Functional Analysis

xiaowen

2024年11月27日

目 录

1	第一章	1
	1.1 第一节	1
2	这是第二章	3
3	这是第三章	4

1 第一章

1.1 第一节

Theorem 1.1

设函数 f(x) 在点 x_0 的某个邻域内有定义,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时,有

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| < \varepsilon$$

成立,那么称函数 f(x) 在点 x_0 处可导,并且导数为 0。

Theorem 1.2

设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b),则至少存在一点 $\xi \in (a,b)$,使得 $f'(\xi) = 0$ 。这就是罗尔 (Rolle) 定理。

Definition 1.1

设函数 f(x) 在点 x_0 的某个邻域内有定义,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $|x-x_0| < \delta$ 时,有

$$|f(x) - f(x_0)| < \varepsilon$$

成立,那么称函数 f(x) 在点 x_0 处连续。这就是函数连续性的 $\varepsilon - \delta$ 定义。

Lemma 1.1

设函数 f(x) 在区间 [a,b] 上连续,g(x) 在区间 [a,b] 上可导,且对任意 $x \in [a,b]$,都有 $|f(x)| \le M$, $|g'(x)| \le N$,其中 M,N 为正常数,则有:

$$\left| \int_{a}^{b} f(x)g'(x)dx \right| \le MN(b-a)$$

这个不等式称为积分估值引理。

Proposition 1.1

设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,且存在 M>0,使得对任意 $x\in(a,b)$,都 有 $|f'(x)| \leq M$,则对任意 $x_1, x_2 \in [a,b]$,有:

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2|$$

这就是利普希茨 (Lipschitz) 条件。

Corollary 1.1

设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,且存在 M>0,使得对任意 $x \in (a,b)$,都 有 $|f'(x)| \le M$,则对任意 $x_1, x_2 \in [a,b]$,有:

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2|$$

这就是利普希茨 (Lipschitz) 条件。

设函数 f(x) 在区间 [a,b] 上连续,且在 x=a 和 x=b 处的导数都存在。证明: 存在 $\xi \in (a,b)$,使得

$$f'(\xi) = \frac{f'(b) - f'(a)}{b - a}$$

解: 令
$$g(x) = f'(x) - \frac{f'(b) - f'(a)}{b - a}(x - a) - f'(a)$$

则 $g(a) = f'(a) - f'(a) = 0$ $g(b) = f'(b) - \frac{f'(b) - f'(a)}{b - a}(b - a) - f'(a) = 0$
由罗尔定理可知,存在 $\xi \in (a, b)$,使得 $g'(\xi) = 0$
即 $f''(\xi) - \frac{f'(b) - f'(a)}{b - a} = 0$
所以 $f''(\xi) = \frac{f'(b) - f'(a)}{b - a}$
证毕。

2 这是一个标记框

提示

是一个提示框

2 这是第二章

定理 2.1.

$$\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1} = \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
$$= \frac{1 + 0}{1 - 0}$$
$$= 1$$

3 这是第三章

定理 3.1.

$$\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1} = \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
$$= \frac{1 + 0}{1 - 0}$$
$$= 1$$