MalikovDO 20122024-155745

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = -0.27259 + 0.28226i, \, s_{31} = 0.28266 + 0.27298i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -57 дБн 2) -59 дБн 3) -61 дБн 4) -63 дБн 5) -65 дБн 6) -67 дБн 7) -69 дБн 8) -71 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3.4 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 17 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 5.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 6.9 дБ 2) 7.5 дБ 3) 8.1 дБ 4) 8.7 дБ 5) 9.3 дБ 6) 9.9 дБ 7) 10.5 дБ 8) 11.1 дБ 9) 11.7 дБ

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 40 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 152 МГц?

Варианты ОТВЕТА:

1) $16 \ \Pi\Phi$ 2) $28.8 \ \Pi\Phi$ 3) $44.9 \ \Pi\Phi$ 4) $9.8 \ \Pi\Phi$

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 381 МГц, частота ПЧ 33 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 348 MΓ_{ΙΙ}
- 2) 315 MΓ_{II}
- 3) 1905 MΓ_{II}
- 4) 1176 МГц.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 2756 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 9 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 423 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 5950 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2282 МГц до 2332 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -83 дБм 2) -86 дБм 3) -89 дБм 4) -92 дБм 5) -95 дБм 6) -98 дБм 7) -101 дБм 8) -104 дБм 9) -107 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

- $1) \ \{5;14\} \quad 2) \ \{13;-31\} \quad 3) \ \{7;-21\} \quad 4) \ \{7;-36\} \quad 5) \ \{7;-11\} \quad 6) \ \{9;-31\} \quad 7) \ \{13;-11\}$
- 8) $\{13; -16\}$ 9) $\{9; -26\}$