ใบงานที่ 1

Introduction

ลักษณะรูปแบบบอร์ดต่างๆ

1. ARDUINO

a. Arduino UNO R3 – เหมาะกับนักพัฒนาเริ่มต้น เนื่องจากค่อนข้างมีแหล่งอ้างอิงและแอปพลิเค ชันตัวอย่างค่อนข้างมาก หากต้องการเชื่อมต่ออินเตอร์เน็ตต้องใช้โมดูลอื่นเพิ่มเติม

b. Arduino nano – เหมาะกับนักพัฒนาเริ่มต้น ราคาไม่แพง หากต้องการเชื่อมต่ออินเตอร์เน็ตต้อง ใช้โมดูลอื่นเพิ่มเติม

2. ตระกูล ARM

a. STM32F103;Blue Pill – เหมาะกับนักพัฒนาที่ต้องการจะเล่นไมโครคอนโทรลเลอร์ตระกูล ARM ซึ่งเป็นที่นิยม สามารถเรียนรู้การเขียนโค้ดที่เข้าถึงอุปกรณ์รอบข้างโดยตรง หรือเขียนโค้ด โดยอาศัย Arduino ได้

b. STM32F429 Discovery – บอร์ดจากค่าย ST ที่มีประสิทธิภาพ เหมาะกับผู้ที่ต้องการเรียนรู้การ เขียนโค้ดที่เข้าถึงอุปกรณ์รอบข้างโดยตรง

3. บอร์ด ESP

a. ESP8266 – เหมาะกับนักพัฒนาที่ต้องการเรียนรู้เทคโนโลยี IoT (Internet of Things) เนื่องจาก ตัวบอร์ดสามารถรองรับการส่งข้อมูลผ่าน Wi-Fi หรือทำตัวเองเป็น Wi-Fi AP ได้ รวมถึงการ พัฒนาสามารถเขียนโค้ดโดยอาศัย ARDUINO ได้ด้วย

b. ESP32; ESP32-C3; ESP32-C6 – ลักษณะของบอร์ดเหมาะกับการเรียนรู้เทคโนโลยี IoT เช่นเดียวกับ ESP8266 แต่มีความสามารถเพิ่มเติมในส่วนของ Bluetooth และในบางบอร์ดที่ ยกตัวอย่างมา ยังมีการสื่อสารที่เป็น IEEE 802.15.4 เพิ่มเติมมาอีกด้วย

- 4. บอร์ดระบบสมองกลฝังตัว คอมพิวเตอร์จิ๋วที่สามารถทำงานได้เหมือนกับคอมพิวเตอร์ แต่ประสิทธิภาพ ในการทำงานอาจจะน้อยกว่า สามารถพัฒนาระบบได้หลากหลายทั้งภาษา C, Python และมีตัว ระบบปฏิบัติการในการอำนวยความสะดวก การเข้าถึงอุปกรณ์รอบข้างจะเข้าถึงได้ยาก ต้องติดต่อผ่าน ทาง Device Driver แต่ก็มีนักพัฒนาที่พัฒนาตัวไลบรารีที่ทำให้สามารถเข้าถึงอุปกรณ์รอบข้างได้ง่ายขึ้น ตัวบอร์ดระบบสมองกลฝังตัวจึงเหมาะกับนำเอาไปใช้ในการประมวลผลที่มีความซับซ้อนมากกว่าบอร์ด อื่นๆ ที่กล่าวมา
 - a. Raspberry Pi 4

b. ODroid xu4

c. NVIDIA Jetson Nano – มี CUDA Core เพื่อใช้ในการประมวลผลที่ต้องการประสิทธิภาพมากๆ เหมาะกับระบบงานสมองกลฝังตัวที่ต้องการประมวลผลภาพ (Digital Image Processing) หรือ งาน AI (Machine Learning, etc)

letson Nano B01

รายละเอียดบอร์ดที่ใช้ในการทดลอง

บอร์ด ESP32Devkit V.1

1. Board Details

หัวข้อ	ข้อมูล
\\/inclease and a still the	WiFi: 150Mbps
Wireless connectivity	Bluetooth: BLE (Bluetooth Low Energy) 4.0 and Legacy Bluetooth
Processor	Tensilica Xtensa Dual-Core 32-bit LX6 running at 160 or 240 MHz
	ROM: 448 KB (for boot and core function)
	SRAM: 520 KB (for data and instruction)
	RTC FAST SRAM: 8 KB (for data storage and main CPU during
	RTC Boot from the deep-sleep mode)
Memory	RTC SLOW SRAM: 8 KB (for co-processor accessing during deep-
Wemory	sleep mode)
	eFuse: 1 Kbit (of which 256 bits are used for the system (MAC
	address and chip configuration) and the remaining 768 bits are
	reserved for customer applications, including Flash-Encryption
	and Chip-ID)
	4 × programmable GPIOs
	12-bit SAR ADC up to 18 channels
	2 × 8-bit DAC
Dariaharal	10 × touch sensors
Peripheral	4 × SPI
	2 × I2S
	2 × I2C
	3 × UART

2. Pin Out¹

2.1 Power

Pin Name	Function
VIN	The input of the 3.3V positive voltage regulator. Supply voltage in the range of 4 to 12V.
3.3V	Output from the voltage regulator. You can also supply 3.3V to this pin if you have one. But do not supply both VIN and 3V3 together.
GND	Ground (Negative) supply pins.
ENABLE	This is the reset pin. Connecting this pin to GND will reset the ESP32. This pin is normally pulled-up. The EN button will pull it LOW when you press it.

 $^{^{1} \} ref: \ https://www.circuitstate.com/pinouts/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-board-pinout-diagram-and-reference/doit-esp32-devkit-v1-wifi-development-doit-esp32-devkit-v1-wifi-development-doit-esp32-devkit-doit-esp32-dev$

2.2 GPIO

GPIO	INPUT?	OUTPUT?	Note
0	-	+	Pull LOW to enter bootloader mode.
1	-	+	TX0 of serial port for programming and printing debug messages.
2	+	+	Connected to the onboard LED, must be left floating or LOW to enter flashing mode.
3	+	-	RX0 of serial port for programming and printing debug messages.
4	+	+	
5	+	+	Strapping pin
6-11	-	-	Flash memory interface. Do not use.
12	+	+	Strapping pin. Boot can fail if pulled HIGH (for 3.3V memories) due to brownout.
13-14	+	+	
15	+	+	Pulling LOW mutes the debug messages through the serial port.
16-19	+	+	
21-23	+	+	
25-27	+	+	
32-33	+	+	
34-36	+	-	Input only
39	+	-	Input only

^{+ :} Can be configured; - : Cann't be configured

2.3 UART

Arduino Instance	UART	RX Pin	TX Pin	стѕ	RTS	
Serial	UART0	GPIO 3 (RX0)	GPIO 1 (TX0)	N/A	N/A	
Serial1	UART1	GPIO 9 (RX1)	GPIO 10 (TX1)	GPIO 6	GPIO 11	
Serial2	UART2	GPIO 16 (RX2)	GPIO 17 (TX2)	GPIO 8	GPIO 7	
ESP32 Arduino Serial UART pins						

2.4 I2C

Arduino Instance	I2C	SDA	SCL		
Wire	I2C0	GPIO 21	GPIO 22		
Wire1	I2C1	-	-		
ESP32 Arduino I2C pins					

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDDA, VDD3P3, VDD3P3_RTC,	Voltage applied to power supply pins per	-0.3	3.6	\/
VDD3P3_CPU, VDD_SDIO	power domain	-0.3	3.0	V
l _{output} *	Cumulative IO output current	-	1200	mA
T_{store}	Storage temperature	-40	150	°C

 $^{^{\}star}$ The chip worked properly after a 24-hour test in ambient temperature at 25 °C, and the IOs in three domains (VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO) output high logic level to ground.

3.2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDDA, VDD3P3_RTC, ^{note 1} VDD3P3,	D3P3_RTC, note 1 VDD3P3, Voltage applied to power supply pins 2.3/3.0 note 3		3.3	3.6	
VDD_SDIO (3.3 V mode) ^{note 2}	per power domain	2.3/3.0	3.3	3.0	'
VDD3P3_CPU	Voltage applied to power supply pin	1.8	3.3	3.6	V
	Current delivered by external power	0.5			_
	supply	0.5	-	-	A
T note 4	Operating temperature	-40	-	125	°C

3.3 DC Characteristics (3.3 V, 25 °C)

Table 15: DC Characteristics (3.3 V, 25 °C)

Symbol	Paramet	er	Min	Тур	Max	Unit
C_{IN}	Pin capacitance		-	2	-	рF
V_{IH}	High-level input voltage		0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	Low-level input voltage		-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	High-level input current		-	-	50	nA
I_{IL}	Low-level input current		-	-	50	nA
V_{OH}	High-level output voltage		0.8×VDD ¹	-	-	V
V_{OL}	Low-level output voltage		-	-	0.1×VDD ¹	V
	High-level source current (VDD ¹ = 3.3 V, $V_{OH} >= 2.64 V$, output drive strength set	VDD3P3_CPU power domain ^{1, 2}	-	40	-	mA
I_{OH}		VDD3P3_RTC power domain ^{1, 2}	-	40	-	mA
	to the maximum)	VDD_SDIO power domain ^{1, 3}	-	20	-	mA
l _{OL}	Low-level sink current (VDD 1 = 3.3 V, V $_{OL}$ = 0.495 V, output drive strength set to the maximum)		-	28	-	mA
R_{PU}	Resistance of internal pull-up resistor		-	45	-	kΩ
R_{PD}	Resistance of internal pull-d	own resistor	-	45	-	kΩ
V_{IL_nRST}	Low-level input voltage of C to power off the chip	HIP_PU	-	-	0.6	V

3.4 RF Power-Consumption Specifications

Mode	Min	Тур	Max	Unit
Transmit 802.11b, DSSS 1 Mbps, POUT = +19.5 dBm	-	240	-	mA
Transmit 802.11g, OFDM 54 Mbps, POUT = +16 dBm	-	190	-	mA
Transmit 802.11n, OFDM MCS7, POUT = +14 dBm	-	180	-	mA
Receive 802.11b/g/n	-	95 ~ 100	-	mA
Transmit BT/BLE, POUT = 0 dBm	-	130	-	mA
Receive BT/BLE	-	95 ~ 100	-	mA