Vecteurs et colinéarité

Définition. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un nombre réel k tel que $\vec{u} = k\vec{v}$.

Autrement dit s'ils sont alignés, dans le même sens ou de sens opposés.

 $ec{v}$ $ec{w}$

Exemple. Les vecteurs \vec{u} , \vec{v} et \vec{k} sur l'image ci-contre sont colinéaires entre eux. Le vecteur \vec{w} n'est colinéaire avec aucun des autres vecteurs.

Définition. Un **repère** désigne la donnée d'un point 0 et de deux vecteurs \vec{i} et \vec{j} non colinéaires. On note $(0; \vec{i}; \vec{j})$ un tel repère.

Un repère sert à repérer les coordonnées, les longueurs, aires, angles, etc..

Remarque. Quand on change de repère, les coordonnées d'un vecteur ou d'un point changent. Cependant, les définitions et formules sur les vecteurs restent valables, si on les écrit dans un $\underline{\text{même}}$ repère R.

Attention : Les longueurs, aires et angles sont des notions a priori <u>relatives au repère</u> utilisé.

Définition. On note $\mathbf{R_0} = \left((0;0); \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$ le **repère canonique**.

Jusqu'ici, on s'est toujours placé dans R_0 sans le dire.

Remarque. Dans un repère donné, on peut définir, l'angle géométrique entre deux vecteurs (non nuls).

Propriété. Dans un repère donné, deux vecteurs non nuls sont **colinéaires** s'ils forment un angle nul (0°) ou plat (180°)

Définition. Dans un repère donné, deux vecteurs non nuls sont **orthogonaux**, s'ils forment un angle droit (90°).

Exemple. Les vecteurs \vec{u} et \vec{v} sur l'image ci-contre sont orthogonaux, car si on les fait partir du même point, ils forment un angle droit.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0)

Exemples. Ici on considère R_0 comme le repère de référence.

Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur

2 (en les mesurant dans R_0).

 R_4 n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Rappel. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un nombre réel k tel que $\vec{u} = k\vec{v}$.

Exemple. $\binom{3}{2}$ et $\binom{-9}{-6}$ sont des vecteurs colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$.

Exemple. Les vecteurs ci-contre sont colinéaires entre eux puisqu'ils sont proportionnels à \vec{u}

Définition. Dans un repère donné, le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et

$$\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$
 est le nombre $\det(\vec{u}; \vec{v}) = xy' - yx'$

Pour éviter la notation $\det \begin{pmatrix} x \\ y \end{pmatrix}; \begin{pmatrix} x' \\ y' \end{pmatrix}$ on utilise la notation $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$ $\det (\vec{u}; \vec{v})$

Exemple. Si
$$\vec{u} = \binom{2}{-1}$$
 et $\vec{v} = \binom{-1}{4}$, alors $\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix} = (2) \times (4) - (-1) \times (-1) = 8 - 1 = 7$

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} quand on les fait partir d'un même point, vaut $|\det(\vec{u}; \vec{v})|$

Exemple. En supposant que l'unité de base est le cm, l'aire du parallélogramme délimité par les vecteurs \vec{u} et \vec{v} précédents est : $|\det(\vec{u}; \vec{v})| = 7 \text{ cm}^2$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est zéro.

(Dans n'importe quel repère)

Exemple. $\binom{3}{2}$ et $\binom{-9}{-6}$ sont-ils colinéaires ?

$$\begin{vmatrix} 3 & -9 \\ 2 & -6 \end{vmatrix} = (3) \times (-6) - (2) \times (-9) = -18 + 18 = 0 \text{ donc } {3 \choose 2} \text{ et } {-9 \choose -6} \text{ sont colinéaires.}$$

Propriété. Deux droites (AB) et (CD) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{CD}) = 0$.

Exemple. Soit A = (0; 3), B = (2; 2), C = (1; -2), D = (-10; 3, 5).

(AB) et (CD) sont-elles parallèles ou sécantes ?

$$\overrightarrow{AB} = \begin{pmatrix} 2 - 0 \\ 2 - 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \qquad \overrightarrow{CD} = \begin{pmatrix} -10 - 1 \\ 3,5 - (-2) \end{pmatrix} = \begin{pmatrix} -11 \\ 5,5 \end{pmatrix}$$
$$\det(\overrightarrow{AB}; \overrightarrow{CD}) = \begin{vmatrix} 2 & -11 \\ -1 & 5,5 \end{vmatrix} = (2) \times (5,5) - (-1) \times (-11) = 11 - 11 = 0$$

Donc (AB) et (CD) sont parallèles.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1,3), B = (2,6) et C = (3,9) sont-ils alignés ?

$$\overrightarrow{AB} = \begin{pmatrix} 2 - 1 \\ 6 - 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 3 - 1 \\ 9 - 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
$$\det(\overrightarrow{AB}; \overrightarrow{AC}) = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = (1) \times (6) - (3) \times (2) = 0$$

Donc A, B et C sont alignés.