实验 1 Python 编程环境的使用

1. 实验目的

- (1) 了解 Python 编程环境,进行程序设计的基本训练
- (2) 熟悉 Python 语言的使用方式,编写简单 python 程序,包括编写和运行基本的输入、输出和数值计算程序。
- (3) 会定义和调用函数

2. 实验任务

实验任务 1-1 圆台体积计算

编写圆台体积计算程序,即通过输入上底半径 r、下底半径 R、高 h 计算圆台体积。将计算结果保留两位小数。 提示: 圆台体积公式为:

$$V = \frac{1}{3}\pi h(R^2 + r^2 + R \cdot r)$$

输入格式:

输入数据包含三行,分别依次为上底半径 r、下底半径 R、和高 h,可能包含小数。

输出格式:

输出数据包含一行,为一个数 V,表示圆台体积。保留两位小数。

实验目的:

本实验帮助理解变量的赋值、程序的输入输出方法,以及简单的数值计算。

实验指导:

- 1. Python 中通过 input() 函数得到的输入为字符串变量,因此在计算前需要使用 float() 函数转化为浮点型,如 r = float(r)。
- 2. Python 中乘方运算可以使用 ** 符号实现,如 r^2 可以用 r ** 2 计算。
- 3. 在输出浮点型数据时,我们往往需要保留确定的小数位数。为了实现这一目的,我们可以在 print()时在数据前加上'%.nf'%,其中 n 为需要保留的小数位数。例如: print('%.3f'%a)。我们也可以使用 format()函数,如 print("{:.3f}".format(a))也可以达成同样效果。

有关这一方法的详细解释,可参见 Python 官方文档 <u>printf-style String</u>

Formatting 及 Format String Syntax 的有关说明。

参考运行结果:

实验任务 1-2 小明的实验数据

小明同学最近正在做基础物理实验,每次都对数据处理的大量计算十分头疼,所以想借助 python来帮助自己进行数据处理,今天小明在测钢丝直径时测量了3次直径。请读入这3次直径值,要求输出平均值和标准差。

注:设共有 k 个数据,令 x_i 表示第 i 个数据, \bar{x} 表示数据平均值, $s(\bar{x})$ 表示数据的标准差,则平均值和标准差的计算方法为:

$$\bar{x} = \frac{\sum_{i=1}^{k} x_i}{k}, s(\bar{x}) = \sqrt{\frac{\sum_{i=1}^{k} (x_i - \bar{x})^2}{k - 1}}$$

输入格式:

输入数据共一行,表示3次测量的直径值,中间用空格隔开。

输出格式:

输出数据共一行,表示平均值和标准差,中间用空格隔开,保留2位小数。

实验目的:

本实验旨在帮助理解库函数的调用。

实验指导:

- 1. Python 中通过 input()函数获得的是字符串变量,若一行输入数据有多个。可以用 a,b,... = input().split()按照空格将输入的多个值分开,分别赋给前面的变量。
- 2. 在Python 中使用开方等数学运算需要导入 math 包,可以写 from math import sqrt, 此后就可以直接使用 sqrt() 函数,如 s = sqrt(a);也可以写 import math,这样就可以将 math 包中的全部函数引入,但是使用函数时要使用成 s = math.sqrt(a)。

3. 我们在 Python 后序学习中会经常使用别人已经编写好的函数。想要具体了解这些函数的使用方法可以去<u>官网</u>查询,或者在 IDLE 中使用 help()函数,以本题为例:

```
File Edit Shell Debug Options Window Help

>>> import math
>>> help(math.sqrt)
Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)
Return the square root of x.
```

实验任务 1-3 简单密码

密码学(Cryptography)是和计算机发展紧密联系的一门学科。在很长时间的发展过程中,密码由简单变得复杂,但是密码离不开加密和解密两个过程。假设存在以下加密方式,将一组已知信息(一个十进制数)通过乘以 a,然后减去 b,再乘以 c,最后加上 d 的方式进行加密。现请你编写一个函数,读取用户输入,调用该函数并输出实现该过程。

输入格式:

输入数据共五行,依次为原码,a,b,c,d。

输出格式:

输出共一行,为 The cyphertext is m.,其中 m 以密文代替。

实验目的:

理解数值(任意类型)的运算,学习函数的定义方法。

实验指导:

Python 中不可将+在字符串与数字之间使用,也就是说使用'a'+3 既不能得到'a3'也不能得到'd'。如希望得到前者,数字 3 须转化成字符串型,即使用 'a'+str(3) 。 如希望得到后者,请参考下一题。

实验任务 1-4 ASCII 码

在计算机中,用若干位二进制符号表示数字、字母、命令以及特殊符号的方法称为字符编码,又称作 ASCII 码 (American Standard Code for Information Interchange,美国国家信息交换标准码)。常用字符有 128 个,其十进制 ASCII 码值从 0 到 127(如下表所示),其中 0 为空字符,1 $^{\circ}$ 31 表示的是各种控制字符。ASCII 码用 7 位二进制符号来表示字符和命令,编码为 $000~0000_{
m bin}\sim 111~1111_{
m bin}$,为书写方便,一般缩写成两位十六进制编码,为 $00_{
m hex}\sim 7F_{
m hex}$ 。例如:"a"字符的 ASCII 码编码为 $61_{
m hex}$,其十进制 ASCII 码值为 97,"A"字符的 ASCII 码编码为 $41_{
m hex}$,其十进制 ASCII 码值为 65。

Dec	H	Oct	Chai	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html Ch	<u>nr</u>
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	a#96;	8
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	a#65;	Α	97	61	141	a#97;	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	rr	66	42	102	@#66;	В	98	62	142	4#98;	b
3	3	003	ETX	(end of text)	35	23	043	# ;	#	67	43	103	a#67;	С	99	63	143	c	C
4	4	004	EOT	(end of transmission)	36	24	044	%#36;	ş	68	44	104	D	D	100	64	144	d	d
5	- 5	005	ENQ	(enquiry)	37	25	045	@#37;	*	69	45	105	@#69;	E	101	65	145	e	e
6	6	006	ACK	(acknowledge)				@#38;						F	1			f	
7	7	007	BEL	(bell)	39	27	047	@#39;	1	-			@#71;			-		g	_
8	8	010	BS	(backspace)				(72	48	110	H	H	104	68	150	h	h
9	9	011	TAB	(horizontal tab)	41	29	051	@#41;)	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)				6#42;					6#74;					j	_
11	В	013	VT	(vertical tab)	43	2B	053	a#43;	+	75	4B	113	G#75;	K	107	6B	153	a#107;	k
12	С	014	FF	(NP form feed, new page)	44	20	054	@#44;		76	40	114	a#76;	L	108	6C	154	a#108;	1
13	D	015	CR	(carriage return)	45	2D	055	6#45;	E 1.		_		6#77;		1			m	
14	E	016	S0	(shift out)	46	2E	056	a#46;		78	4E	116	@#78;	N	110	6E	156	n	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	/				6#79;		111	6F	157	o	0
16	10	020	DLE	(data link escape)	48	30	060	@# 4 8;	0	80	50	120	@#80;	P	112	70	160	p	p
17	11	021	DC1	(device control 1)	49	31	061	a#49;	1	81	51	121	Q	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	a#50;	2	82	52	122	@#82;	R	114	72	162	a#114;	r
19	13	023	DC3	(device control 3)	51	33	063	@#51;	3	83	53	123	6#83;	S	115	73	163	s	S
20	14	024	DC4	(device control 4)	52	34	064	4	4	84	54	124	a#84;	T	116	74	164	t	t
21	15	025	NAK	(negative acknowledge)	53	35	065	6#53;	5	85	55	125	6#85;	U	117	75	165	@#117;	u
22	16	026	SYN	(synchronous idle)	54	36	066	 4 ;	6	86	56	126	V	V	118	76	166	v	V
23	17	027	ETB	(end of trans. block)	55	37	067	G#55;	7	87	57	127	6#87 ;	W	1			w	
24	18	030	CAN	(cancel)	56	38	070	a#56;	8	88	58	130	6#88;	Х	120	78	170	@#120;	x
25	19	031	EM	(end of medium)	57	39	071	G#57;	9	89	59	131	6#89;	Y	121	79	171	@#121;	Y
26	1A	032	SUB	(substitute)	58	ЗΑ	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27	1B	033	ESC	(escape)	59	ЗВ	073	;	\$ C.	91	5B	133	[[123	7B	173	{	{
28	10	034	FS	(file separator)	60	3С	074	@#60;	<	92	5C	134	@#92;	A.	124	70	174	@#124;	I
29	1D	035	GS	(group separator)	61	ЗD	075	@#61;	=	93	5D	135	6#93;	1	125	7D	175	@#125;	}
30	1E	036	RS	(record separator)	62	ЗE	076	@#62;	>	94	5E	136	@#9 4 ;	^				~	
31	1F	037	US	(unit separator)	63	3 F	077	<u>@</u> #63;	2	95	5 F	137	6#95;	_	127	7F	177	@#127;	DEL
										•			S	ourc	e: W	AVV.	Look	upTables	mos.

请你试用 Python 编写一个函数,该函数完成把大写字母转化为对应的小写字母的功能。获得从键盘输入的一个大写字母,调用你所编写的函数,能将该字符串转化为相应的小写字母进行输出。

输入格式:

输入为一个字符,表示待转化的大写字母。

输出格式:

输出为一个字符,表示转化后的小写字母。

实验目的:

理解函数的定义方法。

实验指导:

Python 提供了 ord()函数和 chr()函数实现字符和 ASCII 码的转换: ord()函数可用于获取含单个字符的字符串中该字符的 ASCII 码值,如 ord('c')的结果为 99, ord('cc')则会报错; chr()函数则相反,可获得一个 ASCII 码值对应的字符,如 chr(99)的结果为'c'。

实验任务 1-5 打点计时器 (选做)

打点计时器是一种测量短暂时间的工具。如果运动物体带动的纸带通过打点计时器,在纸带上打下的点就记录了物体运动的时间,纸带上的点也相应的表示出了运动物体在不同时刻的位置。

请你编写一个程序,通过分析自由落体运动上方连接的纸带,输入打点计时器以 0.05s 的时间间隔打出六个计数点的位置信息,计算在中间四个点的速度,利用用速度信息使用线性回归计算加速度,并与标准值相比较(9.8m/s²),计算相对误差。

输入格式:

输入数据为六行,依次给出实验后纸带上连续六个计数点(不一定是最初六个)距起始点的距离(单位:厘米)。

输出格式:

对于每组数据,输出两行:

第一行为纸带的加速度,单位 m/s²,保留三位小数。

第二行为速度与标准值 9.8m/s² 的相对误差的绝对值,保留五位小数。

实验指导:

- 1. 输入的数据单位是厘米,输出单位是 m/s²,注意单位换算
- 2. 一元线性回归时,斜率公式为 $\mathbf{b} = \frac{\bar{y}\bar{x} \bar{x}\bar{y}}{\bar{x}^2 \bar{x}^2}$ 。

