Data Sheet

HCPL-2201, HCPL-2202, HCPL-2211, HCPL-2212, HCPL-2231, HCPL-2232, HCPL-0201, HCPL-0211, HCNW2201, **HCNW2211**

Very High CMR, Wide V_{CC} Logic Gate **Optocouplers**

Description

The Broadcom® HCPL-22XX, HCPL-02XX, and HCNW22XX are optically coupled logic gates. The HCPL22XX and HCPL-02XX contain a GaAsP LED while the HCNW22XX contains an AlGaAs LED. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminating the need for additional waveshaping.

A superior internal shield on the HCPL-2211/12, HCPL-0211, HCPL-2232, and HCNW2211 guarantees common mode transient immunity of 10 kV/µs at a common mode voltage of 1000V.

CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage, or degradation, or both that may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments. The components are not AEC-Q100 qualified and are not recommended for automotive applications.

Features

- 10 kV/µs minimum Common Mode Rejection (CMR) at $V_{CM} = 1000V (HCPL-2211/2212/0211/2232,$ HCNW2211)
- Wide operating V_{CC} range: 4.5V to 20V
- 300 ns propagation delay guaranteed over the full temperature range
- 5 Mbd typical signal rate
- Low input current (1.6 mA to 1.8 mA)
- Hysteresis
- Totem pole output (no pull-up resistor required)
- Available in 8-pin DIP, SOIC-8, wide body packages
- Guaranteed performance from -40°C to +85°C
- Safety approval
 - UL recognized –3750 V_{rms} for 1 minute (5000 V_{rms} for 1 minute for HCNW22XX) per UL1577
 - CSA approved
 - IEC/EN/DIN EN 60747-5-5 approved with $V_{IORM} = 630 V_{peak} (HCPL-2211/2212 Option 060)$ only) and $V_{IORM} = 1414 V_{peak}$ (HCNW22XX only)
- MIL-PRF-38534 hermetic version available (HCPL-52XX/62XX)

Applications

- Isolation of high-speed logic systems
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Ground loop elimination
- Pulse transformer replacement
- High-speed line receiver
- Power control systems

Broadcom AV/02-0674FN

Functional Diagram

NOTE: A 0.1-µF bypass capacitor must be connected between pins 5 and 8.

The electrical and switching characteristics of the HCPL-22XX, HCPL-02XX and HCNW22XX are guaranteed from -40° C to $+85^{\circ}$ C and a V_{CC} from 4.5V to 20V. Low I_{F} and wide V_{CC} range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high-speed couplers. Logic signals are transmitted with a typical propagation delay of 150 ns.

Selection Guide

Minimum (Minimum CMR Input		8-Pin DIP	(300 Mil)	Small Outline SO-8	Widebody (400 Mil)	Hermetic
dV/dt (V/μs)	V _{CM} (V)	On Current (mA)	Single Channel Package	Dual Channel Package	Single Channel Package	Single Channel Package	Single and Dual Channel Packages
1,000	50	1.6	HCPL-2200 ^{a,b} HCPL-2201 HCPL-2202		HCPL-0201	HCNW2201	
		1.8		HCPL-2231			
2,500	400	1.6	HCPL-2219 ^{a,b}				
5,000 ^c	300°	1.6	HCPL-2211 HCPL-2212		HCPL-0211	HCNW2211	
		1.8		HCPL-2232			
1,000	50	2.0					HCPL-52XX ^b HCPL-62XX ^b

- a. HCPL-2200/2219 devices include output enable/disable function.
- b. Technical data for the HCPL-2200/2219, HCPL-52XX, and HCPL-62XX are on separate Broadcom publications.
- c. Minimum CMR of 10 kV/ μ s with V_{CM} = 1000V can be achieved with input current, I_F, of 5 mA.

Schematic

Ordering Information

HCPL-2201, HCPL-2202, HCPL-2211, HCPL-2212, HCPL-2231, HCPL-2232, HCPL-0201, HCPL-0211 are UL Recognized with $3750 \, V_{rms}$ for 1 minute per UL1577.

HCNW2201 and HCNW2211 are UL Recognized with 5000 V_{rms} for 1 minute per UL1577.

All devices listed above are approved under CSA Component Acceptance Notice #5, File CA 88324.

	Ор	tion					UL 5000		
Part Number	RoHS Compliant	Non RoHS Compliant	Package	Surface Mount	Gull Wing	Tape & Reel	V _{rms} / 1 Minute Rating	IEC/EN/DIN EN 60747-5-5	Quantity
HCPL-2201	-000E	No option	300 mil						50 per tube
HCPL-2202	-300E	#300	DIP-8	Х	Х				50 per tube
HCPL-2211	-500E	#500		Х	Х	Х			1000 per reel
HCPL-2212	-060E	#060						X	50 per tube
	-360E	#360		Х	Х			Х	50 per tube
	-560E	#560		Х	Х	Х		X	1000 per reel
HCPL-2231	-000E	No option	300 mil						50 per tube
HCPL-2232	-300E	#300	DIP-8	Х	Х				50 per tube
	-500E	#500		Х	Х	Х			1000 per reel
HCPL-0201	-000E	No option	SO-8	Х					100 per tube
HCPL-0211	-500E	#500		Х		Х			1500 per reel
	-060E	#060		Х				Х	100 per tube
	-560E	#560		Х		Х		X	1500 per reel
HCNW2201	-000E	No option	400 mil				Χ	Х	42 per tube
HCNW2211	-300E	#300	Widebody	Х	Х		Χ	Х	42 per tube
	-500E	#500	DIP-8	Х	Х	Х	Χ	Х	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

HCPL-2202-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

HCPL-2202 to order product of 300 mil DIP package in tube packaging and non-RoHS compliant.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

NOTE: The notation #XXX is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use -XXXE.

Package Outline Drawings

8-Pin DIP Package (HCPL-2201/02/11/12/31/32)

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2201/02/11/12/31/32)

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

AV02-0674EN Broadcom

Small-Outline SO-8 Package (HCPL-0201/11)

NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

8-Pin Widebody DIP Package (HCNW2201/11)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW2201/11)

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The HCPL-22XX/02XX and HCNW22XX have been approved by the following organizations:

UL Recognized under UL 1577, Component Recognition Program, File E55361.CSA Approved under CSA Component Acceptance Notice #5, File CA 88324.

IEC/EN/DIN EN 60747-5-5 (Option 060 and HCNW only.)

Insulation and Safety Related Specifications

Parameter	Symbol	8-Pin DIP (300 Mil) Value	SO-8 Value	Widebody (400 Mil) Value	Unit	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	200	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group		Illa	Illa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1).

NOTE: Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (Option 060)

		Characterist	ic	
Description	Symbol	HCPL-2201/02/11/12/31/32	HCPL-0201/11	Unit
Installation Classification per DIN VDE 0110, Table 1				
For Rated Mains Voltage ≤ 150 V _{rms}		I – IV	I – IV	
For Rated Mains Voltage ≤ 300 V _{rms}		I – IV	I – IV	
For Rated Mains Voltage ≤ 600 V _{rms}		I – IV	I – III	
Climatic Classification		0/70/21	0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	V _{IORM}	630	567	V_{peak}
Input to Output Test Voltage, Method b ^a V _{IORM} × 1.875 = V _{PR} , 100% Production Test with t _m = 1s, Partial Discharge < 5 pC	V _{PR}	1181	1063	V _{peak}
Input to Output Test Voltage, Method a ^a V _{IORM} × 1.6 = V _{PR} , Type and Sample Test, t _m = 10s, Partial Discharge < 5 pC	V _{PR}	1008	907	V _{peak}
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60s)	V _{IOTM}	8000	6000	V _{peak}
Safety-Limiting Values (Maximum values allowed in the event of a failure, also see Figure 12.)	T _S	175	150	°C
Case Temperature	_	230	230	mA
Input Current Output Power	I _{S, INPUT} P _{S, OUTPUT}	600	600	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _S	≥10 ⁹	≥10 ⁹	Ω

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: These optocouplers are suitable for safe electrical isolation only within the safety limit data. Maintenance of the safety limit data is ensured by means of protective circuits.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (HCNW22xx Option 060 ONLY)

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110, Table 1			
For Rated Mains Voltage ≤ 150 V _{rms}		I - IV	
For Rated Mains Voltage ≤ 300 V _{rms}		I – IV	
For Rated Mains Voltage ≤ 600 V _{rms}		I - IV	
For Rated Mains Voltage ≤ 1000 V _{rms}		I – III	
Climatic Classification		-40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	V _{IORM}	1414	V _{peak}
Input to Output Test Voltage, Method b ^a	V _{PR}	2651	V _{peak}
V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t _m = 1 sec, Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a ^a	V _{PR}	2262	V _{peak}
V _{IORM} x 1.6 = V _{PR} , Type and Sample Test, t _m =1 0 sec, Partial Discharge < 5 pC			
Highest Allowable Overvoltage ^a (Transient Overvoltage t _{ini} = 60 sec)	V _{IOTM}	8000	V _{peak}
Safety-Limiting Values (Maximum values allowed in the event of a failure, also see Figure 12.)			
Case Temperature	T _S	150	°C
Input Current	I _{S, INPUT}	400	mA
Output Power	P _{S, OUTPUT}	700	mW
Insulation Resistance at TS, V _{IO} = 500V	R _S	≥10 ⁹	Ω

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: These optocouplers are suitable for safe electrical isolation only within the safety limit data. Maintenance of the safety limit data is ensured by means of protective circuits.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Note	
Storage Temperature		T _S	-55	125	°C		
Operating Temperature		T _A	-40	85	°C		
Average Forward Input Current		I _{F(AVG)}	_	10	mA	а	
Peak Transient Input Current (≤1 μs Pulse Width, 300 pps)		I _{F(TRAN)}	_	1.0	А	а	
(≤200 μs Pulse Width, <1% Duty Cycle)	HCNW22XX		_	40	mA		
Reverse Input Voltage	HCNW22XX	V _R	_	5	V	а	
Average Output Current		I _O	_	25	mA	а	
Supply Voltage		V _{CC}	0	20	V		
Output Voltage		V _O	-0.5	20	V	а	
Total Package Power Dissipation		P _T	_	210	mW	b	
	HCPL-223X		_	294			
Output Power Dissipation		Po		See Figure 7.		а	
Lead Solder Temperature			260°C fc	or 10s, 1.6 mm b	pelow seating	plane	
(Through Hole Parts Only)	HCNW22XX		260°C for 10s, up to seating plane				
Solder Reflow Temperature Profile (Surface Mount Parts Only)			Se	e Package Outl	ine Drawings	i.	

a. Each channel.

Recommended Operating Conditions

Parameter		Symbol	Min.	Max.	Unit
Power Supply Voltage		V _{CC}	4.5	20	V
Forward Input Current (ON)		I _{F(ON)}	1.6 ^a	5	mA
	HCPL-223X		1.8 ^b	_	
Forward Input Voltage (OFF)		V _{F(OFF)}	_	0.8	V
Operating Temperature		T _A	-40	85	°C
Junction Temperature		T _J	-40	125	°C
Fan Out		N	_	4	TTL Loads

a. The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guardband.

b. Derate total package power dissipation, P_T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.

b. The initial switching threshold is 1.8 mA or less. It is recommended that 2.5 mA be used to permit at least a 20% LED degradation guardband.

Electrical Specifications

 $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, $4.5\text{V} \le \text{V}_{\text{CC}} \le 20\text{V}$, $1.6\text{ mA} \le \text{I}_{\text{F(ON)}}^{1} \le 5\text{ mA}$, $0\text{V} \le \text{V}_{\text{F(OFF)}} \le 0.8\text{V}$, unless otherwise specified. All Typicals at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$.

Parameter		Sym.	Min.	Тур.	Max.	Unit	Test Conditions	Note	Fig
Logic Low Output Voltage		V _{OL}	_	_	0.5	V	I _{OL} = 6.4 mA (4 TTL Loads)	a, b	1
Logic High Output Voltage		V _{OH}	2.4	С		V	I _{OH} = -2.6 mA	d, b	1
(V _{OUT} < V _{CC})			2.7	_			I _{OH} = -0.4 mA		
Output Leakage Current		I _{OHH}	_	_	100	μA	V _O = 5.5V; I _F = 5 mA		1
			_	_	500		V _O = 20V; I _F = 5 mA		
Logic Low Supply Current		I _{CCL}	_	3.7	6.0	mA	$V_{CC} = 5.5V; V_F = 0V, I_O = Open$		
			_	4.3	7.0		V_{CC} = 20V; V_F = 0V, I_O = Open		
	HCPL-223X		_	7.4	12.0		V _{CC} = 5.5V; V _F = 0V, I _O = Open		
			_	8.6	14.0		V_{CC} = 20V; V_F = 0V, I_O = Open		
Logic High Supply Current		I _{CCH}	_	2.4	4.0	mA	V_{CC} = 5.5V; I_F = 5 mA, I_O = Open		
			_	2.7	5.0		V_{CC} = 20V; I_F = 5 mA, I_O = Open		
	HCPL-223X			4.8	8.0		V_{CC} = 5.5V; I_F = 5 mA, I_O = Open		
				5.4	10.0		V_{CC} = 20V; I_F = 5 mA, I_O = Open		
Logic Low Short Circuit		I _{OSL}	15	_		mA	$V_O = V_{CC} = 5.5V; V_F = 0V$		1, 3
Output Current			20	_			$V_{O} = V_{CC} = 20V; V_{F} = 0V$		
Logic High Short Circuit		I _{OSH}		_	-10	mA	$V_{CC} = 5.5V; V_{O} = GND; I_{F} = 5 \text{ mA}$		1, 3
Output Current				_	-20		$V_{CC} = 20V; V_{O} = GND; I_{F} = 5 \text{ mA}$		
Input Forward Voltage		V _F		1.5	1.7	V	$T_A = 25^{\circ}C; I_F = 5 \text{ mA}$	е	1
			_	_	1.85		I _F = 5 mA		
	HCNW22XX		_	1.5	1.82		T _A = 25°C; I _F = 5 mA		
			_	_	1.95		I _F = 5 mA		
Input Reverse Breakdown		BV_R	5	_	_	V	I _R = 10 μA		1
Voltage	HCNW22XX		3	_	_		I _R = 100 μA		
Input Diode Temperature		$\Delta V_F / \Delta T_A$	_	-1.7	_	mV/°C	I _F = 5 mA		
Coefficient	HCNW22XX		_	-1.4	_		I _F = 5 mA		
Input Capacitance		C _{IN}		60		-	f = 1 MHz, V _F = 0V	a, e	
	HCNW22XX		_	70	_		f = 1 MHz, V _F = 0V		

- a. Each channel.
- b. Duration of output short circuit time should not exceed 10 ms.
- c. Typical $V_{OH} = V_{CC} 2.1V$.
- d. Derate total package power dissipation, P_T, linearly above 70°C free-air temperature at a rate of 4.5 mW/°C.
- e. For single devices, input capacitance is measured between pin 2 and pin 3.

1. For HCPL-223X, 1.8 mA \leq I_{F(ON)} \leq 5 mA.

Switching Specifications (AC)

 -40° C ≤ T_A ≤ 85°C, 4.5V ≤ V_{CC} ≤ 20V, 1.6 mA ≤ I_{F(ON)}² ≤ 5 mA, 0V ≤ V_{F(OFF)} ≤ 0.8V, unless otherwise specified. All Typicals at T_A = 25°C, V_{CC} = 5V, I_{F(ON)} = 3 mA.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time to	t _{PHL}	_	150	_	ns	Without Peaking Capacitor	5, 6	a, b
Logic Low Output Level		_	160	_		HCNW22XX		
		_	150	300		With Peaking Capacitor		
Propagation Delay Time to	t _{PLH}	_	110	_	ns	Without Peaking Capacitor	5, 6	a, b
Logic High Output Level		_	180	_		HCNW22XX		
		_	90	300		With Peaking Capacitor		
Output Rise Time (10% to 90%)	t _r	_	30	_	ns		5, 9	а
Output Fall Time (90% to 10%)	t _f		7	_	ns		5, 9	а

a. Each channel.

b. The t_{PLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3V point on the leading edge of the output pulse. The t_{PHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3V point on the trailing edge of the output pulse.

Parameter	Sym.	Device	Min.	Unit	Test C	onditions	Fig.	Note
Logic High Common Mode Transient Immunity	CM _H	HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201	1,000	I _F = 1.6 mA ^a , T _A =	V _{CC} = 5V T _A = 25°C	10	b, c	
		HCPL-2211/12 HCPL-0211	5,000	V/µs	$ V_{CM} = 300V,$ $I_F = 1.6 \text{ mA}^d$			
		HCPL-2232 HCNW2211	10,000	V/µs	$ V_{CM} = 1 \text{ kV},$ $I_F = 5.0 \text{ mA}$			
Logic Low Common Mode Transient Immunity	CM _L	HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201	1,000	V/µs	V _{CM} = 50V	$V_F = 0V$ $V_{CC} = 5V$ $T_A = 25^{\circ}C$	10	b, c
		HCPL-2211/12 HCPL-0211 HCPL-2232 HCNW2211	10,000	V/µs	V _{CM} = 1 kV			

a. $I_F = 1.8 \text{ mA} \text{ for HCPL-}2231.$

b. Each channel.

c. CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0V$. CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8V$.

d. $I_F = 1.8 \text{ mA}$ for HCPL-2232.

^{2.} For HCPL-223X, 1.8 mA \leq I_{F(ON)} \leq 5 mA.

Package Characteristics

Parameter		Sym.	Min.	Тур.	Max.	Unit	Test Conditions	Fig.	Note
Input-Output Momentary		V _{ISO}	3750	_	_	V _{rms}	RH < 50%, t = 1 min.		b, c
Withstand Voltage ^a	HCNW22XX		5000	_	_		T _A = 25°C		b, d
Input-Output Resistance		R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500 Vdc		b
	HCNW22XX		10 ¹²	10 ¹³	_		T _A = 25°C		
			10 ¹¹		_		T _A = 100°C		
Input-Output Capacitance		C _{I-O}	_	0.6		pF	f = 1 MHz		b
	HCNW22XX		_	0.5	0.6		$T_A = 25^{\circ}C, V_{I-O} = 0 \text{ Vdc}$		
Input-Input Insulation Leakage Current		I _{I-I}	_	0.005	_	μA	Relative Humidity = 45%, $t = 5s$, $V_{I-I} = 500V$		е
Resistance (Input-Input)		R _{I-I}	_	10 ¹¹	_	Ω	V _{I-I} = 500V		е
Capacitance (Input-Input)		C _{I-I}	_	0.25	_	pF	f = 1 MHz		е

- a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification, or the Broadcom Application Note *Optocoupler Input-Output Endurance Voltage*, publication number 5963-2203.
- b. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V_{rms} for one second (leakage detection current limit, I_{LO} ≤ 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
- d. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V_{rms} for one second (leakage detection current limit, I_{I-O} ≤ 5 μA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table.
- $e. \ \ For \ HCPL-2231/32 \ only. \ Measured \ between \ pins \ 1 \ and \ 2, \ shorted \ together, \ and \ pins \ 3 \ and \ 4, \ shorted \ together.$

Figure 1: Typical Logic Low Output Voltage Vs. Temperature

Figure 2: Typical Logic High Output Current vs. Temperature

Figure 3: Typical Output Voltage vs. Forward Input Current

Figure 4: Typical Input Diode Forward Characteristic

Figure 5: Circuit for t_{PLH} , t_{PHL} , t_r , t_f

NOTE: A 0.1 µF bypass capacitor must be connected between pins 5 and 8.

Figure 6: Typical Propagation Delays vs. Temperature

Figure 7: Maximum Output Power per Channel vs. Supply Voltage

Figure 9: Typical Rise, Fall Time vs. Temperature

Figure 8: Typical Logic High Output Voltage vs. Supply Voltage

Figure 10: Test Circuit for Common Mode Transient Immunity and Typical Waveforms

NOTE: CM_H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, $V_O > 2.0V$.

 CM_L is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, $V_O < 0.8V$.

Use of a 0.1-µF bypass capacitor connected between pins 5 and 8 is recommended.

Figure 11: Typical Input Threshold Current vs. Temperature

Figure 12: Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/DIN EN 60747-5-5

Figure 13: Recommended LSTTL to LSTTL Circuit where 500 ns Propagation Delay Is Sufficient

Figure 14: Recommended LSTTL to LSTTL Circuit for Applications Requiring a Maximum Allowable Propagation Delay of 300 ns

Figure 15: LSTTL to CMOS Interface Circuit

Figure 16: Alternative LED Drive Circuit

Figure 17: Series LED Drive with Open Collector Gate (4.7 k Resistor Shunts I_{OH} from the LED)

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2016–2021 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

