Probabilités

Table des matières

l. Cadre général de la théorie des probabilités	2
1.1. Espace probabilisé général · · · · · · · · · · · · · · · · · · ·	. 2
1.2. Exemples d'espace probabilisés · · · · · · · · · · · · · · · · · ·	. 4
1.2.1. Univers $\Omega = \mathbb{N} \cdot \cdot$. 4
1.2.2. Univers $\Omega = \mathbb{R} \cdot \cdot$. 4
1.2.3. Univers $\Omega = \mathbb{R}^d$. 5
1.3. Classe monotone · · · · · · · · · · · · · · · · · · ·	. 5
2. Variables et vecteurs aléatoires	7
2.1. Loi d'un vecteur aléatoire	. 7

1. Cadre général de la théorie des probabilités

1.1. Espace probabilisé général

Définition 1.1. Soit Ω un ensemble. On appelle tribu sur Ω une famille $\mathcal F$ de parties de Ω vérifiant :

- (1) \mathcal{F} est non-vide : $\emptyset \in \mathcal{F}$,
- (2) la stabilité par passage au complémentaire : $\forall A \in \mathcal{F}, A^c \in \mathcal{F}$,
- (3) la stabilité par union dénombrable : $\forall (A_n)_{n\in\mathbb{N}}\in\mathcal{F}^{\mathbb{N}}, \bigcup_{n\geq 1}A_n\in\mathcal{F}.$

Définition 1.2. Soit Ω un ensemble et \mathcal{F} une tribu sur Ω . On appelle *mesure de probabilité* une mesure $\mathbb{P}: \mathcal{F} \to \mathbb{R}_+$ vérifiant $\mathbb{P}(\Omega) = 1$.

Définition 1.3. Soit Ω un ensemble, $\mathcal F$ une tribu sur Ω et $\mathbb P$ une mesure de probabilité sur $(\Omega, \mathcal F)$. On appelle *espace probabilisé* le triplet $(\Omega, \mathcal F, \mathbb P)$, on dit que Ω est l'univers et que $\mathcal F$ sont les événements.

Remarque 1.4. Dans le cadre discret, on avait souvent $\mathcal{F} := \mathcal{P}(\Omega)$. Dans le cadre général, on aura souvent $\mathcal{F} \subsetneq \mathcal{P}(\Omega)$.

Définition 1.5. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements sur $(\Omega,\mathcal{F},\mathbb{P})$. On dit que $(A_n)_{n\in\mathbb{N}}$ est un système complet si elle vérifie :

- (1) les A_n sont disjoints deux à deux,
- (2) la probabilité de l'union des A_n est 1.

Proposition 1.6. Soit $(A_n)_{n\in\mathbb{N}}$ un système complet sur $(\Omega,\mathcal{F},\mathbb{P})$. Alors on a

$$\forall B \in \mathcal{F}, \mathbb{P}(B) = \sum_{n=1}^{+\infty} \mathbb{P}(B \cap A_n).$$

Démonstration. On pose $C:=\bigcup_{n\geq 1}A_n$, puisque $\mathbb{P}(C)=1$, on a $\mathbb{P}(C^c)=0$ d'où $\mathbb{P}(B\cap C^c)=0$. Soit $B\in\mathcal{F}$, on en déduit

$$\mathbb{P}(B) = \mathbb{P}(B \cap C) + \underbrace{\mathbb{P}(B \cap C^c)}_{=0} = \mathbb{P}\bigg(\bigcup_{n \geq 1} B \cap A_n\bigg) = \sum_{n=1}^{+\infty} \mathbb{P}(B \cap A_n).$$

Corollaire 1.7. Soit $(A_n)_{n\in\mathbb{N}}$ un système complet sur $(\Omega,\mathcal{F},\mathbb{P})$. Alors pour tout $B\in\mathcal{F}$ on a

(1) $\mathbb{P}(B) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) P(B|A_n)$

$$(2) \ \forall i \geq 1, \mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i)\mathbb{P}(B|A_i)}{\sum_{n=1}^{+\infty}\mathbb{P}(A_n)\mathbb{P}(B|A_n)}.$$

Théorème 1.8. (Continuité de la mesure de probabilité) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

(1) Soit $\left(A_{n}\right)_{n\in\mathbb{N}}$ une suite croissante d'événements. Alors on a

$$\lim_{n\to +\infty} \mathbb{P}(A_n) = \mathbb{P}\Biggl(\bigcup_{n\geq 1} A_n\Biggr).$$

(2) Soit $\left(A_{n}\right)_{n\in\mathbb{N}}$ une suite décroissante d'événements. Alors on a

$$\lim_{n\to +\infty} \mathbb{P}(A_n) = \mathbb{P}\bigg(\bigcap_{n>1} A_n\bigg).$$

Démonstration.

 $(1) \ \ \text{Pour tout } n \geq 1, \text{ on pose } B_n \coloneqq A_n \setminus A_{n-1} \text{ avec } A_0 = \emptyset, \text{ tel que les } (B_n)_{n \in \mathbb{N}} \text{ forme un système}$ complet sur $\bigcup_{n>1} A_n$, on en déduit alors

$$\mathbb{P}\bigg(\bigcup_{n\geq 1}A_n\bigg)=\mathbb{P}\bigg(\bigcup_{n\geq 1}B_n\bigg)=\sum_{n=1}^{+\infty}\mathbb{P}(B_n)=\sum_{n=1}^{+\infty}\mathbb{P}(A_n)-\mathbb{P}(A_{n-1})$$

on reconnait une somme téléscopique et on a donc

$$\mathbb{P}\Bigg(\bigcup_{n\geq 1}A_n\Bigg)=\lim_{n\to +\infty}\mathbb{P}(A_n)-\mathbb{P}(A_0)=\lim_{n\to +\infty}\mathbb{P}(A_n).$$

(2) On obtient directement le résultat par passage au complémentaire.

 $\begin{array}{l} \textbf{D\'efinition 1.9. Soit } \left(A_n\right)_{n\in\mathbb{N}} \text{ une suite d'\'ev\'enements de } (\Omega,\mathcal{F},\mathbb{P}). \\ \bullet \text{ On appelle } \textit{limite sup\'erieure} \text{ de la suite } \left(A_n\right)_{n\in\mathbb{N}} \text{ la valeur} \end{array}$

$$\limsup_{n\to +\infty}A_n\coloneqq \bigcap_{n\geq 1}\bigcup_{k\geq n}A_k$$

intuitivement on considère les éléments qui appartiennent à une infinité d'événements.

• On appelle *limite inférieure* de la suite $(A_n)_{n\in\mathbb{N}}$ la valeur

$$\limsup_{n\to +\infty}A_n:=\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k.$$

Corollaire 1.10. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements de $(\Omega,\mathcal{F},\mathbb{P})$. Alors on a

$$\mathbb{P}\bigg(\limsup_{n \to +\infty} A_n\bigg) = \lim_{m \to +\infty} \lim_{n \to +\infty} \mathbb{P}\bigg(\bigcup_{k=m}^n A_k\bigg)$$

$$\mathbb{P} \Big(\liminf_{n \to +\infty} A_n \Big) = \lim_{m \to +\infty} \lim_{n \to +\infty} \mathbb{P} \left(\bigcap_{k=m}^n A_k \right)$$

Proposition 1.11. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements de $(\Omega,\mathcal{F},\mathbb{P}).$ Alors on a

$$\mathbb{P}\!\left(\bigcup_{n\geq 1} A_n\right) \leq \sum_{n=1}^{+\infty} A_n.$$

Démonstration. On sait que le résultat est vérifié pour un nombre fini d'événements. Par passage à la limite et par continuité de la mesure P on a

$$\mathbb{P}\bigg(\bigcup_{n\geq 1}A_n\bigg)=\lim_{m\to +\infty}\mathbb{P}\bigg(\bigcup_{n=1}^mA_n\bigg)\leq \lim_{m\to +\infty}\sum_{n=1}^m\mathbb{P}(A_n)=\sum_{n=1}^{+\infty}\mathbb{P}(A_n).$$

Définition 1.12. Soit A un événement de $(\Omega, \mathcal{F}, \mathbb{P})$.

- On dit que A est négligeable si $\mathbb{P}(A) = 0$.
- On dit que A est presque-sûr si $\mathbb{P}(A) = 1$.

Corollaire 1.13. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Alors

- L'union dénombrable d'événements négligeables est négligeable.
- L'intersection dénombrable d'événements presque-sûrs est presque-sûre.

Proposition 1.14. Soit \mathcal{A} une famille d'événements de $(\Omega, \mathcal{F}, \mathbb{P})$. Alors il existe une unique tribu $\sigma(\mathcal{A})$ telle que $\sigma(\mathcal{A})$ soit la plus petite tribu contenant \mathcal{A} .

Démonstration. Il existe au moins une tribu contenant \mathcal{A} , à savoir $\mathcal{P}(\Omega)$. Alors l'intersection de toutes les tribus contenant \mathcal{A} est une tribu et convient.

Définition 1.15. Soit \mathcal{A} une famille d'événements de $(\Omega, \mathcal{F}, \mathbb{P})$. On appelle *tribu engendrée* par \mathcal{A} , notée $\sigma(\mathcal{A})$, la tribu de la Proposition 1.14.

Exemple 1.16. Soit *A* un événement de $(\Omega, \mathcal{F}, \mathbb{P})$. Alors $\sigma(\{A\}) = \{\emptyset, A, A^c, \Omega\}$.

1.2. Exemples d'espace probabilisés

Définition 1.17. Soit (E, \mathcal{O}) un espace topologique. On appelle *tribu borélienne* sur E, notée $\mathcal{B}(E)$, la tribu engendrée par les intervalles ouverts de E, c'est-à-dire $\mathcal{B}(E) \coloneqq \sigma(\mathcal{O})$.

Lemme 1.18. Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilité sur (Ω,\mathcal{F}) et $(\lambda_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs telle que $\sum_{n=1}^{+\infty}\lambda_n=1$. Alors $\mu=\sum_{n=1}^{+\infty}\lambda_n\mu_n$ est une mesure de probabilité sur (Ω,\mathcal{F}) .

1.2.1. Univers $\Omega = \mathbb{N}$

Se référer au cours de Probabilités de deuxième année.

1.2.2. Univers $\Omega = \mathbb{R}$

Exemple 1.19. (Mesure de Dirac) Soit $x \in \mathbb{R}$, l'application $\delta_x : \mathcal{B}(\mathbb{R}) \to \mathbb{R}_+$ définie par

$$\forall A \in \mathcal{B}(\mathbb{R}), \delta_x(A) = \begin{cases} 0 \text{ si } x \notin A \\ 1 \text{ si } x \in A \end{cases}$$

est une mesure de probabilité sur \mathbb{R} .

Exemple 1.20. (Mesure uniforme sur $\{1,...,n\}$) L'application $\mu = \frac{1}{n} \sum_{k=1}^{n} \delta_k$ est une mesure uniforme sur \mathbb{R} .

Exemple 1.21. (Mesure de Poisson) Soit $\lambda > 0$, l'application $\mu = \sum_{n=1}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} \delta_n$ est une mesure de Poisson sur \mathbb{R} .

Définition 1.22. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction borélienne. On dit que f est une *densité de probabilité* sur \mathbb{R} si elle vérifie :

- (1) pour λ -presque tout $x \in \mathbb{R}, f(x) \geq 0$,
- (2) $\int_{\mathbb{R}} f(x) \, \mathrm{d}\lambda(x) = 1.$

Lemme 1.23. Soit f une densité de probabilité sur \mathbb{R} . Alors l'application $\mu_f:\mathcal{B}(\mathbb{R})\to\mathbb{R}_+$ définie par $\forall A\in\mathcal{B}(\mathbb{R}), \mu_f(A)=\int_A f(x)\,\mathrm{d}\lambda(x)$ est une mesure de probabilité sur \mathbb{R} .

Démonstration. On a bien $\forall A \in \mathcal{B}(\mathbb{R}), \mu_f(A) \geq 0$. De plus $\mu_f(\mathbb{R}) = 1$. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de $\mathcal{B}(\mathbb{R})$ deux à deux disjoints. On pose $A := \bigcup_{n \geq 1} A_n$, alors $\mathbb{1}_A = \sum_{n=1}^{+\infty} \mathbb{1}_{A_n}$ et

$$\mu_f(A) = \int_A f(x) \,\mathrm{d}\lambda(x) = \int_{\mathbb{R}} \mathbbm{1}_A(x) f(x) \,\mathrm{d}\lambda(x) = \int_{\mathbb{R}} \sum_{n=1}^{+\infty} \mathbbm{1}_{A_n}(x) f(x) \,\mathrm{d}\lambda(x)$$

d'après le théorème de convergence monotone on a

$$\mu_f(A) = \lim_{m \to +\infty} \int_{\mathbb{R}} \sum_{n=1}^m \mathbb{1}_{A_n} f(x) \, \mathrm{d}\lambda(x) = \lim_{m \to +\infty} \sum_{n=1}^m \mu_f(A_n) = \sum_{n=1}^{+\infty} \mu_f(A_n).$$

Donc μ_f est bien une mesure de probabilité sur \mathbb{R} .

Remarque 1.24. On dit que μ_f est la mesure de densité f.

Proposition 1.25. Soit f et g deux densités de probabilités sur \mathbb{R} . Alors les mesures de densité μ_f et μ_g sont égales si et seulement si f et g sont égales presque partout.

Démonstration.

 \Rightarrow : Supposons que $\mu_f = \mu_q$. On pose

$$A_{+} := \{x \in \mathbb{R} \mid f(x) > g(x)\}$$
$$A := \{x \in \mathbb{R} \mid f(x) < g(x)\}$$

ces deux ensembles sont boréliens car f et g sont boréliennes. Par construction

$$\int_{A_+} f - g \,\mathrm{d}\lambda = \mu_f(A_+) - \mu_g(A_+) = 0 = \int_{A_-} f - g \,\mathrm{d}\lambda$$

de plus $A\coloneqq \{x\in \mathbb{R} \mid |f(x)-g(x)|>0\}=A_+\cup A_-$, on en déduit

$$\int_A |f-g| \,\mathrm{d}\lambda = \int_A (f-g) \mathbb{1}_{A_+} + (g-f) \mathbb{1}_{A_-} \,\mathrm{d}\lambda = 0$$

donc f - g = 0 presque partout et f = g presque partout.

 \Leftarrow : Si f=g presque partout, alors il est évident que $\mu_f=\mu_g$.

Exemple 1.26. (Loi uniforme) Soit $c, d \in \mathbb{R}$ avec c < d. Alors la fonction $f : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{\mathbb{1}_{[c,d]}(x)}{d-c}$ est une densité de probabilité. En particulier, pour tout $[a,b] \subset [c,d]$

$$\mu_f([a,b]) = \int_{[a,b]} f(x) \,\mathrm{d}\lambda x = \frac{b-a}{d-c}.$$

On note la probabilité associée $\mathcal{U}([c,d])$.

Exemple 1.27. (Loi exponentielle) Soit $\lambda > 0$. Alors la fonction $f : \mathbb{R} \to \mathbb{R}, x \mapsto \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_+}(x)$ est une densité de probabilité. On note la probabilité associée $\mathcal{E}(\lambda)$.

Exemple 1.28. (Loi normale) La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ est une densité de probabilité. On note la probabilité associée $\mathcal{N}(0,1)$.

1.2.3. Univers $\Omega = \mathbb{R}^d$

On peut étendre les exemples de \mathbb{R} , ainsi que les définitions de densité et de mesures de probabilité associée.

1.3. Classe monotone

Définition 1.29. Soit \mathcal{C} une famille de parties d'un ensemble Ω . On dit que \mathcal{C} est une *classe monotone* si elle vérifie :

- (1) $\Omega \in \mathcal{C}$,
- (2) $\forall A, B \in \mathcal{C}, A \subset B \Rightarrow B \setminus A \in \mathcal{C}$,
- (3) $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{C}^{\mathbb{N}}$ croissante, $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{C}$.

Remarque 1.30. Une tribu est une classe monotone, la réciproque est fausse.

Lemme 1.31. Soit \mathcal{C} une classe monotone. Alors \mathcal{C} est une tribu si et seulement si elle est stable par intersection finie, c'est-à-dire :

$$\forall A_1,...,A_n \in \mathcal{C}, \bigcap_{k=1}^n A_n \in \mathcal{C}.$$

Démonstration.

 \Rightarrow : Si \mathcal{C} est une tribu elle est stable par intersection finie.

 \Leftarrow : Supposons que $\mathcal C$ est stable par intersection finie. Soit $(A_n)_{n\in\mathbb N}$ une suite d'éléments de $\mathcal C$. Puisque $\mathcal C$ est stable par passage au complémentaire, $\mathcal C$ est aussi stable par union finie, en effet

$$A, B, \in \mathcal{C} \Rightarrow A^c, B^c \in \mathcal{C} \Rightarrow A^c \cap B^c \in \mathcal{C} \Rightarrow A \cup B = (A^c \cap B^c)^c \in \mathcal{C}$$

on a donc pour tout $N\in\mathbb{N}$, $\bigcup_{n=0}^{N}A_{n}\in\mathcal{C}$, et par union croissante

$$\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{N\in\mathbb{N}}\underbrace{\bigcup_{n=0}^NA_n}_{\text{croisante}}\in\mathcal{C}$$

donc \mathcal{C} est bien une tribu.

Définition 1.32. Soit \mathcal{A} une famille de parties d'un ensemble Ω . On appelle *classe monotone engendrée* par \mathcal{A} , notée $\mathcal{C}(\mathcal{A})$, l'intersection de toutes les classes monotones contenant \mathcal{A} .

Théorème 1.33. (Théorème de la classe monotone) Soit \mathcal{A} une famille de partie d'un ensemble Ω . Si \mathcal{A} est stable par intersection finie, alors $\mathcal{C}(\mathcal{A}) = \sigma(\mathcal{A})$.

Démonstration. Soit $A \in \mathcal{C}(\mathcal{A})$, on pose $\mathcal{C}_A \coloneqq \{B \in \mathcal{C}(\mathcal{A}) \mid A \cap B \in \mathcal{C}(\mathcal{A})\}$. Puisque \mathcal{C}_A est une classe monotone contenant A, on a $\mathcal{C}_A = \mathcal{C}(\mathcal{A})$. Donc $\mathcal{C}(\mathcal{A})$ est stable par intersection finie. D'après le Lemme 1.31 $\mathcal{C}(\mathcal{A})$ est une tribu.

Corollaire 1.34. Soit μ et ν deux mesures de probabilités sur (Ω, \mathcal{F}) . S'il existe une famille de parties \mathcal{A} stable par intersection finie sur laquelle μ et ν coïncident, alors elles coïncident sur $\sigma(\mathcal{A})$.

2. Variables et vecteurs aléatoires

Définition 2.1. Soit (Ω, \mathcal{F}) un espace probabilisable. On appelle *vecteur aléatoire* une application borélienne $X:(\Omega,\mathcal{F})\to (\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$. Dans le cas d=1, on dit que X est une *variable aléatoire*.

Proposition 2.2. Soit (Ω, \mathcal{F}) un espace probabilisable.

(1) Une application $X: \Omega \to \mathbb{R}$ est une variable aléatoire si et seulement si

$$\forall t \in \mathbb{R}, X^{-1}(]-\infty, t]) \in \mathcal{F}$$

- (2) Une application $X=(X_1,...,X_d):\Omega\to\mathbb{R}^d$ est un vecteur aléatoire si et seulement si $X_1,...,X_d$ sont des variables aléatoires.
- (3) Soit $X: \Omega \to \mathbb{R}^d$ un vecteur aléatoire et $\varphi: \mathbb{R}^d \to \mathbb{R}^n$ une application borélienne. Alors $\varphi \circ X$ est un vecteur aléatoire.

Démonstration.

- (1) \Rightarrow : Si X est une variable aléatoire, alors X est mesurable et le résultat est évident. \Leftarrow : Si pour tout $t \in \mathbb{R}$ on a $X^{-1}(]-\infty,t]) \in \mathcal{F}$. Alors puisque la famille $\{]-\infty,t] \mid t \in \mathbb{R}\}$ engendre $\mathcal{B}(\mathbb{R})$, X est mesurable. Donc X est une variable aléatoire.
- (2) On obtient le résultat par projection en appliquant (1) à $X_1, ..., X_n$.
- (3) On obtient le résultat par composition de fonctions boréliennes.

Proposition 2.3. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires sur (Ω,\mathcal{F}) .

- (1) Si les applications $S := \sup_{n \in \mathbb{N}} X_n$ et $I := \inf_{n \in \mathbb{N}} X_n$ sont finies, alors S et I sont des variables aléatoires.
- (2) Si $(X_n)_{n\in\mathbb{N}}$ converge simplement vers une limite finie X, alors X est une variable aléatoire. *Démonstration*.
- (1) On remarque que pour tout $t \in \mathbb{R}$ on a $S^{-1}(]-\infty,t]) = \bigcap_{n \in \mathbb{N}} X^{-1}(]-\infty,t])$ et que l'on peut écrire de la même manière pour I.
- (2) On remarque que $X=\lim_{n\to+\infty}X_n=\limsup_{n\to+\infty}X_n=\liminf_{n\to+\infty}X_n.$

2.1. Loi d'un vecteur aléatoire

Proposition 2.4. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}^d$ un vecteur aléatoire. Alors l'application $\mathbb{P}_X : \mathcal{B}(\mathbb{R}^d) \to \mathbb{R}_+, A \mapsto \mathbb{P}(X^{-1}(A))$ est une mesure de probabilité sur \mathbb{R}^d .

Définition 2.5. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}^d$ un vecteur aléatoire. On appelle *loi de X*, notée \mathbb{P}_X , la mesure de probabilité de la Proposition 2.4. On dit aussi que X suit la loi \mathbb{P}_X .

Définition 2.6. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}^d$ un vecteur aléatoire. On appelle *atomes de X*, noté \mathcal{V}_X , l'ensemble

$$\mathcal{V}_X \coloneqq \big\{x \in \mathbb{R}^d \mid \mathbb{P}_X(\{x\}) > 0\big\}.$$

Exemple 2.7. (Loi de Bernoulli) On considère $(\Omega, \mathcal{F}, \mathbb{P})$ avec $\Omega = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$ et \mathbb{P} la mesure uniforme sur [0,1]. On prend $X = \mathbb{1}_{[0,p]}$ avec $p \in [0,1]$. Soit $A \in \mathcal{B}(\mathbb{R})$, alors

$$\begin{split} \mathbb{P}_X(A) &= \mathbb{P}\big(X^{-1}(A)\big) = \mathbb{P}\big(X^{-1}(A \cap \{0\})\big) + \mathbb{P}\big(X^{-1}(A \cap \{1\})\big) \\ &= \delta_0(A)\mathbb{P}\big(X^{-1}(0)\big) + \delta_1(A)\mathbb{P}\big(X^{-1}(1)\big) = \delta_0(A)(1-p) + \delta_1(A)p \end{split}$$

 $\operatorname{donc} \mathbb{P}_X = \delta_0(1-p) + \delta_1 p.$

Proposition 2.8. Soit $(\Omega,\mathcal{F},\mathbb{P})$ un espace probabilisé et $X=(X_1,...,X_d):\Omega\to\mathbb{R}^d$ un vecteur aléatoire. Si X admet une densité $f:\mathbb{R}^d\to\mathbb{R}_+$, alors les variables aléatoires $X_1,...,X_d$ admettent des densités $f_1,...,f_d:\mathbb{R}\to\mathbb{R}_+$ avec

$$\forall i \in \{1,...,d\}, f_i(x) \coloneqq \int_{\mathbb{R}^{d-1}} f\big(x_1,...,x_{i-1},x,x_{i+1},...,x_d\big) \, \mathrm{d}\lambda\big(x_1,...,x_{i-1},x_{i+1},...,x_n\big).$$

Démonstration. Il suffit d'appliquer le théorème de Fubini.