# **Hypothesis Testing in Excel**



This handout uses three following data sets:

- [1.] <u>CEO Compensation 2008 Forbes.xlsx</u> for Topics 1, 2a.
- [2.] <u>Sales Presentation Ratings.xlsx</u> for Topic 2b.

For help with Excel, go to: <a href="http://office.microsoft.com/en-us/excel-help">http://office.microsoft.com/en-us/excel-help</a>

#### In this handout:

|   | Topic                                                     | Data | Page |
|---|-----------------------------------------------------------|------|------|
| 0 | Getting started with StatTools                            |      | 2    |
| 1 | Hypothesis testing for population mean                    |      |      |
|   | Using StatTools                                           | [1.] | 3    |
| 2 | Hypothesis testing for the difference in population means |      |      |
|   | a. <u>Independent samples</u>                             | [1.] | 4    |
|   | Using Data Analysis ToolPak                               |      | 5    |
|   | Using StatTools                                           |      | 6    |
|   | b. Matched (paired) samples                               | [2.] | 8    |
|   | Using Data Analysis ToolPak                               |      | 8    |
|   | Using StatTools                                           |      | 9    |

## 0. Getting Started with StatTools

Make sure StatTools is running. To connect remotely: https://remoteapp.whitman.syr.edu



- Highlight all the data (Columns A through W).
- StatTools → Data Set Manager



Click Yes. Change data set's Name to "CEO Compensation." Make sure Excel Range covers columns A
through W (by default, the correct range should be already selected). Click OK.



- You can now use StatTools. You should always perform the above steps whenever you need to do analysis of data using the StatTools add-in.
- Change placement of reports:
  - StatTools → Utilities → Application Settings.



o In **Reports** → **Placement**, select "After Last Used Column in Active Sheet" → OK.



## 1. HYPOTHESIS TESTING FOR POPULATION MEAN $(\mu)$

Use data set **CEO Compensation 2008 Forbes.xlsx**. Suppose you want to test whether the *average* Total Compensation of *all* CEOs is *greater than \$10 million*.

- StatTools → Data Set Manager → Rename the data to "CEO Compensation."
- StatTools → Statistical Inference → Hypothesis Test → Mean:



Make sure that Analysis Type is set to "One-Sample Analysis." Put a check mark next to the variable Total 2008 Compensation. On the bottom, in Null Hypothesis Value write 10 and in Alternative Hypothesis Type select "Greater Than Null Value (One-Tailed Test)," because our alternative hypothesis is H<sub>A</sub>: μ>10. Also, remove the check mark from Standard Deviation. Click OK.



The following output will appear. The hypothesis is tested using 3 levels of α: 10%, 5%, and 1%.

|                                  | Total 2008 compensation |  |
|----------------------------------|-------------------------|--|
| Hypothesis Test (One-Sample)     | CEO compensation        |  |
| Sample Size                      | 499                     |  |
| Sample Mean                      | 11.43                   |  |
| Sample Std Dev                   | 29.88                   |  |
| Hypothesized Mean                | 10                      |  |
| Alternative Hypothesis           | > 10                    |  |
| Standard Error of Mean           | 1.34                    |  |
| Degrees of Freedom               | 498                     |  |
| t-Test Statistic                 | 1.0689                  |  |
| p-Value                          | 0.1428                  |  |
| Null Hypoth. at 10% Significance | Don't Reject            |  |
| Null Hypoth. at 5% Significance  | Don't Reject            |  |
| Null Hypoth. at 1% Significance  | Don't Reject            |  |

### 2. HYPOTHESIS TESTING FOR THE DIFFERENCE IN POPULATION MEANS ( $\mu1-\mu2$ )

## a) Independent samples

Use data set **CEO Compensation 2008 Forbes.xlsx**. Suppose we want to test <u>whether there is a difference</u> in the average Total Compensations between *all* CEOs that are founders and that are non-founders.

- Copy and paste Column F (*Founder*: Yes, No) and Column J (*Total 2008 Compensation*) into a new spreadsheet. You can highlight Column F, press **CTRL**, highlight Column J; then copy and paste.
- We now need to split the data by *Founder* (Yes, No): *Total 2008 Compensation* for *Founder*=Yes, and *Total 2008 Compensation* for *Founder*=No. To do so, sort the two columns by *Founder*.



• Then, create two new columns: *Total 2008 Compensation-Non-founder* and *Total 2008 Compensation-Founder*. In each column, copy and paste from Column B the compensation values of Founders (Yes) and Non-Founders (No), respectively. The two new columns will be of different lengths; that's fine.

| $\mathcal{A}$ | Α       | В            | С              | D              |
|---------------|---------|--------------|----------------|----------------|
|               |         |              | Total 2008     | Total 2008     |
|               |         | Total 2008   | compensation - | compensation - |
| 1             | Founder | compensation | Non-founder    | Founder        |
| 2             | No      | 222.64       | 222.64         | 556.98         |
| 3             | No      | 154.58       | 154.58         | 87.48          |
| 4             | No      | 116.93       | 116.93         | 44.49          |
| 5             | No      | 90.47        | 90.47          | 36.01          |
| 6             | No      | 68.62        | 68.62          | 29.75          |
| 7             | No      | 67.26        | 67.26          | 12.05          |
| 8             | No      | 64.60        | 64.60          | 8.23           |
| 9             | No      | 61.30        | 61.30          | 8.17           |
| 10            | No      | 54.78        | 54.78          | 5.58           |
| 11            | No      | 51.93        | 51.93          | 1.99           |
| 12            | No      | 51.29        | 51.29          | 1.95           |
| 13            | No      | 49.26        | 49.26          | 1.40           |
| 14            | No      | 47.56        | 47.56          | 1.30           |
| 15            | No      | 42.68        | 42.68          | 1.28           |
| 16            | No      | 42.27        | 42.27          | 0.97           |
| 17            | No      | 39.26        | 39.26          | 0.51           |
| 18            | No      | 39.22        | 39.22          | 0.00           |
| 19            | No      | 38.66        | 38.66          | Ê              |
| 20            | No      | 38.12        | 38.12          |                |

 We can now proceed to hypothesis testing for the difference in population means. There are two ways to do so, as we will see next.

### [1.] Using Excel's Data Analysis ToolPak:

To activate Data Analysis ToolPak: go to File → Options → Add-Ins → around the top of the list find and click on Analysis ToolPak; on the bottom next to Manage: Excel Add-ins click on Go... and put a check mark next to Analysis ToolPak → Click OK.



Data → Data Analysis → scroll down, select t-Test: Two-Sample Assuming Unequal Variances. Click OK.



- Specify the following inputs:
  - o In Variable 1 Range, click on Column C (*Total 2008 compensation Non-founder*).
  - o In Variable 2 Range, click on Column D (*Total 2008 compensation Founder*).
  - In Hypothesized Mean Difference write 0, because our null and alternative hypotheses are formulated as:

```
H<sub>0</sub>: μ_1 = μ_2 (which is the same as: H<sub>0</sub>: μ_1 - μ_2 = 0)
H<sub>A</sub>: μ_1 ≠ μ_2 (which is the same as: H<sub>A</sub>: μ_1 - μ_2 ≠ 0)
```

- o Put a check mark in Labels.
- O Specify **Alpha**. Suppose, we need to use  $\alpha$ =5%: then write 0.05.
- o In Output options:
  - Either select New Worksheet Ply if you want your output to be in a separate tab, or
  - Click on Output Range and click on cell F1 for the range to place the report so that the upper left corner is in cell F1.
- o Click OK.



Expand the columns of the output table to see better all results. The following output will appear:



### [2.] Using StatTools:

- Highlight the four columns (A through D).
- StatTools → Data Set Manager → Rename the new dataset, call it "By Founder". Click OK.



- StatTools → Statistical Inference → Hypothesis Test → Mean.
- Set Analysis Type to "Two-Sample Analysis." Make sure the Data Set is "By Founder." Put check marks next to Total 2008 Compensation Non-founder and Total 2008 Compensation Founder. In Null Hypothesis Value write 0 and set Alternative Hypothesis Type to "Not Equal to Null Value (Two-Tailed Test)", because our null and alternative hypotheses are formulated as:





• Click OK. The following screen will appear. You don't need to reverse the order. The resulting hypothesis testing results will be for  $\mu$ (Non-Founder) –  $\mu$ (Founder). If you don't want to reverse the order, click OK.



• The following output will appear. I have highlighted the portion that we need to use (we will always assume Unequal Variances in this course). The hypothesis is tested using 3 levels of  $\alpha$ : 10%, 5%, and 1%.

|                                       | Total 2008 compensation - Non-founder | Total 2008 compensation - Founder  By founder |  |
|---------------------------------------|---------------------------------------|-----------------------------------------------|--|
| Sample Summaries                      | By founder                            |                                               |  |
| Sample Size                           | 482                                   | 17                                            |  |
| Sample Mean                           | 10.18                                 | 46.95                                         |  |
| Sample Std Dev                        | 16.92                                 | 133.44                                        |  |
|                                       | Equal                                 | Unequal                                       |  |
| Hypothesis Test (Difference of Means) | Variances                             | Variances                                     |  |
| Hypothesized Mean Difference          | 0                                     | 0                                             |  |
| Alternative Hypothesis                | <>0                                   | <>0                                           |  |
| Sample Mean Difference                | -36.77                                | -36.77                                        |  |
| Standard Error of Difference          | 7.195420011                           | 32.37276946                                   |  |
| Degrees of Freedom                    | 497                                   | 16                                            |  |
| t-Test Statistic                      | -5.1105                               | -1.1359                                       |  |
| p-Value                               | < 0.0001                              | 0.2727                                        |  |
| Null Hypoth. at 10% Significance      | Reject                                | Don't Reject                                  |  |
| Null Hypoth. at 5% Significance       | Reject                                | Don't Reject                                  |  |
| Null Hypoth. at 1% Significance       | Reject                                | Don't Reject                                  |  |
|                                       |                                       |                                               |  |
| Equality of Variances Test            |                                       |                                               |  |
| Ratio of Sample Variances             | 0.0161                                |                                               |  |
| p-Value                               | < 0.0001                              |                                               |  |

# b) Matched (paired) samples

Use the dataset **Sales Presentation Ratings.xlsx**. Suppose we are interested in determining <u>whether there is a significant difference in the average responses</u> between husbands and their wives.

### [1.] Using Excel's Data Analysis ToolPak:

Data → Data Analysis → t-Test: Paired Two Sample for Means → click OK.



- Specify the following inputs:
  - o In Variable 1 Range, click on Column B (Husband).
  - o In Variable 2 Range, click on Column C (Wife).
  - In Hypothesized Mean Difference write 0, because our hypotheses are formulated as:

```
H<sub>0</sub>: μ_1 = μ_2 (which is the same as: H<sub>0</sub>: μ_1 - μ_2 = 0)
H<sub>A</sub>: μ_1 ≠ μ_2 (which is the same as: H<sub>A</sub>: μ_1 - μ_2 ≠ 0)
```

- o Put a check mark in Labels.
- o Specify **Alpha**. Suppose, we need to use  $\alpha$ =5%: then write 0.05.
- o In Output options:
  - Either select New Worksheet Ply if you want your output to be in a separate tab, or
  - Click on Output Range and click on cell E1 for the range to place the report so that the upper left corner is in cell E1.
- o Click OK.



Expand the columns of the output table to see better the results. The following output will appear:



### [2.] Using StatTools:

- StatTools → Data Set Manager → Rename the data to "Ratings."
- StatTools → Statistical Inference → Hypothesis Test → Mean.

• In the Analysis Type, select "Paired-Sample Analysis." Put a check mark next to *Husband* and *Wife*. Specify **Null Hypothesis Value** as  $\frac{0}{1}$  and **Alternative Hypothesis Type** as "Not Equal to Null Value (Two-Tailed Test)," because our alternative hypothesis is  $\frac{1}{1}$  which is the same as  $\frac{1}{1}$   $\frac{1}$ 



• The following screen will appear. You don't need to reverse the order. The resulting hypothesis testing is for  $\mu(Husband)-\mu(Wife)$ .



• The following output will be produced. The hypothesis is tested using 3 levels of  $\alpha$ : 10%, 5%, and 1%.

|                                       | Husband     | Wife        |
|---------------------------------------|-------------|-------------|
| Sample Summaries                      | Ratings     | Ratings     |
| Sample Size                           | 35          | 35          |
| Sample Mean                           | 6.914       | 5.286       |
| Sample Std Dev                        | 1.222       | 1.792       |
|                                       |             |             |
|                                       | Equal       | Unequal     |
| Hypothesis Test (Difference of Means) | Variances   | Variances   |
| Hypothesized Mean Difference          | 0           | 0           |
| Alternative Hypothesis                | <>0         | <>0         |
| Sample Mean Difference                | 1.629       | 1.629       |
| Standard Error of Difference          | 0.366548418 | 0.366548418 |
| Degrees of Freedom                    | 68          | 59          |
| t-Test Statistic                      | 4.4430      | 4.4430      |
| p-Value                               | < 0.0001    | < 0.0001    |
| Null Hypoth. at 10% Significance      | Reject      | Reject      |
| Null Hypoth. at 5% Significance       | Reject      | Reject      |
| Null Hypoth. at 1% Significance       | Reject      | Reject      |
|                                       |             |             |
|                                       |             |             |
| Equality of Variances Test            |             |             |
| Ratio of Sample Variances             | 0.4649      |             |
| p-Value                               | 0.0285      |             |