

GNN BASED E-COMMERCE RECOMMENDER SYSTEM

Ying Kang

OUTLINE

- Opportunity ecommerce conversion
- Solution a better recommender
- Data + Model
- Demo
- MLOps Stack/Iterations
- Conclusions
- Future Work

Appendix

- Model architecture and evaluation matrix
- Production infrastructure
- Lessons Learned

OPPORTUNITY

- ❖ Worldwide E-commerce sales: Over \$ 5.2 trillion
 - ➤ Conversion Rate in the US: ~2.3% for 2Q 2022
 - ➤ Conversion Rate in UK: 4%
- ♦ Improve from 2.3% to 4% => 73.9% increase in sales
- ❖ Big opportunity
- Hypothesis: Personalized recommendation will improve conversion rate
 - Maximize the probability of buying

SOLUTIONS

- Better recommender => higher conversion rate => more sales!
- Use Graph Neural Network LightGCN
- Based on a research paper in 2020 He, Xiangnan, et al. "LightGCN:

 Simplifying and powering graph convolution network for recommendation." 2020
- Outperforms widely used Matrix Factorization models by 35%

COLLABORATIVE FILTERING(CF) + MATRIX FACTORIZATION(MF)

Classic RecSys uses CF with simple MF

- Use MF to learn User and Item embeddings from user-item interaction matrix
- Use learned embeddings to estimate probability of new user-item interactions
- Recommend items to user where estimated user-item probability is high

E-COMMERCE IS MULTI-BEHAVIOR

- A consumer interacts with items in multiple forms: view, add to cart, remove from cart, purchase, etc
- Input: user-item interactions of
 different forms
- Output: user-item interaction
 probability on target behavior
 Purchase

WHY GNN

- GNN learns User and Item purchase probability by leveraging graph structure.
- Extends reach to k-hop neighbors.
- Addresses data sparsity issue in e-commerce.
 - i.e. a consumer only interacts with a tiny percentage of items

Figures are from: Wang et al. Neural Graph Collaborative Filtering, SIGIR 2019

LIGHTGCN MODEL ARCHITECTURE

$$\text{Objective Function:} \quad BPR(u) = \frac{1}{|E| \cdot |E_{neg}|} \sum_{(u,v_{pos}) \in E(u)} \sum_{(u,v_{neg}) \in E_{neg}(u)} -\log \left(\sigma(f_{\theta}(u,v_{pos}) - f_{\theta}(u,v_{neg}))\right)$$

A high level outline of the LightGCN model and aggregation of outputs.

DATA

- Kaggle eCommerce Events History in Cosmetics Shop
 Oct 2019 Jan 2020
- Number of consumers: 1.64 million
- Number of products: 54.6 thousand
- 4 types of events: view, add to cart, remove from cart, purchase.
- 20 million events in total

EVALUATING MODEL PERFORMANCE

- Evaluation Metric (Recall@K):
 - ➤ LightGCN 0.171, Matrix Factorization 0.127
 - > Recall@20 Out of actual bought items, what percentage are in the recommended list of 20

Higher Recall@K → higher Conversion Rate → higher sales

DEMO

- ❖ Visual of the consumers, products and their connectivity
- Pick one consumer, make a call to the recommender deployed on AWS to recommend 20 products
- Explainability: the paths from consumer to recommended items.

MLOPS STACK

PRODUCTION INFRASTRUCTURE

CONCLUSIONS

- state-of-the-art GNN eCommerce recommender based on very recent paper
- Experimented on real world dataset
- 35% better performance than classic Matrix Factorization model.
- Better recommendation => higher conversion rate!
- Recommendations visually explainable
- End-to-end integrated data and ML workflow, using Git and DVC.
- Highly scalable production TorchServe on AWS
- Cost: only 4 hours of sleep every night

FUTURE WORK

- What we would do next...
 - Optimize model with other metrics, and use ensemble of multiple models
 - GNN's strong power to learn from graph-structured data(item category, Price bucket)
 - Take Session Feature into consideration

book sport necessity sport

LESSONS LEARNED

- Start early, really early
- Set up branching and versioning process in the very beginning, and stick with it.
 - Will save you from wasting many many hours
- Do a trial training with the whole dataset as soon as possible.
 - Need to optimize GPU memory use in code
- Library code may have bugs.
 - Be prepared to debug into third party code
- Continuous refactoring
 - Don't leave critical code in Jupyter Notebook for too long.
 - Organize code in classes and functions =>Object Oriented programming
- Prepare for production release early
 - don't need a best tuned model to begin
- Tell your cat upfront you won't have time for him in the coming weeks.

THANK YOU! QUESTIONS?

APPENDIX

MODEL USE CASES

Recommend items for consumers who has buying or viewing history.

For New consumers, new items: popularity recommender, random recommender, content filtering recommender

DATA LINEAGE

Raw Data

(20 Million * 9 columns)

								, 9)	(20692840
user_session	user_id	price	brand	category_code	category_id	product_id	event_type	event_time	
d380fec1-4eee-4b40-940e- 25H5305571b	560038527	3.65	NaN	NaN	1720400165430363096	5889092	view	2019-10-14 07:49:19 UTC	18439902
16d4d746-424a-4acb-9bc5- ac2ea7ac05a1	478239488	0.75	NaN	NaN	1487580007776650194	5793077	remove_from_cart	2019-11-28 10:55:53 UTC	16072835
94cdcb42-9f6f-45d8-90b9- 3770d39f3251	585185095	5.56	smart	NeN	1783999068909863670	5786837	cart	2020-01-22 11:03:23 UTC	2834254
7e922394-c389-4ae9-99a0- fc1b8496be2d	533866480	0.79	freedecor	NaN	1487580007675996893	5848407	view	2019-10-02 13:20:46 UTC	16844423
69bbb116-fb51-4ec9-bf50- Bea14ee5c5cb	509522345	5.56	NaN	NaN	1487580013170524342	5886802	view	2019-11-25 12:25:40 UTC	15635685
a55de4b7-0a87-4ae1-b5a0- f8f657764ef6	599906722	4.13	relouis	NaN	1487580013279576251	5916489	view	2020-01-11 21:36:56 UTC	1298770
e292d58c-ba70-4342-81cf- 81c2a14fe5e8	586476743	26.95	opi	NaN	1487580006293622112	5899164	view	2020-01-21 11:33:24 UTC	2691355
688e954e-668a-452a-a752- 43af00635f0a	422178927	4.37	artes	NaN	1487580007399162817	5857673	remove_from_cart	2020-01-23 04:14:22 UTC	2927998

User-item Interaction Matrix
(10 Million * 4 columns)

10157408 rows × 4 columns

Edge Index Format

tensor([[769, 168, 326, ..., 1683, 2006, 989], [1192, 1272, 1085, ..., 601, 621, 59]])

ETHICAL CONSIDERATIONS

Some ethical considerations of a recommender are:

- Does the system recommend inappropriate products?
- Privacy consideration: can sensitive information about a user be inferred by observing the recommendations that the system generates?
- Does the system limit recommendations in a way that nudges users in particular directions? It is possible to add an experiment to this project to introduce some randomness in the recommendation and see how a small % of randomness effects model accuracy.