每日一题(5.2)答案

选题:门宇翎、李东宸 答案制作:程昊一

2022年1月12日

1. Ξn 为正整数, 2^n+1 为素数,求证:n 为2 的幂,即存在自然数k,使得 $n=2^k$. (门字翎供题)

分析 这道题与每日一题(5.1)中的第一题很类似,我们仍然采用反证法,但我们要考虑清楚"n为2的幂"的反面是什么.

解 假设n不为2的幂,即存在一个大于1的奇数 n_1 ,使得 $n_1 \mid n$.记 $\frac{n}{n_1} = n_2$. 那么,

$$2^{n} + 1 = 2^{n_1 \times n_2} + 1$$

$$= (2^{n_2})^{n_1} + 1$$

$$= (2^{n_2} + 1)[(2^{n_2})^{n_1 - 1} - (2^{n_2})^{n_1 - 2} + (2^{n_2})^{n_1 - 3} - \dots + 1]$$

在这里,我们把 $2^n + 1$ 分解成了大于1的两个数的乘积,所以 $2^n + 1$ 不是素数,与题目矛盾! 所以,假设不成立,即n为2的幂.

注 我们利用了一个公式:

$$a^{n} + 1 = (a+1)(a^{n-1} - a^{n-2} + a^{n-3} - \dots + 1)$$

其中n是奇数.

更一般地:

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - a^{n-4}b^{3}) + \dots + b^{n-1}$$

其中n是奇数.

2.将正七边形的七个顶点染红、蓝两色,证明必存在一个顶点均同色的等腰三角形. (李东宸供题)

解 我们设这个正七边形的七个顶点设为 A_1, A_2, \ldots, A_7 .

由于抽屉原理,对于某种颜色,至少有4个点被染成了这种颜色.不妨设有至少4个红色的点,且 A_1 被染成了红色.

如果四个红点中有3个连续的,那么命题成立.如果没有3个连续的,那么必定会有2个红点

在同一条边上,我们不妨设 A_1 和 A_2 均为红色.我们按 A_5 的颜色进行分类讨论.

- (1) 若 A_5 为红色,则 $\triangle A_1A_2A_5$ 为等腰三角形,而且 A_1,A_2,A_5 都为红色,命题成立.
- (2) 若 A_5 为蓝色,因为红点中没有三个连续的,所以 A_7 , A_3 均不是红色,即 A_7 , A_3 都是蓝色,此时 $\triangle A_3 A_5 A_7$ 为符合要求的等腰三角形,命题成立.

综上:命题得证.