MATH 8610 (SPRING 2021) FINAL EXAM

Assigned 04/28/2021 at 8am, due at 11:30am. Unless there is significant urgent accident with proper documented proof, no submission will be accepted after 11:30am.

The final is closed-book. No references to textbooks, notes, online resources, previous homework are allowed. No communications in *any* form with any person other than myself during the exam. You can use a calculator, pen/pencil and paper. No computers or any electronic devices are allowed. Violations of academic integrity would be reported and handled following the University's Graduate Student Handbook.

- 1. [Q1] Let $A \in \mathbb{R}^{n \times n}$ be real symmetric, indefinite and nonsingular. Consider a signed Cholesky factorization $A = LDL^T$, where L is lower triangular, and D is a diagonal matrix with ± 1 diagonal elements. Consider a collection of such matrices, for which $\kappa_2(L) \leq C_n$ for some moderate constant $C_n > 0$ (assume n is fixed).
 - (a) Show that for these matrices, the Cholesky factor L satisfies $||L||_2 \leq \sqrt{C_n ||A||_2}$.
 - (b) Suppose a signed Cholesky factorization applied to these matrices gives \widehat{L} , and diagonal \widehat{D} with ± 1 entries, such that $A + \Delta A = \widehat{L}\widehat{D}\widehat{L}^T$, with $\kappa_2(\widehat{L}) \leq C_n$, and $\frac{\|\Delta A\|_2}{\|\widehat{L}\|_2\|\widehat{L}^T\|_2} = \mathcal{O}(\epsilon_{mach})$. Show this algorithm is backward stable for such matrices.

(Hint: left and right multiply $A = LDL^T$ by L^{-1} and L, respectively, note that D is orthogonal, and find an upper bound on $\|L^TL\|_2$; also need $\|L\|_2\|L^T\|_2 = \|L^TL\|_2$)

$$\begin{split} & [\mathbf{A}\mathbf{1}] \text{ From } A = LDL^T, \text{ we have } L^{-1}AL = DL^TL, \text{ and } \|DL^TL\|_2 = \|L^{-1}AL\|_2. \text{ Since } D \text{ is an orthogonal matrix, it follows that } \|L^TL\|_2 = \|DL^TL\|_2 \leq \|L^{-1}\|_2 \|A\|_2 \|L\|_2 = \kappa_2(L)\|A\|_2 \leq C_n\|A\|_2. \text{ Meanwhile, let } L = U\Sigma V^T \text{ be an SVD of } L, \text{ and we have } \|L^TL\|_2 = \|U\Sigma V^TV\Sigma U^T\|_2 = \|\Sigma^2\|_2 = \max\{\sigma_i^2\} = \|L\|_2^2 = \|L\|_2 \|L^T\|_2. \text{ It follows that } \|L\|_2^2 \leq C_n\|A\|_2, \text{ or } \|L\|_2 \leq \sqrt{C_n\|A\|_2}. \end{split}$$

Given the actual computed signed Cholesky factorization $A + \Delta A = \widehat{L}\widehat{D}\widehat{L}^T$, the above derivation shows that $\|\widehat{L}\|_2 \|\widehat{L}^T\|_2 \le C_n \|A + \Delta A\|_2 \le C_n (\|A\|_2 + \|\Delta A\|_2)$. Therefore, from the known relation $\frac{\|\Delta A\|_2}{\|\widehat{L}\|_2 \|\widehat{L}^T\|_2} = \mathcal{O}(\epsilon_{mach})$, we have $\frac{\|\Delta A\|_2}{C_n (\|A\|_2 + \|\Delta A\|_2)} = \mathcal{O}(\epsilon_{mach})$, or $\frac{\|\Delta A\|_2}{\|A\|_2 + \|\Delta A\|_2} \le \widetilde{C}_n \epsilon_{mach}$. Taking the reciprocal of both sides, subtract 1, then taking the reciprocal again, we have $\frac{\|\Delta A\|_2}{\|A\|_2} \le \frac{\widetilde{C}_n \epsilon_{mach}}{1 - \widehat{C}_n \epsilon_{mach}} = \mathcal{O}(\epsilon_{mach})$ for sufficiently small ϵ_{mach} . This established the backward stability of signed Cholesky factorization algorithm for all symmetric matrices whose Cholesky factors satisfy $\kappa_2(L) \le C_n$.

2. [Q2] Let $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ be of full rank n, with SVD $A = \sum_{j=1}^{n} \sigma_{j} u_{j} v_{j}^{T}$, with singular values $\sigma_{1} \ge \sigma_{2} \ge \ldots \ge \sigma_{n} > 0$. Choose and fix index k $(1 \le k < n)$, define $A_{k} = \sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{T} + \sum_{j=k+1}^{n} \frac{\sigma_{k+1}}{2} u_{j} v_{j}^{T}$, and consider $S = \{B : B \in \mathbb{R}^{m \times n}, \sigma_{j}(B) \le \frac{\sigma_{k+1}}{2}, k+1 \le j \le n\}$ (similarly, assuming that $\sigma_{1}(B) \ge \ldots \ge \sigma_{n}(B)$). Show that

$$||A - A_k||_2 = \inf_{B \in S} ||A - B||_2.$$

(Hint: Note that $||Aw|| \le ||Bw|| + ||(A-B)w||$, assume that there exists a minimizer $B \ne A_k$, and let w lie in a subspace spanned by certain right singular vectors)

[A2] By the definition of $A_k \in S$, we have $\|A - A_k\|_2 = \max_{j=k+1}^n \left| \sigma_j - \frac{\sigma_{k+1}}{2} \right| = \frac{\sigma_{k+1}}{2}$. Assume by contradiction that there exists a matrix $B \in S$, such that $\|A - B\|_2 < \frac{\sigma_{k+1}}{2}$. For this matrix, and any vector $w \in \text{span}\{v_{k+1},\ldots,v_n\}$ (space spanned by the right singular vectors of A corresponding to the smallest singular values) of unit 2-norm, $\|Aw\|_2 \leq \|Bw\|_2 + \|(A - B)w\|_2 \leq \frac{\sigma_{k+1}}{2} + \|A - B\|_2 < \sigma_{k+1}$. This is a contradiction

if we let $w = v_{k+1}$ since $||Aw||_2 = \sigma_{k+1}$. In short, there does not exist such a better approximation $B \in S$ to A; that is, $||A - A_k||_2 = \inf_{B \in S} ||A - B||_2$.

- 3. [Q3] Consider the unshifted QR iteration applied to a real symmetric tridiagonal matrix H, described by $Q^{(k)}R^{(k)}=H^{(k-1)}$ and $H^{(k)}=R^{(k)}Q^{(k)}$, with $H^{(0)}=H$. Define $\underline{Q}^{(k)}=Q^{(1)}\cdots Q^{(k)}$ and $\underline{R}^{(k)}=R^{(k)}\cdots R^{(1)}$.
 - (a) Is the arithmetic work of each QR iteration $\mathcal{O}(n)$, $\mathcal{O}(n^2)$, or $\mathcal{O}(n^3)$, and why?
 - (b) With $H^k = \underline{Q}^{(k)}\underline{R}^{(k)}$, show that under certain mild assumptions, the first and the last column of $\underline{Q}^{(k)}$ converge to the eigenvector of H associated with the largest and the smallest (modulus) eigenvalues, respectively.
 - (c) Now consider the *shifted QR* iteration. Assume that the bottom-right 3×3 block

of
$$H^{(k)}$$
 is $\begin{bmatrix} \times & \eta a \\ \eta a & a+b & \delta \\ \delta & b \end{bmatrix}$, with $|\delta|$ sufficiently small, $|a|$ not very small, and $\eta \neq 0$.

Assume that the shift $\mu^{(k+1)} = b$ is used to transform $H^{(k)}$ to $H^{(k+1)}$. Give an upper bound on the (n, n-1) entry of $H^{(k+1)}$ in modulus. What does this imply?

- [A3] (a) If each $H^{(k)}$ is a tridiagonal matrix, then each Givens rotation applied to the left side of $H^{(k)}$ only changes at most 6 entries, and so does each Givens rotation applied to the right side of $R^{(k)}$. Therefore, in each QR iteration, the total arithmetic cost to perform QR and compute RQ by n-1 Givens rotations is $\mathcal{O}(n)$.
- (b) We multiply both sides of $H^k = \underline{Q}^{(k)}\underline{R}^{(k)}$ by e_1 on the right, and obtain $H^ke_1 = \underline{Q}^{(k)}\underline{R}^{(k)}e_1 = r_{11}^{(k)}\underline{Q}^{(k)}e_1 = r_{11}^{(k)}\underline{q}_1^{(k)}$ (a scalar multiple of the first column of the accumulated Q factor). Since H^ke_1 is the vector obtained in the k-th step of the power method with matrix H and starting vector e_1 , it typically converges toward the eigenvector associated with the largest (in modulus) eigenvalue of H, if the eigenvalue of such largest modulus is unique, and e_1 has a nonzero component of this eigenvector; the right-hand side $q_1^{(k)}$ is the first column of the accumulated Q factor.

Similarly, taking the inverse transpose of $H^k = \underline{Q}^{(k)}\underline{R}^{(k)}$ gives $H^{-k} = \underline{Q}^{(k)}\big(\underline{R}^{(k)}\big)^{-T}$. Multiplying both sides by e_n , we have $H^{-k}e_n = \underline{Q}^{(k)}\big(\underline{R}^{(k)}\big)^{-T}e_n = \frac{1}{r_{nn}^{(k)}}\underline{Q}^{(k)}e_n = \frac{1}{r_{nn}^{(k)}}\underline{Q}^{(k)}$. Since $H^{-k}e_n$ is the vector obtained in the k-th step of the inverse power method with H and starting vector e_n , it usually converges toward the eigenvector associated with the smallest (modulus) eigenvalue of H, under similar mild assumptions; the right-hand side $\underline{q}_n^{(k)}$ is the last column of the accumulated Q factor.

(c) To QR factorize the tridiagonal matrix, we first obtain $H^{(k)}-bI$, which has the right bottom 3-by-3 block $\left[\begin{array}{ccc} \times & \eta a \\ \eta a & a & \delta \\ & \delta & 0 \end{array} \right]$. Then, we apply n-2 Givens rotations on

the left side of $H^{(k)} - bI$, and note that the (n-2)-nd Givens rotation is not identity because the (n-1, n-2) entry is $\eta a \neq 0$. As a result, right before applying the last

Givens rotation on the left, we have the temporary matrix $H_{tmp}^{(k)} = \begin{bmatrix} \times & \times & \times \\ \times & \widehat{a} & \widehat{\delta} \\ & \delta & 0 \end{bmatrix}$,

where $|\widehat{a}| \leq \sqrt{1+\eta^2}|a|$ and $\widehat{\delta} \leq |\delta|$ as a result of the (n-2)-nd Givens rotation applied on the left side (which does not change the 2-norm of the vectors $H_{tmp}^{(k)}(n-2:n-1,n-1)$ and $H_{tmp}^{(k)}(n-2:n-1,n)$). Then, following HW4 Q5(b), the (n,n-1) entry of $H^{(k+1)}$ is $H_{n,n-1}^{(k+1)} = -\frac{\widehat{\delta}\delta^2}{\widehat{a}^2+\delta^2}$. Since we assumed that |a| is not very small and $|\delta|$ is sufficiently small, unless \widehat{a} happens to be very small, we have $|H_{n,n-1}^{(k+1)}| = \mathcal{O}(\delta^3)$, which establishes cubic convergence of the (n,n-1) entry as the QR iteration proceeds.

- 4. [Q4] Consider the Arnoldi relation $AU_k = U_{k+1}\underline{H}_k$, with $U_k^TU_k = I$, $\underline{H}_k \in \mathbb{R}^{(k+1)\times k}$. Let (μ, w) be an eigenpair of H_k (the top k rows of \underline{H}_k).
 - (a) Show that $(\mu, U_k w)$ satisfies $AU_k w \mu U_k w \perp \mathcal{K}_k(A, u_1)$, and $||AU_k w \mu U_k w||_2 = |h_{k+1,k} w(k)|$, where w(k) is the last element of w.
 - (b) What happens if $col(U_k)$ is an invariant subspace of A, i.e., $col(AU_k) \subset col(U_k)$? Under what condition(s) for u_1 would this scenario happen?
 - [A4] (a) The eigenpair (μ, w) satisfies $H_k w = \mu w$. We multiply both sides of the Arnoldi relation on the right by w and get $AU_k w = U_k H_k w + h_{k+1,k} u_{k+1} e_k^T w = \mu U_k w + h_{k+1,k} u_{k+1} e_k^T w$. It follows that the eigenresidual vector $AU_k w \mu U_k w = h_{k+1,k} u_{k+1} e_k^T w = h_{k+1,k} w(k) u_{k+1}$ is a scalar multiple of vector u_{k+1} . By the construction of Arnoldi's method, $u_{k+1} \perp \text{span}\{u_1, \dots, u_k\} = \mathcal{K}_k(A, u_1)$. Also, $\|AU_k w \mu U_k w\|_2 = \|h_{k+1,k} w(k) u_{k+1}\|_2 = |h_{k+1,k} w(k)|$ because $\|u_{k+1,2} u_k u_k u_k\|_2 = \|h_{k+1,k} u_k u_k\|_2 = \|h_{k+1,k} u_k\|_2$
 - (b) If $\operatorname{col}(AU_k) \subset \operatorname{col}(U_k)$, then $\mathcal{K}_{k+1}(A, u_1) = \operatorname{span}\{u_1\} + A\mathcal{K}_k(A, u_1) = \operatorname{span}\{u_1\} + \operatorname{col}(AU_k) \subset \operatorname{col}(U_k) = \mathcal{K}_k(A, u_1)$. Meanwhile, since $\mathcal{K}_k(A, u_1) \subset \mathcal{K}_{k+1}(A, u_1)$, we have $\mathcal{K}_k(A, u_1) = \mathcal{K}_{k+1}(A, u_1)$; that is, the dimension of $\mathcal{K}_k(A, u_1)$ will no longer increase with k. This would happen if the starting vector u_1 is a linear combination of eigenvectors of A associated with k distinct eigenvalues.
- 5. [Q5] Let $r_0 = b Ax_0$ be the initial residual vector of the linear system Ax = b, and $r_k = r_0 Az_k$ with $z_k \in \mathcal{K}_k(A, r_0)$.
 - (a) Show that $p_k \perp A\mathcal{K}_k(A, r_0)$ for CG, and $r_k \perp A\mathcal{K}_k(A, r_0)$ for GMRES. As a result, show that $(r_j, p_k) = (r_k, p_k)$ for CG, and $(r_j, r_k) = (r_k, r_k)$ for GMRES $(1 \leq j < k)$.
 - (b) Let $AU_k = U_{k+1}\underline{H}_k$ be the Lanczos/Arnoldi relation for solving Ax = b, where $u_1 = \frac{r_0}{\|r_0\|_2}$. Let the k-th iterate of CG or GMRES be $x_k = x_0 + U_k y_k$. Show that $H_k y_k = \|r_0\|_2 e_1$ for CG, whereas $\underline{H}_k^T \underline{H}_k y_k = \|r_0\|_2 \underline{H}_k^T e_1$ for GMRES.

(Hint: for GMRES, consider the normal equation for the linear least squares)

[A5] (a) For CG, we have span $\{r_0, \ldots, r_{k-1}\} = \operatorname{span}\{p_0, \ldots, p_{k-1}\} = \mathcal{K}_k(A, r_0)$, with $p_0 = r_0$. Since $p_i^T A p_j = 0$ for all $i \neq j$, we have $p_k \perp \operatorname{span}\{A p_0, \ldots, A p_{k-1}\} = A \mathcal{K}_k(A, r_0)$. Recall that for Krylov subspace methods, the residual at the k-th step is $r_k = r_0 - A z_k$ with $z_k \in \mathcal{K}_k(A, r_0)$. Note that $r_k - r_j = (r_0 - A z_k) - (r_0 - A z_j) = A(z_j - z_k) \in A \mathcal{K}_k(A, r_0)$ because $1 \leq j < k$. It follows that $r_k - r_j \perp p_k$, which is equivalent to $(r_j, p_k) = (r_k, p_k)$. For GMRES, since the residual $r_k = r_0 - A z_k = r_0 - A U_k y_k$ is minimized in 2-norm for all $y \in \mathbb{R}^k$, the least squares condition we learned from Chapter 2 states that y_k must satisfy $r_k = r_0 - A U_k u_k \perp \operatorname{col}(A U_k) = A \mathcal{K}_k(A, r_0)$. Replacing p_k we have shown for CG with r_k of GMRES, we obtain $(r_j, r_k) = (r_k, r_k)$.

For CG, $r_k \perp \text{span}\{r_0, \dots, r_{k-1}\} = \mathcal{K}_k(A, r_0) = \text{col}(U_k)$. Therefore, $r_k = r_0 - Az_k = U_k e_1 ||r_0||_2 - AU_k y_k = U_k e_1 ||r_0||_2 - U_k H_k y_k - h_{k+1,k} u_{k+1} e_k y_k$ satisfies

$$U_k^T r_k = U_k^T \left(U_k e_1 \| r_0 \|_2 - U_k H_k y_k - h_{k+1,k} u_{k+1} e_k y_k \right) = e_1 \| r_0 \|_2 - H_k y_k = 0,$$

which gives $H_k y_k = ||r_0||_2 e_1$.

For GMRES, we have $r_k = U_{k+1}e_1\|r_0\|_2 - U_{k+1}\underline{H}_ky_k = U_{k+1}(e_1\|r_0\|_2 - \underline{H}_ky_k)$ satisfying $r_k \perp \operatorname{col}(AU_k) = \operatorname{col}(U_{k+1}\underline{H}_k)$. This leads to

$$(AU_k)^T = (U_{k+1}\underline{H}_k)^T r_k = \underline{H}_k^T (e_1 ||r_0||_2 - \underline{H}_k y_k) = 0,$$

which gives $\underline{H}_k^T \underline{H}_k y_k = ||r_0||_2 \underline{H}_k^T e_1$.