H15T2A4

a) Zeige, dass es keine biholomorphe Abbildung

$$f: \mathbb{C} \to \mathcal{D} := \{z \in \mathbb{C} : Re(z) \ge 0\}$$
 gibt.

b) Sei $\Omega \subseteq \mathbb{C}$ ein nichtleeres Gebiet. Bestimme alle holomorphen Funktionen $f: \Omega \to \Omega$, die der Gleichung $f \circ f = f$ genügen.

zu a):

Vorbemerkung: Gemeint ist vermutlich, dass es keine biholomorphe Abbildung $f: \mathbb{C} \to f[\mathbb{C}]$ mit Wertebereich $f[\mathbb{C}] \subseteq \mathcal{D}$ gibt. Die Abbildung $f: \mathbb{C} \to \mathcal{D}$ kann nämlich nicht surjektiv sein, da \mathcal{D} nicht offen sein kann.

Angenommen $f:\mathbb{C}\to f[\mathbb{C}]\subseteq\mathcal{D}$ sei so eine biholomorphe Abbildung. Dann nimmt f nicht den Wert -1 an, so dass

$$g: \mathbb{C} \to \mathbb{C}, \quad g(z) = \frac{1}{f(z) + 1}$$

eine wohldefinierte ganz-holomorphe Abbildung ist. Es gilt für alle $z \in \mathbb{C}$ die Schranke $\text{Re}(f(z)+1) \geq 1$ und daher

$$|g(z)| = \frac{1}{|f(z)+1|} \le \frac{1}{|\operatorname{Re}(f(z)-1)|} \le 1.$$

Die Abbildung g ist also beschränkt. Nach dem Satz von Liouville ist sie konstant. Dann ist auch $f = \frac{1}{f-1}$ konstant, also nicht biholomorph, im Widerspruch zur Annahme.

zu b):

Wir zeigen für alle holomorphen Funktionen $f:\Omega\to\Omega$ die Äquivalenz der beiden folgenden Aussagen:

- 1. $f = f \circ f$,
- 2. Die Funktion f ist die Identität $id: \Omega \to \Omega$ oder konstant mit einem Wert $c \in \Omega$.

Der Beweisteil "2. \Rightarrow 1." ist trivial : Sowohl die Identität $f = id : \Omega \to \Omega$ als auch alle konstanten Funktionen $f = const_c : \Omega \to \Omega$ mit einem Wert $c \in \Omega$ erfüllen $f \circ f = f$.

Zu "1. \Rightarrow 2.": Es gelte $f \circ f = f$. Wir unterscheiden zwei Fälle:

• 1. Fall: $f = const_c$ ist konstant mit einem Wert c. Wegen $f : \Omega \to \Omega$ muss dann $c \in \Omega$ gelten.

• 2. Fall: f ist nicht konstant. Da der Definitionsbereich von f ein Gebiet ist, also insbesondere zusammenhängend, erhalten wir aus dem Satz von der offenen Abbildung, dass der Wertebereich $f[\Omega]$ von f offen ist. Wir zeigen nun, dass für alle $w \in f[\Omega]$ gilt: $f'(w) \in \{0,1\}$. Hierzu sei $w \in f[\Omega]$ gegeben. Wir nehmen $a \in \Omega$ mit f(a) = w und schließen f(w) = f(f(a)) = f(a) = w unter Verwendung der Voraussetzung $f \circ f = f$. Nach der Kettenregel gilt:

$$f'(w) = (f \circ f)'(w) = f'(f(w)) \cdot f'(w) = f'(w)^{2},$$

also f'(w)(f'(w)-1)=0 und daher $f'(w)\in\{0,1\}$, wie behauptet. Weil $f'[f[\Omega]]$ als Bild der zusammenhängenden Menge Ω unter der stetigen Abbildung $f'\circ f$ zusammenhängend ist, kann f' auf $f[\Omega]$ nur entweder den Wert 0 oder den Wert 1 annehmen. Die Einschränkung $f'|_{f[\Omega]}$ ist also konstant. Nach dem Identitätssatz für holomorphe Funktionen ist daher auch f' konstant mit dem Wert 0 oder 1, denn f' ist holomorph auf dem Gebiet Ω und $f[\Omega]$ ist offen (siehe oben) und nichtleer, besitzt also insbesondere Häufungspunkte in Ω . Falls f' konstant mit dem Wert 0 ist, ist f konstant (da Ω zusammenhängend ist), im Widerspruch zur Fallannahme. Die Funktion f' ist also konstant mit dem Wert 1. Wir fixieren wieder ein $w \in f[\Omega]$. Es folgt für alle $z \in \Omega$, weil Ω zusammenhängend ist: $f(z) = f(w) + 1 \cdot (z - w) = w + (z - w) = z$. Damit ist f = id gezeigt.