一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.设 $A=\{1,4,2x\},B=\{1,x^2\},$ 若 $B\subseteq A$,则 x=() A.0 B.0 或 2 C.0 或 -2 D.2 或 -2

2.若 $(\sqrt{x} + \frac{2}{x^2})^n$ 展开式中只有第 6 项的二项式系数最大,则 n = () A.9 B.10 C.11 D.12

3.已知向量 $\vec{a} = (1,3), \vec{b} = (2,2)$,则 $\cos \langle \vec{a} + \vec{b}, \vec{a} - \vec{b} \rangle = ($) A. $\frac{1}{17}$ B. $\frac{\sqrt{17}}{17}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{2\sqrt{5}}{5}$

4.等差数列 $\{a_n\}$ 的首项为 $\{a_n\}$ 的首项为 $\{a_n\}$ 的首项为 $\{a_n\}$ 的首项为 $\{a_n\}$ 的首项的和为(

A. -24 B. -3 C.3 D.8

5.要得到函数 $y = \cos 2x$ 的图象,只需将函数 $y = \sin(2x + \frac{\pi}{3})$ 的图象(

A.向右平移 $\frac{\pi}{6}$ 个单位 B.向左平移 $\frac{\pi}{6}$ 个单位 C.向右平移 $\frac{\pi}{12}$ 个单位 D.向左平移 $\frac{\pi}{12}$ 个单位

6.在三棱锥 P-ABC 中,线段 PC 上的点 M 满足 $PM=\frac{1}{3}PC$,线段 PB 上的点 N 满足 $PN=\frac{2}{3}PB$,则三棱锥

P-AMN 和三棱锥 P-ABC 的体积之比为()A. $\frac{1}{9}$ B. $\frac{1}{3}$ C. $\frac{2}{9}$ D. $\frac{4}{9}$

7.为研究某池塘中水生植物的覆盖水塘面积 x (单位: dm^2) 与水生植物的株数 y (单位: 株)之间的相关关系,收集了 4 组数据,用模型 $y = ce^{kx}(c > 0)$ 去拟合 x = y 的关系,设 $z = \ln y, x = z$ 的数据如表格所示:得到 x = z 的

8.双曲线 $M: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右顶点分别为 A,B,曲线 M 上的一点 C 关于 x 轴的对称点为 D,若直线 AC 的斜率为 m,直线 BD 的斜率为 n,则当 $|mn + \frac{9}{mn}|$ 取到最小值时,双曲线离心率为(

A.3 B.4 C. $\sqrt{3}$ D.2

二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.

9.已知复数 z 满足 $z^2+z+1=0$,则() $A.z=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ B.|z|=1 $C.z^2=\frac{1}{z}$ $D.z+z^2+z^3+\cdots+z^{2024}=0$

C.|AB|的最小值为 $2\sqrt{2}$ D.|OM| + |ON|的最小值为 4

11.已知函数 $f(x) = \ln(\sqrt{x^2 + 1} - x + 1)$,则(

A. f(x) 在其定义域上是单调递减函数 B. y = f(x) 的图象关于 (0,1) 对称

C. f(x) 的值域是 $(0,+\infty)$ D.当x > 0 时, $f(x) - f(-x) \ge mx$ 恒成立,则 m 的最大值为-1

三、填空题:本题共3小题,每小题5分,共15分.

12.已知随机变量 $X \sim B(n, p)$.若 E(X) = 30, D(X) = 20 , 则 P =

13.已知抛物线 $y^2 = 2px(p > 0)$ 的焦点 F 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的右焦点,直线 l 过点 F 交抛物线于 A,B 两点,且 |AB| = 8 .直线 l_1, l_2 分别过点 A,B 且均与 x 轴平行,在直线 l_1, l_2 上分别取点 M,N (M,N 均在点 A,B 的右侧), $\angle ABN$ 和 $\angle BAM$ 的角平分线相交于点 P,则 $\triangle PAB$ 的面积为______.

14.已知正方体 $ABCD - A_lB_lC_lD_l$ 的棱长为 $2\sqrt{3}, M, N$ 为 BD_l 的三等分点,动点 P 在 $\triangle ACB_l$ 内,且 $\triangle PMN$ 的面积为 $2\sqrt{6}$,则点 P 的轨迹长度为______.

四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.

15. (13 分) 如图所示,圆 O 的半径为 2,直线 AM 与圆 O 相切于点 A, AM = 4,圆 O 上的点 P 从点 A 处逆时针转动到最高点 B 处,记 $\angle AOP$ = θ , θ \in $(0,\pi]$. (1) 当 θ = $\frac{2\pi}{3}$ 时,求 $\triangle APM$ 的面积;

(2) 试确定 θ 的值,使得 $\triangle APM$ 的面积等于 $\triangle AOP$ 的面积的 2 倍.

16. (15 分) 如图,直三棱柱 $ABC - A_1B_1C_1$ 中, D, E 分别是 AB, BB_1 的中点, $AA_1 = AC = CB = \frac{\sqrt{2}}{2}AB$.

(1) 证明: BC_1 / 平面 A_1CD_1 ; (2) 求二面角 $D - A_1C - E$ 的正弦值.

2024-03-03

- 17. (15 分) 盒中有大小颜色相同的 6 个乒乓球,其中 4 个未使用过(称之为新球),2 个使用过(称之为旧球). 每局比赛从盒中随机取 2 个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.
- (1) 求一局比赛后盒中恰有3个新球的概率;
- (2) 设两局比赛后盒中新球的个数为 X, 求 X 的分布列及数学期望.

- 18. (17 分) 已知函数 $f(x) = \frac{1}{2}x^2 a \ln x, a \in R, f'(x)$ 是 f(x) 的导函数, $g(x) = xe^x$.
- (1) 求 f(x) 的单调区间; (2) 若 f(x) 有唯一零点.
- ①求实数 a 的取值范围; ②当 a > 0 时, 证明: g(x) > f'(x) + 4.

2024-03-03

- 19. (17 分) 已知有穷数列 $A: a_1, a_2, \cdots, a_n (n \ge 3)$ 中的每一项都是不大于 n 的正整数.对于满足 $1 \le m \le n$ 的整数 m,令集合 $A(m) = \{k \mid a_k = m, k = 1, 2, \cdots, n\}$.记集合 A(m) 中元素的个数为 S(m) (约定空集的元素个数为 S(m)).
- (1) 若A:6,3,2,5,3,7,5,5, 求A(5)及s(5);
- (2) 若 $\frac{1}{s(a_1)} + \frac{1}{s(a_2)} + \dots + \frac{1}{s(a_n)} = n$, 求证: a_1, a_2, \dots, a_n 互不相同;
- (3) 已知 $a_1 = a, a_2 = b$,若对任意的正整数 $i, j (i \neq j, i + j \leq n)$ 都有 $i + j \in A(a_i)$ 或 $i + j \in A(a_j)$,求 $a_1 + a_2 + \cdots + a_n$ 的值.

2024-03-03

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的

1.设 $A = \{1, 4, 2x\}, B = \{1, x^2\}, 若B\subseteq A, 则x = (C) A.0$ B.0或2 C.0或-2 D.2或-2

2.若 $(\sqrt{x} + \frac{2}{x^2})^n$ 展开式中只有第 6 项的二项式系数最大,则 n = (B) A.9 B.10 C.11 D.12

key:由 $T_{r+1} = C_n^r (\sqrt{x})^{n-r} (\frac{2}{x^2})^n$ 得r = 5的二项式系数最大,∴n = 10

3.已知向量 $\vec{a} = (1,3), \vec{b} = (2,2)$,则 $\cos \langle \vec{a} + \vec{b}, \vec{a} - \vec{b} \rangle = (B)$ A. $\frac{1}{17}$ B. $\frac{\sqrt{17}}{17}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{2\sqrt{5}}{5}$

4.等差数列 $\{a_n\}$ 的首项为 1,公差不为 0.若 a_2, a_3, a_6 成等比数列,则 $\{a_n\}$ 前 6 项的和为(A

A. -24 B. -3 C.3 D.8

5.要得到函数 $y = \cos 2x$ 的图象,只需将函数 $y = \sin(2x + \frac{\pi}{3})$ 的图象(D)

A.向右平移 $\frac{\pi}{6}$ 个单位 B.向左平移 $\frac{\pi}{6}$ 个单位 C.向右平移 $\frac{\pi}{12}$ 个单位 D.向左平移 $\frac{\pi}{12}$ 个单位

6.在三棱锥 P-ABC 中,线段 PC 上的点 M 满足 $PM=\frac{1}{3}PC$,线段 PB 上的点 N 满足 $PN=\frac{2}{3}PB$,则三棱锥

P-AMN 和三棱锥 P-ABC 的体积之比为(C) A. $\frac{1}{9}$ B. $\frac{1}{3}$ C. $\frac{2}{9}$ D. $\frac{4}{9}$

7.为研究某池塘中水生植物的覆盖水塘面积 x (单位: dm^2) 与水生植物的株数 y (单位: 株)之间的相关关系,收集了 4 组数据,用模型 $y = ce^{kx}(c > 0)$ 去拟合 x = y 的关系,设 $z = \ln y, x = z$ 的数据如表格所示:得到 x = z 的

8.双曲线 $M: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左、右顶点分别为 A, B,曲线 M上的一点 C 关于 x 轴的对称点为 D,若直线

AC 的斜率为 m,直线 BD 的斜率为 n,则当 $|mn + \frac{9}{mn}|$ 取到最小值时,双曲线离心率为(D)

A.3 B.4 $C.\sqrt{3}$ D.2

二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.

9.已知复数 z 满足 $z^2 + z + 1 = 0$,则(BC))A. $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ B. |z| = 1 C. $z^2 = \overline{z}$ D. $z + z^2 + z^3 + \dots + z^{2024} = 0$

key:由求根公式得 $z = \frac{-1 \pm \sqrt{3}i}{2}$, A错, B, C对,

 $\therefore z^3 - 1 = (z - 1)(z^2 + z + 1) = 0, \\ \therefore z^{3n} = 1(n \in \mathbb{Z}), \\ \therefore z + z^2 + \dots + z^{2024} = \frac{z(1 - z^{2024})}{1 - z} = \frac{z - 1}{1 - a} = -1, D^{\text{fiff}}$

10.过线段 $x + y = 4(0 \le x \le 4)$ 上一点 P 作圆 $O: x^2 + y^2 = 4$ 的两条切线,切点分别为 A,B,直线 AB 与 x,y 轴分别交 于点 M,N,则(BCD)A.点 O 恒在以线段 AB 为直径的圆上 B.四边形 PAOB 面积的最小值为 4

C. |AB| 的最小值为 $2\sqrt{2}$ D. |OM| + |ON| 的最小值为 4

11.已知函数 $f(x) = \ln(\sqrt{x^2 + 1} - x + 1)$,则(ACD)

2024-03-03

A. f(x) 在其定义域上是单调递减函数 B. y = f(x) 的图象关于 (0,1) 对称

C. f(x) 的值域是 $(0,+\infty)$ D.当 x > 0 时, $f(x) - f(-x) \ge mx$ 恒成立,则 m 的最大值为 -1

$$key: 由 \sqrt{x^2+1} - x + 1 > 0 \Leftrightarrow \sqrt{x^2+1} > x - 1 \Leftrightarrow x < 1, or, \begin{cases} x \ge 1 \\ x^2 + 1 \ge x^2 - 2x + 1 \end{cases}$$
 得定义域为($-\infty, +\infty$)

$$f'(x) = \frac{1}{\sqrt{x^2 + 1} - x + 1} \cdot (\frac{2x}{2\sqrt{x^2 + 1}} - 1) < 0, A$$
 $\forall f$;

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{\sqrt{x^2 + 1} + x} + 1 \right) = 0, \lim_{x \to -\infty} f(x) = +\infty, C$$

$$f(-x) + f(x) = \ln[(\sqrt{x^2 + 1} + x + 1)(\sqrt{x^2 + 1} - x + 1)] = \ln[(\sqrt{x^2 + 1} + 1)^2 - x^2]$$
不恒为2, B错;

$$f(x) - f(-x) = \ln(\sqrt{x^2 + 1} - x + 1) - \ln(\sqrt{x^2 + 1} + x + 1) = \ln\frac{\sqrt{x^2 + 1} - x + 1}{\sqrt{x^2 + 1} + x + 1}$$

$$= \ln(1 - \frac{2x}{\sqrt{x^2 + 1} + x + 1}) = \ln(1 - \frac{2}{\sqrt{1 + \frac{1}{x^2} + 1 + \frac{1}{x}}}) \ge mx \Leftrightarrow m \le \frac{1}{x} \cdot \ln(1 - \frac{2}{\sqrt{1 + \frac{1}{x^2} + 1 + \frac{1}{x}}})$$
(在x > 0上递减)

$$\overline{\lim} \lim_{x \to 0^{+}} \frac{\ln(\sqrt{x^{2} + 1} - x + 1) - \ln(\sqrt{x^{2} + 1} + x + 1)}{x} = \lim_{x \to 0^{+}} \frac{\frac{2x}{2\sqrt{x^{2} + 1}} - 1}{\sqrt{x^{2} + 1} - x + 1} - \frac{2x}{2\sqrt{x^{2} + 1}} + 1}{1} = -1, \therefore m \le -1$$

$$key$$
: 设 $p(x) = f(x) - f(-x) - mx$, 则 $p(0) = 0$

$$p'(x) = \frac{\frac{2x}{\sqrt{x^2 + 1}} - 1}{\sqrt{x^2 + 1} - x + 1} - \frac{\frac{2x}{2\sqrt{x^2 + 1}} + 1}{\sqrt{x^2 + 1} + x + 1} - m, \therefore p'(0) = -1 - m \ge 0 \stackrel{\text{def}}{=} m \le -1$$

三、填空题:本题共3小题,每小题5分,共15分.

12.已知随机变量
$$X \sim B(n, p)$$
 .若 $E(X) = 30, D(X) = 20$,则 $P = ______$. $\frac{1}{3}$

14.已知正方体 $ABCD - A_iB_iC_iD_i$ 的棱长为 $2\sqrt{3}$, M, N 为 BD_i 的三等分点,动点 P 在 $\triangle ACB_i$ 内,且 $\triangle PMN$ 的面积为 $2\sqrt{6}$,则点 P 的轨迹长度为_______. $\frac{2\sqrt{6}\pi}{3}$

四、解答题: 本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

15. (13 分) 如图所示,圆 O 的半径为 2,直线 AM 与圆 O 相切于点 A, AM = 4,圆 O 上的点 P 从点 A 处逆时针转动到最高点 B 处,记 $\angle AOP = \theta, \theta \in (0,\pi]$. (1) 当 $\theta = \frac{2\pi}{3}$ 时,求 $\triangle APM$ 的面积;

(2) 试确定 θ 的值,使得 $\triangle APM$ 的面积等于 $\triangle AOP$ 的面积的2倍.

15.【解析】(1)过点P作PQ \bot AM 交 AM 于点Q,如图:因为圆Q的半径为 2,

2024-03-03

由题意
$$PQ = 2 - 2\cos\theta = 2 - 2\cos\frac{2\pi}{3} = 3$$
,

所以
$$\triangle APM$$
 的面积为 $\frac{1}{2} \times 4 \times 3 = 6$

$$S_2 = \frac{1}{2}AM \cdot PQ = \frac{1}{2} \times 4 \times 2 \times (1 - \cos\theta) = 4(1 - \cos\theta),$$

由题意
$$S_2 = 2S_1$$
,所以 $4(1-\cos\theta) = 4\sin\theta$,即 $\sin\theta + \cos\theta = 1$,所以 $\sin\left(\theta + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$,

因为
$$\theta \in (0,\pi)$$
,所以 $\theta + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$,所以 $\theta + \frac{\pi}{4} = \frac{3\pi}{4}$,所以 $\theta = \frac{\pi}{2}$,

所以当 $\theta = \frac{\pi}{2}$ 时,使得 $\triangle APM$ 的面积等于 $\triangle AOP$ 的面积的 2 倍.

16. (15 分) 如图,直三棱柱
$$ABC - A_1B_1C_1$$
中, D, E 分别是 AB, BB_1 的中点, $AA_1 = AC = CB = \frac{\sqrt{2}}{2}AB$.

(1) 证明: BC_1 // 平面 A_1CD ; (2) 求二面角 $D-A_1C-E$ 的正弦值.

16.【解析】(1)证明:连接 AC_1 ,交点 A_1C 于点F,则F为 AC_1 的中点.

又D是AB的中点.连接DF,则 BC_1 //DF.

因为DF \subset 平面 A_1CD ,BC \subset 平面 A_1CD .所以 BC_1 // 平面 A_1CD .

(2) 解: 由
$$AC = CB = \frac{\sqrt{2}}{2}AB$$
,得 $AC \perp BC$.

以 C 为坐标原点, \overrightarrow{CA} , \overrightarrow{CB} , $\overrightarrow{CC_1}$ 的方向分别为 x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系 C-xyz 不妨设 CA=2 ,则 D(1,1,0), E(0,2,1), $A_1(2,0,2)$.

所以
$$\overrightarrow{CD} = (1,1,0), \overrightarrow{CE} = (0,2,1), \overrightarrow{CA_1} = (2,0,2).$$

设 $\vec{n} = (x_1, y_1, z_1)$ 是平面 A_1CD 的法向量.

$$\operatorname{CD} \left\{ \begin{aligned} & \overrightarrow{n} \cdot \overrightarrow{CD} = 0 \\ & \overrightarrow{n} \cdot \overrightarrow{CA_1} = 0 \end{aligned} \right., \quad \operatorname{ED} \left\{ \begin{aligned} & x_1 + y_1 = 0 \\ & 2x_1 + 2z_1 = 0 \end{aligned} \right., \quad \operatorname{ED} \left\{ \begin{aligned} & \overrightarrow{n} = \left(1, -1, -1\right). \end{aligned} \right.$$

同理,设 $\vec{m} = (x_2, y_2, z_2)$ 是平面 A_i CE的法向量,

2024-03-03

则
$$\begin{cases} \vec{m} \cdot \overrightarrow{CE} = 0 \\ \vec{m} \cdot \overrightarrow{CA} = 0 \end{cases}$$
, 即
$$\begin{cases} 2y_2 + z_2 = 0 \\ 2x_2 + 2z_2 = 0 \end{cases}$$
, 取 $\vec{m} = (2, 1, -2)$.

从而
$$\cos\langle \vec{n}, \vec{m} \rangle = \frac{\vec{n} \cdot \vec{m}}{|\vec{n}||\vec{m}|} = \frac{\sqrt{3}}{3}$$
,故 $\sin\langle \vec{n}, \vec{m} \rangle = \frac{\sqrt{6}}{3}$.所以二面角 $D - A_1C - E$ 的正弦值为 $\frac{\sqrt{6}}{3}$.

- 17. (15 分)盒中有大小颜色相同的 6 个乒乓球,其中 4 个未使用过(称之为新球),2 个使用过(称之为旧球).每局比赛从盒中随机取 2 个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.
- (1) 求一局比赛后盒中恰有3个新球的概率;
- (2) 设两局比赛后盒中新球的个数为 X, 求 X 的分布列及数学期望.

17.【解析】解答: (1)
$$P = \frac{C_2^1 C_4^1}{C_6^2} = \frac{8}{15}$$

(2)
$$X$$
 的可能取值为 $0,1,2,3,4$. $P(X=0) = \frac{C_4^2}{C_6^2} \cdot \frac{C_2^2}{C_6^2} = \frac{6}{225}$, $P(X=1) = \frac{C_4^2}{C_6^2} \cdot \frac{C_4^1 C_2^1}{C_6^2} + \frac{C_4^1 C_2^1}{C_6^2} \cdot \frac{C_3^2}{C_6^2} = \frac{72}{225}$,

$$P(X=2) = \frac{C_4^2}{C_6^2} \cdot \frac{C_4^2}{C_6^2} + \frac{C_4^1 C_2^1}{C_6^2} \cdot \frac{C_3^1 C_3^1}{C_6^2} + \frac{C_2^2}{C_6^2} \cdot \frac{C_4^2}{C_6^2} = \frac{114}{225}, \quad P(X=3) = \frac{C_2^2}{C_6^2} \cdot \frac{C_4^1 C_2^1}{C_6^2} + \frac{C_4^1 C_2^1}{C_6^2} \cdot \frac{C_3^2}{C_6^2} = \frac{32}{225},$$

$$P(X=4) = \frac{C_2^2}{C_6^2} \cdot \frac{C_2^2}{C_6^2} = \frac{1}{225}$$

所以X的分布列为

X	0	1	2	3	4
P	$\frac{6}{225}$	$\frac{72}{225}$	$\frac{114}{225}$	$\frac{32}{225}$	$\frac{1}{225}$

$$E(X) = 0 \times \frac{6}{225} + 1 \times \frac{72}{225} + 2 \times \frac{114}{225} + 3 \times \frac{32}{225} + 4 \times \frac{1}{225} = \frac{16}{9}$$

- 18. (17 分) 已知函数 $f(x) = \frac{1}{2}x^2 a \ln x, a \in R, f'(x)$ 是 f(x) 的导函数, $g(x) = xe^x$.
- (1) 求 f(x) 的单调区间; (2) 若 f(x) 有唯一零点.
- ①求实数 a 的取值范围; ②当 a > 0 时, 证明: g(x) > f'(x) + 4.

当 $a \le 0$ 时,f'(x) > 0, ∴ f(x)的递增区间为 $(0,+\infty)$, 无递减区间;

当a > 0时, $f'(x) > 0 \Leftrightarrow x > \sqrt{a}$, f(x)的递增区间为 $(\sqrt{a}, +\infty)$,递减区间为 $(0, \sqrt{a})$

2024-03-03

(2) ①解: 由 (1) 得: 当a < 0时,f(x)在x > 0上递增,且 $\lim_{x \to 0^+} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, ∴ f(x)有唯一零点,

当
$$a = 0$$
时, $f(x) = \frac{1}{2}x^2(x > 0)$ 无零点;

$$\triangleq a > 0$$
 by, $f(x)_{\min} = f(\sqrt{a}) = \frac{1}{2}a - a \ln \sqrt{a} = \frac{1}{2}a(1 - \ln a)$

$$\overline{\lim} \lim_{x \to 0^+} f(x) = +\infty, \lim_{x \to +\infty} f(x) = +\infty,$$

$$\therefore f(x)_{\min} = f(\sqrt{a}) = \frac{1}{2}a - a \ln \sqrt{a} = \frac{1}{2}a(1 - \ln a) = 0, \\ \therefore a = e, \\ \therefore a$$
的取值范围为($-\infty$, 0) $\cup \{e\}$

②证明:::a > 0.::由①得a = e

要证:
$$g(x) > f'(x) + 4 \Leftrightarrow xe^x > x - \frac{e}{x} + 4 \Leftrightarrow x^2e^x - x^2 - 4x + e > 0 \forall x > 0$$
恒成立…(*)

设
$$p(x) = x^2 e^x - x^2 - 4x + e$$
,

则
$$p'(x) = (2x + x^2)e^x - 2x - 4 = (x + 2)(xe^x - 2) > 0 \Leftrightarrow 0 < xe^x - 2 记为 $q(x)$$$

则
$$g'(x) = (x+1)e^x > 0$$
,而 $g(\ln 2) = 2(\ln 2 - 1) < 0$, $g(0.9) = 0.9e^{0.9} - 2 > 0$

∴ 存在唯一 $x_0 \in (\ln 2, 0.9)$, 使得 $q(x_0) = 0$, ∴ $p'(x) > 0 \Leftrightarrow x > x_0$

$$\therefore p(x)_{\min} = p(x_0) = x_0^2 e^{x_0} - x_0^2 - 4x_0 + e = 2x_0 - x_0^2 - 4x_0 + e = -x_0^2 - 2x_0 + e > -0.81 - 1.8 + e > 0$$

∴(*)成立, 证毕

19. (17 分) 已知有穷数列 $A: a_1, a_2, \dots, a_n (n \ge 3)$ 中的每一项都是不大于 n 的正整数.对于满足1≤ $m \le n$ 的整数 m,令集合 $A(m) = \{k \mid a_k = m, k = 1, 2, \dots, n\}$.记集合 A(m) 中元素的个数为 S(m) (约定空集的元素个数为 0).

(1) 若
$$A:6,3,2,5,3,7,5,5$$
,求 $A(5)$ 及 $s(5)$; (2) 若 $\frac{1}{s(a_1)} + \frac{1}{s(a_2)} + \cdots + \frac{1}{s(a_n)} = n$,求证: a_1,a_2,\cdots,a_n 互不相同;

- (3) 已知 $a_1 = a, a_2 = b$,若对任意的正整数 $i, j (i \neq j, i + j \leq n)$ 都有 $i + j \in A(a_i)$ 或 $i + j \in A(a_j)$,求 $a_1 + a_2 + \cdots + a_n$ 的值.
- (1) 解: 由己知得 $A(5) = \{k \mid a_k = 5, k = 1, 2, \dots, 8\} = \{4, 7, 8\}, s(5) = 3$

(2) 证明: 由已知得:
$$A(a_i) = \{k \mid a_k = a_i, k = 1, 2, \dots, n\}$$
至少有一个元素 i

$$\therefore s(a_i) \ge 1 \\ (i = 1, 2, \dots, n), \\ \therefore n = \frac{1}{s(a_i)} + \frac{1}{s(a_i)} + \dots + \frac{1}{s(a_n)} \le n, \\ \therefore s(a_i) = 1 \\ (i = 1, 2, \dots, n)$$

 $\therefore a_1, a_2, \cdots, a_n$ 互不相同,

2024-03-03

(3) 解:
$$\therefore A(a_i) = \{k \mid a_k = a_i, k = 1, 2, \dots, n\}, A(a_j) = \{k \mid a_k = a_j, k = 1, 2, \dots, n\},$$
 $\therefore i + j \in A(a_i) \Leftrightarrow a_{i+j} = a_i, \exists i + j \in A(a_j) \Leftrightarrow a_{i+j} = a_j$
 $\therefore a_{1+j} = a_1 (j = 2, 3, \dots, n-1), \exists a_{1+j} = a_j (j = 2, 3, \dots, n-1),$
 $\Rightarrow b = a \exists i, \quad a_2 = a_1, \dots a_3 = a_1, or, a_2, a_4 = a_1, or, a_3,$
 $\therefore a_3 = a, a_4 = a, \dots, a_n = a, \dots a_1 + a_2 + \dots + a_n = na$
 $\Rightarrow b \neq a \exists i, \quad a_k = a_{1+k-1} = a_1, or, a_k \in \{a_1, a_2\}, \dots a_n \in \{a_1, a_2\}$
 $\Rightarrow a_1 = a_1, a_2, \exists i, a_2 = a_1, a_2, a_3 = a_1, a_3, a_4 = a_1, a_2, a_3 = a_1, a_1, a_2 = a_1, a_2 = a_1, a_2 = a_1, a_3 = a_1, a_3 = a_1, a_1, a_2 = a_1, a_1, a_2 = a_1, a_2 = a_1, a_1, a_2 = a_1, a_1, a_2 = a_1, a_2 = a_1, a_1, a_2 = a_1, a_1, a_1, a_2 = a_1, a_1, a_1, a_1, a_2 = a_1, a_1, a_2$