Déterminer la nature de f et ses éléments caractéristiques. Résoudre le système $MX = Y_0, Y_0 = (1, 2, 3, 4)$.

- Ex 2 soient F et G deux espaces supplémentaires de E, de dimension r et n-r et on considère les projecteurs associés pet q ainsi que la symétrie s=p-q. Soit $\mathcal{B}=(e_1,\ldots,e_n)$ une base telle que $\left\{\begin{array}{l} (e_1,\ldots,e_r) \text{ soit une base de } F\\ (e_{r+1},\ldots,e_n) \text{ soit une base de } G\end{array}\right.$ Calculer $\operatorname{Mat}_{\mathcal{B}}(p)$, $\operatorname{Mat}_{\mathcal{B}}(p)$ et $\operatorname{Mat}_{\mathcal{B}}(s)$
- **Ex 3** Soit $N = \begin{pmatrix} \ddots & \ddots & \\ & \ddots & \ddots & \\ & 0 & \ddots & 1 \end{pmatrix} \in \mathcal{M}_n$. A l'aide de son endomorphisme associé, montrer que N est nilpotente.
- **Ex 4** Soit \mathcal{B} la base canonique de \mathbb{R}^4 , et $\mathcal{B}' = (X_1, X_2, X_3, X_4)$, avec

$$X_1 = (0, 1, 1, 0), \quad X_2 = (1, 1, 0, 0), \quad X_3 = (1, 1, -1, 0), \quad X_4 = (-1, 1, 1, 1)$$

- a) Montrer que \mathcal{B}' est une base de \mathbb{R}^4 et y exprimer le vecteur X=(2,3,-1,4) .
- b) Quelle est l'équation dans \mathcal{B}' de l'hyperplan d'équation x y + z + 3t = 0 dans \mathcal{B} ?
- **Ex 5** a) Calculer la matrice S en base canonique de la symétrie s par rapport au plan F de \mathbb{R}^3 d'équation x+y+2z=0parallèlement à la droite G engendrée par $X_0 = (1, -1, 1)$?
 - b) Calculer la matrice S' de S dans une base $\mathcal{B} = (X_0, X_1, X_2)$ où (X_1, X_2) est une base de F. Relier S et S'.
- $\textbf{Ex 6} \ \ \text{Soit} \ A = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right), \ \mathcal{B} = (e_1, e_2, e_3) \ \text{la base canonique de } \mathbb{R}^3, \ \mathcal{B}' = (e_2, e_1, e_3) \ \text{et } \mathcal{B}'' = (e_2, e_3, e_1) \ .$

- a) Ecrire les matrices A' et A'' de f dans B' et B'', puis les liens entre A et A', A et A''. Donner les matrices de passage $P = P_{\mathcal{BB'}}$ et $Q = P_{\mathcal{BB''}}$ ainsi que leurs inverses.
- b) Soit \mathcal{E} l'ensemble des matrices A vérifiant A'' = A. Montrer que \mathcal{E} est une sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$,
- - b) En déduire la formule d'inversion de Pascal : si $\forall n \in \mathbb{N}, \ a_n = \sum_{k=0}^n \binom{n}{k} b_k$ alors $\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$
- Ex 8 Soient $(a,b,c) \in \mathbb{R}^3$ / $a^2 + b^2 + c^2 = k \neq 0$, et f l'endomorphisme de \mathbb{R}^3 de matrice $A = \begin{pmatrix} a^2 & ba & ca \\ ab & b^2 & cb \\ ac & bc & c^2 \end{pmatrix}$ a) Déterminer $\mathrm{Im}\,f$, $\ker f$. Montrer que $\mathbb{R}^3 = \mathrm{Im}\,f \oplus \ker f$.

 b) En déduire qu'il existe une base de \mathbb{R}^3 dans laquelle f s'écrit $\begin{pmatrix} k & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Quelle est la nature de $\frac{1}{k}f$?
- $\textbf{Ex 9} \ \ \text{Soit} \ A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \ \text{d'endomorphisme associ\'e} \ f \ \text{dans la base canonique} \ \mathcal{B} = (e_1, e_2, e_3)$ On pose $e_1' = e_2 + e_3, \ e_2' = e_1 + e_3, \ e_3' = e_1 + e_2.$
 - a) Montrer que $\mathcal{B}'=(e_1',e_2',e_3')$ est une base de \mathbb{R}^3 . Calculer $A'=\operatorname{Mat}_{\mathcal{B}'}(f)$. Donner un lien entre A et A'.
 - b) En déduire les puissances de A.

PCSI 1 Thiers 2019/2020 **Ex 10** Soient $E = \mathbb{R}_n[X]$, $(a, m) \in \mathbb{R}^2$ et f l'application de E dans E définie par

$$\forall P \in E, \ f(P) = m(P(X) - P(a)) - (X - a)(P'(X) - P'(a))$$

a) Pour $k \in [[0, n]]$, on pose $T_k(X) = \frac{1}{k!}(X - a)^k$.

Justifier que $\mathcal{B}=(T_0,\ldots,T_n)$ est une base de E et donner les coordonnées d'un polynôme $P\in E$ dans \mathcal{B} .

- b) Justifier que f est un endomorphisme de E et calculer $M = \text{Mat}_{\mathcal{B}}(f)$ (attention aux deux premières colonnes).
- c) En déduire Im f, ker f et rg f en discutant suivant les valeurs de m

- **Ex 11** Soit $A = \frac{1}{2} \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}$, d'endomorphisme associé f dans la base canonique.

 a) Trouver une base \mathcal{B}' dans laquelle f a pour matrice $T = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Donner le lien entre A et T
 - b) Calculer T^n puis A pour $n \in \mathbb{N}$, et en déduire l'expression des suites (x_n) et (y_n) vérifiant

$$\left\{ \begin{array}{l} x_{n+1} = \frac{3}{2}x_n + \frac{1}{2}y_n \\ y_{n+1} = -\frac{1}{2}x_n + \frac{5}{2}y_n \end{array} \right., \quad x_0 = 1, \quad y_0 = 0$$

Ex 12 Calculer le rang, une base l'espace engendré et une relation de dépendance linéaire non triviale des familles :

a)
$$X = \begin{pmatrix} 2 \\ 3 \\ -3 \\ 4 \\ 2 \end{pmatrix}$$
, $Y = \begin{pmatrix} 3 \\ 6 \\ -2 \\ 5 \\ 9 \end{pmatrix}$, $Z = \begin{pmatrix} 7 \\ 18 \\ -2 \\ 7 \\ 7 \end{pmatrix}$, $T = \begin{pmatrix} 2 \\ 4 \\ -2 \\ 3 \\ 1 \end{pmatrix}$.

- b) $P=X^4+3X^3-4X^2+2X+1$, $Q=8X^4+4X^3-3X^2+5X+2$, $R=22X^4+10X^3-7X^2+17X+6$, $S=2X^3-3X^2+3X+1$ (dans $E=\mathbb{R}_4\left[X\right]$).
- **Ex 13** Soient $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\mathcal{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ la base canonique de $E = \mathcal{M}_2(\mathbb{R})$.

Soit f l'endomorphisme de E défini par $\forall M \in E, f(M) = AM - MA$.

- a) Calculer la matrice Φ de f dans B, et montrer que $f=0 \iff A$ est scalaire. Interpréter
- b) On suppose que A n'est pas scalaire : montrer que rg f = 2. En déduire la dimension de l'espace vectoriel C(A) des matrices qui commutent avec A
- c) Calculer C(A) dans le cas où A est une matrice diagonale (non scalaire), puis triangulaire (non diagonale).

Ex 14 Soit E un \mathbb{C} -ev de dimension 3, et $f \in \mathcal{L}(E)$ vérifiant $f^3 = f^2$ et dim ker $(f - \mathrm{id}_E) = 1$

- a) Montrer que $E = \ker (f id_E) \oplus \ker f^2$. Encadrer $\operatorname{rg} f$.
- b) On suppose $\operatorname{rg} f = 1$. Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- c) On suppose $\operatorname{rg} f = 2$. Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
- **Ex 15** a) Soit E un espace de dimension n et $f \in \mathcal{L}(E)$ vérifiant $f^n = \mathbb{O}$ et $f^{n-1} \neq \mathbb{O}$. Soit $u \in E$ tel que $f^{n-1}(u) \neq 0_E$. Montrer que $(u, f(u), \dots, f^{n-1}(u))$ est une base de E.
 - b) Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^{n-1} \neq 0$ et $A^n = 0$. Montrer qu'il existe une matrice inversible P telle que $A = PA'P^{-1}$, où $A' = \begin{bmatrix} 1 & \ddots & \mathbf{O} \\ & \ddots & \ddots \\ & & \ddots & \ddots \end{bmatrix}$