ME EN 6200 Homework 2 Ryan Dalby

Problem 5
(a) Show a plot of output vs. time, label all axes.

(b) Briefly describe the response based on the input from Part (a) -- what's happening? The response ramps up to approximately 3.5 from t=0 to t=1 then stays at approximately 3.5 from t=1 to t=2. The response finally goes back down to 0 from t=2 to t=3. The response is essentially the same signal as the input signal but amplified by a gain of around 3.5.

(c) Now suppose the input is a unit step instead of the input u(t) shown above. Simulate the response and provide a plot of output vs. time. Label all axes appropriately.

(d) For Part (c), what is the final value?

The final value of the unit step response is 3.61

(e) Rather than get the final value from the plot in Part (c), how else could you have done it?

Since the final value at t=3 is close to the settled value I could have used the final value theorem for u(s)*G(s). I could use this because all the poles for s*u(s)*G(s) = G(s) are in the open left half plane which is because the roots of the denominator of G(s), which is $s^2 + 2s + 10000$, have a negative real part.

(f) Provide print out of your Matlab code (m-file, Simulink model, etc.) to justify how you created your plots.

```
%% ME EN 6200 Homework 2 Ryan Dalby
clear;
close all;
%% Problem 5
omega_n = 100; % Hz natural frequency
zeta = 0.01; % Damping constant
K = 3.6;
G = tf((K*omega_n^2),[1, (2*zeta*omega_n), (omega_n^2)]);
u = Q(t) t.*heaviside(t) - t.*heaviside(t-1) + heaviside(t-1) -
heaviside(t-2) - (t-3).*heaviside(t-2) + (t-3).*heaviside(t-3);
dt = 0.001;
t_vals = 0:dt:3;
% a
figure;
lsim(G,u(t_vals),t_vals);
title('Amplitude vs Time Response for G(s)');
legend('response');
figure;
step(G,3);
title('Amplitude vs Time Unit Step Response for G(s)');
legend('response');
% d
step_response = step(G,3);
fprintf('The final value of the unit step response is
%.2f\n',step_response(end));
```