Verbal Behavior Event Detection Using Textual and Acoustic Semantics

Asif Salekin Sarah Masud Preum

Motivation: Detecting Verbal Agitation

- Agitation affects people with dementia, autism, Alzheimer
- 65% demented elderly patients are hospitalized due to agitation
- Manage cognitive disorder
- Solution:
 - continuous monitoring by caregivers
 - automatic detection

Motivation: Verbal Agitation Metrics

Cohen Mansfield inventory for verbal agitation

- 1. Crying
- 2. Laughing
- 3. Screaming
- 4. Negativism
- 5. Cursing
- 6. Saying repetitive sentence
- 7. Asking for help
- 8. Making sexual advance

Related Work: Detect Verbal Agitation Events Using **Acoustic** Features

[W. Huang, 2010], [L.S.
 Kennedy, 2004], [S. Petridis,
 2008], [K. P. Truong, 2007]

Related work: Detect Verbal Agitation Events Using **Textual** Features

- Detecting negativism is equivalent to sentiment analysis [M. Weigand, 2010] [B. Pang, 2008], [T. Wilson 2005]
- Detecting repetitive sentence is a sequence mining problem: detect recurring subsequences [J. Pei, 2004]

Goals

- Detect cursing
- Detect asking for help Patients in hospital
- Detect **verbal sexual advances**Detect sexual harassment in office environment

Less explored but important

Challenges

- Cursing: Ambiguity in word with multiple senses
 - "I rode my ass up the mountain" vs "Stop being an ass!"
- Asking for help: Textual content can often be misleading, need acoustic semantics (tone of the speaker)
 - In a urging tone: "Please <u>help</u> me!"
 - In a neutral tone: "The man asked your help"
- Verbal sexual advances
 - Similar challenges

Goals and Challenges

Detect three events from the Cohen Mansfield agitation inventory for verbal agitation

Detecting Asking For Help & Verbal Sexual Advances

Overview of Approach

Behavior event data collection

Acoustic preprocessing

Textual preprocessing

Acoustic Features

Textual Features

Binary Classification

Extracting Acoustic Features

- "human behaviors remain consistent with the specific emotion concepts" [Y. Zemack-Rugar, 2007]
 Verbal sexual advance → arousal
- Goal: Represent the emotional concepts reflected in the tone of speech.

Acoustic features	Role
Zero crossing rate	Detect voice vs non voice
Harmonic-to-noise ratio	Anger vs non anger
Energy	A valuable was a successi
Pitch	Arousal vs non arousal
F0 fundamental frequency	Joy-surprise vs disgust-anger

Processing Text Data

- Speech to text conversion:
 Dragon NaturallySpeaking 12 (95%-99% accuracy)
- Stop word list reduction: some stop words are important features in the problem domain (e.g., help, please)
- Stemming: Porter stemmer
- Normalization: punctuation, case conversion

Extracting Textual Features

Text document: converted text from audio clips

Document 1: please please help me

• • • •

Bag of word representation: smoothed vector space of words

$$\hat{tf}(w,d) = \begin{cases} 1 + \log t f(w,d) & \text{if } tf(w,d) > 0\\ 0 & \text{otherwise} \end{cases}$$
$$idf(w) = 1 + \log(\frac{N}{DF(w)})$$

•••	help		please		•••	me
0	4.2	0	3	0	0	0.2

Combined Feature Space Formation

Acoustic Features

Textual Features

Combine Features

Binary Classification

Detecting Cursing

Overview of Approach

Behavior Event Data Collection Speech to Text Conversion Textual preprocessing **Extracting Textual Features Binary Classification**

Resolving Ambiguity of Curse Detection

- Generate curse dictionary of 165 words:
 - http://www.noswearing.com/dictionary/d
 - http://en.wiktionary.org/wiki/Category:English swear words
- 36 Ambiguous words: dog, ass, etc.
- Word sense disambiguation
 - WordNet knowledge base
 - Modified Lesk algorithm

Resolving Ambiguity of Curse Detection: An Example

"I rode my <u>ass</u> up the mountain" vs "Stop being an <u>ass!</u>"

		Word sense
Non	1	Hardy and sure footed animal smaller and with longer ears that horse
curse 2	2	The fleshy part of the human body that you sit on
Curse	3	A pompous fool
4	4	Slang for sexual intercourse

- Adapted Lesk Algorithm -> modification
 - Multiclass problem
 Binary class Problem

Experiment Design

- Data
 - Controlled experiments with 4 volunteers
 - Movie clip extracts
- Ground truth: manual labeling
- Performance metrics: accuracy, F-1
- Analysis: kappa statistics for confidence analysis

Result: Detecting "Asking for Help"

Using only acoustic features

Classifier	Accuracy	Kappa Statistics	F1-Measure
Naïve Bayes	75.8	0.42	0.75
K-nearest neighbor	80.9	0.57	0.81
Random forest	80.2	0.50	0.79

- Using only textual features performs even worse
- Using both acoustic features and textual features

Classifier	Accuracy	Kappa Statistics	F1-Measure
Naïve Bayes	84.7	0.67	0.86
K-nearest neighbor	83.5	0.62	0.84
Random forest	89.6	0.75	0.89

~11% increase

~10% increase

Result: Detecting "Verbal Sexual Advances"

Using only acoustic features

Classifier	Accuracy	Kappa Statistics	F1-Measure
Naïve Bayes	71.4	0.42	0.72
K-nearest neighbor	80.3	0.61	0.81
Random forest	79.7	0.61	0.80

- Using only textual features performs even worse
- Using both acoustic features and textual features

Classifier	Accuracy	Kappa Statistics	F1-Measure
Naïve Bayes	73.2	0.45	0.72
K-nearest neighbor	76.4	0.53	0.74
Random forest	86.6	0.72	0.87

Result: Cursing

- Baseline 1: Use all words in curse dictionary:
- Baseline 2: Use only single meaning words in dictionary as curse

	Precision	Recall	F-measure
Baseline 1	0.73	1	0.84
Baseline 2	1	0.74	0.85
Our approach	0.95	0.96	0.96

Analyzing Results: Identifying New Challenge

- Random forest better than kNN, Naïve Bayes
 - Probably data not linearly separable
- Curse of Dimensionality??
 - Small dataset but large feature space
- Potential Solution:

Evaluate feature reduction: PCA

Principle Component Analysis (PCA)

Problem: PCA

Results:

Asking for help:

Reduced Feature number: 126

Accuracy: from 89.6% to 84%

Verbal sexual advances:

Reduced Feature number: 213

Accuracy: from 86.6% to 80%

Project to higher dimension with RBF kernel

$$f_1 = \text{similarity}(x, l^{(1)}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^n (x_j - l_j^{(1)})^2}{2\sigma^2}\right)$$

Kernel PCA

- Increase the dimension up to number of training data
- Perform PCA on that higher dimension data
- Results:
- Asking for help: Accuracy from 89.6% to 73%
- Verbal sexual advances: Accuracy from 86.6% to 67.8%
- Limitation
 - We have limited number of training data so, can not increase dimension!!!
 - Hence, we need more data to use KPCA.

LPCA Steps
6 dimensions
Perform PCA on
6 dimensional data

Conclusion

- Combine text mining and signal processing
- First to detect cursing, asking for help, verbal sexual advances
- Textual features enhances classification performance
- Future works:
 - Evaluate on a larger dataset: validity of feature reduction
 - Include more contextual features

Thanks!

Question?