Logic and Set Theory

January 22, 2018

C0	ONTENTS	2
Contents		
0	Miscellaneous	3
1	Propositional logic	4
2	Syntactic implication	6

3

0 Miscellaneous

Some introductory speech

1 Propositional logic

Let P denote a set of *primitive proposition*, unless otherwise stated, $P = \{p_1, p_2, ...\}$.

Definition. The language or set of propositions L = L(P) is defined inductively by:

- (1) $p \in L \ \forall p \in P$;
- (2) $\perp \in L$, where \perp is read as 'false';
- (3) If $p, q \in L$, then $(p \implies q) \in L$. For example, $(p_1 \implies L)$, $((p_1 \implies p_2) \implies (p_1 \implies p_3))$.

Note that at this point, each proposition is only a finite string of symbols from the alphabet $(,), \Longrightarrow, \bot, p_1, p_2, ...$ and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set $L_1 = P \cup \{\bot\}$, and $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$, and then put $L = L_1 \cup L_2 \cup ...$

Each proposition is built up *uniquely* from 1) and 2) using 3). For example, $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$ came from $(p_1 \Longrightarrow p_2)$ and $(p_1 \Longrightarrow p_3)$. We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p \pmod{p}$, as an abbreviation for $p \implies L$;
- $p \lor q \ (p \text{ or } q)$, as an abbreviation for $(\neg p) \implies q$;
- $p \wedge q$ (p and q), as an abbreviation for $(p \implies (\neg q))$.

These definitions 'make sense' in the way that we expect them to.

Definition. A valuation is a function $v: L \to \{0, 1\}$ s.t. (1) $v(\bot) = 0$; (2)

$$v(p \implies q) = \left\{ \begin{array}{ll} 0 & v(p) = 1, v(q) = 0 \\ 1 & else \end{array} \right. \forall p,q \in L$$

Remark. On $\{0,1\}$, we could define a constant \bot by $\bot = 0$, and an operation \Longrightarrow by $a \Longrightarrow b = 0$ if a = 1, b = 0 and 1 otherwise. Then a valuation is a function $L \to \{0,1\}$ that preserves the structure (\bot and \Longrightarrow), i.e. a homomorphism.

Proposition. (1) If v, v' are valueations with $v(p) = v'(p) \ \forall p \in P$, then v = v' (on L).

(2) For any $w: P \to \{0,1\}$, there exists a valuation v with $v(p) = w(p) \ \forall p \in P$. In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have $v(p) = v'(p) \ \forall p \in L_1$. However, if v(p) = v'(p) and v(q) = v'(q) then $v(p) \implies q = v'(p) \implies q$, so v = v' on L_2 . Continue inductively we have v = v' on $L_n \forall n$.

(2) Set $v(p) = w(p) \ \forall p \in P \text{ and } v(\bot) = 0$: this defines v on L_1 . Having defined v on L_n , use the rules for valuation to inductively define v on L_{n+1} so we can extend v to L.

5

Definition. We say p is a tautology, written $\vDash p$, if $v(p) = 1 \ \forall$ valuations v. Some examples:

(1) $p \implies (q \implies p)$: a true statement is implies by anything. We can verify this by:

So we see that this is indeed a tautology;

(2) $(\neg \neg p) \implies p$, i.e. $((p \implies \bot) \implies p$, called the "law of excluded middle";

(3) $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)]$. Indeed, if not then we have some v with $v(p \Longrightarrow (q \Longrightarrow r)) = 1$, $v(\Longrightarrow (p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)) = 0$. So $v(p \Longrightarrow q) = 1$, $v(p \Longrightarrow r) = 0$. This happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then $v(q \Longrightarrow r) = 0$, so $v(p \Longrightarrow (q \Longrightarrow r)) = 0$.

Definition. For $S \subset L$, $t \in L$, say S entails or semantically implies t, written $S \models t$ if $v(s) = 1 \forall s \in S \implies v(t) = 1$, each valuation v. ("Whenever all of S is true, t is true as well.")

For example, $\{p \Longrightarrow q, q \Longrightarrow r\} \vDash (p \Longrightarrow r)$. To prove this, suppose not: so we have v with $v(p \Longrightarrow q) = v(q \Longrightarrow r) = 1$ but $v(p \Longrightarrow r) = 0$. So v(p) = 1, v(r) = 0, so v(q) = 0, but then $v(p \Longrightarrow q) = 0$.

If v(t) = 1 we say t is true in v or that v is a model of t.

For $S \subset L$, v is a model of S if $v(s) = 1 \ \forall s \in S$. So $S \vDash t$ says that every model of S is a model of t. For example, in fact $\vDash t$ is the same as $\phi \vDash t$.

2 Syntactic implication

For a notion of 'proof', we will need axioms and deduction rules. As axioms, we'll take

1.
$$p \implies (q \implies p) \ \forall p, q \in L;$$

2. $[p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)] \ \forall p, q, r \in L;$
 $(\neg \neg p) \implies p \ \forall p \in L.$

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as all of these are infinite sets of axioms.

As deduction rules, we'll take just modus ponens: from p, and $p \implies q$, we can deduce q.

For $S \subset L$, $t \in L$, a proof of t from S cosists of a finite sequence $t_1, ..., t_n$ of propositions, with $t_n = t$, s.t. $\forall i$ the proposition t_i is an axiom, or a member of S, or there exists j, k < i with $t_j = (t_k \implies t_i)$.

We say s is the *hypotheses* or *premises* and t is the *conclusion*.

If there exists a proof of t from S, we say S proves or syntactically implies t, written $s \vdash t$.

If $\phi \vdash t$, we say t is a theorem, written $\vdash t$.