Normalizace

Jiří Zacpal

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

KMI/DATAB Databáze

cislo_projekt jmeno_projekt	cislo_zamestnanc	jmeno_zamestnanc		hadinaya	mada	hodinu	uumlata
u u u 15 Evergreen	102	e Alice Nováková	pozice Elektrikář	hodinova_	mzda 200 Kč		vyplata 4 760 Kč
						•	
15 Evergreen		František Bláha	Databázový návrhář		350 Kč		6 790 Kč
15 Evergreen		Jitka Smutná	Databázový návrhář		350 Kč		12 495 Kč
15 Evergreen		Václav Krása	Programátor		150 Kč	•	
15 Evergreen	102	David Skoupil	Analytik		300 Kč	23,8	7 140 Kč
18 Amber	114	Anna Jánská	Návrhář aplikace		120 Kč	24,6	2 952 Kč
18 Amber	118	Jakub Frommer	Brigádník		70 Kč	45,3	3 171 Kč
18 Amber	104	Jana Rámová	Analytik		300 Kč	32,4	9 720 Kč
18 Amber	112	Darina Sladká	Analytik DSS		225 Kč	44	9 900 Kč
22 Rosmary	105	Jitka Smutná	Databázový návrhář		350 Kč	64,7	22 645 Kč
22 Rosmary	104	Jana Rámová	Analytik		300 Kč	48,4	14 520 Kč
22 Rosmary	113	Daniel John	Návrhář aplikace		120 Kč	23,6	2 832 Kč
22 Rosmary	111	Jan Václav	Účetní		130 Kč	22	2 860 Kč
22 Rosmary	106	Václav Krása	Programátor		150 Kč	12,8	1 920 Kč
25 Starflight	107	Marie Aloisová	Programátor		150 Kč	24,6	3 690 Kč
25 Starflight	115	Tomáš Vidím	Analytik		300 Kč	45,8	13 740 Kč
25 Starflight	101	František Bláha	Databázový návrhář		350 Kč	56,3	19 705 Kč
25 Starflight	114	Anna Jánská	Návrhář aplikace		120 Kč	33,1	3 972 Kč
25 Starflight	108	Roman Koubský	Analytik		300 Kč	23,6	7 080 Kč
25 Starflight	118	Jakub Frommer	Brigádník		70 Kč	30,5	2 135 Kč
25 Starflight	112	Darina Sladká	Analytik DSS		225 Kč	41,4	9 315 Kč

Normalizace relačních schémat

- Nevhodný návrh relace signalizuje výskyt opakujících se položek v datech, ale také pozorujeme následující potíže :
 - redundance opakuje se jméno projektu, jméno zaměstnance, ...,
 - nebezpečí vzniku nekonzistence při modifikacích jako důsledek redundance - změníme jméno zaměstnance jen v některých záznamech
 - anomálie při vkládání záznamů nemůžeme vložit projekt bez zaměstnance, který jej řeší, neboť by nebyly obsazeny klíčové atributy,
 - anomálie při vypouštění záznamů přestanou-li řešit úlohy všichni pracovníci na stejné pozici, ztratíme informaci o platu dané pozice.
- Problém vyřešíme dekompozicí relace za pomoci funkčních závislostí.


```
CREATE TABLE prace na projektu
cislo projektu INTEGER,
jmeno projektu VARCHAR(20),
cislo zamestnance INTEGER,
jmeno zamestnance VARCHAR(50),
prijmeni VARCHAR(30),
pozice VARCHAR(20),
hodinova mzda INTEGER,
hodiny numeric(5),
email VARCHAR(50),
vyplata INTEGER
```


Smažeme vyplata:

ALTER TABLE prace_na_projektu
DROP COLUMN vyplata;

1. normální forma

- Relace je 1. NF, jestliže:
 - všechny atributy jsou atomické, tj. dále již nedělitelné,
 - relace má primární klíč.
- Převod:
 - 1. Nahraďte každý skupinový atribut atomickými atributy.
 - 2. Určete primární klíč.

Vytvoříme primární klíč:

```
ALTER TABLE prace_na_projektu
ADD CONSTRAINT projekt_zamestnanec_pkey PRIMARY KEY
(cislo projektu,cislo zamestnance);
```


Vytvoříme atributy pro jméno a příjmení:

```
ALTER TABLE prace_na_projektu
ADD COLUMN jmeno VARCHAR(20);

ALTER TABLE prace_na_projektu
ADD COLUMN prijmeni VARCHAR(30);
```

Rozdělíme jmeno zamestnance na jméno a příjmení:

```
UPDATE prace_na_projektu SET jmeno=left(jmeno_zamestnance,
position(' ' in jmeno_zamestnance)-1),
prijmeni=right(jmeno_zamestnance,char_length(jmeno_zamestnance))-position(' ' in jmeno_zamestnance));
```


Smažeme jmeno_zamestnance:

ALTER TABLE prace_na_projektu

DROP COLUMN jmeno_zamestnance;

Funkční závislost

- funkční závislost je definována mezi dvěma podmnožinami atributů v rámci jedné relace
- nechť X, Y jsou podmnožiny množiny jmen atributů $\{A_1, ..., A_n\}$ relace R.
- * X určuje Y (tj. Y je funkčně závislý na X), jestliže všechny záznamy (řádky) v tabulce, které mají stejnou hodnotu atributu X má stejnou hodnotu atributu Y.
- píšeme $X \to Y$
- je-li $Y \subset Y$ říkáme, že závislost $X \to Y$ je triviální
- příklad:

```
cislo_zamestnance →prijmeni (naopak to neplatí)
cislo_projektu→jmeno_projektu
```

Funkční závislosti

2. normální forma

- Relace je v 2. NF, jestliže:
 - je v 1. NF,
 - neobsahuje částečné závislosti (atribut, který není primárním klíčem závislý na celém primárním klíči).
- Převod:
 - 1. Určete všechny částečné závislosti.
 - 2. Pro každou částečnou závislost vytvořte zvláštní relaci.

Částečné závislosti


```
Vytvoříme relaci projekt:
CREATE TABLE projekt
cislo projektu INTEGER,
jmeno projektu VARCHAR(20),
CONSTRAINT cislo pkey PRIMARY KEY (cislo projektu)
Vložíme n-tice:
INSERT INTO projekt SELECT DISTINCT
cislo projektu, jmeno projektu FROM prace na projektu;
Odstraníme atribut jmeno projektu:
ALTER TABLE prace na projektu
DROP COLUMN jmeno projektu;
```

Úkol

Převeďte relaci do 2. NF.

3. normální forma

- Relace je v 3. NF, jestliže:
 - je v 2. NF,
 - neobsahuje transitivní závislosti (nejsou zde závislosti mezi neklíčovými atributy).
- Převod:
 - 1. Určete všechny tranzitivní závislosti.
 - 2. Pro každou tranzitivní závislost vytvořte zvláštní relaci.

Tranzitivní závislosti

C_PROJ	JM_PROJ	C_ZAM	JM_ZAM	PR_ZAM	PRACE	H_MZDA	ODPR_H

Úkol

Převeďte relaci do 3. NF.

Boyceho-Coddova normální forma

- Relace je v BCNF, jestliže:
 - pro každou netriviální funkční závislost X -> Y relační proměnné R platí, že
 X je nadklíč (superklíč) R.

- Převod:
 - 1. Určete všechny tyto závislosti.
 - 2. Pro každou závislost vytvořte zvláštní relaci.

Funkční závislosti

Úkol

Nastavte pro všechny relace referenční integritu.

Bodovaný úkol

Normalizujte relaci knihovna ze souboru

datab_08_normalizace_ukol.sql

do BCNF nebo 3. normální formy.