CLAIMS

What is claimed is:

	2	
pa	3	
pa ba	4	
	5	
	6	L.
aı	7	
	8	IJ IJ
C	9	
	10	F

11

12

13

14

1

2

1

2

1

1. A direct conversion receiver (DCR) comprising:

a pair of quadrature conversion paths, each of said quadrature conversion paths receiving an RF input signal and converting said RF input signal to a digital baseband signal, said each quadrature conversion path comprising:

a mixer mixing said RF input signal with a carrier phase signal,

an analog filter receiving a quadrature baseband signal from said multiplier and providing a filtered baseband signal,

an analog-to-digital converter (ADC) converting a quadrature baseband component to a digital baseband signal,

a 5th order elliptical filter filtering said quadrature baseband component, and a phase equalizer compensating for phase distortion arising in said analog filter; and

a baseband processor receiving quadrature digital baseband outputs from said pair of quadrature conversion paths and providing digital information therefrom.

- 2. A DCR as in claim 1 wherein each phase equalizer is a second order all pass digital phase equalizer.
- 3. A DCR as in claim 2 wherein the phase equalizer has a transfer function defined by

$$H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

- 4 where a0=b2, a1=b1, a2=b0.
- 4. A DCR as in claim 3 wherein each 5th order elliptical filter receives the digital output of the ADC and provides said digital baseband component to the phase equalizer.

1 2

3

1

2

3

4

5

6

7

9

10

11

12

13

14

15

1

2

5.	A DCR as in claim 3 wherein each 5th order elliptical filter receives the
filtere	d baseband signal from the analog filter and provides the quadrature baseband
compo	onent to the ADC, the ADC output being provided to the phase equalizer.

6. A direct conversion receiver (DCR) comprising:

a pair of quadrature conversion paths, each of said quadrature conversion paths receiving an RF input signal and converting said RF input signal to a digital baseband signal, said each quadrature conversion path comprising:

a mixer mixing said RF input signal with a carrier phase signal,

an analog filter receiving a quadrature baseband signal from said multiplier and providing a filtered baseband signal,

an analog-to-digital converter (ADC) converting a quadrature baseband component to a digital baseband signal,

a 5th order elliptical digital filter receiving said quadrature baseband component and providing a filtered digital baseband component, and

a phase equalizer compensating said filtered digital baseband component for phase distortion arising in said analog filter; and

a baseband processor receiving quadrature digital baseband outputs from said pair of quadrature conversion paths and providing digital information therefrom.

- 7. A DCR as in claim 6 wherein each phase equalizer is a second order all pass digital phase equalizer.
- 8. A DCR as in claim 7 wherein the phase equalizer has a transfer function defined by

$$H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

4 where a0=b2, a1=b1, a2=b0.

1	9. A direct conversion receiver (DCR) comprising:
2	a pair of quadrature conversion paths, each of said quadrature conversion
3	paths receiving an RF input signal and converting said RF input signal to a digital
4	baseband signal, said each quadrature conversion path comprising:
5	a mixer mixing said RF input signal with a carrier phase signal,
6	an analog filter receiving a quadrature baseband signal from said multiplier
7	and providing a filtered baseband signal,
8	a 5th order elliptical filter filtering said filtered baseband signal and providing
9	a quadrature baseband component,
10	an analog-to-digital converter (ADC) converting said quadrature baseband
11	component to a digital baseband signal, and
12	a phase equalizer compensating said digital baseband signal for phase
13	distortion arising in said analog filter; and
14	a baseband processor receiving quadrature digital baseband outputs from said
15	pair of quadrature conversion paths and providing digital information therefrom.
1	10. A DCR as in claim 9 wherein each phase equalizer is a second order all pass
2	digital phase equalizer.
1	11. A DCR as in claim 10 wherein the phase equalizer has a transfer function
•	
2	defined by
3	$H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$

where a0=b2, a1=b1, a2=b0. 4