

Session X - Galaxy

Miguel Juliá

<u>BU-ISCIII</u> <u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

04-15 Noviembre 2019, 2ª Edición Programa Formación Continua, ISCIII

Index

Galaxy:

- Computing in Biosciences
- Change of Paradigm
- What is Galaxy
- Workflows
- The porject
- Galaxy training

Computing in Biosciences

Web-based platforms (i.e. Galaxy) and remote HPC

Pros	Cons
No need to storage intermediate files	Your data is in someone else's computer No backups or data management schemes
No need to install software Partial control over installed software	No control over installed software, versions and future availability
Graphic interface	No control over hidden parameters
Analysis are partially reproducible	Quotas

Change of Paradigm I

1 sample

Research only: NGS was still a new thing, no applications 10 years ago

Reproducibility is not needed: Why would anyone reanalyse this?

Storage is not an issue: files of 1 sample fits everywhere in my HDD, maybe I will copy it in a CD-ROM

Computing is simple: no need to worry about resources or optimisation

multiple samples

Many applications: research, clinical, industrial, forensic, military, ...

Reproducibility, scalability, portability and standardisation are required

Storage is challenging: storage, indexation and backup required, privacy and legal standards

Computing requires optimisation and lots of resources

Change of Paradigm II

Nowadays scientific computing paradigm

Pros	Cons
Data remains private Backups and data management schemes	High storage space Dedicated file systems Databases to index files
Control over software installed versions, open source programs	Many versions of the same software coexists
All parameters are available for the command	You have to understand all software variations
Analysis are reproducible and public	You have to publish and document your work

What is Galaxy I

Data Intensive analysis for everyone

- Versatile and reproducible workflows
- Web platform
- Open source under Academic Free License
- Developed at Penn State, Johns Hopkins, OHSU and Cleveland Clinic with substantial outside contributions

What is Galaxy II

Accessibility

 Users without programming experience can easily upload/retrieve data, run complex tools and workflows, and visualize data

Reproducibility

 Galaxy captures information so that any user can understand and repeat a complete computational analysis

Transparency

- Users can share or publish their analyses (histories, workflows, visualizations)
- Pages: online Methods for your paper

What is Galaxy III

What is Galaxy IV

What is Galaxy V

What is Galaxy VI

>¤_BU-ISCIII

What is Galaxy VII

- Location of all analyses
 - collects all datasets produced by tools
 - collects all operations performed on the data
- For each dataset (the heart of Galaxy's reproducibility), the history tracks
 - name, format, size, creation time,
 datatype-specific metadata
 - tool id, version, inputs,
 parameters
 - standard output (stdout) and error (stderr)
 - state
 (waiting, running, success, failed)
 - hidden, deleted, purged

What is Galaxy VIII

Workflows I

- Bioinformatic analyses invariably involve shepherding files through a series of transformations, called a pipeline or a workflow.
- These transformations are done by executable command line software written for Unixcompatible operating systems.
- They need to be reproducible, easy to maintain, portable and scalable.

Workflows II

The Project

- Clinical data storage
- Hospitals
- Patient oriented research
- Training

Thanks for your attention!

And this is only the tip of the iceberg... Check this if you wanna know what's really going under the hood:

https://github.com/BU-ISCIII