Compartment Models cont'd

Haefner Ch 4

Model diagrams used in early stages of model development :

- Forrester Diagrams
- · Simple compartments with arrows
- 1. Draw compartments, one per state variable
- 2. Draw arrows to show flows
- 3. Label all components
- 4. Mathematical formulation
 - a) One DE per compartment
 - b) Define flow equations (transfer equations)
- 5. Solve (quantities and flows versus time)

Step 4b		
	Flows between compartments	
	A J_{AB} B	
	$J_{AB} = k \left(A - B \right)$	

Step 4b – Write transfer equations

$J_{AB} = k$	constant flow
$J_{AB} = k_{AB}A$	donor dependent
$J_{AB} = k_{AB}B$	recipient dependent
$J_{AB} = k_{AB} \left(A - B \right)$	donor-recipient difference
$J_{AB} = k_{AB}AB$	donor-recipient product
$J_{AB} = k_{AB}A - l_{AB}A^2$	like logistic function
$J_{AB} = k_{AB} f(t)$	forcing function (time)

Model for Lab exercise 4

$$\begin{split} \frac{dS}{dt} &= -J_{za} - J_{zb} \\ \frac{dA}{dt} &= J_{za} \\ \frac{dB}{dt} &= J_{zb} \end{split} \qquad \begin{aligned} J_{za} &= k_{za} \left(S - A \right) \\ J_{zb} &= k_{zb} S \end{aligned}$$

Remember how we could solve the simple exponential population ODE model ?

$$\begin{split} \frac{dN}{dt} &= rN \\ \frac{\Delta N}{\Delta t} &\cong rN \\ \Delta N &\cong rN\Delta t \\ \Delta N &= N_{t+1} - N_t \\ N_{t+1} &= N_t + \Delta N \\ N_{t+\Delta t} &= N_t + r N_t \Delta t \end{split}$$

