This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

Patent Abstracts of Japan

PUBLICATION NUMBER

63017393

PUBLICATION DATE

25-01-88

APPLICATION DATE

08-07-86

APPLICATION NUMBER

61160217

APPLICANT:

NIPPON DENSO CO LTD:

INVENTOR :

NONOGAKI MASAYUKI;

INT.CL.

F28F 1/40

TITLE

HEAT EXCHANGER

ABSTRACT :

PURPOSE: To reduce incurring of a heat loss in a pipe, to increase thermal conductivity in a pipe, to improve radiation performance, and to improve the efficiency of heat exchange, by a method wherein a number of semispherical projections, protruded inwardly, are formed on the flat part of a flat tube, and a specified relation is provided among an inner side distance (short size) between the flat parts, positioned facing each other, of the flat tube, the height of the projection, a pitch between the projections.

CONSTITUTION: Semispherical projections 6, protruded inwardly, are formed longitudinally and laterally in parallel on a flat wall 2a of a flat tube 2. A height H of the projection is set to a value (0.1B≤H≤0.4B) being 10% or more and 40% or less of the sectional height of a water flow passage, i.e. a short diameter B of the flat tube 2. Since the projections 6 are formed in a semispherical shape, the base part of the projection crosses the flat part 2a in a manner to form a gentle sloped surface in a range (2H<D<3H) of a diameter D of the base part of the projection is two times or more or three times or less as longer as the height H of the projection. A distance between the projections 6, extended along the direction of a flow, i.e. a pitch P, is limited to a value (10H≤P≤30H) being 10 times or more and 30 times or less as long as the height H of the projection.

COPYRIGHT: (C)1988,JPO&Japio

THIS PAGE BLANK (USPTO)

19 日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63 - 17393

int Cl.

識別記号

厅内整理番号

⑩公開 昭和63年(1988)1月25日

F 28 F 1/40

A - 6748 - 3L

審査請求 未請求 発明の数 1 (全6頁)

公発明の名称 熱交換器

> 到特 頤 昭61-160217

23出 頤 昭61(1986)7月8日

70条 明 者 谷 定行 神 砂発 明 者 鈴 木 俊 久 砂発 明 者 野々垣 昌之

爱知県刈谷市昭和町1丁目1番地 日本電装株式会社内 爱知県刈谷市昭和町1丁目1番地 日本電装株式会社内

愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内

①出 類 人 日本電装株式会社

爱知県刈谷市昭和町1丁目1番地

30代 理 人 弁理士 鈴江 武彦 外2名

1. 発明の名称

魚 交

2. 特許請求の範囲

流体が流される偏平チューブとフィンとを交互 に積層してコア部を形成した熱交換器において、 上記編平チューブにおける平坦部に、内方に向か って突出する多数の半球状の突起を形成し、この **海平チューブの互いに対向する平坦部間の内側間** 隔(短径)をB、上記突起の高さをH、および上 記突起間のピッチをPとしたとき、

 $0.18 \le H \le 0.48$

 $10 H \le P \le 30 H$ としたことを特徴とする熱交換器。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、自動車用ラジエータや破房装置など に使用される交換器において、流体の流れる通路 を構成する偏平チューブの構造に関する。

〔従來の技術〕

例えば自動車用暖房装置では、エンジンのと 水を熱敵とし、エンジン側で暖められた高温に 却水を暖房装置の熱交換器に導き、この熱交上 で車室内外の空気と熱交換して車室内の空気と めるようになっている。

上記のような暖房装置に用いられる熱交換。 上記高温の冷却水を過す偏平チューブと、この 平チューブに接合されたコルゲートフィンまと プレートフィンとを交互に貧層してコア部を引 しており、偏平チューブ内を流れる高温の冷と により該属平チューブの側壁を通じてフィンド 伝達し、このフィンの表面を流れる空気に熱く えて该空気を暖めるようになっている。

ところで、コア部における伝熱効率を高める は、偏平チュープ内を渡れる高温の冷却水のナ 偏平チューブに伝達することが大切な要因です **賈内熱伝達率の向上が要請される。**

従来、資内熱伝達串を溜めるため、偏平チェ プ内にインナーフィンを装造したり、内面に;

形成して管内熱伝達率を高める手段が提案されいるが、このような構造では管内の圧力損失がしく増大し、実車に装着した場合に売分な性能とを期待できない欠点がある。

また、実開昭 5 9 - 7 1 0 8 3 号公報に示され ように、偏平チューブにおける平坦部に、内方 引かって多数の突起を形成した提案もなされて 5。

で明が解決しようとする問題点〕

」かしながら、只単に、多数の突起を設けても、 勺の圧力損失の増大を招き、賃内流速が低下す こめ伝熱性能が低下する場合がある。

引逝点を解決するための手段】

・発明は、管内の圧力損失を少なくして管内熱 ミ平を高めるため、偏平チューブにおける平坦 こ、内方に向かって多数の半球状突起を形成し、)偏平チューブの互いに対向する平坦部間の内 → 開(短径)を B、上記突起の高さを H、およ ・記突起間のピッチを P としたとき、

 $0.1B \leq H \leq 0.4B$

- め、または溶接により造管したのち、偏平型 1形して構成されている。なお、偏平チューブ 偏平率(長径/短径)は、第1図に示すよう A / B = 5 ~ 1 5 に形成されている。

ルゲートフィン3 … はその屈曲部を上記値平一ブ2 … の平坦部側壁にろう付けまたは半田にて接合されている。

ア部1には入口タンク4 および出口タンク5 けられており、入口タンク4に導入 2 … に分 2 … にか 3 … に伝えられる。 で 5 へ 2 を 3 … に は 5 の で 5 る。 で 5 な か 5 と 5 と 5 に か 5 に

平チューブ2 には、第1回ないし第3回に示うな突起6 …が形成されている。すなわち、 チューブ2 における平坦な壁2aには、内方に 1 0 H ≤ P ≤ 3 0 H としたことを特徴とする。

(作用)

本発明によると、優平チューブの内壁に沿った 管内流れは突起下流側で後流を生じ、この後に沿った より管内流れを伝熱方向(管壁に直交する方に) に隆起させて流体の入れ替えを行ない、これにより 流体から偏平チューブの壁への無伝達を効果的 に促進することができる。しかも、突起は半球の に促進することができる。 のは少なく、 であるから 通路断面なの は少 は少 なく であるから できる。

(発明の実施例)

以下、本発明について、第1回ないし第9回に 示す第1の実施例にもとづき説明する。

第6図に無交換器の全体を示し、1 はコア部であり、偏平チューブ2 … とコルゲートフィン3 …またはブレートフィンを、チューブ2 の軸方向の鉛直面に發層して構成されている。

幅平チューブ 2 … は、黄銅またはアルミニウムからなる帯材をパイプ形に加工し、端級相互を巻

向かって半球状の突起 6 … が、凝および微方向に 並列されて形成されている。

これう突起 6 … は、突起高さ H が、 通水路の断面高さ、すなわち幅平チューブ 2 の短径 B の 1 0 %以上、 4 0 %以下に形成されている(0 . 1 B \leq H \leq 0 . 4 B)。

そして、突起 6 … は半球状をなしているから、その突起 基部の径 D は、第 2 図に示すように、突起高さ H の 2 倍を超え、 3 倍未満の範囲 (2 H < D < 3 H)で、平坦部 2a と 沿らかな曲面をなして交わるように設定されている。

また、突起 6 … の流れ方向に沿う間隔、つまりピッチ P は、第 2 図に示すように、突起の高さHに対して 1 0 倍以上、 3 0 倍以下に制限されている (10 H ≤ P ≤ 3 0 H)。

さらに、流れ方向と交差する構接した突起 6 … 間の間隔 W は、第 3 図に示すように、突起の高さ H に対して 4 倍以上(W ≥ 5 H)に設定されている。

このような構成による実施例の作用を説明する。

しかも、突起6 …は偏平チューブ2 の平坦部24 に所々に突設してあるので、通路断面積の減少は 少く、管内の圧力損失を低く抑えることができる。 次に、本発明の数値的限定の理由について説明 する。

突起高さ H を、 0 . 1 B ≤ H ≤ 0 . 4 B に するのは以下の理由による。 すなわち、第 8 図は突起 固さ H の 影響具合を調べたものであるが、 突起高 き H が 恒径 B の 1 0 % 未満 であると、 突起 6 … の 下流側に回り込む後流による陸起作用が弱く、管

性能は低下する。

したがって、実用車両の破房装置に実施して効果を発揮し得るのは、10 H≤P≤30 Hの範囲である。

また、隣接した突起 8 …間の間隔WをW≥4H に設定するのは、上記したように、隣接する突起 間互が干渉し合ってそれぞれの突起 8 …の下液側 に回り込む後流による胜起作用を狙害しないよう にするためである。

このようなことから、突起高さ日を 0. 1 B ≤ H ≤ 0. 4 B、突起径 D を 2 H < D < 3 H、突起径 D を 2 H < D < 3 H、突起径 D を 2 H < D < 3 H、突起径 D を 2 H < D < 3 H、突起径 D を 2 H < D < 3 D H、および隣接した災起 6 …間の間隔 W を W ≥ 4 H に設定したものは、実単に搭載した場合、第 7 図に示す実験データからも判るように、突起を設けない従来のものに比べて 1 0 % 程度の性能向上が確められ、実用に進し得ることが 博明している。

なお、上記第1の実施例では、突起 6 …の形状を半球形としたが、本発明はこれに限らず、突起 6 …は冷災の流れ方向の断面が半球形であればよ

内の流れが管壁部分と入れ替わらず、従来とほとんど同じような解流となって管内無伝達率が低く突起6 …を設ける初期の目的が達成できない。また、突起高さ日が短径Bの40%を超えると、内障が極端に減少したり残留応力が生じななど、製造が不可能であり、加工上の制約を受ける。

一方、突起 6 …のピッチ P が大き過ぎると、単位面積当りの突起数が減少するので、突起 6 …の下流側に回り込む後流の形成が少なくなり、伝熱

く、流れ方向と直交する方向には、第10図に示す第2の実施例のような楕円形突起10、第11図に示す第3の実施例のような角形突起20などであってもよい。

また、突起の配列は第12図に示す第3の実施 例のように、千島形であってもよい。

(発明の効果)

および10HSPS30 としたので、実用市に 適用して管内の圧力損失が少なくて管内熱伝達率 を高め、放熱性能が増し、熱交換効率の向上が認 められる。

4. 図面の簡単な説明

第1図ないし第9図は本発明の第1の実施例を示し、第1図は偏平チューブの拡大した斜視図、第2図および第3図はそれぞれ第1図中日-日線および第5図はそれぞれ第1図中日-日線および第5図は作用を説明するための図、第6図は無交換器全体の斜視図、第7図ないし第9図はそれぞれ実験データを示す特性図、第10図ないし第12図はそれぞれ本発明の第2ないし第4の実施例を示す値平チューブの斜視図である。

1 … コア部、2 … 偏平チューブ、3 … フィン、6 、10、20… 突起。

出版人代理人 弁理士 鈴江武彦

,p

