Les Suites numériques

I. Généraliés

1. Modes de générations

- A partir d'une relation explicite : $U_n = f(n)$
- A partir d'une relation de récurrence : $U_{n+1} = f(U_n)$

2. Sens de variation d'une suite

- (U_n) est croissante signifie que $U_{n+1} \ge U_n$. $\Leftrightarrow U_{n+1} U_n \ge 0$
- (U_n) est décroissante signifie que $U_{n+1} \le U_n \iff U_{n+1} U_n \le 0$

II. Deux suites particulières

1. Les suites arithmétiques

- <u>Définition</u>: $U_{n+1} = U_n + r$ où $r \in \mathbb{R}$ est la raison de la suite.
- Propriété 1 : \forall n, p ∈ \mathbb{N} : $U_n = U_p + (n-p) \times r$
 - en particulier : $U_n = U_0 + n \times r$ et $U_n = U_1 + (n-1) \times r$
- <u>Somme des termes</u>: $S = U_0 + U_1 + ... + U_n = \frac{n+1}{2}(U_0 + U_n)$
 - de façon générale, on peut retenir : $S = \frac{N^{bre} \text{ de termes}}{2} (1^{ier} \text{ terme + dernier terme}).$

2. Les suites géométriques

- <u>Définition</u>: $U_{n+1} = q \times U_n \quad \forall n \in \mathbb{N}. q \in \mathbb{R}$ est la **raison** de la suite.
- Propriété: $U_n = U_p \times q^{n-p}$; $\forall n, p \in \mathbb{N}$.

 en particulier, $U_n = U_0 \times q^n$ et $U_n = U_1 \times q^{n-1}$
- <u>Somme</u>: $S = U_0 + U_1 + ... + U_n = \frac{U_{n+1} U_0}{q 1}$
 - de façon générale, on peut retenir : $S = \frac{\text{Le terme après le dernier} \text{le 1}^{\text{ier}}}{q-1}$

III. Limites de suites

1. Définitions

- On note $\lim U_n$ la limite de la suite (U_n) lorsque n tend vers + l'infini. C'est-à-dire vers quoi tend la suite lorsque n prend des valeurs très grande.
- Si $\lim U_n = a$ avec $a \in \mathbb{R}$, (U_n) est dite convergente vers a.

2. Les limites de références

On admet les résultats suivants :

$$\lim_{n \to \infty} \frac{1}{n} = 0 \qquad \qquad \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\lim_{n \to \infty} \frac{1}{n^k} = 0 \ \forall \ k \in \mathbb{N} \qquad \qquad \lim_{n \to \infty} \ln(n) = +\infty$$

$$\lim_{n \to \infty} e^n = + \infty$$

3. Le cas des suites géométriques

- (U_n) est une suite géométrique de raison $q \neq 1$, alors :
 - si $q \le -1$: U_n n'a pas de limite.

```
\begin{split} si-1 &< q < 1: U_n \ \textbf{converge} \ vers \ 0 \\ si \ q &> 1: \lim_{n \ \to \ \infty} U_n = \pm \infty \ \ (\text{selon le signe de } U_0 \ ) \end{split}
```

En résumé, si une suite géométrique converge, alors c'est vers 0 et $q \in [-1; 1[$.

4. Les théorèmes de comparaisons

- On dit que deux suites (U_n) et (V_n) sont équivalentes si $\lim_{n \to \infty} \frac{Un}{Vn} = a$ avec $a \in \mathbb{R}$.
- On dit que (U_n) est prépondérante devant (V_n) (ou que (V_n) est négligeable devant (U_n)) si $\lim_{n\to\infty}\frac{Un}{Vn}=+\infty$.

Ainsi, si deux suites ont pour limite $+\infty$ mais que l'une est prépondérante devant l'autre c'est qu'elle tend vers l'infini beaucoup plus vite que la deuxième.

<u>Propriété</u>: on adopte le signe « << » pour signifier « est négligeable devant » $ln(n) << n^p << a^n \quad \forall \ p \in \mathbb{I} N \ et \ \forall \ a \in \mathbb{I} R, \ a > 1.$