SVKM's Dwarkadas J. Sanghvi College of Engineering Acad .Year 2022-2023 YEAR III / Semester VI

Program: B.Tech in Computer Engineering

Subject/Course: Advance Algorithm

Date: 08.08.2023

Max. Marks: 75 Time: 10:00-13:00 Duration: 03:00 Hrs

RE-EXAMINATION

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book provided for their use.

- (1) This question paper contains 03 pages.
- (2) All Questions Are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer of each new question is to start on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat-labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Write a short note on R Tree. Explain Node-Spilt operation in R Tree using suitable example.	[05]
Q1 (b)	What is the role of Height in Push-Relable Algorithm? Apply Push-Relabel algorithm on following Flow Network. Draw the resultant network and give Maximum Flow.	[10]
	S 13 T 5 5 10 F 10	
	OR	
	Find maximum flow for the following network using Ford Fulkerson BFS method ONLY.	[10]
	$ \begin{array}{c c} \hline S & 3 & A \\ \hline 3 & 4 & 1 \\ \hline B & 2 & C \\ \hline 6 & 1 \end{array} $	
	(b)	P.T.O

Q2 (a)	Construct the Unbalanced KD Tree for following elements where K=2 (6, 2), (7, 1), (2, 9), (3, 6), (4, 8), (8, 4), (5, 3), (1, 5), (9, 5)	[10
111111	OR	
	What is RB Tree? List all the properties of RB Tree. Delete node "10" from following RB Tree	[10
	10 B 40 B	
1 67- 40	B(-20) B (-5) (20) B (60) R	
	B 50 B	-
	(Note: Write 'R' for Red node and 'B' for Black node while constructing the RB Tree)	
Q2 (b)	List all the properties of Binomial Heap. What is Min Heap Property? Delete node "15" from the following Root List	
	12 7 15	[05]
	25 28 33	
	41	
Q3 (a)	What is Hiring Problem? Explain with suitable diagram and give its probabilistic analysis. OR	[05
	What is Randomized Algorithm? Explain basic 3 rules of Randomized Algorithm.	[0:
Q3 (b)	What is Convex Hull? Perform Graham Scan Algorithm on following elements and draw the Convex Hull:	[10
7	(3,2), (8,3), (9,6), (5,6), (4,8), (1,5), (8,8), (7,4) (Note: Draw Convex Hull and show the clear stack state after each step of Graham Scan Algorithm.)	
Q4 (a)	Give the categories of Randomized Algorithms. Give suitable example of each. Google Search Engine falls under which category? Justify the answer.	[0:
	OR	[0
	Perform Amortized analysis on Dynamic Tables using any TWO methods and compare the complexities of same.	Р.Т

Q4 (b)	Reduce N-Queen problem using reducibility concept. Assume suitable value of	[07]
	N. OR	
	What is NP-Completeness? How it is achieved? Elaborate with simple example.	[07]
Q5 (a)	Prove that TSP Problem is NP-Complete and design an approximation algorithm for TSP.	[10]
Q5 (b)	Explain K-Server problem with simple example.	[05]
	OR Write a short note on Powend Worst Case analysis	[05]
	Write a short note on Beyond Worst Case analysis.	

All the Best!