must be integrated again
 - Hard to overview a large ER diagram (e.g., over 100 entities/relations for an enterprise)

ER Model vs. Multidimensional Model

- The multidimensional model
 - Its only purpose: data analysis
 - It is not suitable for OLTP systems
 - More built in "meaning"
 - What is important
 - What describes the important
 - What we want to optimize
 - Easy for query operations
- Recognized by OLAP/BI tools
 - Tools offer powerful query facilities based on MD design

Multidimensional model: basic concepts

- A fact is a concept relevant to decision-making processes. It typically
 models a set of events taking place within a company (e.g., sales,
 shipments, purchases, ...). It is essential that a fact have dynamic
 properties or evolve in some way over time
- A measure is a numerical property of a fact and describes a quantitative fact aspect that is relevant to analysis (e.g., every sale is quantified by its receipts)
- A dimension is a fact property with a finite domain and describes an analysis coordinate of the fact. Typical dimensions for the sales fact are products, stores, and dates.
- Facts "live" in a multidimensional cube

Cubes

- A "cube" may have many dimensions!
 - More than 3 the term "hypercube" is sometimes used
 - Theoretically no limit for the number of dimensions
 - Typical cubes have 4-12 dimensions
- But only 2-4 dimensions can be viewed at a time
 - Dimensionality reduced by queries via projection/aggregation
- A cube consists of cells
 - A given combination of dimension values
 - A cell can be empty (no data for this combination)
 - A sparse cube has few non-empty cells
 - A dense cube has many non-empty cells
 - Cubes become sparser for many/large dimensions

Dimensions

- Dimensions are the core of multidimensional databases
 - Other types of databases do not support dimensions
- Dimensions are used for
 - Selection of data
 - Grouping of data at the right level of detail
- Dimensions consist of dimension values
 - Product dimension have values "milk", "cream", ...
 - Time dimension have values "1/1/2001", "2/1/2001",...
- Dimension values may have an ordering
 - Used for comparing cube data across values
 - Example: "percent sales increase compared with last month"
 - Especially used for Time dimension

Dimensions -continued

- Dimensions have hierarchies with levels
 - Typically 3-5 levels (of detail)
 - Dimension values are organized in a tree structure
 - Product: Product->Type->Category
 - Store: Store->Area->City->County
 - Time: Day->Month->Quarter->Year
 - Dimensions have a bottom level and a top level (ALL)
- Levels may have attributes
 - Simple, non-hierarchical information
 - Day has Workday as attribute
- Dimensions should contain much information
 - Time dimensions may contain holiday, season, events,...
 - Good dimensions have 50-100 or more attributes/levels

MD: basic concepts

- The general term dimensional attributes stands for the dimensions and other
 possible attributes, always with discrete values, that describe them (e.g., a
 product is described by its type, by the category to which it belongs, by its brand,
 and by the department in which it is sold)
- A hierarchy is a directed tree whose nodes are dimensional attributes and whose arcs model many-to-one associations between dimensional attribute pairs. It includes a dimension, positioned at the tree's root, and all of the dimensional attributes that describe it

Events and aggregation

- A primary event is a particular occurrence of a fact, identified by one tuple made up of a value for each dimension. A value for each measure is associated with each primary event
 - In reference to the sales example, a possible primary event records that 10 packages of Shiny detergent were sold for total sales of \$25 on 10/10/2008 in the SmartMart store
- Given a set of dimensional attributes (group-by set), each n-tuple of their values identifies a secondary event that aggregates all of the corresponding primary events. Each secondary event is associated with a value for each measure that sums up all the values of the same measure in the corresponding primary events
 - This makes it possible to use hierarchies to define the way you can aggregate primary events and effectively select them for decision-making processes. While the dimension in which a hierarchy takes root defines its finest aggregation granularity, the other dimensional attributes correspond to a gradually increasing granularity

DFM: advanced concepts

A descriptive
attribute stores
additional
information about a
dimensional
attribute. It is not
used for aggregation
because it has a
dense domain
and/or it is a child of
a one-to-one
association

 Some arcs in a fact schema can be optional

DFM (dimensional fact model)

Advanced concepts

 A multiple arc models a many-to-many association between two dimensional attributes

١				
	Facts & Crimes	Golfarelli, Rizz	3	
	Sounds Logical	Golfarelli	5	
	The Right Measure	Rizzi	10	
	Facts: How and Why	Golfarelli, Rizz	4	
	The Fourth Dimension	Golfarelli	8	
How much did Rizzi sell?				

DFM: advanced concepts

 An incomplete hierarchy is a hierarchy where, for some instances, one ore more aggregation levels are missing (because they are unknown or undefined)

Types of Facts

- Event fact (transaction)
 - A fact for every business event (sale)
- "Fact-less" facts
 - A fact per event (customer contact)
 - No numerical measures
 - An event has happened for a given dimension value combination
- Snapshot fact
 - A fact for every dimension combination at given time intervals
 - Captures current status (inventory)
- Cumulative snapshot facts
 - A fact for every dimension combination at given time intervals
 - Captures cumulative status up to now (sales in year to date)
- Every type of facts answers different questions
 - Often both event facts and both kinds of snapshot facts exist

Empty fact (Fact-less) schema

- A fact schema is said to be empty if it does not have any measures
 - primary events only record the occurrence of events in an application domain

Types of Measures

- Three types of measures
- Additive
 - Can be aggregated over all dimensions (using SUM operator)
 - Example: sales price
 - Often occur in event facts
- Semi-additive
 - Cannot be aggregated over some dimensions typically time
 - Example: inventory level
 - Often occur in snapshot facts
- Non-additive
 - Cannot be aggregated over any dimensions
 - Example: average sales price
 - Occur in all types of facts

Additivity

- Additivity in fact requires that we can use the SUM operator to aggregate the values along the dimension hierarchy.
- Note: a measure can be semi-additive, but you can still use the AVG, MAX, Min operators to aggregate it.

Why a schema cannot answer question X

- Possible reasons
 - Certain measures not included in fact table
 - Granularity of facts too coarse
 - Particular dimensions not in DW
 - Descriptive attributes missing from dimensions
 - Meaning of attributes/measures deviate from the expectation of data analysts (users)

Cube: A Lattice of Cuboids

Star vs. snowflake

- Snowflaking may be useful when:
 - The ratio between the cardinalities of the primary and secondary DTs is high, because in this case it leads to a relevant space savings

