Sarah Ertel	1	2	3	4	Σ
Patrick Greher					
Eugen Ljavin					

Übungsblatt Nr. 3 (Abgabetermin 10.05.2018)

Aufgabe 1

a)

```
Algorithm 1: Insertion Sort Algorithmus
```

```
1 function insertionSort(toSort[j])
2 for i \leftarrow 1; i < toSort.length; i \leftarrow i+1 do
3  | j \leftarrow i;
4 | while (j > 0) \land (toSort[j-1] > toSort[j]) do
5  | toSort[j-1] \leftarrow toSort[j-1];
6  | toSort[j-1] \leftarrow toSort[j];
7  | toSort[j] \leftarrow tmp;
8  | j \leftarrow j-1;
9 | end
10 end
```

Algorithm 2: Minimumsuche + Austausch Algorithmus

```
1 function minimumSwapSort(toSort[])
 2 for i \leftarrow 0; i < toSort.length - 1; i \leftarrow i + 1 do
        for j \leftarrow i+1; j < toSort.length; i \leftarrow j+1 do
            if toSort[i] > toSort[j] then
 4
                 tmp \leftarrow toSort[i];
 \mathbf{5}
                 toSort[i] \leftarrow toSort[j];
 6
 7
                 toSort[j] \leftarrow tmp;
 8
            end
        end
 9
10 end
```

b)

c)

	Minimumsuche + Austausch Algorithmus	Insertion Sort
Vertauschungen	0	0
Vergleiche	maximal: $\frac{n^2}{2} - \frac{n}{2}$	n-1

d)

 $n \in \mathbb{N}$

	Minimumsuche + Austausch Algorithmus	Insertion Sort
Array	$A = \langle n, n+1, n+2, \dots \rangle$	$A = \langle n, n-1, n-2, \ldots \rangle$
Anzahl Vergleiche	$\frac{n^2}{2} - \frac{n}{2}$	$\frac{n^2-n}{2}$

e)

 $n \in \mathbb{N}$

	Minimumsuche + Austausch Algorithmus	Insertion Sort
Array	$A = \langle n, n-1, n-2, \ldots \rangle$	$A = \langle n, n-1, n-2, \ldots \rangle$
Anzahl Vertauschungen	$\frac{n^2}{2} - \frac{n}{2}$	$\frac{n^2-n}{2}$

Aufgabe 2

 $A = \langle 4, 2, 12, 10, 18, 14, 6, 16, 8 \rangle$

a)

4

1) Die erste Zahl aus dem Array nehmen und als Wurzel einsetzen

3) 4 und 2 vertauschen, da2<4

5) Die nächsten vier Elemente werden angefügt

(10,18,14 sind größer als die jeweiligen Parent Elemente)

6) Die letzten beiden Elemente werden angefügt

2) Die nächste Zahl aus dem Array als Child a

4) nächste Zahl als Child anfügen

6) Da 6 < 12 müssen die beiden Elemente vert

7) 8 und 10 müssen vertrauscht werden

c)

d)

Das größte Element könnte sich an jedem Knoten des Min-Heap Baumes befinden. Man muss also den Baum traversieren, bis man den maximalen Knoten gefunden hat. Anschließend muss die Min-Heap Eigenschaft wiederhergestellt werden.

- Um den maximalen Knoten zu finden muss jeder Knoten betrachtet werden $\Rightarrow \mathcal{O}(n)$
- Der gefundene Knoten muss mit dem letzten Element des Min-Heap Baumes ersetzt werden $\Rightarrow \mathcal{O}(1)$
- Die Min-Heap Eigenschaft muss wiederhergestellt werden $\Rightarrow \mathcal{O}(\log n)$

Es ergibt sich eine Gesamtlaufzeit von $\mathcal{O}(n) + \mathcal{O}(1) + \mathcal{O}(\log n) = \mathcal{O}(n)$.

Aufgabe 3

a)

Ein k-Heap kann wie ein Binärer-Heap als Array dargestellt werden. Der Parent node eines Elementes i lässt sich mit $\lfloor (i-1)/k \rfloor$, die Child nodes mit i*k+1 bis i*k+k berechnen.

b)

Die Höhe eines k-Heaps der Größe n ist $\lfloor log_k(n) + 1 \rfloor$

c)

Algorithm 3: Insert

```
1 function insertElement(Element e, k-nary k, Heap data)
2 positionElement, heapSize ← heapSize+1
3 data[heapSize-1] ← e
4 for parent = [(positionElement - 1)/k], data[positionElement] > parent; do
5 | vertausche (data[positionElement] mit data[parent] positionElement ← parent
6 end
```

Algorithm 4: ExtractMin

```
1 function ExtractMin(Heap data, k-nary k)
 2 position \leftarrow 0
 3 lösche data[position]
 4 data[position] \leftarrow data[heapSize-1]
 5 while true do
       children[] \leftarrow data[position*k+1] - data[position*k+k]
 6
       for index \leftarrow 0, index < k, index+1 do
 7
           if children/index/< data/position/ then
 8
               vertausche(children[index],data[position])
 9
               position \leftarrow index index \leftarrow k
10
           end
11
       end
12
13 end
```

Aufgabe 4

a)

Für das Array der Länge n=2 sortiert der Algorithmus korrekt, da die Elemente ggfs. vertauscht werden um sie zu sortieren und der Algorithmus terminiert. Bei der Länge n=1 terminiert der Algorithmus direkt.

```
Für n > 2 gilt:
```

Nach dem Ausführen der Zeile 8 ist der Bereich A[1...n-k] sortiert, sodass die größten Elemente im hinteren Bereich des zweiten Drittels liegen. Nach dem Ausführen der Zeile 9 ist der Bereich A[1+k...n] sortiert, sodass die größten Elemente am Ende des Arrays stehen. Das zweite Dittel (mittlerer Bereich) ist nun nicht mehr sortiert. Nach dem Ausführen der Zeile 10 ist der Bereich A[1...n-k] wieder sortiert. Da die größten Elemente durch Ausführen der Zeile 9 in das letzte Drittel des Arrays gebracht wurden ist folglich der Bereich A[1...n] und somit das gesamte Array sortiert.

b)

Der Algorithmus ruf sich rekursiv drei mal auf und betrachtet dabei $\frac{2}{3}$ der Arraylänge n. Des Weiteren werden zwei Vergleiche durchgeführt, um zu prüfen, ob zwei Elemente getauscht werden müssen sowie für die Abbruchbedingung. Es ergibt sich daraus die Rekursionsvorschrift $T(n) = 3 \cdot T\left(\frac{2}{3} \cdot n\right) + 1$

Mit Hilfe des Mastertheorems lässt sich folgende Komplexität ermitteln:

$$T(n) = 3 \cdot T\left(\frac{2}{3} \cdot n\right) + 1 \Rightarrow 3 \cdot T\left(\frac{2}{3} \cdot n\right) + \mathcal{O}(1)$$
 Nach dem Mastertheorem gilt: $a = 3$; $b = \frac{3}{2}$; $f(n) = 1 = \mathcal{O}(n^c)$ mit $c = 0$ Es ist: $c < \log_{\frac{3}{2}} 3$

Nach Fall 1 des Mastertheorems gilt: $T(n) = \mathcal{O}(n^{\log_{\frac{3}{2}}3}) \approx \mathcal{O}(n^{2,7})$

c)

Sowohl Quck-Sort, als auch Minimumsuche + Austausch sowie Insertion Sort haben im worst case eine Komplexität von $\mathcal{O}(n^2)$.

Setzt man in dieser Teilaufgabe Komplexität mit Effizienz gleich, gilt $\mathcal{O}(n^2) < \mathcal{O}(n^{2,7})$. Damit ist Zwei-Drittel-Sortieren im worst case **nicht** effizienter als die drei obenstehenden Sortieralgorithmen.