SEQUENCE LISTING

<110> Bristol-Myers Squibb Company

<120> POLYNUCLEOTIDE ENCODING TWO NOVEL HUMAN POTASSIUM CHANNEL BETA-SUBUNITS, K+betaM4 and K+betaM5

<130>	D0115NP									
<150> <151>	US 60/27 2001-02-	•				•				
<150> <151>	US 60/27 2001-03-	-								
<160>	98									
<170>	PatentIn	version	3.0							
<210><211><211><212><213>	1 1839 DNA homo sap	iens								
<220> <221> <222>	CDS (5)(10	57)								
	l tg acc gg et Thr Gl									49
	c tgc ttt s Cys Phe									97
	c cca ggg l Pro Gly 35	_								145
_	g agc act u Ser Thr 50	_	_	-		_	-	_		 193
	t gga act s Gly Thr	_	-		_					241
	a gga cta u Gly Leu		_	_			_	_		289
	g ctg aac r Leu Asn									337

_		_			gac Asp					_	_		_		~	31	85
					gac Asp											4:	33
					tat Tyr											41	81.
					ttc Phe 165											52	29
					cag Gln											51	77
					gcc Ala											62	25
					acg Thr											6	73
					tct Ser											72	21
				_	ctc Leu 245			_					_			7 (69
					aat Asn											81	17
			-		ctg Leu	-			_					_		86	65
					aag Lys	_			_							91	13
					aac Asn											96	61
			_	_	gat Asp 325			_		-						100	9
gct	ctg	gat	ttt	atg	aac	aat	aag	att	att	cga	tta	ata	cgg	tac	agg	105	57

taaaaggacc ccaacaacac tggagatggg gagtcccagg aagctcatgt cagccaggtc 1117 ttggagggca tctcgccagt ggtgcgaggc aggggactat actaatctgt attaattgtg 1177 tagcaggact tgattcccc catgatgaag tccacctttt ggaatccagt gtcctctgaa 1237 cagaaccacc ttttttcttg ccattttgag ctgcagacag gcggtttatt atgacaagtg 1297 aagagtcagc tgatgttac taaaggaggc cataggagga ttttccagcc aggacaaaag 1357 agcagcagtt ttctcctggg ctccatctct ctgtaccgct agccagtgcc gcattatcc 1417 atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccctcc cagggtgcat 1537 ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgg gcagggtcta 1657 gaggaatgag tgtccagga gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatcttt caaaaaaaa aaaaaaaaa 1837 aa 1839
tagcaggact tgattcccc catgatgaag tccacctttt ggaatccagt gtcctctgaa 1237 cagaaccacc tttttcttg ccattttgag ctgcagacag gcggtttatt atgacaagtg 1297 aagagtcagc tgatgtgtac taaaggaggc cataggagga ttttccagcc aggacaaaag 1357 agcagcagtt ttctcctggg ctccatctct ctgtaccgct agccagtgcc gcatttatcc 1417 atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccctccc cagggtgcat 1537 ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgt gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaaa
cagaaccacc tttttcttg ccatttgag ctgcagacag gcggtttatt atgacaagtg 1297 aagagtcagc tgatgtgtac taaaggaggc cataggagga ttttccagcc aggacaaaag 1357 agcagcagtt ttctcctggg ctccatctct ctgtaccgct agccagtgcc gcatttatcc 1417 atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccctcc cagggtgcat 1537 ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
aagagtcagc tgatgtgtac taaaggaggc cataggagga ttttccagcc aggacaaaag 1357 agcagcagtt ttctcctggg ctccatctct ctgtaccgct agccagtgcc gcatttatcc 1417 atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccetccc cagggtgcat 1537 ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
agcagcagtt ttctcctggg ctccatctct ctgtaccgct agccagtgcc gcatttatcc 1417 atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccctccc cagggtgcat 1537 ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
atctgtaaga aggccctggt ggagaggatg ggatgagaac aagaggctac ctccagttaa 1477 ccaggacata aagtccccag cggttcctgt cacacctgct cctccctccc cagggtgcat 1537 ccatgatcgt ggatgttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
ccaggacata aagtcccag cggttcctgt cacacctgct cctccctccc cagggtgcat 1537 ccatgatcgt ggatgttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
ccatgatcgt ggatgtttgc ccaggggtga ccatgtttgg ctggcttgga atgctgtgca 1597 ttctcagagc tctgttagtg tcccctcttg ggggtcagag atgaggtgtg gcagggtcta 1657 gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
tteteagage tetgttagtg teecetettg ggggteagag atgaggtgtg geagggteta 1657 gaggaatgag tgteeaggea gagtteagaa ggtaggaatg teecetettga tagggetgaa 1717 teaagggatt cetggettta gaaagggtet getatetttg caaaaatgtg eaagtatetg 1777 tageeagtgt aatgaaatea etteeaaate eaaaaaaaa aaaaaaaaa aaaaaaaa
gaggaatgag tgtccaggca gagttcagaa ggtaggaatg tccctcttga tagggctgaa 1717 tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
tcaagggatt cctggcttta gaaagggtct gctatctttg caaaaatgtg caagtatctg 1777 tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
tagccagtgt aatgaaatca cttccaaatc caaaaaaaaa aaaaaaaaa aaaaaaaa
aa 1839

<210> 2 <211> 351 <212> PRT

<213> homo sapiens

<400> 2

Met Thr Gly Ser His Asp Val Ile Gly Gly Ala Gly Lys Gln Val Leu

Cys Cys Phe Cys Lys Gln Arg Asn Lys Ser Leu Gly Thr Tyr Pro Gly

Val Pro Gly Asn Ala Leu Trp Leu Leu Thr Ser Pro Ala Cys Asn Ala 40

Leu Ser Thr Ser Ala Val Met His Gly Arg Asp Lys Gly Ser Val Thr

His Gly Thr Val Gln Val Leu Ser Asp Thr Arg Phe Phe Ser Cys Arg 70 75

- Glu Gly Leu Leu Pro Ala Thr Gln Ser Pro Ala Met Ser Asp Pro Ile 85 90 95
- Thr Leu Asn Val Gly Gly Lys Leu Tyr Thr Thr Ser Leu Ala Thr Leu 100 105 110
- Thr Ser Phe Pro Asp Ser Met Leu Gly Ala Met Phe Ser Gly Lys Met 115 120 125
- Pro Thr Lys Arg Asp Ser Gln Gly Asn Cys Phe Ile Asp Arg Asp Gly 130 135
- Lys Val Phe Arg Tyr Ile Leu Asn Phe Leu Arg Thr Ser His Leu Asp 145 150 155 160
- Leu Pro Glu Asp Phe Gln Glu Met Gly Leu Leu Arg Arg Glu Ala Asp 165 170 175
- Phe Tyr Gln Val Gln Pro Leu Ile Glu Ala Leu Gln Glu Lys Glu Val 180 185 190
- Glu Leu Ser Lys Ala Glu Lys Asn Ala Met Leu Asn Ile Thr Leu Asn 195 200 205
- Gln Arg Val Gln Thr Val His Phe Thr Val Arg Glu Ala Pro Gln Ile 210 220
- Tyr Ser Leu Ser Ser Ser Ser Met Glu Val Phe Asn Ala Asn Ile Phe 225 230 235 240
- Ser Thr Ser Cys Leu Phe Leu Lys Leu Leu Gly Ser Lys Leu Phe Tyr 245 250 255
- Cys Ser Asn Gly Asn Leu Ser Ser Ile Thr Ser His Leu Gln Asp Pro 260 265 270
- Asn His Leu Thr Leu Asp Trp Val Ala Asn Val Glu Gly Leu Pro Glu 275 280 285
- Glu Glu Tyr Thr Lys Gln Asn Leu Lys Arg Leu Trp Val Val Pro Ala 290 295 300

Asn Lys Gln Ile Asn Ser Phe Gln Val Phe Val Glu Glu Val Leu Lys 305 310 315 320

Ile Ala Leu Ser Asp Gly Phe Cys Ile Asp Ser Ser His Pro His Ala 325 330 335

Leu Asp Phe Met Asn Asn Lys Ile Ile Arg Leu Ile Arg Tyr Arg 340 345 350

<210> 3

<211> 237

<212> PRT

<213> homo sapiens

<400> 3

Met Asp Asn Gly Asp Trp Gly Tyr Met Met Thr Asp Pro Val Thr Leu
1 5 10 15

Asn Val Gly Gly His Leu Tyr Thr Thr Ser Leu Thr Thr Leu Thr Arg 20 25 30

Tyr Pro Asp Ser Met Leu Gly Ala Met Phe Gly Gly Asp Phe Pro Thr 35 40 45

Ala Arg Asp Pro Gln Gly Asn Tyr Phe Ile Asp Arg Asp Gly Pro Leu 50 55 60

Phe Arg Tyr Val Leu Asn Phe Leu Arg Thr Ser Glu Leu Thr Leu Pro 75 80

Leu Asp Phe Lys Glu Phe Asp Leu Leu Arg Lys Glu Ala Asp Phe Tyr 85 90 95

Gln Ile Glu Pro Leu Ile Gln Cys Leu Asn Asp Pro Lys Pro Leu Tyr 100 105 110

Pro Met Asp Thr Phe Glu Glu Val Val Glu Leu Ser Ser Thr Arg Lys 115 120 125

Leu Ser Lys Tyr Ser Asn Pro Val Ala Val Ile Ile Thr Gln Leu Thr 130 135 140

Ile Thr Thr Lys Val His Ser Leu Leu Glu Gly Ile Ser Asn Tyr Phe 145 150 155 160

Thr Lys Trp Asn Lys His Met Met Asp Thr Arg Asp Cys Gln Val Ser

Phe Thr Phe Gly Pro Cys Asp Tyr His Gln Glu Val Ser Leu Arg Val 180 185 190

His Leu Met Glu Tyr Ile Thr Lys Gln Gly Phe Thr Ile Arg Asn Thr

195 200 205 Arg Val His His Met Ser Glu Arg Ala Asn Glu Asn Thr Val Glu His 215 Asn Trp Thr Phe Cys Arg Leu Ala Arg Lys Thr Asp Asp <210> 4 <211> 256 <212> PRT <213> homo sapiens <220> <221> UNSURE <222> (15)..(15)<223> wherein "X" is equal to any amino acid. <400> 4 Met Ser Arg Pro Leu Ile Thr Arg Ser Pro Ala Ser Pro Leu Xaa Asn 10 Gln Gly Ile Pro Thr Pro Ala Gln Leu Thr Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly His Met Tyr Thr Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Glu Ser Arg Ile Gly Arg Leu Phe Asp Gly Thr Glu Pro Ile Val Leu Asp Ser Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Gln Met Phe Arg Tyr Ile Leu Asn Phe Leu Arg Thr Ser Lys Leu 95 Leu Ile Pro Asp Asp Phe Lys Asp Tyr Thr Leu Leu Tyr Glu Glu Ala 105 Lys Tyr Phe Gln Leu Gln Pro Met Leu Glu Met Glu Arg Trp Lys 120 115 Gln Asp Arg Glu Thr Gly Arg Phe Ser Arg Pro Cys Glu Cys Leu Val Val Arg Val Ala Pro Asp Leu Gly Glu Arg Ile Thr Leu Ser Gly Asp Lys Ser Leu Ile Glu Glu Val Phe Pro Glu Ile Gly Asp Val Met Cys 170 Asn Ser Val Asn Ala Gly Trp Asn His Asp Ser Thr His Val Ile Arg

180

Phe Pro Leu Asn Gly Tyr Cys His Leu Asn Ser Val Gln Val Leu Glu 195 200 205

Arg Leu Gln Gln Arg Gly Phe Glu Ile Val Gly Ser Cys Gly Gly Gly 210 220

Val Asp Ser Ser Gln Phe Ser Glu Tyr Val Leu Arg Arg Glu Leu Arg 225 230 235 240

Arg Thr Pro Arg Val Pro Ser Val Ile Arg Ile Lys Gln Glu Pro Leu 245 250 255

<210> 5

<211> 234

<212> PRT

<213> homo sapiens

<400> 5

Met Pro His Arg Lys Glu Arg Pro Ser Gly Ser Ser Leu His Thr His 1 5 10 15

Gly Ser Thr Gly Thr Ala Glu Gly Gly Asn Met Ser Arg Leu Ser Leu 20 25 30

Thr Arg Ser Pro Val Ser Pro Leu Ala Ala Gln Gly Ile Pro Leu Pro 35 40 45

Ala Gln Leu Thr Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Ser 50 55 60

His Met Tyr Thr Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Asp Ser 65 70 75 80

Arg Ile Ser Arg Leu Phe Asn Gly Thr Glu Pro Ile Val Leu Asp Ser 85 90 95

Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Glu Ile Phe Arg Tyr 100 105 110

Val Leu Ser Phe Leu Arg Thr Ser Lys Leu Leu Pro Asp Asp Phe 115 120 125

Lys Asp Phe Ser Leu Leu Tyr Glu Glu Ala Arg Tyr Tyr Gln Leu Gln 130 135 140

Pro Met Val Arg Glu Leu Glu Arg Trp Gln Gln Glu Gln Glu Gln Arg 145 150 155 160

Arg Arg Ser Arg Ala Cys Asp Cys Leu Val Val Arg Val Thr Pro Asp 165 170 175

Leu Gly Glu Arg Ile Ala Leu Ser Gly Glu Lys Ala Leu Ile Glu Glu 180 185 190

Val Phe Pro Glu Thr Gly Asp Val Met Cys Asn Ser Val Asn Ala Gly 195 200 205

Trp Asn Gln Asp Pro Thr His Val Ile Arg Phe Pro Leu Asn Gly Tyr 210 215 220

Cys Arg Leu Asn Ser Val Gln Asp Val Leu 225 230

<210> 6

<211> 338

<212> PRT

<213> Drosophila melanogaster

<400> 6

Met Asp Arg Glu Arg Glu Arg Asp Val Lys Ala Leu Glu Pro Arg Asp 1 5 10 15

Leu Ser Ser Thr Gly Arg Ile Tyr Ala Arg Ser Asp Ile Lys Ile Ser 20 25 30

Ser Ser Pro Thr Val Ser Pro Thr Ile Ser Asn Ser Ser Ser Pro Thr 35 40 45

Pro Thr Pro Pro Ala Ser Ser Ser Val Thr Pro Leu Gly Leu Pro Gly 50 60

Ala Val Ala Ala Ala Ala Ala Val Gly Gly Ala Ser Ser Ala Gly 65 70 75 80

Ala Ser Ser Tyr Leu His Gly Asn His Lys Pro Ile Thr Gly Ile Pro 85 90 95

Cys Val Ala Ala Ala Ser Arg Tyr Thr Ala Pro Val His Ile Asp Val 100 105 110

Gly Gly Thr Ile Tyr Thr Ser Ser Leu Glu Thr Leu Thr Lys Tyr Pro 115 120 125

Glu Ser Lys Leu Ala Lys Leu Phe Asn Gly Gln Ile Pro Ile Val Leu 130 135 140

Asp Ser Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Gly Met Phe 145 150 155 160

Arg His Ile Leu Asn Phe Met Arg Asn Ser Arg Leu Leu Ile Ala Glu 165 170 175

Asp Phe Pro Asp Leu Glu Leu Leu Glu Glu Ala Arg Tyr Tyr Glu
180 185 190

Val Glu Pro Met Ile Lys Gln Leu Glu Ser Met Arg Lys Asp Arg Val 195 200 205

Arg Asn Gly Asn Tyr Leu Val Ala Pro Pro Thr Pro Pro Ala Arg His 210 215 220

Ile Lys Thr Ser Pro Arg Thr Ser Ala Ser Pro Glu Cys Asn Tyr Glu

225	_' 230		235	240
Val Val Ala Leu His 245	Ile Ser Pr	co Asp Leu 250	Gly Glu Arg Ile	e Met Leu 255
Ser Ala Glu Arg Ala 260	Leu Leu As	sp Glu Leu 265	Phe Pro Glu Ala 270	
Ala Thr Gln Ser Ser 275	Arg Ser Gl		Trp Asn Gln Gly 285	Asp Trp
Gly Gln Ile Ile Arg 290	Phe Pro Le 295	eu Asn Gly	Tyr Cys Lys Let 300	ı Asn Ser
Val Gln Val Leu Thr 305	Arg Leu Le 310	eu Asn Ala	Gly Phe Thr Ile	e Glu Ala 320
Ser Val Gly Gly Gln 325	Gln Phe Se	er Glu Tyr 330	Leu Leu Ala Arç	g Arg Val 335
Pro Met				
<210> 7 <211> 733 <212> DNA <213> homo sapiens				
<400> `7 gggatccgga gcccaaat	ot totgagas	aaa ctcacac	rata cocaccatac	ccagcacctg 60
aattcgaggg tgcaccgt				
teteceggae teetgagg	_			,
tcaagttcaa ctggtacg				
aggagcagta caacagca				
ggctgaatgg caaggagt				
				,
agaaaaccat ctccaaag				
catcccggga tgagctga				
atccaagcga catcgccg				
ccacgcctcc cgtgctgg				
acaagagcag gtggcagc	ag gggaacgt	tct tctcatg	gete egtgatgeat	gaggetetge 660
acaaccacta cacgcaga	ag agcctcto	ccc tgtctcc	ggg taaatgagtg	cgacggccgc 720
gactctagag gat				733

<210> 8

```
<211> 724
<212> DNA
<213> homo sapiens
<220>
<221>
      Unsure
<222> (1)..(3)
<223> wherein "N" is equal to "A", "G", "C", or "T".
<400> 8
                                                                      60
nnnagtgaag ctaatgtact ttgcacagtg ttagcaatta tcacccattc atcaggtatt
                                                                     120
aattcatttc qatcccaaqq qcatagqctt qatqtacaat aaggagttaa ggactgttaa
                                                                     180
ttctctgata aggtttggtt atagtcattt ctcacttctc accctctcca ggactacttc
cagcaaccca gtctcctgcc atgtccgacc ccatcacgct gaacgtcggg gggaagctct
                                                                     240
                                                                     300
atacaacctc actggcgacc ctgaccagct tccctgactc catgctaggc gccatgttca
                                                                     360
qcqqqaaqat qcccaccaag agggacagcc agggcaactg cttcattgac cgtgacggca
                                                                      420
aagtgttccg ctatatcctc aacttcctgc ggacctccca ccttgacctg cctgaggact
tocaggagat ggggctgctc cgcagggagg ccgacttcta ccaggtgcag cccctgattg
                                                                      480
aggccctgca ggagaaggaa gtggagctct ccaaggccga gaagaatgcc atgctcaaca
                                                                      540
tcacactgaa ccaqcqtqtq caqacqqtcc acttcactqt gcqcqaqqca ccccagatct
                                                                      600
                                                                      660
acageetete etetteeage atggaggtet teaaegeeaa eatetteage aceteetgee
tettecteaa geteettgge tetaagetet tetaetgete caatggeaat eteteeteea
                                                                      720
                                                                      724
tcac
<210>
<211>
       74
<212>
       DNA
      homo sapiens
<213>
<400> 9
ttgaggatat agcggaacac tttgccgtca cggtcaatga agcagttgcc ctggctgtcc
                                                                       60
                                                                       74
ctcttggtgg gcat
<210>
      10
<211>
       20
<212>
       DNA
<213> homo sapiens
<400> 10
                                                                       20
atacaacctc actggcgacc
```

```
<211> 20
<212> DNA
<213> homo sapiens
<400> 11
ccatctcctg gaagtcctca
<210> 12
<211>
      99
<212> PRT
<213> homo sapiens
<400> 12
Asp Pro Ile Thr Leu Asn Val Gly Gly Lys Leu Tyr Thr Thr Ser Leu
Ala Thr Leu Thr Ser Phe Pro Asp Ser Met Leu Gly Ala Met Phe Ser
Gly Lys Met Pro Thr Lys Arg Asp Ser Gln Gly Asn Cys Phe Ile Asp
                            40
Arg Asp Gly Lys Val Phe Arg Tyr Ile Leu Asn Phe Leu Arg Thr Ser
His Leu Asp Leu Pro Glu Asp Phe Gln Glu Met Gly Leu Leu Arg Arg
Glu Ala Asp Phe Tyr Gln Val Gln Pro Leu Ile Glu Ala Leu Gln Glu
Lys Glu Val
<210>
      13
<211>
       14
<212>
      PRT
<213> homo sapiens
<400> 13
Phe Cys Lys Gln Arg Asn Lys Ser Leu Gly Thr Tyr Pro Gly
<210>
      14
<211>
      14
<212> PRT
<213> homo sapiens
<400> 14
Lys Asn Ala Met Leu Asn Ile Thr Leu Asn Gln Arg Val Gln
                                    10
```

<210> 11

```
<210> 15
<211> 14
<212> PRT
<213> homo sapiens
<400> 15
Tyr Cys Ser Asn Gly Asn Leu Ser Ser Ile Thr Ser His Leu
                                   10
<210> 16
<211> 13
<212> PRT
<213> homo sapiens
<400> 16
Asp Thr Arg Phe Phe Ser Cys Arg Glu Gly Leu Leu Pro
                                  10
<210> 17
<211> 13
<212> PRT
<213> homo sapiens
<400> 17
Leu Gly Ala Met Phe Ser Gly Lys Met Pro Thr Lys Arg
<210> 18
<211> 13
<212> PRT
<213> homo sapiens
<400> 18
Ser Gly Lys Met Pro Thr Lys Arg Asp Ser Gln Gly Asn
               5
<210> 19
<211> 13
<212> PRT
<213> homo sapiens
<400> 19
Gln Thr Val His Phe Thr Val Arg Glu Ala Pro Gln Ile
               5
                                   10
<210>
      20
<211> 26
<212> PRT
<213> homo sapiens
<400> 20
```

```
Gly Thr Tyr Pro Gly Val Pro Gly Asn Ala Leu Trp Leu Leu Thr Ser
Pro Ala Cys Asn Ala Leu Ser Thr Ser Ala
            20
<210>
      21
<211>
      25
<212>
      PRT
<213>
      homo sapiens
<400> 21
Val Phe Asn Ala Asn Ile Phe Ser Thr Ser Cys Leu Phe Leu Lys Leu
                                    10
Leu Gly Ser Lys Leu Phe Tyr Cys Ser
            20
<210>
      22
<211>
<212>
      PRT
<213> bacteriophage T7
<400> 22
Asp Tyr Lys Asp Asp Asp Lys
<210> 23
<211>
      2154
<212>
      DNA
<213> homo sapiens
<220>
<221>
      CDS
<222>
      (1)..(1029)
<400> 23
atg acg atg gcg gtt ttg cgg aat aga aaa ggg gga aag gga cca ctc
                                                                      48
Met Thr Met Ala Val Leu Arg Asn Arg Lys Gly Lys Gly Pro Leu
agg ege egg eeg etg geg etg eet get ett ega etg gge gag ett eet
                                                                      96
Arg Arg Pro Leu Ala Leu Pro Ala Leu Arg Leu Gly Glu Leu Pro
            20
                                25
gcc aat cag ggc gga acc agc gcg gcg tcg gcc agt agc ggg agg cgg
                                                                     144
Ala Asn Gln Gly Gly Thr Ser Ala Ala Ser Ala Ser Ser Gly Arg Arg
                            40
                                                                     192
teg ggt cag gee eea get ggg ege gag egg gte gge gtt gag gga gee
Ser Gly Gln Ala Pro Ala Gly Arg Glu Arg Val Gly Val Glu Gly Ala
acc gec etc eeg eet geg eac tge etc teg eec eec tee gge eag eec
                                                                     240
```

Thr 65	Ala	Leu	Pro	Pro	Ala 70	His	Cys	Leu	Ser	Pro 75	Pro	Ser	Gly	Gln	Pro 80	
gca Ala	gcc Ala	ggc Gly	cgc Arg	gtc Val 85	atg Met	cca Pro	ggc Gly	gct Ala	gct Ala 90	cgg Arg	cga Arg	gcc Ala	aga Arg	ggg Gly 95	atg Met	288
gtg Val	gta Val	gtc Val	acg Thr 100	Gly	cgg Arg	gag Glu	cca Pro	gac Asp 105	agc Ser	cgt Arg	cgt Arg	cag Gln	gac Asp 110	ggt Gly	gcc Ala	336
								gac Asp								384
acg Thr	gcc Ala 130	acg Thr	cag Gln	gcg Ala	ggg Gly	cac His 135	gcg Ala	ctg Leu	ccc Pro	ctg Leu	ctg Leu 140	cca Pro	cag Gln	gag Glu	ttt Phe	432
								gga Gly								480
ctg Leu	tcc Ser	aca Thr	ctg Leu	cgg Arg 165	tgc Cys	tac Tyr	gaa Glu	gac Asp	acc Thr 170	atg Met	ttg Leu	gca Ala	gcc Ala	atg Met 175	ttc Phe	528
								gac Asp 185								576
								gat Asp								624
								gtt Val								672
								ctg Leu								720
cca Pro	ctg Leu	aag Lys	ggc Gly	gag Glu 245	aag Lys	gtg Val	cgc Arg	caa Gln	gcg Ala 250	ttt Phe	ctg Leu	gga Gly	ctc Leu	atg Met 255	ccc Pro	768
tat Tyr	tac Tyr	aaa Lys	gac Asp 260	cac His	ttg Leu	gag Glu	cgg Arg	att Ile 265	gtg Val	gag Glu	atc Ile	gcc Ala	cgg Arg 270	ctg Leu	cgt Arg	816
gcg Ala	gtc Val	cag Gln 275	cgg Arg	aag Lys	gcc Ala	cgc Arg	ttt Phe 280	gcc Ala	aag Lys	ctc Leu	aag Lys	agc Ser 285	ttg Leu	aca Thr	cct Pro	864
								aag Lys								912

. If we have the constraint of the property of the constraint of

290	295	300	
	rg Arg Leu Tyr	ttg gaa act ccc att ggt cca Leu Glu Thr Pro Ile Gly Pro 315 320	960
gag aga cag aac aat ga Glu Arg Gln Asn Asn Gl 325	ag aag aaa tcc Lu Lys Lys Ser	c cct gtc cag ttg cct gca gga Pro Val Gln Leu Pro Ala Gly 330	1008
gta ttc caa cac ttc at Val Phe Gln His Phe Me . 340	5 55 5 5 5	attc cattgagatg gggtttacgt	1059
cttgattttg aacacctgtc	agcactgttc to	ctgtttgca tggcaattct gaccctttta	1119
tggcaacaac acccctggga	caacccagat tt	gtagattg agatccaaag gtagaatttc	1179
cagacagtcc aaccaaggta	tcaagtgatg tt	tccagagt ggaaggetet cacegtgtee	1239
caggatttct ggggtttgta	agcagtactg go	ccatttgtg accetgtttt ttacetaate	1299
attctgtctt tttaggacat	ggttttaccc ga	atocotggo aaaggatoca gaattocaat	1359
agctgaaaac cctgttatag	cttttctcct at	tctgcctt acccaagaca cacttgaacc	: 1419
cctcagtaag gctatagaga	gggccatgag ca	aggggcage etetecettg tttetacage	1479
tccatgatga ggggttgact	gaggccagca at	cottgtag gtgtgacagt tgcaatataa	1539
ttaacagttt caagatctag	aggtaccttt to	gaaagaacc ccttcaggga tatctatcca	1599
cagtagcctg gagcagccaa	ggtgaacctg ac	gattttgac ccacacaata agggggggcc	: 1659
attcttttc aaatattttg	gcttcagaat ac	cacttcatt acacatgcaa atattgagag	1719
attaacagaa attccagctc	ttatgcctaa ct	egagaagag ccactgcaag ttgcagttag	1779
gtacccatgt gcagcagagg	ccagctgaat co	ccagagett eccaaagtgg acaecagegg	1839
ggactattcc tgatgtccca	cccaagagag ga	aagatgage tgaggegete ttgetetgee	1899
caaatgcatc ccatgtgcat	tcacgtgtca co	ccattcaaa ataacatggc attcttggaa	1959
ccttgtatct gacatgtaag	accageetae ac	cattggggt gggtgcaggg gctcacactt	2019
gtaatcctag cactttggaa	ggctgaggtg gg	gcagattgc ttgagcacag gagttccaga	2079
ccagcctgag caacatggcg	aaatcctgtc to	cttcaagaa ataaaataat aataataata	2139
aaaaaaaaa aaaaa			2154

<210> 24 <211> 343 <212> PRT <213> homo sapiens

<400> 24

- Met Thr Met Ala Val Leu Arg Asn Arg Lys Gly Gly Lys Gly Pro Leu 1 5 10 15
- Arg Arg Pro Leu Ala Leu Pro Ala Leu Arg Leu Gly Glu Leu Pro 20 25 30
- Ala Asn Gln Gly Gly Thr Ser Ala Ala Ser Ala Ser Ser Gly Arg Arg 35 40 45
- Ser Gly Gln Ala Pro Ala Gly Arg Glu Arg Val Gly Val Glu Gly Ala 50 60
- Thr Ala Leu Pro Pro Ala His Cys Leu Ser Pro Pro Ser Gly Gln Pro 65 70 75 80
- Ala Ala Gly Arg Val Met Pro Gly Ala Ala Arg Arg Ala Arg Gly Met 85 90 95
- Val Val Val Thr Gly Arg Glu Pro Asp Ser Arg Arg Gln Asp Gly Ala 100 105 110
- Met Ser Ser Ser Asp Ala Glu Asp Asp Phe Leu Glu Pro Ala Thr Pro 115 120 125
- Thr Ala Thr Gln Ala Gly His Ala Leu Pro Leu Leu Pro Gln Glu Phe 130 140
- Pro Glu Val Val Pro Leu Asn Ile Gly Gly Ala His Phe Thr Thr Arg 145 150 155 160
- Leu Ser Thr Leu Arg Cys Tyr Glu Asp Thr Met Leu Ala Ala Met Phe 165 170 175
- Ser Gly Arg His Tyr Ile Pro Thr Asp Ser Glu Gly Arg Tyr Phe Ile 180 185 190
- Asp Arg Asp Gly Thr His Phe Gly Asp Val Leu Asn Phe Leu Arg Ser 195 200 205
- Gly Asp Leu Pro Pro Arg Glu Arg Val Arg Ala Val Tyr Lys Glu Ala 210 215 220

Gln Tyr Tyr Ala Ile Gly Pro Leu Leu Glu Gln Leu Glu Asn Met Gln 225 230 235 240

Pro Leu Lys Gly Glu Lys Val Arg Gln Ala Phe Leu Gly Leu Met Pro 245 250 255

Tyr Tyr Lys Asp His Leu Glu Arg Ile Val Glu Ile Ala Arg Leu Arg 260 265 270

Ala Val Gln Arg Lys Ala Arg Phe Ala Lys Leu Lys Ser Leu Thr Pro 275 280 285

Ser Trp Leu Met Ser Val Leu Ile Lys Met Pro Pro Gly Val Thr Ser 290 295 300

Trp Ile Asn Ala Glu Arg Arg Leu Tyr Leu Glu Thr Pro Ile Gly Pro 305 310 315

Glu Arg Gln Asn Asn Glu Lys Lys Ser Pro Val Gln Leu Pro Ala Gly 325 330 335

Val Phe Gln His Phe Met Gly 340

<210> 25

<211> 225

<212> PRT

<213> homo sapiens

<400> 25

Met Ser Thr Val Val Glu Leu Asn Val Gly Gly Glu Phe His Thr 1 10 15

Thr Leu Gly Thr Leu Arg Lys Phe Pro Gly Ser Lys Leu Ala Glu Met 20 25 30

Phe Ser Ser Leu Ala Lys Ala Ser Thr Asp Ala Glu Gly Arg Phe Phe 35 40 45

Ile Asp Arg Pro Ser Thr Tyr Phe Arg Pro Ile Leu Asp Tyr Leu Arg 50 55 60

Thr Gly Gln Val Pro Thr Gln His Ile Pro Glu Val Tyr Arg Glu Ala 65 70 75 80

Gln Phe Tyr Glu Ile Lys Pro Leu Val Lys Leu Leu Glu Asp Met Pro

				85					90					95	
Gln	Ile	Phe	Gly 100	Glu	Gln	Val	Ser	Arg 105	Lys	Gln	Phe	Leu	Leu 110	Gln	Val
Pro	Gly	Tyr 115	Ser	Glu	Asn	Leu	Glu 120	Leu	Met	Val	Arg	Leu 125	Ala	Arg	Ala
Glu	Ala 130	Ile	Thr	Ala	Arg	Lys 135	Ser	Ser	Val	Leu	Val 140	Cys	Leu	Val	Glu
Thr 145	Glu	Glu	Gln	Asp	Ala 150	Tyr	Tyr	Ser	Glu	Val 155	Leu	Cys	Phe	Leu	Gln 160
Asp	Lys	Lys	Met	Phe 165	Lys	Ser	Val	Val	Lys 170	Phe	Gly	Pro	Trp	Lys 175	Ala
Val	Leu	Asp	Asn 180	Ser	Asp	Leu	Met	His 185	Cys	Leu	Glu	Met	Asp 190	Ile	Lys
Ala	Gln	Gly 195	Tyr	Lys	Val	Phe	Ser 200	Lys	Phe	Tyr	Leu	Thr 205	Tyr	Pro	Thr
Lys	Arg 210	Asn	Glu	Phe	His	Phe 215	Asn	Ile	Tyr	Ser	Phe 220	Thr	Phe	Thr	Trp
Trp 225											,				
<210 <210 <210 <210	l> 3 2> I	26 313 PRT nomo	sapi	iens											
<400)> 2	26													
Met 1	Glu	Glu	Met	Ser 5	Gly	Glu	Ser	Val	Val 10	Ser	Ser	Ala	Val	Pro 15	Ala
Ala	Ala	Thr	Arg 20	Thr	Thr	Ser	Phe	Lys 25	Gly	Thr	Ser	Pro	Ser 30	Ser	Lys
Tyr	Val	Lys 35	Leu	Asn	Val	Gly	Gly 40	Ala	Leu	Tyr	Tyr	Thr 45	Thr	Met	Gln
Thr	Leu 50	Thr	Lys	Gln	Asp	Thr 55	Met	Leu	Lys	Ala	Met 60	Phe	Ser	Gly	Arg
Met 65	Glu	Val	Leu	Thr	Asp 70	Ser	Glu	Gly	Trp	Ile 75	Leu	Ile	Asp	Arg	Cys 80
Gly	Lys	His	Phe	Gly 85	Thr	Ile	Leu	Asn	Tyr 90	Leu	Arg	Asp	Gly	Ala 95	Val
Pro	Leu	Pro	Glu		Arg	Arg	Glu	Ile		Glu	Leu	Leu	Ala	Glu	Ala

```
Lys Tyr Tyr Leu Val Gln Gly Leu Val Glu Glu Cys Gln Ala Ala Leu
                            120
Gln Asn Lys Asp Thr Tyr Glu Pro Phe Cys Lys Val Pro Val Ile Thr
                        1.35
Ser Ser Lys Glu Glu Gln Lys Leu Ile Ala Thr Ser Asn Lys Pro Ala
Val Lys Leu Leu Tyr Asn Arg Ser Asn Asn Lys Tyr Ser Tyr Thr Ser
Asn Ser Asp Asp Asn Met Leu Lys Asn Ile Glu Leu Phe Asp Lys Leu
                                185
Ser Leu Arg Phe Asn Gly Arg Val Leu Phe Ile Lys Asp Val Ile Gly
Asp Glu Ile Cys Cys Trp Ser Phe Tyr Gly Gln Gly Arg Lys Ile Ala
Glu Val Cys Cys Thr Ser Ile Val Tyr Ala Thr Glu Lys Lys Gln Thr
                    230
                                        235
Lys Val Glu Phe Pro Glu Ala Arg Ile Tyr Glu Glu Thr Leu Asn Ile
                                    250
                245
Leu Leu Tyr Glu Ala Gln Asp Gly Arg Gly Pro Asp Asn Ala Leu Leu
Glu Ala Thr Gly Gly Ala Ala Gly Arg Ser His His Leu Asp Glu Asp
Glu Glu Arg Glu Arg Ile Glu Arg Val Arg Arg Ile His Ile Lys Arg
Pro Asp Asp Arg Ala His Leu His Gln
<210>
      27
<211>
      301
<212>
      PRT
<213> Drosophila melanogaster
<400> 27
Met Ser Glu Ser Met Ser Gly Asp His Lys Ile Leu Leu Lys Gly His
Ser Ser Gln Tyr Leu Lys Leu Asn Val Gly Gly His Leu Tyr Tyr Thr
Thr Ile Gly Thr Leu Thr Lys Asn Asn Asp Thr Met Leu Ser Ala Met
```

Phe Ser Gly Arg Met Glu Val Leu Thr Asp Ser Glu Gly Trp Ile Leu

55

```
Ile Asp Arg Cys Gly Asn His Phe Gly Ile Ile Leu Asn Tyr Leu Arg
70 75 80
```

- Asp Gly Thr Val Pro Leu Pro Glu Thr Asn Lys Glu Ile Ala Glu Leu 85 90 95
- Leu Ala Glu Ala Lys Tyr Tyr Cys Ile Thr Glu Leu Ala Ile Ser Cys
 100 105 110
- Glu Arg Ala Leu Tyr Ala His Gln Glu Pro Lys Pro Ile Cys Arg Ile 115 120 125
- Pro Leu Ile Thr Ser Gln Lys Glu Glu Gln Leu Leu Ser Val Ser 130 135 140
- Leu Lys Pro Ala Val Ile Leu Val Val Ġln Arg Gln Asn Asn Lys Tyr 145 150 155 160
- Ser Tyr Thr Ser Thr Ser Asp Asp Asn Leu Leu Lys Asn Ile Glu Leu 165 170 175
- Phe Asp Lys Leu Ser Leu Arg Phe Asn Glu Arg Ile Leu Phe Ile Lys 180 185 190
- Asp Val Ile Gly Pro Ser Glu Ile Cys Cys Trp Ser Phe Tyr Gly His 195 200 205
- Gly Lys Lys Val Ala Glu Val Cys Cys Thr Ser Ile Val Tyr Ala Thr 210 220
- Asp Arg Lys His Thr Lys Val Glu Phe Pro Glu Ala Arg Ile Tyr Glu 225 230 235 240
- Glu Thr Leu Gln Val Leu Leu Tyr Glu Asn Arg Asn Ala Pro Asp Gln 245 250 255
- Glu Leu Met Gln Ala Thr Ser Ser Ala Arg Val Gly Ser Ala Ser Gly 260 265 270
- Thr Ser Ile Asn Gln Tyr Thr Ser Asp Glu Glu Glu Glu Arg Thr Gly 275 280 285
- Leu Ala Arg Leu Arg Ser Asn Lys Arg Asn Asn Pro Ser 290 295 300
- <210> 28
- <211> 221
- <212> PRT
- <213> Caenorhabditis elegans
- <400> 28
- Met Glu Pro Ser Thr Ile Val Lys Leu Asp Val Gly Gly Lys Ile Phe 1 5 10 15
- Lys Thr Thr Ile Phe Thr Leu Cys Lys His Asp Ser Met Leu Lys Thr

and the first firs

			20					25					30			
Met	Phe	Cys 35	Thr	Asp	Val	Pro	Val 40	Thr	Lys	Asn	Glu	Glu 45	Gly	Ser	Val	
Phe	Ile 50	Asp	Arg	Asp	Ser	Lys 55	His	Phe	Arg	Leu	Ile 60	Leu	Asn	Phe	Leu	
Arg 65	Asp	Gly	Gln	Ile	Ala 70	Leu	Pro	Asp	Ser	Asp 75	Arg	Glu	Val	Arg	Glu 80	
Val	Leu	Ala	Glu	Ala 85	Ser	Tyr	Phe	Leu	Leu 90	Asp	Pro	Leu	Ile	Glu 95	Leu	
Cys	Gly	Glu	Arg 100	Leu	Glu	Gln	Ser	Leu 105	Asn	Pro	Tyr	Tyr	His 110	Leu	Val	
Ser	Thr	Val 115	Leu	Glu	Ala	Arg	Lys 120	Ile	Ile	Phe	Ala	Thr 125	Glu	Lys	Pro	
Ile	Val 130	Val	Leu	Arg	Leu	Pro 135	Val	Tyr	Ile	Ala	Thr 140	Ser	Gly	Asn	Gln	
Ser 145	Tyr	Tyr	Phe	Ser	Glu 150	Thr	Lys	Phe	Arg	Glu 155	Leu	Ser	Glu	Glu	Tyr 160	
His	Lys	His	Val	Ala 165	Phe	Ile	Leu	Ile	Thr 170	Glu	Pro	Glu	Phe	Asn 175	Glu	
Asp	Cys	Ser	Trp 180	Ser	Phe	Phe	Leu	Arg 185	Ala	Lys	Lys	Ile	Thr 190	Ala	Arg	
Ile	Lys	Gly 195	Pro	Met	Asp	Cys	Asn 200	Leu	Val	Glu	Glu	Cys 205	Met	Pro	Lys	
Thr	Val 210	Glu	Arg	Arg	Arg	Glu 215	Lys	Lys	Thr	Trp	His 220	His				
<210 <211 <211 <211	1> ! 2> i	29 583 DNA homo	sap:	iens												
<400 gcta	-	29 ggg 1	ttaga	aatgo	gg ta	agga	cttg	g ca	gatga	atga	gggʻ	tggg	gca (gagg	gaggag	60
aga	gaaga	aaa (gtgti	tcaga	at go	gacco	cgtg	g gc	ttga	gtga	ctga	aatg	aat	ggtgt	ggcac	120
caa	tcaga	acc (ccag	ggati	tg aa	agato	ggag	c ago	cccc	agct	ctca	attc	ccc (gttg	cctgcc	180
tga	gagc	cct (ggtga	attt	ct ti	cca	gttt	c ct	gagg	ttgt	tcc	cctt	aac .	atcg	gagggg	240
ctca	actt	cac 1	taca	cgcct	tg to	ccaca	actg	c gg	tgct	acga	aga	cacc	atg	ttgg	cagcca	300
tgt	tcag	tgg (gegg	cacta	ac at	ccc	cacgo	g ac	tccg	aggg	ccg	gtac	ttc .	atcga	accgag	360
ato	gcaca	aca (cttte	aaata	at af	ctc	tacat	t cta	acaa	tcaa	ctt	tgta	atc :	ctado	caggtg	420

and the the till the call the term of the till t

attagcg	tag g	cttg	agta	t gç	ggacc	ttga	tat	cttc	cat	agta	cctaga	aga	ggaga	ata	480
gcatatt	gat c	aaat	ttaa	t aa	atgg	gttt	att	gaaa	gag	atca	atttt	ttt	tttt	ttt	540
ttgccaa	agg a	igaca	aaga	c aç	gccaç	agaa	att	cgaa	ata	aca					583
<211> <212>	30 80 DNA homo	sapi	ens												
	30	.~~~	a+ a ~	~ ~	**	+~~~	ant	ataa	+ ~ ~	0000	anatan	202	taaa	taa	60
gatgaag					Judaa	rggg	gat	.gcag	jege	cycc	.caccya	aca	cggc	cgc	
caacatg	gtg t	cttc	gtag	С											80
<211> <212>	31 20 DNA homo	sapi	ens												
	31														
tgttccc	ctt a	acat	cgga	g											20
<211> <212>	32 20 DNA homo	sapi	ens												
	32														20
cataccc	aaa q	gtgtg	tgcc	a											20
<211> <212>	33 13 PRT homo	sapi	.ens												
<400>	33														
Ala Ala 1	Ser	Ala	Ser 5	Ser	Gly	Arg	Arg	Ser 10	Gly	Gln	Ala				
<211> <212>	34 13 PRT homo	sapi	ens												
<400>	34														
Gly Met	Val	Val	Val	Thr	Gly	Arg	Glu	Pro	Asp	Ser	Arg				

```
<210>
       35
<211>
       13
<212>
       PRT
<213> homo sapiens
<400> 35
Gly Arg Glu Pro Asp Ser Arg Arg Gln Asp Gly Ala Met
                5
<210>
       36
<211>
       13
<212>
       PRT
<213> homo sapiens
<400> 36
Gly Gly Ala His Phe Thr Thr Arg Leu Ser Thr Leu Arg
<210>
       37
. <211>
       13
<212>
       PRT
<213>
       homo sapiens
<400> 37
Thr Thr Arg Leu Ser Thr Leu Arg Cys Tyr Glu Asp Thr
<210>
       38
<211>
       13
<212>
       PRT
<213>
       homo sapiens
<400> 38
Leu Ala Ala Met Phe Ser Gly Arg His Tyr Ile Pro Thr
<210>
       39
<211>
       96
<212>
       PRT
<213> homo sapiens
<400> 39
Glu Val Val Pro Leu Asn Ile Gly Gly Ala His Phe Thr Thr Arg Leu
Ser Thr Leu Arg Cys Tyr Glu Asp Thr Met Leu Ala Ala Met Phe Ser
Gly Arg His Tyr Ile Pro Thr Asp Ser Glu Gly Arg Tyr Phe Ile Asp
                             40
Arg Asp Gly Thr His Phe Gly Asp Val Leu Asn Phe Leu Arg Ser Gly
```

	50					55					60					
Asp 65	Leu	Pro	Pro	Arg	Glu 70	Arg	Val	Arg	Ala	Val 75	Tyr	Lys	Glu	Ala	Gln 80	
Tyr	Tyr	Ala	Ile	Gly 85	Pro	Leu	Leu	Glu	Gln 90	Leu	Glu	Asn	Met	Gln 95	Pro	
<210 <211 <212 <213	L> 2>	40 25 PRT homo	sapi	iens												
<400)>	40														
Ala 1	Lys	Leu	Lys	Ser 5	Leu	Thr	Pro	Ser	Trp 10	Leu	Met	Ser	Val	Leu 15	Ile	
Lys	Met	Pro	Pro 20	Gly	Val	Thr	Ser	Trp 25								
<210 <211 <212 <213	L> ?>	41 39 DNA homo	sap:	iens												
<400 gcag		41 cgg c	cege	ggaco	ca ct	cag	geged	c ggd	eeget	gg						39
<210 <211 <212 <213	L> 2>	42 38 DNA homo	sap	iens												
<400 gcag		42 tcg a	acgco	ccato	ga aq	gtgtt	.ggaa	a tad	ctcct	-g						38
<210 <211 <212 <213	L> 2>	43 49 DNA homo	sapi	iens												
<400 gcag		43 cgg c	cgca	atgad	cg at	ggcġ	ggttt	tgo	cggaa	atag	aaaa	aggg	gg			49
<210 <211 <212 <213	.> 2>	44 40 DNA homo	sapi	Lens												
<400		44 tca a	acctio	ggaco	ca da	acaca	aggg	a aad	caato	ctcc						4 C

and the training of the second with the training of training of the training of tr

<210> <211> <212> <213>	45 21 DNA Homo sapiens	
<400>		21
	46 23 DNA	
<400>	Homo sapiens 46 tage etettgttet cat	23
<210> <211>	47 24	
<212> <213> <400>	DNA Homo sapiens	
ccatcci	cete caccagggee ttet	24
<210><211><211><212><213>	48 18 DNA Homo sapiens	
<400> tgcccc	48 ctgg agtcacat	18
<210> <211> <212>	4 9 20 DNA	
<213> <400>	Homo sapiens	
ggaccaa	atgg gagtttccaa 50	20
<211> <211> <212> <213>	25 DNA Homo sapiens	
<400> cageege	50 cett tetgegttaa teeat	25
<210> <211>	51 14 PDT	

<213>	homo sapiens	
<400>	51	
Ala Ala 1	a Ser Ala Ser Ser Gly Arg Arg Ser Gly Gln Ala Pro 5 10	
<210> <211> <212> <213>	52 20 DNA Drosophila melanogaster	
<400> atgaggo	52 cttg gatcagcttt	20
<210><211><211><212><213>	53 20 DNA Drosophila melanogaster	
<400>	53 gcct gacattccat	20
<210> <211> <212> <213>	54 21 DNA Drosophila melanogaster	
<400> actgcaq	54 gccg attcattaat g	21
<210> <211> <212> <213>	55 48 DNA Drosophila melanogaster	
<400> gaattaa	55 atac gactcactat agggagatat catacacata cgatttag	48
<210><211><211><212><213>	56 48 DNA Drosophila melanogaster	
<400> gaattaa	56 atac gactcactat agggagacat gattacgcca agctcgaa	48
<210><211><211><212><213>	57 21 DNA Drosophila melanogaster	

<400> tgtaaaa	57 acga cggccagtga a	21
<210><211><211><212><213>	58 23 DNA Homo sapiens	
<400> caggtg	58 cagc tggtgcagtc tgg	23
<210> <211> <212> <213>	59 23 DNA Homo sapiens	
<400> caggtca	59 aact taagggagtc tgg	23
<210> <211> <212> <213>	60 23 DNA Homo sapiens	
<400> gaggtg	60 cagc tggtggagtc tgg	23
<210> <211> <212> <213>	61 23 DNA Homo sapiens	
<400>	61 cagc tgcaggagtc ggg	23
<210> <211> <212> <213>	62 23 DNA Homo sapiens	
<400> gaggtg	62 cagc tgttgcagtc tgc	23
<210> <211> <212> <213>	63 23 DNA Homo sapiens	
<400>	63 cage tgeageagte agg	23

<210> <211> <212>	64 24 DNA		
<213>	Homo sapiens		
<400> tgagga	64 gacg gtgaccaggg	tgcc	24
<210> <211> <212>	65 24 DNA		
<213>	Homo sapiens		
<400> tgaaga	65 gacg gtgaccattg	tccc	24
<210> <211> <212>	66 24 DNA		
<213>	Homo sapiens		
<400>	66		
tgagga	gacg gtgaccaggg	ttcc	24
<210> <211>	67 24		
<211>	DNA		
<213>	Homo sapiens		
<400>	67		
	gacg gtgaccgtgg	tece	24
<210>	68		
<211> <212>	23 DNA		
<213>	Homo sapiens		
<400>	68		
	caga tgacccagtc	tcc	23
<210>	69		
<211>	23		
<212> <213>	DNA Homo sapiens		
<400>	69	too	23
gatgtt	gtga tgactcagtc		د ع
<210>	70		
<211>	23		

an and and any an an and the substitution in the transfer that the

<212> <213>	DNA Homo sapiens	
<400> gatatt	70 gtga tgactcagtc tcc	23
<210><211><211><212><213>		
<400> gaaatt	71 gtgt tgacgcagtc tcc	23
<210><211><211><212><212><213>	72 23 DNA Homo sapiens	
<400>	72 gtga tgacccagtc tcc	23
<210><211><211><212><213>	DNA	
<400>	73 acac tcacgcagtc tcc	23
<210><211><211><212><212>	74 23 DNA Homo sapiens	
<400>	74 gtgc tgactcagtc tcc	23
<210> <211> <212> <213>	75 23 DNA Homo sapiens	
<400> cagtct	75 gtgt tgacgcagcc gcc	23
<210><211><211><212><213>	76 23 DNA • Homo sapiens	

<400> cagtcto	76 gccc tgactcagcc tgc	2	23
<210><211><212><212><213>	77 23 DNA Homo sapiens		
<400> tcctate	77 gtgc tgactcagcc acc	2	23
<210> <211> <212> <213>			
<400> tcttctc	78 gagc tgactcagga ccc	2	23
<210><211><211><212><213>	79 23 DNA Homo sapiens		
<400> cacgtt	79 atac tgactcaacc gcc	2	23
<210><211><211><212><213>	80 23 DNA Homo sapiens		
<400> caggct	80 gtgc tcactcagcc gtc	2	23
<210><211><211><212><213>	81 23 DNA Homo sapiens		
<400> aatttt	81 atgc tgactcagcc cca	í á	23
<210><211><211><212><213>			
<400> acgttt	82 gatt tocacottgg tocc	2	24

<210> <211> <212>	83 24 DNA	
<213><400> acgtttq	Homo sapiens 83 gate tecagettgg teee	24
<210> <211>	8 4 2 4	
<212> <213>	DNA Homo sapiens	
<400> acgttt	84 gata tocaetttgg teee	24
<210><211><211><212><212><213>	85 24 DNA Homo sapiens	
<400>	85 gate tecacettgg tece	24
<210><211><211><212><213>	86 24 DNA Homo sapiens	
<400>	86 mate tecagtegtg tece	24
<210> <211> <212>	87 23 DNA	
<213> <400> cagtcte	Homo sapiens 87 gtgt tgacgcagcc gcc	23
<210> <211> <212>	88 23 DNA	
<213> <400>	Homo sapiens 88 gece tgactcagee tge	23
<210> <211>	89 23	-

<212> <213>		
<400> tcctate	> 89 stgtgc tgactcagcc acc	23
<210><211><211><212><213>	> 23 > DNA	
		23
<210> <211> <212>	> 23 > DNA	
<213> <400>	> 91	0.2
	tatac tgactcaacc gcc	23
<210><211><211><212><213>	> 23 > DNA	
<400>	-	23
<210>		
<211> <212> <213>	> DNA	
<400> aatttt	> 93 ttatgc tgactcagcc cca	23
<210> <211>	> 39	
<212> <213>		
<400> gcagca	> 94 cagegg cegeteegae eecateaege tgaaegteg	39
<210> <211> <212>	> 37	
<212> <213>		

<400> 95 gcagcagtcg accctgtacc gtattaatcg aataatc	37
<210> 96 <211> 39 <212> DNA <213> Homo sapiens	
<400> 96 gcagcagcgg ccgcatgacc gggagccatg acgtcatcg	39
<210> 97 <211> 37 <212> DNA <213> Homo sapiens	
<400> 97 gcagcagtcg acattggagc agtagaagag cttagag	37
<210> 98 <211> 191 <212> PRT <213> Homo sapiens	
<400> 98	
Met Val Lys Lys Leu Val Met Ala Gln Lys Arg Gly Glu Thr Arg Ala 1 5 10 15	
Leu Cys Leu Gly Val Thr Met Val Val Cys Ala Val Ile Thr Tyr Tyr 20 25 30	
Ile Leu Val Thr Thr Val Leu Pro Leu Tyr Gln Lys Ser Val Trp Thr 35 40 45	
Gln Glu Ser Lys Cys His Leu Ile Glu Thr Asn Ile Arg Asp Gln Glu 50 55 60	
Glu Leu Lys Gly Lys Lys Val Pro Gln Tyr Pro Cys Leu Trp Val Asn 70 75 80	
Val Ser Ala Ala Gly Arg Trp Ala Val Leu Tyr His Thr Glu Asp Thr 85 90 95	
Arg Asp Gln Asn Gln Gln Cys Ser Tyr Ile Pro Gly Ser Val Asp Asn 100 105 110	
Tyr Gln Thr Ala Arg Ala Asp Val Glu Lys Val Arg Ala Lys Phe Gln 115 120	
Glu Gln Gln Val Phe Tyr Cys Phe Ser Ala Pro Arg Gly Asn Glu Thr 130 135 140	
Ser Val Leu Phe Gln Arg Leu Tyr Gly Pro Gln Ala Leu Leu Phe Ser	

and all the training and all and the training and the training the training that the training training the training training

145 Leu Phe Trp Pro Thr 160 Leu Leu Thr Gly Gly Leu Leu Leu Ile Ile Ala Met Val Lys Ser Asn Gln Tyr Leu Ser 185 Leu Ala Ala Gln Lys Leu 180 Leu 185 Leu Ala Ala Rie Ile Ala Rie Institution $\frac{1}{1}$