Multilayer stream graphs JFLI Workshop - 2019

Pimprenelle Parmentier M1 student Riken AIP

pimprenelle.parmentier@polytechnique.edu

Supervisors:

Tiphaine Viard (Riken AIP)
Benjamin Renoust (Institute for Datability Science, Osaka University)
Jean-François Baffier (JSPS)

Graphs: interactions (edges) between individuals (nodes).

$$G = (V, E)$$

Graphs: interactions (edges) between individuals (nodes).

$$G = (V, E)$$

A few examples:

- social interactions
- IP network
- transportation network

Graphs: interactions (edges) between individuals (nodes).

$$G = (V, E)$$

A few examples:

- social interactions
- IP network
- transportation network

Graphs: interactions (edges) between individuals (nodes).

$$G=(V,E)$$

A few examples:

- social interactions
- IP network
- transportation network

- ⇒ More complex systems : How to deal with...
 - different types of nodes and/or different types of links ?
 - time-dependence ?

- useful:
 - applicable
 - interesting results

- useful:
 - applicable
 - interesting results
- efficient
 - ullet easy to manipulate o building theories
 - high complexity

- useful:
 - applicable
 - interesting results
- efficient
 - ullet easy to manipulate o building theories
 - high complexity
- coherent

- useful:
 - applicable
 - interesting results
- efficient
 - ullet easy to manipulate o building theories
 - high complexity
- coherent
- generalizing the first two existing notions :
 - multilayer graphs
 - stream graphs

Multilayer graphs: complex structures

$$M = (V_M, E_M, V, L)$$

 $V = \{MAP, MB, YYA, AC\}$ $L = \{\text{conferences}, \text{ relationship types}\}$ $V_M = \{(MAP/ECCS'13/Talk \text{ to each other}), \text{ etc.}\}$ $E_M = \{\text{Edges between elements of }$

 V_M

Different types of interaction Different types of nodes

ightarrow More complex structures

Stream Graphs: time-dependence

$$S = (T, V, W, E)$$

```
T = [0, 10]
V = \{a, b, c, d\}
W = \{(t, u)|u \text{ appears at } t\}
E = \{(t, (u, v))|(u, v) \text{ appears at } t\}
```


- nodes can appear or disappear in function of continuous time
- links can appear or disappear in function of continuous time

→ Model interactions over time

$$G = (T, T_M, V, W_M, E_M, \mathcal{L})$$


```
T = [0, 18]
\mathcal{L} = \{Uni, Dept\}
V = \{R1, R2, R3\}
T_M = \{([0, 10], (U3, Math)), \dots\}
```

$$G = (T, T_M, V, W_M, E_M, \mathcal{L})$$

$$\textit{W}_{\textit{M}} = \{(\textit{t}, (\textit{R}1, \textit{U}1, \textit{Math})) | \textit{t} \in [0, 18]), \dots\}$$

$$G = (T, T_M, V, W_M, E_M, \mathcal{L})$$

$$W_M = \{(t, (R1, U1, Math)) | t \in [0, 18]\}, \dots\}$$

$$E_M = \{(t, (R1, U1, Math), (R2, U2, Math) | t \in [1, 6]\}, \dots\}$$

 G_1 and G_2 are **isomorphic** if we can find a bijection which map the nodes of G1 to the nodes of G2

 G_1 and G_2 are **isomorphic** if we can find a bijection which map the nodes of G1 to the nodes of G2

$$a \rightarrow 2, b \rightarrow 3, c \rightarrow 1, d \rightarrow 4$$

$$a
ightarrow f$$
, $b
ightarrow d$, $c
ightarrow e$

There is no bijection that respects layer structure.

Possibilities: diffusion

Find the "decisive" times and and nodes/links/layer : stop a diffusion, find a weakness in the network...

Possibilities: diffusion

Find the "decisive" times and and nodes/links/layer : stop a diffusion, find a weakness in the network...

Possibilities: diffusion

Find the "decisive" times and and nodes/links/layer : stop a diffusion, find a weakness in the network...

Possibilities: influence

Measure "influence": find a "precursory", find which parameter are "important" and which are not (ex: most of researchers who won the price P worked in dept D in university U at time T) ...

Thank you!

- Multilayer stream graphs are graphs with nodes and edges of different types and can change with time
- \bullet What we have done : formal object $\textbf{G} = (\textbf{T}, \textbf{T}_{\textbf{M}}, \textbf{V}, \textbf{W}_{\textbf{M}}, \textbf{E}_{\textbf{M}}, \mathcal{L})$
- What we are doing: computational object, visualization
- Next step : measure of "influence"
- Tracks for the future : study of diffusion

