Praktische Leistungsüberprüfung in DBI			
Name:	Klasse: 5CAIF		
1 Transactions	von 6 Punkten		
In einer Oracle Datenbank wird folgende Tabelle im Tablespace von User1 erstellt:			
CREATE TABLE Salary (
S_Teacher VARCHAR2(10) PRIMARY KEY,			
S_Salary DECIMAL(9,4)			
);			

Geben Sie die Ergebnisse der folgenden SELECT Statements aus, wenn folgende Anweisungen unter dem angegebenen User an die Datenbank gesendet wurden.

User1		User2	
INSERT INTO Sa	INSERT INTO Salary VALUES ('SZ', 3000);		er1.Salary VALUES
SELECT * FROM S	SELECT * FROM Salary		Jser1.Salary
S_Teacher	S_Salary	S_Teacher	S_Salary
COMMIT;			
SELECT * FROM S	SELECT * FROM Salary		Jser1.Salary
S_Teacher	S_Salary	S_Teacher	S_Salary
UPDATE Salary S	SET S_Salary = 2000;		
SELECT * FROM S	Salary	SELECT * FROM U	Jser1.Salary
S_Teacher	S_Salary	S_Teacher	S_Salary
COMMIT;	1	COMMIT;	

2 Datenbankmanagement

von 4 Punkten

User1 führt folgende Anweisung aus (Autocommit ist OFF):

INSERT INTO Salary VALUES ('SZ', 3000);

Sie geben nun den Befehl **shutdown normal**; in sqlplus ein. Was passiert danach? Kreuzen Sie die richtigen Antworten an. Für falsch beantwortete Fragen gibt es 1 Punkt Abzug.

	Ja	Nein
Die Datenbank führt automatisch ein COMMIT für alle Transaktionen aus.		
Die Datenbank trennt alle Verbindungen der User und führt ein ROLLBACK aus.		
Die Datenbank wartet auf das Ende der Transaktionen.		
Die Datenbank wartet auf den Disconnect aller User.		

In der Tabelle Salary sind folgende Werte gespeichert:

<u>S Teacher</u>	<u>er S Salary</u>	
HIK	3000	
SZ	2500	
NIJ	NULL	

Welche Werte liefern die folgenden SELECT Statements:

4 Analytische Funktionen

von 6 Punkten

Führen Sie die Anweisungen in der Datei *temperature.sql* aus und schreiben Sie die SQL Statements, die die folgenden Fragestellungen beantworten.

4.1 Geben Sie den Mittelwert pro Tag und Region (Spalte Tagesmittel) sowie den Mittelwert dieser Tagesmittel für die ganze Region aus.

Korrekte Ausgabe:

REGION	TAG	TAGESMITTEL	REGIONMITTEL
NOE	01/10/2019	14,15	9,96
NOE	02/10/2019	9,65	9,96
NOE	03/10/2019	8,30	9,96
WIE	01/10/2019	11,10	10,32
WIE	02/10/2019	8,50	10,32
WIE	03/10/2019	12,90	10,32
	•••	•••	

4.2 Geben Sie die 3 heißesten Tage (bezogen auf die ganze Tabelle) aus.

Korrekte Ausgabe:

REGION	STATION	TAG	TEMP	RANG
NOE	1002	13/10/2019	19,9	1
NOE	1002	04/10/2019	17,8	2
NOE	1001	20/10/2019	16,8	3