Lecture 11: Acceleration via Regularization and Restarting; Lower Bounds

Yudong Chen

Last week we discussed two variants of Nesterov's accelerated gradient descent (AGD).

Algorithm 1 Nesterov's AGD, smooth and strongly convex

input: initial x_0 , strong convexity and smoothness parameters m, L, number of iterations Kinitialize: $x_{-1} = x_0$, $\beta = \frac{\sqrt{L/m}-1}{\sqrt{L/m}+1}$

for k = 0, 1, ... K

$$y_k = x_k + \beta (x_k - x_{k-1})$$

 $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$

return x_K

Theorem 1. For Nesterov's AGD Algorithm 1 applied to m-strongly convex L-smooth f, we have

$$f(x_k) - f^* \le \left(1 - \sqrt{\frac{m}{L}}\right)^k \cdot \frac{(L+m) \|x_0 - x^*\|_2^2}{2}.$$

Equivalently, we have $f(x_k) - f^* \le \epsilon$ after at most $k = O\left(\sqrt{\frac{L}{m}}\log\frac{L\|x_0 - x^*\|_2^2}{\epsilon}\right)$ iterations.

Algorithm 2 Nesterov's AGD, smooth convex

input: initial x_0 , smoothness parameter L, number of iterations K

initialize: $x_{-1} = x_0$, $\lambda_0 = 0$, $\beta_0 = 0$.

for k = 0, 1, ... K

$$y_k = x_k + \beta_k (x_k - x_{k-1})$$

 $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$

$$x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$$

$$\lambda_{k+1} = \frac{g_k - \frac{1}{L} \sqrt{f(g_k)}}{\lambda_{k+1}}$$

$$\lambda_{k+1} = \frac{1 + \sqrt{1 + 4\lambda_k^2}}{2}, \beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}$$

Theorem 2. For Nesterov's AGD Algorithm 2 applied to L-smooth convex f, we have

$$f(x_k) - f(x^*) \le \frac{2L \|x_0 - x^*\|_2^2}{k^2}.$$

In this lecture, we will show that the two types of acceleration above are closely related we can use one to derive the other. We then show that in a certain precise (but narrow) sense, the convergence rates of AGD are optimal among first-order methods. For this reason, AGD is also known as Nesterov's optimal method.

Acceleration via regularization

Suppose we only know the AGD method for strongly convex functions (Algorithm 1) and its $(1-\sqrt{\frac{m}{L}})^k$ guarantee (Theorem 1). Can we use it as a subroutine to develop an accelerated algorithm for (non-strongly) convex functions with a $\frac{1}{k^2}$ convergence rate?

The answer is yes (up to logarithmic factors). One approach is to add a *regularizer* $\varepsilon \|x\|_2^2$ to f(x) and apply Algorithm 1 to the function $f(x) + \varepsilon \|x\|_2^2$, which is strongly convex. See HW 3.

Add regularizer
$$\Rightarrow$$
 moke loss strengly cux.

for cux f . $g(x) = f(x) + E[|x||_2^2$ is $2E$ -strengly cux.

Hence. $g(x)$, $g(x)$ sotisfies $\frac{1}{2}$ that I . Note that $x^2 = 0$ is a minimiser of $g(x)$ because $g(x) = \frac{1}{2} \frac{1}{2}$

Acceleration via restarting 2

In the opposite direction, suppose we only know the AGD method for (non-strongly) convex functions (Algorithm 2) and its $\frac{1}{k^2}$ guarantee (Theorem 2). Can we use it as a subroutine to develop an accelerated algorithm for strongly convex functions with a $\left(1-\sqrt{\frac{m}{L}}\right)^k$ convergence rate (equivalently, a $\sqrt{\frac{L}{m}} \log \frac{1}{\epsilon}$ iteration complexity)?

This is possible using a classical and powerful idea in optimization: *restarting*. See Algorithm 3. In each round, we run Algorithm 2 for $\sqrt{\frac{8L}{m}}$ iterations to obtain \overline{x}_{t+1} . In the next round, we restart Algorithm 2 using \overline{x}_{t+1} as the initial solution and run for another $\sqrt{\frac{8L}{m}}$ iterations. This is repeated for T rounds.

Algorithm 3 Restarting AGD

input: initial \overline{x}_0 , strong convexity and smoothness parameters m, L, number of rounds T**for** t = 0, 1, ..., T

Run Algorithm 2 with \overline{x}_t (initial solution), L (smoothness parameter), $\sqrt{\frac{8L}{m}}$ (number of iterations) as the input. Let \overline{x}_{t+1} be the output.

return \overline{x}_T

Exercise 1. How is Algorithm 3 different from running Algorithm 2 without restarting for $T \times T$ $\sqrt{\frac{8L}{m}}$ iterations?

Ans: Remove previous XK, BK's update. From analysis, BKT as KT, results (for large K)
In in one asing momentum. Restarting makes momentum not dramatically large.

2.) Analysis. (Algo 3).

For m-strongly clk, smooth
$$f$$
. Apply $Thm \geq 1$.

$$f(\overline{X}m) - f(t^{*}) \leq \frac{2L\|\overline{X}t - X^{*}\|^{2}}{5L} = \frac{m\|\overline{K}t - X^{*}\|^{2}}{4}.$$

By strong-convexity, $f(\overline{X}t) - f(x^{*}) \leq \langle f(x^{*}), \overline{X}t - X^{*}\rangle + \frac{m}{2}\|\overline{X}t - X^{*}\|^{2}$

$$\Rightarrow \|\overline{X}t - X^{*}\|^{2} \leq \frac{1}{m}(f(\overline{X}t) - f(x^{*})) \quad \text{Plug back.}$$

$$f(\overline{X}t_{1}) - f(x^{*}) \leq \frac{1}{2}(f(\overline{X}t) - f(x^{*})) \quad \text{Hence} \quad f(\overline{X}t) - f(x^{*}) \leq (\frac{1}{2})^{T}(f(\overline{X}t) - f(x^{*}))$$
To achieve $f(\overline{X}t) - f(x^{*}) \leq \Sigma$, only need $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Total $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Total $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Total $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Total $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Total $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t) - f(x^{*})}{\Sigma}) + \frac{1}{2}$
Therefore $T = O(\log \frac{f(\overline{X}t)$

This iteration complexity is the same as Theorem 1 up to a logarithmic factor.

Remark 1. Note how strong convexity is needed in the above argument.

Remark 2. Optional reading: This overview article discusses restarting as a general/meta algorithmic technique.

3 Lower bounds

In this section, we consider a class of first-order iterative algorithms that satisfy $x_0 = 0$, and

$$x_{k+1} \in \text{Lin}\left\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x_k)\right\}, \quad \forall k \ge 0,$$
 (1)

where the RHS denotes the linear subspace spanned by $\nabla f(x_0)$, $\nabla f(x_1)$, ..., $\nabla f(x_k)$; in other words, x_{k+1} is an (arbitrary) linear combination of the gradients at the previous (k+1) iterates.

Smooth and convex *f*

Theorem 3. There exists an L-smooth convex function f such that any first-order method in the sense of (1) must satisfy

$$f(x_k) - f(x^*) \ge \frac{3L \|x_0 - x^*\|_2^2}{32(k+1)^2}.$$

Comparing with this lower bound, we see that the $\frac{L}{k^2}$ rate for AGD in Theorem 2 is optimal/unimprovable (up to constants).

Proof of Theorem 3. Let $A \in \mathbb{R}^{d \times d}$ be the matrix given by

$$A_{ij} = \begin{cases} 2, & i = j \\ -1, & j \in \{i - 1, i + 1\} \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

Explicitly,

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & -1 & 2 & -1 & 0 & \cdots & 0 \\ & & \ddots & \ddots & \ddots & \\ 0 & \cdots & & & -1 & 2 & -1 \\ 0 & \cdots & & & & -1 & 2 \end{bmatrix}.$$

$$5 \Rightarrow 5 \Rightarrow 0.$$

Consider
$$f(x) = \frac{L}{S} x^T A x - \frac{L}{4} x^T e_1$$

$$\nabla f(x) = \frac{1}{2} (Ax - C_1)$$

$$\frac{\gamma f(x)}{\gamma^2 f(x)} = \frac{1}{\zeta} (Ax - C_1)$$

$$\frac{\gamma^2 f(x)}{\gamma^2} = \frac{1}{\zeta} (Ax - C_1)$$

$$\frac{1}{\zeta} - \frac{1}{\zeta} f(x) = \frac{1}{\zeta} (Ax - C_1)$$

$$\frac{1}{\zeta} - \frac{1}{\zeta} f(x) = \frac{1}{\zeta} (Ax - C_1)$$

Home
$$0 \leq \nabla^2 f(x) \leq LI_- \Rightarrow f(x)$$
 is $C(X)$, $L-smooth$.
By industion, we can show $X_k \in Lin f_{e_1}, AX_1, \cdots, AX_{k-1}$.

Then
$$f(x_k) = \frac{1}{8}x^TAx_k - \frac{1}{4}x^Te_1 = \frac{1}{8}x^TA_kx_k = f_k = \min_{k=1}^{8} \frac{1}{8}x^TA_kx_k - \frac{1}{4}x^Te_1$$

Thus min can be derived directly. Set $f_k(x_k) = 0$.

$$t \quad \forall f_{\kappa}(x) = 0.$$

Then for
$$f(x) = f_{d}(x)$$
, $f'' = f_{d}'' = -\frac{1}{8} \frac{d}{dH}$ Set $f_{0} = 0$.

In addition, $||x_{d}^{+} - x_{0}||_{2}^{2} = \frac{d}{|x|^{2}} ||x_{d}^{-} - x_{0}^{+}||_{2}^{2} - x_{0}^{+}||_{2}^{2} = \frac{d}{|x|^{2}} ||x_{d}^{-} - x_{0}^{+}||_{2}^{$

$$= \frac{35 |k+1|_{2}}{|k+1|_{2}} = \frac{35 |k+1|_{$$

3.2 Smooth and strongly convex f

For strongly convex functions, we have the following lower bound, which shows that the $\left(1 - \frac{1}{\sqrt{L/m}}\right)^k$ rate of AGD in Theorem 1 cannot be significantly improved.

Theorem 4. There exists an <u>m-strongly convex</u> and <u>L-smooth function</u> such that any first-order method in the sense of (1) must satisfy

$$f(x_k) - f(x^*) \ge \frac{m}{2} \left(1 - \frac{4}{\sqrt{L/m}} \right)^{k+1} \|x_0 - x^*\|_2^2.$$

Consider

$$f(x) = \frac{L-m}{8}(xTAx - 2xTe_1) + \frac{m}{2}||x||^{\frac{1}{2}}.$$

Then to sheek $f(x) = \frac{L-m}{8}(xTAx - 2xTe_1) + \frac{m}{2}||x||^{\frac{1}{2}}.$

Hence $f(x_k) - f(x_k^{\frac{1}{2}}) > \frac{m}{2}||x_k - x_k^{\frac{1}{2}}||^{\frac{1}{2}}.$

Similarly we got $X_k \in Lin(S_k), ..., X_k^{\frac{1}{2}}.$

[feach $C = \sum_{i=1}^{k} |x_i - x_i^{\frac{1}{2}}|^2 = \sum_{i=k+1}^{k} |x_i - x_i^{\frac{1}{2}}|^2$

$$||x_i - x_i^{\frac{1}{2}}|^2 \ge \frac{d}{2}||x_i - x_i^{\frac{1}{2}}|^2 = \sum_{i=k+1}^{k} |x_i^{\frac{1}{2}}|^2$$

where $x^*(i)$ denotes the ith entry of x^* . For simplicity we take $d \to \infty$ (we omit the formal limiting argument). The minimizer x^* can be computed by setting the gradient of f to zero, which gives an infinite set of equations

$$1 - 2\frac{L/m + 1}{L/m - 1}x^*(1) + x^*(2) = 0,$$

$$x^*(k-1) - 2\frac{L/m + 1}{L/m - 1}x^*(k) + x^*(k+1) = 0, \qquad k = 2, 3, \dots$$

Solving these equations gives

Then
$$f(x_{k}) = \left(\frac{\sqrt{L/m} - 1}{\sqrt{L/m} + 1}\right)^{i}, \quad i = 1, 2, ...$$

$$f(x_{k}) - f(x^{2}) \ge \frac{m}{2} |x - x^{2}|^{2}$$

$$\ge \frac{m}{2} \underbrace{\sum_{i=k+1}^{d} |x_{i}|^{2}}_{i=k+1} = \frac{m}{2} \underbrace{\sum_{i=k+1}^{d} |x_{i}|^{2}}_{l=k+1} = \frac{m}{2} \left(\frac{\sqrt{L/m} - 1}{\sqrt{L/m} + 1}\right)^{2(k+1)}$$

$$= \frac{m}{2} \left(|-\frac{4}{\sqrt{L/m} + 1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2(k+1)}$$

$$\ge \frac{m}{2} \left(|-\frac{1}{\sqrt{L/m} + 1}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2(k+1)}$$

$$\ge \frac{m}{2} \left(|-\frac{1}{\sqrt{L/m} + 1}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2} \cdot \left(|-\sqrt{L/m}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2k+1}$$

$$\ge \frac{m}{2} \left(|-\frac{1}{\sqrt{L/m} + 1}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2k+1} \cdot \left(|-\sqrt{L/m}|^{2k+1} + \frac{4}{\sqrt{L/m} + 1}\right)^{2k+1} \cdot \left(|-\sqrt{L/m}|^{2k+$$

 \Box

Remark 3. The lower bounds in Theorems 3 and 4 are in the worst-case/minimax sense: one cannot find a first-order method that achieves a better convergence rate on *all* smooth convex functions than AGD. This, however, does not prevent better rates to be achieved for a sub class of such functions. It is also possible to achieve better rates by using higher-order information (e.g., the Hessian).

 $^{^{1}}$ The convergence rates for AGD in Theorems 1 and 2 do not explicitly depend on the dimension d, hence these results can be generalized to infinite dimensions.