Constraint Based Evaluation of Generalised Images Generated by Deep Learning.

Azelle Courtial, Guillaume Touya, Xiang Zhang LASTIG, Univ Gustave Eiffel, IGN, ENSG

Context

Provide tools for the evaluation of generalisation by deep learning.

Presentation

- 1. Motivation
- 2. Constraint
- 3. Validation
- 4. Interest and limits
- 5. Conclusion

Motivation

Emergence of generalization methods including deep learning.

Existing evaluation methods

Evaluation form deep learning methods are not adapted for map.

Existing evaluation

Evaluation from map generalization are not adapted for images or for controling deep learning.

Challenge

Where to evaluate?

Use case

Mountain roads generalisation from a precise data at 1:25 000 to image legible at 1:250 000.

Our constraints

Legibility constraint

- Smothness
- Coalescence

Preservation constraint

- Position accuracy
- Continuity preservation

Realism constraint

- Noise
- Color

Legibility constraints

We use morphological mathematic to identify pixels that make the image legiblility decrease.

Preservation constraints

We combine a position accuracy constraint with a structure persevervation constraint based on statisitics on pixels sets.

Initial image 1 road set 3 background sets

Continuity loss 2 road sets 2 background sets

Road disappearance 1 road set 2 background sets

Loop creation 1 road set 4 background sets

Border effect 2 road sets 4 background sets

Realism constraints

As there is no way to be sure that the deep neural network produce a map we introduce some realism constraint.

First, we verify that our constraint give the expected result on some extrem fake cases.

First, we verify that our constraint give the expected result on some extrem fake cases.

First, we verify that our constraint give the expected result on some extrem fake cases.

Interest

Compare the metods

Identifying images that are badly generalized

Limits

Why is the measured coalescence greater for the initial image than for the generalized one here?

Threshold effect

Why is the measured smoothness greater for the initial image than for the generalized one here?

Situation effect

Why do the constraint measure an important continuity problem here?

Border effect

Conclusion

- Pixels based constraint evaluation is possible
- Enable better deep learning models for map generalization
- Remain pixel based issues

Conclusion

- Integrate these constraints as part of the loss function
- User based evaluation

Then, we verify that our constraints give consistant result with our perception, and especially the legibility value increase with generalisation.

Legibility mean for 12 images	Initial image	Reference	Good prediction	Medium prediction	Bad prediction
Number of coalescent pixel	2682	1275	1139	1153	2345
Part of road pixel that coalesce	0,48	0,32	0,27	0,27	0,53
Number of not smooth pixels	326	42	45	64	79
Part of the roads pixel that are not smooth	4,33	0,96	0,92	1,01	1,72

Then, we verify that our constraints give consistant result with our perception, and especially the legibility value increase with generalisation.

Preservation mean for 12 images	Reference	Good prediction	Medium prediction	Bad prediction
Intersection over union	0,19	0,63	0,22	0,23
Continuity constraint	0,35	0,39	0,81	1,85

Un-realism mean for 12 images	Initial image	Reference	Good prediction	Medium prediction	Bad prediction
Noise	0	0,19	0,19	4,69	10,5
Color	0	0	4,78	1,86	0

Use cases

Add a loss for tuning the learning process.

- To choose a parameter for the network.
- To confirme the validity of an image.
- To guide the post processing.

Identify which tiles need to be denoised.

Identify which shape is better in merging process.

To identify the weakness of a network.