XI - Fonctions de plusieurs variables

- p désigne un entier naturel non nul.
- Si $x = (x_1, ..., x_n) \in \mathbb{R}^p$, alors $||x|| = \sqrt{\sum_{i=1}^p x_i^2}$ désigne la norme de x.
- U désigne une partie de \mathbb{R}^p pour laquelle, en tout point x_0 et pour toute direction u, tous les points suffisamment proches de x_0 dans la direction u appartiennent à U. Formellement,

$$\forall x_0 \in U, \forall u \in \mathbb{R}^p, \exists \varepsilon > 0 ; \forall t \in [0, \varepsilon], x_0 + tu \in U.$$

Cela permet d'approcher les points de x_0 dans toutes les directions et définir la notion de continuité, dérivabilité.

I - Applications partielles

I.1 - Définitions

Définition 1 - Application partielle

Pour tout $a = (a_1, \ldots, a_p) \in U$ et $i \in [1, p]$, l'application partielle en a selon la i-ème composante est définie par $f_{a,i}: t \mapsto f(a_1, \ldots, a_{i-1}, t, a_{i+1}, \ldots, a_n)$. De plus, il existe un ouvert $U_{a,i}$ contenant a_i tel que $f_{a,i}$ soit définie sur $U_{a,i}$.

Exemple 1 - TODO

Proposition 1

Si f est continue sur U, alors, pour tous $i \in [1, p]$ et $a \in U$, l'application partielle $f_{a,i}$ est continue sur $U_{a,i}$.

I.2 - Dérivées partielles

Définition 2 - Dérivées d'une fonction selon un vecteur

La fonction f admet une dérivée partielle en a par rapport à la i-ème variable si l'application partielle $f_{a,i}$ admet une dérivée en a_i . Cette valeur est notée $\partial_i f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$.

Exemple 2 - TODO

Définition 3 - Fonctions de classe \mathscr{C}^1

Soit f une fonction définie sur U. La fonction f est de $classe \mathscr{C}^1$ si ses dérivées partielles sont définies et continues sur U. On note $\mathscr{C}^1(U,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^1 sur U à valeurs réelles.

Théorème 1 - Développement limité d'ordre 1

Soit f une fonction de classe \mathscr{C}^1 sur U et $a=(a_1,\ldots,a_p)\in U$. Alors, il existe une fonction ε telle que $\lim_{x\to(0,\ldots,0)}\varepsilon(x)=0$ et pour tout $h=(h_1,\ldots,h_p)\in\mathbb{R}^p$ tel que $a+h\in U$,

$$f(a+h) = f(a) + \sum_{i=1}^{p} h_i \partial_i f(a) + ||h|| \varepsilon(h).$$

La fonction f admet un développement limité d'ordre <math>1 en a.

Exemple 3 - TODO

Faire le parallèle avec le cas n = 1.

I.3 - Points critiques

Dérivées partielles, Points critiques

II - Calcul différentiel d'ordre 2

Définition 4 - Dérivées partielles d'ordre 2

Soit f une fonction de classe \mathscr{C}^1 sur U et $(i,j) \in [1,p]^2$. Si $\partial_i f$ admet une dérivée partielle en a selon la j-ème variable, on note

$$\partial_j \left(\partial_i f \right) = \partial_{j,i}^2 f.$$

Lorsque i=j, on note $\partial_i^2 f$ cette dérivée. Si toutes les dérivées partielles d'ordre 2 de f sont continues, f est de classe \mathscr{C}^2 sur U.

Exemple 4 - TODO

Théorème 2 - Théorème de ? (Admis)

Soit f une fonction de classe \mathscr{C}^2 sur U. Alors, pour tout $(i,j) \in [1,p]^2$, $\partial_{i,j}^2 f = \partial_{j,i}^2 f$.

Exemple 5 - TODO

II.1 - Matrice hessienne

Définition 5 - Matrice hessienne

Soit $f: U \to \mathbb{R}$ une application de classe \mathscr{C}^2 et x_0 un point de D. La hessienne de f en x_0 est la matrice de $\mathscr{M}_n(\mathbb{R})$ définie par

$$H(f)(x_0) = \begin{pmatrix} \partial_{1,1}^2(f)(x_0) & \partial_{1,2}^2(f)(x_0) & \cdots & \partial_{1,n}^2(f)(x_0) \\ \vdots & \vdots & & \vdots \\ \partial_{n,1}^2(f)(x_0) & \partial_{n,2}^2(f)(x_0) & \cdots & \partial_{n,n}^2(f)(x_0) \end{pmatrix}$$

La fonction f admet un développement limité d'ordre 2 en a.

Exemple 6 - TODO

Théorème 3 - Développement limité d'ordre 2

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 et $a = (a_1, \dots, a_p) \in U$. Il existe une fonction ε telle que $\lim_{x \to (0,\dots,0)} \varepsilon(x) = 0$ et pour tout $h = (h_1,\dots,h_p) \in \mathbb{R}^p$ tel que $a + h \in U$,

$$f(a+h) = f(a) + \sum_{i=1}^{p} (h_i - a_i) \partial_i f(a) + \sum_{i=1}^{p} \sum_{j=1}^{p} h_i h_j \partial_{i,j}^2(f)(a) + ||h||^2 \varepsilon(h).$$

Exemple 7 - TODO

II.2 - Convexité

TODO : Hypothèse sur U

Définition 6 - Convexité / Concavité

Soit $f: U \to \mathbb{R}$.

 \bullet La fonction f est convexe si

$$\forall x, y \in U, \forall t \in [0, 1], f(tx + (1-t)y) \leq tf(x) + (1-t)f(y).$$

• La fonction f est concave si

$$\forall x, y \in U, \forall t \in [0, 1], f(tx + (1-t)y) \ge tf(x) + (1-t)f(y).$$

Exemple 8 - TODO

Théorème 4 - Conditions sur la hessienne

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 et a un point critique de f. Notons $q(f)(h) = \sum_{i=1}^{p} \sum_{j=1}^{p} \partial_{i,j}^2(f)(a)h_ih_j$.

- Si $\forall a \in \mathbb{R}^p, \forall h \in \mathbb{R}^p \setminus \{0\}, q(f)(h) \leq 0$, alors f est concave.
- Si $\forall a \in \mathbb{R}^p, \forall h \in \mathbb{R}^p \setminus \{0\}, q(f)(h) \ge 0$, alors f est convexe.

Exemple 9 - TODO

III - Recherche d'extrema

III.1 - Conditions nécessaires, Conditions suffisantes

Définition 7 - Extremum local / global

Soit $f \in \mathscr{C}^1(U, \mathbb{R})$ et $a \in U$.

- (i). f présente un maximum local en a s'il existe un ouvert $V \subset U$ contenant a tel que pour tout $x \in V$, $f(x) \leq f(a)$.
- (ii). f présente un minimum local en a s'il existe un ouvert $V \subset U$ contenant a tel que pour tout $x \in V$, $f(x) \geqslant f(a)$.
- (iii). f présente un $maximum\ global$ en a si pour tout $x\in U,$ $f(x)\leqslant f(a).$
- (iv). f présente un $minimum\ global$ en a si pour tout $x\in U$, $f(x)\geqslant f(a)$.
- (v). Un extremum est un maximum ou un minimum.

Exemple 10 - TODO

Définition 8 - Point critique

Soit $f:U\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 et $a\in U$. Le point a est un point critique de f si

$$\forall i \in [1, p], \ \partial_i(f)(a) = 0.$$

Théorème 5 - Condition nécessaire d'existence d'un extremum

Soit f une application admettant des dérivées partielles selon chacune de ses variables sur U. Si f présente un extremum local en a, alors a est un point critique de f, i.e. $\nabla f(a) = 0$.

TODO : NOTATIONS pour la hessienne et pour q : dépendance en f et en a

Théorème 6 - Conditions sur la hessienne

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 et a un point critique de f. Notons $q(f)(h) = \sum_{i=1}^{p} \sum_{j=1}^{p} \partial_{i,j}^2(f)(a)h_ih_j$.

- Si $\forall h \in \mathbb{R}^p \setminus \{0\}$, q(f)(h) > 0, alors f admet en a un minimum local.
- Si $\forall h \in \mathbb{R}^p \setminus \{0\}$, q(f)(h) < 0, alors f admet en a un maximum local.
- S'il existe h_1 et h_2 tels que $q(f)(h_1) > 0$ et $q(f)(h_2) < 0$, alors f n'admet pas d'extremum en a.

Exemple 11 - TODO

Théorème 7 - Notations de Monge

On suppose que p=2 et on note $H(f)(a)=\begin{pmatrix} r & s \\ s & t \end{pmatrix}$.

- Si $s^2 rt < 0$, alors f possède un extremum local en a.
 - \star Si r > 0, il s'agit d'un minimum local.
 - \star Si r < 0, il s'agit d'un maximum local.
- Si $s^2 rt < 0$, alors f ne possède pas d'extremum en a. Il s'agit d'un point col (ou point selle).
- Si $s^2 rt = 0$, on ne peut pas pas conclure.

Exemple 12 - TODO

III.2 - Extrema sous contraintes

Théorème 8 - Condition nécessaire d'existence d'un extremum sous contrainte linéaire

Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 et $a \in U$.

Recherche d'extrema locaux sous contrainte homogène : Méthode des multicplicateurs de Lagrange.