CC1004 - Modelos de Computação Práticas 6 e 7

Ana Paula Tomás

DCC FCUP

Março 2021 - Abril 2021

Folha 5 - Questão 6b)

AFND- ε para $(((10) + (11))^*)$ obtido pelo **método de Thompson**:

Conversão para AFD pelo método baseado em subconjuntos

	0	1
$\rightarrow * \{s_{11}, s_9, s_1, s_5, s_{12}\}$	{}	$\{s_3, s_7\}$
{}	{}	{}
$\{s_3,s_7\}$	$\{s_4, s_{10}, s_9, s_1, s_5, s_{12}\}$	$\{s_8, s_{10}, s_9, s_1, s_5, s_{12}\}$
$* \{s_4, s_{10}, s_9, s_1, s_5, s_{12}\}$	{}	$\{s_3, s_7\}$
$* \{s_8, s_{10}, s_9, s_1, s_5, s_{12}\}$	{}	$\{s_3, s_7\}$

Folha 5 - Questão 6b) cont.

Renomear os estados do AFD para simplificar as designações. Aplicar o algoritmo de Moore para minimizar o AFD.

	0	1
$\rightarrow * q_0$	q_1	q ₂
q_1	q_1	q_1
q ₂	q ₃	q_4
* q 3	q_1	q ₂
* q 4	q_1	q ₂

Tabela inicial:

Restantes pares:

- $q_0 \equiv q_3 \equiv q_4$ porque $\delta(q_0, 0) = q_1 = \delta(q_3, 0) = \delta(q_4, 0)$ e $\delta(q_0, 1) = q_2 = \delta(q_3, 1) = \delta(q_4, 1).$
- $q_1 \not\equiv q_2$ pois $\delta(q_1, 0) = q_1$ e $\delta(q_2, 0) = q_3$ e $q_1 \not\equiv q_3$.

Tabela Final:

Folha 5 - Questão 6b) cont.

Conclusão da aplicação do algoritmo de Moore:

1) AFD

	0	1
$\rightarrow * q_0$	q_1	q ₂
q_1	q_1	q_1
q ₂	q ₃	q_4
* q ₃	q_1	q ₂
* q 4	q_1	q ₂

2) Equivalência de estados

Três classes de equivalência:

$$\{q_0, q_3, q_4\}, \{q_1\} \in \{q_2\}$$

3) AFD mínimo equivalente

	0	1
$\rightarrow * \{q_0, q_3, q_4\}$	$\{q_1\}$	$\{q_2\}$
$\{q_1\}$	$\{q_1\}$	$\{q_1\}$
$\{q_2\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$

- 1a) Para $L = \{0^n 10^n \mid n \in \mathbb{N}\}$, o conjunto $\frac{\Sigma^*}{R_L}$ é infinito porque, quaisquer que sejam $p, q \in \mathbb{N}$, com $p \neq q$, tem-se $(0^p, 0^q) \notin R_L$ pois, para $z = 10^p$, a palavra $0^p z \in L$ mas $0^q z \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$.
 - Como as classes $[\varepsilon]$, [0], [00], [000], [0000], \dots são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1b) Para $L = \{ww \mid w \in \{0,1\}^*\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p, q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p1, 0^q1) \notin R_L$ pois, para $z = 0^p1$, a palavra $0^p1z \in L$ mas $0^q1z \notin L$. Logo, $[0^p1] \neq [0^q1]$, se $p \neq q$. Como as classes [01], [001], [0001], [00001], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1c) Para $L = \{wyw^R \mid w \in \{0,1\}^*, y \in \{0,1,\varepsilon\}\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p,q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p,0^q) \notin R_L$ pois, para $z=10^p$, a palavra $0^pz \in L$ mas $0^qz \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$. Como as classes [0], [00], [000], [0000], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.

5 / 13

- 1a) Para $L = \{0^n 10^n \mid n \in \mathbb{N}\}$, o conjunto $\frac{\sum^*}{R_L}$ é infinito porque, quaisquer que sejam $p, q \in \mathbb{N}$, com $p \neq q$, tem-se $(0^p, 0^q) \notin R_L$ pois, para $z = 10^p$, a palavra $0^p z \in L$ mas $0^q z \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$.
 - Como as classes $[\varepsilon]$, [0], [00], [000], [0000], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1b) Para $L = \{ww \mid w \in \{0,1\}^*\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p, q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p1,0^q1) \notin R_L$ pois, para $z = 0^p1$, a palavra $0^p1z \in L$ mas $0^q1z \notin L$. Logo, $[0^p1] \neq [0^q1]$, se $p \neq q$. Como as classes [01], [001], [0001], [00001], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1c) Para $L = \{wyw^R \mid w \in \{0,1\}^*, y \in \{0,1,\varepsilon\}\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p,q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p,0^q) \notin R_L$ pois, para $z = 10^p$, a palavra $0^pz \in L$ mas $0^qz \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$. Como as classes [0], [00], [000], [0000], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.

- 1a) Para $L = \{0^n 10^n \mid n \in \mathbb{N}\}$, o conjunto $\frac{\Sigma^*}{R_L}$ é infinito porque, quaisquer que sejam $p, q \in \mathbb{N}$, com $p \neq q$, tem-se $(0^p, 0^q) \notin R_L$ pois, para $z = 10^p$, a palavra $0^p z \in L$ mas $0^q z \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$.
 - Como as classes $[\varepsilon]$, [0], [00], [000], [0000], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1b) Para $L = \{ww \mid w \in \{0,1\}^*\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p, q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p1,0^q1) \notin R_L$ pois, para $z = 0^p1$, a palavra $0^p1z \in L$ mas $0^q1z \notin L$. Logo, $[0^p1] \neq [0^q1]$, se $p \neq q$. Como as classes [01], [001], [0001], [00001], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.
- 1c) Para $L = \{wyw^R \mid w \in \{0,1\}^*, y \in \{0,1,\varepsilon\}\}$, o conjunto Σ^*/R_L é infinito porque, quaisquer que sejam $p,q \in \mathbb{Z}^+$, com $p \neq q$, tem-se $(0^p,0^q) \notin R_L$ pois, para $z = 10^p$, a palavra $0^pz \in L$ mas $0^qz \notin L$. Logo, $[0^p] \neq [0^q]$, se $p \neq q$. Como as classes [0], [00], [000], [0000], ... são todas distintas, o conjunto de classes é infinito. Logo, pelo teorema de Myhill-Nerode, L não é regular.

• 2a) $L = \{x \mid \text{o número de 0's em } x \text{ não \'e múltiplo de cinco}\}$ \'e regular porque o número de classes de R_L \'e finito.

De facto, R_L tem **cinco** classes de equivalência: [ε], [0], [00], [000], e [0000], sendo:

• **2b)** $L = \{x \mid x \text{ tem igual número de 0's e de 1's} \}$ não é regular. O conjunto das classes de equivalência de R_L é infinito, porque as palavras 0^n , com $n \in \mathbb{N}$, pertence a classes distintas: $(0^n, 0^k) \notin R_L$ se $n \neq k$, pois, para $z = 1^n$, tem-se $0^n z \in L$ e $0^k z \notin L$.

Myhill-Nerode

- 2c) $L = \{x \mid \#_0(w) \#_1(w) < 3$, qualquer que seja w prefixo de $x\}$ é regular. Construir o AFD mínimo para L por aplicação do corolário do teorema de
- 2d) $L = \{1y1x \mid x \in \{0\}^* \text{ e } |y| \le 2|x|\}$ não é regular.

Mostrar que Σ^*/R_L não é finito.

10) AFD produto de A_1 e A_2 :

AFD A_1 :

AFD A2:

Transições para o AFD produto de A_1 e A_2

	a	Ъ
$ ightarrow$ (s_0,q_0)	(s_1,q_1)	(s_1,q_0)
(s_1,q_1)	(s_2,q_1)	(s_0,q_0)
(s_1,q_0)	(s_2,q_1)	(s_0,q_0)
(s_2,q_1)	(s_2,q_1)	(s_2,q_0)
(s_2, q_0)	(s_2,q_1)	(s_2,q_0)

Estados finais para reconhecer:

- $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$: o conjunto de estados finais é $F = \{(s_0, q_0), (s_2, q_0)\}$
- $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$: teria $F = \{(s_0, q_0), (s_2, q_0), (s_2, q_1), (s_1, q_0)\}$
- $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$: teria $F = \{(s_2, q_1)\}$

11) AFD para a linguagem reversa de $\mathcal{L}(A_1)$:

AFD A1:

AFND- ε para $\mathcal{L}(A_1)^R$:

AFD para $\mathcal{L}(A_1)^R$:

Folha 6 - Questão 15 a)

15a) $L = \{y2y \mid y \in \{0,1\}^* \text{ e } |y| \ge 1\}$ não é regular pois não satisfaz a condição do lema da repetição para linguagens regulares.

Queremos mostrar que **para todo o inteiro positivo** n, existe $z \in L$ com $|z| \ge n$ e tal que, **para todas as decomposições** de z na forma z = uvw, com $|uv| \le n$ e $v \ne \varepsilon$, se tem $uv^iw \notin L$, para algum i > 0.

- Dado $n \in \mathbb{Z}^+$, escolhemos a palavra $z = 0^{n+1} 20^{n+1}$.
- $z \in L \ e \ |z| = 2n + 3 \ge n$.
- Para qualquer decomposição de z na forma z = uvw, com $|uv| \le n$ e $v \ne \varepsilon$, existe $i \in \mathbb{N}$ tal que $uv^i w \notin L$. Basta tomar i = 0.
 - Como uv é prefixo de z e tem no máximo n símbolos, a subpalavra v teria apenas 0's, estando à esquerda de 2 em z.
 - Então, qualquer que seja a decomposição, tem-se $uv^0w = 0^{n+1-|v|}20^{n+1} \notin L$.

Portanto, L não satisfaz a condição do lema da repetição.

Folha 6 - Questão 15 b)

15b) $L = \{000(10)^{2n} \mid n > 0\}$ é regular. Consequentemente, L satisfaz a condição do lema da repetição para linguagens regulares. Mas, para o justificar, como pedido, começamos por ver que L é reconhecida pelo autómato finito seguinte:

Recordando a prova do lema da repetição, sabemos que para n=9 (ou seja, n igual ao número de estados deste autómato), qualquer palavra $z\in L$, com $|z|\geq 9$, admite uma decomposição que satisfaz a condição do lema.

- As palavras z de L com $|z| \ge 9$ são da forma 000101010 $(1010)^k$, para $k \ge 0$.
- Para a decomposição u = 000, v = 1010 e $w = 1010(1010)^k$, a palavra $uv^i w$ é:
 - $0001010(1010)^k$, para i = 0.
 - $0001010(1010)^{i-1}1010(1010)^k$, para $i \ge 1$.

Portanto, $uv^iw \in L$, **para todo** $i \ge 0$, o que significa que L satisfaz a condição do lema da repetição.

Folha 6 - Questão 15 c)

15c) $L = \{11, 102, \varepsilon\}$ é regular. Consequentemente, L satisfaz a condição do lema da repetição para linguagens regulares. Mas, para o justificar, como pedido, começamos por ver que L não tem palavras com comprimento maior ou igual a 4.

Assim, podemos tomar n = 4, para trivialmente satisfazer a condição do lema.

De facto, o lema diz que, existe uma constante n, tal que, qualquer que seja a palavra de $z \in L$, se $|z| \ge n$ então z tem de satisfazer a condição indicada no lema. Como L não tem palavras com comprimento maior ou igual a 4, esta implicação é quando fixamos n=4.

Recordar que $p \Rightarrow q$ equivale a $(\neg p) \lor q$.

Folha 6 - Questão 15 d)

15d) $L = \{22^m y 2y^R \mid y \in \{0,1\}^* \text{ e } m \ge 0\}$ não satisfaz a condição do lema da repetição.

- Dado $n \in \mathbb{Z}^+$, podemos escolher $z = 20^n 20^n$.
- $z \in L \ e \ |z| = 2n + 2 > n$.
- Se decompusermos z na forma uvw, com $|uv| \le n$ e $v \ne \varepsilon$, podemos ter:
 - Caso 1: $w = \varepsilon$, $v = 20^t$, $w = 0^{n-t}20^n$, com $0 \le t < n$, ou
 - Caso 2: $w = 20^t$, $v = 0^k$, $w = 0^{n-t-k}20^n$, com $0 \le t + k < n$ e $k \ge 1$.
- Se tomarmos i = 0, em ambos os casos a palavra $uv^i w \notin L$.
 - Caso 1: $uv^i w = 0^{n-t} 20^n \notin L$ pois começa por 0 em vez de 2.
 - Caso 2: $uv^iw = 20^{n-k}20^n \notin L$ pois tem menos 0's à esquerda do segundo 2 do que à direita. Assim, não é da forma $22^m y 2y^R$, com $y \in \{0,1\}^*$ e $m \ge 0$.

Portanto, qualquer que seja $n \in \mathbb{Z}^+$, não existe uma decomposição para $z = 20^n 20^n$ que satisfaça as condições impostas pelo lema, para i = 0. Logo, L não é regular.