NEMATIC MATERIALS IN CURVES SPACES

A Dissertation
Presented to
The Academic Faculty

By

Perry W. Ellis

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Georgia Institute of Technology

Georgia Institute of Technology

Summer/Fall 2017

NEMATIC MATERIALS IN CURVES SPACES

Approved by:

Dr. Burdell, Advisor School of Myths Georgia Institute of Technology

Dr. Two School of Mechanical Engineering Georgia Institute of Technology

Dr. Three School of Electrical Engineering Georgia Institute of Technology Dr. Four School of Computer Science Georgia Institute of Technology

Dr. Five School of Public Policy Georgia Institute of Technology

Dr. Six School of Nuclear Engineering Georgia Institute of Technology

Date Approved: January 11, 2000

A great quote to start the thesis

George P. Burdell

ACKNOWLEDGEMENTS

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

TABLE OF CONTENTS

Acknowledgments			
List of	Tables		ix
List of	Figures		X
Chapte	r 1: Int	roduction	1
Chapte	er 2: Ac	tive nematics on the surface of a torus	2
2.1	Introd	uction	3
2.2	Makin	ag active nematic toroids	3
	2.2.1	Active nematic formulation	3
	2.2.2	Flat sample confirmation	3
	2.2.3	Making toroidal droplets	3
2.3	Imagii	ng active nematic toroids	3
	2.3.1	Confocal setup and parameters	3
	2.3.2	Passing confocal data into MATLAB	3
2.4	Deterr	mining director and defects	3
	2.4.1	Coherence-enhanced diffusion filtering	3
	2.4.2	Calculating the director	3

		2.4.3	Finding defect location and charge	3
		2.4.4	Edge charge	3
	2.5	Measur	ring surface curvature	3
	2.6	Defect	number and curvature	3
		2.6.1	Average defect density	3
		2.6.2	Defect number distributions	3
	2.7	Defect	charge and curvature	3
	2.8	Defect	orientation and curvature	3
	2.9	Compa	rison with numerical calculations	3
	2.10	Conclu	sions	3
Cł	napter	· 3: Hoi	meotropic nematics confined in toroids and bent capillaries	4
	3.1	Inrodu	etion	5
	3.2			
		Escape	d radial and twisted escaped radial capillaries	5
		Escape 3.2.1	d radial and twisted escaped radial capillaries	
	3.3	3.2.1	-	5
	3.3	3.2.1 Nemati	Intensity profile and ratio	5
	3.3	3.2.1 Nemati	Intensity profile and ratio	5 5 5
	3.3	3.2.1 Nemati	Intensity profile and ratio	5 5 5
	3.3	3.2.1 Nemati 3.3.1 3.3.2 3.3.3	Intensity profile and ratio	5 5 5 5 5
		3.2.1 Nemati 3.3.1 3.3.2 3.3.3	Intensity profile and ratio	5 5 5 5 5
		3.2.1 Nemati 3.3.1 3.3.2 3.3.3 Nemati	Intensity profile and ratio	5 5 5 5 5 5 5

	3.4.4	Comparison with toroids	5
3.5	3.5 Simulating polarized optical microscopy textures for twisted escape director configurations		
	3.5.1	Jones Calculus	5
	3.5.2	Validation using spherical droplets	5
	3.5.3	Validation using planar-anchored nematic toroids	5
	3.5.4	Comparison with homeoetropic-anchored nematic toroids	5
	3.5.5	Intensity ratio as a function of twist parameter	5
3.6	Conclu	usions	5
Chapte	r 4: Ho	omeotropic nematics confined in capillary bridges	6
4.1	Introd	uction	ϵ
4.2	Makin	ng capillary bridges	ϵ
4.3	Defect	t structure transitions	ϵ
4.4	Measu	aring defect conformation using fluorescence microscopy	ϵ
4.5	Compa	arison with numerical calculations	6
4.6	Conclu	usions	ϵ
Chapte	r 5: Co	nclusion	7
Append	lix A: S	Something Here?	ç
Referer	ices .		ç
Vito			16

LIST OF TABLES

LIST OF FIGURES

SUMMARY

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

CHAPTER 1 INTRODUCTION

ACTIVE NEMATICS ON THE SURFACE OF A TORUS

2.2	Making active nematic toroids
2.2.1	Active nematic formulation
2.2.2	Flat sample confirmation
2.2.3	Making toroidal droplets
2.3	Imaging active nematic toroids
2.3.1	Confocal setup and parameters
2.3.2	Passing confocal data into MATLAB
2.4	Determining director and defects
2.4.1	Coherence-enhanced diffusion filtering
2.4.2	Calculating the director
2.4.3	Finding defect location and charge
2.4.4	Edge charge
2.5	Measuring surface curvature
2.6	Defect number and curvature
2.6.1	Average defect density
2.6.2	Defect number distributions
2.7	Defect charge and curvature 3
2.8	Defect orientation and curvature

2.1 Introduction

HOMEOTROPIC NEMATICS CONFINED IN TOROIDS AND BENT CAPILLARIES

3.1 I	nroduction
3.2 H	Escaped radial and twisted escaped radial capillaries
3.2.1	Intensity profile and ratio
3.3 N	Nematic liquid crystals in toroids
3.3.1	Measuring the intensity profile and aspect ratio
3.3.2	Large aspect ratio toroids
3.3.3	Small aspect ratio toroids
3.4 N	Nematic liquid crystals in bent capillaries
3.4.1	Making bent capillaries
3.4.2	Measuring planar curvature
3.4.3	Measuring the intensity profile
3.4.4	Comparison with toroids
3.5 S	Simulating polarized optical microscopy textures for twisted escaped radial di
r	rector configurations
3.5.1	Jones Calculus
3.5.2	Validation using spherical droplets

3.5.3 Validation using planar-anchored nematic toroids

3.5.5 Intensity ratio as a function of twist parameter

3.5.4 Comparison with homeoetropic-anchored nematic toroids

HOMEOTROPIC NEMATICS CONFINED IN CAPILLARY BRIDGES

- 4.1 Introduction
- 4.2 Making capillary bridges
- 4.3 Defect structure transitions
- 4.4 Measuring defect conformation using fluorescence microscopy
- 4.5 Comparison with numerical calculations
- 4.6 Conclusions

CONCLUSION

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Appendices

APPENDIX A SOMETHING HERE?

VITA

Vita may be provided by doctoral students only. The length of the vita is preferably one page. It may include the place of birth and should be written in third person. This vita is similar to the author biography found on book jackets.