北京邮电大学

物理实验报告

实验名称: 惠斯登电桥测中值电阻

学院: 信息与通信工程学院

班 级: 2018211128

姓 名: 吴辉强

学 号: 2018213487

任课教师: 王鑫老师

实验日期: _2019.11.1

成 绩:

实验目的

1. 掌握惠斯登电桥测量中值电阻的原理和特点

2.学领用自搭惠斯登电桥测量未知电阻,并掌握计算结果的不确定度

3.学会用箱式单臂电桥测量中值电阻 4.了解 电桥灵敏度对测量结果的影响,以及常用减小测量误差的办法。

实验仪器名称 [型号、主要参数]

干电池、直流指针式检流计、ZX21型电阻箱、滑线变阻器、 QJ23型箱式电桥、开关、导线等.

实验原理和操作步骤 【基本物理思想、设计原理、主要公式及其意义、电路图或光路图等;操作步骤

实验原理.
(. 惠斯登电桥(也叫单臂电桥),其原理如图所示, R、R2、R5为可调标准电阻, R为传测电阻, C为比较臂, Rx为传测电阻, C为检流计, E为电源电动势、证明中心, C、R2、R5、使得检流计上电流为0,即马3, 比时电桥处于平衡状态、有Uan=UaB.

电欧姆定律: I, R,= I2Rx, I, R2= I2Rs

=> Rx = P1 Rs. 0

2. 电桥的灵敏度(5)

S=完,②即电桥灵敏度 S 是桥臂 电阻的相对变化 公长 (军际上是 kx 公长, 因及是不能变的) 与检流计相应的偏转格数 ch的比值。电桥灵敏度 反映电桥对电阻相对变化的分裂存能力。如果电桥灵敏度高,则对于待测电阻的微小变化,检流计符有明显的偏转。

罗丁亦可写为: S = 会设·金冠 = S:·SL, 图S;表示检流计的电流 灵敏度, SL表示电桥的线路下 灵敏度。

北京邮电大学物理实验报告
整个电桥的灵敏度为
$\frac{1}{ R_1+R_2+R_5+R_X+R_g[2+(\frac{R_1}{R_2}+\frac{R_S}{R_X})]}$
中国或有以下结论:
①电桥的灵敏度与检流计的灵敏度5;成正比;
包电源电动势越高,电桥灵敏度就越高(但应注意功率,避免投坏).
③检验计内阻处域小,电桥灵敏度越高.
④ 桥臂电阻(R、R2、R5、Rx) 越大, 电桥灵敏度越低.
3.1版换法则电阻.
由以二世以得不确定度:
$\frac{u(Rx)}{ x } = \frac{(u(Rx))^2 + (u(Rx))^2 + (u(Rx))^2}{ x } + \frac{(u(Rx))^2 + (u(Rx))^2}{ x } = \frac{1}{2}$
17 RS 5 KX 51 KX = 15 KS
电图的消息 Rx=(Rs·Ri, ulkx)=(日·h·Rs) 异台·h·Rs) 子(是·h·Rs)
实验等级[0]23型直流单臂电桥使用:
大地等多级(0)23型 鱼风牛鸡鱼的水用:
的比例臂的数值,使电桥平衡时,比较臂尽的四个旋钮都能用上尖烟线)
2. 特比较精旋钮旋到及的粗略值上
3. 测量时先按"B"后按"G",证图尽便检流计扫断不动,则及"吃品"
4. お山井 - 131、 - 6112年1.
二、实验步3聚: 1. 自搭惠斯登电桥3则量积电阻18x、18x2(结果保留4位有效的)
2. 多换 12c 和 1/x 的位置, 分别测 两待测 电阳的现值(台上)
9. 利用QJ23型直流单臂电桥>别于如阳值,并计算电桥是数度
注意事项:0检流什不能在发路情况下调要。使用时露出红点,使用后
路出自点。
②箱式惠斯登电桥的打破退 B和G只能点接,不要锁住.

实验数据处理与讨论	-	一十十六八十十年日上计管	结果表示与讨论等
实验数据外理与讨论	实验数据计算、	不确定度公式推寻与以并、	ALACT.

实验数据处理	与讨论 [实验	数据计算、不确定	定度公式推导与	计算、结果表示与内尼亚
1. 自搭惠其	听登电桥汉	量两个电阻		
Rx	R(S)	Re(N)	Rs(N)	A DESCRIPTION OF THE PROPERTY
2300	200.0	2000-D	298.2	
215261		200.0	199.0	
电阻箱	的世仪器	误差~ 经:	=(0.1+0-2 景	-)% $(m=6)$
	1		= U(R)	
复文	的规则是	1 (1x)=1	(BIX) = DX	
i) 12300	: Rx = R1	$R_S = \frac{200.0}{2000.0}$	× 298.2 =	29.822
S WEN	= (0, 1+0.2		106%	9/
MA	= (0,1+0.2)	(2000.0) = 0,	10/2 => 11	(Rx) - (u(Rx))2 (u(Rx))2 + (u(Rx))2 = 0.18%
ulks)	= (0, (+0)	1×98.2 %= 0.	104%	y/
R) UC	$2x) = Rx \cdot 0$			
	+ 1/(Px)=(2			
1 4	(RX) × 100% =	-0.18%	<i>Y</i>	
il portion	kn; Rx	$=\frac{R_1}{R_2}R_5=$	2000.0 × 199	0 = 1990 sc
MA	=(0, +0	2 2000.0)% =	=0,1006/2	= u(kv - [m/k); (m/k); (m/k)) = 0.18%
nik	= (0.1+0.	2× 200.0)% =	0.106%	= 12x - 12x - 12x - 12x - 0.18%
ník	25 = 10.1 + 0.	2× 6 0%	= 0.106%	
) = Px 0.18;		
=> {)= (1990 ±		
	WRX)	00% = 0.18	%	
2. 交换法》				1 (0.12 / (0.13)
		L. Rs , M.R.		(MIR) + (MIR)
- 利用支	完主: Rx=∫	Rs. Ps', m	RX = 1(1)	RS)+(1 W(KS))2
	12 4	= = (0.1+	0.2岁)%	

				- /	
		七京邮电大学物理	实验报告		
	R _I (N)	R2(N)	Rs(n)	Rs(N)	
26801		200.0	337.7	1350-1	
i)未利用效	换时法时:				
/ _x =	R1. R5 = 400.0	× 337.7 = 675.	41		
nl	RI) = (0,1+0,2 x	400,0)%=0,10	3%7 - ulex	PI H WE FE	(PS) =0.18%
<u> </u>	$\frac{R_1}{R_2} = (0.) + 0.2 \times$	200.0)/0 = 0.10			,
	125 - 10,1+0.2x-		3670 my MK	1= KX.01810 -10	
7)	Rx ± n URx) = (675.4			13/	
	KX ×100% = 0,	18/10	0		6
1	块牌法时;	171- 1	20	/	0
	Ps. Rs' = 537,7x13.			1 400 12 / 1/4	(0))
$\frac{\sqrt{Rs}}{Rs} = \frac{1}{1}$	(0.1+ 0.2×37.7	1/6 = 0.1050/0	RX J	2 RS / (2)	Rs = 0.07%
• • •	(0.1 + 0.2×1350.1		MCPX) = PX.	1.07% = 17.500	
= 38	Rx ± U(Rx) = (6)			77	
大月3-	水桶定度比赤	4) 用方指注 10	1670.18%	路出山	小3保养
	3型箱的惠斯登				JUNE
	: Rx = R1 . Rs=			*	1
71.1	in	70	14	ZAT	

 $2ii)R_{x} = \frac{P_{1}}{S} \cdot R_{s} = \frac{P_{1}}{R_{s}} \cdot R_{s} = \frac{1}{1988} = \frac{1988}{1988} \times \frac{1}{1988} = \frac{1}{1988} \times \frac{1}{1988} = \frac{1}{1988} \times \frac{1}{1988} = \frac{1}{1988} \times \frac{1}{1988} \times \frac{1}{1988} = \frac{1}{1988} \times \frac{1}{$

回答问题与第 <u>1. 不可以</u>	改变。应为等臂交换,才能会 RI、R)、消去以减少误差。且由
2. "电计":	键为接通检流计,观察指针偏转;短路"键为在指针
使治。	恒度较大时,若想使之停下,可在其经过平衡位置对按下以 应露出红点才能测量。周零,使用后置于自点露出以锁住指针
保护电路	始滑战变阻器有较大阻值,可以使电阻调节过程中起到各作用。当间电阻接近实际阻值时,滑线变阻器调制零,高检流计灵敏度作用。
4. 形会.	
13) 会 (4) 会	(影响检流计灵敏度计算及电桥平衡) (影响电桥的调平衡)
5.	Ri接0.12,0.9几接线柱, Ri接0.91.
	BD间电流有无可以从闭告S后的的示数
总结:本	有无变化看出,若闭台S, ①示数破,则 Be-景Rs. 公室验告与聚较为简单,通过这次实验, 我更深刻地体会电桥的原理及是是是是一个是是是一个是是是一个是是是一个是是是一个是是一个一个一个一个一个一
任课教师指	导意见,提高了仪器的成能的,多维了女权法这一为证法。经了不确定度的计算主题过

北京邮电大学物理实验要求及原始数据表格

实验 3.3 惠斯登电桥测量中值电阻 姓名吴辉强 合作者丁伟航 班级2018 教师王美和宗验时间2019.11实验组号_16

一、预习要点

- 1. 惠斯登电桥的测量原理和特点;
- 2. 交换法减小测量误差的基本原理; 交换法测量时, R_1, R_2 , 的阻值是否可以改变:
- 3. 哪些参量影响电桥的灵敏度? 如何测量电桥灵敏度?
- 4. 从减小测量误差的角度出发,说明如何选择桥臂电阻;
- 5. 预习 OJ23 型直流单臂电桥的使用方法。

二、实验注意事项

- 1. 检流计不能在短路情况下调零。使用时露出红点。使用后露出白点。
- 2. 箱式惠斯登电桥的按键 B 和 G 只能点按, 不要锁住。

三、实验内容

- 1. 自搭惠斯登电桥测量数据表中指定的两个电阻 R_x 。采用三个电阻箱作为桥臂电阻,要求测量结果 R_x 有 4位有效数字:
- 2. 利用交换法测量数据表中指定的电阻;要求测量结果 R_x 有 4 位有效数字;
- 3. 利用 QJ23 型直流单臂电桥测量数据表中指定的两个未知电阻,并计算电桥灵敏度(选作)

四、数据表格

1. 自搭惠斯登电桥测量两个电阻

Rx	$R_1(\Omega)$	R_2 (Ω)	$R_{s}\left(\Omega\right)$
≈ 30Ω	200.0	2000.0	298.2
$\approx 1.5 \sim 2k\Omega$	2000.0	200.0	199.0

2. 交换法测电阻

R_x	$R_{\rm i}(\Omega)$	$R_2(\Omega)$	$R_s(\Omega)$	$R_{s}^{'}(\Omega)$
≈ 680Ω	400.0	200.0	337.7	1350.1

3. 用 QJ23 型箱式惠斯登电桥测电阻, 并计算电桥灵敏度, Δn 小于 3.0 格。(选作)

R _x	R_1/R_2	$R_s(\Omega)$	ΔR_s (Ω)	Δn
≈ 30Ω	0.0	2985 2982	2.1.2.1	2.0
$\approx 1.5 \sim 2k\Omega$		1988	1	≥1.9

教师签字。

北京邮电大学物理实验要求及原始数据表格

五、数据处理

- 1. 列表计算自搭惠斯登电桥所测未知电阻的阻值及其不确定度。
- 2. 列表计算利用交换法测量未知电阻的阻值,分别计算交换法测量结果的不确定度与未利用交换法测量结果的不确定度,然后进行比较和讨论。
- 3. 计算用 QJ23 型直流单臂电桥测量未知电阻的阻值,并利用公式 $S = \frac{\Delta n}{\Delta R_s / R_s}$ 计算该电桥的灵敏度(选作)。
- 4. 以上所有数据处理过程均应给出不确定度 $u(R_x)$ 的详细推导过程和计算过程;并将结果表

示成
$$R_x \pm u(R_x)$$
 和 $\frac{u(R_x)}{R_x}$ 的形式。

六、思考题

1. 使用交换法测未知电阻时 R_1, R_2 的阻值在交换前后是否可以改变?为什么?例如交换前

 $R_1 = R_2 = 100.0\Omega$,交换后 $R_1^{'} = R_2^{'} = 500.0\Omega$ 。

- 2. AC5/3 检流计的"电计"和"短路"键的作用是什么?调零键下方的锁扣在什么位置才可以进行调零和测量(说明是露出红点还是白点),使用后应置于什么位置(是露出红点还是白点)?
- 3. 说明测量电路中滑线变阻器的作用。
- 4. 下列因素是否会加大测量误差?
 - (1) 电源电压大幅下降;
 - (2) 电源电压稍有波动;
 - (3) 检流计零点没有调准;
 - (4) 检流计灵敏度不够高。
- 5. 用给出的仪器自组单臂电桥,并用其测量表头(微安表)内阻。要求:
 - (1) 画出线路图;
 - (2) 写出设计思想及表头内阻的计算公式。

仪器: 0.1 级电阻箱一个(其内部电路示意图见书第二章基本仪器介绍): 电阻箱有四个接线柱分别标有: 0, 0.9Ω , 9.9Ω , 99999.9Ω 。滑线变阻器一个: 500Ω , 允许 2A 电流。微安表一个: $100\mu A$, 1.5 级,内阻约为 1000Ω 。电源: 3V 干电池。开关导线若干。

用熟程。