Laborator 1: Introducere in SageMath

Calcule in SageMath

Operatii algebrice de baza

```
"cele patru operatii" a+b, a-b, a*b, a/b

ridicarea la putere a^b sau a**b

radical sqrt(a)

radical de ordin n a^(1/n)
```

In notebook, se pot introduce comenzi in linia de comanda, rezultatul obtinandu-se apasand butonul Run sau folosind combinatia de taste Shift+Enter

Combinatia de taste Alt+Enter executa comanda si insereaza o noua linie de comanda.

De asemenea, functia *numerical_approx* returneaza valoarea aproximativa a unei expresii numerice

```
In [6]: numerical_approx(15/6)
Out[6]: 2.5000000000000
In [7]: numerical_approx(44/13, digits=60)
```

Alte operatii cu numere intregi

Out[7]: 3.38461538461538461538461538461538461538461538461538461538462

catul impartirii	a // b
restul impartirii	a % b
catul si restul	divmod(a,b)
n!	factorial(n)
coeficient binomial	binomial(n,k)

Functii matematice uzuale

parte intreaga	floor(a)
modulul	abs(a)
exponentiala si logaritmul	exp, log
Logaritm in baza a	log(x, a)
Functii trigonometrice	sin, cos, tan
Functii trigonometrice inverse	arcsin, arccos, arctan
Functii hiperbolice	sinh, cosh, tanh
Functii hiperbolic inverse	arcsinh, arccosh, arctanh
Partea intreaga, etc	floor, ceil, trunc, round
Radical de ordin 2 si n	sqrt, nth_root

Variabile

Variabilele trebuie declarate explicit inainte de a fi utilizate. (SR este abrevierea de la Symbolic Ring):

```
In [8]: x = SR.var('x')
          p1=(x+1)^2
          p1
Out[8]: (x + 1)^2
          Pentru a dezvolta expresia se foloseste comanda variable.expand()
 In [9]: p1.expand()
Out[9]: x^2 + 2*x + 1
In [10]: p2=x^2 + 2*x + 1
          p2
Out[10]: x^2 + 2*x + 1
          Pentru a descompune in factori o expresie data se foloseste comanda variabila.factor()
In [11]: p2.factor()
Out[11]: (x + 1)^2
In [12]: p3=x^2-5*x+6
          p3.factor()
Out[12]: (x - 2)*(x - 3)
          Comanda vaiabila.subs() se foloseste pentru a calcula valoarea unei expresii pentru o anumita
          valoare a parametrilor sai.
In [13]: p1.subs(x=-1)
Out[13]: 0
In [14]: p3.subs(x=2)
Out[14]: 0
In [15]: p3.subs(x=-3)
Out[15]: 30
```

Comanda var('x') se poate folosi in locul comenzii x = SR.var('x')

```
In [16]: x=var('x')
p=(2*x-1)^3
p.expand()

Out[16]: 8*x^3 - 12*x^2 + 6*x - 1

In [17]: x,y=var('x,y')
p=(2*x+y)^2
p.expand()

Out[17]: 4*x^2 + 4*x*y + y^2

In [18]: p.subs(x=1,y=1)

Out[18]: 9
```

Ecuatii si sisteme de ecuatii algebrice

O ecuatie se defineste folosind semnul "==", ex. f(x)==g(x).

Cele mai folosite comenzi pentru rezolvarea ecuatiilor sunt:

```
Solutie simbolica solve

Radacini (cu ordin de multiplicitate) roots

Solutie numerica find_root
```

```
In [19]: x=var('x')
eq1=x^2+x+1==0
solve(eq1,x)
```

```
Out[19]: [x == -1/2*I*sqrt(3) - 1/2, x == 1/2*I*sqrt(3) - 1/2]
```

Nu toate ecuatiile pot fi rezolvate cu ajutorul softului SageMath, in exemplul urmator SageMath nu returneaza nicio solutie.

```
In [20]: eq2=exp(-x)==x solve(eq2,x)
```

```
Out[20]: [x == e^{-(-x)}]
```

Pentru a determina o solutie numerica se foloseste *find_root(equation,a,b)*, comanda ce va determina solutia in intervalul *[a,b]*

```
In [21]: find_root(eq2,0,2)
```

Out[21]: 0.5671432904098384

Comanda solve poate fi folosita si pentru sisteme de ecuatii, acestea putand fi definite in Sage folosind []

```
[eq1,eq2,...,eqn].
```

```
In [22]: x,y=var('x,y')
syst=[x+2*y==1,x-y==3]
solve(syst,x,y)

Out[22]: [[x == (7/3), y == (-2/3)]]
```

Limite

Pentru a calcula o limita se va folosi comanda limit

```
In [23]: n,x=var('n,x')
In [24]: limit(1/n,n=infinity)
Out[24]: 0
In [25]: limit(sin(x)/x,x=0)
Out[25]: 1
In [26]: limit(1/x, x=0)
Out[26]: Infinity
```

Ultimul rezultat se refera la faptul ca una dintre limite, la stanga sau la dreapta, este infinita. Pentru a calcula limita la stanga (minus) sau la dreapta (plus) se poate folosi optiunea *dir*.

```
In [27]: limit(1/x, x=0,dir='minus')
Out[27]: -Infinity
In [28]: limit(1/x, x=0,dir='plus')
Out[28]: +Infinity
```

Functii folositoare la analiza:

Derivarea functiilor

```
In [29]: f(x)=exp(x^2)+3
In [30]: diff(f(x),x,2)
Out[30]: 4*x^2*e^(x^2) + 2*e^(x^2)
In [31]: diff(f(x),x,3)
Out[31]: 8*x^3*e^(x^2) + 12*x*e^(x^2)
```

Integrarea functiilor

Sage nu poate calcula intotdeauna valoarea integralei definite

```
In [36]: integrate(sin(sqrt(1 - x^3)), x, 0,1)
Out[36]: integrate(sin(sqrt(-x^3 + 1)), x, 0, 1)
```

Pentru a determina valoarea numerica a unei intergrale definite pe un interval se foloseste functia *integral_numerical*, care returneaza o pereche, in care prima valoare este valoarea aproximativa integralei, iar a doua pereche este eroarea estimarii.

```
In [37]: integral_numerical(sin(sqrt(1 - x^3)), 0, 1)
Out[37]: (0.7315380084233594, 3.953379981670976e-07)
```

Grafice 2D

Reprezentarea grafica a functiilor

Pentru a reprezenta grafic functia f(x) pe intervalul [a,b], se foloseste comanda plot(f(x), a, b) sau sintaxa alternativa plot(f(x), x, a, b).

```
In [38]: f(x)=\sin(x)/x
          plot(f(x),-1,1)
Out[38]:
                                                1.00
                                                0.98
                                                0.96
                                                0.94
                                                0.92
                                                0.90
                                                0.88
                                                0.86
                                                0.84 -
            -1.0
                                                                        0.5
                                -0.5
                                                    0.0
                                                                                            1.0
```

Comanda plot are mai multe optiuni. Cele mai importante sunt:

```
plot_points (default value 200): numarul minim de puncte calculate;
```

xmin and xmax: capetele intervalului de reprezentare a functiei;
color: culoarea graficului, sau tripletul RGB corespunzator culorii, sau
numele culorii cum ar fi 'blue', sau codul HTML al culorii cum ar fi
'#aaff0b';
detect_poles (default value False): determina punctele de discontinuitate;
alpha: transparenta culorii liniei;
thickness: grosimea liniei;
linestyle: stilul graficului utilizat cum ar fi grafic prin linie punctata
':', grafic prin linii intrerupte '-.', sau grafic prin linie continua
(valoarea implicita) '-'.

Se pot reprezenta grafic mai multe functii in aceeasi fereastra, specificand lista functiilor [f1(x), f2(x),...,fn(x)] si lista corespunzatoare a culorilor $[color_1', color_2', color_n']$:

In [39]: plot([sin(x),f(x)],0,4*pi,color=['red','blue'])

Out[39]:

Daca lista de functii este mare, se poate folosi comanda *for* pentru a genera respectiva lista prin indexarea elementelor listei. De exemplu, pentru functia $f_n(x) = \frac{x}{(1+x^2)^n}$ daca dorim sa reprezentam grafic a functiile $f_1(x), ..., f_{10}(x)$ vom construi prima data lista indexand functiile dupa n si apoi vom reprezenta garficele folosind comanda *plot*:

```
In [40]: x,n=var('x,n')
         f(x,n)=x/(1+x^2)^n
In [41]: f_list=[f(x,n) for n in [1..10]]
          f_list
Out[41]: [x/(x^2 + 1),
          x/(x^2 + 1)^2,
           x/(x^2 + 1)^3,
          x/(x^2 + 1)^4,
           x/(x^2 + 1)^5,
           x/(x^2 + 1)^6,
           x/(x^2 + 1)^7,
           x/(x^2 + 1)^8,
          x/(x^2 + 1)^9,
          x/(x^2 + 1)^10
In [42]: plot(f_list,-3,3)
Out[42]:
                                             0.4
                                             0.2
                       -2
                                                             1
                                                                         2
                                            -0.4
```

In cazul in care exista puncte de discontinuitate se poate folosi optiunea *detect_poles=True* si putem alege intervalul de marginire a functiei, precizind *ymin* si *ymax* (intervalul pe axa 0y)

In [43]: plot(tan(x), -2*pi,2*pi,detect_poles=True,ymin=-5,ymax=5)

Out[43]:

Curbe in forma parametrica

Daca o curba in forma parametrica este data de

$$\begin{cases} x(t) &= f(t) \\ y(t) &= g(t) \end{cases}, \ t \in [a, b]$$

se va folosi comanda parametric_plot((f(t), g(t)), (t, a, b)).

De exemplu, in cazul semicercului definit de

$$\begin{cases} x(t) &= \cos(t) \\ y(t) &= \sin(t) \end{cases}, \ t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

avem:

```
In [44]: t=var('t')
x(t)=cos(t)
y(t)=sin(t)
parametric_plot((x(t), y(t)), (t, -pi/2, pi/2))

Out[44]:

1.0

-0.5

-1.0
```

Pentru a reprezenta in acelasi sistem de coordonate mai multe curbe date in forma parametrica, vom atribui fiecarui grafic o variabila si le vom combina folosing comanda plus (+), iar pentru afisare comanda *show*.

In [45]: g1=parametric_plot((x(t), y(t)), (t, -pi/2, 3*pi/2),color='red')
g2=parametric_plot((2*x(t), y(t)), (t, 0, 2*pi),color='blue')
show(g1+g2)

Când lista de curbe date prin ecuatii parametrice este mare, putem folosi comanda *for* pentru a genera lista de curbe si prin adunare le combinam in acelasi grafic, de exemplu, sa reprezentam familia cercurilor centrate in origine (0,0) si de raza r

$$\begin{cases} x(t) &= r \cdot \cos(t) \\ y(t) &= r \cdot \sin(t) \end{cases}, t \in [0, 2\pi]$$

pentru r = 0.1, 0.2, ..., 1

```
In [46]: g=parametric_plot((1/10*cos(t),1/10*sin(t)),(t,0,2*pi))
for k in [2..10]:
    g1=parametric_plot((k/10*cos(t),k/10*sin(t)),(t,0,2*pi))
    g=g+g1
show(g)
```



```
implicit\_plot(f(x, y), (x, a, b), (y, c, d))
```

```
In [47]:
           x,y=var('x,y')
           f(x,y)=x^2+y^2
            implicit_plot(f(x,y)==1,(x,-1,1),(y,-1,1))
Out[47]:
               1.0
               0.5
               0.0
              -0.5
           g1=implicit_plot(f(x,y)==1,(x,-1,1),(y,-1,1))
In [48]:
           g2=implicit_plot(f(x,y)==4,(x,-2,2),(y,-2,2))
g3=implicit_plot(f(x,y)==9,(x,-3,3),(y,-3,3))
            show(g1+g2+g3)
               3
               2
               1
               0
              ^{-1}
              -2
 In [ ]:
```

In []:	:	