Foundations of Representation Theory

Lecture Notes in the Winter Term 2018/19

CONTENTS

1 1	Alg	ebras and modul	es														
1	1.1	Algebras - Basics						 									
1	1.2	Quivers - Basics .															
1	1.3	Modules - Basics						 									
]	1.4	Representation of	quivers	,				 					 				

INTRODUCTION

These are my personal lecture notes for the lecture Foundations of Representation Theory held by Dr. Hans Franzen at the University of Bonn in the winter term 2018/19.

I try to update them on my website, https://pankratius.github.io. The authors labels his own comments and additions in purple.

Conventions: In this lecture, rings will always be unital, and ring homomorphisms f always fulfill f(1) = 1. Rings do not have to be commutative.

1.1 Algebras - Basics

Let k be a commutative ring.

Definition 1.1.1. A k-algebra A is a ring A, together with a structure of a k-module on A, such that

for all
$$a, b \in A, \lambda \in K$$
: $(\lambda a)b = a(\lambda b) = \lambda(ab)$ (*)

Definition 1.1.2. Let A, B be k-algebras. A homomorphism of algebras is a map $f: A \to B$ that is both k-linear and a ring homomorphism.

Remark 1.1.3. Let A be a ring. Define

$$Z(A) := \{ a \in A \mid \forall b \in A : ab = ba \},\$$

which is a commutative subring and is called the **center** of A.

Remark 1.1.4. Let A be a ring. Giving a k-algebra structure on A is the same as giving a ring homomorphism $k \to Z(A)$. More precisely:

- i) If A is a k-algebra, then $p: k \to A$, $\lambda \mapsto \lambda 1$ satisfies $\operatorname{Im} p \subseteq Z(A)$ and is a ring homomorphism. (the first statement follows from (*) and the second one from the fact that A has a k-module structure).
- ii) Let $\varphi: k \to Z(A)$ be a ring homomorphism. Define

$$\lambda a := \varphi(\lambda)a$$
,

for all $\lambda \in k$. This defines a k-algebra structure on A (Scalar multiplication with elements from k in A follows from the distributivity in A, and (*) since $\operatorname{Im}(\varphi) \subseteq Z(A)$).

iii) Let A, B be k-algebras and $f: A \to B$ a homomorphism of rings. Then f is a homomorphism of k-algebras if and only if the following diagram commutes:

Example 1.1.5. i) Let V be a k-module. Consider $\operatorname{End}_k(V)$. This has a ring structure given by

$$\operatorname{End}_k(V) \times \operatorname{End}_k(V) \to \operatorname{End}_k(V), \ (\phi, \psi) \mapsto \varphi \circ \psi.$$

Then $\operatorname{End}_k(V)$ is both a ring and a k-module, and becomes a k-algebra via

$$\varphi: k \to \operatorname{End}_k(V), \ \lambda \mapsto \lambda \operatorname{id}.$$

Note that $\operatorname{Im} \varphi \subseteq Z(A)$. If k is a field, then $Z(\operatorname{End}_k(V)) = \{\lambda \operatorname{id} \mid \lambda \in k\}$.

ii) Take $V = k^n$ (free module of rank n). Then $\operatorname{End}_k(V) \cong \operatorname{M}_n(k)$. Define

$$T_u := \{ n\varphi \in \mathcal{M}_n(k) \mid \varphi \text{ is upper triangular} \},$$

i.e. T_u presevers flags in k^n . Then T_u is a **subalgebra** of $M_n(k)$, i.e. is both a subring and a k-submodule of the original algebra.

- iii) Let G be a group. Define to be the **group algebra** of k[G] as follows:
 - As k-module, is defined as the free module on G,

$$k[G] := k^{(G)} = \{ \sum_{g \in G} \lambda_g g \mid \lambda_g \in k, \ \lambda_g \neq 0 \text{ for only finitely many } g \in G \}.$$

• Multiplication: Let $a:=\sum \lambda_g g, \ b=\sum \mu_g g$ and define:

$$ab := \sum_{g \in G, h \in G} \lambda_g \mu_h(gh) = \sum_{j \in G} \left(\sum_{gh=j} \lambda_g \mu_h \right) j.$$

This multiplication is associative, k-bilinear, distributive and $1|_{k[G]} = e$. In addition, (*) is satisfied.

1.2 Quivers - Basics

Definition 1.2.1. A quiver is a "directed graph". Formally, a quiver is a quadruple (Q_0, Q_1, s, t) consiting of sets Q_0 (vertices) and Q_1 (arrows) and maps $s: Q_1 \to Q_0, t: Q_1 \to Q_0$. For $\alpha \in Q_1$, we call $s(\alpha)$ the source of α and $t(\alpha)$ the target of α :

$$s(\alpha) \xrightarrow{\alpha} t(\alpha).$$

Example 1.2.2. i) $Q = (\{1\}, \emptyset, ...)$ is visualized as: 1

ii)
$$Q = (\{1\}, \{\alpha\}, ...)$$
 is visualized as $\begin{array}{c} & \\ 1 \end{array}$

iii)
$$Q = (\{1,2\}, \{\alpha, \beta\}, s(\alpha) = s(\beta) = 1, t(\alpha) = t(\beta) = 2)$$
 is visualized as $1 \xrightarrow{\alpha \atop \beta} 2$

Definition 1.2.3. Let Q be a quiver such that both Q_0 and Q_1 are finite.

i) Let $\ell \in \mathbb{Z}_{\geq 1}$. A **path** of length ℓ is a sequence $\alpha_{\ell}...,\alpha_1$ of arrows, such that $t(\alpha_i) = s(\alpha_{i+1})$ for $1 \leq i \leq \ell - 1$,

$$\circ \xrightarrow{\alpha_1} \circ \xrightarrow{\alpha_2} \circ \dots \xrightarrow{\alpha_\ell} \circ$$

Define Q_{ℓ} to be the set of all paths of length ℓ .

Let $p: \alpha_{\ell}...\alpha_1$ be a path. Define $s(p) := s(\alpha_1)$ and $t(p) := s(\alpha_{\ell})$.

Formally define Q_0 to be the set of all paths of length zero. Denote by ε_i for $i \in Q_0$ the constant path at i. ε_i is called a **lazy path**. We set $s(\varepsilon_i) = t(\varepsilon_i) := i$.

- ii) Let $p = \alpha_{\ell}...\alpha_{i}$ and $q = \beta_{m}...\beta_{1}$ be paths of length ℓ and m respectively, with $\ell, m \geq 1$. If t(p) = s(q), then set $q \circ p := \beta_{m}....\beta_{1}\alpha_{\ell}...\alpha_{1}$. This is a path of length $\ell + m$. For p a path of length ≥ 0 and ε_{i} a lazy path:
 - if t(p) = i, set $\varepsilon_i \circ p := p$,
 - if s(p) = i, set $p \circ \varepsilon_i := p$.

In all others cases, the composition is not defined.

iii) Define

$$Q_* := \bigcup_{\ell > 0} Q_\ell,$$

the set of all paths. Define the **path-algebra** kQ:

- As a k-module, $kQ := k^{(Q_*)}$.
- Multiplication: Let $a = \sum \lambda_p p$, $b = \sum \mu_p p$. Define

$$ab := \sum_{p,q \in Q_*} \lambda_p \mu_q(p \cdot q),$$

where

$$p \cdot q := \begin{cases} p \circ q, & \text{if it is defined, i.e } t(q) = s(p) \\ 0, & \text{else} \end{cases}.$$

The multiplication is associative (due to the associativity of the composition of paths) and k-bilinear by definition. In addition, distributivity and (*) are fulfilled.

• The identity is given by $\sum \varepsilon_i$.

Example 1.2.4. i) Q = 1, then kQ = k.

ii)
$$Q = 1 \leftarrow$$
 , then $Q_* = \{\alpha^n \mid n \geq 0\}$ and $kQ = k[t]$.

iii)
$$Q = 1 \xrightarrow{\frac{\alpha}{\beta}} 2$$
. Then $Q_* = \{\varepsilon_1, \varepsilon_2, \alpha^n, \beta^n \mid n \geq 0\}$ and

$$kQ = k\varepsilon_1 \oplus k\varepsilon_2 \oplus k\alpha \oplus k\beta.$$

A multiplication table is given by

	ε_1	ε_2	α	β
ε_1	ε_1	0	0	0
ε_2	0	ε_2	α	β
α	α	0	0	0
β	β	0	0	0

Lemma 1.2.5. Let k be a field, A a k-algebra and $n := \dim(A) < \infty$. Then there exists an injective homomorphism of k-algebras $\varphi : A \to M_n(k)$.

Proof. By choosing a basis of A, we get an isomorphism $\operatorname{End}_k(A) \cong \operatorname{M}_n(k)$. So it suffices to find an injective homomorphism of k-algebras $\varphi : A \to \operatorname{End}_k(A)$. Consider

$$\varphi: A \to \operatorname{End}_k(A), \ \varphi(a): A \to A, b \mapsto ab.$$

- $\varphi(a)$ is k-linear for all a by the distributivity in A and the condition (*).
- φ is k-linear by the distributivity in A and the condition (*).
- Let $a, a' \in A$. Then

$$\varphi(aa')(b) = (aa')(b) = a(a'b) = (\varphi(a) \circ \varphi(a'))(b).$$

Hence φ is indeed a homomorphism of k-algebras.

To show that φ is injective, let $a \in \ker \varphi$, hence ab = 0 for all $b \in A$. But in particular, 0 = a1 = a.

Definition 1.2.6. Let A be a k-algebra. Then the **opposite algebra** A^{op} is A (as a k-module), and the multiplication is defined as

$$a \cdot_{A^{\mathrm{op}}} b = b \cdot_A b.$$

Example 1.2.7. Let Q be a quiver, and define $Q^{\text{op}} := (Q_0, Q_1, s^{\text{op}}, t^{\text{op}})$, where $s^{\text{op}}(\alpha) := t(\alpha)$ and $t^{\text{op}}(\alpha) := s(\alpha)$. Then $kQ^{\text{op}} = k(Q^{\text{op}})$

1.3 Modules - Basics

Definition 1.3.1. Let A be a k-algebra. A **left** A-module M is a k-module M together with a map $A \times M \to M$, $(a, x) \mapsto ax$, such that:

$$a(x+y) = ax + ay \tag{L1}$$

$$(a+b)x = ax + bx (L2)$$

$$a(bx) = (ab)x (L3)$$

$$1_A x = x \tag{L4}$$

$$(\lambda a)x = \lambda(ax) = a(\lambda x),\tag{L5}$$

for all $a, b \in A$, $x, y \in M$ and $\lambda \in k$. If A is a left A-module, we denote this as ${}_AM$. A **right** A-module is defined analogous, where (L3) becomes (xa)b = x(ab). If A is a right A-module, we denote this by A_M .

Remark 1.3.2. A right A-module is the same as a left A^{op} -module.

Definition 1.3.3. Let A be a k-algebra, and M, N left A-modules. A **homomorphism of left** A-modules $f: M \to N$ is a k-linear map such that

$$f(ax) = af(x)$$

for all $a \in A$ and $x \in M$.

Define the set of all left A-algebra homomorphisms as

 $hom_A(M, N) := hom_A({}_AM, {}_AM) := \{f : M \to N \mid f \text{ is a homomorphism of left } A\text{-modules}\}.$

A homomorphism of left A-modules is an **isomorphism** if it is a bijective homomorphism of left A-modules.

Homomorphism of right A-modules are defined analogous.

Remark 1.3.4. Let M, N be left A-modules. Then

i) $hom_A(M, N)$ has a k-module structure given by

$$\lambda f: M \to N, \ x \mapsto \lambda f(x) = f(\lambda x).$$

This is well defined, as k lies in the center of A.

- ii) In general, $hom_A(M, N)$ has neither a left nor a right A-module structure.
- iii) f is an isomorphism if and only if there is a homomorphism of left A-modules $g:N\to M$ such that

$$g \circ f = \mathrm{id}_M$$
 and $f \circ g = \mathrm{id}_N$.

iv) Let $f:M\to M'$ and $g:N\to N'$ be homomorphisms of left A-modules. Then we obtain k-linear maps

$$f^* : \hom_A(M', N) \to \hom_A(M, N), \ h \mapsto h \circ f$$

 $g_* : \hom_A(M, N) \to \hom_A(M, N'), \ h \mapsto g \circ h.$

Remark 1.3.5. Let A be a k-algebra and M, N left A-modules.

i) A subset $M' \subseteq M$ is called a **submodule** if

(SM1)
$$0 \in M'$$

(SM2) $x, x' \in M' \implies x + x' \in M'$

(SM3)
$$a \in A, x \in M' \implies ax \in M'$$
.

In particular, submodules of A-modules are submodules of the underlying k-module, as follows using (L4)

ii) Let M be a submodule. Then the **quotient** has a left A-module structure in the obvious way. The projection

$$\pi:M\to M'$$

is a homomorphism of left A-modules.

- iii) A **left ideal** is left A-submodule of ${}_AA$. Similar, a **right ideal** is right A-submodule of A_A . For a left ideal $I \subseteq A$, the quotient A/I is a left A-module, but in general not an algebra.
- iv) A two-sided ideal $I \subset A$ is both a left- and a right-ideal of A. Then A/I has an algebra structure, by setting

$$(x+I)(y+I) := (xy) + I.$$

In general, this is only well-defined if I is a two-sided ideal of A.

v) Let $f: M \to N$ be a homomorphism of left A-modules. Then we obtain left A-modules:

$$\ker f$$
, $\operatorname{Im} f$, $\operatorname{coker} f := N/\operatorname{Im} f$, $\operatorname{coim} f := M/\ker f$.

In particular, f factors uniquely as

$$M \xrightarrow{\text{coim } f \xrightarrow{\exists !} \text{Im } f \xrightarrow{} N . \tag{F}$$

vi) Let $\{M_i \subset M \mid i \in I\}$ be a family of left A-submodules, for some index set I. Then

$$\bigcap_{i \in I} M_i \text{ and } \sum_{i \in I} M_i$$

are left A-modules.

vii) Let $x \in M$. Define

$$Ax := \{ax \mid a \in A\},\$$

which is a left A-submodule. Similar, for $x \in M_A$, define $xA := \{xa \mid a \in A\}$, which is a right A-submodule. For a subset $E \subset M$,

$$\sum_{x \in E} Ax = \bigcap_{\substack{E \subseteq M' \subseteq M \\ M' \text{ submodule}}} M'.$$

M is called **finitely generated**, if there are $x_1, ..., x_n \in M$, such that

$$M = \sum_{i=1}^{n} Ax_i.$$

viii) Let $\{M_i \mid i \in I\}$ be a family of left A-modules. Then

$$\prod_{i \in I} M_i := \{ (x_i)_{i \in I} \mid x_i \in M_i \}$$

is called the **product**, and

$$\bigoplus_{i \in I} M_i := \{ (x_i)_{i \in I} \mid x_i \in M_i, \ x_i \neq 0 \text{ for only finitely many } i \}$$

is called the **coproduct** .They are both left A-modules. The **projection**

$$\pi_j: \prod_{i\in I} M_i \to M_j, \ (x_i)_{i\in I} \mapsto x_j$$

and the inclusion

$$\iota_j: \bigoplus_{i\in I} x_j \mapsto (\delta_{ij}x_j)_{i\in I}$$

are morphism of left A-modules.

ix) A left A-module M is finitely generated if and only if there is a surjective homomorphism of left A-modules

$$A^n := \bigoplus_{i=1}^n A \longrightarrow M$$

for some $n \geq 1$. A is called **finitely presented**, if there is an exact sequence of left A-modules

$$A^m \longrightarrow A^n \longrightarrow M \longrightarrow 0$$

for some $m, n \geq 1$.

Proposition 1.3.6. Let

$$M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \longrightarrow 0$$
 (*)

and

$$0 \longrightarrow N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3 \tag{**}$$

be sequences of left A-modules.

- *i)* The following are equivalent:
 - a) (*) is exact.
 - b) For all left A-modules N, the sequence

$$0 \longrightarrow \hom_A(M_3, N) \xrightarrow{f_2^*} \hom_A(M_2, N) \xrightarrow{f_1^*} \hom_A(M, N)$$

is exact.

- *ii)* The following are equivalent:
 - a) (**) is exact.
 - b) For all left A-modules M, the sequence

$$0 \longrightarrow \hom_A(M, N_1) \xrightarrow{g_{1,*}} \hom_A(M, N_2) \xrightarrow{g_{2,*}} \hom_A(M, N_3)$$

is exact.

Proof. We will only prove $a) \Longrightarrow b$ of ii).

Lemma 1.3.7. Let K, M, N be left A-modules, and $\zeta : K \to M$, $\varphi : M \to N$ be homomorphisms of left A-modules, such that $\varphi \circ \zeta = 0$. Then there is a unique homomorphism $\overline{\zeta}$, such that

commutes.

• $g_{1,*}$ injective: Let $h \in \ker(g_{1,*})$. Then

$$g_1 \circ h: M \xrightarrow{h} N_1 \xrightarrow{g_1} N_2$$

and since g_1 is injective, it follows h = 0.

- Im $g_{1,*} \subseteq \ker g_{2,*}$: Since ** is exact, it follows that $g_2 \circ g_1 = 0$. For $h \in \operatorname{Im} g_{1,*}$ there exists an $h' : M \to N_1$ such that $h = g_1 \circ h'$, and hence $g_2 \circ h = g_2 \circ g_1 \circ h' = 0$.
- $\ker g_{2,*} \subseteq \operatorname{Im} g_{1,*}$: As (**) is exact, $\ker g_2 = \operatorname{Im} g_1$ holds. Let $h: M \to N_2 \in \ker g_{2,*}$, i.e. $g_2 \circ h = 0$:

$$0 \longrightarrow N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} N_3$$

By lemma 1.3.7, h factors uniquely through ker $g_2 = \text{Im } g_1$:

But since g_1 is injective, (F) implies that there is a uniquely determined isomorphism $\tilde{g}_1: N_1 \longrightarrow \operatorname{Im} g_1$.

Putting everything together, we obtain the following commutative diagram:

Setting $h' := \tilde{g}_1^{-1} \circ h'$, we obtain

$$g_1 \circ h' = \iota \circ \tilde{g}_1 \circ \tilde{g}_1^{-1} \circ \tilde{h} = \iota \circ \tilde{h} = h.$$

Proposition 1.3.8. Let A be a k-algebra. To give a left A-module structur is the same as to give a k-module structure V together with a homomorphism $\varphi: A \to \operatorname{End}_k(V)$ of k-algebras. To give a right A-module structure is the same as giving a k-module structure V together with a homomorphism $\varphi: A \to \operatorname{End}_k(V)^{\operatorname{op}}$.

1.4 Representation of quivers

Let k be a field and Q be a quiver.

Definition 1.4.1. A representation over k consists of

- a k-vector space X_i for all $i \in Q_0$,
- a k-linear map

$$X_{\alpha}: X_{s(\alpha)} \to X_{t(\alpha)}$$

for each $\alpha \in Q_1$

Example 1.4.2 (Continue example 1.2.4). i) Let $Q = \cdot$. Then a representation of Q is simply a k-vector space.

ii) Let Q = 1 . Then a representation of Q is a k-vector space V together with an endomorphism $\varphi \in \operatorname{End}_k(V)$:

$$Q = V \stackrel{f}{\longleftrightarrow}$$
.

iii) Let $Q = 1 \xrightarrow{\alpha \atop \beta} 2$, the **Kronecker Quiver**. Then a representation of Q is a pair of vector spaces V, W and two linear maps $f, g \in \text{hom}_K(V, W)$:

$$Q = V \xrightarrow{f \atop q} W$$

Definition 1.4.3. Take X, Y to be two representations of Q over k. A homomorphism of representations $f: X \to Y$ is a tupel $(f_i)_{i \in Q_0}$ of linear maps $f_i: X_i \to Y_i$, such that for all

 $\alpha \in Q_1$ the diagram

$$\begin{array}{ccc} X_{s(\alpha)} & \xrightarrow{f_{s(\alpha)}} & Y_{s(\alpha)} \\ X_{\alpha} \downarrow & & \downarrow Y_{\beta} \\ X_{t(\alpha)} & \xrightarrow{f_{t(\alpha)}} & Y_{t(\alpha)} \end{array}$$

commutes.

Example 1.4.4 (Continue example 1.4.2). i) Homomorphisms of representations are k-linear maps $X \to Y$.

ii) Homomorphisms of representations (V,φ) and (W,ψ) are k-linear maps $f:V\to W,$ such that

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} & W \\ \varphi \Big\downarrow & & \Big\downarrow \psi \\ V & \stackrel{f}{\longrightarrow} & W \end{array}$$

commutes

iii) Homomorphisms of representations (V_1, V_2, A, B) and (W_1, W_2, C, D) are pairs (f_1, f_2) of linear maps $f_1: V_1 \to W_1$ and $f_2: V_2 \to W_2$, such that $A \circ f_1 = f_2 \circ A$ and $B \circ f_1 = f_2 \circ B$.

Definition 1.4.5. An **isomorphism of representations** $f: X \to Y$ is a homomorphism of representations, such that there exists $g: Y \to X$ homomorphism of representations satisfying

$$g \circ f = \mathrm{id}_X$$
 and $f \circ g = \mathrm{id}_y$.

An isomorphism of representations is a homomorphism of representations such that each map f_i is bijective.

End of Lecture 2

INDEX

```
algebra, 1
    opposite, 4
arrows, 2
center, 1
coproduct
    of A-modules, 7
finitely generated, 6
finitely presented, 7
group algebra, 2
homomorphism\\
    of A-algebras, 5
    of k-algebras, 1
    of representations, 9
ideal, 6
module
    over an algebra, 4
opposite
    algebra, 4
path, 3
    lazy, 3
path-algebra, 3
product
    of A-modules, 7
quiver, 2
    representation, 9
quotient
    of an A-module, 6
representation
    quiver, 9
source, 2
subalgebra, 2
submodule
    of A-module, 5
target, 2
vertices, 2
```