CS499 Homework 9 (First Draft)

Intersteller

Exercise 9.1

We define $f_1: N \to N$

$$f_1(0) = 0, f_1(1) = 1, \dots, f_1(n) = n.$$

We define $f_2:N\to N^2$ based on this graph:

	0	/	2	う	4	5	13.4
0	(0,0)	(0 -1)	(O, 2)	(0, 3)	(0,4)	(0,5)	v1)
1	(1,0)	(1/1)	(1/2)	(ルう)	(1/ 4)	(1,5)	111
2	(2)0)	(2/1)	(2,2)	(2,3)	(2,4)	(2,5)	174
3	(3.0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(1)
:	Ę	Ę	Ę	÷	E	7.	.,,

Figure 1:

$$f_2(0) = (0,0), f_2(1) = (0,1), f_2(2) = (1,0) \cdots$$

We define $f_3: N \to N^3$ based on this graph:

	0	/	2	3	4	5	11.1
£(0)=(0,0)	(0,0,0)	(0,0,1)	(0,0,2)	(0,0,3)	(0,0,4)	(0,0,5)	、 1)
£(1)=(0,1)	(0,10)	(1,1,0)	(2/1/2)	(6,1,0)	(0,1,4)	(3,1,5)	111
f=(2)=(1,0)	(1,0,0)	(101)	(پسوه دا)	(1,0/3)	(104)	(1.05)	171
f= (3)=(2,0)	(100,0)	(,0,1)	(2,0,2)	(جرەر2)	(2,0,4)	(2,0,5)	111
:	į.	Ę	3	Ę	Ē	1.11	.,,

Figure 2:

$$f_2(0) = (0,0,0), f_2(1) = (0,0,1), f_2(2) = (0,1,0) \cdots$$

And so on, we can define $f_k, k \in N$. Now we can define a bijection $N \to N*$ base on this graph:

	0	/	2	3	4	5	13.3
f,	f, (0)	f (1)	f(2)	filis	f,(4)	f,(5)	XI)
f ₂	f. (0)	f.(1)	f,(2)	f_(3,)	f_(4)	£(5)	114
T ₃	f3(0)	f_(1)	f3(2)	f3(3)	f3(4)	f ₃ (5)	111
- fa	f4(0)	f4(1)	£(2)	£()	£(4)	<i>f</i> ₄ (5)	m
÷	1		= =	3,	11.1	2.0	'',

Figure 3:

We have $0 \to f_1(0)$, $1 \to f_1(1)$, $2 \to f_2(0) \cdots$. This is a bijection $N \to N*$.

Exercise 9.5

 $000\cdots,100\cdots,1100\cdots,11100\cdots$ According to this rule, the first n bits of the n_{th} sequence are 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite chain.

Exercise 9.6

 $100\cdots,0100\cdots,00100\cdots,000100\cdots$ According to this rule, the n_{th} bit of the n_{th} sequence is 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite antichain.