Homework 11

OSCAR RAMIREZ

Questions 5 - 6 NYU Tandon CS Extended Bridge Summer 2022

NetID: or2092

Question 5:

a) Theorem: For any positive integer n, 3 divides $n^3 + 2n$

Proof:

Base Case:

$$n = 1$$

 $n^3 + 2n = (1)^3 + 2(1) = 1 + 2 = 3$
3 is evenly divisible by 3. Base case is true.

Inductive Step:

For any $k \ge 2$, if $k^3 + 2k = 3m$, for some integer m, then $(k+1)^3 + 2(k+1) = 3m$.

$$3m = (k+1)^3 + 2(k+1)$$

$$= k(k^2 + 2k + 1) + (k^2 + 2k + 1) + 2k + 2$$

$$= k^3 + 3k^2 + 3k + 2k + 3$$

$$= (k^3 + 2k) + 3k^2 + 3k + 3$$

$$= (3j) + 3k^2 + 3k + 3$$

$$= 3(j + k^2 + k + 1)$$
Algebra
Algebra
Algebra

Since j and k are integers, then $(j+k^2+k+1)$ is also an integer, therefore $3(j+k^2+k+1)$ is evenly divisible by 3. \blacksquare

b)Theorem: For any positive integer $n \geq 2$, n can be written as a product of primes.

Proof:

Base Case:

n=2

n can be written as $2 \cdot 1$, and is therefore a product of a prime number, as requested.

Inductive Step:

Assuming that $k \geq 2$, any integer j in the range from 2 through k can be expressed as a product of prime numbers. We will show that k+1 can be expressed as a product of prime numbers.

We have two cases, which are when (k+1) is a prime number, and when (k+1) is a composite number. In the case that (k+1) is a prime number, then it is a product of one prime number, (k+1). If k+1 is composite, it can be expressed as the product of two integers, a and b such that $a \ge 2$ and $b \ge 2$.

Now we need to show that both a and b fall within the range [j,k]Since $(k+1) = a \cdot b$, we can say that $a = \frac{(k+1)}{b}$. Since $b \ge 2$, we know that $a \le k$ and is within the range [j,k]. The same can be said for b knowing that $b = \frac{(k+1)}{a}$ and $a \ge 2$. So, by the inductive hypothesis we can also say that a and b can be written as the product of a prime number, and therefore (k+1) can be written as the product of a prime number.

Question 6:

<u>Exercise 7.4.1:</u>

a)

$$P(n) = \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

$$P(3) = (1)^2 \cdot (2)^2 \cdot (3)^2 = \frac{(3)(3+1)(2(3)+1)}{6}$$

$$(1) + (4) + (9) = \frac{(3)(4)(7)}{6}$$

$$14 = 14$$

P(3) is true.

b)

$$P(k) = \sum_{i=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$$

c)

$$P(k+1) = \sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

d)

What must be proven is that n = 1 is true.

e)

The inductive step is would state that for any positive integer k, if P(k) is true, then P(k+1) is also true.

f)

The inductive hypothesis in the inductive step from my previous answer is $P(k) = \sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$.

g)

Theorem: For every positive integer k, $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$

Proof:

Base Case: $P(1) = (1)^2 = \frac{(1)((1)+1)(2(1)+1)}{6} \ 1 = \frac{1(2)(3)}{6} = \frac{6}{6} \ 1 = 1 \ n = 1$ is true.

Inductive Step: For every positive integer k, assuming $\sum_{j=1}^k j^2 = \frac{k(k+1)(2k+1)}{6}$, we will show that $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$.

Preliminary calculation (simplifying):

$$\frac{(k+1)(k+2)(2k+3)}{6} = \frac{(k)(2k^2+3k+4k+6) + (2k^2+3k+4k+6)}{6}$$
$$= \frac{2k^3+3k^2+4k^2+6k+2k^2+3k+4k+6}{6}$$
$$= \frac{2k^3+9k^2+13k+6}{6}$$

1. Algebra
$$\sum_{j=1}^{k+1} j^2 = \sum_{j=1}^k j^2 + (k+1)^2$$
2. Inductive Hypothesis
$$= (\frac{k(k+1)(2k+1)}{6}) + \frac{6((k+1)^2)}{6}$$
3. Algebra
$$= \frac{k(2k^2 + k + 2k + 1) + 6k^2 + 12k + 6}{6}$$
4. Algebra
$$= \frac{2k^3 + k^2 + 2k^2 + k + 6k^2 + 12k + 6}{6}$$
5. Algebra
$$= \frac{2k^3 + 9k^2 + 13k + 6}{6}$$

I simplified P(k+1) as extra insurance since I wouldn't have been able to factor out (k+1)(k+2) after everything is simplified.

Exercise 7.4.3:

 $\mathbf{c})$

Theorem: For $n \ge 1$, $\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}$

Proof:

Base Case:

For
$$n = 1$$
, $\sum_{j=1}^{1} \frac{1}{j^2} = \frac{1}{(1)^2} \le 2 - \frac{1}{(1)}$
 $1 \le 1$

n=1 is true.

Inductive Step:

Assuming $\sum_{j=1}^{k} \frac{1}{j^2} \le 2 - \frac{1}{k}$ for any $k \ge 1$, we will show that $\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} = \sum_{j=1}^k \frac{1}{j^2} + \frac{1}{(k+1)^2} = (2 - \frac{1}{k}) + \frac{1}{(k+1)^2}$$
Since $k \ge 1$, $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$: $2 - \frac{1}{k} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{(k)(k+1)}$

$$(\sum_{j=1}^{k+1} \frac{1}{j^2}) \le 2 - \frac{1}{k} + \frac{1}{(k)(k+1)}$$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{(k+1)}{(k)(k+1)} + \frac{1}{(k)(k+1)}$$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 + \frac{1 - (k+1)}{(k)(k+1)}$$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 + \frac{-k}{(k)(k+1)}$$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 + \frac{-1}{(k+1)}$$

$$\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}$$

Therefore, $\sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}$.

Exercise 7.5.1:

a)

Base Case: Inductive Step: Assuming that for any $n \ge 1$, $3^{2k} - 1 = 4m$ for some integer m, we will show that $3^{2(k+1)} - 1 = 4m$.

$$4m = 3^{2k} - 1$$
$$4m + 1 = 3^{2k}$$

1. Algebra
$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

2. Algebra $= 3^2 \cdot 3^{2k} - 1$
3. Inductive Hypothesis $= 9 \cdot (4m+1) - 1$
4. Algebra $= 36m + 8$
5. Algebra $= 4(9m+2)$

Since m is an integer, (9m+2) is also an integer. Since $3^{2(k+1)}-1$ can be represented as the product of 4 and some integer, it is evenly divisible by 4.