Tutorial Sheet - X (Language and Grammar)

- 1. Consider the words $u = a^3bab^2$ and $v = baba^2$. Find:
 - λu ичи (ii)
- (iii) λv
- (iv)
- $u\lambda v$
- (v) $|\lambda|$ (vi) |u| (vii) |uvu|
- 2. Consider the language $L = \{ab, c\}$ over $A = \{a, b, c\}$. Find:

- (iii)
- 3. For the finite state machine M given in the table A, find out the string among the following strings, which are accepted by M:(a)

101101

11111 (c) (b)

000000

	Inputs	
States	0	1
q_0	q_2	$q_{\scriptscriptstyle 1}$
$q_{_1}$	q_3	q_{0}
q_{2}	$q_{\scriptscriptstyle 0}$	q_3
q_3	$q_{_1}$	$q_{_2}$

	Inputs		
States	a	b	
s_0	s_0	\boldsymbol{s}_1	
S_1	S_1	s_2	
s_2	s_2	s_2	

Table B

Accepting states are q_0, q_2

Table A

- 4. Let M be the automaton with the following input set A, state set S, and accepting or final ("yes") state set $Y: A = \{a,b\}$, $S = \{s_0, s_1, s_2\}$, $Y = \{s_1\}$. Suppose s_0 is the initial state of M, and next state function F of M is given by the table B. Draw the state diagram D = D(M) of the automaton M.
- 5. Construct the state diagram for the finite-state machine with the state table shown below.
- 6. Construct the state table for the finite-state machine with the state diagram shown in Figure 1.

F	Inputs	
States	0	1
s_0	$s_1, 1$	$s_0, 0$
s_1	$s_3, 1$	$s_0, 1$
s_2	$s_1, 0$	$s_{2}, 1$
s ₃	$s_{2}, 0$	$s_{1}, 0$

Table C

- 7. Find the output string generated by the finite state machine in Figure 1 if the input string is 000000 (ii) 111111 (iii) 101011 (iv) 110101
- 8. Describe the language L = L(G), where G has the productions $S \to aSb, Sb \to bA, abA \to c$.