EE3206/EE3206E INTRODUCTION TO COMPUTER VISION AND IMAGE PROCESSING

Tutorial Set D – Solutions

Question 1

- $0 < \alpha < 1$: The image tends to get brighter as the gray levels get transformed to higher levels.
- $\alpha = 1$: No change.
- $\alpha > 1$: The image tends to get darker as the gray levels get transformed to lower levels.

We obviously cannot just replace r by r_k to give

$$T_{\alpha}(r_k) = (r_k)^{\alpha}$$

since we know that

$$r_k = 255 \rightarrow s_k = 255$$

Hence, we normalise r_k by 255, then multiply by 255 after taking the exponential, i.e.,

$$s_k = T_\alpha(r_k) = 255 \left(\frac{r_k}{255}\right)^\alpha$$

The transformation function is

$$s_k = C(r_k - \mu) + \mu$$

The histogram is shifted such that its mean is at the origin. It is then stretched and shifted back by the same amount. C is chosen such that the stretched histogram occupies the full range of gray levels (without significant clipping occurring).

Gray level:	0	1	2	3	4	5	6	7	8	9	10
Number of pixels:	0	0	200	300	500	1000	1300	1300	1800	0	0

We first compute the image mean

$$\mu = \frac{1}{N} \sum_{k} n_k r_k$$

$$= \frac{1}{6400} (0(0) + 1(0) + 2(200) + 3(300) + \dots)$$

$$= 6.19$$

C has to satisfy two constraints:

1. For
$$r_k = 2, s_k \ge 0$$

i.e.
$$C(2-6.19) + 6.19 \ge 0$$

or $C \le 1.5$

2. For
$$r_k = 8$$
, $s_k \le 10$

i.e.
$$C(8-6.19) + 6.19 \le 10$$

or $C \le 2.1$

Therefore, we choose C = 1.5.

$$p_s(s) = s + 0.5$$

We first find the transformation $T^{-1}(s)$ that equalises $p_s(s)$:

$$r = T^{-1}(s)$$

$$= \int_0^s p_s(w)dw$$

$$= \int_0^s (w + 0.5)dw$$

$$= \left[\frac{1}{2}w^2 + \frac{1}{2}w\right]_0^s$$

$$= \frac{1}{2}s^2 + \frac{1}{2}s$$

The transformation that is applied to $p_r(r)$ to give $p_s(s)$ is

$$s = T(r)$$

$$= -\frac{1}{2} \pm \frac{\sqrt{1+8r}}{2}$$

$$= -\frac{1}{2} + \frac{\sqrt{1+8r}}{2} \quad \text{since } r = 0 \Rightarrow s = 0$$

Question 4

k	r_k	$p_r(r_k)$	S_{k}	$p_s(s_k)$
0	0	0	0 ¬	
1	0.05	0	0	0
2	0.1	0	0	0
3	0.15	0	0 _	
4	0.2	0.15	0.15 —	0.15
5	0.25	0.15	0.3 —	0.15
6	0.3	0.15	0.45 —	0.15
7	0.35	0.15	0.6 —	0.15
8	0.4	0.1	0.7 —	0.1
9	0.45	0.1	0.8 —	0.1
10	0.5	0.1	0.9 —	0.1
11	0.55	0.1	1 ¬	
12	0.6	0	1	
13	0.65	0	1	
14	0.7	0	1	
15	0.75	0	1	0.1
16	0.8	0	1	0.1
17	0.85	0	1	
18	0.9	0	1	
19	0.95	0	1	
20	1	0	1	

In the frequency domain, the output image after one application of the filter is

$$G_1(u, v) = H(u, v) \times F(u, v) = e^{-\omega^2/2\sigma^2} F(u, v)$$

Applying the filter k times will result in

$$G_k(u, v) = [e^{-\omega^2/2\sigma^2}]^k F(u, v) = e^{-k\omega^2/2\sigma^2} F(u, v)$$

As k increases, the function $\exp(-k\omega^2/2\sigma^2)$ tends towards an impulse, i.e., it is equal to 1 at (0,0) and 0 elsewhere. Thus, $G_k(u,v)$ will be zero everywhere except at the origin where it is equal to F(0,0):

$$G_k(u,v) = \begin{cases} F(0,0) & (u,v) = (0,0) \\ 0 & \text{elsewhere} \end{cases}$$

Hence, with repeated filtering, the output image will take on a constant value equal to the average value of the input image:

$$g_k(x,y) = \bar{f}(x,y)$$

y	0	0	0	0	0	0	0	0	0	0	0
$\downarrow \qquad \qquad x$	0	0	0	0	0	0	0	1	1	0	0
1 - 2	0	0	0	0	0	0	1	1	1	0	0
	0	0	0	0	0	1	1	1	1	0	0
f(x,y)	0	0	0	0	1	1	1	1	1	0	0
	0	0	0	1	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	1	1	0	0
	0	0	0	0	0	0	0	0	0	0	+
									1		
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	-1	-1	1	1	0
	0	0	0	0	0	-1	-3	-2	3	3	0
	0	0	0	0	-1	-3	-3	-1	4	4	0
$G_{x}(x,y)$	0	0	0	-1	-3	-3	-1	0	4	4	0
	0	0	-1	-3	-3	-1	0	0	4	4	0
	0	-1	-3	-3	-1	0	0	0	4	4	0
	0	-2	-B	-1	0	0	0	0	3	3	0
	0	-1	-1	0	0	0	0	0	1	1	+
		•	•		0				•	•	
			9							ş,	
		Tropy	0.00				Tropa 1		-		
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	-1	-3	-3	-1	0
	0	0	0	0	0	-1	-3	-4	-3	-1	0
$G_{y}(x,y)$	0	0	0	0	-1	-3	-3	-1	0	0	0
	0	0	0	-1	-3	-3	-1	0	0	0	0
	0	0	-1	-3	-3	-1	0	0	0	0	0
	0	-1	-3	-3	-1	0	0	0	0	0	0
	0	0	1	3	4	4	4	4	3	1	0
	0	1	3	4	4	4	4	4	3	1	+
	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0
0	1.4	3.2	3.2	1.4	0	0	0	0	0	(
0	3.2	4.2	4.5	4.2	1.4	0	0	0	0	(
0	4.0	4.2	1.4	4.2	4.2	1.4	0	0	0	(
0	4.0	4.0	0	1.4	4.2	4.2	1.4	0	0	(
0	4.0	4.0	0	0	1.4	4.2	4.2	1.4	0	(
0	4.0	4.0	0	0	0	1.4	4.2	4.2	1.4	C
0	3.2	4.2	4.0	4.0	4.0	4.0	3.2	3.2	2.0	0
+	1.4	3.2	4.0	4.0	4.0	4.0	4.0	3.2	1.4	(
0	0	0	0	0	0	0	0	0	0	(

Gradient magnitude
$$= \sqrt{(G_x)^2 + (G_y)^2}$$

								-		
X	X	х	х	х	х	х	х	х	х	χ
x	-45	-72	-108	-135	x	x	x	x	x	>
x	-18	-45	-117	-135	-135	x	x	x	x	>
x	0	0	-135	-135	-135	-135	x	x	x	X
x	0	0	x	-135	-135	-135	-135	x	x	,
x	0	0	x	x	-135	-135	-135	-135	x	>
x	0	0	x	x	x	-135	-135	-135	-135	>
x	18	45	90	90	90	90	108	162	180	X
+	45	72	90	90	90	90	90	108	135	Х
x	x	x	x	x	x	x	x	x	x	Х

Gradient angle = $atan(G_y/G_x)$ (in degrees)

x: undefined

Note:

- edge strength depends on edge orientation
- diagonal edges give a stronger response compared to vertical and horizontal edges

$$f(x,y) = \exp(-ax^2 - by^2)$$

$$G_x(x,y) = \frac{\partial f}{\partial x}$$

$$= -2ax \exp(-ax^2 - by^2)$$

$$G_y(x,y) = \frac{\partial f}{\partial y}$$

$$= -2by \exp(-ax^2 - by^2)$$

Hence

$$|\mathbf{G}(x,y)| = [G_x^2 + G_y^2]^{1/2}$$

= $2\sqrt{a^2x^2 + b^2y^2} \exp(-ax^2 - by^2)$

$$\theta(x,y) = \tan^{-1}(G_y/G_x)$$
$$= \tan^{-1}(by/ax)$$

$$\mathbf{G}(x,y) = 2\sqrt{a^2x^2 + b^2y^2} \exp(-ax^2 - by^2) \angle \tan^{-1}(by/ax)$$

 $|\mathbf{G}(x,y)|$