

Grundlagen der Bildverarbeitung

Fouriertransformation

Prof. Dr. Klaus Tönnies

Bildverarbeitung &

Bildverstehen

Erinnerung JPEG-Kompression

- Wie lassen sich die Basen entwickeln?
 - Sinnvolle Zerlegung
 - Invertierbarkeit
- Geht das für beliebige Blockgrößen?
- Kann man noch mehr damit machen?

Fouriertransformation

- Vektor- und Funktionsbasen
- Transformation zwischen Basen
- Basisfunktionen der Fouriertransformation
- 1-D und 2-D Fouriertransformation und grundlegende Eigenschaften
- Darstellung der Komponenten der Fouriertransformierten

Fouriertransformation

- Beschreibung einer beliebige Funktion als Summe von gewichteten periodischen Funktionen (*Basisfunktionen*) mit unterschiedlicher Frequenz (*Frequenzraumrepräsentation*).
- Anwendungen
 - Beschreibung des Informationsverlusts bei Digitalisierung
 - Restauration von linearen Störungen
 - Rekonstruktion von Bildern aus Projektionen
 - Schnelle Filterung

Basisfunktionen

- Bilder können als zweidimensionale Funktion f(m,n) aufgefasst werden.
- Jede Funktion kann als Summe von gewichteten Basisfunktionen $b_{u,v}$ aufgefasst werden:

$$f(m,n) = \sum_{v=0}^{M-1} \sum_{u=0}^{N-1} w_{u,v} \cdot b_{u,v}(m,n)$$

- Die Wichtungen $w_{u,v}$ bilden eine neue Funktion w(u,v), die f(m,n) zusammen mit den Basisfunktionen genau beschreibt.
- Die Auswirkung von Veränderungen auf die Wichtungen (z.B. Filterung) hängen von den Basisfunktionen ab.
- Die Fouriertransformation ist die Transformation von einer Ortsbasis in eine Frequenzbasis.

Ortsbasis

- Jede Basisfunktion ist ein Bild, das in einem Pixel den Wert 1 und in allen anderen Pixeln den Wert 0 hat.
- Zwei Basisfunktionen unterscheiden sich dadurch, dass sie den 1-Pixel an unterschiedlichen Stellen haben.
- Vorgeschlagene Basis ist vollständig und eindeutig.

$$f(m,n) = \sum_{v=0}^{M-1} \sum_{u=0}^{N-1} w_{u,v} \cdot b_{u,v}(m,n)$$

Basisfunktionen Wichtung

$$b_{u,v}(m,n)$$

$$W_{u,v}$$

Frequenzbasis (1-D)

Ein erstes Beispiel

Ein erstes Beispiel

Erste Experimente

Erste Experimente

Invertierbarkeit von Ax=b

- Die Transformation ist einfach invertierbar, wenn die Basisfunktionen in A eine orthogonale Basis bilden.
 - Was ist Orthogonalität für Funktionen?
 - Wann bilden Basisfunktionen eine orthogonale Basis?
- Transformation: "Projektion" der Funktion auf die neue Basis.
- Inverse Transformation: Projektion auf die alte Basis.
- Orthogonalität, Projektion, Transformation etc. sind Begriffe aus der Vektoralgebra und können auch für Funktionen genutzt werden.

Orthogonale Vektorbasis

- Zwei Vektoren sind orthogonal, wenn ihr Skalarprodukt Null ist.
- N Vektoren bilden eine Basis für einen N-dimensionalen Raum, wenn sie alle orthogonal zueinander sind.
- Projektion eines Vektors p auf einen Basisvektor b ist durch das normierte Skalarprodukt zwischen ihnen gegeben.
- Beispiel:
 - Koordinatenvektoren eines dreidimensionalen Raums.

$$\vec{b}_i \bullet \vec{b}_j = 0$$
, für $i, j = 1, 2, 3 \land i \neq j$

$$\vec{p}^{B} = \left(\frac{\vec{p} \bullet \vec{b}_{1}}{\left\| \vec{b}_{1} \right\|} \quad \frac{\vec{p} \bullet \vec{b}_{2}}{\left\| \vec{b}_{2} \right\|} \quad \frac{\vec{p} \bullet \vec{b}_{3}}{\left\| \vec{b}_{3} \right\|} \right)$$

Funktionen statt Vektoren

- Eine Funktion f(x) ist auch durch vollständige Aufzählung aller Werte eindeutig definiert: $f(x) = \{f(x_1), f(x_2), ...\}$
- Skalarprodukt zwischen Funktionen f_1 und f_2 :

$$\int_{-\infty}^{\infty} f_1(x) f_2(x) dx$$

$$\int_{x_{\min}}^{x_{\max}} f_1(x) f_2(x) dx$$

$$\sum_{n=-\infty}^{\infty} f_1(n) f_2(n)$$

$$\sum_{n=0}^{N-1} f_1(n) f_2(n)$$

• Orthogonale Basen können wie für Vektoren definiert und genutzt werden.

Funktion als Vektor (Beispiel)

Ein Bild kann als Funktion mit endlichem Definitionsbereich aufgefasst werden.

Anzahl der Bildelemente = Anzahl der Funktionswerte = Vektordimension.

Transformation in eine andere Basis

- Die Transformation in eine andere Basis ist invertierbar,
 - wenn sie *orthogonal* ist
 - wenn die *Anzahl der Basisvektoren gleich* bleibt.
- Orthogonalität der zwei Funktionen: $[f_1 \bullet f_2](n) = \sum_{n=0}^{N-1} f_1(n) \cdot f_2(n) = 0$
- Jede orthogonale Basis kann durch Rotation (und Translation) aus jeder anderen Basis für die gleiche Funktion erzeugt werden.
- Transformation entspricht einer Rotation (und ggf. Translation):

$$T_b[f](u) = \sum_{n=0}^{1} f(n) \cdot b_u(n)$$

$$b_1(n) = (\cos \alpha + \sin \alpha)$$

$$b_2(n) = (-\sin \alpha + \cos \alpha)$$

Transformation in Vektor-Matrix-Schreibweise

• Funktion kann als Vektor \vec{f} ihrer Funktionswerte repräsentiert werden:

$$\vec{f} = (f(0) \quad f(1) \quad \dots \quad f(N-1))$$

• Basisfunktionen b_{μ} können in einer quadratischen Matrix **B** zusammengefasst werden:

$$\mathbf{B} = \begin{pmatrix} b_0(0) & b_1(0) & \dots & b_{N-1}(0) \\ b_0(1) & b_1(1) & & \dots \\ & \dots & & & \\ b_0(N-1) & \dots & & b_{N-1}(N-1) \end{pmatrix}$$

• Transformation auf die neue Basis \vec{F} ist die Multiplikation des Vektors mit der Matrix \vec{B} : $\vec{F} = \vec{f} \times \vec{B}$

Orthogonale periodische Funktionen

Anmerkung:

Das Resultat der Rücktransformation muss skaliert werden, weil die Basis nicht normiert ist.

Vollständige Basis

- Basisfunktionen seien Kosinuskurven mit Frequenzen 0,1,2,...: $b_u(n) = \cos(nu \cdot 2p/N)$, u=0,1,2...
- Problem:

Die maximal repräsentierbare Schwingungsanzahl für eine Funktion mit N Werten ist N/2

ightharpoonup Anzahl der Basisfunktionen ist N/2.

• Zusätzlich benötigte Basisfunktionen sollten die gleiche Semantik haben.

Beispiel: 4 Basisfunktionen

Abgetastete Kosinuswellen:

- $(1 \ 1 \ 1 \ 1)$
- $(1 \ 0 1 \ 0)$
- (1-1 1-1)
- $(1 \ 0 1 \ 0)$

Lösungen:

- frequenzverschobene Perioden (DCT).
- komplexe periodische Funktionen (FT).

Basisfunktionspaare

Abgetastete Kosinuswellen:

$$(1 \ 1 \ 1 \ 1)$$

$$(1 \ 0 - 1 \ 0)$$

$$(1-1 1-1)$$

$$(1 \ 0 - 1 \ 0)$$

Abgetastete Sinuswellen:

$$(0 \ 0 \ 0 \ 0)$$

$$(0 \ 1 \ 0 - 1)$$

$$(0 \ 0 \ 0 \ 0)$$

$$(0-1 \ 0 \ 1)$$

Komplexe periodische Funktionen

- 1. Projektion auf Vektor von Basisfunktionen:
 - $\vec{b}_u(n) = \begin{bmatrix} b_{u,\cos} & b_{u,\sin} \end{bmatrix} = \begin{bmatrix} \cos(nu \cdot 2\pi/N) & \sin(nu \cdot 2\pi/N) \end{bmatrix}$
 - $\vec{F}(u) = \begin{bmatrix} \vec{f} \times \mathbf{B}_{\cos} & \vec{f} \times \mathbf{B}_{\sin} \end{bmatrix}$
- 2. Definition des Skalarprodukts:
 - Betrachtung der beiden Komponenten des Vektors als Real- und Imaginärteil

$$\vec{b}_u(n) = \cos(nu \cdot 2\pi / N) + i \cdot \sin(nu \cdot 2\pi / N)$$

Komplexes Skalarprodukt

$$\cos(\alpha) + i\sin(\alpha)$$

Alle Werte für komplexe Zahlen der Form $\cos(\alpha) + i \cdot \sin(\alpha)$ liegen auf einem Kreis mit Abstand 1 in der komplexen Ebene.

Komplexes Skalarprodukt

Skalarprodukt zwischen zwei Vektoren mit komplexen Elementen:

- Summe der Produkte der Komponenten des ersten Vektors mit der komplex-konjugierten Komponenten des zweiten Vektors.
- Die komplex-konjugierte zu $x=a+i\cdot b$ ist $x^*=a-i\cdot b$.

Skalarprodukt:

$$\vec{x} \cdot \vec{y} = \sum_{i=0}^{N-1} x_i \cdot y_i^* = \sum_{i=0}^{N-1} (\text{Re}(x_i) + i \text{Im}(x_i))(\text{Re}(y_i) - i \text{Im}(y_i))$$

Repräsentation als Exponentialfunktion

Taylorreihenentwicklung für Kosinus und Sinus:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

• Taylorreihenentwicklung für e^{ix}:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \Rightarrow e^{ix} = 1 + \frac{ix}{1!} + \frac{(ix)^{2}}{2!} + \frac{(ix)^{3}}{3!} + \dots$$

- Es gilt daher wegen $i^2 = -1$: $\cos(x) + i \cdot \sin(x) = e^{ix}$
- Phasenverschiebung lpha kann in komplexen Funktionen als Multiplikation ausgedrückt werden:

$$\cos(x+\alpha) + i\sin(x+\alpha) = \exp(i(x+\alpha)) = \exp(i\alpha)\exp(i\alpha)$$

1-D Basisfunktionen

Bildfunktion: f(n), n=0,N-1,

also: N Basisfunktionen

$$b_u(n) = \exp(i \cdot 2p/N \cdot n \cdot u)$$
, mit Frequenzen $u=0,N-1$

z.B.
$$b_0(n) = [(1,0), (1,0), ..., (1,0)]$$

Transformation FT: $FT(f) = F = f \times B$ (Vektor-Matrix-Schreibweise)

$$F(u) = \sum_{n} f(n) \exp(-i \cdot 2\pi/N nu)$$
, für alle u =0, N -1

Rücktransformation \mathbf{FT}^{-1} : $\mathbf{FT}^{-1}(\mathbf{F}) = \mathbf{F} \times \mathbf{B}^{\mathsf{T}}$ (Vektor-Matrix-Schreibweise)

$$f(n) = \frac{1}{N} \sum_{u} F(u) \exp(i \cdot 2\pi/N nu)$$
, für alle $n=0,N-1$

Skalierungsfaktor, weil die Basisfunktionen nicht normiert sind.

Phase und Amplitude

- Das Resultat der Fouriertransformation ist eine komplexe Funktion F(u).
- Der Betrag eines Funktionswerts ist die Amplitude und der Winkel zur reellen Achse ist die Phase zur Gewichtung der betreffenden Basisfunktion

Beispiel 1-D Fouriertransformation

Beispiel 1-D Fouriertransformation

Logarithmische Darstellung der Amplitude

Amplitude und Phase

Rücktransformation

Summation der mit Amplitude und Phase modifizierten Sinus/Kosinuskurven.

Realteil der summierten Wellen

Phasenverschiebung

Summation der mit Amplitude und Phase modifizierten Sinus/Kosinuskurven.

Realteil der summierten Wellen

Was sollten Sie heute gelernt haben?

- Orthogonale Funktionsbasis
- Komplexe periodische Funktionen
- 1-d Fouriertransformation
- Darstellung von Amplitude und Phase

Famous Last Question

Warum enthält die Fouriertransformierte Funktion F(u) redundante Information?

F(u)=*F(-u), d.h. F ist exakt bestimmt, falls man die Hälfte der Werte kennt