

Hydraulic Systems Monitoring

Predicting system stability and process degradation

Stephen Duckers

Quick Look

Business Insights & Actions

OKR:

EnergyMobil needs to focus on monitoring valve condition and Internal pump leakage because once these processes drop below optimal values the system is more likely to be unstable

Valve Condition

The valve_condition is the most significant factor affecting the stability of the hydraulic system. When the valve_condition is operating at 100%, the system is most stable. EnergyMobil should therefore focus on maintaining optimal valve conditions.

Regular inspections and maintenance of the valves could prevent potential system instabilities.

System Efficiency Sensor

The system efficiency sensor (SE) is the second greatest indicator of system stability.

EnergyMobil should leverage this sensor's data to predict potential system failures or instabilities.

An alert system could be put in place to notify the team when the sensor's readings drop below a certain threshold, indicating a potential decrease in stability.

Internal Pump Leakage

Internal_pump_leakage significantly affects the system stability. The system's stability begins to decrease when leakage starts to occur. Hence, it's crucial to monitor and mitigate any internal pump leakages promptly to ensure system stability.

Cooler Condition

The cooler_condition is not a significant factor in determining the system's stability. This can help EnergyMobil to prioritize its maintenance tasks and focus more on the valve condition and internal pump leakages.

The Data

- Original Dataset
 - 17 columns corresponding sensor data
 - 4 degradation condition columns and 1 stable flag column
 - 2205 rows by 23 columns
- Multi-class Classification for Degradation Conditions
 - SMOTE for unbalanced classes
 - quantileTransformer
 - a non-linear transformation based on the ranks of the data,
 preserving the order of values and outliers
- Binary Classification for Stable Flag
 - Onehotencoder for degradations conditions

Feature Importance

- randomforestclassifier for each of the 5 targets
- Spearman Rank Test
 - does not assume linear relationship or normally distributed data
- Chi2 test for categorical columns
- Recall_weighted Metric
 - Prioritizes False Negatives
 - Using "weighted" averaging effectively gives higher importance to the minority classes

Behavior of Targets over Time

Class Distribution for each Target

Correlation between Features and Targets

Spearman Rank Test and Chi-Squared Test

Feature	Spearman rho	p-value
FS2	0.014100	0.507200
СР	-0.024800	0.244800
TS2	-0.048700	0.022300
PS5	0.054100	0.011100
PS6	0.054100	0.011100
TS3	-0.054900	0.010000
TS4	-0.056500	0.008000
TS1	-0.056900	0.007500
PS2	0.061900	0.003700
VS1	-0.067700	0.001500
EPS1	-0.073300	0.000600
PS1	0.076500	0.000300
CE	-0.080500	0.000200
SE	0.504500	0.000000
FS1	0.165600	0.000000
PS3	0.148800	0.000000
PS4	-0.134800	0.000000

Feature	Chi-square score	p-value
cooler_condition	1.617700	0.203400
valve_condition	1098.554400	0.000000
internal_pump_leakage	664.418900	0.000000
hydraulic_accumulator	81.069400	0.000000

• Strong Predictors:

Based on both Spearman's rank and Chi-squared tests, 'SE' and 'FS1' from the Spearman's test, and
'valve_condition', 'internal_pump_leakage', and 'hydraulic_accumulator' from the Chi-squared test showed
significant correlation or association with the target variable 'stable_flag', indicating their strong predictive
power.

• Weak Predictors:

• On the other hand, 'FS2' and 'CP' from the Spearman's test, and 'cooler_condition' from the Chi-squared test showed weak or no significant correlation or association with the target variable 'stable_flag', suggesting they might not be useful for prediction.

• Significance Level:

• The p-values in the test results indicate the statistical significance of the results. A p-value below 0.05 (5% significance level) indicates a statistically significant result, whereas a p-value above 0.05 suggests the result could have occurred by chance.

Feature Importance for Each Target

Validation Scores for Degradation States and Stable Flag

Cooler Condition Classification Report

	precision	recall	f1-score	support
3	1.000000	0.992593	0.996283	135.000000
20	0.977612	1.000000	0.988679	131.000000
100	0.994220	0.982857	0.988506	175.000000
weighted avg	0.991056	0.990930	0.990938	441.000000

Internal Pump Leakage Classification Report

	precision	recall	f1-score	support
0	0.983122	0.978992	0.981053	238.000000
1	0.951456	0.951456	0.951456	103.000000
2	0.960396	0.970000	0.965174	100.000000
weighted avg	0.970573	0.970522	0.970540	441.000000

Valve Condition Classification Report

	precision	recall	f1-score	support
73	0.535714	0.671642	0.596026	67.000000
80	0.365079	0.370968	0.368000	62.000000
90	0.390000	0.565217	0.461538	69.000000
100	0.953608	0.761317	0.846682	243.000000
weighted avg	0.719194	0.662132	0.681042	441.000000

Hydraulic Accumulator Classification Report

	precision	recall	f1-score	support
90	0.974194	0.949686	0.961783	159.000000
100	0.783784	0.878788	0.828571	66.000000
115	0.858974	0.848101	0.853503	79.000000
130	1.000000	0.978102	0.988930	137.000000
weighted avg	0.933074	0.929705	0.930883	441.000000

Stable Flag - Validation/Test Scores & Feature Importance

Validation Set Classification Report

	precision	recall	f1-score	support
0	0.981884	0.978339	0.980108	277.000000
1	0.963636	0.969512	0.966565	164.000000
weighted avg	0.975098	0.975057	0.975072	441.000000

Test Set Classification Report

	precision	recall	f1-score	support
0	0.980000	0.970297	0.975124	303.000000
1	0.936170	0.956522	0.946237	138.000000
weighted avg	0.966285	0.965986	0.966085	441.000000