

International Institute for Energy Systems Integration

# Multi-Infrastructure Approaches for Gas and Electricity Distributions Systems

Roch DROZDOWSKI – roch.drozdowski@grdf.fr Head of mission Smart Grids - Strategy Unit - GrDF France

May, 28th 2014 - Copenhaguen



International Institute for Energy Systems Integration

- 1. Gas: the French context
- 2. Upstream optimization
- 3. Downstream optimization

May, 28th 2014 - Copenhaguen



#### France Gas Infrastructure

Transport distribution network (P>16 bar)

GRTgaz et TIGF: 93% of the territory in a 25 km radius

Transport distribution network (P>16 bar)

GrDF: 77% of France population covered

9 500 communities







## GrDF - a Distribution System Operator in an open gas market



A neutral and independant DSO, operating the gas network for all suppliers and customers A legal monopoly with a unique regulated tariff



#### GrDF: 2013 key figures

#### A distribution network...

• Network length: 195 000 km

#### ... shipping gas to final customers

- 310 TWh
- 30 supplyers
- 11 millions customers

#### ... owned by communities

- 9 500 communities with concession contracts
- Accounting for 77% of the French population

#### A robust business model

- 2800 MEUR of turnover
- 700 MEUR invested every year



## GrDF strong contribution to the public debate on energy transition in 2013





#### France – Energy Roadmap Energy Transition National Debate



- ☐ Electricity and heat generation
- **□**Transport
- ☐ Industry and Agriculture
- ☐ Residential and Tertiary



#### Towards smart energy networks





#### GrDF at the heart of next energy transition



GrDF implements a proactive strategy to anticipate new business



International Institute for Energy Systems Integration

- 1. Gas: the French context
- 2. Upstream optimization
- 3. Downstream optimization

May, 28th 2014 - Copenhaguen



#### Electricity storage – Key figures

- Gas and electricity consumption in France are roughly the same: 400 TWh per year
- Gas storage capacity is 300 higher in energy than the electricity storage capacity (137 TWh vs. 0,2 TWh)
- tis equivalent to a 130-day reserve for gas (4 months of consumption) and 8 hours for electricity
- 10 millions of electric vehicles equiped with 25 kWh battery would be equivalent to 0,2 TWh (8hours)



In 2050, excess of renewable electricity production could reach up to 75TWh (5000 to 6000h) and require massive storage capacities



Source: GRTgaz, E-Cube study



In 2050, excess of renewable electricity production could reach up to 75TWh (5000 to 6000h) and require massive storage capacities



Source: GRTgaz, E-Cube study



**Electric network** 

#### Gas grids as energy storage and flexibility provider





#### GRHYD – 16MEUR incl. 2MEUR Subsidy



#### Power-to-gas in european scenarios

| Pays        | Nom                                                   | Année | Champ   | Objectif          | Hydrogène ou méthane ?     | Motorisation à terme             | Quantification excédents? |  |  |
|-------------|-------------------------------------------------------|-------|---------|-------------------|----------------------------|----------------------------------|---------------------------|--|--|
|             |                                                       |       |         |                   |                            | elec 14% + H2 17% +              |                           |  |  |
| DE          | Leitstudie BMU                                        | 2011  | complet | GES -80 à -95%    | H2 et CH4                  | hydride (dont bio)               | Oui - détails             |  |  |
| DE          | DVGW - PIK                                            | 2013  | complet | GES -80%          | H2 d'abord, CH4 ensuite    | Hybride (70%) + CH4 (30%)        | Oui - détails             |  |  |
| DE          | F-ISE                                                 | 2013  | complet | GES -80%          | CH4 seulement si ambitieux | 100% ENR                         | Oui - détails             |  |  |
| DE          | Kombikraftwerk2                                       | 2013  | elec    | 100% ENRe         | CH4 seulement              | -                                | Oui - détails             |  |  |
| DE          | VDE                                                   | 2012  | elec    | 100% ENRe         | Non                        | -                                | Non                       |  |  |
| DE          | UBA (UmweltBundesAmt)                                 | 2013  | complet | GES -95%          | PtH2 et/ou PtCH4 et/ou PtL | elec 20% + reste E-fuel          | Oui - détails CH4         |  |  |
| DK          | DCC/Green Energy                                      | 2010  | complet | 100% ENR          | Non                        | elec 60% + bio (gaz+liquid)      | Non                       |  |  |
| DK          | SEV 2030                                              | 2010  | complet | 100% ENR          | H2 (pas référence à CH4)   | elec 50% + bio (gaz) + H2        | Oui - détails             |  |  |
| DK          | IDA 2050                                              | 2009  | complet | 100% ENR          | H2 et discussion CH4       | elec 50% + H2 40%                | Oui - détails             |  |  |
| FR          | ADEME - vision 2030-2050                              | 2013  | complet | GES -75%          | H2, CH4 possible           | Hybrides (38%) et élec<br>(28%)  | Non                       |  |  |
| FR          | NégaWatt                                              | 2011  | complet | GES-95% - ENR 90% | CH4 seulement              | 20% elec reste biogaz et gaz     |                           |  |  |
| FR          | GRDF                                                  | 2013  | complet | GES -75%          | H2 et discussion CH4       | biogaz 73% elec 14%              | Oui                       |  |  |
| FR          | ANCRE                                                 | 2013  | complet | GES -75%          | H2 et/ou CH4               | pas détaillé                     | Non                       |  |  |
|             | EU trends 2050                                        | 2013  | complet | 80-100 % ENRe     | Non                        | surtout électrique               | Non                       |  |  |
| EU          | ECF Roadmap 2050                                      | 2010  | elec    | 80% décarboné     | Pas de choix technique     | -                                | Non                       |  |  |
| EU          | GP Battle of the Grids                                | 2011  | elec    | 100% ENRe         | Non                        | -                                | Non                       |  |  |
| СН          | OFEN                                                  | 2012  | complet | GES 1t/hab.       | Non                        | elec 35% + bio 30% + gaz<br>5%   | Non                       |  |  |
| CH          | AES                                                   | 2012  | elec    | 100% ENRe         | Non                        | -                                | Non                       |  |  |
| BE          | Vers 100% d'ER en Belgique                            | 2013  | complet | 100% ENR          | H2 et discussion CH4       | pas détaillé                     | Oui - détails H2          |  |  |
|             | ECN Roadmap NL                                        | 2011  | complet | GES -75%          | Discussion ouverte         | Elec + biomasse (sans<br>détail) | Non                       |  |  |
| GB          | ZCB                                                   | 2013  | complet | 100% ENR          | CH4                        | Elec et CH4, pas H2              | Oui - détails CH4         |  |  |
| IRL         | STORE                                                 | 2013  | elec    | 80% ENRe          | Non                        | -                                | Non                       |  |  |
| SE          | Energy scenario for Sweden                            | 2011  | complet | 100% ENR          | Non                        | Elec + biomasse (sans détail)    | Non                       |  |  |
| <b>SCAN</b> | Nordic 2006-2030                                      | 2006  | elec    | GES-70% 2030      | H2                         | elec + fuelcells + fossil        | Oui -détails H2           |  |  |
|             | Comparaison des scénarios E&E consultant, Hespul 2014 |       |         |                   |                            |                                  |                           |  |  |

# GrDF GAZ RÉSEAU DISTRIBUTION FRANCE

#### The green gas roadmap implementation



Green gas generation is already a reality for GrDF with 3 injecting site and more than 380 in the projects pipe



#### The 3 first biomethane injection successes

Municipal waste and bioCNG



Bioénergie de la Brie Agricultural waste Pymouth
Pottsmouth Bengine
Pottsmouth Bengine
Bengine
Le Harre
Legan Bengine
Le Harre
Legan Bengine
Remote
Remote
Remote
Le Harre
Remote
Le Harre
Remote
Le Harre
Remote
R

Sydeme (Moselle)
Municipal waste and bioCNG



10 to 15 new projects to be connected to GrDF grid in 2014



Purification unit

GrDF injection unit





69% of projects are based on agriculture and agroindustrial waste



Average flowrate of projects: 200 m<sup>3</sup>/h (~20 GWh/year)



#### Example of biomethane integration





#### The green gas roadmap implementation

#### Electricity sources and hydrogen production in TWh per year



Hydrogen produced and injected in the gas network



International Institute for Energy Systems Integration

- 1. Gas: the French context
- 2. Upstream optimization
- 3. Downstream optimization



## Electric power in 2012: +6% vs. 2010, +11% vs. 2011

### Historique des maxima annuels de consommation constatés depuis 2001\*

| Mercredi 08/02/2012 | 102 100 MW |
|---------------------|------------|
| Mardi 04/01/2011    | 91 820 MW  |
| Mercredi 15/12/2010 | 96710 MW   |
| Mercredi 07/01/2009 | 92400 MW   |
| Lundi 15/12/2008    | 84420 MW   |
| Lundi 17/12/2007    | 88 960 MW  |
| Vendredi 27/01/2006 | 86280 MW   |
| Lundi 28/02/2005    | 86 020 MW  |
| Mercredi 22/12/2004 | 81 400 MW  |
| Jeudi 09/01/2003    | 83540 MW   |
| Mardi 10/12/2002    | 79 730 MW  |
| Lundi 17/12/2001    | 79 590 MW  |

\*En gras sont indiqués les maxima absolus

Source: RTE



#### Demand correlation to temperature: 2300MW/°C

#### Consommation journalière en fonction de la température



Consommation journalière française des jours ouvrés en fonction de la température sur la période allant du 1er juin 2011 au 31 mai 2012. Les points en rouge indiquent les consommations des jours dont la température moyenne est inférieure à 15°C, ceux en vert les jours dont la température est supérieure à 18°C. La droite rouge de pente équivalente à 2 300 MW par degré celsius correspond à ce qu'il est convenu d'appeler le « gradient d'hiver ».

Source: RTE



#### Demand correlation to temperature: 2300MW/°C



Fig. Temperature impact on the electricity system from 11/2006 to 05/2012

Sources: RTE data and Météo France



#### Demand correlation to temperature: 2300MW/°C





Industry - -4% per year

Residential and tertiay- +2,4% per year

Source: RTE



## Grid design criteria - Cost of not distributed energy – avg of 26€/kWh, 200 times cost of energy

Grid reinforcement vs. consumption x probability of failure x cost of NDE



Source: RTE



## Cost of not distributed energy – avg of 26€/kWh, 200 times cost of energy

**Only «long duration» demand response** has an impact on system reinforcement by decreasing the risk of technical failure

#### A theoretic illustration:

- Pmax < Pn : short demand response
- •NDE decrease : long (seasonal) demand response



International Institute for Energy Systems Integration - Roch Drozdowski - GrDF



## Cost of not distributed energy – avg of 26€/kWh, 200 times cost of energy

French demand, normal temp., 2000h, seasonal heating only.



Fig. Hourly temperatures for the top 2000h and distribution over 32 years RTE and  $M\acute{e}t\acute{e}oFrance$ 

Source: Cyril Vuillecard, PhD



## Cost of not distributed energy – avg of 26€/kWh, 200 times cost of energy

**Demand response frequency** impacting technical failure risk

| % heure | 1  | 2  | 3  | 4  | 5 | 6 | 7  | 8  | 9  | 10 | 11  | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  | 21 | 22 | 23 | 24 |
|---------|----|----|----|----|---|---|----|----|----|----|-----|----|----|----|----|----|----|----|----|-----|----|----|----|----|
| Semaine | 53 | 45 | 43 | 46 | 0 | 0 | 39 | 62 | 88 | 98 | 100 | 97 | 98 | 91 | 88 | 89 | 91 | 99 | 99 | 100 | 93 | 74 | 73 | 67 |
| Weekend | 46 | 42 | 0  | 0  | 0 | 0 | 0  | 0  | 40 | 54 | 53  | 51 | 44 | 49 | 43 | 36 | 46 | 46 | 61 | 83  | 61 | 43 | 44 | 46 |

Winter time frequency of demand response impacting technical failure risk

Source: Cyril Vuillecard, PhD



#### Impact des solutions existantes sur la charge électrique

#### Heating appliances

#### Bi-energy technologies:

- Hybrid boilers
- Micro-cogeneration

Electric heating

Boilers (woord, gas, fioul)

Electric heat-pumps

Hybrid boilers

Micro-cogeneration



Fig. Illustration of the impact of different heating appliances

Source: Cyril Vuillecard, PhD



## Les technologies bi-énergie répondent aux enjeux de maîtrise de la demande en PACA

PACA (source : bilan prévisionnel RTE 2011)

Electricity consumption: +4,4% in volume et +5,3% peak from 2009 to 2010.

Strong correlation to the temperature: 190 MW/°C during winter time, 64 MW/°C during the summer



Source: RTE



## Decentralized energy generation: the future of gas utilization – study illustration





#### **Temporary results**

Regional economic efficiency of the different scenarios

Electric heating and standard boilers are replaced by:

Sénario Gaz Chaleur: condensing boilers

Scénario Hybride: hybrid boilers





## Decentralized energy generation: the future of gas utilization

The number of dwellings increases from 27 to 37 million from 2010 and 2050.

Unit consumption decrease: renovation programs (500,000 major renovations per year) and penetration of efficient technologies such as condensing boilers, coupling gas-REN, gas fuel-cell, micro-CHP

#### Residential and tertiary final energy consumption (TWh per year)





#### Electricity and gas mobility

| 2050 time horizon                    | Short distance | Medium distance     | Long distance       |
|--------------------------------------|----------------|---------------------|---------------------|
| Personal vehicles / Utility vehicles | Electricity    | Gas / Diesel, fuels | Gas / Diesel, fuels |
| Bus / autocar                        |                | Gas                 | Gas                 |
| Road transport                       | Gas            | Gas                 | Gas                 |
| Fluvial / maritime transport         |                |                     | Gas                 |

#### Transport energy consumption (TWh per year)





#### Gas distribution: an history of transitions



Gas distribution grid is available for next renewable gas transition



## Thank you for your attention. To follow-up:

- > Global vision: Smart Gas Grids and networks (FR)
- > Upstream optimization: the GRHYD power-to-gas project (ENG)
- > Downstream optimization: pointe électrique française (FR)
- > Don't hesitate to contact me:
- roch.drozdowski@grdf.fr Twitter Linkedin
- www.grdf.fr

