Winter - 2012 Examination

Model Answer Page No: 1/19 Subject & Code: Applied Maths (12035)

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)	a)	$\int (x+1)^2 dx$		
		$= \int \left(x^2 + 2x + 1\right) dx$	1	
		$=\frac{x^3}{3}+x^2+x+c$		•
		3	1	2
		OR		
		$\int (x+1)^2 dx = \frac{(x+1)^3}{3} + c$	2	2
		Note: In solution of integration problems, if the constant 'c' is		
		not added, ½ mark may be deducted.		
	b)	$\int_{0}^{\infty} X = I_{ij}$		
	,	$\int \frac{x}{x^2 + 3x - 4} dx$		
		$= \int \frac{x}{(x-1)(x+4)} dx$		
			1	
		$= \int \left[\frac{1/5}{x-1} + \frac{4/5}{x+4} \right] dx$		
		$= \frac{1}{5}\log(x-1) + \frac{4}{5}\log(x+4) + c$	1	2
		Note: To find the partial fractions of LHS, traditional partial fraction		
		method is generally used. But apart from this direct method of partial		
		fraction is also allowed here.		
	c)	$\int_{a} \sin^2 x \cos x dx = t$	1/2	
		$\int \sin^2 x \cos x dx$ $\therefore \cos x dx = dt$	/2	
		$=\int t^2 dt$	1/2	
		$-t^3$	72	
		$=\frac{t^3}{3}+c$	1/2	
		$=\frac{\sin^3 x}{3}+c$	1/2	2
		J		
	d)	$\int_{4}^{9} \frac{dx}{x^{3/2}} = \left[\frac{x^{-1/2}}{-1/2} \right]_{4}^{9}$	1/2	
	<u> </u>		/-	
		$=\left[-\frac{2}{\sqrt{x}}\right]_4^9$		
		,		
		$= \left\lceil -\frac{2}{\sqrt{9}} \right\rceil - \left\lceil -\frac{2}{\sqrt{4}} \right\rceil$	1	
				_
		$=\frac{1}{3} \ or \ 0.333$	1/2	2

Subject & Code: Applied Maths (12035)

Page No: 2/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	200	\mathbf{OR} $\mathbf{c}^{9} dx $		
		$\int_{4}^{9} \frac{dx}{x^{3/2}} = \left[\frac{x^{-1/2}}{-1/2}\right]_{4}^{9}$	1/2	
		$= \left\lceil \frac{9^{-1/2}}{-1/2} \right\rceil - \left\lceil \frac{4^{-1/2}}{-1/2} \right\rceil$	1	
		$=\frac{1}{3} \text{ or } 0.333$	1/2	2
	e)	$\int_0^{\log 2} e^{2x} dx = \left[\frac{e^{2x}}{2} \right]_0^{\log 2}$	1/2	
		$\begin{bmatrix} \mathbf{J}_0 & \cdots & \begin{bmatrix} 2 \end{bmatrix}_0 \\ \mathbf{a}^{2\log 2} & \mathbf{a}^0 \end{bmatrix}$		
		$=\frac{e^{2\log 2}}{2} - \frac{e^0}{2}$	1/2	
		$=\frac{4}{2}-\frac{1}{2}$		
		$=\frac{3}{2}$ or 1.5	1	2
	f)	$\sqrt[3]{\frac{dy}{dx} + y} = \sqrt[4]{\frac{d^2y}{dx^2}}$		
		\sqrt{dx} \sqrt{dx} \sqrt{dx} \sqrt{dx} \sqrt{dx}	1	
		$\left(\frac{dy}{dx} + y\right)^4 = \left(\frac{d^2y}{dx^2}\right)^3$		
		Degree=3	1	2
	g)	xdy - ydx = 0		2
		$\therefore \frac{dy}{y} - \frac{dx}{x} = 0$		
		$\therefore \int \frac{dy}{y} - \int \frac{dx}{x} = c$	1	
		$\therefore \log y - \log x = c$	1	2
		Note: The above may also be further reduced into the form of $\frac{y}{x} = k$ or $y = kx$ but it is desirable.		
		$\frac{1}{x} = k \text{ or } y = kx \text{ but it is desirable.}$ $n = n(S) = 52$		
	h)	m = n(A) = 13	1	
		$\therefore p = \frac{m}{n} = \frac{13}{52}$	1/2	
		$=\frac{1}{4} \ or \ 0.25$	1/2	2

Subject & Code: Applied Maths (12035) **Page No:** 3/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)	i)	n = n(S) = 6	1	
		m = n(A) = 2		
		$\therefore p = \frac{m}{n} = \frac{2}{6}$	1/2	
		$=\frac{1}{3} \ or \ 0.333$	1/2	2
		3		
	j)	$n = n(S) = {}^{52}C_2 = 1326$	1	
		$m = n(King \ and \ Queen) = 4 \times 4 = 16$	1	
		$\therefore p = \frac{m}{n} = \frac{16}{1326}$	1/2	
		$=\frac{8}{663}$ or 0.012	1/2	2
		663		
	k)	$A = \int_{a}^{b} y dx$		
		$=\int_0^3 x^2 dx$	1/2	
		$= \left[\frac{x^3}{3}\right]_0^3$		
			1/2	
		$=\frac{3^3}{3}-0$	1/2	
		= 9	1/2	2
	<i>l</i>)	$n = n(S) = 2^2 = 4$		
		m = n(A) = 3	1	
		$\therefore p = \frac{m}{n} = \frac{3}{4} or 0.75$	1	2
		Note for Numerical Problems: For practical purpose, generally		
		the values of fractional numbers are truncated up to 3		
		decimal points by the method of rounded-off. Thus the solution is taken up to 3 decimal points only. If answer is		
		truncated more than 3 decimal points, the final answer		
		may vary for last decimal point. Thus 8/663 is actually 0.01206636500754147812971342383107 but can be taken		
		as 0.012. Due to the use of advance calculators, such as		
		modern scientific non-programmable calculators, the step 8/663 may not be written by the students and then		
		directly the answer 0.012 is written. In this case, no marks to be deducted.		

Subject & Code: Applied Maths (12035)

Page No: 4/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
2)	a)	Put $\tan \frac{x}{2} = t$ $\therefore dx = \frac{2dt}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$	1	
		$ \therefore \int \frac{dx}{5 + 4\cos x} = \int \frac{1}{5 + 4\left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2dt}{1 + t^2} $		
		$=2\int \frac{1}{t^2+9} dt$ $=2\int \frac{1}{t^2+3^2} dt$	1	
		$= 2\int \frac{1}{t^2 + 3^2} dt$ $= 2 \times \frac{1}{3} \tan^{-1} \left(\frac{t}{3}\right) + c$	1	
		$=\frac{2}{3}\tan^{-1}\left(\frac{\tan\frac{x}{2}}{3}\right)+c$	1	4
	b)	$\int \frac{\log x}{x(2+\log x)(3+\log x)} dx \qquad \boxed{ Put \ \log x = t \\ \therefore \frac{1}{x} dx = dt }$	1	
		$= \int \frac{t}{(2+t)(3+t)} dt$	1/2	
		$=\int \left[\frac{-2}{2+t} + \frac{3}{3+t}\right] dt$	1	
		$=-2\log(2+t)+3\log(3+t)+c$	1 1/2	4
		= $-2\log(2 + \log x) + 3\log(3 + \log x) + c$ Note: Direct method of partial fraction is allowed.	/-	4
	c)	$\int x^2 \tan^{-1} x dx$		
		$= \tan^{-1} x \int x^2 dx - \int \left(\int x^2 dx \right) \frac{d}{dx} \left(\tan^{-1} x \right) dx + c (*)$	1	
		$= \tan^{-1} x \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{1+x^2} dx + c$	1	
		$= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \int \frac{x^3}{1+x^2} dx + c$		
		$= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \int \left[x - \frac{x}{1 + x^2} \right] dx + c$	1	
		$= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \left[\frac{x^2}{2} - \frac{1}{2} \log(1 + x^2) \right] + c$	1	4
		(*) Note: The constant 'c' may not be added by the students in the step (*). If done so, it must have been added at least in the last step.		

Subject & Code: Applied Maths (12035)

Page No: 5/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
2)	d)	Put $\sin x = t$ $\therefore \cos x dx = dt$ $\begin{array}{c cccc} x & t \\ \hline 0 & 0 \\ \hline \pi/2 & 1 \end{array}$	1/2	
		$\int_0^{\pi/2} \frac{\cos x}{4 - \sin^2 x} dx = \int_0^1 \frac{1}{4 - t^2} dt \qquad(*)$ $= \int_0^1 \frac{1}{2^2 - t^2} dt$	1	
		$= \left[\frac{1}{2 \times 2} \log \left(\frac{2+t}{2-t}\right)\right]_0^1$ $= \frac{1}{4} \log \left(\frac{2+1}{2-1}\right) - \frac{1}{4} \log \left(\frac{2+0}{2-0}\right)$	1	
		$=\frac{1}{4}\log 3$	1	4
		Note: In the step (*) if the limits are kept unchanged i. e., the step is written as $\int_0^{\pi/2} \frac{\cos x}{4 - \sin^2 x} dx = \int_0^{\pi/2} \frac{1}{4 - t^2} dt$, no further marks are to be given. Further many times the problem is first solved by without limits and then limiting values are applied. This method is also permissible. Give appropriate marks.		
	e)	$x^{2} + y^{2} = 36$ $y = \sqrt{36 - x^{2}}$ $y = 0 \text{ gives } x^{2} = 36$		
		$\therefore x = 6, -6$	1	
		$A = 4 \int_0^a y dx$ $= 4 \int_0^6 \sqrt{36 - x^2} dx$	1	
		$=4\left[\frac{x}{2}\sqrt{36-x^2}+\frac{6^2}{2}\sin^{-1}\left(\frac{x}{6}\right)\right]_0^6$	1	
		$=4\left[\frac{6}{2}\sqrt{36-6^2}+\frac{6^2}{2}\sin^{-1}1\right]-4\left[0+\frac{6^2}{2}\sin^{-1}0\right]$		
		$= 4 \left[0 + \frac{6^2}{2} \cdot \frac{\pi}{2} \right] - 4 \left[0 + \frac{6^2}{2} \sin^{-1} 0 \right]$ $= 36\pi$	1	4

Subject & Code: Applied Maths (12035)

Page No: 6/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
2)	f)	$y^2 = 9x$		WIGHKS
		y = 0 gives $x = 0$.		
		$\therefore x = 0 \& x = 3 \text{ are the limits.}$		
		$\int_0^3 y dx = \int_0^3 3\sqrt{x} dx$		
		$= \left[3 \cdot \frac{2}{3} x^{3/2}\right]_0^3$	1/2	
		$= \left[2x^{3/2}\right]_0^3$ $= \left[2 \cdot 3^{3/2}\right] - 0$		
		$=2\cdot3^{3/2} \ or \ 10.392$	1/2	
		$\int_0^3 xy dx = \int_0^3 3x \sqrt{x} dx$	/2	
		$=3\int_0^3 x^{3/2} dx$		
		$= \left[3 \cdot \frac{2}{5} x^{5/2}\right]_0^3$	1/2	
		$= \left[\frac{6}{5} \cdot 3^{5/2}\right] - 0$		
		$= \frac{6}{5} \cdot 3^{5/2} or 18.706$	1/2	
		$\int_0^3 y^2 dx = \int_0^3 9x dx$		
		$= \left[\frac{9}{2}x^2\right]_0^3$	1/2	
		$= \left[\frac{9}{2} \cdot 3^2\right] - 0$		
		$=\frac{81}{2} \ or \ 40.5$	1/2	
		$\therefore x = \frac{\int_0^3 xy dx}{\int_0^3 y dx} = \frac{\frac{6}{5} \cdot 3^{5/2}}{2 \cdot 3^{3/2}} = \frac{18}{10} or \frac{18.706}{10.392} = 1.8$	1/2	
		$\therefore \overline{y} = \frac{\frac{1}{2} \int_0^3 y^2 dx}{\int_0^3 y dx} = \frac{\frac{81}{2}}{2 \cdot 3^{3/2}} = \frac{1}{4} \cdot 3^{5/2} or \frac{40.5}{10.392} = 3.897$	1/2	
		$\therefore C.G. = \left(\frac{18}{10}, \frac{1}{4} \cdot 3^{5/2}\right) or (1.8, 3.897)$		4
		Note: The above example can be solve by directly finding the		
		values of \bar{x} and \bar{y} .		

Subject & Code: Applied Maths (12035)

Page No: 7/19

Que.	Sub.	Model answers	Marks	Total
No. 3)	Que. a)		IVICINS	Marks
3)	<i>a)</i>	$I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ $= \int_0^{\pi/2} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} dx$	1/2	
		$I = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$	1	
		$\therefore 2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	1/2	
		$=\int_0^{\pi/2} 1 \cdot dx$	1/2	
		$= \left[x\right]_0^{\pi/2}$	1/2	
		$=\frac{\pi}{2}$	1/2	
		$\therefore I = \frac{\pi}{4}$	1/2	4
		OR		
		$I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ Replace $x \to \frac{\pi}{2} - x$ $\therefore \sin x \to \cos x$ $\& \cos x \to \sin x$	1/2	
		$I = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$ $\int_0^{\pi/2} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\cos x}} dx$	1	
		$\therefore 2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	1/2	
		$= \int_0^{\pi/2} 1 \cdot dx$ $= \left[x \right]_0^{\pi/2}$	1/2	
		$=\frac{\pi}{2}$	1/2	
		$\therefore I = \frac{\pi}{4}$	1/2	
			1/2	4
	b)	$I = \int_{1}^{5} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 3}} dx$ $= \int_{1}^{5} \frac{\sqrt[3]{9 - (6 - x)}}{\sqrt[3]{9 - (6 - x)} + \sqrt[3]{(6 - x) + 3}} dx$	1/2	

Subject & Code: Applied Maths (12035)

Page No: 8/19

Que.	Sub.	Model answe	rs	Marks	Total
No. 3)	Que.			1,141118	Marks
		$I = \int_{1}^{5} \frac{\sqrt[3]{9 - x}}{\sqrt[3]{9 - x} + \sqrt[3]{x + 3}} dx$		1	
		$\therefore 2I = \int_{1}^{5} \frac{\sqrt[3]{9-x} + \sqrt[3]{x+3}}{\sqrt[3]{9-x} + \sqrt[3]{x+3}} dx$		1/2	
		$\int_{1}^{3} \sqrt[3]{9} - x + \sqrt[3]{x} + 3$ $= \int_{1}^{5} 1 \cdot dx$		1/2	
		$-\int_{1}^{1} 1^{4} dx$ $= \left[x\right]_{1}^{5}$		1/2	
		=5-1			
		= 4		1/ ₂ 1/ ₂	4
		$\therefore I = 2$ OR		/2	
			Replace $x \to 6-x$		
			$\therefore 9 - x \to x + 3$ $\& x + 3 \to 9 - x$	1/2	
		, ,	$\& x+3 \rightarrow 9-x$		
		$I = \int_{1}^{5} \frac{\sqrt[3]{x+3}}{\sqrt[3]{x+3} + \sqrt[3]{9-x}} dx$		1	
		$\therefore 2I = \int_{1}^{5} \frac{\sqrt[3]{9-x} + \sqrt[3]{x+3}}{\sqrt[3]{9-x} + \sqrt[3]{x+3}} dx$		1/2	
		$= \int_{1}^{5} 1 \cdot dx$		1/2	
		$J_1 = \begin{bmatrix} x \end{bmatrix}_1^5$		1/2	
		=5-1			
		= 4		1/2	
		$\therefore I = 2$		1/2	4
	c)	$I = \int_0^\pi x \sin^3 x \cos^2 x dx$			
		$= \int_0^{\pi} (\pi - x) \sin^3(\pi - x) \cos^2(\pi - x) dx$		1/2	
		$= \int_0^\pi \left(\pi - x\right) \sin^3 x \cos^2 x dx$		1/2	
		$= \int_0^{\pi} \pi \sin^3 x \cos^2 x dx - \int_0^{\pi} x \sin^3 x \cos^2 x dx$	lx		
		$=\pi \int_0^\pi \sin^3 x \cos^2 x dx - I$			
		$\therefore 2I = \pi \int_0^{\pi} \sin^3 x \cos^2 x dx$		1/2	
		$=\pi \int_0^\pi \sin x \sin^2 x \cos^2 x dx$			
		$= \pi \int_0^{\pi} \sin x \left(1 - \cos^2 x \right) \cos^2 x dx$			

Subject & Code: Applied Maths (12035)

Page No: 9/19

Que.	Sub.	26.11	3.5.1	Total
No.	Que.	Model answers	Marks	Marks
3)		Put $\cos x = t$: $-\sin x dx = dt$ $\begin{bmatrix} x & t \\ 0 & 1 \\ \hline \pi & -1 \end{bmatrix}$ $\therefore 2I = -\pi \int_{1}^{-1} (1 - t^{2}) t^{2} dt$	1/2	
		$= \pi \int_{-1}^{1} (t^2 - t^4) dt$ $= \pi \left[\frac{t^3}{3} - \frac{t^5}{5} \right]_{-1}^{1}$ $= \pi \left[\frac{1}{3} - \frac{1}{5} \right] - \pi \left[\frac{-1}{3} - \frac{-1}{5} \right]$ $= \frac{4}{15} \pi$	1/2	4
		$\therefore I = \frac{2}{15}\pi$	1/2	T
	d)	Given $y^2 = 9x$ and $x^2 = 9y$ $\therefore \left(\frac{x^2}{9}\right)^2 = 9x$		
		$\therefore x = 0, x = 9$ $A = \int_{a}^{b} (y_2 - y_1) dx$	1	
		$=\int_0^9 \left[3\sqrt{x} - \frac{x^2}{9}\right] dx$	1	
		$= \left[3 \cdot \frac{2}{3} x^{3/2} - \frac{1}{9} \cdot \frac{x^3}{3} \right]_0^9$ $= \left[2 \cdot 9^{3/2} - \frac{1}{27} \cdot 9^3 \right] - 0$	1	
	e)	= 27	1	4
	·	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\therefore y^2 = b^2 \left(1 - \frac{x^2}{a^2} \right)$		
		$\therefore y^2 = \frac{b^2}{a^2} \left(a^2 - x^2 \right)$ $\therefore y = \frac{b}{a} \sqrt{a^2 - x^2}$		

Subject & Code: Applied Maths (12035)

Page No: 10/19

Que.	Sub.	Model answers	Marks	Total
No. 3)	Que.	Now $y = 0$ gives $a^2 - x^2 = 0$ i. e., $x = a, -a$	1	Marks
		$\therefore V = \pi \int_{-a}^{a} y^2 dx$		
		v – u		
		$= \pi \int_{-a}^{a} \frac{b^2}{a^2} (a^2 - x^2) dx$		
		$= \frac{\pi b^2}{a^2} \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a}$	1	
		$= \frac{\pi b^2}{a^2} \left[a^3 - \frac{a^3}{3} \right] - \frac{\pi b^2}{a^2} \left[-a^3 + \frac{a^3}{3} \right]$	1	
		$=\frac{4\pi ab^2}{3}$	1	4
	f)	$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$		
	,	$\therefore \frac{\sec^2 x}{\tan x} dx + \frac{\sec^2 y}{\tan y} dy = 0$	1	
		$\therefore \int \frac{\sec^2 x}{\tan x} dx + \int \frac{\sec^2 y}{\tan y} dy = c$	1	
		$\therefore \log \tan x + \log \tan y = c \dots (i)$	1	
		$At y = \frac{\pi}{4}, x = \frac{\pi}{4}, c = 0$	1/2	
		$\therefore \log \tan x + \log \tan y = 0$	1/2	4
		$\[OR \tan x = \cot y OR x = \frac{\pi}{2} - y \]$		
		Note: In the above solution, the step (i) is also formed by 'substitution method'. But direct method is also permissible as shown above.		
4)	a)	$\int x^2 y dx - \left(x^3 + y^3\right) dy = 0$		
		$\therefore \frac{dy}{dx} = \frac{x^2 y}{x^3 + y^3}$		
		Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1	
		$\therefore v + x \frac{dv}{dx} = \frac{x^2 vx}{x^3 + (vx)^3} = \frac{v}{1 + v^3}$		
		$\therefore x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$		
		$\therefore x \frac{dv}{dx} = -\frac{v^4}{1 + v^3}$	1	
		$\therefore \frac{1+v^3}{v^4} dv = -\frac{1}{x} dx$		

Subject & Code: Applied Maths (12035)

Page No: 11/19

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
4)		$\therefore \int \left(\frac{1}{v^4} + \frac{1}{v}\right) dv = -\int \frac{1}{x} dx$ $\therefore \frac{v^{-3}}{-3} + \log v = -\log x + c$ $\therefore \frac{1}{-3v^3} + \log v = -\log x + c$ $\therefore \frac{x^3}{-3v^3} + \log\left(\frac{y}{x}\right) = -\log x + c$	1	4
	b)	$\therefore \frac{1}{-3y^3} + \log\left(\frac{1}{x}\right) = -\log x + c$ $\cos^2 x \frac{dy}{dx} + y = \tan x$ $\therefore \frac{dy}{dx} + \sec^2 x \cdot y = \tan x \cdot \sec^2 x$ $\therefore P = \sec^2 x \text{ and } Q = \tan x \cdot \sec^2 x$ $\therefore IF = e^{\int pdx} = e^{\int \sec^2 x dx} = e^{\tan x}$	1	
		$\therefore y \cdot IF = \int Q \cdot IF \cdot dx + c$ $\therefore y \cdot e^{\tan x} = \int \tan x \cdot \sec^2 x \cdot e^{\tan x} \cdot dx + c$ Put $\tan x = t$ $\therefore \sec^2 x \cdot dx = dt$ $\therefore y \cdot e^{\tan x} = \int t e^t \cdot dt + c$ $\therefore y \cdot e^{\tan x} = te^t - e^t + c$	1 1/2 1/2	
	c)	$\therefore y \cdot e^{\tan x} = \tan x e^{\tan x} - e^{\tan x} + c$ $\therefore y \cdot e^{\tan x} = e^{\tan x} (\tan x - 1) + c$ $\frac{dy}{dx} = x^3 y^3 - xy$ $\therefore \frac{dy}{dx} + xy = x^3 y^3$	1	
		$\therefore \frac{1}{y^3} \frac{dy}{dx} + \frac{x}{y^2} = x^3$ $Put \frac{1}{y^2} = t$ $\therefore \frac{-2}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$ $\therefore \frac{1}{-2} \frac{dt}{dx} + x \cdot t = x^3$ $\therefore \frac{dt}{dx} - 2x \cdot t = -2x^3$	1	

Subject & Code: Applied Maths (12035)

Page No: 12/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	2000	$P = -2x, Q = -2x^{3}$ $\therefore IF = e^{\int pdx} = e^{\int -2xdx} = e^{-x^{2}}$ $\therefore t \cdot e^{-x^{2}} = \int -2x^{3} \cdot e^{-x^{2}} \cdot dx + c$ $\therefore t \cdot e^{-x^{2}} = -\int 2x \cdot x^{2} \cdot e^{-x^{2}} \cdot dx + c$	1	
		Put $x^2 = u$: $2xdx = du$	1	4
	d)	$(3x^{2} + 6xy^{2})dx + (6x^{2}y + 4y^{2})dy = 0$ $M = 3x^{2} + 6xy^{2}$ $\therefore \frac{\partial M}{\partial y} = 12xy$ $N = 6x^{2}y + 4y^{2}$ $\therefore \frac{\partial N}{\partial x} = 12xy$ $\therefore \text{ the equation is exact.}$ $\therefore \text{ the solution is,}$	1	
	e)	$\int_{y \text{ constant}} Mdx + \int_{terms \text{ free from } x} Ndy = c$ $\int_{y \text{ constant}} (3x^2 + 6xy^2) dx + \int_{y^2} 4y^2 dy = c$ $\therefore 3 \cdot \frac{x^3}{3} + 6y^2 \frac{x^2}{2} + 4 \frac{y^3}{3} = c$ $\therefore x^3 + 3x^2y^2 + \frac{4}{3}y^3 = c$ $x + 2y + 3z = 14$ $3x + y + 2z = 11$	1	4
		2x+3y+z=11 $3x+6y+9z=42$ $3x+y+2z=11$ $$	1	

Subject & Code: Applied Maths (12035) **Page No:** 13/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	Que.	$5y+7z=31$ $5y+25z=85$ $-18z=-54$ $\therefore z=3$ $y=2$ $x=1$	1 1 1	4
		Note: In the above solution, first x is eliminated and then y is eliminated to find the value of z first. If in case the problem is solved by elimination of another unknown i. e., either first y or z, appropriate marks to be given as per above scheme of marking. Let us see, how the solution becomes by eliminating first y and then z to get the value of x, as illustrated below: $ x+2y+3z=14 \qquad 9x+3y+6z=33 $ $ 6x+2y+4z=22 \qquad and \qquad 2x+3y+z=11 $ $$	1	
	f)	$-25x - 5z = -40$ $\underline{7x + 5z = 22}$ $-18x = -18$ $\therefore x = 1$ $y = 2$ $z = 3$ $5x - y = 9$ $x - 5y + z = -4$	1 1 1	4
		$y-5z = 6$ $\therefore x = \frac{9+y}{5}$ $y = \frac{-4-x-z}{-5}$ $z = \frac{6-y}{-5}$ Starting with $x_0 = 0 = y_0 = z_0$	1	
		$x_1 = 1.8$ $y_1 = 1.16$ $z_1 = -0.968$	1	

Subject & Code: Applied Maths (12035)

Page No: 14/19

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
1)		$x_2 = 2.032$	1	
		$y_2 = 1.0128$		
		$z_2 = -0.997$		
		2.002		
		$x_3 = 2.003$ $y_3 = 1.001$	1	
		$z_3 = -0.9998$		_
		23 - 0.7776		4
5)	a)	$\frac{dy}{dx} = \frac{x+y+1}{x+y-1}$		
	,			
		Put $x + y = t$	1	
		$\therefore 1 + \frac{dy}{dx} = \frac{dt}{dx}$	1	
		$\therefore \frac{dt}{dx} - 1 = \frac{t+1}{t-1}$		
		$\therefore \frac{dt}{dx} = \frac{t+1}{t-1} + 1 = \frac{2t}{t-1}$		
		$\frac{dx}{dx} - \frac{1}{t-1} + 1 - \frac{1}{t-1}$		
		$\therefore \frac{t-1}{2t}dt = dx$		
		$\therefore \int \frac{t-1}{2t} dt = \int dx$		
		$\therefore \frac{1}{2} \int \left(1 - \frac{1}{t} \right) dt = \int dx$	1	
		$\therefore \frac{1}{2} (t - \log t) = x + c$	1	
		$\therefore \frac{1}{2} \Big[x + y - \log (x + y) \Big] = x + c$		
			1	4
		$OR x + y - \log(x + y) = 2x + k$		
	b)	dv = -		
		$\frac{dv}{dt} = 5 - 2t$		
		$\therefore dv = (5-2t)dt$		
		$\therefore \int dv = \int (5-2t) dt$		
		$\therefore v = 5t - t^2 + c$	1	
		At t = 0, v = 4.		
		$\therefore c = 4$		
		$\therefore v = 5t - t^2 + 4$	1	

Subject & Code: Applied Maths (12035)

Page No: 15/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
5)	~	$\therefore \frac{ds}{dt} = 5t - t^2 + 4$ $\therefore \int ds = \int (5t - t^2 + 4) dt$ $\therefore s = \frac{5}{2}t^2 - \frac{t^3}{3} + 4t + c$	1/2	
		$At t = 0, s = 0.$ $\therefore c = 0$ $\therefore s = \frac{5}{2}t^2 - \frac{t^3}{3} + 4t$	1/2	
		$\therefore at \ t = 3\sec,$ $s = \frac{5}{2} \cdot 3^2 - \frac{3^3}{3} + 4 \cdot 3 = \frac{51}{2} or 25.5$	1	4
	c)	$\frac{d^2x}{dt^2} = 3t^2$ $\therefore \frac{dv}{dt} = 3t^2$		
		$\therefore dv = 3t^2 dt$ $\therefore \int dv = \int 3t^2 dt$ $\therefore v = t^3 + c$ $At \ t = 1, \ v = 2.$	1	
	۵	$\therefore c = 1$ $\therefore v = t^3 + 1$	1 1	4
	(d)	$f(x) = x^3 - x - 4$ $\therefore f(1) = -4$ $f(2) = 2$ $\therefore \text{ the root is in } (1, 2).$	1	
		$\therefore x_1 = \frac{1+2}{2} = 1.5$ $\therefore f(1.5) = -2.125$ $\therefore \text{ the root is in } (1.5, 2).$	1	
		$\therefore x_2 = \frac{1.5 + 2}{2} = 1.75$ $\therefore f(1.75) = -0.391$ $\therefore \text{ the root is in } (1.75, 2).$	1	
		$\therefore x_3 = \frac{1.75 + 2}{2} = 1.875$	1	4

Subject & Code: Applied Maths (12035)

Page No: 16/19

Que.	Sub.	Model answers	Marks	Total Marks
No	Que.	Model answers OR $f(x) = x^3 - x - 4$ $\therefore f(1) = -4$ $f(2) = 2$ \therefore the root is in $(1, 2)$. $ \begin{array}{c cccc} & a & b & x = \frac{a+b}{2} & f(x) \\ \hline & 1 & 2 & 1.5 & -2.125 \\ \hline & 1.5 & 2 & 1.75 & -0.391 \\ \hline & 1.75 & 2 & 1.875 & \end{array} $ $ f(x) = x^3 - x - 1$ $ \therefore f(1) = -1$ $ f(2) = 5$ $ \therefore \text{ the root is in } (1, 2).$ $ \therefore x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = 1.167$ $ \therefore f(1.167) = -0.579$ $ \therefore \text{ the root is in } (1.167, 2).$ $ \therefore x_2 = 1.253$ $ \therefore f(1.253) = -0.286$	Marks 1 1 1 1 1	Marks 4
		∴ the root is in (1.253, 2). ∴ $x_3 = 1.293$ OR $f(x) = x^3 - x - 1$	1	4
		$f(1) = -1$ $f(2) = 5$ $\therefore \text{ the root is in } (1, 2).$	1	
		a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ $f(x)$ 1 2 -1 5 1.167 -0.0579 1.167 2 -0.0579 5 1.253 -0.286 1.253 2 -0.286 5 1.293	1 1 1	4

Subject & Code: Applied Maths (12035)

Page No: 17/19

Out	Cub			Total
Que. No.	Sub. Que.	Model answers	Marks	Marks
5)	f)	5x + 2y + z = 12		1/101110
	,	x + 4y + 2z = 15		
		x + 2y + 5z = 20		
		$\therefore x = \frac{12 - 2y - z}{5}$		
		$y = \frac{15 - x - 2z}{4}$	1	
		$z = \frac{20 - x - 2y}{5}$		
		Starting with $x_0 = 0 = y_0 = z_0$		
		$x_1 = 2.4$		
		$y_1 = 3.25$	1	
		$z_1 = 4$		
		$x_2 = 0.1$		
		$y_2 = 1.15$	1	
		$z_2 = 2.02$		
		r = 1 536		
		$x_3 = 1.536$ $y_3 = 2.172$	1	
		$z_3 = 3.52$		4
		23 – 3.52		4
6)	a)	$S = \{1, 2,, 20\}$		
		n = n(S) = 20	1	
		$A = \{3, 5, 6, 9, 10, 12, 15, 18, 20\}$		
		m=n(A)=9	1	
				1
		$\therefore p = \frac{m}{n} = \frac{9}{20} or 0.45$	2	4
		OR		
		$S = \{1, 2,, 20\}$		
		n(S) = 20		
		$A = \{3, 6, 9, 12, 15, 18\}$		
		n(A) = 6		
		$p(A) = \frac{6}{20}$	1	
		20		
	<u> </u>	I .	Ī	l

Subject & Code: Applied Maths (12035)

Page No: 18/19

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	Z uro.	$B = \{5, 10, 15, 20\}$		1,101110
		n(B)=4		
		$p(B) = \frac{4}{20}$	1	
		$A = \{15\}$		
		$n(A \cap B) = 1$		
		$p(A \cap B) = \frac{1}{20}$	1	
		$\therefore p = p(A) + p(B) - p(A \cap B) = \frac{9}{20} \text{ or } 0.45$	1	4
	b)	Total Balls = $10+5+5=20$		
		$n = n(S) = {}^{20}C_2 = 190$	1	
		m = n (not of same colour)		
		= n(1R1W or 1W1B or 1R1B)		
		$=10\times5+5\times5+10\times5$	1 1	
		= 125 $m = 125$		
		$\therefore p = \frac{m}{n} = \frac{125}{190} or 0.659$	1	4
	c)	p = 0.2		
		$\therefore q = 0.8$ $Here n = 4$		
		$i) p = {}^{n}C_{r}p^{r}q^{n-r}$		
		$= {}^{4}C_{1}(0.2)^{1}(0.8)^{3}$		
		= 0.4096	1	
		ii) p = p(0) + p(1) + p(2)		
		$= {}^{4}C_{0}(0.2)^{0}(0.8)^{4} + {}^{4}C_{1}(0.2)^{1}(0.8)^{3} + {}^{4}C_{2}(0.2)^{2}(0.8)^{2}$	1	
		= 0.4096 + 0.4096 + 0.1536	1	
		= 0.8192	1	4
	d)	$n = 100, p = 3\% = \frac{3}{100} = 0.03$	1	
		m = np = 3	1	
		$\therefore p = \frac{e^{-m}m^r}{r!}$		
		$\therefore p = \frac{e^{-m}m^r}{r!}$ $= \frac{e^{-3}3^5}{5!}$	1	
			1	4
		= 0.1008	1	

Subject & Code: Applied Maths (12035) **Page No:** 19/19

6) e) $\overline{x} = 14$, $\sigma = 2.5$ Here $x = 18$ $\therefore z = \frac{x - \overline{x}}{\sigma} = \frac{18 - 14}{2.5} = 1.6$ $p = \text{Area more than } z = 1.6 \text{ under the normal curve}$ $= 0.5 - A(z = 0 \text{ to } z = 1.6)$ $= 0.5 - 0.4452$ $= 0.0548$ $\therefore N = p \times 1000 = 54.8$ $\therefore \text{ the number of students} = 55$ 1 f) $P(A') = \frac{2}{3}$ $P(B') = \frac{1}{5}$ $P(C') = \frac{5}{7}$ $\therefore p = p(\text{the problem is solved})$	Que. Sub. No. Que.	Model answers	Marks	Total Marks
$=1-p \text{ (the problem is not solved by all A, B, C)}$ $=1-p(A \cap B \cap C')$ $=1-\frac{2}{3}\cdot\frac{1}{5}\cdot\frac{5}{7}$ $=\frac{95}{105} \text{ or } \frac{19}{21} \text{ or } 0.905$ Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	No. Que. 6) e)	$\overline{x} = 14$, $\sigma = 2.5$ Here $x = 18$ ∴ $z = \frac{x - \overline{x}}{\sigma} = \frac{18 - 14}{2.5} = 1.6$ $p = \text{Area more than } z = 1.6 \text{ under the normal curve}$ $= 0.5 - A(z = 0 \text{ to } z = 1.6)$ $= 0.5 - 0.4452$ $= 0.0548$ ∴ $N = p \times 1000 = 54.8$ ∴ the number of students = 55 $P(A') = \frac{2}{3}$ $P(B') = \frac{1}{5}$ $P(C') = \frac{5}{7}$ ∴ $p = p \text{ (the problem is solved)}$ $= 1 - p \text{ (the problem is not solved by all A, B, C)}$ $= 1 - \frac{2}{3} \cdot \frac{1}{5} \cdot \frac{5}{7}$ $= \frac{95}{105} \text{ or } \frac{19}{21} \text{ or } 0.905$ Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of	1 1 1 1 1	Marks 4