Paleoethnobotany:

Study of people and plants in the past

Paleoethnobotany:

- What is the nature of our data?
- How do we collect it?
- What do we do with it?

Macrobotanical Remains

Corn cupules

Chenopod seeds

Pollen

Phytoliths

Starch Grains

How do plants enter the archaeological record?

- 1) People use them
 - procure
 - process
 - prepare
 - consume
 - discard
- •2) They are preserved

Must be preserved: dry conditions

Must be preserved: wet conditions

Windover, Florida

• Must be preserved: carbonized

How do plants enter the archaeological record?

1) People use them

2) They are preserved

Procure: gather, harvest, purchase

Eat

Procure: gather, harvest, purchase

Paleofeces or Coprolite?

- Biases
 - Byproducts are overrepresented relative to edible portions

Biases

- Byproducts are overrepresented relative to edible portions
- Items not cooked with fire are underrepresented

Biases

- Byproducts are overrepresented relative to edible portions
- Items not cooked with fire are underrepresented
- Items that burn to ash (e.g. leaves) or unrecognizable mass (e.g. potatoes) are underrepresented

Biases

- Byproducts are overrepresented relative to edible portions
- Items not cooked with fire are underrepresented
- Items that burn to ash (e.g. leaves) or unrecognizable mass (e.g. potatoes) are underrepresented
- Small, fragile items that do not easily withstand mechanical damage (e.g. freeze/thaw and recovery techniques) are underrepresented

So what are we likely to find?

Recovery

Recovery

Microscope analysis

Modern comparisons

Maypop (Passiflora incarnata)

Purslane (Portulaca oleracea)

Paleoethnobotany and interpretation

Paleoethnobotany and interpretation

Environmental reconstruction

Environmental Change

- Case Study: Somerset Levels, southwest England
 - Trackways built and incorporated into a bog between 6000 and 2000 years ago

Around 5800 BP: Oak planks

By 5700 BP: Birch brushwood tracks

Around 5500-5000 BP: Coppiced hazel and elder hurdle/woven tracks

Paleoethnobotany and interpretation

- Environmental reconstruction
- Subsistence and foodways

How do plants enter the archaeological record?

- 1) People use them
 - procure
 - process
 - prepare
 - consume
 - store
 - discard
 - 2) They are preserved

Foodways

 The ways people obtain, prepare, share, store, discard, and think about food

Foodways

 The ways people obtain, prepare, share, store, discard, and think about food

Foodways are shaped by...

Human Behavioral Ecology

 People make decisions that – on the whole – increase their fitness (their likelihood to survive and have children) within a particular environmental setting.

Central Place Foraging Theory

return rate = energy obtained – energy spent time spent

t_{handling} + t_{walking}

Ranking Return Rates, No Travel

1.Mulberry	7982 kcal/hr
2.Fish, slough spawning	6378 kcal/hr
3.Deer	5613 kcal/hr
4.Fish, stream spawning	3786 kcal/hr
5.Wild turkey	3756 kcal/hr
6.Hickory	2881 kcal/hr
7.Grape	2192 kcal/hr
8.Mussels	1885 kcal/hr
9.Fish, stream	1636 kcal/hr
10.Amaranth, cut	1240 kcal/hr

11.Waterfowl	957 kcal/hr
12.Acorn	920 kcal/hr
13.Chenopod, cut	900 kcal/hr
14.Chenopod greens	715 kcal/hr
15.Squirrel	641 kcal/hr
16.Chenopod, strip	604 kcal/hr
17.Amaranth, strip	542 kcal/hr
18.Black walnut	227 kcal/hr
19.Other greens	215 kcal/hr
20.Hazelnut	186 kcal/hr

Ranking Distances of Return Rate "Half Life"

1.Squirrel	83 km
2.Chenopod, strip	58 km
3.Amaranth, strip	53 km
4.Waterfowl	42 km
5.Hickory	29 km
6.Hazel	28 km
7.Turkey	24 km
8.Acom	20 km
9.Fish, stream	20 km
10.Black walnut	-17 km

11.Deer	13 km
12.Fish, spawning stream	11 km
13.Grape	9 km
14.Mussel	8 km
15.Chenopod, cut	8 km
16.Fish, spawning slough	7 km
17.Amaranth, cut	6 km
18.Chenopod greens	3 km
19.Mulberry	3 km
20.Other greens	2 km

t_{handling} + t_{walking}

Diet Breadth

1.Mulberry	7982 kcal/hr
2.Fish, slough spawning	6378 kcal/hr
3.Deer	5613 kcal/hr
4.Fish, stream spawning	3786 kcal/hr
5.Wild turkey	3756 kcal/hr
6.Hickory	2881 kcal/hr
7.Grape	2192 kcal/hr
8.Mussels	1885 kcal/hr
9.Fish, stream	1636 kcal/hr
10.Amaranth, cut	1240 kcal/hr

11.Waterfowl	957 kcal/hr
12.Acorn	920 kcal/hr
13.Chenopod, cut	900 kcal/hr
14.Chenopod greens	715 kcal/hr
15.Squirrel	641 kcal/hr
16.Chenopod, strip	604 kcal/hr
17.Amaranth, strip	542 kcal/hr
18.Black walnut	227 kcal/hr
19.Other greens	215 kcal/hr
20.Hazelnut	186 kcal/hr

Poplar Forest

Bowes 2011; Bowes & Trigg 2012

Period/Site	Feature	Taxonomic Richness
Early Jefferson - North Hill	1546 A-G Sub-floor pit	31
Later Jefferson - North Hill	1476 B-D Exterior pit	7
Later Jefferson - Quarter Site	829 Sub-floor pit	7
Later Jefferson - Quarter Site	1206 Structure	10
Hutter Era – Site A	ER 2352/4 Sub-floor pit	37

Process of Plant Domestication in Eastern North America

Wild Chenopod

Sumpweed: Earliest domesticate ~4000 bp

Diet Breadth

1.Mulberry	7982 kcal/hr
2.Fish, slough spawning	6378 kcal/hr
3.Deer	5613 kcal/hr
4.Fish, stream spawning	3786 kcal/hr
5.Wild turkey	3756 kcal/hr
6.Hickory	2881 kcal/hr
7.Grape	2192 kcal/hr
8.Mussels	1885 kcal/hr
9.Fish, stream	1636 kcal/hr
10.Amaranth, cut	1240 kcal/hr

11.Waterfowl	957 kcal/hr
12.Acorn	920 kcal/hr
13.Chenopod, cut	900 kcal/hr
14.Chenopod greens	715 kcal/hr
15.Squirrel	641 kcal/hr
16.Chenopod, strip	604 kcal/hr
17.Amaranth, strip	542 kcal/hr
18.Black walnut	227 kcal/hr
19.Other greens	215 kcal/hr
20.Hazelnut	186 kcal/hr

Risk and Domestication of Plants

- Why bother with low return resources?
- Instant return vs. delayed return
 - I'll give you \$100 today or \$500 in three months
 - Depends on:
 - Current conditions
 - Likelihood of benefit in three months
 - Opportunity costs

Late Archaic:

- growing population
- more neighbors = less mobility
- seed crops to reduce risk
- communal strategies

Early Woodland:

- growing population
- cultiv. plot investment = even less mobility
- seed crops to reduce risk
- household strategies

Resulting social changes:

- Intra-group
- Household
- Inter-group

"Seeds are described almost as intergenerational relatives — both as children that need nurturing and protecting, and as grandparents who contain cultural wisdom that needs guarding."

- Elizabeth Hoover (2019)

ca. 2000-yr-old bag of chenopod seeds, Edens Bluff Shelter, Arkansas

African Diaspora Crops

Poplar Forest

Bowes 2011; Bowes and Trigg 2012

Period/Site	Feature	Taxonomic Richness
Early Jefferson - North Hill	1546 A-G Sub-floor pit	31
Later Jefferson - North Hill	1476 B-D Exterior pit	7
Later Jefferson - Quarter Site	829 Sub-floor pit	7
Later Jefferson - Quarter Site	1206 Structure	10
Hutter Era – Site A	ER 2352/4 Sub-floor pit	37

Poplar Forest

Bowes 2011

Period/Site	Feature	Taxonomic Richness	Volume of Soil Analyzed	Taxa per Liter
Early Jefferson - North Hill	1546 A-G Sub-floor pit	31	136.5 L	.23
Later Jefferson - North Hill	1476 B-D Exterior pit	7	70.5 L	.10
Later Jefferson - Quarter Site	829 Sub-floor pit	7	6 L	1.17
Later Jefferson - Quarter Site	1206 Structure	10	527 L	.02
Hutter Era - Site A	ER 2352/4 Sub-floor pit	37	150.6 L	.25

Figure 8.1. Proportion of seeds found at slave quarter sites from various habitats at Poplar Forest.

Monticello's Site 8

Change through Time

South Pavilion Kitchen

Figure 1: Monticello mountaintop with the South Pavilion and South Wing circled in red.

Stew Stoves

South Pavilion Kitchen

Questions?

Paleoethnobotany and interpretation

- Subsistence and foodways
- Environmental reconstruction
- Regional patterns and changes through time

Process of Plant Domestication in Eastern North America

Wild Chenopod

Sumpweed: Earliest domesticate ~4000 bp

Paleoethnobotany and interpretation

- Subsistence and foodways
- Environmental reconstruction
- Regional patterns
- Changes through time
- Human behavioral ecology

Risk and Domestication of Plants

- Why bother with low return resources?
- Instant return vs. delayed return
 - I'll give you \$50 today or \$100 in three months
 - Depends on:
 - Current conditions
 - Likelihood of benefit in three months
 - Opportunity costs

Paleoethnobotany and interpretation

- Subsistence and foodways
- Environmental reconstruction
- Regional patterns
- Changes through time
- Human behavioral ecology
- Social foodways

Sociopolitical Impacts of Corn

Johannessen 1993

Figure 12-11. Changes in food, dishes, and community patterns over six hundred years in the American Bottom.

Paleoethnobotany and interpretation

- Subsistence and foodways
- Environmental reconstruction
- Regional patterns
- Changes through time
- Human behavioral ecology
- Social foodways

Poplar Forest

- Diet breadth
 - Nutritional adequacy?
 - Better access to wider range of foods?
 - Greater autonomy of slaves?
- Using plants for wide range of purposes