

Univ.-Prof. Dr. Radu Ioan Boţ

Nonlinear Optimization

Exercise session 1

- 1. Let $X \subseteq \mathbb{R}^n$ be a nonempty convex set and $f : \mathbb{R}^n \to \mathbb{R}$ a convex function. Show that every local minimum of f with respect to X is a global minimum of f with respect to X. (2 points)
- 2. Let $X \subseteq \mathbb{R}^n$ be a nonempty set and $x_0 \in X$. Show that the following statements are true:
 - (i) $T_X(x_0)$ is a nonempty closed cone;
 - (ii) if X is a convex set, then $T_X(x_0) = \operatorname{cl}\left(\bigcup_{\lambda \geq 0} \lambda(X x_0)\right)$ is a convex set, too;
 - (iii) if X is a convex set, then $(T_X(x_0))^* = -N_X(x_0)$.

(4 points)

3. Let $X \subseteq \mathbb{R}^n$ be a nonempty set and $\operatorname{dist}_X : \mathbb{R}^n \to \mathbb{R}$, $\operatorname{dist}_X(y) = \inf\{\|y - x\| : x \in X\}$, the distance function associated to X. For a given function $f : \mathbb{R}^n \to \mathbb{R}$, let

$$f'(x_0; d) = \lim_{t \downarrow 0} \frac{f(x_0 + td) - f(x_0)}{t}$$

denote its directional derivative at $x_0 \in \mathbb{R}^n$ in direction $d \in \mathbb{R}^n$. Prove that: if $X \subseteq \mathbb{R}^n$ is a nonempty and convex set and $x_0 \in X$, then

$$T_X(x_0) = \{ d \in \mathbb{R}^n : (\text{dist}_X)'(x_0; d) = 0 \}.$$

(3 points)

4. Consider the general constrained optimization problem

min
$$f(x)$$
,
s. t. $g_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$
 $x \in \mathbb{R}^n$

where $f, g_i, h_j : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, j = 1, ..., p, are continuously differentiable functions. Let x_0 be a feasible element of this problem and

$$X_{\text{lin}} := \{ x \in \mathbb{R}^n : g_i(x_0) + \nabla g_i(x_0)^T (x - x_0) \le 0, i = 1, ..., m \\ h_j(x_0) + \nabla h_j(x_0)^T (x - x_0) = 0, j = 1, ..., p \}.$$

Prove that $T_{\text{lin}}(x_0) = T_{X_{\text{lin}}}(x_0)$.

Hint. Show that
$$T_{\text{lin}}(x_0) = \bigcup_{\lambda \ge 0} \lambda(X_{\text{lin}} - x_0)$$
 and use Exercise 1(ii). (3 points)

5. Let

$$g: \mathbb{R}^2 \to \mathbb{R}^4, g(x, y) = (\pi - 2x, -y - 1, 2x - 3\pi, y - \sin(x))^T,$$

and

$$X = \{(x, y) \in \mathbb{R}^2 : g(x, y) \leq 0\}.$$

- (i) Represent the set X graphically.
- (ii) Find the tangent cones $T_X(x_i)$, i = 1, 2, 3, where $x_1 = (\frac{\pi}{2}, 1)^T$, $x_2 = (\pi, 0)^T$ and $x_3 = (\frac{3\pi}{2}, -1)^T$, and represent these sets graphically.
- (iii) Find the linearized tangent cones $T_{lin}(x_i)$ for $i \in \{1, 2, 3\}$.
- (iv) Find $i \in \{1, 2, 3\}$ for which $T_X(x_i) = T_{\text{lin}}(x_i)$.

(4 points)

- 6. Let be $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Prove by using the strong duality theorem of linear optimization that the following statements are equivalent:
 - (i) The system Ax = b has a solution $x \ge 0$.
 - (ii) It holds $b^T d \geq 0$ for every $d \in \mathbb{R}^m$ with $A^T d \geq 0$.

(3 points)