

Charge reconstruction with AMS-02 L0

November Test Beam Data @ SPS

AMS-02 Perugia Group

Overview

- 1. Test beam and ladder introduction
- 2. Analysis and signal corrections
 - Eta correction
 - · VA equalization
- 3. Comparison between the corrections
- 4. Charge resolution

The Beam

- Primary beam of 379 GV/c Pb hitting a 40 mm Be target
- Ions produced by fragmentation
- Selection by rigidity: around 300 GV/c (MIPs)
- The setup used corresponds approximately to A/Z = 2

The Ladder

- Composed by 10 silicon sensors and 16 VA (64 channels each)
- Silicon thickness = $320 \pm 20 \mu m$
- Number of total strips/readout = 4096/1024
- $\overline{\text{Strip pitch}} = 27.25 \, \mu \text{m}$

The Dataset

- ~ 12.6 hours between November 25th/26th
- Data Blocks: 6/061– 6/826 with Cal: 6/052
- Trigger-to-hold time: 6.5 μs

The Custerization

- First strip found with $S/N \ge 5.5$ is the seed
- Adjacents are added if $S/N \ge 2.0$

Eta Definition

- $\eta = S_R / (S_R + S_L)$ where S_R and S_L can represent the seed signal and the secondary strip signal, based on the position of the secondary (with respect to the seed)
- The charge is shared between the closest readout strips
- It represents the enegy loss between two readout strips

The Analysis

- Distribution of the cluster total signal vs eta
- Took only the most energetic cluster per event
- The horizontal bands correspond to different nuclei species
- Saturation of the VA around 9000-10000 ADC

• Inter-strip
energy loss
is assumed to
have a parabolic
dependence:

$$f(\eta) = a\eta^2 + b\eta + c$$

• Using the Z=2 sample to evaluate the correction by fitting the *y* projections one finds:

$$f(\eta) = 498\eta^2 - 495\eta + 449$$

- The three points founded in the (η-ADC) plane are:
- (0,449)
- (0.5,326)
- (1,452)

• The correction consists to multiply each ADC value by:

$$w = c / f (\eta)$$

- f (η) will be the function value at the eta point corresponding to the ADC value being considered
- C is the known term of the parabola

- Corrected cluster amplitude by eta vs eta
- Improved charge separation

- Corrected
 cluster
 amplitude by
 eta vs Cog
- The center of gravity (Cog) is an estimate of the impact position of the particle
- Equalization of VA # 5 to 13 (red labels)

- By doing the y projection of every VA we obtain this type of plot
- The equalization procedure consists of comparing how the MPV values given by the Landau fit, for a given Z, change with the VA.

- VA #10 chosen as a reference
- Ratio, in each
 VA, between the
 MPV
 value, for each
 peak, of the VA
 10 and the
 corresponding
 VA
- Represents the percent change between peaks from VA
 10

- This graph represents the ratio function for the $VA\ 11$, $f_{11}(ADC)$
- The *x* coordinate corresponds to the MPV given by the fit for the peaks of the VA number eleven.
- On the *y* coordinate there is the ratio between the MPV of VA 10 and VA 11

- The graph is used as a function to equalize the VA 11 with respect to the VA 10:
- 1. Take the eta corrected ADC_{11} value on VA 11
- 2. Evaluate $f_{11}(ADC_{11})$
- 3. Multiply ADC_{11} by $f_{11}(ADC_{11})$

$\frac{\textbf{The Analysis}}{\textbf{All together on } \sqrt{\textbf{ADC}}}$

- $\sqrt{ADC} \propto Z$
- Biggest improvements given by the eta correction
- Z=1 is suppressed by the triggers and the clusterization thresholds

$\frac{\text{The Analysis}}{\text{All together on } \sqrt{\text{ADC}}}$

The binned likelihood gaussian fits give

${f Z}$	µ(√ADC)	O (√ADC)
2	21.69 ± 0.04	3.7 ± 0.1
3	33.07 ± 0.03	3.2 ± 0.1
4	44.8 ± 0.1	5.1 ± 0.7
5	58.9 ± 0.05	4.2 ± 0.1
6	71.39 ± 0.08	3.7 ± 0.2
7	83.81 ± 0.09	3.9 ± 0.3

Charge resolution

- The √ADC value is proportional to Z: to bring the peaks back to the correct charge number, a multiplicative factor (or, better, a function) is missing
- The resolution is expressed as the relative error

\mathbf{Z}	σ/μ
2	0.17
3	0.10
4	0.11
5	0.07
6	0.05
7	0.04