

Data Analysis with R: Day 4 - Preliminary - Slides

Sonja Hartnack, Terence Odoch & Muriel Buri

October 2018

How to deal with missing values in R? (1/3)

- In R, missing values are represented by the symbol NA (not available).
- Impossible values (e. g., dividing by zero) are represented by the symbol NaN (not a number).
- Ask yourself why a NA and / or NaN occurs!

How to deal with missing values in R? (2/3)

Testing for Missing Values

```
vec1 <- c(1, 2, 3, NA)
is.na(vec1) # returns a vector (FALSE, FALSE, FALSE, TRUE)
# The TRUE indicates the position of the NA in vec1.</pre>
```

Recoding Values to Missing

```
# recode specific values (e. g. 0.001) to missing for variable x # select rows where x is 0.001 and recode value in column x with NA tmp.row <- which(dat$x == 0.001) dat$x[tmp.row] <- NA
```

How to deal with missing values in R? (3/3)

Excluding Missing Values from specific function calls

```
a <- c(1, 2, NA, 3)
mean(a) # returns NA
mean(a, na.rm=TRUE) # returns 2
```

 Check for complete cases with function complete.cases(...)

```
# list rows of data that have missing values
dat[!complete.cases(dat),]
subdat <- dat[complete.cases(dat),]</pre>
```

 Create new dataset without missing data with function na.omit(...)

```
new.dat <- na.omit(dat)</pre>
```

How to check your data for plausibility?

- Ask yourself what can go wrong?
- Implausible values?
- Impossible values?
- Logical errors?

Exercise 10

Overview

Basic Statistical Tests

Study data is collected for a purpose - to answer one or more specific scientific questions. The classical way to perform a formal statistical analyses of these data is to formulate these research questions into statistical **hypothesis tests**.

In this section we will go through a simple example in detail to highlight some of the important concepts - the general approach for more complex analyses is exactly same. *Note: the precise technical details are much less important than the concepts!*

After six weeks will the mean weight of a chicken be more than 250 grams?

There are 71 observations in chickwts from which to answer this question. This can be formulated into a statistical hypothesis test. A hypothesis test has two parts, the null hypothesis and the alternative hypothesis. This is typically written as follows:

 $H_0: \mu \leq 250$ $H_A: \mu > 250$

where μ is the mean weight in the **population** of chickens from which the sample of 71 chickens was drawn. Remember - we know the mean weight in the sample of chickens is greater than 250 it is the **population** of chickens which we are interested in.

After six weeks will the mean weight of a chicken be at least 250 grams?

 $H_0: \mu \leq 250$ $H_A: \mu > 250$

The null hypothesis (H_0) is the default situation, sometimes called the "state of nature". In a treatment-control trial, H_0 is typically that the effect of the treatment is not different from the control. In this example our default position is that the mean weight of chickens is \leq 250. This is called a single-sided hypothesis test.

We now analyse the 71 observations to see whether there is evidence to **REJECT** the null hypothesis H_0 , and if the null hypothesis is rejected then we can conclude that the available evidence supports the alternative hypothesis.

```
t.test(chickwts$weight, mu = 250, alternative = "greater")
t.test(chickwts$weight, mu = 250, alternative = "less")
```

Note that hypothesis testing is concerned with finding evidence in support of the null hypothesis H_0 - the default situation - rather than evidence in favour of the alternative hypothesis.

One Sample t-test

For the chicken weights data an appropriate formal analyses is to use a **one-sample t-test**, why this test is appropriate will be discussed later. This analysis involves calculating a simple summary statistic - called a *t*-statistic - which we do entirely from the observed data.

$$T_{obs} = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

where \bar{x} is the sample mean, s the sample standard deviation and μ is the population mean in the null hypothesis which we wish to test for. We then look up the value of T_{obs} in a set of statistical tables/computer to see what the answer is to our research question.

Important concept - sampling

Why is
$$T_{obs} = \frac{\bar{x} - \mu}{s / \sqrt{(n)}}$$
 called a *t*-statistic?

If another sample of 71 chickens from the same population were weighed then the values for \bar{x} and s would be different, and hence the value for T_{obs} . If this was repeated many times and a histogram/Q-Q/P-P plot produced of the values for T_{obs} then this would follow the shape of a known distribution - **student-***t* probability distribution. It is this piece of mathematics - knowing what the sampling distribution of T_{obs} is - which allows us to infer information about the population of chickens from which our original 71 chickens were sampled - without actually having to collect lots and lots of other samples of chickens! Mathematical theory is used to fill this data gap.

chickwts: t-test

$$T_{obs} = \frac{261.31 - 250}{78.07/\sqrt{71}} = 1.22$$

Put the values for the sample mean and standard deviation into the t-statistic formula along with the $\mu=250$. We now look up the value of this in a t-distribution reference table. All this calculation will be done for you in R but it is important to understand the general process as this is the same for hypothesis testing in other more complex analyses.

One Sample, one-sided, t-test

Important concept - p-values

- The result of a hypothesis test is usually communicated in the form of a p-value
- The interpretation of a p-value is of crucial importance it is the probability that the test statistic takes values at least as extreme as that observed assuming that H₀ is true
- Exactly what at least as extreme as refers to depends on the alternative hypothesis H_A.
- This may sound rather abstract but it is usually obvious in practice

After six weeks will the mean weight of a chicken be at least 250 grams?

 $H_0: \mu \leq 250$

 $H_A: \mu > 250$

The alternative hypothesis is $\mu >$ 250 so in this test **at least as extreme as** in the definition of a p-value is the probability of observing a t-statistic which is > 1.22 **assuming that** H_0 **is true** - this is why 250 was used for μ when calculating T_{obs} .

One Sample, one-sided, t-test

Research Question

The purpose of this hypothesis test analysis is to answer a very specific scientific question:

After six weeks will the mean weight of a chicken be more than 250 grams?

So what is our answer?

The *p*-value for this hypothesis test is 0.113. Based on this value we can either **reject** H_0 and conclude that the mean weight of chickens in the population is likely to be greater than 250 grams or else we can **accept** H_0 where the mean chicken weight is less than 250 grams.

Research Question - be pragmatic with p-values

By convention a p-value of less than 0.05 is considered to provide reasonable evidence for rejecting H_0 . A p-value of between 0.05 and 0.1 might be considered as weak evidence against H_0 . Values of less that 0.01 are generally considered as very strong evidence for rejecting H_0 . It is **always** best to provide a p-value in any analyses to let the reviewer/client see the strength of evidence rather than simply claiming statistically significant findings!

Communicating Results of Hypothesis Tests

Transparency is essential - the devil can be in the detail - which at the very least should comprise:

- i. what hypothesis was being tested be clear and precise
- ii. what statistical test was used
- iii. what the p-value is
- iv. what the treatment effect is (more later).

This is particularly crucial if the analyses are to be given to someone *else* to then make a judgment on the scientific significance.

Two-sided Tests: One Population

After six weeks will the mean weight of a chicken be equal to 250 grams?

This is now a two sided hypothesis test:

 $H_0: \mu = 250$

 $H_A: \mu \neq 250$

This time the hypothesis test is asking how much evidence is there in our sample data to conclude that in the population of all chickens the mean weight is not equal to 250 grams.

Two-sided Tests: One Population


```
# t.test(chickwts$weight, mu = 250, alternative = "two.sided")
t.test(chickwts$weight, mu = 250)
##
##
   One Sample t-test
##
## data: chickwts$weight
## t = 1.2206, df = 70, p-value = 0.2263
## alternative hypothesis: true mean is not equal to 250
## 95 percent confidence interval:
## 242.8301 279.7896
## sample estimates:
## mean of x
## 261.3099
```

Two-sided Tests

A two-sided test is similar to a one-sided test - the key difference is in what is now defined as **at least as extreme** in the definition of the *p*-value. This time the alternative hypothesis refers to observing a value of **either** $\bar{x} > 250$ or $\bar{x} < -250$ **assuming that** H_0 **is true**, which using the t-test approach is equivalent to the probability of observing $T_{obs} > 1.22$ or $T_{obs} < -1.22$ which we can again look up in reference tables.

One Sample, two-sided, t-test

Two-sided Tests

- The two-sided t-test has a p-value which is exactly double the single sided test
- Think! intuitively the p-value should be less for a single sided test as the research question you are asking is much narrower e.g. greater than 250 grams, as opposed to whether the mean chicken weight might be either less than 250 grams or greater than 250 grams.
 - \rightarrow You are using the same amount of information (71 observations) to answer a narrower research question and so all else being equal you should expect a "more powerful" analyses (e.g. a lower p-value all else being equal)

Exercise 11

Chi-square Test

There are two very commonly used statistical tests for testing dependence between two categorical variables: Chi-squared test & Fisherâs exact test.

To test independence of rows and columns

	Disease		
Risk Factor	+	-	Total
+	a	b	a+b
-	С	d	c+d
Total	a+c	b+d	n = a+b+c+d

• Assumptions: a, b, c, d must have at least 5 observations!

The Chi-square Distribution

Exact Fisher Test: Permutation Test

	Success	Failure	Total
Therapy	7	2	9
New Therapy	2	8	10
Total	9	10	19

7 2 8	P = 9!*10!*9!*10! / 19!*7!*2!*8! = 0.01754
8 1 1 9	P = 9!*10!*9!*10! / 19!*8!*1!*1!*9! = 0.00097
9 0 0 10	P = 9!*10!*9!*10! / 19!*9!*0!*10! = 0.00001

For a one-sided test: p = 0.01754+0.00097+0.00001 = 0.01852

Exercise 12

Simulating in R

Continuous variable

```
n <- 100
rnorm(n, mean = 0, sd = 1)  # Normal distribution</pre>
```

Binary variable

```
rbinom(n, size = 1, prob = 0.4) # Binomial distribution
```

Count variable

```
rpois(n, lambda = 7)  # Poisson distribution
```

Other options

```
seq(from = 0, to = 100, by = 1)  # ID
sample(3:30, size = 50, replace = TRUE)  # herd size
rep(c(1, 2, 3), times = 5)
rep(c(1, 2, 3), each = 5)
```

• ...

Plotting in R

Plotting in R

- Continuous data
 - Histogram
 - Boxplot
- Nominal / Ordinal data
 - Barplot
 - Mosaicplot
 - Scatterplots

Exercise 13A and 13B

Exercise 14

