PRINTABLE VERSION

Quiz 5

You scored 77.78 out of 100

Question 1		
Your answer is CORRECT.		
	an implication $P\Rightarrow Q$ is provided below: Proposition. $P\Rightarrow Q$ Proof. Suppose P . Missing steps involving P and Q and any previously established facts Therefore Q . \square	
What type of proof was described in the outline?		
a) A proof by introspection is described in this outline.		
b) Wait a minute The proof described in this outline isn't a valid proof technique!		
c) A proof by contrapositive is described in this outline.		
d) A direct proof is described in this outline.		
e) A proof by contradiction is described in this outline.		
Question 2		
Your answer is CORRECT.		
Suppose a mathematician wants to prove a statement of the form $P \lor Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?		
a) ○ Suppose ¬P.		
b) \bigcirc Suppose $\neg P \land Q$.		
c) \odot Suppose $\neg P \land \neg Q$.		
d) \bigcirc Suppose $\neg P \lor \neg Q$.		
e) ○ Suppose ¬Q		
Question 3		
Your answer is CORRECT.		
Given two sets A and B	one can prove $A\subseteq B$ by	
a) \bigcirc First supposing $x \in B$, and then showing $x \in A$.		
b) \odot First supposing $x \in A$, and then showing $x \in B$.		
c) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.		
d) Sirst supposing X	$ \notin A, \text{ and then showing } x \in B. $	

e) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.		
Question 4		
Your answer is CORRECT.		
Given two sets A and B one can prove $B\subseteq A$ by		
a) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$.		
b) \odot First supposing $x \notin A$, and then showing $x \notin B$.		
c) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.		
d) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.		
e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.		
Question 5		
Your answer is INCORRECT.		
A lovely little proof is presented below:		
Proposition. If x and y are both divisible by 5 then so is $3x - 7y$.		
Proof. Suppose the integers x and y are both divisible by 5.		
By the definition of divisible, this means $\exists a,b\in\mathbb{Z},\ x=5a\ \text{ and }y=5b.$		
It follows that $3x - 7 = 3(5a) - 7(5b) = 5 \cdot 3a - 5 \cdot 7b = 5(3a - 7b)$.		
Since this expression is a multiple of 5 the proof is complete. \Box		
Determine the type of proof used.		
a) A direct proof was used.		
b) A proof by contrapositive was used.		
c) Wait a minute This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.		
d) A proof by contradiction was used.		
e) A proof by indoctrination was used.		
Question 6		
Your answer is CORRECT.		
A proposition and an attempt at its proof are presented below.		
Proposition. The sum of an odd integer and an even integer is odd.		
Proof. (Direct)		
$\overline{(1) \text{ Suppose } x, y} \in \mathbb{Z} ext{are integers.}$		
(2) We can assume x is odd and that y is even.		
$\text{(3) Since x is odd, it follows that } \exists y\in\mathbb{Z}, x=2y+1.$		
(4) Since y is even, it follows that $\exists m\in\mathbb{Z},y=2m.$		
(5) We now have $x + y = (2y + 1) + y = 3y + 1 = 3(2m) + 1 = 2(3m) + 1$.		
(6) Because $x + y$ has the form of an odd number it is odd. \square		

Identify the mistake, if any, in this proof.		
a) There is an error in Line (2) since we do not know which integer is odd or even.		
b) \bigcirc There is an error in Line (1) since we cannot simply assume $x, y \in Z$.		
c) There is an error in Line (4) since where the definition of "even" is misapplied.		
d) There is an error in Line (3) where the variable name "y" is used when this name already refers to a different variable.		
e) There is an algebraic mistake in Line (5).		
Question 7		
Your answer is INCORRECT.		
A proposition and an attempt at its proof are presented below.		
Proposition. $\foralln\in\mathbb{N},n(n+1)$ is even.		
Proof. (Direct)		
(1) Let $n \in \mathbb{N}$. We will use cases to prove the proposition.		
Case 1: n is even.		
(2) In this case we have $n = 2m$ for some $m \in \mathbb{N}$.		
(3) Because n is even, it follows that when n is divided by 2, there is no remainder. (4) n being even implies $n + 1$ is odd.		
(5) It now follows that $n(n+1) = (2m)(2m+1) = 2 \cdot \left(m(2m+1)\right)$ which has the form of an even number.		
(6) Therefore $n(n+1)$ is even, proving the proposition in this case.		
(b) Therefore $N(N+1)$ is even, proving the proposition in this case.		
Case $2: n$ is odd.		
(7) In this case we have $n=2\ell+1$ for some $\ell\in\mathbb{Z}$.		
(8) If n is not odd then it is even and Case 1 applies.		
(9) It follows that $n(n+1) = (2\ell+1)(2\ell+1+1) = (2\ell+1)(2\ell+2) = 2(2\ell+1)(\ell+1)$		
(10) Because the expression above has the form of an even number, $n(n+1)$ is even.		
(11) If $n(n+1)$ is odd, then there is a contradiction.		
(12) This completes the proof. \Box		
One or more lines in this proof are not needed the proof works perfectly well without them (in fact, it works better without them). Which lines		
are not needed?		
a) Only line (8) is not needed. All other lines are needed.		
b) Only lines (3) and (11) are not needed. All other lines are needed.		
c) Only lines (3),(4),(8), and (11) are not needed. All other lines are needed.		
d) Only lines (4) and (11) are not needed. All other lines are needed.		
e) All lines are needed.		

Question 8

Your answer is CORRECT.

Suppose we want to write a direct proof of the proposition below:

$$\forall x \in \mathbb{Z}, x^3 - x \text{ is a multiple of 3.}$$

Which of the following statements or properties do we need to use when composing this proof?

- a) \odot A case where x = 2n + 1 is odd, and x = 2n + 1 is plugged into $x^3 x$.
- **b)** \bigcirc Suppose $x^3 x \neq m$ for some $m \in \mathbb{Z}$.
- c) \bigcirc Suppose $x^3 x = 3m$
- d) \bigcirc Suppose $x^3 x \neq m$ for any $m \in Z$.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true. The recursively defined sequence $a_n = a_{n-1} - 1$ with initial conditions $a_0 = \pi$ has a term that is negative. Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) We need only check that the claim is true for one, single natural number.
- b) \bigcirc We need to show the claim is true for an abitrary natural larger than 3, saying something like "Let $n \ge 4$."
- c) Nothing can describe an accurate proof strategy since this proposition is false.