ComS 472 - PS6 Due: Oct 27, 2024 Name: Aren Ashlock

- 1. (12 pts) (Exercise 6.1) Which of the following are correct? No explanation is needed. The operator \models always has the lowest precedence.
 - (a) False \models True.

Correct

(b) True \models False.

Incorrect

(c) $A \wedge B \models A \Leftrightarrow B$.

Correct

(d) $A \Leftrightarrow B \models A \lor B$.

Incorrect

(e) $A \Leftrightarrow B \models \neg A \lor B$.

Correct

(f) $(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B \lor C) \land (B \land C \land D \Rightarrow E).$

Correct

 $(g) (A \vee B) \wedge (\neg C \vee \neg D \vee E) \models (A \vee B) \wedge (\neg D \vee E).$

Incorrect

(h) $(A \vee B) \wedge \neg (A \Rightarrow B)$ is satisfiable.

Correct

 $(i) (A \wedge B) \Rightarrow C \models (A \Rightarrow C) \vee (B \Rightarrow C).$

Correct

 $(j) (C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C))$

Correct

(k) $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable.

Correct

(l) $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $A \Leftrightarrow B$ for any fixed set of proposition symbols that includes A, B, C.

Incorrect

- 2. (9 pts) (Exercise 7.7) Prove, or find a counterexample to, each of the following assertions:
 - (a) (3 pts) If $\alpha \models \gamma$ or $\beta \models \gamma$ (or both) then $\alpha \land \beta \models \gamma$.

This assertion is **true**. There are 2 cases that need to be proved:

- 1. When both $\alpha \models \gamma$ and $\beta \models \gamma$, which means that both α and β are subsets of γ . In this case, if there is any intersection between α and β , then that itself is a subset of γ since both sets are encompassed by γ meaning any shared models are encompassed by γ as well. This means the assertion is true for this situation.
- **2.** When either $\alpha \models \gamma$ or $\beta \models \gamma$, which means that whichever set of models entails γ is a subset of γ . In this case, we know one of the sets of models (either α or β) is entirely encompassed by γ . Therefore, any intersection between α and β will lie within γ making it a subset. This means the assertion is true in either of those situations.
- (b) (3 pts) If $\alpha \wedge \beta \models \gamma$ then $\alpha \models \gamma$ or $\beta \models \gamma$ (or both).

This assertion is **false**. An example of this can be the following: $M(\alpha)$ is $x \ge 0$, $M(\beta)$ is $x \le 0$, and $M(\gamma)$ is x = 0.

In this circumstance, when $\alpha \wedge \beta$ is true, it's only for x = 0 which is a subset of $M(\gamma)$. However, there are values in $M(\alpha)$ and $M(\beta)$ (independent of each other) that are not found within $M(\gamma)$. Therefore, $\alpha \models \gamma$ and $\beta \models \gamma$ are both FALSE, but $\alpha \wedge \beta \models \gamma$ is TRUE. This results in $T \Rightarrow F \vee F$, which is FALSE.

(c) (3 pts) If $\alpha \models (\beta \lor \gamma)$ then $\alpha \models \beta$ or $\alpha \models \gamma$ (or both).

This assertion is **false**. Here is an example of a possible scenario where $\alpha \models (\beta \lor \gamma)$ is true:

As shown by the diagram, it is possible for a model of α to not be in the models of β or for a model of α to not be in the models of γ . Therefore, $\alpha \models \beta$ or $\alpha \models \gamma$ (or both) is false in this instance, thus proving that the assertion is false.

- 3. (10 pts) (Exercise 7.16) This exercise looks into the relationship between clauses and implication sentences.
 - (a) (3 pts) Show that the clause $\neg P \lor ... \lor \neg P_m \lor Q$ is logically equivalent to the implication sentence $P_1 \wedge ... \wedge P_m \Rightarrow Q.$

The implication sentence is true for all cases other than $T \Rightarrow F$. That will happen when $P_1 \wedge ... \wedge P_m$ is true (so each P must be true) and Q is false. Looking at the clause, that will result in FALSE as well since all P being true will result in false and Q is false.

The other instance where Q is false is when at least one of the P is false. In this case, the implication results in $F \Rightarrow F$, which is TRUE. And the clause is true since the negation of at least one P that is false will make it TRUE.

Now, if all P are false and Q is true, then the implication results in $F \Rightarrow T$, which is also TRUE. And since Q is true, that means the clause is TRUE.

Finally, the only other result of the implication is $T \Rightarrow T$, which happens when $P_1 \wedge ... \wedge P_m$ is true (so each P must be true) and Q is true. Even though $\neg P \lor ... \lor \neg P_m$ will result in false, Q is true, so the clause is TRUE.

- (b) (4 pts) Show that every clause (regardless of the number of positive literals) can be written in the form $P_1 \wedge ... \wedge P_m \Rightarrow Q_1 \vee ... \vee Q_n$, where the P_i s and Q_j s are propositional symbols. (A knowledge base consisting of such sentences is in implicative normal form or Kowalski form.)
 - 1. We know that every clause is written as literals connected using disjunctions.
 - 2. Then, you are able to group the positive and negative literals together with parenthesis since the disjunction symbol has the lowest precedence in a clause. This gives a rough form of $(\neg P_1 \lor ... \lor \neg P_m) \lor$ $(Q_1 \vee ... \vee Q_n)$ where P are the negative literals and Q are the positive literals.
 - 3. Next, apply De Morgan's Law to the P terms to get $\neg (P_1 \land ... \land P_m) \lor (Q_1 \lor ... \lor Q_n)$.
 - 4. Finally, you can reverse the "implication elimination" rule $(\neg \alpha \lor \beta \text{ becomes } \alpha \Rightarrow \beta)$ to get $P_1 \land ... \land P_m \Rightarrow \beta$ $Q_1 \vee ... \vee Q_n$.
- (c) (3 pts) Write down the full resolution rule for sentences in implicative normal form.

$$\frac{a_1 \wedge \ldots \wedge a_m \Rightarrow b_1 \vee \ldots \vee b_i \vee \ldots \vee b_n \quad c_1 \wedge \ldots \wedge c_j \wedge \ldots \wedge c_p \Rightarrow d_1 \vee \ldots \vee d_q \quad b_i, c_j \text{ and complements}}{a_1 \wedge \ldots \wedge a_m \wedge c_1 \wedge \ldots \wedge c_{j-1} \wedge c_{j+1} \wedge \ldots \wedge c_p \Rightarrow b_1 \vee \ldots \vee b_{i-1} \vee b_{i+1} \vee \ldots \vee b_n \vee d_1 \vee \ldots \vee d_q}$$

4. (14 pts) (Exercise 7.21) A propositional 2-CNF expression is a conjunction of clauses, each containing exactly two literals, e.g.,

$$(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G).$$

(a) (3 pts) Prove using resolution that the above sentence entails G.

$$(A \lor B) \land (\neg A \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G)$$
$$(B \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G)$$

$$(B \lor C) \land (\neg B \lor D) \land (\neg C \lor G) \land (\neg D \lor G)$$

 $(B \lor C) \land (\neg B \lor G) \land (\neg C \lor G)$

$$\begin{aligned} (G \vee C) \wedge (\neg C \vee G) \\ G \vee G \\ G \end{aligned}$$

(b) (4 pts) Two clauses are *semantically distinct* if they are not logically equivalent. How many semantically distinct 2-CNF clauses can be constructed from n proposition symbols?

Choosing the clauses:
$$\binom{n}{2} = \frac{n(n-1)}{2}$$

Since there are 4 ways of arranging positive and negative, we get: $4 \times \frac{n(n-1)}{2}$

Answer: $2n^2 - 2n$

- (c) (3 pts) Using your answer to (b), prove that propositional resolution always terminates in time polynomial in n, given a 2-CNF sentence containing no more than n distinct symbols.
 - From (b), we know there are at most $2n^2 2n$ distinct 2-CNF clauses, so there can be a maximum of that many clauses in a propositional expression. The worst resolution can perform is going from the maximum number of clauses to a single clause, which will perform $2n^2 2n 1$ resolutions since each resolution step can only reduce one at a time and the result will always be at most another 2-CNF. Thus, looking at the big-O notation, it will terminate in $O(n^2)$.
- (d) (4 pts) Explain why your argument in (c) does not apply to 3-CNF.

With 2-CNF, resolution will make 2 clauses resolve into another 2-CNF clause. However, with 3-CNF, resolution will make it a 4-CNF, which can continue to grow with further resolutions. Therefore, we cannot know that resolution will terminate in polynomial time

5. (15 pts) (Exercise 7.23) Consider the following sentence:

$$((Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)) \Rightarrow ((Food \land Drinks) \Rightarrow Party).$$

(a) (5 pts) Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.

(I'm using F as Food, D as Drinks, and P as Party in the header. In the table, T and F still mean True and False)

F	D	P	$(F \Rightarrow P)$	$(D \Rightarrow P)$	$((F \Rightarrow P) \lor (D \Rightarrow P))$	$(F \wedge D)$	$((F \land D) \Rightarrow P)$	Result
T	\overline{T}	\overline{T}	T	T	T	T	T	T
T	T	F	F	F	F	T	F	T
T	F	T	T	T	T	F	T	T
T	F	F	F	T	T	F	T	T
F	T	T	T	T	T	F	T	T
F	T	F	T	F	T	F	T	T
F	F	T	T	T	T	F	T	T
F	$\boldsymbol{\mathit{F}}$	F	T	T	T	F	T	T

Based on the enumeration, the sentence is valid.

(b) (5 pts) Convert the left-hand and right-hand sides of the main implication into CNF, showing each step, and explain how the results confirm your answer to (a).

```
Start: ((\text{Food} \Rightarrow \text{Party}) \lor (\text{Drinks} \Rightarrow \text{Party})) \Rightarrow ((\text{Food} \land \text{Drinks}) \Rightarrow \text{Party})
((\neg \text{Food} \lor \text{Party}) \lor (\text{Drinks} \Rightarrow \text{Party})) \Rightarrow ((\text{Food} \land \text{Drinks}) \Rightarrow \text{Party})
                                                                                                                         [implication elimination]
((\neg \text{Food} \lor \text{Party}) \lor (\neg \text{Drinks} \lor \text{Party})) \Rightarrow ((\text{Food} \land \text{Drinks}) \Rightarrow \text{Party})
                                                                                                                         [implication elimination]
(\neg Food \lor Partv \lor \neg Drinks \lor Partv) \Rightarrow ((Food \land Drinks) \Rightarrow Partv)
                                                                                                                   [drop unnecessary ()]
(\neg Food \lor \neg Drinks \lor Party \lor Party) \Rightarrow ((Food \land Drinks) \Rightarrow Party)
                                                                                                                    [commutativity of \vee]
(\neg Food \lor \neg Drinks \lor Party) \Rightarrow ((Food \land Drinks) \Rightarrow Party)
                                                                                                      [Partv \lor Partv \equiv Partv]
(\neg \text{Food} \lor \neg \text{Drinks} \lor \text{Party}) \Rightarrow (\neg (\text{Food} \land \text{Drinks}) \lor \text{Party})
                                                                                                       [implication elimination]
(\neg Food \lor \neg Drinks \lor Party) \Rightarrow ((\neg Food \lor \neg Drinks) \lor Party)
                                                                                                          [De Morgan]
(\neg Food \lor \neg Drinks \lor Party) \Rightarrow (\neg Food \lor \neg Drinks \lor Party)
                                                                                                       [drop unnecessary ()]
```

Explanation: As shown, the left-hand and right-hand sides are equivalent. Therefore, the main implication can only result in $T \Rightarrow T$ or $F \Rightarrow F$, which both are TRUE. This shows how in every model, the sentence is true, which is the definition of **valid**.

(c) (5 pts) Prove your answer to (a) using resolution.

To prove it, we have our KB on conjuctions, which is the left-hand side. We add $\neg \alpha$, the right-hand side. Then show it results in an empty clause after resolution. (I'm going to start with the final form from 5b...)

KB: (1) ($\neg \text{Food} \lor \neg \text{Drinks} \lor \text{Party}$)

 $\neg \alpha \colon (\mathsf{Food} \land \mathsf{Drinks} \land \neg \mathsf{Party}) \quad [\mathsf{Add} \ \mathsf{each} \ \mathsf{conjunction} \ \mathsf{to} \ \mathsf{the} \ \mathsf{KB}]$

KB: (1) (\neg Food $\lor \neg$ Drinks \lor Party), (2) Food, (3) Drinks, (4) \neg Party

- 1. (1) (\neg Food $\lor \neg$ Drinks \lor Party) and (2) Food results in (5) (\neg Drinks \lor Party)
- 2. (5) (\neg Drinks \lor Party) and (3) Drinks results in (6) Party
- 3. (6) Party and (4) \neg Party results in an empty clause.

Therefore, there must be a contradiction meaning the original sentence must be valid. This backs up my answer to (a).