

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1202jxp

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 JAN 12 Match STN Content and Features to Your Information
Needs, Quickly and Conveniently
NEWS 3 JAN 25 Annual Reload of MEDLINE database
NEWS 4 FEB 16 STN Express Maintenance Release, Version 8.4.2, Is
Now Available for Download
NEWS 5 FEB 16 Derwent World Patents Index (DWPI) Revises Indexing
of Author Abstracts
NEWS 6 FEB 16 New FASTA Display Formats Added to USGENE and PCTGEN
NEWS 7 FEB 16 INPADOCDB and INPAFAMDB Enriched with New Content
and Features
NEWS 8 FEB 16 INSPEC Adding Its Own IPC codes and Author's E-mail
Addresses
NEWS 9 APR 02 CAS Registry Number Crossover Limits Increased to
500,000 in Key STN Databases
NEWS 10 APR 02 PATDPAFULL: Application and priority number formats
enhanced
NEWS 11 APR 02 DWPI: New display format ALLSTR available
NEWS 12 APR 02 New Thesaurus Added to Derwent Databases for Smooth
Sailing through U.S. Patent Codes
NEWS 13 APR 02 EMBASE Adds Unique Records from MEDLINE, Expanding
Coverage back to 1948
NEWS 14 APR 07 CA/CAplus CLASS Display Streamlined with Removal of
Pre-IPC 8 Data Fields
NEWS 15 APR 07 50,000 World Traditional Medicine (WTM) Patents Now
Available in CAplus
NEWS 16 APR 07 MEDLINE Coverage Is Extended Back to 1947

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2,
AND CURRENT DISCOVER FILE IS DATED 15 JANUARY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that
specific topic.

All use of STN is subject to the provisions of the STN customer
agreement. This agreement limits use to scientific research. Use
for software development or design, implementation of commercial
gateways, or use of CAS and STN data in the building of commercial
products is prohibited and may result in loss of user privileges
and other penalties.

* * * * * * * * * STN Columbus * * * * * * * * * * * * *

FILE 'HOME' ENTERED AT 13:02:57 ON 21 APR 2010

=> file caplus	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	0.22	0.22

FILE 'CAPLUS' ENTERED AT 13:03:13 ON 21 APR 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 21 Apr 2010 VOL 152 ISS 17
FILE LAST UPDATED: 20 Apr 2010 (20100420/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Feb 2010
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Feb 2010

CAplus now includes complete International Patent Classification (IPC) reclassification data for the first quarter of 2010.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s (coproduction or co-produc? or integrat?) (s) hydrocarbon? (3a) dimethyl ether
235 COPRODUCTION
597 COPRODN
664 COPRODUCTION
(COPRODUCTION OR COPRODN)
1010531 CO
32073 COS
1038348 CO
(CO OR COS)
5259025 PRODUC?
1252670 PRODNN
534 PRODNS
1252854 PRODNN
(PRODNN OR PRODNS)
5852159 PRODUC?
(PRODUC? OR PRODNN)
4355 CO-PRODUC?
(CO(W)PRODUC?)
432423 INTEGRAT?
587019 HYDROCARBON?
397115 DIMETHYL
48 DIMETHYLS

397139 DIMETHYL
 (DIMETHYL OR DIMETHYLS)
 578054 ETHER
 168527 ETHERS
 645949 ETHER
 (ETHER OR ETHERS)
 160666 DIMETHYL ETHER
 (DIMETHYL(W) ETHER)
 L1 1 (COPRODUCTION OR CO-PRODUC? OR INTEGRAT?) (S) HYDROCARBON? (3A)
 DIMETHYL ETHER

=> d l1 ibib ab

L1 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2004:202099 CAPLUS
 DOCUMENT NUMBER: 141:107938
 TITLE: Integrated three-step method for the production of dimethyl ether from hydrocarbon gases or natural gas
 INVENTOR(S): Rozovskii, A. Ya.; Lin, G. I.; Kubikov, V. N.; Maidurov, N. P.; Petrov, V. N.; Brand, B. B.; Makhlin, V. A.
 PATENT ASSIGNEE(S): Russia
 SOURCE: Russ., No pp. given
 CODEN: RUXXE7
 DOCUMENT TYPE: Patent
 LANGUAGE: Russian
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2220939	C2	20040110	RU 2002-101325	20020109
PRIORITY APPLN. INFO.:			RU 2002-101325	20020109

AB Using natural and associated hydrocarbon gases, containing largely methane along

with other hydrocarbon and nonhydrocarbon gases, di-Me ether is prepared in 3 steps: (i) preparation of synthesis gas with a H₂/CO molar ratio of approx. 1 according to method of partial non-catalytic oxidation of hydrocarbon gas with oxygen in a high-temperature converter while simultaneously correcting the composition of the primary partial oxidation products by introducing into the reaction zone carbon dioxide and steam streams and utilizing the excessive heat content in the stream of gases to be converted at the outlet of the converter into steam and water-heating boilers; (ii) synthesis of di-Me ether in a reactor using a mixed methanol synthesis-methanol etherification catalyst which involves recycling of the reacted synthesis gas; and (iii) fractionation of the synthesis products and production of com. di-Me ether of ≥95% purity. A process flow diagram is presented.

=> s (coproduction or co-produc? or integrat?) (s) (hydrocarbon? or liquid (1a)fuel) (3a) dimethyl ether
 235 COPRODUCTION
 597 COPRODN
 664 COPRODUCTION
 (COPRODUCTION OR COPRODN)
 1010531 CO
 32073 COS
 1038348 CO
 (CO OR COS)
 5259025 PRODUC?

1252670 PRODN
534 PRODNS
1252854 PRODN
(PRODN OR PRODNS)
5852159 PRODUC?
(PRODUC? OR PRODN)
4355 CO-PRODUC?
(CO(W) PRODUC?)
432423 INTEGRAT?
587019 HYDROCARBON?
914607 LIQUID
160932 LIQUIDS
1033373 LIQUID
(LIQUID OR LIQUIDS)
1290100 LIQ
120863 LIQS
1335684 LIQ
(LIQ OR LIQS)
1833090 LIQUID
(LIQUID OR LIQ)
501414 FUEL
190646 FUELS
559954 FUEL
(FUEL OR FUELS)
397115 DIMETHYL
48 DIMETHYLS
397139 DIMETHYL
(DIMETHYL OR DIMETHYLS)
578054 ETHER
168527 ETHERS
645949 ETHER
(ETHER OR ETHERS)
16066 DIMETHYL ETHER
(DIMETHYL(W) ETHER)
L2 1 (COPRODUCTION OR CO-PRODUC? OR INTEGRAT?) (S) (HYDROCARBON? OR
LIQUID (1A)FUEL) (3A) DIMETHYL ETHER

=> s (mak? or produc? or synthes? or prepar? or manufactur?) (3a) (hydrocarbon?
(2a) dimethyl ether)
971075 MAK?
5259025 PRODUC?
1252670 PRODN
534 PRODNS
1252854 PRODN
(PRODN OR PRODNS)
5852159 PRODUC?
(PRODUC? OR PRODN)
1933785 SYNTHEZ?
2092149 PREPAR?
157210 PREP
2624 PREPS
159594 PREP
(PREP OR PREPS)
2367036 PREPD
3 PREPDS
2367038 PREPD
(PREPD OR PREPDS)
197430 PREPG
9 PREPGS
197439 PREPG
(PREPG OR PREPGS)

3145120 PREPN
223789 PREPNS
3312870 PREPN
(PREPN OR PREPNS)
5654314 PREPAR?
(PREPAR? OR PREP OR PREPD OR PREPG OR PREPN)
839808 MANUFACTUR?
1196991 MANUF
2047 MANUFS
1198574 MANUF
(MANUF OR MANUFS)
294009 MANUFD
279470 MANUFG
1763161 MANUFACTUR?
(MANUFACTUR? OR MANUF OR MANUFD OR MANUFG)
587019 HYDROCARBON?
397115 DIMETHYL
48 DIMETHYLS
397139 DIMETHYL
(DIMETHYL OR DIMETHYLS)
578054 ETHER
168527 ETHERS
645949 ETHER
(ETHER OR ETHERS)
16066 DIMETHYL ETHER
(DIMETHYL(W) ETHER)
L3 31 (MAK? OR PRODUC? OR SYNTHES? OR PREPAR? OR MANUFACTUR?) (3A)
(HYDROCARBON? (2A) DIMETHYL ETHER)

=> s 13 and (tail gas or off gas or offgas or residual gas or unreacted or unconverted)

83967 TAIL
15704 TAILS
95465 TAIL
(TAIL OR TAILS)
1846110 GAS
597919 GASES
2052500 GAS
(GAS OR GASES)
3251 TAIL GAS
(TAIL(W) GAS)
409949 OFF
3623 OFFS
412852 OFF
(OFF OR OFFS)
1846110 GAS
597919 GASES
2052500 GAS
(GAS OR GASES)
8805 OFF GAS
(OFF(W) GAS)
3802 OFFGAS
916 OFFGASES
4224 OFFGAS
(OFFGAS OR OFFGASES)
306204 RESIDUAL
7405 RESIDUALS
311897 RESIDUAL
(RESIDUAL OR RESIDUALS)
1846110 GAS
597919 GASES

2052500 GAS
 (GAS OR GASES)
 7872 RESIDUAL GAS
 (RESIDUAL(W) GAS)
 37338 UNREACTED
 2382 UNCONVERTED
 L4 6 L3 AND (TAIL GAS OR OFF GAS OR OFFGAS OR RESIDUAL GAS OR UNREACTIONED OR UNCONVERTED)

=> s l4 not l1
 L5 6 L4 NOT L1

=> s l4 not l2
 L6 6 L4 NOT L2

=> d l6 ibib ab tot

L6 ANSWER 1 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2006:299547 CAPLUS
 DOCUMENT NUMBER: 144:314769
 TITLE: Hydrocarbon synthesis with Fischer-Tropsch reaction
 INVENTOR(S): Steynberg, Andre Peter
 PATENT ASSIGNEE(S): Sasol Technology (Proprietary) Limited, S. Afr.
 SOURCE: PCT Int. Appl., 24 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2006033025	A1	20060330	WO 2005-IB50448	20050203
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
AU 2005286113	A1	20060330	AU 2005-286113	20050203
CN 1938400	A	20070328	CN 2005-80008986	20050203
ZA 2006006883	A	20080430	ZA 2006-6883	20060817
IN 2006KN02412	A	20070525	IN 2006-KN2412	20060825
US 20080027150	A1	20080131	US 2007-588476	20070509
PRIORITY APPLN. INFO.:			US 2004-542089P	P 20040205
			WO 2005-IB50448	W 20050203

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A process for synthesizing hydrocarbons includes feeding a gaseous feedstock comprising H₂, CO and CO₂, into a di-Me ether (DME) synthesis stage, and in the DME synthesis stage, converting a portion of the gaseous feedstock into a DME product and gaseous products. The DME product is separated from unreacted gaseous reactants and the gaseous products to obtain a tail gas comprising H₂ and CO. The tail gas is fed into a Fischer-Tropsch hydrocarbon synthesis stage, and the H₂, CO and CO₂ are allowed at least partially to react catalytically in the Fischer-Tropsch hydrocarbon synthesis stage to

form hydrocarbons.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 2 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2005:1345853 CAPLUS
DOCUMENT NUMBER: 144:72048
TITLE: Complex method for producing fuel dimethyl ether and gasoline from hydrocarbon gases
INVENTOR(S): Gritsenko, A. I.; Kubikov, V. B.; Lorents, V. Ya.; Petrov, V. N.; Slivinskii, E. V.
PATENT ASSIGNEE(S): OAO "Stroitransgaz", Russia
SOURCE: Russ., 19 pp.
CODEN: RUXXE7
DOCUMENT TYPE: Patent
LANGUAGE: Russian
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2266893	C2	20051227	RU 2003-131293	20031028
PRIORITY APPLN. INFO.:			RU 2003-131293	20031028

AB A complex method for producing fuel di-Me ether and gasoline from hydrocarbon gases is provided. The method involves successively carrying out stages for recovery of synthesis gas, synthesis of di-Me ether, fractionation and separation of products of synthesis, synthesis of gasoline from the gas-phase flow containing di-Me ether, and fractionation of the products from gasoline synthesis. The synthesis gas is obtained by a method of high-speed nonequil. partial oxidation with formation in outlet of the corresponding stage of the complex process the mole value ratio H₂/CO in fresh synthesis gas in the range 1.35-1.65, which is not typical for equi-methanol technol. The invention provides schemes and parameters in fractionation of vapor-gaseous mixture in outlet from the di-Me ether synthesis reactor compartment and combinations of schemes with recycle of unreacted and flowing gases are taken for the complex scheme. This process improved the method for making the modified gasoline.

L6 ANSWER 3 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2005:811717 CAPLUS
DOCUMENT NUMBER: 143:213349
TITLE: Process for the production of hydrocarbons and dimethyl ether from synthesis gas
INVENTOR(S): Steynberg, Andre Peter; Greeff, Pierre
PATENT ASSIGNEE(S): Sasol Technology Proprietary Limited, S. Afr.
SOURCE: PCT Int. Appl., 29 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2005075386	A2	20050818	WO 2005-IB50449	20050203
WO 2005075386	A3	20051027		
W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,			

NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,				
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,				
AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,				
EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,				
RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML,				
MR, NE, SN, TD, TG				
AU 2005210265	A1	20050818	AU 2005-210265	20050203
CN 1938401	A	20070328	CN 2005-80010708	20050203
ZA 2006006884	A	20080430	ZA 2006-6884	20060817
IN 2006KN02413	A	20070525	IN 2006-KN2413	20060825
US 20090230024	A1	20090917	US 2008-588475	20080219
PRIORITY APPLN. INFO.:			US 2004-542088P	P 20040205
			WO 2005-IB50449	W 20050203

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A process for co-producing hydrocarbons and di-Me ether (DME) includes feeding a gaseous feedstock, comprising hydrogen and carbon monoxide, into a three-phase, low-temperature catalytic Fischer-Tropsch reaction stage, allowing the hydrogen and carbon monoxide partially to react catalytically in the Fischer-Tropsch reaction stage to form hydrocarbons, and obtaining a tail gas from the Fischer-Tropsch reaction stage which includes unreacted hydrogen and carbon monoxide and also carbon dioxide. The composition of at least a portion of the tail gas is adjusted to provide a DME synthesis feedstock with a syngas number (SN) of 1.8-2.2, where $SN = \frac{([H_2] - [CO_2])}{([CO] + [CO_2])}$ and where [H₂], [CO], and [CO₂], resp., are the molar proportions of hydrogen, carbon monoxide, and carbon dioxide in the DME synthesis feedstock. The DME synthesis feedstock is fed into a DME synthesis stage for conversion; process flow diagrams are presented.

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1998:430705 CAPLUS
 DOCUMENT NUMBER: 129:150352
 ORIGINAL REFERENCE NO.: 129:30619a, 30622a
 TITLE: Manufacture of dimethyl ether from hydrocarbon gases while recycling unreacted material gases
 INVENTOR(S): Mizuguchi, Masatsugu; Ogawa, Takashi; Ono, Masami; Tomura, Keiji
 PATENT ASSIGNEE(S): Nippon Kokan Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 10182533	A	19980707	JP 1996-349203	19961227

PRIORITY APPLN. INFO.:

AB In manufacture of Me2O by catalytic reaction of CO- and H-containing material gases, the material gases are manufactured by reforming gas mixts. containing (1)

CO₂ recovered from products of Me2O manufacture process, (2) saturated hydrocarbon

gases, and (3) air. Unreacted gases recovered from Me2O manufacture process are fed to the reformer as heat sources. Thus, Me2O is manufactured using air as a low-cost material, unreacted gases as heat

sources, and byproduct CO₂ as a C source.
OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD
(1 CITINGS)

L6 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 1996:598398 CAPLUS
DOCUMENT NUMBER: 125:252402
ORIGINAL REFERENCE NO.: 125:47087a, 47090a
TITLE: CO₂/dimethyl ether (DME) feed mixtures in the
DME-to-hydrocarbons (DTH) process
AUTHOR(S): Sardesai, Abhay; Tartamella, Tim; Lee, Sunggyu
CORPORATE SOURCE: Process Research Center, University Akron, Akron, OH,
44325-3906, USA
SOURCE: Proceedings - Annual International Pittsburgh Coal
Conference (1995), 12th, 716-721
CODEN: PICNE4; ISSN: 1075-7961
PUBLISHER: Pittsburgh Coal Conference, University of Pittsburgh
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The DTH process represents the second stage in the conversion of synthesis
gas to hydrocarbons, in which DME produced from the LPDME (liquid-phase DME
manufacturing) process is converted to C₁-C₁₀-hydrocarbons over a zeolite-type
catalyst in a fixed-bed tubular reactor in the vapor phase at 375°.
The product distribution can be controlled by varying the operating
temperature,
pressure and space velocity of DME. Unreacted CO₂ from the DME
synthesis reactor represents a potential problem in terms of further
hydrocarbon processing from a DME feedstock; CO₂-DME mixts. are difficult
to sep. A productivity comparison was made with runs containing feed mixts.
of CO₂-DME and N₂-DME mixts. CO₂ is not actively involved in the reaction
kinetics for the conversion of DME to hydrocarbons. Product distributions
of the gaseous product are similar to those where N₂ was used as the
diluent. Data obtained in the production of hydrocarbons from DME-CO₂ mixts.
were consistent with the accepted mechanism of hydrocarbon formation for
DME-MeOH systems.

L6 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 1987:87448 CAPLUS
DOCUMENT NUMBER: 106:87448
ORIGINAL REFERENCE NO.: 106:14307a, 14310a
TITLE: Synthesis process for producing alkylate hydrocarbons
INVENTOR(S): Owen, Hartley; Tabak, Samuel A.; Wright, Bernard S.
PATENT ASSIGNEE(S): Mobil Oil Corp., USA
SOURCE: U.S., 8 pp.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 12
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4634798	A	19870106	US 1985-779369	19850923
AU 8662005	A	19870326	AU 1986-62005	19860827
AU 628283	B2	19920917		
NO 8603713	A	19870324	NO 1986-3713	19860917
NO 171056	B	19921012		
NO 171056	C	19930120		
EP 216604	A1	19870401	EP 1986-307184	19860918
EP 216604	B1	19910116		

R: BE, DE, FR, GB, IT, NL, SE

CA 1269403	A1	19900522	CA 1986-518548	19860918
JP 62121787	A	19870603	JP 1986-223946	19860924
US 4767604	A	19880830	US 1986-919151	19861015
PRIORITY APPLN. INFO.:				
			US 1985-779347	A 19850923
			US 1985-779363	A 19850923
			US 1985-779367	A 19850923
			US 1985-779369	A 19850923
			US 1985-779373	A 19850923

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The title process is accomplished by contacting a MeOH or Me2O feedstock with a zeolite at elevated temperature and pressure to produce C₂H₄ and C_{≥3} alkenes, which are fractionated in a sorption unit in contact with a liquid C_{≥4} isoparaffin absorbent to selectively sorb C_{≥3} alkenes, which are fractionated to recover C_{≥5} gasoline and to provide a C₃₋₄ alkene-rich stream, which is reacted with a C_{≥4} isoparaffin in an alkylation reactor in the presence of acid alkylation catalysts to produce C_{≥7} paraffinic alkylates, from which the unreacted isoparaffins are separated and recycled to the sorption fractionation unit as lean sorbent.

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD
(1 CITINGS)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT