

Eye-Movement Patterns Reveal Effects of Reading Skills on On-line Language Processing

Tao Gong

David Braze, James S. Magnuson, W. Einar Mencl, Whitney Tabor, Julie A. Van Dyke, Donald P. Shankweiler

Motivation

- Most models of eye movements in reading assume that lexical properties (e.g., word frequency and length) are the primary determiners of the eyes' progress in reading text (Joseph, Nation, & Liversedge, 2013; Reichle et al., 2013);
- Our interests:
 - Effects of reading skill differences on eye movement patterns in reading;
 - O Interactions between reading skills and lexical properties.

Research Questions

- O Given that not everyone's experience and skills are the same:
 - O Do eye movement patterns in reading connected text co-vary with conventional measures of reading skills?
 - O Do effects of lexical properties on eye movements interact with reading skill differences?

Participants

- 6 46 native English speakers (age range = 16 -24; mean = 20.58; SD = 2.25).
- Wide range of individual differences:
 - Adult education program, community college;
 - Or no enrollment at all.
- O Pre-screened to ensure ability to read simple sentences with comprehension.
- O Continuous sampling of individuals, not extreme groups based on particular reading skills.

(((HL)))

Components of Reading Skills

Name	Label	
TY 1 1	ppvt.raw: Peabody Picture Vocabulary Test	
Vocabulary	wasi.v.raw: Wechsler Abbreviated Scale of Intelligence	
Decoding	wid.raw: Word Identification Test	
	watt.raw: Word Attack in Woodcock Reading Mastery	
Daading Campushansian	piat.r.raw: Print Sentence Comprehension Test	
Reading Comprehension	gort.comp: Passage Comprehension Test	
Print experience	MRT: Magazine Recognition Test	
	ART: Author Recognition Test	
Visual Working Memory	corsi: Block-Tapping Test	
Oral Reading Fluency	gort.fluen: Gary Oral Reading Fluency Test	
Listening Comprehension	piat.l.raw: Listening Sentence Comprehension Test	
Verbal Working Memory	sspan.corr: Verbal Working Memory Test	
(cf Broze Tabor Shankweiler & Mencl 2007)		

(cf. Braze, Tabor, Shankweiler, & Mencl, 2007)

(((HL)))

Task

Participants covertly read sentences, shown one by one in a monospace font on a computer monitor, clicked a button when done, and answered a comprehension question in about 30% of trials (mean accuracy = 91.32%, SD = 6.7).

O Eye movements were recorded with an Eyelink II head-mounted device (sampling rate = 250 Hz).

Materials

- 28 simple sentences:
 - O E.g., "One of the lawyer's best clients always paid his bills early."
- 44 sentences with embedded clauses:
 - O E.g., "The waiter had told the customer that the pies were fresh."

No manipulation of words in sentences.

(((HL)))

Lexical Properties

O Lexical property measures (based on COCA database (Corpus of Contemporary American English)):

Name	Label
Current word length	Len_W
Current word frequency	$Freq_W$
Previous word length	Len _{W-1}
Previous word frequency	Freq _{W-1}
Next word length	Len _{W+1}
Next word frequency	Freq _{W+1}

Particulars of the Data

- O Data of 44 subjects for analyses (data of two subjects were removed due to incomplete data):
 - O 320 content words.
 - 12,957 eye-movement observations.

Eye-movement (EM) Measures

- First-pass reading time: Summed durations of first-pass fixations on current word.
- First-pass regression incidence: Whether or not there is a backward eye-movement from the current word.

These measures reflect the early stages of lexical processing and textual integration (Kuperman & Van Dyke, 2013).

Statistical Analyses

- Mixed effects linear (Quené & van den Bergh, 2008) or logistic regression (Jaeger, 2008).
- Control Lexical properties analyses:
 - O EM measures ~ lexical properties;
 - Main effects of lexical properties on eye-movement measures (Joseph et al., 2013; Kuperman & Van Dyke, 2011; Valle, Binder, Walsh, Nemier, & Bangs, 2013).
- O Individual differences analyses:
 - O EM measures ~ lexical properties + reading skills + lexical properties : reading skills.

Individual Differences Analyses

EM measures	Reading skills	β	SE	t	p<
	gort.fluen	-21.99	10.13	-2.17	.05
	$gort.fluen: Freq_W$	5.71	1.53	3.73	.001
	printexp : Freq _W	5.37	1.80	2.98	.005
First-pass	piat.l.raw : Freq _W	-3.41	1.25	-2.73	.01
reading time	$printexp: Len_W$	-2.99	.89	-3.36	.01
	$decod: Len_W$	-3.92	.86	-4.54	.001
	sspan.corr : Len_W	2.57	.71	3.64	.001
	$corsi: Len_W$	-1.56	.67	-2.34	.05

Oral Reading Fluency

Oral reading fluency (gort.fluen)

Oral Reading Fluency x Freqw

Q	slope	intercept
1 st	-27.002	332.243
2 nd	-17.855	301.490
3 rd	-13.768	275.005
4 th	-8.461	250.819

Monotonic drop of slopes and intercepts;

Fluent readers are least sensitive to Freq_W.

Print Experience x Freqw

Q	slope	intercept
1 st	-26.113	329.759
2^{nd}	-19.108	302.296
3 rd	-16.758	295.430
4 th	-7.629	244.388

Monotonic drop of slopes and intercepts;

Experienced readers are least sensitive to Freqw.

Listening Comprehension x Freqw

Q	slope	intercept
1 st	-17.491	300.869
2 nd	-22.203	324.147
3 rd	-19.307	296.115
4 th	-10.515	249.274

Non-monotonic drop of slopes and intercepts;

Good comprehenders are least sensitive to Freqw.

Word frequency (Freqw)

Conclusions

- Readers having poor component reading skills (e.g., oral reading fluency, print experience, comprehension) are more sensitive to lexical properties during reading.
- O Interactions between reading skills and lexical properties on eye-movements show monotonic or non-monotonic effects.

O Variations in conventionally measured reading skills can predict on-line reading behavior → A further indicator of their validity and relevance for reading models, reading instruction, and reading remediation.

Future Directions

- Relationship between reading skill differences and online oral reading behaviors;
- Abilities to deal with comprehension challenges due to syntactic or pragmatic anomalies.

Acknowledgement

O US NIH Grants (HD 071988 and HD 040353)

```
igg(igg(igg(	ext{Haskins Laboratories}ig)igg)igg)
```

- We thank Douglas Whalen from the Haskins Laboratories for comments on an early version of the talk.
- O We are grateful to Jessica Grittner, Josh Coppola, and Jon Gordils from the Haskins Laboratories for assistance with this research.