

Graphen 3: Maximum Flow, Bipartite Matching

Ford-Fulkerson, Edmond-Karp, Max Flow, Min Cut, MCBM, Bipartite Graphen, Vertex Cover, König Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt | 9. Juni 2019

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

$$50 + 30$$

Motivation

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

$$50 + 30 + 15 = 95$$

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Ford Fulkerson

• mf = 0;

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

- mf = 0;
- \blacksquare Solange ein Pfad p (s \rightarrow ... i \rightarrow j \rightarrow ... \rightarrow t) von source nach t existiert:

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

- mf = 0;
- \blacksquare Solange ein Pfad p (s \rightarrow ... i \rightarrow j \rightarrow ... \rightarrow t) von source nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

- mf = 0;
- \blacksquare Solange ein Pfad p (s $\rightarrow ...$ i \rightarrow j $\rightarrow ...$ \rightarrow t) von source nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - lacksquare 2. Kapazität aller Kanten in Pfadrichtung (z.B. i ightarrow j) um f reduzieren

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

IS und V

- mf = 0;
- Solange ein Pfad p (s \rightarrow ... i \rightarrow j \rightarrow ... \rightarrow t) von source nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - lacksquare 2. Kapazität aller Kanten in Pfadrichtung (z.B. i ightarrow j) um f reduzieren
 - \blacksquare 3. Kapazität aller Kanten gegen Pfadrichtung (z.B. j \rightarrow i) um f erhöhen

Ford Fulkerson

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

- mf = 0;
- \blacksquare Solange ein Pfad p (s \rightarrow ... i \rightarrow j \rightarrow ... \rightarrow t) von source nach t existiert:
 - 1. finde minimale Kante f auf dem Pfad
 - lacksquare 2. Kapazität aller Kanten in Pfadrichtung (z.B. i ightarrow j) um f reduzieren
 - lacksquare 3. Kapazität aller Kanten gegen Pfadrichtung (z.B. j ightarrow i) um f erhöhen
 - mf += f;

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Rückkante

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Laufzeit

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Laufzeit Ford Fulkerson

O(ES)

Laufzeit

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Laufzeit Ford Fulkerson

- O(ES)
- wobei S die Lösung ist

Laufzeit

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Laufzeit Ford Fulkerson

- O(ES)
 - wobei S die Lösung ist
- lacksquare O(S) mal Tiefensuche, was in O(E) läuft, da $E \geq V$ 1

Laufzeit

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Laufzeit Ford Fulkerson

- O(ES)
- wobei S die Lösung ist
- lacksquare O(S) mal Tiefensuche, was in O(E) läuft, da $E \geq V$ 1
- \Rightarrow kann sehr groß werden

Laufzeit Beispiel

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Laufzeit Beispiel

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Laufzeit Beispiel

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Laufzeit Beispiel

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Laufzeit Beispiel

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Edmond Karp

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Unterschied zu Ford Fulkerson

Breitensuche statt Tiefensuche

Edmond Karp

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Unterschied zu Ford Fulkerson

- Breitensuche statt Tiefensuche
- Laufzeit O(VE²)

Edmond Karp

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Unterschied zu Ford Fulkerson

- Breitensuche statt Tiefensuche
- Laufzeit O(VE²)
- O(VE) mal Breitensuche, was in O(E) läuft

UVa 10779 - Collector's Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

UVa 10779 - Collector's Problem

Unterschiedliche Karten zum Sammeln

UVa 10779 - Collector's Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1

UVa 10779 - Collector's Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen

UVa 10779 - Collector's Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und V

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen
- Bob tauscht beliebig (auch Einzelstücke ein und gegen Karten, die er bereits besitzt)

UVa 10779 - Collector's Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

- Unterschiedliche Karten zum Sammeln
- Alle Karten sind gleich viel Wert, Tausch 1 zu 1
- Andere Sammler tauschen nur eigene Duplikate gegen Karten, die sie noch nicht besitzen
- Bob tauscht beliebig (auch Einzelstücke ein und gegen Karten, die er bereits besitzt)
- Wie viele unterschiedliche Karten kann Bob maximal besitzen?

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Einmaliger "greedy" Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Mehrfacher beliebiger Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Mehrfacher beliebiger Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Mehrfacher beliebiger Tausch

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Vereinfachung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Multi-source & Multi-sink

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Multi-source & Multi-sink

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

■ Situation: Mehrere sources s_0, \ldots, s_i und sinks t_0, \ldots, t_j

Multi-source & Multi-sink

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

- Situation: Mehrere sources s_0, \ldots, s_i und sinks t_0, \ldots, t_j
- Füge zwei neue Knoten hinzu, eine super source ss und ein super sink st

Multi-source & Multi-sink

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphe

- Situation: Mehrere sources s_0, \ldots, s_i und sinks t_0, \ldots, t_j
- Füge zwei neue Knoten hinzu, eine super source ss und ein super sink st
- $\forall \mathbb{N}_0 \ni x \leq i$: Füge (ss, s_x) mit Gewicht ∞ zu E hinzu
- $\forall \mathbb{N}_0 \ni y \leq j$: Füge (t_y, st) mit Gewicht ∞ zu E hinzu

Multi-source & Multi-sink

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphe

- Situation: Mehrere sources s_0, \ldots, s_i und sinks t_0, \ldots, t_j
- Füge zwei neue Knoten hinzu, eine super source ss und ein super sink st
- $\forall \mathbb{N}_0 \ni x \leq i$: Füge (ss, s_x) mit Gewicht ∞ zu E hinzu
- $\forall \mathbb{N}_0 \ni y \leq j$: Füge (t_y, st) mit Gewicht ∞ zu E hinzu
- Berechne Max-Flow von ss nach st

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

- Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität
- Ersetze jeden Knoten v_x durch zwei Knoten v_-in_x und v_-out_x und verbinde sie durch eine gerichtete Kante mit der Knotenkapazität als Gewicht

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

IS und VC

Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität

- Ersetze jeden Knoten v_x durch zwei Knoten v_-in_x und v_-out_x und verbinde sie durch eine gerichtete Kante mit der Knotenkapazität als Gewicht
 - $V' := \{v_in_0, v_out_0, \dots, v_in_i, v_out_i\}$

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

- Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität
- Ersetze jeden Knoten v_x durch zwei Knoten v_-in_x und v_-out_x und verbinde sie durch eine gerichtete Kante mit der Knotenkapazität als Gewicht
 - $V' := \{v_{-}in_0, v_{-}out_0, \dots, v_{-}in_i, v_{-}out_i\}$
 - $\bullet E' := E \cup \{(v_{-}in_x, v_{-}out_x) : \mathbb{N}_0 \ni x \leq i\}$

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphe

- Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität
- Ersetze jeden Knoten v_x durch zwei Knoten v_-in_x und v_-out_x und verbinde sie durch eine gerichtete Kante mit der Knotenkapazität als Gewicht
 - $V' := \{v_{-}in_0, v_{-}out_0, \dots, v_{-}in_i, v_{-}out_i\}$
 - $\bullet E' := E \cup \{(v_{-}in_x, v_{-}out_x) : \mathbb{N}_0 \ni x \leq i\}$
 - $\forall \mathbb{N}_0 \ni x \leq i : w((v_{-i}n_x, v_{-o}ut_x)) \coloneqq w(v_x)$

Knoten Kapazität

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphe

- Situation: Knoten v_0, \ldots, v_i haben eigene Kapazität
- Ersetze jeden Knoten v_x durch zwei Knoten v_-in_x und v_-out_x und verbinde sie durch eine gerichtete Kante mit der Knotenkapazität als Gewicht
 - $V' := \{v_{-}in_0, v_{-}out_0, \dots, v_{-}in_i, v_{-}out_i\}$
 - $\bullet E' := E \cup \{(v_{-}in_x, v_{-}out_x) : \mathbb{N}_0 \ni x \leq i\}$
- Doppelte Anzahl an Knoten!

Schnitt

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Definition

Schnitt

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Schnitt

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Das zu C gehörige ${f cut\text{-set}}$ ist

$$X_C := \{(u, v) \in E \mid u \in S, v \in T\} = (S \times T) \cap E$$

Schnitt

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

IS und \

Definition

Ist $V = S \dot{\cup} T$ eine Partition von V mit $s \in S$, $t \in T$, so heißt C := (S, T) ein s-t cut (oder s-t Schnitt).

Das zu C gehörige cut-set ist

$$X_C := \{(u, v) \in E \mid u \in S, v \in T\} = (S \times T) \cap E$$

Die **Kosten** des Schnittes sind definiert durch $c(S, T) := \sum_{(u,v) \in X_C} c(u,v)$

Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Definition

Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Definition

Ein **Min Cut** ist ein s-t cut C = (S, T) mit minimalen Kosten.

Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Definition

Ein **Min Cut** ist ein s-t cut C = (S, T) mit minimalen Kosten.

Für einen solchen gilt insbesondere:

 $\forall e \in X_C, X_C' \coloneqq X_C \setminus e$: Es existiert ein Weg von s nach t in $(V, E \setminus X_C')$

Berechnung Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Nebenprodukt von Max Flow

Berechnung Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)

Berechnung Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problen

Variationen von Network Flow

Bipartite Graphen

IS und VC

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S

Berechnung Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S
- $T = V \setminus S$

Berechnung Min Cut

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphe

- Nebenprodukt von Max Flow
- DFS/BFS von s ausführen (nur Kanten mit streng positiver restlicher Kapazität traversierbar)
- Jeder gefundene Knoten ist in S
- $T = V \setminus S$
- Alle Kanten in X_C haben Restkapazität $0 \implies$ Min Cut = Max Flow

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer

Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und VC

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten
- Computer des Chefs und Server sind unzerstörbar und Verbindung soll getrennt werden

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphe

UVa 11506 - Angry Programmer

- Gefeuerter Programmierer will sich r\u00e4chen und Netzwerk zerst\u00f6ren
- Kann Computer und Kabel (verbinden je einen Computer mit einem Anderen) zerstören, jeweils mit bekannten Kosten
- Computer des Chefs und Server sind unzerstörbar und Verbindung soll getrennt werden
- Was sind die minimalen Kosten um die Verbindung zu zerstören?

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und VC

UVa 11506 - Angry Programmer - Lösung

Computer sind Knoten, Kabel sind Kanten

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

- Computer sind Knoten, Kabel sind Kanten
- Aufteilen der Knoten mit Gewicht in in- & out-Knoten mit gewichteter Kante

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

UVa 11506 - Angry Programmer - Lösung

- Computer sind Knoten, Kabel sind Kanten
- Aufteilen der Knoten mit Gewicht in in- & out-Knoten mit gewichteter Kante
- Min Cut

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Hevdt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von **Network Flow**

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Aufgabe zu Min Cut & Vertex Capacities

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Matchings

Definition

Sei $G = (V, E), E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1,e_2\in M:e_1\neq e_2\Rightarrow e_1\cap e_2=\varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\} \text{ heißt inklusionsmaximal}$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $\mathit{M} \in \mathcal{M} \coloneqq \{\mathit{M} \subseteq \mathit{E} \mid \mathit{M} \text{ ist Matching}\}$ heißt **inklusionsmaximal**, falls

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $\mathit{M} \in \mathcal{M} \coloneqq \{\mathit{M} \subseteq \mathit{E} \mid \mathit{M} \text{ ist Matching}\}$ heißt **inklusionsmaximal**, falls

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $\mathit{M} \in \mathcal{M}$ heißt kardinalitätsmaximal

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} := \{M \subseteq E \mid M \text{ ist Matching}\} \text{ heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1,e_2 \in \textit{M}: e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $\mathit{M} \in \mathcal{M} \coloneqq \{\mathit{M} \subseteq \mathit{E} \mid \mathit{M} \text{ ist Matching}\}$ heißt **inklusionsmaximal**, falls

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Für G bipartit: "Maximum Cardinality Bipartite Matching", kurz MCBM.

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Kein Matching

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Matching, aber weder inklusions- noch kardinalitätsmaximal

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Inklusions-, aber nicht kardinalitäsmaximales Matching

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Kardinalitätsmaximales Matching

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

Definition

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

Gegeben eine Liste N von natürlichen Zahlen und $a, b \in N$ ($a \neq b$), existiert ein Complete Prime Pairing von N, in dem a und b gepaart werden?

■ Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

Gegeben eine Liste N von natürlichen Zahlen und $a, b \in N$ ($a \neq b$), existiert ein Complete Prime Pairing von N, in dem a und b gepaart werden?

■ Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{ v \in N \mid v \text{ gerade} \}, V_2 := N \setminus V_1$.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{ v \in N \mid v \text{ gerade} \}, V_2 := N \setminus V_1$.
- Setze V := N und $E := \{\{a, b\} \mid a, b \in N \text{ und } a + b \in \mathbb{P}\}$. Dann ist G := (V, E) bipartit.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

Complete Prime Pairing

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{v \in N \mid v \text{ gerade}\}, V_2 := N \setminus V_1$.
- Setze V := N und $E := \{\{a, b\} \mid a, b \in N \text{ und } a + b \in \mathbb{P}\}$. Dann ist G := (V, E) bipartit.
- Berechne ein MCBM M von G und gebe "Ja" aus, falls $|M| = |V_1| = |V_2|$.

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Augmenting Paths

Sei $G = (V, E), V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und VO

Augmenting Paths

Sei $G=(V,E),\ V=V_1\dot\cup V_2$ bipartit und $M\subseteq E$ ein Matching. Ein Pfad $(v_1,...,v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

• $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

• $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)

$$\forall i \in \{1,...,n-1\} : \{v_i,v_i+1\} \in \begin{cases} E \setminus M, & i \text{ ungerade,} \\ M, & i \text{ gerade.} \end{cases}$$

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen vo Network Flow

Bipartite Graphen

IS und VO

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

- $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)
- $\forall i \in \{1,...,n-1\} : \{v_i,v_i+1\} \in \begin{cases} E \setminus M, & i \text{ ungerade,} \\ M, & i \text{ gerade.} \end{cases}$
- $v_n \in V_2 \setminus \bigcup M$ (freier Knoten rechts)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

Ist M ein Matching und $(v_1, ..., v_n)$ ein Augmenting Path

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und V

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

Ist M ein Matching und $(v_1, ..., v_n)$ ein Augmenting Path, so ist

$$M' := M \setminus P \cup P \setminus M$$
, wobei $P := \{\{v_i, v_{i+1}\} \mid i \in \{1, ..., n-1\}\}$

(flippe die Kanten entlang des Pfades) ein Matching mit |M'| = |M| + 1.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

(1) Initialisiere $M := \emptyset$.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und V

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

Findet MCBM in Laufzeit $O(|V| \cdot |E|)$.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VO

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Independent Set

Definition

Gegeben einen Graphen G. Ein Independent Set IS ist eine Menge von Knoten, sodass keine zwei Knoten in IS über eine Kante in G verbunden sind.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Independent Set

Definition

Gegeben einen Graphen *G*. Ein Independent Set *IS* ist eine Menge von Knoten, sodass keine zwei Knoten in *IS* über eine Kante in *G* verbunden sind.

In der Regel wird nach einem möglichst großen Independent Set gesucht.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphen

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Vertex Cover

Definition

Gegeben einen Graphen *G*. Ein Vertex Cover *VC* ist eine Menge von Knoten, sodass jede Kante in *G* mit mindestens einem Knoten aus *VC* verbunden ist.

In der Regel wird nach einem möglichst kleinen Vertex Cover gesucht.

Zusammenhang zwischen IS und VC

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein VC von $G \iff V \setminus X$ ist ein IS von G

Zusammenhang zwischen IS und VC

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein VC von $G \iff V \setminus X$ ist ein IS von G

Beweis:

- Sei X ein beliebiges VC. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:

Zusammenhang zwischen IS und VC

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Grapher

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein VC von $G \iff V \setminus X$ ist ein IS von G

Beweis:

- Sei X ein beliebiges VC. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:
 - Angenommen es würde $\{u,v\} \subseteq V \setminus X, u \neq v$ existieren mit $(u,v) \in E$
 - Dann wäre aber $u, v \notin X$ und die Kante (u, v) wäre vom VC X nicht abgedeckt \Rightarrow Widerspruch!

Zusammenhang zwischen IS und VC

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Probler

Variationen von Network Flow

Bipartite Graphe

IS und VC

Satz

Sei G = (V, E) eine Graph und $X \subseteq V$ eine Menge von Knoten. Dann gilt:

X ist ein VC von $G \iff V \setminus X$ ist ein IS von G

Beweis:

- Sei X ein beliebiges VC. Wir behaupten, dass $V \setminus X$ ein IS ist.
- Nehmen wir also das Gegenteil an und führen dies zum Widerspruch:
 - Angenommen es würde $\{u,v\} \subseteq V \setminus X, u \neq v$ existieren mit $(u,v) \in E$
 - Dann wäre aber $u, v \notin X$ und die Kante (u, v) wäre vom VC X nicht abgedeckt \Rightarrow Widerspruch!
- Die andere Richtung folgt ähnlich

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Hevdt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen von Network Flow

Bipartite Graphen

IS und VC

Größe von IS und VC

Es ist trivial beliebige IS oder VC anzugeben. Deswegen suchen wir in der Regel nach möglichst großen IS und möglichst kleinen VC. Das wollen wir formalisieren:

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen vo Network Flow

Bipartite Grapher

IS und VC

Größe von IS und VC

Es ist trivial beliebige IS oder VC anzugeben. Deswegen suchen wir in der Regel nach möglichst großen IS und möglichst kleinen VC. Das wollen wir formalisieren:

Definition

Ein IS/VC ist **inklusions maximal/minimal**, wenn kein Knoten hinzugefügt/entfernt werden kann ohne die Eigenschaft des IS/VC zu behalten.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen vor Network Flow

Bipartite Grapher

IS und VC

Größe von IS und VC

Es ist trivial beliebige IS oder VC anzugeben. Deswegen suchen wir in der Regel nach möglichst großen IS und möglichst kleinen VC. Das wollen wir formalisieren:

Definition

Ein IS/VC ist **inklusions maximal/minimal**, wenn kein Knoten hinzugefügt/entfernt werden kann ohne die Eigenschaft des IS/VC zu behalten. Ein IS/VC ist **kardinalitäts maximal/minimal**, wenn kein größeres/kleineres IS/VC existiert.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen vor Network Flow

Bipartite Graphe

IS und VC

Größe von IS und VC

Es ist trivial beliebige IS oder VC anzugeben. Deswegen suchen wir in der Regel nach möglichst großen IS und möglichst kleinen VC. Das wollen wir formalisieren:

Definition

Ein IS/VC ist **inklusions maximal/minimal**, wenn kein Knoten hinzugefügt/entfernt werden kann ohne die Eigenschaft des IS/VC zu behalten. Ein IS/VC ist **kardinalitäts maximal/minimal**, wenn kein größeres/kleineres IS/VC existiert.

Bemerkung

Ein kardinalitätsmaximales IS oder ein kardinalitätsminimales VC auszurechnen is *NP*-schwer.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen von Network Flow

Bipartite Graphen

IS und VC

Satz von König

Satz (von Dénes König)

In einem bipartiten Graphen ist die Größe eines kardinalitätsminimalem Vertex Cover (VC) gleich der Größe eines Max Cardinality Bipartite Matching (MCBM).

Satz von König

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Satz (von Dénes König)

In einem bipartiten Graphen ist die Größe eines kardinalitätsminimalem Vertex Cover (VC) gleich der Größe eines Max Cardinality Bipartite Matching (MCBM).

Etwas informeller aufgeschrieben erhalten wir damit |VC| = |MCBM|. Und mit unserem Wissen aus dem vorangegangenen Satz folgt: |V| = |VC| + |IS| = |MCBM| + |IS|

Satz von König

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen vo Network Flow

Bipartite Graphen

IS und VC

Satz (von Dénes König)

In einem bipartiten Graphen ist die Größe eines kardinalitätsminimalem Vertex Cover (VC) gleich der Größe eines Max Cardinality Bipartite Matching (MCBM).

Etwas informeller aufgeschrieben erhalten wir damit |VC| = |MCBM|. Und mit unserem Wissen aus dem vorangegangenen Satz folgt:

$$|V| = |VC| + |IS| = |MCBM| + |IS|$$

Mit diesem Satz und den uns bekannten Verfahren erhalten wir nur die Größen der Mengen nicht aber deren Elemente. Um auch an die Elemente der Mengen ran zu kommen, braucht es noch mehr Verfahren. Die Mengen sind allerdings nicht eindeutig.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Problem

Variationen vo Network Flow

Bipartite Graphe

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind $N \leq 500$ Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden. Zwei Schüler laufen Gefahr ein Paar zu werden, wenn sie ein unterschiedliches Geschlecht, maximal 40cm Größendifferenz und einen gleichen Musikgeschmack haben.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen voi Network Flow

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind $N \leq 500$ Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden. Zwei Schüler laufen Gefahr ein Paar zu werden, wenn sie ein unterschiedliches Geschlecht, maximal 40cm Größendifferenz und einen gleichen Musikgeschmack haben.

Lösungsansatz:

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen voi Network Flow

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind $N \leq 500$ Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden. Zwei Schüler laufen Gefahr ein Paar zu werden, wenn sie ein unterschiedliches Geschlecht, maximal 40cm Größendifferenz und einen gleichen Musikgeschmack haben.

Lösungsansatz:

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten
- Suche nach einem maximalem IS

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre von der Heydt

Maximum Flow

UVa 10779 -Collector's Proble

Variationen vor Network Flow

Bipartite Grapher

IS und VC

Guardian of Decency

Aufgabe

Gegeben sind $N \leq 500$ Schüler, beschrieben durch Größe, Geschlecht und Musikgeschmack. Der Lehrer möchte wissen wie viele Schüler maximal auf Klassenfahrt kommen können, ohne dass die Gefahr besteht, dass zwei Schüler ein Paar werden. Zwei Schüler laufen Gefahr ein Paar zu werden, wenn sie ein unterschiedliches Geschlecht, maximal 40cm Größendifferenz und einen gleichen Musikgeschmack haben.

Lösungsansatz:

- Modelliere das Problem als Graphen mit den Schülern als Knoten
- Verbinde Schüler, wenn sie ein Paar werden könnten
- Suche nach einem maximalem IS
- nutze dafür aus dass der Graph bipartit ist, indem Männchen und Weibchen voneinander getrennt werden
- Berechne mittels Flow ein MCBM und daraus die Größe von IS