Tutoriat 1 - Rezolvari Funcții. Relații de echivalență. S.C.I.R.

Savu Ioan Daniel, Tender Laura-Maria

- 2 noiembrie 2020 -

Exercitiul 1

Fie f:
$$\mathbb{R} - > \mathbb{R}$$
, $f(x) = \begin{cases} x^2 + 2x + m, x \le -1 \\ mx - 9, x > -1 \end{cases}$ cu m $\in \mathbb{R}$.

- a) Realizați graficul funcției pentru m=1.
- b) Determinați imaginea funției f în funcție de parametrul real m.
- c) Găsiți valorile lui m pentru care funcția dată este:
 - c.1 injectivă
 - c.2 surjectivă
 - c.3 bijectivă

Rezolvare:

a) Pentru m = 1,
$$f(x) = \begin{cases} x^2 + 2x + 1, x \le -1 \\ x - 9, x > -1 \end{cases}$$
.

Vom studia cum se comporta funcția pe cele două ramuri: $f/_{(-\infty,-1]}$ și $f/_{(-1,\infty)}$. Ramura superioară este de gradul al II-lea, graficul este o parabolă cu vârful în jos. Vom afla punctul de minim. Pentru $ax^2 + bx + c$, vârful parabolei este $(-\frac{b}{2a}, -\frac{\Delta}{4a})$. Astfel obținem că punctul de minim este (-1, 0). Ramura inferioară este liniară. $f/_{(-1,\infty)}$ este strict crescătoare. Fie $x, y \in (-1, \infty)$

Ramura inferioară este liniară. $f/_{(-1,\infty)}$ este strict crescătoare. Fie $x,y \in (-1,\infty)$, x < y. Atunci f(x) = x - 9, f(y) = y - 9. $f(x) < f(y) \iff x - 9 < y - 9 \iff x < y$, ceea ce este adevărat. Cum $f/_{(-1,\infty)}$ este strict crescătoare minimul este atins pentru x = -1 în punctul (-1, -10).

b) Vom studia functia similar subpunctului a) însă în functie de parametrul

Astfel, punctul de minim al primei ramuri este (-1, m-1). Iar $\lim_{x\to-\infty} f(x) =$ $+\infty$. Deci Im $f_{(-\infty,-1]}$ este $[m-1,+\infty)$.

Vom studia monotonia funcției pentru $(-1, +\infty)$. Analog demonstrației de la subpunctul a), pentru m>0 funcția este strict crescătoare. Pentru m<0funcția este strict descrescătoare. Pentru $m = 0, f/_{(-1, +\infty)} = -9$, constantă.

Pentru m > 0, $\lim_{x \to \infty} f(x) = +\infty$. Pentru m < 0, $\lim_{x \to \infty} f(x) = -\infty$.

Astfel, dacă m > 0, $\text{Im}_{f(-1, +\infty)} = (-m - 9, +\infty)$. Dacă m < 0, $\text{Im}_{f(-1, +\infty)} = (-\infty, -m - 9)$. Dacă m = 0, $\text{Im}_{f(-1, +\infty)} = -9$. În concluzie, $\text{Im} f = \begin{cases} (min(4m - 4, -m - 9), +\infty), & m < 0 \\ \{-9\} \cup [-1, +\infty), & m = 0 \\ (-\infty, -m - 9] \cup [4m - 4, +\infty), & m > 0 \end{cases}$.

c) 1. f este injectivă dacă f(x) = f(y) = x = y. În primul rând vom studia injectivitatea pe ramuri. Cunoaștem că $f/(-\infty, -1]$ și $f/(-1, +\infty)$ sunt monotone, deci injective.

Caut valorile lui m pentru care funcția nu este injectivă. Fie x, y, $x \in (-\infty, -1]$, iar $y \in (-1, +\infty)$ cu proprietatea că f(x) = f(y). $f(x) \in [m-1, +\infty) => \exists y$ $f(y) \ge m-1$.

Pentru m > 0, funcția nu este injectivă întrucât $\forall y \in (max(4m-4, -m-1))$ 9), $+\infty$) $\exists x_1 \in (-\infty, -1)$ și $x_2 \in (-1, +\infty)$ astfel încât $f(x_1) = f(x_2) = y$. Pentru m = 0, funcția nu este injectivă (f(0) = f(1) = -9).

Pentru m \leq 0, funcția nu este injectivă dacă m - 1 < -m - 9 \iff 2m < -8 \iff m < -4.

Deci, funcția este injectivă pentru $m \in [-4, 0)$.

c) 2. Funcția este surjectivă dacă $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}$ astfel încât f(x) = y.

Cu alte cuvinte, $Imf = \mathbb{R}$. Analizând cazurile obținute la b), pentru a funcția poate fi surjectivă dacă m < 0. De asemenea $(-\infty, -m-9] \cup [m-1, +\infty) = \mathbb{R}$. $m-1 < -m-9 \iff 2m < -8 \iff m < -4$.

Deci, f este surjectivă pentru $m \in (-\infty, -4]$.

c) 3. O funcție este bijectivă \iff funcția este injectivă și surjectivă. Folosim rezultatele obținute la subpunctele anterioare și găsim că f este bijectivă pentru $m \in (-\infty, -4] \cap [-4, 0] = \{-4\}.$

Exercițiul 2

Fie E o mulțime și
$$A\subseteq E$$
. Funcția $\xi:E->\{0,1\},\ \xi_A(x)=\begin{cases} 1,x\in A\\ 0,x\notin A \end{cases}$

se numește funcția caracteristică a lui A în E. (Curs 2, Seria 13, pagina 3)

Fie $A, B \subseteq E$, cunoastem regulile lui de Morgan:

$$C_E(A \cup B) = (C_E A) \cap (C_E B)$$

$$C_E(A \cap B) = (C_E A) \cup (C_E B)$$

Demonstrati regulile lui de Morgan cu ajutorul functiei caracteristice.

Rezolvare:

Pentru doua submultimi A si B ale unei multimi T, functia caracteristică are următoarele proprietăți:

1)
$$\xi_A = \xi_B \iff A = B$$

2)
$$\xi_{A \cap B} = \xi_A * \xi_B$$

3)
$$\xi_{A \cup B} = \xi_A + \xi_B - \xi_A * \xi_B$$

4)
$$\xi_{C_T A} = 1 - \xi_A$$

5) $\xi_A^2 = \xi_A$

5)
$$\xi_A^2 = \xi_A$$

Putem aplica proprietățile de mai sus în relațiile lui de Morgan, obținând:

$$\xi_{C_E(A \cup B)} = 1 - (\xi_A + \xi_B - \xi_A * \xi_B)$$

$$\xi_{(C_E A) \cap (C_E B)} = 1 - (\xi_A^2 + \xi_B^2 - \xi_A * \xi_B) = 1 - (\xi_A + \xi_B - \xi_A * \xi_B)$$

Din cele două relații de mai sus, împreună cu proprietatea 1, deducem:

$$C_E(A \cup B) = (C_E A) \cap (C_E B)$$

În mod analog,

$$\xi_{C_E(A \cap B)} = 1 - \xi_A * \xi_B$$

$$\xi_{(C_E A) \cup (C_E B)} = (1 - \xi_A) + (1 - \xi_B) - (1 - \xi_A) * (1 - \xi_B) = 1 - \xi_A * \xi_B$$
 de unde:

$$C_E(A \cap B) = (C_E A) \cup (C_E B).$$

Exercitiul 3

Arătati că relația de congruență modulo n este relație de echivalentă.

Rezolvare:

- preluată din Tutoriat 1, anul 2019-2020, de la Gabriel Majeri

Fie $n \in \mathbb{N}^*$ fixat. Atunci spunem că $a \equiv b \mod n$ dacă $n \mid (a - b)$.

Pentru a demonstra că este relație de echivalență, trebuie să demonstrăm că este reflexivă, simetrică și tranzitivă.

1. Reflexivitate

Fie $a \in \mathbb{N}$. Atunci $n \mid (a - a) = 0$. Astfel $a \equiv a \mod n$. Deci \equiv este reflexivă.

2. Simetrie

Fie $a, b \in \mathbb{N}$ cu $a \equiv b \mod n$. Din definiție, $n \mid (a-b)$. Atunci $n \mid -(a-b)$. De unde rezultă că $n \mid (b-a)$. Deci $b \equiv a \mod n$. Astfel \equiv este simetrică.

3. Tranzitivitate

Fie $a, b, c \in \mathbb{N}$ cu $a \equiv b \mod n$ și $b \equiv c \mod n$. Conform definiției $n \mid (a-b)$ și $n \mid (b-c)$. Atunci facem suma și obținem $n \mid ((a-b)+(b-c)) \implies n \mid (a-c)$. Deci $a \equiv c \mod n$. Astfel \equiv este tranzitivă.

Conform celor trei proprietăti demonstrate mai sus ≡ este relație de echivalență.

Exercitiul 4

Definim pe mulțimea numerelor complexe C următoarea relație binară:

$$x \rho y \iff x - y \in \mathbb{R}$$

- a) Să se arate că ρ este relație de echivalență.
- b) Aflati clasa de echivalentă a lui π în raport cu ρ .
- c) Aflați clasa de echivalență a lui 1+2i în raport cu ρ .
- d) Aflați clasa de echivalență a lui a+bi, cu $a,b\in\mathbb{R}$, în raport cu ρ .
- e) Determinați un sistem complet și independent de reprezentanți pentru ρ . (Restanță algebră, seria 13, 04.06.2020)

Rezolvare:

a) Pentru a demonstra că ρ este relație de echivalență vom arăta că
 ρ este reflexivă, simetrică si tranzitivă.

 ρ este reflexivă $\iff x \rho x \ \forall x \in \mathbb{R} \iff x - x \in \mathbb{R} \iff 0 \in \mathbb{R}$, ceea ce este adevarat. ρ este simetrică $\iff \forall a, b \in \mathbb{R}$ astfel încât $a \rho b$ atunci $b \rho a$.

 $a \rho b \iff a - b \in \mathbb{R}$. Dacă a - b $\in \mathbb{R}$, atunci -(a-b) = b-a $\in \mathbb{R} \iff b \rho a$.

 ρ este tranzitivă dacă $a \rho b$ și $b \rho c$ atunci a ρ c.

a $\rho b \iff a - b \in \mathbb{R}$ b $\rho c \iff b - c \in \mathbb{R}$

Atunci a - c = (a - b) + (b - c) $\in \mathbb{R} \iff a \rho c$.

b) Clasa de echivalență a lui π în raport cu ρ este $[\pi] = \{x \mid x \rho \pi\},$

```
\begin{split} &[\pi] = \{x \mid x - \pi \in \mathbb{R}\} \\ &\pi = \pi + 0 \cdot i \\ &x = a + b \cdot i \\ &\pi - x = \pi - a - bi \in \mathbb{R} \iff b = 0 \\ &\text{Deci, clasa de echivalență a lui } \pi \text{ este } \mathbb{R}. \end{split} c) Clasa de echivalență a lui 1 + 2i în raport cu \rho este [1 + 2i] = \{x \mid x \rho \ (1 + 2i)\}, \\ &[1 + 2i] = \{x \mid x - (1 + 2i) \in \mathbb{R}\} \\ &x = a + b \cdot i \\ &x - (1 + 2i) = a - 1 + (b - 2)i \in \mathbb{R} \iff b - 2 = 0 \iff b = 2 \\ &\text{Deci, clasa de echivalență a lui } 1 + 2i \text{ este } \{a + 2i \mid a \in \mathbb{R}\}. \\ &\text{d) Clasa de echivalență a lui a + bi în raport cu } \rho \text{ este } [a + bi] = \{x \mid x \rho \ (a + bi)\}, \\ &[a + bi] = \{x \mid x - (a + bi) \in \mathbb{R}\} \\ &x = c + d \cdot i \\ &x - (a + bi) = a - c + (b - d)i \in \mathbb{R} \iff b - d = 0 \iff b = d \end{split}
```

e) O mulțime A este sistem complet și independent de reprezentanți dacă $\forall \, x,y \in A, x \, \neg \rho \, y \,$ și $\forall \, x \in \mathbb{C} \, \exists \, y \in A$ astfel încât $x \rho \, y$. Conform d) clasa de echivalență a lui a+bi este $\{c+bi \mid c \in \mathbb{R}\}$. Un sistem de reprezentanți este $\{ai \mid a \in \mathbb{R}\}$. $\forall \, x=a+bi \in \mathbb{C} \, \exists \, y=bi \in A \,$ astfel încât $x \rho \, y \iff x-y=a \in \mathbb{R}$.

Deci, clasa de echivalență a lui a+bi este $\{c+bi \mid c \in \mathbb{R}\}.$

 $\forall\,x=ai,\,y=bi\in A,\,x\neq y,\,\,x\,\neg\rho\,y\iff x-y=(a-b)i\not\in\mathbb{R}\iff a-b\neq 0,\,\text{ceea ce este adevărat}.$