

# Examen de Sistemas Operativos. 18 de abril de 2006.

#### NOTAS:

- \* La fecha de publicación de las notas, así como de revisión se notificarán por Aula Global.
- \* Para la realización del presente examen se dispondrá de 1 hora.
- \* No se pueden utilizar libros ni apuntes

### Cuestionario

Responda a las siguientes preguntas (1 punto por pregunta):

- 1) ¿Cuáles son las principales funciones de un sistema operativo?
- 2) Cuales son los motivos principales para utilizar sistemas operativos multitarea.
- 3) ¿Cuáles son los componentes principales de un proceso? Describa brevemente dichos componentes.
- 4) ¿Cuáles son las diferencias entre procesos ligeros y procesos normales?
- 5) Cuales son las causas que provocan la ejecución de código del núcleo del sistema operativo.



Problema 1 (5 punto)

El siguiente programa implementa una función matemática determinada mediante la creación de un grupo de procesos:

```
int num=4;
int pid1,pid2;
int res1, res2;
while(1) {
  if ((0 == num) | (1 == num)) {
      printf ("res: %d\n",num);
      exit(num);
  } else {
      pid1 = fork();
      if (pid1 > 0) {
          pid2 = fork();
          if (pid2 > 0) {
              waitpid(pid1,&res1,0);
              waitpid(pid2,&res2,0);
               printf ("res: %d+%d=%d\n",res1,res2,res1+res2);
               exit(res1+res2);
          } else {
              num=num-2;
          }
      } else {
          num=num-1;
      }
   }
}
```

Conteste a las siguientes preguntas:

- a) Construya un grafo genealógico de los procesos que genera el programa anterior, (el nodo raíz será el proceso inicial y los nodos de los procesos hijos estarán colocados debajo de su nodo padre y unidos con una línea continua). Cada nodo debe contener la siguiente información:
  - Número de identificación del proceso (comenzando desde 1, puede haber varias combinaciones posibles).
  - Valor de retorno del proceso.
  - Otros datos que considere importantes.
- b) Indique cual será la salida por pantalla de dicho programa (puede haber varias soluciones)
- c) Si se varía el valor inicial de num ¿Cual será el efecto en la ejecución del programa?
- d) Considerando que el valor inicial de num sea el valor de entrada y el valor de retorno del proceso inicial el resultado ¿Cuál es la función matemática que implementa el programa en cuestión?

NOTA: la función waitpid espera hasta que el proceso hijo con el identificador igual al 1º parámetro termine. El valor de retorno de proceso hijo se guardará en el 2º parámetro.

## Ingeniería en Informática



#### **SOLUCIONES:**

- 1. ¿Cuáles son las principales funciones de un sistema operativo?
  - a. Gestor de recursos hardware:
     Gestiona el hardware para repartir los recursos entre los distintos procesos.
  - Maquina extendida:
     Ofrece nuevas servicios a los procesos ampliando los que se obtienen directamente del hardware.
  - c. Interfaz de aplicaciones:
     Ofrece una interfaz común a las aplicaciones para acceder a los recursos hardware y a los servicios extendidos del sistema operativo, independientemente del computador utilizado.
  - d. Interfaz de usuario:

    Ofrece una interfaz al usuario para la utilización del computador y la ejecución de programas.
- 2. Cuales son los motivos principales para utilizar sistemas operativos multitarea.
  - a. Aprovechar al máximo el hardware. Simultaneando procesos que requieren entrada/salida con otros que requieran CPU e incluso ejecutando varios procesos a la vez en caso de tener varias CPUs
  - b. Dar servicio a múltiples usuarios de forma simultanea.
  - c. Ejecutar aplicaciones distribuidas en múltiples procesos. (Ej: aplicaciones paralelas).
- 3. ¿Cuáles son los componentes principales de un proceso? Describa brevemente dichos componentes.
  - a. Imagen de memoria del proceso. Zona de memoria dedicada al proceso donde se guarda el código y los datos del programa que ejecuta el proceso.
  - b. Estado del proceso. Conjunto de registros de la CPU que representa un instante de la ejecución del proceso.
  - c. Bloque de control del proceso. Estructura de datos asociada al proceso donde se almacena toda la información del sistema operativo relacionada con dicho proceso.
- 4. ¿Cuáles son las diferencias entre procesos ligeros y procesos normales?
  - a. Los procesos normales no comparten nada salvo que se haga de forma explicita. Los procesos ligeros lo comparten todo menos el estado del proceso (los registros de la CPU y si esta ejecutando o bloqueado), y la pila (variables locales).
  - Los procesos normales normalmente ejecutan un programa por proceso mientras que los procesos ligeros ejecutan un mismo programa entre varios.

## Ingeniería en Informática



- 5. Cuales son las causas que provocan la ejecución de código del núcleo del sistema operativo.
  - a. Arranque del sistema (es un caso especial)
  - b. Interrupciones hardware (EJ: reloj)
  - c. Excepciones (Ej: division por cero)
  - d. Llamadas al sistema (EJ: impresión por pantalla)

### SOLUCION EJERCICIO

a)



b) Salida por pantalla:

res: 0

res: 1

res: 1+0=1

res: 1

res: 1+1=2

res: 0

res: 1

res: 1+0=1

res: 2+1=3

- c) Por norma la variable num va decreciendo en cada uno de los hijos creados, salvo si vale 0 o 1 que no crea hijos, luego entonces las posibilidades son:
  - a. Si num < 0, nunca se llega a la condición de salida. Se crean procesos indefinidamente.
  - b. Si num = 0 ó num = 1, No se crea ningún proceso nuevo.
  - c. Si num > 1, Al aumentar num aumenta el número de procesos generados mientras que al disminuir num disminuye el número de procesos.
- d) La función es la sucesión de fibonacci: