# Interacção Humana com o Computador

#### **Aula IV**



Departamento de Informática UBI 2018/2019

João Cordeiro jpaulo@di.ubi.pt



#### Types of error

- Slips (deslizes/falhas/faltas)
  - -Right intention, but failed to do it right
  - -Causes: poor physical skill, inattention, ...
  - -Similar aspect but different functionality

- Mistakes (enganos)
  - Wrong intention
  - -Cause: incorrect understanding

**Humans create mental models** to explain behavior. if wrong (different from actual system) errors can occur





#### Types of error

**Humans create mental models** to explain behavior. if wrong (different from actual system) errors can occur









#### Types of error

**Humans create mental models** to explain behavior. if wrong (different from actual system) errors can occur





#### Types of error

**Humans create mental models** to explain behavior. if wrong (different from actual system) errors can occur



**4.5** A Clock Radio, "Human Engineered" to Simplify Operation. Note the row of identical-looking switches. (Copyright Tandy Corporation. Used with permis- sion.)



4.6 Make the Controls Look and Feel Different. The control-room operators in a nuclear power plant tried to overcome the problem of similar-looking knobs by placing beer-keg handles over them. This is good design, even if after the fact; the operators should be rewarded. (From Seminara, Gonzales, & Parsons, 1977. Photograph courtesy of Joseph L. Seminara.)





#### Controlling an electronic syringe



Figure 0.1 Automatic syringe: setting the dose to 1372. The effect of one key slip before and after user involvement

**Before** 

**After** 



#### Controlling an electronic syringe



Figure 0.1 Automatic syringe: setting the dose to 1372. The effect of one key slip before and after user involvement

**Before** 

**After** 



# The difficulty of software development



necessitava





#### Various theories of how emotion works

- James-Lange (1890): emotion is our interpretation of a physiological response to a stimuli
- **Cannon** (1929): emotion is a psychological response to a stimuli
- -**Schacter-Singer** (1962): emotion is the result of our evaluation of our physiological responses, in the light of the whole situation we are in, e.g. +cardio ==> excited (excitement/fear?)
- Emotion clearly involves both cognitive and physical responses to stimuli





#### The field of sentiment analysis

- Several important applications, not only in HCI
- There are some tools: Circumplex model of affect







 The biological response to physical stimuli is called affect

- Affect influences how we respond to situations
  - positive → creative problem solving
  - negative → narrow thinking

"Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"

(Donald Norman)



- -Stress increase the difficulty of problem solving
- -**Relaxed** users will be more forgiving of shortcomings in design
- Aesthetically pleasing and rewarding interfaces will increase positive affect







- -Stress increase the difficulty of problem solving
- -Relaxed users will be more forgiving of shortcomings in design
- -Aesthetically pleasing and rewarding interfaces will increase positive affect







#### Implications for interface design

- -Stress increase the difficulty of problem solving
- -Relaxed users will be more forgiving of shortcomings in design

-Aesthetically pleasing and rewarding interfaces will increase positive affect



Compuserve's WinCim 2.0





Microsoft Office 2008



- -Stress increase the difficulty of problem solving
- -**Relaxed** users will be more forgiving of shortcomings in design
- -Aesthetically pleasing and rewarding interfaces will increase positive affect







- -Stress increase the difficulty of problem solving
- -Relaxed users will be more forgiving of shortcomings in design
- Aesthetically pleasing and rewarding interfaces will increase positive affect

| Password                                   |
|--------------------------------------------|
| Please enter the owner@world.com password: |
| Password:                                  |
|                                            |
| Cancel OK                                  |





- -Stress increase the difficulty of problem solving
- -Relaxed users will be more forgiving of shortcomings in design
- -Aesthetically pleasing and rewarding interfaces will increase positive affect







#### Individual Differences

#### Long term

- Gender, physical and intellectual abilities

#### Short term

Effect of stress or fatigue

#### Changing

Age



#### Ask yourself:

Will design decisions exclude sections of user population?



# The Computer



**Figure 1.1:** The nature of Human-Computer Interaction. Adapted from Figure 1 of the ACM SIGCHI Curricula for Human-Computer Interaction [Hewett et al., 2002]

# The Computer

A computer system is made up of various elements each of these elements affects the interaction

- -Input devices: text entry and pointing
- -Output devices: screen (small&large), digital paper
- Virtual reality: special interaction and display devices
- Physical interaction: e.g. sound, haptic, bio-sensing
- Paper: as output (print) and input (scan)
- -Memory: RAM & permanent media, capacity & access
- Processing: speed of processing, networks



# Interacting with computers

# To understand **human**-computer interaction ... need to understand computers!

#### What does interaction mean?





## Interactivity?

"Long ago in a galaxy far away ..."

#### **Batch** Processing

- Punched card stacks or large data files prepared
- Long wait ....
- Line printer output... and if it is not right ...



#### Now most interaction is more dynamic

- Rapid feedback;
- -The user is in control (most of the time);
- -She is exploring/doing rather than thinking.





# Command Line Interactivity





Unix Operating System

Unix PC, 1985

Massachusetts Institute of Technology
AT&T Bell Labs
General Electric

# UNIX HISTORY

1969 - 2010





# Interactivity?

PDP-11

Denis Ritchie



Ken Thompson



# Interactivity?





# Command Line Interactivity

```
Enter today's date (m-d-y): 08-04-81
The IBM Personal Computer DOS
Version 1.00 (C)Copyright IBM Corp 1981
A>dir *.com
IBMBIO
          COM
                     1920 07-23-81
IBMDOS
          COM
                     6400 08-13-81
COMMAND
          COM
                     3231 08-04-81
FORMAT
          COM
                     2560 08-04-81
CHKDSK
          COM
                     1395 08-04-81
SYS
          COM
                     896 08-04-81
DISKCOPY
         COM
                     1216 08-04-81
DISKCOMP
         COM
                     1124 08-04-81
COMP
                     1620 08-04-81
          COM
DATE
          COM
                     252 08-04-81
TIME
          COM
                     250 08-04-81
MODE
          COM
                     860 08-04-81
                     2392 08-04-81
EDLIN
          COM
DEBUG
          COM
                     6049 08-04-81
                    10880 08-04-81
BASIC
          COM
BASICA
                    16256 08-04-81
          COM
A>_
```



#### First GUI — "Xerox Alto"



March 1, 1973





#### GUI — "Xerox Star"



1981





# GUI — Apple Macintosh





1984



#### GUI — Windows 1.0



1985





#### Modern GUIs





## Modern GUIs





#### Richer interaction

#### Desktop computing





#### Ubiquitous computing



Sensorsand deviceseverywhere



#### Richer interaction

#### **Ubiquitous** computing



"The most profound technologies are those that disappears"

Mark Weiser

#### Multiple smal computation devices

- Computers have moved out of machine room, onto the desktop and now into the pocket (Alan Dix, 2016)



## The Computer

## Text Entry Devices

keyboards (QWERTY et al.) chord keyboards, phone pads handwriting, speech



## Keyboards

- Them most common text input device
- Allows rapid and precise entry of text by experienced users
- Keypress closes connection, causing a character code to be sent
- Usually connected by cable, but can be wireless



## layout - QWERTY

Standardize layout (?)

but ...

- non-alphanumeric keys are placed differently
- accented symbols needed for different scripts
- minor differences between UK and USA keyboards
- QWERTY arrangement not optimal for typing
  - layout to prevent typewriters jamming!
- Alternative designs allow faster typing but ...



## layout - QWERTY

Standardize layout (?)

but ...

- non-alphanumeric keys are placed differently
- accented symbols needed for different scripts
- minor differences between UK and USA keyboards
- QWERTY arrangement not optimal for typing
  - layout to prevent typewriters jamming!
- Alternative designs allow faster typing but large social base of QWERTY typists produces reluctance to change.





The "typewriter" history





The "typewriter" history





1954

The "typewriter" history





1968

The "typewriter" history



## Alternative keyboard layouts

#### Alphabetic

- Keys arranged in alphabetic order
- Not faster for trained typists
- Not faster for beginners either!

#### **Dvorak**

- Common letters under dominant fingers
- Biased towards right hand
- Common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change



## Alternative keyboard layouts

#### **Dvorak**





Property of Museum of History & Industry, Seattle

August Dvorak 1936



## alternative keyboard layouts

#### **Shape Writer**



#### Quick learning curve





Recognize word patterns



## Alternative keyboard layouts

#### Shape Writer





Based on Fitt's Law

$$Mt = a + b \log_2(D/S + 1)$$

More Efficient

Atomic Keyboard



## Special keyboards for special users

PCDMALTRON
Ergonomic Keyboard Specialists

- Designed to reduce fatigue for RSI
  - RSI: Repetitive Strain Injury
- For one handed use
   e.g. the Maltron left-handed keyboard





## Special keyboards for special users

PCD MALTRON
Ergonomic Keyboard Specialists

- Designed to reduce fatigue for RSI
  - RSI: Repetitive Strain Injury
- For one handed use
   e.g. the Maltron left-handed keyboard





## Special keyboards for special users

- designs to reduce fatigue for RSI
  - RSI: Repetitive Strain Injury
- for impaired users in general e.g. the head stick keyboard





## Laser Projection Keyboard





## Phone pad and T9 entry

#### Use numeric keys with multiple presses

```
2 - a b c 6 - m n o

3 - d e f 7 - p q r s

4 - g h i 8 - t u v

5 - j k l 9 - w x y z

hello = 4433555[pause]555666

Surprisingly fast!
```

#### T9 predictive entry

- "Text on 9 keys"
- type as if single key for each letter
- use dictionary to 'guess' the right word
- hello = 43556 ...
- but 26 -> menu 'am' or 'an'





## Numeric keypads

- For entering numbers quickly:
  - Calculator, PC keyboard
- For telephonesNot the same!Did you noticed?

ATMs are like phones



telephone



calculator



## Cursor keys

- Four keys (up, down, left, right) on keyboard.
- Very, very cheap, but slow.
- Useful for not much more than basic motion for text-editing tasks.



No standardized layout, but inverted "T", most common



## Handwriting recognition



Text can be input into the computer, using a pen and a digesting tablet

- natural interaction

#### Technical problems:

- capturing all useful information stroke path, pressure, etc. in a natural manner
- segmenting joined up writing into individual letters
- interpreting individual letters
- coping with different styles of handwriting



- But, recent improvements
- Used in PDAs, and tablet computers ...
   leave the keyboard on the desk!



## Apple Pencil

- Designed to interact with the iPad Pro. Opens new interaction possibilities
- Key features are:
  - Precision
  - Smoothness
  - Familiarity





## Speech Recognition (NLP)

#### Improving rapidly

#### Most successful when:

- Single user with training, learns the user peculiarities;
- Limited vocabulary systems.

#### Some challenges:

- External noise interference;
- Imprecise pronunciation;
- Large vocabularies;
- Different speakers;
- Accents.

For 3% error rate = 1/30 character = 1/6 words.





Apple Siri



Amazon Alexa

# Positioning, Pointing and Drawing

mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze, cursors



#### The Mouse

#### Handheld pointing device

- very common
- easy to use



- planar movement
- buttons

(Usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.)



#### Douglas Engelbart 1964

**Stanford Research Institute** 





#### How does it work?

#### Two methods for detecting motion

#### Mechanical

- Ball on underside of mouse turns as mouse is moved
- Rotates orthogonal potentiometers
- Can be used on almost any flat surface

#### • Optical

- Light <u>emitting diode</u> on underside of mouse
- May use special grid-like pad or just on desk
- Less susceptible to dust and dirt
- Detects <u>fluctuations</u> in reflected light intensity to calculate relative motion in (x, z) plane









#### The Mouse

#### Mouse located on desktop

- Requires physical space
- No arm fatigue





It is an *indirect* manipulation device.

- Device itself doesn't obscure screen, is accurate and fast.
- Hand-eye coordination problems for novice users



## Touchpad

- Small touch sensitive tablets
- Stroke to move mouse pointer
- Used mainly in laptop computers
- Good "acceleration" settings are important
  - Fast stroke
    - lots of pixels per inch moved
    - initial movement to the target
  - Slow stroke
    - less pixels per inch
    - for accurate positioning
- The touch keyboard.







#### Direct Touch Interaction

- Relatively new;
- Direct interaction;
- Multiple gestures;
- Input and output interleaved in the same space.
- Requires new interaction design: e.g. WIMP ==> PWIG













## Direct Touch Interaction

#### Allows a complex and rich interaction





## Direct Touch Interaction

### Allows a complex and rich interaction





### Touch-sensitive screen

- Detect the presence of finger or stylus on the screen.
  - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
  - <u>direct</u> pointing device

#### Advantages:

- Fast, and requires no specialized pointer
- Good for menu selection
- Suitable for use in hostile environment: clean and safe from damage.

#### • Disadvantages:

- Finger can mark screen
- Imprecise (finger is a fairly blunt instrument!)
  - difficult to select small regions or perform accurate drawing
- Lifting arm can be tiring





## Multimodal Co-located Interaction

User exemplifies commands through gestures System uses voice and image recognition

