Dependable Hybrid Systems Design: a Refinement Approach

Zheng Cheng Dominique Méry

Nov, 2020

Where were we?

- Overview of hybrid system
- Review of calculus
- Review of Event-B
- Develop theories in Event-B

Outlines

Design Hybrid Systems in Event-B Smart Heating System Refinement Strategy for Hybrid System Design

Smart Heating System

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- \blacktriangleright Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- ▶ Safety: $T_{min} \le T \le T_{max}$

Refinement Strategy for Hybrid System Design

Lab Material

- https://github.com/veriatl/LORIA_WEEK2
- ▶ Import theory-axiom-real to Rodin, and deploy this theory
- ► Import **ex-heating-maintainer-event** to Rodin

Smart Heating System (Specification M0)

Smart Heating System (Specification M0)

- Generic hybrid system state trajectory
- Generic safety property
- Big-step semantics

Smart Heating System (Safety M1)

Smart Heating System (Safety M1)

- Concrete system state trajectory
- Concrete safety property
- Big-step semantics refined
- Important proof obligations: guard preservation

Smart Heating System (Cycle M2)

Smart Heating System (Cycle M2)

- Time pointer
- Refined system state trajectory
- Refined safety property
- Small-step semantics
- Important proof obligations: invariant preservation

Smart Heating System (Close-loop M3)

Smart Heating System (Close-loop M3)

- Variable for close-loop mode control
- Prediction (Controller)
- Progression (Plant)

Smart Heating System (Control Logic M4)

Event-triggered

- Event-triggered design(when certain events are detected what actions that system should take)
- Specification of time-triggered design

Smart Heating System (Control Logic M4)

Time-triggered

- Revisit the description of heating system
- Time-triggered design(the controller takes action only every once in a while)

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- ightarrow monotonicity

- 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- → monotonicity
- ▶ Sample at δ s
- $\rightarrow\,$ Decision at sampling time

- ▶ 2 modes: ON/OFF
- $\,\,
 ightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- ightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
 - Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- \rightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
 - Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode
 - ▶ Safety: $T_{min} \le T \le T_{max}$

Case 1: ON mode, $T(now) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta + t_{act}) \leq T_{max}$, Stay ON

Case 2,3,4: ?