Dinámica Péndulo Simple «solución exacta»

16 de enero de 2021

Índice

1	Ecuación Diferencial	2
	1.1 Deducción por Fuerzas	2
	1.2 Deducción por Momento Angular	3
	1.3 Deducción por Ecuación de Lagrange	
2	Conservación de Energía»	5
3	Ecuaciones de movimiento $ heta(t),\dot{ heta}(t)$	6
	3.1 Velocidad angular	6
	3.2 Posición angular	8
4	Expresión Período T	13
5	Notas	15
	5.1 Funciones Elípticas de Jacobi	15
	5.2 Integrales Elípticas	17
	5.3 Integración Termino a Termino	19
	$5.4 \ \dot{\theta}(t) = p(t)$	

1. Ecuación Diferencial

Un péndulo simple es una masa «m» suspendida de una cuerda o varilla de masa despreciable (longitud L), que es capaz de oscilar sin rozamiento respecto de un punto «O». La dinámica de este sistema esta descrita por una ecuación diferencial ordinaria **no lineal**, **de segundo orden**.

El péndulo bajo la restricción de la cuerda y la acción de la gravedad describe una trayectoria sobre un arco de una circunferencia de radio L (longitud de la cuerda).

La ecuación diferencial que determina el movimiento de este sistema esta dado por:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

(Nota: la masa no interviene en el movimiento de un péndulo)

Ésta ecuación diferencial se pueden deducir por varios métodos:

La fuerza que actúa sobre la partícula de masa m en la dirección tangencial, se corresponde con la componente del peso en esa dirección, por la geometría de la figura se deduce que vale: $F_T = mg \sin \theta$

Aplicando la segunda ley de Newton:

$$F_T = ma_T \longrightarrow -mg\sin\theta = ma_T \tag{1.1}$$

(Nota: el signo negativo, tiene en cuenta que el crecimiento del desplazamiento angular θ (hacia la derecha en la figura) tiene sentido opuesto, al sentido de la fuerza tangencial F_T)

Dado que el movimiento es circular, se cumple.

$$s = \theta L \longrightarrow v = \dot{\theta}L \longrightarrow a_T = \ddot{\theta} \cdot L$$
$$\left(\dot{\theta} = \frac{d\theta}{dt} \longrightarrow \ddot{\theta} = \frac{d^2\theta}{dt^2}\right)$$

Llevando estos resultados a la ecuación (1.1) se obtiene la ecuación diferencial que describe la dinámica del péndulo simple, donde $\theta(t)$ determina la posición angular en función del tiempo.

$$m\alpha \cdot L = -mg\sin\theta$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

Movimiento Radial

Ecuación del movimiento en la dirección radial, la aceleración normal o centrípeta esta dada por $a_n = \frac{v^2}{L}$ y dirigida radialmente hacia el centro de la trayectoria circular.

La segunda ley de Newton se escribe como

$$ma_n = T - mq\cos\theta$$

Esta ecuación permite determinar la tensión de la cuerda conociendo el valor de la velocidad v en cada posición angular θ . La tensión T es máxima, cuando el péndulo pasa por la posición $\theta=0$, dado que su velocidad es máxima, $T=mg+m\frac{v_{max}^2}{L}$.

La tensión es mínima, en los extremos de la trayectoria, donde la velocidad es cero v=0, se tiene que $T=mg\cos\theta$.

1.2. Deducción por Momento Angular

La dinámica del movimiento de rotación se describe, mediante la ecuación que relaciona la aceleración angular α con el momento angular M y el momento de inercia I.

$$M = \ddot{\theta} I \longleftarrow \begin{cases} \ddot{\theta} = \frac{d^2\theta}{dt^2} & \text{aceleración angular} \\ I = mL^2 & \text{momento inercia} \end{cases}$$

En este caso, el momento angular está determinado por la componente tangencial de la fuerza de gravedad y el brazo de esta fuerza, que es la longitud del hilo, es decir.

$$M = -mqL\sin\theta$$

El signo menos indica que en un ángulo de rotación positivo θ (en sentido antihorario), el momento angular genera la rotación en la dirección opuesta.

La ecuación dinámica se deduce como sigue.

$$-mgL\sin\theta = \frac{d^2\theta}{dt^2}mL^2$$

$$\frac{d^2\theta}{dt^2} = \frac{-mgL\sin\theta}{mL^2} = -\frac{g\sin\theta}{L}, \quad \longrightarrow \frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

1.3. Deducción por Ecuación de Lagrange

Otra forma de obtener la ecuación dinámica es, a través del Lagrangiano del sistema, que esta dado por la diferencia de la energía cinética y la energía potencial.

$$\mathcal{L} = T - V = \frac{1}{2}mL^2\dot{\theta}^2 + mgL\cos\theta$$

donde θ , es ángulo que forma el hilo con la vertical y L, es la longitud del hilo. Aplicando las ecuaciones de Lagrange se obtiene la ecuación del movimiento:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\theta}} - \frac{\partial \mathcal{L}}{\partial \theta} = 0 \qquad \Rightarrow \qquad mL^2\ddot{\theta} + mgL\sin\theta = 0$$

$$\left\{\dot{\theta} = \frac{d\theta}{dt} \quad \ddot{\theta} = \frac{d^2\theta}{dt^2}\right\}$$

$$\boxed{\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0}$$

2. Conservación de Energía»

La energía inicial total se corresponde con la «energía potencial» que tiene el péndulo en su posición inicial de partida a una altura H (como se muestra en la figura).

$$E_{Total} = E_p = mgH \longrightarrow E_{Total} = mg(L - L\cos\theta_{max})$$
 (2.1)

Para una posición cualquiera de la trayectoria se tiene que:

$$E_{Total} = E_c + E_p$$

$$E_{Total} = \frac{1}{2}mv^2 + mg(L - L\cos\theta)$$

Usando la ecuación (2.1) en la expresión anterior se obtiene:

$$mg(L - L\cos\theta_{max}) = \frac{1}{2}mv^2 + mg(L - L\cos\theta)$$

Usando $s = \theta L \longrightarrow \frac{ds}{dt} = \frac{d\theta}{dt} L \longrightarrow \dot{\theta} = \frac{d\theta}{dt} L$ se obtiene:

$$mgL(1 - \cos\theta_{max}) = \frac{1}{2}m\left(\frac{d\theta}{dt}L\right)^{2} + mgL(1 - \cos\theta)$$

$$(1 - \cos\theta_{max}) = \frac{L}{2g}\left(\frac{d\theta}{dt}\right)^{2} + (1 - \cos\theta)$$

$$\frac{L}{2g}\left(\frac{d\theta}{dt}\right)^{2} = (1 - \cos\theta_{max}) - (1 - \cos\theta)$$

$$\frac{L}{2g}\left(\frac{d\theta}{dt}\right)^{2} = \cos\theta - \cos\theta_{max}$$

$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{L}}\sqrt{\cos\theta - \cos\theta_{max}}$$

3. Ecuaciones de movimiento $\theta(t),\dot{\theta}(t)$

La ecuación diferencial que describe la dinámica del sistema es una ecuación de EDO Segundo grado, No lineal en la variable dependiente $\theta = \theta(t)$.

La dificultad para encontrar una resolución, depende principalmente de si se puede aplicar la aproximación $\sin\theta\to\theta$, dado que este cambio la convierte en una Ecuación Lineal, cuando no se puede hacer esta aproximación la resolución es mucho más complicada y hay que hacer uso de las «integrales elípticas» y la solución se obtiene en función de las funciones elípticas de Jacobi.

 $(\sin \theta \to \theta \text{ esta condición se cumple para desplazamientos angulares muy pequeños})$

Se evaluá el comportamiento del péndulo cuando su energía $E < E_p$ y describe oscilaciones de amplitud $0 < \theta < \pi$.

3.1. Velocidad angular

En general, las ecuaciones diferenciales ordinarias no lineales, no pueden ser resueltas analíticamente, pero para esta ecuación, como el termino $\frac{d\theta}{dt}$ no aparece en la ecuación, si es posible encontrar una solución analítica usando las funciones elípticas de Jacobi.

La determinación de la velocidad angular $\dot{\theta}(t)$ se realiza a través de la siguiente ecuación.

$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{L}}\sqrt{\cos\theta - \cos\theta_{max}}$$

Esta ecuación **se puede deducir de varias formas**, una de ellas es considerar la velocidad angular como una función del desplazamiento angular, $\dot{\theta} = \dot{\theta}(\theta)$ el truco consiste en tratar $\dot{\theta}$ como una función de θ en lugar de t. Para ello se tiene presente lo siguiente relación:

$$\frac{d^2\theta}{dt^2} = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) = \frac{d}{dt} \left(\dot{\theta} \right) = \frac{d\dot{\theta}}{d\theta} \frac{d\theta}{dt} = \dot{\theta} \left(\frac{d\dot{\theta}}{d\theta} \right)$$
(3.1)

Ahora hay que considerar $\frac{d\dot{\theta}}{d\theta}$ como lo indicado, una función de $\dot{\theta}=\dot{\theta}(\theta)$, es decir derivando como una potencia se recupera la expresión anterior:

$$\frac{d}{d\theta} \left(\frac{1}{2} \dot{\theta}^2 \right) = \frac{1}{2} \frac{d}{d\theta} \left(\dot{\theta}^2 \right) = \frac{1}{2} 2 \dot{\theta} \frac{d\dot{\theta}}{d\theta} = \dot{\theta} \frac{d\dot{\theta}}{d\theta}$$
 (3.2)

Por tanto, igualando las dos expresiones (3.1) y (3.2), se tiene que:

$$\frac{d^2\theta}{dt^2} = \frac{d}{d\theta} \left(\frac{1}{2} \dot{\theta}^2 \right)$$

Llevado este resulta a la ecuación diferencial se obtiene otra ecuación que puede ser integrada de forma directa

$$\frac{d}{d\theta} \left(\frac{1}{2} \dot{\theta}^2 \right) + \frac{g}{L} \sin \theta = 0$$

Integrando.

$$\int d\left(\frac{1}{2}\dot{\theta}^2\right) = -\int \frac{g}{L}\sin\theta d\theta$$

$$\frac{1}{2}\dot{\theta}^2 = \frac{g}{L}\cos\theta + C \longrightarrow \frac{d\theta}{dt} = \sqrt{\frac{2g}{L}\cos\theta + 2C}$$

(en Notas 5.4 hay una forma alternativa para deducir esta expresión)

Para determinar la constante de integración se hace uso de la condiciones iniciales, dado que para t=0 el péndulo esta desplazado hacia la izquierda en su posición mas alta y en reposo, su posición angular es máxima θ_{max} y su velocidad angular es nula $\dot{\theta}=0$.

$$\left\{\frac{1}{2}\dot{\theta}^2\right\}_{\dot{\theta}=0} = \left\{\frac{g}{L}\cos\theta + C\right\}_{\theta_{max}} \longrightarrow 0 = \frac{g}{L}\cos\theta_{max} + C \longrightarrow C = -\frac{g}{L}\cos\theta_{max}$$

Llevando este valor de la constante C a la ecuación queda determinada la velocidad angular.

$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{L}}\sqrt{\cos\theta - \cos\theta_{max}}$$

3.2. Posición angular

La posición angular se determina integrando las siguiente expresión, que proviene de la velocidad angular anterior.

$$dt = \frac{d\theta}{\sqrt{\frac{2g}{L}\left(\cos\theta - \cos\theta_{max}\right)}} \tag{3.3}$$

Esta integración como se verá, lleva a una «integral elíptica de primer tipo», para ello se empieza haciendo uso de la siguiente igualdad trigonométrica.

$$\cos \theta = 1 - 2\sin^2 \frac{\theta}{2}$$

(Nota:esta igualdad se puede probar usando $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ y haciendo $2\alpha = \theta$)

Aplicándose a los cosenos, se obtiene.

$$dt = \sqrt{\frac{L}{2g}} \frac{d\theta}{\sqrt{1 - 2\sin^2\frac{\theta}{2} - \left(1 - 2\sin^2\frac{\theta_{max}}{2}\right)}}$$

$$dt = \sqrt{\frac{L}{2g}} \frac{d\theta}{\sqrt{2\sin^2\frac{\theta_{max}}{2} - 2\sin^2\frac{\theta}{2}}}$$

$$dt = \frac{1}{2} \sqrt{\frac{L}{g}} \frac{d\theta}{\sqrt{\sin^2 \frac{\theta_{max}}{2} - \sin^2 \frac{\theta}{2}}}$$

Para hacer explicita la forma de la integral elíptica, se hace el cambio de variable $\theta \longrightarrow \varphi$, dado por la expresión.

$$\sin\frac{\theta}{2} = \sin\frac{\theta_{max}}{2}\sin\varphi \tag{3.4}$$

Para simplificar se define una nueva constante $k=\sin\frac{\theta_{max}}{2}$, se tiene entonces.

$$\sin \frac{\theta}{2} = k \sin \varphi \longrightarrow \sin \varphi = \frac{1}{k} \sin \frac{\theta}{2}$$

Tomando diferenciales en la expresión anterior y manipulando el lado izquierdo, se tiene.

$$\cos \varphi d\varphi = \frac{1}{2k} \cos \frac{\theta}{2} d\theta$$
$$\sqrt{1 - \sin^2 \varphi} d\varphi = \frac{1}{2k} \cos \frac{\theta}{2} d\theta$$

Transformando el lado derecho con $\cos\frac{\theta}{2}=\sqrt{1-\sin^2\frac{\theta}{2}}$ y usando $\sin\frac{\theta}{2}=k\sin\varphi$ se obtiene.

$$\sqrt{1 - \sin^2 \varphi} d\varphi = \frac{1}{2k} \sqrt{1 - k^2 \sin^2 \varphi} d\theta$$

Despejando $d\theta$.

$$\frac{2k\sqrt{1-\sin^2\varphi}}{\sqrt{1-k^2\sin^2\varphi}}d\varphi = d\theta$$

Llevado a (3.3) y haciendo uso de $\sin \frac{\theta}{2} = \sin \frac{\theta_{max}}{2} \sin \varphi$ con $k = \sin \frac{\theta_{max}}{2}$, se tiene.

$$dt = \frac{1}{2}\sqrt{\frac{L}{g}} \frac{1}{\sqrt{k^2 - k^2 \sin\varphi}} \frac{2k\sqrt{1 - \sin^2\varphi}}{\sqrt{1 - k^2 \sin^2\varphi}} d\varphi$$

$$dt = \frac{1}{2}\sqrt{\frac{L}{g}} \frac{1}{\sqrt{1 - \sin^2\varphi}} \frac{2k\sqrt{1 - \sin^2\varphi}}{\sqrt{1 - k^2 \sin^2\varphi}} d\varphi$$

$$dt = \sqrt{\frac{L}{g}} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2\varphi}}$$
(3.5)

Integrando en ambos lados, se obtiene la ecuación que permitirá determinar la posición angular en función del tiempo.

$$\sqrt{\frac{g}{L}}t = \int_0^{\varphi(t)} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$
 (3.6)

El **nuevo límite de integración** « $\varphi(t)$ » se obtiene del cambio de variable $\sin \frac{\theta}{2} = \sin \frac{\theta_{max}}{2} \sin \varphi$, realizado en (3.4) y esta dado por:

$$\varphi(t) = \sin^{-1} \left(\frac{\sin \frac{\theta(t)}{2}}{\sin \frac{\theta_{max}}{2}} \right)$$

$$\sqrt{\frac{g}{L}}t = \int_0^{\sin^{-1}\left(\frac{\sin\frac{\theta(t)}{2}}{\sin\frac{\theta_{max}}{2}}\right)} \frac{d\varphi}{\sqrt{1 - k^2\sin^2\varphi}}$$

■ Nota:

la integral que aparece en el lado derecho, se corresponde con una «integral elíptica» de primera especie o tipo, que esta definida por la expresión.

$$F(k,\phi) \equiv \int_0^\phi \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$$

Haciendo uso de la notación **«seno elíptico de Jacobi»** (sn) esta misma integral, se puede expresar como sigue.(ver detalles en el apartado de notas 5.1,ecuación (5.7))

$$\operatorname{sn}^{-1}(\sin\phi, k) \equiv \int_0^\phi \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$$

Llevado a la ecuación (3.6), se puede obtener la solución en función de la variable $\varphi(t)$.

$$\begin{split} \sqrt{\frac{g}{L}}t &= \left\{ \int_0^{\varphi(t)} \frac{d\varphi}{\sqrt{1-k^2\sin^2\varphi}} \equiv \sin^{-1}\left(\sin\varphi(t),k\right) \right\} \\ \sqrt{\frac{g}{L}}t &= \sin^{-1}\left(\sin\varphi(t),k\right) \\ \sin\left(\sqrt{\frac{g}{L}}t,k\right) &= \sin\left(\sin\varphi(t),k\right) \\ \sin\left(\sqrt{\frac{g}{L}}t,k\right) &= \sin\varphi(t) \end{split}$$

Finalmente para obtener la ecuación de movimiento, en el desplazamiento angular $\theta(t)$, se utiliza $\varphi(t) = \sin^{-1}\left(\frac{\sin\frac{\theta(t)}{2}}{\sin\frac{\theta max}{2}}\right)$ en la expresión anterior.

$$\sin^{-1}\left(\operatorname{sn}\left(\sqrt{\frac{g}{L}}t,k\right)\right) = \sin^{-1}\left(\frac{\sin\frac{\theta(t)}{2}}{\sin\frac{\theta_{max}}{2}}\right)$$

$$\sin\left(\sin^{-1}\left(\operatorname{sin}\left(\sqrt{\frac{g}{L}}t,k\right)\right)\right) = \sin\left(\sin^{-1}\left(\frac{\sin\frac{\theta(t)}{2}}{\sin\frac{\theta_{max}}{2}}\right)\right)$$

3.2.1. Gráfica

Representación gráfica de la función de Jacobi »sn» para los valores de k=0.05 y k=0.9, la primera al ser el valor de k muy próximo a cero, se parece mucho a la función seno.

Referencias

[1] https://dlmf.nist.gov/22.3

4. Expresión Período T

Se parte de la ecuación integral que relaciona la posición angular con el tiempo, dado por (3.5)

$$dt = \sqrt{\frac{L}{g}} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

(Con el parámetro $k=\sin\frac{\theta_{max}}{2}$ y la relación $\sin\frac{\theta}{2}=\sin\frac{\theta_{max}}{2}\sin\varphi$)

Se calcula un cuarto del periodo ajustando los límites de integración entre $\theta=0$ y θ_{max} , para trasladar estos limites a los nuevos valores para la variable φ , se utiliza la expresión $\sin\frac{\theta}{2}=\sin\frac{\theta_{max}}{2}\sin\varphi$, que define el cambio de variable.

■ Para $\theta = 0$ $\sin \theta = \sin \frac{\theta_{max}}{2} \sin \varphi \longrightarrow 0 = \sin \frac{\theta_{max}}{2} \sin \varphi \longrightarrow 0 = \sin \varphi \longrightarrow \varphi = 0.$

■ Para $\theta = \theta_{max}$, $\sin \frac{\theta_{max}}{2} = \sin \frac{\theta_{max}}{2} \sin \varphi \longrightarrow 1 = \sin \varphi \longrightarrow \varphi = \frac{\pi}{2}.$

Con estos límites se puede calcular un cuarto del periodo.

$$\frac{T}{4} = \sqrt{\frac{L}{g}} \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

Esta última integral es una «integral elíptica» del tipo «**completa de primera especie**». Su expresión estándar esta dada por:

$$K(k) = F(k, \frac{\pi}{2}) = \int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{1 - k^2 \sin^2 u}} \longleftarrow 0 < k < 1$$

Esta integral no tienen primitiva elemental y su resolución se hace a través de tablas o mediante un desarrollo en serie, que se integra termino a termino (ver 4.2.1).

Su solución esta dada por la siguiente serie.

$$K(k) = \frac{\pi}{2} \left\{ 1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 k^4 + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 k^6 + \cdots \right\} \leftarrow 0 < k < 1$$

$$T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1}{2}\frac{3}{4}\right)^2 k^4 + \left(\frac{1}{2}\frac{3}{4}\frac{5}{6}\right)^2 k^6 + \cdots \right)$$

Donde $k = \sin \frac{\theta_{max}}{2}$.

$$T = T_0 \left[1 + \left(\frac{1}{2} \right)^2 \sin^2 \frac{\theta_{max}}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 \sin^4 \frac{\theta_{max}}{2} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^2 \sin^6 \frac{\theta_{max}}{2} + \dots \right] = T_0 \left[\sum_{n=0}^{\infty} \left(\frac{(2n)!}{2^{2n} (n!)^2} \right)^2 \sin^{2n} \left(\frac{\theta_{max}}{2} \right) \right]$$

$$T_0 = 2\pi \sqrt{\frac{L}{g}}$$

5. Notas

5.1. Funciones Elípticas de Jacobi

La forma mas intuitiva de considerar las «funciones elípticas» es considerarlas como análogas a las funciones trigonométricas inversas, en su forma integral. A continuación se muestra el caso para el arcoseno,

$$\int_0^x \frac{dv}{\sqrt{1 - v^2}} = \sin^{-1} x \tag{5.1}$$

Se puede definir $x=\sin t$, $(-\pi/2 \le t \le \pi/2)$, y expresar la misma integral del siguiente modo.

$$\int_0^{\sin t} \frac{dv}{\sqrt{1 - v^2}} = \sin^{-1}(\sin t) = t$$

$$\int_0^{\sin t} \frac{dv}{\sqrt{1 - v^2}} = t$$
(5.2)

Por tanto se puede considerar la función «sin» como la inversa de la integral (5.1). Esto es lo que justifica la siguiente definición.

Definición. La función «seno elíptico Jacobi» sn(u,k), se define como la función inversa de la siguiente integral:

$$u = \int_0^{\sin(\mathbf{u}, \mathbf{k})} \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}}$$
 (5.3)

$$\mathbf{s}n^{-1}(z,k) = \int_0^z \frac{dv}{\sqrt{1 - v^2}\sqrt{1 - k^2v^2}}$$
 (5.4)

$$z = \operatorname{sn}(u, k) \tag{5.5}$$

Estas expresiones están justificadas por las siguientes relaciones.

función elíptica «sn»		trigonométrica inversa
$u = \int_0^{\sin(u,k)} \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}}$ $\sin^{-1}(z,k) = \int_0^z \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}}$	expresiones analogas	$t = \int_0^{\sin t} \frac{dv}{\sqrt{1 - v^2}}$ $\sin^{-1} x = \int_0^x \frac{dv}{\sqrt{1 - v^2}}$
$z = \mathbf{sn}(u, k)$		$x = \sin t$

La nomenclatura sn(u,k), pone de manifiesto la dependencia que hay en el parámetro "k" dentro de la integral, el cual aparece como novedad respecto a la definición del «arcoseno».

De forma general a la siguiente integral, se la llama «integral elíptica de primera especie» y se puede presentar en dos formas, una se conoce como «forma de Jacobi» y la otra «Forma de Legendre».

Forma de Legendre	Forma de Jacobi
$F(k,\phi) = \int_0^\phi \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$	$F_1(k,z) = \int_0^z \frac{dv}{\sqrt{1 - v^2}\sqrt{1 - k^2v^2}}$

El cambio entre las dos formas, se realiza a través del cambio de variable « $v = \sin u$ », que con lleva el siguiente cambio en los limites de integración « $z = \sin \phi$ », este permite expresar $z = \sin(u, k)$ de una forma mas adecuada para los cálculos.

$$\left\{\begin{array}{l}
\operatorname{sn}(u,k) = z \\
z = \sin \phi
\end{array}\right\} \longrightarrow \operatorname{sn}(u,k) = \sin \phi \tag{5.6}$$

$$\left\{ \begin{array}{c} \mathbf{sn}^{-1}(z,k) = \int_0^z \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}} \\ z = \sin \phi \end{array} \right\} \longrightarrow \mathbf{sn}^{-1}(\sin \phi, k) = \int_0^z \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}}$$

$$\left\{ \begin{array}{l}
\int_{0}^{\phi} \frac{du}{\sqrt{1 - k^{2} \sin^{2} u}} = \int_{0}^{z} \frac{dv}{\sqrt{1 - v^{2}} \sqrt{1 - k^{2} v^{2}}} \\
\operatorname{sn}^{-1}(\sin \phi, k) = \int_{0}^{z} \frac{dv}{\sqrt{1 - v^{2}} \sqrt{1 - k^{2} v^{2}}} \end{array} \right\} \longrightarrow \operatorname{sn}^{-1}(\sin \phi, k) = \int_{0}^{\phi} \frac{du}{\sqrt{1 - k^{2} \sin^{2} u}} \tag{5.7}$$

5.2. Integrales Elípticas

La integral elíptica «incompleta del primer tipo», en su forma de Legrende se define como:

$$F(k,\phi) = \int_0^\phi \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$$

(son la base para definir las funciones elípticas de Jacobi)

Donde el parámetro k se llama «modulo» de la Integral Elíptica. Tienen dos formas de presentación, Legrende y Jacobi; estando relacionadas por la transformación de variable $v=\sin u$.

Forma Legendre a Jacobi

Se realiza con el cambio de variable $v = \sin u$. El nuevo diferencial se obtiene de:

$$v = \sin u \longrightarrow dv = \cos u du = \sqrt{1 - \sin^2 u} du = \sqrt{1 - v^2} du$$

$$dv = \sqrt{1 - v^2} du \longrightarrow du = \frac{dv}{\sqrt{1 - v^2}}$$

y los nuevos límites de integración esta dados por $u(0,\phi) \longrightarrow v\left(\sin \theta, \sin \phi\right)$, normalmente el nuevo límite de integración $\sin \phi$ se renombra como $x \equiv \sin \phi$. Llevado a la integral se obtiene la forma de Jacobi, para la misma integral.

$$\int_0^x \frac{dv}{\sqrt{1 - v^2}\sqrt{1 - k^2 v}}$$

5.2.1. Resumen

Incompleta

Tipo	Forma de Legendre	Forma de Jacobi
1ª	$F(k,\phi) = \int_0^\phi \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$	$F_1(k,x) = \int_0^x \frac{dv}{\sqrt{1 - v^2}\sqrt{1 - k^2v^2}}$
2ª	$E(k,\phi) = \int_0^\phi \sqrt{1 - k^2 \sin^2 u} du$	$E_1(k,x) = \int_0^x \frac{\sqrt{1 - k^2 v^2}}{\sqrt{1 - v^2}} dv$
3 <u>a</u>	$H(k, n, \phi) = \int_0^{\phi} \frac{du}{(1 + n\sin^2 u)\sqrt{1 - k^2\sin^2 u}}$	$H_1(k, n, \phi) = \int_0^x \frac{dv}{(1 + nv^2)\sqrt{(1 - v^2)1 - k^2v^2}}$

NOTA: $x = \sin \phi$

Completa Las integrales completas, son un caso particular de las incompletas y se obtiene cuando se fija el valor de x=1, lo cual implica que $\phi=\frac{\pi}{2}$.

Tipo	Formato Legendre	Formato Jacobi
1ª	$K(k) = F(k, \frac{\pi}{2}) = \int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{1 - k^2 \sin^2 u}}$	$F_1(k) = \int_0^1 \frac{dv}{\sqrt{1 - v^2} \sqrt{1 - k^2 v^2}}$
2 <u>a</u>	$E(k) = E(k, \frac{\pi}{2}) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 u} du$	$E_1(k) = \int_0^1 \frac{\sqrt{1 - k^2 v^2}}{\sqrt{1 - v^2}} dv$
3 <u>a</u>	$\Pi(k,n) = \int_0^{\frac{\pi}{2}} \frac{du}{(1 + n\sin^2 u)\sqrt{1 - k^2 \sin^2 u}}$	$\prod_{1} (k, n) = \int_{0}^{1} \frac{dv}{(1 + nv^{2})\sqrt{1 - v^{2}}\sqrt{1 - k^{2}v^{2}}}$

5.2.2. Soluciones

$$F(x) = \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^2 x^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 x^4 + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 x^6 + \dots \right]$$

$$\bullet K(k) = \frac{\pi}{2} \sum_{n=0}^{\infty} \left[\frac{(2n)!}{2^{2n} (n!)^2} \right]^2 k^{2n} = \frac{\pi}{2} \sum_{n=0}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2 k^{2n} = \frac{\pi}{2} \left(1 + \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^{2k} {}^{2n} \right)$$

•
$$K(k) = F\left(k, \frac{\pi}{2}\right) = \frac{\pi}{2} \left\{ 1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 k^4 + + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 k^6 + \cdots \right\} \leftarrow 0 < k < 1$$

$$E(k) = \frac{\pi}{2} \sum_{n=0}^{\infty} \left[\frac{(2n)!}{2^{2n} (n!)^2} \right]^2 \frac{k^{2n}}{1-2n} = \frac{\pi}{2} \left(1 - \sum_{n=0}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2n-1} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right)^2 \frac{k^{2n}}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) \right) = \frac{\pi}{2} \left(1 - \sum_{n=1}^{\infty} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) \right) = \frac{\pi}{2} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(\frac{(2n-1)!}{2^{2n-1} n! (n-1)!} \right) = \frac{\pi}{2} \left(\frac{(2n-1)!}{2^{2n-1} n!} \right) = \frac{\pi}{2} \left(\frac{(2n-1)!}{2^{2n-1} n!}$$

$$E(k) = \frac{\pi}{2} \left(1 - \sum_{i=1}^{\infty} \frac{(2i-1)!!^2 k^{2i}}{(2i)!!^2 (2i-1)} \right)$$

$$\bullet \ E(k) = \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 k^2 - \left(\frac{1 \times 3}{2 \times 4}\right)^2 \frac{k^4}{3} - \left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^2 \frac{k^6}{5} - \dots \right]$$

5.3. Integración Termino a Termino

Integración termino a termino.

$$K(k) = F(k, \frac{\pi}{2}) = \int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{1 - k^2 \sin^2 u}} \longleftarrow 0 < k < 1$$

Se hace a través del «teorema del binomio» con el cambio $z=k^2\sin^2\theta$ se tiene la serie

$$(1-z)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)(-z) + \left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\frac{\left(-z\right)^2}{2!} + \left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\frac{\left(-z\right)^3}{3!} + \cdots$$

Esta serie converge de forma uniforme y la solución se puede dar en los términos que resulten de la integración termino a termino.

$$\int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{1 - k^2 \sin^2 u}} = \int_0^{\frac{\pi}{2}} \left\{ 1 + \frac{1}{2} k^2 \sin^2 u + \frac{1}{2} \frac{3}{4} k^4 \sin^4 u + \frac{1}{2} \frac{3}{4} \frac{5}{6} k^6 \sin^6 u + \cdots \right\} = \frac{\pi}{2} \left\{ 1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1}{2} \frac{3}{4}\right)^2 k^4 + \left(\frac{1}{2} \frac{3}{4} \frac{5}{6}\right)^2 k^6 + \cdots \right\}$$

Para la integración de cada termino se usa la siguiente integral tabulada.

$$\int_0^{\frac{\pi}{2}} \sin^2 u du = \int_0^{\frac{\pi}{2}} \cos^2 u du = \begin{cases} \frac{1}{2} \frac{3}{4} \frac{5}{6} \cdots \frac{n-1}{n} \left(\frac{\pi}{2} \right) & n \in \mathbb{Z}^+ \ par \\ \frac{2}{1} \frac{4}{3} \frac{6}{5} \cdots \frac{n-1}{n} \left(\frac{\pi}{2} \right) & n \in \mathbb{Z}^- \ impar \end{cases}$$

5.4.
$$\dot{\theta}(t) = p(t)$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

Haciendo el cambio de variable $\frac{d\theta(t)}{dt}=p(t)$ y aplicando la regla de la cadena para la derivación, se tiene:

$$\frac{d^2\theta}{dt^2} = \frac{d}{dt} \underbrace{\left(\frac{d\theta}{dt}\right)}_{p} = \frac{dp}{dt} = \frac{dp}{d\theta} \underbrace{\frac{d\theta}{dt}}_{p} = p\frac{dp}{d\theta}$$

La ecuación diferencial de 2-Orden se transforma en otra que es de primer 1-Orden y de variables separadas.

$$p\frac{dp}{d\theta} + \frac{g}{L}\sin\theta = 0$$

Agrupando los términos en la variable dependiente $p(\theta)$ y la variable independiente θ , se obtiene.

$$p\frac{dp}{d\theta} = -\frac{g}{L}\sin\theta \longrightarrow pdp = -\frac{g}{L}\sin\theta d\theta$$

Integrando en ambos lados se obtiene la siguiente solución implícita para la variable p

$$\int pdp = -\int \frac{g}{L}\sin\theta d\theta$$

$$\frac{1}{2}p^2 = \frac{g}{L}\cos\theta + C\tag{5.8}$$

Deshaciendo el cambio de variable $p=\frac{d\theta}{dt}$

$$p^2 = 2\left(\frac{g}{L}\cos\theta + C\right)$$

$$p = \sqrt{\frac{2g}{L}\cos\theta + 2C}$$

$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{L}\cos\theta + 2C} \tag{5.9}$$

Dinamica-Pendulo-Simple 21