Instructions:

- This Assignment is to be completed individually be each student.
- No partial credit for showing only final result, hence must show all necessary computational steps to gain credits

Q.1	Consider a channel with bandwidth W=1 MHz and SNR =20 dB, and we want to allocate	
	this channel among M=10 users.	
a	What bit rate is available to each user if we divide the entire channel into M channels of	1
	equal bandwidth	
	A:	
	W(Width) = 1 MHz, $M(Users) = 10$	
	$SNR = 10^{\frac{SNR_{db}}{10}} = 10^2,$	
	Bandwidth per user(B) = $\frac{W}{M} = \frac{1Mhz}{10} = 0.1 \text{MHz}$	
	To get the bit rate in this noisy channel, we use Shannon capacity	
	$BitRate(C) = B \cdot \log_2(1 + SNR)$	
	$= (0.1) \cdot \log_2(1 + 100)$	
	= 0.66 Mbits/s	
b	What bit rate is available to each user if the entire frequency band is used as a single	1
	channel and TDM (time division multiplexing) is applied?	
	A:	
	If the entire freq band is used as a single channel	
	$C = W \cdot \log_2(1 + SNR)$	
	= 6.66 Mbits/s	
	Since it's time shared, the actual bit rate available to the user is	
	$C_{\text{freq}} = \frac{6.66}{10} \text{ Mbits/s}$	
	= 0.66 Mbits/s	
c	How does the comparison of (a) and (b) change if the FDM (frequency division	1
	multiplexing) scheme in (a) requires a guard band between adjacent channels? Assume	
	the guard band is 10% of the channel bandwidth	
	A:	
	If only config (a) is using guard band and (b) is not, then final bit rate for (a) will be lesser	
	than (b), since they initially had the same bitrate	
	If the guard band is 10% of the original bandwidth distributed over the 9 spaces between	
	bandwidth divisions,	
	$C = 0.9 \cdot C_a = 0.59 \text{Mbits/s}$	

Q,2 Consider the IP network is shown below, where R is a router and S is a switch. A, B, C, and D are hosts. IP addresses and MAC addresses of hosts and router interfaces are listed as follows

a In this question, we assume R has a complete routing table and S has a complete forwarding table. However, R's ARP cache is empty right now.

R received a packet with the following header

Ethernet Src	Ethernet Dst	IP Src	IP Dest	Payload
18:AB:AC:AD:AE:AF	3E:FF:28:29:30:31	192.168.1.3	20.2.3.2	

Since R does not have anything in its ARP cache yet, it will not be able to fill in the Ethernet Dst field before it tries to send it to next hop. Thus, R will send out an ARP request first. Which host(s) will receive this ARP request sent by R? After the device(s) received the ARP request from R, which will respond?

A:

Router has filtering capacity, so it'll broadcast the request to the NID subnet of 20.2.3.2, i.e It'll broadcast to the devices connected to the port ID 20.2.3.1, which means, that C, and D receive the broadcast ARP request from R, C's IP address would match the request, so it would respond to R's ARP.

b After the above operation was successfully completed, what would the new header of the packet that R sending out?

A:

The request from A is due, so it sends the header with A's IP, but from the MAC of R's port ID, to the IP address of C

Ethernet Src	Ethernet Dst	IP Src	IP Dest	Payload
3E:FF:38:39:40:41	01:FF:12:34:56:78	192.168.1.3	20.2.3.2	

c After the above operation was successfully completed, would R send out ARP requests again for this incoming packet?

Ethernet Src	Ethernet Dst	IP Src	IP Dest	Payload
18:AB:AC:AD:AE:AF	3E:FF:28:29:30:31	192.168.1.3	20.2.3.8	

	A: ARP table is	now made, so	R would know	w where to sen	d packets, when	n IP of C is	
	referenced in		But, it's not aw	are of D's MA		t sends out an ARP	
Q.3	Consider a c		strings that co		e following for	ır codewords:	
a	What is the l	namming dista		e?			1
	A: XOR(⊕)	000000	000011	001111	111111	Min hamming distance	
	000000	000000	000011	001111	111111	2	
	000011	000011	000000	001100	111100	2	
	001111	001111	001100	000000	110000	2	
	111111	111111	111100	110000	000000	2	
	* So we see the codeword		um distance be	etween codewo	ords, or the ham	nming distance for	
b		rate of this cod ficient, please		o encode two-b	oit strings? Is it	efficient?	1
	* Here k=2,	n=6. The rate t	to this codewo	rd is $k/n = \frac{2}{6} = 0$	0.333,		
	We know the error conditi	at there are 2^{n-k} ons, hence we $(-1) \le n - k$	possible parit	y bits, that mea		inguish atmost 2 ^{n-k}	
	In our case t	n he ratio can be	as high as $\frac{4}{-}$	0.532 which r	means ideally fo	or 4-bit datawords,	
	we could use codeword, w Here, we are	e min 6-bit cod ould just reduc	ewords, and de ce the efficience ts than require	etect all single by, as so many	bit errors, use of parity bits won		
С	A: $d_{min} = 2 \ge s + $	-1, can detect singl	_	this code? Ho	w many bit flip	s can be corrected?	
		= 0, we can't	correct any err	ors			
d					nerator $x^4 + x^3$	³ + 1?	1
	If $(x^{j-i} + \cdots + $	$r = x^{j} + \dots + \dots + \dots + 1$ is not di	visible by x^4 - + 1 < 5 . But,	$+x^3 + 1$, and L is an integer	if $(j - i) < 4$, hence is equa	l to 4	

Name:	Name: Haldi, Arka			
SID: 2	SID: 2018130014			
Q.No	Marks	Score		
1	3			
2	3			
3	4			
Total	10			