áD.

이수인원

교과목 포트폴리오 (MAE4028 재료의기계적거동)

1. 교과목 수강인원

■ 자연과학

■공학

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	공학	32	29
2022	2	공학	37	36
2023	2	공학	36	30
2024	2	자연과학	1	1
2024	2	공학	24	24

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	38	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	12	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	11	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.39	
2016	2	3.49	3.16	3.61	3.5	
2015	2	3.51	3.28	3.6	3.69	
2015	1	3.49	2.94	3.64	3.56	

비율

10 24 4

24

201648

교과목 포트폴리오 (MAE4028 재료의기계적거동)

4. 성적부여현황(등급)

2023

2023

2

2

ВО

C+

5

3

		/ /						
수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2021	2	Α+	10	34.48	2023	2	C0	3
2021	2	Α0	3	10.34	2024	2	A+	6
2021	2	B+	3	10.34	2024	2	Α0	1
2021	2	ВО	9	31.03	2024	2	B+	6
2021	2	C+	2	6.9	2024	2	ВО	5
2021	2	C0	1	3.45	2024	2	C+	4
2021	2	D0	1	3.45	2024	2	C0	1
2022	2	Α+	8	22.22	2024	2	D+	2
2022	2	A0	7	19.44				
2022	2	B+	6	16.67	-			
2022	2	В0	4	11.11	_			
2022	2	C+	4	11.11	_			
2022	2	C0	4	11.11				
2022	2	D+	2	5.56	_			
2022	2	D0	1	2.78	-			
2023	2	Α+	11	36.67	_			
2023	2	A0	2	6.67	_			
2023	2	B+	6	20	_			
-	1				=			

16.67

10

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	89	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	92	
2022	2	90.98	92.48	90.7	93	

6. 강의평가 문항별 현황

	평가문항		보인평 균 소속학과,대학평균과의 차이 가중 (+초과,-:미달)		점수별 인원분포				
번호					매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
			학과	대학	- 1점	2점	3점	4점	디
	교강사:	미만	차이 평균	차이 평균	1 점		5점	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
신소재공학부	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	1강좌(32)	1강좌(37)	1강좌(36)	1강좌(25)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 신소재공학부	4학년 학부생을 대상으로, 재료가 나타내는 다양한 기계적 거동(역학 특성) 및 그 미세기구와영향인자에 대한 심도있는 이해를 위한 수업으로서, 역학 기초, 전위 및 재료결함, (단결정/다결정) 변형기구, 강화기구 등에 대한 내용을 심화학습함과 동시에, 현재 관련분야에서 이슈가되고 있는 토픽들에 대하여 소개한다	This course provides an introductory treatment of the mechanical behavior of materials with a balanved mechanics-materials approach. The topics include (1) review of fundamental continuum mechanics. (2) microstructural defects, (3) theories of plastic deformation in single-and poly-crystalline materials, (4) strengthening mechanisms, (5) Mechanical testing, and (6) mechanical behavior of advanced materials such as amorphous alloys and nanocrystalline materials.	
학부 2020 - 2023 교육과 정		4학년 학부생을 대상으로, 재료가 나타내는 다양한 기계적 거동(역학 특성) 및 그 미세기구와 영향인자에 대한 심도있는 이해를 위한 수업으로서, 역학 기초, 전위 및 재료결함, (단결정/다결정) 변형기구, 강화기구 등에 대한 내용을 심화학습함과 동시에, 현재 관련분야에서 이슈가	This course provides an introductory treatment of the mechanical behavior of materials with a balanved mechanics-materials approach. The topics include (1) review of fundamental continuum mechanics. (2) microstructural	

교육과정	관장학과	국문개요	영문개요	수업목표
		되고 있는 토픽들에 대하여 소개한다	defects, (3) theories of plastic deformation in single- and poly-crystalline materials, (4) strengthening mechanisms, (5) Mechanical testing, and (6) mechanical behavior of advanced materials such as amorphous alloys and nanocrystalline materials.	
학부 2016 - 2019 교육과 정	서울 공과대학 신소재공학부	4학년 학부생을 대상으로, 재료가 나타내는 다양한 기계적 거동(역학 특성) 및 그 미세기구와 영향인자에 대한 심도있는 이해를 위한 수업으로서, 역학 기초, 전위 및 재료결함, (단결정/다결정) 변형기구, 강화기구 등에 대한 내용을 심화학습함과 동시에, 현재 관련분야에서 이슈가되고 있는 토픽들에 대하여 소개한다	This course provides an introductory treatment of the mechanical behavior of materials with a balanved mechanicsmaterials approach. The topics include (1) review of fundamental continuum mechanics. (2) microstructural defects, (3) theories of plastic deformation in singleand poly-crystalline materials, (4) strengthening mechanisms, (5) Mechanical testing, and (6) mechanical behavior of advanced materials such as amorphous alloys and nanocrystalline materials.	
학부 2013 - 2015 교육과 정	서울 공과대학 신소재공학부	4학년 학부생을 대상으로, 재료가 나타내는 다양한 기계적 거동(역학 특성) 및 그 미세기구와 영향인자에 대한 심도있는 이해를 위한 수업으로서, 역학 기초, 전위 및 재료결함, (단결정/다결정) 변형기구, 강화기구 등에 대한 내용을 심화학습함과 동시에, 현재 관련분야에서 이슈가되고 있는 토픽들에 대하여 소개한다	This course provides an introductory treatment of the mechanical behavior of materials with a balanved mechanics-materials approach. The topics include (1) review of fundamental continuum mechanics. (2) microstructural defects, (3) theories of plastic deformation in single-and poly-crystalline materials, (4) strengthening mechanisms, (5) Mechanical testing, and (6) mechanical behavior of advanced materials such as amorphous alloys and nanocrystalline materials.	
학부 2009 - 2012 교육과 정	서울 공과대학 신소재공학부	4학년 학부생을 대상으로, 재료가 나타내는 다양한 기계적 거동(역학 특성) 및 그 미세기구와 영향인자에 대한 심도있는 이해를 위한 수업으로서, 역학 기초, 전위 및 재료결함, (단결정/다결정) 변형기구, 강화기구 등에 대한 내용을 심화학습함과 동시에, 현재 관련분야에서 이슈가되고 있는 토픽들에 대하여 소개한다	This course provides an introductory treatment of the mechanical behavior of materials with a balanved mechanicsmaterials approach. The topics include (1) review of fundamental continuum mechanics. (2) microstructural defects, (3) theories of plastic deformation in singleand poly-crystalline materials, (4) strengthening mechanisms, (5) Mechanical testing, and (6) mechanical behavior of advanced materials such as amorphous alloys and nanocrystalline materials.	

10. CQI 등록내역	
	No data hava haan faynd
	No data have been found.

