Assignment 2.

1. Expand $\frac{2-x^2}{\sqrt{4+3x}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [6]

- 2. (a) Simplify the expression $(\sqrt{1+x} + \sqrt{1-x})(\sqrt{1+x} \sqrt{1-x})$. [2]
 - (b) Using this result, expand $\frac{1}{\sqrt{1+x}+\sqrt{1-x}}$ in ascending powers of x, up to and including the term in x^4 . [5]

3. When $(2-3)^{-3}$	$(3x)(1+ax)^{\frac{3}{4}}$, where a is a cons	stant, is expanded in ascending	g powers of x , the coefficient of the term
in x is zero.			

[3]

(a) Find the value of a.

(b) When a has this value, find coefficient of the term in x^4 in the expansion of $(2-3x)(1+ax)^{\frac{3}{4}}$. [4]

- 4. It is given that $f(x) = \frac{x^2}{(x+1)(x-1)^2}$.
 - (a) Write f(x) in terms of partial fractions. [4]

(b) Hence expand f(x) in ascending powers of x, up to and including the term in x^4 . [4]