Композиция гомотетий

- 1. Докажите, что композиция двух гомотетий с коэффициентами k_1 и k_2 , является параллельным переносом, если $k_1k_2=1$, а иначе гомотетией с коэффициентом k_1k_2 , причём её центр лежит на прямой, соединяющей центры двух данных гомотетий.
- **2.** Две окружности ω_1 , ω_2 одинакового радиуса пересекаются в разных точках X_1 , X_2 . Окружность ω касается окружности ω_1 снаружи в точке Y_1 и касается окружности ω_2 внутри в точке Y_2 . Докажите, что прямые X_1Y_1 , X_2Y_2 пересекаются в точке, лежащей на ω .
- 3. Окружности S_1 , S_2 , S_3 касаются внешним образом окружности S (в точках A_1 , B_1 , C_1 соответственно) и двух сторон треугольника ABC (AB и AC, BC и BA, CA и CB соответственно). Докажите, что прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке.
- 4. Дан выпуклый четырёхугольник ABCD. Лучи AB и DC пересекаются в точке P, а лучи AD и BC в точке Q. Из точек P и Q внутрь углов APD и AQB проведено ещё по два луча, разбивающие четырёхугольник ABCD на девять частей. Известно, что в части, примыкающие к вершинам B, C, D, можно вписать окружность. Докажите, что в часть, примыкающую к вершине A, также можно вписать окружность.
- **5.** Каждую сторону *n*-угольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами правильного *n*-угольника. Докажите, что исходный *n*-угольник правильный.