Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

rensningsanlæ

Problemformuler

System beskrive

Løsninger o afarænsnin

afgrænsninger

Modelloring

Modellerin

Struktu

Preissmann

Implementerin

Linearis

MPC

Resulta

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg

Problemformulering

System beskrivelse

Løsninger og afgrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Typisk opbygning af kloak ledning

Agenda

Group 1030

Introduktioi Kloakker og

rensningsanlæg

Problemformulering

System beskrivels

Løsninger og

Modellering

.

Simulering

Drainamann

. . .

IIIpieilieliteli

Linearise

MDC

Resulta

Diskussion/Konklusion

Rensning af spildevand

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problemformulering

System beskrivelse

Løsninger og afgrænsninge

.

....

Simulem

Preissman

Implemente

impiemente

Kontro

Lineariserin

Regults

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformulering

System beskrivels

d ----

Løsninger og

afgrænsninger

Modellering

Otendate

Preissman

Implementeri

Kontrol

Lineariseri

Resulta

Diskussion/Konklusion

Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformulerin

System beskrivels

Løsninger og

afgrænsninger

Modellerin

WOOGCHCIIII

Simulei

Di diktai

Preissmann

Implementerir

Kontrol

Linearisering

Resulta

- Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformulerin

System beskrivels

Løsninger og

afgrænsninger

Modellerin

Simule

- ·

Preissmann

Implementering

Kontro

Lineariserin

Resulta

- ▶ Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problemformulering

System beskrivels

Løsninger og

Modellerin

.

Simulei

Struktur

Preissmann

Implementerin

Kontro

Linearisering

Resulta

- Virksomhedsbesøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier
 - Andre forstyrrelser

Group 1030

Problemformulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Kontrol

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformule

System beskrivelse

Løsninger og afgrænsninge

Modellerina

Modellerii

Struktur

Preissmann

Implementeri

KOHITOI

Lineariserin

Resulta

Diskussion/Konklusion

- ▶ Data fra industri.
- Flow profiler af beboelse og mindre industri.

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og afgrænsninger

.

Modellering

Simuleri

Struktur

Preissmann

IIIpioiliolitoi

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

► Indsættelse af tank

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og afgrænsninger

atgrænsninger

Modellering

....

Simuleri

- .

Preissmann

Implementer

Kontro

Lineariserin

MPC

Resulta

- ► Indsættelse af tank
- ► Afgrænse simulering til enkelt kemisk komponent

Løsninger og afgrænsninger

Agenda

Group 1030

ntroduktion

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og afgrænsninger

afgrænsninger

Modellering

....

Simulerin

Struktur

Preissmann

Implemente

Kontro

Lineariserin

Resultat

- Indsættelse af tank
- ► Afgrænse simulering til enkelt kemisk komponent
- ▶ Runde kloakrør

Agenda

Group 1030

System beskrivelse

Modellering

Kloakledning

► Transport af koncentrat i kloakledning

Sammenkobling af kloakledninger

Tank

Agenda

Group 1030

Modellering

Diskussion/Konklusion

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial t}{\partial Q} + \frac{\partial x}{\partial Q} +$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

Transport af koncentrat i kloakledning

Sammenkobling af kloakledninger

Tank

Agenda

Group 1030

Modellering

Diskussion/Konklusion

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right)$$

$$\frac{1}{gA}\frac{\partial \mathcal{U}}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{\mathcal{U}}{A}\right) + \frac{\partial \mathcal{U}}{\partial x} + \mathcal{S}_f$$

- ▶ Transport af koncentrat i kloakledning
 - Afhænger af flow i kloakledning
 - Antagelser
- Sammenkobling af kloakledninger

Tank

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) +$$

$$\left(\frac{Q}{A}\right) + \frac{\partial h}{\partial x} + S_f - \frac{\partial h}{\partial x}$$

- Transport af koncentrat i kloakledning
 - Afhænger af flow i kloakledning
 - Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloakledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right)$$

Antagelser

Transport af koncentrat i kloakledning

- Afhænger af flow i kloakledning
- Antagelser

- Summering af flow og koncentrat
- Antagelser

Tank

- Ændring i højde og koncentrat
- Antagelser

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

Modellering

Ciandada

Struktur

ruktur

eissmann

Implementering

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

► Intialisering

Dept. of Electronic Systems Aalborg University Denmark

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

Modellerin

Simulering

Struktur

issmann

Implementaring

.

Lineariserir

MPC

Resultat

Diskussion/Konklusion

Intialisering

Opsætning af komponenter

Agenda

Group 1030

Introduktio

rensningsanlæg

Problemformulering

System beskrivelse

Løsninger og

Modellering

Modelielini

Struktur

uuktui

- reissilidilii

Implementering

Kontrol

Lineariserii

Resulta

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

minamana

mplementering

IIIpidiliolitaliii

Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state
- Simulering

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

KANADA SA

Wodeliering

Struktur

truktur

reissmann -

Implementerin

Kontrol

Lineariserin

D . . . II . .

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

► Iterativ beregning af komponenterne

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problemformulering

System beskrive

Løsninger og

Modellerin

Struktur

HUKUI

Preissmann

Implementerin

Kontrol

Lineariserin

Resulta

Diskussion/Konklusio

Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

- Iterativ beregning af komponenterne
- ► Gennemgang af resultat

Preissmann

Agenda

Group 1030

System beskrivelse

Modellering

Preissmann

Resultat

► Kinematisk bølge approksimation

$$ightharpoonup S_b = S_f$$

► Fyldningsgrads kurve for rør

Group 1030

ntroduktio

Kloakker og

Problemformulerin

System beskrivelse

Løsninger og

afgrænsninger

Modellering

01-1-1-1-1

Otendatus

Preissmann

Implementer

implementer

Kontrol Lineariserin

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

Modellering

Preissmann

▶ Ubetinget stabilitet

Courant's tal

Agenda

Group 1030

Introduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

Modellering

Modellerin

Simulering

Preissmann

Implementer

. . . .

Lineariserin

Resultat

Diskussion/Konklusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}}} \cdot \Delta t}{\Delta x}$$

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformulerin

System beskrivel

Løsninger og

atgrænsninger

Modellering

Simulerir

Preissmann

Implementer

Kontrol

MPC

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problemformuleri

System beskrivel

Løsninger og

aigraonainigoi

Modellering

Preissmann

Implementer

Kontrol

Linearisen

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

afgrænsninger

Modellering

Modellerii

. . .

Struktur

Preissmann

Implementering

....

Kontrol

Lineariserin

Resulta

- ► Implementering
- ► Kontrol
- ▶ Resultater
- ▶ Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

Problemformulerin

System beskrivelse

øsninger og

Modellering

.

omnulem

Drojoomoon

Fielssillallii

Implementering

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Rør

- Længde [m]
- Sektioner
- S_b (Hældning) [‰]
- $\triangle x = \text{Længde/Sektioner [m]}$
- Diameter [m]
- ► Theta
- $ightharpoonup Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- ▶ Størrelse [m³]
- ► Højde [m]
- ► Areal = Størrelse / Højde [m²]
- ► Maksimum outflow [m³/s]
- Placering i data

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

argreenamiger

Modellering

Modellerii

Simulering

Struktur

Preissmann

Implementering

mplemente

Lineariserin

MPC

Resultat

Diskussion/Konklusion

► Steady state

► System opsætning

Fields	type type	e component	sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	17	207
4	'Tank'	1	1
5	'Pipe'	1	38
6	'Total'	21	282

Group 1030

Modellering

Implementering

Beregner parameter for hvert tidsskridt

Group 1030

ntroduktio

Kloakker og rensningsanlæg Problemformuleri

System beskrivel

Løsninger og

afgrænsninger

Modellering

Simulering

Preisemann

Implementering

Kontrol

Lineariseri

Resultat

Dickussion/Konklusio

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntrodulation

Kloakker og rensningsanlæg

Problemformulering

System beskrive

Løsninger og

Løsninger og

Modellering

Wodeliering

Simulering

Struktur

Preissmann

Implementer

Kontre

Linearisering

MPC

Resultat

Diskussion/Konklusion

▶ Lineær model til MPC

► Linearisering af kontinuitets ligningen

► Højde states

► Preissmann scheme

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

Linearisering

Opstilles på state space form

$$\left[\underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{b}\right] \begin{bmatrix} h_{j+1}^{j+1} \\ h_{j+1}^{j+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{c} \underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix} =$$

Group 1030

atroduktion

rensningsanlæg

Problemformulerin

System beskrivel

Løsninger og

.....

Modellering

. . . .

Preissmann

Implemente

Implemente

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

$$\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & b_1 & 0 & \cdots & 0 \\
0 & a_1 & b_2 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & 0 & a_{m-1} & b_m
\end{bmatrix}
\underbrace{\begin{bmatrix}
h_0^{i+1} \\ h_1^{i+1} \\ h_2^{i+1} \\ \vdots \\ h_m^{i+1}
\end{bmatrix}}_{x(k+1)}$$

$$=\underbrace{\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ c_0 & d_1 & 0 & \cdots & 0 \\ 0 & c_1 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & c_{m-1} & d_m \end{bmatrix}}_{A}\underbrace{\begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{\chi(k)} +$$

$$\underbrace{\begin{bmatrix} 1 \\ -a_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B} h_0^{i+1} + \underbrace{\begin{bmatrix} \frac{dh}{dQ}}{0} \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B_d} d_0^{i+1}$$

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformuleri

System beskrive

Løsninger og

afgrænsninger

Modellering

Simulerii

Struktur

Preissmann

Implementeri

Kontrol

Linearisering

MPC

Resulta

Diskussion/Konklusion

- ► e Forøgelse af højde i tank(inflow)
- ► f Reducering af højde i tank(Outflow)
- ► g Inflow i efterfølgende rør

$$= \underbrace{ \begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} }_{x(k+1)} + \underbrace{ \begin{bmatrix} d_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c_{2,0} & d_{2,1} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i} \\ h_{2,0}^{i} \\ h_{2,1}^{i} \\ h_{2,1}^{i} \end{bmatrix}}_{x(k)} }_{B} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix} }_{B}$$

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problemformulerin

System beskrivelse

Løsninger og

afgrænsninger

Modellering

Simulerir

Droinomonn

1 1010011101111

Implementer

. . . .

Linearisering

MPC

Resulta

Diskussion/Konklusion

► Samligning af ulineær og lineær model for små forstyrrelser

► System setup

Sinus input

Туре	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

5

Group 1030

Modellering

Linearisering

Tank højde

Nonlinear

Linear

Dept. of Electronic Systems Aalborg University

Group 1030

System beskrivelse

Modellering

MPC

Cost funktion

- Afgrænset til at minimiere flow variationer
- ▶ Constraints
 - ► Højde
 - Kontrol input
- ► Prediktions model

Group 1030

Modellering

MPC

▶ Begrænset i længde af prediktions horisont

- System setup
- ► Forstyrrelses input

Fields	type type	⊞ component	sections sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemformuler

System beskrivel

Løsninger og

afgrænsninger

Modellering

01...............

Struktı

Preissman

Implementer

Kontr

Linearisering

Pocult

Hesultat

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problemiormulerin

System beskrive

Løsninger og

argracinomingor

Modellering

Simule

Droiceman

rieissillai

impiementen

Lincor

MPC

Resulta

Diskussion/Konklusion

Input højde i rør efter tank

Tank højde

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

rensningsanlæg

Problemformulering

System beskrivelse

Løsninger og

afgrænsninger

Modellering

1110001101111

Simulering

Preissmann

1 1010011101111

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

 System setup, efterligning af Fredericia

▶ Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

Group 1030

troduktio

Kloakker og rensningsanlæg

Problemformulering

System beskrivel

Løsninger og

afgrænsninger

Modellering

11100001101111

Ottoulation

Preissma

Implementer

Kontrol Linearise

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduletie

Kloakker og rensningsanlæg

Problemformulering

System beskrivelse

Løsninger og

Løsninger og

Modellering

....

Simulering

Struktur

Preissmann

Implementeri

Kontrol

Lineariserin

Resultat

Diskussion/Konklusi

Diskussion/Konklusion

Agenda

Group 1030

and the state of

Kloakker og

Problemformulerin

System beskrivelse

Løsninger og

.....

Modellering

Simulei

Droinemann

Preissmann

Implementering

Kontro

Linearisering

Resultat

Diskussion/Konklusion (36

- ► Courant's tal
- ▶ Model reduktion
- Simulering
- ► MPC