I. Vecteurs orthogonaux

Définition 1

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

 \overrightarrow{u} et \overrightarrow{v} sont dits orthogonaux lorsqu'au moins l'un des deux est nul ou lorsque leurs directions sont perpendiculaires.

Dans ce cas, on note $\overrightarrow{\mathfrak{u}} \perp \overrightarrow{\mathfrak{v}}$.

Propriété 1

On considère un repère orthonormé (O; \overrightarrow{v} , \overrightarrow{j}) tel que $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

$$\overrightarrow{u}\bot\overrightarrow{v}\quad\Leftrightarrow\quad xx'+yy'=0.$$

Démonstration

On construit le triangle OAB tel que $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$.

On a donc $\overrightarrow{OA} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{OB} \begin{pmatrix} x' \\ y' \end{pmatrix}$. En particulier, puisque O est l'origine du repère alors les coordonnées de A sont (x; y) et celles de B sont (x'; y'). Ainsi :

$$\begin{array}{ll} \overrightarrow{u}\bot\overrightarrow{v} & \Leftrightarrow & \overrightarrow{OA}\bot\overrightarrow{OB} \\ & \Leftrightarrow & \text{OAB est rectangle en O} \\ & \Leftrightarrow & \text{OA}^2 + \text{OB}^2 = \text{AB}^2 \\ & \Leftrightarrow & \sqrt{(x^2+y^2)^2} + \sqrt{(x'^2+y'^2)^2} = \sqrt{((x-x')^2+(y-y')^2)^2} \\ & \Leftrightarrow & x^2+y^2+x'^2+y'^2=x^2+x'^2+y^2+y'^2-2xx'-2yy' \\ & \Leftrightarrow & 0=-2(xx'+yy') \\ \hline \overrightarrow{u}\bot\overrightarrow{v} & \Leftrightarrow & xx'+yy'=0 \end{array}$$

II. Définition et propriétés du produit scalaire

Définition 2

On considère un repère orthonormé (O; $\overrightarrow{\iota}$, $\overrightarrow{\jmath}$) tel que $\overrightarrow{\iota}$ $\binom{x}{y}$ et $\overrightarrow{\nu}$ $\binom{x'}{y'}$. Le **produit scalaire** de $\overrightarrow{\iota}$ et $\overrightarrow{\nu}$ est un **nombre réel**, noté $\overrightarrow{\iota}$ $\overrightarrow{\iota}$ $\overrightarrow{\nu}$, défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$$

<u> Remarque</u>

Exemple • Dans un repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$, on considère les points suivants :

$$A(-3;-1)$$
; $B(1;2)$; $C(-2;-1)$ et $D(4;3)$.

Les droites (AB) et (CD) sont-elles perpendiculaires?

Propriété 2

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs. On a les égalités suivantes :

$$-\overrightarrow{u}\cdot\overrightarrow{v}=\overrightarrow{v}\cdot\overrightarrow{u};$$

$$-\ \left(k\overrightarrow{u}\right)\cdot\overrightarrow{v}=\overrightarrow{u}\cdot\left(k\overrightarrow{v}\right)=k\times\left(\overrightarrow{u}\cdot\overrightarrow{v}\right);$$

$$-\overrightarrow{u}\cdot(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}\cdot\overrightarrow{v}+\overrightarrow{u}\cdot\overrightarrow{w}.$$

<u>Démonstration</u>

Laissée en exercice. Il suffit d'utiliser les coordonnées de chaque vecteur et d'utiliser le fait que l'addition est associative et commutative et que la multiplication est distributive par rapport à l'addition. On utilise aussi les fait que les coordonnées d'une somme de vecteurs est la somme des coordonnées de chaque vecteur.

III. Vecteurs colinéaires

<u>Définition 3</u>

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont dits colinéaires lorsqu'au moins l'un des deux est nul ou lorsqu'il existe un réel k tel que :

$$\overrightarrow{v} = k\overrightarrow{u}$$
.

$$A \longrightarrow C$$

 \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Dans un repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$, on note $\begin{pmatrix} x \\ y \end{pmatrix}$ les coordonnées de $\overrightarrow{\iota}$. Puisque $\overrightarrow{\nu} = k\overrightarrow{\iota}$ alors $\begin{pmatrix} kx \\ ky \end{pmatrix}$ sont les coordonnées de $\overrightarrow{\nu}$. Peu importe le sens des vecteurs, on a : $\overrightarrow{\iota} \cdot \overrightarrow{\nu} = kx^2 + ky^2 = k(x^2 + y^2)$.

$$\begin{aligned} \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| &= \sqrt{(x^2 + y^2)} \times \sqrt{(kx)^2 + (ky)^2} \\ &= \sqrt{(x^2 + y^2) \times (k^2)(x^2 + y^2)} \\ &= \sqrt{k^2 \times (x^2 + y^2)^2} \\ &= \sqrt{k^2} \times \sqrt{(x^2 + y^2)^2} \\ &= \sqrt{k^2} \times (x^2 + y^2) \end{aligned}$$

Or, si $k \geqslant 0$ alors $\sqrt{k^2} = k$ et si $k \leqslant 0$, $\sqrt{k^2} = -k$. On obtient donc la propriété suivante :

Propriété 3

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs colinéaires.

 \overrightarrow{u} et \overrightarrow{v} sont de même sens : alors $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\|$.

 \overrightarrow{u} et \overrightarrow{v} sont de sens contraire : alors $\overrightarrow{u} \cdot \overrightarrow{v} = - \|\overrightarrow{u}\| \times \|\overrightarrow{v}\|$.

IV. Projeté orthogonal

Définition 4

On considère trois points A, B et C.

Le **projeté orthogonal** de C sur la droite (AB) est le point H tel que :

$$H \in (AB)$$
 et $(AB)\perp (CH)$.

<u>| Remarques</u>

- Les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont colinéaires.
- Si C ∈ (AB) alors H et C sont confondus : H = C.
- $-Si(AC)\bot(AB)$ alors A = H et $Si(BC)\bot(AB)$ alors H = B.

Propriété 4

On considère trois points A, B et C et on appelle H le projeté orthogonal de C sur la droite (AB). Alors :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = \pm \left\| \overrightarrow{AB} \right\| \times \left\| \overrightarrow{AH} \right\|$$

le signe dépendant du sens de \overrightarrow{AH} par rapport à \overrightarrow{AB} .

<u>Démonstration</u>

Il suffit d'utiliser la relation de Chasles et la propriété 2 de la page 2 :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} + \overrightarrow{HC}$$

$$= \overrightarrow{AB} \cdot \overrightarrow{AH} + \overrightarrow{AB} \cdot \overrightarrow{HC}$$

$$= \overrightarrow{AB} \cdot \overrightarrow{AH} + 0 \text{ puisque } \overrightarrow{AB} \perp \overrightarrow{HC}$$

Dans les configurations précédentes, on note $\alpha = \left(\overrightarrow{AB}; \overrightarrow{AC}\right)$.

• \overrightarrow{AB} et \overrightarrow{AH} sont de même sens : les formules de trigonométrie dans le triangle ACH rectangle en H permettent d'affirmer que :

$$AH = AC \times \cos \alpha$$
.

Ainsi,
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH = AB \times AC \cos \alpha$$
.

• \overrightarrow{AB} et \overrightarrow{AH} sont de sens contraire : alors $(\overrightarrow{AC}; \overrightarrow{AH}) = \pi - \alpha$. Dans le triangle ACH rectangle en H, les formules de trigonométrie permettent d'affirmer que :

$$AH = AC \times \cos(\pi - \alpha) = -AC \times \cos(\alpha).$$

Ainsi,
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH = -AB \times (-AC \cos \alpha) = AB \times AC \cos \alpha$$
.

Propriété 5

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

$$\overrightarrow{u}\cdot\overrightarrow{\nu}=\left\Vert u\right\Vert \times\left\Vert \nu\right\Vert \times\cos\left(\overrightarrow{u},\overrightarrow{\nu}\right).$$

<u>| Remarque</u>

Yeursque $\cos \alpha = -\cos \alpha$, on retrouve $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$.

Exemple • On considère les points A(1; 1), B(4; 2) et C(2; 3). En arrondissant à l'unité, déterminer la mesure des angles du triangle ABC.

