

AD-A186 644

UNDERSTANDING ALGEBRA EQUATION SOLVING STRATEGIES(U)
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF PSYCHOLOGY
K VANLEHN ET AL 86 JUL 87 PCG-2 N00014-86-K-0349

1/1

UNCLASSIFIED

F/G 12/1

NL

AD-A186 644

DTIC FILE COPY
12

Understanding Algebra Equation Solving Strategies

Technical Report PCG-2

Kurt VanLehn and William Ball

Departments of Psychology and Computer Science
Carnegie-Mellon University
Schenley Park,
Pittsburgh, PA 15213 U.S.A.

DEPARTMENT
of
PSYCHOLOGY

Carnegie-Mellon University

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

87 10 13 023

(12)

Understanding Algebra Equation Solving Strategies

Technical Report PCG-2

Kurt VanLehn and William Ball

Departments of Psychology and Computer Science
Carnegie-Mellon University
Schenley Park,
Pittsburgh, PA 15213 U.S.A.

6 July 1987

Running head: Algebra strategies

This research was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract number N00014-86-K-0349. Approved for public release; distribution unlimited.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

A186644

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; Distribution unlimited	
4. PERFORMING ORGANIZATION REPORT NUMBER(S) PCG-2		5. MONITORING ORGANIZATION REPORT NUMBER(S) Same as Performing Organization	
6a. NAME OF PERFORMING ORGANIZATION Carnegie-Mellon University	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Personnel and Training Research Office of Naval Research (Code 1142 PT)	
8c. ADDRESS (City, State, and ZIP Code) Department of Psychology Pittsburgh, PA 15213		7b. ADDRESS (City, State, and ZIP Code) 800 N. Quincy St. Arlington, VA 22217-5000	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Same as Monitoring Organization	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-86-K-0349	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS 441a538-02/1-15-00 PROGRAM ELEMENT NO N/A PROJECT NO N/A TASK NO N/A WORK UNIT ACCESSION NO N/A	
11. TITLE (Include Security Classification) Understanding Algebra Equation Solving Strategies			
12. PERSONAL AUTHOR(S) Kurt VanLehn & William Ball			
13a. TYPE OF REPORT Technical	13b. TIME COVERED FROM 86Jun15 TO 87Oct-11	14. DATE OF REPORT (Year, Month, Day) 87 July 6	15. PAGE COUNT 13
16. SUPPLEMENTARY NOTATION			
17. COSAT CODES FIELD GROUP SUB-GROUP		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Algebra, equation solving, problem space, problem solving	
19. ABSTRACT (Continue on reverse if necessary and identify by block number)			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS PPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION SECURITY CLASSIFICATION OF THIS PAGE	
22a. NAME OF RESPONSIBLE INDIVIDUAL Susan Chapman		22b. TELEPHONE (Include Area Code) 1202 596-4322 22c. OFFICE SYMBOL 1142 PT	

DD FORM 1473, 34 MAR

33 APR edit or may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Abstract

A task analysis of linear algebraic equation solving is presented. The problem space is shown to have an elegant mathematical form. Several strategies for searching the problem space are delineated, and their properties discussed. The forward search strategy, which appears to be the one most commonly taught in high-school textbooks, tends to generate non-optimal solution paths. An operator-subgoaling search strategy tends to generate shorter paths. Bundy and Welham's waterfall loop strategy is shown to be a variant of operator-subgoaling that is more amenable for use by humans. This task analysis suggests that the waterfall loop strategy may be better for teaching to high-school students than the forward search strategy.

SEARCHED	INDEXED	M
SERIALIZED	FILED	
APR 19 1981		
SCHOOL OF COMPUTER SCIENCE		
UNIVERSITY OF TORONTO LIBRARY		
TORONTO, ONTARIO M5S 1A4 CANADA		

A-1

1. Introduction

This brief note presents an analysis of a small portion of high school algebra, the solving of linear equations in one variable. The analysis is based on the formal properties of the task, rather than data from human subjects. Two results are presented. First, the structure of the task domain is uncovered, and shown to have some elegant properties. Second, there is suggestive evidence that forward search, which appears to be the strategy most commonly taught in high school algebra, is a less efficient search strategy than operator subgoaling, a strategy based directed on the structure of the task domain, in that it tends to generate longer solution paths. This suggests that operator subgoaling may be a better strategy for teaching high school algebra students. However, operator subgoaling seems to require more cognitive resources of the student than forward search. Bundy and Welham's (1981) waterfall loop strategy, which is a type of operator subgoaling, is shown to offer reduced requirements for cognitive resources. It thus combines the advantages of short solution paths with low cognitive load.

Although these results are suggestive, empirical work is needed in order to build a case for changing the pedagogical practices of high school algebra. A tenuous, but still interesting conjecture is that teaching students the *structure* of the solution space, as described herein, may lead them to a better understanding of the process of solving algebra equations.

2. The problem space of simple algebraic equation solving

Solving an algebra equation can be viewed as search in a problem space (Newell & Simon, 1972). A problem space is defined by a set of states, a set of operators for moving from one state to another, an initial state, and a description for the desired final state. For algebra, a state is just an algebraic equation, and an operator is just an algebraic transformation, such as subtracting a term from both sides of the equation. The initial state is the given equation, e.g., $6-5(x+3)+7x = 3-x$. A final state is any equation that has just one occurrence of the variable, and the variable is isolated, that is, it stands alone on the left or right side of the equation.

Different initial states (i.e., different equations to be solved) engender different specific problem spaces. However, all the problem spaces in this task domain have the same basic topological form. This section discusses that form.

The form is hierarchical. We will define a hierarchy of state types, such that a state of type N is an equivalence class of states of type N-1. The lowest state type, state type 1, consists of the actual

equations. Thus, $1+x = 3$ and $x+1 = 3$ are distinct type 1 states. A type 2 state is an equivalence class of type 1 states that can be reached by the algebraic transformations for commutativity, associativity, arithmetic combination, reversing the sides of an equation, and simplifying a double unary minus. Thus, the following equations are all in the same type 2 class:

$$x+1 = 30/3$$

$$1+x = 30/3$$

$$1+x = 10$$

$$1+x = -(-10)$$

$$10 = 1+x$$

$$10 = x+1$$

$$11-1 = x+1$$

$$100^{-1/2} = x+1$$

Because there are infinitely many ways to express numbers as arithmetic expressions, there are infinitely many type 1 states in a type 2 state.

Type 3 states are defined as the equivalence class of type 2 states under the algebraic transformations that "do the same thing" to both sides of the equations, such as adding the same term to both sides of the equation. Such equivalence classes have an interesting structure. It is easiest to discuss it with the aid of several simple examples.

Figure 1 shows eight type 2 states that constitute a type 3 state. They are arranged in a cube in order to show the relationships among them. The edges that are parallel to the horizontal axis are represent the operations of multiplying or dividing by a . The vertical axis edges represent multiplying or dividing by b . The remaining edges represent multiplying or dividing by c . The diagonals of the cube (not drawn) correspond to inverting both sides of the equation.

Figure 2 displays another type 3 state, where the equations are related by adding and subtracting from both sides. The edges represent adding and subtracting by, respectively, a , b or c . The diagonals represent negating both sides of the equation.

In general, all equations formed from three atomic subexpressions and an invertible binary operator will engender a type 3 state that has either type 2 states arranged in a cube. However, if the subexpressions are not atomic, but are themselves expressions, then a type 3 state consists of two or more cubes that

Figure 1: Type 3 state for multiplication and division

Figure 2: Type 3 state for addition and subtraction

$$\begin{array}{c}
 \begin{array}{ccc}
 3/30 = 1/(x + 2) & \text{---} & 1/30 = 1/3(x + 2) \\
 | & & | \\
 3 = 30/(x + 2) & \text{---} & 1 = 30/3(x + 2) \\
 | & & | \\
 3(x + 2)/30 = 1 & \text{---} & (x + 2)/30 = 1/3 \\
 | & & | \\
 3(x + 2) = 30 & \text{---} & x + 2 = 30/3 \\
 | & & | \\
 x + 2 = 10 & \text{---} & x + 2 - 10 = 0 \\
 | & & | \\
 x = 10 - 2 & \text{---} & x - 10 = -2 \\
 | & & | \\
 2 = 10 - x & \text{---} & 2 - 10 = -x \\
 | & & | \\
 0 = 10 - 2 - x & \text{---} & -10 = -2 - x
 \end{array}
 \end{array}$$

Figure 3: Type 3 state for the equation $3(x+1) = 30$.

share vertices. Figure 3 illustrates such a state for the equation $3(x+1) = 30$. The upper cube treats the subexpression $(x+1)$ as atomic, while the bottom cube treats $3/30$ as atomic. The multiplication cube shares the vertex that stands for the equation $x+1 = 3/30$ with the addition cube. In general, there are three vertices in every cube that can be shared, viz. those where a subexpression that is treated as atomic relative to the cube's operations appears isolated on one side of the equality. When a subexpression is isolated, its operator is the top operator on one side of the equation, and thus can be found a new "do it to both sides" cube.

In principle, one can add (or multiply, etc.) any expression to both sides of an equation. Thus, adding $234y$ to both sides of $2(x+1) = 30$ is legal. However, most algebra equations can be solved by applying both-sides operations using only subexpressions that appear in the equation. If we restrict the problem space by only allowing the both-sides operators to use subexpressions from the equation, then a type 3 state always consists of a set of one or more cubes, connected by shared vertices. With this restriction, a type 3 state has the following properties:

- All its constituent type 2 states are equations with exactly the same atomic terms (i.e., modulo arithmetic evaluation, which merges numbers together).
- Any atom or term can be isolated by operations that stay inside the type 3 state.

These properties follow directly from the fact that each operation neither destroys terms nor creates terms, and that all operations are invertible, given that the equations are linear equations.

These two properties together imply that if any equation in a type 3 state has a single occurrence of the variable, then they all do, and furthermore, that one of the type 2 equations has the variable isolated on one side of the equation. Thus, a type 3 state is a "final" state if it contains an equation with a single occurrence of the unknown. For example, the equation $3(x+1) = 30$ corresponds to a final type 3 state; mere "both sides" operations are all that is required to convert it to the desired form.

To put the property more generally, all the equations in the type 3 state have the same number of occurrences of the unknown variable. A type 3 state can be assigned a heuristic value equal to the number of occurrences of the unknown, and this value can be used to guide the search among type 3 states by always choosing operations reduce this value. This strategy is discussed further below.

The only way to change the set of atomic expressions in an equation is to use some form of distribution or its converse combination. These operations are illustrated below:

$$\begin{aligned}
 x(a+b) &= c \leftrightarrow ax+bx = c \\
 c &= (a+b)x \leftrightarrow c = a/x+b/x \\
 x^ax^b &= c \leftrightarrow x^{a+b} = c
 \end{aligned}$$

These distribution operations form the type 3 state transitions. Thus, the whole problem space for linear¹ algebra equation solving can be reduced dramatically to a problem space of type 3 states connected by type 3 operators, with the final type 3 state having just a single occurrence of the variable. This idea forms the basis of the operator subgoal strategy, which is discussed in the next section.

3. Two search strategies

This section discusses two search strategies, then compares them. The first strategy derives from the problem space analysis presented above. The idea is to search through the type 3 states using a simple hill climbing strategy -- move to an adjacent type 3 state that minimizes the number of occurrences of the variable -- then search through the final type 3 state to find a final type 2 state.

Although this sounds quite simple, it is complicated by the fact that the combine-term operations, which are the operators used to move between type 3 states, require that the terms to be combined are cousins in the expression tree. That is, when the expression is viewed as an operator tree (see figure 4), the two occurrences of the variable must be direct descendants of sibling nodes. In the equation $3x+4x+4 = 7$ it is possible to coalesce the occurrences of the variable, but in the equation $3x+4(x+1) = 7$ it is not possible apply the combine-terms operation. Thus the strategy requires *operator subgoaling*, wherein the solver adopts the new goal of transforming the equation into a form suitable for applying the combine-terms operator. In this case, the subgoal is to transform the subexpression $4(x+1)$ into a sum with x contained in one of its terms. This can be accomplished by applying the distribution operator, which corresponds to a transition between two adjacent type 3 states, both of which have same heuristic value. In some cases, the subgoal can be accomplished by staying inside the type 3 state, as when $3x = 7-4$ is transformed to $3x+4x = 7$. Such subgoaling can become rather complicated. Because the dominant form of activity is operator subgoaling, this strategy is named *operator subgoaling*.

As mentioned earlier, final states can be specified as a conjunction of two properties, (1) there is one occurrence of the variable, and (2) it occurs isolated on the left or right side of the equation. The operator

¹The analysis can probably be extended to a much larger class of equations. Bundy and Williams' (1981) equation solving system, which will be shown later to use a special case of this strategy, can solve rational polynomials containing trigometric and hyperbolic functions.

Figure 4: Expression tree for the equation $3x+4x+4=7$. The "*" means multiply.

subgoaling strategy achieves the single-occurrence goal first, then works on the isolation goal. The search strategy that seems to be taught in high school emphasizes the isolation subgoal. In the textbooks we have examined, students are taught to clear radicals, fractions, and parentheses first, then combine terms. (See figure 5 for one popular textbook's description of the strategy it teaches). This isolate-then-combine strategy has the advantage that it is easily implemented as a visually-cued forward search. The search heuristics are rules such as "If you see some parentheses, then use the distribution operator to remove them." Because the heuristics are cued by visual features of the equation, they may be easier to remember.

However, the forward search strategy leads to inefficient solutions in some cases:

<u>Forward Search Solution</u>
$3(x+2) = 30$
$3x+6 = 30$
$3x = 24$
$x = 8$

<u>Optimal Solution</u>
$3(x+2) = 30$
$x+2 = 10$
$x = 8$

The optimal solution path in this case would be generated by the operator subgoaling strategy. The forward search's strategy is non-optimal because it moves out of the initial type 3 state, which is also a final state, and into an adjacent type 3 state, which is also a final state. In this case, it is better to stay in the initial type 3 state. Here are some more cases where the forward search strategy does poorly:

SOLVING AN EQUATION HAVING ONE VARIABLE

1. Clear the equation of fractions, if any, by multiplying both members by the L.C.D. of all fractions in the equations.
 2. Remove parentheses.
 3. Clear the equation of decimals, if any, by multiplying both members by the appropriate power of 10.
- If it is a first-degree equation.
4. Collect all terms containing the variable so they are in the left member. Collect all other terms in the right member.
 5. Simplify both members.
 6. Divide each member by the coefficient of the variable.
 7. Check your result by replacing the variable in the original equation.
- If it is a second-degree equation.
4. Collect the terms so they are in the left member. The right member should be zero.
 5. Simplify the left member.
 6. Factor the left member.
 7. Set each factor containing the variable equal to zero and solve each resulting equation.
 8. Check your results by replacing the variable in the original equation.

Figure 5: A procedure from a popular high school textbook,
Welchons et al. (1981), pg. 419.

$4(3b+4)-3x = 147$	Removing the parentheses is unnecessary
$(3b+4)(3x+7) = -4-3b$	Shortest path is to divide by $3b+4$
$27(3x+7x+9) = 102$	Shortest path is to divide out the 27 first

We believe that it can be shown that the operator subgoal strategy always produces shorter solution paths than forward search, or a path of equal length. This belief is based mostly on our inability to find a counterexample. Further work is needed on this important question.

4. Comparing the two strategies

For human solvers, it is important to find shorter paths, but not so much because it saves time, but rather because it reduces the chance of error. Experienced solvers make most of their errors during the execution of operations, as opposed to using incorrect or inappropriate operations (Lewis, 1981). The fewer the operations needed to achieve a solution, the less chance of error.

However, shortness of path is not the only relevant criterion upon which a search strategy should be chosen. The strategy should be easy to use and easy to learn. The operator subgoal strategy may not be particularly easy to use, because it seems to require a goal stack. That is, the solvers must remember what goal they were working on so that they can resume working on it when they get done with the subgoal. The extra memory load of maintaining a goal stack may make the operator subgoal strategy more difficult to use than the forward search strategy, which requires no goal stack because its selection of operators is determined entirely by the current state.

The waterfall loop strategy (Bundy & Welham, 1981) offers the best of both strategies. It is essentially an operator subgoal strategy, which means that it tends to generate optimal solution paths, but it is implemented by several heuristics that are driven almost entirely by the current state, thus minimizing potential memory load. The waterfall loop strategy has three "meta" rules:

- *Isolation*: If the equation has just one occurrence of the variable, then apply a both-sides operator appropriate to the arithmetic operation that is the root of the expression tree on the side of the equation containing the variable.
- *Combination*: If the equation has two occurrences of the variable that are cousins in the tree, then combine them.
- *Attraction*: If the equation has multiple, non-cousin occurrences of the variable, select two that are nearest in the tree, and apply a transformation that will make them nearer.

The first of these meta-rules that matches the equation is fired, then the loop repeats on the new

equation. That is, control falls through to the rule that matches, then loops back.

The waterfall loop strategy has the same goal structure as the operator subgoaling strategy. Isolation and combination are the top level goals of algebra equation solving, and attraction is a subgoal of combination. The waterfall loop differs from operator subgoaling in that it uses no goal stack as temporary state for its processing. It is driven entirely by the appearance of the equation. So it too is a visually cued, forward search strategy. But its *design* makes it a form of operator subgoaling.

The waterfall loop therefore combines the best properties of both forward search and operator subgoaling. It tends to generate optimal solution paths, and it is visually cued. The differences between it and the usual procedure taught in schools is that its cues concern the number of occurrences of the variable and their relative position in the equation tree. The forward search procedure is cued by the presence of large features, such as parentheses and radicals.

Obviously, these comments about ease of use must be viewed as suggestive only. Experimental work, preferably with both expert and novices human solvers, is needed to compare the two strategies.

5. Suggestions for further research

This brief note, although sparse on results, opens a number of interesting avenues for research. Two have been mentioned already: a formal demonstration of the optimality of the operator subgoaling strategy over the forward search strategy, and an empirical demonstration of its superior ease of use. Similarly, we need to experimentally compare the learnability of the two strategies.

A possibly more important question is whether this new view of algebraic equation solving as simple climbing in the type 3 problem space allows students to truly *understand* the task domain. Certainly, we feel that we understand algebraic strategies better for having understood the structure of the problem space. Perhaps this view will help the students as well.

To put the suggestion in more concrete form, suppose one built an algebra equation solving system along the lines of AlgebraLand (Brown, 1983) that used a menu-driven interface to allow the student to select operations which the system would then apply. AlgebraLand keeps track of the path the student follows and displays it. If the student backs up, then the display is a tree, otherwise it is a path. Brown claims that this may facilitate the acquisition of improved search strategies. This claim is consistent with research by Anderson and his colleagues (Anderson, Boyle & Yost, 1985, Anderson, Boyle & Reiser,

1985), which shows that similar displays of solution trees seems to help geometry students learn strategies for finding proofs in plane geometry. The basic message from both sets of researchers is that displaying the solution path in a way that emphasizes its tacit structure helps students learn a search strategy based on that structure. Now, suppose that we displayed the search of an algebra student in a manner similar to the cubes of figures 1, 2 and 3. We conjecture that this display will help students come to understand algebra strategy in a new, more beneficial way.

References

- Anderson, J.R., Boyle, C.F. & Reiser, B. (1985). Intelligent tutoring systems. *Science*, 228(4698), 456-462.
- Anderson, J. R., Boyle, C., & Yost, G. (1985). The geometry tutor. In *Proceedings of Ninth International Joint Conference on Artificial Intelligence*. Los Altos, CA: Morgan-Kaufman, 1-7
- Brown, J.S. (1983). Process versus product: A perspective on tools for communal and informal electronic learning. In *Report from the learning lab: Education in the electronic age*. New York, NY: Educational Broadcasting Company.
- Bundy, A. and Welham, B. (1981). Using meta-level inference for selective application of multiple rewrite rule sets in algebraic manipulation. *Artificial Intelligence*, 16, 189-211.
- Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), *Cognitive Skills and their Acquisition*. Hillsdale, NJ: Lawrence Erlbaum.
- Newell, A. & Simon, H. A. (1972). *Human Problem Solving*. Englewood Cliffs, NJ: Prentice-Hall.
- Welchons, A.M., Krickenberger, W.R., Pearson, H.R., Duffy, A.G., M& MacCaffery, J.M. (1981). *Algebra: Book 1*. Lexington, MA: Ginn.

- Commanding Officer**
CAPT Lorin W. Brown
MROTC Unit
Illinois Institute of Technology
3300 S Federal Street
Chicago, IL 60616-3793
- Dr. John Black**
Teachers College
Columbia University
525 West 121st Street
New York, NY 10027
- Dr. Steve Andriole**
George Mason University
School of Information
Technology & Engineering
Technology & Engineering
4400 University Drive
Fairfax, VA 22030
- Dr. Beth Adelman**
Department of Computer Science
Tufts University
Medford, MA 02155
- Dr. Robert Ahlers**
Code M711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813
- Dr. Phillip L. Ackerman**
University of Minnesota
Department of Psychology
Minneapolis, MN 55455
- Dr. Ed Aiken**
Navy Personnel R&D Center
San Diego, CA 92152-6800
- Dr. Robert Aiken**
Temple University
School of Business Administration
Department of Computer and
Information Sciences,
Philadelphia, PA 19122
- Dr. James Aigner**
University of Florida
Gainesville, FL 32605
- Dr. William E. Alley**
AFHRC/AFOT
Brooks AFB, TX 78235
- Dr. Steve Andriole**
George Mason University
School of Information
Technology & Engineering
Technology & Engineering
4400 University Drive
Fairfax, VA 22030
- Dr. Arthur S. Blawies**
Code M711
Naval Training Systems Center
Orlando, FL 32813
- Dr. Robert Blanchard**
Navy Personnel R&D Center
San Diego, CA 92152-6800
- Dr. Alan Beddoe**
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND
- Dr. Patricia Bedell**
University of Colorado
Department of Psychology
Box 345
Boulder, CO 80309
- Dr. Robert Bock**
University of Chicago
NORC
8030 South Ellis
Chicago, IL 60637
- Dr. Jeff Bonar**
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260
- Dr. Richard Braby**
NTSC Code 10
Orlando, FL 32751
- Dr. Jamilis H. Braddock II**
Center for the Social
Organization of Schools
The Johns Hopkins University
3505 North Charles Street
Baltimore, MD 21218
- Dr. Robert Breaux**
Code N-095R
Naval Training Systems Center
Orlando, FL 32813
- Dr. Ann Brown**
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign IL 61820
- Dr. Tom Cafferty**
Dept. of Psychology
University of South Carolina
Columbia, SC 29208
- Dr. Joseph C. Campione**
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign IL 61820
- Joanne Copper**
Center for Research into Practice
1710 Connecticut Ave. NW
Washington DC 20009
- Dr. Susan Carey**
Harvard Graduate School of
Education
337 Gutman Library
Appion Way
Cambridge MA 02136

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P O Box 218
Yorktown Heights, NY 10598

LCDR Robert Carter
Office of the Chief
of Naval Operations
OP-01B
Pentagon
Washington, DC 20330 20000

Dr. Alphonse Chapanis
8415 Bellona Lane
Suite 210
Burton Towers
Baltimore, MD 21204

Dr. David Cherney
English Department
Penn State University
University Park, PA 16802

Dr. Paul R. Chatelet
OUSDRE
Pentagon
Washington, DC 20330-20000

Dr. Michaelene Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. L. J. Chmura
Computer Science and Systems
Code 7590
Information Technology Division
Naval Research Laboratory
Washington, DC 20373

Dr. Lynn A. Cooper
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

LT Judy Crookshanks
Chief of Naval Operations
OP-112G5
Washington, DC 20330-20110

Dr. Cary Crichon
Intelligent Instructional
Technologies At Lab
Cameron Station Bldg 5
Alexandria, VA 22311
Arlin, TC
(12 Copies)

Dr. Stephenie Doan
Code 6021
Naval Undersea Warfare Engineering
Keyport, WA 98345

Mr. Raymond E. Christel
AFHRL/MOT
Brooks AFB, TX 78235

Dr. Thomas M. Duffy
Communications Design Center
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Richard Durea
University of California
Santa Barbara, CA 93106

Edward E. Eddores
(NAIR) N301
Naval Air Station
Corpus Christi, TX 78419

Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

Dr. Jeffrey Elman
University of California
San Diego
Department of Linguistics
La Jolla, CA 92093

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

Dr. Randy Engle
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. William Epstein
University of Wisconsin
W. J. Brodgen Psychology Bldg
1202 W. Johnson Street
Madison, WI 53706

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder CO 80309

Dr. William Clancy
Stanford University
Knowledge Systems Laboratory
701 Welch Road, Bldg C
Palo Alto, CA 94304

Dr. Charles Clinton
Tobin Hall
Department of Psychology
University of Massachusetts
Amherst, MA 01003

Dr. Allan M. Collins
Bolt Beranek & Newman Inc
50 Moulton Street
Cambridge, MA 02138

Dr. Stanley Collier
Office of Naval Technology
Code 222
800 N Quincy Street
Arlington, VA 22217-5000

Dr. Andrea di Sessa
University of California
School of Education
Tolman Hall
Berkeley, CA 94720

Dr. R. K. Dismukes
Associate Director for Life Sciences
AFOSR
Boeing AFB
Washington, DC 20330-20110

Dr. Randy Engle
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. William Epstein
University of Wisconsin
W. J. Brodgen Psychology Bldg
1202 W. Johnson Street
Madison, WI 53706

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder CO 80309

Dr. Natalie Dehn
Department of Computer and
Information Science
University of Oregon
Eugene, OR 97403

Dr. Gerald F. DeJong
Artificial Intelligence Group
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

Gaëry Delacote
Directeur de L'Informatique
Scientifique et Technique
CNRS

Dr. Thomas E. DeZern
Project Engineer, AI
General Dynamics
PO Box 746
Fort Worth, TX 76101

Dr. Andrea di Sessa
University of California
School of Education
Tolman Hall
Berkeley, CA 94720

Dr. R. K. Dismukes
Associate Director for Life Sciences
AFOSR
Boeing AFB
Washington, DC 20330-20110

Dr. Randy Engle
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. William Epstein
University of Wisconsin
W. J. Brodgen Psychology Bldg
1202 W. Johnson Street
Madison, WI 53706

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder CO 80309

Dr. Beatrice J. Farr
Army Research Institute
3001 Eisenhower Avenue
Alexandria, VA 22333

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Marshall J. Farr
Farr-Sigbl Co
2520 North Vernon Street
Arlington, VA 22207

Dr. Paul Feitovich
Southern Illinois University
School of Medicine
Medical Education Department
P.O. Box 3926
Springfield, IL 62706

Mr. Wallace Feurrieg
Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

Dr. Gerhard Fischer
University of Colorado
Department of Computer Science
Boulder, CO 80309

J. D. Fletcher
9931 Corsica Street
Vienna, VA 22180

Dr. Linda Flower
Carnegie-Mellon University
Department of English
Pittsburgh, PA 15213

Dr. Kenneth D. Forbes
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Dr. Barbara A. Fox
University of Colorado
Department of Linguistics
Boulder, CO 80309

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. Daniel Gopher
Industrial Engineering
& Management
TECHNION
Haifa 32000
ISRAEL

Dr. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. Dede Gentner
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Lee Gladwin
Route 3 -- Box 229
Winchester, VA 22601

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hare Street
Pittsburgh, PA 15260

Dr. Arthur M. Glenberg
University of Wisconsin
W. J. Brodgen Psychology Bldg.
1202 W. Johnson Street
Madison, WI 53706

Dr. Marvin D. Glick
Cornell University
13 Stone Hall
Ithaca, NY 14853

Dr. Sam Glucksmberg
Department of Psychology
Princeton University
Princeton, NJ 08540

Dr. Joseph Godden
Computer Science Laboratory
SRI International
333 Ravenwood Avenue
Menlo Park, CA 94025

Dr. Susan Goldman
University of California
Santa Barbara, CA 93106

Dr. Wayne Harvey
Center for Learning Technology
Educational Development Center
55 Chapel Street
Newton, MA 02160

Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Sherrile Gottl
AFHRL/MODJ
Brooks AFB, TX 78235

Dr. Michael Graffman, Ph.D.
2021 Lyttonsville Road
Silver Spring, MD 20910

Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21210

Dr. James G. Greeno
University of California
Berkeley, CA 94720

Dr. Edward Haertel
School of Education
Stanford University
Stanford, CA 94305

Dr. Henry M. Haff
Haff Resources Inc
4910 33rd Road North
Arlington, VA 22207

Dr. James Howard
Dept. of Psychology
Human Performance Laboratory
Catholic University of America
Washington, DC 20064

Ms. Julia S. Hough
Lawrence Erlbaum Associates
6012 Greene Street
Philadelphia, PA 19144

Dr. Jim Holland
Intelligent Systems Group
Institute for
Cognitive Science (ICOS)
UCSD
La Jolla, CA 92093

Dr. Melissa Holland
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

- Dr. Earl Hunt**
Department of Psychology
University of Washington
Seattle WA 98103
- Dr. Ed Hutchins**
Intelligent Systems Group
Institut für
Cognitive Science (C-015)
UCSD
La Jolla CA 92093
- Dr. Dillon Inouye**
WICAT Education Institute
Proto UT 84057
- Dr. Alice Isen**
Department of Psychology
University of Maryland
Collegeville MD 21228
- Dr. R. J. K. Jacob**
Computer Science and Systems
Code 7390
Information Technology Division
Naval Research Laboratory
Washington DC 20375
- Dr. Zachary Jacobson**
Bureau of Management Consulting
365 Laurier Avenue West
Ottawa Ontario K1A 0S5
CANADA
- Dr. Robert Jennerone**
Department of Psychiatry
University of South Carolina
Columbia SC 29208
- Dr. Claude Janvier**
Directeur, CIRADE
Université du Québec à Montréal
P O Box 6600 St A
Montréal Québec H3C 3P6
CANADA
- Dr. Robin Jeffries**
Hewlett-Packard Laboratories
P O Box 10490
Palo Alto CA 94303-0971
- Margaret Jerome**
c/o Dr. Peter Chandler
83 The Drive
Have
Sussex
- UNITED KINGDOM**
- Dr. Douglas H. Jones**
Thatcher Jones Associates
P O Box 6600
10 Traisfelder Court
Lawrenceville NJ 08648
- Dr. Marcel Just**
Carnegie Mellon University
Department of Psychology
Schenley Park
Pittsburgh PA 15213
- Dr. Alice Isen**
Department of Psychology
University of Maryland
Collegeville MD 21228
- Dr. Ruth Kanfer**
University of Minnesota
Department of Psychology
Elliott Hall
75 E River Road
Minneapolis MN 55455
- Dr. Milton S. Katz**
Army Research Institute
5001 Eisenhower Avenue
Alexandria VA 22313
- Dr. Dennis Kibler**
University of California
Department of Information
and Computer Science
Irvine CA 92717
- Dr. David Kieras**
University of Michigan
Technical Communication
College of Engineering
1223 E Engineering Building
Ann Arbor MI 48109
- Dr. Peter Kincaid**
Training Analysis
Evaluation Group
Department of the Navy
Orlando FL 32813
- Dr. Diane Langston**
Communications Design Center
Carnegie-Mellon University
Schenley Park
Pittsburgh PA 15213
- Dr. Jill Larkin**
Carnegie-Mellon University
Department of Psychology
Pittsburgh PA 15213
- Dr. Marcia C. Lynn**
Lawrence Hall of Science
University of California
Berkeley CA 9420
- Dr. Frederic M. Lord**
Educational Testing Service
Princeton NJ 08541
- Dr. Sandra P. Marshall**
Dept. of Psychology
San Diego State University
San Diego CA 92102
- Dr. Jim Levin**
Department of
Educational Psychology
210 Educational Building
1310 South Sixth Street
Champaign IL 61820-6990
- Dr. John Levine**
Learning R&D Center
University of Pittsburgh
Pittsburgh PA 15260
- Dr. Clayton Lewis**
University of Colorado
Department of Computer Science
Campus Box 430
Boulder CO 80309
- Library**
Naval War College
Newport RI 02840
- Library**
Naval Training Systems Center
Orlando FL 32813
- Dr. Charlotte Linde**
Structural Semantics
P O Box 707
Palo Alto CA 94320

<p>Dr. Richard E. Mayer Department of Psychology University of California Santa Barbara, CA 93106</p> <p>Dr. Jay McClelland Department of Psychology Carnegie-Mellon University Pittsburgh, PA 15213</p> <p>Dr. Joe McLachlan Navy Personnel R&D Center San Diego, CA 92152-6800</p> <p>Dr. James S. McMichael Navy Personnel Research and Development Center Code 05 San Diego, CA 92152</p> <p>Dr. Barbara Means Human Resources Research Organization 1100 South Washington Alexandria, VA 22314</p> <p>Dr. Arthur Melmed U.S. Department of Education 724 Brown Washington, DC 20200</p> <p>Dr. George A. Miller Department of Psychology Green Hall Princeton University Princeton, NJ 08540</p> <p>Dr. James R. Miller MCC 9430 Research Blvd Echelon Building #1 Austin, TX 78759</p> <p>Dr. Mark Miller Computer Thought Corporation 1721 West Piano Parkway Piano, TX 75075</p> <p>Dr. Andrew R. Molnar Scientific and Engineering Personnel and Education National Science Foundation Washington, DC 20550</p>	<p>Office of Naval Research Director, Manpower and Personnel Laboratory NPRDC (Code 06) 800 N. Quincy Street San Diego, CA 92152-6800 (6 Copies)</p> <p>Office of Naval Research Dr. Randy Musew Program Manager Training Research Division HuRRO 1100 S. Washington Alexandria, VA 22314</p> <p>Office of Naval Research Dr. Allen Munro Behavioral Technology Laboratories - USC 1045 S. Elene Ave. 4th Floor Redondo Beach, CA 90277</p> <p>Office of Naval Research Dr. T. Niblett The Turing Institute 36 North Hanover Street Glasgow G1 2AD Scotland UNITED KINGDOM</p> <p>Office of Naval Research Dr. Richard E. Niesselt University of Michigan Institute for Social Research Room 5201 Ann Arbor, MI 48109</p> <p>Office of Naval Research Dr. Mary Jo Nissen University of Minnesota N218 Elliott Hall Minneapolis, MN 55455</p> <p>Office of Naval Research Dr. A. F. Norcilio Computer Science and Systems Code 7590 Information Technology Division Naval Research Laboratory Washington, DC 20375</p> <p>Office of Naval Research Dr. Donald A. Norman Institute for Cognitive Science C-013 University of California, San Diego La Jolla, California 92093</p> <p>Office of Naval Research Dr. Mark Miller Computer Thought Corporation 1721 West Piano Parkway Piano, TX 75075</p> <p>Office of Naval Research Dr. Andrew R. Molnar Scientific and Engineering Personnel and Education National Science Foundation Washington, DC 20550</p>	<p>Office of Naval Research Code 1142CS 800 N. Quincy Street Arlington, VA 22217-5000</p> <p>Office of Naval Research Code 11R 800 N. Quincy Street Arlington, VA 22217-5000</p> <p>Office of Naval Research Code 12 800 North Quincy Street Arlington, VA 22217-5000</p> <p>Office of Naval Research Library, NPRDC Code P20L San Diego, CA 92152-6800</p> <p>Office of Naval Research Dr. Harold F. O'Neill Jr. School of Education - WPH 801 Department of Educational Psychology & Technology University of Southern California Los Angeles, CA 90089-0031</p> <p>Office of Naval Research Dr. Michael Oberlin Naval Training Systems Center Code 711 Orlando, FL 32813-7100</p> <p>Office of Naval Research Dr. Stellan Ohlsson Learning R & D Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15213</p> <p>Office of Naval Research Dr. George A. Miller Information Technology Division Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000</p> <p>Office of Naval Research Resident Representative UCSD University of California, San Diego La Jolla, CA 92093-0001</p> <p>Office of Naval Research Assistant for Planning MANTR, OP 01B6 Washington, DC 20370</p>
--	---	--

**Assistant for MPT Research
Development and Studies**
OP 0187
Washington, DC 20370

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

COR R T Parlette
Chief of Naval Operations
OP-112G
Washington DC 20370-2000

Dr. James Paulson
Department of Psychology
Portland State University
P O Box 751
Portland, OR 97207

Dr. Douglas Pearce
DCIEM
Box 2000
Downsview, Ontario
CANADA

Dr. James W Pellegrino
University of California
Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Virginia E Pendergrass
Code 711
Naval Training Systems Center
Orlando, FL 32813-7100

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E 58th St
Chicago, IL 60637

**Military Assistant for Training and
Personnel Technology**
DUSD (R & E)
Room 3D129, The Pentagon
Washington DC 20301-1080

Dr. Ray Perez
ARI (PERI-III)
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. David N Perkins
Educational Technology Center
337 Culman Library
Appian Way
Cambridge, MA 02130

Dr. Steven Pinker
Department of Psychology
E10-018
MIT
Cambridge, MA 02139

Dr. Tjeerd Plomp
Twente University of Technology
Department of Education
P O Box 217
7500 AE ENSCHEDE
THE NETHERLANDS

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder CO 80309

Dr. Michael L Posner
Department of Neurology
Washington University
Medical School
St Louis, MO 63110

Dr. Joseph Psotka
ATTN PERI-IC
Army Research Institute
5001 Eisenhower Ave
Alexandria, VA 22333

Dr. Mark D Reckase
ACT
P O Box 168
Iowa City IA 52243

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Wesley Regen
AFHRL/MOD
Brooks AFB, TX 78235

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O Hara Street
Pittsburgh, PA 15213

Dr. Gil Richard
Mail Stop C04-14
Grumman Aerospace Corp
Bethpage, NY 11714

Mark Richer
1041 Lake Street
San Francisco, CA 94118

Dr. Linda G Roberts
Science, Education and
Transportation Program
Office of Technology Assessment
Congress of the United States
Washington, DC 20510

Dr. Andrew M Rose
American Institutes
for Research
1035 Thomas Jefferson St - NW
Washington DC 20007

Dr. Colleen M Seiffert
Intelligent Systems Group
Institute for
Cognitive Science (C-015)
UCSD
La Jolla CA 92093

Dr. David Rumelhart
Center for Human
Information Processing
Univ. of California
La Jolla, CA 92093

Dr. Ramsay W Selden
Assessment Center
CSSO
Suite 379
400 N Capitol NW
Washington DC 20001

- Dr. Sylvia A. S. Shello**
Department of Computer Science
Towson State University
Towson, MD 21204
- Dr. Ben Shneiderman**
Dept. of Computer Science
University of Maryland
College Park, MD 20742
- Dr. Lee Shulman**
Stanford University
1030 Calhoun Way
Stanford, CA 94305
- Dr. Rendall Shumaker**
Naval Research Laboratory
Code 7510
4555 Overlook Avenue SW
Washington DC 20375-5000
- Dr. Valerie Shute**
AFHRL/MOE
Brooks AFB TX 78235
- Dr. Robert S. Siegler**
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh PA 15213
- Dr. Zile M. Simutis**
Instructional Technology
Systems Area
ARI
5001 Eisenhower Avenue
Alexandria, VA 22333
- Dr. H. Wallace Sineiko**
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314
- Dr. Derek Sleeman**
Dept. of Computing Science
King's College
Old Aberdeen
AB9 2UB
UNITED KINGDOM
- Dr. Richard E. Snow**
Department of Psychology
Stanford University
Stanford, CA 94305
- Dr. Elliot Soloway**
Yale University
Computer Science Department
P O Box 2110
New Haven CT 06520
- Dr. Kathryn T. Spoehr**
Brown University
Department of Psychology
Providence RI 02912
- James J. Staszewski,**
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh PA 15213
- Dr. Robert Sternberg**
Department of Psychology
Yale University
Box 11A Yale Station
New Haven CT 06520
- Dr. Albert Stevens**
Bolt Beranek & Newman Inc
10 Moulton St
Cambridge MA 02238
- Dr. Paul Thohig**
Army Research Institute
3001 Eisenhower Avenue
Alexandria VA 22333
- Dr. Kurt Van Lehn**
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh PA 15213
- Dr. Jerry Vogt**
Navy Personnel R&D Center
Code 31
San Diego CA 92152-6800
- Dr. Thomas Sticht**
Navy Personnel R&D Center
San Diego CA 92152-0000
- Dr. John Tengney**
AFOSR/NL
Bolling AFB DC 20332
- Dr. Barbara White**
Bolt Beranek & Newman Inc
10 Moulton Street
Cambridge MA 02138
- Dr. Kikumi Tatsuka**
CFRL
252 Engineering Research
Laboratory
Urbana IL 61801
- Dr. Heather Wild**
Naval Air Development
Center
Code 6021
Warminster PA 18974-5000
- Dr. William Clancy**
Stanford University
Knowledge Systems Laboratory
701 Welch Road, Bldg. C
Palo Alto, CA 94304
- Dr. Michael Williams**
Intelli-Corp
1975 El Camino Real West
Mountain View CA 94040-2216
- Dr. Robert A. Wisher**
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria VA 22333
- Dr. Martin F. Wiskott**
Navy Personnel R&D Center
San Diego CA 92152-6800
- Dr. Dan Wolz**
AFHRL/MOE
Brooks AFB TX 78235
- Dr. Wallace Wulfbeck, III**
Navy Personnel R&D Center
San Diego CA 92152-6800
- Dr. Joe Yoseluk**
AFHRL/LRT
Lowry AFB CO 80230
- Dr. Joseph L. Young**
Memory & Cognitive
Processes
National Science Foundation
Washington DC 20550

Dr. Steven Zornett
Office of Naval Research
Code 114
800 N Quincy St
Arlington VA 22217-3000

END

DATE

Film

JAN
1988