Numerical Calculus

Pătrulescu Flavius

Technical University of Cluj-Napoca

2025

References

- 1. C.D. Meyer, *Matrix Analysis and Applied Linear Algebra*, SIAM, Philadelphia, 2000.
- 2. A. Quarteroni, R. Sacco, F. Saleri, *Numerical Mathematics*, Springer-Verlag, New-York, 2000.

Vector space (Meyer, 2000)

 $(\mathbb{K}, +, \cdot)$ -scalar field, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $\mathcal{V} \neq \emptyset$ (vectors) Vector addition and scalar multiplication:

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$

$$(u, v) \in \mathcal{V} \times \mathcal{V} \to u + v \in \mathcal{V}$$

$$\cdot: \mathbb{K} \times \mathcal{V} \to \mathcal{V}$$

$$(\alpha, v) \in \mathbb{K} \times \mathcal{V} \to \alpha \cdot v \in \mathcal{V}$$

 $(\mathcal{V},+,\cdot)$ is a vector space over \mathbb{K}

- 1. $(\mathcal{V}, +)$ is abelian group
 - 1.1 $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}, \ \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{V}$
 - 1.2 $(x + y) + z = x + (y + z), \forall x, y, z \in V$
 - 1.3 $\exists ! \mathbf{0}_{\mathcal{V}} \in \mathcal{V} \text{ s.t. } \mathbf{x} + \mathbf{0}_{\mathcal{V}} = \mathbf{x}, \ \forall \ \mathbf{x} \in \mathcal{V}$
 - 1.4 $\forall x \in \mathcal{V}, \exists ! (-x) \in \mathcal{V}$ s.t. $x + (-x) = \mathbf{0}_{\mathcal{V}}$
- 2. $(\alpha \cdot \beta) \cdot \mathbf{x} = \alpha \cdot (\beta \cdot \mathbf{x}), \forall \alpha, \beta \in \mathbb{K}, \mathbf{x} \in \mathcal{V}$
- 3. $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}, \ \forall \ \alpha \in \mathbb{K}, \ \mathbf{x}, \mathbf{y} \in \mathcal{V}$
- 4. $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \forall \alpha, \beta \in \mathbb{K}, \mathbf{x} \in \mathcal{V}$
- 5. $1 \cdot \mathbf{x} = \mathbf{x}$. $\forall \mathbf{x} \in \mathcal{V}$

▶ Real coordinate space: $(\mathbb{R}^n, +, \cdot)$, $n \in \mathbb{N}^*$ (over \mathbb{R})

$$\mathbb{R}^n = \{ \boldsymbol{x} | \boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in \mathbb{R} \}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Rightarrow \mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}, \alpha \mathbf{x} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

- $(\mathcal{M}_{mn}(\mathbb{R}), +, \cdot)$, $m, n \in \mathbb{N}^*$ (over \mathbb{R})
- $(C[a,b],+,\cdot)$ (over \mathbb{R})

$$C[a,b] = \{f : [a,b] \to \mathbb{R} | f - continuous\}$$

$$f,g \in C[a,b] \Rightarrow (f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$$

- $(\mathbb{C}[X], +, \cdot)$ (over \mathbb{C})
- $(\mathbb{R}[X], +, \cdot)$ (over \mathbb{R})
- ▶ $(\Pi_n, +, \cdot)$, $n \in \mathbb{N}$ (over \mathbb{R})

$$\Pi_n = \{ P \in \mathbb{R}[X] : deg(P) \leqslant n \}$$

• $(\mathcal{L}, +, \cdot)$ (over \mathbb{R})

$$\mathcal{L} = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_2 = \alpha x_1 \} \subset \mathbb{R}^2, \ \alpha \in \mathbb{R}^*$$

• $(C^1[a,b],+,\cdot)$ (over \mathbb{R})

Subspace (Meyer, 2000)

Let $\mathcal S$ be a nonempty subset of a vector space $\mathcal V$ over $\mathbb K$ (symbolically, $\mathcal S\subseteq \mathcal V$). If S is also a vector space over $\mathbb K$ using the same addition and scalar multiplication operations, then $\mathcal S$ is said to be a *subspace* of $\mathcal V$.

It's not necessary to check all 10 of the defining conditions in order to determine if a subset is also a subspace-only the closure conditions need to be considered. That is, a nonempty subset ${\mathcal S}$ of a vector space ${\mathcal V}$ is a subspace of ${\mathcal V}$ if and only if

- 1. $\mathbf{x}, \mathbf{y} \in \mathcal{S} \Rightarrow \mathbf{x} + \mathbf{y} \in \mathcal{S}$
- 2. $\mathbf{x} \in \mathcal{S} \Rightarrow \alpha \cdot \mathbf{x} \in \mathcal{S}, \forall \alpha \in \mathbb{K}$

- Given a vector space $\mathcal V$, the set $\mathcal Z=\{\mathbf 0_{\mathcal V}\}$ containing only the zero vector is a subspace. Naturally, this subspace is called the *trivial subspace*.
- $\mathcal{L} \subset \mathbb{R}^2$ (the straight lines that pass through the origin) is a *proper* subspace of $(\mathbb{R}^2, +, \cdot)$.
- In $(\mathbb{R}^3, +, \cdot)$ the trivial subspace and lines through the origin are again subspaces, but there is also another one—planes through the origin.
- $(C^1[a,b],+,\cdot)$ is a subspace of $C([a,b],+,\cdot)$
- ▶ Π_n is a subspace of $(\mathbb{R}[X], +, \cdot)$, $\forall n \in \mathbb{N}^*$

Spanning sets (Meyer, 2000)

For a set of vectors $S = \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \} \subset \mathcal{V}$ the set of all possible linear combinations of the \mathbf{v}_i 's is denoted by

$$span(S) = \{\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n | \alpha_i \in \mathbb{K}\}$$

Notice that span(S) is a subspace of V; it is called *space spanned* by S.

If $\mathcal V$ is a vector space such that $\mathcal V = span(\mathcal S)$, we say $\mathcal S$ is a spanning set for $\mathcal V$. In other words, $\mathcal S$ spans $\mathcal V$ whenever each vector in $\mathcal V$ is a linear combination of vectors from $\mathcal S$.

- ► The vectors $\left\{ m{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, m{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, m{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ span \mathbb{R}^3
- The units vectors

$$\mathcal{E} = \left\{ oldsymbol{e}_1 = egin{pmatrix} 1 \ 0 \ 0 \ dots \ 0 \end{pmatrix}, oldsymbol{e}_2 = egin{pmatrix} 0 \ 1 \ 0 \ dots \ 0 \end{pmatrix}, \dots, oldsymbol{e}_n = egin{pmatrix} 0 \ 0 \ 0 \ dots \ 1 \end{pmatrix}
brace \mathbb{R}^n$$

form a spanning set for \mathbb{R}^n .

▶ The finite set $\{1, x, ..., x^n\}$ spans Π_n (polynomials with degree $\leq n$) and the infinite set $\{1, x, x^2, ...\}$ spans $\mathbb{R}[X]$ or $\mathbb{C}[X]$.

Linear Independence (Meyer, 2000)

A set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is said to be a *linearly independent set* whenever the only solution for the scalars α_i in the homogeneous equation

$$\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0}_{\mathcal{V}}$$

is the trivial solution $\alpha_1 = \ldots = \alpha_n = 0$. Whenever there is a nontrivial solution for the α 's (i.e., at least one $\alpha_i \neq 0$), the set $\mathcal S$ is said to be a *linearly dependent set*. In other words, linearly independent sets are those that contain no dependency relationships, and linearly dependent sets are those in which at least one vector is a combination of the others.

- ▶ The unit vectors $\mathcal{E} = \{e_1, \dots, e_n\} \subset \mathbb{R}^n$ form a linearly independent set.
- Vandermonde Matrix

$$V_{m \times n} = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{n-1} \end{pmatrix}$$

The columns in V constitute a linearly independent set whenever $n \leq m$.

▶ Let $f_1, f_2, ..., f_n \in C^{\infty}(\mathbb{R})$. Wronski Matrix

$$W(x) = \begin{pmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{pmatrix}$$

If there is at least one point $x = x_0$ s.t. $W(x_0)$ is nonsingular then $\{f_1, f_2, \dots f_n\}$ is a linearly independent set.

► The set of polynomials $\{1, x, x^2, \dots, x^n\}$ is linearly independent in Π_n .

Basis. Dimension (Meyer, 2000)

A linearly independent spanning set for a vector space $\mathcal V$ is called a basis for $\mathcal V$.

Spaces that possess a basis containing an infinite number of vectors are referred to as *infinite-dimensional spaces*, and those that have a finite basis are called *finite-dimensional spaces*.

Although a space $\mathcal V$ can have many different bases, the preceding result guarantees that all bases for $\mathcal V$ contain the same number of vectors. The dimension of a vector space $\mathcal V$ is defined to be

 $dim(\mathcal{V}) =$ number of vectors in any basis for \mathcal{V}

- ▶ The unit vectors $\mathcal{E} = \{e_1, e_2, \dots, e_n\}$ in \mathbb{R}^n are a basis for \mathbb{R}^n . This is called the *standard basis* for \mathbb{R}^n . $dim(\mathbb{R}^n) = n$
- ► The set $\{1, x, x^2, ..., x^n\}$ is a basis for the vector space Π_n (set of polynomials having degree n or less). $dim(\Pi_n) = n + 1$
- ▶ The set $\{1, x, x^2, ...\}$ is a basis for the vector space $\mathbb{R}[X]$ (all polynomials). $dim(\mathbb{R}[X]) = \infty$
- ▶ The set $\{1, i\}$ $(i^2 = -1)$ is a basis for \mathbb{C} . $dim(\mathbb{C}) = 2$

General inner product (Meyer, 2000)

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{K}, \ \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$$

- 1. $\langle x, x \rangle \in \mathbb{R}, \langle x, x \rangle \geqslant 0$, $\forall x \in \mathcal{V}$; $\langle x, x \rangle = 0 \Leftrightarrow x = \mathbf{0}_{\mathcal{V}}$
- 2. $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle, \ \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{V}, \ \alpha \in \mathbb{K}$
- 3. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle, \ \forall \ \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$
- 4. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (For $\mathbb{K} = \mathbb{R}$: $\langle x, y \rangle = \langle y, x \rangle$)

Properties

- 1. $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle, \ \forall \ \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$
- 2. $\langle \mathbf{x}, \beta \mathbf{y} \rangle = \overline{\beta} \langle \mathbf{x}, \mathbf{y} \rangle, \ \forall \ \mathbf{x}, \mathbf{y} \in \mathcal{V}, \ \beta \in \mathbb{K}$
- 3. $\langle \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2, \beta_1 \mathbf{y}_1 + \beta_2 \mathbf{y}_2 \rangle =$ = $\alpha_1 \overline{\beta}_1 \langle \mathbf{x}_1, \mathbf{y}_1 \rangle + \alpha_1 \overline{\beta}_2 \langle \mathbf{x}_1, \mathbf{y}_2 \rangle + \alpha_2 \overline{\beta}_1 \langle \mathbf{x}_2, \mathbf{y}_1 \rangle + \alpha_2 \overline{\beta}_2 \langle \mathbf{x}_2, \mathbf{y}_2 \rangle$

1. The standard inner products

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^t \boldsymbol{y} = \sum_{i=1}^n x_i y_i \, (\text{ in } \mathbb{R}^n)$$

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^* \boldsymbol{y} = \sum_{i=1}^n \bar{x}_i y_i \, (\text{ in } \mathbb{C}^n)$$

2. A-inner product (elliptical inner product): A non-singular $(A^*$ -conjugate transpose: $a_{ii}^* = \overline{a}_{ji})$

$$\langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{x}^* A^* A \mathbf{x} \, (\text{ in } \mathbb{C}^n)$$

3. In C([a,b])

$$\langle f, g \rangle_w = \int_a^b w(t) f(t) g(t) dt,$$

 $w \in C([a,b])$ is a positive function, the *weight* function.

Norms (Meyer, 2000; Quarteroni et al. 2000)

- $\|\cdot\|:\mathcal{V}\to\mathbb{R}$
 - 1. $\|\mathbf{x}\| \geqslant 0 \quad \forall \mathbf{x} \in \mathcal{V}, \quad \|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}_{\mathcal{V}}$
 - 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \quad \forall \mathbf{x} \in \mathcal{V}, \ \alpha \in \mathbb{K}$
 - 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathcal{V} \text{ (triangle inequality)}$

Backward Triangle Inequality. The triangle inequality produces an upper bound for a sum, but it also yields the following lower bound for a difference:

$$\Big|\|\mathbf{x}\|-\|\mathbf{y}\|\Big|\leqslant \|\mathbf{x}-\mathbf{y}\|.$$

Continuity. In the case where $\mathcal V$ is a finite dimensional space any norm $\|\cdot\|$ defined on $\mathcal V$ is a continuous function of its argument, namely, $\forall\, \varepsilon>0,\, \exists\,\, C>0$ s.t. $\|\pmb x-\hat{\pmb x}\|\leqslant \varepsilon$ then

$$|\|\mathbf{x}\| - \|\hat{\mathbf{x}}\|| < C\varepsilon, \, \forall \, \mathbf{x}, \hat{\mathbf{x}} \in \mathcal{V}.$$

p-norm (Meyer, 2000)

For $p \ge 1$ the *p-norm* in \mathbb{R}^n or \mathbb{C}^n is defined as

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Particular cases

$$p=1: \quad \|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i| \text{ (Minkowski norm)}$$

$$p=2: \quad \|\boldsymbol{x}\|_2 = \Big(\sum_{i=1}^n |x_i|^2\Big)^{\frac{1}{2}} \text{ (euclidean norm)}$$

$$p=\infty: \quad \|\boldsymbol{x}\|_\infty = \max_{i=1,n} |x_i| \text{ (Chebyshev norm)}$$

Norm inequalities (Meyer, 2000)

$$\lim_{p\to\infty}\|\boldsymbol{x}\|_p=\|\boldsymbol{x}\|_{\infty}$$

Hölder inequality: If p > 1 and q > 1 are real numbers s.t.

$$1/p + 1/q = 1$$
 then

$$|\mathbf{x}^*\mathbf{y}| \leqslant \|\mathbf{x}\|_p \|\mathbf{y}\|_q$$

C.B.S. inequality (Hölder inequality p = q = 2):

$$|\boldsymbol{x}^*\boldsymbol{y}| \leqslant \|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2$$

Equality holds if and only if $\mathbf{y} = \alpha \mathbf{x}$, $\alpha = (\mathbf{x}^* \mathbf{y})/(\mathbf{x}^* \mathbf{x})$ Minkowski inequality: for p > 1

$$\|\mathbf{x} + \mathbf{y}\|_p \leqslant \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$$

Equivalent norms (Quarteroni et al. 2000)

Two norms $\|\cdot\|_p$ and $\|\cdot\|_q$ on $\mathcal V$ are *equivalent* if there exist two positive constants c_1, c_2 s.t.

$$c_1\|\boldsymbol{x}\|_q \leqslant \|\boldsymbol{x}\|_p \leqslant c_2\|\boldsymbol{x}\|_q.$$

In finite-dimensional spaces all norms are equivalent. In the case $\mathcal{V} = \mathbb{R}^n$ we have $\forall \mathbf{x} \in \mathbb{R}^n$

a)
$$\|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1} \leq \sqrt{n} \|\mathbf{x}\|_{2}$$

$$b) \|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{2} \leqslant \sqrt{n} \|\mathbf{x}\|_{\infty}$$

$$c) \| \boldsymbol{x} \|_{\infty} \leq \| \boldsymbol{x} \|_{1} \leq n \| \boldsymbol{x} \|_{\infty}$$

Unit *p*-spheres (Meyer, 2000)

$$\mathcal{S}_1 = \{ \pmb{x} : \|\pmb{x}\|_1 = 1 \}, \ \mathcal{S}_2 = \{ \pmb{x} : \|\pmb{x}\|_2 = 1 \}, \ \mathcal{S}_\infty = \{ \pmb{x} : \|\pmb{x}\|_\infty = 1 \}$$

Norms in Inner-Product Spaces (Meyer, 2000)

If $\mathcal V$ is an inner-product space with an inner product $\langle \cdot, \cdot \rangle$, then

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \ \forall \mathbf{x} \in \mathcal{V}$$

defines a norm on \mathcal{V} .

General C.B.S. inequality

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leqslant \|\mathbf{x}\| \|\mathbf{y}\|.$$

Equality holds if and only if $\mathbf{y} = \alpha \mathbf{x}$, $\alpha = \langle \mathbf{x}, \mathbf{y} \rangle / \|\mathbf{x}\|^2$.

▶ In *C*[*a*, *b*]

$$||f||_2 = \sqrt{\langle f, f \rangle} = \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}.$$

▶ A-norm (elliptical norm) $A \in \mathcal{M}_n(\mathbb{C})$, $det(A) \neq 0$

$$\|\mathbf{x}\|_{A} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{A}} = \sqrt{\mathbf{x}^* A^* A \mathbf{x}} = \|A\mathbf{x}\|_{2}.$$

In \mathbb{R}^n the standard inner product generates the euclidean norm.

$$\sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} = \sqrt{\boldsymbol{x}^t \boldsymbol{x}} = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} = \|\boldsymbol{x}\|_2.$$

Parallelogram Identity (Meyer, 2000)

For a given norm $\|\cdot\|$ on a vector space $\mathcal V$, there exists an inner product on $\mathcal V$ such that $\langle\cdot,\cdot\rangle=\|\cdot\|^2$ if and only if the parallelogram identity

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$$

holds for all $x, y \in \mathcal{V}$.

The parallelogram identity doesn't hold for *p*-norms when $p \neq 2$.

$$x = e_1, y = e_2 \Rightarrow \begin{cases} \|e_1 + e_2\|_p^2 + \|e_1 - e_2\|_p^2 = 2^{\frac{p+2}{2}} \\ 2(\|e_1\|_p^2 + \|e_2\|_p^2) = 4 \end{cases}$$

Orthogonality. Angles (Meyer, 2000)

In an inner-product space $\mathcal V$, two vectors $\mathbf x, \mathbf y \in \mathcal V$ are said to be orthogonal (to each other) whenever $\langle \mathbf x, \mathbf y \rangle = 0$, and this is denoted by writing $\mathbf x \perp \mathbf y$.

For \mathbb{R}^n with the standard inner product, $\mathbf{x} \perp \mathbf{y} \Leftrightarrow \mathbf{x}^t \mathbf{y} = 0$. For \mathbb{C}^n with the standard inner product, $\mathbf{x} \perp \mathbf{y} \Leftrightarrow \mathbf{x}^* \mathbf{y} = 0$.

In a real inner-product space \mathcal{V} , the radian measure of the *angle* between nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ is defined to be the number $\theta \in [0, \pi]$ such that

$$\cos\theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Orthonormal Sets (Meyer, 2000)

The set $\mathcal{B} = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n \} \in \mathcal{V}$ is called *orthogonal set* whenever $\boldsymbol{u}_i \perp \boldsymbol{u}_j, \ \forall \ i \neq j$. Moreover, if $\|\boldsymbol{u}_i\| = 1, \ \forall \ i$ then it is called *orthonormal set*. In other words

$$\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Every orthonormal set is linearly independent.

Every orthonormal set of n vectors from an n-dimensional space \mathcal{V} is an orthonormal basis for \mathcal{V} .

- ▶ The standard basis $\mathcal{E} = \{e_1, \dots, e_n\}$ in \mathbb{R}^n is orthonormal.
- Let $L^1(-\pi,\pi)$ the space of real-valued functions that are integrable on the interval $(-\pi,\pi)$ and where the inner product is given by

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t) dt.$$

The set

$$\mathcal{B}' = \{1, \cos t, \cos 2t, \dots, \sin t, \sin 2t, \dots\}$$

is a set of mutually orthogonal functions. Normalizing each function produces the orthonormal set

$$\mathcal{B} = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos t}{\sqrt{\pi}}, \frac{\cos 2t}{\sqrt{\pi}}, \dots, \frac{\sin t}{\sqrt{\pi}}, \frac{\sin 2t}{\sqrt{\pi}}, \dots \right\}$$

Gram-Schmidt orthogonalization procedure (Meyer, 2000)

If $\mathcal{O} = \{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \}$ is a basis for a general inner-product space \mathcal{V} then the Gram-Scmidt sequence $\mathcal{B} = \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \}$ defined by

$$\boldsymbol{u}_1 = \frac{\boldsymbol{u}_1}{\|\boldsymbol{u}_1\|}, \ \boldsymbol{u}_k = \frac{\boldsymbol{x}_k - \sum_{i=1}^{k-1} \langle \boldsymbol{u}_i, \boldsymbol{x}_k \rangle \boldsymbol{u}_i}{\|\boldsymbol{x}_k - \sum_{i=1}^{k-1} \langle \boldsymbol{u}_i, \boldsymbol{x}_k \rangle \boldsymbol{u}_i\|}$$

is an orthonormal basis for \mathcal{V} .

General Matrix Norms (Meyer, 2000)

$$\|\cdot\|:\mathcal{M}_n(\mathbb{C})\to\mathbb{R}$$

1.
$$||A|| \geqslant 0$$
, $||A|| = 0 \Leftrightarrow A = O_n$

2.
$$\|\alpha A\| = |\alpha| \|A\|, \forall \alpha \in \mathbb{C}$$

3.
$$||A + B|| \le ||A|| + ||B||$$

4.
$$||AB|| \le ||A|| ||B||$$

Examples: Frobenius norm

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n ||A(i,:)||_2^2\right)^{\frac{1}{2}} = \left(\sum_{j=1}^n ||A(:,j)||_2^2\right)^{\frac{1}{2}}$$

Induced Matrix Norms (Meyer, 2000)

A vector norm $\|\cdot\|_{v}$ on \mathbb{C}^{n} induces a matrix norm on $\mathcal{M}_{n}(\mathbb{C})$

$$|||A||| = \max_{\mathbf{x} \neq \mathbf{0}_{\mathbb{C}^n}} \frac{||A\mathbf{x}||_{v}}{||\mathbf{x}||_{v}} = \max_{||\mathbf{x}||_{v}=1} ||A\mathbf{x}||_{v}, A \in \mathcal{M}_{n}(\mathbb{C})$$

Examples:

$$|||A||_{1} = \max_{\|\mathbf{X}\|_{1}=1} ||A\mathbf{X}||_{1} = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|$$

$$|||A|||_{\infty} = \max_{\|\mathbf{X}\|_{\infty}=1} ||A\mathbf{X}||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$$

$$|||A|||_{2} = \max_{\|\mathbf{X}\|_{2}=1} ||A\mathbf{X}||_{2} = \sqrt{\rho(A^{*}A)}$$

Induced Matrix Norms (Meyer, 2000)

$$||I_n||=1, \forall n \in \mathbb{N}$$

It's apparent that an induced matrix norm is compatible with its underlying vector norm in the sense that

$$||A\boldsymbol{x}||_{\boldsymbol{v}} \leqslant ||A|| ||\boldsymbol{x}||_{\boldsymbol{v}}$$

When A is nonsingular

$$||A^{-1}|| = \frac{1}{\min\limits_{\|X\|_{V}=1} ||Ax\|_{V}}$$

Induced Matrix Norms (Meyer, 2000)

$$\begin{split} & \|A\|_{2} \leqslant \|A\|_{F} \leqslant \sqrt{n} \|A\|_{2} \\ & \frac{1}{\sqrt{n}} \|A\|_{\infty} \leqslant \|A\|_{2} \leqslant \sqrt{n} \|A\|_{\infty} \\ & \frac{1}{\sqrt{n}} \|A\|_{1} \leqslant \|A\|_{2} \leqslant \sqrt{n} \|A\|_{1} \\ & \max_{1 \leqslant i, j \leqslant n} |a_{ij}| \leqslant \|A\|_{2} \leqslant n \max_{1 \leqslant i, j \leqslant n} |a_{ij}| \end{split}$$