29 The diagram shows an electron, with charge e, mass m, and velocity v, entering a uniform electric field of strength E.

The direction of the field and the electron's motion are both horizontal and to the right.

Which expression gives the distance x through which the electron travels before it stops momentarily?

$$A \quad x = \frac{mv}{F}$$

$$\mathbf{B} \quad x = \frac{mv}{F_{\mathbf{Q}}}$$

$$\mathbf{C} \quad x = \frac{mv^2}{2F}$$

A
$$x = \frac{mv}{E}$$
 B $x = \frac{mv}{Ee}$ **C** $x = \frac{mv^2}{2E}$ **D** $x = \frac{mv^2}{2Ee}$

30 Which amount of charge, flowing in the given time, will produce the largest current?

	charge/C	time/s
Α	4	1/4
В	4	1
С	1	4
D	1 /4	4

Space for working