Task 4: Location-Based Restaurant Analysis

Objective

Perform a geographical and statistical analysis of restaurant locations, cuisines, and ratings using city/locality-wise groupings.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import folium
from folium.plugins import MarkerCluster

# Mount Google Drive
from google.colab import drive
drive.mount('/content/drive')

# Load Dataset from Google Drive
file_path = '/content/drive/My Drive/ML_Internship/resturant_dataset.csv'
df = pd.read_csv(file_path)

# Preview first few rows
df.head()

# Basic view
df[['City', 'Latitude', 'Longitude', 'Aggregate rating', 'Cuisines']].head()

The Mounted at /content/drive
```

		ıg	egate rati	Aggre	ngitude	L	Latitude	City		
ch	Fren	.8	4		1.027535	12	14.565443	Makati City		0
		.5	4		1.014101	12	14.553708	Makati City		1
١,	Seafood	.4 S	4		1.056831	12	14.581404	indaluyong City	Man	2
		.9	4		1.056475	12	14.585318	indaluyong City	Man	3
		.8	4		1.057508	12	14.584450	indaluyong City	Man	4

Step 1: Restaurant Location Mapping (Using Folium)

Step 2: City-wise Analysis of Restaurant Count and Average Rating

```
# Top cities by number of restaurants
top_cities = df['City'].value_counts().nlargest(10)
plt.figure(figsize=(10,5))
sns.barplot(x=top_cities.values, y=top_cities.index)
plt.title('Top 10 Cities by Number of Restaurants')
plt.xlabel('Number of Restaurants')
plt.ylabel('City')
plt.show()
```

