2.17 report

Zhewen Yang

Testbed setup

Sender and **Receiver** are running on the same machine.

QUIC establishes three transmission paths through three different ports:

- Path 1: eth0 (simulating a wired network)
- Path 2: wlan0 (simulating WiFi)
- Path 3: 10 (only used for QUIC handshake)

Network Emulation with mahimahi (http://mahimahi.mit.edu/)

- mahimahi is used to introduce network constraints:
 - Bandwidth Limitation: mm-link restricts different paths' bandwidth.
 - Latency Emulation: mm-delay adds artificial delay.
 - Packet Loss Control: mm-loss simulates packet loss.

(But for now I do not have complex network trace, just set a fixed delay)

Testbed setup

EXP

Video: Big_bunny

Total Duration: 20.066s

Resolution: 1920x1080 (Full HD)

Frame Rate: 30 fps

Bitrate: 3724023 bps

Audio Codec: AC-3 (48kHz)

Segment Duration: 3.246s

Total Segments: 6

Initial EXP

- Total video length: 20.066s, segment duration: 2.87s.
- Max buffer size: 1s, initial buffer: 1s.
- Buffer management: Alpha = 1s, Beta = 2s.
- **Processing first segment**: segment_3724023_.mp4 (init segment)
 - a. Bitrate: 3724023 bps
- Download Metrics:
 - a. Segment size: 1742 bytes
 - b. Download time: 9.2ms
- Final segment downloaded: segment_3724023_6.m4s
 - a. Size: **2071529 bytes**
 - b. Download time: 24.95ms

Total data downloaded: 8006383 bytes

Playback completed at: 20.066s

Final buffer state: 0s, indicating smooth playback with no interruptions.

Initial EXP

Multi-Path QUIC Transmission

- Path 0: Loopback (10), RTT = 560µs+t
- Path 1: IP 10.188.59.107:36563, RTT = 297µs+t1
- Path 3: IP 10.110.152.185:45226, RTT = 153µs+t3 (shorter) (t is the delay set by mahimahi)

Path	Packets Sent	Retransmissions	Packets Lost	Packets Received	RTT
0	6	0	0	7	560µs+ t
1	1414	2	0	2547	297µs+ t
3	2603	3	0	4874	153µs+ t

Still have retransmission but with no pkt lost. RTT might be too low, or CWND is to small. I can change the trace to other network environment.

Compare w sp-quic (same video)

	SP	MP
path	1	2
Handshake Time	Faster (no path management overhead)	Slower (multiple paths need synchronization)
RTT	87µs+t	Path 0: 297µs+t, Path 3: 153µs+t
Retransmission	2	5
Segment Download Time		-30%-10%

SP-QUIC has lower RTT and fewer retransmissions, making it more efficient for stable networks.

MP-QUIC leverages multiple paths but suffers from ACK delays and occasional spurious retransmissions.

The improvement is not 50%(of course), but need to identify the reason. (Many paper have conclusions, but I need to find out in the exp logs.)

For stable, low-latency networks \rightarrow SP-QUIC is preferable due to lower overhead and better efficiency. For lossy or fluctuating networks \rightarrow MP-QUIC can provide better robustness by utilizing multiple paths.

Conclusion

- No network bottleneck observed.
- QUIC multi-path scheduling is effective.
- Playback starts with minimal delay and runs smoothly.
- Further optimizations can improve reliability and video quality.

Next to do:

I am modifying mahimahi to cooperate with our quic testbed to make it work with more complex network trace. Try to run more experiments to see results.

And try to stream 3d/spatial video.

Now still use minRTT scheduler. I am working on implementing other scheduler (like schedule the packet according to frame)