# Sprawozdanie z projektu z kursu Projektowanie Efektywnych Algorytmów

Autor: Piotr Kołeczek

Numer albumu: 234940

Prowadzący projekt: Dr inż. Dariusz Banasiak

Grupa zajęciowa: środa 18:55 – 20:35

Termin oddania: 28.10.2019r.

Temat projektu: Implementacja i analiza algorytmów dokładnych rozwiązujących asymetryczny problem komiwojażera

(ATSP).

### 1. Wprowadzenie do problemu oraz wstęp teoretyczny.

Rozważanym problemem projektowym jest programowa implementacja asymetrycznego problemu komiwojażera. Ów problem polega na wyznaczeniu takiego cyklu Hamiltona w grafie pełnym ważonym, którego koszt jest możliwie jak najmniejszy. Problem ilustrowany jest często jako problem podróżnika, który ma za zadanie przejść przez wszystkie miasta w krainie przebywając możliwie jak najkrótszą drogę (lub poświęcając na podróż jak najmniej czasu).

Problem projektowy możemy rozważyć w przypadku, gdy droga z miasta **A** do miasta **B** jest taka sama jak z miasta **B** do miasta **A** oraz kiedy w przeciwnym kierunku **może** mieć inną wartość. Ta różnica dzieli problem na symetryczny (STSP) oraz asymetryczny problem komiwojażera (ATSP).

Problem komiwojażera jest problemem, który zalicza się do tak zwanych problemów *NP-trudnych*, czyli takich, dla których nie wynaleziono algorytmów, które rozwiązują ów problem w sposób optymalny o wielomianowej złożoności obliczeniowej. Algorytmy, które wyszukują optymalny cykl Hamiltona w grafie dla większych instancji grafów są bardzo złożone obliczeniowo i są bardzo czasochłonne, dlatego też często wykorzystuje się algorytmy liczące przybliżoną wartość optymalnej drogi.

## 2. Metody rozwiązania.

Przyjrzyjmy się najpierw najpopularniejszemu algorytmowi dokładnemu, który rozwiązuje problem projektowy. Jest to algorytm **Brute Force**, który po polsku nazywamy algorytmem *przeglądu zupełnego*, *siłowym*, *brutalnej siły*. Najtrafniejsze stwierdzenie to algorytm przeglądu zupełnego, ponieważ metoda Brute Force polega na odnalezieniu wszystkich cykli Hamiltona w rozważanym grafie, a następnie wybranie tego, którego koszt cyklu jest optymalny.

Niewątpliwą zaletą tego algorytmu jest fakt, że jest on dokładny, a zatem gdy zakończy się wykonywanie algorytmu Brute Force możemy być pewni, że znalazł on optymalne rozwiązanie problemu.

Pokrótce mówiąc działa on w taki sposób, że przeglądane są kolejne wierzchołki grafu do momentu dotarcia do końca (wierzchołka startowego), co zamyka cykl. W tym momencie sprawdza czy znalezione rozwiązanie jest lepsze od poprzedniego wyszukanego. Jeżeli tak, aktualny najlepszy cykl jest nadpisywany nowym (lepszym) i algorytm wraca ponownie do miejsca startu, wykonując czynność od nowa. Czynność ta jest powtarzana do momentu, kiedy wszystkie możliwe drogi w grafie zostaną przejrzane. I w tym momencie, niejawnie zresztą, odkryliśmy największą wadę tego algorytmu. Działanie algorytmu w taki sposób powoduje wytworzenie niesłychanie wielkiej liczby możliwych rozwiązań do przejrzenia. To rzutuje bezpośrednio na czas wykonywania algorytmu, którego złożoność wynosi:

## O(n!)

co oznacza, że algorytm Brute Force jest jednym z najwolniejszych algorytmów, gdyż mamy do czynienia ze złożonością wykładniczą (superwykładniczą).

Inną metodą, którą rozważymy jest metoda programowania dynamicznego. Jest to taka strategia działania, w której jeden duży problem optymalizacyjny dzielimy na mniejsze pod-problemy, łatwiejsze obliczeniowo. Określamy stan, który będzie podzbiorem zbioru wszystkich wierzchołków z wyszczególnionym początkiem i końcem.

Taka reprezentacja dużego problemu pozwala nam na optymalizację tego podejścia – skoro ścieżka naszego kupca ma być cyklem i ma przechodzić przez wszystkie wierzchołki, to bez straty ogólności możemy założyć, że zawsze zaczyna się ona w pewnym, wyszczególnionym wierzchołku (nazwijmy go wierzchołkiem początkowym). W ten sposób przestrzeń stanów można ograniczyć do podzbiorów zbioru wierzchołków, wraz z wyszczególnionym wierzchołkiem końcowym.

Dzięki programowaniu dynamicznemu złożoność czasową możemy zredukować do postaci:

### $O(n^2 \cdot 2^n)$

A taka złożoność w porównaniu do metody przeglądu zupełnego, choć dalej ponad-wykładnicza, jest znacznie mniej zajmująca czasowo.

# 3. Metodyka pomiarowa oraz pomiary czasowe.

Każdy z wyżej wymienionych algorytmów został poddany seryjnym pomiarom czasowym. Ze względu na fakt, iż algorytmy dokładne rozwiązujące problem komiwojażera mają ponad-wykładniczą złożoność czasową oraz obliczeniową, niemożliwym było testowanie algorytmów dla większych instancji grafów. Dlatego też do testów zostały wykorzystane małe instancje problemów przygotowane przez doktora Mierzwę oraz magistra Idzikowskiego (pliki z grafami zostały pobrane ze stron wspomnianych prowadzących). Górną granicę czasową testowania poprawności algorytmów przyjąłem na 1:30 minut. Wszelkie zmienne oraz struktury danych wykorzystywały 32-bitowe liczby całkowite. Dla algorytmu przeglądu zupełnego (Brute Force) zostało wykonanych 1000 prób pomiarowych w przypadku macierzy o rozmiarze N = 3, 4, 6, po 200 iteracji dla macierzy N = 10 oraz po 2 iteracje dla N = 12 oraz 13.

Dla programowania dynamicznego ze względu na bardzo szybkie operacje logiczne na liczbach oraz rozdzielenie problemu na mniejsze pod-problemy testowanie algorytmu rozpocząłem dla instancji grafów o rozmiarze od **14** wierzchołków. Dla instancji o rozmiarze N = 14, 15, 16 wykonano **1000** testów, dla N = 17 – **200** prób pomiarowych, dla N = 18 - **100** prób, N = **20** wykonano **10** iteracji, natomiast dla N = 21, 22, 23, 24 zrobiono kolejno **5, 3, 2** oraz **1** iterację pomiarową czasu.

Dla wszystkich testów wyniki zostały uśrednione.

Zadanie projektowe zostało zrealizowane w języku programowania C# w platformie .NET, a do samych pomiarów posłużyłem się precyzyjnym czasomierzem **Stopwatch**, który zawarty jest w przestrzeni **System.Diagnostics.** 

#### 3.1 Metoda Brute Force.

Poniżej zostały ukazane uśrednione wyniki dla czasu trwania metody przeglądu zupełnego problemu komiwojażera w postaci tabelarycznej oraz graficznej:

Tabela 1: Zależności czasowe między rozmiarem grafu, a czasem rozwiązywania TSP przy użyciu algorytmu Brute Force.

| Nazwa pliku | Liczba wierzchołków<br>grafu | Optymalny koszt<br>cyklu Hamiltona | Uzyskana waga<br>cyklu | Średni czas<br>wykonywania<br>algorytmu w [ms] |
|-------------|------------------------------|------------------------------------|------------------------|------------------------------------------------|
| tsp_3.txt   | 3                            | 147                                | 147                    | 0.0373222                                      |
| tsp_4.txt   | 4                            | 107                                | 107                    | 0.0397718                                      |
| tsp_6_2.txt | 6                            | 80                                 | 80                     | 0.0525811                                      |
| tsp_10.txt  | 10                           | 212                                | 212                    | 51.147784                                      |
| tsp_12.txt  | 12                           | 264                                | 264                    | 6314.35295                                     |
| tsp_3.txt   | 13                           | 269                                | 269                    | 80019.7584                                     |



Rysunek 1: Zależność czasu wykonywania algorytmu przeglądu zupełnego w zależności od rozmiaru macierzy grafu.

#### 3.2. Metoda programowania dynamicznego.

W metodzie programowania dynamicznego zastosowano technikę podziału całego problemu na szereg mniejszych pod-problemów – główną ideą tej metody jest obliczenie optymalnego rozwiązania dla wszystkich pod-problemów długości N (N jest wartością określającą liczbę wierzchołków w grafie) korzystając z rekurencyjnie wyliczonych wartości mniejszych pod-problemów o długości N-1.

W rozważanym problemie są potrzebne dwie rzeczy:

- Zestaw odwiedzonych wierzchołków w rozważanej ścieżce,
- Indeks ostatniego odwiedzonego wierzchołka w ścieżce.

Posiadając zbiór N-elementowy, liczba wszystkich podzbiorów danego zbioru wynosi 2<sup>N</sup>. Żeby móc zapamiętać aktualny stan ścieżki, czyli nasz zestaw odwiedzonych wierzchołków możemy się posłużyć tak zwaną maską bitową. Maska bitowa o długości N to liczba binarna o N-bitach, w której to każdy bit może zostać ustawiony na 1 lub 0 (1 – wierzchołek odwiedzony, 0 – wierzchołek nieodwiedzony).

#### 3.2.1. Opis implementacji algorytmu.

Zaimplementowany algorytm wykorzystuje dwie tablice o rozmiarze [N][2<sup>N</sup>] – jedna służy do przechowywania podproblemów, które są generowane dla mniejszych podgrafów całego grafu (dla zbiorów M elementowych ze zbioru N, gdzie N jest równe liczbie miast). W celu oznaczania kolejnych wierzchołków, które zostały odwiedzone wykorzystałem 32 bitową maskę (int) i wykonując operacje logiczne AND, OR i XOR. Najlepsza droga jest przechowywana na stosie o własnej implementacji.

#### 3.2.2. Przykład rozwiązania TSP metodą programowania dynamicznego.

Rozważmy macierz kosztów:

|   | 0   | 1   | 2   |  |
|---|-----|-----|-----|--|
| 0 | inf | 49  | 79  |  |
| 1 | 60  | Inf | 91  |  |
| 2 | 87  | 8   | inf |  |

Pogrubione liczby w pierwszym wierszu oraz pierwszej kolumnie oznaczają ich numerację.

Tablice pod-problemów dla każdego z wierzchołka:

| inf  | inf | inf | inf | inf | inf | inf | inf  |
|------|-----|-----|-----|-----|-----|-----|------|
| inf  | inf | inf | inf | inf | inf | inf | inf  |
| linf | inf | inf | inf | inf | inf | inf | infl |

Rozpoczynamy sprawdzanie od wierzchołka 0. Początkowa maska odwiedzin wierzchołków: 001.

Dla wierzchołka 0:

Czy maska odwiedzin wynosi 111? NIE (wynosi 001, przechodzę dalej)

Czy 0 wierzchołek został odwiedzony? TAK (omijam)

Czy 1 wierzchołek został odwiedzony? **NIE** (zaczynam go rozpatrywać)

Nowa maska odwiedzin = **011** (wierzchołek **0** oraz **1** odwiedzony)

Wartość podproblemu = macierzKosztów[0][1] + obliczenie kosztu(1, 011 = 3) -> wchodzę do miasta 1

Przy przejściu z wierzchołka **0** do **1**:

Czy maska odwiedzin wynosi 111? NIE (wynosi 011, przechodzę dalej)

Czy 0 wierzchołek został odwiedzony? TAK (omijam)

Czy wierzchołek 1 został odwiedzony? TAK (omijam)

Czy wierzchołek 2 został odwiedzony? **NIE** (zaczynam go rozpatrywać)

Nowa Maska odwiedzin = **111** (wierzchołek **0, 1, 2** odwiedzony).

Wartość podproblemu = macierzKosztów[1][2] + obliczenie kosztu(2, 111 = 7) -> wchodzę do miasta 2

Przy przejściu z wierzchołka 1 do 2:

Czy maska odwiedzin wynosi 111? TAK, zwracam macierzKosztów[2][0] = 87

Powrót do wierzchołka 1:

Wartość podproblemu = macierzKosztów[1][2] + obliczenie kosztu (2, 111 = 7) = 91 + 87 = 178

Podproblem[1][3] = 178

Tablice podproblemów:

|inf inf inf inf inf inf inf inf| |inf inf inf 178 inf inf inf| inf |inf inf inf inf inf inf inf inf|

Powrót do wierzchołka 0:

Wartość podproblemu = macierzKosztów[0][1] + obliczenie kosztu(1, 011 = 3) = 49 + 178 = 227

Przy przejściu z wierzchołka 0 do 2:

Nowa maska = 101 (**0** i **2** wierzchołek odwiedzony)

Wartość podproblemu = macierzKosztów[0][2] + obliczenie kosztu(2, 101 = 5) -> wchodzę do miasta 2

Dla wierzchołka 2:

Czy maska odwiedzin wynosi 111? NIE (wynosi 101, przechodzę dalej)

Czy 0 wierzchołek został odwiedzony? **TAK** (omijam)

Czy wierzchołek 1 został odwiedzony? **NIE** (zaczynam go rozpatrywać)

Nowa maska odwiedzin = **111** (wierzchołek **0, 1 i 2** odwiedzony)

Wartość podproblemu = macierzKosztów[2][1] + obliczenie kosztu(1, 111 = 7) -> wchodzę do miasta 1

Dla wierzchołka 1:

Czy maska odwiedzin wynosi 111? TAK zwracam macierzKosztów[1][0] = 60

#### Powrót do wierzchołka 2:

Wartość podproblemu = macierzKosztów[2][1] + obliczenie kosztu(1, 111 = 7) = 8 + 60 = 68

Podproblem[2][5] = 68

#### Tablice podproblemów:

| inf |
|-----|-----|-----|-----|-----|-----|-----|-----|
| inf | inf | inf | 178 | inf | inf | inf | inf |
| inf | inf | inf | inf | inf | 68  | inf | inf |

#### Wracam do wierzchołka 0:

Wartość podproblemu = macierzKosztów[0][2] + obliczenie kosztu(1, 101 = 5) = 79 + 68 = **147** 

Podproblem[0][1] = **147** 

#### Tablice podproblemów:

| inf | 147 | inf | inf | inf | inf | inf | inf |
|-----|-----|-----|-----|-----|-----|-----|-----|
| inf | inf | inf | 178 | inf | inf | inf | inf |
| inf | inf | inf | inf | inf | 68  | inf | inf |

Najlepszy obliczony koszt przy odwiedzeniu wszystkich wierzchołków = 147

Najkrótsza droga: 0 -> 2 -> 1 -> 0.

### 3.2.3. Wyniki pomiarów metody programowania dynamicznego.

Poniżej zostały przedstawione pomiary czasowe dla programowania dynamicznego:

Tabela 2: Zależności czasowe między rozmiarem grafu, a czasem rozwiązywania TSP przy użyciu programowania dynamicznego.

| Nazwa pliku | Liczba wierzchołków<br>grafu | Optymalny<br>koszt cyklu<br>Hamiltona | Uzyskana waga<br>cyklu | Średni czas<br>wykonywania<br>algorytmu w [ms] |
|-------------|------------------------------|---------------------------------------|------------------------|------------------------------------------------|
| tsp_14.txt  | 14                           | 282                                   | 282                    | 6.3360164                                      |
| tsp_15.txt  | 15                           | 291                                   | 291                    | 14.3460906                                     |
| data16.txt  | 16                           | 156                                   | 156                    | 35.7130162                                     |
| br17.atsp   | 17                           | 39                                    | 39                     | 95.507767                                      |
| data18.txt  | 18                           | 187                                   | 187                    | 274.838689                                     |
| tsp_20.txt  | 20                           | 20                                    | 20                     | 1415.76021                                     |
| gr21.tsp    | 21                           | 2707                                  | 2707                   | 3430.76272                                     |
| tsp_22.txt  | 22                           | 22                                    | 22                     | 7557.962166                                    |
| tsp_23.txt  | 23                           | 23                                    | 23                     | 17656.1605                                     |
| gr24.tsp    | 24                           | 1272                                  | 1272                   | 41841.8251                                     |



Wykres 2: Zależność czasu wykonywania algorytmu programowania dynamicznego w zależności od rozmiaru macierzy grafu.



Wykres 3: Porównanie algorytmów rozwiązujących problem komiwojażera dla różnej wielkości grafów.

### 4. Wnioski oraz podsumowanie.

Zadanie projektowe miało na celu zapoznać studenta z różnymi metodami rozwiązania problemu optymalizacyjnego, jakim jest problem komiwojażera. Ze względu na ogromną złożoność obliczeniową rozważanego problemu (zawierającego się w przestrzeni problemów NP-trudnych) niemożliwym było przetestowanie większych instancji problemów w rozsądnym czasie.

Wszystkie algorytmy rozwiązujące problem komiwojażera zostały zaimplementowane w projekcie i działają w pełni poprawnie. Obserwując wyniki czasowe wszystkich algorytmów możemy łatwo zauważyć, że rozwiązanie problemu komiwojażera metodą programowania dynamicznego z użyciem masek bitowych wykonuje się wielokrotnie szybciej od przeglądu zupełnego. Jest to spowodowane naturą samego programowania dynamicznego – rozwiązywanie całego problemu jako szereg mniejszych pod-problemów. Niemniej jednak, redukcja złożoności czasowej programowania dynamicznego względem przeglądu zupełnego pozwoliła wykonać testy dla instancji maksymalnie o 10 wierzchołków większych.