

Dr. rer. nat. Johannes Riesterer

Motivation

Gegeben ist ein zeitabhängiges System $t\mapsto x(t)$. Möchten verstehen, wie sich x(t) über die Zeit entwickelt. Zu festen Zeitpunkten $t_0, \cdots t_n$ lässt sich $x(t_i)$ messen und damit $x'(t_i)\cong \frac{x(x(t_i)-x(t_{i-1}))}{t_i-t_{i-1}}$ näherungsweise bestimmen. Im allgemeinen ist x'(t)=f(x(t),t).

Beispiel

(1) $x'(t) = \mu e^x$. Dann ist $x(t) = ce^{\mu t}$ für alle $c \in \mathbb{R}$ eine Lösung. Ist $x(0) = x_0$, so ist $x(t) = x_0 e^{\mu t}$ eine Lösung von (1) mit $x(0) = x_0$.

Ein System von Differentialgleichungen 1-ter Ordnung ist ein System von Gleichungen

$$x'_1(t) = f_1(t, x_1, \dots, x_n)$$

$$x'_2(t) = f_2(t, x_1, \dots, x_n)$$

$$\vdots$$

$$x'_n(t) = f_n(t, x_1, \dots, x_n)$$

Werden zusätzlich die Anfanfsbedingungen $x_1(t_0)=x_0^1,\ldots,x_n(t_0)=x_0^n$ vorgegebenen, so spricht man von einem Anfangswertproblem. Eine Lösung ist eine Funktion $x:I\subset\mathbb{R}\to\mathbb{R}^n$, deren Koordinatenfunktionen diese Bedingungen erfüllt.

Ein Anfangswertproblem *n*-ter Ordnung

$$x^{(n)}(t) = f(t, x^{(n)}, x^{(n-1)}, \cdots, x', x)$$

mit $x(t_0) = x_0$; $x'(t_0) = x_1$; \cdots ; $x^{n-1}(t_0) = x_{n-1}$ ist äquivalent zu dem System von Differentialgleichungen 1-ter Ordnung

$$x'_1(t) = x_2(t)$$

$$x'_2(t) = x_3(t)$$

$$\vdots$$

$$x'_n(t) = f(t, x_1, \dots, x_n)$$

mit den Anfangswertbedingungen

$$x_1(t_0) = x_0, x_2(t_0) = x_1, \cdots, x_{n-1}(t_0) = x_{n-1}.$$

Ein Vektorfeld ist eine Abbildung

$$v:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$$
,

die jedem Punkt $x \in \Omega$ einen Vektor $v(x) \in \mathbb{R}^n$ zuordnet.

Figure: Quelle:

 $Wikipedia: https://en.wikipedia.org/wiki/Vector_field\#/media/File: VectorField.swindows and the state of th$

Angewandte Mathematik

Dynamische Systeme

System von Differentialgleichungen

Eine Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ heißt Integralkurve in dem Vektorfeld $v: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, falls

$$\varphi'(t) = v(\varphi(t))$$

gilt für alle $t \in I$.

Figure: Quelle:

Ein dynamisches System ist eine Abbildung $F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, die jedem Punkt $(t,x) \in U$ einen Vektor $F(t,x) \in \mathbb{R}^n$ zuordnet. Eine Integralkurve oder Lösung für F ist eine Weg $\varphi: I \to \mathbb{R}^n$ mit

$$\varphi'(t) = F(t, \varphi(t))$$

für alles $t \in I$.

Für eine vektorwertige Funktion $f:I\to\mathbb{R}^n; f(t):=\begin{pmatrix} f(t)\\ \vdots\\ f_n(t) \end{pmatrix}$ definieren wir das Integral komponentenweise durch

$$\int_a^b f(t)dt := \begin{pmatrix} \int_a^b f_1(t)dt \\ \vdots \\ \int_a^b f_n(t)dt \end{pmatrix}.$$

System von Differentialgleichungen

Ein Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ ist genau dann Lösung des AWP $\varphi'(t) = F(t, \varphi)$ mit $\varphi(t_0) = x_0$, wenn

$$\varphi(t) = x_0 + \int_{t_0}^t F(t,\varphi)dt$$

gilt.

Beweis

Folgt direkt durch komponentenweise Anwendung des Hauptsatzes der Integral- und Differentialrechnung.

Lipschitz-Stetig

Eine Abbildung $F:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ heißt Lipschitz-Stetig, falls es eine Konstante $L\geq 0$ gibt mit

$$||F(t,x) - F(t,x')|| \le L||x - x'||$$

für alle (t,x) und (t,x') in U.

Metrischer Raum

Ein metrischer Raum (X,d) ist eine Menge X zusammen mit einer Abbildung $d: X \times X \to X$ die linear ist in beiden Argumenten und die Dreiecksungleichung $d(x,y) \leq d(x,z) + d(z,y)$ erfüllt.

Beispiel

$$d(x,y) := ||y - x||$$
 wobei $|| \cdot ||$ eine Norm ist.

Beispiel

Das für uns später relevante Beispiel ist der Funktionenraum mit der Maximumsnorm $||\varphi||:=\max_t$.

Banachscher Fixpunktsatz

Es sei (X,d) ein vollständiger metrischer Raum und $P:X \to X$ eine Abbildung mit

$$d(P(x),P(x))<\lambda d(x,y)$$

und $\lambda < 1$. Dann besitzt P genau einen Fixpunkt $x^* \in X$ mit $P(x^*) = x^*$.

Figure: Quelle: Wikipedia

Wähle beliebiges $x_0 \in X$. Durch wiederholtes Abbilden erhalten wir die Folge $x_n := P(x_{n-1})$. Für diese Gilt nach Voraussetzung an P

$$d(x_{n+1},x_n) < \lambda d(x_n,x_{n-1}) < \lambda^n d(x_1,x_0).$$

Mit wiederholtem Anwenden der Dreiecksungleichung gilt

$$d(x_{n+m},x_m) \leq d(x_{n+1},x_n) + d(x_{n+2},x_{n+1}) + \cdots + d(x_{n+m},x_{n+m-1}).$$

Da $\lambda < 1$ folgt $\lim_{n \to \infty} d(x_{n+m}, x_m) \le \lim_{n \to \infty} \frac{\lambda^n}{1 - \lambda} d(x_1, d_0) = 0$ und damit ist x_n eine Cauchyfolge. Da (X, d) vollständig ist, konvergiert die Folge in X gegen einen Grenzwert x^* . Für diesen gilt $P(x^*) = P(\lim_{n \to \infty} x^*) = \lim_{n \to \infty} P(x_n) = \lim_{n \to \infty} x_{n+1} = x^*$ und damit ist x^* ein Fixpunkt von P.

Lokaler Existenzsatz von Picard-Lindelöf

Das dynamisches System

$$F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

sei lokal Lipschitz-Stetig. Dann gibt es zu jedem Punkt $(t_0, x_0) \in U$ ein Intervall $I_{\delta}(t_0) := (t_0 - \delta, t_0 + \delta) \subset \mathbb{R}$ auf dem das AWP

$$x' = F(t, x), x(t_0) = x_0$$

Angewandte Mathematik Beweis

Betrachte die Menge $M:=\{\psi:I_{\delta}(t_0)\to\mathbb{R}^n\mid ||\psi(t)-x_0||\leq b\}$ von Wegen in der Nähe von x_0 und die Abbildung

$$P: M \to M$$

$$(P\psi)(t) := x_0 + \int_{t_0}^t F(t, \psi(t)) dt$$

Ein Fixpunkt von *P* ist eine Lösung der Differentialgleichung. P ist eine Kontraktion.

Lineare (gewöhnliche) Differentialgleichung.

Eine Differentialgleichung der Form

$$x'(t) := A(t)x(t) + b(t)$$

mit $A:I\subset\mathbb{R}\to\mathbb{R}^{n\times n}$ und $b:I\subset\mathbb{R}\to\mathbb{R}^n$ heißt lineare (gewöhnliche) Differentialgleichung.

Existenz und Eindeutigkeit]

Ist x'(t) := A(t)x(t) + b(t) eine lineare Differentialgleichung und A und b stetig, so besitzt das AWP

$$x'(t) := A(t)x(t) + b(t); x(t_0) = x_0$$

genau eine auf ganz / definierte Lösung.

Beweis

F(t,x) := A(t)x(t) + b(t) ist Lipschitz-Stetig mit Konstanten $L := \max_{t \in J} ||A(t)||$ für jedes kompakte Intervall $J \subset I$.

Lineare (gewöhnliche) Differentialgleichung.

- Die Menge \mathcal{L} der auf I definierten Lösungen der homogenen Gleichung x'(t) = A(t)x(t) ist eine n-dimensionaler reeller Vektorraum.
- n Lösungen $\varphi_1, \dots, \varphi_n : I \to \mathbb{R}^n$ bilden genau dann eine Basis für \mathcal{L} , wenn die Vektoren $\varphi_1(t), \dots, \varphi_n(t)$ für ein $t \in I$ eine Basis des \mathbb{R}^n bilden.

Angewandte Mathematik

Sind $\varphi_1, \dots, \varphi_n$ Lösungen der homogenen Gleichung, so auch $c_1 \cdot \varphi_1 + \dots + c_n \cdot \varphi_n$, da die Ableitung linear ist. \mathcal{L} ist somit ein Vektorraum. Definiere

$$\alpha_{t_0}: \mathcal{L} \to \mathbb{R}^n$$

 $\alpha_{t_0}(\varphi) := \varphi(t_0).$

Aufgrund des Existenzsatzes und der linearität ist α_{t_0} surjektiv und wegen der Eindeutigkeit der Lösung injektiv.

Lineare (gewöhnliche) Differentialgleichung.

Eine Basis $\varphi_1, \dots, \varphi_n$ des Lösungsraumes \mathcal{L} der homogenen Gleichung x'(t) = A(t)x(t) heißt Fundamentalsystem.

Lineare (gewöhnliche) Differentialgleichung.

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ definiert man die Exponentialfunktion

$$e^A := \sum_{k=0}^{\infty} \frac{1}{k!} A^k .$$

Es gilt

$$(e^{tA})' = Ae^{tA} .$$

Lineare (gewöhnliche) Differentialgleichung.

Für eine Matrix A lautet die Lösung des Anfangswertproblems x'(t) = Ax(t) und $x(0) = x_0$

$$x(t)=e^{tA}x_0.$$

Ist v_1, \dots, v_n eine Basis des \mathbb{R}^n , so ist $e^{tA}v_1, \dots, e^{tA}v_n$ ein Fundamentalsystem für \mathcal{L} . Damit bilden die Spalten von e^{tA} ein Fundamentalsystem.

Beweis

Es ist $x(0) = x_0$ und x'(t) = Ax(t). Der Rest folgt aus Satz ??

Lineare (gewöhnliche) Differentialgleichung.

Sei v eine Eigenvektor von A zum Eigenwert λ . Dann löst

$$\varphi_{v}(t) := e^{t\lambda}v$$

das AWP x' = Ax mit x(0) = v.

Beweis

$$\varphi_{\nu}'(t) = \lambda e^{t\lambda} v = e^{t\lambda} \lambda v = e^{t\lambda} A v = A e^{t\lambda} v = A \varphi_{\nu}(t).$$

Lineare (gewöhnliche) Differentialgleichung.

Hat eine Matrix A n Eigenvektoren v_1, \cdots, v_n zu den Eigenwerten $\lambda_1, \cdots \lambda_n$, so bilden die Lösungen $\varphi_{v_1}, \cdots \varphi_{v_n}$ ein Fundamentalsystem.

Beweis

Eigenvektoren sind linear unabhängig.

Hauptvektoren.

Ein Vektor v heißt Hauptvektor zum Eigenwert λ , falls es eine Zahl s>0 gibt mit

$$(A - \lambda E)^s v = 0$$

Die kleinste Zahl s, für die dies gilt heißt Stufe.

Hauptvektoren.

Zu jeder Matrix $A \in \mathbb{R}^{n \times n}$ gibt es eine Basis aus Hauptvektoren.

Hauptvektoren

Ist v ein Hauptvektor der Stufe s zum Eigenwert λ der Matrix A, so gilt

$$e^{tA}v = e^{t\lambda E}e^{t(A-\lambda E)}v = e^{t\lambda}\left(\sum_{k=0}^{\infty} \frac{1}{k!}(A-\lambda E)^k t^k\right)v$$
$$= e^{t\lambda}\left(\sum_{k=0}^{s-1} \frac{1}{k!}(A-\lambda E)^k t^k\right)v$$