Sujet d'entraînement d'algèbre

M1 MIASHS

Septembre 2025

Exercice 1 : Sous-espace de matrices symétriques (cas n = 3)

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices réelles 3×3 et

$$\mathscr{S}_3(\mathbb{R}) = \{ A \in \mathcal{M}_3(\mathbb{R}) : A^\top = A \}$$

l'ensemble des matrices symétriques 3×3 .

- (a) Montrer que $\mathscr{S}_3(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- (b) Pour $1 \le i \le 3$, on note E_{ii} la matrice de $\mathcal{M}_3(\mathbb{R})$ dont l'unique coefficient non nul vaut 1 en position (i,i). Pour $1 \le i < j \le 3$, on note $F_{ij} = E_{ij} + E_{ji}$, où E_{ij} a 1 en position (i,j) et 0 ailleurs.

Écrire explicitement les matrices E_{11} , E_{22} , E_{33} , F_{12} , F_{13} , F_{23} . Montrer que la famille

$$\mathcal{B} = \{E_{11}, E_{22}, E_{33}, F_{12}, F_{13}, F_{23}\}$$

est une base de $\mathscr{S}_3(\mathbb{R})$ (montrer qu'elle engendre $\mathscr{S}_3(\mathbb{R})$ et qu'elle est libre).

(c) En déduire la dimension de $\mathscr{S}_3(\mathbb{R})$.

Info bonus (cas général n). Pour $n \ge 1$, on définit E_{ii} pour $1 \le i \le n$ et $F_{ij} = E_{ij} + E_{ji}$ pour $1 \le i < j \le n$. Alors

$$\mathcal{B}_n = \{E_{11}, \dots, E_{nn}\} \cup \{F_{ij} : 1 \le i < j \le n\}$$

est une base de $\mathscr{S}_n(\mathbb{R})$ et

$$\dim (\mathscr{S}_n(\mathbb{R})) = \frac{n(n+1)}{2}.$$

Exercice 2 : Application linéaire non inversible sur \mathbb{R}^3

On considère $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie, pour $(x,y,z) \in \mathbb{R}^3$, par

$$f(x, y, z) = (x + y - z, 2x + 2y + z, 3x + 3y).$$

- (a) Montrer que f est une application linéaire $(i.e., f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3))$.
- (b) Déterminer la matrice associée A de f dans la base canonique de \mathbb{R}^3 .
- (c) La matrice A est-elle inversible? Par conséquent, peut-on dire que f est injective, surjective, bijective?
- (d) Déterminer $\ker(f)$ et $\operatorname{Im}(f)$, et montrer que ce sont des sous-espaces vectoriels de \mathbb{R}^3 .

- (e) Quelle(s) équation(s) vérifient $(x, y, z) \in \ker(f)$? Montrer qu'il s'agit d'un sous-espaces vectoriels de \mathbb{R}^3 .
- (f) Quelle(s) équation(s) vérifient $(x, y, z) \in \text{Im}(f)$? Montrer qu'il s'agit d'un sous-espaces vectoriels de \mathbb{R}^3 .
- (g) Vérifier le théorème du rang dans cet exemple : $\dim \ker(f) + \operatorname{rg}(f) = 3$.

Exercice 3 : Diagonalisation et théorème spectrale.

On considère la matrice

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix}.$$

(a) Vérifier que S est symétrique.

- (b) Vérifier que $S\begin{pmatrix} 1\\1\\-1 \end{pmatrix} = 2\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$.
- (c) Déterminer si S est injective, surjective, bijective (en dimension finie, relier à l'inversibilité de S).
- (d) S est-elle nécessairement diagonalisable? Justifier. Calculer le polynôme caractéristique de S, son spectre Sp(S), et des bases de chaque sous-espace propre E_{λ} .
- (e) En déduire une matrice orthogonale Q (les colonnes étant des vecteurs propres orthonormés) et une matrice diagonale D telles que $S = QDQ^{\top}$.

Exercice 4 : Chaîne stochastique en dimension 3

Un voyageur se déplace chaque jour entre trois villes : Paris (P), Lyon (L) et Marseille (M). On modélise ce déplacement comme un processus aléatoire dont les probabilités de transition sont données par les règles suivantes (lire « de la ville j vers la ville i ») :

- Si le voyageur est à **Paris**, le lendemain il reste à Paris avec probabilité $\frac{1}{2}$ et part à Lyon avec probabilité $\frac{1}{2}$ (jamais directement à Marseille).
- Si le voyageur est à **Lyon**, le lendemain il part à Paris avec probabilité $\frac{1}{4}$, reste à Lyon avec probabilité $\frac{1}{4}$, et part à Marseille avec probabilité $\frac{1}{2}$.
- Si le voyageur est à **Marseille**, le lendemain il part à Lyon avec probabilité 1 (jamais directement à Paris, et il ne reste pas à Marseille).

On note

$$v_t = \begin{pmatrix} p_t \\ \ell_t \\ m_t \end{pmatrix}$$

le vecteur des probabilités d'être respectivement à Paris, Lyon et Marseille au jour t (avec $p_t, \ell_t, m_t \ge 0$ et $p_t + \ell_t + m_t = 1$).

- (a) À partir des règles ci-dessus, écrire le système linéaire qui relie v_{t+1} à v_t (équations composante par composante pour $p_{t+1}, \ell_{t+1}, m_{t+1}$).
- (b) En déduire la matrice de transition A (colonne-stochastique) telle que $v_{t+1} = A v_t$.

- (c) Vérifier que A est bien colonne-stochastique (coefficients positifs et chaque colonne somme à 1).
- (d) Déterminer le spectre $\mathrm{Sp}(A)$ et, pour chaque valeur propre, une base de l'espace propre associé.
- (e) Construire une matrice P de vecteurs propres linéairement indépendants et une matrice diagonale D telles que $A = PDP^{-1}$.
- (f) Calculer P^{-1} par élimination de Gauss en transformant le système $(P \mid I_3) \sim (I_3 \mid P^{-1}).$
- (g) En déduire, pour l'état initial

$$v_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

la limite

$$v_{\infty} = \left(\lim_{t \to \infty} A^t\right) v_0.$$

Interpréter ce résultat (distribution stationnaire à long terme).