—、Blur

1.MediumBlur

MediumBlur(radius).convolve(img, mode)

函数作用:中值模糊,对每个像素采用周围像素中值代替

参数说明:

- radius --模板半径,决定计算时核半径,int类型
- img, 图片地址
- mode, 色彩模式 默认same 单色

举例

- MediumBlur(1).convolve(imgPath, "fill")
- MediumBlur(1).convolve(imgPath, "fill")

例图:

数学过程:

图9.9 一维窗口

2.AverageBlur

AverageBlur(radius).convolve(img, mode,dtype)

函数作用:均值模糊,对每个像素采用周围像素平均值代替

参数说明:

- radius --模板半径,决定计算时核半径,int类型
- img, 图片地址
- mode, 色彩模式 默认same 单色
- dtype,数据类型

举例:

- AverageBlur(1).convolve(imgPath, "fill")
- AverageBlur(3).convolve(imgPath, "fill")

例图:

• 可以看出随着radius的变大,模糊程度加大

数学原理:

核中心像素等于以中心像素为中心的矩阵*半径为radius的卷积核

$$x_{rac{n}{2},rac{n}{2}}^* = rac{1}{n*n} imes egin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \ dots & dots & \ddots & dots \ x_{n,1} & x_{n,2} & \cdots & x_{n,n} \end{pmatrix} egin{pmatrix} 1 & 1 & \cdots & 1 \ 1 & 1 & \cdots & 1 \ dots & dots & \ddots & dots \ 1 & 1 & \cdots & 1 \end{pmatrix}$$

3.BilateralBlur

函数作用: 双边模糊, 相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘 (Edge Perseving)

参数说明:

- radius --模板半径,决定计算时核半径,int类型
- img, 图片地址
- mode, 色彩模式 默认same 单色
- dtype,数据类型

举例:

- BilateralBlur(1,20,5).convolve(imgPath, "fill")
- BilateralBlur(5,20,60).convolve(imgPath, "fill")
- BilateralBlur(5,60,20).convolve(imgPath, "fill")

例图:

• 数学原理:

。 空间距离的权重因子:

$$c(\xi, \mathbf{x}) = e^{-\frac{1}{2}(\frac{d(\xi, \mathbf{x})}{\sigma_d})^2} = e^{-\frac{1}{2}(\frac{\|\xi - \mathbf{x}\|}{\sigma_d})^2}$$

。 相似度的权重因子:

$$s(\xi, \mathbf{x}) = e^{-\frac{1}{2} \left(\frac{\sigma(\mathbf{f}(\xi), \mathbf{f}(\mathbf{x}))}{\sigma_r}\right)^2}$$

0

0

权重因子
$$=rac{s(\xi,x)+c(\xi,x)}{2}$$

4. Gaussian Blur

GaussianBlur(radius, sigema).convolve(img, mode, dtype)

函数作用:双边模糊,相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘 (Edge Perseving)

参数说明:

- radius 模板半径,决定计算时核半径,int类型
- sigema
- img, 图片地址
- mode, 色彩模式 默认same 单色
- dtype,数据类型

数学原理:

正态分布的密度函数叫做"高斯函数" (Gaussian function)。它的一维形式是:

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}*e^{rac{-(x-u)^2}{2\sigma^2}}$$

其中, μ是x的均值, σ是x的方差。因为计算平均值的时候,中心点就是原点,所以μ等于0。 在二维空间中扩展为:

$$f(u,v)=rac{1}{\sqrt{2\pi}\sigma}st e^{rac{-(u^2+v^2)}{2\sigma^2}}$$

假定σ=1.5,则模糊半径为1的权重矩阵如下:

0.0453542	0.0566406	0.0453542
0.0566406	0.0707355	0.0566406
0.0453542	0.0566406	0.0453542

中心像素计算过程如下

14	15	16		0.0947416	0.118318	0.0947416		14x0.0947416	15x0.118318	16x0.0947
24	25	26	X	0.118318	0.147761	0.118318	=	24x0.118318	25x0.147761	26x0.1183
34	35	36		0.0947416	0.118318	0.0947416		34x0.0947416	35x0.118318	36x0.09474

结果是:将这9个值加起来,就是中心点的高斯模糊的值

1.32638	1.77477	1.51587
2.83963	3.69403	3.07627
3.22121	4.14113	3.4107

5.MotionBlur

MotionBlur(radius).convolve(img,mode,dtype)

函数作用:运动模糊,在已知模糊运动核的前提下,通过核线性卷积的形式对图像添加运动模糊 参数说明:

- radius --模板半径,决定计算时核半径,int类型
- img, 图片地址
- mode, 色彩模式 默认same 单色
- dtype,数据类型

举例:

- MotionBlur(1,20,5).convolve(imgPath, "fill")
- MotionBlur(5,20,60).convolve(imgPath, "fill")
- BilateralBlur(5,60,20).convolve(imgPath, "fill")

例图:

数学原理:

$$x_{rac{n}{2},rac{n}{2}}^* = rac{1}{n} imes egin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \ dots & dots & \ddots & dots \ x_{n,1} & x_{n,2} & \cdots & x_{n,n} \end{pmatrix} egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

6.MeanShiftBlur

MeanShift(hs, hr, maxIter).convolve(img, mode='same', dtype='uint8')

函数作用:均值迁移模糊是图像边缘保留滤波算法中一种,经常用来在对图像进行分水岭分割之前去噪声,可以大幅度提升分水岭分割的效果。

参数说明:

- hs , 模板半径 , 决定计算核半径 , int类型
- hr, 颜色差值的阈值
- maxIter, 最大迭代次数
- img, 图片地址
- mode, 色彩模式 默认same单通道 可为fill彩色三通道图片
- dtype,数据类型

举例:

• MeanShiftBlur(5,5,20).convolve(imgPath, "fill")

例图:

左图为原图,右图为在hs=5, hr=5, maxIter=20的情况面的图片

数学原理:

问题: 时间复杂度过高O(N^5)