

Curso 2020/21

Técnicas de los Sistemas Inteligentes

Enunciado de la Práctica 3

Introducción

El objetivo de la tercera práctica de la asignatura de Técnicas de los Sistemas Inteligentes consiste en diseñar e implementar un dominio de planificación clásico basado en el juego StarCraft¹. Para el desarrollo de la práctica los estudiantes deberán confeccionar un conjunto de ficheros PDDL y ejecutarlos en el planificador Metric-FF para obtener un plan válido. Este documento describe el mundo del juego, así como las tareas a realizar para superar la práctica, e información sobre la entrega y su evaluación.

Descripción del mundo

El mundo sobre el que se va a desarrollar la práctica está inspirado en juegos de estrategia militar y gestión de recursos, tales como StarCraft o Age of Empires. En StarCraft, un grupo de vehículos de construcción espacial (VCEs) deben recolectar una serie de recursos para construir nuevas estructuras, entre otras posibles acciones. Para la realización de esta práctica usaremos una versión simplificada del juego StarCraft 1 de Blizzard Entertainment (Figura 1).

Figura 1: Ejemplo de entorno en el que se desarrolla la acción en StarCraft.

¹ Videojuego de estrategia en tiempo real de ciencia ficción militar desarrollado por Blizzard Entertainment, y lanzado en 1998. Se trata de uno de los juegos para ordenador más vendidos de la historia, con más de 11 millones de copias vendidas (a fecha de Febrero de 2009). Más información en https://en.wikipedia.org/wiki/StarCraft (video game)

En nuestro mundo tenemos una pequeña base Terran², en la que podemos construir edificios y reclutar unidades. Para poder realizar estas acciones necesitaremos extraer recursos del entorno. Los recursos que podremos extraer serán de dos tipos:

Minerales

Gas Vespeno

Ambos recursos deben ser recolectados por un tipo de unidad: el VCE. Los VCE son los trabajadores encargados de recolectar recursos y construir edificios. Los nuevos edificios que se construyan desbloquean nuevas capacidades en la base, ya sea habilitando el reclutamiento de nuevos tipos de unidades, o permitiendo el desarrollo de investigaciones que a su vez expandirán aún más dichas capacidades. Para poder extraer recursos, los VCE deben asignarse a un "nodo de recursos" (el emplazamiento donde habrá o bien minerales o bien gas vespeno) y se encargarán de, periódicamente, obtener/extraer el recurso. Un VCE asignado a un recurso no podrá moverse por el mapa ni construir edificios hasta que sea desasignado del nodo. A un nodo de recursos se pueden asignar tantos VCEs libres como se desee (se entiende por VCE libre aquellos no asignados a otro nodo de recursos).

Figura 2: Ejemplo de VCE para recolección de recursos

Para representar el mapa usaremos el siguiente grafo. Cada nodo del grafo representará una "localización", en la que puede haber edificios y unidades, y las aristas entre localizaciones representa un camino entre ambas. No hay límite en cuanto al número de unidades que pueden encontrarse en una localización determinada, pero solo puede haber un edificio construido en cada localización. Cada nodo de recursos se encuentra en alguna localización. En una localización solo puede haber un nodo de recursos, aunque puede construirse un edificio en una localización que contenga un nodo de recurso. Es decir, una misma localización puede contener al mismo tiempo un nodo de recursos, un edificio y número ilimitado de unidades.

² Una de las tres razas del videojuego StarCraft, junto con los Protoss y los Zerg. Los Terran son humanos exiliados de la Tierra y altamente evolucionados, con una gran capacidad de adaptación a cualquier situación.

Descripción de la tarea a realizar

Los estudiantes deberán definir un dominio de planificación escrito en PDDL que represente el mundo presentado en la sección anterior y, a medida que se realicen los ejercicios propuestos, ir añadiéndole nuevas funcionalidades.

Ejercicio 1

Diseñar y programar una versión inicial del dominio de planificación propuesto. Los dominios diseñados deben cumplir con los siguiente requisitos:

- Representar en el dominio los **tipos**: **Unidades**, **Edificios**, y **Localizaciones**. Usar **constantes** para representar el tipo de unidad **VCE**, los tipos de edificio **CentroDeMando** y **Barracones**, y los tipos de recursos **Minerales** y **Gas**.
- Definir los **predicados** necesarios para:
 - o Dete nidad está en una localización concreta.
 - o Repi nino entre dos localizaciones.
 - o Dete construido.
 - o Asig<mark>0: NAVEGAR VCE1 LO(</mark>o concreto a una localización concreta.
 - o Indic yendo un recurso.

Nota: En caso sidere que necesita más tipos, constantes o predicados para realizar correctamente el ejercicio, tiene libertad total para crearlos.

- El dominio debe contener **únicamente** las siguientes dos **acciones** definidas:
 - o Navegar: Mueve a una unidad entre dos localizaciones.
 - Parámetros: Unidad, Localización origen, Localización destino
 - Asignar: Asigna un VCE a un nodo de recurso ya no po (:goal (and de recurso de la ejecución ignarlo. Además, en este ficiente asignar un único VCE a un nodo de recursos de un tipo (minerales o gas vespeno) para tener ilimitados recursos de ese tipo.
 - Parámetros: Unidad, Localización del recurso, Tipo de recurso

Nota: Es <u>imprescindible respetar tanto el nombre de las acciones como el orden de los parámetros</u> para que el plan generado de vuestro dominio pueda ser comparado con la solución de la práctica.

- El **problema** debe definir el mapa de 3x4 localizaciones expuesto anteriormente. En la localización LOC11 debe encontrarse el edificio CentroDeMando1 (de tipo CentroDeMando) y la unidad VCE1 (de tipo VCE). En el mapa existen dos recursos de mineral en las localizaciones LOC23 y LOC33.
- El **objetivo** (:goal) de este ejercicio es generar recursos de tipo Mineral.

Ejercicio 2

Partiendo del ejercicio anterior, crear/modificar las siguientes acciones:

Construir: Ordena a un VCE libre que construya un edificio en una localización. En este ejercicio, cada edificio sólo requerirá un único tipo de recurso para ser construido. Adicionalmente y por simplicidad, en este ejercicio se permite que existan varios edificios en la misma localización.

- Parámetros: Unidad, Edificio, Localización, Recurso
- Asignar: Para poder obtener Gas Vespeno (es decir, asignar un VCE a un nodo de gas vespeno), debe existif un cumero Extractor construido previamente sobre dicho nodo de recurso. No hay cambios para obtener recursos de mineral.

Adicionalmente se debe definir el **predicado** para:

Definir qué recurso necesita cada edificio para ser construido.
Este ejercicio también requiere la definición del tipo de edificio Extractor.

En el **problema**, existen nodos de mineral en las localizaciones LOC23 y LOC33, y un nodo de gas vespeno en la localización LOC13. La construcción de los extractores requiere minerales. Este ejercicio requiere dos unidades VCE (VCE1 y VCE2).

El **objetivo** de este ejercicio es generar recursos de tipo Gas Vespeno.

Nota: Aunque un edificio no haya sido construido (por ejemplo Extractor1 de tipo Extractor), éste debe aparecer en la lista de objetos del problema, para representarlo y poderlo referenciar posteriormente por la acción Construir.

Ejercicio 3

Partiendo del ejercicio anterior, modificar la acción **Construir** para que tenga en cuenta que un edificio puede requerir más de un tipo de recurso. Esta acción debe inferir por sí misma si se tiene el tipo de recursos necesarios para poder ejecutarse. Además, debe evitar que se construya más de un edificio en la misma localización.

Parámetros: Unidad, Edificio, Localización

Para los siguientes ejercicios es muy importante definir esta restricción de forma que solo se tenga que instanciar una única vez por tipo de edificio. Por ejemplo, para incluir información sobre los recursos necesarios para los Barracones solo debe escribirse una única vez

(necesita Barracones Minerales)

independientemente del número de barracones que existan en el problema.

El **problema** debe definir que la construcción de Barracones necesita la obtención previa tanto de minerales como de gas vespeno. Se definirán tres unidades VCE en la localización LOC11. Los tres nodos de recursos (dos de mineral y uno de gas vespeno) se localizarán en las mismas ubicaciones que el ejercicio anterior, así como el Centro de Mando.

El **objetivo** es la construcción de unos Barracones (llamados Barracones1) en la localización LOC32.

Ejercicio 4

Partiendo del ejercicio anterior, crear una acción **Reclutar** para crear nuevas unidades. En este problema se incluyen dos nuevos tipos de unidades: el Marine y el Segador. Al igual que los edificios, la creación de cada unidad requiere distintos recursos. La creación de VCEs y Marines requiere minerales, mientras que los Segadores requieren mineral y gas vespeno. Cada unidad se genera en un edificio concreto: los VCEs se reclutan en el Centro de Mando, mientras que Marines y Segadores se reclutan en los Barracones. Los parámetros de esta acción son:

Parámetros: Edificio, Unidad, Localización

El fichero de **problema** contendrá inicialmente un único VCE1, aunque se deben definir otras dos unidades VCE2 y VCE3 para que el problema se pueda resolver. Los nodos de minerales

estarán en las localizaciones LOC23 y LOC33, mientras que el nodo de gas vespeno estará en la localización LOC13. El Centro de Mando estará ubicado en LOC11.

El **objetivo** de este problema es disponer de un marine (Marine1) en la localización LOC31, otro marine (Marine2) en la localización LOC24, y un segador (Segador1) en la localización LOC12. Nótese que para ello hace falta construir un extractor (Extractor1) con el que obtener gas vespeno, con el que posteriormente se construirá unos barracones (Barracones1) donde se reclutarán a estas unidades militares.

Ejercicio 5

Partiendo del ejercicio anterior, incluir en el dominio todos los elementos necesarios para usar una nueva acción **Investigar**, cuyos **parámetros** son *Edificio* e *Investigación*, y que permitirá realizar nuevas investigaciones para la base. En este ejercicio, todas las investigaciones se desbloquean en un nuevo edificio "**Bahía de Ingeniería**", cuya construcción requiere de mineral y gas vespeno. Al igual que los edificios y unidades, las investigaciones requieren de varios recursos. Crear una investigación "**Impulsar Segador**", la cual requiere tanto minerales como gas vespeno para ser ejecutada. Modificar la acción **Reclutar** para que no se puedan crear Segadores hasta que no se haya obtenido dicha investigación.

El **objetivo** de este ejercicio es el mismo que el del Ejercicio 4.

Ejercicio 6

Partiendo del <u>ejercicio 4</u>, modificar todos los elementos necesarios del dominio para que este sea capaz de usar información numérica.

- 1. Incluir una nueva acción **Recolectar** para extraer recursos de un nodo y almacenarlos. Cada vez que se llame a esta acción se actualizará el número de minerales o gas vespeno almacenado. En concreto, la acción se ejecuta sobre un nodo de recurso, y como efecto se incrementará la cantidad de este recurso en 10 unidades por cada VCE asignado a dicho nodo. Además, se debe establecer un límite a la cantidad de recursos almacenados; es decir, esta acción no se podrá llevar a cabo si la cantidad recolectada más la almacenada previamente exceden el límite de recursos almacenable. Este límite se establece en 60 unidades, tanto para minerales como para gas vespeno.
 - Parámetros: Recurso, Localización
- 2. Modificar las acciones de **Construir** y **Reclutar** para para consumir un cierto número de recursos. Estos recursos deben estar almacenados y ser suficientes para poder ejecutar la acción. Los costes de cada elemento (edificio o unidad) son los siguientes:

Elemento	Minerales	Gas Vespeno
Barracones	50	20
Extractor	33	0
VCE	10	0
Marine	20	10
Segador	30	30

Las características del **problema** (disposición del mapa, localización de recursos, edificios y unidades) así como el **objetivo** del ejercicio es el mismo que en el **ejercicio 4**.

Ejercicio 7

Incluir una nueva función para controlar el tiempo que tarda cada acción del plan:

- 1. La acción Asignar no tiene coste.
- 2. La acción Recolectar tiene un coste fijo de 10 unidades.
- 3. La acción **Navegar** tiene un coste dependiente de la distancia entre dos localizaciones y la velocidad a la que se desplazan las unidades. La distancia entre cualesquiera dos localizaciones conectadas es de 10 unidades, mientras que las velocidades de las unidades son:
 - a. VCE: 1 unidad de distancia / unidad de tiempo
 - b. Marine: 5 unidades de distancia / unidad de tiempo
 - c. Segador: 10 unidades de distancia / unidad de tiempo
- 4. Los tiempos de creación de cada elemento (edificio para la acción **Construir**, o unidad para la acción **Reclutar**) son los siguientes:

Elemento	Tiempo
Barracones	46
Extractor	21
VCE	12
Marine	18
Segador	32

Incluir una métrica para encontrar un plan que minimice el tiempo del plan, cuyas características del **problema** (disposición del mapa, localización de recursos, edificios y unidades) y el resto de características del objetivo son los mismos que en el ejercicio anterior.

Ejecución de los dominios de planificación

Para el desarrollo de esta práctica usaremos el planificador MetricFF en su primera versión, que se puede descargar en:

https://fai.cs.uni-saarland.de/hoffmann/ff/Metric-FF.tgz

Nota: <u>No se debe usar</u> la versión 2.0 o 2.1 de este planificador, puesto que no soportan la opción de optimización que ayudará a visualizar que el plan obtenido es correcto.

Una vez compilado, se ejecutará con el siguiente comando:

La opción "-O" le indica al planificador que debe optimizar el plan encontrado, mientras que las opciones "-g 1" y "-h 1" nos sirven para establecer la función de coste y la función heurística usada por A* para encontrar el plan. Usando estos valores garantizamos una heurística optimista y, por tanto, capaz de encontrar la solución óptima.

Evaluación y Entrega

Los estudiantes deben entregar en la actividad creada en PRADO, antes de las 23:59 del 09 de junio de 2021, una carpeta comprimida en formato ZIP con el siguiente contenido:

• Un fichero de dominio y otro fichero de problema para cada uno de los siete ejercicios planteados. Dichos ficheros deben respetar los nombres "dominioX.pddl" y "problemaX.pddl", donde "X" corresponde al número del ejercicio. Es decir, por cada ejercicio debe haber un fichero de dominio y otro de problemas.

Todos los ficheros deben estar adecuadamente comentados, explicando y justificando la solución presentada, así como las variables, tipos y predicados usados para codificar cada problema, y cualquier otro aspecto relativo a las decisiones tomadas durante el proceso de implementación. Un código cuyos comentarios sean, a criterio del profesor, extremadamente deficientes podrá invalidar total o parcialmente aquellos ejercicios a los que afecte.

<u>Nota</u>: Los problemas con **errores sintácticos** en PDDL automáticamente califican con una puntuación de **0 (cero) puntos**.

La puntuación para la entrega será la siguiente:

- Ejercicio 1: 1.50 puntos
- Ejercicio 2: 1.25 puntos
- Ejercicio 3: 1.50 puntos
- Ejercicio 4: 1.50 puntos
- Ejercicio 5: 1.25 puntos
- Ejercicio 6: 1.50 puntos
- Ejercicio 7: 1.50 puntos