하워석

- 1. Iris 데이터셋을 활용해 클래스별 변수 평균 차이를 검정
 - 1. 먼저 iris 데이터셋을 불러와 구조를 확인합니다.

```
import seaborn as sns
   iris = sns.load_dataset('iris')
   print(iris.head())
   print(iris.info())
                                                                                         Python
   sepal_length sepal_width petal_length petal_width species
           5.1
                        3.5
                                      1.4
                                                   0.2 setosa
                                                   0.2 setosa
           4.9
                        3.0
                                      1.4
           4.7
                        3.2
                                      1.3
                                                   0.2
                                                        setosa
3
           4.6
                        3.1
                                      1.5
                                                   0.2
                                                        setosa
           5.0
                        3.6
                                      1.4
                                                   0.2 setosa
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
    sepal_length 150 non-null
                                  float64
   sepal_width 150 non-null
                                  float64
    petal_length 150 non-null
                                  float64
   petal_width 150 non-null
                                  float64
4 species
                  150 non-null
                                  object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
None
```

꽃받침의 너비 길이, 꽃잎의 너비의 길이가 float 타입으로, 종이 범주형 타입으로 입력되어 있으며, 총 150개의 데이터가 결측치 없이 존재하고 있음을 알 수 있습니다.

2. 종별 기술통계량은 다음과 같다.

<pre>iris.groupby('species')['petal_length'].describe() </pre> <pre> 0.0s</pre>									
	count	mean	std	min	25%	50%	75%	max	
species									
setosa	50.0	1.462	0.173664	1.0	1.4	1.50	1.575	1.9	
versicolor	50.0	4.260	0.469911	3.0	4.0	4.35	4.600	5.1	
virginica	50.0	5.552	0.551895	4.5	5.1	5.55	5.875	6.9	

대체로 setosa보다 versicolor가, versicolor 보다 virginica가 큰 경향성을 보이고 있다는 것을 알 수 있다.

3. 해당 자료를 Boxplot으로 시각화하면 다음과 같다.

아까 본 경향성을 확연하게 체감할 수 있다.

4. Shapiro-Wilk 검정을 통해 해당 자료들이 정규분포를 따르는 데이터셋에서 나왔는 지 검정할 수 있다. 이 때 귀무가설과 대립가설은 다음과 같다.

 H_0 : 해당 데이터는 정규분포를 따른다.

 H_1 : 해당 데이터는 정규분포를 따르지 않는다.

검정 결과에 따르면 세 그룹 모두 p-value가 0.05이상이므로 귀무가설을 기각하지 못하고, 정규성을 만족함을 알 수 있다. 5. Levene 검정을 통해 3개의 그룹이 등분산성을 가지는지 검정할 수 있다. 이 때 귀무가설과 대립가설은 다음과 같다.

 H_0 : 각 그룹의 분산이 동일하다.

 H_1 : 적어도 하나의 그룹의 분산은 동일하지 않다.

검정 결과에 따르면 p-value가 0.05 미만이므로 귀무가설이 기각되고, 대립가설이 채택되어 이 데이터는 등분산성을 만족하지 않는다.

6. 등분산성을 가정하고 평균의 차이를 구하기 위한 대립가설과 귀무가설을 수립하면 다음과 같다.

 H_0 : 각 그룹의 평균이 동일하다.

H₁ : 적어도 하나의 그룹의 평균은 동일하지 않다.

7. One-way ANOVA를 통해 평균의 차이를 검정하면 다음과 같다.

검정 결과에 따르면 p-value가 0.05 미만이므로 귀무가설이 기각되고, 대립가설이 채택되어 이 데이터는 그룹별 평균에 차이가 존재한다.

8. Tukey HSD를 통해 사후검정을 하면 다음과 같다. 이 사후 검정은 각각의 그룹을 비교하여 실질적으로 어떤 그룹의 평균끼리 차이가 존재하는 가를 확인할 수 있다.

검정 결과에 따르면 모든 비교군에서 p-adj가 0으로, 이는 모두 p-value가 0.05 미만으로 아주 작다고 볼 수 있다. 따라서 모든 그룹의 평균의 차이가 유의미하게 존재한다.

9. Boxplot의 시각화 자료, ANOVA의 대립가설, Tukey HSD의 '모든 평균이 다르다'는 3 가지 결과를 통해 각 그룹의 평균이 유의미하게 다르고, 그 길이는 virginica, versicolor, setosa순으로 길다는 것을 알 수 있다.

실제 신용카드 사기 데이터셋을 활용해 클래스 불균형 상황에서 분류 모델을 학습
 다음과 같은 코드를 통해 신용카드 정보에 대한 데이터를 불러온다.

```
import pandas as pd

df = pd.read_csv('creditcard\creditcard.csv')

print(df.head())
print(df.info())
print(df.describe())

print(df['Class'].value_counts())
print(df['Class'].value_counts(normalize=True))

    Python
```

총 31개의 열이 존재하며 시간, 금액, 그리고 28개의 마스킹된 벡터들이 float타입으로, Class가 0과 1의 int 타입으로 존재한다.

```
[8 rows x 31 columns]
Class
0 284315
1 492
Name: count, dtype: int64
Class
0 0.998273
1 0.001727
Name: proportion, dtype: float64
```

클래스의 개수와 비율을 확인해보면 클래스 간 데이터의 개수 차이가 굉장히 크다 는 사실을 알 수 있다.

2. 클래스가 0인 데이터들을 일부 무작위로 undersampling하여 비율의 차이를 줄인다.

```
fraud = df[df['Class'] == 1]
normal = df[df['Class'] == 0].sample(n=10000, random_state=42)

df_sampled = pd.concat([fraud, normal], axis=0).sample(frac=1, random_state=42) # 섞기

print(df_sampled['Class'].value_counts())

✓ 0.0s

Python

Class
0 10000
1 492

Name: count, dtype: int64
```

3. 숫자가 다른 열에 비해 큰 금액이 다른 열에 비해 과도하게 영향을 주지 않도록 정 규화를 진행하고, 학습에 사용될 독립변수와, 종속변수를 구분한다.

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df_sampled['Amount_Scaled'] = scaler.fit_transform(df_sampled[['Amount']])

df_sampled.drop('Amount', axis=1, inplace=True)

# X, y 분리

X = df_sampled.drop('Class', axis=1)

y = df_sampled['Class']

$\square 0.5s$

Python
```

4. 학습에 사용될 데이터와 평가에 사용될 데이터를 일정한 비율이 되로록 나누어준다.

5. 아직 클래스간 비율의 차이가 심하므로 SMOTE를 통해 oversampling하여 비율을 일정하게 만든다. 이 때 SMOTE는 단순히 기존의 데이터를 복제하는 것이 아니라 선형보간을 해주어 데이터가 더 풍부하고 특정한 값에 매몰되지 않게 학습할 수 있도록 도와준다.

6. 학습을 진행하여 결과를 잘 예측할 수 있는 모델인지 평가한다.

```
from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import classification_report, average_precision_score
   model = RandomForestClassifier(random state=42)
  model.fit(X_train_smote, y_train_smote)
   y_pred = model.predict(X_test)
   y_proba = model.predict_proba(X_test)[:, 1]
   print(classification_report(y_test, y_pred, digits=4))
   print("PR-AUC:", average_precision_score(y_test, y_proba))
✓ 5.7s
                                                                                     Python
             precision recall f1-score support
               0.9916 0.9990 0.9953
                                              2001
               0.9759 0.8265 0.8950
                                               98
                                  0.9909
                                             2099
   accuracv
                                             2099
  macro avg
              0.9837 0.9128 0.9451
              0.9908 0.9909 0.9906
                                              2099
weighted avg
PR-AUC: 0.9156887960343137
```

7. 위의 결과를 통해 Recall ≥ 0.80, F1 ≥ 0.88, PR-AUC ≥ 0.90을 모든 클래스에 대하여 만족하고 있다. 따라서 이 모델을 잘 학습된 모델이라고 할 수 있다.