Алгебра. Неофициальный конспект

Лектор: Алексей Владимирович Степанов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Гом	ологическая алгебра
	1.1	Абелевы категории
	1.2	Компле́ксы
		1.2.1 Морфизмы комплексов
	1.3	Гомологии
		1.3.1 Гомологии окружности
		1.3.2 Длинная точная последовательность гомологий
	1.4	Функторы между абелевыми категориями
		1.4.1 Точные и полуточные функторы
		1.4.2 Гомотопность морфизмов комплексов
	1.5	Проективные резольвенты
	1.6	Левый производный функтор
	1.0	1.6.1 Длинная точная последовательность левых производных функторов
		1.6.2 Связанные последовательности функторов
	1.7	Производные функторы для \otimes
	1.8	Производные функторы для Нот
	1.0	1.8.1 Инъективные резольвенты
		1.8.2 О расширениях модулей и Ext ¹ 21
	1.9	Гомологии и когомологии групп
	1.3	Томологии и когомологии групп
2	Teo	рия Галуа
	2.1	Базовые понятия про расширения полей
		2.1.1 Лемма о простых расширениях. Алгебраические и трансцендентные элементы 24
		2.1.2 Конечные и алгебраические расширения
		2.1.3 Алгебраическое замыкание одного поля в другом
		2.1.4 Базис трансцендентности
	2.2	Построение полей
		2.2.1 Поле разложения
		2.2.2 Конечные поля
		2.2.3 Алгебраическая замкнутость поля и алгебраическое замыкание
	2.3	Сепарабельность
	2.4	Расширения Галуа
		2.4.1 Теорема о количестве вложений
		2.4.2 Лемма Артина
		2.4.3 Теорема о характеризации расширений Галуа
		2.4.4 Характеризация сепарабельных расширений
	2.5	Соответствие Галуа
	2.6	Применения теории Галуа
	2.0	2.6.1 Разрешимые группы и субнормальные ряды
		2.6.2 Основная теорема алгебры
		2.6.2 Теорема Абеля — Руффини о разрешимости в радикалах 39

Глава 1

Гомологическая алгебра

Лекция I 12 февраля 2024 г.

1.1 Абелевы категории

Напомним некоторые определения из предыдущей лекции.

Определение 1.1.1 (Предаддитивная категория \mathscr{A}). $\forall A, B \in \mathscr{A} : \mathrm{Mor}_{\mathscr{A}}(A, B)$ образует абелеву группу, и везде, где определена, выполнена дистрибутивность:

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
 $(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha$

Определение 1.1.2 (Бипроизведение $A,B\in\mathscr{A}$). Такая диаграмма $A\overset{\stackrel{\pi_1}{\longleftarrow}}{\longleftrightarrow} C\overset{\pi_2}{\longleftrightarrow} B$, что

- 1. $\pi_1 i_1 = id_A$.
- 2. $\pi_2 i_2 = id_B$.
- 3. $i_2\pi_2 + i_1\pi_1 = id_C$.
- 4. $\pi_2 i_1 = 0$.
- 5. $\pi_1 i_2 = 0$.

Определение 1.1.3 (Аддитивная категория). Предаддитивная категория с финальным объектом и произведениями (любых двух объектов).

Эквивалентно, существуют инициальный объект и копроизведения, эквивалентно существуют нулевой объект и бипроизведения.

Определение 1.1.4 (Предабелева категория). Аддитивная категория, в которой у всех морфизмов есть ядро и коядро.

Определение 1.1.5 ((Ко)нормальный мономорфизм (эпиморфизм)). Он является (ко)эквалайзером (какой-то, неважно какой, пары стрелок).

Определение 1.1.6 (Абелева категория). Предабелева категория, в которой все мономорфизмы нормальны.

Пусть $\mathscr C$ — категория. Вспомним про категорию стрелок $\mathscr Arr\mathscr C$, в которой объекты — стрелки из $\mathrm{Mor}(\mathscr C)$, множество морфизмов между ϕ,ψ — это

$$\mathrm{Mor}_{\mathscr{Arr}_{\mathscr{C}}}(\phi,\psi) = \{(\alpha,\beta) | \alpha : \mathrm{source}(\phi) \to \mathrm{source}(\psi), \beta : \mathrm{target}(\phi) \to \mathrm{target}(\psi), \beta \phi = \psi \alpha \}$$

то есть множество коммутативных диаграмм следующего вида:

$$\begin{array}{ccc}
 & & \phi \\
\downarrow \alpha & & \downarrow \beta \\
 & & & \psi & \phi
\end{array}$$

Далее будем обозначать за $\ker f$ ядро стрелки, как уравнитель стрелки и нуля, а за $\ker f := \operatorname{source}(\ker f)$ — объект (в конкретных категориях типа $\operatorname{mod-R}$ это докатегорное понятие ядра — подмодуль без стрелки-вложения).

Лемма 1.1.1. ker, coker — функторы $ArrA \to ArrA$ (то есть лемма утверждает, что можно определить действие не только на объектах, но и на морфизмах).

Доказательство. Достаточно доказать для ядер, для коядер двойственно.

Определим действие ker на морфизмах. Пусть (α, β) — морфизм между $f, f' \in Arr \mathcal{A}$:

$$\operatorname{Ker} f \xrightarrow{\ker f} A \xrightarrow{f} B$$

$$\downarrow^{\exists!\phi} \qquad \downarrow^{\alpha} \qquad \downarrow^{\beta}$$

$$\operatorname{Ker} f' \xrightarrow{\ker f'} A' \xrightarrow{f'} B'$$

Тогда $f \cdot \ker f = 0$, откуда $\beta \cdot f \cdot \ker f = 0$, а из коммутативности $f' \cdot \alpha \cdot \ker f = 0$. По универсальному свойству ядра $\exists ! \phi : \ker f' \cdot \phi = \alpha \cdot \ker f$, положим $\ker(\alpha, \beta) = (\phi, \alpha)$.

Далее несложно проверить, что данное определение сохраняет композицию и id.

Определение 1.1.7 (Точный функтор). Функтор, сохраняющий ядра и коядра.

Интересный факт (Теорема Фрейда — Митчелла (Freyd — Mitchell)). Для любой малой абелевой категории \mathcal{A} : $\exists R \in \mathcal{R}ing$ (необязательно коммутативное кольцо с единицей) и строгий, полный, точный функтор $\mathcal{A} \to mod$ -R.

Иными словами, всякую абелеву категорию можно себе мыслить, как полную подкатегорию в категории mod-R (то есть категорию $\mathscr C$, в которой $\mathrm{Obj}\,\mathscr C\subset\mathrm{Obj}\,mod$ -R, и $\forall A,B\in\mathrm{Obj}\,\mathscr C:\mathrm{Mor}_{\mathscr C}(A,B)=\mathrm{Mor}_{mod}$ -R(A,B)) для некоторого кольца R. Неформально это означает, что все факты, которые можно доказать для категории модулей, будут верны и для данной абелевой категории. Мы часто будем использовать теорему Фрейда — Митчелла, чтобы доказать какой-то факт про все абелевы категории, используя конкретность категории модулей.

Предложение 1.1.1. Для всякого морфизма $f:A\to B$ найдётся пунктирная стрелка, делающая диаграмму коммутативной.

Более того, в абелевой категории эта стрелка — изоморфизм.

Доказательство. Само построение пунктирной стрелки легко получается из универсальных свойств ядра и коядра, а доказательство того, что это — изо — непростое.

Из теоремы Фрейда — Митчелла это очевидно: для $f:A\to B$: с одной стороны, CoKer $\ker f=A/\operatorname{Im}(\ker f)=A/\operatorname{Ker} f$, а с другой стороны $\operatorname{Ker} \operatorname{coker} f=\operatorname{Ker}(\operatorname{coker} f)=\operatorname{Im}(A)$, и, конечно, $\operatorname{Im}(A)\cong A/\operatorname{Ker}(f)$.

Также это можно обосновать, исходя из эпи-моно разложения, полученного на прошлой лекции. Там было построено, что $f = \varepsilon \cdot \ker \operatorname{coker} f$ (для какого-то эпиморфизма ε) — эпи-моно разложение.

Двойственно $f = \mu \cdot \operatorname{coker} \ker f$ (для какого-то мономорфизма μ) — тоже эпи-моно разложение, и дальше можно воспользоваться функториальностью эпи-моно разложения:

$$\begin{array}{ccc}
\bullet & \xrightarrow{\varepsilon} & \xrightarrow{\ker \operatorname{coker} f} & & \\
\operatorname{id} & & & & & \\
\downarrow & & & & \downarrow & \\
\bullet & & & & \downarrow & & \\
\bullet & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & \downarrow & \\
\bullet & & & & & & & \downarrow & \\
\bullet & & & & & & & \downarrow & \\
\bullet & & & & & & & \downarrow & \\
\bullet & & & & & & & \downarrow & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & \\
\bullet & & & & \\
\bullet & & & & & \\
\bullet & & & \\
\bullet & & & & \\
\bullet & & & & \\
\bullet & & \\
\bullet & & \\
\bullet & & & \\
\bullet & & & \\
\bullet & & \\$$

В его силу найдутся такие стрелки ξ и ζ , что все квадраты коммутативны. Значит, ξ подходит в качестве пунктирной стрелки в утверждении предложения. При этом ξ — изо, так как $\xi\zeta=\mathrm{id}$ (из коммутативности квадратов ξ · coker ker $f=\varepsilon$ и $\zeta\cdot\xi$ · coker ker $f=\zeta\cdot\varepsilon=\mathrm{coker}\,\ker f$, но coker ker f — эпиморфизм, поэтому $\zeta\cdot\xi=\mathrm{id}$) и $\zeta\xi=\mathrm{id}$ (аналогично)

Лемма 1.1.2. Пусть \mathscr{C} — полная подкатегория в абелевой категории \mathscr{A} . Следующие условия равносильны

- С является абелевой.
- $-0_{\mathscr{A}}\in\mathscr{C}$, здесь, как обычно, $0_{\mathscr{A}}$ нулевой объект категории $\mathscr{A}.$
 - в содержит бипроизведение любых двух своих объектов.
 - Ядра и коядра (взятые в А) любых морфизмов из С лежат в С.

Доказательство.

 \Leftarrow . Достаточно проверить все свойства определения абелевой категории. Они все сразу следуют, в частности, любой мономорфизм μ в $\mathscr C$ нормален, так как он является ядром $\operatorname{coker} \mu$ (что следует либо из леммы, доказанной при построении эпи-моно разложения, либо из теоремы Фрейда — Митчелла).

⇒. Чуть сложнее, доказывать не будем (и использовать тоже).

1.2 Комплексы

Если противное не оговорено, то всё происходит в абелевой категории \mathcal{A} , большими буквами обозначены объекты данной категории, маленькими — морфизмы.

Определение 1.2.1 (Компле́кс). Такая диаграмма, что $\forall k \in \mathbb{Z}: d_k \cdot d_{k+1} = 0.$

$$\cdots \xrightarrow{d_{n+1}} C_{n+1} \xrightarrow{d_n} C_n \xrightarrow{d_{n-1}} C_{n-1} \xrightarrow{d_{n-2}} \cdots$$

Альтернативно, комплекс можно рассматривать, как функтор из категории (\mathbb{Z},\geqslant) (полученной из частично упорядоченного множества) в \mathscr{A} (при котором образ композиции любых двух нетождественных морфизмов нулевой). Таким образом, комплексы — полная подкатегория в категории этих функторов.

Ещё один, следующий, взгляд на комплексы работает только для конкретной категории, уже вложенной в R-модули: в абстрактной категории объекты не сравнимы на \subset .

Определение 1.2.2 (Градуированный объект). $C_{\bullet} = \bigoplus_{n \in \mathbb{Z}} C_n$ с морфизмом $d: C_{\bullet} \to C_{\bullet}$, таким, что $d(C_n) \subset C_{n+p}$ для некоторой фиксированной *степени объекта* p (чаще всего она равна ± 1).

Так же, как видно из определения, в данной категории должны быть счётные бипроизведения (прямые суммы), иначе градуированного объекта может не быть.

Определение 1.2.3 (Дифференциальный модуль). Градуированный объект (C_{\bullet}, d) со свойством $d^2 = 0$.

Определение 1.2.4 (Комплекс). Дифференциальный модуль степени -1.

При развороте стрелок получается дифференциальный модуль степени +1, также известный, как кокомплекс:

$$\cdots \xleftarrow{d^{n+2}} C^{n+1} \xleftarrow{d^{n+1}} C^n \xleftarrow{d^n} C^{n-1} \xleftarrow{d^{n-1}} \cdots$$

Предостережение. У кокомплекса несколько другая нумерация стрелок, но мы их практически не будем использовать.

Определение 1.2.5 (Сдвиг комплекса (C_{\bullet},d) на $p \in \mathbb{Z}$). Комплекс $(C[p]_{\bullet},d[p])$, где $C[p]_n = C_{n+p}$ и $d[p]_n = d_{n+p}$.

Иногда при сдвиге комплекса определяют $d[p]_n = (-1)^p d_{n+p}$, но мы так делать не будем.

Лекция II

19 февраля 2024 г.

1.2.1 Морфизмы комплексов

Определение 1.2.6 (Морфизм дифференциальных модулей $\bigoplus A_n \to \bigoplus B_n$). Такое $f: \bigoplus A_n \to \bigoplus B_n$, что $f(A_n) \subset B_n$, и диаграммы коммутативны:

$$A_{n+1} \xrightarrow{d_n^A} A_n$$

$$\downarrow^f \qquad \qquad \downarrow^f$$

$$B_{n+1} \xrightarrow{d_n^B} B_n$$

На языке абелевых категорий, надо рассматривать не одно отображение f, так как отношение $f(A_n) \subset B_n$ не выражается, а серию морфизмов $\{f_n: A_n \to B_n\}_{n \in \mathbb{Z}}$.

Для всякого морфизма f коммутативна диаграмма в категории комплексов:

$$A[1] \xrightarrow{d^A} A$$

$$\downarrow^{f[1]} \quad \downarrow^f$$

$$B[1] \xrightarrow{d^B} B$$

Если рассматривать комплексы, как функторы из категории (\mathbb{Z},\geqslant) , то морфизмы между комплексами — естественные преобразования между функторами.

Теорема 1.2.1. Категория комплексов абелева.

Доказательство.

Лемма 1.2.1. Если $\mathscr C$ — малая категория, $\mathscr A$ — абелева, то $\mathrm{Func}(\mathscr C,\mathscr A)$ — тоже абелева категория.

Доказательство леммы.

Морфизмы в данной категории — естественные преобразования между функторами, и их сложение устроено поточечно: $\forall \eta, \zeta: \mathcal{F} \to \mathcal{G}, \forall A \in \mathcal{A}: (\eta + \zeta)_A = \eta_A + \zeta_A$.

Нулевой объект — функтор \mathbb{O} , сопоставляющий каждому объекту $0_{\mathscr{A}}$, и каждой стрелке — нуль-стрелку.

Для двух функторов \mathscr{F},\mathscr{G} имеется их бипроизведение: $(\mathscr{F}\oplus\mathscr{G})(C)=\mathscr{F}(C)\oplus\mathscr{G}(C)$.

Если $\eta \in \mathrm{Mor}_{\mathrm{Func}(\mathscr{C},\mathscr{A})}(\mathscr{F},\mathscr{G})$ (то есть η — естественное преобразование $\mathscr{F} \to \mathscr{G}$), то $(\mathrm{Ker}\,\eta)(C) = \mathrm{Ker}(\eta_C)$.

ker определяется аналогично лемме (лемма 1.1.1). Аналогично с коядрами.

Далее по-хорошему надо проверить, что выполняются все универсальные свойства, и что любой мономорфизм нормален, но мы этого делать не будем.

Ссылаемся на (лемма 1.1.2), рассматривая категорию комплексов, как полную подкатегорию в категории функторов. Нулевой объект — комплекс, состоящий из нулей — в категории комплексов имеется. Бипроизведением комплексов A_{\bullet} и B_{\bullet} является комплекс $(A \oplus B)_{\bullet}$, у которого $(A \oplus B)_n = A_n \oplus B_n$, и $d_n^{A \oplus B} = d_n^A \oplus d_n^B$:

$$\cdots \longrightarrow A_{n+1} \xrightarrow{d_n^A} A_n \xrightarrow{d_{n-1}^A} A_{n-1} \longrightarrow \cdots$$

$$\cdots \longrightarrow B_{n+1} \xrightarrow{d_n^B} B_n \xrightarrow{d_{n-1}^B} B_{n-1} \longrightarrow \cdots$$

$$\cdots \longrightarrow A_{n+1} \oplus B_{n+1} \xrightarrow{d_n^{A \oplus B}} A_n \oplus B_n \xrightarrow{d_{n-1}^{A \oplus B}} A_{n-1} \oplus B_{n-1} \longrightarrow \cdots$$

Если $d_{n-1}^A \cdot d_n^A = 0$, и $d_{n-1}^B \cdot d_n^B = 0$, то (из теоремы Митчелла уж точно очевидно) $d_{n-1}^{A \oplus B} \cdot d_n^{A \oplus B} = 0$.

Ядра тоже являются комплексами, так как на языке конкретных категорий это просто подмодули. Двойственно с коядрами. \Box

1.3 Гомологии

Дифференциал d по совместительству является морфизмом комплексов $d:C[1] \to C$ (по-хорошему, $C[1]_{\bullet} \to C_{\bullet}$, но точку будем опускать):

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_n} C_n \longrightarrow \cdots$$

$$\downarrow^{d_n} \qquad \downarrow^{d_{n-1}}$$

$$\cdots \longrightarrow C_n \xrightarrow{d_{n-1}} C_{n-1} \longrightarrow \cdots$$

Ниже мы по произвольному комплексу C строим новые комплексы.

Определение 1.3.1 (Циклы). Комплекс $Z = Z(C) \stackrel{def}{=} \operatorname{Ker} d[-1]$.

В конкретной категории в n-й компоненте комплекса циклов лежит подмодуль C_n , при взятии дифференциала обращающийся в нуль: $Z(C)_n = \operatorname{Ker} d[-1]_n = \operatorname{Ker} d_{n-1} \subset C_n$.

Определение 1.3.2 (Границы). Комплекс $B = B(C) \stackrel{def}{=} \operatorname{Im} d$.

В конкретной категории в n-й компоненте комплекса границ лежит подмодуль C_n , являющийся образом дифференциала: $B(C)_n = \operatorname{Im} d_n \subset C_n$.

Определения циклов и границ имеют смысл и для абстрактных абелевых категорий. В них, *образ* — это ядро коядра: $\operatorname{Im} \phi \stackrel{def}{=} \operatorname{Ker}(\operatorname{coker} \phi)$. В абелевой категории канонически $\operatorname{Im} \phi \cong \operatorname{CoIm} \phi \stackrel{def}{=} \operatorname{CoKer}(\ker \phi)$, так что образ можно определять и так.

На языке конкретных категорий, так как $d^2=0$, то $B_n\subset Z_n$, и можно определить фактормодуль $H_n\coloneqq Z_n/B_n$ — гомологии.

То же самое можно сказать на языке универсальных свойств, хотя в будущем мы, ссылаясь на теорему Mитчелла, будем всё писать исключительно в терминах элементов.

Построение H в терминах универсальных свойств. Пусть C — произвольный комплекс, $Z=Z(C),\ B=B(C).$ Изобразим следующую диаграмму в категории комплексов, где $z:Z(C)\to C$ вкладывает ядра, а $\mathrm{coker}\,z=b:C[1]\to B$ — факторизация по этому вложению:

$$Z[1] \xrightarrow{z[1]} C[1] \xrightarrow{d} C \xrightarrow{d[-1]} C[-1]$$

$$\downarrow \downarrow \qquad \qquad \uparrow z$$

$$B \xrightarrow{\alpha} Z \xrightarrow{\operatorname{coker} \beta} H \xrightarrow{\cdots} 0$$

Так как $d[-1] \cdot d = 0$, то можно пропуститься через ядро: $\exists! \alpha : z \cdot \alpha = d$.

Далее, $z \cdot \alpha \cdot z[1] = d \cdot z[1] = 0$, а так как z — моно, то $\alpha \cdot z[1] = 0$. Значит, можно пропуститься через коядро, то есть $\exists ! \beta : \beta b = \alpha$. Далее H определяется, как коядро β .

Взятие циклов, границ и гомологий функториально (то есть циклы, границы и даже гомологии являются функторами, бьющими из категории комплексов в неё же). Например, для морфизма комплексов образуется соответствующий морфизм комплексов их гомологий. Это сразу следует из функториальности взятия ядер и коядер.

Следствие 1.3.1. B комплексах Z, B, H нулевые дифференциалы.

$$\cdots \longrightarrow \operatorname{Ker}(d_n) \longrightarrow \operatorname{Ker}(d_{n-1}) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_n} C_n \longrightarrow \cdots$$

B состоит из подмодулей в $Z,\ H$ — из фактормодулей, понятно, что там дифференциалы тоже нулевые.

1.3.1 Гомологии окружности

• Рассмотрим окружность, как симплициальное множество, склеенное из двух нульмерных

клеток-точек
$$\{a,b\}$$
, и двух одномерных клеток-отрезков $\{x,y\}$: $a \overset{x}{\underbrace{\hspace{1cm}}} b$

Построим $C_0 = \mathbb{Z}a + \mathbb{Z}b$ — свободная абелева группа на $\{a,b\}$, $C_1 = \mathbb{Z}x + \mathbb{Z}y$ — тоже свободная абелева группа, но на образующих $\{x,y\}$. Вместо \mathbb{Z} можно было взять любое другое кольцо.

Получили так называемый симплициальный комплекс для данного разбиения окружности на клетки (все остальные элементы комплекса объявляются нулями):

$$0 \longrightarrow C_1 \stackrel{d_1}{\longrightarrow} C_0 \longrightarrow 0$$

Определим d_1 , как «конец минус начало»: $\begin{cases} d_1(x) = b - a, \\ d_1(y) = a - b \end{cases}$

Теперь
$$\begin{cases} Z_0 = C_0 \\ Z_1 = \mathbb{Z}(x+y) \end{cases} \begin{cases} B_0 = \mathbb{Z}(b-a) \\ B_1 = 0 \end{cases} \quad \text{и} \begin{cases} H_0 = Z_0/B_0 = (\mathbb{Z}a + \mathbb{Z}b)/\mathbb{Z}(b-a) & \cong \mathbb{Z} \\ H_1 = Z_1/B_1 = \mathbb{Z}(x+y) & \cong \mathbb{Z} \end{cases}$$

• Теперь триангулируем окружность по-другому: $z = \begin{pmatrix} a & x \\ b & d_1(x) = b-a, \\ d_1(y) = c-b, \\ d_1(z) = a-c \end{pmatrix} .$

Теперь
$$\begin{cases} Z_0 = C_0 \\ Z_1 = \mathbb{Z}(x+y+z) \end{cases}, \begin{cases} B_0 = \mathbb{Z}(b-a) + \mathbb{Z}(c-b) \\ B_1 = 0 \end{cases}$$
 и
$$\begin{cases} H_0 & \cong \mathbb{Z} \\ H_1 = \mathbb{Z}(x+y+z)/0 & \cong \mathbb{Z}. \end{cases}$$

Ответ получился тот же самый, и это не случайно — есть теорема, что сингулярные/симплициальные гомологии (они равны для клеточных пространств) не зависят от триангуляции.

Упражнение 1.3.1. Триангулировать сферу, и вычислить гомологии. Дифференциал от треугольника ABC (ориентация — порядок вершин — важна) определяют, как его обход вдоль периметра: AB + BC + CA.

1.3.2 Длинная точная последовательность гомологий

Напомним, что комплекс называется *точным*, если не просто $d_n \cdot d_{n+1} = 0$, но и сразу $\operatorname{Im}(d_{n+1}) = \operatorname{Ker}(d_n)$. Часто встречаются *короткие точные последовательности* — последовательности вида $0 \to A \xrightarrow{i} B \xrightarrow{\pi} C \to 0$. Точность в члене A означает, что i — моно, точность в члене C означает, что π — эпи, а в члене B — что $\operatorname{Im}(i) = \operatorname{Ker}(\pi)$, то есть (в элементах) $\forall x \in B : \pi(x) = 0 \iff x \in \operatorname{Im}(i)$.

Теорема 1.3.1 (Длинная точная последовательность гомологий). Пусть имеется точная последовательность комплексов $0 \to A' \stackrel{i}{\to} A \stackrel{\pi}{\to} A'' \to 0$.

Тогда существует длинная точная последовательность гомологических групп

$$\cdots \longrightarrow H' \stackrel{i}{\longrightarrow} H \stackrel{\pi}{\longrightarrow} H'' \stackrel{\delta}{\longrightarrow} H'[-1] \stackrel{i[-1]}{\longrightarrow} H[-1] \longrightarrow \cdots$$

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально: если есть другая короткая точная последовательность, и морфизм между ними, то по отношению к ним найдётся естественный морфизм полученных длинных точных последовательностей гомологий.

Доказательство. Для $z \in Z''_n$, обозначим за [z] класс z в H''_n .

$$0 \longrightarrow A'_{n} \xrightarrow{i_{n}} A_{n} \xrightarrow{\pi_{n}} A''_{n} \longrightarrow 0$$

$$\downarrow d'_{n} \downarrow \qquad \downarrow d''_{n} \downarrow$$

$$0 \longrightarrow A'_{n-1} \xrightarrow{i_{n-1}} A_{n-1} \xrightarrow{\pi_{n-1}} A''_{n-1} \longrightarrow 0$$

Рассуждения ниже обычно называют *диаграммный поиск*. Кажется, это невозможно ни записывать, ни читать, но для полной картины пусть будет.

- Для начала построим $\delta: H_n'' \to H_{n-1}'$.
 - Выберем $z \in \mathrm{Ker}(d_n'')$, пусть $y \in \pi_n^{-1}(z)$ произвольный прообраз. $\bar{y} \coloneqq d_n(y)$ лежит в ядре π_{n-1} из коммутативности правого квадрата. Из точности нижней строки $\exists \bar{x} \in i_{n-1}^{-1}(\bar{y})$ (и он единственен, так как i_{n-1} моно), положим $\delta([z]) \coloneqq [\bar{x}]$.
 - Убедимся, что определение не зависит от выбора $y\in\pi_n^{-1}(z)$. Для этого рассмотрим другой $y'\in\pi_n^{-1}(z)$. Так как $\pi_n(y-y')=0$, то из точности верхней строки $\exists x\in i_n^{-1}(y-y')$. Из коммутативности левого квадрата: $d_n'(x)=i_{n-1}^{-1}(d_n(y-y'))=i_{n-1}^{-1}(d_n(y))-i_{n-1}^{-1}(d_n(y'))$, то есть $\bar x$ определён с точностью до $\mathrm{Im}(d_n')$, а его класс эквивалентности в гомологиях однозначно.
 - Очевидно, что δ линеен: его можно задать формулой $i_{n-1}^{-1}(d(\pi_n^{-1}(_)))$, где берётся любой прообраз. Для всякого R-линейного $f: x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2) \Rightarrow \forall \alpha, \beta \in R: \alpha x_1 + \beta y_1 \in f^{-1}(\alpha x_2 + \beta y_2)$, то есть прообразы можно выбирать линейно.
- Убедимся, что полученная длинная точная последовательность гомологических групп точна. Здесь используются определённые при построении δ элементы $y \in A_n$ и $\bar{y} \in A_{n-1}, \bar{x} \in A'_{n-1}$.
 - $\forall z \in \mathrm{Ker}(d_n''): \delta([z]) = 0 \iff \bar{y} = 0 \iff y \in \mathrm{Ker}(d_n).$ Отсюда $\delta([z]) = 0 \iff z \in \pi_n\left(\mathrm{Ker}(d_n)\right)$, что означает точность в члене H_n'' .
 - С одной стороны, $\forall \bar{x} \in \mathrm{Ker}(d'_{n-1}) : i_{n-1}(\bar{x}) \in \mathrm{Im}(d_n) \Rightarrow \exists y \in A_n : i_{n-1}(\bar{x}) = d_n(y) \Rightarrow \bar{x} = \delta\left([\pi_n(y)]\right)$ (δ определена, так как $\pi_n(y) \in \mathrm{Ker}(d''_n)$ из коммутативности правого квадрата: $d''_n(\pi_n(y)) = \pi_{n-1}(\bar{y})$, а из точности нижней строки это нуль). С другой стороны, $\forall z \in \mathrm{Ker}(d''_n) : i_{n-1}(\delta([z])) = d_n(y) \in \mathrm{Im}(d_n)$. Это означает точность в члене H'_{n-1} .
 - С одной стороны, $\forall \bar{x} \in \mathrm{Ker}(\mathrm{d}'_{n-1}): \pi_{n-1}(i_{n-1}(\bar{x})) = 0$ из точности нижней строки. С другой стороны, $\forall \bar{y} \in \mathrm{Ker}(d_{n-1}):$ если $\pi_{n-1}(\bar{y}) \in \mathrm{Im}(d''_n)$, то из сюръективности π : $\exists y \in A_n: d''_n(\pi_n(z)) = \pi_{n-1}(\bar{y}).$ Обозначим $\Delta \coloneqq \bar{y} d_n(y)$, так как $\pi_{n-1}(\Delta) = 0$, то $\Delta \in \mathrm{Im}(i_{n-1}).$ Тем самым, $[\bar{y}] = [\Delta]$ лежит в образе H''_{n-1} , и последовательность точна в члене H_n .

• Функториальность идёт без доказательства.

Лекция III _{4 марта 2024 г.}

Теперь приведём другое доказательство существования длинной точной последовательности гомологий, опирающееся на лемму о змее.

Лемма 1.3.1 (О змее). Пусть даны два точных комплекса $A' \to A \to A'' \to 0$ и $0 \to B' \to B \to B''$, и морфизм между ними. Тогда имеется длинная точная последовательность из пунктирных стрелок.

Короткие стрелки получены из действия соответственных функторов (ядра и коядра), а связующий гомоморфизм определён δ определён в доказательстве, и естественен (функториален).

Доказательство. Доказательство очень похоже на доказательство существования длинной точной последовательности гомологий.

Можно опять сказать, что это диаграммный поиск, и повторить доказательство, но проще вывести из доказательства (теорема 1.3.1). Для этого достаточно рассмотреть комплексы $C_{\bullet} := \left[\dots \to 0 \to A \stackrel{\phi}{\to} B \to 0 \to \dots\right]$, и соответствующие C'_{\bullet} и C''_{\bullet} (где вместо A и B подставлены A' и B' либо A'' и B'' соответственно). После этого доказательство (теорема 1.3.1) строит искомую длинную точную последовательность, так как $H(C_{\bullet}) = [\dots \to 0 \to \operatorname{Ker}(\phi) \to \operatorname{CoKer}(\phi) \to 0 \to \dots]$. При этом априори лемма о змее чуть сильнее, так как она не использует, что $A' \to A$ — моно, а $B \to B'$ — эпи, но можно проследить, что доказательство (теорема 1.3.1) в нужных членах это тоже не использует.

Теорема 1.3.2 (Длинная точная последовательность гомологий на бис). Пусть имеется точная последовательность комплексов $0 \to A' \xrightarrow{i} A \xrightarrow{\pi} A'' \to 0$.

Существует длинная точная последовательность гомологических групп

$$\cdots \longrightarrow H' \stackrel{i}{\longrightarrow} H \stackrel{\pi}{\longrightarrow} H'' \stackrel{\delta}{\longrightarrow} H'[-1] \stackrel{i[-1]}{\longrightarrow} H[-1] \longrightarrow \cdots$$

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально.

Доказательство. Длинная точная последовательность комплексов означает наличие следующей

коммутативной диаграммы (где строки точны, и столбцы — комплексы)

Пусть циклы, границы и гомологии в комплексе A обозначаются $Z_{\bullet}, B_{\bullet}, H_{\bullet}$ соответственно, в $A' - Z'_{\bullet}, B'_{\bullet}, H'_{\bullet}$, , в $A'' - Z''_{\bullet}, B''_{\bullet}, H''_{\bullet}$. Из коммутативности диаграммы B'_n вправо уходит в B_n , а B_n , в свою очередь — в B''_n .

Чтобы воспользоваться леммой о змее, построим следующую диаграмму, взяв коядро верхней строки, ядро — нижней, и дорисовав сверху — ядра вертикальных стрелок, снизу — коядра:

Обоснуем, каким образом получилась такая диаграмма. По определению $d_n(B_n)=\{0\}$, поэтому $A_n \xrightarrow{d_n} A_{n-1}$ пропускается через фактор, и получается отображение $\widetilde{d}_n: A_n/B_n \to A_{n-1}$. Так как A — комплекс, то $\widetilde{d}_n(A_n/B_n) \subset Z_{n-1}$, можно сузить codomain, получая \overline{d}_n . По определению $H_n=Z_n/B_n$, поэтому действительно $H_n=\mathrm{Ker}(d_n)$. В свою очередь, $H_{n-1}=Z_{n-1}/B_{n-1}$, и это действительно $\mathrm{CoKer}(d_n)$.

Отображение $A_n \to A_n''$ было эпиморфизмом, после взятия коядра эпиморфизмом оно и осталось. Двойственно, $A_{n-1}' \to A_{n-1}$ было мономорфизмом, мономорфизмом оно и осталось.

Применяя лемму о змее, получаем утверждение теоремы.

1.4 Функторы между абелевыми категориями

Пусть \mathscr{A}, \mathscr{B} — абелевы категории.

Определение 1.4.1 (Аддитивный функтор $\mathscr{F}: \mathscr{A} \to \mathscr{B}$). Такой функтор, что $\forall \alpha, \beta \in \operatorname{Mor}(\mathscr{A}): \mathscr{F}(\alpha + \beta) = \mathscr{F}(\alpha) + \mathscr{F}(\beta)$ всегда, когда определено.

1.4.1 Точные и полуточные функторы

Рассмотрим произвольную короткую точную последовательность $0 \to A' \to A \to A'' \to 0$ в \mathscr{A} . Подействовав на неё функтором \mathscr{F} , мы получим последовательность $0 \to \mathscr{F}(A') \to \mathscr{F}(A) \to \mathscr{F}(A'') \to 0$. Точность, вообще говоря, пропадёт, но если \mathscr{F} сохраняет точность в каком-то члене для всех таких коротких точных последовательностей, то функтор \mathscr{F} имеет соответствующее название:

- 1. Если всегда имеется точность в члене $\mathscr{F}(A)$, то \mathscr{F} полуточный функтор.
- 2. Если всегда имеется точность в членах $\mathscr{F}(A')$ и $\mathscr{F}(A)$, то \mathscr{F} точный слева функтор.
- 3. Если всегда имеется точность в членах $\mathcal{F}(A)$ и $\mathcal{F}(A'')$, то \mathcal{F} точный справа функтор.
- 4. Если всякая короткая точная последовательность переходит в короткую точную последовательность, то \mathscr{F} точный функтор.

Лемма 1.4.1. Пусть $\mathcal{F}-$ аддитивный функтор. Следующие условия эквивалентны:

- 1. У точен справа.
- 2. \mathscr{F} сохраняет нуль и коядра: $\mathscr{F}(0) = 0, \mathscr{F}(\operatorname{coker}(\phi)) = \operatorname{coker}(\mathscr{F}(\phi)).$
- 3. У сохраняет конечные копределы.

Доказательство.

- $(3) \Rightarrow (2)$ Коядро конечный копредел, поэтому очевидно.
- (2) ⇒ (3) В свою очередь, копроизведение в абелевой категории бипроизведение, а это «внутренний объект» (его определение не использует никакие универсальные свойства, только накладываются некоторые условия на стрелки, которые аддитивные функторы сохраняют), поэтому всякий аддитивный функтор сохраняет его. Предложение из предыдущего семестра о том, что существование инициального объекта и всех копроизведений влечёт существование всех копределов завершает доказательство.
- $(2)\Rightarrow (1)$ Короткая точная последовательность $A'\stackrel{\phi}{\to} A\stackrel{\psi}{\to} A''\to 0$ характеризуется свойствами $\psi=\operatorname{coker}\phi, 0=\operatorname{coker}\psi.$
- (1) \Rightarrow (2) Рассмотрим произвольный $\phi: A' \to A$. У него есть эпи-моно разложение $\phi = \mu \varepsilon$ (μ моно, ε эпи), и $\operatorname{coker}(\mu \varepsilon) = \operatorname{coker}(\mu)$, так как ε эпиморфизм. Значит, без потери общности ϕ мономорфизм.

Тогда последовательность $0 \to A' \stackrel{\phi}{\to} A \stackrel{\operatorname{coker} \phi}{\to} \operatorname{CoKer} \phi \to 0$ точна, и так как \mathscr{F} — точен справа, то $\mathscr{F}(\operatorname{coker} \phi) = \operatorname{coker}(\mathscr{F}(\phi))$.

Также точный справа функтор сохраняет нуль: $0 \to A \stackrel{\mathrm{id}}{\to} A \to 0 \to 0$ переходит в $\mathscr{F}(A) \stackrel{\mathrm{id}}{\to} \mathscr{F}(A) \to \mathscr{F}(0) \to 0$.

Следствие 1.4.1. Левый сопряжённый функтор (к любому другому функтору) точен справа.

Доказательство. Он сохраняет копределы.

Функтор копредела (который является левым сопряжённым к диагональному Δ) сохраняет копределы, значит, точен справа. Другими словами, копределы коммутируют.

Коядро, как конечный копредел, сохраняет коядра, значит, коядро — точный справа функтор. Двойственно, ядро — точный слева функтор — сохраняет ядра, значит, точный слева функтор.

Это можно понять и без высокой науки, но проверять точность в категории стрелок непросто, так как она не является конкретной категорией, и не вложена в mod-R. Видимо, удобнее всего проверять второй пункт из (лемма 1.4.1), и он вырождается в следующую диаграмму:

Применяя к морфизму (α, β) функтор ker, свойственный категории стрелок, мы получим морфизм (ψ, α) . Если же рассмотреть морфизм (α, β) , как морфизм в произвольной абелевой категории, то его ядром будет $(\ker \alpha, \ker \beta)$. К ядру также можно применить функтор ker, свойственный категории стрелок, получая морфизм $(\phi, \ker \alpha)$.

Чтобы проверить, что функтор ядра сохраняет ядра, надо убедиться, что $\phi = \ker \psi$. Используя коммутативность I, и то, что $\ker \alpha \cdot \ker f$ — мономорфизм, получаем, что ϕ — тоже мономорфизм. Проверим точность в члене B, рассмотрев $x \in B$, такой, что $\psi(x) = 0$.

- Во-первых, $\ker h(\psi(x)) = 0$ $\stackrel{\text{III}}{\Rightarrow} \operatorname{коммутативен} \alpha(\ker g(x)) = 0$ $\stackrel{\text{точность в } E}{\Rightarrow} \exists y \in D : \ker \alpha(y) = \ker g(x).$
- Во-вторых, из коммутативности I: $\ker \beta(f(y)) = 0$, $\overset{\ker \beta \text{моно}}{\Rightarrow} f(y) = 0 \overset{\text{точность в } D}{\Rightarrow} \exists z \in A : \ker f(z) = y.$
- И наконец, $\ker g(\phi(z)) = \ker g(x) \overset{\ker g \text{моно}}{\Rightarrow} \phi(z) = x.$

К сожалению, в лемме о змее это не помогает в доказательстве того, что последовательность точна в члене $\operatorname{Ker} \phi$, так как нет точной последовательности $0 \to A' \to A \to A'' \to 0$.

При доказательстве существования длинной точной последовательности гомологий на бис, мы использовали, что коядро точно справа, ядро — точно слева.

Лекция IV

11 марта 2024 г.

Факт 1.4.1. Если точный справа функтор сохраняет мономорфизмы, то функтор точен. Двойственно, точный слева функтор, сохраняющий эпиморфизмы, точен.

Доказательство. Условия как раз означают, что короткая точная последовательность отображается в короткую точную последовательность.

1.4.2 Гомотопность морфизмов комплексов

Пусть имеются комплексы X_{\bullet} и X'_{\bullet} , и между ними морфизмы f, g.

Определение 1.4.2 (Морфизмы f и g гомотопны). Существует семейство морфизмов $s_k: X_{k-1} \to X_k'$, таких, что $f_n - g_n = d_n' s_{n+1} + s_n d_{n-1}$. При этом диаграмма ниже **не обязана** быть коммутативной

$$X_{n+1} \xrightarrow{d_n} X_n \xrightarrow{d_{n-1}} X_{n-1} \xrightarrow{d_{n-2}} \cdots \xrightarrow{d_0} X_0$$

$$\downarrow f_{n+1} \downarrow \downarrow g_{n+1} \downarrow f_n \downarrow \downarrow g_n \downarrow g_{n-1} \downarrow g_{n-1} \downarrow g_n \downarrow g_$$

Пишут $f \simeq g$.

А почему вот такие диагональные стрелки — это то же самое, что и гомотопность в топологии?

Теорема 1.4.1. Если два морфизма комплексов $f, g: X \to X'$ гомотопны, то H(f) = H(g) (здесь функтор гомологий применён не к объектам-комплексам, а к морфизмам комплексов).

Доказательство. Гомологии — аддитивный функтор, докажем, что H(f-g)=0.

Рассмотрим $\overline{x} \in H_n(X)$. У него имеется прообраз $x \in Z_n(X)$.

Заметим, что $H(f_n-g_n)(\overline{x})=\overline{(f_n-g_n)(x)}=\overline{d'_n(s_{n+1}(x))}+\overline{s_n(d_{n-1}(x))}$. Первое слагаемое равно нулю, так как $d'_n(\cdots)\in B_n(X')$, а второе — так как $x\in \operatorname{Ker} d_{n-1}$.

Замечание. Если $\mathcal{F}: \mathcal{A} \to \mathcal{A}$ — аддитивный функтор, то ему соответствует функтор $Comp(\mathcal{F})$, действующий на комплексах с элементами из \mathcal{A} поэлементным применением к объектам и морфизмам функтора \mathcal{F} . Допуская вольность речи, можно обозначать этот функтор тоже \mathcal{F} . Используя

эту вольность речи, можно отметить, что если $f \simeq g$ — гомотопные морфизмы комплексов с объектами из \mathscr{A} , то $\mathscr{F}(f) \simeq \mathscr{F}(q)$.

Факт 1.4.2. Для морфизмов комплексов «быть гомотопными» — отношение эквивалентности.

Доказательство. Рефлексивность: $\forall n: s_n = 0$. Симметричность: $s_n \coloneqq -s_n$. Транзитивность:

$$\begin{cases} f_n - g_n = d'_n s_{n+1} + s_n d_{n-1} \\ g_n - h_n = d'_n r_{n+1} + r_n d_{n-1} \end{cases} \Rightarrow f_n - h_n = d'_n (s_{n+1} + r_{n+1}) + (s_n + r_n) d_{n-1}$$

Определение 1.4.3 (Два комплекса X и X' гомотопически эквивалентны). Существуют морфизмы комплексов $f: X \to X'$ и $g: X' \to X$, такие, что $fg \simeq \mathrm{id}_{X'}$ и $gf \simeq \mathrm{id}_X$. Данные морфизмы f и g называют гомотопическими эквивалентностями.

Факт 1.4.3. Если X и X' гомотопически эквивалентны, то $H(X) \cong H(X')$.

Определение 1.4.4 (Квазиизоморфизм $f: X \to X'$). Морфизм f, такой, что H(f) — изоморфизм.

Факт 1.4.4. Гомотопическая эквивалентность — квазиизоморфизм.

Определение 1.4.5 (Комплекс X ацикличен). X точен, то есть H(X) = 0.

Определение 1.4.6 (Комплекс X стягиваем). $\mathrm{id}_X \simeq 0_X$.

Замечание. Из (теорема 1.4.1) следует, что стягиваемый комплекс ацикличен.

Обратное, вообще говоря, неверно. Стягиваемый комплекс сохраняется под действием функторов, а ацикличный — может и не сохраниться.

1.5 Проективные резольвенты

Пусть \mathscr{A} — абелева категория, $P \in \mathscr{A}$.

Определение 1.5.1 (Объект P проективен). $\forall \phi : A \to B : \phi - \exists \theta : P \to B : \exists \theta : P \to A$, такое, что диаграмма коммутирует. При этом θ должно быть какое-то, не факт, что оно единственно.

$$\begin{array}{c}
P \\
\downarrow \forall \psi \\
A \xrightarrow{\searrow \forall \phi} B \longrightarrow 0
\end{array}$$

Факт 1.5.1. В Set все множества — проективные объекты.

Теорема 1.5.1. Пусть $\mathcal{A} = R\text{-}mod$. Модуль P проективен $\iff P$ является прямым слагаемым свободного модуля.

Доказательство.

- 1. Свободный модуль проективен: пусть $\{p_{\alpha}\}$ базис P. Определим $\theta(p_{\alpha})=\phi^{-1}(\psi(p_{\alpha}))$, где прообраз выбран произвольно, и продолжим по линейности.
- 2. Прямое слагаемое проективного модуля проективно. Рассмотрим каноническое вложение $M \hookrightarrow M \oplus N$, где $M \oplus N$ проективен.

Определим $M \oplus N \to B, (m,n) \mapsto \psi(m)$. Так как $M \oplus N$ проективен, то найдётся $M \oplus N \to A$, и композиция $M \to M \oplus N \to A$ подходит в качестве морфизма, который должен найтись из определения проективного модуля.

3. Пусть P проективен. Возьмём свободный модуль F, сюръективно накрывающий P (например, подойдёт свободный модуль на всех элементах P, но на практике, конечно, удобно брать модуль поменьше).

$$F \xrightarrow{\exists \text{id}} P$$

$$F \xrightarrow{\pi} P$$

Так как модуль проективен, то найдётся пунктирная стрелка. Значит, $F \cong P \oplus \operatorname{Ker} \pi \ (\forall f \in F : \pi^{-1}(f) = P(f) + \operatorname{Ker} \pi).$

Примеры.

- Пусть $R = \mathbb{Z}/6\mathbb{Z}$. Тогда $\mathbb{Z}/6\mathbb{Z}$ является R-модулем, но $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, значит, модули $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$ все проективны над кольцом $\mathbb{Z}/6\mathbb{Z}$.
- Можно предъявить проективный модуль, исходя из топологического факта о том, что шар нельзя причесать. А как?

Определение 1.5.2 (Проективная резольвента модуля M). Ацикличный (точный) комплекс вида $\cdots \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$, где P_i — проективные модули.

В будущем докажем, что любые две проективные резольвенты гомотопически эквивалентны (следствие 1.6.1).

Определение 1.5.3 (В категории $\mathscr A$ достаточно много проективных объектов). $\forall A \in \mathscr A$ найдётся проективный объект $P \in \mathscr A$ вместе с эпиморфизмом $P \twoheadrightarrow A$.

Если в нашей категории ${\mathscr A}$ достаточно много проективных объектов, то у всякого модуля M найдётся резольвента — надо просто подряд накрывать возникающие ядра.

$$\Pi$$
екция V 18 марта 2024 г.

1.6 Левый производный функтор

Зафиксируем некоторый аддитивный функтор $\mathscr{F}: \mathscr{A} \to \mathscr{B}$, который обычно будет точен справа. Пусть у объекта $A \in \mathscr{A}$ имеется проективная резольвента, которую я выделил стрелками \leadsto .

Иными словами, проективная резольвента — это некоторый морфизм комплексов P и A_{\bullet} . Под комплексом A_{\bullet} подразумевается такой комплекс, в котором в нулевой градуировке сидит A, а в остальных — нули (следовательно, все дифференциалы — тоже нули).

Раз ${\mathscr F}$ точен справа, то он сохраняет нуль. Применим ${\mathscr F}$ к верхней строчке. Тогда получится комплекс вида

$$\cdots \longrightarrow \mathscr{F}(P_1) \longrightarrow \mathscr{F}(P_0) \longrightarrow 0$$

Чуть ниже мы определим $L_n\mathcal{F}(A)\coloneqq H_n\mathcal{F}(P)$ — левый производный функтор, измеряющий неточность \mathcal{F} — но пока, например, неясна корректность (независимость от резольвенты) такого определения.

Теорема 1.6.1. Пусть P_i проективные, сверху комплекс (ноль в верхней строчке стоит для красоты, он там неважен), снизу — точный комплекс, и дан морфизм f.

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Тогда найдутся пунктирные стрелки, и они определены с точностью до гомотопии.

Доказательство.

• - Сначала построим $f_i: P_i \to Q_i$.

 $Q_0 o B$ сюръективно, значит, так как P_0 проективен, то найдётся $f_0: P_0 o Q_0$, такое, что квадрат коммутативен.

- Далее по индукции: пусть построены f_0, \ldots, f_n .

$$P_{n+1} \xrightarrow{d_n^P} P_n \xrightarrow{d_{n-1}^P} P_{n-1}$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$

$$Q_{n+1} \xrightarrow{d_n^Q} Q_n \xrightarrow{d_{n-1}^Q} Q_{n-1}$$

Хочется заполучить стрелку $P_{n+1} \to Q_{n+1}$, воспользовавшись проективностью P_{n+1} . Для этого надо найти сюръективное отображение из Q_{n+1} .

Так как внизу — точная последовательность, то $d_n^Q:Q_{n+1}\to \mathrm{Ker}(d_{n-1}^Q)$ подойдёт: вопервых, $\mathrm{Im}(d_n^Q)=\mathrm{Ker}(d_{n-1}^Q)$ из точности Q_{ullet} , а во-вторых, $\mathrm{Im}(f_n\circ d_n^P)\subset \mathrm{Ker}(d_n^Q)$ — чтобы это увидеть, надо применить d_n^Q и воспользоваться коммутативностью правого квадрата, и тем, что P — комплекс. Тем самым, по определению проективного модуля $\exists f_{n+1}: P_{n+1} \to Q_{n+1}.$

• — Теперь пусть имеются два морфизма комплексов, продолжающих f, это f_i и g_i .

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

$$\downarrow f_1 \downarrow \downarrow g_1 \qquad f_0 \downarrow \downarrow g_0 \qquad \downarrow f \qquad \downarrow g_0 \qquad \downarrow g_0$$

Распишем разность: пусть $h_i \coloneqq f_i - g_i$. Построим гомотопию $h \simeq 0$. Понятно, что $A \to Q_0$ надо взять нулевым.

 s_0 строится по основному свойству проективного модуля P_0 : ведь $h_0(P_0)\subset {
m Ker}(d_{-1}^Q)={
m Im}\, d_0^Q$

- Далее индукция. Пусть построены s_0, \dots, s_{n-1} , строим s_n .

$$Q_{n+1} \xrightarrow{d_{n-1}^{P}} P_{n-1} \xrightarrow{d_{n-2}^{P}} P_{n-2}$$

$$Q_{n+1} \xrightarrow{d_{n}^{Q}} Q_{n} \xrightarrow{\downarrow} Q_{n-1} Q_{n-1}$$

Хочется, чтобы выполнялось $h_n = d_n^Q s_n + s_{n-1} d_{n-1}^P$, эквивалентно $d_n^Q s_n = h_n - s_{n-1} d_{n-1}^P$.

Надо проверить, что образ правой части лежит в $\operatorname{Im}(d_n^Q)$, то есть $\operatorname{Ker}(d_{n-1}^Q)$. Применим d_{n-1}^Q . Получим

$$d_{n-1}^{Q}h_{n} - d_{n-1}^{Q}s_{n-1}d_{n-1}^{P} = h_{n-1}d_{n-1}^{P} - (h_{n-1} - s_{n-2}d_{n-2}^{P})d_{n-1}^{P} = 0$$

Тем самым, s_n действительно найдётся согласно свойству проективного модуля. \square

Следствие 1.6.1. Любые две проективные резольвенты одного и того же объекта гомотопически эквивалентны.

Доказательство. Пусть P,Q — две резольвенты объекта A. В силу (теорема 1.6.1), можно построить морфизмы этих резольвент $f: P \to Q$ и $g: Q \to P$.

$$\begin{array}{cccc} P & \longrightarrow & A & & P & \longrightarrow & A \\ g \uparrow & \downarrow f & & \uparrow_{\mathrm{id}} & & \mathrm{id} \downarrow & \downarrow gf & & \uparrow_{\mathrm{id}} \\ Q & \longrightarrow & A & & P & \longrightarrow & A \end{array}$$

Получается, что $gf: P \to P$ — эндоморфизм P, как резольвенты A. С другой стороны, id_P — тоже эндоморфизм P, как резольвенты A, и опять применяя (теорема 1.6.1), получаем, что $gf \simeq \mathrm{id}_P$. Аналогично $fg \simeq \mathrm{id}_Q$.

Таким образом, определение левого производного функтора $L_n \mathscr{F}(A) \stackrel{def}{=} H_n \mathscr{F}(P)$ корректно.

С некоторой точки зрения «правильно» рассматривать категорию комплексов с точностью до гомотопической эквивалентности, назовём её $\mathscr{HoComp}(\mathcal{A})$: там объекты — $\mathrm{Obj}\,\mathcal{A}$, а группа морфизмов $\mathrm{Mor}_{\mathscr{HoComp}(\mathcal{A})}(P,Q) = \mathrm{Mor}(\mathscr{Comp}(\mathcal{A}))/\mathrm{Ho}(P,Q)$, где Ho(P,Q) — группа морфизмов, гомотопных 0.

Примеры (Что такое L_0 от точного справа функтора).

ullet Предположим, что ${\mathcal F}$ точен справа. Тогда

$$\mathscr{F}(P_1) \longrightarrow \mathscr{F}(P_0) \longrightarrow \mathscr{F}(A) \longrightarrow 0$$

точна. $L_0\mathscr{F}(A)=H_0(\mathscr{F}(P))=\mathrm{CoKer}(\mathscr{F}(P_1)\to\mathscr{F}(P_0))$. Получается $\mathrm{CoKer}(\mathscr{F}(P_1)\to\mathscr{F}(P_0))=\mathscr{F}(A)$, то есть $L_0\mathscr{F}=\mathscr{F}$.

• Обратно, если $L_0 \mathscr{F} = \mathscr{F}$, то \mathscr{F} сохраняет коядра, значит, точен справа. Вообще-то, сохраняются только коядра морфизмов проективных объектов, почему этого достаточно? (Похорошему, надо ещё проверить, что $L_0 \mathscr{F}$ действует на морфизмах так же, но это банально).

Следствие 1.6.2. Если P_A, P_B — проективные резольвенты A, B соответственно, $u \ f : A \to B$, то $\exists \widetilde{f} : P_A \to P_B$, делающий диаграмму коммутативной. Он определён однозначно c точностью до гомотопии.

$$P_{A} \longrightarrow A_{\bullet}$$

$$\tilde{f} \downarrow \qquad \qquad f \downarrow$$

$$P_{B} \longrightarrow B_{\bullet}$$

3десь A_{ullet} — комплекс, где A сосредоточен в нулевом члене.

Таким образом, морфизму f объектов из $\mathscr A$ сопоставляется морфизм резольвент $\widetilde f$, а он, в свою очередь, индуцирует морфизм гомологий $H_n(P_A) \to H_n(P_B)$. Значит, конструкция L функториальна.

1.6.1 Длинная точная последовательность левых производных функторов

Зафиксируем некоторый функтор \mathscr{F} . Далее мы исследуем $L_n\mathscr{F}$, для упрощения записи будем писать $L_n\coloneqq L_n\mathscr{F}$.

Пусть имеется короткая точная последовательность $0 \to A \to B \to C \to 0$ в \mathscr{A} . Построим длинную точную последовательность производных функторов, выглядящую так:

$$\cdots \to L_1(A) \to L_1(B) \to L_1(C) \to L_0(A) \to L_0(B) \to L_0(C) \to \cdots$$

Для получения такой штуки было бы неплохо заполучить точную последовательность резольвент $P_A \to P_B \to P_C$, причём не абы какую, а сохраняющую свою точность под действием любого аддитивного функтора. Оказывается, это сделать несложно, и в этом нам поможет лемма о подкове.

Лемма 1.6.1 (О подкове). Пусть P- проективный модуль, все строки и столбцы (состоящие из чёрных сплошных стрелок) точны.

Утверждается, что диаграмму можно достроить до коммутативной, добавив зелёные пунктирные стрелки. Новые строки и столбцы также станут точны.

Доказательство. Так как P — проективен, а g — эпи, то найдётся сечение s такое, что $gs=h_C$.

Определим стрелку h_B исходя из того, что квадраты должны в итоге получиться коммутативными. Из коммутативности левого квадрата $h_B(u,0)=f(h_A(u))$. Из коммутативности правого треугольника $gh_B(0,v)=h_C(v)=gs(v)$. Тем самым, подойдёт $h_B(u,v)\coloneqq f(h_A(u))+s(v)$.

При таком определении правый квадрат будет коммутативен: $g(s(v)) = h_C(\pi(u,v)) \stackrel{?}{=} g(h_B(u,v)) = g(s(v))$, последнее равенство имеет место, так как gf = 0.

Также несложно убедиться, что построенный морфизм h_B — эпи, видимо, это делается в тупую при помощи диаграммного поиска:

Рассмотрим $b \in B$, пусть $c \coloneqq g(c)$ и $\bar{b} \coloneqq \pi^{-1}\left(h_C^{-1}(c)\right)$ — произвольный прообраз. Из коммутативности правого квадрата $h_B\left(\bar{b}\right)$ и b под действием g уходят в g(b), откуда $g\left(b-h_B\left(\bar{b}\right)\right)=0$. Из точности нижней строки $\exists a \in A: f(a)=b-h_B\left(\bar{b}\right)$, а из эпиморфности $h_A: \exists \bar{a} \in Q: h_A\left(\bar{a}\right)=a$. Тем самым, $h_B\left(i(\bar{a})+\bar{b}\right)=b$.

Теорема 1.6.2. Для короткой точной последовательности $0 \to A \to B \to C \to 0$ существует точная последовательность резольвент $0 \to P_A \to P_B \to P_C \to 0$, точность которой сохраняется под действием любого аддитивного функтора.

Доказательство. Возьмём произвольные резольвенты P_A, P_C . Резольвенту P_B будем строить пошагово, по индукции. $(P_B)_0 \coloneqq (P_A)_0 \oplus (P_C)_0$ строится прямым применением леммы о подкове.

Далее необходимо провести индукционный переход.

$$(P_{A})_{n+1} \xrightarrow{-i} (P_{A})_{n+1} \oplus (P_{C})_{n+1} \xrightarrow{\pi} (P_{C})_{n+1}$$

$$\downarrow \qquad \qquad \downarrow^{d_{n}^{B}} \qquad \qquad \downarrow^{d_{n}^{B}}$$

$$0 \longrightarrow \operatorname{Ker}(d_{n-1}^{A}) \longrightarrow \operatorname{Ker}(d_{n-1}^{B}) \longrightarrow \operatorname{Ker}(d_{n-1}^{C}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{d_{n-1}^{A}} \qquad \qquad \downarrow^{d_{n-1}^{B}} \qquad \downarrow^{d_{n-1}^{C}}$$

$$0 \longrightarrow \operatorname{Ker}(d_{n-2}^{A}) \longrightarrow \operatorname{Ker}(d_{n-2}^{B}) \longrightarrow \operatorname{Ker}(d_{n-2}^{C}) \longrightarrow 0$$

Вычленим некоторый кусочек диаграммы, и попробуем применить лемму о подкове для получения d_n^B . Для этого необходимо потребовать от стрелки $\mathrm{Ker}(d_{n-1}^B) \to \mathrm{Ker}(d_{n-1}^C)$, чтобы она была эпиморфизмом.

При n=1 это верно в силу леммы о змее:

Если же n>1, то воспользуемся тем, что $(P_B)_n=(P_A)_n\oplus (P_C)_n$. Это, в частности, значит, что у ретракции $\pi_n:(P_B)_n\to (P_C)_n$ имеется односторонняя обратная — сечение $s_n:(P_C)_n\to (P_B)_n$, такая, что $\pi_n\cdot s_n=\mathrm{id}_{(P_C)_n}$. Ввиду функториальности ядра односторонняя обратная будет иметься и у отображения ядер $\mathrm{Ker}(d_{n-1}^B)\to \mathrm{Ker}(d_{n-1}^C)$, что значит, что это эпиморфизм.

Так как прямая сумма проективных проективна, то $(P_A)_{n+1} \oplus (P_C)_{n+1} woheadrightarrow {\rm Ker}\, d_{n-1}^B$, и определение резольвенты B по индукции корректно.

Точность $0 \to P_A \to P_B \to P_C$ под действием всякого аддитивного функтора, конечно, сохраняется, так как $(P_B)_n = (P_A)_n \oplus (P_C)_n$, а аддитивные функторы сохраняют бипроизведение.

Следствие 1.6.3 (Длинная точная последовательность производных функторов). Для короткой точной последовательности $0 \to A \to B \to C \to 0$ имеет место длинная точная последовательность

$$\cdots \to L_1(A) \to L_1(B) \to L_1(C) \to L_0(A) \to L_0(B) \to L_0(C) \to \cdots$$

Доказательство. Из (теорема 1.6.2) найдётся точная последовательность проективных резольвент $0 \to P_A \to P_B \to P_C \to 0$. Применяя \mathscr{F} , получаем точную последовательность $0 \to \mathscr{F}(P_A) \to \mathscr{F}(P_B) \to \mathscr{F}(P_C) \to 0$.

Возьмём у $\mathscr{F}(P_A), \mathscr{F}(P_B), \mathscr{F}(P_C)$ гомологии. Составленная из них длинная точная гомологическая последовательность как раз и сконструирует искомую длинную точную последовательность левых производных функторов.

Замечание. Если ${\mathcal F}$ точен справа, то длинная точная последовательность производных функторов обрывается эпиморфизмом: ${\mathcal F}(B) \to {\mathcal F}(C) \to 0$.

Лекция VI _{25 марта 2024 г.}

1.6.2 Связанные последовательности функторов

Рассмотрим формальное обобщение производных функторов.

Пусть имеется семейство $\{\mathscr{F}_i\}_{i\in\mathbb{N}}$ функторов $\mathscr{F}_i:\mathscr{A}\to\mathscr{A}'$.

Определение 1.6.1 ((Левая) связанная последовательность функторов). Такая последовательность функторов $\{\mathscr{F}_i\}_{i\in\mathbb{N}_0}$, что для любой точной последовательности $0\to A\to B\to C\to 0$ существует функториальная длинная точная последовательность

$$\cdots \to \mathscr{F}_1(A) \to \mathscr{F}_1(B) \to \mathscr{F}_1(C) \to \mathscr{F}_0(A) \to \mathscr{F}_0(B) \to \mathscr{F}_0(C)$$

Пример. Последовательность $\{L_i\mathscr{F}\}_{i\in\mathbb{N}_0}$ — связанная последовательность функторов.

Заметим, что $\forall i>0: L_i\mathcal{F}(P)=0$, если P проективен. Это очевидным образом следует из существования резольвенты $0\to P\to P\to 0$. Если \mathcal{F} точен справа (а мы это предполагаем), то он сохраняет ноль. Тогда $L_n\mathcal{F}$ — гомологии $[\cdots\to 0\to 0\to \mathcal{F}(P)\to 0]$, которые в нулевом члене — $\mathcal{F}(P)$, а в остальных — нулевые.

Оказывается, этого условия достаточно, чтобы определить связанную последовательность по нулевому элементу:

Теорема 1.6.3. Пусть $\{\mathscr{F}_i\}, \{\mathscr{G}_i\}$ — две связанные последовательности функторов, такие, что имеется естественный изоморфизм $\mathscr{F}_0 \cong \mathscr{G}_0$, и для любого проективного $P: \forall i>0: \mathscr{F}_i(P)=\mathscr{G}_i(P)=0$.

Также предположим, что в А достаточно много проективных объектов.

Тогда $\forall i: \mathscr{F}_i \cong \mathscr{G}_i$ — естественный изоморфизм.

 $\ \ \, \mathcal{A}$ оказательство. Пусть $A \in \mathscr{A}$. Накроем A проективным, возьмём ядро, получим точную последовательность

$$0 \to M \to P \to A \to 0$$

Так как последовательности функторов — связаны — то имеется длинная точная последовательность, нарисуем её кусок:

$$0 = \mathcal{F}_1(P) \longrightarrow \mathcal{F}_1(A) \longrightarrow \mathcal{F}_0(M) \longrightarrow \mathcal{F}_0(P)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 = \mathcal{G}_1(P) \longrightarrow \mathcal{G}_1(A) \longrightarrow \mathcal{G}_0(M) \longrightarrow \mathcal{G}_0(P)$$

Значит, имеется естественный изоморфизм ядер, $\mathscr{F}_1(A)\cong\mathscr{G}_1(A)$, тем самым, $\mathscr{F}_1\cong\mathscr{G}_1$ (естественность — упражнение).

Теперь займёмся индукционным переходом:

$$0 = \mathscr{F}_i(P) \longrightarrow \mathscr{F}_i(A) \longrightarrow \mathscr{F}_{i-1}(M) \longrightarrow \mathscr{F}_{i-1}(P) = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 = \mathscr{G}_i(P) \longrightarrow \mathscr{G}_i(A) \longrightarrow \mathscr{G}_{i-1}(M) \longrightarrow \mathscr{G}_{i-1}(P) = 0$$

Зажав $\mathcal{F}_i(A)$ и $\mathcal{F}_{i-1}(M)$ между двумя нулями, мы доказали, что все четыре ненулевых объекта изоморфны (естестенность, опять же, доказывается несложно).

Следствие 1.6.4. Пусть \mathscr{F} точен справа (например $\mathscr{F} = _ \otimes M$, где M — фиксированный модуль). Пусть $\mathscr{F}_0 \cong \mathscr{F}$, где $\{\mathscr{F}_i\}$ — связанная последовательность функторов, такая, что для любого проективного $P: \mathscr{F}(P) = 0$.

По-прежнему предполагаем, что в А достаточно много проективных объектов.

Тогда $\forall i \in \mathbb{N} : \mathscr{F}_i \cong L_i \mathscr{F}$.

1.7 Производные функторы для \otimes

Пусть R — необязательно коммутативное кольцо с единицей, $M \in mod$ - $R, N \in R$ -mod, напомним, что тогда $M \otimes_R N \in \mathscr{Ab}$.

Изучим производные функторов тензорного произведения (функтор тензорного произведения точен справа, так как он — левый сопряжённый к Hom (что верно в силу естественного изоморфизма $\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(A, \operatorname{Hom}(B, C))$)).

Обозначим $\operatorname{LTor}_i(M,_) \stackrel{def}{=} L_i(M \otimes _)$, $\operatorname{RTor}_i(_,N) \stackrel{def}{=} L_i(_ \otimes N)$.

Примеры.

• Изучим ${
m Tor}_1(M,R/aR)$, где R — коммутативная область целостности. Для R/aR несложно написать проективную резольвенту: $0 \to R \xrightarrow{a} R \to R/aR \to 0$ (a(m) = am).

Тензорно домножая на M, мы получаем $0 \to M \stackrel{m \otimes r \mapsto m \otimes ar}{\longrightarrow} M \to M \otimes R/aR \to 0$. Так как кольцо коммутативное, то тензорное произведение — mod-R, поэтому $m \otimes r \mapsto m \otimes ar$ — тоже просто отображение умножения на a.

Так как естественно $M \otimes R/aR \cong M/aM \otimes R \cong M/aM$, то гомологии в среднем члене — нуль, а в левом члене — a-кручение в M, то есть $\{x \in M | ax = 0\}$.

• Если же хочется изучить всё кручение M, то оказывается, $\mathrm{Tor}_1(M,F/R) = \{x \in M | \exists a \in R \setminus \{0\} : ax = 0\}$ (здесь F/R — фактор R-модулей). Здесь используется, что $F/R = \varinjlim R/aR$, значит, $\mathrm{Tor}_1(F/R,M) = \varinjlim \mathrm{Tor}_1(R/aR,M)$.

Теорема 1.7.1. Имеет место естественный изоморфизм: $\forall i : \mathrm{LTor}_i \cong \mathrm{RTor}_i$.

Идея доказательства. Пусть имеются резольвенты $[\ldots \to P_1 \to P_0 \to M]$ и $[\ldots \to Q_1 \to Q_0 \to N]$, нарисуем следующую коммутативную диаграмму:

Тензорное домножение на свободный объект — точный справа функтор — из дистрибутивности тензорного произведения. Тензорное домножение на проективный объект (прямое слагаемое свободного) — точный справа функтор — опять же из дистрибутивности.

Все строки точны, кроме нижней, и все столбцы точны, кроме правого, в которых мы и хотим посчитать гомологии, и доказать, что они равны.

Заведём тотальный комплекс $\operatorname{Tot}(M,N)_n \coloneqq \bigoplus_{i=0}^n P_i \otimes Q_{n-i}$, и теперь надо определить дифференциал D. Необходимо, чтобы выполнялось требование $D^2 = 0$, поэтому абы какой не подойдёт.

Пусть $d_p:P_p o P_{p-1},\ d_q:Q_q o Q_{q-1}$ — дифференциалы резольвент, определим

$$D_{p,q}: P_p \otimes Q_q \to \mathsf{Tot}(M,N)_{p+q-1}$$
$$(x \otimes y) \mapsto d_p(x) \otimes y + (-1)^p x \otimes d_q(y)$$

Теперь определим полный дифференциал $D_n \coloneqq \bigoplus_{p+q=n} D_{p,q} : \operatorname{Tot}(M,N)_n \to \operatorname{Tot}(M,N)_{n-1}.$

Упражнение 1.7.1. $D_{n-1} \cdot D_n = 0$.

Осталось показать, что гомологии нижней строки, как и гомологии правого столбца, совпадают с гомологиями тотального комплекса.

1.8 Производные функторы для Hom

Теперь разберёмся с функторами ${
m Hom}$ — эти функторы являются правыми сопряжёнными к \otimes , поэтому точны слева.

Таких функторов два: имеются ковариантный $\text{Hom}(M, _)$, и контравариантный $\text{Hom}(_, N)$.

Для изучения точных слева функторов будем строить последовательность правых сопряжённых функторов.

1.8.1 Инъективные резольвенты

Определение 1.8.1 (Инъективный модуль Q). Такой модуль Q, что для любой инъекции $A \rightarrowtail B$, и для любого морфизма $A \to Q$, существует морфизм $B \to Q$ такой, что диаграмма коммутативна:

Интересный факт. Инъективный модуль — то же самое, что и делимый модуль, то есть $\forall r \in R \setminus \{0\}, q \in M : \exists x \in M : rx = q$. Скорее всего, это верно только над PID.

В одну сторону доказательство очевидно — чтобы убедиться, что инъективный модуль является делимым, надо в качестве A взять кольцо R, а в качестве B — поле частных R.

В категории \mathscr{C} , где достаточно много инъективных объектов (то есть $\forall C \in \mathscr{C} : \exists$ проективный Q вместе с вложением $C \hookrightarrow Q$), двойственно проективной, строится инъективная резольвента, в которой коядро предыдущего морфизма вкладывается в следующий инъективный модуль:

$$0 \to N \to Q_0 \to Q_1 \to Q_2 \to \cdots$$

Далее аналогично определяются правые производные функторы, в частности, имеется комплекс

$$0 \to \operatorname{Hom}(M, Q_0) \to \operatorname{Hom}(M, Q_1) \to \cdots$$

Гомологии такого комплекса обозначают $\operatorname{Ext}^i(M,N)$.

Построим теперь проективную резольвенту для $M\colon\cdots\to P_2\to P_1\to P_0\to M\to 0$. Применяя к этой последовательности контравариантный Hom, получаем $0\to \operatorname{Hom}(P_0,N)\to \operatorname{Hom}(P_1,N)\to\cdots$ Гомологии этого комплекса обозначают $\operatorname{Ext}^i(M,N)$ (это уже другой Ext , но они, как и Tor, естественно изоморфны, доказательство абсолютно аналогично)

1.8.2 О расширениях модулей и Ext^1

Название Ext происходит от extensions, элементы Ext^1 находятся в биекции с классами коротких точных последовательностей $0 \to M \to ? \to N \to 0$ (теорема 1.8.1). В качестве среднего члена всегда подойдёт $M \oplus N$, но, может быть, и ещё что-то, и за это отвечает Ext^1 .

Для функторов Ext более высокой степени надо брать более длинные последовательности.

Пусть $M, N \in mod - R$.

Определение 1.8.2 (Расширение N при помощи M). Точная последовательность $0 \to M \to X \to N \to 0$.

Морфизм расширений $0 \to M \to X \to N \to 0$ и $0 \to M \to X' \to N \to 0$ — такая стрелка $X \to X'$, что два получившихся треугольника коммутативны.

Теорема 1.8.1. $\operatorname{Ext}^1(N,M)$ естественно изоморфен множеству классов изоморфизмов расширений N при помощи M.

Доказательство. Рассмотрим расширение $0 \to M \to X \to N \to 0$. Запишем кусок длинной точной последовательности правых производных функторов для $\operatorname{Hom}(_,M)$ и данной короткой точной последовательности, заменяя Ext^0 на Hom :

$$\operatorname{Ext}^1(N,M) \longleftarrow \operatorname{Hom}(M,M) \longleftarrow \operatorname{Hom}(X,M) \longleftarrow \operatorname{Hom}(N,M) \longleftarrow 0$$

Построим $x \in \operatorname{Ext}^1(N, M)$, как образ $\operatorname{id} \in \operatorname{Hom}(M, M)$.

Построим стрелку обратно, накрыв N проективным объектом, и взяв ядро: $0 \to A \to P \to N \to 0$. Для $\mathrm{Hom}(_,M)$ и этой короткой точной последовательности можно тоже записать кусок длинной точной последовательности правых производных функторов:

$$0 = \operatorname{Ext}^1(P, M) \longleftarrow \operatorname{Ext}^1(N, M) \longleftarrow \operatorname{Hom}(A, M) \longleftarrow \operatorname{Hom}(P, M) \longleftarrow \operatorname{Hom}(N, M)$$

Так как домножение на проективный модуль — точный функтор, то $\operatorname{Ext}^1(P,M)=0$. Значит, $\operatorname{Ext}^1(N,M) \leftarrow \operatorname{Hom}(A,M)$ — эпиморфизм. Сопоставим элементу $x \in \operatorname{Ext}^1(N,M)$ его какой-то прообраз $\beta \in \operatorname{Hom}(A,M)$. Теперь пусть X — пушаут диаграммы $M \stackrel{\beta}{\leftarrow} A \to P$.

Построим следующую диаграмму, получая отображение $X \to N$ из универсального свойства пушаута, применённого к $P \to N$ и нулевому $M \to N$.

Можно показать, что нижняя последовательность — короткая точная, и мы определим её, как образ элемента $x \in \operatorname{Ext}^1(N,M)$.

Далее можно проверить, что в одну сторону эти отображения взаимно обратны — построим по диаграмме выше, как по паре коротких точных последовательностей, последовательность правых производных функторов, и в силу функториальности между ними будут следующие морфизмы:

$$0 = \operatorname{Ext}^{1}(P, M) \longleftarrow \operatorname{Ext}^{1}(N, M) \longleftarrow \operatorname{Hom}(A, M) \longleftarrow \operatorname{Hom}(P, M) \longleftarrow \operatorname{Hom}(N, M)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}^{1}(N, M) \longleftarrow \operatorname{Hom}(M, M) \longleftarrow \operatorname{Hom}(X, M) \longleftarrow \operatorname{Hom}(N, M)$$

Если я правильно понимаю, то стрелка, помеченная ? — тождественное отображение простонапросто из функториальности длинной точной последовательности, и того, что функторы сохраняют id.

Элементу $x \in \operatorname{Ext}^1(N,M)$ сопоставляется $\beta \in \operatorname{Hom}(A,M)$, полученная проходом против стрелки влево. Можно заметить, что образ id под действием $_\cdot\beta$ тоже равен β , так что из коммутативности левого квадрата, если сопоставить x короткую точную последовательность, а потом обратно, то получится снова x.

Надо ещё проверить, что обратное отображение не зависит от выбора β , и что композиция в другую сторону тоже тождественна, но это вряд ли будет когда-нибудь написано.

1.9 Гомологии и когомологии групп

Пусть G — группа, A — абелева группа, на которой действует G. Иными словами, A — $\mathbb{Z}[G]$ -модуль.

Рассматриваем \mathbb{Z} , либо как кольцо, либо как $\mathbb{Z}[G]$ -модуль с тривиальным действием G.

Определим гомологии $H_n(G,A) \stackrel{def}{=} \operatorname{Tor}_n^{\mathbb{Z}[G]}(\mathbb{Z},A)$ (верхний индекс $\mathbb{Z}[G]$ указывает, что мы работаем в категории $\mathbb{Z}[G]$ -модулей). Также определим когомологии $H^n(G,A) \stackrel{def}{=} \operatorname{Ext}_{\mathbb{Z}[G]}^n(\mathbb{Z},A)$.

Запишем проективную резольвенту по первому аргументу.

- Пусть P_n свободный \mathbb{Z} -модуль с базисом $\{(g_0,\ldots,g_n)|g_i\in G\}$. По совместительству P_n свободный $\mathbb{Z}[G]$ -модуль с базисом $\{(1,g_1,\ldots,g_n)|g_i\in G\}$ и действием $g\cdot(g_0,\ldots,g_n)=(gg_0,\ldots,gg_n)$.
- Теперь определим гомоморфизмы.

$$\cdots \longrightarrow P_0 = \mathbb{Z}[G] \longrightarrow \mathbb{Z}$$

Граничные гомоморфизмы определены так: $d_n(g_0,\ldots,g_n)=\sum\limits_{i=0}^n (-1)^i(g_0,\ldots,\widehat{g}_i,\ldots,g_n).$ Несложно проверить, что $d_{n-1}\cdot d_n=0.$

• Посчитаем нулевые гомологии и когомологии группы G. $H_0(G,A)=\mathbb{Z}\otimes_{\mathbb{Z}[G]}A.$ $\mathbb{Z}=\mathbb{Z}[G]/I_G,$ где $I_G=\mathrm{Ker}(\phi),$ здесь $\phi:\mathbb{Z}[G]\to\mathbb{Z}-\mathbb{Z}$ -линейный гомоморфизм аугментации, определённый на базисе $g\mapsto 1.$ Иными словами, $I_G=\langle g-1|g\in G\rangle=\left\{\sum_{g\in G}\alpha_h\cdot g\left|\sum_{g\in G}\alpha_g=0\right.\right\}$, все суммы финитные.

Тем самым, $H_0(G,A) = \mathbb{Z} \otimes_{\mathbb{Z}[G]} A \cong A/(I_G A)$ — коинварианты. $I_G A = \langle ga - a | g \in G, a \in A \rangle$.

- Теперь посчитаем когомологии. $H^0(G,A) = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A)$. Всякому гомоморфизму $\varphi \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A)$ можно $\phi(1)$. Из G-линейности $\forall g \in G: \phi(1) = \phi(g \cdot 1) = g \cdot \phi(1)$, значит, $\phi(1) \in A^G \stackrel{def}{=} \{a \in A | \forall g \in G: ga = a\}$ инварианты. Значит, нулевые когомологии инварианты.
- $H_1(G,\mathbb{Z}) = G^{ab} \stackrel{def}{=} G/[G,G].$
- $H^1(G,A)=\mathrm{Der}(G,A)$ множество скрещённых гомоморфизмов.

Скрещенный гомоморфизм — это такое отображение $\phi: G \to A$, которое обладает свойством $\phi(gh) = g \cdot \phi(h) + \phi(g)$.

• $H_2(G,\mathbb{Z})=$? Предположим, что имеется точная последовательность групп $0\to R\to F\to G\to 1$, то есть $G\cong F/R$.

Тогда
$$H_2(G,\mathbb{Z})=rac{R\cap [F,F]}{[R,F]}.$$

Если [G,G]=G (G совершенна), то существует универсальное центральное расширение $\pi:S \twoheadrightarrow G$, то есть $\mathrm{Ker}(\pi) \in C(S)$, и

В этом случае $H_2(G,\mathbb{Z})={\rm Ker}\,\pi$. Например, в случае $G=SL_n(F):S={\rm St}_n(F)-$ группа Стейнберга. Ядро ${\rm St}_n(F) \twoheadrightarrow SL_n(F)-$ это $K_{2,n}(F)=H_2(G,\mathbb{Z})$. Для $n\geqslant 5$ от поля ничего не зависит.

Глава 2

Теория Галуа

Лекция VIII

15 апреля 2024 г.

2.1 Базовые понятия про расширения полей

Мы будем изучать расширения полей, и базовое поле будем обозначать F (от английского Field), а расширенное — K (от немецкого Körper). Имеется теоретико-множественное включение $F \subset K$, и включение полей обозначается K/F (это не надо путать с факторкольцом, никаких факторов здесь не берётся, просто общепринятое обозначение).

K является векторным пространством над F, и $\dim_F K \stackrel{def}{=} [K:F]$ — степень расширения.

Для элемента $\alpha \in K$ поле $F(\alpha)$ — наименьшее подполе в K, содержащее F и α .

2.1.1 Лемма о простых расширениях. Алгебраические и трансцендентные элементы

Лемма 2.1.1 (О простых расширениях). Либо $F(\alpha) \cong F(t)$ — поле дробно-рациональных функций, оно же поле частных F[t], его общий элемент имеет вид $\frac{p}{q}$ $(p \in F[t], q \in F[t]^*)$.

Либо $F(\alpha) \cong F[t]/(p)$, где $p \in F[t]$ — неприводимый. В этом случае $\deg p$ — степень расширения.

Доказательство. Рассмотрим гомоморфизм F-алгебр $\phi: F[t] \to F(\alpha), t \mapsto \alpha$.

• Если $\operatorname{Ker} \phi = \{0\}$, то $\operatorname{Im} \phi \cong F[t]$. Тем самым, $F(\alpha) \supset \operatorname{Im} \phi$, а раз $F(\alpha)$ — поле, то оно содержит и поле частных $Q(\operatorname{Im} \phi) \cong Q(F[t])$.

Так как $F(\alpha)$ — наименьшее подполе, содержащее α , то $F(\alpha) \cong F(t)$.

• Иначе, так как многочлены — PID — то $\ker \phi = p \cdot F[t]$, и $\operatorname{Im} \phi \cong F[t]/(p)$. То, что p неприводим, легко видеть от противного: если p = rs, то один из r, s ассоциирован с p, иначе в кольце появляются делители нуля.

Тем самым, раз p неприводим, то (p) — максимальный идеал, откуда $\operatorname{Im} \phi \cong F[t]/(p)$ — уже поле. Базисом F[t]/(p) над F является, например, $\left(1,\overline{t},\ldots,\overline{t}^{\deg(p)-1}\right)$.

В первом случае $F(\alpha)\cong F(t)$ элемент $\alpha\in K$ называется трансцендентным.

Во втором случае $F(\alpha)\cong F[t]/(p)$ элемент $\alpha\in K$ называется алгебраическим. В таком случае $p\in F[t]$ — минимальный многочлен α . Таким образом, $F(\alpha)=F[\alpha]$, где $F[\alpha]$ — наименьшее кольцо в K, содержащее F и α .

В случае расширений колец вместо слова алгебраический используют *целый* при дополнительном условии унитальности минимального многочлена.

Определение 2.1.1 (Алгебраическое расширение K/F). Такое расширение, что $\forall \alpha \in K$: α — алгебраический. В противном случае ($\exists \alpha \in K$: α — трансцендентный) расширение называют трансцендентным.

Определение 2.1.2 (Конечное расширение K/F). Расширение конечной степени: $[K:F] < \infty$.

Лемма 2.1.2. Пусть имеется композиция (ещё говорят башня) расширений L/K/F. Тогда $[L:F]=[L:K]\cdot [K:F]$.

Доказательство. Пусть $(a_{\alpha})_{\alpha \in A}$ — базис K над F, и $(b_{\beta})_{\beta \in B}$ — базис L над K.

Тогда несложно видеть, что $(a_{\alpha} \cdot b_{\beta})_{\alpha \in A, \beta \in B}$ — базис L над F.

2.1.2 Конечные и алгебраические расширения

Конечные и алгебраические расширения тесно связаны между собой, но, конечно, существует бесконечное алгебраическое расширение. Например, $\mathbb{Q}\left(\sqrt{p}\middle|p\in\mathbb{P}\right)$ — имеет бесконечную степень над \mathbb{Q} , так как корни из простых чисел линейно независимы над \mathbb{Q} (что вообще говоря тоже надо обосновать, но это верный факт).

Теорема 2.1.1. Пусть K/F — расширение полей. Следующие условия равносильны:

- 1. Расширение K/F конечно.
- 2. Расширение K/F алгебраическое и конечнопорождённое.
- 3. $K = F[\alpha_1, \ldots, \alpha_n]$, где все α_i алгебраичны над F.

Доказательство.

 $(3) \Rightarrow (1)$ Индукция по n.

База: $n=0 \Rightarrow K=F$.

<u>Переход:</u> $F[\alpha_1, \dots, \alpha_n] = F[\alpha_1, \dots, \alpha_{n-1}][\alpha_n]$. Так как α_n алгебраично над F, то оно алгебраично и над $F[\alpha_1, \dots, \alpha_{n-1}]$ (впрочем, степень минимального многочлена при увеличении поля может стать меньше).

 $(1) \Rightarrow (2)$ **Лемма 2.1.3.** Любой элемент конечного расширения K/F алгебраический.

Доказательство леммы.

Рассмотрим $\alpha \in K$. Так как расширение конечно, то $1, \alpha, \alpha^2, \ldots$ линейно зависимы. Выбрав линейную зависимость $\beta_0 + \beta_1 \alpha + \cdots + \beta_d \alpha^d = 0$. Тогда $\beta_0 + \beta_1 t + \cdots + \beta_d t^d$ аннулирует α , то есть ядро ϕ из доказательства (лемма 2.1.1) ненулевое.

Пусть [K:F]=d, значит, K имеет базис $(\alpha_1,\ldots,\alpha_d)$ над F. Тогда K порождено элементами α_1,\ldots,α_d даже просто как векторное пространство, а не как F-алгебра.

 $(2) \Rightarrow (3)$ Тавтологично.

2.1.3 Алгебраическое замыкание одного поля в другом

Пусть имеется расширение полей K/F, тогда $\mathrm{Int}_K F \stackrel{def}{=} \{\alpha \in K | \alpha \text{ алгебраичен над } F\}$ — целое (алгебраическое) замыкание F в K.

 $\operatorname{Int}_K F$ является полем: $\forall \alpha, \beta \in \operatorname{Int}_K F : \alpha - \beta, \alpha + \beta, \alpha \cdot \beta, \frac{\alpha}{\beta}$ (последнее при $\beta \neq 0$) лежат в $F[\alpha, \beta]$, а это — конечное расширение согласно (теорема 2.1.1).

2.1.4 Базис трансцендентности

Пусть $X \subset K$ — произвольное подмножество, где по-прежнему K/F — расширение полей.

Определение 2.1.3 (X алгебраически независим над F). $\forall f \in F[t_1, \dots, t_m], \forall x_1, \dots, x_m \in X$ (где x_i попарно различны): $f(x_1, \dots, x_m) \neq 0$.

Иными словами, отображение из универсальной F-алгебры, порождённой элементами X в F[X] (определённое на образующих $x\mapsto x$) имеет нулевое ядро.

Определение 2.1.4 (Линейная оболочка X над F). $\langle X \rangle \stackrel{def}{=} \operatorname{Int}_K F(X)$ (где, как обычно, F(X) — наименьшее подполе в K, содержащее F и X).

Определение 2.1.5 (X — (алгебраический) базис расширения K/F). Алгебраически независимое X такое, что $\langle X \rangle = K$. При этом |X| называется *степенью трансцендентности* K/F

Пример. В кольце F(t): одноэлементное множество $\{t\}$ — базис трансцендентности.

Для алгебраического базиса X верны те же аксиомы, что и для базиса векторных полей:

- 1. todo
- 2. todo
- 3. todo

Я не смог найти эти аксиомы, а интересно, может кто-то другой подскажем, как они выглядят?

Теорема 2.1.2. Степень трансцендентности не зависит от выбора базиса.

Доказательство. Аналогично подобному факту из линейной алгебры.

2.2 Построение полей

2.2.1 Поле разложения

Пусть F — поле, $f \in F[t]$.

Определение 2.2.1 (Поле разложения f над F). Расширение F_f/F , в котором f раскладывается на линейные множители, и вкладывающееся (**не факт**, что единственным образом) в любое другое поле, обладающее тем же свойством.

Примеры.

- $F = \mathbb{R}, f(t) = t^2 + 1$. В этом случае $F_f \cong \mathbb{C}$.
- $F = \mathbb{Q}, f(t) = t^3 2$. В этом случае $\mathbb{Q}\left(\sqrt[3]{2}\right)$ не поле разложения, оно вкладывается в \mathbb{R} , а f в \mathbb{R} на линейные множители не раскладывается.

Надо присоединить ещё какой-то корень f, достаточно присоединить какой-то $\sqrt[3]{1}$, отличный от 1; это то же самое, что присоединить $\sqrt{-3}$, так как $\left(\frac{-1\pm\sqrt{-3}}{2}\right)^3=1$. Тем самым, поле разложения $\mathbb{Q}_f\cong\mathbb{Q}\left[\sqrt[3]{2},\sqrt{-3}\right]$.

Теорема 2.2.1. Для любого $f \in F[t]$ существует его поле разложения.

Доказательство. Индукция по $\deg f$.

<u>База:</u> $\deg f = 1 \Rightarrow F_f = F$.

Переход: Пусть f = pg, где p — неприводим.

Пусть E := F[t]/(p). В $E: \alpha := \overline{t} = t + (p)$ — корень p.

Также в E: $f(t) = (t - \alpha) \cdot h(t)$ для некоторого h: $\deg h = \deg f - 1$. Положим $F_f \coloneqq E_h$, E_h существует по индукционному предположению.

Теперь пусть K/F — другое поле, в котором f раскладывается на линейные множители. Сначала устроим вложение $E \hookrightarrow K$, отправив α в любой корень p. Такой корень найдётся в K, так как F[t] — UFD, и раз уж f раскладывается на линейные множители в K, то p и подавно.

При этом h раскладывается в K на линейные множители, по индукции E_h вкладывается в K. \square

Пусть K/F и L/F — расширения полей. Тогда гомоморфизм $\phi: K \to L$ называется гомоморфизмом полей над F, если он оставляет F на месте. Все гомоморфизмы полей по определению сохраняют 1, в частности, любой гомоморфизм полей инъективен ($\phi(x) = \phi(y) \iff \phi(xy^{-1}) = \phi(1) \iff xy^{-1} = 1$).

Теорема 2.2.2. Пусть K — поле, в котором $f \in F[t]$ раскладывается на линейные множители. Тогда K — поле разложения $f \iff K \cong F[\alpha_1, \dots, \alpha_n]$, где α_i — все корни f (deg f = n).

Доказательство.

- \Leftarrow . Построенное в (теорема 2.2.1) поле разложения действительно порождено корнями f.
- \Rightarrow . В поле разложения f по определению лежат все корни f. Более того, раз в $F[\alpha_1,\ldots,\alpha_n]$ многочлен f разложим на линейные множители, то имеется гомоморфизм $K \to F[\alpha_1,\ldots,\alpha_n]$. Он сюръективен (в образе лежит F, так как гомоморфизм над F, и в образе лежат корни α_i , так как в них отправятся корни многочлена f) и инъективен (любой гомоморфизм полей инъективен).

Лекция IX 16 апреля 2024 г.

Лемма 2.2.1. Пусть K/F и L/F — конечные расширения, и $K \to L, L \to K$ — гомоморфизмы над F. Тогда $K \cong L$ (и оба отображения — изоморфизмы).

Доказательство. Достаточно убедиться, что оба гомоморфизма биективны, а это удобно проверять, рассматривая K и L, как векторные пространства над F. Так как гомоморфизмы полей — мономорфизмы, то $\dim_F K = \dim_F L$.

2.2.2 Конечные поля

Пусть F — конечное поле ($|F|<\infty$). В поле есть единница, и так как поле конечное, то его характеристика ненулевая: в конечной аддитивной группе поля любой элемент, в том числе 1, имеет конечный порядок. Пусть p — эта характеристика. Так как поле — область целостности, то $p\in\mathbb{P}$.

Тем самым, в F вкладывается поле из p элементов, изоморфное факторкольцу $\mathbb{Z}/p\mathbb{Z}$. Обозначим поле из p элементов за \mathbb{F}_p .

Лемма 2.2.2. Любое конечное поле характеристики p содержит p^n элементов, где $n \in \mathbb{N}$.

 \mathcal{A} оказательство. Так как F — векторное пространство над \mathbb{F}_p , то F $\stackrel{\mathbb{F}_p\text{-}\mathscr{V}ext}{\cong}$ \mathbb{F}_p^n для некоторого $n\in\mathbb{N}$.

Теорема 2.2.3. Для любого простого p и любого $n \in \mathbb{N}$ существует поле из p^n элементов. При этом все такие поля изоморфны (но изоморфизмов может быть несколько).

Доказательство.

• Обозначим $q \coloneqq p^n \in \mathbb{N}$. Рассмотрим $f \in \mathbb{F}_p[t], f(t) = t^q - t$, и посмотрим на его поле разложения $(\mathbb{F}_p)_f$. Так как в \mathbb{F}_p : q = 0, то $f'(t) = qt^{q-1} - 1 = -1$, что показывает, что у f нет кратных корней. Тем самым, $F \coloneqq (\mathbb{F}_p)_f$ содержит по меньшей мере q элементов — корни f.

• Рассмотрим корни f в его поле разложения $X := \{x \in F | x^q - x = 0\} \subset F$. Заметим, что X замкнуто относительно сложения, умножения и взятия обратного:

$$\begin{cases} x^q = x \\ y^q = y \end{cases} \Rightarrow \begin{cases} (xy)^q = xy \\ (x+y)^q = x^q + y^q = x + y \\ \left(\frac{1}{x}\right)^q = \frac{1}{x^q} = \frac{1}{x} \end{cases}$$

Первое следует из коммутативности, второе — из того, что p делит все биномиальные коэффициенты $\binom{q}{k}$, кроме $\binom{q}{0}$ и $\binom{q}{q}$; иными словами, $x\mapsto x^p$ — эндоморфизм Фробениуса из первого семестра, а $x^q=\left((x^p)^{\cdot\cdot}\right)^p$.

Тем самым, $X\leqslant F$ — подполе в F. Из замкнутости X относительно сложения $\mathbb{F}_p\subset X$, так как всякий элемент в \mathbb{F}_p — сумма единиц.

С другой стороны, X содержит все корни t^q-t , а F — поле разложения t^q-t , значит, имеется и гомоморфизм $F \to X$. X/\mathbb{F}_p и F/\mathbb{F}_p конечны, откуда (лемма 2.2.1) X = F.

• Пусть E — произвольное поле порядка p^n . Его характеристика равна p, значит, в него вкладывается \mathbb{F}_p . $|E^*| = q-1$, значит по теореме Лагранжа (о порядке элемента в группе) $\forall x \in E: x^{q-1} = 1$. Тем самым, f раскладывается на линейные множители и в E, откуда опять же имеется вложение $F \hookrightarrow E$. Но |F| = |E| = q, значит, $F \cong E$.

2.2.3 Алгебраическая замкнутость поля и алгебраическое замыкание

Лемма 2.2.3. Пусть F — поле. Следующие условия эквивалентны:

- 1. $\forall f \in F[t] \setminus F$: f раскладывается на линейные множители в F.
- 2. $\forall f \in F[t] \setminus F : f$ имеет корень в F.
- 3. $\forall f \in F[t] \setminus F$: (f неприводим \iff deg f = 1).
- 4. Любое алгебраическое расширение F совпадает с F.
- 5. Любое конечное расширение F совпадает с F.

Доказательство. Тривиально.

- $(1) \Rightarrow (2)$ Тавтологично.
- $(2)\Rightarrow (3)\Rightarrow$ следует из теоремы Безу (α корень $\iff t-\alpha-$ делитель), \iff следует из того, что все многочлены степени 1 неприводимы.
- $(3)\Rightarrow (4)$ Пусть E/F алгебраическое расширение, выберем $\theta\in E$, и найдём его минимальный многочлен. Он неприводим $\Rightarrow \deg f=1$, то есть $\theta\in F$.
- $(4) \Rightarrow (5)$ Тавтологично.
- $(5)\Rightarrow (1)$ Рассмотрим $f\in F[t].$ $F_f=F\Rightarrow$ все корни f лежат в F. Так как f неприводим, то $\deg f=1.$

Определение 2.2.2 (Алгебраически замкнутое поле). Поле F, удовлетворяющее условиям из предыдущей леммы (лемма 2.2.3).

Лемма 2.2.4. Пусть K/F — алгебраическое расширение, и любой многочлен из F[t] раскладывается на линейные множители в K[t]. Тогда K алгебраически замкнуто.

Доказательство. Пусть f – неприводимый в K[t]. Без потери общности f — унитальный: $f(t) = t^n + \alpha_{n_1} t^{n-1} + \cdots + \alpha_0$. Построим поле $E \coloneqq F[\alpha_0, \dots, \alpha_n]$, расширение E/F конечно.

f тем более неприводим в E, значит, можно рассмотреть поле $L\coloneqq E[t]/(f)$, расширение L/E, а

стало быть и
$$L/F$$
 тоже конечны.
$$\begin{matrix} K & L \\ \text{алгебраично} \mid \\ E \\ \text{конечно} \mid \\ F \end{matrix}$$

f имеет корень в L, назовём его β . В силу конечности β алгебраично над F, то есть $\exists g \in F[t]: g(\beta) = 0$. Согласно посылке леммы, g разложим на множители в K[t], значит, имеется вложение $\phi: F_q \hookrightarrow K$ над E. Но $f(\beta) = 0 \Rightarrow f(\phi(\beta)) = \phi(f(\beta)) = \phi(0) = 0$, то есть f имеет корень в K. \square

 $\mathit{Интересный}\ \phi \mathit{акт}.$ Можно ослабить посылку: если K/F — алгебраическое расширение, и любой многочлен из F[t] имеет корень в K, то K алгебраически замкнуто.

Лемма 2.2.5. Пусть L/F — расширение полей, причём L алгебраически замкнуто. Тогда $\operatorname{Int}_L F$ тоже алгебраически замкнуто.

Доказательство. Рассмотрим $f \in F[t]$. В L он раскладывается на линейные множители $f(t) = (t-\alpha_1) \cdot \ldots \cdot (t-\alpha_n)$, где $\alpha_i \in L$. По определению алгебраического замыкания F в L, $\alpha_i \in \operatorname{Int}_L F$. Применяя (лемма 2.2.4), получаем, что $\operatorname{Int}_L F$ алгебраически замкнуто.

Пример. Рассмотрим расширение \mathbb{C}/\mathbb{Q} . Целые алгебраические числа $\mathbb{A} \stackrel{def}{=} \operatorname{Int}_{\mathbb{C}} \mathbb{Q}$ — алгебраически замкнутое подполе в \mathbb{C} . Оно не совпадает с \mathbb{C} , так как \mathbb{C} континуально, а $\operatorname{Int}_{\mathbb{C}} \mathbb{Q}$ счётно.

Определение 2.2.3 (Алгебраическое замыкание поля F). Алгебраическое расширение F, являющееся алгебраически замкнутым полем. Обозначается F^{alg} .

Теорема 2.2.4. У любого поля F существует алгебраическое замыкание.

Доказательство. Рассмотрим множество многочленов F[t], как множество индексов, и введём множество переменных $X \coloneqq \{x_f | f \in F[t]\}$. Далее рассмотрим кольцо многочленов от этих переменных F[X], и профакторизуем его по идеалу $J \coloneqq (f(x_f)|f \in F[t])$.

Лемма 2.2.6. Этот идеал не совпадает со всем кольцом: $J \neq F[X]$.

Доказательство леммы.

Пойдём от противного: $J=F[X]\Rightarrow 1\in J$, то есть существует конечная линейная комбинация

$$g_1 f_1(x_{f_1}) + \dots + f_m f_m(x_{f_m}) = 1$$
, rge $f_i, g_i \in F[t]$ (\triangle)

Корни конечного множества многочленов мы умеем присоединять: введём $f\coloneqq f_1\cdot\ldots\cdot f_m$, в F_f у каждого из f_i есть корень, назовём его β_i . Теперь устроим гомоморфизм F-алгебр $\phi:F[X]\to F_f, \begin{cases} x_{f_i}\mapsto\beta_i\\x_g\mapsto0 \end{cases}$, он определён согласно универсальному свойству кольца многочленов

В образе (\triangle) обращается в равенство 0=1, но в F_f это, конечно, неверно.

Раз $J \leqslant F[X]$ не совпадает со всем кольцом, то можно взять максимальный идеал \mathfrak{m} , содержащий J, и не совпадающий со всем кольцом (лемма Цорна). Факторкольцо $E_1 := F[X]/\mathfrak{m}$ является полем, в котором образ переменной x_f — корень многочлена f.

К сожалению, не факт, что E_1 алгебраически замкнуто, (лемма 2.2.4) неприменима, так как неизвестно, что всякий многочлен из F[t] раскладывается в $E_1[t]$ на линейные множители.

Обозначим $E_0 \coloneqq F$, и устроим итерации, по E_i получая E_{i+1} согласно вышеописанной процедуре. Для цепочки вложений полей $E_0 \hookrightarrow E_1 \hookrightarrow E_2 \hookrightarrow \dots$ можно рассмотреть объединение с понятно

определёнными операциями. Поле $\overline{F}\coloneqq\bigcup_{i=0}^\infty E_i$ уже является алгебраически замкнутым полем (любой многочлен из $\overline{F}[t]$ имеет конечное количество коэффициентов, которые все лежат в каком-то E_N , а корень можно найти в E_{N+1}).

Теперь осталось положить $F^{\mathrm{alg}} \coloneqq \mathrm{Int}_{\overline{F}} F$, оно алгебраически замкнуто, согласно (лемма 2.2.5). \square

Лекция X 22 апреля 2024 г.

Предложение 2.2.1. Пусть E/F — алгебраическое расширение, и L/F — такое расширение, ито $\forall f \in F[t]$: f раскладывается на линейные множители в L[t]. Обозначим $K := \operatorname{Int}_L F$. Тогда

- 1. Существует вложение $\phi: E \hookrightarrow L$ над F.
- 2. Для всякого вложения ϕ : $\phi(E) \subset K$.
- 3. Если E алгебраически замкнуто, то $\phi(E) = K$.

Доказательство.

1. Образуем множество $\mathcal{X}\coloneqq \left\{(\widetilde{F},\phi)\Big| F\subset \widetilde{F}\subset E, \phi:\widetilde{F}\hookrightarrow L\right\}$. На \mathcal{X} введём частичный порядок: $(F',\phi')\preceq (F'',\phi'')\iff F'\subset F''$ и $\phi''\big|_{F'}=\phi'$.

 \mathcal{X} непусто, так как $(F, F \hookrightarrow L) \in \mathcal{X}$.

Убедимся, что здесь применима лемма Цорна: если $(F_{\alpha},\phi_{\alpha})_{\alpha\in A}$ — цепь, то $\widetilde{F}\coloneqq\bigcup_{\alpha\in A}F_{\alpha}$ вместе с $\widetilde{\phi}$ — верхняя грань (где $\widetilde{\phi}$ определено так: и $\forall x\in\widetilde{F}:\widetilde{\phi}(x):=\phi_{\alpha}(x)$ для произвольного α , такого, что $x\in F_{\alpha}$).

Тем самым, имеется максимальный элемент $(\widetilde{F},\widetilde{\phi})\in\mathcal{X}$. Предположим, что $\widetilde{F}\neq E$, то есть $\exists \theta\in E\setminus\widetilde{F}$. Пусть $f\in F[t]$ — минимальный многочлен θ в F, и $g\in\widetilde{F}[t]$ — минимальный многочлен θ над \widetilde{F} .

Отождествим \widetilde{F} с его образом $\widetilde{\phi}(\widetilde{F})\subset L$ (ϕ инъективно, как гомоморфизм полей).

- В L многочлен f раскладывается на линейные множители. Так как $g\mid f$, то $g\in L[t]$ тоже раскладывается на линейные множители, то есть $\exists \alpha\in L: g(\alpha)=0$. Согласно универсальному свойству простого расширения: $\widetilde{F}[\theta]\cong \widetilde{F}[t]/(g)$, то есть $\exists !\psi: \widetilde{F}[\theta]\to \widetilde{F}[\alpha]$ гомоморфизм полей над \widetilde{F} , такой, что $\psi(\theta)=\alpha$. Пара $(\widetilde{F}[\theta],\psi)$ строго больше пары $(\widetilde{F},\widetilde{\phi})$, противоречие. Тем самым, $\widetilde{F}=E$, и имеется полностью определённое $E\to L$.
- 2. Корень $f \in F[t]$ переходит в корень, поэтому ϕ сохраняет множество алгебраических элементов, откуда $\phi(E) \subset K$.
- 3. Рассмотрим $\beta \in K$, это корень некоторого унитального многочлена $f \in F[t]$. В E многочлен f раскладывается на линейные множители $f(t) = (t \alpha_1) \cdot \ldots \cdot (t \alpha_n)$, где $\alpha_i \in E$. Применяя индуцированный $\phi : E[t] \to L[t]$ к данному разложению, получаем $f(t) = (t \phi(\alpha_1)) \cdot \ldots \cdot (t \phi(\alpha_n))$. Подставляя β , получаем, нуль. Значит, $\beta = \phi(\alpha_i)$ для некоторого i.

Следствие 2.2.1. Любое алгебраическое расширение F вкладывается в алгебраическое замыкание F.

Следствие 2.2.2. Алгебраическое замыкание F вкладывается в любое алгебраически замкнутое поле, содержащее F.

Следствие 2.2.3. Алгебраическое замыкание единственно с точностью до **не единственного** изоморфизма.

2.3 Сепарабельность

Пусть F — поле, $f \in F[t]$.

Определение 2.3.1 (Сепарабельный многочлен f). f не имеет кратных корней в F^{alg} .

Так как кратные корни — это корни $\gcd(f,f')$, то условие сепарабельности эквивалентно условию $\gcd(f,f')=1.$

Если $f = \prod_{i=1}^n f_i$, где f_i неприводимы, то f сепарабелен \iff все f_i различны и сепарабельны. Неприводимый же многочлен на сепарабельность проверять легко: $\deg f' < \deg f$, поэтому при $\deg f > 0$: $\gcd(f,f') \neq 1 \iff f' = 0$ (что бывает только в конечной характеристике).

Теперь пусть E/F — алгебраическое расширение полей.

Определение 2.3.2 ($\alpha \in E$ сепарабелен над F). Минимальный многочлен α сепарабелен.

Определение 2.3.3 (Расширение E/F сепарабельно). $\forall \alpha \in E : \alpha \in E$ сепарабелен над F.

Интересный факт. $F = E^{\operatorname{Aut}(E/F)} \iff E/F$ — сепарабельное расширение. Здесь $\operatorname{Aut}(E/F)$ — автоморфизмы E, тождественные над F, и для $G \subset \operatorname{Aut}(E/F)$: $E^G \stackrel{def}{=} \{x \in E | \forall g \in G : gx = x\}$ — множество точек, оставляемых под действием G на месте.

Примеры (Сепарабельные и несепарабельные расширения).

- Любое расширение поля характеристики нуль сепарабельно.
- Пусть $E := \mathbb{F}_p(t)$, $F := \mathbb{F}_p(t^p)$ (подполе в E, содержащее только степени t, кратные p). Рассмотрим многочлен $x^p t^p \in F[x]$. Над $E : x^p t^p = (x t)^p$, то есть он раскладывается на кратные линейные множители. Но над F многочлен неприводим, так как легко перечислить все его делители в E[t], и убедиться, что в F они не лежат.

Получается, $x^p - t^p \in F[x]$ неприводим и несепарабелен. И действительно, $(x^p - t^p)' = px^{p-1} = 0$.

Определение 2.3.4 (Совершенное поле F). Любое алгебраическое расширение F сепарабельно.

Упражнение 2.3.1. Верно ли, что F совершенно \iff эндоморфизм Фробениуса $\operatorname{Frob}: F \to F, x \mapsto x^p$ сюръективен?

Примеры.

- Если $\operatorname{char} F = 0$, то F совершенно.
- Если $|F| < \infty$, то F совершенно.

Доказательство. Рассмотрим $\theta \in F^{\mathrm{alg}}$. $|F[\theta]| = q^n$, где $q \coloneqq |F|$. Тогда $\theta^{q^n-1} = 1$ (теорема Лагранжа для мультипликативной группы $F[\theta]^*$), то есть θ — корень $t^{q^n-1}-1$.

Этот многочлен взаимно прост со своей производной: $\left(t^{q^n-1}-1\right)'=(q^n-1)t^{q^n-2}=-t^{q^n-2},$ и $\gcd(-t^{q^n-2},t^{q^n-1}-1)=1.$

Минимальный многочлен θ делит $t^{q^n-1}-1$, значит, он тоже не имеет кратных корней. \Box

Лекция XI 29 апреля 2024 г.

Предложение 2.3.1. Пусть E/F — алгебраическое расширение полей. Следующие условия эквивалентны:

- 1. E/F несепарабельно.
- 2. Минимальный многочлен некоторого $\theta \in E$ несепарабелен над F.
- 3. $\exists f \in F[t]$ неприводимый в F[t], такой, что f' = 0, причём f имеет корень в E.

- $4. \exists f \in F[t]$ неприводимый в F[t], такой, что f имеет кратный корень в E.
- 5. $\exists f \in F[t]$ неприводимый в F[t], такой, что $\exists g \in F[t] : f(t) = g(t^p)$, причём f имеет корень E.

 $\ \ \, \mathcal{L}$ оказательство. $(1) \iff (2) \Rightarrow (3) \iff (4)$ и $(3) \Rightarrow (5)$ очевидно (эквивалентность $(3) \iff (4)$ соблюдена, так как для неприводимого многочлена $f: \gcd(f,f') \neq 1 \iff f'=0$).

Докажем (5)
$$\Rightarrow$$
 (2). Пусть $\theta \in E$ — корень f . Подставим: $f(\theta) = g(\theta^p) = 0$. Получили $(t - \theta^p) \mid g \Rightarrow (t - \theta)^p = t^p - \theta^p \mid f$.

На самом деле, данное предложение говорит, что кратность любого корня неприводимого несепарабельного многочлена делится на p. Используя его, несложно доказать эквивалентность из (упражнение 2.3.1):

Доказательство. Если E/F несепарабельно, то найдётся неприводимый многочлен $f=(\alpha_n t^{pn}+\alpha_{n-1}t^{p(n-1)}+\cdots+\alpha_0)\in F[t]$. Но так как автоморфизм Фробениуса сюръективен, то $\forall \alpha_j\in F:\exists \beta_j\in F:\beta_j^p=\alpha_j$. Получаем

$$\alpha_n t^{pn} + \alpha_{n-1} t^{p(n-1)} + \dots + \alpha_0 = (\beta_n t^{pn} + \beta_{n-1} t^{p(n-1)} + \dots + \beta_0)^p$$

что противоречит неприводимости f.

Упражнение 2.3.2. Сепарабельное расширение сепарабельного расширения сепарабельно.

2.4 Расширения Галуа

Определение 2.4.1 (Расширение E/F нормально). Любой неприводимый многочлен из F[t], имеющий корень в E, раскладывается на линейные множители в E

Пример. $\mathbb{Q}\left[\sqrt[3]{2}\right]/\mathbb{Q}$ не нормально, так как t^3-2 не раскладывается на линейные множители даже в \mathbb{R} .

Любое расширение несложно сделать нормальным, присоединив все корни всех неприводимых многочленов из F[t], имеющих корни в E.

Определение 2.4.2 (Расширение Галуа). Конечное сепарабельное нормальное расширение.

Условие конечности в определении иногда отсутствует, но мы другими заниматься не будем.

Определение 2.4.3 (Группа Галуа расширения Галуа E/F). Группа автоморфизмов E, тождественных на F: $Gal(E/F) \stackrel{def}{=} Aut(E/F)$.

Группа автоморфизмов расширения E/F имеет смысл и не для расширения Галуа, но там не используется запись ${
m Gal.}$

2.4.1 Теорема о количестве вложений

Теорема 2.4.1. Пусть имеются расширения K/F и E/F, и $f \in F[t]$. При этом K порождено некоторыми корнями многочлена f, а в E: f раскладывается на линейные множители. Пусть n — количество вложений $K \hookrightarrow E$ над F.

- 1. $0 < n \le [K : F]$
- 2. Если f сепарабелен, то n = [K : F].
- 3. Если f несепарабелен, свободен от квадратов в F[t], и любой неприводимый в F[t] сомножитель f имеет корень в K, то n < [K:F].

Доказательство. Индукция по степени расширения [K:F].

<u>База:</u> $[K:F]=1 \iff K=F$. Все три пункта очевидны.

Переход: разложим $f=f_1\cdot\ldots\cdot f_n$, где неприводимые $f_i\in F[t]$. $K\neq F\Rightarrow$ не все f_i не имеют корней в $K\setminus F$. Без потери общности f_1 имеет корень в $K\setminus F$. Дополнительно, если такой существует, то выберем f_1 , как несепарабельный множитель, имеющий корень в $K\setminus F$.

Зафиксируем какое-то вложение $F[t]/(f_1) \hookrightarrow K$, отождествим $F[t]/(f_1)$ со своим образом $\widetilde{F} \leqslant K$. Используя универсальное свойство простого расширения, получаем, что количество вложений $\widetilde{F} \hookrightarrow E$ (назовём это количество k) равно количеству корней f_1 в E.

Если f_1 сепарабелен, то в E он имеет $\deg f_1$ корней, иначе — строго меньше.

Пусть $\phi:\widetilde{F}\hookrightarrow E$ — фиксированное вложение. Отождествим \widetilde{F} и $\phi(\widetilde{F})$. Расширение K/\widetilde{F} порождено корнями f, он по-прежнему раскладывается на линейные множители в E.

 $[K:\widetilde{F}]\cdot [\widetilde{F}:F]=[K:F]\Rightarrow [K:\widetilde{F}]<[K:F]$. По индукционному предположению существует m вложений $K\hookrightarrow E$ над \widetilde{F} , где $m\leqslant [K:\widetilde{F}]$.

Так как столько вложений имеется для каждого ϕ , то $n=km\leqslant [\widetilde{F}:F]\cdot [K:\widetilde{F}]=[K:F]$. При этом, если f сепарабелен и свободен от квадратов, то несепарабельный f_1 , имеющий корень в K, найдётся, тогда $k<[\widetilde{F}:F]$ и n<[K:F].

Следствие 2.4.1. Пусть K/F и E/F — конечные расширения.

- 1. Количество вложений $K \hookrightarrow E$ над F не превосходит [K:F].
- 2. Существует расширение L/E: имеется вложение $K \hookrightarrow L$ над F.
- 3. Если E/F расширение Галуа, то количество вложений $K \hookrightarrow E$ над F равно либо [K:F], либо 0.

Доказательство. Пусть $K=F[\alpha_1,\ldots,\alpha_n]$, пусть f_1,\ldots,f_n — минимальные многочлены α_1,\ldots,α_n соответственно.

Избавимся от ассоциированных, оставив только уникальные, и положим f равному их произведению.

Положим $L \coloneqq E_f$. Теперь выполнена посылка (теорема 2.4.1), откуда количество вложений $K \hookrightarrow L$ над F не 0, но и не более [K:F].

Если существует вложение $K \hookrightarrow E$ над F, то все f_i имеют корни в E. Если дополнительно E/F — расширение Галуа, то и подрасширение E/F — сепарабельно. Тогда $\alpha_1, \ldots, \alpha_n$ сепарабельны над F, то есть f сепарабелен над F. А из нормальности расширения E/F все f_i раскладываются на линейные множители в E. Тем самым, E0 (теорема E1) завершает доказательство.

Следствие 2.4.2. Для расширения Γ алуа: $|\operatorname{Gal}(E/F)| = [E:F]$.

2.4.2 Лемма Артина

Теорема 2.4.2 (Лемма Артина). Пусть E — поле, и $G \leqslant \operatorname{Aut}(E)$, $|G| < \infty$. Обозначим $F := E^G \stackrel{def}{=} \{\alpha \in E | \forall g \in G : g\alpha = \alpha\}$.

Тогда [E:F] = |G|.

Доказательство. Достаточно доказать, что $[E:F]\leqslant |G|$, обратное неравенство следует из (следствие 2.4.1).

Пусть $G = \{\phi_1, \phi_2, \dots, \phi_n\}$, где $\phi_1 = 1_G = \mathrm{id}_E$. Пусть $m > n, \alpha_1, \dots, \alpha_m \in E$, докажем, что $\alpha_1, \dots, \alpha_m$ линейно зависимы над F, то есть что имеет место линейная зависимость $\sum_{i=1}^m \alpha_i x_i = 0$.

Заведём систему линейных уравнений $\left\{\sum\limits_{i=1}^m\phi_j(\alpha_i)x_i=0\right\}_{j=1}^n$ относительно переменных x_1,\ldots,x_m .

В ней уравнений меньше, чем неизвестных, поэтому по теореме о размерности пересечения имеется ненулевое решение $\beta_1, \dots, \beta_m \in E$. Дальше надо доказать, что найдётся решение, где все $\beta_i \in F$.

Выберем набор β_1, \dots, β_m с наименьшим количеством ненулевых элементов. Пусть $\beta_i \neq 0$ для некоторого i, отнормируем решение, поделив на β_i . Теперь $\beta_i = 1$. Утверждается, что все $\beta_i \in F$.

От противного: если $\exists k: \beta_k \notin F$, то $\exists l: \phi_l(\beta_k) \neq \beta_k$. Тогда не только β_1, \ldots, β_m — решение, но и $\phi_l(\beta_1), \ldots, \phi_l(\beta_m)$ — тоже решение, причём их поэлементная разность имеет меньшее количество ненулевых элементов. Получаем противоречие.

Лекция XII

6 мая 2024 г.

Следствие 2.4.3. Для любой группы $G \leqslant \operatorname{Aut}(E)$: $\operatorname{Aut}(E/E^G) = G$.

 \mathcal{A} оказательство. Очевидно, $G \leqslant \operatorname{Aut}(E/E^G)$. По лемме Артина $|G| = [E:E^G] \geqslant |\operatorname{Aut}(E/E^G)| \geqslant |G|$, и равенство достигается только при $G = \operatorname{Aut}(E/E^G)$

2.4.3 Теорема о характеризации расширений Галуа

Теорема 2.4.3 (Характеризация расширений Галуа). Пусть E/F — расширение полей. Следующие условия эквивалентны:

- 1. E/F расширение Галуа.
- 2. E поле разложения некоторого сепарабельного $f \in F[t]$.
- 3. $F = E^{\operatorname{Aut}(E/F)}$ и $[E:F] < \infty$.
- 4. Для некоторой конечной $G \leqslant \operatorname{Aut}(E)$: $F = E^G$.

Доказательство.

 $(1)\Rightarrow (2)$ Аналогично доказательству (следствие 2.4.1). Так как E/F — расширение Галуа, то оно порождено конечным множеством элементов: $E=F[\alpha_1,\ldots,\alpha_n]$. Пусть $f_i\in F[t]$ — минимальные многочлены α_i , и пусть $f:=f_{i_1}\cdot\ldots\cdot f_{i_k}$, где перемножаются уникальные среди f_i .

f сепарабелен, как произведение взаимно простых сепарабельных многочленов, E порождено корнями f, и так как E/F нормально, то f разложим на линейные множители в E. Согласно (теорема 2.2.2), $E=F_f$.

- $(2)\Rightarrow (3)$ Согласно (следствие 2.4.1), $|\operatorname{Aut}(E/F)|=[E:F]$. Ясно, что $F\subset \widetilde{F}:=E^{\operatorname{Aut}(E/F)}$. С другой стороны, по лемме Артина, $[E:\widetilde{F}]=|\operatorname{Aut}(E/F)|$, откуда $[\widetilde{F}:F]=1$.
- $(3)\Rightarrow (4)$ Согласно (теорема 2.4.1), $[E:F]<\infty\Rightarrow |\operatorname{Aut}(E/F)|<\infty$, тем самым, $G\coloneqq\operatorname{Aut}(E/F)$ подойдёт.
- $(4)\Rightarrow (1)$ По лемме Артина, [E:F]=|G|, тем самым, расширение конечно. Пусть $f\in F[t]$ неприводимый, имеющий корень $\alpha\in E$. Рассмотрим орбиту α под действием $G\colon G\alpha=\{\alpha_1,\dots,\alpha_m\}$. Пусть $h(t):=(t-\alpha_1)\cdot\dots\cdot(t-\alpha_m)\in E[t]$. Раскрыв скобки (по теореме Виета)

$$h(t) = t^m - s_1(\alpha_1, \dots, \alpha_m)t^{m-1} + s_2(\alpha_1, \dots, \alpha_m)t^{m-2} + \dots + (-1)^m s_m(\alpha_1, \dots, \alpha_m)$$

где $s_k(\alpha_1,\ldots,\alpha_m)-k$ -й основной симметрический многочлен, то есть сумма всевозможных произведений вида $\alpha_{i_1}\cdot\ldots\cdot\alpha_{i_k}$ по всем кортежам $1\leqslant i_1<\cdots< i_k\leqslant m$. Эти коэффициенты инвариантны под действием G, значит, они лежат в F. Под действием G коэффициенты h остаются на месте, а корни h переходят в корни.

Таким образом, $\forall g \in G: \exists \sigma \in S_m: g(\alpha_i) = \alpha_{\sigma(i)}$. Но раз h раскладывается на различные линейные множители в E[t], то минимальный многочлен α (который делит h) тоже раскладывается на различные линейные множители в E[t]. Так как $\alpha \in E$ был произвольным, то E/F по определению сепарабельно и нормально.

2.4.4 Характеризация сепарабельных расширений

Следствие 2.4.4. Расширение E/F, порождённое конечным числом сепарабельных элементов, вкладывается в расширение Галуа (и, следовательно, сепарабельно).

Доказательство. Аналогично доказательству (следствие 2.4.1). Пусть $E = F[\alpha_1, \dots, \alpha_n]$, где α_i сепарабельны. Пусть $f_i \in F[t]$ — минимальный многочлены α_i , и пусть $f \coloneqq f_{i_1} \cdot \dots \cdot f_{i_k}$, где перемножаются уникальные среди f_i .

f сепарабелен, можно устроить вложение $E \hookrightarrow F_f$ (оно есть, например, согласно (следствие 2.4.1)), а F_f — расширение Галуа согласно (теорема 2.4.3).

Следствие 2.4.5. Пусть K/F — расширение полей. Множество элементов K, сепарабельных над F, образует поле.

Доказательство. $\forall \alpha, \beta \in K : F[\alpha, \beta]$ сепарабельно (следствие 2.4.4), значит, $\alpha + \beta, \alpha\beta$ и даже $\frac{\alpha}{\beta}$ (при $\beta \neq 0$) тоже сепарабельны.

Это поле называется сепарабельным замыканием F в K. Если опускают K, то подразумевается сепарабельное замыкание в $F^{\rm sep} \subset F^{\rm alg}$.

Определение 2.4.4 (Чисто несепарабельное расширение K/E). $\forall \alpha \in K \setminus E$: α не сепарабелен над E

Следствие 2.4.6. Любое алгебраическое расширение K/F раскладывается в башню сепарабельного расширения E/F и чисто несепарабельного K/E.

2.5 Соответствие Галуа

Следствие 2.5.1. Пусть имеется башня расширений E/K/F, и E/F — расширение Галуа. Тогда E/K — расширение Галуа.

Доказательство. Раз E/F — расширение Галуа, то $\exists f \in F[t] : E = F_f$, где f сепарабелен. Тогда $E = K_f$, значит, E/K — действительно расширение Галуа.

Теперь у нас всё готово, чтобы установить соответствие Галуа.

E/F — расширение Галуа, $G \coloneqq \operatorname{Gal}(E/F) = \operatorname{Aut}(E/F)$. Пусть $\mathcal{F} \coloneqq \{K \leqslant E | F \leqslant K \leqslant E\}$, и $\mathcal{G} \coloneqq \{H \leqslant G\}$. Тогда имеется биекция $\mathcal{F} \leftrightarrow \mathcal{G}$: подполю $K \in \mathcal{F}$ сопоставляется $\operatorname{Gal}(E/K) \leqslant G$. Обратно, подгруппе $H \in \mathcal{G}$ сопоставляется подполе E^H .

Теорема 2.5.1 (Соответствие Галуа). Указанные выше отображения $\mathcal{F} \leftrightarrow \mathcal{G}$ — взаимно обратные биекции, удовлетворяющие следующим свойствам:

- Монотонность по включению: $H \leqslant H' \leqslant G \Rightarrow E^{H'} \leqslant E^H$.
- При $H \leqslant H' \leqslant G : |H:H'| = [E^H:E^{H'}].$
- $\forall \sigma \in G : \sigma (E^H) = E^{\sigma H \sigma^{-1}}$.
- E^H/F расширение Галуа $\iff H \lessdot G$. В этом случае $\mathrm{Gal}(E^H/F) \cong G/H$.

Доказательство.

- $Gal(E/E^H) = H$ следствие из леммы Артина (следствие 2.4.3).
- $E^{\mathrm{Gal}(E/K)} = K$ согласно теореме о характеризации расширений Галуа (теорема 2.4.3). E/K расширение Галуа согласно ей же (точнее, (следствие 2.5.1)).
- Монотонность по включению очевидна.
- По лемме Артина $\forall H'\leqslant H\leqslant G: |H:H'|=\frac{|H|}{|H'|}=\frac{\left[E:E^H\right]}{\left[E:E^{H'}\right]}=\left[E^{H'}:E^H\right].$
- Запишем цепочку равносильностей $\alpha \in E^H \iff \forall h \in H: h(\alpha) = \alpha \iff \forall h \in H: \sigma h \sigma^{-1}(\sigma \alpha) = \sigma \alpha \iff \sigma \alpha \in E^{\sigma H \sigma^{-1}}.$
- $H \leqslant G \iff \forall \sigma \in G : \sigma H \sigma^{-1} = H \iff \forall \sigma \in G : \sigma(E^H) = E^H$. Рассмотрим гомоморфизм $\theta : G \to \operatorname{Aut}(E^H/F), \sigma \mapsto \sigma\big|_{E^H}$. Очевидно, $\operatorname{Ker}(\theta) = H$. Покажем, что θ сюръективно. Пусть $\eta \in \operatorname{Aut}(E^H/F)$, покажем, что $\eta \in \operatorname{Im}(\theta)$.

Расширение E/F нормально, значит, $\exists f \in F[t] : E = F_f$. Тогда и подавно $(E^H)_f = E$. Так как $E = (E^H)_f \cong \eta(E^H)_f$, то по теореме о количестве вложений \exists хотя бы одно вложение $E \to E$ над η (то есть продолжение η , как отображения полей). Итого θ сюръективно.

Тем самым, ${\rm Aut}(E^H/F)\cong G/H$. Теперь заметим, что $F=E^G=(E^H)^{G/H}\Rightarrow E^H/F-$ расширение Галуа, и ${\rm Gal}(E^H/F)\cong G/H$.

Обратно: пусть E^H/F нормально, $\alpha \in E^H$ — корень некоторого многочлена $f \in F[t]$. Тогда $\forall \sigma \in G : \sigma(\alpha)$ — корень f, то есть $\sigma(E^H) = E^H$. С другой стороны, $\sigma(E^H) = E^{\sigma H \sigma^{-1}}$, и так как соответствие Галуа биективно, то $\forall \sigma \in G : \sigma H \sigma^{-1} = H$, то есть $H \leqslant G$.

Теперь можно нарисовать некоторые картинки:

Здесь одно поле находится над другим, если верхнее — расширение нижнего. Их обычно соединяют просто чертой, а не стрелкой, и на черте написана группа Галуа расширения.

Лекция XIII 20 мая 2024 г.

Определение 2.5.1 (Решётка). Частично упорядоченное множество, в котором есть все конечные инфимумы (наибольший элемент, меньший данных) и супремумы (наименьший элемент, больший данных).

Соответствие Галуа устанавливает антиизоморфизм решёток подгрупп и подполей, где порядок индуцирован с включения.

Пусть K и L — подполя большого поля E. Наименьшее подполе в E, содержащее и K, и L, обозначают $K \cdot L.$

Предложение 2.5.1. Пусть E/F — расширение Галуа, $G \coloneqq \mathrm{Gal}(E/F)$. Выберем подгруппы $P,Q \leqslant G$, и соответствующие им поля $K \coloneqq E^P, L \coloneqq E^Q$, и рассмотрим следующую башню

полей:

Eсли $K/(K\cap L)$ нормально, то и $(K\cdot L)/L$ нормально, причём $\mathrm{Gal}(K\cdot L/L)\cong\mathrm{Gal}(K/K\cap L).$

 \mathcal{A} оказательство. Так как $K/K\cap L$ нормально, то $P\leqslant \langle P\cup Q\rangle$. Тем самым, $\langle P\cup Q\rangle=PQ\stackrel{def}{=}\{pq|p\in P,q\in Q\}$, и $P\cap Q\leqslant Q$, откуда из соответствия Галуа $K\cdot L/L$ нормально.

Согласно теореме Нётер об изоморфизме

$$\operatorname{Gal}(K \cdot L/L) \cong \frac{Q}{Q \cap P} \cong \frac{PQ}{P} \cong \operatorname{Gal}(K/K \cap L)$$

Пусть $f \in F[t]$ — сепарабельный.

Определение 2.5.2 (Группа Галуа многочлена f). $\mathrm{Gal}(f/F) \stackrel{def}{=} \mathrm{Gal}(F_f/F)$. Если поле F не указано, то логично в качестве него брать наименьшее поле, содержащее коэффициенты многочлена. В частности характеристике нуль выбирается $F := \mathbb{Q}$ (коэффициенты многочлена f).

Пусть имеется расширение E/F, и $f \in F[t] \subset E[t]$. Из определения видно, что $E_f = E \cdot F_f$, так как F_f содержит все корни f, а E_f порождено ими над E.

Таким образом, имеет место башня полей

Согласно (предложение 2.5.1), $\operatorname{Gal}(E_f/E) \cong \operatorname{Gal}(F_f/E \cap F_f) \leqslant \operatorname{Gal}(F_f/F)$.

2.6 Применения теории Галуа

2.6.1 Разрешимые группы и субнормальные ряды

Определение 2.6.1 (Разрешимая группа G). Такая группа G, что существует субнормальный ряд с абелевыми ϕ акторами $1 = G_0 \leqslant G_1 \ldots \leqslant G_n = G$ (факторы ряда — факторгруппы G_{i+1}/G_i).

Лемма 2.6.1. Группа разрешима \iff существует нормальный ряд с абелевыми факторами, то есть ряд $1 = G_0 \triangleleft G_1 \ldots \triangleleft G_n$, где все $G_i \triangleleft G$.

Доказательство.

- ⇐. Очевидно.
- \Rightarrow . Согласно посылке, у группы G есть субнормальный ряд с абелевыми факторами $1=G_0 \leqslant G_1 \leqslant \ldots \leqslant G_n = G$. Построим ряд по алгоритму $\widetilde{G}_{i-1} \coloneqq \left[\widetilde{G}_i, \widetilde{G}_i\right]$.

Лемма 2.6.2. *Если* $H \leq G$, то $[H, H] \leq G$.

Доказательство леммы.

На образующих: $\forall h_1, h_2 \in H : {}^g[h_1, h_2] = [{}^gh_1, {}^gh_2] \in [H, H].$

Согласно лемме, это будет нормальный ряд с абелевыми факторами.

Теперь убедимся, что $[G_{i+1},G_{i+1}]\leqslant G_i$. Профакторизуем обе части предполагаемого выключения по G_i . Слева будет $[G_{i+1},G_{i+1}]/G_i=[G_{i+1}/G_i,G_{i+1}/G_i]=\{1\}$, так как фактор абелев. Тем самым, включение выполнено.

По индукции легко видеть, что $\widetilde{G}_i \leqslant G_i$, откуда нормальный ряд $\widetilde{G}_n \geqslant \widetilde{G}_{n-1} \geqslant \dots$ обрывается на шаге с номером не больше n.

Определение 2.6.2 (Композиционный ряд). Неуплотняемый субнормальный ряд без повторений. Неуплотняемость означает, что любой фактор — простая (без нормальных подгрупп) группа.

В самом деле, если $H \leqslant G_{i+1}/G_i$, то $\pi_{G_i}^{-1}(H)$ можно вставить в ряд между G_i и G_{i+1} .

Лемма 2.6.3. Любые два композиционных ряда эквивалентны. Любые два субнормальных ряда обладают эквивалентными уплотнениями. Факторы композиционного ряда изоморфны циклическим группам простого порядка.

Доказательство. Аналогично теореме Жордана — Гёльдера.

2.6.2 Основная теорема алгебры

Лемма 2.6.4. Пусть $|G| = p^n$. Тогда $\exists H \leqslant G : |G:H| = p$.

Доказательство. Пусть $n\geqslant 1$. Центр $C\leqslant G$ p-группы нетривиален, значит, $\pi_C(G)=G/C$ имеет порядок строго меньше p^n . По индукции в ней есть подгруппа $\widetilde{H}\leqslant G/C$ индекса p, тогда $|G:\pi_C^{-1}(H)|=p$.

Теорема 2.6.1 (FTHA). $\mathbb{C} = \mathbb{R}\left[\sqrt{-1}\right]$ алгебраически замкнуто.

Доказательство. Рассмотрим конечное расширение E/\mathbb{C} , тогда расширение E/\mathbb{R} тоже конечно. Вложим его в нормальное расширение E'/\mathbb{C} (в расширение Галуа).

 $G \coloneqq \operatorname{Gal}(E'/\mathbb{R})$, пусть $|G| = 2^k \cdot m$, где m нечётно. Пусть P — силовская 2-подгруппа в G: |G:P| = m. Так как $[E':\mathbb{R}] = 2^k \cdot m$ и $[E':E'^P] = |P| = 2^k$, то $[E'^P:\mathbb{R}] = m$.

Рассмотрим $\alpha \in E'^P$, пусть $f \in \mathbb{R}[t]$ — минимальный многочлен α . Тогда $[\mathbb{R}[\alpha]:\mathbb{R}] = \deg f \mid m$, откуда $\deg f$ нечётна. Но f неприводим над \mathbb{R} , а он нечётной степени. Используя соображения полноты \mathbb{R} и непрерывности $(\lim_{x \to -\infty} f(x) = -\infty$ и $\lim_{x \to +\infty} f(x) = +\infty$), получаем, что у f есть корень. Значит, $\deg f = 1$, то есть $\alpha \in \mathbb{R}$. Тем самым, $E'^P = \mathbb{R}$, соответствие Галуа говорит, что P = G.

 $\mathrm{Gal}(E'/\mathbb{C})\leqslant \mathrm{Gal}(E'/\mathbb{R})$, откуда $\mathrm{Gal}(E'/\mathbb{C})$ — тоже 2-группа. Согласно (лемма 2.6.4), найдётся $H\leqslant \mathrm{Gal}(E'/\mathbb{C})$ индекса 2.

Тогда $[E'^H:\mathbb{C}]=2$, но у \mathbb{C} нет расширений степени 2 — любой квадратный многочлен над \mathbb{C} разложим в \mathbb{C} на линейные множители. Тем самым, $\mathrm{Gal}(E'/\mathbb{C})$ тривиальна, откуда $E'=\mathbb{C}$, и получается, что у \mathbb{C} нет никаких конечных расширений.

Лекция XIV

2.6.3 Теорема Абеля — Руффини о разрешимости в радикалах

Теорема Дирихле о независимости характеров. Группа Галуа, как базис $\operatorname{End}(E/F)$

Теорема 2.6.2 (Дирихле, о линейной независимости характеров). Пусть H — группа, E — поле, и $\sigma_1, \ldots, \sigma_n : H \to E^*$ — различные групповые гомоморфизмы. Утверждается, что $\sigma_1, \ldots, \sigma_n$ линейно независимы над E в пространстве всех функций $H \to E$.

Доказательство. Предположим наличие линейной зависимости:

$$\forall h \in H : \sum_{i=1}^{n} \alpha_i \sigma_i(h) = 0$$
, где $\alpha_i \in E$ (©)

Выберем самую короткую такую (с наименьшим n), в ней в частности все $\alpha_i \neq 0$.

Пусть $g \in H$ таков, что $\sigma_n(g) \neq \sigma_{n-1}(g)$. Запишем

$$\begin{cases} \sum_{i=1}^{n} \alpha_i \sigma_i(g) \sigma_i(h) = 0\\ \sum_{i=1}^{n} \alpha_i \sigma_n(g) \sigma_i(h) = 0 \end{cases}$$

где первое получено подстановкой $h \leftarrow gh$ в (\bigcirc) , а второе — домножением (\bigcirc) на $\sigma_n(g)$. Вычитая, получаем линейную зависимость меньшей длины:

$$\sum_{i=1}^{n} \alpha_i (\sigma_i(g) - \sigma_n(g)) \sigma_i(h) = 0$$

При этом зависимость нетривиальна, так как $\alpha_{n-1}(\sigma_{n-1}(g)-\sigma_n(g)) \neq 0.$

Часто эту теорему применяют для $H=E^*$, $\sigma_i\in \mathrm{Gal}(E/F)$: пусть E/F — расширение Галуа, пусть n:=[E:F], $\{\sigma_1,\ldots,\sigma_n\}=\mathrm{Gal}(E/F)\leqslant \mathrm{End}(E/F)\stackrel{def}{=}\mathrm{End}_F(E)$.

Тогда $\dim_E(\langle \operatorname{Gal}_F(E) \rangle) = n$ — по теореме Дирихле (теорема 2.6.2) все эндоморфизмы вида $\sum_{i=1}^n \alpha_i \sigma_i$ различны. С другой стороны, $\dim_F(\operatorname{End}_F(E)) = n^2$, так как $\dim_F(E) = n$, откуда $\langle \operatorname{Gal}_F(E) \rangle = \operatorname{End}_F(E)$, то есть $\sigma_1, \ldots, \sigma_n - E$ -базис пространства $\operatorname{End}_F(E)$.

Первообразный корень и круговой многочлен

Расширение называется тем же словом, что и его группа — так, бывают, *абелевы, циклические, разрешимые* расширения, и тому подобное.

Определение 2.6.3 ($\varepsilon \in F$ — первообразный корень n-й степени из 1). $\begin{cases} \varepsilon^n = 1 \\ \varepsilon^k \neq 1, \quad 0 < k < n \end{cases}$

Если в поле есть первообразный корень степени n, то $p\coloneqq \operatorname{char} F \not\mid n$: если n=pm, то $0=\varepsilon^{pm}-1=(\varepsilon^m-1)^p$, откуда ε — не первообразный.

Несложно видеть, что $\varepsilon^k = \varepsilon^m \iff k \equiv m \pmod n$, откуда $\varepsilon^0, \varepsilon, \dots, \varepsilon^{n-1}$ — корни n-й степени из единицы, и многочлен t^n-1 раскладывается на линейные множители. Обозначим множество корней этого многочлена $\mu_n(F)$.

Лемма 2.6.5. Пусть E/F — расширение полей, и в базовом поле F есть первообразный корень степени n из 1. Следующие условия эквивалентны.

- 1. $E = F[\alpha]$, $e \partial e \alpha^n \in F$, $u \alpha^k \notin F$ npu 0 < k < n.
- 2. E/F циклическое расширение Галуа (то есть $\mathrm{Gal}(E/F)\cong C_n$).

Доказательство.

- $(1)\Rightarrow (2)$ Многочлен $f(t)=t^n-\alpha^n\in F[t]$ имеет n различных корней $\left\{\alpha\varepsilon^k\middle|0\leqslant k< n
 ight\}$, откуда $E=F_f$ для сепарабельного f, то есть E/F расширение Галуа.
 - Устроим отображение $\theta: \operatorname{Gal}(E/F) \to E^*, \sigma \mapsto \frac{\sigma(\alpha)}{\alpha}$. Так как $\left(\frac{\sigma(\alpha)}{\alpha}\right)^n = \frac{\sigma(\alpha)^n}{\alpha^n} = \frac{\sigma(\alpha^n)}{\alpha^n} = \frac{\sigma(\alpha^n)}{\alpha^n} = \frac{\sigma(\alpha^n)}{\alpha^n} = \frac{\sigma(\alpha)^n}{\alpha^n} =$
 - Проверим, что это гомоморфизм групп.

Так как $\tau(\alpha)$ — корень f, то $\tau(\alpha)=\varepsilon^m\alpha$ для некоторого $m\in\mathbb{N}$. Сокращая на $\varepsilon^m\in F$, получаем

- Проверим сюръективность. Любая собственная подгруппа μ_n имеет вид μ_k , где $k \mid n$, и если $\exists k \in \mathbb{N} : \forall \sigma \in \operatorname{Gal}(E/F) : \frac{\sigma(\alpha)^k}{\alpha^k} = 1$, то $\forall \sigma \in \operatorname{Gal}(E/F) : \sigma(\alpha^k) = \alpha^k$, то есть $\alpha^k \in F$. Получаем, что $k \geqslant n$.
- С одной стороны, $|\operatorname{Gal}(E/F)| \geqslant n$ из сюръективности, с другой стороны, $[E:F] \leqslant n$, откуда $|\operatorname{Gal}(E/F)| = [E:F] = n$, и из количественных соображений θ изоморфизм.
- $(2)\Rightarrow (1)$ Пусть σ образующая группы Галуа $(\mathrm{Gal}(E/F)=\{1,\sigma,\dots,\sigma^{n-1}\}).$ По теореме Дирихле (теорема 2.6.2), $\sum\limits_{k=0}^{n-1} \varepsilon^k \sigma^k \neq 0$, тем самым, $\exists \beta \in E: \alpha \coloneqq \sum\limits_{k=0}^{n-1} \varepsilon^k \sigma(\beta)^k \neq 0$.
 - Посчитаем

$$\sigma(\alpha) = \sum_{k=0}^{n-1} \varepsilon^k \sigma(\beta)^{k+1} = \sum_{i=1}^n \varepsilon^{i-1} \sigma(\beta)^i = \varepsilon^{-1} \alpha$$

Тем самым, $\sigma(\alpha^k)=\sigma(\alpha)^k=(\varepsilon^{-1}\alpha)^k=\varepsilon^{-k}\alpha^k$. В частности, α^n неподвижен под действием $\mathrm{Gal}(E/F)$, и $\alpha^n\in F$.

— Покажем линейную независимость $1,\alpha,\dots,\alpha^{n-1}$ над F, из количественных соображений будет следовать, что это базис E над F. Пусть $\sum\limits_{k=0}^{n-1}\alpha^kx_k=0$ для неких $x_k\in F$.

Применяя σ^j к данному равенству, получаем $\sum\limits_{k=0}^{n-1} \varepsilon^{-kj} \alpha^k x_k = 0$. При $j=0,\dots,n-1$ полу-

чаются n линейных уравнений с переменными $\alpha^k x_k$. Матрица коэффициентов системы $(\varepsilon^{-kj})_{j=0..n-1}^{k=0..n-1}$ невырождена, так как её определитель — определитель Вандермонда — не нуль.

Лемма 2.6.6. Пусть $E \coloneqq F[\varepsilon]$, где ε — первообразный корень степени n. Тогда E/F — расширение Γ алуа, и $\mathrm{Gal}(E/F) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^*$ (в частности, расширение E/F абелево).

Доказательство. Так как $\mu_n=\langle \varepsilon \rangle$, то t^n-1 , раскладывается на линейные множители в $F[\varepsilon]$, то есть $F[\varepsilon]=F_{t^n-1}$. Всякий элемент $\sigma\in \mathrm{Gal}(E/F)$ однозначно определён значением $\sigma(\varepsilon)$ (так как $E=F[\varepsilon]$), при этом так как σ оставляет F на месте, то $\sigma(\varepsilon)$ — тоже первообразный корень степени n из 1.

Устроим $\pi: \operatorname{Gal}(E/F) \hookrightarrow \mathbb{Z}/n\mathbb{Z}$, сопоставляя элементу $\sigma \in \operatorname{Gal}(E/F)$ такой показатель $k \in \mathbb{Z}/n\mathbb{Z}$, что $\sigma(\varepsilon) = \varepsilon^k$. Инъективность σ очевидна: $\sigma(\varepsilon) = \tau(\varepsilon) \Rightarrow \sigma = \tau$. Очевидно, это гомоморфизм мононидов, и так как образ обратимых элементов обратим, то $\pi: \operatorname{Gal}(E/F) \to (\mathbb{Z}/n\mathbb{Z})^*$ — гомоморфизм групп.

Определение 2.6.4 (Круговой многочлен степени n). $\Phi_n(t) \stackrel{def}{=} \prod_{\varepsilon} (t - \varepsilon)$, где ε пробегает все первообразные корни степени n из 1 по одному разу.

Так как любой корень степени n из 1 — первообразный степени $k\mid n$, то $\prod\limits_{k\mid n}\Phi_k(t)=\prod\limits_{\varepsilon^n=1}(t-\varepsilon)=t^n-1$

Интересный факт. Для любого поля с первообразным корнем степени n из единицы $\Phi_n \in \mathbb{Z}[t] \leqslant \mathbb{Q}[t]$, и там он неприводим, степени $\phi(n)$ (где ϕ — euler totient function).

Теорема Абеля — Руффини

Пусть $f \in F[t]$ — ненулевой многочлен.

Определение 2.6.5 (Уравнение f=0 разрешимо в радикалах). Все корни f (лежащие в алгебраическом замыкании F) выражаются через элементы F при помощи арифметических операций и извлечений корня. Иными словами, существуют цепочка полей $F=F_0\hookrightarrow F_1\hookrightarrow\cdots\hookrightarrow F_m$, где в F_m многочлен f раскладывается на линейные множители, и $F_i=F_{i-1}[\alpha_i]$, где $\beta\coloneqq\alpha_i^k\in F_{i-1}$. В таком случае ещё пишут $F_i=F_{i-1}\left\lceil\sqrt[m]{\beta_i}\right\rceil$.

Теорема 2.6.3 (Абель — Руффини). Пусть F поле, $\operatorname{char} F = 0$; ненулевой $f \in F[t]$. Следующие условия эквивалентны:

- 1. Уравнение f = 0 разрешимо в радикалах.
- 2. $Gal(F_f/F)$ разрешима.

Доказательство.

 \Leftarrow . Сначала присоединим к F первообразный корень из 1 достаточно большой степени — подойдёт первообразный корень ε степени $(\deg f)!$. Положим $F_1 \coloneqq F[\varepsilon]$. Иными словами, $F_1 \coloneqq F_{t^{(\deg f)!}-1}$. Это расширение Галуа, так как $\operatorname{char} F = 0$.

В силу рассуждения после (определение 2.5.2), $\operatorname{Gal}(f/F_1) \leqslant \operatorname{Gal}(f/F)$, поэтому $G \coloneqq \operatorname{Gal}(f/F_1)$ тоже разрешима. По определению у неё существует субнормальный ряд, и так как G конечна, то его можно уплотнить до композиционного $\{1\} = G_m \leqslant G_{m-1} \leqslant \ldots \leqslant G_1 = G$. Факторгруппы G_i/G_{i+1} — простые абелевы группы, то есть циклические, простого порядка. Положим $F_i \coloneqq ((F_1)_f)^{G_i}$.

Согласно (лемма 2.6.5), F_i имеет вид $F_{i-1}[\alpha_i]$, что по определению означает разрешимость в радикалах.

 \Rightarrow . По условию существует башня полей $F\hookrightarrow F_1\hookrightarrow\cdots\hookrightarrow F_m$, где f раскладывается на линейные множители в F_m , и $F_i=F_{i-1}[\alpha_i]$, где $\alpha_i^{k_i}\in F_{i-1}$. Для применения (лемма 2.6.5) недостаёт первообразного корня.

Добавим его: $F_{m+1} \coloneqq (F_m)_{t^k-1}$, где $k \coloneqq k_1 \cdot \ldots \cdot k_m$. Далее хотим получить, что $\operatorname{Gal}(f/F)$ разрешима. Понятно, что $F_f \subset F_m$, поэтому достаточно доказать, что $\operatorname{Aut}(F_m/F)$ разрешима, или даже $\operatorname{Aut}(F_{m+1}/F)$ разрешима — факторгруппа разрешимой группы разрешима. В доказательстве будет использоваться соответствие Галуа, для этого дополним F_{m+1}/F до нормального: пусть E/F нормально, и $F_{m+1} \subset E$ (например, E — поле разложения минимального многочлена, аннулирующего все элементы $\varepsilon, \alpha_1, \ldots, \alpha_m$).

Пусть $\operatorname{Gal}(E/F) = \{\sigma_1, \dots, \sigma_n\}$. Поле $\widetilde{E} = F[\varepsilon, \sigma_i(\alpha_j)] \subset E$ тоже нормально над F, так как оно устойчиво под действием $\operatorname{Gal}(E/F)$. А для этого поля есть хорошая цепочка (порождающие присоединяются по одному, все образы α_{j+1} добавляются после всех образов α_j):

$$F \subset F[\varepsilon] \subset F[\sigma_1(\alpha_1)] \subset F[\sigma_1(\alpha_1), \sigma_2(\alpha_1)] \subset \cdots \subset \widetilde{E}$$

Все промежуточные расширения абелевы (первое вкладывается в $(\mathbb{Z}/n\mathbb{Z})^*$ согласно (лемма 2.6.6), остальные циклические согласно (лемма 2.6.5)). Соответствие Галуа говорит, что этой башне полей соответствует субнормальный ряд группы $\operatorname{Gal}(\widetilde{E}/F)$ с абелевыми факторами, то есть $\operatorname{Gal}(\widetilde{E}/F)$ разрешима. Её факторгруппа $\operatorname{Gal}(F_f/F)$ тоже разрешима.