# XC62FP



## Series

Positive Voltage Regulators

- **◆CMOS Low Power Consumption**
- **♦Small Input-Output Voltage Differential**

: 0.12V @ 100mA,

0.38V @ 200mA

**♦**Maximum Output Current : 250mA (Vout=5.0V)

♦Output Voltage Range :2.0V~6.0V ♦Highly Accurate :±2% (±1%)

## **■**General Description

The XC62FP series is a group of positive voltage output, three-pin regulators, that provide a high current even when the input/output voltage differential is small. Low power consumption and high accuracy is achieved through CMOS and laser trimming technologies.

The XC62FP consists of a high-precision voltage reference, an error amplification circuit, and a current limited output driver. Transient response to load variations have improved in comparison to the existing series

SOT-23 (150mW), SOT-89 (500mW) and TO-92 (300mW) packages are available.

## ■Applications

- Battery Powered Equipment
- Palmtops
- ●Portable Cameras and Video Recorders
- ●Reference Voltage Sources

### ■Features

#### **Maximum Output Current**

: 250mA

(within max. power dissipation, Vout = 5.0V)

#### **Output Voltage Range**

: 2.0V ~ 6.0V in 0.1V increments (1.5V ~ 1.9V for custom products)

Highly Accurate: Output voltage ±2%

(±1% for semi-custom products)

#### **Low Power Consumption**

: Typ. 2.0 $\mu$ A @ Vout=5.0V

## **Output Voltage Temperature Characteristics**

: Typ. ±100ppm/°C

Input Stability : Typ. 0.2%/V Small Input-Output Differential

: Iout = 100mA @ Vout = 5.0V with a

0.12V differential.

#### **Ultra Small Packages**

: SOT-23 (150mW) mini-mold, SOT-89 (500mW) mini-power mold TO-92 (300mW)

# ■Typical Application Circuit

# 

# ■Typical Performance Characteristic



# ■Pin Configuration



# ■Pin Assignment

| PIN NUMBER |        |           |           | PIN NAME   | FUNCTION                 |  |
|------------|--------|-----------|-----------|------------|--------------------------|--|
| SOT-23     | SOT-89 | TO-92 (T) | TO-92 (L) | PIN NAIVIE | FUNCTION                 |  |
| 1          | 1      | 1         | 2         | Vss        | Ground                   |  |
| 3          | 2      | 2         | 1         | Vin        | Supply voltage input     |  |
| 2          | 3      | 3         | 3         | Vоит       | Regulated voltage output |  |

# **■**Product Classification

Ordering Information



| DESIGNATOR | DESCRIPTION                                                  | DESIGNATOR | DESCRIPTION                                                                          |
|------------|--------------------------------------------------------------|------------|--------------------------------------------------------------------------------------|
| а          | Polarity of Output Voltage:<br>P: + (Positive)               | e          | Package Type M=SOT-23 P=SOT-89 T=TO-92 (Standard) L=TO-92 (Custom pin configuration) |
| b          | Output Voltage<br>30=3.0V<br>50=5.0V                         |            |                                                                                      |
| С          | Temperature Coefficients:<br>0=±100ppm (typical)             | f          | Device Orientation R=Embossed Tape (Standard Feed) L=Embossed Tape                   |
| d          | Output Voltage Accuracy:<br>1=±1.0% (Semi-custom)<br>2=±2.0% |            | (Reverse Feed)<br>H=Paper Tape (TO-92)<br>B=Bag (TO-92)                              |

# ■Packaging Information

## ●SOT-23



#### ●SOT-89



## ●TO-92







# Marking

## ●SOT-23, SOT-89



|                      | <b>(Q)</b> | 4          |  |  |
|----------------------|------------|------------|--|--|
|                      | $\odot$    | <u>(c)</u> |  |  |
|                      |            |            |  |  |
| SOT-89<br>(TOP VIEW) |            |            |  |  |

## 2 Represents the decimal number of the Output Voltage

| SYMBOL | VOLTAGE(V) | SYMBOL | VOLTAGE(V) |
|--------|------------|--------|------------|
| Α      | ①.0        | F      | ①.5        |
| В      | ①.1        | Н      | ①.6        |
| С      | ①.2        | K      | ①.7        |
| D      | ①.3        | L      | ①.8        |
| E      | ①.4        | М      | ①.9        |

#### ① Represents the integer of the Output Voltage

| SYMBOL | VOLTAGE(V) | SYMBOL | VOLTAGE(V) |  |
|--------|------------|--------|------------|--|
| 1      | 1.②        | 5      | 5.②        |  |
| 2      | 2.②        | 6      | 6.②        |  |
| 3      | 3.②        |        |            |  |
| 4      | 4.2        |        |            |  |

#### 3 Based on internal standards

| Based on internal standards |
|-----------------------------|
| SYMBOL                      |
| 0                           |

4 Represents the assembly lot no. Based on internal standards

#### ●TO-92



 Represents the polarity of Output Voltage

| DESIGNATOR | CONFIGURATION |
|------------|---------------|
| Р          | CMOS          |

4 Represents the temperature characteristics

| DESIGNATOR | TEMPERATURE CHARACTERISTICS |  |
|------------|-----------------------------|--|
| 0          | TPY±100ppm                  |  |

6 Represents a least significant digit of the produced year

| - 3        | - I <i>)</i>  |
|------------|---------------|
| DESIGNATOR | PRODUCED YEAR |
| 0          | 2000          |
| 1          | 2001          |

Denotes the production lot number0 to 9, A to Z repeated (G.I.J.O.Q.W excepted)

#### 23 Represents the Detect Voltage

| DESIG | VOLTAGE (V) |             |
|-------|-------------|-------------|
| 2     | 3           | VOLTAGE (V) |
| 3     | 3           | 3.3         |
| 5     | 0           | 5.0         |

5 Represents the Detect Voltage Accuracy

| -          | •                        |
|------------|--------------------------|
| DESIGNATOR | DETECT VOLTAGE ACCURACY  |
| 1          | within ±1% (semi-custom) |
| 2          | within ±2%               |

# ■Block Diagram



# ■ Absolute Maximum Ratings

Ta=25°C

|                                    |                                  |        |                    | Ta=25°C |
|------------------------------------|----------------------------------|--------|--------------------|---------|
| PARAMETER                          |                                  | SYMBOL | RATINGS            | UNITS   |
| Input Voltage                      |                                  | Vin    | 12                 | ٧       |
| Output Cu                          | Output Current                   |        | 500                | mA      |
| Output Vo                          | Output Voltage                   |        | Vss-0.3 ~ Vin+0.3  | V       |
| _                                  | SOT-23                           |        | 150                |         |
| Continuous Total Power Dissipation | SOT-89                           | Pd     | 500                | mW      |
| Biodipation                        | TO-92                            |        | 300                |         |
|                                    | Operating Ambient<br>Temperature |        | -40 ~ +85          | °C      |
| Storage Temp                       | Storage Temperature              |        | <b>−</b> 40 ~ +125 | °C      |

# **■**Electrical Characteristics

## XC62FP5002 Vout(T)=5.0V (Note1)

Ta=25°C

| PARAMETER                                     | SYMBOL               | CONDITIONS                                                                                       | MIN   | TYP   | MAX   | UNITS  | CIRCUIT |
|-----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------|-------|-------|-------|--------|---------|
| Output Voltage                                | Vour (E) (Note2)     | IOUT=40mA<br>VIN=6.0V                                                                            | 4.900 | 5.000 | 5.100 | V      | 1       |
| Maximum Output Current                        | Іоит тах             | Vin=6.0V, Vout(E) ≥ 4.5V                                                                         | 250   |       |       | mA     | 1       |
| Load Stability                                | Δ <b>V</b> ουτ       | V <sub>IN</sub> =6.0V<br>1mA ≤ lout ≤ 100mA                                                      |       | 40    | 80    | mV     | 1       |
| Input -Output<br>Voltage Differential (Note3) | Vdif1                | Iout=100mA                                                                                       |       | 120   | 300   | mV     | 1       |
|                                               | Vdif2                | Iout=200mA                                                                                       |       | 380   | 600   | mV     | 1       |
| Supply Current                                | Iss                  | VIN=6.0V                                                                                         |       | 2.0   | 4.5   | μА     | 2       |
| Input Stability                               | ΔVOUT<br>ΔVIN • VOUT | $\begin{array}{l} \text{Iout=40mA} \\ 6.0\text{V} \leq \text{Vin} \leq 10.0\text{V} \end{array}$ |       | 0.2   | 0.3   | %/V    | 1       |
| Input Voltage                                 | Vin                  |                                                                                                  |       |       | 10    | ٧      | _       |
| Output Voltage<br>Temperature Characteristics | ΔVουτ<br>ΔTopr•Voυτ  | louт=40mA<br>-40°C ≤ Topr ≤ 85°C                                                                 |       | ±100  |       | ppm/°C | 1       |

## XC62FP4002 Vout(T)=4.0V (Note1)

Ta=25°C

| PARAMETER                                                | SYMBOL                               | CONDITIONS                                | MIN   | TYP   | MAX   | UNITS  | CIRCUIT |
|----------------------------------------------------------|--------------------------------------|-------------------------------------------|-------|-------|-------|--------|---------|
| Output Voltage                                           | Vour (E) (Note2)                     | IOUT=40mA<br>VIN=5.0V                     | 3.920 | 4.000 | 4.080 | V      | 1       |
| Maximum Output Current                                   | Іоит тах                             | VIN=5.0V, VOUT(E) ≥ 3.6V                  | 200   |       |       | mA     | 1       |
| Load Stability                                           | Δ <b>V</b> ουτ                       | $V_{IN}=5.0V$ $1mA \le I_{OUT} \le 100mA$ |       | 45    | 90    | mV     | 1       |
| Input -Output<br>Voltage Differential <sup>(Note3)</sup> | Vdif1                                | Iout=100mA                                |       | 170   | 330   | mV     | 1       |
|                                                          | Vdif2                                | Iout=200mA                                |       | 400   | 630   | mV     | 1       |
| Supply Current                                           | Iss                                  | VIN=5.0V                                  |       | 2.0   | 4.5   | μΑ     | 2       |
| Input Stability                                          | ΔVout<br>ΔVin • Vout                 | IouT=40mA<br>5.0V ≤ ViN ≤ 10.0V           |       | 0.2   | 0.3   | %/V    | 1       |
| Input Voltage                                            | Vin                                  |                                           |       |       | 10    | V      | _       |
| Output Voltage<br>Temperature Characteristics            | <u>Δ</u> Vουτ<br><u>Δ</u> Topr• Voυτ | louт=40mA<br>-40°C ≤ Topr ≤ 85°C          |       | ±100  |       | ppm/°C | 1       |

## XC62FP3002 Vout(T)=3.0V (Note1)

Ta=25°C

| PARAMETER                                     | SYMBOL                                | CONDITIONS                                 | MIN   | TYP   | MAX   | UNITS  | CIRCUIT |
|-----------------------------------------------|---------------------------------------|--------------------------------------------|-------|-------|-------|--------|---------|
| Output Voltage                                | Vour (E) (Note2)                      | IOUT=40mA<br>VIN=4.0V                      | 2.940 | 3.000 | 3.060 | V      | 1       |
| Maximum Output Current                        | Іоит тах                              | VIN=4.0V, VOUT(E) ≥ 2.7V                   | 150   |       |       | mA     | 1       |
| Load Stability                                | Δ <b>V</b> ουτ                        | V <sub>IN</sub> =4.0V<br>1mA ≤ louт ≤ 80mA |       | 45    | 90    | mV     | 1       |
| Input -Output<br>Voltage Differential (Note3) | Vdif1                                 | Іоит=80mА                                  |       | 180   | 360   | mV     | 1       |
|                                               | Vdif2                                 | Iout=160mA                                 |       | 400   | 700   | mV     | 1       |
| Supply Current                                | Iss                                   | VIN=4.0V                                   |       | 2.0   | 4.5   | μА     | 2       |
| Input Stability                               | ΔVout<br>ΔVin • Vout                  | lоuт=40mA<br>4.0V ≤ Vin ≤ 10.0V            |       | 0.2   | 0.3   | %/V    | 1       |
| Input Voltage                                 | Vin                                   |                                            |       |       | 10    | V      | _       |
| Output Voltage<br>Temperature Characteristics | <u>Δ</u> Vουτ<br><u>Δ</u> Topr • Voυτ | Iо∪т=40mA<br>-40°C ≤ Topr ≤ 85°C           |       | ±100  |       | ppm/°C | 1       |

## XC62FP2002 Vout(T)=2.0V (Note1)

Ta=25°C

| PARAMETER                                                | SYMBOL                                | CONDITIONS                       | MIN   | TYP   | MAX   | UNITS  | CIRCUIT |
|----------------------------------------------------------|---------------------------------------|----------------------------------|-------|-------|-------|--------|---------|
| Output Voltage                                           | Vout (E) (Note2)                      | IOUT=40mA<br>VIN=3.0V            | 1.960 | 2.000 | 2.040 | V      | 1       |
| Maximum Output Current                                   | Іоит тах                              | VIN=3.0V, VOUT(E) ≥ 1.8V         | 100   |       |       | mA     | 1       |
| Load Stability                                           | Δ <b>V</b> ουτ                        | Vin=3.0V<br>1mA ≤ Iout ≤ 60mA    |       | 45    | 90    | mV     | 1       |
| Input -Output<br>Voltage Differential <sup>(Note3)</sup> | Vdif1                                 | Іоит=60mА                        |       | 180   | 360   | mV     | 1       |
|                                                          | Vdif2                                 | Iout=120mA                       |       | 400   | 700   | mV     | 1       |
| Supply Current                                           | Iss                                   | VIN=3.0V                         |       | 2.0   | 4.5   | μΑ     | 2       |
| Input Stability                                          | ΔVOUT ΔVIN • VOUT                     | Iout=40mA<br>3.0V ≤ Vin ≤ 10.0V  |       | 0.2   | 0.3   | %/V    | 1       |
| Input Voltage                                            | Vin                                   |                                  |       |       | 10    | V      | _       |
| Output Voltage<br>Temperature Characteristics            | <u>Δ</u> Vουτ<br><u>Δ</u> Topr • Voυτ | lо⊔т=40mA<br>-40°C ≤ Topr ≤ 85°C |       | ±100  |       | ppm/°C | 1       |

Note: 1.  $V_{OUT}(T)$ =Specified Output Voltage .

- 2. Vour(E)=Effective Output Voltage (i.e. the output voltage when "Vour(T)+1.0V" is provided at the VIN pin while maintaining a certain lour value).

  3. Vdif={ViN1= The input voltage at the time 98% of Vour(E) is output (input voltage has been gradually reduced).

## ■Typical Application Circuit

#### Standard Circuit



### ■Directions for use

#### Notes on Use

- 1. Please use this IC within the stipulated absolute maximum ratings as the IC is liable to malfunction outside of such parameters.
- 2. There is a possibility that oscillation may occur as a result of the impedance present between the power supply and the IC's input. Where impedance is 10Ω or more, please use a capacitor (Cin) of at least 1μF.
  - With a large output current, operations can be stabilised by increasing capacitor size (CIN). If CIN is small and capacitor size (CL) is increased, there is a possibility of oscillation due to input impedance.
  - In such cases, operations can be stabilised by either increasing the size of C<sub>IN</sub> or decreasing the size of C<sub>L</sub>.
- 3. Please ensure that output current (Ioυτ) is less than Pd ÷ (Vin -Voυτ) and does not exceed the stipulated Continuous Total Power Dissipation value (Pd) for the package.
- 4. Should you wish to increase output current (loυτ) and/or have the capability to exceed the stipulated Pd value, using a current boost circuit (similar to the one shown below) is likely to lead to oscillation.
  - With such applications, we recommend use of a boost type voltage regulator, such as the Torex XC62EP series.

## Current Boost Circuit : Poor Example



# ■Test Circuits

#### Circuit 1



## Circuit 2



## ■Typical Performance Characteristics

#### (1) OUTPUT VOLTAGE vs. OUTPUT CURRENT









#### (2) OUTPUT VOLTAGE vs. INPUT VOLTAGE









#### (2) OUTPUT VOLTAGE vs. INPUT VOLTAGE









#### (3) INPUT/OUTPUT VOLTAGE DIFFERENTIAL vs. OUTPUT CURRENT









## (4) SUPPLY CURRENT vs. INPUT VOLTAGE

Input Voltage:VIN (V)



Input Voltage:VIN (V)

#### (5) OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE









### (6) SUPPLY CURRENT vs. AMBIENT TEMPERATURE









## (7) INPUT TRANSIENT RESPONSE 1



-6

Time (0.4msec/div)

Time (0.4msec/div)

#### (8) INPUT TRANSIENT RESPONSE 2



#### (9) LOAD TRANSIENT RESPONSE









#### (10) RIPPLE REJECTION RATE







