# P2-Proyecto con PicoBlaze Arquitecturas Hardware de Comunicaciones

# Objetivo: Diseñar un SoPC simple



# PARTE 1 PROYECTO HELLOWORLD

### Sistema mínimo: "Helloworld"



# Crear Proyecto ISE: PicoBlaze\_Helloworld



#### Transmision serie asíncrona: RS232

- □ La unidad de transmisión es el carácter
- □ Tiempo entre caracteres arbitrario (t<sub>i</sub>)
- Temporización rígida dentro de cada carácter (t<sub>bit</sub>)
- □ Formato: 1 bit start − 8 bits datos − 1 bit stop
- $\Box$  El primer bit transmitido es el de menor peso ( $b_0$ )



## Código ASM: programa\_helloworld.asm



- Main: realiza Eco +1
- Rutinas: Recibe y Transmite
  - Rutinas de espera
    - Muestreo de datos

txreq, 01 ;hacemos el eco del caracter recibido CALL transmite JUMP start ;Rutina de recepcion de caracteres esperamos a que se reciba un bit de inicio: INPUT rxreg, rs232 rxreg, 80 AND NZ, recibe wait\_05bit JUMP CALL ; almacenamos los 8 bits de datos LOAD contbit,09 wait\_1bit CALL SR0 rxreq s0, rs232 INPUT AND 50. 80 rxreg, s0 OR SUB contbit, 01 JUMP NZ, next\_rx\_bit RETURN ;Rutina de transmision de caracteres enviamos un bit de inicio LOAD 50, 00 OUTPUT s0, rs232 CALL wait\_1bit ; enviamos los 8 bits de datos LOAD contbit, 08 OUTPUT txreq, rs232 CALL wait\_1bit SR0 txreq SUB contbit, 01 JUMP NZ, next\_tx\_bit ; enviamos un bit de parada s0, FF LOAD

s0, rs232

wait\_1bit

; copiamos el caracter recibido al buffer de

txreg, rxreg

ADDRESS

CALL

LOAD

OUTPUT

RETURN

CALL

start:

recibe:

;Inicio del programa

esperamos a recibir un caracter:

recibe



#### Ensamblador: asm.exe

- Aplicación para MS-DOS desarrollada en C. Uso:
  - C:\>asm.exe programa\_helloworld.asm



# Crear Proyecto ISE: PicoBlaze\_Helloworld



# Configuración para conexionado a PC



## Programar la FPGA con iMPACT

- Lanzar el wizard de configuración:
   Menú→Edit→Launch Configuration Wizard.
- 2. Configurar los siguiente parámetros en el asistente de configuración del iMPACT:
  - Configurar dispositivo *vía: Boundary Scan mode.*
  - Automatically connect to cable and identify the Boundary Scan Chain.
- 3. Asignar el archivo .bit a la FPGA tipo Spartan (xc3s500e) y dejar las otras dos en bypass.
- 4. Seleccionar la FPGA xc3s500e y en las opciones del boton secundario del ratón elegir "Program..." para programar la FPGA.



# Configuración para comunicación con PC

- Configuración del HyperTerminal de W'XP/W7 para funcionar con PicoBlaze en su configuración por defecto:
  - Bits por segundo: 115200
  - Bits de datos: 8
  - Paridad: Ninguno
  - Bits de Parada: 1
  - Control de Flujo: Ninguno
  - Emulación: Automática



# PARTE 2 MODIFICACIÓN DEL PROYECTO HELLOWORLD

#### Modificación-1<sup>a</sup>: añadir RAM



# Modificación-2°: añadir Interrupción





- Modificar herramienta ensambladora (asm.ccp):
  - Añadir nuevo código de operación.
  - Añadir nuevo nemónico al juego de instrucciones.
  - Incrementar el número de instrucciones reconocibles
  - Añadir instrucción en el parser de chequeo de sintaxis.
  - Añadir instrucción en el parser de decodificación de Código Máquina



- Modificar código VHDL de PicoBlaze:
  - Añadir código de operación (flip\_id = '11111')
  - Declarar el componente y definir el comportamiento de la instrucción
  - Declarar nuevas señales de control (i\_flip)
  - Habilitar señales de habilitación de flags del Banco de Registros.
  - Añadir al decodificar de instrucciones de la UC la nueva instrucción.
  - Añadir a la ALU la salida de la nueva instrucción.



#### **Modificar VHDL**

- 1 Añadir cod. Operación
- 2- Declarar/instanciar Componente.
- 3- Añadir señal "i\_flip"
- 4- Habilitar Flag y puertos en "register\_and\_flag\_enable"
- 5- Añadir decodificador UC.
- 6- Añadir salida ALU

#### Rutina de interrupción



