数据结构作业 ^{第一次}

姓名: 刘士祺

学号: 2017K8009929046

1. 习题 1-8

- (1) n-1
- (2) n-1
- (3) n-1
- $(4) \frac{n(n+1)}{2}$
- $(5) \frac{(n+2)(n+1)n}{6}$
- $(6) \lfloor \frac{n-1}{2} \rfloor + 1$
- $(7) \lfloor \sqrt{n} \rfloor$
- (8) 100
- 2. 习题 1-9

解 时间复杂度为 $O(\log(n))$, $n = \log_2(\frac{i}{4})$

3. 习题 1-12

- (1) 正确
- (2) 不正确
- (3) 不正确
- (4) 正确
- (5) 不正确

4. 习题 2-4

(1)

5. 习题 2-5

6. 习题 2-9

- (1) 将链表的头节点改放于链表尾部。
- (2) 将链表在 pa 与 pb 前切开,连接为两个单循环链表。
- 7. 习题 3-3

解 stack

8. 习题 3-7

解 此处用% 表示栈底。设 $B \times C = G, G/D = H A - H = I E^F = J I + J = K$

C/ C/ 14 · · · · · · · · · · · · · ·	. 1747/40	$0 \land C = G, G/D = H A =$
OPTR 栈	OPND 栈	剩余字符串
%	%	$\underline{A} - B \times C/D + E \uparrow F$
% A	%	$\underline{-}B \times C/D + E \uparrow F$
% A	% -	$\underline{B} \times C/D + E \uparrow F$
% A B	% -	$\underline{\times}C/D + E \uparrow F$
% A B	% - ×	$\underline{C}/D + E \uparrow F$
% A B C	% - ×	$\underline{/}D + E \uparrow F$
% A G	% -	$\underline{/}D + E \uparrow F$
% A G	% - /	$\underline{D} + E \uparrow F$
% A G D	% - /	$\underline{+}E \uparrow F$
% I	%	$\underline{+}E\uparrow F$
% I	% +	$\underline{E} \uparrow F$
% I E	% +	<u></u> † <i>F</i>
% I E	% +↑	<u>F</u>
% I E F	% +↑	
% I J	% +	
% K	%	
	OPTR 栈 % A % A 8 A B % A B C % A G % A G % A G % I % I % I E % I E % I E % I J	OPTR 桟 OPND 桟 % A % - % A B % - × % A B C % - × % A G D % - / % I E % + ↑ % I E F % I T

9. 习题 3-10

解 所求的函数为:

```
void test() {
   int x;
   Stack s;
   InitStack(s);
   do {
      scanf(x);
      if (x != 0) Push(s, x);
      else break;
   } while (true);
   int sum = 0;
   printf(sum);
```

```
while (!StackEmpty(s)) {
    Pop(s, x);
    sum += x;
    printf(sum);
}
```