

# **SMART REMOTE VEHICLE**

# Objectifs du Projet :

- Développer une solution pratique et abordable pour contrôler un robot à distance.
- Explorer l'intégration de matériels et logiciels, notamment l'ESP32, MIT App Inventor, et la technologie Wi-Fi.
- Fournir une interface utilisateur intuitive pour une expérience de contrôle simplifiée.

Imen Hamdi

# Description Générale:

Ce projet consiste à concevoir et développer un système permettant de contrôler un véhicule robotisé à distance grâce à une application mobile créée avec MIT App Inventor. L'objectif est de démontrer l'intégration de technologies IoT (Internet des Objets) pour le contrôle sans fil de robots en temps réel

# Fonctionnalités Principales :

#### 1. Contrôle du Mouvement:

 Le robot peut avancer, reculer, tourner à gauche, tourner à droite ou s'arrêter en fonction des commandes envoyées depuis l'application mobile.

### 2. Réglage de la Vitesse :

 Un curseur dans l'application permet d'ajuster dynamiquement la vitesse des moteurs, rendant le contrôle plus précis et flexible.

### 3. Éclairage:

 Le robot est équipé d'un système d'éclairage que l'utilisateur peut activer ou désactiver à distance.

### 4. Interface Utilisateur Intuitive:

 L'application mobile dispose d'une interface conviviale comprenant des boutons de commande, un curseur de vitesse et des indicateurs pour une utilisation facile.

# Étape de Fonctionnement :

- L'ESP32 héberge un serveur web local et attend les requêtes provenant de l'application mobile.
- 2. L'utilisateur envoie des commandes HTTP à travers l'application, comme avancer (State=F), tourner (State=R), ou modifier la vitesse (Speed=150).
- 3. L'ESP32 interprète ces commandes et ajuste les signaux envoyés aux moteurs pour produire le mouvement souhaité.
- 4. Une lumière intégrée peut être activée ou désactivée selon les besoins.

## Technologies Utilisées:

- **ESP32**: Microcontrôleur utilisé comme unité centrale pour le contrôle des moteurs, la gestion des commandes, et l'hébergement d'un serveur web.
- **Wi-Fi**: Le véhicule se connecte à un réseau Wi-Fi pour recevoir les commandes via des requêtes HTTP.
- **MIT App Inventor :** Plateforme utilisée pour concevoir l'application mobile permettant de contrôler le robot.
- Moteurs à CC avec PWM : Les moteurs sont contrôlés en vitesse et direction grâce à une modulation de largeur d'impulsion.

### Fonctionnalités possibles avec MIT App Inventor :

#### 1. Connexion Wi-Fi:

- o L'application doit se connecter au même réseau Wi-Fi que l'ESP32.
- Les commandes HTTP sont envoyées à l'adresse IP locale de l'ESP32.

### 2. Interface utilisateur (UI):

- Boutons pour contrôler les mouvements : avancer, reculer, tourner à gauche, tourner à droite.
- o Curseur pour ajuster la vitesse (Speed).
- o Bouton pour activer/désactiver la lumière.

#### 3. Commandes HTTP:

- o Chaque bouton envoie une commande State spécifique :
  - State=F pour avancer.
  - State=B pour reculer.
  - State=L ou R pour tourner.
  - State=W ou w pour contrôler la lumière.
- o Un curseur envoie une commande Speed pour ajuster la vitesse.

#### 4. Structure de communication :

- o Les commandes sont envoyées sous forme d'URL, par exemple :
- o http://<ESP32 IP>/?State=F
- o http://<ESP32\_IP>/?Speed=200

# 5. ESP32 côté serveur :

 Le code ESP32 interprète ces requêtes, exécute les commandes et répond à l'application.