La bobine

Définition

La bobine est un composant électronique illustré sur la figure ci-dessous.

Le comportement de la tension aux bornes de la bobine en fonction du courant qui le traverse est régi par la relation suivante :

$$u(t) = L rac{di(t)}{dt}$$
 où L est l'inductance de la bobine, exprimée en Henry (H).

Remarque

L'expression $u(t)=L\frac{di(t)}{dt}$ impose que le courant qui traverse une bobine ne peut pas subir de discontinuité (sinon la tension à ses bornes à cet instant serait infinie).

Energie emmagasinée par une bobine

Fondamental

La bobine se comporte comme un réservoir d'énergie électrique. L'énergie emmagasinée w(t) est :

$$w(t) = rac{1}{2} \cdot L \cdot i^2(t)$$

Le courant emmagasiné dans une bobine ne peut pas être discontinu en régime variable car cela imposerait une tension d'amplitude infinie à ses bornes.

Conditions initiales et finales pour la bobine

Fondamental

Si les conditions initiales sont nulles. Le courant qui traverse la bobine ne peut pas subir de discontinuité. Par conséquent, le courant qui traverse la bobine est nul.

• En régime établi (conditions finales), le courant emmagasiné dans la bobine est maximal et constant. Par conséquent, la tension aux bornes de la bobine ($L rac{di}{dt}$) est nul.

Stéphanie Parola - HILISIT - Université Montpellier (a) BY-NG-SR