Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick Facebook Al Research (FAIR) Published in 2020 CVPR

발제자: 윤예준

목차

- Introduction
 - MoCo outline
 - MoCo Motivate
 - Pretext Task
- Method
 - InfoNCE
 - Momentum Contrast
 - Technical details
 - Shuffling BN
- Experiments & Results
- Improved Baselines with Momentum Contrastive Learning

1. Introduction

MoCo (Momentum Contrast) outline

- Dynamic Dictionary 구축
 - "This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning."
- Hypothesis
 - 1. "Good features can be learned by a large dictionary that covers a rich set of negative samples." => Dictionary as a queue
 - 2. "The encoder for the dictionary keys is kept as consistent as possible despite its evolution." => Momentum update
- InfoNCE loss 사용
- Pretext task and downstream vision tasks results

1. Introduction

MoCo Motivate

이전 학습 방식의 문제점

1. Introduction

Pretext Task

• 연구자가 직접 정의한 task

- Instance Discrimination Task[61]
 - Positive pair: same image
 - Negative pair: Otherwise

5

InfoNCE

- NCE (Noise-Contrastive Estimation)
 - Target data를 target이 아닌 data와 비교하여 정답 확률 추정하는 방법
- InfoNCE

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

- q = query sample
- k = Key sample
- τ = hyperparameter 0.07

Momentum Contrast – Dictionary as a queue

- Maintaining the dictionary as a queue of data samples
- Reusing the encoded keys from the immediate preceding mini-batches
- Decoupling the dictionary size from the mini-batch size
- Removing the oldest mini-batch in queue

Momentum Contrast – Momentum update

Momentum update

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}.$$

Momentum update experiment

$momentum\; m$	0	0.9	0.99	0.999	0.9999	
accuracy (%)	fail	55.2	57.8	59.0	58.9	_

Momentum Contrast – Relations to previous mechanisms

Comparison of three contrastive loss mechanisms under the ImageNet linear classification protocol

	R5	0-dilated-	-C5	R50-C4		
pre-train	AP ₅₀ AP AP ₇₅			AP ₅₀	AP	AP_{75}
end-to-end	79.2	52.0	56.6	80.4	54.6	60.3
memory bank	ank 79.8 5	52.9	57.9	80.6	54.9	60.6
MoCo	81.1	54.6	59.9	81.5	55.9	62.6

Comparison of three contrastive loss mechanisms on PASCAL VOC object detection

Technical Details

• Encoder와 data augmentation은 NPID[61] 셋팅 사용

ResNet

- last fully-connected layer (after global average pooling) has a fixed-dimensional output (128-D)
- Output vector is normalized by its L2-norm

Data Augmentation

- 224x224-pixel crop is taken from a randomly resize image
- Random color jittering
- Random horizontal flip
- Random grayscale conversion

[61]https://arxiv.org/abs/1805.01978v1

Shuffling BN

- Standard ResNet BN 사용 문제 => 좋은 표현 학습 방해[35]
 - BN이 적용된 배치 내에서 sample간의 Information leak이 생기면서 모델이 Pretext task에서 cheating을 하면서 low-loss solution을 쉽게 찾는 것 같다고 주장.
- 해결책으로 Shuffling BN 사용
 - Train with multiple GPUs and perform BN on the samples independently for each GPU.
 - For the key encoder f_k , we shuffle the sample order in the current mini-batch before distributing it among GPUs (and shuffle back after encoding)
 - the sample order of the mini-batch for the query encoder f_q is not altered.
 - This ensures the batch statistics used to compute a query and its positive key come from two different subsets.

[35] https://openreview.net/ pdf?id=rJerHlrYwH

MoCo 요약

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_q = aug(x) # a randomly augmented version
  x_k = aug(x) # another randomly augmented version
  q = f_q.forward(x_q) # queries: NxC
  k = f_k.forward(x_k) # keys: NxC
  k = k.detach() # no gradient to keys
   # positive logits: Nx1
  l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
  # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn.(1)
  labels = zeros(N) # positives are the 0-th
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
  loss.backward()
  update(f_q.params)
   # momentum update: key network
  t_k.params = m*t_k.params+(1-m)*t_q.params
   # update dictionary
  enqueue (queue, k) # enqueue the current minibatch
  dequeue (queue) # dequeue the earliest minibatch
```

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Dataset

- ImageNet-1M (IN-1M)
 - 1.28 million images in 1000 classes
 - Well-balanced in class distribution
 - Images generally contain iconic view of objects
- Instagram-1B (IG-1B)
 - 1 billion (940M) public images from Instagram
 - Images from ~1500 hashtags that are related to the ImageNet categories
 - Relatively uncurated comparing to IN-1M
 - Long-tailed, unbalanced distribution of real-world data
 - Contains bot Iconic objects and scene-level images

Training

- Optimizer
 - SGD
 - 0.0001 decay and 0.9 SGD momentum
- IN-1M
 - 256 mini-batch
 - initial learning rate 0.03
 - 200 epoch
 - Learning rate multiplied by 0.1 at 120 and 160 epochs
 - 8 GPU
- IG-1B
 - 1024 mini-batch
 - Initial learning rate 0.12
 - Exponentially decayed by 0.9 x after every 62.5k iterations (64M images)
 - 1.25 iterations(~.14 epochs of IG-1B)
 - 64 GPU

Linear Classification Protocol

method	architecture	#params (M)	accuracy (%)
Exemplar [17]	R50w3×	211	46.0 [38]
RelativePosition [13]	R50w2×	94	51.4 [38]
Jigsaw [45]	R50w2×	94	44.6 [38]
Rotation [19]	Rv50w4×	86	55.4 [38]
Colorization [64]	R101*	28	39.6 [14]
DeepCluster [3]	VGG [53]	15	48.4 [4]
BigBiGAN [16]	R50	24	56.6
	Rv50w4×	86	61.3
methods based on con	trastive learning	follow:	
InstDisc [61]	R50	24	54.0
LocalAgg [66]	R50	24	58.8
CPC v1 [46]	R101*	28	48.7
CPC v2 [35]	R170*	303	65.9
CMC [56]	R50 _{L+ab}	47	64.1 [†]
	$R50w2\times_{L+ab}$	188	68.4 [†]
AMDIM [2]	AMDIM _{small}	194	63.5 [†]
	AMDIM _{large}	626	68.1 [†]
МоСо	R50	24	60.6
	RX50	46	63.9
	R50w2×	94	65.4
	R50w4×	375	68.6

Transferring Features

pre-train	AP ₅₀	AP	AP ₇₅
random init.	64.4	37.9	38.6
super. IN-1M	81.4	54.0	59.1
MoCo IN-1M	81.1 (-0.3)	54.6 (+0.6)	59.9 (+0.8)
MoCo IG-1B	81.6 (+0.2)	55.5 (+1.5)	61.2 (+2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train	AP ₅₀	AP	AP ₇₅
random init.	60.2	33.8	33.1
super. IN-1M	81.3	53.5	58.8
MoCo IN-1M	81.5 (+0.2)	55.9 (+2.4)	62.6 (+3.8)
MoCo IG-1B	82.2 (+0.9)	57.2 (+3.7)	63.7 (+4.9)

(b) Faster R-CNN, R50-C4

			AP_{50}	AP	AP ₇	5		
pre-train	RelPos, by [14]	Multi-task [14]	Jigsaw, by [26]	LocalAgg [66]	MoCo	MoCo	Multi-task [14]	MoCo
super. IN-1M	74.2	74.2	70.5	74.6	74.4	42.4	44.3	42.7
unsup. IN-1M	66.8 (-7.4)	70.5 (-3.7)	61.4 (-9.1)	69.1 (-5.5)	74.9 (+0.5)	46.6 (+4.2)	43.9 (-0.4)	50.1 (+7.4)
unsup. IN-14M	-	-	69.2(-1.3)	-	75.2 (+0.8)	46.9 (+4.5)	-	50.2 (+7.5)
unsup. YFCC-100M	-	-	66.6(-3.9)	-	74.7 (+0.3)	45.9 (+3.5)	-	49.0 (+6.3)
unsup. IG-1B	-	-	-	-	75.6 (+1.2)	47.6 (+5.2)	-	51.7 (+9.0)

Table 4. Comparison with previous methods on object detection fine-tuned on PASCAL VOC trainval2007. Evaluation is on

4. Improved Baselines with Momentum Contrastive Learning

Improved Baselines with Momentum Contrastive Learning

저자: Xinlei Chen, Haoqi Fan, Ross Girshick, Kaiming He

소속: Facebook Al Research (FAIR)

4. Improved Baselines with Momentum Contrastive Learning

SimCLR 핵심 요소 3가지

- 1. Large batch, longer training
- 2. Stronger augmentation(color distortion, random resize crop, blur 등)
- 3. MLP projection head

4. Improved Baselines with Momentum Contrastive Learning

MoCo 성능 향상 방법

- SimCLR 핵심 요소 2, 3 이용
 - Stronger augmentation
 - MLP projection head
- Cosine learning rate scheduler 적용

		unsup. 1	pre-tra	iin	ImageNet	vo	C detec	tion
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	\checkmark		200	67.3	82.5	57.2	63.9
(d)	✓	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for

		ImageNet						
case	MLP	aug+	cos	epochs	batch	acc.		
MoCo v1 [6]				200	256	60.6		
SimCLR [2]	✓	✓	\checkmark	200	256	61.9		
SimCLR [2]	✓	\checkmark	\checkmark	200	8192	66.6		
MoCo v2	✓	✓	✓	200	256	67.5		
results of longe	results of longer unsupervised training follow:							
SimCLR [2]	✓	✓	✓	1000	4096	69.3		
MoCo v2	✓	\checkmark	\checkmark	800	256	71.1		

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy

	mechanism	batch	memory / GPU	time / 200-ep.
Ī	MoCo	256	5.0G	53 hrs
	end-to-end	256	7.4G	65 hrs
	end-to-end	4096	$93.0G^{\dagger}$	n/a

Table 3. **Memory and time cost** in 8 V100 16G GPUs, implemented in PyTorch. †: based on our estimation.