Question 7 (7 marks)

The ages in years, and salaries in thousands of dollars (\$'000), of eight employees at a company are shown below. The equation of the least-squares line for these data is y = 0.2x + 38.

Age (x)	35	37	41	43	45	47	53	55
Salary (y)	42	44	47	50	52	51	49	45

The table below shows the predicted y-values, obtained from the equation of the least-squares line, and the corresponding residuals.

x	у	Predicted y-value	Residual	
35	42	45.0	-3.0	
37	44	45.4	-1.4	
41	47	46.2	0.8	
43	50	46.6	3.4	
45	52	47.0	5.0	
47	51	47.4	3.6	
53	49	48.6	0.4	
55	45	Α	В	

(a) Determine the value of **A** and **B**.

(2 marks)

Residual

(c) Justify, using the residual plot in part (b), whether the least-squares line is a good model for these data. (2 marks)

The calculated	correlation	coefficient	for these	data is 0.42.
----------------	-------------	-------------	-----------	---------------

(d) Describe how this supports your response in part (c).

(1 mark)