Diskrete Strukturen Pflichtserie 7

Nikita Emanuel John Fehér, 3793479

09. Dezember 2024 09:15-10:45 Dietzschold, Johannes

7.1

Seien A und B Mengen mit |A| = |B|. Zeigen Sie dass $|A_2| = |B_2|$.

Da:

$$A = \{a | a \in A\}$$

$$A^2 = A \times A = \{(a_1, a_2) | a_1, a_2 \in A\}$$

Damit lässt sich zeigen das $|A^2|=|A|\cdot |A|=n\cdot n=n^2=|A|^2$ Für B gilt das gleiche $|B^2|=|B|\cdot |B|=n\cdot n=n^2=|B|^2$

$$\implies$$
 Wenn $|A| = |B|$

$$\implies |A^2| = |B^2|$$

7.1

Für eine Menge M und $k \in \mathbb{N}$, definieren wir $\mathcal{P}_k(M) := \{X \subseteq M : |X| = k\}$. Seien A und B Mengen mit |A| = |B|.

(a) Zeigen Sie, dass $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

Da wir wissen das
$$|\mathcal{P}(M)| = 2^{|M|}$$

 $\Longrightarrow |\mathcal{P}(A)| = 2^{|A|}$
 $\Longrightarrow |\mathcal{P}(B)| = 2^{|B|}$
Da $|A| = |B|$
 $\Longrightarrow 2^{|A|} = 2^{|B|}$

(b) Zeigen Sie, dass für jede $k \in \mathbb{N}$ gilt $|\mathcal{P}_k(A)| = |\mathcal{P}_k(B)|$

Da für beliebige
$$M$$
 gilt: $|\mathcal{P}_k(M)| = \binom{|M|}{k}$

$$\implies |\mathcal{P}_k(A)| = \binom{|A|}{k}$$

$$\implies |\mathcal{P}_k(B)| = \binom{|B|}{k}$$
Da $|A| = |B|$

$$\implies \binom{|A|}{k} = \binom{|B|}{k}$$

$$\implies |\mathcal{P}_k(A)| = |\mathcal{P}_k(B)|$$

7.3

Sei A eine unendliche abzählbare Menge. Zeigen Sie dass $|\mathcal{P}_2(A)| = \aleph_0$. (Hinweise: Sie können die Resultate der vorherigen Übungen auf diesem oder einem vorherigen Blatt verwenden.)