# Muiltple Object Tracking using RNNs

Khizer Amin

#### Introduction

- Why tracking?
  - Association: keep the object identity across frames
  - SpeedUp: Local prediction (fast for intermediate frames)
- Why RNN/LSTMs
  - Natural language processing
  - ANNs can't deal with the temporal or sequential data.
  - Memory (They retain context by having memory)
- Applications
  - Video surveillance
  - Traffic management
  - Medical imaging



# Challenges for Tracking

- Occlusion
  - It is a classic reseach problem in computer vision.



 Different view points (camera motion)



# Challenges for Tracking

 A varying number of targets (birth/death of targets)

Data Association







| Related Work                                                                                                                                                                                                                                                                          | MOTA <sup>1</sup> | Differences                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Online Deep Tracking Metric learning (A. Sadeghian, A. Alahi, S. Savarese - 2016) (RNN based) Tracking multiple target using cues(their appearance, motion and inter-relations)                                                                                                       | 37.6%             | <ul> <li>Using 3 RNNs as LSTMs for each cue.</li> <li>Matching targets in each frame.</li> </ul>                                                             |
| Learning to Track: Online Multi-Object Tracking by Decision Making. (Y. Xiang, A. Alahi, S. Savarese - 2015)  Tracking using Markov decision process, where each object's lifetime is modeled by an MDP.                                                                              | 30.3%             | <ul> <li>MDP handle the birth/death and appearance/disappearanc e of objects in tracking.</li> <li>Data Association using Reinforcement learning.</li> </ul> |
| Joint Probabilistic Data Association Revisited (JPDA) (Rezatofighi et al. 2015) Associating the detected measurements in each time frame with existing targets using a joint probabilistic score                                                                                      | 23.8%             | <ul> <li>Reformulate the DA         assignment score as a         integer linear problem</li> </ul>                                                          |
| Muiltple Object 3D Position Tracking using RNNs (Our approach) Tracking based on RNN(motion, prediction and update) and LSTM(data association) (This was the first approach of the time which employs RNNs/LSTMs for online MOT, and also non trivial for DL approaches at that time) | 19.0%             | <ul> <li>Time varying nr. of targets.</li> <li>State estimation of targets.</li> <li>Data association</li> </ul>                                             |

<sup>1.</sup> Multiple-Object tracking Accuracy

#### Architecture



#### RNN Stage - Prediction Layer

- Using available ground truth Bboxes from current and the previous state.
- Predicting the target motion in the absence of the measurements.



## RNN Stage — Update Layer

- Updating the state for the target 'x' by updating the current status of the targets Bbox coordinates by introducing the measurements data 'z'.
- Comparison between the measurement and target coordinates.



### RNN Stage — Birth/Death Layer

- Targets can appear or disappear from a frame.
- Preserving target's identity and association.
- Identifying target's track initiation and termination.



## LSTM Stage



- Performing data association.
- Creating the association matrix 'A' using the LSTM cell.
- Using to 'A' matrix to preserve the context and identity of a target over time.

## Data Association using LSTM

LSTM has a strong memory unit.

 LSTM cell outputs the association vector between predicted targets and detected measurements.

$$C = ||x^i - z^j||_2$$

• The association vector then passed to the RNN update layer to estimate the state of the target ' $x_{t+1}$ '.

• The process to train LSTM for data association is complex. Model can be simplified by removing LSTM based data association.

#### Data Association - Alternative approach

Intersection over Union (IoU)

Overlap of predicted targets and detected measurements:

$$IoU = \frac{Intersection \ area \ of \ two \ bounding \ boxes}{Union \ of \ areas \ of \ both \ bounding \ boxes}$$

## Data Association - Alternative approach

 Finding similarities between Bounding boxes.



## Experiment

#### Training Data

- Data with sequence of images is hard to get.
- MOTChallenge 2015 is used with 22 video sequences.

#### Implementation:

- Keras-Tensorflow
- The original paper paper was inspired by Andrea Karpathy RNN algorithm for textual data.

#### **Evaluation Metrics**

Two standard metrics:

MOTA

$$1 - \frac{\sum_{t} (m_t + f_{pt} + mme_t)}{\sum_{t} g_t}$$

MOTP

$$\frac{\sum_{i,t} d_{i,t}}{\sum_{t} c_{t}}$$

## Results

| Method                 | MOTA (%) | MOTP (%) |
|------------------------|----------|----------|
| AMIR15(SadeghianAS17)  | 37.6     | 71.7     |
| MDP(xiang_iccv15)      | 30.3     | 71.3     |
| JPDMm(Rezatofighi2016) | 23.8     | 68.2     |
| RNN_LSTM(Milan:2017)   | 19.0     | 71.0     |
| Our implementation     |          |          |
| Prediction Layer       | 5.1      | 30.3     |
| Update Layer with IoU  | 17.6     | 70.8     |

Table 4.1: Tracking results on MOTChallenge test set.

#### Demonstration



### Next steps

#### Conversion (2D -> 3D)





# Thank you for the attention