Supporting Information

Rapid profiling of peptide stability in proteolytic environments

Hans H. Gorris*,†,§, Steffen Bade*, Niels Röckendorf*, Eike Albers†,¶, M. Alexander Schmidt†, Milan Fránek‡ & Andreas Frey*

*Division of Mucosal Immunology, Research Center Borstel, Borstel, Germany; †Institute of Infectiology, University of Münster, Münster, Germany; †Department of Analytical Biotechnology, Veterinary Research Institute, Brno, Czech Republic.

Present address:

§Department of Chemistry, Tufts University, Medford, MA, USA; ¶Department of Clinical Chemistry and Pharmacology, University Hospital Bonn, Bonn, Germany.

The Research aricle describes a novel assay which is suitable to determine the stability of peptides in complex proteolytic environments.

The Supporting information contains the exact protocol of the solid phase peptide synthesis employed and includes an exemplary overview of synthesis yields obtained with this procedure (Table S1).

The Supporting Figures emphasize the statements of the main paper by providing additional experimental data.

Figure S1 gives the results obtained when analyzing the stability of enzyme activity in murine intestinal lavage over prolonged incubation at 37° C.

In addition to the data presented in the main paper for the enzyme trypsin (see Figure 4 A,B), concerning the determination of $k_{\text{cat}}/K_{\text{M}}$ via variation of both, enzyme concentration and time, Figure S2 shows the results of the analogous experiment conducted with the enzyme chymotrypsin.

Figure S3 elaborates the results concerning the influence of the peptides' flanking regions depicted in Figure 4 C,D of the main paper by providing additional data obtained with different substrate peptides.

Table S2 contains a complete listing of the half-lifes of all 375 peptides investigated for their stability in murine intestinal fluid.

Supporting Method:

SPOT peptide synthesis on cellulose membranes¹

Peptide libraries were SPOT-synthesized using standard fluorenylmethoxycarbonyl (Fmoc) amino acid protection chemistry. Vacuum dried Whatman 540 cellulose membranes were esterderivatized in a closed container for 24 h at RT with Fmoc-protected proline (0.2 M Fmocproline, 0.25 M diisopropylcarbodiimide (DICD) and 0.46 M N-methylimidazole in deionized and desiccated dimethylformamide (DMF)). Peptide bond formation of all amino acids was performed at RT in a semiautomated cycle: Washing and incubation steps were carried out manually under agitation. (i) acetyl-blocking of reactive groups with 2 % (v/v) acetic anhydride in DMF for 24 h or 20 min (the solution was changed repeatedly), (ii) DMF-washing (1 x 30 s, 2 x 2 min), (iii) Fmoc-deprotection with 20 % (v/v) piperidine in DMF for 5 min, (iv) DMF-washing (1 x 30 s, 4 x 2 min), (v) bromophenol blue (BPB) staining with 0.01 % (w/v) BPB in DMF for 10 min (the solution was changed repeatedly) for synthesis control, (vi) ethanol-washing (1 x 30 s, 2 x 2 min), (vii) drying in the cold air flow of a hair-dryer and placement of the membrane on the tray of the pipetting device ASP 222 (Intavis AG, Cologne, Germany). (vii) Solutions of 0.2 M Fmoc-protected amino acids and 0.35 M 1-hydroxybenzotriazole (HOBt) in deionized and desiccated methyl-2-pyrrolidone (NMP) were activated with DICD (final concentration: 0.25 M) 30 min prior to each synthesis cycle. (viii) The pipetting device automatically applied 0.1 or 0.2 μl of the activated amino acid solutions onto each positionally addressed area (SPOT) on the membrane. Each amino acid application step was performed three times followed by an incubation time of at least 40 min. Proline derivatized cellulose membranes were acetyl-capped for 24 h. In the first cycle a Boc-Lys(Fmoc) amino acid solution containing 0.4 mM 5(6)carboxytetramethylrhodamine was prepared. The rhodamine derivative rendered the SPOTs visible by eye. All SPOTs were defined by the automated application of 0.1 µl activated Boc-Lys(Fmoc) solution to the membrane resulting in the formation of a cleavable ε -lysine-proline anchor². The membranes were capped for another 24 h. In the following cycles 0.2 µl activated amino acid solutions were automatically applied to the SPOTs and the time for acetyl-capping was reduced to 20 min. The first amino acid following the anchor residue was Fmoc-biocytine or Fmoc-N-γ-(N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl)-L-glutamine (Merck Biosciences, Schwalbach, Germany), respectively. The latter already incorporates a PEG-moiety, whereas following biocytine amino poly(ethylene glycole) diglycolic acid (n=9) (Polypure, Oslo, Norway) was coupled. The sequence motif was synthesized in repeating cycles by adding amino acids one by one. For synthesis completion 2,4-dichlorophenoxyacetic acid (2,4-D) was applied. For side chain deprotection and diketopiperazine formation of the \(\epsilon\)-lysine-proline anchor, the dried membranes were incubated in a closed container for 2 x 1 h with a freshly prepared solution of 3 % triisobutylsilane, 2 % water and 50 % trifluoroacetic acid in dichloromethane (all v/v). Chemicals were washed out with dichloromethane (1 x 1 min, 3 x 10 min), a solution of 0.1 % HCl and 50 % methanol in water (1 x 1 min, 3 x 20 min) and 1 M acetic acid (1 x 1 min, 3 x 20 min) and the membranes were dried under vacuum. Visible by a tinge of rhodamine SPOTs were punched out and transferred individually to polypropylene tubes. The peptides were cleaved from the membrane by shaking overnight at 30 °C in 0.5 ml 0.1 M triethylammonium acetate and 20 % ethanol in water. Supernatants were transferred to a second tube and 0.5 ml new triethylammonium acetate buffer was applied to the SPOTs for another 2 h. Supernatants were combined in the second tube and lyophilized. Peptides were dissolved in 1.5 ml L-PBS x 0.005 % (w/v) Tween 20 (L-PBST), snap frozen in liquid N₂ and stored at -80 °C.

References

- (1) Frank, R. Tetrahedron 1992, 48, 9217-9232.
- (2) Bray, M. B.; Maeji, N. J.; Geysen, H. M. Tetrahedron Lett 1990, 31, 5811-5814

Supporting Table 1: Synthesis yield of peptides generated by SPOT-synthesis

Random peptide	Sequence motif	SPOT synthesis amount [nmole]	Peptide amount for proteolysis experiments (3/1000 SPOT) [pmole]		
1	HQEQPT	0.957 ± 0.027	2.87 ± 0.08		
1	AKENGMLYEFHQEQPT	0.791 ± 0.077	2.37 ± 0.23		
2	VRTRSA	0.972 ± 0.093	2.92 ± 0.28		
2	VHNMDKPWLSVRTRSA	n.a.	n.a.		
3	VWNELA	1.145 ± 0.098	3.43 ± 0.29		
3	WMLCRMQRFWVWNELA	n.a.	n.a.		
4	AEQPAA	0.696 ± 0.040	2.09 ± 0.12		
4	FLHMWLLTIFAEQPAA	n.a.	n.a.		
5	GDFQRT	0.921 ± 0.083	2.76 ± 0.25		
	GTEKPFVEAGGDFQRT	0.502 ± 0.047	1.51 ± 0.14		

Random peptides were SPOT-synthesized as described. As synthesis amounts could depend on sequence motif as well as on peptide length five different 16-mer and N-terminally shortened 6-mer peptides were synthesized with a C-terminal biotin label and an N-terminal 2,4-D-aminoundecanoic acid label. The synthesis amount was determined with a competitive ELISA. Free 2,4-D-aminoundecanoic acid (synthesized in our lab; SB, unpublished results) of known concentration was serially diluted in the peptide solution, the mixtures were transferred to an anti-2,4-D antibody-coated microtiter plate, and captured peptide was quantitated with enzymelabeled streptavidin. From the midpoint of the resulting binding curve, representing equal amounts of competitor and peptide, the total peptide amount could be determined (geometric mean \pm SE of triplicate measurements). In three cases this method was not applicable (n.a.) as some 16-mer peptides exhibited nonspecific binding to the microtiter plate.

Figure S1: Stability of proteolytic activity in intestinal lavage during long incubation times.

Murine small intestinal lavage was diluted in a microtiter plate to the final concentration needed for proteolysis and preincubated for 0, 30, 60, 90 or 120 min at 37° C. Immediately after the preincubation time, 67 pM peptide substrate was added and incubated for further 90 min at 37° C. After termination of the enzyme reaction, the peptide solutions were transferred to an antibody-coated microtiter plate, where uncleaved peptides were detected by enzyme-coupled signal amplification. Peptide half-lifes were calculated using equation 4. The peptides GPARLA (a) and GVPFGP (b), which contain cleavage motives for trypsin or chymotrypsin, respectively, show no significant difference in half-lifes due to incubation times up to 120 min (triplicate measurements, one-way ANOVA, Fisher's PLSD-test, p > 0.05).

Figure S2: Determination of $k_{\text{cat}}/K_{\text{M}}$ by variation of incubation time and of enzyme concentration.

Either 67 pM substrate (GVPFGP) was incubated with 2 nM chymotrypsin for 10, 30, 90 or 270 min at 37 °C (a) or chymotrypsin was serially diluted in 67 pM substrate for 90 min at 37 °C (b). After termination of the proteolysis reaction, the peptide solutions were transferred to an antibody-coated microtiter plate, where uncleaved peptides were detected by enzyme-coupled signal amplification. Plotting the course of substrate degradation against incubation time (a) or chymotrypsin concentration (b) yielded both pseudo-first order reaction kinetics and equation 2 was employed for non-linear curve-fitting. Error bars indicate the SE of fivefold measurements. $k_{\text{cat}}/K_{\text{M}}$ was $1.9 \times 10^4 \pm 0.2 \times 10^4 \,\text{M}^{-1} \,\text{s}^{-1}$ (a) or $2.3 \times 10^4 \pm 0.4 \times 10^4 \,\text{M}^{-1} \,\text{s}^{-1}$ (b) (geometric mean \pm SE). Both values did not differ significantly from each other (p > 0.05, Student's two-tailed t-test).

Figure S3: Influence of flanking motifs on $k_{cat}/K_{\rm M}$.

10-mer, 13-mer and 16-mer substrate sequence motifs for trypsin (a-c) and chymotrypsin (d-f) were used with a choice of the best flanking motifs for preventing nonspecific binding to microtiter plates (Figure 3f). Chymotrypsin or trypsin were serially diluted in 67 pM substrate and incubated for 90 min at 37 °C. After termination of the enzyme reaction, the peptide solutions were transferred to an antibody-coated microtiter plate, where uncleaved peptides were detected by enzyme-coupled signal amplification. Values for k_{cat}/K_M were determined from eq. 2 after non-linear curve fitting (geometric means + SE of triplicate measurements). Figures S3c and f show the same experiment as Figure 4c and 4d in the main text. To emphasize the large difference in peptide stabilities due to different flanking motifs all y-axes have the same scaling. Direct attachment of negatively charged building blocks to the sequence motif rendered the peptides more stable to proteolysis than peptides without such flanking regions. This effect was prevented by introducing PEG between sequence motif and negatively charged building blocks; (xxx), peptide; (P), poly(ethylene glycole) diglycolic acid (n=2); (-), D-glutamate; (=), carboxyglutamate.

Table S2: Peptide stability in small intestinal fluid

	10-mer peptides	t _{1/2} [s]	SE		16-mer peptides	t _{1/2} [s]	SE
1	GSIGAASMEF	2.7013	0.2777	1	GSIGAASMEFCFDVFK	0.0097	0.0025
2	IGAASMEFCF	0.0629	0.0168	2	IGAASMEFCFDVFKEL	0.0084	0.0020
3	AASMEFCFDV	0.0556	0.0163	3	AASMEFCFDVFKELKV	0.0068	0.0016
4	SMEFCFDVFK	0.0103	0.0030	4	SMEFCFDVFKELKVHH	0.0084	0.0018
5	EFCFDVFKEL	0.0088	0.0014	5	EFCFDVFKELKVHHAN	0.0098	0.0005
6	CFDVFKELKV	0.0122	0.0025	6	CFDVFKELKVHHANEN	0.0103	0.0017
7	DVFKELKVHH	0.0101	0.0018	7	DVFKELKVHHANENIF	0.0201	0.0039
8	FKELKVHHAN	0.0094	0.0028	8	FKELKVHHANENIFYC	0.0074	0.0020
9	ELKVHHANEN	0.1969	0.0086	9	ELKVHHANENIFYCPI	0.0851	0.0178
10	KVHHANENIF	1.2897	0.0876	10	KVHHANENIFYCPIAI	0.0892	0.0174
11	HHANENIFYC	0.0485	0.0074	11	HHANENIFYCPIAIMS	0.0575	0.0092
12	ANENIFYCPI	0.1557	0.0240	12	ANENIFYCPIAIMSAL	0.0425	0.0032
13	ENIFYCPIAI	0.0890	0.0143	13	ENIFYCPIAIMSALAM	0.0327	0.0054
14	IFYCPIAIMS	0.0469	0.0037	14	IFYCPIAIMSALAMVY	0.0167	0.0033
15	YCPIAIMSAL	0.2911	0.0130	15	YCPIAIMSALAMVYLG	0.0125	0.0014
16	PIAIMSALAM	0.1596	0.0172	16	PIAIMSALAMVYLGAK	0.0077	0.0012
17	AIMSALAMVY	0.0512	0.0087	17	AIMSALAMVYLGAKDS	0.0088	0.0020
18	MSALAMVYLG	0.0132	0.0033	18	MSALAMVYLGAKDSTR	0.0063	0.0012
19	ALAMVYLGAK	0.0077	0.0002	19	ALAMVYLGAKDSTRTQ	0.0045	0.0009
20	AMVYLGAKDS	0.0111	0.0020	20	AMVYLGAKDSTRTQIN	0.0037	0.0007
21	VYLGAKDSTR	0.0135	0.0009	21	VYLGAKDSTRTQINKV	0.0040	0.0008
22	LGAKDSTRTQ	0.0122	0.0006	22	LGAKDSTRTQINKVVR	0.0033	0.0008
23	AKDSTRTQIN	0.0092	0.0005	23	AKDSTRTQINKVVRFD	0.0038	0.0004
24	DSTRTQINKV	0.0210	0.0065	24	DSTRTQINKVVRFDKL	0.0044	0.0009
25	TRTQINKVVR	0.0027	0.0006	25	TRTQINKVVRFDKLPG	0.0045	0.0004
26	TQINKVVRFD	0.0094	0.0013	26	TQINKVVRFDKLPGFG	0.0085	0.0021
27	INKVVRFDKL	0.0069	0.0007	27	INKVVRFDKLPGFGDS	0.0111	0.0020
28 29	KVVRFDKLPG	0.0119 0.1526	0.0012 0.0364	28 29	KVVRFDKLPGFGDSIE	0.0131 0.1209	0.0021 0.0282
30	VRFDKLPGFG	25.2445	2.5943	30	VRFDKLPGFGDSIEAQ	5.6930	0.0282
31	FDKLPGFGDS	40.1296	7.1878	31	FDKLPGFGDSIEAQCG	6.4211	0.7910
32	KLPGFGDSIE	17.8114	2.4067	32	KLPGFGDSIEAQCGTS	5.0348	0.7910
33	PGFGDSIEAQ FGDSIEAQCG		1.4460		PGFGDSIEAQCGTSVN FGDSIEAQCGTSVNVH	1.3951	0.4914
34		13.4815	0.0964		DSIEAQCGTSVNVHSS	0.4688	0.1132
35	DSIEAQCGTS IEAQCGTSVN	6.4814	0.6663	35	IEAQCGTSVNVHSSLR	0.1930	0.0399
36	AQCGTSVN	4.3435	0.3449	36	AQCGTSVNVHSSLRDI	0.1730	0.0019
37	CGTSVNVHSS	1.1378	0.3449	37		0.0499	0.0019
38	TSVNVHSSLR	0.1177	0.0143	38		0.1029	0.0019
39	VNVHSSLRDI	0.0148	0.0038		VNVHSSLRDILNQITK	0.0614	0.0013
40	VHSSLRDILN	0.0527	0.0038	40		0.1104	0.0022
41	SSLRDILNQI	0.0527	0.0112	41	SSLRDILNQITKPNDV	0.1963	0.0141
42	LRDILNQITK	0.0939	0.0112	42	LRDILNQITKPNDVYS	0.0514	0.0085
43	DILNQITKPN	4.1593	0.1479	43	DILNQITKPNDVYSFS	0.0223	0.0039
44	LNQITKPNDV	20.6999	2.1888	44		0.0054	0.0004
45	QITKPNDVYS	0.2963	0.0418	45	~	0.0025	0.0006
	2	<u>-</u> , 05			E = 1111 1.10 1 101 0 11101(2.3000

	10-mer peptides	t _{1/2} [s]	SE	•		16-mer peptides	t _{1/2} [s]	SE
46	TKPNDVYSFS	0.0120	0.0019		46	TKPNDVYSFSLASRLY	0.0011	0.0001
47	PNDVYSFSLA	0.0026	0.0004		47	PNDVYSFSLASRLYAE	0.0014	0.0000
48	DVYSFSLASR	0.0037	0.0005		48	DVYSFSLASRLYAEER	0.0011	0.0002
49	YSFSLASRLY	0.0019	0.0007		49	YSFSLASRLYAEERYP	0.0032	0.0004
50	FSLASRLYAE	0.0035	0.0009		50	FSLASRLYAEERYPIL	0.0031	0.0005
51	LASRLYAEER	0.0031	0.0008		51	LASRLYAEERYPILPE	0.0023	0.0003
52	SRLYAEERYP	0.0052	0.0007		52	SRLYAEERYPILPEYL	0.0028	0.0005
53	LYAEERYPIL	0.1052	0.0144		53	LYAEERYPILPEYLQC	0.0281	0.0053
54	AEERYPILPE	11.4998	2.1736		54	AEERYPILPEYLQCVK	0.2682	0.0682
55	ERYPILPEYL	1.4660	0.2397		55	ERYPILPEYLQCVKEL	0.1018	0.0264
56	YPILPEYLQC	0.1016	0.0108		56	YPILPEYLQCVKELYR	0.0298	0.0047
57	ILPEYLQCVK	0.3817	0.0205		57	ILPEYLQCVKELYRGG	0.0143	0.0021
58	PEYLQCVKEL	0.1101	0.0190		58	PEYLQCVKELYRGGLE	0.0152	0.0013
59	YLQCVKELYR	0.0263	0.0032		59	YLQCVKELYRGGLEPI	0.0093	0.0007
60	QCVKELYRGG	0.0128	0.0019		60	QCVKELYRGGLEPINF	0.0085	0.0013
61	VKELYRGGLE	0.0225	0.0050		61	VKELYRGGLEPINFQT	0.0052	0.0007
62	ELYRGGLEPI	0.0244	0.0033		62	ELYRGGLEPINFQTAA	0.0085	0.0010
63	YRGGLEPINF	0.0238	0.0024		63	YRGGLEPINFQTAADQ	0.0110	0.0031
64	GGLEPINFQT	0.0336	0.0036		64	GGLEPINFQTAADQAR	0.0207	0.0026
65	LEPINFQTAA	0.0242	0.0049		65	LEPINFQTAADQAREL	0.0155	0.0013
66	PINFQTAADQ	0.0812	0.0093		66	PINFQTAADQARELIN	0.0183	0.0015
67	NFQTAADQAR	0.1293	0.0141		67	NFQTAADQARELINSW	0.0247	0.0059
68	QTAADQAREL	0.0514	0.0126		68	QTAADQARELINSWVE	0.0297	0.0048
69	AADQARELIN	0.0325	0.0061		69	AADQARELINSWVESQ	0.0322	0.0043
70	DQARELINSW	0.0224	0.0025		70	DQARELINSWVESQTN	0.0223	0.0047
71	ARELINSWVE	0.0156	0.0023		71	ARELINSWVESQTNGI	0.0078	0.0014
72	ELINSWVESQ	1.2344	0.2859		72	ELINSWVESQTNGIIR	0.1455	0.0179
73	INSWVESQTN	3.3348	0.8046		73	INSWVESQTNGIIRNV	0.0095	0.0028
74	SWVESQTNGI	0.7564	0.0298		74	SWVESQTNGIIRNVLQ	0.0099	0.0027
75	VESQTNGIIR	0.3309	0.0104		75	VESQTNGIIRNVLQPS	0.0085	0.0025
76	SQTNGIIRNV	0.0066	0.0008		76	SQTNGIIRNVLQPSSV	0.0032	0.0008
77	TNGIIRNVLQ	0.0072	0.0010		77	TNGIIRNVLQPSSVDS	0.0033	0.0003
78 70	GIIRNVLQPS	0.0038	0.0003			GIIRNVLQPSSVDSQT	0.0050	0.0013
79	IRNVLQPSSV	0.0049	0.0008			IRNVLQPSSVDSQTAM	0.0069	0.0022
80	NVLQPSSVDS	0.3384	0.0684			NVLQPSSVDSQTAMVL	0.1618	0.0189
81	LQPSSVDSQT	0.1866	0.0275		81	LQPSSVDSQTAMVLVN	0.0332	0.0044
82	PSSVDSQTAM	4.5647	0.8713			PSSVDSQTAMVLVNAI	0.0371	0.0060 0.0047
83	SVDSQTAMVL	0.2013	0.0233		83	SVDSQTAMVLVNAIVF	0.0236	
84 85	DSQTAMVLVN	0.0195 0.0264	0.0030 0.0042			DSQTAMVLVNAIVFKG	0.0080 0.0051	0.0013
	QTAMVLVNAI					QTAMVLVNAIVFKGLW	0.0051	0.0003
86 87	AMVLVNAIVF	0.0165 0.0087	0.0027 0.0014		86 87	AMVLVNAIVFKGLWEK VLVNAIVFKGLWEKAF	0.0030	0.0004 0.0008
88	VLVNAIVFKG	0.0087	0.0014		88	VLVNAIVFKGLWEKAF VNAIVFKGLWEKAFKD	0.0030	0.0008
89	VNAIVFKGLW AIVFKGLWEK	0.0051	0.0008		89	_	0.0028	0.0009
90	VFKGLWEK VFKGLWEKAF	0.0034	0.0002			AIVFKGLWEKAFKDED VFKGLWEKAFKDEDTQ	0.0057	0.0001
91	KGLWEKAFKD	0.0053	0.0012			KGLWEKAFKDEDTQAM	0.0037	0.0008
92	LWEKAFKDED	0.0033	0.0008		92	LWEKAFKDEDTQAMPF	0.0084	0.0023
93	EKAFKDEDTQ	0.0131	0.0022		93	EKAFKDEDTQAMPFRV	0.0101	0.0013
73	rval vnrnið	0.0343	0.0023		73	EVAL VDED I ÅAMEL KA	0.003/	0.0003

	10-mer peptides	t _{1/2} [s]	SE		16-mer peptides	t _{1/2} [s]	SE
94	AFKDEDTQAM	7.6573	2.8082	94	AFKDEDTQAMPFRVTE	0.0047	0.0015
95	KDEDTQAMPF	0.6468	0.0314	95	KDEDTQAMPFRVTEQE	0.0049	0.0003
96	EDTQAMPFRV	0.0033	0.0001	96	EDTQAMPFRVTEQESK	0.0041	0.0009
97	TQAMPFRVTE	0.0047	0.0012	97	TQAMPFRVTEQESKPV	0.0076	0.0012
98	AMPFRVTEQE	0.0063	0.0002	98	AMPFRVTEQESKPVQM	0.0050	0.0012
99	PFRVTEQESK	0.1310	0.0214	99	PFRVTEQESKPVQMMY	0.1097	0.0086
100	RVTEQESKPV	2.1948	0.2307	100	RVTEQESKPVQMMYQI	0.1086	0.0146
101	TEQESKPVQM	19.4782	3.0864	101	TEQESKPVQMMYQIGL	0.0696	0.0035
102	QESKPVQMMY	3.8079	0.5193	102	QESKPVQMMYQIGLFR	0.0055	0.0013
103	SKPVQMMYQI	0.1240	0.0080	103	SKPVQMMYQIGLFRVA	0.0020	0.0001
104	PVQMMYQIGL	0.0880	0.0082	104	PVQMMYQIGLFRVASM	0.0022	0.0005
105	QMMYQIGLFR	0.0060	0.0010	105	QMMYQIGLFRVASMAS	0.0021	0.0002
106	MYQIGLFRVA	0.0025	0.0006	106	MYQIGLFRVASMASEK	0.0025	0.0001
107	QIGLFRVASM	0.0015	0.0001	107	QIGLFRVASMASEKMK	0.0021	0.0004
108	GLFRVASMAS	0.0060	0.0018	108	GLFRVASMASEKMKIL	0.0047	0.0002
109	FRVASMASEK	0.0082	0.0021	109	FRVASMASEKMKILEL	0.0026	0.0002
110	VASMASEKMK	0.1745	0.0345	110	VASMASEKMKILELPF	0.0075	0.0029
111	SMASEKMKIL	0.0072	0.0017	111	SMASEKMKILELPFAS	0.0073	0.0023
112	ASEKMKILEL	0.0103	0.0027	112	ASEKMKILELPFASGT	0.0034	0.0016
113	EKMKILELPF	0.0135	0.0039	113	EKMKILELPFASGTMS	0.0134	0.0018
114	MKILELPFAS	0.0183	0.0051	114	MKILELPFASGTMSML	0.0220	0.0052
115	ILELPFASGT	0.0767	0.0173	115	ILELPFASGTMSMLVL	0.0507	0.0089
116	ELPFASGTMS	0.0648	0.0104	116	ELPFASGTMSMLVLLP	0.0410	0.0096
117	PFASGTMSML	3.8440	1.2250	117	PFASGTMSMLVLLPDE	0.0444	0.0057
118	ASGTMSMLVL	0.1692	0.0097	118	ASGTMSMLVLLPDEVS	0.0325	0.0024
119	GTMSMLVLLP	0.0949	0.0108	119	GTMSMLVLLPDEVSGL	0.0306	0.0103
120	MSMLVLLPDE	0.0317	0.0056	120	MSMLVLLPDEVSGLEQ	0.0139	0.0025
121	MLVLLPDEVS	0.3230	0.0694	121	MLVLLPDEVSGLEQLE	0.1049	0.0418
122	VLLPDEVSGL	8.3587	0.5968	122	VLLPDEVSGLEQLESI	0.2344	0.0626
123	LPDEVSGLEQ	0.3722	0.1025	123	LPDEVSGLEQLESIIN	0.1597	0.0278
124	DEVSGLEQLE	0.1719	0.0223	124	DEVSGLEQLESIINFE	0.0265	0.0024
125	VSGLEQLESI	1.0014	0.0596	125	VSGLEQLESIINFEKL	0.0393	0.0053
126	GLEQLESIIN	0.5162	0.1333		GLEQLESIINFEKLTE	0.0228	0.0044
127	EQLESIINFE	0.0686	0.0208		EQLESIINFEKLTEWT	0.0345	0.0092
128	LESIINFEKL	0.0663	0.0119		LESIINFEKLTEWTSS	0.0424	0.0057
129	SIINFEKLTE	0.0667	0.0179		SIINFEKLTEWTSSNV	0.0653	0.0089
130	INFEKLTEWT	0.0541	0.0065		INFEKLTEWTSSNVME	0.0497	0.0079
131	FEKLTEWTSS	0.0563	0.0088		FEKLTEWTSSNVMEER	0.0286	0.0062
132	KLTEWTSSNV	0.4176	0.1064		KLTEWTSSNVMEERKI	0.0414	0.0098
133	TEWTSSNVME	0.5842	0.1034		TEWTSSNVMEERKIKV	0.0139	0.0035
134	WTSSNVMEER	0.9286	0.0851		WTSSNVMEERKIKVYL	0.0060	0.0024
135	SSNVMEERKI	0.0399	0.0119		SSNVMEERKIKVYLPR	0.0021	0.0004
136	NVMEERKIKV	0.0072	0.0002		NVMEERKIKVYLPRMK	0.0021	0.0003
137	MEERKIKVYL	0.0037	0.0011		MEERKIKVYLPRMKME	0.0014	0.0007
138	ERKIKVYLPR	0.0008	0.0001		ERKIKVYLPRMKMEEK	0.0014	0.0007
139	KIKVYLPRMK	0.0017	0.0002		KIKVYLPRMKMEEKYN	0.0012	0.0003
140	KUYLPRMKME	0.0044	0.0003	140	KVYLPRMKMEEKYNLT	0.0010	0.0002
141	YLPRMKMEEK	0.0088	0.0012	141	YLPRMKMEEKYNLTSV	0.0054	0.0003
141	า ท่ะ เกมเกมู่กู้กู้นั้น	0.0000	0.0033	141	THEUMINGEVINFION	0.0034	0.0014

	10-mer peptides	t _{1/2} [s]	SE			16-mer peptides	t _{1/2} [s]	SE
142	PRMKMEEKYN	0.0056	0.0010	14	42	PRMKMEEKYNLTSVLM	0.0051	0.0011
143	MKMEEKYNLT	0.0367	0.0073	14	43	MKMEEKYNLTSVLMAM	0.0321	0.0026
144	MEEKYNLTSV	0.0093	0.0020	14	44	MEEKYNLTSVLMAMGI	0.0225	0.0024
145	EKYNLTSVLM	0.0124	0.0013	14	45	EKYNLTSVLMAMGITD	0.0211	0.0013
146	YNLTSVLMAM	0.0294	0.0077	14	46	YNLTSVLMAMGITDVF	0.0298	0.0038
147	LTSVLMAMGI	0.0787	0.0218	14	47	LTSVLMAMGITDVFSS	0.0170	0.0011
148	SVLMAMGITD	0.1194	0.0217	14	48	SVLMAMGITDVFSSSA	0.0276	0.0016
149	LMAMGITDVF	0.8333	0.0550	14	49	LMAMGITDVFSSSANL	0.0241	0.0012
150	AMGITDVFSS	0.0154	0.0024	15	50	AMGITDVFSSSANLSG	0.0262	0.0020
151	GITDVFSSSA	0.0178	0.0041	15	51	GITDVFSSSANLSGIS	0.0240	0.0043
152	TDVFSSSANL	0.0190	0.0021	15	52	TDVFSSSANLSGISSA	0.0361	0.0031
153	VFSSSANLSG	0.1849	0.0306	15	53	VFSSSANLSGISSAES	0.2471	0.0395
154	SSSANLSGIS	0.7012	0.0776	15	54	SSSANLSGISSAESLK	0.3682	0.0067
155	SANLSGISSA	0.6149	0.1038	15	55	SANLSGISSAESLKIS	0.0601	0.0051
156	NLSGISSAES	1.5216	0.1626	15	56	NLSGISSAESLKISQA	0.0601	0.0050
157	SGISSAESLK	0.5455	0.1247	15	57	SGISSAESLKISQAVH	0.0526	0.0063
158	ISSAESLKIS	0.0401	0.0052	15	58	ISSAESLKISQAVHAA	0.0502	0.0090
159	SAESLKISQA	0.0451	0.0095	15	59	SAESLKISQAVHAAHA	0.0475	0.0035
160	ESLKISQAVH	0.0465	0.0095	16	60	ESLKISQAVHAAHAEI	0.0463	0.0038
161	LKISQAVHAA	0.0192	0.0040	16	61	LKISQAVHAAHAEINE	0.0154	0.0011
162	ISQAVHAAHA	0.1691	0.0111	16	62	ISQAVHAAHAEINEAG	0.1789	0.0120
163	QAVHAAHAEI	0.1777	0.0249	16	63	QAVHAAHAEINEAGRE	0.0901	0.0103
164	VHAAHAEINE	0.1356	0.0201	16	64	VHAAHAEINEAGREVV	0.0783	0.0052
165	AAHAEINEAG	0.7772	0.0871	16	65	AAHAEINEAGREVVGS	0.1269	0.0070
166	HAEINEAGRE	0.1388	0.0195	16	66	HAEINEAGREVVGSAE	0.1531	0.0126
167	EINEAGREVV	0.1025	0.0148	16	67	EINEAGREVVGSAEAG	0.1950	0.0348
168	NEAGREVVGS	0.1284	0.0033	16	68	NEAGREVVGSAEAGVD	0.1676	0.0473
169	AGREVVGSAE	0.0967	0.0130	16	69	AGREVVGSAEAGVDAA	0.1212	0.0155
170	REVVGSAEAG	1.7169	0.3093	17	70	REVVGSAEAGVDAASV	0.0694	0.0112
171	VVGSAEAGVD	4.0618	0.7241	17	71	VVGSAEAGVDAASVSE	0.0475	0.0109
172	GSAEAGVDAA	3.1271	0.3753		72	GSAEAGVDAASVSEEF	0.0261	0.0050
173	AEAGVDAASV	0.0711	0.0070		73	AEAGVDAASVSEEFRA	0.0214	0.0036
174	AGVDAASVSE	0.0548	0.0059			AGVDAASVSEEFRADH	0.0322	0.0064
175	VDAASVSEEF	0.0426	0.0043			VDAASVSEEFRADHPF	0.0389	0.0107
176	AASVSEEFRA	0.0246	0.0036			AASVSEEFRADHPFLF	0.0233	0.0051
177	SVSEEFRADH	0.0788	0.0120		77	SVSEEFRADHPFLFCI	0.0029	0.0006
178	SEEFRADHPF	0.0759	0.0053		78 		0.0038	0.0010
179	EFRADHPFLF	0.0569	0.0077		79	EFRADHPFLFCIKHIA	0.0031	0.0005
180	RADHPFLFCI	0.0056	0.0011			RADHPFLFCIKHIATN	0.0038	0.0003
181	DHPFLFCIKH	0.0042	0.0010			DHPFLFCIKHIATNAV	0.0046	0.0010
182	PFLFCIKHIA	0.0046	0.0009			PFLFCIKHIATNAVLF	0.0055	0.0012
183	LFCIKHIATN	0.0185	0.0012			LFCIKHIATNAVLFFG	0.0038	0.0009
184	CIKHIATNAV	0.0929	0.0059		84	CIKHIATNAVLFFGRC	0.0025	0.0003
185	KHIATNAVLF	0.0719	0.0032		85	KHIATNAVLFFGRCVS	0.0008	0.0001
186	IATNAVLFFG	0.0048	0.0007	18	80	HIATNAVLFFGRCVSP	0.0009	0.0002
187	TNAVLFFGRC	0.0015	0.0005					
188	AVLFFGRCVS	0.0012	0.0000					
189	VLFFGRCVSP	0.0014	0.0002	ı				

Half-lifes of 10-mer (left side) and 16-mer (right side) ovalbumin peptides (nested peptides covering the entire ovalbumin sequence with a frame shift of two amino acids) in small intestinal fluid were measured using the optimized peptide construct described in Figure 4E of the main paper and murine intestinal lavage of known dilution. Calculated half-lifes were extrapolated to undiluted enzyme solutions. Data represent the geometric mean and SE of triplicate measurements.