# Contents

| 1. Basic notions in quantum information theory             | . 2 |
|------------------------------------------------------------|-----|
| 1.1. Qubits and basic operations                           | . 2 |
| 1.2. Postulates of quantum mechanics (Heisenberg picture)  | . 4 |
| 1.3. Postulates of quantum mechanics (Schrodinger picture) | . 5 |
| 1.4. States, entanglement and measurements                 | . 5 |
| 2. Quantum channels and open systems                       | . 7 |
| 2.1. Quantum channels                                      | . 7 |
| 2.2. Examples of quantum channels                          | 11  |
| 2.3. Properties of channels                                | 12  |
| 2.4. Description of open quantum many-body systems         | 14  |
| 2.5. Separability criteria                                 | 14  |

# 1. Basic notions in quantum information theory

The field is motivated by the fact that we want to control quantum systems.

- 1. Can we construct and manipulate quantum systems?
- 2. If so, which are the scientific and technological applications?

Entanglement frontier: highly complex quantum systems, which are more complex and richer than classical systems. However, quantum systems have *decoherence*, which classical systems don't. "Quantum advantage" gives speed up over classical systems.

Quantum vs classical information theory:

- True randomness.
- Uncertainty.
- Entanglement.

Note we always work with finite-dimensional Hilbert spaces, so take  $\mathbb{H} = \mathbb{C}^N$ .

# 1.1. Qubits and basic operations

**Notation 1.1** Vectors are denoted by  $|\psi\rangle \in \mathbb{C}^n$ , dual vectors by  $\langle \psi | \in (\mathbb{C}^n)^*$ , and inner products by  $\langle \psi | \phi \rangle \in \mathbb{C}$ .  $|\psi\rangle\langle\psi| : \mathbb{C}^n \to \mathbb{C}^n$  are rank-one projectors.

**Definition 1.2** Another important basis of  $\mathbb{C}^2$  is  $\{|+\rangle, |-\rangle\}$ , where  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$  and  $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ .

**Definition 1.3** For an operator  $T: \mathbb{H} \to \mathbb{H}$ , the **operator norm** of T is

$$||T|| = ||T||_{\mathbb{H} \to \mathbb{H}} := \sup_{x \in H} \frac{||T(x)||_{\mathbb{H}}}{||x||_{\mathbb{H}}}$$

**Notation 1.4** Let  $B(\mathbb{H})$  denote the space of bounded linear operators, i.e. T such that  $||T|| < \infty$ .

**Notation 1.5** Denote the dual of the operator T by  $T^*$ , i.e. the operator that satisfies  $\langle y|T(x)\rangle = \langle T^*(y)|x\rangle$  for all  $x,y\in\mathbb{H}$ .

**Definition 1.6** A quantum measurement is a collection of measurement operators  $\{M_n\}_n \subseteq B(\mathbb{H})$  which satisfies  $\sum_n M_n^* M_n = \mathbb{I}$ , the identity operator.

Given  $|\phi\rangle$ , the probability that  $|n\rangle$  occurs after this operation is  $p(n) = \langle \phi | M_n^* M_n | \phi \rangle$ . After performing this operation, the state of the system is  $\frac{1}{\sqrt{p(n)}} M_n | \phi \rangle$ . This is the **Born rule**.

**Example 1.7** A measurement in the computational basis is  $M_0 = |0\rangle\langle 0|$ ,  $M_1 = |1\rangle\langle 1|$ . Note  $M_0$  and  $M_1$  are self-adjoint. Let  $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$ . Then  $p(i) = \langle \phi|M_i|\phi\rangle = |\alpha_i|^2$ . The state after measurement is  $\frac{\alpha_i}{|\alpha_i|}|i\rangle$ , which is equivalent to  $|i\rangle$ .

Note that  $|\psi\rangle$  and  $e^{i\theta}|\psi\rangle$  are operationally identical: the phase does not affect the measurement probabilities.

**Definition 1.8** A quantum measurement  $\{M_n\}_n \subseteq B(\mathbb{H})$  is **projective measurement** if the  $M_n$  are orthogonal projections (i.e. they are self-adjoint (Hermitian) and  $M_n M_m = \delta_{nm} M_n$ ).

**Definition 1.9** An **observable** is a Hermitian operator, which we can express as its spectral decomposition

$$M = \sum_{n} \lambda_n M_n,$$

where  $\{M_n\}_n$  is a projective measurement. The possible outcomes of the measurement correspond to its eigenvalues  $\lambda_n$  of the observable. Note that the expected value of the measurement is

$$\sum_n \lambda_n p(n) = \sum_n \lambda_n \langle \phi \, | \, M_n \, | \, \phi \rangle = \langle \phi \, | \, M \, | \, \phi \rangle.$$

**Definition 1.10**  $T: \mathbb{H} \to \mathbb{H}$  is **positive (semi-definite)** (written  $T \ge 0$ ) if  $\langle \psi | T | \psi \rangle \ge 0$  for all  $|\psi\rangle \in H$ .

**Definition 1.11** A POVM (positive operator valued measurement) is a collection  $\{E_n\}_n$  where each  $E_n = M_n^* M_n$  for a general measurement  $\{M_n\}_n$  (i.e. each  $E_n$  is positive and Hermitian, and  $\sum_n E_n = \mathbb{I}$ ).

Note that the probability of obtaining outcome m on  $|\psi\rangle$  is  $p(m) = \langle \psi | E_m | \psi \rangle$ . We use POVMs when we care only about the probabilities of the different measurement outcomes, and not the post-measurement states.

Conversely, given a POVM  $\{E_n\}_n$ , we can define a general measurement  $\{\sqrt{E_n}\}_n$ .

**Remark 1.12** Any transformation on a normalised quantum state must map it to a normalised quantum state, and so the operation must be unitary.

**Definition 1.13** The Pauli matrice are

$$\begin{split} \sigma_0 &= \mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \\ \sigma_Y &= Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \end{split}$$

The Pauli matrices are unitaries, and we can think of them as quantum logical gates.

**Definition 1.14** The trace of  $T: \mathbb{H} \to \mathbb{H}$  is

$$\operatorname{tr} T = \operatorname{tr} M = \sum_{i} M_{ii} \in \mathbb{C},$$

where M is a matrix representation of T in any basis (this is well-defined since the trace is cyclic and linear).

**Proposition 1.15** For any state  $|\phi\rangle$  and any operator A,

$$\operatorname{tr}(A|\phi\rangle\langle\phi|) = \langle\phi|A|\phi\rangle.$$

Proof (Hints). Straightforward.

*Proof.*  $\operatorname{tr}(A|\phi\rangle\langle\phi|) = \sum_{i} \langle i|A|\phi\rangle\langle\phi|i\rangle$  for an orthonormal basis  $\{|i\rangle\}$ . Any basis where  $|\phi\rangle = |j\rangle$  for some j instantly yields the result. Alternatively, we have

$$\operatorname{tr}(A|\phi\rangle\langle\phi|) = \sum_i \langle i \, | \, A \, | \, \phi \, \rangle \langle \, \phi \, | \, i \, \rangle = \sum_i \langle \, \phi \, | \, i \, \rangle \langle i \, | \, A \, | \, \phi \, \rangle = \langle \, \phi \, | \, I \, | \, A \, | \, \phi \, \rangle = \langle \, \phi \, | \, A \, | \, \phi \, \rangle.$$

Suppose we don't fully know the state of the system, but know that it is  $|\phi_i\rangle$  with probability  $p_i$ . We want to be able to consider the  $\sum_i p_i |\phi_i\rangle$  as a state, but this isn't normalised (except when some  $p_i = 1$ ). To solve this issue, we assume each  $|\phi_i\rangle$  to the rank-one projector  $|\phi_i\rangle\langle\phi_i|$ , and we describe the unknown state by  $\rho = \sum_i p_i |\phi_i\rangle\langle\phi_i|$ . This gives rise to the following definition:

**Definition 1.16** A density matrix/operator is a linear operator  $\rho \in B(\mathbb{H})$  which is:

- Hermitian,
- Positive semi-definite, and
- Satisfies tr  $\rho = 1$ .

# 1.2. Postulates of quantum mechanics (Heisenberg picture)

**Postulate 1.17** Given an isolated physical system, there exists a complex (separable) Hilbert space  $\mathbb{H}$  associated with it, called **state space**. The physical system is described by a **state vector**, which is a normalised vector in  $\mathbb{H}$ .

**Postulate 1.18** Given an isolated physical system, its evolution is described by a unitary. If the state of the system at time  $t_1$  is  $|\phi_1\rangle$  and at time  $t_2$  is  $|\phi_2\rangle$ , then there exists a unitary  $U_{t_1,t_2}$  such that  $|\phi_2\rangle = U_{t_1,t_2}|\phi_1\rangle$ .

This can be generalised with the Schrodinger equation: the time evolution of a closed quantum system is given by  $i\hbar \frac{d}{dt}|\phi(t)\rangle = H|\phi(t)\rangle$ . The Hermitian operator H is called the **Hamiltonian** and is generally time-dependent.

**Definition 1.19** Let the spectral decomposition of H be

$$H = \sum_i E_i |E_i\rangle\langle E_i|,$$

where the  $E_i$  are the energy eigenvalues and the  $|E_i\rangle$  are the energy eigenstates (or stationary states).

The minimum energy is called the **ground state energy** and its associated eigenstate is called the **ground state**. The (spectral) gap of H is the (absolute) difference between the ground state energy and the next largest energy eigenvalue. When the gap is strictly positive, we say the system is **gapped**. The states  $|E_i\rangle$  are called **stationary**, since they evolve as  $|E_i\rangle \to \exp(-iE_it/\hbar)|E_i\rangle$ .

We have  $|\phi(t_2)\rangle = U(t_1, t_2)|\phi(t_1)\rangle$  where  $U(t_1, t_2) = \exp(-iH(t_2 - t_1)/\hbar)$  which is a unitary. In fact, any unitary U can be written in the form  $U = \exp(iK)$  for some Hermitian K.

**Postulate 1.20** Given a physical system with associated Hilbert space  $\mathbb{H}$ , quantum measurements in the system are described by a collection of measurements  $\{M_n\}_n \subseteq B(\mathbb{H})$  such that  $\sum_n M_n^* M_n = \mathbb{I}$ , as in Definition 1.6. The index n refers to the measurement outcomes that may occur in the experiment, and given a state  $|\phi\rangle$  before measurement, the probability that n occurs is

$$p(n) = \langle \phi | M_n^* M_n | \phi \rangle.$$

The state of the system after measurement is  $\frac{1}{\sqrt{p(n)}}M_n|\phi\rangle$ 

**Postulate 1.21** Given a composite physical system, its state space  $\mathbb{H}$  is also composite and corresponds to the tensor product of the individual state spaces  $\mathbb{H}_i$  of each component:  $\mathbb{H} = \mathbb{H}_1 \otimes \cdots \otimes \mathbb{H}_N$ . If the state in each system i is  $|\phi_i\rangle$ , then the state in the composite system is  $|\phi_1\rangle \otimes \cdots \otimes |\phi_N\rangle$ .

**Definition 1.22** Given  $|\phi\rangle \in H_1 \otimes \cdots \otimes H_N$ ,  $|\phi\rangle$  is **entangled** if it cannot be written as a tensor product of the form  $|\phi_1\rangle \otimes \cdots \otimes |\phi_n\rangle$ . Otherwise, it is **separable** or a **product state**.

**Example 1.23** The **EPR pair** (Bell state)  $|\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$  is entangled.

# 1.3. Postulates of quantum mechanics (Schrodinger picture)

**Postulate 1.24** Given an isolated physical system, the state of the system is completely described by its density operator, which is Hermitian, positive semi-definite and has trace one.

If we know the system is in state  $\rho_i$  with probability  $p_i$ , then the state of the system is  $\sum_i p_i \rho_i$ .

**Pure states** are of the form  $\rho = |\phi\rangle\langle\phi|$ , **mixed states** are of the form  $\rho = \sum_i p_i |\phi_i\rangle\langle\phi_i|$ .

**Postulate 1.25** Given an isolated physical system, its evolution is described by a unitary. If the state of the system is  $\rho_1$  at time  $t_1$  and is  $\rho_2$  at time  $t_2$ , then there is a unitary U depending only on  $t_1, t_2$  such that  $\rho_2 = U \rho_1 U^*$ .

**Postulate 1.26** The same as Postulate 1.20, except we specify that after measurement  $\{M_n\}_n$ , the probability of observing n is  $p(n) = \operatorname{tr}(M_n^* M_n \rho)$  and the state after measurement is  $\frac{1}{p(n)} M_n \rho M_n^*$ .

**Postulate 1.27** The same as Postulate 1.21, except that the state of the composite system is  $\rho = \rho_1 \otimes \cdots \otimes \rho_n$ , where  $\rho_i$  is the state of *i*th individual system.

**Remark 1.28** The Heisenberg and Schrodinger postulates are mathematically equivalent.

# 1.4. States, entanglement and measurements

**Theorem 1.29** (Schmidt Decomposition) Let  $|\psi\rangle$  be a pure state in a bipartite system  $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$ , where  $\mathbb{H}_A$  has dimension  $N_A$  and  $\mathbb{H}_B$  has dimension  $N_B \geq N_A$ . Then

there exist orthonormal states  $\{|e_i\rangle:i\in[N_A]\}\subseteq\mathbb{H}_A$  and  $\{|f_i\rangle:i\in[N_A]\}\subseteq\mathbb{H}_B$  such that

$$|\psi\rangle = \sum_{i=1}^{N_A} \lambda_i |e_i\rangle \otimes |f_i\rangle,$$

where  $\lambda_i \geq 0$  and  $\sum_i \lambda_i^2 = 1$ .

The  $\lambda_i$  are unique up to re-ordering. The  $\lambda_i$  are called the **Schmidt coefficients** and the number of  $\lambda_i > 0$  is the **Schmidt rank** of the state.

*Proof.* Let  $|\psi\rangle = \sum_{k=1}^{N_A} \sum_{\ell=1}^{N_B} \beta_{k\ell} |\phi_k\rangle \otimes |\phi_\ell\rangle$  for orthonormal bases  $\{|\phi_k\rangle : k \in [N_A]\} \subseteq \mathbb{H}_A$ ,  $\{|\chi_\ell\rangle : \ell \in [N_B]\} \subseteq \mathbb{H}_B$ . Let  $(\beta_{k\ell})$  have singular value decomposition

$$U[\Sigma \ 0]V$$
,

where U is an  $N_B \times N_B$  unitary,  $\Sigma$  is an  $N_A \times N_A$  diagonal matrix with non-negative entries, and V is an  $N_A \times N_A$  unitary. So

$$eta_{k\ell} = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} U_{ki} \Sigma_{ij} V_{j\ell} = \sum_{i=1}^{N_A} \Sigma_{ii} U_{ki} V_{i\ell}.$$

Hence,

$$|\psi\rangle = \sum_{k,\ell} \sum_{i} \Sigma_{ii} U_{ki} |\phi_k\rangle \otimes V_{i\ell} |\chi_\ell\rangle = \sum_{i} \Sigma_{ii} \underbrace{\left(\sum_{k} U_{ki} |\phi_k\rangle\right)}_{|e_i\rangle} \otimes \underbrace{\left(\sum_{\ell} V_{j\ell} |\chi_\ell\rangle\right)}_{|j_B\rangle}.$$

**Proposition 1.30**  $|\psi\rangle$  is entangled iff its Schmidt rank is > 1. Otherwise, it is separable (i.e. a product state).

**Definition 1.31** Let  $|\psi\rangle$  be a pure state in a bipartite system  $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$ , where  $\mathbb{H}_A$  has dimension  $N_A$  and  $\mathbb{H}_B$  has dimension  $N_B \geq N_A$ .  $|\psi\rangle$  is **maximally entangled** if all its Schmidt coefficients are equal (to  $1/\sqrt{N_A}$ ).

**Notation 1.32** Write  $S(\mathbb{H}) = \{ \rho \in B(\mathbb{H}) : \rho = \rho^{\dagger}, \rho \geq 0, \text{tr } p = 1 \}$  for the set of density matrices on  $\mathbb{H}$ .

**Definition 1.33** The **partial trace** over B,  $\operatorname{tr}_B$ , on the bipartite system  $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$  is the operator defined linearly by

$$\begin{split} \operatorname{tr}_B: S(\mathbb{H}_{AB}) &\to S(\mathbb{H}_A), \\ |a_1\rangle\langle a_2| \otimes |b_1\rangle\langle b_2| &\mapsto \operatorname{tr}(|b_1\rangle\langle b_2|) \cdot |a_1\rangle\langle a_2|. \end{split}$$

Note that if  $\rho_{AB} = \rho_A \otimes \rho_B$ , then  $\operatorname{tr}_B \rho_{AB} = \operatorname{tr}(\rho_B) \cdot \rho_A = \rho_A$ .

**Definition 1.34** Let  $\rho_{AB}$  be a density matrix in  $S(\mathbb{H}_{AB})$ .  $\rho_A = \operatorname{tr}_B(\rho_{AB})$  is called the reduced density matrix or marginal of  $\rho_{AB}$  in A

**Proposition 1.35** Let  $M_A \in B(\mathbb{H}_A)$ . We have

$$\operatorname{tr}(M_A \rho_A) = \operatorname{tr}((M_A \otimes \mathbb{I}_B) \rho_{AB}).$$

for all  $\rho_{AB} \in S(\mathbb{H}_{AB})$ ,  $\rho_A = \operatorname{tr}_B(\rho_{AB})$ . In fact, this can be taken to be an equivalent definition of partial trace.

**Remark 1.36** Let  $\rho_{AB} = |\psi\rangle\langle\psi| \in S(\mathbb{H}_{AB})$  be a pure state and let  $r_{\psi}$  be its Schmidt rank. Then

$$\rho_A = \operatorname{tr}_B(|\psi\rangle\langle\psi|) = \sum_{k=1}^{r_\psi} p_k |u_k\rangle\langle u_k|.$$

So  $\rho_A$  is pure iff  $r_{\psi}=1$ , i.e. iff  $|\psi\rangle$  is separable.

**Proposition 1.37** Let  $\rho_{AB} \in B(\mathbb{H}_{AB})$  and  $\rho_A = \operatorname{tr}_B(\rho_{AB})$ . Then:

- 1.  $\operatorname{tr} \rho_A = \operatorname{tr} \rho_{AB}$ .
- 2. If  $\rho_{AB} \geq 0$ , then  $\rho_A \geq 0$ .
- 3. If  $\rho_{AB}$  is a density matrix then  $\rho_A$  is a density matrix.
- 4. We have

$$\langle \phi_i | \rho_A | \phi_i \rangle = \sum_k \langle \phi_i \otimes \psi_k | \rho_{AB} | \phi_i \otimes \psi_k \rangle,$$

for an orthonormal bases  $\{|\phi_i\rangle\}$  and  $\{|\psi_k\rangle\}$ .

5. If  $\rho_{AB} = \sigma_A \otimes \sigma_B$  and  $\operatorname{tr}(\sigma_B) = 1$ , then  $\sigma_A = \rho_A$ .

Proof.

- 1. This follows from linearity of trace and the fact that  $tr(\rho \otimes \sigma) = tr(\rho) \cdot tr(\sigma)$ .
- 2. By 1,  $\langle \psi | \rho_A | \psi \rangle = \operatorname{tr}(\rho_A | \psi \rangle \langle \psi |) = \operatorname{tr}(\rho_{AB}(|\psi \rangle \langle \psi | \otimes \mathbb{I})) \geq 0$ .
- 3. From 1 and 2, by definition.

**Definition 1.38** Let  $\rho_A \in \mathbb{S}(H_A)$  be a (pure or mixed) state. We may introduce an auxiliary space  $\mathbb{H}_R$  of dimension  $\operatorname{rank}(\rho_A)$  and construct a pure state  $|\psi_{AR}\rangle \in \mathbb{H}_A \otimes \mathbb{H}_R$  such that  $\rho_A = \operatorname{tr}_R(|\psi_{AR}\rangle\langle\psi_{AR}|)$ . This is called **purification**.

**Remark 1.39** Let  $\{M_n^A\}_n$  be a POVM in  $\mathbb{H}_A$ . Then  $\{M_n^A \otimes \mathbb{I}_B\}_n$  is a POVM in  $\mathbb{H}_{AB}$ .

**Theorem 1.40** (Naimark) For every POVM  $\{E_n\}_{n=1}^m \subseteq B(\mathbb{H})$ , there is a state  $|\psi\rangle \in \mathbb{C}^m$  and a projective measurement  $\{P_n\}_{n=1}^m \subseteq B(\mathbb{H} \otimes \mathbb{C}^m)$  such that

$$\operatorname{tr}(\rho E_n) = \operatorname{tr}((\rho \otimes |\psi\rangle \langle \psi|) P_n) \quad \forall n \in [m], \forall \rho \in S(\mathbb{H}).$$

# 2. Quantum channels and open systems

# 2.1. Quantum channels

**Definition 2.1** A quantum channel is a linear map  $T: S(\mathbb{H}_{in}) \to S(\mathbb{H}_{out})$  which satisfies:

• Preserves trace:  $tr(T(\rho)) = tr(\rho)$  for all  $\rho \in S(\mathbb{H}_{in})$ .

- Positive: if  $\rho \geq 0$ , then  $T(\rho) \geq 0$ .
- Completely positive: for all  $\rho, \sigma$  if  $\rho \otimes \sigma \geq 0$ , then  $(T \otimes \mathbb{I}_n)(\rho \otimes \sigma) = T(\rho) \otimes \sigma \geq 0$  (note that this implies the second condition, but the converse is false).

So quantum channels are completely positive trace-preserving (CPTP) maps. We may depict a quantum channel T as follows:



**Example 2.2** Examples of quantum channels:

- Unitary evolution:  $\rho \mapsto U\rho U^*$ .
- Adding an ancilla:  $\rho \mapsto \rho \otimes \rho_E$  (the *E* denotes "environment").
- Partial trace:  $\rho \mapsto \operatorname{tr}_B(\rho)$  or  $\rho \mapsto \operatorname{tr}_A(\rho)$ .

We will see that in fact, any quantum channel is a combination of these three.

**Definition 2.3** We define the maximally entangled state in  $(\mathbb{C}^d)^{\otimes 2}$  as

$$|\phi\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^{d} |kk\rangle.$$

**Definition 2.4** Recall the transposition map is defined as

$$\Theta: A \to A^T, \quad \langle i | A^T | j \rangle = \langle j | A | i \rangle.$$

We define the **partial transpose** by its action on the maximally entangled state  $|\phi\rangle = \frac{1}{d} \sum_{i=1}^{d} |ii\rangle$ :

$$(|\phi\rangle\langle\phi|)^{T_A} = (|\phi\rangle\langle\phi|)^{T_1} = (\Theta\otimes\mathrm{id})(|\phi\rangle\langle\phi|) = \frac{1}{d}F,$$

where  $F = \sum_{i,j=1}^{n} |ij\rangle\langle ji|$  is the flip operator. Note the partial transpose is positive but not CP. Alternatively, we can define it by its action on an orthonormal basis:

$$\langle ij|X^{T_A}|k\ell\rangle = \langle kj|X|i\ell\rangle.$$

**Remark 2.5** Note that the partial transpose is useful for detecting entanglement but is not physically implementable (as not CP).

**Definition 2.6** Let  $T: B(\mathbb{C}^{d \times d}) \to B(\mathbb{C}^{d' \times d'})$  be a linear map. The **Choi-Jami-olkowski matrix**  $C \in B(\mathbb{C}^{d'} \otimes \mathbb{C}^d)$  of T is defined as

$$C\coloneqq (T\otimes \mathrm{id}_d)|\phi\rangle\langle\phi|.$$

Note that in fact,  $C \in S(\mathbb{C}^{d'} \otimes \mathbb{C}^d)$  is a density matrix if T is a quantum channel.

**Remark 2.7** Note that the Choi-Jamiolkowski matrix completely determines T: since  $|\phi\rangle\langle\phi|=\frac{1}{d}\sum_{n,m=1}^{d}|nn\rangle\langle mm|$ , we have

$$\begin{split} \langle ij|C|k\ell\rangle &= \frac{1}{d} \sum_{m,n=1}^d \langle ij| (T(|n\rangle\langle m|) \otimes |n\rangle\langle m|) |k\ell\rangle \\ &= \frac{1}{d} \sum_{m,n=1}^d \langle j|n\rangle \cdot \langle m|\ell\rangle \cdot \langle i|T(|n\rangle\langle m|) |k\rangle = \frac{1}{d} \langle i|T(|j\rangle\langle \ell|) |k\rangle, \end{split}$$

and so we can determine any entry of any  $T(\rho)$  by linearity. This state-channel duality is called the **Choi-Jamiolkowski isomorphism**, and can be expressed as

$$\operatorname{tr}(AT(B)) = d\operatorname{tr}\big(CA \otimes B^T\big) \quad \forall A \in B\Big(\mathbb{C}^{d'}\Big), B \in B\Big(\mathbb{C}^d\big).$$

Indeed, let  $\mathbb{F}|ij\rangle = |ji\rangle$  be the flip operator: note that  $\mathbb{F}^{T_2} = d|\phi\rangle\langle\phi|$ , then if d = d',

$$\begin{split} d\operatorname{tr}(C(A\otimes B^T)) &= d\operatorname{tr}((T\otimes\operatorname{id}_d)(|\phi\rangle\langle\phi|)\big(A\otimes B^T\big)\big) \\ &= \operatorname{tr}(\mathbb{F}^{T_2}(T^*(A)\otimes B^T)) = \operatorname{tr}(T^*(A)\otimes B) = \operatorname{tr}(AT(B)). \end{split}$$

**Definition 2.8** The Hilbert-Schmidt inner product of  $A, B \in B(\mathbb{C}^d)$  is

$$\langle A | B \rangle_{HS} := tr(A^*B).$$

**Theorem 2.9** (Characterisation of Quantum Channels) Let  $T: B(\mathbb{C}^d) \to B(\mathbb{C}^{d'})$  be a linear map. TFAE:

- 1. T is a quantum channel.
- 2. Let  $C = (T \otimes \mathbb{I}_d)(|\phi\rangle\langle\phi|)$  be the Choi-Jamiolkowski matrix of T, then  $C \geq 0$  and  $\operatorname{tr}_1(C) = \frac{1}{d}\mathbb{I}_d$ .
- 3. Kraus decomposition: There exists  $\{A_k\}_{k=1}^{dd'} \subseteq \mathbb{C}^{d' \times d}$  with  $\sum_{k=1}^{dd'} A_k^* A_k = \mathbb{I}_d$  such that

$$T(\rho) = \sum_{k=1}^{dd'} A_k \rho A_k^* \quad \forall \rho \in S \big( \mathbb{C}^d \big).$$

We call the number of non-trivial  $A_k$  in the Kraus decomposition the **Kraus rank** of T.

4. **Stinespring dilation**: there exists a unitary U on  $\mathbb{C}^d \otimes \mathbb{C}^{dd'}$  and a state  $|\psi\rangle \in \mathbb{C}^{dd'}$  such that  $T(\rho) = \operatorname{tr}_2(U(\rho \otimes |\psi\rangle \langle \psi|)U^*)$  for all  $\rho \in S(\mathbb{C}^d)$ .

Proof (Hints).

- $1 \Rightarrow 2$ : straightforward.
- $4 \Rightarrow 1$ : use that compositions of quantum channels are quantum channels.

Proof.

•  $1 \Rightarrow 2$ :  $C \ge 0$  follows from the completely positive property of T and linearity. Also,

$$\operatorname{tr}_1(C) = \frac{1}{d} \sum_{n,m=1}^d \operatorname{tr}(T|n\rangle\langle m|) \cdot |n\rangle\langle m|$$

9

$$= \frac{1}{d} \sum_{n,m=1}^{d} \operatorname{tr}(|n\rangle\langle m|) \cdot |n\rangle\langle m| \quad \text{since } T \text{ preserves trace}$$

$$= \frac{1}{d} \sum_{n,m} \delta_{mn} |n\rangle\langle m| = \frac{1}{d} \sum_{n=1}^{d} |n\rangle\langle n| = \frac{1}{d} \mathbb{I}_{d}.$$

 $2 \Rightarrow 3$ : we use that (verify this)  $(A \otimes \mathbb{I})|\phi\rangle = (\mathbb{I} \otimes A^T)|\phi\rangle$  for all  $A \in B(\mathbb{C}^d)$ , where  $|\phi\rangle$  is the maximally entangled state, and that  $\forall |\psi\rangle \in \mathbb{C}^{d^2}$ , there exists A such that  $|\psi\rangle = (A \otimes \mathbb{I})|\phi\rangle$ . Since  $C \geq 0$ , we can write  $C = \sum_{k=1}^{dd'} |\psi_k\rangle \langle \psi_k|$  ( $|\psi_k\rangle$  are not necessarily normalised). So

$$\begin{split} C &= \sum_{k=1}^{dd'} (A_k \otimes \mathbb{I}) |\phi\rangle \langle \phi| (A_k^* \otimes \mathbb{I}) \\ &= (T \otimes \mathbb{I}) |\phi\rangle \langle \phi|. \end{split}$$

Also,

$$\begin{split} &\frac{1}{d}\mathbb{I} = \operatorname{tr}_{1}(C) = \sum_{n=1}^{d} \langle n_{1} | C_{12} | n_{1} \rangle \\ &= \frac{1}{d} \sum_{n=1}^{d} \sum_{m=1}^{dd'} (\mathbb{I} \otimes A_{m}^{T}) (|\phi\rangle \langle \phi|) (\mathbb{I} \otimes \overline{A}_{k}) |n\rangle \\ &= \sum_{n=1}^{d} \langle n | \sum_{k=1}^{dd'} (\mathbb{I} \otimes A_{m}^{T}) \frac{1}{d} \left( \sum_{k,\ell=1}^{d} |kk\rangle \langle \ell\ell| \right) (\mathbb{I} \otimes \overline{A}_{k}) |n\rangle \\ &= \frac{1}{d} \sum_{n=1}^{d} \sum_{m=1}^{dd'} \sum_{k,\ell=1}^{d} \langle n | k\rangle \langle \ell | n\rangle A_{m}^{T} |k\rangle \langle \ell | \overline{A}_{k} \\ &= \frac{1}{d} \sum_{n=1}^{d} \sum_{m=1}^{dd'} A_{m}^{T} |n\rangle \langle n | \overline{A}_{m} \\ &= \frac{1}{d} \sum_{m=1}^{dd'} A_{m}^{T} \overline{A}_{m} \end{split}$$

So we set  $\tilde{A}_m := \overline{A}_m$ .

•  $3 \Rightarrow 4$ : let  $V = \sum_{k=1}^{dd'} A_k \otimes |k\rangle$ , where  $\{|k\rangle\}_{k=1}^{dd'}$  is an orthonormal basis of  $\mathbb{C}^{dd'}$ . V is an isometry, i.e.  $V^*V = \sum_{k=1}^{dd'} A_k^* A_k = \mathbb{I}_d$ . Then for all  $\rho \in S(\mathbb{C}^{dd'})$ , since  $(A_k \otimes \mathbb{C}^{dd'})$  $|k\rangle \rho = (A_k \rho) \otimes |k\rangle,$ 

$$\begin{split} \operatorname{tr}_2(V\rho V^*) &= \operatorname{tr}_2\left(\sum_{k,\ell=1}^{dd'} (A_k \rho A_\ell^*) \otimes |k\rangle \langle \ell|\right) \\ &= \sum_{k,\ell=1}^{dd'} (A_k \rho A_\ell^*) \operatorname{tr}(|k\rangle \langle \ell|) \\ &= \sum_{k=1}^{dd'} A_k \rho A_k^* = T(\rho). \end{split}$$

Now choose  $V = U(\mathbb{I} \otimes |\psi\rangle)$  for some pure state  $|\psi\rangle$  and unitary U.

•  $4 \Rightarrow 1$ : the maps

$$\rho\mapsto\rho\otimes|\psi\rangle\langle\psi|\mapsto U(\rho\otimes|\psi\rangle\langle\psi|)U^*\mapsto \mathrm{tr}_2(U(\rho\otimes|\psi\rangle\langle\psi|)U^*)$$

are all quantum channels, and so their composition is also a quantum channel.

#### Remark 2.10

• The number k in the Kraus decomposition is called the **Kraus rank** of T, which is the same as the Choi rank (rank of the Choi-Jamiolkowski matrix). Note: this is not the same as the rank of T as a map.

• We can always express T with r = rank(C) Kraus operators which are orthogonal (w.r.t Hilbert-Schmidt inner product), since T is a completely positive linear map.

• Two sets of Kraus operator  $\{K_j\}$  and  $\{J_\ell\}$  represent the same map T iff there exists a unitary U such that  $K_j = \sum_{\ell} U_{j\ell} J_{\ell}$ .

# 2.2. Examples of quantum channels

**Definition 2.11** In two dimensions, there are three kinds of errors:

- 1. Bit flip errors, modelled by the Pauli  $X: |0\rangle \mapsto |1\rangle, |1\rangle \mapsto |0\rangle$ .
- 2. Phase flip error: modelled by Pauli  $Z: |0\rangle \mapsto |0\rangle, |1\rangle \mapsto -|1\rangle$ .
- 3. Combination of bit and phase flip errors: modelled by Pauli Y.

A map describing the depolarising channel is

$$U_{A\to AE}: |\psi\rangle_A \mapsto \sqrt{1-p} |\psi\rangle_A \otimes |0\rangle_E + \sqrt{\frac{p}{3}} (X|\psi\rangle_A \otimes |1\rangle_E + Y|\psi\rangle_A \otimes |2\rangle_E + Z|\psi\rangle_A \otimes |3\rangle_E)$$

(the environment  $H_E$  has dimension 4). We can express this in the Kraus decomposition: let  $M_a \coloneqq \langle a|_E U_{A \to AE}, \ a \in \{0,1,2,3\}, \ \text{and} \ M_0 = \sqrt{1-p}\mathbb{I}, \ M_1 = \sqrt{p/3}X, \ M_2 = \sqrt{p/3}Y, \ M_3 = \sqrt{p/3}Z.$  It is straightforward to see that

$$\sum_{a=0}^3 M_a^\dagger M_a = \left(1-p+\frac{p}{3}+\frac{p}{3}+\frac{p}{3}\right)\mathbb{I} = \mathbb{I}.$$

The channel is  $T(\rho) = (1-p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z)$ . For arbitrary dimensions D, the depolarising channel is  $\rho \mapsto (1-p)\rho + p\sigma$ , where  $\sigma \in S(\mathbb{C}^D)$ , usually  $\sigma = \mathbb{I}/d$ .

**Definition 2.12** The phase damping channel is the map

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \mapsto \begin{bmatrix} \rho_{00} & (1-p)\rho_{01} \\ (1-p)\rho_{10} & \rho_{11} \end{bmatrix}.$$

Let the environment have orthonormal basis  $\{|0\rangle, |1\rangle, |2\rangle\}$ , then the state representation is

$$\begin{split} |0\rangle_A &\mapsto \sqrt{1-p} |0\rangle_A \otimes |0\rangle_E + \sqrt{p} |0\rangle_A \otimes |1\rangle_E \\ |1\rangle_A &\mapsto \sqrt{1-p} |1\rangle_A \otimes |0\rangle_E + \sqrt{p} |1\rangle_A \otimes |2\rangle_E \end{split}$$

The Kraus operators are  $M_0=\sqrt{1-p}\cdot\mathbb{I},\ M_1=\sqrt{p}|0\rangle\langle 0|,\ M_2=\sqrt{p}|1\rangle\langle 1|.$  We have  $M_0^2+M_1^2+M_2^2=\mathbb{I}.$  The map is  $T(\rho)=(1-p/2)\rho+\frac{1}{2}pZ\rho Z.$ 

**Definition 2.13** A density matrix  $\rho \in S(\mathbb{H}_A \otimes \mathbb{H}_B)$  is **separable** if it can be expressed as a convex combination

$$\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \sigma_{i}^{B},$$

where  $p_i \geq 0$ ,  $\sum_i p_i = 1$ , and  $\rho_i^A \in S(\mathbb{H}_A)$  and  $\sigma_i^B \in S(\mathbb{H}_B)$ .

**Definition 2.14** A quantum channel T is **entanglement breaking** if its Choi-Jamiolkowski matrix is separable. This is equivalent to the existence of a POVM  $\{M_k\}$  and a set of density matrices  $\{\rho_k\}$  such that  $T(\rho) = \sum_k \operatorname{tr}(M_k \rho) \rho_k$ .

# 2.3. Properties of channels

**Remark 2.15** Let  $|\psi\rangle \in \mathbb{H}_A \otimes \mathbb{H}_B$ ,  $d = \min\{\dim H_A, \dim H_B\}$ , not necessarily normalised. The Schmidt decomposition is

$$|\psi\rangle = \sum_{j=1}^{d} \lambda_j |e_j\rangle \otimes |f_j\rangle,$$

 $\lambda_j \geq 0,\, \sum_{j} \lambda_j^2 = \langle \psi | \psi \rangle,\, \left\{e_j\right\},\, \left\{f_j\right\}$  orthonormal bases.

The reduced density operators of  $|\psi\rangle$  are diagonal in the bases  $\{|e_j\rangle\}$ ,  $\{|f_j\rangle\}$ , with eigenvalues  $\lambda_j^2$ . Conversely, if  $\rho_A \in S(\mathbb{H}_A)$  has spectral decomposition  $\rho_A = \sum_j \lambda_j |e_j\rangle \langle e_j|$ , then  $|\psi\rangle$  provides a purification for  $\rho_A = \operatorname{tr}_B(|\psi\rangle \langle \psi|)$ ; the minimal dilation space we can choose,  $\mathbb{H}_{\min}$  has dimension  $\operatorname{rank}(\rho_A)$ . If  $|\psi\rangle \in \mathbb{H}_A \otimes \mathbb{H}_{\min}$ , then all other purifications of  $\rho_A$  are of the form  $|\psi'\rangle = (\mathbb{I}_A \otimes V)|\psi\rangle$ , with  $V \in B(\mathbb{H}_{\min}, \mathbb{H}_B)$  an isometry. Hence, all purifications are related by  $\mathbb{I}_A \otimes U$  with U an isometry.

**Proposition 2.16** (Equivalence of Ensembles) Let  $\{|\psi_j\rangle: j \in [M]\}$  and  $\{|\phi_\ell\rangle: \ell \in [N]\}$  be (not necessarily normalised) ensembles. Then

$$\sum_{j=1}^{M} |\psi_{j}\rangle\langle\psi_{j}| = \sum_{\ell=1}^{N} |\phi_{\ell}\rangle\langle\phi_{\ell}|$$

iff there is an isometry  $U \in \mathbb{C}^{M \times N}$  such that  $|\psi_j\rangle = \sum_{\ell=1}^N U_{j\ell} |\phi_\ell\rangle$ .

Proof (Hints).

- $\Leftarrow$ : straightforward.
- $\Longrightarrow$ : explain why we can assume that  $\rho = \sum_{j} |\psi_{j}\rangle\langle\psi_{j}|$  and  $\sigma = \sum_{\ell} |\phi_{\ell}\rangle\langle\phi_{\ell}|$  are density matrices. Consider purifications of  $\rho$  and  $\sigma$  which use the same orthonormal basis in the dilation space.

Proof.

•  $\Leftarrow$ : this is straightforward to show.

•  $\Longrightarrow$ : WLOG (by rescaling  $\rho$ ), we can assume  $\rho := \sum_j |\psi_j\rangle \langle \psi_j|$  is a density matrix. We have  $\rho = \operatorname{tr}_B(|\psi\rangle \langle \psi|)$  (through purification), where  $|\psi\rangle = \sum_j |\psi_j\rangle \otimes |j\rangle$ . Similarly, let  $|\phi\rangle = \sum_\ell |\phi_\ell\rangle \otimes |\ell\rangle$  (so we use the same orthonormal basis  $\{|\ell\rangle\} = \{|j\rangle\}$ ). So  $|\psi\rangle$  and  $|\phi\rangle$  differ by a unitary (or an isometry if the dimensions are not equal), hence  $|\psi\rangle = (1 \otimes U)|\phi\rangle$ . Taking the scalar product with  $\langle j|$ , we obtain  $|\psi_j\rangle = \sum_\ell U_{j\ell}|\phi_\ell\rangle$ .

**Notation 2.17** Let  $T_1, T_2$  be linear maps. Write  $T_2 \ge T_1$  to mean  $T_2 - T_1$  is completely positive. By the Choi-Jamiolkowski isomorphism, this is equivalent to  $C_2 \ge C_1$  where  $C_i$  is the Choi matrix of  $T_i$  (i.e.  $C_2 - C_1$  is positive semi-definite).

**Theorem 2.18** Let  $T_1, T_2 : \mathbb{C}^{d' \times d'} \to \mathbb{C}^{d \times d}$  be completely positive maps, with  $T_2 \geq T_1$ . Let  $V_i : \mathbb{C}^d \to \mathbb{C}^{d'} \otimes \mathbb{C}^{r_i}$  be Stinespring representations for  $T_i$  (i.e.  $T_i(A) = V_i^* (A \otimes \mathbb{I}_{r_i})V_i$ ), then there is a contraction (i.e.  $W^*W \leq \mathbb{I}$ )  $W : \mathbb{C}^{r_2} \to \mathbb{C}^{r_1}$  such that  $V_1 = (\mathbb{I}_{d'} \otimes W)V_2$ .

Moreover, if  $V_2$  belongs to a minimal dilation, then W is unique.

Proof (Hints).

*Proof.* We use the equivalence  $T_2 \geq T_1 \Leftrightarrow C_2 \geq C_1$ . Define the map

$$R_i = \left(\mathbb{I}_{r_i} \otimes \langle \phi | \right) (V_i \otimes \mathbb{I}_{d'}) \in B \Big( \mathbb{C}^d \otimes \mathbb{C}^{d'}, \mathbb{C}^{r_i} \Big)$$

Let  $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^{d'}$ . We want to show  $||R_2|\psi\rangle||^2 \ge ||R_1|\psi\rangle||^2$ . Indeed,

$$\begin{split} \|R_2|\psi\rangle\|^2 &= \langle\psi\,|\,R_2^*R_2\,|\,\psi\rangle \\ &= \langle\psi\,|\,(V_2^*\otimes\mathbb{I}_{d'}) \Big(\mathbb{I}_{r_2}\otimes|\phi\rangle\Big) \Big(\mathbb{I}_{r_2}\otimes\langle\phi|\Big) (V_2\otimes\mathbb{I}_{d'})\,|\,\psi\rangle \\ &= \langle\psi\,|\,(T_2\otimes\mathrm{id})(|\phi\rangle\langle\phi|)\rangle \\ &= \langle\psi\,|\,C_2\,|\,\psi\rangle \geq \langle\psi\,|\,C_1\,|\,\psi\rangle. \end{split}$$

And  $\langle \psi | C_1 | \psi \rangle = \|R_1 | \psi \rangle\|^2$  by the same argument. So there exists a contraction  $W : \mathbb{C}^{r_2} \to \mathbb{C}^{r_1}$ , such that  $R_1 = WR_2$ . So  $V_1 = (\mathbb{I}_{d'} \otimes W)V_2$ . If  $r_2 = \operatorname{rank}(C_2)$ , then  $R_2$  is surjective, and so W is uniquely determined.

**Theorem 2.19** (Radon-Nikodym) Let  $\{T_i\}$  be a set of CP maps such that  $\sum_i T_i = T \in B\left(\mathbb{C}^{d' \times d'}, \mathbb{C}^{d \times d}\right)$  with Stinespring representation  $T(A) = V^*(A \otimes \mathbb{I}_r)V$ . Then there exists a set of non-negative operators  $P_i \in \mathbb{C}^{r \times r}$  such that  $\sum_i P_i = \mathbb{I}_r$  and  $T_i(A) = V^*(A \otimes P_i)V$ .

**Remark 2.20** Since  $T = \sum_i T_i$ , this gives  $T(A) = \sum_i V^*(A \otimes P_i)V$ , where  $\{P_i\}$  is a POVM. This gives an identification between quantum channels of this form and POVMs.

**Definition 2.21** An **instrument** is a set of CP maps  $\{T_i\}$  whose sum is trace-preserving.

TODO: insert diagram.

Remark 2.22 Instruments encompass the notions of quantum channels and POVMs:

- We can assing a quantum channel  $T: \rho \mapsto \sum_i T_i(\rho)$ . (Measurement outcome ignored.)
- By contrast, POVMs ignore the quantum system:  $p_i = \operatorname{tr}(T_i(\rho)) = \operatorname{tr}(T_i(\rho)\mathbb{I}) = \operatorname{tr}(\rho T_i^*(\mathbb{I})) = \operatorname{tr}(\rho M_i)$ :  $\{M_i\}$  is a POVM.

Remark 2.23 Instruments can viewed as a special case of quantum channels by assigning to them the quantum channel

$$\rho \mapsto \sum_i T_i(\rho) \otimes |i\rangle \langle i|,$$

where  $\{|i\rangle\}$  is an orthonormal basis.

**Proposition 2.24** (Quantum Steering) Let  $\rho \in B(\mathbb{H}_A)$  be a density operator with purification  $|\psi\rangle \in \mathbb{H}_A \otimes \mathbb{H}_B$ . Let  $\rho = \sum_i \lambda_i \rho_i$  be a convex combination. Then there is an instrument  $\{T_i\}$  with each  $T_i : B(\mathbb{H}_B) \to B(\mathbb{H}_B)$ , such that  $\lambda_i \rho_i = \operatorname{tr}_B((\mathbb{I} \otimes T_i)(|\psi\rangle\langle\psi|))$ .

# 2.4. Description of open quantum many-body systems

Assume evolution is

$$\rho_{SE}(t) = \rho_S(t) \otimes \rho_E \overset{\mathrm{d}t}{\mapsto} \rho_{SE}(t+\mathrm{d}t) = \rho_S(t+\mathrm{d}t) \otimes \rho_E(t+\mathrm{d}t) = \rho_S(t+\mathrm{d}t) \otimes \rho_E$$

**Definition 2.25** A quantum Markov semigroup is a 1-parameter continuous semigroup  $\{T_t: t \geq 0\}$  of quantum channels (so each  $T_t: S(\mathbb{H}) \to S(\mathbb{H})$ ).

Note that  $T_0 = \mathbb{I}$  and  $T_s \circ T_t = T_{t+s}$ . We have

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t = \mathcal{L} \circ T_t = T_t \circ \mathcal{L},$$

where  $\mathcal{L}$  is the infinitesimal generator of the semigroup, called the **Liouvillian** or **Lindbladian**. This equation is called the **master equation** or **Liouville equation**. This gives

$$T_t = e^{t\mathcal{L}}.$$

### 2.5. Separability criteria

**Notation 2.26** Let  $A(\mathbb{H})$  denote the set of bounded linear Hermitian operators on  $\mathbb{H}$ .

**Definition 2.27** The **covariance** (or **operator correlation**) of  $\rho$  between subsystems A and B is

$$\operatorname{Cor}_{\rho}(A:B) = \sup_{\|M_A\|, \|M_B\| \leq 1} |\mathrm{tr}(\rho M_A T_B) - \mathrm{tr}(\rho M_A) \operatorname{tr}(\rho M_B)|,$$

where  $M_A \in A(H_A)$ ,  $M_B \in A(H_B)$ , and  $\|\cdot\|$  is the standard operator norm.

**Example 2.28** If  $\rho$  is separable, then  $\operatorname{Cor}_{\rho}(A:B)$  measures classical correlation. If  $\rho = \rho_A \otimes \rho_B$ , then  $\operatorname{Cor}_{\rho}(A:B) = 0$ .

**Definition 2.29** Let  $|\psi\rangle = \sum_{i=1}^{d} \sqrt{p_i} |e_i\rangle \otimes |f_i\rangle$  be the Schmidt decomposition of  $|\psi\rangle \in \mathbb{H}_A \otimes \mathbb{H}_B$ . Let  $\rho = |\psi\rangle\langle\psi|$ . The **entanglement entropy** of  $\rho$  is the Shannon entropy of the probability distribution  $(p_1, ..., p_d)$ :

$$S_{\mathrm{ENT}}(\rho) \coloneqq -\sum_{i=1}^d p_i \log(p_i).$$

#### Proposition 2.30

- $S_{\text{ENT}(\rho)} = 0$  iff the Schmidt rank of  $|\psi\rangle$  is 1.
- The maximum value of  $S_{\text{ENT}}(\rho)$  is  $\log(d)$ , and is achieved iff  $|\psi\rangle$  is maximally entangled, i.e.  $\lambda_i = 1/d$  for all  $i \in [d]$ .

**Proposition 2.31** (PPT Criterion) Let  $\rho \in S(\mathbb{H}_A \otimes \mathbb{H}_B)$ . If  $\rho^{T_A}$  has a negative eigenvalue, then  $\rho$  is entangled.

*Proof (Hints)*. Prove the contrapositive.

*Proof.* Assume  $\rho$  is separable, so  $\rho = \sum_{i} p_{j} \rho_{j}^{A} \otimes \rho_{j}^{B}$ . Then

$$\rho^{T_A} = (\Theta \otimes \mathrm{id})(\rho) = \sum_j p_j (\rho_j^A)^T \otimes \rho_j^B,$$

and so  $\rho^{T_A} \geq 0$ , as it is a sum of positive matrices.

**Definition 2.32** Write  $S_{\text{SEP}} = \{\text{separable density matrices}\}$ , which is convex and compact. By the Hahn-Banach theorem, for all  $\rho \notin S_{\text{SEP}}$ , there exists a hyperplane determined by a Hermitian operator  $\omega$  such that  $\operatorname{tr}(\rho\omega) < 0$  and  $\operatorname{tr}(\sigma\omega) \ge 0$  for all  $\sigma \in S_{\text{SEP}}$ .  $\omega$  is called an **entanglement witness** for  $\rho$ .

By the Choi-Jamiolkowski isomorphism,  $\omega$  corresponds to a map  $\Lambda$  via the following:

$$\omega = (\Lambda \otimes id_B)(|\phi\rangle\langle\phi|).$$

**Remark 2.33** The entanglement witness corresponding to the transposition map is the flip operator F.

**Proposition 2.34** Let  $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$  and let  $\rho \in S(\mathbb{H}_{AB})$ . Then  $\rho$  is separable iff  $(\Lambda \otimes \mathrm{id}_B)(\rho) \geq 0$  for every positive map  $\Lambda : B(\mathbb{H}_A) \to B(\mathbb{H}_A)$ .

 $Proof\ (Hints).$ 

- $\Longrightarrow$ : straightforward.
- **⇐**: TODO.

*Proof.*  $\Longrightarrow$ : let  $\rho$  be separable, so we can write  $\rho = \sum_j p_j \rho_j \otimes \sigma_j$ . Then for every positive  $\Lambda : B(\mathbb{H}_A) \to B(\mathbb{H}_A)$ ,

$$(\Lambda \otimes \mathrm{id}_B)(\rho) = \sum_j \lambda_j \Lambda \big(\rho_j\big) \otimes \sigma_j \geq 0,$$

since each  $\Lambda(\rho_i) \geq 0$ .

 $\Leftarrow$ : let  $\rho$  be entangled. We want to find a positive map  $\Lambda: B(\mathbb{H}_A) \to B(\mathbb{H}_A)$  such that  $(\Lambda \otimes \mathrm{id}_B)(\rho)$  has a negative eigenvalue. By Definition 2.32,  $\rho$  has an entanglement witness  $\omega$ , with  $\mathrm{tr}(\rho\omega) < 0$ . By the Choi-Jamiolkowski isomorphism, this defines a map  $\Lambda$  such that

$$\omega = (\Lambda^* \otimes id_B)(|\phi\rangle\langle\phi|).$$

Since  $\operatorname{tr}(XY) = \operatorname{tr}(\mathbb{F}(X \otimes Y))$ , and  $F = d|\phi\rangle\langle\phi|$ , we have for all  $A \in B(\mathbb{H}_A)$ ,  $B \in B(\mathbb{H}_B)$ ,

$$\begin{split} \operatorname{tr} \bigl( B^T \Lambda(A) \bigr) &= \operatorname{tr} \bigl( F \bigl( \Lambda(A) \otimes B^T \bigr) \bigr) \\ &= d \operatorname{tr} \bigl( (\Lambda \otimes \operatorname{id}_B) (A \otimes B) (|\phi\rangle \langle \phi|) \bigr) \\ &= d \langle \phi \, | \, (\Lambda \otimes \operatorname{id}_B) (A \otimes B) \, |\phi\rangle. \end{split}$$

TODO: finish.

#### Remark 2.35

- In the above proof, we use that  $\operatorname{tr}(\rho\omega) = d\langle \phi | (\Lambda \otimes \operatorname{id}_B)(\rho) | \phi \rangle < 0$  implies that  $(\Lambda \otimes \operatorname{id}_B)$  has a negative eigenvalue. However, the converse is false. Hence, the positive map  $\Lambda$  corresponding to a witness  $\omega$  in fact "detects more entanglement" than  $\omega$ .
- It can be shown that  $\Lambda$  constructed from  $\omega$  detects an entangled state  $\rho$  iff  $\rho$  is detected by a witness of the form  $(\mathbb{I} \otimes \mathbb{X})\omega(\mathbb{I} \otimes X^*)$  for some  $X \in B(\mathbb{H}_B)$ .

Remark 2.36 Note that Proposition 2.34 is a theoretical result but is not implementable (in a lab) since  $\Lambda$  is only required to be positive (but not CP). However, the map

$$T(\rho) = \frac{p}{d^2} \mathbb{I}_d \otimes \mathbb{I}_d + (1 - p)(\Lambda \otimes \mathrm{id}_B)(\rho)$$

is a CP map. If  $\rho$  is separable, then the minimal eigenvalue of  $T(\rho)$  must exceed a certain threshold. If it doesn't exceed this threshold, then  $\rho$  is entangled.

**Remark 2.37** Note that by using a change of abasis via a unitary U, we can obtain a different partial transpose  $\tilde{T}_A$  from the "usual" partial transpose  $T_A$ :

$$\rho^{\tilde{T}_A} = (U \otimes \mathbb{I})((U^* \otimes \mathbb{I})\rho(U \otimes \mathbb{I}))^{T_A}(U^* \otimes \mathbb{I}) = \left((UU^T) \otimes \mathbb{I}\right)\rho^{T_A}\left((UU^T)^* \otimes \mathbb{I}\right) \neq \rho^{T_A}.$$

Note that this non-uniqueness of the partial transpose does not affect the previous criteria, as they only deal with the eigenvalues, which are invariant under basis changes. Also, we have  $\rho^{\tilde{T}_A} \iff \rho^{T_A} \geq 0 \iff \rho^{T_B} \geq 0$ , since  $\rho^{T_A}$  and  $\rho^{T_B}$  differ only by a global transposition.

**Definition 2.38** A map  $\Lambda : B(\mathbb{H}) \to B(\mathbb{H})$  is called **decomposable** if  $\Lambda = \Lambda_1 + \Lambda_2 \circ \Theta$ , where  $\Lambda_1$  and  $\Lambda_2$  are positive maps and  $\Theta$  is a partial transpose. Otherwise, it is called **non-decomposable**.

**Example 2.39** The entanglement witness corresponding to a decomposable map  $\Lambda = \Lambda_1 + \Lambda_2 \circ \Theta$  is  $\omega = Q_1 + Q_2^T$ , where  $Q_i = d(\Lambda_i \otimes \mathbb{I})(|\phi\rangle\langle\phi|)$  is the entanglement witness of  $\Lambda_i$ 

**Proposition 2.40** (Reduction Criterion) Let  $\Lambda_{\text{red}}(A) = \text{tr}(A)\mathbb{I} - A$ . Note that  $\Lambda_{\text{red}}$  is positive. Proposition 2.34 gives us

$$(\Lambda_{\mathrm{red}} \otimes \mathbb{I})(\rho) \Longrightarrow \begin{cases} \rho_A \otimes \mathbb{I}_B \geq \rho_{AB} \\ \mathbb{I}_A \otimes \rho_B \geq \rho_{AB}. \end{cases}$$

The entanglement witness corresponding to  $\Lambda_{\rm red}$  is  $(\mathbb{I}-F)^{T_A}=2P_-^{T_A}$ , where  $P_-$  is the projector onto the anti-symmetric subspace (the space of anti-Hermitian operators). In this case, we obtain

$$\operatorname{tr}(\rho\omega) < 0 \quad \text{iff} \quad \langle \phi | \rho | \phi \rangle \le \frac{1}{d},$$

where  $|\phi\rangle$  is the maximally entangled state.

Proof. Omitted.  $\Box$ 

**Remark 2.41** If  $\mathbb{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ ,  $P_{-}^{T_A}$  is 1-dimensional, which gives that entanglement being detected by  $\omega$  is equivalent to the PPT criterion.

**Proposition 2.42** Entangled states with positive partial transpose exist iff there are non-decomposable maps. Specifically, there exists a non-decomposable map  $T: B(\mathbb{H}_A) \to B(\mathbb{H}_B)$  iff there exists an entangled state  $\rho \in B(\mathbb{H}_A) \otimes B(\mathbb{H}_B)$  with positive partial transpose  $\rho^{T_A} \geq 0$ .

*Proof.* Omitted.

**Proposition 2.43** Let  $\rho \in S(\mathbb{C}^2 \otimes \mathbb{C}^3)$  or  $S(\mathbb{C}^2 \otimes \mathbb{C}^2)$ . Then  $\rho$  is separable iff  $\rho^{T_A} \geq 0$ .

*Proof (Hints)*. Use the fact that every positive  $\Lambda$  on a Hilbert space of dimension  $2 \otimes 2$  or  $2 \otimes 3$  is decomposable.

*Proof.* This follows from the PPT Criterion and Proposition 2.42 combined with the fact that every positive  $\Lambda$  on a Hilbert space of dimension  $2 \otimes 2$  or  $2 \otimes 3$  is decomposable.

17