Equivalenza e minimizzazione di automi

Stati equivalenti

Sia
$$A=(Q,\Sigma,\delta,q_0,F)$$
 un DFA, e $\{p,q\}\subseteq Q$. Definiamo

$$p \equiv q \iff \forall w \in \Sigma^* \ : \ \hat{\delta}(p,w) \in F \text{ se e solo se } \hat{\delta}(q,w) \in F$$

- Se $p \equiv q$ diciamo che p e q sono equivalenti
- Se $p \not\equiv q$ diciamo che p e q sono distinguibili In altre parole: p e q sono distinguibili se e solo se

$$\exists w : \hat{\delta}(p, w) \in F \text{ e } \hat{\delta}(q, w) \notin F, \text{ o viceversa}$$

0

$$\begin{split} \hat{\delta}(C,\epsilon) \in F, \hat{\delta}(G,\epsilon) \notin F \Rightarrow C \not\equiv G \\ \hat{\delta}(A,01) = C \in F, \hat{\delta}(G,01) = E \notin F \Rightarrow A \not\equiv G \end{split}$$

Cosa si puo' dire su A e E?

$$\hat{\delta}(A,\epsilon) = A \notin F, \hat{\delta}(E,\epsilon) = E \notin F$$

$$\hat{\delta}(A,1) = F = \hat{\delta}(E,1)$$
Quindi
$$\hat{\delta}(A,1x) = \hat{\delta}(E,1x) = \hat{\delta}(F,x)$$

$$\hat{\delta}(A,00) = G = \hat{\delta}(E,00)$$

$$\hat{\delta}(A,01) = C = \hat{\delta}(E,01)$$
Conclusione: $A \equiv E$.

Algoritmo induttivo

Possiamo calcolare coppie di stati distinguibili con il seguente metodo induttivo (algoritmo di riempimento di una tavola):

Base: Se $p \in F$ e $q \notin F$, allora $p \not\equiv q$.

Induzione: Se $\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$, allora $p \not\equiv q$.

Esempio: Applichiamo l'algoritmo ad A:

В	x						
C	x	x					
D	x	х	x		_		
E		х	x	х			
F G	x	х	x		x		_
G	x	x	x	x	x	x	
Н	x		x	х	x	x	x
	\boldsymbol{A}	В	С	D	Ε	F	G

Correttezza dell'algoritmo

Teorema 4.20: Se p e q non sono distinguibili dall'algoritmo, allora $p \equiv q$.

Prova: Supponiamo per assurdo che esista una coppia "sbagliata" $\{p,q\}$, tale che

- **1** $\exists w : \hat{\delta}(p, w) \in F, \hat{\delta}(q, w) \notin F$, o viceversa.
- ② L'algoritmo non distingue tra $p \in q$.

Sia $w=a_1a_2\cdots a_n$ la stringa piu' corta che identifica la coppia "sbagliata" $\{p,q\}$.

Allora $w \neq \epsilon$ perche' altrimenti l'algoritmo distinguerebbe p da q (caso base). Quindi $n \geq 1$.

- Consideriamo gli stati $r = \delta(p, a_1)$ e $s = \delta(q, a_1)$.
- Allora $\{r, s\}$ non puo' essere una coppia sbagliata perche' $\{r, s\}$ srebbe identificata da una stringa piu' corta di w.
- Quindi, l'algoritmo deve aver scoperto nel caso base che r and s sono distinguibili.
- Ma allora l'algoritmo distinguerebbe p da q nella parte induttiva.
- Quindi non ci sono coppie "sbagliate" e il teorema e' vero.

Testare l'equivalenza di linguaggi regolari

Siano L e M linguaggi regolari (descritti in qualche forma). Per testare se L=M

- onvertiamo sia *L* che *M* in DFA.
- Immaginiamo il DFA che e' l'unione dei due DFA (non importa se ha due stati iniziali)
- Se l'algoritmo dice che i due stati iniziali sono distinguibili, allora $L \neq M$, altrimenti L = M.

Possiamo vedere che entrambi i DFA accettano $L(\epsilon + (\mathbf{0} + \mathbf{1})^*\mathbf{0})$.

Il risultato dell'algoritmo e'

Quindi i due automi sono equivalenti.

Minimizzazione di DFA

- Possiamo usare l'algoritmo per minimizzare un DFA mettendo insieme tutti gli stati equivalenti. Cioe' rimpiazzando p by $p/_{\equiv}$.
- Esempio: Il DFA di prima ha le seguenti classi di equivalenza: $\{\{A,E\},\{B,H\},\{C\},\{D,F\},\{G\}\}.$
- II DFA unione di prima ha le seguenti classi di equivalenza: $\{\{A, C, D\}, \{B, E\}\}.$
- Notare: affinche' $p/_{\equiv}$ sia una classe di equivalenza, la relazione \equiv deve essere una relazione di equivalenza (riflessiva, simmetrica, e transitiva).

Transitivita'

Teorema 4.23: Se $p \equiv q$ e $q \equiv r$, allora $p \equiv r$.

Prova: Supponiamo per assurdo che $p \not\equiv r$.

- Allora $\exists w$ tale che $\hat{\delta}(p, w) \in F$ e $\hat{\delta}(r, w) \notin F$, o viceversa.
- Lo stato $\hat{\delta}(q,w)$ e' o di accettazione o no.
- Caso 1: $\hat{\delta}(q, w)$ e' di accettazione. Allora $q \not\equiv r$.
- Caso 2: $\hat{\delta}(q, w)$ non e' di accettazione. Allora $p \not\equiv q$.
- Il caso contrario puo' essere provato simmetricamente.
- Quindi deve essere $p \equiv r$.

Minimizzazione di automi

Per minimizzare un DFA $A=(Q,\Sigma,\delta,q_0,F)$ costruiamo un DFA $B=(Q/_{\equiv},\Sigma,\gamma,q_0/_{\equiv},F/_{\equiv})$, dove

$$\gamma(p/_{\equiv},a)=\delta(p,a)/_{\equiv}$$

Affinche' B sia ben definito, dobbiamo mostrare che

Se
$$p \equiv q$$
 allora $\delta(p, a) \equiv \delta(q, a)$

Se $\delta(p,a)\not\equiv\delta(q,a)$, allora l'algoritmo concluderebbe $p\not\equiv q$, quindi B e' ben definito. Notare anche che $F/_\equiv$ contiene tutti e soli gli stati accettanti di A.

Possiamo minimizzare

Otteniamo:

Notare: Non possiamo applicare l'algoritmo a NFA.

Per esempio, per minimizzare

rimuoviamo lo stato C. Ma $A \not\equiv C$.

Perche' non si puo' migliorare il DFA minimizzato

- Sia B il DFA minimizzato ottenuto applicando l'algoritmo al DFA A.
- Sappiamo gia' che L(A) = L(B).
- Potrebbe esistere un DFA C, con L(C) = L(B) e meno stati di B?
- Applichiamo l'algoritmo a B "unito con" C.
- Dato che L(B) = L(C), abbiamo $q_0^B \equiv q_0^C$.
- Inoltre, $\delta(q_0^B, a) \equiv \delta(q_0^C, a)$, per ogni a.

• Per ogni stato p in B esiste almeno uno stato q in C, tale che $p \equiv q$.

Prova:

- Non ci sono stati inaccessibili, quindi $p = \hat{\delta}(q_0^B, a_1 a_2 \cdots a_k)$, per una qualche stringa $a_1 a_2 \cdots a_k$.
- Allora $q = \hat{\delta}(q_0^C, a_1 a_2 \cdots a_k)$, e $p \equiv q$.
- Dato che C ha meno stati di B, ci devono essere due stati r e s di B tali che $r \equiv t \equiv s$, per qualche stato t di C.
- Ma allora $r \equiv s$ che e' una contraddizione, dato che B e' stato costruito dall'algoritmo.