Numerical Quadrature Rules

The idea: The definite integral I[f; a, b] = [f(x) dx is approximated with a numerical a quadrature rule Q[f; a, b].

Why? Fundamental reason: The fundamental theorem If calculus is not universal.

For instance arc lengths cannot be found in closed form in the general case.

Practical reason: Modern computers ...

Concepts: Points and weights $Q[f; a,b] = \sum_{i=0}^{n} w_i f(x_i),$

where the quadrature points $X_i \in [a,b]$ and weights $W_i \in \mathbb{R}$.

Notice: $\sum_{i=0}^{n} w_i = b-a$.

Rate of convergence

The error estimate relates the error to the number of intervals n (or points n+L).

For any convergent method the error decreases at some speed or rate.

there are many rules available and it is up to the engineer to select the appropriate one.

Tn [f; a, b]: The trapezoidal rule

The idea is to linearise the function of at every interval and then apply summation as in the definition of the definite integral.

One interval:

$$\int_{1}^{\infty} f(x) dx \simeq h \frac{y_{j-1} + y_{j}}{2},$$

$$x_{j-1} \qquad 1 \leq j \leq n.$$

Definition

$$T_{n}[f;a_{1}b] = \lambda \left(\frac{1}{2}y_{0} + y_{1} + y_{2} + \dots + y_{n-1} + \frac{1}{2}y_{n}\right)$$

$$= \frac{\lambda}{2} \left(y_{0} + 2y_{1} + 2y_{2} + \dots + 2y_{n-1} + y_{n}\right)$$

Example
$$I = \int \frac{dx}{x}$$
; $T_{4} = ?$

$$\lambda = \frac{2-1}{4} = \frac{1}{4}$$
; $T_{7} = \frac{1}{4} \left(\frac{1}{2} \cdot 1 + \frac{4}{5} + \frac{2}{3} + \frac{4}{7} + \frac{1}{2} \cdot \frac{1}{2} \right)$

$$= 0.657$$

Malf; a, b]: The midpoint rule

Let $h = \frac{b-a}{n}$. Choose the points $m_j = a + (j - \frac{1}{2})h_j$.

Definition $M_n[f; a,b] = h_j \sum_{j=1}^n f(m_j)$

Notice that this is just a special Riemann sum!

Example
$$I = \int_{1}^{2} \frac{dx}{x}$$
; $M_{4} = ?$

$$M_{4} = \frac{1}{4} \left[\frac{8}{9} + \frac{8}{11} + \frac{8}{13} + \frac{8}{15} \right] \simeq 0.691$$

The exact solution: I = ln 2 ~ 0.693

So, it would appear that the midpoint rule wins in this case.

What can be said about the general case?

Theorem The error estimates

Let f'' be continuous and bounded from above over [a,b], that is, $|f''(x)| \leq K$, K = constant. Then, with $h = \frac{b-a}{2}$, we have

$$\left| \int_{a}^{b} f(x) dx - T_{n} \right| \leq \frac{K(b-a)^{3}}{12} h^{2} = \frac{K(b-a)^{3}}{12 n^{2}}$$

$$\left| \int_{a}^{b} f(u) dx - M_{n} \right| \leq \frac{K(b-a)}{24} l_{n}^{2} = \frac{K(b-a)^{3}}{24 n^{2}}$$

Both methods are quadratic, c.e., for the error ~ O(=).

Proof (Trapezoid)

The ener
$$g(x) = f(x) - A - B(x - x_0)$$

= $f(x) - y_0 - \frac{1}{h}(y_1 - y_0)(x - x_0)$

By the definition of the definite integral:

$$\int g(x) dx = \int f(x) dx - h \frac{y_0 + y_1}{2} \quad \text{over } [x_0, x_1]$$

Also:
$$\int_{x_0}^{x_1} (x-x_0)(x_1-x) g''(x) dx = -2 \int_{x_0}^{x_1} g(x) dx$$

Triangle inequality:

$$\left| \int_{x_{0}}^{x_{1}} f(x) dx - h \frac{y_{0} + y_{1}}{2} \right| \leq \frac{1}{2} \int_{x_{0}}^{x_{1}} (x - x_{0}) (x_{1} - x) |f'(x)| dx$$

$$\leq \frac{K}{2} \int_{x_{0}}^{x_{1}} (-x^{2} + (x_{0} + x_{1})x - x_{0}x_{1}) dx$$

$$= \frac{K}{12} (x_{1} - x_{0})^{3} = \frac{K}{12} h^{3}$$

The whole interval:

The whole interval:
$$\left| \int_{\alpha}^{b} f(x) dx - T_{n} \right| = \left| \sum_{j=1}^{n} \left(\int_{x_{j-k}}^{x_{j}} f(x) dx - L \frac{y_{j-1} + y_{j}}{2} \right) \right|$$

$$\leq \sum_{j=1}^{n} \left| \int_{x_{j-k}}^{x_{j}} f(x) dx - L \frac{y_{j-1} + y_{j}}{2} \right| = \sum_{j=1}^{n} \frac{K}{12} L^{3}$$

$$= K \cdot \frac{1}{12} \cdot n \cdot h^3 = \frac{K(b-a)}{12} h^2$$