Fizyka układów złożonych Model Izinga

Aleksander Jakóbczyk Nr. indeksu: 255939

1 Przykładowe konfiguracje spinów

W tej sekcji zaprezentowane zostaną przykładowe konfiguracje spinów dla poszczególnych losowych stanów początkowych w zależności od parametrów:

- L Długość boku całej siatki,
- T temperatura zredukowana,
- Mcs Ilość kroków monte carlo.

Dodatkowo na dysku Google, zostały umieszczone przykłądowe animacje dla paru losowych konfiguracji początkowych.

Dla L = 10

$$L = 10, Mcs = 1000, T = 0.5$$

$$L = 10, \quad Mcs = 1000, \quad T = 1$$

 $L=10, \ Mcs=1000, \ T=1.7$ Mcs = 1000, $T=\,2.66$ L = 10,L = 10,Mcs = 1000,T=4.0L = 10,Mcs = 1000,T=7.0

Dla~L=50

 $L = 50, \quad Mcs = 5000, \quad T = 0.5$

 $L = 50, \quad Mcs = 5000, \quad T = 1$

 $L = 50, \quad Mcs = 5000, \quad T = 1.7$

L = 50, Mcs = 5000, T = 2.66

$$L = 50, \quad Mcs = 5000, \quad T = 4.0$$

 $L = 50, \quad Mcs = 5000, \quad T = 7.0$

 $Dla\ L = 100$

$$L=100, \ Mcs=1000000, \ T=0.5$$

 $L=100, \ Mcs=1000000, \ T=1$

 $L=100, \ Mcs=1000000, \ T=1.7$ $L=100, \ Mcs=1000000, \ T=2.66$ $L=100,\ Mcs=1000000,\ T=4.0$ $L = 100, \quad Mcs = 1000000, \quad T = 7.0$

2 Trajektorie

W tej sekcji przedstawione zostaną poszczególne trajektorie dla losowych stanów początkowych.

 $Dla\;L=10\;i\;Mcs=100$

Dla L = 50 i Mcs = 5000

Dla L = 100 i Mcs = 10000

Dodatkowo zostaną przedstawionych kilka innych trajektorii dla rożnych temperatur:

3 Magnetyzacja

W tej sekcji przedstawiony zostanie wykres magnetyzacji w zależności od temperatury $T \in [1, 3.5]$:

Dodatkowo policzona została magnetyzacja po zespole:

4 Podatność magnetyczna

W tej sekcji przedstawiony zostanie wykres podatności magnetyczna w zależności od temperatury $T \in [1, 3.5]$:

Dodatkowo policzona została podatność magnetyczna po zespole:

