TOP COMPARTMENT

LOWER COMPARTMENT

FIGURE 1

The first that the first that

Peptide 3 (µM)

FIGURE 3

FIGURE 4

Figures

TARGET FOR VIRAL ENTRY (HIV VIRUS)

COEN(Me)2

COEN(Me)2

COEN(Me)2

Florine 8

and the first first first that the first first first first first first first first

Figorie X

FIGURE X

Anny trees and the first trees of the first first trees.

The same of the sa

FIGURE B1 Z 11

Codon Amino Acid

Phe

UUU, UUC

UCU, UCC, UCA, UCG, AGU, AGC

Ser Tyr

UAU, UAC

Cys

UGU, UGC

Leu

UUA, UUG, CUU, CUC, CUA, CUG

Trp

UGG

Pro

CCU, CCC, CCA, CCG

His

CAU, CAC

Arg

CGU, CGC, CGA, CGG, AGA, AGG

Gln

CAA, CAG

Ile

AUU, AUC, AUA

Thr

ACU, ACC, ACA, ACG

Asn

AAU, AAC

Lys

AAA, AAG

Met

AUG

Val

GUU, GUC, GUA, GUG

Ala

GCU, GCC, GCA, GCG

Asp

GAU, GAC

Gly

GGU, GGC, GGA, GGG

Glu

GAA, GAG

Hard the same water than the same water ij 洼 1

ıD
#:: <u>#</u>
in in
12.2
in in
51
\$
ıέ
į.Ł
1
\$ ⁵ = 5

こうかん こうかんけん ないかいかい かんかん かんかん かんかん かんかん かんかん かんかん しんかんしょ あんかん しゅうしゅう

Original	Exemplary	Preferred
Residue	Substitutions	Substitutions
Ala (A)	val; leu; ile	val
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; lys; arg	gln
Asp (D)	glu	glu
Cys (C)	ser	ser
Gln (Q)	asn	asn
Glu (E)	asp	asp
Glu (L) Gly (G)	pro	pro
• •	asn; gln; lys; arg	arg
His (H)	leu; val; met; ala; phe	leu
Ile (I)	norleucine	
Leu (L)	norleucine; ile; val; met;	ile
Leu (L)	ala; phe	
Lys (K)	arg; gln; asn	arg
Met (M)	leu; phe; ile	leu
Phe (F)	leu; val; ile; ala	leu
Pro (P)	gly	gly
• •	thr	thr
Ser (S)	ser	ser
Thr (T)	tyr	tyr
Trp (W)	trp; phe; thr; ser	phe
Tyr (Y)	ile; leu; met; phe; ala;	leu
Val (V)	norleucine	

FIGURE 14

Peptide 3

```
LFL peptide 3(1-12)[MCP-1]: Residues 50-61 of mature hMCP-1
    E-I-C-A-D-P-K-Q-K-W-V-Q
    L amino acids
    LFL peptide 3(3-12)[MCPI] Residues 52-61 of mature hMCP-1
    C-A-D-P-K-Q-K-W-V-Q
    L amino acids
     LFL peptide 3(1-6)[MCP1]: residues 50-55 of mature hMCP-1
     E-I-C-A-D-P
     L amino acids
     LFL peptide 3(7-12)[MCP1]: Residues 56-61 of mature hMCP-1
      K-Q-K-W-V-Q
L amino acids
      LFL Leu<sub>4</sub>peptide3(1-12)[MCP-1]
1
E-I-C-L-D-P-K-Q-K-W-V-Q
L amino acids
1:4
      LFL Ser<sub>7</sub>peptide3(1-12)[MCP-1]
E-I-C-A-D-P-S-Q-K-W-V-Q
      L amino acids
Ū
      LFL Ile<sub>11</sub>peptide3(1-12)[MCP-1]
 1
 E-I-C-A-D-P-K-Q-K-W-I-Q
 L amino acids
       LFL Leu<sub>4</sub>Ile<sub>11</sub>peptide3(1-12)[MCP-1]
       E-I-C-L-D-P-K-Q-K-W-I-Q
       L amino acids
        CFL Cys<sub>0</sub>Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub>peptide3(1-12)[MCP-1]
        C-E-I-C-L-D-P-K-Q-K-W-I-Q-C
        L amino acids
        LRD Leu<sub>4</sub>Ile<sub>11</sub> peptide 3(1-12)[MCP-1]
        q-i-w-k-q-k-p-d-l-c-i-e
        D amino acids
```

 $CRD\ Cys_0Leu_4Ile_{11}Cys_{13}peptide\ 3(1-12)[MCP-1]$ c-q-i-w-k-q-k-p-d-l-c-i-e-c D amino acids LFL $Ser_7Glu_8Glu_9peptide3(1-12)[MCP1)$:Residues 50-61 of mature hMIP1 α E-I-C-A-D-P-S-E-E-W-V-Q L amino acids LFL peptide3(10-12)[MCP-1] W-V-Q L amino acids CFL Cys₀Cys₄ peptide3(10-12)[MCP-1] C-W-V-Q-C L amino acids LRD peptide3(10-12)[MCP-1] q-v-w D amino acids LFL peptide3(7-9)[MCP-1] K-Q-K 4.00 Marie L amino acids 計上 LRD peptide3(7-9)[MCP-1] k-q-k D amino acids 1 ij LFL peptide $3(7-9)[MIP1\alpha](MIP1\alpha$ specific inhibitor) :4 := S-E-E L amino acids LRD peptide3(7-9)[MIP1 α] (MIP1 α specific inhibitor) e-e-s D amino acids LFL peptide3(7-9)[IL-8](IL-8 specific inhibitor) K-E-N L amino acids LRD peptide3(7-9)[IL-8](IL-8 specific inhibitor) n-e-k D amino acids

```
LFL peptide3(7-9)[SDF-1\alpha](SDF-1\alpha specific inhibitor)
    K-L-K
    L amino acids
    LRD peptide3(7-9)[SDF1\alpha] (SDF-1\alpha specific inhibitor)
     k-l-k
     D amino acids
     LFL Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide3(3-12)[MCP-1]
     L-D-P-K-Q-K-W-I-Q-C
     L amino acids
     CRD Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide3(3-12)[MCP-1]
      c-q-i-w-k-q-k-p-d-l-c
      D amino acids
      <sup>3</sup>H-Ala CRD-Leu₄Ile<sub>11</sub> Cys<sub>13</sub> peptide 3(3-12)[MCP-1](D-Ala attached to Asp residue of CRD-
      Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide 3(3-12)[MCP-1])
<sup>3</sup>H-L-Leu LRD Cys<sub>13</sub> peptide3(3-12)[MCP-1]
c-q-i-w-k-q-k-p-d-L-c
<u>},:</u>≟
1,
       D and L amino acids
LFL SES
į, <u>į</u>.
S-E-S
       L amino acids
ij
       LFL KKK
 į.
       K-K-K
 ļ, Ē
        L amino acids
 .
IJ
        LFL Cys<sub>4</sub> peptide3(10-12)[MCP-1]
        W-V-Q-C
        L amino acids
        LRD Cys<sub>4</sub> peptide3(10-12)[MCP-1]
         c-q-v-w
         D amino acids
         LFL Ile<sub>11</sub>Cys<sub>13</sub>peptide3(10-12)[MCP-1]
          W-I-Q-C
         L amino acids
```

LRD Cys₁₃Ile₁₁peptide3(10-12)[MCP-1] cqiw D amino acids LRD peptide3(7-12)[MCP-1] q-v-w-k-q-k D amino acids CFL Cys₀Cys₁₃peptide3(7-12)[MCP-1] C-K-Q-K-W-V-Q-C L amino acids CRD Cys₀Cys₁₃peptide3(7-12)[MCP-1] c-q-v-w-k-q-k-c D amino acids LFL peptide3(10-12)[RANTES] WVR L amino acids 1 Ü LRD peptide3(10-12)[RANTES] ı.£ rvw 13 D amino acids 1:22 LFL peptide3(10-12)[SDF-1] W-I-Q 5; L amino acids 1:3 Peptide 2 in E LFL peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 S-Y-R-R-I-T-S-S-K-C-P-K-E-A-V L amino acids CFL Cys₀Cys₁₆peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 C-S-Y-R-R-I-T-S-S-K-C-P-K-E-A-V-C

L amino acids

D amino acids

v-a-e-k-p-c-k-s-s-t-i-r-r-y-s

LRD peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1

CRD Cys₀Cys₁₆peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 c-v-a-e-k-p-c-k-s-s-t-i-r-r-y-s-c D amino acids

LFL peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β H-L-K-I-L-N-T-P-N-C-A-L-Q-I-V L amino acids

CFL Cys_0Cys_{16} peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β C-H-L-K-I-L-N-T-P-N-C-A-L-Q-I-V-C L amino acids

LRD peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β v-i-q-l-a-c-n-p-t-n-l-i-k-l-h

D amino acids

CRD Cys_0Cys_{16} peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β c-v-i-q-l-a-c-n-p-t-n-l-i-k-l-h-c

D amino acids

1

: =

Harrier Harris

i i

81

ı.£

: 4: LFL peptide $2(1-14)[MIP-1\alpha]$: Residues 28-41 of hMIP-1 α D-Y-F-E-T-S-S-Q-C-S-K-P-G-V

L amino acids

LRD peptide $2(1-14)[MIP1\alpha]$: Residues 28-41 of mature $hMIP1\alpha$ v-g-p-k-s-c-q-s-s-t-e-f-y-d

D amino acids

LFL peptide 2(1-16)[IL8]: Residues 27-42 of mature hIL8 E-L-R-V-I-E-S-G-P-H-C-A-N-T-E-I

L amino acids

LFL Peptide 2(1-10)[MCP-1]: Residues 28-37 of hMCP-1 S-Y-R-R-I-T-S-S-K-C L amino acids

LFL peptide 2(10-15)[MCP-1]: Residues 37-42 of hMCP-1 C-P-K-E-A-V L amino acids

LFL peptide 2(1-5)[MCP-1]: Residues 28-32 of hMCP-1 S-Y-R-R-I L amino acids

LFL peptide 2(6-10)[MCP-1]: Residues 33-37 of hMCP-1 T-S-S-K-C L amino acids

LFL peptide $2(1-9)[MIP-1\alpha]$: Residues 28-36 of hMIP-1 α D-Y-F-E-T-S-S-Q-C L amino acids

LFL peptide $2(9-14)[MIP-1\alpha]$: Residues 36-41 of hMIP-1 α C-S-K-P-G-V L amino acid

LFL Cys₀Ser₁₀Cys₁₆peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 C-S-Y-R-R-I-T-S-S-K-S-P-K-E-A-V-C L amino acids

CFL Cys₀Ser₁₀Cys₁₆peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 C-S-Y-R-R-I-T-S-S-K-S-P-K-E-A-V-C

L amino acids

10

1:4

:] í:£ 1.2 13 HJ LRD Cys₀Ser₁₀Cys₁₆peptide 2(1-15)[[MCP-1]: Residues 28-42 of hMCP-1 c-v-a-e-k-p-s-k-s-s-t-i-r-r-y-s-c

D amino acids

CRD Cys₀Ser₁₀Cys₁₆peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 c-v-a-e-k-p-s-k-s-s-t-i-r-r-y-s-c

D amino acids

_	
-	
~	
_	

Sequence	DARC Binding	THP- MCP-1	THP-1 Migration 1 MIP-1a	SDF-10
		શ	ns	S
Syrritsskcpkeav	350 files	98	DS	ns Tus
vaekpcksstirrys	MI 81	TIS	NS	SI
Syrritssk	22µM	SU.	SU	ns
SYRRI	>100µ×	St	NS	US.
TSSKC	Mupo!<	SU	su.	ns
CPKEAV	>100µM	Muor	40µM	Mul
HLKILNTPNCALOIV	Mtl 61	SE	TIS	STI .
DYFETSSQCSKPGV	Mµ001<	દ	เกร	ns
vgpkscqsstefyd	Wrl001<	ŞU	ns	us
DYFETSSQC	Mu001<)\$	us Us	25
CSKPGV	M1001<			

Figure 15

		•							
			ي ال	MCP-1	MIP-Ia	RANTES	SDF-1a	871	Other Data
Sequence	Mal We.		Binding	ED-50	ED-50	ED-50	BD-50	ED-50	
		٠	BD-S0						
			74.50	2	30	١	SI	SIJ	
AOPDAINAPYTCC	1302		Nomin					•	
SYRRITSSKCPKEAV	1725		100nM	SU	SC C	١.			
				:					
			1						
			M1(8)	ris 1	ns		ZI	•	
vaekpcksstirrys	27.1		M161 .	METION	40µM		7µM		
HIKTIATPNCALOIV	1677.3						ž	•	
	1549		×100µM	, P.S	SE	•	2		
DYFETSSOCSKPGV			V100LM	SII	ПS	,	SÚ		
vgpkscgsstefyd	1549		74.00		su		SD.	v	
CVRRITISSKC	1097.4		7777N	<u> </u>					_
- Kanaa	645.8		>100µM	· us	SI SI		§2		
CENTRAL	603 0	:	>100µM	us	SE.		TUS .	1	-
SYRRI	2000		M1001<	SU .	ПS	-	ns.	1	
TSSKC	525.7		V1001M	SII ·	SU	•	tts		
DYFETSBOC	1079.2						<u>د</u>	٠	
i E Carlo	589.8		>100µM	(IIS	SU .	,	OI .		
CSRFOV									

Floruse 16

13.5µM 10µM					9µм 8.5µМ				18.5µМ 16µМ	S SuM SuM	}	2.5µM 3µM	4µM 3µM	Zu.Z	, tron	4µM 3.5µM	2.25µM IµM	<u> </u>	4-	>100µМ >100µМ	> [00µM .	
13.				1				:			1-1-1		,		+		1. SuM		>100µM	>100µM	>100uM	┥
76	wric'/		•		6.5µM		1	•	Minc	3	ShiM	My .	Z SuM	222	35µM	2iuM	7 S.I.M	WINC: /	>100µM	(Milos 7	
	Wing Wing				RuM	i i i i	Mu001	Muor .	Manyo	windez	7µM	ВиМ	No.	· /huv	S.SµM	Mirc		Sum	7µM	>100uM	┿~	
_	6 kiM			•		1	3µM	- Mild	The state of the s	•	15µM			25µM		3.68	Achra	1µM	SouM	Miloni	Independent	
<u></u>							,		·			:										
	1445					1202	2000	1302	1305	647		816	1487	1404		1459	1501	431.5		464.5	399.4	
	CapiaCada	ELCADENGAM				OMONOAGO	Chorage	cgwwkgkpdac	cowkakpdac		BICADE	KOKWVQ	- RICLDPKQKWVQ		RICADPSORWVQ	BICADPKOKWIQ	STCT.DPKOXWIQ		MVQ	KQK	388	

Signature Sign										_)		<u>ا</u>
S16.6 S16.		•				Note 2									prior to MC
S16.6 S16.		WITOOI >				•		,		· 	1	. •		٠.	adjunian OF
S16.6 S16.6 S10.0µM S10.0µM		,		350nM		1		•	1		.				,
S16.6 S16.6 S10.0µM S10.0µM	_	>100µM				,		٠ ,					-	;	•
S16.6 1359		>100uM			_						,				
S16.6 1359		Janovi -	zardoo! <				>100µm		10nM		>100µM		·		
wkgkpdlc wkgkpdlc wkgkpdlc			MH001 <		>100µM		1		1		Minor	1000	Migory	1,22	
wkgkpdlc wkgkpdlc wkgkpdlc									•						
KLK cqiwkqkpdlc cqiwkqkpdlc cqiwkqkpdlc			516.6			1359		1448		1472.2		1573		8 609	
							COLWANNE		COLWANDA		cqiwkgkpdlc		SES		XXX

Note I:In Vivo effect. Abolishes macrophages in an in vivo rat intradermal study induced by 500ng MCP-1. 300µg IV and 10 mg SQ 30 minutes prior to MC D-abouved to D-asp ("d") is attached to D-asp ("d") is attached to D-asp ("d"). Subjected to D-asp ("d") is attached to D-asp ("d") is attached to D-asp ("d").

				Study Design Tal	ole		
Group	Animal #	7	RX	RX dose/route T=-30 min	Dermal Agonist	Dermal AgonistDo se (ng in 50 ul) T=0	Hour of Sacrifice
1	1,2,3	3	PB\$	200 ut: iv 200 ut: SQ-back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
2	4,5,6	3	NR58-3,14.3	3 ug: iv 100 ug: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
3	7,8,9	3	NR58-3.14.3	30 ug: iv 1 mg: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
4	10,11,12	3	NR58-3,14.3	300 ug: iv 10 mg: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24

Figure 17