网藤科技南京研发中心

网络基础

是协议

修订时间: 2022.9.14 杨文睿

应用层 表示层 会话层 传输层 网络层 数据链路层 物理层

交换机

- 交换Switching
- 广播域Broadcast domain
- 单播Unicast
- 组播Multicast
- 广播Broadcast

交换机

- 终端设备的接入
- 数据帧的寻址及转发
- 基本的接入安全功能
- 广播域的隔离(VLAN)
- 二层链路的冗余、防环及负载均衡

路由器

路由器

- 隔绝广播
- 路由协议的支持,路由选择
- 网络层寻址及数据转发
- 广域网接入、地址转换及特定的安全功能

OSI参考模型

各种应用程序协议

数据的格式化、数据加密解密、数据的压缩解压缩

建立、管理、终止实体之间的会话连接

数据的分段及重组;提供端到端的数据服务(可靠或不可靠)

将分组从源端传送到目的端;逻辑寻址;路由选择

将分组数据封装成帧;实现两个相邻结点之间的通信;差错检测

在介质上传输比特;提供机械的和电气的规约

借助OSI模型理解数据传输过程(封装过程)

数据传输过程

数据链路层

以太网数据帧格式

网络层协议—IP

Version (4)	Header Length (4)	Priority & Type of Service (8)	Total Length (16)			
Identification (16)			Flags (3) Fragment offset (13)			
Time to	live (8)	Protocol (8)	Header checksum (16)			
Source IP Address (32)						
Destination IP Address (32)						
Options (0 or 32 if any)						
Data (varies)						

20 Bytes

网络层协议—ARP

Address Resolution Protocol

- 将 IPv4 地址解析为 MAC 地址
- 维护IP与MAC映射关系的缓存

Ethernet II Header src 00dd.f800.0001 dst FFFF-FFFFFFF				
Arp Request				
SenderMac 00dd.f800.0001				
SenderIP	1.1.1.1			
TargetMac	00-00-00-00			
TargetIP	1.1.1.254			

Ethernet II Header src 0000.000C.AAAA dst 00dd.f800.0001						
Arp Reply						
SenderMac	0000.000C.AAAA					
SenderIP	1.1.1.254					
TargetMac	00dd.f800.0001					
TargetIP	1.1.1.1					

路由

Protocol	Network	Exit Intf
Connected	192.168.1.0/24	FE1/0
Connected	192.168.12.0/24	S0/0
RIP	192.168.2.0/24	S0/0

交換网络

二层交换机的主要功能

- 终端设备的接入;
- 以太网数据帧的交换,根据目的MAC地址转发数据帧;
- 学习MAC地址,并维护MAC地址表;
- 防止二层环路。

MAC地址及MAC地址表

MAC地址表

switch#show mac-address-table

Mac Address Table						
Vlan	Mac Address	Туре	Ports			
1	0002.8502.def0	DYNAMIC	Gi0/1			
1	0015.f915.8e80	DYNAMIC	Gi0/1			
1	0030.b637.8e10	DYNAMIC	Gi0/1			
10	0027.450b.c00a	STATIC	Gi0/2			
20	00d0.bbe4.da59	DYNAMIC	Gi0/5			

Catalyst交换机默认情况下动态MAC表项的老化时间为300s

VLAN

- 交换机的所有接口属于一个广播域,往往也是一个逻辑子网;
- 用户无法根据业务需要灵活的在交换机上进行广播域的隔离;
- 随着网络规模越来越大、数量越来越多,广播风暴将给网络带来重大问题。

VLAN

- VLAN (Virtual LAN) 技术提供了一种灵活的解决方案;
- 将交换机的接口根据业务需要添加到不同的VLAN中,从而实现二层隔离。

VLAN小结

- 一个VLAN中所有设备处于同一广播域内,不同的VLAN为不同的广播域,一个VLAN一般是一个IP网段,不同的VLAN规划到不同的IP网段;
- 不同的VLAN之间二层隔离,广播不能跨越VLAN传播,因此不同VLAN之间的设备无法 进行二层通信,需通过三层设备实现互通;
- VLAN中成员关系多基于交换机的接口进行静态地分配,划分VLAN就是将交换机的接口添加到特定VLAN;
- VLAN工作于OSI参考模型的第二层,是二层交换机的一个非常根本的工作机制。

Access概念

- Access是交换机二层接口的一种类型,通常用于连接终端(例如PC或服务器)或路由器;
- Access接口只能加入一个VLAN,默认交换机上的二层接口都加入VLAN1。

Trunk概念

- 当一条链路需要承载多个VLAN的流量时,需使用trunk技术;
- Trunk链路两端的交换机需采用相同的干道协议(Dot1q或ISL);
- Trunk技术使得VLAN能够跨交换机,Trunk链路两端的接口需指定为Trunk类型。

802.1Q

802.1q是一种公有标准,也称为Dot1q

VLAN隔离

每个VLAN都是一个独立的广播域,不同的VLAN之间二层就已经隔离,因此属于不通 VLAN的节点之间是无法直接互访的。

由路由器实现

路由器子接口实现

Switch virtual interface

svi配置

生成树背景

生成树背景

网络的冗余性增强了,但是却出现了二层环路

环路带来的问题

spanning-tree基本概念

在网络中部署生成树后,交换机之间会进行协议报文的交互并进行计算,最终将网络中的某个接口进行阻塞(Block),从而打破环路。

谢谢观看