Experiment 4 Preliminary Work Impedance Measurement and Complex Power

Ahmet Akman 2442366

April 25, 2022

Contents

1	Step 1	1
	1.1 a)	2
	1.2 b)	4
2	Step 2	6
3	Step 3	7
4	Step 4	8
	•	9
	4.2 2nd Method	
5	Conclusion	9

1 Step 1

In this step the circuits given in Figure 1 is taken as the reference.

Figure 1: Circuit schematic for the step 1

1.1 a)

The circuit given in Figure 2 is constructed in LTSpice environment.

Figure 2: Circuit schematic in LTSpice for the step 1 part a

As a result the plot of voltage and current characteristics of input and load are given in Figure 3.

Figure 3: I and V versus time for Input and Load

To obtain power consumed at load, IR2 and V_{load} are multiplied. The plot given in Figure 4 is obtained.

Figure 4: Power consumed at load versus Time

The average and the RMS values of the load power are calculated and given in Table 1.

Table 1: Resistance reading by color code convention.

Average (W)	RMS (W)
$-3.61x10^{-4}$	$5.37x10^{-4}$

1.2 b)

The circuit given in Figure 5 is constructed in LTSpice environment. In addition to previous step a capacitor with 100nF is connected.

Figure 5: Circuit schematic in LTSpice for the step 1 part b

As a result the plot of voltage and current characteristics of input and load are given in Figure 6.

Figure 6: I and V versus time for Input and Load

To obtain power consumed at load, IR2 and V_{load} are multiplied. The plot given in Figure 7 is obtained.

Figure 7: Power consumed at load versus Time

The average and the RMS values of the load power are calculated and given in Table 2.

Table 2: Resistance reading by color code convention.

Average (W)	RMS (W)
$-3.4x10^{-4}$	$5.16x10^{-4}$

2 Step 2

To determine a method to measure the unknown capacitance value C, the circuit given in Figure 8 needed to be constructed.

Figure 8: Proposed circuit for Capacitance measurement

Now let us derive the expression for capacitance;

$$\begin{split} V_c(t) &= V_m cos(\omega t + \phi) \implies in \ phasors \ V_m \ / \phi \\ i_c(t) &= CDV_c(t) = CV_m(-\omega)sin(\omega t + \phi) \\ &= -C\omega V_m cos(\omega t + \phi - 90) \\ &= -C\omega V_m / \phi - 90 \circ \\ V_{in} &= V_i / -90 \circ \\ Z &= \frac{V_c}{I_c} = \frac{V_{in} / \phi}{-C\omega V_m / \phi - 90 \circ} = \frac{/90 \circ}{-C\omega} = \frac{J}{-C\omega} = \frac{1}{j\omega C} \\ |Z| &= \frac{V}{A} = \frac{1}{C\omega} \implies C = \frac{A}{V\omega} \end{split}$$

3 Step 3

To determine a method to measure the unknown inductance value L, the circuit given in Figure 9 needed to be constructed.

Figure 9: Proposed circuit for inductance measurement

Now let us derive the expression for inductance;

$$V_{in}(t) = V_i cos(\omega t + -90) \Rightarrow in \ phasors \ V_i n \ /-90$$

$$Z_L = r + j\omega L \Rightarrow |Z_L| = \sqrt{r^2 + \omega^2 L^2} = \frac{V_{rms}}{I_{rms}}$$

$$I^2 \omega^2 L^2 = V^2 - I^2 r^2$$

$$So; \ L = \frac{\sqrt{V_{rms}^2 - I_{rms}^2 r^2}}{I_{rms} \omega}$$

4 Step 4

In this step the circuit schematic given in Figure 10 is the reference.

Figure 10: Circuit for impedance measurement

4.1 1st Method

In first method, the terminal A is denoted as channel 1 and terminal C is denoted as channel 2, terminal B is ground. Here, by inverting the channel 2 in XY mode one can obtain the impedance by dividing the slope by 10. The important thing here is in the signal supply is grounded this method would not work.

4.2 2nd Method

In the second method, the terminal A is denoted as channel 1 and terminal B is denoted as channel 2, terminal C is ground. Here one can measure the current by simply dividing the channel 2 by 10 and find the impedance by dividing the channel 1 by the current found. Since it is assumed 10ohm is much smaller than the impedance we could take channel 2 directly. This method can be applied in time mode and phase can be obtained from the measure mode of the DSO directly.

5 Conclusion

In this preliminary work document. Neccesssary simuloations concerning complex power are done and plotted. Then some of the measurement techniques for the capacitance , inductance and impedance are examined.

Appendix A

The results of the simulations are fetched from LTSpice and plotted in MATLAB in order to make the plots more readable and convenient.