PLP - 41 TOPIC 41 — DENUMERABLE SETS

Demirbaş & Rechnitzer

DENUMERABLE SETS

LIST OUT THE ELEMENTS

When a set B is denumerable we can "list out" its elements.

- ullet Since denumerable there is a bijection $f:\mathbb{N} o B$
- ullet So we can write B as

$$egin{aligned} B &= \{f(1), f(2), f(3), f(4), \ldots\} \ &= \{b_1, b_2, b_3, b_4, \ldots\} \end{aligned} \qquad b_n = f(n) \end{aligned}$$

This list has two nice properties

ullet Since f is injective, the list does not repeat

$$k
eq n \implies b_k = f(k)
eq f(n) = b_n$$

ullet Since f is surjective, any given $y\in B$ appears at some *finite* position

$$orall y \in B, \exists n \in \mathbb{N} ext{ s.t. } y = f(n) = b_n$$

A LIST GIVES A BIJECTION

Say we can write the elements of B in a \emph{nice} list

$$B = \{b_1, b_2, b_3, b_4, \ldots\}$$

then we can use this to construct a bijection: $g: \mathbb{N} \to B$.

What does *nice* mean? First define

$$g: \mathbb{N} o B$$
 by $g(k) = b_k$

Then the list is *nice* when

- it does not repeat so that g is injective
- ullet any given element $y\in B$ appears at a finite position

$$orall y \in B, \exists n \in \mathbb{N} ext{ s.t. } y = g(n) = b_n$$

so g is surjective

So the construction of such a list proves a bijection from $\mathbb N$ to B, and so B is denumerable.

EXAMPLE 1

PROPOSITION:

The set of all integers is denumerable.

Scratch

- We need to list out all the integers so that
 - the list does not repeat
 - any given integer appears at a finite position in the list

• Try
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

What
$$n \in \mathbb{N}$$
 gives $f(n) = 0$?

• Try
$$\mathbb{Z} = \{1, 2, 3, \ldots, 0, -1, -2, -3, \ldots\}$$

What
$$n \in \mathbb{N}$$
 gives $f(n) = 0$?

$$ullet$$
 Try again: $\mathbb{Z}=\{0,1,-1,2,-2,3,-3,\ldots\}$

PROOF
$$|\mathbb{N}| = |\mathbb{Z}|$$

List $\mathbb{Z}=\{0,1,-1,2,-2,3,-3,\ldots\}$ or equivalently

PROOF.

List the elements $z \in \mathbb{Z}$ as above, so that

- ullet if $z\geq 1$, then z appears at position 2z
- ullet if $z\leq 0$, then z appears at position 1-2z

The list then

- does not repeat
- and any given $z \in \mathbb{Z}$ appears at some finite position and thus the list defines a bijection between \mathbb{N} and \mathbb{Z} .

NOTHING BETWEEN DENUMERABLE AND FINITE

THEOREM:

Let A, B be sets with $A \subseteq B$. If B is denumerable then A is countable.

Proof sketch:

- If A is finite then it is countable
- If A is infinite then it suffices to construct a bijection $f: \mathbb{N} \to A$.
- Since B is denumerable, list out its elements $B=\{b_1,b_2,b_3,b_4,b_5,b_6,\ldots\}$
- Since $A \subseteq B$, delete elements to get $A = \{b_1, b_2, b_3, b_4, b_5, b_6 \ldots\}$ (example only)
- ullet Then $A = \{b_1, b_4, b_6, b_9, b_{13}, \ldots\}$
- ullet Since the B-list did not repeat, this list does not repeat
- Since any given $a \in A$ is also in B, that a appears at a finite position (earlier than in B-list)
- ullet Hence A is denumerable, and so countable

EXAMPLE

PROPOSITION:

Let $k \in \mathbb{N}$, then following sets are denumerable:

$$k\mathbb{Z}=\{kn:n\in\mathbb{Z}\}$$

and

$$k\mathbb{N}=\{kn:n\in\mathbb{N}\}$$

We could establish bijections from those sets to $\mathbb Z$ or $\mathbb N$, or use previous theorem.

PROOF.

For any $k \in \mathbb{N}$ the sets are subsets of \mathbb{Z} . Since \mathbb{Z} is denumerable, it follows that the sets are countable (by the previous theorem). Further, since the sets are not finite, it follows that they must be denumerable.

UNION AND INTERSECTION PRESERVE COUNTABLE

PROPOSITION:

Let A,B be countable sets, then $A\cap B$ and $A\cup B$ are all countable.

Proof sketch

- If A, B are finite, then all are finite, so countable
- Since $A \cap B \subseteq A$, by the previous theorem, this is countable.
- Since A, B countable, B-A is countable. Then list carefully

$$A = \{a_1, a_2, a_3, \ldots\}$$
 $(B - A) = \{b_1, b_2, b_3, \ldots\}$

then combine the lists by alternating

$$A \cup B = A \cup (B - A) = \{a_1, b_1, a_2, b_2, a_3, b_3, \ldots\}$$

If A finite, then $A \cup B = \{a_1, a_2, \ldots, a_n, b_1, b_2, b_3, \ldots\}$

CARTESIAN PRODUCT PRESERVES COUNTABLE

PROPOSITION:

Let A, B be countable sets, then $A \times B$ is countable.

Scratchwork — If neither finite then $A=\{a_1,a_2,a_3,\ldots\}$ and $B=\{b_1,b_2,b_3,\ldots\}$ and so

X	a_1	a_2	a_3	a_4	• • •
b_1	(a_1,b_1)	(a_2,b_1)	(a_3,b_1)	(a_4,b_1)	• • •
b_2	(a_1,b_2)	(a_2,b_2)	(a_3,b_2)	(a_4,b_2)	• • •
b_3	(a_1,b_3)	(a_2,b_3)	(a_3,b_3)	(a_4,b_3)	• • •
b_4	(a_1,b_4)	(a_2,b_4)	(a_3,b_4)	(a_4,b_4)	• • •
•	•	•	• •	•	• •

Construct list of pairs by careful sweep of the table.

PROOF

PROOF.

Since A, B are denumerable we can construct the following table

X	a_1	a_2	a_3	• • •
b_1	(a_1,b_1)	(a_2,b_1)	(a_3,b_1)	• • •
$\overline{b_2}$	(a_1,b_2)	(a_2,b_2)	(a_3,b_2)	• • •
$\overline{b_3}$	(a_1,b_3)	(a_2,b_3)	(a_3,b_3)	• • •
•	•	•	•	•••

By sweeping through diagonals $\swarrow \swarrow \swarrow$ we list all the elements of $A \times B$:

$$A imes B = \Big\{(a_1,a_1),(a_2,a_1),(a_1,b_2),(a_3,b_1),(a_2,b_2),(a_1,b_3),\dots\Big\}$$

This list does not repeat, and any given (a_k, b_n) appears at finite position, so $A \times B$ is denumerable.

RATIONALS ARE DENUMERABLE

PROPOSITION:

The set of all rational numbers \mathbb{Q} is denumerable.

Very strange since \mathbb{Q} is dense: between any two rationals you can always find another rational.

Proof-sketch

- Note that any $q\in\mathbb{Q}$ can be written uniquely as $q=rac{a}{b}$ with $a\in\mathbb{Z},b\in\mathbb{N}$ and $\gcd(a,b)=1$
- ullet We can rewrite rationals as $P=\{(a,b)\in\overline{\mathbb{Z} imes\mathbb{N}} ext{ s.t. } \gcd(a,b)=1\}$
- ullet There is a bijection $f:\mathbb{Q} o P$ given by $\overline{f(a/b)}=(a,b)$, where a/b is the reduced fraction
- Since $P \subseteq \mathbb{Z} \times \mathbb{N}$, we know P is denumerable.
- Thus since $|P|=|\mathbb{Q}|$ we have that \mathbb{Q} is denumerable also.