Работа 5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

Богданов Александр Б05-003

13 октября 2022 г.

Цель работы: в данной работе проводится исследование спектров γ -лучей от различных образцов при помощи сцинтилляционных γ -спектрометров на основе неорганического кристалла NaI(Tl) и органической сцинтиллирующей пластмассы.

В работе используются: сцинтиллятор, фотоэлектронный умножитель (Φ ЭУ), предусилитель импульсов, высоковольтный блок питания Φ ЭУ, блок АЦП, компьютер для сбора данных.

Теоретические положения:

При прохождении γ -квантов через материальную среду образуются электроны, возникающие за счет фотоэффекта, комптоновского рассеяния и рождения электрон-позитронных пар. Образующиеся при этих процессах электроны испытывают большое количество неупругих соударений с молекулами и атомами среды. Неупругие соударения могут сопровождаться как ионизацией, так и возбуждением молекул или атомов среды. При переходах возбужденных молекул или атомов в основное состояние, при рекомбинации электрических зарядов и т.п. в веществе возникают кванты света различных длин волн, присущих данному веществу.

Возникающее излучение должно сильно поглощаться в сцинтилляторе, так как его энергия в точности равна энергии возбуждения атомов среды. Чтобы избежать этого явления, в кристаллы сцинтиллятора вводят небольшие добавки других атомов. При этом спектр поглощения сдвигается относительно спектра испускания в сторону меньших длин волн, и увеличивается вероятность выхода из вещества хотя бы некоторой части квантов света, отвечающих длинноволновому краю спектра испускания. В этом случае прохождение ионизирующей частицы через вещество будет сопровождаться световой вспышкой, которая и может быть использована для регистрации частицы.

Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления, с различной вероятностью доставки фотона к фотоприёмнику из разных точек сцинтиллятора и с разбросом высвечиваемого числа фотонов. Поэтому линия на спектре размывается. Её часто описывают гауссианом. В данной работе используется этот метод обработки данных.

Энергетическим разрешением спектрометра называется величина:

$$R_i = \frac{\Delta E_i}{E_i} \propto \frac{1}{\sqrt{E_i}}$$

Экспериментальная установка:

- 1. Сцинтиллятор
- 2. ФЭУ
- 3. Предусилитель импульсов
- 4. Высоковольтный блок питания для ФЭУ
- 5. Блок преобразования аналоговых импульсов с ФЭУ в цифровой код (АЦП)
- 6. Компьютер для сбора данных, их обработки и хранения

Ход работы:

- 1. Настроим установку.
- 2. Убедимся, что на полученной картине фонового спектра отсутствуют какие-либо фотопики.
- 3. Найдем пики полного поглощения для веществ 22 Na, 60 Co, 137 Cs, 152 Eu и 241 Am. Спектр фона и спектры исследуемых веществ:

4. Получим на экране осциллографа устойчивое изображение импульсов с выхода ФЭУ:

5. В каждом спектре определим номера каналов, отвечающих центрам пиков полного поглощения излучения от радиоактивных источников 22 Со и 137 Сs. Этим каналам присвоим табличные значения энергий и проведем линейную аппроксимацию зависимости энергии от номера канала для данного γ -спектрометра при данной геометрии измерения и настройках γ -спектрометра. Построим калибровочный график зависимости номера канала от энергии γ -кванта:

6. С помощью графика получим формулу для энергии: $E_i = 0,008N_i - 0.0031$ МэВ. Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты ΔE_i и энергетическое разрешение R_i :

Источник	N_i	ΔN_i	E_i, M∍B	ΔЕ_і, МэВ	R_i
Co 60	1408	70,3	1,17	0,058	0,0499
	1597	80,4	1,33	0,067	0,0503
Cs 137	797	49,8	0,66	0,041	0,0625
Na 22	617	45,0	0,51	0,037	0,0729
Am 241	86	10,4	0,07	0,008	0,1209
AIII 241	45	8,7	0,03	0,007	0,1933
Eu 152	60	15,2	0,05	0,012	0,2533
Eu 152	162	14,0	0,13	0,011	0,0864

7. Энергия края комптоновского поглощения для 22 Na, 60 Co, 137 Cs:

_					
-	Источник	Ν_κ	Е_к, МэВ		
			Эксперимент	Теория	
	Na 22	1294	1,076	1,062	
	Co 60	1130	0,939	0,963	
	Cs 137	533	0,442	0,477	

8. Построим график, по одной оси которого отложим экспериментальные значения, а по другой – расчетные значения этой энергии.

9. Для проверки зависимости $R_i=\frac{C}{\sqrt{E_i}}$ построим график $R_i^2=f(\frac{1}{E_i})$. Значение минимальной энергии для $^{241}\mathrm{Am},$ из-за большой погрешности исключим.

10. В спектрах источников, в которых наблюдается энергия фотопиков (22 Na, 60 Co, 137 Cs), определим энергии фотопиков и сравним эти значения со значениями, измеренными по формуле $E'=\frac{E}{1+\frac{2E}{2\pi\sigma^2}}$.

Истонник	N_обр	Е_обр, МэВ		
Источник		Эксперимент	Теория	
Na 22	206	0,169	0,171	
Co 60	272	0,224	0,210	
Cs 137	212	0,174	0,185	

11. Построим теоретический график $E_{\text{обр}} = f(E_i)$ и эксперементально полученные точки:

Вывод:

В ходе работы сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu. Были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом: фотоэффект, эффект Комптона. Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.