Datenstrukturen und Algorithmen

Übung 3 O-Notation, Rekursion

Aufgabe 1

Welche der folgenden Aussagen sind richtig, welche falsch? Beweisen Sie Ihre Aussage mit Hilfe der Definition der O-Notation.

- i) 17 ∈ O(1)
- ii) $n * (n 1) \in O(n^2)$
- iii) $2^n \in O(3^n)$
- iv) $3^n \in O(2^n)$
- v) $2^n \in O(n^7)$
- vi) $(n+1)! \in O(n!)$
- vii) $\sum_{i=0}^{n} (2i+1) \in O(n^2)$
- $\text{viii)} \sum_{i=0}^{n} \mathbf{i}^{k} \in \mathrm{O}(\mathbf{n}^{k+1})$

Aufgabe 2

Endrekursion

Schreiben Sie eine endrekursive Variante der Fakultätsfunktion.

Aufgabe 3

Anagramme

Eine **Permutation** ist eine Anordnung von Dingen in einer bestimmten Reihenfolge (manchmal auch "Reihenfolge" genannt).

Es sollen **alle Anagramme** eines bestimmten Wortes auflisten – also **alle möglichen Permutationen**, die aus den Buchstaben des ursprünglichen Wortes gebildet werden können (unabhängig davon, ob sie ein echtes Wort ergeben oder nicht).

Diesen Vorgang nennen wir ein Wort anagrammieren.

Beispiel:

Wenn man das Wort "cat" anagrammiert, entstehen folgende Permutationen: cat, cta, atc, act, tca, tac

Schreiben Sie hierzu ein rekursives Python Programm.