Sprawozdanie z laboratorium nr 1 z przedmiotu WMM

Grupa 107, 31 marca 2022 r., godz. 14.15

Zadanie nr 1

- **1.** Dane są dwa sygnały o okresie podstawowym N = 4: $s_1 = \{2,0,1,3\}$ i $s_2 = \{1,0,3,0\}$.
 - a) Dla każdego sygnału wyznaczyć i wykreślić widmo amplitudowe i fazowe, obliczyć moc sygnału i sprawdzić słuszność twierdzenia Parsevala.
 - b) Sprawdzić słuszność twierdzenia o dyskretnej transformacji Fouriera splotu kołowego sygnałów s₁ i s₂: wyznaczyć ręcznie splot kołowy sygnałów s₁ i s₂, a następnie wyznaczyć ten splot ponownie za pomocą dyskretnej transformacji Fouriera.

Podpunkt A

```
def widmo_amplitudowe(sygnal):
    widmo = np.fft.fft(sygnal)
    return np.abs(widmo)
def widmo_fazowe(sygnal):
    widmo = np.fft.fft(sygnal)
    return np.angle(widmo)
def moc_sygnalu(sygnal):
    return sum([i**2 for i in sygnal]) / len(sygnal)
def tw_parsevala(sygnal):
    fft = np.fft.fft(sygnal)
    parseval = sum([np.abs(n)**2 for n in fft]) / len(sygnal)
    moc = moc sygnalu(sygnal) * 4
    if parseval == moc:
        return "Prawda", moc
    else:
        return "Fałsz", moc
```

S1:

('Prawda', 14.0)

S2:

('Prawda', 10.0)

Podpunkt B

```
def splot_kolowy_reczny(sygnal1, sygnal2):
    splot = [0.0 for i in range(N)]
    for s1 in range(N):
        for s2 in range(N):
            splot[s1] += sygnal1[s2] * sygnal2[s1-s2]
    return splot

def splot_kolowy_dft(sygnal1, sygnal2):
    x = np.fft.fft(sygnal1) * np.fft.fft(sygnal2)
    return np.abs(np.fft.ifft(x))
```

Splot obliczony ręcznie: [5. 9. 7. 3.]

Splot obliczony przez DFT: [5.0, 9.0, 7.0, 3.0]

Zadanie nr 2

2. Zbadać wpływ przesunięcia w czasie na postać widma amplitudowego i widma fazowego dyskretnego sygnału harmonicznego $s[n] = A\cos\left(2\pi\frac{n}{N}\right)$ o amplitudzie A=4 i okresie podstawowym N=52. W tym celu dla każdej wartości $n_0 \in \left\{0, \frac{N}{4}, \frac{N}{2}, \frac{3N}{4}\right\}$ wykreślić widmo amplitudowe i fazowe przesuniętego sygnału $s[n-n_0]$. Skomentować otrzymane wyniki.

Widma amplitudowe

Wnioski

Jak można zaobserwować na powyższych wynikach widmo amplitudowe pozostało stałe wraz z przesunięciem o dowolną liczbę próbek. Amplituda jest odległością widma od punktu 0 + 0j, a my tylko obracamy widmo względem tego punktu, więc odległość się nie zmienia. Zmienia się natomiast widmo fazowe sygnału, przesuwając się w zależności od podanej zmiennej.

Zadanie nr 3

3. Zbadać wpływ dopełnienia zerami na postać widma amplitudowego i widma fazowego dyskretnego sygnału $s[n] = A \left(1 - \frac{n \bmod N}{N}\right)$ o amplitudzie A = 3 i okresie podstawowym N = 11. W tym celu dla każdej wartości $N_0 \in \{0, 1N, 4N, 9N\}$ wykreślić widmo amplitudowe i fazowe sygnału s[n] dopełnionego N_0 zerami. Skomentować otrzymane wyniki.

Wnioski

W momencie dopełnienia sygnału zerami liczba próbek widmowych wzrasta. Otrzymujemy przez to większą rozdzielczość wyliczanej DFT.

Szymon Dyszewski

Zadanie nr 4

4. Dany jest sygnał rzeczywisty s(t) = A₁ sin(2πf₁t) + A₂ sin(2πf₂t) + A₃ sin(2πf₃t), gdzie A₁ = 0.1, f₁ = 3000 Hz, A₂ = 0.4, f₂ = 4000 Hz, A₃ = 0.8, f₃ = 10000 Hz. Przy założeniu, że częstotliwość próbkowania wynosi f_s = 48000 Hz, a liczba próbek sygnału wynosi N₁ = 2048, przedstawić wykres widmowej gęstości mocy sygnału s(t). Czy dla podanej liczby próbek mamy do czynienia ze zjawiskiem przecieku widma? Czy sytuacja uległaby zmianie dla liczby próbek N₂ = 3/2 N₁? Odpowiedź uzasadnić.

Przeciek widma:

Brak przecieku:

Wnioski

Dla podanej liczby próbek N mamy doczynienia ze zjawiskiem przecieku widma, widać to na pierwszym wykresie gęstość sygnału nie tworzy słupków. Dla liczby próbek 3N/2 na wykresie możemy zauważyć zniknięcie zjawiska przecieku. Częstotliwość sygnału to 1kHz natomiast częstotliwość próbkowania to 48kHz, wynika z tego że sygnał powinien się powtarzać co 48 próbek. Liczba 3072 jest podzielna przez 48 i dzięki temu zjawisko przecieku nie występuje.