Theory–First Tour of the Time-Series Pipeline

Below is a theory-first tour of every statistical object in our pipeline. For each we give:

- (i) A definition or formula,
- (ii) The property it measures or enforces,
- (iii) Why it is needed here.

1. Box-Cox Power Transformation

Definition

For y > 0 and $\lambda \neq 0$:

$$y^{(\lambda)} = \frac{y^{\lambda} - 1}{\lambda}, \quad y^{(0)} = \log y.$$

Role

Simultaneously stabilises variance and linearises exponential growth. 1

Why here

All series exhibit level-dependent variance; the MLE $\hat{\lambda}$ decides additive vs. multiplicative form.

2. STL Decomposition

$$y_t = T_t + S_t + R_t,$$

with T_t trend, S_t seasonal of known period s, R_t remainder.²

- Role: Robustly separates trend/seasonality/noise.
- Why: Compare RMS of R_t on raw vs. log series to choose additivity.

¹Box & Cox (1964).

²Cleveland et al. (1990).

3. Lomb-Scargle Periodogram

$$P(f) = \frac{1}{2\sigma^2} \left[\frac{\left[\sum (y_i - \bar{y}) \cos \omega (t_i - \tau) \right]^2}{\sum \cos^2 \omega (t_i - \tau)} + \frac{\left[\sum (y_i - \bar{y}) \sin \omega (t_i - \tau) \right]^2}{\sum \sin^2 \omega (t_i - \tau)} \right], \quad \omega = 2\pi f,$$

 τ chosen to decorrelate sine/cos terms.³

- Role: Finds periodicity in gapped data.
- Why: No strong peak set s = 1 (no season).

4. State-Space Kalman Filter in ARIMA/SARIMAX

State-Space Formulation

Any ARIMA/SARIMA can be written as

$$\begin{cases} \boldsymbol{x}_{t+1} = \mathbf{F} \, \boldsymbol{x}_t + \mathbf{G} \, \varepsilon_t, \\ y_t = \mathbf{H}^\top \boldsymbol{x}_t + d_t, \end{cases}$$

where x_t is a latent state vector, ε_t white noise.

Kalman Filter

A recursive algorithm that computes the optimal (minimum-variance) estimate \hat{x}_t of the unobserved state given data up to t, and updates its error covariance.⁴

- *Role*:
 - Interpolation: fills missing observations via the filter's prediction step.
 - Extrapolation: yields multi-step forecasts from the last state.
- Why: The statsmodels SARIMAX.fit() method uses Kalman filtering/smoothing under the hood to handle NaNs and to compute both in-sample state estimates and out-of-sample forecasts.

5. ARIMA / SARIMA Family

ARIMA(**p,d,q**)
$$\Phi(B)\nabla^d y_t = \Theta(B) \varepsilon_t$$
, $\Phi(B) = 1 - \sum_{i=1}^p \phi_i B^i$, $\Theta(B) = 1 + \sum_{i=1}^q \theta_i B^j$.

SARIMA(p,d,q)×(P,D,Q)_s Adds seasonal ∇_s^D and polynomials $\Phi_s(B^s)$, $\Theta_s(B^s)$.

- Role: Parametric serial dependence in mean.
- Why: Grid-search picks ARIMA(1,0,0) by AIC, confirming no seasonal block.

³Lomb (1976); Scargle (1982).

⁴Kalman (1960).

6. Akaike Information Criterion (AIC)

$$AIC = -2\ell_{\max} + 2k,$$

where $\ell_{\text{max}} = \text{maximized log-likelihood}$, $k = \text{parameters.}^5$

- Role: Penalises complexity vs. fit.
- Why: AIC88 in favor of ARIMA(1,0,0).

7. Ljung–Box Test

$$Q_{LB}(m) = n(n+2) \sum_{h=1}^{m} \frac{\hat{\rho}_h^2}{n-h}, \quad Q_{LB} \sim \chi_{m-k}^2.$$

- Role: Tests residual autocorrelation.
- Why: p1.0 residuals are white.

8. ARCH-LM Test

Regress ε_t^2 on its own q lags; $TR^2 \sim \chi_q^2.6$

- Role: Detects conditional heteroskedasticity.
- *Why*: p10 fit GARCH(1,1).

9. GARCH(1,1) Volatility Model

$$\begin{cases} \varepsilon_t = \sigma_t z_t, \ z_t \sim N(0, 1), \\ \sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2, \ \omega > 0, \ \alpha, \beta \ge 0, \ \alpha + \beta < 1. \end{cases}$$

- Role: Time-varying conditional variance.
- Why: Combine with ARIMA variance for density forecasts.

10. Bias-Correct Back-Transform

If $\log Y \sim N(\mu, \sigma^2)$, then $\mathbb{E}[Y] = \exp(\mu + \frac{1}{2}\sigma^2)$.

- Role: Removes downward bias from $\exp(\hat{\mu})$.
- Why: Unbiased level forecasts.

⁵Akaike (1974).

⁶Engle (1982).

11. Workflow Summary

- 1. Log transform (Box–Cox $\hat{\lambda} \approx 0$).
- 2. Detrend and confirm no season (s = 1).
- 3. Fit ARIMA(1,0,0) $\xrightarrow{\text{Kalman filter}}$ fill gaps.
- 4. Residuals pass Ljung–Box; ARCH–LM triggers GARCH(1,1).
- 5. Forecast mean μ_t & variance σ_t^2 ; back-transform.

References

- Akaike, H. (1974). A new look at the statistical model identification. *IEEE Trans. Autom. Control*, 19(6):716–723.
- Box, G. E. P. & Cox, D. R. (1964). An analysis of transformations. JRSS B, 26(2):211–252.
- Bollerslev, T. (1986). GARCH: Generalized autoregressive conditional heteroskedasticity. *J. Econometrics*, 31(3):307–327.
- Cleveland, R. B. et al. (1990). STL: Seasonal-trend decomposition using Loess. *J. Official Stat.*, 6(1):3–73.
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity. *Econometrica*, 50(4):987–1007.
- Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. *J. Basic Eng.*, 82(1):35–45.
- Lomb, N. R. (1976). Least-squares frequency analysis of unevenly spaced data. *Astrophys. Space Sci.*, 39:447–462.
- Ljung, G. M. & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2):297–303.
- Scargle, J. D. (1982). Studies in astronomical time series analysis. ApJ, 263:835–853.