Diskretna matematika 1

Izbori k elementov iz n množice:

urejeni/ponavljanje	DA/DA	DA/NE	NE/DA	NE/NE
število	n^k	$n^{\underline{k}}$	$\binom{n+k-1}{k}$	$\binom{n}{k}$

Binomska in multinomska števila: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ $\binom{n}{n_1,\dots,n_k} = \frac{n!}{n_1!\dots n_k!}$ Velja: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \sum_{k=0}^n \binom{n}{k} = 2^n$ $\sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}$ Rekurzivna zveza: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Pravilo vključitev in izključitev: $|A_1 \cup \cdots \cup A_n| = \alpha_1 - \alpha_2 + \cdots + (-1)^{n+1}\alpha_n$ $\alpha_i = {\rm vsota}$ moči vseh možnih presekov poimnožic.

V posebnem, če so vsi preseki po i množic enako močni: $|\bigcup_{i=1}^n A_i| = \sum_{i=1}^n (-1)^{i+1} {n \choose i} |\bigcap_{i=1}^i A_i|$

Trdnjavski polinomi: $T(D,x) = \sum_{k=1}^{|D|} t_k(D) x^k$ je trdnjavski polinom deske D. Število $t_k(D)$ je število možnih različnih postavitev k trdnjav na desko D.

Če je D polna deska: $t_k(D_{m,n}) = \binom{m}{k} \binom{n}{k} k!$

 $\dot{\text{Ce}}\ D = D_1 \oplus D_2\ (D_1 \text{ in } D_2 \text{ nimata niti skupnih vrstic niti stolpcev (se pa ne držijo nujno skupaj))},$ potem velja $T(D, x) = T(D_1, x)T(D_2, x)$.

V splošnem drži naslednja rekurzija: $T(D,x) = T(D \setminus a, x) + x \cdot T(D/a, x)$, a polje na D.

Prehod na komplementarno desko: $t_k(D) = \sum_{j=0}^n (-1)^j \binom{m-j}{k-j} \binom{n-j}{k-j} (k-j)! t_j(\overline{D})$

Število deranžmajev: $\# = n! (\frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!})$

Stirlingova števila 2. vrste:

S(n,k) je število možnih razbitij n-množice na k nepraznih kosov.

Definiramo S(0,0) = 1 in S(n,0) = 0 za $n \ge 1$.

Rekurzivna zveza: $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$ Velja: $x^n = \sum_{k=1}^n S(n,k) x^{\underline{k}} \qquad S(n+1,m+1) = \sum_{k=1}^n {n \choose k} S(k,m)$ Število surjekcij: $k! S(n,k) = \sum_{i=1}^n (-1)^i {k \choose i} (k-i)^n$

Lahova števila:

L(n,k) je število možnih razbitij n-množice na k linearno urejenih nepraznih kosov.

Definiramo L(0,0) = 1 in L(n,0) = 0 za $n \ge 1$.

Rekurzivna zveza: $L(n,k) = L(n-1,k-1) + (n+k-1) \cdot L(n-1,k)$

Eksplicitna formula: $L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!} \binom{n}{k}$.

Velja: $x^{\bar{n}} = \sum_{k=1}^{n} L(n, k) x^{\underline{k}}$

Stirlingova števila 1. vrste:

s(n,k) je število permutacij n množice, ki se zapišejo kot produkt k disjunktnih ciklov.

Definiramo s(0,0) = 1 in s(n,0) = 0 za $n \ge 1$.

Rekurzivna zveza: $s(n, k) = s(n - 1, k - 1) + (n - 1) \cdot s(n - 1, k)$

Velja: $x^{\overline{n}} = \sum_{k=1}^{n} s(n,k) x^k$

Bellova števila:

B(n) je število vseh možnih razbitij n množice. Očitno velja: $\sum_{k=0}^{n} S(n,k) = B(n)$. Rekurzivna zveza: $B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$

Particije števila:

Particija števila n je zapis $n = \lambda_1 + \cdots + \lambda_k$, kjer velja $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_k$. λ_i so kosi. Rekurzivna zveza: p(n;k)=p(n-1;k-1)+p(n-k;k), št. particij n na k kosov. $p(n;k)=p(n-k;\leq k)=\sum_{i=1}^{n-k}p(n-k;i)$

Dvanajstera pot:

Razporejamo n predmetov v r predalov. Ali ločimo elemente, dopuščamo prazne predale, dopuščamo več kot en predmet v predalu? Glejmo $f: [n] \to [r]$.

$predmeti/predali \setminus f$	poljubna	injektivna	surjektivna
DA/DA	r^n	$r^{\underline{n}}$	r!S(n,r)
NE/DA	$\binom{r+n-1}{n}$	$\binom{r}{n}$	$\binom{n-1}{r-1}$
DA/NE	$\sum_{k=1}^{r} S(n,r)$	$n \le r$	S(n,r)
NE/NE	$\sum_{k=1}^{r} p(n;r)$	$n \le r$	p(n;r)

Binomska števila: $\binom{n}{k}$

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1														
1	1	1													
2	1	2	1												
3	1	3	3	1											
4	1	4	6	4	1										
5	1	5	10	10	5	1									
6	1	6	15	20	15	6	1								
7	1	7	21	35	35	21	7	1							
8	1	8	28	56	70	56	28	8	1						
9	1	9	36	84	126	126	84	36	9	1					
10	1	10	45	120	210	252	210	120	45	10	1				
11	1	11	55	165	330	462	462	330	165	55	11	1			
12	1	12	66	220	495	792	924	792	495	220	66	12	1		
13	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1	
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1

Stirlingova števila 2. vrste: S(n,k) in Bellova števila B(n)

	0			(.,,			(/			
$n \backslash k$	1	2	3	4	5	6	7	8	9	10	B(n)
1	1										1
2	1	1									2
3	1	3	1								5
4	1	7	6	1							15
5	1	15	25	10	1						52
6	1	31	90	65	15	1					203
7	1	63	301	350	140	21	1				877
8	1	127	966	1701	1050	266	28	1			4140
9	1	255	3025	7770	6951	2646	462	36	1		21147
10	1	511	9330	34105	42525	22827	5880	750	45	1	115975

Stirlingova števila 1. vrste: s(n,k)

	0		(,)							
$n \backslash k$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	2	3	1							
4	6	11	6	1						
5	24	50	35	10	1					
6	120	274	225	85	15	1				
7	720	1764	1624	735	175	21	1			
8	5040	13068	13132	6769	1960	322	28	1		
9	40320	109584	118124	67284	22449	4536	546	36	1	
10	362880	1026576	1172700	723680	269325	63273	9450	870	45	1

Lahova števila: L(n,k)

$n \backslash k$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	1	5	1							
4	1	26	11	1						
5	1	157	103	19	1					
6	1	1100	981	274	29	1				
7	1	8801	9929	3721	593	41	1			
8	1	79210	108091	50860	10837	1126	55	1		
9	1	792101	1268211	718411	191741	26601	1951	71	1	
10	1	8713112	16010633	10607554	3402785	590756	57817	3158	89	1

Particije števila: p(n;k)

$n \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1														
2	1	1													
3	1	1	1												
4	1	2	1	1											
5	1	2	2	1	1										
6	1	3	3	2	1	1									
7	1	3	4	3	2	1	1								
8	1	4	5	5	3	2	1	1							
9	1	4	7	6	5	3	2	1	1						
10	1	5	8	9	7	5	3	2	1	1					
11	1	5	10	11	10	7	5	3	2	1	1				
12	1	6	12	15	13	11	7	5	3	2	1	1			
13	1	6	14	18	18	14	11	7	5	3	2	1	1		
14	1	7	16	23	23	20	15	11	7	5	3	2	1	1	
15	1	7	19	27	30	26	21	15	11	7	5	3	2	1	1