Got 2 Minutes? Start here \$\\

Summary

- > Democratises sketch control, enabling real amateur sketches to generate accurate images.
- Identifies the root-cause behind deformed and non-photorealistic outputs of existing diffusion-based Sketch-to-Image frameworks.

What's wrong with Sketch-to-Image DM?

- Sketches depict significant shape-deformity and hold less contextual information than other pixel-perfect conditioning signals (e.g., masks).
- Lack of suitable prompts negatively impacts result. Ensuring a balance between sketch and text-conditioning requires manual intervention.
- > Exiting methods (e.g., SGDM) employs spatial sketch-conditioning.

Solutions

- Eliminate spatial sketch-conditioning by converting the input sketch into an equivalent fine-grained textual embedding, thereby preserving users' semantic-intent without pixel-level spatial alignment.
- Fine-grained discriminative loss for maintaining the fine-grained sketch-photo correspondence.
- Introduces sketch-abstraction-aware t-sampling. For highly abstract sketch, a higher probability is assigned to larger t and vice-versa.

It's All About Your Sketch: Democratising

Sketch Control in Diffusion Models

Subhadeep Koley^{1,2}, Ayan Kumar Bhunia¹, Deeptanshu Sekhri¹, Aneeshan Sain¹, Pinaki Nath Chowdhury¹, Tao Xiang^{1,2}, Yi-Zhe Song^{1,2}

- ¹SketchX, CVSSP, University of Surrey
- ²iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

Proposed Model

- > Salient Components
 - 1. Fine-grained discriminative guidance via pre-trained FG-SBIR model.
 - 2. Super-concept preservation loss via synthetically generated textual prompts.
 - 3. Adaptive *t*-sampling based on input sketch-abstraction.
- > We encode sketches as sequence of feature vectors as an equivalent fine-grained textual embedding.
- > To ensure a fine-grained matching between sparse freehand sketches and pixel-perfect photos, we use a pre-trained FG-SBIR model $\mathcal{F}(\cdot)$.

- \triangleright For learning $\mathcal{A}(\cdot)$, we use a discriminative SBIR loss that calculates cosine similarity $\delta(\cdot,\cdot)$ between input sketch and output photo features from $\mathcal{F}(\cdot)$.
- > We posit that textual captions being less fine-grained than a sketch, acts as a super-concept of the corresponding sketch.
- \triangleright We use a pre-trained SoTA captioner to synthetically generate caption d for every ground truth photo p. Then, at each t, the noise predicted through text-conditioning (T(d)) acts as a reference to calculate a regularisation loss to learn $\mathcal{A}(\cdot)$.
- High and low-level semantic structures of the output image tend to manifest in different stages of the denoising process.
- > We thus adjust the time-step sampling procedure based on the input sketch's abstraction level.
- $\omega = 0$ $\omega = 0.5$ $\omega = 1$
- > To assess sketch-abstraction, we design a CLIP-based sketch classifier, that provides a score where scores from $0 \rightarrow 1$ denotes more to less abstract sketches.

Experiments & Results

