UFPI – UNIVERSIDADE FEDERAL DO PIAUÍ

Bacharelado em Engenharia Elétrica

Algoritmo e Programação de Computadores

Prof. Eduardo Magalhães

Aula 02

Algoritmos são conjuntos de passos finitos e organizados que, quando executados, resolvem um determinado problema.

Manzano e Oliveira, 2014.

Algoritmo x Software

- O software é composto de por um conjunto de instruções, escrita em uma sequência lógica, que permitem o computador a resolver um problema.
- Porém , para que o computador possa interpretar estas instruções, elas devem ser escritas em uma linguagem específica chamada de linguagem de programação.
- Um algoritmo escrito numa linguagem de programação é chamado de código fonte.

Representação de Algoritmos

Os algoritmos podem ser representados de várias formas, dependendo dos objetivos e das preferências de seu desenvolvedor :

- · Pseudocódigo;
- Descrição Narrativa;
- Fluxograma;
- Diagrama de Chapin.

Descrição Narrativa

 É a descrição dos passos a serem executados pelo algoritmo, feita diretamente natural. Os passos são listados um após o outro, na sequencia em que devem ser executados, cada um em uma nova linha de texto.

Exemplo de algoritmo para trocar uma lâmpada:

- 1. Pegar a escada;
- 2. Posicionar a escada sob a lâmpada;
- 3. Pegar a lâmpada nova;
- 4. Subir na escada;
- 5. Remover a lâmpada nova;
- 6. Colocar a lâmpada antiga;
- 7. Descer da escada;
- 8. Colocar a lâmpada antiga no lixo;
- 9. Guardar a escada.

Pseudocódigo ou Portugol

- Também conhecido como português estruturado. É uma técnica mais formal e estruturada uma vez que possui algumas regras definidas.
- Estas regras são as próximas às adotadas pelas linguagens de programação, o que é bastante positivo para o estudante.

Algoritmo para trocar uma lâmpada:

Algoritmo TrocaLampada

Inicio

Pegar a escada

Posicionar a escada sob a lâmpada

Pegar a lâmpada nova

Subir na escada

Remover a lâmpada nova

Colocar a lâmpada antiga

Descer da escada

Colocar a lâmpada antiga no lixo

Guardar a escada

Fim.

Fluxograma

- Também conhecidos como Diagramas de blocos, nos permitem dar uma representação visual para para o algoritmo facilitando sua compreensão;
- Para criar um fluxograma utilizam-se figuras geométricas;
- A indicação do fluxo de execução é feito por meio de setas;

Fluxograma

Terminal

Serve para demarcar o inicio e o fim de um algoritmo

Processamento

Representa operações de processamento

, Fluxo (

Fluxo de execução

Indica o curso natural do algoritmo

Algoritmo para trocar uma lâmpada:

Diagrama de Chapin

 Também conhecidos como Diagrama de Nassi-Shineiderman, é uma forma de representação hierárquica da lógica do programa. Este diagrama é construído em um grande quadro, dividido em blocos à medida em que as ações do processamento vão sendo inseridas.

Algoritmo para trocar uma lâmpada:

Inicio		
Pegar a escada		
Posicionar a escada sob a lâmpada		
Pegar a lâmpada nova		
Subir na escada		
Remover a lâmpada nova		
Colocar a lâmpada antiga		
Descer da escada		
Colocar a lâmpada antiga no lixo		
Guardar a escada		
Fim		

Linearização de Expressões

Para a construção de Algoritmos todas as expressões aritméticas devem ser linearizadas, ou seja, colocadas em linhas.

É importante também ressalvar o uso dos operadores correspondentes da aritmética tradicional para a computacional.

Linearização de Expressões

$$\left\lceil \frac{2}{3} + \left(5 - 3\right) \right\rceil + 1 =$$

Tradicional

$$(2/3+(5-3))+1=$$

Computacional

Operadores Especiais (MOD e DIV)

MOD → Retorna o resto da divisão entre 2 números inteiros.

DIV → Retorna o valor inteiro que resulta da divisão entre 2 números inteiros.

Operadores Aritméticos

- + → Adição - Subtração
- * Multiplicação

/ → Divisão

Operadores Relacionais

- > Maior que
- < Menor que
- >= → Maior ou Igual
- <= → Menor ou Igual
- = → Igual
- <> → Diferente

Operadores lógicos

Atuam sobre expressões retornando sempre valores lógicos como Falso ou Verdadeiro.

] p ₁	RETORNA VERDADEIRO SE AMBAS AS
B	PARTES FOREM VERDADEIRAS.
	BASTA QUE UMA PARTE SEJA
OU	VERDADEIRA PARA RETORNAR
	VERDADEIRO.
NÃ	INVERTE O ESTADO, DE VERDADEIRO
0	PASSA PARA FALSO E VICE-VERSA.

Para trabalharmos adequadamente com operadores lógicos, temos que conhecer a tabela verdade para cada um dos operadores. Uma tabela verdade é o conjunto de todas as possibilidades combinatórias entre os valores das variáveis lógicas.

Expressões Lógicas

As expressões compostas de relações sempre retornam um valor lógico. Exemplo:

2+5>4 → Verdadeiro	3<>3 → Falso

A	В	AEB	AOUB	NÃO (A)
V	V			
V	F			
F	V			
F	F			

A	В	AEB	AOUB	NÃO (A)
V	V	V	V	F
V	F	F	V	F
F	V	F	V	V
F	F	F	F	V

Exemplos:

Resultado:V

Resultado: F

Mais exemplos:

Comparação Válida	Exemplo
variável e constante	X = 3
variável e variável	A <> B
variável e expressão	Y = W + J
expressão e expressão	(X+1) < (Y+4)

Operadores lógicos

Os operadores lógicos permitem que mais de uma condição seja testada em uma única expressão, ou seja, pode-se fazer mais de uma comparação (teste) ao mesmo tempo. A Tabela a seguir, apresenta os operadores lógicos que utilizaremos nesta disciplina.

Operadores lógicos

Operação	Operador
Negação	Não
Conjunção	E
Disjunção (não- exclusiva)	Ou
Disjunção (exclusiva	xou (lê-se: "ou exclusivo")

Constantes

São chamadas de constantes, as informações (dados) que não variam com o tempo, ou seja, permanecem sempre com o mesmo conteúdo, é um valor fixo (invariável). Como exemplos de constantes pode-se citar: números, letras, palavras etc.

Variáveis

Uma variável é um espaço da memória do computador que "reservamos" para guardar informações (dados). Como o próprio nome sugere as variáveis, podem conter valores diferentes a cada instante de tempo, ou seja, seu conteúdo pode variar de acordo com as instruções do algoritmo.

Variáveis

São referenciadas através de um nome (identificador) criado por você durante desenvolvimento do algoritmo. Exemplos de nomes de variáveis: produto, idade, a, x, nota I, peso, preço, etc. O conteúdo de uma variável pode ser alterado, consultado ou apagado quantas vezes forem necessárias durante o algoritmo.

Variáveis

Figura 4: Ilustração de Variável [TON04]

Atribuição

É uma notação utilizada para atribuir um valor a uma variável, ou seja, para armazenar um determinado conteúdo em uma variável. A operação de atribuição, normalmente, é representada por uma apontando para a esquerda, mas existem outros símbolos para representar a atribuição, depende da forma de representação do algoritmo.

Atribuição

Atribuições Possíveis	Exemplos
variável ← constante	Idade ← 2 (lê-se:idade <i>recebe</i> 12)
variável ← variável	preço ← valor
variável ← expressão	$A \longleftarrow B + C$

Comentários

Os comentários são utilizados para facilitar o entendimento do algoritmo.

Pode ser um texto ou simplesmente uma frase que aparece delimitado por chaves ({ }) ou precedido por duas barras (//).

Os comentários explicam o que acontecerá quando determinada instrução for executada e servem, também, para ajudar quem escreveu o algoritmo, caso haja a necessidade de analisá-lo algum tempo depois de sua criação.

Comentários

Exemplo: Subtrair dois número inteiros

```
Algoritmo Subtração
Início
{Ler dois números}
Ler (num I)
Ler (num2)
{Subtrair os dois números}
Resultado = num I-num2
Fim {fim do algoritmo subtração}
```

Resolução de Problemas

<Computador Hipotético>

Computador Hipotético

- Introdução
- Variáveis: E15, E16, E17....
 - Armazenar/guardar um determinado valor.
- Passos: P1, P2, P3...
 - Guardar uma ou mais instruções.
- Tabela Algorítmica

P1	
P2	
P3	
P4	

Problema I

Dados dois números realize e apresente a soma deles.

Problema II

Dadas duas notas de um aluno calcule e apresente a média das notas.

Problema III

•Dado o saldo de uma aplicação, exiba o novo saldo após um reajuste de 10%.

Problema IV

•Uma Empresa paga a seu vendedor um salário fixo de R\$ 800,00, mais uma comissão de 15% pelo valor de vendas realizada no mês. Leia o valor de vendas e determine o salário total do funcionário.