Stats to parse out DM and pH effects

Sasha D. Hafner

04 January, 2023

Plots

```
dat$DMgrp <- cut(dat$DM, 4)</pre>
dat$pHgrp <- cut(dat$pH, 4)</pre>
dd <- subset(dat, !is.na(pH) & !is.na(DM))</pre>
ggplot(dd, aes(pH, emis.perc, colour = source)) +
  geom_point() +
  geom_line() +
  facet_wrap(~ DMgrp, ncol = 4)
                                                                              Amon et al. (2006)
        (0.609, 3.39]
                        (3.39, 6.16]
                                        (6.16, 8.93)
                                                        (8.93, 11.7]
                                                                              Anderson et al, in prep
                                                                              Chantigny et al. (2007)
                                                                              Chantigny et al. (2009)
                                                                              Clemens et al. (2006)
                                                                              Hafner et al., in preparation
   40 -
                                                                              Hansen et al. (2004)
                                                                              Hjorth et al. (2009)
emis.perc
                                                                              Möller et al. (2009)
                                                                              Nyord et al. (2012)
                                                                              Pain et al. (1990)
   20 -
                                                                              Pedersen et al., in preparation A
                                                                              Pedersen et al., in preparation B
                                                                              Perschke et al., in prep
                                                                              Riva et al. (2016)
                                                                              Rubæk et al. (1996)
                                                                              Sommer et al. (2006)
                                                                              Wagner et al. (2021)
                                    pН
                                                                              Wulf et al. (2002)
ggplot(dd, aes(DM, emis.perc, colour = source)) +
  geom_point() +
  geom_line() +
```

```
facet_wrap(~ pHgrp, ncol = 4)
```

geom_path: Each group consists of only one observation. Do you need to adjust
the group aesthetic?

Not pretty but there do seem to be correlations for both DM and pH.

How did digestion change DM and pH?

```
dd <- subset(dd, !is.na(relDiff.set))
ggplot(dd, aes(DM, pH, colour = relDiff.frac, group = interaction(source, relDiff.set))) +
  geom_line(colour = 'gray85') +
  geom_point() +
  theme_bw()</pre>
```


Generally increased pH and decreased DM, as expected in the absence of added high DM substrates.

Models

Summary.

```
dfsumm(dat[, c('source', 'app.meth', 'DM', 'pH', 'relDiff.frac', 'emis.perc')])
##
    122 rows and 6 columns
##
##
    122 unique rows
##
                                   source
                                                             app.meth
                                                                           DM
                                                                                    рН
## Class
                                                            character numeric numeric
                                character
## Minimum
                       Amon et al. (2006)
                                                            broadcast
                                                                         0.62
                                                                                   3.2
## Maximum
                       Wulf et al. (2002) trailing shoe + harrowing
                                                                         11.7
                                                                                     9
## Mean
                                      <NA>
                                                                         4.39
                                                                                  7.76
## Unique (excld. NA)
                                                                    6
                                                                           71
                                        21
                                                                                    36
                                                                    7
## Missing values
                                         0
                                                                                    14
## Sorted
                                    FALSE
                                                                FALSE
                                                                        FALSE
                                                                                FALSE
##
##
                       relDiff.frac emis.perc
                                      numeric
## Class
                          character
## Minimum
                          digestate
                                           1.6
## Maximum
                          reference
                                            60
## Mean
                               <NA>
                                          22.7
## Unique (excld. NA)
                                  2
                                            98
## Missing values
                                 46
                                             0
```

```
## Sorted
                             FALSE
                                       FALSE
##
Overall digestion effect (not expecting much)
m1 <- lm(emis.perc ~ source + app.meth + relDiff.frac, data = dat)
summary.aov(m1)
##
                Df Sum Sq Mean Sq F value
                                            Pr(>F)
## source
                14
                     4828
                            344.9
                                     3.98 0.000137 ***
                            662.1
                                     7.64 0.001252 **
## app.meth
                2
                     1324
                             63.2
                                     0.73 0.397011
## relDiff.frac 1
                       63
## Residuals
                     4420
                             86.7
               51
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 53 observations deleted due to missingness
tail(coef(m1))
   sourceWagner et al. (2021)
                                  sourceWulf et al. (2002)
##
##
                     12.798830
                                                 20.298830
## app.methopen slot injection
                                     app.methtrailing hose
##
                    -13.750000
                                                  8.000000
##
         app.methtrailing shoe
                                     relDiff.fracreference
##
                            NA
                                                  1.933273
Nothing.
Separate DM and pH effects.
m2 <- lm(emis.perc ~ pH + DM + relDiff.frac + source + app.meth, data = dat)
summary.aov(m2)
##
                Df Sum Sq Mean Sq F value Pr(>F)
## pH
                     67.9
                             67.9
                                    0.914 0.34486
                 1
## DM
                   346.3
                            346.3
                                    4.661 0.03692 *
                 1
## relDiff.frac 1
                      1.8
                             1.8
                                    0.024 0.87754
## source
               12 2495.8
                           208.0
                                    2.799 0.00724 **
                           913.2 12.289 0.00114 **
## app.meth
                1 913.2
## Residuals
                40 2972.6
                            74.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 65 observations deleted due to missingness
drop1(m2, test = 'F')
## Single term deletions
##
## Model:
## emis.perc ~ pH + DM + relDiff.frac + source + app.meth
                Df Sum of Sq
                                       AIC F value Pr(>F)
                               RSS
## <none>
                             2972.6 259.38
                        2.11 2974.7 257.43 0.0284 0.867126
## pH
                 1
                        1.59 2974.2 257.42 0.0213 0.884604
## DM
                1
## relDiff.frac 1
                        2.86 2975.4 257.44 0.0385 0.845358
## source
                10
                   2404.38 5377.0 273.17 3.2354 0.003866 **
                1 913.25 3885.8 272.66 12.2890 0.001139 **
## app.meth
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m3 <- lm(emis.perc ~ pH + DM + source + app.meth, data = dat)
summary.aov(m3)
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## pH
                1
                     463
                           463.0
                                  4.694 0.033286 *
## DM
                    1312 1312.4 13.305 0.000473 ***
                1
## source
               16
                    4701
                           293.8
                                  2.979 0.000678 ***
               5
                    3023
                           604.6
                                   6.130 7.55e-05 ***
## app.meth
## Residuals
               79
                    7792
                            98.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 19 observations deleted due to missingness
drop1(m3, test = 'F')
## Single term deletions
##
## Model:
## emis.perc ~ pH + DM + source + app.meth
##
            Df Sum of Sq
                             RSS
                                    AIC F value
                                                   Pr(>F)
## <none>
                          7792.1 493.59
## pH
                   529.9 8322.0 498.37 5.3722 0.0230494 *
             1
## DM
             1
                   981.9 8774.1 503.82 9.9554 0.0022695 **
                  4917.5 12709.6 511.98 3.1160 0.0004117 ***
## source
            16
## app.meth 5
                  3023.1 10815.2 517.36 6.1300 7.548e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
cc \leftarrow coef(m3)[1:3]
СС
## (Intercept)
                                    DM
                        рΗ
## -25.475142
                  4.205796
                              2.109639
confint(m3)[1:3, ]
##
                     2.5 %
                              97.5 %
## (Intercept) -63.6388860 12.688603
## pH
                 0.5939860 7.817605
## DM
                 0.7787866 3.440491
cc['pH'] / cc['DM']
##
         рН
## 1.993609
m3 is where it gets interesting. Clear positive effects of DM and pH, although the pH effect seems small
(+4% emission (frac. of TAN) per unit pH change). Effect of pH is about 2x DM effect (1 unit pH change:
1% DM change).
plot(m3, ask = FALSE)
## Warning: not plotting observations with leverage one:
##
     102
```


Fitted values
Im(emis.perc ~ pH + DM + source + app.meth)
Residuals vs Leverage

Leverage Im(emis.perc ~ pH + DM + source + app.meth)

We might look at relative effect.

```
m4 <- lm(log10(emis.perc) ~ pH + DM + source + app.meth, data = dat)
summary.aov(m4)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## pH 1 0.726 0.7257 12.252 0.000767 ***
```

```
## DM
                   0.574 0.5744
                                    9.698 0.002570 **
                   2.545
                          0.1591
                                    2.686 0.001971 **
## source
               16
                                    5.702 0.000153 ***
## app.meth
                5
                   1.689
                          0.3377
## Residuals
                   4.679
                          0.0592
               79
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 19 observations deleted due to missingness
cc <- 100 * (10^coef(m4)[1:3] - 1)
СС
  (Intercept)
                                     DM
##
                        рΗ
     -24.47896
                  38.27664
                               11.86561
100 * (10<sup>confint(m4)</sup>[1:3, ] - 1)
                    2.5 %
##
                              97.5 %
## (Intercept) -91.232586 550.52562
## pH
                12.782575
                            69.53354
## DM
                 3.772978
                            20.58934
cc['pH'] / cc['DM']
##
         pН
## 3.225847
```

38% increase in emission with a 1 unit increase in pH, seems plausible. Effect of pH here 3x DM effect. Seems more plausible.

```
plot(m4, ask = FALSE)
```

Warning: not plotting observations with leverage one:

Fitted values Im(log10(emis.perc) ~ pH + DM + source + app.meth)

Theoretical Quantiles
Im(log10(emis.perc) ~ pH + DM + source + app.meth)
Scale-Location

O6

Fitted values Im(log10(emis.perc) ~ pH + DM + source + app.meth)

Predictions

Might be interesting to see how predictions here stack up against current DK EFs (based on ALFAM2).

```
dat$si <- factor(as.integer(factor(dat$source)))
m5 <- lm(log10(emis.perc) ~ pH + DM + si + app.meth, data = dat)
coef(m5)</pre>
```

coef(m5)			
##	(Intercept)	рН	
##	-0.12193204	0.14074882	
##	DM	si2	
##	0.04869660	0.17827981	
##	si3	si4	
##	0.05756898	0.20300552	
##	si5	si6	
##	0.40397579	0.37177705	
##	si7	si8	
##	0.48801250	0.29512484	
##	si11	si14	
##	0.42117908	0.26718720	
##	si15	si16	
##	0.70218532	0.11573208	
##	si17	si18	
##	0.20769066	0.25782185	
##	si19	si20	
##	-0.01567678	0.14392388	
##	si21	app.methclosed slot injection	
##	0.25760194	-0.67956909	
##	app.methopen slot injection	app.methtrailing hose	
##	-0.57136678	-0.13501678	

ref 19 trailing hose 6.5 7.0 10.69409 dig 19 trailing hose 5.1 7.9 12.23609						
dig 19 trailing hose 5.1 7.9 12.23609	scenario	si	app.meth	DM	рН	emis
-li 10 4ili CF 70 14.91F00	dig	19	trailing hose	5.1	7.9	12.23609
dig+ 19 trailing hose 6.5 7.9 14.31588	dig+	19	trailing hose	6.5	7.9	14.31588