jhTAlib

Joost Hoeks

2019-08-18

Contents

jhTAlib 2
Depends only on
Docs
Install
Update
Examples
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Test
Reference
Behavioral Techniques
Candlestick
Cycle Indicators
Data
Event Driven
Experimental
General
Information
Math Functions
Momentum Indicators
Overlap Studies
Pattern Recognition
Price Transform 26

Statistic Functions Uncategorised Volatility Indicators Volume Indicators Notebooks Recession Probability Donation and Funding jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
Technical Analysis Software
· ·
Charting SoftwareBacktest Software
Trading Robot Software
Trading Nobot Software Trading Software in general
Work in progress
work in progress
Depends only on
• The Python Standard Library
Docs
• .html
• .epub
• .json
• .odt
• .pdf
• .rst

• .rtf

• .xml

Install

From PyPI:

\$ [sudo] pip3 install jhtalib

From source:

- \$ git clone https://github.com/joosthoeks/jhTAlib.git
- \$ cd jhTAlib
- \$ [sudo] pip3 install -e .

Update

From PyPI:

\$ [sudo] pip3 install --upgrade jhtalib

From source:

- \$ cd jhTAlib
- \$ git pull [upstream master]

Examples

\$ cd example/

Example 1

\$ python3 example-1-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-1-plot.ipynb

3

Example 2
\$ python3 example-2-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-2-plot.ipynb
Example 3
\$ python3 example-3-plot.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-3-plot.ipynb
Example 4
\$ python3 example-4-plot-quandl.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-4-plot-quandl.ipynb
Example 5
\$ python3 example-5-plot-quandl.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-5-plot-quandl.ipynb

\$ python3 example-6-plot-quandl.py

Example 6

or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-6-plot-quandl.ipynb
Example 7
Example 1
<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-8-alphavantage-2-df.ipynb
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/masterexample/example-9-cryptocompare-2-df.ipynb

Example 10

DF NumPy Pandas

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb

Example 11

Basic Usage
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-11-basic-usage.ipynb
Test
<pre>\$ cd test/ \$ python3 test.py</pre>
Reference
import jhtalib as jhta
Behavioral Techniques
ATH All Time High DONE
• dict of lists of floats = jhta.ATH(df, price='High')
LMC Last Major Correction DONE
• dict of lists of floats = jhta.LMC(df, price='Low', price_high='High')
PP Pivot Point DONE
dict of lists of floats = jhta.PP(df)
• https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis)
FIBOPR Fibonacci Price Retracements DONE • dict of lists of floats = jhta.FIBOPR(df, price='Close')
ATH All Time High DONE • dict of lists of floats = jhta.ATH(df, price='High') ———————————————————————————————————

FIBTR Fibonacci Time Retracements •
GANNPR W. D. Gann Price Retracements DONE • dict of lists of floats = jhta.GANNPR(df, price='Close')
GANNTR W. D. Gann Time Retracements •
<pre>JDN Julian Day Number DONE • jdn = jhta.JDN(utc_year, utc_month, utc_day) • https://en.wikipedia.org/wiki/Julian_day</pre>
<pre>JD Julian Date DONE • jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute utc_second)</pre>
https://en.wikipedia.org/wiki/Julian_day SUNC Sun Cycle •
MERCURYC Mercury Cycle

VENUSC Venus Cycle •
EARTHC Earth Cycle •
MARSC Mars Cycle
JUPITERC Jupiter Cycle •
SATURNC Saturn Cycle •
URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •
PLUTOC Pluto Cycle •

MOONC Moon Cycle
Candlestick
CDLBODYS Candle Body Size DONE
• list of floats = jhta.CDLBODYS(df)
• https://www.tradeciety.com/understand-candlesticks-patterns/
CDLWICKS Candle Wick Size DONE • list of floats = jhta.CDLWICKS(df) • https://www.tradeciety.com/understand-candlesticks-patterns/
CDLUPPSHAS Candle Upper Shadow Size DONE
• list of floats = jhta.CDLUPPSHAS(df)
• https://www.tradeciety.com/understand-candlesticks-patterns/
CDLLOWSHAS Candle Lower Shadow Size DONE • list of floats = jhta.CDLLOWSHAS(df) • https://www.tradeciety.com/understand-candlesticks-patterns/
CDLBODYP Candle Body Percent DONE • list of floats = jhta.CDLBODYP(p)

 list of floats = jhta.CDLBODYM(df, n) book: Trading Systems and Methods
GAP Gap DONE • list of floats = jhta.GAP(df)
QSTICK Qstick DONE • list of floats = jhta.QSTICK(df, n) • https://www.fmlabs.com/reference/default.htm?url=Qstick.htm
SHADOWT Shadow Trends DONE • dict of lists of floats = jhta.SHADOWT(df, n) • book: The New Technical Trader
<pre>IMI Intraday Momentum Index DONE • list of floats = jhta.IMI(df) • https://www.fmlabs.com/reference/default.htm?url=IMI.htm</pre>
Cycle Indicators HT_DCPERIOD Hilbert Transform - Dominant Cycle Period •
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase

CDLBODYM | Candle Body Momentum | DONE

HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE • list of floats = jhta.TS(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm
Data
CSV2DF CSV file 2 DataFeed DONE
• dict of tuples of floats = jhta.CSV2DF(csv_file_path)
CSVURL2DF CSV file url 2 DataFeed DONE
• dict of tuples of floats = jhta.CSVURL2DF(csv_file_url)

• csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples of floats = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10) DF_HEAD | DataFeed HEAD | DONE • dict of tuples of floats = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples of floats = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df) **Event Driven** ASI | Accumulation Swing Index (J. Welles Wilder) | DONE • list of floats = jhta.ASI(df, L) • book: New Concepts in Technical Trading Systems

DF2CSV | DataFeed 2 CSV file | DONE

• list of floats = jhta.SI(df, L)
• book: New Concepts in Technical Trading Systems
Experimental
JH_SAVGP Swing Average Price - previous Average Price DONE
• list of floats = jhta.JH_SAVGP(df)
JH_SAVGPS Swing Average Price - previous Average Price Summation DONE
• list of floats = jhta.JH_SAVGPS(df)
JH_SCO Swing Close - Open DONE • list of floats = jhta.JH_SCO(df)
JH_SCOS Swing Close - Open Summation DONE
• list of floats = jhta.JH_SCOS(df)
JH_SMEDP Swing Median Price - previous Median Price DONE
• list of floats = jhta.JH_SMEDP(df)
<pre>jh_SMEDPS Swing Median Price - previous Median Price Summa- tion DONE</pre>

 $SI \mid Swing Index (J. Welles Wilder) \mid DONE$

JH_SPP | Swing Price - previous Price | DONE • list of floats = jhta.JH_SPP(df, price='Close') JH_SPPS | Swing Price - previous Price Summation | DONE • list of floats = jhta.JH_SPPS(df, price='Close') JH_STYPP | Swing Typical Price - previous Typical Price | DONE • list of floats = jhta.JH_STYPP(df) JH_STYPPS | Swing Typical Price - previous Typical Price Summation | DONE • list of floats = jhta.JH_STYPPS(df) JH_SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE • list of floats = jhta.JH_SWCLP(df) JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE • list of floats = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

STANDARDIZE | Standardize | DONE

- list of floats = jhta.STANDARDIZE(df, price='Close')
- ${\rm https://machinelearning mastery.com/normalize-standardize-time-series-data-python/}$

RATIO | Ratio | DONE

- list of floats = jhta.RATIO(df1, df2, price1='Close', price2='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Ratio.htm$

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RSIC.htm$

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE

• print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list)

Math Functions

EXP | Exponential | DONE

• list of floats = jhta.EXP(df, price='Close')

LOG | Logarithm | DONE

• list of floats = jhta.LOG(df, price='Close')

LOG10 | Base-10 Logarithm | DONE

• list of floats = jhta.LOG10(df, price='Close')

SQRT | Square Root | DONE

• list of floats = jhta.SQRT(df, price='Close')

ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close') ATAN | Arc Tangent | DONE • list of floats = jhta.ATAN(df, price='Close') COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close') SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close') TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close')

ATANH Inverse Hyperbolic Tangent DONE
• list of floats = jhta.ATANH(df, price='Close'
COSH Hyperbolic Cosine DONE
• list of floats = jhta.COSH(df, price='Close') ———————————————————————————————————
SINH Hyperbolic Sine DONE
• list of floats = jhta.SINH(df, price='Close')
TANH Hyperbolic Tangent DONE
• list of floats = jhta.TANH(df, price='Close')
PI Mathematical constant PI DONE
• float = jhta.PI()
${f E} \mid {f Mathematical\ constant\ E} \mid {f DONE}$
• float = jhta.E()
TAU Mathematical constant TAU DONE
• float = jhta.TAU()
PHI Mathematical constant PHI DONE
• float = jhta.PHI()

	ist of ints = jhta.FIB(n)
CEIL	Ceiling DONE
•	ist of floats = jhta.CEIL(df, price='Close')
FLO	R Floor DONE
•	ist of floats = jhta.FLOOR(df, price='Close')
DEG	EES Radians to Degrees DONE
• :	ist of floats = jhta.DEGREES(df, price='Close
RAD	ANS Degrees to Radians DONE
• ;	ist of floats = jhta.RADIANS(df, price='Close
ADD	$oxed{Addition High + Low \mid DONE}$
• ;	ist of floats = jhta.ADD(df)
OIV	Division High / Low DONE
	ist of floats = jhta.DIV(df)
MAX	Highest value over a specified period DONI
	ist of floats = jhta.MAX(df, n, price='Close'

MAXINDEX	Index of highest value or	ver a specified period	DONE

• list of ints = jhta.MAXINDEX(df, n, price='Close')
MIN Lowest value over a specified period DONE
• list of floats = jhta.MIN(df, n, price='Close')
MININDEX Index of lowest value over a specified period DONE
• list of ints = jhta.MININDEX(df, n, price='Close')
MINMAX Lowest and Highest values over a specified period DONE
• dict of lists of floats = jhta.MINMAX(df, n, price='Close')
$\label{eq:minmaxindex} \mbox{MINMAXINDEX} \mid \mbox{Indexes of lowest and highest values over a specified period} \mid \mbox{DONE}$
• dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close')
MULT Multiply High * Low DONE
• list of floats = jhta.MULT(df)
SUB Subtraction High - Low DONE
• list of floats = jhta.SUB(df)

SUM Summation DONE	
• list of floats = jhta.SUM(df, n, price='Close')	
Momentum Indicators	
ADX Average Directional Movement Index •	
ADXR Average Directional Movement Index Rating •	
APO Absolute Price Oscillator DONE	
• list of floats = jhta.APO(df, n_fast, n_slow, price • https://www.fmlabs.com/reference/default.htm?url=PriceOs	
AROON Aroon •	
AROONOSC Aroon Oscillator	
BOP Balance Of Power	

CCI Commodity	Channel Index	
CMO Chande M	Iomentum Oscillator	
DX Directional I	Movement Index	
MACD Moving	Average Convergence/Divergence	I
MACDEXT MA	ACD with controllable MA type	
MACDFIX Mov	ing Average Convergence/Diverge	nce Fix 12/26
MFI Money Flor		
MINUS_DI Min	nus Directional Indicator	

MINUS_DM Minus Directional Movement •
MOM Momentum DONE • list of floats = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator
RMI Relative Momentum Index DONE • list of floats = jhta.RMI(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RMI.htm
ROC Rate of Change DONE • list of floats = ihta.ROC(df. n. price='Close')

ROCP Rate of Change Percentage DONE
• list of floats = jhta.ROCP(df, n, price='Close')
ROCR Rate of Change Ratio DONE
• list of floats = jhta.ROCR(df, n, price='Close')
ROCR100 Rate of Change Ratio 100 scale DONE
• list of floats = jhta.ROCR100(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm
RSI Relative Strength Index DONE
• list of floats = jhta.RSI(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=rsi.htm
STOCH Stochastic DONE
• list of floats = jhta.STOCH(df, n, price='Close')
$\bullet \ https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm$
STOCHF Stochastic Fast
STOCHRSI Stochastic Relative Strength Index •

TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •
ULTOSC Ultimate Oscillator •
WILLR Williams' %R DONE • list of floats = jhta.WILLR(df, n)
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm} \\ \underline{\hspace{1cm}}$
Overlap Studies
BBANDS Bollinger Bands DONE
 dict of lists of floats = jhta.BBANDS(df, n, f=2) https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm
BBANDW Bollinger Band Width DONE
• list of floats = jhta.BBANDW(df, n, f=2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
DEMA Double Exponential Moving Average •

EMA | Exponential Moving Average | DONE • list of floats = jhta.EMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm ENVP | Envelope Percent | DONE • dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm$ KAMA | Kaufman Adaptive Moving Average | MA | Moving Average | MAMA | MESA Adaptive Moving Average | MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm

• list of floats = jhta.MIDPRICE(df, n)
• http://www.tadoc.org/indicator/MIDPRICE.htm
MMR Mayer Multiple Ratio DONE
• list of floats = jhta.MMR(df, n=200, price='Close')
• https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/
SAR Parabolic SAR DONE
• list of floats = jhta.SAR(df, af_step=.02, af_max=.2)
book: New Concepts in Technical Trading Systems
SAREXT Parabolic SAR - Extended •
SMA Simple Moving Average DONE
• list of floats = jhta.SMA(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm} \\ \underline{\hspace{1cm}}$
T3 Triple Exponential Moving Average (T3) $ullet$
TEMA Triple Exponential Moving Average •

 $\mathbf{MIDPRICE} \mid \mathbf{MidPoint} \ \mathbf{Price} \ \mathbf{over} \ \mathbf{period} \mid \mathbf{DONE}$

TRIMA | Triangular Moving Average | DONE

- list of floats = jhta.TRIMA(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm$

WMA | Weighted Moving Average

•

Pattern Recognition

CDL2CROWS | Two Crows |

CDL3BLACKCROWS | Three Black Crows |

CDL3INSIDE | Three Inside Up/Down |

CDL3LINESTRIKE | Three-Line Strike |

CDL3OUTSIDE | Three Outside Up/Down |

CDL3STARSINSOUTH | Three Stars In The South |

CDL3WHITESOLDIERS | Three Advancing White Soldiers |

CDLABANDONEDBABY | Abandoned Baby |

CDLADVANCEBLOCK | Advance Block |

CDLBELTHOLD | Belt-hold |

CDLBREAKAWAY | Breakaway |

CDLCLOSINGMARUBOZU | Closing Marubozu |

```
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
```

```
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
```

```
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
{\bf CDLSEPARATINGLINES} \mid {\bf Separating \ Lines} \mid
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
```

Price Transform

AVGPRICE | Average Price | DONE

- list of floats = jhta.AVGPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm$

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df)

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list of floats = jhta.HARMONIC_MEAN(df, n, price='Close')

32

MEDIAN | Median (middle value) of data | DONE • list of floats = jhta.MEDIAN(df, n, price='Close') MEDIAN_LOW | Low median of data | DONE • list of floats = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list of floats = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None)

VARIANCE | Sample variance of data | DONE

• list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None)

COV | Covariance | DONE

- float = jhta.COV(list1, list2)

${\bf COVARIANCE} \mid {\bf Covariance} \mid {\bf DONE}$

- list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COR | Correlation | DONE

• float = jhta.COR(list1, list2)

CORRELATION | Correlation | DONE

• list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://www.mathsisfun.com/data/least-squares-regression.html$

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- ${\rm https://machinelearning mastery.com/implement-simple-linear-regression-scratch-python/}$

Uncategorised

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \, \rm https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://en.wikipedia.org/wiki/Expected_value$

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- $\bullet\,$ book: Computer Analysis of the Futures Markets

BPPS | Basis Points per Second | DONE

- float = jhta.BPPS(trade_start_price, trade_end_price, trade_start_timestamp, trade_end_timestamp)
- book: An Introduction to Algorithmic Trading

Volatility Indicators

AEM | Arms Ease of Movement | DONE

- list of floats = jhta.AEM(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ArmsEMV.htm$

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

NATR | Normalized Average True Range |

•

RVI Relative Volatility Index DONE
• list of floats = jhta.RVI(df, n)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RVI.htm$
INERTIA Inertia
• ————————————————————————————————————
TRANGE True Range DONE
• list of floats = jhta.TRANGE(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TR.htm$
Volume Indicators
AD Chaikin A/D Line DONE
• list of floats = jhta.AD(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$
ADOSC Chaikin A/D Oscillator
•
OBV On Balance Volume DONE

 $\bullet \ \, \rm https://www.fmlabs.com/reference/default.htm?url=OBV.htm$

• list of floats = jhta.OBV(df)

PVR | Price Volume Rank | DONE

- list of ints = jhta.PVR(df, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVrank.htm$

PVT | Price Volume Trend | DONE

- list of floats = jhta.PVT(df, price='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=PVT.htm$

PVI | Positive Volume Index | DONE

- list of floats = jhta.PVI(df, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVI.htm$

NVI | Negative Volume Index | DONE

- list of floats = jhta.NVI(df, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=NVI.htm

Notebooks

• https://github.com/joosthoeks/jhTAlib/tree/master/notebooks

Recession Probability

• https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebooks/recession_probability.ipynb

Donation and Funding

• BTC: 3KCoXMyUDgVABoFSuV8GQT3k8qkUhEDG9X
