

LA INGENIERÍA EN LA MÚSICA, JUEGOS Y DRONES

Autores: Elvira Castillo y Samuel Romero

twitter: @layoel

Instagram: eca_ingeniera

- 1. ARDUINO
- 2. PROGRAMACIÓN EN C++
- 3. PRÁCTICA: THEREMIN
- 4. PRÁCTICA: SEMAFORO
- 5. PRÁCTICA: JUEGO ATRAPA AL TOPO
- 6. VISITA AL LABORATORIO DE MECATRÓNICA Y DRONES.

ARDUINO

- Arduino es un micro controlador.
- Es libre (no es único).
- Flexible y fácil de manejar.

- ·Puertos de comunicación.
- Modular y ampliable.
- Software: C++, programación por bloques (scratch for arduino)

Analógicas:

Pueden tomar infinitos valores entre su valor mínimo y su valor máximo.

Digitales:

Sólo puede tomar dos valores (0 o 1) donde:

0 es el mínimo, off, falso, tierra.

1 es el máximo, on, verdadero, fuente.

Entradas/salidas digitales

Para declarar un pin como salida en arduino, hay que hacerlo en:

setup(){AQUI DENTRO}

Los pines que usaremos como entrada:

•pinMode(numero_de_pin, INPUT);

Los que usaremos como salida:

•pinMode(numero_de_pin, OUTPUT);

Entradas/salidas analógicas

- El arduino no tiene capacidad para trabajar con señales analógicas, tiene que convertirlas a digitales.
- •Pines analógicos: A0,A1,A2,A3,A4,A5
- •Para tratar Entradas/salidas analógicas usamos las funciones:
 - •analogRead(pin); // que lee del pin analógico especificado
 - analogWrite(pin); // que recibe un valor analógico en el pin especificado
 - •map(valor, de bajo, de alto, a bajo, a alto); // para convertir un rango de valores en otro.
- •Entradas analógicas tienen ~ (PWM)
 - analogWrite(pin);

¿Qué puedo hacer con Arduino?

¡Todo lo que se te ocurra!

PROGRAMACIÓN C++

¿Qué es un algoritmo?

•Secuencia ordenada de instrucciones que resuelve un problema concreto

Lenguajes de programación:

•Bajo nivel: Ensamblador

•Alto nivel: C++, C, Java ...

¿Qué es un programa?

• Es un conjunto de instrucciones, especificadas en un lenguaje de programación concreto que pueden ejecutarse en un ordenador o en un microcontrolador.

.Compilación

• Traducir un programa a código ejecutable por la máquina

UNIVERSIDAD DE GRANADA

¿Cómo se programa el Arduino?

Arduino/Genuino Uno en COM4

- ·Usamos el IDE de arduino.
- .Vamos a programar en C++.
- ·Funciones básicas.
 - •void setup();
 - •void loop();
- •Ejemplo Blink.
- .Compilar y subir el programa a la placa.


```
sketch_jun25a Arduino 1.8.5
Archivo Editar Programa Herramientas Ayuda
  sketch jun25a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```


Hola mundo!

```
void setup() {
```

Aquí vendrán las <u>configuraciones</u> de nuestros <u>pines como entradas o salidas</u> y la configuración del puerto serie si es necesaria. Todo incluido entre llaves.

```
void loop() {
```

Aquí pondremos las <u>instrucciones</u> que ejecutará nuestro programa.

Sentencia: es la parte del código fuente que el compilador traduce en una instrucción que entiende el hardware.

Siempre debe terminar en

• Se ejecutan de forma secuencial

Declaración y asignación de variables

Tipos de datos

- Numéricos:
 - Int lado1;
 - Double lado2;
- Texto:
 - Char caracter;
 - String cadena;
- Lógicos
 - Bool midato; (sólo toma valor verdadero o falso)
- Complejos:
 - int vector[2];

- lado1 = 3;
- lado2 = 3,5;
- caracter = 'c';
- cadena = 'hola mundo';
- midato = true;
- Vector[0] = 3;Vector[1] = 2;

Tipos

- Matemáticos:
 - +, -, *, /, %.
- Relacionales:

- Lógicos
 - &&, ||, !.

Р	!P	
True	False	
False	True	

Р	Q	P&&Q	P Q
True	True	True	True
True	False	False	True
False	True	False	True
False	False	False	False

Condicional simple

```
If (condición){
    sentencias;
}
```

Ejemplo:

Comprobar si un número es par. Si lo es encender el led conectado al pin 9.

Condicional compuesto

```
If (condición && condición){
    sentencias;
}

If (condición || condición){
    sentencias;
}
```

Ejemplo:

Comprobar si un número es par y menor que 6. Si lo es encender el led conectado al pin 9.

Condicional doble

```
If (condición ){
    sentencias;
}else{
    sentencias;
}
```

Ejemplo:

Comprobar si un número es par. Si lo es encender el led conectado al pin 9. Si no lo es encender el led conectado al pin 10.

Anidando condicionales

```
If (condición1){
     If (condición2){
        sentencias;
     }else{
        sentencias;
}else{
  sentencias;
```

Ejemplo:

- Si un numero es par y menor que 6 encender el led. Si no es menor que 6 que suene el buzzer
- Si no es par encender el led conectado al pin 10.


```
Loop(){
      Lo que se va a repetir siempre
for (inicio; fin; incremento){
      Lo que se va a repetir desde inicio a fin
while(condición){
lo que quiero que haga mientras se cumpla la condición
```

Pensar y Esperar en arduino

En Arduino:

Pensar es escribir en pantalla un mensaje, por lo que tenemos que iniciar en el setup() el terminal serie de arduino

Serial.beguin(9600);

Y en el loop() cuando queramos imprimir algún valor por pantalla:

Serial.print("lo que queramos que escriba por pantalla");

Para esperar usaremos: delay(tiempo_a_esperar);

¡Vamos a practicar!

Materiales:

- .Microcontrolador:
 - Arduino
- Actuador:
 - Buzzer
- .Sensor:
 - •Fotorresistencia
- .Otros
 - •Resistencia y cables.

UNIVERSIDAD DE GRANADA ¿Cómo lo conectamos?

https://www.digikey.es/es/resources/conversion-calculators/conversion-calculator-resistor-color-code-5-band

•Recuerda en el setup() ponemos los pines digitales como entrada o salida.

Busca información sobre la función tone() de arduino.

¿Para que sirve la función map()?

Los pines se pueden asignar a variables y usar un nombre de variable en lugar del numero de pin.

Semaforo cambia pulsando botón

Materiales:

- .Microcontrolador:
 - Arduino.
- Actuadores:
 - Botón.
 - Leds.
- .Otros
 - •Resistencias y cables.

Materiales:

- .Microcontrolador:
 - Arduino.
- Actuadores:
 - Botones.
 - •Leds.
 - Buzzer.
- .Otros
 - •Resistencias y cables.

•Recuerda en el setup() ponemos los pines digitales como entrada o salida.

- Busca información sobre la función random(min, max) de arduino.
- ·Piensa primero el algoritmo antes de programarlo.
- •Aquí tienes un vídeo de ayuda del funcionamiento del juego https://www.youtube.com/watch?v=NYZ5i9UxcUk