UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2022/2 Prova da área IIA

1 - 4	5	6	Total

Nome:	Cartão:
Nome:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet~$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:	
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$
$senh(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-1}$	$-jb^j$, $\binom{n}{j} = \frac{n!}{j!(n-j)!}$
gam(m a) = gam(m)	202(21) 202(21) 202(21)

$\operatorname{sen}(x+y) =$	sen(x)cos(y) + sen(y)cos(x)	
$\cos(x+y) =$	$\cos(x)\cos(y) - \sin(x)\sin(y)$	

Propriedades:

r ropi	iedades:	
1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{ (f*g)(t) \right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

 Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, \ m \neq 0, 1, 2, \dots$

Funções especiais:

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

Integrais

Integrais:
$\int xe^{\lambda x} \mathrm{d}x = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$
$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$

Tabela de transformadas de Laplace:

Tabel	a de transformadas de Laplace:	
	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1}{s}$ $\frac{1}{s^2}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$ $\frac{1}{\sqrt{\pi t}}$
4	$\frac{1}{\sqrt{s}}$,	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{\sqrt{s}},$ $\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{rac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$	e^{at}
8	$\frac{s-a}{1 \over (s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}, \qquad (n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	$\frac{1}{s^2 + w^2}$	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$ \frac{1}{s^2 + w^2} $ $ \frac{s}{s^2 + w^2} $ $ \frac{1}{s^2 - a^2} $ $ \frac{s}{s^2 - a^2} $	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt\cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s^2}{(s^2+w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\operatorname{cosh}(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
	$\frac{s}{(s^4-a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$ $\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$rac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$rac{1}{s^{rac{3}{2}}}e^{rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} & \text{sen}(wt), & 0 < t < \frac{\pi}{w} \\ & 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 Sejam y(t) tal que $2y + 3 \int_0^t e^{t-\tau} y(\tau) d\tau = 6$, $t \ge 0$ e sua transformada de Laplace Y(s).

É correto: (0.8pt)

()
$$Y(s) = \frac{6}{2s+3}$$

()
$$Y(s) = \frac{6(s-1)}{s(2s+1)}$$

()
$$Y(s) = \frac{6(s+1)}{s(2s+5)}$$

()
$$Y(s) = \frac{6(s-1)}{s(2s-1)}$$

() nenhuma das anteriores

É correto: (0.8pt)

()
$$y(t) = 9e^{t/2} - 6$$

()
$$y(t) = 3e^{-t/2}$$

()
$$y(t) = 9e^{-3t/2} - 6$$

()
$$y(t) = 9e^{-t/2} - 6$$

() nenhuma das anteriores

• Questão 2 Considere y(t) tal que $\begin{cases} y' + 2y = e^{-2t}, & t > 0 \\ y(0) = 2 \end{cases}$ e sua transformada de Laplace Y(s).

É correto: (0.8pt)

$$(\)\ Y(s) = \frac{1}{(s+2)^2}$$

()
$$Y(s) = \frac{2}{s+2} + \frac{1}{(s+2)^2}$$

()
$$Y(s) = \frac{2}{s} + \frac{1}{(s+2)^2}$$

()
$$Y(s) = -\frac{2}{s+2} + \frac{1}{(s+2)^2}$$

() nenhuma das anteriores

É correto: (0.8pt)

()
$$y(t) = 2e^{-2t} + te^{-2t}$$

()
$$y(t) = te^{-2t}$$

()
$$y(t) = 2 + te^{-2t}$$

$$(y(t)) = -2e^{-2t} + te^{-2t}$$

() nenhuma das anteriores

• Questão 3 Seja y(t) tal que $\begin{cases} y'' - y = te^{-t}, & t > 0 \\ y(0) = -1, y'(0) = 1 \end{cases}$ e sua transformada de Laplace Y(s).

É correto: (0.8pt)

()
$$Y(s) = -\frac{1}{s+1} + \frac{1}{(s-1)(s+1)^2}$$

()
$$Y(s) = -\frac{1}{s+1} + \frac{1}{(s+1)^2}$$

()
$$Y(s) = \frac{1}{s+1} - \frac{1}{(s-1)(s+1)^2}$$

()
$$Y(s) = \frac{1}{s+1} - \frac{1}{(s+1)^3}$$

() nenhuma das anteriores

É correto: (0.8pt)

$$(y(t)) = \frac{e^t}{4} - \frac{5e^{-t}}{4} - \frac{te^{-t}}{2}$$

()
$$y(t) = \frac{e^t}{4} - \frac{e^{-t}}{4} - \frac{te^{-t}}{2}$$

()
$$y(t) = \frac{e^t}{8} - \frac{e^{-t}}{8} - \frac{te^{-t}}{4} - \frac{t^2e^{-t}}{4}$$

$$(y(t)) = \frac{e^t}{8} - \frac{9e^{-t}}{8} - \frac{te^{-t}}{4} - \frac{t^2e^{-t}}{4}$$

() nenhuma das anteriores

• Questão 4A(0.6pt) O PVI impulsivo con	$\mathbf{q} = \mathbf{Quest\tilde{ao}} \mathbf{4B}(0.6\mathrm{pt}) \text{Sendo} u(t) \mathbf{a}$
$(-\alpha' + 2\alpha) = 2\delta(4)$	á função degrau unitário e sabando que
equivalente a qual dos abaixo:	$\begin{cases} y' + 3y = u(t) - u(t-1) \\ y(0) = 0 \end{cases}$, é correto afirmar:
$ () \begin{cases} y' + 3y = 0 \\ y(0) = 1 \end{cases} $	() $y(t) = \frac{1 - e^{-3t}}{3} - \left(\frac{1 - e^{-3(t-1)}}{3}\right) u(t-1)$
$ () \begin{cases} y' + 3y = 0 \\ y(0) = 3 \end{cases} $	() $y(t) = -\frac{e^{-3t}}{3} + \frac{e^{-3(t-1)}}{3}u(t-1)$
$ () \begin{cases} y' + 3y = 0 \\ y(0) = -3 \end{cases} $	() $y(t) = \frac{1 - e^{-3t}}{3} + \left(\frac{1 - e^{-3(t-1)}}{3}\right) u(t-1)$
$ () \begin{cases} y' + 3y = 0 \\ y(0) = e^3 \end{cases} $	() $y(t) = 1 - e^{-3t} - (1 - e^{-3(t-1)})u(t-1)$
() nenhum dos anteriores	() nenhuma das anteriores está correta
• Questão 5 (2.0 pontos) Sabendo $x(0) = 2$, $y(0) = 2$	
$\begin{cases} \frac{dx}{dt} = -2x + 3y \\ \frac{dy}{dt} = -3x + 2y \end{cases} $ para $t > 0$, usando transfe	ormadas de Laplace $X(s)$ e $Y(s)$.

 $\begin{cases} y'+2y=f(t) &, t>0 \\ y(0)=0 \end{cases}$ onde f(t), que depende de um parâmetro positivo a, é determinada como abaixo:

6A.(1.0pt) Obtenha $F(s) = \mathcal{L}(f)$ para a > 0. **6B.**(1.0pt) Obtenha a solução y(t), usando a resposta de **6A**, para a = 1.

t
l a 2a Bom Trabalho