

SAM Format

- SAM = Sequence Alignment/Map format
- Tab delimited plain text
- Store large nucleotide sequence alignments
 - Alignment of every read
 - Including gaps, SNPs and structural variants
 - Pairing of reads
 - Can record more than one alignment location in the genome
 - Stores quality values
 - Stores information about duplication

SAM Format

Strengths

- Flexible
- Useful for operations on very large sequences
- Extremely detailed documentation
 - https://github.com/samtools/htsspecs/blob/master/SAMv1.pdf
 - Manipulations can be done with the software samtools

SAM - Header

- Structure
 - Optional Header at top of file
 - Alignmentinformation

@
@
@
@
@
@
Read Info
Read Info

Read Info

SAM - Header

- Header lines start with @ symbol
- Always at top of file
- Contain lots of information about what was mapped, what it was mapped to, and how (metadata)
 - the version information for the SAM/BAM file
 - whether or not and how the file is sorted
 - information about the reference sequences
 - any processing that was used to generate the various reads in the file
 - software version

Simple Header

```
@HD = first line
       VN = version of SAM format
                        SO = sort order (this is sorted by coordinates)
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
@SQ = reference sequence
       SN = Sequence reference Name
                         LN = sequence reference length
```

Decipher header information: https://samtools.github.io/hts-specs/SAMv1.pdf

Alignment Line

- Below the headers are the alignment records
- Tab-delimited fields
- 1 QNAME Query template/pair NAME
- 2 FLAG bitwise FLAG
- 3 RNAME Reference sequence NAME
- 4 POS 1-based leftmost POSition/coordinate of clipped sequence
- 5 MAPQ MAPping Quality (Phred-scaled)
- 6 CIGAR extended CIGAR string
- 7 MRNM Mate Reference sequence NaMe (`=' if same as RNAME)
- 8 MPOS 1-based Mate POSistion
- 9 TLEN inferred Template LENgth (insert size)
- 10 SEQ query SEQuence on the same strand as the reference
- 11 QUAL query QUALity (ASCII-33 gives the Phred base quality)
- 12+ OPT variable OPTional fields in the format TAG:VTYPE:VALUE

Lets unpack this alignment line, taken from a SAM file:

Query name

SRR030257.2000020

			Bit		Description
			1	0x1	template having multiple segments in sequencing
			2	0x2	each segment properly aligned according to the aligner
			4	0x4	segment unmapped
Fiel	7	2 •	8	0x8	next segment in the template unmapped
1 101	. u	~ •	16	0x10	SEQ being reverse complemented
Flag			32	0x20	SEQ of the next segment in the template being reverse complemented
1 1 4 9)		64	0x40	the first segment in the template
	_		128	0x80	the last segment in the template
			256	0x100	secondary alignment
83			512	0x200	not passing filters, such as platform/vendor quality controls
0.5			1024	0x400	PCR or optical duplicate
			2048	0x800	supplementary alignment

$$64 + 16 + 2 + 1$$

- 1 = Read is paired
- 2 = Read mapped in proper pair
- 16 = Read mapped to reverse strand
- 64 = First in pair

Look up a SAM flag: https://broadinstitute.github.io/picard/explain-flags.html

Reference sequence name (useful especially if you have multiple chromosomes)

gi 254160123 ref NC_012967.1

Position- 1-based leftmost mapping POSition of the first matching base

3295752

Mapping Quality

- equals -10 log₁₀ Pr{mapping position is wrong}, rounded to the nearest integer
- Same as phred!
- Probability of 99.9% correct = map quality of 30
- Probability of 0% correct = map quality of 0
- value 255 indicates that the mapping quality is not available.

.000001% probability wrong

CIGAR String

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

36M 8S28M

36 nucleotides match (perfect match)

8S28M 8 nucleotides clipped, 28 match

More CIGAR

Aligning these two:

Position:

CIGAR:

5 3M1I3M1D5M

Reference sequence for the next read in the template

- For a forward read, this is the reference where the reverse read maps
- For a reverse read, this is the reference where the forward read maps

= reverse read maps on the same reference

Position where the next read maps

3295706

(Forward read mapped at 3295752. Remember the forward read mapped to the reverse strand)

Observed template length
From leftmost base to rightmost base
Negative if this read is the rightmost read

Sequence of the read

TGCTGGCGGCGATATCGTCCGTGGTTCCGATCTGGT

Quality of the read

?%<91<?>>??AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Optional MORE information

TAG:TYPE:VALUE format

```
XT:A:U NM:i:0 SM:i:37 AM:i:37 X0:i:1
```

X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:36

Anything with an X is specified by the user or by the mapping software, and is not part of the SAM spec.

Decipher the last fields

```
One of Unique/Repeat/N/Mate-sw
XT:A:U
NM:i:0
         Edit distance to the reference
SM:i:37
         Template-independent mapping quality
AM:i:37
         Smallest template-independent mapping
      quality of other segments
X0:i:1
         Number of best hits
X1:i:0
         Number of suboptimal hits found by BWA
XM: i:0
         Number of mismatches in the alignment
         Number of gap opens
XO:i:0
XG:i:0
         Number of gap extentions
         String for mismatching positions
MD: Z: 36
```

SAM

Example sam with one read:

```
@SQ SN:gi|254160123|ref|NC 012967.1| LN:4629812
@PG ID:bwaPN:bwa VN:0.7.12-r1039
  CL:/lustre/projects/rnaseq_ws/apps/bwa-0.7.12/bwa
sampe ../raw data/NC 012967.1.fasta aln SRR030257 1.sai
aln_SRR030257_2.sai ../raw_data/SRR030257_1.fastq
../raw data/SRR030257 2.fastq
SRR030257.1 99 gi|254160123|ref|NC 012967.1| 950180
  60\ 36M = 950295 \ 151
  TTACACTCCTGTTAATCCATACAGCAACAGTATTGG
  AAA;A;AA?A?AAAAA?;?A?1A;;????566)=*1 XT:A:U
  XG:i:0 MD:7:32C3
```

BAM Format

- Sister format to SAM
- BAM Binary version of SAM
- compressed BGZF (Blocked GNU Zip Format) a variant of GZIP (GNU ZIP),
- files are bigger than GZIP files, but they are much faster for random access
- Can index and then look up information embedded in the file with decompressing the whole file
- up to 75% smaller in size
- Not readable by people

```
^_<8b>^{\text{h}}D<@<e^@<e^@<e^@<e^BC^B<e^HAuPANÃO<e^Pt/ ç<Up<80>1:-<00)@¥<V)<84>B<PWËJ<9c>bDl<br/>aX10ffg´ · 7<0<br/>K¶<e ÜmàkÍ<br/>YYÂc<91> · ÖúN<br/>CYUV60°CùA<br/>YCXÕ|}Åò¾ÈÊý<br/>VÞOØ<8b>u;<br/>AYÏÒ<9c> , [Á»<br/>AN1<84> - j<9c>è<br/>BÂ[<94> ìU <87>¾_!<8c>£<97>&´<br/>A<br/>SC>£<97>&´<br/>A<br/>A<br/>A<br/>A<br/>A<br/>A<br/>A<br/>A<br/>A<br/>A<br/>B<br/>B<br/>B<br/>C<br/>B<br/>B<br/>B<br/>C<br/>B<br/>B<br/>B<br/>B<br/>B<br/>C<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B<br/>B
```

CRAM

- Introduced in 2011 by EMBL/EBI
- Even smaller and more efficient than BAM files
- Rare

EBI has a cram toolkit https://www.ebi.ac.uk/en a/software/cram-toolkit

Fritz, Markus Hsi-Yang, et al. "Efficient storage of high throughput DNA sequencing data using reference-based compression." Genome research 21.5 (2011): 734-740.

