

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

16) Algoritmo de Prim.

Entrada. Un grafo conexo ponderado.

Idea. Mantener un subgrafo conexo H e ir agregando nuevos vértices incidentes en aristas de peso mínimo.

Inicio. Elegir $v \in V(G)$. $V(H) = \{v\}$, $E(H) = \emptyset$.

Iteración. Mientras $V(H) \neq V(G)$, elegir la arista e de menor peso entre el conjunto de aristas que tienen un extremo en V(H) y otro en $V(G)\backslash V(H)$. Si la arista elegida es e = uw con $u \in V(H)$ y $w \in V(G)\backslash V(H)$, actualizamos $V(H) \leftarrow V(H) \cup \{w\}$, $E(H) \leftarrow E(H) \cup \{e\}$.

- a) Probar que si G es un grafo conexo ponderado, el algoritmo de Prim produce un árbol recubridor de G de peso mínimo.
- b) Dar un árbol recubridor de peso mínimo para cada uno de los grafos del ejercicio 15, utilizando el algoritmo de Prim.
- a) Sea G un grafo conexo ponderado y sea H el subgrafo que genera el algoritmo. Primero observemos que H es un árbol recubridor de G. En efecto, en cada iteración agregamos una arista incidente en un nuevo vértice que añadimos a H manteniendo H conexo y acíclico, por lo que H es un árbol. Además, como el algoritmo finaliza cuando V(G) = V(H), H resulta un árbol recubridor de G. Veamos ahora que H es de mínimo peso.

Sean e_1, \ldots, e_{n-1} las aristas de H ordenadas en el mismo orden en que fueron agregadas. Para un árbol recubridor T cualquiera de G, definimos $a(T) = \max_{i \in [n]} \{i : e_j \in T \text{ para todo } j < i\}$. Si T = H, entonces a(T) = n. Entre todos los árboles recubridores de G de peso mínimo, elegimos H' de manera que $a(H') = \max\{a(T) : T \text{ árbol recubridor de } G\}$.

Sea k = a(H'). Tenemos que $e_i \in E(H') \cap E(H)$ para todo i < k.

Supongamos que H no es un árbol recubridor de peso mínimo. Entonces, $H \neq H'$, $k \leq n-1$, y $e_k \in E(H) \setminus E(H')$.

Sea U el conjunto de vértices que ya han sido agregados a H antes de agregar la arista e_k . Por cómo son elegidas las aristas en cada iteración del algoritmo de Prim, $e_k = uv$ para ciertos vértices u y v con $u \in U$ y $v \notin U$.

Por otro lado, como H' es un árbol recubridor de G, para estos vértices u y v existe un único u, v-camino simple P en H'. Sea e = xy la primer arista de este u, v-camino que tiene un extremo, x, en U y otro, y, fuera de U.

Observemos que si agregamos la arista e_k a H', se genera un ciclo, concatenando P con esta arista. La arista e pertenece a este ciclo. Luego, no es una arista de corte en $H' \cup e_k$.

Borrando la arista e, obtenemos $T = (H' \cup e_k) \setminus e$ conexo y acíclico (pues rompemos el único ciclo que se formó al agregar e_k) y resulta un árbol recubridor.

Notemos que
$$w(T) = w(H') + w(e_k) - w(e)$$
.

Como en el paso k del algoritmo de Prim elegimos la arista e_k antes que la arista e, resulta que $w(e_k) \leq w(e)$. Por otro lado, como T es un árbol recubridor y H' es un árbol recubridor de peso mínimo, resulta que $w(H') \leq w(T)$. Luego,

$$w(H') \le w(T) = w(H') + w(e_k) - w(e) \le w(H')$$
 pues $w(e_k) - w(e) \le 0$

Entonces, w(T) = w(H') y T es también un árbol recubridor de peso mínimo. Pero $e_i \in E(T) \cap E(H)$ para todo $i \in [k]$. Luego, $a(T) \ge k + 1$. Esto contradice la elección de H'.

La contradicción surge de suponer que H no era de peso mínimo. Por lo tanto, concluimos que el algoritmo de Prim devuelve un árbol recubridor de peso mínimo de G.

b) Consideremos el grafo ponderado G de la figura.

Utilicemos el algoritmo de Prim para obtener un árbol recubridor de peso mínimo de G.

Como vértice inicial elegimos el vértice 1. Luego, agregamos al subgrafo H las aristas en el siguiente orden: $\{1,2\},\{2,3\},\{3,4\},\{3,5\}$. Obteniendo el siguiente árbol de peso 7.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

- 17) Determinar si cada una de las siguiente afirmaciones es verdadera o falsa, justificando adecuadamente.
 - a) Si todos los pesos en un grafo conexo ponderado G son diferentes, entonces G admite un único árbol recubridor de peso mínimo.
 - b) Si todos los pesos en un grafo conexo ponderado G son diferentes, entonces los árboles recubridores de G distintos tienen pesos distintos.

a) Verdadero.

Sea G un grafo conexo ponderado tal que todos los pesos de sus aristas son diferentes. Para cada arista $e \in E(G)$, denotemos por w(e) al peso de la arista e, y sea $w(G) = \sum_{e \in E(G)} w(e)$.

Como G es conexo, admite un árbol recubridor. Supongamos que G admite dos árboles recubridores de peso mínimo distintos T y T'.

Sea e la arista de menor peso en $E(T)\triangle E(T')$.

Supongamos que $e \in E(T)\backslash E(T')$. Por lo hecho en el ejercicio 12 (b), existe $e' \in E(T')\backslash E(T)$ tal que $(T' \cup e)\backslash e'$ es un árbol recubridor de G. Como $e' \in E(T)\triangle E(T')$ y todos los pesos de G son diferentes, w(e) < w(e').

Pero notemos que

$$w((T' \cup e) \setminus e') = w(T') + w(e) - w(e') < w(T')$$
 pues $w(e) - w(e') < 0$

Así obtenemos que $w((T' \cup e) \setminus e') < w(T')$. Es decir, $(T' \cup e) \setminus e'$ es un árbol recubridor de menor costo que T'. Esto no es posible ya que T' es un árbol recubridor de peso mínimo.

Por lo tanto, concluimos que G tiene un único árbol recubridor de peso mínimo.

b) Falso

T1 y T2 son dos árboles recubridores de G distintos que tienen el mismo peso.

Algoritmo de Dijkstra

Entrada: Un grafo G ponderado con pesos no negativos y un vértice de inicio u. El peso de una arista xy es $\omega(xy)$ y si $xy \notin E(G)$, consideramos $\omega(xy) = \infty$.

Idea: Considerar un conj. S de vértices para los cuales hallamos un camino mínimo desde u, agrandando S hasta incluir todos los vértices. Tendremos una distancia arbitraria t(z) desde u a cada $z \notin S$, hasta que la distancia mínima sea hallada.

Inicio:
$$S = \{u\}, t(u) = 0, t(z) = \omega(uz) \ \forall z \neq u.$$

$$\underline{\text{Iteración:}} \ \text{Considerar} \ \underline{v \notin S} \ \text{con} \ t(\underline{v}) = \min\{t(z): \ z \notin S\}.$$

Agregar
$$\mathbf{d}$$
 a S .

Explorar las aristas desde v y actualizar las etiquetas t(z) para z

vecino de
$$v$$
 y $z \notin S$ con $t(z) = \min\{t(z), t(z) + \omega(vz)\}.$

Continuar la iteración hasta que S = V(G) o hasta que

$$T(z) = \infty \ \forall z \notin S.$$

a) Aplicar el algoritmo de Dijkstra al grafo ponderado de la figura y determinar la distancia 20) S= {a,d}. del vértice a a cada uno de los otros vértices.

$$\begin{aligned} & + (c) = \min \{ \pm (c) + \pm (d) + \omega (cd) \} = \\ & = \min \{ 4, 1 + 3 \} = 4 \\ & + (b) = \min \{ \pm (b) + \pm (d) + \cos \} = \pm (b) \end{aligned}$$

$$\begin{aligned} & + (b) = \min \{ \pm (b) + \pm (d) + \cos \} = \pm (b) \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + \pm (d) + \cos \} = \pm (b) \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \cos \} = \pm (b) \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \cos \} = \pm (b) \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

$$\begin{aligned} & + (c) = \min \{ \pm (c) + (d) + \omega (cd) \} = 0 \end{aligned}$$

•	
t(a) = 0	
t(b) = 7	
t(c)=4	
t(d)=1	
tlu7 = 00	Art

- b) Dar un camino de longitud mínima desde el vértice a a los vértices f, g y ℓ .
- a) Inicializamos el algoritmo con el vértice a

It.	a	b	c	d	e	f	g	h	i	j	k	ℓ
0	(0, -)	$(\infty, -)$										
1	-	(7, a)	(4, a)	(1, a)	$(\infty, -)$							
2	-	(7, a)	(4, a)	-	(3, d)	$(\infty, -)$	$(\infty, -)$	(3, d)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$
3	-	(4, e)	(4, a)	-	-	(6, e)	$(\infty, -)$	(3, d)	(5, e)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$
4	-	(4, e)	(4, a)	-	-	(6, e)	(6, h)	-	(5, e)	$(\infty, -)$	(4, h)	$(\infty, -)$
5	-	-	(4, a)	-	-	(6, e)	(6, h)	-	(5, e)	$(\infty, -)$	(4, h)	$(\infty, -)$
6	-	-	-	-	-	(6, e)	(5, c)	-	(5, e)	$(\infty, -)$	(4, h)	$(\infty, -)$
7	-	-	-	-	-	(6, e)	(5, c)	-	(5, e)	$(\infty, -)$	-	(11, k)
8	-	-	-	-	-	(6, e)	-	-	(5, e)	$(\infty, -)$	-	(11, k)
9	-	-	-	-	-	(6, e)	-	-	-	(8, i)	-	(6, i)
10	-	-	-	-	-	-	-	-	-	(7, f)	-	(6, i)
11	-	-	-	-	-	-	-	-	-	(7, f)	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

Luego, la longitud de un camino más corto de a a cada vértice es:

$$d(a, a) = 0$$
 $d(a, b) = 4$ $d(a, c) = 4$
 $d(a, d) = 1$ $d(a, e) = 3$ $d(a, f) = 6$
 $d(a, g) = 5$ $d(a, h) = 3$ $d(a, i) = 5$
 $d(a, j) = 7$ $d(a, k) = 4$ $d(a, l) = 6$

b) A partir de la ejecución, podemos determinar caminos de longitud mínima del vértice a a cada uno de los demás vértices, observando las etiquetas, y reconstruyendo hacia atrás dichos caminos.

Árboles binarios

Definición 1. Un árbol enreaizado T es un árbol con un único vértice distinguido r, llamado raíz de T. Un árbol enraizado es binario si todo vértice tiene a lo sumo dos hijos. Si en particular todo vértice tiene grado 0 o 2 hijos el árbol es binario completo.

- 24) Un árbol enraizado es m-ario (con $m \in \mathbb{N}$) si todo vértice tiene a lo sumo m hijos. Si en particular todo vértice tiene 0 o m hijos, se dice m-ario completo. Sea T un árbol m-ario completo con i vértices internos.
 - a) Determinar la cantidad de hojas de T.
 - b) Determinar la cantidad de vértices de T.

Sea T un árbol m-ario completo con i vértices internos y l hojas.

a) Como T es un árbol m-ario completo, cada uno de los i vértices internos tiene exactamente m hijos. Luego, hay im vértices que son hijos.

Por otro lado, la cantidad de vértices que son hijos son todos salvo la raíz. Esto es, l + i - 1. Luego, tenemos que im = l + i - 1, y como consecuencia l = i(m - 1) + 1.

- T tiene i(m-1)+1 hojas.
- b) La cantidad de vértices es |V(T)| = i + l = im + 1.