TP 5 : Dosage d'un antiseptique – Identification d'espèces chimiques

Nom:	
	Classe:
Prénom:	

Objectifs de la séance :

- Réaliser une échelle de teinte en autonomie.
- Mesurer la concentration en KMnO₄ présente dans du Dakin.
- **>** Réaliser des tests chimiques.

I – Dosage d'un antiseptique

Compétences	Fragile	Moyen	Bien	Très bien
APP – Rechercher l'information.				
ANA/RAI – Élaborer un protocole.				
REA – Réaliser un protocole, un calcul.				
VAL – Comparer avec des valeurs de références.				

▶ Problématique :

Mesurer la concentration de permanganate de potassium présent dans du Dakin à l'aide d'une échelle de teinte.

Document 1 – Dakin

Le Dakin est une **solution aqueuse** d'hypochlorite de sodium (NaClO). Du permanganate de potassium (KMnO₄) est ajouté à la solution, pour qu'elle ne soit pas dégradée par l'exposition au rayonnement UV du Soleil.

- ▶ Le constructeur indique que la concentration de KMnO₄ est de l'ordre de $0,01~\rm g/L$ dans le Dakin.
- ▶ On dispose d'une solution de permanganate de potassium (KMnO₄) avec une concentration massique c = 0.08 g/L.
- ${f 1}$ Donner une série de concentration pour des solutions étalons, de sortes que l'échelle de teinte réalisée permette d'encadrer la concentration annoncée par le constructeur. $(APP,\,ANA/RAI)$

Solution étalon	1	2	3	4
Concentration (g/L)	0,08			

2 — Indiquer les volumes des solutions mère $V_{\rm mère}$ à introduire dans une fiole jaugée de 50 mL pour préparer chaque solution. $_{(REA)}$

Solution étalon	2	3	4
$V_{\text{mère}} \text{ (mL)}$			

- $\ \, \textcircled{1} \,$ Appel \mathbf{n}° 1 : Appeler le professeur si vous êtes bloqué-es.
- 3 Préparer les solutions étalons par dilution successives. (REA)

4 — En utilisant l'échelle de teinte réalisée, donner un encadrement pour la concertration de permanganate de potassium présent dans le Dakin. La réponse doit êtr rédigée. (REA, VAL)
⚠ Appel n° 2 : Appeler le professeur si vous êtes bloqué-es.
${\bf 5}$ — Indiquer si votre mesure est cohérente avec la concentration annoncée par l'constructeur. $_{(APP,\ VAL)}$

II – Identification d'espèces chimiques

Contexte:

Les eaux minérales sont des solutions aqueuses, qui contiennent plusieurs ions de nature et de masses différentes. Impropre à une consommation régulière, elles peuvent servir dans des régimes spécifiques.

Problématique :

Comment déterminer les ions présents dans des eaux minérales?

Document 2 – Composition	de trois eaux minérales
	Vichy St Yorre

$Min\'eralisation\ en\ mg/L$														
Bicarbonates (CO_3^{2-})	4368	Chlorures (Cl ⁻)	322											
Sodium (Na ⁺)	1708	Sulfates (SO_4^{2-})	174											
Potassium (K ⁺)	110	Calcium (Ca ²⁺)	90											
Fluorures (F ⁻)	1	Magnésium (Mg ²⁺)	11											

Volvic

${\rm Min\'eralisation~en~mg/L}$													
Bicarbonates (CO_3^{2-})	65,3	Chlorures (Cl ⁻)	8,4										
Sodium (Na ⁺)	9,4	Sulfates (SO_4^{2-})	6,9										
Potassium (K ⁺)	5,7	Calcium (Ca ²⁺)	9,9										
Nitrates (NO_3^-)	6,3	Magnésium (Mg ²⁺)	6,1										

Hépar

${\rm Min\'eralisation~en~mg/L}$														
Bicarbonates (CO_3^{2-})	383,7	Chlorures (Cl ⁻)	11											
Sodium (Na ⁺)	14,2	Sulfates (SO_4^{2-})	1479											
Potassium (K ⁺)	4	Calcium (Ca ²⁺)	549											
Nitrates (NO_3^-)	4,3	Magnésium (Mg ²⁺)	119											

Document 3 – Tests caractéristiques de certains ions

Ion à tester	Réactif utilisé	Résultat du test positif
Chlorures (Cl ⁻)	Solution de nitrate d'argent	Précipité blanc, noircit*
Sulfates (SO_4^{2-})	Solution de chlorure de baryum	Précipité blanc
Calcium (Ca ²⁺)	Solution d'oxalate d'ammonium	Précipité blanc
Magnésium (Mg ²⁺)	Solution d'hydroxyde de sodium	Précipité blanc

^{*} Le précipité blanc noircit à la lumière.

On a trois béchers (A, B, C) contenant des eaux minérales, que vous voulez identifier.

- 6 Réaliser le protocole suivant :
- 1. Laver et sécher 4 tubes à essais.
- 2. Verser dans chaque tube à essais quelques mL de l'eau d'un bécher.
- 3. Réaliser un test différent dans chaque tube à essais à l'aide des 4 réactifs.
- 4. Noter si un précipité se forme et son abondance dans le tableau suivant (-, +, ++, +++)

Test réalisé	Bécher A	Bécher B	Bécher C
Nitrate d'argent			
Chlorure de baryum			
Oxalate d'ammonium			
Hydroxyde de sodium			

cha	aqı	– b			1S	a	ic	la	n	t	d	es	S (do)C	eu	m	16	en	its	3	2	е	et	3	,	er	1	dé	éd	u	ir	9	1'€	ea	u	r	ni	n	ér	a	le	(O.	nt	te	nu	.]	pa	r
		 	 	 											•																			•				•											•	
		 	 	 											•					•														•															•	