Question 1.

- (a) Show that the function $f(z) = \sin(1/z)$ has an isolated essential singularity at $z_0 = 0$.
- (b) Explain the behaviour of f(z) in the neighbourhood of z_0 using Casorati-Weierstrass theorem.

Question 2.

Use the residue theorem to evaluate the following integral $\frac{1}{2\pi i} \int_{|z|=3} \frac{e^{iz}}{z^2(z-2)(z+5i)}$.

Question 3.

- (a) Show that $f(z) = \frac{\cos(z)}{z^2 (\pi/2)^2}$ has isolated removable singularities at $z = \pm \pi/2$.
- (b) Give an entire function g such that g(z) = f(z) for $z \neq \pm \pi/2$.

Question 4.

Suppose f is analytic and has a zero of order m at z_0 . Show that g(z) = f'(z)/f(z) has a simple pole at z_0 with $\text{Res}(g, z_0) = m$.

Question 5.

Find the residue of the following functions at the mentioned point.

- (a) $f(z) = \frac{1}{(1-z)}$ at $z = \infty$.
- **(b)** $f(z) = \frac{\cos(z)}{\int_0^z g(w)dw}$ at z = 0, where g is an analytic function with g(0) = 1.

Question 6.

- (a) Explain why Cauchy's integral formula can be viewed as a special case of Cauchy's residue theorem.
- (b) Give a function f that is analytic in the punctured plane $\mathbb{C} \{1\}$ with an isolated essential singularity at z = 1 and a simple zero at z = 0.

Question 7.

Show that $f(z) = (2\cos(z) - 2 + z^2)^2$ has a zero of order 8 at z = 0.

Question 8.

Suppose z_0 is the isolated removable singularity of f(z) then prove that f is bounded and analytic in some deleted neighbourhood $0 < |z - z_0| < \epsilon$ of z_0 .

Question 9.

If f is analytic everywhere in the complex plane except a finite number of singularities $z_1, z_2, z_3, \dots, z_n$ interior to a simple closed positive oriented curve C, then show that

$$\frac{1}{2\pi i} \int_C f(z)dz = \operatorname{Res}\left(\frac{1}{z^2} f(1/z), 0\right).$$

Note: You can use this result directly: $\operatorname{Res}(f(z), \infty) = -\sum_{k=1}^{n} \operatorname{Res}(f(z), z_k) = -\frac{1}{2\pi i} \int_{C} f(z) dz$.

Question 10.

Find all the singular points, their type (if pole, then mention the order as well), and the residue at each singular point of the function $f(z) = \pi \cot(\pi z)$.