Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle			Fin Plate	
MainMo	odule			Shear Connection	
Connect	tivity			Column flange-Beam web	
Shear(l	(N)*			150.0	
•		Supporting Se	ection		
	Supportin	ng Section		PBP 300X222.9	
	Material *			E 250 (Fe 410 W)B	
т Ү	Ultimate strei	ngth, fu (MPa)		410	
	Yield Streng	th , fy (MPa)		250	
α	Mass	222.92	Iz(cm4)	526988000.0	
ZZ D	Area(cm2) - A	28400.0	Iy(cm4)	175746300.0	
	D(mm)	337.9	rz(cm)	136.2	
R ₁	B(mm)	325.7	ry(cm)	78.7	
В В	t(mm)	30.3	Zz(cm3)	3119190.0	
Y	T(mm)	30.4	Zy(cm3)	1079190.0	
•	FlangeSlope	90	Zpz(cm3)	3653090.0	
	R1(mm)	1.52	Zpy(cm3)	1079190.0	
	R2(mm)	0.0			
		Supported Se	ction		
		ed Section		UB 406 x 178 x 74	
	Material *		E 250 (Fe 410 W)B		
T	Ultimate strength, fu (MPa)		410		
		th , fy (MPa)	250		
$(B-t)$ α	Mass	74.2	Iz(cm4)	273100000.0	
ZZ D	Area(cm2) -	9450.0	Iy(cm4)	15450000.0	
	D(mm)	413.0	rz(cm)	170.0	
R ₁	B(mm)	179.5	ry(cm)	40.0	
В	t(mm)	9.5	Zz(cm3)	1323000.0	
Y	T(mm)	16.0	Zy(cm3)	172000.0	
	FlangeSlope	90	Zpz(cm3)	1501000.0	
	R1(mm)	10.2	Zpy(cm3)	172000.0	
	R2(mm)	0.0			
D' '	()*	Bolt Deta		9.0.16.0.90.0.94.0.90.0.96.0	
Diameter	` '		<u> </u>	2.0, 16.0, 20.0, 24.0, 30.0, 36.0]	
Grade *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]			
Туре				Bearing Bolt	
Bolt hole	· -			Standard	
Slip factor	r (µ_f)			0.3	

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Deta	nils
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)B
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Deta	ils
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		30.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 561}{\sqrt{3} \ * 1.25}$ $= 77.73$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 30.0 * 9.5 * 410}{1.25}$ $= 119.19$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (77.73, 119.19)$ $= 77.73$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{150.0^{2} + 300.0^{2}}}{77.73}$ $= 5$	6	
No of Columns		2	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	75	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 9.5, \ 300 \ mm)$ = 304.0	75	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	75	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 9.5, \ 300 \ mm)$ = 304.0	75	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 33.0 = 56.1	60	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *10.0 * \sqrt{\frac{250}{250}}$ $= 120.0$	60	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$	60	Pass
Will. Edge Distance (IIIII)	= 1.7 * 33.0 = 56.1		1 6055
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 10.0 * \sqrt{\frac{250}{250}}$ $= 120.0$	60	Pass
Capacity (kN)	99.61	119.19	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Nam	e LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 413.0 = 247.8$	270	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 413.0 - 2 * (16.0 + 10.2 + 10)	270	Pass
	= 360.6		
	$2 * e_{min} + (n \ c - 1) * p_{min})$		
Min. Plate Length (mm)	= 2 * 56.1 + (2 - 1) * 75.0	205.0	Pass
	= 197.2		
Min.Plate Thickness (mm)	$t_w = 9.5$	10.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3} * \gamma_{mo}$	
Shear yielding Capacity		$=\frac{270*10.0*250}{\sqrt{3}*1.1}$	
(V_dy) (kN)			
		= 354.28 $0.75 * A_{vm} * f_{v}$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (270 - (3 * 33.0)) * 10.0 * 41	10
(V_dn) (kN)		= 525.83	
Block Shear Capacity in		524.12	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	150.0	= Min(354.28, 525.83, 524.12)	Pass
(kN)		=354.28	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma}$	
T		/mo	
Tension Yielding Capacity (kN)		$=\frac{270*10.0*250}{1.1}$	
(MI)		= 613.64	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		$I_{dn} = \frac{1}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{0.9 * (270 - 3 * 33.0) * 10.0 * 4}{1.25}$	10
(kN)			
		=602.21	
Block Shear Capacity in		701.62	
Tension (T_db) (kN)		$T_d = Min(T_{dq}, T_{dn}, T_{db})$	
Tension Capacity (kN)	300.0	$ I_d = Min(I_{dg}, I_{dn}, I_{db}) $ $= Min(613.64, 602.21, 701.62) $	Dagg
Tension Capacity (KIV)	300.0	, , , , , , , , , , , , , , , , , , , ,	Pass
Moment Capacity (kN-m)	16.12	=602.21 41.42	Pass
/		16 12 300 0	
Interaction Ratio	≤ 1	$\frac{10.12}{41.42} + \frac{600.0}{602.21} = 0.89$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	Thickness of Thicker part = $max(30.4, 10.0)$ = 30.4 $IS800: 2007 \ cl.10.5.2.3 \ Table 21,$ $t_{w_{min}} = 6$	10	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(30.4, 10.0) = 10.0$ $t_{w_{max}} = 10.0$	10	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{16125000.0 * 129.0}{2862252.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{16125000.0 * 0.0}{2862252.0}$ $V_{wv} = \frac{V}{l_w} = \frac{150000.0}{516}$ $A_{wh} = \frac{A}{l_w} = \frac{300000.0}{516}$ $R_w = \sqrt{(726.74 + 581.4)^2 + (0.0 + 290.7)^2}$ $= 1171.84$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{7.0 * 410}{\sqrt{3} * 1.25}$ $= 1325.6$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	20 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View