

Benchmarking Spike-Based Visual Recognition:

a Dataset, Evaluation and Algorithms

Qian Liu

Supervisor: Steve Furber

Co-Supervisor: David Lester

Adviser: Alvaro Fernandes

Background

- Spikes
- Spiking Neural Networks (SNNs)
- Special visual input for SNNs
 - e.g. DVS(Dynamic Vision Sensor)

DAVIS240: £3,346

Aims and Motivations

- Unified spiking data
- Meaningful comparisons
- Promoting future research

Authors	Data	Accuracy		
Matsugu et al. (2002)	Face plain images	98.3%		
Fu et al. (2012)	JAFFE plain images	97.35%		
O'Connor et al. (2013)	Poissonian Spiking MNIST	95.0%		
Bichler et al. (2012)	DVS recorded Car trajectories	98%		
Zhao et al. (2015)	DVS recorded Three postures	99.48%		

A Dataset: NE15-MNIST

- Unified spiking data
 - Poissonian generator
 - Rank order coding generator
 - DVS recorded flashing image
 - DVS recorded moving image

A Dataset: NE15-MNIST

- Meaningful comparisons
 - On the same data
 - Among SNNs
 - vs. conventional algorithms

A Dataset: NE15-MNIST

- Promoting future research
 - Poissonian: easier accessible
 - ROC: spatio-temporal pattern recognition
 - Flashing image: fast recognition
 - Moving image: invariant recognition

Evaluation on Spiking Vision Recognition

- Metrics on SNN models
 - Biological training time
 - Biological testing time
 - Response latency

	Preprocessing	Network Training		Recognition	
Brader et al. (2007)	None	Two layer, LIF neurons	Semi-supervised, STDP, calcium LTP/LTD	96.5%	
Beyeler et al. (2013)	None	V1 (edge), V4 (orientation), and competitive decision, Izhikevich neurons	Semi-supervised, STDP, calcium LTP/LTD	91.6% 300 ms per test	
Neftci et al. (2013)	Thresholding	Two layer RBM, LIF neurons	Event-driven contrastive divergence, supervised	91.9% 1 s per test	
Diehl and Cook (2015)	None	Two layers, LIF neurons, inhibitory feedback	Unsupervised, exp. STDP, 3,000,000 s of training 200,000 s per iteration	95%	
Diehl et al. (2015)	None	ConvNet or Fully connected, LIF neurons	Off-line trained with ReLU, weight normalization	99.1% (ConvNet), 98.6% (Fully connected); 0.5 s per test	
Zhao et al. (2015)	Thresholding or DVS	Simple (Gabor), Complex (MAX) and Tempotron	Tempotron, supervised	Thresholding 91.3%, 11 s per test DVS 88.1%, 2 s per test	

Evaluation on Spiking Vision Recognition

- Metrics on H/W platforms
 - Feasibility due to H/W limits
 - Simulation time
 - Energy use

	System	Neuron Model	Synaptic Plasticity	Precision	Simulation Time	Energy/Power Usage
SpiNNaker (Stromatias et al., 2013)	Digital, Scalable	Programmable Neuron/Synap Axonal delay		11- to 14-bit synapses	Real-time Flexible time resolution	8 nJ/SE 54.27 MSops/W
TrueNorth (Merolla et al., 2014)	Digital, Scalable	Fixed models, Config params, Axonal delay	No plasticity	122 bits params & states, 4-bit synapse ^a	Real-time	46 GSops/W
Neurogrid (Benjamin et al., 2014)	Mixed- mode, Scalable	Fixed models, Config params	Fixed rule	13-bit shared synapses	Real-time	941 pJ/SE
HI-CANN (Schem- mel et al., 2010)	Mixed- mode, Scalable	Fixed models, Config params	Fixed rule	4-bit synapses	Faster than real-time ^b	198 pJ/SE 13.5 MSops/W (network only)
HiAER- IFAT (Yu et al., 2012)	Mixed- mode, Scalable	Fixed models, Config params	No plasticity	Analogue neu- ron/synapse	Real-time	22-pJ/SE (Park et al., 2014) 20GSops/W

Benchmarking SNNs Algorithms

- state-of-the-art
 - 2-Layer STDP (Synaptic-timing dependent plasticity)
 - Spiking Deep Network (off-line training)
 - Spiking Convolutional Network(ConvNet) (off-line training)
- Case studies on H/W (SpiNNaker)
 - STDP online training
 - Spiking Deep Belief Network (SDBN) (Evangelos Stromatias)
 - Spiking ConvNet (1st year, and future work)

Case Study I: 2-layer STDP

Training

Testing

Case Study I: 2-layer STDP

Metrics on SNN models

- biological training time: 18,000s, 0.3s / image

- biological testing time: 1s / image

- response latency: 10.7ms

Metrics on H/W platforms

- feasibility due to H/W limits
- simulation time
- energy use

N: Nest	Subclasses	Accuracy (%)		Simulation (s)		Power Use (W)	
S: SpiNNaker	per digit	N	S	N	S	N	S
•	1	79.62	79.50	446.52		~ 20	0.38
	10	91.29	91.43	503.91		~ 20	0.38
	50	92.98	92.92	772.70	12,000	~ 20	0.41
	100	87.27	86.83	1142.39	,	~19	0.44
	1000	89.65	89.74	12585.28		~ 17	1.50

This work has been submitted to Frontiers in Neuromphic Engineering and is under interactive review.

Future Work: Towards the Robust Object Recognition

- state-of-the-art
 - 2-Layer STDP learned 1 case study
 - Spiking DBN (off-line training) online formalised training
 - Spiking ConvNet (off-line training) future case study
- My exploration on Spiking DBN
 - Restricted Boltzmann Machine (RBM)
 - Deep Belief Net
 - Future work: spiking RBM & DBN

Current work has been written down in a study report.

Potential Research Tasks Contrastive Divergence RBM Validation Maths of DBN Practical Training Methods Future Tasks Mean-Field Theory SRBM Structure STDP Learning for CD Layered STDP Learning

Questions?