Modulárna aritmetika, rozšírený Euklidov algoritmus

Modulárna aritmetika

- počítanie v $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$, t.j. všetky operácie $(+, -, \cdot)$ sú modulo n.
- $\bullet \ a \equiv b \ (\bmod \, n),$ t.j. "aje kongruentné s $b \ \bmod n$ ", znamená, že po delení n dávajú aaj brovnaký zvyšok.
- $a=t_1\cdot n+q_1,\,b=t_2\cdot n+q_2.$ Keďže $q_1=q_2,$ tak $a-b=t_1\cdot n-t_2\cdot n=(t_1-t_2)\cdot n,$ t.j. n|(a-b).
- Definícia: $a \equiv b \pmod{n} \iff n | (a b)$.

Rozšírený Euklidov algoritmus

- \bullet Euklidov algoritmus \to výpočet najväčšieho spoločného deliteľa dvoch čísel (aspoň jedno je rôzne od 0).
- Najväčší spoločný deliteľ dvoch čísel a, b, ozn. (a, b), je $d \in \mathbb{N}$ také, že
 - (1) d|a, d|b, t.j. d je spoločný deliteľ
 - (2) pre každé $k \in \mathbb{N}$: $k|a, k|b \Rightarrow k|d,$ t.j. d je maximálny
- Platí veta (ako dôsledok Euklidovho algoritmu):

Ak
$$(a, b) = d$$
, tak $\exists u, v \in \mathbb{Z}$: $u \cdot a + v \cdot b = d$.

- \bullet rozšírený Euklidov algoritmus \rightarrow hľadá k a, b hodnoty d, u, v:
 - najprv sa spočíta d: (štandartný Euklidov algoritmus)
 - 1. ak a < b, tak výmena $a \leftrightarrow b$
 - 2. ($a \ge b$) Delenie so zvyškom:
 - a:b=m zv. n
 - 3. ak sa n nerovná 0, tak

$$a=n$$
, iterácia (n,b) t.j. GOTO 1.

inak

koniec (
$$(a,b)=b$$
)

- Z tohto postupu dostávame: $(d_{n+1} = 0, \text{ t.j. } (a, b) = d_n, d_0 = a, d_1 = b)$
 - $(1) d_0 = m_1 d_1 + d_2$
 - $(2) d_1 = m_2 d_2 + d_3$
 - (3) $d_2 = m_3 d_3 + d_4$

$$(n-2)$$
 $d_{n-3} = m_{n-2}d_{n-2} + d_{n-1}$

$$(n-1) \quad d_{n-2} = m_{n-1}d_{n-1} + d_n$$

$$(n) d_{n-1} = m_n d_n + d_{n+1}$$

-
$$(a,b) = d_n = d_{n-2} - m_{n-1}d_{n-1} =$$

(nahradíme d_{n-1} výrazom z (n-2),t.j. výrazom $d_{n-3}-m_{n-2}d_{n-2})$

=
$$d_{n-2} - m_{n-1}(d_{n-3} - m_{n-2}d_{n-2}) = (1 + m_{n-1}m_{n-2})d_{n-2} - m_{n-1}d_{n-3} =$$
(nahradíme d_{n-2} výrazom z $(n-3)$, t.j. $d_{n-4} - m_{n-3}d_{n-3}$)

$$= A_{n-3}d_{n-4} + B_{n-3}d_{n-3} =$$

 $=A_1a+B_1b$

- Výstup: $d, u = A_1, v = B_1$
- Keď použití k-tej rovnice máme $d = A_k d_{k-1} + B_k d_k$, tak aplikovaním (k 1). rovnice dostávame:

 $d = A_k d_{k-1} + B_k d_k = A_k d_{k-1} + B_k (d_{k-2} - m_{k-1} d_{k-1}) = B_k d_{k-2} + (A_k - m_{k-1} d_{k-1}) = B_k d_{k-2} + (A_k - m_{k-1} d_{k-1}) = B_k d_{k-1} + B_k d_{k-1}$ $B_k \cdot m_{k-1} d_{k-1} = A_{k-1} d_{k-2} + B_{k-1} d_{k-1}$

Preto:

- $A_n = 0, B_n = 1$
- $A_{k-1} = B_k$ a $B_{k-1} = A_k B_k \cdot m_{k-1}$, pre $k = n, n-1, \dots, 2$.
- Výstup A_1, B_1 .

Výpočet inverzných prvkov v \mathbb{Z}_n

- v je inverzný prvok k u v \mathbb{Z}_n , ak $u \cdot v \equiv 1 \pmod{n}$
- nemusí existovať, ak existuje označuje sa $u^{-1} \mod n$
- \bullet Veta: $u^{-1} \bmod n$ existuje práve vtedy, keď (u,n)=1

Dôkaz: (\Rightarrow) Existuje $u^{-1} \mod n$, t.j. $u \cdot v \equiv 1 \pmod n \Leftrightarrow n \mid (u \cdot v - 1)$, t.j. $1 = u \cdot v - k \cdot n$, pre nejaké $k \in \mathbb{N}$. Nech $d = (u, n) \in \mathbb{N}$, potom keďže d|u a d|n, tak $d|(u \cdot v - k \cdot n) = 1$. Čiže d = 1.

 (\Leftarrow) Nech (u,n) = 1. Z rozšíreného Euklidovho algoritmu dostávame, že existujú $U, V \in \mathbb{Z}$ také, že $U \cdot u + V \cdot n = 1 = (u, n)$. Zobraním poslednej rovnice modulo n dostávame: $U \cdot u \equiv 1 \pmod{n}$. Teda $U \mod n = u^{-1} \mod n$.

Z druhej časti dôkazu máme nasledujúci postup (u, n) = 1:

- Z rozšíreného Euklidovho algoritmu pre u, n dostávame celé čísla U, V také, že: $U \cdot u + V \cdot n = 1$
- Vyjadrením predošlej rovnosti cez $\operatorname{mod} n$ máme: $U \cdot u \equiv 1 \pmod{n}$
- Preto v \mathbb{Z}_n je $u^{-1} = U \mod n$.

Príklady

- 1. Použite rozšírený Euklidov algoritmus na nasledujúce dvojice: (a) (52, 14), (b) (73, 18), (c) (59, 27), (d) (81, 11), (e) (34, 19), (f) (68080, 56957)
- 2. Vypočítajte $u^{-1} \mod n$ (ak existuje): (a) 2^{-1} v \mathbb{Z}_6 , (b) 17^{-1} v \mathbb{Z}_{20} , (c) 23^{-1} v \mathbb{Z}_{44} , (d) u^{-1} , $\forall u \in \mathbb{Z}_{12}$,
 - (e) u^{-1} , $\forall u \in \mathbb{Z}_{13}$, (f) 9^{-1} v \mathbb{Z}_{29}

Riešené príklady

• Použite rozšírený Euklidov algoritmus pre dvojicu (85, 27).

Riešenie:

```
85: 27 = 3 \text{ zv. } 4
27: 4 = 6 \text{ zv. } 3
4: 3 = 1 \text{ zv. } 1
3: 1 = 3 \text{ zv. } 0
1 = \mathbf{4} - 1 \cdot \underline{\mathbf{3}} = \mathbf{4} - 1 \cdot (\mathbf{27} - 6 \cdot \mathbf{4}) = 7 \cdot \underline{\mathbf{4}} - 1 \cdot \mathbf{27} = 7 \cdot (\mathbf{85} - 3 \cdot \mathbf{27}) - 1 \cdot \mathbf{27} = 7 \cdot \mathbf{85} - 22 \cdot \mathbf{27}
Preto (85, 22) = 1 a 1 = 7 \cdot 85 - 22 \cdot 27.
Alernatívne:
(0, 1), (1, 0 - 1 \cdot 1) = (1, -1), (-1, 1 - (-1) \cdot 6) = (-1, 7), (7, -1 - 7 \cdot 3) = (7, -22). T.j. 7 \cdot 85 + (-22) \cdot 27 = 1
```

 \bullet Zistite $16^{-1} \, \mathrm{mod} \, 53 \, \mathrm{a} \, \, 53^{-1} \, \, \mathrm{mod} \, 16$ (ak existuje).

Riešenie:

(1) Použijeme zovšeobecnený Euklidov algoritmus pre dvojicu (53, 16)

$$53:16 = 3 \text{ zv. } 5$$

 $16:5 = 3 \text{ zv. } 1$
 $5:1 = 5 \text{ zv. } 0$

$$1 = 16 - 3 \cdot 5 = 16 - 3 \cdot (53 - 3 \cdot 16) = 10 \cdot 16 - 3 \cdot 53.$$

Alebo: $(0, 1), (1, 0 - 1 \cdot 3) = (1, -3), (-3, 1 - (-3) \cdot 3) = (3, 10)$

(53, 16) = 1, preto existujú príslušné inverzné hodnoty.

- (2) Pre výpočet $16^{-1} \mod 53$ zoberieme poslednú rovnosť modulo 53: $1 = 10 \cdot 16 3 \cdot 53 \mod 53 = 10 \cdot 16 \mod 53$, pre $16^{-1} \mod 53 = 10$.
- (3) Pre výpočet $53^{-1} \mod 16$ zoberieme poslednú rovnosť modulo 16: $1=-3\cdot 53 \mod 16, \, 53^{-1} \mod 16=-3 \mod 16=13.$