Recent Advances in Machine Learning for Charge Density Prediction

A Review of State-of-the-Art Approaches

Review

May 27, 2025

Outline

What is Charge Density?

- ightharpoonup Charge density $ho(\vec{r})$ is a fundamental quantity in quantum mechanics
- ▶ Represents the probability distribution of electrons in a system
- Key properties:
 - Non-negative: $\rho(\vec{r}) \geq 0$
 - Normalized: $\int \rho(\vec{r})d\vec{r} = N$ (number of electrons)
 - **E**(3) equivariant: $\rho(R\vec{r} + \vec{t}) = \rho(\vec{r})$ for any rotation R and translation \vec{t}

Why is Charge Density Important?

- ► Foundation of Density Functional Theory (DFT)
- Determines many physical properties:
 - ► Total energy
 - Forces on atoms
 - Electronic structure
 - Chemical bonding
- Computational bottleneck in materials science
- Key for materials discovery and design

Challenges in Charge Density Prediction

- ► High-dimensional output space
- Need for physical constraints:
 - ► E(3) equivariance
 - Electron conservation
 - Non-negativity
- Computational efficiency
- Accuracy requirements for downstream tasks

E(3) Equivariance

- ► E(3) = Euclidean group in 3D
- ► Includes:
 - ► Rotations (SO(3))
 - Translations
 - Reflections
- For charge density:

$$\rho(R\vec{r}+\vec{t})=\rho(\vec{r})$$

where $R \in SO(3)$ and $\vec{t} \in \mathbb{R}^3$

Higher-Order Tensor Representations

- ► Irreducible representations (irreps) of SO(3)
- ▶ Tensor features $V_{cm}^{(\ell,p)}$ where:
 - $lliub \ell$: rotation order $(\ell \in \{0, 1, 2, ...\})$
 - ▶ *p*: parity $(p \in \{-1, 1\})$
 - c: channel index
 - ightharpoonup m: index in $[-\ell,\ell]$
- ▶ Size at each order: $\mathbb{R}^{N_{\text{channels}} \times (2\ell+1)}$

Tensor Product Operations

Combines representations using Clebsch-Gordan coefficients

$$(U^{(\ell_1,p_1)}\otimes V^{(\ell_2,p_2)})_{cm_o}^{(\ell_o,p_o)} = \sum_{m_1=-\ell_1}^{\ell_1} \sum_{m_2=-\ell_2}^{\ell_2} C_{(\ell_1,m_1)(\ell_2,m_2)}^{(\ell_o,m_o)} U_{cm_1}^{(\ell_1,p_1)} V_{cm_2}^{(\ell_2,p_2)}$$

where:

$$|\ell_1 - \ell_2| \le \ell_o \le |\ell_1 + \ell_2|$$

Impact of Higher-Order Features

- ightharpoonup Higher ℓ values capture more complex angular dependencies
- Performance improvement:
 - ▶ 44.6% median improvement for materials with non-metals/metalloids
 - ▶ 23.0% median improvement for materials with only metals
- ► Particularly important for:
 - Covalent bonding
 - High angular variance systems
 - Complex electronic structures

ChargE3Net Architecture Overview

- ► E(3)-equivariant graph neural network
- ► Key components:
 - Graph construction with atoms and probe points
 - ► Higher-order equivariant features (up to L=4)
 - Message passing between atoms and probes
 - Equivariant convolution operations
- Input: Atomic species and positions
- Output: Charge density at probe points

Graph Construction

- Vertices:
 - Atoms: One-hot encoding of atomic number
 - Probe points: Initialized as zero scalar
- Edges:
 - Atom-atom: Unidirectional, cutoff 4Å
 - Atom-probe: Directed from atoms to probes
- Periodic boundary conditions supported

Message Passing Architecture

- ► Two types of convolutions:
 - ► Conv_{atom}: Bidirectional between atoms
 - Conv_{probe}: From atoms to probes
- Each layer:
 - Updates atom representations
 - Updates probe representations
 - Uses tensor product operations
- Final layer: Regression to predict charge density

Performance on Benchmark Datasets

- Materials Project (MP):
 - ► ChargE3Net: 0.523% mae
 - ▶ DeepDFT: 0.799% mae
 - ▶ invDeepDFT: 0.859% mae
- ► QM9:
 - ► ChargE3Net: 0.206% mae
 - ► OrbNet-Equi: 0.284% mae
 - ► DeepDFT: 0.357% mae
- ► NMC:
 - ► ChargE3Net: 0.061% mae
 - ▶ DeepDFT: 0.060% mae

Impact on DFT Calculations

- SCF step reduction:
 - ▶ MP materials: 26.7% reduction
 - ► GNoME materials: 28.6% reduction
- Non-self-consistent property prediction:
 - ▶ 40% of materials: energy errors < 1 meV/atom
 - ▶ 70% of materials: forces < 0.03 eV/Å
 - ▶ 76% of materials: band gaps within chemical accuracy
- ► Linear scaling O(N) with system size

Higher-Order Features Analysis

- ▶ Performance vs. rotation order:
 - ► L=0: Basic scalar features
 - ► L=1: Vector features
 - ► L=2,3,4: Higher-order tensor features
- Channel distribution:
 - ightharpoonup $N_{channels} = |500/(L+1)|$
 - Equal representation size across orders
- Consistent improvement with increasing L

Angular Variance Analysis

- High angular variance materials:
 - Example: Cs(H2PO4)
 - Strong covalent bonding
 - Significant L=4 improvement
- Low angular variance materials:
 - Example: Rb2Sn6
 - Primarily ionic interactions
 - ► Similar L=0 and L=4 performance
- Metric ζ for angular variance:

$$\zeta(\textit{G}) = 1 - rac{\sum_{ec{g}_k \in \textit{G}} |
abla
ho(ec{g}_k) \cdot \hat{r}_{ki}|}{\sum_{ec{g}_k \in \textit{G}} ||
abla
ho(ec{g}_k)||}$$

SCDP Architecture Overview

- Orbital-based approach
- Key components:
 - Spherical-harmonics-based atomic orbitals
 - Learnable basis sets
 - Efficient evaluation of spherical fields
- ► Input: Atomic species and positions
- Output: Charge density through orbital coefficients

Orbital Representation

Charge density as sum of spherical fields:

$$\rho(\vec{r}) = \sum_{i} \sum_{nlm} c_{nlm}^{i} \phi_{nlm} (\vec{r} - \vec{r}_{i})$$

where:

- $ightharpoonup \phi_{nlm}$: Atomic orbital basis functions
- $ightharpoonup c_{nlm}^i$: Learnable coefficients
- $ightharpoonup \vec{r}_i$: Atomic positions
- Basis functions:
 - ► Radial part: Gaussian-type orbitals
 - Angular part: Spherical harmonics

Learnable Basis Sets

- ► Reference basis: def2-QZVPPD
- Learnable parameters:
 - ightharpoonup Orbital exponents (α)
 - Contraction coefficients
 - Radial scaling factors
- Optimization:
 - End-to-end training
 - Physical constraints preserved
 - Adaptive to different elements

Efficiency Optimizations

- Spherical channel representation:
 - Efficient evaluation of spherical harmonics
 - Pre-computed Clebsch-Gordan coefficients
 - Optimized tensor operations
- ► Computational improvements:
 - >10x faster than existing methods
 - Linear scaling with system size
 - GPU-optimized implementation

Performance Analysis

- Accuracy:
 - Competitive with grid-based methods
 - ▶ Better for systems with strong atomic character
 - Flexible accuracy-efficiency trade-off
- **Efficiency**:
 - ► Faster inference than grid-based methods
 - Lower memory requirements
 - Scalable to large systems

Downstream Applications

- Property prediction:
 - ► Total energy
 - Forces
 - ► Electronic structure
- Materials discovery:
 - High-throughput screening
 - Property optimization
 - Structure prediction
- ► Molecular dynamics:
 - Force field generation
 - Trajectory simulation
 - Property evolution

Uni-3DAR Overview

- ► Tokenization-based approach
- ► Key components:
 - ► Hierarchical octree compression
 - ► Fine-grained structural tokenization
 - Masked next-token prediction
- Unifies:
 - 3D structure generation
 - Property prediction
 - Multi-modal tasks

Hierarchical Tokenization

- Octree-based compression:
 - Coarse-to-fine subdivision
 - Non-empty cell detection
 - Level-wise tokenization
- ► Fine-grained tokenization:
 - Atom types and positions
 - ► In-cell coordinate discretization
 - Structural details
- 2-level subtree compression:
 - ightharpoonup 8 subcells ightarrow 1 token
 - ▶ 256 possible states
 - 8x reduction in tokens

Masked Next-Token Prediction

- ► Challenge: Dynamic token positions
- Solution:
 - Token duplication
 - Masked token replacement
 - Position-aware prediction
- Benefits:
 - Handles varying token positions
 - ► Maintains causal sampling
 - Improves prediction accuracy

Unified Framework

- Single-frame generation:
 - Unconditional generation
 - Property-conditioned generation
 - ► Text-guided generation
- ► Multi-frame generation:
 - Molecular dynamics
 - Pocket-based generation
 - Frame-by-frame prediction
- Understanding tasks:
 - ► Token-level properties
 - Structure-level properties
 - Cross-modal tasks

Performance Analysis

- Generation tasks:
 - ▶ Up to 256% relative improvement
 - ▶ 21.8x faster inference
 - Better quality and diversity
- Understanding tasks:
 - Competitive with specialized models
 - Effective transfer learning
 - Multi-task learning benefits

Efficiency Optimizations

- ► Training:
 - ► FlashAttention with bfloat16
 - Sequence packing
 - Efficient memory usage
- ► Inference:
 - KV-cache acceleration
 - Paired token generation
 - ► GPU utilization optimization

Cross-Modal Applications

- Protein folding:
 - Sequence to structure
 - Multi-frame generation
 - Property prediction
- Crystal structure prediction:
 - PXRD-guided generation
 - NMR signal conditioning
 - Property optimization

Approach Comparison

- ► ChargE3Net:
 - ► E(3)-equivariant GNN
 - ► Higher-order tensor features
 - Grid-based representation
- ► SCDP:
 - Orbital-based approach
 - Learnable basis sets
 - Spherical channel representation
- ► Uni-3DAR:
 - Tokenization-based
 - Octree compression
 - Unified framework

Performance Comparison

- Accuracy:
 - ► ChargE3Net: Best on MP and QM9
 - SCDP: Competitive with faster inference
 - ► Uni-3DAR: Best for generation tasks
- Efficiency:
 - ChargE3Net: O(N) scaling
 - ► SCDP: >10x faster than grid-based
 - Uni-3DAR: 21.8x faster inference
- Memory usage:
 - ChargE3Net: Moderate
 - ► SCDP: Low
 - Uni-3DAR: High (transformer-based)

Equivariance Handling

- ► ChargE3Net:
 - ► Explicit E(3) equivariance
 - ► Higher-order tensor representations
 - ► Clebsch-Gordan coefficients
- ► SCDP:
 - Implicit through basis functions
 - Spherical harmonics
 - Physical constraints
- ► Uni-3DAR:
 - Data augmentation
 - ► Tokenization structure
 - Position-aware prediction

DFT Acceleration

- ► SCF step reduction:
 - ChargE3Net: 26.7-28.6%
 - SCDP: Efficient initialization
 - ► Uni-3DAR: Multi-frame prediction
- Property prediction:
 - Energy and forces
 - Electronic structure
 - Chemical properties

Materials Discovery

- ► High-throughput screening:
 - Property prediction
 - Structure optimization
 - Composition design
- Property optimization:
 - Inverse design
 - Multi-objective optimization
 - Constraint satisfaction

Molecular Dynamics

- ► Force field generation:
 - Energy and force prediction
 - Trajectory simulation
 - Property evolution
- ► Long-time dynamics:
 - Rare event sampling
 - Phase transitions
 - Chemical reactions

Key Takeaways

- ► Higher-order features:
 - Significant performance improvement
 - ▶ Better for complex systems
 - Important for covalent bonding
- ► Tokenization approach:
 - Efficient compression
 - Unified framework
 - Cross-modal capabilities

Future Directions

- Model improvements:
 - ► Higher-order features beyond L=4
 - ► Better equivariance handling
 - ► More efficient architectures
- ► Applications:
 - Larger systems
 - More complex properties
 - Real-time prediction
- ► Integration:
 - Multi-modal learning
 - ► Transfer learning
 - Active learning