The Bootstrap

October 27, 2010

The Sample Mean and the Sample Median

- Let X_i be IID for i=1,...,n, with mean μ and variance σ^2 . We use the sample mean \bar{X} to estimate μ .
- Is the estimator biased? What is it's standard error?
- Of course, we know it's unbiased and the SE is σ/\sqrt{n} , where $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$
- What about the median, particularly the difference in medians? Except for special circumstances, we don't have closed-form formulas for the uncertainty associated with these quantitites.

The Bootstrap Algorithm for estimating standard errors

- **1** Select B independent bootstrap samples $\mathbf{x}^{*1}, \mathbf{x}^{*2}, ..., \mathbf{x}^{*B}$, each consisting of n data values draw with replacement from x.
- 2 Evaluate the bootstrap replication corresponding to each bootstrap sample,

$$\hat{\theta}^*(b) = s(\mathbf{x}^{*\mathbf{b}})$$
 $b = 1, 2, \dots, B.$

3 Estimate the $\operatorname{se}_F(\hat{\theta})$ by the sample standard deviation of the B replications

$$\widehat{\operatorname{se}}_{B} = \left\{ \sum_{b=1}^{B} [\widehat{\theta}^{*}(b) - \widehat{\theta}^{*}(\cdot)]^{2} / (B-1) \right\}^{1/2};$$

where
$$\theta^*(\cdot) = \sum_{b=1}^B \hat{\theta}^*(b)/B$$

The Bootstrap Algorithm for SE

The Plug-in Principle

 We observe a random sample of size n from a probability distribution F,

$$F \rightarrow (x_1, X_2, \ldots, x_n)$$

the empirical distribution function \hat{F} is defined to be the discrete distribution that puts probability 1/n on each value $x_1, i = 1, ..., n$.

• The plug-in estimate of a parameter $\theta = t(F)$ is defined to be $\hat{\theta} = t(\hat{F})$.

Confidence Intervals

 Standard confidence intervals depend on the large sample or asymptotic result:

$$rac{\hat{ heta}- heta}{\hat{ ext{se}}}\sim extsf{N}(0,1)$$

 In finite samples, we may not want to rely on that result and we instead can use bootstraped confidence intervals.

Percentile Method

- Many methods of bootstraped confidence intervals, but the **percentile** method is probably the easiest and most intuitive.
- To proceed we generate B independent bootstrap data sets $\mathbf{x^{*1}}, \mathbf{x^{*2}}, \dots, \mathbf{x^{*B}}$ and compute the bootstrap replications $\hat{\theta}^*(b) = s(\mathbf{x^{*b}})$ for $b = 1, 2, \dots, B$.
- Let $\hat{\theta}_B^{*(a)}$ be the $100 \cdot \alpha$ th empirical percentile of the $\hat{\theta}^*(b)$ values, that is the $B \cdot \alpha$ th value in the ordered list of B replications of $\hat{\theta}^*$. Likewise let the $\hat{\theta}_B^{*(1-a)}$ be the $100 \cdot (1-\alpha)$ th empirical percentile.
- The approximate $1-2\alpha$ percentile interval is

$$[\hat{\theta}_{\%,lo},\hat{\theta}_{\%,up}] = [\hat{\theta}_{B}^{*(a)},\hat{\theta}_{B}^{*(1-a)}]$$

Regression Models

- Suppose $Y = X\beta + \epsilon$, where the design matrix is $n \times p$, X is fixed and has full rank. The parameter vector β is $p \times 1$, unknown, to be estimated by OLS. The errors $\epsilon_1, \ldots, \epsilon_n$ are IID with mean 0 and variance σ^2 .
- If we forgot the formulas and wanted to estimate the bias and variance of OLS, we could use the bootstrap. What's random here?
- In the model, the Y_i 's are random, but not IID. The ϵ_i are random and IID but unobserved. What do we do?
- We can re-sample the residuals: $e = Y X\hat{\beta}$.

Regression Models

- Suppose $Y = X\beta + \epsilon$, where the design matrix is $n \times p$, X is fixed and has full rank. The parameter vector β is $p \times 1$, unknown, to be estimated by OLS. The errors $\epsilon_1, \ldots, \epsilon_n$ are IID with mean 0 and variance σ^2 .
- If we forgot the formulas and wanted to estimate the bias and variance of OLS, we could use the bootstrap. What's random here?
- In the model, the Y_i 's are random, but not IID. The ϵ_i are random and IID but unobserved. What do we do?
- We can re-sample the residuals: $e = Y X\hat{\beta}$.

Regression Models

- We draw n times at random with replacement from this population to get bootstrap errors $\epsilon_1^*, \ldots \epsilon_n^*$. These are IID (because you sample them that way).
- Next we generate the Y_i^* :

$$Y^* = X\hat{\beta} + \epsilon^*$$

- With the Y^* and X, we can directly examine the distribution of $\hat{\beta}^*$, where $\hat{\beta}^* = (X'X)^{-1}X'Y^*$.
- Note that this is known as the "parametric" bootstrap.
- The distribution of $\hat{\beta}^* \hat{\beta}$ is a good approximation for the distribution of $\hat{\beta} \beta$. In addition, the empirical covariance matrix of the $\hat{\beta}^*$ is a good approximation to the thoretical covariance matrix of $\hat{\beta}$.