

Project report : linear regression model Predict apartment rental prices

By

Hussain Alhadab
Ahmed Alonaizi
Feras Alyahya
Mohamme Al Hamoud

• Problem

Apartment owners face difficulty in determining the right price for rent, with price competition between apartment owners, apartment owners need a way to help them determine the right price for the consumer, based on the specific characteristics of each property

Solution

In this project, we will develop a linear regression model to predict apartment rent prices according to their characteristics. Which will help the owners to determine the best price

Tools

Pandas

Sklearn

beautifulsoup

• Data Source

We have used Web Scrapping to collect our data and the source was Aqar site and Wekipedia

• Data columns

Columns	Туре
DISTRICT	String
PRICE	Integer
BED	Integer
ВАТН	Integer
LIVING	Integer
AGE	Integer
IMAGES	Integer
FLOOR	String
TARGET	String
FURNISHED	String
KITCHEN	String
ANNEXE	String
PARKING	String
ELEVATOR	String
AC	String

Data cleaning & engineering

Number of rows = 6978

Number of features = 17

- Remove empty values
- Remove the outlier values in the (Price) and (BED) columns
- remove redundancy
- Convert the variable type to numeric
- Add a column with the name (Amanat)
- Add a column with the name (Regions)

After Data cleaning & engineering

Number of rows = 5146

Number of features = 19

Relations

• Results

		Linear Regression	Ridge Regression	Polynomial Regression
X1 =	All features Using Amanat Drop District & Regions	Train R^2 = 0.71 Validation R^2 = 0.71 Test R^2 = 0.72	Train $R^2 = 0.71$ Validation $R^2 = 0.71$ Test $R^2 = 0.72$	Train R^2 = 0.83 Validation R^2 = 0.76 Test R^2 = 0.78
X2 =	All features Using District Drop Amanat & Regions	Train R^2 = 0.83 Validation R^2 = -4.0 Test R^2 = -4.2	Train R^2 = 0.83 Validation R^2 = -4.0 Test R^2 = -4.2	Train R^2 = 0.91 Validation R^2 = -900 Test R^2 = -800
X3 =	All features Using Regions Drop Amanat & district	Train R^2 = 0.70 Validation R^2 = 0.70 Test R^2 = 0.71	Train $R^2 = 0.70$ Validation $R^2 = 0.70$ Test $R^2 = 0.71$	Train $R^2 = 0.78$ Validation $R^2 = 0.75$ Test $R^2 = 0.76$
X4 =	Scaling Log10 All features Using Amanat Drop District & Regions	Train R^2 = 0.784 Validation R^2 = 0.78 Test R^2 = 0.77	Train R^2 = 0.785 Validation R^2 = 0.78 Test R^2 = 0.71	Train R^2 = 0.82 Validation R^2 = -111 Test R^2 = -087

In X2 we found overfitting so we need to perform cross validation CV mean = -5e+15

• Prediction

	Actual Price	LinearRegressionModel	LinearRegressionScaledLog10	PolynomialRegression
0	20,000	20,809	21,193	24,478
1	60,000	48,129	48,993	54,305
2	20,000	12,224	11,997	14,990
3	22,000	16,347	16,278	11,240
4	35,000	23,744	23,309	29,736

Conclusion

After the results of the model appeared, and the comparison between the results of each model, we concluded that the best model is the model with the highest R^2.

We seek to improve the accuracy of the model in the future by adding additional features such as (the average income of the population in each neighborhood - the number of residents in each neighborhood), which helps us in developing the project and determining the rental prices of apartments based on specifications