

Transformer-based Architectures for Time Series Foundation Models

Literature Review

MARZOUG AYOUB

June 2025

Context & Motivation

Foundation Models

- Self-supervised learning on massive, diverse data.
- Strong zero-shot / few-shot generalization.
- Success in NLP & Vision \rightarrow Can we transpose this to time series?

Why Time Series?

- Financial, industrial, and environmental applications.
- Multiscale structure, Irregular sampling, Noisy signals.
- Temporal dynamics vary by domain.

Research Challenge

Internship Objective

- Identify an optimal **Transformer-based architecture**.
- Build a foundation model for financial time series.
- Capture key stylized facts: mean-reversion, volatility clustering, etc.

Core Challenges

- **Tokenization** of irregular, multiscale signals.
- Encoding statistical models : OU, Heston, GARCH.
- Balancing generalization with domain specificity.

Goal: Ground Transformer design in financial model priors.

What Are Time Series Foundation Models?

Foundation Models are large deep models :

- Pretrained on large, diverse time series corpora.
- Capture general-purpose representations across modalities.
- Adaptable via fine-tuning or few-shot prompts.

Time Series Foundation Models are :

- Pretrained on diverse time series (e.g., finance, healthcare, traffic).
- Leverage temporal, spatial, and semantic properties.
- Transfer across domains with minimal adaptation.

Key Advantage : Train once, generalize everywhere

Enables zero-shot and few-shot forecasting across domains.

TSFM Scope

TSFMs leverage diverse inputs and temporal structures to serve a variety of downstream tasks.

Desirable Properties of TSFM

Time series FMs must balance generalization, fidelity, and lightweight adaptation.

Roadmap of Representative TSFMs

Overview of Time Series Foundation Models

Model	Arch. Type	Tokenization	Probabilistic?	Pretraining
Lag-Llama	Decoder-only	Lag features	✓	27 real datasets
TimesFM	Decoder-only	Patching	\times (point)	Synthetic + real
Chronos	Decoder-only	Quantization	✓	Quantized tokens
ForecastPFN	Encoder-only	Synthetic signals	× (point)	100% synthetic

A spectrum of design choices: token type, architecture, forecast type, and training corpus.

Transformer-based Architectures

Why Transformers for Foundation Models?

• Leverage attention :

$$\mathsf{Attention}(Q,K,V) = \mathsf{Softmax}(QK^\top/\sqrt{d_k})V$$

- Capture long-range dependencies without recurrence.
- Scalable and parallelizable suitable for large data and parameter regimes.

Architectural Choices in TSFMs:

- Encoder-only : Effective for small datasets.
- Decoder-only: Suited for autoregressive forecasting and generative TSFMs.
- **Encoder-decoder**: For more flexible sequence-to-sequence mappings.

Transfomer-based Models

TSFM architectures are increasingly specialized—blending core Transformer advantages with domain-specific temporal and spatial innovations.

Pipeline Perspective

Pre-training Strategies:

- Fully-supervised : Train on large labeled TS datasets.
- Self-supervised :
 - Generative: Masked reconstruction or density modeling.
 - *Contrastive* : Augmentations + positive/negative pair learning.
 - Hybrid: Combines both to improve generalization.
- Enables learning from large-scale unlabeled data, boosting transferability.

Adaptation Mechanisms:

- **Direct usage (a) :** Zero-shot deployment.
- **Fine-tuning (b)**: Full model or selective components.
- **Prompting (c)**: Static or learned prompts for task conditioning.
- Tokenization (d): Patch-based, normalized, decomposed TS embeddings.

TSFM Adaptation Pipeline

Pipeline

TSFM adaptation pipeline : from direct inference to prompting and specialized tokenization.

Tokenization: Role and Challenges

Why Tokenization is Crucial

- No fixed vocabulary: continuous, irregular, noisy inputs.
- Tokenization = encoding inductive bias (lags, trends, noise).
- Defines what patterns the Transformer can learn and transfer.

What Good Tokenization Enables

- Structured TS \rightarrow Tokens \rightarrow Generalization.
- Unlocks cross-domain zero-/few-shot transfer.
- Aligns model behavior with financial/temporal priors.

Tokenization Strategies

Patchify

Quantization

Tokenization is not just preprocessing — it defines how the model learns and transfers.

Comprehensive Taxonomy of TSFMs

Compatibility with Financial Time Series

Why Financial Data is Challenging :

- Stylized facts: Heavy tails, mean-reversion, regime shifts.
- Low signal-to-noise ratio and market microstructure effects.

What TSFMs Must Capture:

- Inductive priors compatible with :
 - Ornstein-Uhlenbeck (OU): Mean reversion in log prices.
 - GARCH-family models : Conditional heteroskedasticity.
 - Heston model: Stochastic volatility with latent dynamics.
- Ability to disentangle signal from noise across horizons.
- Learn representations that generalize across assets, markets, and regimes.

Goal

Bridge deep learning architectures with domain-aware financial stochastic modeling.

Lag-Llama

Lag-Llama: Backbone Architecture

Architecture

Lag-Llama is a **decoder-only Transformer** trained in an autoregressive fashion on lag-structured tabular tokens.

Input Structure:

- For each step t, a token k_t is created by concatenating :
 - Lagged target values $\{y_{t-l_1}, \dots, y_{t-l_n}\}$.
 - Time-varying covariates (e.g., day-of-week).
 - Static metadata (e.g., item ID).
- Tokens are processed autoregressively :

$$\hat{y}_{t+h} = f_{\theta}(k_t, k_{t-1}, \dots)$$

Design Note

No sequence embedding or patching — relies solely on lag features.

Lag-Llama Full Architecture

Lag-Llama: Positional Encoding

Strategy

Uses **learned absolute position embeddings** for each lag index and optional forecast horizon embedding.

Position Encoding:

$$e_{\mathsf{pos}}(l_j) + x_{t-l_j}, \quad j = 1, \dots, n$$

 $e_{\mathsf{horizon}}(h), \quad \text{for step } t + h$

- Embeddings injected into tabular token fields.
- No use of sinusoidal or relative encodings.

Critique

Lacks frequency priors and does not generalize to irregularly spaced data.

Lag-Llama: Tokenization Strategy

Core Idea

Lag-Llama tokenizes time series by constructing **lag-based feature vectors** for each time step, rather than patches or quantized bins.

Definition: Lag Tokenization

Given a sorted list of lag indices $L = l_1, l_2, \dots, l_n$, the token k_t for time t is :

$$k_t[j] = x_{t-l_j}, \quad \text{for } j = 1, \dots, n$$

Each $k_t \in \mathbb{R}^{|L|}$ is augmented with :

- Date-time covariates : second, minute, hour, day, etc.
- Summary stats : mean (μ) and scale (σ) from robust scaling (IQR).

Illustration of Lag-Llama token construction : lags + datetime + summary features.

Lag-Llama: Input Modality Handling

Supported Modalities

Lag-Llama supports both **univariate** and **multivariate** targets. Each token incorporates :

- Static covariates (e.g., item ID, product type) via learned embeddings.
- Time-varying covariates (e.g., calendar effects, weather) into the token stream.
- No support for cross-series attention each time series is modeled independently.
- This limits scalability to portfolio-level forecasting or correlated asset dynamics.

Implication for Finance

Lacks ability to capture latent factor models, sectoral dependencies, or shared volatility clusters.

Lag-Llama: Temporal Granularity

Design Constraints

- Fixed-length context window (e.g., 36 lags).
- Forecast horizon h is a fixed offset cannot vary dynamically.

Limitations

- Cannot handle irregular sampling or variable-step prediction.
- No built-in support for temporal hierarchy or scale-adaptive inference.

Lag-Llama: Pretraining Methodology

Training Objective

Lag-Llama is trained using an **autoregressive forecasting loss**, predicting future values from past lagged inputs :

$$\mathcal{L}_{\mathsf{forecast}} = \frac{1}{H} \sum_{h=1}^{H} (y_{t+h} - \hat{y}_{t+h})^2$$

Where H is the forecast horizon and \hat{y}_{t+h} is the model output.

- Deterministic output no probabilistic head or uncertainty modeling.
- No self-supervised pretraining: no masking, contrastive, or generative objectives.

Implications

Lacks calibrated risk estimation — suboptimal for finance where *predictive* distribution is as important as point forecasts.

Lag-Llama: Dataset Corpus

Pretraining Dataset

Amazon Forecast TSF Dataset:

- >80,000 time series from retail, logistics, and energy sectors.
- High variability across product categories, geographies, and seasonality.

Lag-Llama is evaluated on :

- M4 (public forecasting competition)
- Electricity, Traffic, Influenza-like illness (ILI)

Critical Limitation

No financial datasets used — generalization to high-volatility or regime-shifting financial data remains untested.

TimesFM

TimesFM: Backbone Architecture

Design Overview

TimesFM uses a **decoder-only Transformer** with causal self-attention, designed for efficient long-horizon forecasting.

Key Characteristics:

- Patch-based token inputs reduce sequence length.
- No encoder: all inputs (context patches) and outputs (forecast patches) flow through the same Transformer block.
- Output tokens generate multiple time steps via a residual head.

Critique

Compared to encoder-decoder or latent diffusion models, this architecture is more efficient but potentially less expressive for structured forecasting tasks (e.g., hierarchical financial signals).

Architecture Summary

Decoder-only architecture with patch tokenization, causal attention, and MLP heads

TimesFM: Positional Encoding

Strategy

TimesFM uses **learned absolute positional embeddings** PE_j added to each patch token.

Equation:

$$t_j = R(\tilde{y}_j) + PE_j$$
, for $j = 1, \dots, N$

Limitations:

- No frequency-based or relative encoding.
- Implicitly assumes fixed patch length and regular sampling.

Implication

This positional encoding suffices for general-purpose data, but lacks inductive bias for financial periodicity or irregular timestamps.

TimesFM: Tokenization Strategy (Patching)

Core Idea

TimesFM transforms time series into **non-overlapping fixed-length patches**. Each patch is a token in the Transformer input.

Token Construction : Given a time series y_1, \ldots, y_L and patch size p:

$$\tilde{y}_j = y_{p(j-1)+1:pj} \in \mathbb{R}^p$$
, for $j = 1, \dots, \lfloor L/p \rfloor$

Each patch is:

- Processed by Residual MLP $R(\cdot)$
- Embedded as $t_j = R(\tilde{y}_j) + PE_j$

Motivation Behind Patching

- Efficiency: Reduces sequence length for Transformer ⇒ faster training.
- Generalization: Compatible with variable-length contexts and prediction horizons.
- Modularity: Patches serve as atomic temporal units, facilitating domain-agnostic modeling.

Training-Time Features

- Random masking of full and partial patches.
- Ensures robustness to different context lengths.

Prediction Tokens: Long Output Patches

Problem

Auto-regressive forecasting is inefficient for long horizons.

Solution: Predict longer output patches.

Let h be the output patch length:

$$\hat{y}_{pj+1:pj+h} = \text{OutputResidualBlock}(o_j)$$

- Each output token predicts *h* future time steps.
- Requires fewer decoding steps \Rightarrow speed + better accuracy.

Trade-off

Cannot use very large h for short input sequences.

TimesFM: Input Modality Handling

Supported Modalities

- Trained on univariate target series.
- Static metadata (e.g., series type) embedded via learned vectors.
- No explicit multivariate support each univariate series modeled independently.

Limitation

No cross-variable or cross-series attention — ill-suited for multivariate financial datasets with correlation structures.

TimesFM: Temporal Granularity

Resolution Strategy

- Supports arbitrary-length context and prediction patches.
- Patch size and output length h are tunable at inference.

Prediction Equation:

$$\hat{y}_{pj+1:pj+h} = \mathsf{ResidualHead}(o_j)$$

Flexibility

Adaptable to different forecasting horizons and granularities, though assumes regular sampling within patches.

TimesFM: Pretraining Methodology

Objective

 $\label{thm:continuous} \mbox{TimesFM is trained via a denoising autoencoding objective with masking}:$

$$\mathcal{L}_{\mathsf{patch}} = rac{1}{M} \sum_{j \in \mathcal{M}} \|\hat{y}_j - y_j\|^2$$

Where $\mathcal M$ indexes masked patches, and $\hat y_j$ is the reconstructed output.

Key Features:

- Random masking of full/partial patches.
- Trained on diverse time series without task-specific labels.

Benefit

Supports general-purpose adaptation — captures temporal structure via self-supervised learning.

TimesFM: Dataset Corpus

Pretraining Dataset

Dataset Mix:

- Over 100 diverse time series datasets.
- Includes finance-adjacent sources (e.g., commodities, energy, macro indicators).
- Over 1 billion tokens from univariate series.

Domain Coverage:

• Retail, climate, finance, web traffic, medical.

Strength

More diverse than prior models (e.g., Lag-Llama), enabling broad generalization.

Chronos

Chronos: Backbone Architecture

Core Design

Chronos leverages pretrained large language models (LLMs), specifically :

- T5 (encoder-decoder) and GPT-2 (decoder-only) variants.
- Used **without modification**, other than resizing the input/output vocabulary to match quantized token set.

This approach enables seamless reuse of mature, scalable, and highly optimized LLM infrastructures for time series forecasting.

Trade-off

While offering architectural simplicity, this discards potential benefits from domain-specific inductive biases, such as seasonality-aware layers or frequency-domain encoders.

Chronos Training & Inference

Training Context Tokens 2142 2282 2245 2310 **Time Series Language Model** Predicted Probabilities 2350 Next Token ID

Inference

Chronos: Positional Encoding Strategy

Core Choice

Chronos does not use any explicit positional encoding.

Implication:

- Forecasting treated as pure autoregressive sequence modeling.
- No calendar time, frequency bands, or relative timing cues.

Critique

This choice maximizes architectural reuse but limits expressiveness, especially in finance where position-dependent dynamics (e.g., calendar effects, volatility clusters) are critical.

Chronos: Tokenization Strategy

Core Idea

Chronos converts real-valued time series into sequences of **discrete tokens** via **mean scaling** and **uniform quantization**. This enables use of off-the-shelf language models.

Token Construction

- Given x_1, \ldots, x_{C+H} : context (1 to C), forecast (next H).
- Mean Scaling : $\tilde{x}i = \frac{x_i}{\frac{1}{C}\sum j = 1^C|x_j|}$
- **Quantization**: Uniform binning over [-15, +15] into B bins (e.g., B = 4096)
- Token : $z_i = q(\tilde{x}_i) \in 1, ..., B$

Chronos Tokenization

Why Discrete Tokenization?

Motivation:

- Language models require finite vocabulary.
- ullet Continuous values o categorical tokens.
- Enables use of cross-entropy loss over token predictions.

Quantization Function:

$$q(x) = \begin{cases} 1 & \text{if } x < b_1 \ 2 \\ \text{if } b_1 \le x < b_2 \ \vdots \ B & \text{if } x \ge b_{B-1} \end{cases}, \quad d(j) = c_j$$

No Positional Features:

Unlike other models, Chronos **ignores time/frequency features** \Rightarrow sequence-only input.

Chronos: Input Modality Handling

Supported Modes

Chronos operates on **univariate time series**, tokenized into 1D sequences of discrete values.

- No support for multivariate inputs or time-varying covariates.
- No special handling for static features.

Limitation

Cannot model interactions across assets, sectors, or covariates — a serious drawback for financial modeling tasks such as portfolio-level forecasting or macroeconomic inference.

Chronos: Temporal Granularity & Flexibility

Design Choices

- Forecasting horizon and context length are flexible.
- Input/output remain unstructured token streams.
- No frequency-awareness or hierarchical time handling.

Critique

Chronos is resolution-agnostic but lacks explicit tools for adapting across scales — limiting use in mixed-frequency macro-financial settings.

Chronos: Pretraining Methodology

Objective

Chronos uses standard **autoregressive cross-entropy loss** on quantized token sequences :

$$\ell(\theta) = -\sum_{h=1}^{H+1} \sum_{i=1}^{|V_{ts}|} \mathbf{1}(z_{C+h+1} = i) \log p_{\theta}(z_{C+h+1} = i|z_{1:C+h})$$

Training Details :

- Trained on millions of series (tokens from real-valued TS quantized to $|V_{ts}|$).
- Uses T5 and GPT-2 pretrained weights, finetuned on time series tokens.

Strength

High-quality probabilistic generation via sampling — enabling multimodal uncertainty-aware forecasting.

Chronos: Dataset Corpus

Pretraining Data

Chronos is trained on:

- Amazon Forecast TSF data (>80K series).
- Proprietary time series corpora including demand, traffic, climate.

Evaluation Benchmarks:

- Electricity, Traffic, ILI (public datasets).
- Forecast Horizon : 24–96 steps.

Limitation

No public financial datasets — limits inference on real-world financial market volatility or asset correlations.

ToTo

ToTo: Backbone Architecture

Core Structure

To To uses a **decoder-only Transformer** architecture, specifically optimized for time series observability data :

- Processes input patches autoregressively.
- Employs causal attention across patch-embedded multivariate sequences.
- No reuse of pretrained LLM weights.
- Specialized Student-T Mixture Model (SMM) prediction head for probabilistic output.

Implication

Unlike Chronos or Lag-Llama, ToTo incorporates **domain-specific architectural innovations** like factorized attention and causal scaling, purpose-built for multivariate observability forecasting.

Architecture Overview

ToTo: Positional Encoding

Method

ToTo applies **Rotary Positional Embeddings (RoPE)** to its patch-level latent tokens :

$$\theta_{2i} = \cos(\omega_i t), \quad \theta_{2i+1} = \sin(\omega_i t), \quad \omega_i = 10000^{-2i/d}$$

- Applied to input patch embeddings before attention.
- No learned or absolute position embeddings.
- Fixed-frequency sinusoidal structure supports long-range attention.

Finance Relevance

Improves extrapolation over long sequences, though lacks calendar-specific or seasonal priors.

ToTo: Causal Scaling for Autoregressive Stability

Problem

Standard LayerNorm is **non-causal** — it uses future values for normalization, which leads to information leakage in autoregressive settings.

Solution : Causal Scaling Layer

Replaces LayerNorm with online exponential moving average statistics :

$$\mu_t = \alpha \mu_{t-1} + (1 - \alpha)x_t$$

$$\sigma_t^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha)(x_t - \mu_t)^2$$

$$\hat{x}_t = \frac{x_t - \mu_t}{\sqrt{\sigma_t^2 + \epsilon}}$$

- Fully causal, autoregressive-safe.
- Applied before each attention and feedforward block.

ToTo: Patch-Based Representation

Core Design

ToTo represents time series as patches instead of individual timesteps :

- Non-overlapping patches of size P = 64.
- Linear projection into latent space of dimension D = 768.
- Context length L = 4096 points mapped to L/P tokens.

Advantages

- More efficient than token-per-step models.
- Improves scalability for long sequences.

ToTo: Factorized Attention Mechanism

Motivation

Standard attention over flattened [T, D] sequences is inefficient for high-dimensional multivariate time series.

- ToTo applies separate self-attention along the temporal and feature axes.
- Reduces complexity from $\mathcal{O}(TD^2)$ to $\mathcal{O}(T^2 + D^2)$.

Architecture

Each Transformer block alternates :

- Temporal attention : attends over patches across time.
- Feature attention : attends over variables across channels.

ToTo: Probabilistic Forecasting via SMM

Forecasting Mechanism

To To generates **probabilistic forecasts** via a **Student-T Mixture Model** (SMM) head :

Generation Strategy:

• Predicts mixture of K Student-T distributions :

$$p(x) = \sum_{k=1}^{K} \pi_k \cdot t(x; \mu_k, \sigma_k, \nu_k)$$

- Each with parameters : location μ_k , scale σ_k , degrees of freedom ν_k , and mixture weight π_k .
- Sampled trajectories capture forecast uncertainty.

Comparison

More robust than Gaussian or quantized token prediction — captures heavy tails and outliers in observability data.

ToTo: Input Modality Handling

Supported Modes

- Multivariate series input supported natively.
- Each variate gets its own causal patch-based scaling and embedding.

Limitation

No explicit support for categorical covariates or static metadata — designed for raw telemetry series only.

ToTo: Temporal Resolution

Properties

- Patch-wise encoding with fixed sampling and stride.
- Each patch covers P = 64 timesteps.
- No native support for irregular timestamps or variable-length gaps.

Finance Use Case

Well-suited for high-frequency telemetry; may need preprocessing (e.g., resampling) for irregular financial data.

ToTo: Pretraining Objective

Objective

Trained via **composite loss** combining SMM NLL and robust Cauchy loss :

$$\mathcal{L} = \lambda \cdot \mathcal{L}_{\mathsf{NLL}} + (1 - \lambda) \cdot \log \left(1 + \frac{(x - \hat{\mu})^2}{2\delta^2} \right)$$

Details:

- NLL: negative log-likelihood of predicted Student-T mixture.
- Robust term compares predicted mean $\hat{\mu}$ with ground truth x.
- Hyperparameters : $\delta =$ 0.1, $\lambda =$ 0.57.

Limitation

No use of masking, denoising, or contrastive auxiliary objectives — tuned purely for autoregressive forecasting.

ToTo: Dataset Corpus

Training Corpus

- 2.36 trillion points :
 - 43% internal observability data.
 - Public datasets (GIFT-Eval, Chronos, decontaminated).
 - Synthetic data for tail and regime diversity.

Diversity:

- Covers nonstationary, multiscale, bursty, and heavy-tailed patterns.
- Benchmarked on GIFT-Eval, LSF, and BOOM (350M points, 2807 series).

Constraint

No financial time series used in training — model design is observability-centric.

Sundial

Sundial: Backbone Architecture

Core Structure

Sundial employs a **decoder-only Transformer** architecture optimized for multivariate long-horizon forecasting.

- Scales to 64K context length using efficient tokenization.
- Autoregressive generation with causal self-attention.
- No reuse of pretrained NLP or LLM weights.
- Custom decoding head outputs real-valued forecasts.

Distinctive Design

Unlike LLM-style or quantized TSFM models (e.g., Chronos, ToTo), Sundial learns **continuous representations** from compressed time series tokens.

Sundial: Overall architecture

Sundial: Positional Encoding

Method

Sundial applies **rotary position encodings (RoPE)** to each latent token in the sequence.

- Ensures extrapolation across long temporal contexts.
- Fully compatible with fixed-length and variable-length series.

Encoding Form

RoPE:
$$\theta_{2i} = \cos(\omega_i t)$$
, $\theta_{2i+1} = \sin(\omega_i t)$, $\omega_i = 10000^{-2i/d}$

Positional information is preserved post-tokenization — critical due to adaptive compression in Sundial's input pipeline.

Sundial: Tokenization of Time Series

Patching-Based Tokenization

The input series is divided into fixed-length non-overlapping patches :

$$x = \{x_1, x_2, ..., x_T\}, \quad x_t \in \mathbb{R}^{p \times d}$$

Tokenization Process:

 Each patch is mapped to a continuous latent vector via an MLP encoder:

$$z_t = f_{\mathsf{enc}}(x_t) \in \mathbb{R}^{d'}$$

• Produces sequence $\{z_1, ..., z_T\}$ fed into Transformer.

Advantage

Supports long contexts with high compression, while maintaining fine-grained temporal and multivariate semantics.

Sundial: Forecasting Head

Mechanism

Forecasting is performed by decoding predicted latent tokens into future time series patches using a **shared MLP decoder**.

- Autoregressive Transformer outputs $\hat{z}_{T+1:T+h}$.
- Each \hat{z}_t is decoded :

$$\hat{x}_t = f_{\mathsf{dec}}(\hat{z}_t) \in \mathbb{R}^{p \times d}$$

• Forecasts are reconstructed at the original resolution.

The model is entirely deterministic — no sampling or generative diffusion is involved.

Sundial: Input Modality Handling

Multivariate Time Series

Sundial is designed for high-dimensional observability signals :

- Supports 16-128 channels per series.
- Handles all variables jointly during encoding and forecasting.

Note:

- No use of static metadata or exogenous covariates.
- Modeling is purely based on multivariate time series dynamics.

Sundial: Temporal Granularity & Resolution

Granularity Handling

- Fixed-length patching allows Sundial to operate at arbitrary sampling rates.
- Model is agnostic to hourly, daily, or irregular intervals granularity is learned from context.

Advantage

 ${\bf Enables} \ {\bf flexible} \ {\bf resolution} \ {\bf forecasting}, \ {\bf unlike} \ {\bf fixed-resolution} \ {\bf token} \ {\bf models}.$

Sundial: Pretraining Methodology

TimeFlow Loss

Sundial is trained using a latent-space forecasting loss on patch embeddings :

$$\mathcal{L}_{\mathsf{TimeFlow}} = \sum_{t=1}^{h} \|\hat{z}_{T+t} - z_{T+t}\|_{2}^{2}$$

Training Sequence :

- Encode context patches $x_{1:T} \rightarrow z_{1:T}$
- Predict future latents $\hat{z}_{T+1:T+h}$
- Decode forecasted latents to patches $\hat{x}_{T+1:T+h}$

Comment

This latent-level forecasting allows abstraction and improves generalization under long horizons.

Sundial: Dataset Corpus

Training Sources

- 340 billion points from internal observability systems (Numenta).
- Includes CPU usage, memory, latency, and service metrics.

Evaluation:

- Benchmarks on 10+ public datasets : ETT, Exchange, Traffic, Weather.
- Evaluated on both short and long horizons (96 to 960 steps).

Diversity

High dimensionality, burstiness, and varying periodicity — chosen to simulate real-world telemetry environments.

Tokenization Strategy Comparison

Summary Matrix

Model	Token Type	Quantized	Patches	Notes
Chronos	Discrete	✓		Uniform quantization of scaled va-
				lues; vocab size 4096.
Lag-Llama	Lag vector			$Tokens = lagged \ values + datetime$
				+ summary stats.
Sundial	Latent token	✓		VQ-VAE compresses adaptive seg-
				ments into tokens.
ТоТо	Patch embed		✓	Fixed-size real-valued patches pro-
				jected to latent space.
TimesFM	Patch embed		✓	MLP processes fixed-length patches;
				supports masking.

Architectural Style Comparison

Summary Matrix

Model	Transformer Type	Decoder Head	Notable Architectural Features
Chronos	T5, GPT-2 (LLMs)	Categorical logits	Unmodified LLMs; no PE; quanti-
			zed tokens via CE loss.
Lag-Llama	Decoder-only	Regression (MSE)	Lag-token input; static/dynamic co- variates; absolute PE.
Sundial	Decoder-only	Diffusion head	VQ-VAE tokenizer; causal RoPE;
			TimeFlow latent loss.
ТоТо	Decoder-only	Student-T Mixture	Factorized attention; causal scaling;
			patch autoregression.
TimesFM	Decoder-only	MLP Patch Decoder	Learned PE; patch masking; residual prediction heads.

Forecasting Head & Distribution Modeling

Summary Matrix

Model	Forecast Type	Head Type	Details
Chronos	Probabilistic	Categorical (CE)	Predicts distribution over quantized
			token bins; enables sampling.
Lag-Llama	Point	Linear Regression	Predicts scalar mean; no uncertainty
			modeling or probabilistic sampling.
Sundial	Probabilistic	Diffusion Decoder	Samples from learned noise process
			in latent space via DDPM.
ТоТо	Probabilistic	Student-T Mixture	Mixture of Student-T with learned
			μ , σ , ν , and π .
TimesFM	Point	Residual MLP	Deterministic multi-step prediction
			per patch; no explicit uncertainty.

Pretraining Corpus & Scaling Comparison

Corpus & Model Scaling Summary

Model	Pretraining Corpus	Scale	Domain Coverage	
Chronos	Amazon TSF + proprie-	>80K series	Retail, demand, traffic, climate;	
	tary demand/climate		no financial data	
Lag-Llama	Amazon TSF	>80K series	Retail, logistics, energy; fixed lags	
			only	
Sundial	Internal Numenta teleme-	340B points	System observability, bursty mul-	
	try logs		tivariate telemetry	
ТоТо	2.36T points incl. synthe-	2.36T points	Observability, GIFT, Chronos,	
	tic		synthetic; no financial TS	
TimesFM	100+ public datasets	1B+ tokens	Web, climate, energy, ma-	
			cro/retail; broad coverage	

Towards Wavelet-Based Tokenization

Challenge

Existing foundation models for time series (e.g., Chronos, ToTo) suffer from :

- Inefficient tokenization of continuous, high-frequency signals.
- Loss of important local and multi-scale structure during quantization.
- High memory/computation overhead in dense time-domain token streams.

Proposal:

- Replace or augment standard tokenization with wavelet-based multiresolution encoding.
- Use wavelet coefficients as compact, information-rich tokens.

Wavelet-Based Tokenization: Method

Wavelet Formulation & Embedding

Discrete Wavelet Transform (DWT)

For a time series x_t , decompose via :

$$x_t = \sum_{k} c_A^{(J)}(k) \cdot \phi_{J,k}(t) + \sum_{j=1}^{J} \sum_{k} c_D^{(j)}(k) \cdot \psi_{j,k}(t)$$

- $\phi_{J,k}(t)$: approximation basis.
- $\psi_{j,k}(t)$: detail basis at scale j.
- $c_A^{(J)}$: low-pass coefficients (trend).
- $c_D^{(j)}$: high-pass coefficients (details).

Embedding:

$$z_j = \mathsf{MLP}(c_j), \quad \text{for } j \in \{c_A^{(J)}, c_D^{(1)}, \dots\}$$

Compatibility with Foundation Models

Application Scope

Wavelet-based tokenization is model-agnostic :

- Applied to both decoder-only (GPT, ToTo) and encoder-decoder (T5, Chronos) Transformers.
- No change in backbone architecture required.

Benefits:

- Compression : Fewer tokens needed to capture long-range behavior.
- Semantics : Naturally captures bursts, trends, and noise separation.
- Scalability : Improves memory efficiency in long sequence settings.

Wavelet Tokenization : Empirical Gains

Findings (on popular foundation models)

- **Chronos**: +6.1% sMAPE improvement with wavelets vs uniform quantization.
- **ToTo**: +4.3% MASE improvement, lower calibration error.
- Latency : 20–30% reduction in inference cost.

Ablation:

- Best performance with 3–4 wavelet levels (J = 3 or 4).
- Haar and Daubechies-4 wavelets outperform DCT or Fourier baselines.

Conclusion

Wavelet tokenization enhances generalization, compression, and forecasting accuracy in foundation models.

Limitations & Open Research Directions

Current Limitations

- Tokenization bottlenecks: No universally optimal strategy quantization (Chronos) sacrifices granularity, patching (TimesFM) obscures local dynamics, lag tokens (Lag-Llama) lack adaptability.
- Multimodality gaps: Most models handle only raw numerical inputs; few incorporate static or time-varying covariates, textual signals, or cross-series dependencies.
- Domain misalignment: Current architectures often ignore financial structures (e.g., market regimes, volatility bursts, calendar effects).

Open Research Directions

- Multimodal tokenization: Fuse time series with auxiliary modalities news, sentiment, macroeconomic indicators — into unified token streams.
- Covariate-aware modeling: Architectures should condition on static/meta data (e.g., sector, asset class) and time-varying covariates (e.g., volatility, volume).
- Wavelet + lag/pattern hybridization : Combine frequency-aware decompositions with temporal embeddings for richer token structures.
- Structure-aligned pretraining: Embed financial priors (OU, GARCH) into loss functions, architectures, or data augmentations.
- Temporal resolution adaptivity: Incorporate attention mechanisms that dynamically adjust across time scales.

Concluding Synthesis

What We've Seen

- Transformer-based time series models differ most critically in their tokenization strategies and data assumptions.
- **Chronos**: quantized tokens for LLM reuse; **ToTo**: patches + factorized attention; **TimesFM**: patch-based + denoising; **Lag-Llama**: lag-centric with datetime/covariates; **Sundial**: VQ tokens + diffusion head.
- Architectural tradeoffs (decoder-only vs encoder-decoder vs diffusion) impact scalability, uncertainty modeling, and adaptability.
- Pretraining on rich corpora is crucial but current models underexplore financial-specific inductive biases.

Next Steps

- Explore wavelet-based tokenization for multi-resolution financial dynamics.
- Develop covariate-aware and multimodal token architectures (e.g., combining price, volume, macro indicators, and news).
- Architect a candidate foundation model that integrates financial structure: seasonality, volatility, and regime shifts.

Appendix & References I

K. Rasul, A. Ashok, A. R. Williams, et al. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv:2310.08278, 2024.

A. Das, W. Kong, R. Sen, Y. Zhou. TimesFM: A Decoder-Only Foundation Model for Time-Series Forecasting. arXiv:2310.10688, 2024.

A. F. Ansari, L. Stella, C. Turkmen, et al.

Chronos: Learning the Language of Time Series.

Transactions on Machine Learning Research, 2024. arXiv :2403.07815.

Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang & Mingsheng Lon

Sundial: A Family of Highly Capable Time Series Foundation Models arXiv:2502.00816, 2025.

Luca Masserano, Abdul Fatir Ansari, Boran Han, Xiyuan Zhang, Christos Faloutsos Enhancing Foundation Models For Time Series Forecasting via Wavelet-based Tokenization.

arXiv.org :2412.05244, 2024.

All models and analysis in this presentation are derived from the above foundational sources.