Problem 1: Detect Cycle in an Undirected Graph

Given an undirected graph, determine whether the graph contains a cycle or not.

Input:

• A graph with N vertices and M edges, where N is the number of vertices and M is the number of edges. The graph is represented as an adjacency list.

Output:

- Return true if the graph contains a cycle.
- Return false if the graph does not contain a cycle.

Input	Output
4 4	true
0 1 1 2 2 3 3 0	
3 2	
Explanation: 0 -> 1 -> 2 -> 3 -> 0 forms a cycle.	
3 2	false
0 1 1 2	

Problem 2: Detect Cycle in a Directed Graph

Given a directed graph, determine whether the graph contains a cycle or not.

Input:

• A graph with N vertices and M edges, where N is the number of vertices and MMM is the number of edges. The graph is represented as an adjacency list.

Output:

- Return true if the graph contains a cycle.
- Return false if the graph does not contain a cycle.

•

Input	Output
4 4	true
0 1 1 2 2 3 2 1	

Explanation: 1 -> 2 -> 3 -> 1 forms a cycle.

32

Explanation: No cycle is formed in the graph.

false