(19) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭57-54260

①Int. Cl.³ C 22 F 1/18 C 22 C 27/02 H 01 L 39/12 識別記号 102 庁内整理番号 8019—4K 6411—4K

7131-5F

❸公開 昭和57年(1982) 3月31日

発明の数 1 審査請求 有

(全 4 頁)

ØNb₃Sn複合加工材の製造法

②特

昭55—128551

22出

(昭55(1980)9月18日

⑫発 明 者

太刀川恭治 東京都世田谷区成城 3 丁目13番

29号

仍発 明 者 浅野稔久

茨城県新治郡桜村大字花室1382 番地吾妻1丁目604棟701号

加発 明 者 竹内孝夫

茨城県新治郡桜村大字花室1481 番地の1吾妻1丁目401棟412号

⑪出 願 人 科学技術庁金属材料技術研究所

長

明 細 書

1. 発明の名称

Nb_aSn複合加工材の製造法

- 2. 特許請求の範囲
 - 1) ニオブに 0.1~1 0 原子がのチタンを含む合金体と、銅に 2~9 原子がの錫を含む合金体との複合体を、線引き、圧延あるいは管引きなどにより線、テーブあるいは管状などに加工した後、 600~900 でで熱処理を行い複合体境界に Nb₂Snの化合物層を生成させることを特徴とする Nb₂Sn 複合加工材の製造法。
 - 2) ニオブに 0.1~1 0 原子がのチタンを含む合金体と、銅に 2~9 原子がの鍋と 0 1~1 5 原子がのガリウムまたは 0.1~1 8 原子がのアルミニウムを含む合金体との複合体を、練引き、圧延あるいは管引きなどにより線、 テーブあるいは管状に加工した後、 6 0 0 ~ 9 0 0 ℃で熱処理を行い複合体境界面に Nb3 Snの化合物を生成させることを特徴とする Nb3 Sn複合加

工材の製造法。

3. 発明の詳細な説明

本発明はニオブにチタンあるいは更にガリウムまたはアルミニウムを添加して特性の改善された強磁界発生用Nb_BSn複合加工材の製造法に関する。

せられるようになった。表面拡散法とは、例え ば Nb テーブを静融器 (Sn) 浴中に連続的に通過 させてテープ表面にSnを付着させた後、適当な 温度で熱処理してNbとSnを拡散反応させテー プ表面に Nb₂Sn化合物層を生成させる方法であ る。複合加工法とは、例えばNbと鋼(Cu)-Sn 固帯合金体とを複合一体化した後加工、熱処理 して Cu-Sn 合金中の Sn のみを選択的にNbと反 応させて、Nb38n化合物層を境界面に生成させ る方法で、固体拡散法の一種である。Nbおよび Cu-Sn 固務合金体はともに十分な 可 盟 性 を 有 するため、熱処理を施す以前に複合体のまま要 求される線、テープ、管等の任意の形状に容易 に加工が可能である。さらに、Cu-Sn合金マト リックス中に多数の Nb 棒を埋め込んで 細 篠 加 工することにより、速い磁界変化に対して安定 な極細多芯形式の線材とすることができる。こ のような表面拡散法および複合加工法により作 製された Nb,Snあるいは V,Ga 化合物維材はす でに物性研究用などの小型強磁界マグネットと

して利用されている。

一方近年、核融合炉用、高エネルギー貯蔵用、 超電導発電機用等の大型強磁界マグネットの開 発が進められており、これらに使用される超道 導離材として15至以上の強磁界領域において 大きい臨界電流(Ic)をもち、しかも違い磁界 変化に対して安定な化合物価細多芯磁の実用化 が急がれている。しかし、従来の純Nbと Cu-Sn 2 元合金との複合体から作製した Nb, Sn 化 合物銀材の臨界電流([c)は、10T以上の磁 界で急速に低下し、この額材によっては12T 以上の磁界を発生し得る超電導マグネットを作 製することは困難であった。一方、VaGa化合物 線材は強磁界特性が Nb,Snよりもすぐれている が、材料の価格が Nb₂Snよりかなり高価である ため、線材を大量に使用する大型設備に関して は、"強磁界特性を少量の合金元素鑑加により改 善した Nb₃Sn線材を使用する方が得策である。 最近、 Nb にハフニウム(Hf)を固善された 2 元合 金体と、 Ču-Sn 2 元合金あるいはそれに Ga ま

たはAlを添加した3元Cu基合金体とを復合一 体化したのち加工、熟処理して強磁界中の超電 導特性が顕著に改善された Nb Sn 化合物線材を 製造する方法が開発された(特置53-112191)。 Nb 合金中の Hf は Nb₃Sn 相内に固薄してNb₃Sn 層の拡散生成速度を着しく増大させてNbgSn層 の厚さを増加しIcを増大させる。また、Cu-Sn 合金中に軽加された Ga または Al もSn とともに Nb 合金体内に拡散して、生成される Nb, Sn 相 内に固醇しそのHcz を高める。このようにして Hf、あるいはHfおよびGa、あるいはHfおよ . びAlを添加した Nb₃Sn 複合加工線材の強磁界 特性は著しく改善され、強磁界まで大きい Ic 値が得られている。しかし、上記発明において 使用されるHfは高価なため、 VaGa線材に比較 して安価というNb₃Sn線材の利点が若干損なわ れる欠点があった。そのためさらに安価な疑力 元素で治磁界特性を改善することが、VaGaと競 合する強磁界用 Nb₃Sn 複合加工線材の実用化表 件として要求されていた。

本発明はこのような要求を満たすために、Hf に比べはるかに安価な Ti を添加した Nb 合金体 と、Cu-SnあるいはCu-Sn-GaあるいはCu-Sn-Al 合金体との複合体を所定の形状まで加工 して熱処理し、複合体境界面にTi、Ga、Alを 少量含む強磁界特性の改善されたNbaSn層を拡 散生成させることを目的とする。この明細書中 の合金の含有率はすべて原子もで表示されてい る。本発明による製造法では、まずNb,Sn層の 拡散生成を促進させるためにTiを固層させた Nb基合金体を複製し、また別に Cu-Sn 合金体 あるいはそれにNbs8nのHcs を高める効果のあ る Gaまたは AI を添加した合金体を溶製し、上 配Nb基合金体をCu基合金体で被覆した各種形 状の複合体を作り、これを線引き、圧延あるい は管引きなどにより線、テーブあるいは管など に加工する。ここで、Nbに添加される Ti 量も すぐれた超電導停性を得るために0.1~10gの 範囲内にあること、特に1~5gの範囲内にあ ることが望ましい、また Cu-3n-Ga あるいは

Cu-Sn-Al合金体中の Gaあるいは Al量もすぐ れた超龍海特性を得るためにそれぞれ 0.1 多以 上、またCu基合金体の良好な加工性を保持す る上から158あるいは188以下の範囲内に なければならない。さられ Cu 基合金体中の Sn 番は十分なNb,Sn層厚を得るために2多以上、 また良好な加工性を保持する上から9メ以下の 範囲内になければならない。ついで該加工材を 熱処埋し、Snあるいはそれに加えて少量のGa またはAlをNb 基合金体内に拡散させて複合体 、境界面に少量の Ti あるいはさらに Ga またはAl を含む超尾導特性のすぐれたNb。Sn化合物層を 生成せしめる。ことで拡散のための 熱 処 埋 は 600~900℃の温度範囲で1分間~200時間 の時間内おこなう。これより低い温度あるいは 短い時間の熱処理では十分な量の Nb₃Sn層が生 成されず、また遊にこれより高温、長時間にな ると Nb₃Snの結晶粒が粗大化し超電導特性が劣

本発明で得られるTiあるいはさらにGaまた

よく発生できるので、核融合炉、高エネルギー 貯蔵、超電導発電機、高エネルギー物理加速器、 物性研究用等の各種強磁界マグネットの巻線材 として効果的に使用し得る。

哭施例 1.

純NbおよびNbに2および5多のTiを配合した素材をアルゴン雰囲気中でアーク溶解炉にて溶製し、これを擦ロールおよびスェーシングにて3m径まで加工してNb-Ti合金棒を作製した。これを外径8m内径3mのCu-7多Sn合金管に挿入した複合体を滯ロールおよび平ロールにより厚さ約250μm幅約5mのテーブ状に加工し、アルゴン雰囲気で800℃で100時間の熱処理をおこなった。試料のNb₃Sn層の厚さおよびTcの測定した結果は第1表の通りであった。

また、これらの試料のIcの獨定結果は第1図の通りであった。Tiの添加により NbaSn 層の厚さが顕著に増大し、また全磁界領域での Ic 特性が著しく改善されることがわかる。 はAIが添加されたNb.Sn 複合加工線材は、従 来のNb,Sn線材と比較して臨界電流 Icと上部 臨界磁界 Hc2 が増加し、その結果強磁界におけ るIcの改善が顕着である。そのため本発明は各 種超電導利用機器を十分な余裕をもって強磁界 で使用可能ならしめ、機器の性能、安全性、な らびに信頼性を向上させることに効果がある。 さらに強磁界特性を改善するために Nb に輸加 されたTiは、同様の目的で磊加されるHfに比 敢してはるかに安価で、契造コストをはとんど 増大させることなく Nbsonの遺磁界将性を顕著 に改善できるので、その経済的ならびに技術的 効果がきわのて大きい。また本発明は複合加工 法を採用しているため、適い磁界変化に対して 安定で、交流損失の小さい僵細多芯形式の線材 を作製することが可能であり、さらに大容量線 材の製造も容易で利用機器の大型化も可能にな

以上のように本発明により改善されたNb₃Sn 複合加工線材は、15T以上の減磁界を安定度

第 1 表

芯材(原子多)	マトリックス材(原子多)	Nb ₃ Sn 層厚(##)	T c (K)
Nb-2 # Ti	Cu-7≸Sn	30	1 7. 5
N b − 5 % T i	#	35	1 7. 4
Nb-2 # Ti	Cu-5 \$ 8 n - 4 \$ G a	20	1 7. 7
N b − 5 € T i	,	2 5	1 7. 6
Nb-2 5 Ti	Cu-5#8n-4#Al	20	1 7. 7
N b - 5 ≸ T i	,	2 3	1 7. 6
Nb	Cu-7 % Sn	15	.1 7. 2

実施例 2.

実施例1.と何様にしてNb-2、5 % Ti 合金棒と、Cu-5 % Sn-4 % Ga 合金管との複合体をテープ状に加工したのち800 でで100 時間の熱処理をおこなった。Nb, Sn 層の厚さおよびTc の調定結果を前記第1 表に、またこれらの試料の配合の調定結果を第1 図に示す。Ti と Ga の同時疏加によりTc が上昇し、さらに磁界の増加によるIc の低下が明らかに小さくなり、12 T以上の強磁界で大きい Ic が得られる。これは Tc の上

界に伴い Hca が増加したためと考えられる。 実施例 3.

実施例 2.と同様にして Nb-2、5 が Ti 合金体と、Cu-5 が Sn-4 が Al 合金体との複合テープを作製したのち 800 ℃で 100 時間の熱処理をおこなった。 Nb: Sn 層の厚さおよび Tc の測定結果を前記第 1 表に示す。 Ti と Al の同時番加により Tc が上昇し、また実施例 2.と同様に強磁界で Ic の改善が得られた。

4. 図面の簡単な説明

第1 図は実施例 1.および 2.で配した本発明による Nb a Sn 複合加工線材を 800 ℃ で 100 時間熱処理した場合の磁界一路界電流曲線である。

- 1: Nb/Cu-7#8n 2: Nb-2#Ti/Cu-7#8n
- 3 : Nb-5Ti/Cu-7≸8n
- 4 : Nb-2 & Ti/Cu-5 & Sn-4 & Ga
- 5 : Nb-5Ti/Cu-5\$8n-4\$Ga

特許出顧人 科学技術庁金属材料技術研究所長

自発による。 手 続 補 正 書

昭和55年12,月19日

特許庁長官 島田 存借 殿 (特許庁審査官 殿)

- 1.事件の表示 昭和55年特許服第12×551号
- 2. 発明の名称 Rb, Sri 複合加工材の製造法
- 3.補正をする者・

事件との関係 申件出類/

住 所 東京都目黒区中目黒2丁目3番12号

氏 名 科学技術庁金属材料技術研究所長

技術庁金属材料技術研究所

4.補正命令の日付

(自発)

4 - A - 8

- 5.補正の対象 明細書の「発明の詳細な説明:の機
- 6.補正の内容

別紙のとおり

- 12 1

(1) 第2頁8行「ニォブに」を削除する。