Balanced Binary Search Tree

Algorithm: Design & Analysis [8]

In the last class...

- Finding *max* and *min*
- Finding the second largest key
- Adversary argument and lower bound
- Selection Problem Median
- A Linear Time Selection Algorithm
- Analysis of Selection Algorithm
- A Lower Bound for Finding the Median

Balanced Binary Search Tree

- Definition of red-black tree
- Black height
- Insertion into a red-black tree
- Deletion from a red-black tree

Binary Search Tree Revisited

Node Group in a binTree

As in 2-tree,

Improving the Balancing by Rotation

Red-Black Tree: the Definition

- If *T* is a binary tree in which each node has a color, red or black, and all external nodes are black, then *T* is a red-black tree if and only if:
 - [Color constraint] No red node has a red child
 - [Black height constrain] The black length of all external paths from a given node u is the same (the black height of u)
 - The root is black.
- Almost-red-black tree(ARB tree)
 - Root is red, satisfying the other constraints.

Balancing is under controlled

Recursive Definition of Red-Black Tree

(A red-black tree of black height h is denoted as RB_h)

- Definition:
 - \blacksquare An external node is an RB_0 tree, and the node is black.
 - A binary tree is an ARB_h ($h \ge 1$) tree if: \longleftarrow No ARB_0
 - Its root is red, and
 - Its left and right subtrees are each an RB_{h-1} tree.
 - A binary tree is an RB_h ($h \ge 1$) tree if:
 - Its root is black, and
 - Its left and right subtrees are each either an RB_{h-1} tree or an ARB_h tree.

RB_i and ARB_i

Red-Black Tree with 6 Nodes

Black-Depth Convention

Properties of Red-Black Tree

- The **black height** of any RB_h tree or ARB_h tree is well defind and is h.
- Let T be an RB_h tree, then:
 - \blacksquare T has at least 2^h -1 internal black nodes.
 - T has at most 4^h -1 internal nodes.
 - The depth of any black node is at most twice its black depth.
- Let A be an ARB_h tree, then:
 - A has at least 2^h -2 internal black nodes.
 - A has at most $(4^h)/2-1$ internal nodes.
 - The depth of any black node is at most twice its black depth.

Well-Defined Black Height

- That "the **black height** of any RB_h tree or ARB_h tree is well defind" means the black length of all external paths from the root is the same.
- Proof: induction on h
- Base case: h=0, that is RB_0 (there is no ARB_0)
- In ARB_{h+1} , its two subtrees are both RB_h . Since the root is red, the black length of all external paths from the root is h, that's the same as its two subtrees.
- In RB_{h+1} :
 - Case 1: two subtrees are RB_h 's
 - Case 2: two subtrees are ARB_{h+1} 's
 - Case 3: one subtree is an RB_h (black height=h), and the another is an ARB_{h+1} (black height=h+1)

Bound on Depth of Node in RBTree

- Let T be a red-black tree with n internal nodes. Then no node has depth greater than $2\lg(n+1)$, which means that the height of T in the usual sense is at most $2\lg(n+1)$.
 - Proof:
 - Let h be the black height of T. The number of internal nodes, n, is at least the number of internal black nodes, which is at least 2^h -1, so $h \le \lg(n+1)$. The node with greatest depth is some external node. All external nodes are with black depth h. So, the depth is at most 2h.

Influences of Insertion into an RB Tree

- Black height constrain:
 - No violation *if* inserting a red node.

Repairing 4-node Critical Cluster

Repairing 4-node Critical Cluster

Patterns of 3-Node Critical Cluster

Repairing 3-Node Critical Cluster

Root of the critical cluster is changed to M, and the parentship is adjusted accordingly

Implementing Insertion: Class

```
class RBtree
       Element root;
       RBtree leftSubtree;
       RBtree rightSubtree;
       int color; /* red, black */
                                                Color pattern
       static class InsReturn
               public RBtree newTree;
               public int status /* ok, rbr, brb, rrb, brr */
```

Implementing Insertion: Procedure

```
RBtree rbtInsert (RBtree oldRBtree, Element newNode)
   InsReturn ans = rbtIns(oldREtree, newNode);
   If (ans.newT InsReturn rbtIns(RBtree oldRBtree, Element newNode)
                   InsReturn ans, ansLeft, ansRight;
     ans.newT<sub>1</sub>
                   if (oldRBtree = nil) then <Inserting simply>;
   return ans.n
                   else
the wrapper
                     if (newNode.key <oldRBtree.root.key)</pre>
                        ansLeft = rbtIns (oldRBtree.leftSubtree, newNode);
                        ans = repairLeft(oldRBtree, ansLeft);
                     else
                        ansRight = rbtIns(oldRBtree.rightSubtree, newNode);
                        ans = repairRight(oldRBtree, ansRight);
                                                        the recursive function
                   return ans
```

Correctness of Insertion

- If the parameter oldRBtree of rbtIns is an RB_h tree or an ARB_{h+1} tree(which is true for the recursive calls on rbtIns), then the newTree and status fields returned are one of the following combinations:
 - Status=ok, and newTree is an RB_h or an ARB_{h+1} tree,
 - Status=rbr, and newTree is an RB_h,
 - Status=brb, and newTree is an ARB_{h+1} tree,
 - Status=rrb, and newTree.color=red, newTree.leftSubtree is an ARB_{h+1} tree and newTree.rightSubtree is an RB_h tree,
 - Status=brr, and newTree.color=red, newTree.rightSubtree is an ARB_{h+1} tree and newTree.leftSubtree is an RB_h tree
- For those cases with red root, the color will be changed to black, with other constraints satisfied by repairing subroutines.

Deletion: Logical and Structral

Deletion from RBTree: Examples

Deletion in a Red-Black Tree

Procedure of Red-Black Deletion

- 1. Do a standard BST search to locate the node to be logically deleted, call it *u*
- 2. If the right child of *u* is an external node, identify *u* as the node to be structurally deleted.
- 3. If the right child of u is an internal node, find the tree successor of u, call it σ , copy the key and information from σ to u. (color of u not changed) Identify σ as the node to be deleted structurally.
- 4. Carry out the structural deletion and repair any imbalance of black height.

Imbalance of Black Height

Analysis of Black Imbalance

- The imbalance occurs when:
 - A black node is delete structurally, and
 - Its right subtree is black (external)
- The result is:
 - An RB_{h-1} occupies the position of an RB_h as required by its parent, coloring it as a "gray" node.
- Solution:
 - Find a red node and turn it black as locally as possible.
 - The gray color might propagate up the tree.

Propagation of Gray Node

Map of the vicinity of g, the gray node

g-subtree gets well-defined black height, but that is less than that required by its parent

Repairing without Propagation

Repairing without Propagation

Complexity of Operations on RBTree

- With reasonable implementation
 - A new node can be inserted correctly in a redblack tree with n nodes in $\Theta(\log n)$ time in the worst case.
 - Repairs for deletion do O(1) structural changes, but may do $O(\log n)$ color changes.

Home Assignments

- pp.302-

 - **6.11-13**
 - **6.17**