NOTAÇÕES

 $\mathbb{N} = \{1, 2, 3, \ldots\}$: conjunto dos números complexos

 \mathbb{R} : conjunto dos números reais i: unidade imaginária: $i^2=-1$ $[a,b]=\{x\in\mathbb{R};\ a\leq x\leq b\}$ |z|: módulo do número $z\in\mathbb{C}$

 $[a,b] = \{x \in \mathbb{R}; \ a \le x < b\}$: conjugado do número $z \in \mathbb{C}$

 $]a,b[=\{x\in\mathbb{R};\ a< x< b\}$ $M_{m\times n}(\mathbb{R})$: conjunto das matrizes reais $m\times n$

 $A \backslash B = \{x; \ x \in A \ \mbox{e} \ x \notin B\}$ det A : determinante da matriz A

 $\sum_{n=1}^{k} a_n = a_1 + a_2 + \dots + a_k, \ k \in \mathbb{N}$: transposta da matriz A

 $\sum_{n=0}^{k} a_n x^n = a_0 + a_1 x + \dots + a_k x^k, \ k \in \mathbb{N}$: inversa da matriz inversível A

 $\mathcal{P}(A)$: conjunto de todos os subconjuntos do conjunto A

n(A): número de elementos do conjunto finito A

Arg z: argumento principal de $z \in \mathbb{C} \setminus \{0\}$, Arg $z \in [0, 2\pi[$

 $f\circ g$: função composta das funções f e g

 $f \cdot g$: produto das funções $f \in g$

Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Questão 1. Considere as afirmações abaixo relativas a conjuntos $A, B \in C$ quaisquer:

I. A negação de $x \in A \cap B$ é: $x \notin A$ ou $x \notin B$.

II. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

III. $(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$.

Destas, é (são) falsa(s)

A () apenas I. B () apenas II. C () apenas III.

D () apenas I e III. E () nenhuma.

Questão 2. Considere conjuntos $A,B\subset\mathbb{R}$ e $C\subset(A\cup B)$. Se $A\cup B,A\cap C$ e $B\cap C$ são os domínios das funções reais definidas por $\ln(x-\sqrt{\pi}),\ \sqrt{-x^2+6x-8}$ e $\sqrt{\frac{x-\pi}{5-x}}$, respectivamente, pode-se afirmar que

A () $C =]\sqrt{\pi}$, 5[. B () $C = [2, \pi]$. C () C = [2, 5[.

D () $C = [\pi, 4]$. E () C não é intervalo.

Questão 3. Se z é uma solução da equação em \mathbb{C} ,

$$|z - \overline{z} + |z|^2 = -\left[\left(\sqrt{2} + i\right)\left(\frac{\sqrt{2} - 1}{3} - i\frac{\sqrt{2} + 1}{3}\right)\right]^{12}$$

pode-se afirmar que

A () $i(z - \overline{z}) < 0$. B () $i(z - \overline{z}) > 0$. C () $|z| \in [5, 6]$. D () $|z| \in [6, 7]$. E () $\left|z + \frac{1}{\overline{z}}\right| > 8$.

Questão 4. Os argumentos principais das soluções da equação em z,

$$iz + 3\overline{z} + (z + \overline{z})^2 - i = 0,$$

pertencem a

$$A \left(\ \right) \left] \frac{\pi}{4}, \frac{3\pi}{4} \right[.$$

$$B\left(\right)\left]\frac{3\pi}{4},\frac{5\pi}{4}\right[.$$

$$C() \left[\frac{5\pi}{4}, \frac{3\pi}{2}\right].$$

$$D\left(\ \right)\left]\frac{\pi}{4},\frac{\pi}{2}\left[\ \cup\ \right]\frac{3\pi}{2},\frac{7\pi}{4}\right[.$$

$$\mathrm{E} \left(\ \right) \left] 0, \frac{\pi}{4} \left[\ \cup \ \right] \frac{7\pi}{4}, 2\pi \left[. \right]$$

Questão 5. Considere a progressão aritmética $(a_1, a_2, ..., a_{50})$ de razão d. Se $\sum_{n=1}^{10} a_n = 10 + 25d$ e $\sum_{n=1}^{50} a_n = 4550, \text{ então } d - a_1 \text{ \'e igual a}$

B () 6.

C () 9. D () 11.

E () 14.

Questão 6. Sejam $f, g: R \to R$ tais que f é par e g é impar. Das seguintes afirmações:

I. $f \cdot g$ é ímpar,

II. $f \circ q \in par$,

III. $g \circ f$ é impar,

é (são) verdadeira(s)

A () apenas I.

B () apenas II.

C () apenas III.

D () apenas I e II.

E () todas.

Questão 7. A equação em x,

$$\operatorname{arctg}\left(e^{x}+2\right)-\operatorname{arccotg}\left(\frac{e^{x}}{e^{2x}-1}\right)=\frac{\pi}{4},\ x\in\mathbb{R}\setminus\{0\},$$

A () admite infinitas soluções, todas positivas.

B () admite uma única solução, e esta é positiva.

C () admite três soluções que se encontram no intervalo $\left| -\frac{5}{2}, \frac{3}{2} \right|$.

D () admite apenas soluções negativas.

E () não admite solução.

Questão 8. Sabe-se que o polinômio $p(x) = x^5 - ax^3 + ax^2 - 1$, $a \in \mathbb{R}$, admite a raiz -i. Considere as seguintes afirmações sobre as raízes de p:

I. Quatro das raízes são imaginárias puras.

II. Uma das raízes tem multiplicidade dois.

III. Apenas uma das raízes é real.

Destas, é (são) verdadeira(s) apenas

A () I.

B () II.

C () III.

D () I e III. E () II e III.

Questão 9. Um polinômio real $p(x) = \sum_{n=0}^{5} a_n x^n$, com $a_5 = 4$, tem três raízes reais distintas, a, be c, que satisfazem o sistema

$$\begin{cases} a + 2b + 5c = 0 \\ a + 4b + 2c = 6 \\ 2a + 2b + 2c = 5 \end{cases}$$

Sabendo que a maior das raízes é simples e as demais têm multiplicidade dois, pode-se afirmar que p(1) é igual a

A ()
$$-4$$
. B () -2 . C () 2. D () 4. E () 6.

B ()
$$-2$$
.

Questão 10. Considere o polinômio $p(x) = \sum_{n=0}^{15} a_n x^n$ com coeficientes $a_0 = -1$ e $a_n = 1 + i a_{n-1}$, n=1,2,...,15. Das afirmações:

I.
$$p(-1) \notin \mathbb{R}$$
,

II.
$$|p(x)| \le 4(3+\sqrt{2}+\sqrt{5}), \forall x \in [-1, 1],$$

III.
$$a_8 = a_4$$
,

é (são) verdadeira(s) apenas

E () II e III.

Questão 11. A expressão $(2\sqrt{3} + \sqrt{5})^5 - (2\sqrt{3} - \sqrt{5})^5$ é igual a

A ()
$$2630\sqrt{5}$$
.

B ()
$$2690\sqrt{5}$$
.

C ()
$$2712\sqrt{5}$$
.

D ()
$$1584\sqrt{15}$$
.

E ()
$$1604\sqrt{15}$$
.

Questão 12. Um palco possui 6 refletores de iluminação. Num certo instante de um espetáculo moderno os refletores são acionados aleatoriamente de modo que, para cada um dos refletores, seja de $\frac{2}{3}$ a probabilidade de ser aceso. Então, a probabilidade de que, neste instante, 4 ou 5 refletores sejam acesos simultaneamente, é igual a

A ()
$$\frac{16}{27}$$
.

B ()
$$\frac{49}{81}$$
.

C ()
$$\frac{151}{243}$$

D ()
$$\frac{479}{729}$$

A ()
$$\frac{16}{27}$$
. B () $\frac{49}{81}$. C () $\frac{151}{243}$. D () $\frac{479}{729}$. E () $\frac{2^4}{3^4} + \frac{2^5}{3^5}$.

Questão 13. Considere a matriz

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{bmatrix} \in M_{3\times 3}(\mathbb{R}),$$

em que $a_4=10,\,\det A=-1000$ e $a_1,\,a_2,\,a_3,\,a_4,\,a_5$ e a_6 formam, nesta ordem, uma progressão aritmética de razão d > 0. Pode-se afirmar que $\frac{a_1}{d}$ é igual a

$$A()-4$$

A ()
$$-4$$
. B () -3 . C () -2 . D () -1 . E () 1.

$$C()-2$$

$$D() -1$$

Questão 14. Sobre os elementos da matriz

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \in M_{4 \times 4}(\mathbb{R})$$

sabe-se que (x_1, x_2, x_3, x_4) e (y_1, y_2, y_3, y_4) são duas progressões geométricas de razão 3 e 4 e de soma 80 e 255, respectivamente. Então, $\det(A^{-1})$ e o elemento $(A^{-1})_{23}$ valem, respectivamente,

A ()
$$\frac{1}{72}$$
 e 12. B () $-\frac{1}{72}$ e -12. C () $-\frac{1}{72}$ e 12. D () $-\frac{1}{72}$ e $\frac{1}{12}$. E () $\frac{1}{72}$ e $\frac{1}{12}$.

Questão 15. O valor da soma $\sum_{n=1}^{6} \operatorname{sen}\left(\frac{2\alpha}{3^n}\right) \operatorname{sen}\left(\frac{\alpha}{3^n}\right)$, para todo $\alpha \in \mathbb{R}$, é igual a

$$A () \frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \alpha \right].$$

$$B () \frac{1}{2} \left[\sin \left(\frac{\alpha}{243} \right) - \sin \left(\frac{\alpha}{729} \right) \right].$$

$$C () \cos \left(\frac{\alpha}{243} \right) - \cos \left(\frac{\alpha}{729} \right).$$

$$D () \frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \left(\frac{\alpha}{243} \right) \right].$$

$$E () \cos \left(\frac{\alpha}{729} \right) - \cos \alpha.$$

Questão 16. Se os números reais α e β , com $\alpha + \beta = \frac{4\pi}{3}$, $0 \le \alpha \le \beta$, maximizam a soma sen $\alpha + \sin \beta$, então α é igual a

A ()
$$\frac{\pi\sqrt{3}}{3}$$
. B () $\frac{2\pi}{3}$. C () $\frac{3\pi}{5}$. D () $\frac{5\pi}{8}$. E () $\frac{7\pi}{12}$.

Questão 17. Considere as circunferências $C_1: (x-4)^2+(y-3)^2=4$ e $C_2: (x-10)^2+(y-11)^2=9$. Seja r uma reta tangente interna a C_1 e C_2 , isto é, r tangencia C_1 e C_2 e intercepta o segmento de reta $\overline{O_1O_2}$ definido pelos centros O_1 de C_1 e O_2 de C_2 . Os pontos de tangência definem um segmento sobre r que mede

A ()
$$5\sqrt{3}$$
. B () $4\sqrt{5}$. C () $3\sqrt{6}$. D () $\frac{25}{3}$. E () 9.

Questão 18. Um cilindro reto de altura $\frac{\sqrt{6}}{3}$ cm está inscrito num tetraedro regular e tem sua base em uma das faces do tetraedro. Se as arestas do tetraedro medem 3 cm, o volume do cilindro, em cm^3 , é igual a

A ()
$$\frac{\pi\sqrt{3}}{4}$$
. B () $\frac{\pi\sqrt{3}}{6}$. C () $\frac{\pi\sqrt{6}}{6}$. D () $\frac{\pi\sqrt{6}}{9}$. E () $\frac{\pi}{3}$.

Questão 19. Um triângulo equilátero tem os vértices nos pontos $A, B \in C$ do plano xOy, sendo B=(2,1) e C=(5,5). Das seguintes afirmações:

- A se encontra sobre a reta $y = -\frac{3}{4}x + \frac{11}{2}$,
- A está na intersecção da reta $y = -\frac{3}{4}x + \frac{45}{8}$ com a circunferência $(x-2)^2 + (y-1)^2 = 25$, II.
- A pertence às circunferências $(x-5)^2 + (y-5)^2 = 25$ e $\left(x-\frac{7}{2}\right)^2 + (y-3)^2 = \frac{75}{4}$,

é (são) verdadeira(s) apenas

- A () I.
- B () II.
- C () III.
- D () I e II.
- E () II e III.

Questão 20. Sejam A, B, C e D os vértices de um tetraedro regular cujas arestas medem 1 cm. Se M é o ponto médio do segmento \overline{AB} e N é o ponto médio do segmento \overline{CD} , então a área do triângulo MND, em cm^2 , é igual a

- A () $\frac{\sqrt{2}}{6}$. B () $\frac{\sqrt{2}}{8}$. C () $\frac{\sqrt{3}}{6}$. D () $\frac{\sqrt{3}}{8}$. E () $\frac{\sqrt{3}}{9}$.

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E RESPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Sejam A, B e C conjuntos tais que $C \subset B$, $n(B \setminus C) = 3n(B \cap C) = 6n(A \cap B)$, $n(A \cup B) = 22$ e (n(C), n(A), n(B)) é uma progressão geométrica de razão r > 0.

- a) Determine n(C).
- b) Determine $n(\mathcal{P}(B \setminus C))$.

Questão 22. A progressão geométrica infinita $(a_1, a_2, ..., a_n, ...)$ tem razão r < 0. Sabe-se que a progressão infinita $(a_1, a_6, ..., a_{5n+1}, ...)$ tem soma 8 e a progessão infinita $(a_5, a_{10}, ..., a_{5n}, ...)$ tem soma 2. Determine a soma da progressão infinita $(a_1, a_2, ..., a_n, ...)$.

Questão 23. Analise se a função $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{3^x - 3^{-x}}{2}$ é bijetora e, em caso afirmativo, determine a função inversa f^{-1} .

Questão 24. Seja $f: \mathbb{R} \to \mathbb{R}$ bijetora e împar. Mostre que a função inversa $f^{-1}: \mathbb{R} \to \mathbb{R}$ também é ímpar.

Questão 25. Considere o polinômio $p(x) = \sum_{n=0}^{6} a_n x^n$, com coeficientes reais, sendo $a_0 \neq 0$ e $a_6 = 1$. Sabe-se que se r é raiz de p, -r também é raiz de p. Analise a veracidade ou falsidade das afirmações:

- Se r_1 e r_2 , $|r_1| \neq |r_2|$, são raízes reais e r_3 é raiz não real de p, então r_3 é imaginário puro. I.
- Se r é raiz dupla de p, então r é real ou imaginário puro.
- III. $a_0 < 0$.

Questão 26. Uma urna de sorteio contém 90 bolas numeradas de 1 a 90, sendo que a retirada de uma bola é equiprovável à retirada de cada uma das demais.

- a) Retira-se aleatoriamente uma das 90 bolas desta urna. Calcule a probabilidade de o número desta bola ser um múltiplo de 5 ou de 6.
- b) Retira-se aleatoriamente uma das 90 bolas desta urna e, sem repô-la, retira-se uma segunda bola. Calcule a probabilidade de o número da segunda bola retirada não ser um múltiplo de 6.

Questão 27. Considere as matrizes $A \in M_{4\times 4}(\mathbb{R})$ e $X, B \in M_{4\times 1}(\mathbb{R})$:

$$A = \begin{bmatrix} a & 1 & b & 1 \\ b & 1 & a & 0 \\ 0 & 2 & 0 & 0 \\ -a & 2 & b & 1 \end{bmatrix}; \quad X = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \text{ e } B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

- a) Encontre todos os valores reais de a e b tais que a equação matricial AX = B tenha solução única
- b) Se $a^2 b^2 = 0$, $a \neq 0$ e $B = [1 \ 1 \ 2 \ 4]^t$, encontre X tal que AX = B.

Questão 28. Considere a equação $(3 - 2\cos^2 x)\left(1 + \lg^2\frac{x}{2}\right) - 6\lg\frac{x}{2} = 0.$

- a) Determine todas as soluções x no intervalo $[0, \pi[$.
- b) Para as soluções encontradas em a), determine $\cot g x$.

Questão 29. Determine uma equação da circunferência inscrita no triângulo cujos vértices são A = (1,1), B = (1,7) e C = (5,4) no plano xOy.

Questão 30. As superfícies de duas esferas se interceptam ortogonalmente (isto é, em cada ponto da intersecção os respectivos planos tangentes são perpendiculares). Sabendo que os raios destas esferas medem 2 cm e $\frac{3}{2}$ cm, respectivamente, calcule

- a) a distância entre os centros das duas esferas.
- b) a área da superfície do sólido obtido pela intersecção das duas esferas.