Open Tech Summit Indonesia
Universitas Katolik Indonesia Atmajaya
Monday, 25 Nov 2024 – Tuesday 26 Nov 2024

Co-location pattern mining and its implementation

Akhmad Sofwan

akhmadsofwan@ui.ac.id

Definition (1)

Data Mining

Data mining is the process of sorting through big data set to find pattern and relationship that can help solve business problems through Data Analysis. [1]

• Spatial Data Mining (Knowledge Discovery in Spatial Databases) is data mining applied to spatial databases or spatial data [2].

Definition (2)

 Spatial Co-location patterns represent the subsets of events (services/features) which instances are frequently located together in a Geographic Space. [2]

X,Z,Y are Geographic Instances

Fig 1: Spatial Dataset with Neighborhood Example

Event-centric Model Approach

Even-centric model [3] is one of Co-location pattern model approach.

Fig 2 : Spatial data set to illustrate the Event Centric Model

Measurement (1)

- User defined : Minimum Distance between Geographic object in proximity neighborhood
- Euclidean Distance

$$d_y = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$

Participation Ratio

$$pr(C,f_i) = \frac{|\pi fi(table instances of C)|}{|instances of fi|}$$

Participation Index

$$pi(C) = min_{i=1}^{k} pr(C, f_i)$$

Measurement (2)

Conditional Probability

```
\frac{\left|\pi C_1(table instance of (C_1 \cup C2))\right|}{\left|instance of C_1\right|}
```

Experiment (1)

- Tools:
 - Flask Framework
 - PostgreSQL
 - Leaflet

Experiment (2)

Flow

Fig 3: Mining Process

Experiment (3)

Data Retrieval:

 Humanitarian OpenStreet Map Team (HOTOSM)
 Education Facilities on Jakarta in Points - ShapeFile

Fig 4 : Education facilities on Jakarta in QGIS

Experiement (4)

Attribute: osm_id, operatorty, addrcity, capacitype, name, addrfull, source, building, amenity

Data Transformation

Shapefile to DBMS in PostgreSQL with PostGIS

Table name: hotosm idn

Fields: gid, odm id, operatorty, addrcity, capacitype, name, addrfull, source, building,

amenity, geom, lon, lat

Experiment (5)

Create – Read – Update – Delete (CRUD) and Data Visualization

Data	Dis	plav
		JO . Ot <i>J</i>

Home Dis	splay Data	
Name	e of Building :	
Sear	ch Kembali	

Entry Data		

No	OSM Id	Name	Туре	City	Address	Type of Building	Data Source	Option
1	2775374606	MI Sirojul Munir						Edit Hapus
2	4867479032	London School Public Relations	private	DKI Jakarta	Jalan H. Abdul Jalil	college	HOT_InAWARESurvey_2017	Edit Hapus
3	4555468602	Praba Engineering Services	None	Depok	None	college	None	Edit Hapus
4	4145875213	Politeknik Keuangan Negara STAN		Banten		college		Edit Hapus
5	4240902698	Bina Sarana Informatika Margonda	None	Pd. Cina, Beji, Depok, West Java	None	college	None	Edit Hapus
6	2398010242	SMAS BINA RUHAMA	None	Kec. Sukaraja - Kab. Bogor	None	college	None	Edit Hapus
7	5096745789	STIE Wiyatamandala	private	DKI Jakarta	Jalan Swasembada Timur XIII	college	HOT_InAWARESurvey_2017	Edit Hapus
8	4969702968	Perguruan Tinggi Islam Al Halimiyah	private	DKI Jakarta	Jalan Robusta Raya Nomor 31	college	HOT_InAWARESurvey_2017	Edit Hapus
9	4842721737	Akademik Manajemen Informasi dan Komunikasi	private	DKI Jakarta	Jalan Cipinang Besar Selatan No.2	college	HOT_InAWARESurvey_2017	Edit Hapus
10	2398010241	SMAN 1 SUKARAJA		Kec. Sukaraja - Kab. Bogor		college		Edit Hapus

Fig 5 : Da<mark>t</mark>a Disp<mark>l</mark>ay and Searching

Experiment (6)

Data Entry

Home | Display Data

Entry Data

Id OSM	:
Name	:
Type	:
City	:
Address	:
Type of Building	:
Data Source	:
Save Back	

Fig 6 : Data Entry

Experiment (7)

Fig 7: Data Visualization

Experiment (8)

Data Preprocessing

- Decide based on Amenity as Geography Objetcs to mining Amenity : College, School, Kindergarten, University

No	Amenity	Amount
1	University	36
2	School	690
3	Kindergarten	456
4	College	48

- Data Cleaning

Experiment (9)

Colocation Pattern Mining

Algorithms for mining colocation rules iteratively has 4 basic tasks as follows [3]:

- Generation of candidate colocations.
- Generation of table instances of candidate colocations.
- pruning
- Generation of colocation rules.

Experiment (10)

Generation of candidate co-locations size 2 :

$$c(4,2) = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = \frac{4.3}{2} = \frac{12}{2} = 6$$

No	Co-location		
1	University - School		
2	University - Kindergarten		
3	University - College		
4	School - Kindergarten		
5	School - College		
6	Kindergarten - College		

Experiment (11)

Generation of table instances of candidate colocations

Unit distance : 0.001 = 111m [4]. Distance between instances.

Use st_dwithin --> Returns True if the geometries are within a given distance Formula : boolean ST_Dwithin (geometry g1, geometry g2, double precision distance_of_srid) [5]

Create table features:

create table feature as select gid,osm_id,name,amenity,geom from hotosm_idn where amenity='feature' [6]

Example:

create table university as select gid,osm_id,name,amenity,geom from hotosm_idn where amenity='university'

Experiment (12)

4 tables are generated as follows: university, school, kindergarten, college

```
Generate table instances with this sql: create table colo_feature1_feature2 as select a.gid as urut_uni,b.gid as urut_sch from feature1 as a,feature2 as b where st dwithin(a.geom,b.geom,0.001) group by a.gid,b.gid order by a.gid
```

example university-school table:

```
create table colo_uni_sch as select a.gid as urut_uni,b.gid as urut_sch from university as a,school as b where st_dwithin(a.geom,b.geom,0.001) group by a.gid,b.gid order by a.gid
```

Experiment (13)

Table generated as follows:

- colo uni sch
- colo uni kinder
- colo uni college
- colo_sch_kinder
- colo_sch_college
- colo_kinder_college

Experiment (14)

No	Candidate colocation	Distinct amount	Left paricipati on ratio	Right participation ratio	Participati on Index	Rank
1	University - School	4 3	0.11	0.004	0.004	4
2	University Kindergarten	0 0	0	0	0	6
3	University College	6 5	0.17	0.1	0.1	1
4	School Kindergarten	28 18	0.04	0.04	0.04	3
5	School College	7 6	0.01	0.13	0.01	2
6	Kindergarten College	1 1	0.002	0.02	0.002	5

Experiment (15)

Candidate Colocations size 2

No	Co-location
1	university-School
2	University-Kindergarten
3	University-College
4	School-Kindergarten
5	School-College
6	Kindergarten-College

Participation Index

No	Candidate colocation	Distinct amount	Left participation	Right Participation	Participation Index
1	University-School	4 3	0.11	0.00	0.00
2	University-Kindergarten	0 0	0.00	0.00	0.00
3	University-College	6 5	0.17	0.10	0.10
4	School-Kindergarten	28 18	0.04	0.04	0.04
5	School-College	7 6	0.01	0.12	0.01
6	Kindergarten-College	1 1	0.00	0.02	0.00

Result

University – College is the highest participation index, 0.1.
 It means that in 111 meter, University and College in neighborhood in 0.1 or 10%. In another word 10% of University must be in 111 m from College.

Reference (1)

- [1] Alexander S.Gillis, Craig Stedman, Adam Hughes, data mining, TechTarget, https://www.techtarget.com/searchbusinessanalytics/definition/data-mining,2010 – 2024
- [2] Fadi K.Deeb, Ludovit Niepel, "A Methodology for Discovering Spatial Co-location Patterns"
- [3] Yan Huang, Shashi Shekhar, Hui Xiong, "Discovering Colocation Patterns from Spatial Data Sets: A General Approah", IEEE transasctions on Knowledge and Data Engineering, Vol.16, No.12, December 2004

Reference (2)

- [4] Jeremie parker, Distance between 2 POINTs in Postgis in srid 4326 in metres, https://stackoverflow.com/questions/8464666/distance-between-2-points-in-postgis-in-srid-4326-in-metres. Accessed: Nov 25, 2024
- [5] postgis, ST_Dwithin, https://postgis.net/docs/ST_DWithin.html, postgis.net Accessed: Nov 25, 2024
- [6] Akhmad Sofwan, Tesis Magister, Fakultas Ilmu Komputer Magister Ilmu Komputer Universitas Indonesia, 2016