WOULD YOU RUN AWAY FROM A

Team Panchreston

THE PROBLEM

- To flee or not to flee? Predict the probability.
- What if the predator is big?
- What if the predator is fast?
- What about next time?

MODEL DEVELOPMENT

- Relative size of predator
- Rate of change of relative size of predator
- Squash function
- Learning rate
- Numerical Methods

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

• $\frac{dy}{dt}$: The rate of change of the decision

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

- $\frac{dy}{dt}$: The rate of change of the decision
- S(t): The size of the predator as a function of time

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

- $\frac{dy}{dt}$: The rate of change of the decision
- S(t): The size of the predator as a function of time
- S_0 : The initial size of the predator

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * \mathbf{S}'(\mathbf{t}) + \mathbf{y} \right] * \lambda + y(y - 1)$$

- $\frac{dy}{dt}$: The rate of change of the decision
- S(t): The size of the predator as a function of time
- S_0 : The initial size of the predator
- S'(t): The rate that the predator's size is changing

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + \mathbf{y} \right] * \lambda + y(y - 1)$$

- $\frac{dy}{dt}$: The rate of change of the decision
- S(t): The size of the predator as a function of time
- S_0 : The initial size of the predator
- S'(t): The rate that the predator's size is changing
- y: The probability of fleeing

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

- $\frac{dy}{dt}$: The rate of change of the decision
- S(t): The size of the predator as a function of time
- S_0 : The initial size of the predator
- S'(t): The rate that the predator's size is changing
- y: The probability of fleeing
- λ : The learning rate

DEFINITIONS

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

DEFINITIONS

$$\frac{dy}{dt} = \left[\log \left(1 + \left| \frac{S(t)}{S_0} \right| \right) * S'(t) + y \right] * \lambda + y(y - 1)$$

• λ : number of occurrences

squashing

• $\frac{1 + \tanh(x - 3.453)}{2} \in [0,1]$

REFERENCES

- http://www.color-hex.com/color-palette/37167
- www.tattoowoo.com/fonts

OUR CODE

https://gist.github.com/nick5435/5ba6bff9c33c09c52e1f9c106c5507
96

