

SVM Is a Large Margin Classifier

- Why large margin classifier is good?
- Given a linearly separable data set, the optimal separating line maximizes the margin:
 - More robust to noise
 - Large margin reduces VC dimension of hypothesis set

SVM: Notation and Conventions

- Assume that:
 - 1. Outputs are encoded as $y_i \in \{-1, 1\}$
 - 2. Pull out w_0 from w
 - The bias $w_0 = b$ plays a different role
 - $\underline{\mathbf{w}} = (w_1, ..., w_d)$ and there is no $x_0 = 1$
 - $\underline{\underline{w}}^T \underline{x} + b = 0$ is the equation of the separating hyperplane
 - 3. $\underline{\mathbf{x}}_n$ is the closest point to the hyperplane
 - It can be multiple points from different classes
- Normalize $\underline{\pmb{w}}$ and b to get a canonical representation of the hyperplane imposing $|\underline{\pmb{w}}^T\underline{\pmb{x}}_n+b|=1$

SVM: Original Form of Problem

• The SVM problem is:

$$\begin{array}{l} \text{find } \underline{\pmb{w}}, b \\ \text{maximize } \frac{1}{\|\underline{\pmb{w}}\|} & \text{(max margin)} \\ \text{subject to } \min_{i=1,\dots,n} |\underline{\pmb{w}}^T\underline{\pmb{x}}_i + b| = 1 & \text{(hyperplane)} \end{array}$$

• This problem is not friendly to optimization since it has norm, min, and absolute value

Primal Form of SVM Problem

You can rewrite it as:

find
$$\underline{\boldsymbol{w}}, b$$
 minimize $\frac{1}{2}\underline{\boldsymbol{w}}^T\underline{\boldsymbol{w}}$ subject to $y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1 \ \forall i=1,...,n$

- Note that under \underline{w} minimal and linear separable classes, it is guaranteed that for at least one \underline{x}_i in the second equation will be equal to 1 (as in the original problem)
 - In fact otherwise we could scale down $\underline{\boldsymbol{w}}$ and b (which does not change the plane) to use the slack, against the hypothesis of minimality of $\underline{\boldsymbol{w}}$

Dual (Lagrangian) Form of SVM Problem

minimize with respect to
$$\underline{\alpha}$$

$$\mathcal{L}(\underline{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \underline{\mathbf{x}}_i^T \underline{\mathbf{x}}_j$$
 subject to
$$\underline{\alpha} \geq \underline{\mathbf{0}}, \sum_{i=1}^{N} \alpha_i y_i = 0$$

$$\underline{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\mathbf{x}}_i$$

• The equation for $\underline{\boldsymbol{w}}$ is not a constraint, but it computes $\underline{\boldsymbol{w}}$ (the plane) given $\underline{\alpha}$, while b is given by $\min |\underline{\boldsymbol{w}}^T \underline{\boldsymbol{x}}_i + b| = 1$

Dual Form of SVM as QP Problem

• The dual form of SVM problem is a convex quadratic programming problem, in the form:

minimize with respect to
$$\underline{\alpha}$$
 $\underline{\mathbf{1}}^T\underline{\alpha} - \frac{1}{2}\underline{\alpha}^T\underline{\underline{Q}}\underline{\alpha}$ subject to $\underline{\alpha} \geq 0, \underline{\mathbf{y}}^T\underline{\alpha} = 0$

where:

- the matrix is $\underline{\boldsymbol{Q}} = \{y_i y_j \underline{\boldsymbol{x}}_i^T \underline{\boldsymbol{x}}_i\}_{ij}$
- $\underline{\alpha}$ is the column vector $(\alpha_1, \dots, \alpha_N)$

Solving Dual Formulation of SVM Problem (1/2)

- Solving convex problem for α
 - ullet Feeding this problem to a QP solver, you get the optimal vector lpha
- Compute hyperplane w
 - From $\underline{\alpha}$ recover the plane $\underline{\mathbf{w}}$ from the equation: $\underline{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\mathbf{x}}_i$
 - Looking at the optimal α_i , you can observe that many of them are 0
 - This is because when you applied the Lagrange multipliers to the inequalities: $y_i(\underline{w}^T\underline{x}_i + b) \ge 1$, you got the KKT condition:

$$\alpha_i(y_i(\underline{\mathbf{w}}^T\underline{\mathbf{x}}_i+b)-1)=0$$

- From these equations, either
 - α_i = 0 and <u>x</u>_i is an *interior point* since it has non-null distance from the plane (i.e., slack) from the plane; or
 - $\alpha_i \neq 0$ and the slack is 0, which implies that the \underline{x}_i point touches the margin, i.e., it is a *support vector*

Solving Dual Formulation of SVM Problem (2/2)

 Thus the hyperplane is only function of the support vectors:

$$\underline{\boldsymbol{w}} = \sum_{i=1}^{N} \alpha_i y_i \underline{\boldsymbol{x}}_i = \sum_{\underline{\boldsymbol{x}}_i \in \mathsf{SV}} \alpha_i y_i \underline{\boldsymbol{x}}_i$$

since only for the support vectors $\alpha \neq 0$

- The $\alpha_i \neq 0$ are the real degree of freedom
- Compute b
 - Once $\underline{\boldsymbol{w}}$ is known, you can use any support vector to compute b:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)=1$$

Support Vectors and Degrees of Freedom for SVM

- The number of support vectors is related to the degrees of freedom of the model
- Because of the VC dimension, you have an in-sample quantity to bound the out-of-sample error:

$$E_{out} \leq E_{in} + c \frac{\text{num of SVs}}{N-1}$$

• You are "guaranteed" to not overfit

Non-Linear Transform for SVM

- $\Phi: \mathcal{X} \to \mathcal{Z}$ transforms $\underline{\boldsymbol{x}}_i$ into $\underline{\boldsymbol{z}}_i = \Phi(\underline{\boldsymbol{x}}_i) \in \mathbb{R}^{\tilde{d}}$ with $\tilde{d} > d$
- Transform vectors through Φ and apply SVM machinery
- Dual SVM formulation in \mathcal{Z} space:

$$\mathcal{L}(\underline{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \underline{z}_i^T \underline{z}_j$$

- Note:
 - Optimization problem has same number of unknowns as original space (number of points N)
 - Support vectors live in \mathcal{Z} : they have $\alpha=0$. In \mathcal{X} , they are pre-images of support vectors
 - Decision boundary and margin can be represented in original space (not linear)

Non-Linear Transforms for SVM vs Others

- In SVM the non-linear transform does not change the number of unknowns and degrees of freedom of the model
- This is different from transforming the variables in a linear problem, since in that case the number of unknowns changes

SVM in Higher Dimensional Space

Pros

- You don't pay the price in terms of complexity of optimization problem
 - Number of unknowns is still N (different than a linear problem)
- You don't pay the price in terms of increased generalization bounds
 - Number of support vectors is ≤ N
 - ullet This is because each hypothesis h can be complex but the cardinality of the hypothesis set ${\cal H}$ is the same

Cons

- You pay a price to compute $\Phi(\underline{x}_i)^T \Phi(\underline{x}_i)$, since Φ could be very complex
 - The kernel trick will remove this extrá complexity by doing $\Phi(\underline{x}_i)^T \Phi(\underline{x}_i) = K_{\Phi}(\underline{x}_i, \underline{x}_i)$

Non-Linear Transform in SVM vs Kernel Trick

- The trivial approach is:
 - Transform vectors with $\Phi(\cdot)$
 - Apply all SVM machinery to the transformed vectors
 - Cons: Φ might be very complex, e.g., potentially exponential number of terms
- You can express the SVM problem formulation and the prediction in terms of a kernel

$$\mathcal{K}_{\Phi}(\underline{\textbf{\textit{x}}},\underline{\textbf{\textit{x}}}') = \Phi(\underline{\textbf{\textit{x}}})^T \Phi(\underline{\textbf{\textit{x}}}') = \underline{\textbf{\textit{z}}}^T \underline{\textbf{\textit{z}}}'$$

• You only need the kernel $K_{\Phi}(\underline{x},\underline{x}')$ of the transformation $\Phi(\cdot)$ and not $\Phi(\cdot)$ itself

SVM in Terms of Kernel: Optimization Step

• When you build the QP formulation for the Lagrangian to compute the α we can use $K_{\Phi}(\underline{x}_i, \underline{x}_i)$ instead of $\underline{z}_i^T \underline{z}_i$

$$\mathcal{L}(\underline{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m K_{\Phi}(\underline{x}_n, \underline{x}_m)$$

• \underline{z}_n does not appear in the constraints

$$\underline{\boldsymbol{\alpha}} \geq \underline{\boldsymbol{0}}, \underline{\boldsymbol{\alpha}}^T \boldsymbol{y} = 0$$

SVM in Terms of Kernel: Prediction Step

- ullet You need only inner products to compute a prediction for a given \underline{z}
- In fact to make predictions, you replace the expression of $\underline{\tilde{w}} = \sum_{i:\alpha_i>0} \alpha_i y_i \underline{z}_i$ in $h(\underline{x}) = \text{sign}(\underline{w}^T \Phi(\underline{x}) + b)$, yielding:

$$h(\underline{\mathbf{x}}) = \operatorname{sign}(\sum_{i:\alpha_i > 0} \alpha_i y_i K_{\Phi}(\underline{\mathbf{x}}_i, \underline{\mathbf{x}}) + b)$$

where b is given by $y_i(\underline{w}^T\underline{z}_i + b) = 1$ for any support vector \underline{x}_m and thus

$$b = \frac{1}{y_m} - \sum_{i:\alpha_i > 0} \alpha_i y_i K_{\Phi}(\underline{x}_i, \underline{x}_m)$$

Implications of Kernel Trick in SVM

- The "kernel trick" is a computational shortcut:
 - Use the kernel of the transformation instead of the transformation itself
- To use SVMs, compute inner products between transformed vectors **z**
- The kernel trick implies:
 - No need to compute Φ()
 - Use the kernel K_{Φ} , not the transformation Φ
 - No need to know Φ
 - With function K_{Φ} as an inner product, use SVM machinery without knowing ${\cal Z}$ space or transformation Φ
 - Φ can be impossible to compute
 - K_{Φ} can correspond to a transformation Φ to an infinite dimensional space (e.g., Gaussian kernel)

Non-Linearly Separable SVM Problem

- In general there are different types of non-linearly separable data sets
- Slightly non-separable
 - Few points crossing the boundary
 - ⇒ use soft margin SVMs
- Seriously non-separable
 - E.g., the class inside the circle
 - ⇒ use non-linear kernels

- In practice, both issues are present
 - Combine soft margin SVM and non-linear kernel transforms

Soft-Margin SVM: Advantages

- Even with linearly separable data, improve E_{out} using soft margin SVM at the cost of worse E_{in}
 - Trade-off between in-sample and out-of-sample performance
- E.g., outliers force a smaller margin
 - Ignoring outliers could increase margin
- Large C parameter in SVM requires minimizing error, trading off large margin for correct classification

Primal Formulation for Soft Margin SVM

 You want to introduce an error measure based on the margin violation for each point, so instead of the constraint:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1$$
 (hard margin)

You can use:

$$y_i(\underline{\boldsymbol{w}}^T\underline{\boldsymbol{x}}_i+b)\geq 1-\xi_i$$
, where $\xi_i\geq 0$ (soft margin)

- The cumulative margin violation is $C \sum_{i=1}^{N} \xi_i$
- The soft margin SVM optimization (primal form) is:

find
$$\underline{\boldsymbol{w}}, b, \boldsymbol{\xi}$$

minimize
$$\frac{1}{2}\underline{\boldsymbol{w}}^{T}\underline{\boldsymbol{w}} + C\sum_{i=1}^{N}\xi_{i}$$
 subject to
$$y_{i}(\underline{\boldsymbol{w}}^{T}\underline{\boldsymbol{x}}_{i} + b) \geq 1 - \xi_{i} \ \forall i$$

$$\xi_{i} \geq 0$$

Classes of Support Vectors for Soft Margin SVM

- There are 3 classes of points:
 - Margin support vectors: they are exactly on the margin and define it
 - In primal form: $y_i(\underline{\mathbf{w}}^T\underline{\mathbf{x}}_i + b) = 1 \iff \xi_i = 0$
 - In dual form: $0 < \alpha_i < C$
 - Non-margin support vectors: they are inside the margin and classified correctly or not
 - In primal form: $y_i(\underline{\mathbf{w}}^T\underline{\mathbf{x}}_i + b) < 1 \iff \xi_i > 0$
 - In dual form: $\alpha_i = C$
 - Non-support vectors, i.e., interior points:
 - In primal form: $y_i(\underline{w}^T\underline{x}_i + b) > 1$
 - In dual form: $\alpha_i = 0$

Intuition for C in SVM

- C represents how much penalty you incur for passing the margin
 - If C is large, then SVM will try to fit all the points to avoid being penalized
 - Lower bias / higher variance
 - $C \to \infty$ which yields hard-margin SVM
 - If C is small, then you allow margin violations
 - Higher bias / lower variance
- From another point of view $C \propto \frac{1}{\lambda}$, so large C means small λ and thus small regularization
 - C is chosen through cross validation, like any regularization parameter

Multi-Class Classification for SVM

- Often SVM packages have built-in multi-class classification
- Otherwise use the one-vs-all method:
 - Train K SVMs distinguishing each class from the rest using one-hot encoding
 - Get SVM parameters $(\underline{\boldsymbol{w}}_1, b_1), ..., (\underline{\boldsymbol{w}}_K, b_k)$
 - For a new example \underline{x} compute $\underline{w}_{i}^{T}\underline{x} + b_{i}$ for all the models
 - Pick the model that gives the largest positive value
 - I.e., more confident about its class vs the rest of the classes

- Similarity-Based Models
- Clustering
- Anomaly Detection

Similarity-Based Models: Intuition

- Idea: the model evaluated in one point $h(\underline{x})$ is affected by:
 - Other data points in the training set $(\underline{x}_n, y_n) \in \mathcal{D}$
 - The effect is based on the distance $d(\underline{x}, \underline{x}_n) = ||\underline{x} \underline{x}_n||$
- The model is a superposition of effects
 - Sum of the effect of each point in the training set, scaled down by the distance

$$h(\underline{x}) = \sum_{i}$$
 effect of $h(\underline{x}_{i})$ scaled by $d(\underline{x},\underline{x}_{i})$

• This approach allows to define complex decision boundaries

Similarity-Based Models: Gaussian Kernels

• Consider a Gaussian kernel with a "landmark" point \underline{x}_i and a similarity distance defined as:

$$K(\underline{\mathbf{x}},\underline{\mathbf{x}}_i) = \exp(-\frac{\|\underline{\mathbf{x}}-\underline{\mathbf{x}}_i\|^2}{2\sigma^2})$$

• E.g., the hypothesis model has the form:

$$h(\underline{\mathbf{x}}) = \sum_{i=1}^{3} y_i K(\underline{\mathbf{x}}, \underline{\mathbf{x}}_i) = y_1 K(\underline{\mathbf{x}}, \underline{\mathbf{x}}_1) + y_2 K(\underline{\mathbf{x}}, \underline{\mathbf{x}}_2) + y_3 K(\underline{\mathbf{x}}, \underline{\mathbf{x}}_3)$$

- The response is weighting the responses $y_i = \{0,1\}$ through the similarity of \underline{x} from the landmark points
- This can be seen by plotting h(x) on a plane

Radial Basis Function Model for Regression

- Aka RBF
- The model form for regression is:

$$h(\underline{\mathbf{x}}) = \sum_{i=1}^{N} w_i \exp(-\gamma \|\underline{\mathbf{x}} - \underline{\mathbf{x}}_i\|^2)$$

where:

- \bullet If γ is small \implies the exponential falls off slowly, and multiple training points affect a point between them
- \bullet If γ is large \implies there are spikes centered in the training points and nothing outside

Radial Basis Function Model for Classification

- For classification use a similar approach to "linear regression for classification"
 - Fit a regression model:

$$s(\underline{x}) = \sum_{i=1}^{N} w_i \exp(-\gamma ||\underline{x} - \underline{x}_i||^2)$$

• Take the sign to make predictions:

$$h(\underline{x}) = sign(s(\underline{x}))$$

RBF: Block Diagram

- The params(fixed by learning) are one for each training point
 - The weights depending on the distance of the input to the examples
 - The weighted params are summed together

RBF: Number of Parameters

- Some variants for RBF:
 - Add bias term
 - Use different γ_i for each point
 - Increase degrees of freedom
- RBF has lots of parameters
 - Parameters $\underline{\mathbf{w}}$ equal data points N (e.g., $N = 10^9$)
 - One parameter w_i per training point (e.g., $N = 10^6$)
 - Cons: Negative impact on generalization error

RBF: Reducing Model VC Dimension

- To reduce number of parameters
 - Pick $K \ll N$ centers $\mu_{_1},...,\mu_{_K}$ instead of $\underline{\mathbf{x}}_1,...,\underline{\mathbf{x}}_N$
 - Use k-means clustering to find centers
 - Unsupervised learning; doesn't use labels
 - Same as RBF model using distances from cluster centers:

$$h(\underline{\mathbf{x}}) = \sum_{i=1}^{K} w_i \exp(-\gamma ||\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}}_i||^2)$$

- Still many parameters because:
 - K (scalar) weights w_k
 - K reference points $\underline{\mu}_k$ (d-dimensional vectors)

RBF: Learning Models (1/2)

• Learn w_i, γ , with fixed centers μ_i , for an RBF model:

$$h(\underline{\mathbf{x}}) = \sum_{i=1}^{K} w_i \exp(-\gamma \|\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}}_i\|^2)$$

Minimize:

$$E_{in} = \sum_{i} (h_{\underline{\boldsymbol{w}},\gamma}(\underline{\boldsymbol{x}}_{i}) - y_{i})^{2} = f(\underline{\boldsymbol{w}},\gamma)$$

Use an iterative approach (e.g., EM, coordinate descent)

RBF: Learning Models (2/2)

- Use iterative approach (similar to EM algorithm):
 - Fix γ , solve for $\underline{\boldsymbol{w}}$ (one-step learning)
 - Fix $\underline{\mathbf{w}}$, solve for γ (gradient descent)
- Step 1
 - ullet Assume γ is known and fixed
 - Learn w
- Impose perfect interpolation:

$$E_{in} = \frac{1}{n} \sum (h(\underline{x}_i) - y_i)^2 = 0$$

Problem:

$$h(\underline{\mathbf{x}}_j) = \sum_i w_i \exp(-\gamma \|\underline{\mathbf{x}}_i - \underline{\mathbf{x}}_j\|^2) = \sum_i w_i \phi_{i,j} = \underline{\phi}_j^T \underline{\mathbf{w}} = y_i$$

- N equations (one per point) and N unknowns w
- Φ is known, function of data set and γ

Learning RBF Models

• The problem in matrix form is:

$$\underline{\underline{\Phi}} \cdot \underline{w} = \underline{y}$$

- If $\underline{\underline{\Phi}}$ is invertible, then $\underline{\underline{w}} = \underline{\underline{\Phi}}^{-1}\underline{\underline{y}}$. Desired values on training points

 - Exponential interpolates other points
- If Φ is not invertible, optimize in least square sense:

$$\operatorname{argmin}_{\underline{\boldsymbol{w}}} E_{in} = \sum_{i} (h(\underline{\boldsymbol{x}}_{j}) - y_{i})^{2}$$

- Compute pseudo-inverse (assuming $\underline{\Phi}^T\underline{\Phi}$ is invertible)
- Assign weights:

$$\underline{\mathbf{w}} = (\underline{\underline{\mathbf{\Phi}}}^T \underline{\underline{\mathbf{\Phi}}})^{-1} \underline{\underline{\mathbf{\Phi}}}^T \underline{\mathbf{y}}$$

- Step 2
 - Assume w is known and fixed
 - Learn γ

RBF Network vs Neural Networks

- The regression model for Neural Networks and RBF model is similar:
 - RBF:

$$h(\underline{\mathbf{x}}) = \sum_{i} w_{i} e^{-\gamma \|\underline{\mathbf{x}} - \underline{\mathbf{x}}_{i}\|^{2}} = \underline{\mathbf{w}}^{T} \underline{\boldsymbol{\phi}}$$

• Neural networks:

$$h(\underline{\mathbf{x}}) = \Theta(\underline{\mathbf{w}}^{(L)T}\underline{\mathbf{x}}^{(L)}) = \Theta(\underline{\mathbf{w}}^{(L)T}\underline{\Theta}(\underline{\underline{\mathbf{W}}}^{(L-1)}...))$$

- Difference:
 - RBF has a single layer
 - Neural networks have multiple layers
- Similarities:
 - Combine features with weights using dot product
 - Extract features from inputs
 - RBF features: $e^{-\gamma \|\underline{x}-\underline{x}_i\|^2}$, always > 0
 - NN hidden layers: features can be > 0 or < 0

RBF Network vs SVM

- The model form is the same:
 - RBF:

$$h(\underline{x}) = \operatorname{sign}(\sum_{i} w_{i} e^{-\gamma \|\underline{x} - \underline{x}_{i}\|^{2}})$$

• SVM:

$$h(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^T \underline{\mathbf{x}} + b)$$

- The interpretation is completely different (interpolation vs large margin)
 - RBF: all vectors (or centers of few clusters) contribute to the model
 - SVM: only support vectors contribute to the model

K-Nearest Neighbor (KNN) Model

• The model is like:

$$h_{\underline{w}}(\underline{x}) = \frac{1}{n} \sum_{\underline{x}_i \text{ closest to } \underline{x}} w_i$$

- Idea:
 - Closeness implies a distance (e.g., euclidean metric) or similarity (e.g., a kernel)
 - Consider the k closest points to the evaluation point \underline{x}
 - Take an average of their response

KNN: Intuition of Number Degrees of Freedom

- Nearest neighbor model (k = 1)
 - Adopt the response of the closest point to the point we are evaluating \underline{x}
 - Like Voronoi tessellations: each point has a region for which it is the closest point and assigns its output to that region
- One could think there is a single parameter for KNN, i.e., k, since this is the hyperparameter we need to learn
 - For k=1 there are N neighborhoods, one around each point of the training set
 - For k = N there is a single neighborhood
 - So the intuition is that the effective number of parameters is $\frac{N}{k}$ since one can imagine there are N/k non-overlapping neighborhoods

KNN: Assumptions on the Data

- KNN makes no assumption on the data
 - This is the opposite of the linear model where there is a strong assumption on the data
- KNN assumes locality in parameter space
 - The model is constant in the neighborhood of an example
 - E.g., k = 1 we consider the Voronoi tesselation low-bias / high-variance
 - E.g., k = N we consider the average value (high-bias / low-variance)

Training and Test Error for KNN

- For k = 1 a KNN model
 - Makes no error on the training set (assuming a non-noisy target), since it memorizes the training set (low bias / high variance)
 - E_{out} is larger than E_{in}
- If k increases the training error E_{in} increases but the test error E_{out} decreases until it starts increasing again
 - We have the typical behavior of model complexity as in bias-variance diagrams

KNN vs RBF Models

- Similarities
 - K-Nearest Neighbor is a discrete version of the RBF model
- Differences:
 - Consider only the k closest examples to the point \underline{x} (not all examples in the training set)
 - Use a constant kernel (responses are not weighted by distance)

- Similarity-Based Models
- Clustering
- Anomaly Detection

K-Means Clustering: Problem Formulation

- We have N unlabeled points $\{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$
- We want to partition the points into K clusters $S_1,...,S_K$
 - Each cluster is defined by its center μ_{ν}
 - Each point \underline{x}_i is assigned to cluster $\overline{c}(\underline{x}_i)$
 - The unknowns are: $c(\underline{x}_1),...,c(\underline{x}_N),\underline{\mu}_1,...,\underline{\mu}_K$
- We want to minimize the distance between each $\underline{\mathbf{x}}_i$ and the assigned center μ_k where $k = c(\underline{\mathbf{x}}_i)$:

$$\begin{split} J(c_1,...,c_N,\mu_1,...,\mu_K) &= \sum_{k=1}^K \sum_{\underline{\boldsymbol{x}}_n \in S_k} \|\underline{\boldsymbol{x}}_n - \underline{\boldsymbol{\mu}}_k\|^2 \text{(scanning the clusters)} \\ &= \sum_{i=1}^N \|\underline{\boldsymbol{x}}_i - \underline{\boldsymbol{\mu}}_{c(\underline{\boldsymbol{x}}_i)}\|^2 \qquad \text{(scanning the points)} \end{split}$$

• K-means clustering is NP-hard (combinatorial) and thus intractable SCIENCE ACABFM (act there are K^N possible assignments

K-Means Clustering: Lloyd'S Algorithm

- ullet We start picking a random assignment of N points to the K clusters
 - Better than picking randomly the centroids of the clusters
- Each iteration does 2 steps
- Step 1: Move centroid
 - We move the centroid of each cluster to the mean point of the current cluster
 - This loop iterates over the K clusters
 - $\underline{\mu}_k \leftarrow \frac{1}{|S_k|} \sum_{\underline{\mathbf{x}}_n \in S_k} \underline{\mathbf{x}}_n$
- Step 2: Cluster assignment
 - Each x_n is assigned to the closest cluster based on its center
 - This loop iterates over the N points
 - $S_k \leftarrow \{\underline{\mathbf{x}}_n : \|\underline{\mathbf{x}}_n \boldsymbol{\mu}_k\| \le \|\underline{\mathbf{x}}_n \boldsymbol{\mu}_l\| \ \forall l \ne k\}$

K-Means Clustering: Convergence

- K-means algorithm converges since:
 - There is a finite (though large K^N) number of possible partitionings, and thus a finite number of possible values of the objective functions
 - The objective function $J(\cdot)$ is always decreased
- The objective function is always decreasing
 - The cost function $J(\mu_1,...,\mu_{\nu},c_1,...,c_N)$ can be seen as a function of:
 - The centroids c₁, ..., c_N
 - The point assignments $\underline{\mu}_1,...,\underline{\mu}_K$ At each step, K-means minimizes J with respect to:
 - The centroids (keeping the assignments fixed); then
 - The assignments (keeping the centroids fixed)
 - It is like coordinate descent
- Generally, it converges to a local minimum
 - Run K-means multiple times using different random initializations
 - Pick the best result

K-Means Clustering: Non-Separable Clusters

- For simplicity, we imagine a clear separation between clusters
 - In practice, clusters (especially in high dimensions) are not obviously separable
- We can use K-means on data that is not obviously separated
 - E.g., market segmentation
 - E.g., t-shirt sizing
 - Collect height and width of a population of customers
 - Run K-means
 - Find the optimal way to split the population into 3 sizes (S, M, L)

Choosing the Number of Clusters

- ullet It's often unclear how many clusters K exist in the data
 - E.g., visual analysis can be inconclusive with 2D or 3D data
 - Even more difficult in high dimensional spaces
- 1. Elbow Method
 - Vary the number of clusters K
 - Compute the optimal cost function $J(\cdot)$
 - Choose K at the "elbow" point if visible
 - ullet The elbow is absent if the curve resembles a hyperbole $pprox 1/{\it K}$
- 2. End-to-end approach
 - Choose K to optimize later processing stages
 - E.g., More t-shirt sizes (i.e., more clusters) ⇒
 - Satisfy customers
 - Complicates manufacturing
 - Increases stocking and inventory management

Clustering: Interpretation of Clusters

- Often we want to give a meaning to clusters
- Cluster meaning is difficult to automate: it must be interpreted manually
 - Examine the cluster centroids
 - Centroid values show the "typical" point in each cluster
 - High, low, or zero feature values highlight key characteristics
 - Analyze the distribution of features per cluster
 - Plot histograms or boxplots for each feature
 - Identify features that vary sharply across clusters
 - Visualize clusters in 2D or 3D
 - E.g., PCA, t-SNE, UMAP
 - Helps understand separation and internal structure
 - Identify common traits in each cluster
 - For categorical features, count dominant categories
 - Compare clusters to external labels if available
 - See if clusters align with known real-world groups
 - Train a classifier like decision tree
 - Important features for predicting cluster reveal their meaning
- Example: Customer Segmentation

ACADEMOSter 1

SCIENTE atures: (Age, Annual Income, Spending Score)

- Similarity-Based Models
- Clustering
- Anomaly Detection

Anomaly Detection: Problem Formulation

• Problem:

- We have $\{\underline{x}_1,...,\underline{x}_N\}$ examples with features $\underline{x} \in \mathbb{R}^P$ for good / non-anomalous instances
- We want to find a way to detect bad / anomalous instances

• Algorithm:

- We don't know what makes a "bad instances"
- We learn what "good instances" have in common using unsupervised learning
 - I.e., find the distribution for "good instances" \underline{x}_i , $Pr(\underline{x} \text{ is good})$
- Pick features
 - The goal is to find "sensitive" features, i.e., features that might take large or small values in case of an anomaly
 - E.g., ratio between CPU load and network traffic
- Estimate the distribution Pr(x is good)
- Choose the threshold ε
- For a new instance \underline{x}_{new} , if

$$\Pr(\underline{\mathbf{x}}_{new} \text{ is good}) \leq \varepsilon$$

Anomaly Detection: Example of Aircraft Engines

- Problem
 - Test aircraft engines to identify anomalies in a new engine
- Solution:
 - Features x_i can be:
 - Heat generated
 - Vibration intensity
 - . .
 - Collect data for all engines
 - Model a PDF Pr(x is good)
 - Decide if a new engine is acceptable $\Pr(\underline{\mathbf{x}}_{good}) \leq \varepsilon$ or needs more testing

Anomaly Detection: Example of Hacked Account

- Problem
 - Find if an account for a given user i was hacked
- Solution:
 - Model features that represent "user i activity"
 - Features x_i can be:
 - How many times s/he logs a day
 - How many times s/he fails to enter the password
 - How fast s/he types
 - How many pages s/he visits
 - How many times s/he posts comments
 - . . .
 - Model a PDF Pr(<u>x</u> is good)
 - Identify unusual users by checking $\Pr(\underline{\mathbf{x}}_{new}) \leq \varepsilon$

Anomaly Detection: Example of Computers in Data Center

- Problem
 - Monitor servers in a data center to find malfunctioning or hanged servers
- Solution:
 - Features <u>x</u>, can be:
 - Memory in use
 - CPU load
 - Network traffic
 - Number of reads/writes per sec
 - CPU load / network activity
 - Model a PDF Pr(x is good)
 - Identify unusual users by checking $\Pr(\underline{x}_{new}) \leq \varepsilon$

Using a Gaussian Model for Anomaly Detection

- Aka "density estimation"
- Given N examples $\underline{x}_1, ..., \underline{x}_N \in \mathbb{R}^p$
- Ensure that the features have a Gaussian distribution
 - If not, we can apply some transformations, e.g., $log(x_i + k)$
- Estimate the parameters of the Gaussian model $f_X(\underline{x})$
- Given a new example \underline{x}_{new} , compute:

$$\Pr(\underline{\mathbf{x}}_{new} \text{ is good}) \leq \varepsilon$$

to flag an anomaly

