

Tarea 7: FIM8451 - Mecánica Estadística Avanzada

Instituto de Física Pontificia Universidad Católica de Chile Prof: B. Loewe, Segundo Semestre 2024 Fecha de Entrega: 5 de Diciembre, 2024

Esta tarea es opcional. Resolverla correctamente otorga un punto extra para la tarea con peor calificación.

Problema: Modelo de un láser con ruido

Considere el siguiente modelo simple de un láser:

$$\dot{I} = (g - \alpha)I - \beta I^2 + \xi,$$

donde I es la intensidad de la luz, y g, α , y β son constantes positivas relacionadas con la intensidad de bombeo, la tasa de pérdida y el nivel de saturación, respectivamente. La cantidad ξ representa fluctuaciones aleatorias en la intensidad debido a emisión espontánea (en lugar de emisión estimulada). Suponga que:

$$\langle \xi \rangle = 0$$
 ; $\langle \xi(t)\xi(s) \rangle = \kappa \delta(t-s)$.

- (a) Escriba la ecuación de Fokker-Planck que gobierna la evolución de la densidad de probabilidad p(I,t).
- (b) Resuelva esta ecuación para la densidad de probabilidad estacionaria (es decir, independiente del tiempo) $p_{\rm st}(I)$. En este modelo, los valores negativos de I no tienen significado físico, por lo que solo se deben incluir valores no negativos de I.
- (c) Grafique $p_{\rm st}(I)$ para tres valores de la intensidad de bombeo: $g=0.5, g=1.0, {\rm y}\ g=1.5$. Para los tres casos, use $\beta=0.2$ y $\alpha=1.0$. Físicamente, las fluctuaciones de emisión espontánea son bastante pequeñas, por lo que tome $\kappa=10^{-4}$. Genere los gráficos de manera que se facilite la comparación visual de las anchuras relativas de las tres curvas.
- (d) Nuevamente, con $\beta = 0.2$, $\alpha = 1.0$ y $\kappa = 10^{-4}$, grafique las fluctuaciones cuadráticas medias de la intensidad $\langle I^2 \rangle \langle I \rangle^2$ en el rango $g \in (0,2)$. Debería encontrar un aumento sustancial cerca del valor g = 1, que es el valor en el que el láser se enciende.
- (e) Ahora considere la ecuación de Langevin del modelo de láser. Fije $\beta=0.2,~\alpha=1.0$ y $\kappa=10^{-4}$ para todos los cálculos posteriores.
 - (i) Sin ruido ($\xi = 0$), integre numéricamente la ecuación con la condición inicial I = 1, para diferentes valores de g. Verifique que para g < 1, $I \to 0$ asintóticamente en el tiempo, mientras que para g > 1, la intensidad se satura en un valor $I_{\infty} = (g \alpha)/\beta$.
 - (ii) Con ruido, genere una serie temporal para $\xi(t)$ con media cero, correlación delta y la intensidad deseada κ . Verifique que el método de Euler con un paso de tiempo Δt y varianza del ruido σ^2 produce una intensidad de ruido efectiva $\kappa = \sigma^2 \Delta t$.

(iii) Incluya el término de ruido en la simulación del láser. Para un valor fijo de g, genere una serie temporal larga y calcule la fluctuación cuadrática media $\langle I^2 \rangle - \langle I \rangle^2$. Repita esto para varios valores de g entre g=0 y g=2, y grafique (1) $\langle I \rangle$ en función de g y (2) la varianza $\langle I^2 \rangle - \langle I \rangle^2$ en función de g.

¡NOTA! Este modelo tiene una característica técnica un tanto desafortunada de la que debe tener cuidado. Específicamente, es posible que el ruido haga que I tome valores menores que cero. Esto no es físico y es, además, numéricamente inestable (I puede divergir hacia $-\infty$). Una solución sencilla que es adecuada para nuestros propósitos es imponer esta regla: si I toma valores negativos, simplemente restablézcalo a cero. Si puede pensar en otra forma de manejar esta dificultad, siéntase libre de hacerlo, pero en cualquier caso asegúrese de indicar claramente lo que hizo.