Reinforcement Learning Regret Bound Analysis

Pei-Yuan Wu

Dept. Electrical Engineering

National Taiwan University

Outline

- Reinforcement Learning Basics
 - Markov Decision Process
 - Value function and Q-function
- Bellman optimality equations
- Value iteration, policy iteration
- Bandit problem
- Linear UCB
- Pessimistic Value Iteration

Reinforcement Learning

AGENT

- State $s \in \mathcal{S}$
- Take action $a \in \mathcal{A}$

ENVIRONMENT

- Get reward r
- New state $s' \in \mathcal{S}$

Cart-Pole Problem

- Objective: Balance a pole on top of a movable cart
- ► State: angle, angular speed, position, horizontal velocity
- Action: horizontal force applied on the cart
- Reward: 1 at each time step if the pole is upright

Markov Decision Process (MDP)

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterizes the state of the world

Defined by $(S, A, r, \mu, \mathbb{P}, \gamma)$

S: set of possible states (for simplicity assume |S| is countable)

A: set of possible actions (for simplicity assume |A| is finite)

 $r: S \times A \rightarrow [0,1]$: reward function

 $\mu \in \Delta(S)$: initial state distribution

 $\mathbb{P}: S \times A \to \Delta(S)$: transition probability

 $\gamma \in [0,1)$: discount factor

 $\Delta(S)$: Collection of probability distributions on S

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim \mu$.
- Then, for t = 0,1,2,... until done:
 - \triangleright Agent selects action a_t
 - Environment samples reward $r_t = r(s_t, a_t)$
 - \checkmark Sometimes we assume noisy observation $r_t = r(s_t, a_t) + \epsilon_t$
 - Environment samples next state $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}
- Trajectory (up to time t): $\tau_t = (s_0, a_0, r_0, s_1, ..., s_t)$
- \blacktriangleright policy π specifies what action to take by the agent.
 - Generally speaking, a policy may be stochastic and depends on the past trajectory $a_t \sim \pi(\cdot | \tau_t)$
 - Stationary policy only depends on the current state $\pi: S \to \Delta(A)$, $a_t \sim \pi(\cdot | s_t)$
 - Deterministic stationary policy $\pi: S \to A$, $a_t = \pi(s_t)$
 - **Objective:** find the optimal policy π^* that maximizes the cumulative discounted rewards $\sum_t \gamma^t r_t$ (formal definition given later)

Value function and Q-function

With MDP $(S, A, r, \mu, \mathbb{P}, \gamma)$, following a policy π produces sample trajectory (path) $\tau_{\infty} = (s_0, a_0, r_0, s_1, ...)$

where $s_0 \sim \mu$, $a_t \sim \pi(\cdot | s_0, a_0, r_0, ..., s_t)$, $r_t = r(s_t, a_t)$

The value function at state s is the expected cumulative reward from following the policy from state s

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t \mid \pi, s_0 = s\right]$$

The **Q-value function** at state s and action a is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\left[\sum_{t\geq 0} \gamma^t r_t \mid \pi, s_0 = s, a_0 = a\right]\right]$$

Bellman consistency equation

Lemma (Bellman consistency equation):

Suppose that π is a stationary policy. Then V^{π} and Q^{π} satisfy the following Bellman consistency equations: for all $s \in S$ and $a \in A$,

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s, a) \right]$$
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s, a)} \left[V^{\pi}(s') \right]$$

Optimal policy

■ The optimal value function V^* and optimal Q-value function Q^* are defined as

$$Q^*(s, a) = \max_{\pi \in \Pi} Q^{\pi}(s, a)$$
$$V^*(s) = \max_{\pi \in \Pi} V^{\pi}(s)$$

Here Π is the collection of all non-stationary and stochastic policies.

Theorem: There exists a stationary and deterministic policy π^* such that for all $s \in S$ and $a \in A$,

$$Q^{\pi^*}(s, a) = Q^*(s, a)$$

 $V^{\pi^*}(s) = V^*(s)$

We refer to such π^* as an **optimal policy**.

Bellman optimality equation

The **greedy policy** w.r.t. $Q \in \ell^{\infty}(S \times A)$ is the stationary and deterministic policy $\pi_Q: S \to A$, defined as

$$\pi_Q(s) = \operatorname*{argmax}_{a \in A} Q(s, a)$$

where ties are broken in some arbitrary (and deterministic) manner.

Theorem (Bellman Optimality Equations): For any $Q \in \ell^{\infty}(S \times A)$, we have that $Q = Q^*$ iff Q satisfies the Bellman optimality equation:

$$Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)} \left[\max_{a' \in A} Q(s',a') \right]$$

Furthermore, π_Q is an optimal policy.

Denote Bellman optimality operator \mathbb{T} : $\ell^{\infty}(S \times A) \to \ell^{\infty}(S \times A)$ as $(\mathbb{T}Q)(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)} \left[\max_{a' \in A} Q(s',a') \right]$

Then the Bellman optimality equation can be written as $Q = \mathbb{T}Q$.

Value Iteration

How to compute Q^* ?

For any $Q, Q' \in \ell^{\infty}(S \times A)$, holds

$$\|\mathbb{T}Q - \mathbb{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

Since \mathbb{T} is a contraction, and that Q^* is the unique fixed point of \mathbb{T} , one can compute Q^* by first setting some $Q^{(0)} \in \ell^{\infty}(S \times A)$, and then iteratively applying the fixed point mapping

$$\mathbf{Q}^{(k+1)} \leftarrow \mathbb{T}\mathbf{Q}^{(k)}$$

It follows that

$$\|Q^{(k)} - Q^*\|_{\infty} \le \gamma^k \|Q^{(0)} - Q^*\|_{\infty}$$

Proposition (Q-Error Amplification): For any $Q \in \ell^{\infty}(S \times A)$, holds

$$V^{\pi_Q}(s) \ge V^*(s) - \frac{2\|Q - Q^*\|_{\infty}}{1 - \gamma}$$

What's the problem with this?

Must compute Q(s, a) for every state-action pair, which is computationally infeasible if the state-action space $S \times A$ is large.

Policy Iteration

- Start from an arbitrary policy π_0 .
- Then for k = 0,1,2,... until done:
- \triangleright Policy evaluation: Compute Q^{π_k} .
- Policy improvement: Update the policy:

$$\pi_{k+1} = \pi_Q \pi_k$$

Namely, $\pi_{k+1}(s) = \underset{a \in A}{\operatorname{argmax}} Q^{\pi_k}(s, a)$.

Proposition:

- 1. $Q^{\pi_{k+1}} \ge \mathbb{T}Q^{\pi_k} \ge Q^{\pi_k}$.
- 2. $\|Q^{\pi_{k+1}} Q^*\|_{\infty} \le \gamma \|Q^{\pi_k} Q^*\|_{\infty}$.

Episodic MDP

Discounted time independent MDP

Defined by $(S, A, r, \mu, \mathbb{P}, \gamma)$

S: set of possible states

A: set of possible actions

 $r: S \times A \rightarrow [0,1]$: reward function

 $\mu \in \mathcal{A}(S)$: initial state distribution

 $\mathbb{P}: \mathcal{S} \times A \to \Delta(S)$: transition probability

1: discount factor

Goal: Find policy π that maximizes

$$\mathbb{E}\left[\left[\sum_{t\geq 0} \gamma^t r(s_t, a_t) \mid \pi, s_0 = s\right]\right]$$

Episodic time dependent MDP

Defined by $(S, A, (r_h)_{h=0}^{H-1}, \mu, (\mathbb{P}_h)_{h=0}^{H-1}, H)$

S: set of possible states

A: set of possible actions

 $r_h: S \times A \rightarrow [0,1]$: reward function at step h

 $\mu \in \Delta(S)$: initial state distribution

 $\mathbb{P}_h: S \times A \to \Delta(S)$: transition probability at step h

H: horizon

Goal: Find policy π that maximizes

$$\mathbb{E}\left[\sum_{h=0}^{H-1} r_h(s_h, a_h) \,| \pi, s_0 = s\right]$$

K-armed bandit problem

- We have K decisions (the "arms"), where when we play arm $a \in [1, K]$ we obtain a random reward with mean $\mu_a \in [0,1]$.
- Every iteration t, the learner will pick an arm $I_t \in [1, K]$. Our cumulative regret is

$$R_T = T \max_{a} \mu_a - \sum_{t=1}^{T} \mu_{I_t}$$

 Can be regarded as a MDP with one state (casino) and K actions (arms)

Reward μ_1

 μ_2

• •

 μ_k

Upper confidence bound (UCB) algorithm

- First play each arm once.
- \blacksquare In iteration t:
 - > maintain counts and empirical mean for each arm:

$$N^{t}(a) = \sum_{i=1}^{t} 1\{I_{i} = a\}, \hat{\mu}_{t}(a) = \frac{1}{N^{t}(a)} \sum_{i=1}^{t} 1\{I_{i} = a\}r_{i}$$

From which the UCB is computed as

$$\hat{\mu}_t(a) + \sqrt{\frac{\log(TK/\delta)}{N^t(a)}}$$

> Play the arm with the highest UCB.

Algorithm 1 UCB

for
$$t \leftarrow 1$$
 to K do

$$I_t \leftarrow t$$

Play arm I_t and receive reward r_t

end for

for
$$t \leftarrow K + 1$$
 to T do

$$I_t \leftarrow \arg\max_{a \in [1,K]} \left(\hat{\mu}^{t-1}(a) + \sqrt{\frac{\log(TK/\delta)}{N^{t-1}(a)}} \right)$$

Play arm I_t and receive reward r_t

end for

Linear stochastic bandit

- \blacksquare In round t,
 - the learner is given a decision set $D_t \subset \mathbb{R}^d$ from which to choose action $x_t \in D_t$.
 - The learner observes reward $r_t = \langle x_t, \mu_* \rangle + \eta_t$, where $\mu_* \in \mathbb{R}^d$ is fixed but unknown, and η_t is a zero mean random noise.
- Goal: Maximize total reward $\sum_{t=1}^{T} \langle x_t, \mu_* \rangle$. In other words, to minimize regret

$$R_T = \sum_{t=1}^T \langle x_t^*, \mu_* \rangle - \sum_{t=1}^T \langle x_t, \mu_* \rangle = \sum_{t=1}^T \langle x_t^* - x_t, \mu_* \rangle$$

where $x_t^* \in \underset{x \in D_t}{\operatorname{argmax}} \langle x, \mu_* \rangle$.

Optimism in the face of uncertainty (OFU) principle

- \blacksquare In round t,
 - ightharpoonup Maintains a confidence set $C_{t-1} \subset \mathbb{R}^d$ for the parameter μ_* .
 - C_{t-1} is calculated from $x_1, x_2, ..., x_{t-1}$ and $r_1, r_2, ..., r_{t-1}$ where $\mu_* \in C_{t-1}$ "with high probability".
 - Chooses an optimistic estimate $\tilde{\mu}_t \in \operatorname*{argmax}\max_{x \in D_t} \langle x, \mu \rangle$ and the action $x_t \in \operatorname*{argmax} \langle x, \tilde{\mu}_t \rangle$ which maximizes the reward according

to estimate $\tilde{\mu}_t$.

Algorithm 2 OFUL

for
$$t \leftarrow 1$$
 to T do
$$(x_t, \tilde{\mu}_t) \leftarrow \arg\max_{(x,\mu) \in D_t \times C_{t-1}} \langle x, \mu \rangle$$
Play x_t and observe reward r_t
Update C_t
end for

Confidence set

How to estimate the confidence set C_t ?

- Recall that $r_t = \langle x_t, \mu_* \rangle + \eta_t$.
- Let $\hat{\mu}_t$ be the regularized least-squares estimate of μ_* up to step t, namely

$$\hat{\mu}_t \in \operatorname*{argmin}_{\mu} \left\{ \sum_{t=1}^T (\langle x_t, \mu \rangle - r_t)^2 + \rho \|\mu\|_{\Sigma_0}^2 \right\} = \left(\Sigma_0 + \sum_{t=1}^T x_t x_t^T \right)^{-1} \left(\sum_{t=1}^T r_t x_t \right)^{-1} \left(\sum_{t=1}^T r_$$

where $\Sigma_0 \in \mathbb{R}^{d \times d}$ is positive definite, and $||v||_A = \sqrt{v^T A v}$.

Theorem: Assume that each η_t is conditionally R^2 -subgaussian, that is,

$$\mathbb{E}\left[e^{\lambda\eta_t}|x_1,\dots,x_t,\eta_1,\dots,\eta_{t-1}\right] \leq \exp\left(\frac{\lambda^2R^2}{2}\right), \forall \lambda \in \mathbb{R}$$

Then/for each $\delta < 0$, with probability at least $1 - \delta$, the following holds for all $t \ge 0$:

$$\|\hat{\mu}_t - \mu_*\|_{\Sigma_t} \le \left\| \Sigma_t^{-\frac{1}{2}} \Sigma_0 \right\| \|\mu_*\| + R \sqrt{\log \left(\frac{\det(\Sigma_t)}{\delta^2 \det(\Sigma_0)} \right)}$$

where $\Sigma_t = \Sigma_0 + \sum_{i=1}^t x_i x_i^{\mathrm{T}}$.

Suppose $\|\mu_*\| \leq M$, we may take confidence set as

$$C_t = \left\{ \mu \in \mathbb{R}^d \middle| \|\mu - \hat{\mu}_t\|_{\Sigma_t} \le \beta_t \right\}, \beta_t = \left\| \Sigma_t^{-\frac{1}{2}} \Sigma_0 \right\| M + R \sqrt{\log \left(\frac{\det(\Sigma_t)}{\delta^2 \det(\Sigma_0)} \right)}$$

It follows that, with probability at least $1 - \delta$, holds $\mu_* \in C_t$ for all $t \ge 0$.

Linear UCB

 $\|\mu - \hat{\mu}_t\|_{\Sigma_t} \le \beta_t \Leftrightarrow \mu = \hat{\mu}_t + \beta_t \Sigma_t^{-1/2} v \text{ for some vector } v \text{ of norm at most 1. Thus }$

$$\max_{\mu \in C_{t-1}} \langle x, \mu \rangle = \langle x, \hat{\mu}_t \rangle + \beta_t \sqrt{x^{\mathrm{T}} \Sigma_t^{-1} x}$$

- This leads to the linear UCB algorithm.
- **Proposition:** If $\mu_* \in C_{t-1}$, then

$$\langle x_t^*, \mu_* \rangle - \langle x_t, \mu_* \rangle \le 2\beta_{t-1} \sqrt{x_t^{\mathrm{T}} \Sigma_{t-1}^{-1} x_t}$$

Algorithm 3 LinUCB $b_{0} \leftarrow 0$ for $t \leftarrow 1$ to T do $\hat{\mu}_{t-1} \leftarrow \Sigma_{t-1}^{-1} b_{t-1}$ $\beta_{t-1} \leftarrow R \sqrt{\log \frac{\det(\Sigma_{t-1})}{\delta^{2} \det(\Sigma_{0})}} + \|\Sigma_{t-1}^{-1/2} \Sigma_{0}\| M$ $x_{t} \leftarrow \arg \max_{x \in D_{t}} \left(\langle x, \hat{\mu}_{t-1} \rangle + \beta_{t-1} \sqrt{x^{\mathsf{T}} \Sigma_{t-1}^{-1} x} \right)$ Play x_{t} and observe reward r_{t} $\Sigma_{t} \leftarrow \Sigma_{t-1} + x_{t} x_{t}^{\mathsf{T}}$ $b_{t} \leftarrow b_{t-1} + x_{t} r_{t}$ end for

Online vs offline RL

Reinforcement Learning with Online Interactions

Offline Reinforcement Learning

https://huggingface.co/learn/deep-rl-course/en/unitbonus3/offline-online