Table 1.1: Equivalence relations.

$$\begin{array}{|c|c|c|c|c|}\hline E_1 & \neg\neg p & \Leftrightarrow & p \\ E_2 & \neg (p \lor q) & \Leftrightarrow & \neg p \land \neg q \\ E_4 & p \lor q & \Leftrightarrow & q \lor p \\ E_6 & p \lor (q \lor r) & \Leftrightarrow & (p \lor q) \lor r \\ E_8 & p \land (q \lor r) & \Leftrightarrow & (p \land q) \lor (p \land r) \\ E_{10} & p \lor p & \Leftrightarrow & p \\ E_{12} & p \lor \mathbf{F} & \Leftrightarrow & p \\ E_{14} & p \lor \mathbf{T} & \Leftrightarrow & \mathbf{T} \\ E_{16} & p \lor \neg p & \Leftrightarrow & \mathbf{T} \\ E_{18} & p \lor (p \land q) & \Leftrightarrow & p \\ E_{20} & p \to q & \Leftrightarrow & \neg p \lor q \\ E_{22} & \neg \Box p & \Leftrightarrow & \Diamond \neg p \\ E_{24} & \bigcirc (p \lor q) & \Leftrightarrow \Diamond p \\ E_{26} & \Diamond (p \lor q) & \Leftrightarrow & \Diamond p \lor \Diamond q \\ E_{26} & \Diamond (p \lor q) & \Leftrightarrow & \Diamond p \lor \Diamond q \\ E_{26} & \Diamond (p \lor q) & \Leftrightarrow & \Diamond p \lor \Diamond q \\ E_{27} & \Box (p \land q) & \Leftrightarrow & \Box p \land \Box q \\ \hline \end{array}$$

Table 1.2: Implication relations.

$$A||B = \left\langle Q^A \times Q^B, \Sigma^A \cup \Sigma^B, \delta, \left\langle q_i^A, q_i^B \right\rangle, Q_m^A \times Q_m^B, (Q_x^A \times Q^B) \cup (Q^A \times Q_x^B) \right\rangle$$

$$\delta(\left\langle q^A, q^B \right\rangle, \sigma) = \left\{ \begin{array}{ll} \delta^A(q^A, \sigma) \times \delta^B(q^B, \sigma) & \sigma \in \Sigma^A \cap \Sigma^B \\ \delta^A(q^A, \sigma) \times \{q^B\} & \sigma \in \Sigma^A \setminus \Sigma^B \\ \{q^A\} \times \delta^B(q^B, \sigma) & \sigma \in \Sigma^B \setminus \Sigma^A \end{array} \right.$$

CTL* formula	Equivalent μ -calculus fixpoint
$\exists \Diamond p$	$\mu y.p \lor \exists \bigcirc y$
$\exists \Box p$	$\nu y.p \land \exists \bigcirc y$
$\exists p \mathcal{U} q$	$\mu y.q \lor (p \land \exists \bigcirc y)$
$\exists p \mathcal{W} q$	$\nu y.q \vee (p \wedge \exists \bigcirc y)$
$\exists (p \to \Diamond q)$	$\mu y. \neg p \lor q \lor \exists \bigcirc y$
$\exists \Box p \land \exists \Diamond q$	$\nu y.(p \land \exists \bigcirc y) \land \mu z.(q \lor \exists \bigcirc z)$
$\exists \Box \exists \Diamond p$	$\nu y.(\mu z.p \vee \exists \bigcirc z) \wedge \exists \bigcirc y$
$\exists\Box\Diamond p$	$\nu y.\mu z.(p \land \exists \bigcirc y) \lor \exists \bigcirc z$
$\exists \Diamond \Box p$	$\mu y.\nu z.(p \vee \exists \bigcirc y) \wedge \exists \bigcirc z$
$\exists \Box n\mathcal{U}a$	$yyyz(a \land \exists \bigcirc y) \lor (n \land \exists \bigcirc z)$

Table 1.3: CTL* formulas and their equivalent μ -calculus fixpoints