ГЛАВА Интегралы, зависящие от параметра

Пример. Рассмотрим интеграл

$$I = \int_0^{+\infty} \frac{\sin x}{x} \, dx.$$

Это несобственный интеграл 1-ого рода. Он сходится по признаку Дирихле. Данный интеграл — неберущийся, т.е. вычислить его по формуле Ньютона — Лейбница не получится. Тем не менее, есть другие подходы к его вычислению.

Положим

$$J(\alpha) = \int_0^{+\infty} e^{-\alpha x} \frac{\sin x}{x} \, dx.$$

Тогда получаем, что I = J(0).

Имеем

$$J'(\alpha) = -\int_0^{+\infty} e^{-\alpha x} \sin x \, dx = -\frac{1}{1+\alpha^2}.$$

Тогда

$$J(\alpha) = -\int \frac{d\alpha}{1+\alpha^2} = -\arctan \alpha + C,$$

где C — некоторая постоянная.

Поскольку $J(\alpha) \to 0$ при $\alpha \to +\infty$, то находим, что $C = \pi/2$. Значит,

$$J(\alpha) = -\arctan \alpha + \frac{\pi}{2},$$

и следовательно,

$$I = \frac{\pi}{2}.$$

Заметим, однако, что некоторые из сделанных в данном примере преобразований (дифференцирование интеграла по параметру, предельный переход при $\alpha \to +\infty$) нуждаются в обосновании.

§ Равномерная сходимость функций

Будем все расписывать для функции двух переменных, однако, аналогичные результаты можно получить и для функций большего числа аргументов.

Рассмотрим функцию f(x,y), определенную в области $D=X\times Y\subset R^2$.

Определение. Пусть y_0 — предельная точка множества Y. Будем говорить, что функция f(x,y) сходится при $y \to y_0$ к функции $\varphi(x)$, равномерно относительно $x \in X$ (пишут $f(x,y) \rightrightarrows \varphi(x)$), если

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0: \ \forall y \in Y: \ |y - y_0| < \delta \ \Rightarrow \ |f(x, y) - \varphi(x)| < \varepsilon, \ \forall x \in X.$$

Равномерность сходимости означает, что величина δ в выписанном выше определении не зависит от выбора аргумента x.

Отметим некоторые свойства равномерной сходимости.

Теорема (критерий сходимости Коши). Для того чтобы функция f(x,y) сходилась при $y \to y_0$ к некоторой конечной функции равномерно относительно $x \in X$, необходимо и достаточно, чтобы выполнялось условие:

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0: \ \forall y_1, y_2 \in Y: \ (|y_1 - y_0| < \delta) \ \& \ (|y_2 - y_0| < \delta) \ \Rightarrow$$

$$\Rightarrow |f(x, y_1) - f(x, y_2)| < \varepsilon, \ \forall x \in X.$$

Теорема. Функция f(x,y) сходится при $y \to y_0$ к функции $\varphi(x)$, равномерно относительно $x \in X$ тогда и только тогда, когда для любой последовательности аргументов $\{y_n\}_{n=1}^{+\infty} \in Y$, такой что $y_n \to y_0$ при $n \to +\infty$, последовательность значений функции $f(x,y_n)$ при $n \to +\infty$ сходится к значению $\varphi(x)$, равномерно относительно $x \in X$.

Данная теорема позволяет свести анализ равномерной сходимости функций к анализу равномерной сходимости функциональных последовательностей. В результате, теоремы, доказанные ранее для последовательностей, удается перенести на функции.

Теорема. Пусть X = [a,b], и функция f(x,y) — непрерывна (интегрируема) по x на данном отреже при любом фиксированном значении $y \in Y$ из некоторой окрестности точки y_0 . Тогда если функция f(x,y) сходится при $y \to y_0$ к функции $\varphi(x)$, равномерно относительно $x \in [a,b]$, то функция $\varphi(x)$ будет непрерывной (интегрируемой) на указанном отреже [a,b].

Теорема. Пусть x_0 — предельная точка множества X, а y_0 — предельная точка множества Y. Тогда если функция f(x,y) сходится при $x \to x_0$ к некоторой функции $\psi(y)$, а также сходится при $y \to y_0$ к некоторой функции $\varphi(x)$, причем хотя бы одна из этих сходимостей является равномерной (относительно второго аргумента), то тогда

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y).$$

Лемма. Пусть функция f(x,y) определена и непрерывна в прямоугольной области $D = [a,b] \times [c,d]$. Тогда при любом $y_0 \in [c,d]$ функция f(x,y) будет сходиться при $y \to y_0$ к значению $f(x,y_0)$ равномерно относительно $x \in [a,b]$.

Доказательство. По теореме Кантора функция f(x,y) равномерно непрерывна в области D. Значит,

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x', x'' \in [a, b], \ \forall y', y'' \in [c, d]:$$
$$(|x' - x''| < \delta) \ \& \ (|y' - y''| < \delta) \ \Rightarrow \ |f(x', y') - f(x'', y'')| < \varepsilon.$$

Тогда, полагая x' = x'' = x, $y' = y_0$, y'' = y, получаем требуемое. Лемма доказана.

Отметим, что результаты, сформулированные выше для области вида $D=X\times Y$ (например, если $X=[a,b],\ Y=[c,d],$ то область D будет тогда представлять собой прямоугольник), допускают распространение на двумерные области более общего вида. В частности, последнюю лемму можно переформулировать для произвольной замкнутой ограниченной области D.

§ Собственные интегралы, зависящие от параметра

В настоящем параграфе будем исследовать случай, когда интеграл зависит только от одного параметра. Однако, аналогичные результаты можно получить и для случая, когда имеется большее число параметров.

1. Интегралы с фиксированными границами. Пусть функция f(x,y) определена в прямоугольной области $D = [a,b] \times [c,d]$ (см. рисунок 1). Будем считать, что эта функция интегрируема по x на промежутке [a,b] при любом фиксированном значении $y \in [c,d]$. Тогда интеграл

$$J(y) = \int_{a}^{b} f(x, y) dx$$

называется интегралом, зависящим от параметра $y \in [c, d]$.

Теорема (о предельном переходе). Пусть функция f(x,y) сходится при $y \to y_0$ $(y_0 \in [c,d])$ к функции $\varphi(x)$, равномерно относительно $x \in [a,b]$. Тогда

$$\lim_{y \to y_0} \int_a^b f(x, y) \, dx = \int_a^b \varphi(x) \, dx.$$

Доказательство. Согласно результатам предыдущего параграфа, функция $\varphi(x)$ интегрируема на отрезке [a,b]. Из равномерной сходимости имеем:

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0: \ \forall y \in [c,d]: \ |y - y_0| < \delta \ \Rightarrow \ |f(x,y) - \varphi(x)| < \varepsilon, \ \forall x \in [a,b].$$

Тогда при $|y-y_0|<\delta$ получаем

$$\left| \int_a^b f(x,y) \, dx - \int_a^b \varphi(x) \, dx \right| \le \int_a^b |f(x,y) - \varphi(x)| \, dx < \varepsilon(b-a).$$

Отсюда следует требуемое. Теорема доказана.

Рис. 1.

Теорема (о непрерывности). Пусть функция f(x,y) непрерывна в области D. Тогда функция J(y) будет непрерывной на отрезке [c,d].

Доказательство. Выберем произвольное $y_0 \in [c,d]$. Зададим приращение аргумента Δy $((y_0 + \Delta y) \in [c,d])$. Имеем, что $f(x,y_0 + \Delta y) \to f(x,y_0)$ при $\Delta y \to 0$, равномерно относительно $x \in [a,b]$ (см. лемму из прошлого параграфа). Тогда по теореме о предельном переходе получаем

$$\lim_{\Delta y \to 0} J(y_0 + \Delta y) = \lim_{\Delta y \to 0} \int_a^b f(x, y_0 + \Delta y) \, dx = \int_a^b f(x, y_0) \, dx = J(y_0),$$

следовательно, функция J(y) непрерывна в точке y_0 . Теорема доказана.

Теорема (об интегральном переходе). Пусть функция f(x,y) непрерывна в области D. Тогда функция J(y) будет интегрируемой на отрезке [c,d], u

$$\int_{c}^{d} J(y) \, dy = \int_{c}^{d} dy \int_{a}^{b} f(x, y) \, dx = \int_{a}^{b} dx \int_{c}^{d} f(x, y) \, dy = \iint_{D} f(x, y) \, dx dy.$$

Доказательство теоремы следует из свойств двойного интеграла.

Теорема (о дифференциальном переходе) (правило Лейбница). Пусть функция f(x,y) непрерывна в области D, и в этой области существует непрерывная частная производная $\frac{\partial f(x,y)}{\partial y}$. Тогда функция J(y) будет дифференцируемой на отрезке [c,d], u

$$J'(y) = \int_a^b \frac{\partial f(x,y)}{\partial y} dx.$$

Доказательство. Имеем

$$J'(y) = \lim_{\Delta y \to 0} \frac{J(y + \Delta y) - J(y)}{\Delta y} = \lim_{\Delta y \to 0} \int_{a}^{b} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} dx =$$
$$= \lim_{\Delta y \to 0} \int_{a}^{b} \frac{\partial f(x, y + \theta \Delta y)}{\partial y} dx.$$

Здесь $\theta \in (0,1)$. Применяя теорему о предельном переходе, и учитывая лемму из предыдущего параграфа, находим требуемое:

$$J'(y) = \int_a^b \lim_{\Delta y \to 0} \frac{\partial f(x, y + \theta \Delta y)}{\partial y} dx = \int_a^b \frac{\partial f(x, y)}{\partial y} dx.$$

Теорема доказана.

Пример. Пусть

$$J(y) = \int_0^1 xy^2 \, dx.$$

Вычислим производную этой функции двумя способами. С одной стороны,

$$J(y) = \frac{x^2}{2} \Big|_0^1 y^2 = \frac{y^2}{2},$$

и значит,

$$J'(y) = y.$$

С другой стороны,

$$J'(y) = \int_0^1 \frac{\partial(xy^2)}{\partial y} \, dx = \int_0^1 2xy \, dx = \frac{x^2}{2} \Big|_0^1 2y = y.$$

Получили то же самое.

2. Интегралы с подвижными границами. Пусть функция f(x,y) определена в области

$$D = \{(x,y)^T \in R^2: x \in [a(y),b(y)], y \in [c,d]\}.$$

Здесь $a(y),\ b(y)$ — некоторые ограниченные функции, заданные на отрезке [c,d]. Положим

$$\bar{a} = \min_{[c,d]} a(y), \qquad \bar{b} = \max_{[c,d]} b(y)$$

(см. рисунок 2). Будем считать, что функция f(x,y) интегрируема по x на промежутке [a(y),b(y)] при любом фиксированном значении $y\in [c,d]$. Тогда интеграл получим следующий интеграл, зависящий от параметра:

$$J(y) = \int_{a(y)}^{b(y)} f(x, y) dx.$$

Рис. 2.

Теорема (о предельном переходе). Пусть функция f(x,y) сходится при $y \to y_0$ (здесь $y_0 \in [c,d]$) к функции $\varphi(x)$, равномерно относительно $x \in [\bar{a},\bar{b}]$ (таких что $(x,y) \in D$), и кроме того, $a(y) \to \hat{a}$ и $b(y) \to \hat{b}$ при $y \to y_0$. Тогда

$$\lim_{y \to y_0} \int_{a(y)}^{b(y)} f(x, y) dx = \int_{\hat{a}}^{\hat{b}} \varphi(x) dx.$$

Доказательство. Согласно условиям теоремы, имеем

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0: \ \forall y \in [c, d]: \ |y - y_0| < \delta \implies$$

$$\Rightarrow |f(x, y) - \varphi(x)| < \varepsilon, \ \forall x \in [\bar{a}, \bar{b}] \ ((x, y) \in D),$$

и кроме того,

$$|a(y) - \hat{a}| < \varepsilon, \qquad |b(y) - \hat{b}| < \varepsilon.$$

Тогда при $|y-y_0|<\delta$ получаем

$$\left| \int_{a(y)}^{b(y)} f(x,y) \, dx - \int_{\hat{a}}^{\hat{b}} \varphi(x) \, dx \right| =$$

$$= \left| \int_{a(y)}^{\hat{a}} f(x,y) \, dx + \int_{\hat{a}}^{\hat{b}} f(x,y) \, dx + \int_{\hat{b}}^{b(y)} f(x,y) \, dx - \int_{\hat{a}}^{\hat{b}} \varphi(x) \, dx \right| \le$$

$$\le \left| \int_{a(y)}^{\hat{a}} f(x,y) \, dx \right| + \left| \int_{\hat{b}}^{b(y)} f(x,y) \, dx \right| + \int_{\hat{a}}^{\hat{b}} |f(x,y) - \varphi(x)| \, dx <$$

$$< \varepsilon \left(2M + (\hat{b} - \hat{a}) \right).$$

Здесь $M = \sup_{D} f(x,y)$ (мы в данном параграфе исследуем собственные интегралы, значит, $M \neq \infty$). Отсюда следует требуемое. Теорема доказана.

Теорема (о непрерывности). Пусть функция f(x,y) непрерывна в области D, и функции a(y), b(y) непрерывны на отрезке [c,d]. Тогда функция J(y) будет непрерывной на отрезке [c,d].

Доказательство. Выберем произвольное $y_0 \in [c,d]$. Зададим приращение аргумента Δy $((y_0 + \Delta y) \in [c,d])$. Имеем, что $f(x,y_0 + \Delta y) \to f(x,y_0)$ при $\Delta y \to 0$, равномерно относительно аргумента x (см. лемму из прошлого параграфа), и кроме того, $a(y_0 + \Delta y) \to a(y_0)$ и $b(y_0 + \Delta y) \to b(y_0)$ при $\Delta y \to 0$. Тогда по теореме о предельном переходе получаем

$$\lim_{\Delta y \to 0} J(y_0 + \Delta y) = \lim_{\Delta y \to 0} \int_{a(y_0 + \Delta y)}^{b(y_0 + \Delta y)} f(x, y_0 + \Delta y) \, dx = \int_{a(y_0)}^{b(y_0)} f(x, y_0) \, dx = J(y_0),$$

следовательно, функция J(y) непрерывна в точке y_0 . Теорема доказана.

Теорема (об интегральном переходе). Пусть функция f(x,y) непрерывна в области D, и функции a(y), b(y) непрерывны на отрезке [c,d]. Тогда функция J(y) будет интегрируемой на отрезке [c,d], и

$$\int_{c}^{d} J(y) \, dy = \int_{c}^{d} dy \int_{a(y)}^{b(y)} f(x, y) \, dx = \iint_{D} f(x, y) \, dx dy.$$

Доказательство теоремы следует из свойств двойного интеграла.

Теорема (о дифференциальном переходе) (обобщенное правило Лейбница). Пусть функция f(x,y) непрерывна в области D и имеет там непрерывную частную про-изводную $\frac{\partial f(x,y)}{\partial y}$. Пусть также функции a(y), b(y) непрерывно-дифференцируемы на отрезке [c,d]. Тогда функция J(y) будет дифференцируемой на отрезке [c,d], u

$$J'(y) = \int_{a(y)}^{b(y)} \frac{\partial f(x,y)}{\partial y} dx - f(a(y),y)a'(y) + f(b(y),y)b'(y).$$

Доказательство. Построим функцию

$$F(y, u, v) = \int_{v}^{v} f(x, y) dx.$$

Тогда J(y) = F(y, a(y), b(y)). Используя правило дифференцирования сложных функций, а также учитывая теорему Барроу и доказанное ранее частное правило Лейбница, получаем

$$J'(y) = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial u}a'(y) + \frac{\partial F}{\partial v}b'(y) =$$

$$= \int_{a(y)}^{b(y)} \frac{\partial f(x,y)}{\partial y} dx - f(a(y),y)a'(y) + f(b(y),y)b'(y).$$

Теорема доказана.

Пример. Пусть

$$J(y) = \int_{\sin y}^{1+y^2} \frac{e^{xy}}{x} \, dx.$$

Тогда

$$J'(y) = \int_{\sin y}^{1+y^2} e^{xy} dx - \frac{e^{y \sin y}}{\sin y} \cos y + \frac{e^{y^3}}{y^2} 2y =$$

$$= \frac{e^{xy}}{y} \Big|_{\sin y}^{y^2} - \frac{e^{y \sin y} \cos y}{\sin y} + \frac{2e^{y^3}}{y} = \frac{3e^{y^3}}{y} - \frac{e^{y \sin y} (1 + \cos y)}{\sin y}.$$