

AMENDMENTS TO THE SPECIFICATION

Please amend the specification by replacing the paragraph at page 16, line 24 to page 17, line 20 with the following rewritten paragraph:

The ~~antireflection film~~ antireflection layer having a reflectance of 0.5% or smaller at the wavelength of 550 nm is formed at least on one face of the thermoplastic film as described above. The protective film for polarizing plates of the present invention has a standard deviation of S of 0.3 or smaller. The standard deviation of S is obtained by obtaining the reflectance $R(\lambda)$ at a wavelength λ in the region of wavelength of 380 to 780 nm while the wavelength λ is successively increased by an increment $\Delta\lambda$ of 1 nm from 380 nm to 780 nm, calculating S in accordance with relation (1):

$$S = \sum_{\lambda=380}^{780} \Delta\lambda \cdot R(\lambda) \quad \dots (1)$$

which gives the sum of products of the reflectance $R(\lambda)$ at the wavelength of λ and the increment of the wavelength between two successive measurements of the reflectance $\Delta\lambda$ (=1 nm), and calculating the standard deviation of S obtained at 10 points randomly selected within an area of 100 cm² on the surface of the film. When the standard deviation exceeds 0.3, the fluctuation of the spectral reflectance within the surface of the film increases. As the result, the distribution of luminance and the distribution of color difference become uneven, and images show fluctuation, flicker and uneven distribution of color when a polarizing plate is prepared by using the obtained protective film for polarizing plates and mounted to a liquid crystal display device. It is preferable that the standard deviation is 0.1 or smaller and more preferably 0.05 or smaller.