Aufgabe 1 – Lateinisches Rechteck

Ein lateinisches $r \times n$ -Rechteck $(r \leq n)$ ist eine Anordnung der Zahlen $1, \ldots, n$ in r Zeilen und n Spalten, so dass in jeder Zeile und jeder Spalte jede Zahl höchstens einmal vorkommt. Ein lateinisches n-Quadrat ist ein lateinisches $n \times n$ -Rechteck.

$$\begin{bmatrix} 4 & 1 & 2 & 3 \\ 2 & 3 & 1 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

Beispiel eines lateinischen 3×4 -Rechtecks.

Angenommen wir haben ein lateinisches $r \times n$ -Rechteck mit r < n gegeben. Wir wollen sehen, ob wir es zu einem lateinischen n-Quadrat erweitern können. Das heisst, wir wollen n - r weitere Zeilen mit Zahlen aus $1, \ldots, n$ zu dem Rechteck hinzufügen, ohne eine Spalte oder eine Zeile in der eine Zahl mehrfach vorkommt zu erhalten.

- (a) Angenommen wir haben ein lateinisches $r \times n$ -Rechteck wie oben beschrieben. Wir wollen zeigen, wann man dieses zu einem $(r+1) \times n$ -Rechteck erweitern kann. Beschreiben Sie, wie man dieses Problem mit einem bipartiten Graphen $G = (A \uplus B, E)$ modellieren kann und zeigen Sie, dass die Erweiterung genau dann möglich ist, wenn G ein perfektes Matching hat.
- (b) Zeigen Sie, dass der in (a) konstruierte Graph regulär ist. Das heisst, zeigen Sie, dass es eine ganze Zahl k gibt, sodass alle Knoten (sowohl die Knoten in A als auch die Knoten in B) Grad genau k haben.
- (c) Benutzen Sie ihr Ergebnis aus (b) um zu beschreiben, welche $r \times n$ -Rechtecke man zu einem lateinischen n-Quadrat erweitern kann.
- (d) Geben Sie einen Algorithmus an, der als Eingabe ein Lateinisches $r \times n$ -Rechteck nimmt und es zu einem lateinischen n-Quadrat erweitert (falls ein solches existiert) und ansonsten "Nicht möglich" ausgibt.

Hinweis: In (a) kann es hilfreich sein, die Knoten in A mit 'Spalte 1', 'Spalte 2',... zu labeln und die Knoten aus B mit 'Nummer 1', 'Nummer 2',.... Was sind dann die Kanten? Was ist die entsprechende Bedeutung eines perfekten Matchings in Bezug auf das lateinische Quadrat?

Hinweis: Für (d) können Sie die Ergebnisse der vorherigen Teilaufgaben verwenden. Beachten Sie aber, dass zu einem Algorithmus auch immer eine Laufzeitanalyse und ein Korrektheitsbeweis gehören – auch wenn dies nur ein kurzer Hinweis auf eine der vorherigen Teilaufgaben ist!

Lösung zu Aufgabe 1 – *Latin Rectangle*

(a) After a bit of pondering, we can see that this is an assignment problem; the task is to assign each of the numbers 1, 2, ..., n to one of the n positions in the new row of the latin rectangle, with some additional restrictions about which assignments would be allowed (the rectangle should still be latin). Let us try to construct a graph, and see if we can capture these restrictions.

We construct the graph $G = (A \uplus B, E)$ as follows. We let $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$, where in the back of our heads we think of a_i and the "column i", and b_j as the "number j". We add an edge between vertices a_i and b_j iff the value j is not already present in the i:th column of the given latin $r \times n$ rectangle.

It remains to show that we can extend the latin rectangle by one more row iff G has a perfect matching.

 \Rightarrow : Suppose the latin rectangle can be extended by adding the row (x_1, x_2, \ldots, x_n) . We claim that $M = \{\{a_1, b_{x_1}\}, \{a_2, b_{x_2}\}, \ldots, \{a_n, b_{x_2}\}\}$ (i.e. we connect column i to the number x_i , as the back of our heads would expect) is a perfect matching. Indeed M clearly has the size of a perfect matching, so it only remains to show that it is a matching.

As (x_1, x_2, \ldots, x_n) was a valid extension, x_i was not already present in column i, so reading off our construction above $\{a_i, b_{x_i}\}$ are all edges in G, i.e. $M \subseteq E$. It is clear from our definition of M above that every vertex in A is incident to at most (in fact exactly) one edge in M. Moreover, as by definition of latin rectangle, (x_1, x_2, \ldots, x_n) has no repeating elements, the same holds for B. So we have shown that M is a matching, which concludes the argument.

- \Leftarrow : Any perfect matching in a bipartite graph is a one-to-one mapping between A and B. In this case, between columns and the numbers $1,2,\ldots n$. Given a perfect matching M in G we add one more row to the latin $r\times n$ rectangle where for each column we write the assigned value from the matching. That is, in column i, we write the number j where j is the unique value satisfying $\{a_i,b_j\}\in M$. As $\{a_i,b_j\}\in M\subseteq E$, it follows that j was not already present in column i, so the extension does not create a repeating element in a column. Moreover as b_j is only incident to one edge in M, no number will appear twice in the new row. Hence we have successfully extended the rectangle.
- (b) By our definition of G, a vertex $a_i \in A$ is connected to all b_j where $j \in [n]$ is not present in the i:th column of the latin $r \times n$ rectangle. As there are r unique elements in each column, a_i has degree n-k. Furthermore a vertex $b_j \in B$ is connected to all a_i such that the value j is not present in the i:th column. As each j appears once in every row, it is present in the rectangle precisely r times. And as it never appears twice in the same column, as it is a latin $r \times n$ rectangle, j appears in precisely r columns. Thus, it is not present in n-r columns and hence b_j has degree n-k. We conclude that G is (n-r)-regular.
- (c) From (b) we have that any graph G constructed as in (a) is n-r-regular. As n-r>0 and G is bipartite by construction, it follows by Frobenius theorem that it always has a perfect matching. Thus by (a) we can always extend a latin $r \times n$ rectangle by one more row, as long as r < n. We conclude that all latin $r \times n$ rectangles can be extended to latin squares.
- (d) As extension is always possible, the algorithm should never return "Not possible".

Given any latin $r \times n$ square we proceed as follows: For each $t = r+1, r+2, \ldots, n$, we construct the bipartite graph G_t as described in (a), apply the Hopcroft-Karp algorithm to find a perfect matching M_t and extend the latin rectangle with one more row by writing in the i:th column the value j where b_j is the unique neighbor of a_i in the matching and repeat. Once t = n, we return the resulting $n \times n$ matrix.

¹What is going on in the back of our minds has no formal significance for the proof; it is just there to help us think up the model.

Proof of correctness: As we have seen in (c), the graphs G_t have perfect matchings, so any maximum matching algorithm will inedeed find a perfect matching. As we saw in the \Leftarrow part of (a), the extension described above does indeed preserve latin-ness. Clearly after step t, the rectangle consists of t rows, so after reaching t=n this is indeed a latin square that extends the initial $r \times n$ rectangle, as desired.

Runtime analysis: The procedure is ran for at most n iterations. Constructing the graph G and storing it in a sensible format takes $O(n^2)$ time. Running Hopcroft-Karp on this graph and returning a perfect matching in a sensible format (e.g. a list of length n where the i:th element indicates which vertex a_i is matched with) takes $O(n^{2.5})$ time. Finally, reading off the matching to extend the rectangle can be done in O(n) time. We see that the dominating term is computing the matching. Thus we get a total runtime of $O(n \cdot n^{2.5}) = O(n^{3.5})$.