CURTIN UNIVERSITY

Discipline of Computing School of Electrical Engineering, Computing and Mathematical Sciences

Test - S1 / 2019

SUBJECT: OPER	ATING SYSTEMS	Code COMP2006		
TIME ALLOWED:	90 minutes test preceded by a PERIOD during which time only supervisor will indicate when answer	notes may be made. The		
AIDS ALLOWED:				
	To be supplied by the Candidate:	Nil		
	To be supplied by the University:	Nil		
	Calculators are NOT allowed.			
GENERAL INSTRUCTIONS:				
This paper consists of Four (4) questions with a total of 100 marks.				

ATTEMPT ALL QUESTIONS

Name:			
G. L.W			
Student No: _			
Tutorial Time/	Tutor:		

QUESTION ONE (total: 25 marks): Operating Systems.

- a) (6 marks). Describe each of the following terms.
 - System call.
 - Timesharing system
 - Privilege instruction.

Answer:

b) (4 marks). One of the main purposes of OS is to simulate features not available on hardware. List two such features, and describe one of the two listed features.

c)	(4 marks). Explain the difference between a CPU's instruction register (IR) and Program Counter (PC).
	Answer:
d)	(3 marks). Explain if the following statement is true or false : Setting the program counter register is a privileged operation.
	Answer:
e)	(4 marks). Explain why using direct access memory (DMA) is more efficient as compared to using interrupt to communicate with the I/O controller.
	Answer:

f) (4 marks). Explain one main advantage and one main disadvantage of the microkernel approach to system design.

Answer:

END OF QUESTION ONE

QUESTION TWO (total: 24 marks): Processes and threads

Ųί	DESTION I WO (total. 24 marks). I rocesses and threads
a)	(Total: 6 marks). Assume the following four process states: ready, waiting, running, terminated. For each of the following events, you must mention in which state and to which state a process will be moved. Explain your answers.
	(i) (2 marks). There is a <i>context switch</i> between user-level threads.
	(ii) (2 marks). The requested I/O from a process is completed.
	(iii) (2 marks). A divide by zero instruction is executed in a process.
	Answer:
	(i)
	(ii)
	(iii)

b) **(6 marks).** Each process is represented in the OS by a *process control block* (PCB). List four sets of information stored in a PCB. Describe each of the sets.

c)	(8 marks). Consider the two major communication schemes: shared mem	ory and
	message passing. Describe the responsibility of the OS and the app	olication
	programs when using each of the mechanisms.	

d) **(4 marks).** Discuss one advantage and one disadvantage of implementing user/kernel-level thread using one-to-one model.

Q١	UESTION THREE (total: 25 marks): Process Synchronization
a)	(4 marks). Describe each of the following terms:
	Atomic instruction
	• Progress condition for correct solution to the critical section problem.
	Answer:
	• Atomic instruction:
	• Progress condition:
b)	(3 marks). Does a program containing a race condition will always / sometimes never result in data corruption or some other incorrect behavior? Explain your answer.
	Answer:
c)	(6 marks). Describe how the priority inversion problem occurs, and one possible solution to solve the problem.

d) (Total: 6 marks). Consider the following definition of semaphore and its wait() and signal() operators. The integer value of S shows if there is a process in the critical section and the number of processes in the waiting queue.

```
typedef struct {
   int value;
   struct process *list;
} semaphore;

wait(semaphore *S) {
   S->value--;
   if (S->value < 0) {
       add this process to S->list;
       block();
   }
}

signal(semaphore *S) {
   S->value++;
   if (S->value <= 0) {
       remove a process P from S->list;
       wakeup(P);
   }
}
```

- (i) (2 marks). How many processes are there in the waiting queue if the value of S is 1? Is there any process in the critical section? **Hint.** Assume S is initialized to one.
- (ii) **(4 marks).** Is it possible that the value of S become -2? If yes, explain what the value of -2 means in terms of the number of processes in the waiting queue and the number of processes in critical section. Otherwise explain why it is not possible.

A			
Ans	TA7	Δr	•
	, vv	CI.	•

- (i) S = 1:
- (ii) S = -2:

- e) (Total: 6 marks).
 - (i) (4 marks). Describe the synchronization construct monitor.
 - (ii) (2 marks). What is the main advantage of using monitor than semaphore?

(i)

(ii)

QUESTION FOUR (total: 26 marks): CPU Scheduling

a)	(4 marks).	Briefly explain the	different between	preemptive and	l nonpreemptive
	types of CP	U scheduling. For ea	ach type, give two	examples.	

types of CPU scheduling. For each type, give two examples. Answer: Preemptive: Non-preemptive:

- b) (Total: 6 marks).
 - (i) **(2 marks).** Describe the main difference between an I/O bound process and a CPU-bound process.
 - (ii) **(4 marks).** To make better use of computer resources, which process type, i.e., I/O bound or CPU-bound, should be given a higher priority in CPU scheduling? Justify your answer.

Answer:

(i)

(ii)

- c) (Total: 4 marks).
 - (i) (2 marks). In the context of CPU scheduling, briefly explain the performance metrics throughput and turnaround time.
 - (ii) (2 marks). Does a scheduling algorithm that maximizes throughput necessarily minimises turnaround time? Justify your answer.

Answer:

(i) Throughput:

Turnaround time:

(ii)

d)	(4 marks). Describe the main advantage and the main disadvantage of setting a
	short quantum in the round robin scheduling algorithm.

Advantage:

Disadvantage:

e) (Total: 8 marks). Given the following set of processes with their arrival times and burst time:

Process	Arrival Time	Burst Time
A	0	7
В	1	3
С	5	2
D	7	2

- (i) (4 marks). Draw a Gantt chart for the round-robin scheduling (quantum=2).
- (ii) (2 marks). Compute the average waiting time.
- (iii) (2 marks). Compute the average turn around time.

Answer:

(i) Gantt chart:

(ii) Average waiting time:

(iii) Average turn around time:

END OF TEST PAPER