# Question Answering Benchmark and Semantic Parsing

# Xifeng Yan University of California, Santa Barbara

Thanks to Yu Su, Semih Yavuz, Izzeddin Gur, Huan Sun, who did the work











# **Graph Data**



# **Question Answering**

#### Natural Language Interface

- Text Based Question Answering
- Knowledge Graph Based Question Answering
- ☐ FAQ/Quora Style Question Answering

# Knowledge Graph



## **Query Graph Data**

```
g.V().has("person","name","gremlin").
out("knows").out("created").
hasLabel("project"). Gremlin in Titan
```

```
SELECT AVG(?stars)
WHERE { ?a v:label person .
?a v:name "gremlin" .
?a e:knows ?b .
?b e:created ?c .
?c v:label "project" .
?c v:stars ?stars }
```

# NL Question to Knowledge Graph Mapping

Who did [Viggo Mortensen] play in Lord of the Rings?



# Using Recurrent Neural Network



# On Generating Characteristic-rich Question Sets for QA Evaluation (EMNLP'16), with Yu Su

#### Characteristic-rich Question Sets (EMNLP16): Motivation

 Existing datasets for semantic parsing/question answering (QA) over knowledge bases mainly concern simple questions (question=utterance)

```
"Where was Obama born?"
```

"What party did Clay establish?"

"What kind of money to take to Bahamas?"

. . . . . . .

## Real-world questions have rich characteristics

- ☐ Structural complexity
  - "Who was the coach when Michael Jordan stopped playing for the Chicago Bulls?"
- Quantitative analysis (functions)
  - "What is the best-selling smartphone in 2015?"
- Commonness
  - "Where was Obama born?" vs.
  - "What is the tilt of axis of Polestar?"
- Paraphrase
  - "What is the nutritional composition of coca-cola?"
  - "What is the supplement information for coca-cola?"
  - "What kind of nutrient does coke have?"
- □ ...

Can we generate questions with rich characteristics from a knowledge base?

# Logical Form: Graph Query



# Logical Form: Graph Query



# Functions (Scott Yih et al.)

| Category  | Counting                              | Super                                         | Comparative                             |                                                     |
|-----------|---------------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| Functions | count                                 | max <b>and</b> min                            | argmax and argmin                       | $<,>,\leq$ , and $\geq$                             |
| Domain    | Question node                         | Question node of numeric class                | Template/grounded node of numeric class | Template/grounded node of numeric class             |
| Example   | Rocket Launch Site  spaceports  NASA  | Float internalStorage Ipad                    | Concert Venue capacity Integer          | Distilled Spirit    alcoholByVolume   40.0          |
| Question  | How many launch sites does nasa have? | What's the smallest internal storage of ipad? | Find the largest concert venue.         | List distilled spirits with no more than 40.0% abv. |

# Query template and graph query generation



## Too many graph queries

- Freebase: 24K classes, 65K relations, 41M entities, 596M facts
- Easily generate millions of graph queries
- Which graph queries correspond to relevant questions?



# Commonness checking



ClueWeb+FACC1: 1B documents, 10B entity mentions

| Entity Probabilities |           |  |  |
|----------------------|-----------|--|--|
| USA 0.025            |           |  |  |
|                      |           |  |  |
| James_Southam        | $10^{-8}$ |  |  |

#### **Relation Probabilities**

| Location.contains     | 0.08 |
|-----------------------|------|
|                       | •••  |
| Chromosome.identifier | 0.0  |



# Canonical utterance generation



# UI for canonical command generation



## Paraphrasing



"Find people who died from <lung tumor>, same as their parent did."

"Who died from <lung cancer>, the same cause of death of their parent?"



"Find people who died from <lung cancer>, same as their parent did."

#### **Dataset**

#### ☐ GRAPHQUESTIONS

■ 5166 questions, 148 domains, 506 classes, 596 relations

| Question                                                                                               | Domain                | Answer        | # of edges | Function | $\log_{10}(p(q))$ | $ \mathbf{A} $ |
|--------------------------------------------------------------------------------------------------------|-----------------------|---------------|------------|----------|-------------------|----------------|
| Find terrorist organizations involved in <b>September 11 attacks</b> .                                 |                       |               |            |          |                   |                |
| The <b>September 11 attacks</b> were carried out with the involvement of what terrorist organizations? | Terrorism             | alQaeda       | 1          | none     | -16.67            | 1              |
| Who did <b>nine eleven</b> ?                                                                           |                       |               |            |          |                   |                |
| How many children of <b>Eddard Stark</b> were born in <b>Winterfell</b> ?                              |                       |               |            |          |                   |                |
| Winterfell is the home of how many of Eddard Stark's children?                                         | Fictional<br>Universe | 3             | 2          | count    | -23.34            | 1              |
| What's the number of <b>Ned Stark</b> 's children whose birthplace is <b>Winterfell</b> ?              |                       |               |            |          |                   |                |
| In which month does the average rainfall of <b>New</b> York City exceed 86 mm?                         |                       |               |            |          |                   |                |
| Rainfall averages more than <b>86</b> mm in <b>New York City</b> during which months?                  | Travel                | March, August | 3          | comp.    | -37.84            | 7              |
| List the calendar months when <b>NYC</b> averages in excess of <b>86</b> millimeters of rain?          |                       |               |            |          |                   |                |

#### **Evaluation**

- ☐ SEMPRE (Berant et al. EMNLP'13) semantic parsing
  - Bottom-up beam parsing, log-linear function w/ linguistic features
- □ PARASEMPRE (Berant and Liang ACL'14) semantic parsing
  - How well the canonical utter. paraphrases the input utter.?
- JACANA (Yao and Van Durme ACL'14) information extraction
  - Binary classifier w/ linguistic features: which neighboring entity of the topic entity is the correct answer?

| System     | F1    | Time/s |  |
|------------|-------|--------|--|
| SEMPRE     | 10.80 | 56.19  |  |
| PARASEMPRE | 12.79 | 18.43  |  |
| JACANA     | 5.08  | 2.01   |  |

## Decomposition by characteristics



## Next generation KBQA

- Complex questions
  - Better exploration of the huge candidate space
  - Imitation/reinforcement learning, partial logical form evaluation
- More expressive
  - Support of functions like superlatives and comparatives
  - Open domain is more challenging ("older", "best-selling", ...)
- Better handling of paraphrasing
- Better performance at the tail

Improving Semantic Parsing via Answer Type Inference (EMNLP'16) with Semih Yavuz et al.

What did Joe Biden study in college?

## What did Joe Biden study in college?



MajorFieldOfStudy. (Education. JoeBiden)

### What did Joe Biden study in college?



MajorFieldOfStudy. (Education. JoeBiden)



Political Science

## What did Joe Biden study in college?



MajorFieldOfStudy. (Education. JoeBiden)



Political Science

Motivation: An interface between natural language and structured knowledge bases (Freebase, DBPedia, Yago, ...)

# Answer Type Helps

## What are Taylor Swift's albums?

AgendalL (Berant and Liang, 2015) top-10 logical forms

| Relation                              | Answer Type       | Prob | F1  |
|---------------------------------------|-------------------|------|-----|
| people.person.profession              | people.profession | 0.12 | 0   |
| people.person.profession              | people.profession | 0.12 | 0   |
| music.artist.album                    | music.album       | 0.05 | 0.5 |
| music.artist.album                    | music.album       | 0.05 | 0.5 |
| music.artist.album                    | music.album       | 0.02 | 0.5 |
| music.artist.album                    | music.album       | 0.02 | 0.5 |
| film.actor.film/film.performance.film | film.film         | 0.01 | 0   |
| music.artist.origin                   | location.location | 0.01 | 0   |
| film.actor.film/film.performance.film | film.film         | 0.01 | 0   |
| music.artist.origin                   | location.location | 0.01 | 0   |

# Answer Type Helps

## What college did Magic Johnson play for?

#### AgendalL (Berant and Liang, 2015) top-10 logical forms

| Relation                                                      | Answer Type                          | Prob | F1    |
|---------------------------------------------------------------|--------------------------------------|------|-------|
| basketball.basketball_player.position_s                       | basketball.basketball_position       | 0.39 | 0     |
| basketball.basketball_player.former_teams                     | basketball.basketball_team           | 0.1  | 0     |
| people.person.education / education.education.institution     | education.university                 | 0.09 | 1.0   |
| people.person.education / education.education.institution     | education.educational_instituition   | 0.07 | 0.667 |
| government_position_held.office_holder                        | government.government_office_ortitle | 0.04 | 0     |
| organization.organization.founders                            | organization.organization            | 0.03 | 0     |
| sports.sports_team.roster/sports.sports_team_roster.player    | sports.sports_team                   | 0.03 | 0     |
| sports.sports_award_winner.awards/sports.sports_a ward.season | sports.sports_league_season          | 0.02 | 0     |
| sports.sports_team.roster/sports.sports_team_roster.player    | sports.sports_team                   | 0.02 | 0     |
| people.person.education / education.education.institution     | education.university                 | 0.02 | 1.0   |

# Observation

Filters top-2 wrong answers!

What are Taylor Swift's albums? music.album answer type Filters top-2 wrong answers! music.artist.album What college did Magic Johnson play for? education.university people.person.education /

education.education.institution

# Room for Improvement by Answer Type

| Ranking             | F1   | # Improved Qs |
|---------------------|------|---------------|
| AgendaIL            | 49.7 | -             |
| w/ Oracle Types@10  | 57.3 | +234          |
| w/ Oracle Types@20  | 58.7 | +282          |
| w/ Oracle Types@50  | 60.1 | +331          |
| w/ Oracle Types@All | 60.5 | +345          |

**Table 1:** What if the correct answer type is enforced? On WebQuestions, we remove those with incorrect answer types in the top-k logical forms returned by AgendaIL (Berant and Liang, 2015), a leading semantic parsing system, and report the new average F1 score as well as the number of questions with an improved F1 score.

# Outline

- □ Background
- Motivation
- ☐ Answer Type Inference
- □ Future Work

# Answer Type Inference

- ☐ Setup
- Question Abstraction
- Conversion to Statement Form
- Inferring Answer Types
- Reranking Logical Forms by Answer Type

# Pipeline

```
When did [Shaq] come into the NBA?
                   Abstraction
When did [drafted athlete] come into the NBA?
                   Conversion
  [drafted athlete] come when into the NBA
               Answer Type Inference
              SportsLeagueDraft
```

# Answer Type Inference

- ☐ Setup
- Question Abstraction
- Conversion to Statement Form
- Inferring Answer Types
- Reranking Logical Forms by Answer Type
- Dataset Creation
- Experiments

## **Question Abstraction**

**Intuition**: Answer type remains invariant as the topic entity changes within the same category (e.g., drafted athlete).

When did [Shaq] come into the NBA?

strac

Abstraction

: \*

When did [drafted athlete] come into the NBA?

## Objective:

- 1. Find the right KB type that represent the topic entity in the question context.
- 2. Form the abstract question by replacing the topic entity with this representative type.

## **Bidirectional LSTM Model**

## when did [shaq] come into the nba?



Output: Network outputs a **probability distribution** over KB types denoting the likelihood for being topic entity (e.g. shaq) type in the question context

# Answer Type Inference

- □ Setup
- Question Abstraction
- □ Conversion to Statement Form
- Inferring Answer Types
- Reranking Logical Forms by Answer Type
- Dataset Creation
- Experiments

## Conversion to Statement Form

What boarding school did Mark Zuckerberg go to?

Conversion

Mark Zuckerberg go to what boarding school?

## Objective:

 Canonicalize question form into statement (subject-relation-object) form by reordering the words of question

## Pattern-based Approach

#### what boarding school did [mark zuckerberg] go to?



[ENTITY] [go] [to] [what boarding school]

- Retrieve the named entity (NER) tags of the question tokens.
- Replace tokens corresponding to the named entity with a single special token ENTITY.
- Obtain the dependency parse tree of the simplified question.
- Represent each question by a pattern: the root's dependency relations to its sub-trees in the original order.

## **Conversion Mapping:**

- 1. Cluster question representation patterns
- Manually map frequent patterns\* to their corresponding conversions (Pattern vs. Mapping)

## Reordering Words based on Mapping

what boarding school did [mark zuckerberg] go to?



[ENTITY] [go] [to] [what boarding school]

### Reordering Words:

- Conversion mapping determines the order in which the sub-trees of the root is recomposed
- Original order of sub-trees and question tokens:
  - (dep, aux, nsubj, nmod)
  - [what boarding school] [did] [ENTITY] [to]
- Reordered sub-trees and question tokens:
  - (nsubj, root, nmod, dep)
  - [ENTITY] [go] [to] [what boarding school]

# Answer Type Inference

- □ Setup
- Question Abstraction
- Conversion to Statement Form
- □ Inferring Answer Types
- Reranking Logical Forms by Answer Type
- Dataset Creation
- Experiments

## Inferring Answer Type

Intuition: Question word (e.g., "when") along with its directed left and right contexts provides the clues for answer type

[drafted athlete] come when into the NBA?

•

Answer Type Inference

: \*

SportsLeagueDraft

## **Objective:**

 For a given abstract question, assign a score/probability to each target KB type denoting its likelihood of being the answer type. (for reranking candidate answers)

# Bidirectional LSTM Model for Answer Type Inference



[drafted athlete] come when into the nba?

- Output: Network outputs a score/probability distribution over KB types denoting the likelihood of being the answer type
- Output Node: Question word (e.q., "when")
- Left Context: { [drafted athlete], come, when}
- Right Context: {when, into, the, nba}

# Answer Type Inference

- ☐ Setup
- Question Abstraction
- Conversion to Statement Form
- □ Inferring Answer Types
- Reranking Logical Forms by Answer Type
- □ Dataset Creation
- Experiments

## Main Result

| Model                                | F1   |
|--------------------------------------|------|
| (Berant and Liang, 2015)             | 49.7 |
| (Yih et al., 2015)                   | 52.5 |
| (Xu et al., 2016)                    | 53.3 |
| (Yih et al., 2015) (w/ Freebase API) | 48.4 |
| (Yih et al., 2015) (w/o ClueWeb)     | 50.9 |
| (Xu et al., 2016) (w/o Wikipedia)    | 47.1 |
| Our Approach                         | 52.6 |

**Table 3:** Comparison of our reranking-by-type system with several existing works on WebQuestions.

Recovering Question Answering Errors via Query Revision (EMNLP'17), with Semih Yavuz et al.

## **Motivation & Goal**

Cross-check the answer by inserting it back in the question



## **Question Revisions**

| Freebase Relation                  | Subject Type | Object Type    | Relation Text    |
|------------------------------------|--------------|----------------|------------------|
| activism.activist.area_of_activism | activist     | activism issue | area of activism |



1. EC: Entity Centric

Abstraction
2. EAC: Entity-Answer Centric
3. ERC: Entity-Relation Centric

## **Encoding and Scoring Revised Questions**

q' = What area of activism did activist fight for ? • • • Revis

Revised Question



Bidirectional LSTM Encoder

$$s(q') = \mathbf{w}^T \mathbf{enc}(q')$$

Revised Question
Scoring

# Margin-based Training Objective

Score(Revised Question by Correct Relation) >> Score(Revised Question by Wrong Relation)



$$\sum_{q \in Q} \sum_{(r_{pos}, r_{neg})} max \left(0, \delta(r_{pos}, r_{neg}) - [s(q'_{pos}) - s(q'_{neg})]\right)$$

# Experiments

# Quantitative

| (Dong et al., 2015)               | 40.8 |         |
|-----------------------------------|------|---------|
| (Yao, 2015)                       | 44.3 |         |
| (Berant and Liang, 2015)          | 49.7 |         |
| (Yih et al., 2015) - <b>STAGG</b> | 52.5 | •       |
| (Reddy et al., 2016)              | 50.3 |         |
| (Xu et al., 2016a)                | 53.3 |         |
| (Xu et al., 2016b)                | 53.8 | <u></u> |
| Our Approach on STAGG             | 53.9 |         |
|                                   |      |         |

Comparison with Most Recent Work

### Variants of Our Model

| WebQ        | EC        | 52.9 |
|-------------|-----------|------|
|             | EAC       | 53.5 |
| $\geqslant$ | ERC       | 53.2 |
|             | EAC + ERC | 53.3 |
| eO          | EC        | 52.8 |
| μpl         | EAC       | 53.6 |
| +SimpleQ    | ERC       | 53.8 |
|             | EAC + ERC | 53.9 |

# **Qualitative**

| Questions and Refinement Candidates                                         | KB Relations                      | IsR      |
|-----------------------------------------------------------------------------|-----------------------------------|----------|
| 1. where does the <b>zambezi river</b> start?                               |                                   |          |
| Prediction (ERC): where mouth does the river start                          | river.mouth                       |          |
| Refinement (ERC): where origin does the river start                         | river.origin                      | <b>~</b> |
| 2. what did mary wollstonecraft fight for ?                                 |                                   |          |
| Prediction (EAC): what profession did person fight for                      | person.profession                 |          |
| Refinement (EAC): what activism issue did activist fight for                | activist.area_of_activism         | <b>~</b> |
| 3. where did the <b>iroquois indians</b> come from?                         |                                   |          |
| Prediction (EAC): where ethnicity did the ethnicity come from               | ethnicity.included_in_group       |          |
| Refinement (EAC): where location did the ethnicity come from                | ethnicity.geographic_distribution | X        |
| Prefiction (ERC): where included in group(s) did the ethnicity come from    | ethnicity.included_in_group       |          |
| Refinement (ERC): where geographic distribution did the ethnicity come from | ethnicity.geographic_distribution | <b>~</b> |
| EAC + ERC                                                                   | ethnicity.geographic_distribution | <b>~</b> |

## **Future Work**

- Continue working on
- Knowledge Graph Based Question Answering
- Text Based Question Answering
- FAQ/Quora Style Question Answering
- Better models and commercial applications

## Acknowledgements (Our Students)



































# Thank You