

Model Development Phase Template

Date	3 July 2024	
Team ID	739698	
Project Title	Acoustic Fire Extinguishing Prediction	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code

```
[ ] def model_evaluation(classifier):
    cm = confusion_matrix(y_test, classifier.predict(x_test))
    counts = [value for value in cm.flatten()]
    labels = [f'{v1}' for v1 in counts]
    labels = np.asarray(labels).reshape(2,2)
    sns.heatmap(cm, annot = labels, cmap = 'Greens', fmt = '')
    y_pred = classifier.predict(x_test)
    yt_pred = classifier.predict(x_train)
    print('The Training Accuracy of the algorithm is', accuracy_score(y_train, yt_pred))
    print('The Testing Accuracy of the algorithm is', accuracy_score(y_test, y_pred))
    return [(accuracy_score(y_train * 100, yt_pred * 100) * 100), (accuracy_score(y_test * 100, y_pred * 100) * 100), precision_score(y_test, y_pred,average='macro')]
```



```
Training the model in multiple Algorithms (K Nearest Neighbors Model)

[ ] knn = KNeighborsClassifier() knn.fit(x_train,y_train)

* KNeighborsClassifier KNeighborsClassifier()
```

```
(SVM Model)

[ ] Svm = SVC()
    Svm.fit(x_train,y_train)

T SVC
    SVC()
```



```
(Logistic Regression)
      lr = LogisticRegression()
      lr.fit(x train, y train)
 ₹
       ▼ LogisticRegression
      LogisticRegression()
Decision Tree Model
    dt = DecisionTreeClassifier(max_depth= 11)
    dt.fit(x_train, y_train)
₹
            DecisionTreeClassifier
     DecisionTreeClassifier(max depth=11)
(Random Forest Model)
     rf = RandomForestClassifier(max_depth=11)
     rf.fit(x train, y train)
₹
             RandomForestClassifier
     RandomForestClassifier(max depth=11)
```



```
(Gradient Boosting Model)

[ ] gb = GradientBoostingClassifier()
    gb.fit(x_train,y_train)

→ GradientBoostingClassifier
    GradientBoostingClassifier()
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
KNN	(K Nearest Heighbors Model) ■ ken_r - model_evaluation(ken) = the Treating Accuracy of the algorithm is 0.086231223868553 The Treating Accuracy of the algorithm is 0.0107477767331614	94&91	-
SVM	(SVM Model) Svm r = model_evaluation(Svm) The Training accuracy of the algorithm is 0.800010140071073 the Testing accuracy of the algorithm is 0.8000101400102209	88&89	-
Naïve bayes	(Mainive Boyes) ■ gpt_r - model_evaluation(gpb) = The Training Accuracy of the algorithm is 0.008270063880332 The Testing Accuracy of the algorithm is 0.008270063800332	86&87	-
Logistic regression	(Logistic regression) It r - model contamt ion(tr) The Trainfor Accuracy of the algorithm is 0.87523550007766 the testing Accuracy of the algorithm is 0.87703502068071	87&87	-
Decision Tree	(Decision Tree Model) ② dt_r - model_evaluation(st) ③ the training According of the algorithm is a successorationed. The testing According of the algorithm is a successorationed.	98&94	-
Random Forest Model	Random Forest Model ↑ rf_x - model_evaluation(rf) ☐ the training Accuracy of the algorithm is 0.080078641393224 The Testing Accuracy of the algorithm is 0.080078641393227	98&95	-
Gradient boosting model	Oradient Bootling Model Ø gb, r = model, evaluation(gb) The Training According of the algorithm is 0.0532216070427578 The Training According of the algorithm is 0.0872468118086019	95&94	-