Take the Scenic Route: Improving Generalization in Vision-and-Language Navigation

Felix Yu, Zhiwei Deng, Karthik Narasimhan, Olga Russakovsky

Princeton University

Key Contributions

Define VLN

- Identify bias in action space of Room-to-Room (R2R) dataset for Vision-and-Language Navigation (VLN) task, dubbed "action priors".
- Remedy scarce amount of annotated data and these priors through random walk sampling.
- Validate our approach to show improved performance and agent generalizability.

Images taken from Anderson et al. CVPR '18

An agent is...

Define VLN

in an environment represented by a graph.

 given panoramic egocentric view of scene, navigable locations, and natural language instructions.

 Tasked to navigate through environment to goal.

Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by moose antlers hanging on wall.

Difficulties in VLN

Lack of Data

Define VLN

- Time-consuming to obtain multiple sentencelong annotations.
- Room-to-Room Dataset
 [1] only contains 21,567
 samples for 7,189 paths

Leave the bedroom, and enter the kitchen. Walk forward, and take a left at the couch. Stop in front of the window.

[1] Anderson, Peter, et al. (CVPR '18) "Vision-and-language navigation"

Difficulties in VLN

Lack of Data

Define VLN

- Poor generalizability to unseen environments.
 - Action priors exist in shortest path sampling

Related Works

- Lack of Data
- Poor generalizability to unseen environments.
 - Action priors exist in shortest path sampling

Wang et al. (CVPR '19) "Cross-Modal Matching"

Ma et al. (ICLR '19) "Self-Monitoring Agent

Hu et al. (ACL '19) "Are You Looking?"

Tan et al. (NAACL '19) "Environmental Dropout"

Related Works

- Lack of Data
- Poor generalizability to unseen environments.
 - Action priors exist in shortest path sampling

Fried et al. (NeurIPS '18) "Speaker-Follower"

Hu et al. (ACL '19) "Are You Looking?"

Tan et al. (NAACL '19) "Environmental Dropout"

Related Works

- Lack of Data
- Poor generalizability to unseen environments.
 - Action priors exist in shortest path sampling

Fried et al. (NeurIPS '18) "Speaker-Follower"

Wang et al. (CVPR '19) "Cross-Modal Matching"

Ma et al. (ICLR '19) "Self-Monitoring Agent

Hu et al. (ACL '19) "Are You Looking?"

Tan et al. (NAACL '19) "Environmental Dropout"

Our Method: Augmenting with Random Walks

Lack of Data → Data Augmentation

Define VLN

- Poor generalizability to unseen environments. → Reduce Priors
 - Action priors exist in shortest path sampling
 - → Random Walk Sampling

Recap: Teleporting Action Space Action Prior: Non-uniform distribution in action space for each node within the dataset.

Define VLN

<u>Felix Yu</u>, Zhiwei Deng, Karthik Narasimhan, Olga Russakovsky. Take the Scenic Route: Improving Generalization in Vision-and-Language Navigation. Learning with Limited Labels Workshop, CVPR '20.

Why do Action Priors Exist in VLN

Define VLN

Many paths go through a \leftrightarrow b. For a \leftrightarrow c or b \leftrightarrow c to appear in data, path must begin or end at c. **Less likely!**

Results

1. Calculate transition matrices from **Shortest** Path Augmented Data (Fried et al. NeurIPS '18)

- 1. Calculate transition matrices from **Shortest** Path Augmented Data (Fried et al. NeurIPS '18)
- 2. Feed transition matrices to greedy agent.
- 3. Evaluate greedy agent.

Results

Input Modality	MTM		V + L	
	Greedy	Random	Follower	
Success Rate	0.35	0.12	0.66	
Fraction of times agent stops within three meters of goal	Agent which follows Transition Matrices	Agent which performs random walks.	Agent described in Speaker-Follower (Fried et al. NeurIPS '18).	

Results

Input Modality	MTM		V + L
	Greedy	Random	Follower
Success Rate	0.35	0.12	0.66

Points of interest:

Having action priors allows agent to increase success rate by a factor of 3.

Results

Define VLN

Input Modality	MTM		V + L
	Greedy	Random	Follower
Success Rate	0.35	0.12	0.66

Points of interest:

- Having action priors allows agent to increase success rate by a factor of 3.
- Even with no language language information, greedy agent is able to achieve over half the success rate of Follower.

Note: Input modality between Greedy agent and Follower are not the same, so direct comparison can't be made.

Results

How do Action Priors Affect Generalization?

- Models localize through visual features.
- Choose action according to priors, rather than instructions.
- In new environment, no such priors exist.

Unseen Environments

How do I get to goal? I don't know how to read.

Exit through the...

Priors

Shortest Path Sampling:

Define VLN

- Pick two points in environment.
- Calculate shortest path.
- If # steps between 4-6, keep.

Contains Action Priors

Random Walk Sampling:

- Randomly pick starting location.
- Sample # of steps.
- Take Random Walk while avoiding cycles.
- If end location > 3 meters from start, keep.

Mitigates action Priors

1. Calculate Transition Matrices from **Random Walk** Augmented Data.

2. Calculate Skew Factor of each Node. (Ratio between largest transition prob and uniform transition

prob).

Action	Transition Probability
<move 1="" to=""></move>	0.1
<move 2="" to=""></move>	0.2
<move 3="" to=""></move>	0
<move 4="" to=""></move>	0.7

Skew Factor =
$$\frac{0.7}{0.25}$$
 = 2.8

Skew Factors closer to 1 indicate smaller action prior.

- 1. Calculate Transition Matrices from **Random Walk** Augmented Data.
- 2. Calculate Skew Factor of each Node. (Ratio between largest transition prob and uniform transition prob).
- Plot Histogram of skew factors.

Points of Interest:

 R2R and Speaker-Follower Augmented have large skew factors.

- Calculate Transition Matrices from Random Walk Sampling.
- Calculate Skew Factor of each Node. (Ratio between largest transition prob and uniform transition prob).
- 3. Plot Histogram of skew factors.

Points of Interest:

- R2R and Speaker-Follower Augmented have large skew factors.
- Random Walk skew factors close to 1.

- Calculate Transition Matrices from Random Walk Sampling.
- Calculate Skew Factor of each Node. (Ratio between largest transition prob and uniform transition prob).
- 3. Plot Histogram of skew factors.

Points of Interest:

- R2R and Speaker-Follower Augmented have large skew factors.
- Random Walk skew factors close to 1.

Note: 'None' means node is never visited in the dataset.

Random Walk Sampling

Define VLN

Train Follower model from Speaker-Follower (Fried et al. NeurIPS 2018) Compare between three different augmentation methods.

Data Augmentation	Seen Validation Success Rate	Unseen Validation Success Rate	Difference in Success Rate
None	0.571	0.272	0.299
Shortest Path	0.616	0.297	0.319
Random Walk (ours)	0.530	0.389	0.141
	Validation samples in environments seen during training	Validation samples in novel environments	Difference denotes how well agent generalizes to new environments

Define VLN

Data Augmentation	Seen Validation Success Rate	Unseen Validation Success Rate	Difference in Success Rate
None	0.571	0.272	0.299
Shortest Path	0.616	0.297	0.319
Random Walk (ours)	0.530	0.389	0.141

Data augmentation always helps in unseen environments.

Results

Data Augmentation	Seen Validation Success Rate	Unseen Validation Success Rate	Difference in Success Rate
None	0.571	0.272	0.299
Shortest Path	0.616	0.297	0.319
Random Walk (ours)	0.530	0.389	0.141

Data augmentation always helps in unseen environments.

Although shortest path sampling has best seen validation success rate, random walk sampling has best unseen validation success.

Our method allows agents to generalize better to unseen environments.

Define VLN

Data Augmentation	Seen Validation Navigational Error	Unseen Validation Navigational Error
None	4.39	6.98
Shortest Path	3.99	6.85
Random Walk (ours)	5.03	6.29

Trend also hold for navigational error.

Results

Define VLN

SPL = Success Rate Weighted by Path Length

Data Augmentation	Seen Validation SPL	Unseen Validation SPL
None	0.470	0.187
Shortest Path	0.540	0.201
Random Walk (ours)	0.504	0.360

Trend hold for Success Rate Weighted by Path Length as well. Suggests counterintuitive notion that it is more effective to train agents on inefficient random paths in order to navigate efficiently during testing.

Key Takeaways

- Shortest Path Sampling leads to priors in the action space.
- Using Random Walk data augmentation alleviates these priors while addressing lack of data for the task.
- A model trained using our random walk method generalize better to novel environments.

Lab website: https://visualai.princeton.edu/

Personal Website: https://www.cs.princeton.edu/~felixy

Email: felixy@princeton.edu

