Laboratorio de Microcomputadoras

Convertidor Analógico Digital

Diana A. Cruz Hernández Amaranto de J. Dávila Jáuregui

Convertidor Analógico Digital (CAD)

• El objetivo de un CAD es transformar una señal eléctrica analógica en una señal digital equivalente, lo más parecida posible a la señal original.

- Parámetros
 - Velocidad de conversión
 - Resolución
 - Voltajes de referencia

Procesos

Para obtener una señal digital se siguen los siguientes procesos.

- Muestreo: Se toma la muestra analógica a convertir.
- Cuantización: La magnitud de la señal se discretiza asignándole un valor dependiendo del nivel de cuantización en el cual se encuentre.
- Digitalización o codificación

Convertidor A/D PIC16f886

- Resolución de 10 bits
- 13 canales de entrada multiplexados
- Voltajes de referencia seleccionados por software
 - Internos y/o externos
- Puede trabajar cuando la microcomputadora esta en modo SLEEP
- La interrupción generada por el CAD puede despertar a la microcomputadora de modo SLEEP

Diagrama de bloques

Se tienen 13 canales analógicos (entradas) multiplexadas. Los bits CHS<3:0> son los bits de selección del canal.

Los voltajes de referencia usados por el convertidor se seleccionan con los bits VCFG1 y VCFG0.

El bot ADON, activa el módulo de conversión.

Diagrama de bloques

Con el bit GO/DONE se toma la muestra poniéndolo a "uno" en el instante deseado, con esto se inicia la conversión, cuando el resultado está disponible este mismo bit se pone en "cero" automáticamente.

El bit ADFM justifica el resultado a la izquierda o derecha de los registros de resultado ADRESH:ADRESL, el resultado que es de 10 bits, puede desplazarse a la derecha o a la izquierda.

Registros de configuración

Existen cuatro registros principales asociados al convertidor A/D

- Dos de configuración:
 - ADCON0: ADC control register0
 - ADCON1: ADC control register1
- Dos de resultado
 - ADRESH:ADC result high register
 - ADRESL: ADC result low register

Formato del resultado

Los 10 bits del registro de resultado se almacenan en los registros ADRESH y ADRESL y pueden justificarse a la derecha o izquerda dependiendo del valor del bit ADFM.

Si se van a leer los 10 bits se recomienda justificar a la derecha. Si solo se van a usar 8 bits generalmente se justifica a la izquierda y se lee solo el ADRESH aunque se pierda resolución al descartar los dos bits menos significativos.

FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT

Configuración de los puertos analógicos

- Los registros TRISA y ANSEL configuran al PORTA y los registros TRISB y ANSELH configural al PORTB.
- Los bits que se deseen configurar como entradas deben tener su correspondiente bit en TRISX a uno
- Y los registros ANSEL y ANSELH configuran el modo de operación analógico para cada uno de los bits del PORTA y PORTB respectivamente. Para que éstos puertos operen de manera analógica se debe escribir "uno" en el bit correspondiente.

Registos de configuración ADCON0 (ADCS1:ADCS0)

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0						
ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD ≥ 3.0V)

ADC Clock I	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<1:0>	20 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	00	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/8	01	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾		
Fosc/32	10	1.6 µs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
FRC	11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Reloj de Conversión

La operación del CAD está sincronizada con una señal de reloj derivada del reloj principal.

El sistema de reloj del CAD se configura con los bits ADCS1:ADCS0

- De acuerdo con la tabla 9-1, se debe buscar una opción que resulte en un periodo mayor o igual a 1.6 us. En la tabla para 4 Mhz nos dice que la opción recomendada es Fosc/32 o FRC. Ya que los valores sombreados no cumplen con ese periodo mínimo.
- Para ADCS1:ADCS0 = 01, tenemos Fosc/8= 2us lo que es >= a 1.6 us

Voltaje de referencia

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
ADFM	_	VCFG1	VCFG0	_		_	_
bit 7 bit 0							

- Los voltajes de referencia se seleccionan con los bits VCFG0 (Vref+) y VCFG1 (Vref-)
 Cuando estos bits están en "uno" se selecciona la referencia interna correspondiente (Vcc y GND)
- Cuando estos bits están en cero, se seleccionan las referencias externas, las cuales se deben ingresar como voltaje a través de los pines AN2 y AN3

Pasos para una correcta conversión

1) Configurar el módulo A/D:

- a. Configurar los pines analógicos y los Voltajes de referencia VREF- y VREF+, mediante el registro ADCON1 (y los correspondientes bits TRIS como entradas).
- b. Seleccionar el canal de entrada a convertir mediante los bits CHS3:CHS0 del registro ADCON0
- c. Seleccionar el reloj de conversión mediante los bits ADCS1:ADCS2
- d. Activar el convertidor mediante el bit ADON
- 2) Configurar interrupciones (si se desea), para ello: limpiar ADIF y poner ADIE, PEIE y GIE.
- 3) Esperar mientras transcurre el tiempo de adquisición (20 µseg).
- 4) Tomar la muestra e iniciar la conversión poniendo el bit GO/DONE en "uno".
- 5) Esperar a que termine la conversión:
 - a. Por "poleo" (Polling): Consultando continuamente el bit GO/DONE esperando que sea "cero"
 - b. Por interrupciones: Cuando la conversión termina, la bandera ADIF = 1, esto genera una solicitud de interrupción, la cual deberá ser atendida por una rutina de atención a la interrupción diseñada para ello.
- **6) Leer el dato convertido** de los registros (ADRESH:ADRESL)

Expresiones para el cálculo de voltajes y valores digitales

• La resolución del convertidor está dada por:

Usando las referencias internas de voltaje (Vcc y GND) y n= 10 bits, se tiene:

$$Res=(5-0)/1023 = 4.88 \text{ mV}$$

• El valor digital para un voltaje de entrada Vin es:

```
V_d = Vin / Res; ejemplo V_d = 3.4 V / 4.88 mV = 696.72 \approx 697
```

- Para un voltaje analógico de 3.4 volts el convertidor entregaría un valor digital de 697
- Si se quiere obtener el valor analógico correspondiente a un valor digital simplemente hay que despejar la ecuación anterior.