Superhydrophobic and Superoleophilic Graphene Coated Melamine Sponge for Oil-Water Separation

Shivam Gupta and Nyan-Hwa Tai*

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

Experimental Work

- In a massive oil spill accident in the **Gulf of Mexico in 2010**, approximately **4.9 million barrels of oil spilled**.
- This accident mostly impacted marine species and seagrasses.
- Out of 322 species, 53 species were threatened and 29 were nearly threatened, including 16 species of sharks and eight corals.

Hydrophobic Material

Natural Hydrophobic materials

Artificial Material

Can be fal

materials.

Materials Used

Preparation method

- ➤ A piece of the commercial sponge was first cleaned with acetone and distilled water successively using an ultrasonic cleaner, followed by drying in a vacuum oven at 100 °C for several hours to completely remove moisture.
- The as-dried sponge was then dipped into a dispersion of graphene nanosheets in ethanol, and finally dried in the vacuum oven at 100 °C for 2 hours.

Results and discussion

(a) Morphology: Scanning electron microscopy (SEM) micrograph of (a) pure sponge (b) graphene coated sponge and (c) graphene-PDMS coated sponge.

(b) Removal of oil from water

(c) Absorption capacity measurement

(d) Fluid channel for continuous separation of oil and water

Conclusion:

- A facile, inexpensive method to fabricate graphene-based sponges with superhydrophobic and superoleophilic properties.
- > Easy to scale up.
- Excellent absorption capacities up to 165 times its own weight, high selectivity, good recyclability and lightweight.
- > The designed fluid channel set-up can separate oil-water mixture continuously.