Teori Penaksiran

Bahan Kuliah *II2092 Probabilitas dan Statistik*

Oleh: Rinaldi Munir

Sekolah Teknik Elektro dan Informatika ITB

- Telah dijelaskan pada bagian sebelumnya bahwa tujuan utama pengambilan sampel dari suatu populasi adalah untuk mengetahui parameter populasi itu sendiri.
- Contoh, misalkan sebuah populasi diketahui berdistribusi normal, tetapi parameter rataan dan variansinya tidak diketahui.
- Contoh lain, suatu populasi diketahui berdistribusi binomial, tetapi parameter p tidak diketahui.
- Oleh karena parameter populasi tidak diketahui, maka dalam statistika inferensi dipelajari cara mengetahui parameter tersebut.

- Ada dua cara yang digunakan untuk mengetahui parameter populasi:
 - 1. Cara penaksiran (pendugaan)
 - 2. Cara pengujian hipotesis
- Dua cara di atas didasarkan pada statistik atau besaran yang dihitung dari sampel sehingga kita harus mengambil sampel dari populasi.

Penaksiran dengan Metode Klasik

- Parameter populasi ditulis dilambangkan dengan θ (dibaca tetha) dimana θ bisa merupakan rata-rata populasi (yaitu μ), simpangan baku populasi (yaitu σ), dan bisa pula proporsi populasi (yaitu ρ) pada percobaan binomial.
- Statistik dari sampel ditulis dengan $\widehat{\theta}$ dimana $\widehat{\theta}$ bisa merupakan rataan sampel (yaitu \overline{X}), simpangan baku sampel (yaitu S), dan bisa pula proporsi sampel (yaitu \widehat{p})

• Dalam statistika inferensi, statistik $\hat{\theta}$ inilah yang dipakai untuk menaksir parameter θ dari populasi. Tepatnya adalah:

Statistik $\hat{\theta} = \hat{X}$ dipakai untuk menaksir parameter $\theta = \mu$ Statistik $\hat{\theta} = S$ dipakai untuk menaksir parameter $\theta = \sigma$ Statistik $\hat{\theta} = \hat{p}$ dipakai untuk menaksir parameter $\theta = p$

- Statistik yang digunakan untuk mendapatkan taksiran titik disebut penaksir atau fungsi keputusan.
- Contoh: S^2 , yang merupakan fungsi peubah acak, adalah penaksir σ^2
- Sebuah nilai penaksir tidak diharapkan dapat menaksir parameter populasi tanpa kesalahan, misalkan tidak perlu \bar{X} dapat menaksir μ secara tepat, tetapi diharapkan tidak terlalu jauh dari parameter yang ditaksir.

Penaksir Tak Bias

• Misalkan $\widehat{\Theta}$ adalah penaksir dengan nilai taksiran $\widehat{\theta}$ dari parameter populasi yang tidak diketahui μ . Kita menginginkan distribusi sampling Θ mempunyai rataan sama dengan parameter yang ditaksir.

Penaksir yang memiliki sifat seperti ini disebut dengan tak bias (unbiased).

Definisi:

Sebuah statistik $\widehat{\Theta}$ dikatakan penaksir tak bias dari parameter Θ jika:

$$\mu_{\widehat{\Theta}} = E(\widehat{\Theta}) = \theta$$

Penaksir tak bias, $E(\hat{\Theta}) = \theta$

Penaksir bias, $E(\hat{\Theta}) \neq \theta$

• Contoh 1. Nilai rataan \overline{X} dari sampel berukuran n yang diambil secara acak dari populasi dengan rataan μ merupakan penaksir tak bias karena $\mathrm{E}(\overline{X}) = \mu$. Dalam hal ini, statistik $\hat{\theta} = \overline{X}$ dan parameter $\Theta = \mu$

• Contoh 2. Tunjukkan bahwa S^2 adalah penaksir tak bias dari parameter σ^2 !

<u>Jawa</u>ban:

Kita tuliskan

$$\begin{split} \sum_{i=1}^{n} (X_i - \bar{X})^2 &= \sum_{i=1}^{n} [(X_i - \mu) - (\bar{X} - \mu)]^2 \\ &= \sum_{i=1}^{n} (X_i - \mu)^2 \\ &- 2(\bar{X} - \mu) \sum_{i=1}^{n} (X_i - \mu) + n(\bar{X} - \mu)^2 = \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2 \end{split}$$

Sekarang tentukan

$$E(S^{2}) = E\left[\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}\right] = \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_{i} - \mu)^{2} - nE(\bar{X} - \mu)^{2}\right]$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \sigma^{2}_{X_{i}} - n\sigma^{2}_{\bar{X}}\right)$$

Tetapi,

$$\sigma^2_{X_i} = \sigma^2 \ untuk \ i = 1, 2, ..., n \ dan \ \sigma^2_{\bar{X}} = \frac{\sigma^2}{n}$$

sehingga

$$E(S^2) = \frac{1}{n-1} \left(n\sigma^2 - n\frac{\sigma^2}{n} \right) = \sigma^2$$

Variansi Nilai Penaksir

- Jika kita mengumpulkan semua penaksir tak bias yang mungkin dari parameter Θ, maka salah satu yang memiliki variansi terkecil dikatakan penaksir yang paling efisien dari Θ.
- Jadi, bila $\hat{\Theta}_1$ dan $\hat{\Theta}_2$ adalah penaksir tak bias parameter populasi θ yang sama, maka kita akan memilih penaksir yang variansi distribusi sampelnya paling kecil. Misalkan $\sigma^2 < \sigma^2$ maka dikatakan $\hat{\Theta}_1$ penaksir θ yang lebih efisien daripada $\hat{\Theta}_2$

Perhatikan Gambar 1, hanya $\hat{\Theta}_{1}$ dan $\hat{\Theta}_{2}$ yang tak bias karena distribusinya berpusat di θ .

Karena variansi $\hat{\Theta}_1$ lebih kecil daripada $\hat{\Theta}_2$ maka $\hat{\Theta}_1$ adalah Penaksir paling efisien

Gambar 1 Distribusi *Sampling* dari Penaksir θ yang Berbeda

- Ada dua macam penaksiran:
 - 1. Penaksiran titik

Bila nilai parameter θ dari populasi hanya ditaksir dengan memakai satu nilai statistik $\hat{\theta}$ dari sampel yang diambil dari populasi tersebut.

Contoh: misalkan kita ingin mengetahui rata-rata tinggi orang Indonesia. Diambil sampel acak sebanyak 1000 orang dan diperoleh tinggi rata-ratanya adalah $\hat{X}=164$ cm. Nilai ini dipakai untuk menduga rata-rata tinggi orang Indonesia. Karena hanya satu nilai saja sebagai penaksir, maka \hat{X} disebut penaksir titik.

2. Penaksiran selang (interval)

Bila nilai parameter θ dari populasi hanya ditaksir dengan memakai beberapa nilai statistik $\hat{\theta}$ yang berada dalam suatu interval, maka statistik $\hat{\theta}$ disebut **penaksir selang.**

Contoh: rata-rata tinggi orang Indonesia dapat ditaksir berada dalam selang 160 sampai 166 cm, di antara kedua nilai ini terdapat rata-rata sesungguhnya.

Nilai ujung selang 160 dan 166 tergantung pada rataan sampel \overline{X} . Bila ukuran sampel membesar, maka $\sigma_x^2 = \sigma^2/n$ mengecil, sehingga kemungkinan besar taksiran bertambah dekat dengan parameter μ .

- Kita juga dapat menduga bahwa tinggi rata-rata orang Indonesia berada dalam selang 155 sampai 169 cm.
- Makin lebar intervalnya, makin besar kepercayaan atau keyakinan bahwa rata-rata tinggi orang Indonesia yang kita duga berada pada interval tersebut.
- Artinya, kita lebih percaya selang 155 < θ < 169 dibandingkan dengan selang 160 < θ > 166.
- Derajat kepercayaan penaksir $\hat{\Theta}$ disebut **koefisien kepercayaan** yang ditulis dengan α dimana $0 < \alpha < 1$ dan dinyatakan dalam bentuk peluang.

• **Derajat kepercayaan** terhadap suatu interval $\hat{\Theta}_{1} < \theta < \hat{\Theta}_{2}$ dinyatakan dalam bentuk peluang, yaitu

P(
$$\hat{\Theta}_{1} < \theta < \hat{\Theta}_{2}$$
) = nilai tertentu

- Contoh, misalkan P(160 < θ < 166) = 0.95, itu artinya derajat keyakinan bahwa rata-rata tinggi orang Indonesia berada pada selang 160 sampai 166 adalah 95%.
- Misalkan P(155 < θ < 159) = 0.99, itu artinya derajat keyakinan bahwa rata-rata tinggi orang Indonesia berada pada selang 155 sampai 159 adalah 99%.

• Secara umum, dengan mengambil sampel acak secara berulang-ulang, maka kita akan memperoleh statistik θ sehingga peluang dari interval $\hat{\Theta}_{|} < \theta < \hat{\Theta}_{|}$ akan sama dengan nilai tertentu yang diinginkan adalah

$$P(\hat{\Theta} < \theta < \hat{\Theta}) = 1 - \alpha$$

untuk $0 < \alpha < 1$.

- α disebut koefisien kepercayaan
- $1-\alpha$ disebut tingkat atau derajat kepercayaan
- Selang $\hat{\Theta}_{1} < \theta < \hat{\Theta}_{2}$ disebut selang kepercayaan $(1-\alpha)100\%$
- 🗓 dan 🗓 disebut batas-batas kepercayaan

- Jadi, bila α = 0.05 diperoleh selang keeprcayaan 95%, dan bila α = 0.01 diperoleh selang kepercaayan 99%.
- Makin besar selang kepercayaan, makin yakin kita bahwa selang tersebut mengandung parameter yang tidak diketahui.
- Dalam statistik, lebih disukai memilih interval yang lebih sempit, tetapi dengan derajat kepercayaan yang tinggi. Misalnya, kita lebih memilih selang $160 < \theta < 166$ dengan tingkat kepercayaan 95% daripada selang $155 < \theta < 169$ dengan tingkat kepercayaan 99%.

Menaksir Rataan

- Akan ditentukan selang taksiran dari μ .
- Misalkan sampel diambil dari populasi normal, atau jika tidak mempunyai ukuran sampel yang besar., selang kepercayaan untuk μ dapat dibuat dengan menggunakan distribusi sampel \bar{X}

Sesuai dengan teorema limit pusat, diharapkan distribusi sampel \bar{X} akan mendekati normal dengan rataan $\mu_{\bar{X}} = \mu$ dan simpangan baku $\sigma_{\bar{X}} = \sigma/\sqrt{n}$

• Tulislah $z_{\alpha/2}$ untuk nilai z yang di sebelah kanannya terdapat daerah seluas $\alpha/2$,

• Selanjutnya peluang Z yang terletak antara $-z_{\infty/2} \, dan \, z_{\infty/2} \,$ ditunjukkan pada kurva berikut:

Gambar 2 P
$$(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1-\alpha$$

Dari Gambar 2 dapat dilihat:

$$P\left(-z_{\infty/2} < Z < z_{\infty/2}\right) = 1 - \infty$$

di mana:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

sehingga:

$$P\left(-z_{\infty/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\infty/2}\right) = 1 - \infty$$

atau dapat dituliskan:

$$P\left(\overline{X} - z_{\infty/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\infty/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \infty$$

Selang Kepercayaan untuk μ bila σ diketahui:

Jika \bar{x} adalah rataan dari sampel acak dengan ukuran n dari sebuah populasi dengan variansi σ^2 , maka selang kepercayaan $(1 - \alpha)100\%$ dari μ adalah:

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

di mana $z_{\alpha/2}$ adalah nilai z yang memberikan luas $\frac{\alpha}{2}$ sebelah kanan nilai tersebut.

• Sampel yang berlainan akan memberikan nilai \bar{x} yang berlainan, sehingga memberikan taksiran selang yang berlainan bagi parameter μ .

Gambar 3 Interval Kepercayaan μ

Contoh 3:

Rataan nilai matematika sampel acak 36 mahasiswa tingkat sarjana adalah 2.6. Hitunglah selang kepercayaan 95% untuk rataan nilai matematika semua mahasiswa tingkat sarjana. Anggap simpangan baku = 0.3.

Jawaban:

Nilai taksiran dari μ adalah $\bar{x}=2.6$, dan $1-\alpha=0.95$ sehingga $\alpha=0.05$. Nilai z yang memberikan luas 0.025 sebelah kanan atau 0.975 sebelah kiri adalah $z_{0.025}=1.96$ sehingga selang kepercayaan 95 % adalah

$$2.6 - (1.96)\frac{0.3}{\sqrt{36}} < \mu < 2.6 + (1.96)\frac{0.3}{\sqrt{36}}$$

atau
$$2.50 < \mu < 2.70$$

 Contoh 4. Masih berkaitan denga soal nomor 3, tentukan selang kepercayaan 99% untuk rataan nilai matematika semua mahasiswa tingkat sarjana.

Jawaban: Di sini 1 - α = 0.99 sehingga α = 0.01, $z_{\alpha/2}$ = $z_{0.005}$ Menurut tabel Normal, nilai z yang memberikan luas sebelah kanannya 0.005 adalah $z_{0.005}$ = 2.575

Selang kepercayaan 99% yang dicari adalah

$$2.6 - (2.575) \frac{(0.3)}{\sqrt{36}} < \mu < 2.6 + (2.575) \frac{(0.3)}{\sqrt{36}}$$

atau, bila disederhanakan: $2.47 < \mu < 2.73$

Bila dibandingkan dengan jawaban nomor 3, terlihat bahwa untuk menaksir μ dengan derajat ketepatan lebih tinggi diperlukan selang yang lebih lebar.

- Selang kepercayaan $(1 \alpha)100\%$ memberikan ketepatan taksiran titik, dengan kata lain \bar{x} menaksir μ tanpa kesalahan (galat).
- Tetapi umumnya sampel tidak menghasilkan $\overline{\mathcal{X}}$ tepat sama dengan µ tanpa kealahan, sehingga taksiran titik umumnya meleset (mengandung galat)

• Galat <
$$z_{\alpha/2} \frac{\alpha}{\sqrt{n}}$$

• Sebagai contoh, pada soal nomor 3, dengan tingkat kepercayaan 95% perbedaan \bar{x} = 2.6 dengan rataan μ sesungguhnya menghasilkan galat (e)

$$e < 1.96 \frac{(0.3)}{\sqrt{36}} = 0.098$$

sedangkan pada soal nomor 4, dengan tingkat kepercayaan 99% perbedaan $\bar{x} = 2.6$ dengan rataan μ sesungguhnya menghasilkan galat (e)

$$e < 2.575 \frac{(0.3)}{\sqrt{36}} = 0.13$$

• Teorema (1):

Jika \bar{x} untuk menaksir μ , kita berada pada tingkat kepercayaan $(1-\alpha)100\%$ dengan kesalahan tidak lebih dari $z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$

• Teorema (2):

Jika \bar{x} dipakai untuk menaksir μ , kita berada pada tingkat kepercayaan $(1-\alpha)100\%$ dengan kesalahan tidak lebih dari e apabila ukuran sampel adalah $n=\left(\frac{z_{\alpha/2}\sigma}{e}\right)^2$

• Contoh 5: Berapa jumlah sampel yang diperlukan pada contoh 3 agar kita memiliki tingkat kepercayaan 95% bahwa taksiran μ memiliki kesalahan kurang dari 0.05?

Jawaban:

Simpangan baku populasi adalah σ = 0.3. Dengan teorema sebelumnya,

$$n = \left(\frac{(1.96)(0.3)}{0.05}\right)^2 = 138.3 \approx 139$$

Jadi, dengan kepercayaan 95% sampel acak berukuran 139 akan memberikan taksiran ratarata-rata yang galatnya kurang dari 0.05

Selang kepercayaan untuk μ bila σ tidak diketahui:

Jika \bar{x} dan s adalah rataan dan simpangan baku sampel acak dari populasi normal dengan variansi σ^2 tidak diketahui, selang kepercayaan $(1-\alpha)100\%$ untuk μ adalah:

$$\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

Dengan $t_{\alpha/2}$ adalah nilai t dengan n-1 derajat kebebasan yang memberikan luas $\frac{\alpha}{2}$ sebelah kanan nilai tersebut.

 Penggunaan distribusi t untuk σ yang tidak diketahui berdasarkan anggapan bahwa sampel berasal dari populasi berdistribusi hampir normal (kurva berbentuk lonceng) • Contoh 6. Tujuh botol yang mirip masing-masing berisi minuman 9.8, 10.2, 10.4, 9.8, 10.0, 10.2, dan 9.6 liter. Carilah selang kepercayaan 95% untuk rataan isi botol semecam itu bila distribusinya hampir normal.

Jawaban: Rataan dan simpangan baku sampel di atas

$$\bar{x} = 10.0 \text{ dan s} = 0.283$$

Tingkat kepercayaan = 0.95 = 1 - α \rightarrow sehingga α = 0.05

$$t_{0.05/2} = t_{0.025}$$

Dari tabel distribusi t diperoleh $t_{0.05/2}$ = 2.447 untuk derajat kebebasan v = n - 1 = 6. Jadi, selang kepercayaan 95% untuk μ adalah

$$10.0 - (2.447) \frac{(0.283)}{\sqrt{7}} < \mu < 10.0 + (2.447) \frac{(0.283)}{\sqrt{7}}$$

atau $9.74 < \mu < 10.26$

Menaksir Variansi

• Definisi:

Jika sampel berukuran n diambil dari populasi normal dengan variansi σ^2 dan variasi sampel s^2 dihitung, akan diperoleh nilai statistik S^2 yang digunakan sebagai nilai taksiran dari σ^2 .

Dengan kata lain S^2 adalah penaksir dari σ^2 .

Interval penaksiran ditentukan dengan statistik:

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

• Statistik X^2 mempunyai distribusi *chi-squared* dengan derajat kebebasan n-1 untuk sampel dari populasi normal.

Selang penaksiran dapat dituliskan:

$$P(X_{1-\alpha/2}^2 < X^2 < X_{\alpha/2}^2) = 1 - \alpha$$

dengan $X_{1-\alpha/2}^2$ dan $X_{\alpha/2}^2$ adalah nilai-nilai dari distribusi *chi-squared* dengan n-1 derajat kebebasan.

• Kurva:

Gambar 4 Interval Penaksiran

Definisi:

Jika s^2 adalah variansi sampel acak berukuran n dari populasi normal, selang kepercayaan $(1 - \alpha)100\%$ dari σ^2 adalah:

$$\frac{(n-1)S^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}$$

dengan $\chi^2_{\alpha/2}$ dan $\chi^2_{1-\alpha/2}$ adalah nilai *chi-squared* dengan*n*-1 derajat kebebasan yang mempunyai luas di sebelah kanan $\frac{\alpha}{2}$ dan $1-\frac{\alpha}{2}$.

• Contoh 7. Berat 10 paket biji rumput yang didistribusikan oleh perusahaan tertentu adalah 46.4; 46.1; 45.8; 47.0; 46.1; 45.9; 45.8; 46.9; 45.2; 46.0. Hitunglah selang kepercayaan 95% dari variansinya, asumsi distribusi normal.

Jawaban:

Hitung dulu

$$s^{2} = \frac{n \sum_{t=1}^{n} x_{t}^{2} - (\sum_{t=1}^{n} x_{t})^{2}}{n(n-1)}$$

$$= \frac{(10)(21,273.12) - (461.2)^{2}}{(10)(9)}$$

$$= 0.286$$

Untuk selang 95%, maka $\alpha=0.05$, dengan tabel chikuadrat maka untuk v=9 diperoleh $\chi^2_{0.025}=19.023$ dan $\chi^2_{0.975}=2.700$

Dengan demikian selang kepercayaan 95% adalah:

$$\frac{(9)(0.286)}{19.023} < \sigma^2 < \frac{(9)(0.286)}{2.700}$$
 atau $0.135 < \sigma^2 < 0.953$

Menaksir Nisbah Dua Variansi Dua Sampel

• Definisi (1):

Taksiran rasio dua variansi populasi σ_1^2/σ_2^2 adalah rasio dari variansi sampel s_1^2/s_2^2 .

Dengan kata lain statistik S_1^2/S_2^2 adalah penaksir dari σ_1^2/σ_2^2

• Definisi (2):

Jika s_1^2 dan s_2^2 adalah variansi dari dua sampel saling bebas berukuran n_1 dan n_2 dari populasi normal, maka interval kepercayaan $(1-\alpha)100\%$ untuk σ_1^2/σ_2^2 adalah:

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{\frac{\alpha}{2}}(v_1, v_2)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} f_{\frac{\alpha}{2}}(v_2, v_1)$$

dengan $f_{\frac{\alpha}{2}}(v_1,v_2)$ adalah nilai f dengan derajat kebebasan $v_1=n_1-1$ dan $v_2=n_2-1$ yang mempunyai luas sebelah kanan $\alpha/2$, serupa untuk $f_{\frac{\alpha}{2}}(v_2,v_1)$ yang mempunyai derajat kebebasan $v_1=n_1-1$ dan $v_2=n_2-1$.

• Contoh 8. Perusahaan baterai mobil mengklaim bahwa produknya secara rata-rata berumur 3 tahun dengan simpangan 1 tahun. Jika 5 baterai mempunyai umur 1.9; 2.4; 3.0; 3.5; dan 4.2 tahun, tentukan selang kepercayaan 95% untuk σ^2 dan berilah pendapat apakah klaim perusahaan yang menyatakan bahwa $\sigma^2 = 1$ adalah valid? Asumsi distribusi umur baterai adalah normal.

Jawaban:

Hitung dulu

$$s^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n(n-1)}$$
$$= \frac{(5)(48.26) - (15)^{2}}{(5)(4)} = 0.815$$

Untuk selang 95%, maka $\alpha=0.05$ dan dengan tabel chi-kuadrat dengan v=4 maka $\chi^2_{0.025}=11.143$ dan $\chi^2_{0.975}=0.484$ Dengan demikian selang kepercayaan 95% adalah:

$$\frac{(4)(0.815)}{11.143} < \sigma^2 < \frac{(4)(0.815)}{0.484} \text{ atau} \quad 0.293 < \sigma^2 < 6.736$$

Kesimpulan: klaim perusahaan bisa diterima karena nilai 1 masih terletak pada selang tersebut.