Problema 1

1)
$$x_1 = \frac{(83 - 3n)\lambda}{6}$$
; $-28 \le n \le 27$

2)
$$\Psi = 2\Psi_0 \operatorname{sen}(\omega t + \pi/3)$$
 (amplitud $2\Psi_0$, fase inicial $\pi/3$)

Problema 2

1)
$$\frac{\lambda}{12}$$
 de *B*, entre F_1 y *B*.

2)
$$\Psi_B = a \operatorname{sen} \omega t$$

Problema 3

1)
$$\vec{v}_O = 51(-3\vec{u}_x + 4\vec{u}_y) \,\mathrm{m \, s}^{-1}$$

2)
$$\Delta S = 20 [3(\log 3) - 1] dB \approx 8.6 dB$$

Problema 4

1)
$$T = mLf^2$$

2) A distancias
$$\frac{L}{12}$$
, $\frac{5L}{12}$, $\frac{7L}{12}$ y $\frac{11L}{12}$ de un extremo.

Problema 5

1)
$$v = 1200 \text{ m s}^{-1}$$

2)
$$\Psi_C = \frac{A_0\sqrt{3}}{3}\cos\left(3600\pi + \frac{\pi}{3}\right)$$

Problema 6

1)
$$\Psi_2 = b \cos \left(4000\pi t - \frac{25\pi}{2} x_2 + \frac{5\pi}{6} \right)$$

2)
$$\Psi_A = 2b \operatorname{sen} (4000\pi t + \pi)$$
: Amplitud $2b$, fase inicial π .

3)
$$S_A - S_B = 20 \log 2 \, dB$$

Problema 7

$$L = 27 \,\mathrm{cm}$$

Problema 8

1)
$$\vec{v} = \frac{a\omega}{2} \operatorname{sen}(\omega t + \pi) \vec{u}_z$$

2)
$$z = \frac{1}{25}$$
 m, $\frac{2}{25}$ m, $\frac{4}{25}$ m, $\frac{5}{25}$ m, $\frac{7}{25}$ m, $\frac{8}{25}$ m, $\frac{10}{25}$ m,

Problema 9

1)
$$\Delta S = 10\log\frac{9}{7}\,\mathrm{dB}$$

2)
$$\Psi_B = A\sqrt{7}\cos(\omega t + \alpha)$$
, $\sin\alpha = \frac{1}{2\sqrt{7}}$, $\cos\alpha = -\frac{3\sqrt{3}}{2\sqrt{7}}$

1

Problema 10

- 1) Tercer armónico.
- 2) $\frac{L}{10}, \frac{3L}{10}, \frac{5L}{10}, \frac{7L}{10} \text{ y } \frac{9L}{10}$

Problema 11

- $1) \quad \left| \phi_2 \phi_1 \right| = \pi$
- 2) $\Psi = \frac{1}{3}\Psi_0 \operatorname{sen}\left(2\pi f t + \frac{4\pi}{5}\right)$

Problema 12

- 1) $kg m^{-1}s^{-2}$
- 2) $\frac{L}{9}, \frac{L}{3}, \frac{5L}{9}, \frac{7L}{9}, L$
- 3) Quinto armónico.

Problema 13

$$\frac{I_r}{I_i} = \frac{1}{36}$$

Problema 14

- 1) x = 0 es el extremo libre. La varilla oscila en el 6º armónico.
- 2) $v = 400\pi\sqrt{2}\operatorname{sen}(200\pi t)\operatorname{cm s}^{-1}$: $v_0 = 400\pi\sqrt{2}\operatorname{cm s}^{-1}$, $\varphi = 0$
- 3) x = (5+10m) cm, $0 \le m \le 10$

Problema 15

- $1) \quad \lambda = \frac{16}{11} \, \mathrm{m}$
- 2) $\frac{\Psi_{01}}{\Psi_{02}} = \frac{4}{5}$

Problema 16

- 1) $\Delta S = 10 \log 3 \, dB$
- 2) $\Psi = \frac{1}{2} \Psi_0 \cos(\omega t + \pi)$

Problema 17

- 1) $\frac{I_r}{I_i} = \frac{9}{25}$
- $2) \quad (\Delta S)_{m\acute{a}x} = 40 \log 2 \, dB$
- $3) \quad \frac{5\lambda}{2} < d < 3\lambda$

- **Problema 18**1) $r_{1A} = 3 \text{ m}$; $\delta = \pi \text{ rad}$
- 2) $\varphi_2 \varphi_1 = \frac{\pi}{4} \text{ rad}$ 3) $d = \frac{2}{5} \text{ m}$