

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/806,009	03/22/2004	Graham A. Gaston	414-35351-US	1214
44871	7590	12/20/2005	EXAMINER	
MADAN, MOSSMAN & SRIRAM, P.C. 2603 AUGUSTA SUITE 700 HOUSTON, TX 77057			HUGHES, SCOTT A	
			ART UNIT	PAPER NUMBER
			3663	
DATE MAILED: 12/20/2005				

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/806,009	GASTON ET AL.	
	Examiner	Art Unit	
	Scott A. Hughes	3663	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 9/27/2005.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-11 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-11 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 22 March 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Response to Amendment

The amendments to claims 2, 8, and 9 filed 9/27/2005 are sufficient to overcome the U.S.C. 112 rejections of the previous office action.

Response to Arguments

Applicant's arguments with respect to claims 1-11 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1-5, 7-9, and 11 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cecconi in view of Andersen.

With regard to claim 1, Cecconi discloses a method for acquiring seismic data while drilling a well (Column 1, Lines 1-10). Cecconi discloses conveying at least one seismic receiver 12 installed in a drill string 5 (Fig. 1a). Cecconi discloses that the receiver is controlled in part by an associated accelerometer that generates signal to control seismic data acquisition (Column 8, Line 37 to Column 9, Line 7). Cecconi discloses generating seismic signals by a seismic source 6 at a surface location 7, and detecting the seismic signals with at least one sensor 18 in the at least one seismic receiver 12 at at least one location in the wellbore (Column 3, Lines 40-65). Cecconi

Art Unit: 3663

discloses computing an arrival time for the detected seismic signals in the seismic receiver (Column 1, Lines 12-17; Column 3, Lines 50-63). Cecconi does not disclose that the signals are coded signals. Cecconi discloses the use of a seismic vibrator as the source for the signals that are imparted into the formation surrounding the well. Andersen teaches that vibrators are capable of imparting coded seismic signals into a formation as sweeps (Column 1, Line 35 to Column 2, Line 33; Column 3; Column 4, Line 52 to Column 5, Line 20 to Column 7). It would have been obvious to modify Cecconi to include using the vibrator source to create coded seismic signals as taught by Andersen in order to be able to match a recorded seismic wave with a specific wave generated by the source so that the operator of a seismic survey knows that the seismic data being recorded is matched with the seismic waves imparted into the earth by the survey source.

With regard to claim 2, Cecconi discloses that the computed arrival time is transferred to a surface processor (Columns 9 and 10).

With regard to claim 3, Cecconi discloses that the computed arrival time is stored in the seismic receiver (Columns 9 and 10).

With regard to claim 4, Cecconi does not disclose coded seismic signals comprising discrete timed events. Andersen teaches that the coded seismic signals further comprise timed discrete events (Figs. 3-5) (Column 1, Lines 35-55; Column 6). It would have been obvious to modify the vibrator source disclosed by Cecconi to include coded seismic signals that comprise discrete timed events in order to match a recorded seismic wave with a specific wave generated by the source so that the

Art Unit: 3663

operator of a seismic survey knows that the seismic data being recorded is matched with the seismic waves imparted into the earth by the survey source.

With regard to claim 5, Cecconi does not disclose that the coded signals comprise timed discrete frequencies. Andersen teaches that coded signals can comprise timed discrete frequencies (Figs. 3-5) (Column 1, Lines 35-55; Column 6). It would have been obvious to modify the vibrator source disclosed by Cecconi to include coded seismic signals that comprise discrete timed events in order to match a recorded seismic wave with a specific wave generated by the source so that the operator of a seismic survey knows that the seismic data being recorded is matched with the seismic waves imparted into the earth by the survey source.

With regard to claim 7, Cecconi discloses detecting the seismic signals with at least one sensor 8 located at the surface and storing the signal detected by the surface sensor in a surface processor (Column 3, Lines 29-45).

With regard to claim 8, Cecconi discloses transferring the signals stored in the seismic receiver to a surface processor upon removal of the drill string form the wellbore (Columns 9 and 10).

With regard to claim 9, Cecconi discloses processing, according to programmed instructions, the surface detected signals and the seismic receiver detected signals to generate a seismic map (Column 1, Lines 1-20; Column 4, Lines 28-65).

With regard to claim 11, Cecconi discloses a method for acquiring seismic data while operating a drill string in a wellbore (Column 1, Lines 1-10). Cecconi discloses synchronizing, at the surface, a surface clock 48 in a surface controller 10 with a

Art Unit: 3663

downhole clock 23 in a seismic receiver 12 (Figs. 1a, 3) (Column 4, Lines 52-65; Column 8, Lines 15-36; Columns 6-10 in general). Cecconi discloses programming, at the surface, a processor in the seismic receiver to activate during at least one predetermined time window after a predetermined delay time (Column 8, Lines 37-50). Cecconi discloses that the receiver is programmed beforehand, meaning that is programmed before being used in the well and therefore it is programmed at the surface. Cecconi discloses conveying the seismic receiver in the drill string to a location of interest in the wellbore (Column 8, Lines 37-50; Column 1, Lines 1-30) (Fig. 1a). Cecconi discloses generating, under control of a surface processor, seismic signals by a seismic source 6 near a surface location (Fig. 1a) (Column 3, Lines 29-40; Column 10, Lines 27-34). Cecconi discloses a control module attached to the seismic source, and states that the source transmits waves that are detected by the sensors. Cecconi discloses detecting the seismic source signals with a near-source sensor 8 and storing the signals in the surface processor 9 (Column 3, Lines 29-65). Cecconi discloses detecting the seismic signals with at least one sensor in the seismic receiver 12 at a location of interest 13 in the wellbore (Column 3, Lines 41-64). Cecconi discloses storing the seismic signals in the receiver and transferring the detected seismic signals from the seismic receiver to the surface processor (Columns 9 and 10). Cecconi discloses processing the near-source signals and the seismic receiver detected signals according to programmed instructions to generate a seismic map (Column 1, Lines 1-20; Column 4, Lines 28-65). Cecconi does not disclose that the signals are coded signals. Cecconi discloses the use of a seismic vibrator as the source for the signals

Art Unit: 3663

that are imparted into the formation surrounding the well. Andersen teaches that vibrators are capable of imparting coded seismic signals into a formation as sweeps (Column 1, Line 35 to Column 2, Line 33; Column 3; Column 4, Line 52 to Column 5, Line 20 to Column 7). It would have been obvious to modify Cecconi to include using the vibrator source to create coded seismic signals as taught by Andersen in order to be able to match a recorded seismic wave with a specific wave generated by the source so that the operator of a seismic survey knows that the seismic data being recorded is matched with the seismic waves imparted into the earth by the survey source.

Claims 6 and 10 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cecconi in view of Andersen as applied to claims 1-5, 7-9, and 11 above and further in view of Robbins.

With regard to claim 6, Cecconi does not disclose a plurality of receivers located along a drill string. Cecconi discloses one tool with a seismic sensor located in a drill string, but not a plurality of tools. Robbins teaches a plurality of receivers located along the drill string (Fig. 1) (Column 4, Lines 60-68). It would have been obvious to modify Cecconi to include a plurality of receivers along the drill string instead of the one receiver in order to be able to take data at multiple depths of the borehole simultaneously instead of having to move the one receiver to a new location each time data for a new depth was desired.

With regard to claim 10, Cecconi discloses a method for acquiring seismic data while drilling a well (Column 1, Lines 1-10). Cecconi discloses conveying at least one

Art Unit: 3663

seismic receiver 12 installed in a drill string 5 (Fig. 1a). Cecconi discloses that the receiver is controlled in part by an associated accelerometer that generates signal to control seismic data acquisition (Column 8, Line 37 to Column 9, Line 7). Cecconi discloses generating seismic signals by a seismic source 6 at a surface location 7, and detecting the seismic signals with at least one sensor 18 in the at least one seismic receiver 12 at at least one location in the wellbore (Column 3, Lines 40-65). Cecconi does not disclose that the signals are coded signals. Cecconi discloses the use of a seismic vibrator as the source for the signals that are imparted into the formation surrounding the well. Andersen teaches that vibrators are capable of imparting coded seismic signals into a formation as sweeps (Column 1, Line 35 to Column 2, Line 33; Column 3; Column 4, Line 52 to Column 5, Line 20 to Column 7). It would have been obvious to modify Cecconi to include using the vibrator source to create coded seismic signals as taught by Andersen in order to be able to match a recorded seismic wave with a specific wave generated by the source so that the operator of a seismic survey knows that the seismic data being recorded is matched with the seismic waves imparted into the earth by the survey source. Cecconi does not disclose computing, in the seismic receiver, a check shot transit time for the detected seismic signals, and transferring the check shot transit time to the surface. Cecconi discloses computing the time (Δt) that it takes for the direct path wave to go from the source to the receiver in the borehole. Cecconi discloses taking these measurements every 10m, which is a known depth increment. It is known a check shot is made with a known depth increment and with the time it takes for a direct path signal to travel from the source to

Art Unit: 3663

the receiver (See Robbins Columns 3-4). Therefore, Cecconi discloses a method that can be used to take check shot data by using the transit times and the known depth increments of the receiver.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

The cited prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Any inquiry concerning this communication or earlier communications from the

Art Unit: 3663

examiner should be directed to Scott A. Hughes whose telephone number is 571-272-6983. The examiner can normally be reached on M-F 9:00am to 5:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jack Keith can be reached on (571) 272-6878. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

SAH

JACK KEITH
SUPERVISORY PATENT EXAMINER