K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Darlington Amplifier

Numerical 1: A two stage circuit is shown figure 1. It's BJT parameters are $\beta_1 = \beta_2$ = 100, $V_{BE_1} = V_{BE_2} = 0.7$ V. Calculate 1st and 2nd stage DC parameters, current gain, voltage gain, overall current gain and voltage gain, input impedance, output impedance and output voltage. Given: $\beta_1 = \beta_2 = 100$

Figure 1: Circuit 1

Solution:

The given circuit 1 is a Darlington pair amplifier employing npn-BJT. For DC biasing, the capacitors acts as an open source.

DC Analysis:

Figure 2: DC Equivalent circuit

$$\begin{split} V_{th} &= \frac{V_{CC} \times R_2}{R_1 + R_2} \\ V_{th} &= \frac{10 \times 50 \times 10^3}{100 \times 10^3 + 50 \times 10^3} = \textbf{3.33 V} \\ R_{th} &= \frac{R_1 \times R_2}{R_1 + R_2} \\ R_{th} &= \frac{100 \times 10^3 \times 50 \times 10^3}{100 \times 10^3 + 50 \times 10^3} = \textbf{33.33 k} \Omega \end{split}$$

Thevenin's Equivalent Circuit:

Figure 3: Thevenin's Equivalent circuit

Aplying KVL to the base emitter loop,

$$V_{th} - R_{th}I_{B_1} - V_{BE_1} - V_{BE_2} - I_{E_2}R_{E_2} = 0$$

$$R_{th}I_{B_1} + (1 + \beta_1)(1 + \beta_2)I_{B_1}R_{E_2} = V_{th} - V_{BE_1} - V_{BE_2}$$

$$...(\because I_{E_2} = (1 + \beta_2)I_{B_2}, I_{B_2} = I_{E_1} \& I_{E_1} = (1 + \beta_1)I_{B_1})$$

$$I_{B_1} = \frac{V_{th} - V_{BE_1} - V_{BE_2}}{R_{th} + (1 + \beta_1)(1 + \beta_2)R_{E_2}}$$

$$I_{B_1} = \frac{3.33 - 0.7 - 0.7}{33.33 \times 10^3 + (1 + 00)(1 + 100) \times 1 \times 10^3} = \mathbf{0.1889} \ \mu\mathbf{A}$$

$$I_{C_1} = \beta_1 I_{B_1}$$

$$I_{C_1} = 100 \times 0.1889 \times 10^{-6} = \mathbf{0.01889} \ \mathbf{mA}$$

$$I_{E_1} = (1 + \beta_1)I_{B_1}$$

$$I_{E_1} = (1 + 100) \times 0.1889 \times 10^{-6} = \mathbf{0.01907} \ \mathbf{mA}$$

Terminal B_2 is connected to terminal E_1 ,

$$I_{B_2} = I_{E_1} = \mathbf{0.01907} \ \mathbf{mA}$$

$$I_{C_2} = \beta_2 I_{B_2}$$

$$I_{C_2} = 100 \times 0.01907 \times 10^{-3} = 1.9079 \text{ mA}$$

$$I_{E_2} = (1 + \beta_2)I_{B_2}$$

$$I_{E_2} = (1+100) \times 0.01907 \times 10^{-3} = 1.9269 \text{ mA}$$

Voltage across terminal C_2 is given as,

$$V_{C_2} = V_{CC} = 10 \text{ V}$$

Voltage across terminal E_2 can be given as,

$$V_{E_2} = I_{E_2} R_{E_2}$$

$$V_{E_2} = 1.9269 \times 10^{-3} \times 1 \times 10^3 =$$
1.9269 V

AC Analysis:

Small signal parameters:

$$r_{\pi_1} = \frac{\beta_1 V_T}{I_{E_1}}$$

$$r_{\pi_1} = \frac{100 \times 26 \times 10^{-3}}{0.01907 \times 10^{-3}} =$$
136.339 k Ω

$$r_{\pi_2} = \frac{\beta_2 V_T}{I_{E_2}}$$

$$r_{\pi_2} = \frac{100 \times 26 \times 10^{-3}}{1.9269 \times 10^{-3}} =$$
1.349 k Ω

$$g_{m_1} = \frac{I_{C_1}}{V_T}$$

$$g_{m_1} = \frac{0.01889 \times 10^{-3}}{26 \times 10^{-3}} = \mathbf{0.726} \ \mathbf{mA/V}$$

$$g_{m_2} = \frac{I_{C_2}}{V_T}$$

$$g_{m_2} = \frac{1.9079 \times 10^{-3}}{26 \times 10^{-3}} =$$
73.38 mA/V

Small Signal Equivalent Circuit is shown in figure 4:

Figure 4: Small Signal Equivalent Circuit

Input impedance of stage 1:

$$Z_{i_2} = r_{\pi_2} + (1 + \beta_2)R_{E_2}$$
 $Z_{i_2} = 1.349 \times 10^3 + (1 + 100) \times 1 \times 10^3 = \mathbf{102.349 \ k\Omega}$
 $Z_{i_1} = (1 + \beta_1)Z_{i_2} + r_{\pi_1}$
 $Z_{i_1} = (1 + 100) \times 102.349 \times 10^3 + 136.339 \times 10^3 = \mathbf{10.4735 \ M\Omega}$
 $Z_i = (R_{th} \mid\mid Z_{i_1})$
 $Z_i = (33.33 \times 10^3 \mid\mid 10.4735 \times 10^6) = \mathbf{33.224 \ k\Omega}$

Output impedance of stage 2:

$$Z_{o_1} = rac{R_{th} + r_{\pi_1}}{1 + eta_1}$$
 $Z_{o_1} = rac{33.33 imes 10^3 + 136.339 imes 10^3}{1 + 100} = \mathbf{1.679 \ k\Omega}$
 $Z_{o_2} = rac{Z_{o_1} + r_{\pi_2}}{1 + eta_2}$
 $Z_{o_2} = rac{1.679 imes 10^3 + 1.349 imes 10^3}{1 + 100} = \mathbf{29.98 \ \Omega}$
 $Z_{o} = Z_{o_2} \parallel R_{E_2}$
 $Z_{o} = 29.98 \parallel 1 imes 10^3 = \mathbf{29.1073 \ \Omega}$

Current gain of stage 1:

$$A_{i_1} = rac{I_{E_1}}{I_{B_1}}$$
 $A_{i_1} = rac{(1+eta_1)I_{B_1}}{I_{B_1}}$ $A_{i_1} = (1+eta_1) = \mathbf{101}$

Current gain of stage 2:

$$egin{aligned} A_{i_2} &= rac{I_{E_2}}{I_{B_2}} \ A_{i_2} &= rac{(1+eta_2)I_{B_2}}{I_{B_2}} \ A_{i_2} &= (1+eta_2) = \mathbf{101} \end{aligned}$$

Overall voltage gain:

$$A_{i_T} = A_{i_1} \times A_{i_2}$$

 $A_{i_T} = 101 \times 101 =$ **10201**

Stage 1 Voltage gain:

$$A_{V_1} = rac{V_{o_1}}{V_i}$$
 $A_{V_1} = rac{I_{E_1} imes Z_{i_2}}{I_{B_1} imes Z_{i_1}}$
 $A_{V_1} = A_{i_1} imes rac{Z_{i_2}}{Z_{i_1}}$
 $A_{V_1} = 101 imes rac{102.349 imes 10^3}{10.4735 imes 10^6} = \mathbf{0.9869}$

Stage 2 Voltage gain:

$$egin{align} A_{V_2} &= rac{V_o}{V_{o_1}} \ A_{V_2} &= rac{I_o imes R_E}{I_{B_2} imes Z_{i_2}} \ A_{V_2} &= A_{i_2} imes rac{R_E}{Z_{i_2}} \ A_{V_2} &= 101 imes rac{1 imes 10^3}{102.349 imes 10^3} = \mathbf{0.9868} \ \end{array}$$

Overall voltage gain:

$$A_{V_T} = A_{V_1} \times A_{V_2}$$

 $A_{V_T} = 0.9869 \times 0.9868 = \mathbf{0.9738}$

$$A_{V_T}$$
 in dB = $20\log_{10}(|A_{V_T}|)$
 A_{V_T} in dB = $20\log_{10}(0.9738) = -0.2306$ dB

Output Voltage:

$$V_o = A_{V_T} V_i$$

$$V_o = 0.9738 \times 100 \times 10^{-3} =$$
97.38 mV

SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:

Figure 5: Circuit Schematic 1: Results

Figure 6: Input & Output waveforms for stage 1 voltage gain

Figure 7: Input & Output waveforms for stage 2 voltage gain

Figure 8: Input & Output waveforms for stage 1 current gain

Figure 9: Input & Output waveforms for stage 2 current gain

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
I_{B_1}	$0.1889 \ \mu A$	$0.1829 \ \mu A$
I_{C_1}	0.01889 mA	0.01829 mA
I_{E_1}	0.01907 mA	$0.01847~\mathrm{mA}$
I_{B_2}	0.01907 mA	$0.01847~\mathrm{mA}$
I_{C_2}	1.9079 mA	1.8479 mA
I_{E_2}	$1.9269~\mathrm{mA}$	1.8663 mA
V_{C_2}	10 V	10 V
V_{E_2}	1.9269 V	1.8663 V
Voltage gain of stage 1: A_{V_1}	0.9869	0.9786
Voltage gain of stage 2: A_{V_2}	0.9868	0.9928
Overall voltage gain: A_{VT} in dB	$0.9738 \; dB$	$0.9716 \; dB$
Current gain of stage 1: A_{i_1}	101	100.9591
Current gain of stage 2: A_{i_2}	101	101.0498
Overall Current gain: A_{i_T}	10201	10201.9131
Input impedance of stage 1	$33.224~\mathrm{k}\Omega$	_
Output impedance of stage 2	$29.1073 \ \Omega$	_
Output Voltage	97.38 mV	97.1654 mV

Table 1: Numerical 1
