UFV – Campus Florestal Ciência da Computação Trabalho Prático 01

Disciplina: Matemática Discreta **Professor:** Fabrício A. Silva

Valor: 15 pontos

Data da Entrega: 18/10/2020 até 23:59

Forma de Entrega: Online (https://run.codes) (veja instruções no final deste

documento)

Primavera em Latserolf

Todos os anos, há um festival de primavera em Latserolf (do dialeto local, cidade do calor) e milhares de pessoas de todo o mundo vão à cidade apreciar a diversidade de flora que a região possui. No entanto, nesta época do ano a demanda por gelo, em decorrência do calor excessivo em Latserolf, é sempre muito grande, e M. Gelos fabrica cubos de gelo para vender nesta época do ano.

É conhecido que M. Gelos sempre empilha os seus cubos de gelo em duas pilhas A e B, e que o tamanho da pilha B é determinado a partir do tamanho da pilha A. Para isto, M. Gelos armazena em seu sistema duas strings binárias S_1 e S_2 , ambas de tamanho N, e o tamanho de A é determinado por $\sum\limits_{i=0}^{N-1}$ ($S_{1i} \oplus S_{2i}$) • (i+1). Também é conhecido que os cubos de gelo sempre são encaminhados para o envio a partir de duas operações X e Y, mas nunca as duas ao mesmo tempo:

- X: retira 2 cubos de gelo da pilha A e 1 cubo de gelo da pilha B.
- Y: retira 1 cubo de gelo da pilha A e 2 cubos de gelo da pilha B.

Para atender a demanda por gelo dos milhares de turistas que vêm a Latserolf, M. Gelos necessita que, no final do dia de trabalho, as duas pilhas sempre acabem vazias para que não haja desperdício! O problema a ser resolvido é determinar o tamanho mínimo da pilha B de tal modo que as pilhas A e B figuem vazias.

Entrada

A primeira linha de entrada consiste em um número inteiro $N (0 \le N \le 10^4)$, a segunda linha a string binária S_1 e na terceira linha a string binária S_2 .

Saída

A saída consiste em um número inteiro positivo que representa o tamanho mínimo de *B* para que as duas pilhas terminem vazias.

Exemplos de entrada/saída		
4 0001 1001	2	
3 101 010	3	
2 11 00	3	

• Primeiro caso: A = 1 e B = 2, caso trivial. M. Gelos pode zerar as duas pilhas com uma operação.

```
Segundo caso: Temos que A = 6 e B = 3;
Após 1ª operação: A = 4 e B = 2;
Após 2ª operação: A = 2 e B = 1;
Após 3ª operação: A = 0 e B = 0.
```

```
Terceiro caso: A = 3 e B = 3
Após 1ª operação: A = 2 e B = 1;
Após 2ª operação: A = 0 e B = 0.
```

Observações:

- A entrega do trabalho deverá ser feita pelo site https://run.codes. Faça o seu cadastro, e procure pela disciplina CCF130 da UFV, código 3YVZ.
- Este trabalho deve ser realizado individualmente. Todas as submissões são checadas para evitar cópia/plágio. Portanto, evite problemas e implemente o seu próprio código para não ter sua nota zerada.
- A entrada deve ser lida da entrada padrão, e a saída deve ser escrita na saída padrão.
- Os programas serão testados com múltiplos casos de teste, cada um em uma execução diferente.
- A linguagem de programação a ser utilizada deve ser C ou python3 e o nome do arquivo fonte deve ser latserolf_<MAT>.c ou latserolf_<MAT>.py, onde <MAT> é a matrícula do aluno.

•	Você poderá submeter o trabalho várias vezes para https://run.codes . a última submissão será avaliada.	Apenas