universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 6 - The stochastic integral as a martingale

Exercise 1 (4 points).

Let $Y_1, Y_2, ...$ be a sequence of i.i.d random variables with $\mathbf{P}(Y_1 = 1) = \mathbf{P}(Y_1 = -1) + \frac{1}{2}$, and let $X_0 = 0$ and for all $n \in \mathbb{N}$,

$$X_n = \begin{cases} Y_1 & \text{if } X_{n-1} = 0\\ X_{n-1} + Y_n & \text{otherwise,} \end{cases}$$

which means $\mathcal{X} = (X_n)_{n \in \mathbb{N}}$ behave like a random walk as long as it does not hit 0, and always jump as Y_1 just after hitting 0. We also define $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$.

- (a) Show that $(X_n)_{n\in\mathbb{N}_0}$ is an $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ adapted process with $\mathbf{E}[X_{n+1}|X_n]=X_n$ for all $n\in\mathbb{N}_0$.
- (b) Show that $(X_n)_{n\in\mathbb{N}_0}$ is not an $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ martingale.
- (c) Find a Doob decomposition for $(X_n)_{n\in\mathbb{N}_0}$.

Exercise 2 (2+2 points).

- (a) For some $N \in \mathbb{N}$, let $(X_n)_{n=0,1,2,\dots}$ be the Markov chain with transition matrix $p_{xy} = \binom{N}{y} (\frac{x}{N})^y (1 \frac{x}{N})^{N-y}$, i.e. given $X_n = x$, it is $X_{n+1} \sim B(N, x/N)$.
 - (i) Show that \mathcal{X} is a bounded martingale.
 - (ii) Compute the quadratic variation of \mathcal{X} .
- (b) Let $(X_n)_{n=0,1,2,...}$ be the Markov chain with transition matrix $p_{xy} = e^{-x} \frac{x^y}{y!}$, starting in $X_0 \in \mathbb{N}_0$, i.e. given $X_n = x$, it is $X_{n+1} \sim \operatorname{Poi}(x)$.
 - (i) Show that \mathcal{X} is a critical branching process and determine its offspring distribution.
 - (ii) Show that \mathcal{X} is a martingale and compute its quadratic variation.

Exercise 3 (4 points).

Let $(X_i)_{i=1,2,...}$ be i.i.d. random variables with

$$\mathbf{P}(X_1 = -1) = \mathbf{P}(X_1 = 1) = \frac{1}{2}$$
 and $S_n := \sum_{i=1}^n X_i$.

Thus $S = (S_n)_{n \geq 0}$ is a martingale. Furthermore, let $F = (F_n)_{n \geq 0}$ be its filtration, $T := \inf\{i \geq 1 \mid X_i = 1\}$ and the process $\mathcal{H} = (H_i)_{i \geq 0}$ be given by

$$H_1 := 1, \qquad H_n := 2 \cdot H_{n-1} \mathbb{1}_{\{X_{n-1} = -1\}}.$$

Show that \mathcal{H} is previsible and calculate $\mathbf{E}[\mathcal{H} \cdot \mathcal{S})_n$ and $\mathbf{E}[(\mathcal{H} \cdot \mathcal{S})_T]$.

Exercise 4 (2+2=4 Points).

Let $\mathcal{Y} = (Y_t)_{t \in I}$ be a stochastic process. A stopped stochastic process is given by $\mathcal{Y}^T := (Y_{T \wedge t})_{t \in I}$, where T is an I-valued random variable. Suppose that $\mathcal{X} = (X_n)_{n \geq 0}$ is a martingale with respect to the filtration $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$, T an \mathcal{F} -stopping time, \mathcal{X}^T the process stopped at T and $\mathcal{H} = (H_n)_{n \geq 0}$ is previsible. Show that

- (a) $(\mathcal{H} \cdot (\mathcal{X}^T))_n = ((\mathcal{H} \cdot \mathcal{X})_n^T \text{ and }$
- (b) $\langle \mathcal{X}^T \rangle_n = \langle \mathcal{X} \rangle_n^T$.