

Week 12

Machine learning — Decision Trees and Clustering

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 1: Python Basics: How to Translate
 Procedures into Codes
- ❖ Week 2: Intermediate Python Data structures for Your Analysis
- Week 3: Relational Databases Where Big Data is Typically Stored
- Week 4: SQL Ubiquitous Database
 Format/Language
- Week 5: Statistical Distributions The Shape of Data
- Week 6: Sampling When You Can't or Won't
 Have ALL the Data

- Week 7:Hypothesis Testing Answering Questions about Your Data
- Week 8: Data Analysis and Visualization Using Python's NumPy for Analysis
- Week 9: Data analysis and visualization Using Python's Pandas for Data Wrangling
- Week 10: Text Mining Automatic Understanding of Text
- Week 11: Machine learning Basic Regression and Classification
- ♦ Week 12: Machine learning Decision Trees and Clustering

Decision Trees

- Decision trees are tree structures containing rules
- The leaf nodes of the tree are the "learned" categories (or threshold values)
- · A path from the root to a leaf node represents a rule

Example: A decision tree with rules on deciding who survived or died on the titanic

Source: https://en.wikipedia.org/wiki/Decision_tree_learning#/media/File:CART_tree_titanic_survivors.png

- To use the tree, enter a person-data object and you'll get an answer
- Ex: ("John Brown", "Male", "30 years old", "3 siblings") Ans: Survived (89% probability)
- Ex: ("Jill Jones", "Female", "7 years old", "no siblings") Ans: Survived (73% probability)
- Ex: ("Hercules Mulligan", "Male", "2 years old", "20 siblings") Ans: Died (17% probability)
- Note that the 17% probability doesn't mean that there is an 83% chance that Mulligan survived!

Decision Trees


```
In [1]: from IPython.display import Image
    Image(filename = "CART_tree_titanic_survivors.png", width=400, height=400)
Out[1]:
```


Types of Decision Tree

- . Classification trees: Uses rules to classify cases into two or more categories (Rocks vs Mines)
 - Classification trees recursively split the data on a feature value
 - Each split minimizes the cost (also known as the impurity)
 - . Cost is commonly measured using the GINI cost function (a measure of the probability of misclassification or 'purity')
- Regression trees: Uses rules to group data into target variable ranges (Wine Quality)
 - · Also split the data on feature values
 - · Minimize cost (impurity). Usually the mean squared error

Predicting Wine Quality

Import the data

```
In []: url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
    import pandas as pd
    from pandas import DataFrame
    w_df = pd.read_csv(url,header=0,sep=';')
    w_df.describe()
```

Build train and test samples

```
In []: from sklearn.model_selection import train_test_split
    train, test = train_test_split(w_df, test_size = 0.3)
    x_train = train.iloc[0:,0:11]
    y_train = train[['quality']]
    x_test = test.iloc[0:,0:11]
    y_test = test[['quality']]

#Use all data for cross validation
    x_data = w_df.iloc[0:,0:11]
    y_data = w_df[['quality']]
    #x_data
    y_test
```

Classifier Vs. Regressor

Classifiers vs Regressors

- . Decision tree regressors are used when the target variable is continuous and ordered (wine quality from 0 to 10)
- · Classifiers are used when the target variable is a set of unordered categories (rocks or mines)

For wine quality, we need a regressor

Details: http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

```
In [5]: #Get the R-Square for the predicted vs actuals on the text sample
    print("Training R-Square", model.score(x_train,y_train))
    print("Testing R-Square", model.score(x_test,y_test))

Training R-Square 0.352621759288
Testing R-Square 0.281274761523
```

Classifier Vs. Regressor

Download and install graphviz https://graphviz.gitlab.io/download/

If you are having issues using Graphviz in Windows, then try the following steps:

- 1. 1. Install Graphviz
- 2. 2. After installing graphviz, add it to the Computer's Path.
 - · Go to PC properties
 - · Click environment variables in the advanced settings section
 - Add C:\Program Files (x86)\Graphviz2.38\bin\ to the PATH and click Apply
- 3. Install Pydotplus. Note that you will always have to install pydot after graphviz as Pydot is Graphviz's dot language and needs Graphviz for reference

Install pydotplus (using pip): Install graphviz before you install pydotplus!

In []: #!pip install pydotplus
In []: import pydotplus
feature_names = [key for key in w_df]
 dot_data = tree.export_graphviz(model.tree_, out_file=None, feature_names=feature_names)
 graph = pydotplus.graph_from_dot_data(dot_data)
 graph.write_pdf("wines.pdf")
 #The tree will be saved to wines.pdf in your current directory

Entropy Minimizers

Decision trees are Entropy minimizers

. Entropy: a measure of uncertainty in the data

what is the uncertainty in color when you draw a marble from a box of 100 blue marbles?

what is the uncertainty when you draw a marble from a box with 50 blue and 50 red marbles?

. Entropy minimization: decision tree algorithms seek to partition the data on features in the way that total entropy is minimized

Regression trees

- . Run regressions for each X to the dependent variable
- · Pick the variable with the most explanatory power and split it at several points
- . Calculate the Mean Square Error of each of the two halves for each split
- · Pick the split point that gives the lowest mse (combined)

Cross Validation

Cross validation is required to understand how robust is the model.

- Split the training set into k smaller sets (aka folds)
- Train the data on k-1 folds
- Validate the results on fold k
- Repeat this holding out each of the k folds in turn
- · Report the average of all tests as the performance metric
- http://scikit-learn.org/stable/modules/cross validation.html

Purpose of cross-validation

- · Not to generate a tree (it generates many trees!)
- But to provide an estimate of the average error of the model
- Roughly, the idea is to see how the model performance varies with different training sets
- · To generate the tree, use the entire training set as before

```
In [8]: from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold

In [9]: #from sklearn.cross_validation import cross_val_score
    #from sklearn.cross_validation import KFold
    crossvalidation = KFold(n_splits=5,shuffle=True, random_state=1)
```

```
In [10]: from sklearn import tree
          import numpy as np
          for depth in range(1,10):
             model = tree.DecisionTreeRegressor(
             max depth=depth, random state=0)
             if model.fit(x_data,y_data).tree_.max_depth < depth:</pre>
             score = np.mean(cross val score(model, x data, y data, scoring='neg mean squared error', cv=crossvalidation, n jobs=
             print ('Depth: %i Accuracy: %.3f' % (depth, score))
         Depth: 1 Accuracy: -0.548
         Depth: 2 Accuracy: -0.512
         Depth: 3 Accuracy: -0.482
         Depth: 4 Accuracy: -0.482
          Depth: 5 Accuracy: -0.480
         Depth: 6 Accuracy: -0.493
         Depth: 7 Accuracy: -0.535
         Depth: 8 Accuracy: -0.573
         Depth: 9 Accuracy: -0.600
```

Classification Tree

Classification trees are used when dealing with categorical dependent variables

· Pick a variable and a split point so that the misclassification cost is the lowest.

Rocks and Mines Data Set

```
In [11]: import pandas as pd
          from pandas import DataFrame
         url="https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data"
         df = pd.read csv(url, header=None)
         df[60]=np.where(df[60]=='R',0,1)
          df.describe()
                                                                          In [13]: from sklearn.tree import DecisionTreeClassifier
In [12]: from sklearn.model selection import train test split
                                                                                    from sklearn import tree
         train, test = train test split(df, test size = 0.3)
         x train = train.iloc[0:,0:60]
                                                                                    model = DecisionTreeClassifier(max depth = 3,criterion='entropy')
         y train = train[[60]]
                                                                                    model.fit(x train,y train)
         x test = test.iloc[0:,0:60]
                                                                          Out[13]: DecisionTreeClassifier(class weight=None, criterion='entropy', max depth=3,
         y test = test[[60]]
                                                                                                max features=None, max leaf nodes=None,
         y train
                                                                                                min impurity split=le-07, min samples leaf=1,
                                                                                                min samples split=2, min weight fraction leaf=0.0,
Out[12]:
             60
                                                                                                presort=False, random state=None, splitter='best')
          78
             0
          133 1
                                                        In [14]: import pydotplus
                                                                  feature names = [key for key in df]
          12 0
                                                                  dot data = tree.export graphviz(model.tree , out file=None, feature names=feature names)
                                                                  graph = pydotplus.graph_from_dot data(dot data)
          163 1
                                                                  graph.write pdf("mines.pdf")
          95 0
                                                                  #The tree will be saved to mines.pdf in your current directory
                                                        Out[14]: True
```


Confusion Matrix


```
In [15]: def confusion matrix(predicted, actual, threshold):
             if len(predicted) != len(actual): return -1
             tp = 0.0
             fp = 0.0
             tn = 0.0
             fn = 0.0
             for i in range(len(actual)):
                 if actual[i] > 0.5: #labels that are 1.0 (positive examples)
                     if predicted[i] > threshold:
                         tp += 1.0 #correctly predicted positive
                     else:
                         fn += 1.0 #incorrectly predicted negative
                 else:
                                    #labels that are 0.0 (negative examples)
                     if predicted[i] < threshold:
                         tn += 1.0 #correctly predicted negative
                     else:
                         fp += 1.0 #incorrectly predicted positive
             rtn = [tp, fn, fp, tn]
             return rtn
```

```
In [16]: p_train=model.predict(x_train)
    p_test = model.predict(x_test)
    print(confusion_matrix(p_train,np.array(y_train),.5))
    print(confusion_matrix(p_test,np.array(y_test),.5))

[60.0, 23.0, 2.0, 60.0]
    [18.0, 10.0, 3.0, 32.0]
```

```
In [17]: from sklearn.metrics import roc_curve,auc
    import pylab as pl
    *matplotlib inline
    (fpr, tpr, thresholds) = roc_curve(y_train,p_train)
    area = auc(fpr,tpr)
    pl.clf() #Clear the current figure
    pl.plot(fpr,tpr,label="In-Sample ROC Curve with area = %1.2f"%area)

pl.plot([0, 1], [0, 1], 'k') #This plots the random (equal probability line)
    pl.xlim([0.0, 1.0])
    pl.xlim([0.0, 1.0])
    pl.xlabel('False Positive Rate')
    pl.ylabel('True Positive Rate')
    pl.title('In sample ROC rocks versus mines')
    pl.legend(loc="lower right")
    pl.show()
```


Confusion Matrix

We can pick a model by looking at the threshold, the cost, and decide which methodology is better. Cross validation can be helpful to identify other methods to improve decision tree's results.

Clustering Algorithms

Unsupervised learning

- The algorithm tries to group similar data together (clusters)
- · Using the values of the feature space

K-Means Clusterng

- · partitions the dataspace into clusters
- · minimizes distance between the mean of a cluster and the data points
- the desired number of clusters must be known in advance

Image recognition dataset

- Digits 0-9 pixelated into 64 quadrants
- Each value represents the area that is shaded

Do imports

```
In [2]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_digits
from sklearn.preprocessing import scale
```

Load data

scale the data to normal distribution

```
In [4]: data = scale(digits.data)
In [5]: data
                          , -0.33501649, -0.04308102, ..., -1.14664746,
Out[5]: array([[ 0.
                -0.5056698 , -0.19600752],
                           , -0.33501649, -1.09493684, ..., 0.54856067,
                -0.5056698 , -0.19600752],
                          , -0.33501649, -1.09493684, ..., 1.56568555,
                 1.6951369 , -0.19600752],
               ...,
                          , -0.33501649, -0.88456568, ..., -0.12952258,
                -0.5056698 , -0.19600752],
                          , -0.33501649, -0.67419451, ..., 0.8876023 ,
                -0.5056698 , -0.19600752],
                           , -0.33501649, 1.00877481, ..., 0.8876023 ,
               10.
                -0.26113572, -0.1960075211)
```


Render the digit images and their associated values

Training and Testing Samples

```
In [9]: from sklearn.model selection import train test split
        X train, X test, y train, y test, images train, images test = train test split(
                data, digits.target, digits.images, test size=0.25,
                  random state=42)
        n samples, n features = X train.shape
        n digits = len(np.unique(y train))
        labels = y train
        labels
Out[9]: array([5, 2, 0, ..., 2, 7, 1])
In [10]: from sklearn.model selection import train test split
        X train, X test, y train, y test, images train, images test = train test split(
                data, digits.target, digits.images, test size=0.25,
                  random state=42)
        n samples, n features = X train.shape
        n digits = len(np.unique(y train))
         labels = y train
        X train
Out[10]: array([[ 0. , -0.33501649, -0.67419451, ..., -1.14664746,
                -0.5056698 , -0.19600752],
               [ 0. , 5.17802955, 2.2710018 , ..., -0.12952258,
                -0.26113572, -0.19600752],
               [ 0. , -0.33501649, -0.25345218, ..., -0.80760583,
In [11]: len(np.unique(y train))
Out[11]: 10
```


Create the model and fit the data

k-means++ runs an initializer before using the k-means algorithm

```
In [ ]: images train
```


Returned labels are cluster numbers

```
In [14]: print_digits(images_train, clf.labels_, max_n=20)

5 2 0 8 7 3 7 0 2 2 7 5 8 7 3 6 5

1 3 2 0 6 8 6 2 3 3 8 8 8 6 8 4 8
```

Use test sample to generate predictions

Evaluating the Model

Evaluating the model

- Adjusted rand index: A measure of the similarity between two groups
- . We'll use it to see how similar the y_test actuals and predicted groupings are
- https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
- 0.0 indicates that there is no similarity and any overlap is explainable as totally random
- · 1.0 indicates that the two groups are identical

```
In [18]: from sklearn import metrics
    print("Adjusted rand score: {0:2}".format(metrics.adjusted_rand_score(y_test, y_pred)))
    Adjusted rand score: 0.5674467844660916
```


Confusion matrix

- Each row corresponds to a number (y_test)
- Each column to y_pred (the cluster number)
- . Data is the number of times y_test was assigned to the corresponding y_pred
- For example, 0 is fully assigned to cluster 2 (Row 0, Column 2)
- 8 is assigned to cluster 0 21 times (Row 8, Column 0)
- 7, which is cluster 6 is assigned to cluster 6 34 times (Row 7, Column 6)

```
In [19]: print(metrics.confusion_matrix(y_test, y_pred))

[[ 0  0  43  0  0  0  0  0  0  0]
[20  0  0  7  0  0  0  10  0  0]
[5  0  0  31  0  0  0  1  1  0]
[1  0  0  1  0  1  4  0  39  0]
[1  50  0  0  0  0  1  2  0  1]
[1  0  0  0  1  41  0  0  16  0]
[0  0  1  0  44  0  0  0  0  0]
[0  0  0  0  0  1  34  1  0  5]
[21  0  0  0  0  0  3  1  2  11  0]
[0  0  0  0  0  0  2  3  3  40  0]]
```

Graphical Views of the Clusters

COLUMBIA ENGINEERING EXECUTIVE EDUCATION

- First reduce the x dimensions to 2 using principle component analysis
- https://en.wikipedia.org/wiki/Principal componenent analysis
- Then figure out the range of values and define the grid
- · Run k-means on the reduced (2 component) data set
- Draw a color map and plot the pca points on this map
- Find the cluster centroids and plot them on the color map

```
In [ ]: from sklearn import decomposition
        pca = decomposition.PCA(n components=2).fit(X train)
        reduced X train = pca.transform(X train)
        # Step size of the mesh.
        h = .01
        # point in the mesh [x min, m max]x[y min, y max].
        x min, x max = reduced X train[:, 0].min() + 1, reduced X train[:, 0].max() - 1
        y min, y max = reduced X train[:, 1].min() + 1, reduced X train[:, 1].max() - 1
        xx, yy = np.meshgrid(np.arange(x min, x max, h),
            np.arange(y_min, y_max, h))
        kmeans = cluster.KMeans(init='k-means++', n clusters=n digits,
            n init=10)
        kmeans.fit(reduced X train)
        Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.figure(1)
        plt.clf()
        plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max
        plt.plot(reduced X train[:, 0], reduced X train[:, 1], 'k.',
            markersize=2)
        # Plot the centroids as a white X
        centroids = kmeans.cluster centers
        plt.scatter(centroids[:, 0], centroids[:, 1], marker='.',
            s=169, linewidths=3, color='w', zorder=10)
        plt.title('K-means clustering on the digits dataset (PCA reduced data)\nCentroids as
        plt.xlim(x min, x max)
        plt.ylim(y min, y max)
        plt.xticks(())
        plt.yticks(())
        plt.show()
```

K-means clustering on the digits dataset (PCA reduced data) Centroids are marked with white dots

www.emeritus.org