Курсовая работа на тему: «Булевы операции над полигональными моделями»

Выполнили: студенты группы РК9-72

Кобзарь В. А.

Романов А. С.

Руководитель: Хрыков С. С.

Цели

Разработать программу, предоставляющую пользователю возможность выполнения булевых операций (объединение, пересечение, вычитание) над полигональными моделями.

Задачи

- 1. Обзор и анализ существующих решений
- 2. Разработка алгоритма реализации булевых операций
- 3. Написание программы, реализующей выбранный алгоритм
- 4. Тестирование программы

Обзор и анализ существующих решений

Веб – приложений с возможностью выполнения булевых операций не найдено

Разработка алгоритма реализации

- 1. Поиск линии пересечения двух моделей
- 2. Триангуляция моделей в областях пересечения
- 3. Разбиение моделей на внутренние и внешние части
- 4. Получение результата операции путём сложения частей моделей (в зависимости от операции)

Поиск линии пересечения двух моделей

Подзадачи поиска пересечения

1. Предварительная проверка пересечения треугольников

$$\pi_2$$
: $N_2 \cdot X + d_2 = 0$ - уравнение плоскости $N_2 = (V_1^2 - V_0^2) \times (V_2^2 - V_0^2)$ - нормаль плоскости π_2 . $d_2 = -N_2 \cdot V_0^2$

 $d_{V_i^1} = N_2 \cdot V_i^1 + d_2$, i = 0, 1, 2. - расстояния (с учетом знака) от вершин треугольника T_1 до плоскости π_2

2. Проверка принадлежности точки пересечения треугольникам

$$S_{ABC} = S_1 + S_2 + S_3$$

Триангуляция области пересечения

Триангуляция Делоне

Инкрементальный алгоритм

---- **-**спящее ребро

-живое ребро

---- -мертвое ребро

Инкрементальный алгоритм

Результат 2D триангуляции

Разработка пространственного алгоритма триангуляции

3D триангуляция

Промежуточные результаты

Разбиение моделей на внешние и внутренние части

Чётное количество пересечений — внешняя часть, нечётное -внутренняя

Получение результата операции путем сложения частей моделей

Внешние части моделей

Внутренние части моделей

- 1. Объединение: 1 и 2
- 2. Пересечение: 3 и 4
- 3. Вычитание: 1 и 3 или 2 и 4

Code Map

Тестирование

Позвонки

Конический винт

Объединение

Пересечение

Вычитание конического винта из позвонков

Вид снаружи

Результаты тестирования

Тестируемые модели	Операция	Количество	Non-	Время
(количество		дыр	manifold	операции,
треугольников)			edges*	С
Конус/сфера	Объединение	0	0	<1
(378/1280)	Пересечение	0	0	<1
	Вычитание	0	0	<1
Куб/параллелепипед	Объединение	0	0	<1
(12/12)	Пересечение	0	0	<1
	Вычитание	0	0	<1
Позвонки/	Объединение	0	2	32
Конический винт	Пересечение	1	0	32
(95986/9294)	Вычитание	0	2	32

^{*}Non-manifold edges – это ребра, которые включены в более, чем два треугольника

Дальнейшее развитие

- Улучшение быстродействия
- Интеграция кода, написанного одногруппниками

Спасибо за внимание