

SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAAAAAA
SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAAAAAA
SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAAAAAA
SSS	DDD	AAA
SSSSSSSSSS	DDD	AAA
SSSSSSSSSS	DDD	AAA
SSSSSSSSSS	DDD	AAA
SSS	DDD	AAA
SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAA
SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAA
SSSSSSSSSSSSS	DDDDDDDDDDDDD	AAA

FILEID**QAST

E 8

The image shows a 16x16 grid of letters. The letters are arranged in a diamond shape, with 'QQ' at the top and bottom vertices, 'AA' on the inner sides, and 'SS' in the center. The grid is composed of the following rows:

- Row 0: Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
- Row 1: A A A A A A A A A A A A A A A A
- Row 2: S S S S S S S S S S S S S S S S S S
- Row 3: T T T T T T T T T T T T T T T T T T
- Row 4: Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
- Row 5: A A A A A A A A A A A A A A A A A A
- Row 6: S
- Row 7: T
- Row 8: Q
- Row 9: A
- Row 10: S
- Row 11: T
- Row 12: Q
- Row 13: A
- Row 14: S
- Row 15: T
- Row 16: Q

Ellipses (...) are present in the bottom right corner.

(1)	2	COPYRIGHT NOTICE
(1)	29	PROGRAM DESCRIPTION
(2)	71	DECLARATIONS
(3)	132	GETPROCMEM - GET MEMORY FROM ANOTHER PROCESS
(4)	188	QAST-TIMEOUT - AST ROUTINE CALLED WHEN QAST TIMES OUT
(5)	224	QAST - QUEUE MEMORY REQUEST TO ANOTHER PROCESS

QA
PsPS
--
SA
DA
QAPh
--
In
Co
Pa
Sy
Pa
Sy
Ps
Cr
AsTh
60
Th
46
36Ma
--
-S
-S
TO
12
Th
MA

0000 1 .TITLE QAST - GET DATA FROM ANOTHER PROCESS
0000 2 .SBTTL COPYRIGHT NOTICE
0000 3 .IDENT 'V04-000'
0000 4 *****
0000 5 *****
0000 6 *
0000 7 * COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 8 * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 9 * ALL RIGHTS RESERVED.
0000 10 *
0000 11 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 12 * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 13 * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 14 * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 15 * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 16 * TRANSFERRED.
0000 17 *
0000 18 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 19 * AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 20 * CORPORATION.
0000 21 *
0000 22 * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 23 * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 24 *
0000 25 *
0000 26 *****
0000 27 |

0000 29
0000 30 ++
0000 31
0000 32
0000 33
0000 34
0000 35
0000 36
0000 37
0000 38
0000 39
0000 40
0000 41
0000 42
0000 43
0000 44
0000 45
0000 46
0000 47
0000 48
0000 49
0000 50
0000 51
0000 52
0000 53
0000 54
0000 55
0000 56
0000 57
0000 58
0000 59
0000 60
0000 61
0000 62
0000 63
0000 64
0000 65
0000 66
0000 67
0000 68
0000 69 --

.SBTTL PROGRAM DESCRIPTION
FACILITY
SYSTEM DUMP ANALYZER
ABSTRACT
ROUTINES TO OBTAIN MEMORY FROM ANOTHER PROCESS ON
THE RUNNING SYSTEM.
ENVIRONMENT
NATIVE MODE, USER MODE
AUTHOR
TIM HALVORSEN, JULY 1978
MODIFIED BY
V03-003 MSH0011 Michael S. Harvey 23-Feb-1983
Simplify the handling of a target process in SUSP or SUSPO
state. Instead of having to queue yet another special kernel
AST just to resuspend the process, simply clear the RESPEN
bit (set by SDA's \$RESUME call). This all works because now
the SUSPEND AST in the Exec is a normal kernel AST instead
of a special kernel AST and so SDA doesn't have to work as
hard as it used to in the case of a suspended process.
Use IPL\$ SYNCH to close window between state test and special
kernel AST queueing.
V03-002 TMH0002 Tim Halvorsen 02-Aug-1983
Fix code which allows analysis of suspended processes
which was broken when EPIDs were added.
V03-001 KDM0002 Kathleen D. Morse 28-Jun-1982
Added \$PRDEF.

0000	71	.SBTTL DECLARATIONS	
0000	72	SYMBOL DEFINTIONS	
0000	73		
0000	74		
0000	75		
0000	76	\$ACBDEF	: AST CONTROL BLOCK DEFINITIONS
0000	77	\$PRIDEF	: PRIORITY DEFINITIONS
0000	78	\$IPLDEF	: IPL DEFINITIONS
0000	79	\$PCBDEF	: PROCESS CONTROL BLOCK
0000	80	\$PHDDEF	: PROCESS HEADER
0000	81	\$PRDEF	: PROCESSOR REGISTERS
0000	82	\$PSLDEF	: PSL DEFINITIONS
0000	83	\$SSSDEF	: STATUS DEFINITIONS
0000	84	\$STATEDEF	: PROCESS STATE VALUES
0000	85	\$MCHKDEF	: MACHINE CHECK PROTECTION MASK
0000	86	\$VADEF	: VIRTUAL ADDRESS DEFINITIONS
0000	87	\$PTEDEF	: PAGE TABLE ENTRY DEFINITIONS
0000	88	\$RPBDEF	: RESTART PARAMETER BLOCK
0000	89		
0000	90		
0000	91	DEFINE EXTENSIONS TO THE AST CONTROL BLOCK	
0000	92		
0000	93	\$DEFINI PKT	
0000	94		
00000010	0000	95 PKT_ORIGPID = ACBSL_AST	: PID OF REQUESTOR
00000014	0000	96 PKT_ADDR = ACBSL_ASTPRM	: ADDRESS OF REQUESTED DATA
0000001C	0000	98 . = ACBSL_KAST+4	
001C	99		
0020	100	SDEF PKT_QAST .BLKL	: ADDRESS OF SCHSQAST
0020	101	SDEF PKT_DEANON .BLKL	: ADDRESS OF EXESDEANONPAGED
0024	102	SDEF PKT_RETLOC .BLKL	: ADDRESS TO RETURN DATA
0028	103	SDEF PKT_LEN .BLKL	: LENGTH OF DATA
002C	104	SDEF PKT_STATUS .BLKL	: STATUS OF TRANSFER
0030	105	SDEF PKT_STATLOC .BLKL	: ADDRESS TO RETURN STATUS
0034	106	SDEF PKT_WAKE .BLKL	: ADDRESS OF SCHSWAKE
0038	107	:\$DEF PKT_PRTCT .BLKL	: ADDRESS OF EXESMCHK PRTCT
0038	108	\$DEF PKT_IMGCNT .BLKL	: PHDSL_IMGCNT OF REQUESTOR
003C	109	SDEF PKT_FLAGS .BLKB	: FLAGS-BYTE
003D	110	_YIELD PKT,0,<- <SU\$PEND.,M>,->	: RE-SUSPEND PROCESS AFTER MEMORY FETCH
003D	111		
003D	112		
003D	113	SDEF PKT_SIZE	: TOTAL SIZE OF FIXED PORTION
003D	114	SDEF PKT_DATABUF	: START OF DATA TO BE MOVED
003D	115		: AST CODE FOLLOWS DATA
003D	116	\$DEFEND PKT	
0000	117		
0000	118	.DEFAULT DISPLACEMENT, LONG	
0000	119		
00000000	120	.PSECT DATA,NOEXE,WRT	
00000000	121		
00000000	122	QAST_COUNT: .LONG 0	: QAST REQUEST COUNTER
0004	123		
00000000	124	.PSECT QAST,EXE,NOWRT	
0000	125		
00989680	0000	126 SECONDS = 10*1000*1000	: 1 SECOND IN DELTA TIME
00989680	127		

QAST
V04-000

- GET DATA FROM ANOTHER PROCESS
DECLARATIONS

J 8

16-SEP-1984 01:43:47 VAX/VMS Macro V04-00
5-SEP-1984 03:33:40 [SDA.SRC]QAST.MAR;1

Page 4
(2)

0000 128
0000 129 TIMEOUT:
FFFFFFFFFF FE363C80 0000 130 .LONG -3*SECONDS,-1 ; 3 SECOND TIMEOUT COUNT

RE
VO

0008 132 .SBTTL GETPROCMEM - GET MEMORY FROM ANOTHER PROCESS
 0008 133 ---
 0008 134
 0008 135 READ MEMORY FROM ANOTHER PROCESS ON THE RUNNING SYSTEM.
 0008 136
 0008 137 INPUTS:
 0008 138
 0008 139 04(AP) = LOCATION TO READ IN OTHER PROCESS CONTEXT
 0008 140 08(AP) = ADDRESS OF BUFFER IN LOCAL MEMORY TO RECEIVE TRANSFER
 0008 141 12(AP) = LENGTH OF TRANSFER
 0008 142 16(AP) = PID OF OTHER PROCESS
 0008 143
 0008 144 OUTPUTS:
 0008 145
 0008 146 SSS_NORMAL - MEMORY TRANSFERRED OK
 0008 147 SSS_ACCVIO - UNABLE TO ACCESS MEMORY
 0008 148 SSS_NOPRIV - NOT ENOUGH PRIVILEGE (CMKRNL)
 0008 149 SSS_NONEXPR - NON-EXISTANT PROCESS OR INVALID PID
 0008 150 ---
 0000 0008 151 .ENTRY GETPROCMEM,0
 0000 000A 152
 0000022C 8F DD 000A 153 PUSHL #SSS_TIMEOUT : PRESET TO TIMED OUT STATUS
 5E DD 0010 154 PUSHL SP : ADDRESS OF LONGWORD TO GET STATUS
 7E 0C AC 7D 0012 155 MOVQ 12(AP),-(SP) : MOVE LENGTH AND PID
 7E 04 AC 7D 0016 156 MOVQ 4(AP),-(SP) : MOVE SOURCE AND DESTINATION ADDRESSES
 05 DD 001A 157 PUSHL #5 : NUMBER OF ARGUMENTS
 5E DD 001C 158 PUSHL SP : ADDRESS OF ARGUMENT LIST
 000000B0'EF 9F 001E 159 PUSHAB QAST : ADDRESS OF KERNEL MODE ROUTINE
 00000000'GF 02 FB 0024 160 CALLS #2,G^SYSSCMKRNL : CALL ROUTINE IN KERNEL MODE
 4B 50 E9 002B 161 BLBC R0,90\$: IF ERROR, EXIT WITH STATUS
 5E 18 C0 002E 162 ADDL #6*4,SP : REMOVE ARGUMENT LIST
 03 50 D1 0031 163 CMPL R0,#3 : AST OUTSTANDING?
 43 13 0034 164 BEQL 90\$: IF NOT, EXIT WITH SUCCESS
 00000000'EF D6 0036 165 INCL QAST_COUNT : INCREMENT THE COUNTER
 003C 166 \$SETIMR_S ASTADR=B^QAST TIMEOUT,- : SCHEDULE TIMEOUT REQUEST
 003C 167 REQIDT=QAST COUNT,- : ASTPRM OF QAST COUNTER
 003C 168 DAYTIM=TIMEOUT : ADDRESS OF TIMEOUT DELTA TIME
 0051 169 \$HIBER_S : WAIT FOR AST TO COMPLETE
 0058 170 \$SCANTIM_S : CANCEL OUTSTANDING TIMER REQUESTS
 0061 171 : HIBERNATE COULD HAVE COMPLETED DUE TO THE FOLLOWING REASONS:
 0061 172 1) WAKE FROM AST RESPONSE, REQUEST SUCCESSFUL
 0061 173 2) WAKE FROM TIMEOUT, REQUEST UNSUCCESSFUL, AST CANCELED BY TIMEOUT
 0061 174 3) WAKE FROM 'WAKE PENDING' FLAG, WHICH COMPLETES \$HIBER IMMEDIATELY.
 0061 175 (NOT SURE WHAT SCENARIOS CAUSE THIS, BUT BETTER SAFE...)
 0061 176
 0061 177
 0061 178 FOR CASE #3, WE CAN LIMIT THE DAMAGE BY CANCELING THE OUTSTANDING
 0061 179 AST SO THAT IT DOESN'T COME BACK AND WIPE OUT OUR STACK WITH THE
 0061 180 COMPLETION STATUS OR WIPE OUT OUR BUFFER WITH THE MEMORY.
 0061 181
 0000022C 8F 6E D1 0061 182 CMPL (SP),#SSS_TIMEOUT : HAS REQUEST COME BACK YET?
 OC 12 0068 183 BNEQ 50\$: BRANCH IF IT HAS
 50 8E D0 0076 184 SCMKRNL_S B^REJECT_RESPONSE : DONT LET AST EVER COME BACK
 04 0079 185 50\$: MOVL -(SP)+,R0 : GET RETURN STATUS
 186 90\$: RET : EXIT WITH SUCCESS

007A 188 .SBTTL QAST_TIMEOUT - AST ROUTINE CALLED WHEN QAST TIMES OUT
 007A 189 ---
 007A 190
 007A 191 THIS AST ROUTINE IS CALLED WHEN A SPECIAL KERNEL MODE
 007A 192 AST REQUEST TO ANOTHER PROCESS TIMES OUT. THE IMAGE
 007A 193 COUNTER IS INCREMENTED CAUSING THE KAST ROUTINE (WHEN
 007A 194 IT EVER GETS GOING AGAIN) TO DROP IT ON THE FLOOR. THE
 007A 195 CURRENT PROCESS IS WOKEN UP. THE STATUS LONGWORD HAS
 007A 196 BEEN PRESET TO SSS_TIMEOUT SO THAT IT KNOWS THE REQUEST
 007A 197 FAILED.
 007A 198
 007A 199 INPUTS:
 007A 200 4(AP) = QAST REQUEST NUMBER
 007A 201
 007A 202
 007A 203 OUTPUTS:
 007A 204
 007A 205 NONE
 007A 206 ---
 007A 207
 0000 007A 208 QAST_TIMEOUT:
 007A 209 .WORD 0
 007C 210
 00000000'EF 04 AC D1 007C 211 CMPL 4(AP),QAST_COUNT : IS THIS FOR THE CURRENT QAST?
 17 12 0084 212 BNEQ 90\$: IF NOT, IGNORE THE TIMEOUT
 0086 213 \$CMKRL_S B^REJECT_RESPONSE : INCREMENT THE IMAGE COUNTER
 0092 214 SWAKE_S : WAKEUP THE CURRENT PROCESS
 04 009D 215 90\$: RET
 009E 216
 009E 217 REJECT_RESPONSE:
 0000 009E 218 .WORD 0
 50 00000000'FF 00 00A0 219 MOVL @SCH\$GL CURPCB,R0 : ADDRESS OF CURRENT PCB
 51 6C A0 00 00A7 220 MOVL PCBSL_PRD(R0),R1 : ADDRESS OF PHD
 00F4 C1 D6 00AB 221 INCL PHDSL_IMGCNT(R1) : INCREMENT IMAGE COUNTER
 04 00AF 222 RET

00B0 224 .SBTTL QAST - QUEUE MEMORY REQUEST TO ANOTHER PROCESS
00B0 225 ---
00B0 226
00B0 227 QAST - QUEUE AST TO READ MEMORY FROM ANOTHER PROCESS
00B0 228
00B0 229 INPUTS:
00B0 230 04(AP) - LOCATION OF DATA
00B0 231 08(AP) - RETURN LOCATION
00B0 232 12(AP) - LENGTH OF TRANSFER
00B0 233 16(AP) - PID OF TARGET PROCESS
00B0 234 20(AP) - ADDRESS TO RETURN STATUS
00B0 235
00B0 236 IMPLICIT INPUTS:
00B0 237 THE FOLLOWING SYMBOLS REFER TO LONGWORDS WHICH CONTAIN THE
00B0 238 VALUE OF THE SYMBOL FOR THE CURRENT RUNNING EXECUTIVE:
00B0 239
00B0 240
00B0 241 SCH\$GL_CURPCB
00B0 242 SCH\$GL_MAXPIX
00B0 243 SCH\$GL_PCBVEC
00B0 244 PHV\$GL_PIXBAS
00B0 245 SGNSGL_BALSETCT
00B0 246 SWP\$GL_BALBASE
00B0 247 SWP\$GL_BSLOTSZ
00B0 248 MMG\$GL_SPTBASE
00B0 249 EXE\$GL_RPB
00B0 250 EXESAL[OCBUF
00B0 251 EXE\$DEANONPAGED
00B0 252 EXESMCHK_PRTCT
00B0 253 SCH\$QAST
00B0 254 SCH\$WAKE
00B0 255
00B0 256 OUTPUTS:
00B0 257 R0 = 1 IF THE SPECIAL KERNEL MODE AST IS STILL OUTSTANDING
00B0 258 (IMPLIES HIBERNATE NEEDED IN CALLING ROUTINE)
00B0 259 R0 = 3 IF NO SPECIAL KERNEL AST WAS ISSUED (AVOID HIBERNATE)
00B0 260
00B0 261
00B0 262 SSS_ACCVIO = NO READ ACCESS TO MEMORY
00B0 263 SSS_NONEXPR = NON-EXISTANT PROCESS OR INVALID PID
00B0 264
00B0 265 ---
007C 00B0 266 QAST: .WORD "M<R2,R3,R4,R5,R6>"
00B2 267
00B2 268
00B2 269
00B2 270 : CHECK ACCESSIBILITY OF SYSTEM VA BECAUSE ALTHOUGH A PROBE INSTRUCTION
00B2 271 : WILL RETURN SUCCESS (PTE VALID), PAGEFAULT DOES NOT ALLOW ONE TO
00B2 272 : FAULT IN SOME ONE ELSE'S PROCESS PAGE TABLE PAGE (WHOSE WORKING SET
00B2 273 : DO YOU PUT IT IN?, ETC.) AND FAKES AN ACCESS VIOLATION ON THE MOVC.
00B2 274 : THUS, WE MUST MUCK IN SYSTEM SPACE IN THE CONTEXT OF THE PROCESS WHICH
00B2 275 : OWNS THE BALANCE SET SLOT TO AVOID PROBLEMS DISPLAYING HIS PROCESS
00B2 276 : PAGE TABLE. ALSO, CHECK IF BEYOND END OF SYSTEM VIRTUAL MEMORY AS
00B2 277 : PROBE DOES NOT DETECT THIS CONDITION, AND PAGEFAULT ABORTS ON IT.
00B2 278
00B2 279 MOVL 16(AP), R6 : ASSUME SWITCHING TO "CURRENT" PROCESS
BBC #VASV_SYSTEM,4(AP),5S : CONTEXT SWITCH IF NOT SYSTEM SPACE
00B6 280

55 56 10 AC DD 00B2 279
04 AC 1F E1 00B6 280

QAST
V04-000- GET DATA FROM ANOTHER PROCESS
QAST - QUEUE MEMORY REQUEST TO ANOTHER P

N 8

16-SEP-1984 01:43:47 VAX/VMS Macro V04-00
5-SEP-1984 03:33:40 [SDA.SRC]QAST.MAR;1Page 8
(5)

52 04 AC 000001FF 8F CB 008B 281 BICL3 #X1FF,4(AP),R2 : CLEAR PAGE OFFSET
 50 52 00000000'FF C3 00C4 282 SUBL3 @SWPSGL_BALBASE,R2,R0 : BELOW BALANCE SET SLOTS?
 45 19 00CC 283 BLSS 20S IF NOT, CHECK IF I/O SPACE
 50 50 F7 8F 78 00CE 284 ASHL #-9, R0, R0 COMPUTE BALANCE SET PAGE NUMBER
 50 00000000'FF C6 00D3 285 DIVL @SWPSGL_BSLOTSZ,R0
 00000000'FF 50 B1 00DA 286 CMPW R0,@SGNSGL_BALSCT : PROCESS HEADER INDEX
 54 00000000'FF D0 00E3 287 BGEQ 8\$ BEYOND END OF BALANCE SET SLOTS?
 55 6C A4 D0 00EA 288 MOVL @SCHSGL_CURPCB,R4 : IF SO, CHECK IF LEGAL AT ALL
 42 A5 50 B1 00EE 290 MOVL PCB\$L_PHD(R4),R5
 1C 13 00F2 291 CMPW R0,PHDSW_PHVINDEX(R5) : GET ADDRESS OF CURRENT PCB
 51 00000000'FF D0 00F4 292 MOVL @PHV\$GL_PIXBAS,R1 : GET ADDRESS OF CURRENT PHD
 50 6140 32 00FB 293 CVTWL (R1)[R0],R0 THIS PROCESS'S HEADER?
 51 00000000'FF D0 0101 294 BLSS 80S IF SO, OK TO USE THIS PROCESS CONTEXT
 54 6140 D0 0108 295 MOVL @SCHSGL_PCBVEC,R1 : GET ADDRESS OF HEADER/PIX ARRAY
 56 60 A4 D0 010C 296 MOVL (R1)[R0],R4 : GET PROCESS INDEX OWNING BALANCE SLOT
 0073 31 0110 297 MOVL PCB\$L_PID(R4),R6 ACCVIO IF NOBODY OWNS THE SLOT
 0113 298 BRW 50S : GET ADDRESS OF PCB ADDRESS ARRAY
 0113 299 : GET PCB OWNING BALANCE SET SLOT
 0113 300 : GET PID OF PROCESS WHICH OWNS SLOT
 0113 301 : USE THAT PROCESS CONTEXT
 0113 302 :
 0113 303 : SYSTEM ADDRESS IS BELOW THE BALANCE SET SLOTS. CHECK IF MAPPED
 53 52 15 09 EF 0113 304 20\$: BY ANY ACTIVE MEMORY CONTROLLER. IF NOT, THEN ASSUME ITS I/O
 51 00000000'FF DO 0118 305 : SPACE AND DISALLOW TRANSFER.
 53 6143 DO 011F 306 :
 37 18 0123 307 :
 53 53 15 00 EF 0125 308 :
 51 00000000'FF DO 012A 309 :
 51 00BC C1 9E 0131 310 :
 52 08 DO 0136 311 :
 0139 312 :
 0139 313 :
 0139 314 :
 50 53 04 A1 C3 0139 315 25\$: ASSUME
 07 07 1F 013E 316 :
 50 61 18 00 ED 0140 317 :
 15 1A 0145 318 :
 51 08 CO 0147 319 28\$: CMPZV #RPBSV_PAGCNT,#RPBSS_PAGCNT,(R1),R0 : WITHIN RANGE OF MEMORY?
 EC 52 F5 014A 320 :
 09 11 014D 321 :
 014F 322 :
 014F 323 :
 014F 324 :
 014F 325 :
 00000000'FF 52 D1 014F 326 8\$: SYSTEM ADDRESS IS ABOVE THE BALANCE SET SLOTS. CHECK IF BEYOND
 04 1F 0156 327 : END OF SYSTEM VIRTUAL ADDRESS SPACE.
 50 OC 3C 0158 328 80\$:
 04 0158 329 :
 015C 330 :
 015C 331 :
 015C 332 :
 015C 333 40\$: CMPL R2 @MMG\$GL_MAXPTE : LEGAL SYSTEM VA?
 BLSSU 40\$: IF GPT, DON'T NEED TO SWITCH CONTEXT
 0000016A'EF FO 015E 334 :
 9F 0163 335 :
 02 0169 336 :
 52 04 AC DO 016A 337 42\$: MOVZWL #SSS_ACCVIO,R0 : IF NOT, ACCESS VIOLATION
 RET :
 READ MEMORY FROM CURRENT PROCESS CONTEXT
 6E 02 16 00 DC 015C 338 :
 0000016A'EF FO 015E 339 :
 9F 0163 340 :
 02 0169 341 :
 52 04 AC DO 016A 342 40\$: MOVPSL -(SP) : GET CURRENT PSL
 INSV #PSLSC_KERNEL,#PSL\$V_PRVMOD,#PSL\$S_PRVMOD,(SP) : ADDRESS FOLLOWING REI
 PUSHAB 42\$:
 REI : SET PREVIOUS MODE TO KERNEL
 MOVL 4(AP),R2 : GET SOURCE BUFFER ADDRESS

53	08 AC	7D	016E	338	MOVQ	8(AP), R3	GET DESTINATION ADDRESS AND LENGTH
			0172	339	IFNORD	R4,(R2),80S	CHECK FOR READ ACCESS
			0178	340	IFNOWRT	R4,(R3),80S	CHECK FOR WRITE ACCESS
			017E	341	PUSHAB	B^458	END OF RECOVERY BLOCK ADDRESS
63	62	54	28	017E	342	MOVL	#<MCHKSM LOG!MCHKSM_MCK!MCHKSM_NEXM!MCHKSM_UBA>, R0 ; PROTECT MAS
			0182	343	JSB	@EXESMCHR_PRTCT	INHIBIT MACHINE CHECKS
50	03	D0	0182	344	MOVC	R4,(R2),(R3)	MOVE DATA TO BUFFER
		04	0185	345	RSB	BLBC	END OF PROTECTED CODE
			0186	346	MOVL	R0,80S	BRANCH IF MACHINE CHECK OCCURRED
			0186	347	RET	#3,R0	SET NO AST OUTSTANDING
			0186	348			READ MEMORY FROM SOME OTHER PROCESS CONTEXT
			0186	349			
			0186	350			
			0186	351			
			0186	352	TSTL	R6	ANY PID TO SWITCH TO?
			D2	353	BEQL	40S	BRANCH IF NOT
51	00000000'FF	50 08E8	8F	354	MOVZWL	#SSS_NONEXPR,R0	ASSUME BAD PID
			56	355	SUBW3	R6,@SCHSGL_MAXPIX,R1	CHECK FOR LEGAL INDEX
			51	356	INCW	R1	MAXPIX+1 = "SYSTEM PROCESS"
			C1	357	BEQL	40S	SKIP AST IF "SYSTEM PROCESS"
			E8	358	BLSS	90S	BR IF ILLEGAL INDEX
51	OC AC	000000B1'8F	C1	359	ADDL3	#PKT_SIZE+CODELEN,12(AP),R1	: TOTAL SIZE OF BUFFER
		00000000'FF	16	360	JSB	@EXESALLOCBUF	ALLOCATE BUFFER FOR CODE
			D6	361	BLBC	R0,90S	BRANCH IF ERROR DETECTED
			55	362	MOVL	R2,R5	SAVE ADDRESS OF PACKET
		OB A5	80 8F	363	MOVL	R6,ACBSL_PID(R5)	SET TARGET PID
		50	OC AC	364	MOVB	#1@ACBSV_KAST,ACBSB_RMOD(R5)	: SET SPECIAL KERNEL AST
			18 A5	365	MOVL	12(AP),R0	: GET LENGTH OF TRANSFER
			3D A540	366	MOVAB	PKT_SIZE(R5)[R0],ACBSL_KAST(R5)	: SET ADDRESS FOR AST
			28 A5	367	MOVL	R0,PKT_LEN(R5)	: SET LENGTH OF TRANSFER
			14 A5	368	MOVL	4(AP),PKT_ADDR(R5)	: SET ADDRESS FOR FFTCH
			24 A5	369	MOVL	8(AP),PKT_RETLOC(R5)	: AND ADDRESS OF RETURN LOCATION
			2C A5	370	MOVL	#SSS_ACCVIO_PKT_STATUS(R5)	: ASSUME NO READ ACCESS
			30 A5	371	MOVL	20(AP),PKT_STAT[OC(R5)]	: ADDRESS TO RETURN STATUS
			14 AC	372	MOVL	@SCHSGL_CURPCB,R4	: GET ADDRESS OF CURRENT PCB
			54 00000000'FF	373	MOVL	PCBSL_PAD(R4),R0	: GET PHD ADDRESS
			50 6C A4	374	MOVL	PCBSL_PID(R4),PKT_ORIGPID(R5)	: SET PID FOR RETURN
			10 A5	375	MOVL	PHDSL_IMGCNT(R0),PKT_IMGCNT(R5)	: SET IMGCNT OF REQUESTOR
			38 A5	376	CLRB	PKT_FLAGS(R5)	: AND CLEAR FLAGS BYTE
			3C A5	377	PUSHI	R5	: SAVE REGS FOR MOVC
			55	378	MOVC3	#CODELEN,W^CODE,@ACBSL_KAST(R5)	: COPY CODE SEGMENT
18 B5	0268'CF	0074'8F	28	379	POPL	R5	: RESTORE REGISTERS
			55	380	MOVL	SCHSQAST,PKT_QAST(R5)	: COPY ABSOLUTE ADDRESSES IN EXECUTIVE
1C A5	00000000'EF	8BED0	0200	381	MOVL	SCHSHAKE,PKT_WAKE(R5)	
34 A5	00000000'EF	DO	0203	382	MOVL	EXESDEANONPAGED,PKT_DEANON(R5)	
20 A5	00000000'EF	DO	0213	383	MOVL	EXESMCHK_PRTCT,PKT_PRTCT(R5)	
			52 04	384	MOVZBL	#PRIS_TICOM,R2	: SET PRIORITY INCREMENT CLASS
51	00000000'FF	50 OC A5	3C	385	ACBSL_PID(R5),R0	: GET DESTINATION PID	
			54 6140	386	MOVL	@SCHSGL_PCBVEC,R1	: GET ADDRESS OF PCB VECTOR
			09 2C A4	387	MOVL	(R1)[R0],R4	: GET DESTINATION PCB ADDRESS
			B1	388	SETIPL	#IPL\$_SYNCH	: DON'T LET TARGET'S STATE CHANGE
			0D 13	389	CMFW	PCBSW_STATE(R4),#SCHSC_SUSP	: IF TARGET PROCESS SUSPENDED
			0A 2C A4	390	BEQL	100S	: THEN RESUME IT
			B1	391	CMFW	PCBSW_STATE(R4),#SCHSC_SUSPO	: OR SUSPENDED AND OUTSWAPPED
			07 13	392	BEQL	100S	: THEN RESUME IT
			1C B5	393	JSB	#PKT_QAST(R5)	: QUEUE AST FOR TARGET (NO RESUSPEND)
			16	394	SETIPL	#0	: DROP IPL, BLOCK IS GONE

04	0242	395	RET	; RETURN TO ORIGINAL MODE
	0243	396		
	0244	397		
	0245	398		
	0246	399		
	0247	400		
	0248	401		
	0249	402		
	024A	403		
	024B	404		
3C A5 01	90	405	100\$:	MOVBL #PKT_M_SUSPEND,PKT_FLAGS(R5) : MARK PROCESS IN SUSPEND STATE
1C B5	16	406		JSB @PKT_QAST(R5) : QUEUE AST FOR TARGET (RESUSPEND)
	024C	407		SETIPL #0 : LOWER IPL, BLOCK IS NOW GONE
50 60 A4	00	408		MOVL PCB\$L PID(R4),R0 : GET PROCESS IPID
00000000 FF	16	409		JSB @EXESIPID_TO_EPID : CONVERT TO EPID (IN R0)
	0251	410		PUSHL R0 : PUSH EPID ON STACK
50	DD	411		MOVL SP,R0 : POINT TO IT
50 SE	00	412		\$RESUME_S PIDADR=(R0) : RESUME PROCESS SO AST WILL EXECUTE
	025C	413		RET : RETURN
	04	0267		

0268 415 :
 0268 416 : CODE PLACED IN NON-PAGED BUFFER EXECUTED IN
 0268 417 : DESTINATION PROCESS CONTEXT AS A SPECIAL KERNEL AST.
 0268 418 :
 30 BB 0270 419 CODE: IFNORD PKT LEN(R5),@PKT_ADDR(R5),10\$: BRANCH IF NOT READABLE
 0270 420 PUSHR #^MZR4,R5> : SAVE REGISTERS
 0272 421 :
 0272 422 :
 0272 423 :
 0272 424 :
 0272 425 :
 0279 426 :
 30 BA 0279 427 :
 2C A5 01 00 027B 428 :
 05 3C A5 E9 027F 429 10\$: ASSUME PKT V SUSPEND EQ 0
 00 24 A4 05 E5 0283 430 BLBC PKT_FLAGS(R5),40\$: BRANCH IF NOT RE-SUSPENDING
 0C A5 10 A5 D0 0288 431 BBCC #PCBSV RESPN PCB\$L STS(R4),40\$: ALLOW TARGET TO REMAIN IN SUSP
 0B A5 80 BF 90 028F 432 40\$: MOVL PKT ORIGPID(R5),ACBSL PID(R5) : SET PID FOR RETURN AST
 18 A5 9D AF 9E 0292 433 MOVB #1@ACBSV KAST,ACBSB RMOD(R5) : SET FOR KAST AGAIN
 52 04 9A 0297 434 MOVAB B^REPLY ACBSL KAST(R5) : SET NEW AST ADDRESS
 1C B5 17 029A 435 MOVZBL #PRIS T1COM,R2 : SET PRIORITY INCREMENT CLASS
 029D 436 JMP @PKT_QAST(R5) : QUEUE RETURN AST AND EXIT
 029D 437 :
 029D 438 : CODE PLACED IN NON-PAGED BUFFER EXECUTED IN
 029D 439 : ORIGINATOR PROCESS CONTEXT TO RETURN MEMORY
 029D 440 : TO REQUESTED BUFFER AND RETURN COMPLETION STATUS.
 029D 441 :
 00F4 C0 50 6C A4 D0 029D 442 REPLY: MOVL PCB\$L PHD(R4),R0 : GET ADDRESS OF PROCESS HEADER
 38 A5 D1 02A1 443 CMPL PKT IMGCNT(R5),PHD\$L_IMG\$NT(R0) : CHECK IF STILL SAME IMAGE
 2A 12 02A7 444 BNEQ DEALOC : IF NOT, DROP TRANSFER ON FLOOR
 02A9 445 IFNOWRT PKT_LEN(R5),@PKT_RETLOC(R5),130\$: BRANCH IF NOT WRITABLE
 02B1 446 PUSHL R5 : SAVE REGISTER
 24 B5 3D A5 28 A5 28 02B3 447 MOVC PKT_LEN(R5),PKT_DATABUF(R5),@PKT_RETLOC(R5) : MOVE DATA
 55 BED0 02BA 448 POPL R5 : RESTORE REGISTER
 02BD 449 130\$: IFNOWRT #4,@PKT_STATLOC(R5),140\$: BRANCH IF STATUS NOT WRITABLE
 30 B5 2C A5 D0 02C4 450 MOVL PKT STATUS(R5),@PKT_STATLOC(R5) : RETURN STATUS
 51 0C A5 D0 02C9 451 140\$: MOVL ACBSL_PID(R5),R1 : GET PID FOR WAKE
 02CD 452 SETIPL #IPL\$-SYNCH : RAISE TO SYNCH
 34 B5 16 02D0 453 JSB @PKT_WAKE(R5) : WAKE REQUESTOR PROCESS
 02D3 454 :
 02D3 455 :
 50 20 B5 55 D0 02D3 456 DEALOC: SETIPL #IPL\$-ASTDEL : RESTORE IPL
 17 02D6 457 MOVL R5,R0 : SET ADDRESS FOR RELEASE
 02D9 458 JMP @PKT_DEANON(R5) : FREE BLOCK
 02DC 459 :
 00000074 02DC 460 CODELEN = .-CODE : SIZE OF ENTIRE CODE SEGMENT
 02DC 461 :
 02DC 462 .END :

\$ST1	= 00000001		RPBSS_BASEPFN	= 00000020
ACBSB_RMOD	= 0000000B		RPBSS_PAGCNT	= 00000018
ACBSL_AST	= 00000010		RPBSV_BASEPFN	= 00000020
ACBSL_ASTPRM	= 00000014		RPBSV_PAGCNT	= 00000000
ACBSL_KAST	= 00000018		SCHSC_SUSP	= 00000009
ACBSL_PID	= 0000000C		SCHSC_SUSPO	= 0000000A
ACBSV_KAST	= 00000007	R 03	SCHSGE_CURPCB	***** X 03
CODE	00000268	R 03	SCHSGL_MAXPIX	***** X 03
CODELEN	= 00000074		SCHSGL_PCBVEC	***** X 03
DEALLOC	000002D3	R 03	SCHSQAST	***** X 03
EXE\$ALLOCBUF	***** X 03		SCHSWAKE	***** X 03
EXE\$DEANONPAGED	***** X 03		SECONDS	= 00989680
EXE\$GL_RPB	***** X 03		SGNSGL_BALSETCT	***** X 03
EXE\$IPID_TO_EPID	***** X 03		SIZ...	= 00000001
GETPROCMEM	00000008	RG 03	SSS_ACCVIO	= 0000000C
IPL\$_ASTDEL	= 00000002		SSS_NONEXPR	= 000008E8
IPL\$_SYNCH	= 00000008		SSS_NORMAL	= 00000001
MMGSGL_MAXGpte	***** X 03		SSS_TIMEOUT	= 0000022C
MMGSGL_SPTBASE	***** X 03		SWPSGL_BALBASE	***** X 03
PCBSL_PHD	= 0000006C		SWPSGL_BSLOTSZ	***** X 03
PCBSL_PID	= 00000060		SYSSCANIM	***** GX 03
PCBSL_STS	= 00000024		SYSSCMKRL	***** GX 03
PCBSV_RESPEN	= 00000005		SYSSHIBER	***** GX 03
PCBSW_STATE	= 0000002C		SYSSRESUME	***** GX 03
PHDSL_IMGCNT	= 000000F4		SYSSSETIMR	***** GX 03
PHDSW_PHVINDEX	= 00000042		SYSSWAKE	***** GX 03
PHVSGE_PIXBAS	***** X 03		TIMEOUT	00000000 R 03
PKT_ADDR	= 00000014		VASS_VPN	= 00000015
PKT_DATABUF	0000003D		VASV_SYSTEM	= 0000001F
PKT_DEANON	00000020		VASV_VPN	= 00000009
PKT_FLAGS	0000003C			
PKT_IMGCNT	00000038			
PKT_LEN	00000028			
PKT_M_SUSPEND	= 00000001			
PKT_ORIGPID	= 00000010			
PKT_QAST	0000001C			
PKT_RETLOC	00000024			
PKT_SIZE	0000003D			
PKT_STATLOC	00000030			
PKT_STATUS	0000002C			
PKT_V_SUSPEND	= 00000000			
PKT_WAKE	00000034			
PRS_IPL	= 00000012			
PRIS_TICOM	= 00000004			
PSLSC_KERNEL	= 00000000			
PSLSS_PRVMOD	= 00000002			
PSLSV_PRVMOD	= 00000016			
PTESS_PFN	= 00000015			
PTE\$V_PFN	= 00000000			
QAST	00000080	R 03		
QAST_COUNT	00000000	R 02		
QAST_TIMEOUT	0000007A	R 03		
REJECT_RESPONSE	0000009E	R 03		
REPLY	0000029D	R 03		
RPBSC_MEMDSCSIZ	= 00000008			
RPBSC_NMEMDSC	= 00000008			
RPBSL_MEMDSC	= 000000BC			

```
+-----+
! Psect synopsis !
+-----+
```

PSECT name

	Allocation	PSECT No.	Attributes
: ABS .	00000000 (0.)	00 (0.)	NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
\$ABSS\$	0000003D (61.)	01 (1.)	NOPIC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
DATA	00000004 (4.)	02 (2.)	NOPIC USR CON REL LCL NOSHR NOEXE RD WRT NOVEC BYTE
QAST	000002DC (732.)	03 (3.)	NOPIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE

```
+-----+
! Performance indicators !
+-----+
```

Phase

Phase	Page faults	CPU Time	Elapsed Time
Initialization	35	00:00:00.04	00:00:01.10
Command processing	134	00:00:00.43	00:00:03.77
Pass 1	322	00:00:07.38	00:00:26.97
Symbol table sort	0	00:00:01.14	00:00:05.55
Pass 2	103	00:00:01.48	00:00:06.06
Symbol table output	11	00:00:00.05	00:00:00.48
Psect synopsis output	2	00:00:00.02	00:00:00.36
Cross-reference output	0	00:00:00.00	00:00:00.00
Assembler run totals	609	00:00:10.54	00:00:44.29

The working set limit was 1650 pages.

60357 bytes (118 pages) of virtual memory were used to buffer the intermediate code.

There were 60 pages of symbol table space allocated to hold 1053 non-local and 19 local symbols.

462 source lines were read in Pass 1, producing 20 object records in Pass 2.

36 pages of virtual memory were used to define 35 macros.

```
+-----+
! Macro library statistics !
+-----+
```

Macro library name

Macros defined

Macro library name	Macros defined
\$255\$DUA28:[SDA.OBJ]SDALIB.MLB;1	0
\$255\$DUA28:[SYS.OBJ]LIB.MLB;1	13
\$255\$DUA28:[SYSLIB]STARLET.MLB;2	18
TOTALS (all libraries)	31

1222 GETS were required to define 31 macros.

There were no errors, warnings or information messages.

MACRO/LIS=LISS:QAST/OBJ=OBJ\$:QAST MSRC\$=QAST/UPDATE=(ENH\$=QAST)+EXECML\$/LIB+LIB\$=SDALIB/LIB

0353 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

PROCESS
LIS

RMS
LIS

QOST
LIS

RELEASE
LIS

POOL
LIS