Mathématiques Cours de Spé

Table des matières

1	Séri	ies nur	nériques	7
	1.1	Défini	${ m tions}$	7
		1.1.1	Convergence et divergence	7
		1.1.2	Somme et reste d'une série convergente	8
		1.1.3	Condition nécessaire de convergence	8
	1.2	Séries	à termes positifs	9
		1.2.1	Premier critère	9
		1.2.2	Séries de Riemann	10
		1.2.3	Critères de comparaison	10
		1.2.4	Règle de Riemann	12
		1.2.5	Séries de Bertrand	13
		1.2.6	Règle de D'Alembert	14
		1.2.7	Règle de Cauchy	14
		1.2.8	Règle de Duhamel	15
	1.3	Séries	à termes quel conques	16
		1.3.1	Séries alternées	16
		1.3.2	Critère spécial	17
		1.3.3	Convergence absolue	17
		1.3.4	Règle d'Abel	18
	1.4	Exerci	ices types	19
2	Inté	grales	impropres	23
	2.1	Défini	tions	23

		2.1.1	Définition d'une intégrale impropre	23
		2.1.2	Convergence et divergence	24
	2.2	Foncti	ons de Riemann	29
	2.3	Intégr	ales impropres de fonctions positives	30
		2.3.1	Rappels sur les notations de Landau	30
		2.3.2	Critères de comparaison pour des fonctions positives	31
		2.3.3	Fonctions de Bertrand	33
	2.4	Critèr	es complémentaires	34
		2.4.1	Critère intégral de Cauchy	34
		2.4.2	Intégration par parties	35
		2.4.3	Changement de variable	36
		2.4.4	Convergence absolue	36
	2.5	Exerci	ices types	37
3	Fen	DOOR W	ectoriels	44
J	Е s р		tions	44
	0.1	3.1.1	Espaces vectoriels	44
		3.1.2	Sous-espaces vectoriels	45
	3.2		tions	45
	9.4	3.2.1	Intersection de sev	45
		3.2.2	Somme de sev	46
	3.3	_	espaces supplémentaires	46
	0.0	3.3.1	Sev en somme directe	46
		3.3.2	Sev supplémentaires	46
	3.4		ngendré	47
	3.5		cation linéaire	47
	5.5	3.5.1	Définition	47
		3.5.2	Noyau et image	48
	3.6		et dimension	49
	0.0	3.6.1	Famille libre, famille génératrice, base	49
		3.6.2	Dimension	49
		0.0.2		10

		3.6.4	Théorème du rang	51
	3.7	Exerci	ices types	51
4	Mat	trices		56
	4.1	Opéra	tions	56
		4.1.1	Définition	56
		4.1.2	Somme	57
		4.1.3	Produit externe	57
		4.1.4	Produit interne	57
		4.1.5	Transposée	58
		4.1.6	Trace	59
		4.1.7	Déterminant	59
		4.1.8	Inversion	61
	4.2	Matri	ce et application linéaire	62
		4.2.1	Matrice d'une application linéaire	62
		4.2.2	Matrice de passage	63
		4.2.3	Changement de base	64
	4.3	Exerci	ices types	64
5	Diag	gonalis	sation des endomorphismes et des matrices carrées	69
	5.1	Défini	tions	69
		5.1.1	Valeur propre	69
		5.1.2	Sous-espace propre	69
		5.1.3	Polynôme d'endomorphisme	70
	5.2	Diago	nalisabilité	71
		5.2.1	Polynôme caractéristique	71
		5.2.2	Polynôme scindé	71
		5.2.3	Endomorphisme diagonalisable	72
	5.3	Exerci	ices types	75
6	Esp	aces p	réhilbertiens	83
	6.1	Défini	tions	83

		6.1.1	Forme bilinéaire	
		6.1.2	Forme bilinéaire symétrique	
		6.1.3	Produit scalaire	
	6.2	Théor	èmes de Cauchy-Schwarz et de Minkowski	
		6.2.1	Théorème de Cauchy-Schwarz	
		6.2.2	Théorème de Minkowski	
	6.3	Ortho	gonalité	
		6.3.1	Définitions	
		6.3.2	Théorème de Pythagore	
		6.3.3	Orthogonal d'un sous-espace	
		6.3.4	Famille orthogonale et orthonormale	
		6.3.5	Théorème de Gram-Schmidt	
		6.3.6	Théorème du supplémentaire orthogonal	
	6.4	Projec	etion orthogonale	
		6.4.1	Définition	
		6.4.2	Distance à un sous-espace	
		6.4.3	Théorème de Bessel	
	6.5	Adjoir	at 93	
		6.5.1	Définition	
		6.5.2	Propriétés	
		6.5.3	Opérateur autoadjoint	
	6.6	Exerci	ces types	
7	Suit	os do	fonctions 105	
•			tions	
	1.1	7.1.1	Suite de fonctions	
		7.1.2	Convergence simple	
		7.1.2	Convergence uniforme	
	7.2		étés de la convergence uniforme	
	1.4	7.2.1	La convergence uniforme implique la convergence simple	
		7.2.1	Convergence uniforme et opérations	
		7.2.3	Convergence uniforme et operations	
		1.4.3	Convergence uniforme et continuite	

		7.2.4	Convergence uniforme et intégrales définies	1
		7.2.5	Convergence uniforme et dérivées	1
	7.3	Appro	eximation des fonctions continues	4
		7.3.1	Approximation uniforme des fonctions continues sur un fermé borné 11	4
		7.3.2	Approximation uniforme des fonctions continues et périodiques	4
	7.4	Exerci	ices types	5
8	Séri	ies de :	fonctions 11	.6
	8.1	Conve	rgences	16
		8.1.1	Définition d'une série de fonctions	.6
		8.1.2	Convergence simple	17
		8.1.3	Convergence uniforme	8
		8.1.4	Convergence normale	20
		8.1.5	Convergence absolue	21
		8.1.6	Liens entre les différents types de convergence	21
	8.2	Propri	iétés de la convergence uniforme	22
		8.2.1	Convergence uniforme et continuité	22
		8.2.2	Convergence uniforme et intégrales définies	22
		8.2.3	Convergence uniforme et dérivées	22
	8.3	Exerci	ices types	23
9	Séri	ies de l	Fourier 12	27
	9.1	Défini	tions	27
		9.1.1	Série trigonométrique	27
		9.1.2	Continuité par morceaux	28
		9.1.3	Coefficients de Fourier et série de Fourier	20
		9.1.4	L'espace $\mathcal D$ et ses propriétés	32
	9.2	Propri	iétés	33
		9.2.1	Théorème de Bessel	33
		9.2.2	Théorème de Parseval	33
		9.2.3	Théorème de Lejeune-Dirichlet	34
	9.3	Exerci	ices types 13	۲.F

10 Fonctions de deux variables réelles	142
10.1 Introduction	142
10.2 Topologie de \mathbb{R}^2	142
10.2.1 Normes sur \mathbb{R}^2	142
10.2.2 Ouverts de \mathbb{R}^2	143
10.3 Dérivées partielles	144
10.3.1 Fonctions partielles	144
10.3.2 Dérivées partielles premières	144
10.3.3 Dérivées partielles secondes	147
10.3.4 Théorème de Schwarz	148
10.4 Point critique	149
10.4.1 Point critique	149
10.4.2 Notations de Monge	150
10.5 Extrema locaux des fonctions de deux variables	151
10.5.1 Extremum local	151
10.5.2 Recherche pratique des extrema locaux	152
10.6 Evergices types	154

Chapitre 1

Séries numériques

1.1 Définitions

1.1.1 Convergence et divergence

Définition 1

Soit (u_n) une suite réelle. La série de terme général u_n notée $\sum u_n$ est la suite des sommes partielles (S_n) où pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$. On dit que $\sum u_n$ converge si (S_n) converge. On dit qu'elle diverge sinon.

Exemple de la série géométrique

Soit $q \in \mathbb{R}_+^*$. Considérons la série géométrique $\sum q^n$.

Alors la suite des sommes partielles associée est $(S_n) = \left(\sum_{k=0}^n q^k\right)$.

Or pour tout $n \in \mathbb{N}$,

$$S_n = \sum_{k=0}^n q^k = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1 \\ n + 1 & \text{sinon} \end{cases}$$

Donc (S_n) converge ssi q < 1 c'est-à-dire $\sum u_n$ converge ssi q < 1.

Proposition 1

Soient $\sum u_n$, $\sum v_n$ deux séries numériques et $\lambda \in \mathbb{R}$. Alors

- 1. $(\sum u_n \ converge \ et \ \sum v_n \ converge) \Longrightarrow \sum (u_n + v_n) \ converge.$
- 2. $\sum u_n$ converge $\Longrightarrow \sum \lambda u_n$ converge.
- 3. $\left(\sum u_n \ converge \ et \ \sum v_n \ diverge\right) \Longrightarrow \sum (u_n + v_n) \ diverge.$

1.1.2 Somme et reste d'une série convergente

Définition 2

Soit $\sum u_n$ une série numérique convergente. On appelle somme de la série le nombre réel

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n$$

et on appelle reste de la série la suite (R_n) définie pour tout $n \in \mathbb{N}$ par

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$

Exemple

En reprenant l'exemple précédent, si q < 1, alors la somme de la série $\sum q^n$ est

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} \quad \operatorname{car} \ q^{n+1} \xrightarrow[n \to +\infty]{} 0$$

Ainsi si q < 1, la série $\sum q^n$ est convergente et converge vers $\frac{1}{1-q}$

1.1.3 Condition nécessaire de convergence

Proposition 2

Soit (u_n) une suite réelle. Alors

$$\sum u_n \ converge \implies u_n \xrightarrow[n \to +\infty]{} 0$$

Exemple

$$\sum \frac{e^n}{n}$$
 diverge car la suite $\left(\frac{e^n}{n}\right)$ ne tend pas vers 0.

1.2 Séries à termes positifs

1.2.1 Premier critère

Définition 3

On dit qu'une série numérique $\sum u_n$ est à termes positifs si pour tout $n \in \mathbb{N}$, $u_n \geqslant 0$.

Proposition 3

Soient $\sum u_n$ une série à termes positifs et (S_n) la suite de ses sommes partielles. Alors

$$\sum u_n$$
 converge \iff (S_n) est majorée

Proposition 4

Soient (u_n) et (v_n) deux suites réelles telles que

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant v_n$$

Alors
$$\begin{cases} \sum v_n \ converge \implies \sum u_n \ converge \end{cases}$$

$$et$$

$$\sum u_n \ diverge \implies \sum v_n \ diverge$$

Exemple

La série à termes positifs $\sum \frac{1}{n|\sin(n)|}$ diverge. En effet pour tout $n \in \mathbb{N}^*$, $|\sin(n)| \le 1$ donc

$$\frac{1}{|\sin(n)|} \geqslant 1$$

Ainsi pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{n|\sin(n)|} \geqslant \frac{1}{n}$$

or $\sum \frac{1}{n}$ diverge donc $\sum \frac{1}{n|\sin(n)|}$ diverge.

1.2.2 Séries de Riemann

Définition 4

On appelle série de Riemann, toute série de la forme $\sum \frac{1}{n^{\alpha}}$ où $\alpha \in \mathbb{R}$.

Théorème 1 (de Riemann)

Soit $\alpha \in \mathbb{R}$. Alors

$$\sum \frac{1}{n^{\alpha}} \ converge \iff \alpha > 1$$

Exemple

Etudions la nature de la série numérique $\sum \frac{1+\cos(n)}{n^4}$. C'est une série à termes positifs car pour tout $n \in \mathbb{N}^*$,

$$1 + \cos(n) \ge 0$$
 vu que $\cos(n) \ge -1$

D'autre part pour tout $n \in \mathbb{N}^*$,

$$\frac{1 + \cos(n)}{n^4} \leqslant \frac{2}{n^4} \quad \text{car} \quad \cos(n) \leqslant 1$$

Or la série de Riemann $\sum \frac{1}{n^4}$ converge (car 4>1) donc la série $\sum \frac{1+\cos(n)}{n^4}$ converge par comparaison.

1.2.3 Critères de comparaison

Proposition 5

1. Soient (u_n) et (v_n) deux suites réelles <u>positives</u> telles que $u_n = o(v_n)$. Alors

$$\sum v_n \ converge \implies \sum u_n \ converge$$

2. Soient (u_n) et (v_n) deux suites réelles <u>positives</u> telles que $u_n = O(v_n)$. Alors

$$\sum v_n \ converge \implies \sum u_n \ converge$$

3. Soient (u_n) et (v_n) deux suites réelles <u>positives</u> telles que $u_n \sim v_n$. Alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Exemples

1. Montrons que la série à termes positifs $\sum e^{-\sqrt{n}}$ converge. On a

$$e^{-\sqrt{n}} = o\left(\frac{1}{n^2}\right)$$

En effet

$$\frac{e^{-\sqrt{n}}}{\frac{1}{n^2}} = n^2 e^{-\sqrt{n}} \xrightarrow[n \to +\infty]{} 0$$

Or $\sum \frac{1}{n^2}$ converge (car 2 > 1) donc $\sum e^{-\sqrt{n}}$ converge par comparaison.

2. Montrons que la série à termes positifs $\sum \frac{|\sin(n)|}{n^2}$ converge.

On a

$$\frac{\left|\sin(n)\right|}{n^2} = O\left(\frac{1}{n^2}\right)$$

En effet la suite ($|\sin(n)|$) est bornée. Or $\sum \frac{1}{n^2}$ converge donc $\sum \frac{|\sin(n)|}{n^2}$ converge par comparaison.

3. Montrons que la série à termes positifs $\sum \ln \left(\frac{n+1}{n} \right)$ diverge. On a

$$\ln\left(\frac{n+1}{n}\right) = \ln\left(1+\frac{1}{n}\right)$$
$$= \frac{1}{n} + o\left(\frac{1}{n}\right)$$

D'où

$$\ln\left(\frac{n+1}{n}\right) \sim \frac{1}{n}$$

Or $\sum \frac{1}{n}$ diverge donc la série $\sum \ln \left(\frac{n+1}{n}\right)$ diverge par comparaison.

Proposition 6

Soit (u_n) une suite réelle. Alors

$$\sum (u_n - u_{n-1})$$
 converge \iff (u_n) converge

Exemple

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n)$$

On a

$$u_n - u_{n-1} = \frac{1}{n} - \ln(n) + \ln(n-1) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$$

Ainsi

$$u_n - u_{n-1} = \frac{1}{n} - \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

donc

$$u_n - u_{n-1} \sim -\frac{1}{2n^2}$$

or $\sum \frac{1}{n^2}$ converge donc $\sum (u_n - u_{n-1})$ converge. Ainsi, par la proposition 6, (u_n) converge. La limite de cette suite s'appelle la constante d'Euler notée γ .

1.2.4 Règle de Riemann

Théorème 2 (règle de Riemann)

Soit (u_n) une suite réelle positive. S'il existe $\alpha > 1$ tel que $n^{\alpha}u_n \xrightarrow[n \to +\infty]{} 0$ alors $\sum u_n$ converge.

Exemple

Etudions la nature de la série à termes positifs $\sum (\ln(n))^{-n}$. (Il est entendu que dans la suite des sommes partielles associées à cette série, $n \ge 2$). On a

$$\left(\ln(n)\right)^{-n} = e^{-n\ln\left(\ln(n)\right)}$$

Or $n^2 e^{-n \ln(\ln(n))} \xrightarrow[n \to +\infty]{} 0$. Donc en appliquant la règle précédente, on en déduit que la série $\sum (\ln(n))^{-n}$ converge.

1.2.5 Séries de Bertrand

Définition 5

On appelle série de Bertrand toute série de la forme $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}}$ où $(\alpha, \beta) \in \mathbb{R}^2$.

Théorème 3 (de Bertrand)

Soit $(\alpha, \beta) \in \mathbb{R}^2$. Alors

$$\sum \frac{1}{n^{\alpha} (\ln(n))^{\beta}} \ converge \quad \Longleftrightarrow \ \alpha > 1 \ ou \ (\alpha = 1 \ et \ \beta > 1)$$

Exemple

Etudions la nature de la série $\sum \frac{\ln(n)}{\sqrt{n^3 + n^2 + 1}}$. On a

$$\sqrt{n^3 + n^2 + 1} = \sqrt{n^3 \left(1 + \frac{1}{n} + \frac{1}{n^3}\right)}$$
$$= n^{\frac{3}{2}} \sqrt{1 + \frac{1}{n} + \frac{1}{n^3}}$$

Donc

$$\sqrt{n^3 + n^2 + 1} \sim n^{\frac{3}{2}}$$

Ainsi

$$\frac{\ln(n)}{\sqrt{n^3 + n^2 + 1}} \sim \frac{\ln(n)}{n^{\frac{3}{2}}}$$

Or la série de Bertrand $\sum \frac{\ln(n)}{n^{\frac{3}{2}}}$ converge (car $\frac{3}{2} > 1$).

Donc la série $\sum \frac{\ln(n)}{\sqrt{n^3 + n^2 + 1}}$ converge par comparaison via la proposition 5.

1.2.6 Règle de D'Alembert

Théorème 4 (règle de d'Alembert)

Soit (u_n) une suite réelle strictement positive telle que

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \quad où \ \ell \in \mathbb{R}^+ \cup \{+\infty\}$$

$$Alors \begin{cases} \ell < 1 \Longrightarrow \sum u_n \ converge \end{cases}$$

$$et$$

$$\ell > 1 \Longrightarrow \sum u_n \ diverge$$

Exemple

Considérons $\sum u_n$ où pour tout $n \in \mathbb{N}$, $u_n = \frac{1}{n!}$.

Alors
$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}$$

$$= \frac{n!}{(n+1)!}$$

$$= \frac{1}{n+1}$$

Ainsi $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 0$ et 0 < 1 donc $\sum \frac{1}{n!}$ converge par la règle de d'Alembert.

1.2.7 Règle de Cauchy

Théorème 5 (règle de Cauchy)

Soit (u_n) une suite réelle strictement positive telle que

$$\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell \quad où \ \ell \in \mathbb{R}^+ \cup \{+\infty\}$$

$$Alors \begin{cases} \ell < 1 \Longrightarrow \sum u_n \ converge \\ et \\ \ell > 1 \Longrightarrow \sum u_n \ diverge \end{cases}$$

Exemple

Considérons la série $\sum u_n$ où pour tout $n \in \mathbb{N}^*$, $u_n = \left(\frac{n}{n+1}\right)^{n^2}$.

On a
$$\sqrt[n]{u_n}$$
 = $\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^2}}$
= $\left(\left(\frac{n}{n+1}\right)^{n^2}\right)^{\frac{1}{n}}$
= $\left(\frac{n}{n+1}\right)^n$
= $e^{n\ln\left(\frac{n}{n+1}\right)}$
= $e^{-n\ln\left(1+\frac{1}{n}\right)}$
= $e^{-n\left(\frac{1}{n}+o\left(\frac{1}{n}\right)\right)}$
= $e^{-1+o(1)} \xrightarrow[n \to +\infty]{} \frac{1}{e}$

Or $\frac{1}{e} < 1$ donc la série $\sum \left(\frac{n}{n+1}\right)^{n^2}$ converge par la règle de Cauchy.

1.2.8 Règle de Duhamel

Théorème 6 (règle de Duhamel)

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle strictement positive telle que

$$\exists \alpha \in \mathbb{R}, \quad \frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

$$Alors \begin{cases} \alpha > 1 \Longrightarrow \sum u_n \ converge \end{cases}$$

$$et$$

$$\alpha < 1 \Longrightarrow \sum u_n \ diverge$$

Exemple

Etudions la nature de $\sum u_n$ où pour tout $n \ge 2$,

$$u_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)$$

On a pour tout $n \ge 2$,

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{n!} \prod_{k=1}^n \sin\left(\frac{1}{\sqrt{k}}\right)}{\sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)}$$

$$= \sqrt{n} \sin\left(\frac{1}{\sqrt{n}}\right)$$

$$= \sqrt{n} \left(\frac{1}{\sqrt{n}} - \frac{1}{6n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)\right)$$

$$= 1 - \frac{1}{6n} + o\left(\frac{1}{n}\right)$$

Or $\frac{1}{6} < 1$ donc $\sum u_n$ diverge par la règle de Duhamel.

1.3 Séries à termes quelconques

Dans ce paragraphe, on considère des séries à termes quelconques c'est-à-dire de terme général de signe non constant. Parmi toutes les séries à termes quelconques, il existe deux grandes familles pour lesquelles des théorèmes existent : il s'agit des séries alternées et des séries absolument convergentes.

1.3.1 Séries alternées

Définition 6

Soit (u_n) une suite réelle. On dit que (u_n) est alternée s'il exite une suite réelle (a_n) positive telle que pour tout $n \in \mathbb{N}$, $u_n = (-1)^n a_n$ ou $u_n = (-1)^{n+1} a_n$.

Exemple

Par exemple, $\left(\frac{(-1)^n}{n}\right)$ est une suite alternée.

1.3.2 Critère spécial

Théorème 7 (Critère spécial des séries alternées)

Soit (u_n) une suite réelle alternée.

 $Si(|u_n|)$ est décroissante et converge vers 0 alors

- 1. $\sum u_n$ converge.
- 2. $\forall n \in \mathbb{N}, |R_n| \leq |u_{n+1}|$

Exemple

Considérons la série $\sum u_n$ où pour tout $n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{n}$. Alors (u_n) est une suite alternée. De plus $(|u_n|)$ est décroissante et converge vers 0. Donc la série $\sum \frac{(-1)^n}{n}$ converge par la règle de Leibniz.

1.3.3 Convergence absolue

Définition 7

On dit qu'une série numérique $\sum u_n$ converge absolument si la série $\sum |u_n|$ converge.

Exemple

Par exemple la série $\sum \frac{(-1)^n}{n^2}$ converge absolument car la série de Riemann $\sum \frac{1}{n^2}$ converge.

Proposition 7

Soit $\sum u_n$ une série numérique convergeant absolument. Alors $\sum u_n$ converge.

Exemple

Par exemple la série $\sum \frac{\sin(n)}{n^2}$ converge car elle converge absolument. En effet pour tout $n \in \mathbb{N}^*$,

$$\left|\frac{\sin(n)}{n^2}\right| \leqslant \frac{1}{n^2}$$

Or la série $\sum \frac{1}{n^2}$ converge donc $\sum \left|\frac{\sin(n)}{n^2}\right|$ converge c'est-à-dire $\sum \frac{\sin(n)}{n^2}$ converge absolument.

Définition 8

On appelle série semi-convergente toute série convergente mais non absolument convergente.

Proposition 8

Soit
$$\alpha \in \mathbb{R}$$
. Alors $\sum \frac{(-1)^n}{n^{\alpha}}$ converge $\iff \alpha > 0$

1.3.4 Règle d'Abel

Théorème 8 (règle d'Abel)

Soient (u_n) et (v_n) deux suites réelles telles que

- 1. (u_n) est décroissante et converge vers 0.
- 2. La suite $\left(\sum_{k=0}^{n} v_k\right)$ est bornée.

Alors $\sum u_n v_n$ converge

Exemple

Soit $\theta \in \mathbb{R} - 2\pi\mathbb{Z}$. Etudions la nature de la série $\sum u_n$ où pour tout $n \in \mathbb{N}^*$, $u_n = \frac{e^{in\theta}}{n}$.

Posons pour tout $n \in \mathbb{N}^*$, $v_n = \frac{1}{n}$ et $w_n = e^{in\theta}$.

Alors $(u_n)_{n\in\mathbb{N}^*}$ est décroissante et converge vers 0. Montrons que la suite $\left(\sum_{k=1}^n e^{ik\theta}\right)$ est bornée.

Remarquons que $e^{i\theta} \neq 1$ car $\theta \notin 2\pi \mathbb{Z}$.

$$\sum_{k=1}^{n} e^{ik\theta} = \sum_{k=1}^{n} (e^{i\theta})^{k}$$

$$= e^{i\theta} \cdot \frac{1 - e^{in\theta}}{1 - e^{i\theta}}$$

$$= e^{i\theta} \cdot \frac{e^{i\frac{n\theta}{2}}}{e^{i\frac{\theta}{2}}} \cdot \frac{e^{-i\frac{n\theta}{2}} - e^{i\frac{n\theta}{2}}}{e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}}$$

$$= e^{i\frac{(n+1)\theta}{2}} \cdot \frac{\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

Ainsi
$$\left| \sum_{k=1}^{n} e^{ik\theta} \right| \leq \frac{1}{\left| \sin\left(\frac{\theta}{2}\right) \right|}$$

Donc la suite des sommes partielles associée à $\sum w_n$ est bornée.

Ainsi, $\sum v_n w_n = \sum u_n$ converge par la règle d'Abel.

1.4 Exercices types

Exercice 1

Déterminer la nature de la série de terme général $\frac{2^n}{n!} + \frac{(-1)^n}{n^{3/2}}$

Solution

Posons pour tout $n \in \mathbb{N}$, $u_n = \frac{2^n}{n!}$

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n}$$
$$= \frac{2}{n+1} \xrightarrow[n \to +\infty]{} 0 < 1$$

Donc $\sum u_n$ converge via la règle de D'Alembert.

$$\sum \frac{1}{n^{3/2}}$$
 converge. Ainsi $\sum \frac{(-1)^n}{n^{3/2}}$ converge absolument donc converge.

Ainsi $\sum \frac{2^n}{n!} + \frac{(-1)^n}{n^{3/2}}$, somme de deux séries convergentes, converge.

Exercice 2

Soit (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \ln\left(1 + \frac{(-1)^n}{2n}\right)$

- 1. Déterminer un développement limité de u_n au voisinage de $+\infty$ à l'ordre 2.
- 2. En déduire la nature de $\sum u_n$.

Solution

1.
$$u_n = \frac{(-1)^n}{2n} - \frac{1}{2(2n)^2} + o\left(\frac{1}{n^2}\right) = \frac{(-1)^n}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

2. Par le critère des séries alternées, $\sum \frac{(-1)^n}{2n}$ converge et d'autre part :

$$-\frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \underset{+\infty}{\sim} -\frac{1}{8n^2}$$

or
$$\sum \frac{1}{n^2}$$
 converge donc $\sum -\frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$ converge.

Finalement $\sum u_n$, somme de deux séries convergentes, converge.

Exercice 3

Considérons la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \frac{(-1)^n (n+1)^{n-1} (2n-1)}{n^{n+1}}.$$

1. Montrer que

$$\left(\frac{n+1}{n}\right)^{n-1} = e\left(1 - \frac{3}{2n} + o\left(\frac{1}{n}\right)\right)$$

2. En déduire que

$$u_n = (-1)^n \frac{2e}{n} + (-1)^{n+1} \frac{4e}{n^2} + o\left(\frac{1}{n^2}\right)$$

N.B.:
$$u_n = (-1)^n \left(\frac{n+1}{n}\right)^{n-1} \left(\frac{2n-1}{n^2}\right)$$
.

3. Déterminer la nature de $\sum u_n$.

Solution

1.

$$\left(\frac{n+1}{n}\right)^{n-1} = e^{(n-1)\ln\left(1+\frac{1}{n}\right)} = e^{(n-1)\left(\frac{1}{n}-\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)}$$

donc

$$\left(\frac{n+1}{n}\right)^{n-1} = e^{1 - \frac{1}{2n} - \frac{1}{n} + o\left(\frac{1}{n}\right)} = e^{1 - \frac{3}{2n} + o\left(\frac{1}{n}\right)} = e^{-\frac{3}{2n} + o\left(\frac{1}{n}\right)}$$

d'où par un développement limité de l'exponentielle, on obtient finalement :

$$\left(\frac{n+1}{n}\right)^{n-1} = e\left(1 - \frac{3}{2n} + o\left(\frac{1}{n}\right)\right)$$

2.

$$u_n = (-1)^n \left(\frac{n+1}{n}\right)^{n-1} \left(\frac{2n-1}{n^2}\right) = (-1)^n \left(\frac{n+1}{n}\right)^{n-1} \left(\frac{2}{n} - \frac{1}{n^2}\right)$$

En utilisant la question précédente, on a

$$u_n = (-1)^n e\left(\frac{2}{n} - \frac{1}{n^2}\right) \left(1 - \frac{3}{2n} + o\left(\frac{1}{n}\right)\right) = (-1)^n e\left(\frac{2}{n} - \frac{3}{n^2} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right)$$

i.e.

$$u_n = (-1)^n e^{\left(\frac{2}{n} - \frac{4}{n^2} + o\left(\frac{1}{n^2}\right)\right)}$$

soit encore

$$u_n = (-1)^n \frac{2e}{n} + (-1)^{n+1} \frac{4e}{n^2} + o\left(\frac{1}{n^2}\right).$$

3. $\sum (-1)^n \frac{2e}{n}$ converge par le critère spécial des séries alternées.

Notons

$$v_n = (-1)^{n+1} \frac{4e}{n^2} + o\left(\frac{1}{n^2}\right)$$

 $|v_n| \underset{+\infty}{\sim} \frac{4e}{n^2}$ or $\sum \frac{1}{n^2}$ converge donc $\sum v_n$ converge absolument donc converge.

Ainsi $\sum u_n$, somme de deux séries convergentes, converge.

Exercice 4

Soit $\alpha \in \mathbb{R}_+^*$. Etudier la nature de la série de terme général $1 - \cos\left(\frac{1}{n^{\alpha}}\right)$

Solution

Comme
$$\alpha > 0, \ \frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$$
 Ainsi

$$1 - \cos\left(\frac{1}{n^{\alpha}}\right) = 1 - \left(1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right) = \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \sim \frac{1}{2n^{2\alpha}}$$

Ainsi
$$\sum \left(1 - \cos\left(\frac{1}{n^{\alpha}}\right)\right)$$
 converge ssi $2\alpha > 1$ i.e. $\alpha > 1/2$

Exercice 5

Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général $u_n = \left(\cos\left(\frac{1}{n}\right)\right)^{n^{\alpha}}$

Solution

$$u_n = \left(\cos\left(\frac{1}{n}\right)\right)^{n^{\alpha}}$$

$$= e^{n^{\alpha}\ln\left(\cos\left(\frac{1}{n}\right)\right)}$$

$$= e^{n^{\alpha}\ln\left(1 - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)}$$

$$= e^{n^{\alpha}\left(-\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)}$$

$$= e^{-\frac{1}{2n^2 - \alpha} + o\left(\frac{1}{n^2 - \alpha}\right)}$$

Si
$$\alpha < 2$$
, $u_n \xrightarrow[n \to +\infty]{} 1 \neq 0$ donc $\sum u_n$ diverge.

Si
$$\alpha = 2$$
, $u_n \xrightarrow[n \to +\infty]{} e^{-1/2} \neq 0$ donc $\sum u_n$ diverge

Si
$$\alpha > 2$$
, $n^2 u_n \xrightarrow[n \to +\infty]{} 0$ donc $\sum u_n$ converge.

Chapitre 2

Intégrales impropres

2.1 Définitions

2.1.1 Définition d'une intégrale impropre

Définition 9

Soit $(a,b) \in \mathbb{R}^2$ avec a < b. On appelle intégrale impropre toute intégrale d'un des 8 types suivants :

- a. $\int_a^b f(t) dt$ où f est une fonction définie et continue sur [a,b[et non définie en b.
- b. $\int_a^b f(t) dt$ où f est une fonction définie et continue sur]a,b] et non définie en a.
- c. $\int_a^b f(t) dt$ où f est une fonction définie et continue sur]a,b[et non définie en a et b.
- d. $\int_{a}^{+\infty} f(t) dt$ où f est une fonction définie et continue sur $[a, +\infty[$.
- e. $\int_{-\infty}^{b} f(t) dt$ où f est une fonction définie et continue sur $]-\infty,b]$.
- f. $\int_{-\infty}^{+\infty} f(t) dt$ où f est une fonction définie et continue sur $]-\infty, +\infty[=\mathbb{R}.$

- g. $\int_a^{+\infty} f(t) dt$ où f est une fonction définie et continue $\sup]a, +\infty[$ et non définie en a.
- $h.\ \int_{-\infty}^b f(t)\,dt\ \ où\ f\ \ est\ une\ fonction\ d\'efinie\ et\ continue\ sur\]-\infty, b[\ \ et\ non\ \ d\'efinie\ en\ b.$

Exemples

- 1. $\int_0^1 \frac{1}{\sqrt{1-t}} dt$ est une intégrale impropre du type a. car la fonction $t \mapsto \frac{1}{\sqrt{1-t}}$ n'est pas définie en 1 (elle tend vers l'infini en 1).
- 2. $\int_0^1 \frac{1}{t(1-t)} dt$ est une intégrale impropre du type c. car la fonction $t \mapsto \frac{1}{t(1-t)}$ n'est pas définie en 0 et 1.
- 3. $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale impropre du type d.
- 4. $\int_0^{+\infty} \frac{1}{t^{\alpha}} dt$ (où $\alpha \in \mathbb{R}$) est une intégrale impropre du type g.

Remarques

- 1. Nous verrons dans la suite du cours que l'étude des intégrales impropres du type c., f., g. et h. se ramènent à l'étude d'intégrales impropres d'autres types.
- 2. Dans la suite du cours, nous utiliserons la notation $b \leq +\infty$ (respectivement $-\infty \leq a$) qui signifie que b est un réel ou $+\infty$ (respectivement a est un réel ou $-\infty$) ce qui permet d'énoncer les définitions de la convergence pour uniquement trois grands types d'intégrales impropres.

2.1.2 Convergence et divergence

La premier réflexe à posséder lorsqu'on étudie une intégrale impropre est de repérer les bornes sur lesquelles la fonction n'est pas définie.

Olivier Rodot 24 E.P.I.T.A.

Définition 10 (cas droit)

Soit $f: [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] avec $-\infty < a < b \le +\infty$. On dit que $\int_a^b f(t) dt$ converge $si \ x \longmapsto \int_a^x f(t) dt$ admet une limite finie en b. Dans ce cas

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Remarques

- 1. On dit que $\int_a^b f(t) dt$ diverge si $\int_a^b f(t) dt$ ne converge pas.
- 2. Si F est une primitive de f, alors $\int_a^x f(t) dt = F(x) F(a)$. Ainsi $\int_a^b f(t) dt$ converge ssi F(x) admet une limite finie lorsque x tend vers b.

Exemples

1. Etudions l'intégrale $\int_0^1 \frac{1}{1-t} dt$. Il s'agit bien d'une intégrale impropre (cas droit) car la fonction $t \mapsto \frac{1}{1-t}$ n'est pas définie en 1. On a

$$\int_0^x \frac{1}{1-t} dt = -[\ln(1-t)]_0^x$$

$$= \ln(1) - \ln(1-x)$$

$$= -\ln(1-x) \xrightarrow[r \to 1]{} +\infty$$

Donc
$$\int_0^x \frac{1}{1-t} dt \xrightarrow[x \to 1]{} +\infty$$
. Ainsi $\int_0^1 \frac{1}{1-t} dt$ diverge.

2. Etudions l'intégrale impropre $\int_{1}^{+\infty} \frac{dt}{t^2}$. On a

$$\int_{1}^{x} \frac{dt}{t^{2}} = -\left[\frac{1}{t}\right]_{1}^{x}$$

$$= 1 - \frac{1}{x} \xrightarrow[x \to +\infty]{} 1$$

Donc
$$\int_1^x \frac{dt}{t^2} \xrightarrow[x \to +\infty]{} 1$$
. Donc $\int_1^{+\infty} \frac{dt}{t^2}$ converge. On a de plus

$$\int_{1}^{+\infty} \frac{dt}{t^2} = 1$$

Définition 11 (cas gauche)

Soit $f:]a,b] \longrightarrow \mathbb{R}$ continue sur [a,b] avec $-\infty \leqslant a < b < +\infty$. On dit que $\int_a^b f(t) dt$ converge $si \ x \longmapsto \int_a^b f(t) dt$ admet une limite finie en a. Dans ce cas

$$\int_{a}^{b} f(t) dt = \lim_{x \to a} \int_{x}^{b} f(t) dt$$

Remarque

- 1. On dit que $\int_a^b f(t) dt$ diverge si $\int_a^b f(t) dt$ ne converge pas.
- 2. Si F est une primitive de f, alors $\int_x^b f(t) dt = F(b) F(x)$. Ainsi $\int_a^b f(t) dt$ converge ssi F(x) admet une limite finie lorsque x tend vers a.

Exemples

1. Etudions l'intégrale $\int_0^1 \ln(t) dt$. Il s'agit bien d'une intégrale impropre (cas gauche) car la fonction $t \mapsto \ln(t)$ n'est pas définie en 0. On a par intégration par parties (en posant $u(t) = \ln(t)$ et v'(t) = 1):

$$\int_{x}^{1} \ln(t) dt = [t \ln(t)]_{x}^{1} - \int_{x}^{1} \frac{1}{t} \times t dt$$

$$= [t \ln(t) - t]_{x}^{1}$$

$$= \ln(1) - 1 - (x \ln(x) - x)$$

$$= x - x \ln(x) - 1$$

Or $x \ln(x) \xrightarrow[x \to 0]{} 0$ (théorème des croissances comparées) donc $\int_x^1 \ln(t) dt \xrightarrow[x \to 0]{} -1$. Ainsi $\int_0^1 \ln(t) dt$ converge et on a de plus

$$\int_0^1 \ln(t) \, dt = -1$$

2. Etudions l'intégrale impropre $\int_{-\infty}^{0} e^{t} dt$. On a

$$\int_{x}^{0} e^{t} dt = [e^{t}]_{x}^{0}$$
$$= 1 - e^{x} \xrightarrow[x \to -\infty]{} 1$$

Donc $\int_{x}^{0} e^{t} dt \xrightarrow[x \to -\infty]{} 1$. Ainsi $\int_{-\infty}^{0} e^{t} dt$ converge et on a de plus

$$\int_{-\infty}^{0} e^t \, dt = 1$$

Définition 12 (cas bilatéral)

Soit $f:]a, b[\longrightarrow \mathbb{R}$ continue sur]a, b[avec $-\infty \leqslant a < b \leqslant +\infty$. On dit que $\int_a^b f(t) dt$ converge s'il existe $c \in]a, b[$ tel que $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ convergent. Dans ce cas

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

Remarques

- 1. En pratique, lorsqu'on étudie une intégrale impropre bilatérale $\int_a^b f(t) dt$, on considère un point c quelconque strictement compris entre a et b.
- 2. Lorsqu'on considère une intégrale impropre bilatérale $\int_a^b f(t) dt$, et que pour un c strictement compris entre a et b, $\int_a^c f(t) dt$ diverge alors on peut immédiatement conclure que l'intégrale $\int_a^b f(t) dt$ diverge. En effet si cette dernière intégrale convergeait, alors en particulier $\int_a^c f(t) dt$ convergerait ce qui est contradictoire.

Exemples

1. Etudions l'intégrale $\int_0^1 \frac{1}{t(1-t)} dt$. Il s'agit bien d'une intégrale impropre bilatérale car la fonction $t \mapsto \frac{1}{t(1-t)}$ n'est pas définie en 0 et 1. Choisissons un point strictement compris entre 0 et 1, par exemple $\frac{1}{2}$ et commençons par étudier la nature de $\int_0^{\frac{1}{2}} \frac{1}{t(1-t)} dt$. On a

$$\frac{1}{t(1-t)} = \frac{1}{t} + \frac{1}{1-t}$$

Donc

$$\int_{x}^{\frac{1}{2}} \frac{1}{t(1-t)} dt = \int_{x}^{\frac{1}{2}} \frac{1}{t} + \frac{1}{1-t} dt$$

$$= [\ln(t) - \ln(1-t)]_{x}^{1/2}$$

$$= \ln\left(\frac{1}{2}\right) - \ln\left(\frac{1}{2}\right) - (\ln(x) - \ln(1-x))$$

$$= \ln(1-x) - \ln(x) \xrightarrow[x \to 0]{} +\infty$$

Donc $\int_x^{\frac{1}{2}} \frac{1}{t(1-t)} dt \xrightarrow[x\to 0]{} +\infty$. Ainsi $\int_0^{\frac{1}{2}} \frac{1}{t(1-t)} dt$ diverge. Par conséquent $\int_0^1 \frac{1}{t(1-t)} dt$ diverge.

2. Etudions l'intégrale impropre bilalérale $\int_{-\infty}^{+\infty} t \, dt$. Commençons par étudier la nature de $\int_{0}^{+\infty} t \, dt$ (le choix de la borne 0 est arbitraire, on a aurait pu choisir n'importe quel réel). On a

$$\int_0^x t \, dt = \frac{1}{2} [t^2]_0^x$$
$$= \frac{1}{2} x^2 \xrightarrow[x \to +\infty]{} +\infty$$

Donc $\int_0^x t \, dt \xrightarrow[x \to +\infty]{} +\infty$. Ainsi $\int_0^{+\infty} t \, dt$ diverge. Par conséquent $\int_{-\infty}^{+\infty} t \, dt$ diverge.

Observation

On prendra garde de ne pas confondre $\int_{-\infty}^{+\infty} f(t) dt$ avec $\lim_{x \to +\infty} \int_{-x}^{x} f(t) dt$. En effet, on a vu dans un des exemples précédents que $\int_{-\infty}^{+\infty} t dt$ diverge (en particulier cette intégrale n'est pas un nombre) et pourtant $\lim_{x \to +\infty} \int_{-x}^{x} t dt = 0!$

Remarque

Dans la suite du cours, les résultats principaux seront énoncés dans le cas droit d'une intégrale impropre, les autres cas se déduisant très facilement du premier.

Proposition 9

Soient f et g continues sur [a,b[avec $-\infty < a < b \leqslant +\infty$ telles que $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent. Alors pour tout $\lambda \in \mathbb{R}$, $\int_a^b (f+\lambda g)(t) dt$ converge et on a de plus

$$\int_{a}^{b} (f + \lambda g)(t) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt$$

Remarque

Si $\int_a^b f(t) dt$ converge et $\int_a^b g(t) dt$ diverge alors $\int_a^b (f+g)(t) dt$ diverge. En effet, si $\int_a^b (f+g)(t) dt$ convergeait, alors en utilisant la propositon précédente, $\int_a^b (f+g)(t) - f(t) dt = \int_a^b g(t) dt$ convergerait ce qui est faux par hypothèse.

2.2 Fonctions de Riemann

Les intégrales impropres qui suivent sont des références au sens où l'étude d'une intégrale impropre se ramène souvent à comparer la fonction à intégrer aux fonctions de Riemann.

Théorème 9 (Riemann)

Soit $\alpha \in \mathbb{R}$. Alors

1.

$$\int_0^1 \frac{dt}{t^{\alpha}} \ converge \iff \alpha < 1$$

$$\int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \ converge \iff \alpha > 1$$

Remarque

En utilisant les résultats du théorème précédent, pour tout $\alpha \in \mathbb{R}$, $\int_0^{+\infty} \frac{dt}{t^{\alpha}}$ diverge. En effet, si $\int_0^{+\infty} \frac{dt}{t^{\alpha}}$ convergeait, alors en particulier $\int_0^1 \frac{dt}{t^{\alpha}}$ et $\int_1^{+\infty} \frac{dt}{t^{\alpha}}$ convergeraient. On aurait donc à la fois $\alpha < 1$ et $\alpha > 1$ ce qui est absurde.

2.3 Intégrales impropres de fonctions positives

Etudier la nature d'une intégrale impropre $\int_a^b f(t) \, dt$ (cas droit) est aisé lorsqu'on peut exhiber une primitive F de f. Il suffit en effet d'étudier la limite de F en b. Malheureusement, il est souvent délicat (voire impossible) d'exprimer une primitive de f: par exemple si f est la fonction $t \mapsto e^{t^2}$ ou encore $t \mapsto \frac{\sin(t)}{t}$. Dans ce cas, une des idées est de comparer f à des fonctions de références, par exemple les fonctions de Riemann. Comme pour les séries numériques, les critères résultant de ces comparaisons ne sont valables que dans le cas de fonctions positives.

2.3.1 Rappels sur les notations de Landau

Soit a un réel ou $+\infty$ ou $-\infty$ (ce qu'on notait précédemment $-\infty \leqslant a \leqslant +\infty$).

Définition 13 (Notations de Landau)

- 1. On dit que f est dominée par g au voisinage de a (et on écrit : au voisinage de a, f = O(g)) si au voisinage de a, f = g.h avec h bornée au voisinage de a.
- 2. On dit que f est négligeable devant g au voisinage de a (et on écrit : au voisinage de a, f = o(g)) si au voisinage de a, $f = g.\varepsilon$ avec $\varepsilon(t)$ tend vers 0 quand $t \to a$.
- 3. On dit que f est équivalente à g au voisinage de a (et on écrit $f \sim g$) si au voisinage de a, f = g.k avec k(t) tend vers 1 quand $t \to a$.

Observations

- 1. Si g ne s'annule pas, f = O(g) au voisinage de a signifie simplement que $\frac{f}{g}$ est bornée au voisinage de a
- 2. Si g ne s'annule pas, f = o(g) au voisinage de a signifie simplement

$$\frac{f(t)}{g(t)} \xrightarrow[t \to a]{} 0$$

3. Si gne s'annule pas, $f \underset{a}{\sim} g$ signifie simplement

$$\frac{f(t)}{g(t)} \xrightarrow[t \to a]{} 1$$

Exemples

- 1. Au voisinage de $+\infty$, $\sin(t) = O(1)$ car la fonction $t \mapsto \frac{\sin(t)}{1} = \sin(t)$ est bornée (par 1) au voisinage de $+\infty$.
- 2. Au voisinage de 0, $t^2 = o(t)$ car $\frac{t^2}{t} = t \xrightarrow[t \to 0]{} 0$
- 3. $\sin(t) \sim t \operatorname{car} \frac{\sin(t)}{t} \xrightarrow[t \to 0]{} 1$

Remarques

Rappelons également les exemples suivants :

1. pour tout $\alpha \in \mathbb{R}$ et tout $\beta \in \mathbb{R}_+^*$, on a au voisinage de $+\infty$

$$(\ln(t))^{\alpha} = o(t^{\beta})$$
 c'est-à-dire $\frac{(\ln(t))^{\alpha}}{t^{\beta}} \xrightarrow[t \to +\infty]{} 0$

2. pour tout $\alpha \in \mathbb{R}$, on a au voisinage de $+\infty$

$$t^{\alpha} = o(e^t)$$
 c'est-à-dire $\frac{t^{\alpha}}{e^t} \xrightarrow[t \to +\infty]{} 0$

2.3.2 Critères de comparaison pour des fonctions positives

Proposition 10

 $Soient \ f \ : [a,b[\to \mathbb{R}_+ \ et \ g \ : [a,b[\to \mathbb{R}_+ \ d\'efinies \ et \ continues \ sur \ [a,b[\ o\`u \ -\infty < a < b \leqslant +\infty.$

1. Supposons qu'au voisinage de b, $0 \le f(t) \le g(t)$. Alors

$$\int_a^b g(t) dt \ converge \implies \int_a^b f(t) dt \ converge$$

et

$$\int_{a}^{b} f(t) dt diverge \implies \int_{a}^{b} g(t) dt diverge$$

2. Supposons qu'au voisinage de b, f(t) = O(g(t)). Alors

$$\int_{a}^{b} g(t) dt \ converge \implies \int_{a}^{b} f(t) dt \ converge$$

3. Supposons qu'au voisinage de b, f(t) = o(g(t)). Alors

$$\int_a^b g(t) dt \ converge \implies \int_a^b f(t) dt \ converge$$

4. Supposons que $f \sim g$. Alors $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ sont de même nature.

Exemples

1. Etudions l'intégrale $\int_1^{+\infty} \frac{1}{t^3+1} dt$. La fonction $t \mapsto \frac{1}{t^3+1}$ est positive et définie en 1. Il s'agit donc du cas droit d'une intégrale impropre. On a pour tout $t \in \mathbb{R}_+^*$, $t^3+1 \geqslant t^3$ donc pour tout $t \in \mathbb{R}_+^*$,

$$\frac{1}{t^3+1} \leqslant \frac{1}{t^3}$$
 Or $\int_1^{+\infty} \frac{1}{t^3} dt$ converge donc $\int_1^{+\infty} \frac{1}{t^3+1} dt$ converge par comparaison.

2. Etudions l'intégrale $\int_1^{+\infty} \frac{|\sin(t)|}{t^2}$. La fonction $t \mapsto \frac{|\sin(t)|}{t^2}$ est positive et définie en 1. Il n'y a donc qu'une étude en $+\infty$. On a au voisinage de $+\infty$

$$\frac{|\sin(t)|}{t^2} = O\left(\frac{1}{t^2}\right)$$

car la fonction

$$t \mapsto \frac{\frac{|\sin(t)|}{t^2}}{\frac{1}{42}} = |\sin(t)|$$

est bornée. Or $\int_1^{+\infty} \frac{1}{t^2} dt$ converge donc $\int_1^{+\infty} \frac{|\sin(t)|}{t^2}$ converge.

3. Etudions l'intégrale $\int_{1}^{+\infty} e^{-t^2} dt$. La fonction $t \mapsto e^{-t^2}$ est positive et définie en 1. Il s'agit donc du cas droit d'une intégrale impropre. On a au voisinage de $+\infty$,

$$e^{-t^2} = o\left(\frac{1}{t^2}\right)$$

En effet

$$\frac{e^{-t^2}}{\frac{1}{t^2}} = t^2 e^{-t^2} \xrightarrow[t \to +\infty]{} 0$$

Or $\int_{1}^{+\infty} \frac{1}{t^2} dt$ converge donc $\int_{1}^{+\infty} e^{-t^2} dt$ converge par comparaison.

4. Etudions l'intégrale $\int_0^1 \frac{e^{-t}}{t} dt$. La fonction $t \mapsto \frac{e^{-t}}{t}$ est positive et définie en 1. Il s'agit donc du cas gauche d'une intégrale impropre. On a

$$\frac{e^{-t}}{t} \underset{0}{\sim} \frac{1}{t}$$

car

$$\frac{\frac{e^{-t}}{t}}{\frac{1}{t}} = e^{-t} \xrightarrow[t \to 0]{} 1$$

Or $\int_0^1 \frac{1}{t} dt$ diverge donc $\int_0^1 \frac{e^{-t}}{t} dt$ diverge par comparaison.

Remarque

Dans les exemples ci-dessus, aucune tentative d'expression d'une quelconque primitive n'a été lancée. Il s'agissait simplement de comparer la fonction f à une fonction de Riemann.

2.3.3 Fonctions de Bertrand

Les fonctions de Bertrand sont les autres fonctions de références.

Théorème 10 (Bertrand)

Soient α et β deux réels. Alors

$$\int_{2}^{+\infty} \frac{1}{t^{\alpha} (\ln(t))^{\beta}} \, dt \ converge \Longleftrightarrow \ \alpha > 1 \ ou \ (\alpha = 1 \ et \ \beta > 1)$$

Remarque

Par exemple $\int_{2}^{+\infty} \frac{\ln(t)}{t} dt$ diverge.

Exemple

Etudions l'intégrale $\int_e^{+\infty} \frac{\ln(t)}{(1+t)^3} dt$. La fonction $t \mapsto \frac{\ln(t)}{(1+t)^3}$ est positive sur $[e, +\infty[$ et définie en e. Il s'agit donc du cas droit d'une intégrale impropre. On a

$$\frac{\ln(t)}{(1+t)^3} \underset{+\infty}{\sim} \frac{\ln(t)}{t^3}$$

car

$$\frac{\frac{\ln(t)}{(1+t)^3}}{\frac{\ln(t)}{t^3}} = \left(\frac{t}{1+t}\right)^3 \xrightarrow[t \to +\infty]{} 1$$

Or $\int_{e}^{+\infty} \frac{\ln(t)}{t^3} dt$ converge donc $\int_{e}^{+\infty} \frac{\ln(t)}{(1+t)^3} dt$ converge par comparaison.

2.4 Critères complémentaires

2.4.1 Critère intégral de Cauchy

Ce critère compare la nature d'une série avec celle d'une intégrale impropre. Il permet d'établir un lien entre les cours consacrés aux séries numériques et ceux consacrés aux intégrales impropres.

Théorème 11 (Critère intégral de Cauchy)

Soit $f: [n_0, +\infty[\to \mathbb{R} \text{ continue, positive et décroissante sur } [n_0, +\infty[. Alors \sum f(n) \text{ et } \int_{n_0}^{+\infty} f(t) dt$ sont de même nature.

Exemple

Soit $\alpha \in \mathbb{R}$. Etudions la nature de la série $\sum \frac{1}{n^{\alpha}}$.

Si
$$\alpha \leq 0$$
, $\frac{1}{n^{\alpha}} \to 0$ donc la série $\sum \frac{1}{n^{\alpha}}$ diverge.

Si $\alpha > 0$, la fonction $f: t \mapsto \frac{1}{t^{\alpha}}$ est continue, positive et décroissante sur $[1, +\infty[$ car pour tout

 $t \in [1, +\infty[$

$$f'(t) = \frac{-\alpha}{t^{\alpha+1}} \leqslant 0$$

Ainsi, on en déduit via le théorème précédent que $\sum \frac{1}{n^{\alpha}}$ est de même nature que $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$. Or $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge ssi $\alpha > 1$ donc $\sum \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

2.4.2 Intégration par parties

L'intégration par parties permet parfois d'étudier la nature d'une intégrale impropre comme le montre l'exemple qui suit.

Exemple

Etudions l'intégrale $\int_0^{+\infty} t e^{-t} dt$. La fonction $t \mapsto t e^{-t}$ est définie en 0. Il s'agit donc du cas droit d'une intégrale impropre. Procédons par une intégration par parties en posant u(t) = t et $v'(t) = e^{-t}$. Alors

$$\int_0^x te^{-t} dt = -[te^{-t}]_0^x - \int_0^x -e^{-t} dt$$
$$= -xe^{-x} - [e^{-t}]_0^x$$
$$= -xe^{-x} - e^{-x} + 1$$

or

 $xe^{-x} \xrightarrow[x \to +\infty]{} 0$ (théorème des croissances comparées)

et

$$e^{-x} \xrightarrow[x \to +\infty]{} 0$$

donc

$$\int_0^x te^{-t} dt \xrightarrow[x \to +\infty]{} 1$$

Ainsi $\int_0^{+\infty} te^{-t} dt$ converge et on a de plus

$$\int_{0}^{+\infty} te^{-t} dt = 1$$

2.4.3 Changement de variable

Le changement de variable permet également d'étudier certaines intégrales impropres.

Exemple

Soit $\beta \in \mathbb{R}$. On souhaite étudier $\int_2^{+\infty} \frac{1}{t(\ln(t))^{\beta}} dt$ (cas particulier des fonctions de Bertrand). La fonction $t \mapsto \frac{1}{t(\ln(t))^{\beta}}$ est définie en 2 donc il s'agit du cas droit d'une intégrale impropre.

Effectuons le changement de variable suivant $u=\ln(t)$ dans l'intégrale $\int_2^x \frac{1}{t(\ln(t))^\beta}\,dt$. On a alors $du=\frac{dt}{t}$. Ainsi

$$\int_2^x \frac{1}{t(\ln(t))^\beta} dt = \int_{\ln(2)}^{\ln(x)} \frac{1}{u^\beta} du$$

Donc $\int_{2}^{+\infty} \frac{1}{t(\ln(t))^{\beta}} dt$ est de même nature que $\int_{\ln(2)}^{+\infty} \frac{1}{u^{\beta}} du$. Or cette dernière converge ssi $\beta > 1$ donc $\int_{2}^{+\infty} \frac{1}{t(\ln(t))^{\beta}} dt$ converge ssi $\beta > 1$.

2.4.4 Convergence absolue

Définition 14 (cas droit)

On dit que $\int_a^b f(t) dt$ converge absolument si $\int_a^b |f(t)| dt$ converge.

La convergence absolue revêt un intérêt essentiellement par la proposition suivante.

Proposition 11

 $Si\int_{a}^{b} f(t) dt$ converge absolument, alors elle converge.

Exemple

Etudions la convergence de l'intégrale $\int_1^{+\infty} \frac{\sin(t)}{t^3} dt$. Comme la fonction $t \mapsto \frac{\sin(t)}{t^3}$ est définie en 1, il s'agit du cas droit d'une intégrale impropre. On a pour tout $t \ge 1$,

$$\left|\frac{\sin(t)}{t^3}\right| \leqslant \frac{1}{t^3}$$

Or $\int_{1}^{+\infty} \frac{1}{t^3} dt$ converge donc $\int_{1}^{+\infty} \left| \frac{\sin(t)}{t^3} \right| dt$ converge c'est-à-dire $\int_{1}^{+\infty} \frac{\sin(t)}{t^3} dt$ converge

absolument.

On en conclut par la proposition précédente que $\int_1^{+\infty} \frac{\sin(t)}{t^3} dt$ converge.

2.5 Exercices types

Exercice 1

Déterminer la nature des intégrales impropres suivantes :

$$1. \int_0^{+\infty} e^{-t} dt$$

2.
$$\int_0^1 \frac{\sin(t)}{t^{\alpha}} dt \text{ avec } \alpha \in \mathbb{R}.$$

3.
$$\int_{-\infty}^{+\infty} \frac{dt}{(1+e^t)(1+e^{-t})}$$

Solution

Déterminer la nature des intégrales impropres suivantes :

1. Au voisinage de
$$+\infty$$
, $e^{-t} = o\left(\frac{1}{t^2}\right)$

or
$$\int_{1}^{+\infty} \frac{dt}{t^2}$$
 converge donc $\int_{1}^{+\infty} e^{-t} dt$ d'où $\int_{0}^{+\infty} e^{-t} dt$ converge.

2. Au voisinage de 0,
$$\frac{\sin(t)}{t^{\alpha}} \sim \frac{t}{t^{\alpha}} = \frac{1}{t^{\alpha-1}}$$
.

Or
$$\int_0^1 \frac{dt}{t^{\alpha-1}}$$
 converge ssi $\alpha - 1 < 1$ i.e. ssi $\alpha < 2$.

Ainsi
$$\int_0^1 \frac{\sin(t)}{t^{\alpha}} dt$$
 converge ssi $\alpha < 2$.

3. Au voisinage de
$$+\infty$$
, $\frac{1}{(1+e^t)(1+e^{-t})} \sim e^{-t}$

Or
$$\int_0^{+\infty} e^{-t} dt$$
 converge d'où $\int_0^{+\infty} \frac{dt}{(1+e^t)(1+e^{-t})}$ converge.

Au voisinage de
$$-\infty$$
, $\frac{1}{(1+e^t)(1+e^{-t})} \sim e^t$

Or
$$\int_{-\infty}^{0} e^{t} dt$$
 converge d'où $\int_{-\infty}^{0} \frac{dt}{(1+e^{t})(1+e^{-t})}$ converge.

Ainsi
$$\int_{-\infty}^{+\infty} \frac{dt}{(1+e^t)(1+e^{-t})}$$
 converge.

Exercice 2

On rappelle la formule $\sin(2x) = 2\sin(x)\cos(x)$.

Considérons
$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$$
 et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

- 1. Montrer (rigoureusement) que $\ln(\sin(x)) \sim \ln(x)$.
- 2. Montrer que I converge et que I=J en utilisant par exemple le changement de variable $u=\frac{\pi}{2}-x$
- 3. Montrer que $I = \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$.
- 4. En déduire la valeur de I.

Solution

1.

$$\frac{\ln(\sin(x))}{\ln(x)} = \frac{\ln\left(\frac{\sin(x)}{x} \cdot x\right)}{\ln(x)}$$
$$= 1 + \frac{\ln\left(\frac{\sin(x)}{x}\right)}{\ln(x)} \xrightarrow[x \to 0]{} 1$$

Donc $\ln(\sin(x)) \sim \ln(x)$

2. Via la première question $\ln(\sin(x)) \sim \ln(x)$ or $\int_0^{\frac{\pi}{2}} \ln(x) dx$ converge. En effet

$$\int_0^{\frac{\pi}{2}} \ln(x) dx = \left[x \ln(x) - x \right]_0^{\pi/2} = \frac{\pi}{2} \ln\left(\frac{\pi}{2}\right) - \frac{\pi}{2}$$

Ainsi I converge.

D'autre part en effectuant le changement de variable $x = \frac{\pi}{2} - u$ dans I on a

$$I = \int_{\frac{\pi}{2}}^{0} \ln\left(\sin\left(\frac{\pi}{2} - u\right)\right) (-du) = J$$

3. En effectuant le changement de variable $u = \frac{x}{2}$ on a

$$\int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx = \frac{1}{2} \int_0^{\pi} \ln(\sin(u)) du$$

$$= \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} \ln(\sin(u)) du + \int_{\frac{\pi}{2}}^{\pi} \ln(\sin(u)) du \right)$$

$$= \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} \ln(\sin(u)) du + \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt \right)$$
(via le changement de variable $u = t + \frac{\pi}{2}$)
$$= \frac{1}{2} (I + J)$$

$$= I$$

4.

$$\begin{split} I &= \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx \\ &= \int_0^{\frac{\pi}{2}} \ln(2\sin(x)\cos(x)) dx \\ &= \int_0^{\frac{\pi}{2}} \ln(2) dx + \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx + \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx \\ &= \frac{\pi}{2} \ln(2) + I + J \end{split}$$
 Ainsi $J = I = -\frac{\pi}{2} \ln(2)$.

Exercice 3

Soient
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$
 et $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ où $(\alpha,x,y) \in \mathbb{R}^3$.

- 1. Déterminer $\{\alpha \in \mathbb{R}, \Gamma(\alpha) \text{ converge}\}.$
- 2. Former une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$.
- 3. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 4. Déterminer $\{(x,y) \in \mathbb{R}^2, \beta(x,y) \text{ converge}\}.$
- 5. Montrer que $\beta(x,y) = \beta(y,x)$.

Solution

1.
$$\int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$
 est une intégrale impropre bilatérale.

Etude en 0 :
$$e^{-t}t^{\alpha-1} \sim t^{\alpha-1} = \frac{1}{t^{1-\alpha}}$$

or
$$\int_0^1 \frac{dt}{t^{1-\alpha}}$$
 converge ssi $1-\alpha < 1$ i.e. ssi $\alpha > 0$ donc $\int_0^1 e^{-t} t^{\alpha-1} dt$ converge ssi $\alpha > 0$.

Etude en $+\infty$: via le théorème de croissance comparée on a,

$$\forall \alpha \in \mathbb{R}, \ t^2 e^{-t} t^{\alpha - 1} \xrightarrow[t \to +\infty]{} 0$$

donc au voisinage de l'infini,

$$e^{-t}t^{\alpha-1} = o\left(\frac{1}{t^2}\right)$$

or
$$\int_1^{+\infty} \frac{dt}{t^2}$$
 converge donc pour tout $\alpha \in \mathbb{R}$, $\int_1^{+\infty} e^{-t} t^{\alpha-1} dt$ converge.

Conclusion:

$$\int_0^{+\infty} e^{-t} t^{\alpha - 1} dt \quad \text{converge ssi} \quad \alpha > 0$$

i.e.

$$\Gamma(\alpha)$$
 converge ssi $\alpha > 0$

2. On procède par intégration par parties en posant $u(t)=t^{\alpha}$ et $v'(t)=e^{-t}$ et en remarquant que $\left[u(t)v(t)\right]_0^{+\infty}=0$. On a ainsi

$$\Gamma(\alpha+1) = \alpha \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$

Conclusion:

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

3. En utilisant le résultat de la question précédente, on a par une récurrence immédiate, pour tout $n \in \mathbb{N}^*$,

$$\Gamma(n) = (n-1)!\Gamma(1)$$

or

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$$

Conclusion : pour tout $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$

4. $\int_0^1 t^{x-1} (1-t)^{y-1} dt$ est une intégrale impropre bilatérale.

Etude en
$$0: t^{x-1}(1-t)^{y-1} \sim t^{x-1} = \frac{1}{t^{1-x}}$$

or $\int_0^{\frac{1}{2}} \frac{dt}{t^{1-x}}$ converge ssi 1-x < 1 i.e. ssi x > 0 donc $\int_0^{\frac{1}{2}} t^{x-1} (1-t)^{y-1} dt$ converge ssi x > 0.

Etude en 1:
$$t^{x-1}(1-t)^{y-1} \sim (1-t)^{y-1} = \frac{1}{(1-t)^{1-y}}$$

or par le changement de variable u = 1 - t,

$$\int_{\frac{1}{2}}^{1} \frac{dt}{(1-t)^{1-y}} = \int_{0}^{\frac{1}{2}} \frac{du}{u^{1-y}}$$

qui converge ssi 1-y<1 i.e. ssi y>0 donc $\int_{\frac{1}{2}}^1 t^{x-1} (1-t)^{y-1} dt$ converge ssi y>0.

Conclusion: $\int_0^1 t^{x-1} (1-t)^{y-1} dt \quad \text{converge ssi} \quad (x,y) \in \mathbb{R}_+^{*2}$

i.e. $\beta(x,y)$ converge ssi $(x,y) \in \mathbb{R}_+^{*2}$

5. En utilisant le changement de variable u=1-t, on a immédiatement

$$\beta(x,y) = \beta(y,x)$$

Exercice 4

Soit $\alpha \in \mathbb{R}$.

On rappelle le résultat suivant :

$$\int_{1}^{+\infty} \frac{\ln(x)}{x^{\alpha}} dx \quad \text{converge ssi} \quad \alpha > 1$$

- 1. Montrer que $\int_0^1 x \ln(x) dx$ converge.
- 2. Soit

$$I(\alpha) = \int_0^{+\infty} \frac{x \ln(x)}{(1+x^2)^{\alpha}} dx$$

- a. Déterminer la nature de $I(\alpha)$ en fonction de α .
- b. Effectuer le changement de variable $y = \frac{1}{x}$ dans I(2). En déduire la valeur de I(2).

Solution

1. En intégrant par partie, on a

$$\int_0^1 x \ln(x) dx = \left[\frac{x^2}{2} \ln(x) \right]_0^1 - \frac{1}{2} \int_0^1 x dx = -\frac{1}{4}$$

donc $\int_0^1 x \ln(x) dx$ converge.

2. a. Etude en 0 :

$$\frac{x\ln(x)}{(1+x^2)^\alpha} \sim x\ln(x)$$
 or $\int_0^1 x\ln(x)dx$ converge d'où $\int_0^1 \frac{x\ln(x)}{(1+x^2)^\alpha}dx$ converge.

Etude en $+\infty$:

$$\frac{x\ln(x)}{(1+x^2)^{\alpha}} \underset{+\infty}{\sim} \frac{x\ln(x)}{x^{2\alpha}} = \frac{\ln(x)}{x^{2\alpha-1}}$$

or $\int_1^{+\infty} \frac{\ln(x)}{x^{2\alpha-1}} dx$ converge ssi $2\alpha-1>1$ i.e. ssi $\alpha>1$ d'où $\int_1^{+\infty} \frac{x \ln(x)}{(1+x^2)^{\alpha}} dx$ converge ssi $\alpha>1$.

Ainsi $I(\alpha)$ converge ssi $\alpha > 1$

b. En effectuant le changement de variable $y = \frac{1}{x}$ dans I(2), on a

$$I(2) = \int_{+\infty}^{0} \frac{\frac{1}{y} \ln\left(\frac{1}{y}\right)}{\left(1 + \frac{1}{y^{2}}\right)^{2}} \cdot \left(-\frac{dy}{y^{2}}\right) = -\int_{0}^{+\infty} \frac{y \ln(y)}{(y^{2} + 1)^{2}} dy$$

i.e. I(2) = -I(2) donc I(2) = 0

Chapitre 3

Espaces vectoriels

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

3.1 Définitions

3.1.1 Espaces vectoriels

Définition 15

E est un \mathbb{K} -ev si E est muni d'une loi de composition interne notée + et d'une loi de composition externe (de $\mathbb{K} \times E$ dans E) notée . telles que

- -(E,+) est un groupe commutatif
- $\ \forall (\lambda, \mu) \in \mathbb{K}^2, \forall (x, y) \in E^2$
 - $\cdot \ (\lambda + \mu).x = \lambda.x + \mu.x$
 - $\cdot \ \lambda.(x+y) = \lambda.x + \lambda.y$
 - $\cdot \ \lambda.(\mu.x) = (\lambda \mu).x$
 - $\cdot 1.x = x$

Exemples

- 1. Pour tout $n \in \mathbb{N}^*$, \mathbb{R}^n est un \mathbb{R} -ev.
- 2. L'espace des polynômes à coefficients réels $\mathbb{R}[X]$ est un $\mathbb{R}\text{-ev}.$

- 3. L'espace des fonctions de \mathbb{R} dans \mathbb{R} est un \mathbb{R} -ev.
- 4. L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$ est un \mathbb{R} -ev.

3.1.2 Sous-espaces vectoriels

Définition 16

Soit E un \mathbb{K} -ev. F est un sev de E si

- $\cdot F \subset E$
- $\cdot F \neq \emptyset$
- $\forall (x,y) \in F^2, \forall (\lambda,\mu) \in \mathbb{K}^2, \ \lambda x + \mu y \in F$

Remarque

Pour montrer qu'un ensemble est vectoriel, on montre dans la quasi-totalité des cas que c'est un sev d'un ev classique du type d'un des exemples ci-dessus.

Exemples

- 1. Soit $n \in \mathbb{N}$. L'espace des polynômes de degré inférieur ou égal à n à coefficients réels est un \mathbb{R} -ev car c'est un sev du \mathbb{R} -ev $\mathbb{R}[X]$.
- 2. L'ensemble des fonctions paires de $\mathbb R$ dans $\mathbb R$ est un $\mathbb R$ -ev car c'est un sev du $\mathbb R$ -ev $\mathbb R^{\mathbb R}$.
- 3. L'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} est un \mathbb{R} -ev car c'est un sev du \mathbb{R} -ev $\mathbb{R}^{\mathbb{R}}$.

3.2 Opérations

3.2.1 Intersection de sev

Proposition 12

Soient E un \mathbb{K} -ev, F et G deux sev de E. Alors $F \cap G$ est un sev de E. Plus généralement, si $(F_i)_{i \in I}$ est une famille de sev de E, alors $\bigcap_{i \in I} F_i$ est un sev de E.

Remarque

Cette proposition est essentielle pour la notion de sev engendré.

3.2.2 Somme de sev

Définition 17

Soient E un \mathbb{K} -ev, F et G deux sev de E.

On définit l'ensemble F + G par

$$F + G = \{z \in E, \exists (x,y) \in F \times G, z = x + y\}$$

Proposition 13

Soient E un \mathbb{K} -ev, F et G deux sev de E. Alors F + G est un sev de E.

3.3 Sous-espaces supplémentaires

3.3.1 Sev en somme directe

Définition 18

Soient F et G deux sev d'un \mathbb{K} -ev E. On dit que F et G sont en somme directe si

$$\forall (x,y) \in F \times G : x+y=0 \Longrightarrow x=y=0$$

Exemple

Dans \mathbb{R}^3 , les sev $\mathbb{R} \times \{0\} \times \{0\}$ et $\{0\} \times \mathbb{R} \times \{0\}$ sont en somme directe.

Proposition 14

Les assertions suivantes sont équivalentes :

- (i) F et G sont en somme directe
- (*ii*) $F \cap G = \{0\}$

(iii)
$$\forall x \in F + G, \exists !(y, z) \in F \times G, x = y + z$$

3.3.2 Sev supplémentaires

Définition 19

Soient F et G deux sev d'un \mathbb{K} -ev E. On dit que F et G sont supplémentaires dans E et on écrit $E = F \oplus G$ si

$$F \cap G = \{0\}$$
 et $E = F + G$

Proposition 15

Soient E un \mathbb{K} -ev, F et G deux sev de E. Alors

$$E = F \oplus G \iff \forall x \in E, \exists !(y,z) \in F \times G, \quad x = y + z$$

Exemple

Soient $E = \mathbb{R}^{\mathbb{R}}$, $P = \{f \in \mathbb{R}^{\mathbb{R}}, f \text{ paire}\}$ et $I = \{f \in \mathbb{R}^{\mathbb{R}}, f \text{ impaire}\}$. Alors P et I sont supplémentaires dans E.

3.4 Sev engendré

Définition 20

Soient E un \mathbb{K} -ev et $X \subset E$. Il existe un plus petit sev de E contenant X. C'est l'intersection de tous les sev de E contenant X. Il est appelé sev de E engendré par X et noté Vect(X).

Proposition 16

Soient E un \mathbb{K} -ev et $X = \{x_1, ..., x_n\} \subset E$. Alors

$$Vect(X) = \{\lambda_1 x_1 + ... + \lambda_n x_n : (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n\}$$

Exemples

- 1. Dans le plan $E = \mathbb{R}^2$, le sev engendré par un vecteur non nul x de E est $Vect(\{x\}) = \mathbb{R}x$ i.e. la droite vectorielle engendrée par x.
- 2. Dans le plan $E = \mathbb{R}^2$, le sev engendré par deux vecteurs non nuls et non colinéaires de E est E tout entier.

3.5 Application linéaire

3.5.1 Définition

Définition 21

Soient E, F deux K-ev et $f: E \to F$. On dit que f est linéaire (et on écrit $f \in \mathcal{L}(E,F)$) si

$$\forall (x,y) \in E^2, \, \forall (\lambda,\mu) \in \mathbb{K}^2, \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Exemples

1.
$$I: \left\{ \begin{array}{ccc} C^0(\mathbb{R},\mathbb{R}) & \longrightarrow & \mathbb{R} \\ & & & \\ f & \longmapsto & \int_a^b f(x) dx \end{array} \right.$$
 est linéaire.

2.
$$D: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ & & \text{est lin\'eaire.} \end{array} \right.$$

Proposition 17

- 1. $\mathcal{L}(E,F)$ est un \mathbb{K} -ev
- 2. Soit $f \in \mathcal{L}(E, F)$. Alors

a.
$$f(0) = 0$$

b.
$$\forall (x,y) \in E^2$$
, $f(x-y) = f(x) - f(y)$

3.5.2 Noyau et image

Définition 22

Soit $f \in \mathcal{L}(E, F)$.

On appelle noyau (resp. image) de f l'ensemble noté $Ker(f) = \{x \in E, f(x) = 0\}$ (resp. $Im(f) = \{f(x); x \in E\}$)

Proposition 18

Soit $f \in \mathcal{L}(E, F)$.

- 1. Ker(f) et Im(f) sont respectivement des sev de E et F.
- 2. f injective $\iff Ker(f) = \{0\}.$
- 3. f surjective \iff Im(f) = F.

Exemple

Considérons l'application linéaire
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}_n[X] \\ P & \longmapsto & P' \end{array} \right.$$

Alors $Ker(f) = \{\text{polynômes constants}\}\ \text{et } Im(f) = \mathbb{R}_{n-1}[X].$

3.6 Base et dimension

3.6.1 Famille libre, famille génératrice, base

Définition 23

Soient E un \mathbb{K} -ev et $L = \{x_1, ..., x_n\} \subset E$. On dit que L est une famille libre si

$$\forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n : \lambda_1 x_1 + ... + \lambda_n x_n = 0 \Longrightarrow (\lambda_1, ..., \lambda_n) = (0, ..., 0)$$

On dit que L est liée si elle n'est pas libre.

Définition 24

Soient E un \mathbb{K} -ev et $G = \{x_1, ..., x_n\} \subset E$. On dit que G engendre E (ou que E est engendré par G ou que G est une partie génératrice de E) si E = Vect(G).

Définition 25

Soient E un \mathbb{K} -ev et $B = \{x_1, ..., x_n\} \subset E$. On dit que B est une base de E si B est libre et engendre E.

Exemple

 $B = (1, X - 1, (X + 1)^2)$ est une base de $\mathbb{R}_2[X]$.

3.6.2 Dimension

Définition 26

Soit E un \mathbb{K} -ev. On dit que E est de dimension finie s'il est engendré par une famille finie de vecteurs de E.

Exemple

Soit $n \in \mathbb{N}$. Alors $\mathbb{R}_n[X]$ est de dimension finie car $\mathbb{R}_n[X] = Vect(1, X, X^2, ..., X^n)$

Théorème 12

Soit E un \mathbb{K} -ev de dimension finie. Toutes les bases de E ont même cardinal. Ce nombre est appelé dimension de E et noté $dim_{\mathbb{K}}(E)$ ou dim(E).

Exemples

- 1. Soit $n \in \mathbb{N}$. Alors $\mathbb{R}_n[X]$ est de dimension n+1 car $B=(1,X,X^2,...,X^n)$ est une base de E et Card(B)=n+1.
- 2. $E = \mathbb{C}$ est un \mathbb{C} -ev de dimension 1 car $B = \{1\}$ est une base de E en tant que \mathbb{C} -ev.
- 3. $F = \mathbb{C}$ est un \mathbb{R} -ev de dimension 2 car $B = \{1, i\}$ est une base de F en tant que \mathbb{R} -ev.

3.6.3 Théorème de la base incomplète et ses corollaires

Théorème 13

Soit E un \mathbb{K} -ev de dimension finie engendré par G. Soit L une famille libre de E. Alors on peut compléter la famille L par des vecteurs pris dans G pour obtenir une base de E.

Proposition 19

Soit E un K-ev de dimension finie tel que $E \neq \{0\}$. Alors E admet au moins une base.

Proposition 20

Soient E un \mathbb{K} -ev de dimension finie et F un sev de E.

Alors F admet au moins un supplémentaire dans E.

Proposition 21

Soient E un \mathbb{K} -ev de dimension finie, F et G deux sev supplémentaires dans E, B une base de F et B' une base de G.

Alors $B \sqcup B'$ est une base de E.

Proposition 22

$$E = F \oplus G \Longrightarrow dim(E) = dim(F) + dim(G)$$

Proposition 23

Soient E un \mathbb{K} -ev de dimension finie, F et G deux sev de E tels que

$$F \subset G$$
 et $dim(F) = dim(G)$

Alors F = G

Proposition 24

Soient E et F deux \mathbb{K} -ev de dimension finie. Alors

$$f \in \mathcal{L}(E, F)$$
 bijective $\implies dim(E) = dim(F)$

3.6.4 Théorème du rang

Théorème 14

Soit $f \in \mathcal{L}(E, F)$ avec E de dimension finie. Alors

$$dim(E) = dim(Ker(f)) + dim(Im(f))$$

Proposition 25

Soient E un \mathbb{K} -ev de dimension finie, F et G deux sev de E. Alors

$$dim(F+G) = dim(F) + dim(G) - dim(F \cap G)$$

3.7 Exercices types

Exercice 1

Soient E un \mathbb{K} -ev de dimension finie n paire et $f \in \mathcal{L}(E)$. Montrer que

$$\left(f^2=0 \text{ et } \dim \left(Im(f)\right)=\frac{n}{2}\right) \Longleftrightarrow \left(Im(f)=Ker(f)\right)$$

Solution

 \implies Montrons que $Im(f) \subset Ker(f)$.

Soit $y \in Im(f)$. Alors il existe $x \in E$ tel que y = f(x). Or $f^2 = 0$ donc $f(y) = f^2(x) = 0$ donc $y \in Ker(f)$.

D'autre part, par le théorème du rang, dim(Ker(f)) + dim(Im(f)) = n or $dim(Im(f)) = \frac{n}{2}$ donc $dim(Ker(f)) = \frac{n}{2}$.

Ainsi dim(Im(f)) = dim(Ker(f)).

Comme $Im(f) \subset Ker(f)$, on en déduit que Im(f) = Ker(f).

 \longleftarrow Montrons que $f^2 = 0$.

Soit $x \in E$. Alors $f(x) \in Im(f)$ or Im(f) = Ker(f) donc $f(x) \in Ker(f)$ i.e. $f^2(x) = 0$.

D'autre part, par le théorème du rang, on a $dim\big(Ker(f)\big)+dim\big(Im(f)\big)=n$ or Im(f)=Ker(f) donc $dim\big(Im(f)\big)=\frac{n}{2}$.

Exercice 2

Soient E un \mathbb{R} -ev et $(f,g) \in \mathcal{L}(E) \times \mathcal{L}(E)$.

- 1. Montrer que $(Ker(g \circ f) = Ker(f)) \iff (Ker(g) \cap Im(f) = \{0\})$
- 2. Montrer que $(Im(g \circ f) = Im(g)) \iff (Ker(g) + Im(f) = E)$

Solution

 $1. \implies$

Supposons $Ker(g \circ f) = Ker(f)$.

Soit $y \in Ker(g) \cap Im(f)$. Alors il existe $x \in E$ tel que y = f(x) et g(y) = 0. Ainsi g(f(x)) = 0 i.e. $x \in Ker(g \circ f)$. Or

$$Ker(g\circ f)=Ker(f)$$

donc $x \in Ker(f)$ donc y = f(x) = 0. Ainsi $Ker(g) \cap Im(f) = \{0\}$ (l'autre inclusion étant évidente).

 \leftarrow

Supposons $Ker(g) \cap Im(f) = \{0\}.$

Montrons d'abord que $Ker(g \circ f) \subset Ker(f)$.

Soit $x \in Ker(g \circ f)$. Alors g(f(x)) = 0. Donc $f(x) \in Ker(g)$ et $f(x) \in Im(f)$.

Donc $f(x) \in Ker(g) \cap Im(f)$. Or

$$Ker(g) \cap Im(f) = \{0\}$$

donc f(x) = 0 i.e. $x \in Ker(f)$.

Montrons à présent que $Ker(f) \subset Ker(g \circ f)$.

Soit $x \in Ker(f)$. Alors f(x) = 0. Donc g(f(x)) = g(0) = 0 donc $x \in Ker(g \circ f)$.

$2. \implies$

Supposons $Im(g \circ f) = Im(g)$.

Montrons que $E \subset Ker(g) + Im(f)$.

Soit $x \in E$. Alors $g(x) \in Im(g) = Im(g \circ f)$. Donc il existe $z \in E$ tel que g(x) = g(f(z)).

Ainsi x = x - f(z) + f(z) avec $f(z) \in Im(f)$ et $x - f(z) \in Ker(g)$ car

$$g(x - f(z)) = g(x) - g(f(z)) = 0$$

Donc $x \in Ker(g) + Im(f)$. Ainsi E = Ker(g) + Im(f) (l'autre inclusion étant évidente).

Supposons E = Ker(g) + Im(f).

L'inclusion $Im(g \circ f) \subset Im(g)$ est évidente.

Montrons que $Im(g) \subset Im(g \circ f)$.

Soit $y \in Im(g)$. Alors il existe $x \in E$ tel que y = g(x). Or

$$E = Ker(g) + Im(f)$$

donc $x = x_1 + x_2$ avec $(x_1, x_2) \in Ker(g) \times Im(f)$. Ainsi

$$y = g(x) = g(x_1 + x_2) = g(x_2)$$

or $x_2 \in Im(f)$ donc il existe $z \in E$ tel que $x_2 = f(z)$. Ainsi

$$y = g(f(z))$$

donc $y \in Im(g \circ f)$. Donc $Im(g) \subset Im(g \circ f)$.

Exercice 3

Soient E un \mathbb{R} -ev, $(f, g, h) \in \mathcal{L}(E) \times \mathcal{L}(E) \times \mathcal{L}(E)$. Montrer que

$$Im(h \circ f) \subset Im(h \circ g) \iff Im(f) + Ker(h) \subset Im(g) + Ker(h)$$

Solution

Supposons $Im(h \circ f) \subset Im(h \circ g)$.

Soit $y \in Im(f) + Ker(h)$. Alors il existe $(x, z) \in E \times Ker(h)$ tel que y = f(x) + z. Donc

$$h(y) = h(f(x) + z) = h(f(x)) \in Im(h \circ f) \subset Im(h \circ g)$$

Ainsi il existe $t \in E$ tel que h(y) = h(g(t)). Donc

$$y = g(t) + y - g(t) \in Im(g) + Ker(h)$$

car

$$h(y - g(t)) = h(y) - h(g(t)) = 0$$

Ainsi $Im(f) + Ker(h) \subset Im(g) + Ker(h)$.

Supposons $Im(f) + Ker(h) \subset Im(g) + Ker(h)$.

Soit $y \in Im(h \circ f)$. Alors il existe $x \in E$ tel que y = h(f(x)). Or

$$f(x) \in Im(f) \subset Im(f) + Ker(h) \subset Im(g) + Ker(h)$$

Donc il existe $(u, v) \in E \times Ker(h)$ tel que f(x) = g(u) + v. Ainsi

$$y = h(g(u) + v) = h(g(u)) \in Im(h \circ g)$$

Donc $Im(h \circ f) \subset Im(h \circ g)$.

Exercice 4

Soient E un \mathbb{K} -ev et $(p,q) \in \mathcal{L}(E) \times \mathcal{L}(E)$ tel que $p^2 = p$ et $q^2 = q$ (c'est-à-dire p et q sont des projecteurs). On suppose $p \neq 0, q \neq 0$ et $p \neq q$.

- 1. Soit $\alpha \in \mathbb{R}$. Montrer que $q = \alpha p \Rightarrow \alpha p = \alpha^2 p$.
- 2. Montrer que (p,q) forme une famille libre dans $\mathcal{L}(E)$.

Solution

1. Supposons $q = \alpha p$. Alors $\alpha p = q^2$ (car $q = q^2$) donc $\alpha p = (\alpha p)^2$ (car $q = \alpha p$) i.e. $\alpha p = \alpha^2 p^2$ soit $\alpha p = \alpha^2 p$ (car $p^2 = p$).

2. Supposons par l'absurde que (p,q) non libre i.e. p et q colinéaires.

Alors $q = \alpha p$ avec $\alpha \in \mathbb{R}$.

En utilisant la question 1., on a donc $\alpha p = \alpha^2 p$ soit $(\alpha^2 - \alpha)p = 0$ i.e. $\alpha(\alpha - 1)p = 0$ d'où $\alpha(\alpha - 1) = 0$ car $p \neq 0$. Donc $\alpha = 0$ ou $\alpha = 1$.

Or si $\alpha=0$ alors q=0 ce qui contredit l'hypothèse. De même, si $\alpha=1$ alors q=p ce qui contredit également l'hypothèse.

Chapitre 4

Matrices

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

4.1 Opérations

4.1.1 Définition

Définition 27

Soient $I = \{1, ..., m\}$ et $J = \{1, ..., n\}$. On appelle matrice de type (m, n) (ou à m lignes et n colonnes) à éléments dans \mathbb{K} toute application A de $I \times J$ dans \mathbb{K} .

Notation

Si A est une matrice de type (m,n) à éléments dans \mathbb{K} , on écrit $A=(a_{ij})_{(i,j)\in I\times J}$ ou encore

$$A = \left(\begin{array}{cccc} a_{11} & \dots & \dots & a_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{array}\right)$$

On note $\mathcal{M}_{m,n}(\mathbb{K})$ l'ensemble des matrices de type (m,n) à coefficients dans \mathbb{K} .

Exemples

1.
$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$$

$$2. A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R})$$

4.1.2 Somme

Définition 28

Soient
$$A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$$
 et $B = (b_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$. Alors

$$A + B = (c_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$$
 où $c_{ij} = a_{ij} + b_{ij}$

Exemple

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) + \left(\begin{array}{ccc} 6 & 5 & 4 \\ 3 & 2 & -1 \end{array}\right) = \left(\begin{array}{ccc} 7 & 7 & 7 \\ 7 & 7 & 5 \end{array}\right)$$

4.1.3 Produit externe

Définition 29

Soient
$$A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$$
 et $\lambda \in \mathbb{K}$. Alors

$$\lambda A = (b_{ij}) \in \mathscr{M}_{m,n}(\mathbb{K}) \ où \ b_{ij} = \lambda a_{ij}$$

Exemple

$$3\left(\begin{array}{rrr} 1 & 1 & -1 \\ 2 & 3 & 5 \end{array}\right) = \left(\begin{array}{rrr} 3 & 3 & -3 \\ 6 & 9 & 15 \end{array}\right)$$

4.1.4 Produit interne

Définition 30

Soient
$$A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$$
 et $B = (b_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors

$$AB = (c_{ij}) \in \mathcal{M}_{m,p}(\mathbb{K}) \text{ où } c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Exemple

Soient
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Alors
$$AB = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$
 et $BA = \begin{pmatrix} 3 & 0 & 7 \\ -1 & 1 & -2 \\ 2 & 1 & 5 \end{pmatrix}$

Proposition 26

Soit
$$(A = (a_{ij}), B = (b_{ij}), C = (c_{ij})) \in (\mathcal{M}_3(\mathbb{R}))^3$$
. Alors $A(BC) = (AB)C$.

4.1.5 Transposée

Définition 31

Soit $A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$. Alors la transposée de A notée tA est définie par

$${}^{t}A = (b_{ij}) \in \mathscr{M}_{n,m}(\mathbb{K}) \ où \ b_{ij} = a_{ji}$$

Exemple

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 4 \end{pmatrix}$$
. Alors ${}^{t}A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 4 \end{pmatrix}$

Proposition 27

Soient $A = (a_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K}), B = (b_{ij}) \in \mathcal{M}_{m,n}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

1.
$${}^{t}(A+B) = {}^{t}A + {}^{t}B$$

2.
$$t(\lambda A) = \lambda^t A$$

3.
$${}^{t}(AB) = {}^{t}B {}^{t}A$$

4.1.6 Trace

Définition 32

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. Alors la trace de A est le nombre noté tr(A) défini par

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Exemple

$$tr\left(\begin{array}{ccc} 1 & 2 & 3\\ -1 & 2 & 4\\ 5 & 7 & 5 \end{array}\right) = 1 + 2 + 5 = 8$$

Proposition 28

Soient $(A, B) \in \mathscr{M}_n^2(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

1.
$$tr(A+B) = tr(A) + tr(B)$$

2.
$$tr(\lambda A) = \lambda tr(A)$$

3.
$$tr(AB) = tr(BA)$$

4.
$$tr({}^{t}A) = tr(A)$$

4.1.7Déterminant

Définition 33 (récursive)

$$Soit A \in \mathscr{M}_{n}(\mathbb{K}). Alors le déterminant de A noté det(A) ou \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} est défini$$

par

$$\forall j \in \{1, ..., n\}, \ det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij}$$

où pour tout $(i,j) \in \{1,...,n\}^2$, Δ_{ij} est le déterminant de la matrice obtenue en supprimant de la matrice initiale la $i^{\grave{e}me}$ ligne et la $j^{\grave{e}me}$ colonne avec $det(a_{ij})=a_{ij}$ (condition d'arrêt).

Proposition 29

Soient $A \in \mathcal{M}_n \mathbb{K}$ et $\lambda \in \mathbb{K}$. Alors

1.
$$det({}^{t}A) = det(A)$$

2.
$$det(\lambda A) = \lambda^n det(A)$$

3.
$$det(AB) = det(A) det(B)$$

Proposition 30

Toute transformation du type $L_i \longleftarrow L_i + \sum_{j \neq i} \alpha_j L_j$ (resp. $C_i \longleftarrow C_i + \sum_{j \neq i} \alpha_j C_j$) laisse inchangé le déterminant.

Exemple

Soient
$$\lambda \in \mathbb{R}$$
 et $A = \begin{pmatrix} 1 - \lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 1 & -2 & 2 - \lambda \end{pmatrix}$

Alors
$$det(A) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 1 & -2 & 2 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ \lambda - 1 & -2 & 2 - \lambda \end{vmatrix} \quad C_1 \leftarrow C_1 - C_3$$

$$= \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} \quad L_3 \leftarrow L_3 + L_1$$

$$= (1 - \lambda)(-\lambda(2 - \lambda) + 1)$$

$$= (1 - \lambda)^3$$

4.1.8 Inversion

Définition 34

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = BA = I_n$. On écrit alors $B = A^{-1}$

Proposition 31

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$A inversible \iff det(A) \neq 0$$

Exemple

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

A est inversible car $det(A) = -1 \neq 0$. Déterminons A^{-1} .

Soient
$$U = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $V = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 . On a

$$AU = V \Leftrightarrow U = A^{-1}V$$

Or

$$AU = V \iff \begin{cases} x+y &= X & (1) \\ x+z &= Y & (2) \\ x+y+z &= Z & (3) \end{cases} \iff \begin{cases} x+y &= X \\ x+z &= Y \\ y &= Z-Y \end{cases}$$

(on a remplacé (3) par (3) - (2)). D'où

$$AU = V \iff \begin{cases} x = X + Y - Z \\ z = -X + Z \\ y = Z - Y \end{cases}$$

Finalement

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}.$$

Ainsi
$$A^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$
.

4.2 Matrice et application linéaire

4.2.1 Matrice d'une application linéaire

Définition 35

Soient E et F deux \mathbb{K} -ev de dimensions respectives n et m, $B = (e_1, ..., e_n)$ et $B' = (f_1, ..., f_m)$ bases respectives de E et F, $u \in \mathcal{L}(E, F)$ définie par

$$u(e_j) = \sum_{i=1}^{m} a_{ij} f_i$$

On appelle matrice de u relativement à B, B', la matrice notée $Mat_{B,B'}(u) \in \mathcal{M}_{m,n}(\mathbb{K})$ définie par $Mat_{B,B'}(u) = (a_{ij})$.

Exemple

Soient
$$B = (1, X, X^2)$$
 et $D : \begin{cases} \mathbb{R}_2[X] & \longrightarrow \mathbb{R}_2[X] \\ P & \longmapsto P' \end{cases}$

Alors la matrice de D relativement à B est $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Proposition 32

Soient $u \in \mathcal{L}(E, F)$ de matrice A dans $B, B', x \in E, X$ la matrice colonne des coordonnées de x dans $B, y = u(x) \in F, Y$ la matrice colonne des coordonnées de y dans B'. Alors

$$Y = AX$$

Proposition 33

Soient B et B' deux bases respectives de E et F, $(u,v) \in (\mathcal{L}(E,F))^2$. Alors

$$Mat_{B,B'}(u+v) = Mat_{B,B'}(u) + Mat_{B,B'}(v)$$

et

$$Mat_{B,B'}(\lambda u) = \lambda Mat_{B,B'}(u)$$

Proposition 34

Soient B, B' et B" bases respectives de E, F et G, $(u,v) \in \mathcal{L}(E,F) \times \mathcal{L}(F,G)$. Alors

$$Mat_{B,B''}(v \circ u) = Mat_{B',B''}(v) Mat_{B,B'}(u)$$

Proposition 35

Soient B une base de E et $u \in \mathcal{L}(E)$ bijective.

Alors $Mat_B(u)$ est inversible et $(Mat_B(u))^{-1} = Mat_B(u^{-1})$

Proposition 36

Soient $u \in \mathcal{L}(E)$ et B une base de E.

 $L'application \ Mat: \left\{ \begin{array}{c} \mathscr{L}(E) \longrightarrow \mathscr{M}_n(\mathbb{K}) \\ \\ u \longmapsto Mat_B(u) \end{array} \right. \ est \ un \ isomorphisme \ d'espaces \ vectoriels.$

4.2.2 Matrice de passage

Définition 36

Soient $B = (e_1, ..., e_n)$ et $B' = (e'_1, ..., e'_n)$ bases de E définies par

$$\forall j \in \{1, ..., n\}, \ e'_{j} = \sum_{i=1}^{n} p_{ij} e_{i}$$

On appelle matrice de passage de B à B' la matrice notée $P_B^{B'} = (p_{ij})$.

Exemple

Soient $B = (1, X, X^2)$ et $B' = (1, X - 1, (X + 1)^2)$ deux bases de $\mathbb{R}_2[X]$. Alors

$$P_B^{B'} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad P_{B'}^B = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

4.2.3 Changement de base

Proposition 37

Soient B et B' deux bases de E, X les coordonnées d'un vecteur $x \in E$ dans B et X' les coordonnées de x dans B'. Alors

$$X = P_B^{B'} X'$$

Proposition 38

Soient B et B' deux bases de E, $u \in \mathcal{L}(E)$, $A = Mat_B(u)$ et $A' = Mat_{B'}(u)$. En notant $P = P_B^{B'}$, on a alors

$$A' = P^{-1}AP$$

4.3 Exercices types

Exercice 1

1. Soit
$$u: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (z,y+z,x+y+z) \end{array} \right.$$

Déterminer la matrice de u relativement à la base canonique de \mathbb{R}^3 .

2. Soient
$$(u, v, w) \in \mathbb{R}^{\mathbb{R}} \times \mathbb{R}^{\mathbb{R}} \times \mathbb{R}^{\mathbb{R}}$$
 défini pour tout $t \in \mathbb{R}$ par
$$\begin{cases} u(t) = e^{t} \\ v(t) = e^{2t} \end{cases}$$
 et $E = Vect(u, v, w)$.

- - a. Montrer que $\mathscr{B} = (u, v, w)$ est une base de E.
- b. Montrer que $f \in E \Longrightarrow f' \in E$.

c. Soit
$$D: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ f & \longmapsto & f' \end{array} \right.$$

Déterminer la matrice de D relativement à \mathscr{B} .

Solution

1. Notons $\mathscr{B} = ((1,0,0),(0,1,0),(0,0,1))$ la base canonique de \mathbb{R}^3 . Alors

$$Mat_{\mathscr{B}}(u) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

2. a. Par définition de E, \mathcal{B} engendre E. Montrons que \mathcal{B} est libre.

Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $\lambda u + \mu v + \nu w = 0$. Alors pour tout $t \in \mathbb{R}$,

$$\lambda e^t + \mu e^{2t} + \nu t e^{2t} = 0$$

soit encore

$$\lambda + \mu e^t + \nu t e^t = 0$$

En particulier pour t = 0, on a $\lambda + \mu = 0$.

D'autre part, en faisant tendre t vers $-\infty$ on a $\lambda=0$ donc $\mu=0$ puis en prenant t=1, on a $\nu=0$. Ainsi $\mathscr B$ est libre.

Donc \mathscr{B} est une base de E.

b. Soit $f \in E$. Alors il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $f = \lambda u + \mu v + \nu w$. Alors

$$f' = \lambda u' + \mu v' + \nu w'$$

or u' = u, v' = 2v et w' = v + 2w, donc

$$f' = \lambda u + (2\mu + \nu)v + 2\nu w \in E$$

c.

$$Mat_{\mathscr{B}}(D) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 2

Déterminer la dimension des \mathbb{R} -ev suivants :

1.
$$\mathscr{L}(\mathbb{R}^2, \mathbb{R}^8)$$

2.
$$\mathscr{L}(\mathbb{R}_4[X], \mathbb{R}^3)$$

3.
$$\mathcal{L}(\mathcal{M}_{2,4}(\mathbb{R}), \mathbb{R}_2[X])$$

Solution

Rappelons que si E et F sont deux \mathbb{R} -ev de dimension respective n et p alors $\mathscr{L}(E,F)$ est isomorphe à $\mathscr{M}_{p,n}(\mathbb{R})$. Ainsi

$$dim(\mathcal{L}(E,F)) = np$$

1.
$$dim(\mathcal{L}(\mathbb{R}^2, \mathbb{R}^8)) = dim(\mathbb{R}^2) \times dim(\mathbb{R}^8) = 16$$

2.
$$dim\left(\mathcal{L}(\mathbb{R}_4[X], \mathbb{R}^3)\right) = dim\left(\mathbb{R}_4[X]\right) \times dim(\mathbb{R}^3) = 15$$

3.
$$dim\left(\mathcal{L}(\mathcal{M}_{2,4}(\mathbb{R}), \mathbb{R}_2[X])\right) = dim\left(\mathcal{M}_{2,4}(\mathbb{R})\right) \times dim\left(\mathbb{R}_2[X]\right) = 8 \times 3 = 24$$

Exercice 3

Soient
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3 \end{pmatrix}$$
 et $\lambda \in \mathbb{R}$.

Déterminer, sous forme factorisée, $det(A - \lambda I)$ et $det(B - \lambda I)$ en précisant les transformations effectuées sur les lignes et les colonnes.

Solution

Notons $P_A = det(A - \lambda I)$.

En effectuant la transformation $C_1 \leftarrow C_1 + C_2$ on a

$$P_A = \begin{vmatrix} 2 - \lambda & -1 & 1 \\ 2 - \lambda & -5 - \lambda & 1 \\ 0 & -6 & 2 - \lambda \end{vmatrix}$$

puis en effectuant $L_2 \leftarrow L_2 - L_1$ on a

$$P_A = \begin{vmatrix} 2 - \lambda & -1 & 1 \\ 0 & -4 - \lambda & 0 \\ 0 & -6 & 2 - \lambda \end{vmatrix}$$

Ainsi
$$P_A = (2 - \lambda)(-4 - \lambda)(2 - \lambda)$$
$$= -(2 - \lambda)^2(4 + \lambda)$$

Notons $P_B = det(B - \lambda I)$.

En effectuant la transformation $C_3 \leftarrow C_3 + C_2$ on a

$$P_B = \begin{vmatrix} 3 - \lambda & 1 & 0 \\ 2 & 4 - \lambda & 2 - \lambda \\ -1 & -1 & 2 - \lambda \end{vmatrix}$$

puis en effectuant $L_2 \leftarrow L_2 - L_3$ on a

$$P_B = \begin{vmatrix} 3 - \lambda & 1 & 0 \\ 3 & 5 - \lambda & 0 \\ -1 & -1 & 2 - \lambda \end{vmatrix}$$

Ainsi
$$P_B$$
 = $(2 - \lambda)((3 - \lambda)(5 - \lambda) - 3)$
= $(2 - \lambda)(\lambda^2 - 8\lambda + 12)$
= $(2 - \lambda)(\lambda - 2)(\lambda - 6)$
= $(2 - \lambda)^2(6 - \lambda)$

Exercice 4

Soient
$$A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$$
 et $f : \begin{cases} \mathscr{M}_2(\mathbb{R}) & \longrightarrow \mathscr{M}_2(\mathbb{R}) \\ M & \longmapsto AM \end{cases}$

- 1. Montrer que f est linéaire.
- 2. Déterminer la matrice de f relativement à la base canonique de $\mathcal{M}_2(\mathbb{R})$

Solution

1. Il suffit de constater que pour tout $(M,N) \in \mathcal{M}_2^2(\mathbb{R})$ et tout $(\lambda,\mu) \in \mathbb{R}^2$,

$$f(\lambda M + \mu N) = \lambda f(M) + \mu f(N)$$

i.e.

$$A(\lambda M + \mu N) = \lambda AM + \mu AN$$

2. Notons $\mathscr{B} = (e_{11}, e_{12}, e_{21}, e_{22})$ la base canonique de $\mathscr{M}_2(\mathbb{R})$.

$$f(e_{11}) = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} = -e_{11} + e_{21}$$

$$f(e_{12}) = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} = -e_{12} + e_{22}$$

$$f(e_{21}) = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = 2e_{11}$$

$$f(e_{22}) = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 2e_{12}$$

Ainsi
$$Mat_{\mathscr{B}}(f) = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Chapitre 5

Diagonalisation des endomorphismes et des matrices carrées

5.1 Définitions

5.1.1 Valeur propre

Définition 37

Soient E un \mathbb{K} -ev et $u \in \mathcal{L}(E)$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe $x \in E$, $x \neq 0$, tel que $u(x) = \lambda x$.

Définition 38

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de A s'il existe $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $X \neq 0$, tel que $AX = \lambda X$.

Notation

On note $Sp_{\mathbb{K}}(u)$ l'ensemble des valeurs propres de u dans \mathbb{K} .

5.1.2 Sous-espace propre

Définition 39

Soit $\lambda \in Sp_{\mathbb{K}}(u)$. On appelle sev propre associé à λ le sev noté $E_{\lambda} = Ker(u - \lambda id_E)$. On appelle vecteur propre associé à λ tout vecteur non nul de E_{λ} .

5.1.3 Polynôme d'endomorphisme

Définition 40

Soient $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. On définit le polynôme d'endomorphisme P(u) par

$$P(u) = \sum_{k=0}^{n} a_k u^k \in \mathcal{L}(E)$$

On dit que P est un polynôme annulateur de u si P(u) = 0.

Exemples

- 1. Soit $p \in \mathcal{L}(E)$ un projecteur (i.e. $p^2 = p$). Alors $X^2 - X$ est un polynôme annulateur de p.
- 2. Soit $s \in \mathcal{L}(E)$ une symétrie (i.e. $s^2 = id$). Alors $X^2 1$ est un polynôme annulateur de s.

Proposition 39

1. Soit $\lambda \in Sp_{\mathbb{K}}(u)$. Alors

$$\forall P \in \mathbb{K}[X], \ P(\lambda) \in Sp_{\mathbb{K}}(P(u))$$

2. Si P est un polynôme annulateur de u, alors

$$Sp_{\mathbb{K}}(u) \subset \{\lambda \in \mathbb{K}, \ P(\lambda) = 0\}$$

Exemples

- 1. Soit $p \in \mathcal{L}(E)$ un projecteur. $X^2 X = X(X-1) \text{ est un polynôme annulateur de } p \text{ donc } Sp_{\mathbb{K}}(p) \subset \{0,1\}.$
- 2. Soit $s \in \mathcal{L}(E)$ une symétrie. Alors $X^2-1=(X-1)(X+1)$ est un polynôme annulateur de s donc $Sp_{\mathbb{K}}(s)\subset\{-1,1\}$.

Proposition 40

Soient $u \in \mathcal{L}(E)$ et $(\lambda_1, ..., \lambda_n) \in Sp_{\mathbb{K}}^n(u)$ où les λ_i sont 2 à 2 distincts. Alors les E_{λ_i} sont en somme directe.

5.2 Diagonalisabilité

5.2.1 Polynôme caractéristique

Définition 41

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme caractéristique de A le polynôme noté P_A défini par

$$P_A = \det(A - XI_n)$$

Proposition 41

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$Sp_{\mathbb{K}}(A) = \{ \lambda \in \mathbb{K}, \ P_A(\lambda) = 0 \}$$

Exemple

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Alors
$$P_A(\lambda)$$
 = $\begin{vmatrix} -\lambda & 1 & 1 \\ -1 & 2 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix}$
= $(1 - \lambda)(-\lambda(2 - \lambda) + 1)$
= $(1 - \lambda)^3$

D'où P_A est scindé dans \mathbb{R} et $Sp_{\mathbb{R}}(A) = \{1\}$

5.2.2 Polynôme scindé

Définition 42

Soit $P \in \mathbb{K}_n[X]$. On dit que P est scindé dans \mathbb{K} s'il existe $k \in \mathbb{K}$, $(\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ (non forcément distincts) tels que

$$P = k \prod_{i=1}^{n} (X - \lambda_i)$$

Exemples

- 1. $X^2 + 1$ est scindé dans \mathbb{C} car $X^2 + 1 = (X i)(X + i)$ mais n'est pas scindé dans \mathbb{R} .
- 2. $(X-1)^2(X-3)(X-6)^3$ est scindé dans \mathbb{R} .

Notation

Soit $A \in \mathcal{M}_n(\mathbb{K})$ tel que P_A scindé dans \mathbb{K} . On note $m(\lambda_i)$ l'ordre de multiplicité de la valeur propre λ_i dans P_A .

Exemple

Soit
$$A \in \mathcal{M}_3(\mathbb{R})$$
 telle que $P_A(\lambda) = (\lambda - 1)^2(\lambda - 2)$.
Alors $Sp_{\mathbb{R}}(A) = \{1, 2\}$ avec $m(1) = 2$ et $m(2) = 1$.

Proposition 42

Soient E un \mathbb{K} -ev de dimension n et $u \in \mathcal{L}(E)$. Alors

$$\lambda_0 \in Sp_{\mathbb{K}}(u) \Longrightarrow 1 \leqslant dim(E_{\lambda_0}) \leqslant m(\lambda_0)$$

5.2.3 Endomorphisme diagonalisable

Définition 43

Soit $u \in \mathcal{L}(E)$ où E est de dimension finie. On dit que u est diagonalisable s'il existe une base B de E propre pour u i.e. telle que $Mat_B(u)$ diagonale.

Définition 44

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$ s'il existe $P \in \mathcal{M}_n(\mathbb{K})$ inversible telle que $D = P^{-1}AP$ soit diagonale.

Théorème 15

Soient E un \mathbb{K} -ev de dimension finie n et $u \in \mathcal{L}(E)$. Alors les assertions suivantes sont équivalentes :

- (i) u diagonalisable
- (ii) il existe une base de E formée de vecteurs propres

$$(iii) \sum_{\lambda \in Sp_{\mathbb{K}}(u)} E_{\lambda} = E$$

(iv)
$$\sum_{\lambda \in Sp_{\mathbb{K}}(u)} dim(E_{\lambda}) = dim(E)$$

Théorème 16

Soit $A \in \mathscr{M}_n(\mathbb{K})$.

Alors $[A \text{ diagonalisable dans } \mathcal{M}_n(\mathbb{K})] \Leftrightarrow [P_A \text{ scind\'e dans } \mathbb{K} \text{ et } \forall \lambda \in Sp_{\mathbb{K}}(A), \text{ } dim(E_{\lambda}) = m(\lambda)]$

Exemples

1. Soit
$$A=\begin{pmatrix}0&1&1\\-1&2&1\\0&0&1\end{pmatrix}$$
. Etudions la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$.

$$P_A(\lambda) = \begin{vmatrix} -\lambda & 1 & 1 \\ -1 & 2 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)(-\lambda(2 - \lambda) + 1)$$
$$= (1 - \lambda)^3$$

D'où P_A est scindé dans \mathbb{R} et $Sp_{\mathbb{R}}(A) = \{1\}$ avec m(1) = 3.

$$E_1 = Ker(A - I)$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } -x + y + z = 0 \right\}$$

D'où $\dim(E_1) = 2 \neq 3$ donc A n'est pas diagonalisable.

2. Soit $A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$. Etudions la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$.

$$P_A = det(A - XI) = \begin{vmatrix} 3 - X & -1 & 1 \\ 0 & 2 - X & 0 \\ 1 & -1 & 3 - X \end{vmatrix}$$

En développant par rapport à la deuxième ligne, on a

$$P_A = (2 - X)((3 - X)^2 - 1)$$

soit

$$P_A = (2 - X)^2 (4 - X)$$

Donc P_A est scindé dans \mathbb{R} et $Sp_{\mathbb{R}}(A) = \{2,4\}$ avec m(2) = 2 et m(4) = 1.

Déterminons le sous-espace propre E_2 associé à la valeur propre 2.

$$E_2 = Ker(A - 2I) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad (A - 2I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

soit

$$E_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad x - y + z = 0 \right\}$$

i.e.

$$E_2 = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Ainsi

$$dim(E_2) = 2 = m(2)$$

D'autre part comme m(4) = 1, $dim(E_4) = 1$ Ainsi A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

En outre

$$E_4 = Ker(A - 4I) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad (A - 4I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

donc

$$E_4 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad -x - y + z = 0 \\ -2y = 0 \\ x - y - z = 0 \right\}$$

soit finalement

$$E_4 = \text{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Ainsi
$$D = P^{-1}AP$$
 avec $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

5.3 Exercices types

Exercice 1

Soient
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & -3 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$?

Si oui, exhiber une base de vecteurs propres i.e. déterminer D et P.

(Vous devez justifier rigoureusement votre réponse en déterminant **OBLIGATOIREMENT** avec précision les sous-espaces propres)

Solution

$$P_A(X) = \begin{vmatrix} -1 - X & 2 & 0 \\ 2 & 2 - X & -3 \\ -2 & 2 & 1 - X \end{vmatrix} \quad C_1 \leftarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 1 - X & 2 & 0 \\ 1 - X & 2 - X & -3 \\ 1 - X & 2 & 1 - X \end{vmatrix} \quad L_2 \leftarrow L_2 - L_1$$

$$L_3 \leftarrow L_3 - L_1$$

$$= \begin{vmatrix} 1 - X & 2 & 0 \\ 0 & -X & -3 \\ 0 & 0 & 1 - X \end{vmatrix}$$

$$= -X(1 - X)^2$$

D'où P_A est scindé dans \mathbb{R} et $S_{P_{\mathbb{R}}}(A) = \{0,1\}$ avec m(0) = 1 et m(1) = 2.

$$E_{1} = Ker(A - I)$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \text{ tel que } \middle| \begin{array}{c} -2x + 2y = 0 \\ 2x + y - 3z = 0 \\ -2x + 2y = 0 \end{array} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \text{ tel que } x = y = z \right\}$$

$$= \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

D'où dim $(E_1) = 1 \neq 2 = m(1)$ donc A n'est pas diagonalisable.

$$P_B(\lambda) = \begin{vmatrix} -X & 1 & 1 \\ 1 & -X & 1 \\ 1 & 1 & -X \end{vmatrix} \quad C_1 \leftarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 2 - X & 1 & 1 \\ 2 - X & -X & 1 \\ 2 - X & 1 & -X \end{vmatrix} \quad L_2 \leftarrow L_2 - L_1$$

$$= \begin{vmatrix} 2 - X & 1 & 1 \\ 2 - X & 1 & -X \end{vmatrix} \quad L_3 \leftarrow L_3 - L_1$$

$$= \begin{vmatrix} 2 - X & 1 & 1 \\ 0 & -1 - X & 0 \\ 0 & 0 & -1 - X \end{vmatrix}$$

$$= (2 - X)(1 + X)^2$$

D'où P_B est scindé dans \mathbb{R} et $S_{P_{\mathbb{R}}}(B) = \{-1, 2\}$ avec m(-1) = 2 et m(2) = 1.

$$E_{-1} = Ker(B+I)$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } x+y+z=0 \right\}$$

$$= Vect \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

D'où $\dim(E_{-1}) = 2 = m(-1)$. De plus $\dim(E_2) = 1$ car m(2) = 1 donc B est diagonalisable. Il reste à déterminer E_2 pour obtenir une base de vecteurs propres.

$$E_{2} = Ker (B - 2I)$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \text{ tel que } \middle| \begin{array}{c} -2x + y + z = 0 \\ x - 2y + z = 0 \\ x + y - 2z = 0 \end{array} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \text{ tel que } x = y = z \right\}$$

$$= \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Ainsi
$$D = P^{-1}AP$$
 avec $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$

Exercice 2

Soient
$$a \in \mathbb{R}$$
 et $A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & a & 0 \\ 0 & 0 & 2+2a \end{pmatrix}$.

Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de a.

N.B.: la diagonalisation dans les cas favorables n'est pas demandée.

Solution

On a

$$P_A(X) = -X(a-X)(2+2a-X)$$

donc le polynôme caractéristique de A est scindé dans \mathbb{R} .

$$1 \text{er cas} : a \notin \{0, -1, -2\}$$

Alors $S_{P_{\mathbb{R}}}(A) = \{0, a, 2 + 2a\}$ avec $\forall \lambda \in S_{P_{\mathbb{R}}}(A), m(\lambda) = 1$ donc A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

 $\underline{2e \operatorname{cas}} : a = 0$

Alors

$$P_A(X) = X^2(2 - X)$$

donc $S_{P_{\mathbb{R}}}(A) = \{0, 2\}$ avec m(0) = 2 et m(2) = 1. Or

$$E_0 = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

donc $\dim(E_0) = 1 \neq m(0)$ d'où A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

 $3e \ cas : a = -1$

Alors

$$P_A(X) = -X^2(1+X)$$

donc $S_{P_{\mathbb{R}}}(A) = \{0, -1\}$ avec m(0) = 2 et m(-1) = 1. Or

$$E_0 = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

donc $\dim(E_0) = 2 = m(0)$ d'où A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ (car $\dim(E_{-1}) = 1$ vu que m(-1) = 1)

 $4e \ cas : a = -2$

Alors

$$P_A(X) = -X(2+X)^2$$

donc $S_{P_{\mathbb{R}}}(A) = \{0, -2\}$ avec m(0) = 1 et m(-2) = 2. Or

$$E_{-2} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

donc dim $(E_{-2}) = m(-2)$. D'autre part comme m(0) = 1, dim $(E_0) = 1$ d'où A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Finalement A diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ ssi $a \neq 0$.

Exercice 3

Soit (u_n) une suite réelle vérifiant $u_0 = 0$, $u_1 = u_2 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+3} = u_{n+2} + 2u_{n+1}$.

Notons pour tout
$$n \in \mathbb{N}$$
, $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$.

1. Soit $n \in \mathbb{N}$. Déterminer $A \in \mathcal{M}_3(\mathbb{R})$ telle que $X_{n+1} = AX_n$.

N.B. :
$$A$$
 est de la forme $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$ où $a,\,b$ et c sont des réels à déterminer.

- 2. Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et la diagonaliser (on explicitera la matrice diagonale et P).
- 3. En déduire u_n en fonction de n pour tout $n \in \mathbb{N}$.

Solution

$$1. \ A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{array}\right)$$

2.
$$P_A(X) = -X(X+1)(X-2)$$
.

Donc le polynôme caractéristique de A est scindé dans \mathbb{R} et $S_{P_{\mathbb{R}}}(A) = \{0, -1, 2\}$ De plus m(0) = m(-1) = m(2) = 1 donc A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

$$E_0 = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}, E_{-1} = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\} \text{ et } E_2 = \operatorname{Vect}\left\{ \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \right\}.$$

Donc
$$D = P^{-1}AP$$
 avec $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & 4 \end{pmatrix}$.

3. On a $A = PDP^{-1}$. Ainsi pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

En utilisant par exemple la méthode du pivot de Gauss, on a $P^{-1} = \frac{1}{6} \begin{pmatrix} 6 & 3 & -3 \\ 0 & -4 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

Ainsi pour tout $n \in \mathbb{N}$,

$$A^{n} = \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 6 & 3 & -3 \\ 0 & -4 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 0 & 4(-1)^{n+1} + 2^n & 2(-1)^n + 2^n \\ 0 & 4(-1)^{n+2} + 2^{n+1} & 2(-1)^{n+1} + 2^{n+1} \\ 0 & 4(-1)^{n+1} + 2^{n+2} & 2(-1)^n + 2^{n+2} \end{pmatrix}$$

Or pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$ donc pour tout $n \in \mathbb{N}$, $X_n = A^nX_0$ i.e. vu que $u_0 = 0$ et $u_1 = u_2 = 1$

$$\begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 0 & 4(-1)^{n+1} + 2^n & 2(-1)^n + 2^n \\ 0 & 4(-1)^{n+2} + 2^{n+1} & 2(-1)^{n+1} + 2^{n+1} \\ 0 & 4(-1)^{n+1} + 2^{n+2} & 2(-1)^n + 2^{n+2} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Ainsi on a en particulier pour tout $n \in \mathbb{N}$,

$$u_n = \frac{1}{6} \left(4(-1)^{n+1} + 2^n + 2(-1)^n + 2^n \right)$$

soit encore

$$u_n = \frac{1}{3} \left((-1)^{n+1} + 2^n \right)$$

Exercice 4

- 1. Montrer que tout polynôme de degré impair à coefficients réels admet au moins une racine réelle.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A + I = 0$ (*)
 - a. Soit $\lambda \in Sp_{\mathbb{R}}(A)$. Montrer que $\lambda^2 + \lambda + 1 = 0$.
 - b. Montrer qu'une matrice $A \in \mathcal{M}_3(\mathbb{R})$ ne peut pas vérifier l'équation (*).

Solution

1. Soit P un polynôme à coefficients réels de degré impair. En notant \tilde{P} la fonction polynôme (continue) associée à P, on a

$$\lim_{-\infty} \tilde{P} = -\infty \quad \text{et} \quad \lim_{+\infty} \tilde{P} = +\infty$$

D'après le théorème des valeurs intermédiaires, on en déduit que P admet au moins une racine réelle.

2. a. Soit $\lambda \in Sp_{\mathbb{R}}(A)$. Alors $\exists X \neq 0, \ AX = \lambda X \text{ donc } A^2X = AAX = \lambda^2 X \text{ soit}$

$$(A^2 + A + I)X = (\lambda^2 + \lambda + 1)X$$

or $A^2 + A + I = 0$ donc

$$(\lambda^2 + \lambda + 1)X = 0$$

or $X \neq 0$ donc

$$(\lambda^2 + \lambda + 1) = 0$$

b. Supposons que $A \in \mathcal{M}_3(\mathbb{R})$ vérifie (*). Alors par 2.a., on a

$$Sp_{\mathbb{R}}(A) = \emptyset$$

or le polynôme caractéristique P_A de A est de degré 3 donc de degré impair donc par 1., P_A admet au moins une racine réelle i.e.

$$Sp_{\mathbb{R}}(A) \neq \emptyset$$

ce qui est contradictoire.

Chapitre 6

Espaces préhilbertiens

6.1 Définitions

6.1.1 Forme bilinéaire

Définition 45

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$. On dit que φ est une forme bilinéaire si

–
$$\forall x \in E, \ y \longmapsto \varphi(x,y) \ est \ linéaire$$

$$- \forall y \in E, \ x \longmapsto \varphi(x,y) \ est \ linéaire$$

Exemples

1. Soient
$$E = C^0(\mathbb{R}, \mathbb{R})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{R} \\ (f,g) & \longmapsto \int_0^1 f(t)g(t) dt \end{cases}$

Alors φ est une forme bilinéaire sur E.

2. Soient
$$E = \mathcal{M}_n(\mathbb{R})$$
 et $\psi : \begin{cases} E \times E & \longrightarrow \mathbb{R} \\ (A, B) & \longmapsto tr(AB) \end{cases}$

Alors ψ est une forme bilinéaire sur E.

Proposition 43

Soient E un \mathbb{R} -ev de dimension finie n, $\mathscr{B}=(e_1,...,e_n)$ une base de E et $\varphi:E\times E\longrightarrow \mathbb{R}$ bilinéaire. Alors

$$\forall (x,y) \in E^2, \ \varphi(x,y) = {}^t X M Y$$

où $M = (\varphi(e_i, e_j)) \in \mathcal{M}_n(\mathbb{R})$, X et Y sont respectivement les coordonnées de x et y dans \mathscr{B} . M s'appelle la matrice de la forme bilinéaire φ relativement à \mathscr{B} .

Exemple

Soit
$$\varphi : \begin{cases} \mathscr{M}_2(\mathbb{R}) \times \mathscr{M}_2(\mathbb{R}) & \longrightarrow \mathbb{R} \\ (A, B) & \longmapsto tr(AB) \end{cases}$$

Alors la matrice de φ relativement à la base canonique de $\mathcal{M}_2(\mathbb{R})$ est

$$M = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Proposition 44

Soient B et B' deux bases d'un \mathbb{R} -ev E de dimension finie, $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire, $M = Mat_B(\varphi)$ et $M' = Mat_{B'}(\varphi)$. Alors

$$M' = {}^t P M P$$

$$où P = P_B^{B'}.$$

6.1.2 Forme bilinéaire symétrique

Définition 46

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire. On dit que φ est symétrique si

$$\forall (x,y) \in E^2, \ \varphi(x,y) = \varphi(y,x)$$

Proposition 45

Soient E un \mathbb{R} -ev de dimension finie, B une base de E, $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire et $M = Mat_B(\varphi)$. Alors

$$\varphi$$
 symétrique \iff M symétrique

6.1.3 Produit scalaire

Définition 47

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$. On dit que φ est un produit scalaire si φ est bilinéaire, symétrique, positive et définie i.e. si φ est bilinéaire symétrique et

$$\begin{cases} \forall x \in E, \ \varphi(x, x) \geqslant 0 \\ \forall x \in E, \ (\varphi(x, x) = 0 \Longrightarrow x = 0) \end{cases}$$

On appelle espace préhilbertien réel tout \mathbb{R} -ev muni d'un produit scalaire. On appelle espace euclidien tout \mathbb{R} -ev de dimension finie muni d'un produit scalaire.

Remarque

Lorsque (E, φ) est préhilbertien, on note souvent φ par <,> de sorte que pour tout $(x, y) \in E^2$, on notera souvent < x, y > au lieu de $\varphi(x, y)$.

Exemples

1. Soient
$$E = C^0([a, b], \mathbb{R})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{R} \\ (f, g) & \longmapsto \int_a^b f(t)g(t) dt \end{cases}$

Alors φ est un produit scalaire sur E.

2. Soient
$$E = \mathcal{M}_n(\mathbb{R})$$
 et $\psi : \begin{cases} E \times E & \longrightarrow \mathbb{R} \\ (A, B) & \longmapsto tr({}^t\!AB) \end{cases}$

Alors ψ est un produit scalaire sur E.

6.2 Théorèmes de Cauchy-Schwarz et de Minkowski

6.2.1 Théorème de Cauchy-Schwarz

Théorème 17 (Cauchy-Schwarz)

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire symétrique et positive. Alors

$$\forall (x,y) \in E^2, \ |\varphi(x,y)| \leqslant \sqrt{\varphi(x,x)} \sqrt{\varphi(y,y)}$$

Exemple

Soient
$$E = C^0([a, b], \mathbb{R})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{R} \\ (f, g) & \longmapsto \int_0^1 f(t)g(t) dt \end{cases}$

Alors via le théorème de Cauchy-Schwarz, on a pour tout $(f,g) \in E$,

$$\left| \int_a^b f(t)g(t) \, dt \right| \leqslant \sqrt{\int_a^b f^2(t) \, dt} \, \sqrt{\int_a^b g^2(t) \, dt}$$

6.2.2 Théorème de Minkowski

Théorème 18 (Minkowski)

Soit (E, φ) préhibertien réel. Alors

$$\forall (x,y) \in E^2, \ \sqrt{\varphi(x+y,x+y)} \leqslant \sqrt{\varphi(x,x)} + \sqrt{\varphi(y,y)}$$

6.3 Orthogonalité

6.3.1 Définitions

Définition 48

Soit E un \mathbb{R} -ev. On appelle norme sur E, toute application $N: E \longrightarrow \mathbb{R}$ telle que pour tout $(x,y) \in E^2$ et tout $\lambda \in \mathbb{R}$:

$$\begin{cases}
N(x) \geqslant 0 \\
N(\lambda x) = |\lambda| N(x) \\
N(x) = 0 \iff x = 0 \\
N(x+y) \leqslant N(x) + N(y)
\end{cases}$$

Proposition 46

Soit (E, φ) préhilbertien réel. Alors $N: E \longrightarrow \mathbb{R}$ définie pour tout $x \in E$ par $N(x) = \sqrt{\varphi(x, x)}$ est une norme sur E.

Définition 49

Soit (E, <, >) préhilbertien réel.

On dit que 2 vecteurs x et y de E sont orthogonaux si < x, y >= 0.

6.3.2 Théorème de Pythagore

Théorème 19 (Pythagore)

Soient (E, <, >) préhilbertien réel, x et y deux vecteurs orthogonaux de E. Alors

$$||x + y||^2 = ||x||^2 + ||y||^2$$

6.3.3 Orthogonal d'un sous-espace

Définition 50

Soient (E,<,>) préhilbertien réel et $A\subset E.$ On appelle orthogonal de A l'ensemble noté A^\perp défini par

$$A^{\perp} = \{x \in E, \ \forall y \in A \ < x, y >= 0\}$$

Proposition 47

Soient (E, <, >) préhilbertien réel et $A \subset E$. Alors A^{\perp} est un \mathbb{R} -ev.

Proposition 48

Soient A et B deux parties d'un espace préhilbertien (E,<,>). Alors

1.
$$A \subset B \Longrightarrow B^{\perp} \subset A^{\perp}$$

2.
$$A^{\perp} = (Vect(A))^{\perp}$$

3.
$$A \subset A^{\perp \perp}$$

4.
$$A \cap A^{\perp} \subset \{0\}$$

Exemple

Soient
$$\varphi : \begin{cases} \mathbb{R}_2[X] \times \mathbb{R}_2[X] & \longrightarrow \mathbb{R} \\ (P,Q) & \longmapsto P(0)Q(0) + P'(0)Q'(0) + P''(0)Q''(0) \end{cases}$$

et
$$F = Vect(1 + X + X^2, 1 - X + X^2)$$
.

Déterminons F^{\perp} .

Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$ tel que pour tout $Q \in F$, $P \perp Q$.

$$\operatorname{Alors} \left\{ \begin{array}{l} \varphi(aX^2+bX+c,1+X+X^2)=0 \\ \\ \varphi(aX^2+bX+c,1-X+X^2)=0 \end{array} \right. \text{ soit } \left\{ \begin{array}{l} c+b+4a=0 \\ \\ c-b+4a=0 \end{array} \right.$$

Ainsi b = 0 et c = -4a donc $F^{\perp} = Vect(X^2 - 4)$.

6.3.4 Famille orthogonale et orthonormale

Définition 51

Soient (E, <, >) préhilbertien réel (resp. euclidien) et $X = \{x_1, ..., x_n\} \subset E$ (resp. $B = (e_1, ..., e_n)$ base de E). On dit que X est une famille orthogonale (resp. B base orthogonale) de E si

$$i \neq j \Longrightarrow \langle x_i, x_j \rangle = 0 \quad (resp. \ i \neq j \Longrightarrow \langle e_i, e_j \rangle = 0)$$

On dit que X est une famille orthonormée ou orthonormale (resp. B base orthonormée) de E si

$$\langle x_i, x_i \rangle = \delta_{ij} \quad (resp. \langle e_i, e_i \rangle = \delta_{ij})$$

Proposition 49

Soient (E, <, >) euclidien et $B = (e_1, ..., e_n)$ une base orthonormée de E. Alors pour tout $x \in E$,

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Proposition 50

Toute famille orthogonale de vecteurs non nuls d'un espace préhilbertien réel est libre.

6.3.5 Théorème de Gram-Schmidt

Théorème 20 (Gram-Schmidt)

Soient (E, <, >) un espace euclidien et $B = (e_1, ..., e_n)$ une base de E. Alors il existe une base orthogonale $O = (f_1, ..., f_n)$ de E telle que $\forall k \in \{1, ..., n\}, f_k \in Vect(e_1, ..., e_k)$.

Exemple

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)(1-x^2)dx$$

Déterminons, par la méthode de Gram-Schmidt, à partir de la base $(1, X, X^2)$ de E une base orthogonale (P_0, P_1, P_2) de E pour <,>.

On a : $P_0 = 1$

 $P_1 = X + aP_0 = X + a$ où $a \in \mathbb{R}$ vérifie $< P_0, P_1 > = 0$ i.e. < 1, X + a > = 0 soit en utilisant la linéarité à droite :

$$a = -\frac{\langle 1, X \rangle}{\langle 1, 1 \rangle}$$

or $<1, X>=\int_{-1}^{1} x(1-x^2)dx=0$ car $x\mapsto x(1-x^2)$ est impaire. Donc a=0 i.e. $P_1=X$

$$P_2 = X^2 + bP_0 + cP_1 = X^2 + b + cX$$
 où $(b, c) \in \mathbb{R}^2$ vérifie

$$\begin{cases} < P_0, P_2 >= 0 \\ < P_1, P_2 >= 0 \end{cases}$$

i.e.

$$\begin{cases} <1, X^{2} + b + cX >= 0 \\ < X, X^{2} + b + cX >= 0 \end{cases}$$

soit finalement comme $\langle 1, X \rangle = \langle X, 1 \rangle = 0$:

$$\begin{cases} b = -\frac{\langle 1, X^2 \rangle}{\langle 1, 1 \rangle} \\ c = -\frac{\langle X, X^2 \rangle}{\langle X, X \rangle} \end{cases}$$

Or
$$\langle X, X^2 \rangle = \int_{-1}^1 x^3 (1 - x^2) dx = 0$$
 car $x \mapsto x^3 (1 - x^2)$ est impaire. Donc $c = 0$.

D'autre part

$$<1, X^{2}> = \int_{-1}^{1} x^{2}(1-x^{2})dx = 2\int_{0}^{1} x^{2} - x^{4}dx = 2\left(\frac{1}{3} - \frac{1}{5}\right) = \frac{4}{15}$$

et

$$<1,1> = \int_{-1}^{1} 1 - x^2 dx = 2 \int_{0}^{1} 1 - x^2 dx = 2 \left(1 - \frac{1}{3}\right) = \frac{4}{3}$$

d'où
$$b = -\frac{1}{5}$$
 i.e. $P_2 = X^2 - \frac{1}{5}$

6.3.6 Théorème du supplémentaire orthogonal

Théorème 21

Soient (E, <, >) un espace euclidien et F un sev de E. Alors

$$E = F \oplus F^{\perp}$$

Corollaire 1

Soient (E, <, >) un espace euclidien et F un sev de E. Alors

$$F^{\perp\perp} = F$$

Remarque

Ce résultat est faux en dimension infinie comme l'illustre le contre-exemple ci-dessous.

Soient $E = C^0([0,1],\mathbb{R})$ muni de son produit scalaire canonique et $F = \{f \in E, f(0) = 0\}$. Alors $F^{\perp} = \{0\}$.

En effet soient $f \in F^{\perp}$ et $g: x \mapsto xf(x)$.

Or
$$g \in F$$
 donc $\langle f, g \rangle = \int_0^1 x f^2(x) dx = 0$.

Donc par continuité et positivité de la fonction $x \mapsto xf^2(x)$ on a pour tout $x \in [0, 1]$, $xf^2(x) = 0$ donc pour tout $x \in [0, 1]$, f(x) = 0 soit finalement f = 0 par continuité de f.

Ainsi
$$F^{\perp} = \{0\}$$
 donc $F^{\perp \perp} = E \neq F$.

6.4 Projection orthogonale

6.4.1 Définition

Définition 52

Soient (E,<,>) un espace euclidien et F un sev de E. On appelle projecteur orthogonal sur F noté p_F le projecteur sur F parallèlement à F^\perp i.e. $p_F \in \mathcal{L}(E), \ p_F^{\ 2} = p_F, \ Im(p_F) = F$ et $Ker(p_F) = F^\perp$.

Proposition 51

Soient (E, <, >) un espace euclidien (resp. préhilbertien réel), F un sev (resp. de dimension finie) de E et $(e_1, ..., e_p)$ une base orthonormée de F. Alors pour tout $x \in E$,

$$p_F(x) = \sum_{i=1}^{p} \langle x, e_i \rangle e_i$$

6.4.2 Distance à un sous-espace

Proposition 52

Soient F un sev d'un espace euclidien (E,<,>) et $x\in E$. Alors l'application $\left\{ \begin{array}{ll} F & \longrightarrow \ \mathbb{R} \\ y & \longmapsto \ ||x-y|| \end{array} \right.$ atteint son minimum en $p_F(x)$.

On appelle distance de x à F noté d(x,F) le réel $||x-p_{_F}(x)||$.

Exemple

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)(1-x^2)dx$$

Déterminer le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$.

Notons P_0 le projeté orthogonal de X^2 sur $F = \mathbb{R}_1[X] = Vect(1, X)$. Alors

$$\begin{cases}
P_0 \in F \\
X^2 - P_0 \in F^{\perp}
\end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ X^2 - aX - b \in F^{\perp} \end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX + b \\
< X^2 - aX - b, 1 >= 0 \\
< X^2 - aX - b, X >= 0
\end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ \int_{-1}^{1} (x^2 - ax - b)(1 - x^2) dx = 0 \\ \int_{-1}^{1} (x^2 - ax - b)x(1 - x^2) dx = 0 \end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX + b \\
b = \frac{1}{5} \\
a = 0
\end{cases}$$

i.e.

$$P_0 = \frac{1}{5}$$

6.4.3 Théorème de Bessel

Théorème 22 (Bessel)

Soit $(e_1,...,e_p)$ une famille orthonormée de (E,<,>). Alors pour tout $x \in E$,

$$\sum_{i=1}^{p} (\langle x, e_i \rangle)^2 \le ||x||^2$$

6.5 Adjoint

6.5.1 Définition

Définition 53

Soient (E, <, >) un espace euclidien et $u \in \mathcal{L}(E)$.

Alors il existe un unique endomorphisme noté $u^* \in \mathcal{L}(E)$ tel que

$$\forall (x,y) \in E^2, < x, u(y) > = < u^*(x), y >$$

 u^* est appelé adjoint de u.

6.5.2 Propriétés

Proposition 53

Soit (E, <, >) un espace euclidien.

- 1. L'application $\begin{cases} \mathscr{L}(E) & \longrightarrow \mathscr{L}(E) \\ u & \longmapsto u^* \end{cases}$ est un automorphisme d'espaces vectoriels.
- 2. Pour tout $u \in \mathcal{L}(E)$, $(u^*)^* = u$.
- 3. $(id)^* = id$.
- 4. Pour tout $(u, v) \in \mathcal{L}(E)^2$, $(v \circ u)^* = u^* \circ v^*$.
- 5. Pour tout $u \in \mathcal{L}(E)$ bijectif, on a u^* bijectif et $(u^*)^{-1} = (u^{-1})^*$.

Proposition 54

Soient (E, <, >) un espace euclidien et $B = (e_1, ..., e_n)$ une base orthonormée de E. Alors pour tout $u \in \mathcal{L}(E)$,

$$\operatorname{Mat}_B(u^*) = {}^t \operatorname{Mat}_B(u)$$

Proposition 55

Soient (E, <, >) un espace euclidien et $u \in \mathcal{L}(E)$. Alors

$$Ker(u^*) = (Im(u))^{\perp}$$
 et $Im(u^*) = (Ker(u))^{\perp}$

6.5.3 Opérateur autoadjoint

Définition 54

Soient (E, <, >) un espace euclidien et $u \in \mathcal{L}(E)$.

On dit que u est autoadjoint si $u^* = u$ i.e. si pour tout $(x,y) \in E^2$, $\langle u(x), y \rangle = \langle x, u(y) \rangle$.

Exemple

Soit p un projecteur orthogonal de (E,<,>) où (E,<,>) est un espace euclidien i.e. p est la projection sur F=Im(p) parallèlement à $Ker(p)=F^{\perp}$.

Montrons que p est autoadjoint.

Soit $(x,y) \in E^2$. Montrons que $\langle p(x), y \rangle = \langle x, p(y) \rangle$.

$$< p(x), y > = < p(x), p(y) + y - p(y) >$$

$$\ = \ < p(x), p(y) > + < p(x), y - p(y) >$$

Or
$$p(x) \in Im(p)$$
 et $y - p(y) \in Ker(p) = (Im(p))^{\perp}$ donc

$$< p(x), y > = < p(x), p(y) >$$

De même

$$< x, p(y) > = < x - p(x) + p(x), p(y) >$$

$$= < x - p(x), p(y) > + < p(x), p(y) >$$

$$= < p(x), p(y) >$$

Donc < p(x), y > = < x, p(y) >.

6.6 Exercices types

Exercice 1

On considère un espace vectoriel E de dimension finie et un produit scalaire sur E noté <.,.>. Dans la suite, f désigne un endomorphisme de E. On dit que f est une isométrie si $\forall x \in E, ||f(x)|| = ||x||$. 1. Soient x et y deux vecteurs de E. Montrer que

$$\langle x, y \rangle = \frac{1}{2} (||x + y||^2 - ||x||^2 - ||y||^2).$$

- 2. Montrer que si f est une isométrie alors f est bijectif.
- 3. Montrer que

$$f$$
 est une isométrie $\iff \forall (x,y) \in E^2, \langle f(x), f(y) \rangle = \langle x, y \rangle$.

4. Soit f une isométrie telle que $f^2 = -id$. Montrer que pour tout x dans E, f(x) est orthogonal à x.

Solution

1.

$$\begin{aligned} ||x+y||^2 - ||x||^2 - ||y||^2 &= \langle x+y, x+y \rangle - \langle x, x \rangle - \langle y, y \rangle \\ &= \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle - \langle x, x \rangle - \langle y, y \rangle \\ &= 2 \langle x, y \rangle \end{aligned}$$

Ainsi

$$\langle x, y \rangle = \frac{1}{2} (||x + y||^2 - ||x||^2 - ||y||^2)$$

2. Supposons que f est une isométrie. Comme E est de dimension finie, il suffit de montrer que f est injectif i.e. $Ker(f) = \{0\}$.

Soit $x \in Ker(f)$. Alors f(x) = 0. Donc ||f(x)|| = 0 or ||f(x)|| = ||x|| donc ||x|| = 0 soit x = 0.

3. \leftarrow : prendre y = x.

 $\lceil \Longrightarrow \rceil$: Soit $(x,y) \in E^2$. Via la question 1., on a

$$\langle f(x), f(y) \rangle = \frac{1}{2} (||f(x) + f(y)||^2 - ||f(x)||^2 - ||f(y)||^2)$$

or f étant linéaire et une isométrie on a

$$\langle f(x), f(y) \rangle = \frac{1}{2} (||x+y||^2 - ||x||^2 - ||y||^2) = \langle x, y \rangle$$

4. Soit $x \in E$. Montrons que $\langle f(x), x \rangle = 0$. Via la question précédente on a

$$< f(x), x > = < f^{2}(x), f(x) >$$
 $= < -x, f(x) >$
 $= - < f(x), x >$

Ainsi
$$\langle f(x), x \rangle = 0$$

Exercice 2

Soient (E, <>) un espace euclidien et ||.|| la norme associée à <,>.

1. Montrer que

$$\forall (x,y) \in E^2 : 1 + ||x+y||^2 \le 2(1 + ||x||^2)(1 + ||y||^2)$$

2. Montrer que

$$\forall (x,y) \in E^2 : \left| \left| \frac{1}{||x||^2} x - \frac{1}{||y||^2} y \right| \right| = \frac{1}{||x|| \ ||y||} ||x - y||$$

3. Soit $u \in \mathcal{L}(E)$. Pour $(x,y) \in E^2$, on pose

$$\phi(x,y) = \langle u(x), u(y) \rangle$$

Donner une condition nécessaire et suffisante sur u pour que ϕ soit un produit scalaire sur E.

Solution

1. Montrons que

$$\forall (x,y) \in E^2 \,:\, 2(1+||x||^2)(1+||y||^2)-1-||x+y||^2 \geq 0.$$

$$2(1+||x||^2)(1+||y||^2)-1-||x+y||^2=2+2||y||^2+2||x||^2+2||x||^2||y||^2-1-||x||^2-||y||^2-2 < x,y>$$
 soit

$$2(1+||x||^2)(1+||y||^2)-1-||x+y||^2=1+||x||^2+||y||^2+2||x||^2||y||^2-2 < x,y > 1$$

soit encore

$$2(1+||x||^2)(1+||y||^2)-1-||x+y||^2=1+||x-y||^2+2||x||^2||y||^2\geq 0$$

2. Montrons que

$$\forall (x,y) \in E^2 : \left| \left| \frac{1}{||x||^2} x - \frac{1}{||y||^2} y \right| \right|^2 = \frac{1}{||x||^2 ||y||^2} ||x - y||^2.$$

Posons $k = \frac{1}{||x||^2} \in \mathbb{R}$ et $l = \frac{1}{||y||^2} \in \mathbb{R}$. Il faut donc montrer que

$$||kx - ly||^2 = kl||x - y||^2.$$

Or

$$||kx - ly||^2 = ||kx||^2 + ||ly||^2 - 2kl < x, y > = k^2 ||x||^2 + l^2 ||y||^2 - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x, y > = k + l - 2kl < x,$$

et

$$|kl||x - y||^2 = kl(||x||^2 + ||y||^2 - 2 < x, y >) = l + k - 2kl < x, y >$$

d'où l'égalité

3. On a clairement ϕ bilinéaire, symétrique et positive pour tout $u \in \mathcal{L}(E)$. D'autre part :

$$\phi$$
 définie $\Leftrightarrow (\forall x \in E : \phi(x, x) = 0 \Rightarrow x = 0) \Leftrightarrow (\forall x \in E : \langle u(x), u(x) \rangle = 0 \Rightarrow x = 0)$

or

$$\langle u(x), u(x) \rangle = 0 \Leftrightarrow u(x) = 0$$

donc

$$\phi$$
 définie $\Leftrightarrow (\forall x \in E : u(x) = 0 \Rightarrow x = 0)$

i.e.

$$\phi$$
 définie $\Leftrightarrow u$ injective.

Ainsi ϕ est un produit scalaire sur E ssi u est injective.

Exercice 3

On définit sur $\mathcal{M}_2(\mathbb{R})$ le produit scalaire <,> défini pour tout $(A,B)\in\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})$ par

$$\langle A, B \rangle = tr({}^{t}AB)$$

Notons \mathscr{D} l'ensemble des matrices diagonales d'ordre 2 à coefficients réels et \mathscr{S} l'ensemble des matrices symétriques à coefficients réels d'ordre 2. Déterminer \mathscr{D}^{\perp} et \mathscr{S}^{\perp} .

N.B.: vous exhiberez une base de \mathcal{D}^{\perp} et \mathscr{S}^{\perp} .

Solution

$$\mathcal{D} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}; (a, b) \in \mathbb{R}^2 \right\} = Vect \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$

Alors

$$A \in \mathcal{D}^{\perp} \iff \forall D \in \mathcal{D}, \langle A, D \rangle = 0$$

$$\iff \begin{cases} tr\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) = 0$$

$$\Leftrightarrow \begin{cases} tr\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = 0$$

$$\iff \begin{cases} tr \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} = 0 \\ tr \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} = 0 \end{cases}$$

$$\iff \begin{cases} a = 0 \\ d = 0 \end{cases}$$

Ainsi
$$\mathscr{D}^{\perp} = \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}; (b, c) \in \mathbb{R}^2 \right\}$$
 soit encore

$$\mathscr{D}^{\perp} = Vect \left\{ \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \right\}$$

$$\mathcal{S} = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \, {}^t A = A \right\}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \, \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \, (a, b, c) \in \mathbb{R}^3 \right\}$$

Ainsi

$$\mathscr{S} = Vect \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Alors

$$A \in \mathscr{S}^{\perp} \iff \forall S \in \mathscr{S}, \langle A, S \rangle = 0$$

$$\iff \begin{cases} tr\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) = 0$$

$$\iff \begin{cases} tr\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) = 0$$

$$tr\left(\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = 0$$

Donc

$$A \in \mathcal{S}^{\perp} \iff \begin{cases} tr \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} = 0 \\ tr \begin{pmatrix} c & a \\ d & b \end{pmatrix} = 0 \\ tr \begin{pmatrix} 0 & c \\ 0 & d \end{pmatrix} = 0 \end{cases}$$

$$\iff \begin{cases} a = 0 \\ b + c = 0 \\ d = 0 \end{cases}$$

Ainsi
$$\mathscr{S}^{\perp}=\left\{\left(\begin{array}{cc}0&b\\-b&0\end{array}\right);b\in\mathbb{R}\right\}$$
 soit encore

$$\mathscr{S}^{\perp} = Vect \left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\}$$

Exercice 4

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x)p(x)dx$$

où p est une fonction non nulle continue et positive sur [0,1].

- On suppose dans cette question que pour tout x ∈ [0,1], p(x) = x.
 A partir de la base canonique (1, X, X²), construire par la méthode de Gram-Schmidt, une base orthogonale de E relativement à ce produit scalaire.
- 2. On suppose dans cette question que pour tout $x \in [0,1], p(x) = 1$.
 - a. Déterminer le projeté orthogonal P_0 de X^2 sur $\mathbb{R}_1[X] = Vect(1, X)$.

b. Déterminer

$$\min_{(a,b)\in\mathbb{R}^2} \int_0^1 (x^2 - ax - b)^2 dx$$

Solution

1. En utilisant la méthode de Gram-Schmidt, on a : $E_0=1$

 $E_1=X+aE_0=X+a$ où $a\in\mathbb{R}$ vérifie < $E_0,E_1>=0$ i.e. < 1, X+a>=0 soit en utilisant la linéarité à droite :

$$a = -\frac{\langle 1, X \rangle}{\langle 1, 1 \rangle}$$

i.e

$$a = -\frac{\int_0^1 x^2 dx}{\int_0^1 x dx} = -\frac{2}{3}$$

Donc

$$E_1 = X - \frac{2}{3}$$

 $E_2 = X^2 + bE_0 + cE_1 = X^2 + b + cX$ où $(b,c) \in \mathbb{R}^2$ vérifie

$$\begin{cases}
< E_0, E_2 >= 0 \\
< E_1, E_2 >= 0
\end{cases}$$

i.e.

$$\begin{cases}
< E_0, X^2 + bE_0 + cE_1 >= 0 \\
< E_1, X^2 + bE_0 + cE_1 >= 0
\end{cases}$$

i.e. vu que $\langle E_0, E_1 \rangle = \langle E_1, E_0 \rangle = 0$

$$\begin{cases} b = -\frac{\langle 1, X^2 \rangle}{\langle 1, 1 \rangle} \\ c = -\frac{\langle X - \frac{2}{3}, X^2 \rangle}{\langle X - \frac{2}{3}, X - \frac{2}{3} \rangle} \end{cases}$$

i.e.

$$\begin{cases} b = -\frac{\int_0^1 x^3 dx}{\int_0^1 x dx} \\ c = -\frac{\int_0^1 x^3 \left(x - \frac{2}{3}\right) dx}{\int_0^1 x \left(x - \frac{2}{3}\right)^2 dx} \\ b = -\frac{1}{3} \end{cases}$$

i.e.

$$\begin{cases} b = -\frac{1}{2} \\ c = -\frac{6}{5} \end{cases}$$

Ainsi

$$E_2 = X^2 - \frac{1}{2} - \frac{6}{5} \left(X - \frac{2}{3} \right)$$

soit

$$E_2 = X^2 - \frac{6}{5}X + \frac{3}{10}$$

2. a. P_0 est le projeté orthogonal de X^2 sur $F=\mathbb{R}_1[X]=Vect(1,X)$. Alors

$$\begin{cases}
P_0 \in F \\
X^2 - P_0 \in F^\perp
\end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ X^2 - aX - b \in F^{\perp} \end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX + b \\
< X^2 - aX - b, 1 >= 0 \\
< X^2 - aX - b, X >= 0
\end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX + b \\
\int_0^1 (x^2 - ax - b) dx = 0 \\
\int_0^1 (x^2 - ax - b)x dx = 0
\end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ \left[\frac{x^3}{3} - a\frac{x^2}{2} - bx \right]_0^1 = 0 \\ \left[\frac{x^4}{4} - a\frac{x^3}{3} - b\frac{x^2}{2} \right]_0^1 = 0 \end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ \frac{1}{3} - \frac{a}{2} - b = 0 \\ \frac{1}{4} - \frac{a}{3} - \frac{b}{2} = 0 \end{cases}$$

i.e.

$$\begin{cases} P_0 = aX + b \\ 2 - 3a - 6b = 0 \\ 3 - 4a - 6b = 0 \end{cases}$$

i.e.

$$P_0 = X - \frac{1}{6}$$

b. Soient $P=X^2$ et $I=\mathop{\rm Min}_{(a,b)\in\mathbb{R}^2}\int_0^1(x^2-ax-b)^2dx.$ En utilisant les propriétés de P_0 , on a

$$I = \min_{Q \in F} ||P - Q||^2 = ||P - P_0||^2$$

or

$$||P-P_0||^2 = < P-P_0, P-P_0 > = < P, P-P_0 > - < P_0, P-P_0 > = < P, P-P_0 >$$
 car $P-P_0 \in F^{\perp}$ et $P_0 \in F$. Donc $I = < P, P-P_0 >$ i.e.

$$I = \int_0^1 x^2 (x^2 - (x - \frac{1}{6})) dx = \left[\frac{x^5}{5} - \frac{x^4}{4} + \frac{1}{6} \frac{x^3}{3} \right]_0^1 = \frac{1}{180}$$

Ainsi

$$\operatorname{Min}_{(a,b)\in\mathbb{R}^2} \int_0^1 (x^2 - ax - b)^2 dx = \frac{1}{180}$$

Chapitre 7

Suites de fonctions

I désigne un intervalle non vide de \mathbb{R} .

7.1 Définitions

7.1.1 Suite de fonctions

Définition 55

On appelle suite de fonctions de I vers \mathbb{R} , toute suite $(f_n)_{n\in\mathbb{N}}\in (\mathbb{R}^I)^{\mathbb{N}}$

Observation

Lorque l'on considère une suite $numérique\ (u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$, alors $(u_n)_{n\in\mathbb{N}}=(u_0,\,u_1,\,...,\,u_n,\,...)$ où chacun des u_i sont des réels.

En revanche lorsque l'on considère à présent une suite **de fonctions** $(f_n)_{n\in\mathbb{N}} \in (\mathbb{R}^I)^{\mathbb{N}}$, alors $(f_n)_{n\in\mathbb{N}} = (f_0, f_1, ..., f_n, ...)$ où chacun des f_i sont désormais des fonctions de I dans \mathbb{R} .

Remarque

Certaines suites de fonctions (f_n) ne sont définies qu'à partir d'un rang $n \ge n_0$ comme l'exemple 2. ci-dessous où $n_0 = 1$.

Dans la suite du cours (f_n) désignera $(f_n)_{n\in\mathbb{N}}$.

Suites de fonctions Info-Spé

Exemples

1. (f_n) la suite des fonctions puissances sur [0,1] où pour tout $n \in \mathbb{N}, f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

2.
$$(f_n)_{n\in\mathbb{N}^*}$$
 une suite de fonctions sinusoïdales où pour tout $n\in\mathbb{N}^*$, $f_n:$
$$\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{n}\sin(nx) \end{cases}$$

Remarque

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. Quel sens donner à « (f_n) converge vers f sur I»? Deux types de convergence existent :

- une convergence «point par point» dite **convergence simple**.
- une convergence «globale» dite **convergence uniforme**.

7.1.2 Convergence simple

Définition 56

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. On dit que (f_n) converge simplement vers f sur I si

$$\forall x \in I \quad f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

 $autrement \ dit \ si \quad \forall x \in I \ \ \forall \varepsilon > 0 \ \ \exists N \in \mathbb{N} \ \ \left\langle n \geqslant N \Longrightarrow \left| f_n(x) - f(x) \right| < \varepsilon \right\rangle$

Observation

Si $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et x est fixé dans I, alors $(f_n(x))$ est une suite numérique (réelle) c'est-à-dire $(f_n(x)) \in \mathbb{R}^{\mathbb{N}}$.

Ainsi pour étudier la convergence simple de (f_n) sur I, on fixe un $x \in I$ et on étudie la limite de la suite réelle $(f_n(x))$.

Exemples

1. Soit
$$(f_n) \in (\mathbb{R}^{[0,1]})^{\mathbb{N}}$$
 où pour tout $n \in \mathbb{N}$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

Suites de fonctions Info-Spé

Soit $x \in [0, 1]$.

Alors
$$f_n(x) = x^n \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } x \in [0, 1[\\ 1 & \text{si } x = 1 \end{cases}$$

Ainsi (f_n) converge simplement vers la fonction $f: \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ \\ x & \longmapsto \begin{cases} 0 & \text{si } x \in [0,1[\\ 1 & \text{si } x = 1 \end{cases} \end{cases}$ sur [0,1].

2. Soit
$$(f_n)_{n\in\mathbb{N}^*} \in (\mathbb{R}^{\mathbb{R}})^{\mathbb{N}^*}$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{n}\sin(nx) \end{cases}$

Soit $x \in \mathbb{R}$. Alors pour tout $n \in \mathbb{N}^*$, $|f_n(x)| \leq \frac{1}{n}$ donc $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction nulle sur \mathbb{R} .

3. Soit
$$(f_n) \in \left(\mathbb{R}^{[0,1[}\right)^{\mathbb{N}}$$
 où pour tout $n \in \mathbb{N}, f_n : \begin{cases} [0,1[\longrightarrow \mathbb{R} \\ x \longmapsto n^2 x^n \end{cases}$

Soit $x \in [0,1[$. Alors $f_n(x) = n^2 x^n \xrightarrow[n \to +\infty]{} 0$. Donc (f_n) converge simplement vers la fonction nulle sur [0,1[.

Observations

- 1. Dans l'exemple 1., chaque f_n est continue, pourtant f n'est pas continue. Ainsi la «limite simple» d'une suite de fonctions continues n'est pas forcément continue.
- 2. Dans l'exemple 2., on a pour tout $x \in \mathbb{R}$, $f'_n(x) = \cos(nx)$ donc pour tout $x \in \mathbb{R}$, la suite $\left(f'_n(x)\right)_{n \in \mathbb{N}}$ n'a pas de limite.

Ainsi
$$\frac{d}{dx} \left(\lim_{n \to +\infty} (f_n(x)) \right) \neq \lim_{n \to +\infty} \left(\frac{d}{dx} (f_n(x)) \right)$$
.

Autrement dit les deux «symboles» lim et $\frac{d}{dx}$ ne commutent pas.

3. Dans l'exemple 3.,
$$\int_0^1 f_n(x) dx = \int_0^1 n^2 x^n dx = n^2 \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{n^2}{n+1} \xrightarrow[n \to +\infty]{} + \infty$$

Ainsi $\lim_{n \to +\infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n \to +\infty} f_n(x) dx$.

Autrement dit les deux «symboles» lim et \int ne commutent pas.

7.1.3 Convergence uniforme

Définition 57

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. On dit que (f_n) converge uniformément vers f sur I si :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n \geqslant N \Longrightarrow \forall x \in I \ \left| f_n(x) - f(x) \right| < \varepsilon \right)$$

Observation

A présent le N ne dépend plus de x. Ainsi pour n assez grand, les graphes des f_n s'insèrent dans une bande de largeur 2ε autour du graphe de f.

Proposition 56

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. Alors

$$(f_n) \ converge \ uniform\'ement \ vers \ f \ sur \ I \Longleftrightarrow \left\{ \begin{array}{l} (il \ existe \ N \in \mathbb{N} \ tel \ que \ d\`es \ que \ n \geqslant N \\ \Delta_n := \sup_{x \in I} \left| f_n(x) - f(x) \right| \ existe) \\ et \\ \left(\Delta_n \xrightarrow[n \to +\infty]{} 0 \right) \end{array} \right.$$

Méthodes pour étudier la convergence uniforme

1. On cherche f telle que (f_n) converge simplement vers f sur I puis on tente de déterminer $\sup_{x\in I} |f_n(x) - f(x)|$ (grâce au tableau de variation) et on montre que

$$\sup_{x \in I} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0$$

Exemple

Soit
$$(f_n)_{n\in\mathbb{N}^*} \in (\mathbb{R}^{\mathbb{R}^+})^{\mathbb{N}^*}$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R}^+ \longrightarrow \mathbb{R} \\ x \longmapsto xe^{-nx} \end{cases}$

Soit
$$x \in \mathbb{R}^+$$
. Alors $f_n(x) = xe^{-nx} \xrightarrow[n \to +\infty]{} 0$.

Donc $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur \mathbb{R}^+ .

Etudions la convergence uniforme éventuelle de $(f_n)_{n\in\mathbb{N}^*}$ vers la fonction nulle :

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R}^+, \quad f'_n(x) = (1 - nx)e^{-nx}$$

d'où
$$\sup_{x \in \mathbb{R}^+} |f_n(x)| = f_n\left(\frac{1}{n}\right) = \frac{1}{ne} \xrightarrow[n \to +\infty]{} 0$$

donc $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers la fonction nulle sur \mathbb{R}^+ .

2. Si la détermination de $\sup_{x\in I} |f_n(x) - f(x)|$ n'est pas aisée, on cherche une suite numérique

$$(\varepsilon_n) \text{ (c'est-à-dire indépendante de } x) \text{ telle que : } \begin{cases} \varepsilon_n \xrightarrow[n \to +\infty]{} 0 \\ \forall x \in I, \ \left| f_n(x) - f(x) \right| \leqslant \varepsilon_n \end{cases}$$

Exemple

Exemple
Soit
$$(f_n)_{n \in \mathbb{N}^*} \in (\mathbb{R}^{\mathbb{R}})^{\mathbb{N}^*}$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{n}\sin(nx) \end{cases}$

 $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur

De plus, pour tout $x \in \mathbb{R}$, $|f_n(x)| \leq \frac{1}{n}$ or $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément vers la fonction nulle sur \mathbb{R} .

Remarque

Lorsque (f_n) converge simplement vers f sur I et pour tout $n \in \mathbb{N}$, la fonction $f_n - f$ n'est pas bornée sur I, on peut directement conclure que (f_n) ne converge pas uniformément vers f sur I car $\sup_{x \in I} |f_n(x) - f(x)| = +\infty$.

7.2 Propriétés de la convergence uniforme

7.2.1 La convergence uniforme implique la convergence simple

Proposition 57

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$ telles que (f_n) converge uniformément vers f sur I. Alors (f_n) converge simplement vers f sur I.

7.2.2 Convergence uniforme et opérations

Proposition 58

Soient $\lambda \in \mathbb{R}^*$, $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant uniformément vers $f \in \mathbb{R}^I$ sur I et $(g_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant uniformément vers $g \in \mathbb{R}^I$ sur I. Alors $(f_n + \lambda g_n)$ converge uniformément vers $f + \lambda g$ sur I.

7.2.3 Convergence uniforme et continuité

Proposition 59

Soient $x_0 \in I$, $f \in \mathbb{R}^I$ et $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ tels que pour tout $n \in \mathbb{N}$, f_n est continue en x_0 et (f_n) converge uniformément vers f sur I. Alors f est continue en x_0 .

Corollaire 2

Soient $f \in \mathbb{R}^I$ et $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ tels que pour tout $n \in \mathbb{N}$, f_n est continue sur I et converge uniformément vers f sur I. Alors f est continue sur I.

7.2.4 Convergence uniforme et intégrales définies

Proposition 60

Soient a et b deux réels avec a < b, $(f_n) \in (\mathbb{R}^{[a,b]})^{\mathbb{N}}$ avec pour tout $n \in \mathbb{N}$, f_n continue sur [a,b] et $f \in \mathbb{R}^{[a,b]}$ tels que (f_n) converge uniformément vers f sur [a,b].

$$Alors \lim_{n \to +\infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx \quad c\text{'est-\`a-dire } \lim_{n \to +\infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to +\infty} f_n(x) \, dx$$

Exemple

Soit la suite de fonctions
$$(f_n)_{n\in\mathbb{N}^*} \in (\mathbb{R}^{[0,1]})^{\mathbb{N}^*}$$
 où pour tout $n\in\mathbb{N}^*$, $f_n: \begin{cases} [0,1] \longrightarrow \mathbb{R} \\ x \longmapsto \frac{ne^x}{n+x} \end{cases}$

Déterminons
$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx$$
.

Soit
$$x \in [0,1]$$
. Alors $f_n(x) \xrightarrow[n \to +\infty]{} e^x$.

Donc
$$(f_n)_{n\in\mathbb{N}^*}$$
 converge simplement vers $f: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ & & & \sup [0,1]. \\ x & \longmapsto & e^x \end{array} \right.$

D'autre part, pour tout
$$x \in [0,1], |f_n(x) - f(x)| = \frac{xe^x}{n+x} \leqslant \frac{e}{n} \operatorname{donc} \sup_{x \in [0,1]} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

Ainsi $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur [0,1].

D'où
$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to +\infty} f_n(x) dx$$

c'est-à-dire
$$\lim_{n\to+\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx = e-1$$

7.2.5 Convergence uniforme et dérivées

Proposition 61

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ avec pour tout $n \in \mathbb{N}$, f_n de classe C^1 sur I et $f \in \mathbb{R}^I$ telles que (f_n) converge simplement vers f sur I et (f'_n) converge uniformément vers une fonction g sur I. Alors f est dérivable sur I et pour tout $x \in I$, f'(x) = g(x) c'est-à-dire

$$\frac{d}{dx} \left(\lim_{n \to +\infty} (f_n(x)) \right) = \lim_{n \to +\infty} \left(\frac{d}{dx} (f_n(x)) \right)$$

Inventaire des méthodes pour montrer qu'une suite (f_n) ne converge pas uniformément vers f sur I

1. On montre que $\sup_{x\in I} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0$.

$$\mathbf{Exemple} : \operatorname{soit} (f_n)_{n \in \mathbb{N}^*} \in (\mathbb{R}^{\mathbb{R}})^{\mathbb{N}^*} \text{ où pour tout } n \in \mathbb{N}^*, f_n : \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{x\sqrt{n}}{1 + nx^2} \end{cases}$$

Soit $x \in \mathbb{R}$. Alors $f_n(x) = \frac{x}{\frac{1}{\sqrt{n}} + \sqrt{n}x^2} \xrightarrow[n \to +\infty]{} 0$ donc $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction nulle sur \mathbb{R} .

D'autre part pour tout
$$x \in \mathbb{R}$$
, $f'_n(x) = \frac{\sqrt{n}(1 + nx^2) - x\sqrt{n}(2nx)}{(1 + nx^2)^2} = \frac{\sqrt{n}(1 - nx^2)}{(1 + nx^2)^2}$

Comme pour tout $n \in \mathbb{N}^*$, les fonctions f_n sont impaires, il suffit de dresser un tableau de variation sur \mathbb{R}^+ .

Donc
$$\sup_{x \in \mathbb{R}} |f_n(x)| = f_n\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2} \xrightarrow[n \to +\infty]{} 0$$

d'où $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément vers la fonction nulle sur \mathbb{R} .

2. On montre qu'il existe une suite numérique $(M_n) \in I^{\mathbb{N}}$ telle que pour tout $n \in \mathbb{N}, \sup_{x \in I} |f_n(x) - f(x)| \geqslant M_n$ avec $M_n \xrightarrow[n \to +\infty]{} 0$

Exemple: soit
$$(f_n)_{n\in\mathbb{N}^*} \in (\mathbb{R}^{]0,1]}^{\mathbb{N}^*}$$
 où pour tout $n\in\mathbb{N}^*$, $f_n: \begin{cases}]0,1] \longrightarrow \mathbb{R} \\ x \longmapsto \frac{nx}{nx+1} \end{cases}$

Alors
$$(f_n)_{n\in\mathbb{N}^*}$$
 converge simplement sur $]0,1]$ vers $f: \left\{ \begin{array}{ccc}]0,1] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & 1 \end{array} \right.$

Or pour tout
$$n \in \mathbb{N}^*$$
, $\left| f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right| = \frac{1}{2} \operatorname{donc} \sup_{x \in]0,1]} \left| f_n(x) - f(x) \right| \geqslant \frac{1}{2}$

d'où $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément vers f sur]0,1].

3. On montre que pour tout $n \in \mathbb{N}$, f_n est continue et f n'est pas continue.

Exemple: soit
$$(f_n) \in (\mathbb{R}^{[0,1]})^{\mathbb{N}}$$
 où pour tout $n \in \mathbb{N}$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

Alors
$$(f_n)$$
 converge simplement sur $[0,1]$ vers la fonction $f: \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ & & \\ x & \longmapsto & \left\{ \begin{array}{ccc} 0 & \text{si} & x \in [0,1[\\ 1 & \text{si} & x=1 \end{array} \right. \end{array} \right.$

Comme f n'est pas continue sur [0,1] et que pour tout $n \in \mathbb{N}$, f_n est continue sur [0,1], on en conclut que (f_n) ne converge pas uniformément vers f sur [0,1].

4. On montre qu'il existe une suite numérique $(x_n) \in I^{\mathbb{N}}$ telle

que
$$f_n(x_n) - f(x_n) \xrightarrow[n \to +\infty]{} 0$$

Exemple: soit
$$(f_n)_{n \in \mathbb{N}^*} \in (\mathbb{R}^{\mathbb{R}})^{\mathbb{N}^*}$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{\sin(nx)}{1 + n^2x^2} \end{cases}$

 $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur \mathbb{R} or $f_n\left(\frac{\pi}{2n}\right) = \frac{1}{1+\frac{\pi^2}{4}} \xrightarrow[n\to+\infty]{} 0$ donc $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément vers la fonction nulle sur \mathbb{R} .

5. Dans le cas où
$$I = [a, b]$$
, on montre que $\int_a^b f_n(x) dx \xrightarrow[n \to +\infty]{} \int_a^b f(x) dx$

Olivier Rodot 113 E.P.I.T.A.

Exemple : soit
$$(f_n)_{n \in \mathbb{N}^*} \in (\mathbb{R}^{[0,1]})^{\mathbb{N}^*}$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto n^2 x e^{-nx} \end{cases}$

Soit $x \in [0, 1]$.

Alors $f_n(x) \xrightarrow[n \to +\infty]{} 0$ donc $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction nulle sur [0,1].

Or
$$\int_0^1 f_n(x) dx = n^2 \left(-\frac{1}{n} \left[x e^{-nx} \right]_0^1 + \frac{1}{n} \int_0^1 e^{-nx} dx \right)$$

$$= n^2 \left(-\frac{e^{-n}}{n} - \frac{1}{n^2} \left[e^{-nx} \right]_0^1 \right)$$

$$= 1 - e^{-n} (n+1) \xrightarrow[n \to +\infty]{} 1 \text{ et } \int_0^1 0 dx \neq 1$$

Donc $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément vers la fonction nulle sur [0,1].

7.3 Approximation des fonctions continues

7.3.1 Approximation uniforme des fonctions continues sur un fermé borné

Théorème 23 (de Weierstrass)

Soient a et b deux réels tels que a < b. Toute fonction continue sur [a,b] (à valeurs réelles) est limite uniforme sur [a,b] d'une suite de fonctions polynomiales.

7.3.2 Approximation uniforme des fonctions continues et périodiques

On considère dans cette section des fonctions 2π -périodique. Les démonstrations s'adaptent facilement au cas général des fonctions T-périodique en introduisant $w=\frac{2\pi}{T}$.

Définition 58

Soit f une fonction de \mathbb{R} dans \mathbb{C} . On dit que f est un polynôme trigonométrique s'il existe $N \in \mathbb{N}$ et $(c_n) \in \mathbb{C}^{2N+1}$ tels que

$$\forall t \in \mathbb{R}, \ f(t) = \sum_{n=-N}^{N} c_n e^{int}$$

Théorème 24 (de Weierstrass)

Toute fonction continue et 2π -périodique de \mathbb{R} dans \mathbb{C} est limite uniforme sur \mathbb{R} d'une suite de polynômes trigonométriques.

7.4 Exercices types

Les exercices types de ce chapitre figurent dans celui consacré aux séries de fonctions.

Chapitre 8

Séries de fonctions

8.1 Convergences

8.1.1 Définition d'une série de fonctions

Définition 59

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$. On appelle série de fonctions de terme général f_n , notée $\sum f_n$, la suite de fonctions des sommes partielles $(S_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ où pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n f_k$.

Exemples

1.
$$\sum f_n$$
 où pour tout $n \in \mathbb{N}$, $f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

2.
$$\sum f_n$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{(-1)^n x^n}{n} \end{cases}$

Remarque

Ainsi, si $\sum f_n$ est une série de fonctions où $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$, alors pour tout $x \in I$, $\sum f_n(x)$ est une série numérique.

8.1.2 Convergence simple

Définition 60

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$. On dit que $\sum f_n$ converge simplement sur I si pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge c'est-à-dire si pour tout $x \in I$, la suite numérique $(S_n(x))$ converge.

Définition 61

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ telle que $\sum f_n$ converge simplement sur I.

On appelle somme de la série $\sum f_n$ notée S ou $\sum_{n=0}^{+\infty} f_n$ la fonction définie pour tout $x \in I$ par

$$S(x) = \sum_{n=0}^{+\infty} f_n(x).$$

On appelle reste de la série $\sum f_n$ la suite de fonctions notée $(R_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ et tout $x \in I$ par $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$.

Observations

- 1. Etudier la convergence simple de $\sum f_n$ sur I revient donc après avoir fixé un $x \in I$ à étudier la convergence de la série numérique $\sum f_n(x)$. On pourra à cette occasion utiliser tous les critères déjà vus sur les séries numériques.
- 2. Si $\sum f_n$ converge simplement vers S sur I alors pour tout $n \in \mathbb{N}$, $R_n = S S_n$.

Exemples

1.
$$\sum f_n$$
 où pour tout $n \in \mathbb{N}, f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

Etudions la convergence simple de $\sum f_n$ sur \mathbb{R} .

Soit $x \in \mathbb{R}$. Etudions la série numérique $\sum x^n$.

On a
$$\sum x^n$$
 converge ssi $|x| < 1$. En effet, $\sum_{k=0}^n x^k = \begin{cases} \frac{1-x^{n+1}}{1-x} & \text{si } x \neq 1 \\ n+1 & \text{si } x = 1 \end{cases}$

donc
$$\lim_{n \to +\infty} \sum_{k=0}^{n} x^k$$
 existe et est finie ssi $|x| < 1$.

Ainsi
$$\sum f_n$$
 converge simplement sur] $-1,1[$ vers $S:$
$$\begin{cases}]-1,1[\longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{1-x} \end{cases}$$

2.
$$\sum f_n$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{(-1)^n x^n}{n} \end{cases}$

Etudions la convergence simple de $\sum f_n$ sur [0,1].

Soit $x \in [0,1]$. Etudions la série numérique $\sum \frac{(-1)^n x^n}{n}$. C'est une série numérique alternée or la suite numérique $\left(\left|\frac{(-1)^n x^n}{n}\right|\right) = \left(\frac{x^n}{n}\right)$ décroît et tend vers 0 (la décroissance de cette suite provient de $\frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} = x \cdot \frac{n}{n+1} \leqslant 1$)

Ainsi en utilisant le critère spécial des séries alternées, la série numérique $\sum \frac{(-1)^n x^n}{n}$ converge donc $\sum f_n$ converge simplement sur [0,1].

8.1.3 Convergence uniforme

Définition 62

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$.

On dit que $\sum f_n$ converge uniformément sur I si (S_n) converge uniformément sur I.

Remarques

- 1. Si $\sum f_n$ converge uniformément sur I alors $\sum f_n$ converge simplement sur I (cf. chapitre précédent).
- 2. Si $\sum f_n$ et $\sum g_n$ convergent uniformément sur I alors pour tout $\lambda \in \mathbb{R}$, $\sum (f_n + \lambda g_n)$ converge uniformément sur I (cf. chapitre précédent).

Proposition 62

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ telle que $\sum f_n$ converge uniformément sur I.

Alors (f_n) converge uniformément vers la fonction nulle sur I.

Observation

Cette proposition est utile par sa contraposée : si (f_n) ne converge pas uniformément vers la fonction nulle sur I (c'est-à-dire si $\sup_{x\in I} |f_n(x)|$ ne tend pas vers 0 lorsque n tend vers l'infini) alors $\sum f_n$ ne converge pas uniformément sur I.

Exemple

$$\sum f_n$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R}^+ & \longrightarrow \mathbb{R} \\ x & \longmapsto nx^2 e^{-x\sqrt{n}} \end{cases}$

Etudions la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .

Soit $x \in \mathbb{R}^+$. Etudions la série numérique $\sum nx^2e^{-x\sqrt{n}}$.

Si x=0, la série converge trivialement. Sinon on a $n^2f_n(x) \xrightarrow[n \to +\infty]{} 0$ donc au voisinage de l'infini, $f_n(x) = o\left(\frac{1}{n^2}\right)$. Par conséquent $\sum f_n(x)$ converge par comparaison. Ainsi $\sum f_n$ converge simplement sur \mathbb{R}^+ .

Etudions la convergence uniforme éventuelle de $\sum f_n$ sur \mathbb{R}^+ .

Pour tout $x \in \mathbb{R}^+$, on a $f'_n(x) = nx(2 - x\sqrt{n})e^{-x\sqrt{n}}$.

On en déduit le tableau de variations suivant

donc
$$\sup_{x \in \mathbb{R}^+} |f_n(x)| = f_n\left(\frac{2}{\sqrt{n}}\right) = \frac{4}{e^2} \xrightarrow[n \to +\infty]{} 0$$

Ainsi (f_n) ne converge pas uniformément vers la fonction nulle sur \mathbb{R}^+ donc $\sum f_n$ ne converge pas uniformément sur \mathbb{R}^+ .

Proposition 63

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ telle que $\sum f_n$ converge simplement sur I.

Alors $\sum f_n$ converge uniformément sur I si et seulement si (R_n) converge uniformément vers la fonction nulle sur I.

Remarque

La proposition 63 est particulièrement adaptée aux séries alternées vérifiant le critère spécial : en effet si $\sum u_n$ est une série numérique alternée vérifiant le critère spécial alors pour tout $n \in \mathbb{N}$, on a $|R_n| \leq |u_{n+1}|$.

Exemple

$$\sum f_n$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{(-1)^n x^n}{n} \end{cases}$

Soit $x \in [0, 1]$.

La série numérique $\sum f_n(x)$ est alternée et vérifie le critère spécial car la suite numérique $(|f_n(x)|)$ est décroissante et converge vers 0 donc $\sum f_n(x)$ converge. Ainsi $\sum f_n$ converge simplement sur [0,1]. De plus pour tout $x \in [0,1]$, comme la série numérique alternée $\sum f_n(x)$ vérifie le critère spécial, on a

$$\left| R_n(x) \right| \leqslant \left| \frac{(-1)^{n+1} x^{n+1}}{n+1} \right| \leqslant \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

donc (R_n) converge uniformément vers la fonction nulle sur [0,1]. Ainsi la série $\sum f_n$ converge uniformément sur [0,1].

8.1.4 Convergence normale

Définition 63

Soit
$$(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$$
.

On dit que
$$\sum f_n$$
 converge normalement sur I si
$$\begin{cases} pour \ tout \ n \in \mathbb{N}, \ f_n \ born\'ee \ sur \ I \\ et \\ la \ s\'erie \ num\'erique \ \sum \sup_{x \in I} |f_n(x)| \ converge \end{cases}$$

Proposition 64

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$. Alors $\sum f_n$ converge normalement sur I si et seulement si il existe une suite

$$num\acute{e}rique\ (\alpha_n)\ telle\ que \left\{ \begin{array}{l} pour\ tout\ n\in\mathbb{N}\ et\ pour\ tout\ x\in I,\ \left|f_n(x)\right|\leqslant\alpha_n\\ et\\ \sum\alpha_n\ converge \end{array} \right.$$

Exemple

$$\sum f_n$$
 où pour tout $n \in \mathbb{N}^*$, $f_n : \begin{cases} \mathbb{R}^+ & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{n^2 + n^3 x^2} \end{cases}$

On remarque immédiatement que $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{n^2}$ et la série numérique $\sum \frac{1}{n^2}$ converge. Ainsi $\sum f_n$ converge normalement sur \mathbb{R}^+ .

8.1.5 Convergence absolue

Définition 64

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$. On dit que $\sum f_n$ converge absolument sur I si pour tout $x \in I$, la série numérique $\sum |f_n(x)|$ converge.

Exemple

$$\sum f_n \text{ où pour tout } n \in \mathbb{N}^*, f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ \\ x & \longmapsto (-1)^n \frac{x^2 + n}{n^3} \end{cases}$$

Soit $x \in \mathbb{R}$. Alors $|f_n(x)| = \frac{x^2 + n}{n^3} \sim \frac{1}{n^2}$ donc la série numérique $\sum |f_n(x)|$ converge par comparaison. Ainsi $\sum f_n$ converge absolument sur \mathbb{R} .

8.1.6 Liens entre les différents types de convergence

Proposition 65

Soit
$$(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$$
. Alors

1. $\sum f_n$ converge absolument sur $I \Longrightarrow \sum f_n$ converge simplement sur I.

2. $\sum f_n$ converge normalement sur $I \Longrightarrow \sum f_n$ converge absolument sur I.

Proposition 66

Soit $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ telle que $\sum f_n$ converge normalement sur I. Alors $\sum f_n$ converge uniformément sur I.

8.2 Propriétés de la convergence uniforme

8.2.1Convergence uniforme et continuité

Proposition 67

Soient
$$(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$$
 et $x_0 \in I$ tels que
$$\begin{cases} pour \ tout \ n \in \mathbb{N}, \ f_n \ est \ continue \ en \ x_0 \ (resp. \ sur \ I) \\ et \\ \sum f_n \ converge \ uniform\'ement \ sur \ I \end{cases}$$

Alors
$$\sum_{n=0}^{+\infty} f_n$$
 est continue en x_0 (resp. sur I).

8.2.2 Convergence uniforme et intégrales définies

Proposition 68

Soit
$$(f_n) \in (\mathbb{R}^{[a,b]})^{\mathbb{N}}$$
 telle que
$$\begin{cases} pour \ tout \ n \in \mathbb{N}, \ f_n \ est \ continue \ sur \ [a,b] \\ et \\ \sum f_n \ converge \ uniform\'ement \ sur \ [a,b] \end{cases}$$

$$Alors \int_a^b \sum_{n=0}^{+\infty} f_n(x) \, dx = \sum_{n=0}^{+\infty} \int_a^b f_n(x) \, dx$$

8.2.3 Convergence uniforme et dérivées

Proposition 69

Soit
$$(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$$
 telle que
$$\begin{cases} pour \ tout \ n \in \mathbb{N}, \ f_n \ de \ classe \ C^1 \ sur \ I \\ \sum f_n \ converge \ simplement \ sur \ I \\ \sum f'_n \ converge \ uniform\'ement \ sur \ I \end{cases}$$
Alors
$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f'_n$$

8.3 Exercices types

Ces exercices types portent à la fois sur les suites et les séries de fonctions.

Exercice 1

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie pour tout $x\in\mathbb{R}^+$ par $f_n(x)=nx^2e^{-nx}$.

- 1. Etudier la convergence simple de (f_n) sur \mathbb{R}^+ .
- 2. Etudier la convergence uniforme de (f_n) sur \mathbb{R}^+ .

Solution

- 1. On a $f_n(0) = 0$ et si $x \in \mathbb{R}_+^*$, $f_n(x) \xrightarrow[n \to +\infty]{} 0$ par croissance comparée donc (f_n) converge simplement vers la fonction nulle sur \mathbb{R}^+ .
- 2. Soit $x \in \mathbb{R}_+$. $f'_n(x) = nxe^{-nx}(2 nx)$ donc $||f_n||_{\infty} = f_n\left(\frac{2}{n}\right) = \frac{4}{ne^2} \xrightarrow[n \to +\infty]{} 0$. Ainsi (f_n) converge uniformément vers la fonction nulle sur \mathbb{R}^+ .

Exercice 2

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par

$$\forall x \in [0,1], \quad f_n(x) = nx^n(1-x)$$

- 1. Etudier la convergence simple de (f_n) sur [0,1].
- 2. Etudier la convergence uniforme de (f_n) sur [0,1].

Solution

- 1. Soit $x \in [0,1]$. Si $x \neq 1$, alors $nx^n \xrightarrow[n \to +\infty]{} 0$ donc $f_n(x) \xrightarrow[n \to +\infty]{} 0$. Si x = 1, 1-x = 0 donc on a également $f_n(x) \xrightarrow[n \to +\infty]{} 0$. Ainsi (f_n) converge simplement vers la fonction nulle sur [0,1].
- 2.

$$f'_n(x) = nx^{n-1}(n - (n+1)x)$$

donc

$$||f_n||_{\infty} = f_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^{n+1}$$

or

$$\left(\frac{n}{n+1}\right)^{n+1} = e^{(n+1)\ln\left(\frac{n}{n+1}\right)} = e^{-(n+1)\ln\left(1+\frac{1}{n}\right)} = e^{-(n+1)\left(\frac{1}{n}+o\left(\frac{1}{n}\right)\right)} = e^{-\left(1+\frac{1}{n}\right)+o(1)}$$

donc

$$||f_n||_{\infty} = e^{-\left(1 + \frac{1}{n}\right) + o(1)} \xrightarrow[n \to +\infty]{} \frac{1}{e} \neq 0$$

donc (f_n) ne converge pas uniformément vers la fonction nulle sur [0,1].

Exercice 3

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie pour tout $x\in\mathbb{R}^+$ par $f_n(x)=nx^2e^{-nx}$.

- 1. Etudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 2. Etudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .
- 3. Etudier la convergence uniforme de $\sum f_n$ sur \mathbb{R}^+ .

Solution

- 1. Soit $x \in \mathbb{R}+$.

 On a $\sum f_n(0)$ convergente et si $x \neq 0$, $f_n(x) = o\left(\frac{1}{n^2}\right)$ donc $\sum f_n$ converge simplement sur \mathbb{R}^+
- 2. $\sum ||f_n||_{\infty} = \sum \frac{4}{ne^2}$ qui diverge donc $\sum f_n$ ne converge pas normalement sur \mathbb{R}^+ .
- 3. Soit $x \in \mathbb{R}^+$.

$$R_n(x) = \sum_{k=n+1}^{+\infty} kx^2 e^{-kx}$$

$$\geqslant x^2 \sum_{k=n+1}^{2n} ke^{-kx}$$

$$\geqslant x^2 e^{-2nx} \sum_{k=n+1}^{2n} k$$

$$\geqslant n(n+1)x^2 e^{-2nx}$$
Or $R_n\left(\frac{1}{n}\right) \geqslant \frac{n(n+1)}{n^2} e^{-2} \xrightarrow[n \to +\infty]{} e^{-2}$.

Ainsi (R_n) ne converge pas uniformément vers la fonction nulle sur \mathbb{R}^+ donc $\sum f_n$ ne converge pas uniformément sur \mathbb{R}^+ .

Exercice 4

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par

$$\forall x \in \mathbb{R}^+, \quad f_n(x) = xe^{-n^2x^2}$$

- 1. Etudier la convergence simple de (f_n) sur \mathbb{R}^+ .
- 2. Etudier la convergence uniforme de (f_n) sur \mathbb{R}^+ .
- 3. Etudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 4. Etudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .

Solution

a. Soit $x \in \mathbb{R}^+$.

Si
$$x = 0$$
 alors $f_n(x) = 0$.

Si $x \neq 0$, alors $f_n(x) = xe^{-n^2x^2} \xrightarrow[n \to +\infty]{} 0$. Donc (f_n) converge simplement vers la fonction nulle sur \mathbb{R}^+ .

b. Pour tout $x \in \mathbb{R}^+$, on a

$$f_n'(x) = (1 - 2n^2x^2)e^{-n^2x^2}$$

d'où

$$||f_n||_{\infty} = f_n\left(\frac{1}{n\sqrt{2}}\right) = \frac{1}{n\sqrt{2e}} \xrightarrow[n \to +\infty]{} 0$$

donc (f_n) converge uniformément vers la fonction nulle sur \mathbb{R}^+ .

c. Soit $x \in \mathbb{R}^+$.

Si x = 0, la série $\sum f_n(x)$ est la série numérique nulle donc converge.

Si $x \in]0, +\infty[$, $n^2 f_n(x) \xrightarrow[n \to +\infty]{} 0$ donc $f_n(x) = o\left(\frac{1}{n^2}\right)$ or $\sum \frac{1}{n^2}$ converge donc la série numérique $\sum f_n(x)$ converge.

Ainsi $\sum f_n$ converge simplement sur \mathbb{R}^+ .

d. En reprenant les résultats de la question b., on a

$$||f_n||_{\infty} = \frac{1}{n\sqrt{2e}}$$

or $\sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas normalement sur \mathbb{R}^+ .

Chapitre 9

Séries de Fourier

9.1 Définitions

9.1.1 Série trigonométrique

Définition 65

On appelle série trigonométrique toute série de fonctions $\sum f_n$ où pour tout $n \in \mathbb{N}$,

$$f_n: \begin{cases} \mathbb{R} & \longrightarrow \mathbb{C} \\ x & \longmapsto a_n \cos(n\omega x) + b_n \sin(n\omega x) \end{cases}$$
 avec $\omega \in \mathbb{R}$, (a_n) et (b_n) deux suites complexes.

Observations

- 1. Si $\sum f_n$ est une série trigonométrique, alors chaque f_n est $\frac{2\pi}{\omega}$ -périodique car pour tout $x \in \mathbb{R}$, $f_n\left(x + \frac{2\pi}{\omega}\right) = f_n(x)$
- 2. Si $\sum f_n$ est une série trigonométrique et $\sum f_n$ converge simplement sur I vers $S = \sum_{n=0}^{+\infty} f_n$, alors S est $\frac{2\pi}{\omega}$ -périodique.

En effet soit $x \in \mathbb{R}$. Alors la suite des somme partielles (S_n) vérifie $S_n\left(x + \frac{2\pi}{\omega}\right) = S_n(x)$.

Or
$$S_n\left(x + \frac{2\pi}{\omega}\right) \xrightarrow[n \to +\infty]{} S\left(x + \frac{2\pi}{\omega}\right)$$
 et $S_n(x) \xrightarrow[n \to +\infty]{} S(x)$

d'où par unicité de la limite $S\left(x + \frac{2\pi}{\omega}\right) = S(x)$.

3. Les séries de Fourier étudient notamment la réciproque de la $2^{\text{ème}}$ remarque : étant donnée une fonction $f: \mathbb{R} \to \mathbb{C}$, 2π -périodique, existe-t-il (a_n) et (b_n) deux suites complexes telles que pour tout $x \in \mathbb{R}$, $f(x) = \sum_{n=0}^{+\infty} a_n \cos(n\omega x) + b_n \sin(n\omega x)$?

Remarque

Dans toute la suite, on considère $\omega = 1$ (c'est-à-dire des fonctions 2π -périodiques) sachant que les définitions, propositions et théorèmes s'adaptent facilement au cas général.

9.1.2 Continuité par morceaux

Définition 66

On dit que $f:[0,2\pi] \to \mathbb{C}$ est continue par morceaux sur $[0,2\pi]$ si f est continue sur $[0,2\pi]$ sauf en un nombre fini (éventuellement nul) de points x_i pour lesquels f admet une limite à gauche (notée $f(x_i^-) = \lim_{\substack{h \to 0 \\ h > 0}} f(x_i - h)$) et à droite (notée $f(x_i^+) = \lim_{\substack{h \to 0 \\ h > 0}} f(x_i + h)$) c'est-à-dire s'il existe $n \in \mathbb{N}^*$ et $(x_0, \ldots, x_n) \in [0, 2\pi]^{n+1}$ tels que

1.
$$x_0 = 0 < x_1 < \ldots < x_n = 2\pi$$

2. Pour tout $i \in [0, n-1]$, f continue $sur]x_i, x_{i+1}[$ et f admet une limite à gauche en x_i (pour $i \neq 0$) et à droite en x_i (pour $i \neq n$).

Notations

On notera $C_m^0(\mathbb{R},\mathbb{C})$ (resp. $C_m^0(I,\mathbb{C})$ où $I \subset \mathbb{R}$) l'ensemble des fonctions continues par morceaux sur \mathbb{R} (resp. sur I), $C_{m,2\pi}^0(\mathbb{R},\mathbb{C})$ l'ensemble des fonctions continues par morceaux et 2π -périodiques sur \mathbb{R} et $C_{2\pi}^0(\mathbb{R},\mathbb{C})$ l'ensemble des fonctions continues et 2π -périodiques sur \mathbb{R} .

Observations

- 1. Le «éventuellement nul» de la définition précédente signifie que les fonctions continues sur $[0, 2\pi]$ sont bien évidemment continues par morceaux sur $[0, 2\pi]$.
- 2. Soit $f \in C_m^0([0,2\pi],\mathbb{C})$. Alors en reprenant les notations de la dernière définition, on a

$$\int_0^{2\pi} f(x) \, dx = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx$$

9.1.3 Coefficients de Fourier et série de Fourier

Définition 67

Soit $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$. Pour tout $n \in \mathbb{N}$, on appelle $n^{i\grave{e}mes}$ coefficients de Fourier associés à f les

nombres complexes
$$a_n(f)$$
 et $b_n(f)$ définis par
$$\begin{cases} a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx \\ b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx \end{cases}$$

On appelle série de Fourier de f la série de fonctions $\frac{a_0(f)}{2} + \sum_{n \geq 1} F_n(f)$ où pour tout $n \in \mathbb{N}^*$,

$$F_n(f): \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{C} \\ \\ x & \longmapsto a_n(f)\cos(nx) + b_n(f)\sin(nx) \end{array} \right.$$

Proposition 70

Soit
$$f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$$
. Alors
$$\begin{cases} f \text{ paire} & \Longrightarrow b_n(f) = 0 \\ f \text{ impaire} & \Longrightarrow a_n(f) = 0 \end{cases}$$

Exemple

Soit
$$f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$$
 définie par $f(x) = \begin{cases} 1 \text{ si } x \in [0,\pi[\\ 0 \text{ si } x \in [\pi,2\pi[\end{cases}] \end{cases}$.

Alors
$$a_0(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{\pi} dx = 1.$$

Soit $n \in \mathbb{N}^*$. Alors

$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, dx = \frac{1}{\pi} \int_0^{\pi} \cos(nx) \, dx = \frac{1}{n\pi} \left[\sin(nx) \right]_0^{\pi} = 0$$

De plus

$$b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_0^{\pi} \sin(nx) dx = -\frac{1}{n\pi} [\cos(nx)]_0^{\pi}$$
$$= -\frac{1}{n\pi} (\cos(n\pi) - 1)$$
$$= \frac{1}{n\pi} (1 - (-1)^n)$$

d'où
$$\begin{cases} b_{2p}(f) = 0 \\ b_{2p+1}(f) = \frac{2}{(2p+1)\pi} \end{cases}$$

La série de Fourier de f est : $\frac{1}{2} + \frac{2}{\pi} \sum_{p \geq 0} \frac{1}{2p+1} \sin((2p+1)x)$

Proposition 71

Soit $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$. Alors la série de Fourier de f s'écrit :

$$\sum_{n\in\mathbb{Z}} c_n(f) e^{inx} \quad c'est-\grave{a}-dire \quad c_0(f) + \sum_{n\geqslant 1} c_n(f) e^{inx} + c_{-n}(f) e^{-inx}$$

où pour tout
$$n \in \mathbb{N}$$
, $c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$.

Pour tout $n \in \mathbb{N}$, le nombre complexe $c_n(f)$ s'appelle $n^{i \in me}$ coefficient de Fourier (exponentiel) de f.

Définition 68

Soit E un \mathbb{C} -ev.

On appelle produit scalaire sur E tout forme $\varphi: E \times E \to \mathbb{R}$ sesquilinéaire (c'est-à-dire linéaire à droite et antilinéaire à gauche), hermitienne (c'est-à-dire pour tout $(x,y) \in E^2$, $\varphi(x,y) = \overline{\varphi(y,x)}$) et définie positive sur E.

Remarque

Cette définition (et les exemples ci-dessous) sont juste des rappels destinés à se refamiliariser avec ce concept revêtant un intérêt essentiel dans cette section consacrée aux séries de Fourier. On rappelle que φ antilinéaire à gauche signifie que pour tout $(x, y, z) \in E^3$ et tout $\lambda \in \mathbb{C}$,

$$\varphi(x + \lambda y, z) = \varphi(x, z) + \overline{\lambda}\varphi(y, z)$$

Exemples

1. Considérons
$$E = \mathcal{M}_n(\mathbb{C})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{C} \\ (A, B) & \longmapsto tr({}^t \overline{A}B) \end{cases}$

Alors φ est un produit scalaire sur E. En effet :

 $-\varphi$ est clairement antilinéaire à droite et linéaire à gauche car la trace est linéaire.

 $-\varphi$ est hermitienne. En effet, soit $(A,B)\in E^2$.

Alors
$$\varphi(A, B) = tr({}^{t}\overline{A}B)$$

$$= tr({}^{t}({}^{t}\overline{A}B))$$

$$= tr({}^{t}B\overline{A})$$

$$= tr(\overline{{}^{t}BA})$$

$$= \overline{\varphi(B, A)}$$

 $-\varphi$ est positive. En effet soit $A=(a_{ij})\in E$. Montrons que $\varphi(A,A)=tr({}^t\overline{A}A)\geqslant 0$.

On a
$${}^t\overline{A}A = (b_{ij})$$
 où $b_{ij} = \sum_{k=1}^n \overline{a_{ki}} \, a_{kj}$ donc $tr({}^t\overline{A}A) = \sum_{i=1}^n b_{ii} = \sum_{k=1}^n \sum_{k=1}^n \overline{a_{ki}} \, a_{ki}$ d'où $\varphi(A,A) = \sum_{i=1}^n \sum_{k=1}^n |a_{ki}|^2 \geqslant 0$

– φ est définie car étant donnée A dans $E,\,\varphi(A,A)=0\Longrightarrow \forall (i,k)\in [\![1,n]\!]^2,\;|a_{ki}|^2=0$

$$\Longrightarrow A = 0$$

2. Considérons
$$E = C^0([a,b],\mathbb{C})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{C} \\ (f,g) & \longmapsto \int_a^b \overline{f(x)}g(x) \, dx \end{cases}$

Alors φ est un produit scalaire sur E.

En effet:

- $-\varphi$ est clairement antilinéaire à droite et linéaire à gauche.
- $-\varphi$ est également clairement hermitienne
- φ est positive. En effet soit $f \in E$. Alors $\varphi(f, f) = \int_a^b \overline{f(x)} f(x) dx = \int_a^b |f(x)|^2 dx \ge 0$

-
$$\varphi$$
 est définie car étant donnée f dans E , $\varphi(f,f)=0\Longrightarrow \forall x\in [a,b],\ \big|f(x)\big|^2=0$ $\Longrightarrow f=0$

9.1.4 L'espace \mathcal{D} et ses propriétés

Notation

On note \mathscr{D} l'ensemble des fonctions $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$ telles que pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2} (f(x^{+}) + f(x^{-}))$$

Observation

$$C_{2\pi}^0(\mathbb{R},\mathbb{C}) \subset \mathscr{D} \subset C_{m,2\pi}^0(\mathbb{R},\mathbb{C}).$$

Remarque

Si $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$ n'est pas dans \mathscr{D} , il est facile de transformer f pour qu'elle soit dans \mathscr{D} comme l'illustre la définition qui suit.

Définition 69

Soit $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$.

On appelle régularisée de
$$f$$
 la fonction notée $\widetilde{f}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ & & & \\ x & \longmapsto & \frac{1}{2} \big(f(x^+) + f(x^-) \big) \end{array} \right.$

Proposition 72

L'application
$$\varphi:(f,g)\longmapsto \frac{1}{2\pi}\int_0^{2\pi}\overline{f(x)}g(x)\,dx$$
 est un produit scalaire sur \mathscr{D} .

Remarques

- 1. φ est clairement un produit scalaire sur $C^0_{2\pi}(\mathbb{R},\mathbb{C})$ mais n'est pas un produit scalaire sur $C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$ car non définie. En effet étant donnée $f \in C^0_{m,2\pi}(\mathbb{R},\mathbb{C})$, si $\varphi(f,f) = 0$ alors f = 0 sur $[0,2\pi]$ sauf aux points x_i de la subdivision choisie de $[0,2\pi]$.
- 2. Pour tout $f \in \mathcal{D}$ et pour tout $n \in \mathbb{Z}$, $c_n(f) = \varphi(e_n, f)$.

3. Dans la suite du cours, nous noterons <, > le produit scalaire sur \mathcal{D} au lieu de φ .

Proposition 73

La famille
$$(e_n)_{n\in\mathbb{Z}}$$
 est orthonormée dans $(\mathcal{D}, <, >)$ où $e_n: \left\{ \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{C} \\ x \longmapsto e^{inx} \end{array} \right.$

9.2 Propriétés

9.2.1 Théorème de Bessel

Théorème 25 (de Bessel)

Soit $f \in \mathcal{D}$.

Alors pour tout
$$N \in \mathbb{N}$$
, $\sum_{n=-N}^{N} |c_n(f)|^2 \le ||f||^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx$

9.2.2 Théorème de Parseval

Théorème 26 (de Parseval)

Soit
$$f \in \mathcal{D}$$
. Alors $\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = ||f||^2$ où $||f||^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx$

Si
$$f$$
 est à valeurs réelles : $\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{a_0^2(f)}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2(f) + b_n^2(f))$

Remarque

L'égalité de Parseval du théorème précédent permet en particulier de déterminer certaines sommes de séries numériques convergentes comme l'illustre l'exemple qui suit.

Exemple

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi]$ par $f(x) = x^2$.

Déterminons tout d'abord la série de Fourier de f.

Comme f est paire, pour tout $n \in \mathbb{N}$, $b_n(f) = 0$.

$$a_0(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2\pi^2}{3}$$

Soit $n \in \mathbb{N}^*$. Alors

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) dx$$

$$= \frac{2}{\pi} \left(\frac{1}{n} \underbrace{\left[x^2 \sin(nx) \right]_{0}^{\pi}} - \frac{2}{n} \int_{0}^{\pi} x \sin(nx) dx \right)$$

$$= -\frac{4}{n\pi} \left(-\frac{1}{n} [x \cos(nx)]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos(nx) dx \right)$$

$$= \frac{4(-1)^n}{n^2}$$

La série de Fourier de f s'écrit donc

$$\frac{\pi^2}{3} + 4\sum_{n>1} \frac{(-1)^n \cos(nx)}{n^2}$$

Par le théorème de Parseval, on a

$$\frac{\pi^4}{9} + \frac{1}{2} \sum_{n=1}^{+\infty} \frac{16}{n^4} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^4 dx$$

soit

$$\frac{\pi^4}{9} + 8\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{1}{\pi} \int_0^{\pi} x^4 dx$$

c'est-à-dire

$$\frac{\pi^4}{9} + 8\sum_{1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{5}$$

soit finalement

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

9.2.3 Théorème de Lejeune-Dirichlet

Définition 70

On dit que $f:[0,2\pi] \longrightarrow \mathbb{C}$ est de classe C^1 par morceaux s'il existe $n \in \mathbb{N}^*$ et $(x_0,\ldots,x_n) \in [0,2\pi]^{n+1}$ tels que :

- 1. $x_0 = 0 < x_1 < \ldots < x_n = 2\pi$
- 2. pour tout $i \in [0, n-1]$, f continue sur chaque $]x_i, x_{i+1}[$ et $f(x_i^+)$ et $f(x_i^-)$ existent.

3. pour tout $i \in [0, n-1]$, f dérivable sur chaque $]x_i, x_{i+1}[$ et $f'(x_i^+)$ et $f'(x_i^-)$ existent.

Notations

On note $C^1_{m,2\pi}(\mathbb{R},\mathbb{C})$ l'ensemble des fonctions de classe C^1 par morceaux et 2π -périodique de \mathbb{R} dans \mathbb{C} .

Théorème 27 (de Lejeune-Dirichlet)

Soit $f \in C^1_{m,2\pi}(\mathbb{R},\mathbb{C})$. Alors la série de Fourier de f converge simplement sur \mathbb{R} vers la régularisée \widetilde{f} de f c'est-à-dire

$$\forall x \in \mathbb{R}, \quad \sum_{n=-\infty}^{+\infty} c_n(f) e^{inx} = \widetilde{f}(x)$$

ou encore

$$\forall x \in \mathbb{R}, \quad \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} a_n(f)\cos(nx) + b_n(f)\sin(nx) = \widetilde{f}(x)$$

9.3 Exercices types

Exercice 1

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi[$ par $\begin{cases} f(x) = -1 & \text{si } x \in [-\pi, 0[\\ f(x) = 1 & \text{si } x \in [0, \pi[$

- 1. Déterminer les coefficients de Fourier a_n et b_n associés à f et écrire la série de Fourier associée à f.
- 2. En déduire $\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)}$
- 3. En utilisant l'égalité de Parseval, déterminer $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$
- 4. En déduire $\sum_{p=1}^{+\infty} \frac{1}{p^2}$

Solution

1. On a pour tout $n \in \mathbb{N}$, $a_n = 0$.

Soit $n \in \mathbb{N}^*$. Alors

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) dx$$
$$= -\frac{2}{n\pi} [\cos(nx)]_{0}^{\pi}$$
$$= \frac{2}{n\pi} (1 - (-1)^n)$$

Ainsi pour tout $p \in \mathbb{N}$, $b_{2p} = 0$ et $b_{2p+1} = \frac{4}{(2p+1)\pi}$

La série de Fourier de f est donc $\frac{4}{\pi} \sum \frac{\sin((2p+1)x)}{(2p+1)}$

2. La fonction f étant C^1 par morceaux, on a en particulier en tout point x où f est continue :

$$f(x) = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\sin((2p+1)x)}{(2p+1)}$$

En particulier pour $x = \frac{\pi}{2}$, on a

$$1 = \frac{4}{\pi} \sum \frac{(-1)^p}{(2p+1)}$$

d'où

$$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)} = \frac{\pi}{4}$$

3. En utilisant l'égalité de Parseval, on a

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{8}{\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

Or f étant impaire, f^2 est paire donc

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{1}{\pi} \int_{0}^{\pi} dx = 1$$

$$1 = \frac{8}{\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

d'où

$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

4.

$$\sum_{p=1}^{+\infty} \frac{1}{p^2} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} + \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

Or

$$\sum_{p=1}^{+\infty} \frac{1}{(2p)^2} = \frac{1}{4} \sum_{p=1}^{+\infty} \frac{1}{p^2}$$

donc

$$\frac{3}{4} \sum_{p=1}^{+\infty} \frac{1}{p^2} = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

d'où

$$\sum_{p=1}^{+\infty} \frac{1}{p^2} = \frac{\pi^2}{6}$$

Exercice 2

On considère la fonction f, 2π périodique définie pour tout $x \in [-\pi, \pi]$ par f(x) = |x|.

- 1. Déterminer les coefficients de Fourier a_n et b_n associés à f.
- 2. Déterminer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$
- 3. Déterminer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$
- 4. Déterminer $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}$
- 5. Déterminer $\sum_{n=1}^{+\infty} \frac{1}{n^4}$

Solution

1. f est paire donc pour tout $n \in \mathbb{N}$, $b_n = 0$.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

Soit $n \in \mathbb{N}^*$.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{\pi} \left(\frac{1}{n} \underbrace{\left[x \sin(nx) \right]_{0}^{\pi}}_{=0} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \right)$$

$$= -\frac{2}{n\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= \frac{2}{n^2 \pi} [\cos(nx)]_{0}^{\pi}$$

$$= \frac{2}{n^2 \pi} ((-1)^n - 1)$$

Ainsi pour tout $p \in \mathbb{N}^*$, $a_{2p} = 0$ et pour tout $p \in \mathbb{N}$,

$$a_{2p+1} = -\frac{4}{(2p+1)^2\pi}$$

La série de Fourier de f est donc

$$\frac{\pi}{2} - \frac{4}{\pi} \sum \frac{1}{(2p+1)^2} \cos((2p+1)x)$$

2. La fonction f est C^1 par morceaux (et de plus continue sur \mathbb{R}) donc d'après le théorème de Dirichlet, la série de Fourier de f converge simplement vers f sur \mathbb{R} . Ainsi pour tout $x \in \mathbb{R}$,

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} \cos((2p+1)x) = |x|$$

En particulier pour x=0, on a $\frac{\pi}{2}-\frac{4}{\pi}\sum_{p=0}^{+\infty}\frac{1}{(2p+1)^2}=0$ soit

$$\sum_{n=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

3.

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} + \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

Or

$$\sum_{p=1}^{+\infty} \frac{1}{(2p)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

donc

$$\frac{3}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

d'où

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

4. En utilisant l'égalité de Parseval, on a

$$\frac{\pi^2}{4} + \frac{1}{2} \cdot \frac{16}{\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx$$

or

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^2}{3}$$

donc

$$\frac{8}{\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^2}{3} - \frac{\pi^2}{4} = \frac{\pi^2}{12}$$

donc

$$\frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^4} + \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$$
 Or
$$\sum_{p=1}^{+\infty} \frac{1}{(2p)^4} = \frac{1}{16} \sum_{n=1}^{+\infty} \frac{1}{n^4}$$
 donc
$$\frac{15}{16} \sum_{n=1}^{4} \frac{1}{n^4} = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$
 d'où
$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Exercice 3

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi[$ par $f(x) = e^x$.

1. Déterminer la série de Fourier de f.

2. En déduire
$$\sum_{n=1}^{+\infty} \frac{1}{1+n^2}$$

Solution

1.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x dx = \frac{e^{\pi} - e^{-\pi}}{\pi}$$

Soit $n \in \mathbb{N}^*$. Alors

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos(nx) dx = \int_{2 \text{ IPP}}^{\pi} \frac{(-1)^n}{\pi (1 + n^2)} (e^{\pi} - e^{-\pi})$$

D'autre part

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin(nx) dx = \int_{0.1 \text{ IPP}}^{\pi} \frac{n(-1)^{n+1}}{\pi (1+n^2)} (e^{\pi} - e^{-\pi})$$

Donc la série de Fourier de f est

$$\frac{e^{\pi} - e^{-\pi}}{2\pi} + \frac{e^{\pi} - e^{-\pi}}{\pi} \sum \frac{(-1)^n}{1 + n^2} \cos(nx) + \frac{n(-1)^{n+1}}{1 + n^2} \sin(nx)$$

2. En appliquant le théorème de Dirichlet (remarquez que f est discontinue en π), on a

$$\frac{f(\pi^{-}) + f(\pi^{+})}{2} = \frac{e^{\pi} - e^{-\pi}}{2\pi} + \frac{e^{\pi} - e^{-\pi}}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{1 + n^2} \cos(n\pi) + \frac{n(-1)^{n+1}}{1 + n^2} \sin(n\pi)$$

Or $\cos(n\pi) = (-1)^n$ et $\sin(n\pi) = 0$ donc

$$\frac{e^{\pi} + e^{-\pi}}{2} = \frac{e^{\pi} - e^{-\pi}}{2\pi} + \frac{e^{\pi} - e^{-\pi}}{\pi} \sum_{n=1}^{+\infty} \frac{1}{1 + n^2}$$

soit finalement

$$\sum_{n=1}^{+\infty} \frac{1}{1+n^2} = \frac{1}{2} \left(\frac{\pi (e^{\pi} + e^{-\pi})}{e^{\pi} - e^{-\pi}} - 1 \right)$$

Olivier Rodot 141 E.P.I.T.A.

Chapitre 10

Fonctions de deux variables réelles

10.1 Introduction

Nous étudions dans ce chapitre les fonctions de \mathbb{R}^2 dans \mathbb{R} (fonctions de deux variables

réelles) c'est-à-dire les fonctions
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ \\ (x,y) & \longmapsto f(x,y) \end{array} \right.$$

L'étude porte principalement sur les notions de dérivées partielles et sur la recherche des éventuels extrema locaux. Nous constaterons que beaucoup de concepts et de théorèmes déjà vus sur les fonctions d'une variable se généralisent aux fonctions de deux variables.

10.2 Topologie de \mathbb{R}^2

10.2.1 Normes sur \mathbb{R}^2

Définition 71

On appelle norme sur \mathbb{R}^2 toute application $N: E \to \mathbb{R}$ telle que pour tout $(x,y) \in \mathbb{R}^2$ et tout $\lambda \in \mathbb{R}$,

$$-N(x) \geqslant 0$$

$$-N(x)=0 \iff x=0$$

$$-N(\lambda x) = |\lambda|N(x)$$

$$-N(x+y) \leqslant N(x) + N(y)$$

Exemples

1.
$$\|.\|_2 : \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto \sqrt{x^2 + y^2} \end{cases}$$

2.
$$\|\cdot\|_{\infty}: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ \\ (x,y) & \longmapsto & \operatorname{Max}(|x|,|y|) \end{array} \right.$$

3.
$$\|.\|_1 : \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto |x| + |y| \end{cases}$$

Définition 72

On dit que deux normes N et N' sur \mathbb{R}^2 sont équivalentes s'il existe $\alpha > 0$ et $\beta > 0$ tels que pour tout $x \in E$,

$$N(x) \leqslant \alpha N'(x)$$
 et $N'(x) \leqslant N(x)$

Proposition 74

 $\|.\|_2, \|.\|_{\infty}$ et $\|.\|_1$ sont équivalentes sur \mathbb{R}^2 .

Remarque

Dans la suite du cours $\|\,.\,\|$ désignera in différemment $\|\,.\,\|_2,\,\|\,.\,\|_\infty$ ou $\|\,.\,\|_1$

10.2.2 Ouverts de \mathbb{R}^2

Définition 73

On appelle boule ouverte de \mathbb{R}^2 de centre u_0 et de rayon r>0 l'ensemble noté $B(u_0,r)$ défini par

$$B(u_0, r) = \left\{ u \in \mathbb{R}^2, \ \|u - u_0\| < r \right\}$$

Définition 74

Soit U une partie de \mathbb{R}^2 . On dit que U est un ouvert de \mathbb{R}^2 si

$$\forall x \in U \ \exists \varepsilon > 0 \ B(x, \varepsilon) \subset U$$

10.3 Dérivées partielles

10.3.1 Fonctions partielles

Définition 75

Soient $f: I \subset \mathbb{R}^2 \to \mathbb{R}$ et $u = (u_1, u_2) \in I$. On appelle fonctions partielles associées à f au point u, les fonctions de \mathbb{R} dans \mathbb{R} notées $f(., u_2)$ et $f(u_1, .)$ définies par

$$f(.,u_2): x \longmapsto f(x,u_2)$$

et

$$f(u_1,.): y \longmapsto f(u_1,y)$$

Exemple

Soient
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 - \{(0,0)\} & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto \frac{xy}{x^2 + y^2} \end{array} \right.$$

Les fonctions partielles associées à f au point u = (1,1) sont

$$f(.,1) : x \longmapsto f(x,1) = \frac{x}{x^2 + 1}$$

et

$$f(1,.) : y \longmapsto f(1,y) = \frac{y}{1+y^2}$$

10.3.2 Dérivées partielles premières

Définition 76

Soient $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ et $u = (u_1, u_2) \in U$. On dit que f admet en u des dérivées partielles (premières) si la fonction partielle $f(., u_2)$ (resp. $f(u_1, .)$) est dérivable en u_1 (resp. u_2). Les

dérivées partielles (premières) au point u sont alors notées $\frac{\partial f}{\partial x}(u)$ et $\frac{\partial f}{\partial y}(u)$.

Si f admet en tout point de U des dérivées partielles premières, on définit alors les fonctions $\frac{\partial f}{\partial x}$ (resp. $\frac{\partial f}{\partial y}$) par

$$\frac{\partial f}{\partial x} : \begin{cases} U \longrightarrow \mathbb{R} \\ u = (u_1, u_2) & \longmapsto \frac{\partial f}{\partial x}(u) \end{cases}$$

$$\left(resp. \frac{\partial f}{\partial y} : \left\{ \begin{array}{c} U \longrightarrow \mathbb{R} \\ u = (u_1, u_2) & \longmapsto \frac{\partial f}{\partial y}(u) \end{array} \right) \right.$$

Observation

Ainsi pour calculer $\frac{\partial f}{\partial x}$, il suffit de considérer y comme une constante dans f(x,y) et de dériver f(x,y) par rapport à x.

De même pour calculer $\frac{\partial f}{\partial y}$, il suffit de considérer x comme une constante dans f(x,y) et de dériver f(x,y) par rapport à y.

Exemples

1. Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ \\ (x,y) & \longmapsto & x^2y-x+2y \end{array} \right.$$

Alors

$$\frac{\partial f}{\partial x}(x,y) = 2xy - 1$$

et

$$\frac{\partial f}{\partial u}(x,y) = x^2 + 2$$

2. Soit
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ \\ (x,y) & \longmapsto & xe^{xy} \end{array} \right.$$

Alors

$$\frac{\partial g}{\partial x}(x,y) = e^{xy} + xye^{xy}$$

et

$$\frac{\partial g}{\partial y}(x,y) = x^2 e^{xy}$$

3. Soit
$$h: \left\{ \begin{array}{ccc} \mathbb{R}^2 - \{(0,0)\} & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto \frac{xy}{x^2 + y^2} \end{array} \right.$$

Alors

$$\frac{\partial h}{\partial x}(x,y) = \frac{y(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2}$$
$$= \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$

et

$$\frac{\partial h}{\partial y}(x,y) = \frac{x(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2}$$
$$= \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$$

Remarque

 $\frac{\partial f}{\partial x}$ (resp. $\frac{\partial f}{\partial y}$) sont parfois notées $D_1(f)$ ou encore f_x' (resp. $D_2(f)$ ou f_y').

10.3.3 Dérivées partielles secondes

Soient $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ et $u \in U$. On dit que f admet des dérivées partielles secondes en u si $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ admettent des dérivées partielles en u.

Elles se notent alors:

$$-\frac{\partial^2 f}{\partial x^2}(u) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right)(u)$$
$$-\frac{\partial^2 f}{\partial y^2}(u) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right)(u)$$
$$-\frac{\partial^2 f}{\partial x \partial y}(u) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(u)$$
$$-\frac{\partial^2 f}{\partial y \partial x}(u) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(u)$$

Si elles existent en tout point de u, on appelle dérivées partielles secondes de f les quatre fonctions suivantes :

$$-\frac{\partial^{2} f}{\partial x^{2}} : \begin{cases} U & \longrightarrow \mathbb{R} \\ u = (u_{1}, u_{2}) & \longmapsto \frac{\partial^{2} f}{\partial x^{2}}(u) \end{cases}$$

$$-\frac{\partial^{2} f}{\partial y^{2}} : \begin{cases} U & \longrightarrow \mathbb{R} \\ u = (u_{1}, u_{2}) & \longmapsto \frac{\partial^{2} f}{\partial y^{2}}(u) \end{cases}$$

$$-\frac{\partial^{2} f}{\partial x \partial y} : \begin{cases} U & \longrightarrow \mathbb{R} \\ u = (u_{1}, u_{2}) & \longmapsto \frac{\partial^{2} f}{\partial x \partial y}(u) \end{cases}$$

$$-\frac{\partial^{2} f}{\partial y \partial x} : \begin{cases} U & \longrightarrow \mathbb{R} \\ u = (u_{1}, u_{2}) & \longmapsto \frac{\partial^{2} f}{\partial y \partial x}(u) \end{cases}$$

Exemple

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ \\ (x,y) & \longmapsto & x^2y - x + 2y \end{array} \right.$$

Alors

$$\frac{\partial f}{\partial x}(x,y) = 2xy - 1$$

 et

$$\frac{\partial f}{\partial y}(x,y) = x^2 + 2$$

Donc

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 2y$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

$$\frac{\partial^2 f}{\partial x \, \partial y}(x, y) = 2x$$

et

$$\frac{\partial^2 f}{\partial u \, \partial x}(x, y) = 2x$$

10.3.4 Théorème de Schwarz

On constate dans l'exemple précédent que

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}$$

Le théorème de Schwarz dit que c'est toujours vrai pourvu que f soit suffisamment «régulière» (plus précisément de classe C^2 c'est-à-dire si les dérivées partielles premières et les quatre dérivées partielles secondes existent et sont continues). Dans tous les exemples et exercices proposés, le théorème sera applicable de sorte qu'il sera inutile de calculer à la fois $\frac{\partial^2 f}{\partial x \, \partial u}$ et $\frac{\partial^2 f}{\partial u \, \partial x}$

Théorème 28 (Schwarz)

Soit $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 sur U. Alors

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}$$

10.4 Point critique

10.4.1 Point critique

Définition 77

Soient $f:U\subset\mathbb{R}^2\to\mathbb{R}$ et $u=(a,b)\in U.$ On dit que u est un point critique de f si

$$\frac{\partial f}{\partial x}(u) = 0$$
 et $\frac{\partial f}{\partial u}(u) = 0$

Remarque

Lorsque l'on cherche l'ensemble des points critiques d'une fonction $f:U\subset\mathbb{R}^2\to\mathbb{R}$, il suffit donc de résoudre le système

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$$

Exemple

Considérons
$$f:$$

$$\left\{ \begin{array}{ccc} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 & \\ & (x,y) & \longmapsto \ x^3+y^3-3xy \end{array} \right.$$

Recherchons les points critiques de f.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{cases}$$

$$\iff \begin{cases} y = x^2 \\ x = y^2 \end{cases}$$

$$\iff \begin{cases} y = x^2 \\ x(x^3 - 1) = 0 \end{cases}$$

Ainsi la deuxième équation donne x = 0 ou x = 1 ce qui donne respectivement en reportant dans la première équation y = 0 ou y = 1. Ainsi f admet deux points critiques (0,0) et (1,1).

10.4.2 Notations de Monge

Définition 78

Soient $f:U\subset\mathbb{R}^2\to\mathbb{R}$ (vérifiant le théorème de Schwarz) et $u=(a,b)\in U$ un point critique de f. On note alors

$$\begin{cases} r = \frac{\partial^2 f}{\partial x^2}(a, b) \\ s = \frac{\partial^2 f}{\partial x \partial y}(a, b) \\ t = \frac{\partial^2 f}{\partial y^2}(a, b) \end{cases}$$

Exemple

Reprenons l'exemple précédent. On a

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y\\ \frac{\partial f}{\partial y}(x,y) = 3y^2 - 3x \end{cases}$$

Donc

$$\begin{cases} \frac{\partial^2 f}{\partial x^2}(x,y) = 6x \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) = -3 \\ \frac{\partial^2 f}{\partial y^2}(x,y) = 6y \end{cases}$$

On a déjà vu que A=(0,0) et B=(1,1) sont les points critiques de f. Pour A=(0,0), on a

$$\begin{cases} r = \frac{\partial^2 f}{\partial x^2}(0,0) = 0 \\ s = \frac{\partial^2 f}{\partial x \partial y}(0,0) = -3 \\ t = \frac{\partial^2 f}{\partial y^2}(0,0) = 0 \end{cases}$$

Pour B = (1,1) on a

$$\begin{cases} r = \frac{\partial^2 f}{\partial x^2}(1, 1) = 6 \\ s = \frac{\partial^2 f}{\partial x \partial y}(1, 1) = -3 \\ t = \frac{\partial^2 f}{\partial y^2}(1, 1) = 6 \end{cases}$$

10.5 Extrema locaux des fonctions de deux variables

10.5.1 Extremum local

Définition 79

Soient $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ et $u \in U$. On dit que f admet en u un maximum (resp. minimum) local si $f(v) \leqslant f(u)$ (resp. $f(v) \geqslant f(u)$) pourvu que v soit suffisamment proche de u. On dit que f admet un extremum local en u si f admet un minimum local ou un maximum local en u.

Proposition 75

Soit $f:U\subset\mathbb{R}^2\to\mathbb{R}$. Si f admet un extremum local en $u\in U$ et que les dérivées partielles premières existent en u alors

$$\frac{\partial f}{\partial x}(u) = \frac{\partial f}{\partial y}(u) = 0$$

Remarques

- 1. Ainsi les extrema locaux éventuels d'une fonction $f:U\subset\mathbb{R}^2\to\mathbb{R}$ sont à chercher parmilles points critiques.
- 2. Remarquons l'analogie de cette proposition avec celle consacrée aux fonctions d'une variable.

10.5.2 Recherche pratique des extrema locaux

Théorème 29

Soient $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ (vérifiant le théorème de Schwarz) et $u = (a, b) \in U$ un point critique de f. Alors

- 1. $si \ rt s^2 > 0 \ et \ r > 0 \ alors \ u \ est \ un \ minimum \ local \ de \ f$.
- 2. $si \ rt s^2 > 0 \ et \ r < 0 \ alors \ u \ est \ un \ maximum \ local \ de \ f$.
- 3. $si \ rt s^2 < 0$, f n'admet pas d'extremum en u. On dit que u est un point-col (ou point-selle) de f.

Remarque

Si $rt - s^2 = 0$, aucun théorème général n'existe pour conclure directement. Bien entendu, les exercices proposés rentreront dans le cadre du théorème.

Exemple

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x,y) = x^2 + y^3 - 2xy - y$$

Déterminons les points critiques de f et précisons leur nature (maximum local, minimum local ou point-col). Commençons par rechercher les points critiques de f:

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} 2x - 2y = 0 \\ 3y^2 - 2x - 1 = 0 \end{cases}$$

$$\iff \begin{cases} x = y \\ 3x^2 - 2x - 1 = 0 \end{cases}$$

Après calcul du discriminant de la deuxième équation, on trouve $x=-\frac{1}{3}$ ou x=1. Ainsi en utilisant la première équation, on a donc deux points critiques $\left(-\frac{1}{3},-\frac{1}{3}\right)$ et (1,1). Déterminons la nature de chaque point critique. On a

$$\begin{cases} \frac{\partial^2 f}{\partial x^2}(x,y) = 2\\ \frac{\partial^2 f}{\partial x \partial y}(x,y) = -2\\ \frac{\partial^2 f}{\partial y^2}(x,y) = 6y \end{cases}$$

Donc au point $\left(-\frac{1}{3}, -\frac{1}{3}\right)$:

$$\begin{cases} r = \frac{\partial^2 f}{\partial x^2} \left(-\frac{1}{3}, -\frac{1}{3} \right) = 2 \\ s = \frac{\partial^2 f}{\partial x \partial y} \left(-\frac{1}{3}, -\frac{1}{3} \right) = -2 \\ t = \frac{\partial^2 f}{\partial y^2} \left(-\frac{1}{3}, -\frac{1}{3} \right) = -2 \end{cases}$$

Ainsi $rt - s^2 < 0$ donc $\left(-\frac{1}{3}, -\frac{1}{3}\right)$ est un point-col.

Au point (1,1),

$$\begin{cases} r = \frac{\partial^2 f}{\partial x^2}(1, 1) = 2 \\ s = \frac{\partial^2 f}{\partial x \partial y}(1, 1) = -2 \\ t = \frac{\partial^2 f}{\partial y^2}(1, 1) = 6 \end{cases}$$

Ainsi $rt - s^2 > 0$ et r > 0 donc (1, 1) est un minimum local.

10.6 Exercices types

Exercice 1

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x,y) \in \mathbb{R}^2$ par $f(x,y) = x^2 + xy + y^2 + \frac{1}{4}x^3$.

- 1. Déterminer les points critiques de f.
- 2. Pour chacun des points critiques, préciser s'il s'agit d'un maximum local, d'un minimum local ou d'un point-col.

Solution

1. Déterminons les points critiques de f:

$$\frac{\partial f}{\partial x}(x,y) = 2x + y + \frac{3}{4}x^2$$

$$\frac{\partial f}{\partial y}(x,y) = x + 2y$$

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \iff (x,y) = (0,0) \text{ ou } (x,y) = (-2,1) \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$$

f a donc 2 points critiques (0,0) et (-2,1).

2. Déterminons la nature de chaque point critique.

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 2 + \frac{3}{2}x$$

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = 1$$
$$\frac{\partial^2 f}{\partial y^2}(x, y) = 2$$

Donc au point (0,0): r=2, s=1 et t=2 donc $rt-s^2>0$ et r>0 d'où f admet en (0,0) un minimum local.

Au point (-2,1): r=-1, s=1 et t=2 donc $rt-s^2<0$ d'où f admet en (-2,1) un point-col.

Exercice 2

Soit $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ définie par $f(x,y) = x(\ln^2(x) + y^2)$.

Déterminer les points critiques de f en précisant s'il s'agit de maximum local, minimum local ou point-col.

Solution

Recherchons les points critiques de f.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} \ln^2(x) + y^2 + x \cdot \frac{2\ln(x)}{x} = 0 \\ 2xy = 0 \end{cases}$$

$$\iff \begin{cases} \ln^2(x) + 2\ln(x) + y^2 \\ y = 0 \quad (\operatorname{car} x \neq 0) \end{cases}$$

$$\iff \begin{cases} \ln(x)(\ln(x) + 2) = 0 \\ y = 0 \end{cases}$$

$$\iff \begin{cases} x = 1 \text{ ou } x = e^{-2} \\ y = 0 \end{cases}$$

f admet donc deux points critiques (1,0) et $(e^{-2},0)$.

Déterminons la nature de chaque point critique :

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{2\ln(x)}{x} + \frac{2}{x}$$
$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = 2y$$
$$\frac{\partial^2 f}{\partial y^2}(x,y) = 2x$$

Donc au point (1,0): r=2, s=0 et t=2 donc $rt-s^2=4>0$ et r>0 d'où f admet en (1,0) un minimum local.

Au point $(e^{-2}, 0)$: $r = -2e^2$, s = 0 et $t = 2e^{-2}$ donc $rt - s^2 = -4 < 0$ d'où f admet en $(e^{-2}, 0)$ un point-col.