Proof:	
Approximation ratio:	
For each item i, Mui' &	equals vi rounded down] (x
to the nearest multiple	of ju.
Thus, $v_i - \mu v_i' < \mu$ (each	ch item "loses" less than } (44)
u in the rounding.)	
	()
	vi d fu hoù
	$\sigma_{i} = \left\{\begin{array}{c} \frac{1}{2} \frac{1}{$
	~ <u> </u>

Let 5 be the set of items selected by Alg. 3.2

This is an optimal solution to the instance with values vi', and hence, to the instance with values $\mu v_i'$.

with values $\mu\nu_i^2$.
Let 0 be the set of items in an optimal solution to the original instance with values ν_i^2 .

The total value produced by Alg. 32 is $\sum_{i \in S} \sigma_i > \sum_{i \in S} \mu \sigma_i', \text{ by } (4)$ $\geq \sum_{i \in O} \mu \sigma_i', \text{ by } (44)$ $\geq \sum_{i \in O} (\sigma_i - \mu), \text{ by } (44)$ $\geq (\sum_{i \in O} \sigma_i) - n\mu, \text{ since } |O| \leq n$ = OPT - EM $\geq (1-E) OPT, \text{ Since } OPT > M$

Running time; See above According to Thm 3.5, Alg. 3.2 is a Jully polynomial time approximation scheme (FPTAS) also poly. in input Family dA_{E} of alg., where A_{E} poly. Size has precision E. in E ((1-E)-approx. alg for max. problems, (1+E)-approx. alg for min. problems)

Thus, Thm 3.5 could also be stated like this:

Theorem 3.5: Alg 3.2 is a FPTAS

In the Multiple Knapsack problem, there are a fixed number of knapsacks.

Bin Packing can be seen as a dual problem of Multiple Knapsack:

In the Bn Packing problem, there is an unlimited supply of bins, all of size. I. The ain is to pack all items in as few bins as possible.

Simple approx. alg.s: Asymptotic approx ratio Next-fit (NF) کر First-Fit (FF) 1.7 Best-Fit (BF) 1.7 Next-Fit-Decreasing (NFO) ≈ 1.69 First-Fit-Decreasing 1.222... (FFD)Best-Fit-Decreasing (BFD) 1.222...

Approx. schure?

Can we do the same kind of rounding for Bin Packing as we did for Knapsack?

Section 3.3: The Bin Packing Problem

Last time we discussed simple approx. alg.s Today we will dwelop an approximation scheme.

Approximation scheme {A_{\mathcal{e}}}:

- | \top ransfam $\top \rightarrow \top$ ":
 - a. Remove all items smalls than $\frac{\mathcal{E}}{2}$. $(\pm \rightarrow \pm)$ $\Rightarrow O(\frac{1}{\mathcal{E}})$ items fit in one bin
 - b. Round up sizes of remaining items $(T' \rightarrow T'')$ $\Rightarrow O(1)$ different them sizes
- 2. Do dyn. prg. on I'' $\Rightarrow A_{\epsilon}(I'') = OPT(I'')$
- 3. Add small Hens to the packing using First-Fit (or any other Anyfit alg.)

Adding small items to the packing (3.)

Lemma 3.10

$$A_{\varepsilon}(I) \leq \max_{\varepsilon} A_{\varepsilon}(I''), \frac{2}{2-\varepsilon} \text{Size}(I) + 19$$

 $\frac{\text{Proof}}{\text{If no extra bin is needed for adding the small items, } A_{\epsilon}(I) = A_{\epsilon}(I'').$

Otherwise, all bins, except possibly the last one, are filled to more than $1-\frac{5}{2}$. In this case,

$$A_{\varepsilon}(\mathbb{I}) \leq \left\lceil \frac{\text{Size}(\mathbb{I})}{|-\varepsilon|_{2}} \right\rceil \leq \frac{\text{Size}(\mathbb{I})}{|-\varepsilon|_{2}} + |$$

$$= \frac{2}{2-\varepsilon} \text{Size}(\mathbb{I}) + |$$