מבוא לתכנון VLSI

<u>מטלה 2</u>

<u>זוג 22</u>

מגישים: יעקב קוזמינסקי 205888036 , זהר שורק 205888035

חלק א'- בניית MUX

1.1) נתחיל בלבנות את הסכמה של הMUX נשתמש ברכיב האינוורטר שבנינו בעבודה הקודמת עם הבטא האופטימלית שכבר מצאנו.

בעצם ייצרנו 2 אינוורטרים כדי לייצר אות כניסה של S_NOT וקישרנו ביניהם ע"י קריאה ללייבלים על החוטים כדי שהסכמה תהיה יותר אסטטית.

2.1)כעת, נוכל לייצר TB עבור הרכיב שלנו, לחבר את הקבל האהוב עלינו בן ה 100 פמטו ולהריץ סימולציות ADEL עבור כניסות שונות של ADEL.

וכעת לתוצאות ההרצה:

:A=1, B=0

:A=0, B=1

:A=1, B=1

:A=0, B=0

: נסתכל על טבלת האמת של הרכיב

Select (S)	Input1 (A)	Input2 (B)	Output
0	А	В	А
1	А	В	В

. $V_{in}=S=0 o V_{out}=A$ וכאשר וכאשר אוכן, מהסימולציות נבחין כי כאשר בין כי כאשר אוכן, מהסימולציות נבחין כי כאשר כלומר, קיימת התאמה בין טבלת האמת לבין התנהגות הרכיב.

נביט בפונקציה הבוליאנית של הMUX:

$$A \cdot \bar{S} + B \cdot S$$

נוכל לראות שהכניסת סלקטור S בעצם בוררת לנו בין 2 מצבים בהם הרכיב עובד: מהפך ובאפר.

כדי לחשב את זמני TCD וTCD, נשתמש בהגדרות מהקורס מעגלים ספרתיים ונמצא אותם בעזרת VOH,VOL,VOH,VIL. ואז נחשב בדרך הבאה:

נריץ סימולציה ראשונה עבור VA = VB 11 מVA = VB מVB מVB נריץ

לפי מה שלמדנו בספרתיים, נוכל למדוד את הנק' בהם הנגזרת שווה ל -1 וככה למצוא את נקודות ה Voh_min לפי מה שלמדנו בספרתיים, נוכל למדוד את הנק' בהם הנגזרת שווה ל -1 וככה למצוא את נקודות ה VOL_MAX . VIL

VIL VOL_MAX VIH	867.265mV 18.6uV 935.298mV
VIH	
	935.298mV
Transient Response	
Name Vis V.B	Tue May 2 14:20:13 2023
0.85 0.85 0.75 (E) 415.0 430.0 435.0 440.0 445.0 455.0 440.0 445.0 470.0 475.0 480.0 485.0 490.0 495.0	119: 504.00 year 935; 296mV) M18: 505; 18(9): 867; 25mV) 500.0 505; 0 510:0 515:0 520:0 525:0 530:0 535:0 540:0 545:0 550:0 555:0 560:0 565:0 570:0 575:0 580:0 585:0 time (m)
sufer V6.VLB	· U
15- 125- 2075- 05- 025-	500. 201 to 1.5072V €
0.0 H	505 4 Hz 18 66V

-TCD אדל הזמן הקצר ביותר בין שינוי הכניסה -כלומר VIH עד לתחילת שינוי המוצא – כלומר VOL_MAX עד לתחילת שינוי המוצא – כלומר VOL_MAX + 505.481 – 504.8 = 0.681ns tcd = 505.481 – 504.8 = 0.681ns לגבי הtpd - זה הזמן בין שינוי הכניסה ל – VIL ועד התייצבות מוצא עד VIL – 1 אבי הtpd - 506.224 – 505.18 = 1.04ns

כעת נריץ עבור A=0 ו B=1:

באותה דרך ע"י השוואה פונקציית הנגזרת נמצא את הנק' . נרצה לחשב את הזמנים, באמצעות ערכי הזמן שמצאנו בסימולציית TRAN:

1.799V	VOH_MIN
864.78mV	VIL
36.01mV	VOL_MAX
963.4 mV	VIH

כעת הרכיב משמש כ-"באפר" , מכאן שהחישוב המתאים הוא: tpd = t(VOL_MAX) - t(VIL) = 506.55 - 505.195 = 1.35ns tcd = t(VOH_MIN) - t(VIH) = 505.1 - 504.64 = 0.46ns - עבור הTCD נחשב

– לסיכום, נבחר את ה TPD – המקסימלי ואת ה-TCD המינימלי משתי המדידות ולכן TPD – לסיכום, נבחר את ה $\mathsf{Trd} = 0.46\mathsf{ns} - \mathsf{1.35ns}$

2. תכנון LAYOUT של השער ובדיקתו:

– של הרכיב Layout - להלן

– Coverage למעט שגיאת DRC להלן מעבר בדיקת

– LVS להלן מעבר בדיקת

2.5) כעת נטען את קובץ הפרזיטיקות ונריץ שוב את אותה סימולציה כמקודם:

:0= B 1=A עבור

1.764V VOH_MIN

864.72mV VIL

17.5162uV VOL_MAX

963.297 mV VIH

נרצה לחשב את הזמנים, באמצעות ערכי הזמן שמצאנו בסימולציית TRAN:

tpd = $t(VOH_MIN) - t(VIL) = 506.577 - 505.196 = 1.381ns$ $tcd = t(VOL_MAX) - t(VIH) = 505.54 - 504.64 = 0.9ns$

:1= B 0=A עבור

נרצה לחשב את הזמנים, באמצעות ערכי הזמן שמצאנו בסימולציית TRAN:

$$tpd = t(VOL_MAX) - t(VIL) = 506.577 - 505.196 = 1.381ns$$

 $tcd = t(VOH_MIN) - t(VIH) = 505.1 - 504.65 = 0.45ns$

1.79983V	VOH_MIN
864.776mV	VIL
36mV	VOL_MAX
962.645 mV	VIH

– לסיכום, נבחר את ה TPD – המקסימלי ואת ה-TCD המינימלי משתי המדידות ולכן TTCd – 1.381ns ו- Tpd = 1.381ns

נבחין שבהתחשב בפרזיטיקות קיבלנו TPD גדול מהמקרה שבלי הפרזיטיקות. הסיבה לכך היא שטעינת קבלים פרזיטים נוספים מאריכה את זמן התייצבות המוצא על הערך הרצוי. עם זאת, זמן ה – TCD לא השתנה.

<u>חלק ב</u>

2.1+2.2) נתחיל מלבות את הסכמה של הרכיב. נבנה את הרכיב ע"י שימוש ב 24 מוקסים של 2X1 כאשר נחלק את הרכיב ל3 "שכבות". בשכבה הראשונה יכנס אות המוצא בן ה 8 ביטים והSELECTOR יחליט האם אנחנו את הרכיב ל3 "שכבות". בשכבה הראשונה יכנס אות ניסה של 1 הוא יזיז את האות ב4 סיביות קדימה. השכבה מוציאים את האות כפי שהוא(אם יקבל 0) או עבור כניסה של 1 הוא יזיז את האות ב4 סיביות קדימה. השכבה השנייה תקבל את אות המוצא מהשכבה הראשונה וע"י ה selector נבחר אם להזיז את הביט ב2 או להשאירו כפי שהוא. והשכבה האחרונה תעבוד באותה דרך כאשר היא מזיזה בביט אחד קדימה. להלן הסכימה והסימבול ממבט מאקרו למיקרו:

שלושת השכבות בנויות באותה צורה עד כדי הפינים השונים והכניסות השונות, לכן נראה שרטוט של אחת השכבות: השכבות:

ניתן לראות שזו השכבה הראשונה שכן ההבדל בכניסות הוא ב4 ביטים. בשכבה השנייה נראה הבדל ב2 ביטים ובשלישית ב1.

2.3) ניצור סכמת TB וככניסה נכניס את מספר הקבוצה שלנו בבינארי 22=00010110. נריץ סימולציות DC ונצפה לראות ערכים של 1 לוגי = 1.8v בכניסות המתאימות לערך הבינארי של הסיבוב שאותו נרצה.

נכניס אות של S=011 ז"א סיבוב של 3 ביטים ונצפה לקבל

	0	1	2	3	4	5	6	7	ldx
Ī	0	0	0	1	0	1	1	0	IN
	1	0	1	1	0	0	0	0	OUT

ואחר הרצה אכן נקבל:

נכניס אות של S מיבוב של 7 ביטים ונצפה לקבל

0	1	2	3	4	5	6	7	Idx
0	0	0	1	0	1	1	0	IN
0	0	0	0	1	0	1	1	OUT

ואכן התוצאה לאחר הרצה:

נכניס אות של S=100 ז"א סיבוב של 4 ביטים ונצפה לקבל:

0	1	2	3	4	5	6	7	ldx
0	0	0	1	0	1	1	0	IN
0	1	1	0	0	0	0	1	OUT

ואכן לאחר הרצה נקבל:

כאשר בסעיף זה המתחים המאוד קטנים יחשבו כ0 לוגי(ברוך בורא התכנון הדיגיטלי).

(2.4)

כעת נמדוד את ה TCD וה TPD של הרכיב כולו. מאיך שתכננו את הרכיב אנו יודעים שהוא ממומש ע"י רכיבי מוקס זהים שלכל אחד מדדנו את הזמנים שלו בנפרד בחלק א' של העבודה. התבקשנו מדוד את הזמנים עבור מצב בו כל הSים מקוצרים ולכן כל הרכיבים עובדים באותה דרך. ז"א שנשארו עם 2 אפשרויות כאשר רכיב יעבוד כבאפר או כמהפך. שכן אם רכיב החזיק ערך לוגי מסוים בתחילת ההרצה של המתחים ואותו ערך לוגי בסוף אז חישוב הזמנים לא רלוונטי שכן לא פעפע דרכו כלום(זאת עד כדי סיכון סטטי!).

נעבוד באותה שיטה כמו שעבדנו בחלק הראשון של העבודה. ראשית נריץ VDC על כל הכניסות ונראה אילו כניסות בכלל רלוונטיות לנו: (S עולה ל0 ל 1 לוגי)

ננתח כניסה כניסה:

- 0- ערך הוולטים הוא במיקרו ויש קפיצה הנובעת מסיכון סטטי.
- 1-ערך המוצא הוא בנאנו! ולכן מתייחס אליו כ-0 לוגי אך גם בו יש הפרעה
 - 2- זהה לניתוח כניסה 0
- 3- התנהגות של באפר, ערך הוולטים בסקלה רגילה כאשר מתחילה ב1 ונגמרת ב0 לוגי
- 4- התנהגות של מהפך, ערך הוולטים בסקלה רגילה כאשר מתחילה ב0 ונגמרת ב1 לוגי
 - 5- זהה לניתוח כניסה 3
 - 6- זהה לניתוח כניסה 0
 - 7- זהה לניתוח כניסה 4

נתייחס כרגע רק לכניסות שערכיהן בסקאלה של ערכים לוגים יציבים ז"א יציאות: 3,4,5,7. מכיון שהרכיבים זהים נניח כי ערכי המתחים אותם עלינו למצוא כדי למצוא את הזמנים זהים, (כבר נראה דוגמא לכך שזה אכן מתקיים) לכן נוכל לצמצם את הניתוח שלנו לכניסה אית שמתנהגת כבאפר ואחת כמהפך. שכן את המתחים זהים אז גם הזמנים יהיו זהים. ז"א שסהכ ננתח את כניסות 3 ו 4.

ראשית נראה השוואה של המתחים הזהים עבור כניסות 3 ו 5 ו 4 ו 7 שמתנהגות זהה:

ניתן לראות שהמתחים זהים מאד. ובאותה צורה ניתן להראות גם עבור הסט השני של הכניסות שמתנהגות כבאפר.

נסיק מפה את הערכים הרלוונטים:

1.764V	VOH_MIN
864.72mV	VIL
19.2nV	VOL_MAX
935.28 mV	VIH

כעת נמצא את הזמנים בעזרת המתחים עבור אחת הכניסות, נביט בכניסה 3:

נחשב זמנים לפי הנוסחא של חלק א': tcd = Vol_max-VIH=505.865-504.804 = 1.106ns tpd = VOH_MIN-VIL = 506.88-505.196 = 1.684ns

. כעת נריץ סימולציה זהה רק עבור כניסה 4 שכן ערכי כניסה 7 יהיו מאד דומים

1.7999V	VOH_MIN
865.916mV	VIL
36.0144mV	VOL_MAX
907.868 mV	VIH

וכעת נחשב את הזמנים:

Tpd= VOL_max- VIL = 506.468-505.189 = 1.279ns

Tcd = Voh_min-VIH = 505.083-504.956= 0.127ns

לבסוף נחבר את הTPD המקסימלי והTCD המינימלי ולכן:

TPD = 1.684ns , TCD = 0.127ns

2.1) להלן שרטוט ה – Layout שתכננו:

:Coverage & density למעט שגיאות DRC להלן מעבר בדיקת (3.2

לא הצלחנו להעביר את הרכיב LVS ולכן לא הצלחנו לייבא קובץ PEX ולהריץ שוב את הסימולציות עם הפרזיטיקות.

אם היינו מצליחים, היינו מצים לקבל TPDארוך יותר במעט שכן כעת ישנם קיבולים פרזיטים אותם עלינו לטעון מלפרוק- מה שמאריך את זמן הפעפוע. ואילו הTCD יהי בערך אותו דבר- כדומה לתצאה שכן קיבלנו בMUX הבודד.