

Vannarpettai, Tirunelveli - 627 003.

Department of Computer Science and Engineering

DECEPTIVE PRODUCT FEEDBACK IDENTIFICATION WITH ML

GUIDE NAME:

MRS. ELIZABETH
PAULSHYAH

PRESENTED BY

Noel Abraham V-95072012063 Vignesh E-95072012321 Srinivasa Dharmar V-95072012318

CONTENTS

- AREA OF THE PROJECT AND FIELD OF THE PROJECT
- PROBLEM STATEMENT
- COMPANY DETAILS
- LITERATURE SURVEY
- OBJECTIVES
- ABSTRACT
- INTRODUCTION
- EXISTING SYSTEM
- PROPOSED SYSTEM
- EXPECTED OUTPUT
- WORKPLAN / TIME SCHEDULE
- HARDWARE/SOFTWARE USED
- APPLICATIONS
- REFERENCES

AREA OF THE PROJECT AND FIELD OF THE PROJECT

AREA OF PROJECT: Machine Learning (ML)

FIELD OF PROJECT: E-Commerce

PROBLEM STATEMENT

In the online marketplace, authentic product reviews are pivotal for consumer trust. However, deceptive feedback threatens platform reputation. The project addresses this by implementing "Deceptive Product Feedback Identification with ML." Using LSA, the system automates the identification of fake reviews, providing a technical solution to enhance the integrity of online product feedback.

LITERATURE SURVEY

SI. NO	TITLE AND AUTHOR, YEAR	PUBLISHER & JOURNAL NAME	METHODOLOGY USED	DRAWBACKS
1.	Machine Learning Approaches for Fake Reviews Detection(2022)	IEEE	 Checked rating behaviour of the product. Unnecessary bad or good reviews were eliminated 	Relatively slower compared to LSA
2.	Exploring E- Commerce Product Experience Based on Fusion Sentiment Analysis Method (2022)4	IEEE	 Uses NLP to analyse the opinion mined Analysis of semantic sentiment 	Lacks the tracking of redundant review

SI. NO	TITLE AND AUTHOR, YEAR	PUBLISHER & JOURNAL NAME	METHODOLOGY USED	DRAWBACKS
3.	IP spam detection using Machine Learning for Data Analytics	IEEE	• Tracks IP	Doesn't uses a standard ML model
4.	Opinion Mining Using Multi- Dimensional Analysis (2023)	IEEE	 Classify the opinion expression with ML and NLP Recognition of emotion 	Relatively slower compared to LSA

OBJECTIVES

- Develop a Fake Review Detection System for online ecommerce platforms.
- Address the increasing impact of product reviews on consumer purchasing decisions.
- Create a technology-driven solution to automatically identify and filter out fake or misleading reviews.
- Ensure the authenticity of customer feedback, contributing to a fair online shopping environment.
- Contribute to the overall integrity of online marketplaces and e-commerce platforms.
- Foster a transparent and reliable system for users to make well-informed purchasing decisions.

ABSTRACT

"Deceptive Product Feedback Identification with ML" tackles the challenge of identifying fake reviews in online platforms. Leveraging machine learning, specifically Latent Semantic Analysis (LSA) to detect reviews, biased user promotions, IP address patterns, review floods, simultaneous similar reviews, and LSA for meaningful analysis. This technical solution ensures automated and robust deception detection, safeguarding the credibility of online product reviews.

INTRODUCTION

- Reviews on online websites play a vital role in sales of the product as before buying people try to get all the pros and cons of the product.
- The scope and need of online markets and e-commerce platforms are on the rise.
- The amount of feedbacks for products are present in detail for users to analyze the product they are buying.
- Users sometime bombard the review section with extreme comments which can work in favor or against the product.
- This project aims to take care of factitious review

EXISTING SYSTEM

- User are not able to find out whether the review is genuine or fake. If the social media optimization team uses different IP address to send the same review, system fail to track the fake review.
- Brands can use their resources to wrongly increase the rating of their particular products. Same user can write multiple reviews from different accounts.

PROPOSED SYSTEM

- Reviews by customers on a product will act as our data on which methods will be applied.
- For filtering the fake reviews from genuine one mining method will be carried out.
- Apply analysis algorithm to make insightful data analysis with methods like text mining ,sentimental analysis natural language processing or NLP

PROPOSED SYSTEM-BLOCK DIAGRAM

EXPECTED OUTPUT

WORKPLAN / TIME SCHEDULE

MONTH	WORK PLAN	
JANUARY 24	 Worked on the idea and synopsis of the project Assessed various methodologies through the published research papers 	
FEBRUARY 24	 Design the front end of the website Authenticate users using Google OAuth 	
MARCH 24	 Include the backend part and database to store user reviews Detect multiple reviews submitted through the same IP addresses 	
APRIL 24	 Inclusion of sentimental analysis, latent semantic analysis, and content similarity. Final testing of system 	

HARDWARE/SOFTWARE USED

OS: Linux/Windows-10/Macos

Processor: Atleast 4 cores CPU

Main Memory: 8GB RAM

Hard Disk: 75GB

Python Language Jupyter Notebook

APPLICATIONS

- To be intergrated in an E-commerce Website
- Detect Fake reviews with ML in E-commerce Platforms
- Monitors the IP

REFERENCES

MACHINE LEARNING APPROACHES FOR FAKE REVIEWS DETECTION: A SYSTEMATIC LITERATURE REVIEW 2022 MOHAMMED ENNAOURI AND AHMED ZELLOU

EXPLORING E-COMMERCE PRODUCT EXPERIENCE BASED ON FUSION SENTIMENT ANALYSIS METHOD 2022 HUAQIAN HE, GUIJUN ZHOU, AND SHUANG ZHAO

EVALUATING ANNOTATED DATASET OF CUSTOMER REVIEWS FOR ASPECT BASED SENTIMENT ANALYSIS 2021 DIMPLE CHEHAL PARUL GUPTA AND PAYAL GULATI

OPINION MINING USING MULTI-DIMENSIONAL ANALYSIS 2023 SATARUPA BISWAS AND G. POORNALATHA

TEXT MINING AND EMOTION CLASSIFICATION ON MONKEYPOX TWITTER DATASET: A DEEP LEARNING-NATURAL LANGUAGE PROCESSING (NLP) APPROACH
RUTH OLUSEGUN 1, TIMOTHY OLADUNNI AND HALIMA AUDU AND YAO HOUKPATI

AND STAPHORD BENGESI

