Supplement For

Beauty of

VEDIC SPEED MATHEMATICS

(Journey from Limited Intelligence to Human Bio-Calculator)

Version – 4 (27-03-2020)

Paperback, eBook & **Video Course** on Vedic Speed Mathematics www.Speed16.com/books/vm

Location of this file: www.Speed16.com/files/vms1.pdf

Note: We keep updating this file (adding new examples, new graphical representations etc.). Keep visiting for updates.

MULTIPLICATION

Multiplication using Base Method

Case 1: When both numbers (multiplicand and multiplier) are less than the working base:

Ex.1:	Ex.2:	Ex.3:	Ex.4:	Ex.5:	Ex.6:
7×8	6×7	94×96	90×89	997×993	950×930
B:10	B:10	B:100	B:100	B:1000	B:1000
7-3	6 -4	94 -6	90 -10	997 -3	950 -50
8/-2	7 -3	96 -4	89 -11	993 -7	930 -70
-/					
5 6	3 12	90 24	79 110	990 021	880 3500
	3+1 2		79+1 10		880+3 500
	4 2		80 10		883 500
56	42	9024	8010	990021	883500

Multiplication using Criss Cross Method

Case 1: Two Digit Numbers (2D×2D and 2D×1D) {D: Digit}

Graphical Representation:

Answer consists of three parts.

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b × d)

Case 2: Three Digit Numbers (3D×3D; 3D×2D and 3D×1D)

Answer consists of Five Parts.

First	Second	Third	Fourth	Fifth
Part: Part:		Part: Part: 1		Part:
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(a\times f + b\times e)$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c × f)
		+ c × d)		

CASE 3: $(4 \times 3; 4 \times 3; 4 \times 2; 4 \times 1)$

Answer consists of seven parts.

First Part:	Second Part:	Third Part:	Fourth Part:
a b c d e f g h	a b c d e f g h	a b c d e f g h	a b c d e f g h
(a×e)	$(\mathbf{a} \times \mathbf{f}) + (\mathbf{b} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f}) +$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) +$
		(c×e)	$(\mathbf{c} \times \mathbf{f}) + (\mathbf{d} \times \mathbf{e})$

Fifth Part:	Sixth Part:	Seventh Part:	
a b c d	a b c d	a b c d	
e f g h	e f g h	e f g h	
$(\mathbf{b} \times \mathbf{h}) + (\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{c} \times \mathbf{h}) + (\mathbf{d} \times \mathbf{g})$	(d×h)	

CASE 4: $(5 \times 5; 5 \times 4; 5 \times 3; 5 \times 2; 5 \times 1)$

Answer consists of nine parts.

First Part:	Second Part:	Third Part:
a b c d e f g h i j	a b c d e f g h i j	a b c d e f g h i j
(a×f)	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f})$

Fourth Part:	Fifth Part:	Sixth Part:
a b c d e	a b c d e	a b c d e
f g h i j	f g h i j	f g h i j
$(a\times i)+(b\times h)+$	$(\mathbf{a} \times \mathbf{j}) + (\mathbf{b} \times \mathbf{i}) + (\mathbf{c} \times \mathbf{h}) +$	$(\mathbf{b} \times \mathbf{j}) + (\mathbf{c} \times \mathbf{i}) +$
$(\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{g}) + (\mathbf{e} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{h}) + (\mathbf{e} \times \mathbf{g})$

Seventh Part:	Eighth Part:	Nineth Part:
a b c d e	a b c d e	a b c d e
f g h i j	fghíj	fghij
$(c\times j)+(d\times i)+$	$(\mathbf{d} \times \mathbf{j}) + (\mathbf{e} \times \mathbf{i})$	(e×j)
(e×h)		

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

CASE 5: (6×6; 6×5; 6×4; 6×3; 6×2; 6×1) (**Do it Yourself**)

Answer consists of eleven parts.

First Part:	Second Part	Third Part:	Fourth Part	Fifth Part:
abcd e f				
ghijkl	ghijk l	ghijkl	ghijk l	ghijk l

6 th Part:	7 th Part:	8 th Part:	9 th Part:	10 th Part:	11 th Part
abcd e f	abcd e f				
ghijkl	ghijkl	ghijkl	ghijkl	ghijkl	ghijkl

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

DIVISION

Vinculum Number: A number that has atleast one vinculum digit is called vinculum number. Notation: Either dotted or dash above the number. **Ex.** $1\ddot{4}$ 2; $\ddot{9}641$; $2\bar{2}3$; $6\bar{2}3\bar{8}$; $8\bar{4}2\bar{3}$; $\bar{8}$; $\bar{3}$

 $1\overline{4}2=100-40+2=62;$ $\overline{9}641=-9000+600+40+1=-8359$ $2\overline{2}3=200-20+3=183$ $6\overline{2}3\overline{8}=6000-200+30-8=5822$ $8\overline{4}2\overline{3}=8000-400-20-3=7577$ $\overline{8}=-8$ $\overline{3}=-3$

Division using Transpose and Apply

Ex.1:123÷11; Here Base=10 and Surplus=1; Negation of Surplus=-1= $\ddot{1}$

Step 1:	Step 2:	Step 3:	Step 4:	Step 5:
11) 1 2 ¦ 3	11) 1 2 3	11) 1 2 ¦ 3	11) 1 2 ¦ 3	11) 1 2 ¦ 3
-1	-1	-1 -1	1 1 1	1 1 1 2

Answer: 11 (Q); 2 (R)

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

Division by FLAG (ध्वजांक) Method

Ex.2: Divide 949 by 22

Step 1	Step 2	Step 3	Answer
$2^2 # 9_14 9$	$2^2 # 9_1 4_{0}9$	$2^2 # 9_1 4 _0 9_1$	
4	4.3	4 3 1	43.1 (Upto 1
14-(2*4)=14-8=6	9-(2*3)=9-6=3		Decimal
6÷2=3(Q) 0(R)	3÷2=1(Q) 1(R)		Point)

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

DECIMALS, FRACTIONS AND PERCENTAGES

Fractions: Is an expression that indicates the quotient of two quantities. **Ex.** $\frac{p}{q}$; $\frac{1}{2}$; $\frac{1}{3}$; $\frac{42}{2.1}$; $\frac{445.61}{2.64}$; $\frac{785}{2}$; $\frac{36}{3}$; $-\frac{40}{20}$; $-\frac{1}{9}$ etc. Upper part is Numerator (N) and Lower part is Denominator. The Denominator can not be zero.

Basic Operations on Decimals

Addition:

Ex.1: 0.32+13.35+45.058+**696.368**+31.004

0.32 (320/1000);

13.35 (13350/1000);

45.058 (45058/1000);

696.368 (696368/1000);

31.004 (31004/1000)

$$\frac{320}{1000} + \frac{13350}{1000} + \frac{45058}{1000} + \frac{696368}{1000} + \frac{31004}{1000} = \frac{786100}{1000} = 786.1$$

Ex.2: 143+365.9+**0.04**+**36.02**+**6986.36**+7469.3

143 (14300/100);

365.9 (36590/100);

0.04 (4/100);

36.02 (3602/100);

6986.36 (698636/100);

7469.3(746930/100)

$$\frac{14300}{100} + \frac{36590}{100} + \frac{4}{100} + \frac{3602}{100} + \frac{698636}{100} + \frac{746930}{100} = \frac{1500062}{100} = \frac{1500062}{100}$$

Subtraction:

Ex.1: 133.45-45.058-6.368-31.004

133.45 (133450/1000);

45.058 (45058/1000);

6.368 (6368/1000);

31.004 (31004/1000)

$$\frac{133450}{1000} - \frac{45058}{1000} - \frac{6368}{1000} - \frac{31004}{1000} = \frac{51020}{1000} = 51.02$$

Ex.2: 143-65.9-0.004-36.002-6.986-7.3

143 (143000/1000);

65.9 (65900/1000);

0.004 (4/1000);

36.002 (36002/100);

6.986 (6986/1000);

7.3(7300/1000)

$$\frac{143000}{1000} - \frac{65900}{1000} - \frac{4}{1000} - \frac{36002}{1000} - \frac{6986}{1000} - \frac{7300}{1000} = \frac{26808}{1000}$$
$$= 26.808$$

Multiplication:

Ex.1:	Ex.2:	Ex.3:	Ex.4:
3.6×6.8	43.63×34.2	42.36×67.363	3.6×63.68×1.3
$\frac{36}{10} \times \frac{68}{10}$	$\frac{4363}{100} \times \frac{3420}{100}$	$\frac{42360}{1000} \times \frac{67363}{1000}$	$\frac{360}{100} \times \frac{6368}{100} \times \frac{130}{100}$
$=\frac{2448}{100}$	$=\frac{14921460}{10000}$	$=\frac{2853496680}{1000000}$	$=\frac{298022400}{1000000}$
= 24.48	= 1492.146	= 2853.49668	= 298.0224
24.48	1492.146	2853.49668	298.0224

Basic Operations on Fractions:

Addition:

Case 1: When Denominators are same: Just add numerators; place denominator as it is and Reduce.

Case 2: When one Denominator is factor of another: Make same denominator by multiplying lower denominator and its numerator with the factor and add using case 1.

Case 3: Cross Product: Numerator: sum of cross products; Denominator: product of both denominators.

Ex.1:	Ex.2:	Ex.3:	Ex.4:
Case:1	Case:2	Case:3	Case:3
$\frac{68}{10} + \frac{36}{10}$	$\frac{150}{21} + \frac{1350}{63}$	$\frac{35}{16} + \frac{12}{20}$	$\frac{36}{10} + \frac{25}{12} + \frac{11}{14}$
$\frac{68+36}{10}$	$\frac{150 \times 3}{21 \times 3} + \frac{1350}{63}$	$\frac{(35 \times 20) + (16 \times 12)}{(16 \times 20)}$	$\frac{(36 \times 12) + (10 \times 25)}{(10 \times 12)} + \frac{11}{14}$
$\frac{104}{10}$	$\frac{450}{63} + \frac{1350}{63}$	$\frac{(700) + (192)}{(320)}$	$\frac{682}{120} + \frac{11}{14}$
52 5	$\frac{450 + 1350}{63}$	892 320	$\frac{(682 \times 14) + (120 \times 11)}{(120 \times 14)}$
	$\frac{1800}{63} = \frac{200}{7}$	$\frac{223}{80}$	$\frac{10868}{1680} = \frac{2717}{420}$
52	200	223	2717
5	7	80	420

Subtraction:

Case 1: When Denominators are same: Just subtract numerators; place denominator as it is and Reduce.

Case 2: When one Denominator is factor of another: Make same denominator by multiplying lower denominator and its numerator with the factor and subtract using case 1.

Case 3: Cross Product: Numerator: Difference of cross products; Denominator: product of both denominators.

Ex.1:	Ex.2:	Ex.3:	Ex.4:
Case:1	Case:2	Case:3	Case:3
68 _ 36	<u>150</u> <u>1350</u>	<u>35</u> _ <u>12</u>	$\frac{36}{25} - \frac{25}{11}$
10 10	21 63	$\overline{16}$ $\overline{20}$	10 12 14
68 - 36	150 × 3 1350	$(35 \times 20) - (16 \times 12)$	$(36 \times 12) - (10 \times 25)$ 11
10	21 × 3 63	(16 × 20)	${} (10 \times 12) - \overline{14}$
32	450 1350	(700) - (192)	182 11
10	63 63	(320)	$\frac{120}{14}$
16	450 – 1350	508 127	$(182 \times 14) - (120 \times 11)$
5	63	$\frac{360}{320} = \frac{127}{80}$	(120 × 14)
	_900100		1228 _ 307
	- 63 - 7		$\frac{1680}{1680} = \frac{1}{420}$
<u>16</u>	$-\frac{100}{}$	<u>127</u>	<u>307</u>
5	7	80	420

Multiplication:

Option 1: Multiply Numerator with numerator and denominator with denominator and REDUCE.

Option 2: Write factors and cancel common factors. Then Multiply Numerator with numerator and denominator with denominator and REDUCE.

Ex.1:	Ex.2:	Ex.3:
$\frac{36}{10} \times \frac{68}{10}$ 2448	$\frac{84}{44} \times \frac{66}{42}$ $21 \times 4 22 \times 3$	$\frac{360}{210} \times \frac{630}{60} \times \frac{30}{90}$ $60 \times 6 210 \times 3 30$
$=\frac{100}{612}$	$= \frac{21 \times 4}{22 \times 2} \times \frac{22 \times 3}{21 \times 2}$ $= \frac{1}{4} \times \frac{3}{4} = 3$	$= \frac{60 \times 6}{210} \times \frac{210 \times 3}{60} \times \frac{30}{3 \times 30}$ $= \frac{6}{1} \times \frac{1}{1} \times \frac{1}{1} = 6$
$={25}$ $\frac{612}{25}$	3	6

Division: Write the first set as it is; replace ÷ (division sign) by × (multiplication sign); Exchange Numerator and Denominator of second set; Perform Multiplication.

$$\frac{N1}{D1} \div \frac{N2}{D2} = \frac{N1}{D1} \times \frac{D2}{N2}$$

$$\frac{84}{44} \div \frac{42}{66} = \frac{84}{44} \times \frac{66}{42} = \frac{21 \times 4}{22 \times 2} \times \frac{22 \times 3}{21 \times 2} = \frac{4}{2} \times \frac{3}{2} = 3$$

Reciprocals

Ending in 9:

Ex. 1:
$$\frac{1}{19}$$
?

A: Denominator is 19. Positive Osculator of 19 is 2. (Go through "Divisibility" Unit to understand osculator concept).

$$\frac{1}{19} \approx \frac{1}{20} = \frac{0.1}{2}$$
Now for $\frac{0.1}{2}$

Divisor	2	2	2	2	2	2	2	2	2	2	2	2	2
Dividend	0.1	>1-	10	-	5	12	6	3	11	15	17	18	9
Quotient	-	0.	0	5	/2	6	3	1	5	7	8	9	4
Remainder	-	-	-	0	1	0	0	1	1	1	1	0	1

Divisor is 2 in all cases. Initial Dividend is 0.1. We can not divide 0.1 by 2 so in quotient we need to give decimal point. New Dividend is 1. Again we can not divide 1 by 2 so in quotient we need to add zero. New Dividend is 10. We divide 10 by 2. Q is 5 and R is 0. New Dividend is RQ (05). Remainder and then append Quotient. 5÷2; Q=2; R=1; Next Dividend=12 (:R=1 & Q=2). Like this we go on dividing. Final answer: Quotient Row.

$$\frac{1}{19} = 0.052631578 \dots$$

POLYNOMIALS

Multiplication using Criss Cross Method

Note: Read Multiplication using Criss Cross or Vertically & Crosswise Method from Multiplication Unit

Steps:

- 1. Write coefficients of given polynomials one below the other separated by space or vertical bar.
- 2. Multiply coefficients using formula (refer formula OR graphical representation).
- 3. Last part is constant. Go on incrementing powers of variable by 1 from right. Second last is x, then x², x³, x⁴, x⁵ and so on. **Note:** Write coefficient as zero if any term is absent.

CASE 1: $(2 \times 2; 2 \times 1)$

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b × d)

CASE 2: $(3 \times 3; 3 \times 2; 3 \times 1)$

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(\mathbf{a} \times \mathbf{f} + \mathbf{b} \times \mathbf{e})$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c×f)
		+ c × d)		

CASE 3: $(4 \times 3; 4 \times 3; 4 \times 2; 4 \times 1)$

First Part:	Second Part:	Third Part:	Fourth Part:
a b c d e f g h	a b c d e f g h	a b c d e f g h	a b c d e f g h
(a×e)	$(\mathbf{a} \times \mathbf{f}) + (\mathbf{b} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f}) + (\mathbf{c} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f}) + (\mathbf{d} \times \mathbf{e})$

Fifth Part:	Sixth Part:	Seventh Part:
a b c d	a b c d	a b c d
e f g h	e f g h	e f g h
$(\mathbf{b} \times \mathbf{h}) + (\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{c} \times \mathbf{h}) + (\mathbf{d} \times \mathbf{g})$	(d×h)

Ex.1:
$$(x^3+5x^2+3x+2) (2x^3-4x^2-7x+3)$$

1 5 3 2
2 -4 -7 3
 $(1\times2) \mid (1\times-4)+(5\times2) \mid (1\times-7)+(5\times-4)+(3\times2) \mid (1\times3)+(5\times-7)+(3\times-4)+(2\times2) \mid (5\times3)+(3\times-7)+(2\times-4) \mid (3\times3)+(2\times-7) \mid (2\times3)$
2 \left(6 \left(-21\right) \right(-40\right) \right(-14\right) \right(-5\right) \text{6}
2x^6+6x^5-21x^4-40x^3-14x^2-5x+6
2x^6+6x^5-21x^4-40x^3-14x^2-5x+6

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm

CASE 4: $(5 \times 5; 5 \times 4; 5 \times 3; 5 \times 2; 5 \times 1)$

First Part:	Second Part:	Third Part:
a b c d e f g h i j	a b c d e f g h i j	a b c d e f g h i j
(a×f)	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f})$	$(a\times h)+(b\times g)+(c\times f)$

Fourth Part:	Fifth Part:	Sixth Part:
a b c d e f g h i j	a b c d e f g h i j	a b c d e f g h i j
$(a\times i)+(b\times h)+$	$(a\times j)+(b\times i)+(c\times h)+$	$(b\times j)+(c\times i)+$
$(\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{g}) + (\mathbf{e} \times \mathbf{f})$	$(\mathbf{d} \times \mathbf{h}) + (\mathbf{e} \times \mathbf{g})$

Seventh Part:	Eighth Part:	Nineth Part:
a b c d e	a b c d e	a b c d e
f g h i j	fghij	fghi j
$(\mathbf{c} \times \mathbf{j}) + (\mathbf{d} \times \mathbf{i}) + (\mathbf{e} \times \mathbf{h})$	$(\mathbf{d} \times \mathbf{j}) + (\mathbf{e} \times \mathbf{i})$	(e×j)

CASE 5: (6×6; 6×5; 6×4; 6×3; 6×2; 6×1) (**Do it Yourself**)

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
abcd e f	abcd e f	abcd e f	abcd e f	abcd e f
ghijkl	ghijkl	ghijkl	ghijkl	ghijkl

Sixth Part:	Seventh P:	Eighth P:	Nineth P:	Tenth P:
abcd e f	abcd e f	abcd e f	abcd e f	abcd e f
ahiilal	ahiile 1	ahiilal	ahiile l	ahiik 1
ghijkl	ghijkl	gnijki	ghijkl	ghijkl

Division using Transpose and Apply

Ex.1:
$$(x^3+9x^3+20x+12) \div (x+1)$$

$$\frac{(x+1)}{-1} x^3+9x^3+20x+12)$$

$$-1 -8 -12$$

$$-1 8 12 0$$

$$\mathbf{Q}: x^2+8x+12=(x+2) (x+6) \mathbf{R}: 0$$

$$\mathbf{Q}: x^2+8x+12=(x+2) (x+6) \mathbf{R}: 0$$

Ex.3:
$$(3x^4-2x^3+x^2-2x+3) \div (x^2-2x+6)$$

$$\frac{(x^2-2x+6)}{+2|-6} 3x^4-2x^3+x^2-2x+3$$

$$+6 -18$$

$$8 -24$$

$$-18 54$$

$$\mathbf{Q:}3x^2+4x-9 \mathbf{R:}-44x+57$$

$$\mathbf{Q:}3x^2+4x-9 \mathbf{R:}-44x+57$$

SIMPLE EQUATIONS

Simple Algebraic Equations contains only one variable.

	TYPE-1	TYPE-2
General Form	px+q=rx+s	(x+p)(x+q) = (x+r)(x+s)
Value of x	$x = \frac{s - q}{p - r}$	if $p \times q = r \times s$ then $x = 0$ else
	P '	$x = \frac{rs - pq}{p + q - r - s}$
Ex.1	5x+3=3x+9	(x+4)(x+3) = (x+2)(x+6)
	$x = \frac{9-3}{5-3}$	$p \times q = r \times s$
	$=\frac{6}{7}=3$	4×3=2×6 => 12=12
	$=\frac{1}{2}=3$	∴ x=0
Ex.2	3x-3=4x+7	(x+3)(x+5) = (x+2)(x+4)
	$x = \frac{7 - (-3)}{3} = \frac{10}{1} = -10$	p×q≠r×s
	3-4 -1	$x = \frac{2 \times 4 - 3 \times 5}{3 + 5 - 2 - 4}$
		3+5-2-4 7
		$=-\frac{1}{2}$
Ex.3	6x+6=8x+8	(x-2)(x+3) = (x+4)(x-5)
	$x = \frac{8-6}{6-8} = \frac{2}{-2} = -1$	p×q≠r×s
	OR	$x = \frac{4 \times (-5) - (-2) \times 3}{-2 + 3 - 4 - (-5)}$
	6x+6=8x+8	= - 7
	6(x+1)=8(x+1)	
	x+1=0 x=-1	

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm

	TYPE-3	TYPE-4
General Form	$\frac{px+q}{rx+s} = \frac{t}{u}$	$\frac{a}{x+p} + \frac{b}{x+q} = 0$
Value of x	$x = \frac{ts - uq}{up - tr}$	$x = -\frac{aq + bp}{a + b}$
Ex.1	$\frac{2x+3}{3x+5} = \frac{3}{2}$ $x = \frac{3 \times 5 - 2 \times 3}{2 \times 2 - 3 \times 3} = -\frac{9}{5}$	$\frac{\frac{3}{x+2} + \frac{4}{x+3} = 0}{x = -\frac{3\times 3 + 4\times 2}{3+4} = -\frac{17}{7}}$
Ex.2	$\frac{2 \times 2 - 3 \times 3}{2 \times 4} = \frac{7}{3}$ $x = \frac{7 \times 2 - 3 \times (-4)}{3 \times 1 - 7 \times 2} = \frac{26}{11}$	$\frac{5}{x-3} + \frac{6}{x+4} = 0$ $x = -\frac{5 \times 4 + 6 \times -3}{5 + 6} = -\frac{2}{11}$
Ex.3	$\frac{3x-2}{x-3} = \frac{4}{3}$ $x = \frac{4(-3)-3(-2)}{3\times 3-4\times 1} = \frac{6}{5}$	$\frac{4}{x+2} + \frac{4}{x+3} = 0$ $x = -\frac{4 \times 3 + 4 \times 2}{4 + 4} = -\frac{5}{2}$ OR $x+2+x+3=0$ $2x+5=0$ $x = -5/2$

Solution using "If the Set is same, it is ZERO"

4.

A. If
$$N1+N2=D1+D2$$
 then

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$5x+4+2x+7=7x+11$$

∴
$$7x+11=0$$

$$x = -\frac{11}{7}$$

B. If
$$m(N1+N2)=n(D1+D2)$$
 then

$$N1+N2=D1+D2=0$$
 (**m,n**=common factors)

$$\frac{7x+2}{2x+1} = \frac{5x+6}{x+1}$$

$$7x+2+5x+6=12x+8=4(3x+2)$$

$$2x+1+x+1=3x+2=1(3x+2)$$

$$\therefore 3x+2=0$$

$$x = -\frac{2}{3}$$

C. If m(N1-D1)=n(N2-D2) then

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5-5x-4=-2x+1$$
 and $4x+6-2x-7=2x-1=-1$ (-2x+1)

$$\therefore$$
 -2x+1=0; 2x=1; x = $\frac{1}{2}$

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming:

www.Speed16.com/books/vm

QUADRATIC EQUATIONS

Solution using Calculus

This sutra tells that: Differentiation of expression is equal to square root of discriminant.

E=>
$$ax^2+bx+c = 0$$
 ----(Expression)
D(E) = $2ax+b$ ----(Differentiation of Expression)
Discriminant = b^2 -4ac

Square Root of Discriminant = $\sqrt{b^2 - 4ac}$

$$\therefore 2ax+b=\sqrt{b^2-4ac}$$

(Differentiation of expression = square root of discriminant.)

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ex.1:
$$x^2+7x+12=0$$

using Calanā kalanābhyām (चलनकलनाध्याम्)

a=1; b=7; c=12

$$\sqrt{b^2 - 4ac} = \sqrt{7^2 - 4 \times 1 \times 12} = \sqrt{1} = \pm 1$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-7 \pm 1}{2 \times 1}$
 $x = (-7+1)/2 \text{ OR } x = (-7-1)/2; x = -6/2 \text{ OR}$
 $x = -8/2; x = -3 \text{ OR } x = -4$

Ex.2: $x^2+6x+8=0$	Ex.3: $3x^2+12x+7=0$	Ex.4: $6x^2 + 8x + 5 = 0$
a=1; b=6; c=8	a=3; b=12; c=7	a=6; b=8; c=5
$\sqrt{b^2-4ac}$	$\sqrt{b^2-4ac}$	$\sqrt{b^2-4ac}$
$= \sqrt{6^2 - 4 \times 1 \times 8}$	$= \sqrt{12^2 - 4 \times 3 \times 7}$	$= \sqrt{8^2 - 4 \times 6 \times 5}$
$=\sqrt{4}=\pm 2$	$=\sqrt{60}$	$=\sqrt{-56}$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-6 \pm 2}{2 \times 1}$ $x = (-6 + 2)/2 \text{ OR } x = (-6 + 2)/2$ $x = -4/2 \text{ OR } x = -8/2$ $x = -2 \text{ OR } x = -4$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-12 \pm \sqrt{60}}{2 \times 3}$ $x = \frac{-12 \pm 2\sqrt{15}}{6}$ $x = \frac{2(-6 \pm \sqrt{15})}{6}$ $x = \frac{(-6 \pm \sqrt{15})}{3}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-8 \pm \sqrt{-56}}{2 \times 6}$ $x = \frac{-8 \pm \sqrt{4 \times 14 \times i^2}}{12}$ $x = \frac{-8 \pm 2i\sqrt{14}}{12}$ $x = \frac{-4 \pm i\sqrt{14}}{6}$
x = -2 OR x = -4	$x = \frac{(-6 \pm \sqrt{15})}{2}$	$x = \frac{-4 \pm i\sqrt{14}}{6}$
	3	6

Reciprocals By Mere Observation {Sub Sutra 13: Vilokanam}

Given Expression:	Convert it into:	Values:
$\frac{x_1}{x_2} \pm \frac{x_2}{x_1} = \frac{a}{b}$	$\frac{x_1}{x_2} \pm \frac{x_2}{x_1} = \frac{c}{d} \pm \frac{d}{c}$	$\frac{x_1}{x_2} = \frac{c}{d} \ or \ \pm \frac{d}{c}$

TYPE-1 (Plus)

Ex.1	Ex.2	Ex.3	Ex.4
$x + \frac{1}{x} = \frac{10}{3}$ $\frac{x}{1} + \frac{1}{x} = \frac{10}{3}$	$x + \frac{1}{x} = \frac{65}{8}$ $\frac{x}{1} + \frac{1}{x} = \frac{65}{8}$	$\frac{4x+3}{7x+1} + \frac{7x+1}{4x+3} = \frac{73}{24}$	$\frac{5x+2}{x-3} + \frac{x-3}{5x+2} = \frac{74}{35}$
$\left \frac{x}{1} + \frac{1}{x} \right = \frac{3}{1} + \frac{1}{3}$	$\left \frac{x}{1} + \frac{1}{x} \right = \frac{8}{1} + \frac{1}{8}$	$\frac{73}{24} = \frac{3}{8} + \frac{8}{3}$	$\frac{\frac{74}{35}}{\frac{5}{35}} = \frac{5}{7} + \frac{7}{5}$
$\frac{x}{1} = \frac{3}{1} OR \frac{1}{3}$	$\frac{x}{1} = \frac{8}{1} OR \frac{1}{8}$	$\frac{4x+3}{7x+1} = \frac{3}{8}OR\frac{8}{3}$ Solve for x	$\frac{3x+2}{x-3} = \frac{5}{7}OR\frac{7}{5}$ Solve for x

3 OR 1/3	8 OR 1/8	-21/11 OR 1/44	-29/30 OR -
			31/18

TYPE-2 (Minus):

Ex.5	Ex.6	Ex.7	Ex.8
$\begin{array}{c} x - \frac{1}{x} = \frac{7}{12} \\ x 1 7 \end{array}$	$x - \frac{1}{x} = \frac{11}{30}$	$\frac{4x-3}{7x-1} - \frac{7x-1}{4x-3} =$	$\frac{5x-2}{x-3} - \frac{x-3}{5x-2} =$
$\frac{x}{1} - \frac{1}{x} = \frac{1}{12}$ $\frac{x}{1} - \frac{1}{12} = \frac{4}{12} - \frac{3}{12}$	$\frac{x}{1} - \frac{1}{x} = \frac{30}{30}$ $\frac{x}{1} - \frac{1}{1} = \frac{6}{1} - \frac{5}{1}$		$\frac{21}{10}$ $\frac{21}{10} = \frac{5}{2} - \frac{2}{5}$
$\begin{vmatrix} 1 & x & 3 & 4 \\ \frac{x}{1} = \frac{4}{3} & OR - \frac{3}{4} \end{vmatrix}$		$\frac{24}{4x-3} = \frac{3}{8} OR \frac{8}{3}$ Solve for x	$ \begin{array}{ccc} 10 & 2 & 5 \\ \frac{5x-2}{x-3} & = \frac{5}{2}OR - \frac{2}{5} \\ Solve for x \end{array} $
4/3 OR -3/4	6/5 OR -5/6	-21/11 OR 1/44	-11/5 OR 16/27

Solution using "If the Set is same, it is ZERO"

First Factor:

If $\mathbf{m}(N1+N2)=\mathbf{n}(D1+D2)$ then N1+N2=D1+D2=0 ($\mathbf{m},\mathbf{n}=$ common factors)

Second Factor:

If $\mathbf{m}(\text{N1-D1}) = \mathbf{n}(\text{N2-D2})$ then N1-D1=N2-D2=0 ($\mathbf{m}, \mathbf{n} = \text{common factors}$)

Ex.1	Ex.2
$\frac{3x+5}{}-\frac{4x+6}{}$	$\frac{2x+6}{} - \frac{6x+3}{}$
5x+4 - 2x+7	4x+3 - 4x+6
N1+N2=3x+5+4x+6=7x+11	N1+N2=2x+6+6x+3=8x+9
D1+D2=5x+4+2x+7=7x+11	D1+D2=4x+3+4x+6=8x+9
N1-D1=3x+5-5x-4=-2x+1	N1-D1=2x+6-4x-3=-2x+3
N2-D2=4x+6-2x-7=2x-1=-1(-	N2-D2=6x+3-4x-6=2x-3=-1 (-
2x+1)	2x+3)
First Factor:	First Factor:
7x+11=0; 7x=-11; x=-11/7	8x+9=0; 8x=-9; x=-9/8
Second Factor:	Second Factor:

-2x+1=0; 2x=1; x=1/2	-2x+3=0; 2x=3; x=3/2
x = -11/7 OR x = 1/2	x = -9/8 OR x = 3/2

CUBIC EQUATIONS

CASE 3:

$$\frac{1}{D1} + \frac{1}{D2} = \frac{1}{D3} + \frac{1}{D4}$$

if D1+D2=D3+D4

First Value: D1+D2=0

Second Value: D1-D2= D3-D4 Third Value: D1-D2= D4-D3

$$Ex: \frac{1}{4x+2} + \frac{1}{7x-6} = \frac{1}{5x+4} + \frac{1}{6x-8}$$

D1=4x+2; D2=7x-6;

D3=5x+4; D4=6x-8

D1+D2=11x-4; D3+D4=11x-4;

D1-D2=-3x+8; D3-D4=-x+12 D4-D3=x-12

First: 11x-4=0; x=4/11;

Second: -3x+8=-x+12; x=-2

Third: -3x+8=x-12; x=5

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming:

www.Speed16.com/books/vm

SIMULTANEOUS EQUATIONS

Solution using Criss Cross Method

General Form: $a_1x+b_1y=c_1$ and $a_2x+b_2y=c_2$; Values are

$$x = \frac{b_1 c_2 - b_2 c_1}{a_2 b_1 - a_1 b_2} \quad y = \frac{a_2 c_1 - a_1 c_2}{a_2 b_1 - a_1 b_2}$$

$$a_1x+b_1y=c_1$$
 $a_1x+b_1y=c_1$ $a_1x+b_1y=c_1$ $a_2x+b_2y=c_2$ $a_2x+b_2y=c_2$

EX.1:	EX.2:	EX.3:
3x+7y=27-(I)	2x+y=7-(I)	-2x+y=1-(I)
5x+2y=16-(II)	3x-y=8-(II)	-3x+2y=5 –(II)
$r = \frac{7 \times 16 - 27 \times 2}{}$	$r = \frac{1 \times 8 - (-1) \times 7}{1 \times 8 + (-1) \times 7}$	$r = \frac{1 \times 5 - 2 \times 1}{1 \times 5 - 2 \times 1}$
$x = {5 \times 7 - 3 \times 2}$ $112 - 54 58$	$x = \frac{3 \times 1 - 2 \times -1}{8 + 7 + 15}$	$x = {-3 \times 1 - (-2) \times 2}$
$=\frac{112-34}{35-6}=\frac{36}{29}=2$	$=\frac{3+7}{3+2}=\frac{15}{5}=3$	$=\frac{5-2}{-3+4}=\frac{3}{1}=3$
$5 \times 27 - 3 \times 16$	$3 \times 7 - 2 \times 8$	$-3 \times 1 - (-2) \times 5$
$y = {5 \times 7 - 3 \times 2}$	$y = \frac{3 \times 1 - 2 \times -1}{3 \times 1 - 2 \times -1}$	$y = \frac{1}{-3 \times 1 - (-2) \times 2}$
$=\frac{135-48}{35-6}=\frac{87}{29}=3$	$=\frac{21-16}{3+2}=\frac{5}{5}=1$	-3 + 10 7
		$={-3+4}={1}=7$
x=2 and y=3	x=3 and y=1	x=3 and y=7

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm

INTRODUCTION TO VEDIC MATHEMATICS

Sutras: Meaning and Usage

Sutra 3: Ūrdhva – tiryagbhyām (ऊर्ध्वतिर्यग्भ्याम्)

Meaning: Vertically and Crosswise.

Usage: This is used to to multiply given numbers vertically and

ab

crosswise.

$$\begin{array}{c} \times & cd \\ \hline \\ = (a \times c) \mid (a \times d + b \times c) \mid (b \times d) \\ \\ & abc \\ \times & def \\ \hline \\ = (a \times d) \mid (a \times e + b \times d) \mid (a \times f + b \times e + c \times d) \mid (b \times f + c \times e) \mid (c \times f) \\ \end{array}$$

Ex: 25×67

First Part:	Second Part:	Third Part:
a b 2 5 c d 6 7	a b 2 5 c d 6 7	a b 2 5 c d 6 7
(a×c) (2×6=12)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$ $(2 \times 7 + 5 \times 6 = 44)$	(b×d) (5×7=35)

12|44|35

12|44+3|5

12|47|5

12+4|7|5

16|7|5

1675

Applications: to find Product of given numbers and polynomials. **Refer Units:** Multiplication and Polynomials.

Sutra 5: Sūnyam Samyasamuccaye (शून्यं साम्यसमुच्चये)

Meaning: If the Samuccay (समुच्चय or समूह or Set) is same, it is ZERO.

Usage:

CASE 3: If the numerical numerators of two fractions are same, then the sum of denominators is ZERO.

$$Ex. \ \frac{3}{4x+5} + \frac{3}{7x-3} = 0$$

Here 3=3; so 4x+5+7x-3=0;

11x+2=0; 11x=-2; x=-2/11.

$$Ex. \ \frac{-7}{x^2+6} + \frac{-7}{6x+3} = 0$$

Here -7=-7; so $x^2+6+6x+3=0$;

$$x^2+6x+9=0$$
; $(x+3)^2=0$; $x=-3$.

$$Ex. \ \frac{16}{3x+5} - \frac{16}{8x-12} = 0$$

16=16; so 3x+5-(8x-12)=0; 3x+5-8x+12=0; -5x+17=0; x=17/5.

Note: Here sign is negative, so we have subtracted (D1-D2)

CASE 4:

A. If
$$N1+N2=D1+D2$$
 then $N1+N2=D1+D2=0$

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5+4x+6=7x+11$$
; $5x+4+2x+7=7x+11$

$$\therefore$$
 7x+11=0; x = -\frac{11}{7}

B. If
$$\mathbf{m}(N1+N2)=\mathbf{n}(D1+D2)$$
 then $N1+N2=D1+D2=0$ ($\mathbf{m},\mathbf{n}=$ common factors)

$$\frac{7x+2}{2x+1} = \frac{5x+6}{x+1}$$

$$7x+2+5x+6=12x+8=4(3x+2)$$

$$2x+1+x+1=3x+2=1(3x+2)$$

$$3x+2=0$$

$$X = -\frac{2}{3}$$

C: If $\mathbf{m}(N1-D1)=\mathbf{n}(N2-D2)$ then N1-D1=N2-D2=0 (\mathbf{m},\mathbf{n} =common factors)

$$\frac{3x+5}{5x+4} = \frac{4x+6}{2x+7}$$

$$3x+5-5x-4=-2x+1$$
 and $4x+6-2x-7=2x-1=-1$ (-2x+1)

$$\therefore$$
 -2x+1=0; 2x=1; x = $\frac{1}{2}$

Sutra 13: Sopantyadvayamantyam (सोपान्त्यद्वयमन्त्च्यम्)

Meaning: The ultimate and twice the penultimate

Usage:

$$\frac{1}{AB} + \frac{1}{AC} = \frac{1}{AD} + \frac{1}{BC}$$

If A, B, C and D are in Arithmetic Progression then D+2C=0

$$Ex.\frac{1}{(x+3)(x+4)} + \frac{1}{(x+3)(x+5)} = \frac{1}{(x+3)(x+6)} + \frac{1}{(x+4)(x+5)}$$

$$A=(x+3);$$

$$B=(x+4);$$

$$C=(x+5);$$

$$D=(x+6);$$

Here A, B, C & D are in Arithmetic Progression;

So,
$$D+2C=0$$
;

eBook & Video Course: www.Speed16.com/books/vm; info@speed16.com

$$(x+6)+2(x+5)=0;$$

 $x+6+2x+10=0;$ $3x+16=0;$ **x=-16/3.**

Sub Sutras: Meaning and Usage

Sub Sutra 9: Antyayoreva (अन्त्ययोरेव)

Meaning: Only the Last Terms

Usage: This sutra is used to solve certain equations of the type:

After ignoring Constants; Numerator and the Denominator of one side are in the ratio of Numerator and Denominator of the other side.

if
$$\frac{m(N1) + c1}{m(D1) + c2} = \frac{N2}{D2}$$
 where $N1 = N2$ and $D1 = D2$ then $\frac{N2}{D2} = \frac{c1}{c2}$ m is common factor; c1 and c2 are constants.

$$Ex. \frac{x^2 + x + 2}{x^2 + 2x + 5} = \frac{x + 1}{x + 2}$$

$$= > \frac{x(x+1) + 2}{x(x+2) + 5} = \frac{x+1}{x+2} \text{ then } \frac{x+1}{x+2} = \frac{2}{5}; x = -\frac{1}{3}$$

Sub Sutra 12: Vilokanam (विलोकनं)

Meaning: By Mere Observation

Usage: This sutra is used in solving quadratic and simultaneous equations. Refer Unit: Quadratic Equations.

Ex: $x + \frac{1}{x} = \frac{10}{3}$; By Vilokanam (विलोकनं) we say that x=3.

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm