#### 論文題目

# あああを用いた あああ予測

Hoge Hoge Hoge

# 指導教授 萩原 将文 教授

慶應義塾大学 理工学部 情報工学科 令和 99 年度

学籍番号 12345678

田中 太郎

# 目 次

| あらまし |                                             | 1         |
|------|---------------------------------------------|-----------|
| 第1章  | はじめに                                        | 2         |
| 第2章  | 関連研究                                        | 3         |
| 2.1  | Wavenet                                     | 3         |
|      | 2.1.1 概要                                    | 3         |
|      | 2.1.2 拡張因果畳み込み                              | 3         |
| 第3章  | HOGE を用いた予測                                 | 5         |
| 3.1  | 時系列予測                                       | 5         |
| 第4章  | 評価実験                                        | 6         |
| 4.1  | 実験条件の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 6         |
|      | 4.1.1 データセット                                | 6         |
|      | 4.1.2 比較手法                                  | 6         |
| 4.2  | あああの予測                                      | 6         |
|      | 4.2.1 実験方法                                  | 6         |
|      | 4.2.2 実験結果                                  | 6         |
| 第5章  | 結論                                          | 8         |
| 謝辞   |                                             | 10        |
| 参考文献 | 状                                           | 11        |
| 付録   |                                             | <b>12</b> |

| 付録 A | データの前処理                                   | 12 |
|------|-------------------------------------------|----|
| A.1  | ヒストリカルデータ                                 | 12 |
| 付録B  | 実験結果詳細                                    | 13 |
| B.1  | の予測                                       | 13 |
| 付録C  | のモデル化                                     | 14 |
| C.1  | 異なる                                       | 14 |
| 付録D  | のヒストグラム                                   | 15 |
| D.1  | 異なる期間・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 15 |

## あらまし

本論文では hoge を提案する.

# 第1章

# はじめに

 $\operatorname{DeepMind}$  社が開発した  $\operatorname{Wavenet}[1]$  がある .

#### 第2章

#### 関連研究

#### 2.1 Wavenet

#### 2.1.1 概要

Wavenet [1] は音声波形を時系列データとして自己回帰モデルで学習することによって,人間の声のような自然な音声を生成することができる.時点tにおける観測値を $x_t$ ,  $x=\{x_1,...,x_T\}$ を観測値の全体集合とする.このとき,波形の同時確率は条件付き確率の積として以下のよう表現される.

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t | x_1, ..., x_{t-1})$$
(2.1)

つまり, $x_t$ は前時点の全てにおけるサンプルに条件づけられる.

#### 2.1.2 拡張因果畳み込み

因果的畳み込み (causal convolutions) が Wavenet の最も重要な部分である. 図 2.1 に因果的畳み込み層のスタックを示す.



図 2.1: 因果的畳み込み層

# 第3章

## HOGEを用いた予測

#### 3.1 時系列予測

hoge は今まで多く行われてきた . [2] はあああ .

### 第4章

### 評価実験

- 4.1 実験条件の設定
- 4.1.1 データセット

為

4.1.2 比較手法

\_

- 4.2 あああの予測
- 4.2.1 実験方法

2017年

4.2.2 実験結果

表 4.1 に

表 4.1: あああといいの予測誤差

|       | 2019   |             | 2019 2018 |             | 2017   |        |
|-------|--------|-------------|-----------|-------------|--------|--------|
| モデル   | ああ     | <b>L1L1</b> | ああ        | <b>6161</b> | ああ     | 1111   |
| Naive | 1      | 1           | 1         | 1           | 1      | 1      |
| TCN   | 1.0895 | 0.9032      | 1.4791    | 0.9198      | 1.2888 | 0.8555 |
| LSTM  | 1.0384 | 0.9295      | 1.4917    | 0.9725      | 1.1627 | 0.8541 |
| 提案手法  | 1.0977 | 0.8698      | 1.3824    | 0.9439      | 1.2061 | 0.8516 |

## 第5章

## 結論

本論文では

今後の課題を以下に挙げる.

- の向上必要がある。
- への応用を行いたい。

#### • の改善

今後,取り組みたい。

### 謝辞

本研究を行うにあたり親身に相談に乗っていただき,ご指導してくださった 萩原将文教授,ならびに共に問題解決,議論,相談に付き合ってくださった研究 室の先輩方,同期の皆様に深く感謝いたします.誠にありがとうございました.

### 参考文献

- [1] Aaron van den Oord et al. "Wavenet: A generative model for raw audio". In: arXiv preprint arXiv:1609.03499 (2016).
- [2] Biing Hwang Juang and Laurence R Rabiner. "Hidden Markov models for speech recognition". In: *Technometrics* 33.3 (1991), pp. 251–272.

## 付録A

データの前処理

A.1 ヒストリカルデータ

為

## 付録B

## 実験結果詳細

B.1 の予測

第

# 付録C

# のモデル化

C.1 異なる

あ

## 付録D

## のヒストグラム

D.1 異なる期間

図