Equivalence Paths

by Sven Nilsen, 2018

Assuming semantics of constrained functions, an equivalence path is an "auto-constraint" operator:

$$\sim := \langle (f : A \rightarrow B) \rightarrow (A \rightarrow B) = f\{\langle (a : A) = |[f] | f(a) | == 1\}$$

This unary operator `~` is called "universal equivalence path".

All structure preserving functions have themselves as equivalence paths:

Similarly, applying `~` twice has no effect:

There is a short version for accessing the two functions using `~` as a binary operator:

$$\forall \neg f$$
 <=> $f \sim 0$ <=> \(a : A) = |[f] f(a)| == 1
 $\exists \neg f$ <=> $f \sim 1$ <=> \(b : B) = |[f] b| == 1

When a function `f` is constrained to `f \sim 0`, its existential path is `f \sim 1`:

$$\exists f \{ f \sim 0 \} \iff \exists f \iff f \sim 1 \}$$

If one knows `f ~ 1`, then one can construct `f ~ 0` by composing `f` with `f ~ 1`:

$$f \sim 1 \cdot f \ll \forall f \ll f \ll 0$$

One can think of $\ \ \ \$ as crossing out all input-output pairs that intersect. Using constrained functions, it is possible to fine-tune any desired equivalence path:

~ f	$\sim f\{(\neg = 3)\}$	$\sim f\{(\neg = 2)\}$	$\sim f\{(\neg=2) \land (\neg=5)\}$
$0 \rightarrow a$	$0 \rightarrow a$	$0 \rightarrow a$	$0 \rightarrow a$
$1 \rightarrow b$	$1 \rightarrow b$	$1 \rightarrow b$	$1 \rightarrow b$
$\frac{2}{2} \rightarrow c$	$2 \rightarrow c$	2 → c	2 → c
3 → c	$3 \rightarrow c$	$3 \rightarrow c$	$3 \rightarrow c$
$4 \rightarrow d$	$4 \rightarrow d$	$4 \rightarrow d$	$4 \rightarrow d$
$5 \rightarrow d$	$5 \rightarrow d$	$5 \rightarrow d$	$5 \rightarrow d$