

Applied Cryptography CPEG 472/672 Lecture 11B

Instructor: Nektarios Tsoutsos

Elliptic Curves (EC)

- More powerful & efficient than RSA, D-H
 - Smaller integers for same security
 - 256-bit EC is equivalent to 4096-bit RSA
- More complicated math that RSA, D-H
 - OpenSSL (2005), OpenSSH (2011)
 - Used in Bitcoin, smart phones etc.
- Most application rely on ECDLP
 - Elliptic curve counterpart of DLP
 - Main idea: addition of 2D points on a curve

What is an EC?

- A group of points on a plane
 - \odot Curve equation $y^2 = x^3 + ax + b$
 - The values of a, b define the curve shape
- Example
 - ⊙ a=-4
 - \circ b=0
- Select x value
 - Solve y
 - Not all x have real solution

EC over integers

- \odot In this case we use integers on \mathbb{Z}_p
 - \odot No real numbers, everything is mod p
- Example
 - $\odot \mathbb{Z}_{191}$
 - \circ a = -4, b = 0
- Horizontal symmetry
- About p points

Square roots modulo a prime

- \odot In General: Find y so that $y^2 = x \mod p$
- In case of EC:

$$\circ y^2 = x^3 + ax + b \bmod p$$

 \odot Find y for a given x in \mathbb{Z}_p

Finite Field Arithmetic on \mathbb{Z}_p

- \odot Example using \mathbb{Z}_{191} , a=-4, b=0:
 - $\circ x = 3$

$$\circ y^2 = 3^3 - 4 \cdot 3 + 0 = 27 - 12 = 15 \mod 191$$

- \odot How to find y? y = 46 or y = 145
- We use the Tonelli algorithm (demo today)

Addition of points

Special rules apply: Addition law on EC

$$\circ R = P + Q$$

$$egin{array}{lll} x_R &=& (m^2 - x_P - x_Q) mod p \ y_R &=& [y_P + m(x_R - x_P)] mod p \ &=& [y_Q + m(x_R - x_Q)] mod p \end{array}$$

\odot If $P \neq Q$:

$$m=(y_P-y_Q)(x_P-x_Q)^{-1} \bmod p$$

Addition of points (2)

Special rules apply: Addition law on EC

$$\circ R = P + Q$$

$$egin{array}{lll} x_R &=& (m^2 - x_P - x_Q) mod p \ y_R &=& [y_P + m(x_R - x_P)] mod p \ &=& [y_Q + m(x_R - x_Q)] mod p \end{array}$$

\odot If P = Q:

$$m = (3x_P^2 + a)(2y_P)^{-1} mod p$$

Doubling of P

Addition of points (3)

- Special rules apply: Addition law on EC
- \circ What is P + (-P)?

$$\circ P = (x_P, y_P)$$

$$\circ -P = (x_P, -y_P)$$

$$\circ P + (-P) = \mathcal{O}$$

- Point of infinity
 - Equivalent to a zero element

Multiplication of point by value

- \odot Multiplication of P by value k
 - ⊙ Returns point kP
 - \circ E.g., if k = 3 then 3P = P + P + P
- \odot Naïve technique: do k-1 additions
 - Similar to naïve exponentiation in RSA
- Fast technique: use intermediate values
 - \odot Example for k = 8:
 - $\circ P_2 = P + P_1, P_4 = P_2 + P_2, P_8 = P_4 + P_4$
 - 3 additions instead of 7 using naïve

The ECDLP problem

- Given a point Q so that Q = kP, find k
 Similar to DLP where we want the exponent
- The ECDLP is believed to be hard
 Needs smaller numbers vs DLP to he hard
- • When p is n bits, we get n/2 bits security
 • E.g., 256-bit p gives 128 bits of security
- How to find k?
 - \odot Find collision $c_1P + d_1Q = c_2P + d_2Q$
 - \circ Then $k = (c_1 c_2)/(d_2 d_1)$

Hands-on exercises

- Square roots modulo prime (Tonelli)
- \odot Point addition on \mathbb{Z}_p
- CoCalc example of point addition
- Visual example of point addition

Reading for next lecture

- Aumasson: Chapter 12 until the end
 - We will have a short quiz on the material