Introducción a la Bioinformática

Alineamiento de secuencias Búsqueda de secuencias en bases de datos

Fernán Agüero

Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín

El alineamiento de secuencias es similar a otros tipos de análisis comparativo.

En ambos es necesario cuantificar las similitudes y diferencias (scoring) entre un grupo relacionado de entidades.

Finches of the Galápagos Islands observed by Charles Darwin on the voyage of HMS *Beagle*

Alinear secuencias

Para poder comparar secuencias, tenemos que sistematizar la manera en que lo hacemos Por donde empezamos? Comparamos las dos secuencias letra a letra, empezando por la primera? Tiene sentido?

GCTACTAGTTCGCTTAGC

GCTACTAGCTCTAGCGCGTATAGC

Homología vs similitud

- Homología entre dos entes biológicos implica una herencia compartida
- Homología es un término cualitativo
- Se es homólogo o no se es
- Similitud implica una apreciación cuantitativa o una cuantificación directa de algún caracter
- Podemos usar una medida de similitud para inferir homología

Los algoritmos que alinean secuencias modelan procesos evolutivos

GATTACCA

GATGACCA GATTACCA

GATTACCA GATTATCA GATTACCA

Deriva de un ancestro común a través de cambios incrementales debido a errores en la replicación del DNA, mutaciones, daño o crossing-over desigual.

Algoritmos de alineamiento modelan procesos evolutivos

GATTACCA

GATGACCA GATTACCA

GATTACCA GATTACCA

Deriva a partir de un ancestro común a través de cambio incremental.

GATCATCA GATTGATCA GATACCA

Sólo las secuencias actuales son conocidas, las secuencias ancestrales se postulan.

Algoritmos de alineamiento modelan procesos evolutivos

GATTACCA

GATGACCA GATTACCA

GATTACCA GATTATCA GATTACCA

Deriva a partir de un ancestro común a través de cambio incremental. Mutaciones que no matan al individuo pueden pasar a la población.

GATCATCA GATTGATCA GATACCA

La palabra **homología** implica una herencia común (un ancestro común), el cual puede ser inferido a partir de observaciones de **similitud** de secuencia.

Alineamientos

- Qué es un alineamiento?
 - El procedimiento de comparación de dos (o más) secuencias que busca una serie de caracteres individuales o patrones de caracteres que se encuentren en el mismo orden en ambas secuencias
- Cómo alineamos dos secuencias?
 - Usando un método (algoritmo)
 - a mano (como en los viejos tiempos)
 - usando una computadora

Definición de alineamiento: tipos

Alineamiento: Cada base se usa a lo sumo una vez

Alineamiento global: Todas las bases se alinean con otra base o con un

gap ("-")

Alineamientos locales: No hay necesidad de alinear todas las bases

Align GATESLIKESCHEESE and GRATEDCHEESE

G-ATESLIKESCHEESE or G-ATES & CHEESE GRATED----CHEESE GRATED & CHEESE

Alineamientos buenos y malos?

Cuál es el 'mejor' alineamiento?

GCTACTAG-T-T--CGC-T-TAGC
GCTACTAGCTCTAGCGCGTATAGC

0 mismatches, 5 gaps

GCTACTAGTT----CGCTTAGC
GCTACTAGCTCTAGCGCGTATAGC

3 mismatches, 1 gap

Cómo decidir cuál es el mejor?

- Respuesta: el más significativo desde el punto de vista biológico
- Pero: necesitamos una medida objetiva
- sistemas de puntaje (scoring)
 - reglas para asignar puntos
 - el más simple: match, mismatch, gap

Un primer sistema de puntajes

Ejemplo de sistema de score

$$match = +1$$
 $mismatch = 0$ $gap = -1$

Cambiemos nuestro sistema de puntajes

Usando otro sistema de score

No se pueden comparar scores

- Primera conclusión importante:
 - no tiene sentido comparar scores de distintos alineamientos
 - a menos que se especifique el sistema de scoring utilizado

Gap penalties

1- Abrir un gap es costoso

Penalty =
$$5 * (-5) + 6 * (-1) = -31$$

2 - Extender un gap es menos costoso

Penalty =
$$1 * (-5) + 6 * (-1) = -11$$

Dot plots: introducción

Dot-plot: Fitch, Biochem. Genet. (1969) 3, 99-108.

Eje horizontal: secuencia 1

		С	G	T	A	C	С	G	T
ncia 2	A	0	0	0	1	0	0	0	0
: secuencia	С	1	0	0	0	1	1	0	0
Eje vertical:	G	0	1	0	0	0	0	1	0
Eje	T	0	0	1	0	0	0	0	1

- Dos secuencias, una vertical y otra horizontal a los ejes del gráfico.
- Se colocan "puntos" en donde hay un match.
- Las líneas diagonales son regiones de identidad.
- Se aplican filtros para mejorar la comprensión del gráfico.

Similitud local

Dominios mezclados confunden a los algoritmos de alineamiento.

Módulos en el factor XII de coagulación y en el activador de plasminógneos – tissue plasminogen activator (PLAT)

F1,F2 Fibronectin repeats
E EGF similarity domain
K Kringle domain
Catalytic Serine protease activitiy

Dot plots: ejemplo

Dot plots: ejemplo (cont.)

Dominios repetidos muestran un patrón característico.

Dot plots: path graphs

Dot plots sugieren caminos (paths) a través del espacio de alineamientos posibles.

Path graphs son representaciones más explícitas de un alineamiento.

Cada path es un alineamiento único.

Dominios EGF conservados en la urokinse plasminogen activator (PLAU) y el tissue plasminogen activator (PLAT)

PLAU 90 EPKKVKDHCSKHSPCQKGGTCVNMP--SGPH-CLCPQHLTGNHCQKEK---CFE 137 PLAT 23 ELHQVPSNCD----CLNGGTCVSNKYFSNIHWCNCPKKFGGQHCEIDKSKTCYE 72

Path graphs: encontrar el mejor camino

Los problemas que involucran encontrar la mejor ruta o camino (Best-path problems) son comunes en computación científica.

El algoritmo para encontrar el mejor camino entre dos extremos y pasando por varios puntos se llama 'dynamic programming'

Rutear una llamada telefónica desde NY a San Francisco

Dynamic programming: introducción

Un ejemplo:

Construir un alineamiento óptimo entre estas dos secuencias

G A T A C T A

G A T T A C C A

Utilizando las siguientes reglas de scoring:

Match: +1

Mismatch: -1

Gap: -1

Dynamic programming: ejemplo

Ordenar las dos secuencias en una matriz bidimensional

Los vértices de cada celda se encuentran entre letras (bases).

Needleman & Wunsch (1970)

	G	A	T	A	C	T	A	
G								
A								
T								
T								
A								
C								
C								
A								

Dynamic programming: ejemplo (cont.)

El objetivo es encontrar la ruta (path) óptimo

Dynamic programming: paths posibles

Cada path corresponde a un alineamiento único

Dynamic programming: scores: match

El score para una ruta (path) es la suma incremental de los scores de sus pasos (diagonales o lados).

Dynamic programming: scores: mismatch

El score para una ruta (path) es la suma incremental de los scores de sus pasos (diagonales o lados).

Dynamic programming: scores: gaps

El score para una ruta (path) es la suma incremental de los scores de sus pasos (diagonales o lados).

Dynamic programming: paso a paso (1)

Extender el path paso por paso

				G	A	T	A	C	T	A	
			G								
G G	- -	G	A	1) (+	1)						
G	G		T								
+1)	-1	-1	T								
			A								
			C								
			C								

Dynamic programming: paso a paso (2)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

		A	T	A	C	T	A	
G			2)———					
A	י ע		2)					
T								
T								
A								
С								
C								
A								

Dynamic programming: paso a paso (3)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

_								
G.	G	A	T	A	C	T	A	
G								
G A	1) (+							
T) (+	2)					
T								
A								
C C								
C								
A								

Dynamic programming: paso a paso (4)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

d pu								
	G	A	T	A	C	T	A	
G								
A								
T	2)) (+						
T								
A C								
C								
C								
A								

Dynamic programming: paso a paso (5)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

Dynamic programming: paso a paso (6)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

Dynamic programming: paso a paso (7)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

Dynamic programming: best path

Recorrer el camino de atrás hacia adelante para obtener el mejor path y alineamiento.

Dynamic programming: alineamiento obtenido

Imprimir el alineamiento

GA-TACTA
GATTACCA

	G	A	T	A	C	T	A
G							
A							
T							
T							
A							
С							
С							
A							

Dynamic programming: alineamiento obtenido

Imprimir el alineamiento

GAT-ACTA
GATTACCA

	G	A	T	A	C	T	A
G							
A							
T							
T							
A							
C							
C							
A							

Dynamic programming: Smith-Waterman

- El método fue modificado (Smith-Waterman) para obtener alineamientos locales
- El método garantiza la obtención de un alineamiento óptimo (cuyo score no puede ser mejorado)
- La complejidad es proporcional al producto de las longitudes de las secuencias a alinear

Similitud global y local

El algoritmo de programación dinámica puede ser implementado para alineamientos locales o globales.

Optimal global alignment

Needleman & Wunsch (1970)

Las secuencias se alinean esencialmente de un extremo a otro Optimal local alignment

Smith & Waterman (1981)

Las secuencias se alinean en regiones pequeñas y aisladas

Smith-Waterman: paso a paso

Extender el path paso por paso

Smith-Waterman: paso a paso (2)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

Smith-Waterman: paso a paso (3)

Incrementar el path paso a paso

Recordar el mejor subpath que lleva a cada punto en la matriz.

Dynamic programming demos

- Needleman-Wunsch web app desarrollada para enseñanza
 - http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Needleman-Wunsch

Dynamic programming demos

- Smith-Waterman web app desarrollada para enseñanza
 - http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman

Global y local

- Un algoritmo de alineamiento local, siempre produce alineamientos locales?
- Un algoritmo de alineamiento global siempre produce alineamientos globales?

NO

- dependiendo del sistema de scoring (scores para match/mismatch/gaps) SW puede producir alineamientos globales
- dependiendo la penalidad asignada a los gaps en los extremos de un alineamiento global (o alterando significativamente el sistema de scoring) NW puede producir alineamientos locales

Matrices

- Un sistema de scoring simple, penaliza por igual cualquier mismatch
- Biológicamente tiene sentido penalizar ciertos cambios y ser más permisivo con otros
 - En proteínas: residuos hidrofóbicos reemplazados entre sí.
 - En DNA: transversiones vs transiciones
- Una matriz no es otra cosa que un sistema de scoring que permite asignar puntajes individuales a cada una de las letras del alfabeto en uso.

Matrices

- Un ejemplo de matriz de scoring podría ser el clásico ejemplo de penalizar más los cambios que alteran las propiedades químicas de un residuo (aa)
 - hidrofóbicos: Ile, Val, Leu, Ala
 - Polares (+): Lys, Arg
 - Polares (-): Glu, Asp
 - Aromáticos: Phe, Tyr, Trp
 - etc.

```
Ile x Val = -1

Ile x Asp = -5

Phe x Tyr = -1

Phe x Gly = -8
```

Matrices derivadas por observación

PAM (Dayhoff, 1978)

- proveen estimaciones de plausibilidad de cambio de un aminoácido en otro en proteínas homólogas
- derivadas a partir de un grupo de secuencias > 85% similares
- los cambios de aminoácidos observados son llamados "accepted mutations"
- Se extrapolan matrices a períodos evolutivos más largos

Matrices derivadas por observación

BLOSUM (Henikoff)

- Blocks Amino Acid Substitution Matrices
- Sustituciones de amino ácidos observadas en un conjunto grande de 'blocks'
- Representan más de 500 familias de proteínas
- Se agrupan los blocks de acuerdo a su identidad y se generan matrices
- blocks 80% idénticos -> BLOSUM80
- Blocks 60% idénticos -> BLOSUM60
- etc

Sistemas de scoring: BLOSUM62

Algunas sustituciones son más comunes que otras

Los scores provienen del la observación de los tipos y frecuencias de sustitución en distintas familias proteicas

```
BLOSUM62
```

```
R - 1 5
N - 2 0 6
M -1 -1 -2 -3 -1 0 -2 -3 -2 1
F -2 -3 -3 -3 -2 -3 -3 -1
  -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1
   0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2
```

Sistemas de scoring: BLOSUM62: identidades

Las identidades tienen scores positivos, pero algunas son más valoradas que otras.

BLOSUM62

```
0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -2 -1
               ILKMF
```

Sistemas de scoring: BLOSUM62: sustituciones

Algunas sustituciones tienen scores positivos, pero la mayoría son negativos.

BLOSUM62

```
N - 2 0 6
   0 -2 0 -1 -3 -2 -2 6
```

Más matrices

- PAM
- BLOSUM
- Otras
 - Comparación simple de propiedades químicas de amino ácidos
 - Análisis complejos de sustituciones en estructura secundaria de proteínas, a partir de alineamientos estructurales
 - Gonnet (1994). Sustitución de dipéptidos
 - Jones (1994) matriz específica de proteínas transmembrana
- Algunas de estas matrices sirven para alinear proteínas en base a características estructurales y pueden no ser útiles para análisis evolutivos!

Referencias

Bioinformatics. Sequence and Genome analysis. David W Mount, CSHL Press (2001)

Introduction to Bioinformatics. Lesk, A. M. (2019). Oxford University Press.

Hugues Sicotte (NCBI). (slides DP)

Javascript-based implementations for various algorithms http://rna.informatik.uni-freiburg.de/Teaching/