

SLEW RATE CONTROL OF OUTPUT DRIVERS USING FETS WITH
DIFFERENT THRESHOLD VOLTAGES

Field of the Invention

5 The present invention relates generally to integrated circuit pad circuits, and more particularly to controlling the slew rate of output drivers using transistors with differing threshold voltages.

Background of the Invention

10 Integrated circuits communicate with one another using digital signals. In the digital world, a digital signal may be in one of a plurality of predefined quantized states. Because digital signals are transmitted using an analog signal along a transmission line, the predefined quantized states of the digital signal are represented by different ranges of voltages within the total voltage range of the signal. For example, a typical digital integrated circuit (IC) will communicate using two states - zero and one. The digital state of zero is represented by the range of voltages between a minimum voltage V_{MIN} (e.g., 0 volts) of the potential voltage range of the signal and a voltage V_{LOW} that is low relative to the total range of voltage, whereas the digital state of one is represented by the range of voltages between a voltage V_{HIGH} that is high relative to the total range of voltages and a maximum voltage V_{MAX} (e.g., 1.5 volts) of the potential voltage range of the signal. In this example, the state of the digital signal is unknown when the voltage level of the signal is between V_{LOW} and V_{HIGH} , which typically only occurs during transitions of the signal from either the zero state to the one state or vice versa.

15 Because the transmission signal is actually analog, the transition between digital states does not occur instantaneously, but instead occurs over a period of time $T_{TRANSITION}$ that is dependent on the physical conditions present on the transmission line. It is well known that signal transitions over a transmission line will suffer a delay known as a propagation delay due to the parasitic resistance, inductance, and capacitance of the line. This delay increases with the length of the line. In addition, it is also well-known that

unless the impedance of the transmission line matches that of the load it drives, the signal will degrade because the mismatch in impedance leads to reflections from the load that are passed back to the driver circuit. The driver circuit then re-reflects the reflection causing further signal degradation.

5 Unfortunately, when the driver circuit drives multiple loads with differing impedances, the transmission line requires multiple stubs to properly match each of the loads during realtime operation. However, the use of multiple stubs then generates multiple reflections. One way of ensuring proper detection of signal states is to control the edge rates of the
10 signal.

However, this competes with the trend towards ever increasing signal frequencies, which results in higher edge rates. Accordingly, a need exists for a technique for controlling the slew rate of signal edge transitions without sacrificing the signal frequency.

15

Summary of the Invention

The present invention is a method and circuit for controlling the slew rate of integrated circuit output drivers using transistors with differing threshold voltages to allow a stepped-stage slew rate on the transition edges
20 of a digital signal.

In accordance with the method of the invention, a number of switchably conductive devices such as FETs each characterized by a different threshold voltage are connected in parallel between a transmission line node such as the output pad and a voltage source. Each conductive
25 device is controllable at a respective switch using a common driving signal. Accordingly, when the driving signal transitions from one digital state to another, the conductive devices will each turn on or off (depending on the direction of the signal transition) in turn to generate a stepped control of the slew rate of the signal edge on the node.

30

Brief Description of the Drawing

The invention will be better understood from a reading of the following detailed description taken in conjunction with the drawing in which like reference designators are used to designate like elements, and in which:

5 FIG. 1A is an operational flowchart of a method for adjusting the amount of current conducted to the output pad in order to slow down the edge rate of the signal on the output pad by incrementally increasing the amount of current conducted to the output pad;

10 FIG. 1B is an operational flowchart of a method for adjusting the amount of current conducted to the output pad by incrementally decreasing the amount of current conducted to the output pad;

FIG. 2 is a schematic diagram of a slew-rate controlled output driver circuit implemented in accordance with the invention;

15 FIG. 3A is a voltage-vs.-timing diagram illustrating a driving voltage signal;

FIG. 3B is a voltage-vs.-timing diagram illustrating the output signal seen on the output pad as a result of the driving voltage signal of FIG. 3A;

FIG. 4 is an alternative embodiment of a slew rate controlled output driver circuit implemented in accordance with the invention;

20 FIG. 5 is an operational flowchart of an exemplary embodiment of a method in accordance with the invention for implementing a circuit for controlling the slew rate of output drivers by using transistors with differing threshold voltages to achieve a stepped-stage slew rate on the edges of the signal transitions; and

25 FIG. 6 is an operational flowchart of a method for operating a circuit built in accordance with FIG. 5.

Detailed Description

A novel method and circuits for controlling the slew rate of output drivers using transistors with differing threshold voltages is described in detail hereinafter. Although the invention is described in terms of specific illustrative embodiments, such as specific output driver designs, it is to be understood that the embodiments described herein are by way of example

only and the scope of the invention is not intended to be limited thereby but is intended to extend to any embodiment incorporating any number of transistors of any type with differing threshold voltages that results in stepped-stage slew rate on the edges of signal transitions.

Turning now in detail to the drawing, FIGS. 1A and 1B illustrate an exemplary embodiment of methods in accordance with the invention for controlling the slew rate of output drivers by using transistors with differing threshold voltages to achieve a stepped-stage slew rate on the edges of the signal transitions. In particular, the invention employs switchably conductive devices such as field effect transistors (FETs) with varying threshold voltages. It is known in the art that FETs may be designed with varying specifications. For example, the FETs most commonly used in integrated circuits due to their lower voltage ratings have a threshold voltage between 0.4-0.5 volts. FETs designed for use in higher power applications typically have a threshold voltage between 0.6 and 0.7 volts. This 200-300 mV difference is used to advantage in the present invention to achieve a stepped-stage slew rate on the signal edges as discussed hereinafter.

FIG. 1A illustrates a method 10 for adjusting the amount of current conducted to the output pad in order to slow down the edge rate of the signal on the output pad by incrementally increasing the amount of current conducted to the output pad. As shown in FIG. 1A, the driving voltage, which controls the amount of current to conduct to the output pad, is sensed 12. When the driving voltage reaches a first threshold, for example voltage corresponding to the lowest threshold voltage of all conductive devices coupled to the output pad, as determined in step 14, the amount of current conducted to the pad is stepped up 16, for example from no current conduction to a first increment of conduction. When the driving voltage reaches a next threshold, for example voltage corresponding to the next highest threshold voltage of all conductive devices coupled to the output pad, as determined in step 18, the amount of current conducted to the pad is stepped up 20 to a higher level. Steps 18 and 20 may be repeated for additional higher threshold voltage levels of additional conductive devices coupled to the output pad.

FIG. 1B illustrates a method 30 for adjusting the amount of current conducted to the output pad in order to slow down the edge rate of the signal on the output pad by incrementally decreasing the amount of current conducted to the output pad. As shown in FIG. 1B, the driving voltage, which controls the amount of current to conduct to the output pad, is sensed 32.

When the driving voltage reaches a first threshold, for example voltage corresponding to the highest threshold voltage of all conductive devices coupled to the output pad, as determined in step 34, the amount of current conducted to the pad is stepped down 36, for example from maximum current conduction to a smaller amount of conduction. When the driving voltage reaches a next threshold, for example voltage corresponding to the next lowest threshold voltage of all conductive devices coupled to the output pad, as determined in step 38, the amount of current conducted to the pad is stepped down 40 to a lower level. Steps 38 and 40 may be repeated for additional lower threshold voltage levels of additional conductive devices coupled to the output pad.

As will become apparent in the description hereinafter, the two methods 10 and 30 may alternatively operate to drive a single data signal.

Turning now to a specific preferred embodiment, FIG. 2 depicts a slew rate controlled output driver circuit 100 in accordance with the present invention. As will be described in detail hereinafter, the slew-rate controlled output driver circuit 100 of FIG. 2 provides the functionality for controlling the slew rate of the signal driven onto the output pad by performing a step-controlled edge transition.

As known in the art, a typical output driver will include at least an inverter 110 having an input coupled to receive a data signal and an output coupled to the gate of a transistor whose drain is coupled to an output pad 150 and whose source is coupled to either a high voltage source (e.g., V_{DD}) for driving the output pad to a high voltage level, or a low voltage source (e.g., V_{SS} or ground) for driving the output pad to a low voltage level. In the illustrative embodiment of FIG. 2, the circuitry is implemented using field effect transistors (FETs). Furthermore, the output driver 100 includes two stages: drive high stage S1 and drive low stage S2.

SEARCHED INDEXED
SERIALIZED FILED

As shown, drive high stage S1 includes a first inverter 110 which receives data signal DATA. The output of the inverter is connected to the gate of a low-voltage p-channel FET (PFET) P_{LV} and to the gate of a high-voltage PFET P_{HV} . The sources of PFETs P_{LV} and P_{HV} are each connected to the circuit high-voltage source V_{DD} , and their drains are each connected to the pad node 150.

Drive low stage S2 includes a second inverter 120 which also receives data signal DATA. The output of the inverter is connected to the gate of a low-voltage n-channel FET (NFET) N_{LV} and to the gate of a low-voltage NFET N_{HV} . The sources of NFETs N_{LV} and N_{HV} are each connected to the circuit ground, and their drains are each connected to the pad node 150.

Referring now also to FIGS. 3A and 3B in conjunction with FIG. 2, in operation, when the data signal DATA transitions from a low to a high voltage level, inverters 110 and 120 will both output a low voltage level. Accordingly, a low voltage level is applied to the gates of PFETs P_{LV} and P_{HV} , turning them both on, in a staged manner, to source a high-voltage level VDD onto the pad node 150. Because low-voltage PFET P_{LV} is characterized by a lower threshold voltage than high-voltage PFET P_{HV} , PFET P_{LV} will turn on sooner than PFET P_{HV} , as illustrated at P_{LV_ON} and P_{HV_ON} in FIG. 3A. Since PFETs P_{LV} and P_{HV} operate as resistors coupled in parallel, the voltage level on the output pad, shown in FIG. 3B, transitions more slowly during the period of time when only the low-voltage PFET is on, and more quickly when the high-voltage PFET turns on. Accordingly, the addition of the high-voltage PFET P_{HV} in parallel with the low-voltage PFET P_{LV} allows a stepped-stage slew rate of the edge transition, where the slew rate of each stage is controlled by the sizing of the low- and high-voltage PFETs P_{LV} and P_{HV} .

Whenever the data signal DATA is high, resulting in a low voltage level output by inverters 110 and 120 and the application of a low voltage level to the gates 112 and 132 of PFETs P_{LV} and P_{HV} , a low voltage level is simultaneously applied to the gates 122 and 142 of NFETs N_{LV} and N_{HV} . The application of the low voltage levels to the gates 122 and 142 of NFETs

N_{LV} and N_{HV} turns off NFETs N_{LV} and N_{HV} to isolate the pad node 150 from ground when the pad is being driven high. Because low-voltage NFET P_{LV} is characterized by a lower threshold voltage than high-voltage NFET P_{HV}, high-voltage NFET N_{HV} will turn off sooner than low-voltage NFET N_{LV}, as illustrated at N_{LV}_ON and N_{HV}_ON in FIG. 3A. Just as in the case of the high-voltage PFETs P_{LV} and P_{HV}, low-voltage NFETs N_{LV} and N_{HV} operate together as resistors coupled in parallel. Accordingly, the voltage level on the output pad 150 (shown in FIG. 3B) transitions more quickly during the period of time when both the high- and low-voltage NFETs N_{HV} and N_{LV} are on and more slowly when only the low-voltage NFET N_{LV} is on. Accordingly, the use of the high-voltage NFET N_{HV} in parallel with the low-voltage NFET N_{LV} results in a stepped-stage slew rate of the edge transition, where the slew rate of each transition stage is controlled by the sizing of the low- and high-voltage NFETs N_{LV} and N_{HV} (together with the sizing of the low- and high-voltage PFETs P_{LV} and P_{HV}).

When the data signal DATA transitions to a low voltage level, inverters 110 and 120 will both output a high voltage level. Accordingly, a high voltage level is applied by inverter 110 to the gates of PFETs P_{LV} and P_{HV}, turning them both off, in a staged manner, to isolate the high-voltage level VDD from the pad node 150. Again, because low-voltage PFET P_{LV} is characterized by a lower threshold voltage than high-voltage PFET P_{HV}, PFET P_{HV} will turn off sooner than PFET P_{LV}, resulting in a stepped-stage slew rate of the edge transition as shown in FIGS. 3A and 3B.

Simultaneously, the high voltage level output by inverter 120 is applied to the gates 122 and 142 of NFETs N_{LV} and N_{HV}. The application of the high voltage level to the gates 122 and 142 of NFETs N_{LV} and N_{HV} turns on NFETs N_{LV} and N_{HV} to pull the pad node 150 to ground in a stepped-stage manner due to the difference in threshold voltages of low-voltage NFET P_{LV} and high-voltage NFET P_{HV}. In particular, the voltage level on the output pad 150 transitions to ground more quickly when both the high- and low-voltage NFETs N_{HV} and N_{LV} are on and more slowly when only the low-voltage NFET N_{LV} is on.

FIG. 3B shows the output signal PAD seen on pad node 150 with and without the invention. As shown, in the prior art, without the additional high-voltage transistors P_{HV} and N_{HV} of the invention, the output signal edge transitioned fully once the threshold voltage of the respective transistors was reached (as limited by the size (i.e., resistance) of the transistor). By staging the transition using transistors with different threshold voltages, the edge transition can be slowed down by essentially delaying the full transition.

It will be appreciated that the number of transistors with differing threshold voltages and connected as shown at 130 and 140 in FIG. 2 can be increased to add further stepped stages, and therefore additional control, of the edge transitions of the signal.

FIG. 4 is an alternative embodiment of a slew rate controlled output driver circuit 200 in accordance with the invention. In this embodiment, output driver 200 includes an inverter 210 which receives data signal DATA. The output of the inverter is connected to the gate of a low-voltage NFET $N2_{LV}$ and to the gate of a high-voltage NFET $N2_{HV}$. The sources of NFETs $N2_{LV}$ and $N2_{HV}$ are each connected to the circuit ground, and their drains are each connected to the pad node 250. A pullup resistor 220 is connected between the pad node 250 and a high-voltage source V_{DD} .

In operation, when the input signal DATA is low, the pad is to be driven low, and the signal is high, the pad is to be driven high. When the input signal DATA undergoes a high-to-low transition, the output of the inverter 210 transitions from low-to-high, and accordingly, a low-to-high transition is applied to the gates of low- and high-voltage NFETs $N2_{LV}$ and $N2_{HV}$, whereby both of them eventually fully conduct and pull the output pad 230 to ground. When the input signal DATA undergoes a low-to-high transition, the output of the inverter 210 transitions from high-to-low, which is applied to the gates of low- and high-voltage NFETs $N2_{LV}$ and $N2_{HV}$, whereby both of them eventually are turned off to isolate the output pad 230 from ground, allowing pull-up resistor 220 to pull the output pad 230 to V_{DD} . The use of parallel low- and high-voltage transistors results in a staged level of conductance similar to the timing diagram of FIG. 3A and 3B.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1897
1898
1899
1899
1900
1901
1902
1903