总结

黄飞虎

2021.1.6

学习情况

使用图像分类数据集完成了图像分类

在完成作业3

论文情况

Deep contextualized word representations

深层语境词表征

本文的工作

推出了一种新的基于深度学习框架的词向量表征模型: ELMo (Embeddings from Language Models)模型,从缩写就可以看出模型本质是从语言模型而来的。

比较了ELMo与其他词向量的训练结果,突出了ELMO的优势

常见的词向量的比较

• Word2vec和glove都属于静态的词向量,无法解决一词多义的问题。而ELMo、GPT、bert词向量,它们都是基于语言模型的动态词向量。

• 从特征提取器方面说,ELMo采用LSTM,GPT和BERT用Transformer。 从单、双向语言模型方面说,BERT和ELMo采用双向语言模型, GPT采用单向语言模型。但是ELMo实际上是两个单向语言模型 (方向相反)的拼接,这种融合特征的能力比bert一体化融合特 征方式弱。

ELMo原理

与其他广泛使用的单词嵌入不同,ELMo单词表示是整个输入句子的功能,它是在具有字符卷积的两层biLM上计算的是内部网络状态的线性函数。 此设置使它能够半监督学习,其中对biLM进行了大规模的预培训,并且可以轻松地将其纳入各种现有的神经NLP体系结构中。

双向LSTM语言模型有两个特点,一是用了多层LSTM,二是结合了forward和backward LM。elmo使用的双向lstm语言模型,由一个forward LM和一个backward LM构成。所要优化的目标:最大化对数前向和后向的似然概率。

前向语言模型:

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1})$$

合起来就是双向语言模型:

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s))$$

后向语言模型:

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N)$$

Θx和Θs表示两个网络共享的参数。其中Θx表示映射层的共享,将单词映射为word embedding的共享,就是说同一个单词,映射为同一个word embedding。 Θs表示上下文矩阵的参数,这个参数在前向和后向 Istm中是相同的。

ELMo: Embeddings from Language Models

ELMO 模型不同于之前的其他模型只用最后一层的输出值来作为word embedding的值,而是用所有层的输出值的线性组合来表示word embedding的值。

对于每个token,一个L层的biLM要计算出 2L+12L+1 个表征:

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

评估

下表是ELMo 增强神经模型和当前最优(SOTA)单个模型基线在六个 NLP 基准任务上的测试集性能对比。

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)	
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%	回答问题
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%	文本蕴含
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%	语音角色标签
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%	共指解析
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%	命名实体提取
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%	情绪分析

分析

	Source	Nearest Neighbors		
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer		
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended		
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round		
	grounder $\{\dots\}$	excellent play.		
	Olivia De Havilland	{} they were actors who had been handed fat roles in		
	signed to do a Broadway	a successful play, and had talent enough to fill the roles		
	\underline{play} for Garson $\{\dots\}$	competently, with nice understatement.		

ELMo消除多义词的效果展示

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

biLM表示训练的模型。第一层,第二层分别使用biLM结果显示,越高层,对语义理解越好,表示对词义消歧做的越好。这表明,越高层,越能捕获词意信息。

POS tagging (词性标注)

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

这是另一个任务的实验了,第一层效果好 于第二层。表明,低层的更能学到词的句 法信息和词性信息。

ELMo的优点与不足

优点:

- 1. ELMo能够学习到词汇用法的复杂性,比如语法、语义。
- 2. ELMo能够学习不同上下文情况下的词汇多义性。
- 3. 能轻松添加到现有模型

不足:

- 1. ELMo使用了 LSTM 而不是Transformer, 很多研究已经证明了 Transformer 提取特征的能力是要远强于 LSTM 的。
- 2. ELMO 采取双向拼接这种融合特征的能力可能比 Bert 一体化的融合特征方式弱。

谢谢观看