数据挖掘在收入预测中的应用

贾文鑫 51184407128 2019年1月10日

摘要

本文试图研究人们特别关注的收入预测问题,研究哪些变量对收入的影响较大,种族歧视和性别歧视在收入方面的表现。利用本学期学习的 10 种分类方法,对美国居民收入数据进行预测分类。首先预估模型,根据准确率、kappa 值和运行时间选取合适的模型进一步优化参数,随后将优化之后的模型应用到测试集中,根据准确率、AUC 值等评价指标评估模型的优良性,最后根据这些模型在测试集中得到的结果,进一步分析各类变量对收入的影响。得到结论,随机森林方法略微优于其他分类方法,各类方法大致处于同一水平,变量方面,人际关系和受教育程度对收入的影响最大,而性别和种族并没有显著的重要性。

本文包含11张图形,11张表格。

关键词: 收入; 随机森林; 判别分类; 预测; 模型评估

目录

摘要		2
第一章	引言	1
1. 1	研究背景	1
1.2	问题提出	1
1.3	论文结构安排	1
第二章	数据分析	3
2. 1	数据来源与预处理	3
2. 2	模型初步选择	7
2. 3	模型参数优化	7
2. 4	模型效果评估	9
第三章	总结与展望19	9
附录 代	码20	Э

第一章 引言

1.1 研究背景

收入一直是人们日常最关心的几个问题之一,生活中也经常能看到家长向刚工作的哥哥姐姐们询问工资情况,大多数同学选择来上海就读研究生生也是因为上海收入相对较高。那么收入到底和那些因素有关呢?如果能够研究得到收入与哪些因素是相关的,是否可以通过影响这些因素来达到提高自己收入的目的呢?

1.2 问题提出

本文所选取的数据中包含有年龄、受教育程度、工作阶层和种类、人际关系、种族、性别等十多个变量,来探究美国居民收入与哪些因素有关。通过采用本门课程所学习的 10 种分类方法,采用已知的信息,在训练集中训练模型,在测试集中预测收入是否大于 50k。通过对各类分类方法评价指标的分析,来挑选最优的估计模型。从直观上来看,受教育程度高的人理应要比没受过太多教育的人收入更高,不同职业之间应该也会有收入差异,而且种族与性别之间的差异也是我们所关心的,是否真的存在性别歧视和种族歧视导致男性比女性的收入高,白种人比有色人种收入高。

1.3 论文结构安排

本文结合本学期学习的各种分类方法,对美国居民收入进行预测,并且选取适当的分类评价指标,对模型预测效果进行评估。本文尝试对 1 万条数据进行训练,寻找最优预估的同时,测试各算法的运行速度,很好的模拟了现实操作。

本文共分为三个部分,结构安排如下:

第一章介绍了选题背景,收入的多少是人们十分关心的问题,那么是什么因素影响了收入自然而然地引起了人们的思考,本文选取数种分类方法来对收入进行预测。

第二章是本文的重点,主要是各种分类方法的实证分析,采用不同的分类器,

结合准确率、kappa 值、AUC 值等指标,评价各个模型的预估效果。并采用效果 较好的分类方法在测试集中预测,并对这些分类模型进行评估。

第三章主要结合第二章模型的结果,就此次研究中所总结的经验教训予以简要陈述。

第二章 数据分析

2.1 数据来源与预处理

本文的数据来源于 http://archive.ics.uci.edu/ml/的 adult 数据集,共包含 16281个数据,每一条数据包含 14 个因变量和 1 定型的自变量。

2.1.1 变量的介绍

每一条数据包含了 14 个因变量, 这 14 个因变量既有连续变量又有分类变量, 我们需要使用这 14 个变量去预测这个人的收入是否大于 50k。

	化 1 又里	
变量名	变量解释	
age	连续变量,	被观测者年龄
workclass	分类变量,	工作阶层
fnlwgt	连续变量,	权重
education	分类变量,	受教育程度
education.num	连续变量,	受教育年限
marital-status	分类变量,	婚姻状况
occupation	分类变量,	职业
relationship	分类变量,	家庭关系
race	分类变量,	种族
sex	分类变量,	性别
capital-gain	连续变量,	资本收益
capital-loss	连续变量,	资本亏损
hours-per-week	连续变量,	每周工作时间
native-country	分类变量,	原生国家

表1 变量名解释

2.1.2 变量的初步筛选

观察收入数据的前几项可以看出, capital-gain 和 capital-loss 两项的值绝大多数取值为 0, 而且从实际上来说,如果一个人资本收益较大,那么基本可以肯定他的收入大于 50k,这些变量对预测没有意义,所以选择将这两个变量去除。

2.1.3 训练集与测试集的构造

设立随机数种子为 1,在总数据中随机抽取 2/3 作为训练集,其余作为测试集。缺失值处理和归一化将在建立每一个模型时进行。

2.2 模型初步选择

首先针对每种方法都建立一个模型,观察它们在训练集中的效果,尽量采取交叉验证的方法获取模型在训练集上的正确率和 kappa 值,并选取其中效果最好的 5 个模型进行参数优化。

其中, KNN 方法和 SVM 方法需要对变量进行归一化处理,且有些方法不能处理数据的缺失值,需要提前对数据进行处理,将连续性变量归一化处理,或是将缺失数据所在的行清除。

分类器	正确率	kappa 值	运行时间
naive bayes	0.826494	0.4992671	<1min
KNN	0.8300797	0.5042374	5min
决策树	0.8217131	0.4340324	<1min
bagging	0.8226096	0.4275556	<1min
随机森林	0.8356574	0.5266836	2min
adaboost	0.8358566	0.5320491	<1min
staking	0.8311533	0.5010647	5min
SVM	0.827988		2min
xgboost	0.821414		2min
神经网络	0.813526	0.4265689	20min

表 2 模型预估效果

正确率表示模型将训练局中的数据正确分类的比例,kappa 值表示相对于乱猜,模型正确分类的提高值 k=(p0-pe)/(1-pe)。

从上表可以看出,初步建立的模型中,神经网络不仅正确率和 kappa 值最低,而且运行时间也是最长的,所以选择将其去除。剩下的变量中,根据其模型效果和运行时间选择 KNN、bagging、随机森林、adaboost 和 SVM 这 5 种综合效果最好的 5 种方法进行下一步参数优化。

2.3 模型参数优化

2.3.1 KNN 的参数优化

KNN 方法使用前需要对数据进行归一化处理。选取欧式距离,最大的邻居数设为 100, 在"rectangular", "triangular", "epanechnikov", "optimal", "cos", "inv", "gaussian", "triweight", "biweight"这些核函数中选取最优的 k 和 kernel。

最终输出最优参数 k=66, kernel="inv", 模型的准确率也提升到了 0.832。

2.3.2 Bagging 的参数优化

Bagging 方法不需要对数据标准化处理,也能够处理数据的缺失值。设置minsplit=1,maxdepth=10,即最小分裂 case 为 1,最大树高度为 10,利用 10 折交叉验证寻找最优的参数 m.

最终输出最优参数 m=4, 模型在训练集的准确率也有显著提升。

2.3.3 随机森林的参数优化

随机森林方法使用前需要去除数据的缺失值。设置 minsplit=1,maxdepth=10,即最小分裂 case 为 1,最大树高度为 10, ntree=500,寻找最优的 ntree 和 mtry 值 使得训练集上的错误率最小。

树的数量与错误率的关系:

图 1 随机森林数的数量与错误率关系图

最终输出最优参数 ntree=182,mtry=2,模型的错误率降低到了到了 0.163。

2.3.4 Adaboost 的参数优化

Adaboost 方法同样使用前需要去除数据的缺失值。设置minsplit=1,maxdepth=10,即最小分裂 case 为1,最大树高度为10,利用2折交叉验证,在"Breiman","Freund","Zhu"寻找最优的 coeflearn 参数,在1:10中寻找

最优的 mfinal 值。

错误率与不同参数之间的关系:

图 2 adaboost 错误率关系图

最终输出最优参数 coeflearn="Breiman",mfinal=9。

2.3.5 SVM 的参数优化

SVM 方法需要对数据标准化处理,使用前需要去除数据的缺失值。采用 2 折交叉验证,在-5:15 中以 2 为间隔寻找最优 cost 参数,在-15:3 中以 2 为间隔寻找最优 gamma 参数,使得正确率最高。

最终输出最优参数 cost=2**1,gamma=2**(-3), 共 4256 个支撑向量。

2.4 模型效果评估

表 3 模型效果对比

分类器	正确率	kappa 值	Precision	Recall	AUC
KNN	0.8270916	0.5031449	0.6856287	0.5540323	0.87727
bagging	0.8181275	0.412946	0.76243981	0.38306452	0.74958
随机森林	0.8290837	0.51057	0.6883629	0.5629032	0.74000
adaboost	0.8219124	0.4917947	0.668616	0.5532258	0.87324
SVM	0.8306773	0.5128840	0.6953908	0.5596774	0.7400

上表给出了 5 个分类器在测试集中的效果, 其中精准率

Precision=TP/(TP+FP), 召回率 Recall=TP/(TP+FN), AUC 表示 ROC 曲线在 x 轴 方向所围的面积。

从正确率来看,SVM 方法是最优的;从 kappa 值来看,SVM 方法是最优的;从 Precision 来看,bagging 方法是最优的;从 召回率 recall 来看,随机森林方法是最优的;从 AUC 值来看,KNN 方法是最优的。

下面分别分析每个模型在测试集中的预测结果

2.4.1 KNN 模型在测试集中的预测结果

混淆矩阵:

315

687

1

图形分析:

图 3 knn 图形分析

2.4.2 Bagging 模型在测试集中的预测结果

混淆矩阵:

表 5 bagging 混淆矩阵

Confusion Matrix and Statistics		
	Refere	ence
Prediction	0	1
0	3632	765
1	148	475

变量重要性:

表 6 knn 变量重要性

	0 8000 发星至女正
变量名	相对重要性
age	1.7746296
workclass	0
fnlwgt	0
education	12.2525035
education.num	13.4421459
marital-status	0
occupation	4.6432893
relationship	67.3491905
race	0
sex	0
hours-per-	0.5292411
week	0.5382411
native-country	0

Variable relative importance

图 4 bagging 变量重要性柱状图

从变量重要性表中可以看出,relationship 是影响最重要的变量,说明良好的 人际关系与收入是息息相关的,其次种族、性别、出生国家这几个变量的重要性 为零,可见在美国,种族歧视、性别歧视的问题已经得到了有效的控制。

图形分析:

图 5 bagging 图形分析

2.4.3 随机森林模型在测试集中的预测结果

混淆矩阵:

表 7 随机森林混淆矩阵

Confusion Matrix and Statistics		
	Refere	ence
Prediction	0	1
0	3464	542
1	316	698

变量相对重要性:

表 8 随机森林变量重要性

变量名	相对重要性	
age	0.0012837817,	0.0680500576
workclass	0.0046625293,	0.0038515196
fnlwgt	0.0019635672,	0.0010249972
education	0.0276295398,	0.0130539744
education.num	0.0322782584,	0.0242303658
marital-status	0.0280280698,	0.0786140828
occupation	0.01075126 ,	0.0586479091
relationship	0.0209057694,	0.0661022138
race	0.0005594742,	-0.0001675230
sex	0.0081556166,	-0.0018544703
hours-per-week	0.0009276968,	0.0335627091
native-country	0.0015263009,	0.0007588691

Variable Importance Random Forest computer

图 6 随机森林变量重要性图

ROC 曲线图:

与 bagging 的变量相对重要性表中得到的结果类似,人际关系、受教育程度是影响收入的最大因素,这也说明了一点,美国的阶级已经发生固化,仅仅依靠上层社会良好的人际关系就能够达到高收入。

2.4.4 adaboost 模型在测试集中的预测结果

混淆矩阵:

表 9 adaboost 混淆矩阵

Confusion Matrix and Statistics	5	
	Refere	ence
Prediction	0	1
0	3440	554
1	340	686

变量相对重要性:

表 10 adaboost 变量重要性

	30 人主主文 压
变量名	相对重要性
age	12.5677993
workclass	0.3916313
fnlwgt	0.2256467
education	10.5684174
education.num	7.4401988
marital-status	12.8484901
occupation	5.6381293
relationship	47.3729151
race	0
sex	0
hours-per-week	2.2848712
native-country	0.6619008

Variable relative importance

与前两张变量相对重要性表所得结果类似,但值得注意的是,相对于 bagging 模型的相对重要性表,adaboost 的变量相对重要性略平均,但是种族和性别变量相对重要性依然是 0,再次验证了我们之前的观点。

图形分析:

图 9 adaboost 图形分析

2.4.5 SVM 模型在测试集中的预测结果

混淆矩阵:

表 11 SVM 混淆矩阵

Confusion Matrix and Statistics		
	Refere	ence
Prediction	0	1
0	3476	546
1	304	694

图形查看支持向量:

图 10 SVM 支撑向量图

ROC 曲线图:

图 11 SVM-ROC 曲线图

综合来说,并没有那一个模型是特别优越的,每一个模型都存在优点和不足,如果非要选出一个的话,随机森林模型和 SVM 模型预测效果排在前列,每一个衡量参数都很不错,而且运行速度很快,模型的构造也容易理解,最优参数的寻找也十分便捷,而且随机森林模型不需要对参数进行标准化处理,这两个模型在本文中的缺点是不能够处理缺失值。

第三章 总结与展望

各种模型的正确率都在 0.83 左右,预测的正确率处于相对较高的水平,可以认为由这些变量来预测收入是可行的。但是并没有哪一种方法各类评价指标都显著高于其他方法的,在阅读文献的过程中我发现又有学者提出了一些新的分类方法,但时间紧迫,没有时间进一步探究其优良性。在模型的建立过程中,也遇到了一些问题,主要是内存和 cpu 的限制导致在参数优化的过程中需要大量的时间,SVM 方法建模的过程中因为数据量太大导致内存不够使用,这些问题需要性能更好的机器来解决。

变量的重要性分析,可以得出人际关系是影响收入的最大因素,这也是符合实际的,家庭因素与收入息息相关,毕竟大多数人不是在工作就是和家人在一起,这两方面占据了一个人的绝大多数时间其次,受教育程度是第二重要的变量,理所当然,受到高水平教育的人理应得到更多的收入。与一开始的预想不相符的是,种族和性别在收入方面的影响微乎其微,收入的高低似乎更加依赖自己的出身家庭和后天的受教育程度。当然这只是在美国的现象,中国的具体情况可能会有些许不同。

本文所得出的部分结论与预想的不符,其原因是美国人的收入确实不存在性 别歧视和种族歧视,还是说我们中国的国情与美国不同,让我们潜意识里认为不 同性别种族的收入应该有差异呢?这需要进一步研究中国人的收入受那些因素 的影响才能得到结论。

附录 代码

```
library(caret)
library(klaR)
library(kknn)
library(e1071)
library(adabag)
library(randomForest)
library(rpart)
library(rpart.plot)
library(xgboost)
library(caretEnsemble)
library(ROCR)
data <- read.csv("data.csv")
data<-as.data.frame(data[,-c(11,12)])
names(data)[13] <- "y"
levels(data\$y)[1] <- "0"
levels(data$y)[2] <- "1"
n \le round(2/3*nrow(data))
set.seed(1)
sub train=sample(1:nrow(data),n)
datatrain=data[sub train,] #训练集
datatest=data[-sub train,] #测试集
#naive bayes-----
NB.model <-
NaiveBayes(y~age+fnlwgt+education.num+hours.per.week+.,datatrain,usekernel=T,f
L=1)
pred.NB <- predict(NB.model,datatrain[,-13])#预测
perf.values.NB=confusionMatrix(pred.NB$class,datatrain[,13],positive="1")
perf.values.NB
perf.values.NB$byClass
measure.NB <- postResample(pred.NB$class,datatrain[,13]) #预测效果
measure.NB
#KNN-----
pre=preProcess(datatrain,method = "range")
newdatatrain=predict(pre,datatrain)
pre=preProcess(datatest,method = "range")
newdatatest=predict(pre,datatest)
```

```
model.tkknn < -train.kknn(y \sim ., kmax = 100, newdatatrain, kernel = c("rectangular", kernel = 
"triangular", "epanechnikov", "optimal", "cos", "inv", "gaussian", "triweight",
"biweight"), distance=2, scale=T)
plot(model.tkknn)
model.tkknn #输出最优参数情况
table(newdatatrain[,13],model.tkknn$fitted.values[[66]]) #混淆矩阵
perf.values.KNN=confusionMatrix(model.tkknn$fitted.values[[66]],newdatatrain[,13]
,positive="1")
perf.values.KNN
perf.values.KNN$byClass
measure.KNN <- postResample(model.tkknn$fitted.values[[66]],newdatatrain[,13]) #
预测效果
measure.KNN
model.kknn <- kknn(y~.,newdatatrain,newdatatest[,-
13],k=66,scale=T,distance=2,kernel="inv")
measure.kknn <- postResample(model.kknn\fitted.values,newdatatest[,13])
measure.kknn
perf.values.KNN=confusionMatrix(model.kknn$fitted.values,newdatatest[,13],positiv
e="1")
perf.values.KNN
perf.values.KNN$byClass
pred.knn <- prediction(model.kknn$prob[,2], newdatatest[,13])
perf.auc.knn <- performance(pred.knn,measure="auc")#所得的是一个 list 对象
AUC.KNN=unlist(perf.auc.knn@y.values)#AUC 值
AUC.KNN
#作图
#敏感度-特异度曲线
perf1.knn <- performance(pred.knn,"sens","spec")</pre>
plot(perfl.knn,main="knn 敏感度-特异度曲线")
#ROC
perf2.knn <- performance(pred.knn,"tpr","fpr")</pre>
plot(perf2.knn,main="knn-ROC")
abline(a=0,b=1,lwd=2,lty=2)
#召回率-精确率曲线
perf3.knn <- performance(pred.knn,"prec","rec")</pre>
plot(perf3.knn,main="knn 召回率-精确率曲线")
#提升图
perf4.knn <- performance(pred.knn,"lift","rpp")</pre>
plot(perf4.knn,main="knn 提升图")
#决策树------
```

```
rp rpart <- rpart(y~.,datatrain,minsplit=1,maxdepth=5,cp=0.001, parms
=list(split="gini"))
rpart.plot(rp rpart,type=4,fallen.leaves=TRUE)#画出树状图
cpmatrix <- printcp(rp rpart)</pre>
plotcp(rp rpart)
mincpindex <- which.min(cpmatrix[,4])
cponeSE <- cpmatrix[mincpindex,4]+cpmatrix[mincpindex,5]</pre>
cpindex <- min(which(cpmatrix[,3]<=cponeSE))</pre>
cpmatrix[cpindex,1]#所确定的 cp 值
#剪枝
rp rpart2 <- prune(rp rpart,cp=cpmatrix[cpindex,1])
rpart.plot(rp rpart2,type=4) #每类判定条件更明确
pre <- data.frame(predict(rp rpart2,datatrain[,-13]))</pre>
pre$class <- factor(rep("0",nrow(datatrain)),levels=c("0","1"))
for (i in 1:nrow(datatrain)){
  if (pre[i,1] < pre[i,2])
    pre$class[i] <- factor("1",levels=c("0","1"))
perf.values.rp <- confusionMatrix(pre\class,datatrain[,13],positive="1")
perf.values.rp
perf.values.rp$byClass
measure.rp <- postResample(pre$class,datatrain[,13]) #预测效果
measure.rp
#bagging------
m = 10
errorvec < -rep(0,m)
for (i in 1:m){
  set.seed(1)
  bagcv <-
bagging.cv(y~.,data=datatrain,v=10,mfinal=i,control=rpart.control(minsplit=1,maxde
pth=10)
  errorvec[i] <- bagev$error
}
errorvec
set.seed(1)
model.bag <-
bagging(y~.,data=datatrain,mfinal=4,control=rpart.control(minsplit=1,maxdepth=10))
perf.values <- confusionMatrix(factor(model.bag$class),datatrain$y,positive="1")
perf.values
perf.values$byClass
```

```
measure.bag <- postResample(model.bag$class,datatrain$y)
measure.bag
pred.bag <- predict(model.bag,datatest[,-13],type="class")</pre>
perf.values <- confusionMatrix(factor(pred.bag$class),datatest[,13],positive="1")
perf.values
perf.values$byClass
measure.bag <- postResample(pred.bag$class,datatest$y)
measure.bag
pred.bag <- prediction( pred.bag$prob[,2], datatest[,13])
perf.auc.bag <- performance(pred.bag,measure="auc")#所得的是一个 list 对象
AUC.bag=unlist(perf.auc.bag@y.values)#AUC 值
AUC.bag
model.bag$importance #变量相对重要性
importanceplot(model.bag) #变量相对重要性柱状图
#作图
#敏感度-特异度曲线
perf1.bag <- performance(pred.bag, "sens", "spec")</pre>
plot(perfl.bag,main="bag 敏感度-特异度曲线")
#ROC
perf2.bag <- performance(pred.bag,"tpr","fpr")</pre>
plot(perf2.bag,main="bag-ROC")
abline(a=0,b=1,lwd=2,lty=2)
#召回率-精确率曲线
perf3.bag <- performance(pred.bag,"prec","rec")</pre>
plot(perf3.bag,main="bag 召回率-精确率曲线")
#提升图
perf4.bag <- performance(pred.bag,"lift","rpp")</pre>
plot(perf4.bag,main="bag 提升图")
#RF(最优)-----
datatrain <- datatrain[complete.cases(datatrain),]
datatest <- datatest[complete.cases(datatest),]</pre>
p <- ncol(datatrain)-1
err < -rep(0,p)
B \leq rep(0,p)
for (i in 1:p){
  set.seed(1)
```

```
rfmodel <-
randomForest(y~.,data=datatrain,ntree=500,mtry=i,importance=T,proximity=T,contro
l=rpart.control(minsplit=1,maxdepth=10))
  err[i] <- min(rfmodel$err.rate[,1])
  B[i] <- which.min(rfmodel$err.rate[,1])
}
err
B
mtry.optimal <- which.min(err)
ntree.optimal <- B[which.min(err)]
c(mtry.optimal,ntree.optimal)
set.seed(1)
model.rf <-
randomForest(y~.,data=datatrain,ntree=182,mtry=2,importance=T,proximity=T)
plot(model.rf)#看树的个数与 OOB mse 的关系
perf.values <- confusionMatrix(model.rf\predicted,datatrain[,13],positive="1")
perf.values
perf.values$byClass
measure.rf <- postResample(model.rf$predicted,datatrain$y)</pre>
measure.rf
pred.rf <- predict(model.rf,datatest[,-13],type="class")</pre>
perf.values <- confusionMatrix(pred.rf,datatest[,13],positive="1")
perf.values
perf.values$byClass
measure.rf <- postResample(pred.rf,datatest[,13])
measure.rf
roc.rf <- roc(newdatatest[,13], as.numeric(pred.rf))
plot(roc.rf, print.auc = TRUE, print.thres = TRUE,main="rf-ROC")
model.rf$importance#各变量的重要程度
varImpPlot(model.rf, main="Variable Importance Random Forest computer")#作图
#adaboost------
listcoeflearn <- c("Breiman", "Freund", "Zhu")
m < -10
err <- matrix(0,nrow=length(listcoeflearn),ncol=m)
for (i in 1:length(listcoeflearn)){
  for (j in 1:m) {
```

```
set.seed(1)
    cv.model <-
boosting.cv(y~.,data=datatrain,v=2,boos=T,coeflearn=listcoeflearn[i],mfinal=j,control
=rpart.control(minsplit=1,maxdepth=10))
    err[i,j] <- cv.model$error
  }
}
err
x < -1:m
plot(err[1,],type="b",col="red",ylim=c(0,0.5))
points(err[2,],type="b",col="blue")
points(err[3,],type="b",col="green")
legend('topright',listcoeflearn,col=c("red","blue","green"),pch=rep(1,3))
model.ada <-
boosting(y~.,data=datatrain,boos=F,coeflearn="Breiman",mfinal=9,control=rpart.cont
rol(minsplit=1,maxdepth=10))
perf.values <- confusionMatrix(factor(model.ada$class),datatrain[,13],positive="1")
perf.values
perf.values$byClass
measure.ada <- postResample(model.ada$class,datatrain$y)
measure.ada
pred.ada <- predict(model.ada,datatest[,-13],type="class")</pre>
perf.values <- confusionMatrix(factor(pred.ada$class),datatest[,13],positive="1")
perf.values
perf.values$byClass
measure.ada <- postResample(pred.ada$class,datatest[,13])
measure.ada
pred.ada <- prediction(pred.ada$prob[,2], datatest[,13])
perf.auc.ada <- performance(pred.ada,measure="auc")#所得的是一个 list 对象
AUC.ada=unlist(perf.auc.ada@y.values)#AUC 值
AUC.ada
model.ada$importance
importanceplot(model.ada)
#作图
#敏感度-特异度曲线
perfl.ada <- performance(pred.ada, "sens", "spec")</pre>
```

```
plot(perfl.ada,main="ada 敏感度-特异度曲线")
#ROC
perf2.ada <- performance(pred.ada,"tpr","fpr")</pre>
plot(perf2.ada,main="ada-ROC")
abline(a=0,b=1,lwd=2,lty=2)
#召回率-精确率曲线
perf3.ada <- performance(pred.ada,"prec","rec")</pre>
plot(perf3.ada,main="ada 召回率-精确率曲线")
#提升图
perf4.ada <- performance(pred.ada,"lift","rpp")</pre>
plot(perf4.ada,main="ada 提升图")
#SVM (跑太慢) ------
costset < -seq(-5,15,2)
gammaset \le seq(-15,3,2)
costexp <- 2**costset
gammaexp <- 2**gammaset
accuracy <- matrix(0,length(costset),length(gammaset))</pre>
for (i in 1:length(costset)) {
  for (j in 1:length(gammaset)){
    set.seed(1)
    cvmodel.svm <- svm(y~., newdatatrain,cross=
2,cost=costexp[i],gamma=gammaexp[j])
    accuracy[i,j] <- cvmodel.svm$tot.accuracy
  }
dimnames(accuracy)=list(costset,gammaset)#模型精度变量的列名和行名
accuracy
max(accuracy)#正确率最大值
which.max(accuracy)
set.seed(1)
model.svm <- svm(y\sim., newdatatrain,cost=2**1,gamma=2**(-3))
summary(model.svm)
pred.svm <- predict(model.svm,newdatatest[,-13])</pre>
perf.values <- confusionMatrix(pred.svm,newdatatest[,13],positive="1")
perf.values
perf.values$byClass
measure.svm <- postResample(pred.svm,newdatatest[,13])
measure.svm
roc.svm <- roc(newdatatest[,13], as.numeric(pred.svm))
```

```
plot(roc.svm, print.auc = TRUE, print.thres = TRUE,main="rf-ROC")
onehottrain <- model.matrix(~.-1,data=newdatatrain[,-13])#one-hot 编码后的自变量
onehottrain
plot(cmdscale(dist(onehottrain[,-1])), col = as.integer(newdatatrain[,13]), pch =
c("o","+")[1:5020 %in% model.svm$index +1])
legend("bottomleft",col=c(1,2,2),(byt=n),legend=c("y=no \& a supporter","y=yes \& a
supporter", "y=yes & not a supporter"), pch = c("+", "+", "o")
#stacking------
levels(datatrain$y) <- list(no="0", yes="1")</pre>
set.seed(1)
list.stacking <- caretList(x=datatrain[,-13],y=datatrain[,13],
trControl=trainControl(method="cv",savePredictions='final',classProbs = TRUE),
methodList=c("rpart","rf"))
list.stacking#不能加 kknn
model.stacking <- caretStack(list.stacking, method="glm")
model.stacking
#xgboost-----
newdata <- read.csv("data 无-.csv")
newdata<-as.data.frame(newdata[,-c(11,12)])
names(newdata)[13] <- "y"
levels(newdata$y)[1] <- "0"
levels(newdata\$y)[2] <- "1"
n \le round(2/3*nrow(newdata))
set.seed(1)
sub train=sample(1:nrow(newdata),n)
train=newdata[sub train,] #训练集
test=newdata[-sub train,] #测试集
trainy <- as.numeric(as.factor(train[,13]))-1 #将因变量转化为 numeric,且取值为 0
和 1
trainx <- data.frame(train[,-13]) #训练集的 x
colnames(trainx) <- names(train[,-13])
colxattr <- c(2,4,6,7,8,9,10,12)
trainxattr <- model.matrix(~.,data=trainx[,colxattr])[,-1]
newtrainx <- cbind(trainx[,-colxattr],trainxattr)</pre>
newtrainx <- as.matrix(newtrainx)</pre>
param <-
list(seed=1,objective="binary:logistic",max depth=10,min child weight=0.1)
```

```
modelcv.xgb <-
xgb.cv(data=newtrainx,label=trainy,params=param,nrounds=10,nfold=2)
trainy <- model.matrix(~y-1,newdatatrain) #测试集的 y
trainy <-data.frame(newdatatrain[,13])
trainx <- data.frame(newdatatrain[,-13]) #测试集的 x
colnames(trainx) <- names(newdatatrain[,-13])
colxattr <- c(2,4,6,7,8,9,10,12)
trainxattr <- model.matrix(~.,data=trainx[,colxattr])[,-1]</pre>
newtrainx <- cbind(trainx[,-colxattr],trainxattr)</pre>
newtrain <- as.data.frame(newtrain)</pre>
testy <- model.matrix(~y-1,newdatatest) #测试集的 y
testy <-data.frame(newdatatest[,13])
testx <- data.frame(newdatatest[,-13]) #测试集的 x
colnames(testx) <- names(newdatatest[,-13])</pre>
colxattr <- c(2,4,6,7,8,9,10,12)
testxattr <- model.matrix(~.,data=testx[,colxattr])[,-1]
newtestx <- cbind(testx[,-colxattr],testxattr)</pre>
formulatrain <- as.formula(paste(paste(dimnames(newtrain))[[2]][c(1,2)],collapse = "
+"),"~", paste(dimnames(newtrainx)[[2]], collapse = " + ")))
set.seed(1)
model.nn <- neuralnet(formulatrain,data=newtrain,hidden=c(9,6),linear.output=F)
predcv <- compute(model.nn,newtrainx)</pre>
print(model.nn)
predcv$net.result
predcvclass <- c("0","1")[apply(predcv$net.result, 1, which.max)]
predcvclass
table(predcvclass,train$y)
predcvclass<-as.factor(predcvclass)</pre>
per.values <- confusionMatrix(predcvclass,train$y,positive="1")
per.values
per.values$byClass
```