Uncertainty Quantification with Split Conformal Prediction

Thomas Davies

Edinburgh AI Society Advanced Workshop

November 4, 2024

Motivation

- Machine learning appears to be able to solve most problems
- However we don't know how certain we are about the predictions we make
- Can we do this?

The Goal

• Given any supervised machine learning algorithm that maps paired training examples to a function:

$$(X_1, Y_1), \dots, (X_n, Y_n) \mapsto \hat{f}_{1:n}$$
 (1)

- For a new data point X_{n+1} , we would like to construct a 95% "confidence set" for Y_{n+1}
- This is a (random) set $C(X_{n+1})$ where we have that

$$\mathbb{P}(Y_{n+1} \in C(X_{n+1})) = 0.95$$

• Without any assumptions on our learning algorithm, or underlying model this seems impossible!

Motivation: Ranks of Random Variables

- Consider some i.i.d. real valued random variables Z_1, \ldots, Z_{n+1}
- What is the probability that Z_{n+1} is the k-th largest?
- By symmetry (exchangeability), all the orderings are equally likely
- Therefore:

$$\mathbb{P}(\operatorname{Rank}(Z_{n+1}) = k) = \frac{1}{n+1} \tag{2}$$

• This holds regardless of the distribution of Z_i !

A Note on Exchangeability

- Actually, we didn't need the i.i.d. assumption
- We only need exchangeability for any permutation π :

$$(Z_1,\ldots,Z_{n+1}) \stackrel{d}{=} (Z_{\pi(1)},\ldots,Z_{\pi(n+1)})$$

- This is much weaker than i.i.d.
- Example: Drawing without replacement from an urn
 - Not independent (draws affect future probabilities)
 - But exchangeable (order doesn't matter)

Building Confidence Intervals from Ranks

- If we have n + 1 exchangeable random variables, we know their ranks are uniform
- Key insight: We can use this to build confidence intervals!
- For a (1α) confidence interval:
 - We want Z_{n+1} to be between the $\lceil \frac{\alpha}{2}(n+1) \rceil$ -th and $\lfloor (1-\frac{\alpha}{2})(n+1) \rfloor$ -th order statistics
- Example: With n = 99 calibration points and $\alpha = 0.05$
 - Lower bound: 3rd smallest value
 - Upper bound: 97th smallest value
 - Probability new point falls in this interval = $1 \alpha = 0.95$
- This works regardless of the underlying distribution!

Building Exchangeable Variables

- Let's apply this to machine learning predictions by trying to build some exchangeable random variables - let's look at regression first.
- We split our training pairs into "pure training data" \mathcal{I}_1 and "conformal calibrating data" \mathcal{I}_2
- Let's train out model on \mathcal{I}_1 to get $\hat{f}(x)$ and then we can evaluate our model on \mathcal{I}_2 to generate

$$R_i = |\hat{f}(X_i) - Y_i| \text{ for } (X_i, Y_i) \in \mathcal{I}_2$$

• These R_i are now exchangeable!!! So we can build a confidence interval for our next prediction using the ranking technique as before.

The Split Conformal Prediction Algorithm

- For a new point X_{n+1} , compute $R_{n+1}(y) = |\hat{f}(X_{n+1}) y|$ for candidate values y
- Our confidence set $C(X_{n+1})$ is all values of y where $R_{n+1}(y)$ is "not too large" compared to the calibration scores
- Specifically: $y \in C(X_{n+1})$ if $R_{n+1}(y)$ is smaller than the $\lceil (1-\alpha)(n+1) \rceil$ -th largest calibration score
- This gives us valid (1α) coverage by the rank arguments above!