M03 ATIVIDADE AVALIATIVA

Álgebra Linear

Prof. Paulo F. C. Tilles

Departamento de Matemática

31 de Outubro de 2023

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01 | Valor 3.0

Expresse o polinômio P(x) como uma combinação linear da base $S=\left\{\overline{p}_0,\overline{p}_1,\overline{p}_2,\overline{p}_3\right\}$.

Questão 02 | Valor 3.0

Determine se os vetores $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ são linearmente independentes.

Questão 03 | Valor 4.0

Parte I. Dados os vetores \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 , determine as condições que as componentes de um quarto vetor $\mathbf{u}_4 = (a, b, c, d)$ devem satisfazer para que o conjunto $U = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4}$ forme uma base de R^4 . Encontre um vetor que satisfaça essas condições.

Parte II. Dado um vetor genérico $\mathbf{x} = (x_1, x_2, x_3, x_4)$ de R^4 , determine o vetor de coordenadas de \mathbf{x} em relação à base U, ou seja, $(\mathbf{x})_U$.

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição Questão 01

TABELA I | PARTE 01/05

ANA LILIAN ALFONSO TOLEDO $P(x) = -4x^3 + 5x^2 - 4x + 2$ $\overline{p}_0 = x^3 + 2$

 $\bar{p}_2 = -x^3 - 3x^2$

$$\overline{p}_1 = -5x^3 + x^2 - 3x - 2$$

 $\overline{p}_2 = -5x^2 - x + 1$

ANA PALILA MILITZ DORNELES $P(x) = -4x^3 + 3x^2 - 5x - 4$

$$P(x) = -4x^3 + 3x^2 - 7$$

 $\overline{p}_0 = -2x^3 - 4x$

$$\overline{p}_0 = -2x^3 - 4x$$
 $\overline{p}_1 = -4x^2 - x - 3$ $\overline{p}_2 = 5 - x^2$ $\overline{p}_2 = 2x^3 - 2x^2 - x - 1$

ARTHUR BOGACKI VERISSIMO

$$P(x) = 4x^3 - 6x^2 + 4x$$

 $\overline{p}_0 = 5x^3 + 2$ $\overline{p}_1 = 4x^3 + 2x^2 - x + 4$
 $\overline{p}_2 = -2x^3 + 2x^2 + x - 2$ $\overline{p}_2 = 2x^2 + 4x$

$$P(x) = 3x^3 - 6x^2 - x + 2$$

$$\overline{p}_0 = 5x^2 + 4x + 6$$

$$\overline{p}_2 = x^3 - 5$$

$$\overline{p}_0 = 5x^2 + 4x + 1$$
 $\overline{p}_1 = -3x^2 - 3x$ $\overline{p}_2 = x^3 - 5$ $\overline{p}_2 = -3x^3 + 5x^2 - 2x + 5$

BRUNO DOS SANTOS LIMPIERRE

$$P(x) = 6x^3 + 2x^2 + 4x - 4$$

 $\overline{p}_0 = 5x^3 + 2x$ $\overline{p}_1 = -2x^3 -$
 $\overline{p}_2 = -3x^3 - 5x^2 + 3x + 4$ $\overline{p}_3 = 5x^2 + 2$

$$\overline{p}_1 = -2x^3 - 4x^2 - 2x - 5$$

BRUNO PERUSSATTO

$$P(x) = 2x^3 - 4x^2 + 4x + 1$$

$$\overline{p}_0 = -3x^3 - x^2 + 3x - 5$$
 $\overline{p}_1 = 4x^2 - 5x - 5$
 $\overline{p}_2 = 2x^3$ $\overline{p}_3 = 5x^2 - x - 3$

CARLOS EDUARDO VELOZO CORREA

$$P(x) = 5x^3 - 4x - 4$$

 $\overline{p}_0 = 3x - 3$
 $\overline{p}_2 = -5x^2 - 2x$

$$\overline{p}_1 = -3x^3 + 4x^2 + 4x + 2$$

 $\overline{p}_2 = x^3 + 3x^2 + 2$

CELSO MAIA DA SILVA NETO

$$P(x) = -3x^2 + 4x - 3$$

 $P(x) = -3x^3 - 3x^2 - 3$

$$\overline{p}_0 = 3x + 1$$
 $\overline{p}_1 = -x^2 - 2x$ $\overline{p}_2 = 5x^3 + 1$ $\overline{p}_3 = 5x^3 - x^2 + x - 5$

EDUARDO DE MEDEIROS DA SILVEIRA

DIEGO RIBEIRO CHAVES

$$P(x) = 3x - x^2$$

$$\overline{p}_0 = 3 - 3x$$

$$\bar{p}_0 = 3 - 3x$$
 $\bar{p}_1 = 5x^3 + x^2 - 3x$ $\bar{p}_2 = -3x^3 - 5x^2 - 3x$ $\bar{p}_3 = x^3 - 4$

$$\overline{p}_0 = x^3 + 2x^2 + x$$
 $\overline{p}_1 = 2x^3 + 5x$
 $\overline{p}_2 = 3x^3 - 2x + 3$ $\overline{p}_3 = 2x^2 - 5$

$$\overline{p}_1 = 2x^3 + 5x^2 - 3x - 4$$

$$\begin{aligned}
p_1 &= 2x^2 + 3x \\
\overline{p}_3 &= 2x^2 - 5
\end{aligned}$$

TABELA I | PARTE 02/05

ERICK NICOLAS MARTIM SOARES GABRIEL BISOGNIN MORO

$$P(x) = -6x^3 + 2x^2 - x + 2$$

$$\overline{p}_0 = -5x^3 + x^2 - 4x + 3 \qquad \overline{p}_1 = 2x^2 - x$$

$$P(x) = -4x^3 - 6x^2 + 4x + 3$$

$$\overline{p}_0 = x^3 - x^2 + 5x + 2$$

$$\overline{p}_1 = -4x^2 + 4x - 4$$

$$\bar{p}_1 = -4x^2 + 4x -$$
 $\bar{p}_1 = -2x^3 - 2x^2$

GABRIEL DI DOMENICO

$$P(x) = 5x^3 + 6x^2 - 3x + 2$$

 $\overline{p}_0 = -x^2 - 5x + 2$
 $\overline{p}_2 = -5x^3 - 5x^2 + x + 2$
 $\overline{p}_1 = 4x^3 + 2x^2$
 $\overline{p}_2 = -x^3 - 5x$

$$\overline{p}_1 = 4x^3 + 2x^2$$

$$\overline{p}_2 = -x^3 - 5x$$

GABRIEL PORTO DE FREITAS

$$P(x) = -x^3 - x^2 - 6x - 6$$

$$\overline{p}_0 = -x^3 - 2x$$
 $\overline{p}_0 = 2x^3 + x^2 - 4$

$$\overline{p}_0 = -x^3 - 2x$$
 $\overline{p}_1 = -x^3 + 2x^2 + x$
 $\overline{p}_2 = 2x^3 + x^2 - 4$ $\overline{p}_2 = 4x^2 - x + 1$

GABRIEL SILVA PETTERINE

$$P(x) = x^3 + 5x - 2$$

 $\overline{p}_0 = 4x^3 - 3x^2$
 $\overline{p}_2 = -4x^2 - 2x - 5$

$$\overline{p}_1 = x^3 - 4x^2 + 3x - 3$$

 $\overline{p}_3 = 2x^3 + 2x$

GABRIEL SOUZA BAGGIO

$$P(x) = -4x^3 + 5x^2 + 5x + 1$$

$$\overline{p}_0 = 3x^3 - 2$$

$$\overline{p}_0 = 3x^3 - 2$$

 $\overline{p}_2 = -2x^3 + 3x^2 + x$

$$\overline{p}_1 = 4x^2 + 5x$$
 $\overline{p}_3 = -4x^3 + 2x^2 + x + 1$

GABRIEL STIEGEMEIER

$$P\left(x\right) = 2x^3 - 4x + 3$$

$$\overline{p}_0 = -2x^3 + 3x - 3$$
 $\overline{p}_1 = -5x^3 - 2x^2 + 2$ $\overline{p}_2 = -3x^3 - 3x^2 - 3x$ $\overline{p}_3 = 4 - 4x$

GABRIELI MARTINS DE OLIVEIRA

$$P(x) = x^3 - 5x^2 - 4$$

$$\frac{1}{x} - 4$$

$$\bar{p}_0 = 5x^2 + 4x - 4$$
 $\bar{p}_1 = 4x^3 + x + 3$ $\bar{p}_2 = 3x^3 + 3x^2 + 4$ $\bar{p}_3 = -x^3 - 4x^2$

GUILHERME BRIZZI

$$P(x) = 3x^3 + 5x^2 + 2x - 5$$

$$\overline{p}_0 = 4x^3 + 3x$$

$$\overline{p}_2 = x^2 + 2x$$

$$\overline{p}_1 = 4x^3 + 4x^2 + 5$$

 $\overline{p}_1 = 2x^3 + 2x^2 + 2$

$$\overline{p}_1 = 4x^3 + 4x^2 + 5$$
 $\overline{p}_0 = 2x^3 - 5x^2 - 4x - 3$ $\overline{p}_1 = -2x^3 - 2$
 $\overline{p}_3 = 2x^3 + 2x^2 + 2x + 1$ $\overline{p}_2 = 5x - 2x^2$ $\overline{p}_3 = 3x^3 + x^2 + 4$

GUILHERME FEREIRA DA SILVA $P(x) = x^3 - 4x^2 + 4x + 4$

$$\overline{p}_1 = 4x^3 + 4x^2 + 5$$
 $\overline{p}_0 = 2x^3 - 5x^2 - 4x - 3$ $\overline{p}_1 = -2x^3 - 2$

$$= 2x^3 - 5x^2 - 4x - 3$$
$$= 5x - 2x^2$$

$$p_1 = -2x^3 - 2$$

 $\overline{p}_3 = 3x^3 + x^2 +$

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA I | PARTE 03/05

GUILHERME MENEGHETTI EINLOFT

$$P(x) = 5x^3 - 4x^2 - 6x - 4$$

 $\overline{p}_0 = 3x^2 + 1$ $\overline{p}_1 = x^3 + 5x^2 - 5x - 3$

$$\overline{p}_0 = 3x^2 + 1$$
 $\overline{p}_1 = x^3 + 5x^2 - 5x - 3$ $\overline{p}_2 = -3x^3 + 5x + 4$ $\overline{p}_3 = 5x^3 + 2x$

GUSTAVO DA SILVA REIS

$$P(x) = -5x^3 - 2x^2 - 4x - 4$$

$$\overline{p}_0 = -2x^2 + 2x - 4$$
 $\overline{p}_1 = 5x^3 + x + 4$
 $\overline{p}_2 = 5x^3 + 3x^2 - x - 2$ $\overline{p}_3 = -2x^3 - 4x^2$

$$\overline{b}_1 = 5x^3 + x + 4$$

 $\overline{b}_2 = -2x^3 - 4x^2$

GUSTAVO MONTAGNER DOS SANTOS

$$P(x) = -x^3 - x^2 - 4x - 5$$

$$\overline{p}_0 = 4x^3 - 5x^2 - 2x$$

$$\overline{p}_1 = 4x^3 + 3x + 4$$

$$\overline{p}_0 = 4x^3 - 5x^2 - 2x$$
 $\overline{p}_1 = 4x^3 + 3x + 4$
 $\overline{p}_2 = 3x^2 + 3x + 1$ $\overline{p}_2 = -4x^3 - 5$

IAIME ANTONIO DANIEL FILHO

$$P(x) = -x^3 - 2x^2 + 2x + 4$$

$$\overline{p}_0 = -3x^3 - 2x + 2x + 4$$

 $\overline{p}_0 = -3x^3 - 2x - 5$
 $\overline{p}_2 = x^2 + 4x$

$$\overline{p}_1 = 2x^3 + 4x^2 - 5$$

 $\overline{p}_2 = 2x^3 + 3x^2 + 3x - 2$

THUAN LUIS ALMEIDA ASSUMPÇÃO

$$P(x) = 4x^3 - 3x^2 + 2x$$

$$\overline{p}_0 = 3x^3 - 5x + 5$$

 $\overline{p}_0 = -2x^3 + 4x^2 + 5$

$$\overline{p}_0 = 3x^3 - 5x + 5$$
 $\overline{p}_1 = -4x^3 - 3x^2 - 5$
 $\overline{p}_2 = -2x^3 + 4x^2 + 2x$ $\overline{p}_3 = -4x^2 + x - 1$

IOAO CARLOS ZUCCHI

$$P(x) = 5x^2 - 3x + 6$$

$$\overline{p}_0 = x^2 - 4x + 2$$

$$\overline{p}_2 = 5 - 2x^3$$

$$\overline{p}_1 = x^2 - 5x^3$$

 $\overline{p}_3 = x^3 + x^2 - 5x - 5$

JOAO PEDRO AZENHA RIGHI

$$P\left(x\right) = 5x^3 - 3x - 6$$

$$\bar{p}_0 = -x^2 + 5x - 4$$
 $\bar{p}_1 = 3x^3 - 3x^2 + 4x$
 $\bar{p}_2 = -x^3 + x - 1$ $\bar{p}_3 = -3x^3 + 2x^2 + 1$

$$\overline{p}_0 = -x^2 + 5x - 4$$
 $\overline{p}_1 = 3x^3 - 3x^2 + 4x$

JOAO PEDRO RODRIGUES FREIRE

$$P(x) = -3x^3 - 6x^2 - 3x - 3$$

$$\bar{p}_0 = 1 - 4x^3$$
 $\bar{p}_2 = 4x - 3$

$$\overline{p}_1 = -2x^3 - x^2$$

 $\overline{p}_3 = -4x^3 - 2x^2 - 5x$

JOAO VITOR DA SILVA

$$P(x) = 2x^3 + 2x^2 + x + 2$$

$$\overline{p}_0 = 5x^3 - x^2 - 2x$$
 $\overline{p}_1 = 3x^3 - 3x^2 + 4x - 2$ $\overline{p}_2 = x^3 + 4$ $\overline{p}_3 = -2x - 4$

$$-2x$$
 $\bar{p}_1 = 3x^3 - 3x^2 + 4$
 $\bar{p}_3 = -2x - 4$

KAUAN MARUIAMA

$$P(x) = -6x^3 + 3x^2 - 4x + 1$$

$$\bar{p}_0 = -3x^3 - 5x^2 + 3x + 5$$

$$\bar{p}_1 = x^3 - x^2 + 4$$

$$p_0 = -3x^3 - 5x$$

$$\overline{p}_2 = 2x$$

$$\overline{p}_3 = 3x^3 - 3x^2 - 4x - 4$$

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA I | PARTE 04/05

LARISSA RODRIGUES SI $P(x) = 4x^3 - 5x + 1$	LVEIRA	LEANDRO BRUM DA SIL $P(x) = 4x^3 - 5x^2 - 5x - 1$	VA LACORTE
$\overline{p}_0 = -3x^3 - x - 5$ $\overline{p}_2 = 5x^2$	$\overline{p}_1 = -2x^3 + 5x^2 - 2x$ $\overline{p}_3 = 4x^3 - 3x - 3$	$\overline{p}_0 = -2x^3 - 5x + 2$ $\overline{p}_2 = x^2 + 3x + 4$	
LEANDRO OLIVEIRA DO $P(x) = -x^3 + 6x^2 - 4x + 3$	NASCIMENTO	LUCAS GUEDES CORRE $P(x) = 6x^3 - 2x + 1$	[A
$ \bar{p}_0 = -x^3 + 2x^2 + 4x + 1 \bar{p}_2 = 3x^3 + 3x^2 + x $		$ \bar{p}_0 = -5x^2 - 3x - 4 \bar{p}_2 = -3x^3 + 5x^2 + 1 $	
LUCAS XAVIER PAIRE $P(x) = x^3 + 6x^2 - 5x$		LUIS FERNANDO DA CR $P(x) = 4x^3 + 6x^2 - 6x + 2$	UZ ANTUNES
			$\overline{p}_1 = 2x^3 + 4x^2 + x + 1$ $\overline{p}_3 = 5x^3 - 5x$
LUIS GUSTAVO WERLE T $P(x) = 3x^3 - 5x^2 + 6x + 3$	TOZEVICH	LUIS HENRIQUE CHESA $P(x) = -4x^3 + 6x^2 + x - 1$	NI
$\overline{p}_0 = -5x^3 - 2x^2 + 5x - 2$ $\overline{p}_2 = 2x^3 + x^2 - x$		$\overline{p}_0 = -2x^3 + 5x^2 + 2x + 3$ $\overline{p}_2 = 3x^2$	
LUIS HENRIQUE SILVEII $P(x) = -5x^3 - x^2 - 6x + 1$	RA POZZEBON	MATHIAS ECKERT RECE $P(x) = -x^3 + 2x^2 - 3x + 4$	KTENVALD
$\overline{p}_0 = 3x^3 - 4x^2 + 5x - 1$	$\overline{p}_1 = -5x^3 - 1$ $\overline{p}_3 = -5x^3 + 4x^2 - 4x + 3$	$\bar{p}_0 = -x^3 - 3x^2 + 2x + 4$ $\bar{p}_2 = 5x^2 - x - 3$	

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01

Questão 02

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01

TABELA I | PARTE 05/05

MIGUEL BRONDANI $P(x) = 5x^3 - 5x^2 + 4$

$$\bar{p}_0 = -x^2 - 3$$

$$5x^2 + 4$$

NILTON DA SILVA RIBEIRO FILHO $P(x) = -4x^3 + 3x^2 - 4x - 1$

$$\overline{p}_1 = 2x^3 - 5x^2 + 2x - 4$$
 $\overline{p}_0 = 2x^3 - 5x^2 - 2$ $\overline{p}_1 = 3x - 5x^3$

$$\bar{p}_1 = 3x - 5x^3
\bar{p}_2 = -x - 2$$
 $\bar{p}_1 = 3x - 5x^3
\bar{p}_3 = 2x^3 - 2x^2 - 3$

PEDRO DE ANDRADE SANTOS

$$P(x) = 2x^3 + 3x^2 - 3x + 1$$

$$\overline{p}_0 = -2x^3 - 4x^2 - 5x$$
 $\overline{p}_1 = 2$

PEDRO HENRIOUE DA SILVA HINERASKY

$$P(x) = 3x^3 + 6x^2 - 2$$

$$\overline{p}_0 = -4x^3 - 2x^2 - 2x - 5$$
 $\overline{p}_1 = -5x^3 - 2$
 $\overline{p}_2 = -5x^3 + 4x^2 + 5x$ $\overline{p}_3 = -5x$

$$\overline{p}_1 = -5x^2$$
 $\overline{p}_3 = -5x$

RAMON GODOY IZIDORO

$$P(x) = -x^3 + x^2 - 5$$

$$\overline{p}_0 = 2x^3 + x^2$$
 $\overline{p}_1 = -x^3 - 3x^2 + 3x + 2$ $\overline{p}_2 = -x^3 - 3x^2 + 3x + 2$ $\overline{p}_3 = 4 - 4x$

$$\overline{p}_1 = -x^3 - 5x^2 - 3x + 4$$

$$+ 3x + 2 \qquad \overline{p}_2 - 4 - 4x$$

RIAN BILHAO PEREIRA

$$P(x) = 5x^3 - 3x^2 + 6x + 1$$

$$\overline{p}_0 = -x^3 + 3x^2 - 4x$$

$$\bar{p}_1 = x^3 + 4x^2 - 5x$$

 $\bar{p}_3 = 2x^2 + 2$

ROBERTO JOSE MAHL

$$P(x) = -4x^3 - 4x^2 - 4x$$

$$\bar{p}_0 = 4x^3 - 3$$
 $\bar{p}_1 = -5x$
 $\bar{p}_2 = 2x^3 + 4x^2 + x + 4$
 $\bar{p}_3 = 2x^2$

$$\overline{p}_1 = -5x^3 + 2x$$

$$\overline{p}_3 = 2x^2$$

$P(x) = 2x^3 + 5x^2 + 5x + 3$

$$\overline{p}_1 = -5x^3 + 2x^2 + x - 1$$
 $\overline{p}_0 = 5x^3 + x^2 - 3x - 4$ $\overline{p}_1 = -3x^3$
 $x + 4$ $\overline{p}_3 = 2x^2$ $\overline{p}_2 = -2x^3 + 5x^2 + 5x - 1$ $\overline{p}_3 = 4x^2 - 3x$

 $\overline{p}_2 = 2 - x$

$$= -2x^3 + 5x^2 + 5x - 1$$

THIERRY WEISSHEIMER MONTEIRO

$$\overline{p}_1 = -3x^3$$

TABELA II PARTE 01/05			
ANA LILIAN ALFONSO $\mathbf{v}_1 = (-3, -3, -2, -2)$	TOLEDO $v_2 = (0, 0, 0, 2)$	$\mathbf{v}_3 = (1, -3, 3, 3)$	$\mathbf{v}_4 = (-3, 1, -3, -2)$
ANA PAULA MILITZ De $\mathbf{v}_1 = (3, 2, -1, 3)$	ORNELES $\mathbf{v}_2 = (-1, -1, 2, 3)$	$\mathbf{v}_3 = (0, -1, 1, 0)$	$\mathbf{v}_4 = (2, 0, -1, -3)$
ARTHUR BOGACKI VE $\mathbf{v}_1 = (-2, 2, -1, 1)$	ERISSIMO $\mathbf{v}_2 = (-3, 2, -3, 0)$	$\mathbf{v}_3 = (2, 0, 0, 2)$	$\mathbf{v}_4 = (2, -2, 3, -1)$
ARTUR LIMA RIOS $\mathbf{v}_1 = (2, -1, -2, -1)$	$\mathbf{v}_2 = (-1, -1, 2, 1)$	$\mathbf{v}_3 = (-3, -1, 3, 2)$	$\mathbf{v}_4 = (0, 2, -1, 0)$
BRUNO DOS SANTOS U $\mathbf{v}_1 = (-1, 3, 2, -1)$	UMPIERRE $\mathbf{v}_2 = (-1, 3, -2, -3)$	$\mathbf{v}_3 = (-1, 3, -1, 0)$	$\mathbf{v}_4 = (-3, -3, 0, -2)$
BRUNO PERUSSATTO $\mathbf{v}_1 = (-3, -2, -3, -1)$	$\mathbf{v}_2 = (-1, 0, -2, 0)$	$\mathbf{v}_3 = (0, -1, 0, 1)$	$\mathbf{v}_4 = (0, -2, -3, -2)$
CARLOS EDUARDO VE $\mathbf{v}_1 = (2, 0, -3, -1)$	ELOZO CORREA $\mathbf{v}_2 = (1, 0, -3, 1)$	$\mathbf{v}_3 = (0, -1, 0, 2)$	$\mathbf{v}_4 = (-2, 2, 1, -1)$
CELSO MAIA DA SILVA $\mathbf{v}_1 = (0, 3, 1, 1)$		$\mathbf{v}_3 = (-2, -2, 3, 3)$	$\mathbf{v}_4 = (-3, 1, -3, -2)$
DIEGO RIBEIRO CHAV $\mathbf{v}_1 = (0, 0, 3, 0)$		$\mathbf{v}_3 = (-2, 1, 1, 0)$	$\mathbf{v}_4 = (0, 0, -2, 0)$
EDUARDO DE MEDEIR $\mathbf{v}_1 = (-1, 1, 2, 0)$		$\mathbf{v}_3 = (0, 0, 3, 0)$	$\mathbf{v}_4 = (1, -1, -2, 2)$

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questoes

Distribuição

TABELA II PARTE 02/05			
ERICK NICOLAS MA $\mathbf{v}_1 = (-1, -1, 0, -2)$		$\mathbf{v}_3 = (-3, -1, 1, 1)$	$\mathbf{v}_4 = (-1, 0, -3, 0)$
GABRIEL BISOGNIN $\mathbf{v}_1 = (0, -1, -1, 1)$	MORO $\mathbf{v}_2 = (2, -2, -2, 0)$	$\mathbf{v}_3 = (3, 0, 0, 0)$	$\mathbf{v}_4 = (0, 3, 3, 0)$
GABRIEL DI DOMEN $\mathbf{v}_1 = (0, -3, -2, 1)$	ICO $\mathbf{v}_2 = (-3, 3, 1, -3)$	$\mathbf{v}_3 = (0, -3, -2, 1)$	$\mathbf{v}_4 = (1, -1, -2, 2)$
GABRIEL PORTO DE $\mathbf{v}_1 = (-1, 2, 1, 1)$	FREITAS $\mathbf{v}_2 = (0, -3, 1, 3)$	$\mathbf{v}_3 = (1, 0, -3, -1)$	$\mathbf{v}_4 = (0, 1, -1, 1)$
GABRIEL SILVA PET $\mathbf{v}_1 = (-2, 0, 2, 2)$	TERINE $\mathbf{v}_2 = (-1, 2, 1, 0)$	$\mathbf{v}_3 = (1, -2, 3, 3)$	$\mathbf{v}_4 = (-3, 2, -1, -1)$
GABRIEL SOUZA BANK $\mathbf{v}_1 = (-2, 1, 1, -2)$		$\mathbf{v}_3 = (-2, 2, 3, 0)$	$\mathbf{v}_4 = (-3, 0, 3, -1)$
GABRIEL STIEGEME $\mathbf{v}_1 = (1, -3, 1, 3)$	IER $\mathbf{v}_2 = (-3, 3, 0, -3)$	$\mathbf{v}_3 = (-1, -2, 1, 0)$	$\mathbf{v}_4 = (-1, 2, -1, 1)$
GABRIELI MARTINS $\mathbf{v}_1 = (0, -2, -2, 2)$		$\mathbf{v}_3 = (2, -2, -2, 1)$	$\mathbf{v}_4 = (2, 0, 0, -1)$
GUILHERME BRIZZI $\mathbf{v}_1 = (3, -3, -1, -1)$	$\mathbf{v}_2 = (-3, -1, 2, 0)$	$\mathbf{v}_3 = (-2, 1, 1, 1)$	$\mathbf{v}_4 = (3, -1, -1, 3)$
GUILHERME FEREIR $\mathbf{v}_1 = (3, 3, 0, -2)$		$\mathbf{v}_3 = (0, 3, -2, 2)$	$\mathbf{v}_4 = (0, 0, 1, -3)$
		1011	N 4 3 N 4 3 N

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA II PARTE 03/05			
GUILHERME MENEG $\mathbf{v}_1 = (1, 3, 1, -3)$	HETTI EINLOFT $\mathbf{v}_2 = (-3, 0, -1, 2)$	$\mathbf{v}_3 = (-3, 3, 0, 1)$	$\mathbf{v}_4 = (3, -1, 2, 0)$
GUSTAVO DA SILVA F $\mathbf{v}_1 = (1, 1, 0, 1)$		$\mathbf{v}_3 = (3, 0, -3, 1)$	$\mathbf{v}_4 = (2, -2, -1, 0)$
GUSTAVO MONTAGN $\mathbf{v}_1 = (-1, -1, 1, 1)$	TER DOS SANTOS $\mathbf{v}_2 = (3, -2, -3, -2)$	$\mathbf{v}_3 = (2, 1, 1, 0)$	$\mathbf{v}_4 = (-1, -3, -3, -1)$
JAIME ANTONIO DAN $\mathbf{v}_1 = (-2, 2, 3, -1)$	NIEL FILHO $\mathbf{v}_2 = (1, -1, -2, 1)$	$\mathbf{v}_3 = (1, -2, 1, -3)$	$\mathbf{v}_4 = (-1, 2, -1, 3)$
JHUAN LUIS ALMEID $\mathbf{v}_1 = (3, 3, -2, -1)$	PA ASSUMPCAO $\mathbf{v}_2 = (3, 1, 0, 3)$	$\mathbf{v}_3 = (0, -1, 2, 2)$	$\mathbf{v}_4 = (3, 1, 0, 3)$
JOAO CARLOS ZUCCI $\mathbf{v}_1 = (3, -3, -3, -3)$	HI $\mathbf{v}_2 = (-3, 3, -2, 2)$	$\mathbf{v}_3 = (1, 0, 3, -2)$	$\mathbf{v}_4 = (-1, 0, -3, 2)$
JOAO PEDRO AZENHA $\mathbf{v}_1 = (3, 3, 0, 1)$	A RIGHI $\mathbf{v}_2 = (-3, -3, 1, -1)$	$\mathbf{v}_3 = (-3, -1, 0, 0)$	$\mathbf{v}_4 = (0, -2, 0, -1)$
JOAO PEDRO RODRIO $\mathbf{v}_1 = (-2, -3, -3, 0)$		$\mathbf{v}_3 = (3, 2, 0, 1)$	$\mathbf{v}_4 = (1, -3, -1, 2)$
JOAO VITOR DA SILV $\mathbf{v}_1 = (3, 2, -3, 1)$	$\mathbf{A} \\ \mathbf{v}_2 = (0, -3, -2, 3)$	$\mathbf{v}_3 = (0, 2, -1, 1)$	$\mathbf{v}_4 = (-1, -1, 0, 1)$
KAUAN MARUIAMA $\mathbf{v}_1 = (3, -2, 0, -3)$	$\mathbf{v}_2 = (2, 3, -2, 1)$	$\mathbf{v}_3 = (-1, 1, 2, -2)$	$\mathbf{v}_4 = (2, -1, -2, 1)$

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA II PARTE 04/05			
LARISSA RODRIGUE $\mathbf{v}_1 = (0, 3, 0, -2)$	S SILVEIRA $\mathbf{v}_2 = (-2, -3, 2, 2)$	$\mathbf{v}_3 = (3, -2, 1, -3)$	$\mathbf{v}_4 = (0, 1, -2, 3)$
LEANDRO BRUM DA $\mathbf{v}_1 = (1, 1, -2, 1)$	SILVA LACORTE $\mathbf{v}_2 = (-2, 2, -1, -1)$	$\mathbf{v}_3 = (-2, 2, -2, 0)$	$\mathbf{v}_4 = (-2, 1, -1, 2)$
LEANDRO OLIVEIRA $\mathbf{v}_1 = (1, 3, -1, 2)$	A DO NASCIMENTO $\mathbf{v}_2 = (-2, 2, 2, -1)$	$\mathbf{v}_3 = (-3, -1, 1, -3)$	$\mathbf{v}_4 = (3, 0, 2, 3)$
LUCAS GUEDES COR $\mathbf{v}_1 = (-3, 0, 0, -3)$		$\mathbf{v}_3 = (-2, -1, 2, -2)$	$\mathbf{v}_4 = (3, 1, 1, -2)$
LUCAS XAVIER PAIR $\mathbf{v}_1 = (0, 3, 3, -3)$	E $\mathbf{v}_2 = (2, -3, -1, 1)$	$\mathbf{v}_3 = (-1, -3, -3, 3)$	$\mathbf{v}_4 = (3, -2, 2, -3)$
LUIS FERNANDO DA $\mathbf{v}_1 = (2, -2, 2, 0)$	CRUZ ANTUNES $\mathbf{v}_2 = (0, -1, 2, -3)$	$\mathbf{v}_3 = (2, 2, -3, 0)$	$\mathbf{v}_4 = (-3, 3, -3, 0)$
LUIS GUSTAVO WER $\mathbf{v}_1 = (-2, 2, -2, 2)$		$\mathbf{v}_3 = (-3, 1, 0, -3)$	$\mathbf{v}_4 = (-2, 2, -1, 0)$
LUIS HENRIQUE CHE $\mathbf{v}_1 = (3, 0, 0, 0)$	ESANI $\mathbf{v}_2 = (3, 2, -3, -1)$	$\mathbf{v}_3 = (2, -1, 0, -1)$	$\mathbf{v}_4 = (1, -1, 3, 2)$
LUIS HENRIQUE SILV $\mathbf{v}_1 = (-3, -2, 1, 3)$		$\mathbf{v}_3 = (-1, 0, -1, 0)$	$\mathbf{v}_4 = (-3, -1, 2, 3)$
イロンイ側とイモンイモン			

M03 ATIVIDADE AVALIATIVA

of. Paulo F. C Tilles

Questões

Distribuição

Questão 01

Questão 02

TABELA II PARTE 05/05				
MIGUEL BRONDANI $\mathbf{v}_1 = (0, -2, -1, -3)$	$\mathbf{v}_2 = (1, -1, 2, -2)$	$\mathbf{v}_3 = (-2, 1, -3, 2)$	$\mathbf{v}_4 = (0, -1, -2, -1)$	
NILTON DA SILVA RIE $\mathbf{v}_1 = (3, 3, -2, 2)$	BEIRO FILHO $\mathbf{v}_2 = (2, -3, -1, -2)$	$\mathbf{v}_3 = (3, 3, 3, 2)$	$\mathbf{v}_4 = (-1, 3, 0, 2)$	
PEDRO DE ANDRADE $\mathbf{v}_1 = (-1, -3, 2, 2)$	SANTOS $\mathbf{v}_2 = (0, -1, 2, 3)$	$\mathbf{v}_3 = (0, -3, -3, -1)$	$\mathbf{v}_4 = (-1, -2, 2, -3)$	
PEDRO HENRIQUE DA $\mathbf{v}_1 = (-1, -3, -2, 0)$	A SILVA HINERASKY $\mathbf{v}_2 = (0, 1, -1, -3)$	$\mathbf{v}_3 = (-2, 1, -1, 3)$	$\mathbf{v}_4 = (0, 0, 3, 2)$	
RAMON GODOY IZIDO $\mathbf{v}_1 = (-1, -3, 2, -1)$		$\mathbf{v}_3 = (0, 1, 0, -1)$	$\mathbf{v}_4 = (0, -3, 3, -3)$	
RIAN BILHAO PEREIR $\mathbf{v}_1 = (1, 0, 3, -3)$	$\mathbf{v}_2 = (3, -2, -1, 0)$	$\mathbf{v}_3 = (1, 0, 1, -1)$	$\mathbf{v}_4 = (-1, -2, -2, -2)$	
ROBERTO JOSE MAHI $\mathbf{v}_1 = (1, -2, -1, 3)$	$\mathbf{v}_2 = (2, -2, 2, 2)$	$\mathbf{v}_3 = (-1, 3, 3, -2)$	$\mathbf{v}_4 = (2, 2, 3, -3)$	
THIERRY WEISSHEIM $\mathbf{v}_1 = (-3, 2, 0, -2)$	IER MONTEIRO $\mathbf{v}_2 = (0, -2, 0, 1)$	$\mathbf{v}_3 = (3, -1, 1, 1)$	$\mathbf{v}_4 = (3, -1, -1, 2)$	

M03 ATIVIDADE AVALIATIVA

of. Paulo F. C. Tilles

Questões

Distribuição

TABELA III | PARTE 01/05

ANA LILIAN ALFONSO TOLEDO

$$\mathbf{u}_1 = (-1, -1, -2, 0)$$
 \mathbf{u}_2

$$\mathbf{u}_2 = (-3, -3, 1, 2)$$

$$\mathbf{u}_3 = (-2, 0, 2, 3)$$

ANA PAULA MILITZ DORNELES

$$\mathbf{u}_1 = (3, -2, 1, 0)$$

$$\mathbf{u}_2 = (-3, -1, 1, 2)$$

$$\mathbf{u}_3 = (-1, -3, -2, -3)$$

ARTHUR BOGACKI VERISSIMO

$$\mathbf{u}_1 = (0, 0, -2, 0)$$

$$\mathbf{u}_2 = (-3, -2, -1, 2)$$

$$\mathbf{u}_3 = (-1, 0, 2, -2)$$

ARTUR LIMA RIOS

$$\mathbf{u}_1 = (-1, 0, 0, -2)$$

$$\mathbf{u}_2 = (-3, -2, 1, 1)$$

$$\mathbf{u}_3 = (2, 1, 1, -2)$$

BRUNO DOS SANTOS LIMPIERRE

$$\mathbf{u}_1 = (-2, -1, -1, 1)$$

$$\mathbf{u}_2 = (1, -3, -1, 0)$$

$$\mathbf{u}_3 = (-2, 1, 3, 0)$$

BRUNO PERUSSATTO

$$\mathbf{u}_1 = (1, 3, 1, -1)$$

$$\mathbf{u}_2 = (-2, 3, -3, 2)$$

$$\mathbf{u}_3 = (2, -3, -3, -2)$$

CARLOS EDUARDO VELOZO CORREA

$$\mathbf{u}_1 = (0, -3, 3, 1)$$

$$\mathbf{u}_1 = (0, -3, 3, 1)$$
 $\mathbf{u}_2 = (1, -1, 1, 2)$
CELSO MAIA DA SILVA NETO

$$\mathbf{u}_3 = (2, -1, -1, 0)$$
 $\mathbf{u}_3 = (2, -2, -3, -3)$

$\mathbf{u}_1 = (3, -2, -3, -1)$ $\mathbf{u}_2 = (-3, 1, 3, 2)$

DIEGO RIBEIRO CHAVES
$$\mathbf{u}_1 = (3, 3, -1, 2)$$
 \mathbf{u}_2

$$\mathbf{u}_2 = (-3, 0, 0, -1)$$

$$\mathbf{u}_3 = (-3, 2, 2, 2)$$

EDUARDO DE MEDEIROS DA SILVEIRA $\mathbf{u}_2 = (-1, -1, 2, 2)$

$$\mathbf{u}_1 = (2, 3, 2, 2)$$

$$\mathbf{u}_2 = (-1)$$

 $\mathbf{u}_3 = (3, 3, 3, 1)$

4日 > 4周 > 4 至 > 4 至 >

M03 ATIVIDADE **AVALIATIVA**

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA III PARTE 02/05			
ERICK NICOLAS MA $\mathbf{u}_1 = (0, -1, -3, -2)$	RTIM SOARES $\mathbf{u}_2 = (-2, -2, 3, 1)$	$\mathbf{u}_3 = (3, 3, -1, -1)$	
GABRIEL BISOGNIN $\mathbf{u}_1 = (0, -2, 2, -1)$	MORO $\mathbf{u}_2 = (1, 3, 0, 2)$	$\mathbf{u}_3 = (0, 1, 3, 1)$	
GABRIEL DI DOMEN $\mathbf{u}_1 = (-3, 0, -2, 3)$	$\mathbf{u}_2 = (-1, -3, -3, -1)$	$\mathbf{u}_3 = (-2, 1, 1, 2)$	
GABRIEL PORTO DE $\mathbf{u}_1 = (-2, -3, 0, -2)$	FREITAS $\mathbf{u}_2 = (2, 1, -1, 1)$	$\mathbf{u}_3 = (-3, 1, 2, -2)$	
GABRIEL SILVA PET $\mathbf{u}_1 = (-1, 1, -3, -2)$	TERINE $\mathbf{u}_2 = (-1, -3, 0, -1)$	$\mathbf{u}_3 = (-3, 1, 1, -1)$	
GABRIEL SOUZA BA $\mathbf{u}_1 = (2, -2, 2, -3)$	GGIO $\mathbf{u}_2 = (-3, -1, 1, 0)$	$\mathbf{u}_3 = (2, -1, -1, 0)$	
GABRIEL STIEGEME $\mathbf{u}_1 = (-1, -3, -1, 0)$	EIER $\mathbf{u}_2 = (-2, 2, 3, 0)$	$\mathbf{u}_3 = (1, 1, 3, -3)$	
GABRIELI MARTINS $\mathbf{u}_1 = (-2, 2, -3, -2)$	DE OLIVEIRA $\mathbf{u}_2 = (2, -1, 2, 0)$	$\mathbf{u}_3 = (0, 0, 3, -3)$	
GUILHERME BRIZZI $\mathbf{u}_1 = (0, -3, -2, -3)$	$\mathbf{u}_2 = (-3, -1, 3, 1)$	$\mathbf{u}_3 = (2, 3, -2, -3)$	
GUILHERME FEREIR $\mathbf{u}_1 = (-2, 1, 0, 0)$	A DA SILVA $\mathbf{u}_2 = (2, -3, 0, 2)$	$\mathbf{u}_3 = (0, -3, -1, 1)$	

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA III PARTE 03/05		
GUILHERME MENEGH $\mathbf{u}_1 = (-3, -1, 1, 1)$		$\mathbf{u}_3 = (3, -1, -2, -2)$
GUSTAVO DA SILVA RE $\mathbf{u}_1 = (1, 2, -1, -1)$	EIS $\mathbf{u}_2 = (-3, -2, -1, 2)$	$\mathbf{u}_3 = (-2, -3, 2, 1)$
GUSTAVO MONTAGNE $\mathbf{u}_1 = (-1, -2, -3, -1)$		$\mathbf{u}_3 = (2, -3, 1, -3)$
JAIME ANTONIO DANI $\mathbf{u}_1 = (-1, 0, 1, 0)$	EL FILHO $\mathbf{u}_2 = (-2, 1, 1, 3)$	$\mathbf{u}_3 = (3, -1, 2, 3)$
JHUAN LUIS ALMEIDA $\mathbf{u}_1 = (0, -2, -2, 2)$		$\mathbf{u}_3 = (-1, 3, -2, 0)$
JOAO CARLOS ZUCCHI $\mathbf{u}_1 = (1, -3, 3, 1)$	$\mathbf{u}_2 = (-2, 3, 1, 1)$	$\mathbf{u}_3 = (-3, 0, 2, -1)$
JOAO PEDRO AZENHA $\mathbf{u}_1 = (-2, -3, 2, 0)$	RIGHI $\mathbf{u}_2 = (0, -2, -1, -1)$	$\mathbf{u}_3 = (-1, -1, -2, 2)$
JOAO PEDRO RODRIGU $\mathbf{u}_1 = (3, 1, -1, -1)$	UES FREIRE $\mathbf{u}_2 = (1, 1, -3, 1)$	$\mathbf{u}_3 = (-3, -3, 3, -2)$
JOAO VITOR DA SILVA $\mathbf{u}_1 = (0, -2, 0, 1)$	$\mathbf{u}_2 = (-1, 1, 2, -3)$	$\mathbf{u}_3 = (-3, 2, -2, -1)$
KAUAN MARUIAMA $\mathbf{u}_1 = (1, -2, 3, 3)$	$\mathbf{u}_2 = (-3, 3, 0, 2)$	$\mathbf{u}_3 = (-2, -3, -1, -1)$

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

TABELA III PARTE 04/05		
LARISSA RODRIGUE $\mathbf{u}_1 = (0, 2, -3, -3)$	S SILVEIRA $\mathbf{u}_2 = (0, 3, 3, -1)$	$\mathbf{u}_3 = (-1, 1, 3, 1)$
LEANDRO BRUM DA $\mathbf{u}_1 = (-2, -3, 0, 0)$		$\mathbf{u}_3 = (0, 3, 3, -3)$
LEANDRO OLIVEIRA $\mathbf{u}_1 = (1, -1, 2, -1)$		$\mathbf{u}_3 = (3, 2, 3, 1)$
LUCAS GUEDES COR $\mathbf{u}_1 = (-1, -3, 3, 2)$		$\mathbf{u}_3 = (-2, 1, 1, 2)$
LUCAS XAVIER PAIR $\mathbf{u}_1 = (3, -1, -3, -2)$	E $\mathbf{u}_2 = (3, -3, -2, -3)$	$\mathbf{u}_3 = (1, -1, 3, -2)$
LUIS FERNANDO DA $\mathbf{u}_1 = (-2, -2, -3, 3)$	CRUZ ANTUNES $\mathbf{u}_2 = (-1, -2, 0, 0)$	$\mathbf{u}_3 = (3, 1, 0, 3)$
LUIS GUSTAVO WERL $\mathbf{u}_1 = (2, 3, -2, 3)$		$\mathbf{u}_3 = (2, 1, -2, 2)$
LUIS HENRIQUE CHE $\mathbf{u}_1 = (0, 1, 0, -2)$	ESANI $\mathbf{u}_2 = (1, -2, 2, -2)$	$\mathbf{u}_3 = (3, 0, -1, 2)$
LUIS HENRIQUE SILV $\mathbf{u}_1 = (3, 3, 3, 1)$	/EIRA POZZEBON $\mathbf{u}_2 = (-2, -3, -2, 3)$	$\mathbf{u}_3 = (3, 1, -2, 1)$
	4	D

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição

Questão 01

Questão 02

Questão 03

TABELA III PARTE 05/05			
MIGUEL BRONDANI $\mathbf{u}_1 = (1, 1, -2, 1)$	$\mathbf{u}_2 = (-2, -2, -1, -2)$	$\mathbf{u}_3 = (0, -1, 1, 2)$	
NILTON DA SILVA RIL $\mathbf{u}_1 = (0, -2, 3, 3)$	BEIRO FILHO $\mathbf{u}_2 = (-3, -3, 3, -1)$	$\mathbf{u}_3 = (0, 1, 0, 1)$	
PEDRO DE ANDRADE $\mathbf{u}_1 = (0, -3, -2, -3)$		$\mathbf{u}_3 = (0, 1, 2, 3)$	
PEDRO HENRIQUE D. $\mathbf{u}_1 = (-3, -2, 1, -3)$		$\mathbf{u}_3 = (2, -3, -3, 3)$	
RAMON GODOY IZID $\mathbf{u}_1 = (-2, 1, 0, 0)$	OORO $\mathbf{u}_2 = (-2, 2, -2, 2)$	$\mathbf{u}_3 = (0, -1, 0, 3)$	
RIAN BILHAO PEREIL $\mathbf{u}_1 = (2, -1, 1, -3)$		$\mathbf{u}_3 = (3, 0, -3, 1)$	
ROBERTO JOSE MAH $\mathbf{u}_1 = (-2, 2, 3, -3)$	$\mathbf{L} \mathbf{u}_2 = (2, -1, -2, 0)$	$\mathbf{u}_3 = (1, 2, -1, -1)$	
THIERRY WEISSHEIN $\mathbf{u}_1 = (3, 2, -2, 0)$	MER MONTEIRO $\mathbf{u}_2 = (-2, -3, 2, 1)$	$\mathbf{u}_3 = (-3, -2, -1, 0)$	
	•	•	

M03 ATIVIDADE AVALIATIVA

Prof. Paulo F. C. Tilles

Questões

Distribuição