BPS STATE COUNTS OF LOCAL ELLIPTIC SURFACES VIA FORMAL GEOMETRY AND THE TOPOLOGICAL VERTEX

JIM BRYAN AND MARTIJN KOOL

ABSTRACT. We compute the (connected) stable pair invariants of $X = \text{Tot}(K_S)$ where S is an elliptic surface with section and at worst 1-nodal singular fibres. The calculation includes thickenings to all orders in both the surface and fibre direction. We use a new method combining motivic arguments and torus localization.

We stratify the moduli space according to underlying reduced support C_{red} of the stable pair and compute the contribution of each C_{red} individually. The contribution of C_{red} can be split up into a part coming from the nodes of C_{red} and the complement of the nodes $C_{\text{red}}^{\circ} \subset C_{\text{red}}$. The formal neighbourhood of C_{red}° in X is isomorphic to a formal neighbourhood of C_{red}° inside its normal bundle. This gives us lots of \mathbb{C}^* -actions.

Localization with respect to the torus actions leads to a vertex calculation which can be performed explicitly. As special cases we find a new proof of the Katz–Klemm–Vafa formula in the primitive case (independent of Kawai–Yoshioka's formula) and the BPS spectrum of the local rational elliptic surface.

CONTENTS

1. Introduction	2
2. Stratification	3
3. Restriction	4
4. Formalization	6
5. Localization	8
5.1. Localization I	8
5.2. Localization II	10
5.3. Punctured curves	11
6. Finale (Schur)	13
References	16

1. Introduction

Let X be a smooth projective 3-fold, $\chi \in \mathbb{Z}$, and $\beta \in H_2(X)$ a curve class. Denote by $P_{\chi}(X,\beta)$ the moduli space of stable pairs $I^{\bullet} = [\mathcal{O}_X \to \mathcal{F}]$ on X for which $\chi(\mathcal{F}) = \chi$, and the scheme theoretic support of F has curve class β . The moduli space $P_{\chi}(X,\beta)$ is an instance of Le Potier's more general moduli spaces of stable pairs [LeP]. The deformation-obstruction theory of stable pairs does not provide a perfect obstruction theory for $P_{\chi}(X,\beta)$. R. P. Thomas and R. Pandharipande realize $P_{\chi}(X,\beta)$ as a component of the moduli space of complexes in $D^b(X)$ with trivial determinant. Viewed as a moduli space of complexes $P_{\chi}(X,\beta)$ does have a perfect obstruction theory [PT1]. When X is in addition Calabi-Yau, this perfect obstruction theory is symmetric and the stable pair invariants of X are defined as the degree of the virtual cycle

$$P_{\chi,\beta}(X) := \int_{[P_{\chi}(X,\beta)]^{\text{vir}}} 1.$$

By a theorem of K. Behrend [Beh]

$$\int_{[P_Y(X,\beta)]^{\text{vir}}} 1 = \int_{P_Y(X,\beta)} \nu_B \, \mathrm{d}e,$$

where $\nu_B: P_{\chi}(X,\beta) \to \mathbb{Z}$ is Behrend's constructible function and $e(\cdot)$ denotes topological Euler characteristic.

In this paper $\pi: S \to B$ denotes an elliptic surface. This means S is a smooth surface, B a smooth curve of genus g(B), and π a holomorphic map with general fibre a connected smooth genus 1 curve [Mir]. We make two assumptions:

- π has a section $B \hookrightarrow S$,
- all singular fibres of π are of Kodaira type I_1 , i.e. rational 1-nodal curves.

We are interested in the case $X = \text{Tot}(K_S)$ and $\beta = B + dF$, where B is the class of the section and F is the class of the fibre. Since X is a non-compact Calabi-Yau 3-fold we require curves of $P_{\chi}(X,\beta)$ to have proper support. Non-compactness of $P_{\chi}(X,\beta)$ also means we do not have a virtual cycle, so one should define stable pair invariants in this setting either by Graber-Pandharipande's localization formula [GP] or by integration of ν_B over $P_{\chi}(X,\beta)$. We choose the latter approach.

Can more be said about such surfaces? I don't thin we need $B \cong \mathbb{P}^1$?

How are both approaches related?

EULER CHAR FOR THIS VERSION FOR NOW! Consider the (disconnected) generating function

(1)
$$Z^{\bullet P}(q,y) := \sum_{d \ge 0} \sum_{\chi} P_{\chi,B+dF}(X) q^{\chi} y^d,$$
$$P_{\chi,B+dF}(X) := e(P_{\chi}(X,B+dF)).$$

The connected generating function is defined as [PT1]

(2)
$$Z^{P}(q,y) := \frac{\sum_{d\geq 0} \sum_{\chi} P_{\chi,B+dF}(X) q^{\chi} y^{d}}{\sum_{d\geq 0} \sum_{\chi} P_{\chi,dF}(X) q^{\chi} y^{d}},$$
$$P_{\chi,dF}(X) := e(P_{\chi}(X,dF)),$$

where $P_{\chi,0}(X) = 1$ for all χ . Our main result is the following.

Theorem 1.1. Let $X = \text{Tot}(K_S)$ where $S \to B$ is an elliptic surface with section B of genus g(B) and N 1-nodal fibres. Then

$$Z^{P}(q,y) = \left(\frac{q}{(1-q)^{2}}\right)^{1-g(B)} \prod_{i=1}^{\infty} \frac{1}{(1-y^{i})^{N-2e(B)}(1-qy^{i})^{e(B)}(1-q^{-1}y^{i})^{e(B)}}.$$

The proof is divided into five movements:

Stratifation, Restriction, Formalization, Localization, Finale (Schur).

2. Stratification

Let β be Poincaré dual to B + dF. The projections

$$\varpi: X \longrightarrow S \longrightarrow B$$

induce a push-forward map

$$P_{\mathcal{X}}(X,\beta) \longrightarrow \operatorname{Sym}^{d}(B), \ I^{\bullet} = [\mathcal{O}_{X} \to \mathcal{F}] \mapsto \varpi_{*}\mathcal{F}.$$

We denote the fibre of $S \to B$ over $p \in B$ by F_p . Let

$$\mathbf{p} := \sum_{i=1}^{m} d_i p_i \subset B$$

be an effective divisor with all $d_i > 0$ and $\sum_{i=1}^m d_i = d$. Consider the reduced curve

$$C_{\mathbf{p}} := \bigcup_{i=1}^{m} F_{p_i} \subset S \subset X,$$

Applications for this paper: stable pair version of KKV in the primitive case independent of KY, gen fun for rational elliptic surface. Future applications: elliptically fibres CY3's, refinement and comparison to refined KKV,

where $S \subset X$ is the zero-section. The fibre of ϖ_* over **p** is

$$P_{\chi}(X, \mathbf{p}) := \{ I^{\bullet} = [\mathcal{O}_X \to \mathcal{F}] \in P_{\chi}(X, \beta) : \varpi_* \mathcal{F} = \mathbf{p} \},$$

i.e. the locally closed subset of stable pairs $I^{\bullet} = [\mathcal{O}_X \to \mathcal{F}] \in P_{\chi}(X, \beta)$ for which \mathcal{F} has set theoretic support $C_{\mathbf{p}}$ and multiplicity d_i along F_{p_i} for all i. We are interested in the stratification

$$P_{\chi}(X,\beta) = \coprod_{\mathbf{p} \in \operatorname{Sym}^d(B)} P_{\chi}(X,\mathbf{p}).$$

Lemma 2.1.

$$e(P_{\chi}(X,\beta)) = \int_{\mathbf{p} \in \operatorname{Sym}^d(B)} e(P_{\chi}(X,\mathbf{p})) de.$$

Proof. [MacP].

3. Restriction

By Lemma 2.1 we are reduced to computing $e(P_{\chi}(X, \mathbf{p}))$ for any

$$\mathbf{p} = \sum_{i=1}^{m} d_i p_i \in \operatorname{Sym}^d(B).$$

Let $q \in C_{\mathbf{p}}$ be one of the *nodal* singularities (either a node in a singular fibre or an intersection point of a fibre with the section). We denote by \widehat{X}_q the formal neighbourhood of $\{q\} \subset X$ and by $X \setminus q$ the complement of $\{q\} \subset X$. Let

$$P_{\chi}(X \setminus q, \mathbf{p})$$

be the moduli space of stable pairs $I^{\bullet} = [\mathcal{O}_{X \setminus q} \to \mathcal{F}]$ such that $\chi(\mathcal{F}) = \chi$, \mathcal{F} has set theoretic support $C_{\mathbf{p}} \setminus q$, \mathcal{F} has multiplicity 1 along $B \setminus q$, and \mathcal{F} has multiplicity d_i along $F_{p_i} \setminus q$ for all i. Moreover let

$$P_{\chi}(\widehat{X}_q, \mathbf{p})$$

be the moduli spaces of stable pairs $I^{\bullet} = [\mathcal{O}_{\widehat{X}_q} \to \mathcal{F}]$ such that $\chi(\mathcal{F}) = \chi$, \mathcal{F} has set theoretic support $\widehat{C}_{\mathbf{p}}$, \mathcal{F} has multiplicity 1 along \widehat{B} , and \mathcal{F} has multiplicity d_i along \widehat{F}_{p_i} for all i. Here $\widehat{C}_{\mathbf{p}}$, \widehat{B} , \widehat{F}_{p_i} denote the lifts¹ of $C_{\mathbf{p}}$, B, F_{p_i} to \widehat{X}_q . We are interested in the injective morphism induced by restriction

(3)
$$P_{\chi}(X, \mathbf{p}) \hookrightarrow \coprod_{\chi = \chi_1 + \chi_2} P_{\chi_1}(X \setminus q, \mathbf{p}) \times P_{\chi_2}(\widehat{X}_q, \mathbf{p}).$$

A little more care in the def of this moduli space is needed since $X \setminus q$ is non-compact AND the supports of the stable pairs are non-compact.

This might need a little more care too since stable pair theory is not yet defined for formal schemes.

The Let \widehat{X}_Z be the formal completion of any scheme along a closed subset Z. If \mathcal{E} is a coherent sheaf on X then one can define a lift \mathcal{E}^{Δ} to \widehat{X}_Z [Har]. In the case $\mathcal{E} = \mathscr{I} \subset \mathcal{O}_X$ is an ideal sheaf, this provides an ideal sheaf $\mathscr{I}^{\Delta} \subset \mathcal{O}_{\widehat{X}_Z}$ [Har].

The image of this morphism can be characterized as follows. Let

$$U = \operatorname{Spec} \mathbb{C}[x, y] \subset S$$

be an open affine neighbourhood of q over which $X = \text{Tot}(K_S)$ trivializes with fibre coordinate z. Then \widehat{X}_q is the reduced point q with sheaf of rings

May not exist. In general work in stalk? See Jim's e-mail on 25.6.2014.

$$\mathcal{O}_{\widehat{X}_q} \cong \widehat{\mathcal{O}}_{X,q} \cong \mathbb{C}[\![x,y,z]\!].$$

Suppose the coordinates are chosen such that $C_{\mathbf{p}}$ is defined by xy = z = 0. Define open subsets

$$V = \{x \neq 0\} \subset U, \ W = \{y \neq 0\} \subset U.$$

Lemma 3.1. An element

$$([s_1:\mathcal{O}_{X\setminus q}\to\mathcal{F}_1],[s_2:\mathcal{O}_{\widehat{X}_q}\to\mathcal{F}_2])$$

lies in the image of the embedding (3) if and only if the Cohen-Macaulay support curves $C_{\mathcal{F}_1}$, $C_{\mathcal{F}_2}$ underlying both stable pairs glue i.e.

$$\Gamma(\widehat{X}_q, \mathscr{I}_{C_{\mathcal{F}_2}}) \otimes_{\mathbb{C}[\![x,y,z]\!]} \mathbb{C}[\![x^{\pm},y,z]\!] \cong \widehat{\Gamma}(V \times \mathbb{C}, \mathscr{I}_{C_{\mathcal{F}_1}}|_{V \times \mathbb{C}}),$$

$$\Gamma(\widehat{X}_q, \mathscr{I}_{C_{\mathcal{F}_2}})) \otimes_{\mathbb{C}[\![x,y,z]\!]} \mathbb{C}[\![x,y^{\pm},z]\!] \cong \widehat{\Gamma}(W \times \mathbb{C}, \mathscr{I}_{C_{\mathcal{F}_1}}|_{W \times \mathbb{C}}),$$

where $\Gamma(\cdot)$ denotes the global section functor, $\widehat{(\cdot)}$ is the formal completion of the module (\cdot) , and $\mathscr{I}_{C_{\mathcal{F}_1}}$, $\mathscr{I}_{C_{\mathcal{F}_2}}$ are ideal sheaves.

Proof. Perhaps Ben-Bassat–Temkin's [BT] abstract setup (or a stable pairs version) reduces to this when Z (in their notation) is just a point. Note: life is not too bad because only the support curve has to glue. This is because the section of a stable pair is an isomorphism outside a 0-dim subscheme.

See Jim's fpqc e-mail on 25.6.2014.

We want to apply the above construction not just for one point q. Let $q_1, \ldots, q_n \in C_{\mathbf{p}}$ be all nodes. For notational simplicity we write

$$X^{\circ} := X \setminus \{q_1, \dots, q_n\}.$$

We embed

$$P_{\chi}(X, \mathbf{p}) \hookrightarrow \coprod_{\chi = \chi' + \chi_1 + \dots + \chi_n} P_{\chi'}(X^{\circ}, \mathbf{p}) \times \prod_{j=1}^n P_{\chi_j}(\widehat{X}_{q_j}, \mathbf{p}).$$

The image is characterized by gluing conditions as in Lemma 3.1 at each of the nodes q_i .

4. Formalization

In the previous section we characterized the image of $P_{\chi}(X, \mathbf{p})$ under restriction to special points and their complements

$$P_{\chi}(X, \mathbf{p}) \hookrightarrow \coprod_{\chi = \chi' + \chi_1 + \dots + \chi_n} P_{\chi'}(X^{\circ}, \mathbf{p}) \times \prod_{i=1}^n P_{\chi_j}(\widehat{X}_{q_j}, \mathbf{p})$$

In this section we relate $P_{\chi}(X^{\circ}, \mathbf{p})$ to moduli spaces of stable pairs on the (punctured) fibres/section inside their normal bundle.

Recall that

$$\mathbf{p} := \sum_{i=1}^{m} d_i p_i \in \operatorname{Sym}^d(B), \ C_{\mathbf{p}} := \bigcup_{i=1}^{m} F_{p_i},$$

and q_1, \ldots, q_n are all nodes of $C_{\mathbf{p}}$. We have an inclusion

$$P_{\chi}(X^{\circ}, \mathbf{p}) \subset P_{\chi}(X^{\circ}, \beta),$$

where $P_{\chi}(X^{\circ}, \beta)$ denotes the moduli space of stable pairs $I^{\bullet} = [\mathcal{O}_{X^{\circ}} \to \mathcal{F}]$ on X° such that $\chi(\mathcal{F}) = \chi$ and the closure of the scheme theoretic support of \mathcal{F} in X is proper with class β . We can make a formal completion of the former space along the latter

$$\widehat{P}_{\chi}(X^{\circ},\beta)_{P_{\chi}(X^{\circ},\mathbf{p})}.$$

Obviously the underlying topological space is unchanged so

$$e(\widehat{P}_{\mathbf{Y}}(X^{\circ}, \beta)_{P_{\mathbf{Y}}(X^{\circ}, \mathbf{p})}) = e(P_{\mathbf{Y}}(X^{\circ}, \mathbf{p})).$$

Passing to the formal completion allows us to consider stable pairs on the formal completion of X° along $C_{\mathbf{p}}^{\circ} := C_{\mathbf{p}} \setminus \{q_1, \dots, q_n\}$. This formal completion is denoted by

$$\widehat{X^{\circ}}_{C_{\mathbf{p}}^{\circ}}.$$

Lemma 4.1. There exists a canonical isomorphism

$$\widehat{P}_{\chi}(X^{\circ},\beta)_{P_{\chi}(X^{\circ},\mathbf{p})} \cong P_{\chi}(\widehat{X^{\circ}}_{C_{\mathbf{p}}^{\circ}},\mathbf{p}),$$

where $P_{\chi}(\widehat{X}^{\circ}_{C_{\mathbf{p}}^{\circ}}, \mathbf{p})$ is the moduli space of stable pairs $I^{\bullet} = [\mathcal{O} \to \mathcal{F}]$ on $\widehat{X}^{\circ}_{C_{\mathbf{p}}^{\circ}}$ such that $\chi(\mathcal{F}) = \chi$, \mathcal{F} has multiplicity 1 along \widehat{B}° , and \mathcal{F} has multiplicity d_i along $\widehat{F}_{p_i}^{\circ}$ for all i. Here \widehat{B}° , $\widehat{F}_{p_i}^{\circ}$ denote the lifts of B° , $F_{p_i}^{\circ} := F_{p_i} \setminus \{q_1, \ldots, q_n\}$ to $\widehat{X}^{\circ}_{C_{\mathbf{p}}^{\circ}}$.

Proof. Jim's idea of categorical limits. This should be formal. \Box

Let us take a closer look at the formal scheme $\widehat{X}^{\circ}_{C_{\mathbf{p}}^{\circ}}$. Removing the nodes points q_1, \ldots, q_n we obtain smooth curves B° , $F_{p_i}^{\circ}$ and

$$C_{\mathbf{p}}^{\circ} \cong B^{\circ} \sqcup F_{p_1}^{\circ} \sqcup \cdots \sqcup F_{p_m}^{\circ}.$$

This isomorphism also holds at the level of formal schemes.

Lemma 4.2. There exists a canonical isomorphism

$$\widehat{X^{\circ}}_{C_{\mathbf{p}}^{\circ}} \cong \widehat{X^{\circ}}_{B^{\circ}} \sqcup \widehat{X^{\circ}}_{F_{p_{1}}^{\circ}} \sqcup \cdots \sqcup \widehat{X^{\circ}}_{F_{p_{m}}^{\circ}},$$

where $\widehat{X}^{\circ}_{B^{\circ}}$, $\widehat{X}^{\circ}_{F_{p_{i}}^{\circ}}$ are the formal completions of X along B° , $F_{p_{i}}^{\circ}$.

Proof. Disjoint union commutes with formal completion.

This lemma allows us to pass to the normal bundles of $B^{\circ} \subset X^{\circ}$, $F_{p_i}^{\circ} \subset X^{\circ}$.

Lemma 4.3. There exists natural isomorphisms

$$\widehat{X^{\circ}}_{B^{\circ}} \cong \widehat{N_{B^{\circ}/X^{\circ}}}_{B^{\circ}}, \ \widehat{X^{\circ}}_{F_{p_{i}}^{\circ}} \cong \widehat{N_{F_{p_{i}}^{\circ}/X^{\circ}}}_{F_{p_{i}}^{\circ}}$$

where $\widehat{N_{B^{\circ}/X^{\circ}}}_{B^{\circ}}$, $\widehat{N_{F_{p_{i}}^{\circ}/X^{\circ}}}_{F_{p_{i}}^{\circ}}$ are the formal completions of the normal bundles $N_{B^{\circ}/X^{\circ}}$, $N_{F_{p_{i}}^{\circ}/X^{\circ}}$ along their zero sections B° , $F_{p_{i}}^{\circ}$.

Proof. For the fibres we proved this rigorously using sections of $\mathcal{O}/\mathscr{I}^{r+1} \to \mathcal{O}/\mathscr{I}^r$ pulled back from the base B. This requires flatness of π . For the section we use Davesh's argument.

Lemmas 4.1, 4.2, 4.3 allow us write

$$\widehat{P}_{\chi}(X^{\circ},\beta)_{P_{\chi}(X^{\circ},\mathbf{p})} \cong \coprod_{\chi=\chi'+\chi_{1}+\dots+\chi_{m}} P_{\chi'}(\widehat{N_{B^{\circ}/X^{\circ}}}_{B^{\circ}},\mathbf{p}) \times \prod_{i=1}^{m} P_{\chi_{i}}(\widehat{N_{F^{\circ}_{p_{i}}/X^{\circ}}}_{F^{\circ}_{p_{i}}},\mathbf{p}),$$

where $P_{\chi}(\widehat{N_{F_{p_i}^{\circ}/X^{\circ}}}_{F_{p_i}^{\circ}}, \mathbf{p})$ is the moduli space of stable pairs $I^{\bullet} = [\mathcal{O} \to \mathcal{F}]$ on $\widehat{N_{F_{p_i}^{\circ}/X^{\circ}}}_{F_{p_i}^{\circ}}$ with $\chi(\mathcal{F}) = \chi$ and \mathcal{F} has set theoretic support $\widehat{F_{p_i}^{\circ}}$ with multiplicity d_i . Here $\widehat{F_{p_i}^{\circ}}$ denotes the lift of $F_{p_i}^{\circ}$ to $\widehat{N_{F_{p_i}^{\circ}/X^{\circ}}}_{F_{p_i}^{\circ}}$. Similar for $P_{\chi}(\widehat{N_{B^{\circ}/X^{\circ}}}_{B^{\circ}}, \mathbf{p})$ where the multiplicity along $\widehat{B^{\circ}}$ is required to be one.

Finally we want to "undo" the formal completion on the normal bundles by using categorical limits as in Lemma 4.1. We denote by

$$P_{\chi}(N_{F_{p,\cdot}^{\circ}/X^{\circ}},\mathbf{p}) \subset P_{\chi}(N_{F_{p,\cdot}^{\circ}/X^{\circ}},d_{i}F_{p_{i}}^{\circ})$$

moduli spaces of stable pairs $I^{\bullet} = [\mathcal{O} \to \mathcal{F}]$ on $N_{B^{\circ}/X^{\circ}}$ with $\chi(\mathcal{F}) = \chi$. The first has \mathcal{F} with set theoretic support $F_{p_i}^{\circ}$ and multiplicity d_i . The second has

IS THIS RE-ALLY TRUE? Sounds plausible.

We have to be careful here because of the discussions in the first two weeks of July/the discussions with Davesh. Something like this presumably only works on open affine pieces. That should be enough though since we first remove the nodes.

 \mathcal{F} such that the closure of its set theoretic support in $N_{F_{p_i}/X}$ is proper with class $d_i F_{p_i}$. Similarly we consider

$$P_{\mathcal{X}}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}) \subset P_{\mathcal{X}}(N_{B^{\circ}/X^{\circ}}, B^{\circ}).$$

The argument presented in the proof of Lemma 4.1 gives

$$P_{\chi}(\widehat{N_{B^{\circ}/X^{\circ}}}_{B^{\circ}}, \mathbf{p}) \cong \widehat{P}_{\chi}(N_{B^{\circ}/X^{\circ}}, B^{\circ})_{P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p})}$$

$$P_{\chi}(\widehat{N_{F_{p_{i}}^{\circ}/X^{\circ}}}_{F_{p_{i}}^{\circ}}, \mathbf{p}) \cong \widehat{P}_{\chi}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, d_{i}F_{p_{i}}^{\circ})_{P_{\chi}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, \mathbf{p})}.$$

Combining all arguments of this section gives the following result.

Proposition 4.4. We have natural isomorphisms

$$\widehat{P}_{\chi}(X^{\circ}, \beta)_{P_{\chi}(X^{\circ}, \mathbf{p})} \cong \coprod_{\chi = \chi' + \chi_{1} + \dots + \chi_{m}} \widehat{P}_{\chi'}(N_{B^{\circ}/X^{\circ}}, B^{\circ})_{P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p})} \times \prod_{i=1}^{m} \widehat{P}_{\chi_{i}}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, d_{i}F_{p_{i}}^{\circ})_{P_{\chi}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, \mathbf{p})}.$$

In particular on the underlying topological space we have a homeomorphism

$$P_{\chi}(X^{\circ}, \mathbf{p}) \approx \coprod_{\chi = \chi' + \chi_{1} + \dots + \chi_{m}} P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}) \times \prod_{i=1}^{m} P_{\chi}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, \mathbf{p}).$$

Proof. Combination of the above.

5. Localization

5.1. **Localization I.** In the previous two sections we constructed an embedding

(4)
$$P_{\chi}(X, \mathbf{p}) \hookrightarrow \coprod_{\chi = \chi' + \chi_1 + \dots + \chi_n} P_{\chi'}(X^{\circ}, \mathbf{p}) \times \prod_{j=1}^n P_{\chi_j}(\widehat{X}_{q_i}, \mathbf{p})$$

and homeomorphisms

(5)
$$P_{\chi}(X^{\circ}, \mathbf{p}) \approx \coprod_{\chi = \chi' + \chi_{1} + \dots + \chi_{m}} P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}) \times \prod_{i=1}^{m} P_{\chi}(N_{F_{p_{i}}^{\circ}/X^{\circ}}, \mathbf{p}).$$

Each normal bundle has a natural \mathbb{C}^{*2} -action given by scaling the fibres. The action of \mathbb{C}^{*2} on $P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p})$ is trivial² so we ignore it. Therefore \mathbb{C}^{*2m} acts naturally on $P_{\chi}(X^{\circ}, \mathbf{p})$ by (5).

 $^{^{2}}$ This action is transverse to the section and our stable pairs have multiplicity 1 along B.

Since each \widehat{X}_{q_j} is just the reduced point q_j with structure sheaf

$$\mathcal{O}_{\widehat{X}_{q_i}} \cong \widehat{\mathcal{O}}_{X,q_j} \cong \mathbb{C}[\![x,y,z]\!],$$

we have \mathbb{C}^{*3} acting on this space by $(s_1, s_2, s_3) \cdot (x, y, z) = (s_1 x, s_2 y, s_3 z)$. In total we get an action of $\mathbb{C}^{*(2m+3n)}$ on the RHS of (4). However $P_{\chi}(X, \mathbf{p})$ is not invariant under this full torus.

Lemma 5.1. Define the a 2m-dimensional subtorus $T \subset \mathbb{C}^{*(2m+3n)}$ by the following equations. For any nodal fibre F_{p_i} with node q_j let $(t_1^{(i)}, t_2^{(i)})$ be the coordinates of \mathbb{C}^{*2} acting on $N_{F_{p_i}^{\circ}/X^{\circ}}$ and let $(s_1^{(j)}, s_2^{(j)}, s_3^{(j)})$ be the coordinates of \mathbb{C}^{*3} acting on \widehat{X}_{q_j} , then

$$s_1^{(j)} = s_2^{(j)} = t_1^{(i)}, \ s_3^{(j)} = t_2^{(i)}.$$

For any (not necessarily nodal) fibre F_{p_i} and $\{q_j\} = F_{p_i} \cap B$ let $(t_1^{(i)}, t_2^{(i)})$ be the coordinates of \mathbb{C}^{*2} acting on $N_{F_{p_i}^{\circ}/X^{\circ}}$ and let $(s_1^{(j)}, s_2^{(j)}, s_3^{(j)})$ be the coordinates of \mathbb{C}^{*3} acting on \widehat{X}_{q_j} , then

$$s_1^{(j)} = 1, \ s_2^{(j)} = t_1^{(i)}, \ s_3^{(j)} = t_2^{(i)}.$$

Then T leaves $P_{\chi}(X, \mathbf{p})$ invariant.

Proof. Use the gluing conditions of Lemma 3.1. This does require passing through several isomorphisms which could be tricky. \Box

How tedious will this be...?

Since $e(P_{\chi}(X, \mathbf{p})) = e(P_{\chi}(X, \mathbf{p})^T)$ we are reduced to understanding the fixed point locus $P_{\chi}(X, \mathbf{p})^T$. Let

$$([s:\mathcal{O}_{X^{\circ}}\to\mathcal{E}],\{[s_j:\mathcal{O}_{\widehat{X}_{q_j}}\to\mathcal{F}_j]\}_{j=1}^n)\in\coprod_{\chi=\chi'+\chi_1+\cdots+\chi_n}P_{\chi'}(X^{\circ},\mathbf{p})\times\prod_{j=1}^nP_{\chi_j}(\widehat{X}_{q_j},\mathbf{p}).$$

This element lies in $P_{\chi}(X, \mathbf{p})$ if and only if the underlying Cohen-Macaulay curves $C_{\mathcal{E}}$, $C_{\mathcal{F}_j}$ glue as described in Lemma 3.1. This element is in addition T-fixed if and only if each of the restrictions

$$\Gamma(\widehat{X}_{q_j}, \mathscr{I}_{C_{\mathcal{F}_j}}) \otimes_{\mathbb{C}[\![x,y,z]\!]} \mathbb{C}[\![x^{\pm},y,z]\!] \cong \widehat{\Gamma}(V \times \mathbb{C}, \mathscr{I}_{C_{\mathcal{E}}}|_{V \times \mathbb{C}})$$

$$\Gamma(\widehat{X}_{q_j}, \mathscr{I}_{C_{\mathcal{F}_j}})) \otimes_{\mathbb{C}[\![x,y,z]\!]} \mathbb{C}[\![x,y^{\pm},z]\!] \cong \widehat{\Gamma}(W \times \mathbb{C}, \mathscr{I}_{C_{\mathcal{E}}}|_{W \times \mathbb{C}})$$

is given by a monomial ideal in two variables, i.e. a (2-dimensional) partition. For each node which is the intersection point of a (not necessarily nodal) fibre F_{p_i} with the zero section, this amounts to specifying a partition λ_i of d_i in the fibre direction. The partition in the section direction is (1), because the

multiplicity of $C_{\mathcal{E}}$ along B is 1. For each node of a nodal fibre F_{p_i} the cross-section of the Cohen-Macaulay support curve has to be given by the same partitions λ_i . Altogether we have fixed partitions $\boldsymbol{\lambda} = \{\lambda_i \vdash d_i\}_{i=1}^m$. Denote by

$$P_{\chi}(X^{\circ}, \mathbf{p})_{\lambda} \subset P_{\chi}(X^{\circ}, \mathbf{p}), \ P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda} \subset P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})$$

the locally closed subsets for which the underlying Cohen-Macaulay curves have restrictions described by partitions λ as above. We arrive at the following conclusion.

Lemma 5.2. The embedding (4) induces a bijective morphism

$$P_{\chi}(X, \mathbf{p})^{T} \cong \coprod_{\chi = \chi' + \chi_{1} + \dots + \chi_{n}} \coprod_{\lambda = \{\lambda_{i} \vdash d_{i}\}_{i=1}^{m}} P_{\chi'}(X^{\circ}, \mathbf{p})_{\lambda} \times \prod_{j=1}^{n} P_{\chi_{j}}(\widehat{X}_{q_{j}}, \mathbf{p})_{\lambda},$$

where T is the torus of Lemma 4.3.

Proof. Easy from the above.

5.2. **Localization II.** In this subsection we focus attention on $e(P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda})$ for any $\lambda = \{\lambda_i \vdash d_i\}_{i=1}^m$. On each moduli space $P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})$ we have a \mathbb{C}^{*3} -action as described in the previous subsection. This action leaves

$$P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda} \subset P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})$$

invariant. The fixed point locus $P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}$ consists of *isolated* fixed points which can be counted using the vertex/edge formalism for stable pairs developed by R. Pandharipande and R. P. Thomas [PT2]. Note that the fixed loci indeed consist of isolated reduced points since one leg is always empty [PT2]. There are two cases:

Case 1: q_j is a node of a nodal fibre F_{p_i} . In this case the legs of the elements of $P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}$ are fixed by the partitions $(\lambda_i, \lambda_i^t, \varnothing)$ where $(\cdot)^t$ denotes the dual partition and we use the ordering convention of [ORV]. The generating function is given by the stable pairs vertex

(6)
$$W_{\lambda_i,\lambda_i^t,\varnothing}(q) = \sum_{\chi} e(P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}) q^{\chi} = \sum_{\mathcal{Q} \in P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}} w(\mathcal{Q}) q^{l(\mathcal{Q}) + 2|\lambda_i|},$$

where we use the notation of [PT2].

Case 2: q_j is a node arising from B intersecting a fibre F_{p_i} . In this case the legs of the elements of $P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}$ are fixed by the partitions $(\lambda_i, (1), \emptyset)$.

[PT2, ORV] are signed Euler chars, whereas for the moment we are doing ordinary Euler chars. $W_{\lambda,\mu,\nu}(q)$ are understood in this way for now.

The generating function is given by the stable pairs vertex

(7)
$$W_{\lambda_i,(1),\varnothing}(q) = \sum_{\chi} e(P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}) q^{\chi} = \sum_{\mathcal{Q} \in P_{\chi}(\widehat{X}_{q_j}, \mathbf{p})_{\lambda}^{\mathbb{C}^{*3}}} w(\mathcal{Q}) q^{l(\mathcal{Q}) + |\lambda_i| + 1}.$$

5.3. **Punctured curves.** In this subsection we consider $e(P_{\chi}(X^{\circ}, \mathbf{p})_{\lambda})$ for any $\lambda = \{\lambda_i \vdash d_i\}_{i=1}^m$. Recall the homeomorphism (5) and define locally closed subsets

$$P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p})_{\lambda} \subset P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}), \ P_{\chi}(N_{F_{p_{z}}^{\circ}/X^{\circ}}, \mathbf{p})_{\lambda} \subset P_{\chi}(N_{F_{p_{z}}^{\circ}/X^{\circ}}, \mathbf{p})$$

with specified "cross-sections" λ of the underlying Cohen-Macaulay curves. Since the Cohen-Macaulay curves underlying the stable pairs in $P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p})$ have multiplicity 1, this space is just a Hilbert scheme of points on B° [PT3]

$$P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}) \cong \mathrm{Hilb}^{n}(B^{\circ})$$

where

$$\chi = 1 - g(B) + n.$$

Therefore

(8)
$$\sum_{\chi} e(P_{\chi}(N_{B^{\circ}/X^{\circ}}, \mathbf{p}))q^{\chi} = q^{1-g(B)} \sum_{n=0}^{\infty} e(\mathrm{Hilb}^{n}(B^{\circ}))q^{n} = \frac{q^{1-g(B)}}{(1-q)^{e(B^{\circ})}}.$$

The curves $F_{p_i}^{\circ}$ coming from a nodal fibre are punctured \mathbb{P}^1 's

$$F_{p_i}^{\circ} \cong \mathbb{P}^1 \setminus \{3 \ pts\} \cong \mathbb{C}^* \setminus pt.$$

The curves $F_{p_i}^{\circ}$ coming from a smooth fibre are smooth elliptic curves E with one puncture. Moreover all normal bundles are in fact *trivial*. Indeed for any fibre F of the elliptic surface $\pi: S \to B$ we have

$$N_{F/X} \cong N_{F/S} \oplus N_{S/X}|_F \cong \mathcal{O}_F(F) \oplus K_S|_F \cong \mathcal{O}_F \oplus \mathcal{O}_F.$$

The last isomorphism follows from $F^2 = 0$ and the formula for the canonical divisor of an elliptic fibration [Mir]

$$K_S = \pi^* D$$
,

where D is a divisor of degree $\chi(\mathcal{O}_S) - \chi(\mathcal{O}_B)$ on B. Therefore

$$N_{F_{p_i}^{\circ}/X^{\circ}} \cong F_{p_i}^{\circ} \times \mathbb{C}^2 \cong \left\{ \begin{array}{ll} (\mathbb{C}^* \setminus pt) \times \mathbb{C}^2 & \text{if } F_{p_i} \text{ is nodal} \\ (E \setminus pt) \times \mathbb{C}^2 & \text{if } F_{p_i} \text{ is smooth.} \end{array} \right.$$

The generating functions of the trivial rank 2 bundles over $F_{p_i} \setminus q_j \cong \mathbb{C}^*$ (when F_{p_i} is nodal with node q_j) and $F_{p_i} \cong E$ (when F_{p_i} is smooth) are easy. Indeed in the former case case \mathbb{C}^* acts (freely) on itself by multiplication and in the latter case E acts (freely) on itself by addition. These actions lift to free actions on the moduli spaces. We obtain the following result.

Lemma 5.3. The following equalities hold

$$\sum_{\chi} e(P_{\chi}(\mathbb{C}^* \times \mathbb{C}^2, \mathbf{p})_{\lambda} q^{\chi} = 1,$$
$$\sum_{\chi} e(P_{\chi}(E \times \mathbb{C}^2, \mathbf{p})_{\lambda} q^{\chi} = 1.$$

Proof. Easy using freeness of the action and $e(\mathbb{C}^*) = e(E) = 0$.

The required generating functions can be computed by using the restriction argument of Section 3 once more. Let C be any smooth curve and consider the 3-fold $C \times \mathbb{C}^2$. Let $p \in C$ and consider the embedding

$$P_{\chi}(C \times \mathbb{C}^2, d) \hookrightarrow \coprod_{\chi = \chi_1 + \chi_2} P_{\chi_1}((C \setminus p) \times \mathbb{C}^2, d) \times P_{\chi_2}(\widehat{C}_p \times \mathbb{C}^2, d),$$

where d denotes the degree of the curve class³. The torus $T = \mathbb{C}^{2*}$ is acting on both spaces by scaling of the factors of \mathbb{C}^2 and the fixed loci are indexed by partitions $\lambda \vdash d$ as earlier in this section. Again we use the notation $(\cdot)_{\lambda}$ to indicate that the "cross-section" of the underlying Cohen-Macaulay support curve has been fixed to be the monomial ideal corresponding to λ . We obtain a bijective morphism

$$P_{\chi}(C \times \mathbb{C}^2, d)_{\lambda} \cong \coprod_{\chi = \chi_1 + \chi_2} P_{\chi_1}((C \setminus p) \times \mathbb{C}^2, d)_{\lambda} \times P_{\chi_2}(\widehat{C}_p \times \mathbb{C}^2, d)_{\lambda}.$$

Summing over all χ gives the following lemma.

Lemma 5.4.

$$\sum_{\chi} e(P_{\chi}(C \times \mathbb{C}^2, d)_{\lambda}) q^{\chi} = W_{\lambda, \emptyset, \emptyset}(q) \cdot \sum_{\chi} e(P_{\chi}(\widehat{C}_p \times \mathbb{C}^2, d)) q^{\chi},$$

Proof. To obtain the stable pair vertex use a \mathbb{C}^{*3} -action on $\widehat{C}_p \times \mathbb{C}^2$ as in the previous subsection.

Putting everything together we obtain the desired generating function.

Proposition 5.5. For each fibre F_{p_i} (nodal or not) we have

$$\sum_{\chi} e(P_{\chi}(N_{F_{p_i}^{\circ}/X^{\circ}}, \mathbf{p})_{\lambda})q^{\chi} = \frac{1}{W_{\lambda,\varnothing,\varnothing}(q)}.$$

Proof. Combine Lemmas 5.3, 5.4.

³The precise definition of these moduli spaces is as in Section 3: we assume the underlying reduced supports of the stable pairs in each moduli space are C, $C \setminus p$, \widehat{C} respectively and d denotes the multiplicity of the underlying Cohen-Macaulay supports along these curves.

We calculate the disconnected generating function (1) first. The connected generating function (2) then follows easily. Denote by $B^{\circ} \subset B$ the locus of smooth fibres and by $B^{\text{sing}} \subset B$ the locus of singular fibres. Let $\text{Conf}^i(B^{\circ})$ be the configuration space of i unordered points on B° and let $N := |B^{\text{sing}}|$. Lemma 2.1 implies

$$Z^{P\bullet}(q,y) = \sum_{\chi} \sum_{i=0}^{\infty} \sum_{i'=0}^{N} \sum_{d_{1},\dots,d_{i} \geq 0} \sum_{d'_{1},\dots,d'_{i'} \geq 0} y^{\sum_{a=1}^{i} d_{a} + \sum_{a=1}^{i'} d'_{a}} \cdot e(\operatorname{Conf}^{i}(B^{\circ})) \cdot \binom{N}{i'} \times e\left(P_{\chi}\left(X, \sum_{a=1}^{i} d_{a}p_{a} + \sum_{a=1}^{i'} d'_{a}p'_{a}\right)\right)$$

$$= \sum_{\chi} \sum_{i=0}^{\infty} \sum_{i'=0}^{N} \sum_{d_{1},\dots,d_{i} \geq 0} \sum_{d'_{1},\dots,d'_{i'} \geq 0} y^{\sum_{a=1}^{i} d_{a} + \sum_{a=1}^{i'} d'_{a}} \cdot \binom{e(B) - N}{i} \cdot \binom{N}{i'} \times e\left(P_{\chi}\left(X, \sum_{a=1}^{i} d_{a}p_{a} + \sum_{a=1}^{i'} d'_{a}p'_{a}\right)\right),$$

where p_1, \ldots, p_i are any choice of distinct points on B° , $p'_1, \ldots, p'_{i'}$ are any choice of distinct points among B^{sing} , and

(9)
$$\binom{n}{k} := (-1)^k \binom{k-n-1}{k},$$

for n < 0. We abbreviate $\mathbf{p} := \sum_{a=1}^{i} d_a p_a$, $\mathbf{p}' := \sum_{a=1}^{i'} d'_a p'_a$, $\mathbf{d} := \sum_{a=1}^{i} d_a$, and $\mathbf{d}' := \sum_{a=1}^{i'} d'_a$. Lemma 5.2 gives

$$\begin{split} &\sum_{i=0}^{\infty}\sum_{i'=0}^{N}\sum_{d_{1},\ldots,d_{i}\geq0}\sum_{d'_{1},\ldots,d'_{i'}\geq0}\sum_{\chi}\sum_{\chi_{1},\ldots,\chi_{i}}\sum_{\chi'_{1},\ldots,\chi'_{i'}}\sum_{\pmb{\lambda}=\{\lambda_{a}\vdash d_{a}\}_{a=1}^{i}}\sum_{\pmb{\lambda}'=\{\lambda'_{a}\vdash d'_{a}\}_{a=1}^{i'}}y^{\mathbf{d}+\mathbf{d}'}\cdot\binom{e(B)-N}{i}\cdot\binom{N}{i'}\times\\ &e(P_{\chi}(X\setminus\{q_{1},\ldots,q_{i},q'_{1},\ldots,q'_{i'},r_{1},\ldots,r_{i'}\},\mathbf{p}+\mathbf{p}')_{\pmb{\lambda},\pmb{\lambda}'})\times\\ &\prod_{a=1}^{i}e(P_{\chi_{a}}(\widehat{X}_{q_{a}},\mathbf{p}+\mathbf{p}')_{\pmb{\lambda}})\cdot\prod_{a=1}^{i'}e(P_{\chi'_{a}}(\widehat{X}_{q'_{a}},\mathbf{p}+\mathbf{p}')_{\pmb{\lambda}'})\cdot\prod_{a=1}^{i'}e(P_{\chi'_{a}}(\widehat{X}_{r'_{a}},\mathbf{p}+\mathbf{p}')_{\pmb{\lambda}'}), \end{split}$$

where q_1, \ldots, q_i denote the nodes arising from F_{p_1}, \ldots, F_{p_i} intersecting the zero section, $q'_1, \ldots, q'_{i'}$ denote the nodes arising from $F_{p'_1}, \ldots, F_{p'_{i'}}$ intersecting the zero section, and $r_1, \ldots, r_{i'}$ are the internal nodes of $F_{p'_1}, \ldots, F_{p'_{i'}}$. The sums

 $\sum_{\chi} \sum_{\chi_1,\dots,\chi_i} \sum_{\chi'_1,\dots,\chi'_{i'}} \cdots$ can be done using equations (6), (7), and (8)

$$\sum_{i=0}^{\infty} \sum_{i'=0}^{N} \sum_{d_1,\dots,d_i \geq 0} \sum_{d'_1,\dots,d'_{i'} \geq 0} \sum_{\lambda = \{\lambda_a \vdash d_a\}_{a=1}^{i}} \sum_{\lambda' = \{\lambda'_a \vdash d'_a\}_{a=1}^{i'}} y^{\mathbf{d}+\mathbf{d}'} \cdot \binom{e(B)-N}{i} \cdot \binom{N}{i'} \times \frac{q^{1-g(B)}}{(1-q)^{e(B)-i-i'}} \cdot \prod_{a=1}^{i} \frac{W_{\lambda_a,(1),\varnothing}(q)}{W_{\lambda_a,\varnothing,\varnothing}(q)} \cdot \prod_{a=1}^{i'} \frac{W_{\lambda'_a,\lambda'_a^t,\varnothing}(q)W_{\lambda'_a,(1),\varnothing}(q)}{W_{\lambda'_a,\varnothing,\varnothing}(q)} \times \frac{q^{1-g(B)}}{(1-q)^{e(B)}} \sum_{i=0}^{\infty} \sum_{i'=0}^{N} \binom{e(B)-N}{i} \cdot \binom{N}{i'} \cdot \binom{1-q}{i} \sum_{\lambda} \frac{W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)} y^{|\lambda|} \times \binom{1-q}{i'} \sum_{\lambda} \frac{W_{\lambda,\lambda^t,\varnothing}(q)W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)} y^{|\lambda|} \cdot \binom{N}{i'} \cdot \binom{1-q}{i'} \sum_{\lambda} \frac{W_{\lambda,\lambda^t,\varnothing}(q)W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)} y^{|\lambda|} \cdot \binom{N}{i'} \cdot$$

With our convention for binomial coefficients (9), Newton's binomial theorem and the geometric series can be combined in one formula

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
, for all $n \in \mathbb{Z}$.

Performing the sums $\sum_{i=0}^{\infty} \sum_{j=0}^{N} \cdots$ yields

$$\left(\frac{q}{(1-q)^2}\right)^{1-g(B)} \left((1-q)\sum_{\lambda} \frac{W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)} y^{|\lambda|}\right)^{e(B)-N} \cdot \left((1-q)\sum_{\lambda} \frac{W_{\lambda,\lambda^t,\varnothing}(q)W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)} y^{|\lambda|}\right)^{N}.$$

Similarly (but easier) one calculates the generating function $\sum_{d\geq 0} \sum_{\chi} P_{\chi,dF}(X) q^{\chi} y^d$

$$\left(\sum_{\lambda} y^{|\lambda|}\right)^{e(B)-N} \cdot \left(\sum_{\lambda} W_{\lambda,\lambda^t,\varnothing}(q) y^{|\lambda|}\right)^{N}.$$

We arrive at the following proposition.

Proposition 6.1. The connected generating series $Z^P(q, y)$ for stable pairs of $X = \text{Tot}(K_S)$ of an elliptic surface $S \to B$ with section of genus g(B) and N 1-nodal fibres is given by

$$\left(\frac{q}{(1-q)^2}\right)^{1-g(B)} \left(\frac{(1-q)\sum_{\lambda} \frac{W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)}y^{|\lambda|}}{\sum_{\lambda} y^{|\lambda|}}\right)^{e(B)-N} \cdot \left(\frac{(1-q)\sum_{\lambda} \frac{W_{\lambda,\lambda^t,\varnothing}(q)W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)}y^{|\lambda|}}{\sum_{\lambda} W_{\lambda,\lambda^t,\varnothing}(q)y^{|\lambda|}}\right)^N,$$

where $W_{\lambda,\mu,\nu}(q)$ is the stable pairs vertex of [PT2].

The various generating functions of vertices appearing in this proposition can be computed. Obviously

$$\sum_{\lambda} y^{|\lambda|} = \prod_{i=1}^{\infty} (1 - y^i)^{-1}.$$

More interesting is the following lemma.

Lemma 6.2. The following identity holds

$$\sum_{\lambda} W_{\lambda, \lambda^{t}, \varnothing}(q) y^{|\lambda|} = \prod_{i=1}^{\infty} \left((1 - y^{i}) \prod_{j=1}^{\infty} (1 - y^{i-1} q^{j})^{j} \right)^{-1}.$$

Proof. [ORV] and [MacD] or exercise in [Sta].

Less trivial is the following lemma.

Lemma 6.3. The following identity holds

$$(1-q)\sum_{\lambda}\frac{W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)}y^{|\lambda|}=\prod_{i=1}^{\infty}\frac{1-y^i}{(1-qy^i)(1-q^{-1}y^i)}.$$

Proof. First apply [ORV]. The remaining sum appears in [BO] as pointed out by P. Johnson answering a MathOverflow question.

The hardest is the following lemma.

Lemma 6.4. The following identity holds

$$(1-q)\sum_{\lambda}\frac{W_{\lambda,\lambda^t,\varnothing}(q)W_{\lambda,(1),\varnothing}(q)}{W_{\lambda,\varnothing,\varnothing}(q)}y^{|\lambda|} = \left(\prod_{i=1}^{\infty}\frac{1-y^i}{(1-qy^i)(1-q^{-1}y^i)}\right)\cdot \left(\prod_{i=1}^{\infty}\left((1-y^i)\prod_{j=1}^{\infty}\frac{\mathbf{dred}}{\mathbf{Ben}?}\right)^{-1}\right)$$

Proof. ?????

We obtain a proof of the theorem in the introduction.

Proof of Theorem 1.1. Combine Proposition 6.1 and Lemmas 6.2, 6.3, and 6.4.

I have not checked whether the overall q^{\cdots} factors work out. Is the power y^{i-1} in RHS correct?

STUCK ON THIS. Do we need help from Andrei, Paul, -

References

[Beh] K.	Behrend

- [BO] S. Bloch and A. Okounkov
- [BT] O. Ben-Bassat and M. Temkin
- [GP] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 487–518 (1999).
- [Har] R. Hartshorne, Algebraic geometry, Springer-Verlag (1977).
- [LeP] J. Le Potier
- [MacD] I. G. MacDonald
- [MacP] R. D. MacPherson
- [Mir] R. Miranda
- [ORV] A. Okounkov, N. Reshetikhin, and C. Vafa
- [PT1] R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 407–447 (2009).
- [PT2] R. Pandharipande and R. P. Thomas, *The 3-fold vertex via stable pairs*, Geom. and Topol. 13 1835–1876 (2009).
- [PT3] R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 267–297 (2010).
- [Sta] R. P. Stanley II