

미쓰비시전기 범용 PLC

MELSEC iQ-R

MELSEC iQ-R 프로그래밍 매뉴얼 (CPU 모듈용 명령/범용 FUN/범용 FB편)

안전을 위한 주의

(사용하기 전에 반드시 읽어 주십시오)

MELSEC iQ-R 시리즈 PLC를 사용하실 때는 각 제품의 매뉴얼 및 각 제품의 매뉴얼에서 소개하는 관련 매뉴얼을 잘 읽고, 안전에 대해 충분히 주의를 기울여 올바르게 취급하시기 바랍니다.

본 매뉴얼은 필요 시 읽을 수 있도록 소중히 보관하시어 반드시 최종 사용자까지 전달되도록 부탁드립니다.

제품의 적용

- (1) 당사 PLC를 사용할 때는 PLC에 고장 이상 등이 발생한 경우에도 중대한 사고로 이어지지 않는 용도일 것 및 고장 이상 시 백업이나 페일 세이프 기능이 기기 외부에서 시스템적으로 설치되어 있을 것을 사용 조건으로 합니다.
- (2) 당사 PLC는 일반 공업 등의 용도를 대상으로 한 범용품으로 설계 제작되고 있습니다. 따라서 다음과 같은 기기 시스템 등의 특수 용도에 대한 사용에 대해서는 당사 PLC의 적용을 제외합니다. 만일 사용하였을 때는 당사에서 당사 PLC의 품질, 성능, 안전과 관련되는 책임(채무 불이행 책임, 하자 담보 책임, 품질 보증 책임, 불법 행위 책임, 제조물 책임 포함)을 지지 않는 것으로 합니다.
 - 각 전력회사의 원자력 발전소 및 기타 발전소용 등의 공공에 대한 영향이 큰 용도
 - 철도 및 관공서 등 특별한 품질 보증 체제의 구축을 당사에 요구하는 용도
 - 항공우주, 의료, 철도, 연소 연료 장치, 승용 이동체, 유인 반송 장치, 오락 기계, 안전 기계 등 생명, 신체, 재산에 큰 영향이 예측되는 용도

다만 상기의 용도라 할지라도 구체적으로 용도를 한정하거나, 특별한 품질(일반 사양을 벗어난 품질 등)을 요구하지 않을 것을 조건으로 당사가 판단하여 당사 PLC의 적용이 가능한 경우도 있으므로 자세한 내용은 당사에 문의하십시오.

- SIL2 프로세스 CPU 사용 시
- (1) 본 제품은 공인 인증 기관에서 IEC61508 및 IEC61511 안전 규격에 대한 적합 인증을 받고 있지만, 이 사실이 고장 · 이상이 없다는 것을 보증하는 것은 아닙니다. 사용하는 적용 분야의 안전 규격에 따른 적합한 안전 대책이 시스템적으로 실행되어 있을 것 및 본 제품이 이용되는 기기 또는 시스템 등의 최종 제품의 안전성 확보를 위해 본 제품 이외에도 적절한 다른 안전 대책을 세워 최종 제품의 안전성을 확보하고 있을 것을 사용 조건으로 합니다.
- (2) 당사는 본 제품이 다음의 용도를 포함한 인명, 재산에 대한 위험이 큰 용도에 이용되는 것을 금지하며, 당사의 지시에 따르지 않고 사용한 것에 기인하는 책임(채무 불이행 책임, 하자 담보 책임, 품질 보증 책임, 불법 행위 책임, 제조물 책임 포함)을 지지 않습니다.
 - ① 화력 수력 원자력 발전소
 - ② 열차·철도 시스템, 항공기, 항공 관제, 기타 교통 시스템
 - ③ 의료 기관, 의료 및 생명 유지에 관한 모든 기기와 어플리케이션
 - ④ 오락 설비
 - ⑤ 소각 및 연료 장치
 - ⑥ 핵물질이나 유해 물질이나 화학 물질 취급 설비
 - ⑦ 채광·굴착
 - ⑧ 기타 상기 ①~⑦에 기재한 사항 이외의 인명, 건강 또는 재산에 대한 위험성이 높은 용도

- 안전 CPU 사용 시
- (1) 본 제품은 공인 인증 기관에서 IEC61508 및 ISO13849-1 안전 규격에 대한 적합 인증을 받고 있지만, 이것이 고장·이상이 없다는 것을 보증하는 것은 아닙니다. 사용 시는 로봇, 프레스 기계, 반송기 등 적용 분야의 안전 규격에 따른 적합한 안전 대책이 시스템적으로 실행되어 있을 것 및 본 제품이 이용되는 기기 또는 시스템 등의 최종 제품의 안전 성 확보를 위해 본 제품 이외에도 적절한 다른 안전 대책을 세워 최종 제품의 안전성을 확보하고 있을 것을 사용 조건으로 합니다.
- (2) 당사는 본 제품이 다음의 용도를 포함한 인명, 재산에 대한 위험이 큰 용도에 이용되는 것을 금지하며, 당사의 지시에 따르지 않고 사용한 것에 기인하는 책임(채무 불이행 책임, 하자 담보 책임, 품질 보증 책임, 불법 행위 책임, 제조물 책임 포함)을 지지 않습니다.
 - ① 화력ㆍ수력ㆍ원자력 발전소
 - ② 열차·철도 시스템, 항공기, 항공 관제, 기타 교통 시스템
 - ③ 의료 기관, 의료 및 생명 유지에 관한 모든 기기와 애플리케이션
 - ④ 오락 설비
 - ⑤ 소각 및 연료 장치
 - ⑥ 핵물질, 유해 물질 및 화학 물질 취급 설비
 - ⑦ 채광·굴착
 - ⑧ 기타 상기 ①~⑦ 이외의 인명, 건강 또는 재산에 대한 위험성이 높은 용도

안내

미쓰비시전기 PLC MELSEC iQ-R 시리즈를 구입해 주셔서 대단히 감사합니다.

본 매뉴얼은 프로그램을 작성하는 경우에 필요한 명령, 범용 평션 및 범용 평션 블록에 대하여 학습하기 위한 매뉴얼입니다. 사용하기 전에 본 매뉴얼이나 관련 매뉴얼을 잘 읽고, MELSEC iQ-R 시리즈 PLC의 기능·성능을 충분히 이해하신 후에 올 바르게 사용하시기 바랍니다.

또한, 본 매뉴얼에서 소개하는 프로그램 예를 실제의 시스템에 적용하는 경우, 대상 시스템에서의 제어에 문제가 없는지를 충분히 검증하십시오.

본 매뉴얼은 최종 사용하는 분께 전달될 수 있도록 해 주시기 바랍니다.

차례

제품의	을 위한 주의의 적용	1
	매뉴얼	
	ште	
	얼 읽는 방법	
011 71 8		20
제1	1부 개요	
제1	장 명령 개요	32
1.1	명령 구성	32
1.2	데이터 지정 방법	34
	비트 데이터	38
	16비트 데이터(워드 데이터)	40
	32비트 데이터(더블 워드 데이터)	43
	실수 데이터(부동 소수점 데이터)	46
	문자열 데이터	49
1.3	실행 조건	51
1.4	명령 처리 시간 고속화	52
	서브셋 처리	52
1.5	프로그래밍 시 주의 사항	53
	명령 공통으로 적용되는 에러	53
	명령 실행 시 디바이스, 라벨 범위 체크	53
	롱 타이머, 롱 적산 타이머 디바이스 사용 시 동작	
	동일 디바이스의 OUT 명령, SET/RST 명령, PLS/PLF 명령 사용 시 동작	58
	파일 레지스터 사용 시 제약 사항	64
제2	2부 명령/FUN/FB 일람	
제2	장 CPU 모듈용 명령	66
2.1	시퀀스 명령	66
2.2	기본 명령	70
2.3	응용 명령	92
	프로그램 제어	92
	데이터 처리	94
	디버그, 고장 진단	102
	문자열 처리	102
	실수 처리	104
	난수	111
	디바이스 조작	112
	타이머, 카운터	
	근거리 제어	
	경사 신호	
	매트릭스 입력	
	CPU 모듈 내장 데이터베이스 액세스 기능	115

	시계	
	모듈 액세스	
	파라미터 설정	
	CPU 모듈데이터 로깅 기능	
	내장 Ethernet 기능용 명령	
	PID 연산 명령	
	PID 제어 명령	
	프로세스 제어 명령	
	멀티 CPU 간 전용 명령	
	SFC 프로그램용 명령	
	이동와 시스템용 명령 안전 시스템용 명령	
	언선 시스템용 당당	131
제32	장 모듈 전용 명령	133
제4경	장 범용 펑션/범용 펑션 블록	134
4.1	범용 평션	134
4.2	범용 펑션 블록	145
제3	3부 시퀀스 명령	
TU = 3		4.40
	장 시퀀스 명령	148
5.1	접점 명령	
	연산 시작, 직렬 접속, 병렬 접속	
	펄스 연산 시작, 펄스 직렬 접속, 펄스 병렬 접속	
	펄스 부정 연산 시작, 펄스 부정 직렬 접속, 펄스 부정 병렬 접속	
5.2	결합 명령	
	래더 블록 직렬 접속, 병렬 접속	
	연산 결과 푸시 읽기, 팝	
	연산 결과 반전	
	연산 결과 펄스화	
	에지 릴레이 연산 결과 펄스화	
5.3	출력 명령	
	아웃(타이머, 카운터, 어넌시에이터 제외)	
	타이머	
	롱 타이머	
	카운터	
	롱 카운터	
	어넌시에이터	
	디바이스 세트(어넌시에이터 제외)	
	디바이스 리셋(어넌시에이터 제외)	
	어넌시에이터 세트	
	어넌시에이터 리셋	
	상승펄스 출력	
	하강펄스 출력	
	비트 디바이스 출력 반전	
- ,	다이렉트 출력의 펄스화	
5.4	시프트 명령	142
5.5	비트 디바이스 시프트	192

	마스터 컨트롤 세트, 리셋	194
5.6	종료 명령	198
	메인 루틴 프로그램 종료	198
	시퀀스 프로그램 종료	199
5.7	정지 명령	201
	시퀀스 프로그램 정지	
5.8	무처리 명령	
0.0	무처리(NOP)	
	무처리(NOPLF)	
	구지다(NOI Li)	200
	ㅂ 기부 여경	
제4	부 기본 명령	
제6징	기본 명령	206
6.1	비교 연산 명령	206
	BIN16비트 데이터 비교	206
	BIN32비트 데이터 비교	208
	BIN16비트 데이터 비교 출력	210
	BIN32비트 데이터 비교 출력	212
	BIN16비트 데이터 대역 비교 출력	214
	BIN32비트 데이터 대역 비교 출력	
	BIN16비트 블록 데이터 비교	
	BIN32비트 블록 데이터 비교	
6.2	산술 연산 명령	
0.2		
	BIN16비트 덧셈	
	BIN16비트 뺄셈	
	BIN32비트 덧셈	
	BIN32비트 뺄셈	
	BIN16비트 곱셈	
	BIN16비트 나눗셈	
	BIN32비트 곱셈	
	BIN32비트 나눗셈	
	BCD4자리 덧셈	247
	BCD4자리 뺄셈	250
	BCD8자리 덧셈	253
	BCD8자리 뺄셈	257
	BCD4자리 곱셈	261
	BCD4자리 나눗셈	263
	BCD8자리 곱셈	265
	BCD8자리 나눗셈	267
	BIN16비트 블록 데이터 덧셈	269
	BIN16비트 블록 데이터 뺄셈	
	BIN32비트 블록 데이터 덧셈	
	BIN32비트 블록 데이터 뺄셈	
	16비트 BIN 데이터 인크리먼트	
	16비트 BIN 데이터 디크리먼트	
	32비트 BIN 데이터 인크리먼트	
	32비트 BIN 데이터 인크리먼트	
6.0		
6.3	논리 연산 명령	
	16비트 데이터 논리적	
	32비트 데이터 논리적	291

	16비트 블록 데이터 논리적	295
	16비트 데이터 논리합	297
	32비트 데이터 논리합	301
	16비트 블록 데이터 논리합	305
	16비트 데이터 배타적 논리합	307
	32비트 데이터 배타적 논리합	311
	16비트 블록 데이터 배타적 논리합	315
	16비트 데이터 부정 배타적 논리합	317
	32비트 데이터 부정 배타적 논리합	321
	16비트 블록 데이터 부정 배타적 논리합	325
6.4	비트 처리 명령	327
	워드 디바이스의 비트 세트	327
	워드 디바이스의 비트 리셋	329
	16비트 테스트	331
	32비트 테스트	333
	비트 디바이스 일괄 리셋	335
6.5	데이터 시프트 명령	337
	BIN16비트 데이터의 n비트 오른쪽 시프트	337
	BIN16비트 데이터의 n비트 왼쪽 시프트	339
	n비트 데이터의 1비트 오른쪽 시프트	341
	n비트 데이터의 1비트 왼쪽 시프트	343
	n워드 데이터의 1워드 오른쪽 시프트	345
	n워드 데이터의 1워드 왼쪽 시프트	347
	n더블 워드 데이터의 1 더블 워드 오른쪽 시프트	349
	n더블 워드 데이터의 1 더블 워드 왼쪽 시프트	351
	단정밀도 실수 n점의 1점 오른쪽 시프트	353
	단정밀도 실수 n점의 1점 왼쪽 시프트	355
	배정밀도 실수 n점의 1점 오른쪽 시프트	357
	배정밀도 실수 n점의 1점 왼쪽 시프트	
	n비트 데이터의 n비트 오른쪽 시프트	
	n비트 데이터의 n비트 왼쪽 시프트	
	n워드 데이터의 n워드 오른쪽 시프트	
	n워드 데이터의 n워드 왼쪽 시프트	
	n더블 워드 데이터의 n더블 워드 오른쪽 시프트	377
	n더블 워드 데이터의 n더블 워드 왼쪽 시프트	
	단정밀도 실수 n점의 n점 오른쪽 시프트	
	단정밀도 실수 n점의 n점 왼쪽 시프트	
	배정밀도 실수 n점의 n점 오른쪽 시프트	
	배정밀도 실수 n점의 n점 왼쪽 시프트	
6.6	데이터 변환 명령	
0.0	BIN 데이터→BCD4자리 변환	
	BIN 데이터→BCD8자리 변환	
	BCD4자리→BIN16비트 데이터 변환	
	BCD8자리→BIN32비트 데이터 변환	
	단정밀도 실수→부호 있음 BIN16비트 데이터	
	단정밀도 실수→부호 없음 BIN16비트 데이	
	단정밀도 실수→부호 있음 BIN32비트 데이터	
	단정밀도 실수→부호 없음 BIN32비트 데이터	
	배정밀도 실수→부호 있음 BIN16비트 데이터	
	배정필도 설수→부호 없음 BIN16비트 데이터	
	배정밀도 실수→부호 있음 BIN32비트 데이터	4Z I

	배정밀도 실수→부호 없음 BIN32비트 데이터	423
	부호 있음 BIN16비트 데이터→부호 없음 BIN16비트 데이터 변환	425
	부호 있음 BIN16비트 데이터→부호 있음 BIN32비트 데이터 변환	427
	부호 있음 BIN16비트 데이터→부호 없음 BIN32비트 데이터 변환	429
	부호 없음 BIN16비트 데이터→부호 있음 BIN16비트 데이터 변환	431
	부호 없음 BIN16비트 데이터→부호 있음 BIN32비트 데이터 변환	433
	부호 없음 BIN16비트 데이터→부호 없음 BIN32비트 데이터 변환	435
	부호 있음 BIN32비트 데이터→부호 있음 BIN16비트 데이터 변환	
	부호 있음 BIN32비트 데이터→부호 없음 BIN16비트 데이터 변환	
	부호 있음 BIN32비트 데이터→부호 없음 BIN32비트 데이터 변환	
	부호 없음 BIN32비트 데이터→부호 있음 BIN16비트 데이터 변환	
	부호 없음 BIN32비트 데이터→부호 없음 BIN16비트 데이터 변환	
	부호 없음 BIN32비트 데이터 →부호 있음 BIN32비트 데이터 변환	
	무호 없음 BIN32비를 데이터→무호 처음 BIN32비를 데이터 원된	
	BIN32비트 데이터→그레이 코드 데이터 변환	
	BIN16비트 그레이 코드 데이터→BIN16비트 데이터 변환	
	BIN32비트 그레이 코드 데이터→BIN32비트 데이터 변환	
	BIN16비트 데이터 블록→BCD4자리 데이터 변환 블록	
	블록 BCD4자리 데이터→블록 BIN16비트 변환 데이터	
	10진 아스키 데이터→BIN16비트 데이터 변환	
	10진 아스키 데이터→BIN32비트 데이터 변환	
	16진 아스키 데이터→BIN16비트 데이터 변환	
	16진 아스키 데이터→BIN32비트 데이터 변환	
	10진 아스키 데이터→BCD4자리 데이터 변환	
	10진 아스키 데이터→BCD8자리 데이터 변환	
	10진 문자열→BIN16비트 데이터 변환	479
	10진 문자열→BIN32비트 데이터 변환	482
	16진 아스키→16진 데이터 BIN 변환	485
	단정밀도 실수→BCD 분해	487
	BIN16비트 데이터 2의 보수(부호 반전)	489
	BIN32비트 데이터 2의 보수(부호 반전)	490
	8→256비트 디코드	491
	256→8비트 인코드	493
	7 세그먼트 디코드	495
	BIN16비트 데이터의 4비트 분리	497
	BIN16비트 데이터의 4비트 결합	
	임의 데이터의 비트 분리	
	임의 데이터의 비트 결합	503
	바이트 단위 데이터 분리	
	바이트 단위 데이터 결합	
6.7	데이터 전송 명령	
0.7	BIN16비트 데이터 전송	
	BIN32비트 데이터 전송	
	BIN16비트 데이터 부정 전송	
	BIN32비트 데이터 부정 전송	
	자리 이동	
	1비트 데이터 반전 전송	
	BIN16비트 데이터 블록 전송(16비트)	
	BIN16비트 데이터 블록 전송(32비트)	
	동일 BIN16비트 데이터 블록 전송(16비트)	
	동일 BIN16비트 데이터 블록 전송(32비트)	527

	동일 BIN32비트 데이터 블록 전송(16비트)	529
	동일 BIN32비트 데이터 블록 전송(32비트)	531
	BIN16비트 데이터 교신	533
	BIN32비트 데이터 교신	535
	BIN16비트 데이터 블록 교환	537
	BIN16비트 데이터 상하 바이트 교환	539
	BIN32비트 데이터 상하 바이트 교환	540
	1비트 데이터 전송	
	n비트 데이터 전송	544
제5	부 응용 명령	
제7증	망 프로그램 제어 !	549
7.1	프로그램 분기 명령	549
	포인터 분기	
	END로 점프	552
7.2	프로그램 실행 제어 명령	553
	인터럽트 금지, 인터럽트 허가	553
	지정 우선도 이하의 인터럽트 금지	555
	인터럽트 프로그램 마스크	560
	지정 인터럽트 포인터 허가/금지	562
	인터럽트 프로그램에서 복귀	564
	WDT 리셋	565
7.3	구조화 명령	566
	FOR~NEXT	566
	FOR~NEXT 강제 종료	568
	서브 루틴 프로그램 호출	570
	서브 루틴 프로그램에서 리턴	
	서브 루틴 프로그램의 출력 OFF 호출	
	프로그램 파일 간 서브 루틴 호출	
	프로그램 파일 간 서브 루틴 프로그램 출력 OFF 호출	
	서브 루틴 프로그램 호출	
7.4	프로그램 제어용 명령	
	프로그램 대기	
	프로그램 출력 OFF 대기	
	프로그램 스캔 실행 등록	597
제8증	할 데이터 처리	599
8.1	로테이션 명령	
J. 1	BIN16비트 데이터의 오른쪽 로테이션	
	BIN16비트 데이터의 왼쪽 로테이션	
	BIN32비트 데이터의 오른쪽 로테이션	
	BIN32비트 데이터의 왼쪽 로테이션	
3.2	데이터 테이블 조작 명령	609
	데이터 테이블에서 선입 데이터 읽기	609
	데이터 테이블에서 후입 데이터 읽기	611
	데이터 테이블에 대한 데이터 쓰기	
	데이터 테이블 데이터 삽입	615
	데이터 테이블 데이터 삭제	617
8.3	데이터 읽기/쓰기 명령	619

	데이터 메모리에서의 데이터 읽기	620
	데이터 메모리에 대한 데이터 쓰기	622
8.4	파일 조작 명령	624
	지정 파일에서의 데이터 읽기	624
	지정 파일에 대한 데이터 쓰기	641
	지정 파일 삭제	656
	지정 파일 복사	660
	지정 파일 이동	664
	지정 파일명 변경	668
	지정 파일 상태 수집	672
	파일 조작 명령에서 발생하는 에러 코드	676
8.5	데이터 제어 명령	677
	BIN16비트 데이터 상하한 리미트 제어	677
	BIN32비트 데이터 상하한 리미트 제어	679
	BIN16비트 데이터 불감대 제어	681
	BIN32비트 데이터 불감대 제어	683
	BIN16비트 데이터 존 제어	685
	BIN32비트 데이터 존 제어	687
	BIN16비트 단위 스케일링(포인트별 좌표 데이터)	689
	BIN32비트 단위 스케일링(포인트별 좌표 데이터)	692
	BIN16비트 단위 스케일링(X/Y별 좌표 데이터)	695
	BIN32비트 단위 스케일링(X/Y별 좌표 데이터)	697
8.6	데이터 처리 명령	699
	BIN16비트 데이터 검색	
	BIN32비트 데이터 검색	
	BIN16비트 데이터 검색(최소·동일·최대)	703
	BIN32비트 데이터 검색(최소·동일·최대)	
	BIN16비트 데이터 비트 체크	
	BIN32비트 데이터 비트 체크	
	BIN16비트 데이터의 비트 판정	
	BIN32비트 데이터의 비트 판정	712
	BIN16비트 데이터 최대값 검색	
	BIN32비트 데이터 최대값 검색	716
	BIN16비트 데이터 최소값 검색	718
	BIN32비트 데이터 최소값 검색	720
	BIN16비트 데이터 정렬	722
	BIN32비트 데이터 정렬	
	BIN16비트 데이터 테이블 정렬	
	BIN16비트 데이터 테이블 정렬 2	
	BIN32비트 데이터 테이블 정렬 2	
	BIN16비트 데이터 합계 계산	738
	BIN32비트 데이터 합계 계산	740
	BIN16비트 데이터 평균값 계산	
	BIN32비트 데이터 평균값 계산	
	BIN16비트 제곱근 계산	
	BIN32비트 제곱근 계산	
	CRC 연산	
8.7	체크 코드 명령	
	체크 코드	750

제9징	다 다버그, 고장 진단	753
9.1	디버그, 고장 진단 명령	753
	에러 표시 또는 어넌시에이터 리셋	753
	운전 계속 이상 명령	755
	운전 정지 이상 명령	757
- 11 4 6 :		
세10:	장 문자열 처리	759
10.1	문자열 처리 명령	759
	문자열 비교	
	문자열 결합	763
	문자열 전송	767
	Unicode 대응 문자열 전송	
	BIN16비트 데이터→10진 아스키 변환	771
	BIN32비트 데이터→10진 아스키 변환	
	BIN16비트 데이터→16진 아스키 변환	
	BIN32비트 데이터→16진 아스키 변환	
	BIN16비트 데이터→문자열 변환	
	BIN32비트 데이터→문자열 변환	
	BCD4자리 데이터→10진ASCII 코드 변환	
	BCD8자리 데이터→10진ASCII 코드 변환	
	단정밀도 실수→문자열 변환	
	16진 BIN 데이터→16진 ASCII 코드 변환	
	Unicode 문자열→시프트 JIS 문자열 변환	
	시프트 JIS 문자열→Unicode 문자열 변환(바이트 오더 마크 없음)	
	시프트 JIS 문자열→Unicode 변환(바이트 오더 마크 있음)	
	문자열 길이 검출	
	문자열 오른쪽부터 추출	
	문자열 왼쪽부터 추출	
	문자열 중의 임의 추출	
	문자열 중의 임의 대체	
	문자열 검색	
	문자열 삽입	
	문자열 삭제	830
제113	장 실수 처리 원	332
11.1	부동 소수점 명령	832
	단정밀도 실수 비교	
	배정밀도 실수 비교	
	단정밀도 실수 비교 출력	
	배정밀도 실수 비교 출력	
	단정밀도 실수 대역 비교 출력	
	배정밀도 실수 대역 비교 출력	
	단정밀도 실수 덧셈	
	단정밀도 실수 뺄셈	
	배정밀도 실수 덧셈	
	배정밀도 실수 뺄셈	
	단정밀도 실수 곱셈	
	단정밀도 실수 나눗셈	
	배정밀도 실수 곱셈	
	배정밀도 실수 나눗셈	

부호 있음 BIN16비트 데이터→단정밀도 실수 변환	870
부호 없음 BIN16비트 데이터→단정밀도 실수 변환	
부호 있음 BIN32비트 데이터→단정밀도 실수 변환	872
부호 없음 BIN32비트 데이터→단정밀도 실수 변환	874
배정밀도 실수→단정밀도 실수 변환	
부호 있음 BIN16비트 데이터→배정밀도 실수 변환	878
부호 없음 BIN16비트 데이터→배정밀도 실수 변환	879
부호 있음 BIN32비트 데이터→배정밀도 실수 변환	
부호 없음 BIN32비트 데이터→배정밀도 실수 변환	881
단정밀도 실수→배정밀도 실수 변환	
문자열→단정밀도 실수 변환	
BCD 포맷 데이터→단정밀도 실수 데이터 변환	888
단정밀도 실수 부호 반전	890
배정밀도 실수 부호 반전	
단정밀도 실수 데이터 전송	892
배정밀도 실수 데이터 전송	893
단정밀도 실수 SIN 연산	894
단정밀도 실수 COS 연산	896
단정밀도 실수 TAN 연산	898
단정밀도 실수 SIN ⁻¹ 연산	900
단정밀도 실수 COS ⁻¹ 연산	
단정밀도 실수 TAN ⁻¹ 연산	
배정밀도 실수 SIN 연산	
배정밀도 실수 COS 연산	908
배정밀도 실수 TAN 연산	910
배정밀도 실수 SIN ⁻¹ 연산	
배정밀도 실수 COS ⁻¹ 연산	
배정밀도 실수 TAN ⁻¹ 연산	916
BCD형 SIN 연산	
BCD형 COS 연산	920
BCD형 TAN 연산	922
BCD형 SIN ⁻¹ 연산	924
BCD형 COS ⁻¹ 연산	
BCD형 TAN ⁻¹ 연산	
단정밀도 실수 각도→라디안 변환	
단정밀도 실수 라디안→각도 변환	932
배정밀도 실수 각도→라디안 변환	
배정밀도 실수 라디안→각도 변환	
단정밀도 실수 제곱근	938
배정밀도 실수 제곱근	940
단정밀도 실수 지수 연산	
배정밀도 실수 지수 연산	944
단정밀도 실수 자연로그 연산	
배정밀도 실수 자연로그 연산	
BCD4자리 제곱근	
BCD8자리 제곱근	
단정밀도 실수 제곱 연산	
배정밀도 실수 제곱 연산	
단정밀도 실수 상용로그 연산	
배정밀도 실수 상용로그 연산	
다저미드 시스 된다가 거새	060

	배정밀도 실수 최대값 검색	964
	단정밀도 실수 최소값 검색	966
	배정밀도 실수 최소값 검색	968
TII 4 O		070
	2장 난수 	970
12.1	난수 명령	
	난수 발생	
	계열 변경	971
제13	장 디바이스 조작	972
13.1	인덱스 레지스터 명령	972
	인덱스 레지스터 일괄 임시 저장	972
	인덱스 레지스터 일괄 복귀	974
	인덱스 레지스터/롱 인덱스 레지스터 선택 임시 저장	975
	인덱스 레지스터/롱 인덱스 레지스터 선택 복귀	978
13.2	파일 레지스터 조작 명령	980
	파일 레지스터 블록 No. 전환	980
	파일 레지스터용 파일 세트	982
13.3	파일 레지스터의 1바이트 단위 읽기/쓰기 명령	
	파일 레지스터의 1바이트 데이터 읽기	
	파일 레지스터의 1바이트 데이터 쓰기	
13.4	간접 어드레스 읽기 명령	
	간접 어드레스 읽기	988
제14	장 타이머, 카운터	990
14.1		
	1상 입력 업/다운 카운터	990
	2상 입력 업/다운 카운터	992
14.2	특수 타이머 명령	994
	티칭 타이머	994
	특수 기능 타이머	996
14.3	펄스계 명령	998
	펄스 밀도 측정	
	고정 스캔 펄스 출력	
	펄스폭 변조	
제15	장 근거리 제어	1004
15.1	근거리 제어 명령	
	로터리 테이블의 근거리 제어	
제16	장 경사 신호	1007
16.1	경사 신호 명령	1007
	경사 신호	
제17	'장 매트릭스 입력	1010
17.1	매트릭스 입력 명령	
1	매트릭스 입력	
제18	B장 CPU 모듈 내장 데이터베이스 액세스 기능	1013
18.1	데이터베이스 액세스 명령	1013

	데이터베이스 가져오기	
	데이터베이스 내보내기	
	데이터베이스 접속	8
	데이터베이스 차단	0.
	데이터베이스 레코드 추가	2
	데이터베이스 레코드 업데이트	29
	데이터베이스 레코드 검색	5
	데이터베이스 레코드 삭제	3
	데이터베이스 트랜잭션 시작	7
	데이터베이스 커밋	9
	데이터베이스 롤백	1
	데이터베이스 액세스 명령에서 발생하는 에러 코드	3
제19	장 시계 105	7
19.1	시계용 명령	57
	시계 데이터 읽기	
	시계 데이터 쓰기	
	시계 데이터 덧셈	
	시계 데이터 뺄셈	
	시간 데이터 변환(시분초→초)	
	시간 데이터 변환(초→시분초)	
	일시 데이터의 변환(일시→초)	
	일시 데이터의 변환(초→일시)	
	날짜 비교	
	시간 비교	
	시간 비교 출력	
	시간 대역 비교 출력	
	확장 시계 데이터 읽기	
	확장 시계 데이터 덧셈	
	확장 시계 데이터 뺄셈	
19.2	타이밍 계측 명령109	
	타이밍 펄스 발생	
	지정 데이터 시간 계측	
	아워 미터	14
TILOO	장 모듈 액세스 109	0
20.1	모듈 액세스 명령109	-
	I/O 리프레시	
	선택 리프레시	
	모듈 리프레시	
	모듈에서의 1워드/2워드 데이터 읽기(16비트 지정)	14
	모듈에 대한 1워드/2워드 데이터 쓰기(16비트 지정)	18
	모듈에서의 1워드/2워드 데이터 읽기(32비트 지정)	3
	모듈에 대한 1워드/2워드 데이터 쓰기(32비트 지정)	7
	모듈 형명 읽기	2:2
	모듈 고유 정보 읽기	:6
제21	장 파라미터 설정 113	1
21.1	루틴 정보 명령	31
	로틴 저는 이기	

	루틴 정보 등록	
제22	장 CPU 모듈데이터 로깅 기능	1135
22.1	로깅용 명령	1135
	트리거 로깅 세트	
	트리거 로깅 리셋	
제23	장 내장 Ethernet 기능용 명령	1138
23.1	오픈/클로즈 처리 명령	1138
	커넥션 확립	
	커넥션 차단	
23.2	소켓 통신용 명령	1143
	수신 데이터 END 처리 시 읽기	
	수신 데이터 명령 실행 시 읽기	
	데이터 송신	
	커넥션 정보 읽기	
	커넥션 교신 대상 변경(UDP/IP)	1153
	커넥션 수신 모드 변경	1155
	소켓 통신 수신 데이터 읽기	1159
23.3	통신 프로토콜 지원 기능 명령	1161
	등록 프로토콜 실행	
23.4	SLMP 프레임 송신 명령	1168
	SLMP 프레임 송신	1168
23.5	파일 전송 기능용 명령	1175
	FTP 클라이언트 파일 송부	
	FTP 클라이언트 파일 수집	
제24	l장 PID 연산 명령	1186
24.1	개요	
	제어용 데이터	
	오토 튜닝	
24.2	PID 연산 명령	
제25	장 PID 제어 명령	1201
25.1	개요	1201
	연산 방식	
	PID 제어 순서	
	기타 기능	
25.2	PID 제어 명령(불완전 미분)	1209
	PID 제어용 데이터 설정	
	PID 연산	
	지정 루프 No. 연산 정지/시작	
	지정 루프 No. 파라미터 변경	
	지정 루프 No. 파라미터 변경	
25.3	PID 제어 명령(완전 미분)	1221
	PID 제어용 데이터 설정	
	PID 연산	
	지정 루프 No. 연산 정지/시작	
	지정 루프 No. 파라미터 변경	
	지정 루프 No. 파라미터 변경	

제26	장 멀티 CPU 간 전용 명령	1232
26.1	다른 호기 CPU 모듈 액세스 명령	1232
	다른 호기 CPU 모듈에서의 디바이스 읽기	1236
	다른 호기 CPU 모듈에 대한 디바이스 쓰기	1239
제27	장 SFC 프로그램용 명령	1242
27.1	SFC 제어 명령	1242
	스텝 활성 체크	1242
	블록 활성 체크	1244
	활성 스텝 일괄 읽기	1246
	블록 기동	1255
	블록 종료	1257
	블록 정지	1259
	블록 재개	1261
	스텝 기동	1263
	스텝 종료	1265
	대상 블록 전환	1267
27.2	SFC 전용 명령	1269
	이행 조건 더미 출력	1269
제28	장 이중화 시스템용 명령	1270
28.1	계 전환	1270
28.2	계 전환 허가/금지	1274
28.3	대기계에서 제어계로 데이터 쓰기	1276
제29	장 안전 시스템용 명령	1281
29.1	안전 데이터 동일성 체크 정보 읽기 명령	1281
	안전 시스템용 명령에서 발생하는 에러 코드	1283
제6	부 모듈 전용 명령	
MI30	장 모듈 전용 명령	1286
74100	<u> </u>	1200
TJI 7	H H Q CLIN	
제7	'부 범용 FUN	
제31	장 형 변환 평션	1290
31.1	BOOL형→WORD형 변환	1290
31.2	BOOL형→DWORD형 변환	1292
31.3	BOOL형→INT형 변환	1293
31.4	BOOL형→DINT형 변환	1294
31.5	BOOL형→TIME형 변환	1295
31.6	BOOL형→STRING형 변환	1296
31.7	WORD형→BOOL형 변환	1297
31.8	WORD형→DWORD형 변환	1298
31.9	WORD형→INT형 변환	1299
31.10	WORD형→DINT형 변환	1300
31.11	WORD형→TIME형 변환	1302

31.13	DWORD형→BOOL형 변환	1304
31.14	DWORD형→WORD형 변환	1305
31.15	DWORD형→INT형 변환	1307
31.16	DWORD형→DINT형 변환	1309
31.17	DWORD형→TIME형 변환	1310
31.18	DWORD형→STRING형 변환	1311
31.19	INT형→BOOL형 변환	1312
31.20	INT형→WORD형 변환	1313
31.21	INT형→DWORD형 변환	1314
31.22	INT형→DINT형 변환	1316
31.23	INT형→BCD형 변환	1317
31.24	INT형→REAL형 변환	1319
	INT형→LREAL형 변환	
	INT형→TIME형 변환	
	INT형→STRING형 변환	
	DINT형→BOOL형 변환	
31.29	DINT형→WORD형 변환	1325
	DINT형→DWORD형 변환	
	DINT형→INT형 변환	
	DINT형→BCD형 변환	
	DINT형→REAL형 변환	
	DINT형→LREAL형 변환	
	DINT형→TIME형 변환	
	DINT형→STRING형 변환	
	BCD형→INT형 변환	
	BCD형→DINT형 변환	
	BCD형→STRING형 변환	
	REAL형→INT형 변환	
	REAL형→DINT형 변환	
	REAL형→LREAL형 변환	
	REAL형→STRING형 변환	
	LREAL형→INT형 변환	
	LREAL형→DINT형 변환	
	LREAL형→REAL형 변환	
	TIME청→BOOL형 변환	
	TIME청→WORD형 변환	
	TIME형→DWORD형 변환	
	TIME형→INT형 변환	
	TIME형→DINT형 변환	
	TIME청→STRING형 변환	
	STRING청→BOOL청 변환	
	STRING형→WORD형 변환	
	STRING형→DWORD형 변환	
	STRING형→INT형 변환	
	STRING형→DINT형 변환	
	STRING형→BCD형 변환	
	STRING형→REAL형 변환	
	STRING형→TIME형 변환	
	미트 매월→DINT형 변환	
	미드 매월→DINT영 연완	
U1.UU	NVIG 7미드 메르 단단	1001

31.64	DINT형→비트 배열 변환1382
31.65	비트 배열 복사
31.66	워드 라벨의 지정 비트 읽기1384
31.67	워드 라벨의 지정 비트 쓰기1386
31.68	워드 라벨의 지정 비트 복사1388
31.69	선두 데이터 수집1390
TIIOO	장 단수값 변수 평션 1391
32.1	절대값1391
32.2	제곱근1393
32.3	자연로그 연산
32.4	상용로그 연산
32.5	지수 연산1397
32.6	SIN 연산
32.7	COS 연산
32.8	TAN 연산
32.9	SIN ⁻¹ 연산
	COS ⁻¹ 연산
32.11	TAN ⁻¹ 연산1403
제33	장 산술 연산 평션 1404
33.1	덧셈
33.2	곱셈
33.3	뺄셈
33.4	나눗셈1412
33.5	임여
33.6	제곱
33.7	대입
제34	장 비트 시프트 펑션 1419
34.1	n비트 왼쪽 시프트1419
34.2	n비트 오른쪽 시프트
34.3	n비트 왼쪽 로테이션
34.4	n비트 오른쪽 로테이션1425
제35	장 비트형 불 평션 1427
35.1	논리적, 논리합, 배타적 논리합1427
35.2	논리 부정1430
제36	장 선택 평션 1431
36.1	선택값1431
36.2	최대값, 최소값 선택
36.3	상하한 리미트 제어
36.4	멀티플렉서1438
제37	장 비교 평년 1440
37.1	비교
37.2	비교1443
제38	장 문자열 평션 1445

38.1	문자열 길이 검출	1445
38.2	문자열의 왼쪽, 오른쪽부터 추출	1447
38.3	문자열 추출	1449
38.4	문자열 결합	1451
38.5	문자열 삽입	1453
38.6	문자열 삭제	1455
38.7	문자열 대체	1457
38.8	문자열 검색	1460
제39)장 시간 데이터형 평 션	1462
39.1	덧셈	
39.2	뺄셈	1464
39.3	곱셈	1466
39.4	나눗셈	1468
제8	8부 범용 FB	
TII 40	N자 2 아저 퍼셔 브로	1472
)장 2 안정 평션 블록	
	2 안정 평션 블록(세트 우선)	
40.2	2 안정 평션 블록(리셋 우선)	1474
제41	장 에지 검출 평션 블록	1476
41.1	상승에지 검출	1476
41.2	하강에지 검출	1478
제42	2장 카운터/타이머 평션 블록	1480
제42 _{42.1}	한 카운터/타이머 평션 블록 업 카운터	
		1480
42.1	업 카운터	1480
42.1 42.2	업 카운터 다운 카운터	1480 1482 1484
42.1 42.2 42.3	업 카운터 다운 카운터 업다운 카운터	1480 1482 1484 1487
42.1 42.2 42.3 42.4	업 카운터 다운 카운터 업다운 카운터 카운터 평션 블록	1480 1482 1484 1487 1489
42.1 42.2 42.3 42.4 42.5	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 필스 타이머.	1480 1482 1484 1487 1489 1492
42.1 42.2 42.3 42.4 42.5 42.6	업 카운터. 다운 카운터. 입다운 카운터. 카운터 평션 블록. 필스 타이머.	1480 1482 1484 1487 1489 1492 1495
42.1 42.2 42.3 42.4 42.5 42.6 42.7	업 카운터. 다운 카운터. 입다운 카운터. 카운터 평션 블록. 필스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록.	1480 1482 1484 1487 1489 1492 1495
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록.	1480 1482 1484 1487 1489 1492 1495 1497
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록.	1480 1482 1484 1487 1489 1492 1495 1497 1501
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머 OFF 지연 타이머 타이머 평션 블록.	1480 1482 1484 1487 1492 1495 1497 1501 1501
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早록	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록.	1480 1482 1484 1487 1489 1495 1497 1501 1501 1532 1533
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早早	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 당이머 평션 블록. 명령 처리 시간. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부.	1480 1482 1484 1487 1492 1495 1497 1501 1532 1533 1558
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머 OFF 지연 타이머. 타이머 평션 블록.	1480 1482 1484 1487 1492 1495 1497 1501 1501 1532 1533 1558
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. EF이머 평션 블록. 당이머 평션 블록. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부. PID의 3상수 구하는 방법. PID 연산 프로그램 예.	1480 1482 1484 1487 1489 1495 1497 1501 1532 1533 1558 1560
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. EFOID 평선 블록. 명령 처리 시간. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부. PID의 3상수 구하는 방법. PID 연산 프로그램 예. 오토 튜닝(스텝 응답법)+PID 제어 프로그램 예.	1480 1482 1484 1487 1492 1495 1497 1501 1532 1533 1558 1560 1561
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2 早3 早4	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록. 명령 처리 시간. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부. PID의 3상수 구하는 방법 PID 연산 프로그램 예. 오토 튜닝(스텝 응답법)+PID 제어 프로그램 예.	1480 1482 1484 1487 1489 1495 1497 1501 1501 1532 1533 1558 1560 1561 1563 1563
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2 早3 早4	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록. 명령 처리 시간. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부. PID의 3상수 구하는 방법. PID 연산 프로그램 예. 오토 튜닝(스텝 응답법)+PID 제어 프로그램 예. 오토 튜닝(스텝 응답법)만의 프로그램 예.	1480 1482 1484 1487 1489 1495 1497 1501 1532 1533 1558 1560 1561 1563 1565
42.1 42.2 42.3 42.4 42.5 42.6 42.7 42.8 早1 早2 早3 早4	업 카운터. 다운 카운터. 업다운 카운터. 카운터 평션 블록. 펄스 타이머. ON 지연 타이머. OFF 지연 타이머. 타이머 평션 블록. 명령 처리 시간. 명령 처리 시간. 명령 처리 시간의 덧셈 시간. 기본 스텝수와 서브셋 처리 가능 여부. PID의 3상수 구하는 방법. PID 연산 프로그램 예. 오토 튜닝(스텝 응답법)+PID 제어 프로그램 예. 오토 튜닝(스텝 응답법)만의 프로그램 예. 가동 모드에 의한 PID 제어 프로그램 예.	1480 1482 1484 1487 1492 1495 1497 1501 1501 1532 1538 1558 1560 1561 1563 1565 1565

명령 색인	1597
개정 이력	1608
보증	1609
상표	1610

관련 매뉴얼

최신의 e-Manual 및 매뉴얼 PDF는 거래처 또는 당사에 의뢰하십시오.

매뉴얼 명칭[매뉴얼 번호]	내용	제공 형식
MELSEC iQ-R 프로그래밍 매뉴얼(CPU 모듈용 명령/범용 FUN/범용 FB편) [SH-081324KOR](본 매뉴얼)	CPU 모듈의 명령, 범용 평션/범용 평션 블록에 대해 설명하고 있습니다.	e-Manual PDF
MELSEC iQ-R 프로그래밍 매뉴얼(모듈 전용 명령편) [SH-081979KOR]	인텔리전트 기능 모듈의 전용 명령에 대해 설명하고 있습 니다.	e-Manual PDF
MELSEC iQ-R 프로그래밍 매뉴얼(프로세스 제어 FB/명령편) [SH-081752KOR]	프로세스 제어에 특화된 범용 프로세스 FB, 태그 액세스 FB, 태그 FB, 프로세스 제어 명령에 대해 설명하고 있습니 다.	e-Manual PDF
MELSEC iQ-R 프로그래밍 매뉴얼(프로그램 설계편) [SH-081321KOR]	래더, ST, FBD/LD, SFC의 프로그램 사양에 대해 설명하고 있습니다.	e-Manual PDF
GX Works3 오퍼레이팅 매뉴얼 [SH-081273KOR]	GX Works3의 시스템 구성, 파라미터 설정, 온라인 기능의 조작 방법 등에 대해 설명합니다.	e-Manual PDF

- e-Manual은 전용 도구를 사용하여 열람할 수 있는 미쓰비시전기 FA 전자 서적 매뉴얼입니다.
- e-Manual에는 다음의 특징이 있습니다.
- 찾고자 하는 정보를 여러 매뉴얼에서 한번에 검색 가능(매뉴얼 통합 검색)
- 매뉴얼 내의 링크를 이용하여 타매뉴얼 참조 가능
- 제품의 일러스트의 각 부품에서 알고자 하는 하드웨어 사양 열람 가능
- 자주 참조하는 정보를 즐겨찾기에 등록 가능
- 샘플 프로그램을 엔지니어링 도구에 복사 가능

용어

본 매뉴얼에서는 특별히 기재하는 경우를 제외하고 다음의 용어를 사용하여 설명합니다.

용어	설명
A/D 변환 모듈	MELSEC iQ-R 시리즈의 아날로그-디지털 변환 모듈, 채널 간 절연 아날로그-디지털 변환 모듈, 고속 아날로그-디지
	털 변환 모듈의 총칭입니다.
A계 	트래킹 케이블로 접속된 2개의 시스템을 판정하기 위해 A계에 설정된 시스템입니다. 양쪽계를 동시에 기동한 경우에는 제어계가 됩니다. 계를 전환해도 A계는 바뀌지 않습니다.
В계	트래킹 케이블로 접속된 2개의 시스템을 판정하기 위해 B계에 설정된 시스템입니다. 양쪽계를 동시에 기동한 경우에는 대기계가 됩니다. 계를 전환해도 B계는 바뀌지 않습니다.
CC-Link IE 컨트롤러네트워크 모듈	MELSEC iQ-R 시리즈 CC-Link IE 컨트롤러 네트워크 탑재 모듈의 약칭입니다.
CC-Link IE 컨트롤러 네트워크 탑재 모듈	CC-Link IE 컨트롤러 네트워크 기능 사용 시 다음 모듈의 총칭입니다. • RJ71GP21-SX • RJ71EN71 • RnENCPU
CC-Link IE 내장 Ethernet 인터페이 스 모듈	Ethernet 기능 사용 시 다음 모듈의 총칭입니다. • RJ71EN71 • CPU 모듈
CC-Link IE 필드 네트워크 마스터 • 로컬 모듈	MELSEC iQ-R 시리즈 CC-Link IE 필드 네트워크 마스터・로컬 탑재 모듈의 약칭입니다.
CC-Link IE 필드 네트워크 마스터 · 로컬 탑재 모듈	CC-Link IE 필드 네트워크 기능 사용 시 다음 모듈의 총칭입니다. • RJ71GF11-T2 • RJ71EN71 • RnENCPU
CPU 모듈	MELSEC iQ-R 시리즈 CPU 모듈의 약칭입니다.
D/A 변환 모듈	MELSEC iQ-R 시리즈의 디지털-아날로그 변환 모듈, 채널 간 절연 디지털-아날로그 변환 모듈, 고속 디지털-아날로 그 변환 모듈의 총칭입니다.
Ethernet 모듈	MELSEC iQ-R 시리즈 CC-Link IE 내장 Ethernet 인터페이스 모듈의 약칭입니다.
FBD/LD	평션 블록 다이어그램/래더 언어의 약칭입니다.
MELSECNET/10	MELSECNET/10 네트워크 시스템의 약칭입니다.
MELSECNET/H	MELSECNET/H 네트워크 시스템의 약칭입니다.
RnCPU	R00CPU, R01CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, R120CPU의 총칭입니다.
RnPCPU	R08PCPU, R16PCPU, R32PCPU, R120PCPU의 총칭입니다.
RnENCPU	R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, R120ENCPU의 총칭입니다.
RnENCPU(네트워크부)	RnENCPU의 오른쪽(네트워크부)을 나타냅니다. (Clamelsec iQ-R Ethernet/CC-Link IE 사용자 매뉴얼(스타트 업편))
SFC	시퀀셜 펑션 차트의 약칭입니다.
SLMP	Seamless Message Protocol의 약칭입니다. 외부 기기에서 SLMP 대응 기기 및 SLMP 대응 기기에 접속된 PLC에 액세스하기 위한 프로토콜입니다.
SLMP 대응 기기	SLMP의 스테이트먼트를 송수신할 수 있는 미쓰비시전기 제품 기기의 총칭입니다. (Ethernet 어댑터 모듈, Ethernet 탑재 모듈)
ST 언어	스트럭처드 텍스트 언어의 약칭입니다.
SIL2 기능 모듈	R6PSFM의 별칭입니다. SIL2 프로세스 CPU와 조합하여 안전 제어하는 모듈입니다. SIL2 프로세스 CPU 이외의 CPU 모듈과 조합할 수 없습니다.
SIL2 프로세스 CPU	R08PSFCPU, R16PSFCPU, R32PSFCPU, R120PSFCPU의 총칭입니다. SIL2 기능 모듈과 조합하여 일반 제어와 안전 제어하는 CPU 모듈입니다. 또한, 이중화 기능 모듈과 조합하여 시스템을 이중화합니다.
상대 기기	데이터 교신하기 위해서 Ethernet으로 접속되어 있는 PC, 다른 Ethernet 탑재 모듈 등의 총칭입니다.
아날로그 모듈	A/D 변환 모듈, D/A 변환 모듈, 온도 입력 모듈의 총칭입니다.
안전 CPU	R08SFCPU, R16SFCPU, R32SFCPU, R120SFCPU의 총칭입니다. 안전 CPU는 안전 기능 모듈과 조합하여 일반 제어와 안전 제어를 하는 CPU 모듈입니다.
안전 기능 모듈	R6SFM의 별칭입니다. 안전 기능 모듈은 안전 CPU와 조합하여 안전 제어를 하는 모듈입니다. 안전 CPU 이외의 CPU 모듈과는 조합할 수 없습니다.
위치결정 모듈	MELSEC iQ-R 시리즈 위치결정 모듈의 약칭입니다.
인텔리전트 기능 모듈	아날로그 모듈 등 입출력 이외의 기능을 가지고 있는 모듈입니다.
엔지니어링 도구	MELSEC PLC 소프트웨어 패키지의 제품명입니다.
응답 스테이트먼트	요구 스테이트먼트에 대해서 SLMP 대응 기기가 외부 기기에 송신하는 처리 결과의 스테이트먼트입니다.

용어	설명
오퍼랜드	각 명령이나 함수의 내부 구성에서 사용하고 있는 소스 데이터(s), 데스티네이션 데이터(d), 디바이스수(n) 등의 디바이스부의 총칭입니다.
온도 입력 모듈	MELSEC iQ-R 시리즈 채널 간 절연 열전대 입력 모듈 및 채널 간 절연 측온저항체 입력 모듈의 총칭입니다.
외부 기기	SLMP 대응 기기에 대해서 SLMP의 요구 스테이트먼트를 송신하는 기기의 총칭입니다. (PC, 표시기 등)
관리 CPU	각 입출력 모듈, 인텔리전트 기능 모듈을 제어하는 CPU 모듈입니다. 멀티 CPU 시스템에서는 모듈마다 제어하는 CPU 모듈을 설정할 수 있습니다.
PLC CPU	R00CPU, R01CPU, R02CPU, R04CPU, R04ENCPU, R08CPU, R08ENCPU, R16CPU, R16ENCPU, R32CPU, R32ENCPU, R120CPU, R120ENCPU의 총칭입니다.
제어계	이중화 시스템 사용 시 제어 및 네트워크의 통신을 실행하고 있는 시스템입니다.
세퍼레이트 모드	이중화한 시스템에서 가동 중에 제어를 정지하지 않고 시스템의 메인터넌스를 실행하기 위한 모드입니다.
대기계	이중화 시스템 사용 시 백업용 시스템입니다.
통신 프로토콜 지원 기능	GX Works3(통신 프로토콜 지원 기능)에서 사용할 수 있는 기능입니다. 이하에 기능의 개요를 나타냅니다. • 상대 기기에 맞춘 프로토콜 설정 • 프로토콜 설정 데이터 읽기/쓰기
이중화 시스템	CPU 모듈, 전원 모듈, 네트워크 모듈 등의 기본 시스템을 이중화하여, 어느 한쪽의 시스템에서 이상이 발생한 경우에도 다른 쪽의 시스템에서 제어를 계속할 수 있는 시스템입니다.
입출력 모듈	입력 모듈, 출력 모듈, 입출력 혼합 모듈, 인터럽트 모듈의 총칭입니다.
네트워크 모듈	다음 모듈의 총칭입니다. • Ethernet 인터페이스 모듈 • CC-Link IE 컨트롤러네트워크 모듈 • CC-Link IE 필드 네트워크 모듈 • MELSECNET/H 모듈 • MELSECNET/10 모듈 • RnENCPU(네트워크부)
백업 모드	이중화한 시스템의 제어계에서 이상이 발생한 경우에 대기계로 제어를 전환하여 계속 운전하는 모드입니다.
버퍼메모리	설정값, 모니터값 등의 데이터를 저장하기 위한 인텔리전트 기능 모듈의 메모리입니다. CPU 모듈의 경우, Ethernet 기능의 설정값, 모니터값 등의 데이터나 멀티 CPU 기능의 데이터 교신에 사용하는 데이 터 등을 저장하기 위한 메모리를 나타냅니다.
프로세스 CPU	R08PCPU, R16PCPU, R32PCPU, R120PCPU의 총칭입니다.
프로세스 CPU(이중화 모드)	이중화 모드로 동작하고 있는 프로세스 CPU를 나타냅니다. 이중화 시스템을 구성할 수 있습니다. 이중화 모드에서도 프로세스 제어 명령이나 온라인 모듈 교환 등을 실행할 수 있습니다.
프로세스 CPU(프로세스 모드)	프로세스 모드로 동작하고 있는 프로세스 CPU를 나타냅니다. 프로세스 제어 명령이나 온라인 모듈 교환 등을 실행할 수 있습니다.
마스터국	CC-Link IE 필드 네트워크에서 네트워크 전체를 제어하는 국입니다. 모든 국과 사이클릭 전송 및 트랜전트 전송을 할수 있습니다. 1네트워크에 1대만 존재합니다.
요구 스테이트먼트	외부 기기에서 SLMP 대응 기기에 대해서 송신하는 처리 요구의 스테이트먼트입니다.
라벨	디바이스를 임의의 문자열로 나타낸 것입니다.
리모트 헤드 모듈	RJ72GF15-T2형 CC-Link IE 필드 네트워크 리모트 헤드 모듈의 약칭입니다.
로컬국	CC-Link IE 필드 네트워크에서 마스터국 및 다른 로컬국과 사이클릭 전송/트랜전트 전송하는 국입니다.

또한, SIL2 프로세스 CPU 및 안전 CPU를 사용하는 경우, 다음의 용어도 사용하여 설명합니다.

용어	내용
안전 사이클 처리	안전 입출력 및 안전 프로그램의 실행 처리입니다.
안전 제어	안전 프로그램 및 안전 통신을 실행하여 기계를 제어합니다. 이상 시는 기계를 안전하게 정지시킵니다.
안전 통신	안전 통신 프로토콜에 정의된 안전층 송수신을 처리하는 통신 서비스입니다.
안전 디바이스	안전 프로그램에서 사용 가능한 디바이스입니다. (♣️️ MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편))
안전 프로그램	안전 제어를 실행하기 위한 프로그램입니다.
안전 라벨	안전 글로벌 라벨, 안전 로컬 라벨, 일반/안전 공유 라벨의 총칭입니다. (C□MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편))
일반 CPU	일반 제어하는 MELSEC iQ-R 시리즈의 각 CPU 모듈의 총칭입니다. (안전 제어하는 CPU 모듈과 구분하는 경우에 사용합니다.)
일반 제어	일반 프로그램 및 일반 통신을 실행하여 기계를 제어합니다. 안전 PLC 이외는 일반 제어만을 보유(기능)합니다. (안전 제어와 구분하는 경우에 사용합니다.)
일반 통신	안전 통신 이외의 통신(CC-Link IE 필드 네트워크의 사이클릭 전송과 트랜전트 전송 등)입니다.
일반 디바이스	CPU 모듈이 내부에 가지고 있는 안전 디바이스 이외의 디바이스(X, Y, M, D 등)입니다. 일반 프로그램에서만 사용할수 있습니다. (안전 디바이스와 구분하는 경우에 사용합니다.)
일반 프로그램	시퀀스 제어를 실행하기 위한 안전 프로그램 이외의 프로그램입니다. (안전 프로그램과 구분하는 경우에 사용합니다.)

명령 기호의 총칭

본문 중에 기재된 명령 기호에 대해서는 특별히 지정하고 있는 경우를 제외하고 다음의 총칭을 사용합니다.

분류	명령 기호	총칭
PID 제어 명령	S(P).PIDINIT, PIDINIT(P)	PIDINIT
	S(P).PIDCONT, PIDCONT(P)	PIDCONT
	S(P).PIDPRMW, PIDPRMW(P)	PIDPRMW
멀티 CPU 간 전용 명령	D(P).DDRD, M(P).DDRD	DDRD
	D(P).DDWR, M(P).DDWR	DDWR

매뉴얼 읽는 방법

본 매뉴얼의 페이지 구성과 기호에 대해 설명합니다.

제3부~제5부 읽는 방법

다음은 매뉴얼 읽는 방법에 관한 설명을 위한 것으로, 실제 기재 내용과는 다릅니다.

- **1** 명령 기호를 나타냅니다.
- 명령 기호에 괄호가 붙어 있는 명령에 대해서는 복수의 명령을 의미하고 있습니다. 예를 들어, "GRY(P)(_U)"의 경우, GRY 명령, GRYP 명령, GRYP_U 명령의 4개가 해당됩니다.

명령 기호	기호의 의미
명령 기호에 "(P)"가 붙어 있다	OFF→ON의 상승펄스 시만 실행하는 명령입니다.
명령 기호에 "(_U)"가 붙어 있다	BIN16비트, BIN32비트의 부호 없음 데이터를 취급하는 명령입니다.

- 명령 기호에 "□"이 붙어 있는 명령에 대해서는 복수의 명령을 의미하고 있습니다. 예를 들어, "LDDT□"의 경우, LDDT=명령, LDDT<>명령, LDDT<>명령, LDDT<>명령, LDDT<=명령의 6개가 해당됩니다.
- ②CPU 모듈별 명령의 사용 가능 여부를 나타냅니다. (×가 붙어 있는 CPU 모듈에서는 명령을 사용할 수 없습니다.)
- 3래더 언어, ST 언어, FBD/LD 언어에서의 기술 형식을 나타냅니다.

래더, FBD/LD 기술 내의 사각으로 둘러싸인 위치에는 각각 해당 명령 기호가 들어갑니다.

ST, FBD/LD 기술 내의 EN(실행 조건)에는 명령의 실행을 제어하는 조건을 입력합니다. ENO(실행 결과)에는 명령의 실행 결과를 출력합니다.

- 4실행 조건을 나타냅니다. (☞ 51페이지 실행 조건)
- ⑤각 오퍼랜드의 내용, 설정 가능한 범위, 데이터형, 라벨에서의 데이터형을 나타냅니다.
- 데이터형에 대해서는 다음을 참조하십시오.

☞ 34페이지 데이터 지정 방법

⑥각 오퍼랜드에서 사용 가능한 디바이스를 나타냅니다. 사용 방법은 다음과 같습니다.

오퍼랜드	비트		워드	더블 워드			간접 지정	상수		기타* ⁵	
	X, Y, M, L, SM, F, B, SB, S, FX, FY	J□₩□ *4	T, ST, C, D, W, SD, SW, FD, R, ZR, RD	U□₩G□, J□₩□* ⁴ , U3E□₩(H)G□	Z	LT, LST, LC	LZ		K, H	Ε	\$
사용 가능 디 바이스* ¹	X, Y, M, L, SM, F, B, SB, S, FX* ² , FY* ²	J□₩X J□₩Y J□₩B J□₩SB	T*3, ST*3, C*3, D, W, SD, SW, FD*2, R, ZR, RD	UUWGU U3EUWGU U3EUWHGU JUWSW JUWSW	Z	LT* ³ LST* ³ LC* ³	LZ	@□ @□.□	K, H	Е	\$ P, I, J, U, DX, DY, N, V, BL, BL□₩S□

SIL2 프로세스 CPU 및 안전 CPU의 안전 프로그램에서 각 오퍼랜드에서 사용 가능한 안전 디바이스를 나타냅니다. 사용 방법은 다음과 같습니다.

오퍼랜드	비트	워드	상수
	SA₩X, SA₩Y, SA₩M, SA₩SM, SA₩B	SA₩T, SA₩ST, SA₩C, SA₩D, SA₩W, SA₩SD	K, H
사용 가능 디바이스 *1	SA₩X, SA₩Y, SA₩M, SA₩SM, SA₩B	SAWT*3, SAWST*3, SAWC*3, SAWD, SAWW, SAWSD	К, Н

- *1 각 디바이스의 설명에 대해서는 다음을 참조하십시오.
 - MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편)
- *2 FX, FY는 비트 데이터, FD는 워드 데이터로만 사용할 수 있습니다.
- *3 T, ST, C, LT, LST, LC를 다음의 명령 이외에서 사용하는 경우, 워드 데이터로만 사용할 수 있습니다. 비트 데이터에서는 사용할 수 없습니다

[비트 데이터로 사용 가능한 명령]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, BKRST, MOVB(P), CMLB(P)

SA₩T, SA₩C를 다음의 명령 이외에서 사용하는 경우에는 워드 데이터로만 사용할 수 있습니다. 비트 데이터에서는 사용할 수 없습니다.

[비트 데이터로 사용 가능한 명령]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, MOVB(P)

- *4 네트워크 No.를 사용하는 네트워크 모듈에 사용할 수 있습니다.
- *5 "기타" 항목에는 설정 가능한 디바이스를 기재합니다.
- 명령에 따라서는 명령의 동작을 설정하기 위한 컨트롤 데이터가 존재하며, 세트측이 "사용자"일 때는 설정 범위에 따라 값을 지정할 필요가 있습니다.
- ❸명령의 기능 상세를 나타냅니다. 또한, 특별히 기재되어 있지 않은 경우, "인터럽트 프로그램"은 아래의 내용이 해당됩니다
- 인터럽트 포인터(I)에 의한 인터럽트 프로그램
- 고정 스캔 실행 타입 프로그램
- 인터럽트 포인터(I)에 의한 인터럽트 발생을 트리거로 하는 이벤트 실행 타입 프로그램

- **9**주의할 내용을 나타냅니다.
- ❷명령에 고유의 연산 에러가 있는 경우, 실행 시 발생하는 에러 코드와 에러 내용에 대해 설명합니다.
- 에러 코드의 항목에 에러 코드가 저장되는 디바이스를 기재하고 있습니다. 에러 코드가 SD0에 저장되는 경우, 에러 플래그(SM0)가 ON 됩니다. (CPU 모듈의 모듈 라벨에서도 확인할 수 있습니다.)
- 각 명령에 기재되어 있지 않은 에러에 대해서는 다음을 참조하십시오.

☑MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편)

제7부, 제8부 읽는 방법

다음은 매뉴얼 읽는 방법에 관한 설명을 위한 것으로, 실제 기재 내용과는 다릅니다.

● 평션 기호를 나타냅니다.

펑션 기호에 괄호가 붙어 있는 범용 펑션/펑션 블록에 대해서는 복수의 펑션을 의미하고 있습니다. 예를 들어,

"BOOL_TO_DINT(_E)"의 경우, "BOOL_TO_DINT","BOOL_TO_DINT_E"의 2개가 해당됩니다.

평션 기호	기호의 의미
평션 기호에 "(_E)"가 붙어 있다	EN/ENO 있음의 기술 형식을 사용할 수 있는 범용 펑션/펑션 블록이 됩니다.

②CPU 모듈별 범용 펑션/펑션 블록의 사용 가능 여부를 나타냅니다. (×가 붙어 있는 CPU 모듈에서는 범용 펑션/펑션 블록을 사용할 수 없습니다.)

③래더 언어, ST 언어, FBD/LD 언어에서의 기술 형식을 나타냅니다.

사각으로 둘러싸여 있는 위치에는 다음의 기호가 들어갑니다.

- 범용 평션: 해당 평션 기호
- 범용 펑션 블록: 인스턴스명과 해당 펑션 블록 기호

EN(실행 조건)에는 범용 평션/평션 블록의 실행을 제어하는 조건을 입력합니다. ENO(실행 결과)에는 범용 평션/평션 블록의 실행 결과를 출력합니다.

FBD/LD의 경우, 펑션의 반환값 명칭은 표시되지 않습니다.

인스턴스에 대해서는 다음을 참조하십시오.

₩MELSEC iQ-R 프로그래밍 매뉴얼(프로그램 설계편)

- ₫각 인수의 내용, 종류, 데이터형, 라벨에서의 데이터형을 나타냅니다.
- 데이터형에 대해서는 다음을 참조하십시오.

☞ 34페이지 데이터 지정 방법

- **⑤**범용 펑션/펑션 블록의 기능에 대해 설명합니다.
- ⑥범용 평션/평션 블록에 고유의 연산 에러가 있는 경우, 실행 시 발생하는 에러 코드와 에러 내용에 대해 설명합니다. 에러 코드의 항목에 에러 코드가 저장되는 디바이스를 기재하고 있습니다. 에러 코드가 SD0에 저장되는 경우, 에러 플래그 (SM0)가 ON 됩니다. (CPU 모듈의 모듈 라벨에서도 확인할 수 있습니다.)

각 범용 펑션/펑션 블록에 기재되어 있지 않은 에러에 대해서는 다음을 참조하십시오.

☑MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편)

제1부 개요

이 부는 다음의 장으로 구성되어 있습니다.

1 명령 개요

1 명령 개요

1.1 명령 구성

PLC에서 사용할 수 있는 명령의 대부분은 명령부와 오퍼랜드부로 나눌 수 있습니다.

명령부와 오퍼랜드부의 용도는 다음과 같습니다.

- 명령부: 해당 명령의 기능을 나타냅니다.
- 오퍼랜드부: 명령에서 사용하는 데이터를 나타냅니다.

오퍼랜드부는 소스 데이터, 데스티네이션 데이터, 수치 데이터로 분류됩니다.

소스(s)

소스는 연산에서 사용하는 데이터입니다.

각 명령에서 지정한 라벨이나 디바이스에 따라 아래와 같이 됩니다.

종류	내용
상수	연산에서 사용하는 수치를 지정합니다. 프로그램 작성 시 설정하므로, 프로그램 실행 중에는 변경할 수 없습니다. 상수를 가변 데이터로 사용하는 경우, 인덱스 수식을 하십시오.*1
디바이스 라벨	연산에서 사용하는 데이터가 저장되어 있는 디바이스 또는 라벨을 지정합니다. 연산을 실행할 때까지 지정된 디바이스 또는 라벨에 데이터를 저장해 둘 필요가 있습니다. 프로그램 실행 중 지정된 디바이스 또는 라벨에 저장하는 데이터를 변경하면, 해당 명령에서 사용하는 데이터를 변경할 수 있습니다.

*1 인덱스 수식에 대해서는 다음을 참조하십시오. □ MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편)

데스티네이션(d)

데스티네이션에는 연산 후의 데이터가 저장됩니다.

다만 명령에 따라서는 연산 전에 데스티네이션에 연산에서 사용하는 데이터를 저장할 필요가 있는 경우가 있습니다.

예

BIN16비트 데이터의 덧셈 명령의 경우

- (1): 연산 실행 전에 사용하는 데이터를 저장합니다.
- (2): 연산 결과만 저장됩니다.

데스티네이션에는 반드시 데이터를 저장하기 위한 라벨이나 디바이스를 설정합니다.

디바이스수/전송수/데이터수/문자열수 등의 수치(n)

디바이스수, 전송수, 데이터수, 문자열수 등의 수치는 복수의 디바이스를 사용하는 명령이나 반복하는 횟수, 처리하는 데이터수·문자열수 등을 지정하는 명령에서 사용하는 디바이스수, 전송수, 데이터수, 문자열수 등을 지정합니다.

예

블록 전송 명령의 경우

(1): BMOV 명령으로 전송하는 전송수를 지정합니다.

디바이스수, 전송수, 문자수 등의 크기 지정은 0~65535, 0~4294967295를 설정할 수 있습니다. *¹

다만 디바이스수, 전송수, 문자수 등의 크기 지정이 0일 때는 해당 명령이 처리되지 않습니다.

또한, 디바이스 메모리 용량 및 파일 저장 용량에 따라서는 상기 크기 지정 상한값 미만이 될 수 있습니다. *2

- *1 설정 범위는 명령에 따라 다릅니다. 자세한 내용은 각 명령을 참조하십시오.
- *2 디바이스 메모리 용량 및 파일 저장 용량은 기종에 따라 다릅니다. 자세한 내용은 다음을 참조하십시오. □ MELSEC iQ-R CPU 모듈 사용자 매뉴얼(스타트 업편)

전송수 등의 수치에 큰 값을 사용하면 스캔 타임이 늦어지므로 주의하십시오.

1.2 데이터 지정 방법

CPU 모듈의 각 명령에서 사용할 수 있는 데이터는 다음과 같습니다.

데이터	분류
비트 데이터	비트 데이터
16비트 데이터(워드 데이터)	부호 있음 BIN16비트 데이터
	부호 없음 BIN16비트 데이터
32비트 데이터(더블 워드 데이터)	부호 있음 BIN32비트 데이터
	부호 없음 BIN32비트 데이터
실수 데이터(부동 소수 데이터)	단정밀도 실수 데이터
	배정밀도 실수 데이터
BCD 데이터	BCD4자리 데이터
	BCD8자리 데이터
	BCD16자리 데이터
문자열 데이터	문자열
	Unicode 문자열

디바이스에서 취급하는 데이터

설정 데이터를 디바이스로 지정하는 경우에 대하여 지정 가능한 디바이스/상수의 종류를 나타냅니다.

데이터형	내용	지정 가능 디바이스/상수* ¹	
비트	비트 데이터를 취급할 수 있습니다. ॎ 38페이지 비트 데이터	• 베트 디바이스 • 워드 디바이스의 베트 지정	
워드	워드 데이터를 취급할 수 있습니다. ॎ 40페이지 16비트 데이터(워드 데이터)	• 워드 디바이스 • 비트 디바이스의 자리 지정(K1~K4)* ²	
부호 있음 BIN16비트	16비트 데이터를 취급할 수 있습니다.	• 10진 상수 • 16진 상수	
부호 없음 BIN16비트	부호 있음과 부호 없음은 값의 범위가 다릅니다. ﷺ 40페이지 16비트 데이터(워드 데이터)	* 10년 8구	
더블 워드	더블 워드 데이터를 취급할 수 있습니다. ॎ 43페이지 32비트 데이터(더블 워드 데이터)	• 워드 디바이스 • 더블 워드 디바이스	
부호 있음 BIN32비트	32비트 데이터 또는 16비트 데이터가 2개 연속하고 있는 데이터를 취급할 수	• 베트 디바이스의 자리 지정(K1~K8)* ² • 10진 상수 • 16진 상수	
부호 없음 BIN32비트	있습니다. 부호 있음과 부호 없음은 값의 범위가 다릅니다. ☞ 43페이지 32비트 데이터(더블 워드 데이터)		
BCD4자리	BCD4자리 데이터를 취급할 수 있습니다. 16비트 데이터를 4자리로 구분하여 각 자리를 0~9로 지정합니다.	• 워드 디바이스 • 비트 디바이스의 자리 지정(K1~K4)* ² • 10진 상수 • 16진 상수	
BCD8자리 데이터를 취급할 수 있습니다. 32비트 데이터를 8자리로 구분하여 각 자리를 0~9로 지정합니다.		 워드 디바이스 더블 워드 디바이스 비트 디바이스의 자리 지정(K1~K8)*² 10진 상수 16진 상수 	
단정밀도 실수	단정밀도 실수 데이터(단정밀도 부동 소수점 데이터)를 취급할 수 있습니다. 46페이지 단정밀도 실수 데이터 구성	• 워드 디바이스 • 더블 워드 디바이스 • 실수 상수	
배정밀도 실수	배정밀도 실수 데이터(배정밀도 부동 소수점 데이터)를 취급할 수 있습니다. ॎ 47페이지 배정밀도 실수 데이터 구성	• 워드 디바이스 • 더블 워드 디바이스 • 실수 상수	
문자열	ASCII 코드, 시프트 JIS 코드의 문자열 데이터를 취급할 수 있습니다. ☞ 49페이지 문자열 데이터	• 워드 디바이스 • 문자열 상수	
Unicode 문자열	Unicode의 문자열 데이터를 취급할 수 있습니다. 🖙 49페이지 문자열 데이터	• 워드 디바이스 • 문자열 상수	
디바이스명	디바이스를 직접 지정할 수 있습니다.	• 사용 가능 디바이스에서 대응하는 디바이스 명	

^{*1} 명령에 따라 소스(s)나 수치 데이터(n) 지정 데이터에 상수를 사용할 수 있습니다.

^{*2} 지정 방법에 대해서는 각 데이터형의 상세 페이지를 참조하십시오.

라벨에서 취급하는 데이터

설정 데이터를 라벨로 지정하는 경우에 대하여 지정 가능한 라벨의 종류를 나타냅니다.

■기본 데이터형

데이터형(라벨)	지정 가능 라벨
UE (BOOL)	• 비트형 라벨 • 워드[부호 없음]/비트열[16비트]형 라벨의 비트 지정 • 워드[부호 있음]형 라벨의 비트 지정 • 타이머/적산 타이머/롱 타이머/롱 적산 타이머형 라벨의 접점 • 코일 • 카운터/롱 카운터형 라벨의 접점 • 코일
워드(부호 없음)/비트열(16비트) (WORD)	• 워드[부호 없음]/비트열[16비트]형 라벨 • 비트형 라벨의 자리 지정(K1~K4) • 타이머/적산 타이머형 라벨의 현재값 • 카운터형 라벨의 현재값
더블 워드[부호 없음]/비트열[32비트] (DWORD)	• 더블 워드[부호 없음]/비트열[32비트]형 라벨 • 비트형 라벨의 자리 지정(K1~K8) • 롱 타이머/롱 적산 타이머형 라벨의 현재값 • 롱 카운터형 라벨의 현재값
워드[부호 있음] (INT)	• 워드[부호 있음]형 라벨 • 비트형 라벨의 자리 지정(K1~K4) • 타이머/적산 타이머형 라벨의 현재값 • 카운터형 라벨의 현재값
더블 워드[부호 없음] (DINT)	• 더블 워드[부호 있음]형 라벨 • 비트형 라벨의 자리 지정(K1~K8) • 롱 타이머/롱 적산 타이머형 라벨의 현재값 • 롱 카운터형 라벨의 현재값
단정밀도 실수 (REAL)	• 단정밀도 실수형 라벨
배정밀도 실수 (LREAL)	• 배정밀도 실수형 라벨
시간 (TIME)	• 시간형 라벨
문자열 (STRING)	• 문자열형 라벨
문자열[Unicode] (WSTRING)	• 문자열[Unicode]형 라벨
포인터 (POINTER)	• 포인터형 라벨

각 라벨의 내용에 대해서는 다음을 참조하십시오. ☑MELSEC iQ-R CPU 모듈 사용자 매뉴얼(응용편)

■총칭 데이터형

몇 가지 기본 데이터형을 정리한 라벨의 데이터형입니다.

평션이나 평션 블록의 함수, 반환값 등에서 복수의 데이터형이 허용되는 경우 총칭 데이터형이 사용됩니다.

총칭 데이터형으로 정의된 라벨은 하위 데이터형 모두에서 사용할 수 있습니다.

데이터	이터형(라벨)					지정 가능 데이터형	
ANY*1	ANY_ELEMENTARY	ANY_BIT				ANY_BOOL	비트
			A		ANY_BITADDR*1	비트	
						ANY16_U	워드(부호 없음)/비트열(16비트)
						ANY32_U	더블 워드[부호 없음]/비트열[32-bit]
		ANY_WORDADDR	ANY_NUM	ANY_INT	ANY16	ANY16_S	워드[부호 있음]
						ANY16_U	워드(부호 없음)/비트열(16비트)
					ANY32	ANY32_S	더블 워드[부호 있음], 시간
						ANY32_U	더블 워드[부호 없음]/비트열[32-bit]
				ANY_REAL	_	ANYREAL_32	단정밀도 실수
						ANYREAL_64	배정밀도 실수
			ANY_STRING			ANYSTRING_SINGLE	문자열
						ANYSTRING_DOUBLE	문자열[Unicode]
			ANY16_U			ANY16_S	워드[부호 있음]
						ANY16_U	워드(부호 없음)/비트열(16비트)
						ANYSTRING_SINGLE	문자열
						워드[부호 있음], 워드[부호 없 트열[16비트]	
							워드[부호 있음], 워드[부호 없음]/비 트열[16비트]
	ANY_STRUCT*1 구조체					구조체	
	STRUCT 구조체						

^{*1} 배열로도 사용할 수 있습니다.

■총칭 데이터형(배열)

다음의 총칭 데이터형에 대해서는 배열 요소수를 정의하십시오.

데이터형(라벨)			지정 가능 데이터형
ANYBIT_ARRAY	ANYBIT_ARRAY		
ANYWORD_ARRAY	ANY16_ARRAY	ANY16_S_ARRAY	워드[부호 있음]의 배열
		ANY16_U_ARRAY	워드[부호 없음]/비트열[16- bit]의 배열
	ANY32_ARRAY	ANY32_S_ARRAY	더블 워드[부호 있음]의 배열, 시간의 배열
		ANY32_U_ARRAY	더블 워드[부호 없음]/비트열 [32-bit]의 배열
	ANY_REAL_ARRAY	ANY_REAL_32_ARRAY	단정밀도 실수의 배열
		ANY_REAL_64_ARRAY	배정밀도 실수의 배열
	ANY_STRING_ARRAY	ANY_STRING_SINGLE_ARRAY	문자열의 배열
		ANY_STRING_DOUBLE_ARRAY	문자열[Unicode]의 배열
STRUCT_ARRAY			구조체 배열

비트 데이터

데이터 크기와 데이터의 범위

비트 데이터는 접점이나 코일 등을 1비트 단위로 취급하는 데이터입니다.

데이터 명칭	데이터 크기	값의 범위
비트 데이터	1비트	0, 1

비트 디바이스/라벨에서의 비트 데이터 취급

비트 디바이스/라벨 1점에 대해서 1비트 데이터를 취급할 수 있습니다.

워드 디바이스에서의 비트 데이터 취급

워드 디바이스는 비트 No. 지정을 실행하면, 지정 비트 No.의 비트 데이터를 취급할 수 있습니다.

비트 지정 표기 방법은 "워드 디바이스 번호.비트 No."입니다.

비트 No. 지정은 16진수로 0~F의 범위 내에서 지정합니다.

예를 들어, D0의 비트 5(b5)는 "D0.5", D0의 비트 10(b10)은 "D0.A"로 지정합니다.

워드 디바이스의 비트 지정이 가능한 디바이스는 아래와 같습니다.

항목	디바이스
워드 디바이스의 비트 지정 가능 디바이스	 데이터 레지스터(D) 링크 레지스터(W, J□₩W) 링크 특수 레지스터(SW, J□₩SW) 평션 레지스터(FD) 특수 레지스터(SD) 모듈 액세스 디바이스(U□₩G) CPU 버퍼 메모리 액세스 디바이스(U3E□G₩, U3E□₩HG) 파일 레지스터(R, ZR) 모듈 리프레시용 레지스터(RD)

SIL2 프로세스 CPU 및 안전 CPU의 안전 프로그램에서 사용하는 안전 디바이스의 비트 No.도 16진수로 0~F의 범위 내에서 지정합니다.

예를 들어, SAWD0의 비트 5(b5)는 "SAWD0.5", SAWD0의 비트 10(b10)은 "SAWD0.A"로 지정합니다.

워드 디바이스의 비트 지정이 가능한 안전 디바이스는 다음과 같습니다.

항목	디바이스
워드 디바이스의 비트 지정 가능 디바이스	• 안전 데이터 레지스터(SA₩D) • 안전 링크 레지스터(SA₩W) • 안전 특수 레지스터(SA₩SD)

워드형 라벨에서의 비트 데이터 취급

워드형 라벨에서는 비트 No.를 지정하여 지정 비트 No.의 비트 데이터를 취급할 수 있습니다. 비트 지정된 표기 방법은 "라벨명.비트 No."입니다.

예

비트 지정 가능 라벨의 데이터형은 아래와 같습니다.

항목	데이터형
비트 지정 가능 라벨의 데이터형	• 워드[부호 있음](INT형) • 워드[부호 없음]/비트열[16-bit](WORD형) • 타이머(TIMER형)의 현재값(N)*1 • 적산 타이머(RETENTIVETIMER형)의 현재값(N)*1 • 카운터(COUNTER형)의 현재값(N)*1

*1 래더의 경우에는 지정할 수 없습니다.