UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

LISTA 1 - REDES NEURAIS E DEEP LEARNING

JOSÉ AUGUSTO AGRIPINO DE OLIVEIRA: 20241030884

JOSÉ EDIVANDRO DE SOUSA JUNIOR: 20241026406

VINICIUS JOSÉ MIRANDA TOSCANO DE BRITO FILHO: 20241026676

1) As métricas de distancia entre vetores são aplicadas nos estudos de aprendizagem de máquina como medidas de similaridade/dissimilaridade entre vetores que representam padrões (atributos). Apresente um estudo sobre as seguintes distancias: Distancia Euclidiana, Distancia de Minkowski, Distancia City Block, Distancia de Mahalanobis, Coeficiente de Correlação de Pearson e Similaridade Cosseno. Apresente neste estudo aplicações onde cada tipo de métricas de distância é mais adequada.

Distância Euclidiana:

O artigo intitulado "Uso de Redes Neurais Profundas para o Aprendizado de Funções Heurísticas para Algoritmos de Busca de Caminhos", de Daniel Matheus Doebber, aborda a distância euclidiana como uma medida para avaliar a dissimilaridade entre dois pontos, sendo crucial para determinar a proximidade entre vetores de atributos em um espaço multidimensional.

Na aplicação discutida, a distância euclidiana se revelou útil em cenários nos quais é possível visualizar de maneira intuitiva agrupamentos em espaços com duas ou mais dimensões. Ela facilitou a identificação de regiões densas no espaço de atributos, separadas por áreas de baixa densidade, o que se alinha bem com a percepção dos clusters formados.

$$d(x,y) \to ||x-y||_2 = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{\frac{1}{2}} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (1)

Onde a Equação 1 é a expressão matemática da distância euclidiana.

City Block, Mahalanobis e Minkowski:

O artigo intitulado "Análise da Influência das Métricas de Distância no Algoritmo Semi-Supervisionado de Competição e Cooperação de Partículas", de Lucas Guerreiro e Fabricio Aparecido Breve, aborda o estudo das distâncias City Block, Mahalanobis e Minkowski.

A distância City Block, também conhecida como distância de Manhattan ou métrica do táxi, segue o princípio de que seu valor é sempre maior ou igual a zero. Quando o valor é zero, significa que os dados são idênticos. Embora seja semelhante à distância euclidiana, a diferença é que as diferenças entre os pontos não são elevadas ao quadrado. Essa métrica é útil quando se deseja atribuir maior importância às diferenças em características individuais dos dados.

$$d(x,y) \to ||x-y||_1 = \sum_{i=1}^{n} |x_i - y_i|$$
 (2)

Onde a Equação 2 é a expressão matemática da distância City Block.

A distância de Minkowski é uma versão mais generalizada da distância Euclidiana, com um parâmetro ajustável denominado "p". Quando p=2, ela corresponde à distância Euclidiana, e quando p=1, torna-se a distância City Block. Essa métrica é útil quando se deseja ajustar a

medida de distância para se adequar a diferentes escalas das características dos dados.

$$d(x,y) \to ||x-y||_p = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$
 (3)

Onde a Equação 3 é a expressão matemática da distância Minkowski.

A distância do cosseno é uma medida de similaridade angular entre dois vetores, calculada a partir do produto escalar normalizado pelo produto das normas de cada vetor, ou seja, suas distâncias euclidianas em relação à origem. Essa métrica é amplamente utilizada em sistemas de recomendação baseados em conteúdo e no processamento de linguagem natural (PLN).

$$d(x,y) \to 1 - \frac{x \cdot y}{||x||_2 ||y||_2} = 1 - \frac{\sum_i^n x_i y_i}{\sqrt{\sum_i^n x_i^2} \sqrt{\sum_i^n y_i^2}}$$
(4)

Onde a Equação 4 é a expressão matemática da Similaridade do Cosseno.

O coeficiente de correlação de Pearson entre dois dados é uma medida da relação linear entre eles, sendo utilizado para identificar padrões correlacionados em mineração de dados e sistemas de recomendação

$$r_{xy} = \frac{\sum z_x z_y}{N} \tag{5}$$

Onde a Equação 5 é a expressão matemática do Coeficiente de Pearson.

2) Considere a função E(w) onde $w = [w_1, w_2, \dots, w_n]^t$ é um vetor com múltiplas variáveis. Usando a expansão em série de Taylor a função pode ser expressa como

$$E(w(n + \Delta w)) = E(w(n)) + g^{T}(w(n)) \cdot \Delta w + \frac{1}{2} \Delta w^{T} H(w(n)) \Delta w + O(\|\Delta w\|^{3})$$
 (6)

onde q(w(n)) é o vetor gradiente local definido por

$$g(w) = \frac{\partial E(w)}{\partial w} \tag{7}$$

e H(w) é matriz Hessiana, definida por

$$H(w) = \frac{\partial^2 E(w)}{\partial w^2} \tag{8}$$

Demonstre com base na expansão em série de Taylor:

a) Que o método do gradiente da descida mais íngreme é dado por $w(n+1) = w(n) - \eta g(w(n))$.

Considerando a expansão em série de Taylor fornecida:

$$E(w(n + \Delta w)) = E(w(n)) + g^{T}(w(n)) \cdot \Delta w + \frac{1}{2} \Delta w^{T} H(w(n)) \Delta w + O(\|\Delta w\|^{3})$$
 (9)

Assumindo que Δw é pequeno para que a aproximação da expansão apresente um bom resultado apenas com o termo de 1^a ordem, podemos descartar os termos de ordem superior, ficando com:

$$E(w(n + \Delta w)) \approx E(w(n)) + g^{T}(w(n)) \cdot \Delta w \tag{10}$$

Agora, para minimizar $E(w(n + \Delta w))$, devemos escolher Δw para seguir na direção oposta ao gradiente, uma vez que o gradiente aponta para a direção de maior crescimento, sendo assim:

$$\Delta w = -\eta g(w) \tag{11}$$

Onde η é a taxa de aprendizado, já que apenas sabemos para onde andar, mas não sabemos o tamanho do passo.

Portanto, a atualização dos pesos é dada por:

$$w(n+1) = w(n) - \eta g(w(n)) \tag{12}$$

b) Que o método de Newton é dado por $w(n+1) = w(n) + H^{-1}w(n)g(w(n))$.

O método de Newton é derivada assumindo que queremos minimizar uma aproximação quadrática da função E(w), assim, a expansão da série de Taylor da função é:

$$E(w(n + \Delta w)) \approx E(w(n)) + g^{T}(w(n)) \cdot \Delta w + \frac{1}{2} \Delta w^{T} H(w(n)) \Delta w$$
 (13)

Derivada em relação a Δw :

$$\frac{\partial E(w + \delta w)}{\partial (\Delta w)} = g(w) + H(w)\Delta w \tag{14}$$

Zeramos para minimizar:

$$g(w) + H(w)\Delta w = 0 \Rightarrow \Delta w = -H^{-1}(w(n))g(w)$$
(15)

Sendo assim, o método de Newton nos dá:

$$w(n+1) = w(n) - H^{-1}(w(n))g(w(n))$$
(16)

c) Que o η^* ótimo é dado por $g(w)\cdot g^T(w)/(g^T(w)\cdot H(w)\cdot g(w))$ assumindo a matriz H definada.

Considerando os termos de 1^a e 2^a da expansão em série de Taylor da função E(w):

$$E(w(n + \Delta w)) \approx E(w) + g^{T}(w) \cdot \Delta w + \frac{1}{2} \Delta w^{T} H(w) \Delta w$$
(17)

Assumindo que $\Delta w = -\eta g(w)$, como mostrado na alternativa "a", temos que:

$$\phi(\eta) = E(w - \eta g(w)) \approx E(w) - \eta g^{T}(w)g(w) + \frac{1}{2}\eta^{2}g^{T}(w)H(w)g(w)$$
 (18)

Agora derivando em relação a η :

$$\frac{\partial \phi(\eta)}{\partial \eta} = -g^T(w)g(w) + \eta g^T(w)H(w)g(w) \tag{19}$$

Para encontrar o ponto crítico da função parabólica $\phi(\eta)$ igualamos a zero:

$$-g^{T}(w)g(w) + \eta g^{T}(w)H(w)g(w) = 0$$
(20)

Com isso, o η é dado por:

$$\eta^* = \frac{g^T(w)g(w)}{g^T(w)H(w)g(w)}$$
 (21)

Isso nos garante que η é um ponto crítico, para garantir que é um ponto de mínimo, é preciso calcular a derivada segunda. Todavia, é dado que a Hessiana é maior que zero, logo a curvatura é positiva.

d) Qual será o valor de η sob as condições acima se o vetor gradiente estiver alinhado com um autovetor correspondente ao autovalor máximo (λ_{max}) .

O passo ótimo η foi derivado como:

$$\eta^* = \frac{g^T(w)g(w)}{g^T(w)H(w)g(w)} \tag{22}$$

Se o vetor gradiente g(w) está alinhado com um autovetor correspondente a um autovalor máximo (λ_{max}) , isso significa que é possível escrever:

$$q(w) = \alpha v_{max} \tag{23}$$

Onde v_{max} é o autovetor correspondente ao autovalor máximo λ_{max} e λ é uma constante escalar de proporcionalidade.

Substituindo $g(w) = \alpha v_{max}$ na fórmula para o passo ótimo:

$$\eta^* = \frac{(\alpha v_{max})^T (\alpha v_{max})}{(\alpha v_{max})^T H(w) (\alpha v_{max})}$$
(24)

Segundo a definição de autovalor e autovetor, $H(w)v_{max} = \lambda_{max}v_{max}$, então:

$$\eta^* = \frac{\alpha^2 v_{max}^T v_{max}}{\alpha^2 v_{max}^T \lambda_{max} v_{max}} \tag{25}$$

Aqui, $v_{max}^T v_{max} = 1$ (pois os autovetores são normalizados), e a constante α^2 aparece tanto no numerador quanto no denominador, podendo ser cancelada:

$$\eta^* = \frac{1}{\lambda_{max}} \tag{26}$$

- e) Em um determinado ponto w o gradiente da função E(w) é igual a zero, isto é, g(w)=0. Isto não é suficiente para indicar que este ponto corresponde a um ponto de mínimo. Pode ser um ponto de máximo ou um ponto de sela. Com base nos autovalores da matriz Hessiana, definida como $H(w)=\frac{\partial^2 E(w)}{\partial w^2}$, apresente a condição para este ponto ser:
 - Um ponto de mínimo

O ponto w é um mínimo local se todos os autovalores de H(w) forem positivos. Isso indica que a função é côncava para cima em todas as direções.

$$\lambda_i > 0 \quad \forall i$$
 (27)

- Um ponto de máximo

O ponto w é um máximo local se todos os autovalores de H(w) forem negativos.

$$\lambda_i < 0 \quad \forall i \tag{28}$$

- Um ponto de sela da função

O ponto w é um ponto de sela se a Hessiana tiver autovalores de sinais diferentes.

$$\exists \lambda_i > 0 \quad e \quad \exists \lambda_i < 0 \tag{29}$$

3) Apresente um estudo comparando os seguintes algoritmos de otimização: Gradiente Estocástico (SGM), AdaGrad, RMSProp e Adam. Estes métodos ou otimizadores são utilizados no processo de aprendizagem de redes neurais/deep learning.

Link para apresentação do estudo realizado.

- 4) O modelo de neurônio artificial de Mc-Culloch-Pitts faz uso da função de ativação para resposta do neurônio artificial. A função sigmoíde (ou função logística) e a função tangente hiperbólica (ou tangsigmoíde) são normalmente utilizadas nas camadas ocultas das redes neurais perceptrons de múltiplas camadas tradicionais (uma ou duas camadas ocultas shallow network). A função ReLu (retificador linear) é normalmente utilizadas nas camadas ocultas das redes Deep Learning.
- a) (i) Faça uma análise comparativa de cada uma destas funções apresentando de forma gráfica a variação da função e da sua derivada com relação a v (potencial de ativação).

Link para o GitHub com a solução proposta.

(ii) Mostre que $\varphi'(v) = \frac{d}{dv}\varphi(v) = \alpha \cdot \varphi(v) \cdot [1 - \varphi(v)]$ para a função sigmoide. Seja a função sigmoide:

$$\varphi = \frac{1}{1 + e^{-\alpha v}} \tag{30}$$

Derivando a sigmoide:

$$\varphi'(v) = \frac{\mathrm{d}}{\mathrm{d}v} \left(\frac{1}{1 + e^{-\alpha v}} \right) \tag{31}$$

Utilizando a regra da cadeia:

$$\varphi'(v) = \frac{\mathrm{d}}{\mathrm{d}v} \left(1 + e^{-\alpha v} \right)^{-1} = -1 \cdot \left(1 + e^{-\alpha v} \right)^{-2} \cdot \frac{\mathrm{d}}{\mathrm{d}v} \left(1 + e^{-\alpha v} \right)$$
(32)

$$\varphi'(v) = -\frac{1}{(1 + e^{-\alpha v})^2} \cdot \left(-\alpha e^{-\alpha v}\right) = \frac{\alpha e^{-\alpha v}}{(1 + e^{-\alpha v})^2} \tag{33}$$

Sabemos que:

$$\varphi(v) = \frac{1}{1 + e^{-\alpha v}} \Rightarrow 1 - \varphi(v) = \frac{e^{-\alpha v}}{1 + e^{-\alpha v}}$$
(34)

Então:

$$\varphi \cdot (1 - \varphi(v)) = \left(\frac{1}{1 + e^{-\alpha v}}\right) \cdot \left(\frac{e^{-\alpha v}}{1 + e^{-\alpha v}}\right) = \frac{e^{-\alpha v}}{(1 + e^{-\alpha v})^2} \tag{35}$$

Logo:

$$\varphi'(v) = \alpha \cdot \frac{e^{-\alpha v}}{(1 + e^{-\alpha v})^2} = \alpha \cdot \varphi(v) \cdot (1 - \varphi(v))$$
(36)

Portanto:

$$\varphi'(v) = \alpha \cdot \varphi(v) \cdot (1 - \varphi(v)) \tag{37}$$

(iii) Mostre que $\varphi'(v)=\frac{\mathrm{d}}{\mathrm{d}v}\varphi(v)=\frac{\alpha}{2}[1-\varphi^2(v)]$ para a função tangsigmoide.

É sabido que:

$$\frac{\mathrm{d}}{\mathrm{d}v}\tanh(\alpha v) = \alpha \cdot (1 - \tanh^2(\alpha v)) \tag{38}$$

Como:

$$\varphi(v) = \tanh\left(\frac{\alpha v}{2}\right) \tag{39}$$

Então:

$$\varphi'(v) = \frac{\mathrm{d}}{\mathrm{d}v} \tanh\left(\frac{\alpha v}{2}\right) = \frac{\alpha}{2} \cdot \left(1 - \tanh^2\left(\frac{\alpha v}{2}\right)\right) = \frac{\alpha}{2} \cdot (1 - \varphi^2(v)) \tag{40}$$

Desse modo:

$$\varphi'(v) = \frac{\alpha}{2} \cdot (1 - \varphi^2(v)) \tag{41}$$

- b) As funções de saída das redes neurais dependem do modelo probabilístico que se busca gerar com a rede. Faça uma análise sobre a escolhas destas funções considerando os seguintes problemas:
 - (i) Classificação de padrões com duas classes.

Função de saída:

$$\varphi(v) = \frac{1}{1 + e^{-v}} \tag{42}$$

A saída da função sigmoide está no intervalo (0, 1), sendo possível interpretar como a probabilidade da classe positiva.

(ii) Classificação de padrões com múltiplas classes.

Função de saída:

$$\varphi_i(v) = \frac{e^{v_i}}{\sum_j e^{v_j}} \tag{43}$$

Essa função transforma o vetor de saída da rede neural em uma distribuição de probabilidade sobre as classes.

(iii) Problema de regressão (aproximação de funções).

Função de saída:

$$\varphi_i(v) = v \tag{44}$$

Permite que a saída assuma qualquer valor real, o que é necessário para estimar variáveis contínuas.

- c) Para cada uma das condições do item (b) apresente a função custo a ser considerada no processo de treinamento de uma rede neural com múltiplas camadas em um processo de aprendizagem supervisionada.
 - (i) Classificação binária

Função custo L: Binary Cross-Entropy

$$\mathcal{L} = -[y \cdot \log(\hat{y}) + (1 - y) \cdot \log(1 - \hat{y})] \tag{45}$$

(ii) Classificação multiclasse

Função custo: Categorical Cross-Entropy

$$\mathcal{L} = -\sum_{i=1}^{K} y_i \cdot \log(\hat{y}_i)$$
(46)

(iii) Regressão

Função custo: Mean Squared Error

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 \tag{47}$$

- 4) O algoritmo backpropagation é o algoritmo base no processo de treinamento de redes neurais do tipo: rede perceptron de múltiplas camadas (MLP), rede convolucional (CNN), rede recorrente (ex: LSTM).
- (i) Apresente a dedução do algoritmo para uma rede perceptron de múltiplas camadas com múltiplas variáveis de entradas e múltiplas variáveis de saída.

4-(3)				
A motivoção p	amtiragle o aro	de bock proposa	osilouto a 'e noit	ção dos persos mais
comoder ocultars. A	té entre outres	ore raigistantra	l subagurque m	principal intuição é
a de retropropoção				
U múcho de :	bramamento de	uma rede muu	rimin 'e 91M las	mizar a função
curto E(m). Tombér				
				mi - im besiteba : ome
·				alzação dos pusos dos
'				reviraltar que "j"
representa a comod				
·				ónio da comada parmada.
		0		
* A Junção co	wite, musti carso o	a MSE, a' dod	a. po1:	
	$(m) = \sum_{i=1}^{n} \sum_{k \in C} e_{i}^{2}$		'	
	- 2 } EC 8			
* Swa e, 0	onne de mouranie	e i ma campo	la de meida da	rede Ando nor:
	$y(m) = dy(m) - y_0$, , , , , , , , , , , , , , , , , , ,
	oção interna de e			
	$(m) = \sum_{i=0}^{p} w_{i}(m)$			
* Soida de mu	7.0	7;		
88	$\mu(m) = \mu(m_{\xi}(m))$			

	0 2	setimo é	, mimi	ті Зал	٤(m)	em.	Junção	dor	gambo	2 Mima	pticon	(puro	2) ω,.	(m).	
Pozo				metod			•		U				0 -		
, 0. 30	ar = 40)			1) = u											
		*	. W (M +	·1) = w		781m	_								
						0									
	Segund	o rug	gra da	codeic	λ:										
	*	28(m) = —,	<u>3E(m)</u>	, <u> </u>	<u>} (m)</u>	34°(W)	3 W	} (m)						
		3Wzi(m)	96 ² (w) 90	} } (m)	9 m² (u	u) 9 n	η ^λ ? (ω)						
	*	<u>∂</u> ε(m)	=	_ 3	1	\(\sum_{100}^{\text{o}} \)	$e_{\lambda}^{2}(m)$	= e _x (΄m)						
		969(4	ი)	963(4	1 2	Je C	$e_{\lambda}^{2}(m)$	U							
	*	3ex(w) =	3	[q [,]	(m) -	y z(m)]	= ~	1						
	7	3 yz	(m)	9 h³(u	n)		00								
		2 11	(m)	2 12	Conto	1)	(0) (0	(m 1)							
	*	3 W.	(m) =	- ο Ψ 	γ (m) (m)		ψ; (w	, '' <i>'</i>							
	*	۶ m² (ع مه ((m) =	9 m³!(m) = = = = = = = = = = = = = = = = = = =	O W	(m) y	(w)] :	= y;(m]					
		JAy	,	3											
	Derve	abom	y 1												
		2E(m) =	-е _з (п	n) φ _γ '(π	տ(ա)) դ); (m)								
		3Wz:1		U	J										

Tem	nor qui,											
	\(\mathbb{W}_{\beta}, (m) =	-η(m) a	= (m)3	η(m) γ,	(m) y	(m)						
	0		9m ^{2;} (w)		U							
	γ /m)	78 (M) -	- 3 E (m)	Je (m)	200	(m)						
	\(\gamma_{f}(m) = -	9 m³(w)	9 G'(w)	9 ht/(w) 9w,	(m)						
	Y _y (m) ,	definido a	como o g	pradiente	lecal.							
* Convid	momdo agero	om a u	reurônio j	tru võm	á ma	connoda	de vo	úda, e	u rya	mão.	ر ر	
o obilor	orugeu rolou	de d _e (m)	, remote or	nsim,	e mad	a, bas	സ്ക്വ റ	alcular	diretam	o stru		
vuo e, (m												
ð				,			4.1					
	x(m) = -	9 h s (w) 9 h	(m) = -	343(w)	41031	(117)	1					
Sande	,											
	$\mathcal{E}(m) = \frac{1}{2}$	EC e2 (m)										
	2											
Com	e _x rendo	e erre d	a muliamia	da car	mada	reguinte	, par	שרעינו	a waw	ı da		
: magabrala	back propaga	tion.				-	·					
Lego,												
L 600 ,			20 ()	T	,			,	()			
	34 ³ (w) = 3	∠, e _K (m)	9 h (w) =	KEC KEC	(m) 3	9 Uz (~)	9 m · ((m)	(2)			
			U			ZIOK (III)	~ 7 }	()				

Inde J
$e_{\kappa}(m) = d_{\kappa}(m) - \psi_{\kappa}(m) = d_{\kappa}(m) - \psi_{\kappa}(v_{\kappa}(m))$
micral
$\partial e_{\kappa}(m) = -\varphi_{\kappa}'(\kappa(m))$ (3)
300K(W)
emos que,
$\frac{\partial \mathcal{N}_{\kappa}(m)}{\partial \mathcal{Y}_{\delta}(m)} = \frac{\partial}{\partial \mathcal{Y}_{\delta}(m)} \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} = 0 \end{array} \right] = \omega_{\kappa_{\delta}}(4)$
a y j (m) b j j (m)
Substituindo (3) 2 (4) em (2):
$\frac{\partial \mathcal{E}(m)}{\partial y_{\lambda}(m)} = -\sum_{\kappa \in \mathbf{C}} e_{\kappa}(m) \varphi_{\kappa}'(n \mathcal{E}(m)) \omega_{\kappa \lambda}$
Lem,
$\gamma_{\kappa}(m) = e_{\kappa}(m) \varphi_{\kappa}^{\gamma}(\kappa(m))$
mtão.
$\frac{\partial \mathcal{E}(m)}{\partial y_{s}(m)} = -\sum_{\kappa \in \mathbf{C}} \gamma_{\kappa}(m) w_{\kappa y} \tag{5}$

Sendo	92715im	rluce , i	drintit	B (5)	me	1),]	Temas	In '				
	γ (m)) ₌ 5	V ()	10	1 (00 (00	1)						
	81111) = <u>S</u> KE C	, 1 ^K (w)	WK y Y	<i>y</i>	J.J						
natrog	<i>t</i> e,											
	(- 0 (m	ر) (ما	× (m1)		r						
γ, ((m) = 5	e _g (m) Σγ	Ψχι) % [[[]] /	; ye							
8		$\sum \gamma$	(m) W,	, φ, (oy,(m))	; 36	С					
		KEC		0 0	8	0 '						
۸,	+	1		۲، ۲		ا ماد						
Û'n	ofms m	r dor	brigs	Iganice	ን ረ ዉን	COOL	D01:					
	W (m	+() =	w (m) + n(m) Y, (m) uz: (a	n) . (ierra 1	(m) pec	ulimo.		
	8^	·	8,		, , ,	0,1			, , , ,	(

(ii) Apresente o pseudo código do algoritmo

A seguir está o pseudocódigo apresentado pelo Goodfellow:

Após a computação direta (forward pass), calcule o gradiente na camada de saída:

$$g \leftarrow \Delta_{\hat{y}} L(\hat{y}, y)$$

for
$$k = l, l - 1, ..., 1$$
 do:

- Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):
- $g \leftarrow g \odot f'(a^{(k)})$
- Compute gradients on weights and biases (including the regularization term, where needed):
- $\Delta_{h(k)}J = q + \lambda \Delta_{h(k)}\Omega(\theta)$
- $\Delta_{W^{(k)}}J = gh^{(k-1)T} + \lambda \Delta_{W^{(k)}}\Omega(\theta)$
- Propagate the gradients w.r.t. the next lower-level hidden layer's activations:
- $g \leftarrow W^{(k)T}g$

end for

Pseudocódigo alternativo com notação do gradiente local:

Após a computação direta (forward pass), calcule o erro no neurônio de saída:

Para cada neurônio j na camada de saída:

$$_j(n) \leftarrow e_j(n) \cdot '_j(v_j(n))$$

Para cada camada oculta m = 11, 12, ..., 1:

Para cada neurônio j na camada m:

$$_j(n) \leftarrow _k _k(n) \cdot w_k j(n) \cdot '_j(v_j(n))$$

Para cada peso w_ji(n) conectando o neurônio i da camada anterior ao neurônio j: w_ji(n+1) \leftarrow w_ji(n) + (n) \cdot _j(n) \cdot y_i(n)

(iii) Pesquise apresente um estudo da implementação computacional do algoritmo backpropagation para deep learning fazendo uso de tensores e computação gráfica.

Link para o GitHub com a solução proposta.

Resposta para a questão 5: Link para o GitHub com as soluções prospostas.

Trabalho abordando a aplicação de redes neurais do tipo perceptron de múltiplas camadas nos Transformers para a área de linguagem natural.

Link para o GitHub com o estudo de caso.

Link para o GitHub com a apresentação do estudo de caso.