Introduction of Deep Learning

Slides are provided by Prof. Hung-yi Lee

Deep learning attracts lots of attention.

• I believe you have seen lots of exciting results

before.

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

Machine Learning ≈ Looking for a Function

Speech Recognition

Image Recognition

$$f($$
 $) = \text{``Cat'}$

- Playing Go
- f(

DialogueSystem

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \dots$$

$$f_1($$

$$f_2$$

$$f_1$$

$$=$$
 "dog"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Training
Data

Supervised Learning

function input:

function output: "monkey"

"cat"

"dog"5

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Three Steps for Deep Learning

Three Steps for Deep Learning

Human Brains

Neural Network

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Neural Network

Neural Network

Different connections leads to different network structure

Each neurons can have different values of weights and biases.

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given parameters θ , define a function

Given network structure, define a function set

Fully Connect Feedforward Network

Deep means many hidden layers

Output Layer (Option)

Softmax layer as the output layer

Ordinary Layer

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Output Layer (Option)

Softmax layer as the output layer

Softmax Layer

Probability:

■ $1 > y_i > 0$

$$\blacksquare_i y_i = 1$$

Example Application

Input

x_{1} x_{2} x_{256} x_{256} $x_{16} \times x_{16} = x_{256}$ $x_{16} \times x_{16} = x_{256}$ $x_{25} = x_{25}$ $x_{25} = x_{25}$

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

• Q: How many layers? How many neurons for each layer?

Trial and Error + Intuition

• Q: Can the structure be automatically determined?

Three Steps for Deep Learning

Training Data

Preparing training data: images and their labels

The learning target is defined on the training data.

Learning Target

Loss

A good function should make the loss of all examples as small as possible.

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find *a function in function set* that

minimizes total loss L

Find the network parameters θ^* that minimize total loss L

Three Steps for Deep Learning

How to pick the best function

Find *network parameters* θ^* that minimize total loss L

Enumerate all possible values

Network parameters $\theta = \{w_1, w_2, w_3, \dots, b_1, b_2, b_3, \dots \}$

Millions of parameters

E.g. speech recognition: 8 layers and 1000 neurons each layer

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find network parameters θ^* that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* θ^* that minimize total loss L Pick an initial value for w Compute $\partial L/\partial w$ **Total** Loss L Negative Increase w Decrease w Positive \mathcal{W} http://chico386.pixnet.net/album/photo/171572850

Network parameters
$$\theta$$
 $\not\in$ $w_1, w_2, \dots, b_1, b_2, \dots$

Find *network parameters* θ^* that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find network parameters θ^* that minimize total loss L

Hopfully, we would reach a minima

Gradient Descent - Difficulty

Gradient descent never guarantee global minima

Backpropagation

- Backpropagation: an efficient way to compute $\partial L/\partial w$
 - Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201 5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

Don't worry about $\partial L/\partial w$, the toolkits will handle it.