Lecture 07

Outline

- What is edge detection?
- Why do we need edge detection?
- Challenges
 - Noise
- How to detect edges?
 - Prewit
 - Sobel
 - Laplacian
 - Canny

Why edge detection?

- Extract useful information from images
 - Recognizing objects

Edge Detection

- Identify sudden changes in an image
 - Semantic and shaped information
 - Marks the border of an object
 - More compact than pixels

Origins of Edges

Edges are caused by a variety of factors

Characterizing edges

An edge is a place of rapid change in the image intensity function

1D Edge Detection

Edge is a rapid change in image intensity in a small region.

Basic Calculus: Derivative of a continuous function represents the amount of change in the function.

Edge Detection Using 1st Derivative

Provides Both Location and Strength of an Edge

Gradient (♥)

Gradient (Partial Derivatives) represents the direction of most rapid change in intensity

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

Pronounced as "Del I"

$$\nabla I = \left[\frac{\partial I}{\partial x}, 0\right]$$

$$\nabla I = \left[0, \frac{\partial I}{\partial y}\right]$$

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$$

Intensity profile

9/14/2021

Source: D. Hoiem

With a little Gaussian noise

a) Intensity derivatives of clean image

b) Intensity derivative of Image with gaussian noise

Effects of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

9/14/2021 Lecture 3 –Edge Detection Source: D. Forsyth

16

Solution: smooth first

To find edges, look for peaks in

$$\frac{d}{dx}(f*g)$$

Derivative theorem of convolution

- Convolution is differentiable:
- This saves us one operation:

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

Prewitt and Sobel Edge Detector

- Compute derivatives
 - In *x* and *y* directions
- Find gradient magnitude
- Threshold gradient magnitude

Prewitt Edge Detector

- 1. Convert image to grey-scale
- 2. Compute derivatives in x and y directions (f_x and f_y using horizontal and vertical Prewitt filter respectively)
- 3. Find gradient magnitude at every pixel

$$\sqrt{f_x^2+f_y^2}$$

4. Threshold gradient magnitude image

Prewitt Filter

Prewitt Filter

► Horizontal Prewitt Filter

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Vertical Prewitt Filter

$$egin{bmatrix} -1 & -1 & -1 \ 0 & 0 & 0 \ 1 & 1 & 1 \end{bmatrix}$$

Note that these kernels are separable

Here, these columns smooth in vertical direction

First order derivative estimator for horizontal direction

And these rows smooth in horizontal direction

First order derivative estimator for vertical direction

Note that these kernels are separable

First order derivative estimator for horizontal direction

2D kernel

Vertical smoothing filter (Averaging filter)

1D first order derivative estimator for horizontal direction

Product of two 1D kernels

Note that these kernels are separable Instead of 2D, two 1D kernels can be convolved with image sequentially

Here, these columns smooth in vertical direction

First order derivative estimator for horizontal direction

2D kernel

1D first order derivative estimator for horizontal direction

Product of two 1D kernels

These kernels are separable too, as in Prewitt

$$K_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

First order derivative estimator for horizontal direction

$$K_{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

1D first order derivative estimator for horizontal direction

2D kernel

Product of two 1D kernels

Convert image to grey-scale

Compute f_X i.e. convolve gray image with horizontal Prewitt filter

Compute f_y i.e. convolve gray image with vertical Prewitt filter

Find gradient magnitude at each pixel

Threshold gradient magnitude image

Prewitt Edge Detector Complete Pipeline

Sobel Edge Detector

- 1. Convert image to grey-scale
- 2. Compute derivatives in x and y directions (f_x and f_y using horizontal and vertical Sobel filter respectively)
- 3. Find gradient magnitude at every pixel

$$\sqrt{f_x^2+f_y^2}$$

4. Threshold gradient magnitude image

Sobel Filter

Horizontal Sobel Filter

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Vertical Sobel Filter

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Convert image to grey-scale

Compute f_X i.e. convolve gray image with horizontal Sobel filter

Compute f_V i.e. convolve gray image with vertical Sobel filter

Find gradient magnitude at each pixel

Threshold gradient magnitude image

Sobel Edge Detector Complete Pipeline

Prewitt vs. Sobel Results

LOUDMOUTH George
and the Sixth-Grade Bully

Prewitt

LOUDMOUTH George
and the Sixth-Grade Bully

Sobel

Sobel vs Prewitt

Source: Dr Rawat(AP UCF)

Questions?

Sources for this lecture include materials from works by Mubarak Shah, Abhijit Mahalanobis, and D. Lowe

Other sources from James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem