Procesamiento y visualización de información

BUCEANDO R

UNTREF

AGENDA DEL DÍA

- Presentaciones
- Motivaciones
- ¿Por qué R?
- Interfaz de R
- Objetos en R
- Operadores

¿Por qué R?

- Es **software libre**, es gratuito.
- Lenguaje de programación especializado.
- Permite automatizar tareas.
- Tiene una **comunidad** enorme de desarrollo.
- Es **sencillo** para comenzar.
- Permite la replicabilidad de nuestro trabajo.

¿Por qué R?

• R es una herramienta más, no la única.

Extracción y procesamiento

Modelado

Visualización

R y Rstudio

R y Rstudio (ahora Posit) son dos softwares distintos. R es el lenguaje de programación propiamente dicho. RStudio es IDE, un programa que nos facilita trabajar con R.

CONOCIENDO RSTUDIO

POSIT CLOUD

GLOSARIO R

Correr/ejecutar: pedir que R realice algo, en otras palabras, estamos dando una instrucción o una orden,

Devolver: El resultado de una ejecución que hayamos solicitado. Puede ser un gráfico, un resultado matemático, etc.

Llamar/invocar un objeto: Utilizamos el nombre de un objeto creado para realizar una acción con él,

Script: Es el archivo donde escribimos los comandos. Lo reconocemos por la extensión **.R**,

Objetos

Cualquier cosa que existe en R y que tiene un nombre.

- Variables
- Funciones
- Gráficos
- Tablas
- Vectores

Los objetos tienen atributos, el principal es el NOMBRE.

Los podemos crear, modificar y eliminar.

OPERADORES

Diferente de

Operadores comparación		Operadores aritméticos		Operadores lógicos	
>	Mayor	+	Suma	!	Negación
>=	Mayor o igual a	-	Resta		O Lógico.
<	Menor	/	Cociente	&	Y Lógico
< =	Menor o igual a	*	Multiplicación		Asignación
==	Igual	^	Potencia	<-	asignación

Módulo

%%

asignación dentro de funciones

TIPOS DE DATOS

Tipo o clase de dato	Ejemplo		
character	nombres <- "Esto es un caracter"		
factor	mes <- factor(months, ordered = TRUE)		
numeric/integer	anio <- 2021		
numeric/float	iva <- 1.21		
logical	es_mayor <- TRUE		

de datosConsultar la clase:class(x)Consultar si es una clase en especial:

is.numeric(x)

is.character(x)

is.logical(x)

Modificar el tipo de dato:

as.numeric(x)

as.character(x)

as.logical(x) as.factor(x)

Funciones para trabajar con tipos

FUNCIONES

Son conjuntos de operaciones. Las funciones aceptan argumentos, es decir, especificaciones sobre cómo deben funcionar. Siempre que las llamamos algo hacen, lo veamos o no. La mayoría de las funciones que vamos a usar ya están definidas en R, otras las encontramos en las librerías, y también podemos crear nuestras propias funciones.

Vectores

Los vectores tienen diferentes atributos. Los más importantes son:

- Nombre: el nombre con el que es definido.
- Índice: es la posición de cada elemento
- Largo: cantidad de elementos dentro del mismo

Podemos acceder a cada elemento por la posición (índice), ejemplo: notas_alumnes[3]

Matrices

Los atributos más importantes de las matrices son:

Nombre: el nombre con el que es definido. índice de columna Indice: es la posición de cada elemento Hay una posición de columna Y una posición de fila [,1] [,2] [,3] mi_matriz <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE) 5 nombre índice de fila mi_matriz[2, 3]

Podemos acceder a los elementos internos de una matriz, indicando la dimensión de fila y columna

Data frames

Al igual que las matrices los data frames tienen dos dimensiones:

- Nombres: el nombre con el que es definido la tabla.
 - Las columnas tienen nombres
 - Las filas pueden tener nombre también.
- Índice: es la posición de cada elemento
 - Hay una posición de columna
 - Y una posición de fila

Se puede acceder a una columna entera y tratarlas como un vector a partir de concatenar el nombre de la tabla y el de la columna con el operador \$.

curso\$notas _____ ahora es un vector numérico

Listas

La principal característica es que puede contener adentro cualquier tipo de objeto, incluso listas. Sí las listas puede tener listas!!!

Como los otros objetos también tienen atributos como :

- Nombres: de la lista y de cada objeto dentro de la lista.
- Índice: es la posición de cada elemento
 - A la vez cada objeto también tiene sus índices.

nombre

mi_lista[[1]]

El primer elemento de la lista es un data frame

TIPOS DE OBJETOS

dato

matrices

data frames

listas

Tipo o clase de **Ejemplo** Características Una dimensión. Acepta un solo tipo de dato.

dato.

Son las famosas tablas. Dos dimensiones, y

cada columna es un vector aparte. Cada

columna puede tener datos diferentes.

 $notas_alumnes <- c(9, 8, 7, 9, 10)$ vectores mi_matriz <- matrix(1:9, nrow = 3, ncol = 3, Dos dimensiones. Sólo aceptan un tipo de

curso <- data.frame(nombres =

notas = notas_alumnes.

concepto= concepto_alumnes)

byrow = TRUE)

nombre_alumnes,

mi_lista <- list(tabla= curso, Tienen N dimensiones.. Acepta cualquier matriz= mi_matriz, objeto dentro del mismo. Son muy útiles para mi_nombre= 'Leandro', mi_edad=25) trabajar con múltiples tablas.

Leyendo archivos

En R podemos leer todo tipo de archivos. Sólo tenemos que encontrar la función correcta y la ubicación del archivo en nuestra computadora.

PAQUETES QUE VAMOS A UTILIZAR

Encuesta Permanente de Hogares

Permite la descarga y manipulación de las bases de la FPH a través de algunas funciones.

Agrupa un conjunto de funciones dedicadas a la manipulación de datos.

Condensa una serie de funciones para representar gráficamente la información que estamos analizando

Paquete de funciones que permiten cargar, manipular y calcular nuevas variables con datos espaciales.