CONTEXT-AWARE RECOMMENDER SYSTEMS USING DEEP LEARNING

BY SHRUTHI MOHAN

21011101125

AI&DS-B

INTRODUCTION

- A context-aware recommender system can make recommendations to users by considering contextual information such as time and place, not only the scores assigned to items by users.
- Based on existing deep learning models, we combine a neural network and autoencoder to extract characteristics and predict scores in the process of restoring input data.
- The autoencoder here acts a preprocessor for the neural network. By encoding the input data into a more compact form, they can simplify the training process and improve the convergence of deep neural networks.

DATASETS:

- O Restaurant dataset : https://github.com/irecsys/CARSKit/blob/master/context-aware_data_sets/Restaurant_TijuanaRestaurant.zip
- Movies dataset : https://github.com/irecsys/CARSKit/blob/master/context-aware_data_sets/Movie_DePaulMovie.zip
- Music dataset : https://github.com/irecsys/CARSKit/blob/master/context-aware_data_sets/Music_InCarMusic.zip
- Instacart Market Analysis: https://www.kaggle.com/c/instacart-market-basket-analysis

BASE MODEL

- The proposed model is formed by connecting multiple AEs and NN.
- The input and output data for the autoencoder include user vectors, item vectors and context vectors.
- The neural network is trained by using score as targets from the hidden layer in the middle.
- R2 Regularization
- Adaptive Moment Estimation (Adam) for optimization

Algorithm 1 Algorithm of Proposed Model Input: User vector U, Item vector I, Context vector C_n , Learning rate N, number of iterations kOutput: parameter w_{AE} , w_{NN} , b_{AE} , b_{NN} , Rating vector YRandomly initialize parameters w_{AE} , w_{NN} , b_{AE} , b_{NN} for i=1 to k do for $u\in U$ do Update w_{AE} , b_{AE} using L_{AE}' Update w_{NN} , b_{NN} using L_{NN}' end for

Figure 2. Neural Context-aware Recommender Systems.

BASE MODEL- RESULTS

- For the restaurant dataset, the NN yields similar results to those obtained from the proposed method because it has less contextual dimensions.
- For the movie and music datasets, which have relatively higher contextual dimensions, the proposed method yields much better performance than the user KNN.
- A supplementary model for the problem of data sparsity.
 Effective for nonlinear data by using deep learning

	Movie	Music	Restaurant
#of users	123	42	50
#of items	79	139	41
#of ratings	5043	4013	896
Dimension	3	8	1
Rating Scale	1–5	0–5	1–5
Data sparsity	94.5	99.9	93.4

The proposed system- autoencoders and neural network works better than a normal autoencoder system because:

- Neural networks help to learn the non-linear relationships and model better.
- Neural networks can handle multi-modal data integration by processing each modality separately and then combining the learned representations.
- Transfer Learning can be used as feature extractors and combined with autoencoders to leverage existing knowledge and improve the quality of content-based recommendations.

Table 2. Performance comparison result in Precision.

Precision@10	Music	Restaurant	Movie
UserKNN	0.010082	0.062889	0.063732
SVD++	0.045452	0.062174	0.059719
CAMF_CI	0.024234	0.050423	0.058384
ItemSplitting-BiasedMF	0.045365	0.06249	0.054859
CSLIM_CI	0.003996	0.012763	0.004598
PMF	0.048151	0.068362	0.06807
FM	0.010663	0.047136	0.027956
NN based model	0.050387	0.059913	0.076811
Proposed model	0.056760	0.072748	0.102263

POSSIBLE REFINEMENTS

Cons of the Base Model:

- Needs high contextual dimensions for good accuracy
- O Needs to reflect reliability- unaware of what context affects the user's preference
- It struggles to capture short-term preference changes

1) FOR HIGH CONTEXTUAL DIMENSIONS

- Transfer learning can be incorporated using pre-trained datasets.
- Reinforcement Learning: reward functions that explicitly consider contextual information can be created. This encourages the model to learn from contextual cues and make better recommendations.

3) FOR LONG-TERM PREFERENCE CHANGES

Transfer learning can be incorporated using pre-trained datasets.

Reinforcement Learning: reward functions that explicitly consider contextual information can be created. This encourages
the model to learn from contextual cues and make better recommendations.

2) FOR RELIABILITY

- Conversational Systems can be incorporated to help users understand the rationale behind the recommendations and make them more trustworthy.
- We can use already built systems like Google LaMDA
 (2023) but the UI needs to be user-friendly and shouldn't make them feel like they are attending a survey.

REFERENCES

- Deep Learning-Based Context-Aware Recommender System Considering Contextual Features (2021): https://www.mdpi.com/2076-3417/12/1/45
- Deep Learning-Based Context-Aware Recommender System Considering Change in Preference(2023): https://www.mdpi.com/2079-9292/12/10/2337
- Leveraging Large Language Models in Conversational Recommender Systems: https://arxiv.org/abs/2305.07961