Практическое занятие №5

Изучение принципов работы с жидкокристаллическим дисплеем LCD 1602 и датчиком температуры/влажности DHT 11 в CAПР Proteus и Arduino IDE

Цель работы:

- 1) изучить основные принципы работы с жидкокристаллическим дисплеем LCD 1602 и датчиком влажности/температуры DHT 11 в CAПР Proteus и Arduino IDE;
- 2) научиться разрабатывать алгоритмы обработки и вывода информации с датчиков на жидкокристаллический дисплей;
 - 3) научиться моделировать устройства индикации в САПР Proteus.

1 Краткие теоретические сведения

1.1 Жидкокристаллический дисплей LCD 1602

LCD дисплеи размерности 1602, являются одними из самых простых, доступных и востребованных дисплеев для разработки различных электронных устройств. Его можно встретить, как и в устройствах собранных на коленке, так и в промышленных устройствах, таких, как например, автоматы для приготовления кофе.

Размерность дисплеев может быть различной, управляться они будут одинаково. Самые распространенные размерности 16x02 (т.е. по 16 символов в двух строках) либо 20x04. Разрешение же самих символов - 5x8 точек.

Большинство дисплеев не имеют поддержку кириллицы, имеют её лишь дисплеи с маркировкой СТК.

На дисплее имеется 16pin разъем для подключения. Выводы промаркированы на тыльной стороне платы.

- (VSS) Питание контроллера (-)
- (VDD) Питание контроллера (+)
- (VO) Вывод управления контрастом
- (RS) Выбор регистра
- (R/W) Чтение/запись (режим записи при соединении с землей)
- (E) Enable (строб по спаду)
- (DB0-DB3) Младшие биты 8-битного интерфейса
- (DB4-DB7) Старшие биты интерфейса
- - Анод (+) питания подсветки
- (К) Катод (-) питания подсветки

Сам дисплей может работать в двух режимах:

- 8-битный режим для этого используются и младшие и старшие биты (BB0- DB7)
- 4-битный режим для этого используются и только младшие биты (BB4- DB7)

Использование 8-битного режима на данном дисплее не целесообразно. Для его работы требуется на 4 пина больше, а выигрыша в скорости практически нет т.к. частота обновления данного дисплея упирается в предел < 10 раз в секунду.

Для вывода текста необходимо подключить выводы RS, E, DB4, DB5, DB6, DB7 к выводам контроллера. Их можно подключать к любым пинам Arduino, главное в программе задать правильную последовательность.

Даташит LCD 1602B:

https://agte.com.br/midia/produtos/AGM-1602B-802.pdf

1.2 Датчик температуры/влажности DHT 11

Датчики DHT11 и DHT22 очень популярны в среде Ардуино и часто используются в проектах метеостанций и умного дома. Данные датчики не выделяются особенным быстродействием и точностью, но они просты в использовании, их можно смело использовать в своих первых проектах ввиду доступности и невысокой цены.

Датчик состоит из двух частей — емкостного датчика температуры и гигрометра. Первый используется для измерения температуры, второй — для влажности воздуха. Находящийся внутри чип может выполнять аналого-цифровые преобразования и выдавать цифровой сигнал, который считывается посредством микроконтроллера.

Даташит DHT11:

 $\underline{https://www.mouser.com/ds/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf}$

1.3 Схема подключения LCD дисплея и датчика DHT 11 к Arduino в Proteus

Для того чтобы собрать данную схему, понадобятся следующие компоненты:

- 1) Arduino Uno
- 2) DHT 11
- 3) LM016L
- 4) 4.7 k Ohm resistor

Типовая схема подключения Данных компонентов к Arduino приведена на следующем изображении:

1.4 Механизм работы с LCD дисплеем

Подробно о данном дисплее и механизмах работы с ним можно прочитать здесь:

http://zelectro.cc/LCD1602

http://arduino-diy.com/arduino-zhidkokristallicheskiy-displey-LCD-1602

https://wiki.iarduino.ru/page/Working_with_character_LCD_displays

 $\underline{http://developer.alexanderklimov.ru/arduino/liquidcrystal.php}$

Обратите внимание, что в данных материалах также описываются функции библиотеки *LiquidCrystal*, необходимой для работы с LCD дисплеями.

1.5 Механизм работы с DHT 11

Подробно о датчике DHT 11 и механизмах работы с ним можно прочитать здесь: <a href="https://arduinomaster.ru/datchiki-arduino/datchiki-temperatury-i-vlazhnosti-dht11-dht22/http://wikihandbk.com/wiki/Arduino:Примеры/Гайд по использованию датчика DHT 11/DHT22_вместе_с_Arduino

Обратите внимание, что в данных материалах также описываются функции библиотеки *DHT*, необходимой для работы с датчиком DHT 11.

1.6 Библиотека LiquidCrystal

Благодаря данной библиотеке плата Arduino может управлять жидкокристаллическим дисплеем (т.е. LCD). Библиотека может работать в 4-битном и 8-битном режимах. Это значит, что она может использовать 4 или 8 каналов связи для передачи данных (вдобавок к каналам для управления — RS и, опционально, RW). К Arduino IDE подключить библиотеку можно через меню *Скетч — Подключить библиотеку — LiquidCrystal*.

К проекту библиотека подключается следующим образом: #include <LiquidCrystal.h>

Все функции библиотеки вызываются через переменную типа **LiquidCrystal**. Создание экземпляра класса выполняется следующим образом:

```
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
```

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

Основные функции данной библиотеки описаны здесь:

https://radioprog.ru/post/158

1.7 Библиотека DHT

Библиотека DHT предназначена для работы с датчиками температуры и влажности: DHT 11, DHT 21 (AM2301), DHT 22 (AM2302, AM2321).

К Arduino IDE подключить библиотеку можно добавив папку DHT ($Docs \ B$ ычислительные машины $\ \Pi$ рактическое занятие $\ N25 \ B$ Библиотека $\ DHT$) в соответствующий каталог библиотек Arduino IDE, по умолчанию находящийся по пути:

 $C:\Users\<\Umanonb3oвателя>\Documents\Arduino\libraries\$

К проекту библиотека подключается следующим образом:

#include "DHT.h"

Все функции библиотеки вызываются через переменную типа *DHT*. Создание экземпляра класса выполняется следующим образом:

#define DHTPIN 6 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT11 // DHT 11

DHT dht(DHTPIN, DHTTYPE);

Основные функции данной библиотеки описаны здесь:

http://wikihandbk.com/wiki/Arduino:Примеры/Гайд_по_использованию_датчика
_DHT11/DHT22_вместе_с_Arduino

1.8 Пример работы

В папке с заданием находится тестовая программа и схема. В программе на LCD дисплей выводится считанные с датчика DHT11 показания температуры в градусах Цельсия.

2 Выполнение практического задания

2.1 Задание на практическое занятие

Вариант	Задание
1	Выводить на дисплей текущее значение температуры (в градусах Цельсия) и
	влажности с датчика DHT 11. Добавить в схему две тактовых кнопки. При
	нажатии на первую кнопку переводить значение температуры из градусов
	Цельсия в Фаренгейты, а при нажатии на вторую – скроллить текст на
	дисплее слева направо.
2	Выводить на дисплей текущее значение температуры (в градусах Цельсия) и
	влажности с датчика DHT 11. Добавить в схему две тактовых кнопки. При
	нажатии на первую кнопку вычислять и выводить на дисплей тепловой
	индекс (heat index), а при нажатии на вторую – скроллить текст на дисплее
	справа налево.
3	Добавить в схему ещё один датчик DHT 11. Добавить в схему две тактовых
	кнопки. По умолчанию выводить на дисплей текущее значение температуры
	и влажности с первого датчика DHT 11. При нажатии на первую кнопку
	выводить на дисплей текущее значение температуры и влажности со второго
	датчика DHT 11, а при нажатии на вторую кнопку – скроллить текст на
	дисплее сначала слева направо, а затем справа налево.
4	Добавить в схему ещё один датчик DHT 11. Добавить в схему две тактовых
	кнопки. По умолчанию выводить на дисплей текущее значение температуры
	и влажности с первого датчика DHT 11. При нажатии на первую кнопку
	выводить на дисплей среднее значение температуры и влажности между
	показаниями датчиков DHT 11, а при нажатии на вторую кнопку – текст на
	дисплее должен начать «мигать».
5	Добавить в схему три датчика DHT 11. Добавить в схему тактовую кнопку.
	Выводить на дисплей показания температуры и влажности с каждого датчика
	DHT 11 в виде бегущей строки. При нажатии на кнопку выводить на дисплей
	максимальные значения температуры и влажности среди показаний датчиков
	DHT 11.

6	Добавить в схему три датчика DHT 11. Добавить в схему тактовую кнопку. В
	виде бегущей строки выводить на дисплей показания температуры (в
	градусах Фаренгейта) и влажности с каждого датчика DHT 11. При нажатии
	на кнопку выводить на дисплей минимальные значения температуры и
	влажности среди показаний датчиков DHT 11.
7	Добавить в схему три датчика DHT 11. Добавить в схему тактовую кнопку.
	Поочерёдно выводить на дисплей показания температуры (в градусах
	Цельсия) и влажности с каждого датчика DHT 11. При нажатии на кнопку
	поочерёдно в виде бегущей сроки выводить на дисплей минимальные,
	максимальные и средние значения температуры и влажности среди
	показаний датчиков DHT 11.

3 Результаты выполнения практического задания

В результате выполнения данного практического задания необходимо составить отчёт (можно в электронном виде), содержащий следующие пункты:

- 1) Титульный лист
- 2) Цель практического занятия
- 3) Задание
- 4) Ход выполнения практического задания (программный код)
- 5) Результат выполнения практического задания (скриншоты)
- 6) Выводы