μΑ741, μΑ741Υ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

- **Short-Circuit Protection**
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- **Low Power Consumption**
- No Latch-Up
- Designed to Be Interchangeable With Fairchild µA741

description

The µA741 is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The μA741C is characterized for operation from 0°C to $70^{\circ}\text{C}.$ The μA741I is characterized for operation from $\,-40^{\circ}\text{C}$ to 85°C.The μA741M is characterized for operation over the full military temperature range of -55°C to 125°C.

symbol

μΑ741M ... JG PACKAGE μΑ741C, μΑ741I . . . D, P, OR PW PACKAGE (TOP VIEW)

μΑ741M ... U PACKAGE (TOP VIEW)

μΑ741M . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

μ**Α741,** μ**Α741**Υ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

electrical characteristics at specified free-air temperature, $V_{CC\pm}=\pm15$ V, $T_A=25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	μΑ741Υ			
		. EST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 0		1	6	mV
ΔV _I O(adj)	Offset voltage adjust range	V _O = 0		±15		mV
lio	Input offset current	V _O = 0		20	200	пA
IB	Input bias current	V _O = 0	_	80	500	пA
VICR	Common-mode input voltage range		±12	±13		V
VOM	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	±12	±14		
		$R_L = 2 k\Omega$	±10	±13		\ \
AVD	Large-signal differential voltage amplification	R _L ≥ 2 kΩ	20	200		V/mV
η	Input resistance		0.3	2		MΩ
ro	Output resistance	V _O = 0, See Note 5		75		Ω
Ci	Input capacitance			1.4		pF
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	70	90		dB
ksvs	Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC})	V _{CC} = ±9 V to ±15 V	+	30	150	μV/V
los	Short-circuit output current		1	±25	±40	mА
lcc	Supply current	V _O = 0, No load	+	1.7	2.8	mA
PD	Total power dissipation	V _O = 0, No load	+	50	85	mW
All	-1-1			00	00	11164

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, $V_{CC}\pm$ = ±15 V, T_A = 25°C

	PARAMETER		TEST CONDITIONS		μ Α741Y		
		1201 CONDITIONS		MIN	TYP	MAX	UNIT
tr	Rise time ,	$V_1 = 20 \text{ mV},$	$R_1 = 2 k\Omega$		0.3		μѕ
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%		
SR	Siew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1		0.5		V/µs

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

TYPICAL CHARACTERISTICS

MAXIMUM PEAK OUTPUT VOLTAGE

vs **FREQUENCY** ±20 V_{CC+} = 15 V VOM - Maximum Peak Output Voltage - V ±18 VCC- = -15 V $R_L = 10 \text{ k}\Omega$ ±16 TA = 25°C ±14 ±12 ±10 ±8 ±6 ±4 ±2 0 100 1k 10k 100k 1M f - Frequency - Hz

Figure 6

OPEN-LOOP SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

Figure 7

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

VS **FREQUENCY** 110 V_{CC+} = 15 V 100 90 A_{VD} – Open-Loop Signal Differential Voltage Amplification – dB V_O = ±10 V = 2 kΩ 70 60 50 40 30 20 10 0 10k 100k 10M f - Frequency - Hz

μΑ741, μΑ741Υ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

are distributed