УДК 576.3.1

«Социальная жизнь» стареющих клеток: что такое SASP и зачем его изучать?

А.В.Бородкина*, П.И.Дерябин, А.А.Грюкова, Н.Н.Никольский Институт цитологии РАН, 194064, Санкт-Петербург, Тихорецкий просп., 4 *E-mail: borodkina618@gmail.com Поступила в редакцию 16.05.2017 Принята к печати 12.02.2018

РЕФЕРАТ Феномен клеточного старения впервые был описан как предел деления нормальных клеток в культуре. С момента первого упоминания и вплоть до недавнего времени основной акцент при изучении клеточного старения был сделан на внутриклеточных изменениях, сопровождающих этот процесс. Наибольшее внимание уделялось необратимой остановке пролиферации стареющих клеток и двум логично вытекающим физиологическим следствиям — супрессии канцерогенеза за счет ареста роста поврежденных клеток и ускорению организменного старения ввиду ухудшения репарации тканей с возрастом. Однако в настоящее время наблюдается смещение акцентов при исследовании клеточного старения. Оказалось, что стареющие клетки через ауто/паракринный механизм могут влиять на клетки микроокружения, секретируя множество различных факторов, включая цитокины, хемокины, протеазы и ростовые факторы. Такой профиль секретируемых стареющими клетками молекул получил название ассоциированного со старением секреторного фенотипа (senescence associated secretory phenotype, SASP). На сегодняшний день известно, что SASP опосредует участие стареющих клеток в самых разнообразных биологических процессах, включая регенерацию, ремоделирование тканей, эмбриогенез, воспаление и туморогенез. Настоящий обзор посвящен описанию «социальной жизни» стареющих клеток, а именно: составу, механизмам регуляции и функциональной роли ассоциированного со старением секреторного фенотипа.

КЛЮЧЕВЫЕ СЛОВА антагонистическая плейотропия, ассоциированный со старением секреторный фенотип, иммунный клиренс, клеточное старение, стволовые клетки, супрессия опухолей, туморогенез.

ВВЕДЕНИЕ

Историю исследования клеточного старения (КС) можно представить в рамках известного диалектического закона «отрицания отрицания», описывающего процесс развития в виде спирали (рис. 1). Первый виток такой условной спирали берет начало более 100 лет назад и отражает господствующую в науке длительное время точку зрения, что старение - это явление, присущее исключительно организмам, и в клеточной культуре его можно избежать. Основное подтверждение этой гипотезы было получено и опубликовано в работе нобелевского лауреата А. Карреля [1]. В своих опытах Каррель демонстрировал возможность бесконечной пролиферации клеток в культуре при наличии адекватных условий, достаточного количества питательных веществ и, как говорил он сам, «должной аккуратности». Смена парадигм и переход на новый виток спирали произошли спустя почти 50 лет, благодаря работе Л. Хейфлика, который установил существование предела деления для нормальных человеческих фибробластов in vitro [2]. Позднее этот предел получил название лимита Хейфлика, а сам автор интерпретировал свою находку как проявление старения человека на клеточном уровне [3]. Следующий важный этап исследования клеточного старения датируется началом 1970-х годов, когда независимо друг от друга А. Оловников и Д. Уотсон описали проблему концевой недорепликации ДНК [4, 5]. Согласно этой гипотезе, при каждом клеточном делении происходит укорочение 5'-концевой дочерней цепи ДНК, что в конечном итоге приводит к достижению лимита Хейфлика. Как следствие, была сформулирована теломерная теория, согласно которой именно укорочение теломер опосредует репликативное старение клеток [4]. Чуть позднее была установлена структура и исследованы свойства теломер [6]. Примерно в это же время стали появляться работы, свидетельствующие о существовании другого типа КС, независимого от длины теломер [7, 8]. Этот тип старения получил название преждевременного, так как признаки старения проявлялись в клетках на ранних пассажах 2007, 2011, 2016 Д. Кампизи, Ф. Родьер, А. Лужамбио, С. Рао, Н. Малаквин — Концепция антагонистической плейотропии КС-КС препятствует пролиферации поврежденных клеток и стимулирует регенерацию тканей, однако накопление старых клеток инициирует воспаление и способствует прогрессии рака [12, 14—17]

Рис. 1. Важнейшие этапы истории исследования клеточного старения

задолго до наступления репликативного старения. Основными индукторами преждевременного старения принято считать разнообразные стрессовые воздействия, а также сверхэкспрессию онкогенов [7–10].

Несмотря на прогресс в исследовании механизмов КС, в течение длительного времени взаимосвязь между старением клеток и организма оставалась гипотетической. И только в 1995 году были получены

экспериментальные доказательства существования старых клеток в образцах человеческих тканей [11]. Связав процессы, происходящие in vivo и in vitro, эти наблюдения подводят логический итог предыдущего витка спирали и служат началом для следующего. который продолжается вплоть до настоящего времени. Ранее проявления КС на организменном уровне рассматривали как нечто однонаправленное, ассоциированное исключительно с возрастом и возрастными заболеваниями. На сегодняшний день эффекты КС описываются концепцией антагонистической плейотропии, подразумевающей его роль в самых разнообразных, а иногда и противоположных процессах, таких, как репарация, регенерация, ремоделирование тканей, эмбриогенез, воспаление, супрессия опухолей и туморогенез [12–16].

ФЕНОМЕНОЛОГИЯ КЛЕТОЧНОГО СТАРЕНИЯ

Прежде чем перейти к основной части данного обзора. посвященной изменениям, сопровождающим КС, и его роли в различных биологических процессах, необходимо понять суть этого феномена. С механистической точки зрения термин КС подразумевает необратимую потерю пролиферативного потенциала метаболически активных клеток, возникающую как следствие нерепарируемых повреждений ДНК [40]. Переходя к рассмотрению КС на организменном уровне, становится очевидным, что предотвращение пролиферации поврежденных клеток в результате их старения обеспечивает поддержание тканевого гомеостаза. Логично вытекающей из двух вышестоящих утверждений и общепринятой на сегодняшний день является точка зрения о том, что старение характерно исключительно для пролиферирующих клеток.

В ходе онтогенеза пролиферация клеток начинается с момента первого дробления зиготы. Образующиеся в результате митотических делений бластомеры и впоследствии эмбриональные стволовые клетки (ЭСК), как известно, обладают неограниченным репликативным потенциалом. На молекулярном уровне отсутствие репликативного старения ЭСК опосредовано активностью теломеразы, компенсирующей укорочение теломер при каждом клеточном делении [41, 42]. Важно, что для этих клеток также не характерно преждевременное старение: при возникновении нерепарируемых повреждений ЭСК элиминируются из популяции путем апоптоза, что необходимо для сохранения стабильности генома [43]. Благодаря неограниченной пролиферации и способности к дифференцировке ЭСК дают начало всем типам клеток взрослого организма.

Во взрослом организме большинство клеток дифференцированы и находятся в состоянии покоя [44]. Стоит подчеркнуть, что это состояние характери-

зуется продолжительной остановкой пролиферации, однако принципиально отличается от КС [45]. Во-первых, арест роста в этом случае не является следствием повреждения ДНК. Во-вторых, этот арест может быть обратим: при наличии определенных стимулов дифференцированные клетки, находящиеся в фазе G0 клеточного цикла, способны снова войти в цикл и начать пролиферировать. Одним из таких стимулов служат нарушения функционирования тканей или органов в результате их повреждения. В этом случае покоящиеся клетки, такие, как фибробласты кожи, гладкомышечные клетки, эндотелиальные клетки, эпителиальные клетки многих внутренних органов, включая поджелудочную железу, печень, почки, легкие, предстательную железу и молочные железы, могут начать пролиферировать для замещения поврежденных участков [44]. Большинство перечисленных типов клеток подвергаются как репликативному, так и преждевременному старению [40, 46-48]. Интересно, однако, что при возникновении повреждений индукция КС одинаково предпочтительна не для всех типов клеток [49]. Так, например, эпителий является очень динамичной тканью, характеризующейся высокой скоростью обновления. Гомеостаз в этой ткани поддерживается в основном за счет гибели поврежденных и пролиферации нормальных клеток, в соответствии с чем эпителиальные клетки более склонны к апоптозу, нежели к запуску КС [50]. Противоположная ситуация характерна для стромальных клеток, формирующих каркас всех внутренних органов. Эти клетки устойчивы к апоптозу и с большей вероятностью входят в состояние старения [49].

Несмотря на описанные выше примеры восстановления пролиферации некоторых типов эпителиальных и стромальных клеток, in vivo большая часть клеток, выполняющих специализированные функции, находится в терминально дифференцированном состоянии и, за редким исключением, не способна пролиферировать даже при серьезных повреждениях [44]. В этом случае регенерация осуществляется за счет деления и дифференцировки взрослых стволовых клеток (СК). На сегодняшний день практически в каждой ткани обнаружен пул резидентных стволовых клеток [51]. Однако оказалось, что взрослые СК также подвержены старению. Во-первых, в этих клетках отсутствует активная теломераза, вследствие чего СК, как и другие пролиферирующие клетки, репликативно стареют [52, 53]. Во-вторых, сравнительно недавно установлен факт индукции преждевременного старения СК при действии различных стрессовых факторов [54-56]. Принимая во внимание исключительную роль СК в регенерации тканей во взрослом организме, нельзя не отметить негативные последствия старения этих клеток. Стареющие СК утрачивают способность пролиферировать, снижается их миграционная активность и дифференцировочный потенциал [57]. Таким образом, КС приводит к постепенному истощению пула функциональных СК: с одной стороны, уменьшается их число, а с другой, они перестают должным образом реагировать на внешние стимулы [58]. В настоящее время существует точка зрения о взаимосвязи между старением СК и общим старением организма, а также растет число данных, описывающих вклад стареющих СК в развитие различных заболеваний, ассоциированных с возрастом [58, 59].

Говоря о КС, нельзя не упомянуть совершенно особый случай — старение трансформированных клеток. Учитывая, что раковые клетки обладают неограниченным пролиферативным потенциалом, речь, конечно, идет не о репликативном, а о преждевременном старении. Однако, если преждевременное КС нормальных пролиферирующих клеток является физиологической реакцией на стресс, то в трансформированных клетках его можно индуцировать только при таких специфических воздействиях, как обработка химиотерапевтическими агентами, облучение радиацией и сверхэкспрессия генов-ингибиторов роста [60]. Таким образом, индукцию КС в трансформированных клетках можно рассматривать как один из способов остановки опухолевого роста [60].

«СОЦИАЛЬНАЯ ЖИЗНЬ» СТАРЕЮЩИХ КЛЕТОК

Известно, что основные признаки КС сходны как у различных его форм, так и у различных типов пролиферирующих клеток [40]. На рис. 2 отражены наиболее важные «индивидуальные» внутриклеточные изменения, сопровождающие КС, которые условно разделены на события, происходящие в ядре и цитоплазме. Особое место среди модификаций, сопровождающих КС, занимает изменение секреторного профиля. В настоящее время принято считать, что ассоциированный со старением секреторный фенотип (senescence associated secretory phenotype, SASP) обуславливает участие стареющих клеток в самых разнообразных процессах, таких, как репарация, распространение старения, иммунный клиренс, эмбриогенез и туморогенез [29, 31, 38, 79, 80].

Классификация факторов, входящих в SASP

Термин SASP впервые использовали в 2008 году для обозначения факторов, секретируемых стареющими клетками [24]. На сегодняшний день принята следующая классификация компонентов, входящих в SASP: растворимые сигнальные факторы, протеазы, нерастворимые белки внеклеточного матрикса и небелковые компоненты [78]. По молекулярным ме-

ханизмам факторы SASP можно разделить на следующие группы [81]:

- 1) Факторы, связывающиеся с рецептором. В состав данной группы входят растворимые сигнальные молекулы, к которым относятся цитокины, хемокины и ростовые факторы. Эти факторы могут влиять на клетки микроокружения, взаимодействуя с соответствующими поверхностными рецепторами на их мембранах и запуская таким образом разные внутриклеточные сигнальные каскады [82, 83]. Наиболее известными представителями этой группы являются интерлейкины IL-6, IL-8, IL-1а, хемокины GROα, GROβ, CCL-2, CCL-5, CCL-16, CCL-26, CCL-20 и ростовые факторы HGF, FGF, TGFβ, GM-CSF.
- 2) Факторы, действующие напрямую. Эта группа включает матриксные металлопротеазы ММР-1, ММР-10, ММР-3 и сериновые протеазы: тканевый активатор плазминогена (tPA) и урокиназный активатор плазминогена (uPA). Эти факторы способны расщеплять мембраносвязанные белки, разрушать сигнальные молекулы и ремоделировать внеклеточный матрикс, благодаря чему стареющие клетки могут модифицировать свое микроокружение [84]. В эту группу можно отнести и маленькие небелковые компоненты, к которым относятся активные формы кислорода (АФК) и азота, повреждающие соседние клетки [78, 85].
- 3) Регуляторные факторы. В эту группу входят тканевые ингибиторы металлопротеаз (ТІМР), ингибитор активатора плазминогена (РАІ) и белки, связывающие инсулиноподобный фактор роста (IGFBP). Эти факторы не имеют собственной ферментативной активности, однако, связываясь с факторами, входящими в первую и вторую группы, регулируют их функционирование. Так, например, ТІМР подавляют активность большинства ММР [86], РАІ-1 функционирует преимущественно как ингибитор tPA и uPA [87], а IGFBP работают как белки-транспортеры IGF [88].

В дополнение ко всем упомянутым факторам, секретируемым старыми клетками, недавно в качестве еще одного компонента SASP начали рассматривать внеклеточные везикулы, в частности везикулы, ассоциированные с микроРНК [89]. Оказалось, что такие везикулы могут влиять на соседние клетки и на клетки, расположенные на значительном удалении, причем как инициируя, так и подавляя КС в зависимости от состава микроРНК.

Хотелось бы отдельно подчеркнуть, что конкретный качественный и количественный состав секретируемых факторов в значительной степени зависит от типа клеток и индуктора старения, что существен-

Рис. 2. Биомаркеры стареющих клеток. Представлены основные признаки стареющих клеток и приведены ссылки на работы, описывающие методические подходы к их оценке

Идентификация факторов SASP Предвзятая (Biased) Непредвзятая (Unbiased) Высокоэффективная жидкостная хроматография и тандемная масс-спектрометрия (LC-MS/MS) белковые микрочипы (Antibody microarray) Метаболическое мечение (SILAC) [91,80]

Белковые микрочипы (Antibody microarray) [24,26,32,37,46,80,94]

Множественный анализ экспрессии генов

(Microarray gene expression profiling) [30,37,90,80,82]

Химическое мечение (ICAT, iTRAQ) [95] Без использования мечения (MRM, Specrtal counts) [96–98]

Валидация идентифицированных компонентов SASP

qPCR [31,32,37,42,90,80,82,83,94,95] ELISA [24,26,31,32,37,92,93,80,83] Western-blotting [80,94,95] Иммунное окрашивание [24,32,80]

Установление роли идентифицированных SASP факторов в конкретном клеточном ответе

Модуляция состава SASP: повышение содержания отдельных факторов при помощи сверхэкспрессии их генов или добавления рекомбинантных белков; удаление исследуемых факторов при помощи нокдаунов их генов или иммунопреципитации специфическими блокирующими антителами

В контрольных клетках

Оценка влияния исследуемых факторов на основные характеристики клеток и вклада факторов в прогрессию КС [30,32,42,80,82,83,95] Определение молекулярных путей регуляции секреции [26,30,32,37,

В клетках-мишенях

Выявление роли изучаемых факторов в паракринных эффектах SASP на клетки-мишени и исследование соответствующих молекулярных механизмов [24,26,32,37,82,94,96]

В моделях *in vivo*

Установление роли SASP и его отдельных компонентов в конкретных физиологических процессах (заживление ран, ремоделирование тканей, прогрессия рака) [37,46,90,80,82,94]

Рис. 3. Экспериментальные подходы к исследованию состава SASP и выявлению функциональной роли его отдельных компонентов

но затрудняет изучение этого признака КС. На сегодняшний день описано несколько подходов к исследованию SASP и выявлению функций его отдельных компонентов. Основные из этих подходов отражены на $puc.\ 3$.

Механизмы регуляции SASP

92,90,80,82,83]

Клеточное старение, как известно, явление не одномоментное, а развивающееся во времени [99]. Интересно, что в последнее время SASP также ста-

ли рассматривать как динамический процесс, в котором условно можно выделить несколько фаз [16]. Считается, что первая фаза секреции начинается сразу после повреждения ДНК и продолжается в течение первых 36 ч. Стоит отметить, что появление этой фазы не является достаточным свидетельством в пользу инициации старения, так как не исключает полной репарации или апоптоза [99]. Следующая фаза — фаза «раннего» SASP, которая продолжается в течение нескольких дней после запуска КС.

Именно в этот период наблюдается появление наиболее важных факторов SASP, например IL-1α. В течение последующих 4–10 дней за счет аутокринного воздействия SASP происходит усиление секреции большинства факторов, что приводит в конечном итоге к формированию «зрелого» SASP [16]. Такая волновая секреция факторов в процессе развития КС во многом обусловлена наличием петель положительной обратной связи и сложных регуляторных механизмов. Ниже представлены наиболее распространенные механизмы регуляции SASP.

Необходимо отметить, что SASP регулируется как на транскрипционном, так и на посттранскрипционном уровнях. Ключевая роль в регуляции экспрессии компонентов SASP, включая IL-6, IL-8, CXCL1, CXCR2, отводится ядерному фактору kB (nuclear factor kappa-light-chain-enhancer of activated B cells, NF-kB) [100-102]. В контроль транскрипции большинства этих факторов вовлечены петли положительной обратной связи. Ярким примером таких «самоусиливающихся» петель служит регуляция секреции IL- 1α [15, 103]. Описано также участие другого транскрипционного фактора — C/EBP β , который, связываясь непосредственно с промотором гена IL-6, инициирует его экспрессию [82, 104].

На посттранскрипционном уровне регуляции SASP принято выделять DDR (DNA Damage Response)зависимый и -независимый механизмы [15]. Как сказано выше, одним из наиболее важных признаков КС является ответ на повреждение ДНК. Показано, что нокдауны таких участников DDR, как ATM, Chk2, NBS1, H2AX, снижают экспрессию и соответственно секрецию ряда факторов SASP, включая IL-6 и IL-8 [104-106]. Несмотря на имеющиеся доказательства вовлеченности DDR в регуляцию SASP, детальные механизмы их взаимосвязи изучены не до конца. Известные на сегодня сигнальные пути связаны с возможностью участников DDR, в частности киназы АТМ, тем или иным образом регулировать активность NF-kB. Так, например, ATM может образовывать комплексы с белком NEMO, которые вследствие инициации DDR экспортируются из ядра в цитоплазму, где NEMO связывает и активирует киназу ІКК. ІКК способствует диссоциации ингибиторного белка IkB из комплекса с NF-kB и активации последнего [107]. Сравнительно недавно было показано участие транскрипционного фактора GATA4 в DDRзависимом механизме регуляции SASP [108]. В норме GATA4 деградирует путем p62-опосредованной аутофагии. В большинстве стареющих клеток аутофагия подавлена и, следовательно, GATA4 стабилизируется, причем этот процесс зависит от АТМ. Накопление GATA4 в стареющих клетках способствует инициации и поддержанию активности NF-kB.

В DDR-независимом механизме регуляции SASP центральное место отводится стресс-киназе р38, вовлеченной в активацию сигнального пути р $16^{{\rm Ink}4a}/{Rb}$, опосредующего арест клеточного цикла в стареющих клетках [109]. В ряде работ показано, что подавление экспрессии р38 предотвращает секрецию большинства цитокинов, хемокинов и ростовых факторов, входящих в состав SASP [110, 111]. Кроме того, поддержание р38 в активном состоянии в течение длительного времени способно инициировать SASP в отсутствие каких-либо других стимулов, вызывающих старение [110]. В результате изучения механизма участия р38 в регуляции SASP была предложена следующая цепь сигнальных событий: р38 активирует свои нижележащие мишени - киназы MSK1 и MSK2, которые затем фосфорилируют p65, трансактивационную субъединицу NF-kB, способствуя тем самым инициации экспрессии многих факторов SASP [16, 112, 113].

Относительно недавно была выявлена роль белка mTOR в регуляции SASP [114, 115]. С одной стороны, было показано, что mTOR может контролировать трансляцию IL-1α и таким образом регулировать SASP [115]. С другой стороны, mTOR контролирует трансляцию киназы МК-2, которая фосфорилирует специфический РНК-связывающий белок ZFP36L1, препятствуя деградации транскриптов большого числа факторов SASP [114]. Еще один возможный вариант участия mTOR в регуляции SASP связывают с присутствием на транс-стороне аппарата Гольджи особого компартмента (TOR-autophagy spatial coupling compartment, TASCC), в котором накапливаются аутолизосомы и mTOR во время старения [116]. Предполагается, что аккумуляция mTOR в этом компартменте способствует ускорению синтеза факторов SASP.

Регуляторные механизмы, описанные выше, наиболее хорошо изучены на сегодняшний день. Однако огромное разнообразие белков, входящих в SASP, а также зависимость состава секретируемых факторов от клеточного контекста и типа старения приводят к росту исследований, ориентированных на детализацию молекулярных механизмов регуляции SASP. В большинстве публикаций акцент делается на взаимосвязи механизмов регуляции и функциональной роли SASP в конкретных биологических процессах, речь о которых пойдет в следующей главе. Стоит отметить, что основная часть исследований выполнена на раковых клетках или на фибробластах. Парадоксально, но при очевидной биологической значимости старения стволовых клеток молекулярным механизмам регуляции SASP в этих клетках посвящено сравнительно небольшое количество работ.

Функциональная роль SASP

Для понимания механизмов, опосредующих участие SASP в разнообразных биологических процессах, прежде всего необходимо ответить на основополагающий вопрос: зачем стареющие клетки секретируют такое большое количество специфических факторов? Исходя из состава, логично предположить, что in vivo SASP может служить неким сигналом, свидетельствующим о появлении стареющих клеток в организме. Схематически этот процесс можно описать следующим образом: секретируемые провоспалительные цитокины и хемокины формируют очаг воспаления и привлекают клетки иммунной системы к местам локализации стареющих клеток для их элиминации; белки, ремоделирующие внеклеточный матрикс, облегчают проникновение клеток иммунной системы к этим местам; секретируемые ростовые факторы стимулируют пролиферацию соседних клеток для последующего замещения удаляемых клеток. В молодом здоровом организме работа этого механизма хорошо отрегулирована, однако с возрастом или в случае каких-либо нарушений его эффективность может существенно снижаться, приводя к накоплению стареющих клеток в популяции и соответственно к продолжительной секреции факторов SASP. Таким образом, результат влияния компонентов SASP на микроокружение определяется неким условным балансом между временем присутствия стареющих клеток в популяции и скоростью их элиминации клетками иммунной системы [12, 14-16]. Так, положительные для организма эффекты SASP обусловлены временным присутствием старых клеток, тогда как отрицательные эффекты связаны с накоплением стареющих клеток и возникновением очага хронического воспаления.

В качестве примера такой временной зависимости эффектов SASP можно привести противоположные последствия феномена «ауто/паракринного старения». Установлено, что секретируемые стареющими клетками молекулы, попадая во внеклеточное пространство, способны через ауто/паракринный пути воздействовать на соседние нормальные клетки и инициировать арест клеточного цикла, остановку пролиферации, в значительной степени ускоряя развитие КС в популяции [80, 83, 117]. Так, например, кондиционная среда, полученная от репликативно-, онкоген- или этопозид-состаренных фибробластов, содержащая высокий уровень IL-1, IL-6 и TGFβ, способствует повышению уровня АФК, повреждению ДНК и соответственно запуску старения в нормальных клетках [117]. Также установлена роль таких факторов SASP, как активин A, GDF15, VEGF, хемокины CCL2 и CCL20, в регуляции старения [80]. Оказалось, что соединения, ингибирующие активность или связывающие рецепторы этих факторов, предотвращают развитие старения в популяции фибробластов. Согласно нашим предварительным результатам, культивирование стволовых клеток эндометрия в кондиционной среде, полученной от старых клеток, также инициирует преждевременное старение в молодых клетках, причем важную роль в этом процессе играет белок PAI-1. Возвращаясь к дуализму конечных эффектов SASP, можно отметить, что в случае временного присутствия стареющих клеток аутокринное старение играет положительную роль: во-первых, предотвращается пролиферация самих поврежденных клеток, а во-вторых, активируется иммунный ответ, приводящий к их удалению [28–31, 118].

Однако накопление стареющих клеток и длительная секреция SASP, способствующая распространению преждевременного старения на соседние клетки, может приводить к нарушению функционирования тканей, ускорению развития старения и различных возраст-ассоциированных заболеваний [33, 119]. Например, повышенная секреция матриксных металлопротеаз стареющими клетками играет важную роль в прогрессии таких патологий, как ишемическая болезнь сердца, остеопороз и остеоартрит [120, 121]. Стареющие гладкомышечные клетки, секретирующие большие количества провоспалительных цитокинов, участвуют в развитии атеросклероза [122]. Повышение секреции ТNF стареющими Т-клетками вовлечено в механизм потери костной ткани [123]. Также известно, что сверхэкспрессия IL-6 может приводить к гиперинсулинемии, воспалению печени и легочной гипертензии [124, 125]. Кроме того, сравнительно недавно для обозначения неинфекционного хронического системного воспаления, сопровождающего старение, в прогрессии которого секретируемые старыми клетками факторы SASP играют важнейшую роль, был введен термин inflammaging [34].

Еще одно проявление двойственности функциональных эффектов SASP — его опухолесупрессорная и опухоль-промотирующая активности [2, 14, 28, 78]. В ряде работ, освещающих туморогенную роль SASP, показано, что факторы, секретируемые стареющими фибробластами, стимулируют пролиферацию различных предраковых и трансформированных линий клеток [24, 25, 126, 127]. Позднее установили, что в культуре предраковых эпителиальных клеток SASP индуцирует эпителиально-мезенхимальный переход и усиливает инвазию клеток, в частности, за счет повышенного содержания IL-6 и IL-8 [24]. Установлено, что факторы SASP, секретируемые стареющими стволовыми клетками, также способствуют прогрессии рака, ускоряя пролифера-

цию и миграцию трансформированных клеток [57]. Например, факторы SASP, секретируемые СК, стимулируют деление и миграцию клеток рака молочной железы как in vitro, так и на мышиной модели [57]. Кроме того, оказалось, что стареющие СК, секретирующие большие количества IL-6 и IL-8, увеличивают устойчивость клеток рака молочной железы к цисплатину [26]. Исходя из имеющихся на сегодняшний день данных, наиболее вероятно, что компоненты SASP индуцируют пролиферацию, выживание и метастазирование в уже коммитированных предраковых клетках [14].

В основе опухолесупрессорной функции лежит способность факторов SASP привлекать клетки иммунной системы для элиминации поврежденных стареющих клеток. Так, на мышиной модели показано, что сверхэкспрессия Ras приводит к запуску индуцированного онкогенами старения гепатоцитов, которое сопровождается активацией SASP, стимуляцией опосредованного CD4⁺ иммунного ответа и, как следствие, удалением этих клеток [28]. Еще одно доказательство опухолесупрессорной роли SASP получено также на мышиной модели гепатокарциномы, однако КС индуцировали сверхэкспрессией р53 [29]. В этом случае секреция стареющими раковыми клетками различных хемокинов приводит к рекрутированию натуральных киллеров (natural killer cells, NK) для их клиренса. Интересно, что удаление хемокина CCL2 при помощи антител предотвращает привлечение NK-клеток и уменьшает элиминацию старых клеток.

Отдельного внимания заслуживает участие SASP в регенерации тканей. Известно, что факторы SASP могут влиять на сигнализацию и дифференцировку стволовых клеток [33, 128, 129]. Так, один из ключевых компонентов SASP - IL-6 способствует индукции и поддержанию плюрипотентности, в частности за счет регуляции экспрессии Nanog [130, 131]. Более того, в экспериментах *in vivo* показано, что секреция SASP способствует репрограммированию клеток микроокружения [32]. Подобная опосредованная SASP регенерация тканей является еще одним примером временной зависимости конечных эффектов SASP. В молодом организме кратковременное действие SASP способствует регенерации ткани за счет временного репрограммирования и последующей пролиферации и дифференцировки соседних клеток, тогда как в пожилом организме неэффективная элиминация старых клеток и длительная секреция SASP могут приводить к задержке клеток микроокружения в дедифференцированном состоянии и соответственно к торможению регенерации [33].

Интересные результаты, касающиеся роли SASP в регенерации и ремоделировании тканей, получены при исследовании молекулярных механизмов заживления ран. Оказалось, что в течение нескольких дней в местах нанесения раны детектируются стареющие фибробласты и эндотелиальные клетки, которые способствуют ее заживлению, благодаря секреции PDGF-A - фактора SASP, ответственного за дифференцировку миофибробластов [31]. Кроме того, установлена роль SASP в ремоделировании тканей в эмбриональном развитии [31, 37-39]. Показано, что SASP-опосредованное ремоделирование происходит как со стороны материнского организма, так и со стороны эмбриона. Так, например, выявлено участие SASP в ремоделировании материнской сосудистой сети на ранних сроках беременности [131]. В процессе эмбрионального развития появляются стареющие клетки, которые посредством SASP служат неким первичным сигналом, запускающим макрофаг-опосредованное удаление клеток, необходимое для правильного развития отдельных структур эмбриона [31, 38, 39].

ЗАКЛЮЧЕНИЕ

Суммируя все вышеизложенное, хотелось бы вернуться к последнему витку спирали, отражающему современный этап истории изучения клеточного старения, и еще раз подчеркнуть плейотропность эффектов КС. Очевидно, что экспериментальные подходы, подразумевающие элиминацию стареющих клеток из организма и рассматриваемые в качестве «антивозрастной» терапии, могут иметь множество сопутствующих нежелательных последствий. В связи с этим наиболее перспективной кажется разработка стратегий, направленных на модуляцию состава факторов, секретируемых старыми клетками, с целью усиления положительных и минимизации возможных негативных эффектов SASP. В этом контексте особое значение приобретает возможность модуляции факторов SASP стареющих СК. Принимая во внимание, что в настоящее время наиболее вероятным механизмом влияния СК на репарацию тканей считается их паракринная активность, проблема изменения секреторного профиля СК в результате их старения становится весьма актуальной и требует дополнительных исследований.

Работа выполнена при финансовой поддержке Российского научного фонда (проект \mathbb{N} 14-50-00068).

СПИСОК ЛИТЕРАТУРЫ

- 1. Carrel A. // J. Exp. Med. 1912. V. 15. \mathbb{N}_{2} 5. P. 516–528.
- 2. Hayflick L., Moorhead P.S. // Exp. Cell Res. 1961. V. 25. P. 585–621.
- 3. Hayflick L. // Exp. Cell Res. 1965. V. 37. P. 614-636.
- Olovnikov A.M. // Dokl. Akad. Nauk SSSR. 1971. V. 201. P. 1496–1499.
- 5. Watson J.D. // Nat. New Biol. 1972. V. 239. P. 197-201.
- 6. Greider C.W., Blackburn E.H. // Cell. 1987. V. 51. № 6. P. 887-898.
- 7. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. // Cell. 1997. V. 88. № 5. P. 593–602.
- 8. Toussaint O., Medrano E.E., von Zglinicki T. // Exp. Gerontol. 2000. V. 35. № 8. P. 927–945.
- 9. Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. // Genes Dev. 2010. V. 24. № 22. P. 2463–2479.
- 10. Fridlyanskaya I.I., Alekseenko L.L., Nikolsky N.N. // Exp. Gerontol. 2015. V. 72. P. 124–128.
- 11. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., et al. // Proc. Natl. Acad. Sci. USA. 1995. V. 92. № 20. P. 9363-9367.
- 12. Rodier F., Campisi J. // J. Cell Biol. 2011. V. 192. $\mathbb{N}\!\!_{2}$ 4. P. 547–556.
- 13. Childs B.G., Durik M., Baker D.J., van Deursen J.M. // Nat. Med. 2015. V. 21. \aleph 12. P. 1424–1435.
- 14. Rao S.G., Jakson J.G. // Trends Cancer. 2016. V. 2. \mathbb{N}_2 11. P. 676–687.
- 15. Lujambio A. // Bioessays. 2016. V. 38. № 1. P. 56-64.
- Malaquin N., Martinez A., Rodier F. // Exp. Gerontol. 2016.
 V. 82. P. 39–49.
- 17. Harley C.B., Futcher A.B., Greider C.W. // Nature. 1990. V. 345. \mathbb{N}_{2} 6274. P. 458–460.
- 18. Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. // Science. 1998. V. 279. № 5349. P. 349–352.
- 19. Shay J.W., Pereira-Smith O.M., Wright W.E. // Exp. Cell. Res. 1991. V. 196. \mathbb{N}_2 1. P. 33–39.
- 20. te Poele R.H., Okorokov A.L., Jardine L., Cummings J., Joel S.P. // Cancer Res. 2002. V. 62. \mathbb{N}_2 6. P. 1876–1883.
- 21. Campisi J. // Cell. 2005. V. 120. № 4. P. 513-522.
- 22. Braig M., Lee S., Loddenkemper C., Rudolph C., Peters A.H., Schlegelberger B., Stein H., Dörken B., Jenuwein T., Schmitt C.A. // Nature. 2005. V. 436. № 7051. P. 660–665.
- 23. Chen Z., Trotman L.C., Shaffer D., Lin H.K., Dotan Z.A., Niki M., Koutcher J.A., Scher H.I., Ludwig T., Gerald W., et al. // Nature. 2005. V. 436. № 7051. P. 725–730.
- 24. Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., Nelson P.S., Desprez P.Y., Campisi J. // PLoS Biol. 2008. V. 6. P. 2853–2868.
- 25. Malaquin N., Vercamer C., Bouali F., Martien S., Deruy E., Wernert N., Chwastyniak M., Pinet F., Abbadie C., Pourtier A. // PLoS One. 2013. V. 8. P. e63607.
- 26. Skolekova S., Matuskova M., Bohac M., Toro L., Demkova L., Gursky J., Kucerova L. // Cell Commun. Signal. 2016. V. 14. \mathbb{N}_2 4. P. 1–13.
- 27. Xue W., Zender L., Miething C., Dickins R.A., Hernando E., Krizhanovsky V., Cordon-Cardo C., Lowe S.W. // Nature. 2007. V. 445. № 7128. P. 656–660.
- 28. Kang T.W., Yevsa T., Woller N., Hoenicke L., Wuestefeld T., Dauch D., Hohmeyer A., Gereke M., Rudalska R., Potapova A., et al. // Nature. 2011. V. 479. P. 547–551.
- 29. Iannello A., Thompson T.W., Ardolino M., Lowe S.W., Raulet D.H. // J. Exp. Med. 2013. V. 210. P. 2057–2069.
- 30. Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W. // Cell. 2008. V. 134. P. 657–667.

- 31. Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.M., Vijg J., van Steeg H., Dolle M.E., et al. // Dev. Cell. 2014. V. 31. P. 722–733.
- 32. Mosteiro L., Pantoja C., Alcazar N., Marión R.M., Chondronasiou D., Rovira M., Fernandez-Marcos P.J., Muñoz-Martin M., Blanco-Aparicio C., Pastor J., et al. // Science. 2016. V. 25. № 354. P. af4445.
- 33. de Keizer P.L. // Trends Mol. Med. 2017. V. 23. № 1. P. 6–17.
- 34. Franceschi C., Campisi J. // J. Gerontol. A Biol. Sci. Med. Sci. 2014. V. 69. P. S4–S9.
- 35. Banito A., Rashid S.T., Acosta J.C., Li S., Pereira C.F., Geti I., Pinho S., Silva J.C., Azuara V., Walsh M., et al. // Genes Dev. 2009. V. 23. № 18. P. 2134–2139.
- 36. Marión R.M., Strati K., Li H., Murga M., Blanco R., Ortega S., Fernandez-Capetillo O., Serrano M., Blasco M.A. // Nature. 2009. V. 460. № 7259. P. 1149–1153.
- 37. Rajagopalan S., Long E.O. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. № 50. P. 20596−20601.
- 38. Munoz-Espin D., Canamero M., Maraver A., Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Gomez-Lopez G., Contreras J., Murillo-Cuesta S., Rodriguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M., et al. // Cell. 2013. V. 155. P. 1104—1118.
- 39. Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J., Keyes W.M. // Cell. 2013. V. 155. № 5. P. 1119–1130.
- 40. Campisi J., d'Adda di Fagagna F. // Nat. Rev. Mol. Cell. Biol. 2007. V. 8. P. 729–740.
- 41. Rosler E.S., Fisk G.J., Ares X., Irving J., Miura T., Rao M.S., Carpenter M.K. // Dev. Dyn. 2004. V. 229. P. 259–274.
- 42. Miura T., Mattson M.P., Rao M.S. // Aging Cell. 2004. V. 3. P. 333–343.
- 43. Dumitru R., Gama V., Fagan B.M., Bower J.J., Swahari V., Pevny L.H., Deshmukh M. // Mol. Cell. 2012. V. 46. P. 573–583.
- 44. Cooper G.M. The Cell: A Molecular Approach. 2nd ed. Washington, D.C.: ASM Press, 2000. 689 p.
- 45. Buttitta L.A., Edgar B.A. // Curr. Opin. Cell Biol. 2007. V. 19. \mathbb{N}_2 6. P. 697–704.
- 46. Jeyapalan J.C., Ferreira M., Sedivy J.M., Herbig U. // Mech. Ageing Dev. 2007. V. 128. P. 36-44.
- 47. Bertram C., Hass R. // Mech. Ageing Dev. 2009. V. 130. № 10. P. 657–669.
- 48. Papadopoulou A., Kletsas D. // Int. J. Oncol. 2011. V. 39. \mathbb{N}_2 4. P. 989–999.
- 49. Georgakopoulou E., Evangelou K., Havaki S., Townsend P., Kanavaros P., Gorgoulis V.G. // Mech. Ageing Dev. 2016. V. 156. P. 17–24.
- 50. Guillot C., Lecuit T. // Science. 2013. V. 340. P. 1185–1189.
- 51. da Silva Meirelles L., Chagastelles P.C., Nardi N.B. // J. Cell Sci. 2006. V. 119. № 11. P. 2204–2213.
- 52. Zimmermann S., Voss M., Kaiser S., Kapp U., Waller C.F., Martens U.M. // Leukemia. 2003. V. 17. P. 1146–1149.
- 53. Banfi A., Bianchi G., Notaro R., Luzzatto L., Cancedda R., Quarto R. // Tissue Eng. 2002. V. 8. P. 901–910.
- 54. Cmielova J., Havelek R., Soukup T., Jiroutova A., Visek B., Suchanek J., Vavrova J., Mokry J., Muthna D., Bruckova L., et al. // Int. J. Radiat. Biol. 2012. V. 88. P. 393–404.
- Larsen S.A., Kassem M., Rattan S.I. // Chem. Cent. J. 2012.
 V. 6. P. 18.
- 56. Burova E.B., Borodkina A.V., Shatrova A.N., Nikolsky N.N. // Oxid. Med. Cell Longev. 2013. V. 2013. № 474931.
- 57. Turinetto V., Vitale E., Giachino C. // Int. J. Mol. Sci. 2016. V. 17. \mathbb{N}_2 7. P. E1164.
- 58. Wehrwein P. // Nature. 2012. V. 492. P. 12-13.

- 59. Bell D.R., van Zant G. // Oncogene. 2004. V. 23. № 43. P. 7290–7296.
- 60. Roninson I.B. // Cancer Res. 2003. V. 63. № 11. P. 2705–2715. 61. Mehta I.S., Figgitt M., Clements C.S., Kill I.R., Bridger J.M. // Ann. N.Y. Acad. Sci. 2007. V. 1100. P. 250–263.
- 62. Righolt C.H., van't Hoff M.L., Vermolen B.J., Young I.T., Raz V. // Aging (Albany NY). 2011. V. 3. № 12. P. 1192–1201.
- 63. Freund A., Laberge R.M., Demaria M., Campisi J. // Mol. Biol. Cell. 2012. V. 23. № 11. P. 2066–2075.
- 64. Shah P.P., Donahue G., Otte G.L., Capell B.C., Nelson D.M., Cao K., Aggarwala V., Cruickshanks H.A, Rai T.S., McBryan T., et al. // Genes Dev. 2013. V. 27. № 16. P. 1787–1799.
- 65. Kwak I.H., Kim H.S., Choi O.R., Ryu M.S., Lim I.K. // Cancer Res. 2004. V. 64. № 2. P. 572–580.
- 66. d'Adda di Fagagna F. // Nat. Rev. Cancer. 2008. V. 8. \mathbb{N}_2 7. P. 512–522.
- 67. Borodkina A.V., Shatrova A.N., Abushik P.A., Nikolsky N.N., Burova E.B. // Aging (Albany NY). 2014. V. 6. № 6. P. 481–495.
- 68. Rodier F., Muñoz D.P., Teachenor R., Chu V., Le O., Bhaumik D., Coppé J.P., Campeau E., Beauséjour C.M., Kim S.H., et al. // J. Cell Sci. 2011. V. 124. P. 68–81.
- 69. Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M. // Science. 2006. V. 311. № 5765. P. 1257.
- 70. Galluzzi L., Vitale I., Kepp O., Kroemer G. Cell senescence. Methods and protocols. N.Y.: Springer Science+Busincess Media, LLC, 2013. 538 p.
- 71. Abdelmohsen K., Gorospe M. // Wiley Interdiscip. Rev. RNA. 2015. V. 6. \mathbb{N}_2 6. P. 615–629.
- 72. Yang J., Dungrawala H., Hua H., Manukyan A., Abraham L., Lane W., Mead H., Wright J., Schneider B.L. // Cell Cycle. 2011. V. 10. № 1. P. 144–155.
- 73. Chondrogianni N., Stratford F.L., Trougakos I.P., Friguet B., Rivett A.J., Gonos E.S. // J. Biol. Chem. 2003. V. 278. № 30. P. 28026–28037.
- 74. Matjusaitis M., Chin G., Sarnoski E.A., Stolzing A. // Ageing Res. Rev. 2016. V. 29. P. 1–12.
- 75. Correia-Melo C., Passos J.F. // Biochim. Biophys. Acta. 2015. V. 1847. № 11. P. 1373–1379.
- 76. Passos J.F., Nelson G., Wang C., Richter T., Simillion C., Proctor C.J., Miwa S., Olijslagers S., Hallinan J., Wipat A., et al. // Mol. Syst. Biol. 2010. V. 6. № 347. P. 1–14..
- 77. Georgakopoulou E.A., Tsimaratou K., Evangelou K., Fernandez Marcos P.J., Zoumpourlis V., Trougakos I.P., Kletsas D., Bartek J., Serrano M., Gorgoulis V.G. // Aging (Albany NY). 2013. V. 5. № 1. P. 37–50.
- 78. Coppe J.P., Desprez P.Y., Krtolica A., Campisi J. // Annu. Rev. Pathol. 2010. V. 5. P. 99–118.
- Parrinello S., Coppe J.P., Krtolica A., Campisi J. // J. Cell Sci. 2005. V. 118. P. 485–496.
- 80. Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., et al. // Nat. Cell Biol. 2013. V. 15. № 8. P. 978–990.
- 81. Byun H.O., Lee Y.K., Kim J.M., Yoon G. // BMB Rep. 2015. V. 48. № 10. P. 549−558.
- 82. Kuilman T., Michaloglou C., Vredeveld L.C., Douma S., van Doorn R., Desmet C.J., Aarden L.A., Mooi W.J., Peeper D.S. // Cell. 2008. V. 133. № 6. P. 1019–1031.
- 83. Acosta J.C., O'Loghlen A., Banito A., Guijarro M.V., Augert A., Raguz S., Fumagalli M., Da Costa M., Brown C., Popov N., et al. // Cell. 2008. V. 133. P. 1006–1018.
- 84. Hornebeck W., Maquart F.X. // Biomed. Pharmacother. 2003. V. 57. P. 223–230.
- 85. Finkel T., Serrano M., Blasco M.A. // Nature. 2007. V. 448. № 7155. P. 767–774.

- Brew K., Dinakarpandian D., Nagase H. // Biochim. Biophys. Acta. 2000. V. 1477. P. 267–283.
- 87. Parfyonova Y.V., Plekhanova O.S., Tkachuk V.A. // Biochemistry (Mosc.). 2002. V. 67. № 1. P. 119–134.
- 88. Hwa V., Oh Y., Rosenfeld R.G. // Endocr. Rev. 1999. V. 20. $\mathbb{N}\!_{2}$ 6. P. 761–787.
- 89. Urbanelli L., Buratta S., Sagini K., Tancini B., Emiliani C. // Int. J. Mol. Sci. 2016. V. 17. № 9. P. E1408.
- 90. Pearson M., Carbone R., Sebastiani C., Cioce M., Fagioli M., Saito S., Higashimoto Y., Appella E., Minucci S., Pandolfi P.P., et al. // Nature. 2000. V. 406. № 6792. P. 207–210.
- 91. Acosta J.C., Snijders A.P., Gil J. // Methods Mol. Biol. 2013. V. 965. P. 175–184.
- 92. Rodier F., Muñoz D.P., Teachenor R., Chu V., Le O., Bhaumik D., Coppé J.P., Campeau E., Beauséjour C.M., Kim S.H., et al. // J. Cell Sci. 2011. V. 124. P. 68–81.
- 93. Freund A., Laberge R.M., Demaria M., Campisi J. // Mol. Biol. Cell. 2012. V. 23. № 11. P. 2066–2075.
- 94. Coppé J.P., Patil C.K., Rodier F., Krtolica A., Beauséjour C.M., Parrinello S., Hodgson J.G., Chin K., Desprez P.Y., Campisi J. // PLoS One. 2010. V. 5. № 2. P. e9188.
- 95. Elzi D.J., Song M., Hakala K., Weintraub S.T., Shiio Y. // Mol. Cell Biol. 2012. V. 32. \mathbb{N}_2 21. P. 4388–4399.
- 96. Severino V., Alessio N., Farina A., Sandomenico A., Cipollaro M., Peluso G., Galderisi U., Chambery A. // Cell Death Dis. 2013. V. 4. P. e911.
- 97. Pasillas M.P., Shields S., Reilly R., Strnadel J., Behl C., Park R., Yates J.R., Klemke R., Gonias S.L., Coppinger J.A. // Mol. Cell Proteomics. 2015. V. 14. N $\!\!\!$ 1. P. 1–14.
- 98. Özcan S., Alessio N., Acar M.B., Mert E., Omerli F., Peluso G., Galderisi U. // Aging (Albany NY). 2016. V. 8. № 7. P. 1316–1329
- 99. Baker D.J., Sedivy J.M. // J. Cell Biol. 2013. V. 202. P. 11–13.
 100. Chien Y., Scuoppo C., Wang X., Fang X., Balgley B., Bolden J.E., Premsrirut P., Luo W., Chicas A., Lee C.S., et al. // Genes Dev. 2011. V. 25. P. 2125–2136.
- 101. Ohanna M., Giuliano S., Bonet C., Imbert V., Hofman V., Zangari J., Bille K., Robert C., Bressac-de Paillerets B., Hofman P., et al. // Genes Dev. 2011. V. 25. P. 1245–1261.
- 102. Rovillain E., Mansfield L., Caetano C., Alvarez-Fernandez M., Caballero O.L., Medema R.H., Hummerich H., Jat P.S. // Oncogene. 2011. V. 30. P. 2356–2366.
- 103. Orjalo A.V., Bhaumik D., Gengler B.K., Scott G.K., Campisi J. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 4. P. 17031–17036.
- 104. Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Raza S.R., Freund A., Campeau E., Davalos A.R., Campisi J. // Nat. Cell Biol. 2009. V. 11. P. 973–979.
- 105. Rodier F., Munoz D.P., Teachenor R., Chu V., Le O., Bhaumik D., Coppe J.P., Campeau E., Beausejour C.M., Kim S.H., et al. // J. Cell Sci. 2011. V. 124. P. 68–81.
- 106. Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A. // Cancer Res. 2012. V. 72. P. 2251–2261.
- 107. Miyamoto S. // Cell Res. 2011. V. 21. P. 116–130.
- 108. Kang C., Xu Q., Martin T.D., Li M.Z., Demaria M., Aron L., Lu T., Yankner B.A., Campisi J., Elledge S.J. // Science. 2015. V. 349. № 6255. P. aaa5612.
- 109. Bulavin D.V., Phillips C., Nannenga B., Timofeev O., Donehower L.A., Anderson C.W., Appella E., Fornace A.J. Jr. // Nat. Genet. 2004. V. 36. P. 343–350.
- 110. Freund A., Patil C.K., Campisi J. // EMBO J. 2011. V. 30. P. 1536–1548.
- 111. Alspach E., Flanagan K.C., Luo X., Ruhland M.K., Huang H., Pazolli E., Donlin M.J., Marsh T., Piwnica-Worms D., Monahan J., et al. // Cancer Discov. 2014. V. 4. P. 716–729.

ОБЗОРЫ

- 112. Vermeulen L., De Wilde G., van Damme P., Vanden Berghe W., Haegeman G. // EMBO J. 2003. V. 22. P. 1313-1324.
- 113. Kefaloyianni E., Gaitanaki C., Beis I. // Cell. Signal. 2006. V. 18. P. 2238-2251.
- 114. Herranz N., Gallage S., Mellone M., Wuestefeld T., Klotz S., Hanley C.J., Raguz S., Acosta J.C., Innes A.J., Banito A., et al. // Nat. Cell Biol. 2015. V. 17. P. 1205-1217.
- 115. Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., Curran S.C., Davalos A.R., Wilson-Edell K.A., Liu S., et al. // Nat. Cell Biol. 2015. V. 17. P. 1049-1061.
- 116. Narita M., Young A.R., Arakawa S., Samarajiwa S.A., Nakashima T., Yoshida S., Hong S., Berry L.S., Reichelt S., Ferreira M., et al. // Science. 2011. V. 332. № 6032. P. 966-970.
- 117. Hubackova S., Krejcikova K., Bartek J., Hodny Z. // Aging (Albany NY). 2012. V. 4. P. 932-951.
- 118. Munoz-Espin D., Serrano M. // Nat. Rev. Mol. Cell. Biol. 2014. V. 15. P. 482-496.
- 119. Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M. // Nature. 2011. V. 479. P. 232-236.
- 120. Nanni S., Melandri G., Hanemaaijer R., Cervi V., Tomasi L., Altimari A., van Lent N., Tricoci P., Bacchi L., Branzi A. // Transl. Res. 2007. V. 149. P. 137–144.
- 121. Price J.S., Waters J.G., Darrah C., Pennington C., Edwards D.R., Donell S.T., Clark I.M. // Aging Cell. 2002. V. 1. P. 57–65.

- 122. Minamino T., Yoshida T., Tateno K., Miyauchi H., Zou Y., Toko H., Komuro I. // Circulation. 2003. V. 108. P. 2264-2269. 123. Effros R.B. // Exp. Gerontol. 2004. V. 39. P. 517-524.
- 124. Franckhauser S., Elias I., Rotter Sopasakis V., Ferré T., Nagaev I., Andersson C.X., Agudo J., Ruberte J., Bosch F., Smith U. // Diabetologia. 2008. V. 51. № 7. P. 1306-1316.
- 125. Steiner M.K., Syrkina O.L., Kolliputi N., Mark E.J., Hales C.A., Waxman A.B. // Circ. Res. 2009. V. 104. № 2. P. 236-244.
- 126. Krtolica A., Parrinello S., Lockett S., Desprez P.Y., Campisi J. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 12072-12077. 127. Sun Y., Nelson P.S. // Clin. Cancer Res. 2012. V. 18. P. 4019-
- 128. Pietras E.M., Mirantes-Barbeito C., Fong S., Loeffler D., Kovtonyuk L.V., Zhang S., Lakshminarasimhan R., Chin C.P., Techner J.M., Will B., et al. // Nat. Cell Biol. 2016. V. 18. P. 607-618.
- 129. Brady J.J., Li M., Suthram S., Jiang H., Wong W.H., Blau H.M., et al. // Nat. Cell Biol. 2013. V. 15. P. 1244-1252.
- 130. Cahu J., Bustany S., Sola B. // Cell Death Dis. 2012. V. 3. P.
- 131. Chang T.S., Wu Y.C., Chi C.C., Su W.C., Chang P.J., Lee K.F., Tung T.H., Wang J., Liu J.J., Tung S.Y., et al. // Clin. Cancer Res. 2015. V. 21. P. 201-210.