Chittaranjan Pradhan

Query Using Relational Algebra

Database Management System 13 Query Using Relational Algebra

Chittaranjan Pradhan School of Computer Engineering, KIIT University

Employee Database

Emp(empNo,name)
Project(projectNo,pName,manager)
Assigned_To(projectNo,empNo)

Query: Find empNo of employees working on project 'comp01'

 $\pi_{empNo} (\sigma_{projectNo='comp01'}(Assigned_To))$

Query: Find details of employees working on project 'comp01'

 $\pi_{empNo,name}$ ($\sigma_{projectNo='comp01'}$ (Emp \bowtie Assigned_To))

Query: Obtain the details of employees working on the database project

π _{empNo,name} (σ _{pName='database'}(Emp \bowtie Assigned_To \bowtie Project))

Query Using Relationa Algebra

Chittaranjan Pradhan

Query Using Relational Algebra

Query: Find the details of employees working on the 'comp01' and 'comp02' projects

π empNo,name (σ projectNo='comp01' \land projectNo='comp02' (Emp \bowtie Assigned_To))

Query: Find the empNo who don't work on project 'comp01'

π _{empNo} (Assigned_To) - π _{empNo} (σ _{projectNo='comp01'} (Assigned_To))

This query can be solved as:

π _{empNo} (σ _{projectNo \neq ' comp01'} (Assigned_To))

Sailor Database

Sailors(<u>sid</u>, sname, rating, age)
Boats(<u>bid</u>, bname, color)
Reserves(<u>sid</u>, <u>bid</u>, <u>day</u>)

Query: Find the names of sailors who've reserved boat 105

 $\pi_{sname} (\sigma_{bid=105} (Reserves \bowtie Sailors))$

This query can also be written as:

 π sname (σ bid=105(Reserves) \bowtie Sailors)

Query: Find the names of sailors who've reserved a green boat

 π sname (σ color='green' (Boats \bowtie Reserves \bowtie Sailors))

This query can also be written as:

 π_{sname} (($\sigma_{color='green'}(Boats)$) \bowtie Reserves \bowtie Sailors)

Query Using Relationa

Chittaranjan Pradhan

Query Using Relational Algebra

Query Using Relationa Algebra

Chittaranjan Pradhan

Query Using Relational Algebra

Query: Find the sailor ids of the sailors who've reserved all boats

 $\pi_{\textit{sid},\textit{bid}}$ (Reserves) $\div \pi_{\textit{bid}}$ (Boats)

Query: Find the names of sailors who've reserved all boats

- 1. ρ Temp (π sid,bid (Reserves) \div π bid (Boats))
- 2. π sname (Temp \bowtie Sailors)

This query can also be written as:

 π sname,bid (Sailors \bowtie Reserves) \div π bid (Boats)

Query: Find the colors of boats reserved by Akash

 $\pi_{color} ((\sigma_{sname='Akash'}(Sailors)) \bowtie Reserves \bowtie Boats)$

Query: Find all sailor id's of sailors who have a rating of at least 10 or reserved boat 105

 $\pi_{sid} \ (\sigma_{rating \geq 10}(Sailors)) \cup \pi_{sid} \ (\sigma_{bid=105}(Reserves))$

Query: Find the names of sailors who have not reserved a green boat

 π_{sname} ((π_{sid} (Sailors) - π_{sid} ($\sigma_{color='green'}$ (Boats) \bowtie Reserves)) \bowtie Sailors)

Query: Find the sailor id's of sailors with age over 20 who have not reserved a green boat

$$\pi_{sid}$$
 ($\sigma_{age>20}$ (Sailors)) - π_{sid} ($\sigma_{color='green'}$ (Boats) \bowtie Reserves)

Query: Find the names of sailors who have reserved at least two boats

 π Reserves.bid (\$\sigma\$ Reserves.bid=Reserves2.bid\$\wedge\$Reserves2.sid (Reserves X \$\rho\$ Reserves2 (Reserves)))

Query: Find the sailor id's of sailors whose rating is better than some sailor called Bobby

 π Sailors2.sid (σ Sailors2.rating>Sailors.rating(ρ Sailors2 (Sailors) X σ sname='Bobby' (Sailors)))

Query: Find the sailor id's of sailors whose rating is better than every sailor called Bobby

 $\pi_{sid}(Sailors) - \pi_{Sailors2.sid} (\sigma_{Sailors2.rating \leq Sailors.rating}(\rho_{Sailors2}) (Sailors) X \sigma_{sname='Bobby'}(Sailors)))$

Query: Find the sailor id's of sailors with the highest rating

 $\pi_{sid}(Sailors)$ - $\pi_{Sailors2.sid}$ ($\sigma_{Sailors2.rating}$ (Sailors) X (Sailors))

Query Using Relationa Algebra

Chittaranjan Pradhan

Query Using Relational Algebra

Shipment Database

Customer(<u>cust_id</u>, cust_name, annual_revenue)
Truck(<u>truckno</u>, driver_name)
City(city_name, population)
Shipment(<u>shipment_no</u>, cust_id, weight, truckno, destination_city)

Query: Find the list of shipment numbers for shipments weighing over 20 pounds

 $\pi_{shipment_no} (\sigma_{weight>20pound}(Shipment))$

Query: Find the names of customers with more than \$10 million in annual revenue

 π_{cust_name} ($\sigma_{annual_revenue}$ >\$10million(Customer))

Query: Find the driver of truck 45

 π driver_name (σ truckno=45(Truck))

Query: Find the names of cities which have received shipments weighing over 100 pounds

 $\pi_{destination_city} (\sigma_{weight>100pounds}(Shipment))$

Query: Find the name and annual revenue of customers who have sent shipments weighing over 100 pounds

 π cust_name,annual_revenue (σ weight>100pounds(Customer \bowtie Shipment))

Query: Find the truck numbers of trucks which have carried shipments weighing over 100 pounds

 $\pi_{truckno}$ ($\sigma_{weight>100pounds}$ (Shipment))

Query Using Relationa

Chittaranjan Pradhan

Query Using Relational Algebra

Query: Find the names of drivers who have delivered shipments weighing over 100 pounds

 $\pi_{\textit{ driver_name}} \ (\sigma_{\textit{ weight} > 100 pounds}(Shipment \bowtie Truck))$

Query: List the cities which have received shipments from customers having over \$15 million in annual revenue

 π destination_city (σ annual_revenue>\$15million(Customer \bowtie Shipment))

Query: List the customers having over \$5 million in annual revenue who have sent shipments weighing greater than 1 pound

 π_{cust_name} ($\sigma_{annual_revenue>\$5million}$ (Customer) $\bowtie \sigma_{weight>1pound}$ (Shipment))

This query can also be written as:

 π_{cust_name} ($\sigma_{annual_revenue}$ \$5million \(weight > 1pound (Customer \) Shipment ()

Query: List the customers whose shipments have been delivered by truck driver Ramesh

 π cust_name (σ driver_name='Ramesh' (Customer ⋈ Shipment ⋈ Truck))

Query: Find the customers having over \$5 million in annual revenue who have sent shipments weighing less than 1 pound or have sent a shipment to Bhubaneswar

 π_{cust_name} ($\sigma_{annual_revenue}$ >\$5million(Customer) $\bowtie \sigma$ weight>1 $pound \lor destination_city='Bhubaneswar'$ (Shipment))

Query: Find the customers who have sent shipments to every city with population over 500000

 $\pi_{\textit{cust_name},\textit{destination_city}}$ (Customer \bowtie Shipment) $\div \pi_{\textit{city}}$ ($\sigma_{\textit{population}>500000}(\text{City}))$

Query: List the drivers who have delivered shipments for customers with annual revenue over \$20 million to cities with population over 1 million

```
\pi driver_name (\sigma annual_revenue>20million(Customer) \bowtie Shipment \bowtie Truck \bowtie (\sigma population>1million(City)))
```

This query can also be written as:

```
\pi driver_name (\sigma annual_revenue>20million\population>1million(Customer \bowtie Shipment \bowtie Truck \bowtie City))
```

Query: Find the cities which have received shipments from every customer

```
\pi destination_city,cust_id (Shipment) \div \pi cust_id (Customer)
```

Query: Find the drivers who have delivered shipments to every city

```
\pi driver_name,destination_city (Truck \bowtie Shipment) \div \pi city_name (City)
```