$12n_{0551} \ (K12n_{0551})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3u^{30} - 13u^{29} + \dots + 2b - 2, \ -7u^{30} + 37u^{29} + \dots + 4a - 40, \ u^{31} - 5u^{30} + \dots + 26u - 4 \rangle \\ I_2^u &= \langle u^{18} - u^{17} + \dots + b - 2, \ u^{18} + 2u^{17} + \dots + a + 1, \\ u^{19} + 5u^{17} + 13u^{15} + 20u^{13} + 20u^{11} + 13u^9 + u^8 + 7u^7 + 2u^6 + 4u^5 + 3u^4 + 2u^3 + 2u^2 + 1 \rangle \\ I_3^u &= \langle 758a^3u^3 - 3539u^3a^2 + \dots + 1193a - 9295, \\ a^3u^3 + a^3u^2 - 2u^3a^2 + a^4 + a^3u - a^2u^2 - a^3 + a^2u - 2u^2a + u^3 - a^2 + 3au + 9u^2 + 3a - 7u + 2, \\ u^4 + u^2 - u + 1 \rangle \\ I_4^u &= \langle -18352u^5a^3 + 13327u^5a^2 + \dots + 704a - 29929, \ u^5a^2 + u^5a + \dots + a^4 + a^3, \\ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 3u^{30} - 13u^{29} + \dots + 2b - 2, -7u^{30} + 37u^{29} + \dots + 4a - 40, u^{31} - 5u^{30} + \dots + 26u - 4 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{7}{4}u^{30} - \frac{37}{4}u^{29} + \dots - \frac{223}{4}u + 10 \\ -\frac{3}{2}u^{30} + \frac{13}{2}u^{29} + \dots + \frac{9}{2}u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{30} + \frac{1}{2}u^{28} + \dots - 22u + \frac{9}{2} \\ -\frac{5}{2}u^{30} + \frac{25}{2}u^{29} + \dots + \frac{139}{2}u - 12 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{3}{2}u^{30} - 8u^{29} + \dots - 48u + \frac{17}{2} \\ -\frac{1}{2}u^{30} + \frac{5}{2}u^{29} + \dots + \frac{21}{2}u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{11}{4}u^{30} - \frac{49}{4}u^{29} + \dots - \frac{223}{4}u + 10 \\ -\frac{5}{2}u^{30} + \frac{19}{2}u^{29} + \dots + \frac{29}{2}u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{30} - 5u^{29} + \dots - 48u + \frac{17}{2} \\ -\frac{1}{2}u^{30} + \frac{7}{2}u^{29} + \dots - \frac{3}{2}u + 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $\begin{array}{l} -3u^{30} + 11u^{29} - 40u^{28} + 89u^{27} - 194u^{26} + 336u^{25} - 572u^{24} + 853u^{23} - 1224u^{22} + 1607u^{21} - \\ 2012u^{20} + 2378u^{19} - 2693u^{18} + 2898u^{17} - 3000u^{16} + 2942u^{15} - 2813u^{14} + 2557u^{13} - 2256u^{12} + \\ 1890u^{11} - 1511u^{10} + 1161u^{9} - 859u^{8} + 595u^{7} - 400u^{6} + 233u^{5} - 122u^{4} + 58u^{3} - 13u^{2} + 6u - 14 \\ \end{array}$

Crossings	u-Polynomials at each crossing
c_1	$u^{31} + 15u^{30} + \dots + 12u - 16$
c_2, c_7	$u^{31} + 5u^{30} + \dots + 26u + 4$
c_3	$u^{31} - 5u^{30} + \dots - 240u + 32$
c_4, c_6, c_{10} c_{11}	$u^{31} + 7u^{29} + \dots + 3u + 1$
c_5,c_9	$u^{31} + u^{30} + \dots + 4u + 1$
c_8	$u^{31} + 25u^{30} + \dots + 101226u + 9028$
c_{12}	$u^{31} - 24u^{30} + \dots - 9728u + 1024$

Crossings	Riley Polynomials at each crossing
c_1	$y^{31} + 3y^{30} + \dots + 5360y - 256$
c_2, c_7	$y^{31} + 15y^{30} + \dots + 12y - 16$
<i>c</i> ₃	$y^{31} - 9y^{30} + \dots + 29696y - 1024$
c_4, c_6, c_{10} c_{11}	$y^{31} + 14y^{30} + \dots - 11y - 1$
c_5,c_9	$y^{31} - 49y^{30} + \dots + 50y - 1$
c_8	$y^{31} + 3y^{30} + \dots - 146312468y - 81504784$
c_{12}	$y^{31} - 18y^{30} + \dots + 4980736y - 1048576$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.721636 + 0.688504I		
a = 0.652136 - 0.856774I	0.12057 - 7.84511I	-4.92980 + 6.31603I
b = -0.153998 + 0.558335I		
u = -0.721636 - 0.688504I		
a = 0.652136 + 0.856774I	0.12057 + 7.84511I	-4.92980 - 6.31603I
b = -0.153998 - 0.558335I		
u = 0.107386 + 1.053710I		
a = 1.161140 + 0.418626I	-1.06007 - 1.48672I	-11.73110 + 4.30166I
b = -0.848962 + 0.418880I		
u = 0.107386 - 1.053710I		
a = 1.161140 - 0.418626I	-1.06007 + 1.48672I	-11.73110 - 4.30166I
b = -0.848962 - 0.418880I		
u = -0.747524 + 0.519989I		
a = -0.367732 + 0.710748I	4.39870 - 0.57100I	-5.18268 + 2.58205I
b = 0.063240 - 0.394635I		
u = -0.747524 - 0.519989I		
a = -0.367732 - 0.710748I	4.39870 + 0.57100I	-5.18268 - 2.58205I
b = 0.063240 + 0.394635I		
u = -0.228069 + 0.871292I		
a = 0.493234 - 0.013294I	-0.647219 - 1.174890I	-7.74715 + 5.33716I
b = -0.220969 + 0.195636I		
u = -0.228069 - 0.871292I		
a = 0.493234 + 0.013294I	-0.647219 + 1.174890I	-7.74715 - 5.33716I
b = -0.220969 - 0.195636I		
u = 0.826592 + 0.330880I		
a = 0.611177 - 0.577058I	-1.86480 - 10.61960I	-6.01076 + 5.40369I
b = 1.51649 + 1.30911I		
u = 0.826592 - 0.330880I		
a = 0.611177 + 0.577058I	-1.86480 + 10.61960I	-6.01076 - 5.40369I
b = 1.51649 - 1.30911I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.771083 + 0.435830I		
a = -0.445507 + 0.696759I	3.95523 - 3.38934I	-6.35399 + 4.30144I
b = -1.22832 - 0.83980I		
u = 0.771083 - 0.435830I		
a = -0.445507 - 0.696759I	3.95523 + 3.38934I	-6.35399 - 4.30144I
b = -1.22832 + 0.83980I		
u = -0.659178 + 0.906469I		
a = 0.847117 + 0.308890I	-0.52577 + 2.60216I	-5.79015 - 0.92756I
b = -0.532248 + 0.049305I		
u = -0.659178 - 0.906469I		
a = 0.847117 - 0.308890I	-0.52577 - 2.60216I	-5.79015 + 0.92756I
b = -0.532248 - 0.049305I		
u = 0.431568 + 1.070840I		
a = -1.72983 - 0.61820I	-3.48253 + 3.49821I	-13.1203 - 5.5567I
b = 1.51123 - 0.88116I		
u = 0.431568 - 1.070840I		
a = -1.72983 + 0.61820I	-3.48253 - 3.49821I	-13.1203 + 5.5567I
b = 1.51123 + 0.88116I		
u = 0.831503 + 0.123089I		
a = 0.072492 + 0.269764I	-4.92001 + 1.57506I	-6.24630 - 4.36146I
b = -0.554560 + 0.979079I		
u = 0.831503 - 0.123089I		
a = 0.072492 - 0.269764I	-4.92001 - 1.57506I	-6.24630 + 4.36146I
b = -0.554560 - 0.979079I		
u = 0.210275 + 1.194020I		
a = -1.29566 - 1.42704I	-6.84341 - 7.58988I	-11.74966 + 3.94255I
b = 1.62781 + 0.12223I		
u = 0.210275 - 1.194020I		
a = -1.29566 + 1.42704I	-6.84341 + 7.58988I	-11.74966 - 3.94255I
b = 1.62781 - 0.12223I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618523 + 1.046160I		
a = -0.569195 - 0.233428I	2.83735 - 4.61812I	-7.27766 + 3.11789I
b = 0.386901 - 0.028623I		
u = -0.618523 - 1.046160I		
a = -0.569195 + 0.233428I	2.83735 + 4.61812I	-7.27766 - 3.11789I
b = 0.386901 + 0.028623I		
u = 0.601498 + 1.094000I		
a = 1.80478 + 0.82107I	2.00079 + 8.57439I	-9.56481 - 9.13529I
b = -1.93685 + 0.87675I		
u = 0.601498 - 1.094000I		
a = 1.80478 - 0.82107I	2.00079 - 8.57439I	-9.56481 + 9.13529I
b = -1.93685 - 0.87675I		
u = 0.372959 + 1.216560I		
a = 1.28688 - 0.66870I	-9.03283 + 5.64879I	-11.83814 - 7.15330I
b = -0.421817 + 1.280630I		
u = 0.372959 - 1.216560I		
a = 1.28688 + 0.66870I	-9.03283 - 5.64879I	-11.83814 + 7.15330I
b = -0.421817 - 1.280630I		
u = 0.587276 + 1.148200I		
a = -2.51290 - 0.46864I	-4.3002 + 15.8732I	-8.95437 - 9.00468I
b = 2.17768 - 1.59943I		
u = 0.587276 - 1.148200I		
a = -2.51290 + 0.46864I	-4.3002 - 15.8732I	-8.95437 + 9.00468I
b = 2.17768 + 1.59943I		
u = 0.501811 + 1.205770I		
a = -0.157189 + 1.192800I	-8.15901 + 3.28278I	-8.89616 + 2.41825I
b = -0.733813 - 0.955023I		
u = 0.501811 - 1.205770I		
a = -0.157189 - 1.192800I	-8.15901 - 3.28278I	-8.89616 - 2.41825I
b = -0.733813 + 0.955023I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.465958		
a = 0.798102	-0.881419	-11.2140
b = 0.696353		

$$I_2^u = \langle u^{18} - u^{17} + \dots + b - 2, \ u^{18} + 2u^{17} + \dots + a + 1, \ u^{19} + 5u^{17} + \dots + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{18} - 2u^{17} + \dots - 3u - 1 \\ -u^{18} + u^{17} + \dots + u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{17} + 5u^{15} + \dots + u + 2 \\ u^{18} + 5u^{16} + \dots + u^{3} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{17} + 9u^{15} + \dots + u + 2 \\ u^{18} + 5u^{16} + \dots + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{17} - u^{16} + \dots - 2u - 1 \\ -u^{18} + u^{17} + \dots + 2u^{2} + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3u^{18} - 2u^{17} + \dots - 6u - 2 \\ -u^{18} + u^{17} + \dots + 2u + 3 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-2u^{17} - 10u^{15} + 4u^{14} - 24u^{13} + 12u^{12} - 34u^{11} + 17u^{10} - 30u^9 + 6u^8 - 18u^7 - 7u^6 - 7u^5 - 6u^4 + u^3 + u^2 + u - 10$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 10u^{18} + \dots - 4u + 1$
c_2	$u^{19} + 5u^{17} + \dots - 2u^2 - 1$
<i>c</i> ₃	$u^{19} - 3u^{17} + \dots + 3u - 2$
c_4, c_{11}	$u^{19} + 6u^{17} + \dots - u + 1$
c_5, c_9	$u^{19} - u^{18} + \dots + 6u^2 + 1$
c_6,c_{10}	$u^{19} + 6u^{17} + \dots - u - 1$
	$u^{19} + 5u^{17} + \dots + 2u^2 + 1$
c ₈	$u^{19} + u^{17} + \dots + 3u^2 + 1$
c_{12}	$u^{19} + 7u^{18} + \dots + 3u + 2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} + 2y^{18} + \dots - 4y - 1$
c_2, c_7	$y^{19} + 10y^{18} + \dots - 4y - 1$
c_3	$y^{19} - 6y^{18} + \dots + 5y - 4$
c_4, c_6, c_{10} c_{11}	$y^{19} + 12y^{18} + \dots + 7y - 1$
c_5, c_9	$y^{19} - 7y^{18} + \dots - 12y - 1$
c_8	$y^{19} + 2y^{18} + \dots - 6y - 1$
c_{12}	$y^{19} - 15y^{18} + \dots - 35y - 4$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.342966 + 0.928812I		
a = 1.348510 + 0.263101I	2.81022 - 1.37153I	-9.77927 + 0.03000I
b = -0.760930 + 0.339185I		
u = -0.342966 - 0.928812I		
a = 1.348510 - 0.263101I	2.81022 + 1.37153I	-9.77927 - 0.03000I
b = -0.760930 - 0.339185I		
u = 0.462820 + 1.013630I		
a = -2.71881 - 1.75930I	-5.17143 + 3.04865I	-17.3001 - 5.4133I
b = 2.96409 - 1.05294I		
u = 0.462820 - 1.013630I		
a = -2.71881 + 1.75930I	-5.17143 - 3.04865I	-17.3001 + 5.4133I
b = 2.96409 + 1.05294I		
u = 0.233225 + 1.122880I		
a = 0.57215 + 1.46143I	0.773516 - 0.146851I	-4.77195 + 0.70902I
b = -1.222460 - 0.507809I		
u = 0.233225 - 1.122880I		
a = 0.57215 - 1.46143I	0.773516 + 0.146851I	-4.77195 - 0.70902I
b = -1.222460 + 0.507809I		
u = -0.666278 + 0.525489I		
a = -0.803308 + 0.905672I	6.17150 - 0.46362I	0.865849 + 0.093263I
b = 0.208916 - 0.549594I		
u = -0.666278 - 0.525489I		
a = -0.803308 - 0.905672I	6.17150 + 0.46362I	0.865849 - 0.093263I
b = 0.208916 + 0.549594I		
u = 0.755679 + 0.375560I		
a = -0.759994 + 0.411460I	5.35455 - 2.68854I	0.27590 + 1.63116I
b = -0.93480 - 1.33254I		
u = 0.755679 - 0.375560I		
a = -0.759994 - 0.411460I	5.35455 + 2.68854I	0.27590 - 1.63116I
b = -0.93480 + 1.33254I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.572364 + 1.036080I		
a = -0.875217 - 0.298710I	4.65158 - 4.35826I	-3.03168 + 5.37971I
b = 0.574390 - 0.089490I		
u = -0.572364 - 1.036080I		
a = -0.875217 + 0.298710I	4.65158 + 4.35826I	-3.03168 - 5.37971I
b = 0.574390 + 0.089490I		
u = 0.583300 + 1.114080I		
a = 2.02438 + 0.07803I	3.18311 + 7.76425I	-3.26242 - 5.87229I
b = -1.48959 + 1.53903I		
u = 0.583300 - 1.114080I		
a = 2.02438 - 0.07803I	3.18311 - 7.76425I	-3.26242 + 5.87229I
b = -1.48959 - 1.53903I		
u = -0.458473 + 1.178850I		
a = -0.111178 + 0.351572I	-8.21489 - 4.24741I	-10.19096 + 5.10189I
b = -0.052777 - 0.243038I		
u = -0.458473 - 1.178850I		
a = -0.111178 - 0.351572I	-8.21489 + 4.24741I	-10.19096 - 5.10189I
b = -0.052777 + 0.243038I		
u = 0.351995 + 0.609402I		
a = 0.67301 - 2.19679I	-3.79826 + 0.59510I	-11.16480 + 2.33336I
b = 1.56998 + 0.91609I		
u = 0.351995 - 0.609402I		
a = 0.67301 + 2.19679I	-3.79826 - 0.59510I	-11.16480 - 2.33336I
b = 1.56998 - 0.91609I		
u = -0.693876		
a = -0.699080	-4.94005	-7.28110
b = 0.286370		

III. $I_3^u = \langle 758a^3u^3 - 3539u^3a^2 + \dots + 1193a - 9295, \ a^3u^3 - 2u^3a^2 + \dots + 3a + 2, \ u^4 + u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + u^{2} - u + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0877721a^{3}u^{3} + 0.409796a^{2}u^{3} + \cdots - 0.138143a + 1.07631 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0211904a^{3}u^{3} + 0.0128532a^{2}u^{3} + \cdots + 0.183997a - 0.0683187 \\ 0.0507179a^{3}u^{3} - 0.325845a^{2}u^{3} + \cdots + 0.178092a - 0.754516 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0620658a^{3}u^{3} + 0.234368a^{2}u^{3} + \cdots + 0.364057a - 0.254748 \\ 0.189787a^{3}u^{3} - 0.0823298a^{2}u^{3} + \cdots + 0.788675a + 0.351436 \\ 0.189787a^{3}u^{3} + 0.575845a^{2}u^{3} + \cdots + 0.428092a + 1.50452 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.100741a^{3}u^{3} + 0.575845a^{2}u^{3} + \cdots + 0.428092a + 1.50452 \\ -0.0507179a^{3}u^{3} + 0.575845a^{2}u^{3} + \cdots + 0.183997a - 0.0683187 \\ 0.0100741a^{3}u^{3} + 0.387332a^{2}u^{3} + \cdots + 0.183997a - 0.0683187 \\ 0.0100741a^{3}u^{3} + 0.387332a^{2}u^{3} + \cdots + 0.103868a + 2.58986 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u^2 6$

Crossings	u-Polynomials at each crossing
c_1	$ (u^4 + 2u^3 + 3u^2 + u + 1)^4 $
c_2, c_7	$(u^4 + u^2 + u + 1)^4$
<i>C</i> 3	$(u^4 + 3u^3 + 4u^2 + 3u + 2)^4$
c_4, c_6, c_{10} c_{11}	$u^{16} + 3u^{14} + \dots + 4u + 19$
c_5, c_9	$u^{16} - 5u^{14} + \dots - 26u + 31$
c_8	$(u^4 - 2u^3 + 3u^2 - u + 1)^4$
c_{12}	$(u^2+u-1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^4$
c_2, c_7	$(y^4 + 2y^3 + 3y^2 + y + 1)^4$
<i>c</i> ₃	$(y^4 - y^3 + 2y^2 + 7y + 4)^4$
c_4, c_6, c_{10} c_{11}	$y^{16} + 6y^{15} + \dots + 1428y + 361$
c_5, c_9	$y^{16} - 10y^{15} + \dots - 5760y + 961$
c_{12}	$(y^2 - 3y + 1)^8$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547424 + 0.585652I		
a = 0.499523 - 0.414695I	-2.96775 + 1.39709I	-4.22981 - 3.86736I
b = 1.49449 + 0.67486I		
u = 0.547424 + 0.585652I		
a = -1.41065 - 0.30491I	4.92794 + 1.39709I	-4.22981 - 3.86736I
b = -0.139658 + 0.204609I		
u = 0.547424 + 0.585652I		
a = 0.85743 + 1.26440I	4.92794 + 1.39709I	-4.22981 - 3.86736I
b = -0.789932 - 0.962845I		
u = 0.547424 + 0.585652I		
a = 0.94882 - 2.09729I	-2.96775 + 1.39709I	-4.22981 - 3.86736I
b = 0.93920 + 1.31022I		
u = 0.547424 - 0.585652I		
a = 0.499523 + 0.414695I	-2.96775 - 1.39709I	-4.22981 + 3.86736I
b = 1.49449 - 0.67486I		
u = 0.547424 - 0.585652I		
a = -1.41065 + 0.30491I	4.92794 - 1.39709I	-4.22981 + 3.86736I
b = -0.139658 - 0.204609I		
u = 0.547424 - 0.585652I		
a = 0.85743 - 1.26440I	4.92794 - 1.39709I	-4.22981 + 3.86736I
b = -0.789932 + 0.962845I		
u = 0.547424 - 0.585652I		
a = 0.94882 + 2.09729I	-2.96775 - 1.39709I	-4.22981 + 3.86736I
b = 0.93920 - 1.31022I		
u = -0.547424 + 1.120870I		
a = 1.98981 - 0.07512I	1.32281 - 7.64338I	-9.77019 + 6.51087I
b = -1.28422 - 1.69317I		
u = -0.547424 + 1.120870I		
a = -0.79640 + 1.83226I	-6.57287 - 7.64338I	-9.77019 + 6.51087I
b = 1.57066 - 0.08141I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.547424 + 1.120870I		
a = 1.77511 - 1.01217I	-6.57287 - 7.64338I	-9.77019 + 6.51087I
b = -2.38632 - 0.09060I		
u = -0.547424 + 1.120870I		
a = -2.36364 - 0.23813I	1.32281 - 7.64338I	-9.77019 + 6.51087I
b = 1.59578 + 1.75888I		
u = -0.547424 - 1.120870I		
a = 1.98981 + 0.07512I	1.32281 + 7.64338I	-9.77019 - 6.51087I
b = -1.28422 + 1.69317I		
u = -0.547424 - 1.120870I		
a = -0.79640 - 1.83226I	-6.57287 + 7.64338I	-9.77019 - 6.51087I
b = 1.57066 + 0.08141I		
u = -0.547424 - 1.120870I		
a = 1.77511 + 1.01217I	-6.57287 + 7.64338I	-9.77019 - 6.51087I
b = -2.38632 + 0.09060I		
u = -0.547424 - 1.120870I		
a = -2.36364 + 0.23813I	1.32281 + 7.64338I	-9.77019 - 6.51087I
b = 1.59578 - 1.75888I		

$$\text{IV. } I_4^u = \langle -18352u^5a^3 + 13327u^5a^2 + \dots + 704a - 29929, \ u^5a^2 + u^5a + \dots + \\ a^4 + a^3, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + u + 1 \\ -2u^{5} - u^{4} - 3u^{3} - 2u^{2} - 3u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.5472a^{3}u^{5} - 0.838545a^{2}u^{5} + \dots - 0.0442962a + 1.88316 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0661297a^{3}u^{5} + 0.889259a^{2}u^{5} + \dots + 0.219782a + 0.555591 \\ -1.41358a^{3}u^{5} + 0.949475a^{2}u^{5} + \dots - 0.855974a - 1.68401 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0667590a^{3}u^{5} + 0.480966a^{2}u^{5} + \dots + 0.115900a + 1.06424 \\ -1.27723a^{3}u^{5} + 0.321525a^{2}u^{5} + \dots - 1.09835a - 1.10174 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0751903a^{3}u^{5} + 0.758007a^{2}u^{5} + \dots + 0.385956a - 0.569999 \\ 0.960423a^{3}u^{5} - 1.91279a^{2}u^{5} + \dots + 1.61442a + 2.68747 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0661297a^{3}u^{5} + 0.889259a^{2}u^{5} + \dots + 0.219782a - 1.44441 \\ 1.21972a^{3}u^{5} - 0.682879a^{2}u^{5} + \dots + 0.779714a + 3.95445 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u 10$

Crossings	u-Polynomials at each crossing
c_1	$(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)^4$
c_2, c_7	$(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)^4$
<i>c</i> 3	$(u^3 - u^2 + 1)^8$
c_4, c_6, c_{10} c_{11}	$u^{24} - u^{23} + \dots + 16u + 11$
c_5, c_9	$u^{24} + u^{23} + \dots + 186u + 79$
c_8	$(u^6 - 3u^5 + 4u^4 - 2u^3 + 1)^4$
c_{12}	$(u^2 + u - 1)^{12}$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^4$
c_2, c_7	$(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^4$
<i>c</i> ₃	$(y^3 - y^2 + 2y - 1)^8$
c_4, c_6, c_{10} c_{11}	$y^{24} + 9y^{23} + \dots + 1856y + 121$
c_5, c_9	$y^{24} - 15y^{23} + \dots - 45972y + 6241$
c_{12}	$(y^2 - 3y + 1)^{12}$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498832 + 1.001300I		
a = -0.211070 + 0.743684I	3.68210 + 2.82812I	-6.49024 - 2.97945I
b = -0.224034 + 0.553154I		
u = 0.498832 + 1.001300I		
a = 1.86886 + 0.18851I	3.68210 + 2.82812I	-6.49024 - 2.97945I
b = -1.51557 + 0.21123I		
u = 0.498832 + 1.001300I		
a = -2.16524 - 0.68774I	-4.21358 + 2.82812I	-6.49024 - 2.97945I
b = 2.43868 - 1.28895I		
u = 0.498832 + 1.001300I		
a = -2.17491 - 1.75278I	-4.21358 + 2.82812I	-6.49024 - 2.97945I
b = 2.11567 - 0.71224I		
u = 0.498832 - 1.001300I		
a = -0.211070 - 0.743684I	3.68210 - 2.82812I	-6.49024 + 2.97945I
b = -0.224034 - 0.553154I		
u = 0.498832 - 1.001300I		
a = 1.86886 - 0.18851I	3.68210 - 2.82812I	-6.49024 + 2.97945I
b = -1.51557 - 0.21123I		
u = 0.498832 - 1.001300I		
a = -2.16524 + 0.68774I	-4.21358 - 2.82812I	-6.49024 + 2.97945I
b = 2.43868 + 1.28895I		
u = 0.498832 - 1.001300I		
a = -2.17491 + 1.75278I	-4.21358 - 2.82812I	-6.49024 + 2.97945I
b = 2.11567 + 0.71224I		
u = -0.284920 + 1.115140I		
a = 1.029620 - 0.410831I	-8.35116	-13.01951 + 0.I
b = -0.672823 - 1.187000I		
u = -0.284920 + 1.115140I		
a = -0.32107 + 1.53891I	-0.455481	-13.01951 + 0.I
b = 1.092390 - 0.411344I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.284920 + 1.115140I		
a = 0.89594 - 1.36997I	-0.455481	-13.01951 + 0.I
b = -1.47716 + 0.53887I		
u = -0.284920 + 1.115140I		
a = -2.53465 - 0.03145I	-8.35116	-13.01951 + 0.I
b = 1.68015 + 0.85313I		
u = -0.284920 - 1.115140I		
a = 1.029620 + 0.410831I	-8.35116	-13.01951 + 0.I
b = -0.672823 + 1.187000I		
u = -0.284920 - 1.115140I		
a = -0.32107 - 1.53891I	-0.455481	-13.01951 + 0.I
b = 1.092390 + 0.411344I		
u = -0.284920 - 1.115140I		
a = 0.89594 + 1.36997I	-0.455481	-13.01951 + 0.I
b = -1.47716 - 0.53887I		
u = -0.284920 - 1.115140I		
a = -2.53465 + 0.03145I	-8.35116	-13.01951 + 0.I
b = 1.68015 - 0.85313I		
u = -0.713912 + 0.305839I		
a = 0.805409 + 0.530294I	3.68210 + 2.82812I	-6.49024 - 2.97945I
b = 0.83973 - 1.49814I		
u = -0.713912 + 0.305839I		
a = -0.874949 + 0.153226I	3.68210 + 2.82812I	-6.49024 - 2.97945I
b = -0.87848 + 1.19410I		
u = -0.713912 + 0.305839I		
a = -0.16062 - 1.58358I	-4.21358 + 2.82812I	-6.49024 - 2.97945I
b = -1.309340 + 0.402018I		
u = -0.713912 + 0.305839I		
a = 0.342678 - 0.205899I	-4.21358 + 2.82812I	-6.49024 - 2.97945I
b = 1.41079 + 0.39396I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.713912 - 0.305839I		
a = 0.805409 - 0.530294I	3.68210 - 2.82812I	-6.49024 + 2.97945I
b = 0.83973 + 1.49814I		
u = -0.713912 - 0.305839I		
a = -0.874949 - 0.153226I	3.68210 - 2.82812I	-6.49024 + 2.97945I
b = -0.87848 - 1.19410I		
u = -0.713912 - 0.305839I		
a = -0.16062 + 1.58358I	-4.21358 - 2.82812I	-6.49024 + 2.97945I
b = -1.309340 - 0.402018I		
u = -0.713912 - 0.305839I		
a = 0.342678 + 0.205899I	-4.21358 - 2.82812I	-6.49024 + 2.97945I
b = 1.41079 - 0.39396I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{4} + 2u^{3} + 3u^{2} + u + 1)^{4}(u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)^{4}$ $\cdot (u^{19} - 10u^{18} + \dots - 4u + 1)(u^{31} + 15u^{30} + \dots + 12u - 16)$
c_2	$(u^4 + u^2 + u + 1)^4 (u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)^4$ $\cdot (u^{19} + 5u^{17} + \dots - 2u^2 - 1)(u^{31} + 5u^{30} + \dots + 26u + 4)$
c_3	$((u^3 - u^2 + 1)^8)(u^4 + 3u^3 + \dots + 3u + 2)^4(u^{19} - 3u^{17} + \dots + 3u - 2)$ $\cdot (u^{31} - 5u^{30} + \dots - 240u + 32)$
c_4,c_{11}	$(u^{16} + 3u^{14} + \dots + 4u + 19)(u^{19} + 6u^{17} + \dots - u + 1)$ $\cdot (u^{24} - u^{23} + \dots + 16u + 11)(u^{31} + 7u^{29} + \dots + 3u + 1)$
c_5, c_9	$(u^{16} - 5u^{14} + \dots - 26u + 31)(u^{19} - u^{18} + \dots + 6u^{2} + 1)$ $\cdot (u^{24} + u^{23} + \dots + 186u + 79)(u^{31} + u^{30} + \dots + 4u + 1)$
c_6,c_{10}	$(u^{16} + 3u^{14} + \dots + 4u + 19)(u^{19} + 6u^{17} + \dots - u - 1)$ $\cdot (u^{24} - u^{23} + \dots + 16u + 11)(u^{31} + 7u^{29} + \dots + 3u + 1)$
	$(u^4 + u^2 + u + 1)^4 (u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)^4$ $\cdot (u^{19} + 5u^{17} + \dots + 2u^2 + 1)(u^{31} + 5u^{30} + \dots + 26u + 4)$
<i>c</i> ₈	$(u^4 - 2u^3 + 3u^2 - u + 1)^4 (u^6 - 3u^5 + 4u^4 - 2u^3 + 1)^4$ $\cdot (u^{19} + u^{17} + \dots + 3u^2 + 1)(u^{31} + 25u^{30} + \dots + 101226u + 9028)$
c_{12}	$((u^{2} + u - 1)^{20})(u^{19} + 7u^{18} + \dots + 3u + 2)$ $\cdot (u^{31} - 24u^{30} + \dots - 9728u + 1024)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^4 (y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^4$ $\cdot (y^{19} + 2y^{18} + \dots - 4y - 1)(y^{31} + 3y^{30} + \dots + 5360y - 256)$
c_2, c_7	$(y^{4} + 2y^{3} + 3y^{2} + y + 1)^{4}(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)^{4}$ $\cdot (y^{19} + 10y^{18} + \dots - 4y - 1)(y^{31} + 15y^{30} + \dots + 12y - 16)$
c_3	$(y^{3} - y^{2} + 2y - 1)^{8}(y^{4} - y^{3} + 2y^{2} + 7y + 4)^{4}$ $\cdot (y^{19} - 6y^{18} + \dots + 5y - 4)(y^{31} - 9y^{30} + \dots + 29696y - 1024)$
c_4, c_6, c_{10} c_{11}	$(y^{16} + 6y^{15} + \dots + 1428y + 361)(y^{19} + 12y^{18} + \dots + 7y - 1)$ $\cdot (y^{24} + 9y^{23} + \dots + 1856y + 121)(y^{31} + 14y^{30} + \dots - 11y - 1)$
c_5, c_9	$(y^{16} - 10y^{15} + \dots - 5760y + 961)(y^{19} - 7y^{18} + \dots - 12y - 1)$ $\cdot (y^{24} - 15y^{23} + \dots - 45972y + 6241)(y^{31} - 49y^{30} + \dots + 50y - 1)$
c_8	$(y^{4} + 2y^{3} + 7y^{2} + 5y + 1)^{4}(y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)^{4}$ $\cdot (y^{19} + 2y^{18} + \dots - 6y - 1)$ $\cdot (y^{31} + 3y^{30} + \dots - 146312468y - 81504784)$
c_{12}	$((y^{2} - 3y + 1)^{20})(y^{19} - 15y^{18} + \dots - 35y - 4)$ $\cdot (y^{31} - 18y^{30} + \dots + 4980736y - 1048576)$