Average Case Analysis

	InpType1			InpType2			InpType3			InpType4		
	n=100	n=1000	n=10000	n=100	n=1000	n=10000	n=100	n=1000	n=10000	n=100	n=1000	n=10000
Ver1	0.000100 89874267 578125	0.00147919 654846191 4	0.017201471 32873535	0.000126 60026550 29297	0.00160212 516784667 97	0.016389608 38317871	0.000145 81680297 851563	0.00196595 191955566 4	0.016536808 013916014	0.00010 671615 600585 938	0.001185 3694915 771485	0.0135997 772216796 87
Ver2	0.000137 09068298 339844	0.00239472 389221191 42	0.023316049 575805665	0.000216 05491638 183595	0.00215144 157409667 95	0.020286846 16088867	0.000236 70196533 203124	0.00232586 860656738 27	0.022264480 590820312	0.00016 174316 40625	0.001484 9662780 761718	0.0182497 024536132 82
Ver3	0.000156 64100646 972656	0.00247402 191162109 36	0.025769138 336181642	0.000198 07815551 757811	0.00325946 807861328 14	0.024078893 661499023	0.000283 24127197 265625	0.00272598 266601562 5	0.025165367 126464843	0.00018 496513 366699 218	0.001785 3736877 441405	0.0204878 330230712 9
Ver4	0.000109 72023010 253906	0.00133676 528930664 07	0.016930961 60888672	0.000136 08932495 117186	0.00206956 863403320 3	0.018203973 7701416	0.000200 12855529 785156	0.00202178 955078125	0.017283296 585083006	0.00012 450218 200683 595	0.001234 2453002 929688	0.0163566 589355468 76

Comments:

- 1. Change with respect to different versions (keeping InpType and n fixed):
 - -Ver1 performs best, then Ver4, then Ver2. Ver3 performs the worst.

This conclusion is consistent with the theory because of several reasons:

- Since the input is already created with randomization, the pivoting strategy does not affect the optimal partitioning of the array when calling QuickSort(L) with left and right partitions. So, runtime is affected by some other operations that differ from version to version. For example, pivot choosing strategy can cause this difference. Ver1 and Ver4 has fastest strategies, because Ver1 chooses pivot directly and Ver4 with very small complexity (sorting 3 elements and chooses median). Ver2 has the slowest strategy because it chooses a random number, this operation is slower. Thus, Ver2 is slower than Ver1 and Ver4.
- The reason that Ver3 performs the worst originates from its additional complexity that comes from shuffling the input array.
- 2. Change with respect to different data size, n (keeping InpType and Ver fixed):
 - n = 10000 is the slowest and n = 100 is the fastest in terms of runtime.

This conclusion is consistent with the theory:

- Since all versions have complexity Theta(n*logn) in average case, their execution time increases with n regardless of InpType.
- 3. Change with respect to different InpType (keeping n and Ver fixed):
 - InpType4 performs the best. InpType1 performs the worst.

This conclusion means that if we increase the frequency of elements (keeping n fixed), our execution time decreases. This is consistent with the theory:

• In the algorithm it can be seen that, regardless of the version, the increasing frequency of elements causes less iterations in the Rearrange(L) function's while loops. That is the number of recursive calls remains approximately the same with a decreased cost caused by the decreasing number of operations in the Rearrange(L) function.

Worst Case Analysis

	InpType1			InpType2			InpType3			InpType4		
	n=100	n=1000	n=10000	n=100	n=1000	n=10000	n=100	n=1000	n=10000	n=100	n=1000	n=10000
Ver1	0.000877 85720825 19531	0.03826737 403869629	3.702209234 237671	0.000365 73410034 17969	0.02422881 126403808 6	2.591908454 8950195	0.000362 87307739 25781	0.01821899 4140625	1.744736194 6105957	0.00013 661384 582519 53	0.001776 2184143 066406	0.0172865 390777587 9
Ver2	0.000507 11631774 90234	0.00185346 603393554 69	0.021548032 760620117	0.000186 68174743 652344	0.00176405 906677246 1	0.027195215 225219727	0.000282 28759765 625	0.00284147 262573242 2	0.026644706 72607422	0.00021 982192 993164 062	0.001315 8321380 615234	0.0184185 504913330 08
Ver3	0.000478 98292541 503906	0.00230002 403259277 34	0.026605367 66052246	0.000198 07815551 757811	0.00200510 025024414 06	0.031321525 57373047	0.000331 64024353 027344	0.00307011 604309082 03	0.024943828 582763672	0.00068 235397 338867 19	0.001619 3389892 578125	0.0215642 452239990 23
Ver4	0.000310 42098999 02344	0.00155901 908874511 72	0.018321752 548217773	0.000175 47607421 875	0.00132608 413696289 06	0.022697210 31188965	0.000228 64341735 839844	0.00130248 069763183 6	0.022061586 380004883	0.00097 131729 125976 56	0.001800 5371093 75	0.0150141 716003417 97

Comments:

- 1. Change with respect to different versions (keeping InpType and n fixed):
 - Ver4 is the best, Ver1 is the worst in terms of execution times. Ver2 and Ver3 has similar execution times to Ver4. This is consistent with the theory as follows:
 - The main difference comes from the total number of recursive calls of QuickSort(L). The pivoting strategy and the input format cause this difference. In Ver1 we call QuickSort(L) with the worst possible partitioning strategy that leads to highest complexity (Partitioning caused by pivoting strategy). In Ver2 and Ver3 we call QuickSort(L) with the nearly optimal partitioning strategy through choosing the pivot randomly and shuffling the array, respectively. In Ver4 we achieved best possible partitioning because input is already sorted and we always divide from the middle with our pivoting strategy of "median of three". This leads to the best performance.
- 2. Change with respect to different data size, n (keeping InpType and Ver fixed):
 - n = 10000 is the slowest and n = 100 is the fastest in terms of runtime.

This conclusion is consistent with the theory:

- Since Ver1 has Theta(n**2) complexity, its execution time increases with n regardless of InpType.
- In all other versions expected complexities are Theta(n*logn). So, their execution time increases with n regardless of InpType.
- 3. Change with respect to different InpType (keeping n and Ver fixed):
 - InpType4 performs the best. InpType1 performs the worst.

This conclusion means that if we increase the frequency of elements (keeping n fixed), our execution time decreases. This is consistent with the theory:

• In the algorithm it can be seen that, regardless of the version, the increasing frequency of elements causes less iterations in the Rearrange(L) function's while loops. That is the number of recursive calls remains approximately the same with a decreased cost caused by the decreasing number of operations in the Rearrange(L) function.