

The Variational Collocation Method

based on a publication by Hector Gomez and Laura De Lorenzis

Steffen Plunder

TU Kaiserslautern

March 2, 2017

Seminar: Advanced Finite Element Methods

Contents

- 1 Introduction
- 2 Collocation in Isogeometric Analysis
 - Choice of collocation points
 - Existence and Uniqueness
 - Collocation at Greville Points
- 3 Variational Collocation Methods
 - Cauchy Meanvalue Theorem of Integration
 - Cauchy-Galerkin Points

Preliminaries

We use the following notations, adapted from [Gomez and De Lorenzis, 2016]

- $\equiv \Xi = (\xi_1, \dots, \xi_k)$ denotes a knot vector (including multiple knots).
- $N_{i,p}$ denotes the i.th B-Spline basis function of degree p. (NURBS and tensor structures will be discussed later.)

The Model Problem: Poisson Equation

Consider we aim to solve (once again) the PDE

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \Gamma_D, \\ \frac{\partial u}{\partial \mathbf{n}} = h, & \text{on } \Gamma_N. \end{cases}$$

Let \mathcal{U} be a finite dimensional subspace of the solution space such that

$$u = g$$
, on $\partial \Omega$, for all $u \in U$.

The Basic Idea of Collocation

In addition we also need **collocation points** $x_1, \ldots, x_k, \ldots, x_{k+n}$.

The idea of collocation methods is to find $u \in \mathcal{U}$ such that the **strong form** of the PDE holds at all collocation points, i.e.

$$(-\Delta u)|_{x_i} = f|_{x_i}$$
 for all $i = 1 \dots k$.

and

$$\frac{\partial u}{\partial \mathbf{n}}|_{\mathbf{x}_i} = h|_{\mathbf{x}_i}, \quad \text{for } i = k+1, \dots, k+n.$$

Note: Only one evaluation of f per collocation point!

Collocation with Boundaries

- Interior collocation points (enforce PDE)
- Boundary collocation point (enforce flux condition)
- Outward normal vectors n_i

Figure: Source [Schillinger et al., 2013].

Basic Idea in this Talk

One of the big open questions in collocation methods is the optimal choice of collocation points, since they influence

- uniqueness and existence,
- convergence and stability [Schillinger et al., 2013].

The variational collocation method proposed in [Gomez and De Lorenzis, 2016] combines

- computational efficiency of collocation methods and
- accuracy of isogeometric Galerkin methods.

Part I: Collocation in Isogeometric Analysis

Collocation in IGA

For a given subspace of B-Spline functions \mathcal{U} , which respect the Dirichlet boundary conditions, the collocation method results in a linear system

$$Kd = F$$
.

K denotes the system matrix, i.e.

$$K_{ij} = \begin{cases} -\Delta U_i(x_j), & \text{for } i = 1, \dots, k \\ \frac{\partial U_i}{\partial \mathbf{n}}(x_j), & \text{for } i = k+1, \dots, k+n. \end{cases}$$

- **d** contains coefficients such that $u_h = \sum d_i u_i$ is the numerical solution.
- The load vector is given as $F_i = f(x_i)$ resp. $F_i = h(x_i)$ on the boundary.

Which collocation points shall we use?

Possible choices are

- Orthogonal collocation: Gauss collocation points,
- Greville abscissae: $x_i = \frac{1}{p} \left(\xi_i + \dots + \xi_{i+p-1} \right)$,
- Cauchy-Galerkin points: Second part of this talk . . .

The choice of collocation points leads to different stability and convergence properties!

Existence and Uniqueness!

Before we can talk about convergence and stability, the existence and uniqueness of the linear system

$$Kd = F$$

has to be mentioned!

Of cause these properties rely on the choice of collocation points! Our goal is to get a square system, i.e.

$$\dim \mathcal{U} = \big| \{x_1, \ldots, x_{k+n}\} \big| = k + n.$$

Collocation at Greville Points

- Uniqueness: Schoenberg-Whitney Conditions $(\xi_i < x_i < \xi_{i+p+1})$
- For engineering applications the points have been proven their efficiency. But unstable behaviour can be constructed by a specific choice of the PDF
- Boundary conditions:
 - \blacksquare Dirichlet boundary conditions are already satisfied by the choice of \mathcal{U} . Greville points on Γ_D are simply ignored.
 - For Greville points onto the Neumann boundary, we need to use the appropriate right hand side.

13/30

Figure: Comparison between collocation and the Galerkin method for 3D smooth Poisson problem. [Cottrell et al., 2009].

Computational efficiency

Figure: Smooth 3D Poisson. Time include assembly, preconditioning and iterative solution. [Cottrell et al., 2009]

Part II: Variational Collocation in Isogeometric Analysis

Variational Methods

Galerkin methods are based on the weak formulation of the PDE. For given finite dimensional subspaces

$$\mathcal{U}^h \subset \{u \in \mathcal{H}^1 \mid u = g \text{ on } \partial\Omega\},\$$

$$\mathcal{W}^h \subset \{u \in \mathcal{H}^1 \mid u = 0 \text{ on } \partial\Omega\}.$$

The Galerkin solution $u_h \in \mathcal{U}^h$ is defined by

$$\int_{\Omega} \nabla \omega \cdot \nabla u_h \, \mathrm{d} x = \int_{\Omega} \omega \cdot f \, \mathrm{d} x, \quad \text{for all } \omega \in \mathcal{W}^h.$$

Note: From now on we assume to have only Dirichlet boundary conditions.

A link between collocation and finite elements...

Theorem (Cauchy, 1821)

Let $\Omega \subseteq \mathbb{R}^d$ be measurable. We consider functions

$$R: \Omega \to \mathbb{R}, \quad \omega: \Omega \to \mathbb{R}.$$

If R is continuous and $\omega \neq 0$ non negative in Ω , then there exists

$$\tau \in \Omega$$
,

such that

$$\int_{\Omega} \omega(\mathbf{x}) R(\mathbf{x}) \, \mathrm{d}\mathbf{x} = R(au) \int_{\Omega} \omega(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

Figure: The picture to remember the proof.

The Idea of variational collocation

The solution $u_h \in \mathcal{U}^h$ of the Galerkin method is characterised by

$$\int_{\Omega} \nabla \omega \cdot \nabla u_h \, \mathrm{d} x = \int_{\Omega} \omega \cdot f \, \mathrm{d} x, \quad \text{for all } \omega \in \mathcal{W}^h.$$

If all ω and u_h are sufficiently smooth, restriction onto the support of ω and partial integration yields again the strong formulation

$$\int_{\operatorname{supp} \omega} \omega \cdot (\Delta u + f) \, \mathrm{d} x = 0, \quad \text{for all } \omega \in \mathcal{W}^h.$$

If we require $u_h \in \mathcal{C}^2(\Omega)$, we can apply Cauchy's Theorem for $R = \Delta u + f$, hence for each $\omega \in \mathcal{W}^h$ there exists a point τ_{ω} , such that

$$(\Delta u + f)|_{\tau_{\omega}} \cdot \int_{\operatorname{supp} \omega} \omega \, \mathrm{d} x = 0, \quad \text{for all } \omega \in \mathcal{W}^h.$$

The Idea of Variational Collocation

$$(\Delta u + f)|_{\tau_{\omega}} \cdot \int_{\operatorname{supp} \omega} \omega \, \mathrm{d} x = 0, \quad \text{for all } \omega \in \mathcal{W}^h.$$

By definition of the spline basis functions, the last integral is non-zero and we get

$$(\Delta u + f)|_{\tau_{-}} = 0$$
, for all $\omega \in \mathcal{W}^h$.

This implies that we can compute the Galerkin approximation by a collocation method, if the last conditions uniquely characterises a **function** $u_h!$ If these requirements are meet, we call these collocation points,

Cauchy-Galerkin Points.

Necessary Assumptions

- $\mathcal{U}^h \subset \mathcal{C}^2(\Omega)$
- **E**xistence of disjoint collocation points $\tau_{\omega} \in \text{supp } \omega$ for all $\omega \in \mathcal{W}^h$ which satisfy the Cauchy Theorem.

Existence of Cauchy-Galerkin Points

Theorem ([Gomez and De Lorenzis, 2016])

If the knot vector Xi satisfies $\xi_i < \xi_{i+p+1}$ for all $i \in 1, ..., n$ (this ensures that the multiplicity is at most p+1), and integrable function $R:[a,b]\to\mathbb{R}$ is orthogonal to the Spline space, i.e.

$$\int_{\Omega} \omega \cdot R \, \mathrm{d} x = 0, \quad \text{for all } \omega \in \mathcal{S}_{p,\Xi}.$$

Then there exists points $\tau_1, \ldots, \tau_{n+1}$ in [a, b] strictly increasing with

$$\xi_i < \tau_i < \xi_{i+p}$$

so that R is orthogonal to $S_{0,\Xi}$, that is

$$\int_{\xi_i}^{\xi_{i+p}} R \, \mathrm{d} x = 0, \quad \textit{for all } i \in 1, \dots, n.$$

Finding Cauchy-Galerkin Points

Since the proofs are non constructive, we still need to find these points! Strategies to estimate these points

- Taylor series (of cause).
- Superconvergence points.

The exact positions are not know a priori!

Finding Cauchy-Galerkin Points

If u_h is the solution of the Galerkin method, the Cauchy-Galerkin points are locate at the roots of the residue $R_h = \Delta u_h - f$.

Superconvergence Points

Like seen before, we are interested in the roots of $R_h = \Delta u_h - \Delta u$. To estimate these the already developed field of superconvergence points can be used.

These points satisfy

$$R_h(x) \in \mathcal{O}(h^{q+\sigma}),$$

where q denotes the order of convergence and σ represents the additional order of convergence in this point.

In the literature on superconvergence (for example [Wahlbin, 2006]) also special points where quantities like the residue etc.

Convergence analysis

Figure: Numerical solution of a linear elasticity problem.

Positions of the CG Points for the Laplace Equation

It is already known [?] that for even degree the knots and midpoints are superconvergence points.

For odd degree [Gomez and De Lorenzis, 2016] compute for maximal smoothness, that CG points are located between the knots at the relative positions

CG points for different interpolation degrees.

p	Zeros of e''
3	$\pm \frac{1}{\sqrt{3}}$
5	$\pm \frac{\sqrt{225-30\sqrt{30}}}{15}$
7	± 0.5049185675126533

Summary

- Cauchy-Galerkin fix the discrepancy between even and odd degrees.
- The order of convergence is still less than for Galerkin-Methods, since CG points can only be estimated a priori.

End

Thanks for your attention!

References

- Cottrell, J., Hughes, T., and Bazilevs, Y. (2009).

 Isogeometric Analysis: Toward Integration of CAD and FEA.

 Wiley.
- Gomez, H. and De Lorenzis, L. (2016).
 The variational collocation method.

 Computer Methods in Applied Mechanics and Engineering, 309:152–181.

Schillinger, D., Evans, J. A., Reali, A., Scott, M. A., and Hughes, T. J.

- (2013). Isogeometric collocation: Cost comparison with galerkin methods and extension to adaptive hierarchical {NURBS} discretizations. Computer Methods in Applied Mechanics and Engineering, 267:170 232
- Wahlbin, L. (2006).

 Superconvergence in Galerkin finite element methods.

 Springer.