

DAX Deep Dive

Venkata Reddy Konasani

- Advanced DAX functions
- Calculate function
- Time intelligence functions
- Cumulative values
- Using filters
- Using VAR
- Previous period calculations

Product Sales Case study Step5: Creating Measures and calculated fields

Excel Formula vs. DAX formula

- What is the difference between Excel formula vs DAX measure?
- •Excel formulas work on every cell in the data. DAX measures work on the full column or full data

What is the quantity sold by each ear?

New measure - Quantity sold

```
1 Quantity_sold = sum(Sales[Quantity])
```

Year	Quantity_sold
2018	9650
2019	9528
2020	1900
Total	21078

New measure - Quantity sold

```
1 Quantity_sold = sum(Sales[Quantity])
```

Create a new measure and keep them in all measures table Note - Create all measures table

What is the revenue(total sales amount) Virginal year per year

Create a new measure Total_Sales = Quantity * Price

Create a new measure Total_Sales = Quantity * Price


```
1 Total_Sales = SUM(Sales[Quantity]*Sales[Price])
```

- 1 Total_Sales = SUM(Sales[Quantity]*Sales[Price])
- The SUM function only accepts a column reference as an argument.

- This formula doesn't work. It throws an error.
- Measures work on the whole table at an aggerated level.
- We can either have sum of quantity or sum of price.

Create a new measure Total_Sales = Quantity * Price

1 Total_Sales = SUM(Sales[Quantity]*Sales[Price])

- 1 Total_Sales = SUM(Sales[Quantity]*Sales[Price])
- The SUM function only accepts a column reference as an argument.

 Instead of overall aggregation, If you want to have a calculation at every row level or any category level, then we nee to use iterator functions

Iterator functions

Iterator functions

Order ID	Sum of Price	Sum of Quantity
AX10001	136	1
AX10002	596	1
AX10004	1848	4
AX10005	1899	1
AX10007	951	4
AX10008	1522	2
AX10009	1103	1
AX10011	1278	3
AX10013	1022	1
AX10014	1725	1
AX10015	880	2
AX10016	1052	1
AX10017	603	1
AX10018	684	1
AX10020	1582	2
AX10022	530	2
AX10023	684	4
AX10024	1494	3
AX10025	290	1
AX10027	2464	1
AX10030	2283	1
AX10032	2141	1
AX10034	1367	1

 It works at the row level

Iterator functions

```
1 Total_Sales = SUMX(Sales, Sales[Quantity]*Sales[Price])
```

Year	Quantity_sold	Total_Sales
2018	9650	11690763
2019	9528	11565545
2020	1900	2404901
Total	21078	25661209

In every row
 Quantity*price is
 calculated and
 the overall sum is
 printed here

What is the profit per year?

Profit in an order = (Product Sale Price - Product price)* Quantity

- Product Price and Product sale price are in different tables
- We have to use the function RELATED in this scenario

Related function

• Profit = SUMX(Sales, (Sales[Price]-RELATED(Product_info[Product Price]))*Sales[Quantity])

Year	Quantity_sold	Total_Sales	Profit
2018	9650	11690763	3805480
2019	9528	11565545	3756605
2020	1900	2404901	781808
Total	21078	25661209	8343893

Related is a frequently used useful measure

Using the measures inside measures

- Profit in an order = (Product Sale Price Product price)* Quantity
- •We can try a different formula which will give the same result
- Profit in an order = Product Sale Price*Quantity Product price* Quantity
- Profit in an order = Total Sales Product price* Quantity

Using the measures inside measures

Profit1 = SUMX(Sales, [Total_Sales]-(RELATED(Product_info[Product Price])*Sales[Quantity]))

Total sales is an existing measure

Year	Quantity_sold	Total_Sales	Profit	Profit1
2018	9650	11690763	3805480	3805480
2019	9528	11565545	3756605	3756605
2020	1900	2404901	781808	781808
Total	21078	25661209	8343893	8343893

 Both are resulting the same values

Find the percentage of profit

- Find the percentage of profit
- Profit/overall sales

Find the percentage of profit

2) Use measure tools to format it as percentage

Display last year sales

Calculate() function

- We can use calculate function to remove the context for total sales.
- From the current context, if we want to refer to a different context.
- When the row context is this year, how do you show the previous year sales?

CALCULATE(<expression> <filter1> , <filter2>, ..)

Year •	Quantity_sold	Total_Sales	Last_year_sales
2018	9650	11690763	
2019	9528	11565545	11690763
2020	1900	2404901	11565545
2021			2404901
Total	21078	25661209	25661209

Show the last year sales

Calculate the sales till this date

Calculate Cumulative sales till date

Calculate the sales till this date

Analytics Transforming You

Cumulative Profit till date

Calculate cumulative profit till date

Cumulative Profit till date

• Less than or equal to

Focus on a particular category

•Display sales from "Los Angeles County" without using a slicer

Focus on a particular category

•Display sales from "Los Angeles County" without using a slicer

```
X V 1 LA_County_Sales = CALCULATE([Total_Sales], Geographical_Data[County]="Los Angeles County")
```

Total	25661209	5630203
2020	2404901	530170
2019	11565545	2510357
2018	11690763	2589676
Year	Total_Sales ▼	LA_County_Sales

Display sales from "Los Angeles County" only for Product 1

Display sales from "Los Angeles County" only for Product 1

 Use Shift+enter for the next line

 Display sales from "Los Angeles County" only for Product 1, Product 2, Product 3

 Display sales from "Los Angeles County" only for Product 1, Product 2, Product 3

Using VAR in the DAX formula

- Defining VARs
- Using FILTER function

Using VAR in the DAX formula

•Display sales for the customers with Age <40 in cities with population more than 200,000 and product current price more than 2000

Using VAR in the DAX formula

•Display sales for the customers with Age <40 in cities with population more than 200,000 and product current price more than 2000.

	Year	Total_Sales ▼	Sales_3Conditions
	2018	11690763	504397
	2019	11565545	554334
	2020	2404901	125354
I	Total	25661209	1184085

- Calculate Last 2 days sales
- Calculate Last 7 days sales
- Calculate Last 30 days sales
- Calculate Last 90 days sales

Calculate Last 2 days sales

 Date must be greater than two days back and less than today.

Calculate Last 7 days sales

Create a new table

• Take the all the rows from the sales table with quantity > 3. Create a new table with this data.

Create a new table

• Take the all the rows from the sales table with quantity > 3. Create a

new table with this data.

× ✓	1 Sales_Su	bset = FILTE	R(Sales, Sales[Qu	antity]>3)			
Order ID 🔻	Product ID 🔻	Location ID	Sales Person ID 🔻	Customer ID 💌	Purchase Date 🔻	Quantity 🔻	Price -
AX10056	ENX2040	A118	EMP1007	C1160	09-10-2019 00:00:00	4	1889
AX10097	ENX2024	A167	EMP1007	C1396	30-01-2019 00:00:00	4	35
AX10110	ENX2066	A107	EMP1013	C1342	10-11-2019 00:00:00	4	209.
AX10152	ENX2027	A146	EMP1043	C1314	21-01-2019 00:00:00	4	249
AX10195	ENX2085	A156	EMP1025	C1694	17-10-2019 00:00:00	4	186
AX10252	ENX2091	A173	EMP1031	C1602	02-02-2019 00:00:00	4	36
AX10258	ENX2043	A168	EMP1009	C1273	13-09-2019 00:00:00	4	54.
AX10269	ENX2095	A136	EMP1012	C1506	15-10-2019 00:00:00	4	174
AX10327	ENX2050	A112	EMP1039	C1773	16-09-2019 00:00:00	4	239.
AX10357	ENX2074	A154	EMP1043	C1798	26-01-2019 00:00:00	4	50-
AX10376	ENX2024	A128	EMP1002	C1426	15-01-2019 00:00:00	4	35
	W2077	A158	EMP1009	C1103	26-09-2019 00:00:00	4	53
		A145	EMP1035	C1610	25-01-2019 00:00:00	4	20.
		19	EMP1013	C1648	27-04-2019 00:00:00	4	94
e >>Table table			EMP1034	C1562	25-04-2019 00:00:00	4	56.
			EMP1002	C1455	09-01-2019 00:00:00	4	1380
			EMP1027	C1625	22-09-2019 00:00:00	4	56.
			EMP1001	C1720	30-07-2019 00:00:00	4	200
		-	EMP1038	C1092	20-12-2019 00:00:00	4	1338
		A153	EMP1043	C1559	21-02-2019 00:00:00	4	158.

Click on Table >> Table tools >> new table

Previous time period

•Display monthly sales, also add a new column last month sales

Previous time period

Display monthly sales, also display a column with last month sales

Product Sales Case study Step6: Creating a Dashboard