Nonlinear Fiber Section Analysis: Displacement Control, Moment Curvature and Interaction Diagrams

SE201B Nonlinear Structural Analysis

OpenSees Tutorial Session # 4

Instructor: Joel P. Conte, Professor

Tutorial By: Angshuman Deb, Ph.D. Student

Feb 19 2021

Outline

- Static Analysis: Force-control vs. displacement-control
- Hierarchical levels of a structure
- Material and fiber section definition in OpenSees
- Nonlinear fiber section analysis
- *zeroLengthSection* element
- PM/PMM interaction diagrams

Static Analysis Integrator: Load Control vs Displacement Control

Load Factor and Pseudo Time

By default, the load factor λ is varied with respect to pseudo-time, in a linear fashion, with a slope of 1.

Hierarchical levels in an MDOF structure

Hierarchical levels in an MDOF structure

Moment Curvature Analysis

Problem Statement

2. Define layer or fiber discretized section (based on uniaxial or biaxial bending) and attach materials to layers or fibers

3. Define nodes and *zeroLengthSection* **element.** Attach Fiber Section to element

4. Apply a hybrid (force-controlled for axial load and displacement-controlled for moment/curvature) loading scheme.

Steel01:

- Uniaxial bilinear steel material
- With kinematic hardening and optional isotropic hardening described by a non-linear evolution equation.

uniaxialMaterial Steel01 \$matTag \$Fy \$E0 \$b <\$a1 \$a2 \$a3 \$a4>

Steel02:

Uniaxial Giuffre-Menegotto-Pinto steel material object with isotropic strain hardening.

Concrete01:

- Kent-Scott-Park concrete.
- Degraded linear unloading/reloading stiffness according to the work of Karsan-Jirsa.
- No tensile strength.

uniaxialMaterial Concrete01 \$matTag \$fpc \$epsc0 \$fpcu \$epsU

Notes:

- Compressive concrete parameters should be input as negative values.
- The initial slope for this model is 2*\$fpc/\$epsc0

Concrete02:

- With tensile strength.
- Linear tension softening.

uniaxialMaterial Concrete02 \$matTag \$fpc \$epsc0 \$fpcu \$epsU \$lambda \$ft \$Ets

Notes:

- Compressive concrete parameters should be input as negative values.
- The initial slope for this model is 2*\$fpc/\$epsc0

Material Tester in OpenSees

output = get materialHysteresis(matDef, inputData, numIncr, localOpenSeesPath)

get_materialHysteresis.m

Example MATLAB driver

```
figure();
matDef = 'uniaxialMaterial Steel02 1 68.0 29000.0 0.01 20.0 0.925 0.15';
inputData = [0, 0.002, -0.002, 0.01, -0.01, 0.02, -0.02, 0.06, -0.06, 0];
numIncr = 100;

% Use your own for this. Shift + Right-click (Option + Right-click in Mac)
% to copy OpenSees executable as path. Paste the path here.
localOpenSeesPath = ".../OpenSees.exe";

out = get_materialHysteresis(matDef, inputData, numIncr, localOpenSeesPath);
plot(out(:,1), out(:,2), 'k', 'linewidth', 1.5); grid on;
xline(0);
yline(0);
set(gca,'xlim',[-0.08, 0.08])
set(gca,'ylim',[-100, 100])
```


Fiber Section in OpenSees

- Fiber section formed by sub regions of simpler, regular shapes (e.g. quadrilateral, circular and triangular regions) called patches.
- Layers of reinforcement bars can be specified.
- Individual fibers, can also be defined.

Note: Each fiber is associated with an "uniaxialMaterial"!

https://opensees.berkeley.edu/wiki/index.php/Fiber_Section

Fiber Section in OpenSees

Note:

fiber, patch, and layer arguments require material tag of previously defined uniaxial material

Fiber Section in OpenSees - Example

```
DEFINE SECTION
                                                                                                                      4 - #9 rebar
set colWidth
                [expr 16.*$in]
set colDepth
               [expr 16.*$in]
set colArea
                [expr $colWidth * $colDepth]
                [expr 2.5*$in]
set cover
                                                                                                                            16 in.
set dB
                [expr 1.128*$in]
                [expr 1.*$in2]
set As
                [expr $colDepth/2.0]
set y1
                [expr $colWidth/2.0]
set z1
set secTag 1
section Fiber $secTag -GJ $Ubig {
                                                                                                             16 in.
     Create rectangular patches
    # Cover concrete
   patch rect $matTagConcCover 7 1
                                        [expr $cover - $y1]
                                                                 [expr -$z1]
                                                                                         [expr $y1 - $cover]
                                                                                                                  [expr $cover - $z1]
   patch rect $matTagConcCover 7 1
                                        [expr $cover - $y1]
                                                                 [expr $z1 - $cover]
                                                                                         [expr $y1 - $cover]
                                                                                                                  [expr $z1]
   patch rect $matTagConcCover 2 1
                                        [expr -$v1]
                                                                                         [expr $cover - $y1]
                                                                 [expr -$z1]
                                                                                                                  [expr $z1]
   patch rect $matTagConcCover 2 1
                                        [expr $y1 - $cover]
                                                                 [expr -$z1]
                                                                                         [expr $v1]
                                                                                                                  [expr $z1]
   # Core concrete
   patch rect $matTagConcCore 7 1 [expr $cover - $y1]
                                                                [expr $cover - $z1]
                                                                                         [expr $v1 - $cover]
                                                                                                                 [expr $z1 - $cover]
     Create straight lavers
    # Reinforcing steel
   layer straight $matTagSteel 4 $As [expr $y1 - $cover] [expr $z1 - $cover] [expr $y1 - $cover] [expr $cover] [expr $z1]
   layer straight $matTagSteel 4 $As [expr $cover - $y1] [expr $cover - $z1] [expr $cover - $y1] [expr $z1 - $cover]
```

Fiber Section Plotter

optional

[] = plot fiberSection(secDefFilePath, secTag, figNum, fibColor)

plot_fiberSection.m

Example MATLAB driver

```
secDefFilePath = ".../modelData.txt";
secTag = 1;
figNum = 1;
plot_fiberSection(secDefFilePath, secTag, figNum)
grid off;
camroll(90)
```



```
fibColor = [1 1 0 0 0.5;
2 0 0 1 0.5;
3 0 0 0 1];
```

plot_fiberSection(secDefFilePath, secTag, figNum, fibColor)
grid off;

camroll(90)

zeroLengthSection Element in OpenSees

element zeroLengthSection \$eleTag \$iNode \$jNode \$secTag <-orient \$x1 \$x2 \$x3 \$yp1 \$yp2 \$yp3>

• If the optional orientation vectors are not specified, the local element axes coincide with the global axes.

$$\boldsymbol{U} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} L \, \boldsymbol{\varepsilon}_o \\ L \, \boldsymbol{\phi}_z \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_o \\ \boldsymbol{\phi}_z \end{bmatrix}$$

$$P = \begin{bmatrix} N \\ M \end{bmatrix}$$

Hybrid Loading Scheme – Load Control Application of Axial Load

```
# Define axial load
set axialLoadTag 1
set axialLoadRatio 0.1
set P [expr abs($fpc)*$colArea*$axialLoadRatio]
pattern Plain $axialLoadTag "Linear" {
    load $controlNode -$P 0.0 0.0;
}
# Define load control integrator
set numAnalysisSteps 1
integrator LoadControl [expr 1./$numAnalysisSteps]; # Note the use of 1.
# Analyze
system BandGeneral
test NormUnbalance 1e-6 100
                                                   Load control application of
numberer Plain
constraints Plain
                                                   pattern defined above
algorithm KrylovNewton
analysis Static
set ok [analyze $numAnalysisSteps]
                                                       Maintain axial load and
if {$0k == 0} {
                                                       reset pseudo-time (= load factor, \lambda) to zero
   puts "Axial load applied and analyzed"
}
# Very important to set
loadConst -time 0.0
```

Hybrid Loading Scheme – Displacement Control Application of Curvature

```
set controlNode 2
set controlDOF 3
                                                                             \mathbf{R}(\mathbf{U}) = \begin{vmatrix} P \\ 0 \end{vmatrix} + \lambda \begin{vmatrix} 0 \\ 1 \end{vmatrix}
# Define reference moment.
set dispControlLoadTag 2
pattern Plain $dispControlLoadTag "Linear" {
    load $controlNode 0.0 0.0 1.0
}
# Define displacement control integrator
                                                                                           Apply a displacement increment
set peakDisp {}
lappend peakDisp [expr 0.01/$colDepth]
                                                                                           $du at DOF #3 of node #2
lappend peakDisp [expr -0.01/$colDepth]
lappend peakDisp [expr 0.03/$colDepth]
lappend peakDisp [expr -0.03/$colDepth]
lappend peakDisp [expr 0.0/$colDepth]
set maxDisp [expr 0.03/$colDepth]
set du [expr 0.01*$maxDisp]
integrator DisplacementControl $controlNode $controlDOF $du
recorder Node -file $analysisResultsDirectory/MK.txt -time
                                                                -node $controlNode -dof 1 $controlDOF disp
```

set numAnalysisSteps [expr int(abs(\$maxDisp/\$du))] analyze \$numAnalysisSteps M

Results


```
recorder Node -file $analysisResultsDirectory/MK.txt -time -node $controlNode -dof 1 $controlDOF disp
```

```
recorder Element -file $analysisResultsDirectory/ConcFib1_SS.txt -time -ele 1 section fiber -$y1 0. $matTagConcCover stressStrain recorder Element -file $analysisResultsDirectory/ConcFib2_SS.txt -time -ele 1 section fiber $y1 0. $matTagConcCover stressStrain recorder Element -file $analysisResultsDirectory/SteelFib1_SS.txt -time -ele 1 section fiber -$y1 0. $matTagConcCover stressStrain recorder Element -file $analysisResultsDirectory/SteelFib2_SS.txt -time -ele 1 section fiber -$y1 0. $matTagConcCover stressStrain stressStrain recorder Element -file $analysisResultsDirectory/SteelFib2_SS.txt -time -ele 1 section fiber -$y1 0. $matTagConcCover stressStrain str
```

record; # This is to record the state before the analysis starts

plot(MK(:,3),MK(:,1),'b-')

plot(ConcFib1_SS(:,3),ConcFib1_SS(:,2),'b-')
plot(ConcFib2_SS(:,3),ConcFib2_SS(:,2),'r-')

plot(SteelFib1_SS(:,3),SteelFib1_SS(:,2),'b-')
plot(SteelFib2_SS(:,3),SteelFib2_SS(:,2),'r-')

PM Interaction Diagrams

Development of PM Diagrams in OpenSees – Analysis Procedure

For various levels of axial load held constant, increase curvature of the section until a concrete strain of -0.003 is reached

PM Interaction Diagram

PMM - Same Concept Extended to 3D

 For various levels of axial load, increase curvature along radial line to reach failure surface.

PMM - Same Concept Extended to 3D

Questions?