# Kinetic Study and Reaction Mechanism of Vinyl Monomer Modified *Antheraea* assama Silk Composites

A. M. Das\*

North East Institute of Science & Technology, Jorhat 785 006, Assam, India

A biodegradable protein fiber *Antheraea assama* silk (SH) was modified by using graft co-polymerization technique with methyl methacrylate (MMA; vinyl monomer) and cerric ammonium sulfate (Ce<sup>IV</sup>). The grafting process was dependent on MMA, Ce<sup>IV</sup>, time factors, temperatures and other properties of the fibroin composites. The possible mechanism of the SHMMA composite was explained by free radical co-polymerization, and the thermal properties were characterized by thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The kinetic parameters were also studied using the Coats and Redfern method with FORTRAN 77 computer programming and evaluating the activation energy. The structural changes of SHMMA, changes of the crystalline and amorphous characteristics after chemical process with MMA—Ce<sup>IV</sup> initiator, were discussed in relation to the weight gain and X-ray diffraction curves. This study shows that silk fibroin composites modified by graft co-polymerization have improved thermal stability and chemical stability, which improve the drawbacks and make the silk fibroin a promising material in constructing textiles.

#### Introduction

The use of natural fibers at the industrial level improves the environmental sustainability of the parts being constructed, especially within the automotive market. Modification of natural or synthetic fibroin with the aim of imparting specific properties to the products has given a great thrust to macromolecular/ polymer science/textile chemistry. Desirable and targeted properties can be imparted to the natural or synthetic fibroin through graft co-polymerization in order to mete-out the requirement of specialized applications. It is a convenient and clean means for altering the properties of numerous polymer backbones and provides a number of new advantageous properties. Antheraea assama (A. assama) silk fibroin is a well-described natural protein fiber produced by the silkworm A. assama Westwood (Lepidoptera: Saturniidae), a multivoltine, sericogenic insect native to North Eastern India,2 which has been used traditionally in the form of thread in textiles for thousands of years. The silk contains a fibrous protein that forms the thread core and a gluelike protein, termed sericin, that surrounds the fibroin and cements them to together.<sup>3</sup> Recent interest lies on the application of silk fibroin (SH) as the biomaterials because of its unique mechanical properties as well as its biocompatibility and biodegradability.4 A. assama SH composites are excellent clothing materials with outstanding mechanical and aesthetic characteristics which are exploited for production of precious textile goods.

Recently, electrospinning using natural proteins and synthetic polymers offers an attractive technique for producing fibrous scaffolds with potential for tissue regeneration and repair. Nanofibrous scaffolds of silk fibroin (SF) and poly(L-lactic acid-co-epsilon-caprolactone) {P(LLA-CL)} blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol as a solvent via electrospinning and also scaffold, blending the silk fibroin with other natural or synthetic polymers, such as P(LLA-CL),<sup>5</sup> N-methylmorpholine N-oxide hydrates (NMMO/H<sub>2</sub>O),<sup>6</sup> chitosan,<sup>7</sup> PLA,<sup>8</sup> collagen,<sup>9</sup> and poly(ethylene oxide) (PEO),<sup>10</sup> etc. Recently, extensive research has been conducted on scientific and

industrial applications of hydrophobic silica nanoparticles and gold nanoparticles to hydrophilic fabrics to realize superhydrophobic textiles with self-cleaning properties by many approaches. <sup>11</sup> The interpretation of polymerization kinetics demands knowledge of reliable kinetic parameters. They provide the basis for more accurate design of the polymerization reaction mechanism and better insight into the behavior of existing reactions; although the literature contains an abundance of initiator decomposition rates in various solvents of in situ rate, data for polymerization systems are scarce. <sup>12</sup>

This variety of silk has some drawbacks such as photoyellowing, wrinkle recovery, and abrasion resistance, etc. So, we have tried to improve these drawbacks by applying a graft copolymerization technique.

In the present paper we discuss the mode of free radical reaction mechanism in the formation of SHMMA composites with the thermal properties of the protein fiber composites. Moreover, the kinetic parameters as well as the structural changes of SHMMA and changes of the crystalline and amorphous percentage after grafting with MMA—Ce<sup>IV</sup> were studied in relation to the weight gain and X-ray diffraction curves. Thus, the successful preparation of Silk fibroin with MMA monomer by graft co-polymerization techniques provides a promising opportunity to widen the potential application of silk composite in biomaterials as well as textile fields.

## **Materials and Methods**

**Chemicals and Reagents.** *A. assama* protein fiber was collected from a private farm near Jorhat, Assam, India. Because the silk fibroin was processed ready for weaving, no further purification was rendered. MMA was first washed with 5% NaOH solution and then dried with anhydrous sodium sulfate and distilled under nitrogen in reduced pressure. Ceric ammonium sulfate (E-Merck), silica gel (CDH), H<sub>2</sub>SO<sub>4</sub> (AR, BDH), and acetone (CDH) were used for this study. Distilled water was used to prepare all solutions.

**Preparation of Graft Co-polymerization.** The polymerization reactions were carried out in air as the use of nitrogen atmosphere during the time of reaction was found to have no

 $<sup>^{\</sup>ast}$  To whom correspondence should be addressed. E-mail: amd\_das2001@yahoo.co.in.

significant contribution on conversions to graft products. <sup>14</sup> The reaction was set up in a three-necked 300 mL round-bottom flask fitted with stirrer in a temperature controlled water bath. A 1 g amount of dry silk fiber/fabric was swollen with water for 15 min, and it was transferred to the reaction flask containing solutions of ceric ammonium sulfate, H<sub>2</sub>SO<sub>4</sub> of different concentrations and the required amount of monomer (MMA) at the required temperature. The reaction time was varied from 1 to 5 h and the temperature of reaction from 35 to 65 °C at a material to liquor ratio of 1:150. The reaction system was intermittently stirred. After the desired reaction time, silks were taken out and were then subjected to repeated extraction with boiling water and acetone to remove homopolymer and its oligomers adhering to the silks. Finally, the products were dried to constant weight and kept in desiccators over P<sub>2</sub>O<sub>5</sub>.

Conditions Affecting Grafting. Grafting onto silk is a heterogeneous reaction, so the physical structure and the state of aggregation of the silk fiber play an important role. Whatever may be the type of reaction involved in the grafting, chemical bonding is achieved and the synthetic polymer is associated with the protein fiber. In the complex system of protein fiber, monomer, initiator, and acid, several reactions take place simultaneously and the extent of grafting depends on the influence of the chemical conditions, the physical conditions, and the nature of the substrate 15,16 such as (a) diffusion of the monomer to the silk, (b) adsorption of the monomer on the silk, (c) initiation of the active sites on the silk side chain and backbone, (d) formation and propagation of graft on the silk, (e) termination of the active sites on the silk side chain and backbone, (f) homopolymer formation, (g) swelling of the silk, and (h) accessibility of the silk. In the time of graft copolymerization in an aqueous medium, particularly it would be expected to affect the pore size of the silk, the crystallineamorphous ratio, and the degree of orientation.<sup>17</sup>

## Characterization

Thermal Analysis of Copolymers. Thermogravimetric analysis (TGA), differential thermogravimetric (DTG), and differential thermal analysis (DTA) were carried out using a Shimadzu (Model 30) thermal analyzer. The masses of the samples were in the range of 3.95-5.78 mg. α-Alumina was used as a reference material, and the temperature ranged from 30 to 800 °C at heating rates of 10, 20, and 30 °C min<sup>-1</sup> in a static air atmosphere. Differential scanning calorimetry (DSC) was obtained from a Perkin-Elmer DSC-7 with kinetic software. It consists of a compact central unit and family of cells for DSC thermogravimetry and thermochemical analysis. The heart of the system, the TA processor, functions as a combination of control unit, computer power unit, and interface to be used through the keyboard and display. The DSC 20 standard cell is used for heat flow measurement in the temperature range ambient to 800 °C.

Kinetic Parameters. The kinetics of polymer degradation is usually represented by the basic kinetic 18

$$d\alpha/dt = k(T) f(\alpha) \tag{1}$$

where  $\alpha$  represents the conversion (extent of reaction;  $\alpha = 0-1$ ), t is the time, k(T) is the rate constant, and  $f(\alpha)$  is the reaction model, which describes the dependence of the reaction rate on the extent of reaction. The temperature dependence of k(T) could be represented by the Arrhenius equation

$$d\alpha/dt = Ae^{-E_a/RT}f(\alpha)$$
 (2)

where  $E_a$  is the activation energy of the process. A is the preexponential factor, R is the universal gas constant, and  $f(\alpha)$  depends on the decomposition mechanism. The simplest and most frequently used model for  $f(\alpha)$  is

$$f(\alpha) = (1 - \alpha)^n \tag{3}$$

where n is the order of reaction.

The rate of conversion,  $d\alpha/dt$ , at constant temperature can be expressed by

$$d\alpha/dt = k = k(T) f(\alpha)$$
 (4)

and finally combining eqs 2-4 gives the following relationship

$$d\alpha/dt = k = (1 - \alpha)^n A e^{-E_a/RT}$$
(5)

and eq 5 can be expressed for first-order reaction by the following relationship

$$d\alpha/dt = k = Ae^{-E_a/RT}$$
 (6)

In short, the Arrhenius equation is an expression that shows the dependence of the rate constant k of chemical reactions on the temperature T and activation energy  $E_a$ , as shown above. In chemical kinetics a reaction rate constant quantifies the speed of a chemical reaction. In chemical kinetics, the frequency factor or A factor is the preexponential constant in the Arrhenius equation, which indicates how many collisions between reactants have the correct orientation to lead to the products. The logarithm of the Arrhenius equation is represented by the following

$$\ln(k) = -E_o/RT + \ln(A) \tag{7}$$

So, when a reaction has a rate constant which obeys the Arrhenius equation, a plot of ln(k) versus  $T^{-1}$  gives a straight line, whose slope and intercept can be used to determine  $E_a$  and A. That is, the activation energy is defined to be -R times the slope of a plot of ln(k) vs (1/T).

$$E_{a} = -R(\delta(\ln k)/\delta(1/T)) \tag{8}$$

The Arrhenius equation gives the quantitative basis of the relationship between the activation energy and the rate at which a reaction proceeds.

**Coats and Redfern Method.** The retrieval of kinetic parameters from weight loss versus temperature data could be carried out by using various methods. <sup>19,20</sup> In the present work, the well-known Coats and Redfern method was used for retrieving kinetic parameters from dynamic thermogravimetry. The general correlation equation used in the Coats and Redfern method is

$$\log[1 - (1 - \alpha)^{1-n}/T^2(1 - n)] = \log[AR/\alpha E_a(1 - 2RT/E_a)] - E/2.3RT \quad (9)$$

where  $\alpha$  is the reaction decomposed at temperature T, n is the order of the reaction, A is the frequency factor (S<sup>-1</sup>), a is the heating rate (K min<sup>-1</sup>), R is the gas constant (kJ mol<sup>-1</sup> K<sup>-1</sup>), T

Scheme 1

$$(NH_4)_4^{Ce}(SO_4)_4 \rightleftharpoons Ce(SO_4)_4^{2^-} + 4(NH_4)^+$$
 $Ce(SO_4)_4^{2^-} \rightleftharpoons Ce^{4^+} + 4SO_4^{2^-}$ 

Scheme 2. Free Radical Reaction Mechanism of the Graft Co-polymerization Reaction System<sup>a</sup>

## Step I: Initiation

Ce<sup>IV</sup> system:

$$C_e^{4+} + SH \stackrel{K_1}{\rightleftharpoons} Complex \stackrel{Kr_1}{\longrightarrow} S + C_e^{3+} + H^+$$
 (1)

$$\begin{array}{c} \cdot & \mathbf{k}_{i} \\ \mathbf{S} + \mathbf{M} \xrightarrow{} \mathbf{SM} \end{array}$$
 (Initiation of grafting) (2)

$$\begin{array}{c}
\mathbf{S} + \mathbf{M} & \stackrel{\mathbf{K}_{i}}{\longrightarrow} \mathbf{SM} & \text{(Initiation of grafting)} \\
\mathbf{M} + \mathbf{Ce}^{\mathbf{4}} & \stackrel{\mathbf{K}_{2}}{\longleftarrow} \mathbf{Complex} \mathbf{2} & \stackrel{\mathbf{Kr}_{2}}{\longrightarrow} \mathbf{M} + \mathbf{Ce}^{\mathbf{3}} + \mathbf{H}^{+}
\end{array} \tag{2}$$

$$SM + H_2O \longrightarrow SMH + OH$$

$$\dot{O}H + M \longrightarrow OH - M$$

# Step II: Propagation

$$\begin{array}{c} \mathbf{SM} + \mathbf{M} \stackrel{k_p}{\longrightarrow} \mathbf{SM}_2 \\ \downarrow \\ \mathbf{SM}_{n-1} + \mathbf{M} \stackrel{k_p}{\longrightarrow} \mathbf{SM}_n \end{array} \qquad \begin{array}{c} \text{Propagation of grafting} \\ \\ \mathbf{M} + \mathbf{M} \stackrel{}{\longrightarrow} \mathbf{M}_2 \\ \downarrow \\ \mathbf{M} \stackrel{k_p}{\longrightarrow} \mathbf{M}_n \end{array} \qquad \begin{array}{c} \text{Propagation of homopolymerization} \end{array}$$

# Step III: Oxidation

Ce<sup>IV</sup> system :

$$SM_n + Ce^{4+} \xrightarrow{k_t} SM_n + Ce^{3+} + H^+$$
 (Termination of grafting)  
 $M_n + Ce^{4+} \longrightarrow M_n + Ce^{3+} + H^+$   
 $S + Ce^{4+} \xrightarrow{k_o} Oxidized product + Ce^{3+} + H^+$ 

Now,

$$\frac{d[SM n]}{dt} = [S][M] - [SM n][Ce^{4+}] k_{t} = 0$$

$$[SM n] = \frac{k_{i}[S][M]}{[Ce^{4+}] k_{t}}$$

$$\frac{d[S]}{dt} = k_{d}[SH][R] - k_{i}[S][M] - k_{0}[S][Ce^{4+}] = 0$$

$$[S'] = \frac{k_{d}[SH][R]}{k_{i}[M] - k_{0}[Ce^{4+}]}$$

$$R_{p} = k_{p}[SM n][M] = \frac{k_{p} k_{d} k_{i}[SH][M]^{2}}{k_{t}[M n^{4+}][k_{i}[M] + k_{0}[M n^{4+}]}$$

$$= \frac{k_{p} k_{i}}{k_{t}} \cdot \frac{k_{p} k_{d} k_{i}[SH][M]^{2}}{[M n^{4+}][k_{i}[M] + k_{0}[M n^{4+}]}$$

<sup>&</sup>lt;sup>a</sup> Where SH, SMn\*, M, and Mn\* represent the silk molecule, silk monomer macroradical, monomer, and monomer macroradicals, respectively.



Figure 1. Thermogravimetric analysis (TGA), differential thermogravimetry (DTG), and differential thermal analysis (DTA) curves at a heating rate of 20 °C/min: (a) ungrafted, (b) 49% SHMMA, (c) 59% SHMMA, and (d) 71% SHMMA.

Table 1. (a) Thermal Analysis Data (Active Decomposition Temperature and Weight Loss for Ungrafted and SHMMA at Heating Rates of 20 °C/min) and (b) DTA Data (Decomposition Temperature)<sup>a</sup>

|                      |                           |                                                                |                                                                      |                                                                      | at 20 °                                          | C/min                                                |                                                      |                                                      |                                                      |                                          |  |  |
|----------------------|---------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------|--|--|
|                      | (a) thermal analysis data |                                                                |                                                                      |                                                                      |                                                  |                                                      |                                                      | (b) DTA data                                         |                                                      |                                          |  |  |
|                      |                           |                                                                | weight loss, <sup>b</sup> %                                          |                                                                      | active d                                         | lecomposition                                        | temp, °C                                             | decomposition temp, °C                               |                                                      |                                          |  |  |
| samples              | %                         | I                                                              | II                                                                   | III                                                                  | I                                                | II                                                   | III                                                  | I                                                    | II                                                   | _                                        |  |  |
| ungrafted<br>grafted | -<br>49<br>59<br>71       | 12.5 (30-140)<br>10.2 (30-170)<br>8.9 (30-180)<br>7.2 (30-190) | 41.8 (150-390)<br>38.0 (175-430)<br>36.8 (185-450)<br>33.0 (195-470) | 43.0 (390–640)<br>45.5 (440–675)<br>48.8 (455–695)<br>47.5 (480–720) | 60 (endo)<br>80 (endo)<br>90 (endo)<br>95 (endo) | 360 (endo)<br>380 (endo)<br>390 (endo)<br>400 (endo) | 520 (endo)<br>550 (endo)<br>565 (endo)<br>585 (endo) | 150 (endo)<br>175 (endo)<br>182 (endo)<br>200 (endo) | 350 (endo)<br>395 (endo)<br>420 (endo)<br>435 (endo) | -<br>365 (exo)<br>380 (exo)<br>405 (exo) |  |  |

<sup>&</sup>lt;sup>a</sup> I, II, and III are the prestage, second stage, and third stage, respectively. <sup>b</sup> Temperature range (°C) in parentheses.

Table 2. (a) Thermal Analysis Data (Active Decomposition Temperature and Weight Loss for Ungrafted and SHMMA at Heating Rates at 30 °C/min) and (b) DTA Date (Decomposition Temperature)<sup>a</sup>

|           |    |               |                             |                     | at 30 °   | °C/min        |            |                    |            |           |  |  |
|-----------|----|---------------|-----------------------------|---------------------|-----------|---------------|------------|--------------------|------------|-----------|--|--|
|           |    |               | (                           | a) thermal analysis | data      |               |            | (b) DTA Data       |            |           |  |  |
|           |    |               | weight loss, <sup>b</sup> % |                     | active    | decomposition | n temp     | decomposition temp |            |           |  |  |
| samples   | %  | I             | II                          | III                 | I         | II            | III        | I                  | II         | _         |  |  |
| ungrafted | _  | 13.8 (30-160) | 48.0 (170-400)              | 32.0 (400-700)      | 70 (endo) | 365 (endo)    | 540 (endo) | 160 (endo)         | 355 (endo) | _         |  |  |
| grafted   | 49 | 11.8 (30-175) | 46.5 (180-420)              | 35.8 (430-720)      | 80 (endo) | 385 (endo)    | 570 (endo) | 190 (endo)         | 415 (endo) | 380 (exo) |  |  |
|           | 59 | 9.6 (30-190)  | 43.9 (195-440)              | 39.7 (445-740)      | 90 (endo) | 390 (endo)    | 585 (endo) | 200 (endo)         | 430 (endo) | 405 (exo) |  |  |
|           | 71 | 8.5 (30-195)  | 41.8 (205-455)              | 37.0 (460-760)      | 95 (endo) | 410 (endo)    | 605 (endo) | 210 (endo)         | 455 (endo) | 420 (exo) |  |  |

<sup>&</sup>lt;sup>a</sup> I, II, and III are prestage, second stage, and third stage. <sup>b</sup> Temperature range (°C) in parentheses.

basically involved stepwise change of n (over a range of 0.6-1.6) to determine the SED in the least-squares estimate of the parameters  $\Delta E$  and A. The data were found to fit well for a first-order reaction.

XRD of Co-polymers. X-ray diffraction data were collected using a computer-controlled X-ray diffractometer (Type, JDX-11P3A, JEOL) with pulse-height analyzer and scintillation counter. Measuring conditions were as follows: mode, step; KV,

Table 3. Experimental Conditions and Kinetic Data of the Coats and Redfern Equation

|                      |          |                      | I (first stage) |               | II (second stage)       |             |               |  |  |
|----------------------|----------|----------------------|-----------------|---------------|-------------------------|-------------|---------------|--|--|
| samples<br>% grafted | temp, °C | $E$ , kJ mol $^{-1}$ | $A, S^{-1}$     | SED, $S^{-1}$ | E, kJ mol <sup>-1</sup> | $A, S^{-1}$ | SED, $S^{-1}$ |  |  |
| 49                   | 20       | 33.781               | 0.398           | 0.001         | 38.582                  | 0.672       | 0.002         |  |  |
|                      | 30       | 36.123               | 0.643           | 0.001         | 41.321                  | 0.997       | 0.001         |  |  |
|                      | 40       | 38.921               | 1.023           | 0.002         | 42.561                  | 1.462       | 0.003         |  |  |
|                      | 50       | 41.746               | 1.721           | 0.001         | 44.626                  | 2.103       | 0.002         |  |  |
| 59                   | 20       | 37.250               | 0.7601          | 0.002         | 42.821                  | 0.908       | 0.002         |  |  |
|                      | 30       | 39.524               | 1.502           | 0.001         | 46.309                  | 1.752       | 0.001         |  |  |
|                      | 40       | 42.881               | 2.598           | 0.003         | 48.147                  | 2.962       | 0.003         |  |  |
|                      | 50       | 48.978               | 4.833           | 0.004         | 51.001                  | 5.125       | 0.002         |  |  |
| 71                   | 20       | 44.216               | 0.938           | 0.003         | 49.779                  | 6.998       | 0.004         |  |  |
|                      | 30       | 45.998               | 2.431           | 0.001         | 54.512                  | 9.985       | 0.001         |  |  |
|                      | 40       | 47.102               | 4.381           | 0.004         | 57.124                  | 14.851      | 0.003         |  |  |
|                      | 50       | 56.892               | 8.462           | 0.002         | 61.324                  | 20.861      | 0.001         |  |  |

Table 4. Logarithmic Data Using the Arrhenius Equation at Different Stages (From the Coats and Redfern Equation)

|                      |         |             | I (first stage) |        | II (second stage) |        |        |  |
|----------------------|---------|-------------|-----------------|--------|-------------------|--------|--------|--|
| samples<br>% grafted | temp, K | 1/ <i>T</i> | ln k            | $R^2$  | 1/ <i>T</i>       | ln k   | $R^2$  |  |
| 49                   | 293     | 0.0034      | -0.934          | 0.9994 | 293               | -0.413 | 0.9997 |  |
|                      | 303     | 0.0033      | -0.455          | _      | 303               | -0.019 | _      |  |
|                      | 313     | 0.0032      | 0.008           | _      | 313               | 0.364  | _      |  |
|                      | 323     | 0.0031      | 0.527           | _      | 323               | 0.726  | _      |  |
| 59                   | 293     | 0.0034      | -0.259          | 0.999  | 293               | -0.114 | 0.9982 |  |
|                      | 303     | 0.0033      | 0.391           | _      | 303               | 0.542  | _      |  |
|                      | 313     | 0.0032      | 0.938           | _      | 313               | 1.067  | _      |  |
|                      | 323     | 0.0031      | 1.557           | _      | 323               | 1.615  | _      |  |
| 71                   | 293     | 0.0034      | -0.082          | 0.9982 | 293               | 1.925  | 0.9992 |  |
|                      | 303     | 0.0033      | 0.711           | _      | 303               | 2.279  | _      |  |
|                      | 313     | 0.0032      | 1.459           | _      | 313               | 2.676  | _      |  |
|                      | 323     | 0.0031      | 2.114           | _      | 323               | 3.015  | _      |  |

40; start angle,  $2^{\circ}$ ; target, Cu; mA, 20; stop angle,  $60^{\circ}$ ; measuring time, 0.5 s; step angle, 0.05. The degree of crystal-linity ( $K_c$ ) was found using the following equation.<sup>21</sup>

$$K_{\rm c} = \int_0^\alpha S^2 I_{\rm c}(S) \, dS / \int_0^\alpha S^2 I(S) \, dS$$
 (10)

where S is the magnitude of the reciprocal lattice vector and S is given by

$$S = 2 \sin \theta / \lambda$$

where  $\theta$  is half of the angle of deviation of the diffracted rays from the incident X-rays,  $\lambda$  is the X-ray wavelength, I(S) is the intensity of coherent X-ray scatter from a specimen (both crystalline and amorphous), and  $I_c(S)$  is the intensity of coherent X-ray scatter from the crystalline region.

## **Result and Discussion**

**Possible Mechanism for Graft Co-polymerization.** Grafting of vinyl monomers to SH is a typical free radical polymerization reaction, which involves three distinct aspects, such as initiation, propagation, and termination. The formation of free radicals on the SH molecule can occur by the homolytic cleavage processes, such as dehydrogenation, dehydroxylation, and depolymerization. The location of the free radicals sites on the SH molecule and within the fibrous structure is dependent on the method of initiation of such sites and on the physical and chemical properties of the SH.<sup>22</sup>

The precise reaction and mechanism governing the grafting of vinyl monomers onto SH are difficult to determine since the reaction is heterogeneous. The ceric ion initiation of grafting has gained considerable importance because this method can be applied for initiating grafting of synthetic monomers to a number of macromolecules.

When SH is oxidized by Ce<sup>IV</sup> salt, ceric ammonium sulfate, free radicals capable of initiating vinyl polymerization are

formed exclusively on the SH side chain and backbone by a single free electron transfer.<sup>23</sup>

Ceric ammonium sulfate exists as a complex salt and is ionized in solution, yielding free ammonium ions and sulfatocerate ions. The sulfatocerate ions subsequently decomposed to yield Ce<sup>IV</sup> cations and sulfate anions<sup>15</sup> (Scheme 1).

The reactions during graft co-polymerization of MMA onto SH with the Ce<sup>IV</sup> system in the presence of H<sub>2</sub>SO<sub>4</sub> may take place as shown in Scheme 2.

The free radical (R\*) formed in the graft co-polymerization process might attack the SH molecule, giving rise to SH macroradicals (S\*) in the following manner.<sup>24</sup>

$$SH + R^{\bullet} \xrightarrow{k_d} S^{\bullet} + RH$$

**Thermal Analysis.** The thermal behavior of ungrafted and grafted products was studied from TG, DTG, and DTA at heating rates of 20 and 30 °C/min, and different percentage of grafting for a heating rate of 20 °C/min are shown in Figure 1. The decomposition temperature ranges, the active decomposition temperatures, and the percent weight losses are given in Table 1a,b and Table 2a,b.

The decomposition took place in three distinct stages referred to as initiation, propagation, and carbonization, <sup>25,26</sup> and all of the TG curves showed an initial small mass loss step around 150 °C, which could be attributed to the removal of absorbed water. In the second stage, a major weight loss was noticed at a heating rate of 20 °C/min for ungrafted and grafted products. The decomposition of protein started at 150 °C for ungrafted product, which increased for 49% grafted at 175 °C, 59% grafted at 185 °C, and 71% grafted at 195 °C, depending on the increasing percent of grafting, while, in the third stage, decomposition of the rest of the polymers started at 390 °C for ungrafted and increased for 49% grafted at 440 °C, 59% grafted at 455 °C, and 71% grafted at 480 °C (Table 1a), respectively.



**Figure 2.** Plots of  $\ln k$  vs 1/T of the first-stage thermal decomposition of SHMMA using Arrhenius equation data from the Coats and Redfern equation: (a) 49, (b) 59, and (c) 71%.

The weight loss percent of the grafted fiber was found to be less than that of the ungrafted fiber, as evident from Tables 1a and 2a, which show the initial, maximum, and final temperatures of active decomposition increased with an increase in the grafting percent of SHMMA. A similar trend was also observed at a heating rate of 30 °C/min.

The DTA curves at the heating rate 20 °C/min showed an endothermic peak at 150 °C for ungrafted SH, and the same appeared at in increasing order for grafted composites, i.e., 175, 182, and 200 °C for 49, 59, and 71% grafted SH, respectively. Similarly, the second endothermic peak appeared at 350 °C for ungrafted SH, and the same shifted to in increasing order for grafted composites, i.e., 395, 420, and 435 °C for 49, 59, and 71% grafted SH, respectively. Exothermic peaks also appeared for grafted composites at 350, 380, and 405 °C for 49, 59, and 71% grafted SH due to a change in crystallinity.<sup>27</sup>

Kinetics Studies. For studying the kinetics of SHMMA composites, we applied the Coats and Redfern method using computer program FORTRAN 77 for linear least-squares method with Gauss-Jordan subroutine. The values of activation energy, frequency factors, and error deviation are shown in Table 3 in four different temperatures, 20, 30, 40, and 50 °C, for SHMMA composites of 49, 59, and 71%. The values were found to be higher than that of the ungrafted original one. These values increased with an increase in the molecular weights. We have



**Figure 3.** Plots of  $\ln k$  vs 1/T of the second-stage thermal decomposition of SHMMA using Arrhenius equation data from the Coats and Redfern equation: (a) 49, (b) 59, and (c) 71%.

also applied the Arrhenius equation for first-order reaction, which is fit well in our reaction process, and plotted graphs ln k versus 1/T for each reaction temperature of the first and second stages of the thermal decompositions, which are shown in Table



Figure 4. Differential scanning calorimetry curves for the decomposition of (a) ungrafted and (b) 49, (c) 59, and (d) 71% SHMMA composite.

Table 5. (a) Thermal Analysis Data for Decomposition Temperature and Glass Transition ( $T_g$ ) Values of Ungrafted and SHMMA at a Heating Rate of 20 °C/min and (b) X-ray Diffraction Data and Crystallinity of Ungrafted and SHMMA

|           | (a | ) thermal analysis data |                     | (b) X-ray diffraction data and crystallinity  |           |                   |  |  |  |
|-----------|----|-------------------------|---------------------|-----------------------------------------------|-----------|-------------------|--|--|--|
| samples   | %  | decomposition temp (°C) | T <sub>g</sub> (°C) | X-ray diffraction data (d' spacing in $A^0$ ) | $2\theta$ | crystallinity (%) |  |  |  |
| ungrafted | _  | 92                      | 175                 | 6.772 (100)                                   | 9.03      | 33                |  |  |  |
| C         | _  | 234                     | 175                 | 4.553 (72)                                    | 18.40     | 33                |  |  |  |
|           | _  | 297                     | 175                 | 3.825 (65)                                    | 20.02     | 33                |  |  |  |
|           | _  | 370                     | 175                 | <del></del>                                   |           | _                 |  |  |  |
| grafted   | 49 | 107                     | 225                 | 7.927 (100)                                   | 12.05     | 46                |  |  |  |
|           | 49 | 327                     | 225                 | 5.726 (87)                                    | 18.36     | 46                |  |  |  |
|           | 49 | 390                     | 225                 | 4.821(81)                                     | 22.51     | 46                |  |  |  |
|           | 49 | 435                     | 225                 | _ ` ´                                         | _         | _                 |  |  |  |
|           | 59 | 120                     | 260                 | 8.234 (100)                                   | 13.54     | 54                |  |  |  |
|           | 59 | 335                     | 260                 | 7.231 (89)                                    | 19.32     | 54                |  |  |  |
|           | 59 | 400                     | 260                 | 5.822 (83)                                    | 22.65     | 54                |  |  |  |
|           | 59 | 450                     | 260                 |                                               | _         | _                 |  |  |  |
|           | 71 | 131                     | 275                 | 10.021 (100)                                  | 13.78     | 62                |  |  |  |
|           | 71 | 347                     | 275                 | 8.019 (93)                                    | 22.98     | 62                |  |  |  |
|           | 71 | 415                     | 275                 | 6.246 (77)                                    | 27.32     | 62                |  |  |  |
|           | 71 | 465                     | 275                 | _                                             | _         | _                 |  |  |  |

4 and Figures 2a-c and 3a-c, and confirmed that the degradation of the polymer composites was indeed first order. The correlation coefficients R were calculated from the graphs and are shown in the figures. The values were found to be higher than that of the ungrafted original one and increased with an increase in the molecular weights in both of the degradation stages. The value of the correlation coefficients R was also calculated from the slope and intercept of the straight lines, and

it was observed that the change of the activation energy was significant in the grafted polymer composites. Contrarily, the decomposition temperature and activation energy of the grafted samples were found to be at higher temperature, suggesting that the high temperature provided favorable conditions to form more stable structures during the grafting. The treatment also increased the crystallinity index of the fibers, resulting in a higher degradation temperature.



Figure 5. XRD patterns of the (a) ungrafted and (b) 49, (c) 59, and (d) 71% SHMMA composite.

Scheme 3. Schematic Representation of the Structural Changes During Graft Co-polymerization of SH<sup>a</sup>

Table 6. Grafting on Antheraea assama Silk Composites by the MMA-Ce<sup>IV</sup> System with (a) Variation of Reaction Time and Temperature and (b) Variation of Monomer Concentration<sup>a</sup>

| (a)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at given temp                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at given monomer concn M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| time of reacn, h | 35 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45 °C                                                                                                                                                                       | 55 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 mol/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 mol/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 mol/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80 mol/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90 mol/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 2                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 4                | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                          | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 5                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1                | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                        | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2                | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.1                                                                                                                                                                        | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.6                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 4                | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.2                                                                                                                                                                        | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5                | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.3                                                                                                                                                                        | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1                | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             | 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             | 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.6                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38.5                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                         | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 3                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2                                                                                                                                                                         | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                  | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>4<br>5<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>5<br>1<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>4<br>5<br>1<br>1<br>2<br>2<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>4<br>5<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>5<br>1<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>5<br>1<br>2<br>3<br>3<br>3<br>4<br>4<br>5<br>1<br>2<br>3<br>3<br>3<br>4<br>3<br>3<br>4<br>5<br>1<br>2<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3 | 1 18<br>2 24<br>3 30<br>4 37<br>5 31<br>1 8.8<br>2 11.5<br>3 13.8<br>4 15.0<br>5 13.7<br>1 30.0<br>2 30.8<br>3 33.3<br>4 36.3<br>5 33.9<br>1 3.3<br>2 2.2<br>3 1.8<br>4 1.7 | 1         18         23           2         24         29           3         30         36           4         37         45           5         31         39           1         8.8         10.0           2         11.5         12.1           3         13.8         14.6           4         15.0         17.2           5         13.7         15.3           1         30.0         33.8           2         30.8         35.4           3         33.3         36.6           4         36.3         38.5           5         33.9         37.4           1         3.3         4.3           2         2.2         2.7           3         1.8         2.2           4         1.7         2.1 | 1         18         23         33           2         24         29         39           3         30         36         47           4         37         45         58           5         31         39         51           1         8.8         10.0         12.4           2         11.5         12.1         15.1           3         13.8         14.6         17.8           4         15.0         17.2         20.1           5         13.7         15.3         17.9           1         30.0         33.8         37.9           2         30.8         35.4         38.8           3         33.3         36.6         39.3           4         36.3         38.5         42.6           5         33.9         37.4         41.8           1         3.3         4.3         6.1           2         2.2         2.7         3.6           3         1.8         2.2         2.9           4         1.7         2.1         2.7 | 1         18         23         33         28           2         24         29         39         35           3         30         36         47         45           4         37         45         58         52           5         31         39         51         48           1         8.8         10.0         12.4         11.3           2         11.5         12.1         15.1         14.1           3         13.8         14.6         17.8         16.8           4         15.0         17.2         20.1         18.7           5         13.7         15.3         17.9         17.4           1         30.0         33.8         37.9         36.4           2         30.8         35.4         38.8         35.6           3         33.3         36.6         39.3         37.5           4         36.3         38.5         42.6         40.9           5         33.9         37.4         41.8         38.2           1         3.3         4.3         6.1         5.2           2         2.2         2.7 | 1     18     23     33     28     33       2     24     29     39     35     39       3     30     36     47     45     47       4     37     45     58     52     58       5     31     39     51     48     51       1     8.8     10.0     12.4     11.3     12.5       2     11.5     12.1     15.1     14.1     15.1       3     13.8     14.6     17.8     16.8     17.8       4     15.0     17.2     20.1     18.7     20.1       5     13.7     15.3     17.9     17.4     17.9       1     30.0     33.8     37.9     36.4     37.9       2     30.8     35.4     38.8     35.6     38.8       3     33.3     36.6     39.3     37.5     39.3       4     36.3     38.5     42.6     40.9     42.6       5     33.9     37.4     41.8     38.2     41.8       1     3.3     4.3     6.1     5.2     6.1       2     2.2     2.7     3.6     3.2     3.6       3     1.8     2.2     2 | 1     18     23     33     28     33     40       2     24     29     39     35     39     46       3     30     36     47     45     47     58       4     37     45     58     52     58     65       5     31     39     51     48     51     60       1     8.8     10.0     12.4     11.3     12.5     15.9       2     11.5     12.1     15.1     14.1     15.1     18.7       3     13.8     14.6     17.8     16.8     17.8     24.1       4     15.0     17.2     20.1     18.7     20.1     26.0       5     13.7     15.3     17.9     17.4     17.9     25.3       1     30.0     33.8     37.9     36.4     37.9     39.6       2     30.8     35.4     38.8     35.6     38.8     41.5       3     33.3     36.6     39.3     37.5     39.3     42.4       4     36.3     38.5     42.6     40.9     42.6     44.8       5     33.9     37.4     41.8     38.2     41.8     43.0       1     3.3 </td <td>1       18       23       33       28       33       40       47         2       24       29       39       35       39       46       52         3       30       36       47       45       47       58       63         4       37       45       58       52       58       65       71         5       31       39       51       48       51       60       66         1       8.8       10.0       12.4       11.3       12.5       15.9       18.2         2       11.5       12.1       15.1       14.1       15.1       18.7       21.0         3       13.8       14.6       17.8       16.8       17.8       24.1       26.5         4       15.0       17.2       20.1       18.7       20.1       26.0       29.3         5       13.7       15.3       17.9       17.4       17.9       25.3       27.7         1       30.0       33.8       37.9       36.4       37.9       39.6       41.2         2       30.8       35.4       38.8       35.6       38.8       41.5       43.0</td> <td>1       18       23       33       28       33       40       47       54         2       24       29       39       35       39       46       52       60         3       30       36       47       45       47       58       63       75         4       37       45       58       52       58       65       71       88         5       31       39       51       48       51       60       66       77         1       8.8       10.0       12.4       11.3       12.5       15.9       18.2       19.6         2       11.5       12.1       15.1       14.1       15.1       18.7       21.0       24.2         3       13.8       14.6       17.8       16.8       17.8       24.1       26.5       29.6         4       15.0       17.2       20.1       18.7       20.1       26.0       29.3       33.3         5       13.7       15.3       17.9       17.4       17.9       25.3       27.7       31.0         1       30.0       33.8       37.9       36.4       37.9       39.6       <td< td=""></td<></td> | 1       18       23       33       28       33       40       47         2       24       29       39       35       39       46       52         3       30       36       47       45       47       58       63         4       37       45       58       52       58       65       71         5       31       39       51       48       51       60       66         1       8.8       10.0       12.4       11.3       12.5       15.9       18.2         2       11.5       12.1       15.1       14.1       15.1       18.7       21.0         3       13.8       14.6       17.8       16.8       17.8       24.1       26.5         4       15.0       17.2       20.1       18.7       20.1       26.0       29.3         5       13.7       15.3       17.9       17.4       17.9       25.3       27.7         1       30.0       33.8       37.9       36.4       37.9       39.6       41.2         2       30.8       35.4       38.8       35.6       38.8       41.5       43.0 | 1       18       23       33       28       33       40       47       54         2       24       29       39       35       39       46       52       60         3       30       36       47       45       47       58       63       75         4       37       45       58       52       58       65       71       88         5       31       39       51       48       51       60       66       77         1       8.8       10.0       12.4       11.3       12.5       15.9       18.2       19.6         2       11.5       12.1       15.1       14.1       15.1       18.7       21.0       24.2         3       13.8       14.6       17.8       16.8       17.8       24.1       26.5       29.6         4       15.0       17.2       20.1       18.7       20.1       26.0       29.3       33.3         5       13.7       15.3       17.9       17.4       17.9       25.3       27.7       31.0         1       30.0       33.8       37.9       36.4       37.9       39.6 <td< td=""></td<> |  |

<sup>&</sup>lt;sup>a</sup> The results are averages of three readings. Conditions: Silk composites, 1 g; ceric ammonium sulfate,  $15 \times 10^{-3}$  M;  $H_2SO_4$  acid,  $15 \times 10^{-2}$  M; material to liquor ratio, 1:150 (M = molar); with (a) MMA of  $50 \times 10^{-2}$  M and (b) temperature of 50 °C.

<sup>&</sup>lt;sup>a</sup> Where SH is the silk molecule, S\* is the silk-free radical, and Mn represents poly(methyl methacrylate) (PMMA).

Scheme 4. Diagrammatic Representation of the Grafted Silk Molecule

**Differential Scanning Calorometry Properties.** The thermal behavior of ungrafted and SHMMA composites of different grafting percent were studied with the help of DSC<sup>8,28</sup>, at a heating rate of 20 °C/min, and the thermograms and data have been presented in Figure 4 and Table 5a. In the case of the ungrafted one, the first broad endotherm below 100 °C is due to the evaporation of water. Two minor and broad endothermic transitions appeared at 234 and 297 °C (shoulder form), followed by a prominent endothermic peak at 370 °C.

In the case of SHMMA, the endothermic peak due to evaporation of water shifted to higher temperature as the grafting increased. However, the SHMMA showed an endothermic peak at 107, 120, and 131 °C for 49, 59, and 71% grafted products, respectively. The minor peaks (shoulder form) were shifted to 327, 335, and 347 °C for the SH due to enthalpic change and another endothermic peak was observed in each of the grafted SH at 390, 400, and 415 °C for 49, 59, and 71% grafted SH. On the basis of the above DSC results, it was assumed that the endothermic peaks at 435, 450, and 465 °C for the SH were related to the presence of the MMA polymer in the SH molecule. The glass transition temperatures ( $T_g$ ) for the grafted SH were found to be 225, 260, and 275 °C for 49, 59, and 71% SHMMA composites and have been shown in Table 5a.

X-ray Diffraction Studies. The XRD patterns of SH grafted with MMA have been shown in Figure 5, and the data obtained have been tabulated in Table 5b. The XRD patterns exhibited the presence of both amorphous and crystalline regions.<sup>29,30</sup> However, the crystalline regions were more prominent in the case of grafted products, in comparison to the original ungrafted SH composites. From the data, it was evident the crystallinity percentages in SHMMA composites were found to be more than that of ungrafted one. The increase in crystallinity character in SHMMA products indicated that, on grafting, the SH molecule had under gone an isomeric change; in other words, the SH molecule which was atactic had changed to isotactic after grafting with MMA using the Ce<sup>IV</sup> redox initiator system. Therefore, it might be suggested that the structural rearrangement of SHMMA composites took place during grafting, as given in Scheme 3. In this scheme, the structure of SH, which consisted mainly of the amino acid residues of glycine, alanine, serine aspartic acid, tyrosine, and arginine, has been represented in one dimension, and the strategy was given to describe the way of attacking by the monomer free radical and finally the SHMMA polymer composites. The diagrammatic representation of SHMMA was also given in Scheme 4.

Comparative Study of the Effects of Temperature and Time on Grafting. A comparative study of the effects of reaction temperature on grafting of MMA onto SH fibers/fabrics was carried out at four different temperatures ranging from 35 to 65 °C. It was evident from Table 6a that the weight gain increased steadily up to 55 °C, and beyond that the rate gradually slowed, which could be ascribed due to the greater activation energy. As the temperature of the reaction increased, the swellability of the SHMMA is greatly enhanced and as such the diffusion of the monomer from the solution phase to the

SH phase took place.<sup>31</sup> The study also was carried out on reaction time for 1–5 h duration. The graft yield percentage increased with the increase in the time of reaction up to 4 h, and after that the rate of grafting slowed (Table 6a). It can be concluded that is due to depletion in the available active centers on the substrate backbone as the reaction proceeded.<sup>32</sup>

Studies on Variation of Monomer Concentrations. The variation of the phenomenon incorporated in the graft copolymerization reactions was carried out using five different concentrations of the monomer MMA (methyl methacrylate) from  $50 \times 10^{-2}$  to  $90 \times 10^{-2}$  M (mol/L). The remaining reaction conditions were kept constant. With the increase in monomer concentrations up to  $80 \times 10^{-2}$  M, the rate of grafting increased gradually and decreased thereafter and has been shown in Table 6b. It can be described that, at a certain monomer concentration, combination of monomer probably took place with SH composites. The concentration of PMMA\* increased with the rate of their combination faster than the rate of their combination with SH composites.  $^{33}$ 

### **Conclusions**

In this study, a strategy is described for a potential new technique for thermostable biodegradable composites using MMA and Ce<sup>IV</sup>, and it has gotten good results from the reaction systems. The grafting percentage of the reaction system was dependent on temperature, time, and monomer concentrations, which have been evident from the data. From thermal analysis data and kinetic parameters, it was observed that grafted SHMMA was found to be thermally more stable than the SH composites and followed first-order Arrhenius rate equation. The MMA and Ce<sup>IV</sup> system does not lead to deleterious effects on the color and other chemical properties of the protein fiber. Besides this, this would be of great importance for further modification of the SH, which have great potential to be constructed into biomaterials as well as the best textiles.

# Acknowledgment

We thank the Director, Dr. P. G. Rao, North East Institute of Science & Technology (CSIR), Jorhat, India, for his kind permission to publish this paper.

# **Literature Cited**

- (1) Sing, V.; Tiwari, A.; Pandey, S.; Sing, S. K. Peroxy-disulphate initiated synthesis of potato starch-graft PAN under microwave irradiation. *eXPRESS Polym. Lett.* **2007**, *1*, 51.
- (2) Hazarika, L. K.; Saikia, C. N.; Kataky, A.; Bordoloi, S.; Hazarika, J. Evaluation of physico-chemical characteristics of silk fibres of *Antheraea assama* reared on different host plants. *Bioresour. Technol.* **1998**, *64*, 67.
- (3) Asakura, T.; Sugino, R.; Yao, J. M.; Takashima, H.; Kishore, R. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) for *Bombyx mori* using solid-state <sup>13</sup>C, <sup>15</sup>N, and <sup>2</sup>H NMR. *Biochemistry* **2002**, *41*, 4415.
- (4) Jin, H.-J.; Park, J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Biomaterial films of *Bombyx mori* silk fibroin with poly(ethylene oxide). *Biomacromolecules* **2004**, *5*, 711.
- (5) Zhang, K.; Wang, H.; Huang, C.; Su, Y.; Mo, X.; Ikada, Y. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. *J. Biomed. Mater. Res.* **2009**, *43*, 114.
- (6) Marsanoa, E.; Corsinia, P.; Canettib, M.; Freddic, G. Regenerated cellulose-silk fibroin blends fibers. *Int. J. Biol. Macromol.* **2008**, *43*, 106.
- (7) She, Z.; Liu, W.; Feng, Q. Preparation and cytocompatibility of silk fibroin/chitosan scaffolds. *Front. Mater. Sci. China* **2009**, *3*, 241.
- (8) Cheung, H.-Y.; Lau, K.-T.; Tao, X.-M.; Hui, D. A potential material for tissue engineering: Silkworm silk/PLA biocomposite. *Composites, Part B* **2008**, *39*, 1026.

- (9) Tang, Y.; Cao, C.; Ma, X.; Chen, C.; Zhu, H. Study on the preparation of collagen-modified silk fibroin films and their properties. *Biomed. Mater.* **2006**, *1*, 242.
- (10) Jin, H.-J.; Park, J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Structure and properties of silk hydrogels. *Biomacromolecules* **2004**, *5*, 711.
- (11) Hoefnagels, H. F.; Wu, D.; de With, G.; Ming, W. Biomimetic superhydrophobic and highly oleophobic cotton textiles. *Langmuir* **2007**, *23*, 13158.
- (12) Kessler, M. R.; White, S. R. Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene. *J. Polym. Sci., Part A: Polym. Chem.* **2002**, *40*, 2373.
- (13) Liu, Y.; Yang, L.; Shi, Z.; Li, J. Graft copolymerization of methyl acrylate onto cellulose initiated by potassium ditelluratoargentate (III). *Polym. Int.* **2004**, *53*, 1561.
- (14) Das, A. M.; Chowdhury, P. K.; Saikia, C. N.; Rao, P. G. Some physical properties and structure determination of vinyl monomer-grafted Anthearea assama silk fiber. *Ind. Eng. Chem. Res.* **2009**, *48*, 9338.
- (15) Jian, M. J.; Hui, J. Z.; Guang, L.; Jin, J. H.; Sheng, L. Y. Poly (P-phenylene benzoxazole) fibre chemically modified by the incorporation of sulfonate groups. *J. Appl. Polym. Sci.* **2008**, *109*, 3133.
- (16) Bhattacharyya, A.; Misra, B. N. Grafting: A versatile mean to modify polymers techniques, factors and applications. *Prog. Polym. Sci.* **2004**, *29*, 767.
- (17) Mingzhong, Li.; Norihiko, M.; Lixing, D.; Linsen, Z. Preparation of porous poly(vinyl alcohol)—silk fibroin (PVA/SF) blend membranes. *Macromol. Mater. Eng.* **2001**, 286, 529.
- (18) Wang, J.; Wenhui, W.; Zhihui, L. Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydogels. *J. Appl. Polym. Sci.* **2008**, *109* (5), 3018.
- (19) Coats, A. W.; Redfern, J. R. Kinetic parameters from thermogravimetric data. *Nature* **1964**, *68*, 201.
- (20) Rabek, J. F. Experimental methods in polymer chemistry; John Wiley & Sons: London, 1980.
- (21) Jayakumar, R.; Prabaharan, M.; Reis, R. L.; Mano, J. F. Graft copolymerized chitosan-present status and applications. *Carbohydr. Polym.* **2005**, *62*, 142.
- (22) Xie, F.; Zhang, H.; Shao, H.; Hu, X. Effect of shearing on formation of silk fibers from regenerated *Bombyx mori* silk fibroin aqueous solution. *Int. J. Biol. Macromol.* **2006**, *38*, 284.

- (23) Kaith, B. S.; Kalia, S. Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. *eXPRESS Polym. Lett.* **2008**, *2*, 93.
- (24) Rahman, M. R.; Huque, M. M.; Islam, M. N.; Hasan, M. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. *Composites, Part A* **2008**, *39*, 1739
- (25) Acar, I.; Pozan, G. S.; Ozgumus, S. Thermal oxidative degradation kinetics and thermal properties of poly(ethylene terephthalate) modified with poly(lactic acid). *J. Appl. Polym. Sci.* **2008**, *109*, 2747.
- (26) Paulik, F. Special trends in thermal analysis. *Talanta* **1996**, *43*, 2025
- (27) Zhu, J.; Shao, H.; Hu, X. Morphology structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. *Int. J. Biol. Macromol.* **2007**, *41*, 469.
- (28) Spinger, V. Worked examples in X-ray analysis (supplied with the computer controlled XRD); Type JDX-11P 3A, JEOL, Japan; Springer: Berlin, 2006.
- (29) Singha, A. S.; Kaith, B. S.; Chauhan, A.; Misra, B. N. Mechanical properties of natural fibre reinforced polymer composites. *J. Polym. Mater.* **2006**, *23*, 3456.
- (30) Singha, A. S.; Shama, A.; Thakur, V. K. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre. *Bull. Mater. Sci.* **2008**, *31*, 7.
- (31) Liu, Z.-T.; Chang'an, S.; Liu, Z.-W.; Jian, L. Adjustable wettability of methyl methacrylate modified ramie fibre. *J. Appl. Polym. Sci.* **2008**, *109* (5), 2888.
- (32) Hongehun, L.; Jincai, L.; Yuetao, Z.; Ying, M. Ethylene/a-olefin copolymerization using diphenylcyclopentadienyl-phenoxytitanium dichloride/ Al(<sup>i</sup>Bu)<sub>3</sub>/[Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] catalyst systems. *J. Appl. Polym. Sci.* **2008**, *109*, 3030
- (33) Das, A. M.; Saikia, C. N.; Hussain, S. Grafting of methyl methacrylate (MMA) onto *Antheraea assama* silk fiber. *J. Appl. Polym. Sci.* **2001**, *81*, 2633.

Received for review April 13, 2010 Revised manuscript received November 12, 2010 Accepted December 1, 2010

IE100867G