

SECI 1013 - DISCRETE STRUCTURE

SECTION 02

SEM I 2023/2024

ASSIGNMENT 3

LECTURER: DR NOORFA HASZLINNA BINTI MUSTAFFA

NAME	MATRIC NUMBER
NUR FIRZANA BINTI BADRUS HISHAM	A23CS0156
DAMIYA AINA BINTI BASIR ABD SHAMMAD	A23CS0220
NURUL ADRIANA BINTI KAMAL JEFRI	A23CS0258

Question 1

- q. How many students in a class to guarantee that at least two students received the same score on the final exam. If the exam is graded on scale from 0 to 100 points. (5 marks)
- b. What is the minimum number of students required in a Structure Discrete class So that at least six students will receive the same letter grade (A,B,C,D or F).

 (5 marks)
- q. pigeonhole, k = Score grade = 100 pigeon, n =

at least 2 Students =
$$\frac{n}{m}$$

Let 1.01 =
$$\frac{n}{100}$$

: 102 students in a class

pigeon, n =

at least 6 students =
$$\frac{n}{m}$$

Let 5.01 =
$$\frac{n}{5}$$

.. minimum number of students required in 9 Discrete structure class is 26 students.

Question 2

The following table gives information on mobile phone sold by a certain store:

	Percentage of customer purchasing	of those Who purchase, percent- age who purchase extended warranty
Brand 1	70	20
Brand 2	30	40

A purchaser is randomly selected/among all those bought a mobile phone from same store. Determine the probability that:

9. customer purchased Brand 1

- b. PCB) = customer purchased Brand 2.PCB) = 0.3
- c. P(W) = Customer purchased extended warranty.
 P(WIA) = 0.2

d.
$$P(A \cap W) = P(A) \cdot P(W \mid A)$$

= 0.7 \cdot 0.2
= 0.14

e. P(Bnw)

$$P(W|B) = 0.4$$

 $P(BNW) = P(B) \cdot P(W|B)$
 $= 0.3 \cdot 0.4$
 $= 0.12$

f. $P(w) = P(w|A) \cdot P(A) + P(w|B) \cdot P(B)$ = (0.2)(0.7) + (0.4)(0.3)= 0.26

9. P(A) =
$$\frac{P(A \cap W)}{P(W)}$$

= $\frac{0.14}{0.26}$
= 0.5385

9) parallel edge --> edges that share one vertex

Question 4

Let G = {V, E} be a graph. An undirected graph having V ={v1, v2, v3, v4, v5} and E = {a, b, c, d, e, f}. Where $a = \{v1,v2\}, b = \{v1,v3\}, c = \{v2,v4\}, d = \{v1,v4\}, e = \{v3,v4\} \text{ and } f = \{v3,v5\}.$

Find the degree of each vertex.

(5 Marks)

. eage d is a loop.

QUESTION 6

	6 determine whether graph Y and 7 below are isomorphic. If it is, find their			
	adjane adjacency matrix.			
	(+ 127 1) 6- 101 topology			
	B A			
) E			
	F OI			
	0			
2				
0				
0	graph 1 and graph 2 are proven to be isomorphic to each other.			
0	graph 1 and graph 2 are proven to be isomorphic to each other.			
-	graph 1 and graph 2 are proven to be isomorphic to each other. A B C D E F 6 5 4 3 2 1			
-	## graph 1 and graph 2 are proven to be isomorphic to each other. A B C D E F 6 5 4 3 2 1 A O 1 0 1 0 0 6 0 1 0 1 0 0			
	## graph 1 and graph 2 are proven to be isomorphic to each other. A B C D E F 6 5 4 3 2 1 A O 1 0 1 0 0 B 1 0 0 1 1 1 5 1 0 0 1 1 1			
	## graph 1 and graph 2 are proven to be isomorphic to each other. A B C D E F 6 5 4 3 2 1 A O 1 0 1 0 0 0 6 0 1 0 1 0 0 B 1 0 0 1 1 1 5 1 0 0 1 1 1 C 0 0 0 0 1 1 1 = 4 0 0 0 1 1 1			

QUESTION 7

(7) consid	Her an undirected graph with vertices $V = \{p,q,r,s,t\}$ and edges
E= }	21, 22, 23, 24, 25, 26, 27 }.
	p,q3, e2= {q,r3, e3= {r,s3, e4= {s,t3, e5= {t,p3, e6= {q,s3, e7= {r,t3}}}
	i) find paths from p to t.
,	ei (p,es,t), (p,e1,q,e2,r,e3,s,e4,t)
25/	9 (p,e1,q,e6,s,e4,t) (p,e1,q,e2,r,e7,t) and
t	eb/20 (0.01 0.01 c. 02 v. 07 c)
e4\	r if) find trails from p to t.
3	es $\rightarrow (\rho, e_5, t), (\rho, e_1, q, e_2, r, e_3, s, e_4, t)$
	(p,e1,q,e6,s,e4,t) (p,e1,q,e2,r,e7,t)
	(p, e1, q, e6, s, e3, r, e7, t), (p, es, t, e1, r, e2, q, e6, s, ex,
	(p,e5,t,e7,r,e3,5,e4,t).

iii) Shortest \rightarrow (p, e5, t)
longest → (p,e1,q,e2,r,e3,s,e4,t)
iv) shortest trails -> (p, es, t)
longest trails -> (p, es, t, e7, r, e2, q, e6, s, e4, t)