LATEXAssignment-I

Deepika Gupta (20201018)

21.09.2021

1 Enumerate

- 1. Prove that there is only one identity in a Group
- 2. In a group G, the right and left cancellation laws hold.
- 3. Prove that each element in a Group has unique inverse.
- 4. State and prove Socks Shoes property of a Group.
- 5. The curve $y = \sqrt{x}$, where $x \ge 0$, is concave
- 6. If $\sin \theta = 0$ and $0 \le \theta < 2\pi$, then $\theta = 0$ or $\theta = \pi$.

2 Itemize

- The identity holds for all real $x : \sin^2 x + \cos^2 x = 1$
- Let $x = (x_1, x_2, \dots, x_n)$ be a vector of non-negative integers. Let

$$M_r(x) = \left(\frac{x_1^r + x_2^r + \dots + x_n^r}{n}\right)^{1/r}, r \in \mathbb{R} \setminus \{0\}$$

• It is not always true that

$$\frac{a+b}{c+d} = \frac{a}{c} + \frac{b}{d}.$$

- The curve $y_{10} = \sqrt[5]{x}$, where $x \ge 0$, is concave
- A set $A = \{x : x \text{ is an English Alphabet}\}\$

3 Ascents

Szegö

tilde

Ò

Szegó

abD

Array

$$F(x) = \begin{cases} x, & x = 0; \\ x^2, & x > 0; \\ x + 5, & x < 0; \end{cases}$$

$$A = \begin{pmatrix} 1 & 4 & 7 & 4 & 8 \\ 2 & 5 & 8 & 5 & 9 \\ 3 & 6 & \alpha & 3 & 0 \\ \beta & 8 & 5 & 8 & 10 \\ 34 & 76 & 0 & 6 & 8 \end{pmatrix}$$
$$\det A = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & \alpha \end{vmatrix}$$

$$\det A = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & \alpha \end{vmatrix}$$

S.No.	Name	Marks(10)
1	ABC	7
2	DF	8

$$\begin{array}{c|cccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
\hline
3 & 6 & \alpha
\end{array}$$

$$\begin{array}{ll} |a+b+c| & \leq & |a+b|+|c| \\ & \leq & |a|+|b|+|c| \end{array}$$

$$|a+b+c| \le |a+b|+|c|$$

 $\le |a|+|b|+|c|$ (1)