基本定义

- 1. 参考教材: An Introduction of Mathmatical Theory of Inverse Problem(前三章), Kirsch;
- 2. 反问题举例:
 - (a) 确定空间分布物体的密度: 即已知 $u(x,y,z) = \iint\limits_{\Omega} \frac{\rho(\xi,\eta,\zeta)d\xi d\eta d\zeta}{\left(\sqrt{(x-\xi)^2+(y-\eta)^2+(z-\zeta)^2}\right)^3},$ 求 $\rho(\xi,\eta,\zeta)$;
 - (b) 逆热传导方程的反问题: 根据热传导方程 $\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) & x \in \mathbb{R} \\ u|_{t=0} = \phi(x) \end{cases},$ 已知正问题的值 $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \phi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi + \frac{1}{2a\sqrt{\pi}} \int_0^t \int_{-\infty}^{+\infty} \frac{f(\xi,\tau)}{\sqrt{t-\tau}} e^{-\frac{(x-\xi)}{4a^2\sqrt{t-\tau}}} d\tau,$ 求 $\phi(x) = u(x,0)$;
- 3. 适定性 (well-posedness): 设 X, Y 是赋范空间, 算子 $K: X \to Y, Kx = y$ 称为适定的若解 x 满足:
 - (a) 存在性: 对每个 $y \in Y$, 至少有一个 $x \in X$, 满足 Kx = y;
 - (b) 唯一性: 对每个 $y \in Y$, 至多由一个 $x \in X$, 满足 Kx = y;
 - (c) 稳定性: x 连续依赖于 y. 即若 $\{x_n\} \subseteq X$, $\lim_{n\to\infty} Kx_n = Kx$, 则 $x_n \to x$;
- 4. 不适定性 (ill-posedness): 不满足任意适定性条件, 也称为病态性;
- 5. 设 X, Y 是赋范空间, 线性紧算子 $K: X \to Y$, 记核空间 $\mathcal{N}(K) = \{x \in X: Kx = 0\}$. 若商空间的维数无穷 $\dim \frac{X}{\mathcal{N}(K)} = \infty$, 则 $\exists \{x_n\} \subset X$ 满足 $Kx_n = 0$ 但 $\{x_n\}$ 不收敛;
 - (a) 特别地, K^{-1} 是无界的;
- 6. 不适定问题举例:
 - (a) (反问题) 第一类 Fredholm 积分方程: 对于 $\int_a^b K(x,t)Z(t)dt=u(x)$, $x\in [c,d]$, 已知 u(x) 求 Z(t). 其中核函数 K(x,t) 在 $[c,d]\times [a,b]$ 上连续;

已知 $Z_1(t)$ 是 $u_1(x)$ 的解, 构造 $Z_2(t) = Z_1(t) + N \sin \omega t$,

得到
$$u_2(x) = \int_a^b K(x,t) Z_2(t) dt = \int_a^b K(x,t) [Z_1(t) + N \sin \omega t] dt = u_1(x) + N \int_a^b K(x,t) \sin \omega t dt;$$

固定 N, 令 $\omega \to \infty$ 充分大, 则由 Riemann-Lebesgue 引理: 因为 K(x,t) 连续, 则 $\int_a^b K(x,t) \sin \omega t dt \to 0$ 充分

由
$$||u_1(x) - u_2(x)||_2 = \left| \left| N \int_a^b K(x,t) \sin \omega t dt \right| \right|_2 = |N| \left\{ \int_c^d \left[\int_a^b K(x,t) \sin \omega t dt \right]^2 dx \right\}^{\frac{1}{2}} \to 0,$$
得 $||Z_1(t) - Z_2(t)||_2 = |N| \left\{ \int_a^b \sin^2 \omega t dt \right\}^{\frac{1}{2}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)}}$

当 $\omega \to \infty$ 充分大, $||Z_1(t) - Z_2(t)||_2 \to |N|\sqrt{\frac{b-a}{2}}$. 即 $u_2 \rightarrow u_1$, $\not\sqsubseteq Z_2 \nrightarrow Z_1$;

$$||Z_1(t) - Z_2(t)||_{\infty} = \max_{t \in [a,b]} |N \sin \omega t| = |N|;$$

即测量值 u_2 相对精确值 u_1 存在充分小的误差, 但反问题 的解的误差不一定充分小;

(b) (正问题) 二维 Laplace 方程的 Cauchy 问题: 对于定解问题 $\begin{cases} \Delta u(x,y) = 0 & -\infty < x < +\infty \\ u(x,0) = f(x) & \frac{\partial u(x,y)}{\partial y} \Big|_{y=0} = \varphi(x,y) \end{cases}$

$$\begin{cases} \Delta u(x,y) = 0 & -\infty < x < +\infty \\ u(x,0) = f(x) & \frac{\partial u(x,y)}{\partial y} \Big|_{y=0} = \varphi(x) \end{cases}$$

其中 $f(x), \varphi(x)$ 已知, 求 u(x,y);

取 $f_1(x) \equiv 0, \varphi_1(x) = \frac{\sin ax}{a} (a > 0)$,则 $u_1(x, y) = \frac{1}{a^2} \sin ax$ · sinh ay 是该问题的解;

取
$$f_2(x) = 0$$
, $\varphi_2(x) = 0$, 则 $u_2(x,y) = 0$;
则 $||f_1(x) - f_2(x)||_{\infty} = 0$, $||\varphi_1(x) - \varphi_2(x)||_{\infty} = \sup_{x \in \mathbb{R}} \left|\frac{\sin ax}{a}\right| = \frac{1}{a}$, $||u_1(x) - u_2(x)||_{\infty} = \sup_{x,y} \left|\frac{1}{a^2}\sin ax \cdot \sinh ay\right| = \frac{1}{a^2}\sinh ay$ (当 $a > 0$ 充分大 $a \to \infty$, 该范数任意大);

(c) (反问题) 计算机层析成像 (CT) 问题: 已知射线强度为 I, 射线围绕 被观测组织参考系旋转的角度为 δ , 射线经过路程参数化为 u, 组 织的射线吸收率为常数 γ , 组织的密度为 ρ , 则 $dI = -\gamma \rho I du$ (解为 $\ln I(u) = -\gamma \int_{u_0}^u \rho(x,y) du$). 射线源到组织参考系的距离为 s, 测量 点的坐标为 $se^{i\delta}+uie^{i\delta}$, 则相对强度损失 $\ln I(u)=-\gamma\int_{u_0}^u\rho(se^{i\delta}+uie^{i\delta})$ $uie^{i\delta})du$. 求组织的密度分布 ρ ;

> 定义 Radon 变换: $R\rho := \int_{-\infty}^{+\infty} \rho(se^{i\delta} + uie^{i\delta})du;$ 假定 ρ 径向对称为 $\rho(r)$, 射线为 (x,0), 则相对射线强度 $v(x) := \ln I(\infty) = -2\gamma \int_0^\infty \rho(\sqrt{x^2 + u^2}) du,$

令
$$r^2=x^2+u^2$$
, 则 $v(x)=-2\gamma\int_x^R\frac{r}{\sqrt{r^2-x^2}}\rho(r)dr$,
其中 $R\to\infty$ 是组织的最大厚度;

(d) (反问题) 微分问题: 已知积分方程 $y(t) = \int_0^t x(s)ds$ 和 y(t), 求 x(t) = y'(t);

对 y(t) 作扰动 $y(t) + \delta \sin \frac{t}{\delta^2}$, 对应的解 $x(t) = y'(t) + \frac{1}{\delta} \cos \frac{t}{\delta^2}$;

考虑 $K: X \to Y$,

取 $K: C[0,1] \to C[0,1]$ 且 y(0) = 0,则 $||y_1 - y_2||_{\infty} = \max_{t \in [0,1]} \left| \delta \sin \frac{t}{\delta^2} \right| = \delta$, $||x_1 - x_2||_{\infty} = \max_{s \in [0,1]} \left| \frac{1}{\delta} \cos \frac{t}{\delta^2} \right| = \frac{1}{\delta}$.此时方程不适定;

取 $K: C[0,1] \to Y := \{ y \in C^1[a,b], \exists y(0) = 0 \},$ 则 $||y||_Y = \max_t |y'|, ||y_1 - y_2||_Y = \max_t \left| \frac{1}{\delta} \cos \frac{t}{\delta^2} \right| = \frac{1}{\delta}$. 此时方程适定;

- 7. 紧积分算子定理: 设 J = [a.b], 且 K(s,t) 在 [a,b] 上连续, 则 $(TX)(s) = \int_a^b K(s,t)X(t)dt$ 所定义的算子 $K: J \to J$ 是紧算子;
- 8. 最坏的误差: 对于 $\int_0^t x(s)ds = y(t), t \in [0,1], x \in C[0,1];$

已知: y(t) 且 $||y''||_{\infty} \le E$. 实际观测值为 $\tilde{y}(t)$, 误差 $z(t) := y(t) - \tilde{y}(t)$;

条件: z(0) = z'(0) = 0 且 $z'(t) \ge 0$, 观测误差 $||z||_{\infty} < \delta$; 计算: $|x(t) - \tilde{x}(t)|^2 = |z'(t)|^2 = \left| \int_0^t \frac{d}{ds} |z'(t)|^2 ds \right| = \int_0^t 2z'(s)z''(s)ds \le 4E \int_0^t z'(s)ds = 4Ez(t);$

结论: $|x - \tilde{x}|_{\infty}^2 \le 4E\delta$, 即 $||x - \tilde{x}||_{\infty} \le 2\sqrt{E\delta}$;

- 9. 范数强弱: 已知线性有界算子 $K: X \to Y$, Banach 空间 X, Y, 子空间 $X_1 \subset X$, 定义 X_1 上的范数为 $||\cdot||_1$, X 上的范数为 $||\cdot||_1$ 若 $\forall x \in X_1$, $\exists c > 0$, s.t. $||x|| \le c||x||_1$, 则称 $||\cdot||_1$ 是比 $||\cdot||$ 更强的范数;
 - (a) 记号: 对于误差 δ , 理想观测值二阶导数上界 E, 记 $F(\delta, E, ||\cdot||_1) := \sup\{||x||_1: ||Kx|| \leq \delta, ||x||_1 \leq E\}$. 当 $\delta \to 0$, 有 $F \to 0$;
 - (b) 注意: ||·||1 不是指 1- 范数;
- 10. 引理: 设 $K: X \to Y$ 是线性紧算子, 且 dim $\frac{X}{N(K)} = \infty$, 则存在 c, δ_0 , 使 得 $\forall \delta \in (0, \delta_0), F(\delta, E, ||\cdot||_1) \geq c$;

- 11. 紧算子奇异分解 (singular value decomposition): 设 $K: X \to Y$ 是紧算子, X, Y 是 Hilbert 空间, 伴随算子 (共轭算子) $K^*: Y \to X$, 其中 $\mu_1 \ge \mu_2 \ge \mu_3... > 0$ 是 K 的奇异值, 则存在标准正交系 $\{x_j\} \subset X$, $\{y_j\} \subset Y$. 有 $Kx_j = u_j y_j$, $K^* y_j = u_j x_j$, $j \in J$, 且 $x = x_0 + \sum_{j \in J} (x, x_j) x_j$, $Kx = \sum_{j \in J} u_j(x, x_j) y_j$. 称 (u_j, x_j, y_j) 为 K 的奇异系;
- 12. 定理: $F(\delta, E, ||x'||_{L^2}) \leq \sqrt{\delta E}, F(\delta, E, ||x''||_{L^2}) \leq \delta^{\frac{2}{3}} E^{\frac{1}{3}};$
- 13. 定理: $K: X \to Y$ 是线性紧算子, X, Y 是 Hilbert 空间, K 有稠密的值域, 共轭算子 $K^*: Y \to X$, 则:
 - (a) 若 $X_1 := K^*(Y), ||x||_1 := ||(K^*)^{-1}x||_Y, x \in X_1, 则:$
 - i. $F(\delta, E, ||\cdot||_1) \leq \sqrt{\delta E}$;
 - ii. 存在 $\delta_n \to 0$, 使得 $F(\delta_n, E, ||\cdot||_1) = \sqrt{\delta_n E}$;
 - (b) 若 $X_2 := K^*K(X), ||x||_2 := ||(K^*K)^{-1}x||_X, x \in X_2, 则:$
 - i. $F(\delta, E, ||\cdot||_2) \leq \delta^{\frac{2}{3}} E^{\frac{1}{3}};$
 - ii. $\exists \delta_n \to 0, s.t. : F(\delta_n, E, ||\cdot||_2) = \delta_n^{\frac{2}{3}} E^{\frac{1}{3}};$
- 14. 例题: 对于 $\begin{cases} \frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} & x \in [0,\pi], t > 0 \\ u(0,t) = u(\pi,t) = 0 & u(x,0) = u_0(x) \end{cases}$ 有精确解 u(x,t) = u(x,t

$$\frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2 t} \sin(nx) \cdot \int_0^{\pi} u_0(y) \sin(ny) dy := \sum_{n=1}^{\infty} a_n \cdot e^{-n^2 t} \sin(nx), 其中 a_n = \frac{2}{\pi} \int_0^{\pi} u_0(y) \sin(ny) dy.$$
 已知 $u(x,T)$, 逆求 $u(x,\tau)$, $\tau < T$;

解可写成 $u(x,t) = \frac{2}{\pi} \int_0^{\pi} K(x,y) u_0(y) dy$,其中 $K(x,y) = \sum_{n=1}^{\infty} e^{-n^2 t} \sin(nx) \sin(ny)$;若 $\tau \in (0,T)$,则 $F(\delta,E,||\cdot||_1) \leq E^{1-\frac{\tau}{T}} \delta^{\frac{\tau}{T}}$;

15. 例题: 数值微分 $N(t) = \begin{cases} \frac{1}{h}[y(t+h) - y(t)] & t \in (0, \frac{1}{2}), \\ \frac{1}{h}[y(t) - y(t-h)] & t \in (\frac{1}{2}, 1), \end{cases}$, 计算 $||N(t) - y'||_{L^2}, y \in H^2(0, 1);$

$$y(t\pm h)=y(t)\pm y'(t)h+\int_t^{t+h}(t\pm h-s)y''(s)ds;$$
 当 $t\in(0,\frac{1}{2})$ 时,

$$\begin{split} N(t)-y'(t)&=\tfrac{1}{h}\int_t^{t+h}(t+h-s)y''(s)ds, \diamondsuit \tau=t+h-s, \\ \text{for } N(t)-y'(t)&=\tfrac{1}{h}\int_0^h y''(t+h-\tau)\tau d\tau; \end{split}$$