waveCUDA: A new CUDA-accelerated R package for wavelet analysis

Julian Waton Supervisor: Dr Emma McCoy

Imperial College London

2 July 2014 R User Conference 2014

> Imperial College London

Outline

Introduction

Outline Purpose of waveCUDA Applications of wavelets

Background

What are Wavelets? What is CUDA?

waveCUDA

Parallelising wavelets with CUDA Speedups How to get waveCUDA

The end

Interest Acknowledgements References

Performing CUDA-accelerated wavelet analysis

waveCUDA

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis wmtsa (Constantine & Percival, 2013), wavethresh (Nason, 2013), waveslim (Whitcher, 2013)

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis wmtsa (Constantine & Percival, 2013), wavethresh (Nason, 2013), waveslim (Whitcher, 2013) - but not GPU-accelerated

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis wmtsa (Constantine & Percival, 2013), wavethresh (Nason, 2013), waveslim (Whitcher, 2013) - but not GPU-accelerated
- There are also a small number of CUDA-accelerated R packages

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis wmtsa (Constantine & Percival, 2013), wavethresh (Nason, 2013), waveslim (Whitcher, 2013) - but not GPU-accelerated
- There are also a small number of CUDA-accelerated R packages gputools (Buckner et al., 2013), HiPLARM (Montana et al., 2013)

- Performing CUDA-accelerated wavelet analysis
- Standard DWT already fast in 1D but can be faster
- There are already packages in R for wavelet analysis wmtsa (Constantine & Percival, 2013), wavethresh (Nason, 2013), waveslim (Whitcher, 2013) - but not GPU-accelerated
- There are also a small number of CUDA-accelerated R packages gputools (Buckner et al., 2013), HiPLARM (Montana et al., 2013)
- I want to be able to do wavelet analysis more quickly in R!

• Time-frequency analysis of time series

- Time-frequency analysis of time series
- Data/image smoothing

- Time-frequency analysis of time series
- Data/image smoothing
- Compression JPEG2000

- Time-frequency analysis of time series
- Data/image smoothing
- Compression JPEG2000

- Time-frequency analysis of time series
- Data/image smoothing
- Compression JPEG2000

• Financial time series - multi-temporal analysis

- Time-frequency analysis of time series
- Data/image smoothing
- Compression JPEG2000

- Financial time series multi-temporal analysis
- WNN

- Time-frequency analysis of time series
- Data/image smoothing
- Compression JPEG2000

- Financial time series multi-temporal analysis
- WNN
- Fault detection

waveCUDA

What are Wavelets?

The (1D) DWT convolves a vector with high-pass and low-pass filters.

The (1D) DWT convolves a vector with high-pass and low-pass filters.

$$c_{J-1,k} = \sum_{l=-\infty}^{\infty} g_l x_{2k-l},$$

$$d_{J-1,k} = \sum_{l=-\infty}^{\infty} h_l x_{2k-l},$$

for $k = 1, ..., 2^{J-1}$, which gives the first level of filtering.

The (1D) DWT convolves a vector with high-pass and low-pass filters.

$$c_{J-1,k}=\sum_{l=-\infty}^{\infty}g_lx_{2k-l},$$

$$d_{J-1,k}=\sum_{l=-\infty}^{\infty}h_lx_{2k-l},$$

for $k = 1, \dots, 2^{J-1}$, which gives the first level of filtering. Then we recursively filter the scaling coefficients, $c_{i,k}$

The (1D) DWT convolves a vector with high-pass and low-pass filters.

$$c_{J-1,k}=\sum_{l=-\infty}^{\infty}g_lx_{2k-l},$$

$$d_{J-1,k}=\sum_{l=-\infty}^{\infty}h_lx_{2k-l},$$

for $k = 1, \dots, 2^{J-1}$, which gives the first level of filtering. Then we recursively filter the scaling coefficients, $c_{i,k}$

$$c_{j-1,k} = \sum_{l=-\infty}^{\infty} g_l c_{j,2k-l},$$

$$d_{j-1,k} = \sum_{l=-\infty}^{\infty} h_l c_{j,2k-l},$$

for
$$k = 1, ..., 2^j, j = J - 1, ..., 1$$

The (1D) DWT convolves a vector with high-pass and low-pass filters.

$$c_{J-1,k}=\sum_{l=-\infty}^{\infty}g_lx_{2k-l},$$

$$d_{J-1,k}=\sum_{l=-\infty}^{\infty}h_lx_{2k-l},$$

for $k = 1, \dots, 2^{J-1}$, which gives the first level of filtering. Then we recursively filter the scaling coefficients, $c_{i,k}$

$$c_{j-1,k} = \sum_{l=-\infty}^{\infty} g_l c_{j,2k-l},$$

$$d_{j-1,k}=\sum_{l=-\infty}^{\infty}h_lc_{j,2k-l},$$

for $k=1,\ldots,2^j, j=J-1,\ldots,1$ Good books on wavelets are (Nason, 2008) and (Percival & Walden, 2000).

waveCUDA

What are Wavelets?

waveCUDA

What are Wavelets?

• Compute Unified Device Architecture

- Compute Unified Device Architecture!
- Markup language for C/C++ (Nvidia, 2011)

- Compute Unified Device Architecture!
- Markup language for C/C++ (Nvidia, 2011)
- Enables programmers to use graphics card as a GPGPU (General Purpose Graphics Processor Unit)

- Compute Unified Device Architecture!
- Markup language for C/C++ (Nvidia, 2011)
- Enables programmers to use graphics card as a GPGPU (General Purpose Graphics Processor Unit)
- Graphics cards are ideal for highly parallel SIMT (Simple Instruction, Multiple Thread) tasks

- Compute Unified Device Architecture!
- Markup language for C/C++ (Nvidia, 2011)
- Enables programmers to use graphics card as a GPGPU (General Purpose Graphics Processor Unit)
- Graphics cards are ideal for highly parallel SIMT (Simple Instruction, Multiple Thread) tasks
- Thanks to the gaming industry, GPU technology has been advancing at a higher rate than Moore's Law

- Compute Unified Device Architecture!
- Markup language for C/C++ (Nvidia, 2011)
- Enables programmers to use graphics card as a GPGPU (General Purpose Graphics Processor Unit)
- Graphics cards are ideal for highly parallel SIMT (Simple Instruction, Multiple Thread) tasks
- Thanks to the gaming industry, GPU technology has been advancing at a higher rate than Moore's Law

	Intel i7-3740QM CPU	NVIDIA GeForce 650M GPU
Cores	4	384
RAM	16GB	2GB
Cache	6MB	256KB
Clock speed	2.7 GHz	0.83GHz
Max memory bandwidth	25.6GB/s	80GB/s

Parallelising wavelets with CUDA

 DWT is parallelisable thanks to Sweldens (Sweldens, 1996, 1998; Daubechies & Sweldens, 1998)

Parallelising wavelets with CUDA

- DWT is parallelisable thanks to Sweldens (Sweldens, 1996, 1998; Daubechies & Sweldens, 1998)
- Wavelet transforms have already been implemented in CUDA (van der Laan, 2011)

Parallelising wavelets with CUDA

- DWT is parallelisable thanks to Sweldens (Sweldens, 1996, 1998; Daubechies & Sweldens, 1998)
- Wavelet transforms have already been implemented in CUDA (van der Laan, 2011)
- Optimisations used shared memory, block size, fiddly kernels performing multiple layers of transform

Parallelising wavelets with CUDA

- DWT is parallelisable thanks to Sweldens (Sweldens, 1996, 1998; Daubechies & Sweldens, 1998)
- Wavelet transforms have already been implemented in CUDA (van der Laan, 2011)
- Optimisations used shared memory, block size, fiddly kernels performing multiple layers of transform
- What has been implemented so far: Haar, Daubechies 4, thresholding, cross-validation

Speedups

I can do a live demo! Wish me luck...

How to get waveCUDA

Requirements:

- nVidia CUDA-capable GPU
- CUDA 5.5
- Linux

Download package from CRAN

How to get waveCUDA

Requirements:

- nVidia CUDA-capable GPU
- CUDA 5.5
- Linux

Download package from CRAN ...coming soon to CRAN repositories near you!

• This is a package in its infancy!

waveCUDA

Further work

- This is a package in its infancy!
- Further optimisations are planned more speedups!

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels
 - streams run simultaneous transforms

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels
 - streams run simultaneous transforms
- More wavelet filters

└─ How to get waveCUDA

Further work

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels
 - streams run simultaneous transforms
- More wavelet filters
- Other wavelet transforms

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels
 - streams run simultaneous transforms
- More wavelet filters
- Other wavelet transforms
 - Non-decimated/maximal overlap/stationary/a trous

- This is a package in its infancy!
- Further optimisations are planned more speedups!
 - in/output vectors avoids extra kernels
 - streams run simultaneous transforms
- More wavelet filters
- Other wavelet transforms
 - Non-decimated/maximal overlap/stationary/a trous
 - 2D transform even bigger speedups

Interest

Are you interested in this package? (rhetorical question that doesn't need answering now)

Email wavecuda@imperial.ac.uk if you would like to be updated when it is uploaded onto CRAN.

Acknowledgements

We are very grateful to BP for providing funding for this research.

References

- Buckner, Josh, Seligman, Mark, & Wilson, Justin. 2013. gputools: A few GPU enabled functions. http://CRAN.R-project.org/package=gputools, R package version 0.28.
- Constantine, William, & Percival, Donald. 2013. wmtsa: Wavelet Methods for Time Series Analysis. http://cran.r-project.org/package=wmtsa, R package version 2.0–0.
- Daubechies, I, & Sweldens, W. 1998. Factoring wavelet transforms into lifting steps. Journal of Fourier analysis and applications, 1–26.
- Montana, Giovanni, Nash, Peter, & Szeremi, Vendel. 2013. HiPLARM: High Performance Linear Algebra in R. http://cran.r-project.org/web/packages/HiPLARM, R package version 0.1.
- Nason, Guy. 2008. Wavelet Methods In Statistics With R. Springer.
- Nason, Guy. 2013. wavethresh: Wavelets statistics and transforms. http://cran.r-project.org/package=wavethresh, R package version 4.6.6.
- Nvidia. 2011. NVIDIA CUDA programming guide.
- Percival, Donald, & Walden, Andrew. 2000. Wavelet Methods For Time Series Analysis. Cambridge University Press.
- Sweldens, W. 1998. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 29(2), 511–546.
- Sweldens, Wim. 1996. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis, 3(2), 186–200.
- van der Laan, WJ. 2011. Accelerating wavelet lifting on graphics hardware using CUDA. *IEEE transactions on parallel and distributed systems*, **22**(1), 132–146.
- Whitcher, Brandon. 2013. waveslim: Basic wavelet routines for one-, two- and three-dimensional signal processing. http://cran.r-project.org/package=waveslim, R package version 1.7.3.