

Mustang Math Tournament 2023

Risky Riding Colt Round

Basic Format

- This round contains 16 problems to be solved in 30 minutes.
- Every problem is multiple choice with exactly one correct answer.
- The problems are separated into four sets (Algebra x, Combinatorics $\{\}$, Geometry \triangle , and Number Theory \equiv) of 4 problems.
- Circling the correct answer to a problem on the answer sheet (backside) will grant you 2 points.
- The poker chips are for grading purposes only, where graders will put 1s and 0s to mark correct and incorrect.

Shooting The Moon

- Every problem has a "moonshine" answer, which is defined as the answer choice that is numerically furthest away from the correct answer.
 - For example, if the answer choices were $\{1, 2, 4, 8\}$ and 4 was the correct answer, 8 would be the moonshine answer as 4 is numerically furthest away from 8 than all other answer choices.
- For any given set, you may attempt to "shoot the moon" by circling the moonshine answer instead of the correct answer for all four problems.
- Successfully shooting the moon grants 12 points for the entire set. Unsuccessful attempts will be graded normally (2 points per correct answer, 0 points per incorrect answer).
- Do not circle multiple answers on a single problem, your answer will be invalidated.

 $\begin{array}{c}
2 \\
x \\
332
\end{array}$

528 x 7 $\begin{array}{c|c}
3 & & \\
x & 2\sqrt{6} & \\
5 & & \\
\sqrt{26} & & \\
& & & \\
& & & \\
\end{array}$

x 8

 $\begin{array}{c|cccc}
4 & & \\
x & & \\
120 & 512 & \\
720 & 1024 & \\
x & \\
\hline
\end{array}$

 $\begin{bmatrix}
 2 \\
 0
 \end{bmatrix}$ 120 $\begin{bmatrix}
 121 \\
 \hline
 7
 \end{bmatrix}$

 $\begin{array}{c} 3 \\ \{\} \\ \frac{1}{68} \\ \frac{1}{52} \\ \frac{1}{51} \\ \{\} \\ \mathcal{E} \end{array}$

 $\begin{array}{c|c} 4 & & \\ 3 & & \\ 2 & \frac{9}{4} \end{array}$ $\begin{array}{c|c} 4 & & \frac{9}{2} \\ & & \\ \hline \end{array}$

 $\begin{bmatrix} 2 \\ \equiv \\ 7 \\ 8 \\ \equiv \\ 7 \end{bmatrix}$

 $\begin{array}{c}
3 \\
\equiv \\
\frac{3379}{42} \\
\frac{247}{2} \\
\frac{1077}{7} \\
\equiv \\
\xi
\end{array}$

 $\begin{array}{c}
5 \\
\equiv \\
302 \quad 407 \\
526 \\
563 \quad 599 \\
\equiv \\
G
\end{array}$

Algebra x

A2. 10 numbers, a_1, a_2, \dots, a_{10} are written in a row on a blackboard. For any integer s in the range $1 \le s \le 10$, the average of the first s numbers is equal to s^2 . What is $a_5 + a_{10}$?

(A) 332 **(B)** 528

A3. Suppose x and y are distinct positive real numbers such that $x^3 - 20x = y^3 - 20y$ and xy = 6. Compute the value of x + y.

(A) $2\sqrt{6}$

(B) 5

A4. What is the value of $\frac{11 \times 12 \times 13 \times 14 \times \cdots \times 20}{1 \times 3 \times 5 \times 7 \times \cdots \times 19}$?

(A) 120

(B) 512

(C) 720

(D) 1024

A5. Let 7a + 2b = 54 and let 4a + 7b = 43. Evaluate a + 12b.

(A) 32

(B) 42

(C) 52

(D) 62

(E) 65

Combinatorics {}

C2. How many ways are there to arrange the letters in BANANAS such that two A's never appear next to each other?

(A) 120

(B) 121

C3. A standard deck of 52 cards is shuffled into a random order. Given that the top card is a king, what is the probability that the bottom card is the king of diamonds?

 $(\mathbf{A}) \frac{1}{68}$

(B) $\frac{1}{52}$

(C) $\frac{1}{51}$

C4. Gerald rolls a standard six-sided die and lands on the number k. He then rerolls the dice k times. What is the expected number of primes that Gerald rolls including the initial roll?

(A) 2

(B) $\frac{9}{4}$

(C) 4

(D) $\frac{9}{2}$

C5. A box has 20 balls that are marked by the numbers 1 to 20. If 3 balls are randomly taken from the box of balls without replacement, what is the probability that one of them is the average of the other two?

(A) $\frac{1}{19}$

(B) $\frac{1}{18}$ (C) $\frac{3}{38}$ (D) $\frac{2}{19}$

(E) $\frac{1}{9}$

Geometry \triangle

G2.	Let Ω be a circle of radius 21. Circles ω_1 of radius 6 and ω_2 of radius 8 are internally
	tangent to Ω and externally tangent to each other. A chord of Ω with length L is
	tangent to both ω_1 and ω_2 , which are on opposite sides of the chord. What is L?

(A) 20 **(B)** $24\sqrt{3}$

G3. Tristan constructs a shape by gluing together 18 equilateral triangles of side length 1 with no overlap. What is the smallest possible perimeter of Tristan's shape?

(A) 11 (B) 12 (C) 15

G4. Which of the following is not a possible area for a triangle with perimeter 60?

(A) 120 (B) 150 (C) $100\sqrt{3}$ (D) 225

G5. Equilateral triangle $\triangle ABC$ with side length 60 is cut into 3600 smaller equilateral triangles with side length 1. Point D is chosen on segment \overline{AC} such that AD=20. If a bug starts at point B and travels in a straight line path to point D, find the total number of triangles the bug passes through the interior of.

(A) 40 (B) 60 (C) 80 (D) 120 (E) 140

Number Theory \equiv

N2. How many digits does the base-16 number 3421₁₆ have in base-4?

(A) 7 (B) 8

N3. Let a and b be not necessarily distinct positive divisors of 42. What is the sum of the distinct possible values of $\frac{a}{b}$?

(A) $\frac{3379}{42}$ (B) $\frac{247}{2}$ (C) $\frac{1077}{7}$

N4. What digit O makes the 5-digit number 2O23O divisible by every answer choice except O?

(A) 3 (B) 4 (C) 6 (D) 7

N5. A *meaningful* number is a number whose prime factors sum to 42. What is the sum of the two smallest meaningful numbers?

(A) 302 (B) 407 (C) 526 (D) 563 (E) 599