Test 1, Gruppe 1

- **1** Wie ist das Karthesische Produkt von n Mengen $M_1, M_2, M_3, \ldots, M_n$ definiert?
 - 2 Wie lauten die Gesethe von *DeMorgan* für Mengen?
 - **3** Wie ist die **Potenzmenge** einer Menge M definiert?
- **4** Wie sind (a) **Maximum** und (b) **Minimum** einer Menge $M \subset \mathbb{R}$ definiert? (c) Gibt es diese immer? (d) Warum ist es für die Definition relevant, dass $M \subset \mathbb{R}$?
 - **5** Wann sind zwei Abbildungen f(x) und g(x) gleich?
 - **6** Was muss eine Abbildung $f:X\to Y$ erfüllen, damit sie **injektiv** ist? Aufgabe 7 9 nicht erkennbar
 - **10** Sei $f: [0,5] \rightarrow [-1,9], f(x) = 2 \cdot x 1 eine Abbildung, Berechnen Sie(a) das Bilddermenge [3,4] Test 2, Gruppe 2$
 - 1 (a) Wie ist die **identische Abbildung** auf einer Menge X definiert?
- (b) Welche zusätzliche bedingung wird an die Menge X gestellt?
- **2** Existiert zu jeder Abbildung $f:X\to Y$ eine Umkehrabbildung? Begründen Sie ihre Antwort!
 - **3** Wie ist die Konjunktion zweier Aussagen A und B definiert?
- 4 Wann sind zwei Aussageformeln F_1, F_2 nach der Definition gleichweirtig?
 - 5 Wie lauten die **Distributivgesetze** der Aussagenlogik?
- **6** Auf welcher Aussagenlogischen Äquivalenz beruht das Beweisprinzip der Kontraposition?

7 Sei
$$f: -2, -1, 0, 1, 2, 3 \to X, f(x) := \begin{cases} -2 \cdot x & \text{, falls } x \leq 0 \\ 3 \cdot & \text{, sonst} \end{cases}$$
 eine Ab-

bildung. Bestimmen Sie die Menge X so, dass f bijektiv ist.

8 Seien (f: Z $\rightarrow \mathbb{N}$), (f(x) = |x|) und $(g: \mathbb{R} \rightarrow \mathbb{Z})$, (g(x) := |x|) ((|x|) is the Floor-

 $Funktion, siegibtimmer die zuder gegeben en Zahln\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (a) Wiek\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (b) Wiek\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (b) Wiek\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (c) Wiek\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (d) Wiek\"{a}chstkleinere oder gleiche Zahlzur\"{u}ck). (e) Wiek \r{u}chstkleinere oder gleiche Zahlzur\ddot{u}ck). (e) Wiek \r{u}chstkleinere oder gleiche Zahl$

9 Sei $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 5x + 1$ eine Funktion. (a) Wie lautet die

 $\label{thm:linear_energy} \mbox{Umkehrfunktion} \ f^{-1}zu\mbox{f.}(b) Zeigen Sie, dass Ihre Umkehrfunktion wirklich die Umkehrfunktion ist werden der Sie, dass Ihre Umkehrfunktion wirklich die Umkehrfunktion ist werden der Sie, dass Ihre Umkehrfunktion wirklich die Umkehrfunktio$

10 Zeigen Sie mittels Wahrheitstabelle, dass die Aussageformeln $F_1(A, B, C) =$

 $A \vee (B \wedge C)$ und $F_2(A, B, C) = (A \vee B) \wedge (A \vee C)$ äquivalent sind.

A	B	C	$B \wedge C$	F_1	$A \lor B$	$A \lor C$	$ F_2 $	$F_1 \Leftrightarrow F_2$
W	W	W	W	W	W	W	W	W
W	W	\mathbf{F}	F	W	W	W	W	W
W	\mathbf{F}	W	F	W	W	W	W	W
W	\mathbf{F}	\mathbf{F}	F	W	W	W	W	W
\mathbf{F}	W	W	W	W	W	W	W	W
\mathbf{F}	W	\mathbf{F}	F	F	W	F	F	W
\mathbf{F}	\mathbf{F}	W	F	F	F	W	F	W
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F	F	\mathbf{F}	F	W

Test 3, Gruppe 3 **1** Wie wird eine binäre Relation ($R_1 \subset M \times M$) auf der M en ge(M) genanntim G $M_1 \times M_2$) $mit(N_1 \neq N_2)$?

- **2** Was muss eine Relation $R \subset X \times Y$ erfüllen, um rechtstotal zu sein?
- ${\bf 3}$ Was muss eine homogene Relation $R\subset M^2$ erfüllen, um symmetrisch zu sein?
- ${\bf 4}$ Was muss eine homogene Relation $R\subset M^2$ erfüllen, um transitiv zu sein?
 - 5 Nennen Sie die Namen der Eigenschaft einer abelschen Gruppe (G, *).
 - **6** Was ist S_n und wie ist es definiert?
- 7 Sei M=0,1,2,3. Bauen Sie eine Relation $R\subset M\times M$, sodass Ihre Relation reflexiv ist.
 - 8 Seien $M = \{0, -1, -2, -3, -4, -5\}, N = \{0, 1, 2, 3, 4, 5\}$ Mengen und

$$R = \{(0,0), (-1,1), (0,2), (-3,3), (0,4), (-5,5)\} \subset M \times N$$

eine Relation. Kann R dann auch der Graph einer Funktion sein? Falls ja, wie lautet dann die Definition der Funktion, und falls nein, warum nicht?

- **9** Gegeben sind die beiden Permutationen $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ und $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
- $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ aus der Gruppe (S_3, \circ) . Berechnen Sie (a) $\sigma_1 \circ \sigma_2$, (b) $\sigma_2 \circ \sigma_1$ sowie (c) $(\sigma_1)^{-1}$ und (d) $(\sigma_2)^{-1}$.
- **10** Zeigen Sie mittels folgender Wahrheitstabelle, dass die Aussageformeln $F_1(A, B, C) = A \Rightarrow (B \lor C)$ und $F_2(A, B, C) = \neg (A \land \neg (B \lor C))$ äquivalent sind.

A	B	C	$B \lor C$	$ F_1 $	$\neg (B \lor C)$	$A \wedge \neg (B \vee C)$	$ F_2 $	$F_1 \Leftrightarrow F_2$
\overline{W}	W	W	W	W	F	F	W	\overline{W}
W	W	F	W	W	F	F	W	W
W	F	W	W	W	F	F	W	W
W	F	F	F	F	W	W	W	W
F	W	W	W	W	F	F	F	W
F	W	F	W	W	F	F	W	W
F	F	W	W	W	F	F	W	W
F	F	F	F	W	W	F	W	W

Test 4, Gruppe 2

- **1** Sei (K, \oplus, \odot) ein Körper und sei $k \in K_0 := K \setminus \{0\}$. Wie bezeichnen / schreiben wir allgemein das Inverse von k bezüglich der Verknüpfung \odot ?
- **2** Sei (K, \oplus, \odot) ein Körper und sei $k \in K$. Wie bezeichnen oder schreiben wir allgemein das Inverse von k bezüglich der Verknüpfung \oplus ?
 - ${\bf 3}$ Unter welcher Bedingung ist der Restklassenring \mathbb{Z}_m ein Körper?
- **4** (a) Aus welchen drei Abschnitten besteht ein Induktions-Beweis? (b) Skizzieren Sie was in jedem der Abschnitte passiert.
- ${\bf 5}$ Wie lautet die ${\bf Gaußsche}$ Summenformel (Inklusive Verbedingungen)?
 - **6** Wie lautet der **binomische Satz** für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$?
- 7 Gegeben sei der endliche Restklassenkörper ($\mathbb{Z}_5, +, \cdot$). Geben Sie die Inversen der Multiplikation (\cdot) an (soweit diese existieren). (Ergebnisse in Standardrepräsentanten)

8

Berechnen Sie das folgende:

$$([4]_11)^{-1} + ([5]_11)^{-1} \cdot [-10]_11$$

9

Berechnen Sie
$$\binom{6}{4}$$

 ${\bf 10}$ (c) Wie viele Mögliche schsstellige Metrikelnummern gibt es im Dezimalsystem (Bestehend aus den Ziffern 0,1,2,3,4,5,6,7,8,9)? (Ziehen (a) mit/ohne Zurücklegen, (b) mit/ohne Beachtung der Reihenfolge?)

Test 5, Gruppe 2

- **1** Wie ist die Menge der komplexen Zahlen (\mathbb{C}) mittels der reellen Zahlen (\mathbb{R}) definiert?
- **2** Sei $z=a+ib\in\mathbb{C},\ a,b\in\mathbb{R}$ eine komplexe Zahl. Wie sind Re(z) und Im(z) definiert?

- **3** Wie ist die **Multiplikation** zweier komplexer Zahlen $z = a + ib, w = c + id \in \mathbb{C}, a, b, c, d \in \mathbb{R}$ definiert? $z \cdot w = \dots$
- 4 Wie ist der **Betrag** einer komplexen Zahl $z=a+ib\in\mathbb{C},\ a,b\in\mathbb{R}$ definiert?
- **5** Welchen Grad hat das folgende Polynom? $f(z) = (z^2 z + \frac{1}{4})(z (1 i))^2$
- **6** Betrachten Sie das folgende Polynom $f(z)=z^7-15z^6+97z^5-375z^4+1103z^3-2305z^2+2799z-1305$ mit den Nullstellen $n_0=1,\,n_1=i3,\,n_3=2-i,\,n_5=5+i2$. Geben Sie die fehlenden Nullstellen $n_2,\,n_4$ und n_6 an.
- 7 Vervollständigen Sie: (Fundamentalsatz der _____ und ____ satz) Es sei $P(z) = \sum_{v=0}^d a_v z$ ein Polynom vom ____ > 0. Dann existieren $z_1, ..., z_k \in$ __ und zugehörige $\alpha_1, ..., \alpha_k \in$ __, so dass $P(z) = a_d(z __) (z __) ... (z __) gilt, dabei ist <math>\alpha_1 + \alpha_2 + ... + \alpha_k = __$.
- **8** Wie lautet die allgemeine Formel für eine Kreisscheibe mir Radius r und Mittelpunkt a+ib in der Komplexen-Ebene?
 - 9 Zeichnen Sie die folgende Menge in der komplexen Ebene:

$$M:=\{z\in\mathbb{C}: \mathrm{Re}(z)\geq -\frac{5}{2}\wedge \mathrm{Im}(z)<\frac{\pi}{2}\}$$

10 Beschreiben Sie die im folgenden Skizzierte Menge mittels der Mengenschreibweise.