LOAN DOCUMENT

	PHOTOGRAPH THIS SHEET	
WBE		
N NO	LEVEL INVEN	TORY
DTIC ACCESSION NUMBER	Infrared Sensing aeroreating	
S ACC	DOCUMENT IDENTIFICATION	
M	27 Dec 99	H
,		A
	DISTRIBUTION STATEMENT A	N
	Approved for Public Release Distribution Unlimited	D
	DAGGER MAN AND AND AND AND AND AND AND AND AND A	L
ACCENSION FINE NTIS GRAM	DISTRIBUTION STATEMENT	\mathbf{E}
DTIC TRAC UNANNOUNCED		
JUSTIFICATION	<u> </u>	W
		T
вү		
DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND ASSESSED.		T
DISTRIBUTION AVAILABILITY AND/OR SPE	DATE ACCESSIONED	H
0-1	DATE ACCESSIONED	
M ,		C
DISTRIBUTION STAMP		A
		R
		E
	DATE RETURNED	
:		
0000	4000 405	
2000	1020 125	
DATE	RECEIVED IN DTIC REGISTERED OR CERTIFIED NU	JMBER
	BUOTOCD ADMITTING CHEEPA AND DEPARTMENT NO DAMES TO A	
DTIC ROM 70A	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC DOCUMENT PROCESSING SUPET MEVIOUS ENTITIES MAY BE	THEON I SOM
DTIC JUN 90 70A	DOCUMENT PROCESSING SHEET PROVIOUS BENTIONS MAY BE STOCK BE EXHAUSTED.	

Unclassified

ISAFE

Infrared Sensing Aeroheating Flight Experiment

Alan Tietjen Jodean Wendt Don Dawson

Computer Sciences Corporation

Rolf Ahlgreen

Computer Sciences Raytheon, KSC, FL

Robert C. Blanchard Sharon Welch NASA Langley Research Center

Michael Lovern SSC San Diego, San Diego, CA Unclassified

Distribution Statement A: Approved for public release distribution is unlimited.

CHART 1

Instruments of the Ballistic Missile Defense Organization/Innovative Sciences and Technology Experimentation Facility (BMDO/ISTEF) collected imagery from the STS-96 and STS-103 landings at Kennedy Space Center, Florida on 6 June and 27 December 1999. Midwave infrared data provided vehicle body surface thermal measurements in support for NASA X vehicle development. Ground-based observations were proposed as an adjunct measurement of boundary layer transition from laminar to turbulent flow, possibly reducing the number of on-board thermal sensors required. Initial comparisons with shuttle thermocouple data indicate temperature measurement agreement on the order of five percent. The video rate, high-resolution thermal maps are also suitable for producing movie sequences for comparison to CFD predictions and wind tunnel results. The shuttle served as a surrogate target to provide data for development of processing techniques. These capabilities are additionally applicable to support ongoing programs, such as ABL for scoring and kill assessment An additional collection is planned to assess performance at higher target altitudes.

This work was performed under BMDO contract N66001-95-D-0088.

Unclassified

ISAFE Objectives

For NASA LaRC

- Measure surface temperature of experimental vehicles in high resolution during supersonic/hypersonic reentry, specifically transition from laminar to turbulent flow
 - Observe experimental vehicle tests: X33, X34, X37, Hyper-X
 - · Deliver to NASA high resolution thermal map movie
 - · Compare to CFD model & wind tunnel predictions
 - · Compare to sparse vehicle surface thermocouple data
 - Demonstrate/validate low cost ground based capability and techniques using Shuttle

For BMDO

 Demonstrate capability with possible application for low cost target scoring for ABL & SBL, as well as AIT testing

Unclassified

CHART

The work described here was performed under an Interagency Agreement between the National Aeronautics and Space Administration, Langley Research Center, and the Ballistic Missile Defense Organization, which states in part:

"BACKGROUND AND PURPOSE

The validation of experimental and computational predictive techniques is essential for the success of future space transportation technology development. Conservatism in design must be eliminated or minimized to enable low cost space transportation. The aerodynamic and aeroheating disciplines are the drivers for vehicle design and provide critical inputs to other disciplines such as control system design, materials, and structures. Aerodynamic and aeroheating data provide the input for thermal protection system (TPS) material selection and sizing, which must represent the minimum weight to ensure survivability and reusability. For autonomous landing vehicles, the aerodynamic performance and margins must be known precisely throughout the entire flight trajectory. To achieve these goals of optimum design of future RLV's, reduced vehicle design cycle time, and to enhance U.S. space launch competitiveness, designers must have highly accurate, calibrated and validated tools for prediction of aerodynamic performance and aeroheating characteristics. Aerothermodynamic flight data provides the ultimate means for tool validation. Once validated, these tools may be used with confidence for the next generation of RLV's and vehicles such as military spaceplanes, and Shuttle Orbiters.

The objective is to extract highly accurate aerodynamic performance and aeroheating characteristics from flight measurements taken during Shuttle and X-33 hypersonic flights for the purpose of providing 1) benchmark data for validation of ground experimental and computational prediction techniques essential for the optimum design and flight of future RLV's, and 2) information required to determine flight margins, address anomalies, and mitigate long-term risk for the next-generation reusable launch system."

Unclassified

ORBITER SURFACE MATERIALS

Summary and Future Efforts

• Summary

 Demonstrated low cost ground base high resolution thermal imaging sufficient to observe transition given correct ground site relative to trajectory and vehicle attitude

Future

- Further observations of Shuttle reentry for capture of laminar to turbulent transition
- Detail planning for X34, X33, X37 observations
- Further discussions with ABL

Unclassified

HART 11