Лабораторная работа № 3.

Многослойные сети. Алгоритм обратного распространения ошибки

Целью работы является исследование свойств многослойной нейронной сети прямого распространения и алгоритмов ее обучения, применение сети в задачах классификации и аппроксимации функции.

Основные этапы работы:

- 1. Использовать многослойную нейронную сеть для классификации точек в случае, когда классы не являются линейно разделимыми.
- 2. Использовать многослойную нейронную сеть для аппроксимации функции. Произвести обучение с помощью одного из методов первого порядка.
- 3. Использовать многослойную нейронную сеть для аппроксимации функции. Произвести обучение с помощью одного из методов второго порядка.

Для обучения многослойных нейронных сетей прямого распространения используются методы поиска экстремума функций многих переменных.

Методы первого порядка:

- Метод градиентного спуска (traingd). Для работы алгоритма необходимо задать скорость обучения: net.trainParam.lr = 0.05.
- Метод градиентного спуска с моментом (traingdm). Для работы алгоритма необходимо задать скорость обучения и величину момента: net.trainParam.lr = 0.05, net.trainParam.mc = 0.9.
- Метод градиентного спуска с адаптивным шагом (traingda). Для работы алгоритма необходимо задать скорость обучения и коэффициент увеличения скорости настройки: net.trainParam.lr = 0.05, net.trainParam.lr inc = 1.05.
- Метод градиентного спуска с адаптивным шагом и моментом (traingdx). Для работы алгоритма необходимо задать скорость обучения, коэффициент увеличения скорости настройки и величину момента: net.trainParam.lr = 0.05, $net.trainParam.lr_inc = 1.05$, net.trainParam.mc = 0.9.
- Метод гибкого распространения (trainrp). Другое название RProp (Resilient Backpropagation).
- Методы сопряженных градиентов: метод Флетчера-Ривса (*traincgf*), метод Полака-Рибейры (*traincgp*), метод Пауэлла-Биеле (*traincgb*), метод Моллера (*trainscg*). Для группы методов сопряженных градиентов рекомендуется задать число нейронов в скрытом слое равным 15.

Методы второго порядка:

- Квазиньютоновский метод, предложенный Бройденом, Флетчером, Гольдфарбом и Шанно (*trainbfg*).
- Метод Левенберга-Марквардта (*trainlm*).
- Одношаговый метод секущих (trainoss).

Сценарий работы:

Этап 1

1. Заданы 3 линейно неразделимых класса. Точки, принадлежащие одному классу, лежат на алгебраической линии. Построить и обучить многослойную сеть прямого распространения, которая будет классифицировать точки заданной области.

Обучающий набор $\{x_i,y_i\},\ i=1,..,N,$ число классов K=3. Сеть реализует отображение вида:

$$f(x_i, y_i) = \{(z_k)_{k=1}^K = (0, ..., 1, ..0) | z_{k=K^*} = 1$$
 при $(x_i, y_i) \in K^* \}$

- $1.1~\mathrm{B}$ соответствии с вариантом задания для каждой линии сгенерировать множество точек. Далее для первого класса выбрать из исходного множества случайным образом 60 точек. Для второго и третьего классов $100~\mathrm{u}$ $120~\mathrm{tovek}$ соответственно. Для выбора точек рекомендуется использовать функцию randperm, с помощью которой получить псевдослучайную последовательность индексов вектора.
- 1.2 Множество точек, принадлежащее каждому классу, разделить на обучающее, контрольное, и тестовое подмножества с помощью функции divider and в отношении 70%-20%-10%.
- 1.3 Отобразить с помощью функции plot исходные множества точек для каждого из классов. Задать параметр LineWidth равным 2, подписать линии, задать сетку. С помощью axis задать границы для входного множества. Параметры отображения для классов:
- **Класс 1** Исходное множество: -r. Обучающее подмножество: or, MarkerEdgeColor = k, MarkerFaceColor = r, MarkerSize = 7. Контрольное подмножество: rV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: rs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- **Класс 2** Исходное множество: -g. Обучающее подмножество: og, MarkerEdgeColor = k, MarkerFaceColor = g, MarkerSize = 7. Контрольное подмножество: gV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: gs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- **Класс 3** Исходное множество: -b. Обучающее подмножество: ob, MarkerEdgeColor = k, MarkerFaceColor = b, MarkerSize = 7. Контрольное подмножество: bV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: bs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- 1.4 Соответствующие подмножества точек каждого класса объединить в обучающее, контрольное, и тестовое подмножества обучающей выборки. Обучающая выборка состоит из последовательного объединения полученных обучающего, контрольного, и тестового подмножеств.
- 1.5 Создать сеть с помощью функции feedforwardnet. Сконфигурировать сеть (configure), указав диапазоны изменения для входного множества и эталонных выходов сети. Точки входного и выходного множеств лежат на отрезках [-1.2, 1.2] и [0, 1] по каждой из координат соответственно.

Число нейронов скрытого слоя задать равным 20. Использовать активационные функцию tansig для скрытого и выходного слоев. Задать RProp в качестве алгоритма обучения.

1.6~Для разделения обучающего множества на подмножества использовать net.divideFcn='divideind'. Также задать параметры:

net.divideParam.trainInd = 1:trnInd; net.divideParam.valInd = trnInd + 1:tstInd;net.divideParam.testInd = tstInd + 1:proInd; где trnInd, tstInd, proInd задают количество примеров в обучающем, контрольном, и тестовом подмножествах.

- 1.7~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 1.8 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве $(net.trainParam.max_fail)$, равными 1500, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 1.9 Выполнить обучение сети с помощью функции train. Для обучения использовать обучающую выборку. Занести в отчет содержимое Performance и Neural Network Training.
 - 1.10 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 1.11 Рассчитать выход сети (sim) для обучающего подмножества. Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0.5; \\ 0, & a_{ij} < 0.5; \end{cases}$$

Занести в отчет количество правильно классифицированных точек.

- 1.12 Провести аналогичные расчеты для контрольного и тестового подмножеств.
- 1.13 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Для этого задать сетку для указанной области с шагом h = 0.025. Рассчитать выход сети для всех узлов сетки.
- 1.14 Выход сети для каждой точки задает ее принадлежность к трем классам. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет.

Для этого использовать функции image и colormap. image отображает матрицу, каждый элемент которой содержит ссылку на таблицу цветов, которая задается с помощью colormap. Элементы в матрице цветов должны находиться в диапазоне [0,1]. Каждая компонента выходного вектора задает интенсивность одного из цветов в модели RGB. Например, (1,0,0) — красный цвет, (0,1,0) — зеленый, (0,0,1) — голубой, (1,1,0) — желтый цвет.

Сначала нужно сформировать таблицу цветов: округлить компоненты выходных векторов до десятых (floor или round) и удалить повторяющиеся вектора с помощью функции unique('rows'). Затем каждый из выходных векторов заменить на номер строки из таблицы цветов. Для перехода от пакетного (batch) представления к матрице ссылок использовать функцию reshape и операцию транспонирования.

Варианты заданий:

Номер варианта соответствует номеру в списке группы. Для генерации точек использовать параметрическое уравнение линии в канонической системе координат.

$$t = 0: 0.025: 2\pi$$
$$x = f(t)$$
$$y = g(t)$$

Константы a и b задают большую и малую полуоси эллипса, p — параметр параболы. Параметры преобразования прямоугольной системы координат на плоскости: угол поворота (α) и координаты параллельного переноса (x_0, y_0).

No	Алгебраические линии
1.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$

№	Алгебраические линии
2.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
3.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
4.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
5.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=-0.1,y_0=0.15$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
6.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
7.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=0.25,y_0=-0.25$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
8.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=-0.25,y_0=0.25$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
9.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=-0.2,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
10.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=0.2,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
11.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/3,x_0=-0.2,y_0=-0.18$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=-0.2,y_0=-0.18$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
12.	Эллипс: $a=0.2,b=0.2,\alpha=\pi/3,x_0=0,y_0=0.4$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0.2,y_0=0.18$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$

№	Алгебраические линии
13.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$
14.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$
15.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$
16.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$
17.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=-0.8,y_0=0$
18.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$
19.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=-1,\alpha=0,x_0=0.8,y_0=0$
20.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=-0.1,y_0=0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=-1,\alpha=0,x_0=0.8,y_0=0$
21.	Эллипс: $a=0.5,b=0.2,\alpha=\pi/3,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0.08,y_0=0.05$ Парабола: $p=-1,\alpha=-\pi/2,x_0=0,y_0=-0.8$
22.	Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.8,b=0.8,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$
23.	Эллипс: $a=0.4,b=0.5,\alpha=0,x_0=0.05,y_0=0$ Эллипс: $a=0.6,b=0.6,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=0,y_0=0$

№	Алгебраические линии	
24.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0.35$ Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0.35$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=0,y_0=0$	
25.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0.2$ Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0.2$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=-0.1,y_0=-0.1$	
26.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Парабола: $p=0.5,\alpha=0,x_0=-0.5,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
27.	Парабола: $p=0.3,\alpha=0,x_0=0.,y_0=0$ Парабола: $p=0.5,\alpha=0,x_0=-0.5,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
28.	Парабола: $p=-0.3,~\alpha=0,~x_0=0.,~y_0=0$ Парабола: $p=-0.4,~\alpha=0,~x_0=0.4,~y_0=0$ Парабола: $p=-0.5,~\alpha=0,~x_0=0.65,~y_0=0$	
29.	Эллипс: $a=0.3,b=0.15,\alpha=-\pi/6,x_0=-0.05,y_0=-0.05$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$	
30.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Парабола: $p=0.7,\alpha=-\pi/3,x_0=-0.2,y_0=0.4$ Парабола: $p=1,\alpha=-\pi/3,x_0=-0.4,y_0=0.6$	

Этапы 2 и 3

2. Задан обучающий набор $\{x(i), y(i)\}$. Построить и обучить двухслойную нейронную сеть прямого распространения, которая будет выполнять аппроксимацию функции вида

$$\hat{y}(i) = f[x(i)]$$

Для обучения использовать алгоритм, реализующий метод поиска экстремума функции многих переменных первого порядка. Функция и метод обучения определяются вариантом задания.

- 2.1 Создать сеть с помощью функции feedforwardnet. Сконфигурировать сеть под обучающее множество с помощью функции configure. Число нейронов скрытого слоя задать равным 10. Использовать активационные функции, заданные по умолчанию (tansig, purelin). Алгоритм обучения определяется вариантом задания.
- 2.2 Для разделения обучающией выборки на обучающее, контрольное, и тестовое подмножества использовать функцию *divideind*. Выделить с конца временной последовательности 10% отсчетов на контрольное подмножество. Тестовое подмножество оставить пустым.

$$net.divideParam.testInd = []$$

2.3 Инициализировать сеть (init) с помощью функции, заданной по умолчанию.

- 2.4 Задать параметры обучения: значения параметров для некоторых методов обучения описаны выше, число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве ($net.trainParam.max_fail$), равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-8} ,
- 2.5 Выполнить обучение сети с помощью функции *train*. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные или наблюдается переобучение, то изменить число нейронов в функции *feedforwardnet*, увеличить число эпох обучения или уменьшить предельное значение критерия обучения. Занести в отчет весовые коэффициенты и смещения для двух слоев. Занести в отчет окна Performance и Neural Network Training, если это возможно для данного метода обучения.
 - 2.6 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 2.7 Рассчитать выход сети (sim) для обучающего подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.
 - 2.8 Проделать тоже самое для контрольного подмножества.
- 3. Построить и обучить двухслойную нейронную сеть прямого распространения, которая будет выполнять аппроксимацию функции. Для обучения использовать алгоритм, реализующий метод оптимизации функций многих переменных второго порядка. Функция и метод обучения определяются вариантом задания.

Последовательности шагов для выполнения 2 и 3 этапов работы совпадают.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Функция	Методы обучения
1	$x = \sin(t^2), t \in [0, 4], h = 0.02$	trainrp, trainoss
1.	$x = \sin(t^2 - 2t + 3), t \in [0, 6], h = 0.025$	traincgb, trainlm
3.	$x = \cos(2.5t^2 - 5t), t \in [0, 2.2], h = 0.01$	trainscg, trainbfg
4.	$x = \sin(t^{2}), t \in [0, 4], h = 0.02$ $x = \sin(t^{2} - 2t + 3), t \in [0, 6], h = 0.025$ $x = \cos(2.5t^{2} - 5t), t \in [0, 2.2], h = 0.01$ $x = \sin(\sin(t)t^{2} + 5t), t \in [0, 3.5], h = 0.01$ $x = \cos(-3t^{2} + 5t + 10), t \in [0, 2.5], h = 0.01$ $x = \sin(0.5t^{2} - 5t), t \in [0, 2], h = 0.01$ $x = \sin(\sin(t)t^{2} - t), t \in [1, 4.5], h = 0.01$ $x = \sin(-2t^{2} + 7t), t \in [0, 3.5], h = 0.01$	traingd, trainbfg
5.	$x = \cos(-3t^2 + 5t + 10), t \in [0, 2.5], h = 0.01$	traingdm, trainoss
6.	$x = \sin(0.5t^2 - 5t), t \in [0, 2], h = 0.01$	traincgp, trainlm
7.	$x = \sin(\sin(t)t^2 - t), t \in [1, 4.5], h = 0.01$	traincgp, trainbfg
8.	$x = \sin(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$	traingdx, trainoss
9.	$x = \sin(t^2 - 2t + 5), t \in [0, 5], h = 0.025$	traingd, trainbfg

N₂	T	trainFcn
10.	$x = \sin(t^2 - 7t), t \in [0, 5], h = 0.025$	trainscg, trainoss
11.	$x = \cos(t^2), t \in [0, 4], h = 0.02$	traingda, trainbfg
12.	$x = \cos(-\cos(t)t^2 + t), t \in [0.5, 4], h = 0.01$	traincgf, trainlm
	$x = \cos(t^2 - 2t + 3), t \in [0, 5], h = 0.02$	traingdx, trainbfg
13.	$x = \cos(t^2 - 10t + 3), t \in [1, 6], h = 0.025$	trainrp, trainlm
14.	$x = \cos(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$	traingda, trainoss
15.	$x = \sin(\sin(t)t^2 + 3t - 10), t \in [2.5, 5], h = 0.01$	traincgb, trainbfg
16.	$x = \cos(-5t^2 + 10t - 5), t \in [0, 2.5], h = 0.01$	trainscg, trainoss
17.	$x = \cos(\cos(t)t^2 - t), t \in [1, 4.5], h = 0.01$	traincgf, trainlm
18.	$x = \sin(-5t^2 + 10t - 5), t \in [0, 2.5], h = 0.01$	traingda, trainoss
19.	$x = \sin(-\theta t + 10t - \theta), t \in [0, 2.0], t = 0.01$	nunguu, nunoss
20.	$x = \cos(\cos(t)t^2 + 5t), t \in [0, 3.5], h = 0.01$	traingdx, trainlm
21.	$x = \sin(t^2 - 10t + 3), t \in [1, 6], h = 0.025$	traingdx, trainoss
22.	$x = \sin(-\sin(t)t^2 + t), t \in [0.5, 4], h = 0.01$	traincgb, trainlm
23.	$x = \sin(t^2 - 6t + 3), t \in [0, 5], h = 0.025$	traingd, trainbfg
24.	$x = \sin(0.66\pi t), t \in [0, 5], h = 0.025$	traingdx, trainoss
	$x = \sin(t^2 - 6t + 3), t \in [0, 6], h = 0.025$	traincgp, trainlm
25.	$x = \sin(\sin(t)t^2), t \in [0, 3.5], h = 0.01$	trainrp, trainbfg
26.	$x = \sin(t^2 - 5t + 6), t \in [0, 6], h = 0.02$	traingda, trainoss
27.	$x = \sin(2.5t^2 - 5t), t \in [0, 2.2], h = 0.01$	traincgf, trainbfg
28.		

№	T	trainFcn
29.	$x = \sin(2t^2 - 6t + 3), t \in [0, 5], h = 0.02$	traincgp, trainlm
30.	$x = \sin(-3t^2 + 5t + 10), t \in [0, 2.5], h = 0.01$	trainscg, trainlm

Литература

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. -pp. 2-2–2-32.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 47–101.
- 3. Hagan M., Demuth H. Neural Network Design. 1996. Chapter 11 and 12. -pp. 11-1-12-52.
- 4. *Бортаковский А. С., Пантелеев А. В.* Аналитическая геометрия в примерах и задачах: Учеб. пособие. М.: Высш. шк., 2005. с. 135–137, 268-289.