First ionization Energy plot (Energy versus atomic number)

Figure 2-14 Periodic trends in the first ionization enthalpies, $\Delta H_{\rm nor}$. Values for the first ionization enthalpies of the elements are also listed in Appendix IIB.

Table 1.6 Ionization energies of the elements* (in eV; 1 eV/atom = 96.4869 kJ/mole) (Continued)

Z	Element	I	11	111	IV	V	VI	VII	VIII
40	Zr	6.84	13.13	22.99	34.34	81.5			
41	Nb	6.88	14.32	25.04	38.3	50.55	102.6	125	1
42	Mo	7.099	16.15	27.16	46.4	61.2	68	126.8	153
43	Tc	7.28	15.26	29.54					
44	Ru	7.37	16.76	28.47					
45	Rh	7.46	18.08	31.06					
46	Pd	8.34	19.43	32.93					
47	Ag	7.576	21.49	34.83					
48	Cd	8.993	16.908	37.48					
49	In	5.786	18,869	28.03	54				
50	Sn	7.344	14.632	30.502	40.734	72.28			
51	Sb	8.641	16.53	25.3	44.2	56	108		
52	Te	9.009	18.6	27.96	37.41	58.75	70.7	137	
53	1	10.451	19.131	33					
54	Xe	12.130	21.21	32.1					
55	Cs	3.894	25.1						
56	Ba	5.212	10.004						
57	La	5.577	11.06	19.175					
58	Ce	5.47	10.85	20.20	36.72				
59	Pr	5.42	10.55	21.62	38.95	57.45			
60	Nd	5.49	10.72	350000000	1/400000000				
61	Pm	5,55	10.90						1
62	Sm	5.63	11.07						
63	Eu	5.67	11.25	12			1		
64	Gd	6.14	12.1						
65	Tb	5.85	11.52						
66	Dy	5.93	11.67						
67	Но	6.02	11.80						9
68	Er	6.10	11.93						
69	Tm	6.18	12.05	23.71					M.
70	Yb	6.254	12.17	25.2					
71	Lu	5.426	13.9					1	
72	Hf	7.0	14.9	23.3	33.3				
73	Ta	7.89	5700,050	(3.52814900)	80000				
74	W	7.98						1	
75	Re	7.88							
76	Os	8.7							
77	Ir	9.1		1					
78	Pt	9.0	18.563	- 1	1	100			
79	Au	9.225	20.5						
80	Hg	10.437	18,756	34.2					
81	Ti	6.108	20.428	29.83					
82	Pb	7.416	15.032	31.937	42.32	68.8			
83	Bi	7.289	16.69	25.56	45.3	56.0	88.3		
84	Po	8.42				22000	0015		
85	At	100,110,000							
86	Rn	10.748						1	
87	Fr								
88	Ra	5.279	10.147	1					
89	Ac	6.9	12.1						
90	Th	3,500	11.5	20.0	28.8				
91	Pa		2.00	*******	20.0				
92	U								
93	Np)					
94	Pu	5.8							
95	Am	6.0							

*From C. E. Moore, "Ionization Potentials and Ionization Limits from Atomic Spectra," NSRDS-NBS 34, 1970.

Inization

MA MA BU

Ionization Energies

35

Table 1.6 Ionization energies of the elements' (in eV; 1 eV/atom = 96.4869 kJ/mole)

Z	Element	11	II	III	IV	v	VI	VII	VIII
1	Н	13.598						1990	100000
2	He	24.587	54.416						
3	Li	5.392	75.638	122.451	502				
4	Be	9.322	18.211	153.893	217.713				
5	В	8.298	25,154	37.930	259.368	340.217			
6	C	11.260	24.383	47.887	64.492	392.077	489.981		
7	N	14.534	29.601	47.448	77.472	97.888	552.057	667.029	
8	О	13.618	35.116	54.934	77.412	113.896	138.116	739.315	871.38
9	F	17.422	34.970	62.707	87.138	114.240	157.161	185.182	953.88
10	Ne	21.564	40.962	63.45	97.11	126.21	157.93	207.27	239.09
11	Na	5.139	47.286	71.64	98.91	138.39	172.15	208.47	264.18
12	Mg	7.646	15.035	80.143	109.24	141.26	186.50	224.94	265.90
13	AI	5.986	18.828	28.447	119.99	153.71	190.47	241.43	284.59
14	Si	8.151	16.345	33,492	45.141	166.77	205.05	246.52	303.17
15	P	10.486	19.725	30.18	51.37	65.023	220.43	263.22	309.41
16	S	10.360	23.33	34.83	47.30	72.68	88.049	280.93	328.23
17	Cl	12.967	23.81	39.61	53,46	67.8	97.03	114.193	348.28
18	Ar	15.759	27.629	40.74	59.81	75.02	91.007	124.319	143.45
19	K	4.341	31.625	45.72	60.91	82.66	100.0	117.56	154.86
20	Ca	6.113	11.871	50.908	67.10	84.41	108.78	127.7	147.24
21	Sc	6.54	12.80	24.76	73.47	91.66	111.1	138.0	158.7
22	Ti	6.82	13.58	27.491	43.266	99.22	119.36	140.8	168.5
23	V	6.74	14.65	29.310	46.707	65.23	128.12	150.17	173.7
24	Cr	6.766	16.50	30.96	49.1	69.3	90.56	161.1	184.7
25	Mn	7.435	15.640	33.667	51.2	72.4	95	119.27	196.46
26	Fe	7.870	16.18	30.651	54.8	75.0	99	125	151.06
27	Co	7.86	17.06	33.50	51.3	79.5	102	129	157
28	Ni	7.635	18.168	35.17	54.9	75.5	108	133	162
29	Cu	7.726	20.292	36.83	55.2	79.9	103	139	166
30	Zn	9.394	17.964	39.722	59.4	82.6	108	134	174
31	Ga	5.999	20.51	30.71	64	*********			
32	Ge	7.899	15.934	34.22	45.71	93.5			
33	As	9.81	18.633	28.351	50.13	62.63	127.6		
34	Se	9.752	21.19	30.820	42.944	68.3	81.70	155.4	
35	Br	11.814	21.8	36	47.3	59.7	88.6	103.0	192.8
36	Kr	13.999	24.359	36.95	52.5	64.7	78.5	111.0	126
37	Rb	4.177	27.28	40	52.6	71.0	84.4	99.2	136
38	Sr	5:695	11.030	43.6	57	71.6	90.8	106	122.3
39	Y	6.38	12.24	20.52	61.8	77.0	93.0	116	129

(Continued)

100K

Ionization Energies

1st I.E.

2nd I.E.

Overall trend of increasing I.E. from left to right is evident, but major exceptions in the second I.E.

Atomic Radii

- 1. Single bond covalent radius (r_{cov}) of an element. Used in bond length determination.
- 2. $\underline{\text{van der waals radius}}$ (r_{vdw}) non-bonded distance of two atoms that are touching one another.
- 3. ionic radius (r_{ion})
 Radius used in ionic compounds
 these have been tabulated and are additive.

Page 61, Table 2-15

Therefore NaCl internuclear separation is 2.83 Å

8	E 2	E 3	38. 200 200	74 Ne 130 220	MG Rn	
(TE)	9.F 135 19(1-)	17.C1 97 180 167.G-)	2 E E E E E E E E E E E E E E E E E E E	33.1 200 206(1-)	85.70	
NB (20)	8 C 70 140 126(2~1	168 185 170(2-)	34.8c 11.7 200 184(2-)	122 T- 133 T- 137 T- 137 (2-1	83 Po	
E (9)	7.N 133 135	15 P 100 185 212(3-)	33 & 22 : :	51 Sb TEL 599(3-5)	88 B 128 B 171 E	
(14)	3 to C	25 E E E E E E E E E E E E E E E E E E E	22 G2 22 G2 67 (+)	第 第 第 第 第	82 PE 142 PE 127 E	
≅ 2	± 2	123	3 E E E E E E E E E E E E E E E E E E E	188 In 198 In 1404:	81 Jt. 200 105(3+)	
18 18 18			10 Zn 120 Zn 140 Xs(2+)	18 Cd 149 160 99(2+)	80 Hg 150 (30 176(2+)	
eΞ			き (E) 再数要求	¥ £3. 25.5±24 25.5±4	74 Mi 178 131(4-1	
T 6			ス (記) 第5 (記)	46 Pd 1690 1000(25-5)	78 Pt 175 94(2~)	
] [6	131 H		27.1.6 125 8312+)	45 Rh	= [2	109
	Fin the on	2	20 Fc	11 Ru	76.0x	108
AHC C	Radii em pmit, fisted in checorden.	(100 pm - 1A)	25 Mo	13.17.	75 Re	192
KIA S	Radd (m		W.C.	42 Ma	74 %	981
3 6			28. V	≅ ∓	a R	3
<u> 2</u>			22 Ts 100(24)	\$ \frac{1}{2} \fra	12.11	114
(3)			3	7 (5 E) (1 E	N7 12 115(24)	¥ ;
4 6	# 25 E	12 Mg 148 Mg 150 80(2)	20 Ca 178 114(25)	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26 Ba 218 149(2+)	ž
≦ ≘	二 美 多量製品	2 E	75 K 198 K 280 152 (1-)	17 Rb 220 166.3 s	\$ 500 181(F)	7. 7.

Figure 2-15 Periodic trends in atomic and tonic radii. For each element, the top value is the average single-bond covalent radius χ_{ins}; the middle value is the average van der Waals radius χ_{ins}; the bottom value is the "Shanmon and Prewitt" ionic radius χ_{ins} for the oxidation state that is specified in parentheses, as described in the text, Each radius is given in picometers (pm), one angatrom (A) being equal to 100 pm.

Atomic Radii & van der Waals radii

- 1. Alkali metals are largest
- 2. Halogens (noble gases) are smallest Why?

(page 62. Effective nuclear charge increases but electrons in the orbitals added to the same level, n, are progressively less shielded from the increasing positive charge of the nucleus from each added proton)

Ionic Radii

- 1. Alkali metals become positively charged (lose e's) so they are smallest.
- 2. Halogens become negatively charged (gain e⁻'s) so they are largest.

	←		Increasir	ng atomic r	adius	1.0		
	1A	2A	3A	4A	5A	6A	7A	8A
1220	H Sep							He
	32							50
			В	C -	N	О	F	Ne
	Li	Be			\cup			-
	152	112	98	91	92	73	72	70
adius	Na	Mg	Al	Si	P	S	Cl	Ar
omic	186	160	143	132	128	127	99	98
Increasing atomic radius	K 227	Ca 197	Ga 135	Ge	As	Se 3	Br	Kr 112
	Rb 248	Sr 215	In 166	Sn 162	Sb 159	Te	133	Xe
↓ ↓	Cs 265	Ba 222	TI 171	Pb 175	Bi 170	Po \$	At 142	Rn 140

Electron Affinities (Electron Attachment Enthalpies)

 $\begin{array}{l} \Delta \; H_{ea} \\ \text{Tendency of an atom to form an anion} \end{array}$

$-\Delta H_{ea}$

Means exothermic so the more negative the number, the more favorable 1. Alkali metals have mostly positive (endothermic) ΔH_{ea} , but most positive are Be, Mg, Ca (alkaline earths)

Going from ns² to ns²np¹ or ns²(n-1)d¹ is not favorable

Closed shell is favorable.

2. The most negative ΔH_{ea} values are for the halogens which have a great tendency to achieve the noble gas configuration

$$np^{5} \xrightarrow{+e^{-}} np^{6}$$

$$F \to F^{-}$$

$$Cl \to Cl^{-}$$

Electronegativites

Empirical measure of the tendency of an atom in a molecule to attract the electrons in a bond.

Called χ (chi).

Is not the same as ΔH_{ea} , although they are related

F. aure 9.8		
ers to	whigh whas	3) Mullikene
165 Sec. 6.	では、 頭の	& Rochow
Charle Aid	l "Or ealeu	2) Allred
Mus and	dermin	1) Paulins
~		

		7.4	ĮĽ,	4.0	ם	3.0	Br	2.8	-	2.5	At	2.2		
		. Y9	0	3.5	s	2.5	8	2.4	Te	2.1		2.0		
		5A (z	3.0	P.	2.1	As	2.0	SS.	1.9	Bi	1.9		
		4A .	S	2.5	Si	8.1	ું	8.1	Sn	1,8	2	1.9		
		3A	В	2.0	ΑI	1.5	ී	1,6	ų.	1.7	F	1.8		
						2B	Zn	1.6	8	1.7	Hg	1.9		
						18	8	1.9	Ag	19	Au	2.4		
						Γ	Z	13	Pd	2.2	¥	2.2		
						- 8B -	ප	1.9	Rh	2.2	h	22		
						L	Fe	1,8	Ru	22	ő	2.2		
						7B	Mn	1.5	Tc	1.9	Re	1.9		
						6B	ò	1.6	Mo	1.8	×	1.7		
						SB	>	1.6	S.	1.6	Ta	1,5		
						4B	II	1.5	Zr	1.4	Hf	1.3		
						3B	S	1.3	¥	1.2	La-Lu	1.0-1.2		
		2A	8	1.5	Mg	1.2	ථි	1.0	Š	1.0	Ba	60	Ra	00
1A	н	2.1	ï	1.0	Z.	60	×	8.0	Rb	8.0	ප	0.7	Fr	10

Chapter 3 Structure and Bonding in Molecules

- Our current understanding of bonding is quite high due to the use of X-ray crystallography and spectroscopy. We can make detailed predictions and comparisons based on a large database of experimental evidence.
- In the absence of detailed data
 - → Models

Many different levels of Bonding Theories exist

69

Two Main Types:

- Localized bonding Theories
- Delocalized Bonding Theories

Chapter 2 – Electronic Structure – and orbitals are very important to bear in mind for the models.

Electrons \rightarrow orbitals \rightarrow bonds

Three types of Bonding:

- 1. Covalent (two-center) bonding between pairs of electrons (localized)
- 2. Delocalized covalent bonding (multicenter bonding)
- 3. Ionic Bonding

In this section, localized and delocalized covalent bonding will be discussed. Ionic Bonding is really a separate subject, as it treats the bond as a purely electrostatic attraction.

Important Point while you are studying the subject of covalent bonding:

There are three theories that are presented together as inter-related topics

- 1. <u>Lewis Dot</u> structures (electron –pairs)
- 2. <u>VSEPR Theory</u>: valence shell electron pair repulsion theory
- 3. <u>Hybridization</u>

1. Lewis Concept

Localized Electron Pairs

G. N. Lewis - Bonding involves a sharing of electrons

Bonding Pairs

A:B

Pairs of electrons between two atoms lead to a covalent bond

→ localized between two atoms

Lone Pairs

: A : B

A lone pair is localized on one atom here

<u>Electronic Structure</u> based on this model is the <u>sum</u> of all the <u>bonding pairs</u> and <u>lone pairs</u>.

We use a diagram to represent this → Lewis Diagram

Lewis Diagrams

- Use only valence electrons
- Electrons are either involved in a two electron bond or they are localized as a lone pair (or lone electrons)
- Bear in mind that the simplest, most symmetrical structure is typically correct
- The central atom is typically:
 - o A metal (or at least electron e.g. atom)
 - Odd atom in the formula
 - o Never hydrogen
- Atoms usually need to achieve a full octet (exceptions are B, Be, Al) if they are in the 1st and 2nd periods
- Atoms beyond 2nd row, atom can acquire more than an octet.
 - → valence shell expansion

Octet Systems

1. Saturated Systems – Single bonds only

4e⁻

N

6e⁻

 $7e^{-}$

F

Valence electron

Η 1e⁻

5e

counts

Same as group in Periodic Table

Lewis Dod symbols for the Various elements

IA	Ĥ	÷	·Na	×	·Rb	స	·Fr
	2A	·Be·	·Mg·	·Ca•	·Sr·	·Ba•	·Ra·
			3B				
			4B				
			5B				
			6B				
			7B				
			L				
			—8B—				
			Г				
			118				
			2B				
	3A	÷	·ķ.	·G.	i • .	Ė	
	4A	··	·s:	.ę.	·š.	·ë.	
	SA	:ż·	:ġ.	.÷.	.qs.	:Bi:	
	6A	:ọ:	:ý:	.se.	·Te·	.Po.	
	7A	: <u>:</u> :	:0:	:: :Br:	: <u>;</u> :	:Āī:	
5	He:	:ë:	:Är:	:Kr:	:Xe:	:Rn:	

2. Unsaturated – multiple bonds are required for atoms to achieve a full octet.

$$NO_3$$
 $N = 5$ electrons $= 5$
 $O = 6$ electrons $= 3$ $= 18$
 $= 1$ extra electron $= 1$
 $= 24$ electrons

 SO_2 S 6 electrons 6 O 6 electrons x 2 $\frac{12}{18}$ electrons

:5:0: :0 — again, this O atom is deficient

:0/5-0. Better structure is this one

Q. What about CO_2 ?

C 4 electrons 4 O 6 electrons x 2 12 16 e

A.