A Segmentation-Driven ViG-SP: Approach to Image Classification

Supervised by: Dr. Karolis Martinkus Ard Kastrati Prof. Dr. Roger Wattenhofer

Philip Toma Mateo Diaz-Bone Stefan Scholbe

Revisiting ResNets: Improved Training and Scaling Strategies

Irwan Bello Google Brain William Fedus Google Brain

Xianzhi Du Ekin D. Cubuk Google Brain Google Brain

Arayind Srinivas UC Berkeley

Tsung-Yi Lin Google Brain

Jonathon Shlens Google Brain

Barret Zoph Google Brain

Approaches to Image Classification

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*.

> *equal technical contribution, †equal advising Google Research, Brain Team

{adosovitskiy, neilhoulsby}@google.com

Approaches to Image Classification

Isotropic

- Consistent feature size
- Uniform receptive fields
- Efficient and compact design

Pyramid

- Multi-layered, hierarchical
- Diverse receptive fields
- Captures fine to broad features

Approaches to Image Classification

Graph-Based Approach to Image Classification

Vision GNN: An Image is Worth Graph of Nodes

Kai Han^{1,2*} Yunhe Wang^{2*} Jianyuan Guo² Yehui Tang^{2,3} Enhua Wu^{1,4}

¹ State Key Lab of Computer Science, ISCAS & UCAS

² Huawei Noah's Ark Lab

³ Peking University ⁴ University of Macau

{kai.han,yunhe.wang}@huawei.com, weh@ios.ac.cn

Vision GNN

Graph Representation Inference

Graph Updates, Feature Transformations & Prediction

Graph-Based Approach to Image Classification

on GNN: An Image is Worth Graph of Nodes

Kai Han^{1,2*} Yunhe Wang^{2*} Jianyuan Guo² Yehui Tang^{2,3} Enhua Wu^{1,4}

¹State Key Lab of Computer Science, ISCAS & UCAS

²Huawei Noah's Ark Lab

³Peking University ⁴University of Macau
{kai.han,yunhe.wang}@huawei.com, weh@ios.ac.cn

Combining ViG with Image Segmentation

Image Segmentations

Original Image

SLIC segmentation

- Dividing Images into rectangular patches might not be optimal
- SLIC Segmentation covers irregular structures encaptured in the image

Incorporating Image Segmentation into VisionGNN

- SLIC segmentation provides graph structure
- UNet model provides per-pixel features

Incorporating Image Segmentation into VisionGNN

 On each superpixel induced graph a custom GCN enables sharing of node information

Incorporating Image Segmentation into VisionGNN

- After GCN we perform a simple aggregation to arrive at one feature vector per superpixel
- After padding we forward the features to the original ViG Backbone

Optimizations

Optimizations

- Unique to our architecture: No optimized PyTorch function available.
- On the "hot path" every millisecond counts!

Optimizations: Generating Superpixel Graphs

Optimizations: Attempts

Attempt 1:

Precompute graphs and optimize for fast disk access.

Augmentations can't be precomputed

Attempt 2:

Generate graphs on the fly.

➤ Needs to be extremely fast

Optimizations: Implementations

PythonSimple double for-loop

249 ms

Python + NumPy

Vectorization through index transformations

35 ms

C/C++ Binding

Low-level and memory optimizations

2 ms

~ 20% time save per epoch

Results

Semester Project

From Pixels to Nodes: A Segmentation-Driven Approach to Image Classification

Mateo Diaz-Bone, Philip Toma, Stefan Scholbe

	ViG-Ti	ViG-B	ViG-SP196	ViG-SP100	ViG-SP-Grid
Top-5 (%)	96.33	97.10	97.78	97.28	97.44
Top-1 (%)	83.06	86.46	87.37	86.22	86.12

	ViG-Ti	ViG-B	ViG-SP196	ViG-SP100	ViG-SP-Grid
Top-5 (%)	96.33	97.10	97.78	97.28	97.44
Top-1 (%)	83.06	86.46	87.37	86.22	86.12

Result:

On ImageNet-100, the ViG-SP196 model outperformed all other configurations

> SLIC with approx. 196 segments

	ViG-Ti	ViG-B	ViG-SP196	ViG-SP100	ViG-SP-Grid
Top-5 (%)	96.33	97.10	97.78	97.28	97.44
Top-1 (%)	83.06	86.46	87.37	86.22	86.12

Result:

On ImageNet-100, the ViG-SP196 model outperformed all other configurations

- ➤ SLIC with approx. 196 segments
- ➤ Chosen for the benchmark on ImageNet

	ViG-Ti	ViG-B	ViG-SP196	ViG-SP100	ViG-SP-Grid
Top-5 (%)	96.33	97.10	97.78	97.28	97.44
Top-1 (%)	83.06	86.46	87.37	86.22	86.12

Result:

On ImageNet-100, the ViG-SP196 model outperformed all other configurations

- ➤ SLIC with approx. 196 segments
- ➤ Chosen for the benchmark on ImageNet

Baseline

	ViG-Ti
Top-5 (%)	92.0
Top-1 (%)	73.9

- Least accurate ViG model
- Smallest ViG model
- Underlying backbone of our architecture

Benchmark

	Validation-Set	Test-Set
Top-5 (%)	88.38	87.67
Top-1 (%)	68.26	67.37

- ViG-parameters in the backbone
- 3 weeks training time
- 130 epochs
- Small batch size (h/w constraints)

Results

Semester Project

Combining Graph- and Convolutional Neural Networks and Image Segmentation to Improve Image Classification

Mateo Diaz-Bone, Philip Toma, Stefan Scholbe

Conclusion

Positive:

Graph representations of images are more flexible

➤ Ability to learn on irregular structures and patterns Good results in combination with CNNs

Negative:

High latency in training on graph representations and graph creation

➤ Difficult computational challenge

Thanks for your attention!

And the possibility to do this project.

Supervised by: Dr. Karolis Martinkus Ard Kastrati Prof. Dr. Roger Wattenhofer

Philip Toma Mateo Diaz-Bone Stefan Scholbe