Instance Based Classifiers

Similar instances have similar classification

Classification steps

- Training phase (Model construction): a model is constructed from the training instances.
 - classification algorithm finds relationships between predictors and targets
 - relationships are summarised in a model
- Testing phase:
 - test the model on a test sample whose class labels are known but not used for training the model
- Usage phase (Model usage):
 - use the model for classification on new data whose class labels are unknown

Instance-based Classifiers

- No clear separation between these phases of classification
- also called lazy classification, as opposed to eager classification
- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Eager vs Lazy Classification

- Model is computed beforeclassification
- Model is independent of the test instance
- Test instance is not included in the training data
- Avoids too much work at classification time
- Model is not accurate for each instance

- Model is computed during classification
- Model is dependent on the test instance
- Test instance is included in the training data
- High accuracy for models at each instance level

Eager Classification

Lazy Classification

Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of labeled records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distances to x

How does it work?

1 nearest-neighbor

Voronoi Diagram

Predict the same value/class as the nearest instance in the training set

Comparing Objects

Problem: measure similarity between instances

vs. text similarity

- different types of data: numbers colours, geolocation, booleans, etc.
- Solution: convert all features of the instances into numerical values
 - represent instances as vectors of features in an ndimensional space

Distance Metrics

Euclidean distance:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan distance

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

Minkowski distance

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

Nearest Neighbor Classification

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the knearest neighbors

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

Weigh the vote according to distance

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_Z} w_i \times I(v = y_i)$$

• weight factor, $w = 1/d^2$

The kNN classification algorithm

Let k be the number of nearest neighbors and D be the set of training examples.

- 1. for each test example z = (x',y') do
- 2. Compute $d(\mathbf{x}',\mathbf{x})$, the distance between z and every example, $(\mathbf{x},\mathbf{y}) \in D$
- 3. Select $D_7 \subseteq D$, the set of k closest training examples to z.

4.
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_Z} I(v = y_i)$$

5. end for

Example

Illustration of kNN for a 3-class problem with k=5

Nearest Neighbor Classification...

- Choosing the value of k: Classification is sensitive to the correct selection of k
 - if k is too small ⇒ overfitting
 - algorithm performs too good on the training set, compared to its true performance on unseen test data
 - → small k? → less stable, influenced by noise
 - → large k? → less precise, higher bias

$$k = \sqrt{n}$$

Nearest Neighbor Classification...

Scaling issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

• Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

Selection of the right similarity measure is critical:

011111111111

VS

00000000001

100000000000

Euclidean distance = 1.4142 for both pairs

Solution: Normalize the vectors to unit length

Pros and Cons

Pros:

- Simple to implement and use
- Robust to noisy data by averaging k-nearest neighbours
- kNN classification is based solely on local information
- The decision boundaries can be of arbitrary shapes

Pros and Cons

Cons:

- Curse of dimensionality: distance can be dominated by irrelevant attributes
- O(n) for each instance to be classified
- More expensive to classify a new instance than with a model

FACULTY OF INFORMATION TECHNOLOGY

