Dokumentacja Zadanie 1.11

Ciesielski Mateusz Kasztelan Damian Matyjas Sebastian Grupa 1

Treść:

Wejście: przedział [a,b], liczba naturalna n, n liczb rzeczywistych $\mathbf{y}_0, \dots, \mathbf{y}_{n-1}$ Zadanie:

- Stworzyć siatkę równoległa n elementów
- podać wielomian interpolacyjny w postaci Newtona interpolujący dane wejściowe

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + [x_0, x_1, x_2](x - x_0)(x - x_1)$$

+... + $[x_0, x_1,, x_n](x - x_0) * * (x - x_{n-1})$

- Wypisać ilorazy różnicowe
- Narysować wielomian interpolacyjny
- zezwolić użytkownikowi na dodanie kolejnego węzła \mathbf{x}_n i wartości \mathbf{y}_n
- Wyznaczyć metodą Newtona (bez ilorazów różnicowych) wielomian interpolujący dane wejściowe y₀,.....,y_n
- Narysować obydwa wielomiany na jednym wykresie

Postać Newtona I - jedna z metod przedstawiania wielomianu. Dla wielomianu stopnia n wybiera się n+1 punktów x_0 , x_1 , ..., x_n i buduje wielomian postaci:

$$w(x) = \sum_{i=0}^{n} a_i \prod_{i=0}^{i-1} (x - x_j) = a_0 + a_1(x - x_0) + a_2(x - x_1)(x - x_0) + \dots + a_n(x - x_{n-1}) + \dots + a_n(x - x_n) + \dots + a_n($$

Postać Newtona II – jedna z metod przedstawiania wielomianu. Jest to metoda, którą używamy w momencie gdy chcemy dołożyć dodatkowy węzeł \mathbf{x}_{n+1} (różne od pozostałych) i wartość \mathbf{y}_{n+1}

$$Q(x) = P(x) + b_{n+1}(x - x_0) \cdot \ldots \cdot (x - x_{n-1})(x - x_n),$$

gdzie:

$$b_{n+1} = \frac{y_{n+1} - P(x_{n+1})}{\omega_n(x_{n+1})}.$$