Etude d'une famille de fonctions

Partie I: Une fonction

- 1. Résoudre l'équation différentielle $(1+x^2)y' + 2xy = 0$.
- 2. On introduit la fonction $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = \frac{1}{1+x^2}$ et on note (Γ) la courbe d'équation $y = \varphi(x)$.
- 2.a Dresser le tableau de variation de la fonction φ .
- 2.b Pour quelle valeur de $x \ge 0$, la dérivée seconde de φ s'annule-t-elle en changeant de signe ? Préciser la position relative de la courbe (Γ) et de sa tangente (T) au point correspondant.
- 3. Représenter la courbe (Γ) accompagnée de (T) en choisissant une unité égale à 2cm.
- 4. Calculer l'intégrale $\int_0^1 \varphi(t) dt$.

Partie II: Une famille de fonctions

1. Intégrer l'équation différentielle :

$$(E): xy' + y = \frac{1}{1+x^2}$$

sur $]-\infty,0[$ et sur $]0,+\infty[$.

2. Soit λ un nombre réel.

On appelle f_{λ} la fonction définie pour x non nul par :

$$f_{\lambda}(x) = \frac{\lambda + \arctan x}{x}$$

On note (C_{λ}) la courbe d'équation $y = f_{\lambda}(x)$.

- 2.a Montrer que f_0 admet en 0 une limite finie ℓ qu'on déterminera. On pose désormais $f_0(0)=\ell$. Dresser le tableau de variation de f_0 .
- 2.b Observer que les courbes (C_{λ}) et $(C_{-\lambda})$ se correspondent dans une transformation géométrique simple.
- 2.c Soit $\lambda_1 < \lambda_2$. Quelle est la position de (C_{λ_1}) par rapport à (C_{λ_1}) ?
- 2.d On suppose $\lambda > 0$. Exprimer $f'_{\lambda}(x)$ sous la forme :

$$f_{\lambda}'(x) = \frac{1}{r^2} g_{\lambda}(x)$$

Former, selon les cas possibles, le tableau de signe de la fonction g_{λ} .

(on ne cherchera pas à exprimer l'éventuelle valeur d'annulation de g_{λ}).

Dresser le tableau de variation de f_{λ} dans chacun des cas possibles.

- 3. Tracer dans un même repère les courbes (C_0) et $(C_{\pi/2})$.
- 4.a Montrer que par tout point d'abscisse non nulle du plan, il passe une et une seule courbe (C_{λ})
- 4.b Déterminer l'ensemble des points P, d'abscisse non nulle, du plan tels que la courbe (C_{λ}) passant par ce point y ait une tangente de pente nulle.
- 4.c On considère un point M d'abscisse non nulle, n'appartenant pas à (Γ) . Déterminer, selon sa position par rapport à (Γ) et à l'axe (Oy), le signe de la pente de la tangente en M à la courbe (C_{λ}) passant par ce point.

On désire obtenir une valeur approchée de l'intégrale

$$I = \int_0^1 f_0(t) dt = \int_0^1 \frac{\arctan t}{t} dt$$

Cette dernière est appelée constante de Catalan.

- 1. Soit n un entier naturel, u et t des réels positifs.
- 1.a Etablir l'égalité :

$$\frac{1}{1+u^2} = \sum_{k=0}^{n} (-1)^k u^{2k} + \frac{(-1)^{n+1} u^{2(n+1)}}{1+u^2}$$

1.b En déduire que :

$$\arctan t = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)} t^{2k+1} + \varphi(t)$$

avec
$$|\varphi(t)| \leq \frac{t^{2n+3}}{2n+3}$$
.

1.c En conclure la majoration :

$$\left|I - \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)^2}\right| \le \frac{1}{(2n+3)^2}$$
.

2. Donner, en précisant la démarche suivie, une valeur décimale approchée de I à 10^{-2} près.