10 класс

Задача 1. Шарик в сосуде с водой

Деревянный и металлический шарики связаны нитью и прикреплены одной нитью ко дну сосуда с водой. Сосуд вращается с постоянной угловой скоростью вокруг вертикальной оси OO' (рис. 5).

В результате шарики, оставаясь полностью в воде, расположились так, как показано на рисунке. Деревянный шарик (1) находится от оси вращения на расстоянии втрое меньшем, чем металлический (2). Верхняя нить составляет угол α (sin $\alpha=4/5$) с вертикалью. Угол между нитями равен 90°. Размеры шариков малы по сравнению с их расстояниями до оси вращения.

- 3. Под каким углом к вертикали направлена сила Архимеда, действующая на деревянный шарик? Лайте объяснение.
- 4. Найдите отношение сил натяжения верхней и нижней нитей.

Задача 2. Тепловая машина

Гигантский айсберг массой $m=9\cdot 10^8$ кг (куб $100\times 100\times 100$ м³), имеющий температуру $T_2=273$ K, дрейфует в течении Гольфстрим, температура воды которого $T_1=295$ K.

1. Пренебрегая прямым теплообменом между айсбергом и теплой водой, найдите максимальную работу тепловой машины, использующей Гольфстрим в качестве нагревателя и айсберг в качестве холодильника, за то время, пока весь айсберг не растает (рис. 6).

2. Определите, сколько воды можно испарить в котле за счёт работы, количество которой найдено в первом пункте, если использовать её в тепловом

насосе для "перекачки" тепловой энергии из течения Гольфстрим в котёл с температурой $T_0 = 373 \; {\rm K} \; ({\rm puc.} \; 7).$

Теплота плавления льда $q=3{,}35\cdot 10^5~\rm{Дж/кг},$ теплота испарения воды $\lambda=2.26\cdot 10^6~\rm{Дж/кг}.$

Задача 3. Адиабатический процесс

В цилиндрическом сосуде объёма $2V_0$ под тяжёлым поршнем находится одноатомный идеальный газ при температуре T_0 и давлении $P_0/2$, занимающий объём V_0 (рис. 8). Над поршнем вакуум. Внизу в сосуде имеется небольшое отверстие перекрытое краном. Снаружи пространство заполнено тем же газом при давлении P_0 , температуре T_0 . Сосуд теплоизолирован.

Кран приоткрывают так, что поршень медленно поднимается вверх, и после того, как давление внутри и снаружи выравнивается, кран закрывают. Определите темпе

ружи выравнивается, кран закрывают. Определите температуру газа после закрытия крана.

Задача 4. Слоистый диэлектрик

Плоский конденсатор с расстоянием между обкладками d подсоединён к источнику постоянного тока с ЭДС, равной \mathscr{E} (рис. 9).

Конденсатор заполнен двумя слоями слабопроводящих сред с разными значениями проводимости λ_1 и λ_2 . Оба слоя находятся в электрическом контакте между собой и с пласти

нами конденсатора. Толщина каждого слоя d/2, диэлектрическая проницаемость обоих слоёв $\varepsilon_1=\varepsilon_2=1$. Найдите:

- 1. Поверхностные плотности σ_1 и σ_2 зарядов на пластинах конденсатора.
- 2. Поверхностную плотность σ заряда в плоскости контакта слоёв.

XLV Всероссийская олимпиада школьников по физике

Примечание: Уделньная проводимость — это, величина, обратная удельному сопротивлению: $\lambda = 1/\rho$.

Задача 5. Перезарядка конденсаторов

Имеются два заряженных конденсатора с ёмкостями $C_1=18$ мкФ и $C_2=19$ мкФ. Напряжения на конденсаторах равны соответственно $U_1=76$ В и $U_2=190$ В. Третий конденсатор с неизвестной ёмкостью C подсоединён к конденсатору C_2 (рис. 10). Ключ K перекидывают из правого положения в левое, а после перезарядки конденсаторов возвращают в исходное положение.

Известно, что после выполнения 44 таких циклов разность напряжений $(U_2 - U_1)_{44}$ составила 1% от первоначальной $(U_2 - U_1)_{0}$.

- 1. Чему равна ёмкость конденсатора C?
- 2. Какое напряжение U_{∞} утсановится на конденсаторах после большого числа циклов?
- 3. Какая тепловая энергия выделится на резисторе R после большого числа пиклов?