PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-047670

(43)Date of publication of application: 23.02.1999

(51)Int.CI.

B05C 11/10

B05C 5/02

(21)Application number: 09-206610

(71)Applicant:

FUJI PHOTO FILM CO LTD

(22)Date of filing:

31.07.1997

(72)Inventor:

ONOGAWA TORU

(54) LIQUID FEEDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obviate the intrusion of air into a coating liquid during the course of liquid feeding by evacuating a piping route connecting a storage tank and a coating means prior to coating, then feeding the coating liquid from the storage tank to the coating means in the case the coating liquid stored in the storage tank is fed to the coating means.

SOLUTION: The outlet side 6c of a three-away valve 6 is first closed, the inlet side 6b and discharge side 6a thereof are opened and a liquid feed pump 5 is operated prior to the coating work. As a result, the coating liquid is circulated through the piping route formed of a tank 1, a liquid feed pie 4 and a return pipe 11. Three-way valves 9, 14 are changed over in parallel therewith and a vacuum pump 15 is operated to put the piping route comprising a middle pipe 7 to a discharge pipe 12 into a vacuum state. Simultaneously the air in a filter 8 is removed as well. The outlet side 14c of the threeway valve 14 is thereafter closed and the three-way valve 6 is changed over to circulate the coating liquid in the piping route formed of the liquid feed pipe 4, the middle pipe 7, the discharge pipe 12 and the return pipe 17. In addition, the three-way valve 9 is changed over to supply the coating liquid to a coater 3 and the coating is started.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

25.09.2003

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-47670

(43)公開日 平成11年(1999)2月23日

(51) Int.Cl.⁶

識別記号

F I

B 0 5 C 11/10 5/02

B 0 5 C 11/10 5/02

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号

特顯平9-206610

(71)出顧人 000005201

(22)出顧日

平成9年(1997)7月31日

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 小野川 徹

静岡県榛原郡吉田町川尻4000番地 富士写

真フイルム株式会社内

(74)代理人 弁理士 萩野 平 (外3名)

(54) 【発明の名称】 送液方法

(57)【要約】

【課題】 送液に伴う塗工液中への気泡の混入を防止してピンホールやスジ状のムラ等の塗工欠陥の無い良好な 塗膜を形成できるとともに、配管経路内の空気の除去を 短時間で行うことができる送液方法を提供する。

【解決手段】 貯留槽に貯留された塗工液を塗工手段に 送液する方法において、塗工に先立ち、貯留槽と塗工手 段とを接続する配管経路を真空引きし、その後塗工液を 貯留槽から塗工手段に送液する送液方法。

BEST AVAILABLE COPY

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 貯留槽に貯留された塗工液を塗工手段に 送液する方法において、塗工に先立ち、貯留槽と塗工手 段とを接続する配管経路を真空引きし、その後塗工液を 貯留槽から塗工手段に送液することを特徴とする送液方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種塗工液の送液 方法に関する。

[0002]

【従来の技術】例えば写真用感光材料、感光性印刷版材 料、磁性材料等の各種記録材料塗工液は、調製時に攪拌 混合されるため、液中に多量の空気を含んでおり、その まま使用すると塗膜にピンホールやスジ状のムラ等の塗 工欠陥が出来てしまう。そのため、塗工液は液中の気泡 を取り除いてから使用される。液中の気泡を除去する技 術として、例えば特開昭56-97058号公報には液 溜槽内に上向きラッパ状流入管と、この流入管の上方に 位置するように障害物とを設け、流入管より吐出する液 20 体が障害物に接触しつつ上昇することで、液中の気泡を この障害物に付着せしめて脱泡する装置が開示されてい る。また特公昭47-6835号公報には、液槽内に超 音波振動を与えて気泡を破泡する装置が開示されてい る。また、特開昭55-121806号公報には、気体 のみを通過させ、液体を通過させない多孔性の気液分離 膜を流路の一部に設け、この部分の周囲を真空引する構 成の脱気装置が開示されている。更に、特公昭40-2 479号公報には、多孔壁からなる脱気筒内部に多数の 充填物を充填した連続流下式真空脱気装置が開示されて いる。

[0003]

【発明が解決しようとする課題】ところで、塗工液は貯 留槽内に溜められ、ここから配管経路を通じて印刷ロー ラやコータ等の塗工手段に供給されるのが一般的であ り、塗工前は配管経路内は空気で満たされている。そこ で、実際の塗工に先立ち、配管経路内を塗工液で置換す ることが行われるが(例えば、特開昭59-34533 号公報参照)、配管経路は多数の分岐部や屈曲部を含 み、更に塗工液中の異物や不溶物の除去のためのフィル タ、あるいは送液量を調整するためのバルブ等が挿入さ れている場合が多く、このような複雑な配管経路の内部 の隅々まで塗工液を行き渡らせるのは極めて困難であ り、多くの場合空気が残存する。特に、フィルタは沪材 が多量の空気を内含しており、沪材に振動を与える等し ても空気を完全に除去するのは困難である。また、フィ ルタは定期的に交換され、その都度塗工液に浸漬して空 気抜きが行われるが、空気が完全に抜け切るには長い時 間がかかり、粘度が高い塗工液では不可能に近い。この ようなフィルタ内の空気は置換用の塗工液の通過に伴っ 50

て放出されるため、配管経路からの空気の除去を更に困 難なものにしている。この配管経路内に残存する空気 は、たとえ微量であっても、実際の塗工の際に送液され る塗工液に混入して塗膜に気泡となって現れる。また、 同一の塗工装置(配管経路)を用い、塗工液の種類を変 えて塗工を行うこともあり、その場合新たな塗工液で配 管経路内を置換することになるが、上記と同様の問題に 加えて、交換前後の塗工液が混ざり合って塗工液をロス するという問題もある。

【0004】このように、塗工前、あるいはフィルタや 10 塗工液の交換の都度、配管内部の空気を除去しなければ ならないが、従来の方法では配管内部の空気を完全に、 しかも短時間の内に除去することは困難であり、塗工工 程における大きな問題となっている。本発明は上記の問 題を解決するものであり、送液に伴う塗工液中への気泡 の混入を防止してピンホールやスジ状のムラ等の塗工欠 陥の無い良好な塗膜を形成できるとともに、配管経路内 の空気の除去を短時間で行うことができる送液方法を提 供することを目的とする。

[0005]

【課題を解決するための手段】上記の目的は、本発明 の、貯留槽に貯留された塗工液を塗工手段に送液する方 法において、塗工に先立ち、貯留槽と塗工手段とを接続 する配管経路を真空引きし、その後塗工液を貯留槽から **塗工手段に送液することを特徴とする送液方法により達** 成される。本発明の方法によれば、配管経路の空気を真 空引きにより強制的に排気するため、配管経路が複雑で あっても空気が完全に、しかも短時間の内に配管経路か ら除去される。そして、上記の排気後に塗工液を送液す るため、送液途中に空気が塗工液に混入することが無く なる。

[0006]

【発明の実施の形態】以下、本発明の好ましい実施の形 態につき、添付図面を参照して詳細に説明する。 図1は 本発明の送液方法を実施するための送液経路を示す概略 図であり、塗工液タンク1と、ウエブWを搬送させるロ ーラ2に近接配置されたコータ3とを、後述される配管 系により接続して構成される。尚、塗工液は、塗工液タ ンク1に貯留される前に予め脱気処理されるか、あるい は塗工液タンク1内で例えば真空脱気される等して、気 泡が除去されている。

【0007】配管系を説明すると、塗工液タンク1の底 部に接続された送液管4は、送液ポンプ5を介して第一 の三方弁6の入口側6 bに接続されている。第一の三方 弁6は、その出口側6cに中管7が接続され、排出側6 aには塗工液タンク1に至る戻り管11が接続されてい る。中管7は、その途中にフィルタ7が配置され、その 先端が第2の三方弁9の入口側9bに接続されている。 このフィルタ7は、塗工液中の異物や不溶物等を除去す るためのものである。第二の三方弁9は、その出口側9

EST AVAILABLE COPY

でにコータ2に至る塗工液吐出管10が接続され、排出側9aには第三の三方弁14の入口側14bに接続される排気管12が接続されている。また、排気管12の途中には、塗工液中への空気の混入を検知するための気泡センサ13が配置されている。第三の三方弁14は、その出口側14cが吸気管16を通じて真空ポンプ15に接続され、排出側14aには塗工液タンク1に至る戻し管17が接続されている。

【0008】本発明は、上記の送液経路において、第一、第二及び第三の三方弁を順次切り換えて塗工に先立 10 ち送液経路から空気を除去し、しかる後塗工作業を行うものである。以下に、そのための操作手順を説明する。塗工液の送液前、配管経路全体は空になっており、空気で満たされている。この状態で、先ず第一の三方弁6の出口側6cを閉じ、入口側6bと排出側6aとを開き、次いで送液ポンプ5を作動させる。これにより、塗工液は、図の矢印①に示すように、塗工液タンク1~送液管4~戻り管11で形成される配管経路を循環する。

【0009】これと平行して、第二の三方弁9の出口側9cを閉じ、入口側9bと排出側9aとを開き、更に第20三の三方弁14の排出側14aを閉じ、入口側14bと出口側14cとを開いて真空ボンプ15を作動させる。これにより、中管7~排気管12で構成される配管経路が真空状態となり、同時にフィルタ8内の空気も脱気される。尚、この時の配管経路の真空度は1~20torr程度で、1~10torrが実用的であり、5~10torrが好ましい。本発明においては、配管経路内の空気の除去を真空引きにより行なうため、配管経路に分岐部や屈曲部が多数あっても、またフィルタ8のように空気を内含するような部材があっても、極めて短時間の30内に脱気作業が完了する。

【0010】中管7~脱気管12で構成される配管経路が所定の真空度となった後、第三の三方弁14の出口側14cを閉じ、次いで第一の三方弁6の排出側6aを閉じると同時に入口側6bと出口側6cとを開く。これにより、塗工液は、図の矢印②に示すように、送液管4~中管7~排気管12~戻り管17で形成される配管経路を循環する。尚、この循環動作中に真空ポンプ15の稼働を停止する。この時、塗工液は、予め空気が除去された上記配管経路を送液されるため、従来のように送液途40中で配管経路に残留する空気が混入することがない。

【0011】次いで、気泡センサ13により上記配管経路を循環する塗工液中に気泡が存在しないことを確認した後、第二の三方弁9の排出側9aを閉じるとともに出口側9cを開いて、塗工液を矢印のに示す如くコータ3に供給する。ここで、吐出管7の内部は上記したような真空引きが行われておらず、管内に空気を含んでいるが、この吐出管7は一般的に短い直管であり、内部の空気は塗工液とともにコータ3から完全に、しかも瞬時に押出される。

【0012】上記の一連の操作により、塗工液を空気の混入を伴うことなくコータ3まで送液することができる。しかも、配管経路からの空気の除去は短時間で済むため、例えばフィルタ8の交換や塗工液の交換等により塗工作業が中断した後に即座に塗工作業を再開できる。以上の実施の形態では塗工液の塗工用配管系に適用した場合を示したが、本発明はこれのみに限定適用されるものでなく、例えば熱交換器や脱気装置など閉じられた系における送液にも好適であり、その場合熱交換効率や反応効率の向上に寄与する。

[0013]

【実施例】以下、本発明の送液方法を実施例を挙げて更に説明する。なお、本発明は実施例のみに限定されるものでない。図1に示す配管経路において、上記した一連の操作により配管経路の真空引き処理を行った後に塗工液を送液した場合と、真空引き処理を行わないで塗工液を送液した場合とについて、塗工液の送液開始から気泡が検出されなくなるまでの時間を比較した。尚、塗工液として、溶存酸素量を2.0ppmに脱気処理したポリビニルアルコール9%水溶液(粘度39cps)を使用した。また、塗工液タンク1内の液量は50リットル、送液ボンプ5による送液量を1リットル/分とし、フィルタ8はフィルタケース内に沪過面積510cm²のポリプロピレン不織布を収納したものを用いた。真空ボンプ15による減圧は10torrとした。

【0014】試験は3回行い、結果は以下の通りである。

テスト1・・・事前真空引き処理した場合に5.5分で 気泡が消失したのに対し、真空引き処理しない場合は1 57分を要した。

テスト2・・・事前真空引き処理した場合に4.0分で 気泡が消失したのに対し、真空引き処理しない場合は1 81分を要した。

テスト3・・・事前真空引き処理した場合に8.5分で 気泡が消失したのに対し、真紅引き処理しない場合は1 09分を要した。

以上の結果からも明らかなように、本発明の真空引き処理を実施した場合には未処理に比べて極めて短時間で気 泡が消失している。

40 [0015]

【発明の効果】以上説明したように、本発明によれば、配管経路の空気を除去した後に塗工液を送液することにより、送液途中における塗工液への空気の混入がなく、またフィルタ交換や塗工液交換後の新たな塗工作業までの時間を大幅に短縮できる。

【図面の簡単な説明】

【図1】本発明の送液方法を実施するための送液経路を 示す概略図である。

【符号の説明】

50 1 送液タンク

- 3 コータ 4 送液管
- 5 送液ポンプ
- 6 第一の三方弁
- 7 中管
- 8 フィルタ
- 9 第二の三方弁

- 10 吐出管
- 11、17 戻り管
- 12 排気管
- 13 気泡センサ
- 14 第三の三方弁
- 15 真空ポンプ

【図1】

BEST AVAILABLE COPY