

Course 1DL481: Algorithms and Data Structures 3 (AD3)

Hiring Problem

Suppose your company needs to hire a new employee:

- An employment agency provides a list of *n* applicants.
- You interview one applicant per day.
- After each interview, you must immediately decide if you hire the interviewed applicant or not.
- You can rehire if a better applicant is interviewed later, but you must pay a fee to the fired employee.

How to hire the best applicant at minimal financial cost? (Not at minimal runtime, as you interview all *n* applicants.)

AD3 - 2 -

Hiring Problem: Deterministic Algorithm

Step 1. Always hire after a better applicant was interviewed.

Example: For n = 8 applicants with post-interview scores [2, 3, 1, 4, 6, 5, 8, 7], you hire 5 times (and pay the firing fee 5 - 1 = 4 times).

Given *n* applicants, how many times do you hire?

- Worst case: n hirings. **Example:** For n = 8 applicants with post-interview scores [1, 2, 3, 4, 5, 6, 7, 9], you hire n = 8 times.
- Average case: ?
 We need to perform a probabilistic analysis: we use knowledge of the distribution of the inputs, or we make assumptions about it.

For any particular input, the output and its cost are the same at each run.

AD3 - 3 -

Hiring Problem: Probabilistic Analysis

Define indicator random variables (independent ones here):

$$X_i = \begin{cases} 1 & \text{if applicant } i \text{ is hired} \\ 0 & \text{otherwise} \end{cases}$$

Let $E[X_i]$ denote the expected value of X_i , that is the probability that applicant i is hired, that is the probability that applicant i is better than 1 to i-1, that is 1/i upon **assuming** that the applicants are randomly ordered. Average number of hirings, much lower than the worst-case number:

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$
$$= \sum_{i=1}^{n} 1/i$$
$$= \ln n + O(1)$$

by linearity of expectation **assuming** a random order the nth harmonic number H(n)

Hiring Problem: Trust Issue

■ We **assumed** that the agency's list is randomly ordered!

■ But what if we cannot trust the employment agency?

Example: What if we must also pay the employment agency a fee each time we fire and rehire?

AD3 - 5 -

Hiring Problem: Randomised Algorithm

The probabilistic analysis guides us to a new algorithm:

Step 0. Shuffle the applicants randomly before interviewing. **Step 1.** Always hire after a better applicant was interviewed.

A randomised algorithm **imposes** a particular distribution, namely a random order, independently of the input order.

- Expected case: $\ln n + O(1)$ hirings, like the average case of the deterministic algorithm upon **assuming** a random order.
- Worst case: no particular input triggers n hirings at every run!

For any particular input, the output and its cost can differ between runs.

AD3 - 6

Hiring Problem: Questions

- How to shuffle (permute) an array A[1..n] randomly? Swap A[i] with $A[\mathsf{RANDOM}(i,n)]$, for i=1 to n, where $\mathsf{RANDOM}(\ell,u)$ returns in $\Theta(1)$ time a random integer between integers ℓ and u, inclusive. This takes $\Theta(n)$ time overall.
- On-line Hiring Problem: You can only hire one applicant (and you then stop interviewing the remaining ones).
 How do you hire a candidate close to the best?
 - Reject the first n/e applicants and hire the first one thereafter that scores higher than all preceding ones, or hire the last one (in case the best one was among the first n/e ones). See Section 5.4.4 of CLRS4 for details.

AD3 - 7 -