3.1.1.1	071	17.11	0011		10/0	/0011		0 .	110
Math	3/1 -	ган	2011	-	10/0	/ 2011	-	Quiz	#0

Score: _____ out of 10.

Name:	(key)	Seat	
rvaine.		Scat.	

Show all work clearly and in order. Please box your answers. 10 minutes.

For each of the following linear differential equations: (a) find the general solution to the associated homogeneous differential equation, and (b) determine the FORM of a particular solution. DO NOT SOLVE FOR THE UNDETERMINED COEFFICIENTS.

1.
$$y'' - 3y' + 2y = 3x$$
.
 $A_{0 \times .eqn}$: $m^2 - 3m + 2 = 0$
 $(m-2)(m-1) = 0$

(a)
$$y_c = \begin{bmatrix} C_1 e^{2x} + C_1 e^{x} \\ \end{bmatrix}$$
 please see below

(b)
$$y_p = A \times + B$$
 please see below

2.
$$y'' - 2y' + y = e^x$$
.

$$M = 2y' + y = e^{x}$$
.
 $M = 1$ $m = 1$

(a)
$$y_c = \begin{bmatrix} c_1 e^x + c_2 x e^x \end{bmatrix}$$
 please see below

(b)
$$y_p = A \times^2 e^{\times}$$
 please see below

3.
$$y'' - 2y' + y = e^x + x^2$$
.

Aux eqn.
$$m^2 - 2m + 1 = 0 \implies m = 1$$
 or $m = 1$

$$(m-1)(m-1) = 0$$
(a) $y_c = \begin{bmatrix} c_1 e^{x} + c_2 x e^{x} \\ \end{bmatrix}$ please see below

(b)
$$y_p = \begin{bmatrix} A \times^2 e^{\times} & A & B \times^2 + C \times + D & \frac{\text{please}}{\text{beton}} \end{bmatrix}$$

4.
$$y'' - 2y' + 5y = \cos(3x)$$
.
 $m^2 - 2m + 5 = 0$ \longrightarrow $m = \frac{-(-2) \frac{1}{2} \sqrt{(-2)^2 - 4(5)}}{2} = \frac{2 \frac{1}{2} \sqrt{-16}}{2} = \frac{1 \frac{1}{2} \frac{4i}{2}}{2} = \frac{1 \pm 2i}{2}$
 $x = 1$

(b)
$$y_p = A \cos(3x) + B \sin(3x)$$
 below

5.
$$y'' - 2y' + 5y = \cos(2x)$$
.
 $px^2 - 2m + 5 = 0$ (some as m 4.) $m = 1 \pm 2i$
 $x = 1$, $\beta = 2$

(a)
$$y_c = \begin{cases} e^{x} \left[C_1 \cos(2x) + C_2 \sin(2x) \right] & \frac{\text{please}}{\text{see}} \\ \frac{\text{see}}{\text{selow}} \end{cases}$$

(b)
$$y_p = A \cos(2x) + B \sin(2x)$$

$$\frac{\text{please}}{\text{see}}$$
below

LOOK AT TABLE 3.4.1 on p123

(1) (b) since
$$y_c = ce^{2x} + c_i e^x$$

we have $y_i = e^{2x}$ AND $y_2 = e^x$

Now, since g(x) = 3x the FORM of yp from Table 3.4.1 # 2 is:

and since no part of yp is equal to y, or yz we do not need to adjust yp (i.e., no function in this form of yp is a solution of the associated homogeneous differential equation.)

(2) (b) have
$$y_1 = e^x$$

 $y_2 = xe^x$
 $g(x) = e^x$

From table 3.4.1 #7 the form of yp is $y_p = Ae^x$

but this contains y, in it so we multiply by x

yp = Axe

(3) (b) Here
$$y_1 = e^x$$

 $y_2 = xe^x$
 $g(x) = e^x + x^2$
 $g(x) = e^x + x^2$

we need to find y_p , for g(x) then $y_p = y_p, +y_{p2}$ AND y_{p2} for $g_2(x)$

looking at $g_i(x)$ and \overline{able} 3.4.1 # $\overline{7}$ $y_{p_i} = Ae^{\times}$

House, we need to adjust this because this contains y, so

but this contains y_2 . Hence, $y_1 = Ax^2e^x$

looking at 92(x) and Table 3.4.1 # 3

$$y_{pz} = Bx^2 + Cx + D$$

and no pat of this contains y, and yz

Thus, $y_p = y_{p,1} + y_{pz} = Ax^2e^x + Bx^2 + (x+D)$

(4)
$$y_{c} = e^{\times} \left[(\cos(2x) + \cos(2x)) \right]$$

$$oR \rightarrow = (\cos(2x) + \cos(2x))$$

$$y_{1} \qquad y_{2}$$

$$(b)$$

$$so \quad y_{1} = e^{\times} \cos(2x)$$

so
$$y_1 = e^x \cos(2x)$$

 $y_2 = e^x \sin(2x)$
 $g(x) = \cos(3x)$

looking at table 3.4.1 # 6

$$\int y_p = A \cos(3x) + B \sin(3x)$$

and no part of this contains y, or yz so we do not need to adjust.

(5) (a)
$$y_c = e^{x} [c, cos(2x) + (z sin(2x))]$$

$$\frac{1}{2} = \frac{1}{2} \left(\frac{e^{x} \cos(2x)}{y_{1}} + \frac{e^{x} \sin(2x)}{y_{2}} \right)$$

(b) so
$$y_1 = e^{\times} \cos(2x)$$

 $y_2 = e^{\times} \sin(2x)$
 $g(x) = \cos(2x)$
looking at table 3.4.1 # 6

$$y_1 = A \cos(2x) + B \sin(2x)$$
and no part of yp contains y_1 or y_2 , so no adjustment!