Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch.

Mar 3, 2022

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch. We need to reduce every problem $X \in \textbf{NP}$ to circuit-SAT

Mar 3, 2022

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot, \cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit,

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit, i.e., circuit outputs 1 if and only if algorithm outputs yes and if the algorithm takes polynomial time then the circuit has polynomial size

Theorem (Cook-Levin)

circuit-SAT is NP-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit, i.e., circuit outputs 1 if and only if algorithm outputs yes and if the algorithm takes polynomial time then the circuit has polynomial size

To decide if $s \in X$, we check if there exists a string t of length p(|S|) s.t. B(s,t) = yes

Theorem (Cook-Levin)

circuit-SAT is NP-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit, i.e., circuit outputs $\mathbf{1}$ if and only if algorithm outputs yes and if the algorithm takes polynomial time then the circuit has polynomial size

To decide if $s \in X$, we check if there exists a string t of length $p(|\S|)$

s.t.
$$B(s,t) = yes$$

S

We transform $B(s, \cdot)$ into a circuit C_s with s "hardwired" and p(|s|) inputs for possible t's

Theorem (Cook-Levin)

circuit-SAT is **NP**-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit, i.e., circuit outputs 1 if and only if algorithm outputs yes and if the algorithm takes polynomial time then the circuit has polynomial size

To decide if $s \in X$, we check if there exists a string t of length p(|S|) s.t. B(s,t) = yes

We transform $B(s, \cdot)$ into a circuit C_s with s "hardwired" and p(|S|) inputs for possible t's

Ask if C_s is satisfiable. If yes, there exists such t so $s \in X$.

Theorem (Cook-Levin)

circuit-SAT is NP-complete

Proof sketch. We need to reduce every problem $X \in \mathbf{NP}$ to circuit-SAT We use the fact that X has a polynomial-time certifier $B(\cdot,\cdot)$

Main idea: any algorithm on inputs of fixed length can be simulated by a circuit, i.e., circuit outputs 1 if and only if algorithm outputs yes and if the algorithm takes polynomial time then the circuit has polynomial size

To decide if $s \in X$, we check if there exists a string t of length p(|S|) s.t. $B(s,t) = \mathrm{yes}$

We transform $B(s,\cdot)$ into a circuit C_s with s "hardwired" and p(|S|) inputs for possible t's

Ask if C_s is satisfiable. If yes, there exists such t so $s \in X$. If no, there's such t that B(s,t) = yes. So $s \notin X$

Decide if there's an IS of size 2

Mar 3, 2022

Decide if there's an IS of size 2

Decide if there's an IS of size 2

Recipe for proving Y is NP-complete

Recipe for proving Y is $\ensuremath{\mathbf{NP}}$ -complete

Step 1: Prove $Y \in \mathbf{NP}$

Recipe for proving Y is **NP**-complete

Step 1: Prove $Y \in \mathbf{NP}$

Step 2: Choose an $\ensuremath{\textbf{NP}}\text{-complete}$ problem X

Recipe for proving Y is **NP**-complete

Step 1: Prove $Y \in \mathbf{NP}$

Step 2: Choose an **NP**-complete problem X

Step 3: Prove $X \leq_P Y$

Observation

If X is **NP**-complete, $Y \in \textbf{NP}$, and $X \leq_P Y$, then Y is **NP**-complete

Recipe for proving Y is NP-complete

Step 1: Prove $Y \in \mathbf{NP}$

Step 2: Choose an **NP**-complete problem X

Step 3: Prove $X \leq_P Y$

Observation

If X is NP-complete, $Y \in NP$, and $X \leq_P Y$, then Y is NP-complete

Proof.

Let W be any problem in **NP**. Then $W \leq_P X \leq_P Y$ implies that

 $W \leq_P Y$. Therefore, Y is **NP**-complete

Theorem

3-SAT is **NP**-complete

Theorem

3-SAT is **NP**-complete

Proof sketch.

Theorem

3-SAT is **NP**-complete

Proof sketch.

We have seen that 3-SAT is in **NP**. Now we show circuit-SAT \leq_P 3-SAT

Theorem

3-SAT is **NP**-complete

Proof sketch.

Theorem

3-SAT is **NP**-complete

Proof sketch.

Theorem

3-SAT is **NP**-complete

Proof sketch.

We have seen that 3-SAT is in **NP**. Now we show circuit-SAT \leq_P 3-SAT Given a circuit, create a 3-SAT variable x_i for each circuit element i, e.g.,

• $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$

Theorem

3-SAT is NP-complete

Proof sketch.

- $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$
- $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \times_1 \times_5 \vee \times_4 : \text{ add } 3 \text{ clauses, } (x_1 \vee \bar{x}_4), \\ (x_1 \vee \bar{x}_5), (\bar{x}_1 \vee x_4 \vee x_5) \end{array} \end{array} \end{array}$

Theorem

3-SAT is **NP**-complete

Proof sketch.

- $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$
- $x_1 = x_5 \lor x_4$: add 3 clauses, $(x_1 \lor \bar{x}_4)$, $(x_1 \lor \bar{x}_5)$, $(\bar{x}_1 \lor x_4 \lor x_5)$
- $x_0 = x_1 \wedge x_2$: add 3 clauses, $(\bar{x}_0 \vee x_1)$, $(\bar{x}_0 \vee x_2)$, $(x_0 \vee \bar{x}_1 \vee \bar{x}_2)$

Theorem

3-SAT is **NP**-complete

Proof sketch.

- $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$
- $x_1 = x_5 \lor x_4$: add 3 clauses, $(x_1 \lor \bar{x}_4)$, $(x_1 \lor \bar{x}_5)$, $(\bar{x}_1 \lor x_4 \lor x_5)$
- $x_0 = x_1 \wedge x_2$: add 3 clauses, $(\bar{x}_0 \vee x_1)$, $(\bar{x}_0 \vee x_2)$, $(x_0 \vee \bar{x}_1 \vee \bar{x}_2)$
- hardwired input $x_5 = 0$: add clause (\bar{x}_5)

Theorem

3-SAT is NP-complete

Proof sketch.

- $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$
- $x_1 = x_5 \lor x_4$: add 3 clauses, $(x_1 \lor \bar{x}_4)$, $(x_1 \lor \bar{x}_5)$, $(\bar{x}_1 \lor x_4 \lor x_5)$
- $x_0 = x_1 \wedge x_2$: add 3 clauses, $(\bar{x}_0 \vee x_1)$, $(\bar{x}_0 \vee x_2)$, $(x_0 \vee \bar{x}_1 \vee \bar{x}_2)$
- hardwired input $x_5 = 0$: add clause (\bar{x}_5)
- output: $x_0 = 1$: add clause (x_0)

Theorem

3-SAT is NP-complete

Proof sketch.

We have seen that 3-SAT is in **NP**. Now we show circuit-SAT \leq_P 3-SAT Given a circuit, create a 3-SAT variable x_i for each circuit element i, e.g.,

- $x_2 = \bar{x}_3$: add 2 clauses, $(x_2 \lor x_3)$, $(\bar{x}_2 \lor \bar{x}_3)$
- $x_1 = x_5 \lor x_4$: add 3 clauses, $(x_1 \lor \bar{x}_4)$, $(x_1 \lor \bar{x}_5)$, $(\bar{x}_1 \lor x_4 \lor x_5)$
- $x_0 = x_1 \land x_2$: add 3 clauses, $(\bar{x}_0 \lor x_1)$, $(\bar{x}_0 \lor x_2)$, $(x_0 \lor \bar{x}_1 \lor \bar{x}_2)$
- hardwired input $x_5 = 0$: add clause (\bar{x}_5)
- output: $x_0 = 1$: add clause (x_0)

Turn clauses of length < 3 into clauses of length exactly 3

From last lecture:

From last lecture:

Independent Set is NP-complete

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

Other **NP**-complete problems:

■ Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

Other NP-complete problems:

■ Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?

3-SAT \leq_P Directed Hamiltonian Cycle \leq_P Hamiltonian Cycle

Mar 3, 2022

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

- Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?
 3-SAT ≤_P Directed Hamiltonian Cycle ≤_P Hamiltonian Cycle
- Travelling Salesman (TSP)

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

- Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?
 3-SAT ≤_P Directed Hamiltonian Cycle ≤_P Hamiltonian Cycle
- Travelling Salesman (TSP) Given a set of cities, distances d(u, v), a number D, is there a tour of length $\leq D$?

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

- Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?
 3-SAT < p. Directed Hamiltonian Cycle < p. Hamiltonian Cycle
 - 3-SAT \leq_P Directed Hamiltonian Cycle \leq_P Hamiltonian Cycle
- Travelling Salesman (TSP) Given a set of cities, distances d(u, v), a number D, is there a tour of length $\leq D$?
 - Hamiltonian Cycle \leq_P TSP

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

Other NP-complete problems:

- Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?
 3-SAT ≤_P Directed Hamiltonian Cycle ≤_P Hamiltonian Cycle
- Travelling Salesman (TSP) Given a set of cities, distances d(u, v), a number D, is there a tour of length $\leq D$?
- Hamiltonian Cycle \leq_P TSP

and many more...

Mar 3, 2022

From last lecture:

- Independent Set is NP-complete
- Vertex Cover is NP-complete

Other NP-complete problems:

- Hamilton cycle. Given G = (V, E) undirected. Is there a simple cycle that contains every vertex in V?
 3-SAT ≤_P Directed Hamiltonian Cycle ≤_P Hamiltonian Cycle
- Travelling Salesman (TSP)
 Given a set of cities, distances d(u, v), a number D, is there a tour of length ≤ D?
 Hamiltonian Cycle <_P TSP
- Hamiltonian Cycle \leq_P 13P

and many more...

Want to learn more about this topic? Take CMPSC 464