Oakland Crime Statistics 2011 数据挖掘报告

姓名: 贺鹏飞 学号: 3220180700

数据可视化和摘要

导入数据

```
5% 导入文本文件中的数据。
%E:\MyWorkplace\DataMining\oakland-crime-statistics-2011-to-2016\records-for-
2011.csv
%
‰ 初始化变量。
filename = 'E:\MyWorkplace\DataMining\oakland-crime-statistics-2011-to-2016\records-
for-2011.csv':
delimiter = ',';
startRow = 2:
endRow = 180016;
5% 每个文本行的格式:
  列 1: 分类 (%C)
  列 2: 文本 (%s)
  列 3: 分类 (%C)
  列 4: 双精度值 (%f)
  列 5: 分类 (%C)
  列 6: 双精度值 (%f)
  列 7: 分类 (%C)
  列 8: 分类 (%C)
  列 9: 分类 (%C)
   列 10: 文本 (%s)
formatSpec = '%C%s%C%f%C%f%C%C%s%[^\n\r]';
‰ 打开文本文件。
fileID = fopen(filename, 'r');
%% 根据格式读取数据列。
dataArray = textscan(fileID, formatSpec, endRow-startRow+1, 'Delimiter', delimiter,
'TextType', 'string', 'EmptyValue', NaN, 'HeaderLines', startRow-1, 'ReturnOnError', false,
'EndOfLine', '\r\n');
```

```
% 关闭文本文件。fclose(fileID);
% 将导入的数组分配给列变量名称
Agency = dataArray{:, 1};
CreateTime = cellstr(dataArray{:, 2});
Location = dataArray{:, 3};
Areald = dataArray{:, 4};
Beat = dataArray{:, 5};
Priority = dataArray{:, 6};
IncidentTypeId = dataArray{:, 7};
IncidentTypeDescription = dataArray{:, 8};
EventNumber = dataArray{:, 9};
```

ClosedTime = cellstr(dataArray{:, 10});

‰ 清除临时变量

clearvars filename delimiter startRow endRow formatSpec fileID dataArray ans;

数据摘要

对标称属性 Agency、Location、Beat、IncidentTypeId、IncidentTypeDescription,给出每一个可能的频数,并将统计结果保存在 Excel 文件中,每一个属性对应一个活动页。在这里按照从大到小的顺序列出前五项,完整表格参见 Excel 文件"CrimeTabulate_2011.xls"。

‰ 标称属性的频数

```
Agency_t=tabulate(Agency);
Location_t=tabulate(Location);
Beat_t=tabulate(Beat);
InctyTpeld_t=tabulate(IncidentTypeld);
InctyTypeDes_t=tabulate(IncidentTypeDescription);
xlswrite('CrimeTabulate_2011.xls',Agency_t,'Agency');
xlswrite('CrimeTabulate_2011.xls',Location_t,'Location');
xlswrite('CrimeTabulate_2011.xls',Beat_t,'Beat');
xlswrite('CrimeTabulate_2011.xls',InctyTpeld_t,'IncidentTypeld');
xlswrite('CrimeTabulate_2011.xls',InctyTypeDes_t,'IncidentTypeDescription');
```

表 1.属性 Agency 的频数和频率

10 TIME IT / (90110) HJJJJJJJ 1				
Agency	频数	频率		
OP	180015	100%		

表 2.属性 Location 的频数和频率

Location	频数	频率
INTERNATIONAL BLVD	3866	2.14%
MACARTHUR BLVD	3129	1.74%
AV&INTERNATIONAL BLVD	3067	1.70%
BROADWAY	2132	1.18%
FOOTHILL BLVD	1791	1.00%

表 3.属性 Beat 的频数和频率

Beat	频数	频率
04X	7410	4.13%
08X	6885	3.84%
26Y	5478	3.05%
30Y	5295	2.95%
06X	5119	2.85%

表 4.属性 IncidentTypeId 的频数和频率

IncidentTypeId	频数	频率
933R	17348	9.64%
911H	12817	7.12%
SECCK	11393	6.33%
415	10752	5.97%
10851	7180	3.99%

表 5. 属性 IncidentTypeDescription 的频数和频率

- · · · · · · · · · · · · · · · · · · ·		
IncidentTypeDescription	频数	频率
ALARM-RINGER	17348	9.64%
911 HANG-UP	12817	7.12%
SECURITY CHECK	11393	6.33%
STOLEN VEHICLE	7180	3.99%
415 UNKNOWN	6624	3.68%

对数值属性 Areald 和 priority,给出他们的最大、最小、均值、中位数、四分位数及缺失值的个数。由于数据集中含有缺失项,所以分别使用 MATLAB 函数:nanmax、nanmin、nanmean、nanmedian、quantile、ismissing。

5 数值属性 Areald

max_Areald=nanmax(Areald);

min_Areald=min(Areald);

mean_Areald=mean(Areald);

median_Areald=median(Areald);

quantile_Areald_1=quantile(Areald,0.25,1);

quantile_Areald3=quantile(Areald,0.75,1);

```
miss_Areald=sum(ismissing(Areald));

    数值属性 Priority

max_Priority=nanmax(Priority);

min_Priority=nanmin(Priority);

mean_Priority=mean(Priority);

median_Priority=median(Priority);

quantile_Priority_1=quantile(Priority,0.25,1);

quantile_Priority_=quantile(Priority,0.75,1);

miss_Priority=sum(ismissing(Priority));
```

表 1.属性 Areald

最大值	最小值	均值	第一四分位	中位数	第三四分位	缺 失 值
						个数
3	1	1.74	1	2	2	903

表 2.属性 priority

最大值	最小值	均值	第一四分	中位数	第三四分位	缺失值个
			位			数
2	0	1.79	2	2	2	0

数据可视化

1.8 1.6 1.4 1.2

对数值属性 Areald,绘制直方图、QQ 图以及盒图,很显然,Areald 不服从正态分布。

数值属性 priority 的直方图、QQ 图和盒图,由 QQ 图看出,priority 不服从正态分布。

在绘制时间属性 CreateTime 的直方图、QQ 图和盒图时,首先使用 datenum 函数将日期数据转换为数值型数据,然后进行绘制。CreateTime 近似正态分布。

```
createnum=datenum(CreateDate);
figure;
histogram (createnum);
title ('CreateTime-直方图');
```


同上所述,绘制时间属性 ClosedTime 的直方图、QQ 图和盒图,ClosedTime 同样近似服从正态分布。

数据缺失的处理

经统计,属性 Areald 缺失 903 项,分别使用下列四种策略对缺失值进行处理,并可视化地对比新旧数据集。(a)(b)(c)为原始数据集的图像,(d)(e)(f)为处理后的数据集图像。

- (1) 将缺失部分剔除
- (2) 用最高频率值来填补缺失值
- (3) 通过属性的相关关系来填补缺失值
- (4) 通过数据对象之间的相似性来填补缺失值

1. 将缺失部分剔除

```
% 剔除缺失部分,可视化
rmAreald=rmmissing(Areald);
figure;
histogram(rmAreald);
title('price-直方图');
xlabel('Areald');
ylabel('频数');
figure;
qqplot(rmAreald);
title('Areald-QQ 图');
figure;
boxplot(rmAreald);
title('Areald-盒图');
set(gca,'XTickLabel',{' '});
```


2.用最高频率值来填补缺失值

% 用最高频率值来填补缺失值 most_fill_Areald=Areald; most_fill_Areald(ismissing(Areald))=mode(Areald);

3.通过属性的相关关系来填补缺失值

4. 通过数据对象之间的相似性来填补缺失值

knnAreald=Areald; test_data=Priority(ismissing(Areald)); train_data=Priority(rmmissing(Areald)); train_label=rmmissing(Areald);

