Refinement Types For Haskell

In this document we provide the proofs for the Theorems and Lemmata of the paper:

Refer to \S A for proofs on dynamic semantics of λ_{\downarrow} (Section 3 of the paper); to \S B for proofs on static semantics of λ_{\downarrow} with the Termination Oracle (Section 4 of the paper); and to \S C for proofs on Termination Analysis of λ_{\downarrow} (Section 4 of the paper);

The technical report of the paper is available on http://goto.ucsd.edu/ nvazou/lazytechreport.pdf

A. Language

We prove Lemma 1(Optimistic Reduction) in (Lemma 1) and Theorem 1(Optimistic Equivalence) in (Theorem 1).

Lemma 1 (Optimistic Reduction). if $e \hookrightarrow_n^j v$ then $e \hookrightarrow_o^* v$.

Proof. We define a new version of optimistic semantics $\hookrightarrow_{o'}$ in Figure 1. We define the semantics for core λ -calculus (ignoring

Expressions
$$e := x \mid \lambda x.e \mid e \mid e \mid < e, e >$$

Values $e := \lambda x.e$

$$\begin{array}{lll} (\lambda x.e) & e_x \hookrightarrow_{o'} e\left[e_x/x\right] & \text{if } \neg(e_x \hookrightarrow_{o'}^* v) \\ (\lambda x.e) & e_x \hookrightarrow_{o'} \lambda x.e < e_x, e_x > & \text{if } (e_x \hookrightarrow_{o'}^* v) \\ (\lambda x.e) & < e_x, v > \hookrightarrow_{o'} e\left[e_x/x\right] \\ (\lambda x.e) & < e_x, e_y > \hookrightarrow_{o'} (\lambda x.e) < e_x, e_y' > & \text{if } e_y \hookrightarrow_{o'} e_y' \\ e_1 & e_2 \hookrightarrow_{o'} e_1' e_2 & \text{if } e_1 \hookrightarrow_{o'} e_1' \end{array}$$

Figure 1. Operational Semantics of OPT'

constants, let and fix operators), but its extension to λ_{\downarrow} is straightforward. Intuitively, when an argument to the application is trivial, its evaluation is fired and then ignored. Obviously

$$e \hookrightarrow_n^* v \Leftrightarrow e \hookrightarrow_{o'}^* v(a)$$

The \Leftarrow direction follows from the fact that if we have the evaluation path of $e \hookrightarrow_{o'}^* v$ then we can ignore the sub-paths between the second and third rule and get its respective $e \hookrightarrow_n^* v$ path.

The \Rightarrow direction follows from the fact that if we have the evaluation path of e at every application $(\lambda x.e)$ e_x and if $e_x \hookrightarrow_{o'}^* v$ we insert the respective path. This way, we get the path $e \hookrightarrow_{o'}^* v$.

Now, we can prove that

$$e \hookrightarrow_{a'}^{l} v \Rightarrow e \hookrightarrow_{a}^{*} v$$

by induction on l.

Consider the path $e \hookrightarrow_{o'}^l v$. The first place where the evaluations differ is the one with $e_1 \equiv (\lambda x.e'') \ e_x$ and $e_x \hookrightarrow_{o'}^* v$ (equivalently from (a), e_x is trivial). Both evaluations will evaluate e_x and for some l' < l by IH

$$e_x \hookrightarrow_{o'}^{l'} v_x \Rightarrow e_x \hookrightarrow_o^* v_x$$

Finally, since by Church Rosser, (if $e_x \hookrightarrow^\star v_x$ and $e''[e_x/x] \hookrightarrow^\star v$ then $e''[v_x/x] \hookrightarrow^\star v$) we get $e \hookrightarrow^\star_o v$.

Figure 2. Substitutions

Theorem 1 (Optimistic Equivalence). $e \hookrightarrow_n^* v \Leftrightarrow e \hookrightarrow_o^* v$.

Proof. The \Leftarrow direction follows from the fact that if a term reduces to a value under some evaluation strategy, then it reduces to that value under CBN. The \Rightarrow direction follows from Lemma 1.

B. Soundness With a Termination Oracle

We assume the Termination Oracle Hypothesis to prove Lemma 2 (Value Substitution) (follows from Lemma 4 with $\rho:=[v/x]$, $\Gamma:=x:\tau_x$, and $\Gamma':=\Gamma$) Lemma 3 (Serious Substitution) (follows from Lemma 3 with $\Gamma_1=\emptyset$) Preservation (Theorem 2), and Progress (Theorem 3) We start by defining constants:

Definition 1 (Constants). Each constant c has a type $\mathsf{Ty}(c)$ such that

- $\emptyset \vdash c : \mathsf{Ty}(c)$
- If $\mathsf{Ty}(c) \equiv \{v:b^l \mid e\}$, then $e \equiv v = c$
- If $\mathsf{Ty}(c)$ is $x:\tau_1 \to \tau_2$ then for all values v such that $\emptyset \vdash v:\tau_1$, [|c|](v) is defined and $\emptyset \vdash [|c|](v):\tau_2[v/x]$ (so, it is not equal to crash).
- If $\mathsf{Ty}(c)$ is $\forall \alpha. \sigma$ then for all types τ such that $\emptyset \vdash \tau [|c|](\tau)$ is defined and $\emptyset \vdash [|c|](\tau) : \sigma [\tau/\alpha]$.
- $\bullet \models c : \mathsf{Ty}(c)$

Substitutions

Next, we formally define substitutions:

$$\begin{array}{c|c} & & & & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline$$

Lemma 2 (Serious Narrowing).

$$\Gamma = \Gamma_1; \Gamma_2$$

$$\tau_x \text{ is serious}$$

$$\Gamma' = \Gamma_1; x : \tau_x; \Gamma_2$$

$$x \notin freeVars(e)$$

- *1.* If $\Gamma' \vdash \sigma$ then $\Gamma \vdash \sigma$.
- 2. If $\Gamma' \vdash \sigma \preceq \sigma'$ then $\Gamma \vdash \sigma \preceq \sigma'$.
- *3.* If $\Gamma' \vdash e : \sigma$ then $\Gamma \vdash e : \sigma$.

Proof. 1 By induction on the derivation $\Gamma' \vdash \sigma$:

• Case WF-BASE-↓. Assume:

$$\Gamma' \vdash \{v:b^{\downarrow} \mid e\}$$

By inversion:

$$\Gamma_T = \mathsf{Trivial}(\Gamma', v : b^{\downarrow})(a), \quad \Gamma_T \vdash e : \mathsf{bool}(b)$$

By the definition of Trivial, we have

$$\Gamma'_T = \mathsf{Trivial}(\Gamma, v : b) (c)$$

So, from (c) and (b):

$$\Gamma \vdash \{v:b^{\downarrow} \mid e\}$$

- Cases WF-BASE † and WF-VAR are trivial, as they do not depend on the environment.
- Case WF-Fun. Assume:

$$\Gamma' \vdash x : \tau \to \tau'$$

By inversion:

$$\Gamma' \vdash \tau$$
, $\Gamma', x : \tau \vdash \tau'$

By IH,

$$\Gamma \vdash \tau$$
, $\Gamma, x : \tau \vdash \tau'$

Using rule WF-FUN:

$$\Gamma \vdash x : \tau \to \tau'$$

• Case WF-POLY. Assume:

$$\Gamma' \vdash \forall \alpha.\sigma$$

By inversion:

$$\Gamma' \vdash \sigma$$

By IH

$$\Gamma \vdash \sigma$$

By rule WF-POLY

$$\Gamma \vdash \forall \alpha. \sigma$$

2 By induction on the derivation of $\Gamma' \vdash \sigma \preceq \sigma'$:

• Case ≤-BASE-↓. Assume:

$$\Gamma' \vdash \{v:b^{\downarrow} \mid e_1\} \preceq \{v:b^{\downarrow} \mid e_2\}$$

By inversion

$$\mathsf{SmtValid}([|\Gamma'|] \Rightarrow [|e_1|] \Rightarrow [|e_2|])$$

By the definition of [|*|]

$$[|\Gamma|] = [|\Gamma'|]$$

So,

$$\mathsf{SmtValid}([|\Gamma|] \Rightarrow [|e_1|] \Rightarrow [|e_2|])$$

By rule <u></u> ∃-BASE-↓

$$\Gamma \vdash \{v:b^{\downarrow} \mid e_1\} \preceq \{v:b^{\downarrow} \mid e_2\}$$

- Cases ≤-BASE-↑ and ≤-VAR are trivial, as they do not depend on the environment.
- Case ≤-FUN. Assume:

$$\Gamma' \vdash x : \tau_1 \to \tau_1' \preceq x : \tau_2 \to \tau_2'$$

By inversion:

$$\Gamma' \vdash \tau_2 \leq \tau_1, \qquad \Gamma', x : \tau_2 \vdash \tau_1' \leq \tau_2'$$

By IH

$$\Gamma \vdash \tau_2 \leq \tau_1, \qquad \Gamma, x : \tau_2 \vdash \tau_1' \leq \tau_2'$$

By rule <u></u> ≺-FUN:

$$\Gamma \vdash x:\tau_1 \to \tau_1' \preceq x:\tau_2 \to \tau_2'$$

• Case ≤-POLY. Assume:

$$\Gamma' \vdash \forall \alpha.\sigma_1 \preceq \forall \alpha.\sigma_2$$

By inversion:

$$\Gamma' \vdash \sigma_1 \prec \sigma_2$$

By IH

$$\Gamma \vdash \sigma_1 \preceq \sigma_2$$

By rule **≺**-Poly:

$$\Gamma \vdash \forall \alpha.\sigma_1 \leq \forall \alpha.\sigma_2$$

3 By induction on the derivation $\Gamma' \vdash e : \sigma$. We push the rule T-SUB down in the tree:

• Case T-SUB. Assume:

$$\Gamma' \vdash e : \sigma$$

By inversion:

$$\Gamma' \vdash e : \sigma', \quad \Gamma' \vdash \sigma' \prec \sigma, \quad \Gamma' \vdash \sigma$$

for some σ' . By IH, 2 and 1

$$\Gamma \vdash e : \sigma', \quad \Gamma \vdash \sigma' \preceq \sigma, \quad \Gamma \vdash \sigma$$

By rule T-SUB:

$$\Gamma \vdash e : \sigma$$

• Case $e \equiv y$. Assume:

$$\Gamma' \vdash e : \sigma$$

Since $x \notin freeVars(e)$ $x \neq y$, we have $\Gamma(y) = \Gamma'(y)$. Hence, for either rule T-VAR-BASE or T-VAR we get

$$\Gamma \vdash e : \sigma$$

- Case $e \equiv c$. Trivial.
- Case $e \equiv \lambda y.e'$. Assume:

$$\Gamma' \vdash (\lambda y.e') : y:\tau_y \to \tau$$

For some τ_y, τ . By inversion

$$\Gamma', y : \tau_y \vdash e' : \tau, \quad \Gamma' \vdash y : \tau_y \to \tau$$

By IH and 1

$$\Gamma, y : \tau_y \vdash e' : \tau, \quad \Gamma \vdash y : \tau_y \to \tau$$

By rule T-FUN

$$\Gamma \vdash (\lambda y.e') : y:\tau_y \to \tau$$

• Case $e \equiv e_1 \ e_2$. Assume:

$$\Gamma' \vdash e_1 \ e_2 : \tau \left[e_2/x \right]$$

and by inversion

$$\Gamma' \vdash e_2 : \tau_y, \qquad \Gamma' \vdash e_1 : (y : \tau_y \to \tau)$$

By IH

$$\Gamma \vdash e_1 : (y : \tau_y \to \tau), \qquad \Gamma \vdash e_2 : \tau_y$$

By rule T-APP

$$\Gamma \vdash e_1 \; e_2 : \tau[e_2/y]$$

• Case $e \equiv \text{let } y = e_y \text{ in } e'$. Assume:

$$\Gamma' \vdash \mathtt{let}\ y = e_x\ \mathtt{in}\ e' : \tau$$

By inversion

$$\Gamma' \vdash e_y : \tau_y, \Gamma', y : \tau_y \vdash e' : \tau, \Gamma' \vdash \tau$$

By IH and 1

$$\Gamma \vdash e_y : \tau_y, \Gamma, y : \tau_y \vdash e' : \tau, \Gamma \vdash \tau$$

By rule T-LET

$$\Gamma \vdash \mathtt{let} \ y = e_x \ \mathtt{in} \ e' : \tau$$

• Case $e \equiv \mu f. \lambda y. e'$. Assume:

$$\Gamma' \vdash \mu f. \lambda y. e : y: \tau_y \to \tau$$

By inversion

$$\Gamma', y : \tau_y, f : \tau \vdash e : \tau, \qquad \Gamma \vdash y : \tau_y \to \tau$$

By IH and 1

$$\Gamma', y : \tau_y, f : \tau \vdash e : \tau, \qquad \Gamma' \vdash y : \tau_y \to \tau$$

By rule T-REC

$$\Gamma \vdash \mu f. \lambda y. e : \tau$$

• Case $e \equiv [\Lambda \alpha] e'$. Assume:

$$\Gamma' \vdash [\Lambda \alpha] e' : \forall \alpha. \sigma'$$

By inversion

$$\Gamma' \vdash e' : \sigma'$$

By IH

$$\Gamma \vdash e' : \sigma'$$

By rule T-GEN

$$\Gamma \vdash [\Lambda \alpha] e' : \forall \alpha. \sigma'$$

• Case $e \equiv e'[\tau]$. Assume:

$$\Gamma' \vdash e' [\tau] : \sigma [\tau/\alpha]$$

By inversion

$$\Gamma' \vdash e' : \forall \alpha.\sigma, \Gamma' \vdash \tau, \tau \text{ is } trivial$$

By IH and 1

$$\Gamma \vdash e' : \forall \alpha.\sigma, \Gamma \vdash \tau, \tau \text{ is } trivial$$

By rule T-INST

$$\Gamma \vdash e'[\tau] : \sigma[\tau/\alpha]$$

Lemma 3 (Serious Substitution). Let

 τ_x is serious

$$\Gamma' = \Gamma_1; x : \tau_x; \Gamma_2$$

$$\Gamma = \Gamma_1; \Gamma_2$$

If $\Gamma' \vdash e_1 : \sigma$ and $\Gamma \vdash e_2 : \tau_x$ then $\Gamma \vdash e_1 [e_2/x] : \sigma$.

Proof. We split cases on the rule used at the root of the derivation. At each case we assume that the rule T-SUB is pushed down.

• Case T-SUB. Assume

$$\Gamma' \vdash e_1 : \sigma$$

By inversion

$$\Gamma' \vdash e_1 : \sigma_1, \quad \Gamma' \vdash \sigma_1 \prec \sigma, \quad \Gamma' \vdash \sigma$$

By IH and Lemma 2

$$\Gamma \vdash e_1 [e_2/x] : \sigma_1, \quad \Gamma \vdash \sigma_1 \preceq \sigma, \quad \Gamma \vdash \sigma$$

By rule T-SUB

$$\Gamma \vdash e_1 [e_2/x] : \sigma$$

• Case T-VAR-BASE. Assume

$$\Gamma' \vdash y : \{v : b^{\downarrow} \mid v = y\} \ (a)$$

where $e_1 \equiv y$ and $\sigma \equiv \{v:b^{\downarrow} \mid v=y\}$. By inversion

$$\Gamma'(y) = \{v : b^{\downarrow} \mid e_y\}$$

There are two cases. Either x=y or $x\neq y$. Since y has a trivial type, $x\neq y$. So, $x\notin freeVars(e_1)$. Hence $e_y\left[e_1/x\right]=e_y$ and from Lemma 2 and (a)

$$\Gamma \vdash e_1 : \sigma$$

• Case T-VAR. Assume

$$\Gamma' \vdash y : \Gamma'(y) (a)$$

where $e_1 \equiv y$ and $\sigma \equiv \Gamma'(y)$. Say x = y, then $\sigma \equiv \tau_x$ and $e_1 [e_2/x] = e_2$, so

$$\Gamma \vdash e_1 [e_2/x] : \sigma$$

Otherwise, $x \neq y$, so $x \notin freeVars(e_1)$. Hence $e_1[e_1/x] = e_1$ and from Lemma 2 and (a)

$$\Gamma \vdash e_1 : \sigma$$

• Case T-CON. Assume

$$\Gamma' \vdash c : \mathsf{Ty}(c) \ (a)$$

Then $x \notin freeVars(e_1)$. Hence $e_1\left[e_2/x\right] = e_1$ and from Lemma 2 and (a)

$$\Gamma \vdash e_1 : \sigma$$

• Case T-FUN. Assume

$$\Gamma' \vdash (\lambda y.e) : y:\tau_y \to \tau$$

where $e_1 \equiv \lambda y.e$ and $\sigma \equiv y:\tau_y \to \tau$. By inversion

$$\Gamma', y : \tau_y \vdash e : \tau, \quad \Gamma' \vdash y : \tau_y \to \tau$$

By IH and Lemma 2

$$\Gamma, y : \tau_y \vdash e [e_2/x] : \tau, \quad \Gamma \vdash y : \tau_y \to \tau$$

By rule T-FUN

П

$$\Gamma \vdash (\lambda y.e [e_2/x]) : y:\tau_y \to \tau$$

But $(\lambda y.e)[e_2/x] = e_1[e_2/x]$, since by α -renaming x should be different than y.

• Case T-APP. Assume

$$\Gamma' \vdash e_1' \ e_2' : \tau [e_2'/y]$$

By inversion

$$\Gamma' \vdash e'_1 : (y : \tau_y \to \tau) (a), \quad \Gamma' \vdash e'_2 : \tau_y (b)$$

By IH

$$\Gamma \vdash e_1' [e_2/x] : (y:\tau_y \to \tau), \quad \Gamma \vdash e_2' [e_2/x] : \tau_y$$

By which and rule T-APP and since $(e_1'\ [e_2/x])\ (e_2'\ [e_2/x])=(e_1'\ e_2')\ [e_2/x]$

$$\Gamma \vdash e \left[e_2/x \right] : \tau \left[e_2'/y \right]$$

• Case T-LET. Assume

$$\Gamma' \vdash \mathtt{let} \ y = e_y \ \mathtt{in} \ e : \tau$$

By inversion

$$\Gamma' \vdash e_y : \tau_y, \quad \Gamma', y : \tau_y \vdash e : \tau, \quad \Gamma' \vdash \tau$$

By IH and Lemma 2

$$\Gamma \vdash e_y [e_2/x] : \tau_y, \quad \Gamma, y : \tau_y \vdash e [e_2/x] : \tau, \quad \Gamma \vdash \tau$$

By rule T-LET and since let $y=e_y\left[e_2/x\right]$ in $e\left[e_2/x\right]=\left(\det y=e_y \ \mathrm{in}\ e\right)\left[e_2/x\right]$

$$\Gamma \vdash (\mathtt{let}\ y = e_y\ \mathtt{in}\ e)\ [e_2/x] : \tau$$

• Case T-REC. Assume

$$\Gamma' \vdash \mu f. \lambda y.e : y:\tau_x \to \tau$$

By inversion

$$\Gamma', y : \tau_y, f : \tau \vdash e : \tau$$

By IH

$$\Gamma, y : \tau_y, f : \tau \vdash e \left[e_2/x \right] : \tau$$

By rule T-REC and since $\mu f.\lambda y.(e [e_2/x]) = (\mu f.\lambda y.e) [e_2/x]$

$$\Gamma \vdash (\mu f. \lambda y. e) [e_2/x] : y:\tau_y \to \tau$$

• Case T-GEN. Assume

$$\Gamma' \vdash [\Lambda \alpha] e : \forall \alpha. \sigma$$

By inversion

$$\Gamma' \vdash e : \sigma$$

By IH

$$\Gamma \vdash e [e_2/x] : \sigma$$

By rule T-GEN and since $[\Lambda \alpha] e [e_2/x] = ([\Lambda \alpha] e) [e_2/x]$

$$\Gamma \vdash ([\Lambda \alpha] e) [e_2/x] : \forall \alpha.\sigma$$

• Case T-INST. Assume

$$\Gamma' \vdash e\left[\tau\right] : \sigma\left[\tau/\alpha\right]$$

By inversion

$$\Gamma' \vdash e : \forall \alpha.\sigma, \quad \Gamma' \vdash \tau, \quad \tau \text{ is trivial}$$

By IH and Lemma 2

$$\Gamma \vdash e[e_2/x] : \forall \alpha.\sigma, \quad \Gamma \vdash \tau$$

By rule T-INST and since $e\left[e_{2}/x\right]\left[au\right]=\left(e\left[au\right]\right)\left[e_{2}/x\right]$

$$\Gamma \vdash (e[\tau])[e_2/x] : \sigma[\tau/\alpha]$$

Lemma 4 (Value Substitution). *If* $\Gamma \models \rho$ *then*

1. If
$$\Gamma$$
; $\Gamma' \vdash e : \sigma$ then $\rho\Gamma' \vdash \rho e : \rho\sigma$.
2. If Γ ; $\Gamma' \vdash \sigma \preceq \sigma'$ then $\rho\Gamma' \vdash \rho\sigma \preceq \rho\sigma'$.

Proof. We use the respective Lemma on standard refinement types of λ_L [1]. For the first case, consider the derivation trees T_e and T_{x_i} (for every $[v_i/x_i] \in \Gamma$) of $x:\tau_x;\Gamma \vdash e:\sigma$ and $\Gamma \vdash v_i:\tau_{x_i}$, respectively. We map T_e and T_{x_i} to T_e^L and $T_{x_i}^L$ using the following transformation: we delete the labels from types and replace the rule T-VAR on variables, with the rules T-VAR-BASE and T-SUB of λ_L . T_e^L and $T_{x_i}^L$ are valid derivation trees for λ_L . Using the Lemma on λ_L we get a derivation tree $T_{\rho e}^L$ whose structure is the same as T_e^L where leaves typing x_i s have been replaced with $T_{x_i}^L$. So, we can invert the transformation on $T_{\rho e}^L$ to get $T_{\rho e}$, a derivation tree of $\rho\Gamma \vdash \rho e:\rho\sigma$ in λ_{\downarrow} . $\hfill \Box$

Theorem 2 (Preservation). *If* $\emptyset \vdash e : \sigma \text{ and } e \hookrightarrow_o e', \text{ then } \emptyset \vdash e' : \sigma.$

Proof. By induction on the typing derivation $\emptyset \vdash e : \sigma$. We split cases on the rule used at the root of the derivation; at each case we push the rule T-Sub down in the tree.

• Case T-SUB. Assume

$$\emptyset \vdash e : \sigma$$

By inversion

$$\emptyset \vdash e : \sigma_1(a), \quad \emptyset \vdash \sigma_1 \leq \sigma(b), \quad \emptyset \vdash \sigma(c)$$

for some σ_1 . By IH and (a)

$$\emptyset \vdash e' : \sigma_1 (a')$$

By (a'), (b) and (c) if we apply the rule T-SUB

$$\emptyset \vdash e' : \sigma$$

- Cases T-VAR-BASE, T-VAR, T-CON, T-FUN, T-REC, T-GEN are trivial, since there is no e' such that $e \hookrightarrow_o e'$.
- Case T-APP. Assume

$$\emptyset \vdash e_1 \ e_2 : \tau[e_2/x]$$

where $e \equiv e_1 \ e_2$ and $\sigma \equiv \tau \ [e_2/x]$. By inversion we have

$$\emptyset \vdash e_1 : (x:\tau_x \to \tau) \ (a), \quad \emptyset \vdash e_2 : \tau_x \ (b)$$

We split cases on the structure of e

• $e\equiv e_1\ e_2$ and e_1 is not a value. By (a) and IH there exists an e_1' so that $e_1\hookrightarrow_o e_1'$ and

$$\emptyset \vdash e_1' : (x:\tau_x \to \tau)$$

Also, $e' \equiv e'_1 e_2$. By (b) and T-APP

$$\emptyset \vdash e' : \sigma$$

• $e \equiv v \ e_2$ and e_2 is not a value and trivial. By (b) and IH there exists an e_2' such that $e_2 \hookrightarrow_o e_2'$ and

$$\emptyset \vdash e_2' : \tau_x$$

Then $e' \equiv v e'_2$. So, by rule T-APP:

$$\emptyset \vdash e' : \tau [e_2/x]$$

• $e \equiv c \ e_2$. If e_2 is not a value, then by IH on (b), there exists e_2 such that $e_2 \hookrightarrow_o e_2'$, and

$$\emptyset \vdash e_2' : \tau_x (a')$$

Then $e'\equiv c\ e_2'.$ By (a) and (b') via rule T-APP, we get $\emptyset\vdash e':\tau\ [e_2/x].$

Otherwise, there exists a value v, such that $e_2 \equiv v$ and $e' \equiv [|c|](v)$. From (a), (b) and Definition 1

$$\emptyset \vdash e' : \tau [e_2/x]$$

• $e \equiv \lambda x. e_{11} \ e_2$. from (a) and by inversion of rule T-FuN we have

$$x:\tau_x\vdash e_{11}:\tau\ (c)$$

We split cases on whether τ_x is trivial or serious.

If τ_x is trivial By the Termination Hypothesis, it must be that the argument e_2 is trivial. By the definition of \hookrightarrow_o the reduction happens only if the trivial e_2 is a value (otherwise e_2 is optimistically evaluated to a value before β -reduction). Hence, there is a value v, such that $e_2 \doteq v$ and $e' \doteq e_1 \ [v/x]$. By Lemma 4 we get $\emptyset \vdash e_1 \ [v/x] : \tau \ [v/x]$. Case 2: τ_x is serious: Then $e' \doteq e_1 \ [e_2/x]$ we need to show that $\emptyset \vdash e_1 \ [e_2/x] : \tau \ [e_2/x]$. By (b) we have $x : \tau_x \models [e_2/x]$ By well-formedness we are guaranteed that x does not appear in τ , or $\tau \ [e_2/x] = \tau$. So, from Lemma 4 we have $\emptyset \vdash e_1 \ [e_2/x] : \tau$.

• $e \equiv (\mu f. \lambda x. e_{11}) v$ where $e' \equiv e [\mu f. \lambda x. e_{11}/f] [e_2/x]$ From (a) and by inversion of the rule T-REC we have

$$f:(x:\tau_x\to\tau), x:\tau_x\vdash e_{11}:\tau$$

Since

$$\emptyset \vdash \mu f. \lambda x. e_{11} : (x:\tau_x \to \tau)$$

We have

$$f:(x:\tau_x\to\tau)\models [\mu f.\lambda x.e_{11}/f]$$

So, by Lemma 4 and since $f \notin freeVars(\tau)$

$$x: \tau_x \vdash e\left[\mu f.\lambda x.e_{11}/f\right]: \tau$$

As before, we split cases on whether τ_x is serious or trivial and we use Lemma 3 or Lemma 4 respectively to get

$$\emptyset \vdash e \left[\mu f. \lambda x. e_{11}/f\right] \left[e_2/x\right] : \tau \left[e_2/x\right]$$

- $e \equiv [\Lambda \alpha] \, e_{11} \, v \, \text{Since} \, \emptyset \vdash [\Lambda \alpha] \, e_{11} : \forall \alpha. \tau' \, \text{which is not a function type, this case cannot appear.}$
- Case T-LET. Assume

$$\emptyset \vdash \mathtt{let} \ x = e_x \ \mathtt{in} \ e_1 : \tau$$

where $\sigma \equiv \tau$ and $e \equiv \text{let } x = e_x \text{ in } e_1$. By inversion

$$\emptyset \vdash e_x : \tau_x (a), \quad x : \tau_x \vdash e_1 : \tau (b), \quad \emptyset \vdash \tau (c)$$

We split cases on the structure of au_x

• Say that e_x is serious. By Lemma 6, (a) and (b)

$$\emptyset \vdash e_1 [e_x/x] : \tau$$

But $e' \equiv e_1 [e_x/x]$ So,

$$\emptyset \vdash e' : \tau$$

The rest cases assume that e_x is trivial.

• Say that e_x is trivial and there exists a value v such that $e_x \equiv v$. From (a) $x : \tau_x \models [e_x/x]$ so, from Lemma 4

$$\emptyset \vdash e_1 [e_x/x] : \tau [e_x/x]$$

From (c) $x \notin freeVars(\tau)$, so $\tau [e_x/x] \equiv \tau$. Also $e' \equiv e_1 [e_x/x]$, so

$$\emptyset \vdash e' : \tau$$

■ Say that e_x is trivial and not a value. So, there exists an e'_x such that $e_x \hookrightarrow_o e'_x$. Then by HI on (a)

$$\emptyset \vdash e'_x : \tau_x$$

By (b), (c) and rule T-LET

$$\emptyset \vdash \mathtt{let} \ x = e'_x \ \mathtt{in} \ e_1 : au$$

But $e' \equiv \text{let } x = e'_x \text{ in } e_1$, so

$$\emptyset \vdash e' : \sigma$$

Case T-INST. We assume that type annotations have been removed at runtime, so this case cannot occur.

Theorem 3 (Progress). *If* $\emptyset \vdash e : \sigma$ *and* e *is not a value, then there exists an* e' *so that* $e \hookrightarrow_{\sigma} e'$.

Proof. We split cases on the type derivation:

• Case T-SUB. Assume

$$\emptyset \vdash e : \sigma$$

By inversion

$$\emptyset \vdash e : \sigma_1(a), \quad \emptyset \vdash \sigma_1 \preceq \sigma(b), \quad \emptyset \vdash \sigma(c)$$

By IH on (a), if e is not a value, there exists an e' so that $e \hookrightarrow_o e'$.

 Cases T-VAR-BASE, T-VAR, trivial, as we cannot typecheck a variable in an empty environment.

- ullet Cases T-Con, T-Fun, T-Rec and T-Gen are trivial as e is a value
- Case T-APP

$$\emptyset \vdash e_1 \ e_2 : \tau[e_2/x]$$

where $e \equiv e_1 \ e_2$ and $\sigma \equiv \tau \ [e_2/x]$. By inversion:

$$\emptyset \vdash e_1 : (x:\tau_x \to \tau) \ (a), \quad \emptyset \vdash e_2 : \tau_x \ (b)$$

If e_1 is not a value, by (a) and IH there exists an e_1 such that $e_1 \hookrightarrow_o e_1'$. Then $e_1 e_2 \hookrightarrow_o e_1' e_2$. Otherwise, we split cases on the structure of e_1 :

- $e_1 \equiv c$. If e_2 is not a value, then by IH and (b) there exists an e_2' such that $e_2 \hookrightarrow_o e_2'$ and $e' \equiv c e_2'$. Otherwise, $e_2 \equiv v$ for some value v and $e' \equiv [|c|](v)$ which is well defined and is not equal to crash by the Definition 1.
- $e_1 \equiv \lambda x. e_x$. If e_2 is serious or a value, then $e' \equiv e_x [e_2/x]$. Otherwise, by IH and (b) there exists an e'_2 such that $e_2 \hookrightarrow_o e'_2$ and $e' \equiv e_1 e'_2$.
- $e_1 \equiv \mu f. \lambda x. e_x$. If e_2 is serious or a value, then $e' \equiv e_x \left[e_2/x \right] \left[e_1/f \right]$.

Otherwise, by IH and (b) there exists an e_2' such that $e_2 \hookrightarrow_o e_2'$ and $e' \equiv e_1 \ e_2'$.

- $e_1 \equiv [\Lambda \alpha] e_\alpha$. This case cannot occur, because then e_1 should be typed as a type abstraction and not a function.
- Case T-LET. Assume

$$\emptyset \vdash \mathtt{let} \ x = e_x \ \mathtt{in} \ e_1 : \tau$$

where $e \equiv \text{let } x = e_x \text{ in } e_1 \text{ and } \sigma \equiv \tau$. By inversion

$$\emptyset \vdash e_x : \tau_x (a), \quad x : \tau_x \vdash e : \tau (b), \quad \emptyset \vdash \tau (c)$$

We split cases on the structure of e_x . If e_x is serious or a value, then $e'\equiv e_1\,[e_x/x]$. Otherwise, by (b) and IH, these exists an e'_x such that $e_x\hookrightarrow_o e'_x$ and $e'\equiv {\tt let}\ x=e'_x$ in e_1 .

 Case T-INST. We assume that types are erased during run-time, thus this case cannot occur.

C. Proof of Termination Theorem

We prove Substitution Lemma 8 (Lemma 4 in the paper), and Termination Lemma 9 (Lemma 5 in the paper). Termination Theorem 4 (Theorem 3 in the paper) is a direct application of Termination Lemma.

Since the Lemmata are mutually dependent imagine we simultaneously reprove preservation, and prove Lemmata 8 and 9.

Definition 2 (Well-formed Terms). *A term e is well-formed with type* σ , *writing* \models $e : \sigma$ *iff*

- 1. if σ is trivial, then there exist i, v such that $e \hookrightarrow_o^i v$,
- 2. if $\sigma \equiv x_1:\tau_{x_1} \to \cdots \to x_n:\tau_{x_n} \to \tau$ and τ is trivial, then for any expressions e_{x_i} such that $\emptyset \vdash e_{x_i}:\tau_{x_i}$ and $\models e_{x_i}:\tau_{x_i}$, for $1 \leq i \leq n$, there exist j,v such that $e_{x_1} \cdots e_{x_n} \hookrightarrow_o^j v$, and
- 3. if $\sigma \equiv \forall \alpha.\sigma'$, then for any trivial type τ such that $\Gamma \vdash \tau \models e[\tau] : \sigma'[\tau/\alpha]$

Lemma 5. If $\sigma \left[\tau / \alpha \right]$ is trivial and τ is trivial then σ is trivial.

Proof. By induction on the structure of types.

- Case $\sigma \equiv \alpha'$ If $\alpha' \neq \alpha$ then $\sigma \left[\tau/\alpha \right] \equiv \sigma$ which is trivial. Otherwise, $\alpha' = \alpha$, so $\sigma \left[\tau/\alpha \right] \equiv \tau$ which is trivial by hypothesis.
- Case $\sigma \equiv \{v:b^l \mid e\}$. Then $\sigma [\tau/\alpha] \equiv \sigma$ which is trivial.
- Case $\sigma \equiv x : \tau_x \to \tau$. Then σ is trivial.

$$\frac{e \text{ is value or serious}}{0 \models \emptyset} \frac{\Gamma \models \theta \quad \emptyset \vdash \theta e : \theta \sigma \quad \models \theta e : \theta \sigma}{\Gamma, x : \sigma \models \theta; [e/x]}$$

Figure 3. Well-formed Expression Substitution

• Case $\sigma \equiv \forall \alpha'.\sigma'$ If $\alpha' = \alpha$ then $\sigma [\tau/\alpha] \equiv \sigma$ which is trivial. Otherwise, $\alpha' \neq \alpha$, so $\sigma [\tau/\alpha] \equiv \forall \alpha'.(\sigma' [\tau/\alpha])$. By induction $\sigma' [\tau/\alpha]$ is trivial, hence, so is σ .

Lemma 6. If $\Gamma \vdash \sigma \preceq \sigma'$ and σ is trivial, then σ' is trivial.

Proof. By induction on the derivation $\Gamma \vdash \sigma \preceq \sigma'$. Cases \preceq -BASE- \downarrow , \preceq -FUN and \preceq -VAR are trivial, as both sides are trivial. In case \preceq -BASE- \uparrow then Lemma is satisfied, as σ is not trivial. Finally, case \preceq -POLY proceeds by inversion of the rule and applying the inductive hypothesis.

Lemma 7. If $\models e : \sigma$ and $\emptyset \vdash \sigma \preceq \sigma'$, then $\models e : \sigma'$

Proof. By induction on the derivation $\emptyset \vdash \sigma \preceq \sigma'$.

• Case ≺-BASE-↓. Assume

$$\emptyset \vdash \{v:b^{\downarrow} \mid e_1\} \preceq \{v:b^{\downarrow} \mid e_2\}$$

where $\sigma \equiv \{v:b^{\downarrow} \mid e_1\}$, and $\sigma' \equiv \{v:b^{\downarrow} \mid e_2\}$. Only the first case of well-formed expressions apply and since σ is trivial, e should converge.

• Case ≺-BASE-↑. Assume

$$\emptyset \vdash \{v:b^l \mid e\} \preceq \{v:b^\uparrow \mid \mathtt{true}\}$$

No case of well-formed expressions apply, thus the Lemma is trivially satisfied.

• Case <u></u> -Fun. Assume

$$\emptyset \vdash x:\tau_1 \to \tau_1' \preceq x:\tau_2 \to \tau_2'$$

where $\sigma \equiv x:\tau_1 \to \tau_1'$ and $\sigma' \equiv x:\tau_2 \to \tau_2'$. By inversion

$$\emptyset \vdash \tau_2 \preceq \tau_1 (a)$$
 $x : \tau_2 \vdash \tau_1' \preceq \tau_2' (b)$

The first case of well-formed expressions is satisfied, as σ is trivial, thus should e converge. For the second case, let τ_1' be trivial, then by (b) and Lemma 6, τ_2' is trivial. Assume an e_x such that $\emptyset \vdash e_x : \tau_2$ and $\models e_x : \tau_2$. By (a) and IH $\emptyset \vdash e_x : \tau_1$ and $\models e_x : \tau_1$. But since $\models e : \sigma'$, and τ_2' is trivial, $e \in e_x$ converges.

The third case does not apply.

- Case \(\preceq\)-VAR is trivial, as only the first case applies and \(e\) should converge.
- Case ≺-POLY. Assume

$$\Gamma \vdash \forall \alpha.\sigma_1 \leq \forall \alpha.\sigma_2$$

By inversion

$$\Gamma \vdash \sigma_1 \preceq \sigma_2$$

For the first case, if σ' is trivial, then σ is trivial and e converges. The second case does not apply. For the third case, for any trivial τ , such that $\emptyset \vdash \tau$, $\models e[\tau] : \sigma_1[\tau/\alpha]$, but $\emptyset \vdash \sigma_1[\tau/\alpha] \leq \sigma_2[\tau/\alpha]$, so $\models e[\tau] : \sigma_2[\tau/\alpha]$.

Lemma 8 (Substitution Lemma). *If* $\Gamma \models \theta$, *then*

- If $\Gamma \vdash e : \sigma$, then $\emptyset \vdash \theta e : \theta \sigma$.
- If $\Gamma \vdash \sigma \leq \sigma'$, then $\emptyset \vdash \theta \sigma \leq \theta \sigma'$.

Proof. Let $\Gamma = \Gamma', x : \sigma_x$ and $\theta = \theta'; [e_x/x]$. From the definition of well-formed substitutions, we have

e is value or serious (a),
$$\emptyset \vdash \theta e : \theta \sigma$$
 (b), $\models \theta e : \theta \sigma$ (c)

By (a), e_x is either a value or serious, so either Lemma 4 or Lemma 6 applies. In either case we get $\Gamma' \vdash e[e_x/x] : \sigma[e_x/x]$. The Lemma follows from iteratively applying this reasoning.

Similarly, the second case follows from Lemma 4 or Lemma 2.

Lemma 9 (Termination Lemma). *If* $\Gamma \vdash e : \sigma$ *and* $\Gamma \models \theta$, *then* $\models \theta e : \theta \sigma$.

Proof. We assume a substitution θ such that $\Gamma \models \theta$. We prove the Lemma by induction on the typing derivation tree $\Gamma \vdash e : \sigma$ (each time we push the rule T-SUB down in the tree.)

• Case T-SUB. Assume

П

$$\Gamma \vdash e : \sigma$$

and σ is trivial. By inversion

$$\Gamma \vdash e : \sigma'(a), \quad \Gamma \vdash \sigma' \preceq \sigma(b), \quad \Gamma \vdash \sigma(c)$$

By IH on (a), $\models \theta e : \theta \sigma'(d)$. By (b) and Lemma 8 $\emptyset \vdash \theta \sigma' \preceq \theta \sigma$. By which, (d) and Lemma 7 we get $\models \theta e : \theta \sigma$

• Cases T-VAR-BASE. Assume

$$\Gamma \vdash x : \{v : b^l \mid v = x\}$$

By inversion

$$\Gamma(x) = \{v:b^l \mid e_x'\}$$

Since $\Gamma \models \theta$ there exists an e_x such that $[e_x/x] \in \theta$ and $\models \theta e_x : \theta \{v : b^l \mid e_x\}$. By which, if $l \equiv \downarrow$ then $\theta x = \theta e_x$ converges. Otherwise none of the cases apply.

• Cases T-VAR. Assume

$$\Gamma \vdash x : \sigma$$

By inversion

$$\Gamma(x) = \sigma$$

Since $\Gamma \models \theta$ there exists an e_x such that $[e_x/x] \in \theta$ and $\models \theta e_x : \theta \sigma$ But, $\theta x = \theta e_x$.

• Case T-Con. Assume

$$\Gamma \vdash c : ty(c)$$

The lemma trivially holds, as by Definition 1, $\models c : ty(c)$

• Case T-FUN. Assume

$$\Gamma \vdash (\lambda x.e') : x:\tau_x \to \tau \ (a)$$

where $e \equiv \lambda x.e'$ and $\sigma \equiv x:\tau_x \to \tau$ which is trivial. We will prove the three requirements of well-formed expressions.

1. Trivial, since e is a value.

2. Say that τ is trivial and assume some e_x such that $\emptyset \vdash e_x$: τ_x and $\models e_x : \theta \tau_x$. So, $\Gamma; x : \theta \tau_x \models \theta; [e_x/x]$. By inversion of the rule (a) we get

$$\Gamma, x : \tau_x \vdash e' : \tau$$

By IH and 1 we get that $(\theta; [e_x/x])e' \hookrightarrow_o^i v$. But $(\theta; [e_x/x])e' = \theta(\lambda x.e'e_x)$. So, $(\theta e)(e_x) \hookrightarrow_o^i v$.

3. The third case cannot occur.

• Case T-APP. Assume

$$e \equiv e_1 e_2$$

By inversion we get

$$\Gamma \vdash e_1 : (x:\tau_x \to \tau) (a) \quad \Gamma \vdash e_2 : \tau_x (b)$$

where τ is trivial. By inductive hypothesis, we get that $\models \theta e_1 : \theta(x:\tau_x \to \tau)$ and $\models \theta e_2 : \theta \tau_x$. By Lemma 8 on (b) we get $\emptyset \vdash \theta e_2 : \theta \tau_x$. So, by 2 on e_1 we get that there exist i,v such that

$$\theta e = (\theta e_1)(\theta e_2) \hookrightarrow_o^i v$$

To prove 2 suppose that

$$\tau \equiv x_1 : \tau_{x_1} \to \cdots \to x_n : \tau_{x_n} \to \tau'$$

Again by 2 on e_1 , for n:=n+1, we get for any expressions e_{x_1},\ldots,e_{x_n} such that $\emptyset \vdash e_{x_i}:\theta\tau_{x_i}$ and $\models e_{x_i};\theta\tau_{x_i}$ for $1\leq i\leq n$, there exist j,v such that $(\theta e)\ e_{x_1}\ldots e_{x_n}\equiv (\theta e_1)(\theta e_2)\ e_{x_1}\ldots e_{x_n}\hookrightarrow_o^j v$

The third case does not apply.

• Case T-LET. Assume

$$\Gamma \vdash \mathtt{let} \ x = e_x \ \mathtt{in} \ e' : \tau$$

where $e \equiv \text{let } x = e_x \text{ in } e'$ and $\sigma \equiv \tau$ which is trivial. By inversion

$$\Gamma \vdash e_x : \tau_x(a), \qquad \Gamma, x : \tau_x \vdash e' : \tau(b)$$

We define a substitution θ' as follows: If τ_x is trivial, then $\theta e_x \hookrightarrow_o v_x i_x$ and $\theta' = \theta$; $[v_x/x]$. Otherwise, $\theta' = \theta$; $[e_x/x]$. In either case Γ ; $x : \tau_x \models \theta'$

The lemma holds by IH on b using the substitution θ' .

• Case T-REC-↓. Assume

$$\Gamma \vdash \mu f. \lambda x. e' : x: \tau_x \to \tau \ (a)$$

where τ is trivial $e \equiv \mu f. \lambda x. e'$. The first case is trivial, as e is a value and the third does not apply. So, we need to prove that for any expression e_x such that

$$\emptyset \vdash e_x : \theta \tau_x (b)$$
 $\emptyset \models e_x : \theta \tau_x (c)$

there exist j, v such that $(\theta e)(e_x) \hookrightarrow_o^j v$. By inverting the rule (a) we get

$$\tau_x = \{v : \mathtt{nat}^{\downarrow} \mid e_x\} (d) \quad \tau_y = \{v : \mathtt{nat}^{\downarrow} \mid e_x \land v < x\} (e)$$

$$\Gamma, x : \tau_x, f : y : \tau_y \to \tau [y/x] \vdash e : \tau (e)$$

Let N the set of values described by $\theta\tau_x$. By (d), $N\subseteq\mathbb{N}$ and $n\in N\Leftrightarrow \theta\left[n/v\right]e_x\hookrightarrow_o^*$ true. Since, $N\subseteq\mathbb{N}$, N is enumerable, thus consider its enumeration n_i , where $i\geq 0$ and $n_i< n_j\Leftrightarrow i< j$. From ((b)) and ((c)) $e_x\hookrightarrow_o^{i_x}n_x$ and from soundness of λ_\downarrow , $n_x\in N$. Also, $(\theta e)(e_x)\hookrightarrow_o^{i_x}(\theta e)n_x$. Hence, it suffices to prove that there exists v',j' such that $(\theta e)n_x\hookrightarrow_o^{j'}v'$. We will prove it by induction on N:

- Base case $(n_x = n_0)$: By (e) $(\theta \lfloor n_0/x \rfloor) \tau_y = \{v : \mathtt{nat}^{\downarrow} \mid \theta e_x \wedge v < n_0\} = \{v : \mathtt{nat}^{\downarrow} \mid \mathtt{false}\}$. Hence, there is no natural value n such that $\emptyset \vdash n : (\theta \lfloor n_0/x \rfloor) \tau_y$; which trivially gives us that $\models \theta \lfloor n_0/x \rfloor e : \theta \lfloor n_0/x \rfloor (y : \tau_y \rightarrow \tau \lfloor y/x \rfloor)$. By Lemma 8 and (a) we get $\emptyset \vdash \theta \lfloor n_0/x \rfloor e : \theta \lfloor n_0/x \rfloor (y : \tau_y \rightarrow \tau \lfloor y/x \rfloor)$. So, $\theta' = \theta \lfloor n_x/x \rfloor \lfloor e/f \rfloor$ is well-formed under $\Gamma' = \Gamma; x : \tau_x; f : y : \tau_y \rightarrow \tau \lfloor y/x \rfloor$ and by Inductive Hypothesis on $(a), \models \theta'e' : \theta'\tau$. Since τ is trivial, $\theta'\tau$ is trivial thus, there exist v_0, i_0 such that $\theta'e' \hookrightarrow_o^{i_0} v_0$. But, $(\theta e)n_x \hookrightarrow_o (\theta \lfloor n_x/x \rfloor \lfloor e/f \rfloor) e' = \theta'e'$. So $(\theta e)n_x \hookrightarrow_o^{i_0+1} v_0$.
- Inductive Step: Suppose for all i' < i there exist $v_{i'}, i_{i'}$ such that

$$(\theta e)n_{i'} \hookrightarrow_o^{i_{i'}} v_{i'}$$

By (e), $\theta\left[n_i/x\right]\tau_y=\{v:\operatorname{nat}^{\downarrow}\mid\theta e_x\wedge v< n_i\}$. For any expression e_y such that $\emptyset\vdash e_y:(\theta\left[n_i/x\right])\tau_y$ and $\models e_y:(\theta\left[n_i/x\right])\tau_y$, there exist v_y,i_y such that $e_y\hookrightarrow_o^{i_y}v_y$ and from preservation $\vdash v_y:(\theta\left[n_i/x\right])\tau_y$. Hence, there exists an l< i such that $v_y=n_l$. By Inductive Hypothesis on N, there exist v_l,i_l such that $(\theta e)(e_y)\hookrightarrow_o^{i_y}(\theta e)n_l\hookrightarrow_o^{i_l}v_l$. So,

$$\models (\theta [n_i/x])e : (\theta [n_i/x])(y:\tau_y \to \tau [y/x])$$

By Lemma 8 and (a) we get

$$\emptyset \vdash (\theta [n_i/x])e : (\theta [n_i/x])(y:\tau_y \to \tau [y/x])$$

So, $\theta' = \theta [n_i/x] [e/f]$ is well-formed under $\Gamma' = \Gamma, x$: $\tau_x, f : y: \tau_y \to \tau [y/x]$ and by Inductive Hypothesis on $(a), \models \theta'e' : \theta'\tau$. Since τ is trivial, $\theta'\tau$ is trivial; thus, there exist v_i, i_i such that $\theta'e' \hookrightarrow_o^{i_i} v_i$. But, $(\theta e)n_i \hookrightarrow_o (\theta [n_i/x] [e/f])e' = \theta'e'$. So, $(\theta e)n_i \hookrightarrow_o^{i_i+1} v_i$.

• Case T-REC-\(\frac{1}{2}\). Assume

$$\Gamma \vdash \mu f. \lambda x. e' : x: \tau_x \to \tau$$

By inversion we get that τ is serious. We will prove the three requirements of well-formed expressions.

- 1. Trivial, since, e is a value
- 2. Trivial, since τ is serious.
- 3. This case does not apply
- Case T-GEN. Assume

$$\Gamma \vdash [\Lambda \alpha] e' : \forall \alpha. \sigma'$$

where $e \equiv [\Lambda \alpha] \, e'$ and $\sigma \equiv \forall \alpha. \sigma'$ which is trivial. By inversion

$$\Gamma \vdash e' : \sigma'(a)$$

We will prove the three requirements of well-formed expressions.

- 1. Trivial since e is a value.
- 2. The second case cannot occur.
- 3. Assume a trivial τ , such that $\emptyset \vdash \tau$. Then $\theta(e[\tau]) = \theta([\Lambda \alpha] e'\tau) \hookrightarrow_{\sigma} \theta e'$. Moreover, σ' is trivial because σ is trivial. So, we can apply IH on (a) and get $\models \theta(e[\tau]) : \theta \sigma'$, for any α thus $\models \theta(e[\tau]) : \theta(\sigma'[\tau/\alpha])$.
- Case T-INST. Assume

$$\Gamma \vdash e'[\tau] : \sigma'[\tau/\alpha]$$

where $e \equiv e'[\tau]$ and $\sigma \equiv \sigma'[\tau/\alpha]$ which is trivial. By inversion

$$\Gamma \vdash e' : \forall \alpha. \sigma'(a), \qquad \Gamma \vdash \tau(b), \qquad \tau \text{ trivial } (c)$$

By Lemma 5 and since σ it trivial, $\forall \alpha.\sigma'$ is trivial.

So by IH on (a) using 3 we have that since (b) and (c) hold, $\models \theta e : \theta \sigma$.

Theorem 4 (Termination). *If* $\emptyset \vdash e : \sigma$ *and* σ *is trivial, then* e *is trivial.*

Proof. Direct implication of Lemma 9 with $\Gamma = \emptyset$ and $\theta = \emptyset$. \square

References

[1] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. Technical Report.