Probability - Lecture notes - Unit 01

Events and outcomes

01 Theory

B Events and outcomes – informally

- An **event** is a *description* of something that can happen.
- An **outcome** is a *complete description* of something that can happen.

All outcomes are events. An event is usually a *partial* description. Outcomes are events given with a *complete* description.

Here 'complete' and 'partial' are within the context of the probability model.

- A It can be misleading to say that an 'outcome' is an 'observation'.
 - 'Observations' occur in the *real world*, while 'outcomes' occur in the *model*.
 - To the extent the model is a good one, and the observation conveys *complete* information, we can say 'outcome' for the observation.

Notice:

• Decause outcomes are *complete*, no two distinct outcomes could *actually happen* in a run of the experiment being modeled.

When an event happens, the *fact* that it has happened constitutes **information**.

B Events and outcomes – mathematically

- The **sample space** is the *set of possible outcomes*, so it is the set of the complete descriptions of everything that can happen.
- An **event** is a *subset* of the sample space, so it is a *collection of outcomes*.
- For mathematicians: some "wild" subsets are not *valid* events. Problems with infinity and the continuum...

Notation

- Write S for the set of possible outcomes, $s \in S$ for a single outcome in S.
- Write $A, B, C, \dots \subset S$ or $A_1, A_2, A_3, \dots \subset S$ for some events, subsets of S.
- Write $\mathcal F$ for the collection of all events. This is frequently a *huge* set!
- Write |A| for the **cardinality** or size of a set A, i.e. the *number of elements it contains*.

Using this notation, we can consider an *outcome itself as an event* by considering the "singleton" subset $\{\omega\} \subset S$ which contains that outcome alone.

02 Illustration

≡ Example - Coin flipping

Flip a fair coin two times and record both results.

- Outcomes: sequences, like HH or TH.
- *Sample space:* all possible sequences, i.e. the set $S = \{HH, HT, TH, TT\}$.
- *Events:* for example:
 - $A = \{HH, HT\} =$ "first was heads"
 - $B = \{HT, TH\} =$ "exactly one heads"
 - $C = \{HT, TH, HH\} =$ "at least one heads"

With this setup, we may combine events in various ways to generate other events:

- *Complex events:* for example:
 - $A \cap B = \{HT\}$, or in words:

"first was heads" AND "exactly one heads" = "heads-then-tails"

Notice that the last one is a *complete description*, namely the *outcome HT*.

• $A \cup B = \{HH, HT, TH\}$, or in words:

"first was heads" OR "exactly one heads" = "starts with heads, else it's tails-then-heads"

Exercise - Coin flipping: counting subsets

Flip a fair coin five times and record the results.

How many elements are in the sample space? (How big is S?)

How many events are there? (How big is \mathcal{F} ?)

Solution

03 Theory

New events from old

Given two events *A* and *B*, we can form new events using set operations:

$$A \cup B \quad \longleftrightarrow \quad ext{``event A OR event B''}$$
 $A \cap B \quad \longleftrightarrow \quad ext{``event A AND event B''}$ $A^c \quad \longleftrightarrow \quad \mathbf{not} \; \mathrm{event} \; A$

We also use these terms for events A and B:

- They are **mutually exclusive** when $A \cap B = \emptyset$, that is, they have *no elements in common*.
- They are **collectively exhaustive** $A \cup B = S$, that is, when they jointly *cover all possible outcomes*.

• In probability texts, sometimes $A \cap B$ is written " $A \cdot B$ " or even (frequently!) "AB".

Rules for sets

Algebraic rules

- Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$. Analogous to (A + B) + C = A + (B + C).
- Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Analogous to A(B + C) = AB + AC.

De Morgan's Laws

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

In other words: you can distribute " c " but must simultaneously do a switch $\cap \leftrightarrow \cup$.

Probability models

04 Theory

Axioms of probability

A **probability measure** is a function $P: \mathcal{F} \to \mathbb{R}$ satisfying:

Kolmogorov Axioms:

- Axiom 1: P[A] ≥ 0 for every event A (probabilities are not negative!)
- **Axiom 2:** P[S] = 1 (probability of "anything" happening is 1)
- **Axiom 3:** additivity for any *countable collection* of *mutually exclusive* events:

$$P[A_1\cup A_2\cup A_3\cup\cdots]=P[A_1]+P[A_2]+P[A_3]+\cdots$$
 when: $A_i\cap A_j=\emptyset$ for all $i
eq j$

• 1 Notation: we write P[A] instead of P(A), even though P is a function, to emphasize the fact that A is a set.

₽ Probability model

A **probability model** or **probability space** consists of a triple (S, \mathcal{F}, P) :

- S the sample space
- ullet ${\mathcal F}$ the set of valid events, where every $A\in {\mathcal F}$ satisfies $A\subset S$
- $P: \mathcal{F} \to \mathbb{R}$ a probability measure satisfying the Kolmogorov Axioms

Solution Finitely many exclusive events

It is a consequence of the Kolmogorov Axioms that additivity also works for finite collections of mutually exclusive events:

$$P[A \cup B] = P[A] + P[B]$$

$$P[A_1 \cup \cdots \cup A_n] = P[A_1] + \cdots + P[A_n]$$

🖺 Inferences from Kolmogorov

A probability measure satisfies these rules.

They can be deduced from the Kolmogorov Axioms.

• **Negation:** Can you find $P[A^c]$ but not P[A]? Use negation:

$$P[A] = 1 - P[A^c]$$

• Monotonicity: Probabilities grow when outcomes are added:

$$A \subset B \gg P[A] \leq P[B]$$

• Inclusion-Exclusion: A trick for resolving unions:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

(even when A and B are not exclusive!)

☐ Inclusion-Exclusion

The principle of inclusion-exclusion generalizes to three events:

$$P[A \cup B \cup C] =$$

$$P[A] + P[B] + P[C] - P[A \cap B] - P[A \cap C] - P[B \cap C] + P[A \cap B \cap C]$$

The same pattern works for any number of events!

The pattern goes: "include singles" then "exclude doubles" then "include triples" then ...

Include, exclude, include, exclude, include, ...

05 Illustration

≡ Example - Lucia is Host or Player

The professor chooses three students at random for a game in a class of 40, one to be Host, one to be Player, one to be Judge. What is the probability that Lucia is either Host or Player?

Solution

- 1. **□** Set up the probability model.
 - Label the students 1 to 40. Write *L* for Lucia's number.
 - Outcomes: assignments such as (H, P, J) = (2, 5, 8)These are ordered triples with distinct entries in 1, 2, ..., 40.
 - Sample space: S is the collection of all such distinct triples
 - *Events:* any subset of *S*
 - *Probability measure*: assume all outcomes are equally likely, so

$$P[(i,j,k)] = P[(r,l,p)]$$
 for all i, j, k, r, l, p

- In total there are $40 \cdot 39 \cdot 38$ triples of distinct numbers.
- Therefore $P[(i,j,k)] = \frac{1}{40\cdot 39\cdot 38}$ for any *specific* outcome (i,j,k).
- Therefore $P[A] = \frac{|A|}{40\cdot 39\cdot 38}$ for any event A. (Recall |A| is the *number* of outcomes in A.)
- 2.

 ⇒ Define the desired event.
 - Want to find *P*["Lucia is Host or Player"]
 - Define A = "Lucia is Host" and B = "Lucia is Player". Thus:

$$A = ig\{(L,j,k) \mid ext{any } j,kig\}, \qquad B = ig\{(i,L,k) \mid ext{any } i,kig\}$$

- So we seek $P[A \cup B]$.
- 3. ₩ Compute the desired probability.
 - Importantly, $A\cap B=\emptyset$ (mutually exclusive). There are no outcomes in S in which Lucia is both Host and Player.
 - By *additivity*, we infer $P[A \cup B] = P[A] + P[B]$.
 - Now compute P[A].
 - There are $39 \cdot 38$ ways to choose j and k from the students besides Lucia.
 - Therefore $|A| = 39 \cdot 38$.
 - Therefore:

$$P[A] \quad \gg \gg \quad \frac{|A|}{40 \cdot 39 \cdot 38} \quad \gg \gg \quad \frac{39 \cdot 38}{40 \cdot 39 \cdot 38} \quad \gg \gg \quad \frac{1}{40}$$

- Now compute P[B]. It is similar: $P[B] = \frac{1}{40}$.
- Finally compute that $P[A] + P[B] = \frac{1}{20}$, so the answer is:

$$P[A \cup B] \gg P[A] + P[B] \gg \frac{1}{20}$$

≡ Example - iPhones and iPads

At Mr. Jefferson's University, 25% of students have an iPhone, 30% have an iPad, and 60% have neither.

What is the probability that a randomly chosen student has *some* iProduct? (Q1)

What about both? (Q2)

=Solution

- 1. ≡ Set up the probability model.
 - A student is chosen at random: an *outcome* is the chosen student.
 - *Sample space S* is the set of all students.
 - Write O = "has iPhone" and A = "has iPad" concerning the chosen student.
 - All students are equally likely to be chosen: therefore $P[E] = \frac{|E|}{|S|}$ for any event E.
 - Therefore P[O] = 0.25 and P[A] = 0.30.
 - Furthermore, $P[O^cA^c]=0.60$. This means 60% have "not iPhone AND not iPad".
- $2. \equiv$ Define the desired event.

- Q1: desired event = $O \cup A$
- Q2: desired event = OA
- 3. **□** Compute the probabilities.
 - We do not believe *O* and *A* are exclusive.
 - Try: apply inclusion-exclusion:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

- We know P[O] = 0.25 and P[A] = 0.30. So this formula, with given data, RELATES Q1 and Q2.
- Notice the complements in O^cA^c and try *Negation*.
- Negation:

$$P[(OA)^c] = 1 - P[OA]$$

DOESN'T HELP.

• Try again: *Negation:*

$$P[(O^c A^c)^c] = 1 - P[O^c A^c]$$

• And De Morgan (or a Venn diagram!):

$$(O^cA^c)^c \gg \gg O \cup A$$

• Therefore:

$$P[O \cup A] \gg \gg P[(O^c A^c)^c]$$

$$\gg \gg 1 - P[O^c A^c] \gg \gg 1 - 0.6 = 0.4$$

- We have found Q1: $P[O \cup A] = 0.40$.
- Applying the RELATION from inclusion-exclusion, we get Q2:

$$P[O \cup A] = P[O] + P[A] - P[OA]$$

$$\gg \gg 0.40 = 0.25 + 0.30 - P[OA]$$

$$\gg \gg P[OA] = 0.15$$

Conditional probability

06 Theory

⊞ Conditional probability

The **conditional probability** of "B given A" is defined by:

$$P[B \mid A] = \frac{P[B \cap A]}{P[A]}$$

This conditional probability $P[B \mid A]$ represents the probability of event B taking place *given the assumption* that A took place. (All within the given probability model.)

By letting the actuality of event *A* be taken as a fixed hypothesis, we can define a *conditional probability measure* by plugging events into the slot of *B*:

$$P[-\mid A] = \frac{P[-\cap A]}{P[A]}$$

It is possible to verify each of the Kolmogorov axioms for this function, and therefore $P[-\mid A]$ itself defines a bona fide *probability measure*.

Conditioning

What does it really mean?

Conceptually, $P[B \mid A]$ corresponds to *creating a new experiment* in which we run the old experiment and record data *only those times that A happened*. Or, it corresponds to finding ourselves with *knowledge* or *data* that A happened, and we seek our best estimates of the likelihoods of other events, based on our existing model and the actuality of A.

Mathematically, $P[B \mid A]$ corresponds to *restricting* the probability function to outcomes in A, and *renormalizing* the values (dividing by p[A]) so that the total probability of all the outcomes (in A) is now 1.

The definition of conditional probability can also be turned around and reinterpreted:

₩ Multiplication rule

$$P[AB] = P[A] \cdot P[B \mid A]$$

"The probability of A AND B equals the probability of A times the probability of B-given-A."

This principle generalizes to any events in sequence:

⊞ Generalized multiplication rule

$$P[A_1A_2A_3] = P[A_1] \cdot P[A_2 \mid A_1] \cdot P[A_3 \mid A_1A_2]$$
 $P[A_1 \cdots A_n] = P[A_1] \cdot P[A_2 \mid A_1] \cdot P[A_3 \mid A_1A_2] \cdot \cdots \cdot P[A_n \mid A_1 \cdots A_{n-1}]$

The generalized rule can be verified like this. First substitute A_2 for B and A_1 for A in the original rule. Now repeat, substituting A_3 for B and A_1A_2 for A in the original rule, and combine with the first one, and you find the rule for triples. Repeat again with A_4 and $A_1A_2A_3$, combine with the triples, and you get quadruples.

07 Illustration

Exercise - Simplifying conditionals

Let $A \subset B$. Simplify the following values:

$$P[A \mid B], \quad P[A \mid B^c], \quad P[B \mid A], \quad P[B \mid A^c]$$

Solution

≡ Coin flipping: at least 2 heads

Flip a fair coin 4 times and record the outcomes as sequences, like *HHTH*.

Let $A_{\geq 2}$ be the event that there are at least two heads, and $A_{\geq 1}$ the event that there is at least one heads.

First let's calculate $P[A_{\geq 2}]$.

Define A_2 , the event that there were exactly 2 heads, and A_3 , the event of exactly 3, and A_4 the event of exactly 4. These events are exclusive, so:

$$P[A_{\geq 2}] = P[A_2 \cup A_3 \cup A_4] \quad \gg \gg \quad P[A_2] + P[A_3] + P[A_4]$$

Each term on the right can be calculated by counting:

$$P[A_2] = rac{|A_2|}{2^4} \quad \gg \gg \quad rac{{4 \choose 2}}{16} \quad \gg \gg \quad rac{6}{16}$$

$$P[A_3] = \frac{|A_3|}{2^4} \quad \gg \gg \quad \frac{{4 \choose 1}}{16} \quad \gg \gg \quad \frac{4}{16}$$

$$P[A_4] = \frac{|A_4|}{2^4} \gg \gg \frac{\binom{4}{0}}{16} \gg \gg \frac{1}{16}$$

Therefore, $P[A_{\geq 2}] = \frac{11}{16}$.

Now suppose we find out that "at least one heads definitely came up". (Meaning that we know $A_{\geq 1}$.) For example, our friend is running the experiment and tells us this fact about the outcome.

Now what is our estimate of likelihood of $A_{\geq 2}$?

The formula for conditioning gives:

$$P[A_{\geq 2} \mid A_{\geq 1}] = \frac{P[A_{\geq 2} \cap A_{\geq 1}]}{P[A_{>1}]}$$

Now $A_{\geq 2}\cap A_{\geq 1}=A_{\geq 2}$. (Any outcome with at least two heads automatically has at least one heads.) We already found that $P[A_{\geq 2}]=\frac{11}{16}$. To compute $P[A_{\geq 1}]$ we simply add the probability $P[A_1]$, which is $\frac{4}{16}$, to get $P[A_{\geq 1}]=\frac{15}{16}$.

Therefore:

$$P[A_{\geq 2} \mid A_{\geq 1}] = rac{11/16}{15/16} \quad \gg \gg \quad rac{11}{15}$$

≡ Example - Flip a coin, then roll dice

Flip a coin. If the outcome is heads, roll two dice and add the numbers. If the outcome is tails, roll a single die and take that number. What is the probability of getting a tails AND a number at least 3?

≡Solution

This "two-stage" experiment lends itself to a solution using the multiplication rule for conditional probability.

$1. \equiv$ Label the events of interest.

- Let *H* and *T* be the events that the coin showed heads and tails, respectively.
- Let A_1, \ldots, A_{12} be the events that the final number is $1, \ldots, 12$, respectively.

- The value we seek is $P[TA_{\geq 3}]$.
- 2.
 Observe known (conditional) probabilities.
 - We know that P[H] = 0.5 and P[T] = 0.5.
 - We know that $P[A_5 \mid T] = \frac{1}{6}$, for example, or that $P[A_1 \mid H] = \frac{1}{12}$.
- 3. ➡ Apply "multiplication" rule.
 - This rule gives:

$$P[TA_{\geq 3}] = P[T] \cdot P[A_{\geq 3} \mid T]$$

- We know P[T] = 0.5 and can see by counting that $P[A_{\geq 3} \mid T] = 0.5$.
- Therefore $P[TA_{\geq 3}] = 0.25$.

≡ Multiplication - draw two cards

Two cards are drawn from a standard deck (without replacement).

What is the probability that the first is a 3, and the second is a 4?

=Solution

This "two-stage" experiment lends itself to a solution using the multiplication rule for conditional probability.

- $1. \equiv \text{Label events}.$
 - Write T for the event that the first card is a 3
 - Write *F* for the event that the second card is a 4.
 - We seek P[TF].
- 2. = Write down knowns.
 - We know $P[T] = \frac{4}{52}$. (It does not depend on the second draw.)
 - Easily find $P[F \mid T]$.
 - If the first is a 3, then there are four 4s remaining and 51 cards.
 - So $P[F \mid T] = \frac{4}{51}$.
- $3. \equiv$ Apply multiplication rule.
 - Multiplication rule:

$$P[TF] = P[T] \cdot P[F \mid T]$$

$$P[TF] = \frac{4}{52} \cdot \frac{4}{51} \gg \gg \frac{4}{13 \cdot 51}$$

• Therefore $P[TF] = \frac{4}{663}$