Esercitazioni di Analisi 2

SERIE DI POTENZE

1. Calcola la somma delle seguenti serie:

(a)
$$\sum_{n=0}^{+\infty} (-1)^n 2^n e^{-n}$$
 $\left[\frac{e}{e+2}\right]$

(b)
$$\sum_{n=1}^{+\infty} \frac{(1+i)^n}{2^n}$$
 [i

(c)
$$\sum_{n=0}^{+\infty} 2^{2n} e^{-n}$$
 $[+\infty]$

(d)
$$\sum_{n=2}^{+\infty} \frac{2^n}{3^{n+1}} \qquad \left[\frac{4}{9}\right]$$

2. Risolvi le seguenti equazioni:

(a)
$$\sum_{n=1}^{+\infty} (2x)^{2n} = 1$$
 $\left[x = \pm \frac{\sqrt{2}}{4} \right]$

(b)
$$\sum_{n=2}^{+\infty} \left(\frac{x}{x+1} \right)^n = 3$$
 $\left[x = \frac{3+\sqrt{21}}{2} \right]$

(c)
$$\sum_{n=k}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{32}{81}$$
 [$k=5$]

3. Calcola il raggio R di convergenza delle seguenti serie di potenze e determinane l'insieme di convergenza semplice (puntuale). (supponi $x \in \mathbb{R}$; cosa cambia nel caso più generale $x \in \mathbb{C}$?)

1

(a)
$$\sum_{n=0}^{+\infty} \frac{x^n}{2^n}$$
 $[R=2; (-2,2)]$

(b)
$$\sum_{n=1}^{+\infty} \frac{x^n}{\log(n+1)}$$
 $[R=1; [-1,1)]$

(c)
$$*\sum_{n=1}^{+\infty} \frac{1 + \log n}{2^n} z^n$$
 [$R = 2; (-2, 2)$]

(d)
$$\sum_{n=1}^{+\infty} \frac{2^n x^n}{n^2}$$
 $\left[R = \frac{1}{2}; \left[-\frac{1}{2}, \frac{1}{2} \right] \right]$

(e)
$$\sum_{n=1}^{+\infty} \frac{n! x^n}{n^n}$$
 $[R = e; (-e, e)]$

(f)
$$\sum_{n=0}^{+\infty} n! \sin^n x$$
 [$R = 0; \{k\pi, k \in \mathbb{Z}\}$]

(g)
$$\sum_{n=1}^{+\infty} \frac{n! x^n}{(2n)!} \qquad [R = +\infty; \mathbb{R}]$$

(h)
$$\sum_{n=1}^{+\infty} (3x-3)^n$$
 $\left[R = \frac{1}{3}; \left(\frac{2}{3}, \frac{4}{3}\right)\right]$

(i)
$$\sum_{n=0}^{+\infty} \frac{(x+3)^n}{(n+1)2^n}$$
 [R = 2; [-5,-1)]

(j)
$$\sum_{n=0}^{+\infty} [1 - (-2)^n] x^n$$
 $\left[R = \frac{1}{2}; \left(-\frac{1}{2}, \frac{1}{2} \right) \right]$

(k)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{(x+1)^n}{n^2+1}$$
 [R = 1; [-2,0]]

(1)
$$\sum_{n=1}^{+\infty} \frac{x^n}{(\log n)^n} \qquad [R = +\infty; \mathbb{R}]$$

(m)
$$\sum_{n=7}^{+\infty} \frac{x^n}{4^n + 5^n}$$
 [$R = 5; (-5, 5)$]

(n)
$$\sum_{n=1}^{+\infty} \frac{(n!)^2 x^n}{(2n)!}$$
 [$R = 4; (-4,4)$]

(o)
$$\sum_{n=1}^{+\infty} \frac{3^{\sqrt{n}} x^n}{n}$$
 $[R=1; (-1,1)]$

4. *Determina l'insieme A di convergenza totale della serie $\sum_{n=1}^{+\infty} \left(\frac{x}{x+1}\right)^n$. [La serie assegnata è una serie geometrica: converge puntualmente in $I = \left\{x \in \mathbb{R} : \left|\frac{x}{x+1}\right| < 1\right\} = \left(-\frac{1}{2}, \infty\right)$; qualunque insieme chiuso $A \subset I$ è un insieme di convergenza totale]

5. *Calcola
$$\int_0^1 \left(\sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)!} \right) dx$$
. (Ricorda che $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$). $\left[\sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)!} \right] = \sum_{n=1}^{+\infty} \frac{x^n}{n!} = \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \right) - 1$; $\int_0^1 \left(\sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)!} \right) dx = \int_0^1 \left(e^x - 1 \right) dx = e - 2$

6. Scrivi la serie associata alla funzione $\frac{x^2}{1-x}$ e determinane intervallo di convergenza puntuale. [Sapendo che $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \ (R=1)$, moltiplicando per x^2 otteniamo: $\frac{x^2}{1-x} = \sum_{n=0}^{\infty} x^{n+2}$, R=1]

7. Calcola
$$\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n n!}$$

$$\left[\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n n!} = \sum_{n=3}^{\infty} \frac{(-\frac{1}{2})^n}{n!} = \left(\sum_{n=0}^{\infty} \frac{(x)^n}{n!} - (x^0 + x^1 + \frac{x^2}{2}) \right) \right|_{x=-\frac{1}{2}} = e^{-\frac{1}{2}} - \frac{5}{8}$$

8. Considera la funzione definita da
$$f(x) = \sum_{n=0}^{+\infty} x^n$$

- (a) determina l'intervallo di convergenza della serie che definisce f. [|x| < 1]
- (b) scrivi esplicitamente f(x) e $f\left(\frac{x^4}{16}\right)$. $\left[\frac{1}{1-x}; \frac{16}{16-x^4}\right]$
- (c) calcola per serie $\int_0^1 f\left(\frac{x^4}{16}\right) dx$. $\left[\sum_{n=0}^{+\infty} \frac{1}{(4n+1)16^n}\right]$
- 9. *Considera la funzione definita da $f(x) = \sum_{n=0}^{+\infty} \frac{x^{2n-1}}{(n-1)!}$
 - (a) determina dove f è definita. \mathbb{R}
 - (b) calcola f'(x) per ogni x per cui esiste. $\left| \sum_{n=2}^{+\infty} \frac{2n-1}{(n-1)!} x^{2n-2} \right|$
 - (c) calcola per serie $\int_{0}^{1} f(x) dx$. $\left[\frac{e}{2} 1 \text{ (vedi il punto } \mathbf{d})\right]$

(d) trova una forma chiusa per
$$f$$
 (cioè la somma della serie).
$$\left[f(x) = \sum_{n=2}^{+\infty} \frac{x^{2n-1}}{(n-1)!} = x \sum_{n=2}^{+\infty} \frac{x^{2(n-1)}}{(n-1)!} = x \left(e^{x^2} - 1 \right) \right]$$

nota: gli esercizi contrassegnati da * sono temi d'esame.