## Multivariate Statistics

Lecture 04

Fudan University

## Outline

Multivariate Normal Distribution (Conditional Distribution)

Characteristic Function

3 Maximum Likelihood Estimator of Mean and Covariance

## Outline

1 Multivariate Normal Distribution (Conditional Distribution)

2 Characteristic Function

3 Maximum Likelihood Estimator of Mean and Covariance

Let  $\mathbf{x}$  be distributed according to  $\mathcal{N}_p(\mu, \mathbf{\Sigma})$  with  $\mathbf{\Sigma} \succ \mathbf{0}$ . Let us partition

$$\mathbf{x} = egin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \quad \text{with } \mathbf{x}^{(1)} \in \mathbb{R}^q \text{ and } \mathbf{x}^{(2)} \in \mathbb{R}^{p-q}.$$

The joint density of  $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{x}^{(2)}$  and  $\mathbf{y}^{(2)} = \mathbf{x}^{(2)}$  is

$$g(\mathbf{y}) = n(\mathbf{y}^{(1)} \mid \boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}) n(\mathbf{y}^{(2)} \mid \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22}).$$

Consider that

$$\begin{bmatrix} \textbf{y}^{(1)} \\ \textbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \textbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \textbf{0} & \textbf{I} \end{bmatrix} \begin{bmatrix} \textbf{x}^{(1)} \\ \textbf{x}^{(2)} \end{bmatrix} \quad \text{with} \quad \det \left( \begin{bmatrix} \textbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \textbf{0} & \textbf{I} \end{bmatrix} \right) = 1.$$

Then the density of  $\mathbf{x}$  (joint density of  $\mathbf{x}_1$  and  $\mathbf{x}_2$ ) is

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x}))|\det(\mathbf{J}(\mathbf{x}))| = g(\mathbf{u}(\mathbf{x})).$$

The resulting joint density of  $\mathbf{x}^{(1)}$  and  $\mathbf{x}^{(2)}$  is

$$\begin{split} &f(\mathbf{x}) = f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) \\ &= n(\mathbf{y}^{(1)} \mid \boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{21}^{-1} \boldsymbol{\Sigma}_{21}) n(\mathbf{x}^{(2)} \mid \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22}) \\ &= \frac{1}{\sqrt{(2\pi)^q \det(\boldsymbol{\Sigma}_{11.2})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)^\top \boldsymbol{\Sigma}_{11.2}^{-1} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)\right) \\ &\cdot \frac{1}{\sqrt{(2\pi)^{p-q} \det(\boldsymbol{\Sigma}_{22})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^\top \boldsymbol{\Sigma}_{22}^{-1} \left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\right) \end{split}$$

where

$$\begin{aligned} \mathbf{x}^{(11.2)} = & \mathbf{x}^{(1)} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{x}^{(2)}, \\ \boldsymbol{\mu}^{(11.2)} = & \boldsymbol{\mu}^{(1)} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \boldsymbol{\mu}^{(2)}, \\ \mathbf{\Sigma}_{11.2} = & \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}. \end{aligned}$$

The marginal density of  $\mathbf{x}^{(2)}$  is

$$\begin{split} & f(\mathbf{x}^{(2)}) = n(\mathbf{y}^{(2)} \mid \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22}) \\ = & \frac{1}{\sqrt{(2\pi)^{p-q} \det(\boldsymbol{\Sigma}_{22})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^{\top} \boldsymbol{\Sigma}_{22}^{-1} \left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\right). \end{split}$$

Hence, the conditional density of  $\mathbf{x}^{(1)}$  given that  $\mathbf{x}^{(2)}$  is

$$\begin{split} f(\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}) &= \frac{f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})}{f(\mathbf{x}^{(2)})} \\ &= \frac{1}{\sqrt{(2\pi)^q \det(\mathbf{\Sigma}_{11.2})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)^\top \mathbf{\Sigma}_{11.2}^{-1} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)\right) \end{split}$$

The conditional density of  $\mathbf{x}^{(1)}$  given that  $\mathbf{x}^{(2)}$  is

$$f(\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}) = \frac{f(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})}{f(\mathbf{x}^{(2)})}$$

$$= \frac{1}{\sqrt{(2\pi)^q \det(\mathbf{\Sigma}_{11.2})}} \exp\left(-\frac{1}{2} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)^{\top} \mathbf{\Sigma}_{11.2}^{-1} \left(\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)}\right)\right)$$

where  $\mathbf{x}^{(11.2)} = \mathbf{x}^{(1)} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{x}^{(2)}$ ,  $\boldsymbol{\mu}^{(11.2)} = \boldsymbol{\mu}^{(1)} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\boldsymbol{\mu}^{(2)}$  and  $\mathbf{\Sigma}_{11.2} = \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$ .

Consider that 
$$\mathbf{x}^{(11.2)} - \boldsymbol{\mu}^{(11.2)} = \mathbf{x}^{(1)} - (\boldsymbol{\mu}^{(1)} + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})).$$

The density  $f(\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)})$  is a *q*-variate normal density with mean

$$\mathbb{E}\big[\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}\big] = \boldsymbol{\mu}^{(1)} + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}) = \boldsymbol{\nu}(\mathbf{x}^{(2)})$$

and covariance matrix (not depend on  $\mathbf{x}^{(2)}$ )

$$\begin{aligned} \operatorname{Cov}\big[\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)}\big] = & \mathbb{E}\big[(\mathbf{x}^{(1)} - \boldsymbol{\nu}(\mathbf{x}^{(2)}))(\mathbf{x}^{(1)} - \boldsymbol{\nu}(\mathbf{x}^{(2)}))^{\top} \mid \mathbf{x}^{(2)}\big] \\ = & \boldsymbol{\Sigma}_{11.2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} \leq \boldsymbol{\Sigma}_{11}. \end{aligned}$$

The density  $f(x_1, x_2)$  can be thought of as a surface  $z = f(x_1, x_2)$  over the  $x_1, x_2$ -plane.

If we intersect this surface with the plane  $x_2 = c$ , we obtain a curve  $z = f(x_1, c)$  over the line  $x_2 = c$  in the  $x_1, x_2$ -plane.

The ordinate of this curve is proportional to the conditional density of  $x_1$  given  $x_2 = c$ ; that is, it is proportional to the ordinate of the curve of a univariate normal distribution.



### Correlation Coefficient

Recall that for random vector  $\mathbf{x} = [x_1, x_2, \dots, x_p]^{\top}$ , we define the covariance matrix as

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{pp} \end{bmatrix} \in \mathbb{R}^{p \times p}$$

and the correlation coefficient between  $x_i$  and  $x_j$  as (suppose  $\Sigma \succ 0$ )

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}}}.$$

## Partial Correlation Coefficient

Now consider the partition

$$\mathbf{x} = egin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$$
 with  $\mathbf{x}^{(1)} \in \mathbb{R}^q$  and  $\mathbf{x}^{(2)} \in \mathbb{R}^{p-q}$ .

Let

$$\mathbf{\Sigma}_{11.2} = \begin{bmatrix} \sigma_{11 \cdot q+1, \dots, p} & \sigma_{12 \cdot q+1, \dots, p} & \dots & \sigma_{1q \cdot q+1, \dots, p} \\ \sigma_{21 \cdot q+1, \dots, p} & \sigma_{22 \cdot q+1, \dots, p} & \dots & \sigma_{2q \cdot q+1, \dots, p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{q1 \cdot q+1, \dots, p} & \sigma_{q2 \cdot q+1, \dots, p} & \dots & \sigma_{qq \cdot q+1, \dots, p} \end{bmatrix} \in \mathbb{R}^{q \times q}.$$

We define

$$\rho_{ij\cdot q+1,\dots,p} = \frac{\sigma_{ij\cdot q+1,\dots,p}}{\sqrt{\sigma_{ii\cdot q+1,\dots,p}}\sqrt{\sigma_{jj\cdot q+1,\dots,p}}}$$

as the partial correlation between  $x_i$  and  $x_j$  holding  $x_{q+1}, \ldots, x_p$  fixed.

We again consider  $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  such that

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \quad \text{and} \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \succ \boldsymbol{0}.$$

Then, we study some properties of  $Bx^{(2)}$ , where

$$\boldsymbol{B} = \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}$$

is the matrix of regression coefficients of  $\mathbf{x}^{(1)}$  on  $\mathbf{x}^{(2)}$ .

The vector  $\mathbb{E}\big[\mathbf{x}^{(1)}\mid\mathbf{x}^{(2)}\big]=\boldsymbol{\mu}^{(1)}+\mathbf{B}(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)})$  is called the regression function.

The vector

$$\mathbf{x}^{(11.2)} = \mathbf{x}^{(1)} - (\boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}))$$

is the vector of residuals of  $\mathbf{x}^{(1)}$  from its regression on  $\mathbf{x}^{(2)}$ .

The components of  $\mathbf{x}^{(11.2)}$  are uncorrelated with the components of  $\mathbf{x}^{(2)}$  since we have

$$\mathbf{x}^{(11.2)} = \mathbf{y}^{(1)} - \mathbb{E}[\mathbf{y}^{(1)}],$$

such that

$$\begin{bmatrix} \textbf{y}^{(1)} \\ \textbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \textbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \textbf{0} & \textbf{I} \end{bmatrix} \begin{bmatrix} \textbf{x}^{(1)} \\ \textbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} \textbf{x}^{(1)} - \textbf{B}\textbf{x}^{(2)} \\ \textbf{x}^{(1)} \end{bmatrix}.$$

### Theorem 1

For  $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  and every vector  $\boldsymbol{\alpha} \in \mathbb{R}^{(p-q)}$ , we have

$$\operatorname{Var}(x_i^{(11.2)}) \leq \operatorname{Var}(x_i - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}),$$

where  $x_i^{(11.2)}$  and  $x_i$  are the *i*-th entry of  $\mathbf{x}^{(11.2)}$  and the *i*-th entry of  $\mathbf{x}$  respectively.

Observe that

$$\mathbb{E}[x_i] = \mu_i + \boldsymbol{\alpha}^{\top} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}),$$

which means

$$\mu_i + \boldsymbol{\beta}_{(i)}^{\top} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$$

is the best linear predictor of  $x_i$  in all functions of the form  $\alpha^{\top} \mathbf{x}^{(2)} + c$ , the mean squared error of the above is a minimum.

The correlation of two variables  $z_1$  and  $z_2$  is defined as

$$\operatorname{Corr} \bigl(z_1,z_2\bigr) = \frac{\operatorname{Cov} \bigl[z_1,z_2\bigr]}{\sqrt{\operatorname{Var} \bigl[z_1\bigr] \operatorname{Var} \bigl[z_2\bigr]}}.$$

The maximum correlation between  $x_i$  and the linear combination  $\alpha^{\top} \mathbf{x}^{(2)}$  is called the multiple correlation coefficient between  $x_i$  and  $\alpha^{\top} \mathbf{x}^{(2)}$ .

## Corollary 1

Under the setting of Theorem 1, prove that

$$\operatorname{Corr}\left[x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right] \geq \operatorname{Corr}\left[x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right]$$

for every  $\alpha \in \mathbb{R}^{(p-q)}$ .

## Outline

1 Multivariate Normal Distribution (Conditional Distribution)

Characteristic Function

3 Maximum Likelihood Estimator of Mean and Covariance

The characteristic function of a p-dimensional random vector  $\mathbf{x}$  is

$$\phi(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{ op}\mathbf{x})
ight]$$

defined for every real vector  $\mathbf{t} \in \mathbb{R}^p$ .

For the complex-valued function g(z) be written as

$$g(z) = g_1(z) + i g_2(z),$$

where  $g_1(z)$  and  $g_2(z)$  are real-valued, the expected value of g(z) is

$$\mathbb{E}[g(z)] = \mathbb{E}[g_1(z)] + \mathrm{i}\,\mathbb{E}[g_2(z)].$$

Let  $\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$  be a p-dimensional random vector. If  $\mathbf{x}^{(1)}$  and  $\mathbf{x}^{(2)}$  are independent and  $g(\mathbf{x}) = g^{(1)}(\mathbf{x}^{(1)})g^{(2)}(\mathbf{x}^{(2)})$ , then we have  $\mathbb{E}[g(\mathbf{x})] = \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})]\mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$ 

If the components of  $\mathbf{x}$  are mutually independent, then

$$\mathbb{E} ig[ \exp(\mathrm{i} \, \mathbf{t}^ op \mathbf{x}) ig] = \mathbb{E} \left[ \prod_{j=1}^p \exp(\mathrm{i} \, t_j x_j) 
ight].$$

### Theorem 2

The characteristic function of  ${\bf x}$  distributed according to  $\mathcal{N}_p(\mu,{f \Sigma})$  is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{ op} \boldsymbol{\mu} - rac{1}{2}\mathbf{t}^{ op} \mathbf{\Sigma} \mathbf{t}
ight).$$

for every  $\mathbf{t} \in \mathbb{R}^p$ .

Sketch of the proof

- **1** The characteristic function of  $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$  is  $\phi_0(\mathbf{t}) = \exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{t}\right)$ .
- ② For  $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , we have  $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$  such that  $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$ .
- **3** Using  $\phi_0(\mathbf{t})$  to present the characteristic function of  $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ .

### Theorem 2

The characteristic function of  ${\bf x}$  distributed according to  $\mathcal{N}_p(\mu,{f \Sigma})$  is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{ op} \boldsymbol{\mu} - rac{1}{2}\mathbf{t}^{ op} \mathbf{\Sigma} \mathbf{t}
ight).$$

for every  $\mathbf{t} \in \mathbb{R}^p$ .

We can use this theorem to prove  $\mathbf{z} = \mathbf{D}\mathbf{x} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top})$  easily.

The following theorem can be viewed as another definition of multivariate normal distribution.

### Theorem 3

If every linear combination of the components of a random vector  $\mathbf{y}$  is normally distributed, then  $\mathbf{y}$  is normally distributed.

In other words, if the p-dimensional random vector  $\mathbf{y}$  leads to the univariate random variable

$$\mathbf{u}^{\mathsf{T}}\mathbf{y}$$

is normally distributed for any fixed  $\mathbf{u} \in \mathbb{R}^p$ , then  $\mathbf{y}$  is normally distributed.

# Characteristic Function and Density

The characteristic function determines the density function uniquely (if the density exists).

### Theorem 4

If the *p*-dimensional random vector  $\mathbf{x}$  has the density  $f(\mathbf{x})$  and the characteristic function  $\phi(\mathbf{t})$ , then

$$f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp(-\mathrm{i} \, \mathbf{t}^{\top} \mathbf{x}) \, \phi(\mathbf{t}) \, \mathrm{d}t_1 \ldots \mathrm{d}t_p.$$

See the proof in Section 10.6 of "Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press".

# Characteristic Function and Probability

If x does not have a density, the characteristic function uniquely defines the probability of any continuity interval.

### Theorem 5

Let  $\{F_j(x)\}$  be a sequence of cdfs, and let  $\{\phi_j(t)\}$  be the sequence of corresponding characteristic functions. A necessary and sufficient condition for  $F_j(x)$  to converge to a cdf F(x) is that, for every t,  $\phi_j(t)$  converges to a limit  $\phi(t)$  that is continuous at t=0. When this condition is satisfied, the limit  $\phi(t)$  is identical with the characteristic function of the limiting distribution F(x).

See the proof in Section 10.7 of "Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press"

### Characteristic Function and Moments

If the *n*-th moment of random variable x, denoted by  $\mathbb{E}[x^n]$ , exists and is finite, then its characteristic function is n times continuously differentiable and

$$\mathbb{E}[x^n] = \frac{1}{\mathrm{i}^n} \frac{\mathrm{d}^n \phi(t)}{\mathrm{d}t^n} \bigg|_{t=0},$$

which is because of

$$\frac{\mathrm{d}^{n}\phi(t)}{\mathrm{d}t^{n}} = \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \mathbb{E}\left[\exp(\mathrm{i}\,tx)\right]$$
$$= \mathbb{E}\left[\frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}\exp(\mathrm{i}\,tx)\right]$$
$$= \mathbb{E}\left[(\mathrm{i}\,x)^{n}\exp(\mathrm{i}\,tx)\right]$$
$$= \mathrm{i}^{n}\,\mathbb{E}\left[x^{n}\exp(\mathrm{i}\,tx)\right].$$

## Characteristic Function and Moments

For normal distributed random vector  $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  and its characteristic function  $\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^\top \boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^\top \boldsymbol{\Sigma} \mathbf{t}\right)$ , we have

$$\mathbb{E}[x_h] = \frac{1}{\mathrm{i}} \frac{\mathrm{d}\phi(\mathbf{t})}{\mathrm{d}t_h} \bigg|_{\mathbf{t}=\mathbf{0}} = \frac{1}{\mathrm{i}} \left( \mathrm{i} \, \mu_h - \sum_{j=1}^p \sigma_{hj} t_j \right) \phi(\mathbf{t}) \bigg|_{\mathbf{t}=\mathbf{0}} = \mu_h$$

and

$$\mathbb{E}[x_h x_j] = \frac{1}{i^2} \frac{\partial^2 \phi(t)}{\partial t_h \partial t_j} \bigg|_{\mathbf{t} = \mathbf{0}}$$

$$= \frac{1}{i^2} \left( \left( -\sum_{k=1}^p \sigma_{hk} t_k + i \mu_h \right) - \sigma_{hj} \right) \left( \left( -\sum_{k=1}^p \sigma_{kj} t_k + i \mu_j \right) - \sigma_{hj} \right) \phi(\mathbf{t}) \bigg|_{\mathbf{t} = \mathbf{0}}$$

$$= \sigma_{hj} + \mu_h \mu_j.$$

Thus, we have

$$\operatorname{Var}(x_h) = \mathbb{E}[x_h - \mu_h]^2 = \mathbb{E}[x_h^2] - \mu_h^2 = \sigma_{hh},$$
$$\operatorname{Cov}(x_h, x_i) = \mathbb{E}[(x_h - \mu_h)(x_i - \mu_i)] = \mathbb{E}[x_h x_i] - \mu_h \mu_i = \sigma_{hi}.$$

### Characteristic Function and Moments

If all the moments of a distribution exist, then the cumulants are the coefficients  $\kappa$  in

$$\log \phi(\mathbf{t}) = \sum_{s_1=0}^{\infty} \cdots \sum_{s_p=0}^{\infty} \kappa_{s_1 \dots s_p} \frac{(\mathrm{i} t_1)^{s_1} \dots (\mathrm{i} t_p)^{s_p}}{s_1! \dots s_p!}.$$

In the case of the multivariate normal distribution, we have

$$\kappa_{100...0} = \mu_1, \quad \kappa_{010...0} = \mu_2, \quad \dots \quad \kappa_{000...1} = \mu_p,$$

and

$$\kappa_{200...0} = \sigma_{11}, \quad \kappa_{110...0} = \sigma_{12}, \quad \dots \quad \kappa_{000...2} = \sigma_{pp}.$$

The cumulants for which  $\sum s_i > 2$  are 0.

## Outline

Multivariate Normal Distribution (Conditional Distribution)

2 Characteristic Function

3 Maximum Likelihood Estimator of Mean and Covariance

Given a sample of (vector) observations from a p-variate (non-singular) normal distribution, we ask for estimators of the mean vector  $\mu$  and the covariance matrix  $\Sigma$  of the distribution.

Suppose our sample of N observations on the  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ , which are distributed according to  $\mathcal{N}(\mu, \mathbf{\Sigma})$ , where N > p. The likelihood function is

$$\begin{split} L &= \prod_{\alpha=1}^{N} \textit{n}(\mathbf{x}_{\alpha} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ &= \frac{1}{(2\pi)^{\frac{\rho N}{2}} \left( \det(\boldsymbol{\Sigma}) \right)^{\frac{N}{2}}} \exp \left[ -\frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right]. \end{split}$$

The likelihood function is

$$L = \frac{1}{(2\pi)^{\frac{pN}{2}} \left( \det(\mathbf{\Sigma}) \right)^{\frac{N}{2}}} \exp \left[ -\frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right].$$

The vectors  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$  are fixed at the sample values and L is a function of  $\boldsymbol{\mu}$  and  $\boldsymbol{\Sigma}$ .

The logarithm of the likelihood function is

$$\ln L = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left( \det(\mathbf{\Sigma}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}).$$

Since  $\ln L$  is an increasing function of L, the maximum likelihood estimators of  $\mu$  and  $\Sigma$  are the vector and the positive definite matrix that maximize  $\ln L$ .

Let the mean vector be

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} = \begin{bmatrix} \frac{1}{N} \sum_{\alpha=1}^{N} x_{1\alpha} \\ \vdots \\ \frac{1}{N} \sum_{\alpha=1}^{N} x_{p\alpha} \end{bmatrix} = \begin{bmatrix} \bar{x}_{1} \\ \vdots \\ \bar{x}_{p} \end{bmatrix}$$

where

$$\mathbf{x}_{lpha} = egin{bmatrix} x_{1lpha} \ dots \ x_{plpha} \end{bmatrix} \quad ext{and} \quad ar{x}_i = rac{1}{N} \sum_{lpha=1}^N x_{ilpha}.$$

Let the matrix of sums of squares and cross products of deviations about the mean be

$$\mathbf{A} = rac{1}{N} \sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op$$

#### Theorem 6

If  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$  constitute a sample from  $\mathcal{N}(\mu, \mathbf{\Sigma})$  with p < N, the maximum likelihood estimators of  $\mu$  and  $\mathbf{\Sigma}$  are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

### Lemma 1

If  $\mathbf{D} \in \mathbb{R}^{p \times p}$  is positive definite, the maximum of

$$f(\mathbf{G}) = N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at  $\mathbf{G} = \frac{1}{N}\mathbf{D}$ .

The maximum likelihood estimators of functions of the parameters are those functions of the maximum likelihood estimators of the parameters.

### Theorem 7

Let  $f(\theta)$  be a real-valued function defined on a set  $\mathcal{S}$  and let  $\phi$  be a single-valued function, with a single-valued inverse, on  $\mathcal{S}$  to a set  $\mathcal{S}^*$ . Let

$$g(\theta^*) = f\left(\phi^{-1}(\theta^*)\right).$$

Then if  $f(\theta)$  attains a maximum at  $\theta = \theta_0$ , then  $g(\theta^*)$  attains a maximum at  $\theta^* = \theta_0^* = \phi(\theta_0)$ . If the maximum of  $f(\theta)$  at  $\theta_0$  is unique, so is the maximum of  $g(\theta^*)$  at  $\theta_0^*$ .

## Corollary 2

If on the basis of a given sample  $\hat{\theta}_1,\ldots,\hat{\theta}_m$  are maximum likelihood estimators of the parameters  $\theta_1,\ldots,\theta_m$  of a distribution, then  $\phi_1(\hat{\theta}_1,\ldots,\hat{\theta}_m),\ldots,\phi_m(\hat{\theta}_1,\ldots,\hat{\theta}_m)$  are maximum likelihood estimator of  $\phi_1(\theta_1,\ldots,\theta_m),\ldots,\phi_m(\theta_1,\ldots,\theta_m)$  if the transformation from  $\theta_1,\ldots,\theta_m$  to  $\phi_1,\ldots,\phi_m$  is one-to-one. If the estimators of  $\theta_1,\ldots,\theta_m$  are unique, then the estimators of  $\theta_1,\ldots,\theta_m$  are unique.

## Corollary 3

If  $\mathbf{x}_1, \ldots, \mathbf{x}_N$  constitutes a sample from  $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , let  $\rho_{ij} = \sigma_{ij}/(\sigma_i \sigma_j)$ . Then the maximum likelihood estimator of  $\rho_{ij}$  is

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}$$