Exam 3: COT 2000

Amarnath Patel

July 12, 2024

Question 1 1

(a) The first four terms:

$$a_0 = 5, a_1 = 17, a_2 = 29, a_3 = 41$$

(b) To show convergence: -

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 5 + \lim_{n \to \infty} \left(\frac{1}{2}\right)^n$$

$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0$$

 $\lim_{n \to \infty} a_n = 5 + 0 = 5$

ans: $a_n = 5 + \left(\frac{1}{2}\right)^n$ converges to 5 as n approaches infinity.

Question 2

- (a) $b_n = 2n$, for $n \ge 1$ (b) $b_n = 3(-1)^{n+1}$, for $n \ge 1$ (c) $b_n = \frac{n}{2n+1}$, for $n \ge 1$

Question 3

(a)
$$\sum_{k=2}^{7} (k+3) = 5+6+7+8+9+10 = 45$$

(b) $\prod_{k=2}^{4} (k+1)^2 = 3^2 \cdot 4^2 \cdot 5^2 = 3600$

4 Question 4

Let $X = \{1, 3, 5, 7, 9\}$ and $Y = \{2, 4, 6, 8, 10\}$.

(a) Define $f: X \to Y$ by:

$$f(1) = 8$$
, $f(3) = 6$, $f(5) = 4$, $f(7) = 8$, $f(9) = 10$.

Is f one-to-one? Is f onto? Explain your answers.

- f is **not one-to-one** because f(1) = 8 and f(7) = 8, implying f is not injective.
- f is **not onto** because $2 \in Y$ is not mapped by any element in X, implying f is not surjective.
- (b) Define $g: X \to Y$ by:

$$g(1) = 2$$
, $g(3) = 4$, $g(5) = 6$, $g(7) = 8$, $g(9) = 10$.

Is g one-to-one? Is g onto? Explain your answers.

- g is **one-to-one** because all values are distinct, implying g is injective.
- g is onto because every element in Y is mapped by some element in X, implying g is surjective.

5 Question 5

- (a) F is not one-to-one (e is repeated). F is not onto (g is not in the range).
 - (b) G is one-to-one. G is onto.
- (c) To make F and G one-to-one correspondences: F: $a\rightarrow e$, $b\rightarrow f$, $c\rightarrow g$ (remove d) G: $a\rightarrow e$, $b\rightarrow f$, $c\rightarrow g$, $d\rightarrow h$ (add h to Y)

6 Question 6

- (a) h(x) = 2x + 1
 - i. One-to-one proof:

$$h(x_1) = h(x_2) \implies 2x_1 + 1 = 2x_2 + 1 \implies x_1 = x_2$$

- ii. Onto proof: For any $y \in \mathbb{Z}$, $x = \frac{y-1}{2} \in \mathbb{Z}$ satisfies h(x) = y
- (b) $g(x) = x^2 1$
- i. Not one-to-one: g(1) = g(-1) = 0
- ii. Not onto: $g(x) \ge -1$ for all x, so y; -1 has no preimage