

Tema 5. Modelado de comportamiento del sistema

Modelado del Software

Escuela Politécnica

Contenidos

- Introducción
- Eventos
- Diagrama de Estados
- Diagrama de Actividades
- Conclusión

Contenidos

• Introducción

- Eventos
- Diagrama de Estados
- Diagrama de Actividades
- Conclusión

Modelando el comportamiento de un sistema

- En el tema anterior vimos las interacciones como mecanismo para modelar aspectos dinámicos de un sistema.
- En este tema estudiamos conceptos y diagramas empleados para modelar el **comportamiento dinámico** de un sistema determinado por cosas que ocurren externa o internamente.
- El comportamiento de un objeto individual se modela mediante una máquina de estados.
- Además de los diagramas de casos de uso, y de interacción (Secuencia y comunicación), para modelar aspectos dinámicos de un sistema también se usan:
 - Diagramas de estados (orientados a eventos)
 - Diagramas de actividades (orientados a actividades)

Contenidos

- Introducción
- Eventos

- Diagrama de Estados
- Diagrama de Actividades
- Conclusión

Definición de evento

- Evento: acontecimiento significativo, ubicado en el tiempo y en el espacio
- Son los estímulos que hacen a una clase cambiar su estado
- Los eventos pueden ser:
 - Externos: fluyen entre el sistema y sus actores
 - Internos: fluyen entre objetos del sistema
- Pueden ser:
 - Síncronos: llamadas (invocación de operaciones)
 - Asíncronos: señales (excepciones), paso de tiempo, cambio de estado

Tipos de eventos (i)

Evento señal

- Permite el intercambio de objetos entre objetos.
- Las señales son parecidas a las clases
 - Pueden tener instancias, atributos y operaciones
 - Pueden existir relaciones de generalización
- Una señal puede originarse por varios motivos:
 - Acción de transición de un estado a otro
 - o Consecuencia de ejecutar una operación
 - o Etc.

Tipos de eventos (ii)

Evento señal

- Las señales se modelan como clases estereotipadas <<signal>>
- Para indicar que una operación envía una señal se usa la dependencia estereotipada
 <<send>>

Tipos de eventos (iii)

Evento llamada

- Representa la invocación de una operación de un objeto
- Suele ser síncrono (esperar resultado de la operación)
- Dos casos especiales de evento llamada:
 - o Creación de un objeto <<create>>
 - Destrucción de un objeto <<destroy>>
- Modelado de un evento llamada (similar a una señal):

Tipos de eventos (iv)

Evento de Tiempo

- Representa un instante en el tiempo mediante una expresión.
- La expresión puede ser:
 - o Absoluta: at <valor temporal>
 - Ejm: at (21:00h)
 - o Relativa: after <valor temporal>
 - Ejm: after (2 segundos)

Tipos de eventos (v)

Evento de Cambio

- Representa un cambio de estado o el cumplimiento de alguna condición.
- Notación: When (<expresion booleana>)
- Ocurre una vez cuando el valor de la expresión cambia de falso -> verdadero
 - El evento no ocurre si la expresión pasa de verdad -> falso
 - No se repite mientras la expresión siga siendo verdadera.

Uso de los tipos de eventos

- Eventos de tipo cambio o tiempo son de uso local en un objeto.
- Notar que los eventos señal o llamada implica al menos dos objetos:
 - Emisor: el que envía la señal o invoca la operación
 - Receptor: el que recibe la señal o implementa la operación
- Cualquier objeto puede:
 - Enviar eventos de tipo señal a otros objetos
 - Invocar operaciones (i.e. enviar eventos de tipo llamada) a otros objetos
 - Recibir eventos de tipo señal o llamada

- Uso de los tipos de eventos
 - Los eventos de llamada que puede recibir un objeto se modelan como **operaciones/métodos** sobre la clase objeto.
 - Las señales que puede recibir un objeto se modelan designándolas en un compartimento extra de la clase.

Contenidos

- Introducción
- Eventos
- Diagrama de Estados

- Diagrama de Actividades
- Conclusión

- Muestra máquinas de estados
- Consta de estados, transiciones, eventos y acciones
 - **Estado**: situación de un objeto.
 - Evento: acontecimiento que ocurre en un instante concreto.
 - **Transición**: relación entre dos estados. Al pasar de uno a otro se realizan acciones. Para entrar el segundo estado se indica condiciones.
 - **Acción**: actividad o tarea que realiza el sistema, provocando un cambio de estado.
- Cubren la vista dinámica de un objeto.
- Resaltan el comportamiento dirigido por eventos de un objeto.

Definición de máquina de estados

- Secuencia de **estados**
- - Por las que pasa un **objeto** a lo largo de su **vida**
- Como consecuencia de procesar eventos que recibe
- -Notar que...
- o Modelan el comportamiento de un objeto.
- El comportamiento de una sociedad de objetos lo modelan los diagramas de interacciones.

Uso de máquinas de estados

- Son la mejor forma de especificar el comportamiento de los objetos reactivos
 - Objetos que responden ante eventos externos o internos
 - Tienen "memoria", es decir, su comportamiento depende de la historia
 - Tiene un ciclo de vida bien definido, con un progresión basada en estados y transiciones entre éstos en base a eventos.
- Una máquina de estados puede visualizarse de dos formas:
 - Destacando los estados de los objetos y sus transiciones (Diagramas de estados)
 - Destacando el flujo de control entre actividades
 (Diagramas de Actividades)

Máquina de estados (i)

- Una máquina de estados tiene forma de grafo dirigido con diferentes tipos de arcos y nodos
 - Nodos: representan los distintos estados por los que pasa un objeto
 - Arcos: representan las transiciones entre dichos estados. Normalmente estas transiciones son disparados por eventos.

В

Máquina de estados (ii)

• Estado:

- Condición o situación en la vida de un objeto
- Un objeto permanece en un estado un tiempo finito de tiempo
- En un estado, el objeto hace alguna actividad o espera algún evento.

Transición:

- Relación entre dos estados de un objeto
- Se transita entre entre estados cuando ocurra un evento y se satisfagan algunas condiciones.
- Componentes:
 - Estado origen / destino
 - Evento disparo: provoca el disparo de la transición
 - Condición de guarda: expresión booleana. Sólo si es verdadera se puede disparar la transición.

Α

Acción: Comportamiento ejecutable que realiza el objeto.

Evento [condición] / Acción

Máquina de estados (ii)

• Estado:

Máquina de estados (ii)

• Transición: La transición puede tener tres elementos (opcionales): evento [guarda] / acción.

Estado 1 evento_{opc}(atributos) _{opc} [guarda] _{opc} /acciones_{opc} Estado 2

Modelado del Software. Tema 6: Modelado de Comportamiento del Sistema

Máquina de estados (ii)

Máquina de estados (iii)

- Es una máquina de estados de un objeto
- Gráficamente:
 - Grafo dirigido: colección de nodos y arcos
 - Estado inicial y final claramente diferenciados del resto

 Ejemplo de diagrama de estados de objetos de la clase "Socio":

• Ejemplo de diagrama de estados de objetos de la clase "Persona":

UCAM |

Artículo recibido [algún artículo agetado], man de la comportamiento del Sistema

Contenidos

- Introducción
- Eventos
- Diagrama de Estados
- Diagrama de Actividades

Conclusión

Diagrama de Actividades

- Muestran el flujo de trabajo paso a paso de una computación que implica la coordinación de varios objetos.
- Cubren la vista dinámica de un sistema
- Son el equivalente en OO a los diagramas de flujo y DFDs.
- Se emplean para especificar el proceso de negocio o flujo de trabajo asociado a un caso de uso.

Actividad

- Es una ejecución no atómica dentro de una máquina de estados.
- Una actividad consiste en un flujo entre nodos de actividad que produce/consume información valores.
- Nodo de actividad = ejecución de un conjunto de acciones
 - Puede suceder que Nodo de actividad = 1 acción

Elementos de un diagrama de actividad

ACCIÓN

- Computación ejecutable y atómica
- No se descompone ni ejecuta por partes.
- Ejemplos: llamadas a otras operaciones, envío de señales, creación o destrucción de objetos, cálculos, etc.

NODO DE ACTIVIDAD

- Agrupación de acciones
- No existe diferenciación gráfica entre acciones y nodos de actividad → Usar anotaciones

FLUJO

 Para marcar los pasos de una acción o nodo a otra.

Componentes de un diagrama de actividad

- Acciones: nodos de actividad atómicos
- Actividades: nodos de actividad con estructura interna
- Datos utilizados
- Nodos de Control: controlan el flujo

Diagrama de Actividades

- Debe haber un inicio y un fin de actividad
- Cuando se completa una acción o un nodo de actividad, se pasa a la siguiente acción o nodo de actividad.
 - Se usa una flecha

Tipos de flujos

- Los flujos secuenciales son los más usados, pero existen otros flujos alternativos.
- Tipos de flujos:
 - Bifurcación: caminos alternativos en función de alguna condición
 - División y Unión: flujos de ejecución concurrentes
 - Calles: identificar responsables de cada actividad

Tipos de flujos (i)

Bifurcación

- Caminos alternativos en función de una expresión booleana
- Gráficamente se representa como un rombo.
- Tiene un flujo de entrada y dos o más de salida
- Cada flujo de salida tiene una guarda.
 - Deben cubrir todas las posibilidades
 - o Puede usarse "else" para marcar flujo de salida alternativo.

• Fusión

- Los caminos antes separados se vuelven a juntar en un rombo
- Tiene varias entradas y una única salida.
- Aquí no hay guardas

Tipos de flujos (ii)

• Ejemplo de bifurcación y fusión

Tipos de flujos (iii)

División

- Representa la separación de un flujo de control sencillo en dos o más flujos de control **concurrentes**.
- Tiene una transición de entrada y dos o más de salida.
- Después de la división, las actividades de cada camino continúan en paralelo.

Unión

- Representa la sincronización de dos o más flujos de control concurrentes.
- Tiene dos o más transiciones de entrada y una de salida.
- El flujo continúa cuando todos los flujos de entrada han alcanzado la unión.

Tipos de flujos (iv)

• Ejemplo de división y unión

Modelado del Software. Tema 6: Modelado de Comportamiento del Sistema

Calles (i)

- Son agrupaciones de flujos de procesos
- Las transiciones pueden cruzarlas
- Cada calle representa una responsabilidad de alto nivel de la actividad que se está modelando.

Calles (ii)

Ejemplo con calles

Diagrama de Actividades

Diagrama de Actividades

Contenidos

- Introducción
- Eventos
- Diagrama de Estados
- Diagrama de Actividades
- Conclusión

Diagrama de estados vs Diagrama de Actividades

 Ambos tipos de diagramas permiten modelar aspectos de comportamiento dinámicos, en el contexto del sistema global

Pero...¿cuándo usar uno u otro?

Diagrama de estados vs Diagrama de Actividades

Diagrama de Estados

- Los aspectos dinámicos pueden involucrar el comportamiento dirigido por eventos de cualquier tipo de objeto
- Preferibles para modelar objetos reactivos

Diagrama de Actividades

- Para modelar aspectos dinámicos de una actividad que puede involucrar diversos clasificadores en del sistema
- Preferibles para modelar un <u>flujo de trabajo o una</u> <u>operación</u>.

 Diagrama de actividades para modelar un flujo de trabajo del sistema:

"Negocio de Venta"

iviodelado del Sottware. I ema 6: iviodelado de Comportamiento del Sistema

 Diagrama de actividades para modelar una operación de una clase: "Intersección" de la clase "Línea"

Ejercicio

Nombre	UC-01. Añadir Nuevo enlace
Precondición	No
Secuencia principal	1 El visitante selecciona la opción de añadir un nuevo enlace. 2 El sistema solicita la información del Nuevo enlace. 3 El usuario introduce la información del enlace
	4 El sistema almacena el nuevo enlace
Alternativas / erróneas	2.1 Si sucede un error recuperando las categorias o nos e encuentra ninguna categoria, el sistema muestra un mensaje de error y este caso de uso termina.
	En cualquier momento el usuario puede cancelar la operación y este caso de uso termina.
	3.2 Si los datos no son correctos, el sistema muestra un mensaje de error y se repite el paso 2.
	4.1 Si sucede un error almacenando el enlace, el sistema muestra un mensaje de error y este caso de uso termina.
Post condición	El Nuevo enlace se almacena en el sistema.
Notas	No.