- **6.16 常態定理** Let $T \in \mathbb{L}(V)$ for inner-product space V over \mathbb{C} with $\dim(V) < \infty$. V has an **6.13 最短解** If E : Ax = b with $A \in F^{m \times n}$ and $b \in F^m$ is a system of linear equations with orthonormal eigenbasis for T iff T is normal, i.e. $TT^* = T^*T$.
- **Def 自伴線運、方陣** T is self-adjoint if $T^* = T$. Square matrix A is Hermitian if $A^* = A$.
- Obs 自伴小觀察 If β is an orthonormal basis of a inner-product space V with $\dim(V) < \infty$, then T is self-adjoint iff $[T]^{\beta}_{\beta}$ is self-adjoint.
- Obs 自伴線運基本性質 If T is a self-adjoint linear operator on an inner-product space V over $F \in \{\mathbb{R}, \mathbb{C}\}$ with $\dim(V) < \infty$, then 1. each eigenvalue of T is real (even if $F = \mathbb{C}$, and) 2. the characteristic polynomial $f_T(t)$ of T splits (even if $F = \mathbb{R}$)
- **6.24 投影:正交** \Leftrightarrow 自伴 If T is a projection of inner-product space W, then T is an orthogonal projection of W iff T is self-adjoint
- Cor 自伴線運推論 Let $T \in \mathbb{L}(V)$ for inner-product space W over $F = \mathbb{C}$ with $\dim(V) < \infty$. If T is normal, T is self-adjoint iff every eigenvalue of T is real.
- **6.17 自伴定理** Let $T \in \mathbb{L}(V)$ for V over \mathbb{R} with $\dim(V) < \infty$. V has an orthonormal eigenbasis for T iff T is self-adjoint.
- Cor 常態線運推論 If $T \in \mathbb{L}(V)$ for W over \mathbb{C} with $\dim(W) < \infty$, then T is normal iff $T^* = q(T)$ for some polynomial $q \in \mathbb{P}(\mathbb{C})$
- **Def 公正、正交方陣** Let $Q \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, Q is unitary if $Q^*Q = I_n$ (i.e. $Q^* = Q^{-1}$) Q is orthogonal if $Q^tQ = I_n$ (i.e. $Q^t = Q^{-1}$)
- **Def 么正、正交等價** Let $A, B \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, A is unitarily equivalent to B if there is a unitary matrix Q with $A = Q^*BQ \bullet A$ is orthogonally equivalent to B if there is an orthogonal matrix Q with $A = Q^t B Q$
- **6.20** If $A \in \mathbb{R}^{n \times n}$, then A is self-adjoint (i.e. symmetric) iff A is orthogonally (i.e. unitarily) equivalent to a diagonal matrix in $\mathbb{R}^{n \times n}$
- **6.19** If $A \in \mathbb{C}^{n \times n}$, then A is normal iff A is unitarily equivalent to a diagonal matrix in $\mathbb{C}^{n \times n}$
- **6.21 方陣舒爾** If $f_A(t)$ splits for $A \in F^{n \times n}$, then A is unitarily equivalent to an uppertriangular matrix in $F^{n \times n}$.
- **公正、正交線**運 Let $T \in \mathbb{L}(V)$, V is an inner-product space over $F \in \{\mathbb{C}, \mathbb{R}\}$. T is unitary if $T^*T = I_V \bullet T$ is orthogonal if T is unitary and $F = \mathbb{R}$
- **6.18** If $T \in \mathbb{L}(V)$ for V over $F \in \{\mathbb{C}, \mathbb{R}\}$, with $\dim(V) < \infty$, then the following are equivalent: • $T^*T = I_V \cdot \langle T(x)|T(y)\rangle = \langle x|y\rangle$ holds for all vectors $x,y \in V$ • For any orthogonal eigenbasis β of V, $T(\beta)$ is an orthonormal basis of V • There is a $\beta \subseteq V$ s.t. β and $T(\beta)$ are both orthonormal bases of $V \bullet ||T(x)|| = ||x||$ holds for all vectors $x \in V$
- Cor **么正、正交自伴定理** If $T \in \mathbb{L}(V)$ for V over $\mathbb{C}(\mathbb{R})$ with $\dim(V) < \infty$, then T is unitary (orthogonal and self-adjoint) iff \bullet V has an orthonormal eigenbasis for T \bullet each eigenvalue og T has absolute value 1

- $S(E) \neq \emptyset$, then there is exactly one vector x in $S(E) \cap L_{A^*}(F^m)$ w.r.t. the standard inner product. Moreover, the vector x is the unique vector in S(E) with minimum ||x||
- **6.12 最佳近似解** Let $A \in F^{m \times n}$ and $b \in F^m$. For any inner-product function of F^m . $\exists x \in F^n$ that minimizes $||Ax - b|| \cdot \text{If } \text{rank}(A) = n$, then $x = (A^*A)^{-1}A^*b$ is the unique minimizer of ||Ax - b|| w.r.t. the standard inner product of F^m

Obs 標準內積觀察 Let $A \in F^{m \times n}$. For any $x \in F^n$ and $y \in F^m$, we have $\langle Ax|y \rangle_m = \langle x|A^*y \rangle_n$

Obs 矩陣位階觀察 For any $A \in F^{m \times n}$, rank $(A^*A) = \text{rank}(A)$

Obs 伴隨矩陣觀察 For any $A \in F^{m \times n}$, if $\operatorname{rank}(A) = n$, then $A^*A \in F^{n \times n}$ is invertible.

Def IEE A self-adjoint $T \in \mathbb{L}(V)$ for inner-product space V over F is positive definite if

- **6.26 奇異值定理** Let $T \in \mathbb{L}(V,W)$ for inner-product spaces V and W over $F \in \{\mathbb{C},\mathbb{R}\}$ with $\operatorname{rank}(T) = r$, $\dim(V) = n$, and $\dim(W) = m$.
- **6.27 SVD** For any matrix $A = F^{m \times n}$ with rank r,

$$A = QSR*$$

holds for:

Def Pseudoinverse $T^{\dagger} \in \mathbb{L}(W, V)$ defined by $T^{\dagger} = (T')^{-1}T''$

偽反線轉定理