Computación Científica II

Ecuaciones Diferenciales Ordinarias

Problemas de Valor Frontera

Cristopher Arenas cristopher.arenas@usm.cl

Universidad Técnica Federico Santa María Computación Científica II - ILI286

v1.1

Considerar la siguiente Ecuación Diferencial Ordinaria:

$$\frac{\mathrm{d}^2 y(x)}{\mathrm{d}x^2} = f(x, y(x), y'(x))$$
$$y(a) = y_a$$
$$y(b) = y_b$$

- Esta ecuación es un problema de valor frontera (BVP).
- Se conocen los valores de y(x) en la frontera de x, esto es, x=a y x=b.
- ¿Por qué son necesarias dos condiciones de frontera?

Ejemplo: Considerar el siguiente BVP:

$$\frac{\mathrm{d}^2 y(x)}{\mathrm{d}x^2} = 1$$
$$y(0) = a$$
$$y(1) = b$$

Para encontrar una solución analítica es necesario integrar dos veces, resultando:

$$y(x) = \frac{x^2}{2} + C_1 x + C_2$$

¿Qué se puede hacer para encontrar los valores de C_1 y C_2 ?

Usando las condiciones de frontera, se debe resolver un sistema lineal para determinar ${\cal C}_1$ y ${\cal C}_2$:

$$y(0) = \frac{0^2}{2} + C_1 \cdot 0 + C_2 = a$$

$$y(1) = \frac{1^2}{2} + C_1 \cdot 1 + C_2 = \frac{1}{2} + C_1 + C_2 = b$$

Donde se obtiene:

$$C_1 = b - \frac{1}{2} - a$$
$$C_2 = a$$

Numéricamente, se resolverán los Problemas de Valor Frontera utilizando dos métodos:

- 1 Método del Disparo.
- 2 Método de las Diferencias Finitas.

8/37

Método del Disparo

Resolver un BVP como si fuera un IVP.

Considerar el problema de valor frontera:

$$\frac{\mathrm{d}^2 y(x)}{\mathrm{d}x^2} = f(x, y(x), y'(x))$$
$$y(a) = k_1$$
$$y(b) = k_2$$

Al tratar el BVP como un IVP, considerar $x \to t$, entonces se tiene el siguiente IVP:

$$y''(t) = f(t, y(t), y'(t))$$
$$y(a) = k_1$$
$$y'(a) = ?$$

El IVP anterior puede convertirse en un sistema dinámico:

$$y'_{1}(t) = y_{2}(t)$$

$$y'_{2}(t) = f(t, y_{1}(t), y_{2}(t))$$

$$y_{1}(a) = k_{1}$$

$$y_{2}(a) = ?$$

Preguntas:

- ¿Qué ocurrió con y(b)?
- ¿Se conoce toda la información del IVP?
- ¿Qué consideraciones deben tenerse en cuenta para resolver el IVP?

Considerar $y_2(a) = \alpha_k$, un valor arbitrario. Resolviendo el IVP, se obtendrán valores numéricos para $y_1(t)$ y para $y_2(t)$ con $a \le t \le b$.

¿Qué debería ocurrir con el valor de $y_1(b)$ al comparar el valor numérico con el valor exacto?

Considerar $F(\alpha) = \hat{y}_1(b, \alpha) - y_1(b)$ la diferencia entre:

- $\hat{y}_1(b,\alpha)$, el valor numérico de la función $y_1(t)$ en t=b obtenido al resolver el IVP suponiendo que $y_2(a)=\alpha$, y
- \blacksquare el valor conocido $y_1(b)$.

El método del disparo, se reduce al problema de encontrar una raíz de $F(\alpha)$, es decir, encontrar un α tal que $F(\alpha)=0$. ¿Cómo se puede encontrar la raíz de esta función?

12/37

Ejemplo: Considerar el BVP:

$$y''(x) = -5y'(x) - 6y(x)$$
$$y(0) = 1$$
$$y(1) = 3$$

Resolver, usando el Método del Disparo.

El BVP se transforma en el sistema dinámico:

$$y'_1(t) = y_2$$

$$y_2(t) = -5y_2(t) - 6y_1(t)$$

$$y_1(0) = 1$$

$$y_2(0) = \alpha$$

Se debe resolver el IVP $\mathbf{y}'(t) = J \mathbf{y}(t)$, con condición inicial $\mathbf{y}(0) = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}$. Se debe escoger un ODE Solver estable.

- \blacksquare Usando un método de búsqueda de ceros, se encontrará α_k , tal que $F(\alpha_k)=0.$
- Considerar el método de la bisección con intervalo inicial [a,b]=[-5,40]. ¿Por qué?

- Se ha determinado que F(31.486) = 0.
- Al encontrar una condición correcta para $y_2(0)$ se puede reconstruir numéricamente la función y(x).

Diferencias Finitas

Reconstruir y(x) desde valores puntuales $y(x_i)$, donde en general lo único que se tiene es una estimación de $y(x_i)$, llamada y_i y valores conocidos en los bordes $y(a) = y_1 = k_1$ y $y(b) = y_2 = k_2$.

¿Cómo se puede usar y_i si es lo que se quiere encontrar?

Fórmulas de Diferencias Finitas

Considerar una función f(x). Por definición, la derivada de f(x) en el valor x es:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

siempre que el límite exista.

Según el Teorema de Taylor, si una función es de clase \mathbb{C}^2 , entonces:

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(c)$$

donde c está entre x y x+h. Reordenando términos, se deduce la primera fórmula de diferencias finitas.

Fórmula de Diferencias Adelantadas de dos puntos (Forward Difference)

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(c)$$

donde c está entre x y x + h.

- \blacksquare Se usará la aproximación $f'(x) pprox \frac{f(x+h) f(x)}{h}$
- Forward Difference es un método de primer orden para aproximar la derivada de una función, debido a que el término de error es $\mathcal{O}(h)$.

Fórmulas de Diferencias Finitas

Análogamente, usando el Teorema de Taylor sobre una función de clase ${\cal C}^2$ se tiene:

$$f(x - h) = f(x) - h f'(x) + \frac{h^2}{2} f''(c)$$

Reordenando términos, se obtiene otra fórmula de diferencias finitas:

Fórmula de Diferencias Atrasadas de dos puntos (Backward Difference)

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2}f''(c)$$

donde c está entre x - h y x.

- \blacksquare Se usará la aproximación $f'(x) pprox \dfrac{f(x) f(x-h)}{h}$
- Backward Difference es un método de primer orden. El término de error es $\mathcal{O}(h)$.

Fórmulas de Diferencias Finitas

Una aproximación de segundo orden puede obtenerse usando el Teorema de Taylor. Considerar f(x), función de clase C^3 , entonces se tienen las ecuaciones:

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(c_1)$$
$$f(x-h) = f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(c_2)$$

$$con x - h < c_2 < x < c_1 < x + h.$$

Restando ambas ecuaciones y reordenando se obtiene una fórmula de tres puntos para la primera derivada con un término de error explícito:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{12}f'''(c_1) - \frac{h^2}{12}f'''(c_2)$$

El **Teorema Generalizado del Valor Intermedio** permite juntar los términos de error.

Fórmula de Diferencias Centradas de tres puntos (Central Difference)

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(c)$$

donde c está entre x - h y x + h.

- Se usará la aproximación $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$
- \blacksquare Central Difference es un método de segundo orden. El término de error es $\mathcal{O}(h^2).$

Una fórmula para la segunda derivada puede obtenerse usando las expansiones de Taylor:

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + \frac{h^4}{24} f^{(4)}(c_1)$$

$$f(x-h) = f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) + \frac{h^4}{24} f^{(4)}(c_2)$$

donde f(x) es de clase C^4 y $x - h < c_2 < x < c_1 < x + h$.

Sumando ambos términos, se elimina el término de la primera derivada y se obtiene:

$$f(x+h) + f(x-h) - 2f(x) = h^2 f''(x) + \frac{h^4}{24} f^{(4)}(c_1) + \frac{h^4}{24} f^{(4)}(c_2)$$

Usando el **Teorema Generalizado del Valor Intermedio** para combinar errores y reordenando se obtiene una fórmula para la segunda derivada.

Fórmula de Diferencias Centradas de tres puntos para la segunda derivada

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{h^2}{12}f^{(4)}(c)$$

donde c está entre x - h y x + h.

- \blacksquare Se usará la aproximación $f''(x) \approx \frac{f(x+h) 2\,f(x) + f(x-h)}{h^2}$
- Esta aproximación es de segundo orden. El término de error es $\mathcal{O}(h^2)$.

Fórmulas de Diferencias Finitas: Resumen

En resumen, se tiene las siguientes aproximaciones para calcular las derivadas:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \qquad \qquad \text{Forward Difference} \qquad \mathcal{O}(h)$$

$$f'(x) \approx \frac{f(x) - f(x-h)}{h} \qquad \qquad \text{Backward Difference} \quad \mathcal{O}(h)$$

$$f'(x) pprox rac{f(x+h) - f(x-h)}{2h}$$
 Central Difference $\mathcal{O}(h^2)$

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \qquad \mathcal{O}(h^2)$$

El Método de Diferencias Finitas establece condiciones que deben cumplir los puntos y_i , al usar estas aproximaciones.

Ejemplo: Considerar el BVP:

$$y''(x) = -5y'(x) - 6y(x)$$

 $y(0) = 1$
 $y(1) = 3$

Resolver, usando el Método de Diferencias Finitas.

- Considerar $y_i \approx y(x_i)$, con $x_i = \frac{i}{n}(1-0) = \frac{i}{n}$.
- Se conocen los valores en la frontera, por lo tanto: $y_0 = 1$ y $y_n = 3$.
- Para 0 < i < n, se satisface la Ecuación Diferencial Ordinaria, esto es:

$$y''(x_i) = -5y'(x_i) - 6y(x_i)$$

Se usarán las siguientes aproximaciones para la primera y segunda derivada:

$$y'(x_i) \approx \frac{y(x_i + h) - y(x_i)}{h} = \frac{y_{i+1} - y_i}{h}$$
$$y''(x_i) \approx \frac{y(x_i + h) - 2y(x_i) + y(x_i - h)}{h^2} = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

 $con h = x_{i+1} - x_i.$

Usando las consideraciones anteriores, se tienen las ecuaciones:

$$i = 0 y_0 = 1$$

$$i = 1 \frac{y_2 - 2y_1 + y_0}{h^2} = -5\frac{y_2 - y_1}{h} - 6y_1$$

$$i = 2 \frac{y_3 - 2y_2 + y_1}{h^2} = -5\frac{y_3 - y_2}{h} - 6y_2$$

$$\vdots$$

$$i = n - 1 \frac{y_n - 2y_{n-1} + y_n}{h^2} = -5\frac{y_n - y_{n-1}}{h} - 6y_{n-1}$$

$$i = n y_n = 3$$

29 / 37

Considerar las n-1 ecuaciones de los casos $i=1,2,\ldots,n-1$. Multiplicando por h^2 y agrupando términos, se tiene:

$$i = 1 y_0 + (-2 - 5h + 6h^2)y_1 + (1 + 5h)y_2 = 0$$

$$i = 2 y_1 + (-2 - 5h + 6h^2)y_2 + (1 + 5h)y_3 = 0$$

$$i = 3 y_2 + (-2 - 5h + 6h^2)y_3 + (1 + 5h)y_4 = 0$$

$$\vdots$$

$$i = n - 1 y_{n-2} + (-2 - 5h + 6h^2)y_{n-1} + (1 + 5h)y_n = 0$$

¿Cómo se pueden determinar los valores de las n-1 incógnitas?

Considerar $\gamma=-2-5\,h+6\,h^2$ y $\delta=1+5h$. Las n-1 ecuaciones pueden expresarse matricialmente de la siguiente forma:

$$\begin{bmatrix} \gamma & \delta & & & & \\ 1 & \gamma & \delta & & & \\ & 1 & \gamma & \delta & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & \gamma & \delta \\ & & & & 1 & \gamma \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} -y_0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ -\delta y_n \end{bmatrix}$$

Preguntas:

- \blacksquare ¿Cómo se pueden encontrar los valores y_1, y_2, \dots, y_{n-1} ?
- **Q**ué representan los valores y_1, y_2, \dots, y_{n-1} encontrados?

Diferencias Finitas BVPs no lineales

Considerar el BVP no lineal:

$$y''(x) = y^2$$
$$y(0) = 1$$
$$y(1) = 2$$

¿Cómo pueden utilizarse las fórmulas de Diferencias Finitas para encontrar numéricamente la función y(x)?

Diferencias Finitas BVPs no lineales

Usando la fórmula de segundo orden, para la segunda derivada se tienen las siguientes n-1 ecuaciones, expresadas matricialmente como:

$$\begin{bmatrix} y_0 - 2y_1 + y_2 - h^2 y_1^2 \\ y_1 - 2y_2 + y_3 - h^2 y_2^2 \\ y_2 - 2y_3 + y_4 - h^2 y_3^2 \\ \vdots \\ y_{n-2} - 2y_{n-1} + y_n - h^2 y_{n-1}^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

¿Cómo pueden encontrarse los valores y_1, y_2, \dots, y_{n-1} en este caso?

Problemas de Valor Frontera

Preguntas:

- ¿Podría usarse otra aproximación para las derivadas en Diferencias Finitas? ¿Qué cambiaría?
- ¿Cómo se podrían obtener fórmulas de diferencias finitas para la tercera o cuarta derivada? ¿Qué orden tendrían estas fórmulas?
- ¿Qué ocurre si se tiene una relación no-lineal de y''(x) con el Método del Disparo?, i.e. F(x,y(x),y'(x),y''(x))=0, $y(0)=c_0$ y $y(1)=c_1$?
- ¿Se puede utilizar RK4 para resolver un BVP?
- ¿Se podría utilizar FPI en el Método del Disparo?
- ¿Cómo se podría resolver un problema de cuarto orden? Donde se proveen condiciones de borde de la función y de sus derivadas?
- ¿Cómo queda el sistema de ecuaciones lineales de Diferencias Finitas cuando h se reduce?

Referencias

Numerical Analysis, Timothy Sauer, Second Edition, Pearson, 2012. Chapter 5: Numerical Differentiation and Integration.

Numerical Analysis, Timothy Sauer, Second Edition, Pearson, 2012. Chapter 7: Boundary Value Problems.