Évaluation n°2

(Calculatrice autorisée)

Cette évaluation est composée de 3 exercices indépendants.

Exercice 1 (Question de cours)

- **1.** Donner les valeurs de $\lim_{x\to +\infty} \frac{\ln(x)}{x}$ et $\lim_{x\to 0^+} x \ln(x)$.
- 2. Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. Que signifie que \overrightarrow{u} et \overrightarrow{v} sont orthogonaux?

Exercice 2 1. On considère la fonction g définie sur l'intervalle]0, $+\infty[$ par :

$$g(x) = \ln(x^2) + x - 2$$

- a. Déterminer les limites de la fonction g en 0^+ et en $+\infty$
- **b.** On admet que la fonction g est dérivable sur]0, $+\infty[$. Étudier les variations de la fonction g sur]0, $+\infty[$.

Dans la suite de l'exercice, on admet pour g le tableau de signes suivant :

x		$-\infty$		α		$+\infty$
g(x)	<i>:</i>)		_	0	+	

où α est un réel compris entre 1 et 2.

2. On considère la fonction f définie sur]0, $+\infty[$ par :

$$f(x) = \frac{x-2}{x} \ln(x)$$

On note C_f sa courbe représentative dans un repère orthonormé.

- a. Déterminer les limites de la fonction f en 0^+ et $+\infty$.
- **b.** On admet que la fonction f est dérivable sur]0, $+\infty[$. Montrer que pour tout réel x>0, on a $f'(x)=\frac{g(x)}{x^2}$.
- **c.** En déduire les variations de la fonction f sur l'intervalle]0 , $+\infty[$.
- 3. a. Étudier le signe de $f(x) \ln(x)$ pour $x \in]0, +\infty[$.
 - **b.** En déduire la position relative de la courbe C_f et de la courbe représentative de la fonction ln sur l'intervalle]0, $+\infty[$.

Exercice 3

L'espace est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère A(2, -1, 3) et B(2, 2, 2) et le vecteur $\overrightarrow{u}(1, 2, 1)$.

- 1. Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{u} définissent un plan de l'espace. On note \mathcal{P} ce plan.
- **2.** Calculer $\overrightarrow{AB} \cdot \overrightarrow{y}$.
- 3. En déduire une mesure de l'angle entre \overrightarrow{AB} et \overrightarrow{u} au degré près.
- 4. Déterminer un vecteur \overrightarrow{n} normal au plan \mathcal{P} .