

SESA2025 Mechanics of Flight Stick Fixed versus Stick Free

Lecture 1.2

Consider an aircraft flying in trimmed conditions

Consider an aircraft flying in trimmed conditions

(A small aircraft with manual controls)

Two ways for a pilot to keep an aircraft in equilibrium (trimmed):

- Using the yoke (controls the elevator directly)
- Using the trim tab (controls the elevator indirectly)

zero-lift line tailplane $lpha_{T_{eff}}$

 V_{eff}

 $C_{M_H} \neq 0 \ (<)$

Southampton Southampton

- The pilot sets the position of the elevator (η) by exerting a force on the yoke to overcome the hinge moment
- $C_{M_H} \neq 0$
- This is referred to as Stick Fixed
- The trim tab angle (β) is assumed to be zero
- High pilot effort $(C_{M_H} \neq 0 + \text{attention})$

 $C_{M_H}=0$

Tail plane

Stick Free

Plot not needed to α_1 hold elevator with

force because they

let it reat in equilibrium

- The pilot rotates the trim tab until the elevator hinge moment is zero and the pilot is no longer required to exert a force on the yoke (zero force)
- $C_{M_H} = 0$
- This is referred to as Stick Free
- Reduced pilot effort
- Elevator can float during, e.g., a gust encounter

Southampto Southampto

 $C_{M_H}=0$

Tail plane

Stick Free – floating elevator

- The hinge moment is $C_{M_H} = b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta = 0$
- Assume the gust produces a $\Delta \alpha_{T_{eff}} > 0$

But
$$\Delta C_{M_H} = b_1 \Delta \alpha_{T_{eff}} + b_2 \Delta \eta + b_3 \Delta \beta = 0$$

- $\Delta \beta = 0$ since it's fixed by the trim wheel
- b_1 and b_2 are negative, solve for $\Delta \eta$

•
$$\Delta \eta = -\Delta \alpha_{Teff} \frac{b_1}{b_2} < 0$$
 \longrightarrow measure of flag negg

$$b_1 = \frac{\partial c_{M_H}}{\partial \alpha_{T_{eff}}} \longrightarrow \text{floating tendenc}$$

• $\Delta \eta = -\Delta \alpha_{Teff} \frac{b_1}{b_2} < 0 \longrightarrow b_1 = \frac{\partial C_{M_H}}{\partial \alpha_{Teff}} \longrightarrow \text{floating tendency} \quad \text{much devator} \quad \text{floating tendency} \quad \text{with changing AoA} \quad \text{possibly induced by guists}$

Tail plane

Stick Fixed

zero-lift line tailplane $\alpha_{T_{eff}}$

 L_T

With $\beta = 0$ (assumed)

Lift model

$$C_{L_T} = \overline{a_1 \alpha_{T_{eff}}} + \overline{a_2 \eta}$$

Hinge moment model

$$C_{MH} = b_1 \alpha_{Teff} + b_2 \eta$$

Tail plane

Stick Free Mow

congilor age where B=0 zero-lift line tailplane $\alpha_{T_{eff}}$

 V_{eff}

 $C_{M_H}=0$

Balance hinge moment aerodynamically

$$C_{M_H} = b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta = 0$$

Solve for elevator position, then sub in

$$\eta = \frac{-b_1 \alpha_{T_{eff}} - b_3 \beta}{b_2}$$

$$C_{L_T} = \overline{a_1} \alpha_{T_{eff}} + \overline{a_3} \beta$$

where

$$\overline{a_1} \stackrel{\text{def}}{=} a_1 - a_2 \frac{b_1}{b_2}; \ \overline{a_3} \stackrel{\text{def}}{=} a_3 - a_2 \frac{b_3}{b_2}$$

Degrerient cleanup variables

Example

and some numbers ...

Measurements of the aero characteristics of a 2D section of a tail plane show that:

$$a_1 = 2\pi \, rad^{-1}$$
 $a_2 = 3.5 \, rad^{-1}$
 $a_3 = 1.1 \, rad^{-1}$
 $b_1 = -0.1 \, rad^{-1}$
 $b_2 = -0.7 \, rad^{-1}$
 $b_3 = -1.3 \, rad^{-1}$

Do these numbers make sense ??

Recall that:

$$C_{L_T} = a_1 \alpha_{T_{eff}} + \overline{a_2} \eta + a_3 \beta$$
 Stick fixed $C_{L_T} = \overline{a_1} \alpha_{T_{eff}} + \overline{a_3} \beta$ Stick free

$$C_{M_H} = b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta \qquad \overline{\alpha}$$

$$C_{M_H} = b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta$$
 $\overline{a_1} \stackrel{\text{def}}{=} a_1 - a_2 \frac{b_1}{b_2}$; $\overline{a_3} \stackrel{\text{def}}{=} a_3 - a_2 \frac{b_3}{b_2}$

The rate of change of C_{L_T} with $\alpha_{T_{eff}}$ is more variable parely security $a_1=6.28\ rad^{-1}$ Stick fixed

 $\sqrt{a_1} = 5.78 \, rad^{-1}$ Stick free

- The tailplane produces less lift per unit change of angle of attack!
- Lower pitch stiffness, worse stability characteristics
- Use horn balance to reduce floating tendency

Other means of trim

i.e. other types of tail planes

- Aircraft requires trim at a variety of speeds, CG locations, payloads, altitudes, ...
- Various other tail plane solutions are possible, with pros and cons
- All of them need to achieve some control on the lift generated by the plane

Other means of trim

Fixed tail

- OK if longitudinal manoeuvrability is not a desired design requirement
- PROS:
 - Lighter
 - Cheaper
 - Structurally easier to design
 - Safer in case of failure
- CONS
 - Limited control /
- Jecansl rolatively Temal 1 churge possible
 - Higher drag associated to trim
- Lift model $a_2 < a_1$

Other means of trim

All-moving tail – All-flying – Stabilator

- Change the installation angle α_s
 - For trim and control (high rotation rates)
- PROS:
 - Higher trimming power
 - Wider range of CG movements
 - Lower drag, as elevator and stabilizer are aligned when aircraft is trimmed
- CONS
 - Structural design?

F-16 jet, with stabilators deflected upwards

L_T

Tail setting angle

Example calculation for adjustable tails

- Primary requirement
 - nullify $C_{M_{CG}}$ at the cruising speed
 - no control surface (i.e. elevator) deflection
- · Example calculation: from the equilibrium conditions

$$C_{L^*} = C_L + C_{L_T} \frac{S_T}{S} = C_w \cos \gamma \text{ and } C_{M_0} + C_{L^*} (h - h_0) - C_{L_T} K = 0$$

 $\alpha_{T_{eff}}$

The tail plane lift model becomes

$$C_{L_T} = a_1 \alpha_{T_{eff}} + a_2 \eta + a_3 \beta$$

Noting that

$$\tan \alpha_{T_{eff}} = \alpha + \alpha_{S} - \varepsilon - \varepsilon_{T}$$

zero-lift line tailplane

 V_{eff}

• We solve for α_s , with α obtained from $C_L = C_{L_{\alpha}}(\alpha - \alpha_0)$

Consider an aircraft flying in trimmed conditions

Southampton Southampton

Other means of trim

Moving the CG

The Aérospatiale/BAC Concorde (1976/2003)

 Shift fuel fore-and-aft for CG control at {tran, super}sonic speed with no drag penalty

