

Name: LUO ZIJIAN

Matric. No: A0224725H

MUSNET: E0572844

Subject: Stochastic process

Assignment: Homework Seven

Date: Mar 11th

Prof: Vincent Tan.

1. EXERCISE 4.	Date	No.
From the above statement, we all	I know state is reu	urrent
can be acceptable	from all states th	at are
accessible from i. 1 i >k > i,	two walk	
But when we know Pii > 0, me	ions i > 1, a one u	valk
The period of a state i, is the greatern other states, $d(i,k) \ge 2$, so we can get $d(i) = 1$, therefore	test common divisor	(gcd)
z. EXERCISE 4.2 Proof:		
	T	
Consider a finite Markov chains with Suppose that all states are transant The	r states, $S = \{1, 2,$	rq B
Suppose that all states are transient. The chain might visits state I sought	nen starting from the	intarting time
the chain might visits state I several the chain will leave state I and will be	times, but at son	ne point -
the chain will leave state and will rethere exists an integar Mizo such the	ever return to it.	That is -
there exists an integar M170 such the Similarly, there exists an integer h	t Xn \$1 , for all o	2 M,
	744	_
contradiction, so we conclude that -	there must be at le	ast one
returner state.		
(A) 10 (A)		
	get in it House	ver, we con
17 July July July July July July July July	not sufficient	ς
1) This argument is sufficient.	en is	
Boows = =================================	12 ansier	?t,
Because it > iz and iz > is, we can	get 1, 713. If	13 7311
with ig >ir and ir >iz, we can g	ret $is \rightarrow iz$,	this is
self-contradict. And it is similar	to is to iz	
(is +>iz means is +iz, is +>i1	means 13 + 11)	
O This statement is sufficient. If ik	-> Thu and Thu	-+>ik,
With ik+1 = i i we can rot warranted the	+ ip+ - >= +	ik, when
it satisfy	and like thi	
it satisfy	M. HAE . ID).	

,	1 For transient states in it, using the state itell is another
	state from The fig: jek] Because there are only M states, there
	cannot be M transient states (with k=M, a different state in+)
	would be generated, it is meaning less) Thus, it must satisfy Ken
	, it can leads to a recurrent state. So this statement is sufficient.
1	

3- 10 A we all know, we are Pro-

3. 1 This problem, we just focus on the relative distance between this spider and this fly.

There are 3 cases

i). This fly moves towards the position of spider, which means the distance can be reduced 2 unit. (with 03 probability)

z) This fly moves away from the spider, which means the distance

be reduced | unit (with our probability).

3) This fly moves away from the position of spider, which means the distance can be been same, (with 0.3 probability)

Suppose the initial relative distance is M units, we can get this Markov Chain

Pr(i,i-2)=0.3 P(i,i-1)=0.4 P(i,i)=0.3But for P(i,0)=0.7 (Because the by captures the fly). P(0,0)=1

6 o state is recurrent 1 ··· M states are transient.

Besform[®]

