Review: Algorithm Efficiency

- A first attempt: an algorithm is efficient if, when implemented, it runs quickly on real input instances
- What is missing?
 - What does "quickly" really mean?
 - Run where?
 - Implemented how and in what language?
 - How do you compare to other algorithms, particularly when performance is not consistent across instances?
 - How does the performance scale up?
- Need a more concrete definition, one that is platform and language independent, and has predictive value as the problem scales up

1

Algorithm Efficiency...

- To understand the performance of algorithm A, it is not enough to run it on one input.
- Need to understand behavior (memory, running time) over *all* possible input instances.
 - Minimum
 - Maximum

over all inputs of size *n*

- Average
- Complexity is usually expressed as a function (e.g., a polynomial) of the input size *n*

Question. What input distribution should be used when computing the average?

Worst, Best, and Average

- The *worst case* complexity is the function defined by the *maximum* time taken on any instance of size *n*.
- The *best case* complexity is the function defined by the *minimum* time taken on any instance of size *n*.
- The *average-case* complexity is the function defined by an *average* time taken on any instance of size *n*.

Each of these is a function $N \rightarrow R^+$: time vs. size

3

Example: A Sorting Algorithm

• For every instance I, run A and plot point $(|I|, T_A(|I|))$

Insertion Sort

Sort(A,n) Cost

1. **for**
$$j \leftarrow 2$$
 to n **do**

2. $k \leftarrow A[j]$ $c_2 \cdot (n-1)$

3. $i \leftarrow j-1$ $c_3 \cdot (n-1)$

4. **while** $i > 0$ **and** $A[i] > k$ **do** $c_4 \cdot \sum_{j=2}^{n} t_j$

5. $A[i+1] \leftarrow A[i]$ $c_5 \cdot \sum_{j=2}^{n} (t_j-1)$

6. $i \leftarrow i-1$ $c_6 \cdot \sum_{j=2}^{n} (t_j-1)$

7. $A[i+1] \leftarrow k$

$$T(n) = an + b \cdot \sum_{j=2}^{n} t_j + c$$

5

Insertion Sort: Analysis

- Worst, best, and average depend on the values t_i .
 - Best case: t_j = 1 ⇒

$$T(n) = an + b(n-1) + c = a_1n + a_0$$

– Worst case: $t_i = j$ ⇒

$$T(n) = an + b(n+2)(n-1)/2 + c = b_2n^2 + b_1n + b_0$$

- Average case: $t_i = j / 2$

$$T(n) = an + b(n+2)(n-1)/4 + c = d_2n^2 + d_1n + d_0$$

Exact Analysis is Difficult

- Best, worst, and average case are difficult to deal with precisely because too many details
- Exact values of constants $(a_i, b_i, d_i, ...)$ depend on:
 - machine
 - compiler
 - implementation of algorithm
- ⇒ "Exact" analysis is not very general
- A second attempt: an algorithm is efficient if it performs significantly fewer operations, at an analytical level and for large inputs, than a naïve or brute force approach

A Simpler Approach

- It is easier to talk about upper and lower bounds of the function in a manner that avoids machine and implementation details
 - Ignore machine dependent constants
 - Drop lower order terms
 - Look at growth rate as T(n) → ∞

Naming the Bounding Functions

- f(n)=O(g(n)) means $c \cdot g(n)$ is upper bound for f(n)
- $f(n)=\Omega(g(n))$ means $c \cdot g(n)$ is lower bound for f(n)
- $f(n) = \Theta(g(n))$ means $c_1 \cdot g(n)$ is upper bound for f(n) and $c_2 \cdot g(n)$ is lower bound for f(n)
- c, c_1 , and c_2 are constants independent of n, bound holds for "sufficiently large" n

Example: Insertion Sort

Time: $T(n) = a_1 n + a_2 \cdot \sum_{j=2}^{n} t_j + a_3$

$$(a_1 + a_2)n + a_3 - 1 \le T(n) \le a_1 n + a_2 \cdot \frac{(n+2)(n-1)}{2} + a_3$$

- Worst case grows as $n^2 \Rightarrow T_{\text{max}}(n) = \Theta(n^2)$
- Best case grows as $n \Rightarrow T_{\min}(n) = \Theta(n)$
- Average case grows as $n^2 \Rightarrow T_{\text{ave}}(n) = \Theta(n^2)$
- \Rightarrow insertion sort takes "between" $c_1 n$ and $c_2 n^2$ i.e., $T(n) = \Omega(n)$ and $T(n) = O(n^2)$

11

Asymptotic Notation: O

• Captures the idea of *upper bound* for T(n)

$$T(n) = O(f(n)) \Leftrightarrow \exists c, n_0 : T(n) \le c \cdot f(n) \ \forall n \ge n_0$$

Examples

• Which of the following is true?

$$100n + 6 = O(n)$$

$$10n^{2} + 4n + 2 = O(n^{3})$$

$$5n^{3} + 4n^{2} - 2 = O(n^{3})$$

$$\frac{1}{100}n^{2} = O(n)$$

13

Asymptotic Notation: Ω

• Idea of *lower bound* for T(n)

$$T(n) = \Omega(f(n)) \Leftrightarrow \exists c, n_0 : T(n) \ge c \cdot f(n) \ \forall n \ge n_0$$

Examples

• Which of the following is true?

$$0.5n + 6 = \Omega(n)$$

$$2n - 3 = \Omega(n)$$

$$\sqrt{n} = \Omega(\log n)$$

$$n! = \Omega(2^{n})$$

$$n^{3} \log n - 7n^{3} + 2n^{2} + 5n\sqrt{n+3} - 8 = \Omega(n^{2} \log^{5} n)$$

15

Asymptotic Notation: Θ

• Idea of equivalent bound for T(n)

$$T\left(n\right) = \Theta\left(f\left(n\right)\right) \Leftrightarrow$$

$$T\left(n\right) = \Theta\left(f\left(n\right)\right) \ \& \ T\left(n\right) = \Omega\left(f\left(n\right)\right)$$

More Examples: O, Ω , Θ

• Think of = as meaning "in the set of functions"

Asymptotic Notation: o

- Idea of *strictly upper bound* for T(n)
- o(f(n)) refers to the set of functions that grow strictly slower than f(n)

$$T(n) = o(f(n)) \Leftrightarrow$$

 $T(n) = O(f(n)) \text{ and } T(n) \neq \Omega(f(n))$

Examples:
$$7n + 5 = o(n^2)$$

$$n^2 = o(n^2 \log n)$$

$$\log^3 n = o(\sqrt{n})$$
₁₈

Addition and Multiplication of Functions

Suppose $f(n)=O(n^2)$, $f(n)=\Omega(n)$, and $g(n)=\Theta(n^2)$

• What do we know about f(n) + g(n)?

$$f(n) + g(n) = O(n^2), f(n) + g(n) = \Omega(n^2)$$

• How about $c \cdot f(n)$?

$$c \cdot f(n) = O(n^2), c \cdot f(n) = \Omega(n)$$

• How about $f(n) \cdot g(n)$?

$$f(n) \cdot g(n) = O(n^4), \ f(n) \cdot g(n) = \Omega(n^3)$$

19

Algorithm Design Paradigms

Incremental approach

- 1. Solve $\langle a_1 \rangle$
- 2. for i = 2, 3, ..., nSolve $\langle a_1, ..., a_{i-1}, a_i \rangle$ using solution of $\langle a_1, ..., a_{i-1} \rangle$

Divide-and-Conquer approach

- 1. *Divide* by splitting problem into 2 or more smaller sub-problems, e.g., $\langle a_1,..., a_{n/2} \rangle$ and $\langle a_{n/2+1},..., a_n \rangle$
- 2. Conquer by solving sub-problems independently
- 3. Combine partial results to solve original instance

What paradigm does the following algorithm use?

Sort(A, n)

- 1. for $j \leftarrow 2$ to n do
- 2. $k \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i > 0 and A[i] > k do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i 1$
- 7. $A[i+1] \leftarrow k$
- Insertion Sort uses the incremental approach

A DAC Sort MergeSort(A, p, r) if p = r then return else $q \leftarrow (p+r)/2$ MergeSort(A, p, q) MergeSort(A, q+1, r) Merge(A, p, q, r) end 23

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

25

Merging

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

ı

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

Merging

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

Merging

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

Merging

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

ı

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

Merging

- · Keep track of smallest element in each sorted half.
- · Insert smallest of two elements into auxiliary array.
- · Repeat until done.

.

Pseudocode

```
MERGE(A, p, q, r)
 1 \quad n_1 \leftarrow q - p + 1
 2 \quad n_2 \leftarrow r - q
 3 create arrays L[1..n_1 + 1] and R[1..n_2 + 1]
     for i \leftarrow 1 to n_1
            do L[i] \leftarrow A[p+i-1]
     for j \leftarrow 1 to n_2
 7
            \mathbf{do}\ R[j] \leftarrow A[q+j]
     L[n_1+1] \leftarrow \infty
     R[n_2+1] \leftarrow \infty
10 i \leftarrow 1
      j \leftarrow 1
12 for k \leftarrow p to r
13
            do if L[i] \leq R[j]
14
                   then A[k] \leftarrow L[i]
15
                          i \leftarrow i + 1
16
                   else A[k] \leftarrow R[j]
17
                           j \leftarrow j + 1
```

Running Time of Merge Sort

- How long does the basic step (merge) take?
- Time taken can be described by a recurrence:

$$T(n) = 2T(n/2) + cn$$
(for $n \ge 2$)

• What does this resolve to?

Recursion Tree for T(n) = 2T(n/2) + cn

$$T(n) = 2T(n/2) + cn = \Theta(n \log n)$$

Running time comparison

$$T_1(n) = 0.1 \ n^2$$

$$T_2(n) = 10 \ n \log n$$

Input size, n	$\Theta(n^2)$	$\Theta(n \log n)$	
10	10 μsec	332 μsec	
100	1 msec	6.64 msec	
1,000	100 msec	100 msec	
10,000	10 sec	1.3 sec	
100,000	17 min	16 sec	
1,000,000	28 hours	3 min	
10,000,000	116 days	39 min	

39

More comparisons

Input size	n	$n \log n$	n^2	n^3	1.5^{n}	2^n	n!
10	<1sec	<1 sec	<1sec	<1 sec	<1 sec	<1 sec	4sec
30	<1sec	<1 sec	<1sec	<1 sec	<1 sec	18min	10 ²⁵ years
50	<1sec	<1 sec	<1sec	<1 sec	11 min	36 years	too long
100	<1sec	<1 sec	<1sec	1sec	12892 years	$10^{17}\mathrm{years}$	too long
1,000	<1sec	<1 sec	1sec	18 min	too long	too long	too long
10,000	<1sec	<1 sec	2 min	12 days	too long	too long	too long
100,000	<1sec	2 sec	3 hours	32 years	too long	too long	too long
1,000,000	1sec	20sec	12 days	31710 years	too long	too long	too long

Running times on a processor than can execute one million steps per second. 'Too long' means $> 10^{25}$ years

Correctness

- Recall that to argue correctness it is not enough to try your algorithm on a few test cases
- Both *incremental* and *divide-and-conquer* algorithms are usually shown to be correct by means of *mathematical induction*
 - For incremental use "weak induction"
 - For divide-and-conquer use "strong induction"
- In general, analyze loops using a *loop invariant*, a property that holds at the start of each iteration which, upon exiting, can be used to show that a section of code is correct

4

Mathematical Induction

• Let P(k) denote some property of natural number k

Examples: P(k) means: $1+3+5+...+2k-1 = k^2$

P(k) means: "my algorithm correctly sorts any array of size k"

P(k) means: "my algorithm takes time at most ck for some c>0"

- 1. Establish one or more base cases, e.g., P(0), P(1)
- 2a. Show $P(k) \Rightarrow P(k+1)$ (weak/standard induction) or
- 2b. Show $\{P(1),...,P(k)\} \Rightarrow P(k+1)$ (strong induction)

Insertion Sort

P(k): At the start of the iteration with $j = k \ge 2$, the subarray A[1: k-1] contains the elements originally in A[1: k-1] in ascending order

We want to show that P(k) holds for all $2 \le k \le n+1$

```
Sort(A, n)
1. for j \leftarrow 2 to n do
2. k \leftarrow A[j]
3. i \leftarrow j - 1
4. while i > 0 and A[i] > k do
5. A[i+1] \leftarrow A[i]
6. i \leftarrow i+1
7. A[i+1] \leftarrow k
```

43

Merge Sort

```
P(k): If r - p + 1 = k, then Merge Sort sorts correctly A[p:r]
```

We want to show that P(k) holds for all $k \ge 1$

```
\begin{array}{ll} \operatorname{MergeSort}(A,p,r) \\ \textbf{if } p = r \textbf{ then return} \\ \textbf{else} \\ q \leftarrow (p+r)/2 \\ \operatorname{MergeSort}(A,p,q) \\ \operatorname{MergeSort}(A,q+1,r) \\ \operatorname{Merge}(A,p,q,r) \end{array} \qquad \begin{array}{ll} \operatorname{Base \ case: } k=1 \\ \operatorname{Strong \ induction:} \\ \operatorname{Assume} \\ P(1),P(2),\ldots,P(k-1) \\ \operatorname{and \ show} P(k) \\ \end{array} \begin{array}{ll} \operatorname{end} \end{array}
```