CS7545, Spring 2023: Machine Learning Theory - Solutions #3

Jacob Abernethy, Zihao Hu, and Guanghui Wang

Due: Tuesday, March 19 at 11:59 p.m.

1) Parameter Tuning.

(a) Write the bound as

$$\frac{\log N}{1 - \exp(-\eta)} + \frac{\eta T}{1 - \exp(-\eta)}.$$

The first term is a decreasing function of η , and the second term is an increasing function of η (To verify, take the derivative $\frac{e^n(e^n-n-1)}{(e^n-1)^2}>0, \forall n>0$). Since $T>>\log N$, the optimal value for η must be small, say less than 1.

Note that for $\eta \in (0,1)$,

$$\frac{\eta}{1 - e^- \eta} \le (\eta + 1)$$

and

$$(1 - \exp(-\eta))^{-1} \le 2/\eta$$

Using the above inequalities, the bound becomes

$$\frac{\log N}{1 - \exp(-\eta)} + \frac{\eta T}{1 - \exp(-\eta)} \le \frac{2\log N}{\eta} + (1 + \eta)T = \left(\frac{2\log N}{\eta} + \eta T\right) + T$$

Take $\eta \leftarrow \sqrt{\frac{2 \log N}{T}}$ and we have an upper bound $O(\sqrt{2T \log N} + T)$.

- (b) The minimum occurs when $T\eta = \eta^{-2}$. So, $\eta = T^{-1/3}$. So, the upper bound is $O(T^{-2/3})$.
- (c) Due to the exponential term, η must have the form $\log f(T)$ for some sub-linear function f of T. Furthermore, the first term $\frac{T}{\eta}$ requires that f is an increasing function of T. For example, we can choose $\eta = \log \sqrt{T}$, and the upper bound becomes $\frac{T}{\log \sqrt{T}} + \sqrt{T}$, which is sublinear.
- (d) At the minimum, all three terms are equal. So, we want $\frac{T\epsilon}{\eta} = T\eta$, and $\frac{T\epsilon}{\eta} = \frac{N}{\epsilon}$

The first condition implies $\epsilon = \eta^2$. The second condition implies $T\epsilon^2 = N\eta$, which then implies $\eta = \left(\frac{N}{T}\right)^{1/3}$ after the substitution $\epsilon = \eta^2$,

So, we get an upper bound $3T\eta = O(T\eta) = O(T^{\frac{2}{3}}N^{\frac{1}{3}})$.

2) **Doubling Trick.** Let $k = \lceil \log_2 T \rceil$. Let $T_i = 2^{i-1}$ for i = 1, ..., k, so that $T \leq \sum_{i=1}^k T_i$. So, the

bound is (asymptotically)

$$\sum_{i=1}^{k} \sqrt{MT_i} = \sqrt{M \sum_{i=1}^{k} 2^{i-1}} = \sqrt{M} \frac{\sqrt{2}^k - 1}{\sqrt{2} - 1} \le \sqrt{M} \frac{\sqrt{2T} - 1}{\sqrt{2} - 1} = O(\sqrt{MT})$$

1

3) **Dynamic Regret.** Following the proof of OGD in Lecture 16 but considering the dynamic regret, we have

$$\operatorname{Regret}_{T} \leq \sum_{t=1}^{T} \frac{\eta}{2} G^{2} + \sum_{t=1}^{T} \frac{(\|\mathbf{w}_{t} - \mathbf{w}_{t}^{*}\|)^{2} - (\|\mathbf{w}_{t+1} - \mathbf{w}_{t}^{*}\|)^{2}}{2\eta}$$

$$\leq \frac{TG^{2}\eta}{2} + \sum_{t=1}^{T} \frac{(\|\mathbf{w}_{t}\|^{2} - 2\langle \mathbf{w}_{t}, \mathbf{w}_{t}^{*} \rangle + \|\mathbf{w}_{t}^{*}\|^{2} - \|\mathbf{w}_{t+1}\|^{2} + 2\langle \mathbf{w}_{t+1}, \mathbf{w}_{t}^{*} \rangle - \|\mathbf{w}_{t}^{*}\|^{2})}{2\eta}$$

$$\leq \frac{TG^{2}\eta}{2} + \frac{1}{2\eta} (\|\mathbf{w}_{1}\|^{2} - \|\mathbf{w}_{T+1}\|^{2}) + \frac{1}{\eta} \sum_{t=1}^{T} \langle \mathbf{w}_{t+1} - \mathbf{w}_{t}, \mathbf{w}_{t}^{*} \rangle$$

$$\leq \frac{TG^{2}\eta}{2} + \frac{D^{2}}{2\eta} + \frac{1}{\eta} (\langle \mathbf{w}_{T+1}, \mathbf{w}_{T}^{*} \rangle - \langle \mathbf{w}_{1}, \mathbf{w}_{1}^{*} \rangle) + \frac{1}{\eta} \sum_{t=2}^{T} \langle \mathbf{w}_{t-1}^{*} - \mathbf{w}_{t}^{*}, \mathbf{w}_{t} \rangle$$

$$\leq \frac{\eta G^{2}T}{2} + \frac{7D^{2}}{4\eta} + \frac{D}{\eta} \sum_{t=2}^{T} \|\mathbf{w}_{t}^{*} - \mathbf{w}_{t-1}^{*} \|$$

$$\leq \frac{\eta G^{2}T}{2} + \frac{7D^{2} + 4DP_{T}}{4\eta}.$$

where we use the following relation

$$\begin{aligned} \left\| \mathbf{w}_{1} \right\|^{2} &= \left\| \mathbf{w}_{1} - \mathbf{0} \right\|^{2} \leq D^{2}, \\ \mathbf{w}_{T+1}^{\top} \mathbf{w}_{T}^{*} &\leq \left\| \mathbf{w}_{T+1} \right\| \left\| \mathbf{w}_{T}^{*} \right\| \leq D^{2}, \\ -\mathbf{w}_{1}^{\top} \mathbf{w}_{1}^{*} &\leq \frac{1}{4} \left\| \mathbf{w}_{1} - \mathbf{w}_{1}^{*} \right\|^{2} \leq \frac{1}{4} D^{2}, \\ \left\langle \mathbf{w}_{t-1}^{*} - \mathbf{w}_{t}^{*}, \mathbf{w}_{t} \right\rangle &\leq \left\| \mathbf{w}_{t-1}^{*} - \mathbf{w}_{t}^{*} \right\| \left\| \mathbf{w}_{t} \right\| \leq D \left\| \mathbf{w}_{t-1}^{*} - \mathbf{w}_{t}^{*} \right\|. \end{aligned}$$

4) **EWA with Prior.** The proof is essentially the same as the regular EWA. Using the same notations

$$W_t = \sum_i w_i^t$$
, $\Phi_t = -\log W_t$, and $L_T(\mathcal{A}) = \sum_{t=1}^T \ell^t(\hat{y}^t, y^t)$, we have $\Phi_{T+1} - \Phi_1 \ge (1 - \exp(-\eta))L_T(\mathcal{A})$.

For any expert i,

$$\Phi_{T+1} - \Phi_1 = -\log W_{T+1} \le -\log w_i^{T+1} = -\log p_i \exp(-\eta L_T(\text{expert } i)) = -\log p_i + \eta L_T(\text{expert } i)$$

So, $(1 - \exp(-\eta))L_T(A) \le \Phi_{T+1} - \Phi_1 \le -\log p_i + \eta L_T(\text{expert } i)$, which implies

$$L_T(\mathcal{A}) \le \frac{-\log p_i + \eta L_T(\text{expert } i)}{1 - \exp(-\eta)}$$

5) Online Non-Convex Optimization. We partition X into 2 -norm ϵ -balls. Each ϵ ball has size $O(\epsilon^n)$ and we need $N := O(1/\epsilon^n)$ of those to cover X. We treat each ball as an expert and run EWA.

EWA suffers $O(\sqrt{T \log N})$ regret with respect to the best expert. Now we need to analyze the best expert's regret with respect to the best fixed-point prediction. Let $x^* = \arg\min_{x \in X} \sum_t f_t(x)$. Then, one of the experts must satisfy $||x - x^*||_2 \le \epsilon$, which by Lipschitz assumption, implies $f_t(x) - f_t(x^*) \le \epsilon$ for all t. So, the best expert suffers at most $T\epsilon$ regret with respect to the best fixed-point prediction. The total regret of the algorithm is therefore upper-bounded by

$$O(\sqrt{T\log N} + T\epsilon) = O\left(\sqrt{Tn\log\frac{1}{\epsilon}} + T\epsilon\right).$$

Set $\epsilon = 1/T$, and the regret now becomes $O(\sqrt{nT \log T})$.

6) Subsets as Experts. Let L_t be the cumulative loss (of an expert or a hyper-expert) up to time t.

Note

$$u_i^t = \sum_{S \in S_k^N : i \in S} w_S^t$$

$$= \sum_{S \in S_k^N : i \in S} \exp(-\eta L_t(S))$$

$$= \sum_{S \in S_k^N : i \in S} \exp(-\eta \sum_{j \in S} L_t(j))$$

$$= \sum_{S \in S_k^N : i \in S} \prod_{j \in S} \exp(-\eta L_t(j))$$

Define

$$\Phi_x^A := \sum_{S \in S_-^A} \prod_{j \in S} v_j$$

for all $x \in [k-1]$ and $A \in \{x, x+1, \ldots, n-1\}$. We will construct a lookup table for Φ . Our algorithm first computes the base cases: $\Phi_1^A = \sum_{i=1}^A v_i$ for all $A \in [n]$, and $\Phi_A^A = \prod_{j=1}^A v_j$ for all $A \in [k]$. Then, we complete the table in O(nk) time, using the following recursive formula:

$$\Phi_x^A \leftarrow v_A \Phi_{x-1}^{A-1} + \Phi_x^{A-1},$$

where the first term is the sumprod value over all elements in S_k^A that contain v_A , and the second term is the sumprod value over the rest.

Now we rewrite u_n^t as

$$u_n^t = v_n \Phi_{k-1}^{n-1} = v_n \left(\sum_{i=k-1}^{n-1} v_i \Phi_{k-2}^{i-1} \right)$$