Лабораторная работа 1.3.2 Определение модуля кручения 13 октября 2023 г.

1. Цели и задачи

- измерение углов закручивания в зависимости от приложенного момента сил
- расчет модулей кручения и сдвига при статическом закручивании стержня
- определение тех же модулей для проволоки по измерениям периодов крутильных колебаний подвешенного на ней маятника (динамическим методом)

2. Оборудование

I часть:

- исследуемый стержень (сталь)
- отсчётная труба со шкалой
- рулетка
- микрометр
- набор грузов

II часть:

- проволока из исследуемого материала (сталь)
- грузы
- секундомеры
- микрометр
- рулетка
- линейка

3. Теория

Момент силы при деформации стержня:

$$M = \frac{\pi R^4 G}{2l} \varphi = f \varphi \tag{1}$$

Отсюда, модуль сдвига:

$$G = \frac{2l}{\pi R^4} f \tag{2}$$

Погрешности:

$$T = \sqrt{\frac{1}{N-1} \sum_{i} (T_i - \langle T \rangle)^2}$$
 (3)

$$G = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + 4\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta f}{f}\right)^2} \tag{4}$$

4. Результаты измерений

I часть:

Диаметр стержня: $d_1 = 4,820 \pm 0,010 \text{ мм}$ Длина стержня: $L_1 = 132,80 \pm 0,10 \text{ см}$ Диаметр диска: $D_1 = 11,070 \pm 0,010 \text{ см}$

II часть:

Длина груза: $l_2^w = 1,050 \pm 0,010 \text{ мм}$ Расстояние от оси до края центрального груза: $l_2^{\text{off}} = 173,00 \pm 0,20 \text{ см}$ Диаметр стержня: $d_2 = 1,050 \pm 0,010 \text{ мм}$ Длина стержня: $L_2 = 173,00 \pm 0,20 \text{ см}$ Масса одного груза: $m_2 = 204,5 \pm 0,5 \text{ г}$

І. Определение модуля кручения стержня статическим методом

Рис. 1. Схема установки I

Таблица 1. Результаты измерений

l, см	T_1 , c	T_2 , c	T_3 , c
12,0	52,26	52,29	52,29
9,0	44,90	44,86	44,89
6,0	37,61	37,65	37,64
3,0	30,74	30,73	30,73
0,0	24,49	24,47	24,49

Угол отклонения:

$$\varphi = \arctan\left(\frac{l}{\Delta l}\right)$$

Момент силы тяжести:

$$M = mgR$$

Рис. 2. График зависимости φ от M

Методом χ^2 :

$$k_1 = 0.165 \pm 0.004 \; \mathrm{m}^{-1} \cdot \mathrm{H}^{-1}$$

$$f_1 = rac{1}{k_1} = 6.07 \pm 0.14 \; \mathrm{M} \cdot \mathrm{H}$$

$$G_1 = rac{2l}{\pi R^4} f = 76,0 \pm 1,8$$
 ГПа

II. Определение модуля сдвига при помощи крутильных колебаний

Рис. 3. Схема установки II

Таблица 2. Результаты измерений

m, г	Δl_1 , см	$\Delta l_2, \mathrm{cm}$	$\Delta l_3,$ см
200	4,4	5,0	4,5
400	8,5	8,7	9,1
500	11,6	11,4	12,0
600	13,5	14,8	13,8
700	16,6	16,6	16,9
800	18,4	18,5	18,3
700	16,7	16,5	16,5
600	14,5	13,5	13,9
500	11,2	11,3	11,5
400	9,2	8,5	9,5
200	4,0	3,9	5,0

Рис. 4. График зависимости T^2 от l^2

$$T^{2} = \frac{(2\pi)^{2}}{f}I_{0} + \frac{(2\pi)^{2}}{f}2m \cdot l^{2}$$

Методом χ^2 :

$$k_2 = 0.06944 \pm 0.00005 \ \mathrm{c^2 \cdot cm^{-2}} = \frac{{{{(2\pi)}^2}}}{{{f_2}}}2m$$

$$f_2 = \frac{{{{(2\pi)}^2}}}{{{k_2}}}2m = 0{,}011627 \pm 0{,}000030~\mathrm{H}\cdot\mathrm{m}$$

$$G_2 = \frac{2l}{\pi R^4} f_2 = 84.3 \pm 3.2$$
ГПа

5. Выводы

Модули сдвига:

$$G_1 = 76,0 \pm 1,8$$
 ГПа

$$G_2 = 84,3 \pm 3,2$$
 ГПа

Полученные модули сдвига в пределах 2σ совпадают с настоящим значением модуля сдвига стали G=79,3 ГПа.