

杉数科技教学平台

第二章线性规划及单纯形法

第四节 单纯形法初窥

郭加熠 | 助理教授

单纯形法思想

在之前的课程中,介绍了单纯形法的思想:从一个基本可行解出发(可行域的端点)至相邻的基本可行解,通过这一方式不断地改善目标函数值,最终达到最优。

- ▶ 需要定义相邻的含义。
- ► 需要设计一个有效的方式找到并移动到相邻的基本可行解(例如,应该避免每次都更新都涉及矩阵的逆运算)。
- ▶ 需要设计一个有效的停止准则结束算法运行。

单纯形法类比: 蚂蚁找蜂蜜

单纯形法示意图

- 1. 找到初始可行解
- 2. 沿着提升目标值的棱边移动
- 3. 找到最优解

每组基对应一个顶点, 入基变量决定移动方向。

目录

规范型与最优性检验

相邻基变量转换: 最小比值法

单纯形法求解例子

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

最优性检验

对于下述问题,基本可行解(0,0,1,1,1.5)是否为最优解?

minimize
$$-x_1 - 2x_2$$
 subject to $x_1 + x_3 = 1$ $x_2 + x_4 = 1$ $x_1 + x_2 + x_5 = 1.5$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

答案是否定的:

▶ 对于当前的基 $\{3,4,5\}$,若增加 x_1 并减小 x_3 与 x_5 ,对应得到的目标函数值将会下降;

最优性检验(续)

调整目标函数的符号,此时(0,0,1,1,1.5)是否为最优解?

minimize
$$x_1 + 2x_2$$

subject to $x_1 + x_3 = 1$
 $x_2 + x_4 = 1$
 $x_1 + x_2 + x_5 = 1.5$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

此时该解为最优解:

- ▶ 当基为 {3,4,5} 时,目标函数值为 0;
- ▶ 由 $x_1, x_2 \ge 0$ 可证。

定义 2.7 规范型

- 一个标准型的线性规划若是关于某组基的规范型,则
 - ► 对于目标函数, 基变量部分的系数为零 (即目标函数只与非基变量相关);
 - ► 对于约束矩阵,基矩阵(或适当调整基向量顺序后)可以组成单位矩阵。

目的: 当线性规划为规范型时,将较易对基本可行解进行最优性判断。

如何将线性规划转化为规范型?

▶ 转化后, 规范型的可行域与最优解是否与原始线性规划问题一致?

考虑如下线性规划:

minimize
$$x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + x_3 = 1$
 $x_2 + x_4 = 1$
 $x_1 + x_2 + x_5 = 1.5$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

当 $B = \{1,2,3\}$ 时,可以求得 $\mathbf{x} = (0.5,1,0.5,0,0)$ 此时,对应的规范型是什么?

例子: 通过行变换得到一系列等价线性规划

В	1	2	3	-1	0	0
	1	0	1	0	0	1
	0	1	0	1	0	1
	1	1	0	0	1	1.5

对于上述例子,利用线性 变换得到规范型

$$ightharpoonup r_3 \leftarrow r_3 - r_1 - r_2$$

$$r_3 \leftarrow -r_3$$

$$r_1 \leftarrow r_1 - r_3$$

$$ightharpoonup c o c - r_1 - 2r_2 - 3r_3$$

В	1	2	3	-1	0	0
	1	0	1	0	0	1
	0	1	0	1	0	1
	0	0	-1	-1	1	-0.5

В	0	0	0	-5	2	-4
1					1	0.5
2	0	1	0	1	0	1 0.5
3	0	0	1	1	-1	0.5

例子: 规范型

minimize
$$-5x_4 +2x_5 +4$$
 subject to x_1
$$-x_4 +x_5 = 0.5$$

$$x_2 +x_4 = 1$$

$$x_3 +x_4 -x_5 = 0.5$$

$$x_1, x_2, x_3, x_4, x_5 \geq 0$$

- ▶ 基 $B = \{1, 2, 3\}$ 对应的基矩阵为单位阵
- ▶ 对应目标函数,基变量部分系数为零
- ▶ 基解 $\mathbf{x} = (0.5, 1, 0.5, 0, 0)$ 在两个线性规划的目标函数值都是 4
- ▶ 为什么是 +4 而不是 -4?

从代数公式角度转换规范型

令基矩阵为 A_B 、非基矩阵(其余部分)为 A_N :

▶ 等式约束 Ax = b 可以转化为:

$$A_B^{-1}A\boldsymbol{x} = A_B^{-1}\boldsymbol{b} \Longrightarrow \boldsymbol{x}_B = A_B^{-1}\boldsymbol{b} - A_B^{-1}A_N\boldsymbol{x}_N$$

▶ 基变量 x_B 可以由非基变量 x_N 表示, x_N 反应了变量的自由度。

此时,目标函数变为

$$\boldsymbol{c}^{T}\boldsymbol{x} = \boldsymbol{c}_{B}^{T}\boldsymbol{x}_{B} + \boldsymbol{c}_{N}^{T}\boldsymbol{x}_{N} = \boldsymbol{c}_{B}^{T}\left(A_{B}^{-1}\boldsymbol{b} - A_{B}^{-1}A_{N}\boldsymbol{x}_{N}\right) + \boldsymbol{c}_{N}^{T}\boldsymbol{x}_{N}$$
$$= \boldsymbol{c}_{B}^{T}A_{B}^{-1}\boldsymbol{b} + \left(\boldsymbol{c}_{N}^{T} - \boldsymbol{c}_{B}^{T}A_{B}^{-1}A_{N}\right)\boldsymbol{x}_{N}$$

以上两个转换可以得到基为 B 下基本可行解的规范型。

▶ 转化得到的规范型与原问题等价:可行域、最优解与原始线性规划问题一致。

等价的线性规划

可以写出以下规范型:

minimize
$$\bar{\boldsymbol{c}}^T \boldsymbol{x} + \boldsymbol{c}_B^T \bar{\boldsymbol{b}}$$
 subject to $\bar{A} \boldsymbol{x} = \bar{\boldsymbol{b}}$ $\boldsymbol{x} \geq 0$

上式中:

$$\bar{A} = A_B^{-1} A_{\gamma} \ \bar{b} = A_B^{-1} b$$

▶
$$\bar{c}$$
 被称为检验数: $\bar{c}^T = c^T - c_R^T A_R^{-1} A$

▶ 部分资料也有忽略常数项
$$\mathbf{c}_{B}^{T}\bar{\mathbf{b}} = \mathbf{c}_{B}^{T}A_{B}^{-1}\mathbf{b}$$
 的表达

最优性检验与检验数

对于检验数向量 $\bar{c} \in \mathbb{R}^n$:

$$\bar{\boldsymbol{c}} = \boldsymbol{c} - A^T (A_B^{-1})^T \boldsymbol{c}_B$$

- ▶ 基变量部分为零: $\bar{\boldsymbol{c}}_B = \boldsymbol{c}_B \boldsymbol{A}_B^T (\boldsymbol{A}_B^{-1})^T \boldsymbol{c}_B = 0$;
- ▶ 非基变量部分: $\bar{\boldsymbol{c}}_N = \boldsymbol{c}_N A_N^T (A_B^{-1})^T \boldsymbol{c}_B$ 。
- ▶ 检验数 \bar{c} 与最优性检验存在如下联系:

定理 2.3

对于基为 B 的基本可行解 x,若各个检验数非负 ($\bar{c} \ge 0$),那么 x 为最优解、 B 为最优基。

例子: 公式法

考虑线性规划: minimize $x_1 + 2x_2 + 3x_3 - x_4$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

当
$$B = \{1, 2, 3\}$$
 时,可以求得 $\mathbf{x} = (0.5, 1, 0.5, 0, 0)$ 、并且

$$A_{\mathcal{B}} = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix}, \qquad A_{\mathcal{B}}^{-1} = egin{pmatrix} 0 & -1 & 1 \ 0 & 1 & 0 \ 1 & 1 & -1 \end{pmatrix}$$

进而得到 $\bar{\boldsymbol{c}}_N = \boldsymbol{c}_N - A_N^T (A_B^{-1})^T \boldsymbol{c}_B = (-5, 2)^T$,根据定理可以判断 \boldsymbol{x} 不是最优解 \boldsymbol{k} 数

单纯形表

在单纯形法求解时,通常构建一个单纯形表刻画规范型的转换:

	$\bar{\boldsymbol{c}}^T$	$-oldsymbol{c}_B^Tar{oldsymbol{b}}$
В	Ā	$ar{m{b}}$

▶
$$\bar{c} := c - A^T (A_B^{-1})^T c_B$$
 (此时, $\bar{c}^T = c^T - c_B^T A_B^{-1} A$);

$$\bar{A} := A_B^{-1} A;$$

$$\bar{\bm{b}} := A_B^{-1} \bm{b}$$
.

表格的右上角表示什么?

▶ 目标函数值的相反数: $-\boldsymbol{c}_{B}^{T}\bar{\boldsymbol{b}} = -\boldsymbol{c}_{B}^{T}A_{B}^{-1}\boldsymbol{b} = -\boldsymbol{c}_{B}^{T}\boldsymbol{x}_{B}$.

单纯形表例子

В	1	2	3	-1	0	0
	1	0	1	0	0	1
	0	1	0	1	0	1
	1	1	0	0	1	1.5

В	1	2	3	-1	0	0
	1	0	0	-1	1	0.5
	0	1	0	1	0	1
	0	0	1	1	-1	0.5

对于上述例子,利用线性 变换得到规范型

$$r_3 \leftarrow -r_3$$

$$r_1 \leftarrow r_1 - r_3$$

$$ightharpoonup c o c - r_1 - 2r_2 - 3r_3$$

В	1	2	3	-1	0	0
	1	0	1	0	0	1
	0	1	0	1	0	1
	0	0	-1	-1	1	-0.5

В	0	0	0	-5	2	-4
1	1	0	0	-1	1	0.5
2	0	1	0	1	0	1
3	0	0	1	1	-1	0.5

寻找更优邻近点

如之前定理所述,当规范型中的检验数满足 $\bar{c} \geq 0$ 时,对应的基本可行解为最优解。

如果不是最优解,应该如何处理?

- 一种方法: 寻找相比于基本可行解更优的邻近点。
 - ▶ 邻近点同样为基本可行解,但与当前解相差一个基变量。
 - ▶ 新引入的变量,也就是入基变量,其检验数为负。

目录

规范型与最优性检验

相邻基变量转换: 最小比值法

单纯形法求解例子

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

基变量的转换

对于先前 $B = \{3, 4, 5\}$ 的例子:

В	-1	-2	0	0	0	0
3	1	0	1	0	0	1
4	0	1	0	1	0	1
5	1	1	0	0	1	1.5

由于 $\bar{c}_1 = -1 < 0$, x_1 可以作为新的基变量。

根据约束, x_1 与当前基变量满足 (假设 x_2 保持为 0):

$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1.5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} x_1$$

提问: x1 可以选择多大,使得新的解仍然可行(非负)?

基变量的转换(续)

考虑类似场景,但第一列约束发生变化:

- 1							
	В	-1	-2	0	0	0	0
	3	-1	0	1	0	0	1
	4	0	1	0	1	0	1
	5	-1	1	0	0	1	1.5

由于 $\bar{c}_1 = -1 < 0$, x_1 仍可以作为新的基变量。

根据约束,同样可以写出 x_1 与当前基变量的关系 (假设 x_2 保持为 0):

$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1.5 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} x_1$$

提问: 在该问题中, x1 又可以选择多大?

最小比值法

对于前两个例子中 x_1 大小的选取,可以通过最小比值法确定最小比值法的流程如下:

- 1. 从非基变量中选取 x_e ,满足检验数 $\bar{c}_e < 0$;
- 2. 若第 e 列 $\bar{A}_{\cdot e} \leq 0$,则该问题无界;
 - ▶ 对应于第二例子中 $\bar{A}_{\cdot 1} = (-1, 0, -1)^T \le 0$
 - ▶ 可构造方向 d 使得 x(t) = x + td 的目标函数值随着 t 增大而趋向无穷
- 3. 否则,通过如下规则选取 θ^*

$$\theta^* = \min_i \left\{ \frac{\bar{b}_i}{\bar{A}_{ie}} : \bar{A}_{ie} > 0 \right\}$$

提问: θ^* 表示什么?

最小比值法(续)

 θ^* 表示 x_e 在保证解可行条件下能够增加的最大值。

▶ 此时恰好有某个(或多个)基变量变为零。

假设仅第 i 行的基变量 $x_{B(i)}$ 变为 0,即满足:

$$\begin{cases} x_{B(i)} = \bar{b}_i - \bar{A}_{ie}\theta^* = 0 \\ x_{B(i')} = \bar{b}_{i'} - \bar{A}_{i'e}\theta^* > 0 \qquad \forall i' \neq i \end{cases}$$

令 o = B(i), 此时称 x_e 为入基变量、 x_o 为出基变量。

▶ 新的基变量将引入 x_e 、而去除 x_o 。

若不止一个基变量为 0, 理论上可以将任意一个作为出基变量。

▶ 更新后的基本可行解是退化的,因为其部分基变量为 0。

单纯形法算法框架

假设初始问题为规范型:对应基为 B、基本可行解为 x。

- 1. 首先, 计算检验数 c
 - ▶ 如果 $\bar{c} \ge 0$,则 x 为最优解,算法停止。否则,运行第 2 步
- 2. 如果 $\bar{c}_e < 0$, 判断单纯形表第 e 列 $\bar{A}_{\cdot e}$:
 - ▶ 如果 $\bar{A}_{\cdot e} \leq 0$,那么该问题无界、最优值为 $-\infty$;
 - ▶ 否则,将 x_e 设为入基变量,基于最小比值法计算

$$\theta^* = \min_i \left\{ \frac{\bar{b}_i}{\bar{A}_{ie}} : \bar{A}_{ie} > 0 \right\}$$

并得到出基变量 x_o。

- 3. 更新当前的基 B, 并将问题转化为新的规范型。
- 4. 重复上述的流程。

转轴操作: 规范型的转换

为了转换当前规范型为新的规范型,转轴操作是一种常用策略。

该方法在更新基本可行解过程中,无需计算逆矩阵 $A_{\rm p}^{-1}$ 。

确定出基变量 x。(假设对应于约束第 i 行)、入基变量 x。后,转轴操作更新当前单 纯形表:

1. 首先对于约束第 i 行,将各个元素除以 \bar{A}_{io} :

$$ar{b}_i \leftarrow rac{1}{ar{A}_{ie}} ar{b}_i \qquad ar{A}_{ij} \leftarrow rac{1}{ar{A}_{ie}} ar{A}_{ij}, \quad \forall j$$
其中, $ar{A}_{ie}$ 也被称为转轴数;

2. 对于其余行 $i' \neq i$,使用高斯消元法更新对应行的元素:

$$\bar{b}_{i'} \leftarrow \bar{b}_{i'} - \bar{A}_{i'e}\bar{b}_i \qquad \bar{A}_{i'j} \leftarrow \bar{A}_{i'j} - \bar{A}_{i'e}\bar{A}_{ij}, \quad \forall j$$

3. 此外,对于目标函数行同样使用高斯消元法讲行表格更新。

目录

规范型与最优性检验

相邻基变量转换:最小比值法

单纯形法求解例子

讲员

叶荫宇,王子卓,皇甫琦,邓琪, 高建军,葛冬冬,郭加熠,何斯 迈,江波,刘慧康

例子

当前基为 $\{3,4,5\}$, 考虑 x_2 作为入基变量:

В	-1	-2	0	0	0	0	$ar{b}_i/ar{A}_{ie}$
3	1	0	1	0	0	1	∞
4	0	1	0	1	0	1	1
5	1	1	0	0	1	1.5	1.5

▶ 根据最小比值法, 出基变量为 x_4 , $\theta^* = 1$;

对于单纯形表,目标行 ← 目标行 + 2 × 约束第 2 行。

В		0	0	2	0	2
3		0	1	0	0	1
2	0	1	0	1	0	1
5	1	1	0	0	1	1.5

例子(续)

В					0	
3					0	1
2	0	1	0	1	0	1
5	1		0			1.5

约束第 3 行 \leftarrow 约束第 3 行 $-1 \times$ 约束第 2 行。

В	-1	0	0	2	0	2
3	1	0	1	0	0	1
2	0	1	0	1	0	1
5	1	0	0	-1	1	0.5

此时已经转化为新的规范型。

例子(续)

由于检验数 $\bar{c}_1 = -1 < 0$, 选择 x_1 作为入基变量:

В	-1	0	0	2	0	2	$ar{b}_i/ar{A}_{ie}$
3	1	0	1	0	0	1	1
2	0	1	0	1	0	1	∞
5	1	0	0	-1	1	0.5	0.5

▶ 根据最小比值法, 出基变量为 x_5 、 $\theta^* = 0.5$ 。

对于单纯形表,目标行 ← 目标行 + 1 × 约束第 3 行。

В	0	0	0	1	1	2.5
3	1	0	1	0	0	1
2	0	1	0	1	0	1
1	1	0	0	-1	1	0.5

例子(续)

E	3	0	0	0	1	1	2.5
3	3	1				0	1
2	2	0				0	1
1	L	1	0	0	-1	1	0.5

约束第1行←约束第1行-1×约束第3行。

В	0	0	0	1		2.5
3	0	0	1	1	-1	0.5
2	0	1	0	1	0	1
1	1			-1	1	0.5

检验数向量 $\bar{c} \ge 0$,故得到最优解 (0.5, 1, 0.5, 0, 0) 及最优值 -2.5。

另一个例子

考虑如下线性规划问题:

minimize
$$-10x_1$$
 $-12x_2$ $-12x_3$
subject to x_1 $+2x_2$ $+2x_3$ ≤ 20
 $2x_1$ $+x_2$ $+2x_3$ ≤ 20
 $2x_1$ $+2x_2$ $+x_3$ ≤ 20
 x_1 , x_2 , x_3 ≥ 0

引入松弛变量 x_4, x_5, x_6 、设置 $B = \{4, 5, 6\}$ 后,初始单纯形表为:

В	-10	-12	-12	0	0	0	0
4	1 2 2	2	2	1	0	0	20
5	2	1	2	0	1	0	20
6	2	2	1	0	0	1	20

另一个例子(续)

В	-10	-12	-12	0	0	0	0
4	1	2	2	1	0	0	20
5	2	1	2	0	1	0	20
6	2	2	1	0	0	1	20

将 x_1 作入基变量,根据最小比值法: 出基变量可以为 x_5 或 x_6 。

▶ 不考虑该退化问题, 仍选 x₅ 作出基变量。

更新后的表格如下(考虑 x3 为入基变量、x4 为出基变量):

В	0	-7	-2	0	5	0	100
4	0	3/2	1	1	-1/2 1/2 -1	0	10
1	1	1/2	1	0	1/2	0	10
6	0	1	-1	0	-1	1	0

另一个例子(续)

更新后的表格如下 (考虑 x2 为入基变量、x6 为出基变量):

В	0	-4	0	2	4	0	120
3	0	3/2	1	1	-1/2	0	10
1	1	-1	0	-1	1	0	0
6	0	5/2	0	1	-3/2	1	10

更新后的表格如下(此时已得到最优解):

В	0	0	0	18/5	8/5	8/5	136
3	0	0	1	2/5	2/5	-3/5	4
1	1	0	0	3/5 2/5	2/5	2/5	4
2	0	1	0	2/5	-3/5	2/5	4

→ 如果最小比值法算错了?

当前基为 {3,4,5}, 考虑 x₂ 作为入基变量:

В	-1	-2	0	0	0	0	$ar{b}_i/ar{A}_{ie}$
3	1	0	1	0	0	1	∞
4	0	1	0	1	0	1	1
5	1	1	0	0	1	1.5	1.5

- ▶ 根据最小比值法, 出基变量为 x4, 但我错把 x5 当成出基变量会发生什么?
- ▶ 请求出此次迭代后的结果

如果最小比值法算错了?

В	-1	-2	0	0	0	0	$ar{b}_i/ar{A}_{ie}$
3	1	0	1	0	0	1	∞
4	0	1	0	1	0	1	1
5	1	1	0	0	1	1.5	1.5

- ▶ 这是一组可行基吗?(之前计算最优值为-2.5,此时对应目标函数值为-3)
- ▶ 沿着使 x_2 提升, x_1 保持为 0,且满足 Ax = b 约束的方向 (基方向) 提升过头了 $x_5 = 0$ 时 x_4 已经从 1 变成 -0.5 了。

В	1	0	0	0	2	3
3	1	0	1	0		
4	-1	0	0	1	-1	-0.5
2	1	1	0	0		

后续内容

▶ 如何从基方向的视角理解单纯形法?

- ▶ 入基变量如何选取比较好?
- ▶ 退化时,出基变量如何选比较好?

▶ 迭代会停止吗? 大致多少次停止? 算法复杂度如何?

感谢聆听!

Thank You!

