Comunicación de datos

Medios de Transmisión alámbricos, cable utp, cable coaxil y FO

Prof.: Lic. Alejandro Mansilla 2019

Medios de transmisión guiados

- Proporcionan un camino físico a través del cual se propaga la señal
- Las mayores limitaciones las impone el medio en sí mismo
- · Los medios guiados más comunes son:
 - ✓ Par trenzado
 - Cable coaxial
 - Fibra óptica

Par trenzado

- 2 cables de cobre aislados
- Entrecruzados en forma de bucle espiral (disminuye la diafonía)
- Cada par constituye un enlace de comunicación
- Se pueden agrupar de a cientos
- Aplicaciones más comunes:
 - Redes de telefonía
 - Cableado interno de edificios

UTP, STP, FTP

- . UTP \rightarrow Ushielded Twisted Pair
- STP → Shielded Twisted Pair
- FTP → Foil Twisted Pair
- 1991 la EIA publicó el documento EIA-568 Estándar para los cables de comunicaciones en edificios comerciales
- 1995 se propone EIA-568-A
 - Cat 3
 - Cat 4
 - Cat 5

UTP

Estándares

- 2009 se lanzaron 4 nuevos estándares:
 - ✔ ANSI/TIA-568-C.0: Cableado genérico de telecomunicaciones para las instalaciones del cliente
 - ✔ ANSI/TIA-568-C.1: Estándar de cableado de telecomunicaciones para edificios comerciales
 - ✔ ANSI/TIA-568-C.2: Estándares de cableado y componentes de telecomunicaciones de par trenzado equilibrado
 - ANSI/TIA-568-C.3: Estándar de componentes de cableado de fibra óptica
 - **V**
 - ✓ Siguen en constante revisión y actualización

Categorías

	Category 5e Class D	Category 6 Class E	Category 6A Class E _A	Category 7 Class F	Category 7 _A Class F _A
Bandwidth	100 MHz	250 MHz	500 MHz	600 MHz	1,000 MHz
Cable type	UTP	UTP/FTP	UTP/FTP	S/FTP	S/FTP
Insertion loss (dB)	24	21.3	20.9	20.8	20.3
NEXT loss (dB)	30.1	39.9	39.9	62.9	65
ACR (dB)	6.1	18.6	19	42.1	44.1

- Insertion loss: pérdida por inserción. Pérdida en todo el recorrido.
- NEXT: Near-end cross talk. Interferencia de un par a otro
- ACR: Attenuation-to-crosstalk ratio. Cuanto más fuerte es la señal por sobre el NEXT en ese par.

Cable coaxial

- Dos conductores
- Pensado para operar en un rango mayor de frecuencias

Utilizado para TV, telefonía de larga distancia, redes de área

local (ya en desuso)

Transmisiones tanto analógicas como digitales

Fibra Óptica

- Medio flexible y delgado de 2 a 125µm
- Capaz de confinar un haz de luz
- Fibras ultra puras de silicio fundido (caro)
- Fibras de cristal multicomponente
- (mas económicas)

Fibra Óptica

Fibra Óptica: características

- Mayor capacidad. Ancho de banda potencial muy alto, del orden de los cientos de Gbps
- Menor tamaño y peso
- Menor atenuación
- Mayor separación entre repetidores
- Algunas aplicaciones:
 - Largas distancias
 - Areas metropolitanas
 - Bucles de abonado
 - Redes LAN

Propagación del haz de luz

Modos de propagación

Multimodo

- ✓ Haces ingresan a la fibra y se van reflejando en diferentes ángulos actuando la fibra como una guía de onda para la banda de 10¹⁴ hasta 10¹⁵ Hz
- Multitud de ángulos de incidencia para los que se produce la reflexión total
- Algunos haces son absorbidos por el revestimiento
- Cada ángulo implica un tiempo de propagación diferente
- Limitaciones en la separación de pulsos y por ende en la velocidad de transmisión
- Estas fibras son adecuadas para distancias cortas

Modos de propagación

Monomodo

- ✓ Radio de fibra menor → reflexión total en un número menor de ángulos
- Reduce el diámetro para permitir una sola longitud de onda y un solo ángulo de reflexión
- ✓ Evita la dispersión multimodal → único camino posible para la luz
- Costosa de fabricar y cara
- Ideal para largas distancias y alto tráfico de datos

Multimodo índice gradual

- Índice de refracción superior en la parte central
- Los haces viajan más rápido al alejarse del centro
- Reduce las diferencias de velocidad de propagación
- Intermedia entre las otras dos

Fuentes de luz

- Diodos LED (Light Emitting Diode)
 - Mas barato
 - Tiempo de vida menor
 - Mayor temperatura
- IDL (Injection Laser Diode)
 - Mas eficaz
 - Mayores velocidades
- Ambas se puede usar tanto en fibras monomodo como multimodo

Ventanas de transmisión

- Relación entre la longitud de onda, tipo de transmisión y velocidad
- Dada las características del medio, la luz se propaga en 4 regiones del espectro

Enorme disponibilidad de Ancho de banda

Wavelength (in vacuum) range (nm)	Frequency Range (THz)	Band Label	Fiber Type	Application
820 to 900	366 to 333		Multimode	LAN
1280 to 1350	234 to 222	S	Single mode	Various
1528 to 1561	196 to 192	C	Single mode	WDM
1561 to 1620	192 to 185	L	Single mode	WDM

Ventanas de transmisión

Perturbaciones en Medios ópticos

- Atenuación
- Dispersión Modal
- Dispersión Cromática
- Pérdidas por radiación (Bending)
- Pérdida por acoplamiento

FIN