1		
	Given that the point A has position vector $4\mathbf{i} - 5\mathbf{j}$ and the point B has position vector $-5\mathbf{i}$	$-2\mathbf{j}$,
	(a) find the vector \overrightarrow{AB} ,	(2)
	(b) find $ \overrightarrow{AB} $.	(2)
	Give your answer as a simplified surd.	(2)

2. The triangle \overrightarrow{PQR} is such that $\overrightarrow{PQ} = 3\mathbf{i} + 5\mathbf{j}$ and $\overrightarrow{PR} = 13\mathbf{i} - 15\mathbf{j}$			
(a) Find \overrightarrow{QR}	(2)		
(b) Hence find $ \overrightarrow{QR} $ giving your answer as a simplified surd.	(2)		
The point S lies on the line segment QR so that $QS:SR=3:2$			
(c) Find \overrightarrow{PS}	(2)		
	(2)		

3		
	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A stone slides horizontally across ice.	
	Initially the stone is at the point $A(-24\mathbf{i} - 10\mathbf{j})$ m relative to a fixed point O .	
	After 4 seconds the stone is at the point $B(12\mathbf{i} + 5\mathbf{j})$ m relative to the fixed point O .	
	The motion of the stone is modelled as that of a particle moving in a straight line at constant speed.	
	Using the model,	
	(a) prove that the stone passes through O ,	
		(2)
	(b) calculate the speed of the stone.	(3)

4		· ·
	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A coastguard station O monitors the movements of a small boat.	
	At 10:00 the boat is at the point $(4\mathbf{i} - 2\mathbf{j})$ km relative to O .	
	At 12:45 the boat is at the point $(-3\mathbf{i} - 5\mathbf{j})$ km relative to O .	
	The motion of the boat is modelled as that of a particle moving in a straight line at constant speed.	
	(a) Calculate the bearing on which the boat is moving, giving your answer in degrees to	
	one decimal place.	(3)
	(b) Calculate the speed of the boat, giving your answer in km h ⁻¹	
		(3)

5. (i) Two non-zero vectors, a and b , are such that	
$ \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} $	
Explain, geometrically, the significance of this statement.	(1)
(ii) Two different vectors, \mathbf{m} and \mathbf{n} , are such that $ \mathbf{m} = 3$ and $ \mathbf{m} - \mathbf{n} = 6$ The angle between vector \mathbf{m} and vector \mathbf{n} is 30°	
Find the angle between vector \mathbf{m} and vector $\mathbf{m} - \mathbf{n}$, giving your answer, in degrees, to one decimal place.	(4)

6			
	Relative to a fixed origin, points P , Q and R have position vectors \mathbf{p} , \mathbf{q} and \mathbf{r} respectively.		
	Given that		
	• P, Q and R lie on a straight line		
	• Q lies one third of the way from P to R		
	show that		
	$\mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})$		
		(3)	
_			

7		
	Relative to a fixed origin O	
	• the point A has position vector $5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$	
	• the point B has position vector $2\mathbf{i} + 4\mathbf{j} + a\mathbf{k}$	
	where a is a positive integer.	
	(a) Show that $ \overrightarrow{OA} = \sqrt{38}$	
		(1)
	(b) Find the smallest value of a for which	
	$ \overrightarrow{OB} > \overrightarrow{OA} $	
		(2)

8		
	Relative to a fixed origin O	
	• point A has position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$	
	• point B has position vector $3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}$	
	• point C has position vector $2\mathbf{i} - 16\mathbf{j} + 4\mathbf{k}$	
	(a) Find \overrightarrow{AB}	
	(w) 1 ma 112	(2)
	(b) Show that quadrilateral <i>OABC</i> is a trapezium, giving reasons for your answer.	
		(2)

9		
	Relative to a fixed origin O,	
	• A is the point with position vector 12i	
	• B is the point with position vector $16\mathbf{j}$	
	• C is the point with position vector $(50\mathbf{i} + 136\mathbf{j})$	
	• D is the point with position vector $(22\mathbf{i} + 24\mathbf{j})$	
	(a) Show that AD is parallel to BC .	
		(2)
	Points A, B, C and D are used to model the vertices of a running track in the shape of a quadrilateral.	
	Runners complete one lap by running along all four sides of the track.	
	The lengths of the sides are measured in metres.	
	Given that a particular runner takes exactly 5 minutes to complete 2 laps,	
	(b) calculate the average speed of this runner, giving the answer in kilometres per hour.	
		(4)

10		
	Relative to a fixed origin O	
	• the point A has position vector $4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$	
	• the point B has position vector $4\mathbf{j} + 6\mathbf{k}$	
	• the point C has position vector $-16\mathbf{i} + p\mathbf{j} + 10\mathbf{k}$	
	where p is a constant.	
	Given that A , B and C lie on a straight line,	
	(a) find the value of p.	
		(3)
	The line segment OB is extended to a point D so that \overrightarrow{CD} is parallel to \overrightarrow{OA}	
	(b) Find $ \overrightarrow{OD} $, writing your answer as a fully simplified surd.	(2)
		(3)