Logic in Computer Science - Example

JJAYCHEN

March 19, 2020

1 Prove the following Theorems with nature deduction.

1.1 $\neg (p \land q) \dashv \vdash \neg q \lor \neg p$

Proof:

Left to right:

$$\neg (p \land q)$$
 premise

$$p \lor \neg p$$
 LEM

3	p	assumption
4	q	assumption
5	$p \wedge q$	$\wedge i \ 3,4$
6	\perp	$\neg e 1, 5$
7	$\neg q$	¬i 4 − 6
8	$\neg q \vee \neg p$	$\forall i_1 7$

$$_{9}$$
 $\neg p$ assumption $_{10}$ $\neg q \lor \neg p$ $\lor i_{2}$ 9

$$\neg q \lor \neg p \lor e 2, 3 - 8, 9 - 10$$

Right to left:

$$\neg q \lor \neg p$$
 premise

_			
	2	$\neg q$	assumption
	3	$p \wedge q$	assumption
	4	q	$\wedge e_2$ 3
	5	\perp	$\neg e 2, 4$
	6	$\neg (p \land q)$	$\neg i \ 3-5$

7	$\neg p$	assumption
8	$p \wedge q$	assumption
9	p	∧e ₁ 8
10	\perp	$\neg e 7,9$
11	$\neg(p \land q)$	¬i 8 − 10

$$\neg (p \land q) \quad \forall e \ 1, 2 - 6, 7 - 11$$

So $\neg (p \land q) \dashv \vdash \neg q \lor \neg p$.

1.2 $p \rightarrow q \dashv \vdash \neg q \rightarrow \neg p$

Proof:

Left to right:

1	$p \to q$	premise
2	$\neg q$	assumption
3	$\neg p$	MT 1, 2
4	$\neg q \to \neg p$	\rightarrow i $2-3$

Right to left:

$$\begin{array}{cccc}
 & \neg q \rightarrow \neg p & \text{premise} \\
\hline
 & 2 & p & \text{assumption} \\
 & 3 & \neg \neg p & \neg \neg i & 2 \\
 & 4 & \neg \neg q & \text{MT } 1, 3 \\
 & 5 & q & \neg \neg e & 4 \\
\hline
 & 6 & p \rightarrow q & \rightarrow i & 2 - 5
\end{array}$$

So $p \to q \dashv \vdash \neg q \to \neg p$.

1.3 $p \land q \rightarrow p \dashv \vdash r \lor \neg r$

Proof:

Left to right:

$$_{\scriptscriptstyle 1}$$
 $r \vee \neg r$ LEM

Right to left:

1	$p \wedge q$	assumption	
2	p	$\wedge e_1 1$	
3	$p \wedge q \rightarrow p$	\rightarrow i 1 – 2	

So $p \land q \rightarrow p \dashv \vdash r \lor \neg r$.

Prove the following theroems with deduction rules.

2.1
$$\forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$

Proof:

$$\begin{array}{cccc}
 & \forall x (P(x) \to \neg Q(x)) & \text{premise} \\
\hline
 & 2 & \exists x (P(x) \land Q(x)) & \text{assumption} \\
\hline
 & x_0 & 3 & P(x_0) \land Q(x_0) & \text{assumption} \\
 & 4 & P(x_0) & & \land e_1 & 3 \\
 & 5 & Q(x_0) & & \land e_2 & 3 \\
 & 6 & P(x_0) \to \neg Q(x_0) & \forall x \in 1 \\
 & 7 & \neg Q(x_0) & & \rightarrow e & 4, 6 \\
 & 8 & \bot & & \neg e & 5, 7 \\
\hline
 & 9 & \bot & & \exists x \in 2, 3 - 8
\end{array}$$

$$\neg (\exists (P(x) \land Q(x))) \quad \neg i \ 2-9$$

2.2
$$\forall x(P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \to x = y)$$
 Proof:

	1	$\forall x (P(x) \leftrightarrow x = b)$	premise
	2	b = b	=i
	3	$b = b \to P(b)$	$\forall x \in 1$
	4	P(b)	$\rightarrow e~2,3$
x_0	5	$P(x_0) \to x_0 = b$	$\forall x \in 1$
y_0	6	$P(y_0) \to y_0 = b$	$\forall x \in 1$
	7	$P(x_0) \wedge P(y_0)$	assumption
	8	$P(x_0)$	∧e ₁ 7
	9	$P(y_0)$	$\wedge e_2 7$
	10	$x_0 = b$	\rightarrow e 5,8
	11	$y_0 = b$	\rightarrow e 6,9
	12	$x_0 = y_0$	= e 10, 11
	13	$P(x_0) \wedge P(y_0) \to x_0 = y_0$	\rightarrow i $7-12$
	14	$\forall y (P(x_0) \land P(y) \to x_0 = y)$	$\forall y$ i $6-13$
	15	$\forall x \forall y (P(x) \land P(y) \to x = y)$	$\forall x \text{ i } 5-14$
	16	$P(b) \land \forall x \forall y (P(x) \land P(y) \to x = y)$	$\wedge i 4, 15$

3 Prove the following theroems with deduction rules.

$$\mathbf{3.1} \quad \forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$

Proof:

$\mathbf{3.2} \quad \forall x (P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$

Proof:

	1	$\forall x (P(x) \leftrightarrow x = b)$	premise
	2	b = b	=i
	3	$b = b \to P(b)$	$\forall x \in 1$
	4	P(b)	\rightarrow e 2,3
x_0	5	$P(x_0) \to x_0 = b$	$\forall x \in 1$
y_0	6	$P(y_0) \to y_0 = b$	$\forall x \in 1$
	7	$P(x_0) \wedge P(y_0)$	assumption
	8	$P(x_0)$	∧e ₁ 7
	9	$P(y_0)$	∧e ₂ 7
	10	$x_0 = b$	\rightarrow e 5,8
	11	$y_0 = b$	\rightarrow e 6, 9
	12	$x_0 = y_0$	= e 10, 11
	13	$P(x_0) \wedge P(y_0) \to x_0 = y_0$	\rightarrow i $7-12$
	14	$\forall y (P(x_0) \land P(y) \to x_0 = y)$	$\forall y$ i $6-13$
	15	$\forall x \forall y (P(x) \land P(y) \to x = y)$	$\forall x \text{ i } 5-14$
	16	$P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$	$\wedge i 4, 15$