EEG-based Emotion Recognition via Channel-wise Attention and Self Attention

Problem

 Most methods extract discriminative features and ignore useful information in channel and time.

Previous works

Conti-CNN

- combine the features of multiple bans to improve recognition accuracy

GCNN

- adopt different entropy (DE) feature as inputs, and use the spectral graph filtering to extract features and recognize emotion

CRAM

- utilize a CNN to encode the high-level representation of EEG signals and a recurrent attention mechanism to explore the temporal dynamics.

Idea

- an attention-based convolutional recurrent neural network (ACRNN) to extract more discriminative features from EEG signals and improve the accuracy of emotion recognition.
 - Channel-wise attention mechanism for CNN
 - Self-attention mechanism for RNN

General Flow of the model

Channel-wise Attention

- extract the difference among channels from the EEG signals by assigning the weights to different channels.
- change the weight of different channels to explore the information of a feature map
- squeeze the global spatial information and generate channel-wise statistics
- two fully-connected (FC) layers around the non-linearity
- softmax function transforms the importance of channels to probability distribution v
 - o v: importance of different channels.
- we consider probability as the weight to recode the information of the EEG sample S

CNN

em

- the kernel height is the same as the number of electrodes.
- the kernel width is also designed to explore temporal information of the EEG signals
- use the exponential linear unit (ELU) function as the activation function in the convolution operations

LSTM

- the LSTM cell exports two outputs, i.e., output ci at the current time i and hidden state hi
- the number of LSTM units in each layer is the same as the number of EEG samples

- two stacked layers to remember and encode all scanned spatial and temporal areas Self-attention mechanism

- assign weights to each EEG signal sample by exploring the intrinsic importance of each sample.
- compute the similarity within each sample from different

$$z'_{i} = f(h'_{i}, q_{i}) = W^{T} \sigma(W_{1} h'_{i} + W_{2} q_{i} + b_{1}) + b,$$

- f (h' i, qi) represents the intrinsic similarity of the i-th encoded EEG sample
- $\mathbf{q}i$ is the aligned pattern vector generated based on the feature vector $\mathbf{h}_{\,i}^{'}$ by linear trans- formation
- o activation functions: ELU
- \circ W and b are the weight and bias terms of σ function,
- o P: the probabilities of all samples
 - the probability of the i-th EEG sample

$$p_i = \frac{\exp\left(z_i^{\prime T} \cdot h_i^{\prime}\right)}{\sum_{i=1}^{n} \exp\left(z_i^{\prime T} \cdot h_i^{\prime}\right)}.$$

- o A: the features ex- tracted by the extended self-attention mechanism
 - the i-th attentive feature

$$A_i = p_i \cdot h_i'.$$

Softmax layer:

$$P = \operatorname{softmax}(WA + b),$$

o cross-entropy error

$$\mathcal{L} = -\sum_{i=1}^{n} \hat{Y}_{i} \log (P_{i}),$$

- Yi is the label of the i-th EEG sample
- the lower cross-entropy error L indicates higher emotion recognition accuracy.

Emotion Recognition from Multi-Channel EEG through Parallel Convolutional Recurrent Neural Network

problem

- directly employ the EEG signals without taking into account the role of the baseline (EEG signals without stimulation).
- rely on complex pre-processing and hand-engineered features to a great extent,

solution

- 1. take the baseline signals into account
- 2. transform the raw 1D chain-like EEG signals into 2D frame-like sequences.
 - a. signals come from physically adjacent channels are still adjacent in the frame,
 - i. reason: the spatial information can be retained after converting
 - b. a hybrid deep learning structure that integrates the Convolutional Neural Network and Recurrent Neural Network to conduct emotion recognition tasks
 - i. CNN: extract spatial features from data frames.
 - ii. RNN: extract temporal features from EEG sequence.
 - c. a feature fusion method is applied to fuse the spatial features and temporal features.

Dataset - DEAP

Array name	array shape	Array contents
data	40 × 40 × 8064	video/trial × channel × data
labels	40×4	video/trial × label (valence, arousal, dominance, liking)

Preprocessing

- take out pre-trial signals from all C channels and cut it into N segments with a same length L.
 - o C: channels
 - N: segments
 - L: length of each segment
 - N(C*L)
- 60s trial data; 3s baseline data

BaseMean =
$$\frac{\sum_{1}^{N} mat_i}{N}$$

Pre-trial - Baseline

BaseRemoved_j = RawEEG_j — BaseMean

Detailed function

CNN

- Use Z-score normalization
- The CNN unit works for mining cross-channel correlation and extracting features from 2D frames.
- Use 4*4 filter
 - o 4 by 4 filter can mine the correlation among more channels than 3 by 3 kernel
- use zero-padding to prevent missing information at the edge of input data frame.
- first convolutional layer with 32 feature maps and double the feature maps in each of the following convolutional layers.
- The pooling layer is usually added for reducing data dimensional at the cost of missing some information.
- a batch normalization (BN) operation is applied to accelerate the model training.

Results

Recognition Accuracy (%) Comparison for Each Subject on "Arousal"		
Sub	results	Given Results
1	93.87%	93.00%
2	85.97%	86.68%
3	94.47%	95.45%
4	85.58%	84.78%
5	89.35%	88.40%
6	88.35%	90.10%
7	90.98%	90.68%
8	91.25%	92.55%
9	88.75%	88.35%
10	91.23%	89.85%

Recognition Accuracy (%) Comparison for Each Subject on "Valence"				
Sub	results	Given Results		
1	92.92%	92.93%		
2	84.07%	85.07%		
3	91.57%	94.80%		
4	84.53%	85.42%		

A Principled Approach for Learning Task Similarity in Multitask Learning

What problem does Multitask Learning solve

- understand the similarities within a set of tasks.
 - Two approaches
 - incorporated this similarity information explicitly
 - weighted loss for each task
 - incorporated this similarity information Implicitly
 - adversarial loss for feature adaptation

Previous Works

[Wang and Pineau, 2015]

- In the multitask learning (MTL) scenario, an agent learns the shared knowledge between a set of related tasks.

[Murugesan and Carbonell, 2017; Murugesan et al., 2016; Pentina and Lampert, 2017]

- minimize a weighted sum of empirical loss in which similar tasks are assigned higher weights.

[Liu et al., 2017; Li et al., 2018]

-	use adversarial losses by feature adaptation, minimizing the distribution distance between the tasks to con- struct a shared feature space.