Command line tools for MEEG data processing

December 20, 2016

Outline

Intro

Globbing (wildcards)

Command line interface for neuropype

ICA preprocessing

Command line interface for features collection

Pipeline for MEEG data analyses

Steps of analyses

- 1. Preprocessing
 - filtering
 - downsampling
 - artifacts removal
 - epochs creation
 - source reconstruction
- 2. Features computation
 - PSD
 - Connectivity
 - ► C1/C1
 - ..
- 3. Features collection
- 4. Machine learning, stats, etc..

Pipeline for MEEG data analyses

Steps of analyses

- 1. Preprocessing
 - filtering
 - downsampling
 - artifacts removal
 - epochs creation
 - source reconstruction
- 2. Features computation
 - PSD
 - Connectivity
 - ► C1/C1
 - •
- 3. Features collection
- 4. Machine learning, stats, etc..

neuropype_ephy package

Nipype

MNE python

Motivation for command line interface

```
def create datasource fif():
    datasource = pe.Node(interface=nio.DataGrabber(
        infields=['subject id'], outfields=['fif file']), name='datasource')
    datasource.inputs.base directory = data path
    datasource.inputs.template = '%s/%s%s'
    datasource.inputs.template args = dict(
        fif_file=[['subject_id', 'subject_id', "_rest_raw_tsss_mc_trans.fif"]]
    datasource.inputs.sort filelist = True¶
    return datasources
                           /media/dmalt/DATAS/MEG
                            ) tree
                                   empty room22052013.fif
                                   K0001 rest.fif
                                   K0001 rest raw tsss mc-ec.fif
                                   K0001_rest_raw_tsss_mc-eo.fif
                                   K0001 rest raw tsss mc.fif
                                   K0001 rest raw tsss mc-ica raw.fif
                                   K0001 rest raw tsss mc trans.fif

    ER upright 13 37 SN.fif

                                  - K0002 rest.fif

    K0002 rest raw tsss mc-ec.fif

                                   K0002 rest raw tsss mc-eo.fif
                                  - K0002 rest raw tsss mc.fif
                                   K0002 rest raw tsss mc-ica raw.fif
                                   K0002 rest raw tsss mc trans.fif
                                 - ER 12 43 upright raw.fif
                                 - K0003 rest raw.fif
                                   K0003 rest raw tsss mc-ec.fif
                                   K0003 rest raw tsss mc-eo.fif
```

Solving this problem with Unix command line

Globbing

- * matches any quantity or character
- ? matches one occurence of any character
- ► \X escape special character (lets you use * or ? in matching)
- ► [x-y] matches numbers in range from x to y
- ► {A,B,...} matches either A, B or any other string in curly braces

```
➤ Wildcards tutorial
```

In most cases we need only the '*' symbol

Examples:

```
# List all files in the current directory
$ ls *
# List all .fif files in dataset subdirectories
$ ls ./*/*.fif
```

Installation

- \$ git clone https://github.com/dmalt/neuropype_cli.git
- \$ cd neuropype_cli
- \$ pip install -editable .

Command line interface for neuropype

Key idea: Use globbing to improve flexibility of the pipeline

Features

- ► Flexible input
- Connect nodes on the go
- Same pattern for launching remotely
- Works on clusters
- "help" pages for each option and command

Syntax

```
Vage: neuropype [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Parallel processing of MEG/EEG data

Options:
-n, --ncpu INTEGER number of CPUs to use
-p, --plugin [Linear]MultiProc[PBS]
-s, --save-path PATH path to store results
-w, --workflow-name TEXT name of the results directory
--help Show this message and exit.

Commands:
conn Create spectral connectivity node
ep2ts Create a node for epochs 2 npy timeseries...
ica Compute ica solution for raw fif file
input Create input node
mse Create multiscale entropy node
psd Create power computation node
```

Workflow options

- -p, -plugin controls parallel execution of the workflow Possible values:
 Linear - serial execution of pipeline
 MultiProc - parallel execution on local machine
 PBS - parallel execution on cluster
- -n number of processors to use;
 Valid only for parallel plugins (MultiProc, PBS)
- -w, -workflow-name name of the workflow.
 Output of the pipeline will be stored in a folder with this name
- -s, -save-path path to a folder where we want to store results
- –help show help

Output folder structure

- workflow_name
 - __keys__Subj1_cond1__epochs-epo_fif
 - con_method_imcoh_freq_band_15.0.30.0
 - con_method_pli_freq_band_8.0.12.0
 - ► ep2ts
 - mse
 - pwr
 - path_node
 - __keys__Subj1_cond2__epochs-epo_fif
 - __keys__Subj2_cond1__epochs-epo_fif
 - •
 - **.**..

Supported nodes (to be improved)

input - pipeline entry point.
 INPUT: list of relative paths to files for processing (use globbing here)

OUTPUT: same as INPUT

ep2ts - convert -epo.fif file with epochs to numpy format INPUT: epochs in .fif format

OUTPUT: .npy file with epochs

▶ ica - compute ICA solution

INPUT: list of raw files

OUTPUT: .html report, ICA solution in .fif, ICA timeseries in .fif, copy of raw file to apply ICA in .fif

mse - compute multiscale entropy

INPUT: list of epochs in .npy format (n_trials x n_sensors x n_times matrices)

OUTPUT: .npz file (same as .npy but for several variables) with two arrays: std_mse and mean_mse

psd - compute power spectral density

INPUT: files with epochs in .fif

OUTPUT: .npz file with power spectral density matrices for each epoch (psds) and frequencies (freqs)

conn - compute connectivity INPUT: epoch files in .npy format

OUTPUT: connectivity matrices in .npy format

ICA preprocessing

► Link to the notebook

collect_neuropype

```
/media/dmalt/SSD500/aut_gamma/aut_gamma_pipeline
) collect_neuropype --help
Usage: collect_neuropype [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...
Gather neuropype output in pandas dataframe

Options:
-w, --workflow-path PATH
-r, --subj-id-regexp TEXT
-s, --savename PATH
--help
Show this message and exit.

Commands:
commands:
commands:
commandd connectivity matrices
mse Add multisale entropy
pwr Add powers on trials
```

- Collect output from the pipeline
- Set labels for machine learning
- Save everything in pandas dataframe (big table with data)

Installation

- \$ git clone https://github.com/dmalt/get_some_rest.git
- \$ cd get_some_rest
- \$ pip install -editable .