Ensemble method (2) Boosting

Ensemble method review

Problem: Trees are weak learner and trees overfit

Idea 1: Let's ensemble them

Idea 2: Let's decorrelate trees

Random Forest

Bagging and Random Forest

Bagging

Random Forest

- Random sample on data (row)
- Also on features (col)
- Further decorrelates the trees

Parallel ensembling

Parallel ensembling

Power of an ensemble of trees

Boosting

Problem: Trees are weak learner and trees overfit

Idea 3: Let's make the trees a strong learner

How: Grow a small tree (stump) to fit residual

Boosting

Decision Tree

Boosting

Boosting algorithm

1. Initialize
$$f(x) = 0$$
, $r = y$

2. For
$$b = 1, 2, ..., B$$
, repeat

a) Fit a tree $f_b(x)$ to the training data (X, r)

b)
$$f(x) \leftarrow f(x) + \lambda f_b(x)$$

c) $r \leftarrow \underline{r} - \lambda f_b(x)$

c)
$$r \leftarrow \underline{r} - \lambda \underline{f_b(x)}$$

3. output $\sum_{b=1}^{B} \lambda f_b(x)$

Boosting algorithm

For $b = 1, 2, \dots, B$, repeat

Fit a tree $f_b(x)$ to the training data (X, r)

$$f(x) \leftarrow f(x) + \lambda f_b(x)$$

$$r \leftarrow r - \lambda f_b(x)$$

Boosting Methods

AdaBoost

Gradient Boost