ពិជគណិតលីនេអ៊ែរ

បង្រៀនដោយ លោកគ្រូ ហាំ ការីម December 29, 2021

ជំពូកទី 1

លំហវ៉ិចទ័រ

1.1 រំឭកមេរៀន

ឧទាហរណ៍ 1.1 ប្រមាណវិធី + និង \times ជាប្រមាណវិធីក្នុងលើសំណុំ \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ឬ \mathbb{C} ។ ដើម្បីផ្លៀងផ្ទាត់សំណើខាងលើយើងយក \mathbb{K} ជាសំណុំណាមួយក្នុងចំណោមសំណុំ ខាងលើ ។ យើងឃើញថាគ្រប់ $a,b\in\mathbb{K}$ យើងបាន

$$a+b\in\mathbb{K}$$
 និង $a imes b\in\mathbb{K}$ ។

បន្ទាប់មកទៀត យើងនឹងស្រាយលក្ខណៈ uniqueness របស់ប្រមាណវិធីទាំងពីរ ។ យក $a_0,b_0\in\mathbb{K}$ ដែល $a_0=a$ និង $b_0=b$ នោះយើងបាន

$$a+b=a_0+b_0$$
 និង $a imes b=a_0 imes b_0$

ហេតុនេះ a+b និង ab ជាធាតុតែមួយគត់ (unique element) ក្នុងសំណុំ $\mathbb K$ ។ ដូចនេះប្រមាណវិធី + និង \times ជាប្រមាណវិធីក្នុងលើសំណុំ $\mathbb N$, $\mathbb Z$, $\mathbb Q$, $\mathbb R$ ឬ $\mathbb C$ ។

ឧទាហរណ៍ 1.2 + និង \times មិនមែនជាប្រមាណវិធីក្នុងសំណុំ $\mathbb{Q}^{\mathbb{C}}$ ទេព្រោះប្រមាណវិធី នេះមិនស្ដាប (closed) លើ $\mathbb{Q}^{\mathbb{C}}$ ឡើយ ។ ជាឧទាហរណ៍យើងអាចយក $a=\sqrt{2}\in\mathbb{Q}^{\mathbb{C}}$ និង $b=-\sqrt{2}\in\mathbb{Q}^{\mathbb{C}}$ តែ

$$a+b=\sqrt{2}+(-\sqrt{2})=0\notin\mathbb{Q}^{\complement}$$

ហើយ

$$a \times b = \sqrt{2}(-\sqrt{2}) = -2 \notin \mathbb{Q}^{\complement}$$

ដូច្នេះ + និង imes មិនមែនជាប្រមាណវិធីក្នុងលើសំណុំ \mathbf{Q}^{\complement} ឡើយ ។

ឧទាហរណ៍ 1.3 ផលគុណស្កាលែនៃពីរវ៉ិចទ័រក្នុង \mathbb{R}^n មិនមែនជាប្រមាណវិធីក្នុងលើ \mathbb{R}^n ទេព្រោះបើយើងយក $\mathbf{x}=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ និង $\mathbf{y}=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$ ដែល $x_i,y_i\in\mathbb{R}$ យើងតែងតែទទួលបាន

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}$$

មានន័យថា $\mathbf{x}\cdot\mathbf{y}\notin\mathbb{R}^n$ នោះប្រមាណវិធីនេះមិនមែនជាប្រមាណវិធីក្នុងរបស់សំណុំ \mathbb{R}^n ទេ ។

ឧទាហរណ៍ 1.4 តាង $\mathcal{F}(A,A)$ ជាសំណុំនៃអនុគមន៍ពី A ទៅ A ។ គេកំណត់អនុគមន៍ មួយដែល

$$\circ: \quad \mathcal{F}(A,A) \times \mathcal{F}(A,A) \quad \longrightarrow \quad \mathcal{F}(A,A)$$
$$(f,g) \quad \longmapsto \quad f \circ g$$

ជាប្រមាណវិធីក្នុងលើ $\mathcal{F}(A,A)$ ។

ដើម្បីងាយស្រួលសរសេរយើងតាង $\mathcal{F}:=\mathcal{F}(A,A)$ ។ ដើម្បីបង្ហាញថា \circ ជា ប្រមាណវិធីក្នុងយើងត្រូវស្រាយឱ្យឃើញពីលក្ខណៈមានតែមួយគត់ (uniqueness) ហើយមានលក្ខណៈស្ដាបលើ \mathcal{F} ។

 \circ លក្ខណៈ Unique ៖ យក $f,g,h,k\in\mathcal{F}$ ដែល f=h និង g=k នោះគ្រប់ $x\in A$ យើងបាន

$$(f \circ g)(x) = f \Big[g(x) \Big]$$

$$= f \Big[k(x) \Big] \qquad (ifm: g = k)$$

$$= h \Big[k(x) \Big] \qquad (ifm: f = h)$$

$$= (h \circ k)(x)$$

នោះយើងបាន $f \circ g = h \circ k$ ។

 \circ បន្ទាប់មកយើងស្រាយភាពស្ដាបរបស់ \circ ។ ដោយគ្រប់ $f,g\in\mathcal{F}$ នោះ

$$f \colon A \to A$$
 និង $g \colon A \to A$

គ្រប់ $x\in A$ យើងបាន $f\circ g(x)=f(g(x))\in A$ នោះ $f\circ g$ ជាអនុគមន៍ពី A ទៅ A ។ មានន័យថា $f\circ g\in \mathcal{F}$ ។

ដូចនេះ ៰ ជាប្រមាណវិធីក្នុងរបស់សំណុំ ℱ។

និយមន័យ 1.1

អនុគមន៍ $f:A\to B$ និង $g:A\to B$ ស្មើគ្នាកាលណាដែនកំណត់ $\mathcal{D}(f)=\mathcal{D}(g)$ ហើយ

$$f(x) = g(x)$$

ចំពោះគ្រប់ $x \in A$ ។

ឧទាហរណ៍ 1.5 បើយើងឱ្យ $f(x)=1+\frac{x^2-1}{x(x-1)}$ និង $g(x)=1+\frac{x+1}{x}$ ។ យើង ឃើញថា f,g មើលទៅដូចជា ស្មើគ្នាមែន ក៏ប៉ុន្តែដែនកំណត់

$$\mathcal{D}(f) = \mathbb{R} \setminus \{0,1\}$$
 និង $\mathcal{D}(g) = \mathbb{R} \setminus \{0\}$

ដូចនេះយើងបាន $f \neq g$ ។

1.2 ក្រុម

និយមន័យ 1.2

យក G ជាសំណុំមួយហើយ * ជាប្រមាណវិធីក្នុងរបស់ G ។ គេថា (G,*) ជា ក្រុមកាលណា

- \circ (ហក្ខណ:ផ្លុំ) a*(b*c)=(a*b)*c បំពោះគ្រប់ $a,b,c\in G$
- \circ (ជាតុណីត) មាន $e \in G$ ដែល e*a = a*e = a ចំពោះគ្រប់ $a \in G$
- \circ (ជាតុច្រាស) គ្រប់ $a \in G$ មាន $b \in G$ ដែល a * b = b * a = e ។

លំហាត់ 1.6 យក E ជាសំណុំមួយ ។ ឧបមាថា $\mathcal{S}(E)$ ជាសំណុំនៃអនុវត្តន៍មួយទល់ មួយ (bijection) ពី E ទៅ E ។ យក \circ ជាប្រមាណវិធីក្នុងលើ $\mathcal{S}(E)$ ដែលជាបណ្ដាក់ រវាងអនុវត្តមួយទល់មួយលើ E ។ តើ $(\mathcal{S}(E), \circ)$ ជាក្រុមឬទេ ? ជាក្រុមអំប៊ើលឬទេ ?

ដំណោះស្រាយ យើងនឹងស្រាយថា $(S(E), \circ)$ ជាក្រុម តែមិនមែនជាក្រុមអាប៊ែលទេ ។ ដំបូងយើងត្រូវដឹងថាតើប្រមាណវិធីនេះស្ដាបលើ S(E) ឬទេ ។ យក $f,g \in S(E)$ ។ យើងចង់ស្រាយថា $f \circ g$ ក៏ជាអនុវត្តមួយទល់មួយដែរ ។ ឧបមាថាមាន $x,y \in E$ ដែល $(f \circ g)(x) = (f \circ g)(y)$ នោះយើងបាន

$$f(g(x)) = f(g(y))$$
 $\implies g(x) = g(y)$ (ព្រោះ f មួយទល់មួយ) $\implies x = y$ (ព្រោះ g មួយទល់មួយ)

ហេតុនេះ $f\circ g\in\mathcal{S}(E)$ ។ ដើម្បីស្រាយថា $\mathcal{S}(E)$ ជាក្រុម យើងត្រូវផ្ទៀងផ្ទាត់លក្ខណៈ ៖

 \circ យក $f,g,h\in\mathcal{S}(E)$ និង $x\in E$ ។ នោះ

$$((f \circ g) \circ h)x = (f \circ g)(h(x)) = f(g(h(x)))$$

ស្រជៀងគ្នាដែរ យើងបាន

$$(f \circ (g \circ h))x = f((g \circ h)x) = f(g(h(x)))$$

នោះ
$$(f \circ g) \circ h = f \circ (g \circ h)$$
 ។

 \circ តាង $id: E \to E$ ដោយ id(x) = x គ្រប់ $x \in E$ ។ បើ id(a) = id(b) នោះយើង បាន a = b ហេតុនេះ id ជាអនុវត្តមួយទល់មួយលើ E ។ យក $f \in \mathcal{S}(E)$ នោះគ្រប់ $x \in E$ យើងបាន

$$(f \circ \mathrm{id})(x) = f(\mathrm{id}(x)) = f(x)$$

ហើយ

$$(\mathrm{id} \circ f)(x) = \mathrm{id}(f(x)) = f(x)$$

ហេតុនេះ $f \circ \mathrm{id} = \mathrm{id} \circ f = f$ ។ (id ជាធាតុណឺតក្នុង $\mathcal{S}(E)$) ។

 \circ យក $f\in\mathcal{S}(E)$ ។ តាមលក្ខណៈរបស់អនុវត្តន៍មួយទល់មួយ យើងបានអនុគមន៍ច្រាស f^{-1} ក៏ជាអនុវត្តមួយទល់មួយដែរ ។ ម្យ៉ាងទៀតគ្រប់ $x\in E$ យើងបាន

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x = id(x)$$

ស្រដៀងគ្នាដែរ

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = id(x)$$

នោះ $f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}$ (មានន័យថា f^{-1} ជាធាតុច្រាសនៃ f) ។

ដូចនេះយើងបាន $(\mathcal{S}(E),\circ)$ ជាក្រុម ។ យើងនឹងស្រាយថា G មិនមែនជាក្រុមអាប៊ែលទេ ។ យក $a,b,c\in E$ ជាចំនួនផ្សេងៗគ្នាក្នុង E ។ យើងរើសយកអនុគមន៍ $f,g\in \mathcal{S}(E)$ ដែល

$$f(a) = b$$
, $g(a) = a$ $\S a$ $g(b) = c$

នោះយើងបាន f(g(a))=f(a)=b ក៏ប៉ុន្តែ g(f(a))=g(b)=c ។ ហេតុនេះ $f\circ g\neq g\circ f$ ។ មានន័យថា $(\mathcal{S}(E),\circ)$ មិនមែនជាក្រុមអាប៊ែលទេ ។

ដូចនេះ $(S(E), \circ)$ is a non-Abelian group.

វិបាក 1.1

គេយក $n \in \mathbb{N}$ ហើយគេយក $E = \{1,2,3,\ldots,n\}$ ។ ដូចលំហាត់ខាងលើដែរ យើងកំណត់សរសេរ $S_n := S(E)$ ជាសំណុំនៃអនុគមន៍មួយទល់មួយពី E ទៅ E ។ យើងបាន (S_n,\circ) ជាក្រុម តែមិនមែនជាក្រុមអាប៊ែលទេ (non-Abelian group) ។

សំណើ 1.2

យក (G,*) ជាក្រុម។

- (a) ជាតុណឺតមានតែមួយគត់
- (b) ជាតុប្រាស x' របស់ x មានតែមួយគត់
- (c) ជាតុច្រាស់របស់ចម្រាសរបស់ x គឺ x; មានន័យថា (x')'=x
- (d) គ្រប់ជាត្ $x,y \in G$ យើងបាន (x*y) = y'*x'
- (e) គ្រប់ជាត្ $x,y,z\in G$ បើx*y=x*z នោះ y=z ។

សម្រាយបញ្ជាក់

(a) យើងឧបមាហិមាន e, e_0 ជាធាតុណឺតរបស់ G ។ ដោយ e_0 ជាធាតុណឺតនោះយើងបាន $e_0*e=e*e_0=e$ ។ ដូចគ្នាដែរ ដោយ e ជាធាតុណឺតនោះ

$$e_0 * e = e * e_0 = e_0$$

នោះយើងបាន $e=e_0$ ។ ដូចនេះជាតុណឺតមានតែមួយគត់ ។

(b) ស្រដៀងគ្នាដែរ យើងឧបមាថាមាន a, b ជាធាតុច្រាសរបស់ x ។ ហេតុនេះ

$$a = e * a = (b * x) * a = b * (x * a) = b * e = b$$

1. លំហវ៉ិចទ័រ

នោះ a=b ។ ដូចនេះជាតុណឹតរបស់ x មានតែមួយគត់ហើយយើងនឹងតាងវាដោយ x^{\prime} ។

(c) ដោយហេតុថា x' ជាធាតុច្រាសនៃ x នោះយើងបាន

$$x * x' = x' * x = e$$

នោះយើងបានធាតុប្រាសរបស់ x' គឺ x ។ ដូចនេះ $\overline{(x')'=x}$ ។

(d) យក $x,y \in G$ នោះ $x',y' \in G$ (well defined) ។ ពិនិត្យមើល

$$(x * y) * (y' * x') = x * (y * y') * x' = x * e * x' = e$$

ម្យ៉ាងទៀត

$$(y'*x')*(x*y) = y'*(x'*x)*y = y'*e*y = e$$

នោះយើងទាញបានថាចម្រាសរបស់ x*y គឺ y'*x' ។

ដូចនេះ
$$(x*y)' = y'*x'$$
 ។

(e) យើងមាន $x,y,z\in G$ ដែល x*y=x*z ។ ដោយ * ជាប្រមាណវិធីក្នុងរបស់ G នោះ

$$x' * (x * y) = x' * (x * z)$$

$$\implies (x' * x) * y = (x' * x) * z$$

$$\implies e * y = e * z$$

$$\implies y = z$$

ម្យ៉ាងទៀត ចម្រាសនៃសំណើនេះ (converse of this statement) ក៏ពិតដែរ ដូចនេះ $x*y=x*z \iff y=z$ ។