Using Papadakis covariates for nearest neighbor analysis

Kevin Wright 2017-11-29

R setup

Papadakis (1937) believed that traditional blocking in field experiments did not adequately represent the patchiness of soil fertility patterns and he instead proposed adjusting the yield of each plot by the performance of the neighboring plots.

If there is heterogeneity in the field that is of a scale smaller than the block (but larger than the individual plots) then adjacent plots will be positively correlated and this information about the neighboring plots can be used to reduce the effect of spatial heterogeneity and increase the accuracy of the treatment effects.

The Papadakis method is a nearest neighbor method that uses a residual covariate in the analysis. In essence, the method follows the following steps.

- 1. Fit a treatment model and calculate the residuals from the model.
- 2. Calculate covariates that are the average of the neighboring residuals.
- 3. Fit a model with additional covariate terms for the residuals.

The left-right (LR) covariate for the (i,j)th plot is the average of the residuals for the plots immediately to the left and right of the (i,j)th plot. If one of these neighbors is missing, then the covariate is constructed from the single remaining neighboring residual. Border plots use only one neighboring residual. The up-down (UD) covariate is similarly constructed from residuals for plots immediately up or down from the (i,j)th plot.

```
papcov <- function(resid,x,y){</pre>
  # Make sure x and y are numeric
  if(is.factor(x)) x <- as.numeric(as.character(x))</pre>
  if(is.factor(y)) y <- as.numeric(as.character(y))</pre>
  xv <- paste(x,v,sep=":")</pre>
  # Average neighboring residuals in up/down direction
  xym1 <- paste(x,y-1,sep=":")</pre>
  xyp1 <- paste(x,y+1,sep=":")</pre>
  rm1 <- resid[match(xym1,xy,NA)]
  rp1 <- resid[match(xyp1,xy,NA)]
  ud <- (rm1+rp1)/2
  # If only one neighboring residual is available, then just use it
  ud <- ifelse(is.na(ud) & !is.na(rm1),rm1,ud)
  ud <- ifelse(is.na(ud) & !is.na(rp1),rp1,ud)
  # Average neighboring residuals in left/right direction
  xm1y \leftarrow paste(x-1,y,sep=":")
  xp1y <- paste(x+1,y,sep=":")</pre>
  cm1 <- resid[match(xm1y,xy,NA)]</pre>
  cp1 <- resid[match(xp1y,xy,NA)]</pre>
  lr \leftarrow (cm1+cp1)/2
```

```
# If only one neighboring residual is available, then just use it
lr <- ifelse(is.na(lr) & !is.na(cm1),cm1,lr)
lr <- ifelse(is.na(lr) & !is.na(cp1),cp1,lr)

return(list(LR=lr, UD=ud))
}</pre>
```

Reproduce Hinz 1987 case 2

Hinz (1987) used the Papadakis technique to analyze a field experiment of tobacco.

```
library("agridat")
data(federer.tobacco)
dat <- federer.tobacco
dat <- transform(dat, height=height-600) # For simplicity
# Model 1 - RCB
m1 <- aov(height ~ factor(block) + factor(dose), dat)</pre>
anova(m1)
## Analysis of Variance Table
##
## Response: height
                 Df Sum Sq Mean Sq F value Pr(>F)
## factor(block) 7 388315
                              55474 1.8352 0.1056
## factor(dose)
                 6 273875
                              45646 1.5100 0.1985
## Residuals
                 42 1269586
                              30228
# Model 2 - Row/Col as class variables
m2 <- aov(height ~ factor(block) + factor(dose) + factor(row), dat)</pre>
anova(m2)
## Analysis of Variance Table
## Response: height
                Df Sum Sq Mean Sq F value
## factor(block) 7 388315
                              55474 7.5455 1.355e-05 ***
## factor(dose) 6 273875
                              45646 6.2088 0.0001521 ***
## factor(row) 6 1004920 167487 22.7816 6.767e-11 ***
## Residuals
                 36 264666
                               7352
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Model 3 - Two-step Papadakis
m3 <- aov(height ~ factor(dose), dat)
dat <- cbind(dat, papcov(m3$resid, dat$block, dat$row))</pre>
m4 <- aov(height ~ factor(dose) + LR + UD, data=dat)
anova(m4)
```

Analysis of Variance Table

```
##
## Response: height
              Df Sum Sq Mean Sq F value
## factor(dose) 6 273875 45646 3.6857 0.004407 **
## LR
               1 1061352 1061352 85.6998 3.636e-12 ***
## UD
                           14477 1.1689 0.285136
               1
                    14477
## Residuals
             47 582073
                           12385
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Resid MS uses 1 df less to account for covariates. Matches Hinz.
582073 / 46
```

[1] 12653.76

Iterated example as given in Stroup et al, Table 2

Stroup, Baenziger, and Mulitze (1994) used the Papadakis tecnique in an iterative manner.

```
library("agridat")
data(stroup.nin)
dat2 <- stroup.nin
dat2 <- subset(dat2,!is.na(yield))
n.gen <- nlevels(dat2$gen)

# RCB model, ranks match Stroup Table 2, RCB Alliance
m5 <- lm(yield ~ gen -1 + rep, data=dat2)
pred.rcb <- coef(m5)[1:n.gen] # RCB adj means
rev(57-sort(rank(pred.rcb)))</pre>
```

##	genNE86503	genNE87619	genNE86501	genRedland	genCenturk78	genNE83498
##	1	2	3	4	5	6
##	genSiouxland	genNE86606	genArapahoe	genNE87613	genNE86607	genLancer
##	7	8	9	10	11	12
##	genTAM107	genCheyenne	genNE87446	genHomestead	genScout66	genNE83404
##	13	14	15	16	17	18
##	genColt	genNE86509	genNE87513	genLancota	genNE85556	genNE87408
##	19	20	21	22	23	24
##	genBrule	genNE87463	genNE87615	genBuckskin	genNE87403	genNE87522
##	25	26	27	28	29	30
##	genNE87451	genNE86582	${\tt genGage}$	genNorkan	genNE86482	genNE83406
##	31	32	33	34	35	36
##	genKS831374	genNE87457	genNE86507	genVona	genNE87512	genNE87627
##	37	38	39	40	41	42
##	genNE83407	genNE86527	genNE87612	genNE85623	genCentura	genNE83T12
##	43	44	45	46	47	48
##	genNE86T666	genNE87409	genTAM200	genCody	genRoughrider	genNE84557
##	49	50	51	52	53	54
##	genNE87499	genNE83432				
##	55	56				

```
# Initial genotype model (no blocks)
m6 <- lm(yield ~ gen -1, data=dat2)
# Calculate Papadakis covariates
pp <- papcov(resid(m6), dat2$col, dat2$row)
dat2$LR <- pp$LR
dat2$UD <- pp$UD
# Single iteration of Papadakis model
m7 \leftarrow lm(yield \sim gen - 1 + LR + UD, data=dat2)
# Papadakis adjusted means
adjmn <- coef(m7)[1:n.gen]
# Residual = observed - adjusted mean
resid <- dat2$yield - adjmn[match(paste0("gen",dat2$gen),names(adjmn))]
# Now iterate Papadakis method to convergence
iter <- 0
notConv <- TRUE
while(notConv){
  iter <- iter + 1
  # Covariates based on residuals
  pp <- papcov(resid, dat2$col, dat2$row)
  dat2$LR <- pp$LR
  dat2$UD <- pp$UD
  m8 <- lm(yield ~ gen - 1 + LR + UD, data=dat2)
  # Check convergence of adjusted means
  prevmn <- adjmn</pre>
  adjmn <- coef(m8)[1:n.gen]
  tol <- sum((adjmn - prevmn)^2)</pre>
  cat("Iteration: ",iter," tol: ",tol,"\n")
  notConv <- tol > .001
  resid <- dat2$yield - adjmn[match(paste0("gen",dat2$gen),names(adjmn))]
## Iteration: 1 tol: 51.60518
## Iteration: 2 tol: 7.823055
## Iteration: 3 tol: 1.445812
## Iteration: 4 tol: 0.3619413
## Iteration: 5 tol: 0.09555693
## Iteration: 6 tol: 0.02840853
## Iteration: 7 tol: 0.008783593
## Iteration: 8 tol: 0.003297561
## Iteration: 9 tol: 0.001650757
## Iteration: 10 tol: 0.001157637
## Iteration: 11 tol: 0.001000046
## Iteration: 12 tol: 0.0009401906
pred.pap <- adjmn</pre>
# Ranks almost match Stroup et al, Table 2, Alliance, RCB+NNA-PAP
all <- data.frame(rcb=57-rank(pred.rcb), nna=57-rank(pred.pap))
all[order(all$rcb),]
##
                rcb nna
## genNE86503
                 1 14
```

##	genNE87619	2	4
##	genNE86501	3	24
##	genRedland	4	6
##	genCenturk78	5	15
##	genNE83498	6	2
##	genSiouxland	7	28
##	genNE86606	8	11
##	genArapahoe	9	18
##	genNE87613	10	9
##	genNE86607	11	16
##	genLancer	12	35
##	genTAM107	13	37
##	genCheyenne	14	21
##	genNE87446	15	46
##	${\tt genHomestead}$	16	44
##	genScout66	17	13
##	genNE83404	18	23
##	genColt	19	17
##	genNE86509	20	42
##	genNE87513	21	45
##	genLancota	22	49
##	genNE85556	23	3
##	genNE87408	24	36
##	genBrule	25	7
##	genNE87463	26	39
##	genNE87615	27	32
##	genBuckskin	28	1
##	genNE87403	29	53
##	genNE87522	30	52
##	genNE87451	31	33
##	genNE86582	32	48
##	${\tt genGage}$	33	29
##	genNorkan	34	51
##	genNE86482	35	25
##	genNE83406	36	19
##	genKS831374	37	5
##	genNE87457	38	34
##	genNE86507	39	10
##	${\tt genVona}$	40	30
##	genNE87512	41	47
##	genNE87627	42	55
##	genNE83407	43	27
##	genNE86527	44	8
##	genNE87612	45	20
##	genNE85623	46	31
##	genCentura	47	26
##	genNE83T12	48	40
##	genNE86T666	49	56
##	genNE87409	50	12
##	genTAM200	51	54
##	genCody	52	43
##	${\tt genRoughrider}$	53	22
##	genNE84557	54	38
##	genNE87499	55	41

```
# Visually compare the coefficients from the two methods
lims=range(c(pred.rcb,pred.pap))
plot(pred.rcb, pred.pap, xlim=lims, ylim=lims,
     xlab="RCB",ylab="Papadakis",type='n')
text(pred.rcb,pred.pap, substring(names(pred.rcb),4),cex=0.5)
title("Iterated Papadakis vs. RCB")
abline(0,1)
```

Iterated Papadakis vs. RCB

The va-

riety 'Buckskin' has a large adjustment when using the Papadakis method. This makes sense, because Buckskin ended up in the high-yielding part of each of the four reps.

References

Hinz, Paul N. 1987. "Nearest-Neighbor Analysis in Practice." Iowa State Journal of Research 62: 199-217.

Papadakis, J S. 1937. "Méthode Statistique Pour Les Expériences En Champ." Bulletin Institute de L'Ameloration Des Plantes à Salonique 23.

Stroup, Walter, P Stephen Baenziger, and Dieter K Mulitze. 1994. "Removing Spatial Variation from Wheat Yield Trials: A Comparison of Methods." *Crop Science* 86: 62–66.