

TSN在工业网络通信中的应用探析

吴少勇

之江实验室

5 + 两核 + 多点

之江实验室 ZHEJIANG LAB

主攻方向:人工智能和网络信息两大领域智能感知、智能计算、智能网络和智能系统四大方向

目录

•工业以太网发展现状

·TSN的主要对比优势

·TSN在工业网络的应用探析

当前工厂内网络的"两层三级"架构

□两层:

- ◆ 工厂IT网络:办公、生产、过程管理等, TCP/IP技术
- ◆ 工厂OT网络:连接生产现场控制器、传感器等,工业以太网/总线技术

口三级:

- ◆ 工厂级:标准以太网,高带宽低实时
- ◆ 车间级:工业以太网为主,兼顾实时性和 高带宽,协议种类较多
- ◆ 现场级: 总线为主, 低带宽高实时, 种类繁多

AII: 工业互联网体系架构白皮书

部分典型工业网络通信指标要求

场景	端到端时延	抖动	可靠性	用户数据速率	有效载荷大小	连接密度
触觉反馈交互	0.5ms	TBC	99.999%	低	小	低
离散自动化-运动控制	1ms	1µs	99.9999%	1 Mbps-10 Mbps	小	100,000/km ²
高压配电	5ms	1ms	99.9999%	10 Mbps	小到大	1,000/km ²
智能交通系统	10ms	2ms	99.9999%	10 Mbps	小	1,000/km ²
远程控制	5ms	TBC	99.999%	小于10Mbps	小到大	低
离散自动化	10ms	1ms	99.99%	10 Mbps	小到大	100,000/km ²
中压配电	25ms	25ms	99.9%	10 Mbps	小到大	1,000/km ²
过程自动化远程控制	50ms	20ms	99.9999%	1 Mbps-100 Mbps	小到大	1,000/km ²
过程自动化监控	50ms	20ms	99.9%	1 Mbps	小	10,000/km ²

口以太网协议栈:包含IEEE802.3 规范和 TCP/IP协议组应用层,"尽力而为"的通信

口工业以太网:对标准以太网实时性、可靠性 增强,适用工业自动化环境,专用协议繁多

口从2017年,在工厂自动化领域的工业以太网 (52%)首次超过传统现场总线(48%)

主要实时以太网市场占比

实现工业以太网的主要方法

- 口 基于标准以太网进行优化:
 - 主要有三类方法:
 - ◆ 基于TCP/IP协议栈
 - ◆ 基于标准以太网
 - ◆ 修改以太网
- 口时钟同步: 主站控制时隙、
 - **CIP Sync**
- 口特定拓扑: EtherCAT 和

SERCOS III采用环拓扑

主要工业以太网的对比

评估项	POWERLINK	PROFITNET IRT	SERCOS III	EtherCAT	Ethernet/IP CIP
传输速率	100Mbps- Gbps/10Gbps	100Mbps-Gbps	100Mbps	100Mbps	100Mbps-Gbps
传输距离	100m	100m	40m	100m	100m
抖动	<<1µs	1µs	1µs	1µs	1µs
循环时间	100μs(min)	1ms(min)	25μs(min)	125μs(max)	100μs
同步方式	IEEE 1588	IEEE 1588		分布时钟	IEEE 1588
推广组织	EPSG	PNO	IGS	ETG	ODVA
始创公司	B&R	SIEMENS	Rexroth	Beckhoff	Rockwell AB
主要领域	I/O、运动控制、 安全	现场总线、运动 控制	运动控制	I/O、运动控制、 安全	I/O、运动控制、 安全
是否需要特殊硬件	无特殊硬件需求	ASIC	FPGA/ASIC	从站ASIC	ASIC
开放性	开源技术	需授权	需授权	需授权	需授权

目录

•工业以太网发展现状

·TSN的主要对比优势

·TSN在工业网络的应用探析

TSN: 时间敏感网络——标准以太网的实时能力

- 口 TSN是IEEE 802.1工作组下的一个任务组,
 - 由AVB工作组重命名而来
- 口 TSN包括多个独立的标准
- □ TSN在OSI参考模型中属于第二层
- ロTSN网络特性:
 - ◆ 高精度时间同步
 - ◆ 低时延、低抖动
 - ◆ 高可靠性
 - ◆ 标准配置接口
 - ◆ 兼容性: 多种应用共享同一网络

TSN的关键技术

Bridge复制

Bridge删除重复

Bridge复制

Listener删除重复

集中用户 配置 CUC 用户/网络配置接口 UNI 条端站(用户) 配置协议 CNC 系型协议 CNC 和名管理 协议

Talker复制

Listener删除重复

>TSN的标准和联盟生态

- □ IEEE 802: TSN技术标准, 9个标准已正式发布,18个标准正在制定 (2019.09)
- 口 IEC和IEEE联合组: 旨在定义工业自动化领域的TSN配置和应用标准(IEC/IEEE 60802)
- □ IIC: TSN测试床, B&R、Rexroth、Schneider、GE、TTTech、KUKA、Cisco等均参与了TSN的互操作测试
- □ Avnu: 推动创建可互操作TSN生态系统、认证和使用开放标准
- 口 CCSA:制订工业互联网网络互联的关键技术、设备及组网等,超过8个标准立项
- 口 AII: 时间敏感网络(TSN)产业发展报告——网络设备互通测试报告 (2019.03)

IEC/IEEE

- 口交换机: Cisco、华为、MOXA、NI、控创......
- ☐ FPGA: Intel、Xilinx.....
- 口交换芯片: Broadcom、Marvell......
- 口仪表: Spirent、Keysight(Ixia)......

TSN的主要优势

- □ 标准以太网速率、
- 口 全双工通信
- □ >Gbps/10Gbps

高带宽

- ロ 时间同步精度<1μs
- ロ 单节点时延<50μs

低时延抖 动

成本低 TSN

- 」 采用商业成熟芯片
- コ降低成本

- 口 时间同步冗余
- 口 帧复制传送和消除
- □ 路径冗余

高可靠性

互操作性

- 口 标准化以太网组件提高 易用性
- ロ 标准YANG模型

专业音频领域

最大限度的提供高实时性和低延时的 音视频传输保证音频和视频之间的同 步,避免发生视频帧丢失、音频不同 步的情况。

汽车控制领域

系统采用低延时且具有实时传输机制的TSN进行统一管理,降低网络功能的成本及复杂性。

TSN

工业互联网

支持IT和OT融合,对工业设备进行 实时监控和实时反馈,增加网络的 兼容性,能够有效的改善互联效率。

5G领域

采用TSN技术能够有效的降低承载网络上的缓存时延,保证5G URLLC网络的低延时可靠性。

目录

•工业以太网发展现状

·TSN的主要对比优势

·TSN在工业网络的应用探析

工厂内部网络目标架构

- ロ 为适应智能制造,工厂内网呈现扁平化、IP化和灵活组网的发展趋势
- □ OT系统逐渐打破车间级、现场级分层次组网模式,智能机器之间将逐渐实现直接的横向互联
- 口 工业以太网逐步代替现场总线, TSN有助于实现 "e网到底"

工厂网络连接现状

□ 技术趋势: PROFINET(v2.4)@TSN、POWERLINK@TSN、EtherCAT@TSN......

控制信息和过程数据共网传输

- 口 传统工业网络依附于控制系统,实现控制闭环信息传输,控制网和数据网分离
- 口 视频监控采集和控制系统要求融合,如矿山监控系统
- □ TSN实现高实时控制流和高带宽视频过程流的共网传输
- □ 典型应用:视觉图像分析、生产大数据采集、异常监测告警.....

高实时调度和自动化生产系统

- 口旧生产线改造,如冰箱的零件加工、拼装、总装配生产等在不同车间,需要同步协同
- □ TSN网络支持PLC、SCADA、实 时数据库等通信,提供全厂网间 高精度时间同步、高可靠性
- 口生产提效:例如原来12-18秒/台, 每快1秒提效>6%

I

互

之江实验室的时间敏感网络项目布局

- 工业互联网系统体系框架:利用态势感知的智能分析能力,"云、网、端"协同联动,构建高实时、高安全平 台体系。
- 项目布局: TSN交换机、TSN网关、TSN PLC、新一代工业控制系统信息安全大型科学装置(含TSN网络系统)

TSN在工业网络通信中的应用探析

谢谢!

