REVIEW OF DIFFERENTIATION

Rules

1. Constant:
$$\frac{d}{dx}c = 0$$

3. Sum:
$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

5. Quotient:
$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

7. Power:
$$\frac{d}{dx}x^n = nx^{n-1}$$

2. Constant Multiple:
$$\frac{d}{dx}cf(x) = cf'(x)$$

4. Product:
$$\frac{d}{dx}f(x)g(x) = f(x)g'(x) + g(x)f'(x)$$

6. Chain:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

8. Power:
$$\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1}g'(x)$$

Functions

Trigonometric:

9.
$$\frac{d}{dx}\sin x = \cos x$$

12.
$$\frac{d}{dx}\cot x = -\csc^2 x$$

Inverse trigonometric:

15.
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

18.
$$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$$

Hyperbolic:

21.
$$\frac{d}{dx} \sinh x = \cosh x$$

24.
$$\frac{d}{dx}\coth x = -\operatorname{csch}^2 x$$

Inverse hyperbolic:

27.
$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2 + 1}}$$

30.
$$\frac{d}{dx} \coth^{-1} x = \frac{1}{1 - x^2}$$

Exponential:

$$33. \frac{d}{dx}e^x = e^x$$

Logarithmic.

$$35_{x} \frac{d}{dx} \ln |x| = \frac{1}{x}$$

10.
$$\frac{d}{dx}\cos x = -\sin x$$

13.
$$\frac{d}{dx} \sec x = \sec x \tan x$$

16
$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
 17. $\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$

19.
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 - 1}}$$

22.
$$\frac{d}{dx} \cosh x = \sinh x$$

25.
$$\frac{d}{dx}$$
 sech $x = - \operatorname{sech} x \tanh x$

28.
$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$$

31.
$$\frac{d}{dx} \operatorname{sech}^{-1} x = -\frac{1}{x\sqrt{1-x^2}}$$

34. $\frac{d}{dx}b^x = b^x(\ln b)$

36. $\frac{d}{dx} \log_b x = \frac{1}{x(\ln b)}$

20.
$$\frac{d}{dx}\csc^{-1}x = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

23.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

11. $\frac{d}{dx} \tan x = \sec^2 x$

14. $\frac{d}{dx}\csc x = -\csc x \cot x$

26.
$$\frac{d}{dx} \operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$$

29.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$$

32.
$$\frac{d}{dx} \operatorname{csch}^{-1} x = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

BRIEF TABLE OF INTEGRALS

1.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \ n \neq -1$$

$$3. \quad \int e^u \, du = e^u + C$$

$$5. \int \sin u \, du = -\cos u + C$$

7.
$$\int \sec^2 u \, du = \tan u + C$$

9.
$$\int \sec u \tan u \, du = \sec u + C$$

11.
$$\int \tan u \, du = -\ln \left| \cos u \right| + C$$

13.
$$\int \sec u \, du = \ln \left| \sec u + \tan u \right| + C$$

15.
$$\int u \sin u \, du = \sin u - u \cos u + C$$

17.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

19.
$$\int \tan^2 u \, du = \tan u - u + C$$

21.
$$\int \sin^3 u \, du = -\frac{1}{3} (2 + \sin^2 u) \cos u + C$$

23.
$$\int \tan^3 u \, du = \frac{1}{2} \tan^2 u + \ln |\cos u| + C$$

25.
$$\int \sec^3 u \, du = \frac{1}{2} \sec u \tan u + \frac{1}{2} \ln \left| \sec u + \tan u \right| + C$$

27.
$$\int \sin au \cos bu \, du = \frac{\sin(a-b)u}{2(a-b)} - \frac{\sin(a+b)u}{2(a+b)} + C$$

29.
$$\int e^{au} \sin bu \, du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$$

31.
$$\int \sinh u \, du = \cosh u + C$$

33.
$$\int \operatorname{sech}^2 u \, du = \tanh u + C$$

35.
$$\int \tanh u \, du = \ln(\cosh u) + C$$

$$37. \int \ln u \, du = u \ln u - u + C$$

39.
$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \frac{u}{a} + C$$

41.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

43.
$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

$$2. \int \frac{1}{u} du = \ln |u| + C$$

$$4. \int a^u \, du = \frac{1}{\ln a} a^u + C$$

6.
$$\int \cos u \, du = \sin u + C$$

8.
$$\int \csc^2 u \, du = -\cot u + C$$

10.
$$\int \csc u \cot u \, du = -\csc u + C$$

12.
$$\int \cot u \, du = \ln \left| \sin u \right| + C$$

14.
$$\int \csc u \, du = \ln \left| \csc u - \cot u \right| + C$$

16.
$$\int u \cos u \, du = \cos u + u \sin u + C$$

18.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$$

$$20. \int \cot^2 u \, du = -\cot u - u + C$$

22.
$$\int \cos^3 u \, du = \frac{1}{3} (2 + \cos^2 u) \sin u + C$$

24.
$$\int \cot^3 u \, du = -\frac{1}{2} \cot^2 u - \ln |\sin u| + C$$

26.
$$\int \csc^3 u \, du = -\frac{1}{2} \csc u \cot u + \frac{1}{2} \ln \left| \csc u - \cot u \right| + C$$

28.
$$\int \cos au \cos bu \, du = \frac{\sin(a-b)u}{2(a-b)} + \frac{\sin(a+b)u}{2(a+b)} + C$$

$$30. \int e^{au} \cos bu \, du = \frac{e^{au}}{u^2 + b^2} \left(a \cos bu + b \sin bu \right) + C$$

32.
$$\int \cosh u \, du = \sinh u + C$$

$$34. \int \operatorname{csch}^2 u \, du = -\coth u + C$$

36.
$$\int \coth u \, du = \ln \left| \sinh u \right| + C$$

38.
$$\int u \ln u \, du = \frac{1}{2}u^2 \ln u - \frac{1}{4}u^2 + C$$

40.
$$\int \frac{1}{\sqrt{a^2 + u^2}} du = \ln \left| u + \sqrt{a^2 + u^2} \right| + C$$

42.
$$\int \sqrt{a^2 + u^2} \ du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln \left| u + \sqrt{a^2 + u^2} \right| + C$$

44.
$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C$$

Note: Some techniques of integration, such as integration by parts and partial fractions, are reviewed in the Student Resource and Solutions Manual that accompanies this text.

TABLE OF LAPLACE TRANSFORMS

(4)	
f(t)	$\mathfrak{L}\{f(t)\} = F(s)$
1. 1	$\frac{1}{s}$
2. t	$\frac{1}{s^2}$
3. t"	$\frac{n!}{s^{n+1}}$, n a positive integer
4. 1-1/2	$\sqrt{\frac{\pi}{s}}$
5. t ^{1/2}	$\frac{\sqrt{\pi}}{2s^{3/2}}$
6. t ^a	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \alpha > -1$
7. sin kt	$\frac{k}{s^2 + k^2}$
8. cos kr	$\frac{s}{s^2 + k^2}$
9. sin² kr	$\frac{2k^2}{s(s^2+4k^2)}$
10. cos² kt	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$
11. e ^{at}	$\frac{1}{s-a}$
12. sinh kt	$\frac{k}{s^2-k^2}$
13. cosh kt	$\frac{s}{s^2 - k^2}$
14. sinh ² kt	$\frac{2k^2}{s(s^2-4k^2)}$
15. cosh ² kt	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$
16. te ^{u1}	$\frac{1}{(s-a)^2}$
17. $t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}, n \text{ a positive integer}$
18. e'' sin kt	$\frac{k}{(x-a)^2+k^2}$
19. c" cos ki	$\frac{x-\alpha}{(x-a)^2+k^2}$

<i>i</i>)	${}^{\prime}\{f(t)\}=F(s)$
20. e ^{ut} sinh kt	$\frac{k}{(s-a)^2-k^2}$
21. $e^{at} \cosh kt$	$\frac{s-a}{(s-a)^2-k^2}$
22. t sin kt	$\frac{2ks}{(s^2+k^2)^2}$
23. t cos kt	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$
24. $\sin kt + kt \cos kt$	$\frac{2ks^2}{(s^2+k^2)^2}$
$25. \sin kt - kt \cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$
26. t sinh kt	$\frac{2ks}{(s^2-k^2)^2}$
27. r cosh kr	$\frac{s^2 + k^2}{(s^2 - k^2)^2}$
$28. \frac{e^{at}-c^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$
$29. \frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$
$30. 1 - \cos kt$	$\frac{k^2}{s(s^2+k^2)}$
31. $kt - \sin kt$	$\frac{k^3}{s^2(s^2+k^2)}$
$32. \frac{a \sin bt - b \sin at}{ab \left(a^2 - b^2\right)}$	$\frac{1}{(s^2+a^2)(s^2+b^2)}$
$33. \frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{(s^2+a^2)(s^2+b^2)}$
34. sin <i>kt</i> sinli <i>kt</i>	$\frac{2k^2y}{x^4+4k^4}$
35. sin <i>kt</i> cosh <i>kt</i>	$\frac{k(s^2 + 2k^2)}{s^4 + 4k^4}$
36. cos kt sinh kt	$\frac{k(s^2 - 2k^2)}{s^4 + 4k^4}$
37. cos kt cosh kt	$\frac{s^3}{s^4+4k^4}$
38. J ₀ (kt)	$\frac{1}{\sqrt{s^2+k^2}}$