- 8.3.1. Càlcul del pH de solucions d'àcids i bases forts
- 8.3.2. Càlcul del pH de solucions d'àcids i bases febles
- 8.3.3. Càlcul del pH de dissolucions d'àcids polipròtics i amfòlits
- 8.3.4. Dissociació de les sals. Càlcul del pH de solucions de sals. Hidròlisi
- 8.3.5. Solucions reguladores del pH
- 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració
- 8.3.7. Indicadors. Interval de viratge i elecció de l'indicador

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.1. Càlcul de pH de solucions d'àcids i bases forts.

Nom de l'àcid	Fórmula
Clorhídric	HCI
Nítric	HNO ₃
Perclòric	HCIO ₄
Bromhídric	HBr
Iodhídric	HI
Sulfúric	H ₂ SO ₄

Nom de la base	Fórmula
Hidròxid sòdic o de sodi	NaOH
Hidròxid potàssic o de potassi	KOH
Hidròxid de liti	LiOH
Hidròxid de rubidi	RbOH
Hidròxid de cesi	CsOH
Hidròxid de magnesi	Mg(OH) ₂
Hidròxid de calci	Ca(OH) ₂
Hidròxid d'estronci	Sr(OH) ₂

• 8.3.1. Càlcul de pH de solucions d'àcids i bases forts.

Exercici 8.18. Determina el pH d'una dissolució de HBr 0,1 M.

HBr
$$+H_2O \rightarrow Br - + H_3O^+$$

$$pH = - log [H_3O^+] = - log 0,1 = 1$$

Exercici 8.19. Determineu el pH d'una dissolució de HClO₄ 10⁻⁷ M.

$$\begin{aligned} & \text{HCIO}_4 \ + \text{H}_2\text{O} \rightarrow & \text{CIO}_4^{-1} + \text{H}_3\text{O}^+ \\ & 10^{-7} \end{aligned}$$

$$& \text{H}_2\text{O} \ + \text{H}_2\text{O} \ \leftrightarrows \ \text{OH}^- \ + \text{H}_3\text{O}^+ \\ & \text{x} \quad 10^{-7} + \text{x} \end{aligned}$$

$$& \text{K}_w = [\text{H}_3\text{O}^+] [\text{OH}^-] = (10^{-7} + \text{x}) \ \text{x} = 10^{-14} \longrightarrow \qquad \text{X} = 0.88.10^{-7} \ \text{M}$$

$$& \text{[H}_3\text{O}^+] = 1.88.10^{-7} \ \text{M} \qquad \text{pH} = 6.73$$

Exercici 8.20. Determineu el pH d'una dissolució de RbOH 0,1 M.

RbOH +
$$H_2O \rightarrow Rb^+ + OH^-$$
 [OH-] = 0,1 M
 $[H_3O^+] = K_w / [OH-] = 10^{-14} / 0,1 = 10^{-13} M$ pH = 13

Exercici 8.21. Determineu el pH d'una dissolució de Ca(OH)₂ 0,1 M.

$$Ca(OH)_2 + H_2O \rightarrow Ca^{2+} + 2 OH$$
 [OH·] = 0,2 M
 $[H_3O^+] = K_w / [OH^-] = 10^{-14} / 0,2 = 5.10^{-14} M$ pH = 13,30

Exercici 8.22. Determineu el pH d'una dissolució de Ca(OH)₂ 10⁻⁷ M.

Ca(OH)₂ + H₂O
$$\rightarrow$$
 Ca²⁺ + 2 OH⁻ [OH⁻] = 2. 10⁻⁷ M
H₂O + H₂O \rightleftharpoons H₃O⁺ + OH⁻
x 2.10⁻⁷ + x
 $K_w = [H_3O^+][OH^-] = x (2.10^{-7} + x) = 10^{-14}$ $X = 4,17.10^{-8}$ M
pH = 7,38

• 8.3.2 Càlcul de pH de solucions d'àcids febles.

$$HA + H_2O \iff A^- + H_3O^+ \qquad K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_a = \frac{X \cdot X}{C_a - X}$$
 Equació de segon grau i calcular x

Simplificacions:

 $C_a >> K_a$ (a partir d'uns 3 ordres de magnitud): $C_a - x \approx C_a$

$$K_a = x^2 / C_a$$
 ; $x^2 = [H_3O^+]^2 = K_a \cdot C_a$

$$log [H_3O^+]^2 = log (K_a \cdot C_a)$$
; $-2 log [H_3O^+] = -log K_a - log C_a$

$$pH = \frac{1}{2} pK_a - \frac{1}{2} log C_a$$

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.2. Càlcul de pH de solucions d'àcids febles.

Exercici 8.23. Determineu el pH d'una solució d'àcid hipoclorós $10^{-2}\,\mathrm{M}$ (pK_a = 7,5).

- a) Equilibri
- b) Fórmula simplificada : pH = ½ pK₂ ½ log C₂

$$= \frac{1}{2} 7.5 - \frac{1}{2} \log 10^{-2} = 4.75$$

Exercici 8.24. Determineu el pH d'una solució d'àcid cloroacètic 10^{-2} M (pK_a = 2,85).

CCIH₂-COOH + H₂O
$$\leftrightarrows$$
 CCIH₂-COO⁻ + H₃O⁺
$$K_a = \frac{X \cdot X}{C_a - X} = x^2 / (10^{-2} - x) = 1,41.10^{-3} ; x = 3,09.10^{-3} \text{ M}$$

$$pH= 2,51$$

• Càlcul de pH de solucions de bases febles.

B + H₂O
$$\leftrightarrows$$
 BH⁺ + OH⁻ $K_b = \frac{OH^- ||BH^+||}{|B|}$
 $K_b = \frac{X \cdot X}{C_b - X}$ $X = [OH^-]$ pH = 14 + log X

Simplificacions: $C_b >> K_b$ (a partir d'uns 3 ordres de magnitud) $C_b - x \approx C_b$.

$$K_b = x^2 / C_b$$
; $x^2 = [OH^-]^2 = K_b \cdot C_b$; $[OH^-] = K_w / [H_3O^+]$
 $(K_w / [H_3O^+])^2 = C_b K_w / K_a$; $([H_3O^+]^2 = K_a K_w / C_b$
 $-2 \log [H_3O^+] = -\log K_a - \log K_w + \log C_b$; $-\log K_w = 14$

pH = 7 +
$$\frac{1}{2}$$
 pK_a + $\frac{1}{2}$ log C_b

8.3 Equilibris de transferència de protons. Càlcul de pH

8.3.2. Càlcul de pH de solucions de bases febles.

Exercici 8.26. Determineu el pH d'una solució de amoníac 0,2 M (p $\rm K_a$ = 9,25).

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

$$pK_b = 14 - pK_a = 14 - 9,25 = 4,75$$

$$pH = 7 + \frac{1}{2}pK_a + \frac{1}{2}log C_b = 7 + \frac{1}{2}9,25 + \frac{1}{2}log 0,2 = 11,28$$

Exercici 8.27. Determineu el pH d'una solució de dimetilamina 10^{-3} M (pK_a = 10,8).

$$(CH_3)_2NH + H_2O \implies (CH_3)_2NH_2^+ + OH^- \qquad pK_b = 14 - pK_a = 14 - 10,8 = 3,2$$

$$K_{b} = \frac{X \cdot X}{C_{b} - X} = x^{2} / (10^{-3} - x) = 6,30.10^{-4}$$
; [OH-] = 5,39.10⁻⁴
pOH = 3,26 pH= 14-3,26 = 10,73

8.3.3. Càlcul de pH de solucions d'àcids polipròtics

$$H_2A + H_2O \leftrightarrows HA^- + H_3O^+ \qquad \kappa_{a_1} = \frac{[H_3O^+][HA^-]}{[H_2A]}$$
 $HA^- + H_2O \leftrightarrows A^{-2} + H_3O^+ \qquad \kappa_{a_2} = \frac{[H_3O^+][A^{-2}]}{[HA^-]}$
 $C_a = [H_2A] + [HA^-] + [A^{-2}] \qquad \qquad [H_3O^+] = [AH^-] + 2 [A^{-2}]$

<u>Simplificacions:</u> Ka₁ >> Ka₂ (una diferència de 1000 entre constants o de 3 entre pKa) podem determinar el pH només mitjançant el primer equilibri de l'àcid

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.3. Càlcul de pH de solucions d'àcids polipròtics

Exercici 8.29. Determineu el pH d'una solució d'àcid sulfurós 10^{-2} M (pK_{a1} = 1,89, pK_{a2} = 7,21).

Exercici 8.30. L'àcid arsènic (H_3AsO_4) és un àcid tripròtic ($pK_{a1} = 2,22$, $pK_{a2} = 6,98$, $pK_{a3} = 11,52$). Determineu el pH i les concentracions dels anions monobàsic (H_2AsO_4 -), dibàsic ($HAsO_4$ ²⁻) i tribàsic (AsO_4 ³⁻) d'una solució d'àcid arsènic 10^{-2} M.

Exercici 8.31. Determineu el pH d'una solució d'àcid sulfúric 10^{-3} M (pK_{a2} = 1,96).

1)
$$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$$
 2) $HSO_4^- + H_2O \implies SO_4^{2-} + H_3O^+$ 10⁻³ 10⁻³ - x x 10⁻³ + x 1,096.10⁻³ = $((10^{-3} + x).x) / (10^{-3} - x)$ $x = 8,54.10^{-4} M$ $x = 8,54.10^{-4} M$

8.3 Equilibris de transferència de protons. Càlcul de pH

8.3.3. Càlcul de pH de solucions d'amfòlits

$$\begin{aligned} \mathsf{H}\mathsf{A}^- \ + \ \mathsf{H}_2\mathsf{O} \ \leftrightarrows \ \mathsf{H}_2\mathsf{A} \ + \ \mathsf{O}\mathsf{H}^- \\ & \mathsf{H}_3\mathsf{O}^+ \end{aligned} \quad \mathsf{K}_b = \frac{ \left[\mathsf{O}\mathsf{H}^- \right] \left[\mathsf{H}_2\mathsf{A} \right] }{ \left[\mathsf{H}\mathsf{A}^- \right] } = \frac{\mathsf{K}_w}{\mathsf{K}_{a_1}} \\ & \mathsf{H}\mathsf{A}^- \ + \ \mathsf{H}_2\mathsf{O} \ \leftrightarrows \ \mathsf{A}^{2^-} \ + \ \mathsf{H}_3\mathsf{O}^+ \end{aligned} \quad \mathsf{K}_{a_2} = \frac{ \left[\mathsf{H}_3\mathsf{O}^+ \right] \left[\mathsf{A}^{-2} \right] }{ \left[\mathsf{H}\mathsf{A}^- \right] } \\ & \mathsf{H}_2\mathsf{O} \ + \ \mathsf{H}_2\mathsf{O} \ \leftrightarrows \ \mathsf{O}\mathsf{H}^- \ + \ \mathsf{H}_3\mathsf{O}^+ \end{aligned} \quad \mathsf{K}_w = \left[\mathsf{H}_3\mathsf{O}^+ \right] \left[\mathsf{O}\mathsf{H}^- \right] \\ & \mathsf{C} = \left[\mathsf{H}_2\mathsf{A} \right] + \left[\mathsf{H}\mathsf{A}^- \right] + \left[\mathsf{A}^{-2} \right] \end{aligned} \quad \begin{aligned} \mathsf{H}_3\mathsf{O}^+ \ \mathsf{H}_2\mathsf{A} \ \mathsf{H}_2\mathsf{A}$$

8.3.3. Càlcul de pH de solucions d'amfòlits

Exercici 8.32. Es pot considerar un amfòlit el HSO₄-?

Exercici 8.33. Determineu el pH d'una dissolució d'hidrogen carbonat sòdic $0.02~M~(pK_{a1}=6.35~i~pK_{a2}=10.32)$. I si la concentració de la sal és de 0.006~M?

$$HCO_3^- + H_2O \implies H_2CO_3 + OH^- C \approx [HA^-], K_{a2} \times C >> 10^{-14}, C >> K_{a1}$$
 $HCO_3^- + H_2O \implies CO_3^{2-} + H_3O^+ 4,78.10^{-11} \times 0,02 \sim 10^{-12}$

$$pH = \frac{1}{2} pK_{a1} + \frac{1}{2} pK_{a2} = \frac{1}{2} (6,35 + 10,32) = 8,33$$
 $4.78.10^{-11} \times 0.006 = 2.9.10^{-13}$

resoldre sistema en equilibri per la concentració 0,006 M

6.3 Equilibris de transferència de protons. Càlcul de pH

- Dissociació de les sals. Càlcul de pH de solucions de sals
- 1.- Sals d'anió i catió no hidrolitzable

$$NaCl_{(s)} \longrightarrow Na^{+}_{aq} + Cl^{-}_{aq}$$
 $H_{2}O + H_{2}O \leftrightarrows OH^{-} + H_{3}O^{+}$
 $pH = 7$

2. -Sals d'anió hidrolitzable i catió no hidrolitzable

$$NaCH_3$$
- $COO \rightarrow Na^+_{aq} + CH_3$ - COO^-_{aq}

$$CH_3$$
- $COO^- + H_2O \implies CH_3$ - $COOH + OH^-$ hidròlisi **bàsica** $pH = 7 + \frac{1}{2}pK_a + \frac{1}{2}log C_b$

3. - Sals d'anió no hidrolitzable i catió hidrolitzable

$$NH_4 CI \rightarrow NH_4^+_{aq} + Cl_{aq}^-$$

$$NH_4^+ + H_2O \leftrightarrows NH_3 + H_3O^+$$
 hidròlisi àcida

$$pH = \frac{1}{2} pK_a - \frac{1}{2} log C_a$$

4. - Sals d'anió i catió hidrolitzables

$$NH_4CH_3-COO \rightarrow NH_4^+_{aq} + CH_3-COO_{aq}$$

• 8.3.4. Dissociació de les sals. Càlcul de pH de solucions de sals

Exercici 8.34. Determineu el pH de les següents solucions de diferents sals:

- a) KNO₃ 0,3 M
- b) NaCIO 0,1 M
- c) NH₄F 0,4 M
- d) CH₃NH₃CI 0,1 M
- a) No s'hidrolitza pH =7

b)
$$CIO^{-} + H_{2}O \implies HCIO + OH^{-}$$
 $pH = 7 + \frac{1}{2} 7.5 + \frac{1}{2} log 0.1 = 10.25$

c)
$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$$
 i $F^- + H_2O \Rightarrow HF + OH^-$
 $pH = \frac{1}{2} pK_{a (ani\acute{o})} + \frac{1}{2} pK_{a (cati\acute{o})} = \frac{1}{2} 3,16 + \frac{1}{2} 9,24 = 6,2$

d)
$$CH_3NH_3^+ + H_2O \Rightarrow CH_3NH_2 + H_3O^+$$
 $pH = \frac{1}{2} \cdot 10,72 - \frac{1}{2} \log 0,1 = 5,86$

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.5. Solucions reguladores del pH.

Sang: $H_2CO_3/HCO_3^$ pH = 7,35-7,45

Solucions **reguladores o amortidores del pH** o també anomenades **tampons**, són solucions que mantenen el pH aproximadament constant quan se li addicionen petites quantitats d'un àcid fort o base forta o quan es dilueixen.

Composició: Són barreges de quantitats relativament grans i semblants d'un àcid feble i la seva base conjugada o d'una base feble i el seu àcid conjugat.

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.5. Solucions reguladores del pH.

$$HA + H_2O \iff A^- + H_3O^+ \qquad K_a = \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]}$$

$$K_a = \frac{\left[C_b + x\right]\left[x\right]}{\left[C_a - x\right]} \quad ; \quad Ca - x \approx Ca \, i \, Cb + x \approx Cb$$

$$PH = pK_a + log \left(C_b/C_a\right)$$

$$1 > log Cb/Ca > -1$$

$$pH = pKa \pm 1$$

$$Equació de Henderson-Hasselbalch$$

• 8.3.5. Solucions reguladores del pH.

Exercici 8.35. Utilitzant la taula de pKa, indica quines parelles àcid-base conjugada faries servir per preparar una solució tampó a pH = 7 i una altre a pH = 3.

Exercici 8.36. Determineu com variarà el pH si a 200 mL del tampó fòrmic (0,12 M)/formiat (0,15 M) hi addicionem 5 mL d'una dissolució de NaOH 0,1 M.

Taula de pKa a 25 °C

			•				
Nombre del ácido	pK _{a1}	pK _{a2}	pK _{a3}	Nombre del ácido	pK _{a1}	pK _{a2}	pK _{a3}
1-Butanoico	4,81			Ión Piperidinio	11,12		
Acético	4,75			Ión Trimetilamonio	9,80		
Acetilsalicílico	3,49			Láctico	3,86		
Arsénico	2,23	6,95	11,49	Maleico	1,88	6,22	
Arsenioso	9,29			Málico	3,45	5,09	
Benzoico	4,20			Malónico	2,84	5,69	
Bórico	9,23			Mandélico	3,39		
Carbónico	6,35	10,32		Nitroso	3,14		
Cianhídrico	9,20			orto-Ftálico	2,95	5,40	
Cítrico	3,80	4,74	5,40	Oxálico	1,25	4,26	
Cloroacético	2,86			Peróxido de Hidrógeno	11,65		
Fenol	10,00			Peryódico	1,69	8,30	
Fluorhídrico	3,16			Pícrico	0,36		
Fórmico	3,74			Pirúvico	2,49		
Fosfórico	2,14	7,19	12,34	Propanoico	4,87		
Fosforoso	1,52	6,79		Salicílico	2,97		
Fumárico	3,05	4,49		Succínico	4,20	5,63	
Glicólico	3,83			Sulfámico	0,98		
Hidrazoico	4,65			Sulfhídrico	7,01	13,88	
Hipocloroso	7,52			Sulfúrico	Fuerte	1.99	
Ión Amonio	9,24			Sulfuroso	1,91	7,18	
Ión Anilinio	4,60			Tartárico	3,03	4,36	
Ión Dimetilamonio	10,77			Tiocíanico	0,88		
Ión etanolamonio	9,49			Tiosulfúrico	0,52	1,60	
Ión Etilamonio	10,63			Tricoloroacético	-0,47		
Ión Etilenamonio	6,84	9,92		Yódico	0,76		
Ión Hidrazinio	7,97						
Ión Hidroxilamonio	5,95						
Ión Metilamonio	10,63						

• 8.3.5. Solucions reguladores del pH.

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.5. Solucions reguladores del pH.

Tercera prova. Curs 2012-2013

R-2) En el laboratori disp	osem d'àcid nítr	ic, hidròxid sòdic i els següents			
àcids febles:					
	Àcid	pKa			
	Acètic	4.75			
	Cianhídric	9.2			
	Clorós	1.96			
	Fòrmic	3.74			
	Hipoclorós	7.5			
	Nitrós	3.29			
	Oxàlic	1.25 – 4.3			
a) Indica quin àcid utilitzaries per preparar un tampó a pH=7.3. Explica com					
prepararies un litre d'aquesta dissolució reguladora o tampó a partir de 0.1					
mols de l'àcid que has triat i els reactius de què disposes.					
b) Calcula com variarà el pH d'aquesta dissolució quan a 200 mL d'aquesta s'hi afegeixin 8 mL d'HCl 0.1M.					

 a) L'únic àcid d'aquesta llista que serveix per preparar un tampó a pH= 7,3 és l'hipoclorós. És l'àcid que té el pK_a més proper al pH del tampó.
 Suposem que volem preparar 1 L de tampó

cal formar la base conjugada: $HCIO + NaOH \rightarrow CIO^- + H_2O + Na^+$

0,1-x -x x

 $pH = pK_a + log (C_b/C_a)$ 7,3 = 7,5 + log x/ (0,1-x) x= 0,0387mols/L

Solució tampó: 0,1 mols de HCIO + 0,0387 mols NaOH en 1 L.

b) En 200 mL del tampó

mols HCIO = 0,2 L · 0,0613 M = 0,01226

mols CIO $^{-}$ = 0,2 L \cdot 0,0387 M = 0,00774

Afegim 0,008 L · 0,1 M = 8.10⁻⁴ mols HCl que reaccionen amb la base conjugada

CIO $^{-}$ + HCI \rightarrow HCIO + CI $^{-}$ 0,00774 - 8.10 $^{-4}$ 0,01226+8.10 $^{-4}$

 $pH = pK_a + log (C_b/C_a); pH = 7.5 + log (0.00694 mols/0.208L / 0.01306 mols/0.208L)$

pH = 7,225

Àcid-Base

VALORACIONS ÀCID-BASE

Determinació de la concentració exacte d'una solució d'un àcid o d'una base

Mètode: volumetries àcid-base

Una solució amb una concentració coneguda de base (o àcid) s'addiciona a una solució d'àcid (o de base) de concentració desconeguda.

Es mesura el volum de la solució de base (o àcid) necessari per a neutralitzar tot l'àcid (o base).

Quan la reacció s'ha completat (neutralització)

Punt d'equivalència

Es caracteritza per un canvi brusc i nítid del pH del medi (P-E.)

Cal un indicador químic o un pHmetre per a detectar el Punt Final (P.F.)

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Exercici 8.37. Es valoren 10 mL d'un vinagre amb NaOH 0,202 M. Quan s'arriba al punt final de la valoració s'han gastat 34,8 mL. Quina és la concentració d'àcid acètic d'aquest vinagre?

 CH_3 -COOH + NaOH \rightarrow Na $^+CH_3$ -COO $^-$ + H_2O Reacció 1:1 n^0 mols àcid = n^0 de mols base

 $34.8.10^{-3} L \times 0.202 \text{ mols.L}^{-1} = 10.10^{-3} L .M$ M = 0.703 mol/L

0,703 mol/L . 60g/1mol = 42,18 g/L 4,218g/100 mL

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Exercici 8.38. Determineu el volum del punt d'equivalència de la valoració de 20 mL d'àcid nítric 0,2 M mitjançant una solució d'hidròxid sòdic 0,1 M.

$$HNO_3 + NaOH \rightarrow Na^+NO_3 + H_2O$$

$$0,020.0,2 = 0,1 V_{eq}$$

$$V_{eq} = 0.04 L$$
 40 mL $pH = 7$ PE

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Valoració àcid fort-base forta

Exemple: Valoració de 100 mL d'HCl 0.1 M amb NaOH 0.1 M

V base afegida (mL)	Mols de base afegits	pН
0	0	1
25	0.0025	1.22
50	0.0050	1.48
75	0.0075	1.85
90	0.009	2.28
99	0.0099	3.30
100	0.01	7.0
101	0.0101	10.7
110	0.0110	11.68
130	0.0130	12.12
150	0.0150	12.30

6.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Valoració base forta- àcid fort

Exercici 8.39. Determineu la corba de valoració de 50 mL d'hidròxid potàssic 0,2 M amb HNO₃ 0,1 M.

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Valoració àcid feble-base forta

Exemple: Valoració de 100 mL d'àcid acètic 0.1 M amb NaOH 0.1 M

V base afegida (mL)	Mols de base afegits	pН
0	0	2.87
25	0.0025	4.27
50	0.0050	4.75
75	0.0075	5.22
90	0.009	5.70
99	0.0099	6.75
100	0.01	8.72
101	0.0101	10.69
125	0.0125	12.04
150	0.0150	12.31

Valoracions d'àcids o bases débils

Només es considerarà la valoració amb bases o àcids forts

$$\begin{array}{ccc} \text{HA} + \text{H}_2\text{O} & & \text{A}^- + \text{H}_3\text{O}^+ \\ \text{àcid} & & \text{base} & & \text{Ka} = \frac{[A^-]}{[\text{HA}]} \ [\text{H}_3\text{O}^+] \end{array}$$

Zones de la corba de valoració:

- 1 El pH inicial depèn de la Ka o Kb
- 2 El pH se correspon amb el de la dissolució Reguladora que es forma durant la valoració.
- 3 El PH en el P.E. es correspon amb el de la sal formada.

El pH depèn de l'excés de base o àcid addicionat

Valoració d'àcid débil amb base forta

UdG

Valoracions d'àcids o bases débils

(1) Si es valora un àcid: $K_A = \frac{[H_3O^+][A^-]}{[HA]}$ \longrightarrow pH = -log [H₃O+]

 $[H_3O^*] = [A^-].$

Si es valora una base: $K_B = \frac{[OH^-][HA]}{[A^-]}$ \longrightarrow pH = 14 -pOH

[OH] = [HA].

(2) Equacions de Hendersson- Hasselbach

$$\rho H = \rho K_A + \log \frac{[A^-]}{[HA]}$$

(3) P.E. Tot l'àcid inicial o la base inicial es transforma en la seva base o àcid conjugat.
El pH el fixa la sal formada

(4) El pH el fixa l'excés de base o àcid sobrepassat el P.E.

• 8.3.6. Corbes de valoració

Efecte de la concentració inicial de l'àcid

, mL

Efecte de la fortalesa de l'àcid

8.3.6. Corbes de valoració àcids polipròtics

• 8.3.6. Introducció a les valoracions àcid-base. Corbes de valoració

Valoració base feble - àcid fort

Exercici 8.40. Determineu la corba de valoració de 50 mL d'amoníac $(pK_b = 4.8) 0.2 \text{ M}$ amb $HCIO_4 0.1 \text{ M}$.

Volum addicionat	Mols addicionats	Mols excés	рН
0	0	0,01	11,25
25	0,0025	0,0075	9,68
50	0,005	0,005	9,20
75	0,0075	0,0025	8,72
90	0,009	0,001	8,25
99	0,0099	0,0001	7,20
100	0,01	0	5,19
101	0,0101	1E-04	3,18
110	0,011	0,001	2,20
150	0,015	0,005	1,60
200	0,02	0,01	1,40

Valoració base feble - àcid fort

8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

Indicadors: Àcids o bases débils que les seves formes àcid/base conjugades presenten colors diferents.

HInd (aq) +
$$H_2O$$
 (l) \leftrightarrow H_3O^+ (aq) + Ind $^-$ (aq)

Color A

Color B

$$K_a(HInd) = \frac{[Ind^-][H_3O^+]}{[HInd]}$$

Quan a una dissolució li addicionem un indicador, estan presents les dues espècies HInd i Ind-.

8.3 Equilibris de transferència de protons. Càlcul de pH

- 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador
 - Si [HIn] / [In] ≥ 10 ⇒ COLOR A
 - Si [Hln] / [ln] ≤ 0,1 ⇒ **COLOR B**
 - Si 0,1< [Hln] / [ln] < 10 ⇒ COLOR MESCLA DE A i B

$$K_{Ind} = \frac{[Ind^{-}][H_{3}O^{+}]}{[HInd]} \qquad [H_{3}O^{+}] = K_{Ind} \cdot \frac{[HInd]}{[Ind^{-}]}$$

- Si [HIn] / [In] \geq 10 \Rightarrow [H₃O⁺] \geq 10 K_{ind} \Rightarrow pH \leq pK_{ind} -1 \Rightarrow COLOR A
- Si [HIn] / [In] ≤ 0,1 \Rightarrow [H₃O⁺] ≤ 10 K_{ind} \Rightarrow pH ≥ pK_{ind} +1 \Rightarrow COLOR B
- •Si 0,1< [HIn] / [In] < 10 \Rightarrow pK_{ind} -1 < pH < pK_{ind} +1 \Rightarrow COLOR MESCLA

• 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

Cal emprar la quantitat mínima d'indicador necessària per a produir el canvi perceptible de color en el P.E.

• 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

8.3 Equilibris de transferència de protons. Càlcul de pH

• 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

•Exercici 8.41. Quin és el millor indicador per a la valoració de l'exercici 8.40?

pH = 5,19 vermell de metil

Vira de groc a vermell

Prova de Química. Vuitena prova.

16,67/2010

7. Determina el pH inicial i el del punt d'equivalència d'una valoració de 20 mL d'àcid propanoic 0.6

M amb hidròxid potàssic 0.4 M. pK_a(propanoic) = 4.87. Digues quin indicador utilitzaries per determinar el punt final de la valoració i perquè.

Indicadors àcid/base			
Nom vulgar	pHs extrems de l'interval de viratge	Color per sota el pH inferior	Color per sobre el pH superior
Blau de timol	1,2-2,8	Vermell	Groc
	8,0-9,6	Groc	Blau
Ataronjat de metil	3,2-4,4	Vermell	Ataronjat
Verd de bromocresol	3,8-5,4	Groc	Blau
Roig de metil	4,8-6,0	Vermell	Groc
Blau de bromotimol	6,0-7,6	Groc	Blau
α-Naftolftaleïna	7,3-8,7	Groc	Blau
Fenolftaleïna	8,2-10,0	Incolor	Vermell

pH inicial: pH= $\frac{1}{2}$ pKa – $\frac{1}{2}$ log Ca= $\frac{1}{2}$ 4.87 – $\frac{1}{2}$ log 0,6 = 2,55

Punt d'equivalència: $0,020.0,6 = 0,4.V_{eq}$; $V_{eq} = 30 \text{ mL}$

 $[A^{-}] = (0.020. \ 0.6)/(0.020+0.030) = 0.24 \ M$

 $pH = 7 + 1/2 + 4.87 + \frac{1}{2} \log 0.24 = 9.13$

8.3 Equilibris de transferència de protons. Càlcul de pH

8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

5) (5 punts) Es valoren 25 mL d'una solució d'una substància X (pKa= 9.24) amb HCl 0.1 M, i s'obté la corba de valoració següent, on s'hi han indicat també uns valors de pH concrets:

• 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador

Llegeix les següents 5 qüestions i per a cadascuna d'elles indica l'única resposta correcte a la taula final. **Només es corregirà la taula.** Les respostes incorrectes no resten punts.

1. La substància valorada és:

- a) <u>Un àcid monopròtic</u>
 b) Una base monopròtica
 c) Un tampó
 d) Un àcid dipròtic
- 2. L'addició de 5 a 20 mL de HCl només fa variar el pH 1.5 unitats. Això s'explica perquè:
 - a) L'HCl és un àcid feble i no pot modificar molt el pH
 - b) En aquesta zona es forma una sal neutre, que neutralitza l'acció de l'àcid
 - c) És degut a la formació d'un tampé
 d) L'HCl és un àcid monopròtic
- 3. La concentració inicial de X és:
 - a) 11.2 M b) 10⁻⁶ M c) 0.1 M d) 5.3 M

8.3 Equilibris de transferència de protons. Càlcul de pH

- 8.3.7.Indicadors. Interval de viratge i elecció de l'indicador
- Utilitzant l'indicador adequat dels que es mostren en la taula, el canvi de color que observarem serà:
 - a) D'incolor a vermell
 - b) De vermell a taronja
 - c) De groc a vermell
 - d) De vermell a groc
- 5. Per tal de calcular el pH en el punt on hem addicionat 35 mL, considerarem:
 - a) Que majoritàriament tenim una base forta
 - (b) Que majoritàriament tenim un àcid fort
 - c) Que no es poden despreciar els protons i hidroxil provinents de la dissociació de l'aigua
 - d) Que tenim un tampó