Laboratorio di Programmazione

Progetto "Longest Increasing Subsequence" - II

5 Maggio 2021

Premessa

Data una sequenza *s* di *n* interi positivi, rappresentata da un array, il seguente programma in Java calcola la lunghezza della più lunga sottosequenza di *s* strettamente crescente (11is: *length of the longest increasing subsequence*).

Per una descrizione del problema e dell'algoritmo ricorsivo, accompagnata da alcuni esempi, fai riferimento all'esercitazione precedente, relativa al progetto "Longest Increasing Subsequence" – parte I (28/04/2021).

1. Applicazione della tecnica di programmazione dinamica bottom-up

La struttura di supporto appropriata per applicare la tecnica di memoization seguendo l'impostazione proposta al punto 2 dell'esercitazione precedente è una matrice quadrata $(n+1) \times (n+1)$.

Una matrice di questo tipo per la sequenza $s = \langle 2, 7, 5, 7, 4 \rangle$ è illustrata nella figura della pagina seguente (n=5) attraverso una griglia (tratti orizzontali e verticali blu) i cui nodi corrispondono agli elementi della matrice.

Ciascuna colonna è associata a una "coda" della sequenza s a partire dall'indice i, e tale porzione della sequenza si legge in alto, guardando gli elementi in neretto a destra della colonna di indice i. In particolare, l'indice 0 corrisponde all'intera sequenza s (tutti gli elementi sono a destra), mentre n corrisponde a una coda di s vuota (non ci sono elementi a destra della colonna n).

Ciascuna riga è invece associata a un valore del parametro t, in accordo con l'interpretazione t = s[j] se $0 \le j < n$ oppure t = 0 se j = n, dove j è l'indice di riga della matrice. Il valore di t, in verde nella figura, si legge a sinistra in corrispondenza alla riga j.

Gli indici di colonna (i) e di riga (j) sono riportati in grigio, rispettivamente sotto la griglia e a destra della griglia.

Le schede llis_bottom_up.pdf, consultabili in forma di presentazione, illustrano il processo di elaborazione per assegnare valori agli elementi della matrice nell'esempio considerato. Gli archi rossi orientati che hanno origine in un nodo riflettono le ricorsioni di llisRec (una o due) per i valori dei parametri corrispondenti ai nodi coinvolti.

Completa il programma preimpostato nel file Bottomuplis.java, senza modificare le parti già codificate, per realizzare la procedura llisde (metodo statico) applicando una tecnica di programmazione dinamica bottom-up in accordo con le indicazioni fornite sopra. Verifica quindi che i risultati ottenuti siano coerenti con i valori calcolati dal programma ricorsivo originale.

2. Ricostruzione di una sottosequenza crescente più lunga seguendo un percorso attraverso la matrice

Analogamente a quanto visto a lezione per il problema della sottosequenza comune più lunga (LCS), a partire dalla matrice risultante alla fine dall'elaborazione oggetto del punto precedente è possibile ricostruire una sottosequenza crescente più lunga (LIS). A tale proposito è sufficiente identificare un opportuno cammino attraverso la matrice che percorre i nodi corrispondenti alle ricorsioni di llisrec che hanno contribuito al risultato finale.

Le schede lis_percorso.pdf, consultabili in forma di presentazione, illustrano il processo di elaborazione per identificare un percorso utile nell'esempio considerato. Gli archi verdi riflettono le ricorsioni di llisRec che hanno fornito i valori utilizzati per calcolare il risultato: in base alla codifica degli argomenti di llisRec adottata, archi orizzontali corrispondono a elementi di s non selezionati; archi inclinati corrispondono a elementi presi a far parte della sottosequenza (evidenziati in questo caso dal fondo verde chiaro).

Completa il programma preimpostato nel file BottomUpLIS.java, senza modificare le parti già codificate, per realizzare la procedura lisde (metodo statico) applicando una tecnica di programmazione dinamica bottom-up completata da un cammino attraverso la matrice in accordo con le indicazioni fornite. Verifica quindi che i risultati ottenuti siano coerenti con quanto ci si dovrebbe attendere.

3. Caricamento del codice prodotto attraverso la piattaforma e-learning

Accedi con le tue credenziali alla sezione dedicata al laboratorio del corso di Programmazione attraverso la piattaforma uniud e-learning: https://elearning.uniud.it

Seguendo lo schema indicato nel *quiz moodle* predisposto per questa esercitazione, inserisci i programmi realizzati per risolvere i problemi proposti nei due punti precedenti.

Le soluzioni corrette caricate entro la scadenza del quiz moodle (vedi termini indicati in corrispondenza al quiz stesso) saranno considerati elementi positivi ai fini della valutazione della prova di Laboratorio di Programmazione.