Varia

Generalisation/Prediction Error: Expected #mistakes on unkown data

 $GeneralisationError = Bias^2 + Variance + Noise$

Probability

Independence E[XY] = E[X]E[Y]

Covariance: $Cov(X_1, X_2) = E[X_1X_2] - E[X_1]E[X_2] =$ $E[(X_1 - E[X_1])(X_2 - E[X_2])]$

Variance: $Var[X] = E[X^2] - E[X]^2$ Chain rule: $P(X,Y) = \frac{P(X,Y)P(Y)}{P(Y)} = P(X|Y)P(Y)$

Gaussian Dist.
$$p_{1D}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

 $p_{dD}(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$ Multiple of Gaussians are gaussian: $X \sim \mathcal{N}(\mu, \Sigma)$, Y = $MX \Rightarrow Y \sim \mathcal{N}(M\mu, M\Sigma M^T)$

Sums of Gaussians are gaussian: $X_1 \sim \mathcal{N}(\mu_1, \Sigma_1), X_2 \sim$ $\mathcal{N}(\mu_2, \Sigma_2), Y = X_1 + X_2 \Rightarrow Y \sim \mathcal{N}(\mu_1 + \mu_2; \Sigma_1 + \Sigma_2)$

Ridge Regression

Problem:
$$w^* = arg \min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

Closed Form: $w^* = (X^T X + \lambda I)^{-1} X^T y$

Sparse Regression: Lasso

Problem:
$$w^* = arg \min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_1$$

Kernelized Linear Regression

$$\min_{\alpha_1, \dots, \alpha_n} \sum_{i=1}^n \left(\sum_{j=1}^n \alpha_j k(x_i, x_j) - y_i \right)^2 + \lambda \alpha^T K \alpha$$

Linear Classification

Problem:
$$w^* = arg \min_{w} \sum_{i=1}^{n} l(w; x_i, y_i)$$

Some Loss-Functions

Square-Loss $l_2 = (y_i - w^T x_i)^2$

0/1 Loss: $l_{0/1} = y_i \neq sign(w^T x_i)$

Perceptron Loss: $l_p(w; y_i, x_i) = max(0, -y_i w^T x_i)$

Hinge Loss (SVM): $l_h = max(0, 1 - y_i w^T x_i)$

Stochastic gradient Descent 6.1.1

pick random
$$x'$$
 and y' if $l(w_t; x', y') \neq 0$
 $w_{t+1} = w_t - \eta \nabla l(w_t; x', y')$ learning rate η

Hard margin SVM problem: $\min_{x} w^T w, s.t. \ y_i W^T x_i >= 1$

Confidence $\eta = yw^Tx$

Margin to w-plane $\gamma = \min_{x' \in L} ||x - x'||_2$

We are looking for a plane such that every sample has minimum distance 1(not actually 1).

Soft margin SVM

Unconstrained: $\min_{w} w^T w + C \sum_{i}^{n} max \left(0, 1 - y_i w^T x_i\right)$

Constrained: $\min_{w,\xi>0} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i$

s.t. $y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \ \forall i = 1, ..., n$

Dual Form: $\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j$ $\sum_{i} \alpha_i y_i = 0 \text{ and } 0 \le \alpha_i \le C$

Optimal solution is a linear combination of the data $w^* = \sum_{i=1}^n (\alpha_i y_i) x_i$

Classify: $y_{new} = sign(\sum_{i=1}^{n} \alpha_i y_i k(x_i, x_{new})) = sign(w^T x)$

Multiclass: $\min_{w_1,\dots,w_c,\xi\geq 0} \sum_{y=1}^c w_y^T w_y + C \sum_i \xi_i \text{ s.t. } w_{y_i}^T x_i \geq$ $w_{ij}^T x_i + 1 - \xi_i \forall i \in \{1, ..., n\}, y \in \{1, ..., c\}$

Kernels k(x,y)

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \Leftrightarrow \forall x, y \in \mathcal{X} : k(x, y) = k(y, x)$ $\forall x, y \text{ Gram Matrix K: } (K)_{i,j} = k(i,j) \text{ is p.s.d.}$ $k_1(x,y) = \langle \phi_1(x), \phi_1(y) \rangle$

Representer Theorem

Problem: $\min_{f \in \mathcal{H}} \sum_{i=1}^{n} l(f(x_i); x_i, y_i) + \lambda ||f||_{\mathcal{H}}^2$

sol:
$$\min_{\alpha_1,...,\alpha_n} \sum_{i=1}^n l\left(\sum_{j=1}^n \alpha_j k(x_i, x_j); x_i, y_i\right) + \lambda \alpha^T K \alpha$$

Best $f(x) = \sum_{j=1}^{n} \alpha_{j} k(x_{j}, x)$ is a sum of weighted kernel evaluations.

- 1. Gaussian Kernel: $exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$
- 2. Sigmoid Kernel: $tanh(\kappa x^T y + b)$
- 3. Polynomial Kernel: $(x^Ty + c)^d$, $c \ge 0$

Closure Properties

- 1. $k(x,y) = ak_1(x,y) + bk_2(x,y), a,b \ge 0$
- 2. $k(x,y) = k_1(x,y)k_2(x,y), k_1, k_2$ are kernels
- 3. $k(x,y) = k_3(\phi(x), \phi(y)), k_3$ is a kernel
- 4. k(x,y) = f(x)f(y)
- 5. $k(x,y) = exp(k_1(x,y))$

Max. a posteriori estimation MAP

Pick most probable model w. Maximize likelihood of model parameter $w^* = arg \max P(w|x_1, ...x_n, y_1, ..., y_n)$

 $P(w|x_1,...,x_n,y_1,...,y_n)$ $P(w)P(y_1,...,y_n|x_1,...x_n,w)$ $P(y_1,...,y_n|x_1,...,x_n)$

Bayesian Learning

Key Idea: find $P(y|x,\theta)$

Prior Assumption

Laplace Prior $p(x; \mu, b) = \frac{1}{2b} exp\left(-\frac{|x-\mu|}{b}\right)$ corresponds to L1-Regularizer

Gauss Prior $p(x; \mu, \sigma)$ corresponds to L2-Regularizer

10.2Logistic Regression

Classification method which replaces assumption about gaussian noise by iid bernoulli noise.

 $P(y|x,w) = Ber(y; \sigma(w^Tx))$

Link Func: $P(Y = +1|x, w) = \sigma(w^T x) = \frac{1}{1 + exp(-w^T x)}$

Learn $w^* = arg \min_{w} \sum_{i=1}^{n} log \left(1 + exp(-y_i w^T x_i)\right)$

Classify $P(y|x_{new}, w^*) = \frac{1}{1 + exp(-yw^*T_x)}$

Bayesian Decision Theory 10.3

 a^* action isdetermined: Best $arg \min_{a \in \mathcal{A}} \int_{y} C(y, a) p(y|x) dy$ $arg \min_{x} E_y[C(y,a)|x]$

where C(y, a) is a cost function.

10.4 Bayesian model Averaging BMA

 $P(y_{new}, x_{new}, D) = \int P(y_{new}|x_{new}, w)P(w|D)dw$ with $P(w|D) = \frac{P(w)P(D|w)}{P(D)}$ where P(w) is the prior.

10.5 Neural Networks

learn $z = \sigma(x) = [\sigma_1(x), ..., \sigma_m(x)]$ and mapping y = f(z)

Gaussian Processes 11

 $GP(f;\mu,k)$ with $\mu(x)$ as mean function and k(x,x') as cov. function. If $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$ with $A = \{x_1, ..., x_n\}$ then Posterior is a GP $P(f|x_1,...,x_n,y_n) =$ $GP(f; \mu', k')$ with $\mu'(x) = \mu(x) + K_{x,A}(K_{AA} + \sigma^2 I)^{-1}(y_A - \mu(x))$ μ_A) and $k'(x,x') = k(x,x') - K_{x,A}(K_{AA} + \sigma^2 I)^{-1}K_{A,x'}$

Bayesian linear regression

Prior $w \sim \mathcal{N}(0, \beta^2 I)$, prior distribution $y \sim \mathcal{N}(0, \beta^2 x^T x +$ σ^2) where error $e \sim \mathcal{N}(0, \sigma^2)$

Predictive dist $P(y|x,y_A) = \mathcal{N}(y;Y\mu_{y|A},\sigma_{y|A}^2)$ where $\mu_{y|A} = \Sigma_{x,A} \Sigma_{AA}^{-1} y_A$ and $\sigma_{y|A}^2 = \Sigma_{xx} - \Sigma_{x,A} \Sigma_{AA}^{-1} \Sigma_{A,x}$

Ensemble Methods

Stumps $h(x) = sign(ax_i - t), \ a \in \{-1, +1\}$

Decision Trees are hierarchical ordered stumps.

Random Forest bagging with random ensemble of decision trees.

12.1Bagging

Train each weak learner on a random subset of the data points. Classify new points by majority vote. Each iterations learns on a 'new' subset.

12.2Boosting

AdaBoost, with weight w_i per datapoint greedily optimizes for exp loss.

• for i = 1 : m $-h_i \leftarrow arg \min_{h} \sum_{j=1}^{n} w_j^{(i)} [h(x_j) \neq y_j]$ $-err_{i} = \frac{\sum_{j=1}^{n} w_{j}^{(i)} [y_{j} \neq h_{i}(x_{j})]}{\sum_{j=1}^{n} w_{j}^{(i)}}, \quad \beta_{i} = \log \frac{1 - err_{i}}{err_{i}}$ $-w_{j}^{(i+1)} = w_{j}^{(i)} exp(\beta_{i}[h_{i}(x_{j}) \neq y_{j}])$ • output: $f(x) = \sum_{i=1}^{n} \beta_{i}h_{i}(x)$

Generative Models

Aim to estimate joint dist. P(y,x) instead of P(y|x).

- Estimate prior on labels P(y)
- Estimate cond. dist. $P(x|y_i) \ \forall i \in I$
- Predict $P(y|x) = \frac{1}{Z}P(Y)P(x|y)$ where $Z = \sum_{y'} P(x|y')$

Conjugate priors

Pair of Prior assumption P(y) about data and likelihood function is called conjucate if posterior distribution remains in the same family as the prior.

13.2 Gaussian Naive Bayes Classifier

• MLE for class prior $P(Y = y) = \frac{Count(Y=y)}{r}$

• MLE feature dist. $P(x_i|y) = \mathcal{N}(x_i; \mu_{y,i}, \sigma_{y,i}^2)$ with $\mu_{y,i} = mean$ and $\sigma^2 = \frac{1}{Count(Y=y)} \sum (x - \mu)^2$

Fisher's LDA

2 gaussian dist. with fixed p = 0.5 and equal covariance Σ . Predict $y = sign(f(x)) = sign(w^T x + w_0)$ where w = $\Sigma^{-1}(\mu_+ - \mu_-)$ and $w_0 = \frac{1}{2}(\mu_-^T \Sigma^{-1} \mu_- - \mu_+^T \Sigma^{-1} \mu_+).$ Where discriminant function $f(x) = log \frac{P(Y=1|x)}{P(Y=-1|x)}$

14 K-Means (Lloyd's Algo)

$$\begin{aligned} z_i \leftarrow \arg\min_{j \in \{1, \dots, k\}} ||x_i - \mu_j^{(t-1)}||_2^2 \\ \mu_j^{(t)} \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i \end{aligned}$$

15 Gaussian Mixture Model (GMM)

$$\begin{split} P(x|\theta) &= P(x|\mu, \Sigma, w) = \sum_{i} w_{i} \mathcal{N}(x; \mu_{i}, \Sigma_{i}), \quad \sum_{i} w_{i} = 1 \\ \text{Latent Variable:} \quad \gamma_{j}(x_{i}) &= P(z_{i} = j | x, \Sigma, \mu) = \\ \frac{P(x|z_{i}=j)P(z_{i}=j)}{P(x)} &= \frac{P(x|z_{i}=j)P(z_{i}=j)}{\sum_{q=1}^{k} P(x|z_{i}=q)P(z_{i}=q)} = \frac{w_{j}P(x|\Sigma_{j},\mu_{j})}{\sum_{j} w_{j}P(x|\Sigma_{l},\mu_{l})} \\ \mu_{j}^{*} &= \frac{\sum_{i=1}^{n} \gamma_{j}(x_{i})x_{i}}{\sum_{i=1}^{n} \gamma_{j}(x_{i})} \\ \Sigma_{j}^{*} &= \frac{\sum_{i=1}^{n} \gamma_{j}(x_{i})(x_{i}-\mu_{j}^{*})(x_{i}-\mu_{j}^{*})^{T}}{\sum_{i=1}^{n} \gamma_{j}(x_{i})} + \nu^{2}I \\ w_{j}^{*} &= \frac{1}{n} \sum_{i=1}^{n} \gamma_{j}(x_{i}) \end{split}$$

16 LinAlg

Positiv semi-definit $K \in \mathbb{R}$ is psd

$$\iff x^T K x \ge 0 \ \forall x \in \mathbb{R}$$

 \iff all eigenvalues of K are ≥ 0

Norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, ||x||_1 = \sum_{i=1}^n |x_i|, ||x||_0 =$ nr of nonzero entries

17 Differentials

$$f(g(x))\frac{d}{dx} = f'(g(x)) \cdot g'(x), \ \frac{d}{dx}log(x) = \frac{1}{x}$$

17.1 Vector/Matrix differentiation

$$\frac{d}{dx}f(x) = \left[\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right], \quad \frac{d}{dx}(b^T x) = \frac{d}{dx}(x^T b) = b, \frac{d}{dx}(x^T x) = \frac{d}{dx}(x^T x) = 2x, \frac{d}{dx}(x^T A x) = (A^T + A)x$$

18 Convex optimisation

minimize f(x) subject to

 $g_i(x) \leq 0, i = 1, ..., m$ inequality constr. $h_i(x) = 0, i = 1, ..., p$ equality constr. Create the Lagrangian $L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$ Lagrange dual function: $d(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$ Lagrange dual problem: max. $d(\lambda, \nu)$ subj. to $\lambda \geq 0$

19 PCA - Principal Component Analysis

 $Z = U_k^T \cdot X$ where Z is dim reduced. Project x to \tilde{x} and minimize error $||x_n - x_n||_2$, variance of projected data is maximized.

- Covariance $\Sigma = \frac{1}{N} \cdot (X M)(X M)^T$ $- Cov(X_i, X_i) = Var(X_i)$ - Symmetric: $Cov(X_i, X_j) = Cov(X_j, X_i)$
- $Eig(\Sigma) = U \cdot \Lambda \cdot U^T$

Deduction Var. of proj. data Z is maximal if cov.

$$\Sigma_Z = A^T \Sigma_X A = \frac{1}{n} (A^T X - \bar{X}) (A^T X - \bar{X})^T.$$

By choosing A = U where $\Sigma_X = U\Lambda U^T$ the covariance $_{2}\Sigma_{Z}$ becomes diagonal.

January 31, 2014

20PCA - Principal Component Analysis

High dimensional data is projected onto a low dimensional subspace while maximizing variance.

- project x to \tilde{x} and minimize error $||x_n x_n||_2$
- variance of projected data is maximized

20.0.1 Algorithm

- Covariance $\Sigma = \frac{1}{N} \cdot (X M)(X M)^T$
 - $Cov(X_i, X_i) = Var(X_i)$
 - Symmetric: $Cov(X_i, X_i) = Cov(X_i, X_i)$
- $\bullet \ Eig(\Sigma) = U \cdot \Lambda \cdot U^T$
- $Z = U_k^T \cdot X$ where Z is dim reduced.

20.0.2 Deduction

Var. of proj. data Z is maximal if cov.

$$\Sigma_Z = A^T \Sigma_X A = \frac{1}{n} (A^T X - \bar{X}) (A^T X - \bar{X})^T.$$

 $\Sigma_Z = A^T \Sigma_X A = \frac{1}{n} (A^T X - \bar{X}) (A^T X - \bar{X})^T$. By choosing A = U where $\Sigma_X = U \Lambda U^T$ the covariance Σ_Z becomes diagonal.

SVD $M = UDV^T$ 21

- \bullet Rank of M: Number of singular values
- Null space: right columns of V where σ_i are 0
- Range of M: left columns of U where σ_i are $\neq 0$
- Pseudo-Inverse: $M^+ = UD^+V$, where $D^+ = D$ with inverted singular values

21.0.3 SVD as a sum

$$M_k = \sum_{i=1}^k U_i \cdot \Sigma_i \cdot V_i^T$$

Minimize L2 Norm: SVD solves $||M - B||_2 = ||M M_k|_2$ for euclidean matrix norms

21.1 Important

Eigenvectors of MM^T and M^TM :

$$MM^T = UDV^TVDU^T = UD(V^TV)DU^T = UD^2U^T$$

$$M^TM = \dots = VD^2V^T$$

If $M = M^T$ (symmetric and real) then $S = U \cdot D \cdot U^T$ Where U has columns of Eigenvectors

22Linear Algebra

Vector Norms

are positive scalable, full-fill the triangular inequality, norm of 0 is 0

22.1.1 p-Norm

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

22.1.2 Euclidean Norm

p-Norm where p=2

22.1.3 1-Norm

Manhattan-Norm $||x||_1 = \sum_{i=1}^n |x_i|$

22.1.4 Zero-Norm

counts the number of non-zero entries.

22.2 **Matrix Norms**

22.2.1 Nuclear Norm

 $||.||_*$ sum of singular values

Frobenious-Norm 22.2.2

 $sqrt(sum(sum(A.^2)))$

22.2.3Spectral Norm

Largest singular value if square $||A||_2 = \sigma_{max}(A)$ Is equals to the 2-Norm

22.2.4 Induced Matrix Norms

$$||A|| = \max\left(\frac{||Ax||}{||x||}\right)$$

22.3Orthogonality

22.3.1 Vectors

inner (scalar) product $\langle ., . \rangle = 0$

22.3.2 Matrices

quadratic, values are in \mathbb{R} , $Q^T = Q^{-1}$

22.3.3 Functions

f(x) orth. to g(x) if $0 = \int f(x)g(x)dx$

22.3.4 Coherence

 $m(U) = max_{i,i:i\neq j} |u_i^T u_i|$

22.3.5 Convexity

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

23 Differentials

Chain rule: $f(g(x))\frac{d}{dx} = f'(g(x)) \cdot g'(x)$

23.1 Vector/Matrix differentiation

$$\frac{d}{dx}f(x) = \left[\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right], \quad \frac{d}{dx}(b^T x) = \frac{d}{dx}(x^T b) = -lnp(X|.) + \frac{1}{2}\kappa(U, Z)ln(N)$$

$$b, \frac{d}{dx}(x^T x) = \frac{d}{dx}(x^T x) = 2x, \frac{d}{dx}(x^T A x) = (A^T + A)x$$
26.3 FM with CMM

Probability

24.1Notation

 $Pr\{...\}$ Probability of an event

P(x) Probability mass function (Verteilungsfunktion)

p(x) Probability density function (Dichtefunktion)

$$P(X,Y) = P(X|Y) \cdot P(Y) = P(Y|X) \cdot P(X)$$

Bayes:
$$P(X|Y) = \frac{P(Y|X) \cdot P(X)}{P(Y)}$$

Collaborative Filtering with SVD

Init/Set values to predict in M to be the avg value.

$$M = U \cdot D \cdot V^T$$

U = Row-to-Concept affinity

V = Column-to-Concept affinity

D = expressiveness of each concept in the data

25.1 Add new row (User Bob)

$$M_{Bob} = U_{Bob} \cdot D \cdot V^T \Longrightarrow M_{Bob} \cdot V \cdot D^- 1 = U_{Bob}$$

K-Means $X = U \cdot Z$

26.1 Hard Assignment

Minimize cost function: $J(U,Z) = ||X - UZ||_f^2 =$ $\sum_{n=1}^{N} \sum_{k=1}^{K} z_{k,n} ||x_n - u_k||_2^2$

Equ. holds only iff $z_{k,n}$ is boolean and $sum(Z_n) = 1$

Algorithm 26.1.1

Step 1: Cluster Assignment Hard-Assign to Cluster where $||X_n - U_i||_2^2$ is minimal

$$k^*(x_n) = argmin\{||x_n - u_1||_2^2, ..., ||x_n - u_k||_2^2, ..., ||x_n - u_K||_2^2\}$$

Step 2: Centroid update u_k : Sum up data points associated to k-th centroid and average.

$$u_k = \frac{\sum_{n=1}^{N} z_{k,n} \cdot x_n}{\sum_{n=1}^{N} z_{k,n}}$$

26.1.2 Convergence K-Means

Step 1 minimizes J because it sets z_k , where $||X_n - U_i||_2^2$

Step 2 minimizes J because $u_k = \frac{\sum_{n=1}^{N} z_{k,n} \cdot x_n}{\sum_{n=1}^{N} z_{k,n}}$ is the

derivative of J with respect to u_k :

derivative of
$$J$$
 with respect to u_k :
$$\frac{\partial J}{\partial u_k} = \frac{\partial \sum_{n=1}^N z_{k,n} ||x_n - u_k||_2^2}{\partial u_k} = \sum_{n=1}^N z_{k,n} \left[\frac{\partial (x_{1,n} - u_{1,k})^2}{\partial u_{1,k}}, ..., \frac{\partial (x_{d,n} - u_{d,k})^2}{\partial u_{d,k}} \right]^T = \sum_{n=1}^N z_{k,n} \left[\frac{\partial J^2}{\partial u_{1,k}} \right]^T$$

$$\sum_{n=1}^{N} z_{k,n} \left[\frac{\partial (x_{1,n} - u_{1,k})^2}{\partial u_{1,k}}, ..., \frac{\partial (x_{d,n} - u_{d,k})^2}{\partial u_{d,k}} \right]^T$$

$$-2\sum_{n=1}^{N} z_{k,n}(x_n - u_k) => \text{ solve for } u_k, \frac{\partial J^2}{u_k^2} > 0 => J$$

does not increase after centroid update.

Estimate K - $\kappa(.)$ num. free param. 26.2

26.2.1 AIC

$$= -lnp(X|.) + \kappa(U,Z)$$

26.2.2 BIC

$$= -lnp(X|.) + \frac{1}{2}\kappa(U,Z)ln(N)$$

EM with GMM Gaussian Mixture Model

•
$$p(x) = \sum_{k=1}^{K} \pi_k \ p(x|\theta_k)$$

•
$$\sum_{k=1}^{K} \pi_k = 1$$
 Each column sums up to 1

• Gaussian Distr.:
$$\mu$$
: Expectation, $\sigma^2 = variance$, $\sigma = stddev$

- \bullet introduce latent variable γ in the E-Step and marginalize away in the M-Step
- $\gamma(z_{k,n})$ is the prob. of x_n beeing ass. to cluster k

26.3.1 E-Step

Evaluate Responsibilities
$$\gamma(z_{k,n}) := \mathbb{E}[z_{k,n}] = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

26.3.2 M-Step

Re-Estimate model parameters

$$N_{k} = \sum_{n=1}^{N} \gamma(z_{k,n})$$

$$u_{k}^{new} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{k,n}) x_{n}, \ \pi_{k}^{new} = \frac{N_{k}}{N}$$

27 Non-negative matrix factorisation

 $X \in \mathbb{R}^{+D}$

Similar to k-means:

- 1. Init U, Z (random positive values)
- 2. Iterate
- 3. Update $U: \tilde{X} = UZ X = UZ => XZ' = UZZ'$ XZ'/UZZ' is a coefficient matrix in \mathbb{R}^+

$$u_d k_{new} = u_d k \cdot ((XZ')/(UZZ'))$$

4. Update $Z: X = UZ; U'X = U'UZ; z_d k_{new} < -z_d k *$ ((UX)/(U'UZ))

27.1 Deduction

$$\min_{U,Z} J(U,Z) = \frac{1}{2}||X - UZ||_F^2 = \frac{1}{2}tr\left((X - UZ)(X - UZ)^T\right)$$

Lagrangian
$$L(U, Z, \alpha, \beta) = J(U, Z) - tr(\alpha U^T) - tr(\beta Z^T)$$

where tr(.) is the trace of a matrix

Kullback-Leibler Divergence

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$
 KL-divergence of

$$X$$
 and UZ for pLSI: $\min_{U,Z} \sum_{d=1}^{D} \sum_{n=1}^{N} x_{dn} \log \left(\frac{x_{dn}}{(UZ)_{dn}} \right)$

4 s.t.
$$\sum_{d=1}^{D} u_{dk} = 1 \forall k, \sum_{d,n} z_{kn} = 1, u_{dk} \ge 0, z_n \ge 0$$

28 Role Based Access control - RBAC

 $\begin{aligned} & \text{Model with } \beta = (p \left\{ u_{dk} = 0 \right\})^{D \times K} \\ & \text{SAC: } p(X|\beta, Z) = \prod_{n,d} (1 - \beta_{dk_n})^{x_{dn}} (\beta_{dk_n})^{(1 - x_{dn})} \\ & \text{MAC: } p(X|\beta, Z) = \prod_{n,d} (1 - \prod_k \beta_{dk}^{z_{kn}})^{x_{dn}} (\prod_k \beta_{dk}^{z_{kn}})^{1 - x_{dn}} \\ & \text{Coverage:} Cov := \frac{\left| \left\{ (i,j) \middle| \hat{x}_{i,j} = x_{i,j} = 1 \right\} \middle|}{\left| \left\{ (i,j) \middle| \hat{x}_{i,j} = x_{i,j} = 1, x_{i,j} = 0 \right\} \middle|} \\ & \text{Deviating Ones:} d1 := \frac{\left| \left\{ (i,j) \middle| \hat{x}_{i,j} = x_{i,j} = 1, x_{i,j} = 0 \right\} \middle|}{\left| \left\{ (i,j) \middle| \hat{x}_{i,j} = x_{i,j} = 0, x_{i,j} = 1 \right\} \middle|} \\ & \text{Deviating Zeros:} d0 := \frac{\left| \left\{ (i,j) \middle| \hat{x}_{i,j} = x_{i,j} = 0, x_{i,j} = 1 \right\} \middle|}{\left| \left\{ (i,j) \middle| x_{i,j} = 0 \right\} \middle|} \end{aligned}$

29 Compressive Sensing

- \bullet x is a D-Dimensional measurement
- x is sparse in some orthonormal basis $U, x = U \cdot z$
- instead of saving x we save y with dim. $M \ll D$
- define any orthonormal basis $U(D \times D)$
- define W $(M \times D)$
- $y = Wx = WUz := \Theta z$
- $\bullet \ \Theta = W \cdot U$
- Store y: Wx => y
- Restore x: $y = \Theta \cdot z$, find most sparse matrix z
 - arg min z : $||z||_0$ s.t. $\Theta z = y$ (matching persuit) - $x = U \cdot z$

30 Sparse Coding

30.0.1 Matching Pursuit

Exact Recovery Conditions

$$K < \frac{1}{2} \left(1 + \frac{1}{m(U)} \right)$$
where Coherence: $m(I)$

where Coherence: $m(U) = \max_{i,j:i \neq j} |u_i^T u_j|$

30.0.2 Overcomplete Dicts.

- increasing overcompleteness
- increases (potentially) to a certain point sparse coding (gets sparser)
- increases linear dependence between atoms
- Solve: $argmin||z||_0 s.t.x = Uz$

31 Dictionary Learning

 $X = U \cdot Z$ alternate betw. Coding and Dict. update step

• Update Z to be as sparse as possible (with MP)

Dictionary Update Step

- $U_{new} = argmin |U||X UZ||_F^2$
- Update one dictionary item U_l at a time
 - write $U \cdot Z$ as sum omit index l: $\sum_{i \neq l} U_i \cdot Z_i^T$

- Residual $R_l = X \left(\sum_{i \neq l} U_i \cdot Z_i^T\right)$
- $=> R_l = U_l \cdot Z_l^T \text{ (where } R_l, Z_l^T \text{ fix)}$
- $-R_l = UDV^T$ update U_l with first column of U

(hint: write SVD as SUM and you will see)

32 Robust PCA R-PCA

X = L + S (L is low rank, S is sparse) relax the problem to: minimize $||L||_* + \lambda \cdot ||S||_1$ subject to L + S = X

32.1 Convex optimisation

minimize f(x) subject to

 $g_i(x) \leq 0, i = 1, ..., m$ inequality constr.

 $h_i(x) = 0, i = 1, ..., p$ equality constr.

Create the Lagrangian

 $L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$

Lagrange dual function: $d(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$

Lagrange dual problem: max. $d(\lambda, \nu)$ subj. to $\lambda \geq 0$

32.2 ADMM - Alternating Direction Method of Multipliers

32.2.1 Alternate Direction

Lagrangian: $L(x, \nu)$

Dual Function: $d(\nu) = \inf_x L(x, \nu)$

Dual Problem: maximize $d(\nu)$

Recover optimal x: $x^* \in argmin_x L(x, \nu^*)$

Gradient Method: $\nu^{k+1} = \nu^k + \alpha^k \nabla d(\nu^k)$

 $\nabla d(\nu^k) = f(\tilde{x})$, where $\tilde{x} = argmin_x L(x, \nu^k)$

32.2.2 Dual decomposition

- 1. if f(x) is separable into $f_1(x_1) + f_2(x_2) + ... + f_n(x_n)$ then L(x, v) is separable so we can split the x-minimisation step
- 2. Method of multipliers
- 3. create augmented lagrange by adding a penalty function $\frac{\rho}{2}||.||_2^2$
- 4. add more penalty for violating constraints, leads to convergence under far more general condition

32.2.3 ADMM in short

minimize f(x) + p(z) s.t. Ax + Bz = c Augm. Lagrange: $L_p(x, z, \nu) = f(x) + p(z) + \nu^T (Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_2^2$

ADMM:

 $x^{k+1} := argmin_x L_{\rho}(x, z^k, \nu^k)$ $z^{k+1} := argmin_z L_{\rho}(x^{k+1}, z, \nu^k)$ $\nu^{k+1} := \nu^k + \rho(Ax^{k+1} + Bz^{k+1} - c)$

32.2.4 PCP Recovery Condition

Probability. $1 - \mathcal{O}(n^{-10})$ with $\lambda = \frac{1}{sqrt(n)}$