LogiSwift Delivery Optimization – Executive Insights Report

Executive Insights Report

Prepared By: Dewansh Vishwakarma

1. Objective

Optimize delivery slot allocation to reduce delays, improve on-time delivery rates, and maximize business savings.

This report covers:

- 1. Exploratory Data Analysis (EDA)
- 2. Logistic Regression modeling for delivery prediction
- 3. Clustering & segmentation for high-risk orders
- 4. Simulation of festive demand scenarios
- 5. A/B testing of the new slot allocation strategy

2. Key Dashboard Metrics

• Average Delay: 122.8 minutes

• On-Time Rate: 12%

• Delivery Success Rate: 75%

Target Delivery Rate: 90%

Total Orders: 23K

Insights:

- Only 12% orders are on time.
- Wide city-level performance gap: Ranchi & Pune perform best, while Visakhapatnam & Nashik lag.
- Weather and traffic strongly impact delivery delays.
- Evening slots are riskier compared to morning deliveries.

3. Exploratory Data Analysis

3.1 Delay Trends

- Orders face an average delay of 2+ hours.
- Monthly trend shows fluctuations; festive months worsen delays.

Visuals:

· Delay distribution histogram

On-Time Heatmap: City × Slot

3.2 Best & Worst Cities

- Top performers: Ranchi, Pune, Kota.
- Bottom performers: Visakhapatnam, Warangal, Nashik.

Top 5 Bes	st Performing Cit	ies
cust_city_normalized [DeliverySuccessRate	TotalOrders
Ranchi	79.1%	484
Kota	79.2%	371
Amritsar	79.3%	376
Faridabad	79.6%	372
Pune	79.9%	383
Bottom 5 We	orst Performing	Cities
cust_city_normalized [DeliverySuccessRate	TotalOrders
Visakhapatnam	68.2%	368
Warangal		2.45
	70.4%	345
Nashik	70.4% 71.3%	345 363

72.3%

379

4. Logistic Regression Results

Model Performance:

• Final Test AUC: 0.4969

• Accuracy: 84% (due to dominance of on-time class)

Bangalore

• Poor at predicting late deliveries (Recall = 0 for Class 1).

Classification Report:

Class	Precision	Recall	F1-Score	Support
On-Time (0)	0.84	1.00	0.92	3653
Late (1)	0.00	0.00	0.00	673

Delivered Orders On-Time %: 15.55%

Visuals:

1. Confusion Matrix Heatmap

Confusion Matrix Heatmap

Definition: A table that shows what the model guessed vs what actually happened.

Colors: Darker cell = more orders in that category.

Purpose: Helps identify how many deliveries were correctly predicted on time or late, and where the model made mistakes.

2. Feature Coefficients

Feature Coefficients (Logistic Regression)

What it is: Shows which factors affect on-time delivery and by how much.

Positive value: Helps delivery be on time.

Negative value: Makes delivery more likely to be late.

Why useful: It lets you know which things to improve (like more staff, better stock, etc.).

3. Predicted Probability Distribution

Predicted Probability Distribution

What it is: Shows how likely each order is to be on time (0 = late, 1 = on time).

Histogram: Peaks near 1 = most orders likely on time, peaks near 0 = risky orders.

Why useful: Helps plan extra support for risky deliveries before problems happen.

4. On-Time Trend by Month

5. Clustering & Risk Segmentation

- KMeans (k=4) segmented orders by order_value & delay_minutes.
- Identified high-risk clusters with large delays & low value.
- Business Use: Prioritize couriers for high-value clusters to maximize revenue retention.

Visual: Elbow Method Plot

SSE (Sum of Squared Errors)

- SSE measures how far data points are from their cluster centroids.
- Smaller SSE → points are tightly packed in clusters.
- Larger SSE → clusters are loose and spread out.
- Elbow Method: Plot SSE vs. number of clusters (k).

The "elbow" point, where the SSE curve starts flattening, suggests the optimal number of clusters.

6. Festive Season Simulation

Simulated 20%, 40%, and 60% order spikes:

Scenario	On-Time %	Change vs Baseline
Baseline	12%	-
+20% Orders	~11%	-1 pp
+40% Orders	~10%	-2 pp
+60% Orders	~9%	-3 pp

Visual: Baseline vs 60% Spike Insight:

The chart shows the on-time delivery %. Baseline is normal conditions with usual orders and couriers. Sim_60pct simulates 60% more orders and fewer couriers. The drop shows how high demand and limited couriers can delay deliveries

Courier shortages + traffic during festive seasons reduce on-time delivery by **9–10 percentage points**.

7. A/B Testing of Slot Allocation

- New slot allocation tested on 50% orders.
- Result: On-time rate **slightly worse (-0.94 pp)** than control.
- Conclusion: Refine strategy further before scaling.

CSV Reference:

A/B Test Results for Slot Allocation:

2 rows	v 2 rows × 2 cols	5		
‡	Test_Group	\$	On_Time_Rate	\$
Θ	control		0.1	17945
1	new_slot		0.115567	

Interpretation: If 'new_slot' has a higher on-time rate than 'control', implement the new strategy in high-risk cities.

8. Actionable Recommendations

- 1. **High-Risk Cities:** Allocate 10–15% more couriers in cities like Allahabad, Nashik, and Warangal.
- 2. **Slot Optimization:** Rebalance evening deliveries → morning for high-value orders.
- 3. **Festive Readiness:** Increase courier pool by 20% and stock levels by 30–40% in Oct–Nov.
- ${\bf 4.} \ \ \textbf{Model Refinement:} \ \textbf{Explore ensemble models to improve late-delivery detection.}$
- 5. **Continue Testing:** Run bi-weekly A/B tests on slot allocation, focus on the worst-performing cities.