

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

DEUTSCHES REICH

AUSGEGEBEN AM
17. OKTOBER 1932

REICHSPATENTAMT
PATENTSCHRIFT
Nr. 561670

KLASSE 45f GRUPPE 23

45f P 279. 30

Tag der Bekanntmachung über die Erteilung des Patents: 29. September 1932

Heinrich Perrot jr. in Calw, Württbg.

Beregnungsvorrichtung

Patentiert im Deutschen Reiche vom 21. November 1930 ab

Beregnungsgeräte, deren Düsenbewegung durch Verwendung einer Freistrahlturbine erreicht wird, sind in verschiedensten Ausführungsformen bekannt geworden.

5 Die Erfindung betrifft ein solches Beregnungsgerät, welches vornehmlich für die Verregnung von dickster Jauche und schmutzigen Abwässern gebaut ist. Diese Verwendungsart schließt den Antrieb der Freistrahlturbine 10 durch einen Nebenstrahl wegen Verstopfungsgefahr aus und bringt infolgedessen die Freistrahlturbine in direkte Beziehung zum Hauptstrahl, der bei solcher Art eines Beregnungsgerätes wiederum wegen Verstopfungsgefahr nie eine gewisse Stärke unterschreitet. Zum Erreichen größtmöglicher Wurfweiten benötigen solche Beregnungsgeräte immer Düsenformen, welche den zur Verregnung kommenden Strahl vor Austritt aus der Düse 15 20 durch Verwendung eines Gleichrichters beruhigen. Diese dadurch bedingte Länge des Düsenkrümmers bringt die Freistrahlturbine in ziemliche Entfernung von dem jeweils notwendigen Untersetzungsgetriebe, das aus baulichen Gründen an dem senkrechten Mantelrohr des Beregnungsgerätes angebracht ist.

Die Erfindung zeigt nun ein solches Beregnungsgerät, bei dem sich die Lagerung der Welle des Turbinenrades in einer exzentrischen Büchse befindet. Durch Drehen der exzentrischen Büchse verändert sich der Achsenabstand von Welle des Turbinenrades und Mittellinie der Verregnungsdüse. Somit wird es möglich, die Schaufeln des Turbinen-

rades bei verschiedenen lichten Weiten der Verregnungsdüse gleichmäßig zu beaufschlagen. Die Verbindung der Welle des Turbinenrades mit dem zur Drehung des Düsenkrümmers notwendigen Getriebe erfolgt durch eine biegsame Welle.

In der Zeichnung ist ein Ausführungsbeispiel dargestellt. Es zeigt die Abbildung einen senkrechten Mittenschnitt durch ein der Erfindung gemäß ausgeführtes Beregnungsgerät.

Es ist 1 der Anschlußstutzen für die nicht näher dargestellte Wasserleitung. Auf diesem Stutzen sitzt mit Gewinde 2 festgeschraubt ein Mantelrohr 3; dieses trägt an seinem oberen Ende auf einer Schulterfläche 50 einen Kegelzahnkranz 4. Das Mantelrohr 3 umschließt ein Steigrohr 5 mit leichtem Gleitsitz, so daß das letztere in dem Mantelrohr drehbar ist. Auf das Steigrohr 5 ist an dessen unterem Ende mit Gewinde ein Bundring 6 aufgeschaubt. Dieser Bundring stützt sich durch ein Kugellager 7 gegenüber einer Schulterfläche 8 des Mantelrohres 3 ab. Das Kugellager 7 ist in bekannter Weise noch mit Laufringen versehen. Dadurch ist ein leichter Lauf des Steigrohres 5 selbst bei hohem Druck im Mantelrohr 3 erreicht.

Mit dem Zahnkranz 4 steht ein Kegelrad 9 im Eingriff, das durch ein Untersetzungsgetriebe von dem aus der Verregnungsdüse austretenden Strahl 11 in Drehung versetzter Freistrahlturbine 12 angetrieben wird. Zu diesem Zweck trägt der auf dem Steigrohr 5

aufgeschraubte Krümmer 13 einen Umfassungsring 14 mit Bohrung 15. Der aus der Düse austretende Strahl 11 beaufschlagt das Turbinenrad 12, das fest auf der Welle 16 sitzt. Diese Welle 16 ist auf Kugellager 17 und 18 in einer exzentrischen Büchse 19 gelagert. Durch Drehung der Büchse 19 innerhalb der Bohrung 15 des Umfassungsringes 14 wird das Laufrad 12 dem Strahl 11 genähert oder entfernt. Diese Einrichtung ermöglicht also für jede lichte Weite der Düse 10 die gleichmäßige Beaufschlagung des Turbinenrades 12 durch Veränderung der Eintauchtiefe. Außerdem kann die Geschwindigkeit der Umdrehungen sowie der Zerstäubungsgrad des Verregnungsstrahles reguliert werden.

Die Umdrehungen der Welle 16 werden durch eine biegsame Welle 20 auf eine Welle 21 mit Schnecke 25 übertragen. Diese Schnecke 25 steht in Eingriff mit einem Schneckenrad 26 auf einer Welle 27 und treibt damit eine zweite Schnecke 28 an, die wiederum im Eingriff mit Schneckenrad 29

steht, das in dem Gehäuse 30 auf einer Welle 25 31 gelagert ist. Die Welle 31 trägt an ihrem freien Ende das schon erwähnte Ritzel 9, das im Eingriff mit dem Zahnkranz 4 des feststehenden Mantelrohres 3 steht.

30

PATENTANSPRUCH:

Zum Verteilen von Jauche und Abwäs-
sern dienende Beregnungsvorrichtung mit
Antrieb durch Freistrahlтурbine und mit 35
Einrichtung zum Erreichen der gleichen
Eintauchtiefe des Turbinenrades in den
Verregnungsstrahl bei verschiedenen Dü-
sengrößen, dadurch gekennzeichnet, daß
die mit einer biegsamen Welle (20) ver-
bundene Turbinenwelle (16) in einer an 40
einem an der Düse (10) befindlichen Ring
(14) angeordneten exzentrischen Büchse
(19) gelagert ist, so daß durch Drehen der
exzentrischen Büchse (19) eine parallele 45
Verschiebung der beiden Achsen von Düse
(10) und Welle (16) des Turbinenrades
erfolgt.

40

Hierzu 1 Blatt Zeichnungen

Zu der Patentschrift 561 670
Kl. 45 f Gr. 23

Zu der Patentschrift 561 670
Kl. 45 f Gr. 23

Zu der Patentschrift 561 670
Kl. 45f Gr. 23

THIS PAGE BLANK (USPTO)