

LP2985 Instruments ZHCSLK4P - JULY 2004 - REVISED FEBRUARY 2022

具有关断模式的 LP2985 150mA 低噪声低压降稳压器

1 特性

- 输出容差为:
 - 1% (A级)
 - 1.5% (标准级)
- 超低压降典型值为:
 - 150mA 满载时为 280mV
 - 1 mA 时为 7 mV
- 宽_{输入}电压范围:最大 16V
- 低 Io: 150mA 满载时为 850 µ A
- 关断电流: 0.01 μA(典型值)
- 低噪声: 30 µ V_{RMS}, 带 10nF 旁路电容器
- 与低 ESR 电容(包括陶瓷电容)一起工作时可保持 稳定
- 过流和热保护
- 高峰值电流能力
- ESD 保护性能超过 JESD 22 规范要求:
 - 2000V 人体模型 (A114-A)
 - 200V 机器模型 (A115-A)

2 应用

- 洗衣机和烘干机
- 陆地移动无线电
- 有源天线系统 mMIMO
- 无线电动工具

3 说明

LP2985 系列固定输出、低压降稳压器为便携式和非便 携式应用提供了具有成本效益的出色性能。该产品系列 可提供 1.8V、2.5V、2.8V、2.9V、3V、3.1V、3.3V、 5V 和 10V 电压, A 版本的输出容差为 1% (非 A 版本 为 1.5%),而且能够提供 150mA 的连续负载电流。 还包括标准稳压器特性,例如过流和过热保护。

器件信息(1)

器件型号	封装	封装尺寸(标称值)		
LP2985	SOT-23 (5)	2.90mm × 1.60mm		

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

压降电压与温度间的关系

Table of Contents

1 特性 1	7.4 Device Functional Modes	12
2 应用	8 Application and Implementation	14
3 说明	8.1 Application Information	14
4 Revision History	0.0 = 1.1	
5 Pin Configuration and Functions	9 Power Supply Recommendations	
6 Specifications4	10 Layout	19
6.1 Absolute Maximum Ratings4	10.1 Layout Guidelines	19
6.2 ESD Ratings4	10.2 Layout Example	19
6.3 Recommended Operating Conditions4	11 Device and Documentation Support	<mark>2</mark> 0
6.4 Thermal Information4	11.1 接收文档更新通知	20
6.5 Electrical Characteristics	11.2 支持资源	20
6.6 Typical Characteristics8		
7 Detailed Description12		20
7.1 Overview	11.5 术语表	
7.2 Functional Block Diagram12		
7.3 Feature Description12	Information	20

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

Changes from Revision O (January 2015) to Revision P (February 2022)	Page
• 更改了 <i>应用</i> 部分	1
 Changed Thermal Information table: changed R _{θ JA} value from 206°C/W to 205.4°C/W 	V and added R $_{ heta}$ $_{ m JC(top)}$,
R $_{\theta}$ JB, Ψ JT, and Ψ JB rows	4
Changed Application Information section	14
Changed <i>Typical Application</i> section to follow current standards	16
Changes from Revision N (June 2011) to Revision O (January 2015)	Page
• 添加了 <i>应用、器件信息</i> 表、 <i>引脚功能</i> 表、 <i>ESD</i> 等级表、热性能信息表、特性说明部	分、 <i>器件功能模式、应</i>
用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装	<i>和可订购信息</i> 部分1
• 删除了 <i>订购信息</i> 表	1

5 Pin Configuration and Functions

DBV (SOT-23) PACKAGE (TOP VIEW)

表 5-1. Pin Functions

PIN		TYPE	DESCRIPTION					
NAME	NO.	ITPE	DESCRIPTION					
BYPASS	4	I/O	Attach a 10-nF capacitor to improve low-noise performance.					
GND	2	_	Ground					
ON/OFF	3	I	Active-low shutdown pin. Tie to V _{IN} if unused.					
V _{IN}	1	I	Supply input					
V _{OUT}	5	0	Voltage output					

6 Specifications

6.1 Absolute Maximum Ratings

over virtual junction temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{IN}	Continuous input voltage range ⁽³⁾	- 0.3	16	V
V _{ON/OFF}	ON/OFF input voltage range	- 0.3	16	V
	Output voltage range ⁽²⁾	- 0.3	9	V
Io	Output current ⁽⁴⁾	Internally limited (short-circuit protected)		_
R ₀ JA	Package thermal impedance ⁽⁴⁾ (5)		206	°C/W
T _J	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature range	- 65	150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) If load is returned to a negative power supply in a dual-supply system, the output must be diode clamped to GND.
- (3) The PNP pass transistor has a parasitic diode connected between the input and output. This diode normally is reverse biased (V_{IN} > V_{OUT}), but is forward biased if the output voltage exceeds the input voltage by a diode drop (see the *Application and Implementation* section for more details).
- (4) Maximum power dissipation is a function of T_J(max), R_{θ JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A) / R_{θ JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (5) The package thermal impedance is calculated in accordance with JESD 51-7.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V _{IN}	Supply input voltage	2.2 ⁽¹⁾	16	V
V _{ON/OFF}	ON/OFF input voltage	0	V _{IN}	V
I _{OUT}	Output current		150	mA
TJ	Virtual junction temperature	- 40	125	°C

(1) Recommended minimum V_{IN} is the greater of 2.5 V or V_{OUT(max)} + rated dropout voltage (max) for operating I_L.

6.4 Thermal Information

		LP2985	
	THERMAL METRIC ⁽¹⁾	DBV	UNIT
		5 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	205.4	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	78.8	°C/W
R ₀ JB	Junction-to-board thermal resistance	46.7	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	8.3	°C/W

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6.4 Thermal Information (continued)

		LP2985	
	THERMAL METRIC ⁽¹⁾	DBV	UNIT
		5 PINS	
Ψ_{JB}	Junction-to-board characterization parameter	46.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at specified virtual junction temperature range, V_{IN} = $V_{OUT(NOM)}$ + 1 V, $V_{ON/\overline{OFF}}$ = 2 V, C_{IN} = 1 μ F, and I_L = 1 mA, C_{OUT} = 4.7 μ F (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TJ	LP	2985A->	¢χ	LP2985-xx		x	UNIT
	FARAIVIE I ER	TEST CONDITIONS	1,1	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		I _L = 1 mA	25°C	- 1		1	- 1.5		1.5	
		$1 \text{ mA} \leqslant I_L \leqslant 50 \text{ mA}$	25°C	- 1.5		1.5	- 2.5		2.5	
∆ V _{OUT}	Output voltage tolerance	1 IIIA < 1[< 50 IIIA	- 40°C to 125°C	- 2.5		2.5	- 3.5		3.5	%V _{NON}
		1 m \ < 1 < 150 m \	25°C	- 2.5		2.5	- 3		3	
		$1 \text{ mA} \leq I_L \leq 150 \text{ mA}$	- 40°C to 125°C	- 3.5		3.5	- 4		4	
	Line regulation	\/ = \(\) + 1 \/ \(\) to 16 \/	25°C		0.007	0.014		0.007	0.014	%/V
	Line regulation	$V_{IN} = [V_{OUT(NOM)} + 1 V]$ to 16 V	- 40°C to 125°C			0.032			0.032	70/ V
		1 -0	25°C		1	3		1	3	
		I _L = 0	- 40°C to 125°C			5			5	
		1 - 4 4	25°C		7	10		7	10	
		I _L = 1 mA	- 40°C to 125°C			15			15	
/ _{INI} -	(1)		25°C		40	60		40	60	
V _{IN} - V _{OUT}	Dropout voltage ⁽¹⁾	I _L = 10 mA	- 40°C to 125°C			90			90	mV
		. 50 4	25°C		120	150		120	150	
		I _L = 50 mA	- 40°C to 125°C			225			225	
			25°C		280	350		280	350	
		I _L = 150 mA	- 40°C to 125°C			575			575	
			25°C		65	95		65	95	
			25°C (LP2985-10)			125		-	125	
		I _L = 0 mA	- 40°C to 125°C			125		-	125	25
			- 40°C to 125°C			160			160	
			(LP2985-10)		7.5	440		7.	440	
			25°C		75	110		75	110	40
		I _L = 1 mA	25°C (LP2985-10)			140	-			
			- 40°C to 125°C		400	170		400	170	
			25°C		120	220		120	220	
GND	GND pin current	I _L = 10 mA	25°C (LP2985-10)			250			250	μ Α
GIVD			- 40°C to 125°C			400			400	
			25°C		350	600		350	600	
		I _L = 50 mA	25°C (LP2985-10)			650			650	
			- 40°C to 125°C			1000			1000	
			25°C		850	1500		850	1500	
		I _L = 150 mA	25°C (LP2985-10)			1800			1800	
			- 40°C to 125°C			2500			2500	
		V _{ON/OFF} < 0.3 V (OFF)	25°C		0.01	0.8		0.01	0.8	
		V _{ON/OFF} < 0.15 V (OFF)	- 40°C to 105°C		0.05	2		0.05	2	
		,	- 40°C to 125°C			5			5	
		V _{ON/OFF} = HIGH → output ON	25°C		1.4			1.4		
ON/OFF	ON/OFF input	- ON/OFF Output Off	- 40°C to 125°C	1.6			1.6			V
JIN/UFF	voltage ⁽²⁾	V _{ON/OFF} = LOW → output OFF	25°C		0.55			0.55		•
		ON/OFF ZOTT Output Of I	- 40°C to 125°C			0.15			0.15	
		V _{ON/OFF} = 0 V	25°C		0.01			0.01		
01/05=	ON/OFF input current	VON/OFF - V	- 40°C to 125°C			- 2			- 2	μ А
JN/OFF	Olwor i input current	V _{ON/OFF} = 5 V	25°C		5			5		μА
ON/OFF		VON/OFF - J V	- 40°C to 125°C			15			15	

6.5 Electrical Characteristics (continued)

at specified virtual junction temperature range, $V_{IN} = V_{OUT(NOM)} + 1 \text{ V}$, $V_{ON/\overline{OFF}} = 2 \text{ V}$, $C_{IN} = 1 \text{ } \mu \text{ F}$, and $I_L = 1 \text{ mA}$, $C_{OUT} = 4.7 \text{ } \mu \text{ F}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	т.	LP2	2985A-x	х	LP	2985-xx		UNIT
	PARAMETER	TEST CONDITIONS	TJ	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _n	Output noise (RMS)	BW = 300 Hz to 50 kHz, C_{OUT} = 10 μ F, C_{BYPASS} = 10 nF	25°C		30			30		μ V
Δ V _{OUT} / Δ V _{IN}	Ripple rejection	f = 1kHz, C_{OUT} = 10 μ F, C_{BYPASS} = 10 nF	25°C		45			45		dB
I _{OUT(PK)}	Peak output current	V _{OUT} ≥ V _{O(NOM)} - 5%	25°C		350			350		mA
I _{OUT(SC)}	Short-circuit current	R _L = 0 (steady state) ⁽³⁾	25°C		400			400		mA

⁽¹⁾ Dropout voltage is defined as the input-to-output differential at which the output voltage drops 100 mV below the value measured with a 1-V differential.

⁽²⁾ The ON/OFF input must be driven properly for reliable operation (see the Application and Implementation section).

⁽³⁾ See 图 6-6 in the *Typical Characteristics* section.

6.6 Typical Characteristics

 C_{IN} = 1 μ F, C_{OUT} = 4.7 μ F, V_{IN} = $V_{OUT(NOM)}$ + 1 V, T_A = 25°C, and ON/ \overline{OFF} pin tied to V_{IN} (unless otherwise specified)

图 6-3. Dropout Voltage vs Temperature

6.6 Typical Characteristics (continued)

 C_{IN} = 1 μ F, C_{OUT} = 4.7 μ F, V_{IN} = $V_{OUT(NOM)}$ + 1 V, T_A = 25°C, and ON/ \overline{OFF} pin tied to V_{IN} (unless otherwise specified)

6.6 Typical Characteristics (continued)

 C_{IN} = 1 μ F, C_{OUT} = 4.7 μ F, V_{IN} = $V_{OUT(NOM)}$ + 1 V, T_A = 25°C, and ON/ \overline{OFF} pin tied to V_{IN} (unless otherwise specified)

6.6 Typical Characteristics (continued)

 $C_{IN} = 1 \ \mu \, F, \ C_{OUT} = 4.7 \ \mu \, F, \ V_{IN} = V_{OUT(NOM)} + 1 \ V, \ T_A = 25 ^{\circ}C, \ and \ ON/\overline{OFF} \ pin \ tied \ to \ V_{IN} \ (unless \ otherwise \ specified)$

图 6-17. Ground-Pin Current vs Temperature

图 6-18. 2.2- μ F Stable ESR Range for Output Voltage \leqslant 2.3 V

图 6-19. 4.7- $\mu\,F$ Stable ESR Range for Output Voltage $\leqslant 2.3~V$

图 6-20. 2.2- μ F, 3.3- μ F Stable ESR Range for Output Voltage ≥ 2.5 V

7 Detailed Description

7.1 Overview

The LP2985 family of fixed-output, low-dropout regulators offers exceptional, cost-effective performance for both portable and nonportable applications. Available in voltages of 1.8 V, 2.5 V, 2.8 V, 2.9 V, 3 V, 3.1 V, 3.3 V, 5 V, and 10 V, the family has an output tolerance of 1% for the A version (1.5% for the non-A version) and is capable of delivering 150-mA continuous load current. Standard regulator features, such as overcurrent and overtemperature protection, are included.

7.2 Functional Block Diagram

7.3 Feature Description

The LP2985 has a host of features that makes the regulator an ideal candidate for a variety of portable applications:

- Low dropout: A PNP pass element allows a typical dropout of 280 mV at 150-mA load current and 7 mV at 1-mA load.
- Low quiescent current: The use of a vertical PNP process allows for quiescent currents that are considerably lower than those associated with traditional lateral PNP regulators.
- Shutdown: A shutdown feature is available, allowing the regulator to consume only 0.01 $\,\mu$ A when the ON/ OFF pin is pulled low.
- Low-ESR-capacitor friendly: The regulator is stable with low-ESR capacitors, allowing the use of small, inexpensive, ceramic capacitors in cost-sensitive applications.
- Low noise: A BYPASS pin allows for low-noise operation, with a typical output noise of 30 $\,\mu$ V_{RMS}, with the use of a 10-nF bypass capacitor.
- Small packaging: For the most space-constrained needs, the regulator is available in the SOT-23 package.

7.4 Device Functional Modes

7.4.1 Normal Operation

In normal operation, the device will output a fixed voltage corresponding with the orderable part number. The device can deliver 150 mA of continuous load current.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.4.2 Shutdown Mode

Set the ON/ $\overline{\text{OFF}}$ pin low to shut down the device when V_{IN} is still present. If a shutdown mode is not needed, tie the pin to V_{IN} . For proper operation, do not leave ON/ $\overline{\text{OFF}}$ unconnected, and apply a signal with a slew rate of \geq 40 mV/ μ s.

8 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

8.1.1 Capacitors

8.1.1.1 Input Capacitor (C_{IN})

A minimum value of 1 μ F (over the entire operating temperature range) is required at the input of the LP2985. In addition, this input capacitor must be located within 1 cm of the input pin and connected to a clean analog ground. There are no equivalent series resistance (ESR) requirements for this capacitor, and the capacitance can be increased without limit.

8.1.1.2 Output Capacitor (C_{OUT})

As an advantage over other regulators, the LP2985 permits the use of low-ESR capacitors at the output, including ceramic capacitors that can have an ESR as low as 5 m Ω . Tantalum and film capacitors also can be used if size and cost are not issues. The output capacitor must be located within 1 cm of the output pin and be returned to a clean analog ground.

As with other PNP LDOs, stability conditions require the output capacitor to have a minimum capacitance and an ESR that falls within a certain range.

- Minimum C_{OUT}: 2.2 µ F (can be increased without limit to improve transient response stability margin)
- ESR range: see 图 6-18 through 图 6-20

Both the minimum capacitance and ESR requirement are critical to be met *over the entire operating temperature* range. Depending on the type of capacitors used, both these parameters can vary significantly with temperature (see the *Capacitor Characteristics* section).

8.1.1.3 Noise Bypass Capacitor (CBYPASS)

The LP2985 allows for low-noise performance with the use of a bypass capacitor that is connected to the internal band-gap reference via the BYPASS pin. This high-impedance band-gap circuitry is biased in the microampere range and, thus, cannot be loaded significantly, otherwise, its output (and, correspondingly, the output of the regulator) changes. Thus, for best output accuracy, dc leakage current through C_{BYPASS} must be minimized as much as possible and must never exceed 100 nA.

A 10-nF capacitor is recommended for C_{BYPASS}. Ceramic and film capacitors are well suited for this purpose.

8.1.1.4 Capacitor Characteristics

8.1.1.4.1 Ceramics

Ceramic capacitors are ideal choices for use on the output of the LP2985 for several reasons. For capacitances in the range of 2.2 $\,\mu$ F to 4.7 $\,\mu$ F, ceramic capacitors have the lowest cost and the lowest ESR, making them choice candidates for filtering high-frequency noise. For instance, a typical 2.2- $\,\mu$ F ceramic capacitor has an ESR in the range of 10 m Ω to 20 m Ω and, thus, satisfies minimum ESR requirements of the regulator.

Ceramic capacitors have one major disadvantage that must be taken into account—a poor temperature coefficient, where the capacitance can vary significantly with temperature. For instance, a large-value ceramic capacitor (\geq 2.2 μ F) can lose more than half of its capacitance as the temperature rises from 25°C to 85°C. Thus, a 2.2- μ F capacitor at 25°C drops well below the minimum C_{OUT} required for stability, as ambient temperature rises. For this reason, select an output capacitor that maintains the minimum 2.2 μ F required for stability over the entire operating temperature range. There are some ceramic capacitors that can maintain a \pm 15% capacitance tolerance over temperature.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.1.1.4.2 Tantalum

Tantalum capacitors can be used at the output of the LP2985, but there are significant disadvantages that can prohibit their use:

- In the 1- μ F to 4.7- μ F range, tantalum capacitors are more expensive than ceramics of the equivalent capacitance and voltage ratings.
- Tantalum capacitors have higher ESRs than their equivalent-sized ceramic counterparts. Thus, to meet the ESR requirements, a higher-capacitance tantalum may be required, at the expense of larger size and higher cost.
- The ESR of a tantalum capacitor increases as temperature drops, as much as double from +25°C to -40°C. Thus, ESR margins must be maintained over the temperature range to prevent regulator instability.

8.1.2 Reverse Input-Output Voltage

As shown in \(\bigsilon 8-1, there is an inherent diode present across the PNP pass element of the LP2985.

图 8-1. Inherent PNP Body Diode

With the anode connected to the output, this diode is reverse biased during normal operation, since the input voltage is higher than the output. However, if the output is pulled higher than the input for any reason, this diode is forward biased and can cause a parasitic silicon-controlled rectifier (SCR) to latch, resulting in high current flowing from the output to the input. Thus, to prevent possible damage to the regulator in any application where the output may be pulled above the input, or the input may be shorted to ground, connect an external Schottky diode between the output and input. With the anode on the output, this Schottky diode limits the reverse voltage across the output and input pins to approximately 0.3 V (as shown in 8-2), preventing the regulator internal diode from forward biasing.

图 8-2. External Schottky Diode to Prevent Reverse Current Through the Device

8.2 Typical Application

⊗ 8-3 shows the standard usage of the LP2985 as a low-dropout regulator.

图 8-3. LP2985 Typical Application

8.2.1 Design Requirements

Minimum C_{OUT} value for stability (can be increased without limit for improved stability and transient response)

 ON/\overline{OFF} must be actively terminated. Connect to V_{IN} if shutdown feature is not used.

Optional BYPASS capacitor for low-noise operation.

8.2.2 Detailed Design Procedure

8.2.2.1 ON/OFF Operation

The LP2985 allows for a shutdown mode via the ON/ $\overline{\text{OFF}}$ pin. Driving the pin LOW (\leq 0.3 V) turns the device OFF; conversely, a HIGH (\geq 1.6 V) turns the device ON. If the shutdown feature is not used, connect ON/ $\overline{\text{OFF}}$ to the input to ensure that the regulator is on at all times. For proper operation, do not leave ON/ $\overline{\text{OFF}}$ unconnected, and apply a signal with a slew rate of \geq 40 mV/ μ s.

8.2.3 Application Curves

9 Power Supply Recommendations

A power supply can be used at the input voltage within the ranges given in the *Recommended Operating Conditions* table. Use bypass capacitors as described in the *Layout Guidelines* section.

10 Layout

10.1 Layout Guidelines

- · Bypass the input pin to ground with a bypass-capacitor.
- The optimum placement of the bypass capacitor is closest to the V_{IN} of the device and GND of the system.
 Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the V_{IN} pin, and the GND pin of the system.
- For operation at full-rated load, use wide trace lengths to eliminate IR drop and heat dissipation.

10.2 Layout Example

图 10-1. Layout Diagram

11 Device and Documentation Support

11.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 13-Jul-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LP2985-10DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRCG	Samples
LP2985-10DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRCG	Samples
LP2985-18DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPHG, LPHL)	Samples
LP2985-18DBVRE4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPHG	Samples
LP2985-18DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPHG	Samples
LP2985-18DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPHG, LPHL)	Samples
LP2985-18DBVTE4	ACTIVE	SOT-23	DBV	5	250	TBD	Call TI	Call TI	-40 to 125		Samples
LP2985-18DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPHG	Samples
LP2985-25DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPLG, LPLL)	Samples
LP2985-25DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPLG, LPLL)	Samples
LP2985-28DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPGG, LPGL)	Samples
LP2985-28DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPGG, LPGL)	Samples
LP2985-28DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPGG	Samples
LP2985-29DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPMG, LPML)	Samples
LP2985-30DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPNG, LPNL)	Samples
LP2985-30DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPNG, LPNL)	Samples
LP2985-30DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPNG, LPNL)	Samples
LP2985-30DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPNG, LPNL)	Samples
LP2985-33DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPFG, LPFL)	Samples
LP2985-33DBVRE4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPFG	Samples

13-Jul-2022 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2) Lead finish/ Ball material (3) (6)		MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LP2985-33DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPFG	Samples
LP2985-33DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPFG, LPFL)	Samples
LP2985-33DBVTE4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPFG	Samples
LP2985-33DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPFG	Samples
LP2985-50DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPSG, LPSL)	Samples
LP2985-50DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPSG, LPSL)	Samples
LP2985-50DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPSG, LPSL)	Samples
LP2985-50DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPSG, LPSL)	Samples
LP2985A-10DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRDG	Samples
LP2985A-10DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LRDG	Samples
LP2985A-18DBVJ	ACTIVE	SOT-23	DBV	5	10000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPTL	Samples
LP2985A-18DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPTG, LPTL)	Samples
LP2985A-18DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPTG	Samples
LP2985A-18DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPTG, LPTL)	Samples
LP2985A-25DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPUG, LPUL)	Samples
LP2985A-25DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPUG, LPUL)	Samples
LP2985A-25DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPUG, LPUL)	Samples
LP2985A-28DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPJG, LPJL)	Samples
LP2985A-28DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPJG, LPJL)	Samples
LP2985A-29DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LPZG, LPZL)	Samples
LP2985A-30DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LRAG, LRAL)	Samples

www.ti.com

13-Jul-2022

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LP2985A-30DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LRAG, LRAL)	Samples
LP2985A-33DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPKG, LPKL)	Samples
LP2985A-33DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPKG	Samples
LP2985A-33DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(LPKG, LPKL)	Samples
LP2985A-33DBVTE4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPKG	Samples
LP2985A-33DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LPKG	Samples
LP2985A-50DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LR1G, LR1L)	Samples
LP2985A-50DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LR1G, LR1L)	Samples
LP2985A-50DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(LR1G, LR1L)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 13-Jul-2022

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2020

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP2985-10DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-10DBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-18DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-18DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-18DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-25DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-28DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-28DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-29DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-30DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-33DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-33DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985-33DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-33DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985-50DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-10DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-10DBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985A-18DBVJ	SOT-23	DBV	5	10000	330.0	8.4	3.17	3.23	1.37	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2020

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP2985A-18DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-18DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-25DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-25DBVT	SOT-23	DBV	5	250	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
LP2985A-28DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-28DBVR	SOT-23	DBV	5	3000	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
LP2985A-29DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-30DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-33DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985A-33DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
LP2985A-33DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-33DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
LP2985A-50DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP2985-10DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-10DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985-18DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-18DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2020

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP2985-18DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985-25DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-28DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-28DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985-29DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-30DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-33DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-33DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985-33DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985-33DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985-50DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-10DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-10DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985A-18DBVJ	SOT-23	DBV	5	10000	358.0	332.0	35.0
LP2985A-18DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-18DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-25DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-25DBVT	SOT-23	DBV	5	250	205.0	200.0	33.0
LP2985A-28DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-28DBVR	SOT-23	DBV	5	3000	205.0	200.0	33.0
LP2985A-29DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-30DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-33DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-33DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
LP2985A-33DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985A-33DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
LP2985A-50DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司