COMPILER DESIGN

UNIT 1

PART 4

The role of parser

According to Chomsky hierarchy, grammars are divided of 4 types:

- Type 0 unrestricted grammar.
- Type 1 context sensitive grammar.
- Type 2 context free grammar.
- Type 3 Regular Grammar.

Type 0: Unrestricted Grammar

Type-0 grammars include all formal grammars.

Type 0 grammar language are recognized by turing machine.

These languages are also known as the Recursively Enumerable languages

For example,

- 1) Sab -> ba
 - A -> S.
- 2) $S \rightarrow ACaB$
 - $Bc \rightarrow acB$
 - $CB \rightarrow DB$
 - aD → Db

Grammar Production in the form of

Where

 α is (V + T)* V (V + T)*

V: Variables(Non terminal)

T: Terminals

 (α) is a string of terminals and nonterminals with at least one non-terminal)

$$\boldsymbol{\beta}$$
 is (V + T)*

(β is a string of terminals and non-terminals)

In type 0 there must be at least one variable on Left side of production.

Type - 1 Grammar

Type-1 grammars generate the context-sensitive languages. The language generated by the grammar are recognized by the Linear Bound Automata

For Example,

$$B \rightarrow b$$

2)
$$AB \rightarrow AbBc$$

$$A \rightarrow bcA$$

$$B \rightarrow b$$

In Type 1

I. First of all Type 1 grammar should be Type 0.

II. Grammar Production in the form of

$$\alpha \ \rightarrow \ \beta$$

$$|\alpha| <= |\beta|$$

i.e count of symbol in $\,\alpha$ is less than or equal to $\,\beta$

Type - 2 Grammar

Type-2 grammars generate the context-free languages. The language generated by the grammar is recognized by a Pushdown automata.

For example,

S -> AB

 $A \rightarrow a$

 $B \rightarrow bB$

B -> c

Type-2 grammars generate the context-free languages.

In Type 2,

- 1. First of all it should be Type 1.
- 2. Left hand side of production can have only one variable.

$$|\alpha|=1.$$

There is no restriction on β

.

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form

$$X \rightarrow a \text{ or } X \rightarrow aY$$

where $X, Y \in N$ (Non terminal)
and $a \in T$ (Terminal)

The rule $S \rightarrow \epsilon$ is allowed if S does not appear on the right side of any rule.

Example

"Context Free Grammar are notation for specifying concrete syntax"

- The languages generated by context free grammars are known as the context free languages
- Inherently recursive structure of a programming language are defined by a context free grammar.

FORMAL DEFINITION OF CFG

CFG stands for context-free grammar. It is is a formal grammar which is used to generate all possible patterns of strings in a given formal language. Context-free grammar G can be defined by four tuples as:

$$G = (V, T, P, S)$$

Where,

G is the grammar, which consists of a set of the production rule. It is used to generate the string of a language.

T is the final set of a terminal symbol. It is denoted by lower case letters.

V is the final set of a non-terminal symbol. It is denoted by capital letters.

P is a set of production rules, which is used for replacing non-terminals symbols(on the left side of the production) in a string with other terminal or non-terminal symbols(on the right side of the production).

S is the start symbol which is used to derive the string. We can derive the string by repeatedly replacing a non-terminal by the right-hand side of the production until all non-terminal have been replaced by terminal symbols.

EXAMPLE

Construct a CFG for a language $L = \{wcwR \mid where w \in (a, b)^*\}.$

Solution:

The string that can be generated for a given language is

L {c, aca, aacaa, bcb, abcba, bacab, abbcbba,}

The grammar could be:

- 1. $S \rightarrow aSa$ rule 1
- 2. $S \rightarrow bSb$ rule 2
- 3. $S \rightarrow c$ rule 3

Now if we want to derive a string "abbcbba", we can start with start symbols.

- 1. $S \rightarrow aSa$
- 2. $S \rightarrow abSba$ from rule 2
- 3. $S \rightarrow abbSbba$ from rule 2
- 4. $S \rightarrow abbcbba$ from rule 3

Thus any of this kind of string can be derived from the given production rules.

EXAMPLE

Construct a CFG for the language $L = a^nb^{2n}$ where n>=1.

Solution:

The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb....}.

The grammar could be:

1. $S \rightarrow aSbb \mid abb$

Now if we want to derive a string "aabbbb", we can start with start symbols.

- 1. $S \rightarrow aSbb$
- 2. $S \rightarrow aabbbb$

 $S \rightarrow 0S1$

 $S \rightarrow 01$

Construct the CFG for the language having any number of a's over the set $\Sigma = \{a\}$.

L= {a,aa,aaa,aa....}

S-> aS

S->epsilon

WHAT IS BNF?

- It stands for Backus-Naur Form
- It is a formal, mathematical way to specify context-free grammars

- Angle brackets mean a Non Terminal
- Symbols without angle brackets are Terminals

Example 123=> 12 3=> 1 2 3

BNF for Expressions

```
1+2*3
a+b*c
1+2+3
1*2*3
1*(2+3*5)
```

There is the production for any grammar as follows:

 $\begin{array}{ccc} S & \rightarrow & aSa \\ S & \rightarrow & bSb \end{array}$

 $S \rightarrow c$

In BNF, we can represent above grammar as follows:

 $S \rightarrow aSa|bSb|c$

1*2*3

EBNF is a few simple extensions to BNF which make expressing grammars more convenient

- "*" The Kleene Star): means 0 or more occurrences
- "+" (The Kleene Cross): means 1 or more occurrences
- "[...]":means 0 or 1 occurrences
- ()Use of parentheses for grouping
- {}* used to show arbitary sequence
- If you have a rule such as:

If you have a rule such as:

replace

If you have a rule such as:

You

<exp> ::= <term>[(+|-)<term>]

with:

it

PARSE TREE

- Parse tree is the graphical representation of symbol. The symbol can be terminal or non-terminal.
- In parsing, the string is derived using the start symbol. The root of the parse tree is that start symbol.
- It is the graphical representation of symbol that can be terminals or nonterminals.
- Parse tree follows the precedence of operators. The deepest sub-tree

 The verse of the second operators. The deepest sub-tree

 The verse of the second operators in the parent node has less precedence over
- the operator in the sub-tree minals.
- All interior nodes have to be non-terminals.
- In-order traversal gives original input string.

Production rules:

$$S \rightarrow S + S \mid S * S$$

 $S \rightarrow a \mid b \mid c$
 $w = a * b + c$

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

LEFTMOST, RIGHTMOST DERIVATIONS

- A **left-most derivation** of a sentential form is one in which rules transforming the left-most nonterminal are always applied
- A **right-most derivation** of a sentential form is one in which rules transforming the right-most nonterminal are always applied

Leftmost Derivation-

Consider the following grammar-

 $S \rightarrow aB/bA$

 $S \rightarrow aS/bAA/a$

 $B \rightarrow bS / aBB / b$

(Unambiguous Grammar)

Let us consider a string w = aaabbabbba

Now, let us derive the string w using leftmost derivation.

 $S \rightarrow aB \rightarrow aaBB$ (Using $B \rightarrow aBB$)

 \rightarrow aaaBBB (Using B \rightarrow aBB)

 \rightarrow aaabBB (Using B \rightarrow b)

 \rightarrow aaabbB (Using B \rightarrow b)

 \rightarrow aaabbaBB (Using B \rightarrow aBB)

 \rightarrow aaabbabB (Using B \rightarrow b)

 \rightarrow aaabbabbS (Using B \rightarrow bS)

 \rightarrow aaabbabbbA (Using S \rightarrow bA)

 \rightarrow aaabbabbba (Using A \rightarrow a)

Leftmost Derivation Tree

Consider the following grammar-

 $S \rightarrow aB/bA$

 $S \rightarrow aS/bAA/a$

 $B \rightarrow bS/aBB/b$

(Unambiguous Grammar)

Let us consider a string w = aaabbabbba

Now, let us derive the string w using rightmost derivation.

Rightmost Derivation-

$$S \rightarrow aB$$

 \rightarrow aaBB (Using B \rightarrow aBB)

 \rightarrow aaBaBB (Using B \rightarrow aBB)

 \rightarrow aaBaBbS (Using B \rightarrow bS)

 \rightarrow aaBaBbbA (Using S \rightarrow bA)

 \rightarrow aaBaBbba (Using A \rightarrow a)

 \rightarrow aaBabbba (Using B \rightarrow b)

→ aaaBBabbba (Using B → aBB)

 \rightarrow aaaBbabbba (Using B \rightarrow b)

 \rightarrow aaabbabbba (Using B \rightarrow b)

Rightmost Derivation Tree

- Left Recursion
- 2. Right Recursion
- 3. General Recursion

General Recursion-

• The recursion which is neither left recursion nor right recursion is called as general recursion.

Example-

 $S \rightarrow aSb / \in$

Right Recursion-

- A production of grammar is said to have **right recursion** if the rightmost variable of its RHS is same as variable of its LHS.
- A grammar containing a production having right recursion is called as Right Recursive Grammar.

Example-

 $S \rightarrow aS/ \in$

(Right Recursive Grammar)

Left Recursion-

- A production of grammar is said to have left recursion if the leftmost variable of its RHS is same as variable of its LHS.
- A grammar containing a production having left recursion is called as Left Recursive Grammar.

Example-

 $S \rightarrow Sa/ \in$

(Left Recursive Grammar)

LEFT RECURSION

 $A \rightarrow A\alpha/\beta$

Top down parser doesn't allow Left Recursion bcz of it's infinite So... we need to eliminate this problem.

Infinite problem

$$\beta \alpha^*$$

Pragya Gaur

ELIMINATION OF LEFT RECURSION

$$A \rightarrow A\alpha | \beta$$

$$A \to \beta A'$$

$$A' \to \alpha A' \in$$

ELIMINATION OF LEFT RECURSION $A \rightarrow \beta \alpha$

$$\begin{array}{c} A \to \beta A' \\ A' \to \alpha A' \in \end{array}$$

 $A \rightarrow A\alpha 1 \mid A \alpha 2 \mid \beta 1 \mid \beta 2$

 $A \rightarrow \beta 1 A' \mid \beta 2 A'$

 $A' \rightarrow \alpha 1A' |\alpha 2A'| \in$

EXAMPLE: IMMEDIATE LEFT RECURSION

$$E \rightarrow TE$$

$$E' \rightarrow +TE' \in$$

$$A \rightarrow A\alpha I\beta$$

ragya Gaur

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \in$$

EXAMPLE

$$T \rightarrow T * F \downarrow$$

$$A \qquad \alpha \qquad \beta$$

$$A \qquad T \rightarrow FT$$

$$T \rightarrow *FT \mid \in$$

$$A \rightarrow A\alpha | \beta$$

agya Gau

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \in$$

$$A \rightarrow Abc \mid AB \mid d \mid fB$$
 $A \rightarrow A\alpha 1 A\alpha 2 \beta 1 \beta 2$

 $B \rightarrow g$

UPDATED GRAMMAR

$$A \rightarrow d A' \mid f BA'$$

 $A' \rightarrow bc A' \mid BA' \mid \in$
 $B \rightarrow g$

$$A \rightarrow A\alpha 1 |\alpha 2|\beta 1|\beta 2$$

$$A \rightarrow \beta 1 A' \mid \beta 2 A'$$

$$A \to \beta 1 A' \mid \beta 2 A'$$

$$A' \to \alpha 1 A' \mid \alpha 2 A' \mid \in$$

 $A \rightarrow Abc \mid AB \mid d$ $A \rightarrow A\alpha 1 A\alpha 2 \beta 1$ $B \rightarrow g$

UPDATED GRAMMAR

 $A \rightarrow d A'$ $A' \rightarrow bc A' \mid BA' \mid \in$ $B \rightarrow g$ $T \rightarrow T^*F \mid F$

$$T \rightarrow T * F | F$$

$$T \rightarrow F T'$$

 $T' \rightarrow *F T' \mid \in$

$$S \rightarrow A$$

$$A \rightarrow Ad / Ae / aB / ac$$

$$B \rightarrow bBc/f$$

$$T \rightarrow T * F$$

 $T \rightarrow T / F$
 $T \rightarrow a$
 $T \rightarrow T*F | T/F | a$
 $A \quad A \quad \alpha 1 \quad A \quad \alpha \quad 2$
 $β$
 $T \rightarrow a \quad T'$
 $T' \rightarrow *F \quad T' | / FT' |$

$$A \to A\alpha | \beta$$

$$A \to \beta A'$$

$$A' \to \alpha 1A' | \alpha 2A' | \in$$

INDIRECT LEFT RECURSION

Case 1: order of Non Terminal- S, A
Case 2: order of Non Terminal- A, S

1.
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow id$$

2.
$$S \rightarrow (L) \mid a$$

$$L \,\rightarrow\, L \,,\, S \mid S$$

1.
$$A \rightarrow Ba/Aa/c$$

$$B \ \rightarrow \ Bb \ I \ Ab \ I \ d$$

1. $E \rightarrow TE'$

 $T \ \to \ FT'$

 $\mathsf{T'} \, {\scriptstyle \rightarrow} \, \mathsf{XFT'} \, | \, \boldsymbol{\in} \,$

 $\mathsf{F} \, \to \, \mathsf{id}$

EXAMPLE: INDIRECT LEFT RECURSION

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

For S

- There is no immediate left recursion
- Don't enter in the inner loopFor A
- Replace A→Sd with S →Aa | b
 A→Ac | Aad| bd |f

$$A \rightarrow A\alpha I\beta$$

Pragya Gar

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' \in$

EXAMPLE

Remove immediate left recursion from A

$$A \rightarrow bdA' \mid fA$$
,
$$A' \rightarrow cA' \mid adA' \mid \in$$

$$A \rightarrow A\alpha 1 |A\alpha 2|\beta$$

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha 1 A' |\alpha 1 A'| \in$$

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \in$

EXAMPLE: INDIRECT LEFT RECURSION

S
$$\rightarrow$$
 Aa | b
A \rightarrow AC | Sd| f
A α β
Remove immediate left recursion from A
A \rightarrow SdA' | fA
'
A' \rightarrow cA' \in

$$A \rightarrow A\alpha | \beta$$

 $A o \beta A'$

$$A' \rightarrow \alpha A' \in$$

EXAMPLE

For S: replace A by $A \rightarrow SdA' \mid fA' \text{ in } S$ →Aa | b $S \rightarrow Aa \mid b$ $S \rightarrow SdA'$ al fA'a $S \rightarrow SdA'$ al fA'a $S \rightarrow f A' a S' l b S'$ S'→dA'aS'| ∈

$$A \rightarrow A\alpha/\beta$$

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A'/\epsilon$$

$$SdA' \mid fA$$

$$A \rightarrow SdA' \mid fA$$
 $A' \rightarrow cA' \mid \in$
 $S \rightarrow fA'aS' \mid bS'$
 $S' \rightarrow dA'aS' \mid \in$

Pragya Gaur

Pragya Gaur

LEFT FACTORING

In left factoring it is not clear which of two alternative productions to use to expand a nonterminal A.

i.e. if A
$$\longrightarrow \alpha \beta_1 | \alpha \beta_2$$

- \square W e don't know whether to expand A to $\alpha\beta_1$ or to $\alpha\beta_2$
- $\ \square$ To remove left factoring for this grammar replace all A productions containing α as prefix by

$$A \longrightarrow \alpha A'$$

$$A' \longrightarrow \beta_1 \mid \beta_2$$

$S \rightarrow abc \mid ab$

- A --> Br
- B --> Cd
- C --> At

YACC(yet another compiler compiler)

- YACC generates C code for syntax analyzer or parser.
- YACC uses grammar rules that allow it to analyze token from LEX and create syntax tree.
- YACc issues a warning message whenever a conflict occurs.
- YACC takes a default action when there is a conflict-

Conflict can be:

- shift reduce conflict
- Reduce reduce conflict

Structure of YACC

Definations

%%

Rules

%%

Subroutines (supporting C routines)

YACC(yet another compiler compiler)

YACC(yet another compiler compiler)

