

UNIVERSIDADE FEDERAL DO ACRE
CURSO DE BACHARELADO EM MEDICINA
DISCIPLINA DE FARMACOLOGIA

FARMACODINÂMICA

PROF. DR. RICARDO DE ARAÚJO MARQUES 2024.2

—FARMACODINÂMICA—

OBJETIVOS DA AULA

- DEFINIR FARMACODINÂMICA
- DESCREVER OS PROCESSOS E ETAPAS ENVOLVIDAS NA INTERAÇÃO FÁRMACO-RECEPTOR
- APRESENTAR AS PRINCIPAIS VIAS DE TRANSDUÇÃO DE SINAL E SUAS CARACTERÍSTICAS
- DISCUTIR AS RELAÇÕES DOSE-RESPOSTA DOS FÁRMACOS
- CLASSIFICAR OS FÁRMACOS DE ACORDO COM SUAS ATIVIDADES INTRÍNSSECAS
- RELACIONAR A SEGURANÇA DE UM FÁRMACO COM SEU ÍNDICE TERAPÊUTICO

—FARMACODINÂMICA—

ROTEIRO DA AULA

- I. INTRODUÇÃO A FARMACODINÂMICA
- II. TRANSDUÇÃO DE SINAL
- III. MODELOS DE INTERAÇÃO ENTRE FÁRMACO E RECEPTOR
- IV. RELAÇÕES DOSE-RESPOSTA
- V. AGONISTAS
- **VI. ANTAGONISTAS**
- VII. RELAÇÕES DOSE-RESPOSTA QUANTAIS

I INTRODUÇÃO A FARMACODINÂMICA

- A FARMACODINÂMICA DESCREVE AS AÇÕES DOS FÁRMACOS NO ORGANISMO
- TAMBÉM DESCREVE A INFLUÊNCIA DE SUAS **CONCENTRAÇÕES NA MAGNITUDE DAS RESPOSTAS**
- A MAIORIA DOS FÁRMACOS EXERCE OS **SEUS EFEITOS INTERAGINDO COM ALVOS** (RECEPTORES)
- **ESTES PODEM ESTAR PRESENTES NA** SUPERFÍCIE OU NO INTERIOR DA CÉLULA

FARMACOCINÉTICA FARMACODIDÂMICA

Eficácia

Toxicidade

II TRANSDUÇÃO DE SINAL

- A LIGAÇÃO DE UM AGONISTA AO RECEPTOR INICIA A RESPOSTA BIOLÓGICA
- AGONISTA É UMA MOLÉCULA QUE SE FIXA A UM RECEPTOR E PRODUZ UMA RESPOSTA MENSURÁVEL

II.I O COMPLEXO FÁRMACO-RECEPTOR

 A INTENSIDADE DA RESPOSTA GERALMENTE É PROPORCIONAL AO NÚMERO DE COMPLEXOS FÁRMACO-RECEPTOR (FR)

Fármaco + Receptor ← Complexo fármaco-receptor → Efeito biológico

 AS INTERAÇÕES SÃO INFLUENCIADAS PELA ESTEREOQUÍMICA, CARGA E POLARIDADE DO LIGANTES

SÃO CARACTERIZADAS PELA ALTA ESPECIFICIDADE (ESTRUTURALMENTE ESPECÍFICOS)

II.II ESTADO DOS RECEPTORES

- OS RECEPTORES EXISTEM EM PELO MENOS DOIS ESTADOS: INATIVO (R) E ATIVO (R*)
- RECEPTORES SÃO ATIVOS MESMO NA AUSÊNCIA DE UM LIGANTE (ATIVIDADE CONSTITUITIVA)
- AS FORMAS ESTÃO EM EQUILÍBRIO ENTRE SI (FORMA R PREDOMINA)
- OS AGONISTAS DESLOCAM O EQUILÍBRIO DE R PARA R* (EFEITO BIOLÓGICO)
- ANTAGONISTAS NÃO ALTERAM A FRAÇÃO R*
- AGONISTAS INVERSOS REDUZEM A FRAÇÃO R*

III MODELOS DE INTERAÇÃO ENTRE FÁRMACO E RECEPTOR

III.I O MODELO CHAVE-FECHADURA

III.II O MODELO DO ENCAIXE INDUZIDO

• PROPÕE O ACOMODAMENTO CONFORMACIONAL RECÍPROCO NO SÍTIO DE INTERAÇÃO

INFLUÊNCIA DA CONFIGURAÇÃO ABSOLUTA NA INTERAÇÃO FÁRMACO-RECEPTOR

INFLUÊNCIA DA CONFIGURAÇÃO ABSOLUTA NA INTERAÇÃO FÁRMACO-RECEPTOR

• CITALOPRAM É UM ANTIDEPRESSIVO INIBIDOR SELETIVO DA RECAPTAÇÃO DE SEROTONINA

50% (R) + 50% (S)

100% (*S***)**

INFLUÊNCIA DA CONFORMAÇÃO NA INTERAÇÃO FÁRMACO-RECEPTOR

receptores muscarínicos

receptores nicotínicos

III.III PRINCIPAIS FAMÍLIAS DE RECEPTORES

 A FARMACOLOGIA DEFINE O RECEPTOR COMO QUALQUER MOLÉCULA BIOLÓGICA A QUAL UM FÁRMACO SE FIXA E PRODUZ UMA RESPOSTA MENSURÁVEL

QUAIS SÃO OS ALVOS?

- ENZIMAS
- ÁCIDOS NUCLEICOS
- PROTEÍNAS ESTRUTURAIS
- RECEPTORES DE SINAIS EXTRACELULARES

MECANISMOS DE SINALIZAÇÃO TRANSMEMBRANA

Canais iônicos
disparados por ligantes

Exemplo:

Receptores colinérgicos nicotínicos B

Receptores acoplados à proteina G

Exemplo:

Adrenorreceptores $\alpha \in \beta$

C

Receptores ligados a enzimas

Exemplo:

Receptores de insulina

D

Receptores intracelulares

Exemplo:

Receptores esteroides

III.IV ETAPAS RELEVANTES DA INTERAÇÃO FÁRMACO RECEPTOR

Tendência do fármaco em se ligar ao receptor

Tendência do fármaco em ativar o receptor, uma vez ligado

AFINIDADE E ATIVIDADE INTRÍSSENCA DE LIGANTES DOS RECEPTORES BENZODIAZEPÍNICOS

SUBSTÂNCIA	AFINIDADE DO LIGANTE ENSAIO DE "BINDING", Ki (nM)	ATIVIDADE INTRÍNSECA DO LIGANTE
diazepam	11,0	Agonista
midazolam	3,1	Agonista
flumazenil	1,4	Antagonista

III.V CARACTERÍSTICAS DA TRANSDUÇÃO DE SINAL

• A TRANSDUÇÃO DE SINAIS TEM DOIS ASPECTOS IMPORTANTES:

1) A CAPACIDADE DE AMPLIAR SINAIS PEQUENOS

2) PROTEGER A CÉLULA CONTRA ESTIMULAÇÃO EXCESSIVA

 QUANDO A ADMINISTRAÇÃO REPETIDA DE UM FÁRMACO RESULTA EM EFEITOS MENORES - TAQUIFILAXIA

 MENOR NÚMERO DE RECEPTORES NA SUPERFÍCIE CELULAR

 INATIVAÇÃO DO RECEPTOR VIA FOSFORILAÇÃO

IV RELAÇÕES DOSE-RESPOSTA

- AGONISTA É DEFINIDO COMO UM FÁRMACO QUE PODE SE LIGAR AO RECEPTOR E PROVOCAR UM EFEITO BIOLÓGICO.
- A INTENSIDADE DO EFEITO DEPENDE DA CONCENTRAÇÃO DO FÁRMACO NO LOCAL DO RECEPTOR, QUE POR SUA VEZ É DETERMINADA POR:
 - DOSE DO FÁRMACO
 - CARACTERISTICAS FARMACOCINÉTICAS

IV.I RELAÇÕES DOSE RESPOSTA GRADUAIS

- A MEDIDA QUE A CONCENTRAÇÃO DE UM FÁRMACO AUMENTA, A INTENSIDADE DE SEU EFEITO FARMACOLÓGICO TAMBÉM AUMENTA
- A POTÊNCIA E EFICÁCIA DE UM FÁRMACO PODEM SER DETERMINADAS NAS CURVAS DE DOSE-RESPOSTA

→ RELAÇÕES DOSE RESPOSTA GRADUAIS: EFICÁCIA

- EFICÁCIA É A HABILIDADE DO FÁRMACO DE PROVOCAR A RESPOSTA FARMACOLÓGICA QUANDO INTERAGE COM UM RECEPTOR
- A EFICÁCIA DEPENDE:
- DO NÚMERO DE COMPLEXOS FÁRMACO-RECEPTOR FORMADOS
- DA EFICIÊNCIA DO ACOPLAMENTO DESDE A ATIVAÇÃO DO RECEPTOR ATÉ A RESPOSTA CELULAR

V. AGONISTAS

- UM AGONISTA SE LIGA AO RECEPTOR E PRODUZ UMA RESPOSTA BIOLÓGICA, PODENDO SER:
- AGONISTAS TOTAIS
 MIMETIZAM A RESPOSTA DO LIGANTE ENDÓGENO
- AGONISTAS PARCIAIS
 POSSUEM EFICÁCIA MENOR QUE OS AGONISTAS TOTAIS
- AGONISTAS INVERSOS
 REVERTEM A ATIVIDADE CONSTITUITIVA DOS RECEPTORES

VI. ANTAGONISTAS

- ANTAGONISTAS SÃO FÁRMACOS QUE DIMINUEM OU SE OPÕEM À AÇÃO DE OUTRO FÁRMACO OU LIGANTE ENDÓGENO
- UM ANTAGONISTA SE LIGA AO RECEPTOR, MAS NÃO O ATIVAM

EFEITO DE FÁRMACOS ANTAGONISTAS

- O ANTAGONISTA COMPETITIVO REDUZ A POTÊNCIA DO AGONISTA
- O ANTAGONISTA NÃO COMPETITIVO REDUZ A EFICÁCIA DO AGONISTA

VII. RELAÇÕES DOSE-RESPOSTA QUANTAIS

• RELAÇÃO DOSE-RESPOSTA QUE MEDE A INFLUÊNCIA DA INTENSIDADE DA DOSE NA PROPORÇÃO DA POPULAÇÃO QUE RESPONDE A ESSA DOSE

→ ÍNDICE TERAPÊUTICO

• É A RELAÇÃO DA DOSE QUE PRODUZ TOXICIDADE COM A DOSE QUE PRODUZ O EFEITO EFICAZ OU CLINICAMENTE DESEJÁVEL EM UMA POPULAÇÃO DE INDIVÍDUOS

Índice terapêutico = DT₅₀ / DE₅₀

• O ÍNDICE TERAPÊUTICO É UMA MESURAÇÃO DA SEGURANÇA DO FÁRMACO

"QUANTO MAIOR A JANELA TERAPÊUTICA, MAIS SEGURO É O FÁRMACO"

—FARMACODINÂMICA—

