QUÍMICA 1

SEGUNDA PRÁCTICA CALIFICADA SEMESTRE ACADÉMICO 2020-1

Horarios: del H101 al H115 Duración: 110 minutos Elaborada por los profesores del curso

INDICACIONES:

- El profesor del horario iniciará la sesión a la hora programada vía zoom para dar indicaciones generales antes de empezar la prueba.
- La prueba será colocada en PAIDEIA y se podrá visibilizar a la hora programada.
- Durante el desarrollo de la prueba los alumnos podrán hacer consultas a los Jefes de Práctica a través de los foros del curso.
- El profesor del horario permanecerá conectado a través del zoom, de esta manera durante el desarrollo de la prueba cualquier alumno podrá volver a conectarse si desea hacer alguna consulta al profesor.
- En PAIDEIA se habilitará las carpetas de Entrega de la Pa2 con un plazo que vence transcurridas las 2 horas programadas para la sesión. Debe tener cuidado de preparar y subir sus archivos desde 10 minutos antes de cumplirse el plazo.
- El nombre del archivo debe configurarse así:
 - INICIAL DE SU NOMBRE-APELLIDO-Pa2-1 (para la pregunta 1)
 - INICIAL DE SU NOMBRE-APELLIDO-Pa2-2 (para la pregunta 2)
- El desarrollo de la práctica puede hacerse manualmente. NO OLVIDE COLOCAR SU NOMBRE Y CÓDIGO EN EL DOCUMENTO.
- El documento con su resolución puede escanearse o fotografiarse para subirlo a PAIDEIA.
- Todos los datos necesarios se dan al final de este documento.
- La práctica consta de dos preguntas que dan un puntaje total de 20 puntos
- Cada pregunta tiene un valor de diez puntos.
- 1. (10 pts) Las bengalas de mano son capaces de emitir luz generada por la ignición (mecánica, por fricción). Estas señales pirotécnicas son fabricadas para la supervivencia en el mar ya que permiten establecer la ubicación de las embarcaciones, botes o balsas en emergencia a determinadas distancias. Según sus características de emisión de luz, pueden ser de uso diurno o nocturno. Al ser encendidas, arden emitiendo un fotón igual a la transición del electrón del átomo de hidrógeno en estado gaseoso desde el nivel 3 hasta el nivel 2.
 - a. (2,5 p) Determine cuánta energía, en kJ, transferirán 0,79 moles de los fotones emitidos en la transición mencionada. Explique el significado del signo de su resultado.
 - b. (1,5 p) Calcule la frecuencia (en Hz) de los fotones emitidos en la bengala y a partir de la siguiente tabla indique el color de las radiaciones. Justifique su respuesta.

Color	Azul	Verde	Amarillo	Naranja	Rojo
λ (nm)	455 - 492	492 - 577	577 – 597	597 - 622	622 - 750

- c. (5,0 p) Los colores emitidos por la bengala de mano se debe a las transiciones electrónicas producidas cuando se calientan determinados compuestos químicos. En un análisis elemental se encontró que los elementos químicos dentro de la bengala son los siguientes: Litio (3Li), sodio (11Na), calcio (20Ca) y un elemento Zz cuyo electrón diferenciador presenta los números cuánticos (3, 1, 0, -1/2).
 - c.1. (2,0 p) Determina los iones más estables de cada uno de ellos, justifique su respuesta en base a la configuración electrónica de los elementos.
 - c.2. (2,0 p) Indique cuáles son los compuestos iónicos que se pueden formar con los cuatro elementos y justifique el orden creciente de los puntos de fusión de los compuestos formados.
 - c.3. (1,0 p) En base a la simbología de Lewis, escriba cómo se forma el compuesto iónico de menor punto de fusión.
- d. (1,0 p) Las bengalas se envuelven como protección, con una cinta de filamento de aluminio reforzado. Explique la conductividad eléctrica del aluminio mediante la teoría del mar de electrones.

2. (10 pts) Los alimentos presentan una serie de compuestos químicos que les dan ciertas características como por ejemplo en cuanto a aromas, sabores y otras propiedades, así, por ejemplo, el dimetilsulfóxido se produce en la descomposición de un compuesto que solo se encuentra en el espárrago, el ácido oxálico está presente en las bayas y el alilmetilsulfuro es el responsable del aliento a ajos o cebollas cuando las consumimos.

H:O: H 	н-о-с-с-о-н о: о:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
dimetilsulfóxido	ácido oxálico	alilmetilsulfuro

- a. (3,5 p) Determine la geometría molecular alrededor de los átomos coloreados, azufre, carbono y azufre. Indique además la polaridad de cada una de las moléculas.
- b. (3,5 p) Explique qué tipos de fuerzas intermoleculares presentan cada uno de estos compuestos. Si alguno presentara enlace de hidrógeno, dibuje al menos 3 moléculas y muestre la interacción.
- c. (2,5 p) El sulforafano (C₆H₁₁OS₂N) es un compuesto que se libera en el proceso de la digestión del brócoli, este compuesto ha sido estudiado por su capacidad de matar células cancerígenas. Se proponen 3 posibles estructuras de Lewis para el sulforafano:

$$: S = C - \overset{\cdots}{N} - R \qquad \overset{\cdots}{S} = C = \overset{\cdots}{N} - R \qquad : \overset{\cdots}{S} - C = N - R \qquad \overset{\cdots}{R} : \overset{\cdots}{S} \overset{\cdots}{S$$

Justifique, en base al concepto de carga formal, cuál será la estructura menos probable para el sulforafano.

DATOS

$$\begin{split} E &= h\nu & c &= \lambda\nu & E &= \frac{k|Q1||Q2|}{d} & E_n &= -R_H \, (\frac{1}{n^2}) \\ h &= 6,63x10^{-34} \, J \, s & R_H &= 2,18x10^{-18} \, J & c &= 3x10^8 \, m \, s^{-1} & N_A &= 6,022 \, x \, 10^{23} \, unidades \\ _6C &_{7}N &_{8}O &_{16}S & & & \\ \end{split}$$

Lima, 29 de mayo de 2020

Jamill Jean Parl Longe Ene 2020 3382
1) a) $E_{N_1} \rightarrow N_2 = -2,18 \cdot 10^{-18} \cdot 1$
E3-2=-2,18×10-785(1)
$E_{3\rightarrow 2} = -3,03, \overline{0} ^{19} = E_{coton} \overline{0} ^{2}$
$E = -3.03 \times 10^{-9}$ 6. 022×10^{23} c(tom2) 0, 79 mol 1kJ
D=-174 D# KJ / El signo negativo nos dice que se libera energía, y esto es coherente yen, que se para de un nivel mas energe tras
D) I for 5 -3/103 15 9J.
EASTORY = 1. VF = 3,08 × 10 J
=> 3,03 × 15 19 J = 6,63 × 15 34 J.5 × VV
$C = \sqrt[4]{\lambda}$ $\lambda = C = 3 \times 10^{20} \text{ n.s}^{-1} \text{ lnm}$ $\sqrt[4]{57} \times \sqrt[4]{42} = \sqrt[4]{9} \text{ m}$
λ = 656, 9 nm De averto co el crado, el color de las radirociónes es el

MARY

	,, GC	r Pad														++	1
	21.	341	NS2	251		M			1			-	-			++	Case Case
	-		andel	, 2	101	5 mes	est	able	+1							++	-
			NO	IA					-	V	-	40				++	-
								-	-							++	-
		u Na	, 15 ²	252 26	6 3	s"			 					j 1			4
			en cl	01 3	705	mais	est	ialda	+1	V	4					++	-
	100	,	gripo	IA		1, 10	7	~		8	Tyt -	-	4			++-	-
J.			1 1		6	2 2	06 1	.7	-		-	-		_			
		20/2	180	2522	P S	2,2	7 4	5-	-	D. /		-	1 /				-
-				0.4	1	DE ME	er es	table	7 4	2		-					-
			gupo	IIA	++					- 1		-	-				
				1 2 -1	/-1	-	1	14	1			1					
	-	22)	(3)	1,0,+1	(2)	7	10	TE *	7				p. 45				
			n=3	orbita	امالا			3,05	5						1		
					1			F				1					
	4.12		> 1	82 25	2 2	06 3	52 3	3p\$									
				z modo:	3				esta	هاط.	2 - V				7		
				inpos	VII A	6											
-														-	4		
	c.2.	Co	mpues	tus 165	Mas	pos	Bles	=> (i Z	2	Na Z	رح (2 2	2			
				-	, -		1-10							1.1			
-		De los	Comp	suestos	101/10	Mo)	reduc	y, ol	der	nava	of Ac	DCLIN	୧୨	el (1923	2	_
	1	1010	700	all am	XM I	ec Dr	ง๛เก		A Com	-4.	Su ho	Val 1	J 01-	11	1 . 1	- -	_
		0017	oder	ven e	1 6	230	de	472	7	Noz	5 (5	Mps	1 41	inen e			_
		Sur	copp	ne al	Nat	or gos	- nanc	mark	ronce	9 6	25 -67	or co	och	ionia	s cle		6
		4 00	ر عدد	6 2n	ener	oria l	rehi	be	25 000	0	qu	100	4	1 2 2 0	nos	granou	-
		meno	r pu	nto de	fusi	Nó (PAIS		no	(and	431	LAG	meric	N N	Wgio	Desc	_
		trave	ો હી	1402 INC	7 .	Y		1 1		111	1	.0. (Accord	134 40	rica	3	_
		C	072	· E	41.	t2x+	11] :	2/								7	
		-		Cata	2	do	377	d c	72				1			+	_
B -4	E China	4.03.L	54	E	41	f \ x-	_	K	V	7	(1)	35	7.			1	_
	-	-	1	.	1	Idis	22	QV.	77					dr	. इंडे दा	> 04	3
		1 2	256	i Z	741	116		K	V	1		V	M	E	U272 <	E	7
-		TANA C		e I e		dN	1	SULP	72	1	Na	₹¿			4	1	
-						N	1		1					112	N272 €	< Pro L	7

James Jean Paul Longze Eine 20203382	
6) dometil sulforido: Esta maécula presenta Fuerzas de elispersión de	
london y dipolo dipolo y a que, es uno made als p	lan No
presenta Fronza all trop overte de History es ya ge	e no
presents Frenzo all fino prente de History en , ya que trone enlaces O-ti F-H, N-H.	
por la polar y presto de hidragos, yaque, si en lace o-H.	chipolo,
por to polar y presto de tado goo, ya que, s	Presara
en vace of the first	-
0 4-5	
HO - e / C 19/	
W III OH. J. O.	
thank Well Fundo Prosents Fretzar de objegers 1007 de landona dipolo-dipo	b, ya
Anneth sulfuno, Presenta fuerzar de dispersión de landon, dipolo-clipo que es polar. No presenta fuerzar del tipo punt	e de
Hidrotago	
5) 8(10 - 6- 6 (C(1), OSN); C=6-6-6-7-2=1	
	0.
	17
1 15 = 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- cH3
CF: 6-2-1-6= +1 CF=6-4-1-1-0 CF=5-2-1-6=0 (F=5-8-1-1-8=4)	
(F) 9-4-141	
CENOTO = O CENOTO	
GFnetaz O Falla determinar la carga formal del C, en cada caso	
today losestructural Frence Craeta =0, en el coso de la estructura 1, o	215
had be deadle boostiva, sin embargo, of the of Nyel Ser que la estas	Alize
a detail attraction thumanos established que en la	3 Hagre
and 3 all' & Hear ld. ewife tearment reserva year 10 10 position in eath	Jahoa
mail estable to 17 les la maj estable de todas yaque todas Boson Ct =0 of	stor
canapter de establisación sa espersan con el tamaño o rado estámico.	
Tu análisis no es correcto, la estructura (1) (SEC-N-RX	MESSK