Vapnik's	rule;				
, u		More	general	problem as	an
			•		
	Intermed	Mate	step.	Vladinir	•
				(((ag)
			200		
General ove	erview				
► Mode	el-hased RI ·				

- - + 'Easy' to learn a model (supervised learning)
 - + Learns 'all there is to know' from the data
 - Objective captures irrelevant information
 - May focus compute/capacity on irrelevant details
 - Computing policy (planning) is non-trivial and can be computationally expensive
- Value-based RL:
 - + Closer to true objective
 - + Fairly well-understood somewhat similar to regression
 - Still not the true objective may still focus capacity on less-important details
- Policy-based RL:
 - + Right objective!
 - Ignores other learnable knowledge (potentially not the most efficient use of data)

we know kind of how to do that and another benefit of learning models

MacBook Pro

Q (5.0g) 類はみずなるaction / action tox 多分布

Policy	New ork:	
NO	N: Q= T	(5,0)
	Q= T	(0/5,0)
Policy	Gradient:	通达对收益期望求接度, 从为at policy network 多数斯罗斯
		AL MORT PORTE Y

Policy gradients / Actor Critics	
X- Learn policy directly	
Policy-based RL	
Approximate paramtieric value function (previous	51y)
$\left(\begin{array}{c} V_{w}(s) \simeq V_{z}(s) \\ Q_{w}(s,a) \simeq Q_{z}(s,a) \end{array}\right)$	
Directly parametrize the policy	
$T_{\theta}(a s) = P(a s, \theta)$	

Value-Based and Policy-Based RL

- Value Based
 - ► Learnt Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

tion policy gradievalue-Based Actor Critic Policy-Based Inction

Simultaneously

Leave

terminology there's also something called actor critic systems and

Advantages of Policy-Based RL

learn the optimal stochastic policy

Advantages:

- Good convergence properties
- Easily extended to high-dimensional or continuous action spaces
- Can learn stochastic policies
- Sometimes policies are simple while values and models are complex
 - ► E.g., rich domain, but optimal is always go left

Disadvantages:

- Susceptible to local optima (especially with non-linear FA)
- Obtained knowledge is specific, does not always generalize well
- ▶ Ignores a lot of information in the data (when used in isolation)

have a nonlinear function you end up in some local

Policy objective function:

policy To(s, a) with parameters &

Average reward per time-step:

Estimate of the Policy gradient:
,
VoJ(O) = VOE, [VXO(S)]
Use Monta Carlo Samples
60 compute this gradient
One-step Case (a Contextual bandie)
J(0) = E[k(5,A)]
Use identity:
VOE[R(5,A)]=E[Volog T(A15)R(5,A)]
then use the serve function trick;
VOE[R(S,A)]
= Vo = d(s) = To (a(s) R(s,a)
>
= = d(s) = Vo To(a(s) R(s,a)
5 0 10 10 10 10 10 10 10 10 10 10 10 10 1

$$= \frac{\nabla_{\theta} T_{\theta}(\alpha|\varsigma)}{T_{\theta}(\alpha|\varsigma)} \frac{\nabla_{\theta} T_{\theta}(\alpha|\varsigma)}{T_{\theta}(\alpha|\varsigma)}$$

Use Stochastic policy - gradient update:

Softnex policy:

Probability of action is proportional to

exponentiated weight.

$$\frac{2^{h(5,a)}}{\sqrt{a(5)}}$$

Gradient:

Policy Gradient Theorem

$$J = J_{i}$$

The policy gradient:

Consider trojectory
$$S = S_0, A_0, R_1, S_1, A_1, R_1,$$

$$S_2, \dots \text{ with return}$$

$$G(S)$$

S::

$$\nabla_{\theta} \mathcal{J}_{\theta}(\pi) = \mathcal{F} \mathcal{J}_{\theta}(\pi) \mathcal{J}_{\theta} \mathcal{J}_{\theta}(\pi) \mathcal{J}_{\theta}(\pi)$$

reduce variance:

A good baseline is Vx (5+1

Vo Jo(> 1=

E[= Vo lug x(A+ S+) (9x (S+, A+)-Vx (5+))]

We estimate Vw(s) explicitly and sample

(7x (St. At) 2 Gt (n)

Bias in Actor - Critic Algorithms
N-step TD-error:
$\mathcal{J}_{t}^{(n)} = \mathcal{G}_{t}^{(n)} - \mathcal{V}_{w}(\mathcal{S}_{t})$
= Rt+1 + VR++2 + ··· + Y P++n +
$\gamma^{n}V_{\omega}(S_{t+n})-V_{\omega}(S_{t})$
G(n)
Estimating the Action-value Function
Critic Solving Policy evaluation
Actor Critic
尼其北的policy gradiet等法艺能完批每较次更新 银纸格站

尾基地的policy gradie+算法只能实现每期次更新,能够搭 地地和如如如为白鳢国东,训练数率很大,并且很容易不收敛

3.
$$\Theta \leftarrow \Theta + A \sqrt{3} J(\Theta)$$

$$\sqrt{6} J(6) = \left[\sum_{t=1}^{T} \sqrt{6} \log T_{10}(\alpha_{t}|S_{t}) Q(S_{t}, \alpha_{t}) \right]$$

$$TNA_{0}(T)$$

Advantage Actor Critic (A2C)

D(St, at) 有很大的营养

水小方差

 $O(S_t, a_t) \leftarrow O(S_t, a_{x_1} - V(S_t)$

1/2/3, OCS, a1 45 U(S)

 $A^{\pi}(S_{t}, a_{t}) = Y(S_{t}, a_{t}) + V^{\pi}(S_{t+1}) - V^{\pi}(S_{t})$

Actor-Critic

Critic Update parameters ${m w}$ of $v_{m w}$ by n-step TD (e.g., n=1) Actor Update heta by policy gradient

```
function Advantage Actor Critic Initialise s, \theta for t = 0, 1, 2, \ldots do Sample A_t \sim \pi_{\theta}(S_t) Sample R_{t+1} and S_{t+1} \delta_t = R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_t) \mathbf{w} \leftarrow \mathbf{w} + \beta \ \delta_t \ \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t) \theta \leftarrow \theta + \alpha \ \delta_t \ \nabla_{\theta} \log \pi_{\theta}(A_t \mid S_t) end for end function
```

[one-step TD-error, or advantage] [TD(0)] [Policy gradient update]

step but it won't actually do multi it will do one step temporal

Full advantage actor critic agent (A two C)

- Advantage actor critic includes:
 - ▶ A representation (e.g., LSTM): $(S_{t-1}, O_t) \mapsto S_t$
 - ightharpoonup A network v_w : $S \mapsto v$
 - ▶ A network π_{θ} : $S \mapsto \pi$
 - ▶ Copies/variants π^m of π_θ to use as policies: $S_t^m \mapsto A_t^m$
 - A n-step TD loss on v_w

$$I(\mathbf{w}) = \frac{1}{2} \left(G_t^{(n)} - v_{\mathbf{w}}(S_t) \right)^2$$

where
$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} v_w(S_{t+n})$$

▶ A *n*-step REINFORCE 'loss' on π_{θ}

$$I(\theta) = \left[G_t^{(n)} - v_{\mathbf{w}}(S_t)\right] \log \pi_{\theta}(A_t|S_t)$$

- Optimizers to minimize the losses
- Also know as A2C, or A3C (when combined with asynchronous parameter updates)

On-policy estimate:

$$G_{t} = \frac{\pi_{\theta}(A_{t}|S_{t})}{b(A_{\tau}|S_{t})} \left(R_{t+1} + V_{s}G_{t+1}^{(n-1)-p}\right)$$

Mulhi-step return: (Mixture of n-step returns)

$$G_{k}^{(0)} = V_{w}(S_{t}) \propto V_{x}(S_{t})$$

(--)

$$G_{k}^{\lambda} = R_{t+1} + V(1 - \lambda_{t+1}) V_{\omega} (S_{t+1}) + V \lambda_{t+1} G_{t+1}^{\lambda}$$

$$\lambda_t \in [0,1]$$
 (" $\lambda_t \in [0,1]$)

Trust region policy optimization
(trust regions)
regularize the policy
Prevent instability
Mexhod: limit the difference between Subsequent
Policies
Kullbeck-Leibler Divergence:
KL(Told // To)
= E[] Told (a/s) by Tola(s) Told (a/s) by Told (a/s)
J(b) - M KL(T. W To)
Mazinize

arge	(TRPO	2015
batch 05	(Pp 0	201 6
Continuous	action space	25
Gaussian	D. V. str.	
6 a 4 55, 00 L	16029:	
a	~ N (pecs	(σ^2)
		· • • • • • • • • • • • • • • • • • • •
gradient:		
•	a	- P(s)
To by The	, (5, a) = -	- M(S)

Continuous actor-critic learning automaton (Cacla)

- $egin{aligned} lackbrack a_t &= \mathsf{Actor}_ heta(S_t) \ lackbrack A_t &\sim \pi(\cdot|S_t,a_t) \; (\mathsf{e.g.},\, A_t \sim \mathcal{N}(a_t,\Sigma)) \end{aligned}$ (get constant)
- $\delta_t = R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) v_{\mathbf{w}}(S_t)$
- ▶ Update $v_{\mathbf{w}}(S_t)$ (e.g., using TD)
- ▶ If $\delta_t > 0$, update $\mathsf{Actor}_{\theta}(S_t)$ towards A_t
- ▶ If $\delta_t \leq 0$, do not update $Actor_{\theta}$

(get current (continuous) action proposal)

(explore)

(compute TD error)

(policy evaluation) (policy improvement)

difference difference error is positive we're happily surprised