Amrita VishwaVidyapeetham Amrita School of Computing, Coimbatore Lab Evaluation -4 Fifth Semester

Computer Science and Engineering

19CSE304 Foundations of Data Science

Course Outcomes (COs):

CO	Course Outcomes
CO01	Understand the statistical foundations of data science.
CO02	Apply pre-processing techniques over raw data so as to enable further analysis.
CO03	Conduct exploratory data analysis and create insightful visualizations to identify
	patterns.
CO04	Identify machine learning algorithms for prediction/classification and to derive
	insights
CO05	Analyse the degree of certainty of predictions using statistical test and models

Duration: One hour Maximum: 20 Marks

Note:

- Each question carries 2 marks.
- Upload .ipynb file.
- State the question numbers against your answers clearly.

Part1(10marks)

Consider the dataset "advertising.csv". Sales are proposed to be enhanced with advertisement in TV, Radio and Newspaper.

- 1. Draw (a) a scatter plot of money spent on TV advertisements versus sales (b) Pair plots and Heatmap.
- 2. Develop a Linear Regression model based on money spent on TV advertisements versus Sales.
- 3. With the regression line so developed, predict the sales that can be anticipated based on the money spent on TV advertisements.
- 4. Draw the Regression Line superimposing on the data.
- 5. Employ statsmodels.api and run an OLS regressor on the data. Plot the line of regression and residuals employing libraries of statsmodel. Comment on the heteroscedasticity.

Part2 (10marks).

Consider the dataset "pima-indians-diabetes.csv". Label indicates the presence of diabetes(1) or its absence(0). Objective is to prepare a KNN classifier for the dataset.

- 1. Import the data set, describe the data and save it on your hard drive. Split the data for training and testing in the ratio of 80:20.
- 2. Employ the standard scalar library and rescale the distribution of values so that the mean of observed values is 0 and the standard deviation is 1.
- 3. Develop a KNN classifier model and predict for the test data.
- 4. Draw up a confusion matrix.
- 5. Identify an optimum k value based on minimum mean errors (consider a range of 20). Draw a corresponding graph between Mean error and k-value.
